

Normalizing Flow

Il-Chul Moon

Department of Industrial and Systems Engineering

KAIST

icmoon@kaist.ac.kr

This slide is heavily influenced and adopted from the tutorial by Byeonghu Na, AAILab, KAIST.

Detour: Explicit Deep Generative Model (VAE)

- Generative model + Neural network
 - Neural network is used for the inference of the distribution parameters
- $x_{data} \sim P_{data}$, $x_{sample} = \hat{x} \sim P_{gen}$
- $z \sim N(Enc_{\mu}(x_{data}), Enc_{\sigma}(x_{data}))$
- Minimizing
 - $Error(x, \hat{x}) = Error(x, G(z))$
 - with some regularizations
 - Prior on Z with N(0, I)

Detour: Implicit Deep Generative Model (GAN)

- Generative model + Neural network
 - Neural network is used for the specification of the density model

Function Approximation on Implicit Probability Distribution of P_{gen}

Some Fundamental Questions on Probabilistic Model

- Probabilistic Model, or Generative Models
 - Fundamental asepcts
 - Generation (==Sampling, Simulation...)
 - Able to generate a sample from Bayesian Network, VAE, GAN
 - Inference
 - Able to calculate a likelihood from Bayesian Network and VAE
 - Inable to calculate a likelihood from GAN
 - a.k.a. Likelihood-Free Model, Likelihood-Free Inference
- Distinctions from the types of generative models
 - Given $x_j \sim p_{data}$, $j = 1, 2, ..., |\mathcal{D}|$
 - 1) The flexibility of p_{θ} parameterized by $\theta \in \mathcal{M}$
 - 2) The property of $d(p_{data}, p_{\theta})$
 - 3) The optimization of $\min_{\theta \in \mathcal{M}} d(p_{data}, p_{\theta})$

Bayesian Network

Model Family $\theta \in \mathcal{M}$

 $\min_{\theta \in \mathcal{M}} d(p_{data}, p_{\theta})$

GAN

TRANSFORMATION OF BASIS FROM DATA SPACE TO LATENT SPACE

Approximation Nature of VAE and GAN

- VAE and GAN are all based upon the approximated distance/divergence
 - VAE optimizes the ELBO
 - $\ln P(E) \ge E_{Q(H|E)} \ln P(E|H) KL(Q(H|E) \parallel P(H))$
 - Optimization on ELBO does not guarantee the optimization of lnP(E)
 - Rather, only guarantees the lower bound optimization, itself
 - Problem of approximation on $\min_{\theta \in \mathcal{M}} d(p_{data}, p_{\theta})$
 - GAN optimizes the minimax of the classification error

•
$$\min_{G} \left\{ \max_{D} \left\{ E_{x \sim p_{data(x)}} [log D(x)] + E_{z \sim p_{z(z)}} [log (1 - D(G(z))] \right\} \right\}$$

- Minimization on JS divergence is only feasible when D becomes the optimal Discriminator
 - However, it is very difficult to achive in reality
- Problem of approximation on $d(p_{data}, p_{\theta})$
- Then, the question becomes whether the exact inference is feasible, or not
 - Flow is a family of $\mathcal M$ that enables the optimization on the exact inference

•
$$\log p_{\theta}(x) = \log p_{z}(f_{\theta}(x)) + \log \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$$

 $\min_{\theta \in \mathcal{M}} d(p_{data}, p_{\theta})$

Detour: Transformation in Linear Algebra

- Imagine a linear transformation
 - We can transform a basis through matrix multiplication

- The meaning of the transformation matrix
 - Diagonal: scaling of the basis
 - Off-diagonal: correlation of the basis
 - Det(T): area multiplier after the transformation
 - What-if $Det(T) < 0 \rightarrow$ The basis becomes directed inversely (flipping)
- Some matrix enables the transformation in the degenerative manner
 - Det(T) = 0
 - All points before the transformation are collapsed into a single point of (0,0)

- Can be changed as $x_4 = (T_4 T_3 T_2 T_1) x_0 = T_4 (T_3 (T_2 (T_1 x_0))) = T_4 (T_3 (T_2 x_1))$
- Can be inversed if A is not degenerative as $x_0 = (T_1^{-1}T_2^{-1}T_3^{-1}T_4^{-1})x_4$
- Diffeomorphism
 - Given two manifolds of M and N, a differentiable map $f: M \to N$ is a diffeomorphism
 - if *f* is a bijective
 - if $f^{-1}: N \to M$ is differentiable

Detour: Change of Variable in Calculus

- Change of variable in a single dimension
 - Condition
 - Let f and h be continuous functions from [a, b] to R, and assume h strictly increasing.
 - Let α be the inverse function of h as y = h(x), $x = \alpha(y)$
 - $a \le x \le b$, $h(a) \le y \le h(b)$
 - Then, $\int_a^b f(x)dx = \int_{h(a)}^{h(b)} f(\alpha(y))d\alpha(y)$
 - In statistics, $p_y(y) = p_x(\alpha(y))\alpha'(y)$
- Change of variable in its multivariate version

•
$$\mathbf{x}_{t+1} = T\mathbf{x}_t \to \Delta A \approx J(\mathbf{x}_t) \Delta \mathbf{x}_{t,1} \dots \Delta \mathbf{x}_{t,m}$$

- x.: a *m*-dimensional vector
- $J(x_t)$: a Jacobian matrix of T^{-1}
- A: an area in x_{t+1} space

$$Jacobian\ Martrix = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & & \frac{\partial f_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

$$Hessian Martrix = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \dots & \frac{\partial^2 f}{\partial x_1 x_n} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} & \frac{\partial^2 f}{\partial x_n x_2} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

•
$$\iint_{X_t} f(\mathbf{x}_t) dx_{t,1} \dots d\mathbf{x}_{t,m} = \iint_{X_{t+1}} f(T(\mathbf{x}_t)) |\det J(\mathbf{x}_t)| dx_{t+1,1} \dots dx_{t+1,m}$$

• In statistics,
$$p_{\mathbf{x}_t}(\mathbf{x}_t) = p_{\mathbf{x}_{t+1}}(T(\mathbf{x}_t)) |\det J(\mathbf{x}_t)| = p_{\mathbf{x}_{t+1}}(T_{\theta}(\mathbf{x}_t)) |\det \frac{\partial T_{\theta}(\mathbf{x}_t)}{\partial \mathbf{x}_t}|$$

Flow Model as a Formula

Change of variable

•
$$x_{t+1} = Tx_t, p_{x_t}(x_t) = p_{x_{t+1}}(T_{\theta}(x_t)) |\det \frac{\partial T_{\theta}(x_t)}{\partial x_t}|$$

Chain of transformations

•
$$x_4 = (T_4 T_3 T_2 T_1) x_0 = T_4 (T_3 (T_2 (T_1 x_0))) = T_4 (T_3 (T_2 x_1))$$

- Flow $f: \mathcal{X} \to \mathcal{Z}$
 - An invertible differentiable function from x to z
 - Usually we denote x as data and z as noise.
- Sampling process is:
 - $z \sim p(z)$
 - $x = f_{\theta}^{-1}(z)$
- Objective function

$$\operatorname{argm} ax_{\theta} \mathbb{E}_{x \sim p_{data}}[\log p_{\theta}(x)]$$

• How can we evaluate the marginal likelihood $p_{\theta}(x)$? \rightarrow Using change-of-variables

$$\log p_X(x) = \log p_Z(f_{\theta}(x)) + \log \left| \frac{\partial f_{\theta}(x)}{\partial x} \right|$$

Composition of Flows

- Each transformation needs to be diffeomorphism
 - Difficult to create highly nonlinear behavior with a simple transformation
- Compose the multiple transformation as a chain
 - $f = f_K \circ f_{K-1} \circ \cdots \circ f_1$
 - Sampling can be $x = f^{-1}(z) = (f_1^{-1} \circ \cdots \circ f_{K-1}^{-1} \circ f_K^{-1})(z)$
 - Density evaluation
 - $p_X(x) = p_Z(f_\theta(x)) \left| \det \frac{\partial f_\theta(x)}{\partial x} \right|$
 - $\det \frac{\partial f(x)}{\partial x} = \det \prod_{i=1}^{K} \frac{\partial f_i}{\partial f_{i-1}} = \prod_{i=1}^{K} \det \frac{\partial f_i}{\partial f_{i-1}}$
 - Training with log-likelihood

$$\max_{\theta} \left\{ \log p_Z(f_{\theta}(x)) + \sum_{i=1}^K \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \right\}$$

- Then, our question becomes what could be the choice of f
 - Following the diffeomorphism
 - Generating a flexible and domain-adapted transformation, i.e. the locality on image

STRUCTURE OF NORMALIZING FLOW

Elementwise Flows

Elementwise Flows

$$f(x) = f((x_1, ..., x_D)) = (f_1(x_1), ..., f_D(x_D)) = z$$

- Each dimension takes only the same dimension value as the transformation input
 - x_D : *D*-th feature dimension of an input vector of x
 - $z_d = f_d(x_d) = f(x_d; \theta_d)$
 - $oldsymbol{ heta}_d$: Each dimension's transformation is parameterized per each dimension with the shared structure
 - We will treat *z* as the transformed *x*
- f is invertible if all $f^{(i)}$ be invertible.

• Analytic Inverse :
$$f^{-1}((z_1, ..., z_D)) = (f_1^{-1}(z_1), ..., f_D^{-1}(z_D))$$

Jacobian matrix

•
$$J_f(x) = \text{diag}(f_1'(x_1), ..., f_D'(x_D)) \rightarrow \text{det}(J_f(x)) = \prod_{i=1}^D f_i'(x_i)$$

- Given the objective function of $\max_{\theta} \left\{ \log p_Z (f_{\theta}(x)) + \sum_{i=1}^K \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \right\}$
 - No mixing of variables
 - i.e. images have highly localized correlations → Problem in modeling the density of the joint space
 - But from these, we know that it is okay to use some activation functions or batch normalization in composition of flows.
 - Computation cost of Inverse: O(D)
 - Computational cost of determinant: O(D)
 - Equivalent to only applying the activation functions without any cross links between inputs and outputs

 $Jacobian \ Martrix = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & & \frac{\partial f_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$

Linear Flows

Linear Flows (or Affine Flows)

$$f(x) = f((x_1, ..., x_D)) = Ax + b = z$$

 $Jacobian \ Martrix = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & & \frac{\partial f_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$

- f is invertible if A is invertible.
 - Analytic inverse : $f^{-1}(z) = A^{-1}(z b)$
- Jacobian matrix

•
$$J_f(x) = A \rightarrow \det(J_f(x)) = \det A$$

- Given the objective function of $\max_{\theta} \left\{ \log p_Z(f_{\theta}(x)) + \sum_{i=1}^K \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \right\}$
 - No capability of nonlinear transformation
 - i.e. Let's assume $z \sim N(0, I)$, then $x \sim N(\mu, \Sigma)$: This nature will not change by composing the transformation
 - Why? This is a linear transformation without any activation
 - If we add an activation to this transformation, the inversion and the Jacobian will not be simple
 - High cost of calculation
 - Computation cost of Inverse: $O(D^3)$
 - Computational cost of determinant: $O(D^3)$
 - Equivalent to applying the fully connected neural network layer without activation

Detour: Laplace Expansion

- The objective function of flow
 - $\max_{\theta} \left\{ \log p_Z(f_{\theta}(x)) + \sum_{i=1}^K \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \right\}$
 - The calculation of the determinant of the Jacobian matrix becomes the key
- Laplace expansion is an expression of determinant as the sum of small matrixes
 - Given the $n \times n$ matrix of A
 - Let's say $M_{i,j}$ is the determinant of the minor matrix which removes i and j-th row and column of A
 - Then, the determinant of *A* becomes

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} A_{i,j} M_{i,j}$$

- This suggests that the determinant calculation becomes simpler with a well positioned $A_{i,j}=0$
 - Diagonal matrix and Triangle matrix

$$\det(A) = \prod_{i=1}^{n} A_{i,i}$$

- Computation complexity
 - Laplace expansion takes O(n!)
 - LU decomposition takes $O(n^3)$

$$Triangular Jacobian Martrix = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} = 0 & & \frac{\partial f_1}{\partial x_n} = 0 \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & & \frac{\partial f_2}{\partial x_n} = 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} = 0 \end{bmatrix}$$

 $Jacobian \ Martrix = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$

 P_2 \vec{a} \vec{b} \vec{b} \vec{b} \vec{b} \vec{c}

- Only transform the affine subspace of x
- Affine Coupling Flows
 - Split variables into x^A and $x^B \rightarrow$ elementwise flows on x^B with the effect of x^A $f(x) = f((x_1, ..., x_D)) = f([x^A; x^B]) = (x^A, x^B \cdot s_\theta(x^A) + t_\theta(x^A)) = z$
 - In other words, $f = (f^A, f^B)$ where $z^A = f^A(x^A) = x^A$ and $z^B = f^B(x^B) = x^B \cdot s_\theta(x^A) + t_\theta(x^A)$
 - $z^A = x^A$: No transformation
 - $z^B = x^B \cdot s_\theta(x^A) + t_\theta(x^A)$
 - Utilizing the elementwise flow in x^B : Good characteristics in nonlinearity and computation complexity
 - f is invertible without significant restrictions of s_{θ} and t_{θ}
 - Analytic inverse

•
$$x^A = (f^A)^{-1}(z^A) = z^A$$

 $x^B = (f^B)^{-1}(z^B) = \{z^B - t_\theta(z^A)\}/s_\theta(z^A)$

Jacobian Matrix

•
$$J_f(x) = \begin{bmatrix} \frac{\partial f^A}{\partial x^A} & \frac{\partial f^A}{\partial x^B} \\ \frac{\partial f^B}{\partial x^A} & \frac{\partial f^B}{\partial x^B} \end{bmatrix} = \begin{bmatrix} I & 0 \\ \frac{\partial f^B}{\partial x^A} & \text{diag}(s(x^A)) \end{bmatrix} \rightarrow \det J_f(x) = \prod_j s(x^A)_j$$

Discussion on Affine Coupling Flow

- Affine Coupling Flows
 - Split variables into x^A and $x^B \rightarrow$ elementwise flows on x^B with the effect of x^A $f(x) = f((x_1, ..., x_D)) = f([x^A; x^B]) = (x^A, x^B \cdot s_\theta(x^A) + t_\theta(x^A)) = z$
- Given the objective function of $\max_{\theta} \left\{ \log p_Z(f_{\theta}(x)) + \sum_{i=1}^K \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \right\}$
 - Some capability of nonlinear transformation
 - $s_{\theta}(x^A)$ and $t_{\theta}(x^A)$: the source of the nonlinear nature
 - i.e. Let's assume $z \sim N(0, I)$, then $x \sim N(\mu, \Sigma)$: This nature will not change by composing the transformation
 - Why? This is a linear transformation without any activation
 - If we add an activation to this transformation, the inversion and the Jacobian will not be simple
 - Low cost of calculation
 - Computation cost of Inverse: O(D)
 - Computational cost of determinant: O(D)
 - Equivalent to applying the some selective links on neural network layer with some activations
 - Moreover, through the compositions of transformations, the split can be changed
 - Split variables into x^A and x^B at $f_1 \neq$ Split variables into x^A and x^B at f_2

Generalized Coupling Flow

- Affine Coupling Flows
 - Split variables into x^A and $x^B \rightarrow$ elementwise flows on x^B with the effect of x^A

$$f(x) = f((x_1, ..., x_D)) = f([x^A; x^B]) = (x^A, x^B \cdot s_\theta(x^A) + t_\theta(x^A)) = z$$

Generalized Coupling Flows: general approach to construct non-linear flows

$$f(x) = f([x^A; x^B]) = (x^A, g(x^B; \theta(x^A))) = z$$

- i.e. $f = (f^A, f^B)$ where $f^A(x^A) = x^A$ (identity), $f^B(x^B) = g(x^B; \theta(x^A))$
 - $\theta(x^A)$: the parameterization dynamically determined by x^A
- f is invertible if g is invertible. (not θ !)
 - Analytic inverse

•
$$f^{-1}(z) = (z^A, g^{-1}(z^B; \theta(z^A)))$$

Jacobian Matrix

•
$$J_f(x) = \begin{bmatrix} \frac{\partial f^A}{\partial x^A} & \frac{\partial f^A}{\partial x^B} \\ \frac{\partial f^B}{\partial x^A} & \frac{\partial f^B}{\partial x^B} \end{bmatrix} = \begin{bmatrix} I & 0 \\ \frac{\partial g}{\partial x^A} & J_g(x^B) \end{bmatrix} \rightarrow \det J_f(x) = \det J_g(x^B) = \prod_j J_g(x^B)_j$$

- g can be any function to be applied in the elementwise manner
 - Linear function, Spline function, and inverse CDF....

Diverse Suggestions on Variable Split

- Coupling flow
 - Split variables into x^A and $x^B \rightarrow$ elementwise flows on x^B with the effect of x^A
 - Setting x^A and x^B depends upon the domain of application
 - Images? Sequences?....
 - Split needs to change over the composition of the transformation

Spatial Checkerboard Pattern

Channel-wise Masking

Interpretation of Coupling Flow from Bayesian Perspective

Coupling Flows (a.k.a. RealNVP): general approach to construct non-linear flows

$$f(x) = f([x^A; x^B]) = \left(x^A, g(x^B; \theta(x^A))\right) = z$$

- Interpretation from the probabilistic modeling perspective
 - Flow of each variable becomes the Bayesian network links
 - $f(x_2) = x_2$
 - $f(x_3) = x_3$
 - $f(x_1) = x_1 s_1(x_2, x_3) + t_1(x_2, x_3)$
 - $f(x_4) = x_4 s_4(x_2, x_3) + t_4(x_2, x_3)$
 - Is same as
 - $f(x_2) = x_2$
 - $f(x_3) = x_3$
 - $f(x_1) = x_1 s_1 (\operatorname{parent}(x_1)) + t_1 (\operatorname{parent}(x_1))$
 - $f(x_4) = x_4 s_4 (\operatorname{parent}(x_4)) + t_4 (\operatorname{parent}(x_4))$

Variable Split

Bayesian Network

- This creates a DAG, which is the key characteristics of Bayesian network
 - However, very typical and stereotype
 - Then, is it possible to create a more interesting structure by Bayesian network?
 - with some inspiration from the old graphical models?

Autoregressive Flow

- Autoregressive Bayesian network structure
 - Density model
 - $x_1 \sim p_\theta(x_1)$
 - $x_2 \sim p_\theta(x_2|x_1)$
 - $x_3 \sim p_{\theta}(x_3 | x_1, x_2)$
 - Generation process : sampling x given z : p(x|z)
 - $x_1 = f_{\theta}^{-1}(z_1)$
 - $x_2 = f_{\theta}^{-1}(z_2; x_1)$
 - $x_3 = f_{\theta}^{-1}(z_3; x_1, x_2)$
 - Inference process: learning the distribution of z given x : q(z|x)
 - $z_1 = f_\theta(x_1)$
 - $z_2 = f_\theta(x_2; x_1)$
 - $z_3 = f_\theta(x_3; x_1, x_2)$
- Jacobian matrix: triangular matrix because of independence between z_t and $x_{(t+1):T}$
- Computation complexity
 - Let's consider the order
 - Inference process : all inputs are given : Can be parallel → Fast
 - Geneation process : some inputs are given : Needs to be sequential → Slow

Inverse Autoregressive Flow and ELBO Interpretation

- Autoregressive flow
 - Generation process : sampling x given z : p(x|z)
 - $x_1 = f_{\theta}^{-1}(z_1), x_2 = f_{\theta}^{-1}(z_2; x_1), x_3 = f_{\theta}^{-1}(z_3; x_1, x_2)$
 - Inference process : learning the distribution of z given x : q(z|x)
 - $z_1 = f_{\theta}(x_1), z_2 = f_{\theta}(x_2; x_1), z_3 = f_{\theta}(x_3; x_1, x_2)$
- Inverse autoregressive flow
 - Generative process (Fast)

•
$$x_1 = f_{\theta}^{-1}(z_1), x_2 = f_{\theta}^{-1}(z_2; z_1), x_3 = f_{\theta}^{-1}(z_3; z_1, z_2)$$

- Inference process (Slow)
 - $z_1 = f_{\theta}(x_1), z_2 = f_{\theta}(x_2; z_1), z_3 = f_{\theta}(x_3; z_1, z_2)$

- Interpretation by the latent inference algorithm, such as variational inference
 - $\log p(x) \ge \mathbb{E}_{z \sim q(Z|X)}[\log p(x|z)] D_{KL}[q(z|x)||p(z)] = \mathbb{E}_{z \sim q(Z|X)}[\log p(x|z)] \mathbb{E}_{z \sim q(Z|X)}\left[\frac{q(Z|X)}{p(z)}\right]$ $\approx E_Z\left[\log p(x|z) - \left(\frac{q(Z|X)}{p(z)}\right)\right] \text{ where } z \sim q(z|x)$
 - Finding $z \sim q(z|x)$ \rightarrow Flexible Posterior by $z_1 = f_{\theta}(x_1), z_2 = f_{\theta}(x_2; z_1), z_3 = f_{\theta}(x_3; z_1, z_2)$
 - In VAE, Need the generation on $z\sim q(z|x)$ to calculate the expectation in the Monte-carlo manner

Diversification of Coupling Flow Function

- What could be the structure of the transformation function?
 - By following the Bayesian network interpretation
 - $x_i = f_{\theta}(z_i; parent(x_i))$
- Desired/Required nature of f_{θ}
 - Need to be applied to a single dimension by creating influence from the other many
 - Invertible
 - Nonlinear
 - Variations
 - NICE, RealNVP, IAF-VAE
 - Using affine transformation (common)
 - Glow
 - Using invertible 1x1 convolution
 - Flow++
 - Using continuous mixture CDFs
 - Spline Flow
 - Using splines

Diverse Choices of Transformation

	Name	f(x)	(f^{-1}, Df) Complexity
Finite Flow	Elementwise Flow	$(f(x_1), \dots, f(x_D))$	
	Linear Flow	Ax + b	$O(D^3), O(D^3)$
	Planar Flow	$x + uh(w^Tx + b)$	-, O(D)
	Radial Flow	$x + \frac{\beta}{\alpha + \ x - x_0\ }(x - x_0)$	-, O(D)
	Coupling Flow	$(h(x^A;\Theta(x^B)),x^B)$	Invertible iff h is invertible / Depends on h , but efficient
	Autoregressive Flow	$\left(h\left(x_t;\Theta_t(x_{1:t-1})\right)\right)_t$	Inverse cost high / determinant elementwise product
	Spline Flow	Spline	Inverse requires Newton method / determinant closed form
	Residual Flow	$(x^A + F(x^B), x^B + G(f(x)^A))$	Invertible easy / Jacobian difficult
Infinitesimal Flow	Langevin Flow	$\frac{\partial}{\partial t}q_t(\mathbf{x}) = -\sum_i \frac{\partial}{\partial \mathbf{x}_i} [F_i(\mathbf{x}, t)q_t] + \frac{1}{2} \sum_i \frac{\partial}{\partial \mathbf{x}_i \partial \mathbf{x}_j} [D_{ij}(\mathbf{x}, t)q_t]$	
	Hamiltonian Flow	$\mathcal{H}(\mathbf{x},\omega) = -\mathcal{L}(\mathbf{x}) - \frac{1}{2}\omega^T M \omega$	

Flow Models with Diverse Transformation as f_{θ}

Planar Flow

- $f_k(z_{k-1}) = z_{k-1} + u_k h_k (w_k^T z_{k-1} + b_k)$
 - z_{k-1} : Linear component
 - $u_k h_k (w_k^T z_{k-1} + b_k)$: Nonlinear component
- Determinant of Jacobian

•
$$\left| \frac{\partial f_k}{\partial z_{k-1}} \right| = \left| I + u_k \left(h_k' \left(w_k^T z_{k-1} + b_k \right) w_k \right)^T \right| = \left| 1 + u_k^T h_k' \left(w_k^T z_{k-1} + b_k \right) w_k \right|$$

- Objective function
 - $\log q_K(z_K) = \log q_0(z_0) \sum_{k=1}^K \log |1 + u_k^T \psi_k(z_{k-1})|$, where $\psi_k(z_{k-1}) = h_k' (w_k^T z_{k-1} + b_k) w_k$
- Radial Flow

•
$$f_k(z_{k-1}) = z_{k-1} + \frac{\beta}{\alpha + \|z_{k-1} - z_{k-1}^*\|} (z_{k-1} - z_{k-1}^*)$$

Determinant of Jacobian

$$\left| \frac{\partial f_k}{\partial z_{k-1}} \right| = \left[1 + \frac{\beta}{\alpha + \|z_{k-1} - z_{k-1}^*\|} \right]^{D-1} \left[1 + \frac{\beta}{\alpha + \|z_{k-1} - z_{k-1}^*\|} - \frac{\|z_{k-1} - z_{k-1}^*\|}{\left(\alpha + \|z_{k-1} - z_{k-1}^*\|\right)^2} \right]$$

Objective function

$$\log q_K(z_K) = \log q_0(z_0) - \sum_{k=1}^K (D-1) \log \left(1 + \frac{\beta}{\alpha + \|z_{k-1} - z_{k-1}^*\|}\right) - \sum_{k=1}^K \log \left(1 + \frac{\beta}{\alpha + \|z_{k-1} - z_{k-1}^*\|} - \frac{\|z_{k-1} - z_{k-1}^*\|}{(\alpha + \|z_{k-1} - z_{k-1}^*\|)^2}\right)$$

COMBINATION WITH OTHER GENERATIVE MODELS

Dimension Restriction of Flow

- Rank-Nullity Theorem
 - [Rank-Nullity Theorem] Let $T: V \to W$ be a linear transformation, where V and W are the finite-dimensional vector spaces. Then, $Rank(T) + Nullity(T) = \dim V$, where $Rank(T) = \dim(T(V))$ and $Nullity(T) = \dim(Ker(T))$.
- Simple interpretations
 - [Theorem] A function $f: \mathbb{R}^n \to \mathbb{R}^m$ with n > m can be bijective.
 - [Theorem] A continuous function $f: \mathbb{R}^n \to \mathbb{R}^m$ with n > m cannot be bijective.
- Requirements of the flow transformation
 - Bijective function
 - Differentiable function
 - Hence, the flow transformation needs to be the matching dimension between the data and the latent variables

Hilbert Curve

(https://math.stackexchange.com/questions/557801/why-is-this-not-a-space-filling-curve)

Learning in Implicit Models

- $\mathbb{E}_{q_{\phi}(h|e)}\left[\ln\frac{q_{\phi}(h)}{p(h)}\right]$ is the expected density ratio
 - The density ratio can be computed by building a classifier to distinguish observed data from that generated by the model.
 - p(h) is used for a set of n samples $E_p = \{e_1^{(p)}, \dots, e_n^{(p)}\}$
 - $q_{\phi}(h)$ is used for a set of n samples $E_q = \{e_1^{(q)}, \dots, e_n^{(q)}\}$
 - Through the ancestral sampling of $q_{\phi}(h|e)$ by randomly selecting e
 - A random variable y that assigns a label y = 1 to all samples in E_p and y = 0 to all samples in E_q .
 - p(h) = p(h|y = 0) and $q_{\phi}(h) = p(h|y = 1)$
 - $p^*(h|y) \equiv \begin{cases} q_{\phi}(h), y = 1\\ p(h), y = 0 \end{cases}$
- By applying Bayes' rule, we can compute the ratio $r(h) = \ln \frac{q_{\phi}(h)}{p(h)}$ as:

$$\frac{q_{\phi}(h)}{p(h)} = \frac{p^*(h|y=1)}{p^*(h|y=0)} = \frac{\frac{p^*(h,y=1)}{p^*(y=1)}}{\frac{p^*(h,y=0)}{p^*(y=0)}} = \frac{\frac{p^*(y=1|h)p^*(h)}{p^*(y=0)}}{\frac{p^*(y=0|h)p^*(h)}{p^*(y=0)}} = \frac{p^*(y=1|h)}{p^*(y=0|h)} \cdot \frac{\pi}{1-\pi} = \frac{p^*(y=1|h)}{p^*(y=0|h)} = \frac{p^*(y=1|h)}{1-D(h)} = \frac{p^*(h)p^*(h)}{1-D(h)} = \frac{p^*(h)p^*(h)}$$

- $D(h) = p^*(y = 1|h)$
- Which indicates density ratio estimation = class probability estimation.
- The problem is reduced to computing the probability p(y = 1|h)
 - Discriminative modeling can be applied, as a discriminator

Discriminator in VAE for Optimal Prior Learning

Variational Autoencoder + Flow

- Merge of two generative models
 - Variational autoencoder
 - requires a flexible latent space model
 - provides the information extraction through data compresions
 - Flow
 - restricted to the continuous and bijective transformation, so no dimensionality reduction
 - provides the flexible modeling on the probability space
- What-if we model the latent space by flow
 - If $z_0 \sim q_0(z_0)$ and
 - $z_K = f_K \circ \cdots \circ f_2 \circ f_1(z_0),$

ELBO of VAE + Flow

- Original ELBO in VAE
 - $\mathcal{L} = \mathbb{E}_{q_{\phi}(H|E)}[\log p_{\theta}(E|H)] D_{KL}(q_{\phi}(H|E)||p_{\theta}(H))$

•
$$L_{ELBO}(\theta, \phi) = \int q_{\phi}(z_{K}|x) \log p_{\theta}(x|z_{K}) dz_{K} + \int q_{\phi}(z_{K}|x) \log \frac{p(z_{K})}{q_{\phi}(z_{K}|x)} dz_{K}$$

$$= E_{z_{K} \sim q_{\phi}(z_{K}|x)} \left[\log p_{\theta}(x|z_{K}) \right] + E_{z_{K} \sim q_{\phi}(z_{K}|x)} \left[\log \frac{p(z_{K})}{q_{\phi}(z_{K}|x)} \right]$$

$$= E_{z_{0} \sim q_{\phi}(z_{0}|x)} \left[\log p_{\theta}(x|f_{K} \circ \cdots \circ f_{1}(z_{0})) \right] + E_{z_{0} \sim q_{\phi}(z_{0}|x)} \left[\log \frac{p(z_{K})}{q_{\phi}(f_{K} \circ \cdots \circ f_{1}(z_{0})|x)} \right]$$

$$= E_{z_{0} \sim q_{\phi}(z_{0}|x)} \left[\log p_{\theta}(x|f_{K} \circ \cdots \circ f_{1}(z_{0})) \right] + E_{z_{0} \sim q_{\phi}(z_{0}|x)} \left[\log p(z_{K}) \right]$$

$$- E_{z_{0} \sim q_{\phi}(z_{0}|x)} \left[\log q_{\phi}(f_{K} \circ \cdots \circ f_{1}(z_{0})|x) \right]$$

- Law of the unconscious statistician (LOTUS)
 - $E_{z_K \sim q_K(z_K)} [\log h(z_K)] = E_{z_0 \sim q_0(z_0|x)} [\log h(f_K \circ \cdots \circ f_1(z_0))]$
- Flow
 - $\log q_{\phi}(z_K) = \log q_{\phi}(z_0) \sum_{k=1}^K \log \det |D_{z_k} f_k|$
- Eventually, ELBO becomes
 - $L_{ELBO}(\theta, \phi) = E_{z_0 \sim q_{\phi}(z_0|x)} \left[\log p_{\phi}(x|f_K \circ \cdots \circ f_1(z_0)) \right] + E_{z_0 \sim q_{\phi}(z_0|x)} \left[\log p(z_K) \right]$ $-E_{z_0 \sim q_{\phi}(z_0|x)} \left[\log q_{\phi}(z_0|x) \right] + \sum_{k=1}^{\infty} E_{z_0 \sim q_{\phi}(z_0|x)} \left[\log \det |D_{z_k} f_k| \right]$

CONTINUOUS TRANSFORMATION ON FLOW

Detour: Residual Network

 Generalized Coupling Flows : general approach to construct non-linear flows

$$f(x) = f([x^A; x^B]) = (x^A, g(x^B; \theta(x^A))) = z$$

- $f = (f^A, f^B)$
 - where $f^A(x^A) = x^A$ (identity), $f^B(x^B) = g(x^B; \theta(x^A))$
- Residual Network Structure
 - $F(z_t) = W_2 \sigma(W_1 z_t)$
 - $z_{t+1} = z_t + f(z_t; \{W_i\})$
- Similarity
 - Existence of the identity operation
 - ResNet
 - All dimensions are processed
 - Flow
 - Some dimensions are processed
 - The other dimensions are kept

He et al., Deep Residual Learning for Image Recognition, CVPR 2016

 Z_{t}

i-ResNet

- Invertible Residual Networks
 - Generative Modeling with i-ResNets
 - Let $F: \mathcal{X} \to \mathcal{Z}$ be a transformation function. Then, equation of flow models:

$$\log p_x(x) = \log p_z(z) + \log \left| \det \frac{\partial F}{\partial x} \right|$$

• From the residual connection (F = I + f),

$$\log\left|\det\frac{\partial F}{\partial x}\right| = tr\left(\log\left(I + \frac{\partial f}{\partial x}\right)\right) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{tr\left(\left(\frac{\partial f}{\partial x}\right)^{k}\right)}{k}$$

- Stochastic Approximation of log-determinant
 - 1) Hutchinson's trace estimator $\rightarrow tr(J_f) = \mathbb{E}_{p(v)}[v^T J_f v]$ with $\mathbb{E}[v] = 0$, Cov(v) = I
 - 2) Infinite sum → truncated at index n

$$\log p_{x}(x) = \log p_{z}(z) + \mathbb{E}_{v} \left[\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} v^{T} J_{f}(x)^{k} v \right]$$

By 2), the estimator is biased. (but the paper said 5-10 iterations are enough)

Detour: Ordinary Differential Equation

- Ordinary Differential Equation
 - Differential equation with a set of functions on an independent variable and the derivatives of the functions
 - $F(x, y, y', ..., y^{(n)}) = 0$
 - y: depenent variable
 - *x*: independent variable
 - y = f(x): unknown function of x
- System of Differential Equations
 - Coupled differential equations

•
$$y: y(x) = [y_1(x), y_2(x), ..., y_m(x)]$$

$$\begin{pmatrix}
f_1(x, y, y', \dots, y^{(n)}) \\
f_2(x, y, y', \dots, y^{(n)}) \\
\vdots \\
f_m(x, y, y', \dots, y^{(n)})
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}$$

Example : SIR Model

•
$$\frac{dS}{dt} = -\beta IS$$
, $\frac{dI}{dt} = \beta IS - \nu I$, $\frac{dR}{dt} = \nu I$
• $\mathbf{v} = [S, I, R]$, $x = t$

How to calculate y for an arbitrary x

Detour: Euler Method

Ordinary Differential Equation

•
$$\begin{pmatrix} f_1(t, y, y', \dots, y^{(n)}) \\ f_2(t, y, y', \dots, y^{(n)}) \\ \dots \\ f_m(t, y, y', \dots, y^{(n)}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

- How to calculate y for an arbitrary t
- Given an initial point and an ODE
 - $y(t_0) = y_0$
 - y'(t) = f(t, y(t))
 - Let's assume a Talyor expansion on y at t_0 , and let's assume a very small step of h

•
$$y(t_0 + h) = y(t_0) + hy'(t_0) + \frac{1}{2}h^2y''(t_0) + O(h^3)$$

- $y(t_0 + h) \approx y(t_0) + hf(t, y(t))$
- Euler method
 - $y_{n+1} = y_n + hf(t_n, y_n)$
 - Assuming given $f(t_0, y_0)$
 - can be expanded to Runge-Kutta method
 - Dynamic setting of h is feasible

$$F(z_t) = W_2 \sigma(W_1 z_t)$$

$$z_{t+1} = z_t + f(z_t; \{W_i\})$$

$$\Rightarrow$$

$$z_{t+1} = z_t + \Delta t \frac{f(z_t; \theta)}{\Delta t} = z_t + \Delta t g(z_t, t; \theta)$$

Exact Value Output vs. Diffential Value Output from NN

IED ARTIFICIAL INTELLIGENCE LAB

- When we consider t as the layer number
 - Initially, t becomes the integer index of layer
 - However, is it feasible to see t as a continuous value?
- Usual neural network
 - $z_{t+1} = f_{NN_t}(z_t; \theta)$
 - z_{t+1} is the actual output given z_t
- Differential value integration with ODE solver
 - $\frac{dz_t}{dt} = g_{NN}(z(t), t; \theta)$
 - $z(t_1) = ODESolver(z(t_0), g_{NN}, t_0, t_1, \theta) = z(t_0) + (t_1 t_0)g_{NN}(z(t_0), t_0; \theta)$
- Now, we can calculate z_t at t with precision values
- Then, how to view the flow model with the discrete transformation?

Discrete Transformation:

Continuous Transformation:

R. Chen et al., Neural Ordinary Differential Equations, NeurIPS 2018

Background of Continuous Normalizing Flow

- Compose the multiple transformation as a chain
 - $f = f_K \circ f_{K-1} \circ \cdots \circ f_1$
 - Training with log-likelihood
 - $\max_{\theta} \left\{ \log p_Z(f_{\theta}(x)) + \sum_{i=1}^{K} \log \left| \det \frac{\partial f_i}{\partial f_{i-1}} \right| \right\}$
 - Role of $\det \frac{\partial f_i}{\partial f_{i-1}}$: Estimating the change of probability after the transformation
- Instantaneous Change of Variables
 - Assumption
 - Let z(t) be a finite continuous random variable with p(z(t)) dependent on time
 - Let $\frac{dz}{dt} = g(z(t), t)$ be a differential equation describing a continuous-in-time transformation of z(t)
 - Assuming that f is uniformly Lipschitz continuous in z and continuous in t
 - Then,

KAIST

The change in log probability also follows a differential equation, $rac{\partial \log p(z(t))}{\partial t} = -tr\left(rac{dg}{dz(t)}
ight)$

Copyright © 2018 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

- g does not have to be bijective, but g should be Lipschitz continuous
- Continuous transformation in probability
 - $z(t_1) z(t_0) = \int_{t_0}^{t_1} g(z(t), t) dt$, where $z(t_1) = x$
 - $\log p(z(t_1)) \log p(z(t_0)) = \int_{t_0}^{t_1} -tr(\frac{dg}{dz(t)}) dt$, where $\log p(z(t_1)) = \log p(x)$
 - Log Determininant of Jacobian matrix → Trace of Jacobian matrix
 - Bijective constraint → Lipschitz constraint

FFJORD

- (Discrete) Normalizing Flow
 - $\log p_{\theta}(x) = \log p(z_0) \sum_{k=1}^{K} \log \det \left| \frac{\partial f_k}{\partial z_k} \right|$
 - Complexity
 - $O(D^3)$ to calculate the log determinant
- Continuous Normalizing Flow

•
$$\log p_{\theta}(x) = \log p(z_0) - \int_{t_0}^{t_1} tr\left(\frac{dg}{dz(t)}\right) dt$$

- Complexity
 - $O(D^2)$ to calculate the trace
- FFJORD: Continuous-time Flow with Hutchinson's trace estimator

•
$$\log p_{\theta}(x) = \log p(z_0) - \mathbb{E}_{p(\epsilon)} \left[\int_{t_0}^{t_1} v^T \left(\frac{dg}{dz(t)} \right) \overline{v dt} \right]$$

- Complexity
 - O(D) to calculate the trace estimator

$$tr(A) = \mathbb{E}_{p(v)}[v^T A v]$$

Where $\mathbb{E}[v] = 0$, $Cov(v) = I$

$$\begin{pmatrix} \frac{\partial f_{\theta}^{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{\theta}^{1}}{\partial x_{D}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{\theta}^{D}}{\partial x_{1}} & \cdots & \frac{\partial f_{\theta}^{D}}{\partial x_{D}} \end{pmatrix}$$