EE263 Autumn 2007-08 Stephen Boyd

Lecture 16 SVD Applications

- general pseudo-inverse
- full SVD
- image of unit ball under linear transformation
- SVD in estimation/inversion
- sensitivity of linear equations to data error
- low rank approximation via SVD

General pseudo-inverse

if $A \neq 0$ has SVD $A = U\Sigma V^T$,

$$A^{\dagger} = V \Sigma^{-1} U^T$$

is the *pseudo-inverse* or *Moore-Penrose inverse* of A if A is skinny and full rank,

$$A^{\dagger} = (A^T A)^{-1} A^T$$

gives the least-squares approximate solution $x_{\rm ls}=A^{\dagger}y$ if A is fat and full rank,

$$A^{\dagger} = A^T (AA^T)^{-1}$$

gives the least-norm solution $x_{\rm ln}=A^\dagger y$

in general case:

$$X_{ls} = \{ z \mid ||Az - y|| = \min_{w} ||Aw - y|| \}$$

is set of least-squares approximate solutions

 $x_{\text{pinv}} = A^{\dagger}y \in X_{\text{ls}}$ has minimum norm on X_{ls} , i.e., x_{pinv} is the minimum-norm, least-squares approximate solution

Pseudo-inverse via regularization

for $\mu > 0$, let x_{μ} be (unique) minimizer of

$$||Ax - y||^2 + \mu ||x||^2$$

i.e.,

$$x_{\mu} = \left(A^T A + \mu I\right)^{-1} A^T y$$

here, $A^TA + \mu I > 0$ and so is invertible

then we have $\lim_{\mu \to 0} x_{\mu} = A^{\dagger} y$

in fact, we have $\lim_{\mu \to 0} \left(A^T A + \mu I\right)^{-1} A^T = A^\dagger$

(check this!)

Full SVD

SVD of $A \in \mathbf{R}^{m \times n}$ with $\mathbf{Rank}(A) = r$:

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \end{bmatrix}$$

- find $U_2 \in \mathbf{R}^{m \times (m-r)}$, $V_2 \in \mathbf{R}^{n \times (n-r)}$ s.t. $U = [U_1 \ U_2] \in \mathbf{R}^{m \times m}$ and $V = [V_1 \ V_2] \in \mathbf{R}^{n \times n}$ are orthogonal
- add zero rows/cols to Σ_1 to form $\Sigma \in \mathbf{R}^{m \times n}$:

$$\Sigma = \begin{bmatrix} \Sigma_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

then we have

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} U_1 & D_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} V_1^T \\ \hline V_2^T \end{bmatrix}$$

i.e.:

$$A = U\Sigma V^T$$

called *full SVD* of A

(SVD with positive singular values only called *compact SVD*)

Image of unit ball under linear transformation

full SVD:

$$A = U\Sigma V^T$$

gives interretation of y = Ax:

- rotate (by V^T)
- stretch along axes by σ_i ($\sigma_i = 0$ for i > r)
- ullet zero-pad (if m>n) or truncate (if m< n) to get m-vector
- rotate (by U)

Image of unit ball under ${\cal A}$

 $\{Ax \mid ||x|| \leq 1\}$ is *ellipsoid* with principal axes $\sigma_i u_i$.

SVD in estimation/inversion

suppose y = Ax + v, where

- $y \in \mathbf{R}^m$ is measurement
- $x \in \mathbf{R}^n$ is vector to be estimated
- ullet v is a measurement noise or error

'norm-bound' model of noise: we assume $||v|| \le \alpha$ but otherwise know nothing about v (α gives max norm of noise)

- consider estimator $\hat{x} = By$, with BA = I (i.e., unbiased)
- ullet estimation or inversion error is $\tilde{x} = \hat{x} x = Bv$
- set of possible estimation errors is ellipsoid

$$\tilde{x} \in \mathcal{E}_{\text{unc}} = \{ Bv \mid ||v|| \le \alpha \}$$

- $x = \hat{x} \tilde{x} \in \hat{x} \mathcal{E}_{unc} = \hat{x} + \mathcal{E}_{unc}$, i.e.: true x lies in uncertainty ellipsoid \mathcal{E}_{unc} , centered at estimate \hat{x}
- ullet 'good' estimator has 'small' $\mathcal{E}_{\mathrm{unc}}$ (with BA=I, of course)

semiaxes of \mathcal{E}_{unc} are $\alpha \sigma_i u_i$ (singular values & vectors of B)

e.g., maximum norm of error is $\alpha \|B\|$, i.e., $\|\hat{x} - x\| \le \alpha \|B\|$

optimality of least-squares: suppose BA=I is any estimator, and $B_{\rm ls}=A^\dagger$ is the least-squares estimator

then:

- $B_{\rm ls}B_{\rm ls}^T \le BB^T$
- $\mathcal{E}_{ls} \subseteq \mathcal{E}$
- in particular $||B_{ls}|| \le ||B||$

i.e., the least-squares estimator gives the smallest uncertainty ellipsoid

Example: navigation using range measurements (lect. 4)

we have

$$y = - \begin{bmatrix} k_1^T \\ k_2^T \\ k_3^T \\ k_4^T \end{bmatrix} x$$

where $k_i \in \mathbf{R}^2$

using first two measurements and inverting:

$$\hat{x} = -\left[\begin{bmatrix} k_1^T \\ k_2^T \end{bmatrix}^{-1} \quad 0_{2 \times 2} \end{bmatrix} y$$

using all four measurements and least-squares:

$$\hat{x} = A^{\dagger} y$$

uncertainty regions (with $\alpha = 1$):

Proof of optimality property

suppose $A \in \mathbb{R}^{m \times n}$, m > n, is full rank

SVD: $A = U\Sigma V^T$, with V orthogonal

$$B_{\mathrm{ls}} = A^{\dagger} = V \Sigma^{-1} U^T$$
, and B satisfies $BA = I$

define
$$Z = B - B_{ls}$$
, so $B = B_{ls} + Z$

then $ZA = ZU\Sigma V^T = 0$, so ZU = 0 (multiply by $V\Sigma^{-1}$ on right)

therefore

$$BB^{T} = (B_{ls} + Z)(B_{ls} + Z)^{T}$$

$$= B_{ls}B_{ls}^{T} + B_{ls}Z^{T} + ZB_{ls}^{T} + ZZ^{T}$$

$$= B_{ls}B_{ls}^{T} + ZZ^{T}$$

$$\geq B_{ls}B_{ls}^{T}$$

using
$$ZB_{\mathrm{ls}}^T=(ZU)\Sigma^{-1}V^T=0$$

Sensitivity of linear equations to data error

consider y=Ax, $A\in \mathbf{R}^{n\times n}$ invertible; of course $x=A^{-1}y$ suppose we have an error or noise in y, i.e., y becomes $y+\delta y$ then x becomes $x+\delta x$ with $\delta x=A^{-1}\delta y$ hence we have $\|\delta x\|=\|A^{-1}\delta y\|\leq \|A^{-1}\|\|\delta y\|$ if $\|A^{-1}\|$ is large,

- ullet small errors in y can lead to large errors in x
- \bullet can't solve for x given y (with small errors)
- hence, A can be considered singular in practice

a more refined analysis uses *relative* instead of *absolute* errors in x and y since y = Ax, we also have $||y|| \le ||A|| ||x||$, hence

$$\frac{\|\delta x\|}{\|x\|} \le \|A\| \|A^{-1}\| \frac{\|\delta y\|}{\|y\|}$$

$$\kappa(A) = ||A|| ||A^{-1}|| = \sigma_{\max}(A) / \sigma_{\min}(A)$$

is called the *condition number* of A

we have:

relative error in solution $x \leq$ condition number \cdot relative error in data y or, in terms of # bits of guaranteed accuracy:

bits accuracy in solution $\approx \#$ bits accuracy in data $-\log_2 \kappa$

we say

- A is well conditioned if κ is small
- ullet A is poorly conditioned if κ is large

(definition of 'small' and 'large' depend on application)

same analysis holds for least-squares approximate solutions with A nonsquare, $\kappa = \sigma_{\max}(A)/\sigma_{\min}(A)$

Low rank approximations

suppose $A \in \mathbf{R}^{m \times n}$, $\mathbf{Rank}(A) = r$, with SVD $A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$

we seek matrix \hat{A} , $\mathbf{Rank}(\hat{A}) \leq p < r$, s.t. $\hat{A} \approx A$ in the sense that $\|A - \hat{A}\|$ is minimized

solution: optimal rank p approximator is

$$\hat{A} = \sum_{i=1}^{p} \sigma_i u_i v_i^T$$

- hence $||A \hat{A}|| = \left|\left|\sum_{i=p+1}^r \sigma_i u_i v_i^T\right|\right| = \sigma_{p+1}$
- interpretation: SVD dyads $u_i v_i^T$ are ranked in order of 'importance'; take p to get rank p approximant

proof: suppose $\operatorname{\mathbf{Rank}}(B) \leq p$

then $\dim \mathcal{N}(B) \geq n - p$

also, $\dim \text{span}\{v_1, \dots, v_{p+1}\} = p+1$

hence, the two subspaces intersect, i.e., there is a unit vector $z \in \mathbf{R}^n$ s.t.

$$Bz = 0, z \in \operatorname{span}\{v_1, \dots, v_{p+1}\}\$$

$$(A - B)z = Az = \sum_{i=1}^{p+1} \sigma_i u_i v_i^T z$$

$$\|(A - B)z\|^2 = \sum_{i=1}^{p+1} \sigma_i^2 (v_i^T z)^2 \ge \sigma_{p+1}^2 \|z\|^2$$

hence
$$||A - B|| \ge \sigma_{p+1} = ||A - \hat{A}||$$

Distance to singularity

another interpretation of σ_i :

$$\sigma_i = \min\{ \|A - B\| \mid \mathbf{Rank}(B) \le i - 1 \}$$

 $\it i.e.$, the distance (measured by matrix norm) to the nearest rank $\it i-1$ matrix

for example, if $A \in \mathbf{R}^{n \times n}$, $\sigma_n = \sigma_{\min}$ is distance to nearest singular matrix

hence, small σ_{\min} means A is near to a singular matrix

application: model simplification

suppose y = Ax + v, where

• $A \in \mathbf{R}^{100 \times 30}$ has SVs

$$10, 7, 2, 0.5, 0.01, \ldots, 0.0001$$

- ||x|| is on the order of 1
- ullet unknown error or noise v has norm on the order of 0.1

then the terms $\sigma_i u_i v_i^T x$, for $i=5,\ldots,30$, are substantially smaller than the noise term v

simplified model:

$$y = \sum_{i=1}^{4} \sigma_i u_i v_i^T x + v$$