

GIRRAWEEN HIGH SCHOOL

TRIAL EXAMINATION

2009

MATHEMATICS

EXTENSION 2

Time allowed - Two hours (Plus 5 minutes' reading time)

DIRECTIONS TO CANDIDATES

- · Attempt ALL questions.
- All questions are worth equal marks.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board-approved calculators may be used.
- Each question attempted is to be returned on a *separate* piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.
- You may ask for extra pieces of paper if you need them.

Question 1 (15 Marks)

Marks

Evaluate:

(a)
$$\int_{1}^{e} \frac{e^x}{1 + e^{2x}} dx$$
 3

(b)
$$\int \frac{1}{3 + \cos x} dx$$
 3

(c)
$$\int x \sin 2x \, dx$$
 2

(d) Express
$$\frac{22-5x}{(x+1)(x-2)^2}$$
 in the form $\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$.

Hence find
$$\int \frac{22-5x}{(x+1)(x-2)^2} dx$$
 4

(e) Evaluate
$$\int \frac{1}{x^2 \sqrt{4 - x^2}} dx$$
 3

Question 2 (15 Marks)

(a) If
$$z = 1 + 3i$$
 and $w = 2 - i$ find in $x + iy$ form:

$$(ii)\frac{z}{w}$$

(b) If
$$z = 1 - i\sqrt{3}$$
 express z^5 in modulus/argument form. 3
Hence express z^5 in $x + iy$ form.

- (c) Sketch on an Argand diagram where the inequalities 3 $|z-1| \le 2$ and $\frac{\pi}{4} < Arg(z-i) < \frac{\pi}{2}$ hold simultaneously.
- (d) z is an arbitrary complex number with $0 < Arg z < \frac{\pi}{2}$. 6
 - (i) Sketch z and iz on an Argand diagram.
 - (ii) Prove that $|iz z|^2 = 2|z|^2$.
 - (iii) If A represents the point z, B represents the point iz and O represents the origin, find the centre and radius of the circle with A, B and O at the circumference if z = 6 + 8i (you may NOT use this value for z in parts (i) and (ii).

Question 3 (15 Marks)

Marks

(a) Below is the graph of y = f(x) from x = -2

6

to x = 4.

Draw separate $\frac{1}{3}$ page diagrams of:

(i)
$$y = \frac{1}{f(x)}$$

(ii)
$$y^2 = f(x)$$

(ii)
$$y^2 = f(x)$$

(iii)
$$y = e^{f(x)}$$

(b) For the hyperbola
$$\frac{(x-1)^2}{9} - \frac{(y+2)^2}{16} = 1$$
 find:

9

- (i) The eccentricity.
- (ii) The co-ordinates of the foci.
- (iii) The equations of the directrices.
- (iv) The equations of the asymptotes.
- (v) Sketch the graph of the hyperbola $\frac{(x-1)^2}{9} \frac{(y+2)^2}{16} = 1$ showing all of these features.

(a) If the roots of the polynomial equation

$$P(x) = 3x^3 - 2x^2 + 5x + 1 = 0$$

are α , β and δ :

- (i) Find $\alpha^2 + \beta^2 + \delta^2$.
- (ii) Find $\alpha^3 + \beta^3 + \delta^3$.
- (iii) Explain why the equation P(x) = 0 has two complex (i.e. non real) roots.
- (iv) Form the polynomial equation with roots α^2 , β^2 and δ^2 .
- (b) If $I_n = \int \cos^n x \, dx$, n a positive integer show that

$$I_n = \frac{\cos^{n-1} x.\sin x}{n} + \frac{n-1}{n} I_{n-2}.$$

Hence find $\int_{0}^{\frac{\pi}{2}} \cos^{10} x.dx$

(c) Use the method of cylindrical shells to find the volume 3 of the solid of revolution formed when the area enclosed by the curve $y = 10x - x^2 - 16$ and the x axis is rotated about the line x = 2.

- (a) A bicycle track with radius r is banked at an angle of α to the horizontal so that a cyclist travelling at a certain speed V will experience no sideways friction when riding around it.
 - (i) By resolving forces (either vertically and horizontally or parallel and perpendicular to the plane) show that

$$\tan\alpha = \frac{v^2}{rg}.$$

- (ii) Find the value of α to the nearest degree if the speed required to experience no sideways friction on this track is 63km/h, the radius of the track is 50 metres and $g = 9.8m/s^2$.
- (iii) The maximum force that friction with the track can produce when the cyclist is travelling faster or slower than the optimum speed of 63km/h is $0.2 \times$ the normal force. Find the minimum speed that the cyclist can travel at on the track before they start to slip down the track. (Use the results from parts (i) and (ii).)

Question (5) continues on the next page!

Question 5 (continued)

Marks

(b) The area enclosed by the circle $x^2 + y^2 = 25$ and the y axis forms the base for a wedge shaped solid with its top at an angle of 30° to the horizontal. (See diagram.)

(i) Show that the area of each rectangular cross-section of the wedge which is perpendicular to the x axis is given by

Area =
$$\frac{2x\sqrt{3}\sqrt{25-x^2}}{3}$$

- (ii) Find the volume of the wedge.
- (c) A standard deck of cards consists of four of each kind (Ace, King, Queen etc.) and 13 of each suite (Spades, hearts, clubs and diamonds). A poker hand consists of 5 cards selected from this deck.

(i) How many hands would contain the Ace of clubs,the Ace of diamonds and no other pairs of like cards?(i.e. cards of the same kind.)

(ii) What is the probability that a poker hand will contain one pair of like cards?

(a) Two circles with centres O and C intersect at A and B. C lies on the circumference of the circle with centre O (see diagram.)

A straight line PQ is drawn through A and QC Produced meets PB at X. Copy the diagram showing all of this information and prove that PX is perpendicular to CX and PX =XB.

(b) For the curve
$$x^2 + y^2 - xy = 48$$

8

(i) Show that
$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}$$

- (ii) Find the points on the curve where the gradient is zero.
- (iii) Find the points on the curve where the gradient is undefined.
- (iv) Find the x and y intercepts and sketch the graph of $x^2 + y^2 xy = 48$ showing all of these features.

Question (6) continues on the next page!

Question (6) (continued)

Marks

4

- (c) A shell (that is, one of the explosive kind the army uses!) is projected vertically upwards from the ground at an initial velocity of Um/s. It experiences air resistance which is proportional to the square of its velocity and gravity which is equal to $10m/s^2$ for each kilogram of its mass.
 - (i) Show that while the shell is rising its position is given by $x = \frac{-1}{2k} \ln \left(\frac{10 + kv^2}{10 + kU^2} \right)$ where k is the constant

for the air resistance.

(ii) Find U, the velocity at which the shell was launched, if it reaches a maximum height height of 500 metres and k = 0.0004.

Exam continues on the next page!

(a) P is the point $(a\cos\theta, b\sin\theta)$ on the ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The normal at P intersects with the

x axis at G. S and S' are the foci of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

(i) Show that the equation of the normal to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at } P \text{ is } \frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2.$$

(ii) Show that the co-ordinates of G are $(ae^2\cos\theta,0)$.

(iii) Show that
$$(PG)^2 = (1 - e^2) \times PS \times PS'$$

Question (7) continues on the next page!

- (b) If w is the non real seventh root of 1 with the smallest positive argument:
 - (i) Show that $w = cis \frac{2\pi}{7}$.
 - (ii) Show that $w^6 + w^5 + w^4 + w^3 + w^2 + w + 1 = 0$.
 - (iii) Show that $w + \frac{1}{w} = 2\cos\frac{2\pi}{7}$. Hence or otherwise show

that
$$\cos \frac{2\pi}{7} - \cos \frac{\pi}{7} - \cos \frac{3\pi}{7} = -\frac{1}{2}$$

(iv) Using DeMoivre's theorem or otherwise, show that $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$. Hence or otherwise show that $\cos \frac{\pi}{7}$ is a root of the equation $8x^3 - 4x^2 - 4x + 1 = 0$.

(Do NOT attempt to solve this equation!)

Exam continues on the next page!

(a) The normal to the rectangular hyperbola $xy = c^2$ at the point $P\left(ct, \frac{c}{t}\right)$ intersects with the hyperbola again at Q. The midpoint of the line PQ is M. (See diagram.)

- (i) Show that the equation of the normal to the hyperbola at P is $t^3x ty = c(t^4 1)$
- (ii) Prove that the co-ordinates of Q are $\left(-\frac{c}{t^3}, -ct^3\right)$
- (iii) Show that the co-ordinates of M are $\left(\frac{c(t^4-1)}{2t^3}, -\frac{c(t^4-1)}{2t}\right)$.
- (iv) Find the Cartesian equation for the locus of M.
- (b) The equation $x^2 x + 1 = 0$ has roots α and β and $A_n = \alpha^n + \beta^n$ 7 for all $n \ge 1$.
 - (i) Without solving the equation, show that $A_1 = 1$, $A_2 = -1$ and $A_n = A_{n-1} A_{n-2}$ for all positive integers n.
 - (ii) Hence use induction to show that $A_n = 2\cos\frac{n\pi}{3}$ for all integers $n \ge 1$.

End of paper!!!

E4 5 200 T' D	
Ext. 2 209 Trial Paper p. 6	
Solutions & Marking Scheme $Q. (3)(b) (i) e^{2} = 1 + b^{2}$	
Q. (3)(b) (i) $e^{z} = 1 + b^{-1}$	
4	<u>-,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- </u>
= 1+ \frac{16}{9}	
$= \frac{25}{5}$ $= \frac{5}{3}$	
e = 3	
(ii) Centre of hyperbolai = (1,-2) $ae = 3 \times \frac{5}{3} = 5$. So foi = (6,-2) & (-4,-2). \geq	
$ae = 3 \times \frac{5}{3} = 5$. So foa = $(6, -2) & (-4, -2)$. 2	enti ndananasana
(iii) Directrices: $\frac{a}{2} = \frac{3 \times \frac{3}{5}}{5} = \frac{9}{5}$	
50 directrices are x=1-9 & x=1+9 2	·
= -4 = 14	
Directrices are the vertical lines = -4 & = 14	
(iv) Asymptotes are $y = \pm \frac{b}{a} \times but passing through (1-2)$	
$y = \pm \frac{4}{2} \pi$. The asymptotes are	
$By y - y_1 = m(z - x_1)$ $By y - y_1 = m(z - x_1)$ $y + 2 = \frac{4}{3}(z - 1)$ $y + 2 = -\frac{4}{3}(z - 1)$ $4z + 3y + 2 = 0$	
$3y+6=4x-4. 3y+6=-7x^{-1}(1) \underline{S}$ $0=4x-3y-10. 4x+3y+2=0. $	
	. •.
1 1 1 1 1 1 1 x	
	444
Focus ->	
(-4,-2) ((-2))	7
(CVertex) (4,-2)	
Asymptote Asymptote	
4x-3y-10=0 / Directrices / 4x+3y+2=0	. <u>)</u>
	.

.

Ext. 2 Trial Paper 209 Solutions: p. 7 $Q.(4)(a)(i) \lambda^{2} + \beta^{2} + \delta^{2} \qquad \text{Notes}$ $= (\alpha + \beta + \delta)^{2} - 2(\alpha \beta + \alpha \delta + \beta \delta) \qquad \alpha + \beta + \delta = -\frac{b}{a} = \frac{2}{3}$ $= (\frac{2}{3})^{2} - 2 \times \frac{5}{3}$ $\lambda^{2} + \beta^{2} + \delta^{2} = -\frac{26}{3}$ $\lambda^{2} + \beta^{2} + \delta^{2} = -\frac{26}{3}$ $\lambda^{2} + \beta^{2} + \delta^{2} = -\frac{26}{3}$ (i) As a, B, S are roots of 3x - 2x +5x+1=0 $3x^{3}-2x^{2}+5x+1=0$ $3\beta^{3} - 2\beta^{2} + 5\beta + 1 = 0$ $3\delta^{3} - 2\delta^{2} + 5\delta + 1 = 0$ $35^{3}-25^{2}+55+1=0$ $\frac{(3+\beta^3+\delta^3)-2(\lambda^2+\beta^2+\delta^2)+5(\lambda+\beta+\delta)+3=0}{3(\lambda^3+\beta^3+\delta^3)-2\lambda^2+\beta^2+\delta^2+3=0}$ $3(\alpha^3+\beta^3+\delta^3)$ $\alpha^3 + \beta^3 + \delta^3$ =-<u>109</u> <u>2</u> =-<u>27</u> (iii) From Part (i) As x + \$ + 5 < 0 at least one of x, b, & must not be real. However, as the co-efficients of P(x) are all real the CONTUGATE of this root most also be a root. 2 Hence, P(x) has two non-real roots. (iv) Letting $y = x^2$ $x = \sqrt{y}$ So $P(x) = 3x^3 - 2x^2 + 5x + 1 = 0$ becomes $3y\sqrt{y} - 2y + 5\sqrt{y} + 1 = 0$ $3y\sqrt{y} + 5\sqrt{y} = 2y - 1$ 5y(3y + 5) = 2y - 1 $5quaring 85: y(9y^2 + 30y + 25) = 4y^2 - 4y + 1 = 0$ $9y^3 + 26y^2 + 29y - 1 = 0$ Replacing y with x, polynomial with roots $x^2 + 29y^2 = 9x^3 + 26x^2 + 29x - 1$.
[not $x = \sqrt{y}$].

Extension 2 Trial Paper 2 09 Solutions: p. 8 Q. (4)(b) $I_{n} = \int_{0}^{n} \cos^{n} x \, dx$ $u = \cos^{n-1} x = \sin x$ $\frac{du = -\sin x \cdot (n-1) \cdot \cos^{n-2} x}{dx} = \cos x$ By $\left\{ u \cdot dx \right\} = uv - \left\{ v \cdot du \right\} dx$ $T_n = \int_{\cos x. dx}^{n} dx = \int_{\cos x. \sin x}^{n-1} (\sin x. -\sin x. (n-1)\cos x. dx$ $=\cos^{n-1}z\cdot\sin x+\left(\ln-1)\cos^{n-2}x\cdot\left(1-\cos^2x\right)\cdot dx$ $\int \cos^n x \cdot dx = \cos^{n-1} x \cdot \sin x + (n-1) \int \cos^{n-2} x \cdot dx - (n-1) \int \cos^n x \cdot dx$ i.e. $T_n = \cos^{n-1} x \cdot \sin x + (n-1)T_{n-2} - (n-1)T_n$ $nT_n = \cos x \cdot \sin x + (n-1)T_{n-2}$ $\frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{1}{2} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{(n-1)}{n} = \frac{\cos^2 x \cdot \sin x}{n} + \frac{\cos^2 x \cdot$ Introducing limits of $\frac{T}{2}80$ and $T_{10} = \left(\frac{\cos x \sin x}{10}\right)^{\frac{1}{2}} + 9T_{8}$. $T_{0} = \left(\frac{\frac{T}{2}}{10}\right) = \frac{T}{2}$ As limits are from \$\frac{7}{5} to 0

& eos \$\frac{7}{2} = 0\$, sin 0 = 0 $T_2 = \left(\frac{\cos x \sin x}{2}\right)^{\frac{\pi}{2}} + \frac{1}{2}T_0$ all cosx xsinx terms can be $I_q = \left[\frac{\cos x \sin x}{4}\right]^{\frac{1}{2}} + \frac{3}{4}I_2$ $\int_{-\infty}^{\frac{\pi}{2}} \frac{10}{\cos x \cdot dx} = \frac{9}{10} \times \frac{7}{8} \times \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} \times \frac{7}{2}$ $\frac{T_6}{6} = \left[\frac{\cos x \sin x}{6}\right]^{\frac{11}{2}} + \frac{5T_6}{6T_6}$ $\overline{I}_8 = \left[\frac{\cos x \sin x}{8}\right]^{\frac{11}{2}} + \frac{7}{8}\overline{I}_6$

Extension 2 Trial Paper Solutions: p. 11
Q.(5)(a)(ūi)[continued]; (1) from previous page x 5 = (3)
$5 \text{ mgsin} \times -N = 5 \text{mv}^2 \cos \times (3)$

$-mg\cos\alpha + N = mv^2 \sin\alpha (2)$
$\frac{5mg\sin\alpha - mg\cos\alpha = 5mv^2\cos\alpha + mv^2\sin\alpha}{r}$
×85 by Tm
$-\int [5g\sin\alpha - g\cos\alpha] = 5v^2\cos\alpha + v^2\sin\alpha$
$r \left[\frac{5g\sin\alpha - g\cos\alpha}{2} \right] = v^2$
$\frac{r\left[5g\sin\alpha - g\cos\alpha\right]}{\left(5\cos\alpha + \sin\alpha\right)} = v^{2}$
$A_{5} = SO_{5} = 9.8_{5} \times = 32^{\circ}.$ $50_{5} = 50_{5} $
$50 \times (5 \times 9.8 \times \sin 32^{2} - 9.8 \cos 32^{\circ}) = v^{2}$
(5cos32°+sin32°)
Minimum speed before fulling down track
= 13.6m/s
$=$ $\pm 49 \text{ km/h}$
(b)(i) Height of each rectangle
= x+an 30°.
$\frac{1}{\sqrt{2}}$
13.
9 / F > > Breadth = 2y
$=2\sqrt{25-x^{\frac{1}{2}}}$
Area = 26 × 2 \25-x2 ×53"

$=22\sqrt{3}\sqrt{25-n^2}$
3,

rial Solutions pe 13 0.(6)(a) Join AC, BC, AB L ABC = x [L's on same are AC of circle centre 0]. AC = BC [radii of circle centre C]. LCAB = & CL's apposite = sides in isosceles AABC). LACB = 180-ZL[L sum \ABC]. LAPB=90°-x[Lat circumference is = Lat centre of circle on LPXQ = 90°[L sum APXQ]. Also PX = XB [line through centre of circle () chord bisects chord.

Solutions (Trial) p= "15 Q.(6)(c)(i) 1 $\frac{dv}{dx} = -\frac{(10 + bv^2)}{v}$ = -V $10+kv^2.$ $\frac{-1}{2k} \left(\frac{2k\nu}{10+k\nu^2} \cdot d\nu \right)$ = - 1 In (10+by2) +C 1 In (10+kU2)+C 1/2/2 ln (10+bl/2) $\frac{1}{2k} \ln \left(\frac{10+kv^2}{10+kV^2} \right)$ (ii) As x = 500 when v = 0 & k = 0.0 1004 500 = - 15 In 10 2,0004 10+0-000402 $= \ln \left(\frac{10 + 0.0004\tilde{U}^2}{10} \right)$ 10+0.00040 0.0004 U = 110-885 . m/s

Extension 2 Trial Solutions p. 19 Q. (7)(b)(iv) By De Moivre's theorem $(\cos \theta + i\sin \theta)^3 = \cos 3\theta + i\sin 3\theta$ $\cos \theta + 3i\cos^2\theta \sin \theta - 3\cos\theta \sin^2\theta - i\sin^3\theta = \cos 3\theta + i\sin 3\theta$ Equating real parts: $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^3 \theta$ = $\cos^3 \theta - 3\cos \theta (1 - \cos^2 \theta)$ $=\cos^{3}\theta - 3\cos\theta + 3\cos^{3}\theta$ $\cos 3\theta = 4\cos \theta - 3\cos \theta$. [Note: You could do "or otherwise": cos 30 = cos (20+0) etc]. Letting 0 = T $\cos \frac{2\pi}{7} = \cos 2\theta \qquad \cos 7 = \cos 3\theta$ $= 2\cos 7 - 1 \qquad = 4\cos 7 - 3\cos 7$ As we know that $\cos \frac{2\pi}{7} - \cos \frac{7\pi}{7} - \cos \frac{3\pi}{7} = -\frac{1}{2} \text{ from Part (\overline{u})}.$ $(2\cos^{2}\frac{\pi}{7}-1)-\cos^{\frac{\pi}{7}}-(4\cos^{3}\frac{\pi}{7}-3\cos^{\frac{\pi}{7}})=-\frac{1}{2}$ $-4\cos\frac{3\pi}{7} + 2\cos\frac{2\pi}{7} + 2\cos\frac{\pi}{7} - 1 = -\frac{1}{2}$: cos \$\frac{17}{2} is a root of 8x^3-4x^2-4x+1=0.

- 4 4 5 5 6 6

 $z = c(t^{4} - 1) + c(t^{4} + 1)$ $= \underbrace{c[t^4 - 1 + t^4 + 1]}_{2t^3} \text{ or } x = \underbrace{c[t^4 - 1] - [t^4 + 1]}_{2t^3}$ \rightarrow As x = ct is at P_{∞} co-ordinate of $Q = \frac{C}{t^3}$ Note: As me knew x=ct was one point of intersection at start, using guadratic equation (1): $t^{3}x^{2} - (x(t^{4}-1)-t^{2}+0)$ y co-ordinate of Q' zy= i2 = y= £2 $Q = \left(-\frac{\zeta}{\xi^2}, -ct^2\right).$

rial paper p. 22 Q (8)(a) (iii) Co-ordinates of M $\frac{\left(\underline{c(t^4-1)} - \underline{c(t^4-1)}}{2t^3}, \underline{c(t^4-1)}$ (iv) Cartesian equation for locus of M: From (iii) $y = -t^2 \times \Rightarrow -y = t^2$ (1) $x^{2} = e^{2}(t^{4}-1)^{2}$ (2) 4t⁶ ×(2)by 4t⁶ $4+6x^2=c^2(+8-2+4+1)(3)$ -y , sub. (1) in (3): Locus of $M = c(x^2 + y^2) + 4zy^3 = 0$

 $Q_{-}(8)(b)A_{1} = \alpha + \beta = -\frac{b}{a}$ $A_{2} = \alpha^{2} + \beta^{2}$ $= (\alpha + \beta)^{2} - 2\alpha\beta$ $=1^{2}-2\times1$ To find An = x + pn As $x \neq \beta$ are mosts of $x^2 - x + 1 = 0$ $\beta^{2} - \beta + 1 = 0$ $\propto \beta \text{ are also roots of } x^{n-2} \left(x^{2} - x + 1\right) = 0$ $\Gamma O + 1 = root = 0 \text{ i.e. } x^{n} - x^{n-1} + x^{n-2} = 0$ $(\bar{u})A_1=1=2\cos\frac{77}{3}$. $\rightarrow True for n=1$. Step 2: Assume true for n=k: $A_k=2\cos\frac{k77}{3}$. Step 3: Trying to prove true for n=k+1i.e. $A_{k+1} = 2\cos(k+1)\pi$ We know Ak+1 = Ak-Ak-1 (from Part (i)] = 2 cos \(\frac{k}{3}\) - 2 cos \(\frac{k}{7}\) \(\frac{1}{7}\) $=2\cos\frac{k\pi}{3}-2\left(\cos\left(\frac{k\pi}{3}-\frac{17}{3}\right)\right)$ $= 2\cos\frac{k\pi}{3} - 2\left[\cos\frac{k\pi}{3}\cos\frac{\pi}{3} + \sin\frac{k\pi}{3}\sin\frac{\pi}{3}\right]$ $= 2\cos\frac{k\pi}{3} - \cos\frac{k\pi}{3} - 2\sin\frac{k\pi}{3}\sin\frac{\pi}{3}$ $\frac{b\pi}{As\cos^{2}_{3}=\frac{1}{2}}=\cos\frac{b\pi}{3}-2\sin\frac{b\pi}{3}\sin\frac{\pi}{3}$

Ext. 2 Paper p. 29

Q. (8)(b)(ii) [continued]: Checking to see if

this is equal to 2 cos ((b+1)77) 2 cos (6+1) TT $=) \left[\cos \left(\frac{kT}{3} + \frac{77}{3} \right) \right]$ $= 2 \left(\cos \frac{k\pi}{3} \cos \frac{\pi}{3} - \sin \frac{k\pi}{3} \sin \frac{\pi}{3} \right)$ True for all positive integers k.