BENRAN HU

benranh@andrew.cmu.edu | zymk9.github.io | +1 (412) 224-7539 | Pittsburgh, US

EDUCATION

Carnegie Mellon University

Dec 2024

Master of Science in Computer Science | GPA: 4.2/4.3

Pittsburgh, PA

The Hong Kong University of Science and Technology

Jun 2023

Bachelor of Science in Data Science and Technology, and in Computer Science | GPA: 4.14/4.3

Hong Kong SAR

• Major GPA: 4.19/4.3. First Class Honors. Recipient of the Academic Achievement Medal.

PUBLICATIONS

Yichen Liu, **Benran Hu**, Chi-Keung Tang, and Yu-Wing Tai. SANeRF-HQ: Segment Anything for NeRF in High Quality. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR*), June 2024.

Yichen Liu*, **Benran Hu***, Junkai Huang*, Yu-Wing Tai, and Chi-Keung Tang. Instance Neural Radiance Field. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, October 2023.

Benran Hu*, Junkai Huang*, Yichen Liu*, Yu-Wing Tai, and Chi-Keung Tang. NeRF-RPN: A general framework for object detection in NeRFs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2023. |

RESEARCH EXPERIENCE

Transfomer-based Autoencoder for Video Generation

Jun 2024 - Present

Advisors: Ivan Skorokhodov, Aliaksandr Siarohin, and Sergey Tulyakov

Creative Vision Group, Snap Research

• Designed a transformer-based video autoencoder tailored for video latent diffusion models and capable of efficient extrapolation, with competitive reconstruction quality, video generation quality, and latent compression rates.

Uncertainty Quantification in Differentiable Rendering | \mathbf{Q}

Sep 2023 - Present

Advisor: Prof. Ioannis Gkioulekas

CMU Imaging and Rendering Lab

• Proposed a general and efficient method to quantify the aleatoric and epistemic uncertainty in both parameter space and image space for various inverse rendering tasks via uncertainty propagation.

Segment Anything for NeRF [CVPR'24] | 🖟 😯

Apr 2023 - Nov 2023

Advisors: Prof. Yu-Wing Tai and Prof. Chi-Keung Tang

HKUST

- Proposed a novel method combining Segment Anything Model and Neural Radiance Field to perform high-quality interactive 3D object segmentation with state-of-the-art performance.
- Experimented different large vision models, distillation methods, and losses to improve NeRF 3D segmentation.

NeRF 3D Instance Segmentation [ICCV'23] | 🖟 🗘

Dec 2022 - Jul 2023

Advisors: Prof. Chi-Keung Tang and Prof. Yu-Wing Tai

HKUST

- Proposed one the first 3D instance segmentation methods in NeRFs by optimizing a Neural Instance Field.
- Trained an end-to-end 3D segmentation model on voxel representations based on Mask R-CNN.

Temporally Adaptive Shading Scheduling

Sep 2022 - May 2024

Advisor: Prof. Pedro Sander

HKUST

 Maximized rendering quality under frametime or bandwidth constraints by adjusting local temporal shading rates with cost and error-aware reprojection.

3D Object Detection in NeRF [CVPR'23] | 🖺 🗘

May 2022 - Nov 2022

Advisors: Prof. Chi-Keung Tang and Prof. Yu-Wing Tai

HKUST

- Proposed the first significant 3D object detection method in Neural Radiance Fields using only multi-view RGB.
- Created the first large synthetic indoor dataset for NeRF 3D object detection using Blender and public assets.

WORK EXPERIENCE

Research InternSnap Inc.

Jun 2024 - Aug 2024
Santa Monica, CA

- Improved transformer-based video autoencoders and latent diffusion models for better video and image generation.
- Boost the post-training performance of the large-scale video generation model at Snap with checkpoint aggregation.

TECHNICAL PROJECTS

Point-based 3D Gaussian Manipulation with Diffusion Q

3D Gaussian Splatting, Diffusion, Scene Editing

• Developed a 3D Gaussian manipulation method based on point-guided image editing with diffusion models.

Specular Manifold Sampling

Path Tracing, Caustics Rendering

• Integrated single-scattering Specular Manifold Sampling into a custom path tracer to support efficient rendering of caustics from specular-diffuse-specular paths.

Wavefront Path Tracing ()

CUDA, GPU Programming, Path Tracing

• Implemented a CUDA path tracer with wavefront design and wide BVH which achieves a maximum speedup of 1.79x compared to megakernel implementation, and 8.20x compared to multi-thread CPU implementation.

Vulkan Mesh Shading and Culling

Vulkan, Mesh Shading, Culling

• Built a highly efficient meshlet shading and culling pipeline in Vulkan utilizing mesh shaders and task shaders.

DEPARTMENTAL SERVICE

Student Helper of Honors Object-Oriented Programming and Data Structures

• Designed lab exercises and a programming assignment on implementing a Git-like version control system.

HONORS & AWARDS

HKUST Academic Achievement Medal	2023
Tse Cheuk Ng Tai Scholarship for students with research achievement in computer vision and graphics	2022
Lee Hysan Foundation Exchange Scholarship	2021
Chiaphua Industries Limited Scholarship for Chinese Mainland Undergraduate Students	2021 - 2022
The Joseph Lau Luen Hung Charitable Trust Scholarship	2020
University's Scholarship Scheme for Continuing Undergraduate Students	2020 - 2022
Dean's List	2019 - 2022