Řešení

 Nejpřímočařejším postupem je napsat si vektory jako řádky matice a provést Gaussovu eliminaci. Nenulové řádky pak tvoří bázi (el. transformace nemění lineární obal).

 $B_1 = \{(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 0, 1)\}$ není ortogonální, není ortonormání. $B_2 = \{(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)\}$ je ortogonální, není ortonormální.

 Provedení ortonormalizace, vstupem je báze (tvořena linearně nezávislými vektory), která bude převedena na ortonormální bázi.

Ortonormalizace např. pro B_2 :

$$f_1 = (1, 0, 0, 0), \ f_2 = (0, 1, 1, 0), \ f_3 = (0, 0, 0, 1)$$

$$\varphi_1 = \frac{f_1}{|f_1|} = \frac{(1,0,0,0)}{\sqrt{1^2 + 0^2 + 0^2 + 0^2}} = \frac{(1,0,0,0)}{\sqrt{1^2}} = (1, 0, 0, 0)$$

$$h_{21} = (f_2, \varphi_1) = 0 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0$$

$$h_2 = f_2 - h_{21} \cdot \varphi_1 = (0, 1, 1, 0) - 0 \cdot (1, 0, 0, 0) = (0, 1, 1, 0) - (0, 0, 0, 0) = (0, 1, 1, 0)$$

$$\varphi_2 = \frac{h_2}{|h_2|} = \frac{(0,1,1,0)}{\sqrt{0^2 + 1^2 + 1^2 + 0^2}} = \frac{(0,1,1,0)}{\sqrt{2}} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$$

$$h_{31} = (f_3, \varphi_1) = 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 0$$

$$h_{32} = (f_3, \varphi_2) = 0 \cdot 0 + 0 \cdot \frac{1}{\sqrt{2}} + 0 \cdot \frac{1}{\sqrt{2}} + 1 \cdot 0 = 0$$

$$h_3 = f_3 - h_{31} \cdot \varphi_1 - h_{32} \cdot \varphi_2 = (0, 0, 0, 1) - 0 \cdot (1, 0, 0, 0) - 0 \cdot (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) = (0, 0, 0, 1)$$

$$\varphi_3 = \frac{h_3}{|h_3|} = \frac{(0,0,0,1)}{\sqrt{(0^2 + 0^2 + 0^2 + 1^2)}} = \frac{(0,0,0,1)}{\sqrt{(1^2)}} = (0,0,0,1)$$