

 Chapter
 05. 합성곱 신경망(CNN) 작동 원리

STEP1. 기본적인 합성곱 신경망

합성곱 신경망의 기본 구조

합성곱 신경망의 기본 구조. 가장 중요한 합성곱 계층은 이해했으니, 나머지도 차근차근 알아보자.

합성곱 계층 Convolutional Layer

합성곱 계층에서는 영상의 크기는 그대로이며, 영상의 채널 수가 달라진다.

합성곱 계층에 의해서 추출된 결과는 공간적 특징이 있으며 '특징 맵(Feature Map)'이라고 한다.

풀링 계층 Pooling Layer

풀링 계층은 여러 화소를 종합하여 하나의 화소로 변환하는 계층이다. 풀링 계층을 통과하면 영상의 크기가 줄어들고, 정보가 종합된다.

Pooling Layers

풀링 방법은 다양하지만, 가장 많이 쓰이는 방법은 <mark>최댓값과 평균값</mark>이다. 합성곱 신경망의 애플리케이션에 맞는 풀링 계층을 사용한다.

평탄화 Flatten

입력된 특징 맵의 모든 화소를 나열하여 <mark>하나의 벡터로 만드는 것</mark>을 평탄화라고 한다. 아무 연산도 일어나지 않으며, 합성곱 계층과 전결합 계층을 연결하는 역할을 한다.

전결합 계층 Fully Connected Layer

2개의 전결합 계층을 사용하여 최종 출력을 내어 준다.

이 과정은 합성곱 신경망으로 추출한 특징을 입력으로 얕은 신경망을 사용하는 것과 같다.

Softmax 함수

다중 클래스 분류 문제를 해결하기 위해서 마지막 계층에는 Softmax 활성 함수를 사용한다.

그러면 왜 이런 구조를 쓰나?

Receptive Field

같은 크기의 필터여도, 풀링에 의해 작아진 특징 맵에 적용되면 <mark>원본 영상에서 차지하는 범위</mark>가 넓다. 이 범위를 Receptive Field라고 한다.

LeNet-5

98년도로, 상당히 이른 시기에 CNN의 기본적인 구조를 잘 정립했다.

VGG-16

2014년도 ILSVRC에서 Top-5 정확도 92.7%를 기록한 VGG-16 네트워크

