Gang Hyun Kim 40097242 (OMP 352 May 19th, 2019

Assignment # 1

Question 1

if BCi] == sum then count = count + 1

for k=1 to j has a time complexity of O(n2) since it is a summation and by definition a summation is

\(\frac{1}{2} = \frac{n(n+1)}{2} \) which makes the time completity as such

for j=0 to n-1 has a time complexity of O(n) since it incomments in a linear Eastion while it reaches n-1

Therefore, the time complexity of the two for loops are $O(n^2)$

for 1=0 to n-1 has a time complexity of O(n)

The program as a whole has a time complexity of $O(n \cdot n^2) = O(n^3)$ due to the outer for loop and the other two inner for loops

Cb)) 0 B[0]=) 1 2 3	sum, 1 2 5 13	k - 1 2 1 2 3	Sum 2 1 4 7 12 15 20 29	count 0 0 0 0 0
	BC1] = 2	0 1 2 3 29, sum 0 1 2	1 2 5 13 1 = 29 2 5	- I I 2 I 2 3 3	1 47 12 15 29 1 47 12 15 20 29	000000
	B[3] = 9	0 1 2 3	$ \begin{array}{c} 1 \\ 2 \\ 5 \end{array} $ $ 13$ $ m = 29 $	1 2 1 2 3	1 4 7 12 15 20 29	

```
Question 2

(a) for (int i=0); <n; i=i+c)

for (int j=1; j < 1024; j=j*2)

| Sum [i]t= j * Sum [i];

| This for loop has a time complexity of O(c) Since it truns always until 1023.

This for loop has a time complexity of O(h)

This program has a time complexity of O(n).
```

Therefore, the algorithm has a time complexity of O(n)

i # ; is iterated

1 0
2 1
4 2
8 4
:

The time complexity for the inner loop is $O(n^2)$ because to find the total number of iterations, it is a summation which by definition is $\frac{n(n+1)}{2}$ making it $O(n^2)$

The outer loop's time complexity is Oclogn)
Therefore, the algorithm's time complexity is Oclog2n)

Question 4

(a) If $0 \le d(n) \le c_1 \cdot f(n_1)$ $0 \le e(n) \le e_2 \cdot g(n_2)$ then $0 \le d(n) + e(n) \le (1 \cdot f(n_1) + c_2 \cdot g(n_2))$ at some point where $c_1 = c_2$ $c_2 \le c_3 \le c_4 \le$

(6)

Let 2ⁿ⁺¹ he a(n) Let 2ⁿ he h(n) Let a(n) is O(b(n))

 $0 \le \Omega(n) \le cb(n)$ if $c \ge 2$ Therefore, the statement 2^{n+1} is $O(2^n)$ is true

 $2^n > n^3$ for certain numbers such as when n=10 1024 > 1000 so n^3 is $0(2^n)$.

Therefore, $2^{n+1} + n^3$ is $O(2^n)$ (c) $2 \times n! = 2 \times 2 \times 3... \times n$ $2^n = 2 \times 2 \times 2... \times 2$ n + terms

 $2^n \le c \cdot n!$ where $n \ge 0$, c = 2

: 2 " is O(n!)

(d)
$$\log(n!) = \log(1) + \log(2) + \dots + \log(n)$$
 $n + erms$
 $n + \log(n) = \log(n) + \log(n) + \log(n) + \dots + \log(n)$
 $n + erms$

log(n!) Snlogn where n>0
i. log(n!) is O(nlogn)