Cálculo de Programas

2.º ano das Licenciaturas em Engenharia Informática e Ciências da Computação UNIVERSIDADE DO MINHO

2012/13 - Ficha nr.º 11

1. O algoritmo da divisão inteira,

$$\begin{aligned} m & \div n \\ \mid m < n = 0 \\ \mid otherwise = 1 + (m - n) \div n \end{aligned}$$

corresponde ao anamorfismo $(\div n) = [g \ n]$ em que $g \ n = (\langle n) \to (i_1 \cdot !), (i_2 \cdot (-n))$. É de esperar que o algoritmo dado satisfaça a propriedade $(m*n) \div n = m$, isto é, $(\div n) \cdot (*n) = id$. Complete a prova seguinte, por fusão-ana, dessa propriedade:

2. Recorde o diagrama genérico de um catamorfismo de gene g sobre o tipo T e a sua propriedade universal:

Nesta disciplina vimos vários exemplos de T, por exemplo os números naturais \mathbb{N}_0 , listas [A] e dois tipos de árvores binárias,

data LTree
$$a = \text{Leaf } a \mid \text{Fork (LTree } a, \text{LTree } a)$$

data BTree $a = \text{Empty} \mid \text{Node } (a, (\text{BTree } a, \text{BTree } a))$

A estes tipos podemos acrescentar outros como, por exemplo, o das listas não vazias

data NEList
$$a = Sing \ a \mid Add \ (a, NEList \ a)$$

e o das chamadas "rose trees":

$$\mathbf{data} \; \mathsf{Rose} \; a = \mathsf{Rose} \; a \; [\mathsf{Rose} \; a]$$

Preencha o quadro seguinte, em que a coluna da esquerda identifica funções sobre o tipo da coluna T, funções essas que conhece ou cujo significado facilmente identifica:

$\underline{}$ k	g	FX	Ff	$\mid T \mid$	in	B
length		$1 + A \times X$		[A]	[nil, cons]	\mathbb{N}_0
length			$id + id \times f$	NEList A		\mathbb{N}_0
count					[Leaf , Fork]	N
listify	$[singl, \widehat{(++)}]$			LTree A		[A]
reverse					[nil, cons]	
sum		$1 + A \times X^2$				
sum					[Sing , Add]	
mirror	$\mathbf{in} \cdot (id + swap)$				[Leaf , Fork]	
mirror					[Empty , Node]	
filter p			$id + id \times f$	[A]		[A]
gmax	[id, max]	$A + A \times X$				A
gmax	[id, max]				[Leaf , Fork]	A

3. Defina como um catamorfismo a função seguinte, extraída do *Prelude* do Haskell,

$$\begin{array}{l} \mathsf{concat} :: [[\,a\,]] \to [\,a\,] \\ \mathsf{concat} = \mathit{foldr} \ (+\!\!\!+\!\!\!+\!\!\!+) \ [\,] \end{array}$$

e mostre que a propriedade

$$length \cdot concat = sum \cdot map \ length \tag{1}$$

se verifica, recorrendo às leis de fusão- e absorção-cata

$$f \cdot (|h|) = (|k|) \quad \Leftarrow \quad f \cdot h = k \cdot (\mathsf{F} f) \tag{2}$$

$$(|h|) \cdot \mathsf{T} f = (|h| \cdot \mathsf{B} (f, id))$$
(3)

em que, para listas, se tem B $(f,g)=id+f\times g$, F f= B (id,f) e T f= map f.

4. A função correspondente a concat para árvores é

join :: LTree (LTree
$$a$$
) \rightarrow LTree a join = ([id , Fork])

que junta uma árvore de árvores de tipo LTree numa só árvore. Conjecture a propriedade (1) para join e demonstre-a.

5. No quadro que se segue mostra-se a classificação de algumas funções conhecidas de acordo com o respectivo F:

Т	FX	Serialização	Ordenação	Inversão	Factorial	Quadrado	Outros
\mathbb{N}_0	1+X						$(n*), (\div n)$
Listas	$1 + A \times X$		iSort	invl	fac	sq	look
BTree	$1 + A \times X^2$	in/pré/pós	qSort				hanoi, traces
LTree	$A + X^2$	tips	mSort	invLTree	dfac	dsq	fib

Identifique a linha e coluna onde deve, do quadro acima, colocar o hilomorfismo de bubble sorting, identificando para ele os genes divide e conquer:

```
\begin{array}{l} bSort :: \mathsf{Ord}\ a \Rightarrow [\,a\,] \rightarrow [\,a\,] \\ bSort\ [\,] = [\,] \\ bSort\ l = \mathbf{let}\ (x,m) = \mathsf{bubble}\ l \\ \quad \quad \mathbf{in}\ \ x : bSort\ m \\ \\ \mathsf{bubble} :: \mathsf{Ord}\ a \Rightarrow [\,a\,] \rightarrow (a,[\,a\,]) \\ \mathsf{bubble}\ [\,x\,] = (x,[\,]) \\ \mathsf{bubble}\ (x:l) = \mathbf{let}\ (y,m) = \mathsf{bubble}\ l \\ \quad \quad \quad \mathbf{in}\ \ \mathbf{if}\ x < y\ \mathbf{then}\ (x,y:m)\ \mathbf{else}\ (y,x:m) \end{array}
```