第二十三·合作博弈·效率、公平与团体理性

hoochanlon

August 6, 2023

1 塔木德的妇女部婚卷

《塔木德·妇女部·婚卷》名富翁在婚书中向他的三位妻子许诺,死后将给A老婆100个金币,B老婆200个金币,C老婆300个金币。可是富翁死后人们发现他的遗产根本不到600个金币,那么三位妻子应怎么分配这位富翁的遗产呢?

拉比的具体裁决方案:

- 只有100金币时, 平均分配法100/3,100/3,100/3。
- 只有200金币时, 神奇分配法50,75,75。
- 只有300金币时, 按比例分配法50,100,150。

遗产分配需要满足的原则:

- 仅分割有争议财产, 无争议财产不需要分割。
- 宣称拥有更多财产权利的一方,其最终所得不少于宣称拥有较少财产权利一方。
- 财产争议者超过两人时,将所有争议者按照其诉求金额排序,最小者 自成一组,剩下所有争议者另成一组,争议财产在两组间公平分配。

这样分遗产的意义,当资源匮乏的时候能够保住弱势方的利益,当资源 充足的时候,又有利于体现所有者的意愿。从而起到了兼顾的作用。根据 这个原则,我们可以推导出任意遗产的分配结果:

- 若 $N \le 150$,ABC各得N/3。
- 若150 < $N \le 250$, A得50, B和C各得(N-50)/2。
- 若250 < N < 350, A得50, B得100, C得到N-150。
- 若350 < N < 500, A得50, B得(N/2)-75, C得(N/2)+25。
- 若500 < N < 600,A得(N/2)-200,B得(N/4)+50,C得(N/4)+150。
- 若N≥600, A得N/6, B得N/3, C得N/2。

2 合作博弈和非合作博弈

2.1 合作博弈和非合作博弈区别

合作博弈与非合作博弈,两者的主要区别在于人们的行为互相作用时,当事人是否达成一个具有约束力的协议,如果有,就是合作博弈;没有,就是非合作博弈。非合作博弈模型强调的是个体理性,以个体利益最大化为原则;合作博弈强调的是群体理性,以实现群体利益最大化为目标。

2.2 合作博弈和非合作博弈联系

非合作博弈是参与者无法选择协调相互之间的策略选择的博弈,当其他参与者会对我的策略选择做出最优反应时,什么才是我的最佳策略选择。合作博弈是参与者可以协调相互之间策略选择的博弈,合作博弈主要解决如果参与者的策略可以相互协调,那么什么样的选择才会带来整体利益最大化。

一般而言,承诺不可信,相互的协议就不可能达成,得到的往往是非合作博弈解。如果承诺可信,相互之间能达成有约束力的协议,得到的往往合作博弈解。由此,通过一个有约束力的协议,可以将非合作博弈转化为合作博弈,把原本不能实现的合作方案得以实现,每个参与者的收益都能得到提高,从而实现群体利益最大化。

2.3 合作博弈的基本概念

在合作博弈中,有许多不同于非合作博弈的概念体系,合作博弈的核心是参与人如何结盟,以及如何分配通过结盟产生的新增收益。每个参与者都能按照自己的利益和其他参与者组成一个小集团,彼此合作以谋求更大的利益。

设:参与人为1- N,S为参与人的一个集合, $S\subseteq N$, $S\neq\emptyset$, $S\neq N$, $S\neq\{i\}$, $i\in N$ 。合作博弈的结果必须是帕累托改进,博弈各方的利益都有所增加,或至少有一部分参与者的利益有所增加,另一部分参与者利益不受损失。

合作博弈必须能够产生出一种合作的剩余,那么至于合作剩余在各方怎么分配,取决于博弈各方的力量对比和制度设计。合作设计的分配,它既是合作的结果,又是达成合作的前提条件,因此更大联盟的总收益一定是大于较小联盟的收益。合作博弈强调群体理性,强调效率、公平和正义,要想强调群体利益最大化,就需要建立一个描述群体理性的特征函数。

给定一个N个参与人的合作博弈,特征函数v是从所有不同联盟 (共2N个) 到一个实数集的映射。

v(S)是N中的联盟S和其他联盟(N-S)的最大期望收益,称为联盟S的特征函数。

特征函数是研究合作博弈的基础,决定特征函数的过程实际上就是分析合作博弈的过程。

3 合作博弈的分析框架

非合作的博弈是纯粹个体之间的博弈,合作博弈是联盟之间的博弈,单个个体也被认为是联盟的一种,所以合作博弈也可以分析个体之间的博弈。特征函数是某个联盟与其他联盟博弈时所获得的最大收益,这是某个联盟是否与其他参与者结盟的决策基础。更大联盟的建立一定不能让参与联盟的人吃亏,合作收益可以在参与者之间自由转移(可转移效用)。

在合作博弈中参与者的收益转让是与协议联系在一起的,联盟成员一般 用支付货币的方式,来弥补参与者放弃单人联盟或其他联盟形式的预期损失(旁支付)。在允许旁支付的条件下,在确保每个参与者至少获得非合 作博弈收益的基础上,那些能使总收益达到最大值的所有合作博弈联盟, 构成合作博弈的解。如果存在两种或两种以上的有效配置方案时,那么所 有的有效解的集合构成的解集(全部有效)的帕累托最优的联盟结构和收 益分配方式的集合,参与者至少能够获得非合作博弈下的收益。

合作博弈中的核(包含所有使团体中的任何成员,都不能从联盟重组中 获益的配置方案)。合作博弈的核可以是任意的,也可以一种或多种联盟 结构,而没有核的联盟结构,我们称作"空核博弈"。合作博弈的解集由全 部有效策略组合与旁支付构成,旁支付保证每个参与者都不会因为合作而 降低收益,许多博弈的解集往往包含多个有效解。核是不被占优的联盟组 成(联盟成员无法因为离开联盟而组建新联盟获利)。

对每个参与者贡献进行利益分配并没有统一标准,因为这涉及对公平性、公正性的价值判断。

- 1. 先考虑A联盟和BC联盟博弈。
- 2. 再考虑B联盟和AC联盟, C联盟和AB联盟的博弈。
- 3. 求出ABC大联盟的特征函数。
- 4. 找解集。
- 5. 找核。
- 6. 对每个参与者的贡献进行分析、作为利益分配的标准。

在合作博弈中,这种边际生产力就可以理解为是一个参与者的最后上车者价值(当参与者作为最后一个加入联盟时对联盟的新增价值)。不过最后上车者价值并不能描述参与者的贡献度。因此就有了夏普利值。夏普利值用于衡量合作博弈总收入的贡献,并以此进行利益分配。按照某种生产要素对财富的边际贡献来分配,这是最有效率的。

一个博弈的夏普利值被定义为他在所有可能加入联盟的次序下,对联盟边际贡献的平均值,对于N个参与者的合作博弈,夏普利值的计算公式如下:

表23.1 不同联盟创造的价值			
	联盟	价值	
	А	80	
	В	100	
on	C	60	
26	AB	250	
	AC	300	
	ВС	360	
	ABC	500	
表23.2 不同联盟顺序的边际贡献值			
联盟顺序	A的贡献	B的贡献	C的贡献
ABC ACB BAC BCA CAB CBA 合计 夏普利值	80 80 100 140 240 140 780	120 200 100 100 200 300 1020	300 220 300 260 60 60 1200

$$\phi_i(n, v) = \frac{1}{n!} \sum_{S \subseteq N \setminus i} \binom{n-1}{|S|} [v(S \cup i) - v(S)]$$

通过夏普利值,我们可以发现一个人本身的能力,并不能很好体现出他对团体的贡献,需要通过计算其对团体的边际贡献,才能更好的来评价他

对团队的价值。为什么用最好上车者价值来计算一个人对团队的贡献,这是因为当一个人威胁要离开团队的时候,其可以从团队获取的最大利益,那就是他的最后上车价值。

大公司往往通过扩大经营规模,创造出很高的总价值,但每个人的这个最后上车价值却不高,那么这样的话,大公司就不会为了挽留某个员工,而付出太大代价,每个员工离开,几乎都不会影响组织的正常运行,因为离开会降低其预期收入(店大欺客,客大欺店)。