Midterm '15

- 1. Consider a single factor experiment with three levels of the factor and three replicates. The response data turned out to be $y_{11}=24$, $y_{12}=22$, $y_{13}=20$, $y_{21}=27$, $y_{22}=26$, $y_{23}=28$, $y_{31}=32$, $y_{32}=34$, $y_{33}=36$.
 - a) What is the value of y..?

b) What is the value of \bar{y} ..?

$$\overline{y} = \frac{243}{3} = 27.67$$

c) What are the values of \bar{y}_1 , \bar{y}_2 and \bar{y}_3 ?

$$y_1 = 21$$
 $y_2 = 27$ $y_3 = 34$

d) Find the value of SS_E for the corresponding ANOVA model.

e) What is the number of degrees of freedom for SS_T , $SS_{Treatments}$ and SS_E in the corresponding ANOVA model?

1

f) What is the value of $\hat{\sigma}^2$ for the corresponding ANOVA model?

2. A single factor experiment was performed for 4 levels of the factor with 4 replicates. It was found that $\bar{y}_1 = 25$, $\bar{y}_2 = 21$, $\bar{y}_3 = 19$, $\bar{y}_4 = 28$ and $MS_E = 9$.

The experimenter suspects that the average of the first three treatments is different from the fourth.

a) Propose a contrast to check the experimenter's suspicion.

b) Propose two more contrasts so that all three of them are orthogonal.

$$\Gamma_2 = M_1 + M_2 - \ell_1 M_3$$

$$\Gamma_3 = M_1 - M_2$$

c) Use Scheffe's method to test the original experimenter's suspicion hypothesis at $\alpha = 0.05$

$$C_{1} = 25 + 21 + 19 - 3.28 = 65 - 76 = -19$$

$$S_{c_{1}} = \sqrt{\frac{9}{4}(1 + 1 + 1 + 9)} = \frac{3}{2}\sqrt{12} = \frac{3 \cdot 2\sqrt{3}}{2} = 3\sqrt{3} \quad (C_{1}) > 16.8$$

$$S_{d_{1}} = 3\sqrt{3} \cdot \sqrt{3} = 9\sqrt{3} \cdot \sqrt{9} = 16.8 \quad te_{1} < 16.8$$

d) Use Scheffe's method perform the corresponding tests on the two contrasts suggested by you, at $\alpha = 0.05$. What is the result?

$$C_{2} = 25 + 21 - 2 \cdot 19 = 46 - 38 = 8$$

$$\int_{C_{2}} = \sqrt{\frac{3}{4}(1 + 1 + 4)} = \frac{3}{2} \sqrt{6}$$

$$\int_{d_{1}2} = \frac{3}{2} \sqrt{6} \sqrt{3 \cdot 3 \cdot 49} = 11.9$$

$$C_{3} = 25 - 21 = 4$$

$$\int_{C_{3}} = \sqrt{\frac{3}{4}(1 + 1)} = \frac{3}{2} \sqrt{2}$$

$$\int_{d_{1}3} = \frac{3}{2} \sqrt{2} \cdot \sqrt{3 \cdot 3 \cdot 49} = 6.9$$

$$\int_{d_{1}3} = \frac{3}{2} \sqrt{2} \cdot \sqrt{3 \cdot 3 \cdot 49} = 6.9$$

I = ABDE = BEDF = ACEF

- 3. A 2^{6-2} experiment needs to be performed. The experimenter has decided to use E = ABD and F = BCD as design generators.
 - a) List all runs the experimenter will have to perform.

		'a) L	ist all runs the experimenter will have to perform.	•
n	n	u)	det o 1 = their numbers inchicate #	
			add 1 2 of letters in russ led are co.	magi
ì	- 1	ae	add 1 2 of letters in rules led are co.	4
L	ò	bed	h M	Ι.
		abd	abole 2 2 with block generators from (•
2	l	uos		11
1	'n	cf;	cde 1 2 they are reeded to answer (aj
	'n	aces		
2	2	DC - 7	$bcd \neq 2$	
2	(bce		
2	2	abc	abedef 3 3	

b) Write down the alias chains involving the main effects.

$$A = BDE = ABCDF = CEF$$
 $F = ABDEF = BCD = ACE$
 $B = ADE = CDF = ABCEF$
 $C = ABCDE = BOF = AEF$
 $D = ABE = BCF = ACDEF$
 $E = ABD = BCDEF = ACF$

c) The experimenter has learned that it would be possible to perform only four runs in a single day. Therefore she would need to block the design accordingly. Propose a set of block generators. Explain why you've chosen this set.

d) Write down the runs that would go in each block.

block (lee)	block 2 (20)	block 3 (0e)	block 4 (00)
(1)	a 6 1	bef	ae
acef	bce	be fadt	cf
abole	def	cde	bol
bedf	acd	abc	abcdef

- 4. In a factorial design with four factors, the following runs were performed: d=20, ac=22, b=26, abcd=30.
 - a) What is the full defining relation for this design?

(1)
$$d$$
 $O = AB$ $I = ABO = AC = BCO$
 $G = AC$
 $G = AC$

b) Find the estimates for the main factor effects assuming all interactions are negligible. Are any of the main factors aliased with each other?

$$A = \frac{30+22}{2} - \frac{20+26}{2} = 26-23=3$$

$$B = \frac{26+30}{2} - \frac{20+21}{2} = 28-21=7$$

$$C = A = 3$$

$$D = \frac{30+10}{2} - \frac{22+26}{2} = 25-24=1$$

c) Suppose additional four runs have been performed: ad = 24, c = 28, ab = 20, bcd = 26. What is the full defining relation for this fraction? Is it a fold-over? What kind of fold-over?

d) Combine the two sets of runs to find the estimates of the main effects. What is the full defining relation of the combined design?

$$T = BCD$$

$$A = \frac{30 + 22 + 24 + 20}{4} - \frac{20 + 26 + 78 + 26}{4} = 24 - 25 = -1$$

$$B = \frac{26 + 30 + 20 + 26}{4} - \frac{20 + 21 + 24 + 28}{4} = 25.5 - 23.5 = 2$$

$$C = \frac{36 + 22 + 28 + 26}{4} - \frac{20 + 26 + 24 + 26}{4} = 26.5 - 27.5 = 4$$

$$D = \frac{30 + 20 + 24 + 26}{4} - \frac{22 + 26 + 78 + 20}{4} = 25 - 24 = 1$$