Chapter 5. Measurement System Analysis

Outline

- Part 1: Introduction to MSA (準度、精度衡量)
- Part 2: 計量型MSA (Gage R&R)
- Part 3: 計數型MSA (Kappa analysis)
- Part 4: 破壞性測試的量測系統

Example

解析度

- 定義:如實地指出量測上微小變化之能力(最小可讀單位)
 - 量測系統分辨力 or 量測系統鑑別力
- ■量測系統
 - 100% 精準無誤的量測 (X) ← 成本昂貴
 - ■『數據類別化』(V)
 - Ex: 一量測系統的解析度為0.01公分 3.001, 3.003, 2.998 → 3

類別越多(解析度越高),量測越準確

Example

■ 解析度為 0.001 mm 之量測系統

受測物數值	量具讀數
0.9995	
0.9996	
0.9997	
0.9998	
0.9999	1.000
1.0000	1.000
1.0001	
1.0002	
1.0003	
1.0004	

受測物數值	量具讀數
1.0005	
1.0006	
1.0007	
1.0008	
1.0009	1.001
1.0010	1.001
1.0011	
1.0012	
1.0013	
1.0014	

量測解析度之需求

- 規格允差範圍的1/10 (經驗法則)
- Example

熱軋鋼板厚度 1.6 ± 0.01mm,那麼我們需要選擇哪一種最小精度的檢驗儀器?

 \rightarrow 公差範圍為0.02其量測系統的解析度應為 $0.02 \times 10\% = 0.002$

良好MSA之特性

■ Accuracy (準度)

個別值/平均值與參考值(真值、目標值)「接近」的程度

■ Precision (精度/離散程度)

個別值與平均值「接近」的程度

良好MSA之特性

- Accuracy (準度)
 - bias(偏倚):能產生一個接近真值的量測數字
 - stability(穩定):在不同時間點下應產生相同的量測結果
 - linearity(線性):量測結果不受真值變動(不同規格零件)而不同
- Precision (精度)
 - repeatability(重複性):同一量測人員對同一受測物進行重複量測, 量測結果應一致(量具變異)
 - reproducibility(再現性):不同量測人員對同一受測物進行重複量測,量測結果應一致(人員變異)

準度的衡量

Example: Bias

- 一個檢測員使用解析度為0.025mm游標卡尺,針對一標準件(24.400毫米)衡量了10次,零件規格允差±0.24 (解析度至少為0.048)
- 數據24.425, 24.425, 24.400, 24.400, 24.37524.400, 24.425, 24.400, 24.425, 24.375
- 分析

Bias = 平均值 - 真值 =
$$\frac{24.4051}{10}$$
 - 24.400 = 0.0051
%Bias = $\frac{0.0051}{0.48} \times 100\% = 1.06\%$

Bias

偏倚

■ 目的:衡量是否能產生一個接近真值的量測數字

越小越好,理想為0

Stability

穩定性

● 使用同一量具,量測同一物件, 但在『不同時間點』平均量測值 的差異(平均值的『飄移』)

穩定度 = (第1時間點量測平均值)-(第2時間點量測平均值)

越小表示穩定度越高

Example: Stability

- Stability可透過管制圖的實施來確定
 - 利用標準件
 - $\notin \mathbb{R} x$ -bar and R charts: $\hat{\sigma} = \overline{R}/d_2$ $\hat{\sigma} = \overline{s}/c_4$
- 某一標準件,經過精密測定後得知其正確尺寸為 6.00。其後施測人員使用該量測系統對標準件進行 量測,如下

重複	1	2	3	4	5	6	7	8	9	10
1	6.01	6.07	5.99	5.89	6.04	5.97	5.97	5.98	6.03	6.03
						6.00				
3	6.10	6.08	5.98	6.01	6.05	5.97	6.03	6.03	6.01	6.03
4	6.03	5.95	5.99	6.02	6.05	5.89	6.01	6.01	6.02	6.07
5	5.99	6.10	6.00	6.09	6.03	6.00	5.98	6.09	6.09	5.97

Example: Stability

• x-bar and R charts

■ 此量測系統之穩定性是可接受的

Linearity

線性

檢查量具在具有不同目標值的零件下進行量測, 其『偏移』是否一致

Example: 線性

零件	1	2	3	4	5	
參考值	2.00	4.00	6.00	8.00	10.00	
重複量測	同一人員、同一零件,重複量測12次					
平均值	2.49	4.13	6.03	7.71	9.38	
偏倚	+0.49	+0.13	+0.03	-0.29	-0.62	

Example: Linearity

■ 我們可找出偏倚(bias)與參考值之間的最佳適配線

- 線性(linearity)是由最佳適配直線的斜率來決定 線性% = 迴歸線斜率 |×100%
 - 較低的斜率(slope)表示具有較佳的量具線性
 - 量具不受目標值變動之影響

理想值為0

Example: 線性

様本	參考值 (X)	偏移 (Y)	X ²	XY
1	2	+0.49	4	0.98
2	4	+0.13	16	0.52
3	6	+0.03	36	0.18
4	8	-0.29	64	-2.32
5	10	-0.62	100	-6.2
總和	30	-0.26	220	-6.84

$\overline{X} = \frac{2+4+6+8+10}{5} = 6$
$\overline{Y} = \frac{0.49 + \dots + (-0.62)}{5} = -0.052$
$\beta = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}$
$\beta = \frac{\overline{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}}{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}$
$= \frac{-6.84 - 5(6)(-0.052)}{220 - 5(6)^2} = -0.132$
$\alpha = \overline{Y} - \beta \overline{X}$
=-0.052-(-0.132)(6)=0.74

迴歸線計算

■迴歸線

$$y = \alpha + \beta x$$

■計算表格

樣本₽	X_{ℓ^0}	Y_{ψ}	$X^{2} \varphi$	XΥφ
1€	X_1^{φ}	$Y_1 \circ$	$X_1^2 \varphi$	$X_1Y_1 \varphi$
20	X_2^{φ}	Y ₂ €	$X_2^2 \varphi$	X_2Y_2
٠	٠	P	9	Đ.
nø	X_n^{φ}	$Y_n \varphi$	$X_n^2 \varphi$	$X_n Y_n \varphi$
總和↵	$\sum X_i \circ$	$\sum Y_i \circ$	$\sum X_i^2 \wp$	$\sum X_i Y_i \circ$

$$\beta = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}}$$

$$\alpha = \overline{Y} - \beta \overline{X}$$
 $\alpha = \overline{Y}$

http://www.graphpad.com/quickcalcs/linear1/

Example: Linearity

Exercise

■ 量測系統工程師欲檢視某個量測系統的線性誤差,因而在 可量測範圍內挑選了已知實際尺寸的8個不同零件,並請量 測人員對該8各零件重複量測10次,每一個零件的實際尺寸 與量測平均值如表所示,請計算該量測系統的線性誤差。

零件	1	2	3	4	5	6	7	8
平均值	1.59	3.85	5.91	8.22	10.59	13.01	14.98	17.24
實際值	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00

精度的衡量

Repeatability

重複性

- 儀器變異(Equipment variation)
 - ■同一位操作員
 - 使用相同的儀器量
 - 進行重複量測相同零件的變異
 - 用以衡量量具本身固有的量測能力

Reproducibility

再現性

- 人員變異(Appraiser variation)
 - 不同的操作人員
 - ■使用相同的儀器
 - ■對同一零件進行重複量測 所的之變異

Gage R&R

- 業界常用之量測系統評判方法
- Gage R & R
 - Gage: 量測
 - Repeatability: 重複性(儀器變異)
 - Reproducibility: 再現性(人員變異)
- **AIAG** (2002)
 - Automotive Industry Action Group 汽車工業行動小組
 - Measurement Systems Analysis (MSA) Reference Manual
 - Chrysler Corporation, Ford Motor Company, General Motors Corporation...

Part 2: 計量型MSA (Gage R&R 分析)

流程總變異來源

Gage R & R

- 目的:
 - 想知道**重複性**(儀器變異)與**再現性**(人員變異)相 對於總變異是否夠小?
- ■前提假設
 - 流程是在管制狀態之下(沒有特殊原因),流程 可歸屬變異為0

Gage R & R 指標

■指標

- 流程總變異的百分比(Percent of total process variation)
 - $\sigma_{measurement}^2$ vs. σ_{total}^2
- 公差的百分比(Percent of tolerance)
 - $\sigma_{measurement}^2$ vs. (USL LSL)
- 區別分類數(Number of distinct data categories)
 - $\sigma_{measurement}^2$ VS. $\sigma_{product}^2$

- 解析度

Gage R&R 指標 1:流程總變異的百分比

■ Percent of Total Variation: % RR_{TV}

$$\%RR_{TV} = \frac{6\sigma_{measurement}}{6\sigma_{total}} \times 100\% = \frac{\sigma_{measurement}}{\sigma_{total}} \times 100\%$$

- % RR TV 之接受性的一般準則為 (AIAG (2002))
 - 低於10%的誤差 可接受的量測系統
 - 10%~30%的誤差
 - 一般的量測:可接受的
 - 關鍵的量測: 應立即改善
 - 大於30%的誤差,

應該改善量測系統(比較儀器變異與人員變異)

Gage R&R 指標 2:公差的百分比

■ Percent of tolerance: %RR_{tolerance} or %P/T

$$\%RR_{Tolerance} = \%P/T = \frac{5.15\sigma_{measurement}}{USL - LSL} \times 100\%$$

5.15σ: 99% spread of variation

■ % RR tolerance 之接受性的一般準則同 % RR TV (AIAG (2002))

%RR_{TV} 與 %RR_{tolerance} 結果不一致

- 接受性的一般準則
 - 兩者皆低於10%之要求,該量測系統才可被接受
 - min $[\% R \& R_{TV}, \% R \& R_{Tolerance}] < 10\%$

Gage R&R 指標 3:區別分類數

■ 區別分類數(ndc):表達量測系統可以分辨不同讀數之數目

$$ndc = \left[\frac{\sigma_{product}}{\sigma_{measurement}}\right] \times 1.41$$

■ ndc應該無條件捨去到整數,而且要大於或 等於5

Gage R&R的執行步驟

- 規劃量測方式
 - 制訂量測的SOP
- 建議受測零件數5個、2位量測人員、重複2次量測 (5×2×2)
- 量測人員應選定可靠的人員
- 於受測零件上進行編號
- 量測時應以隨機順序進行量測
- 量測儀器需具備足夠的解析度(規格允差範圍的 1/10)

Gage R&R 『變異』之計算

- 全距法(range method)
 - 對量測系統提供一快速的近似計算
 - 缺點:無法將變異分解為重複性(儀器變異)與再現性(人員變異)
- 平均值與全距法 (average and range method)
 - 可以將變異分解為重複性與再現性

Method 1. 全距法

■ 通常隨機選出2為施測人員,並各對5個零件 進行1次量測(不需重複量測)

	評估人員1	評估人員2	全距
零件1			
零件2			
零件3			
零件 4			
零件 5			

Example 1: Gage R&R (全距法)

	評估人員1	評估人員2	全距
零件1	0.80	0.85	0.05
零件 2	0.75	0.70	0.05
零件3	0.95	0.90	0.05
零件4	0.55	0.65	0.10
零件 5	0.40	0.50	0.10

$$\overline{R} = \frac{\sum R_i}{5} = \frac{0.35}{5} = 0.07$$

Example 1: Gage R&R (全距法)

■ 量測系統之變異(含重複性與再現性)為

- 假設從過去的研究中得知流程標準差為 $\sigma_{total} = 0.1680$
- ■那麼

%
$$R \& R_{TV} = \frac{\sigma_{measurement}}{\sigma_{Total}} = \frac{0.0588}{0.1680} = 35.0\% > 30\%$$

■ 結論:量測系統需進行改進

d *		g=零件數					
a_2	1	2	3	4	5		
<i>m</i> =	2	1.41	1.28	1.23	1.21	1.19	
人員數	3	1.91	1.81	1.77	1.75	1.74	

Method 2. 平均值與全距法

- 量測件數、重複量測次數、量測人數
- 建議為 5 × 2 × 2
- 優點:
 - 可以將變異分解為重複性與再現性(因為有重複量測)
 - 可判斷Gage R&R分析啟用時機
 - 繪製 $\overline{X} R$ 管制圖
 - ullet R管制圖顯示為一處於管制狀態下, \overline{X} 約有一半超出管制界線

Gage R&R 平均值與全距法計算表格

X_{ijk}			零件					
		零件1	零件2	零件3	零件4	零件5	平均值	
坦 从 B A	量測1							
操作員A	量測2							
平均	自 值						\overline{X}_{A}	
全	距						$\overline{R}_{\scriptscriptstyle A}$	
操作員B	量測1							
徐作貝 D	量測2							
平均	自 值						$\overline{X}_{\scriptscriptstyle B}$	
全	距						$\overline{R}_{\scriptscriptstyle B}$	
零件平均值							><	
$\overline{\overline{X}} = (\overline{X}_A + \overline{X}_B)/2$ (X-bar管制圖)				$\overline{\overline{R}} = (\overline{R}_A + \overline{R}_B)/2$ (估計儀器變異、R管制圖)				
$R_{product} =$	$Max (\overline{X}_{\$ \#}$	$)$ – $Min(\overline{X})$	零件)	$R_{\text{A}} = \overline{X}_{\text{A}} $	$ X_B = \overline{X}_B$	(估計人員	變異)	

(估計零件變異)

Example 2:平均值與全距法

- 今欲對一螺絲量測系統進行Gage R&R分析
- 規格允差 (Tolerance) = USL-LSL = 4
- 5 (parts) \times 2 (trials) \times 2 (operators)
 - 5顆螺絲
 - 每位操作員對每顆螺絲量測2次
 - 2位操作員

Example 2:平均值與全距法

λ	(ijk		零件				
	IJĸ	零件1	零件2	零件3	零件4	零件5	平均值
坦 <i>小</i> B A	量測1	2.29	3.34	1.20	2.58	4.26	
操作員A	量測2	2.41	3.18	1.08	2.74	4.00	
平均	自值	2.35	3.26	1.14	2.66	4.13	$\overline{X}_{A} = 2.708$
全	距	0.12	0.16	0.12	0.16	0.26	$\overline{R}_A = 0.164$
4. A. B. D	量測1	2.04	2.88	0.54	2.03	3.77	
操作員B	量測2	1.90	3.08	0.94	2.01	3.45	
平均	自值	1.97	2.98	0.74	2.02	3.61	$\overline{X}_B = 2.264$
全	距	0.14	0.20	0.40	0.02	0.32	$\overline{R}_{\scriptscriptstyle B} = 0.216$
零件平	平均值	2.16	3.12	0.94	2.34	3.87	
$\overline{\overline{X}} = (\overline{X}_A +$	$\overline{\overline{X}} = (\overline{X}_A + \overline{X}_B)/2 = (2.708 + 2.264)/2 = 2.486$			$\overline{\overline{R}} = (\overline{R}_A + \overline{R}_B)/2 = (0.164 + 0.216)/2 = 0.19$			= 0.190
$R_{product} = Max$ ($\overline{X}_{\text{seft}}$) – Min ($\overline{X}_{\text{seff}}$) = 3.87 ·	-0.94 = 2.93	$R_{\text{A}} = \overline{X}_{A} $	$-\overline{X}_{\scriptscriptstyle B}\Big = 2.70$	8-2.264 =	0.444

Example 2: x-bar & R charts

R chart

$$UCL = D_4 \overline{\overline{R}} = 3.267 \times 0.190 = 0.6280$$

 $CL = \overline{\overline{R}} = 0.190$
 $LCL = D_3 \overline{\overline{R}} = 0$

每組樣本數	管制圖係數		
n	A_2	D_3	D_4
2	1.880	0	3.267
3	1.023	0	2.575
4	0.729	0	2.282
5	0.577	0	2.115
6	0.483	0	2.004
7	0.419	0.076	1.924
8	0.373	0.136	1.864
9	0.337	0.184	1.816
10	0.308	0.223	1.777

■ *x*-bar chart

管制圖係數為查重複量測 之次數(n=2)

$$UCL = \overline{\overline{X}} + A_2 \overline{\overline{R}} = 2.486 + 1.88 \times 0.190 = 2.843$$
 $CL = \overline{\overline{X}} = 2.486$
 $LCL = \overline{\overline{X}} - A_2 \overline{\overline{R}} = 2.486 - 1.88 \times 0.190 = 2.129$

Example 2: x-bar & R charts

R chart

X-bar chart

人員 A 人員 B

4.5
4
3.5
3
2.5
1
0.5
0
1 2 3 4 5 6 7 8 9 10

R管制圖顯示為一處於管制狀態下, X-bar約有一半超出管制界線
→ Gage R&R分析

Example 2: 重複性

■儀器變異

		g= 零件數×人員數			
		10	15	>15	
m =	2	1.16	1.15	1.128	
重複次數	3	1.72	1.71	1.693	

$$\sigma_{\text{\&B}} = \sigma_{\text{±\&E}} = \frac{\overline{\overline{R}}}{d_2^*} = \frac{0.19}{1.16} = 0.164$$

 $(d_2^*: m(重複次數) = 2, g(零件數×人員數) = 10)$

 d_2^* 查Page 480頁,而非查管制圖係數

■ 5 (parts) × 2 (trials) × 2 (operators) , 則 $d_2^* = 1.16$

Example 2: 再現性

■人員變異

$$\sigma_{\text{人}} = \sigma_{\text{\mu,H}} = \sqrt{\left(\frac{R_{\text{人}}}{d_2^*}\right)^2 - \frac{\sigma_{\text{儀器}}^2}{\text{重複量測數×零件數}}}$$

$$= \sqrt{\left(\frac{0.444}{1.41}\right)^2 - \frac{0.164^2}{2 \times 5}} = 0.310$$

$$(d_2^*: m(人員數) = 2, g = 1)$$

d_2^{*}	g = 1	
m =	2	1.41
人員數	3	1.91

■ 5 (parts) × 2 (trials) × 2 (operators) , 則 $d_2^* = 1.41$

Example 2: 量測變異

Example 2: 零件本身變異

$$\sigma_{\text{零件}} = \frac{R_{\text{零件}}}{d_2^*} = \frac{2.930}{2.48} = 1.181$$
 $(d_2^* : m(\text{零件數}) = 5, g = 1)$

<i>d</i> *	m=零件數		
a_2	5	10	
g = 1	2.48	3.18	

■ 5 (parts) × 2 (trials) × 2 (operators) , 則 $d_2^* = 2.48$

Example 2: 總變異

$$\sigma_{\text{total}} = \sqrt{\sigma_{\frac{3}{2}||}^2 + \sigma_{\frac{3}{2}||}^2} = \sqrt{0.351^2 + 1.181^2}$$

$$= 1.232$$

Exercise

■ Page 194

Example 2: 指標計算(Gage R&R分析報表)

$$\% RR_{TV} = \frac{\sigma_{\frac{\pi}{2}}}{\sigma_{total}} \times 100\% = \frac{0.351}{1.232} \times 100\% = 28.49\%$$

$$\% RR_{tolerance} = \frac{5.15 \times \sigma_{\frac{\pi}{2}}}{\text{USL-LSL}} \times 100\% = \frac{1.808}{4} \times 100\% = 45.19\%$$

$$Min \left[\% R \& R_{TV}, \% R \& R_{Tolerance}\right] = 28.49$$

$$ndc = \left[1.41 \times \frac{\sigma_{\frac{\pi}{4}}}{\sigma_{\frac{\pi}{2}}}\right] = \left[1.41 \times \frac{1.181}{0.351}\right] = 4.74 \rightarrow 4 \qquad (無條件捨去)$$
此量測系統可接受?

本例中,人員變異大於儀器變異,需較關注於量測人員之改善

Part 3. 計數型MSA (Kappa分析)

計數值量測

■量測結果

■ 產品: 合格(0)、不合格(1)

■ 法官判決:犯人有罪(0)、無罪(1)

■ **醫療診斷**:輕微骨折(-1)、沒骨折(0)、重度骨折(1)

■ 顧客滿意:很滿意(2)、滿意(1)、一般(0)、不滿意

(-1)、很不滿意(-2)

Example

■ 檢體化驗結果:陽性(1)、再驗(0)、陰性(-1)

就診病人	實際健康狀況	化驗師A	化驗師B	化驗師C
1	1	-1	1	1
2	0	0	1	-1
3	0	0	0	-1
	:	:		:
10	-1	-1	-1	-1

目的:評斷檢測人員之檢測一致性

Kappa 係數

■ 用以衡量一致性(consistence)的統計量

$$Kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o : 觀察的一致性 (判定結果一致的次數百分比)

■ P_e:期望的一致性(判定結果預期一致的機率)

2X2 列連表

■ *Example*: 兩位檢驗者(A、B)、兩類別(0,1)

]	3	/ 台 本L
		類別0	類別1	總計
A	類別0	a	b	gl=a+b
A	類別1	c	d	g2=a+b
總	計	fl=a+c	f2=b+d	n=a+b+c+d
A、B均判為	0之次數 B	判為1之總部	欠數 受	檢總數

P_o

■ 觀察的一致性(測量結果一致的次數百分比)

			3	/向 ÷L
		類別0	類別1	總計
٨	類別0	а	b	gl=a+b
A	類別1	С	d	g2=c+d
總計		fl=a+c	f2=b+d	n=a+b+c+d

$$P_o = \frac{a+d}{n}$$

$P_{\scriptscriptstyle \rho}$

■ 期望的一致性比例 (測量結果預期一致的機率)

			В		
		類別0	類別1	總計	
A	類別0	а	b	gI=a+b	
A	類別1	С	d	g2=c+d	
總計		fl=a+c	f2=b+d	n=a+b+c+d	

$$P_e = \left(\frac{g_1}{n} \times \frac{f_1}{n}\right) + \left(\frac{g_2}{n} \times \frac{f_2}{n}\right)$$

Kappa 係數之判定

- *Kappa* = 1 → 完全一致性
- *Kappa* > 0.75 → 良好的一致性
- Kappa < 0.4 → 量測系統需改善

$$Kappa = \frac{P_o - P_e}{1 - P_e}$$

Kappa 分析表格

St. Tail all.	受測物 真值		檢測人員A		1	檢測人員B			檢測人員C		
文则物	具但	1	2	3	1	2	3	1	2	3	
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											

Kappa 分析之步驟

■ 檢驗者互相兩兩比較A、B → Kappa_{AB}

		F	3
		類別0	類別1
	類別0		
A	類別1		

■ 檢驗者各自跟真值比較 \rightarrow $Kappa_A$ \rightarrow $Kappa_B$

		真	值
		類別0	類別1
	類別0		
A	類別1		

		真值		
		類別0	類別1	
n	類別0			
В	類別1			

Kappa 分析之步驟

■ 製作結果摘要表

Kappa值	A	В
A	$Kappa_{\!{}_{\!A}}$	$Kappa_{AB}$
В	$Kappa_{AB}$	$Kappa_{B}$

- 判斷準則
 - *Kappa* = 1 → 完全一致性
 - *Kappa* > 0.75 → 良好的一致性
 - Kappa < 0.4 →量測系統需改善

Example

- 現場有三位品檢人員檢驗15個產品
- ■將受測物評定為
 - 合格(1)
 - 尚可(0)
 - 不合格(-1)
- 每受測物重複量測3次

Example

受测物	真值		檢測人員A			檢測人員B			檢測人員 C	
文例物	共正	1	2	3	1	2	3	1	2	3
1	1	1	1	1	0	1	1	1	1	-1
2	0	0	0	0	0	0	0	0	0	0
3	-1	0	-1	-1	-1	1	-1	-1	-1	-1
4	1	1	1	1	1	1	1	1	1	1
5	-1	-1	-1	-1	0	-1	-1	-1	-1	-1
6	-1	-1	-1	0	-1	-1	-1	1	-1	-1
7	0	0	0	0	0	0	0	0	0	0
8	1	1	1	1	1	1	1	1	1	1
9	1	1	0	1	1	1	1	1	0	1
10	1	1	1	1	1	1	1	1	1	1
11	0	0	0	1	0	-1	0	0	0	0
12	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
13	0	0	0	0	0	0	0	1	0	0
14	1	1	1	1	1	1	1	1	1	1
15	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

檢測人員間之Kappa係數

■ 檢測人員A、B

			الم مار		
		類別 1	類別 0	類別 -1	總計
	類別 1	16	2	0	18
A	類別 0	1	10	3	14
	類別 -1	1	1	11	13
	總計	18	13	14	45

$$P_o = \frac{16+10+11}{45} = 0.822 \qquad P_e = \left(\frac{18}{45} \times \frac{18}{45}\right) + \left(\frac{13}{45} \times \frac{14}{45}\right) + \left(\frac{14}{45} \times \frac{13}{45}\right) = 0.340$$

$$Kappa_{AB} = \frac{0.822 - 0.340}{1 - 0.340} = 0.730 < 0.75$$

檢測人員A之Kappa係數

■ 檢測人員A、真值

			om ±L		
		類別 1	類別 0	類別 -1	總計
	類別 1	17	1	0	18
A	類別 0	1	11	2	14
	類別 -1	0	0	13	13
總計		18	12	15	45

$$P_o = \frac{17 + 11 + 13}{45} = 0.911 \qquad P_e = \left(\frac{18}{45} \times \frac{18}{45}\right) + \left(\frac{12}{45} \times \frac{14}{45}\right) + \left(\frac{15}{45} \times \frac{13}{45}\right) = 0.339$$

$$Kappa_A = \frac{0.911 - 0.339}{1 - 0.339} = 0.865 > 0.75$$

結果摘要表

Kappa	Kappa 檢驗員A		檢驗員C		
檢驗員A	0.865	0.730	0.799		
檢驗員B	0.730	0.865	0.730		
檢驗員C	0.799	0.730	0.865		

- ■檢驗員各自的檢驗能力不錯 (>0.75)
- ■檢驗員間的檢驗一致性均有待加強

啟示

■ 感冒不要一直換醫生!!

Exercise

■ Page 195

Part 4: 不可重複型量測系統分析 (破壞性測試的量測系統)

破壞性測試的量測系統

- 特性: 無法進行多次重複量測(成本考量)
- *Example*:
 - 手機測試
 - 半導體晶圓測試
 - Notebook 硬度測試
 - 車輛撞擊測試...

變異計算

■ 利用R管制圖計算量測變異

$$\sigma_{\text{\tiny ball}} = \frac{\overline{R}}{d_{\gamma}}$$

■ 利用MR管制圖計算零件變異

$$\sigma_{\text{\$}^{\text{#}}} = \frac{\overline{MR}}{1.128}$$

MR: 移動全距

■總變異

$$\sigma_{total} = \sqrt{\sigma_{rac{1}{2}\parallel}^2 + \sigma_{lpha \parallel}^2}$$

指標計算

■流程總變異的百分比

$$\%R \& R_{TV} = \frac{\sigma_{\frac{1}{2}||}}{\sigma_{total}} \times 100\%$$

■ 公差的百分比

$$\%R \& R_{Tolerance} = \%P/T = \frac{5.15\sigma_{\text{min}}}{USL - LSL} \times 100\% < 30\%$$

■區別分類數

$$ndc = \left\lceil \frac{\sigma_{\text{sep}}}{\sigma_{\text{deg}}} \right\rceil \times 1.41 > 5$$

Example

■ 利用R-chart計算量測變異

批量	1	2	3	4	5	6			
様本1	14.82	15.45	15.31	14.33	14.28	15.35			
様本2	14.87	15.34	15.28	14.29	14.37	15.39			
全距 (R)	0.05	0.11	0.03	0.04	0.09	0.04			
<i>R</i> -bar		0.060							

$$\sigma_{\text{m}} = \frac{\overline{R}}{d_2} = \frac{0.06}{1.128} = 0.053$$

Example

■ 利用X-MR chart計算零件變異

批量	1	2	3	4	5	6		
様本1	14.82	15.45	15.31	14.33	14.28	15.35		
様本2	14.87	15.34	15.28	14.29	14.37	15.39		
平均值	14.845	15.395	15.295	14.310	14.325	15.370		
MR		0.550 0.100 0.985 0.015 1.045						
<i>MR</i> -bar	0.539							

$$\sigma_{\text{TH}} = \frac{\overline{MR}}{1.128} = \frac{0.539}{1.128} = 0.478$$

Example

■總變異

$$\sigma_{total} = \sqrt{\sigma_{\frac{3}{2}||}^2 + \sigma_{\frac{3}{2}||}^2}$$
$$= \sqrt{0.053^2 + 0.478^2}$$
$$= 0.480929$$

Example

■ 流程總變異的百分比

% R &
$$R_{TV} = \frac{0.053}{0.480929} \times 100\% = 11.0203\% < 30\%$$

■區別分類數

$$ndc = \left[\frac{0.478}{0.053}\right] \times 1.41 = 12.72 \rightarrow 12 > 5$$

Exercise

■ 某流程進行破壞性實驗並進行量測,得數據 如表

批量	1	2	3	4	5	6	7
様本1	16.92	17.55	17.41	16.42	16.38	17.45	17.22
様本2	16.97	17.48	17.37	16.39	16.47	17.49	17.13
様本3	16.90	17.46	17.45	16.35	16.40	17.51	17.18