明細書

レーザ走査型蛍光顕微鏡

技術分野

- [0001] 本発明は、細胞の機能の解明やイメージング等のアプリケーションにおいて蛍光観察や共焦点蛍光観察に用いられるレーザ走査型蛍光顕微鏡に関する。 背景技術
- [0002] 従来、この種のレーザ走査型蛍光顕微鏡は、顕微鏡の一般的な観察に加えて試料の微小スポット領域に集光させたレーザ光をガルバノミラーなどの走査手段によって走査し、試料から発する光を検出し画像を得ている。
- [0003] 図1はレーザ走査型共焦点蛍光顕微鏡の一従来例を示す概略構成図である。 図1のレーザ走査型共焦点蛍光顕微鏡は、レーザ光源部51と、レーザ光源部51 からの励起光を試料52上に集光する対物レンズ光学系53と、レーザ光源部51から の励起光を試料52面上で走査させる走査手段54と、走査手段54と対物レンズ光学 系53との間に配置された瞳投影レンズ55と、試料52から発し対物レンズ光学系53 と瞳投影レンズ55を経た蛍光を検出する検出光学系56を備えている。

レーザ光源部51は、レーザ光源51aと、レンズ51b, 51dとピンホール51cからなる コリメート光学系と、ダイクロイックミラー51eを有している。

対物レンズ光学系53は、対物レンズ53aと試料52の中間像を形成するための結像 レンズ53bを有している。また、対物レンズ53aの後側焦点位置が、結像レンズ53bと 瞳投影レンズ55とによって走査手段54の近傍位置で共役になるように構成されてい る。

走査手段54は、ガルバノミラー54a, 54bを有する近接型ガルバノミラーで構成されている。

検出光学系56は、ダイクロイックミラー56aと、バリアフィルター56bと、レンズ56cと 、共焦点ピンホール56dと、フォトマル等の受光センサー56eを有している。

その他、図1の顕微鏡は、光源部51からの励起光を試料52に導くとともに試料52からの蛍光を検出手段56に導くダイクロイックミラー57と、瞳投影レンズ55を経た光

を結像レンズ53bへ偏向するミラー59と、試料52の像を観察するための接眼光学系60と、通常の蛍光観察時に用いる蛍光照明光学系61を有している。

- [0004] このように構成された図1のレーザ走査型共焦点蛍光顕微鏡では、レーザ光源51a から出射した励起光は、レンズ51bによりピンホール51cに集光され、レンズ51dにより平行光に変換される。その後、この励起光は、ダイクロイックミラー51e、57を経て、走査手段54である近接型ガルバノミラー部に導かれ、ガルバノミラー54a,54bのそれぞれの回転により光束を光軸に対し2次元方向にシフトさせられ、瞳投影レンズ55を経て中間像位置58に集光して1次像を結像する。中間像位置58に集光した励起光は、ミラー59、結像レンズ53b、対物レンズ53aを経て試料52に微小スポット状に照射される。このとき、試料52面に照射される励起光は走査手段54によって走査される。
- [0005] また、対物レンズ53aの後側焦点位置は、結像レンズ53bと瞳投影レンズ55によって走査手段54である近接型ガルバノミラー近傍に投影されている。

励起光が照射されることによって試料52で励起した蛍光は、対物レンズ53a、結像レンズ53b、瞳投影レンズ55、走査手段54、ダイクロイックミラー57を経て、検出光学系56に導かれる。そして、ダイクロイックミラー56aで波長分離され、バリアフィルター56b、レンズ56cを経て、共焦点ピンホールを通過した蛍光だけが、フォトマル等の受光センサー56eによって検出される。

[0006] また、接眼光学系60を介して通常の蛍光観察を行う場合には、レーザ光源51aとは異なる光源61aを備えた蛍光照明光学系61を用いる。光源61aから出射した励起光は、レンズ61b、フィルター61cを通り、ダイクロイックミラー61dで反射し、対物レンズ53aを介して試料52を照明する。励起光が照射されることによって試料52で励起した蛍光は、対物レンズ53aで集光され、蛍光照明光学系61に配置されたダイクロイックミラー61dにより波長分離され、バリアフィルター61eを経て、接眼光学系60のプリズム60a、接眼レンズ60bを介して観察される。

発明の開示

[0007] このような従来のレーザ走査型共焦点蛍光顕微鏡は、解像力に優れ、観察する微小スポット以外の光を除去できる利点を備えており、細胞内の機能解明等に役立っ

ている。

しかしながら、レーザ走査型共焦点蛍光顕微鏡においては、対物レンズ53aと結像 レンズ53bといった通常の蛍光観察に用いる光学系に加えて、上述した瞳投影レン ズ55、走査手段54等の光学系を付加する必要があるため、装置自体が大きくなる。

- [0008] 即ち、一般に、レーザ走査型共焦点蛍光顕微鏡の光学系は、結像レンズの焦点距離が約180mm前後と長くなっている。このため、試料から対物レンズの瞳の共役位置近傍に配置される走査手段までの全長が400~500mmとなり、装置全体が大型化している。
- [0009] このため、共焦点蛍光観察や蛍光観察が可能となるのは、顕微鏡のステージ上に 試料を配置した場合に限られる。

そして、実際、ラットや小動物あるいは細胞の培養環境下で生きたままの状態(in vivo)で共焦点蛍光観察を行う場合、ステージ上に観察環境を構築しなければならないという制限があった。

さらに、レーザ走査型共焦点蛍光顕微鏡は、一般に、対物レンズの光軸がステージ面に対して垂直となる状態で観察を行うように構成されている。このため、試料に対し斜めの観察方向から観察することは困難である。また、レーザ走査型共焦点蛍光顕微鏡全体を試料に対して傾ける、あるいは試料やステージを傾けて観察を行うことも困難である。

- [0010] 本発明は、上記問題点に鑑みてなされたものであり、従来のレーザ走査型共焦点 蛍光顕微鏡と比べて、装置を小型化でき、可視域から近赤外域までの波長でもって 、特に細胞を生きたままの状態で観察できる使い勝手のよいレーザ走査型蛍光顕微 鏡を提供することを目的としている。
- [0011] 上記目的を達成するため、本発明によるレーザ走査型蛍光顕微鏡は、レーザ光源部と、前記レーザ光源部からの励起光を試料上に集光する対物レンズ光学系と、前記レーザ光源部からの励起光を試料面上に走査する走査手段と、前記走査手段と前記対物レンズ光学系との間に配置された瞳投影レンズと、試料から発し前記対物レンズ光学系と前記瞳投影レンズを経た蛍光を検出する検出光学系を備え、前記対物レンズ光学系が、対物レンズと、試料の中間像を形成するための結像レンズとを有

し、前記対物レンズの後側焦点位置が、前記結像レンズと前記瞳投影レンズとによって前記走査手段の近傍位置で共役になるように構成されるレーザ走査型蛍光顕微鏡であって、前記対物レンズの同焦点距離をD、試料面から前記走査手段近傍に配置された、前記対物レンズの後側焦点位置の共役位置までの距離をLとするとき、次の条件式(1)を満足することを特徴としている。

0. $15 \le D/L \le 0.5$

...(1)

- [0012] また、本発明によるレーザ走査型蛍光顕微鏡は、前記レーザ光源部からの励起光 を前記走査手段へ導く光伝送手段を備えたことを特徴としている。
- [0013] また、本発明によるレーザ走査型蛍光顕微鏡は、前記瞳投影レンズが、複数のレンズ群からなり、最も前記走査手段側のレンズ面が前記走査手段側に凹面を向け、最も中間像側のレンズ面が中間像側に凹面を向けており、前記走査手段近傍に位置する前記対物レンズの瞳の共役位置から前記結像レンズの中間像位置までの距離をD3、前記瞳投影レンズの焦点距離をFeとするとき、次の条件式(2)を満足することを特徴としている。

 $0.2 \le \text{Fe/D3} \le 0.5$...(2)

[0014] また、本発明によるレーザ走査型蛍光顕微鏡は、複数のレンズ群からなり、正レンズと負レンズの接合レンズを少なくとも1つ備え、前記接合レンズ中の正レンズのアッベ数をνp、前記結像レンズの焦点距離をFTL、前記対物レンズの胴付き位置から中間像位置までの距離をD1とするとき、次の条件式(3), (4)を満足することを特徴としている。

 $0.4 \leq FTL/D1 \leq 1$

 $80 \leq v p \qquad \cdots (4)$

[0015] また、本発明によるレーザ走査型蛍光顕微鏡は、前記結像レンズが、少なくとも中間像側の前群と対物レンズ側の後群の2つのレンズ群からなり、前記結像レンズの前群のレンズ群には、少なくとも1つの負レンズを有し、前記結像レンズの後群の焦点距離をFTL1、前記結像レンズの前群と前記結像レンズの後群との間隔をD2とするとき、次の条件式(5)、(6)を満足することを特徴としている。

 $0.4 \leq D2/FTL \leq 1$

...(5)

...(3)

$0.7 \leq FTL1/FTL \leq 1.5 \cdots (6)$

[0016] また、本発明によるレーザ走査型蛍光顕微鏡は、前記レーザ光源部からの励起光を前記走査手段へ導く第1のマルチモードファイバーと、試料からの蛍光を前記検出光学系へ導く第2のマルチモードファイバーを備えると共に、前記励起光を前記第1のマルチモードファイバーに入射させる第1のレンズと、前記蛍光を前記第2のマルチモードファイバーに入射させる第2のレンズを有し、前記第1のマルチモードファイバーのコア径をΦem、前記第1のレンズにより前記第1のマルチモードファイバーのコア径をΦem、前記第1のレンズにより前記第1のマルチモードファイバーに入射する開口数をNAex、前記励起波長をλex、前記第2のレンズにより前記第2のマルチモードファイバーに入射する開口数をNAem、前記蛍光波長をλemとするとき、次の条件式(7)〜(9)を満足することを特徴としている。

 $2 \leq \Phi \, \text{em} / \Phi \, \text{ex} \leq 12$ ···(7)

 $0.61 \times (\lambda \text{ ex/NAex}) < \Phi \text{ ex}$...(8)

0. $61 \times (\lambda \text{ em/NAem}) < \Phi \text{ em}$ ···(9)

- [0017] また、本発明によるレーザ走査型蛍光顕微鏡は、試料からの蛍光を前記検出光学系へ導く光伝送手段を備えたことを特徴としている。
- [0018] 本発明のレーザ走査型顕微鏡によれば、条件式(1)を満足することにより、走査手段から試料面までの距離を短くして装置を小型化することができる。
- [0019] また、レーザ光学系と走査手段との間に光伝送手段を配置することにより、走査手段から対物レンズまでの本体光学系とレーザ光学系の配置に自由度を持たせることができ、生きたままの試料の状態(in vivo)での観察に好適な小型化された本体光学系を構成することができる。
- [0020] また、走査手段によって偏向された平行光束を中間像位置へリレーさせる瞳投影レンズを、複数のレンズ群を備え、最も走査手段側に配置されたレンズ面が走査手段側に凹面を向け、最も中間像側に配置されたレンズ面が中間像側に凹面を備えるように構成することにより、中間像での光学性能を良好に補正することが可能となる。また、条件式(2)を満足することにより、瞳投影レンズの光学性能を良好にしながら走査手段から中間像位置までの距離を短くして装置を小型化することが可能となる。

[0021] また、条件式(3)を満足することにより、対物レンズの胴付き位置から中間像位置までの距離を短くして装置を小型化することが可能となる。

また、条件式(4)を満足することにより、焦点距離を短くすることによって発生する球面収差、軸上色収差の補正を良好に行うことが可能となる。

[0022] また、結像レンズを2つのレンズ群で構成することにより、前群での収差を打ち消すように後群で収差を補正することが可能となり、in vivoでの観察により好適なレーザ顕微鏡が得られる。

また、条件式(5)及び(6)を満足することにより、非点収差とコマ収差および倍率色収差をより補正することが可能となる。

- [0023] また、レーザ光源部からの励起光を走査手段へ導く第1のマルチモードファイバーと、試料からの蛍光を検出光学系へ導く第2のマルチモードファイバーを備えた構成において、条件式(7)〜(9)を満足することにより、光源からの励起光に対して検出される蛍光量の割合が高くなり、より明るい蛍光が検出でき、且つ、試料からの厚さ方向の画像情報が所定厚さにわたって得られるので、試料が生きたままの状態(in vivo)での観察において、操作性が向上する。
- [0024] また、瞳投影レンズと検出光学系との間に光伝送手段を配置することにより、瞳投影レンズから対物レンズまでの本体光学系と検出光学系の配置に自由度を持たせることができ、in vivoでの観察に好適な小型化された本体光学系を構成することができる。

さらに、光源部からの励起光を走査手段へ導く光伝送手段と、試料からの蛍光を検 出光学系へ導く光伝送手段とをそれぞれ別箇の光ファイバーで設ければ、励起光が 光ファイバーに入射したときに発生する自家蛍光の影響を検出光学系で受けずに済 み、試料で発生した蛍光を高精度に検出できる。

図面の簡単な説明

[0025] [図1]図1はレーザ走査型共焦点蛍光顕微鏡の一従来例を示す概略構成図である。 [図2]図2は本発明にかかるレーザ走査型蛍光顕微鏡の第1実施例の概略構成図である。

[図3]図3は図2の顕微鏡における顕微鏡本体部に備わる光学系の概略構成を示す

要部説明図である。

[図4]図4は図3に示した顕微鏡本体部の光学系にレーザ光源部と検出光学系を加えた構成を示す説明図である。

[図5]図5は本発明にかかるレーザ走査型蛍光顕微鏡の第2実施例における光学系の概略構成を示す説明図である。

[図6]図6は本発明にかかるレーザ走査型蛍光顕微鏡の第3実施例における光学系の概略構成を示す説明図である。

[図7]図7は本発明にかかるレーザ走査型蛍光顕微鏡の第4実施例における光学系の概略構成を示す説明図である。

[図8]図8は本発明の第1実施例における瞳投影光学系及び対物レンズ光学系の構成を示す光軸に沿う断面図である。

[図9]図9は本発明の第2実施例における瞳投影光学系及び対物レンズ光学系の光学構成を示す光軸に沿う断面図である。

[図10]図10は本発明の第3実施例における瞳投影光学系及び対物レンズ光学系の光学構成を示す光軸に沿う断面図である。

発明を実施するための最良の形態

[0026] 図2は本発明にかかるレーザ走査型蛍光顕微鏡の第1実施例の概略構成図、図3 は図2の顕微鏡における顕微鏡本体部11に備わる光学系の概略構成を示す要部説明図、図4は図3に示した顕微鏡本体部11の光学系にレーザ光源部と検出光学系 を加えた構成を示す説明図である。

第1実施例のレーザ走査蛍光顕微鏡は、レーザ光源部1と、交換可能な対物レンズ 2と、走査手段としてのスキャナ部3と、瞳投影レンズ6と結像レンズ5とを備えたレンズ ユニット4と、検出光学系7を顕微鏡本体部11に備えている。

レーザ光源部1は、半導体レーザを用いることで顕微鏡本体部11を小型化できる ので好ましい。

対物レンズ2は、結像レンズ5とともに対物レンズ光学系8を構成している。対物レンズ光学系8は、レーザ光源部1からの励起光をステージ9上の試料10に集光する機能を有している。また、対物レンズ2は、後側焦点位置が、結像レンズ5と瞳投影レン

ズ6とによって、スキャナ部3の近傍位置で共役になるように構成されている。結像レンズ5は、試料10の中間像を形成する機能を有している。

[0027] 瞳投影レンズ6は、スキャナ部3と対物レンズ光学系8との間に配置されている。 検出光学系7は、バリアフィルター7aとレンズ7bと共焦点ピンホール7cと受光セン サー7dを有し、試料10から発し対物レンズ光学系8と瞳投影レンズ6を経た蛍光を受光センサー7dで検出するように構成されている。

レーザ光源部1は、レーザ光源1aと、レンズ1b, 1dとピンホール1cからなるコリメート光学系を有している。

また、スキャナ部3と検出光学系7との間には、光源部1からの励起光を試料10に 導くとともに試料10からの蛍光を検出手段7に導くためのダイクロイックミラー16が設 けられている。

また、レーザ光源部1には、レーザ光源1aからのレーザ光の出射を駆動するレーザ 駆動部14が接続されている。

顕微鏡本体部11には、対物レンズ2の合焦のための準焦機構部12が設けられている。

その他、レーザ走査型蛍光顕微鏡は、顕微鏡本体部11を2次元方向に位置調整と標本に対して観察する角度 θ を調整するための $\mathbf{x}-\mathbf{y}-\theta$ 本体移動機構13を有している。

また、レーザ走査型蛍光顕微鏡は、パーソナルコンピュータなどの処理制御手段15と接続されている。処理制御手段15は、レーザ駆動部14の駆動により出射されるレーザ光源の波長制御、ダイクロイックミラーやフィルター等の波長選択、波長分離素子の制御、レーザ駆動部14の駆動制御、検出光学系7の受光センサー7dで受光された検出情報の解析及び表示制御、スキャナ部3の駆動制御、準焦機構部12の駆動制御、エーソーの本体移動機構13の駆動制御等を行うように構成されている。

[0028] 第1実施例のレーザ走査型蛍光顕微鏡では、レーザ光源1aから出射した励起光は、レンズ1bによりピンホール1cに集光され、レンズ1dにより平行光に変換される。その後、ダイクロイックミラー16を経て、スキャナ部3に導かれ、スキャナ部3のガルバノミラー3a,3bのそれぞれの回転により光束を光軸に対し2次元方向にシフトさせられ

、瞳投影レンズ6を経て中間像位置に集光して1次像を結像する。中間像位置に集光した励起光は、結像レンズ5、対物レンズ2を経て試料10に微小スポット状に照射される。このとき、試料10面に照射される励起光はスキャナ部3によって走査される。

[0029] また、対物レンズ2の後側焦点位置は、結像レンズ5と瞳投影レンズ8によってスキャナ部3の近傍に投影されている。

励起光が照射されることによって試料10で励起した蛍光は、対物レンズ2、結像レンズ5、瞳投影レンズ6、スキャナ部3、ダイクロイックミラー16を経て、検出光学系7に導かれる。そして、バリアフィルター7a、レンズ7bを経て、共焦点ピンホール7cを通過した蛍光だけが、フォトマル等の受光センサー7dによって検出される。

[0030] ここで、第1実施例のレーザ走査型蛍光顕微鏡は、対物レンズ2の同焦点距離をD、試料10面から走査手段(スキャナ部3)近傍に配置された、対物レンズ2の後側焦点位置の共役位置Eまでの距離をLとしたとき、次の条件式(1)を満足するように構成されている。

0. 15≦D/L≦0. 5 ···(1)

[0031] 第1実施例のレーザ走査型蛍光顕微鏡のように、条件式(1)を満足すれば、走査手 段3から試料10までの距離を短くして装置を小型化することが可能となる。

条件式(1)の上限値を上回ると、結像レンズ5、瞳投影レンズ6の焦点距離が短くなり、瞳投影レンズ6と走査手段3との間隔が短くなりすぎて干渉してしまう。

- 一方、条件式(1)の下限値を下回ると、試料10から走査手段3までの全長が長くなり すぎて装置を小型化することが困難となってしまう。
- [0032] 図5は本発明にかかるレーザ走査型蛍光顕微鏡の第2実施例における光学系の概略構成を示す説明図である。なお、第1実施例と同じ構成の部材については同じ符号を付してある。

第2実施例のレーザ走査型蛍光顕微鏡は、第1実施例の変形例であり、光源部1と 走査手段3との間には、ダイクロイックミラー20と、レンズ19と、光伝送手段18と、レン ズ17と、ダイクロイックミラー16とが設けられている。

光伝送手段18はシングルモードファイバーあるいはマルチモードファイバー等の光ファイバーで構成されている。光伝送手段18の光ファイバー端面は、標本面位置と

共役であり、ファイバー端面のコア径が共焦点ピンホールとなるので、光源部1'のピンホール1cと検出器7'のピンホール7cは、光路から外すか、回折径に対して充分に大きな径にしても構わない。光伝送手段18がマルチモードファイバーの場合、ファイバーコア径は、回折径に対して大きくなるので共焦点効果は弱まるが、蛍光像を明るく取り込むことが可能であるので、観察目的に応じてファイバーを選択すると良い。なお、光伝送手段18にマルチモードファイバーを用いて、共焦点でない通常の蛍光観察を行う場合には、光源部1'のピンホール1cと検出器7'のピンホール7cを、光路に備えないで構成するのがよい。

[0033] ダイクロイックミラー20は、光源部1'からの励起光を試料10に導くとともに、試料10からの蛍光を第2の検出光学系7'に導くように構成されている。

そして、光伝送手段18を介してレーザ光源部1からの励起光を走査手段3へ導くと ともに、レンズ17を経た試料10からの蛍光を第2の検出手段7'へ導くようになっている。

なお、図4の実施形態では、光源部1'は、光源1a〜レンズ1dが複数設けられており、それに応じてダイクロイックミラー1eが設けられている。

[0034] 第2実施例のレーザ走査型蛍光顕微鏡のように、レーザ光源部1と走査手段3との間に光伝送手段を配置すれば、スキャナ部3から対物レンズ2までの装置本体部の光学系と、レーザ光源部1との配置に自由度をもたせることが可能となる。このため、顕微鏡本体部の光学系を、生きたままの試料の状態(in vivo)での観察に好適な大きさに小型化することができる。

また第2実施例において、レーザ光源1'に近赤外のフェムト秒パルスレーザを用いると多光子励起の蛍光顕微鏡として観察が可能となる。

この場合、検出器7を多光子励起された蛍光の検出器として使用し、ダイクロイックミラー1e、16、20の分光特性を選択し、ピンホール1c、7cのピンホール径を回折径より充分に大きくするか、光路から外せば良い。

[0035] 図6は本発明にかかるレーザ走査型蛍光顕微鏡の第3実施例における光学系の概略構成を示す説明図である。なお、第2実施例と同じ構成の部材については同じ符号を付してある。

第3実施例のレーザ走査型蛍光顕微鏡は、第2実施例の変形例であり、ダイクロイックミラー16と検出光学系7'との間には、レンズ22と、シングルモードファイバーあるいはマルチモードファイバー等の光ファイバーで構成された光伝送手段21と、レンズ23が設けられている。そして、光伝送手段18を介して光源部1''からの励起光を試料10に導くとともに、光伝送手段21を介して試料10からの蛍光を第2の検出光学系7'に導くように構成されている。第2実施例と同様に、光伝送手段18、21の光ファイバー端面は、標本面位置と共役であり、ファイバー端面のコア径が共焦点ピンホールとなるので、光源部1''のピンホール1cと検出器7'のピンホール7cは、光路から外すか、回折径に対して充分に大きな径にしても構わない。前記光伝送手段18、21がマルチモードファイバーの場合、ファイバーコア径は、回折径に対して大きくなるので共焦点効果は弱まるが、蛍光像を明るく取り込むことが可能であるので、観察目的に応じてファイバーを選択すると良い。なお、光伝送手段18、21にマルチモードファイバーを用いて、共焦点でない通常の蛍光観察を行う場合には、光源部1''のピンホール1cと検出器7'のピンホール7cを、光路に備えないで構成するのがよい。

このように構成すれば、顕微鏡装置の本体部の光学系をより小型化できるので好ましい。

また、第3実施例のレーザ走査型蛍光顕微鏡のように、光源部1''からの励起光をスキャナ部3へ導く光伝送手段18を構成する光ファイバーと、瞳投影レンズ6を経た試料10からの蛍光を第2の検出光学系7'へ導く光伝送手段21を構成する光ファイバーとをそれぞれ別箇に設ければ、励起光が光ファイバー18に入射したときに発生する自家蛍光の影響を第2の検出光学系7'で受けずに済み、試料10で発生した蛍光を高精度に検出できる。

[0036] なお、第3実施例のレーザ走査型蛍光顕微鏡において、光伝送手段18、21をマルチモードファイバーで構成する場合、マルチモードファイバー18のコア径をΦex、マルチモードファイバー21のコア径をΦem、レンズ19によりマルチモードファイバー18に入射する開口数をNAex、励起波長をλex、レンズ22によりマルチモードファイバー21に入射する開口数をNAem、蛍光波長をλemとするとき、次の条件式(7) ~(9)を満足するのが好ましい。

 $2 \leq \Phi \, \text{em} / \Phi \, \text{ex} \leq 12 \qquad \cdots (7)$

 $0. 61 \times (\lambda \, \text{ex/NAex}) < \Phi \, \text{ex} \qquad \cdots (8)$

 $0.61 \times (\lambda \text{ em/NAem}) < \Phi \text{ em}$ ···(9)

[0037] 条件式(7)〜(9)を満足すれば、光源からの励起光に対して検出される蛍光量の割合が高くなり、蛍光像を明るく取り込むことが可能となり、且つ、試料からの画像情報を厚さ方向に沿って所定量得ることができるので、試料が生きたままの状態(In vivo)での観察において操作性が向上する。

条件式(7)の下限値を下回ると、光源からの励起光に対して検出される蛍光の割合が低くなり、得られる蛍光像が暗くなり、試料の厚さ方向の画像情報が非常に少なくなるので観察時の操作性が悪くなってしまう。

一方、条件式(7)の上限値を上回ると、試料の厚さ方向にわたる画像情報が入りすぎて、観察したい蛍光以外の画像が見えすぎてしまい、蛍光観察し難くなる。

条件式(8), (9)を満足しないと、試料への励起光が弱くなったり、検出される蛍光強度が暗く、試料の厚さ方向の画像情報が非常に少なくなるので観察時の操作性が悪くなる。

なお、次の条件式(7-1)を満足すると、より好ましい。

$$4 \leq \Phi \text{ em} / \Phi \text{ ex} \leq 10$$
 ···(7-1)

なお、第3実施例の上記条件式(7)〜(9)を満足するレーザ走査型蛍光顕微鏡の構成は、上記条件式(1)を満足しない一般のレーザ走査型蛍光顕微鏡にも適用可能である。

[0038] 図7は本発明にかかるレーザ走査型蛍光顕微鏡の第4実施例における光学系の概略構成を示す説明図である。なお、第1実施例と同じ構成の部材については同じ符号を付してある。

第4実施例のレーザ走査型蛍光顕微鏡は、第1実施例の変形例であり、光源部1' "がレーザ光源1aとレンズ1dとで構成されている。また、ダイクロイックミラー16を隔てたガルバノミラー3bの反対側には、レンズ22と、光伝送手段21と、レンズ23と、検出光学系7'とが設けられている。

光伝送手段21はシングルモードファイバーあるいはマルチモードファイバー等の光

ファイバーで構成されている。光伝送手段21の光ファイバー端面は、標本面位置と 共役であり、ファイバー端面のコア径が共焦点ピンホールとなるので、光源部1'"の ピンホール1cと検出器7'のピンホール7cは、光路から外すか、回折径に対して充分 に大きな径にしても構わない。光伝送手段21がマルチモードファイバーの場合、ファ イバーコア径は、回折径に対して大きくなるので共焦点効果は弱まるが、蛍光像を明 るく取り込むことが可能であるので、観察目的に応じてファイバーを選択すると良い。

[0039] また、これらの各実施例で示した本発明のレーザ走査型蛍光顕微鏡では、走査手段(スキャナ部3)によって偏向された平行光束を、瞳投影レンズ6を介して中間像位置ヘリレーさせている。

ここで、瞳投影レンズ6を、複数のレンズで構成し、最も走査手段側に配置されたレンズ面が走査手段側に凹面を向き、最も中間像側に配置されたレンズ面が中間像側に凹面を向くように構成すれば、中間像での光学性能を良好に補正することが可能となる。

[0040] また、上記各実施例で示した本発明のレーザ走査型蛍光顕微鏡においては、走査手段の近傍に位置する対物レンズ2の瞳の共役位置から結像レンズ5の中間像位置までの距離をD3、瞳投影レンズ6の焦点距離をFeとするとき、次の条件式(2)を満足するのが好ましい。

$$0.2 \le Fe/D3 \le 0.5$$
 ...(2)

[0041] 条件式(2)を満足すれば、瞳投影レンズの光学性能を良好にしながら走査手段から 中間像位置までの距離を短くして装置を小型化することが可能となる。

条件式(2)の上限値を上回ると、走査手段と瞳投影レンズとの距離が短くなり、瞳投影レンズと走査手段との間隔が短くなりすぎて干渉してしまう。

一方、条件式(2)の下限値を下回ると、走査手段から中間像位置までの全長が長くなりすぎて装置を小型化することが困難となってしまう。

[0042] また、上記各実施例のレーザ走査型蛍光顕微鏡においては、複数のレンズ群からなり、正レンズと負レンズの接合レンズを少なくとも1つ備え、この接合レンズ中の正レンズのアッベ数を ν p、結像レンズ5の焦点距離をFTL、対物レンズ2の胴付き位置から中間像位置までの距離をD1とするとき、次の条件式(3), (4)を満足するのが好ま

しい。

$$0. \ 4 \le FTL/D1 \le 1$$
 ...(3)
 $80 \le vp$...(4)

[0043] 条件式(3)を満足すれば、対物レンズの胴付き位置から中間像位置までの距離を短くして装置を小型化することが可能となる。また、条件式(4)を満足すれば、焦点距離を短くすることによって発生する球面収差、軸上色収差の補正を良好に行い可視域 一近赤外域での共焦点蛍光観察が可能となる。

ここで本発明において共焦点蛍光顕微鏡を構成した場合、実際には取得された画像に、球面収差や軸上色収差が画像として得られるのではなく、各波長および観察領域での波面収差に影響を及ぼす。本発明の光学系の波面収差が良好であれば、検出器から得られる画像は高解像、高S/Nとなる。従って球面収差や軸外収差を良好に補正することで、結果として波面収差を良好に補正することになり、下記条件式で記述される各収差についても同様である。

条件式(3)の上限値を上回ると、対物レンズと結像レンズとの間隔が短くなりすぎて、 対物レンズの作動距離を変化させる準焦機構部を配置することが困難になる。

一方、条件式(3)の下限値を下回ると、試料から走査手段までの全長が長くなりすぎ て装置を小型化することが困難となってしまう。

条件式(4)の下限値を下回ると、対物レンズ光学系で発生する軸上色収差、球面収差の補正が困難になり、励起光の波長が可視域から近赤外光での共焦点蛍光観察が困難になってしまうので好ましくない。

[0044] また、上記各実施例のレーザ走査型顕微鏡においては、結像レンズ5が、少なくとも中間像側の前群と対物レンズ側の後群の2つのレンズ群からなり、結像レンズ5の前群のレンズ群には、少なくとも1つの負レンズを有し、結像レンズ5の後群の焦点距離をFTL1、結像レンズ5の前群と結像レンズ5の後群との間隔をD2とするとき、次の条件式(5)、(6)を満足するのが好ましい。

 $0.4 \leq D2/FTL \leq 1 \cdots (5)$

 $0.7 \leq FTL1/FTL \leq 1.5 \cdots (6)$

[0045] このように、結像レンズ5を2つのレンズ群で構成すれば、前群での収差を打ち消す

ように後群で収差を補正することが可能となり、in vivoでの観察により好適なレーザ走 香型蛍光顕微鏡が得られる。

また、条件式(5)及び(6)を満足すれば、非点収差とコマ収差および倍率色収差をより補正することが可能となる。

条件式(5)の上限値を上回ると、前群のレンズ群が中間像位置に近くなりすぎてレンズ面の傷やゴミによる影響により像質を劣化させるので好ましくない。

一方、条件式(5)の下限値を下回ると、軸上色収差と軸外コマ収差が悪化するので 好ましくない。

条件式(6)の上限値を上回ると、後群のパワーが弱くなりすぎて、色球面収差、コマ 収差の補正をするのが困難になる。

一方、条件式(6)の下限値を上回ると、後群のパワーが強くなりすぎて、軸上色収差とコマ収差の補正が困難になる。

[0046] 以下、本発明のレーザ走査型顕微鏡の瞳投影レンズ及び対物レンズ光学系(結像レンズ及び対物レンズ)の実施例について説明する。なお、各実施例の光学系は、図2〜図7に示した各実施例のレーザ走査型蛍光顕微鏡に適用される。また、各実施例の説明においては、説明の便宜上、図2〜図7に示した光学系の向きと逆向きに示してある。

第1実施例

[0047] 図8は本発明の第1実施例にかかるレーザ走査型蛍光顕微鏡における瞳投影光学 系及び対物レンズ光学系の構成を示す光軸に沿う断面図である。

第1実施例のレーザ走査型蛍光顕微鏡では、瞳投影光学系6は、走査手段側(紙面の左側)から順に、走査手段側に凹面を向けた平凹レンズL61と中間像側に凸面を向けた平凸レンズL62のパワーの弱い接合正レンズと、両凸レンズL63と、走査手段側に凹面を向けた負メニスカスレンズL64の接合正レンズと、両凸レンズL65と、両凸レンズL66と、両凹レンズL67とで構成されている。

[0048] 結像レンズ5は、中間像側から順に、前群G51と後群G52とで構成されている。 前群G51は、中間像側から順に、中間像側に凹面を向けた正メニスカスレンズL51 と、中間像側に凸面を向けた負メニスカスレンズL52とで構成されている。 後群G52は、中間像側から順に、両凸レンズL53と、試料10側に凹面を向けた平 凹レンズL54と両凸レンズL55との接合正レンズとで構成されている。

対物レンズ2は、中間像側から順に、両凸レンズL21と両凹レンズL22の接合負メニスカスレンズと、両凹レンズL23と両凸レンズL24の接合正メニスカスレンズと、負メニスカスレンズL25と両凸レンズL26と負メニスカスレンズL27の接合負レンズと、両凸レンズL28と両凹レンズL29と両凸レンズL30の接合正レンズと、正メニスカスレンズL31と、正メニスカスレンズL32と正メニスカスレンズL33の接合正レンズとで構成されている。

前記対物レンズは水浸対物レンズで、開口数0.8、作動距離3.3mm、同焦点距離45mmの対物レンズである。

[0049] 対物レンズ2は、本発明のレーザ走査型蛍光顕微鏡に対して交換可能に構成されており、対物レンズの倍率を変えることで観察範囲を変更可能である。

さらに対物レンズ2は、水浸対物レンズであるので、In vivo下での本発明のレーザ 走査型蛍光顕微鏡と組み合わせることで、標本を生かしたままの状態でかつ明るい 蛍光像が得られるので好適である。

例えばマウス等の脳の神経細胞を観察する場合、マウス頭部に脳の神経細胞を観察できる程度の穴をあけ、穴をあけた頭部を平行平面板のガラス等の光学部材でふさぎ、頭部の穴を通して本発明のレーザ走査型蛍光顕微鏡に水浸対物レンズを組み合わせて観察することで、脳の神経細胞からの蛍光画像を得ることが可能である。しかもマウス頭部に観察用の穴はガラス等の光学部材でふさいであるので、マウスを生かしたままの観察が可能となり、がん細胞等の成長や細胞の機能解明等の様々なアプリケーションに有効である。

また標本によって対物レンズの倍率や用途を変えることで、In vivo観察だけでなく 様々な用途に小型化されたレーザ走査型蛍光顕微鏡としても使用可能である。

[0050] 次に、第1実施例の光学系を構成する光学部材の数値データを示す。なお、第1実施例の数値データにおいて、 \mathbf{r}_1 、 \mathbf{r}_2 、…は各レンズ面の曲率半径、 \mathbf{d}_1 、 \mathbf{d}_2 、…は各レンズの肉厚または空気間隔、 \mathbf{n}_{dl} 、 \mathbf{n}_{dl} 、…は各レンズのd線での屈折率、 \mathbf{v}_{dl} 、 \mathbf{v}_{dl} 、…は各レンズのアッベ数を表している。第1面は対物レンズの瞳共役位置であり、物点

無限遠からの光束が入射する。対物レンズは水浸対物レンズで、開口数0.8、作動 距離3.3mm、同焦点距離45mmである。

これらの記号は、以下の各実施例においても共通である。

[0051] 数値データ1

$r_1 = \infty$	$d_1 = 14.3728$		
$r_{2} = -6.588$	$d_{2} = 3.9$	$n_{d2} = 1.48749$	$v_{d2} = 70.23$
$r_3 = \infty$	$d_{3} = 3.48$	$n_{d3} = 1.497$	$\nu_{\rm d3} = 81.54$
$r_4 = -9.162$	$d_{4} = 0.2$		
$r_{5} = 125.679$	$d_{_{5}}=3.52$	$n_{d5} = 1.43875$	$\nu_{d5} = 94.93$
$r_6 = -8.85$	$d_6 = 1$	$n_{d6} = 1.7725$	$v_{d6} = 49.6$
$r_{7} = -20.953$	$d_{7} = 0.2$		
$r_8 = 21.356$	$d_8 = 3.62$	$n_{d8} = 1.43875$	$v_{d8} = 94.93$
$r_9 = -21.356$	$d_{9} = 1.91$		
$r_{10} = 13.127$	$d_{10} = 2.39$	$n_{d10} = 1.497$	$v_{d10} = 94.93$
$r_{11} = -282.633$	d ₁₁ =3.8		
$r_{12} = -27.852$	$d_{12} = 1$	$n_{d12} = 1.755$	$\nu_{\rm d12} = 52.32$
$r_{13} = 12.42$	$d_{13} = 10.1024$		
r14=∞(中間像)	$d_{14} = 9$		
$r_{15} = -11.68$	$d_{15} = 1.85$	$n_{d15} = 1.497$	$\nu_{d15} = 81.54$
$r_{16} = -7.6$	$d_{16} = 0.25$		
$r_{17} = 24.968$	$d_{17} = 0.78$	$n_{d17} = 1.51742$	$\nu_{\rm d17} = 52.43$
$r_{18} = 13.675$	$d_{18} = 67.5334$		
$r_{19} = 186.465$	$d_{19} = 3.5$	$n_{d19} = 1.43875$	$v_{d19} = 94.93$
$r_{20} = -126.462$	$d_{20} = 0.25$		
$r_{21} = \infty$	$d_{21} = 3.5$	$n_{d21} = 1.741$	$v_{d21} = 52.64$
	$d_{22} = 2.98$	$n_{d22} = 1.43875$	
$r_{23} = -37.182$			
r ₂₄ =∞(ob胴付き		i	

$r_{25} = 7.1701$	$d_{25} = 2.2311$	$n_{d25} = 1.51884$	$\nu_{\rm d25} = 40.75$
$r_{26} = -40.9891$	$d_{26} = 2.8243$	$n_{d26} = 1.50378$	$\nu_{\rm d26} = 66.81$
$r_{27} = 3.3957$	$d_{27} = 4.9475$		
$r_{28} = -6.0168$	$d_{28} = 1.7182$	$n_{d28} = 1.52944$	$\nu_{\rm d28} = 51.72$
$r_{29} = 9.3327$	$d_{29} = 7.3934$	$n_{d29} = 1.497$	$\nu_{d29} = 81.54$
$r_{30} = -7.1338$	$d_{30} = 0.2$		
$r_{31} = 40.7756$	$d_{31} = 1.1467$	$n_{d31} = 1.755$	$\nu_{\rm d31} = 52.32$
$r_{32} = 8.0004$	$d_{32} = 5.7699$	$n_{d32} = 1.43875$	$\nu_{\rm d32} = 94.93$
$r_{33} = -9.8515$	$d_{33} = 1$	$n_{d33} = 1.59551$	$\nu_{\rm d33} = 39.26$
$r_{34} = -18.0562$	$d_{34} = 0.2$		
$r_{35} = 18.8453$	$d_{35} = 3.783$	$n_{d35} = 1.43875$	$v_{d35} = 94.93$
$r_{36} = -13.4657$	$d_{36} = 1.3$	$n_{d36} = 1.7725$	$v_{d36} = 49.6$
$r_{37} = 38.9003$	$d_{37} = 3.2938$	$n_{d37} = 1.497$	$v_{d37} = 81.54$
$r_{38} = -12.2456$	$d_{38} = 0.2$		
$r_{39} = 8.6474$	$d_{39} = 2.9067$	$n_{d39} = 1.56907$	$\nu_{\rm d39} = 71.3$
$r_{40} = 15.3871$	$d_{40} = 0.2$		
$r_{41} = 6.2872$	$d_{41} = 3.3861$	$n_{d41} = 1.7725$	$v_{\rm d41} = 49.6$
$r_{42} = 5.4004$	$d_{42} = 1.4337$	$n_{d42} = 1.51633$	$v_{d42} = 64.14$
$r_{43} = 80$	$d_{43} = 3.3$	$n_{d43} = 1.33304$	$v_{d43} = 55.79$
$r_{44} = \infty$	$d_{44} = 0$	$n_{d44} = 1.33304$	$v_{d44} = 55.79$
第2実施例			

[0052] 図9は本発明の第2実施例にかかるレーザ走査型蛍光顕微鏡における瞳投影光学 系及び対物レンズ光学系の光学構成を示す光軸に沿う断面図である。

第2実施例のレーザ走査型蛍光顕微鏡では、瞳投影光学系6は、走査手段側(紙面の左側)から順に、走査手段側に凹面を向けた平凹レンズL61と中間像側に凸面を向けた平凸レンズL62とのパワーの弱い接合正レンズと、両凸レンズL63と走査手段側に凹面を向けた負メニスカスレンズL64との接合正レンズと、両凸レンズL65と、両凸レンズL66と、両凹レンズL67とで構成されている。

[0053] 結像レンズ5は、中間像側から順に、前群G51と後群G52とで構成されている。 前群G51は、中間像側から順に、中間像側に凹面を向けた正メニスカスレンズL51 と、中間像側に凸面を向けた負メニスカスレンズL52とで構成されている。

後群G52は、中間像側から順に、両凹レンズL53'と両凸レンズL54'との接合負レンズと、両凸レンズL55とで構成されている。

対物レンズ2は、第1実施例と同様に、中間像側から順に、両凸レンズL21と両凹レンズL22の接合負メニスカスレンズと、両凹レンズL23と両凸レンズL24の接合正メニスカスレンズと、負メニスカスレンズL25と両凸レンズL26と負メニスカスレンズL27の接合負レンズと、両凸レンズL28と両凹レンズL29と両凸レンズL30の接合正レンズと、正メニスカスレンズL31と、正メニスカスレンズL32と正メニスカスレンズL33の接合正レンズとで構成されている。前記対物レンズは水浸対物レンズで、開口数0.8、作動距離3.3mm、同焦点距離45mmの対物レンズである。

[0054] 次に、第2実施例の光学系を構成する光学部材の数値データを示す。

数値データ2

$r_1 = \infty$	$d_{1} = 9.7843$		
$r_{2}^{=-4.624}$	$d_2 = 1$	$n_{d2} = 1.48749$	$v_{d2} = 70.23$
$r_3 = \infty$	$d_3 = 3.04$	$n_{d3} = 1.497$	$\nu_{d3} = 81.54$
$r_4 = -6.051$	$d_{4} = 0.2$		
$r_{5} = 38.988$	$d_{5} = 3.8$	$n_{d5} = 1.43875$	$v_{d5} = 94.93$
$r_6^{=-6.186}$	$d_{6} = 1.2$	$n_{d6} = 1.7725$	$v_{d6} = 49.6$
$r_{7} = -13.818$	$d_{7} = 0.2$		
$r_8 = 12.667$	$d_8 = 3.19$	$n_{d8} = 1.43875$	$\nu_{\rm d8} = 94.93$
$r_9 = -15.719$	$d_{9} = 1.75$		
$r_{10} = 8.402$	$d_{10} = 2.44$	$n_{d10} = 1.497$	$\nu_{\rm d10} = 81.54$
$r_{11} = -79.63$	$d_{11} = 0.98$		
$r_{12} = -19.748$	$d_{12} = 1.1$	$n_{d12} = 1.741$	$\nu_{\rm d12} = 52.64$
$r_{13} = 6.843$	$d_{13} = 5.8022$		
r ₁₄ =∞(中間像)	$d_{14} = 8.4919$		

$$r_{39} = 8.6474$$
 $d_{39} = 2.9067$ $n_{d39} = 1.56907$ $v_{d39} = 71.3$ $r_{40} = 15.3871$ $d_{40} = 0.2$

$$r_{41} = 6.2872$$
 $d_{41} = 3.3861$ $n_{d41} = 1.7725$ $v_{d41} = 49.6$ $r_{42} = 5.4004$ $d_{42} = 1.4337$ $n_{d42} = 1.51633$ $v_{d42} = 64.14$

$$r_{_{43}} = 80$$
 $d_{_{43}} = 3.3$ $n_{_{d43}} = 1.33304$ $v_{_{d43}} = 55.79$ $r_{_{44}} = \infty$ $d_{_{44}} = 0$ $n_{_{d44}} = 1.33304$ $v_{_{d44}} = 55.79$

第3実施例

[0055] 図10は本発明の第3実施例にかかるレーザ走査型蛍光顕微鏡における瞳投影光 学系及び対物レンズ光学系の光学構成を示す光軸に沿う断面図である。

第3実施例のレーザ走査型蛍光顕微鏡では、瞳投影光学系6は、走査手段側(紙面の左側)から順に、走査手段側に凹面を向けた負メニスカスレンズL61'と走査手段側に凹面を向けた正メニスカスレンズL62'の弱いパワーの接合正レンズと、両凸レンズL63と両凹レンズL64と両凸レンズL65との接合正レンズと、両凸レンズL66と、走査手段側に凸面を向けた負メニスカスレンズL67'と両凸レンズL68と両凹レンズL69との接合負レンズとで構成されている。

[0056] 結像レンズ5は、中間像側から順に、前群G51と後群G52とで構成されている。 前群G51は、中間像側から順に、中間像側に凹面を向けた正メニスカスレンズL51 と、中間像側に凸面を向けた負メニスカスレンズL52とで構成されている。

後群G52は、中間像側から順に、両凹レンズL53'と両凸レンズL54'との接合レンズと、両凸レンズL55とで構成されている。

対物レンズ2は、第1実施例と同様に、中間像側から順に、両凸レンズL21と両凹レンズL22の接合負メニスカスレンズと、両凹レンズL23と両凸レンズL24の接合正メニスカスレンズと、負メニスカスレンズL25と両凸レンズL26と負メニスカスレンズL27の接合負レンズと、両凸レンズL28と両凹レンズL29と両凸レンズL30の接合正レンズと、正メニスカスレンズL31と、正メニスカスレンズL32と正メニスカスレンズL33の接合正レンズとで構成されている。前記対物レンズは水浸対物レンズで、開口数0.8、作動距離3.3mm、同焦点距離45mmの対物レンズである。

[0057] 次に、第3実施例の光学系を構成する光学部材の数値データを示す。

数値データ3

$$r_1 = \infty$$
 $d_1 = 7.4167$
 $r_2 = -4.0824$ $d_2 = 1.0919$ $n_{d2} = 1.603$ $v_{d2} = 65.44$
 $r_3 = -8.3801$ $d_3 = 1.7878$ $n_{d3} = 1.7725$ $v_{d3} = 49.6$

$r_{4} = -5.7535$	$d_{4} = 0.2$		
$r_{5} = 25.6339$	$d_{5} = 2.8925$	$n_{d5} = 1.43875$	$\nu_{d5} = 94.93$
$r_6 = -6.4112$	$d_6 = 1$	$n_{d6} = 1.7725$	$v_{d6} = 49.6$
$r_{7} = 137.8602$	$d_7 = 2.3153$	$n_{d7} = 1.497$	$v_{d7} = 81.54$
$r_8 = -9.4621$	$d_8 = 0.2$		
$r_{9} = 10.6954$	$d_{9} = 2.4857$	$n_{d9} = 1.497$	$\nu_{d9} = 81.54$
$r_{10} = -26.6514$	$d_{10} = 0.15$		
$r_{11} = 6.9368$	$d_{11} = 1.5367$	$n_{d11} = 1.7725$	$v_{d11} = 49.6$
$r_{12} = 3.8697$	$d_{12} = 3.2119$	$n_{d12} = 1.497$	$v_{d12} = 81.54$
$r_{13} = -11.1848$	$d_{13} = 1.8514$	$n_{d13} = 1.755$	$\nu_{\rm d13} = 52.32$
$r_{14} = 6.5045$	$d_{14} = 3.935$		
$r_{15} = \infty$	$d_{15} = 5$		
$r_{16} = -63.258$	$d_{16} = 7.6$	$n_{d16} = 1.603$	$v_{d16} = 65.44$
$r_{17} = -14.383$	$d_{17} = 0.15$		
$r_{18} = 21.994$	$d_{18} = 1.2$	$n_{d18} = 1.51742$	$v_{\rm d18} = 52.43$
$r_{19} = 13.279$	$d_{19} = 23.5638$		
$r_{20} = -26.882$	$d_{20} = 1.6$	$n_{d20} = 1.788$	$v_{d20} = 47.37$
$r_{21} = 75.482$	$d_{21} = 3.42$	$n_{d21} = 1.43875$	$v_{\rm d21} = 94.93$
$r_{22}^{} = -18.536$	$d_{22} = 0.15$		
$r_{23} = 141.209$	$d_{23} = 7$	$n_{d23} = 1.497$	$v_{d23} = 81.54$
$r_{24} = -22.954$			
r _{_25} =∞(ob胴付き	$^{5})d_{25} = -2.2345$		
$r_{26} = 7.1701$	$d_{26} = 2.2311$	$n_{d26} = 1.51884$	$\nu_{\rm d26} = 40.75$
$r_{27} = -40.9891$	$d_{27} = 2.8243$	$n_{d27} = 1.50378$	$v_{d27} = 66.81$
$r_{28} = 3.3957$	$d_{28} = 4.9475$		
$r_{29} = -6.0168$	$d_{29} = 1.7182$	$n_{d29} = 1.52944$	$v_{d29} = 51.72$
$r_{30} = 9.3327$	$d_{30} = 7.3934$	$n_{d30} = 1.497$	$v_{\rm d30} = 81.54$
$r_{31} = -7.1338$	$d_{31} = 0.2$		

$r_{32} = 40.7756$	$d_{32} = 1.1467$	$n_{d32} = 1.755$	$\nu_{\rm d32} = 52.32$
$r_{33} = 8.0004$	$d_{33} = 5.7699$	$n_{d33} = 1.43875$	$\nu_{\rm d33} = 94.93$
$r_{34} = -9.8515$	$d_{34} = 1$	$n_{d34} = 1.59551$	$\nu_{\rm d34} = 39.26$
$r_{35} = -18.0562$	$d_{35} = 0.2$		
$r_{36} = 18.8453$	$d_{36} = 3.783$	$n_{d36} = 1.43875$	$v_{d36} = 94.93$
$r_{37} = -13.4657$	$d_{37} = 1.3$	$n_{d37} = 1.7725$	$v_{d37} = 49.6$
$r_{38} = 38.9003$	$d_{38} = 3.2938$	$n_{d38} = 1.497$	$\nu_{\rm d38} = 81.54$
$r_{39} = -12.2456$	$d_{39} = 0.2$		
$r_{40} = 8.6474$	$d_{40} = 2.9067$	$n_{d40} = 1.56907$	$\nu_{\rm d40} = 71.3$
$r_{41} = 15.3871$	$d_{41} = 0.2$		
$r_{42} = 6.2872$	$d_{42} = 3.3861$	$n_{d42} = 1.7725$	$v_{\rm d42} = 49.6$
$r_{43} = 5.4004$	$d_{43} = 1.4337$	$n_{d43} = 1.51633$	$\nu_{d43} = 64.14$
$r_{44} = 80$	$d_{44} = 3.3$	$n_{d44} = 1.33304$	$v_{d44} = 55.79$
$r_{45} = \infty$	$d_{45} = 0$	$n_{d45} = 1.33304$	$v_{d45} = 55.79$

[0058] 次に、上記各実施例のレーザ走査型顕微鏡の条件式に用いる数値パラメータを表 1に示す。また各実施例における各波長での波面収差を表2に示す。対物レンズの 開口数は0.8、焦点距離4.5mm、観察範囲は標本側で像高0.15の水浸対物レン ズである。また、各実施例のレーザ走査顕微鏡を、図6に示した第3実施例における 光伝送手段18、21にマルチモードファイバーを用いたレーザ走査型顕微鏡として構 成した場合における数値パラメータを表3に示す。なお、励起光と蛍光の波長との差 が僅かであるため、表3では、便宜上、励起光と蛍光の波長が同じであるとして扱っ ている。

[0059]

表 1

	第1実施例	第2実施例	第3実施例
瞳投影レンズ焦点距離:Fe	18.01	12	9.36
結像レンズ焦点距離:FTL	75	50	38.99
瞳から試料までの距離: L	200.37	149.96	133.76
対物レンズ同焦点距離:D	45	45	45
対物レンズ前群と後群との距離: D2	67.53	37.61	23.56
瞳投影レンズ全長:D3	49.5	34.99	30.08
対物レンズ胴付きから中間像までの距離:D1	105.87	70.20	58.68
結像レンズ前群焦点距離: FTL1	85.44	62.51	48.91
条件式(1) : D/L	0.22	0.30	0.34
条件式(2) : Fe/D3	0.36	0.35	0.31
条件式(3): FTL/D1	0.71	0.71	0.66
条件式(4): v p	95.00	95.00	95.00
条件式(5): D2/FTL	0.90	0.75	0.60
条件式(6): FTL1/FTL	1.14	1.25	1.25

表2							***	
各波長(nn	n)での波面収差入	435.8nm	486.13nm	546.07nm	587.56nm	656.27nm	800nm	1000nm
実施例1	IH=0	0.0257	0.0168	0.0068	0.0019	0.0065	0.015	0.0206
	IH=0.075	0.0525	0.033	0.0131	0.0148	0.0147	0.0203	0.0248
	IH=0.15	0.0796	0.0858	0.0655	0.055	0.0311	0.009	0.0036
実施例2	IH=0	0.0258	0.0164	0.0061	0.0033	0.0096	0.0178	0.0243
	IH=0.075	0.0551	0.037	0.023	0.0181	0.016	0.0212	0.0259
	IH=0.15	0.1	0.1	0.082	0.0692	0.0456	0.0186	0.0051
実施例3	IH=0	0.0306	0.0317	0.0262	0.0221	0.0126	0.0188	0.0256
	IH=0.075	0.0476	0.0286	0.0188	0.0165	0.0155	0.0219	0.0269
	IH=0.15	0.0215	0.0815	0.0683	0.0627	0.0375	0.0152	0.0269

表3(各実施例共通)		***************************************			
Фсх	9	9	9	9	9
Феш	18	36	50	90	108
Фех/Фет	2	4	5.5	10	12
NAex	0.1	0.1	0.1	0.1	0.1
NAem	0.1	0.1	0.2	0.2	0.2
	дех.	λem÷	₹ 400nm	のとき	
0. 61× (λ e x / N A e x)	2.4	2.4	2.4	2.4	2.4
0. 61× (λ e m/NA e m)	2.4	2.4	1.2	1.2	1.2
λ c x 、λ e m ≒ 1000nm のとき					
0. 61× (λ e x / N A e x)	6.1	6.1	6.1	6.1	6.1
0. 61× (λem/NAem)	6.1	6.1	3.1	3.1	3.1

産業上の利用可能性

[0060] 本発明のレーザ走査型蛍光顕微鏡は、小型で、操作性が良く、可視域から近赤外域までの波長でもって、生きたままの試料の状態(in vivo)での観察を高精度で行うことができ、実用上極めて有用である。

請求の範囲

[1] レーザ光源部と、前記レーザ光源部からの励起光を試料上に集光させる対物レンズ光学系と、前記レーザ光源部からの励起光を試料面上で走査させる走査手段と、前記走査手段と前記対物レンズ光学系との間に配置された瞳投影レンズと、試料から発し前記対物レンズ光学系と前記瞳投影レンズを経た蛍光を検出する検出光学系を備え、前記対物レンズ光学系が、対物レンズと、試料の中間像を形成するための結像レンズとを有し、前記対物レンズの後側焦点位置が、前記結像レンズと前記瞳投影レンズとによって前記走査手段の近傍位置で共役になるように構成されるレーザ走査型蛍光顕微鏡であって、前記対物レンズの同焦点距離をD、試料面から前記走査手段近傍に配置された、前記対物レンズの後側焦点位置の共役位置までの距離をLとするとき、下記条件を満足することを特徴とするレーザ走査型蛍光顕微鏡。

0. $15 \le D/L \le 0.5$

- [2] 前記レーザ光源部からの励起光を前記走査手段へ導く光伝送手段を備えたことを特徴とする請求項1に記載のレーザ走査型蛍光顕微鏡。
- [3] 前記瞳投影レンズが、複数のレンズ群からなり、最も前記走査手段側のレンズ面が前記走査手段側に凹面を向け、最も中間像側のレンズ面が中間像側に凹面を向けており、

前記走査手段の近傍に位置する前記対物レンズの瞳の共役位置から前記結像レンズの中間像位置までの距離をD3、前記瞳投影レンズの焦点距離をFeとするとき、下記条件を満足することを特徴とする請求項1又は2に記載のレーザ走査型蛍光顕微鏡。

$0.2 \le Fe/D3 \le 0.5$

[4] 複数のレンズ群からなり、正レンズと負レンズの接合レンズを少なくとも1つ備え、前記接合レンズ中の正レンズのアッベ数をνp、前記結像レンズの焦点距離をFTL、前記対物レンズの胴付き位置から中間像位置までの距離をD1とするとき、下記両条件を満足することを特徴とする請求項1~3のいずれかに記載のレーザ走査型蛍光顕微鏡。

$0.4 \leq FTL/D1 \leq 1$

 $80 \leq vp$

- [5] 前記結像レンズが、少なくとも中間像側の前群と対物レンズ側の後群の2つのレンズ群からなり、前記結像レンズの前群のレンズ群は、少なくとも1つの負レンズを有し、前記結像レンズの後群の焦点距離をFTL1、前記結像レンズの前群と前記結像レンズの後群との間隔をD2とするとき、下記両条件を満足することを特徴とする請求項1〜4のいずれかに記載のレーザ走査型蛍光顕微鏡。
 - $0.4 \leq D2/FTL \leq 1$
 - $0.7 \leq FTL1/FTL \leq 1.5$
- [6] 前記レーザ光源部からの励起光を前記走査手段へ導く第1のマルチモードファイバーと、バーと、試料からの蛍光を前記検出光学系へ導く第2のマルチモードファイバーと、前記励起光を前記第1のマルチモードファイバーに入射させる第1のレンズと、前記蛍光を前記第2のマルチモードファイバーに入射させる第2のレンズを備え、前記第1のマルチモードファイバーのコア径をΦex、前記第2のマルチモードファイバーのコア径をΦem、前記第1のレンズにより前記第1のマルチモードファイバーに入射する開口数をNAex、前記励起波長をλex、前記第2のレンズにより前記第2のマルチモードファイバーに入射する開口数をNAem、前記蛍光波長をλemとするとき、下記条件の全てを満足することを特徴とする請求項1に記載のレーザ走査型蛍光顕微鏡

 $2 \leq \Phi \text{em} / \Phi \text{ex} \leq 12$

- 0. $61 \times (\lambda ex/NAex) < \Phi ex$
- 0. $61 \times (\lambda \text{ em/NAem}) < \Phi \text{ em}$
- [7] 前記瞳投影レンズを経た、試料からの蛍光を前記検出光学系へ導く光伝送手段を備えたことを特徴とする請求項1又は2に記載のレーザ走査型蛍光顕微鏡。
- [8] 前記レーザ光源部からの励起光を前記走査手段へ導くとともに、前記試料からの 蛍光を前記検出光学系へ導く光伝送光学系を備えたことを特徴とする請求項1乃至 7のいずれかに記載のレーザ走査型蛍光顕微鏡。
- [9] 前記レーザ光源部からの励起光を前記走査手段へ導く第1の光伝送手段と、前記 試料からの蛍光を前記検出光学系へ導く第2の光伝送手段を備えたことを特徴とす

る請求項1乃至7のいずれかに記載のレーザ走査型蛍光顕微鏡。

- [10] 前記対物レンズが、水浸対物レンズであることを特徴とする請求項1乃至9のいず れかに記載のレーザ走査型蛍光顕微鏡。
- [11] レーザ光源が半導体レーザで構成されたことを特徴とする請求項1乃至7のいずれ かに記載のレーザ走査型蛍光顕微鏡。
- [12] 前記検出器が顕微鏡本体部に構成されていることを特徴とする請求項1乃至7のいずれかに記載のレーザ走査型蛍光顕微鏡。
- [13] 前記レーザ光源部からの励起光を前記走査手段へ導く第1のマルチモードファイバーと、試料からの蛍光を前記検出光学系へ導く第2のマルチモードファイバーと、前記励起光を前記第1のマルチモードファイバーに入射させる第1のレンズと、前記蛍光を前記第2のマルチモードファイバーに入射させる第2のレンズとを備え、前記第1のマルチモードファイバーのコア径をΦex、前記第2のマルチモードファイバーのコア径をΦem、前記第1のレンズにより前記第1のマルチモードファイバーに入射する開口数をNAex、前記励起波長をλex、前記第2のレンズにより前記第2のマルチモードファイバーに入射する開口数をNAem、前記蛍光波長をλemとするとき、下記条件の全てを満足することを特徴とする請求項1に記載のレーザ走査型蛍光顕微鏡。

 $4 \le \Phi \text{em} / \Phi \text{ex} \le 10$

- 0. $61 \times (\lambda \text{ ex/NAex}) < \Phi \text{ ex}$
- 0. $61 \times (\lambda \text{ em/NAem}) < \Phi \text{ em}$
- [14] レーザ光源部と、前記レーザ光源部からの励起光を試料上に集光する対物レンズ 光学系と、前記レーザ光源部からの励起光を試料面上で走査させる走査手段と、前 記走査手段と前記対物レンズ光学系との間に配置された瞳投影レンズと、試料から 発し前記対物レンズ光学系と前記瞳投影レンズを経た蛍光を検出する検出光学系を 有するレーザ走査型蛍光顕微鏡であって、前記レーザ光源部からの励起光を前記 走査手段へ導く第1のマルチモードファイバーと、試料からの蛍光を前記検出光学 系へ導く第2のマルチモードファイバーと、前記励起光を前記第1のマルチモードファイバー アイバーに入射させる第1のレンズと、前記蛍光を前記第2のマルチモードファイバー

に入射させる第2のレンズとを備え、前記第1のマルチモードファイバーのコア径を Φ ex、前記第2のマルチモードファイバーのコア径を Φ em、前記第1のレンズにより前記第1のマルチモードファイバーに入射する開口数をNAex、前記励起波長を λ ex、前記第2のレンズにより前記第2のマルチモードファイバーに入射する開口数をNAem、前記蛍光波長を λ emとするとき、下記条件の全てを満足することを特徴とするレーザ走査型蛍光顕微鏡。

 $2 \le \Phi em / \Phi ex \le 12$

- 0. $61 \times (\lambda ex/NAex) < \Phi ex$
- 0. $61 \times (\lambda \text{ em/NAem}) < \Phi \text{ em}$

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/017374

		2027022	004/01/3/4		
A. CLASSIFIC Int.Cl ⁷	ATION OF SUBJECT MATTER G02B21/00				
According to Inte	emational Patent Classification (IPC) or to both national	classification and IPC			
B. FIELDS SEA					
Minimum docum Int.Cl ⁷	entation searched (classification system followed by clas G02B21/00	ssification symbols)			
Documentation s	earched other than minimum documentation to the exten	t that such documents are included in the	fields searched		
Jitsuyo Kokai Ji	Shinan Koho 1922-1996 Tor tsuyo Shinan Koho 1971-2004 Jit	roku Jitsuyo Shinan Koho suyo Shinan Toroku Koho	1994-2004 1996-2004		
Electronic data b	ase consulted during the international search (name of da	ata base and, where practicable, search te	rms used)		
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
X Y A	JP 2001-059939 A (Olympus Opt 06 March, 2001 (06.03.01), Par Nos. [0021] to [0027]; Fig (Family: none)		1 1,2,6-14 3-5		
Y A	JP 2003-029153 A (Olympus Cor 29 January, 2003 (29.01.03), Par Nos. [0006] to [0017]; Fig (Family: none)		1,2,6-14 3-5		
Y A	JP 2002-221663 A (Nikon Corp. 09 August, 2002 (09.08.02), Par Nos. [0008], [0015], [001 (Family: none)		2,6-14 3-5		
	ocuments are listed in the continuation of Box C.	See patent family annex.			
"A" document d to be of part	gories of cited documents: efining the general state of the art which is not considered icular relevance	"T" later document published after the inte date and not in conflict with the applic the principle or theory underlying the i	ation but cited to understand nvention		
filing date "L" document v	cation or patent but published on or after the international which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone	dered to involve an inventive		
special reaso	cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure use, exhibition or other means "O" document referring to an oral disclosure use, exhibition or other means				
"P" document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art document member of the same patent family					
	Date of the actual completion of the international search 09 December, 2004 (09.12.04) Date of mailing of the international search report 28 December, 2004 (28.12.04)				
	ng address of the ISA/	Authorized officer			
Japane	se Patent Office				
Facsimile No.		Telephone No.			

A. 発明の属する分野の分類(国際特許分類 (IPC)) Int. Cl' G02B 21/00 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1' G02B 21/00 最小限資料以外の資料で調査を行った分野に含まれるもの 1922-1996年 日本国実用新案公報 日本国公開実用新案公報 1971-2004年 日本国登録実用新案公報 1994-2004年 日本国実用新案登録公報 1996-2004年 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) C. 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 \mathbf{X} JP 2001-059939 A (オリンパス光学工業株式会 1 Y 社) 2001.03.06 1, 2, 【0021】~【0027】、図1 (ファミリーなし) 6 - 143 - 5Y JP 2003-029153 A (オリンパス株式会社) 1, 2, 2003.01.29 6 - 14【0006】~【0017】、図6 (ファミリーなし) Α 3 - 5Y JP 2002-221663 A (株式会社ニコン) 2, 6-14X C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、 当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 28.12.2004 09.12.2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 2V | 8106 日本国特許庁(ISA/JP) 吉 野 公夫 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3229

C(続き).	関連すると認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
A	2002. 08. 09	3-5				
	【0008】、【0015】、【0016】、図1(ファミリーな					
	L)					
	·					
		ļ				
	·					
		·				
		·				
L						