

MA2401 Geometri Vår 2022

Norges teknisk-naturvitenskapelige

Løsningsforslag — Øving 10

universitet Institutt for matematiske fag

- 6.1.4 La $\Box ABCD$ vær en Saccheri-firkant med base \overline{AB} . En Saccheri-firkant er et paralellogram, men vi viser at alle konklusjonene i teorem 5.1.10 er usanne for firkanten $\Box ABCD$ i hyperbolsk geometri.
 - 1. $\triangle ABC \ncong \triangle CDA$ fordi $AB \neq CD$ fra korrolar 6.1.10.
 - 2. Fra korollar 6.1.10 vet vi også at motsatte sidene \overline{AB} og \overline{CD} er ikke kongruente.
 - 3. Fra korollar 6.1.4 vet vi at $\angle ABC \ncong \angle CDA$.
 - 4. La E være punktet der de to diagonalene skjærer hverandre. Dette punktet vet vi eksisterer ved teorem 4.6.8. Anta nå at AE = EC og BE = ED. Da er $\triangle AEB \cong \triangle CED$ fra vertikale vinkler teoremet og side-vinkel-side postulatet. Men, dette impliserer at vi har AB = CD, noe som motsier korollar 6.1.10.
- 6.1.5 La $\triangle ABC$ være en rettvinklet trekant med rett vinkel i C. La M være midtpunktet på \overline{AC} og N være midtpunktet på \overline{BC} . Vi nedfeller normaler fra hjørnene i $\triangle ABC$ til \overrightarrow{MN} og kaller føttene D, E og F.
 - a) Situasjonen er vist i følgende figur:

b) Siden $\mu(\angle MCN) = 90$, og vinkelsummen i trekanten er mindre enn 180, må både $\angle CMN$ og $\angle MNC$ være spisse. Vi kan derfor bruke lemma 4.8.6 til å konkludere med at M*F*N. La oss vise at $\triangle BEN \cong \triangle CFN$. Fra teorem 3.5.13 vet vi at $\angle BNE \cong \angle CNF$ siden de er toppvinkler. Ettersom N er midtpunktet på \overline{BC} , må vi ha BN = NC. Vi vet også at $\angle BEN$ og $\angle CFN$ er rette vinkler. Dermed gir vinkel-vinkel-side (VVS) oss at $\triangle BEN \cong \triangle CFN$. Et helt tilsvarende bevis gir også at $\triangle ADM \cong \triangle CFM$.

c) Av forrige deloppgave vet vi at DM = MF siden $\triangle ADM \cong \triangle CFM$, og at FN = NE siden $\triangle BEN \cong \triangle CFN$. Dermed er

$$DE = DM + MF + FN + NE = 2(MF + FN) = 2MN.$$

Vi påstår at $\Box EDAB$ er en Saccheri-firkant. Det er klart at vinklene $\angle EDA$ og $\angle BED$ er rette. Siden $\triangle ADM \cong CFM$, er AD = CF og siden $\triangle BEN \cong \triangle CFN$ er CF = BE. Dermed er BE = AD, slik at $\Box ABCD$ er en Saccheri-firkant.

Korollar 6.1.10 gir oss dermed at DE < AB, og ettersom $MN = \frac{1}{2}DE$ er $MN < \frac{1}{2}AB$.

d) Anta at Pythagoras teorem holder for $\triangle MNC$. Da er

$$MN^2 = MC^2 + NC^2.$$

Hvis vi setter inn $MC = \frac{1}{2}AC$ og $NC = \frac{1}{2}BC$ i denne ligningen, får vi at

$$MN^2 = \frac{1}{4}AC^2 + \frac{1}{4}BC^2,$$

og hvis vi ganger begge sidene med 4, får vi

$$(2MN)^2 = AC^2 + BC^2.$$

Men, vi vet fra forrige deloppgave at 2MN < AB, som i lys av forrige ligning må bety at

$$AC^2 + BC^2 = (2MN)^2 < AB^2.$$

Dermed kan ikke Pythagoras teorem holde for trekanten $\triangle ABC$, ettersom vi da måtte hatt $AB^2 = AC^2 + BC^2$.

[6.2.1] La l og m være to linjer slik at $l \parallel m$, og la P og Q være to punkter på m som ligger like langt fra l. Vi vil vise at l og m har en felles normal linje.

Vi nedfeller vinkelrette linjer fra P og Q til l og kaller føttene R og S respektivt. Siden $m \parallel l$ vet vi at R og S er på samme side av l. Dermed er $\Box RSQP$ en Saccherifirkant. La M være midtpunktet på \overline{RS} og la N væøre midtpunktet på \overline{PQ} . Da får vi fra teorem 4.8.10 del 3 at \overline{MN} er en felles normal linje for l og m.

 $\boxed{\textbf{6.2.2}}$ La l og m være paralelle linjer som har en felles normal. Vi ønsker å vise at denne linjen er unik.

Anta at det finnes to ulike felles normaler t og s. Fra indre vinkel-teoremet vet vi at $t \parallel s$. La A, B, C og D være de fire skjæringspunktene mellom linjene l, m, t og s, slik som vist på følgende figur:

Firkanten $\Box ABCD$ er da et rektangel. Men dette motsier teorem 6.1.6, som viser at vi ikke kan ha to ulike normaler for linjene l og m.