МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

Отчет по практике

Генератор случайных чисел Парка-Миллера с перетасовкой и без.

2 курс, группа 2УТС

Выполнил:	
	_ Е. А. Ломов
«»	_ 2024 г.
Руководитель:	
	_ С.В. Теплоухов
« »	2024 г.

Майкоп, 2024 г.

1. Введение

- 1) Задание
- 2) Код прилагающий к заданию
- 3) Скриншот программы

Содержание

1.	Введение	2
2.	Теория	3
	2.1. Техническое задание	3
	2.2. Теоретическая часть	3
3.	Ход работы	3
	3.1. Кол прилагающий к заданию	3

2. Теория

2.1. Техническое задание

Задание: Генератор случайных чисел Парка-Миллера с перетасовкой и без.

2.2. Теоретическая часть

Самая простая последовательность, которую можно предложить для реализации генератора равномерного распределения:

$$I(j+1)=a*I(j) \pmod{m}$$

при соответствующем выборе констант. Константы были предложены Park и Miller:

$$a=7^5=16807$$
, $m=2^{31}-1=2147483647$.

Модуль разлагается в выражение:

$$m=a*q+r$$

Если r<q и 0<z<m-1, то при этом величины $a*(z \mod q)$ и r*[z/q] всегда лежат в интервале 0,...,m-1. Для умножения $(a*z)(\mod m)$ при этом используется алгоритм:

- $t = a(z \mod q) r[z/q]$
- если t<0, то t += m.
- (a*z)(mod m)=t.

В случае констант Парка-Миллера можно использовать q=12773 и r=2836.

3. Ход работы

3.1. Код прилагающий к заданию

#Генератор случайных чисел Парка-Миллера с перетасовкой и без. class ParkMillerRandom:

```
def __init__(self, seed, shuffle=False):
    self.seed = seed
    self.shuffle = shuffle
    self.a = 16807
    self.m = 2147483647
```

```
self.random_numbers = []
    def generate(self, n):
        if self.shuffle:
            self.random_numbers = []
        x = self.seed
        for _ in range(n):
            x = (self.a * x) % self.m
            if self.shuffle:
                self.random_numbers.append(x)
            yield x
    def get_random_numbers(self):
        return self.random_numbers
# Пример использования
seed = 232312213
n = 10
# Генератор без перетасовки
random_gen = ParkMillerRandom(seed)
random_numbers = list(random_gen.generate(n))
print(f'Случайные числа без перетасовки: {random_numbers}')
# Генератор с перетасовкой
random_gen_shuffle = ParkMillerRandom(seed, shuffle=True)
list(random_gen_shuffle.generate(n))
random_numbers_shuffle = random_gen_shuffle.get_random_numbers()
print(f'Случайные числа с перетасовкой: {random_numbers_shuffle}')
```

```
C:\Users\synce\anaconda3\python.exe
Random numbers without shuffling: [207482415, 1790989824, 2035175616, 77048696, 24794531, 109854999, 1644515420, 1256127050, 1963079340, 1683198519]
Random numbers with shuffling: [207482415, 1790989824, 2035175616, 77048696, 24794531, 109854999, 1644515420, 1256127050, 1963079340, 1683198519]
Press any key to continue . . . _
```

Рис.1 Скриншот программы