The Well-Ordering Principle and its applications

- Definition. A nonempty subset S of \mathbb{R} is **well-ordered** if every non-empty subset of S has a smallest element.
- The Well-Ordering Principle: The set \mathbb{N} is well-ordered.
- Example. The following sets are well-ordered:
 - $(1) \mathbb{N} \cup \{0\}$
 - (2) $\mathbb{N} \cup \{-1, 0\}$
 - (3) $\mathbb{N} \cup \{-3, -2, -1\}$
 - (4) $\{n \in \mathbb{N} : n > 5\}$
- Example. The following sets are NOT well-ordered.
 - (1) \mathbb{R} (the open interval (0,2) is a non-empty subset of \mathbb{R} but it has no smallest element)
 - (2) \mathbb{Z} (the set of negative integers is a non-empty subset of \mathbb{Z} but with no smallest element)
 - (3) the interval [0,1] (because (0,1) is a non-empty subset of [0,1] without smallest element)
- Proposition. Every non-empty subset of a well-ordered set is well-ordered.
- Applications
 - (1) The Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, there exist $q, r \in \mathbb{Z}$ for which a = qb + r and $0 \le r < b$.

Proof. Consider the set

$$S = \{a - xb : x \in \mathbb{Z}, a - xb \ge 0\}.$$

It holds

$$S \subseteq \mathbb{N} \cup \{0\}.$$

To see S is non-empty, take $x = -|a| \in \mathbb{Z}$, so

$$a - xb = a + |a|b > 0$$

because b is a positive integer (so $b \ge 1$), hence $a + |a|b \in S$. By the fact that $\mathbb{N} \cup \{0\}$ is well-ordered, there is a least element in S, call it r, so $r \ge 0$ and r = a - qb for some $q \in \mathbb{Z}$. We now prove r < b. If $r \ge b$, then

$$0 \le r - b = (a - qb) - b = a - (q + 1)b$$

would imply $r - b \in S$, which contradicts that r is the smallest in S.

- (2) Proposition 7.1 in the book (for the existence of smallest element).
- (3) Theorem. (Principle of Mathematical Induction) For every $n \in \mathbb{N}$ let P(n) be a statement. If
 - (a) P(1) is a true statement, and
 - (b) the implication $P(k) \Rightarrow P(k+1)$ is true for all $k \in \mathbb{N}$ then P(n) is true for all $n \in \mathbb{N}$.

Proof. We prove by contradiction. Assume that the set

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\}\$$

is non-empty. Then there is a least element l in S by the Well-Ordering Principle. Since P(1) is true by (a), we must have $l \geq 2$. So $l-1 \in \mathbb{N}$. Since l is the least element in S, $l-1 \notin S$, so P(l-1) is true. Then we must have P(l) is true by (b). This contradicts that $l \in S$. We conclude that $S = \emptyset$.