

# Quantum Computing on OpenShift

Parul Singh Software Engineer Red Hat Ismael Faro
Tech Lead Cloud
IBM Quantum

Luciano Bello Qiskit Dev team IBM Quantum

**IBM Quantum** 



# **Agenda**



#### **Introduction to Quantum Computing**

Future of computing Key Concepts

#### **Qiskit Operator**

Demo how to launch a development env for implementing quantum algorithm using Qiskit & OpenShift

#### Example circuit

Qiskit developer's from IBM will demo how to implement circuits using Qiskit





## The world's most powerful "bits + neurons" system

# Oak Ridge National Laboratory US Department of Energy

#### **Summit supercomputer specs**

#### 200,000

trillion calculations per second

#### 9216

IBM Power 9 processors

#### 27,648

**NVIDIA GPUs** 

#### 250 PB

File System

IBM Red Hat Enterprise Linux (RHEL) v 7.4

Operating System



# Are there still intractable problems?

### **Bits & Qubits**

It's *impossible* to completely represent the molecular configuration of caffeine on today's most powerful supercomputers, but we could represent it using 160 qubits



# How many bits do we need for caffeine?

We need approximately 10<sup>48</sup> bits to represent the energy configuration of a single caffeine molecule at a single instant.

This is 1 to 10% of the total number of atoms in the Earth.



# Hard versus easy problems



**IBM Quantum** 



# That's not very

# Quantum Computing **Key Concepts**

You're dead to me! Shrodinger of you



# **Key Concepts**



Bits can be **0** or **1** 

Quantum bits, or *qubits*, can take on those values but can represent a combination of |**0**> and |**1**> while we are computing

**Superposition** is creating a quantum state that is a combination of  $|0\rangle$  and  $|1\rangle$ 

A Hadamard gate H on qubit 0, which puts it into a superposition state





**Entanglement** strongly connects two or more qubits so that their quantum states are no longer independent

A controlled-Not operation (CX) on control qubit 0 and target qubit 1, putting the qubits in an entangled state

#### **Quantum Systems**



- Lead the world in application systems (29 Devices)
- Lead the world in quantum research

# **IBM Quantum**

Quantum Cloud and Software



- Open source projects (Qiskit)
- IBM Quantum Services,
   Quantum Experience,
   Quantum Lab, Systems
   access

**Quantum Community** 



- Education, Researcher,
   Developers, Business
- Lead quantum software ecosystem development



#### Research





#### Production



# **Qiskit**

Qiskit [quiss-kit] is an open source SDK for working with quantum computers at the level of pulses, circuits and algorithms.



- Application, Programs
- Patterns and Circuits Library
- Transpiler (Analyze, Synthesize, Map, Optimize)
- Experimentalist tools and Pulses tools
- Simulators
- IBMQ Provider



**y** @qiskit



# Red Hat Quantum Computing Roadmap





#### Our general goal

- Define how the classical and the quantum can be connected together
- OpenShift provides best of classical computing environments
- IBM Research has developed quantum computers based on superconducting qubits

Prototyping to define the best practices for running heterogenous workflows in a co processor model using OpenShift and IBM Quantum Services



# IBM Quantum software Stack

OpenShift Quantum User Qiskit, Qiskit Experience Open Source Operator + Lab (Development) IBM Quantum API Cloud OpenShift Oiskit as a Service Quantum Operator Near Time Compute (Runtime) Real Quantum Devices k8s



# Demos -OpenShift Qiskit operator



# Developing Quantum Circuits on OpenShift using Qiskit Operator



Launches development environment with all the dependencies pre installed

# **OpenShift Qiskit Operator Demo**





Red Hat's Quantum Computing Roadmap

# **Quantum circuits**

The quantum building blocks



#### **Key Concepts**

# Pulses, Gates and Circuits



A quantum circuit is a computational routine consisting of coherent quantum operations on quantum data, such as qubits, and concurrent real-time classical computation.





# Developing circuits in Qiskit



# **Learn Quantum**



## **Learn Quantum**

Quantum Experience <a href="mailto:quantum-computing.ibm.com">quantum-computing.ibm.com</a>



#### Qiskit qiskit.orq

```
import numpy as np
from qiskit import(
 QuantumCircuit,
  execute,
from giskit.visualization import plot histogram
# Use Aer's gasm simulator
simulator = Aer.get_backend('qasm_simulator')
# Create a Quantum Circuit acting on the q register
circuit = QuantumCircuit(2, 2)
# Add a H gate on qubit 0
circuit.h(0)
# Add a CX (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0, 1)
# Map the quantum measurement to the classical bits
circuit.measure([0,1], [0,1])
# Execute the circuit on the gasm simulator
job = execute(circuit, simulator, shots=1000)
```



# Red Hat's Quantum Computing Roadmap

## Resources

Project Repo: <a href="https://github.com/qiskit-community/openshift-quantum-operators">https://github.com/qiskit-community/openshift-quantum-operators</a>

IBM Quantum Experience and Account: <a href="https://quantum-computing.ibm.com">https://quantum-computing.ibm.com</a>

Qiskit: qiskit.org

Presentation and Demo Notebook:

https://github.com/qiskit-community/qiskit-presentations/tree/master/2020-09-15\_DevNation





# Questions





# Thank you

