Teoria dos números +

André Gustavo dos Santos

Departamento de Informática Universidade Federal de Viçosa

INF 333 - 2024/1

Fonte

Todos os códigos foram retirados do livro texto da disciplina: Competitive Programming: Increasing the Lower Bound of Programming Contests, de Steven Halim e Felix Halim

Teste primo

Teste

Verificar divisibilidade de n com valores 2 a n-1

Teste rápido

Verificar divisibilidade de n com valores 2 a \sqrt{n}

Teste + rápido

Verificar divisibilidade de n com valores primos de 2 a \sqrt{n}

Teste primo

Implementação do teste + rápido

- Pré-processamento
 - Gerar primos ≤ 10.000.000 pelo Crivo de Eratóstenes
- Verificação
 - Se n < 10.000.000 usar marcação do crivo
 - Senão testar divisibilidade com os primos do crivo

Note que isso só funciona se $n \le 100.000.000.000.000$. Por quê?

Lista de primos

```
#include <bitset> // mais eficiente que vector<bool>!
11 _tam_crivo;  // 11 definido com: typedef long long l1;
bitset<10000010> bs; // 10^7 + extra bits, suficiente para maioria
vector<int> primos; // lista de primos
void crivo(ll limite) { // cria lista de primos em [0..limite]
 _tam_crivo = limite + 1; // + 1 para incluir limite
 bs.reset(); bs.flip(); // todos valendo true
 bs.set(0, false); bs.set(1,false); // exceto indices 0 e 1
 for (ll i = 2; i <= _tam_crivo; i++)
    if (bs.test((size_t)i)) {
      //corta todos os multiplos de i comecando de i*i
      for (ll j = i*i; j \le tam crivo; j += i)
       bs.set((size_t);, false);
     primos.push_back((int)i); // adiciona na lista de primos
} // OBS: chamar esse metodo na funcao main!
```

Lista de primos

```
bool eh_primo(ll N) { // metodo rapido para teste de primalidade
  if (N < tam crivo)
    return bs.test(N); // O(1) para primos pequenos
  for (int i=0; i<primos.size(); i++)
    if (N % primos[i] == 0)
      return false;
  return true; // demora mais quando N e' primo
} // OBS: so funciona se N <= (ultimo primo do vector primos)^2</pre>
int main() {
  . . .
  crivo(10000000);
  cout << eh_primo(5915587277);
  . . .
```

Fatoração

```
vector<int> primeFactors(int N) {
 vector<int> factors:
 int PF_idx = 0, PF = primos[PF_idx]; //primos gerado pelo crivo
 while (N!=1 \&\& (PF*PF \le N) \{ //ate sqrt(N), mas N vai diminuing
   while (N%PF == 0) {
     N /= PF;
                           //retira esse fator do N
     factors.push_back(PF); //e o adiciona na lista
   if (N!=1) factors.push_back(N); //caso especial, se N for primo
 return factors;
```

Usar primos do crivo é opcional, também funciona com PF = 2, 3, 4,...

Fatoração

Para 10.000, primeFactors retorna 2 2 2 2 5 5 5 5 e o código acima escreve 2 5

Funções envolvendo fatores primos

Número de fatores primos

Como no código de fatoração, mas contando em vez de adicionar na lista

Ex.: $60 = 2 \times 2 \times 3 \times 5$, são 4 fatores

Número de divisores

Se $N = a^i \times b^j \times \cdots \times c^k$ é a fatoração, então N tem $(i + 1) \times (j + 1) \times \cdots \times (k + 1)$ divisores.

Ex.: $60 = 2^2 \times 3^1 \times 5^1$, são (2+1)(1+1)(1+1) = 12 divisores. (a título de informação, os 12 fatores são 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)

Número de inteiros < *N* relativamente primos com *N*

Totiente de Euler, a seguir

Totiente de Euler (Phi)

Produto de Euler para cálculo de $\varphi(n)$

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$
 Obs.: $p|n$ significa p é divisor de n

Quantos números < n são relativamente primos com n

MDC e MMC - versões compactas

```
#define 11 long long

11 mdc(11 a, 11 b) {return (b==0 ? a : mdc(b, a%b) ); }
11 mmc(11 a, 11 b) {return (a * (b / mdc(a, b) ) ); }
```

Busca-ciclos

O problema

Busca-ciclos (*cycle-finding*, ou *cycle-detection*) é o problema de detectar ciclos em sequências de valores gerados por funções iteradas

Definição

- Para toda função f : S ← S e um valor inicial x₀ ∈ S, sendo S um conjunto finito, a sequência de valores iterados da função x₀, x₁ = f(x₀), x₂ = f(x₁),..., x_i = f(x_{i-1}),... deve em algum momento repetir um valor (ciclo), isto é, ∃i ≠ j|x_i = x_i.
- Depois, a sequência segue repetindo o ciclo de valores de x_i a x_{j-1} .
- Seja μ o menor índice e seja λ o menor valor tal que $x_{\mu} = x_{\mu+\lambda}$. $(\mu \not\in o início e \lambda \not\in o tamanho do ciclo)$
- O problema busca-ciclos consiste em determinar μ e λ dados f e x_0 .

Busca-ciclos

Algoritmo

- Considere um array de booleanos de tamanho |S|
- "Seguir" a sequência, marcando os valores x_i visitados
- Para cada x_j gerado, se o valor já foi marcado, tem-se o ciclo, com $\mu = i, \lambda = j-i$
- O algoritmo gasta tempo $O(\mu + \lambda)$) e espaço O(|S|)

Para gastar menos espaço

- Usar set
- Assim gasta espaço $O(\mu + \lambda)$) (mas aumenta o tempo para verificar se o elemento já ocorreu)

Busca-ciclos

Algoritmo de Floyd (lebre e tartaruga)

O algoritmo também gasta tempo $O(\mu + \lambda)$ mas espaço O(1)

A ideia central é usar dois índices

- tartaruga: segue a sequência normalmente
- lebre: segue a sequência com o dobro da velocidade
- Após entrarem no ciclo, eventualmente os dois se encontram

Busca-ciclos (lebre e tartaruga)

```
pair<int, int> floyd cycle finding (int (*f)(int), int x0) {
  //Fase principal, encontrar uma repeticao x i = x 2i
  //lebre com velocidade o dobro da tartaruga
  int tart = f(x0), lebr = f(f(x0));
  while (lebr != tart) { tart = f(tart); lebr = f(f(lebr)); }
  //Encontrar mu, inicio do ciclo
  //lebre e tartaruga na mesma velocidade
  int mu = 0; lebr = tart; tart = x0;
  while (lebr != tart) { tart = f(tart); lebr = f(lebr); mu+; }
  //Encontrar o tamanho do ciclo comecando de x mu
  //lebre se move, tartaruga parada
  int lamb = 1; lebr = f(tart);
  while (lebr != tart) { lebr = f(lebr); lamb++; }
 return make pair (mu, lamb);
```