Secção 4 do Cap. 3. (Matrizes)

4 Inversa de uma matriz quadrada invertível

Definição. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz quadrada de ordem $n \times n$. Diz-se que A é **invertível** se existir $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que

$$AB = I_n$$
 e $BA = I_n$

(ou, equivalentemente, se existir $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $T_A \circ T_B = \mathrm{Id}$ e $T_B \circ T_A = \mathrm{Id}$).

Proposição. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Tem-se

- A é invertível se e só se $T_A: \mathbb{R}^n \to \mathbb{R}^n$ é bijetiva.
- Se A é invertível, existe uma única matriz $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ que satisfaz $AB = I_n$ e $BA = I_n$. Esta matriz é chamada **inversa** de A e é denotada por A^{-1} .

Nota: se A é invertível, a sua inversa, A^{-1} é exatamente a matriz canónica associada a T_A^{-1} .

Prova da unicidade da inversa: Sejam $B, B' \in \mathcal{M}_{n \times n}(\mathbb{R})$ tais que

$$AB = BA = I_n$$
 e $AB' = B'A = I_n$.

Temos $B' = I_n B' = (BA)B' = B(AB') = BI_n = B$.

Proposição. Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ duas matrizes quadradas de ordem $n \times n$. Tem-se

- A^{-1} é invertível e $(A^{-1})^{-1} = A$.
- AB é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.
- A^t é invertível e $(A^t)^{-1} = (A^{-1})^t$.

Pela seguinte proposição basta verificar uma das igualdades ($AB = I_n$ ou $BA = I_n$) para concluir que A e B são invertíveis e inversas uma da outra.

Proposição. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz quadrada de ordem $n \times n$. Se existir $B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que

$$AB = I_n$$
 ou $BA = I_n$

então A é invertível e $A^{-1} = B$.

Prova: Sejam $T_A, T_B : \mathbb{R}^n \to \mathbb{R}^n$ as transformações lineares associadas a A e B. Supondo $AB = I_n$ temos $T_A \circ T_B = \operatorname{Id}$. Logo, $\forall x \in \mathbb{R}^n$, $T_A(T_B(x)) = x$ o que significa que $x \in \operatorname{Im}(T_A)$ (pois $x = T_A(y)$ com $y = T_B(x)$). Por conseguinte T_A é sobrejetiva e, pelo Teorema da dimensão, podemos concluir que T_A é bijetiva. Logo A é invertível. Sendo A^{-1} a inversa de A, de $AB = I_n$ obtemos $A^{-1}AB = A^{-1}I_n$ e $B = A^{-1}$. Da mesma forma, se $BA = I_n$, obtemos que B é invertível de inversa A.

Proposição. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz quadrada de ordem $n \times n$.

$$A \notin \operatorname{invertivel} \Leftrightarrow \operatorname{car}(A) = n.$$