

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М3102		К работе допущен	
Студент <u>Лопатенко Геор</u>	огий Валентинович	Работа выполнена	_
Преподаватель Тим	лофеева Э.О.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.02

Скольжение тележки по наклонной плоскости

1. Цель работы:

Изучить скольжение тележки по наклонной плоскости.

2. Задачи, решаемые при выполнении работы:

- 1. Получить данные измерений (построить экспериментальную выборку);
- 2. Экспериментально проверить равноускоренность движения тележки;
- 3. Определить величину ускорения свободного падения;
- 4. Сравнить полученную величину со значением константы.

3. Объект исследования:

Тележка, скользящая по наклонной плоскости с воздушной подушкой.

4. Метод экспериментального исследования:

Многократные совместные измерения времени прохода тележки через оптические ворота и проверка теории скользящего по наклонной поверхности тела.

5. Рабочие формулы и исходные данные:

Второй закон Ньютона, описывающий движение тележки: $m\overline{a}=m\overline{g}+\overline{N}+\overline{F}_{_{\mathrm{TD}}}$

 $\begin{cases} 0y: & 0 = N - mg\cos\alpha \\ 0x: & mg\sin\alpha - \mu mg\cos\alpha \end{cases}$

Выражение для ускорения с учетом малых значений угла и коэффициента трения: $a=g(\sin \alpha - \mu)$ Ускорение тележки по методу наим.квадратов и СКО:

$$a = \frac{\sum_{i=1}^{N} Z_{i} Y_{i}}{\sum_{i=1}^{N} Z_{i}^{2}}; \quad \sigma_{a} = \sqrt{\frac{\sum_{i=1}^{N} (Y_{i} - a Z_{i})^{2}}{(N-1) \sum_{i=1}^{N} Z_{i}^{2}}}$$

Абсолютная погрешность с учетом погрешности приборов: $\Delta x = \sqrt{\left(\overline{\Delta x}\right)^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$

Погрешность косвенного значения: $\Delta z = \sqrt{\left(\frac{\partial z}{\partial x1}\Delta x1\right)^2 + \left(\frac{\partial z}{\partial x2}\Delta x2\right)^2}; \ z = f(x1, x2)$

 $\Delta_{_{UX}}$ – погрешность прибора, $\overline{\Delta x}$ – случайная погрешность (доверительный интервал)

Относительная погрешность: $\varepsilon_x = \frac{\Delta x}{\overline{x}} \cdot 100\%$

Значение угла наклона рельса к горизонту:
$$\sin \alpha = \frac{(h_0 - h) - (h_0' - h')}{x' - x}$$
 Значение ускорения и его погрешность: $\overline{a} = \frac{2(x_2 - x_1)}{(\overline{t_2})^2 - (\overline{t_1})^2}$

$$\Delta a = \overline{a} \cdot \sqrt{\frac{(\Delta x_{u2})^2 + (\Delta x_{u1})^2}{(x_2 - x_1)^2}} + 4 \cdot \frac{(\overline{t_2} \Delta t_2)^2 + (\overline{t_1} \Delta t_1)^2}{((\overline{t_2})^2 - (\overline{t_1})^2)^2}$$
 Коэффициенты $B \equiv g = \frac{\sum\limits_{i=1}^N a_i sin\alpha_i - \frac{1}{N} \sum\limits_{i=1}^N a_i \sum\limits_{i=1}^N sin\alpha_i}{\sum\limits_{i=1}^N sin\alpha_i^2 - \frac{1}{N} (\sum\limits_{i=1}^N sin\alpha_i)}; \quad A = \frac{1}{N} (\sum\limits_{i=1}^N a_i - B\sum\limits_{i=1}^N sin\alpha_i)$

СКО для ускорения свободного падения:
$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^N d_i^2}{D(N-2)}} \text{ , где } d_i = a_i - (A + Bsina_i)$$

$$D = \sum\limits_{i=1}^N sin\alpha_i^2 - \frac{1}{N}(\sum\limits_{i=1}^N sin\alpha_i)$$

6. Измерительные приборы:

No	Наименование	Предел измерения	Цена деления	Класс точности	$\Delta_{_{ m H}}$
1	Линейка на рельсе	1.3 м	1 см/дел	-	0.005 м
2	Линейка на угольнике	0.4 м	1 мм/дел	-	0.0005 м
3	ПКЦ-3 (секундомер)	100 c	0.1 c	-	0.1 c

7. Схема установки:

По рельсу на винтовых ножках "1" скользит тележка "2". Для уменьшения трения между поверхностями рельса и тележки создается воздушная подушка с помощью воздушного насоса "3". Тележка снабжена флажком с черными вертикальными рисками, которые фиксирует цифровой измерительный прибор, когда тележка проходит через оптические ворота. Угольник используется для измерения вертикальных координат точек.

8. Результаты прямых измерений и их обработки:

Таблица 2

х, м	x³, M	h0, м	h0', м
0.22	1	0.204	0.206

Таблица 3

Nº	Измеренные величины			НЫ	Рассчитанные величины		
	х1, м	х2, м	t1, c	t2, c	х2-х1, м	(t2^2-t1^2)/2, c^2	
1	0.15	0.40	1.2	2.3	0.2500 ± 0.0047	1.9250 ± 0.1729	
2	0.15	0.50	1.2	2.5	0.3500 ± 0.0047	2.4050 ± 0.1849	
3	0.15	0.70	1.3	3.1	0.5500 ± 0.0047	3.9600 ± 0.2241	
4	0.15	0.90	1.2	3.4	0.7500 ± 0.0047	5.0600 ± 0.2404	
5	0.15	1.10	1.3	4.0	0.9500 ± 0.0047	7.1550 ± 0,2804	

Тогда ускорение посчитаем по МНК: $a=0.138211\approx 0.1382\frac{\text{м}}{\text{c}^2}$ и СКО: $\sigma_a=0.00337781\approx 0.0034$

Таблица 4

Nпл	<i>h</i> , м	<i>h</i> ', м	No	t ₁ , c	t ₂ , c
			1	1.3	4.0
			2	1.4	4.1
1	0.194	0.205	3	1.3	4.0
			4	1.5	4.2
			5	1.4	4.2
			1	1.2	3.2
			2	1.1	3.1
2	0.184	0.205	3	1.1	3.1
			4	1.1	3.1
			5	1.0	3.0
			1	0.9	2.6
			2	0.9	2.6
3	0.175	0.205	3	0.9	2.6
			4	0.8	2.4
			5	0.9	2.6
			1	0.9	2.3
4	0.165	0.204	2	0.9	2.3
т	3.103	0.20-	3	0.8	2.2

			4	0.7	2.2
			5	0.6	2.0
			1	0.6	1.9
5 0.		0.155 0.204	2	0.6	2.0
	0.155		3	0.6	2.0
			4	0.6	2.0
			5	0.6	2.0

*N*пл - количество пластин;

h - высота на координате x = 0.22 м;

h' - высота на координате x' = 1.00 м.

Таблииа 5

Tuonuu	-			
Nпл	sin α	$\langle t_1 \rangle \pm \Delta t_1$, c	$< t_2 > \pm \Delta t_2$, c	$< a > \pm \Delta a, \frac{M}{c^2}$
1	0.0115	1.3800±0.1234	4.1000±0.1409	0.1275±0.0103
2	0.0244	1.1000±0.1102	3.1000±0.1102	0.2262 <u>+</u> 0.0196
3	0.0359	0.8800±0.0868	2.5600±0.1295	0.3286 <u>+</u> 0.0388
4	0.0474	0.7800±0.1751	2.2000±0.1661	0.4490±0.0829
5	0.0603	0.6000±0.0667	1.9800±0.0868	0.5336±0.0530

*N*пл - количество пластин;

$$< t_{1,2} > = \frac{1}{N} \sum_{i=1}^{N} t_{1_i, 2_i};$$

$$B \equiv g = \frac{\sum_{i=1}^{N} a_{i} sin\alpha_{i} - \frac{1}{N} \sum_{i=1}^{N} a_{i} \sum_{i=1}^{N} sin\alpha_{i}}{\sum_{i=1}^{N} sin\alpha_{i}^{2} - \frac{1}{N} (\sum_{i=1}^{N} sin\alpha_{i})} = 8.56$$

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right) = 0.025; \quad D = \sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2 = 0.0014552$$

СКО для ускорения свободного падения: $\sigma_{_{g}}=0.331411$

10. Расчет погрешностей измерений:

Для задания 1:

Доверительная вероятность $\alpha=0.95$, коэффициент Стьюдента $t_{\alpha,n}=2.7764$

$$\begin{split} &\Delta(x_{2}-x_{1}) \,=\, \sqrt{\left(\frac{\partial d}{\partial x_{1}}\Delta_{x_{1}}\right)^{2}+\left(\frac{\partial d}{\partial x_{2}}\Delta_{x_{2}}\right)^{2}}\left(\Delta x_{i} \,\,=\,\, \frac{2}{3}\Delta_{_{\mathrm{H}}}\right) \to \Delta(x_{2}-x_{_{1}}) \,=\, \frac{\sqrt{2}}{300} = 0.0047 \;\mathrm{m} \\ &\Delta(\frac{t_{2}^{2}-t_{1}^{2}}{2}) \,=\, \sqrt{\left(t_{2}\Delta_{_{t}}\right)^{2}+\left(t_{1}\Delta_{_{t}}\right)^{2}}\left(\Delta_{_{t}} \,\,=\,\, \frac{2}{3}\Delta_{_{\mathrm{H}}}\right) \end{split}$$

Абсолютная погрешность коэффициента a для доверительной вероятности $\alpha = 0.9$:

$$\Delta_a = 2\sigma_a = 0.0068$$

Относительная погрешность ускорения: $\varepsilon_a = \frac{\Delta_a}{a} \cdot 100\% = 4.89\%$

Для задания 2:

Доверительная вероятность $\alpha=0.95$, коэффициент Стьюдента $t_{\alpha,n}=2.7764$

		для $t_1^{}$, с	для $t_2^{}$, с		
Nпл	$S_{\bar{t}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \langle t \rangle)^2}{n(n-1)}}$	$\Delta_{t_1} = \sqrt{(t_{\alpha, n} S_{\bar{t}})^2 + (\frac{2}{3} \Delta_{\mu})^2}$	$S_{\bar{t}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \langle t \rangle)^2}{n(n-1)}}$	$\Delta_{t_2} = \sqrt{\left(t_{\alpha,n} S_{\bar{t}}\right)^2 + \left(\frac{2}{3} \Delta_{\mu}\right)^2}$	
1	0.0374	0.1234	0.0447	0.1409	
2	0.0316	0.1102	0.0316	0.1102	
3	0.0200	0.0868	0.0400	0.1295	
4	0.0583	0.1751	0.0548	0.1661	
5	0.0000	0.0667	0.0200	0.0868	

Абсолютная погрешность коэффициента g для доверительной вероятности $\alpha = 0.9$:

$$\Delta_g = 2\sigma_g = 0.6628$$

Относительная погрешность g: $\varepsilon_g = \frac{\Delta_g}{g} \cdot 100\% = 7.74\%$ Абсолютное отклонение значения g: $\left|g_{_{\mathfrak{PKCII}}} - g_{_{\mathtt{Taбл}}}\right| = 9.82 - 8.56 = 1.26 \frac{^{\mathtt{M}}}{^{\mathtt{C}^2}}$

11. Графики:

12. Окончательные результаты:

Доверительный интервал для значения ускорения при одной пластине:

$$a = (0.1382 \pm 0.0068) \frac{M}{c^2}$$
 $\epsilon_a = 4.89\%$ $\alpha = 0.9$

Доверительный интервал значения ускорения свободного падения:

$$g = (8.56 \pm 0.066) \frac{M}{c^2}$$
 $\varepsilon_g = 7.74\%$ $\alpha = 0.9$

13. Выводы и анализ результатов работы:

По собранным данным (с одной пластиной) была построена аппроксимирующая прямая. Угловой коэффициент был получен по методу наименьших квадратов и с погрешностью составляет $a=(0,1382~\pm~0.0068)~\frac{M}{c^2}$. При построении зависимости с таким угловым коэффициентом отмечалось сходство экспериментально и аналитически построенных графиков соответственно, таким образом гипотеза о равноускоренности движения тележки подтверждается в рамках эксперимента. Относительная погрешность полученного значения составляет 4.89%, что является показателем в пределах нормы.

Экспериментально полученные данные позволили рассчитать значения ускорения свободного падения $g=(8.56~\pm~0.066)\frac{M}{c^2}$.

В ходе подсчета было замечено, что абсолютное отклонения для g почти в два раза превышает значение среднего квадратичного отклонения: это объясняется тем, что в экспериментальной установке не работал электромагнит, фиксирующий тележку и запуск времени совершался вручную.