

Linear and Discrete Optimization

Matchings and vertex covers

- Example
- ► A min-max relation

Assigning jobs to employees

Bipartite graphs

A graph G = (V, E) is *bipartite*, if one can partition V into $V = A \dot{\cup} B$ such that each edge $e \in E$ satisfies $|e \cap A| = |e \cap B| = 1$.

Matchings

A *matching* is a subset $\underline{M \subseteq E}$ of the edges such that each $e_1 \neq e_2 \in M$ satisfy $e_1 \cap e_2 = \emptyset$.

The edges in a matching "do not touch".

The maximum weight (bipartite) matching problem

Given a (bipartite) graph G=(V,E) and edge weights $w:E\to\mathbb{N}_0$, determine a matching $M\subseteq E$ such that

w-vertex covers

Let G = (V, E) be a graph with edge weights $w : E \to \mathbb{N}_0$. A *w-vertex cover* is a vector $y \in \mathbb{N}_0^{|V|}$ such that

$$\forall uv \in E: \quad y_u + y_v \geq w_{uv}.$$

The *value* of a *w*-vertex cover *y* is $\sum_{v \in V} y_v$.

w-vertex cover ≥ weight of matching

Lemma (Weak duality)

Let G = (V, E) be a graph and let $w : E \to \mathbb{N}_0$ be edge-weights. If M is a matching of G and if y is a w-vertex cover of G, then

The job assignment is optimal

Both! y and 17 ore optimal