

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

Offenlegungsschrift

(11) DE 3737888 A1

(51) Int. Cl. 4:

A01N 43/653

A 01 N 43/50

// (A01N 43/653,

59:02,47:10,37:06,

37:10,37:34,37:22,

47:28,37:32,47:44,

43:48,43:653,43:66,

57:32,43:82,43:74,

43:40,43:84, 53:00,

43:04,33:02)

(71) Anmelder:

BASF AG, 6700 Ludwigshafen, DE

(72) Erfinder:

Kurbach, Stefan, Dr.; Janssen, Bernd, Dr.; Recker, Hans-Gert, Dr., 6700 Ludwigshafen, DE; Smuda, Hubert, Dr., 6900 Heidelberg, DE; Meyer, Norbert, Dr., 6802 Ladenburg, DE; Jung, Johann, Prof. Dr.; Rademacher, Wilhelm, Dr., 6703 Limburgerhof, DE

(54) Verfahren zur Beeinflussung des Pflanzenwachstums durch Azolylmethyloxirane

Verfahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man den Boden, das Saatgut und/oder die Pflanzen mit einem Azolylmethyloxiran der allgemeinen Formel

in der die Substituenten

A, B C₁-C₄-Alkyl, Phenyl, Naphthyl, Diphenyl oder durch ein bis drei Reste aus der Gruppe Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, Nitro oder Phenoxy substituiertes Phenyl und

Z die CH-Gruppe oder Stickstoff bedeuten oder deren Metall- oder Säureadditionssalze, behandelt.

DE 3737888 A1

DE 3737888 A1

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Beeinflussung des Pflanzenwachstums, indem man den Boden, das Saatgut und/oder die Pflanzen mit einem Azolylmethyloxiran der allgemeinen Formel I:

5

10

15

in der die Substituenten

A und B gleich oder verschieden sind und C₁—C₄-Alkyl, Phenyl, Naphthyl, Diphenyl oder durch ein bis drei gleiche oder verschiedene Reste aus der Gruppe Halogen, C₁—C₄-Alkyl, C₁—C₄-Alkoxy, C₁—C₄-Halogenalkyl, Nitro oder Phenoxy substituiertes Phenyl und

20

Z die CH-Gruppe oder Stickstoff bedeuten,
oder deren Metall- oder Säureadditionssalze, behandelt.

Aus der EP-A 94 564 sind die Azolylmethyloxirane der allgemeinen Formel I bekannt; sie werden zur Verwendung als Arzneimittel, besonders als Antimykotika, und als Pflanzenschutzmittel, besonders als Fungizid, empfohlen. Andere Anwendungen dieser Verbindungen waren nicht bekannt.

25

Der Erfindung lag daher die Aufgabe zugrunde, die Azolylmethyloxirane für neue Anwendungsgebiete bereitzustellen.

Demgemäß wurde gefunden, daß die eingangs definierten Azolylmethyloxirane I sich zur Regulierung des Pflanzenwachstums eignen.

30

Im einzelnen haben die Substituenten in Formel I folgende Bedeutungen:

A und B unabhängig voneinander

- unverzweigtes oder verzweigtes C₁—C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl,

35

- Phenyl,

- Naphthyl, wie 1-Naphthyl und 2-Naphthyl, bevorzugt 2-Naphthyl,

- Diphenyl, wie o-Diphenyl, m-Diphenyl und p-Diphenyl,

- durch ein, zwei oder drei Halogenatome substituiertes Phenyl, wie
2-Fluorphenyl, 3-Fluorphenyl, 4-Fluorphenyl, 2-Chlorphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 2-Bromphenyl,

40

- 3-Bromphenyl, 4-Bromphenyl, 2,3-Difluorphenyl, 2,4-Difluorphenyl, 2,5-Difluorphenyl, 2,6-Difluorphenyl,

- 3,4-Difluorphenyl, 3,5-Difluorphenyl, 2,3-Difluorphenyl, 2,4-Dichlorphenyl, 2,5-Dichlorphenyl,

- 2,6-Dichlorphenyl, 3,4-Dichlorphenyl, 3,5-Dichlorphenyl, 2,3-Dibromphenyl, 2,4-Dibromphenyl,

- 2,5-Dibromphenyl, 2,6-Dibromphenyl, 3,4-Dibromphenyl, 3,5-Dibromphenyl, 2-Chlor-3-fluorphenyl,

- 3-Chlor-2-fluorphenyl, 2-Chlor-4-fluorphenyl, 4-Chlor-2-fluorphenyl, 2-Chlor-5-fluorphenyl,

- 5-Chlor-2-fluorphenyl, 2-Chlor-6-fluorphenyl, 3-Chlor-4-fluorphenyl, 4-Chlor-3-fluorphenyl,

- 3-Chlor-5-fluorphenyl, 2-Brom-3-fluorphenyl, 3-Brom-2-fluorphenyl, 2-Brom-4-fluorphenyl,

- 4-Brom-2-fluorphenyl, 2-Brom-5-fluorphenyl, 5-Brom-2-fluorphenyl, 2-Brom-6-fluorphenyl,

- 3-Brom-4-fluorphenyl, 4-Brom-3-fluorphenyl, 3-Brom-5-fluorphenyl, 2-Brom-3-chlorphenyl,

- 3-Brom-2-chlorphenyl, 2-Brom-4-chlorphenyl, 4-Brom-2-chlorphenyl, 2-Brom-5-fluorphenyl,

50

- 5-Brom-2-chlorphenyl, 4-Brom-6-chlorphenyl, 3-Brom-4-chlorphenyl, 4-Brom-3-chlorphenyl,

- 3-Brom-5-chlorphenyl,

- durch ein, zwei oder drei C₁—C₄-Alkylgruppen substituiertes Phenyl,

- durch ein, zwei oder drei C₁—C₄-Alkoxygruppen substituiertes Phenyl,

- durch ein, zwei oder drei C₁—C₄-Halogenalkylgruppen substituiertes Phenyl,

- durch ein oder zwei Nitrogruppen substituiertes Phenyl,

- durch ein, zwei oder drei Phenoxygruppen substituiertes Phenyl,

- durch Halogen und C₁—C₄-Alkyl zwei- oder dreifach substituiertes Phenyl,

- durch Halogen und C₁—C₄-Alkoxy zwei- oder dreifach substituiertes Phenyl,

- durch Halogen und C₁—C₄-Halogenalkyl zwei- oder dreifach substituiertes Phenyl,

- durch Halogen und Nitro zwei- oder dreifach substituiertes Phenyl,

- durch Halogen und Phenoxy zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkyl und C₁—C₄-Alkoxy zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkyl und C₁—C₄-Halogenalkyl zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkyl und Nitro zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkyl und Phenoxy zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkoxy und C₁—C₄-Halogenalkyl zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkoxy und Nitro zwei- oder dreifach substituiertes Phenyl,

- durch C₁—C₄-Alkoxy um, —enoxy zwei- oder dreifach substituiertes Phenyl,
 - durch C₁—C₄-Halogenalkyl und Nitro zwei- oder dreifach substituiertes Phenyl,
 - durch C₁—C₄-Halogenalkyl und Phenoxy zwei- oder dreifach substituiertes Phenyl,
 - durch Nitro und Phenoxy zwei- oder dreifach substituiertes Phenyl,
 - durch Halogen, C₁—C₄-Alkyl und C₁—C₄-Alkoxy dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Alkyl und C₁—C₄-Halogenalkyl dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Alkyl und Nitro dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Alkyl und Phenoxy dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Alkoxy und C₁—C₄-Halogenalkyl dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Alkoxy und Nitro dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Alkoxy und Phenoxy dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Halogenalkyl und Nitro dreifach substituiertes Phenyl
 - durch Halogen, C₁—C₄-Halogenalkyl und Phenoxy dreifach substituiertes Phenyl
 - durch Halogen, Nitro und Phenoxy dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkyl, C₁—C₄-Alkoxy und C₁—C₄-Halogenalkyl dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkyl, C₁—C₄-Alkoxy und Nitro dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkyl, C₁—C₄-Alkoxy und Phenoxy dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkyl, C₁—C₄-Halogenalkyl und Nitro dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkyl, C₁—C₄-Halogenalkyl und Phenoxy dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkyl, Nitro und Phenoxy dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkoxy, C₁—C₄-Halogenalkyl und Nitro dreifach substituiertes Phenyl
 - durch C₁—C₄-Alkoxy, C₁—C₄-Halogenalkyl und Phenoxy dreifach substituiertes Phenyl
 - durch C₁—C₄-Halogenalkyl, Nitro und Phenoxy dreifach substituiertes Phenyl
- 5
10
15
20
25

Besonders bevorzugt sind die Azolymethyloxirane I, in denen A für 4-Fluorphenyl oder 4-Chlorphenyl, B für Trifluormethylphenyl und Z für Stickstoff steht.

Geeignete Säuren zur Bildung von Salzen der Verbindungen I sind vorzugsweise Halogenwasserstoffsäuren, wie Chlorwasserstoffsäure und Bromwasserstoffsäure, insbesondere Chlorwasserstoffsäure, die mit den Verbindungen I besonders gut kristallisierende Salze bildet, ferner eignen sich Phosphorsäure, Salpetersäure, Schwefelsäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie Essigsäure, Oxalsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salicylsäure, Sorbinsäure, Milchsäure, sowie Sulfonsäuren, wie p-Toluolsulfonsäure und 1,5-Naphthalindisulfonsäure.

Säureadditionssalze sind beispielsweise die Chloride, Bromide, Sulfate, Nitrates, Phosphate, Oxalate oder Dodecyl-benzolsulfonate. Die Wirksamkeit der Salze geht auf das Kation zurück, so daß die Wahl des Anions beliebig ist. Metallkomplexe der Verbindungen I sind Verbindungen der allgemeinen Formel Ia

25

30

35

40

45

50

55

60

in der M ein Metall, z. B. Kupfer, Zink, Zinn, Mangan, Eisen, Kobalt oder Nickel, bevorzugt Kupfer bedeutet, W für das Anion einer anorganischen Säure steht, z. B. Chlorid, Sulfat, Phosphat oder Bromid, bevorzugt Chlorid und n und q 1, 2, 3, oder 4, bevorzugt 1 und 2, bedeuten.

Die Azolymethyloxirane der allgemeinen Formel I lassen sich nach den Methoden, die in der EP-A 94-564 beschrieben sind, herstellen.

Die Verbindungen I enthalten 2 chirale Zentren und werden im allgemeinen in Form von Diastereomerengemischen erhalten. Diese lassen sich durch Diastereomerentrennung, aufgrund ihrer unterschiedlichen physikalischen Eigenschaften z. B. durch Umlkristallisation oder Säulenchromatographie, auch HPLC, in diastereomerreine Enantiomerenpaare trennen. Diese diastereomerreinen Enantiomerenpaare können durch bekannte Methoden der Racematspaltung, wie z. B. durch Umsetzung mit einer chiralen Hilfskomponente, Trennung der entstandenen Diastereomeren nach den oben genannten Methoden und anschließende Abspaltung der Hilfskomponente oder durch Säulenchromatographie, auch HPLC, an chiralen Säulen (Säulenfüllmaterial z. B. Kieselgel dotiert mit einem chiralen nicht herauswaschbaren festen Hilfsstoff), in enantiomerenreine Verbindungen I überführt werden.

Die Azolymethyloxirane der allgemeinen Formel I können praktisch alle Entwicklungsstadien einer Pflanze verschiedenartig beeinflussen und werden deshalb als Wachstumsregulatoren eingesetzt. Die Wirkungsvielfalt der Pflanzenwachstumsregulatoren hängt ab vor allem

65

- von der Pflanzenart und -sorte,
- von dem Zeitpunkt der Applikation, bezogen auf das Entwicklungsstadium der Pflanze und von der

Jahreszeit,

- c) von dem Applikationsort und -verfahren (Samenbeize, Bodenbehandlung oder Blattapplikation)
- d) von klimatischen Faktoren, z. B. Temperatur, Niederschlagsmenge, außerdem auch Tageslänge und Lichtintensität
- e) von der Bodenbeschaffenheit (einschließlich Düngung),
- f) von der Formulierung bzw. Anwendungsform des Wirkstoffs und
- g) von den angewendeten Konzentrationen der aktiven Substanz.

Aus der Reihe der verschiedenartigen Anwendungsmöglichkeiten der erfindungsgemäßen Pflanzenwachstumsregulatoren im Pflanzenanbau, in der Landwirtschaft und im Gartenbau, werden einige nachstehend erwähnt.

A. Mit den erfindungsgemäß verwendbaren Verbindungen läßt sich das vegetative Wachstum der Pflanzen stark hemmen, was sich insbesondere in einer Reduzierung des Längenwachstums äußert. Die behandelten Pflanzen weisen demgemäß einen gedrungenen Wuchs auf; außerdem ist eine dunklere Blattfärbung zu beobachten.

Als vorteilhaft für die Praxis erweist sich z. B. die Verringerung des Grasbewuchses an Straßenrändern, Hecken, Kanalböschungen und auf Rasenflächen wie Park-, Sport- und Obstanlagen, Zierrasen und Flugplätzen, so daß der arbeits- und kostenaufwendige Rasenschnitt reduziert werden kann.

Von wirtschaftlichem Interesse ist auch die Erhöhung der Standfestigkeit von lageranfälligen Kulturen wie Getreide, Mais, Sonnenblumen und Soja. Die dabei verursachte Halmverkürzung und Halmverstärkung verringern oder beseitigen die Gefahr des "Lagerns" (des Umknickens) von Pflanzen unter ungünstigen Witterungsbedingungen vor der Ernte.

Wichtig ist auch die Anwendung zur Hemmung des Längenwachstums und zur zeitlichen Veränderung des Reifeverlaufs bei Baumwolle. Damit wird ein vollständig mechanisiertes Beernten dieser wichtigen Kulturpflanzen ermöglicht.

Durch Anwendung der Verbindungen I kann auch die seitliche Verzweigung der Pflanzen vermehrt oder gehemmt werden. Daran besteht Interesse, wenn z. B. bei Tabakpflanzen die Ausbildung von Seitentrieben (Geiztrieben) zugunsten des Blattwachstums gehemmt werden soll.

Mit den Verbindungen I läßt sich beispielsweise bei Winterraps auch die Frostresistenz erheblich erhöhen. Dabei werden einerseits das Längenwachstum und die Entwicklung einer zu üppigen (und dadurch besonders frostanfälligen) Blatt- bzw. Pflanzenmasse gehemmt. Andererseits werden die jungen Rapspflanzen nach der Aussaat und vor dem Einsetzen der Winterfröste trotz günstiger Wachstumsbedingungen im vegetativen Entwicklungsstadium zurückgehalten. Dadurch wird auch die Frostgefährdung solcher Pflanzen beseitigt, die zum vorzeitigen Abbau der Blühhemmung und zum Übergang in die generative Phase neigen. Auch bei anderen Kulturen, z. B. Wintergetreide ist es vorteilhaft, wenn die Bestände durch Behandlung mit erfindungsgemäßen Verbindungen im Herbst zwar gut bestockt werden, aber nicht zu üppig in den Winter hineingehen. Dadurch kann der erhöhte Frostempfindlichkeit und – wegen der relativ geringen Blatt- bzw. Pflanzenmasse – dem Befall mit verschiedenen Krankheiten (z. B. Pilzkrankheit) vorgebeugt werden. Die Hemmung des vegetativen Wachstums ermöglicht außerdem bei vielen Kulturpflanzen eine dichtere Bepflanzung des Bodens, so daß ein Mehrertrag, bezogen auf die Bodenoberfläche, erzielt werden kann.

B. Mit den Mitteln auf der Basis von Azolylmethyloxiranen I lassen sich Mehrerträge sowohl an Pflanzenteilen als auch an Pflanzeninhaltsstoffen erzielen. So ist es beispielsweise möglich, das Wachstum größerer Mengen an Knospen, Blüten, Blättern, Früchten, Samenkörnern, Wurzeln und Knollen zu induzieren, den Gehalt an Zucker in Zuckerrüben, Zuckerrohr sowie Zitrusfrüchten zu erhöhen, den Proteingehalt in Getreide oder Soja zu steigern oder Gummibäume zum vermehrten Latexfluß zu stimulieren.

Die Azolylmethyloxirane der Formel I können Ertragssteigerungen durch Eingriffe in den pflanzlichen Stoffwechsel bzw. durch Förderung oder Hemmung des vegetativen und/oder des generativen Wachstums verursachen.

C. Mit den Azolylmethyloxiranen I lassen sich schließlich sowohl eine Verkürzung bzw. Verlängerung der Entwicklungsstadien als auch eine Beschleunigung bzw. Verzögerung der Reife der geernteten Pflanzenteile vor oder nach der Ernte erreichen.

Von wirtschaftlichem Interesse ist beispielsweise die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Die Förderung der Ausbildung eines Trengewebes zwischen der Blatt- und Sproßachse ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen z. B. Baumwolle wesentlich.

D. Mit dem Azolylmethyloxiranen I kann weiterhin der Wasserverbrauch von Pflanzen reduziert werden. Dies ist besonders wichtig für landwirtschaftliche Nutzflächen, die unter einem hohen Kostenaufwand künstlich bewässert werden müssen, z. B. in ariden oder semiariden Gebieten. Durch den Einsatz der erfindungsgemäßen Substanzen läßt sich die Intensität der Bewässerung reduzieren und damit eine kostengünstigere Bewirtschaftung durchführen. Unter dem Einfluß von Wachstumsregulatoren kommt es zu einer besseren Ausnutzung des vorhandenen Wassers, weil u. a.

- die Öffnungsweite der Stomata reduziert wird
- eine dickere Epidermis und Cuticula ausgebildet werden
- die Durchwurzelung im Pflanzenbestand durch einen kompakteren Wuchs günstig beeinflußt wird.

Die erfundungsgemäß zu verwendenden Wirkstoffe können den Kulturpflanzen sowohl vom Samen her (als Saatgutbeizmittel) als auch über den Boden, d. h. durch die Wurzel sowie durch Spritzung über das Blatt zugeführt werden.

Infolge der hohen Verträglichkeit der Pflanzen für die Verbindungen I kann die Aufwandmenge stark variiert werden. Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 50 g je Kilogramm Saatgut, vorzugsweise 0,01 bis 1 g, benötigt. Für die Blatt- und Bodenbehandlung sind im allgemeinen Gaben von 0,01 bis 10 kg/ha, bevorzugt 0,1 bis 5 kg/ha ausreichend.

Die Mittel auf der Basis von Azolylmethyloxiranen I können in Form üblicher Formulierungen angewendet werden wie Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollen in jedem Fall eine feine und gleichmäßige Verteilung der wirksamen Substanz gewährleisten. Die Formulierungen werden in bekannter Weise hergestellt, z. B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln, wobei im Falle der Benutzung von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Frage: Lösungsmittel wie Aromaten (z. B. Xylole, Toluol, Benzol), chlorierte Aromaten (z. B. Chlorbenzole), Paraffine (z. B. Erdölfractionen), Alkohole (z. B. Methanol, Butanol), Amine (z. B. Ethanolamin), N,N-Dimethylformamid und Wasser; feste Trägerstoffe wie natürliche Gesteinsmehle (z. B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z. B. hochdisperse Kiesel säure, Silikate); Emulgiermittel oder sonstige oberflächenaktive Mittel, wie nichtionogene und anionische Emulgatoren (z. B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate) und Dispergiermittel wie Lignin, Sulfitablauge und Methylcellulose. Bevorzugt ist die Anwendung der erfundungsgemäßen Verbindungen in wässriger Lösung gegebenenfalls unter Zusatz von mit Wasser mischbaren organischen Lösungsmitteln wie Methanol oder anderen niederen Alkoholen, Aceton, N,N-Dimethylformamid oder N-Methylpyrrolidon.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.% Wirkstoff, vorzugsweise zwischen 0,5 und 90 Gew.%.

Die Formulierungen bzw. die daraus hergestellten gebrauchsfertigen Zubereitungen, wie Lösungen, Emulsionen, Suspensionen, Pulver, Stäube, Pasten oder Granulate werden in bekannter Weise angewendet, beispielsweise im Vorauflaufverfahren, im Nachauflaufverfahren oder als Beizmittel.

Beispiele für Formulierungen sind:

I. 20 Gewichtsteile der Verbindung Nr. 8 werden in 3 Gewichtsteilen des Natriumsalzes der Diisobutylanphthalin-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 60 Gewichtsteilen pulverförmigem Kiesel säuregel gut vermischt und in einer Hammermühle ver mahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

II. 3 Gewichtsteile der Verbindung Nr. 131 werden mit 97 Gewichtsteilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.

III. 30 Gewichtsteile der Verbindung Nr. 38 werden in einer Mischung aus 92 Gewichtsteilen pulverförmigem Kiesel säuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kiesel säuregels gesprüh wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

IV. 40 Gewichtsteile der Verbindung Nr. 43 werden mit 10 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensats, 2 Teilen Kieselgel und 48 Teilen Wasser innig vermischt. Man erhält eine stabile wässrige Dispersion. Durch Verdünnen mit 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,04 Gew.% Wirkstoff enthält.

V. 20 Teile der Verbindung Nr. 43 werden mit 2 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teilen Fettalkohol-polyglykolether, 2 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensats und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

VI. Man vermischt 90 Gewichtsteile der Verbindung Nr. 49 mit 10 Gewichtsteilen N-Methyl- α -pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinsten Tropfen geeignet ist.

VII. 20 Gewichtsteile der Verbindung Nr. 19 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylool, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Etylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Etylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

VIII. 20 Gewichtsteile der Verbindung Nr. 8 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Etylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Etylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

IX. 20 Gewichtsteile der Verbindung Nr. 8 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanol, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Etylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.

Die Mittel auf der Basis von Azolymethyloxiranen I können in diesen Anwendungsbereichen auch zusammen mit anderen Wirkstoffen vorliegen, wie z. B. Herbiziden, Insektiziden, anderen Wachstumsregulatoren und Fungiziden, oder auch mit Düngemitteln vermischt und ausgebracht werden. Beim Vermischen mit Wachstumsregulatormischungen treten auch synergistische Effekte auf, d. h. die Wirksamkeit des Kombinationsproduktes ist größer als die addierten Wirksamkeiten der Einzelkomponenten.

5 Fungizide Wirkstoffe, die mit den Azolymethyloxiranen I kombiniert werden können, sind beispielsweise:

- Schwefel,
- Dithiocarbamate und deren Derivate, wie
- 10 Ferridimethyldithiocarbamat,
- Zinkdimethyldithiocarbamat,
- Zinkethylenbisdithiocarbamat,
- Manganethylenbisdithiocarbamat,
- Mangan-Zink-ethylen-diamin-bis-dithiocarbamat,
- 15 Tetramethylthiuramdisulfide,
- Ammoniak-Komplex von Zink-(N,N-ethylen-bis-dithiocarbamat),
- Ammoniak-Komplex von Zink-(N,N-propylen-bis-dithiocarbamat),
- Zink-(N,N'-propylen-bis-dithiocarbamat),
- N,N'-Polypropylen-bis-(thiocarbamat)-disulfid;
- 20 Nitroderivate, wie
- Dinitro-(1-methylheptyl)-phenylcrotonat,
- 2-sec-Butyl-4,6-dinitrophenyl-3,3-dimethylacrylat,
- 2-sec-Butyl-4,6-dinitrophenyl-isopropylcarbonat,
- 25 5-Nitro-isophthalsäure-di-isopropylester
- heterocyclische Substanzen, wie
- 2-Heptadecyl-2-imidazolin-acetat,
- 2,4-Dichlor-6-(o-chloranilino)-s-triazin,
- 30 O,O-Diethyl-phthalimidophosphonothiotat,
- 5-Amino-1-[bis-(dimethylamino)-phosphinyl]-3-phenyl-1,2,4-triazol,
- 2,3-Dicyano-1,4-dithioantrachinon,
- 2-Thio-1,3-dithio-(4,5-b)-chinoxalin,
- 1-(Butylcarbamoyl)-2-benzimidazol-carbaminsäuremethylester,
- 35 2-Methoxycarbonylamino-benzimidazol,
- 2-(Furyl-(2))-benzimidazol,
- 2-(Thiazolyl-(4))-benzimidazol,
- N-(1,1,2,2-Tetrachlorethylthio)-tetrahydropthalimid,
- N-Trichlormethylthio-tetrahydropthalimid,
- 40 N-Trichlormethylthio-phthalimid,
- N-Dichlorfluormethylthio-N',N'-dimethyl-N-phenyl-schwefelsäurediamid,
- 5-Ethoxy-3-trichlormethyl-1,2,3-thiadiazol,
- 2-Rhodanmethyliobenzthiazol,
- 45 1,4-Dichlor-2,5-dimethoxybenzol,
- 4-(2-Chlorphenylhydroazano)-3-methyl-5-isoxazolon,
- Pyridin-2-thio-1-oxid,
- 8-Hydroxychinolin bzw. dessen Kupfersalze,
- 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin,
- 50 2,3-Dihydro-5-carboxanilido-6-methyl-1,4-oxathiin-4,4-dioxid,
- 2-Methyl-5,6-dihydro-4H-pyran-3-carbonsäure-anilin,
- 2-Methyl-furan-3-carbonsäureanilid,
- 2,5-Dimethyl-furan-3-carbonsäureanilid,
- 2,4,5-Trimethyl-furan-3-carbonsäureanilid,
- 55 2,5-Dimethyl-furan-3-carbonsäurecyclohexylamid,
- N-Cyclohexy-N-methoxy-2,5-dimethyl-furan-3-carbonsäureamid,
- 2-Methyl-benzoësäure-anilid,
- 2-Iod-benzoësäure-anilid,
- N-Formyl-N-morpholin-2,2,2-trichlorethylacetal,
- 60 Piperazin-1,4-diylbis-(1-(2,2,2-trichlor-ethyl)-formamid),
- 1-(3,4-Dichloranilino)-1-formylamino-2,2,2-trichlorethan,
- 2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze,
- 2,6-Dimethyl-N-cyclodedecyl-morpholin bzw. dessen Salze,
- N-[3-(p-tert-Butylphenyl)-2-methylpropyl]-cis-2,6-dimethylmorpholin,
- 65 N-[3-(p-tert-Butylphenyl)-2-methylpropyl]-piperidin,
- 1-[2-(2,4-Dichlorphenyl)-4-ethyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol,
- 1-[2-(2,4-Dichlorphenyl)-4-n-propyl-1,3-dioxolan-2-yl-ethyl]-1H-1,2,4-triazol,
- N-(n-Propyl)-N-(2,4,6-trichlorphenoxyethyl)-N'-imidazol-yl-harnstoff,

1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanon,
 1-(4-Chlorphenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanol,
 α -(2-Chlorphenyl)- α -(4-chlorphenyl)-5-pyrimidin-methanol,
 5-Butyl-2-dimethylamino-4-hydroxy-6-methyl-pyrimidin,
 Bis-(p-chlorphenyl)-3-pyridinmethanol,
 1,2-Bis-(3-ethoxycarbonyl-2-thioureido)-benzol,
 1,2-Bis-(3-methoxycarbonyl-2-thioureido)-benzol,

5

sowie verschiedene Fungizide, wie

Dodecylguanidinacetat,
 3-[3-(3,5-Dimethyl-2-oxy)cyclohexyl]-2-hydroxyethyl-glutarimid,
 Hexachlorbenzol,
 DL-Methyl-N-(2,6-dimethyl-phenyl)-N-furoyl(2)-alaninat,
 DL-N-(2,6-Dimethyl-phenyl)-N-(2'-methoxyacetyl)-alanin-methylester,
 N-(2,6-Dimethylphenyl)-N-chloracetyl-D,L-2-aminobutyrolacton,
 DL-N-(2,6-Dimethylphenyl)-N-(phenylacetyl)-alaninmethyllester,
 5-Methyl-5-vinyl-3-(3,5-dichlorphenyl)-2,4-dioxo-1,3-oxazolidin,
 3-[3,5-Dichlorphenyl](-5-methyl-5-methoxymethyl]-1,3-oxazolidin-2,4-dion,
 3-[3,5-Dichlorphenyl]-1-isopropylcarbamoylhantoin,
 N-(3,5-Dichlorphenyl)-1,2-dimethylcyclopropan-1,2-dicarbonsäureimid,
 2-Cyano-[N-(ethylaminocarbonyl)-2-methoximino]-acetamid,
 1-[2-(2,4-Dichlorphenyl)-pentyl]-1H-1,2,4-triazol,
 2,4-Difluor- α -(1H-1,2,4-triazolyl-1-methyl)-benzhydrylalkohol.

10

15

20

25

Herstellungsbeispiel

I. Herstellung der Vorprodukte

2-Brommethyl-2-phenyl-3-(2-chlorphenyl)-oxiran

30 g 1-(2-Chlorphenyl)-2-phenyl-3-brom-prop-1-en wurden mit 23 g 3-Chlorperoxybenzoësäure in 500 ml Chloroform unter Rückfluß gekocht. Nach beendeter Reaktion wurde die Chloroform-Phase mit wäßriger Natriumhydrogencarbonat-Lösung und Wasser säurefrei gewaschen, über Natriumsulfat getrocknet und i.Vak. eingeengt. Aus dem Rückstand erhielt man 41,3 g (70,2%) 2-Brommethyl-2-phenyl-3-(2-chlorphenyl)-oxiran, das anschließend weiterverarbeitet wurde.

30

35

II. Herstellung der Endprodukte

2-(1,2,4-Triazol-1-yl-methyl)-2-phenyl-3-(2-chlorphenyl)-oxiran

40 23 g 1,2,4-Triazol und 5 g Natriumhydrid (80%ige Dispersion in Mineralöl) wurden in 150 ml N,N-Dimethyl-formamid suspendiert und bei Raumtemperatur mit einer Lösung aus 32 g 2-Brommethyl-2-phenyl-3-(2-chlorphenyl)-oxiran in 150 ml N,N-Dimethylformamid versetzt. Nach 8 h wurde die Reaktionslösung auf Wasser gegeben und mit Essigsäureethylester extrahiert. Die organische Phase wurde mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel i.Vak. abgezogen. Aus dem entstandenen Diastereomerengemisch werden durch Ankristallisation aus Methyl-tert-butylether 15 g cis-2-(1,2,4-Triazol-1-yl-methyl)-2-(phenyl)-3-(2-chlorphenyl)oxiran vom Schmelzpunkt 150°C gewonnen. Aus den Mutterlaugen können 6,3 g trans-2-(1,2,4-Triazolyl-1-yl-methyl)-2-(phenyl)-3-(2-chlorphenyl)oxiran vom Schmelzpunkt 117°C isoliert werden.

45

45 Die in den nachstehenden Tabelle I aufgeführten Verbindungen I können nach dem Herstellungsbeispiel aus entsprechenden Vorprodukten ohne weiteres erhalten werden und lassen eine gleichartige Wirkung erwarten. Die Nomenklatur cis- oder trans-Isomer bezieht sich auf die Stellung vom Azol zum Rest B bezüglich der C-C-Bindung des Oxiranrings.

50

55

60

65

Tabelle

Verbin-dung Nr.	A	B	Z	Salz	Isomer	Fp [°C]
1	Phenyl	2-Chlorphenyl	N	cis		159
2	4-Chlorphenyl	2-Chlorphenyl	N	cis		166
3	4-Diphenyl	2-Chlorphenyl	N	cis		191
4	2,4-Dichlorphenyl	2-Chlorphenyl	N	cis		Harz
5	2-Chlorphenyl	2-Chlorphenyl	N	cis		
6	2-Fluorophenyl	2-Chlorphenyl	N	cis		145–147
7	4-Tolyl	2-Chlorphenyl	N	cis		140
8	4-Fluorophenyl	2-Chlorphenyl	N	cis		136
9	3-Brom-4-fluorophenyl	2-Chlorphenyl	N	cis		129–130
10	4-Bromophenyl	2-Chlorphenyl	N	cis		
11	3,4-Dichlorphenyl	2-Chlorphenyl	N	cis		
12	4-tert.-Butylphenyl	2-Chlorphenyl	N	cis		122
13	3-Chlorphenyl	2-Chlorphenyl	N	cis		
14	3,5-Dichlorphenyl	2-Chlorphenyl	N	cis		
15	4-Phenoxyphenyl	2-Chlorphenyl	N	cis		
16	4-tert.-Butylphenyl	2-Chlorphenyl	CH	cis		123
17	4-Fluorophenyl	2-Chlorphenyl	CH	cis		119–122
18	4-Fluorophenyl	2-Chlorphenyl	CH	trans		Harz
19	4-Fluorophenyl	2-Chlorphenyl	N	trans		Harz
20	2-Fluorophenyl	2-Chlorphenyl	CH	cis		87
21	4-Chlorphenyl	2-Chlorphenyl	CH	cis		90–92
22	Phenyl	2-Chlorphenyl	CH	cis		85–87
23	4-Chlorphenyl	2-Fluorophenyl	N	cis		140
24	Phenyl	2-Fluorophenyl	N	cis		139
25	2-Fluorophenyl	2-Fluorophenyl	N	cis		128
26	2,4-Dichlorphenyl	2-Fluorophenyl	N	cis		Harz
27	4-Fluorophenyl	2-Trifluormethylphenyl	N	cis		110–112
28	Phenyl	4-Fluorophenyl	N	cis		73
29	4-Fluorophenyl	2-Trifluormethylphenyl	CH	cis		133–135
30	4-Fluorophenyl	2,4-Dichlorphenyl	N	cis		127
31	4-Fluorophenyl	3-Chlorphenyl	N	cis		Harz
32	4-Fluorophenyl	3-Chlorphenyl	CH	cis		Harz
33	4-Chlorphenyl	2-Chlor-4-fluorophenyl	CH	cis		132
34	4-Chlorphenyl	2-Chlor-4-fluorophenyl	N	cis		143–145

Verbin-dung Nr.	A	B	Z	Salz	Isomer	Fp [°C]
35	Phenyl	2-Chlor-4-fluorphenyl	CH	cis		117
36	Phenyl	2-Chlor-4-fluorphenyl	N	cis		123
37	4-Fluorphenyl	2-Chlor-4-fluorphenyl	CH	cis		135
38	4-Fluorphenyl	2-Chlor-4-fluorphenyl	N	cis		139
39	4-Fluorphenyl	Phenyl	N	cis		89–92
40	2-Fluorphenyl	2-Fluorphenyl	CH	cis		79–82
41	Phenyl	4-Trifluormethylphenyl	CH	cis		106
42	Phenyl	4-Trifluormethylphenyl	N	cis		132
43	4-Chlorphenyl	4-Trifluormethylphenyl	N	cis		135
44	4-Chlorphenyl	4-Trifluormethylphenyl	CH	cis		123
45	2,4-Dichlorphenyl	3-Fluorphenyl	CH	cis		125
46	4-Fluorphenyl	4-Bromphenyl	N	cis		119
47	4-Fluorphenyl	3-Fluorphenyl	N	cis		99
48	4-Fluorphenyl	4-Fluorphenyl	N	cis		69
49	4-Chlorphenyl	2-Chlor-6-fluorphenyl	N	cis		150
50	Phenyl	4-Bromphenyl	N	cis		122
51	Phenyl	2-Chlor-6-fluorphenyl	N	cis		158
52	4-Tolyl	2-Fluorphenyl	N	cis		127
53	4-Fluorphenyl	2-Fluorphenyl	N	cis		114
54	3-Brom-4-fluorphenyl	2-Fluorphenyl	N	cis		106
55	4-Diphenyl	2-Fluorphenyl	N	cis		
56	2-Chlorphenyl	2-Fluorphenyl	N	cis		
57	4-Bromphenyl	2-Fluorphenyl	N	cis		
58	3,4-Dichlorphenyl	2-Fluorphenyl	N	cis		
59	4-tert.-Butylphenyl	2-Fluorphenyl	N	cis		
60	3-Chlorphenyl	2-Fluorphenyl	N	cis		
61	3,5-Dichlorphenyl	2-Fluorphenyl	N	cis		
62	4-Phenoxyphenyl	2-Fluorphenyl	N	cis		
63	Phenyl	2-Bromphenyl	N	cis		153
64	4-Bromphenyl	Phenyl	CH	cis		152–153
65	4-Bromphenyl	4-Chlorphenyl	CH	cis		143–144
66	Phenyl	2,4-Dichlorphenyl	CH	cis		103
67	4-Bromphenyl	2,4-Dichlorphenyl	CH	cis		107–108
68	2,4-Dichlorphenyl	4-Chlorphenyl	CH	cis		135
69	4-Chlorphenyl	Phenyl	CH	cis		138
70	4-Bromphenyl	2,4-Dichlorphenyl	N	cis		133–134
71	Methyl	2,4-Dichlorphenyl	CH	cis		113–117,5
72	Methyl	2,4-Dichlorphenyl	CH	trans		98–104
73	tert.-Butyl	4-Chlorphenyl	N	cis		79–86
74	tert.-Butyl	4-Chlorphenyl	CH HCl	cis		214–216

Verbin-dung Nr.	A	B	Z	Salz	Isomer	Fp [°C]
75	tert.-Butyl	Phenyl	N	HCl	cis	148
76	tert.-Butyl	Phenyl	CH		cis	75
77	tert.-Butyl	2,4-Dichlorphenyl	N		cis	124
78	tert.-Butyl	2,4-Dichlorphenyl	CH		cis	95
79	4-Chlorphenyl	4-tert.-Butylphenyl	CH		trans	160–162
80	4-Chlorphenyl	4-tert.-Butylphenyl	N		cis	176–177
81	2,4-Dichlorphenyl	4-tert.-Butylphenyl	CH		cis	132–134
82	Methyl	2,4-Dichlorphenyl	N		cis	105–108
83	Methyl	2,4-Dichlorphenyl	N		trans	80–85
84	Methyl	2,4-Dichlorphenyl	N		cis/trans = 1 : 1	70–81
85	4-tert.-Butylphenyl	4-Chlorphenyl	CH		cis	100–102
86	4-tert.-Butylphenyl	4-Chlorphenyl	N		cis	105–107
87	4-tert.-Butylphenyl	2,4-Dichlorphenyl	CH		cis	101–113
88	4-tert.-Butylphenyl	2,4-Dichlorphenyl	N		cis	108–111
89	4-Chlorphenyl	3-Methoxyphenyl	CH	HCl	cis	173
90	4-Chlorphenyl	3-Methoxyphenyl	N		cis	77
91	Phenyl	2,4-Dichlorphenyl	N		cis	159–161
92	4-Chlorphenyl	3-Trifluormethylphenyl	CH		cis	101–104
93	4-Chlorphenyl	3-Trifluormethylphenyl	N		cis	107–109
94	Phenyl	3-Trifluormethylphenyl	CH		cis	77–78,5
95	Phenyl	3-Trifluormethylphenyl	N	HCl	cis	131–133
96	Phenyl	Phenyl	CH		cis	108–110
97	4-Chlorphenyl	4-Fluorophenyl	CH		cis	130–132
98	Phenyl	4-Chlorphenyl	CH		cis	105–106
99	Phenyl	Phenyl	N		cis	116–118
100	Phenyl	4-Chlorphenyl	N		cis	114–115
101	4-Chlorphenyl	Phenyl	N		cis	106–110
102	4-Diphenyl	4-Chlorphenyl	N		cis	163–165
103	4-Bromphenyl	Phenyl	N		cis	115–120
104	4-Bromphenyl	4-Chlorphenyl	N		cis	115–120
105	4-Chlorphenyl	4-Fluorophenyl	N		cis	112–117
106	4-Chlorphenyl	4-Bromphenyl	N		cis	115–119
107	4-Chlorphenyl	4-Bromphenyl	CH		cis	114–116
108	4-Chlorphenyl	4-Bromphenyl	CH		trans	179–181
109	2,4-Dichlorphenyl	4-Bromphenyl	CH		cis	135–139
110	4-Chlorphenyl	4-Fluorophenyl	N		trans	219–223
111	4-Chlorphenyl	4-Bromphenyl	N		trans	210–213
112	2,4-Dichlorphenyl	4-Bromphenyl	N		cis	108–110
113	2,4-Dichlorphenyl	Phenyl	CH		cis	Harz
114	2,4-Dichlorphenyl	Phenyl	CH		trans	118–121

Ver- bin- dung Nr.	A	B	Z	Salz	Isomer	Fp [°C]
115	2,4-Dichlorphenyl	Phenyl	N	cis	Harz	5
116	4-Benzolsulfonylphenyl	4-Chlorphenyl	CH	cis	193–195	
117	4-Benzolsulfonylphenyl	4-Chlorphenyl	CH	trans	204–205	10

Verbindung A Nr.	B	Z	Metall- komplex	Isomer	Fp (°C)	
118	4-Benzolsulfonyl-phenyl	4-Chlorphenyl	N	cis	132–137	
119	4-Benzolsulfonyl-phenyl	4-Chlorphenyl	N	trans	175–177	
120	2-Naphthyl	2,4-Dichlorphenyl	CH	cis	135	
121	2-Naphthyl	4,2,4-Dichlorphenyl	N	cis	151	
122	4-Chlorphenyl	4-Chlorphenyl	CH	cis	115–120	
123	4-Chlorphenyl	4-Chlorphenyl	N	cis	105–108	
124	2-Naphthyl	4-Chlorphenyl	CH	cis	140	
125	2-Naphthyl	4-Chlorphenyl	N	cis	107	
126	2,4-Dichlorphenyl	4-tert-Butylphenyl	CH	trans	142–143	
127	3,4-Dichlorphenyl	4-Bromphenyl	N	cis	130–134	
128	4-Bromphenyl	Phenyl	CH	1/2 CuCl	cis	25
129	4-Chlorphenyl	2-Chlorphenyl	N	1/2 CuCl ₂	cis	155
130	4-Fluorphenyl	2-Chlorphenyl	N	1/2 CuCl ₂	cis	175
131	4-Chlorphenyl	2-Fluorphenyl	N	1/2 CuCl ₂	cis	145
132	Phenyl	2-Chlorphenyl	N	1/2 CuCl ₂	cis	30

Anwendungsbeispiele

35

1. Verkürzung der Wuchshöhe

Zur Bestimmung der wachstumsregulierenden Eigenschaft der Prüfsubstanzen wurden Testpflanzen auf ausreichend mit Nährstoffen versorgtem Kultursubstrat in Kunststoffgefäßen von ca. 12,5 cm Durchmesser und einem Volumen von 500 ml angezogen.

40

Im Vorauflaufverfahren wurden die Testsubstanzen in wässriger Aufbereitung am Tage der Einsaat auf das Saatbett gegossen. Im Nachauflaufverfahren wurden die zu prüfenden Substanzen in wässriger Aufbereitung auf die Pflanzen gesprüht.

45

Die beobachtete wachstumsregulierende Wirkung wurde bei Versuchsende durch Wuchshöhenmessung belegt. Die so gewonnenen Meßwerte wurden zur Wuchshöhe der unbehandelten Pflanzen in Relation gesetzt.

45

Gleichlaufend zur Reduzierung des Längenwachstums steigt die Farbintensität der Blätter an. Der erhöhte Chlorophyllgehalt lässt eine ebenfalls erhöhte Photosynthese und damit eine erhöhte Ertragsbildung erwarten.

Als Vergleichssubstanz diente Chlormequatchlorid (CCC).

Tabelle 1

50

Sommergerste, Sorte "Aramir"; Vorauflauf-Bodenbehandlung

Verbindung Nr.	Konzentration in mg Wirkstoff/Gefäß	relative Wuchshöhen	
ungehandelt	—	100	
CCC	6	86,1	55
27	6	25,7	60
43	6	43,1	

65

Tabelle 2

Rasen "Tiergarten Mischung"; Nachauflauf-Blattbehandlung

5	Verbindung Nr.	Konzentration in mg Wirkstoff/Gefäß	relative Wuchshöhen
10	ungehandelt	—	100
	CCC	1,5	100,4
		6	104,1
	43	1,5	65,8
		6	38,4

15

Tabelle 3

Sonnenblume "Sorex"; Nachauflauf-Blattbehandlung

20	Verbindung Nr.	Konzentration in mg Wirkstoff/Gefäß	relative Wuchshöhen
25	ungehandelt	—	100
	CCC	6	84,7
	8	6	63,5
	19	6	77,6
30	43	6	64,0
	131	6	71,8

Tabelle 4

Sommerraps "Petranova"; Nachauflauf-Blattbehandlung

40	Verbindung Nr.	Konzentration in mg Wirkstoff/Gefäß	relative Wuchshöhen
45	ungehandelt	—	100
	CCC	6	89,3
	4	6	69,1
	7	6	76,0
	8	6	70,6
	27	6	69,1
50	30	6	81,7
	34	6	72,2
	43	6	80,2
	49	6	72,2
	131	6	71,9

55

2. Reiskeimlingstest

Junge Reiskeimlinge (Sorte Bahia) wurden in einer Nährlösung kultiviert, die die jeweiligen Wirkstoffe in unterschiedlichen Konzentrationen enthielt. Nach sechs Tagen Kultur bei 25°C im Dauerlicht wurde die Wirkstoffkonzentration bestimmt, die das Längenwachstum der zweiten Blattscheide um 50% vermindert (= k_{150}). (W. Rademacher und J. Jung, Berichte aus dem Fachgebiet Herbologie, Heft 24, pp 127–134, Universität Hohenheim, 1983).

65

Verbindung Nr.

KI₅₀ (molar)

CCC	$1,5 \times 10^{-2}$	
7	$1,8 \times 10^{-5}$	
8	$1,3 \times 10^{-6}$	5
17	$6,5 \times 10^{-6}$	
19	$6,0 \times 10^{-5}$	
30	$6,4 \times 10^{-6}$	
33	$8,9 \times 10^{-6}$	
34	$2,8 \times 10^{-6}$	10
35	$3,2 \times 10^{-5}$	
36	$7,3 \times 10^{-6}$	
37	$1,5 \times 10^{-5}$	
38	$1,2 \times 10^{-6}$	
47	$1,1 \times 10^{-6}$	15
48	$8,1 \times 10^{-7}$	
49	$3,0 \times 10^{-6}$	

3. Förderung des Körnertrags bei Gerste

20

Sommergerste der Sorte Aura wurde in 5-l-Mitscherlichgefäß auf einem lehmigen Sandboden, dem ausreichend Nährstoffe zugegeben waren, angezogen. Die Bestandesdichte war 14 Pflanzen pro Gefäß. Alle zum Versuch gehörigen Pflanzen wurden mehrfach mit Fungiziden behandelt, um so einen Pilzbefall und damit eine Verfälschung der Ergebnisse weitgehend auszuschließen. Die Kultur der Pflanzen fand im Freien statt. Es erfolgte lediglich bisweilen ein Schutz gegen ungünstige Witterungsbedingungen.

25

Bei einer Wachstumshöhe von ca. 38 cm wurden die Pflanzen mit einer wässrigen Aufbereitung eines Azolylmethyloxirans I gleichmäßig besprüht (3,1 ml/Mitscherlichgefäß). Die Körnerträge sind in der folgenden Tabelle dargestellt und zeigen, daß zum Beispiel die Verbindung Nr. 8 zu einer deutlichen Ertragsverbesserung führt. Von der Versuchsdurchführung her kann ausgeschlossen werden, daß dieser Mehrertrag durch eine etwaige fungizide Wirkung der Testsubstanz oder durch die Vermeidung des Lagerns zustande gekommen sein kann.

30

Verbindung Nr.	Aufwandmenge (mg Wirkstoff/Gefäß)	Ertrag [%] bez. auf 100% der Kontrolle
8	5	120
8	10	111
8	15	118

35

40

Patentansprüche

1. Verfahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man den Boden, das Saatgut und/oder die Pflanzen mit einem Azolylmethyloxiran der allgemeinen Formel

45

50

55

in der die Substituenten

A, B C₁—C₄-Alkyl, Phenyl, Naphthyl, Diphenyl oder durch ein bis drei Reste aus der Gruppe Halogen, C₁—C₄-Alkyl, C₁—C₄-Alkoxy, C₁—C₄-Halogenalkyl, Nitro der Phenoxy substituiertes Phenyl und Z die CH-Gruppe oder Stickstoff bedeuten

60

oder deren Metall- oder Säureadditionssalze, behandelt.

2. Verfahren zur Beeinflussung des Pflanzenwachstums nach Anspruch 1, dadurch gekennzeichnet, daß man den Boden, das Saatgut und/oder die Pflanzen mit 0,1 bis 95 Gew.% eines Azolylmethyloxirans der Formel I neben üblichen Trägerstoffen behandelt.

65

3. Verwendung der Azolylmethyloxirane der allgemeinen Formel I gemäß Anspruch 1 zur Beeinflussung des Pflanzenwachstums.

4. Verfahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man den Boden, das

Saatgut und/oder die Pflanzen mit einem Azolylmethyloxiran der allgemeinen Formel I gemäß Anspruch 1 behandelt, in der A für 4-Fluorphenyl, B für 2-Trifluormethylphenyl und Z für Stickstoff steht.
5. Verfahren zur Beeinflussung des Pflanzenwachstums, dadurch gekennzeichnet, daß man den Boden, das Saatgut und/oder die Pflanzen mit einem Azolylmethyloxiran der allgemeinen Formel I gemäß Anspruch 1 behandelt, in der A für 4-Chlorphenyl, B für 4-Trifluormethylphenyl und Z für Stickstoff steht.

5

10

15

20

25

30

35

40

45

50

55

60

65