

Multimodal One-Shot Learning of Speech and Images

Ryan Eloff Herman A. Engelbrecht Herman Kamper

E&E Engineering, Stellenbosch University, South Africa

Motivation

Imagine that you are a robot chef (in a kitchen) ...

- Humans quickly learn new words and object categories from one or a few examples.
- Artificial agents should do the same, yet current speech and vision processing algorithms require thousands of labelled examples to complete a similar task.
- One-shot learning: acquisition of novel concepts from a single labelled example.
- Different to the above example, since you directly associate visual signals to spoken words without class labels, and generalise to new visual/spoken instances!
- Multimodal one-shot learning: a new task we formalise, where agents learn novel concepts from a single example of co-occurring multimodal sensory inputs.

Multimodal One-Shot Learning and Matching

- Multimodal one-shot learning on a dataset of spoken digits paired with images.
- At test time, a model must match a test query in one modality to the matching item in a test (or *matching*) set in the other modality.
- This is done using information from the *support set*, where neither the query nor the matching set instances occur in the support set.

Our approach Matching set Query: (two) A Multimodal one-shot learning Multimodal one-shot matching

- Cross-modal test-time matching via unimodal comparisons with the support set.
- ullet Assumes we can measure within modality similarity o unimodal one-shot learning!

Metric learning from background data

Omniglot labelled characters (no digits):

Isolated labelled words (no digits):

Neural network models for metric learning

Experimental details

- Simple benchmark dataset: one-shot learning from spoken digits paired with handwritten digit images.
 - **Speech:** TIDigits corpus of spoken digit sequences split into isolated digits. **Images:** MNIST handwritten digits dataset.
- ullet Treat utterances labelled "oh" and "zero" as separate classes ightarrow 11 class labels.
- Models evaluated on one-shot task accuracy averaged over 400 test episodes.

One-shot speech classification

11-way one-shot and five-shot speech classification results on isolated spoken digits.

Model	Train time	11-way Accuracy	
		one-shot	five-shot
$\overline{ ext{DTW}}$	_	$67.99\% \pm 0.29$	$91.30\% \pm 0.20$
FFNN CLASSIFIER	13.1m	$71.39\%\pm0.81$	$89.49\%\pm0.45$
CNN CLASSIFIER	60.6m	$82.07\% \pm 0.92$	$93.58\%\pm0.98$
SIAMESE CNN (OFFLINE)	70.5m	$89.40\% \pm 0.54$	$95.12\% \pm 0.37$
SIAMESE CNN (ONLINE)	15.0m	$\mathbf{92.85\%}\pm0.38$	97.65% \pm 0.22

One-shot matching of speech to images

11-way one- and five-shot cross-modal matching of spoken and visual digits. Speaker invariance tests are 11-way one-shot, where all support set items are from the same speaker as the query, except for the item actually matching the query.

Model	11-way Accuracy			
Model	one-shot	five-shot	speaker invariance	
DTW + PIXELS	$34.92\% \pm 0.42$	$44.46\% \pm 0.69$	$28.00\% \pm 1.86$	
FFNN CLASSIFIER	$36.49\%\pm0.41$	$44.29\% \pm 0.56$	$34.95\% \pm 2.28$	
CNN CLASSIFIER	$56.47\% \pm 0.76$	$63.97\% \pm 0.91$	$53.71\% \pm 2.2$	
SIAMESE CNN (OFFLINE)	$67.41\%\pm0.56$	$70.92\% \pm 0.36$	$66.70\% \pm 0.92$	
SIAMESE CNN (ONLINE)	$\textbf{70.12\%}\pm\textbf{0.68}$	$\textbf{73.53\%}\pm\textbf{0.52}$	$\textbf{69.73\%}\pm\textbf{1.04}$	

Conclusions

- Introduced and formalised multimodal one-shot learning, specifically for learning from speech and images.
- Developed a one-shot cross-modal matching dataset that may be used to benchmark other approaches.
- Unimodal one-shot learning approaches may be used for this task, but result in compounding errors through successive unimodal comparisons.
- Future: explore methods that can directly match one modality to another, particularly looking into recent meta-learning approaches.
- Full code recipe available at: https://github.com/rpeloff/multimodal_one_shot_learning