# Package 'coxsei'

October 12, 2022

Type Package

Title Fitting a CoxSEI Model

| version 0.3                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------|
| <b>Date</b> 2020-02-08                                                                                            |
| Author Feng Chen <feng.chen@unsw.edu.au></feng.chen@unsw.edu.au>                                                  |
| Maintainer Feng Chen <feng.chen@unsw.edu.au></feng.chen@unsw.edu.au>                                              |
| <b>Description</b> Fit a CoxSEI (Cox type Self-Exciting Intensity) model to right-censored counting process data. |
| License GPL (>= 2)                                                                                                |
| LazyLoad yes                                                                                                      |
| NeedsCompilation yes                                                                                              |
| Repository CRAN                                                                                                   |
| <b>Date/Publication</b> 2020-02-08 07:00:08 UTC                                                                   |
|                                                                                                                   |
| R topics documented:                                                                                              |
| coxsei-package                                                                                                    |
| coxsei                                                                                                            |
| coxseiest                                                                                                         |
| coxseifit.ex                                                                                                      |
| coxseiInt                                                                                                         |
| coxseisim                                                                                                         |
| CumInt                                                                                                            |
| dat                                                                                                               |
| Dens                                                                                                              |
| Dist                                                                                                              |
| Quant                                                                                                             |
| RND                                                                                                               |
| Surv                                                                                                              |
| Index 10                                                                                                          |

2 coxsei

| coxsei-package | Fit a Cox-type self-exciting intensity model (CoxSEI) to right-censored counting process data |
|----------------|-----------------------------------------------------------------------------------------------|
|                |                                                                                               |

## **Description**

Fit the CoxSEI model using the partial likelihood method.

#### **Details**

To use the package, the data needs to be prepared into a data frame containing a column named Y for observed event times in ascending order of each individual process, a column named delta indicating if the event is 'death' (1) or 'censoring' (0), a column named id indicating the process id of each event time, and one or more columns giving the value of any covariate variable at the observed event times of each process. Then call the coxseiest function or the identical but much faster coxseiest2 function to estimate the parametric part of the model and then the coxseiInt function to estimate the cumulative baseline intensity function.

## Author(s)

Feng Chen <feng.chen@unsw.edu.au>

Maintainer: Feng Chen <feng.chen@unsw.edu.au>

#### References

Feng Chen and Kani Chen. (2014). Modeling Event Clustering Using the m-Memory Cox-Type Self-Exciting Intensity Model. International Journal of Statistics and Probability. 3(3): 126-137. doi:10.5539/ijsp.v3n3p126 URL: http://dx.doi.org/10.5539/ijsp.v3n3p126

Feng Chen and Kani Chen. (2014). Case-cohort analysis of clusters of recurrent events. 20(1): 1-15. doi: 10.1007/s10985-013-9275-3

#### See Also

survival

|--|

#### Description

Fit a CoxSEI model to counting process data

coxsei 3

#### Usage

#### **Arguments**

x a covariate matrix, or an object of class coxsei

y a vector of observed times

delta a vector of event indicators: 1=event, 0=censoring

id the individual/group id to which the event/censoring time correspond

par.init initial parameter guess to start the iteration

lag parameter as in m-dependence

mit max number of iteration

tr whether to trace the optimization or not

method used in optimization

lower the lower bound of the parameter space if the L-BFGS-B method of optimization

is used.

upper the upper bound of the paramter space if the L-BFGS-B methodof optimalization

is used.

... further arguments to plot.stepfun object an object of the class coxsei

#### Value

an object of class coxsei, basically a list of the following components

coefficients a numeric vector of coefficients vcov the variance-covariance matrix

zval the vector of z-value of the Wald test statistic

pval the vector of p-values

details.par a list returned by the optim routine

cintfn a step function as the estimated cumulative baseline intensity function

cintvar a step function as the variance of the cumulative baseline intensity function es-

timator

details.cint a list containing more details about the cint

4 coxseiest

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

#### References

Feng Chen and Kani Chen. (2014). Modeling Event Clustering Using the m-Memory Cox-Type Self-Exciting Intensity Model. International Journal of Statistics and Probability. 3(3): 126-137. doi:10.5539/ijsp.v3n3p126 URL: http://dx.doi.org/10.5539/ijsp.v3n3p126

Feng Chen and Kani Chen. (2014). Case-cohort analysis of clusters of recurrent events. 20(1): 1-15. doi: 10.1007/s10985-013-9275-3

#### See Also

```
coxseifit.ex
```

#### **Examples**

coxseiest

Function to estimate the parametric part of the Cox (proportional intensity) self-exciting point process (CoxSEI) model

## Description

Estimate the parametric part of the CoxSEI model using (conditionally) right-censored counting process data.

coxseiest 5

#### **Arguments**

dat a data frame with columns Y containing the censored event times of each indi-

vidual process arranged in ascending order with the last time always being the the censoring time, delta containing the event time indicator with value indicator an event time and 0 a censoring time, id specifying the id (process number) of each event time recorded, and the others giving the value of the associated

covariate process at the corresponding event times.

par.init init guess of the value of the parameters to start the optimization iteration with.

m order of "autoregression" of the excitation term.

mit maximum number of iteration in the optimization routine

tr if set to TRUE, print some summary information while the optimization routine

is running.

method method of optimization

lower vector of lower boundary values of the parameter space

upper vector of upper boundary of the parameter space

gfun the excitation function. Defaults to the exponential decay function

$$g(t;\gamma) = \gamma_1 \gamma_2 e^{-\gamma_2 t}$$

#### **Details**

coxseiest uses only R code; coxseiest2 uses external C code, and is expected to be 3~4 times fasters than the former; coxseiest3 assumes the excitation function is the exponential function as defaulted by the former two, and hardwares it in the C side of the code, and therefore is much faster than the former two when the exponential excitation function is desired.

#### Value

A list as that returned by the call to the optimizer routine. For instance,

par gives the estimate of the parameters

hessian gives the inverse of the estimate of the variance-covariance matrix

#### Note

the excitation function has to contain exactly two parameters; a feature that does not seem desiable and might change later.

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

#### References

Feng Chen and Kani Chen. (2014). Modeling Event Clustering Using the m-Memory Cox-Type Self-Exciting Intensity Model. International Journal of Statistics and Probability. 3(3): 126-137. doi:10.5539/ijsp.v3n3p126 URL: http://dx.doi.org/10.5539/ijsp.v3n3p126

Feng Chen and Kani Chen. (2014). Case-cohort analysis of clusters of recurrent events. 20(1): 1-15. doi: 10.1007/s10985-013-9275-3

6 coxseiexp

## See Also

See optim for the components of the returned value

## **Examples**

```
data("dat")
## this takes over 15 minutes
##est0 <- coxseiest(dat,par.init=c(0.2,0.4,0.6,0.6,5))
## this one takes about 4 minutes
##est1 <- coxseiest2(dat,par.init=c(0.2,0.4,0.6,0.6,5))
## this one takes about 10 seconds
est2 <- coxseiest3(dat,par.init=c(0.2,0.4,0.6,0.6,5))</pre>
```

coxseiexp

CoxSEI model with exponential function

## Description

fit CoxSEI model using an exponential excitation function

## Usage

```
coxseiexp(Y, delta, id, Z, par.init, m = 2, mit = 1000, tr = TRUE,
    method = "L-BFGS-B",lower=c(rep(-Inf,ncol(Z)),-Inf,0),
    upper=rep(Inf,ncol(Z) + 2),...)
```

## **Arguments**

| Υ        | the observed times (including censoring times)                                |
|----------|-------------------------------------------------------------------------------|
| delta    | indicator of event: 1=event, 0=censoring                                      |
| id       | the id of the individual/group the event/censoring corresponds to             |
| Z        | covariate matrix                                                              |
| par.init | initial parameter value to start the iteration                                |
| m        | the lag parameter as in M-dependence                                          |
| mit      | maximum number of iteration allowed in maximizing the loag partial likelihood |
| tr       | should the optimization process be 'tr'aced                                   |
| method   | method of optimization; defaults to "L-BFGS-B"                                |
| lower    | vector of lower boundary values of the parameter space                        |
| upper    | vector of upper boundary of the parameter space                               |
|          | other arguments to be passed to the optimization routine                      |

coxseifit.ex 7

## Value

an object of class "coxsei", basically a list with components

coefficients a named vector of coefficients

vcov a symmetric matrix which is supposed to be positive definite when m>0, or with

the (np-2)x(np-2) major submatrix positive definite when m=0

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

coxseifit.ex

CoxSEI model with exponential function

## **Description**

Fit a CoxSEI model with exponential function to right censored counting process data

#### Usage

## Arguments

| dat      | The data                                                                                 |
|----------|------------------------------------------------------------------------------------------|
| par.init | initial value of the regression coefficients and coefficients in the excitation function |
| m        | the lag parameter (the m-dependence parameter)                                           |
| mit      | maximum number of iterations allowed in the optimizer                                    |
| tr       | whether to trace the optimization or not                                                 |
| method   | the method of optimization used by the optim routine                                     |
| lower    | vector of lower boundary values of the parameter space                                   |
| upper    | vector of upper boundary of the parameter space                                          |
|          | other arguments to be passed to the optimization routine                                 |

#### Value

A list of some components with kind of self-evident meanings by their name

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

8 coxseiInt

#### See Also

```
coxseiest, coxseiInt
```

## **Examples**

```
data("dat")
csfit <- coxseifit.ex(dat,c(1:3*0.2,0.7,10))
coef(csfit)
plot(csfit$cintfn,do.points=FALSE)</pre>
```

coxseiInt

Calculate the estimator of the cumulative baseline intensity function in the CoxSEI model.

#### **Description**

It takes the parameter of the parametric part (or its theorized value) and calculate the values of the estimator at the jump times; it also gives the values of the estimator for the variance of the intensity estimator.

## Usage

#### **Arguments**

| dat     | a data frame containing the right-censored counting process data                                                               |
|---------|--------------------------------------------------------------------------------------------------------------------------------|
| parest  | the estimate of parameter of the parametric part of the CoxSEI model                                                           |
| hessian | the hessian matrix returned by the optimization procedure in the estimation of the parametric part based on partial likelihood |
| vcovmat | the variance-covariance matrix of the estimator of the parametric components; defaulted to the inverse of the hessian matrix   |
| m       | autoregressive order in the excitation part of the intensity                                                                   |
| gfun    | the excitation function; defaults to the exponential decay function                                                            |
| gfungrd | derivative/gradient function of the excitation function                                                                        |
|         |                                                                                                                                |

coxseisim 9

#### Value

a list giving the jump times and values at these of the estimator of the cumulative baseline intensity function.

x the ordered death/event times

y the value of the estimator of the intensity function at the observed death/event

times

variest the value of the estimator of the variance of the estimator of the intensity func-

tion, at the jump times

The step function can be obtained using stepfun, and plotted by setting type="s" in the plot function.

#### Note

Currently doesn't compute the standard error or variance estimator of the baseline cumulative intensity estimator.

## Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
data("dat")
est <- coxseiest3(dat,c(0.2,0.4,0.6,log(0.06),log(5)))
pe <- est$par; pe[4:5] <- exp(pe[4:5]);
ve <- diag(pe) %*% solve(est$hessian, diag(pe));
cintest <- coxseiInt(dat,pe,vcovmat=ve)
plot(cintest,type="s")</pre>
```

coxseisim

A function to simulate a CoxSEI process conditional on specified covariate values

## **Description**

simulate the sample path of the CoxSEI model with given covariate process values, and excitation function and order of autodependence in the excitation term.

10 CumInt

## **Arguments**

| parreg | the regression parameter                                                     |
|--------|------------------------------------------------------------------------------|
| parg   | parameters of the excitation function                                        |
| lmd0   | the baseline intensity function                                              |
| g      | the excitation function                                                      |
| censor | the censoring time                                                           |
| m      | order of autoregression in the excitation component of the intensity process |
| trace  | whether to trace the data generation process; defaults to TRUE               |
| Z      | a function to calculate the covariate values at a specified event time       |
|        |                                                                              |

## Value

A data frame with provided covariate values and the censoring time, and the generated event times.

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
n.smp <- 100;
z <- matrix(NA,n.smp,3)
for(i in 1:n.smp)
z[i,] <- round(c(runif(1,0.5,1.5),runif(1,1.5,2.5),rbinom(1,1,0.5)),2)
dat <- coxseisim(1:3*0.2,c(0.07,10),censor=rlnorm(1,0,0.1),m=2,
Z=function(x)matrix(z[1,],length(x),3,byrow=TRUE))
dat$id <- 1;
for(i in 2:n.smp){
    dattmp <- coxseisim(1:3*0.2,c(0.07,10),censor=rlnorm(1,0,0.1),m=2,
    Z=function(x)matrix(z[i,],length(x),3,byrow=TRUE))
    dattmp$id <- i;
    dat <- rbind(dat,dattmp)
}</pre>
```

CumInt

Cumulative intensity function

## **Description**

Calculate the cumulative/integrated hazard/intensity function

```
CumInt(x, int, ...)
```

dat 11

## Arguments

| X   | the value at which to calculate the cumulative function value                               |
|-----|---------------------------------------------------------------------------------------------|
| int | the intensity/hazard rate function. Has to be vectorized.                                   |
| ••• | the arguments to be passed in to control the behavior of the underlying integrate function. |

#### **Details**

Relies on the numerical integration routine of R.

#### Value

The value(s) of the cumulative hazard function at the specified x value(s).

#### Warning

The validity of the user supplied intensity function is not checked.

#### Note

Not intended to be called by the user directly.

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
curve(CumInt(x,int=function(y)1*( y>=0 & y<2)+3*(y>=2 & y<3)+1*(y>=3)), 0,5,xlab="t",ylab="H(t) of a piece-wise constant hazard fun h(t)")
```

dat

A simulated data set from a CoxSEI model

## **Description**

```
Simulated from a CoxSEI model with an exponential excitation function and an AR order 2 for the self-excitation effects. Generated using the following code: set.seed(1); n.smp <-50; z <-matrix(NA,n.smp,3); for(i in 1:n.smp) z[i,] <-round(c(runif(1,0.5,1.5),runif(1,1.5,2.5),rbinom(1,1,0.dat <-coxseisim(1:3*0.2,c(0.07,10),censor=rlnorm(1,0,0.1),m=2, Z=function(x)matrix(<math>z[i,],length(x),3.dat <-1; for(i in 2:n.smp){ dattmp <-coxseisim(1:3*0.2,c(0.07,10),censor=rlnorm(1,0,0.1),m=2, Z=function(x)matrix(<math>z[i,],length(x),3.byrow=T)) dattmp >-coxseisim(1:3*0.2,c(0.07,10),censor=rlnorm(1,0,0.1),m=2, Z=function(x)matrix(<math>z[i,],length(x),3.byrow=T)) dattmp >-coxseisim(1:3*0.2,c(0.07,10),censor=rlnorm(1,0,0.1),m=2, Z=function(x)matrix(<math>z[i,],length(x),3.byrow=T))
```

```
data(dat)
```

Dens Dens

## **Format**

A data frame with 307 observations on the following 6 variables.

```
Y a numeric vector
delta a numeric vector
Z.1 a numeric vector
Z.2 a numeric vector
```

Z.3 a numeric vector

id a numeric vector

## **Examples**

```
data(dat)
## maybe str(dat) ; plot(dat) ...
```

Dens

Density function

## **Description**

Evaluate the density function corresponding to the specified intensity/hazard function int.

## Usage

```
Dens(x, int, ...)
```

## Arguments

the value at which to evaluate the density function
 the intensity/hazard function. Has to be vectorized.
 other arguments to be passed to the underlying integrator

#### Value

A numerical value or vector giving the value(s) of the density function

#### Note

Relies on R's integrate function

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
set.seed(1); \ dat <- \ RND(1000,int=function(x)3*x^2) \\ hist(dat,freq=FALSE); \ curve(Dens(x,int=function(x)3*x^2),add=TRUE) \\
```

Dist 13

| Dist Distribution function |  |
|----------------------------|--|
|----------------------------|--|

## Description

Calculate the value at x of the distribution function associated with the intensity/hazard function probived through int.

## Usage

```
Dist(x, int, ...)
```

## Arguments

x the value to evaluate the distribution function at.int vectorized function specifying the intensity/hazard function

... arguments to be passed to the integrate function

#### Value

A number between 0 and 1 inclusive, that gives the value of the distribution function at the specified x value.

## Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
curve(Dist(x,int=function(x)3*x^2),0,5)
curve(pweibull(x,shape=3),0,5,add=TRUE,col=3,lty=3)
```

Quantile function

## Description

calculates the value of the quantile function (inverse of the distribution function) of the survival variable with given intensity/hazard function.

```
Quant(p, int, tolerance = .Machine$double.eps, ...)
```

14 RND

## **Arguments**

| p the (   | probability) values to calculate the quantiles at |
|-----------|---------------------------------------------------|
| int the i | ntensity/hazard function. Has to be vectorized.   |

tolerance tolerated numerical error in inverting the distribution function.
... arguments to be passed to CumInt (eventually to integrate)

#### Value

a numerical value or vector giving the values of the quantile function at x

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
curve(Quant(x,int=function(x)3*x^2),from=1e-3,to=1 - 1e-3)
curve(qweibull(x,shape=3),col=3,lty=3,add=TRUE)
```

RND

Random number generator

## Description

RND takes a vectorized positive R function defined on positive reals and returns a vector of n values of the random variable (survival time) with the specifed function as its hazard/intensity rate function.

## Usage

```
RND(n, int, tol = .Machine$double.eps^0.5, epsabs = 1e-10, epsrel =
1e-10, limit = 1000)
```

## Arguments

| n      | number of observations.                                                                                                                                                                              |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| int    | hazard rate function of the survival variable, or the intensity function of the one-<br>event point process counting the number (0 or 1) of deaths by following a sample<br>of the surviving suject. |
| tol    | tolerance of the numerical error in calculating the inverse of the cumulative distribution function of the survival variable. Defaults to the square root of the machine epsilon.                    |
| epsabs | maximum absolute error to be tolerated by the integrator.                                                                                                                                            |
| epsrel | maximum relative error to be tolerated by the integrator.                                                                                                                                            |
| limit  | maximum number of iterations permitted by the integrator.                                                                                                                                            |
|        |                                                                                                                                                                                                      |

Surv 15

#### Value

a vector of n observations of the survival variable with the supplied intensity/hazard function.

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

#### **Examples**

```
set.seed(1)
dat <- RND(100,int=function(x)x^2)
ks.test(dat,pweibull,shape=3) # p-value = 0.6058
qqplot(dat,rweibull(100,shape=3))</pre>
```

Surv

Survival function

## **Description**

Evaluate the survival function corresponding to the given intensity/hazard function.

#### Usage

```
Surv(x, int, ...)
```

## **Arguments**

x value to calculate the value of the survival function forint the intensity/hazard functionfurther arguments to be passed to CumInt

#### Value

a numerical value or vector giving the value(s) of the survival function at x

#### Author(s)

Feng Chen <feng.chen@unsw.edu.au>

## **Examples**

```
curve(Surv(x, int=function(x)3*x^2), from=0, to=5)
curve(pweibull(x,shape=3,lower=FALSE), add=TRUE, col=2, lty=3)
```

## **Index**

| * ~datagen              | coxseiest, 4, 8                     |
|-------------------------|-------------------------------------|
| coxseisim, 9            | coxseiest2 (coxseiest), 4           |
| RND, 14                 | coxseiest3 (coxseiest), 4           |
| * ~distribution         | coxseiexp, 6                        |
| Dens, 12                | coxseifit.ex, 4, 7                  |
| Dist, 13                | coxseiInt, 8, 8                     |
| Quant, 13               | coxseisim, 9                        |
| RND, 14                 | CumInt, 10                          |
| Surv, 15                |                                     |
| * ~models               | dat, 11                             |
| coxseiest, 4            | Dens, 12                            |
| * ~regression           | Dist, 13                            |
| coxseiest, 4            | and the C                           |
| coxseiexp, 6            | optim, $6$                          |
| <pre>coxseiInt, 8</pre> | plot.coxsei(coxsei), 2              |
| * ~survival             | print.coxsei (coxsei), 2            |
| coxseiest, 4            | print.summary.coxsei(coxsei), 2     |
| coxseiexp, 6            | print. Summar y. coxser (coxser), 2 |
| coxseiInt, 8            | Quant, 13                           |
| coxseisim, 9            | (Lastra, 12)                        |
| CumInt, 10              | RND, 14                             |
| Dens, 12                |                                     |
| Dist, 13                | summary.coxsei(coxsei), 2           |
| Quant, 13               | Surv, 15                            |
| RND, 14                 | survival, 2                         |
| Surv, 15                |                                     |
| * datasets              |                                     |
| dat, 11                 |                                     |
| * package               |                                     |
| coxsei-package, 2       |                                     |
| * regression            |                                     |
| coxsei, 2               |                                     |
| coxseifit.ex, 7         |                                     |
| * survival              |                                     |
| coxsei, 2               |                                     |
| coxsei-package, 2       |                                     |
| coxseifit.ex, 7         |                                     |
| coxsei, 2               |                                     |
| coxsei-package, 2       |                                     |