

Shenzhen Youritech Technology Co., Limited

specification

S1	ze	ΟĪ

product:

product code: ETO39XGM

client					
	Approved by Customer				
	inpproved by editioner				
Date of approval:					

fiction	examine	rat	ify
11001011	and verify	R &D	O A

catalogue

1.	Overview	4
2.	Product characteristics	4
3.	Structural parameters	5
4.	Structure diagram	6
5.	Module interface	7
6.	Limit the operating range	9
7.	Rated operation range	9
8.	Photoelectric characteristics	.10
9.	Functional description and application circuit	. 11
	.19 Power timing	11
	.29 Color space conversion	12
	.39 Application circuit	13
10.	. Register configuration description	14
11.	. Second-line serial interface	23
12.	. Reliability	.26

Revised records

editio n	revision note	Revised date	remarks
Y01	The initial version	2022 -0913	

. summary

ET039XGM Is a 0.39-inch full-color silicon-based display module with a 1024 * 768 dot array. The display module is characterized by high brightness, high contrast, narrow frame, wide view, wide temperature domain and low power consumption, used for head-mounted display and AR glasses.

2. Product characteristics

- Display color: full color
- Highest resolution of 1024 * 768
- Digital video interface
 - -Support for 24-bit RGB digital video
 - -Support for 24-bit YCbCr digital video
 - -Supports a 16-bit 4:2:2 format for YCbCr digital video
 - -Support for a line-by-line scan
- Digital signal enhancement
 - -contrast control
- 8-bit input, 256-level gray scale display, and 10-bit D / A transformation
- Horizontal / vertical mirror images
- 2-line serial encoding interface
- Working at-40°C ~65°C (to ensure the normal operation of the chip, the heat dissipation module is required, and the recommended operating temperature is 60°C)

3. Structural parameters

order numbe r	project	specifications	unit
1	Resolution ratio	1024×768	-
2	Pixel size	7. 5×7. 5	μ m ²
3	Pixel spacing	7. 5	μ m ²
4	Display the area	7. 92×6. 00	${\tt m}\ {\tt m}^2$
5	Screen bodysize	11. 72×8. 41	m m ²
6	Module size (FPCA)	50. 4×15. 6	m m ²
7	Diagonal dimension of area A / A	0. 39	i nch
8	Module weight	0.73±0.1	gra m

4. Structure diagram

Scale plot of local pixels

Scale view of the golden finger area

5 module interface

Pin order	Pin definitio n	type	description		
1	V SS	V SS	landing		
2	V COM	source	OLED, the device co-cathode		
3	AVDD	source	The 5V power supply is connected with the parallel connection capacitor 22uF, 0.1uF to the ground		
4	V SS	V SS	landing		
5	V SS	V SS	landing		
6	V SS	V SS	landing		
7	V SS	V SS	landing		
8	VDD1V8	source	Digital power supply 1.8V is connected to the 0.1 uF capacitor to the ground		
9	P CLK	import	Pixel clock		
10	H S	import	horizontal synchronizing signal		
11	VS	import	field sync signal		
12	OLED RST	import	reset signal		
13	R 7	import	Red [7] digital video input		
14	R 6	import	Red [6] digital video input		
15	R 5	import	Red [5] digital video input		
16	R 4	import	Red [4] digital video input		
17	R 3	import	Red [3] digital video input		
18	R 2	import	Red [2] digital video input		
19	R 1	import	Red [1] digital video input		
20	R 0	import	Red [0] digital video input		
21	G 7	import	Green [7] for digital videoinput		
22	G 6	import	Green [6] for digital videoinput		
23	G 5	import	Green [5] for digital videoinput		
24	G 4	import	Green [4] for digital videoinput		
25	G 3	import	Green [3] for digital video input		
26	G 2	import	Green [2] for digital video input		
27	G 1	import	Green [1] for digital videoinput		
28	G 0	import	Green [0] for digital videoinput		

29	VDD1V8	source	Digital power supply 1.8V isconnected to the 0.1 uF capacitor to the ground		
30	V SS	V SS	landing		
31	В 7	import	Blue [7] for digital video input		
32	В 6	import	Blue [6] for digital video input		
33	В 5	import	Blue [5] for digital video input		
34	B 4	import	Blue [4] for digital video input		
35	В 3	import	Blue [3] for digital video input		
36	B 2	import	Blue [2] for digital video input		
37	B 1	import	Blue [1] for digital video input		
38	B 0	import	Blue [0] for digital video input		
39	ADDR 0	import	Internal I ² C Slave address control		
40	N C	N C	hang in the air		
41	REF IN	import	Reference voltage control port,		
		•	connecting the 0.1 uF capacitor to the ground		
42	N C	N C	hang in the air		
43	I ² C SCL	import	I ² C Serial communication clockline		
44	N C	N C	hang in the air		
45	I ² C SDA	Input / output	The I ² C serial communication data line		
46	DE	import	Data valid signal		
47	V SS	V SS	landing		
48	V SS	V SS	landing		
49	VDD1V8	source	Digital power supply 1.8V is connected to the 0.1 uF capacitor to the ground		
50	FSA R	output	R channel brightness adjustment, connected to 12 K resistance to the ground		
51	FSA G	output	G channel brightness adjustment, connected to 12 K resistance to the ground		
52	FSA B	output	B channel brightness, adjust, connected with 12 K resistance to the ground		
53	BW R	import	R channel DAC performance control port, connected 0.1 uF, capacitance to 1.8V		
54	BW G	import	G channel DAC performance control port, connected 0.1 uF, capacitance to 1.8V		
55	BW B	import	A B-channel DAC performance control port, connected with a 0.1 uF capacitor to 1.8V		
56	V SS	V SS	landing		
57	V SS	V SS	landing		
58	V SS	V SS	landing		
59	AVDD	source	The 5V power supply is connected with		
39	11100	Source	the parallel connection capacitor		
60	V COM	source	22uF, 0. 1uF to the ground OLED, the device co-cathode		
61	V COM V SS	VSS	landing		
01	l v 22	1			

6. Limit the operating range

project	characteri stic	least value	crest value	unit	remarks
1.8V power supply	VDD 1V8	-0.3	2	V	IC maximum range value
5V power supply	A VDD	-0.3	6	V	IC maximum range value
Negative power supply	V COM	-5 . 5	0	V	IC maximum range value
working temperature	Тор	-40	+65	°C	-
storage temperature	Tpnl	-55	+80	°C	-

Note: The maximum range value is the limit value that cannot be exceeded in the instant. Using or exceeding these ratings may affect the product Life and reliability, but the product can also be damaged. It is recommended to work under the typical operating conditions of the product.

7. Rated operation range

project	characteri stic	test condition	least value	representa tive value	crest valu	unit
	VDD1V8	_	1.62	1.8	1.98	V
working	A VDD	_	4.5	5	5.5	V
voltage	V COM	_	-	0	-	V
high level input voltage	VIH	-	0.7VDD	-	VDD	V
low level input voltage	VIL	-	0	-	0.3VDD	V
high level input	3741	Schm itt	0.7VDD	-	VDD	
voltage	Vt+	Enter				
low level input	Vt+	Sc hmitt Enter	0	-	0.3VDD	
Vt + - Vt+	V hys	Sc hmitt Enter	-	0.50	-	
Logic high-level output voltage	VOH	-	VDD -0.4	-	-	V
Logic low-level output voltage	VOL	-	-	-	0.4	V

8. Photoelectric characteristics

project	symbol	test condition	least value	represe ntative value	crest value	unit
Normal mode, type brightness	Lbr	Full pixel lighting (white light)	-	300	-	c d/ m 2
Normal-mode power consumption	Pt	Full pixel lighting (white light)	-	85	-	m W
C - 1	(x)		0.28	0.31	0.34	-
Color coordinate (white)	(y)		0.30	0.33	0.36	-
0.1	(x)	х,у (СІЕ 1931)	0.57	0.60	0.63	-
Color coordinate (red)	(y)		0.30	0.33	0.36	-
C 1	(x)		0.20	0.23	0.26	-
Color coordinate (green)	(y)		0.60	0.63	0.66	-
C 1	(x)		0.11	0.14	0.17	-
Color coordinate (blue)	(y)		0.04	0.07	0.10	-
contrast ratio	C R	-	≥10000:1	-	-	-
Viewing Angle	-	-	-	TB D	-	Degree

9. Functional description and application circuit

9.r power supply time sequence

The electric timing

Under the electric timing

9.2 Color space conversion

When the input signal is YCbCr, this function can be converted to the RGB signal. When the input format is 4:4:4 format, the color space conversion function is directly used; when the input format is 4:2:2 format, it should first go through the internal 4:2:2 cases

Conversion 4:4:4 format function module, then color space conversion.

Signal connection in 16 bit 4:2:2 format YCbCr, 24 bit 4:4:4 format YCbCr and 24 bit RGB format as shown in the table below.

order number	pin	YCbCr (4:2:2)	YCbCr (4:4:4)	RGB (4:4:4)	remarks
1	19~12	Y[7:0]	Y[7:0]	R [7:0]	
2	27~20	Cb Cr [7:0]	C b [7:0]	G[7:0]	
3	39~32	Unused, grounded	C r [7:0]	B [7:0]	

This function uses registers of 0 x 04 $^{\circ}$ 0 x 05.

9.3, the applied circuit

Match Connector Model: 61FVXS-RSM1-GAN_LF_SN

0. Register configuration description

The general overview of the register settings is shown in the following table:

addre ss	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	The reset value
0x00				Ide	ntify co	de registe	ers		8'h 00
0x01				Tempe	rature va	alue acces	ss regist	ter	8' h 00
0x02		ob	ligate		*	Se1	_data_c	out	8'h 00
0x03	oblig ate	*	*	*	*	*	*	*	8' h 00
0x04	Sel_	_cr _in	Sel _	_cb _in	Se1	_y _in	*	*	8'h 00
0x05	oblig ate	*	*	*	Sel _	cbcr _in	Sel _	_y _in	8'hff
0x06			Gamma corre lose	ction	*	*	Contras	tinput	8' h 00
0x07 [~] 0x1b		Lut values for gamma correction in R data							
0x1c ~									
0x30	The	The lut value in the gamma correction for the G data							
0x31 [~] 0x45	В	B The lut values in the gamma correction for the data							
0x46 [~] 0x56		The region-values in the gamma correction							-
0x57				Contr	ast adju	stment re	gister		8' h 40
0x58					*				8' h 00
0x59					obligate	;			8'h 00
0x5a~ 0x5b	Displays location movement time = $\{0x 5b, 0x5a\} * 16.6ms$							16.6ms	8' h 00
0x5c		Displays the number of rows moved by the position						on	8' h 00
0x5d	Displays the number of columns wherethe position moves							moves	8'h 00
0x5e ~ 0x5f		Ox 5e + Ox 5f = line back porch-1							8' h00/8' h9f
0x60				Вас	ek porch	value-25			8' h 87
0x61			C _	DIN pu	lse width	= clk *	(0x 61 +	1)	8' h 00
0x62				Ва	ackfield	Gallery-16	 3		8' h 0d

0x63	ТВ	8' h 00
0x64	obligate	8'h 00
0x65	TB _ ENABLE _ OUT signal pulse width = clk * 4* 0x 65	8' h 80
0x66	PRESET _FOLLOW _TB signal pulse width = clk * 4* 0x 66	8' h 80
0x67	obligate	8' h 00
0x68	Select the test picture	8'h 00
0x69	Automatic switching test graph time interval =16.6 * 0x 69 ms	8' hb 4
0x6a	Full screen black and white squares (test figure 16) number of pixels per square	8' h 32

0x6b				Strip	e width	(number c	of pixel	s)	8' h0a
0x6c ~ 0x6d		Full-screen controllable grayscale graphics gray scale = {0x 6c, 0x 6d [1:0]}							8' h00~8' h00
0x6e ~		4 * 4 of the test figure 25, area grayscale							
0x82				obligat	te		*	*	8' h 00
0x83			the temp		e value	at 16.6 *	This		8'h 06
0x84					nt 1			*	8' h 14
0x85					Count 2				8'h 05
0x86	*	*	*	*	Sel .	_com _in	Sel _v	ref_in	8'h 00
0x87				temp_	_fedback _	_VREF			8'hd 0
0x88				temp	_fedback	_COM			8'he 3
0x89 [~] 0xa9						e VREF-rel ion algori			
0xaa ~			The	lut val	ue of th	e COM-rel	ated		_
0xca			temp	erature	correct	ion algor	ithm		
0xcb	oblig ate	*	*	Se	l_out	Sel _vs	_in _pwm	1 *	8'h 00
0xcc			T	he firs	st pulse	of PWM			8'hff
0xcd	(Generation time of the second pulse of the PWM							8'hff
0xce		The thi	rd puls	se gene	ration t	ime of the	PWM		8'h 00
0xcf		Fourth	pulse	generat	ion time	of the PV	VM		8' h 00
0xd 0		The fif	fth pul	se gene	eration t	ime of the	e PWM		8' h 00
0xd 1		Sixth	pulse g	enerati	ion time	of the PW	M		8' h 00
0xd 2		PWM fir	st puls	se gene	ration t	ime supple	ment		8' h 20
0xd 3	I	PWM sec	ond pul	se gen	eration	time supple	ement		8' h 21
0xd4 [~] 0xd 5		Number of pixel cycles illuminated in one row of time $\{0\ xd\ 4,0\ xd\ 5\}$							8' h 00/8' h 64
0xd6					clock pul 6 value	lse width	is the		8'h 64
0xd7		<u>*</u>		obligat			*	*	8'h 00
0xd8		obliga	ate	*	*	*	*	*	8' h 00
0xd9					value of are prote		•	•	8'he 1
0xda						erature va	lue		8' hc 8
0xdb	Ge	neratio	n disabl	e, sign	al field	rear galle	ry count		8' h 19

0xdc				obligat	e		*	*	8'h 00
0xdd	*	*	*	*	*	*	*	*	8' h 00
0xde				CTR	_R _IN	[8:1]			8' h 00
0xdf				CTR	_G _IN	[8:1]			8' h 00
0xe0				CTR	 _B _IN	[8:1]			8' h 00
0xe1	Piz	xel cloc		8'h 00					
0xe2	Piz	xel cloc	k dela	y modul	e B: Del	layB Contr	ol [8:1]		8'h 00
0xe3	R	-channe	l DAC b	rightne	ss adjus	stment: BR	_ R [8:1]	8' h?
0xe4	(G-channe	1 DAC 1	brightne	ess adju	stment: BR	_ G[8:	1]	8'h 7f
0xe5]	B-channe	1 DAC	brightn	ess adju	stment: BR	_ B[8:	1]	8'h 7f
0xe6		ob	oligate			EN _R	IN [4:1]		8' h 23
0xe7		EN _G	_IN [4	:1]		EN _B _	IN [4:1]		8' h 23
0xe8				VREF	Control	[8:1]			8' h 23
0xe9			Analo	og sign	al modul	e REG 15:	Ctrl 1	ect.	8'h 1e
0xea			Analo	og sign	al modul	e REG 16:	Ctrl 2	ect.	8' h 18
0xeb	Number of blank rows above when displaying the low-resolution image						nying	8' h 00	
0xec	Number of left blank columns when displaying low-resolution images							8' h 00	
0xed	Column direction compensation settings when displaying low-resolution images							8' h 00	
0xee					[6:4]} :	is the numb	per of 1	ines	8' h 00
0xef					[2:0]} ; w resolu	is the numb	per of c	olumns	8'h 00
0xf0	* {0 xee, 0 xf 0[6:4]}: Total number of low resolution			obligat	{O xee, Total num		columns	8'h 00	
0xf1					obligat	е			8' h 80
0xf2		*	sel _3	8d _mode	left _ri	ight_frame	3d _moo	le_start	8'h 00
0xf3	obligate						8'h 01		
0xf4	obligate						8' h 80		
0xf5	sc6008_v 2: reg _sel _state						8' h 00		
0xf6	TSTA [8:1]							8' h 00	
0xf7	TSTB [8:1]								8'h 01
0xf8				DO	C _A [8:	1]			8'hfe
0xf9				DO	С_В [8:	1]			8' he 4
0xfa				DO	C _C [8:	1]			8'he 0
0xfb				DO	C _D [8:	1]			8' h 4c

Note: Reference $I^2\,\text{C}$ register details for settings with *.

The I ^{2}C register detailed usage instructions are shown below.

1) I ²C address description

I ² C, address bit					
Bi t	Bit Field	description	remarks		
Bit [7:1]	I ² C address	{000010,sla _ addr}, sla _addr is configurable			
		I 2C read / write bits			
Bit 0	R /W	0: Write			
		1: Read			

2) Identification code reserved address

Bi t	Bit description		
Bit [7:0]	ID register when reading EEPROM. Read this EEPROM subsequent value when the 0x 00 address register value of EEPROM is 0 x A 3, otherwise not.	8'h00	

3) Temperature value access register

Register address of 0x01					
Bi t	description	The reset value			
Bit [7:0]	Temperature values are automatically updated to this register.	8'h00			

4) The RGB data output selection register

	Register address of 0x02						
Bi t	B IT FIELD	description	The reset value				
Bit [7:4]	obligate	obligate					
Bit 3	Sel_timing	0: The timin g signal generated by the timing module1: External input timing signal					
Bit [2:0]	Sel_data_out	000: gamma, ma correction data 001: {data_in,2'b00} 010: Contrast adjustment data 011: {data_in,2'b00} 100: {2'b00, data_in} 101: Color swap data 110: {YCbCr, 2'b00} 111: {2'b00,YCbCr}	8'h00				

4) Enter the selection register

Register address of 0x 03							
Bit	Bit Field	description	The reset value				
Bit 7	obligate	obligate					
Bit 6	EN _SELF	0: VS / HS / DE polarity1: Do not use the adaptive determined polarity0: The data of the blanking area is the data given by the decoding chip	8'h 00				
Bit 5	D ATA	1: The data given by the blanking area is 0					
Bit 4	R _CK	0: For the input of R _CK 1: reverse for input R_CK					
Bit 3	ТВ	0: For the input TB 1: reverse the input TB					
Bit 2	DE	0: for input DE 1: reverse for input DE					
Bit 1	H S	0: Input HS 1: reverse for input HS					
Bit 0	V S	0: for input VS 1: reverse for input VS					

5) YCbCr to RGB correlation

	Register address of 0x04					
Bi t	BIT FIELD	description	The reset value			
Bit [7:6]	Sel _cr _in	YCbCr Turn to RGB for input selection 00:422 to 444 output CR _ OUT 01: b_in 10: r_in 11: g_in				
Bit [5:4]	Sel _cb _in	YCbCr Turn to RGB for input selection 00:422 to 444 output CB _ OUT	8' h00			
Bit [3:2]	Sel _y _in	YCbCr Turn to RGB for input selection 00:422 to 444 output Y _ OUT 01: r_in 10: g_in 11: b_in				
Bit 1	Clk _gate _2	YCbCr Turn to the RGB gated clock O: The clock is closed 1: The clock opens				
Bit 0	Clk _gate _1	422 to 444 format gating clock0: The clock is closed1: The clock opens				

Register address of 0x05					
Bi t	B IT FIELD	description	The reset value		
Bit 7	obligate	obligate			
Bit 6	Sel_out	After output cb and cr data swap 1: No swap 0: Exchange	8'hff		
Bit 5	Sel_cbcr_fl ag	The first data at conversion is determined to be cb or cr 1: cb 0: cr			
Bit 4	Sel_d e	1: de 0: de reverse			
Bit [3:2]	Sel_cbcr_in	422 format to 444 format input selection 00: r_in 10: b _in x 1: g _in			
Bit [1:0]	S el _y _in	422 format to 444 format input selection 00: b_in 10: g_in x 1: r_in			

6) Contrast adjustment register

		Register address of 0x05	
Bit	BIT FIELD	description	The reset value
Bit [7:6]	obligate	obligate	
Bit [5:4]	Gamma correct ion for the input selection	Gamma correction module for input data selection 00: Contrast control module output 01: {RGB[7:0], 2'b00} 10: {2'b00, RGB[7:0]} 11: {YCBCR_OUT[7:0], 2'b00}	
Bit 3	gamma	Gamma correction clock 0: The clock opens 1: The clock is closed	8' h00
Bit 2	contrast	Contrast regulation clock 0: The clock opens 1: The clock is closed	
Bit [1:0]	Contrast input selection	Contrast regulation module input data selection x 0: {RGB[7:0], 2'b00} 01: {2'b00, RGB[7:0]} 11: {YCBCR_OUT[7:0], 2'b00}	

	Register address of Ox 57	
Bit	B it description	
Bit [7:0]	Contrast adjustment register	8'h 40

7) Color swap function register

Register address of 0x58			
Bi t	Bit Field	description	The reset value
Bit 7	Color swap clock	Color swap clock 0: The clock is closed 1: The clock opens obligate	
Bit [5:4]	Color swap module B input select	Color swap module B input data selection 00: gamma correction module B output 01: {RGB_B[7:0], 2'b00} 10: {2'b00, RGB_B[7:0]} 11: {YCBCR_OUT_B[7:0], 2'b00}	8'h 00
Bit [3:2]	Color swap module G input select	Color change module G input data selection 00: gamma correction module G output 01: {RGB_G[7:0], 2'b 00} 10: {2'b00, RGB_G[7:0]} 11: {YCBCR OUT G[7:0], 2'b00}	
Bit [1:0]	Color swap module R input select	Color swap module R input data selection 00: Gamma correction module R output 01: {RGB _ R [7:0], 2 'b00} 10: {2' b00, RGB _ R [7:0]} 11: {YCBCR OUT R[7:0], 2'b00}	

Register address of 0x59				
Bi t	Bit Field	description	The reset value	
Bit [7:6]	obligate	obligate		
	Color swap module	B Data output selection 00: B_ OUT = B_IN		
Bit [5:4]		01: B_ OUT = R_IN		
	B channeloutput	10: B_ OUT = G _IN		
		11: B _OUT = B _IN		
Bit [3:2]	Color swap module	G Data output selection OO:G_OUT =G_IN O1:G_OUT =R_IN	8'h00	
G-channel output		10: G_OUT = B _IN 11: G_OUT = G _IN		
	l.	R Data output selection 00: R_OUT = R_IN		
Bit [1:0]	Color swap module	$01: R_OUT = G_IN$		
BIC [I.O]		10: R_OUT = B _IN		
	R-channel output	11: R_OUT = R _IN		

Take the R-channel data transformation register setting as an example:

- 1) Color swap module RGB channel input selection, When setting 0x58 [1:0] to 2'b00, R gamma calibration result as the color swap module R channel input; when setting 0x58 [1:0] to 2'b01, {RGB_R[7:0], The 2'b00} is used as the R channel input; When setting 0x58 [1:0] to 2'b10, {2'b00, RGB_R[7:0]} acts as an input to the R channel; When setting 0x 58 [1:0] to 2'b10, {YCBCR_OUT_R[7:0], The 2'b00} is used as the R channel input;
- 2) Set 0x58 [7] to 1'b1 to open the gating clock. When performing the color change, always set 0x 58 [7] to be effective, otherwise the color change function cannot be realized;
 - 3) Set 0x 59 [1:0] to 2'b00 to output R itself data, that is, the color of the display itself, set

Ox 59 [1:0] is the output G channel data when 2 'b01, now the red and green color transformation, 0x59 [1:0] as the output B' b data 10, to realize the red and blue color transformation.

8) Temporal sequence correlation

o, remporar sequence correlation					
Register address: 0x 5a / 0x 5b					
B it	description The reset				
D; [7 0]	Displays the position				
Bit [7:0]	movement time	8'h 00/8'h 00			
	$=\{0x \ 5b \ ,0x \ 5a \}*16.6ms$				
	Register address of 0x 5c				
B it	description	The reset value			
Bit [7:0]	Displays the number of rows moved by the position	8'h 00			
	Register address of Ox	5d			
B it	description	The reset value			
Bit [7:0]	Displays the number of columns where the position moves	8'h 00			
	Register address: 0x 5e / 0x 5f				
B it	description	The reset value			
Bit [7:0]	Ox 5e + Ox 5f = line back porch-1	8'h 00/8'h 9f			
	Register address of Ox 6	60			
B it	description	The reset value			
Bit [7:0]	Back porch value-10	8'h 96			
	Register address of Ox 6	51			
B it	description	The reset value			
Bit [7:0]	C _ DIN, and the pulsewidth	8'h 00			
	=clk *(0x 61+1)				
Register address of 0x 62					
B it	description	The reset value			
Bit [7:0]	Field back porch-8	8'h 16			

Register address of Ox 63			
Bit	BIT FIELD	description The val	
Bit [7:6]	ТВ	00: TB _DLY [4] 01: TB _DLY [0] 10: TB _DLY [9] 11: TB _DLY [14]	
Bit 5	C_DIN	0: HS _ FLAG generated inside 1: HS _ FLAG generated inside reve	rse
Bit 4	R _CK	0: The HS generated internally 1: generated internally HS reverse 8'h 00	
Bit 3	R _DIN	0: VS generated internally reverse 1: The VS generated internally	
Bit 2	Sel _tb	0: Normal the signal 1: flip frame the with the previous frame	
Bit 1	Sel _col _move	0: No horizontal movement 1: Move horizontally	
Bit 0	Sel _row _move	0: No moving vertically 1: Move vertically	

11. Second-line serial interface

The chip internal integration applies to the functional module of the I^2 C standard protocol (8bit transmission protocol). Through the configuration of different registers, this module realizes the contrast adjustment, gamma correction and display position movement, which can directly communicate with the I^2 C upper computer chip.

This I²C will realize the reading data function as master after power up or reset, to find out whether there is a device supporting 2K EEPROM protocol on the I²C bus, the value inside the device is read to the internal 2K register according to the address, as shown in the following figure, where the value of EEPROM address 0x 00 should be 0 xA 3, as the identification code, otherwise the value of the address will not be updated later. After completing this function, do it

Communicate for slave with the external master, and can only exercise the function of slave.

EEPROM Address to the I²C register address mapping

The address of this I^2C is $\{6'b000010, sla_addr\}$, plus a read and write bit becomes control byte.

FM 04112, I^2C read and write instructions integrated inside the chip (take the address as 7'b0000101 as an example):

write data to one address at a time:

Write one register data SDA at a time

According to the timing of the figure above, the process of writing one register at a time is as follows:

- 1) master, send the start signal start;
- 2) master then issues contro 1 byte and writes data to slave;
- 3) sla ve response;
- 4) master Send the register address to be written;
- 5) sla ve response;
- 6) master Data to write in the sending register

- 7) slave response;
- 8) The master generates an end signal.

Write data to multiple different registers:

Write more than one at a time, the register data SDA signal

According to the timing of the figure above, the process of writing multiple registers at a time is as follows:

- 1) master sends a start signal start;
- 2) master then issues control byte and indicates the number to slaveoccupy;
- 3) slav e response;
- 4) master Send the register address to be written;
- 5) slave response;
- 6) master, the data to be written by the sending register;
- 7) slave response;
- 8) Repeat 4) 5) 6) and 7) steps until all the required contactors are written;
- 9) The master generates an end signal.

Register data reading a specific address is shown in the following below:

Read Data SDA, schematic diagram

According to the timing of the above figure, the reading data process is as follows:

- 1) The mas ter sends out a start signal, start;
- 2) master then issues control byte and writes data to slave;
- 3) slave response;
- 4) master Send the register address to be read;
- 5) slave response;
- 6) master re-generates the start signal;
- 7) master then issues control by te and reads the data to slave;
- 8) slave response;
- 9) s lave Send the register data to be read;
- 10) sla v e does not generate a response signal;
- 11) The master generates an end signal.

Referring to the $I^2\,C$ timing diagram below, the timing requirements of $I^2\,C$ communication are shown in the following table.

A Schematic diagram of the I $^{\rm 2}\text{C}$ timing sequence

The timing requirements for the communication:

order number	parameter	charac teristic	least value	represe ntative value	crest value	unit
1	clock frequency	F clk	-	100	400	KH z
2	Clock high-leveltime	T high	4000	5000	-	ns
3	Clock low-leveltime	T low	4700	5000	-	ns
4	SDA and SCL rise time	Tr	-	-	300	ns
5	Time to decrease in SDA and SCL,respectively	T f	-	-	300	ns
6	Start Conditions Duration	Thd :sta	600	-	-	ns
7	Start the condition setting time	Tsu :sta	600	-	-	ns
8	Data Entry Duration	Thd :dat	0	-	-	ns
9	Set the time for the data entry	Tsu :dat	100	-	-	ns
10	Stop the condition for the setting of the time	Tsu :sto	600	-	-	ns
11	Clock output effective time	T aa	-	-	3500	ns

R 2. reliability

orde r numb er	test item	test condition cap	sample acity	criterion for remarl judgement
1	High temperatu re storage	Non-working condition of the product, test condition: 85°C, time 24H. After the test, the product is returned to room temperature to confirm the situation.	2pcs	Appearance OK, display function OK, color coordinates within the control range of our company
2	High temperatu re work	, ,		function OK, color coordinates within the control range of
3	Low temperatu re storage	24H. After the test, the product is funct withi		Appearance OK, display function OK, color coordinates within the control range of our company
4	Low temperatu re work	Working condition of the product, test condition: -40°C, time 24H. After the test, the product is not removed, and the photoelectric parameters of the product are confirmed under this conditions. Check the product display function and appearance after removal and recovery to room temperature.	2pcs	Appearance OK, display function OK, color coordinates within the control range of our company
5	Hot and cold impact	Test conditions:: -55 / 85°C high and low temperature each maintained for 30min for one cycles, high and low temperature conversion time <5min, a total of 10 cycles. After the test, the product is returned to room temperature to confirm the situation.	2pcs	Appearance OK, display function OK, color coordinates within the control range of our company
6	High temperature and high humidity cycle	A Cycle (24H) was tested for 10 cycles. 1, the experimental box was initially placed at 30°C / 90% RH.2, the humidity is unchanged, 2H time temperature uniform speed rise to 60°C.3,60°C / 90% RH, maintain 6H.4, the humidity is unchanged, and the temperature of 8H time is uniform to 30°C.5,30°C / 90% RH, maintain 8H. During the process, a performance check was conducted within the last 4 hours of the 30°C / 90% RH stage of the fifth cycleand the product was returned to room temperature and reconfirms the condition.	2pcs	Appearance OK, display function OK, color coordinates within the control range of our company