Задача А. Произведение матриц

Имя входного файла: mmul.in
Имя выходного файла: mmul.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Произведением матриц A и B размера $p \times q$ и $q \times r$, соответственно, называется матрица C размера $p \times r$, элементы которой вычисляются по формуле:

$$C_{i,j} = \sum_{k=1}^{q} A_{i,k} \cdot B_{k,j}$$

По данным матрицам A и B найдите их произведение.

Формат входных данных

В первой строке входного файла заданы через пробел три целых числа p, q и r ($1 \le p, q, r \le 100$). В следующих p строках записана матрица A; каждая из этих строк содержит q целых чисел, разделённых пробелами. Наконец, в последних q строках записана матрица B; каждая из этих строк содержит r целых чисел, разделённых пробелами. Элементы матриц не превосходят 100 по абсолютной величине.

Формат выходных данных

В выходной файл выведите матрицу C: p строк, в каждой из которых r чисел через пробел.

mmul.in	mmul.out
2 2 2	1 0
1 0	0 1
0 1	
1 0	
0 1	
1 3 1	-14
1 2 3	
-1	
-2	
-3	
3 2 4	1 1 2 1
0 1	2 1 0 0
1 0	1 1 2 1
0 1	
2 1 0 0	
1 1 2 1	

Задача В. Степень матрицы

Имя входного файла: mpow.in
Имя выходного файла: mpow.out
Ограничение по времени: 5 секунд
Ограничение по памяти: 256 мегабайт

Задана квадратная матрица $n \times n$. Нужно возвести ее в степень m

Формат входных данных

В первой строке задано три целых числа n, m и p $(1 \leqslant n \leqslant 100, 0 \leqslant m \leqslant 10^{18}, 2 \leqslant p \leqslant 10^9)$. Далее задана матрица: n строк по n целых чисел. Все числа в матрице неотрицательны и меньше p.

Формат выходных данных

Выведите матрицу: n строк по n чисел, каждое число — остаток от деления элемента на p

mpow.in	mpow.out
3 5 239	120 92 56
1 0 1	102 84 46
1 2 0	21 204 120
3 2 1	
5 10 27	2 5 7 10 12
1 2 3 4 5	16 19 26 2 9
5 4 3 2 1	5 9 26 3 20
11 12 13 14 15	19 23 18 22 17
15 14 13 12 11	12 22 9 19 6
1 11 1 11 1	

Задача С. Симпатичные узоры

Имя входного файла: tilings.in Имя выходного файла: tilings.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Компания <u>BrokenTiles</u> планирует заняться выкладыванием во дворах у состоятельных клиентов узор из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника $M \times N$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во первых, каждый новый клиент очевидно захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входных данных

На первой строке входного файла находятся два положительных целых числа, разделенные пробелом — M и N ($1 \le M \times N \le 30$).

Формат выходных данных

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $M \times N$. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением считаются различными.

tilings.in	tilings.out
1 1	2
1 2	4
4 1	16
2 3	50

Задача D. Симпатичные узоры наносят ответный удар

Имя входного файла: nice3.in
Имя выходного файла: nice3.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 256 мегабайт

Компания <u>BrokenTiles</u> планирует заняться выкладыванием во дворах у состоятельных клиентов узор из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника $n \times m$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во первых, каждый новый клиент очевидно захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входных данных

На первой строке входного файла находятся два натуральных числа n и m. $1 \leqslant n \leqslant 10^{100}$, $1 \leqslant m \leqslant 5, 1 \leqslant p \leqslant 10000$.

Формат выходных данных

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $n \times m$ по модулю p. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением считаются различными.

nice3.in	nice3.out
2 2 20	14
3 3 7	0

Задача Е. Обобщенные числа фибоначчи

Имя входного файла: fibonacci.in Имя выходного файла: fibonacci.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Мы чуть-чуть обобщили для вас последовательность Фибоначчи, теперь:

$$f_1 = f_2 = 1$$

$$f_i = a \cdot f_{i-1} + b \cdot f_{i-2} + c \cdot 2^i + d \cdot i + e$$
, для $i > 2$

Дано n, найдите значение f_n , взятое по модулю $10^9 + 7$.

Формат входных данных

Неотрицательные целые числа: a, b, c, d, e, n. $(0 \le a, b, c, d, e \le 10^9; 1 \le n \le 10^{18})$

Формат выходных данных

Выведите f_n , взятое по модулю $10^9 + 7$.

fibonacci.in	fibonacci.out
1 1 0 0 0 8	21
1 2 3 4 5 6	775

Задача F. Шестиугольные домино-ромбы

Имя входного файла: rhombic.in Имя выходного файла: rhombic.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Правильный шестиугольник со стороной длины n разделен на $6n^2$ единичных треугольников.

Его требуется полностью покрыть без наложений и пересечений домино-ромбами — фигурами, составленными из двух единичных треугольников с общей стороной.

Требуется посчитать число способов покрыть шестиугольник таким образом. Например, два способа покрыть шестиугольник со стороной 1 приведены на рисунке.

Формат входных данных

Входной файл содержит число $n \ (1 \le n \le 7)$.

Формат выходных данных

Выведите число способов покрыть шестиугольник домино-ромбами.

	rhombic.in	rhombic.out
	1	2
ĺ	2	20