Tutorato 5

Metodi Matematici della Meccanica Classica - 14 aprile 2025

- 1. Da svolgere solo dopo tutti gli altri esercizi. Si consideri una circonferenza Γ di raggio R posta nel piano $\langle \mathbf{e}_x, \mathbf{e}_z \rangle$, dove $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ è un sistema di corodinate cartesiane centrate in O e solidali con un sistema di riferimento \mathscr{R} . Un punto materiale \mathbf{P} , di massa m, si può muovere privo di attrito su Γ ed è sottoposto alla forza peso $\mathbf{F} = -mg\mathbf{e}_z$. Inoltre, dette (x_P, y_P, z_P) le sue coordinate cartesiane rispetto a \mathscr{R} , è collegato tramite una molla di lunghezza a riposo nulla e massa nulla al punto sull'asse z di coordinate $(0,0,z_P)$. Il sistema di riferimento \mathscr{R} ruota attorno all'asse z rispetto a un sistema di riferimento inerziale \mathscr{R}_0 con velocità angolare $\boldsymbol{\omega} = \omega \mathbf{e}_z$.
 - (a) Scrivere la Lagrangianna in \mathcal{R}_0 e scrivere le equazioni di Eulero-Lagrange del sistema.
 - (b) Determinare le configurazioni di equilibrio di **P** rispetto a \mathscr{R} . In particolare, si dimostri che esistono sempre due configurazioni di equilibrio in $\Gamma \cap \{x_P = y_P = 0\}$
 - (c) Si studi la stabilità delle confingrazioni di equilibrio trovate. Si assuma che $k > m\omega^2$.