使用说明书 INSTRUCTION MANUAL

PXAES-数字化全网络声发射系统 V-19.7.23(版本号)

公司:长沙鹏翔电子科技有限公司

地址:湖南省长沙市岳麓区文轩路 27号 A4栋 507

电话: 0731-84668116 网站: <u>www.ndttech.net</u>

邮箱:

目录

第一章 仪器检查及准备工作	3
1.1 装运检查	3
1.2 上电检查	3
1.3 环境要求	3
1.4 配件要求	3
第二章 仪器简介	5
2.1 仪器组成	5
2.2 性能指标	8
第三章 设备连接及软件安装	11
3.1 设备连接	11
3.2 软件安装	
3.4 软件卸载	14
第四章 软件菜单栏、工具栏介绍	15
4.1 软件界面介绍	15
4.2 菜单介绍	20
4.3 工具栏介绍	24
第五章 数据采集设置	26
5.1 AE 硬件设置	
5.2 滤波器和波形设置	27
5.2 特征参数设置	28
5.3 外参数设置	
5.4 波形流与音频设置	30
5.5AE 滤波和报警设置(默认)	31
5.6 设备设置	31

第六章 图形界面的操作	33
6.1 图形操作	33
6.2 各图形介绍	36
6.3 图表数据的操作	40
第七章 数据采集和回放	43
7.1 采集	43
7.2 采集到已经存在的文件	43
7.3 定时采集	43
7.4 回放	44
7.5 反算	44
第八章 数据后处理与分析	45
8.1 数据导出	45
8.2 参数分析	49
8.3 谱分析	49
8.4 小波分析	49
第九章 断铅实验实例	50
9.1 断铅实验的目的	50
9.2 设备连接	50
9.3 传感器安装	50
9.4 采集参数设置	50
9.5 图表界面	52
9.6 断铅实验	52
第十章 其他声发射产品介绍	54
10.1 声发射传感器	54
10.2 前置放大器	54

	10.3 多通道数据采集器	. 54
	10.4 专用声发射仪矿山/边坡监测系统刀具破损检测系统	54
	10.5 声发射配件 声发射传感器夹具声发射专用耦合剂	. 54
第十	-一章 国标等文件	. 55

第一章 仪器检查及准备工作

感谢您选择本公司自主设计生产的声发射系统!本章主要讲述当您收到仪器应进行的一些检查,以及安全使用仪器之前需要了解的一些内容。

1.1 装运检查

- 在开箱后您应先检查仪器及配件是否因为运输出现外包装、外表破损,设备轻摇晃时是否有异响。如有以上情况,请及时与我联系,不要盲目连接电源,否则可能出现设备的二次损坏和触电危险。
- 请根据随货送达的装箱单进行确认,如有配件缺失或货单不符请尽快与我联系, 必要时请配合我司进行处理,以保障您的权益。

1.2 上电检查

- 根据本说明文件第三章及实际货物,进行设备的连接和上电。
- 根据本说明文件第八章及实际货物,进行设备的测试。

1.3 环境要求

- 除另行说明外,请不要在多尘、日光直射、有腐蚀气体的环境下使用、存储。
- ◆ 仪器正常使用温度为 0~55℃,正常保存温度为-20~60℃,请尽量在此条件下使用和保存,以保证测量的精度和使用寿命。
- 本仪器为高精度、高灵敏度产品,使用时请尽量保证低噪音的环境,如无法避免,请让主机尽量远离噪音信号源。

1.4 配件要求

为保证数据的准确性请使用本公司的配套传感器、放大器和信号线等配件。

第二章 仪器简介

本章主要介绍仪器的硬件和性能指标的解读。通过阅读本章可以快速了解本仪器的组成和性能指标的含义。

2.1 仪器组成

PXWAE-1F 声发射系统是单通道的声发射信号采集和处理设备。一套完整的设备应包含以下内容,标"※"的为必要组件。

- 声发射传感器※
- 低噪音信号线※
- 前置放大器
- 同轴电缆
- 数据采集处理卡(器)※
- 配套软件※
- 传输网线※(专业网线,请勿用普通网线代替)
- 电脑※
- 传感器夹具
- 耦合剂※
- 标定铅笔
- 二次开发包
- 宽带传感器

2.1.1 声发射传感器

声发射传感器是将应力波(超声波) 信号转变为电信号的敏感元件。通常和待 测物接触式耦合,通过低噪音信号线 (屏蔽线)和放大器或采集器连接。

图 1、声发射传感器

传感器的参数主要有:

- 谐振频率
- 灵敏度
- 尺寸
- 接口
- 静态电阻
- 绝缘阻抗

图 2、AE144S 频响曲线

根据使用要求还有一些特殊传感器可供选择。

- 宽带传感器
- 内置前放传感器
- 差分输出传感器
- 防水绝缘传感器
- 校准用传感器
- 高灵敏度 R-CAST 传感器系统

2.1.2 低噪音信号线

用于连接 M5 接口的传感器和 BNC 接口的放大器。用于连接 M5 接口的传感器和 BNC 接口的采集器。

2.1.3 双芯线

用于连接差分输出传感器和差分输入放大器。

2.1.4 同轴电缆

用于连接 BNC 接口的传感器和 BNC 接口的放大器。 用于连接 BNC 接口的放大器和 BNC 接口的采集卡(器)。

2.1.5 前置放大器

用于对传感器输出的信号进行放大。

2.1.6 传输网线

用于连接采集器和电脑主机。(专业网线,请勿用普通网线代替,否则可能导致电脑 网卡烧毁)

2.1.7 传感器夹具

具有磁性,辅助传感器固定在铁磁材料表面。

2.1.8 耦合剂

涂抹在传感器和材料接触的面,用于排除空气,减小信号衰减。

2.1.9 标定铅笔

实验前,用于快速标定传感器的耦合情况。

2.1.10 二次开发包

用于客户自己开发软件,整合系统。

2.1.11 数据采集处理卡(器)

前面板

后面板

撞击指示灯:设备启动之后,黄色灯闪烁说明设备启动成功;开始采集数据是红色 灯闪烁说明有信号过门槛;

开关按钮:设备关闭状态下,持续按 3 秒左右启动设备;设备启动状态下,按 1 下 关闭设备;

2.1.12 配套软件

见后续章节具体介绍,用于控制采集器,显示、存储、分析数据。

2.2 性能指标

以下内容针对 PXWAE-1F 声发射系统,参数指标均经过验证。

2.2.1 通道数

本系统单模块为单通道。

如需更多通道声发射采集系统请选着其他系列。咨询电话 18874821153

2.2.2 数据接口

单模块为标准百兆网线接口,最大传输数率为 100Mb/s。

通过数据交换机连接的模块,数据采集器端的速率为百兆网,采集器与电脑连接端 最高为千兆网。

2.2.3 采样精度

24 位高精度采样。

2.2.4 采样率

最高 2.5M 采样率。

可设置采样率为 78.125K、312.5k、625k、1.25M、2.5M。

2.2.5 信号频率带宽

 $1Hz\sim400kHz$

2.2.6 本地存储

本地存储可存储声发射波形源文件或者声发射参数。可通过专用软件打开和读取数据。

2.2.7 滤波器

分为模拟滤波器和数字滤波器。

模拟滤波器可选档位为: 1Hz~400kHz、20kHz~100kHz、100kHz~400kHz、20kHz~400kHz、20kHz~400kHz;

数字滤波器低通可选频点有: 1Hz、20Hz、10kHz、20kHz、30kHz、60kHz、100kHz、200kHz、300kHz、高通可选频点有: 20Hz、10kHz、20kHz、30kHz、60kHz、100kHz、200kHz、300kHz、400kHz、通过选择低通频点、高通频点确定数字滤波器的滤波频段。

2.2.8 参数计算(参考 PAC 和国标的资料)

包括的参数有:

幅度: 单帧信号最大峰值

计数 (振铃计数): 单帧信号持续时间内的震荡次数

能量: 单帧信号持续时间内震荡的包络面积

到达时间:单帧信号信号初次超过门槛的时刻

持续时间:单帧信号信号初次超过门槛和信号最后超过门槛的时间差

上升时间:峰值对应时刻和信号初次超过门槛时刻的时间差

下降时间:峰值对应时刻和信号末次超过门槛时刻的时间差

峰值计数: 上升时间内的振铃计数

峰值频率:峰值所处的振铃计数位

初始频率:峰值计数除以上升时间

平均频率: 振铃计数除以持续时间

反算频率:下降时间的振铃计数除以下降时间

RMS: 采样时间内信号的方均根(RMS) 值ASL:

采样时间内信号电平的均值

阻尼:下降时间除以上升时间

信号主频:幅值最高的振铃对应的频率

2.2.9 波形分割

根据 PDT、HDT、HLT、最大持续时间对波形进行分割。(数值选取参照章节 5.4)

- ▶ PDT: 峰值定义时间常数,用于寻找峰值;
- ▶ HDT: 撞击定义时间常数,用于判断波形的结束点;
- ➤ HLT: 撞击锁闭时间常数:
- ▶ 最大持续时间:在最大持续时间内没有找到波形的结束点,强制截断波形;

2.2.10 波形流

将原始信号采样后,不滤波,不分割地进行保存和提取。

第三章 设备连接及软件安装

本章主要介绍设备的硬件连接,软件的安装以及首次启动时的注意事项。

3.1 设备连接

3.1.1 采集器连接

如果您收到的产品配置和以下示例中的有不同,请联系我们确认连接方式,以下为 通用型型号的连接方式。

硬件连接框图如下:

按如上的连接后,按电源开关启动硬件,此时指示灯会变成黄色,网线接口的指示灯闪烁,说明硬件连接成功。

连接后 15s 左右启动软件。首次启动请先查看 3.3 章节。若软件连接设备不成功,则将连接设备网卡禁用再启用,等待 3s 再次启动软件。

3.1.2 传感器安装

- 直接用耦合剂固定在水平面上
- 用磁吸附夹具固定
- 用螺丝固定
- 用胶水固定
- 波导杆固定
- 特殊传感器固定

3.2 软件安装

3.2.1 推荐系统:

系统: WIN7 及以上

内存: 4G 及以上

硬盘: 速度为 SATA3 标准,容量至少 500GB (根据采集的时间长度确定)

CPU: Intel CPU 3GHz 或 AMD 同等级别

网卡: 百兆网

系统采用标准的、稳定的网络传输协议,同时限制也会比较多,使用时建议关闭其 他不必要的程序、关闭企业防火墙和杀毒软件等对网络传输产生限制的软件和功能。

如果您不确定电脑是否可用,需要采购合适的计算机,请与我联系。

3.2.2 安装步骤

打开安装包,双击 setup.exe,建议在接受许可协议后,选择定制安装(下图右)。 注意事项:若安装在 C 盘,则以管理员身份运行,否则操作系统可能阻止新建文件及保存数据。

3.3 软件首次启动注意事项

本软件运行前请核对以下内容,保 证连接率。

3.3.1 传输数率设置

依次打开"本地连接"—"属性"—"配置"—"高级"—"连接速度和双工模式",选择"自动侦测"。

3.3.2 IP 地址设置

依次打开"本地连接"——"属性"——"配置"——"TCP/IPv4"。

设置 IP 地址: 192.168.1.XXX; (推荐设置)

设置子网掩码: 255.255.255.0

3.3.3 网络允许

首次打开软件会有如下提醒,点击允许访问。

3.3.4 防火墙

如果硬件已经连上,以上都已经设置完毕,依旧不能打开软件,或打开之后读取不到采集设备,请确认系统是否有其他防火墙未关闭。

以上设置变更后不能连接软件,请重启电脑/采集器,再次连接。如果依旧不能连接设备请联系我们进行远程协助。

3.4 软件卸载

打开控制面板——程序——卸载程序——选择"PXAES"程序——右键"卸载"。

第四章 软件菜单栏、工具栏介绍

本章主要介绍软件的界面、菜单栏、工具栏的部分功能,通过本章可以了解本软件的基本功能和操作。

4.1 软件界面介绍

4.1.1 软件主界面介绍

本软件是标准的 windows 风格的软件。

从上到下分别为:

标题栏:软件的名称。

菜单栏:软件的所有操作。

工具栏:软件操作过程的快捷图标按钮。

设备状态栏:显示连接上的硬件设备。

图形显示界面:显示波形、参数、关联图等图表。

图形选择栏:显示可选择的图表。

对话框:软件操作过程弹出的对话框。

4.1.2 软件主界面操作

1. 连接设备,设置采集参数

2. 选择要采集的图形,拖到图形显示界面

3. 设置文件保存路径,保存采集数据

菜单栏点击硬件设置-->声发射通道-->波形流和音频设置

- 4.. 点击采集
- 5. 暂停、停止采集

5. 鼠标移动到设备状态栏和图形显示界面的边沿,鼠标会变成双向箭头,按下鼠标 左键向左拉动,设备状态栏就会隐藏。通过这种方法可以扩大图表的显示区域。

同样操作可将图形选择栏隐藏。

通过反向操作可以复原"设备状态栏"和"图形选择栏"。

全屏的效果如下:

4.2菜单介绍

菜单栏涵盖了本软件的全部操作,主要分为:文件、声发射通道、采集与控制、视图、定位、辅助功能、实用工具,帮助几个子菜单。部分灰色菜单为待开发功能。 下面将进行详细介绍.

4.2.1文件菜单

- 新建项目
- 置灰部分目前还未开发

4.1.3 硬件设置

● AE 硬件设置(第五 章详细介绍)

4.1.4 采集控制(具体见第 7章)

- 采集(快捷键F9)
- 回放 (快捷键F10)
- 暂停(快捷键F11)
- 停止 (快捷键F12)
- ATS
- 电压门时间
- 定时采集(设置采集时间,最大为86400)

4.1.5 视图

- 目前自动图形设置、图形滤波不可用
- 关联:是点击工具栏最右边的 🚝

4.1.6 定位(单通道无法定位)目前还未开发完

- 线定位,在章节 6.2.7 中介绍
- 面定位/3D 定位: 略

4.1.7 辅助功能(目前还未开发完整)

_

4.1.8 -实用工具

只开发了报告、统计、ASCII

导出 ASCII...参数见章节 8.1.1 导出 ASCII...波形见章节 8.1.2

4.1.8帮助

关于软件信息和软件使用手册

4.2 工具栏介绍

从左到右依次为:

- 新建页面: 见章节 6.1.4;
- 选择文件: 见章节 6.1.4:
- 采集:开始采集;
- 暂停: 暂停采集;
- 停止:停止采集;
- 打开设备视图:
- 打开输出视图:
- 帧移: 见章节 6.3.1;

- 放大:选择图形区域放大;
- 手形: -;
- 播放减速;
- 播放加速;
- 加号: 坐标测量;
- 箭头加号: 坐标计算;
- 门槛:门槛值的设置;
- 关联:点击可关联参数表对应图表的帧数。

第五章 数据采集设置

本章主要讲述开始数据采集之前,采集参数的设置,包括设置参数的方法、参数的含义。

选择菜单栏"硬件设置"——"声发射通道"(快捷键F2),弹出对话框。

设置完成之后、点击确定和应用,参数下发到采集卡(器),开始采集数据之后,将按照新的参数进行采集。

设置共分为五个设置页面:

- AE 通道设置
- 滤波器和波形设置
- 特征参数设置
- AE 定时参数
- 波形流设置

5.1 AE 硬件设置

包括

- 通道选择:和后面的通道选择联动:
- 门槛类型:选择固定门槛、浮动门槛;
- 门槛值:最小门槛值的确定方法为:将门槛设置为 20dB,进行采集信号 1min,

找出参数表中最大的幅值,门槛即为此值+1;因现场环境不同,每次更换采集环境后需重新测定最小门槛值;此方法确定的门槛为最低门槛,并非唯一解。

- 浮动门宽:选择固定门槛时,此值无意义:
- 内部增益: 默认;
- 放大器类型、增益、电压: 此版本放大器内置在数据采集处理器中, 固定 40dB 放大, 此处默认:
- 全局波形允许:如果不勾选,只采集和显示特征参数:
- 模拟滤波: 默认

- 数字滤波:默认
- 采样率:输出文件的大小
- 标准设置参考的通道号:多通道版本中,设置好一个通道的配置后,快速设置 其他通道配置

5.2特征参数设置

- 撞击数据组 参数的定义请参考章节 2.2.8; 需要在参数表中显示,请勾选对应的参数;
- 频谱特征:可选择;
- 撞击外参数通道: 可选择:
- 周期计数
- PDT: 定义见章节 2.2.9; 数据可修改;
- HDT: 定义见章节 2.2.9; 数据可修改;

- HLT: 定义见章节 2.2.9; 数据可修改;
- 适用材料选择:根据材料快速选择推荐的以上参数
- 推荐参数

材料	PDT	HDT	HLT
复合材料/非金属	20-50	100-200	300
小金属试样	300	600	1000
高阻尼金属	300	600	1000
低阻尼金属	1000	2000	20000

5.3外参数设置

- 通道选择:和前后的通道选择联动
- 软件比例:默认;
- 外参数硬件: 默认;
- 外参数每AE通道数据线:可根据需求勾;
- 外参数参数设置:可根据需求修改;
- 板卡周期计数:可根据需求修改:

5.4波形流与音频设置

- 通道选择:和前后的通道选择联动
- 采样率: 与 5.2 中设置的采样率联动
- 预触发: (不可用)
- 波形流长度: (不可用)
- 允许波形流勾选:勾选后开始采集波形流,在波形流图表中显示;
- 允许流文件存储: 勾选后开始存储波形流文件;
- 文件路径:波形流文件路径;
- 文件名前缀:波形流文件名前缀
- 波形流触发模式: -;
- 反算 AE 数据: -

5.5AE滤波和报警设置(默认)

5.6设备设置

在左侧设备栏设备型号(通道01)上右键,弹出如下菜单:

5.6.1 获取设备 IP 信息

多设备组网时使用

5.6.2 设置设备 IP 信息

多设备组网时使用

5.6.3 校准设备时间

根据电脑时间校对设备的绝对时间。

5.6.4 校准设备零飘

如果采集过程中发现波形图有零飘,则点击菜单"校准设备零飘"即可。

5.6.5 重启通道

重新启动通道, 多用在设备刷新时

5.6.6 断线重连

重新连接设备,多用于设置IP地址后断线重连

5.6.7 SD卡数据下载

下载硬件的SD卡数据

第六章 图形界面的操作

本章主要介绍图形的显示,包括波形图、参数表、柱形图、功率谱和波形流等的操作。

6.1 图形操作

6.1.1 新增图形

方法一:图形选择栏中"鼠标左键"选择需要的图表,图表标识变成带阴影状态。 在图形显示界面按住鼠标左键拖动任意尺寸后松开,图形即添加进了图形显示界面。多 次重复二动作,可快速绘制相同类型的图形。

方法二:在图形选择栏中"鼠标左键"选择需要的图表,按住鼠标左键直接拖动至图形显示界面。

6.1.2 删除图形

方法:在需要删除的图表上鼠标右键,选择"关闭"。如果需要一次性关闭所有图形,可选择菜单栏的视图"关闭所有图形"。

6.1.3 图形排序

在灰色区域"鼠标右键"跳出选项。选择"设为 1列"效果如图 X。

鼠标移动到图表的边沿,会出现双向箭头,按下鼠标左键拉动,会重新出现灰色区域,在此区域上可再添加图表或者重新排列。

注意:新增加图表或者重新排列图标的时候,都要先按照上面的步骤,拉出灰色的区域,再在灰色的区域内操作。

6.1.4 新建、重命名、删除页

以上的图表都是在一页上显示,而本软件可以同时有几个页,各页之间可以切换, 页类似于 EXCEL 中的 sheet。

方法一:菜单栏一文件一"新建页面"。

方法二:快捷工具栏"□"。

各页之间可以通过鼠标点击"页标签"进行切换。

重命名

方法: 点击数据文件的路径修改

删除页:

方法一:×掉页面

方法二:菜单栏--视图--关闭一页(关闭所有图形)

6.2

6.3

6.4 各图形介绍

6.4.1 波形图

波形流是未经过处理的波形数据,不论信号是否过门槛,都会被完整地采集、存储和显示。波形流采集之前的设置按照章节 5.5 操作。

在图表上方显示"图表的类型"、"采集器编号"、"通道号"

波形图属性参数可设置

6.2.2参数表

参数表用于显示章节 5.3 中选中的特征参数。通过点击参数名称如"幅度",可以 快速排序。

	到达时间(s)	通道	幅度(dB)	能量(mV*ms)	计数	持续时间(ms)	RMS(mV)	A:
18	4.70877537	1	60.07	7	3	0.000	70.0000	
17	4.70700097	1	74.14	122	76	0.001	70.0000	
16	4.70631537	1	73.85	86	17	0.000	70.0000	
15	4.70551537	1	100.00	723	45	0.000	70.0000	
14	4.70477857	1	80.59	65	21	0.000	70.0000	
13	3.86525057	1	68.34	23	11	0.000	70.0000	
12	3.86388577	1	62.30	20	3	0.000	70.0000	
11	3.86221217	1.	69.51	134	93	0.001	70.0000	
10	2.004.070.07		C2 CA	00	40	0 000	70 0000	h

6.2.3功率谱

6.2.4柱形图/散点图

柱形图/散点图用于显示两个参数之间的关系。

在图表中右键出现菜单,选择 柱状图属性设置 ,可选择 X、Y 轴的数据内容。

6.2.5定位图

定位图包括线定位、面定位、3D 定位、球面定位等。当只有一个通道的时候无法进行定位,此处介绍线定位,其他定位图需要时另作提供

- ▶ 从图形选择栏拉"线性定位"图标到工作区
- ▶ 点击快捷工具栏中的显示属性 , 在图形选择栏的区域会出现如下属性:

- ▶ 设置传感器 1 和传感器 2 的坐标和数据源:
- ▶ 撞击等级表示撞击的能量/幅值的大小, E 为最大;
- ▶ 活度计算:统计定位点时用,画一个圈圈,把定位点圈在里头
- ▶ 撞击半径:

6.5 图表数据的操作

6.5.1 参数表和波形联动

瞬时波形图和参数表同时打开,停止采集之后,通过鼠标双击参数表中的某一帧,波形图会切换至对应的波形。

选中快捷工具栏中的帧移" ° ",在波形图中点击可以查看前后帧的波形,参数 表会相应地跳转到对应的帧。

6.3.2参数表导出

在参数表中右键,会出现菜单,选择 导出数据(E)... , 可将参数导出成 x1s

格式的表格。Office 的版本型号请选择 10 版本或 13 版本,版本不兼容会导致导出失败。

6.5.2 波形文件导出

在瞬时波形图中右键,会出现菜单,选择 导出数据(E)... , 可将波形导出成txt 格式的文本。

6.5.3 右键菜单

除以上介绍的图表专属菜单外,还有一些公共菜单。

- 重置图形: 快捷键G;
- 重置: 快捷键R;
- 全屏: 快捷键 F;选择图形点击全屏;
- 属性:选择数据来源,
- 导出数据:快捷键E;导出的文件格式是.TXT;
- 加载布局:快捷键L;加载之前保存的布局;
- 保存布局:快捷键S;保存的文件格式是.pxl;
- 关闭:快捷键C;点击待关闭的图表;
- 截图: 快捷键U;保存的文件格式是. bmp;

第七章 数据采集和回放

本章主要讲述波形的采集、回放和定时采集。对应的是菜单栏的"采集控制"。

7.1 采集

按照第五章设置好采集参数、第六章设置好显示的图形之后。

方法一:选择菜单"采集控制"——"采集",弹出对话框,点击确定,开始采集数据。

方法二:按快捷工具栏"**",开始采集数据。

方法三:按快捷键"F9",开始采集数据。

数据采集结束之后,可用如下方法结束采集操作。

方法一:选择菜单"采集控制"——"停止", 结束采集。方

法二:按快捷工具栏"■",结束采集。

方法三: 按快捷键 "F12", 结束采集。

7.2 采集到已经存在的文件

就是用原来文件的文件名,文件中原来的数据被清空,重新采集新的数据。

7.3 定时采集

菜单栏点击采集控制,选择定时采集。

7.4 回放

按照第六章设置好显示的图形之后。

方法一: 选择菜单"采集控制"——"回放",弹出对话框,选择需要回放的 pxd 文件,点击确定。

方法二:菜单栏,点击打开数据,选择文件,点

击一,开始回放。

方法三:按快捷键"F10",开始回放数据。

7.5 反算

功能测试中,采集完波形流之后,在软件设置 PDT、HDT、HLT、最大持续时间等参数,由软件进行波形切割和参数运算,可以反复修改计算。

本功能测试中。

第八章 数据后处理与分析

本章主要讲述数据采集之后的处理与分析,除本软件中的处理分析外,还有通过与第三方软件合作的处理分析。

8.1 数据导出

8.1.1 参数表导出

参数导出有两种方式,一是直接从参数表导出,二是从波形文件导出。

- 从参数表导出:章节 6.3.2。注意:为了系统的流畅和实时性,参数表图表内保存的数据最大为 1000 帧,超过 1000 帧会将之前的数据覆盖,如果长时间大数据采集时,建议采用第二种参数导出方案。
- 从波形文件导出:点击菜单栏"分析工具"——"ASCII输出..."。出现如下对话框

选择需要导出的参数之后点击"确定",弹出对话框,选择需要导出参数的波形文件,点击"确定",弹出参数文件保存的路径和文件名对话框。点击"保存",开始提取参数。参数表为"TXT"格式,打开参数如下。

8.1.2 波形数据导出

波形的导出有两种方式,一是直接从波形图导出,二是从波形文件导出。

- 从参数表导出:通过章节 6.3.1 介绍的方式选择需要导出波形数据的某帧波形,通过章节 6.3.3 的方式导出波形数据。
- 从波形文件导出:点击菜单栏"实用工具"——"ASCII 波形..."。选择需要导出的 波形文件,点击确定。选择文件的保存路径和名称,点击确定。

注:导出的波形时按照 HIT 保存,一个 HIT 为一个文件,建议单独建立文件夹以保存。建议按照时间顺序找到对应的 hit。

波形数据为"TXT"格式,包含采集信息和数据信息。

8.1.3 波形流文本输出

在"实用工具"菜单选择"波形流文本输出",对话框选择 wfs 文件,再选择输出 文本的路径后弹出下图:

在上图选择后点"确定",将波形流的电压点大小输出。

8.1.4 组合数据文件

在"实用工具"菜单选择"组合数据文件",对话框点"添加···"按钮选择待组合数据文件,再点"确定"即可将以上两个 pxd 文件组合成一个 pxd 文件。

8.1.5报告

显示通道设置、参数设置、波形设置的相关情况,如下图所示:

8.1.6统计

指定 PXD 数据文件后,统计相关参数与外参数的最小、最大、平均、标准差的值,如下图所示:

所有AE撞击 所有时间驱动数 所有波形		0				
通道 AE撞i 1 2314	击					
撞击驱动数据:						
特幅能计持線 征度里数续时 RMS ASL 槛升值 计计	通道 1 1 1 1 1 1 1 1	最小 99.80 9635.85 15.00 t1000.00 0.14 65.78 40.00 1.60 1.00		最大 99.86 10196.09 16.00 1000.10 2.17 89.75 40.00 999.20 15.00	平均 99.83 9987.10 15.00 1000.00 2.10 89.33 40.00 626.42 8.00	标准差 99.83 9987.1 15.00 1000.0 2.12 89.35 40.00 685.49 9.10
时间驱动数据:						
特征 通道	最小	最大	平均	标准差		

8.2 参数分析

8.2.1 时间关联分析

横坐标为时间,纵坐标为特征参数。分析特征参数随时间的变化规律。

8.2.2 参数互相关分析

横坐标和纵坐标都是特征参数。分析特征参数之间的关系。

8.2.3 外参数关联分析

横坐标为外参数,纵坐标为特征参数。分析外参数和特征参数之间的关系。比如在 岩石压裂试验中,振铃计数和加载压力之间的关系。

8.3 谱分析

分析各实验阶段产生的信号的频率特征,通过频率的差异区分信号源的种类等。

8.4 小波分析

声发射软件主要提供参数分析和波形频率分析方法,如果需要用小波分析,可按照章节 8.1.2 的方法导出波形,利用专业的信号分析软件 MATLAB 进行分析。MATLAB 有专门的小波分析工具包,也有大量案例可以参考。

参考声发射博客 www.shengfashe.cn 中的

#小波分析#声发射信号从软件导入到matlab进行分析

#小波分析#在声发射源定位中的应用

具体操作 MATLAB 的方法还需要自己下教程进行学习。

第九章 断铅实验实例

9.1 断铅实验的目的

铅笔芯断裂产生的声发射信号是非常典型的突发型声发射信号,具有信号稳定、频谱宽、可重复性强、易于实现的特点,是良好的模拟声发射源,常用于声发射传感器的标定。由于声发射信号本身属于非平稳信号,包含的有用信号经常被干扰,通过对断铅声发射信号的分析,分离干扰信号与有用信号,探究断铅声发射信号的时域、频域等特征。

9.2 设备连接

按照章节 3.1 连接硬件。

9.3 传感器安装

并采用磁性夹具固定声发射传感器。1045S 宽带声发射传感器(工作频率100~1200KHz)和试件之间涂有耦合剂,目的是减少声发射信号在传感器和试件界面处过度散射和衰减。

9.4 采集参数设置

采集系统主要参数设置下:

AE通道	传感器		门槛		内		内部増益dB				拟波	波		数字滤波			采样室		预触发	波形长度		里程增				
		İ	类型		dB		浮动门	宽		dB		上限		下限		上限	T	下限				微妙			V	
所有通道	PXR1.5	·	固定门槛	▼ 5	,		10		0dB	_	40dB	J	1k	-	BM	Ŧ	无	-	无	•	1.25M	₹	0	16k	Je	10.0
通道1	PXR1.5	Ŧ	固定门槛	▼ 5	1	\exists	10	÷	0dB	•	40dB	•	1k	•	ВМ	Ŧ	无	•	无	•	1.25M	•	0	16k	•	10.0
通道2	PXR1.5	-	固定门槛	▼ 5	,	\exists	10	÷	0dB	•	40dB	¥	1k	-	BM	T	无	-	无	•	1.25M	•	0	16k	v	10.0
TO SHOW THE			時征	参数	设置	1.		设	置	波形			页设置│	A	滤波			置]				- 1 性结	明词		
AE硬件	设置 AE通道			参数	设置	PD		设	置	波形	流和 HD		页设置│	AE			R警设 ILT	置				最	大持续	时间		
				参数		1.	Т	 设	置	波形		T	页设置 │	A		Н		置				最	大持续 全 秒			
,				参数		PD	Т	 设		波形	HD	T	页设置│			Н	ILT	置	1			最			1	
,	A E通道 通道					PD	Т	 设设	80		HD	T	页设置 │	1	□虚波	Н	ILT	置				最				

波形流通道	采样室		预触发	38	形流长度	音頻设置				
		臺秒	K采样点	臺秒	K采样点	开启音频	音類下限(Hz)	音頻上限(Hz		
▼ 所有通道	1.25M	0.000000	0	0.000000	0	▽ 是	0	14000		
▼ 通道1	1.25M	0.000000	0	0.000000	0	▽ 是	0	14000		
厂 通道2	1.25M	0.000000	0	0.000000	0	▽ 是	0	14000		
□ 诵道3	1.25M	0.000000	0	0.000000	0	▽是	0	14000		

AE硬件设置 AE特征参数设置 外参数设置 波形/流和音频设置 AE&波和报警设置												
波形流通道	采样室		预触发	38	形流长度	音频设置						
0.0000000000000000000000000000000000000	0.0.0881049	臺秒	K采样点	臺秒	K采样点	开启音频	音頻下限(Hz)	音頻上限(Hz)				
▽ 所有通道	1.25M	0.000000	0	0.000000	0	▽是	0	14000				
▽ 通道1	1.25M	0.000000	0	0.000000	0	▼ 是	0	14000				
厂 通道2	1.25M	0.000000	0	0.000000	0	▽ 是	0	14000				
	1.25M	0.000000	0	0.000000	0	▽是	0	14000				

9.5图表界面

按照章节 6 操作,从图形选择栏拉入"波形图"、"参数表"、"功率谱",排成一列。

9.6断铅实验

使用直径为 0.5mm 的 HB 铅笔,铅芯伸长量为 2.5mm,每次断铅时保证铅芯与试件表面夹角为 30°。用铅笔在距离声发射传感器 30mm 位置倾斜 30 度角缓慢按压铅笔铅使其断裂,采集发出的声发射信号。连续断铅 10 次。波形图、参数表、功率谱如下:

					[参数表] PX	0AQ18373E-01	(1)				
4 14	10.5	別機(hhimniss mm wu n)	上升稅網(un)	(m)(#19\$##	接针计数	報度(由)	KR	ASL	RMS	4家国计数	平均频率
1	1	00:00:12 131 031 9	31	2163	121	85.9	144220.0	80.0	0.2	6	57.0
2	1	00:00:17 745 384 2	3	2499	199	90.4	148335.0	80.0	0.3	2	78.0
3	1	00:00:27 087 335 5	3	2334	209	93.7	148335.0	80.0	0.3	2	91.0
4	1	00:00:34 282 455 4	3	1989	151	93.8	148335.0	80.0	0.3	2	77.0
5	1	00:00:43 744 979 8	3	2449	214	96.2	148335.0	80.0	0.3	2	89.0
6	1	00:00:51.948.303.2	2	2372	114	94.6	148335.0	80.0	0.3	2	49.0
7	1	00:01:00 375 026 7	3	2294	166	95.8	148335.0	80.0	0.3	2	74.0
8	1	00:01:10 853 256 2	3	2923	157	96.6	148335.0	80.0	9.3	2	55.0
9	1	00:01:19 585 784 9	2	2499	160	92.7	148335.0	80.0	0.3	1	65.0
10	1	00:01:59 905 830 3	3	2670	229	96.0	146335.0	80.0	0.3	2	87.0
11	1.	00:01:59 910 629 2	191	192	4	74.9	148335.0	80.0	0.3	4	21.0
12	1	00:02:19 486 495 9	27	2288	294	92.6	148708.0	80.0	0.3	5	86.0
13	1	00:02:26:668 167 1	7	2212	157	90.4	148708.0	80.0	0.3	2	72.0
14	1	00:02:37 144 256 5	31	2197	162	90.5	146708.0	80.0	0.3	4	75.0
15	1	00:02:45 236 495 9	268	2549	151	85.3	148708.0	80.0	0.3	34	60.0
16	1	00:02:53 136 688 2	516	2256	158	84.4	153317.0	80.0	0.3	60	71.0
17	1	00:02:58 654 953 0	30	2234	160	89.1	153317.0	80.0	0.3	5	73.0
18	1	00:03:09 572 280 8	38	2792	180	86.3	153426-0	80.0	0.3	102. 2	66.0
19	1	00:03:19 919 982 9	5	2471	175	91.9	153426.0	80.0	- 01	A CHARLE	72.0
20	1	00:03:26:105:895:9	357	2344	154	84.0	153406.0	80.0			67.0
21	1	00:03:316518249	246	2604	364	88.4	153426.0	80.0	0.4	25	64.0
22	1	00:03:46 590 896 6	127	1867	86	83.4	153426.0	80.0	0.4	16	47.0

第十章 其他声发射产品介绍

10.1 声发射传感器

公司拥有日本富士(FUJI)和鹏翔科技两大类声发射传感器。

产品包括:各频率段谐振式传感器、差分输出传感器、宽带传感器、超小尺寸传感器、内置前放传感器、高温传感器、防水绝缘传感器、自带磁吸附传感器和 120dB 超高灵敏度传感器系统等。

10.2 前置放大器

公司有固定增益放大器、增益可选放大器、单独电源供电放大器和放大器模块。各类放大器可以适配各公司的声发射系统、NI/凌华的通用数据采集系统和客户自研发数据采集控制系统。

10.3 多通道数据采集器

4 通道千兆网数据采集器。8 通道 PCIE 高精度高速数据采集卡。

10.4 专用声发射仪

矿山**/**边坡监测系统 刀具破损检测系统

10.5 声发射配件

声发射传感器夹具声发射专用耦合剂

长度可选连接信号线

供电/信号分离器

更多信息可访问淘宝展示店 shengfashe.taobao.com

第十一章 国标等文件

- 声发射检测 GJB 6187-2008
- 无损检测术语声发射检测 GB/T 12716: 2001
- 无损检测 声发射检测 总则 GB/T 26644-2011
- 金属压力容器声发射检测及结果评价方法 GB/T 18182-2012
- 承压设备无损检测 第 9 部分: 声发射检测 NB/T 47013.9-2012
- 无损检测 声发射检测 换能器的一级校准 GB/T 19800-2005
- 无损检测声发射检测声发射传感器的二级校准 GB/T 19801- 2005/ ISO 12714: 1999
- 机器状态监测与诊断 声发射 GB/T 25889-2010
- 无损检测 小型部件声发射检测方法 GB/T 26646-2011

特别申明:

本说明书的相关技术参数及性能指标仅供参考,长沙鹏翔电子科技有限公司拥有最终解释权。本文档非公开文档,未经许可请勿转载、复印、分发用于商业用途。