Analog IC Design

Lecture 2 circuits and systems review

Laplace Transform (LT)

Laplace Transform (LT)

Laplace transform helps you to solve differential equations by multiplication and division

Laplace Transform (LT)

Time domain	Laplace domain
e^{at}	$\frac{1}{s-a}$
$\int\limits_0^t f(t)dt$	$\frac{1}{s}F(s)$
$\frac{df(t)}{dt}$	sF(s)
$\delta(t)$	1
u(t)	$\frac{1}{s}$

System input	System response (output) in Laplace domain
Unit impulse: $\delta(t)$	H(s)
Unit step: $u(t)$	$\frac{1}{s}H(s)$

Poles and Zeros

Transfer function

$$H(s) = \frac{N(s)}{D(s)}$$

- Zeros:roots of the numerator N(s) = 0
- Poles: roots of the denominator (characteristic eq.) D(s) =0
- For physical systems, poles & zeros are real or complex conjugate

Notes:

 If the system input is impulse in the time domain then the output is the transfer function in laplace domain

Real and Complex Poles

LHP and RHP Poles

- Poles in LHP: Decaying exponential (stable system)
- Poles in RHP: Growing exponential (unstable system)

First-Order LPF

$$H(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC} = \frac{1}{1 + s\tau}$$

$$H(j\omega) = \frac{v_{out}(j\omega)}{v_{in}(j\omega)} = \frac{1/j\omega C}{R + 1/j\omega C} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + \frac{j\omega}{\omega}}$$

- $\tau = RC$: time constant
- $\omega_c = \frac{1}{\tau} = \frac{1}{RC}$: cutoff/corner frequency

Poles:
$$s_p = -\frac{1}{\tau} = -\omega_c$$

Zeros: ? @ w = infinity

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}}$$

$$P(H(j\omega)) = -\tan^{-1}\frac{\omega}{\omega_c}$$

First-Order LPF Bode Plot

First-Order HPF

$$H(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{R}{R + 1/sC} = \frac{sRC}{1 + sRC} = \frac{s\tau}{1 + s\tau}$$

$$H(j\omega) = \frac{v_{out}(j\omega)}{v_{in}(j\omega)} = \frac{R}{R + 1/j\omega C} = \frac{j\omega RC}{1 + j\omega RC} = \frac{\frac{j\omega}{\omega_c}}{1 + \frac{j\omega}{\omega_c}}$$

$$\square$$
 Zeros: $s_z = 0$

$$|H(j\omega)| = \frac{\frac{\omega}{\omega_c}}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}}$$

$$\Box P(H(j\omega)) = 90^{\circ} - \tan^{-1} \frac{\omega}{\omega_c}$$

First-Order HPF Bode Plot

Second-Order System: LC LPF

$$H(s) = \frac{Z_C}{R + Z_L + Z_C} = \frac{1}{LCs^2 + RCs + 1}$$

$$\omega_o^2 = \frac{1}{LC}$$
 and $Q = \frac{\omega_o L}{R} = \frac{1}{\omega_o RC} = \frac{1}{2\zeta}$

 \square Higher R means higher damping (ζ) and lower quality factor (Q)

$$H(s) = \frac{1}{\left(\frac{s}{\omega_o}\right)^2 + \frac{s}{\omega_o O} + 1} = \frac{\omega_o^2}{s^2 + \left(\frac{\omega_o}{Q}\right)s + \omega_o^2} = \frac{\omega_o^2}{s^2 + (2\zeta\omega_o)s + \omega_o^2}$$

$$V_{in} \stackrel{R}{\sim} \stackrel{L}{\sim} V_{out}$$

Second-Order Passive LC LPF

$$H(s) = \frac{1}{\left(\frac{s}{\omega_o}\right)^2 + \frac{s}{\omega_o Q} + 1} = \frac{\omega_o^2}{s^2 + \left(\frac{\omega_o}{Q}\right)s + \omega_o^2}$$

$$s_{p1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = -\frac{\omega_o}{2Q} \pm \frac{\omega_o}{2} \sqrt{\frac{1}{Q^2} - 4}$$

Second-Order System Poles

$$H(s) = \frac{1}{\left(\frac{s}{\omega_o}\right)^2 + \frac{s}{\omega_o Q} + 1} = \frac{1}{\left(\frac{s}{\omega_o}\right)^2 + \frac{s}{\omega_o/2\zeta} + 1}$$

$$s_{p1,2} = -\frac{\omega_o}{2Q} \pm \frac{\omega_o}{2} \sqrt{\frac{1}{Q^2} - 4}$$

Ringing and Peaking

- 1) Q < 0.5 (ζ > 1) over damped system roots are real, negative, and distinct
- 2) $Q = 0.5 (\zeta = 1)$:critical damped system, roots are real, negative, and equal
- 3) Q > 0.5 (ζ < 1):under damped system,roots are complex conjugate

Problems:

- Increase settling time
- Overshoot and undershooting which is calculated by

Ringing and Peaking

• Ringing at time happens first at Q > 0.5 then peaking at frequency domain at Q > 0.707

