AR16

CODE: 16BS1001 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January-2019

ENGINEERING MATHEMATICS – I

(Common to all Branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Solve $1 + (x \tan y - \sec y) \frac{dy}{dx} = 0$ 7M

b) Find the solution of $x \sin x dy + (y(x \cos x - \sin x) - 2) dx = 0$ 7M

(OR)

2. a) Find the orthogonal trajectories of the family of curves $r = 2a(\cos\theta + \sin\theta)$

b) A body kept in air with temperature 25°c cools down from 7M 145°c to 80°c in 20min. Find when the body cools down to 35°c

UNIT-II

3. a) Solve $(D^2 - D)y = 2x - 1 - 3e^x$ 7M

b) Solve $\frac{d^2y}{dx^2} + 9y = \tan 3x$ 7M

(OR)

4. a) Solve $y'' - 2y' + y = e^x \log x$ by using variation of parameters 7M

b) Solve $(D^2 + 5D + 4)y = x^2 + 7x + 9$ 7M

<u>UNIT-III</u>

5. a) If u = f(r) and $x = r \cos\theta$, $y = r \sin\theta$ prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$

b) Expand e^{xy} in the neighbourhood of (1,1) 7M

(OR)

- 6. a) Find the shortest distance from origin to the surface $xyz^2 = 2$ 7M b) Show that $x^2 - y^2$ are functionally dependent and 7M
 - b) Show that $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation

UNIT-IV

- 7. a) Evaluate $\iint (x^2 + y^2) dx dy$ over the area bounded by the ellipse 7M $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 - b) Evaluate $\iiint (2x + y) dx dy dz$ where V is the closed region 7M bounded by the cylinder $z = 4 x^2$ and the planes x = 0, y = 2, z = 0

(OR)

- 8. a) Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} (x^2y+y^2) dx dy$ by change into polar coordinates
 - b) Find the area which is inside the circle $r = \sin\theta$ and out side 7M the cardioids $r = (1 \cos\theta)$.

UNIT-V

- 9. a) Find the directional derivative of $\frac{1}{r}$ in the direction of \bar{r} at 7M (1,1,2)
 - b) Prove that Curl $(\overline{A} \times \overline{B}) \overline{A} div \overline{B} \overline{B} div \overline{A} + (\overline{B} \cdot \nabla) \overline{A} (\overline{A} \cdot \nabla) \overline{B}$ 7M

(OR)

10. Verify the Gauss divergence theorem for $F = (4x)\bar{\imath} - 2y^2\bar{\jmath} + z^2\bar{k}$ 14M taken over the region bounded by cylinder $x^2 + y^2 = 4$; z = 0, z = 3

SET-1 **CODE: 13BS1001**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, January-2019

ENGINEERING MATHEMATICS - I

(Common to All Branches)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Solve $(x^2-ay)dx=(ax-y^2)dy$.
 - b) State Newton's law of cooling.
 - c) Solve $y^{11}-2y^1+10y=0$.
 - d) Find the particular integral of $(D^2-6D+9)y=e^{-2x}$.
 - e) If $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
 - f) Define stationary points.
 - g) Evaluate $\iint_{-\infty}^{2} xy^2 dx dy$.
 - Change the order of integration in $\int_{1}^{a} \int_{1}^{a} \frac{x dx dy}{x^2 + y^2}$.
 - i) If $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$, find $\nabla .\bar{r}$
 - j) State Gauss divergence theorem.

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

2. a) Solve $xy(1+xy^2)dy/dx = 1$. b) Solve $\frac{dy}{dx} = \frac{x^3 + y^3}{xy^2}$.

6M

6M

(OR)

- 3. a) If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in 15 minutes, find when the temperature 6M will be 40° C?
 - b) Find the orthogonal trajectories of the family of parabolas 6M $y^2=4ax$.

UNIT-II

4. a) Solve
$$(D^2-4D+3)y=\sin 3x \cos 2x$$
. 6M
b) Solve $(D^2+5D+6)y=e^{-2x} \sin 2x$. 6M
(**OR**)

5. a) Solve
$$(D^2+1)(D-1)y=0$$
. 6M

b) Solve
$$\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$$
.

UNIT-III

6. a) If
$$u=x+3y^2-z^3$$
, $v=4x^2yz$, $w=2z^2-xy$, evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ 6M

b) Expand
$$f(x,y)=x^y$$
 in powers of $(x-1)$ and $(y-1)$.

(OR) 7. Examine the function $f(x,y)=x^4+y^4-2x^2+4xy-2y^2$ for extreme 12M values.

UNIT-IV

12M Change the order of integration in $I = \int_{0}^{1} \int_{0}^{2-x} xydxdy$ and hence evaluate the same.

(OR)

- 9. a) Calculate $\iint r^3 dr d\theta$ over the area included between the circles 6M $r=2\sin\theta$ and $r=4\sin\theta$.
 - b) Evaluate $\int_{0.0}^{\infty} e^{-(x^2+y^2)} dxdy$ by changing into polar coordinates. 6M

- Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point (2,-1,2). 6M
 - b) If $\overline{A} = (3x^2 + 6y)\overline{i} 14yz\overline{j} + 20xz^2\overline{k}$, evaluate $\int \overline{A}.d\overline{r}$ from 6M (0,0,0)to(1,1,1) along the path $x=t,y=t^2,z=t^3$.

11. Verify Green's theorem for $\int [(xy+y^2)dx+x^2dy]$, where c is 12M bounded by y=x and $y=x^2$.