© EPODOC / EPO

```
- JP5211724 A 19930820
    PD
          - 1993-08-20
          - JP19920014366 19920129
    OPD
         - 1992-01-29
    TI
          -(A)
           CHARGING-STATE DISPLAY SYSTEM OF ELECTRIC VEHICLE
    ΑB
           PURPOSE:To provide a charging-state display system of electric vehicle where a charging state and
          vehicle state can be monitored in detail at a place separated from a vehicle being charged with
           electricity. CONSTITUTION: A display system 10 is equipped with an electric vehicle 12 and display card
           14; the electric vehicle 12 is equipped with a battery 18 being a traveling drive source, detection circuit
          20, control circuit 22 and transmitter 24; and the display card 14 is equipped with a receiver 26, display
          control circuit 28 and display circuit 30. The control circuit 22 determines the state of the vehicle being
          charged-with-electricity-detected by the detection circuit 20 and outputs the result of determination to the
          transmitter 24. The transmitter 24 encodes and transmits the result of determination, etc. The display
          control circuit 28 having read the coded result of determination, etc., via the receiver 26 displays the
          result of determination in the display circuit 30. Therefore, a charging state can be monitored at a place
          separated from the electric vehicle 12.
  IN
        - (A)
          SUYAMA KOICHI
  PA
        - (A)
         HONDA MOTOR COLTD
  IC
         (A)
         B60L11/18; H02J7/00; H02J7/02; H04Q9/00
         H02J7/00; B60L11/18; H02J7/02; H04Q9/00
 CT
       - (B2)
         JP63314103 A [ ]:
                              JP1278231 A [];
         JP64064532 A [ ];
                              JP62012335 A [ ];
        JP61016761U U[];
                               JP2000667B B [];
        JP2284540 A [1:
                             JP3011940 A[];
        JP2307334 A [];
                             JP2246734 A [];
        JP61032748B B [];
                              JP3273831 A [];
        JP51024165 A [];
                             JP2307335 A [];
        JP62027002U U [];
                              JP3021198 A[];
        JP58003743B B [];
                              JP3284130 A [];
       JP60255025 A[]
                                           © WPI / DERWENT
     - Charge status display system for electric vehicle - has wireless transmitter digitally coding and
П
       transmitting signals representing detected charge status of main vehicle battery, to remote receiver
     - JP19920014366 19920129
PR
     - JP2996559B2 B2 20000111 DW200007 H02J7/00 017pp
PN
     - JP5211724 A 19930820 DW199338 H02J7/00 015pp
     - US5596261 A 19970121 DW199710 H02J7/00 034pp
     - (HOND) HONDA MOTOR COLTD
    - (HOND) HONDA GIKEN KOGYO KK
    - B60L11/18;G01N27/416;G08B21/00;H02J7/00;H02J7/02;H04Q9/00
    - SUYAMAK
    - J05211724
    - (Dwg.1/19)
```

- 1992-01-29

IC

IN

AN - 1993-298831 [38]

© PAJ / JPO

PN - JP5211724 A 19930820

PD - 1993-08-20

AP - JP19920014366 19920129

IN - SUYAMA KOICHI

PA - HONDA MOTOR COLTD

TI - CHARGING-STATE DISPLAY SYSTEM OF ELECTRIC VEHICLE

- AB PURPOSE: To provide a charging-state display system of electric vehicle where a charging state and vehicle state can be monitored in detail at a place separated from a vehicle being charged with
 - CONSTITUTION: A display system 10 is equipped with an electric vehicle 12 and display card 14; the electric vehicle 12 is equipped with a battery 18 being a traveling drive source, detection circuit 20, control circuit 22 and transmitter 24; and the display card 14 is equipped with a receiver 26, display control circuit 28 and display circuit 30. The control circuit 22 determines the state of the vehicle being charged with electricity detected by the detection circuit 20 and outputs the result of determination to the transmitter 24. The transmitter 24 encodes and transmits the result of determination, etc. The display control circuit 28 having read the coded result of determination, etc., via the receiver 26 displays the result of determination in the display circuit 30. Therefore, a charging state can be monitored at a place separated from the electric vehicle 12.
 - H02J7/00;B60L11/18;H02J7/02;H04Q9/00

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-211724

(43)公開日 平成5年(1993)8月20日

(51) Int.CL.		識別記号	庁内整理番号	FΙ	技術表示	新印
H02J	7/00	P	9060-5G		A Participation of the	1999 ()"
B60L	11/18	A	6821 5H			
H02J	7/02	v	9060-5G			
H 0 4 Q	9/00	301 B	7170-5K			*

審査請求 未請求 請求項の数14(全 15 頁)

(2	Ī)	į	Ц	į.	Ŋ,	ij	番	号
	-	•	•		**	***	***		

特顯平4-14366

(71)出願人 000005326

(22) 出顧日

平成4年(1992)1月29日

本田技研工業株式会社 東京都港区南青山二丁目1番1号

(72) 発明者 陶山 孝一

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 弁理士 千葉 剛宏 (外3名)

(54) 【発明の名称】 電気自動車の充電状況表示システム

(57) 【要約】

【目的】充電中の車両から離間した場所において、充電の状況および車両の状況を詳細にモニタすることのできる電気自動車の充電状況表示システムを提供することを目的とする。

【構成】表示システム10は電気自動車12と表示カード14とを備え、電気自動車12は走行駆動源であるバッテリ18と、検出回路20と、制御回路22と、送信機24とを備え、表示カード14は受信機26と表示制御回路28と表示回路30とを備える。検出回路20が検出した充電中の車両の状況を制御回路22は判定し、前記判定結果を送信機24に出力する。送信機24は前記判定結果等をコード化して送信する。前記コード化された判定結果等を受信機26を介して読み取った表示制御回路28は前記判定結果を表示回路30に表示する。従って、電気自動車12から離間した場所において、充電状況をモニタすることができる。

【特許諸求の範囲】

【請求項1】電気自動車から送信される走行駆動源である主バッテリの充電状況情報を、前記電気自動車から離間して受信し、表示する電気自動車の充電状況表示システムであって、

證気自動車の充電状況を検出する複数の検出手段と、

前記検出手段によって検出される夫々の検出結果を判定 する判定手段と、

前記検出結果および前記判定結果を送信する送信手段 と、

を少なくとも備える電気自動車と、

前記送信手段によって送信される検出結果および判定結果を受信する受信手段と、

前記受信手段によって受信される検出結果および判定結果を表示する表示手段と、

を少なくとも備える表示装置と、

を備えることを特徴とする電気自動車の充電状況表示シ ステム。

【請求項2】請求項1記載のシステムにおいて、

検出手段は主バッテリの充電電圧および/または充電電 20 流を検出する電圧および/または電流検出手段を備え、 判定手段は前記充電電圧および/または充電電流が所定 範囲内であるか否かを判定する電圧および/または電流 判定手段を備え、

表示装置は前記判定結果を表示する表示手段を備えることを特徴とする電気自動車の充電状況表示システム。

【請求項3】請求項1記載のシステムにおいて、

検出手段は車輪の回転を検出する回転検出センサを備えることを特徴とする電気自動車の充電状況表示システム。

【請求項4】請求項1記載のシステムにおいて、

検出手段は走行駆動用電気系と制御用電気系との漏電を 検出する漏電検出手段を備え、

判定手段は前記漏電が所定範囲内であるか否かを判定す る漏電判定手段を備え、

表示装置は前配判定結果を表示する表示手段を備えることを特徴とする電気自動車の充電状況表示システム。

【請求項5】請求項1記載のシステムにおいて、

検出手段はパワードライブユニットと主バッテリとの接 続の有無を検出する接続検出手段を備え、

表示装置は前記検出結果を表示する表示手段を備えることを特徴とする電気自動車の充電状況表示システム。

【請求項6】請求項1記載のシステムにおいて、

検出手段は主バッテリの温度を検出する温度検出手段を 備え、

判定手段は前記主バッテリの温度が第1所定値未満、または第1所定値以上であって第2所定値未満、または第 2所定値以上であることを判定する温度判定手段を備 え、

表示装置は前記判定結果が第2所定値以上であるとき充 50

電停止を表示し、第2所定値未満のときは充電中を表示 する表示手段を備えることを特徴とする電気自動車の充 電状況表示システム。

【請求項7】請求項1記載のシステムにおいて、

検出手段は主バッテリ収納ボックス内の水素ガス濃度を 検出する水素ガス濃度検出手段を備え、

判定手段は前記水素ガス濃度が第1所定値未満、または 第1所定値以上であって第2所定値未満、または第2所 定値以上であることを判定する水素ガス濃度判定手段を 10 備え、

表示装置は前記判定結果が第2所定値以上であるとき受電停止を表示し、第2所定値未満のときは充電中を表示する表示手段を備えることを特徴とする電気自動車の充電状況表示システム。

【請求項8】請求項1記載のシステムにおいて、

送信手段は情報の送信を間欠的に行うためのタイミング パルス生成手段を備えることを特徴とする電気自動車の 充電状況表示システム。

【請求項9】請求項1記載のシステムにおいて、

20 判定手段は自己診断手段を備えることを特徴とする電気 自動車の充電状況表示システム。

【請求項10】請求項1記載のシステムにおいて、 判定手段は検出手段に検出される大々の充電状況を充電 中、停止および終了のいずれかを判定し、表示手段は前 記判定毎に異なった表示を行うことを特徴とする電気自 動車の充電状況表示システム。

【請求項11】請求項1記載のシステムにおいて、 送信手段は充電状況およびバッテリ残容量を夫々デジタ ル化する変換手段と、

30 前記デジタル化された充電状況データおよびバッテリ残 容量データを組み合わせた新データをコード化すること により送信データを短縮するコード化手段を備え、

受信手段は前記コード化された送信データを予め記憶された解読コードに従って解読する解読手段を備えることを特徴とする電気自動車の充電状況表示システム。

【請求項12】請求項1記載のシステムにおいて、

受信手段は新情報が所定時間以内に受信されなければ、 現在の表示を継続するための表示継続信号を導出する表 示継続信号導出手段を備えることを特徴とする電気自動 40 車の充電状況表示システム。

【請求項13】請求項1記載のシステムにおいて、 送信手段は車両を特定する情報を予め記憶する記憶手段

前記記憶手段に記憶された車両を特定する情報を読み取 り、該情報を充電状況およびバッテリ残容量等の送信情 報とともに送信する制御手段とを備えることを特徴とす

る電気自動車の充電状況表示システム。 【請求項14】請求項1記載のシステムにおいて、 電気自動車は表示装置を充電するための送電端子を備

-134--

表示装置は前記送電端子と嵌合する受電端子を備え、該 受電端子と前記送電端子とが嵌合することにより電気自 動車によって充電されることを特徴とする電気自動車の 充電状況表示システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、充電中における電気自動車の充電状況および車両状況を車両と離間した場所で モニタすることのできる電気自動車の充電状況表示システムに関する。

[0002]

【従来の技術】電気自動車は走行駆動源である電力を自 宅のガレージ等において、夜間に充電しており、この場 合、充電時の異常および充電状況を示すパッテリの残容 量等を、電気自動車の室内のダッシュボードの上面パネ ルに表示する技術的思想が実開昭63-191801号 公報に開示されている。

[0003]

【発明が解決しようとする課題】ところで、電気自動車の充電には通常7時間乃至10時間と長時間を要するため、充電操作者は充電が開始されると電気自動車を退去するが、充電中に充電ケーブルの脱落およびバッテリ収納ボックス内の水素濃度の上昇等により充電が中止された場合、充電中止を知ることができず、また、充電終了を確認することができない。

【0004】そこで、充電操作者は、度々充電中の車両の状況を確認するためにガレージ等に出向かなければならないという問題がある。

【0005】本発明は、前記従来の問題を解決するため になされたものであって、充電中の車両から離間した場 30 所において、充電の状況および車両の状況を詳細にモニ タすることのできる電気自動車の充電状況表示システム を提供することを目的とする。

[0006]

【課題を解決するための手段】前記の目的を達成するために、本発明は、電気自動車から送信される走行駆動源である主パッテリの充電状況情報を、前記電気自動車から離間して受信し、表示する電気自動車の充電状況表示システムであって、電気自動車の充電状況を検出する複数の検出手段と、前記検出手段によって検出される夫々の検出結果を判定する判定手段と、前配検出結果および前記判定結果を送信する送信手段と、を少なくとも備える電気自動車と、前記送信手段によって送信される検出結果および判定結果を受信する受信手段と、前記受信手段によって受信される検出結果および判定結果を表示する表示手段と、を少なくとも備える表示装置と、を備えることを特徴とする。

[0007]

【作用】本発明に係る電気自動車の充電状況表示システムでは、複数の検出手段によって検出される電気自動車 50

の充電状況を判定手段によって判定し、前記検出結果および前記判定結果を送信手段によって送信する。次いで、前記送信手段によって送信される検出結果および判定結果を受信手段によって受信し、これらの情報を表示手段に表示する。

【0008】従って、充電操作者は電気自動車から離間 した場所で電気自動車の充電状況の情報を得ることが可能となる。

[0009]

10 【実施例】次に、本発明に係る電気自動車の充電状況表示システムについて好適な実施例を挙げ、添付の図面を参照しながら以下詳細に説明する。

【0010】図1は本発明を実施する表示システムの機能を示す概略プロック図であり、図中、参照符号10は 充電時における車両の状況を表示する表示システムを示す。

【0011】表示システム10は車両である電気自動車 12と、充電時の電気自動車12の充電状況等を表示す る表示カード14とを備える。

【0012】電気自動車12は充電に関する制御を行う 充電制御回路16と、この充電制御回路16の制御下に 外部の交流電源から供給される電力によって充電される バッテリ18と、複数種類のセンサからなる検出回路2 0と、検川回路20から出力される夫々の情報に基づい て充電中の電気自動車12の状況を判定し、且つ、電気 自動車12のプリエアコンディショニングの状況等を判 定する制御回路22と、制御回路22から出力される電 気自動車12の状況を示す情報を送信する送信機24 と、後述する表示カード14のバッテリを充電するため の送電端子25とを備える。

【0013】表示カード14は前記送信機24から送信される情報を受信する受信機26と、受信された情報を表示可能なデータに変換する表示制御回路28と、表示制御回路28から出力されるデータを表示する表示回路30と、各種異常が発生した際にブザーを鳴動させる警報回路31と、前記受信機26、表示制御回路28および表示回路30等の電源であるパッテリ32と、前記送電端子25と嵌合する受電端子31と、受電端子31を介して送電される電力によってパッテリ32を充電するDC/DCコンパータからなる充電回路36とを備える。

【0014】図2は電気自動車12の構成を示すプロック図であり、図3は図2に示す電気自動車12の夫々の構成の配置を示す図である。

【0015】充電制御回路16を構成する充電制御エレクトリックコントロールユニット(以下、ECUという)38は、充電器40、パワードライブユニット(以下、PDUという)用接続器42、充電用接続器44、およびパッテリ換気用ファン46と大々接続され、必要に応じてこれらを付勢、若しくは波勢等の制御をする。

【0016】制御回路22はバッテリ18が満充電か否 かを判定する残容量判定機能等を有する充電状況判定B CU48と、エアコンディショナによるコンディショニ ング状況の判定機能等を有するエアコン(以下、A/C という)制御BCU50と、送信信号コード化ECU5 2とを備える。

【0017】充電状況判定ECU48はパッテリ残容量 計54からバッテリ18の残容量を読み取り、温度セン サ56を介してパッテリ18の温度を読み取り、水素セ ンサ58の出力からバッテリボックス内の水素濃度を読 10 み取る。さらに、漏電センサ60の出力によってモータ M等の駆動電装系と制御電装系との漏電状態を判定し、 充電電流センサ62および充電電圧センサ64の出力か ら充電電流および充電電圧を読み取る。

【0018】充電状況判定ECU48は車輪速センサ6 6 の出力から、充電中の電気自動車12が停車している か否かを判定し、外部電源接続センサ68によって外部 電源と電気自動車12との接続状態を監視し、PDU用 コンタクタ接続センサ70から出力される信号からバッ テリ18とPDUとの接続状態を監視し、且つ、前配充 20 電制御BCU38を介してPDU用接続器42を付勢、 若しくは滅勢する。

【0019】さらに、充電状況判定ECU48はサイド ブレーキスイッチ72の出力を読み取り、充電中にサイ ドプレーキが解除されることがないように監視し、充電 スイッチ74の出力を読み取ることで、終了前に充電モ ードが解除された場合を監視し、イグニッションキー (以下、IGN-KEYという) センサ76の出力から 充電中にIGN一KEYが操作され、走行準備がなされ ることがないように監視する。

【0020】A/C制御ECU50はプリA/Cスイッ チ78および室内温度設定スイッチ80の設定状況を読 み取るとともに、室内温度センサ82から出力される室 内温度を読み取り、これらの情報からプリエアコンディ ショニングによるコンディション状況を判定し、A/C の内外気切替えダンパ84の切り替え、およびA/Cプ ロア86を制御する。

【0021】送信信号コード化ECU52は充電状況判 定ECU48およびA/C制御ECU50から出力され る送信情報を読み取って、これらの情報を送信データに 40 コード化するとともに、盗難防止判定ECU88から読 み取った盗難防止情報をコード化する。これらのコード 化された情報は送信機90に出力され、送信機90によ って送信される。

【0022】盗難防止判定ECU88はウインドウ衝撃 センサ92、ドアロックセンサ94およびIGN-KE Yセンサ76と接続され、夫々のセンサから読み取った 情報に基づいて盗難判定を行う。

【0023】図4は表示カード14の構成を示すプロッ

ある。

【0024】表示カード14の受信機26は車両の識別 信号の判定および受信状況の判定等の受信信号コードを 解読し、この解読された受信信号コードを表示制御回路 28の表示制御ECU100に出力する。表示制御EC U100は受信状況の表示、充電状況の表示および警 報、バッテリの残容量の表示、およびブリA/C状況の 表示等の表示データを制御し、この表示データによって 表示回路30および警報回路31を制御する。

【0025】表示回路30はバッテリ18の残容量表示 102、充電中表示104、充電停止表示106、充電 終了予定時刻表示108、正常受信中表示110、プリ A/Cの設定温度表示112、室内の現在温度表示11 4、プリA/C作動中表示116、プリA/C作動終了 表示118、および盗難防止表示120等の表示器を備 える.

【0026】警報回路31はブザーであり、アラーム停 止スイッチ122によって鳴動を停止する。

【0027】以上のように構成される表示システム10 において、充電情報および充電中の車両の状況情報を検 出して送信し、送信されたこれらの情報を受信して表示 する作用について、図6乃至図21を参照しながら説明 する。

【0028】図6は前記検出された夫々の情報を表示す る作用の概要を示すフローチャートである。

【0029】 電気自動車12の制御回路22は図示しな いRAMに設定される車両の識別番号等の初期値を読み 取り(ステップS1)、さらに、検出回路20を構成す る夫々のセンサおよび設定スイッチの設定状況を読み取 る(ステップS2)。

【0030】次いで、ステップS2で読み取ったバッテ リ残容量計54のデータ等に基づいてバッテリ18の放 電深度を演算し、この放電深度の値からバッテリ18の 満充電容量を求め、さらに、満充電容量に対する現在の 残容量を判定する(ステップS3)。前記残容量を示す 情報に従って充電が開始され、充電状況判定ECU48 が充電状況を判定し(ステップS4)、充電制御ECU 38が充電中に発生し得る緊急事態に対する対応制御を 開始し(ステップS5)、A/C制御ECU50がプリ A/C制御におけるエアコンディショニング状況を判定 する (ステップS 6)。

【0031】これらの情報を送信信号コード化ECU5 2がコード化し(ステップS7)、コード化された情報 を送信指令に基づいて送信機24が送信する(ステップ S8)。

【0032】一方、表示カード14の受信機26はコー ド化された情報を受信し、これらの情報から車両の識別 信号を読み取り、識別信号が当該表示カード14に対応 する情報であることを判定し(ステップS9)、受信電 ク図であり、図5は表示回路30の配置を説明する図で 50 彼の強度から表示カード14が受信可能距離範囲内であ

ることを判定した後(ステップS10)、受信信号コー ドの解読を行う(ステップS11)。

【0033】前記解読した結果から、充電中等の充電状 祝を表示回路30に表示するとともに、警告すべき内容 が解読されれば警報回路31を付勤してプザーを噶動さ せ(ステップS12)、さらに、パッテリ18の残容量 を残容量表示102に表示し(ステップS13)、現在 のエアコンディショニング状況をプリA/C作動中表示 116に表示する (ステップS14)。

【0034】また、表示内容が有効か否かを判定するた めの表示を正常受信中表示110に表示して(ステップ S15)、 岡様の制御および判定等を繰り返し実行する ためにスタートにリターンする。

[0_0_8_5]以上説明したステップによって検出された 情報は表示カード14に表示されるが、夫々のステップ の制御方法について図7万至図21を参照しながら以下 詳細に説明する。

【0036】前記ステップS3におけるパッテリ18の 残容量判定ルーチンではパッテリ18の残容量(D○ D) を演算し (ステップS3-1)、このDODと満充 20 電時の値D1とを比較してDOD<D1であるか否かを 判定する(ステップS3-2)。DOD<D1であると き満充電フラグを「0」にセットし(ステップS 3 -3)、DOD<D1ではないときには満充電フラグを 「1」にセットして(ステップS3-4)、夫々リター ンする(図7参照)。

【0037】すなわち、満充電フラグが「1」にセット された場合は、バッテリ残容量表示102は全て点灯 し、充電終了時刻表示108は現在時刻を表示し、充電 停止表示106が点灯する。また、満充電フラグが 30 「0」にセットされた場合は、演算された残容量の値に 相当するパッテリ残容量表示102が点灯し、充電終了 時刻表示108は演算によって求められた終了予定時刻 が表示され、充電中表示104が点灯する。

【0038】前記ステップS4における充電状況判定サ ブルーチンは以下に説明する夫々の条件によって、充電 を継続、停止、終了およびOFF等のモードを選択する ものである(図8乃至図10参照)。

【0039】先ず、充電スイッチ74が操作されている か否かを判定し(ステップS4-1)、操作されていれ 40 ば満充電フラグが「0」か否かを判定し(ステップS4 - 2)、満充電フラグが「0」であれば外部電源接続セ ンサ68が検出する電流値がしきい値以上か否かを判定 する (ステップS4-3)。

[0040] 検出電流値がしきい値以上であれば充電電 王センサ64の検出電圧V, が予め設定された電圧V。 bよび V_1 に対し、 V_0 $\leq V_1$ $\leq V_1$ の関係にあるか否 $^{\mathrm{n}}$ を判定し(ステップS 4 ー 4)、検出電圧 $^{\mathrm{n}}$ にが $^{\mathrm{n}}$ $\mathbb{E} V_1 \leq V_1$ の関係にあれば充電電流センサ 62 の検出 流 I。 が予め設定された電流値 I。 以上であって電流 50 値 I₁ 以下の範囲であるか否かを判定する(ステップS

[0041] 検出電流 I; が I。 ≦ I; ≦ I; であれ ば、車輪速センサ66の出力を読み取って車輪が回転し ているか否かの判定を行い(ステップS 4 - 6)、車輪 が回転していなければ、漏電センサ60の出力から漏電 判定を行う(ステップS 4 - 7)。漏電していない場合 はPDU用コンタクタ接続センサ70の出力からPDU 用コンタクタが滅勢か否かを判定し(ステップS4-8)、滅勢であればモータMに電力が供給されていない と判定して、IGN-KEYセンサ76の出力を読み取 り、イグニッションにキーが挿入されているか否かを判 定する (ステップS4-9)。

-- [-0.0-4-2] 次いで、温度センサ5-6から読み取った検 出バッテリ温度T。が設定された警告バッテリ温度T。 以上か否かを判定し(ステップS4-10)、 $T_8>$ T 。 でなければ水素センサ58の出力を読み取り、この検 出水素濃度D_E が設定された警告水素濃度D₀ 以上か否 かを判定する(ステップS4-11)。 検出水素濃度D ェ が警告水素濃度D。以上でなければ制御モードをAと して(ステップS 4 - 1 2)、充電状況モードをAとす る(ステップS4-13)。制御モードAは正常充電中

【0043】前記ステップS4-11において検出水素 濃度D』が警告水素濃度D。 以上であれば(D』 > D。)、検出水素濃度D。が設定された停止水素濃度D 以上か否かを判定し(ステップS4-14)、検出水 素濃度Da が停止水素濃度D1 以上でなければ、制御モ ードをBとして(ステップS4-15)、前記ステップ S 4-13の充電状況モードAを実行する。制御モード B は検出水素濃度D。が警告水素濃度D。 より高であっ て、停止水素濃度D1 より低であることを示すため(D 。<D $_{ ilde{ ilde{I}}}$ ($D_{ ilde{ ilde{I}}}$)、室内換気およびパッテリ収納ルーム 内の換気制御を行う。

【0044】また、ステップS4-13において検出水 素濃度D』が停止水素濃度D』より大であれば(D』> D1)、水素濃度および/またはパッテリの温度が停止 領域である場合に行う制御モードCとし (ステップS 4 -16)、充電を停止するモードである充電状況モード Bを実行する (ステップS 4-17)。

【0045】さらにまた、ステップS4-10の判定の 結果、検出バッテリ温度T。が警告パッテリ温度T。よ り大であるとき(T。>T。)、検出バッテリ温度T。 が設定された停止バッテリ温度T: 以上か否かを判定し (ステップS4-18)、検出パッテリ温度T。が停止 バッテリ温度 T_1 以上であるとき(T_8 > T_1)、前記 ステップS4-15の制御モードC以下のステップを実 行する。Tr >Tr ではないとき、制御モードDを実行 して(ステップS4-19)、前配ステップ4-13の 充電状況モードAを実行する。

[0046] 一方、前記ステップS4-3乃至ステップS4-9における夫々の判定結果がNOであるとき、制御モードはEとなり(ステップS4-20)、前記ステップS4-16に示される充電を停止する充電状況モードBを実行する。

[0047] さらに、前記ステップS4-2における満充電フラグの判定の結果が「1」であるとき、バッテリは満充電であると判定され、前記ステップS4-20と同様の充電終了制御を行う制御モードEを選択し(ステップS4-21)、充電状況表示モードは充電終了を示 10 すモードCとなる(ステップS4-22)。

【0048】さらにまた、ステップS4-1において充電スイッチが操作されていないと判定された場合は、充電終了を示す制御モードEを実行し(ステップS4-23)、充電状況モードはOFFを示すDとなる(ステップS4-24)。

【0049】以上のステップによって充電状況判定サブルーチンが実行されるが、この充電状況判定サブルーチンにおいて判定された充電制御モードA乃至Eに従って、ステップS5では充電制御が実行される。そこで、前記ステップS4で判定された夫々の充電制御モードA乃至Eについて図11および図12を参照しながら説明する。

【0050】充電制御モードAは正常な状態で充電中であり、充電用接続器44の接点を導通させ(ステップS5-A1)、パッテリ換気用ファン46を滅勢する(ステップS5-A2)。

【0051】充電制御モードBはパッテリ収納ルーム内の検出水素濃度Dェが警告水素濃度D。と停止水素濃度Dェとの範囲内であることを示す(D。<Dェ< 30 D1)。従って、充電を継続しながらパッテリ収納ルーム内の水素を車両の外部へ排出するとともに、室内の換気を行う制御モードである。

【0052】すなわち、充電用接続器 440接点を導通させ(ステップ S5-B1)、バッテリ換気用ファン 46 を付勢する(ステップ S5-B2)。さらに、内外気切替えダンパ 84 を外気導入側に切り替え(ステップ S5-B3)、A/C プロア 86 を最大排気能力となるように付勢する(ステップ S5-B4)。

【0053】充電制御モードCは検出バッテリ温度T。が停止バッテリ温度T:以上であるか、若しくは、バッテリ収納ルーム内の検出水素濃度D:が停止水素濃度D:以上の場合である。

【0054】このため、充電用接続器44の接点を非導 適として(ステップS5-C1)、バッテリ18の充電 を停止し、バッテリ換気用ファン46を付勢する(ステップS5-C2)。さらに、内外気切替えダンパ84を 外気導入側に切り替え(ステップS5-C3)、A/C ブロア86を最大排気能力となるように付勢することに より(ステップS5-C4)、バッテリ収納ルーム内お 50 よび室内の換気を行う。

【0055】充電制御モードDは検出バッテリ温度T。が警告バッテリ温度T。以上であって停止バッテリ温度T。以上であって停止バッテリ温度T。以下の場合であり(T。<T。<T1)、充電を継続しながらバッテリ収納ルーム内を換気し、バッテリ18の温度を下げる制御モードである。そこで、充電用接続器44の接点を導通させ(ステップS5-D1)、バッテリ換気用ファン46を付勢する(ステップS5-D2)。

10

(0 【0056】 充電制御モード已は充電終了モードであるため、充電用接続器44の接点を非導通として(ステップS5-E1)、バッテリ18の充電を停止し、バッテリ換気用ファン46を破勢することにより(ステップS5-E2)、バッテリ収納ルーム内の換気を終了する。

【0057】次いで、ステップS6における車内A/C 状況の判定サブルーチンについて図13を参照しながら 説明する。

【0058】バッテリ18の充電が開始されると、A/C制御ECU50はプリA/Cスイッチ78が操作され でいるか否かを判定し(ステップS6-1)、操作され でいればプリA/Cフラグに「1」をセットする(ステップS6-2)。そして、室内温度センサ82から読み 取った室内温度Tェが、室内温度設定スイッチ80に設定された設定温度Tェに以上か否かを判定し(ステップ S6-3)、Tェ≧Tェにであれば室内状況フラグに「1」をセットして(ステップS6-4)、リターンする。

【0059】前記ステップS6-1においてプリA/Cスイッチ78がセットされていなければ、プリA/Cフラグに「0」をセットして(ステップS6-5)、室内状況フラグに「0」をセットし(ステップS6-6)、リターンする。また、ステップS6-3における室内温度Txと室内温度設定スイッチ80に設定された設定温度Tsrcとの大小比較の判定結果が、Tx≥Tsrcではないとき、すなわち、車内の温度が設定温度Tsrc以上であるとき、エアコン暖房を行う必要がないため、前記ステップS6-6を実行し、室内状況フラグに「0」をセットする。

【0060】次いで、ステップS7における送信信号コ ード化について図14および図15を参照しながら説明 する。

【0061】図15(a)はバッテリ18の残容量と、充電中、充電終了、充電停止およびOFFからなる充電状況とのコード化を示すマップであり、図15(b)はA/Cの室内状況フラグとプリA/C状況フラグとをコード化するマップを示し、図15(C)は図15(a)および図15(b)から得られたコード化データから送信用のコードを得るためのマップである。

【0062】前記ステップS3において判定されて、充電状況判定ECU48から出力されるバッテリ残容量を

示すデータ、例えば、残容量10%と、前記ステップS 4において判定されて充電制御ECU38から出力され る充電状況、例えば、充電中を示すデータとが送信信号 コード化ECU52に読み取られる。送信信号コード化 ECU52は前記残容量10%と、充電中を示すデータ とに基づいて図15(a)のマップを参照し、データα =「C1」を得る(ステップS7-1)。

【0063】一方、前配ステップS6において判定され て、A/C制御ECU50から送信信号コード化ECU 52に出力されるプリA/Cの状況を示す情報、例え 10 ば、プリA/C制御フラグが「1」、および室内状況フ・ ラグが「0」に従って、送信信号コード化ECU52は プリA/Cの状況を図15(b)のマップを参照し、コ ード化データB=「E1」を得る(ステップS7-2) .

[0064]次いで、データ α =「C1」とデータ β = 「E1」とから図15 (c) のマップを参照し、データ γ_{b21} を得(ステップS 7 -3)、データ γ_{b21} に相当 するコードデータを生成する。

【0065】ステップS8の送信指令サブルーチンで、20 は、IGN-KEYセンサ76の出力を読み取り、イグ ニッションにキーが差し込まれているか否かを判定し (ステップS8-1)、キーが差し込まれていなければ 充電状況ECU48および充電制御ECU38の自己診 断を行い(ステップS8-2)、これらのECU48、 38が正常か否かの判定をし(ステップS8-3)、正 常であれば送信用タイマのタイマフラグが「1」か否か を判定する(ステップS8-4)。

【0066】タイマフラグが「1」であれば、送信用タ イマが作動中であるので、タイマの経過時間 t が予め設 30 定された送信インターバルt。に達したか否かを判定し (ステップS8-5)、達していれば前記デジタルデー $夕化されたデータ<math>\gamma$ を送信し(ステップS8-6)、タ イマをリセットレ(ステップS8-7)、タイマフラグ を「0」にセットして(ステップS8-8)、リターン する.

【0067】前記ステップS8-5においてタイマの経 過時間 t が予め設定された送信インターバル t。に達し ていない場合はリターンし、ステップS8-5において タイマフラグが「1」ではないとき、すなわち、タイマ 40 が休止中のときはタイマを付勢してカウントを開始させ (ステップS8-9)、タイマフラグを「1」にセット して (ステップS8-10) 前記ステップS8-5以下 を実行する。

【0068】さらに、ステップS8-1においてイグニ ッションにキーが差し込まれているとき、イグニッショ ンからキーが抜き取られるまでタイマをリセットして (ステップS8-11)、タイマフラグを「O」にセッ トレ (ステップS8-12)、リターンする。この場 合、送信データは送信タイマによって設定された送信イ 60 き、すなわち、表示をホールドするときはUターンする

ンターパルt。に従って、間欠的に送信される。

【0069】以上説明したステップによって充電状況、 充電制御およびA/C状況を示すデータが電気自動車1 2から送信され、この送信データは表示カード14の受 信機26によって読み取られる。この読み取られたデー タが処理されるステップについて、図17万至図21を 参照しながら以下詳細に説明する。

【0070】前記ステップS9における受信状況判定サ ブルーチン、およびステップS10における車両識別判 定では、受信入力の有無を判定し(ステップS9-1)、受信入力があれば受信したデータの車両識別信号 と予め表示カード14に配憶されている車両識別信号と を比較して、一致するか否かを判定する(ステップS9 -2)------

【0071】一致した場合は受信タイマを初期状態にり セットした後にスタートさせ(ステップS9-3)、表 示ホールドフラグを「0」にセットすることによって、 表示ホールドを解除し(ステップS9-4)、リターン する。

【0072】前記ステップS9-1における受信入力有 無判定において、受信入力がない場合は動作中の受信タ イマの経過時間 tx が予め設定されたタイムアップ時間 txoを越えたか否かを判定し(ステップS9-5)、越 えていない場合は前記ステップS9-4の表示ホールド フラグを「0」にセットする。

【0073】また、ステップS9-5において、経過時 間tx が予め設定されたタイムアップ時間txoを越えた 場合、若しくは、ステップS9-2における車両識別の 判定結果が一致しないとき、表示ホールドフラグを 「1」にセットして(ステップ59-6)、リターンす వ.

【0074】この場合、受信タイマがタイムアップする まで受信入力が中断すると、表示は固定され、また、受 信中であって、車両識別信号が異なる場合にも表示は固 定されるため、常に好適な情報を表示することができ Z.,

【0075】ステップS12における充電状況表示警報 制御では、表示ホールドフラグが「0」か否かを判定し (ステップS12-1)、「0」であれば充電状況モー ドが充電を途中で停止する充電状況モードBであるか否 かを判定し(ステップS12-2)、充電状況モードが Bであれば充電中表示104を消灯して、充電停止表示 106を点滅する (ステップS12-3)。 次いで、警 報回路31を付勢してブザーを鳴動させて(ステップS 12-4)、リターンする。

【0076】前記ステップ12-2において判定した充 電状況モードがBではないとき、充電中表示104を点 滅させて(ステップS12-5)、リターンし、ステッ プS12-1において表示フラグが「0」ではないと

(図18参照)。

【0077】次に、ステップS13における残容量表示 制御について図19を参照しながら説明する。

[0078] 残容量衰示制御モードでは、表示ホールド フラグが「0」か否かを判定し(ステップS13-1)、「0」であれば充電状況モードが充電を終了する モードEであるか否かを判定する(ステップSI3-2)。充電状況モードがEであれば残容量表示102を 点灯して(ステップS13-3)、警報回路31を付勢 し、ブザーを鳴動させて(ステップS13-4)、リタ 20 常に受信できないものと判断して、正常受信中表示11 ーンする。

【0079】前記ステップ13-2において判定した充 電状況モードが正ではないとき、充電モードが充電を正 常に遂行中であることを示す充電状況モードAであるか 否かを判定し(ステップS13-5)、充電状況モード がAであればパッテリ18の残容量表示102を点滅さ せて(ステップS13-6)、リターンする。充電状況 モードがAでなければバッテリ18の残容量表示102 を点灯させて(ステップS13-7)リターンする。ま た、ステップS13-1における判定結果が、表示ホー 20 ルドフラグ「0」ではないときにリターンする。

【0080】ステップS14の室内状況表示制御サブル ーチンについて図20を参照しながら説明する。

【0081】表示ホールドフラグが「0」か否かを判定 し(ステップS14-1)、「0」であれば室内状況フ ラグが「1」か否かを判定する(ステップS14-2)。室内状況フラグが「1」であればプリA/C作動 終了表示118を点灯して(ステップS14-3)、プ リA/Cフラグが「1」か否かを判定し(ステップS1 4-4)、プリA/Cフラグが「1」であればプリA/ 30 C作動中表示116を点灯する(ステップS14-

【0082】次いで、現在温度表示114に車内の現在 温度を表示し(ステップS14-6)、設定温度表示1 12にプリA/Cの温度を表示して(ステップS14-7)、リターンする。

【0083】さらに、前記ステップS14-2における 室内状況フラグ判定結果が「1」ではないとき、ブリA /C作動終了表示118を消灯し (ステップS14ー 8) 、前記ステップS14-4に示すプリA/Cフラグ 40 判定ルーチン以下のステップを実行する。

【0084】また、ステップS14-4におけるプリA /Cフラグの判定結果が「1」ではないとき、プリA/ C作動中表示116を消灯し(ステップS14-9)、 現在温度表示114を消灯し(ステップS14-1 0) 、プリA/Cの設定温度表示112を消灯して(ス テップS14-11)、リターンする。

【0085】さらにまた、ステップS14-1における 表示ホールドフラグの判定結果が「0」ではないとき は、リターンする。

14

【0086】次いで、ステップS15の受信状況表示制 御サブルーチンについて図21を参照しながら説明す

【0087】表示ホールドフラグが「0」か否かを判定 し (ステップS 15-1)、「0+であれば正常受信中 表示110を点灯して(ステップS15-2)、リター ンする。また、表示ホールドフラグが「0」ではないと き、ECUのいずれかが破損したか、若しくは、送信機 24との距離が通信可能範囲以上離間しているために正 0を消灯して(ステップS15-3)、リターンする。

【0088】以上説明したように本実施例においては、 電気自動車12の検出回路20が検出したバッテリ18 の残容量と充電状況を示す情報、および車両を特定する 情報をコード化することにより送信情報を短縮化し、こ の短縮化されたコードを送信機24によって送信する。 この送信された情報を受信機26によって受信し、表示 制御回路28の制御下に表示回路30に表示する。

【0089】従って、充電操作者は電気自動車12から 離間した場所で充電状況および充電車両の状況をモニタ することができる。

[0090]

【発明の効果】本発明に係る電気自動車の充電状況表示 システムでは、電気自動車から離間した場所で電気自動 車の充電状況の情報を得ることが可能となる。

【0091】従って、充電操作者は主バッテリが充電さ れる電気自動車の近傍に長時間拘束されることがないと いう効果を奏する。

【図面の簡単な説明】

【図1】本発明に係る電気自動車の充電状況表示システ ムを実施する表示システムの機能を示す概略ブロック図 である。

【図2】図1の実施例に示す電気白動車の構成を示すプ ロック図である。

【図3】図2に示す電気自動車の構成の配置を説明する 図である。

【図4】図1の実施例に示す表示カードの構成を示すブ ロック図である。

【図5】図1の実施例に示す表示回路の配置を説明する 図である。

【図6】図1の実施例において検出された情報を表示す る作用の概要を示すフローチャートである。

【図7】図1の実施例において検出された情報を表示す る作用の詳細を示すフローチャートである。

【図8】図1の実施例において検出された情報を表示す る作用の詳細を示すフローチャートである。

【図9】図1の実施例において検出された情報を表示す る作用の詳細を示すフローチャートである。

【図10】図1の実施例において検出された情報を表示 50 する作用の詳細を示すフローチャートである。

【図11】図1の実施例において検出された情報を表示する作用の詳細を示すフローチャートである。

【図12】図1の実施例において検出された情報を表示 する作用の詳細を示すフローチャートである。

【図13】図1の実施例において検出された情報を表示する作用の評細を示すフローチャートである。

【図 I 4】図 I の実施例において検出された情報を表示する作用の詳細を示すフローチャートである。

【図15】図1の実施例において検出された情報を表示 する作用の詳細を示すフローチャートである。

【図16】図1の実施例において検出された情報を表示 する作用の詳細を示すフローチャートである。

【図17】図1の実施例において検出された情報を表示する作用の詳細を示すフローチャートである。

【図18】図1の実施例において検出された情報を表示する作用の詳細を示すフローチャートである。

【図19】図1の実施例において検出された情報を表示 する作用の詳細を示すフローチャートである。 16 【図 2 0】図 1 の実施例において検出された情報を表示 する作用の詳細を示すフローチャートである。

【図21】図1の実施例において検出された情報を表示 する作用の詳細を示すフローテャートである。

【符号の説明】

- 10…表示システム
- 12…電気自動車
- 14…表示カード
- 16…充電制御回路
- 18、32…パッテリ
- 20…検出回路
- 22…制御回路
- 24…送信機
- 2.6 ... 受信機_
- 28…表示制御回路
- 3 0 …表示回路
- 3 1 …警報回路

【図1】

[図14]

[図12]

[図21]

FIG.12

FIG. 21

[図3]

[図5]

[図6]

\$ 3

START 加製値転み取り

各種データ読み取り

充電制缸

FIG.6

[图8]

【図11】

FIG.11

[図15]

[図16]

[図17]

YES 送信用始撰令

タイマーリセット

タイマーフラグ0

(リターン)

88-8

(リターン

[図18]

【図19】

FIG.19

FIG.18

[図20]

FIG. 20

