Implementation of a selftracking antenna system based on monopulse techniques

Gluzman, Brian Maximiliano Mele Nociforo, Christian Iván

Director: Ing. Jorge Márquez

Co-Director: Ing. Juan Carlos Bonadero

Laboratorio de Comunicaciones

Centro de Experimentación y Lanzamiento de Proyectiles Autopropulsados II

Introduction

- Functional prototype of a passive tracking system for a moving target from which an RF signal is received.
- It will be used mounted on a low-orbit satellite antenna system and unmanned vehicles.
- RF operating signal: 1.8 GHz.
- Technique used: Monopulse

Monopulse

- Tracking radar.
- Signals in this type of radar: Azimuth and elevation.
- Applications:
 - Tactical missile control
 - Tracking of known or unknown targets
 - Analysis of trajectories and echo variations
 - Support applications
 - Satellite tracking, UAV, balloon loads.

Monopulse Operation

- For an error signal:
 - 2 lobes
 - Perspective plane
 - Error is the difference between perspective and actual position
- For two error signals:
 - 4 lobes/2 perpendicular planes
- Monopulse advantages:
 - Four simultaneous lobes
 - A single measurement pulse
 - Free from mechanical vibrations
 - Efficient

Monopulse types

- By measurement:
 - Amplitude
 - Phase

- By number of channels:
 - A channel
 - Two channels
 - Three channels

- Proposed system:
 - Amplitude measurement system
 - Single channel

Pseudomonopulse

- Single channel system
 - TDM
 - FDM
 - SCAMP
 - Pseudo monopulse

- Pseudo monopulse:
 - Multiplexes the difference signals into a single
 - System of switches (Monoscan Converter) and Adder (Coupler)
 - Controlled by Monopulse Electronics (microcontroller)
 - Use more than one pulse
 - Advantages:
 - Lower complexity
 - Low signal degradation
 - Low cost
 - Good dynamic range
 - Reliable
 - Good synchronization with antenna
 - Acceptable and correctable tracking error

Signal expected at the exit

Stages

- Antenna
- Comparator
- Switch system(or Monoscan converter)
- Monopulse electronics
- Directional coupler
- Receiver
 - Low noise amplifier (LNA)
 - Mixer
 - Local oscillator
 - Demodulator

- Control system
- Servo and motor system

Comparator

- Objective: generate the difference and sum signals.
- Specific configuration, based on the generating equations:
 - $(A+B+C+D)/2 \rightarrow Add$
 - $[(A+C)-(B+D)]/2 \rightarrow$ Elevation
 - [(C+D)-(A+B)]/2 → Azimuth
- Special devices are used, which generate addition and subtraction of electromagnetic signals.

Hybrid coupler

- Four-port passive transmission line type.
- It has two inputs and two outputs.
- It is built with sections with specific lengths, so that:
 - An output adds to the signs.
 - And another subtraction to the signs.
- Use of Microstrip/Stripline technology in RF.
- Parameters:
 - Impedance ($Z_0 = 50 \Omega$)
 - Frequency (1.8 GHz)
 - Dielectric (FR4)

Main simulation results

Case	Ideal	Microstrip	Stripline
1- 2	-3dB	-3.46 dB	-3.4dB
1- 4	-3dB	-3.67 dB	-4.18dB
2– 3	-3dB	-3.5 dB	-4.02dB
3 - 4	-3dB	-3.46 dB	-3.41dB
1-1 (2-2, 3-3, 4-4)	Inf	-39.9 dB	-22.9 dB
1-3 (2-4)	Inf	-35 dB	-25.8 dB
phase (2,3) – phase (3,4)	0°	-0.4°	-3.8°
phase (1,4) – phase (1,2)	180°	180.4°	175.6°

Implementation

• The boards were assembled using an insolator provided by the laboratory.

Microstrip board results

Case	ldeal	Simulation	Implementation
1- 2	-3dB	-3.46dB	-3.54dB
1-4	-3dB	-3.67dB	-3.67dB
2- 3	-3dB	-3.5dB	-3.59dB
3 – 4	-3dB	-3.46dB	-3.59dB
1-1 (2-2, 3-3, 4-4)	Inf	-39.9 dB	-22.35 dB
1-3 (2-4)	Inf	-35 dB	-37.4 dB
phase (2,3) – phase (3,4)	0°	-0.4°	0°
phase (1,4) — phase (1,2)	180°	180.4°	174.19°

Switch system

- Multiplexes the difference signals, into a single signal, containing both data.
- It consists of three switches, controlled by the Monopulse Electronics.
- A 180° offset is placed, in order to be able to distinguish the sign.

Design and implementation

- Chosen switch: MASWSS0136
- Two boards were used, interconnected with two lines 180° out of phase...
- Design of the same in Altium, based on design criteria for RF.

Monopulse electronics

- Functions:
 - Generate switch control signals
 - Demultiplex the signals coming from the receiver
 - Provide the control signals, which in turn, are the output signals of the system
- Use of microprocessors:
 - Arduino UNO
- Square waves as control signals (668 and 1336 Hz, respectively).
- From the demultiplexing, the error signals are sent as PWM outputs.

Coupler

- The multiplexed difference signal is combined with the sum signal coming from the comparator.
- AM modulation.
- Coupler was designed with the following parameters:
 - Coupling: 12 dB
 - Frequency: 1.8 GHz
 - Stripline
 - Impedance: 50Ω

Design, modeling and simulation

- As with the hybrid couplers, the measurements were calculated using Ansoft Designer.
- It was modeled and simulated with HFSS at the frequency of interest.

Implementation and results

• Proceeded to assemble the board using the same insolator.

Parameter	Simulation (dBm)	Implementation (dBm)
in1-in1	-19.1	-21.27
in1-in2	-26.4	-19.78
in 1-out	-0.997	-2.27
in2-in2	-19.9	-25.82
in2-out	-12.4	-8.97
out-out	-19.9	-18.97

Receiver

- Based on Superheterodyne receiver.
- Stages:
 - Low Noise Amplifier at the input
 - Mixer
 - Local oscillator
 - Demodulator
 - SDR
 - Analogical

Low noise amplifier (LNA)

- Low level input signal.
- A total gain of 20 dB is desired, at the working frequency.
- Two MAX2640 amplifiers were used, connected in cascade.
- Board design criteria in RF.
- Results:
 - Actual gain: 19.23 dB

Mixer

- The working signal (1.8 GHz) must be frequency shifted to a frequency at which the demodulator can operate.
- The integrated MAX2680 was used.
- Board design criteria in RF.
- The integrated ADF 4351 (signal synthesizer) was used as local oscillator, controlled by a PIC 4550.
- Results:
 - SDR IF frequency: 50.4 MHz
 - Analog IF frequency: 417 kHz

Demodulator

• Demodulation in AM of the signal coming from the coupler

SDR Testing Analog demodulator Definitive system

Software defined radio (SDR)

- Single or multi-stage digitization of the receiving device
- Digital processing:
 - DSP
 - FPGA
- Advantages:
 - Versatility
 - Diversity of dedicated software
 - Broad support

RTL-SDR

- Characteristics:
 - Wide bandwidth
 - 25 MHz to 1,7 GHz
 - USB
 - DSP→PC
 - Dedicated software
 - Matlab
 - HDSDR
- Objectives:
 - Receiver and equipment operation verification
 - Define analog demodulator design

Results with SDR

Analog Receiver

- Envelope detector with diode
- Input signal characteristics:
 - Modulated frequency: 668 Hz
 - Carrier frequency: 417 KHz
- Components used:
 - Audio amplifier: AO LM318
 - Diode: 1N5819

Individual test results

- Results:
 - Amplification: 32 dB
 - Demodulated frequency 668 KHz
 - Input
- M Pos: 0.000s Acción Guardar ima Formato de archivo Jpg Acerca de guardar imágenes Seleccionar carpeta 5.20V 2 Frecuencia Guardar 83.19kHz? 2 Período 164mV 56.3%? M 500us CH2 / 2.11V Sep 24, 2018, 16:27 Espere..

Amplifier output

Demodulator output

Final device

Proposed testing bench

Results

Elevation error \rightarrow [(C+D)-(A+B)]

• Positive (C+D)

Negative (A+B)

Results

Azimuth error \rightarrow [(A+C)-(B+D)]

Positive (A+C)

Negative (B+D)

Conclusion

- A prototype was assembled that meets the specifications and parameters initially established.
- Detection of azimuth and elevation error signals, with their corresponding PWM output signals.
- The measurements of the implementations of each stage were within the established tolerable limits.
- Learning and use of specific software.
 - Microstrip, Stripline: Ansoft Designer, HFSS
 - Board Design: Altium
 - Circuit Design and Simulation: LTSpice
 - SDR: Matlab, HDSDR
- Putting into practice knowledge from various areas within the specialty.
- Use of SDR technology

Improvements and future developments

- Generate single board:
 - RF: Delays, lengths and widths of lines
 - Phase
 - Transfer
- Build an antenna array:
 - Four lobe system
 - Robust, to avoid interference
- SDR applied in real-time OS
- Control system
 - System to control: Incoming signal, servos and antenna

Thanks!

We will answer your questions and concerns

