Lecture 1: Introduction, logistics, review

STATS 101: Foundations of Statistics

Linh Tran

ThetaHat.AI@gmail.com

November 14, 2019

About me

About me

I'm here to teach you statistics!

About me

I'm here to teach you statistics!

AKA Data science. AKA Big data. AKA Machine learning. AKA Artificial Intelligence. AKA (Next hype term here)

Question: What is statistics?

Question: What is statistics?

Origin: Derived from Latin statisticum collegium ("council of state")

Question: What is statistics?

Origin: Derived from Latin statisticum collegium ("council of state")

Merriam-Webster: a branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data.

Question: What is statistics?

Origin: Derived from Latin statisticum collegium ("council of state")

Merriam-Webster: a branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data.

Lay impression: the collection, summary, and analysis of data of any type.

Question: What is statistics?

Origin: Derived from Latin statisticum collegium ("council of state")

Merriam-Webster: a branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data.

Lay impression: the collection, summary, and analysis of data of any type.

My impression: The study of variability.

Why statistics?

Data Scientist:

The Sexiest Job of the 21st Century

A.I. Researchers Are Making More Than \$1 Million, Even at a Nonprofit

Earn a \$1.5 Million Prize at 'Kaggle!' (American Applicants Only, Please.)

Once again, data scientist ranks as the best job in America, according to employees.

Github tops 40 million developers as Python, data science, machine learning popularity surges

Course Series

Current plan

- ► STATS 101: Foundations of Statistics
- ► STATS 102: Introduction to Data Analysis
- ► STATS 103: Introduction to Statistical Learning

Course Series

Current plan

- ► STATS 101: Foundations of Statistics
- ► STATS 102: Introduction to Data Analysis
- ► STATS 103: Introduction to Statistical Learning

Wishful thinking

- ► STATS 204, 205, ...: Machine Learning, Deep Learning, etc.
- ► STATS 214, 215, ...: Survival analysis, clinical trial design, genomics, etc.
- ► STATS 224, 225, ...: Statistical theory, Semi-parametric efficiency, etc.

Math background

Statistical experience

Coding experience

Summary

- Math:
 - ► Some haven't really used algebra/calculus; many have
 - About half are weak on linear algebra
 - ▶ Most are not comfortable/experts at probability & statistics

Summary

- ► Math:
 - Some haven't really used algebra/calculus; many have
 - About half are weak on linear algebra
 - Most are not comfortable/experts at probability & statistics

Statistics:

▶ Most are weak to uncomfortable with statistical concepts

Summary

- ► Math:
 - Some haven't really used algebra/calculus; many have
 - ► About half are weak on linear algebra
 - ▶ Most are not comfortable/experts at probability & statistics
- Statistics:
 - ▶ Most are weak to uncomfortable with statistical concepts
- Coding:
 - Very few people code

Summary

- Math:
 - ► Some haven't really used algebra/calculus; many have
 - About half are weak on linear algebra
 - ▶ Most are not comfortable/experts at probability & statistics
- Statistics:
 - ▶ Most are weak to uncomfortable with statistical concepts
- Coding:
 - Very few people code

Conclusion: Split the class into two

- 1. Slower & more friendly class
- 2. Fast & more in-depth class

Course mixture

Proportion of concepts targeted

Course Information

- ► Class website: talisstats.github.io
- ► **Textbook:** Introduction to Probability (Grinstead and Snell)
- ▶ **Email policy:** Please use *Piazza* for most questions.
- ► **Homework:** Should be submitted to *Gradescope*.
- **Exams:** No exams will be administered.

Using math language

Warning: Math uses a lot of symbols!, e.g.

A	B	F Gamma	∆ Delta	E	Z
Н	Θ Theta		К		M
N	Ξ	O	П	P	Σ
T	Y	Ф	X	Ψ	Отпера
α	β	γ	δ	ε	ζ
Alpha	Beta	Gamma	Delta	Epoilon	Zeta
η	θ	ι	K	λ	μ
η V	U Theto ξ	lota O Omicron	К карра	λ _{Lambda} ρ	σ

Example:

$$\hat{K}(P_n) \triangleq \arg\min_{k} \mathbb{E}_{B_n} \int L(o, \hat{\Psi}_k(P_{n,B_n}^0)) \partial P_{n,B_n}^1(o)$$
 (1)

Deals with equations and unknown quantities, e.g.

$$-x^2(x+2)(x+3)$$
 (2)

Deals with equations and unknown quantities, e.g.

$$-x^2(x+2)(x+3)$$
 (2)

Sometimes written as a polynomial, i.e.

$$-x^{2}(x+2)(x+3) = -x^{2}(x^{2}+5x+6)$$
 (3)

$$= -x^4 - 5x^3 - 6x^2 \tag{4}$$

Deals with equations and unknown quantities, e.g.

$$-x^2(x+2)(x+3)$$
 (2)

Sometimes written as a polynomial, i.e.

$$-x^{2}(x+2)(x+3) = -x^{2}(x^{2}+5x+6)$$
 (3)

$$= -x^4 - 5x^3 - 6x^2 (4)$$

Many times, will be defined as a function, i.e.

$$f(x) = -x^2(x+2)(x+3)$$
 (5)

Deals with equations and unknown quantities, e.g.

$$-x^2(x+2)(x+3)$$
 (2)

Sometimes written as a polynomial, i.e.

$$-x^{2}(x+2)(x+3) = -x^{2}(x^{2}+5x+6)$$
 (3)

$$= -x^4 - 5x^3 - 6x^2 (4)$$

Many times, will be defined as a function, i.e.

$$f(x) = -x^2(x+2)(x+3)$$
 (5)

Also can be defined as another variable, i.e.

$$y = -x^2(x+2)(x+3) (6)$$

System of equations

$$x^{2} + y^{2} = 25$$
 (7)
 $y = x + 1$ (8)

$$y = x + 1 \tag{8}$$

System of equations

$$x^2 + y^2 = 25 (7)$$

$$y = x + 1 \tag{8}$$

Implies that certain values hold true for both equations

System of equations

$$x^2 + y^2 = 25 (7)$$

$$y = x + 1 \tag{8}$$

Implies that certain values hold true for both equations Can solve them by combining/substituting equations, e.g.

$$x^2 + y^2 = 25 (9)$$

$$x^2 + (x+1)^2 = (10)$$

$$2x^2 + 2x + 1 = \tag{11}$$

System of equations

$$x^2 + y^2 = 25 (7)$$

$$y = x + 1 \tag{8}$$

Implies that certain values hold true for both equations Can solve them by combining/substituting equations, e.g.

$$x^2 + y^2 = 25$$
 (9)

$$x^2 + (x+1)^2 = (10)$$

$$2x^2 + 2x + 1 = \tag{11}$$

Solving for *x* gives us

$$2x^2 + 2x - 24 = 0 (12)$$

$$x^2 + x - 12 = (13)$$

$$(x+4)(x-3) =$$
 (14)

$$\implies x = -4 \text{ or } x = 3$$
 (15)

Logarithms

Deals with bases and exponentials, e.g.

$$\log_b a = x \tag{16}$$

Logarithms

Deals with bases and exponentials, e.g.

$$\log_b a = x \tag{16}$$

Read as a power of, i.e.

$$\log_b a = x \implies a = b^x \tag{17}$$

Logarithms

Deals with bases and exponentials, e.g.

$$\log_b a = x \tag{16}$$

Read as a power of, i.e.

$$\log_b a = x \implies a = b^x \tag{17}$$

Has lots of properties, e.g.

$$\log_b(x \cdot y) = \log_b(x) + \log_b(y) \tag{18}$$

$$\log_b(x/y) = \log_b(x) - \log_b(y) \tag{19}$$

$$\log_b(x^y) = y \cdot \log_b(x) \tag{20}$$

$$\log_b(x) = y \log_b(x) \tag{20}$$

$$\log_b(c) = 1/\log_c(b) \tag{21}$$

$$\log_b(x) = \log_c(x)/\log_c(b) \tag{22}$$

$$f(x) = \log(x) \longrightarrow f'(x) = 1/(x\log(h)) \tag{23}$$

$$f(x) = \log_b(x) \implies f'(x) = 1/(x\log(b))$$
 (23)

Review: calculus

The fundamental theorem of calculus

1.
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

2. if
$$F(x) = \int_a^x f(t)dt$$
, then $F'(x) = f(x)$

Review: calculus

Derivatives and integrals

Given a (possibly multivariate function), e.g.

$$f(x,y) = x^2y + \sin(y) \tag{24}$$

Review: calculus

Derivatives and integrals

Given a (possibly multivariate function), e.g.

$$f(x,y) = x^2y + \sin(y) \tag{24}$$

We can take a partial derivative, e.g. wrt x

$$\frac{\partial}{\partial x}f(x,y) = 2xy\tag{25}$$

Derivatives and integrals

Given a (possibly multivariate function), e.g.

$$f(x,y) = x^2y + \sin(y) \tag{24}$$

We can take a partial derivative, e.g. wrt x

$$\frac{\partial}{\partial x}f(x,y) = 2xy \tag{25}$$

We can take an integral, e.g. wrt x

$$\int f(x,y)dx = \frac{1}{3}x^3y + \sin(y) + C(y)$$
 (26)

Example:

Say, $f(x) = x \sin(x)$ represents a position function, i.e.

Example:

Say, $f(x) = x \sin(x)$ represents a position function, i.e.

We can calculate the velocity by $\frac{\partial}{\partial x} f(x)$ (by applying the product rule)

$$\frac{\partial}{\partial x}f(x) = \frac{\partial}{\partial x}(x) \cdot \sin(x) + x \cdot \frac{\partial}{\partial x}(\sin(x))$$

$$= \sin(x) + x \cos(x)$$
(27)

Example: $f(x) = x \sin(x)$ What about acceleration?

Example: $f(x) = x \sin(x)$ What about acceleration?

Take the second derivative, i.e. $\frac{\partial^2}{\partial x^2} f(x) = \frac{\partial}{\partial x} f'(x)$ (by again applying the product rule).

$$\frac{\partial}{\partial x}f'(x) = \frac{\partial}{\partial x}\sin(x) + x\cos(x)$$

$$= \cos(x) + (\cos(x) - x\sin(x))$$
(29)

$$= 2\cos(x) - x\sin(x) \tag{31}$$

Gradients

Given a (possibly multivariate function), e.g.

$$f(x,y) = x^2y + \sin(y) \tag{32}$$

the *gradient* is a vector of partial derivatives of the function, e.g.

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{bmatrix}$$
 (33)

$$= \begin{bmatrix} 2xy \\ x^2 + \cos(y) \end{bmatrix} \tag{34}$$

The Jacobian matrix

Given multiple multivariate functions, e.g.

$$f_1(x,y) = x^2y + \sin(y)$$
 (35)

$$f_2(x,y) = x^2 \sin(y) \tag{36}$$

(37)

the *Jacobian matrix* is a vector of all partial derivatives of the functions, e.g.

$$\nabla \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} f_1(x,y) & \frac{\partial}{\partial y} f_1(x,y) \\ \frac{\partial}{\partial x} f_2(x,y) & \frac{\partial}{\partial y} f_2(x,y) \end{bmatrix}$$
(38)

$$= \begin{bmatrix} 2xy & x^2 + \cos(y) \\ 2x\sin(y) & x^2\cos(y) \end{bmatrix}$$
 (39)

The Jacobian matrix

Given multiple multivariate functions, e.g.

$$f_1(x,y) = x^2y + \sin(y)$$
 (35)

$$f_2(x,y) = x^2 \sin(y) \tag{36}$$

(37)

the *Jacobian matrix* is a vector of all partial derivatives of the functions, e.g.

$$\nabla \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} f_1(x,y) & \frac{\partial}{\partial y} f_1(x,y) \\ \frac{\partial}{\partial x} f_2(x,y) & \frac{\partial}{\partial y} f_2(x,y) \end{bmatrix}$$
(38)

$$= \begin{bmatrix} 2xy & x^2 + \cos(y) \\ 2x\sin(y) & x^2\cos(y) \end{bmatrix}$$
 (39)

n.b. The matrix of second partial derivatives is called the *Hessian* matrix.

Deals with vectors and spaces, e.g.

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \tag{40}$$

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{41}$$

$$V + W = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \tag{42}$$

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{41}$$

$$V + W = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \tag{42}$$

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{41}$$

$$V + W = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \tag{42}$$

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{41}$$

$$V + W = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \tag{42}$$

Vectors can be multiplied together, e.g. dot product

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{43}$$

$$V \cdot W = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 * 0 + 2 * 1 \tag{44}$$

Vectors can be multiplied together, e.g. dot product

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, W = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{43}$$

$$V \cdot W = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 1 * 0 + 2 * 1 \tag{44}$$

This can be generalized to **inner product** (in functional spaces)

Determinants:

Tell us the amount of volume scaling from transformations created by the matrix, e.g. for the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \tag{45}$$

The determinant (|A|=6) results in the following transformation

Determinants:

Tell us the amount of volume scaling from transformations created by the matrix, e.g. for the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \tag{45}$$

The determinant (|A|=6) results in the following transformation

Determinants:

Tell us the amount of volume scaling from transformations created by the matrix, e.g. for the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \tag{45}$$

The determinant (|A|= 6) results in the following transformation

Determinants:

How to calculate determinants:

For a 2x2 matrix:

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \tag{46}$$

For a 3x3 matrix:

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

$$= a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$(47)$$

aei + bfg + cdh - ceg - bdi - afh

(49)

Main points to keep in mind:

► This course establishes a feedback loop

Main points to keep in mind:

- ► This course establishes a feedback loop
- ► This course is separate from your work

Main points to keep in mind:

- ► This course establishes a feedback loop
- ► This course is separate from your work
- ► This course requires commitment

Main points to keep in mind:

- ► This course establishes a feedback loop
- ► This course is separate from your work
- ▶ This course requires commitment
- ► This course is meant for you