H.W.6	
0.6).1)	
	-
o) P(-01 12 - 06)	
o) P(a, b/c,d) = P(a/e,d) x P(b)a,e,d)	
= 96 1)	
P(a) P(d/a) x P(a,b,a,d)	1
P(a) P(b/a) (a) P(a/a,a) P(a) P(b/a) (a) P(a/a,a)	+
La P(de,c) x P(a) P(cla, 4) P(cla, 4) P(de,c) (c) P(de) (c) (de) (c) (de) (de) (de) (de) (de) (de) (de) (de	
P(x) P(d/x)	le
= (a) p(1)	
= P(a) P(bla) P(ala, b) P(4/b, a) P(c) P(d/a) -0)	+
(E) 7(1/z) -O	
Non, P(d/x):-	\bot
$= \sum_{k} P(k, d x)$	+
= { (h e) p(1 h, e) -(2)	
	1
Eurthen, P(lle):-	
= P(=11) P(1) - 3)	
Plan	-
P(e) gets excelled in () by P(e) in den.	
To solve M= 1l):-	
4 same 1(2/12)	
= { P(a,ell) = { P(all) P(cla, h)	
4	
= E P(l. la) P(a) P(c. la, l.) - (F)	
Pfly jets concelled	in(3)
P(h) jets concelled by P(h) in num	1. //
	1

Scanned with CamScanner

#=1

(D=d 18=h, c=z) E & P (D= d, B= l, C= e | e t, dt)

& P (B= l, C= e | e t, dt) P(llet, dt) P(z/h, et, dt) P(d/h, et, e, tt)
P(h/et, dt) P(z/h, et, dt) I(e,ct) I(d,dt) P(h/e+dt)

0.6.2) $P_{i} = P(2_{i} = 1 | X_{i} = 1)$ $0 = P(2_{i} = 1 | X_{i} = 0)$ & logical as for (x 1 2) P(Y=11x) = & P(Y=1, 21x) $= \underbrace{\xi}_{2} P(2 \mid X) P(Y=1 \mid Z) :: CIly d(i).$ = { 1(21x) "\(I (2i,1)\) $= \underbrace{\sum_{i=1}^{N} P(Z_{i}, Z_{2}, Z_{3}^{**}) X_{i}, X_{2}, X_{3}^{**}} \underbrace{\sum_{i=1}^{N} I(Z_{i}, I)}_{X_{i} = I}$ 17. [(2 i | Xi) 17. I(Zi, 1) = 1 17 P(Z = 1 | Xi) - 5 (1-pi) xi P (Y=1 1x)

(2:=11x:=1) $= \frac{\xi}{\pm i} P(Z_{i=1}, X_{i=1} | X = x^{(\pm)}, Y = y^{(\pm)})$ $\leq I(x_{i}, Y)$ $= \frac{\xi}{t=1} P(2i=10, xi=1 | x=x^{(t)}, y=y^{(t)})$

b) Now, from (0) f'on = sach 2(x) .. sech(s) • € (0,1] $\frac{\text{when } se \in (-\vartheta, \varnothing)}{\text{when } x \in (-\vartheta, \varnothing)}$ $\frac{\text{when } se \in (-\vartheta, \varnothing)}{\text{when } x \in (-\vartheta, \varnothing)}$: f "(si) is always (=) 2) Plot In Edf. Q(x,x) = f(0) $\frac{L + 5}{2} := Q(x_{1}) + Q(x_{$ = f(x) + 0 + 0

CSE250A_Hw6

November 11, 2022

```
[]: import numpy as np
    from tqdm.notebook import tqdm
     import time
     from prettytable import PrettyTable
     import math
     import matplotlib.pyplot as plt
    0.1 Q2d)
    0.1.1 Load dataset
[]: X = np.loadtxt("X.txt")
[]: X.shape
[]: (267, 23)
[]: Y = np.loadtxt("Y.txt")
[]: Y.shape
[]: (267,)
[]: def logLikli(p,x):
       tmp = (1-p)**x
      ProbyOGx = np.prod(tmp)
      Proby1Gx = (1-Proby0Gx)
       return ProbyOGx, Proby1Gx
[]: def Estep(p,x,y):
      numi = p*y*x
       deno = (1-p)**x
       deno = np.prod(deno)
       deno = 1-deno
       return numi/deno
```

```
[]: pi = np.array([0.05]*X.shape[1])
[]: print(pi)
    []: TotSamples = []
    for i in range(len(X[0])):
      TotSamples.append(np.sum(X[:,i]))
    print(TotSamples[:5])
    [119.0, 66.0, 105.0, 76.0, 108.0]
[]: pi = np.array([0.05]*X.shape[1])
    N = 256
    mistakes = []
    loglihood = []
    allMistakes = []
    allLogli = []
    toPrint = [0]
    k = 0
    for i in range(N):
     mist = 0
     logli = 0
      estep = 0
      for sample in range(X.shape[0]):
        #llhood and mistakes
       ProbyOGx,Proby1Gx = logLikli(pi,X[sample])
       y = Y[sample]
       if y == 1:
         llhood = Proby1Gx
         if Proby1Gx < 0.5:</pre>
           mist+=1
       else:
         llhood = ProbyOGx
         if Proby0Gx < 0.5:
           mist+=1
       logli+=np.log(llhood)
       # estep
       estep+=Estep(pi,X[sample],y)
      # print(ProbyOGx,Proby1Gx,logli,estep)
      # break
      # break
      pi = estep/TotSamples
```

```
allMistakes.append(mist)
allLogli.append(logli)

if 2**k == i+1 or i==0:
   if i!=0:
      toPrint.append(2**k)
   mistakes.append(mist)
   loglihood.append(logli/X.shape[0])
   k+=1
```

```
[]: print("Table:")
x = PrettyTable()
x.add_column("Iteration", toPrint)
x.add_column("# Mistakes", mistakes)
x.add_column("LogLikelihood", loglihood)
print(x)
```

Table:

+	Iteration	+ 	LogLikelihood
+	0 2 4 8 16 32 64 128	+	-0.9580854082157914 -0.49591639407753635 -0.3779406836061008 -0.3500255657709249 -0.33584054521650464 -0.3230508504922716 -0.3149545210186029 -0.3111781626120766
1	256	J 36	-0.31016351482108506

$0.2 \quad \mathrm{Q3c}$

```
[]: def f(x):
    return math.log(math.cosh(x))

def fd(x):
    return math.tanh(x)
```

```
[]: def Q(x,y):

return f(y) + (fd(y)*(x-y)) + (0.5*((x-y)**2))
```

```
[]:  # x= np.linspace(-1,1,10000)
# print(len(x))
p1 = []
```

```
p2 = []
p3 = []
for i in range(-100000,100001):
    i = i/10000
    p1.append(f(i))
    p2.append(Q(i,-2))
    p3.append(Q(i,3))
x= np.linspace(-10,10,200001)
```

```
[]: x= np.linspace(-10,10,200001)
# x=x/10000
len(x),len(p1)
```

[]: (200001, 200001)

```
[]: | # x= np.linspace(0/10000,10000/10000,10000)
     \# x = np.linspace(0, N, N)
     fig=plt.figure(figsize=(30,10))
     plt.rcParams.update({'font.size': 20})
     fig.add_subplot(1,3,1)
     plt.plot(x,p1,"y")
     plt.xlabel('x')
     plt.ylabel('f(x)')
     plt.title('f(x)')
     fig.add_subplot(1,3,2)
     plt.plot(x,p2,"g")
     plt.xlabel('x')
     plt.ylabel('Q(x,-2)')
     plt.title('Q(x,-2)')
     fig.add_subplot(1,3,3)
     plt.plot(x,p3)
     plt.xlabel('x')
     plt.ylabel('Q(x,3)')
     plt.title('Q(x,3)')
     plt.show()
```


0.3 Q3d)

```
[]: def updatee(xn):
       return xn-fd(xn)
     def doUpdatee(x0,n):
       xn = [x0]
       for i in range(n-1):
         xn.append(updatee(xn[-1]))
       return xn
     \# x0 = -2 \ and \ x0 = 3
     x = np.linspace(-10,10,20)
     X0_1 = doUpdatee(-2,len(x))
     X0_2 = doUpdatee(3,len(x))
     plt.plot(x, X0_1, "r", label="x0 = -2")
     plt.plot(x, X0_2, "g", label="x0 = 3")
     plt.title('Update rule')
     plt.ylabel('Xn')
     plt.xlabel('n')
     plt.legend()
     plt.show()
```


[]: