Number Systems

History

 Earliest written form of numeral systems date back to at least 300 BCE (Devanagari numerals)

Bases

- A number base is the number of digits or combination of digits that a system of counting uses to represent numbers
- A base can be any whole number greater than 0
- The most commonly used number system is the decimal system, commonly known as base 10
- Mathematically, base is written as a subscript after the number
- $V_k, 10_{16}, 10_{10}, 10_8, 10_2$

Base 2

Computers use binary to reflect a high and low states

Negative numbers

Sign magnitude representation doesn't work

Twos Complement

- 1. Convert the absolute value of the negative number into its binary representation
- 2. Invert all bits (one's complement)
- 3. Add 1 to the one's complement

Instead of subtracting two binary numbers, convert second number to two's complement (flip + 1) then add

Overflow

- Occurs in binary arithmetic when the result of an operation exceeds the maximum or minimum value
- Ex. adding 7 + 1 would not be -8 in a 4 bit signed situation
 - It should be 8

Detection

If MSB changes from 0 to 1

Conversion between bases

Binary

Binary to decimal

- Multiply starting from least significant bit
- Example
 - *K* = 2
 - $2^3 = 8$
 - $2^2 = 4$
 - $2^1 = 2$
 - $2^0 = 1$

Decimal to binary

- Most significant bit (tiniest when dividing) → least significant bit (largest when dividing)
- Prepending 0s will not change the value
 - Useful when a certain number of bits is required but the number has less bits
- Example
 - Convert 91₁₀ to 8-bit binary number
 - 91/2 = 45 remainder 1
 - 45/2 = 22 remainder 1
 - 22/2 = 11 remainder 0
 - 11/2 = 5 remainder 1
 - 5/2 = 2 remainder 1
 - 2/2 = 0 remainder 0
 - 1/2 = 0 remainder 1
 - ullet o 1011011 o 01011011 $_2$

Hexadecimal

Hexadecimal to decimal

Decimal to hexadecimal

Hexadecimal to binary

ullet 4 bit binary ightarrow 1 digit hexadecimal