Série 02 - Chap. 02 - Description microscopique de la matière - Physique-Chimie - 2de-Corrigé

	1-QCM	
1 A et B.	2 A et C.	3 A.
4 A.	5 A et C.	6 B.
7 C.	8 A et C.	9 C.
10 B.	11 B.	12 B.

On sait que dans l'écriture ${}_{Z}^{A}X$, A est le nombre de nucléons et Z le nombre de protons, égal aussi au nombre d'électrons.

■ Platine:

78 électrons, donc on a 78 protons, d'où $^{195}_{78}$ Pt. 195 nucléons – 78 protons = 117 neutrons

Cuivre:

29 électrons, donc on a 29 protons.

29 protons + 34 neutrons = 63 nucléons, d'où $^{63}_{29}$ Cu.

■ Or: 197 Au

On a 197 nucléons et 79 protons. 197 nucléons – 79 protons = 118 neutrons 79 protons, c'est aussi 79 électrons.

■ Argent:

47 électrons, donc on a 47 protons, d'où $^{108}_{47}$ Ag. 108 nucléons – 47 protons = 61 neutrons

		Atome			
		Platine Pt	Cuivre Cu	Or Au	Argent Ag
Symbole	du noyau	¹⁹⁵ Pt	63 29 Cu	¹⁹⁷ ₇₉ Au	¹⁰⁸ ₄₇ Ag
Nombre electrons neutrons	électrons	78	29	79	47
	protons	78	29	79	47
	117	34	118	61	
	nucléons	195	63	197	108

15 1. Le quotient de ces deux diamètres est :

$$\frac{100}{1 \times 10^{-3}} = 1 \times 10^5$$

2. Le diamètre approximatif du noyau est :

$$D_{\text{noyau}} = \frac{D_{\text{atome}}}{\text{quotient}}$$

$$D_{\text{noyau}} = \frac{1 \times 10^{-10}}{1 \times 10^{5}}$$

 $D_{\text{noyau}} = 1 \times 10^{-15} \text{ m}$

3. L'atome est constitué, en grande partie, de vide.

- **16 1.** Le symbole du noyau d'uranium est $^{235}_{92}$ U, donc :
- 235 est le nombre de nucléons *A*, c'est-à-dire le nombre de protons et de neutrons ;
- 92 est le numéro atomique *Z*, c'est-à-dire le nombre de protons.

235 - 92 = 143, le nombre de neutrons est 143. Le noyau d'uranium est donc composé de 92 protons et 143 neutrons.

2. a. La masse du noyau est égale à la masse de ses nucléons :

$$m_{\text{noyau}} = 235 \times m_{\text{nu}}$$

 $m_{\text{noyau}} = 235 \times 1,67 \times 10^{-27}$
 $m_{\text{noyau}} = 3,92 \times 10^{-25} \text{ kg}$

b. La masse de l'atome correspondant est égale à la masse du noyau et des électrons.

Comme l'atome est électriquement neutre, on a : nombre d'électrons = nombre de protons

Donc, il y a 92 électrons.

On peut écrire :

$$m_{\text{atome}} = 235 \times m_{\text{nu}} + 92 \times m_{\text{e}}$$
 $m_{\text{atome}} = 235 \times 1,67 \times 10^{-27} + 92 \times 9,11 \times 10^{-31}$
 $m_{\text{atome}} = 3,92 \times 10^{-25} + 8,38 \times 10^{-4} \times 10^{-25}$
 $m_{\text{atome}} = 3,92 \times 10^{-25} + 0,000838 \times 10^{-25}$
 $m_{\text{atome}} = (3,92 + 0,000838) \times 10^{-25}$
 $m_{\text{atome}} = 3,92 \times 10^{-25} \text{ kg}$

- **3.** Relativement au nombre de chiffres significatifs choisi, les deux masses trouvées $m_{\rm noyau}$ et $m_{\rm atome}$ sont égales. La masse des électrons du cortège électronique est donc négligeable par rapport à la masse du noyau.
- 17 1. Des isotopes sont des atomes ou des ions qui ont le même nombre d'électrons et de protons, mais des nombres de neutrons différents.
- **2. a.** Il existe trois isotopes de l'atome d'oxygène.
- **b.** La composition du noyau est :
- pour l'isotope ¹⁶O, 8 protons et 8 neutrons ;
- pour l'isotope ¹⁷O, 8 protons et 9 neutrons ;
- pour l'isotope ¹⁸O, 8 protons et 10 neutrons.
- **3. a.** Il existe deux isotopes de l'atome de chlore.
- **b.** La composition du noyau est :
- pour l'isotope ³⁵Cl, 17 protons et 18 neutrons ;
- pour l'isotope ³⁷Cl, 17 protons et 20 neutrons.

19 La première configuration est impossible car la sous-couche 2s doit contenir 2 électrons.

La deuxième configuration est impossible car la sous-couche 2p doit être remplie (jusqu'à 6 électrons) avant la sous-couche 3s.

La troisième configuration est vraie.

1. Les électrons de valence sont les électrons de la couche la plus externe de l'élément chimique. La configuration électronique du néon est :

$$1s^2 2s^2 2p^6$$

donc le néon possède 8 électrons de valence.

- **2.** La famille des gaz nobles est située dans la dernière colonne du tableau périodique.
- 3. On peut citer l'hélium He et l'argon Ar.
- 27 1. La relation entre N, n et N_A est :

$$N = n \cdot N_A$$

avec n en mol et N_A en mol⁻¹.

2.
$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

Échantillon	N	n
1	1,5 × 10 ²¹	2,5 mmol
2	1,20 × 10 ²²	2,0 × 10 ⁻² mol
3	1,3×10 ²¹	2,1 × 10 ⁻³ mol
4	2,41 × 10 ²⁴	4,0 mol

28 1. D'après le cours, on sait qu'un échantillon de masse $m_{\text{\'ech.}}$ contient un nombre N d'atomes égal à :

$$N = \frac{m_{\text{\'ech.}}}{m_{\text{atome}}}$$

La masse de l'échantillon de carbone est $m_{\rm \acute{e}ch.}$ = 6 g. Il faut convertir la masse en kg : $m_{\rm \acute{e}ch.}$ = 6,0 × 10⁻³ kg. La masse d'un atome de carbone est

$$m_{\rm atome}$$
 = 2,0 × 10⁻²⁶ kg, donc :

$$N = \frac{6.0 \times 10^{-3}}{2.0 \times 10^{-26}}$$

$$N = 3.0 \times 10^{23}$$

Cet échantillon contient $N = 3.0 \times 10^{23}$ atomes de carbone

2. D'après le cours, on sait que la quantité de matière *n*, exprimée en mol, est :

$$n = \frac{N}{N_{\Delta}}$$

avec N le nombre d'entités chimiques et N_A la constante d'Avogadro : $N_A = 6,02 \times 10^{23} \text{ mol}^{-1}$.

$$n = \frac{3,0 \times 10^{23}}{6,02 \times 10^{23}}$$

n = 0.5 mol

 3.0×10^{23} atomes de carbone représentent une quantité de matière égale à 0,5 mol.

29 1. Cet échantillon de fer contient :

$$N = n \cdot N_A$$

$$N = 2.5 \times 6.02 \times 10^{23}$$

$$N = 1.5 \times 10^{24}$$
 atomes de fer

2. La masse d'un atome de fer est :

$$m_{\text{atome}} = \frac{m_{\text{\'ech.}}}{N}$$

$$m_{\text{atome}} = \frac{140}{1.5 \times 10^{24}}$$

$$m_{\text{atome}} = 9.3 \times 10^{-23} \text{ g}$$

30 1. Pour respecter la neutralité de la matière, il y a autant d'ions sodium que d'ions chlorure, soit 24×10^{23} ions.

2. La quantité de matière n d'ions chlorure, présente dans l'échantillon est :

$$n = \frac{N}{N_A}$$

$$n = \frac{24 \times 10^{23}}{6,02 \times 10^{23}}$$

$$n = 4,0 \text{ mol}$$

3. La masse *m* des ions chlorure dans l'échantillon est :

$$m = N \cdot m_{\text{ion}}$$

 $m = 24 \times 10^{23} \times 6,2 \times 10^{-26}$
 $m = 1,5 \times 10^{-1} \text{ g}$

33 1. Le symbole d'un noyau X est ${}_{Z}^{A}X$:

• A est le nombre de nucléons, c'est-à-dire le nombre de protons et de neutrons ;

• *Z* est le numéro atomique, c'est-à-dire le nombre de protons.

Le noyau de béryllium contient :

- 4 protons, donc Z = 4;
- 4 protons et 5 neutrons, donc A = 4 + 5 = 9 nucléons.
 Le symbole du béryllium est ⁴/₉Be.
- **2.** Comme la masse de l'atome est concentrée dans son noyau, la masse de l'atome de béryllium est :

$$m_{
m atome} = 9 \times m_{
m nu} \ m_{
m atome} = 9 \times 1,67 \times 10^{-27} \ m_{
m atome} = 1,50 \times 10^{-26} \ {
m kg}$$

3. a. La masse de tous les électrons est :

$$m_{\text{électrons}} = 4 \times m_{\text{e}}$$

 $m_{\text{électrons}} = 4 \times 9,11 \times 10^{-31}$
 $m_{\text{électrons}} = 3,64 \times 10^{-30} \text{ kg}$

b. $m_{\text{électrons}} = 0,000364 \times 10^{-26} \text{ kg}$

et
$$m_{\text{atome}} = 1,50 \times 10^{-26} \text{ kg}$$
,

 $m_{
m \'electrons} < m_{
m atome}$ donc la masse des électrons est négligeable par rapport à celle du noyau.

La masse du noyau de beryllium est :

$$m_{\text{novau}} = 1,50 \times 10^{-26} \text{ kg}$$

43 > Démarche avancée

1. Pour vérifier la neutralité électrique de l'atome, on calcule $q_{\rm atome}$:

 $q_{\text{atome}} = q_{\text{électrons}} + q_{\text{protons}}$

 $q_{\text{atome}} = 3 \times (-\text{ e}) + 3 \times \text{ e}$

 q_{atome} = 0 C, donc l'atome est électriquement neutre.

2. La masse de l'atome est :

 $m_{\text{atome}} = 7 \times m_{\text{nu}} + 3 \times m_{\text{e}}$

 $m_{\text{atome}} = 7 \times 1,67 \times 10^{-27} + 3 \times 9,11 \times 10^{-31}$

 $m_{\text{atome}} = 1,17 \times 10^{-26} + 2,73 \times 10^{-30}$

 $m_{\text{atome}} = 1,17 \times 10^{-26} \text{ kg}$

La masse du noyau est :

 $m_{\text{novau}} = 7 \times m_{\text{nu}}$

 $m_{\text{noyau}} = 7 \times 1,67 \times 10^{-27}$

 $m_{\text{novau}} = 1,17 \times 10^{-26} \text{ kg}$

Donc la masse de l'atome est essentiellement contenue dans le noyau.

>Démarche élémentaire

1. a. L'atome de lithium possède 3 électrons et 3 protons.

b. La charge des électrons est :

 $q_{\text{électrons}} = 3 \times (-e)$

 $q_{\text{électrons}} = -3 \times e$

 $q_{\text{\'electrons}} = -3 \times 1,60 \times 10^{-19}$

 $q_{\rm \acute{e}lectrons} = -4,80 \times 10^{-19} \ {\rm C}$

La charge des protons est :

 $q_{\text{protons}} = 3 \times e$

 $q_{\text{protons}} = 3 \times e$

 $q_{\rm protons} = 3 \times 1,60 \times 10^{-19}$

 $q_{\text{protons}} = 4.80 \times 10^{-19} \text{ C}$

2. La charge du noyau est :

 $q_{\text{noyau}} = q_{\text{protons}}$

La charge de l'atome est :

 $q_{\text{atome}} = q_{\text{électrons}} + q_{\text{protons}}$

 $q_{\text{atome}} = 3 \times (-\text{ e}) + 3 \times \text{e}$

 q_{atome} = 0 C, donc l'atome est électriquement neutre.

3. a. La masse de l'atome de lithium est :

 $m_{\text{atome}} = 7 \times m_{\text{nu}} + 3 \times m_{\text{e}}$

 $m_{\text{atome}} = 7 \times 1,67 \times 10^{-27} + 3 \times 9,11 \times 10^{-31}$

 $m_{\text{atome}} = 1,17 \times 10^{-26} + 2,73 \times 10^{-30}$

 $m_{\text{atome}} = 1,17 \times 10^{-26} \text{ kg}$

b. La masse du noyau est :

 $m_{\text{novau}} = 7 \times m_{\text{nu}}$

 $m_{\text{noyau}} = 7 \times 1,67 \times 10^{-27}$

 $m_{\text{noyau}} = 1,17 \times 10^{-26} \text{ kg}$

Donc la masse de l'atome est essentiellement contenue dans le noyau.