Lecture 12.1: Vector functions of one variable

Consider a vector \vec{u} that depends on a parameter t:

$$\vec{u}(t) = u_1(t) \cdot \hat{i} + u_2(t) \cdot \hat{j} + u_3(t) \cdot \hat{k}$$

 \implies same as three real functions of one variable:

$$(u_1(t), u_2(t), u_3(t))$$

 \implies best example is a position vector of a moving object, with t begin the time:

$$\vec{r}(t) = x(t) \ \hat{i} + y(t) \ \hat{j} + z(t) \ \hat{k}$$

• We can differential with respect to t, keeping \hat{i} , \hat{j} , \hat{k} constant, obtaining the velocity vector of a moving object:

$$\frac{d\vec{r}}{dt} = \frac{dx}{dt} \; \hat{i} + \frac{dy}{dt} \; \hat{j} + \frac{dz}{dt} \; \hat{k} \equiv \vec{v}(t)$$

The absolute value of the velocity vector is the speed:

$$|\vec{v}(t)| = v(t)$$

• The differentiation again produces the acceleration vector

$$\frac{d^2\vec{r}}{dt^2} = \frac{d^2x}{dt^2} \; \hat{i} + \frac{d^2y}{dt^2} \; \hat{j} + \frac{d^2z}{dt^2} \; \hat{k} \equiv \vec{a}(t)$$

Example 1: Find the velocity, speed and the acceleration and describe the path of an object with the position vector

$$\vec{r} = a\cos(wt) \ \hat{i} + b \ \hat{j} + a\sin(wt) \ \hat{k}$$
, $\{a, w\} = \cos t > 0$

 \Longrightarrow

• the velocity

$$\vec{v} = \frac{d\vec{r}}{dt} = -aw\sin(wt)\ \hat{i} + aw\cos(wt)\hat{k}$$

• the speed

$$|\vec{v}| = \sqrt{(-aw\sin(wt))^2 + (aw\cos(wt))^2} = aw$$

Note that the speed is constant

• the acceleration is

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = -aw^2 \cos(wt) \ \hat{i} - aw^2 \sin(wt) \hat{k} = -w^2 \cdot \left(\vec{r}(t) - b \ \hat{j} \right)$$

- To determine the path, note that $y(t) = b = const \Longrightarrow$ the motion is in the plane \parallel to xz-plane exclusively, located at fixed y = b
- In this plane, the motion is around the circle, of radius a,

$$x^2 + z^2 = a^2$$

• The motion is clockwise, at constant speed:

Example 2: An object is moving to the right along the plane curve $y = x^2$ with constant speed v = 5. Find the velocity and the acceleration of the object when it is at point A = (1,1):

 \Longrightarrow

• Assume that

$$\vec{r} = x(t)\hat{i} + y(t)\hat{j}$$

• the velocity vector is then

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt} \,\hat{i} + \frac{dy}{dt} \,\hat{j} = \frac{dx}{dt} \,\hat{i} + \frac{dy}{dx} \cdot \frac{dx}{dt} \,\hat{j} = \frac{dx}{dt} \,\left(\hat{i} + \frac{dy}{dx} \,\hat{j}\right)$$
$$= \frac{dx}{dt} \,\left(\hat{i} + 2x \,\hat{j}\right)$$

 $\bullet \implies$ the speed is then

$$v = \left| \frac{dx}{dt} \right| \sqrt{1 + 4x^2}$$

• since the speed is constant, and the object moves to the right $\Longrightarrow \frac{dx}{dt} > 0$ and

$$\left| \frac{dx}{dt} \right| \sqrt{(1+4x^2)} = 5 \qquad \Longrightarrow \qquad \frac{dx}{dt} = \frac{5}{\sqrt{1+4x^2}}$$

• ==

$$\vec{v} = \frac{5}{\sqrt{1+4x^2}} \,\hat{i} + \frac{10x}{\sqrt{1+4x^2}} \,\hat{j}$$

and

$$\vec{v}\Big|_{A} = \frac{5}{\sqrt{1+4\cdot 1^2}} \,\hat{i} + \frac{10\cdot 1}{\sqrt{1+4\cdot 1^2}} \,\hat{j} = \sqrt{5} \,\hat{i} + 2\sqrt{5} \,\hat{j}$$

• the acceleration is

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left(\frac{5}{\sqrt{1+4x^2}} \,\hat{i} + \frac{10x}{\sqrt{1+4x^2}} \,\hat{j} \right)$$

$$= 5(1+4x^2)^{-3/2} \cdot \left(-\frac{1}{2} \right) \cdot 8x \cdot \frac{dx}{dt} \cdot \hat{i} + \left(10x(1+4x^2)^{-3/2} \cdot \left(-\frac{1}{2} \right) \cdot 8x + 10(1+4x^2)^{-1/2} \right) \cdot \frac{dx}{dt} \cdot \hat{j}$$

$$= \frac{10}{(1+4x^2)^{3/2}} \cdot \frac{dx}{dt} \cdot (-2x\hat{i} + \hat{j}) = \frac{50}{(1+4x^2)^2} \cdot (-2x\hat{i} + \hat{j})$$

where in the last equality we substituted the explicit expression for $\frac{dx}{dt}$.

• at point A, the acceleration is then

$$\vec{a}\Big|_{A} = \frac{50}{(1+4x^2)^2} \cdot (-2x\hat{i}+\hat{j})\Big|_{x=1} = 2(-2\hat{i}+\hat{j}) = -4\hat{i}+2\hat{j}$$

Differentiating vector functions

 \implies Usual rules apply. Let $\vec{u}(t)$, $\vec{v}(t)$ are vector functions and $\lambda(t)$ is a scalar function; then:

$$\frac{d}{dt}\bigg(\vec{u}(t) + \vec{v}(t)\bigg) = \frac{d\vec{u}}{dt} + \frac{d\vec{v}}{dt}$$

$$\frac{d}{dt}\left(\lambda(t)\cdot\vec{u}(t)\right) = \frac{d\lambda}{dt}\cdot\vec{u} + \lambda\cdot\frac{d\vec{u}}{dt}$$

• for the dot product of two vectors

$$\frac{d}{dt} \left(\vec{u}(t) \cdot \vec{v}(t) \right) = \frac{d\vec{u}}{dt} \cdot \vec{v} + \vec{u} \cdot \frac{d\vec{v}}{dt}$$

• for the cross product of two vectors

$$\frac{d}{dt} \left(\vec{u}(t) \times \vec{v}(t) \right) = \frac{d\vec{u}}{dt} \times \vec{v} + \vec{u} \times \frac{d\vec{v}}{dt}$$

• chain rule (recall that a vector function is just three scalar functions):

$$\frac{d}{dt}\bigg(\vec{u}(\lambda(t))\bigg) = \frac{d\vec{u}}{d\lambda} \cdot \frac{d\lambda}{dt}$$

• for the length of a vector function:

$$\frac{d}{dt}|\vec{u}(t)|^2 = 2|\vec{u}| \cdot \frac{d|\vec{u}|}{dt}$$

$$= \frac{d}{dt} \underbrace{(\vec{u} \cdot \vec{u})}_{=|\vec{u}(t)|^2} = \frac{d\vec{u}}{dt} \cdot \vec{u} + \vec{u} \cdot \frac{d\vec{u}}{dt} = 2\frac{d\vec{u}}{dt} \cdot \vec{u}$$

$$2|\vec{u}| \cdot \frac{d|\vec{u}|}{dt} = 2\frac{d\vec{u}}{dt} \cdot \vec{u}$$

$$\frac{d|\vec{u}|}{dt} = \frac{\frac{d\vec{u}}{dt} \cdot \vec{u}}{|\vec{u}|}$$

• Note that if the acceleration $\frac{d\vec{u}}{dt}$ is \perp to the velocity vector $\vec{u} \Longrightarrow$

$$\frac{d\vec{u}}{dt} \cdot \vec{u} = 0 \qquad \Longrightarrow \qquad \frac{d|\vec{u}|}{dt} = 0$$

i.e., the speed is constant

Example 3: Consider a particle moving with a constant speed around a circle trajectory

 \Longrightarrow

• the position vector of the particle is

$$\vec{r} = a\cos(wt) \ \hat{i} + a\sin(wt) \ \hat{j}$$

• the velocity vector

$$\vec{v} = \frac{d\vec{r}}{dt} = -aw\sin(wt)\ \hat{i} + aw\cos(wt)\ \hat{j}$$

so that indeed

$$v^2 = \left| \frac{d\vec{r}}{dt} \right|^2 = a^2 w^2 = \text{const}$$

• the acceleration vector

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = -aw^2 \cos(wt) \ \hat{i} - aw^2 \sin(wt) \ \hat{j} = -w^2 \cdot \vec{r}(t)$$

indeed

$$\vec{a} \cdot \vec{v} = a^2 w^3 \sin(wt) \cdot \cos(wt) \cdot \underbrace{(\hat{i} \cdot \hat{i})}_{=1} - a^2 w^3 \cos(wt) \cdot \sin(wt) \cdot \underbrace{(\hat{j} \cdot \hat{j})}_{=1} = 0$$

where we also used that $\hat{i} \cdot \hat{j} = 0$, and thus dropped the terms involving that dot product

Example 4: Calculate

$$\frac{d}{dt} \left(\vec{u} \cdot \left(\frac{d\vec{u}}{dt} \times \frac{d^2 \vec{u}}{dt^2} \right) \right)$$

which for a moving object (position \vec{r} , velocity vector \vec{v} and the acceleration vector is \vec{a}) is equivalent

$$\frac{d}{dt} \bigg(\vec{r} \cdot (\vec{v} \times \vec{a}) \bigg)$$

 \Longrightarrow

$$=\underbrace{\frac{d\vec{u}}{dt}\cdot\left(\frac{d\vec{u}}{dt}\times\frac{d^2\vec{u}}{dt^2}\right)}_{(A)} + \underbrace{\vec{u}\cdot\left(\frac{d^2\vec{u}}{dt^2}\times\frac{d^2\vec{u}}{dt^2}\right)}_{(B)} + \vec{u}\cdot\left(\frac{d\vec{u}}{dt}\times\frac{d^3\vec{u}}{dt^3}\right)$$

Note that

$$\widehat{\mathbf{A}} = \vec{v} \cdot (\vec{v} \times \vec{a}) = 0$$

because the vector $\vec{v} \times \vec{a}$ is \perp to \vec{v}

Note that

$$\widehat{\mathbf{B}} = \vec{r} \cdot (\vec{a} \times \vec{a}) = 0$$

because the vector $\vec{a} \times \vec{a} = \vec{0}$

 \Longrightarrow

$$\frac{d}{dt} \left(\vec{u} \cdot \left(\frac{d\vec{u}}{dt} \times \frac{d^2 \vec{u}}{dt^2} \right) \right) = \vec{u} \cdot \left(\frac{d\vec{u}}{dt} \times \frac{d^3 \vec{u}}{dt^3} \right)$$