Bibliography

- Aaronson, S. & D. Gottesman, Physical Review A **70** (5) (2004). "Improved simulation of stabilizer circuits". DOI: 10.1103/physreva.70.052328 arXiv:quant-ph/0406196
- Aharonov, Y. & J. Anandan, Phys. Rev. Lett. **58** (16), 1593 (1987). "Phase Change During a Cyclic Quantum Evolution". DOI: 10.1103/PhysRevLett.58.1593
- Alicea, J., Y. Oreg, G. Refael, F. von Oppen, & M. P. A. Fisher, Nat Phys 7 (5), 412 (2011). "Non-Abelian statistics and topological quantum information processing in 1D wire networks". DOI: 10.1038/nphys1915
- Anandan, J., Physics Letters A **133** (4-5), 171 (1988). "Non-adiabatic non-abelian geometric phase". DOI: 10.1016/0375-9601(88)91010-9
- Aspect, A., P. Grangier, & G. Roger, Phys. Rev. Lett. **47** (7), 460 (1981). "Experimental Tests of Realistic Local Theories via Bell's Theorem".
- Barenco, A., C. H. Bennett, R. Cleve, et al., Physical Review A **52** (**5**), 3457 (1995). "Elementary gates for quantum computation". DOI: 10.1103/physreva. 52.3457 arXiv:quant-ph/9503016
- Bell, J. S., Rev. Mod. Phys. **38** (3), 447 (1966). "On the Problem of Hidden Variables in Quantum Mechanics".
- Bennett, C. H., D. P. DiVincenzo, J. A. Smolin, & W. K. Wootters, Phys. Rev. A 54 (5), 3824 (1996). "Mixed-state entanglement and quantum error correction". DOI: 10.1103/PhysRevA.54.3824 arXiv:quant-ph/9604024
- Bennett, C. H. & S. J. Wiesner, Phys. Rev. Lett. **69** (20), 2881 (1992). "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states".
- Bergou, J. A., U. Herzog, & M. Hillery, "Discrimination of Quantum States," in Paris & Rehacek (2004), Chap. 11, pp. 417–465. DOI: 10.1007/978-3-540-44481-7_11

Bernstein, E. & U. Vazirani, "Quantum Complexity Theory," in *Proceedings of the 25th Annual ACM Symposium on the Theory of Computing* (ACM Press, New York, 1993), pp. 11–20.

- Bernstein, E. & U. Vazirani, SIAM Journal on Computing **26** (5), 1411 (1997). "Quantum Complexity Theory". DOI: 10.1137/s0097539796300921
- Berry, M. V., Proc. R. Soc. London A **392**, 45 (1984). "Quantal Phase Factors Accompanying Adiabatic Changes".
- Blum, K., Density Matrix Theory and Applications, Vol. 64 of Springer Series on Atomic, Optical, and Plasma Physics (Springer Berlin Heidelberg, 2012), 3rd ed., ISBN 978-3-642-20560-6.
- Bohr, N., "Discussion with Albert Einstein on Epistemological Problems in Atomic Physics," in *Albert Einstein, Philosopher-Scientist*, edited by Schilpp, P. A. (Harper, Evanston, 1949), Vol. VII of *The Library of Living Philosophers*, pp. 200–241, 1st ed.
- Born, M., Z. Phys. 37 (12), 863 (1926). "Zur Quantenmechanik der Stoßvorgänge".
- Bouwmeester, D., J.-W. Pan, M. Daniell, H. Weinfurter, & A. Zeilinger, Phys. Rev. Lett. 82 (7), 1345 (1999). "Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement".
- Bravyi, S. B. & A. Y. Kitaev, arXiv:quant-ph/9811052 (1998). "Quantum codes on a lattice with boundary".
- Breuer, H.-P. & F. Petruccione, *The Theory of Open Quantum Systems* (Oxford University Press, New York, 2002).
- Browne, D. & H. Briegel, "One-Way Quantum Computation," in *Quantum Information: From Foundations to Quantum Technology Applications*, edited by Bruß, D. & G. Leuchs (Wiley, 2016), pp. 449–473, 2nd ed. DOI: 10.1002/9783527805785.ch21 arXiv:quant-ph/0603226
- Calderbank, A. R. & P. W. Shor, Phys. Rev. A **54** (2), 1098 (1996). "Good quantum error-correcting codes exist".
- Caves, C. M., Phys. Rev. D 23 (8), 1693 (1981). "Quantum-mechanical noise in an interferometer".
- Chefles, A., "Quantum States: Discrimination and Classical Information Transmission. A Review of Experimental Progress," in Paris & Rehacek (2004), Chap. 12, pp. 467–511. DOI: 10.1007/978-3-540-44481-7_12
- Chiaverini, J., J. Brittond, D. Leibfriede, et al., Science 308 (5724), 997 (2005). "Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System". DOI: 10.1126/science.1110335

Choi, M.-S., J. Phys.: Condens. Matt. **15** (**46**), 7823 (2003). "Geometric Quantum Computation in Solid-State Qubits". arXiv:quant-ph/0111019

- Clauser, J. F., M. A. Horne, A. Shimony, & R. A. Holt, Phys. Rev. Lett. 23, 880 (1969). "Proposed Experiment to Test Local Hidden-Variable Theories".
- Cleve, R., A. Ekert, C. Macchiavello, & M. Mosca, Proceedings of the Royal Society A **454** (1969), 339 (1998). "Quantum algorithms revisited". DOI: 10.1098/rspa.1998.0164 arXiv:quant-ph/9708016
- Cleve, R. & D. Gottesman, Physical Review A **56** (1), 76 (1997). "Efficient computations of encodings for quantum error correction". DOI: 10.1103/physreva. 56.76 arXiv:quant-ph/9607030
- Cornwell, J. F., Group Theory in Physics, Vol. I (Academic Press, Orlando, 1984).
- Cornwell, J. F., *Group Theory in Physics: An Introduction* (Academic Press, San Diego, 1997).
- Crease, R. P., Physics World **15** (9), 19 (2002). "The most beautiful experiment". DOI: 10.1088/2058-7058/15/9/22
- Das, A., Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, & H. Shtrikman, Nat Phys 8 (12), 887 (2012). "Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions".
- Deng, M. T., C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, & H. Q. Xu, Nano Letters 12 (12), 6414 (2012). "Anomalous Zero-Bias Conductance Peak in a Nb-InSb Nanowire-Nb Hybrid Device".
- Dennis, E., A. Kitaev, A. Landahl, & J. Preskill, Journal of Mathematical Physics 43 (9), 4452 (2002). "Topological quantum memory". DOI: 10.1063/1.1499754 arXiv:quant-ph/0110143
- Deutsch, D., Proc. R. Soc. London A **400**, 97 (1985). "Quantum theory, the Church-Turing principle and the universal quantum computer". DOI: 10.1098/rspa.1985.0070
- Deutsch, D. & R. Jozsa, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences **439** (1907), 553 (1992). "Rapid Solution of Problems by Quantum Computation". DOI: 10.1098/rspa.1992.0167
- Dirac, P. A. M., *The Principles of Quantum Mechanics* (Oxford University Press, Oxford, 1958), 4th ed.
- DiVincenzo, D. P., Fortschr. Phys. **48**, 771 (2000). "The Physical Implementation of Quantum Computation". DOI: 10.1002/1521-3978(200009)48:9/11<771:: AID-PROP771>3.0.C0; 2-E arXiv:quant-ph/0002077

Dum, R., A. S. Parkins, P. Zoller, & C. W. Gardiner, Phys. Rev. A **46** (7), 4382 (1992). "Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs".

- Einstein, A., B. Podolsky, & N. Rosen, Phys. Rev. 47, 777 (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"
- Feynman, R., R. B. Leighton, & M. L. Sands, *The Feynman Lectures on Physics*, Vol. III (Addison-Wesley, Redwood City, 1963), 1st ed.
- Fowler, A. G., M. Mariantoni, J. M. Martinis, & A. N. Cleland, Physical Review A 86 (3), 032324 (2012). "Surface codes: Towards practical large-scale quantum computation". DOI: 10.1103/physreva.86.032324 arXiv:1208.0928
- Freedman, M. H., Foundations of Computational Mathematics 1 (2), 183 (2001). "Quantum Computation and the Localization of Modular Functors". DOI: 10.1007/s102080010006
- Giovannetti, V., S. Lloyd, & L. Maccone, Physical Review Letters **96** (1), 010401 (2006). "Quantum Metrology". DOI: 10.1103/PhysRevLett.96.010401 arXiv:quant-ph/0509179
- Gisin, N., Helv. Phys. Acta **62**, 363 (1989). "Stochastic quantum dynamics and relativity". DOI: 10.5169/seals-116034
- Goldstein, S., Phys. Rev. Lett. **72** (13), 1951 (1994). "Nonlocality without inequalities for almost all entangled states for two particles".
- Gottesman, D., Phys. Rev. A **54** (3), 1862 (1996). "Class of quantum error-correcting codes saturating the quantum Hamming bound". DOI: 10.1103/physreva.54.1862 arXiv:quant-ph/9604038
- Gottesman, D., Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology, Pasadena, California (1997). arXiv:quant-ph/9705052
- Gottesman, D., Phys. Rev. A 57 (1), 127 (1998). "Theory of fault-tolerant quantum computation". DOI: 10.1103/PhysRevA.57.127 arXiv:quant-ph/9702029
- Gottesman, D., "The Heisenberg Representation of Quantum Computers," in Group 22: proceedings of XXII International Colloquium on Group Theoretical Methods in Physics: Hobart, July 13-17, 1998, edited by Corney, S. P., R. Delbourgo, & P. D. Jarvis (International Press, Cambridge, MA, 1999), ISBN 978-1571460547. arXiv:quant-ph/9807006
- Greenberger, D. M., M. A. Horne, A. Shimony, & A. Zeilinger, Ame. J. Phys. 58, 1131 (1990). "Bell's theorem without inequalities". DOI: 10.1119/1.16243

Greenberger, D. M., M. A. Horne, & A. Zeilinger, "Going beyond Bell's theorem," in *Bell's Theorem, Quantum Theory, and Conceptions of the Universe*, edited by Kafatos, M. (Kluwer Academic, Dordrecht, The Netherlands, 1989). arXiv:0712.0921

- Griffiths, R. B. & C.-S. Niu, Physical Review Letters **76** (**17**), 3228 (1996). "Semiclassical Fourier Transform for Quantum Computation". DOI: 10.1103/physrevlett.76.3228 arXiv:quant-ph/9511007
- Grover, L. K., "A fast quantum mechanical algorithm for database search," in *Proceedings of the 28th Annual ACM Symposium on the Theory of Computing* (ACM Press, New York, 1996), p. 212. arXiv:quant-ph/9605043
- Grover, L. K., Phys. Rev. Lett. **79** (2), 325 (1997). "Quantum Mechanics Helps in Searching for a Needle in a Haystack".
- Hardy, L., Phys. Rev. Lett. **68** (20), 2981 (1992). "Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories".
- Hardy, L., Phys. Rev. Lett. **71**, 1665 (1993). "Nonlocality for two particles without inequalities for almost all entangled states".
- Higgins, B. L., D. W. Berry, S. D. Bartlett, H. M. Wiseman, & G. J. Pryde, Nature **450** (7168), 393 (2007). "Entanglement-free Heisenberg-limited phase estimation". DOI: 10.1038/nature06257 arXiv:0709.2996
- Horodecki, M., P. Horodecki, & R. Horodecki, Phys. Lett. A **223** (1), 1 (1996). "Separability of mixed states: necessary and sufficient conditions". DOI: 10. 1016/0375-9601(95)00930-2
- Horodecki, R., P. Horodecki, M. Horodecki, & K. Horodecki, Rev. Mod. Phys. 81 (2), 865 (2009). "Quantum entanglement". DOI: 10.1103/RevModPhys.81.865
- Hughston, L. P., R. Jozsa, & W. K. Wootters, Physics Letters A **183** (1), 14 (1993). "A complete classification of quantum ensembles having a given density matrix". DOI: 10.1016/0375-9601(93)90880-9
- Jiang, M., S. Luo, & S. Fu, Physical Review A 87 (2) (2013). "Channel-state duality". DOI: 10.1103/physreva.87.022310
- Jönsson, C., Z. Physik **161**, 454 (1961). "Electron Diffraction at Multiple Slits". DOI: 10.1007/BF01342460
- Kitaev, A. Y., Electronic Colloquium on Computational Complexity 3, 3 (1996). "Quantum measurements and the Abelian Stabilizer Problem". arXiv:quant-ph/9511026

Kitaev, A. Y., Russian Mathematical Surveys **52 (6)**, 1191 (1997). "Quantum computations: algorithms and error correction". DOI: 10.1070/RM1997v052n06ABEH002155

- Kitaev, A. Y., Physics-Uspekhi **44** (**10S**), 131 (2001). "Unpaired Majorana fermions in quantum wires". DOI: 10.1070/1063-7869/44/10S/S29 arXiv:cond-mat/0010440
- Kitaev, A. Y., Ann. Phys. **303** (1), 2 (2003). "Fault-tolerant quantum computation by anyons". DOI: 10.1016/S0003-4916(02)00018-0 arXiv:quant-ph/9707021
- Laflamme, R., C. Miquel, J. P. Paz, & W. H. Zurek, Physical Review Letters 77 (1), 198 (1996). "Perfect Quantum Error Correcting Code". DOI: 10.1103/physrevlett.77.198 arXiv:quant-ph/9602019
- Landauer, R., Physics Today 44 (5), 23 (1991). "Information is Physical".
- Lang, S., Introduction to Linear Algebra, Undergraduate Texts in Mathematics (Springer New York, New York, 1986), 2nd ed., ISBN 9781461210702. DOI: 10.1007/978-1-4612-1070-2
- Lang, S., $Linear\ Algebra$ (Springer, Berlin, 1987), 3rd ed., ISBN 978-1-4757-1949-9. DOI: 10.1007/978-1-4757-1949-9
- Loss, D. & D. P. DiVincenzo, Phys. Rev. A 57 (1), 120 (1998). "Quantum comutation with quantum dots".
- Lundeen, J. S., B. Sutherland, A. Patel, C. Stewart, & C. Bamber, Nature 474 (7350), 188 (2011). "Direct measurement of the quantum wavefunction". DOI: 10.1038/nature10120
- Mourik, V., K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, & L. P. Kouwenhoven, Science **336** (6084), 1003 (2012). "Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices".
- Nadj-Perge, S., I. K. Drozdov, J. Li, et al., Science **346** (6209), 602 (2014). "Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor". DOI: 10.1126/science.1259327 arXiv:http://www.sciencemag.org/content/346/6209/602.full.pdf
- Nakazato, H., Y. Hida, K. Yuasa, B. Militello, A. Napoli, & A. Messina, Physical Review A **74** (6), 062113 (2006). "Solution of the Lindblad equation in the Kraus representation". DOI: 10.1103/physreva.74.062113 arXiv:quant-ph/0606193
- Nielsen, M. & I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, New York, 2011), 10th anniversary ed., ISBN 978-1107002173. DOI: 10.1017/CB09780511976667

Ozawa, M., Physics Letters A **268** (3), 158 (2000). "Entanglement measures and the Hilbert–Schmidt distance". DOI: 10.1016/s0375-9601(00)00171-7

- Pan, J.-W., D. Bouwmeester, M. Daniell, H. Weinfurter, & A. Zeilinger, Nature 403, 515 (2000). "Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement".
- Paris, M. & J. Rehacek, eds., Quantum State Estimation, Vol. 649 of Lecture Notes in Physics (Springer Berlin Heidelberg, Berlin, 2004), ISBN 9783540444817. DOI: 10.1007/b98673
- Peres, A., Phys. Rev. Lett. **77** (8), 1413 (1996). "Separability Criterion for Density Matrices". DOI: 10.1103/PhysRevLett.77.1413 arXiv:quant-ph/9604005
- Pérez-García, D., M. M. Wolf, D. Petz, & M. B. Ruskai, Journal of Mathematical Physics 47 (8), 083506 (2006). "Contractivity of positive and trace-preserving maps under Lp norms". DOI: 10.1063/1.2218675 arXiv:math-ph/0601063
- Plenio, M. B. & P. L. Knight, Rev. Mod. Phys. **70** (1), 101 (1998). "The quantum-jump approach to dissipative dynamics in quantum optics".
- Plenio, M. B. & S. Virmani, Quant Inf Comput 7 (1&2), 1 (2007). "An introduction to entanglement measures". arXiv:quant-ph/0504163
- Preskill, J., "Lecture Notes on Quantum Information and Computation," unpublished (1998).
- Raussendorf, R. & H. J. Briegel, Phys. Rev. Lett. **86** (22), 5188 (2001). "A One-Way Quantum Computer".
- Raussendorf, R., D. Browne, & H. Briegel, Journal of Modern Optics **49** (**8**), 1299 (2002). "The one-way quantum computer—a non-network model of quantum computation". DOI: 10.1080/09500340110107487 arXiv:quant-ph/0108118
- Raussendorf, R., D. E. Browne, & H. J. Briegel, Phys. Rev. A **68 (2)**, 022312 (2003). "Measurement-based quantum computation on cluster states". DOI: 10.1103/PhysRevA.68.022312 arXiv:quant-ph/0301052
- Schwinger, J., Proceedings of the National Academy of Sciences **45** (**10**), 1542 (1959). "The Algebra Of Microscopic Measurement". DOI: 10.1073/pnas.45. 10.1542
- Shor, P. W., "Algorithms for Quantum Computation: Discrete Logarithms and Factoring," in *Proceedings of the 35th Annual Symposium on Foundations of Computer Science* (IEEE Computer Society, Washington, DC, USA, 1994), SFCS '94, pp. 124–134. DOI: 10.1109/SFCS.1994.365700

Shor, P. W., SIAM Journal on Computing 26 (5), 1484 (1997). "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer". arXiv:quant-ph/9508027

- Simon, D. R., SIAM Journal on Computing **26** (5), 1474 (1997). "On the Power of Quantum Computation". DOI: 10.1137/s0097539796298637
- Sjöqvist, E., D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, & K. Singh, New Journal of Physics 14 (10), 103035 (2012). "Non-adiabatic holonomic quantum computation". DOI: 10.1088/1367-2630/14/10/103035 arXiv:1107.5127
- Smolin, J. A. & D. P. DiVincenzo, Phys. Rev. A **53** (4), 2855 (1996). "Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate". DOI: 10.1103/PhysRevA.53.2855
- Steane, A. M., Phys. Rev. Lett. **77** (5), 793 (1996). "Error Correcting Codes in Quantum Theory".
- Størmer, E., *Positive Linear Maps of Operator Algebras* (Springer, Berlin, 2013), ISBN 9783642343698. DOI: 10.1007/978-3-642-34369-8
- Tonomura, A., J. Endo, T. Matsuda, T. Kawasaki, & H. Ezawa, Ame. J. Phys. **57** (2), 117 (1989). "Demonstration of single-electron buildup of an interference pattern". DOI: 10.1119/1.16104
- Vallone, G. & D. Dequal, Physical Review Letters 116 (4), 040502 (2016). "Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function". DOI: 10.1103/physrevlett.116.040502 arXiv:1504.06551
- Vedral, V., A. Barenco, & A. Ekert, Physical Review A **54** (1), 147 (1996). "Quantum networks for elementary arithmetic operations". DOI: 10.1103/physreva. 54.147 arXiv:quant-ph/9511018
- Vedral, V., M. B. Plenio, M. A. Rippin, & P. L. Knight, Physical Review Letters 78 (12), 2275 (1997). "Quantifying Entanglement". DOI: 10.1103/physrevlett. 78.2275
- Wang, C., J. Harrington, & J. Preskill, Annals of Physics **303** (1), 31 (2003). "Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory". DOI: 10.1016/s0003-4916(02)00019-2
- Wehrl, A., Reviews of Modern Physics **50** (2), 221 (1978). "General properties of entropy". DOI: 10.1103/revmodphys.50.221
- Weyl, H., The theory of groups and quantum mechanics (Dover, London, 1931).
- Wigner, E. P., Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959), english translation ed.

Wilczek, F. & A. Zee, Phys. Rev. Lett. **52** (**24**), 2111 (1984). "Appearance of Gauge Structure in Simple Dynamical Systems". DOI: 10.1103/PhysRevLett.52.2111

- Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, & K. H. S. Campbell, Nature 385 (6619), 810 (1997). "Viable offspring derived from fetal and adult mammalian cells". DOI: 10.1038/385810a0
- Wooters, W. K. & W. H. Zurek, Nature 299, 802 (1982). "A single quantum cannot be cloned".
- Zanardi, P. & M. Rasetti, Phys. Lett. A **264 (2-3)**, 94 (1999). "Holonomic quantum computation". DOI: 10.1016/S0375-9601(99)00803-8 arXiv:quant-ph/9904011
- Zurek, W. H., Phys. Today 44 (10), 36 (1991). "Decoherence and the transition from quantum to classical".
- Zurek, W. H., Nature 404, 130 (2000). "Quantum cloning: Schrodinger's sheep". DOI: 10.1038/35004684
- Zurek, W. H., Los Alamos Science 27, 2 (2002). "Decoherence and the Transition from Quantum to Classical: Revisited".

Index

Abelian group, 287, 406, 411	change of basis, 362, 365
amplitude damping, 230	channel-state duality, 217
ancillary qubit, 84	Choi isomorphism, 216–218, 396
	Choi matrix, 216, 387, see also Choi
basis, 360, 362	operator
orthonormal basis, 361, 362, 364,	Choi operator, see also Choi matrix, 216,
367	217, 260, 395
Bayes' rule, 336	Choi vector, 215, 218
Bayes, T., 336	classical communication channel, 145
Bell basis, see also Bell states, 145	classical feedback control, see also semi-
Bell measurement, 96, 145, 218	classical feedback control, 299
Bell states, 96, 145	classical fidelity, 333
Bell's inequality, 142	Clifford circuit, 296, 297
Bell's test, 142	Clifford group, 291, 295, 329
Bell, J., 142	Clifford operators, see also Pauli opera-
Bernstein-Vazirani algorithm, 148, 156	tors, 291, 309
bilinear mapping, 359	closed system, 14, 199, 206
birthday paradox, 157	closure relation, 209
bit flip, 48	cluster state, 99, 126, 137
bit-flip correction code, 308	CNOT gate, 57, 65, 67, 87, 93, 113, 126,
bit-flip error, 268, 269, 271–273, 307	145, 187, 203, 291, 294, 295, 302,
bitwise AND, 81	303
Bloch space, 107, 113, 192, 291, 292	multi-control NOT gate, 83, 85, 90–92,
Bloch sphere, 16, 23, 24, 54	100
Bloch states, 186	code space, 266, 280
Bloch vector, 16, 23, 250	code words, 272, 277
Bohr, Niels H. D., 201	coherence, 105
bra-ket notation, 46, 367	complementarity principle, 13
bright state, 118	completely positive and trace-preserving
	supermap, 207
Calderbank-Shor-Steane codes, 312	completely positive supermap, 206–208,
canonical distance, 360	217, 391 – 393, 398, 401
canonical norm, 244, 360	completeness relation, 37, 225, 372
Cauchy-Schwarz inequality, 261, 263, 359,	computational basis, see also logical ba-
424	sis
center, 285	concave function, 341, 355

concavity of entropy, 356	DiVincenzo criteria, 104
conditional entropy, 337	double-slit experiment, 200, 203
conjugation, 291, 293	dual basis, 368
continued fraction, 182	dual vector, 367
control qubit, 57	
controlled-NOT gate, see also CNOT	effective Hamiltonian, 227, 231, 237
gate, 57	eigenbasis, 370
controlled-unitary gate, 57, 71, 90, 172,	eigenvalue, 370
198	eigenvector, 370
multi-control unitary gate, 69, 70,	Einstein, Albert, 19, 141, 201
80, 81, 83, 89, 90	elementary quantum logic gates, 45
controlled-Z gate, see also CZ gate, 62	Elements, 13, 183
convergent of a continued fraction	entangled state, 17, 19, 58, 346, 377
continued fraction, 183	entanglement, 19, 26, 32, 37, 136, 145,
convex function, 335, 355	151, 331, 346
convex linear, 207	entanglement cost, 353
coset, 285, 290, 408, 409	entanglement distillation, 350
left coset, 409	entanglement fidelity, 217
right coset, 409	entanglement measure, 251
CSS codes, see also Calderbank-Shor-	entanglement witness, 350
Steane codes	entropy, 331, 332
cyclic evolution, 124	entropy of entanglement, 353
cyclic group, 291, 406, 411	environment, 199, 265
CZ gate, 62, 113–115, 126, 137, 291	error operators, 279
multi-control Z gate, 189	error syndrome, 267, 278, 305, 306, 324, 325, 327
damping operator, 227, 231, 237	error-detection, 267, 269
dark state, 118, 138	error-recovery, 268
de Broglie, Louis, 201	Euclid of Alexandria, 13, 183
decoherence, 19, 26, 32, 207, 265	Euclidean algorithm, 183
degenerate codes, 306	Euclidean distance, 333
density matrix, see also density operator	Euler rotation, 55, 130
density operator, 20 , 21 , 199 , 206 , 207 ,	Euler angles, 55
217, 233, 250, 339, 371, 381	Euler, L., 55
dephasing, 220, 222	exclusive OR, 59
depolarizing process, 230	,
Deutsch-Jozsa algorithm, 148	factor group, see also quotient group
Deutsch-Jozsa problem, 157	Feyman, Richard P., 201
dimension, 360	fidelity, 217, 243, 254–256, 360
Dirac, P. M. A., 201	field, 357
direct product group, 411	flux quantization, 103
discrete Fourier transform, 161, 162, 179	Fredkin gate, 86, 87
discrete logarithm, 161	Frobenius inner product, see also Hilbert-
distillable entanglement, 353	Schmidt inner product, 385

INDEX INDEX

gate teleportation, 218	Hermitian product, 359, 360, 362, 365,
gauge transformation, 125	367, 385
generalized interaction picture, 237	hidden subgroup problem, 161, 162, 171,
generalized measurement, 225	178–180
geometric phase, 116	Hilbert space, 14, 15, 104, 361
geometric quantum computation, 122,	Hilbert-Schmidt distance, 243, 250
124, 125	Hilbert-Schmidt inner product, 208, 213,
GHZ state, 62, 98	244, 385
Gibbs' inequality, 334, 335, 343	Hilbert-Schmidt norm, 246, 247, 261
Gibbs, J. W., 334	homomorphism, 407
Gisin-Hughston-Jozsa-Wooters (GHJW)	Householder reflection, see also House-
theorem, 25	holder transformation
golden ratio, 183	Householder transformation, 188, 189,
Gottesman vector, 286, 287, 290, 328,	193
427	
Gottesman-Knill theorem, 296	inertial force, 109
graph state, see also cluster state, 126,	inertial frame, 108
135–137, 297	information theory, 331
Gray code, 70, 81	initialization, 105
Gray code sequence, 81, 91	inner product, 359
Greenberger-Horne-Zeilinger experiment,	invariant subgroup, 285, 409
297	inverse quantum Fourier transform
Greenberger-Horne-Zeilinger state, 62,	quantum Fourier transform, 167
98	irreversible population loss, 227
group, 403	Ising exchange interaction, 114, 115
group generators, 283, 298, 405	isomorphism, 407
group theory, 282, 403	• ,
Grover operator, 192	joint entropy, 336
Grover rotation, 193	joint probability distribution, 335
Grover's algorithm, see also quantum	Josephson inductance, 103
search algorithm, 188	
Grover's diffusion operator, 189	kinetic inductance, 103
Grover, L. K., 188	Klein's inequality, 343–345, 355, 431
210.02, 21.11, 100	Klein's trace inequality, 355
Hadamard gate, 50, 52, 93, 97, 98, 114,	Klein, O., 343, 355
126, 129, 145, 291, 293-295	Kolmogorov distance, 252, 333
Hadamard matrix, 50	Kolmogorov, A., 252
Hardy's test, 143	Kraus elements, 208, 221, 229, 259, 298,
Heisenberg exchange interaction, 113,	393
114	orthogonal Kraus elements, 393
Heisenberg limit, 37	Kraus maps, see also Kraus elements,
Hermitian, 243	see also Kraus elements
Hermitian conjugate, 365, 366	Kraus operator-sum representation, see
Hermitian operator, 206, 366, 370, 390	also Kraus representation

Kraus operators, see also Kraus elements	non-selective measurement, 225
Kraus representation, 207, 213, 393	nonlocality, 19, 141, 142
T . 107	norm, 243, 360
Larmor precession, 107	normal operator, 366, 370
Lindblad basis, 233	normalizer, 291
Lindblad equation, 226, 232, 237, 388	NOT gate, 113
Lindblad generator, 227, 228, 230, 234	null space, 342
Lindblad operators, 227	
linear algebra, 357	observable, 355
linear dependent, 360	octant phase gate, 56, 93, 297
linear map, 363	one-way quantum computation, see also
linear operator, 363	measurement-based quantum con
linearly dependent, 358	putation
linearly independent, 358	open quantum system, 199, 206, 387
logarithmic negativity, 353	operation time, 107
logical basis, 15, 290	operator-sum representation, 217, 389,
logical operators, 289–291, 297–300, 308	392
Mach-Zender interferometer, 201, 202	oracle, 190
Markov approximation, 226	order-finding algorithm, 185, 187
Markov assumption, 228	order-finding problem, 161, 173, 185
maximally entangled state, 40, 99, 204,	orthogonality, 359
216, 217, 262	orthonormal basis, 40, 372
maximally mixed state, 340, 344	
measurement, 45, 105, 207	parallel transport, 125
measurement operators, 37, 225	partial trace, 25, 209, 217, 220, 396–398
measurement-based quantum computa-	partial transposition, 347, 392, 398, 401
tion, 126, 280	path ordering, 125
metric, 243	Pauli gates, see also Pauli operators, 46
mixed state, 19, 23, 25, 30, 220, 371	Pauli group, 282, 283, 287, 291, 305, 404,
modular exponentiation, 178, 185, 186	410, 411
modular multiplication, 173, 185, 186	Pauli measurements, 96
momentum basis, 177	Pauli operators, 98, 105, 138, 145, 282,
mutual information, 337	283, 286, 291
mataar mormaton, oo	Pauli X gate, 50
Newton's laws of motion, 13	Pauli X operator, 46, 50
Newton, Isaac, 13	Pauli Y operator, 48
no-cloning theorem, 33, 34, 60, 144, 265	Pauli Z operator, 47
noiseless coding theorem, 338	period-finding algorithm, 179, 185, 186
non-Abelian gauge potential, 125	phase damping, 221, 229
non-Abelian geometric phase, 116	phase flip, 48
non-Hermitian Hamiltonian, 227, 237	phase gate, 97
non-inertial effect, 108, 109, 123	phase-flip error, 271
non-negative operator, see also positive	phase-flip correction code, 308
semidefinite operator	phase-flip error, 269, 270, 273

planar codes, 316, 322	quantum entropy, see also von Neumann
planar exchange interaction, $see~also~XY$	entropy
exchange interaction	quantum error-correction codes, 96
plaquette defect, 326, 327	quantum error-correction conditions, 276
plaquette operator, 316–318, 320, 322	279,305
point group, 291	quantum factorization algorithm, 97, 139
polar decomposition, 261, 263, 277, 375,	157, 161, 171, 185, 187
427	quantum Fourier transform, 163, 172–174
position basis, 177	177, 178
positive definite Hermitian product, 359	inverse quantum Fourier transform,
positive definite operator, see also posi-	167
tive operator	quantum gate teleportation, 218, 219,
positive operator, 22, 206, 217, 250, 339,	259
371, 372, 375, 376, 390, 392, 400	quantum information theory, 331, 389
positive partial transposition criterion,	quantum jump approach, 227, 236
347, 353	quantum jump operators, see also Lind-
positive semidefinite operator, 209, 371,	blad operators, 227, 231
372	quantum logic gate, 57, 103
post-measurement state, 38	quantum logic gate operation, 45
postulates of quantum mechanics, 13	quantum Markovian dynamics, 227
POVM, 38, 39, 262, 426	quantum master equation, see also Lind-
POVM elements, 38, 39	blad equation, 232
principle of complementarity, 201	quantum mutual information, 345
principle of deferred measurement, 168	quantum operation, 200, 206, 207, 217,
product group, 411	225, 247, 259, 278
projection operator, 218, 395	quantum operation formalism, 32
projective measurement, 38	quantum oracle, 148, 149, 154, 158, 179,
pure state, 14, 19, 23, 25, 30, 34	180, 193, 198
purification, 21, 25, 256, 345	quantum parallelism, 148, 154
	quantum phase estimation, 69, 99, 161,
quadrant phase gate, 56, 93, 291–295	171, 172, 178, 180, 185, 186
quantum channel, 207	quantum register, 52, 59
quantum circuit model	quantum search algorithm, 188
quantum circuit diagram, 45	quantum state, 14
quantum communication, 34	quantum statistical mechanics, 389 quantum teleportation, 19, 62, 140, 144,
quantum computer, 103	218, 299
quantum computer architecture, 103	qubit, 15, 45, 104
quantum decoherence, see also decoher-	quantum bit, 45
ence	quotient group, 285, 408, 410
quantum efficiency, 105	quotient group, 200, 400, 410
quantum entanglement, see also entan-	Rabi oscillation, 109, 123
glement, 62	Rabi frequency, 109
quantum entangler circuit, 58, 96	random variable, 332

reduced density matrix, see also reduced	stabilizer circuits, 96
density operator, 99	stabilizer codes, 279, 284, 288, 312
reduced density operator, 344	stabilizer formalism, 136, 280, 297
reference space, 216	stabilizer subgroup, see also stabilizer.
relative entropy, 333, 334	see also stabilizer
relative Shannon entropy, 333, 342, 343	standard quantum limit, 37
representation, 361–365	standard tensor-product basis, 376
resonance, 109	state vector, 14
rotating frame, 108	statistical ensemble, 19
Hamiltonian in the rotating frame,	statistical mixture, 381
109	Stirling's approximation, 355, 431
time-evolution operator in the rotat-	Stirling, J., 355, 431
ing frame, 109	subadditivity, 345, 355, 356
rotating-wave approximation, 112	super-mapping, see also supermap
rotation operator, 54, 107	superdense coding, 140
	supermap, 206, 207, 217, 387, 389
scalable system, 104	superoperator, 226, 381, 387, 392, 401
scalar, 357	superposition, 265, 276, 357, 358, 363
Schmidt decomposition, 17, 347, 377,	support of operator, 342
379	surface codes, 316, 325, 327
Schmidt number, see also Schmidt rank,	SWAP gate, 64, 65, 87, 113, 137, 140
377	$\sqrt{\text{SWAP}}$ gate, 66, 113, 114, 137
Schmidt rank, 18, 351, 377	
Schmidt, E., 377	target qubit, 57
selective measurement, 225 semiclassical feedback control, see also	Taylor series expansion, 373
classical feedback control, see also	tensor product, 376, 396
separable state, 17, 377	tensor-product basis, 17
Shannon entropy, 332, 339–341, 344	tensor-product space, 17, 40, 376, 379
Shannon, C. E., 332	time ordering, 124
Shor's algorithm, see also quantum fac-	time-evolution operator, 29
torization algorithm, 139	Toffoli gate, 85, 87, 93, 297
Shor, Peter W., 139	topological quantum computation, 125
Simon's algorithm, 148, 157	toric codes, 316, 323
Simon's problem, 157	trace, 207
singular-value decomposition, 246, 261,	trace distance, 243, 250, 252
375, 377, 424	trace norm, 245, 246, 254, 261, 353
singular values, 246, 261	translation, 36
special theory of relativity, 142	translational freedom of Lindblad opera-
spectral decomposition, 25, 35, 209, 218,	tors, 228
245, 261, 371, 374	transposition, 391, 401
spin, 104	matrix transposition, 391, 401
stabilizer, 280–282, 284, 297, 298, 328	triangle inequality, 345, 360
stabilizer circuit, 296, 297	two-level unitary matrix, 91

```
two-level unitary transformation, 73, 75, wave-particle duality, 13, 201, 357
        83, 89-91
                                         XOR, see also exclusive OR
    two-level unitary matrix, 78, 80
                                         XY exchange interaction, 114
Uhlmann's theorem, 256, 257
    Uhlmann's formula, 256, 262
Uhlmann, A., 256, 257
uncertainty principle, 34
unconditional security, 34
unitary freedom, 21
unitary freedom in purification, 21, 25
unitary freedom of density operator, 21,
unitary freedom of Kraus elements, 214,
        227, 228
unitary freedom of Lindblad operators,
        227 - 229
unitary group, 46
unitary matrix, 46, 365
unitary operator, 365, 366, 370
unitary representation, 207
universal quantum computation, 46, 73,
        80, 93
    universal set of quantum logic gates,
        88, 105
universal set of classical logic gates, 88
unstructured search, 188, 190
vector, 358
    orthogonal vectors, 359
    parallel vectors, 359
vector space, 358
vector space of linear maps, 384
vector space of linear operators, 21, 381,
        385
vertex defect, 326, 327
vertex operator, 316–318, 322, 327
von Neumann entropy, 27, 339
von Neumann measurement, see also von
        Neumann scheme of measure-
        ment
von Neumann scheme of measurement,
        34, 176, 177
von Neumann, J., 34
```