P4.1 – Determine a capacidade total e a indutância total dos circuitos das figura 4.1 a) e b) respectivamente.





Figura 4.1

P4.2 - Considere o circuito da figura 4.2 no qual o interruptor  $S_1$  fecha no instante t = 0s.



Figura 4.2

- a) Qual o valor da energia armazenada no condensador imediatamente antes de o interruptor fechar.
- b) Qual o valor final da tensão aos terminais de  $R_L$  (em regime estacionário) após o interruptor fechar.
- c) Obtenha a expressão de V<sub>C</sub>(t) após o interruptor fechar e represente-a graficamente (para t≥0s).
- P4.3 Para o circuito da figura 4.3, determine em t=1s os valores das seguintes grandezas elétricas.
  - a) Tensão no condensador  $V_{\mathcal{C}}$  ,
  - b) Tensão na resistência de  $20 \Omega (V_R)$ ,
  - c) Tensão aos terminais do interruptor  $(V_{SW})$ .



P4.4 - Para o circuito da figura 4.4, onde simultaneamente se comuta a carga do condensador C e da bobina L, determine as correntes, as tensões e as energias nestes dois componentes  $(i_L, i_C, v_L, v_C, w_L)$  e  $w_C$ ) em t = 0, e  $t = +\infty$ . O comutador é atuado em t = 0.



- P4.5 Considere o circuito da figura 4.5 onde se supõe que o interruptor abre em t=0, e torna a fechar em  $t_1=15~\rm ms$ .
  - a) Calcule a potência fornecida pela fonte de corrente e a energia armazenada no condensador antes da abertura do interruptor (t=0).
  - b) Calcule a expressão da tensão  $v_c(t)$  no intervalo  $]0, t_1[$  e o seu valor em  $t = t_1$ .
  - c) Calcule a expressão da tensão  $v_{\mathcal{C}}(t)$  no intervalo  $[t_1,\infty[$  e o seu valor em  $t=2t_1=30~ms.$

- d) Represente graficamente  $v_{\mathcal{C}}(t), i_{\mathcal{C}}(t)$  e  $i_{\mathcal{R}}(t)$  no intervalo  $]0, \infty[$ . Considere como  $t = \infty$ , um valor de t tal que as grandezas a representar já seja praticamente constantes.
- e) Calcule a energia fornecida pela fonte e a energia dissipada na resistência no intervalo de tempo  $]0,2t_1[$ .



P4.6 - Considere o circuito representado na figura 4.6, em que  $v_1(t)$  tem a forma indicada. Determine as expressões de  $v_C(t)$  e  $v_R(t)$  e represente-as graficamente.



Figura 4.6

- P4.7 Considere o circuito da figura 4.7, em que  $i_s = 2u(t)[A]$ . Admita que no instante inicial (t = 0) se tem  $v_c(0) = 8V$  e  $i_L(t) = 3A$ .
  - a) Escreva as equações nodais (integro-diferenciais) do circuito.
  - b) Escreva as equações das malhas.



Figura 4.7

Soluções

$$P4.1-a)~2.85~\mu F$$
 ; b) 6 mH

P4.2 – a) w = 0.8mJ; b) 2V; c) 
$$v_c(t) = 2 + 2e^{-\frac{t}{0.5}}$$

P4.3 – a) 
$$v_c(1) = 4.49 \text{ V}$$
; b)  $v_R(1) = 3.59 \text{ V}$ ;  $v_{SW}(1) = 8.41 \text{ V}$ 

P4.4 -

|                | t = 0   | $t = 0^{+}$ | t → +∞  |
|----------------|---------|-------------|---------|
| i <sub>C</sub> | 0 A     | 1.25 A      | 0 A     |
| V <sub>C</sub> | 6 V     | 6 V         | 12 V    |
| $W_{C}$        | 3.6 mJ  | 3.6 mJ      | 14.4 mJ |
| İL             | 5 A     | 5 A         | 10 A    |
| VL             | 0 V     | 8.3 V       | 0 V     |
| $W_L$          | 37.5 mJ | 37.5 mJ     | 150 mJ  |

 $P4.5 - a) W_C(0) = 0.2 mJ$ , P(0) = -40 mW potência fornecida

b) 
$$v_C(t) = 20 [1+100t] V$$
,  $v_C(t_1) = 50V$ 

c) 
$$v_C(t) = 10 [2+3e^{-100(t-0.015)}] V, v_C(t_2) = -26.7V$$

e) 
$$\Delta W_{fonte} = W_{fonte}(2t_1) - W_{fonte}(0) = -2.12 \text{mJ}, \ \Delta W_R = W_R(2t_1) - W_R(0) = 1.96 \text{mJ}$$

$$\mathsf{P4.6} - v_c(t) = \begin{cases} 1 & \text{, } t \le 0 \\ 5 - 4^{-10^4 t} & \text{, } 0 \le t \le 150 \,\mu\text{s} \\ -2 + 6.11^{-10^4 (t - t_1)} & \text{, } t \ge 150 \,\mu\text{s} \end{cases} [V]$$

$$v_R(t) = \begin{cases} 0 & ,t \le 0 \\ 4^{-10^4 t} & ,0 \le t \le 150 \,\mu s \\ 6.11^{-10^4 (t-t_1)} & ,t \ge 150 \,\mu s \end{cases} [V]$$



P4.7 - a) 
$$\begin{cases} \frac{v_1(t)}{R} + C \frac{dv_1(t)}{dt} - C \frac{dv_2(t)}{dt} = i_S(t) \\ -C \frac{dv_1(t)}{dt} + C \frac{dv_2(t)}{dt} + \frac{1}{L} \int_0^t v_2(x) dx = -i_L(t) \end{cases}$$

$$\begin{cases} \frac{dv_1(t)}{dt} - \frac{dv_2(t)}{dt} + 500v_1(t) = 10^6\\ \frac{dv_2(t)}{dt} - \frac{dv_1(t)}{dt} + 10^8 \int_0^t v_2(x) dx = -1.510^6 \end{cases}$$

b) 
$$\begin{cases} j_1 = i_S & \frac{1}{c} \int_0^t i_C(x) dx + R \left[ i_C(t) - i_S(t) \right] + L \frac{di_C(t)}{dt} + v_C(0) = 0 \\ \frac{di_C(t)}{dt} + 10^8 \int_0^t i_C(x) dx + 2 \times 10^8 i_C(t) = 398.4 \times 10^3 \end{cases}$$

| Semana                   | 1ª aula               | 2ª aula              |
|--------------------------|-----------------------|----------------------|
| Semana 4 (18/10 – 22/10) | P3.9, P4.4, E31, P4.1 | P4.6, P4.7, E32, E33 |