iris =		sepal_length	sepal_width	petal_length	petal_width	species
	1	5.1	3.5	1.4	0.2	"Iris-setosa"
	2	4.9	3.0	1.4	0.2	"Iris-setosa"
	3	4.7	3.2	1.3	0.2	"Iris-setosa"
	4	4.6	3.1	1.5	0.2	"Iris-setosa"
	5	5.0	3.6	1.4	0.2	"Iris-setosa"
	6	5.4	3.9	1.7	0.4	"Iris-setosa"
	7	4.6	3.4	1.4	0.3	"Iris-setosa"
	8	5.0	3.4	1.5	0.2	"Iris-setosa"
	9	4.4	2.9	1.4	0.2	"Iris-setosa"
	10	4.9	3.1	1.5	0.1	"Iris-setosa"
	m	ore				
	150	5.9	3.0	5.1	1.8	"Iris-virginica"

• iris = @pipe CSV.read(download("https://archive.ics.uci.edu/ml/machine-learningdatabases/iris/iris.data"), DataFrame, header=["sepal_length", "sepal_width", "petal_length", "petal_width", "species"]) |> coerce!(_, :species => Multiclass)

names	scitypes	types
sepal_length sepal_width petal_length petal_width species	Continuous Continuous Continuous Continuous Multiclass{3}	Float64 Float64 Float64 Float64 CategoricalValue{String15, UInt32}

schema(<u>iris</u>)

0

isnothing.(iris) |> Matrix |> sum

splitting the dataset

• train, test = stratifiedobs(row->row[:species], iris); nothing

we don't look at testset

	variable	sepal_length	sepal_width	petal_length	petal_width	specie
1	"mean"	5.85143	3.0181	3.76095	1.19143	nothing
2	"std"	0.859686	0.442411	1.795	0.754488	nothing
3	"min"	4.3	2.0	1.0	0.1	"Iris-setosa"
4	"q25"	5.1	2.7	1.5	0.3	nothing
5	"median"	5.8	3.0	4.4	1.3	nothing
6	"q75"	6.4	3.3	5.1	1.8	nothing
7	"max"	7.9	4.2	6.9	2.5	"Iris-virginica"
8	"nunique"	nothing	nothing	nothing	nothing	3
9	"nmissing"	0	0	0	0	0
10	"first"	5.5	4.2	1.4	0.2	"Iris-setosa"
11	"last"	5.4	3.7	1.5	0.2	"Iris-setosa"
12	"eltype"	Float64	Float64	Float64	Float64	CategoricalValue{St [.]

```
• @pipe describe(train, :all) |> permutedims(_, 1)
```

but, it's okay to look at the population distribution of the entire dataset(including testset)


```
species_dist = countmap(iris.species)
species_dist = convert(Dict{eltype(keys(species_dist)), Float64}, species_dist)
for (species, count) ∈ species_dist
species_dist[species] /= size(iris, 1)
end
bar(species_dist)
```

population is normally distributed: no target imbalance

EDA


```
begin

features = names(train)[1:end-1]

n = length(features)

ps = fill(Plots.plot(), n, n)

for i ∈ 1:n, j ∈ 1:n

x, y = train[!, features[i]], train[!, features[j]]

species = train[!, :species]

ps[i, j] = if j < i

dens = KernelDensity.kde((x, y))

Plots.plot(dens)

elseif j > i

Plots.plot(x, y, seriestype=:scatter, group=species)

else

Plots.plot(x, y, seriestype=:density, group=species)

end
```

Assignment to 'y' in soft scope is ambiguous because a global variable by the same name exists: 'y' will be treated as a new local. Disambiguate by using 'local y' to suppress this warning or 'global y' to assign to the existing global variable.

we find that:

- can't see any significant outliers that would skew the distributions
- Because Patel length and Petal width have saperable distributions for different iris species, these 2 variables would have higher influence over classifying the species.
- We can also observe from the scatterplots of petallength x petalwidth, petalwidth x sepalwidth and petalwidth x sepallength, that the species clusters are clearly distinguishable and can easily be saperated a line.
- Hence, a sinple linear model(s) would be best suited for this type of classification here, without requiring of any feature transformations as the features are already distinguishable.
- The setosa species is the most easily distinguishable because of its small feature size.

plot_heatmap (generic function with 1 method)

- @pipe cor(Matrix(train[!, Not(y_col)])) |> plot_heatmap(_, xlabel=names(train)[1:end-1])
 - if we look further we can see that petal_width is highly +vely correlated to petal_length and sepal_length. Similarly, petal_length and sepal_length are also sognificantly correlated.
 - Also, sepal_width is slightly -vely correlated with other variables.


```
• @pipe cov(Matrix(<u>train</u>[!, Not(<u>y_col</u>)])) |> <u>plot_heatmap(_, xlabel=names(<u>train</u>)[1:end-
1])</u>
```

A strong correlation is present between petal width and petal length.

Modeling

we earlier found out that the dataset is not too complex and simple models(most probably linear models) would be better suited for this problem.

```
LogisticClassifier = MLJLinearModels.LogisticClassifier
```

LogisticClassifier = @load LogisticClassifier pkg=MLJLinearModels add=true

```
F import MLJLinearModels √ ? erbosity=0`.
```

pipe = @pipeline LogisticClassifier

```
model =
Machine trained 0 times; caches data
  model: Pipeline431(logistic_classifier = LogisticClassifier(lambda = 1.0, ...))
  args:
    1: Source @863 ← `ScientificTypesBase.Table{AbstractVector{ScientificTypesBase.Continue: Source @847 ← `AbstractVector{ScientificTypesBase.Multiclass{3}}`
    • model = machine(pipe, X_train, y_train)
```

PerformanceEvaluation object with these fields:
 measure, operation, measurement, per_fold,
 per_observation, fitted_params_per_fold,
 report_per_fold, train_test_rows
Extract:

measure	operation	measurement	1.96*SE	per_fold …
Accuracy() LogLoss(tol = 2.220446049250313e-16)	predict_mode	0.827	0.0577	[0.833, 0.83
	predict	0.693	0.0256	[0.682, 0.71

1 column omitted

```
    MLJ.evaluate!(model, resampling=CV(nfolds=6, rng=StableRNG(32)),
    measures=[MLJ.accuracy, log_loss])
```

Model Tuning

```
ProbabilisticTunedModel(
  model = Pipeline431(
        logistic_classifier = LogisticClassifier(lambda = 1.0, ...)),
  tuning = RandomSearch(
        bounded = Distributions.Uniform,
        positive_unbounded = Distributions.Gamma,
        other = Distributions.Normal,
        rng = Random._GLOBAL_RNG()),
  resampling = Holdout(
        fraction_train = 0.7,
        shuffle = false,
        rng = Random._GLOBAL_RNG()),
  measure = Accuracy(),
  weights = nothing,
  class_weights = nothing.
  operation = nothing,
  range = MLJBase.ParamRange[NumericRange(0.0 ≤ logistic_classifier.lambda ≤ 1.0; origin=0
  selection_heuristic = MLJTuning.NaiveSelection(nothing),
  train_best = true,
  repeats = 1.
  n = nothing,
  acceleration = CPU1{Nothing}(nothing),
  acceleration_resampling = CPU1{Nothing}(nothing),
  check_measure = true,
  cache = true)
```

tuned_model =

Machine trained 0 times; does not cache data
 model: ProbabilisticTunedModel(model = Pipeline431(logistic_classifier = LogisticClassifier)
 args:

1: Source @665 ← `ScientificTypesBase.Table{AbstractVector{ScientificTypesBase.Continu

• tuned_model = machine(tm, X_train, y_train)

PerformanceEvaluation object with these fields: measure, operation, measurement, per_fold, per_observation, fitted_params_per_fold, report_per_fold, train_test_rows Extract:

measure	operation	measurement	1.96*SE	per_fold …
Accuracy() LogLoss(tol = 2.220446049250313e-16)	predict_mode	0.914	0.0422	[0.889, 0.88
	predict	1.21	1.29	[0.38, 0.52,

1 column omitted

```
MLJ.evaluate!(tuned_model, resampling=CV(nfolds=6, rng=StableRNG(32)),
measures=[MLJ.accuracy, log_loss])
```

```
09/06/2022, 15:48
```

```
Pipeline431(
  logistic_classifier = LogisticClassifier(
    lambda = 0.37919381454429746,
    gamma = 0.6722497885235214,
    penalty = :none,
    fit_intercept = true,
    penalize_intercept = false,
    scale_penalty_with_samples = true,
    solver = nothing))
```

fitted_params(tuned_model).best_model

r =

r = report(tuned_model)

0.9230769230769231

r.best_history_entry.measurement[1]

ŷ =

CategoricalArrays.CategoricalVector{InlineStrings.String15, UInt32, InlineStrings.String1

```
• \hat{y} = MLJ.predict(\underline{tuned\_model}, X\_test). |> mode
```

0.8888888888888888

Accuracy()(ŷ, y_test)


```
begin
cnf_mat = ConfusionMatrix()(ŷ, y_test)
Lighthouse.plot_confusion_matrix(cnf_mat.mat, cnf_mat.labels, :Row)
end
```

The classes are un-ordered, using order: InlineStrings.String15["Iris-setosa", "Iris-versicolor", "Iris-virginica"].
To suppress this warning, consider coercing to OrderedFactor.

todo: classification report

```
WGLMakie.activate!()
```

```
    begin

     using Pkg
     Pkg.activate(pwd())
     # Pkg.add(["CSV", "DataFrames"])
     # Pkg.add("StatsBase")
     # Pkg.add("Pipe")
     # Pkg.add("MLDataUtils")
     # Pkg.add("MLJ")
     # Pkg.add("StatsPlots")
     # Pkg.add("KernelDensity")
     # Pkg.add("WGLMakie")
     # # Pkg.rm("WGLMakie")
     # Pkg.add("StableRNGs")
     # Pkg.add(name="Lighthouse", version="0.14")
     # Pkg.add("PlutoUI")
     # Pkg.update()
     using Plots, StatsPlots, PlutoUI
     using KernelDensity
     using WGLMakie
     using DataFrames, CSV
     using Statistics, StatsBase, StableRNGs
     using Pipe
     using MLDataUtils, MLJ, Lighthouse
end
```

Activating project at `~/Documents/my-portfolio-projects/machine learn of ing projects/iris-flowers`