

Please use the bookmark to navigate

General information on SG models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): lvtnfet_acc, lvtpfet_acc, nfet_acc, pfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Dvtcc: Standard deviation of variation of threshold voltage defined as Vgs value for which drain current is ivt*M*W/L at Vds = 0.05. 5000 Monte-Carlo runs used.
 - ✓ Ilin : Drain current at Vgs = 1V, Vds = 0.05V.
 - ✓ Dibl : Vt_lin Vt_sat.
 - ✓ Didovid : Standard deviation of normalized variation of drain current at Vgs = 1V, Vds = 0.05V. 5000 Monte-Carlo runs used.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Abeta: delta_GmMax/GmMax * sqrt(w/L)

lvtnfet_acc Electrical characteristics per geometry

lvtnfet_acc@ scribe=QFDMLVx01, l=0.03e-6, w=1e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=1.229e-6, ypos=0, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, as=8.5e-14, ad=8.5e-14, ps=2.17e-06, pd=2.17e-06, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	448.4 0.0mV	366.3 0.0mV	281.2 0.0mV
Ilin*L/W*1e6 []	3.84 0.0%	4.28 0.0%	4.69 0.0%
dVtcc*sqrt(L*W*1e12) []	1.22 -0.0%	1.22 0.1%	1.24 0.2%
abeta [%.µm]	0.41 1.9%	0.44 2.1%	0.47 2.2%
dIdovId*sqrt(L*W*1e12) []	0.34 1.1%	0.34 1.2%	0.34 1.1%

lvtnfet_acc@ scribe=QFDMLVx06, l=1e-6, w=25e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=25.324e-6, ypos=0, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, as=2.125e-12, ad=2.125e-12, ps=5.017e-05, pd=5.017e-05, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	504.8 0.0mV	423.2 0.0mV	338.9 0.0mV
Ilin*L/W*1e6 []	11.26 0.0%	13.46 0.0%	15.78 0.0%
dVtcc*sqrt(L*W*1e12) []	4.34 1.3%	5.39 0.9%	6.97 0.6%
abeta [%.μm]	1.53 -1.1%	1.5 -1.0%	1.5 -0.7%
dIdovId*sqrt(L*W*1e12) []	1.85 0.1%	1.75 -0.1%	1.7 -0.3%

dormieub

lvtpfet_acc Electrical characteristics per geometry

lvtpfet_acc@ scribe=QFDMLVx01, l=0.03e-6, w=1e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=1.229e-6, ypos=0, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, as=8.5e-14, ad=8.5e-14, ps=2.17e-06, pd=2.17e-06, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	523.6 0.0mV	440.4 0.0mV	357.6 0.0mV
Ilin*L/W*1e6 []	1.3 0.0%	1.54 0.0%	1.77 0.0%
dVtcc*sqrt(L*W*1e12) []	1.91 -0.3%	1.96 -0.2%	2.05 -0.1%
abeta [%.μm]	0.6 2.3%	0.65 2.3%	0.66 2.3%
dIdovId*sqrt(L*W*1e12) []	0.54 2.0%	0.51 2.1%	0.49 2.1%

lvtpfet_acc@ scribe=QFDMLVx06, l=1e-6, w=25e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=25.324e-6, ypos=0, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, as=2.125e-12, ad=2.125e-12, ps=5.017e-05, pd=5.017e-05, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	576 0.0mV	496.5 0.0mV	418.9 0.0mV
Ilin*L/W*1e6 []	2.58 0.0%	3.34 0.0%	4.05 0.0%
dVtcc*sqrt(L*W*1e12) []	5.22 0.5%	6.98 0.3%	9.1 0.2%
abeta [%.μm]	2.28 -0.8%	2.29 -0.7%	2.31 -0.6%
dIdovId*sqrt(L*W*1e12) []	2.71 -0.6%	2.62 -0.7%	2.52 -0.8%

nfet_acc Electrical characteristics per geometry

nfet_acc @ scribe=QFDMLVx01, l=0.03e-6, w=1e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=1.229e-6, ypos=0, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, as=8.5e-14, ad=8.5e-14, ps=2.17e-06, pd=2.17e-06, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	484.5 0.0mV	421.4 0.0mV	339.2 0.0mV
Ilin*L/W*1e6 []	3.53 0.0%	3.85 0.0%	4.22 0.0%
dVtcc*sqrt(L*W*1e12) []	1.32 -1.1%	1.3 -1.2%	1.29 -1.3%
abeta [%.μm]	0.35 -2.0%	0.35 -1.8%	0.38 -1.2%
dIdovId*sqrt(L*W*1e12) []	0.25 -2.5%	0.23 -2.5%	0.22 -2.4%

nfet_acc@ scribe=QFDMLVx06, l=1e-6, w=25e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=25.324e-6, ypos=0, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, as=2.125e-12, ad=2.125e-12, ps=5.017e-05, pd=5.017e-05, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	544.4 0.0mV	478.6 0.0mV	395.6 0.0mV
Ilin*L/W*1e6 []	10.56 0.0%	12.37 0.0%	14.75 0.0%
dVtcc*sqrt(L*W*1e12) []	2.51 0.3%	3.41 0.2%	5.11 0.0%
abeta [%.μm]	1.22 -1.2%	1.18 -1.4%	1.16 -1.6%
dIdovId*sqrt(L*W*1e12) []	1.5 -0.3%	1.41 -0.5%	1.37 -0.6%

pfet_acc Electrical characteristics per geometry

pfet_acc@ scribe=QFDMLVx01, l=0.03e-6, w=1e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=1.229e-6, ypos=0, pcpastrx_top=5.700e-08, pcpastrx_bot=8.000e-08, as=8.5e-14, ad=8.5e-14, ps=2.17e-06, pd=2.17e-06, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	546.5 0.0mV	482.8 0.0mV	413.7 0.0mV
Ilin*L/W*1e6 []	1.2 0.0%	1.38 0.0%	1.57 0.0%
dVtcc*sqrt(L*W*1e12) []	2.2 -1.0%	2.15 -1.1%	2.12 -1.2%
abeta [%.μm]	0.54 -0.2%	0.54 -0.0%	0.55 0.2%
dIdovId*sqrt(L*W*1e12) []	0.56 -0.6%	0.52 -0.4%	0.49 -0.3%

pfet_acc@ scribe=QFDMLVx06, l=1e-6, w=25e-6, nf=1, sa=85e-9, sb=85e-9, sd=114e-9, plorient=2, xpos=25.324e-6, ypos=0, pcpastrx_top=1.050e-07, pcpastrx_bot=1.050e-07, as=2.125e-12, ad=2.125e-12, ps=5.017e-05, pd=5.017e-05, vds_mm=0.05, vdd=1, temp=25

DK1.2_RF_mmW wrt DK1.1_RF_mmW

vbs	-1	0	1
Vt_lin [mV]	634 0.0mV	564.8 0.0mV	491.4 0.0mV
Ilin*L/W*1e6 []	2.12 0.0%	2.72 0.0%	3.39 0.0%
dVtcc*sqrt(L*W*1e12) []	5.08 0.2%	6.35 0.1%	7.9 0.0%
abeta [%.μm]	1.94 -1.7%	1.95 -1.7%	1.98 -1.7%
dIdovId*sqrt(L*W*1e12) []	2.54 -0.2%	2.43 -0.3%	2.35 -0.4%

lvtnfet_acc Electrical characteristics scaling

lvtnfet_acc, w [um] vs "IndexArea []"

lvtnfet_acc, l [um] vs "IndexArea []"

vds_mm==0.05 and vbs==0

dormieub

lvtnfet_acc, w*l [um2] vs "IndexArea []"

lvtnfet_acc, Vtlin [mV] vs "IndexArea []"

lvtnfet_acc, Idlin*L/W [uA] vs "IndexArea []"

lvtnfet_acc, AVtlin [mV.um] vs "IndexArea []"

lvtnfet_acc, aBetaLlin [%.um] vs "IndexArea []"

lvtnfet_acc, AIdlin [%.um] vs "IndexArea []"

lvtnfet_acc, Vtsat [mV] vs "IndexArea []"

lvtnfet_acc, Idsat*L/W [uA] vs "IndexArea []"

lvtnfet_acc, AVtsat [mV.um] vs "IndexArea []"

vds_mm==1 and (vbs==0 or vbs==1)

dormieub

lvtnfet_acc, aBetaLsat [%.um] vs "IndexArea []"

lvtnfet_acc, AIdsat [%.um] vs "IndexArea []"

lvtpfet_acc Electrical characteristics scaling

lvtpfet_acc, w [um] vs "IndexArea []"

lvtpfet_acc, l [um] vs "IndexArea []"

lvtpfet_acc, w*l [um2] vs "IndexArea []"

lvtpfet_acc, Vtlin [mV] vs "IndexArea []"

lvtpfet_acc, Idlin*L/W [uA] vs "IndexArea []"

lvtpfet_acc, AVtlin [mV.um] vs "IndexArea []"

vds_mm==0.05 and (**vbs==0 or vbs==1**)

ST Confidential

lvtpfet_acc, aBetaLlin [%.um] vs "IndexArea []"

lvtpfet_acc, AIdlin [%.um] vs "IndexArea []"

lvtpfet_acc, Vtsat [mV] vs "IndexArea []"

lvtpfet_acc, Idsat*L/W [uA] vs "IndexArea []"

lvtpfet_acc, AVtsat [mV.um] vs "IndexArea []"

lvtpfet_acc, aBetaLsat [%.um] vs "IndexArea []"

lvtpfet_acc, AIdsat [%.um] vs "IndexArea []"

nfet_acc Electrical characteristics scaling

nfet_acc, w [um] vs "IndexArea []"

nfet_acc, l [um] vs "IndexArea []"

nfet_acc, w*l [um2] vs "IndexArea []"

nfet_acc, Vtlin [mV] vs "IndexArea []"

nfet_acc, Idlin*L/W [uA] vs "IndexArea []"

nfet_acc, AVtlin [mV.um] vs "IndexArea []"

vds_mm==0.05 and (**vbs==0** or **vbs==-1**)

ST Confidential

nfet_acc, aBetaLlin [%.um] vs "IndexArea []"

nfet_acc, AIdlin [%.um] vs "IndexArea []"

nfet_acc, Vtsat [mV] vs "IndexArea []"

nfet_acc, Idsat*L/W [uA] vs "IndexArea []"

nfet_acc, AVtsat [mV.um] vs "IndexArea []"

vds_mm==1 and (vbs==0 or vbs==-1)

ST Confidential

nfet_acc, aBetaLsat [%.um] vs "IndexArea []"

vds_mm==1 and (vbs==0 or vbs==-1)

ST Confidential

nfet_acc, Aldsat [%.um] vs "IndexArea []"

pfet_acc Electrical characteristics scaling

pfet_acc, w [um] vs "IndexArea []"

pfet_acc, l [um] vs "IndexArea []"

vds_mm==0.05 and vbs==0

dormieub

pfet_acc, w*l [um2] vs "IndexArea []"

pfet_acc, Vtlin [mV] vs "IndexArea []"

pfet_acc, Idlin*L/W [uA] vs "IndexArea []"

pfet_acc, AVtlin [mV.um] vs "IndexArea []"

pfet_acc, aBetaLlin [%.um] vs "IndexArea []"

pfet_acc, AIdlin [%.um] vs "IndexArea []"

pfet_acc, Vtsat [mV] vs "IndexArea []"

pfet_acc, Idsat*L/W [uA] vs "IndexArea []"

pfet_acc, AVtsat [mV.um] vs "IndexArea []"

pfet_acc, aBetaLsat [%.um] vs "IndexArea []"

pfet_acc, Aldsat [%.um] vs "IndexArea []"

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model lvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \mathbf{x} mc_sens = 0
 - \times vds lin = 0.05 V
 - \times ivt = 300e-9 A
 - **✗** model_version = 1.3.e
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - x vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - **x** vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - \times vgs_start = 0 V

- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times mc runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - X lvt_dev = 1
 - **x** gflag_noisedev_rvt_cmos028fdsoi = 1
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 1
 - \mathbf{x} rvt dev = 1
- Model lvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.3.e
 - \times vds_mm = 0.05 V
 - \times ams_release = 2018.3

- \times vgs_stop = Vdd V
- X dlshrink ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times mc runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{x} vbs = 1 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - \mathbf{X} lvt dev = 1
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 1
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 1
 - **x** rvt_dev = 1
- Model nfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters

- **x** vds_off = vds_sat V
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- \times ivt = 300e-9 A
- **✗** model_version = 1.2.d
- \times vds_mm = 0.05 V
- \mathbf{x} ams_release = 2018.3
- \mathbf{x} vgs_stop = Vdd V
- **✗** dlshrink_ivt = 0
- **x** sbenchlsf_release = Alpha
- \times vds sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0

- ✓ Extra parameters
 - \mathbf{X} lvt dev = 1
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 1
 - **✗** gflag_noisedev_lvt_cmos028fdsoi = 1
 - \times rvt_dev = 1
- Model pfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **x** model_version = 1.2.d
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - x vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - \times vgs_start = 0 V
 - **✗** plashrink_ivt = 1
 - **✗** ithslwi = 10e-9 A
 - **x** mc_runs = 5000
 - \times vstep_ivt = 0.005 V

- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - X lvt_dev = 1
 - **x** gflag_noisedev_rvt_cmos028fdsoi = 1
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 1
 - \mathbf{x} rvt_dev = 1
- Model lvtnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \times mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 300e-9 A
 - **x** model_version = 1.3.d
 - \times vds_mm = 0.05 V
 - \times ams_release = 2018.3
 - \times vgs_stop = Vdd V
 - X dlshrink ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V

- **x** mc_nsigma = 3
- \times shrink ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- \times mc_runs = 5000
- \times vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - \mathbf{X} lvt dev = 1
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 1
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 1
 - \mathbf{x} rvt dev = 1
- Model lvtpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \mathbf{x} mc_sens = 0
 - \times vds lin = 0.05 V
 - **x** ivt = 70e-9 A

Sep 24, 2018

- **✗** model_version = 1.3.d
- **x** vds mm = 0.05 V
- **x** ams_release = 2018.3
- \times vgs_stop = Vdd V
- **✗** dlshrink_ivt = 0
- **✗** sbenchlsf_release = Alpha
- \times vds_sat = Vdd V
- **x** mc_nsigma = 3
- **x** shrink_ivt = 1
- \times vgs_start = 0 V
- **✗** plashrink_ivt = 1
- \star ithslwi = 10e-9 A
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- \times temp = 25 °C
- \mathbf{x} vbs = 1 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - \mathbf{X} lvt dev = 1
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 1
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 1

- \times rvt_dev = 1
- Model nfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_off = vds_sat V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 300e-9 A
 - **✗** model_version = 1.2.c
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - x vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - **x** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - **x** shrink_ivt = 1
 - \times vgs_start = 0 V
 - **x** plashrink_ivt = 1
 - \star ithslwi = 10e-9 A
 - \times mc_runs = 5000
 - \mathbf{X} vstep_ivt = 0.005 V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \mathbf{x} vbs = 0 V
 - \times vdd = 1 V

- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - x lvt_dev = 1
 - **✗** gflag_noisedev_rvt_cmos028fdsoi = 1
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 1
 - \times rvt_dev = 1
- Model pfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_off = vds_sat V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.2.c
 - \times vds mm = 0.05 V
 - \times ams_release = 2018.3
 - \times vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - **✗** sbenchlsf_release = Alpha
 - \times vds_sat = Vdd V
 - **x** mc_nsigma = 3
 - \times shrink ivt = 1
 - \times vgs_start = 0 V
 - **✗** plashrink_ivt = 1

ST Confidential

- \star ithslwi = 10e-9 A
- **x** mc_runs = 5000
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \mathbf{x} vbs = 0 V
- \times vdd = 1 V
- ✓ Sweep Parameters
 - \star vbs = -1.0, 0.0, 1.0, 2.0
 - \times vds_mm = 0.05, 1.0
- ✓ Extra parameters
 - x lvt_dev = 1
 - **x** gflag_noisedev_rvt_cmos028fdsoi = 1
 - **x** gflag_noisedev_lvt_cmos028fdsoi = 1
 - \mathbf{x} rvt dev = 1

Sep 24, 2018