

Project Initialization and Planning Phase Project Initialization and Planning Phase

Date	07 November 2024	
Team ID	team - 739821	
Project Title	Virtual Eye - Life Guard for Swimming Pools to Detect Active Drowning	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

The Virtual Eye system aims to detect drowning in real-time using a single underwater camera. By leveraging the YOLOv5 model, this solution detects three classes: Drowning, Swimming, When the system identifies a high drowning probability, it generates an alert to attract the lifeguard's attention. Upon detection, the system immediately alerts lifeguards, enhancing response time and improving swimmer safety.

Project Overview		
Objective	To develop an automated surveillance system that enhances pool safety by detecting and alerting lifeguards to active drowning incidents in real-time.	
Scope	This project covers the design, development, and deployment of a computer vision-based system for swimming pools. It includes real-time image processing, alert mechanisms, and integration with pool surveillance infrastructure.	
Problem Statement		
Description	Drowning is a leading cause of accidental death in swimming pools, often occurring silently and within minutes. Traditional lifeguarding can be challenging, especially in busy or large pools where continuous vigilance is needed.	
Impact	An automated drowning detection system could significantly reduce response times, helping lifeguards intervene swiftly to prevent fatalities and injuries.	
Proposed Solution		
Approach	The system uses YOLOv5 for real-time object detection, analyzing	

Date	07 November 2024	
Team ID	team - 739821	
Project Title	Virtual Eye - Life Guard for Swimming Pools to Detect Active Drowning	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

The Virtual Eye system aims to detect drowning in real-time using a single underwater camera. By leveraging the YOLOv5 model, this solution detects three classes: Drowning, Swimming, When the system identifies a high drowning probability, it generates an alert to attract the lifeguard's attention. Upon detection, the system immediately alerts lifeguards, enhancing response time and improving swimmer safety.

Project Overview		
Objective	To develop an automated surveillance system that enhances pool safety by detecting and alerting lifeguards to active drowning incidents in real-time.	
Scope	This project covers the design, development, and deployment of a computer vision-based system for swimming pools. It includes real-time image processing, alert mechanisms, and integration with pool surveillance infrastructure.	
Problem Statement		
Description	Drowning is a leading cause of accidental death in swimming pools, often occurring silently and within minutes. Traditional lifeguarding can be challenging, especially in busy or large pools where continuous vigilance is needed.	
Impact	An automated drowning detection system could significantly reduce response times, helping lifeguards intervene swiftly to prevent fatalities and injuries.	
Proposed Solution		
Approach	The system uses YOLOv5 for real-time object detection, analyzing	

	video feeds from poolside cameras to identify active drowning behaviors, such as irregular body movements or prolonged submersion.	
Key Features	 Real-Time Detection: Instantly recognizes signs of drowning and triggers alerts. Continuous Monitoring: Operates 24/7, reducing the risk of missed incidents. Efficient and Scalable: Suitable for both small and large pool facilities. 	

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	Colab's GPU (typically an NVIDIA T4 or P100)		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB		
Software				
Frameworks	Python frameworks	Flask		
Libraries	Additional libraries	ultralytics		
Development Environment	IDE, version control	Google Colab, VS studio, Anaconda prompt		
Data				
Data	Source, size, format	Kaggle dataset, 2000 images		