

SEQUENCE LISTING

<110> Bron, Sierd
Jongbloed, Jan D.H.
Mueller, Joerg P.
Van Dijl, Jan M.

<120> Twin-Arginine Translocation in Bacillus

<130> GC634-2

<140> US 09/954,737
<141> 2001-09-17

<150> US 60/233,610
<151> 2000-09-18

<160> 86

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 89
<212> PRT
<213> Escherichia coli

<400> 1
Met Gly Gly Ile Ser Ile Trp Gln Leu' Leu Ile Ala Val Ile Val
1 5 10 15
Val Leu Leu Phe Gly Thr Lys Lys Leu Gly Ser Ile Gly Ser Asp Leu
20 25 30
Gly Ala Ser Ile Lys Gly Phe Lys Lys Ala Met Ser Asp Asp Glu Pro
35 40 45
Lys Gln Asp Lys Thr Ser Gln Asp Ala Asp Phe Thr Ala Lys Thr Ile
50 55 60
Ala Asp Lys Gln Ala Asp Thr Asn Gln Glu Gln Ala Lys Thr Glu Asp
65 70 75 80
Ala Lys Arg His Asp Lys Glu Gln Val
85

<210> 2
<211> 67
<212> PRT
<213> Escherichia coli

<400> 2
Met Gly Glu Ile Ser Ile Thr Lys Leu Leu Val Val Ala Ala Leu Val
1 5 10 15
Val Leu Leu Phe Gly Thr Lys Lys Leu Arg Thr Leu Gly Gly Asp Leu
20 25 30
Gly Ala Ala Ile Lys Gly Phe Lys Lys Ala Met Asn Asp Asp Ala
35 40 45
Ala Ala Lys Lys Gly Ala Asp Val Asp Leu Gln Ala Glu Lys Leu Ser
50 55 60
His Lys Glu

65

<210> 3
<211> 57
<212> PRT
<213> Bacillus subtilis

<400> 3
Met Pro Ile Gly Pro Gly Ser Leu Ala Val Ile Ala Ile Val Ala Leu
1 5 10 15
Ile Ile Phe Gly Pro Lys Lys Leu Pro Glu Leu Gly Lys Ala Ala Gly
20 25 30
Asp Thr Leu Arg Glu Phe Lys Asn Ala Thr Lys Gly Leu Thr Ser Asp
35 40 45
Glu Glu Glu Lys Lys Lys Glu Asp Gln
50 55

<210> 4
<211> 70
<212> PRT
<213> Bacillus subtilis

<400> 4
Met Phe Ser Asn Ile Gly Ile Pro Gly Leu Ile Leu Ile Phe Val Ile
1 5 10 15
Ala Ile Ile Ile Phe Gly Pro Ser Lys Leu Pro Glu Ile Gly Arg Ala
20 25 30
Ala Lys Arg Thr Leu Leu Glu Phe Lys Ser Ala Thr Lys Ser Leu Val
35 40 45
Ser Gly Asp Glu Lys Glu Glu Lys Ser Ala Glu Leu Thr Ala Val Lys
50 55 60
Gln Asp Lys Asn Ala Gly
65 70

<210> 5
<211> 62
<212> PRT
<213> Bacillus subtilis

<400> 5
Met Glu Leu Ser Phe Thr Lys Ile Leu Val Ile Leu Phe Val Gly Phe
1 5 10 15
Leu Val Phe Gly Pro Asp Lys Leu Pro Ala Leu Gly Arg Ala Ala Gly
20 25 30
Lys Ala Leu Ser Glu Phe Lys Gln Ala Thr Ser Gly Leu Thr Gln Asp
35 40 45
Ile Arg Lys Asn Asp Ser Glu Asn Lys Glu Asp Lys Gln Met
50 55 60

<210> 6
<211> 171
<212> PRT
<213> Escherichia coli

<400> 6
Met Phe Asp Ile Gly Phe Ser Glu Leu Leu Val Phe Ile Ile Gly
1 5 10 15

Leu Val Val Leu Gly Pro Gln Arg Leu Pro Val Ala Val Lys Thr Val
 20 25 30
 Ala Gly Trp Ile Arg Ala Leu Arg Ser Leu Ala Thr Thr Val Gln Asn
 35 40 45
 Glu Leu Thr Gln Glu Leu Lys Leu Gln Glu Phe Gln Asp Ser Leu Lys
 50 55 60
 Lys Val Glu Lys Ala Ser Leu Thr Asn Leu Thr Pro Glu Leu Lys Ala
 65 70 75 80
 Ser Met Asp Glu Leu Arg Gln Ala Ala Glu Ser Met Lys Arg Ser Tyr
 85 90 95
 Val Ala Asn Asp Pro Glu Lys Ala Ser Asp Glu Ala His Thr Ile His
 100 105 110
 Asn Pro Val Val Lys Asp Asn Glu Ala Ala His Glu Gly Val Thr Pro
 115 120 125
 Ala Ala Ala Gln Thr Gln Ala Ser Ser Pro Glu Gln Lys Pro Glu Thr
 130 135 140
 Thr Pro Glu Pro Val Val Lys Pro Ala Ala Asp Ala Glu Pro Lys Thr
 145 150 155 160
 Ala Ala Pro Ser Pro Ser Ser Asp Lys Pro
 165 170

<210> 7
 <211> 258
 <212> PRT
 <213> Escherichia coli

<400> 7
 Met Ser Val Glu Asp Thr Gln Pro Leu Ile Thr His Leu Ile Glu Leu
 1 5 10 15
 Arg Lys Arg Leu Leu Asn Cys Ile Ile Ala Val Ile Val Ile Phe Leu
 20 25 30
 Cys Leu Val Tyr Phe Ala Asn Asp Ile Tyr His Leu Val Ser Ala Pro
 35 40 45
 Leu Ile Lys Gln Leu Pro Gln Gly Ser Thr Met Ile Ala Thr Asp Val
 50 55 60
 Ala Ser Pro Phe Phe Thr Pro Ile Lys Leu Thr Phe Met Val Ser Leu
 65 70 75 80
 Ile Leu Ser Ala Pro Val Ile Leu Tyr Gln Val Trp Ala Phe Ile Ala
 85 90 95
 Pro Ala Leu Tyr Lys His Glu Arg Arg Leu Val Val Pro Leu Leu Val
 100 105 110
 Ser Ser Ser Leu Leu Phe Tyr Ile Gly Met Ala Phe Ala Tyr Phe Val
 115 120 125
 Val Phe Pro Leu Ala Phe Gly Phe Leu Ala Asn Thr Ala Pro Glu Gly
 130 135 140
 Val Gln Val Ser Thr Asp Ile Ala Ser Tyr Leu Ser Phe Val Met Ala
 145 150 155 160
 Leu Phe Met Ala Phe Gly Val Ser Phe Glu Val Pro Val Ala Ile Val
 165 170 175
 Leu Leu Cys Trp Met Gly Ile Thr Ser Pro Glu Asp Leu Arg Lys Lys
 180 185 190
 Arg Pro Tyr Val Leu Val Gly Ala Phe Val Val Gly Met Leu Leu Thr
 195 200 205
 Pro Pro Asp Val Phe Ser Gln Thr Leu Leu Ala Ile Pro Met Tyr Cys
 210 215 220
 Leu Phe Glu Ile Gly Val Phe Phe Ser Arg Phe Tyr Val Gly Lys Gly
 225 230 235 240

Arg Asn Arg Glu Glu Asn Asp Ala Glu Ala Glu Ser Glu Lys Thr
245 250 255

Glu Glu

<210> 8
<211> 254
<212> PRT
<213> Bacillus subtilis

<400> 8
Met Thr Arg Met Lys Val Asn Gln Met Ser Leu Leu Glu His Ile Ala
1 5 10 15
Glu Leu Arg Lys Arg Leu Leu Ile Val Ala Leu Ala Phe Val Val Phe
20 25 30
Phe Ile Ala Gly Phe Phe Leu Ala Lys Pro Ile Ile Val Tyr Leu Gln
35 40 45
Glu Thr Asp Glu Ala Lys Gln Leu Thr Leu Asn Ala Phe Asn Leu Thr
50 55 60
Asp Pro Leu Tyr Val Phe Met Gln Phe Ala Phe Ile Ile Gly Ile Val
65 70 75 80
Leu Thr Ser Pro Val Ile Leu Tyr Gln Leu Trp Ala Phe Val Ser Pro
85 90 95
Gly Leu Tyr Glu Lys Glu Arg Lys Val Thr Leu Ser Tyr Ile Pro Val
100 105 110
Ser Ile Leu Leu Phe Leu Ala Gly Leu Ser Phe Ser Tyr Tyr Ile Leu
115 120 125
Phe Pro Phe Val Val Asp Phe Met Lys Arg Ile Ser Gln Asp Leu Asn
130 135 140
Val Asn Gln Val Ile Gly Ile Asn Glu Tyr Phe His Phe Leu Leu Gln
145 150 155 160
Leu Thr Ile Pro Phe Gly Leu Leu Phe Gln Met Pro Val Ile Leu Met
165 170 175
Phe Leu Thr Arg Leu Gly Ile Val Thr Pro Met Phe Leu Ala Lys Ile
180 185 190
Arg Lys Tyr Ala Tyr Phe Thr Leu Leu Val Ile Ala Ala Leu Ile Thr
195 200 205
Pro Pro Glu Leu Leu Ser His Met Met Val Thr Val Pro Leu Leu Ile
210 215 220
Leu Tyr Glu Ile Ser Ile Leu Ile Ser Lys Ala Ala Tyr Arg Lys Ala
225 230 235 240
Gln Lys Ser Ser Ala Ala Asp Arg Asp Val Ser Ser Gly Gln
245 250

<210> 9
<211> 245
<212> PRT
<213> Bacillus subtilis

<400> 9
Met Asp Lys Lys Glu Thr His Leu Ile Gly His Leu Glu Glu Leu Arg
1 5 10 15
Arg Arg Ile Ile Val Thr Leu Ala Ala Phe Phe Leu Phe Leu Ile Thr
20 25 30
Ala Phe Leu Phe Val Gln Asp Ile Tyr Asp Trp Leu Ile Arg Asp Leu
35 40 45
Asp Gly Lys Leu Ala Val Leu Gly Pro Ser Glu Ile Leu Trp Val Tyr
50 55 60

Met	Met	Leu	Ser	Gly	Ile	Cys	Ala	Ile	Ala	Ala	Ser	Ile	Pro	Val	Ala
65				70					75					80	
Ala	Tyr	Gln	Leu	Trp	Arg	Phe	Val	Ala	Pro	Ala	Leu	Thr	Lys	Thr	Glu
				85					90					95	
Arg	Lys	Val	Thr	Ile	Met	Tyr	Ile	Met	Tyr	Ile	Pro	Gly	Leu	Phe	Ala
				100				105					110		
Leu	Phe	Leu	Ala	Gly	Ile	Ser	Phe	Gly	Tyr	Phe	Val	Leu	Phe	Pro	Ile
				115				120					125		
Val	Leu	Ser	Phe	Leu	Thr	His	Leu	Ser	Ser	Gly	His	Phe	Glu	Thr	Met
				130				135				140			
Phe	Thr	Ala	Asp	Arg	Tyr	Phe	Arg	Phe	Met	Val	Asn	Leu	Ser	Leu	Pro
145					150				155				160		
Phe	Gly	Phe	Leu	Phe	Glu	Met	Pro	Leu	Val	Val	Met	Phe	Leu	Thr	Arg
					165				170				175		
Leu	Gly	Ile	Leu	Asn	Pro	Tyr	Arg	Leu	Ala	Lys	Ala	Arg	Lys	Leu	Ser
				180				185				190			
Tyr	Phe	Leu	Leu	Ile	Val	Val	Ser	Ile	Leu	Ile	Thr	Pro	Pro	Asp	Phe
				195				200				205			
Ile	Ser	Asp	Phe	Leu	Val	Met	Ile	Pro	Leu	Leu	Val	Leu	Phe	Glu	Val
				210				215				220			
Ser	Val	Thr	Leu	Ser	Ala	Phe	Val	Tyr	Lys	Lys	Arg	Met	Arg	Glu	Glu
225					230				235				240		
Thr	Ala	Ala	Ala	Ala											
				245											

<210> 10
<211> 63
<212> PRT
<213> Bacillus alcalophilus

<400> 10															
Met	Gly	Gly	Leu	Ser	Val	Gly	Ser	Val	Val	Leu	Ile	Ala	Leu	Val	Ala
1					5				10				15		
Leu	Leu	Ile	Phe	Gly	Pro	Lys	Lys	Leu	Pro	Glu	Leu	Gly	Lys	Ala	Ala
						20			25				30		
Gly	Ser	Thr	Leu	Arg	Glu	Phe	Lys	Asn	Ala	Thr	Lys	Gly	Leu	Ala	Asp
						35			40				45		
Asp	Asp	Asp	Asp	Thr	Lys	Ser	Thr	Asn	Val	Gln	Lys	Glu	Lys	Ala	
					50			55			60				

<210> 11
<211> 272
<212> PRT
<213> Bacillus alcalophilus

<400> 11															
Met	Thr	Met	Met	Thr	Pro	Asn	Gln	Gln	Thr	Ser	Lys	Lys	Lys	Arg	
1					5				10				15		
Lys	Gly	Arg	Lys	Gly	Arg	Val	Pro	Met	Gln	Asp	Met	Ser	Ile	Met	Asp
						20			25				30		
His	Ala	Glu	Glu	Leu	Arg	Arg	Arg	Ile	Phe	Val	Val	Leu	Ala	Phe	Phe
						35			40				45		
Ile	Val	Ala	Leu	Ile	Gly	Gly	Phe	Phe	Leu	Ala	Val	Pro	Val	Ile	Thr
						50			55			60			
Phe	Leu	Gln	Asn	Ser	Pro	Gln	Ala	Ala	Asp	Met	Pro	Phe	Asn	Ala	Phe
65						70			75			80			

Arg	Leu	Thr	Asp	Pro	Leu	Arg	Val	Tyr	Met	Asn	Phe	Ala	Val	Ile	Thr
	85						90							95	
Ala	Leu	Val	Leu	Ile	Ile	Pro	Val	Ile	Leu	Tyr	Gln	Leu	Trp	Ala	Phe
	100						105							110	
Val	Ser	Pro	Gly	Leu	Lys	Glu	Asn	Glu	Gln	Lys	Ala	Thr	Leu	Ala	Tyr
	115						120						125		
Ile	Pro	Ile	Ala	Phe	Leu	Leu	Phe	Leu	Ala	Gly	Ile	Ala	Phe	Ser	Tyr
	130						135						140		
Phe	Ile	Leu	Leu	Pro	Phe	Val	Ile	Ser	Phe	Met	Gly	Gln	Met	Ala	Asp
	145						150				155			160	
Arg	Leu	Glu	Ile	Asn	Glu	Met	Tyr	Gly	Ile	Asn	Glu	Tyr	Phe	Ser	Phe
	165							170					175		
Leu	Phe	Gln	Leu	Thr	Ile	Pro	Phe	Gly	Leu	Leu	Phe	Gln	Leu	Pro	Val
	180							185					190		
Val	Val	Met	Phe	Leu	Thr	Arg	Leu	Gly	Val	Val	Thr	Pro	Thr	Phe	Leu
	195						200					205			
Arg	Lys	Ile	Arg	Lys	Tyr	Ala	Tyr	Phe	Ala	Leu	Leu	Val	Ile	Ala	Gly
	210						215					220			
Ile	Ile	Thr	Pro	Pro	Glu	Leu	Thr	Ser	His	Leu	Phe	Val	Thr	Val	Pro
	225						230				235			240	
Met	Leu	Ile	Leu	Tyr	Glu	Ile	Ser	Ile	Thr	Ile	Ser	Ala	Ile	Thr	Tyr
	245							250					255		
Arg	Lys	Tyr	His	Gly	Thr	Thr	Asp	His	Asn	Gly	Gln	Glu	Ser	Ala	Lys
	260							265					270		

<210> 12
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
cccaagctta tgaaaggag ggctttttg aatgg 35

<210> 13
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
gcggatccaa agctgagcac gatcg 26

<210> 14
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14

cccaagctta aaaagaaaga agatcagtaa gtaggatg	39
<210> 15	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 15	
gcggatccaa gtcctgagaa atccg	25
<210> 16	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 16	
ggaattcgtg ggacggctac c	21
<210> 17	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 17	
cgggatccat catgggaagc g	21
<210> 18	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 18	
gggttaccgg aaaacgcttg atcagg	26
<210> 19	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 19	
cgggatcctt tggcgatag cc	22

```
<210> 20
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 20
gaggatccat gaggagagag gggatcttga atggcatacg ac          42

<210> 21
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 21
cgatcctgca ggacctcatc ggattgc          27

<210> 22
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 22
gtaggatccg cgcctaactt ctcaagc          27

<210> 23
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 23
atagaattca aaaaggaaga gtatg          25

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 24
ctggggatcc aaaaacagga aggc          24

<210> 25
<211> 35
```

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 25		
gagaaggctcg acgcagcatt tacttcaaag gcccc		35
<210> 26		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 26		
accgggtcga ccgtcgttt acaacg		26
<210> 27		
<211> 23		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 27		
ggaattcat ggcctgcccc gtt		23
<210> 28		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 28		
caaggatccc gaattaagga gtgg		24
<210> 29		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 29		
gtctgcagc tgcactaagc ggccgcc		27
<210> 30		
<211> 5		
<212> PRT		
<213> Artificial Sequence		

```
<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
      subtilis

<400> 30
Arg Arg Ile Leu Leu
  1          5

<210> 31
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
      subtilis

<400> 31
Arg Arg Ser Phe Glu
  1          5

<210> 32
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
      subtilis

<400> 32
Arg Arg Thr Leu Met
  1          5

<210> 33
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
      subtilis

<400> 33
Arg Arg Ile Ile Ala
  1          5

<210> 34
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
      subtilis
```

<400> 34
Arg Arg Leu Val Tyr
1 5

<210> 35
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 35
Arg Arg Arg Lys Leu
1 5

<210> 36
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 36
Arg Arg Lys Phe Ile
1 5

<210> 37
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 37
Arg Arg Gln Phe Leu
1 5

<210> 38
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 38
Arg Arg Leu Ile Ile
1 5

<210> 39

<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 39
Arg Arg Asn Phe Lys
1 5

<210> 40
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 40
Arg Arg Lys Phe Ser
1 5

<210> 41
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 41
Arg Arg Ala Phe Leu
1 5

<210> 42
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 42
Arg Arg Met Lys Ile
1 5

<210> 43
<211> 5
<212> PRT
<213> Artificial Sequence

<220>

<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 43
Arg Arg Ser Cys Leu
1 5

<210> 44
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 44
Arg Arg Thr His Val
1 5

<210> 45
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 45
Arg Arg Val Ala Ile
1 5

<210> 46
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 46
Arg Arg Gln Phe Leu
1 5

<210> 47
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 47
Arg Arg Phe Leu Leu

1

5

<210> 48
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 48
Arg Arg Asn Thr Val
1 5

<210> 49
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 49
Arg Arg Leu Leu Met
1 5

<210> 50
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 50
Arg Arg Lys Ile Leu
1 5

<210> 51
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine (RR-)signal peptides of B.
subtilis

<400> 51
Arg Arg Asp Ile Leu
1 5

<210> 52
<211> 42

<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 52
Ser Pro Ala Gln Arg Arg Ile Leu Leu Tyr Ile Leu Ser Phe Ile Phe
1 5 10 15
Val Ile Gly Ala Val Val Tyr Phe Val Lys Ser Asp Tyr Leu Phe Thr
20 25 30
Leu Ile Phe Ile Ala Ile Ala Ile Leu Phe
35 40

<210> 53
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 53
Met Val Ser Ile Arg Arg Ser Phe Glu Ala Tyr Val Asp Asp Met Asn
1 5 10 15
Ile Ile Thr Val Leu Ile Pro Ala Glu Gln Lys Glu Ile Met
20 25 30

<210> 54
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 54
Met Ala Ala Tyr Ile Ile Arg Arg Thr Leu Met Ser Ile Pro Ile Leu
1 5 10 15
Leu Gly Ile Thr Ile Leu Ser Phe Val Ile Met Lys Ala Ala Pro Gly
20 25 30

<210> 55
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 55
Met Lys Phe Val Lys Arg Arg Ile Ile Ala Leu Val Thr Ile Leu Met
1 5 10 15

Leu Ser Val Thr Ser Leu Phe Ala Leu Gln Pro Ser Ala Lys Ala Ala
20 25 30
Glu His

<210> 56
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 56
Met Leu Lys Tyr Ile Gly Arg Arg Leu Val Tyr Met Ile Ile Thr Leu
1 5 10 15
Phe Val Ile Val Thr Val Thr Phe Phe Leu Met Gln Ala Ala Pro Gly
20 25 30

<210> 57
<211> 42
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 57
Met Thr Ser Pro Thr Arg Arg Arg Thr Ala Lys Arg Arg Arg Arg Lys
1 5 10 15
Leu Asn Lys Arg Gly Lys Leu Leu Phe Gly Leu Leu Ala Val Met Val
20 25 30
Cys Ile Thr Ile Trp Asn Ala Leu His Arg
35 40

<210> 58
<211> 54
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 58
Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu
1 5 10 15
Glu Ser Phe Gln Asn Asn Thr Phe Asp Arg Arg Lys Phe Ile Gln Gly
20 25 30
Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser
35 40 45
Val Gly Ala Phe Glu Val
50

<210> 59
<211> 36

<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 59
Met Gly Gly Lys His Asp Ile Ser Arg Arg Gln Phe Leu Asn Tyr Thr
1 5 10 15
Leu Thr Gly Val Gly Phe Met Ala Ala Ser Met Leu Met Pro Met
20 25 30
Val Arg Phe Ala
35

<210> 60
<211> 26
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 60
Met Leu Leu Lys Arg Arg Ile Gly Leu Leu Leu Ser Met Val Gly Val
1 5 10 15
Phe Met Leu Leu Ala Gly Cys Ser Ser Val
20 25

<210> 61
<211> 39
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 61
Met Lys Lys Thr Leu Thr Thr Ile Arg Arg Ser Ser Ile Ala Arg Arg
1 5 10 15
Leu Ile Ile Ser Phe Leu Leu Ile Leu Ile Val Pro Ile Thr Ala Leu
20 25 30
Ser Val Ser Ala Tyr Gln Ser
35

<210> 62
<211> 35
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 62

Met Lys Lys Arg Arg Asn Phe Arg Phe Ile Ala Ala Phe
1 5 10 15
Leu Val Leu Ala Leu Met Ile Ser Leu Val Pro Ala Asp Val Leu Ala
20 25 30

Lys Ser Thr
35

<210> 63
<211> 33
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 63
Lys Arg Arg Lys Phe Ser Ser Val Val Ala Ala Val Leu Ile Phe Ala
1 5 10 15
Leu Ile Phe Ser Leu Phe Ser Pro Gly Thr Lys Ala Ala Ala Gly
20 25 30

Ala

<210> 64
<211> 35
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 64
Met Glu Met Phe Asp Leu Glu Phe Met Arg Arg Ala Phe Leu Ala Gly
1 5 10 15
Gly Met Ile Ala Val Met Ala Pro Ile Leu Gly Val Tyr Leu Val Leu
20 25 30

Arg Arg Gln
35

<210> 65
<211> 26
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 65
Met Lys Lys Arg Arg Lys Ile Cys Tyr Cys Asn Thr Ala Leu Leu Leu
1 5 10 15
Met Ile Leu Leu Ala Gly Cys Thr Asp Ser
20 25

<210> 66
<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 66

Met Arg Arg Ile Leu Ser Ile Leu Val Phe Ala Ile Met Leu Ala Gly
1 5 10 15

Cys Ser Ser Asn

20

<210> 67

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 67

Met Ser Ala Gly Lys Ser Tyr Arg Lys Lys Met Lys Gln Arg Arg Met
1 5 10 15

Asn Met Lys Ile Ser Lys Tyr Ala Leu Gly Ile Leu Met Leu Ser Leu
20 25 30

Val Phe Val Leu Ser Ala Cys Gly Asn Asn Asn
35 40

<210> 68

<211> 42

<212> PRT

<213> Artificial Sequence

<220>

<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 68

Lys Lys Arg Val Ala Gly Trp Tyr Arg Arg Met Lys Ile Lys Asp Lys
1 5 10 15

Leu Phe Val Phe Leu Ser Leu Ile Met Ala Val Ser Phe Leu Phe Val
20 25 30

Tyr Ser Gly Val Gln Tyr Ala Phe His Val
35 40

<210> 69

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 69
Met Arg Arg Ser Cys Leu Met Ile Arg Arg Arg Lys Arg Met Phe Thr
1 5 10 15
Ala Val Thr Leu Leu Val Leu Leu Val Met Gly Thr Ser Val Cys Pro
20 25 30
Val Lys Ala Glu Gly Ala
35

<210> 70
<211> 38
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 70
Met Arg Ile Gln Lys Arg Arg Thr His Val Glu Asn Ile Leu Arg Ile
1 5 10 15
Leu Leu Pro Pro Ile Met Ile Leu Ser Leu Ile Leu Pro Thr Pro Pro
20 25 30
Ile His Ala Glu Glu Ser
35

<210> 71
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 71
Met Leu Arg Asp Leu Gly Arg Arg Val Val Ala Ile Ala Ala Ile Leu
1 5 10 15
Ser Gly Ile Ile Leu Gly Gly Met Ser Ile Ser Leu Ala Asn Met Pro
20 25 30

<210> 72
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 72
Met Lys Lys Met Ser Arg Arg Gln Phe Leu Lys Gly Met Phe Gly Ala
1 5 10 15
Leu Ala Ala Gly Ala Leu Thr Ala Gly Gly Gly Tyr Gly Tyr Ala Arg
20 25 30
Tyr Leu

<210> 73
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 73
Met Arg Arg Phe Leu Leu Asn Val Ile Leu Val Ala Ile Val Leu
1 5 10 15
Phe Leu Arg Tyr Val His Tyr Ser Leu Glu Pro Glu
20 25

<210> 74
<211> 29
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 74
Met Phe Glu Ser Glu Ala Glu Leu Arg Arg Ile Arg Ile Ala Leu Val
1 5 10 15
Trp Ile Ala Val Phe Leu Leu Phe Gly Ala Cys Gly Asn
20 25

<210> 75
<211> 37
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 75
Met Gln Lys Tyr Arg Arg Asn Thr Val Ala Phe Thr Val Leu Ala
1 5 10 15
Tyr Phe Thr Phe Phe Ala Gly Val Phe Leu Phe Ser Ile Gly Leu Tyr
20 25 30
Asn Ala Asp Asn Leu
35

<210> 76
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 76

Met Met Leu Asn Met Ile Arg Arg Leu Leu Met Thr Cys Leu Phe Leu
 1 5 10 15
 Leu Ala Phe Gly Thr Thr Phe Leu Ser Val Ser Gly Ile Glu Ala Lys
 20 25 30
 Asp Leu

 <210> 77
 <211> 44
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> predicted twin-arginine signal peptides of B.
 subtilis

 <400> 77
 Met Ala Glu Arg Val Arg Val Arg Val Arg Lys Lys Lys Lys Ser Lys
 1 5 10 15
 Arg Arg Lys Ile Leu Lys Arg Ile Met Leu Leu Phe Ala Leu Ala Leu
 20 25 30
 Leu Val Val Val Gly Leu Gly Gly Tyr Lys Leu Tyr
 35 40

 <210> 78
 <211> 47
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> predicted twin-arginine signal peptides of B.
 subtilis

 <400> 78
 Met Ser Asp Glu Gln Lys Lys Pro Glu Gln Ile His Arg Arg Asp Ile
 1 5 10 15
 Leu Lys Trp Gly Ala Met Ala Gly Ala Ala Val Ala Ile Gly Ala Ser
 20 25 30
 Gly Leu Gly Gly Leu Ala Pro Leu Val Gln Thr Ala Ala Lys Pro
 35 40 45

 <210> 79
 <211> 54
 <212> PRT
 <213> Bacillus subtilis

 <400> 79
 Met Ala Tyr Asp Ser Arg Phe Asp Glu Trp Val Gln Lys Leu Lys Glu
 1 5 10 15
 Glu Ser Phe Gln Asn Asn Arg Phe Asp Arg Arg Lys Phe Ile Gln Gly
 20 25 30
 Ala Gly Lys Ile Ala Gly Leu Ser Leu Gly Leu Thr Ile Ala Gln Ser
 35 40 45
 Val Gly Ala Phe Glu Val
 50

 <210> 80
 <211> 65

<212> PRT

<213> Streptomyces coelicolor

<400> 80

Met Thr Pro Ala Asn His Gln Ala Pro Thr Ser Ala Pro Ser Pro Ala
1 5 10 15
Pro Ser Gln Ser Ser His Ala Pro Glu Leu Arg Ala Ala Ala Arg Ser
20 25 30
Leu Gly Arg Arg Arg Phe Leu Thr Val Thr Gly Ala Ala Ala Ala Leu
35 40 45
Ala Phe Ala Val Asn Leu Pro Ala Ala Gly Thr Ala Ser Ala Ala Glu
50 55 60
Leu
65

<210> 81

<211> 60

<212> PRT

<213> Streptomyces coelicolor

<400> 81

Met Ala Pro Thr Gly Arg Pro Ser Ala Leu Ala Glu His Ala Phe Ser
1 5 10 15
Pro His Asp Ala Val Leu Gly Ala Ala Ala Arg His Leu Gly Arg Arg
20 25 30
Arg Phe Leu Thr Val Thr Ala Ala Ala Ala Leu Ala Phe Ser Thr
35 40 45
Asn Leu Pro Ala Arg Gly Ala Val Ala Ala Pro Glu
50 55 60

<210> 82

<211> 47

<212> PRT

<213> Streptomyces coelicolor

<400> 82

Met Thr Ser Arg His Arg Ala Ser Glu Asn Ser Arg Thr Pro Ser Arg
1 5 10 15
Arg Thr Val Val Lys Ala Ala Ala Ala Gly Ala Val Leu Ala Ala Pro
20 25 30
Leu Ala Ala Ala Leu Pro Ala Gly Ala Ala Asp Ala Ala Pro Ala
35 40 45

<210> 83

<211> 53

<212> PRT

<213> Streptomyces tendae

<400> 83

Met Thr Pro Ala Ala Arg Pro Ser Gln His Ala Pro Glu Leu Arg Ala
1 5 10 15
Ala Ala Arg His Leu Gly Arg Arg Phe Leu Thr Val Thr Gly Ala
20 25 30
Ala Ala Ala Leu Ala Phe Ala Val Asn Leu Pro Ala Ala Gly Thr Ala
35 40 45
Ala Ala Ala Glu Leu
50

<210> 84
<211> 43
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 84
Met Ser Pro Ala Gln Arg Arg Ile Leu Leu Tyr Ile Leu Ser Phe Ile
1 5 10 15
Phe Val Ile Gly Ala Val Val Tyr Phe Val Lys Ser Asp Tyr Leu Phe
20 25 30
Thr Leu Ile Phe Ile Ala Ile Ala Ile Leu Phe
35 40

<210> 85
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 85
Met Lys Arg Arg Lys Phe Ser Ser Val Val Ala Ala Val Leu Ile Phe
1 5 10 15
Ala Leu Ile Phe Ser Leu Phe Ser Pro Gly Thr Lys Ala Ala Ala Ala
20 25 30
Gly Ala

<210> 86
<211> 43

<212> PRT
<213> Artificial Sequence

<220>
<223> predicted twin-arginine signal peptides of B.
subtilis

<400> 86
Met Lys Lys Arg Val Ala Gly Trp Tyr Arg Arg Met Lys Ile Lys Asp
1 5 10 15
Lys Leu Phe Val Phe Leu Ser Leu Ile Met Ala Val Ser Phe Leu Phe
20 25 30
Val Tyr Ser Gly Val Gln Tyr Ala Phe His Val
35 40