Canonical automata via distributive law homomorphisms

Stefan Zetzsche ¹ Gerco von Heerdt ¹ Alexandra Silva ¹
Matteo Sammartino ^{1,2}

¹University College London

²Royal Holloway University of London

May 10, 2021

1

⁰https://arxiv.org/abs/2104.13421

Introduction

Minimal DFA

Up to isomorphism, the unique size-minimal DFA accepting $\mathcal{L} = \{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$:

3

Minimal NFA

Two non-isomorphic¹ size-minimal NFA accepting $\mathcal{L} = \{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$:

Is there a canonical NFA for \mathcal{L} ?

4

¹Arnold, Dicky, and Nivat 1992.

Minimal NFA

Is there a subclass $C \subseteq NFA$, such that any regular language \mathcal{L} admits a canonical acceptor $c(\mathcal{L}) \in C$ size-minimal in C?

Ę

Example: The canonical RFSA

A NFA accepting $\mathcal{L} \subseteq A^*$ is RFSA, if every state accepts a residual $u^{-1}\mathcal{L} = \{v \in A^* \mid uv \in \mathcal{L}\}$ for some $u \in A^*$.

The canonical RFSA for a regular language $\mathcal{L} \subseteq A^*$ is the X_0 -pointed NFA $\langle \varepsilon, \delta \rangle : X \to 2 \times \mathcal{P}(X)^A$ given by:

- $X = \{U \subseteq A^* \mid U \text{ prime residual of } \mathcal{L}\};$
- $X_0 = \{U \in X \mid U \subseteq \mathcal{L}\};$
- $\varepsilon(U) = [\varepsilon \in U];$
- $\delta_a(U) = \{ V \in X \mid V \subseteq a^{-1}U \}.$

Theorem (2)

The canonical RFSA for \mathcal{L} is size-minimal among RFSA for \mathcal{L} .

²Denis, Lemay, and Terlutte 2002.

Example: The canonical RFSA

How does one come up with this definition? Why does it work?

$NFA \rightarrow DFA$

The classical powerset construction converts a NFA into an equivalent DFA.

$$egin{aligned} \langle arepsilon, \delta
angle : Y &
ightarrow 2 imes \mathcal{P}(Y)^A \ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ \langle arepsilon^\sharp, \delta^\sharp
angle^3 : \mathcal{P}(Y) &
ightarrow 2 imes \mathcal{P}(Y)^A \end{aligned}$$

8

 $^{{}^3 \}varepsilon^{\sharp}(U) = \bigvee_{u \in U} \varepsilon(u), \quad \delta^{\sharp}_{a}(U) = \bigcup_{u \in U} \delta_{a}(u)$

$NFA \rightarrow DFA$ (in CSL)

$$\varepsilon^{\sharp}(U_1 \cup U_2) = \varepsilon^{\sharp}(U_1) \vee \varepsilon^{\sharp}(U_2)$$
$$\delta^{\sharp}_{a}(U_1 \cup U_2) = \delta^{\sharp}_{a}(U_1) \cup \delta^{\sharp}_{a}(U_2)$$

 $\langle \varepsilon^{\sharp}, \delta^{\sharp} \rangle$ is a DFA in the category of complete semilattices (CSL).

9

DFA (in CSL) \rightarrow NFA

Consider the reverse to the powerset construction.

$$\langle D, E \rangle : X \to X^A \times 2$$

$$\downarrow^4 \qquad \qquad 2, X \in \mathsf{CSL}$$

$$\langle \delta, \varepsilon \rangle : Y \to \mathcal{P}(Y)^A \times 2$$

Possible? Maybe, choose Y as a generator for X? Can we find a size-minimal generator Y?

 $^{^4}$ Constraint: $\langle D, E \rangle \sim \langle \delta^{\sharp}, \varepsilon^{\sharp} \rangle$

T-DFA $\rightarrow T$ -NFA

Generalises⁵ to other algebraic theories T:

$$X \to X^A \times B$$

$$\downarrow \qquad \qquad B, X \in Alg(T)$$
 $Y \to T(Y)^A \times B$

Related to the construction of canonical (minimal) automata:

- canonical RFSA⁶ (T=CSL, B=2)
- canonical nominal RFSA⁷ (T=Nominal CSL, B=2)
- minimal xor automaton⁸ ($T=\mathbb{Z}_2$ -VSP, B=2)

⁵Zetzsche, Silva, and Sammartino 2020.

⁶Denis, Lemay, and Terlutte 2002.

⁷Moerman and Sammartino 2019.

⁸Vuillemin and Gama 2010.

Example: The átomaton

Previous work⁹ is not general enough to capture e.g. the átomaton 10 , which intertwines CABA and CSL.

The <u>átomaton</u> for a regular language $\mathcal{L} \subseteq A^*$ is the X_0 -pointed NFA $\langle \varepsilon, \delta \rangle : X \to 2 \times \mathcal{P}(X)^A$ given by:

- $X = \{U \subseteq A^* \mid U \text{ atom of } \mathcal{L}\};$
- $X_0 = \{U \in X \mid U \subseteq \mathcal{L}\};$
- $\varepsilon(U) = [\varepsilon \in U];$
- $\delta_a(U) = \{ V \in X \mid V \subseteq a^{-1}U \}.$

⁹Zetzsche, Silva, and Sammartino 2020.

¹⁰Brzozowski and Tamm 2014.

S-DFA $\rightarrow T$ -NFA

Need a situation parametric in two theories S, T:

$$X o X^A imes B$$

$$\downarrow \qquad \qquad B, X \in \mathsf{Alg}(S)$$
 $Y o T(Y)^A imes B$

Rough idea:

- átomaton (S = CABA, T = CSL, B = 2)
- distromaton¹¹ (S = CDL, T = CSL, B = 2)
- ...

¹¹Myers et al. 2015.

Contributions

- Categorical framework for the derivation of canonical automata
- Strictly improve expressivity of previous work
- Cover categories different from set, e.g. nominal sets
- Discover a new canonical acceptor by relating mod-2 vector spaces with CABAs
- Present sufficient conditions for the existence of minimal acceptors
- Subsume and establish new minimality results

Plan

Preliminaries

Monads, distributive laws, bialgebras

Previous work

- Generators for (bi)algebras
- Example: The canonical RFSA

Current work

- (Deriving) distributive law homomorphisms
- Example: The átomaton
- The minimal xor-CABA automaton
- Minimality

Preliminaries

Overview

T-algebra	$TX o X \in Alg(T)$
free T -algebra	$T^2Y o TY \in Alg(T)$
DFA	$X o FX \in Coalg(F)$
T-DFA	$TX o X o FX \in Bialg(\lambda)$
<i>T</i> -NFA	$T^2Y o TY o FTY \in Bialg(\lambda)$

Monads

The examples below are the most relevant ones for us.

- The powerset monad with $PX = 2^X$ and Alg(P) = CSL;
- The free mod-2 vector space monad with $\mathcal{X}X=2^X$ and $\mathsf{Alg}(\mathcal{X})=\mathbb{Z}_2\text{-VSP};$
- The neighbourhood monad with $\mathcal{H}X = 2^{2^X}$ and $Alg(\mathcal{H}) = CABA$;
- The monotone neighbourhood monad with $\mathcal{A}X = (2, \leq)^{(2^X, \subseteq)}$ and $\mathsf{Alg}(\mathcal{A}) = \mathsf{CDL}$.

Distributive laws

A distributive law between a monad $\langle T, \eta, \mu \rangle$ on C and an endofunctor $F: C \to C$ is a natural transformation

$$\lambda: TF \Rightarrow FT$$

satisfying the laws

$$\lambda \circ \eta_F = F \eta$$
 $\lambda \mu_F = F \mu \circ \lambda_T \circ T \lambda$.

$$(\lambda^h)_X: T(B \times X^A) \stackrel{\langle T\pi_1, T\pi_2 \rangle}{\to} TB \times T(X^A) \stackrel{h \times \text{st}}{\to} B \times (TX)^A$$

induces a distributive law between T and F.

¹¹For example, if F satisfies $FX = B \times X^A$ and $\langle B, h \rangle$ is a T-algebra, the family

Bialgebras

A λ -bialgebra is a tuple $\langle X, h, k \rangle$ consisting of an object X and morphisms

$$TX \xrightarrow{h} X \in Alg(T), \qquad X \xrightarrow{k} FX \in Coalg(F)$$

satisfying

$$TX \xrightarrow{h} X$$

$$Tk \downarrow \qquad \qquad \downarrow_{k} X$$

$$TFX \xrightarrow{\lambda_{X}} FTX \xrightarrow{Fh} FX$$

20

Previous work

Generators

A generator¹² for a T-algebra $\langle X, h \rangle$ is a tuple $\langle Y, i, d \rangle$ consisting of an object Y and a pair of morphisms

where $i^{\sharp} := h \circ Ti : TY \to X$ is the unique extension of $i : Y \to X$ to a T-algebra homomorphism¹³.

If in addition $d \circ i^{\sharp} = \mathrm{id}_{TY}$, we speak of a basis¹⁴.

¹²Arbib and Manes 1975.

¹³For instance, every *T*-algebra $\langle X, h \rangle$ is generated by $\langle X, \mathrm{id}_X, \eta_X \rangle$.

¹⁴Zetzsche, Silva, and Sammartino 2020.

Generators

 $\langle Y,i,d \rangle$ is a generator for an algebra $\langle X,h \rangle$ over the powerset monad iff for all $x \in X$

$$x = \bigvee_{y \in d(x)}^{h} i(y).$$

 $\langle Y, i, d \rangle$ is a generator for an algebra $\langle X, h \rangle$ over the free mod-2 vector-space monad iff for all $x \in X$

$$x = \bigoplus_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

Generators

Let $\langle X,h,k\rangle$ be a λ -bialgebra and $\langle Y,i,d\rangle$ a generator for the T-algebra $\langle X,h\rangle$.

Lemma $(^{15})$

The morphism $h \circ Ti: TY \to X$ is a λ -bialgebra homomorphism

$$h \circ Ti : \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \rightarrow \langle X, h, k \rangle.$$

¹⁵Zetzsche, Silva, and Sammartino 2020.

Example: The canonical RFSA

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CSL-structured DFA (X, h, k) for \mathcal{L} ;
- (c) The canonical RFSA $\langle J(\langle X, h \rangle), Fd \circ k \circ i \rangle$ for \mathcal{L} .

Current work

Distributive law homomorphisms

A distributive law homomorphism¹⁶ $\alpha: \lambda^S \to \lambda^T$ between $\lambda^S: SF \Rightarrow FS$ and $\lambda^T: TF \Rightarrow FT$ consists of a natural transformation $\alpha: T \Rightarrow S$ satisfying:

Lemma (17)

Let $\alpha: \lambda^S \to \lambda^T$ be a distributive law homomorphism. Then $\alpha(X, h, k) := \langle X, h \circ \alpha_X, k \rangle$ and $\alpha(f) := f$ defines a functor $\alpha: \mathsf{Bialg}(\lambda^S) \to \mathsf{Bialg}(\lambda^T)$.

¹⁶Watanabe 2002; Power and Watanabe 2002.

¹⁷Klin and Nachyla 2015; Bonsangue et al. 2013.

Distributive law homomorphisms

The following can be seen as roadmap or soundness argument to our approach.

Corollary

Let $\alpha: \lambda^S \to \lambda^T$ be a homomorphism between distributive laws and $\langle X, h, k \rangle$ a λ^S -bialgebra. If $\langle Y, i, d \rangle$ is a generator for the T-algebra $\langle X, h \circ \alpha_X \rangle$, then

$$(h \circ \alpha_X) \circ Ti : \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \to \langle X, h \circ \alpha_X, k \rangle$$

is a λ^T -bialgebra homomorphism.

Deriving distributive law homomorphisms

If the distributive laws are induced by algebras $h^S:SB\to B$ and $h^T:TB\to B$, respectively, then deriving a homomorphism simplifies.

Lemma

Let $\alpha: T \to S$ be a natural transformation satisfying $h^S \circ \alpha_B = h^T$, then $\lambda^{h^S} \circ \alpha F = F\alpha \circ \lambda^{h^T}$.

Deriving distributive law homomorphisms

For the neighbourhood monad \mathcal{H} , there exists a parametrised family of canonical homomorphisms:

Corollary

Any algebra $h^T: T2 \to 2$ over a set monad T induces a homomorphism $\alpha^{h^T}: \lambda^{h^H} \to \lambda^{h^T}$ between distributive laws by $\alpha_X^{h^T}:=(h^T)^{2^X}\circ\operatorname{st}\circ T(\eta_X^{\mathcal{H}}): TX\to \mathcal{H}X.$

Can be lifted to strong monads and arbitrary output objects on general categories.

Example: The átomaton

The átomaton can be recovered by relating ${\mathcal H}$ and ${\mathcal P}.$

Corollary

Let $\alpha_X : \mathcal{P}X \to \mathcal{H}X$ satisfy $\alpha_X(\varphi)(\psi) = \bigvee_{x \in X} \varphi(x) \wedge \psi(x)$, then α constitutes a distributive law homomorphism $\alpha : \lambda^{h^{\mathcal{H}}} \to \lambda^{h^{\mathcal{P}}}$.

Lemma

Let $\alpha_X : \mathcal{P}X \to \mathcal{H}X$ satisfy $\alpha_X(\varphi)(\psi) = \bigvee_{x \in X} \varphi(x) \land \psi(x)$. If $B = \langle X, h \rangle$ is a \mathcal{H} -algebra, then $\langle \mathsf{At}(B), i, d \rangle$ with i(a) = a and $d(x) = \{a \in \mathsf{At}(B) \mid a \leq x\}$ is a basis for the \mathcal{P} -algebra $\langle X, h \circ \alpha_X \rangle$.

Example: The átomaton

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CABA-structured DFA $\langle X, h, k \rangle$ for \mathcal{L} ;
- (c) The átomaton $\langle \operatorname{At}(\langle X,h\rangle), Fd\circ k\circ i\rangle$ for $\mathcal{L}.$

The minimal xor-CABA automaton

Corollary

Let $\alpha_X : \mathcal{X}X \to \mathcal{H}X$ satisfy $\alpha_X(\varphi)(\psi) = \bigoplus_{x \in X} \varphi(x) \cdot \psi(x)$, then α constitutes a distributive law homomorphism $\alpha : \lambda^{h^{\mathcal{H}}} \to \lambda^{h^{\mathcal{X}}}$.

Allows the definition of a new canonical acceptor – the minimal xor-CABA automaton.

The minimal xor-CABA automaton

"The minimal xor-CABA automaton is to the minimal xor automaton what the átomaton is to the canonical RFSA":

In the presence of a distributive law there exist two possible semantics for automata with side-effects in T.

Definition

Let $\alpha: \lambda^S \to \lambda^T$ be a distributive law homomorphism. We say $\mathcal{X} \in \mathsf{Coalg}(FT)$ is $\alpha\text{-closed}$ if the unique diagonal below is an isomorphism:

 $^{^{17}\}mathrm{ext}: \mathsf{Coalg}(\mathit{FT}) o \mathsf{Coalg}(\mathit{FS})$

 $^{^{17}} ext{exp}: ext{Coalg}(\mathit{FU})
ightarrow ext{Bialg}(\lambda^{\mathit{U}}) ext{ for } \mathit{U} \in \{\mathit{S},\mathit{T}\}$

 $^{^{17}\}alpha: \mathsf{Bialg}(\lambda^{\mathcal{S}}) \to \mathsf{Bialg}(\lambda^{\mathcal{T}})$

Our main result provides sufficient conditions for the existence of a canonical minimal acceptor.

Theorem

Given a minimal λ^S -bialgebra $\mathbb M$ accepting $\mathcal L$ such that $\alpha(\mathbb M)$ admits a size-minimal generator, there exists a α -closed T-succinct automaton $\mathcal X$ accepting $\mathcal L$ such that:

- for any α -closed T-succinct automaton \mathcal{Y} accepting \mathcal{L} we have that $\operatorname{im}(\operatorname{obs}_{\exp(\mathcal{X})}) \subseteq \operatorname{im}(\operatorname{obs}_{\exp(\mathcal{Y})})$;
- $if im(obs_{exp(\mathcal{X})}) = im(obs_{exp(\mathcal{Y})})$, $then |\mathcal{X}| \leq |\mathcal{Y}|$.

For the cases below α is given by the identity, thus rendering closedness trivial.

Corollary

- The canonical RFSA for \mathcal{L} is size-minimal among NFA \mathbb{Y} accepting \mathcal{L} with $\overline{\operatorname{im}(\operatorname{obs}^{\dagger}_{\mathbb{Y}})}^{\operatorname{CSL}} \subseteq \overline{\operatorname{Der}(\mathcal{L})}^{\operatorname{CSL}}$.
- The minimal xor automaton for L is size-minimal among all mod-2-weighted automata Y accepting L.

In the following cases closedness is non-trivial and translates to the identities below.

Corollary

- The <u>atomaton</u> for \mathcal{L} is <u>size-minimal</u> among NFA \mathbb{Y} accepting \mathcal{L} with $\operatorname{im}(\operatorname{obs}^{\dagger}_{\mathbb{Y}}) = \operatorname{im}(\operatorname{obs}^{\dagger}_{\mathbb{Y}})$.
- The distromaton for $\mathcal L$ is size-minimal among NFA $\mathbb Y$ accepting $\mathcal L$ with $\operatorname{im}(\operatorname{obs}^\dagger_{\mathbb V}) = \operatorname{im}(\operatorname{obs}^\dagger_{\mathbb V})$.
- The minimal xor-CABA automaton for \mathcal{L} is size-minimal among mod-2-weighted automata \mathbb{Y} accepting \mathcal{L} with $\frac{\mathsf{among\ mod-2-weighted\ automata}}{\mathsf{im}(\mathsf{obs}^\dagger_{\mathbb{Y}})} \overset{\mathbb{Z}_2\text{-Vect}}{=} \frac{\mathsf{CABA}}{\mathsf{im}(\mathsf{obs}^\dagger_{\mathbb{Y}})}$

The previous results allow us to compare the size of different acceptors.

Corollary

- If $\overline{\mathsf{Der}(\mathcal{L})}^{\mathbb{Z}_2\text{-Vect}} = \overline{\mathsf{Der}(\mathcal{L})}^{\mathsf{CABA}}$, then the minimal xor automaton and the minimal xor-CABA automaton for \mathcal{L} are of the same size.
- If $\overline{\operatorname{Der}(\mathcal{L})}^{\operatorname{CSL}} = \overline{\operatorname{Der}(\mathcal{L})}^{\operatorname{CDL}}$, then the canonical RFSA and the distromaton for \mathcal{L} are of the same size.
- If $\overline{\mathsf{Der}(\mathcal{L})}^{\mathsf{CSL}} = \overline{\mathsf{Der}(\mathcal{L})}^{\mathsf{CABA}}$, then the canonical RFSA and the átomaton for \mathcal{L} are of the same size.

Future work

Ideas

Some rough thoughts for future work:

- Cover the canonical probabilistic RFSA¹⁸ and canonical alternating RFSA¹⁹;
- Utilise distributive laws between two different categories (e.g. automata product);
- Generalise Brzozowski²⁰ inspired double reversal characterisations.

¹⁸Esposito et al. 2002.

¹⁹Berndt et al. 2017.

²⁰Brzozowski 1962.

The end

Thanks for listening!

²⁰https://arxiv.org/abs/2104.13421