Potential Cardinality, I

for Countable First-Order Theories

Douglas Ulrich, Richard Rast, Chris Laskowski

University of Maryland

Rutgers Model Theory Seminar April 11, 2016

The Main Idea

The Goal: Understand the countable models of a theory Φ

Chosen framework: if $\Phi \leq_{_{\! B}} \Psi$ then the countable models of Φ are "more tame" than the countable models of Ψ .

Relatively easy: show $\Phi \leq_{\mathcal{B}} \Psi$; Relatively hard: show $\Phi \nleq_{\mathcal{B}} \Psi$

Theorem (Ulrich, R., Laskowski)

If $\Phi \leq_{R} \Psi$ then $\|\Phi\| \leq \|\Psi\|$.

Roadmap

Borel Reductions

2 Back-and-Forth Equivalence, Scott Sentences, and Potential Cardinality

3 Computations and Consequences

Motivation?

Why study Borel reductions?

Comparing the number of models is pretty coarse. Consider:

- lacktriangle Countable sets of \mathbb{Q} -vector spaces
- @ Graphs

These both have \beth_1 countable models, but Borel reductions can easily show the former is much smaller than the latter.

Counterexamples to Vaught's conjecture are pretty weird; Borel reductions give a nice way to make this formal (even given CH).

Borel Reductions

Fix $\Phi, \Psi \in L_{\omega_1\omega}$.

 $\operatorname{Mod}_{\omega}(\Phi)$ and $\operatorname{Mod}_{\omega}(\Psi)$ are Polish spaces under the formula topology.

 $f: \mathrm{Mod}_{\omega}(\Phi) \to \mathrm{Mod}_{\omega}(\Psi)$ is a Borel reduction if:

- For all $M, N \models \Phi$, $M \cong N$ iff $f(M) \cong f(N)$
- ② For any $\psi \in L_{\omega_1\omega}$ (with parameters from ω) there is a $\phi \in L_{\omega_1\omega}$ (with parameters from ω) where $f^{-1}(\operatorname{Mod}_{\omega}(\Psi \wedge \psi)) = \operatorname{Mod}_{\omega}(\Phi \wedge \phi)$

(preimages of Borel sets are Borel)

Say $\Phi \leq_{\mathbb{R}} \Psi$.

A Real Example

Let Φ be "linear orders" and Ψ be "real closed fields." Then $\Phi \leq_{_{\!R}} \Psi$.

Proof outline:

- Fix a linear order (I, <)
- Pick a sequence $(a_i : i \in I)$ from the monster RCF where $1 \ll a_i$ for all i, and if i < j, then $a_i \ll a_i$.
- Let M_I be prime over $\{a_i : i \in I\}$.
- f is "obviously Borel"
- $(I, <) \cong (J, <)$ iff $M_I \cong M_J$.

Establishing Some Benchmarks

Borel reducibility is inherently relative; it's hard to gauge complexity of (the countable models of) a sentence on its own.

One fix is to establish some benchmarks.

The two most important (for us) are:

- Being Borel a tameness condition which isn't too degenerate Can stratify this into (e.g.) Π^0_α for each $\alpha < \omega_1$
- Being Borel complete being maximally complicated

Borel Isomorphism Relations

Fix $\Phi \in L_{\omega_1 \omega}$. The following are equivalent:

- **1** Isomorphism for Φ is Borel (as a subset of $\operatorname{Mod}_{\omega}(\Phi)^2$)
- There is a countable bound on the Scott ranks of all countable models
- **1** There is an $\alpha < \omega_1$ where \equiv_{α} implies \cong for countable models of Φ
- lacktriangle There is a countable bound on the Scott ranks of all models of Φ
- **1** There is an $\alpha < \omega_1$ where $≡_\alpha$ implies $≡_{∞ω}$ for all models of Φ.

Fact: if Φ is Borel and $\Psi \leq_{\mathbb{R}} \Phi$, then Ψ is Borel.

Borel Complete Isomorphism Relations

Fix $\Phi \in L_{\omega_1 \omega}$. Φ is Borel complete if, for all Ψ , $\Psi \leq_{_{\!B}} \Phi$.

Theorem (Friedman, Stanley)

Lots of classes are Borel complete:

- Graphs
- Trees
- Linear orders
- Groups
- Fields
- . .

Fact: If Φ is Borel complete, then Φ is not Borel.

A Serious Question

It's somewhat clear how to show that $\Phi \leq_{\!\scriptscriptstyle B} \Psi.$

How is it possible to show that $\Phi \not\leq_{\mathcal{B}} \Psi$?

Partial answer: there are some techniques, but they only apply when Φ or Ψ is Borel (and low in the hierarchy).

Very little is known when you can't assume Borel.

Roadmap, II

Borel Reductions

2 Back-and-Forth Equivalence, Scott Sentences, and Potential Cardinality

3 Computations and Consequences

Back-and-Forth Equivalence

Let M and N be L-structures. $\mathcal{F}: M \to N$ is a back-and-forth system if:

- **①** \mathcal{F} is a nonempty set of partial functions $M \to N$
- ② All $f \in \mathcal{F}$ preserve L-atoms and their negations
- **③** For all $f \in \mathcal{F}$, all $m \in M$, and all $n \in N$, there is a $g \in \mathcal{F}$ where $m \in \text{dom}(g)$, $n \in \text{im}(g)$, and $f \subset g$

Say $M \equiv_{\infty\omega} N$ if there is such an \mathcal{F} .

If $M \cong N$ then $M \equiv_{\infty \omega} N$.

If M and N are countable and $M \equiv_{\infty \omega} N$, then $M \cong N$.

Back-and-Forth Equivalence, II

 $M \equiv_{\infty\omega} N$ means they are the same from an "intrinsic perspective."

More precisely, the following are equivalent:

- M ≡_{∞ω} N
- For every $\phi \in L_{\infty\omega}$, $M \models \phi$ iff $N \models \phi$
- In some $\mathbb{V}[G]$, $M \cong N$
- ullet In every $\mathbb{V}[G]$ making M and N countable, $M\cong N$

The relation " $M \equiv_{\infty \omega} N$ " is absolute.

Canonical Scott Sentences

Canonical Scott sentences form a canonical invariant of each $\equiv_{\infty\omega}$ -class. Given an L-structure M, a tuple \overline{a} , and an ordinal α , define $\phi_{\alpha}^{\overline{a}}(\overline{x})$ as follows:

$$\begin{split} \phi_{0}^{\overline{a}}(\overline{x}) &\text{ is qftp}(\overline{a}) \\ \phi_{\lambda}^{\overline{a}}(\overline{x}) &\text{ is } \bigwedge_{\beta < \lambda} \phi_{\beta}^{\overline{a}}(\overline{x}) \text{ for limit } \lambda \\ \phi_{\beta+1}^{\overline{a}}(\overline{x}) &\text{ is } \phi_{\beta}^{\overline{a}}(\overline{x}) \wedge \left(\forall y \bigvee_{b \in M} \phi_{\beta}^{\overline{a}b}(\overline{x}y) \right) \wedge \bigwedge_{b \in M} \exists y \phi_{\beta}^{\overline{a}b}(\overline{x}y) \end{split}$$

For some minimal α^* , for all $\overline{a} \in M$, $\phi_{\alpha^*}^{\overline{a}}(\overline{x})$ implies $\phi_{\alpha^*+1}^{\overline{a}}(\overline{x})$.

Define
$$\operatorname{css}(M)$$
 as $\phi_{\alpha^*}^{\emptyset} \wedge \bigwedge_{\overline{a} \in M} \forall \overline{x} \phi_{\alpha^*}^{\overline{a}}(\overline{x}) \to \phi_{\alpha^*+1}^{\overline{a}}(\overline{x})$

Canonical Scott Sentences, II

For all M, N, the following are equivalent:

- $\mathbf{0} M \equiv_{\infty \omega} N$

Also, if $|M| \leq \lambda$, then $css(M) \in L_{\lambda^+\omega}$.

Also, the relation " $\phi = css(M)$ " is absolute.

Also also, the property " ϕ is in the form of a canonical Scott sentence" is definable and absolute.

Consistency

Proofs in $L_{\infty\omega}$:

- Predictable axiom set.
- \bullet $\phi, \phi \rightarrow \psi \vdash \psi$
- $\{\phi_i : i \in I\} \vdash \bigwedge_{i \in I} \phi_i$

Proofs are now trees which are well-founded but possibly infinite.

 $\phi \in L_{\infty\omega}$ is consistent if it does not prove $\neg \phi$.

Warning: folklore

Consistency, II

If $\phi \in L_{\omega_1 \omega}$ is formally consistent, then it has a model.

This is not true for larger sentences:

- Let $\psi = \cos(\omega_1, <)$, so ψ has no countable models.
- Let $L = \{<\} \cup \{c_n : n \in \omega\}.$
- Let $\phi = \psi \wedge (\forall x \bigvee_n x = c_n)$

Then ϕ is formally consistent, but ϕ has no models.

Fact: the property " ϕ is consistent" is absolute.

Potential Cardinality

Let $\Phi \in L_{\omega_1\omega}$. $\sigma \in L_{\infty\omega}$ is a potential canonical Scott sentence of Φ if:

- $oldsymbol{0}$ σ has the syntactic form of a CSS
- ${\color{red} {\it o}} \ \sigma$ is formally consistent
- \odot σ proves Φ

Let $CSS(\Phi)$ be the set of all these sentences. Let $\|\Phi\| = |CSS(\Phi)|$.

Easy fact:
$$I(\Phi, \aleph_0) \leq I_{\infty\omega}(\Phi) \leq \|\Phi\|$$
.

Note: $I_{\infty\omega}(\Phi)$ is the number of models of Φ up to $\equiv_{\infty\omega}$

The Connection

If $f: \Phi \leq_{\mathcal{B}} \Psi$, then f induces an injection from the countable Scott sentences of Φ to the countable Scott sentences of Ψ .

Theorem (Ulrich, R., Laskowski)

If $f: \Phi \leq_{\!\scriptscriptstyle B} \Psi$, then get an injection $\overline{f}: \mathrm{CSS}(\Phi) \to \mathrm{CSS}(\Psi)$.

Proof Idea:

- Fix $\tau \in CSS(\Phi)$.
- $\overline{f}(\tau)$ is what f would take τ to, in some $\mathbb{V}[G]$ making τ countable.
- Schoenfield: " $\exists M \in \mathrm{Mod}_{\omega}(\Phi) \ (M \models \tau \land f(M) \models \sigma)$ " is absolute
- General fact: If G_1 and G_2 are independent, then $\mathbb{V}[G_1] \cap \mathbb{V}[G_2] = \mathbb{V}$...
- ... so $\overline{f}(\tau) \in \mathbb{V}$ and $\overline{f}(\tau) \in \mathrm{CSS}(\Psi)$.

Roadmap

Borel Reductions

2 Back-and-Forth Equivalence, Scott Sentences, and Potential Cardinality

3 Computations and Consequences

A Few Examples

- If T is \aleph_0 -categorical, ||T|| = 1.
- If T is the theory of algebraically closed fields, $||T|| = \aleph_0$: Coded by the transcendence degree: 0, 1, 2, ... or "infinite."
- If $T=(\mathbb{Q},<,c_q)_{q\in\mathbb{Q}}$, then $\|T\|=\beth_2$. Models are coded by which 1-types they realize, and how.

All these examples are grounded – every potential Scott sentence has a model. Weirder examples won't have this property.

Being Borel

FS/HKL: Φ is Borel iff $\Phi \leq_{\mathsf{B}} \cong_{\alpha}$ for some $\alpha < \omega_1$.

Corollary

If Φ is Borel, $\|\Phi\| < \beth_{\omega_1}$.

Proof Sketch:

- Define the jump of Ψ , $J(\Psi)$, to code "multisets of models of Ψ ."
- Define the *limit jump* of Ψ at limit ordinals λ to be $\sqcup_{\alpha<\lambda}J^{\alpha}(\Psi)$.
- Easy: $J^{\alpha}(\cong_{\beta}) \sim_{\!\!B} \cong_{\beta+\alpha}$.
- Easy: $\| \cong_0 \| = \beth_0$
- Induction: $||J^{\alpha}(\Psi)|| = \beth_{-1+\alpha+1}(||\Psi||)$
- If $\Phi \leq_{\scriptscriptstyle R} \cong_{\alpha}$, $\|\Phi\| \leq \beth_{-1+\alpha+1} < \beth_{\omega_1}$.

Being Borel Complete

Proposition

If Φ is Borel complete, $\|\Phi\| = \infty$.

Proof Sketch:

- If Φ is Borel complete, $LO \leq_{_{\! B}} \Phi$, so $||LO|| \leq ||\Phi||$.
- Folklore: all ordinals are back-and-forth inequivalent, so
- $\infty = I_{\infty\omega}(LO) \le ||LO|| \le ||\Phi||$

Some Excellent Questions

Hanf Number: Is it possible to get $\beth_{\omega_1} \leq \|\Phi\| < \infty$? Unknown!

Is it possible for $\|\Phi\|=\infty$ when Φ is not Borel complete? Yes!

Unknown if there are first-order examples

Is it possible for $\|\Phi\| < \beth_{\omega_1}$ when Φ is not Borel? Yes! And there are first-order examples!

The last "yes!" answers a stubborn conjecture:

Can a first-order theory be neither Borel nor Borel complete?