Introduction to Machine Learning

Group 5

Aman Sharma, Muhammad Ibrahim, Téa McCormack

Table of Contents

- Business Problem
- Dataset, Imputations and Cleaning
- EDA and Feature Engineering
- Models
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - Boosting Tree
- Performance Comparison on Validation / Test Set
- Variable Importance
- Threshold Selection & Business Impact

Business Problem

Median Churn Rate (%)

ARPU (Average Revenue Per Unit) = \$60 USD

Business Problem

WHAT:

- Customers leaving
- Customers getting discounts

• WHY:

- Save Customer?
 Cost of Acquisition > Cost of Retention
- Save Discounts?
 This can add up if everyone gets it

• GOAL:

Predict potential churns

Understanding the Dataset

Customer Demographic	Account Information	Services
Gender (character)	Tenure (integer)	Phone Service (character)
Senior Citizen (binary – 0/1)	Contract (character)	Multiple Lines (character)
Partner (character)	Paperless Billing (character)	Internet Service (character)
Dependents (character)	Payment Method (character)	Online Security (character)
	Monthly Charges (numeric)	Online Backup (character)
	Total Charges (numeric)	Device Protection (character)
		Tech Support (character)
		Streaming TV (character)
		Streaming Movies (character)

• DATA:

- Consists
 of 20 features + 1
 target variable Churn
- Evaluates 7043customers

Churn

No Yes 0.7346301 0.2653699

3 Step Process

1. Plot raw data relationship against target

2. Data Wrangling

- Imputed null values for total charges
 - Dropped customer ID

3. Feature Engineering

- Add_on_services & Charge_ratio
- Assessing feature impact using AUC improvement

INTERNET SERVICE

	InternetService	No	Yes
	<chr></chr>	<dbl></dbl>	<db1></db1>
	DSL		0.190
1	Fiber optic		0.419
ì	No	0.926	0.074 <u>0</u>

STREAMING TV

```
   StreamingTV
   No
   Yes

   <chr>
   <dbl>
   <dbl>

   No
   0.665
   0.335

   No internet service
   0.926
   0.0740

   Yes
   0.699
   0.301
```

All features (no egg)

All features (+ Ratio)

All features (+ Add on)

All features (+ Add on + Ratio)

Resampling results: AUC_ROC FPR Accuracy Kappa 0.46841 0.8450455 0.8041168 . 8975845 0.4545145 Resampling results: Accuracy Kappa AUC_ROC FPR 0.8078436 0.47393 0.8504859 9048309 0.4605324 0.4100031 Resampling results: AUC_ROC Accuracy Kappa FPR 0.8053576 0.47065 0.8448905 . 8992754 0.4545324

logLoss

logLoss

logLoss

0.417748

logLoss

0.4091587

0.4176579

Resampling results:

AUC_ROC Accuracy Kappa FPR 0.8103271 0.48040 0.8511265 9070048 0.4572081

Feature assessment done on Logistic Regression

Model (1/4): Logistic Regression

$$Cost Function = Logloss + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\lambda = 0.0113$$

Lambda based on one SE rule

Confusion Matrix on CV Folds at default 50% threshold

Reference Prediction No Yes No 66.6 12.1 Yes 6.8 14.4

Model (2/4): Decision Trees

size of tree = 6

Confusion Matrix on CV Folds at default 50% threshold

Reference Prediction Yes No Yes 15.6 5.5 No 10.9 67.9

Model (3/4): Random Forests

$$mtry = 13$$

Confusion Matrix on CV Folds

Reference Prediction No Yes No 72.6 1.4 Yes 0.9 25.1

Model (4/4): Boosting Trees

max tree depth = 15 shrinkage = 0.3 # Trees = 1000

Reference Prediction No Yes No 72.5 1.5 Yes 1.0 25.1

Performance Comparison

Variable Importance

Threshold Methodology

- Finding the right threshold is a trade off between
 - Cost of giving discounts to the incorrect customer (FPR) v / s
 - Customer lifetime value loss incurred by not identifying a true churn (FNR)

 $Total\ Cost = FPR * (\$Retention\ Discount) + FNR * (\$Lost\ customer\ LTV)$

Assumption – Retention cost / customer is 10% of Customer LTV

Threshold Methodology

Performance on Holdout Data

Decision Threshold – 0.2

Confusion Matrix and Statistics

Reference Prediction Yes No Yes 326 357 No 47 677

Precision	47%
Recall (Capture Rate)	87%

- Cost of false negative (missing out a future churn) is much higher than the cost of a false positive (giving discount to the wrong customer)
- Business requirements dictate higher preference to recall over precision

Business Actionable Insights

Using the model,

80%

of the potential churns can be saved using

only 25%

of the retention budget

Appendix: Scope for Improvement

- The model slightly over predicts in the lower deciles of scores
- And under predicts in the higher ones
- Scope for re-calibration using advanced techniques

References

BlastChar. (2018, February 23). *Telco customer churn*. Kaggle. https://www.kaggle.com/datasets/blastchar/telco-customer-churn

Sabrina TessitoreSabrina is Content Marketing Manager and qualified B2B AX-pert at CustomerGauge. She provides the strategies necessary for B2B companies to build ROI-generating NPS programs. In Sabrina's free time, & Tessitore, S. (n.d.). What's the average churn rate by industry? CustomerGauge. https://customergauge.com/blog/average-churn-rate-by-industry

Virgin Media O2 sets up for 2024 execution with focused investments in Q1. (n.d.). https://news.virginmediao2.co.uk/wp-content/uploads/2024/05/Virgin-Media-O2-Q1-2024-Earnings-Release.pdf