## Systems programming

MEEC /MEAer - 2019/2020

# Offering

- MEEC (Electrical Engineering)
  - 3<sup>rd</sup> / 4<sup>th</sup> year Computer's Major/Minor
- MEAer (Aerospace Engineering)
  - Avionic

### Objectives

- Present concepts of systems programming
- Exercise direct interaction with the OS
- Increase knowledge on the organization and systems interface
- Explore tools and functionality for good SW development practices

### Classes

- Theoretical
  - Presentation of course material
  - Resolution of some problems (with programming)
- Laboratories
  - Resolution of programming problems

### Classes

### Theoretical

- Monday 12:30.. 14:00 EA2
- Wednesday 11:00 12:30 EA1

#### Laboratories

- SCDEEC
- Tuesday 9:30 .. 11:30
- Tuesday 11:30 .. 13:30
- Friday 15:30 17:30

\_

- Wednesday 14:00 16:00
- Friday 10:30 12:30

# Teaching Staff

- João Nuno Silva
  - joao.n.silva@tecnico.ulisboa.pt
  - 213100347
- Tiago Leão
  - tiago.miguel.leao@tecnico.ulisboa.pt

### Student profile

- Course
  - MEEC
  - MEAer
  - MEFT
  - MMA
- Previous knowledge
  - Programming language
    - C
  - Operating Systems (user level)
  - Networking sockets (not required)

### Evaluation

### Project

- 50% of final grade
- Minimum grade 10
- Last week
  - presentation and discussion of projects

### Exam

- 50% of final grade
- Minimum grade 9

## Academic honesty

- In PSIS plagiarism includes:
  - Use of ideas, code or solutions from other students, person or source, without proper credit acknowledgement
- Students can discuss their problems with other colleagues, but should mention that in the submitted work. This discussion will not lower the grade
- BUT:
  - Students should not copy code from or provide solutions to other colleagues

### Academic honesty

- Academic dishonesty also included copying in test or exams
- Exams are solved without any external help(communication of printed material)

- Academic dishonesty is considered fraud.
- The immediate consequence is the automatic fail in the evaluation where a copy of fraud was detected

# Bibliography

- Operating Systems: Principles and Practice
  - Michael Dahlin, Thomas Anderson
- Modern Operating Systems; A.S. Tanenbaum; Prentice-Hall
  - Theoretical classes
- Advanced Programming in the UNIX Environment
  ; W. Richard Stevens, Stephen A. Rago; Addison
  Wesley
  - Used in laboratory and project
- Other
  - Papers, book chapters
  - Provided in the FENIX





### System

- A system is a set of interacting or interdependent components forming an integrated whole.
- Delineated by its spatial and temporal boundaries,
- Surrounded and influenced by its environment
- Described by its structure and purpose
- Expressed in its functioning.

# System Programming

- Understanding of a System
  - e.g. Operating System
- Use of a System
  - e.g. Operating System
- Development/implementation of a System
  - project

# Systems programming

- Fundamental in the area of computer networks
  - And Distributed Systems / Internet
- Presents the interface and connection between:
  - Hardware (CPU/ memory/ peripherals)
  - Applications
- Relevant in other areas
  - Telecommunication
  - Control

## Program

- Systems
- Architectures and patterns
- Operating System Architectures
- Operating System programming
  - Process management
  - Threads
  - Synchronization
- Communication
  - Shared memory
  - Inter-process communication
  - Data Interoperability
- Performance evaluation
- Event based programming
- Interoperability mechanism
- Introduction to Software engineering
  - Requirements
  - SYSML
- Software testing

- C review
- Processes and shared memory
- Threads and Synchronization
- IPC
- Performance evaluation
- Thrift/ProtocolBuffers/ Avro
- SW development tools
- Software testing