The Limited Power of Verification Queries in Message Authentication and Authenticated Encryption

MAC: authenticity

AE: confidentiality and authenticity

Example: AES-OTR Deoxys ASCON OMD

MAC: authenticity

AE: confidentiality and authenticity

Example: AES-OTR Deoxys ASCON OMD

MAC: authenticity

AE: confidentiality and authenticity

Advantage of modes: able to focus on primitive

Reduction Loss

- Reduction is often not perfect, results in a loss of security
- Loss of security quantified in terms of parameters

Table: Examples of parameters.

n Block size k Key length q Number of tagging or encryption queries v Number of verification queries ℓ Maximum message length σ Total number of encryption ℓ

Various AE Bounds

Various AE Bounds

Various AE Bounds

Improved Bounds: MAC Message Length

$$\frac{\ell^2 q^2}{2^n} \longrightarrow \frac{\ell q^2}{2^n}$$

PMAC, CBC-MAC, EMAC, OMAC, TMAC

Improved Bounds: MAC Message Length

$$\frac{\ell^2 q^2}{2^n} \longrightarrow \frac{\ell q^2}{2^n}$$

PMAC, CBC-MAC, EMAC, OMAC, TMAC

$$n=128, q=2^{48}$$
 :
$$\ell < 2^{15} \longrightarrow \ell < 2^{30}$$

Improved Bounds: MAC Message Length

$$\frac{\ell^2 q^2}{2^n} \longrightarrow \frac{\ell q^2}{2^n}$$

PMAC, CBC-MAC, EMAC, OMAC, TMAC

$$n = 128, q = 2^{48}$$
:

$$\ell \leq 2^{15} \longrightarrow \ell \leq 2^{30}$$

$$n = 128, \ell = 2^{15}$$
:

$$q \le 2^{48} \longrightarrow q \le 2^{63}$$

Improved Bounds: Permutation Based Modes

	b	c	r	κ	security
Ascon	320	192	128	96	96
	320	256	64	128	128
СВЕАМ	256	190	66	128	128
ICEPOLE	1280	254	1026	128	128
	1280	318	962	256	256
Keyak	800	252	548	128	128
	1600	252	1348	128	128
NORX	512	192	320	128	128
	1024	384	640	256	256
GIBBON/ HANUMAN	200	159	41	80	80
	280	239	41	120	120
STRIBOB	512	254	258	192	192

Improved Bounds: Permutation Based Modes

	b	c	r	$\frac{r}{r_{\mathrm{old}}}$	κ	security
Ascon	320	96	224	1.75	96	96
	320	128	192	3	128	128
CBEAM	256	128	128	1.94	128	128
ICEPOLE	1280	128	1152	1.12	128	128
	1280	256	1024	1.06	256	256
Keyak	800	128	672	1.23	128	128
	1600	128	1472	1.09	128	128
NORX	512	128	384	1.2	128	128
	1024	256	768	1.2	256	256
GIBBON/ HANUMAN	200	80	120	2.93	80	80
	280	120	160	3.90	120	120
STRIBOB	512	192	320	1.24	192	192

Improved security bounds leads to

- Better parameter choices
- Increased longevity
- Increased efficiency

Improved security bounds leads to

- Better parameter choices
- Increased longevity
- Increased efficiency

Despite advances, there is still a lot of work left.

Authenticity Definition

 $\operatorname{Auth}(q,v) \colon$ forgery success with q tagging queries and v forgery attempts

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2(q+\mathbf{v})^2}{2^n}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q + \mathbf{v})^2}{2^n}$$

128 bit block cipher

$$\frac{\ell^2(q+v)^2}{2^{128}}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+v)^2}{2^n}$$

- 128 bit block cipher
- Only one-block verification queries

$$\frac{1^2(0+v)^2}{2^{128}}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q + \mathbf{v})^2}{2^n}$$

- 128 bit block cipher
- Only one-block verification queries

$$\frac{v^2}{2^{128}}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+v)^2}{2^n}$$

- 128 bit block cipher
- 2 Only one-block verification queries

$$\frac{v^2}{2^{128}}$$
 vs $\frac{v}{2^{128}}$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+v)^2}{2^n}$$

- 128 bit block cipher
- 2 Only one-block verification queries

$$\frac{v^2}{2^{128}} \quad \text{vs} \quad \frac{v}{2^{128}}$$

$$v=2^{64}: \quad 1 \quad \text{vs} \quad \frac{1}{2^{64}}$$

Optimal Bound

So far only certain types of MACs have optimal bound:

- Nonce-based
- Multiple keys

Excludes PMAC, CBC-MAC, OMAC

Optimal Bound

So far only certain types of MACs have optimal bound:

- Nonce-based
- Multiple keys

Excludes PMAC, CBC-MAC, OMAC

For AF

- except for TBC modes, none with optimal bounds
- Generic composition: reduction to MAC-security
 - \rightarrow need optimal MACs

Question

Why do well-designed schemes exhibit quadratic dependence?

Question

Why do well-designed schemes exhibit quadratic dependence?

Proof techniques

PRF-based MAC

PRF-based MAC

Best possible generic reduction:

 $\mathsf{Auth}(q,v)$

Best possible generic reduction:

$$\mathsf{Auth}(q,v) \leq \tfrac{v}{2^n} + \mathsf{PRF}(q+v)$$

Best possible generic reduction:

$$\begin{aligned} \mathsf{Auth}(q,v) & \leq \tfrac{v}{2^n} + \mathsf{PRF}(q+v) \\ & \mathsf{PRF}(q+v) \in \Omega\left(\tfrac{q^2+v^2}{2^n}\right) \end{aligned}$$

Best possible generic reduction:

$$\mathsf{Auth}(q,v) \leq \tfrac{v}{2^n} + \mathsf{PRF}(q+v)$$

$$\mathsf{PRF}(q+v) \in \Omega\left(\frac{q^2+v^2}{2^n}\right)$$

PMAC

$$\frac{v}{2^n} + c \cdot \frac{\ell(q+v)^2}{2^n}$$

PRP-PRF Switch: $\frac{0.5\sigma^2}{2^n}$

PRP-PRF Switch: $\frac{0.5\sigma^2}{2^n}$

GCM with nonce length fixed to 96 bits

PRP-PRF Switch:
$$\frac{0.5\sigma^2}{2^n}$$

GCM with nonce length fixed to 96 bits

Confidentiality:

$$\underbrace{\frac{0.5(\sigma+q+1)^2}{2^n}}_{\text{PRP-PRF switch}}$$

PRP-PRF Switch:
$$\frac{0.5\sigma^2}{2^n}$$

GCM with nonce length fixed to 96 bits

Confidentiality:

$$\underbrace{\frac{0.5(\sigma+q+1)^2}{2^n}}_{\text{PRP-PRF switch}}$$

Authenticity:

$$\underbrace{\frac{0.5(\sigma+q+v+1)^2}{2^n}}_{\text{PRP-PRF switch}} + \underbrace{\frac{v(\ell+1)}{2^\tau}}_{}$$

Better security bounds improve longevity and efficiency of schemes

- Better security bounds improve longevity and efficiency of schemes
- 2 Many schemes exhibit a quadratic dependence on verification queries

- Better security bounds improve longevity and efficiency of schemes
- 2 Many schemes exhibit a quadratic dependence on verification queries

Conjecture: All CAESAR modes provably achieve the optimal bound.

- Better security bounds improve longevity and efficiency of schemes
- 2 Many schemes exhibit a quadratic dependence on verification queries

Conjecture: All CAESAR modes provably achieve the optimal bound.

Paper in the works

- Generalizing known techniques, applied to GCM to recover bound
- Analyze block cipher based modes in detail, applied to PMAC to recover bound