# Case Study

Ta-Feng grocery dataset model to forecast the sales of any item in the inventory



## HELLO!

I am Gurpreet Singh
I have strong passion for data, ML and predictive modeling
gurpreet.sachdeva@gmail.com

- → Problem Statement
- → Test Harness
- → Persistence
- → Data Analysis
- → Model Validations

#### Problem Statement

## Analyse the point-of-sale data from Ta-Feng Grocery and train a model to predict the monthly sale of any item.

#### Assumptions:

- Since the data is very less (4 months) this case would be a good representation of the approach rather than best performing model
- The data looked like multivariate time series but then the correlation between different data attributes were not known.
- The effect of external environmental factor such as marketing, seasonality and trend was not very clear
- Demographics of the users were not clear except their age and area
- Since the dataset is small, instead of considering months, I have taken week as the cyclic period

#### Training Flow

Data Analysis and Data Preparation

Segregate
Training and
Test Set

Train the ARIMA model

Validate and Fine Tune

#### Technical Environment

- ► The code should work with both Python 2.x and 3.x, I have tested it with 2.7.12
- Required Python packages
  - Numpy
  - Scipy
  - Matplotlib
  - Pandas
  - Scikit
  - Statsmodels

#### Test Harness

- I have splitted the training and testing data set in 2:1 ratio.
- That means 66% of Ta-Feng data was used to train the model and rest 33% to test.
- ► Train-Test split was done such that they respect the temporal order of observations.
- ► For validation I used Walk-Forward Validation.
- ► I used RMSE to evaluate the performance of predictions.
- ► This gives more weight to predictions that are extremely wrong.

### Training a baseline prediction model

- Model used for making predictions is Autoregressive Integrated Moving Average (ARIMA)
- Analysis of the time series data shows that it is non-stationary data
- I tried to make it stationary by subtracting the observation from the same time in the previous cycle
- Ran the augmented Dickey-Fuller test to verify that the series is stationary
- A plot of the differenced dataset is also created and it seems to be a good starting point for modeling
- Used Grid Search to find the optimal values of p,d and q (ARIMA Hyperparameters)

## Data Analysis - Data Snapshot

```
In [177]: pos_data = read_data()
pos_data.head(10)
```

Out[177]:

| Transaction Date | Customer ID | Age | Residence Area | Product Subclass | Product ID    | Amount | Asset | Sale Price |
|------------------|-------------|-----|----------------|------------------|---------------|--------|-------|------------|
|                  |             |     |                |                  |               |        |       |            |
| 2000-11-01       | 539166      | E   | Е              | 130315           | 4714981010038 | 2      | 56    | 48         |
| 2000-11-01       | 663373      | F   | E              | 110217           | 4710265847666 | 1      | 180   | 135        |
| 2000-11-01       | 340625      | Α   | E              | 110411           | 4710085120697 | 1      | 17    | 24         |
| 2000-11-01       | 236645      | D   | Н              | 712901           | 8999002568972 | 2      | 128   | 170        |
| 2000-11-01       | 1704129     | В   | Е              | 110407           | 4710734000011 | 1      | 38    | 46         |
| 2000-11-01       | 841528      | С   | E              | 110102           | 4710311107102 | 1      | 20    | 28         |
| 2000-11-01       | 768566      | K   | Е              | 110401           | 4710088410382 | 1      | 44    | 55         |
| 2000-11-01       | 217361      | F   | Е              | 130401           | 4711587809011 | 1      | 76    | 90         |
| 2000-11-01       | 2007052     | D   | E              | 110504           | 4710323168054 | 1      | 17    | 20         |

#### Data Analysis - Data Info

```
<class 'pandas.core.frame.DataFrame'>
```

DatetimeIndex: 817741 entries, 2000-11-01 to 2001-02-28

Data columns (total 8 columns):

Customer ID 817741 non-null int64

Age 817741 non-null object

Residence Area 817741 non-null object

Product Subclass 817741 non-null int64

Product ID 817741 non-null int64

Amount 817741 non-null int64

Asset 817741 non-null int64

Sale Price 817741 non-null int64

dtypes: int64(6), object(2) memory usage: 56.1+ MB

### Data Analysis - Data Plot of a Product



## Data Analysis - Autocorrelation Plot of the Product



#### Model Validation - Test vs Prediction Plot

Best ARIMA hyperparameters (2, 0, 0) MSE=18056.005



# THANKS!

gurpreet.sachdeva@gmail.com
https://www.linkedin.com/in/gurpreetsachdeva