Multilayer Switch & 사내망 구성도

Multilayer Switch(다계층스위치)

구분	L2 Switch	L3 Switch	L4 Switch	L7 Switch	
포워딩기준	2계층 (MAC Address)	3계층 (IP Address)	4계층 (IP address + Port 번호)	7계층 (IP address + Port 번호+ Content)	
기능	Switching - Learning - Forwarding - Filtering	Switching Routing	L3 Switch Load Balance	L4 Switch Security Content 인식	
주요 용도	Frame 전송	Packet 전송	FLB SLB	FLB SLB Security	

 www.test.com
 50010
 80
 192.168.1.10
 192.168.4.10
 A.M
 D.M

 송Port
 수Port
 송신지IP
 수신지IP
 송MAC
 수MAC

L4 Switch

L7 Switch

사내망 구성도

● 구성도

구성도

❸ 구성도

4 구성도

구성도

⑦ 구성도

NAT(Network Address Translation)

SoHo(Small office/home office)에서의 NAT

사설/공인 IP Address

• 사설 IP 주소

- 인터넷과 연동되지 않은 사적인 독립 네트워크(Private IP Network)에서 사용되는 사적인 주소
- 인터넷 상에서 사용할 수 없음을 의미
- Class 별 사설 IP 주소 대역(IETF RFC 1918)
 - ① A Class: 10.x.x.x
 - ② B Class: 172.16.x.x ~ 172.31.x.x
 - ③ C Class: 192.168.x.x

• 공인 IP주소

- 사설 IP주소를 제외한 주소

NAT기능

- 네트워크 주소 변환 (Network Address Translation)
- 송신지 또는 수신지 IP address를 다른 주소로 변환
- Source NAT(SNAT)와 Destination NAT(DNAT)

Source NAT

Destination NAT

NAT Port Mapping (Port Forwarding)

기업망에서의 NAT

보안망 구성(1)

보안망 구성도

보안 장비 설치 모드

InLine 모드

- 물리적 네트워크 경로 상에 보안장비를 설치
- 네트워크을 통과하는 모든 트래픽들이 보안장비를 거쳐 가도록 하는 모드
- 패킷 차단 목적의 장비에 적용 (예) Anti-DDoS, Firewall, IPS 등
- 장점: 실시간 패킷을 탐지하고 차단
- 단점: 장비에 장애가 발생 할 경우 전체 네트워크 장애로 확산 될 위험성 (전체 네트워크 가용성에 영향을 줄 수 있음)

Out of Path(Mirror) 모드

- 미러링 장비(예. TAP)를 통해 복제된 패킷을 받아서 탐지하는 모드
- 패킷 차단 기능이 없는 탐지 목적의 장비에 적용
 - IDS, Anti-APT, Network Forensic 등
- 네트워크 경로를 벗어난 곳에 위치
- 장점: 전체 네트워크 가용성에 영향을 주지 않으면서 패킷을 탐지할 수 있음
- 단점 : 복제(복사) 된 패킷을 탐지하기 때문에 실시간 패킷을 차단하기 어려움

네트워크 보안 솔루션

공격 종류

Hardening(하드닝)

- '정보를 저장하고 있는 컴퓨터나 네트워크 등과 같은 환경을 굳건하게 한다'는 뜻
- '요새화'라 부르는 경우도 있음
 - 외부에 공개하는 서비스의 국소화
 - 작동하는 있는 것의 파악
 - 불필요한 프로그램 실행 중지
 - 취약성을 수정하는 패치의 신속한 적용
 - 보안 소프트웨어나 기기의 도입
 - 'OS나 네트워크 기기 등의 다층방어 '

네트워크 보안 솔루션

- 1 Firewall
- IDS(Intrusion Detection System)
- IPS(Intrusion Prevention System)
- WAF(Web Application Firewall)
- NAC(Network Access Control)
- VPN(Virtual Private Network)
- UTM(Unified Threat Management)
- Anti-DDoS system

① 방화벽(Firewall)

• IP주소와 Port 번호를 기반으로 방화벽 rule set(필터링 정책)에 따라 패킷 필터링을 수행하는 보안 장비

- 접근 제어(Access Control)/ 패킷 필터링
- NAT(Network Address Translation)
- 액세스 기록 기능
- 사용자 인증(Authentication)
- 암호화 + 터널링

방화벽(Firewall) 정책 설정(rule set) 예제 표

*상태 검사(stateful inspection) 기능

트래픽방향	사 용 자	송신지IP	수신지IP	허용포트	시간대	Permit /Deny	
외부→내부		몇몇 서비스를 제외한 모든 서비스 불가					
외부→DMZ	모든사용자	모든 네트워크	DMZ 네트워크	HTTP, SMTP POP3	모든 시간대		
내부→외부	내부 네트워크 모든 사용자	내부 네트워크	모든 네트워크	의심포트 권고 사항을 제외한 대부분 모든 포트 허용	특정 커뮤니티 웹 사이트 근무 시간대 제외	Permit	
내부→DMZ	인증을 거친 사용자	내부 네트워크	DMZ 네트워크	HTTP, SMTP POP3	모든 시간대		
DMZ→외부	DMZ 네트워크 사용자	DMZ 네트워크	모든 네트워크	HTTP, SMTP POP3	모든 시간대		
DMZ→내부	VOIP SIP를 제외한 모든 서비스 불가						

* P2P 사용 포트

서비스	TCP	UDP	
소리바다	22322, 22323, 7675	8719, 4665, 4672	
구루구루	9292, 9293, 8282, 31200	22321, 7674	
파일구리	9493	9493	

* 메신저 사용 포트

서비스	사용 하는 포트	서버 IP 주소 (변경될수 있음)
Kakaotalk	TCP 80, 43 TCP 8080 5223, 5228 9282 10000 – 10010	210.103.248.0/21 203.133.160.0/19 113.27.148.0/23 61.251.98.128/25 203.238.180.0/24 etc

방화벽 로드 밸런싱(FLB) - SNAT & NDAT

방화벽 로드 밸런싱(FLB) - SNAT & NDAT

L4 스위치 기반의 방화벽 로드 밸런싱

Firewall Load Balancing (FLB)

■ L4 스위치 기반의 로드 밸런싱

방화벽(Firewall) 한계

- 내부 네트워크에 존재하는 악의적인 공격을 막을 수 없음
- 방화벽을 경유하지 않는 공격을 막을 수 없음
- 방화벽에 방어 규칙에 포함되지 않는 공격을 막을 수 없음
- 데이터에 실려 있는 악성코드나 바이러스를 막을 수 없음
 - 메일에 첨부된 악성 코드를 막을 수 없음
- DoS와 DDoS 공격을 막을 수 없다.
 - 열린 포트를 통한 공격을 막을 수 없음

② 침입 탐지 시스템 (Intrusion Detection System)

- 공격을 탐지하고 관리자에게 공격 알림을 통해 공격에 대처할 수 있게 해 주는 보안 시스템
- 전달하는 패킷의 내용이나 로그를 분석하여 공격 여부를 탐지
 - 악성코드 탐지 가능
- HIDS(Host-based IDS)와 NIDS(Network-based IDS)로 분류

*침입 탐지 시스템 (Intrusion Detection System)

HIDS(Host-based IDS)

- 서버에 직접 설치됨에 따라 네트워크 환경과 무관
- 호스트의 자원 사용 실태, 로그 등을 분석하여 침입 여부 탐지
- 무결성 체크 기능이 주요 기능
 - 무결성 점검에 의해 침입여부 식별
 - 최초 설치 시 초기 데이타베이스에 중요 파일들에 대한 해시값 저장
 - 주기적으로 중요 파일의 해시값 변조 유무를 검사/탐지/분석하여 결과 보고
- 오픈 소스 IDS : Tripwire(트립와이어)

NIDS(Network-based IDS)

- 네트워크 상에서 일어나는 침입 시도를 탐지
- 네트워크 세그먼트 당 하나의 장비만 설치하면 되므로 설치 용이
- 패킷 수집을 위해 mirroring 기능 이용
 - Mirroring : 패킷을 복사한 다음 복사한 패킷을 NIDS 장비로 전달
 - 스위치의 미러링 포트를 이용하거나 TAP 장비를 통해 패킷 복사
- 수집된 패킷은 분석을 위해 필터링과 축약과정(reduction)이 필요
 - 필터링은 불요한 정보를 제거하는 과정으로 지정된 수준의 데이터만 수집
 - 축약은 통계적/수학적 기법을 적용하여 반복되는 데이터를 줄이는 과정
- 오픈 소스 NIDS : Snort

False Negative & False Positive

- 미탐지(False Negative)
 - 공격을 탐지하지 못하는 경우
 - 시그니처 기반의 탐지 시스템의 경우 미탐지가 높음

- 오탐지(False Positive)
 - 공격이 아닌 것을 공격으로 탐지하는 경우
 - 행동 기반의 탐지 시스템의 경우 오탐지가 높음

IDS 탐지 방법

	오용탐지(Misuse Detection)	이상탐지(Anomaly Detection)
특 징	 시그니처 기반의 탐지 알려진 공격법이나 보안 정책에 위반하는 행동에 대한 패턴 탐지 공격 분석 결과를 바탕으로 패턴 설정 패턴(시그니처)과 비교하여 일치하는 경우 불법 침입으로 간주 	• 행동 기반의 탐지 • 정상범위(normal)을 벗어나는 데이터를 탐지하는 방법 • 정량적인 분석, 통계적 분석을 사용 • 형태 관찰, 프로파일 생성, 프로파일 기반 으로 이상여부를 확인 • I/O 사용량, 로그인 횟수, 패킷양 등

IDS 탐지 방법

	오용탐지(Misuse Detection)	이상탐지(Anomaly Detection)
장점	• 오탐률(false positive)이 낮음 • 트로이 목마, 백도어 공격 탐지 가능	• 미탐률(false negative)이 낮음 • 인공지능 알고리즘 사용으로 스스로 판단하여 수작업의 패턴 업데이트 불필요 • 알려지지 않는 새로운 공격 탐지 가능
단점	• 미탐률(false negative)이 높음 • 새로운 공격 탐지를 위해 지속적인 공격 패턴 갱신 필요 • 패턴에 없는 새로운 공격에 대해서는 탐지 불가능	• 오탐률(false positive)이 높음 • 정상과 비정상 구분을 위한 임계치 설정이 어려움

침입 탐지 시스템 한계

- 오탐지(false positive)와 미탐지(false negative) 문제 발생
 - 공격에 대한 패턴을 모르다면 분석과 탐지가 어려움
- 실시간 공격을 막을 수 없음
- 단편화(fragmentation), 난독화, 암호화와 같은 기술은 감지하지 어려움

❸침입 방지 시스템 (Intrusion Prevention System)

- 침입탐지시스템의 detection 기능과 방화벽의 차단(blocking) 기능 결합
- 이상 행위 탐지(anomaly detection)를 통해 알려지지 않은 공격 패턴에 대응
- 공격에 대한 사전 방지를 조치하는 것으로 in-line 방식으로 설치 및 운영
- 실시간 침입차단, 인터넷 웜, 악성 코드 및 해킹에 기인한 유해 트래픽 차단
- 능동형 보안 솔루션
 - IDS : 탐지 후 사후에 조치를 취하는 기술
 - IPS : 예방적이고 사전에 조치를 취하는 기술

침입 차단 시스템 필터들

필터	기능	
1	방화벽필터 - 액세스 제어 및 패킷 필터링 기능 (IP, 포트 등 패킷 필드별로 막을 패킷 정의)	
2	트래픽 모니터링 및 QoS 필터 - 프로토콜별, 서비스별, IP 영역별 QoS 기능 제공	
3	프로토콜 무결성 확인 필터 - FTP, DNS, 메일, 웹 등 TCP/IP 프로토콜 동작 표준에 위반하는 패킷 조사	
4	Signature 이상 감시 필터 : 악성 코드, 취약성, 웜에 대한 탐지 및 차단	
5	DoS/DDoS 스캔 필터	
6	L7 필터 : TCP /IP 단편화, 웹 우회 공격 등 L7 프로토콜 디코딩을 통한 필터	
7	데이터 콘텐츠 내용을 기준으로 필터링 여부 결정	56

4 Web Application Firewall(WAF)

- 웹 컨텐츠(HTTP/HTTPS)를 분석하여 공격을 탐지 및 차단하는 기능을 가진 방화벽
 - OWASP Top 10의 웹 공격에 사용되는 요청 파라미터 패턴을 분석

NAC(Network Access Control)

* NAC 기반 구성도

VPN (Virtual Private Network)

계층별 암호화 프로토콜과 VPN

*VPN : 캡슐화 기술(암호화 header를 추가시킴)

- header : 제어 정보

계층	암호화 프로토콜	VPN
2계층	L2TP, PPTP	L2TP VPN PPTP VPN
3계층	IPSec	IPSec VPN
4계층	TLS	CCI VDNI
5계층	SSL	SSL VPN
7계층	HTTPS, SSH etc	

Cisco ASA VPN

*VPN = 캡슐화 기술 = 터널 기술 Remote Access **VPNs** Clientless SSL VPN Full -Tunnel SSL/TLS Client-Based Unencrypted Traffic SSL VPN SSL/TLS/DTLS Full-Tunnel Internet Client-Based IPsec VPN **IPsec** Cisco ASA Adaptive Security Appliance **IPsec** Sensitive Remote Site Resources **IPsec** Enterprise Network Remote Site Site-to-Site **VPNs**

ESP Encapsulation—Tunnel or Transport Mode

Tunnel Mode

Transport Mode

7 DDoS 대응 시스템

- DDoS 공격에 특화된 방어 네트워크 보안 장비
- 기존 방화벽와 IPS로 DDoS 공격이 일정 수준을 방어할 수 있었지만 대량의 DDoS 공격이 한계에 의해 생성된 장비

8 UTM (Universal Threat Management)

- 다양한 보안 기능을 하나의 장비로 통합하여 제공하는 보안 솔루션
- 네트워크는 간단해져서 투자 비용은 줄고 관리는 쉬워짐
- 중소 규모의 네트워크를 중심으로 많이 적용되고 있는 장비

보안 관제 솔루션

			차세대보안관제
	E 양·유 아니기기	빅데이타보안관제 T	• Zero Trust • 머신러닝(AI) 기반 이상
단위보안관제 • Perimeter Security • 단위보안 솔루션모니터링	통합보안관제 • Data Security • 관제 범위 확대 • ESM 기반 보안관제	• Trust Security • 빅데이타 기반 관제 • SIEM 기반 보안관제	행위 탐지 • SOAR(소아) 기반 자동화대응 • 위협정보 관제 연동
1세대	2세대	3세대	4세대

ESM(Enterprise Security Management)

ESM(Enterprise Security Management) 구조

Agent	• 관리 대상 보안 장비(보안장비, 시스템장비, 네트워크 장비)에 설치 • 사전에 정의된 규칙에 의한 이벤트 수집 및 보안 정책 반영 • 정책에 따른 로그 및 이벤트 데이터를 수집하여 ESM manager에 전달
Manager (Engine)	• ESM agent에 의해 수집된 데이터 분석및 저장 • 분석 결과를 ESM Console에 전달
Console	• ESM Manager에 의해 전달된 정보의 시각적 전달, 상황 판단 및 리포팅 기능 제공 • ESM Manager/Agent에 대해 규칙을 제어/통제 수행

ESM 기능

2 SIEM(Security Information & Event Management)

- ESM의 진화된 형태 (2015년 가트너에 의해 처음으로 도입된 개념)
- 기업 정보에 대한 종합 관제 솔루션
- HP 아크사이트(ArcSight), IBM 큐레이더(Qrader), Splunk 등이 널리 쓰임

SIEM 구성요소

SIEM과 ESM 비교

	ESM	SIEM
수집•분석	• Event 위주의 단시간(최대1일) 위협분석 • RDBMS 기반 상관분석 및 리포트, 중앙 처리 구조 • 초당 3초건 내외 수집/분석 포함	 • 빅데이타 수준의 장기간(수개월) 심층분석 • Indexing, MapReduce 등 빅데이타 처리 기반 상관분석 및 리포트 • 초당 3만~5만건 이상 수집/분석 → RDBMS 기반의 처리 속도 지연 극복
시 각 화	• 대시보드, 정형보고서 제공	 대시보드, 정형보고서, 사용자 보고서, 시각 화 보고서 제공 → 다양한 Report 제공
사 용 자	• 보안관리자, 관제 요원 위주	 보안관리자, 관제요원 각업무시스템 별 담당자 개인정보보호담당자 • 대외 서비스 담당자 → 사용자 관점의 다양한 view 지원
하드 웨어	• 고가의 유닉스 서버 스템	• 저가의 리눅스 x86 시스템

	ESM	SIEM
정의	•기업 내 다양한 보안시스템을 관제/운영/ 관리하여 중앙에서 통합적으로 보안 현황 을 모니터링 하는 시스템	 기업 내에서 발생하는 모든 자원의 정보 및 보안 이벤트를 통합 관리 → 장애처리 관점에서 운영 및 심층분석, 규제 준수 관점으로 확대
수 집 • 저 장	• 정형데이타 기준, 원본로그 보관안함 • 수집 데이터 보존기간 :1~2개월	 · 정형/비정형데이타 수용, 원본로그 보관 · 수집 데이터 보존기간 :1년 이상 → 광범위 데이터 처리 및 장기간 보관
위협탐지	 IP, Port 등 시그니처 중심의 네트워크 계층 탐지 단순 패턴 기반 탐지 알려진 공격 위주 분석 단시간(최대1일) 범위 분석 	 IP, Port 외 애플리케이션, 프로토콜 등 연관성 분석 및 탐지 APT 등 알려지지 않은 공격 및 공격간의 연관성 분석, 정상상태에서의 정보위협분석 장시간(수개월) 범위 분석 → 심층분석, 연관분석 지원

보안망 구성(2)

Intranet Zone(Private/Trust)

DMZ Zone(Service/Public)

