IL213: Innovation Lab & Grand Challenge Studio 3

Detect'o

BY TEAM 21

Motivation

- Underground water pipe leaks can be a problem for many people: government agencies people living in the vicinity of the leading pipe-inspection companies.
- A leaky pipe can cause inconvenience to end users and people interacting with the effects of broken infrastructure is a loss for companies transporting water/gas etc.

Specifications

- Small enough to fit through the pipes, but also large enough to carry the necessary components. Able to move through the pipes in a controlled & stable manner.
- Equipped with sensors and cameras that can provide detailed information about the condition of the pipes.
- Withstand the harsh conditions, including high temperatures, corrosive materials, and mechanical stress.
- Has a reliable power source, such as a battery or tethered source, to allow it to operate for extended periods of time.
- The robot should be easy to maintain, with easily accessible components that can be quickly replaced if necessary.

Problem Statement

"Leaks in underground water pipes go unnoticed until they become larger and identifying the exact location is a very tedious and time consuming process."

Stakeholders

- Pipe Inspection Companies will use the robots to perform inspections of pipes for their clients, to identify issues such as corrosion, or leaks and to inspect hazardous areas.
- Pipeline Operators will perform inspections using robots to identify issues that affect the flow of materials and provide accurate data about the condition of the pipes.
- Government Agencies employ these technologies to inspect pipes for drainage systems, or to inspect infrastructure such as oil and gas facilities.
- Industrial Users employ this robot to inspect pipes in their facilities, ensuring the safety & reliability of their operations, and complying with regulations.

Future Timeline

Present

Sep 2022

Explored multiple domains, devised problem statement, and conducted a diverse research study

Dec 2022

Produced OKRs and KPIs with a first sneak peek of prototype with a experimenting setup

Feb 2023

Refining the (actual) prototype design & additional research with multiple inhouse testing rounds

May 2023

Refinement from in-house testing rounds + Rollout for first iteration of the final robot within Plaksha campus

Design & Experimental Setup

Robot Design Iterations

Sphere

- Acoustic Sensors are placed inside the experimental setup, allowing to detect leaks using vibrations & water flow change.
- Endoscopic Camera has been placed inside to provide more visual comprehension of the leakage or to identify the corroded location.
- Arduino has been powering the internal infrastructure enabling us to capture data from the sensors & the camera.

Project Renderings

Experimental Setup V1

PROJECT MENTORS

Priyanshu Singhal

Rahath Malladi

Atharva Sawant Khushi Goel