BykovDS 25012025-105505

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 158 МГц, частота ПЧ 34 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 124 MΓ_{II}
- 2) 440 MΓ_{II}
- 3) 226 MΓ_{II}
- 4) 790 MΓ_{II}.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.57208 + 0.22914i, \ s_{31} = -0.22946 - 0.57289i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -59 дБн 2) -61 дБн 3) -63 дБн 4) -65 дБн 5) -67 дБн 6) -69 дБн 7) -71 дБн
- 8) -73 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4.5 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 16 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 2.7 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

- 1) 3.2 дБ 2) 3.8 дБ 3) 4.4 дБ 4) 5 дБ 5) 5.6 дБ 6) 6.2 дБ 7) 6.8 дБ
- 8) 7.4 дБ 9) 8 дБ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $1155 \text{ M}\Gamma\text{ц}$ с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 317 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3870 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1473 МГц до 1559 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -69 дБм 2) -72 дБм 3) -75 дБм 4) -78 дБм 5) -81 дБм 6) -84 дБм 7) -87 дБм
- 8) -90 дБм 9) -93 дБм

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Pi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 2? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГ Π .)

Рисунок 3 – Экран анализатора спектра

- 1) $\{26; -43\}$ 2) $\{16; -65\}$ 3) $\{11; 67\}$ 4) $\{26; -21\}$ 5) $\{16; 1\}$ 6) $\{26; -219\}$
- 7) $\{16; -131\}$ 8) $\{26; -65\}$ 9) $\{6; 1\}$

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 26 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 196 МГц?

Варианты ОТВЕТА:

1) 45.2 нГн 2) 65 нГн 3) 36.5 нГн 4) 26.9 нГн