Shenzhen VSEEI Semiconductor Co., Ltd

DESCRIPTION:

With high ability to withstand the shock loading of large current, T1210-600G series triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

MAIN FEATURES

Symbol	Value	Unit
I _{T(RMS)}	12	Α
V _{DRM} /V _{RRM}	600/800/1200	V

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	
Storage junction temperature r	T _{stg}	-40-150	$^{\circ}\mathbb{C}$	
Operating junction temperature	range	Tj	-40-125	$^{\circ}$
Repetitive peak off-state voltage	je (Tj=25°C)	V_{DRM}	600/800/1200	V
Repetitive peak reverse voltage	e (T _j =25℃)	V _{RRM}	600/800/1200	V
Non repetitive surge peak Off-s	V _{DSM}	V _{DRM} +100	V	
Non repetitive peak reverse vo	V _{RSM}	V _{RRM} +100	V	
RMS on-state current TO-263 (Tc=100°C)		I _{T(RMS)}	12	А
Non repetitive surge peak on-s (full cycle, F=50Hz)	ITSM	120	Α	
I ² t value for fusing (tp=10ms)		l ² t	78	A ² s
Critical rate of rise of on-state current (I _G =2×I _{GT})		dl/dt	50	A/µs
Peak gate current	I _{GM}	4	Α	
Average gate power dissipation	P _{G(AV)}	1	W	
Peak gate power	P _{GM}	5	W	

Shenzhen VSEEI Semiconductor Co., Ltd

ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

3 Quadrants

Symbol	Test Condition	Quadrant		Value				Unit
Symbol	rest Condition			BW	CW	sw	TW	Offic
Ідт	V _D =12V R _L =33Ω	I - II -III	MAX	50	35	10	5	mA
V _G T	VD - 12V RL -3312	I - II -III	MAX	1.3			V	
V _{GD}	$V_D = V_{DRM} T_j = 125^{\circ}C$ $R_L = 3.3 K\Omega$	I - II -III	MIN		0.2	2		V
	IL IG=1.2IGT	I -III	MAX	80	50	30	20	m ^
IL IL		II	IVIAA	90	60	40	30	mA
Ін	I _T =100mA		MAX	60	40	20	15	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	1000	500	200	100	V/µs
(dl/dt)c	Without snubber T _j =125℃		MIN	12	6.5	2.9	1	A/ms

4 Quadrants

Cymphal	Test Condition Qua	Quadrant	Va	l lmi4		
Symbol				В	С	Unit
loz		I - II -III	MAV	50	25	mΛ
I _{GT}	V _D =12V R _L =33Ω	IV	MAX	70	50	mA
V _{GT}		ALL	MAX	1.3		V
V _{GD}	$V_D = V_{DRM} T_j = 125^{\circ}C$ $R_L = 3.3 K\Omega$	ALL	MIN	0.2		V
IL	I _G =1.2I _{GT}	I -III-IV	MAX	50	40	m A
		II	IVIAA	100	80	mA
lн	I _T =100mA		MAX	50	25	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	500	200	V/µs
(dV/dt)c	(dI/dt)c=5.3A/ms T _j =125℃		MIN	10	5	V/µs

Shenzhen VSEEI Semiconductor Co., Ltd

STATIC CHARACTERISTICS

Symbol	Parameter		Value(MAX)	Unit
V _{TM}	I _{тм} =17A tp=380µs	T _j =25℃	1.5	V
I _{DRM}	\\ -\\ \\ \\ -\\	T _j =25℃	5	μA
I _{RRM}	VD =VDRM VR =VRRM	T _j =125℃	1	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}	junction to case(AC)	TO 262	1.4	°C/W
R _{th(j-a)}	junction to ambient	TO-263	45	C/VV

FIG.1 Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.2: RMS on-state current versus ambient temperature (printed circuit board FR4, copper thickness: 35µm) (full cycle)

FIG.4: On-state characteristics (maximum values)

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I^2t (dI/dt(I-I-II) < 50A/ μ s)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

SOLDERING PARAMETERS

Reflow Condition		Pb-Free assembly	
		(see figure at right)	
	-Temperature Min (T _{s(min)})	+150℃	
Pre Heat	-Temperature Max(T _{s(max)})	+200℃	
	-Time (Min to Max) (ts)	60-180 secs.	
	ramp up rate Temp (T∟)to peak)	3℃/sec. Max	
T _{s(max)} to	T∟ - Ramp-up Rate	3℃/sec. Max	
Reflow	-Temperature(T _L) (Liquidus)	+217℃	
	-Temperature(t _L)	60-150 secs.	
Peak Ten	np (T _p)	+260(+0/-5)°C	
Time with Peak Ten	nin 5°Cof actual np (t₀)	20-40secs.	
Ramp-down Rate		6℃/sec. Max	
Time 25℃ to Peak Temp (T _P)		8 min. Max	
Do not ex	ceed	+260℃	

