PXL – Digital 421280 Software Analysis

Model Based Documentation of Requirements – State Transition diagram

Week 11 – period 01 Luc Doumen Nathalie Fuchs

Elfde-Liniestraat 24, 3500 Hasselt, www.pxl.be

Content

- Models & using models
- Topic overview
 - Goal models
 - Use models (system use cases)
 - 3 perspectives on requirements
 - Data/structural: ERM, Class models
 - Functional: Data Flow Diagram, Activity diagram
 - Behavioral: State charts
 - Sequence diagram
- Key learning points
- Questions & answers

Date: December 21 42TIN1280 Software Analysis

Topic Overview

- Goal models
- System use case models (+ descriptions)
- Three perspectives on requirements
 - Data perspective
 - ERM, Class models (UML)
 - Functional perspective
 - Data flow diagrams, Activity diagrams (UML)
 - Behavioral perspective
 - State charts
- Sequence diagrams

Behavioral Requirements Models

- For modeling the dynamic behavior of a system
- Focus is on system states and events that can change that state
- Behavioral models
- **UML State diagrams**
 - Based on principles of finite state machines
 - Modeling elements: state, start- and end states, state transition, concurrency

42TIN1280 Software Analysis Date: December 21

State Transition Diagram (STD) – steps (1)

Step 1: create or read state transition diagram **Transition Event** "Change channel" Alter channel Radio playing Changing channel "Power on" "Set channel" Play radio **State** Play radio Action

Remark: a transition is only executed when its guard (event) is true

Date: December 21

NEW / NEXT state

• Step 2: create state transition table

Events

EVENT STATE	Power on	Change channel	Set channel
NULL	A: Play radio	n 2	n 2
	S _{new} : Radio playing	n.a.	n.a.
Radio playing	n.a.	A: Alter channel	n.a.
		S _{new} : Channel changing	
Channel changing	n.a.	n.a.	A: Play radio
			S_{new}: Radio playing
States		Action	EW / NEXT state

STD – example laptop

Date: December 21

42TIN1280 Software Analysis

STD - how to draw?

- In 5 steps
 - Define states
 - Describe states (for others to understand)
 - Draw transitions
 - Define events / guard conditions
 - Define actions
 - Create state transition table

STD - pros and cons

- Describes the behaviour of a system
- All possible states a system can get into
- State changes as result of events
- Actions are short effects of transitions
- Suitable for modelling interfaces
- © Suitable for simulation and testing
- 8 May be difficult to read for outsiders

STD - Case - Website

- A website has a homepage, by choosing the button contact 'contact information' is provided.
- By choosing the button 'services' an overview is provided of the services.
- The 'services' page also has a hyperlink to the contact information page.
- The home button will bring you back to the homepage.
- Draw the <u>state transition diagram</u>
- Create the <u>state transition table</u>
- You are allowed to ask questions!

STD - Case - Digital pet program

- You're creating a digital pet program. What happens to the pet when he receives
 different stimuli is determined by the state he's in, so you decide to model the
 digital pet with a <u>state diagram</u>.
- The behavior of the digital pet program is as follows:
 - When the pet is turned on, it starts out happy
 - If the pet is happy and receives punishment,
 then he becomes sad
 - If the pet is sad and receives praise, it becomes happy
 - If the pet is sad and receives punishment, it is heart-broken
 - Create also the state transition table

STD - Case - Fuel pump

- Model the behavior of a fuel pump controller
 - User can buy fuel after inserting a credit card, which is read and validated by the controller
 - Then the user takes the hose out of the holster, and pushes the nozzle trigger, to fuel his car
 - When the nozzle is off, the fuel flow is stopped and the price is charged on the credit card
 - If invalid card or timeout the system returns to the initial waiting state
- Draw the <u>state transition diagram</u>
- Create the <u>state transition table</u>

STD - Case - Elevator

Create the state transition table

STD - Case - Game

Create the state transition table

STD - Case - Person's status

Create the state transition table

Date: December 21

42TIN1280 Software Analysis

STD - Case - Clock

Date: December 21

Create the state transition table

STD - Case - Soda vending

Create the state transition table

Date: December 21

42TIN1280 Software Analysis

STD - Case - Stopwatch

Create the <u>state transition table</u>

Questions & answers

