Facoltà di Ingegneria di Milano-Leonardo

Fisica tecnica a.a. 2018-2019, docenti G. Guédon A. Salioni 9 gennaio 2020

Cognome e nome	Matr	Bonus Quiz 1 2 3
Note: Il tempo a disposizione dell'allievo per la ver consultati appunti e testi. Lo svolgimento dei probl dovrà essere riportata sul foglio con il testo. LO SV CHIARO E ORDINATO E I PASSAGGI DEVONO L'allievo, al termine della prova o in caso di ritiro, soluzione degli esercizi. Qualora fosse presente sol dell'esercizio questo sarà ritenuto non svolto. NB (Tutte le trasformazioni devono essere disegnate in un o unità del Sistema Internazionale).	lemi dovrà essere riportato su j VOLGIMENTO DEGLI ESERO ESSERE CIRCOSTANZIATI. , è tenuto a consegnare il testo lo la soluzione sul foglio di tes	fogli allegati e la soluzione CIZI DEVE ESSERE dell'esame e i fogli con la to e non lo svolgimento
Esercizio 1. (9 punti) Un componente elettronico può essere visto co larghezza pari a 2,5 cm. Una ventola spinge a ad investire la lastra con velocità $w_a = 15$ m termica $N = 5$ Watt. Si vuole determinare la termica $N = 5$ Watt. Si vuole determinare la termica $N = 5$ Watt. Si vuole determinare la termica $N = 5$ Watt. Si vuole determinare la termica $N = 5$ Watt. Si vuole determinare la termica $N = 0.664$ Re $_L^{0.5}$ Pr $_L^{1/3}$ Re $_L^{0.5}$ Re $_L^{0.5}$ Nu $_L = 0.037$ Re $_L^{0.8}$ Pr $_L^{1/3}$ Sx $_L^{0.5}$ Re $_L^{0.5}$ (Per l'aria: $N = 29$ kg/kmol; visc din $_L^{0.5}$	aria alla temperatura T _a = a/s. Il componente genera emperatura superficiale de Flusso imposto Nu _L =0,906 Re _L ^{0,5} Nu _L =0,0616 Re _L ⁰	20°C e pressione $P_a = 1$ bar a al suo interno una potenza el componente. $1.8 \text{ Pr}^{1/3}$ Re $<5 \times 10^5$ Re $<10^7$
$T_s = $		
Esercizio 2. (11 punti) Un ciclo inverso di Carnot è utilizzato per ma una regione nella quale la temperatura esterna con una portata pari a 0,1 kg/s. Tale fluido er pressione di 7 bar, uscendone nello stato di nell'evaporatore è pari a 1,4 bar. Calcolare l'efficienza del ciclo (della macchine $\varepsilon_F = $	a è pari a 21 °C. Il fluido ntra nel condensatore nel li liquido saturo alla ste	o utilizzato è R134a e fluisce lo stato di vapore saturo alla ssa pressione. La pressione
Esercizio 3. (10 punti) Un contenitore munito di setto separa da una $T_{O2} = 95.0$ °C e pressione $P_{O2} = 1.5$ bar e dall e pressione $P_{N2} = 3.0$ bar. Il setto viene e considerarsi perfettamente rigidi, impermeabil	$^{\prime}$ altra un volume di V_{N2} = eliminato. Sapendo che	= 40 l di N_2 a T_{N2} = 225,0 °C contenitore e setto possono
Lo stato finale		
$P_{ m f} =$		
$T_f = $		
$\Delta S_{O2} =$		
$\Delta \mathrm{S}_{\mathrm{N2}} =$		