Automi e Linguaggi Formali

Sara Feltrin

26-02-18

Capitolo 1

Introduzione

Per iniziare, ci sono alcuni concetti di base da tenere a mente:

- Alfabeto: insieme finito e non vuoto di simboli, per esempio $\Sigma = \{0,1\}$ oppure $\Sigma = \{a,b,c,d,e,..,z\}$;
- Stringa: sequenza finita di simboli da un alfabeto Σ , per esempio: 011001 o abc;
- Stringa vuota: stringa con zero occorrenze di simboli dell'alfabeto Σ , denotata da ε ;
- Lunghezza di una stringa: numero di simboli nella stringa, per esempio |w| denota la lunghezza della stringa w, quindi |01001| = 5;
- Potenze di un alfabeto: Σ^k insieme delle stringhe di lunghezza k con simboli da Σ , per esempio preso l'alfabeto $\Sigma = \{0,1\}$ $\Sigma^0 = \{\varepsilon\}$, $\Sigma^1 = \{0,1\}$, $\Sigma^2 = \{00,01,10,11\}$. Viene chiamata potenza di un alfabeto poichè può essere vista come una potenza dove la base è il numero di simboli dell'alfabeto e l'esponente il numero della potenza dell'alfabeto (quindi, nell'alfabeto dei numeri binari con Σ^3 , avremo $2^3 = 8$);
- Insieme di tutte le stringhe: per ottenere l'insieme di tutte le stringhe, usiamo il simbolo * e scriviamo $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$;
- Linguaggio: dato un alfabeto Σ , chiamiamo linguaggio ogni sottoinsieme $L \subseteq \Sigma^*$ (compreso anche il linguaggio vuoto che non contiene nessuna parola).

Capitolo 2

Automi a stati finiti deterministici

Un automa a stati finiti deterministico, chiamato anche DFA, è una quintupla $A = (Q, \Sigma, \delta, q_0, F)$ dove

- $\bullet\,$ Q è un insieme finito di stati;
- \bullet Σ è un alfabeto finito, si intende quindi l'insieme di input che può leggere l'automa;
- δ è una funzione di transizione $(q, a) \mapsto q'$, ovvero dallo stato in cui sono, quando leggo il simbolo a, passo allo stato q';
- $q_0 \subseteq Q$ è lo stato iniziale dell'automa;
- $F \subseteq Q$ è un insieme di stati finiti;

L'automa può essere rappresentato sia come diagramma di transizioni sia come tabella di transizioni:

Esempio: costruiamo un automa A che accetta il linguaggio delle stringhe con 01 come sottostringa

■ L'automa come diagramma di transizione:

L'automa come tabella di transizione:

$$\begin{array}{c|ccccc}
 & 0 & 1 \\
 & q_0 & q_1 & q_0 \\
 & q_1 & q_1 & q_2 \\
 & *q_2 & q_2 & q_2
\end{array}$$

2.1 Linguaggio accettato da un DFA

La funzione di transizione prende in input uno stato e una parola dando in output una nuova parola. Definizione:

- base: $\delta(q,\varepsilon) = q$ -> ritorna lo stadio in cui è;
- induzione $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$, dove $\hat{\delta}$ rappresenta lo stato attuale e δ lo stato in cui mi troverò, a indica l'ultima lettera della parola che voglio leggere. NB: in $\hat{\delta}$ faccio la ricorsione fino ad arrivare al caso base;

Detto ciò, possiamo definire il linguaggio accettato da A in questo modo: $L(A) = \{w : \widehat{\delta}(q_0, w) \in F\}$. Tutti i linguaggi accettati da DFA vengono chiamati **linguaggi regolari**.

Capitolo 3

Automi stati finiti non deterministici

È un automa che può trovarsi contemporaneamente in più stati diversi e le transizioni non devono per forze essere complete, per esempio:

Infatti questo non può essere un DFA perchè da q_0 se leggo 0 posso trovarmi contemporaneamente in q_0 e q_1 , in più da q_1 posso muovermi solo in q_2 e da q_2 non posso proprio muovermi. Un automa a stati finiti non deterministici(NFA) è una quintupla $A = (Q, \Sigma, \delta, q_0, F)$ dove

- Q è un insieme finito di stati;
- Σ è un alfabeto finito;
- δ è una funzione di transizione che prende in input (q,a) e restituisce un sottoinsieme di Q;
- $q_0 \in Q$ è lo stato iniziale;
- $F \in Q$ è un insieme di stati finali;

Anche per i NFA abbiamo una definizione rigorosa:

- base: $\widehat{\delta}(q,\varepsilon) = q$;
- induzione: $\widehat{\delta}(q, w) = \bigcup_{p \in \delta(\widehat{q}, x)} \delta(p, a);$

Data una parola, il nostro automa potrà trovarsi in uno dei tanti stati che siamo andati a calcolare.

3.1 Equivalenza tra DFA e NFA

NFA e DFA sono in grando di riconoscere gli stessi linguaggi e l'equivalenza si dimostra mediante una **costruzione a sottoinsiemi**. Infatti, dato un NFA $N = (Q_N, \Sigma, q_0, \delta_N, F_N)$ costruiremo un DFA $D = (Q_D, \Sigma, q_0, \delta_D, F_D)$ tale che L(D)=L(N). Ogni stato del DFA, Q_D corrisponde ad un insieme di stati dell'NFA. Uno stato del DFA F_D è finale se c'è almeno uno stato finale corrispondente all'NFA. La funzione di transizione δ_D percorre tutte le possibili strade.

Teorema 3.1.1. Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D)=L(N).

Teorema 3.1.2. Un linguaggio L è accettato da un DFA se e solo se è accettato da un NFA.