

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по домашней работе № 2-3

Название домашней работы: Метод конечных сумм для интегрального уравнения Фредгольма 2-го рода

Дисциплина:

Вариант № 9

Численные методы		
Студент группы ФН11-52Б	(Подпись, дата)	Очкин Н.В. (И.О. Фамилия)
Преподаватель	(Подпись, дата)	Кутыркин В.А (И.О. Фамилия)

Задание

Используя дискретный аналог уравнения

$$x(s) - \lambda \int_{a}^{b} K(s, \tau) x(\tau) d\tau = y(s), \ s \in [a; b],$$

индуцированный методом конечных сумм с квадратурными формулами прямоугольников (количество узлов в квадратурной формуле не менее 20), найти приближённое решение уравнения, которое имеет вид:

$$x(s) - \frac{1}{n - 47} \cdot \int_{0}^{\frac{N+7}{N}} K(s, \tau) x(\tau) d\tau = \frac{N+3}{N} \cdot \left(s^2 + \frac{n-53}{2}\right), \quad s \in \left[0; \frac{N+7}{N}\right],$$

где N – номер фамилии студента в журнале, n – номер группы и

$$K(s,\tau) = \begin{cases} s \cdot \left(2 \cdot \frac{N+7}{N} - \tau\right), & 0 \le s \le \tau; \\ \tau \cdot \left(2 \cdot \frac{N+7}{N} - s\right), & \tau \le s \le \frac{N+7}{N} \end{cases}$$

Найти аналитическое решение уравнения, сведя интегральное уравнение соответствующей краевой задаче. В узлах сетки наглядно сравнить приближённое решение с аналитическим, построив графики этих решений, и оценить абсолютную погрешность приближённого решения.

Исходные данные

$$n = 52$$
 $N = 9$

Ход выполнения работы

Численное решение

Для построения дискретного аналога, аппроксимирующего уравнение, зададим двумерную центрально-равномерную сетку $B \times A = \langle (s_i, \tau_i) : s_i \in B, \tau_i \in A \rangle$ типа $n \times n$ шага (h, τ) . Следовательно, $B = \langle s_1, s_2, \ldots, s_n \rangle$ и $A = \langle \tau_1, \tau_2, \ldots, \tau_n \rangle$ центрально-равномерные сетки отрезка [a;b] с шагами $h = \frac{b-a}{n}$ и $\tau = \frac{b-a}{n}$, соответственно.

n зададим равным 20, тогда

$$n=20$$
 отрезок: $\left[0; \frac{N+7}{N} \approx 1.78\right]$

B	A
[0.088889]	0.088889
0.17778	0.17778
0.26667	0.26667
0.35556	0.35556
0.44444	0.44444
0.53333	0.53333
0.62222	0.62222
0.71111	0.71111
0.8	0.8
0.88889	0.88889
0.97778	0.97778
1.0667	1.0667
1.1556	1.1556
1.2444	1.2444
1.3333	1.3333
1.4222	1.4222
1.5111	1.5111
1.6	1.6
1.6889	1.6889
[1.7778]	1.7778

Составим матрицу $K^i_j = K(s_i; au_j)$ размера 20×20 :

K_j^i :

0.30815	0.30025	0.29235	0.28444	0.27654		0.16593	0.15802
0.30025	0.60049	0.58469	0.56889	0.55309		0.33185	0.31605
0.29235	0.58469	0.87704	0.85333	0.82963	• • •	0.49778	0.47407
0.28444	0.56889	0.85333	1.1378	1.1062		0.6637	0.6321
0.27654	0.55309	0.82963	1.1062	1.3827		0.82963	0.79012
:	÷	÷	÷	÷	٠	:	:
0.18963	0.37926	0.56889	0.75852	0.94815	• • •	2.6548	2.5284
0.18173	0.36346	0.54519	0.72691	0.90864		2.9551	2.8207
0.17383	0.34765	0.52148	0.69531	0.86914	• • •	3.1289	2.9867
0.16593	0.33185	0.49778	0.6637	0.82963	• • •	3.1526	3.0025
0.15802	0.31605	0.47407	0.6321	0.79012		3.0025	3.1605

Решим СЛАУ:

$$\mathbf{F} \cdot {}^{>}x = {}^{>}y,$$

$$x^{>}x = [x^1, \dots, x^n\rangle;$$

 $x^{>}y = [y^1, \dots, y^n\rangle;$

$$\mathbf{F} = \left(\delta_j^i - \lambda K_j^i \cdot h\right)_n^n;$$

$$\lambda = \frac{1}{52 - 47} = 0.2;$$

$$\delta_j^i = \begin{cases} 1, & i = j; \\ 0, i \neq j. \end{cases}$$

\mathbf{F} :

ſ	0.99452	-0.0053377	-0.0051973	-0.0050568	-0.0049163		-0.0029498	-0.0028093
	-0.0053377	0.98932	-0.010395	-0.010114	-0.0098327		-0.0058996	-0.0056187
	-0.0051973	-0.010395	0.98441	-0.01517	-0.014749		-0.0088494	-0.008428
	-0.0050568	-0.010114	-0.01517	0.97977	-0.019665		-0.011799	-0.011237
İ	-0.0049163	-0.0098327	-0.014749	-0.019665	0.97542	• • •	-0.014749	-0.014047
1								
١	:	•	:	:	:	٠	:	:
	-0.0033712	0.0067424	: -0.010114	\vdots -0.013485	0.016856	··.	\vdots -0.049444	\vdots -0.051692
	: -0.0033712 -0.0032307	: -0.0067424 -0.0064615	$ \begin{array}{c} \vdots \\ -0.010114 \\ -0.0096922 \end{array} $	0.013485 -0.012923	0.016856 0.016154	-	$ \begin{array}{c} \vdots \\ -0.049444 \\ -0.052534 \end{array} $	$ \begin{array}{c} \vdots \\ -0.051692 \\ -0.050147 \end{array} $
	0.0000112	0.000,	0.0-0	0.0-0-00	0.0-000		0.0 -0	0.001002

Составим вектор >y:

$$y = \frac{N+3}{N} \left(s^2 + \frac{52-53}{2} \right) \approx 1.33 \left(s^2 - 0.5 \right), \quad s \in [0; 1.78]$$

И найдем вектор >x:

$$x = \mathbf{F}^{-1} \cdot y$$

	$\begin{bmatrix} -0.65613 \end{bmatrix}$		[-0.50181]
	-0.62453		-0.31307
	-0.57185		-0.1015
	-0.49811		0.13171
	-0.40329		0.38526
	-0.28741		0.6577
	-0.15045		0.94753
	0.007572		1.2531
	0.18667		1.5727
>	0.38683	>	1.9045
$^{>}y$:	0.60807	>x:	2.2467
	0.85037		2.5974
	1.1137		2.9545
	1.3982		3.3161
	1.7037		3.6801
	2.0303		4.0445
	2.3779		4.4073
	2.7467		4.7664
	3.1365		5.1197
	3.5473		5.4654

Аналитическое решение

Подставляя $K(s,\tau)$ в исходное уравнение, получим:

$$x(s) - \frac{\int\limits_{0}^{s} \tau\left(\frac{32}{9} - s\right) x(\tau) d\tau}{5} - \frac{\int\limits_{s}^{\frac{16}{9}} s\left(\frac{32}{9} - \tau\right) x(\tau) d\tau}{5} = \frac{4s^{2}}{3} - \frac{2}{3}$$

Продифференцируем это уравнение:

$$\frac{d}{ds}x(s) - \frac{\int_{0}^{s} (-\tau x(\tau)) d\tau}{5} - \frac{\int_{s}^{\frac{16}{9}} (\frac{32}{9} - \tau) x(\tau) d\tau}{5} = \frac{8s}{3}$$

Продифференцируем это уравнение во второй раз:

$$\frac{sx(s)}{5} + \frac{\left(\frac{32}{9} - s\right)x(s)}{5} + \frac{d^2}{ds^2}x(s) = \frac{8}{3}$$

Упростим выражение:

$$\frac{32x(s)}{45} + \frac{d^2}{ds^2}x(s) = \frac{8}{3}$$

Решая получившееся дифференциальное уравнение, получим:

$$x(s) = C_1 \sin\left(\frac{4\sqrt{10}s}{15}\right) + C_2 \cos\left(\frac{4\sqrt{10}s}{15}\right) + \frac{15}{4}$$

Подставим краевые условия:

$$x(a) = x(0) = -\frac{2}{3}$$

$$x(b) = x(1.78) = 0.356 \int_{0}^{\frac{16}{9}} \tau x(\tau) d\tau + 3.5473$$

$$x'(b) = x'(1.78) = 4.741 - 0.2 \int_{0}^{\frac{16}{9}} \tau x(\tau) d\tau$$

Получим систему краевых условий:

$$\begin{cases} x(0) = -\frac{2}{3} \\ 0.5625x \left(\frac{16}{9}\right) + \frac{d}{ds}x(s) \Big|_{s=1.78} - 1.9954 = 4.7407 \end{cases}$$

Откуда:

$$C_1 \approx 1.7535$$
 $C_2 = -\frac{53}{12}$

Итого:

$$x(s) = 1.7535 \sin\left(\frac{4\sqrt{10}s}{15}\right) - 4.4167 \cos\left(\frac{4\sqrt{10}s}{15}\right) + 3.75$$

Анализ результатов

Построим совмещённые графики аналитически найденной функции x(s) и функции, построенной по точкам, найденным численно.

Вычислим погрешности:

s	=x(s)	$\approx x(s)$	Δ
0.088889	-0.52295	-0.50181	0.021135
0.17778	-0.35523	-0.31307	0.042163
0.26667	-0.16446	-0.1015	0.062965
0.35556	0.04829	0.13171	0.083423
0.44444	0.28183	0.38526	0.10342
0.53333	0.53485	0.6577	0.12285
0.62222	0.80593	0.94753	0.1416
0.71111	1.0935	1.2531	0.15955
0.8	1.3961	1.5727	0.17662
0.88889	1.7118	1.9045	0.1927
0.97778	2.039	2.2467	0.20771
1.0667	2.3758	2.5974	0.22155
1.1556	2.7203	2.9545	0.23415
1.2444	3.0706	3.3161	0.24544
1.3333	3.4248	3.6801	0.25535
1.4222	3.7807	4.0445	0.26383
1.5111	4.1365	4.4073	0.27082
1.6	4.4901	4.7664	0.27629
1.6889	4.8395	5.1197	0.28021
1.7778	5.1829	5.4654	0.28255

гле

=x(s) - значение функции в точке, найденной аналитически

pprox x(s) - значение функции в точке, найденной численно

 Δ - абсолютная погрешность

 $\max \Delta : 0.28255$

Вывод

В ходе проделанной работы было решено интегральное уравнение Фредгольма второго рода с симметричным, непрерывным и аналитически заданным ядром методом конечных сумм, найдено его аналитическое решение и сравнены результаты обоих вычислений.