

Management großer Softwareprojekte

Prof. Dr. Holger Schlingloff

Humboldt-Universität zu Berlin, Institut für Informatik

Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST

Definition disjunktiver Constraints

 "Aktivität A mit Dauer DA und Aktivität B mit Dauer DB können nicht gleichzeitig ausgeführt werden, da sie die selbe Ressource verwenden"

```
disjunct (A,DA,B,DB) :- A + DA =< B.
disjunct (A,DA,B,DB) :- B + DB =< A.
```

• "Aktivitäten **A**; mit Startzeiten **S**; Dauern **D**; und Bedarf Hi dürfen nicht mehr als L Ressourcen gleichzeitig verwenden"

cumulative([S1,S2,...Sn],[D1,D2,...Dn],[H1,H2,...,Hn],L)

Ein komplexeres Beispiel

Arbeits-	Bearbeitungs-	Nr. der	Anzahl des
aufgabe	dauer	Maschine	benötigten Personals
a1	4 oder 6	1	2 oder 1
a2	4	3	2
a3	3	2	1
a4	5	3	3
a5	4	1	1
b1	5	1	2
b2	4	2	1
ъ3	6	1	2
b4	4	2	3
b5	3	3	2

Ein komplexeres Beispiel

1. Die Bearbeitungsdauer der Aufgabe A1 hängt von dem zur Verfügung stehendem Personal ab und beträgt 4 Zeiteinheiten bei 2 Personen und 6 Zeiteinheiten bei einer Person.

```
Pa1 in {1,2},
element (Pa1, [6,4], Da1)
```

2. Zum Zeitpunkt 15 darf auf der Maschine 2 keine Aufgabe bearbeitet werden. Es dürfen zu diesem Zeitpunkt aber Arbeitsaufgaben beendet bzw. begonnen werden.

```
notin(A3,13,14), notin(B2,12,14), notin(B4,12,14)
```

3. Die Bearbeitung der beiden Aufträge kann zum Zeitpunkt 0 beginnen und muss zum Zeitpunkt 27 abgeschlossen sein.

$$A5 + 4 = < 27, B5 + 3 = < 27$$

- 4. Zwischen den Arbeitsaufgaben des Auftrages a müssen folgende Bedingungen erfüllt sein:
 - a) Die Arbeitsaufgabe A2 kann frühestens 1 Zeiteinheit vor und muss spätestens 3 Zeiteinheiten nach Beendigung der Aufgabe A1 beginnen.

$$A1 + Da1 = < A2 + 1, A2 = < A1 + Da1 + 3$$

b) Die Arbeitsaufgabe A3 beginnt frühestens 1 Zeiteinheit und spätestens 3 Zeiteinheiten nach Beendigung der Aufgabe A2.

$$A2 + 4 + 1 = < A3, A3 = < A2 + 4 + 3$$

c) Die Arbeitsaufgabe A4 beginnt frühestens direkt und spätestens 3 Zeiteinheiten nach Beendigung der Aufgabe A2.

$$A2 + 4 = < A4$$
, $A4 = < A2 + 4 + 3$

d) Die Arbeitsaufgabe A3 kann frühestens 3 Zeiteinheiten nach Beendigung der Aufgaben A3 und A4 beginnen.

$$A3 + 3 + 3 = < A5, A4 + 5 + 3 = < A5$$

5. Die Arbeitsaufgaben des Auftrages B sind in der gegebenen Reihenfolge (B1,..., B5) zu bearbeiten, wobei eine Arbeitsaufgabe erst dann beginnen kann, wenn die vorangehende Aufgabe beendet ist

```
B1 + 5 = < B2, B2 + 4 = < B3, B3 + 6 = < B4, B4 + 4 = < B5
```

6. Zu keinem Zeitpunkt darf auf einer Maschine mehr als eine Arbeitsaufgabe bearbeitet werden

```
cumulative([A1,A5,B1,B3], [Da1,4,5,6] ,[1,1,1,1], 1)
cumulative([A3,B2,B4], [3,4,4], [1,1,1], 1)
cumulative([A2,A4,B5], [4,5,3], [1,1,1], 1)
```

7. Insgesamt stehen 4 Personen für die Erfüllung dieser beiden Aufträge zur Verfügung. Folglich dürfen zu keinem Zeitpunkt mehr als 4 Personen für die Bearbeitung der Aufgaben erforderlich sein.

```
cumulative([A1,A2,A3,A4,A5,B1,B2,B3,B4,B5],
[Da1,4,3,5,4,5,4,6,4,3],
[Pa1,2,1,3,1,2,1,2,3,2], 4)
```

 Nach dem Absetzen der Constraints des gegebenen Beispiels konnte der Constraint-Löser die Domänen der Startzeitvariablen wie folgt beschränken:

```
A1 in {0, 1, 5..8}, A2 in {3..11},
A3 in {9..12, 15..17}, A4 in {7..9, 15},
A5 in {15..23},
B1 in {0..5}, B2 in {5..10},
B3 in {9, 12..14}, B4 in {15..20},
B5 in {19..24}
```

Nicht-vollständige Arbeitweise!

- Hinzufügen von A1<5 oder A1>5 ergibt Inkonsistenz
- Hinzufügen von A1=5 ergibt Zwischenlösung

```
A1 = 5, A2 in \{9..11\}, A3 in \{15..17\},
A4 = 15, A5 = 23, B1 = 0, B2 = 5,
B3 = 9, B4 = 20, B5 = 24,
Pa1 = 2, Da1 = 4
```

mit A2+5≤A3≤A2+7 ergeben sich 7
 Lösungen (vollständiger Lösungsraum):

```
A2 = 9, A3 in \{15,16\} oder A2 = 10, A3 in \{15,16,17\} oder A2 = 11, A3 in \{16,17\}
```

Komplexität der Suche

- im Allgemeinen exponentielles Problem
- Beispiel: 10x10-Standard-Benchmark
 theoretische Anzahl verschiedener Pläne: (10!)¹⁰=4*10⁶⁵
- 50 Variablen mit jeweils nur 4 Werten: $4^{50} = 10^{30}$

Einschränkung des Suchraumes

- zusätzliche Constraints reduzieren Komplexität
- Anzahl der Suchschritte begrenzen
- Heuristiken für Wertzuweisungsreihenfolge
 - Priorität des Auftrages
 - Dauer der Arbeitsaufgabe
 - Summe der Dauern Folgearbeiten
 - Stufe der Abhängigkeiten
 - Maschinenbelastung
- Backtracking über verschiedene Arten der Berechnung der Gewichtungen

6. Risikomanagement

- eine der wichtigsten Aufgaben im SPM
- "erfolgreiche Software-Manager sind gute Risiko-Manager" (Barry Boehm)
- "Wenn Sie die Risiken nicht attackieren, werden sie Sie attackieren!" (Tom Gilb)
- 20% der Fehler verursachen 80% der Kosten
- Aktionen sollten von den Risiken bestimmt werden
- Maßnahmen zur Vermeidung des Eintretens bzw.
 Verminderung des Schadens

Risiken

Risiko = Möglichkeit, dass eine Aktivität negative Auswirkungen hat

Klassifikation nach den Auswirkungen:

- Projektrisiken
 - Auswirkungen auf Projektzeitplan oder Ressourcen
- Produktrisiken
 - Auswirkungen auf Qualität oder Funktionalität der entwickelten Software
- wirtschaftliche Risiken
 - Auswirkungen auf das beauftragte Unternehmen

H. Schlingloff, Management großer Softwareprojekte

6. Risikomanagement

8.1.2003

Beispiele

- Grippe-Epidemie im Büro (Projektrisiko)
- Prototyp wird weiterentwickelt (Produktrisiko)
- Konkurrenzprodukt ist früher fertig (wirtschaftliches Risiko)

Risikoursachen

- Schätzrisiken
 - durch Schätzung der Systemcharakteristik und Ressourcen
- Anforderungsrisiken
 - durch Fehlbeurteilung / Änderung der Kundenwünsche
- personenbezogene Risiken
 - aus den Personen im Entwicklungsteam
- unternehmensbezogene Risiken
 - aus der Organisation, die das Projekt durchführt
- Werkzeugrisiken
 - aus den unterstützenden Werkzeugen
- technologische Risiken
 - aus den verwendeten Hard/Softwaretechnologien

Beispiele

- Die verwendete Datenbank kann nicht genügend Transaktionen pro Sekunde durchführen
- Es ist nicht möglich, genügend qualifizierte Mitarbeiter zu bekommen
- Es wird umstrukturiert und das Management ausgewechselt
- Der generierte Code ist zu ineffizient
- Änderungen erfordern eine Coderevision
- Die Fertigstellungszeit wird signifikant überschritten
- Die Wiederverwendbarkeit vorgesehener Komponenten ist eingeschränkt
- Der Chefprogrammierer fällt krankheitsbedingt längere Zeit aus
- Finanzielle Probleme erzwingen Budgetkürzungen
- CASE-Tools können aus Lizenzgründen nicht eingebunden werden
- Der Kunde verlangt eine zusätzliche Backup-Möglichkeit
 - Das Debugging dauert länger als erwartet

Bestandteile des Risikomanagements

- a) Risikoerkennung
- b) Risikoanalyse

Bewertung

- c) Planung der Risikobehandlung
- d) Risikoverminderung

Kontrolle

Als Fragen formuliert

- Welches sind die größten Risiken im Projekt?
- Was würde passieren wenn sie einträfen?
- Was können wir ggf. tun um die negativen Auswirkungen einzuschränken?
- Wie kann die Wahrscheinlichkeit des Eintreffens verringert werden?
- Wie kann das Auftreten erkannt und verhindert werden?

SEI Risiko Modell (1993)

a) Risikoerkennung (Risikofindung)

- Kreativität z.B. Brainstorming, Kommunikation
- an Hand des Projektplanes
- Erfahrungen Expertenbefragungen, Checklisten

"Taxonomy-Based Risk Identification Questionaire" des SEI

- Produkt
- Entwicklungsumgebung
- Rahmenbedingungen

http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.006.html

Hausaufgabe: Dieses Dokument lesen!

Zitat

1. Requirements

Quelle: CMU SEI

Stability

[Are requirements changing even as the product is being produced?]

- [1] Are the requirements stable?
 - (No) (1.a) What is the effect on the system?
 - Quality
 - Functionality
 - Schedule
 - Integration
 - Design
 - Testing
- [2] Are the external interfaces changing?
- b. <u>Completeness</u>

[Are requirements missing or incompletely specified?]

[3] Are there any TBDs in the specifications?

H. Schlingloff, Management großer Softwareprojekte

Anforderungen

- Stabilität / Vollständigkeit
 - Sind die Anforderungen veränderlich oder noch nicht festgelegt? Wie hoch ist die Wahrscheinlichkeit dass Anforderungen dazukommen?
 - Hat der Auftraggeber implizite Erwartungen? Gibt es verbale Abmachungen?
- Verständlichkeit
 - Sind die Anforderungen verständlich und eindeutig?
- Realisierbarkeit
 - Gibt es technisch nicht realisierbare Anforderungen? Können alle Anforderungen in der gewählten Sprache ausgedrückt werden?
- Nachverfolgbarkeit
 - Ist es möglich, jede einzelne Anforderungen während des gesamten Entwicklungszyklus zu beobachten?

Entwurf

Funktionalität

- Sind die zu Grunde liegenden Algorithmen korrekt, vollständig, realisierbar?
- Schwierigkeit
 - Sind die Annahmen für die Implementierung realistisch, hängt das Design von speziellen Annahmen ab?
 - Gibt es besonders komplizierte Funktionalitäten?
- Schnittstellen
 - Wie groß ist die Wahrscheinlichkeit, dass die Schnittstellen komplexer sind als erwartet?

Entwurf (2)

Leistung

Gibt es spezielle Anforderungen an Qualität, Leistung, oder Design? Wie groß ist die Wahrscheinlichkeit, dass diese nicht erreicht werden können?

Testbarkeit

Wird das Produkt leicht zu testen sein?

Zielplattform

Beschränkt die Zielplattform die Erfüllbarkeit der Anforderungen? Wie wahrscheinlich ist es, dass Zeitverhalten, Verfügbarkeit und Funktionalität erreicht werden?

Wiederverwendung

Ist die Wiederverwendung geplant oder sogar zwingend erforderlich? Wie wahrscheinlich ist es, dass dies mehr Probleme bereitet als es löst?

Team

- Kommunikation
 - Gibt es eine verlässliche Infrastruktur/Plattform?
 - Gibt es Verbindung zum Auftraggeber?
- Kompatibilität
 - Können die Leute zusammenarbeiten?
 - Ist die Aufgabenverteilung geregelt?
- Motivation
 - Gibt es andere als finanzielle Anreize?

Rahmenbedingungen

- Vertragsgestaltung
 - Wie ist die Fälligkeit vereinbart? Kann das Probleme bereiten?
 - Belastet der Vertrag das Projekt (Arbeitsbeschreibung, Spezifikation, Datenfestlegung, Sonstiges)?
 - Ist die verlangte Dokumentation unangemessen?
- Beschränkungen
 - Kann es lizenzrechtliche Probleme geben?

"Top Ten" Hitliste der Risiken

in: Boehm, B.; Basili, V.R.; Computer, Vol. 34.1, Jan. 2001; pp. 135-137

- 1. Personalprobleme
- 2. Unrealistische Pläne und Budgets
- 3. Entwickeln der falschen Funktionen und Eigenschaften
- 4. Entwickeln der falschen Benutzungsschnittstelle
- 5. Goldverzierungen
- 6. Ständiger Wechsel der Anforderungen
- 7. Versagen externer Komponenten
- 8. Versagen externer Aufträge
- 9. zu geringe Leistung pro Zeit
- 10. Fehleinschätzung des Standes der Technik

die "Top Ten" von 1991

- 1. Personalprobleme
- 2. Unrealistische Pläne und Budgets
- 3. Stabilität externer Software
- 4. Unpassende Anforderungen
- 5. Unpassende Benutzungsschnittstellen
- 6. Architektur, Leistung, Qualität
- 7. Wechsel der Anforderungen
- 8. Software-Altlasten
- 9. Versagen externer Aufträge
- 10. Fehleinschätzung des Standes der Technik

weitere Top-Risiken

- Instabilität der Entwicklungsplattform
- Unzulänglichkeit der Infrastruktur
- räumlich verteilte Systementwicklung
- unvertraute Entwicklungsmethodik
- zu starre Regulatorien
- inadäquate bzw. unrealistische Teststrategie
- Parallelarbeit der Entwickler

gängige Risikostrategien

- Risikovermeidung Auswahl einer anderen (nicht riskanten) Alternative
- Risikokontrolle Überwachung und Korrektur riskanter Aktionen
- Risikoannahme Akzeptieren der Konsequenzen einer riskanten Handlung
- Risikoübertragung Abwälzen des Risikos auf andere (Versicherungen, Vertragspartner)

b) Risikoanalyse

Quelle: http://www.ves.de/Projekt/planung/risikoanalyse.htm

- Ziel: Bewertung und Priorisierung der Risiken
 - Qualitative Risikoabschätzung
 - Quantitative Risikoabschätzung

Bedrohung ist Produkt aus

- Wahrscheinlichkeit des Eintretens und
- Konsequenzen bzw. Schaden