dynamic array · Alij · Insertion · O(n) space 2CTL = 3C n=1 4C+2C=6C N=3 1011 C -> MUNN 8C+4C=12C n= 5 2 C n= 6 2 k 3kic O(k) $_{\mathcal{O}}(\mathsf{n})$ Insertion T(n): cost of a sequence of ninsertions in worst case. $T(n) \leq Cn + 2^{\circ} \cdot 3C + 2^{\circ} \cdot 3C + \cdots + 2^{\circ} \cdot 3C$ $\leq cn + (2^{k+1} - 1) \cdot 3c$ lurgest k $2^k \le n$ $\leq CN + (2\cdot N - 1) \cdot 3C$

Annipol (ac) $\Lambda(n) = T(n)$ where T(n) is the worst-case

 $T(n)/n = O(1) \longrightarrow armortized cost$

O(n)

<7C·n

AMOMIZED WOR AUT cost of all possible sequences of n operations Similar

Wost-Case

0(1)

0(1)

O(K)

Amortized

0(1)

04)

0())

When there are multiple types of operations.

Stack

$$T(n) \leq Q(n) + O(n) = O(n)$$

 $T(u)/n = O(1)$

Aggregate analysis

T(h)

Quetuch cost

Qu

pop(S) c o Multipop(S,k) c·min(ISI,k) D

hard to analyze diverly that red = green

$$\underline{\Phi}(i) = \# \text{ Credit left Cufter the ith operation} \underline{\Phi}(0) = \# \text{ Credits}$$

potential function energy

begining.

(2)
$$C_i = C_i + \overline{\Phi}(i) - \overline{\Phi}(i-1)$$

amortized actual cost.

$$(1) \ \underline{\Phi}(n) > \underline{\Phi}(o) \Rightarrow red > green \Rightarrow \underline{\Sigma}(i) > \underline{\Sigma}$$

I(i) = C. # objects in the stack after ith operation

$$\overline{\Phi}(0) = 0 \quad \overline{\Phi}(1) \ge 0$$

Push:

POP

MULTIPOP

		/