F2FS and
EXT4
Reliability

Motivation

- F2FS created for Flash storage devices notably phones
- Not much data on reliability of F2FS
- Only info on reliability was found on old forums from ~2014
- Native Android Filesystem is EXT4
 - How does F2FS compare with EXT4?

Configurations

aineshbakshi/Git-Benchmark:

- Runs 1-3:
 - Total Pulls: 10,000
 - o Pulls Per Test: 100
- Runs 4-5:
 - o Total Pulls: 5,000
 - Pulls Per Test: 50

System:

- Ubuntu 16.04.5
- Linux 4.4.0-104-generic

Micro SD Card (SDHC):

- SanDisk Ultra Class 10
- 32 GB
 - 4 Partitions of 7.43 GB
 - 2x F2FS
 - 2x EXT4

GCC

• Version *5.4.0 - 20160609*

Configurations

EXT4:

- rw
- block_validity
- delalloc
- barrier
- user_xattr
- acl
- resuid=0
- resgid=0
- errors=continue
- commit=5
- min_batch_time=0
- max_batch_time=15000
- stripe=0
- data=ordered
- inode_readahead_blks=32
- init_itable=10
- max_dir_size_kb=0

F2FS:

- F2FS-tools: mkfs.f2fs Ver: 1.6.1 (2016-03-22)
- Info: Debug level = 0
- Info: Label =
- Info: Segments per section= 1
- Info: Sections per zone = 1
- Info: Trim is enabled
- Info: sector size = 512
- Info: total sectors = 62325760 (30432 MB)
- Info: zone aligned segment0 blkaddr: 512
- Info: Discarding device
- Info: This device doesn't support TRIM
- Info: Overprovision ratio = 1.150%
- Info: Overprovision segments = 352 (GC reserved = 181)
- Info: format successful

Runner Script

```
Terminal
File Edit View Terminal Tabs Help
#!/bin/bash
SRC REPO="/home/michael/osproj/linux/"
DEST="/home/michael/osproj/aged"
OUTPUT FILE="/home/michael/osproj/f2fs aged out.txt"
TOTAL PULLS="5000"
PULLS PER TEST="50"
TEST SCRIPT="/home/michael/osproj/fs-age-benchmark/grep f2fs.sh"
PATH TO AGED="/home/michael/osproj/aged"
AGED_BLK DEV="/dev/mmcblk0p3'
PATH TO UNAGED="/home/michael/osproj/flat"
UNAGED BLK DEV="/dev/mmcblk0p4"
umount $PATH TO AGED
umount $PATH TO UNAGED
mount $AGED BLK DEV $PATH TO AGED
mount $UNAGED BLK DEV $PATH TO UNAGED
python /home/michael/osproj/fs-age-benchmark/git benchmark.py $SRC REPO $DEST $
UTPUT FILE $TOTAL PULLS $PULLS PER TEST $TEST SCRIPT $PATH TO AGED $AGED BLK DE
 $PATH TO UNAGED $UNAGED BLK DEV | tee -a master output f2fs.txt
OUTPUT FILE="/home/michael/osproj/ext4 aged out.txt"
TEST SCRIPT="/home/michael/osproj/fs-age-benchmark/grep ext4.sh"
AGED_BLK_DEV="/dev/mmcblk0p1"
UNAGED BLK DEV="/dev/mmcblk0p2"
umount $PATH TO AGED
umount $PATH TO UNAGED
mount $AGED BLK DEV $PATH TO AGED
mount $UNAGED BLK DEV $PATH TO UNAGED
python /home/michael/osproj/fs-age-benchmark/git benchmark.py $SRC REP0 $DEST $0
UTPUT FILE $TOTAL PULLS $PULLS PER TEST $TEST SCRIPT $PATH TO AGED $AGED BLK DE\
$PATH TO UNAGED $UNAGED BLK DEV | tee -a master output ext4.txt
```

F2FS Script

```
AGED PATH=$1
AGED BLKDEV=$2
UNAGED PATH=$3
UNAGED BLKDEV=$4
# remount aged and time a recursive grep
umount $AGED PATH &>> log f2fs.txt
mount $AGED BLKDEV $AGED PATH &>> log f2fs.txt
AGED="$(TIMEFORMAT='%3R'; time (grep r "t26EdaovJD" $AGED PATH) 2>&1)"
SIZE="$(du -s $AGED PATH | awk '{print $1}')"
# create a new f2fs filesystem, mount it, time a recursive grep and dismount it
mkfs.f2fs $UNAGED BLKDEV #&>> log f2fs.txt
mount $UNAGED BLKDEV $UNAGED PATH &>> log f2fs.txt
cp -a $AGED PATH/* $UNAGED PATH 2>/dev/null
umount $UNAGED PATH &>> log f2fs.txt
mount $UNAGED BLKDEV $UNAGED PATH
UNAGED="$(TIMEFORMAT='%3R'; time (grep -r "t26EdaovJD" $UNAGED PATH) 2>&1)"
umount $UNAGED PATH &>> log f2fs.txt
# return the size and times
echo "$SIZE $AGED $UNAGED"
```

Modifications

git_benchmark

F2FS:

0 332388 20.872 21.549 50 337380 21.763 21.274 100 341276 23.086 22.322 150 346040 23.767 21.946 200 349492 24.435 23.281

<<pre><<pull 204 failed>>
<<pull 240 failed>>

250 358072 25.104 23.132

<<pul><<pul><<pul><<pul><<pul></p</p>

450 416888 27.622 24.846

<<pre><<pull 451 failed>>
<<pull 633 failed>>

650 446108 29.366 27.029 700 450104 30.591 26.278 750 455456 31.896 27.348 800 461052 32.246 28.230

<<pre><<pull 813 failed>>
<<pull 3234 failed>>

Results

EXT4:

pulls output 0 290588 13.377 13.858 50 293444 14.331 14.805 100 295616 15.082 15.056 150 298696 15.371 15.736 200 300724 15.607 15.707

<<pre><<pull 204 failed>>
<<pull 633 failed>>

650 385856 18.214 18.895 700 388228 18.643 18.890 750 391332 19.113 19.180 800 394928 19.113 19.573

<<pre><<pull 813 failed>>
<<pull 2375 failed>>

Results

Results

Results

- Results are inconclusive
 - Not enough data/pulls
- Predictions
 - F2FS will age poorly, especially compared to EXT4
 - EXT4 will age more slowly
- Suggestions
 - Better method of aging

References

Thank You!

Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan, Michael A. Bender, William Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Martin Farach-Colton. 2017. *File systems fated for senescence? nonsense, says science!*. In Proceedings of the 15th Usenix Conference on File and Storage Technologies (FAST'17). USENIX Association, Berkeley, CA, USA, 45-58