CSC 261/461 Database Systems

Eustrat Zhupa

November 14, 2018

B+ Trees

```
function find(value V)
 /* Returns leaf node C and index i such that C.P_i points to first record
 * with search key value V */
                    Set C = \text{root node}
                     while (C is not a leaf node) begin
                                          Let i = \text{smallest number such that } V \leq C.K_i
                                          if there is no such number i then begin
                                                                Let P_m = last non-null pointer in the node
                                                                Set C = C.P_m
                                          end
                                          else if (V = C.K_i)
                                                                then Set C = C.P_{i+1}
                                          else C = C.P_i / V < C.K_i / V < C.K_i
                     end
                     /* C is a leaf node */
                     Let i be the least value such that K_i = V
                     if there is such a value i
                                          then return (C, i)
                                          else return null; /* No record with key value V exists*/
```

B+ Trees

```
procedure printAll(value\ V)

/* prints all records with search key value V */

Set done = false;

Set (L,i) = find(V);

if ((L,i) is null) return

repeat

Print record pointed to by L.P_i

Set i=i+1

until (i> number of keys in L or L.K_i>V)

if (i> number of keys in L)

then L=L.P_n

else Set done = true;

until (done or L is null)
```


- ► Disadvantage of sequential file organization:
 - must access an index structure to locate data,
 - must use binary search, and that results in more I/O operations.
- ► Hashing avoids accessing an index structure.
- ► It provides a way of constructing indices.
 - bucket denote a unit of storage that can store records.
 - ▶ K is the set of all search-key values
 - ▶ B is the set of all bucket addresses.
 - ▶ A hash function h is a function from K to B.

- ► Hashing can be used for two different purposes.
 - 1. In a hash file organization, we obtain the address of the disk block through a function.
 - 2. In a hash index keys are organized into a hash file structure.

Hash Functions

- ► Worst hash function:
 - maps all search-key values to the same bucket.
 - ▶ all the records have to be kept in the same bucket.
 - ▶ A lookup has to examine every record to find the one desired.
- ▶ Ideal hash function:
 - distributes the stored keys uniformly across all the buckets
 - every bucket has the same number of records.

- ► We want to choose a hash function that assigns search-key values to buckets with a distribution with these qualities:
 - Uniform: That is, the hash function assigns each bucket the same number of search-key values from the set of all possible search-key values.
 - Random: In the average case, each bucket gets same number of values, regardless of the actual distribution of search-key values.

Hashes

bucket 0				

bucket 1

	15151	Mozart	Music	40000

bucket 2

32343	El Said	History	80000
58583	Califieri	History	60000

bucket 3

22222	Einstein	Physics	95000
33456	Gold	Physics	87000
98345	Kim	Elec. Eng.	80000

bucket 4

12121	Wu	Finance	90000
76543	Singh	Finance	80000

bucket 5

76766	Crick	Biology	72000

bucket 6

10101	Srinivasan	Comp. Sci.	6500
45565	Katz	Comp. Sci.	7500
83821	Brandt	Comp. Sci.	9200

bucket 7

Overflows

- ▶ When the bucket does not have enough space, a bucket overflow.
- ▶ Bucket overflow can occur for several reasons:
 - ▶ Insufficient buckets. The number of buckets, must be chosen such that $n_B > n_r/f_r$
 - Skew. Some buckets are assigned more records than are others, so a bucket may overflow even when other buckets still have space.

- ► Another form called open hashing
 - the set of buckets is fixed,
 - ▶ there are no overflow chains. Apply linear probing.
 - ▶ Drawback: Not flexible and can waste space.

Hash Indexes

- ► Hashing can be used for index-structure creation.
 - ► A hash index organizes the search keys, with their associated pointers, into a hash file structure.
 - apply a hash function on a search key to identify a bucket
 - store the key and its associated pointers in the bucket.

