

New Statistics

New Statistics = Old Statistics

Better studies

Informative designs
Sample size planning
Registrations
No -hacking
Full reporting
Replication

Better statistics

Reporting uncertainty Lowering Bayesian statistics

from amazon.com

Replication crises

There are various **replication crises rumbling** in diverse academic fields.

Large-scale replication attempt in **Psychology** found that **only 36% were replicable**.

The low replicability is the result of **Questionable Research Practices**.

Similar assessments in Medicine, Economics, Marketing, Social sciences.

from Open Science Collaboration

(cc) BY-SA www.therbootcamp.com

3/20

Hallmarks of good studies

- 1 Informative designs
- 2 Sample size planning
- 3 Registrations
- 4 No p-hacking
- 5 Full reporting
- 6 Replication

...and this is where we put the non-significant results.

adapted from Someecards.com

Sample size planning

Sample size should be planned such that there is **sufficient power to detect an effect**, if it is present.

Increasing sample size means narrower sampling distributions and smaller decision errors.

	Effect present	Effect absen
Significant result	1-β	α
Non- significant result	β	1-α

Small N

Sample size planning

Sample size should be planned such that there is **sufficient power to detect an effect**, if it is present.

Increasing sample size means narrower sampling distributions and smaller decision errors.

	Effect present	Effect absen
Significant result	1-β	α
Non- significant result	β	1-α

Sample size planning in R

Sample size should be planned such that there is sufficient power to detect an effect, if it is present.

Increasing sample size means **narrower sampling** distributions and smaller decision errors.

	Effect present	Effect absent
Significant result	1-β	α
Non- significant result	β	1-α

```
# Load pwr package for pwr.t.test
library(pwr)
# N for large effect in t-test
pwr.t.test(sig.level = .05,
          power = .95,
          d = .8) # large effect
       Two-sample t test power calculation
                n = 41.59
                d = 0.8
        sig.level = 0.05
           power = 0.95
      alternative = two.sided
```

NOTE: n is number in *each* group

Sample size planning in R

Sample size should be planned such that there is sufficient power to detect an effect, if it is present.

Increasing sample size means narrower sampling distributions and smaller decision errors.

	Effect present	Effect absent
Significant result	1-β	α
Non- significant result	β	1-α

```
# Load pwr package for pwr.t.test
library(pwr)
# N for small effect in t-test
pwr.t.test(sig.level = .05,
           power = .95,
           d = .2) # small effect
       Two-sample t test power calculation
                n = 650.7
                d = 0.2
        sig.level = 0.05
            power = 0.95
       alternative = two.sided
## NOTE: n is number in *each* group
```

p-hacking

Ronald Coase

from fivethirtyeight.com

Economic factors

Employment Jobs

Statistics with R | April 2019

Hack Your Way To Scientific Glory You're a social scientist with a hunch: The U.S. economy is affected by whether Republicans or Democrats are in office. Try to show that a connection exists, using real data going back to 1948. For your results to be publishable in an academic journal, you'll need to prove that they are "statistically significant" by achieving a low enough p-value. CHOOSE A Dem. Republicans Rep. Democrats POLITICAL PARTY 2 DEFINE TERMS Which politicians do you want to include? Politicians Presidents Pres. × Governors Govs. × Senators Sens. Representatives How do you want to measure economic performance?

9/20

p-hacking

p-hacking is the misuse of data analysis to find patterns in data that can be

presented as statistically significant when in fact there is no real underlying effect.

Wikipedia

Optional Stopping - Stopping data collection once significance is reached.

HARKing - Hypothesizing After the Data are Known. Committed when presenting any non-planned analyses, including the introduction of covariates.

Dos and Don'ts

Columbus looking for India, from history.com

Everything.

Present your result as confirmatory.

Villemard vision for 2000, from sadanduseless.com

Make predictions. Predetermine sample size. Predetermine analysis plan. Register.

Engage in non-planned analyses.

New Statistics

Problems with -values

They are **difficult to interpret** as measures of evidence.

They are used for **arbitrary binarization** via comparison to α .

New statistics

Focus on **estimation**:

rather than

Communication of **uncertainty**: rather than

Confidence Interval (CI) = $\bar{x} \pm t_{1-\alpha} \sigma_{\bar{x}}$

Confidence interval

Confidence intervals essentially are **rearranged** significance tests.

t-test
$$\dfrac{|ar{x}|}{\sigma_{ar{x}}} > t_{1-lpha}$$

Step 1
$$|ar{x}| > t_{1-lpha} \sigma_{ar{x}}$$

Step2
$$|\bar{x}| - t_{1-\alpha}\sigma_{\bar{x}} > 0$$

Confidence interval

Confidence intervals essentially are rearranged significance tests.

t-test
$$\dfrac{|\bar{x}|}{\sigma_{\bar{x}}} > t_{1-lpha}$$

Step 1
$$|ar{x}| > t_{1-lpha} \sigma_{ar{x}}$$

Step2
$$|\bar{x}| - t_{1-\alpha}\sigma_{\bar{x}} > 0$$

```
# standard confidence interval
      <- length(t_1)
Delta \leftarrow mean(t_1 - t_2)
SE <- sd(t_1 - t_2) / sqrt(N)
Delta + SE * qt(.95, N - 1) * c(-1, 1)
```

[1] -1.1480 -0.7421

Statistics with R | April 2019

Confidence interval

Confidence intervals essentially are rearranged significance tests.

t-test
$$\frac{|\bar{x}|}{\sigma_{\bar{x}}} > t_{1-\alpha}$$
 Step 1
$$|\bar{x}| > t_{1-\alpha}\sigma_{\bar{x}}$$

Step2
$$|\bar{x}| - t_{1-\alpha}\sigma_{\bar{x}} > 0$$

```
# bootstrapped confidence interval
bf <- function(x,ind) {</pre>
  sum(x[ind])/length(x[ind])
boot_res <- boot(t_1 - t_2, bf, 1000)
boot.ci(boot_res)
## Warning in boot.ci(boot_res): bootstrap
## variances needed for studentized intervals
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## CALL :
## boot.ci(boot.out = boot_res)
## Intervals :
              Normal
## Level
                                  Basic
## 95% (-1.1777, -0.7113) (-1.1896, -0.7136)
```

Bayesian statistics extends classic (Frequentist) statistics by a **prior** distribution, specifying the prior probability of the hypotheses before seeing the data.

The prior permits calculation of a **true** -value, the posterior probability.

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN: BAYESIAN STATISTICIAN: THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS $\frac{1}{32}$ = 0.027. BET YOU \$50 IT HASN'T. SINCE P<0.05, I CONCLUDE THAT THE SUN HAS EXPLODED.

from xkcd.com

For two reasons Bayesian statistics has long been rejected...

- 1 **Computational needs** to calculate p(D)
- 2 **Subjectivity** in choosing the prior

However,...

- 1 Computers have become **fast enough**
- 2 Statistical inference is **necessarily subjective**
- 3 The influence of priors can be limited through **ignorance priors**

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE)

FREQUENTIST STATISTICIAN:

BAYESIAN STATISTICIAN:

from xkcd.com

The rstanarm and BayesFactor packages make Bayesian stats very easy to use.

Function	Package	Description
stan_glm, stan_glmer	rstanarm	Bayesian (mixed) regression
ttestBF, anovaBF	BayesFactor	Standard h-tests
lmBF	BayesFactor	Bayesian (mixed) regressions

```
# Baysian stats with rstanarm
library(rstanarm)
stan_glm(formula = income ~ height,
         data = baselers)
```

```
## stan_glm
                 gaussian [identity]
## family:
## formula:
                 income ~ height
## observations: 300
   predictors: 2
## ----
              Median MAD_SD
## (Intercept) 9292.9 2188.2
               -10.9 12.8
## height
## Auxiliary parameter(s):
        Median MAD_SD
## sigma 2635.5 107.2
## Sample avg. posterior predictive distribution of y:
           Median MAD_SD
##
## mean_PPD 7439.5 211.7
##
## * For help interpreting the printed output see ?print.sto
## * For info on the priors used see ?prior_summary.stanreg
                                                   18 / 20
```

The rstanarm and BayesFactor packages make Bayesian stats very easy to use.

Function	Package	Description
stan_glm, stan_glmer	rstanarm	Bayesian (mixed) regression
ttestBF, anovaBF	BayesFactor	Standard h-tests
lmBF	BayesFactor	Bayesian (mixed) regressions

```
# Baysian stats with BayesFactor
library(BayesFactor)
lmBF(formula = income ~ height,
    data = baselers)
```

```
## Bayes factor analysis
## [1] height : 0.1813 ±0%
## Against denominator:
    Intercept only
## Bayes factor type: BFlinearModel, JZS
```

19 / 20

Practical

