Machine Learning Cheatsheet for Diabetic Retinopathy Analysis

Dataset Understanding: APTOS 2019 Blindness Detection

- **Source**: Kaggle competition organized by Asia Pacific Tele-Ophthalmology Society (APTOS)
- **Purpose**: Encourage development of ML models to detect DR to prevent blindness
- **Size**: 3,662 images in training set, 1,928 images in test set
- Class Labels: Based on International Clinical Diabetic Retinopathy Disease Severity Scale
 - 0 No DR: No visible signs of diabetic retinopathy
 - 1 Mild: Few microaneurysms present
 - 2 Moderate: More pronounced signs including microaneurysms, hemorrhages, and exudates
 - 3 Severe: Significant hemorrhages and cotton-wool spots
 - 4 Proliferative DR: Most advanced stage with neovascularization
- **Class Distribution**: Significant imbalance
 - Class 0 (No DR): ~49.3% (1,805 images)
 - Class 1 (Mild): ~10.1% (370 images)
 - Class 2 (Moderate): ~27.3% (999 images)
 - Class 3 (Severe): ~5.3% (193 images)
 - Class 4 (Proliferative): ~8.1% (295 images)

Image Characteristics:

- Variable dimensions (480×640 to 2848×4288 pixels)
- Captured using different fundus cameras across multiple clinics
- Varying image quality, brightness, and contrast
- Black borders reducing effective retinal area

Image Preprocessing Pipeline

1. Cropping Black Borders

- Use thresholding to identify the retinal area
- Find the largest contour to identify the retinal region
- Crop to focus on the meaningful content

2. Contrast Enhancement

Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)

- Improves visibility of retinal features
- Especially enhances important DR markers (microaneurysms, hemorrhages)

3. **Resizing**

- Standardize to consistent dimensions (224×224, 300×300, or 512×512)
- Consider resolution needs vs. computational requirements

4. Normalization

- Scale pixel values to range [-1, 1] or [0, 1]
- Improves model convergence during training

5. **Data Augmentation** (for training)

- Address class imbalance
- Techniques: rotation, flipping, zooming, brightness/contrast adjustments
- Libraries: ImageDataGenerator (TF) or transforms (PyTorch)

Model Architecture Options

Convolutional Neural Networks (CNNs)

Pre-trained Models (Transfer Learning)

Model	Characteristics	Advantages	Considerations	
ResNet	Residual connections, deep	Prevents vanishing gradients,	Deeper versions require	
	architecture	good feature extraction	more compute	
EfficientNet	Optimized	Better performance with fewer	Complex architecture	
	depth/width/resolution scaling	parameters		
DenseNet	Dense connections between	Factor	Memory intensive during	
	layers	Feature reuse, fewer parameters	training	
Inception	Parallel convolutional paths	Captures features at multiple	Complex architecture to	
		scales	implement	
VGG	Simple sequential architecture	Easy to understand and	More parameters,	
		implement	potentially overfit	
4	•		•	

Custom Architecture Components

- Input Layer: Matches preprocessing dimensions (e.g., 224×224×3)
- **Convolutional Layers**: Feature extraction with varying filter sizes
- **Pooling Layers**: Reduce spatial dimensions, extract dominant features

- Batch Normalization: Stabilizes training, improves convergence
- **Dropout**: Prevents overfitting (typically 0.2-0.5 rate)
- Global Average Pooling: Reduces parameters vs. flattening
- **Dense Layers**: Final classification layers
- Output Layer: 5 neurons with softmax activation for class probabilities

Training Considerations

Handling Class Imbalance

- Class Weights: Assign higher weights to minority classes in loss function
- Weighted Sampling: Oversample minority classes during batch creation
- **Focal Loss**: Modification of cross-entropy to focus on hard examples
- Label Smoothing: Prevents overconfidence in predictions

Hyperparameters

Parameter	Range	Notes
Learning Rate	1e-4 to 1e-2	Consider scheduling (reduce on plateau)
Batch Size	16-64	Smaller for limited GPU memory
Epochs	25-100	Use early stopping based on validation performance
Optimizer	Adam, RMSprop Adam often performs well for medical imaging	
◀	'	•

Training/Validation Split

- Stratified Split: Maintain class distribution across splits
- Split Ratio: 70-80% training, 10-15% validation, 10-15% testing
- **Cross-Validation**: Consider k-fold for more robust evaluation

Evaluation Metrics

Metric	Description	When to Use		
Quadratic Weighted Kappa	Measures agreement between predicted	Primary metric for APTOS		
(QWK)	and actual ratings	competition		
Accusacy	Overall correct predictions	Less appropriate with class		
Accuracy	Overall correct predictions	imbalance		
Concitivity/Docall	TP/(TP+FN)	Critical for medical screening (miss		
Sensitivity/Recall	1P/(1P+FIN)	fewer cases)		
Specificity	TN/(TN+FP)	Measures ability to correctly identify		
Specificity	111/(1114+FP)	negatives		
AUC-ROC	Area under receiver operating characteristic Overall discriminative ability			
AUC-ROC	curve	Over all disci in initiative ability		
Confusion Matrix	Visualizes predictions across all classes	Detailed error analysis		
Classification Report	Dos class procision rocall E1 score	Evaluate performance on individual		
Classification Report	Per-class precision, recall, F1-score	classes		
◆				

Implementation Frameworks

TensorFlow/Keras

```
# Basic model architecture example
def create model(input shape=(224, 224, 3), num classes=5):
    base model = tf.keras.applications.EfficientNetB3(
        include top=False,
       weights='imagenet',
        input shape=input shape
   )
   # Fine-tuning: freeze early layers
    for layer in base model.layers[:100]:
        layer.trainable = False
   model = tf.keras.Sequential([
        base model,
       tf.keras.layers.GlobalAveragePooling2D(),
        tf.keras.layers.Dropout(0.3),
       tf.keras.layers.Dense(256, activation='relu'),
       tf.keras.layers.Dropout(0.5),
       tf.keras.layers.Dense(num classes, activation='softmax')
   ])
    return model
# Data preparation with augmentation
train datagen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    rotation range=20,
   width shift range=0.1,
   height_shift_range=0.1,
   shear range=0.1,
   zoom range=0.1,
   horizontal_flip=True,
   fill mode='nearest'
)
# Class weights to handle imbalance
class weights = {
   0: 1.0,
   1: 5.0, # Adjust based on class distribution
   2: 1.8,
   3: 9.5,
   4: 6.2
}
```

```
# Compile with appropriate loss and metrics
model.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=le-4),
    loss='categorical_crossentropy',
    metrics=['accuracy', tf.keras.metrics.AUC()]
)

# Callbacks for better training
callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=7, restore_best_weights=True),
    tf.keras.callbacks.ReduceLROnPlateau(factor=0.2, patience=3),
    tf.keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True)]
```

PyTorch

```
import torch
import torch.nn as nn
import torchvision.models as models
from torch.utils.data import DataLoader
from torchvision import transforms
# Example dataset class
class RetinalDataset(torch.utils.data.Dataset):
    def init (self, dataframe, img dir, transform=None):
        self.dataframe = dataframe
        self.img dir = img dir
        self.transform = transform
    def len (self):
        return len(self.dataframe)
    def getitem (self, idx):
        img name = os.path.join(self.img dir, self.dataframe.iloc[idx, 0] + '.png')
        image = Image.open(img name)
        if self.transform:
            image = self.transform(image)
        label = self.dataframe.iloc[idx, 1]
        return image, label
# Data transformations
train transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(20),
    transforms.ToTensor(),
   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Model definition
def get model(num classes=5):
    model = models.densenet121(pretrained=True)
    for param in model.parameters():
        param.requires grad = False
    # Replace classifier
    num features = model.classifier.in features
```

```
model.classifier = nn.Sequential(
        nn.Dropout(0.3),
        nn.Linear(num features, 512),
        nn.ReLU(),
        nn.Dropout(0.4),
        nn.Linear(512, num classes)
    return model
# Training loop (partial example)
def train epoch(model, dataloader, criterion, optimizer, device):
    model.train()
    running loss = 0.0
    for inputs, labels in dataloader:
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running loss += loss.item() * inputs.size(0)
    return running loss / len(dataloader.dataset)
```

Common Challenges and Solutions

Image Quality Issues

- **Problem**: Poor contrast or dark images
- **Solution**: CLAHE enhancement, adaptive gamma correction

Overfitting

- **Problem**: Model performs well on training but poorly on validation
- Solutions:
 - More aggressive data augmentation
 - Increase dropout rate
 - L2 regularization
 - Early stopping

• Simpler model architecture

Class Imbalance

- **Problem**: Poor performance on minority classes
- Solutions:
 - Class weighting in loss function
 - Oversampling minority classes
 - Focal loss
 - Ensemble methods with different class weightings

Computational Resources

- Problem: Large images and models exceed GPU memory
- Solutions:
 - Gradual resizing (train on smaller images first)
 - Mixed precision training
 - Gradient accumulation
 - Efficient architectures (EfficientNet, MobileNet)

Feature Visualization and Interpretability

- **Grad-CAM**: Highlights regions contributing to classification
- **Feature maps**: Visualize intermediate activations
- Occlusion sensitivity: Measure effect of masking image regions
- Integrated gradients: Attribution method for deep networks

Real-world Deployment Considerations

- **Model Size**: Convert to optimized formats (ONNX, TensorRT, TFLite)
- Inference Time: Critical for clinical deployment
- Threshold Tuning: Adjust classification thresholds based on clinical needs
- **Monitoring**: Track performance drift, especially with new camera equipment
- Explainability: Provide visual explanations to clinicians

Resources

• Kaggle competition: https://www.kaggle.com/competitions/aptos2019-blindness-detection

- APTOS dataset: https://www.kaggle.com/datasets/mariaherrerot/aptos2019
- Research papers:
 - "Deep Learning Approach to Diabetic Retinopathy Detection"
 - "Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy"
 - "Automated Diabetic Retinopathy Detection Using Horizontal and Vertical Patch Division-Based Pre-Trained DenseNET with Digital Fundus Images"

Key Takeaways

- 1. **Preprocessing is critical**: Quality enhancement and standardization dramatically impact model performance
- 2. Address class imbalance: Essential for clinical utility across all severity levels
- 3. Transfer learning works well: Models pre-trained on ImageNet provide strong initialization
- 4. **Evaluate holistically**: QWK is standard metric, but consider sensitivity for clinical relevance
- 5. **Interpretability matters**: Clinicians need to understand model decisions