Lab 1

ELECENG 2EJ4

Gurleen Dhillon

dhillg25

400301955

2022-09-25

Part 1

For the NPN-BJT 2N3904 characterized, if we want to bias this device to conduct a collector current $I_C \approx 1.0$ mA at the lowest V_{CE} value, answer the following questions.

- 1. (7 Points) Based on the simulated data in Steps 1.2-1.4, use the bias condition giving the closest I_C value to the desired collector current, find out
 - a. What are the simulated V_{BEon} in volt and the base current I_{B} in $\mu A?$ V_{BEon} = 0.621 V

 $I_{\rm B} = 8.79 \mu A$

- b. What is the $\beta = I_C/I_B$ value at this I_C ?
- c. What is the early voltage $|V_A|$ in volt? 1000V
- d. What is the output resistance r_0 in $k\Omega$? 976 $k\Omega$
- e. What is the transconductance g_m in mS? 41 mS
- f. What is the input resistance r_{π} in $k\Omega$? 2.845 $k\Omega$
- 2. (8 Points) Based on the measured data in Step 1.8, use the same bias condition used in Q1 (or the first reliable data if that bias condition is an outlier), find out
 - a. How much is the measured collector current I_C in mA? 1.74mA
 - b. What are the measured V_{BEon} in volt and the base current $I_{\text{B}}~$ in $\mu A?~$ $V_{\text{BEon}}=0.675V$

 $I_{\rm B} = 8.25 \mu A$

- c. What is the $\beta = I_C/I_B$ value at this I_C ?
- d. What is the early voltage $|V_A|$ in volt? 360V
- e. What is the output resistance r_0 in $k\Omega$? $207k\Omega$
- f. What is the transconductance g_m in mS? 69.6mS
- g. What is the input resistance r_{π} in $k\Omega$? $3.03k\Omega$

-Part **2**—

For the PNP-BJT 2N3906 characterized, if we want to bias this device to conduct a collector current $I_C \approx 1.0$ mA at the lowest V_{EC} value, answer the following questions.

- 3. (7 Points) Based on the simulated data in Steps 2.2-2.4, use the bias condition giving the closest I_C value to the desired collector current, find out
 - a. What are the simulated V_{EBon} in volt and the base current I_{B} in $\mu A?$ $V_{\text{BEon}}=0.66V$

$$I_B = 8.4 \mu A$$

- b. What is the $\beta = I_C/I_B$ value at this I_C ?
- c. What is the early voltage $|V_A|$ in volt? 133
- d. What is the output resistance r_0 in $k\Omega$? 139 $k\Omega$
- e. What is the transconductance g_m in mS? 41.2mS
- f. What is the input resistance r_{π} in $k\Omega$? 2.976 $k\Omega$
- 4. (8 Points) Based on the measured data in Step 2.8, use the same bias condition used in Q1 (or the first reliable data if that bias condition is an outlier), find out
 - a. How much is the measured collector current I_C in mA? 1.24mA
 - b. What are the measured V_{BEon} in volt and the base current I_{B} in $\mu A?$ $V_{\text{BEon}}=0.64V$

$$I_{\rm B} = 3.56 \mu A$$

- c. What is the $\beta = I_C/I_B$ value at this I_C ? 348
- d. What is the early voltage $|V_A|$ in volt? 40V
- e. What is the output resistance r_0 in $k\Omega$? $32.2k\Omega$
- f. What is the transconductance g_m in mS? 49.7mS
- g. What is the input resistance r_{π} in $k\Omega$? 7.015 $k\Omega$

-Part 3-

5. (10 Points) Express the base current I_B as a function of V_{BB} , R_{BB} , V_{BEon} , R_3 , V_{EE} , and β .

$$i_{B} = i_{e} - i_{c}$$

$$i_{c} = \beta i_{B}$$

$$i_{B} = i_{e} - \beta i_{B}$$

$$i_{p} = i_{p}(\beta + 1)$$

$$\begin{split} &V_{BB} - i_{B}R_{BB} - V_{BEon} - i_{e}R_{3} - V_{EE} = 0 \\ &V_{BB} - i_{B}R_{BB} - V_{BEon} - i_{B}(\beta + 1)R_{3} - V_{EE} = 0 \\ &V_{BB} - i_{B}[R_{BB} + (\beta + 1)R_{3}] - V_{BEon} - V_{EE} = 0 \\ &i_{B} = \frac{V_{BB} - (V_{BEon} + V_{EE})}{R_{BB} + R_{3}(\beta + 1)} \end{split}$$

6. (10 Points) Comparing the I_B expression obtained in Q5 with (3), what is the difference between these two equations? For a change ΔV_{EE} in the power supply V_{EE} , derive equations for the resulted change in the base current ΔI_B using (3) and the I_B expression obtained in Q5. Show that the emitter resistor R_3 reduces the change in the base current ΔI_B as a result of the change ΔV_{EE} in the power supply V_{EE} .

The main difference between the expression obtained in Q5 and (3) is that in (3) we are only dividing by R_{BB} while in Q5 we are dividing by $R_{BB}+R_3(\beta+1)$. The $R_3(\beta+1)$

7. (15 Points) Inserting the feedback R_3 at the emitter of the BJT not only stabilizes the I_B but also improves (or increases) the output resistance R_0 of the current sink shown in Fig. 6/Fig. 7 (i.e. I_0 is more stable when there is a change in V_{CE}). Using a π -model for the BJT, prove that the output resistance of the current sink is

8. (10 Points) Inserting the feedback R_3 at the emitter of the BJT improves the stabilization of the Q-point at the cost of increased $V_{o,min}$. What is the $V_{o,min}$ of the constant current sink when $R_3 \neq 0$?

$$R_3 \neq 0$$
 = voltage drop
 $V_{o, min} = V_E + 0.3V$
 $V_{R_3} = i_e R_3$
 $V_{o, min} = V_E + 0.3V + i_e R_3$

9. (15 Points) For V_{EE} = -5V, if we want to design a current sink with I_0 = 1.0 mA and $V_{o,min}$ = -1 V using the NPN-BJT 2N3094 characterized in Q1, what is the resistance value for R_3 ? To reduce the DC power consumption of R_1 and R_2 , we usually choose large resistance values (in tens or hundreds of $k\Omega$) for R_1 and R_2 . Suppose we choose R_2 = 100 $k\Omega$, calculate R_1 in $k\Omega$. Verify the I_0 vs. V_{CC} characteristics of the design by sweeping V_{CC} from -5V to 5V with a 0.05V step and post the screenshot of the simulated I_0 vs. V_{CC} characteristics.

$$V_{o,min} = V_E + 0.3V + i_e R_3$$

- $1V = -5V + 0.3V + (1mA)R_3$
 $3.7k = R_3$

10. (10 Points) When designing the constant current sink shown in Fig. 6, we assume that $|V_{CE}| \ge 0.3 V$ and Q_1 works in the active region. Based on the resistance values obtained in Q9, sweep V_{CC} in Fig. 6 from -5 V to +5V with a 0.05 V step and measure V_E and I_C to determine the $|V_{CE}|$ required for Q_1 to work in the active region.

 $|V_{CE}|$ and Q_1 are only active when V < 0V.

