Byteland has N cities (numbered from 1 to N) and N-1 bidirectional roads. It is guaranteed that there is a route from any city to any other city.

Jeanie is a postal worker who must deliver $m{K}$ letters to various cities in Byteland. She can start and end her delivery route in any city. Given the destination cities for $m{K}$ letters and the definition of each road in Byteland, find and print the minimum distance Jeanie must travel to deliver all $m{K}$ letters.

Note: The letters can be delivered in any order.

Input Format

The first line contains two space-separated integers, $m{N}$ (the number of cities) and $m{K}$ (the number of letters), respectively.

The second line contains K space-separated integers describing the delivery city for each letter. Each line i of the N-1 subsequent lines contains 3 space-separated integers describing a road as $u_i \ v_i \ d_i$, where d_i is the distance (length) of the bidirectional road between cities u_i and v_i .

Constraints

- $\begin{array}{l} \bullet \ 2 \leq K \leq N \leq 10^5 \\ \bullet \ 1 \leq d_i \leq 10^3 \\ \bullet \ By teland \ is \ a \ weighted \ undirected \ acyclic \ graph. \end{array}$

Output Format

Print the minimum distance Jeanie must travel to deliver all \boldsymbol{K} letters.

Sample Input 0

5 3

1 3 4

1 2 1 2 3 2

2 4 2

3 5 3

Sample Output 0

6

Explanation 0

Jeanie has $\bf 3$ letters she must deliver to cities $\bf 1$, $\bf 3$, and $\bf 4$ in the following map of Byteland:

2+1+1+2=6. Thus, we print 6 on a new line.