Aritmética da Computação

Trabalho para Casa: TPC1

Alberto José Proença & Luís Paulo Santos

.....

Metodologia

Leia as folhas do enunciado, e responda <u>obrigatoriamente</u> às questões colocadas na folha fornecida para o efeito (não serão aceites outras); faça as restantes de acordo com as suas expetativas de exigência.

Relembra-se que o objetivo dos TPC's é fomentar o estudo individual e contínuo, complementado por trabalho em grupo, sendo <u>contabilizado o esforço de se tentar chegar ao resultado</u> (que deverá ser fundamentado na aula) em detrimento da correção do mesmo. A resolução dos trabalhos será feita pelos alunos que entregarem os TPC's resolvidos e far-se-á na aula da semana em que o trabalho é entregue.

A ocorrência de fraude tem como primeira consequência uma avaliação negativa.

Prazos

Entrega **impreterível** até à hora de início da sessão PL seguinte, <u>com a presença do estudante durante a sessão PL</u>. Não serão aceites trabalhos entregues depois deste prazo.

Introdução

A lista de exercícios que se apresenta aplica os conceitos introduzidos nas aulas teóricas já lecionadas, nomeadamente sobre sistemas de numeração e representação binária de inteiros.

Enunciado dos exercícios

Sistemas de Numeração

- **1.** (A) Efetue as seguintes conversões:
 - a) Converta para decimal 1011.012 e 10.112
 - **b)** Converta para octal 111110011101₂ e 11011.11₂
 - c) Converta para hexadecimal 1110101011.0112 e 72.25
 - d) Converta para binário 0xfc2f, 100, 36.0625 e 9.6
 - e) Converta para ternário 24 e 174
- 2. ^(A)A maioria das pessoas apenas consegue contar até 10 com os seus dedos; contudo, os engenheiros informáticos podem fazer melhor! Como? Cada dedo conta como um bit, valendo 1 se esticado, e 0 se dobrado.
 - a) Com este método, até quanto é possível contar usando ambas as mãos?
 - **b)** Considere que um dos dedos na extremidade da mão é o bit do sinal numa representação em sinal + amplitude.
 - Qual a gama de valores que é possível representar com ambas as mãos?
- 3. ^(A)Preencha a tabela abaixo com a gama de valores representáveis usando 5 bits em um dos sistemas de representação propostos.

Representação	Intervalo
Binário sem sinal, inteiros	
Binário sem sinal, 1 bit fracionário	
Binário sem sinal, 3 bits fracionários	
Sinal + Amplitude, inteiros	
Sinal + Amplitude, 1 bit fracionário	
Sinal + Amplitude, 3 bits fracionários	

- 4. (A) Efetue as seguintes operações aritméticas em binário usando apenas 8 bits:
 - **a)** $00110011_2 + 01110101_2$
 - **b)** $011100.11_2 + 000011.01_2$
 - **c)** $01001001_2 + 11010001_2$
 - **d)** 0x4c + 0x2b
 - **e)** $672_8 + 703_8$
- **5.** (A)Uma empresa de domótica tem que atribuir um código binário a cada divisão de um prédio com 15 andares: 7 andares subterrâneos numerados de -1 a -7, o piso térreo com o número 0 e 7 pisos numerados de 1 a 7.

Cada andar tem 6 apartamentos. Os maiores apartamentos têm um máximo de 8 divisões. Além de identificar univocamente cada divisão, este código deve indicar também o tipo de divisão, sendo que existem 4 tipos diferentes de divisões: sala (máximo 1 / apartamento), cozinha (máximo 1 / apartamento), quarto (máximo 3 / apartamento) e casa de banho (máximo 3 / apartamento).

Proponha uma estrutura para este código binário usando o menor número possível de bits e apresente a codificação para o quarto número 2, do apartamento 3 do piso -5.

Aritmética de inteiros

- **6.** ^(A)Converta o número –233 para uma representação binária usando 10-bits, com as seguintes representações:
 - a) Sinal e amplitude
 - b) Complemento para 1
 - c) Complemento para 2
 - d) Excesso 2ⁿ⁻¹
- 7. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂, considerando as seguintes representações:
 - a) Inteiro sem sinal
 - b) Sinal e amplitude
 - c) Complemento para 1
 - d) Complemento para 2
 - e) Excesso 2ⁿ⁻¹
- **8.** (R)Considere que está a executar código num computador de **6-bits**, o qual usa complemento para 2 para representar valores do tipo inteiro. Um inteiro "short" é codificado usando 3-bits. Complete a tabela, considerando as seguintes definições:

```
short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;
```

Nota: T_{min} e T_{Max} representam, respectivamente, o menor e o maior valor representável

Expressão	Decimal	Binário
Zero	0	
	-6	
		01 0010
ux		
У		
x>>1		
$\mathbf{T}_{ exttt{Max}}$		
-T _{min}		
$\mathbf{T}_{\texttt{min}} + \mathbf{T}_{\texttt{min}}$		

- 9. ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:
 - **a)** 6
 - **b)** 12
- 10. ^(A)Efetue os seguintes cálculos **usando aritmética binária** de 8-bits em complemento para 2:
 - a) 16 + 110
 - **b)** 70 + 80
 - **c)** 80 **+** (–60)
 - **d)** (-98) (29)

N° Nome: Turma:	
-----------------	--

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efectuar no verso da folha; <u>o não cumprimento desta regra equivale à não entrega do trabalho</u>.

1. (A)Converta cada um dos valores para os seguintes sistemas:

	Valor a converter	Resultado	Valor a converter	Resultado
a) decimal	1011.012		10.112	
b) octal	111 110 011 1012		11 011.112	
c) hexadecimal	11 1010 1011.0112		72.25	
d) binário	0xfc2f		36.0625	
e) ternário	24		174	

3. ^(A) Preencha a tabela abaixo com a gama de valores representáveis usando 5 bits em um dos sistemas de representação propostos.

Representação	Intervalo
Binário sem sinal, inteiros	
Binário sem sinal, 1 bit fracionário	
Binário sem sinal, 3 bits fracionários	
Sinal + Amplitude, inteiros	
Sinal + Amplitude, 1 bit fracionário	
Sinal + Amplitude, 3 bits fracionários	

4. (A) Efetue as seguintes operações aritméticas em binário usando apenas 8 bits:

Elette de seguintes operações antinetidas em binario asando apenas o bito.		is on binario asarias apenas o bits.
	001100112 + 011101012	
	011100.112 + 000011.012	
	01001001 ₂ + 11010001 ₂	
	0x4c + 0x2b	
	672 ₈ + 703 ₈	

- 5. (A)Codificação binária para as divisões de um prédio de 15 andares, com 6 apartamentos por andar:
- 10. ^(A)Efetue os seguintes cálculos **usando aritmética binária** de 8-bits em complemento para 2:

$$0001\ 0000_2 + 0110\ 1110_2 =$$

d.
$$(-98) - (29)$$