PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED (UNDER THE PATENT COOPERATION TREATY (PCI)
(51) International Patent Classification 6:		(11) International Publication Number: WO 95/27785
C12N 15/12, 15/63, 5/10, 1/13, 1/15, C07K 14/47	A1	(43) International Publication Date: 19 October 1995 (19.10.95)
(21) International Application Number: PCT/US (22) International Filing Date: 7 April 1995 (6)		DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/225,477 8 April 1994 (08.04.94)	τ	Published With international search report. With amended claims and statement.
(71) Applicant: YALE UNIVERSITY [US/US]; Office of ative Research, Suite 401, 246 Church Street, New CT 06510 (US).		
(72) Inventors: HOCKFIELD, Susan; 18 Old Orchard Ros Haven, CT 06473 (US). JAWORSKI, Diane, M.; Spring Street, New Haven, CT 06511 (US).		
(74) Agent: KRINSKY, Mary, M.; St. Onge Steward Joh Reens, 986 Bedford Street, Stamford, CT 06905 (U		&
(54) Title: BEHAB, A BRAIN HYALURONAN-BINDIN	IG PRO	YTEIN
(57) Abstract		
found to have a high degree of sequence homology to men Unlike other members of the family, however, the expression	nbers of the	ding (BEHAB) protein is isolated and characterized from brain tissue and f the proteoglycan tandem repeat family of hyaluronan binding proteins. The gene is restricted to the central nervous system. BEHAB is expressed tolypeptide can be used as a marker for diagnostic purposes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
ВЈ	Benin	IT	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Кутgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Моласо	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

WO 95/27785 PCT/US95/04353

BEHAB, A BRAIN HYALURONAN-BINDING PROTEIN

DESCRIPTION

Technical Field of the Invention

This invention relates to a gene encoding a hyaluronan-binding protein that is restricted to the central nervous system, the polypeptide encoded by the gene, and methods for using the polypeptide.

Background of the Invention

The central nervous system extracellular matrix consists of a heterogenous mixture of glycoconjugates, many of which are proteoglycans (Jaworski, D.M., et al., J. Cell Biol. 125: 495-509 (1994), the full text of which is hereby incorporated herein in its entirety by reference). Proteoglycans are complex macromolecules that consist of a core protein modified with one or more types of glycosaminoglycan chains.

Many functional properties of proteoglycans have been ascribed to glycosaminoglycans (ibid.). Glycosa20 minoglycans have been reported to exhibit both adhesive and repulsive properties and, as such, have been suggested to mediate neuronal migration and axon guidance. Glycosaminoglycans are believed to regulate the local cellular environment primarily by serving as selective filters, facilitating permeability and retention of low molecular weight solutes, including growth factors, while excluding other macromolecules.

35

Hyaluronan (also called hyaluronic acid or hyaluronate, and herein abbreviated HA) is particularly suited to this function because of its charge density and hydroscopic nature. HA is a negatively charged high-molecular-weight linear polysaccharide built from repeating disaccharide units (Laurent, T.C., and Fraser, J.R.E., FASEB (Fed. Am. Soc. Exp. Biol.) 6: 2397-2404 (1992)). Hyaluronan is ubiquitously distributed in the extracellular matrices of all tissues, including brain, and is believed to have several functions, including the organization of water and extracellular proteins (ibid.). During development, HA plays a role in the regulation of morphogenesis and differentiation of neural tissues.

Because HA is ubiquitously present in extracellular space, cell type specific functions attributed to HA 15 may be mediated through its interaction with HA-binding proteins, which not only bind HA but can also contain potential binding sites for other molecules. Several HAbinding proteins in the brain have been reported, a sub-20 set of which have a high degree of sequence similarity to one another, including versican (Zimmermann, D.R., and Ruoslahti, E., EMBO (Eur. Mol. Biol. Organ.) J. 8: 2975-2981 (1989)), link protein (Doege, K., et al., Proc. Natl. Acad. Sci. USA 83: 3761-3765 (1986)), neurocan 25 (Rauch, U., et al., J. Biol. Chem. 267: 19536-19547 (1992)), glial hyaluronate binding protein (GHAP, Perides, G., et al., J. Biol. Chem. 264: 5981-5987 (1989)), and CD44 (Culty, M., et al., J. Cell Biol. 111: 2765-2774 (1990)). These have been called the proteoglycan tandem repeat (PTR) family of HA-binding protein. 30

The spatial distribution and temporal expression of neural extracellular matrix proteoglycans and HA-binding proteins indicate that they may be involved in many events in the development and function of the mammalian central nervous system (Jaworski, et al., cited above)

and in the modulation of cell-cell and cell-matrix interactions. While some HA-binding proteins represent general components of the extracellular matrix, others have a restricted pattern of expression on subsets of neurons. In addition, while some extracellular matrix molecules are transiently expressed during embryogenesis, others are first expressed late in the postnatal period, coincident with the decline in developmental synaptic plasticity.

It would be desirable to isolate an HA-binding protein specific to a particular tissue or organ, especially where expression of the protein varied with pathological states so that it could be used as a marker for diagnostic purposes.

15 Summary of the Invention

20

It is an object of the invention to provide a gene encoding a mammalian hyaluronan-binding protein and to elucidate the relationship of the structure of the protein encoded by the gene to other polypeptides, especially other hyaluronan-binding proteins.

It is another and more specific object of the invention to provide a gene encoding a mammalian hyaluronan-binding protein that is restricted to central nervous system tissue and the polypeptide encoded by the gene.

25 These and other objects are accomplished by the present invention which provides purified and isolated DNA fragments comprising DNA sequences encoding mammalian brain enriched hyaluronan binding protein (herein denoted BEHAB), the polypeptide structures they encode, and the relationship of the structures to other polypeptides. Also provided are RNA sequences corresponding to the DNA sequences of the genes, biologically functional plasmids

10

15

or vectors comprising the DNA or RNA sequences, and procaryotic or eucaryotic host cells transformed or transfected with the plasmids or vectors in a manner allowing the host cell to express the polypeptides.

DNA sequences encoding rat and cat BEHAB are cloned, characterized, and sequenced, and the putative amino acid sequences of the polypeptides encoded by the open reading frame are determined (SEQ ID NOS 1 and 2) and human BEHAB partially sequenced (SEQ ID NO 7). The sequence exhibits long stretches of identity between species, suggesting that the encoded protein is functionally important. Unlike other hyaluronan-binding proteins, the expression of BEHAB DNA is restricted to the central nervous system, and markedly increases in glioma. Thus, the protein can be employed as a diagnostic marker for the detection of brain tumors and other neuropathological states, and the invention encompasses methods of detection of BEHAB in biological samples.

Brief Description of the Figure

20 Figure 1 sets out sequence alignments of portions of rat BEHAB (SEQ ID NO 1), portions of cat BEHAB (SEQ ID NO 2), rat aggrecan (SEQ ID NO 3), rat neurocan (SEQ ID NO 4), human versican (SEQ ID NO 5), and rat link protein (SEQ ID NO 6). To illustrate homologous sequences, the figure employs standard one-letter nomenclature for the 25 amino acids: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Identical amino acids are shown in black, and Y, Tyr. 30 amino acid similarity is shown using gray counter-shading. The PTR proteins contain three functional domains: an immunoglobulin fold (A), and two domains thought to be involved in hyaluronan binding, PTR1 (B) and PTR2 (C).

Detailed Description of the Invention

This invention is based upon the identification of a new hyaluronan-binding protein, denoted BEHAB for Brain Enriched Hyaluronan Binding protein, that is restricted to the brain.

By "hyaluronan-binding" protein is meant a protein that binds hyaluronan, a viscous mucopolysaccharide having the structure [D-glucuronic acid (1-β-3)N-acetyl-D-glucosamine(1-β-4)]_n (Laurent and Fraser, cited above).

10 As described in the Examples that follow, the hyaluronan-binding proteins of this invention are restricted to central nervous system tissues, found in both white and gray matter, and are not detected in liver, kidney, spleen, lung, muscle or other tissues. Expression is elevated in human brain glioma, but is not detected in non-brain tumors, including breast, lung, and colon. The BEHAB gene encodes a neural specific protein that binds hyaluronan but lacks a transmembrane domain.

regulated; expression is first detected in the late embryonic period and peaks during the first two postnatal weeks. In the embryo, BEHAB is expressed at highest levels in mitotically active cells. The size and sequence of BEHAB are consistent with the possibility that it could serve a function like link protein, stabilizing interactions between hyaluronan and brain proteoglycans.

Sequence analyses of rat and cat BEHAB (SEQ ID NOs 1 and 2 and Figure 1) show a substantial degree of amino acid identity to other members of the PTR family, which includes rat aggrecan, SEQ ID NO 3 (48%); rat neurocan, SEQ ID NO 4 (48%); human versican, SEQ ID NO 5 (46%); and rat link protein, SEQ ID NO 6 (42%). The NH2-terminal do-

main of this family is defined by two structural motifs, (a) an immunoglobulin (Ig) fold (denoted A in Figure 1) and (b) two PTR folds (PTR1 and PTR2, denoted B and C, respectively, in Figure 1). The PTR folds have been suggested to mediate binding to HA. The Ig domain contains two clusters of conserved amino acids around the cysteine residues which generate the disulfide bond of the loop. The consensus sequence YxCxVxH in the COOHterminal cluster is present in all immunoglobulin and 10 major histocompatability complex proteins, and is also present in BEHAB (Figure 1). The most conserved region of the PTR family's HA-binding protein domain is the sequence CDAGWL(A/S)D(Q/G)(T/S)VRYPI found in PTR1 and PTR2. Two copies of this sequence are also found in 15 BEHAB. The degree of identity of BEHAB between rat and cat is high (84% overall), with the greatest conservation The identity in PTR1 is 95% over the entire domain and 100% over 44 amino acids of the domain. shows the next highest homology (86%), followed by the Ig 20 domain (84%). The relative degree of homology between the PTR1, PTR2, and Ig domains observed in rat and cat is also observed between BEHAB and other members of the PTR family. Human human BEHAB is also highly conserved in the PTR1 domain.

25 This invention provides purified and isolated DNA fragments comprising DNA sequences encoding mammalian brain enriched hyaluronan binding protein, and purified and isolated DNA fragments comprising DNA sequences which hybridize under stringent conditions with sequences encoding the protein. Also provided are RNA sequences corresponding to the DNA sequences.

In one embodiment, the invention provides a purified and isolated DNA fragment derived from rat brain tissue comprising the nucleotides numbered 251 to 1363 of SEQ ID NO 1, and DNA sequences that hybridize under

WO 95/27785 PCT/US95/04353

- 7 -

stringent conditions with the sequence. In another embodiment, the invention provides the purified and isolated DNA fragment derived from cat brain tissue comprising the nucleotides numbered 270 to 1403 of SEQ ID NO 2, and DNA sequences that hybridize under stringent conditions with the sequence. In a third embodiment, the invention provides a purified and isolated DNA fragment derived from human brain tissue comprising nucleotides of SEQ ID NO 7, and DNA sequences that hybridize under stringent conditions with the sequence.

Encompassed by this invention are cloned sequences defining BEHAB of this invention, which can then be used to transform or transfect a host cell for protein expression using standard means. Also encompassed by this invention are DNA sequences homologous or closely related 15 to complementary DNA described herein, namely DNA sequences which hybridize to BEHAB cDNA, particularly under stringent conditions that result in pairing only between nucleic acid fragments that have a high frequency of complementary base sequences, and RNA corresponding 20 thereto. In addition to the BEHAB-encoding sequences, DNA encompassed by this invention may contain additional sequences, depending upon vector construction sequences, that facilitate expression of the gene. Also encompassed are sequences encoding synthetic BEHAB proteins exhib-25 iting activity and structure similar to isolated or cloned BEHAB. These are referred to herein as "biological equivalents".

Because of the degeneracy of the genetic code, a

variety of codon change combinations can be selected to
form DNA that encodes hyaluronan-binding protein of this
invention, so that any nucleotide deletion(s), addition(s), or point mutation(s) that result in a DNA encoding the protein are encompassed by this invention. Since
certain codons are more efficient for polypeptide expres-

sion in certain types of organisms, the selection of gene alterations to yield DNA material that codes for the protein of this invention are preferably those that yield the most efficient expression in the type of organism which is to serve as the host of the recombinant vector. Altered codon selection may also depend upon vector construction considerations.

DNA starting material which is employed to form DNA coding for BEHAB proteins of this invention may be natural, recombinant or synthetic. Thus, DNA starting material isolated from tissue or tissue culture, constructed from oligonucleotides using conventional methods, obtained commercially, or prepared by isolating RNA coding for BEHAB, and using this RNA to synthesize singlestranded cDNA which is used as a template to synthesize the corresponding double stranded DNA, can be employed to prepare DNA of this invention.

DNA encoding the proteins of this invention, or RNA corresponding thereto, are then inserted into a vec-20 tor, e.g., but not limited to, a p series plasmid such as pBR, pUC, pUB or pET, and the recombinant vector used to transform a microbial host organism. Example host organisms useful in the invention include, but are not limited to, bacterial (e.g., E. coli or B. subtilis), yeast 25 (e.g., S. cerevisiae) or mammalian (e.g., mouse fibroblast or other tumor cell line). This invention thus also provides novel, biologically functional viral and circular plasmid RNA and DNA vectors incorporating RNA and DNA sequences describing BEHAB generated by standard 30 means. Culture of host organisms stably transformed or transfected with such vectors under conditions facilitative of large scale expression of the exogenous, vectorborne DNA or RNA sequences and isolation of the desired polypeptides from the growth medium, cellular lysates, or cellular membrane fractions yields the desired products.

35

The present invention thus provides for the total and/or partial manufacture of DNA sequences coding for BEHAB, and including such advantageous characteristics as incorporation of codons preferred for expression by selected non-mammalian hosts, provision of sites of cleavage by restriction endonuclease enzymes, and provision of additional initial, terminal or intermediate DNA sequences which facilitate construction of readily expressed vectors. Correspondingly, the present invention provides for manufacture (and development by site specific muta-10 genesis of cDNA and genomic DNA) of DNA sequences coding for microbial expression of BEHAB analogues which differ from the forms specifically described herein in terms of identity or location of one or more amino acid residues 15 (i.e., deletion analogues containing less than all of the residues specified for the protein, and/or substitution analogues wherein one or more residues are added to a terminal or a medial portion of the polypeptide), and which share the biological properties of BEHAB described 20 herein.

DNA (and RNA) sequences of this invention code for all sequences useful in securing expression in procaryotic or eucaryotic host cells of polypeptide products having at least a part of the primary structural conformation, and one or more of the biological properties of BEHAB which are comprehended by: (a) the DNA sequences encoding BEHAB as described herein, or complementary strands; (b) DNA sequences which hybridize (under hybridization conditions) to DNA sequences defined in (a) or fragments thereof; and (c) DNA sequences which, but for the degeneracy of the genetic code, would hybridize to the DNA sequences defined in (a) and (b) above. cifically comprehended are genomic DNA sequences encoding allelic variant forms of BEHABs included therein, and sequences encoding RNA, fragments thereof, and analogues wherein RNA or DNA sequences may incorporate codons facilitating transcription or RNA replication of messenger RNA in non-vertebrate hosts.

The invention also provides the BEHAB proteins encoded by the above described DNA and/or RNA, obtained by isolation or recombinant means. In one embodiment, for example, the invention provides a polypeptide having an amino acid sequence depicted in residues numbered 1 to 371 of SEQ ID NO 1 or a biological equivalent thereof. In another embodiment, the invention provides a polypeptide having the amino acid sequence depicted in residues numbered 1 to 378 of SEQ ID NO 2 or a biological equivalent thereof. In a third embodiment, the invention provides a polypeptide set out in SEQ ID NO 7 or a biological equivalent thereof.

Isolation and purification of proteins provided by the invention are by conventional means including, for example, preparative chromatographic separations such as affinity, ion-exchange, exclusion, partition, liquid and/or gas-liquid chromatography; zone, paper, thin layer, cellulose acetate membrane, agar gel, starch gel, and/or acrylamide gel electrophoresis; immunological separations, including those using monoclonal and/or polyclonal antibody preparations; and combinations of these with each other and with other separation techniques such as centrifugation and dialysis, and the like.

It is an advantage of the invention that the isolation and purification of BEHAB provides a polypeptide marker for diagnostic purposes. Since BEHAB is neural-specific, it can be used as a diagnostic agent for brain or other central nervous system tumors or other neuro-pathological states. Expression of BEHAB is markedly increased in human brain glioma. Thus, this invention provides novel diagnostic methods employing biochemical markers for BEHAB, such as specific and sensitive immuno-

WO 95/27785 PCT/US95/04353

- 11 -

assays for the detection of BEHAB and patterns of its distribution in samples, to provide not only an indication of ongoing pathological processes in central nervous system tissue, but also differential diagnoses of pathological processes involving specific areas of the central nervous system.

In the practice of the invention, the presence or absence of BEHAB, and/or relative concentrations of BEHAB, are assayed in biological samples obtained from animals or human beings. Typical samples include, but are not limited to, cerebrospinal fluid, serum, urine or tissue homogenates such as those obtained from biopsies. Serum and cerebrospinal fluid are particularly preferred.

10

15

For diagnostic purposes, any method may be employed to assay for BEHAB protein. Assay methods include, but are not limited to, Western blots, Northern blots, Northern dot blots, enzyme-linked immunosorbent assays, radioimmunoassays, or mixtures of these.

For example, one embodiment employs an enzyme-20 linked immunosorbent assay (ELISA). ELISAs typically utilize an enzyme such as horseradish peroxidase, urease, or alkaline phosphatase conjugated to an antibody or conjugated with a tag that interacts with a correspondingly tagged antibody. Example tags, where employed, are 25 avidin and biotin. Test sample is incubated in the wells of microtiter plates with conjugated antibody. serum contains BEHAB antigen, the conjugated antibodies adhere to it. Subsequent measurement of enzyme activity estimates how much tagged antibody is present and bound to BEHAB. From that, amounts of BEHAB in the original 30 test sample are calculated. Preferred ELISAs employ substrates known to those skilled in the art to be easily measurable, for example, by viewing color development in comparison with standards or by employing a spectropho- 12 -

tometer. These and other variations on ELISA protocols known by those skilled in the art are encompassed by the invention.

Most preferred substrates are chromophoric or
yield chromophoric products, so that enzyme activity can
be readily measured by the appearance or disappearance of
color. Examples of enzyme substrates include p-nitrophenyl phosphate for alkaline phosphatase, bromocresol purpose and urea for urease, p-nitrophenyl-β-galactopyranoside for β-galactosidase, and the like. Horseradish
peroxidase requires hydrogen peroxide in addition to
another substrate that serves as a hydrogen donor including, for example, 2,2'-azino-bis-(3-ethylbenzthiazoline6-sulfonic acid), 5-aminosalicylic acid, o-diaminobenzidine, 3,3'-dimethoxybenzidine, o-phenylenediamine (free
base or dihydrochloride), 3,3',5,5'-tetramethylbenzidine
(base or dihydrochloride), and the like chromogens.

An alternate embodiment employs a radioimmunoassay Typical RIAs employ antigens radiolabelled with 20 125I, 3H or other isotope that can be easily detected. example, 125I-labelled BEHAB can be employed. Antibody is titrated with labelled antigen, and the activity and sensitivity of the antiserum is determined. A dilution series of samples to which known amounts of antigen have been added are distributed in wells of microtiter plates. 25 Antibody is added, the well material and/or the supernatants analyzed for radioactivity after incubation, and compared to a standard curve prepared using pure antigen. Amounts of unlabelled antigen bound are calculated by difference. These and other variations on RIA protocols 30 known by those skilled in the art are encompassed by this invention.

The following exampes are presented to further illlustrate and explain the present invention and should not be taken as limiting in any regard.

Examples

5

Example 1

Rat and cat cDNA clones encoding BEHAB from the two species are prepared in this example.

To isolate rat cDNA clones encoding HA-binding proteins involved in neural development, an unamplified postnatal day 12 rat brain Agt10 cDNA library is screened 10 with rat aggrecan clone pRCP 4 encoding the HA-binding region (described by Doege, K., et al., J. Biol. Chem. 262: 17757-17767 (1987)). A total of 3.2 \times 10⁵ recombinants are screened resulting in two positives. 15 The library is rescreened with one of these clones, resulting in 15 additional clones. 4 x 104 phage (per 150mm plate) are plated with E. coli C600 bacteria, immobilized onto nitrocellulose filters, and prepared for hybridization using standard techniques. Filters are pre-20 washed for 1 hour in 1 M NaCl, 0.1% sodium dodecyl sulfate (SDS), 20 mM Tris-HCl (pH 8.0) and 1 mM EDTA at 65°C. Filters are then prehybridized for an additional 4 to 6 hours in 50% formamide, 5 x SCC (1 x SCC = 0.15 M sodium chloride, 0.015 M sodium citrate), 1% SDS, 1 x 25 Denhardt's (0.02% Ficoll, 0.02% bovine serum albumin (BSA, Fraction V), 0.02% polyvinylpyrrolidone), 50 mM sodium phosphate (pH 6.7), and 100 µg/ml salmon sperm DNA at 37°C. Hybridization is carried out in the identical solution with the inclusion of 10° cpm pRCP 4 probe/ml for 30 24 hours at 37°C. For all experiments, radiolabelled probes (32P-dCTP, Amersham) are prepared by random priming (Boehringer Mannheim Corp., Indianapolis IN) gel purified

cDNA inserts, followed by the removal of unincorporated radionucleotides (NICK column, Pharmacia). One post hybridization wash is in 2 x SSC, 0.1% SDS and one in 0.2 x SSC for 1 hour each are performed at room temperature.

5 Phage DNA is isolated using DE52 (Whatman) and the cDNA insert excised by EcoRI digestion. The insert size of the clones are determined and partial restriction maps are prepared to eliminate redundant clones. The cDNA is gel purified (Gene-Clean®, Bio 101), eight clones sub
10 cloned into pBluescript® KS+ (Stratagene, LaJolla, CA) and transformed into DH5α (GIBCO BRL, Gaithersburg, MD).

To isolate cat cDNA clones, random nonamers (1.4 mg) are used to synthesize first cDNA from 5 µg poly A+ RNA isolated from P39 cat cortex, cDNA synthesis is per-15 formed according to manufacturer's instructions for the production of nondirectional libraries (Stratagene) and size-fractionated by column chromatography (GIBCO BRL). 50 ng of cDNA is ligated to 1 µg EcoRI cut, phosphatized Lambda Zap® II vector and packaged into phage (Gigapack 20 II Gold®, Stratagene). This yields 0.5 x 106 recombinants when transfected into XL1-Blue® (Stratagene). The unamplified library is screened with rat clone H1. Hybridization is performed in 6 x SSC, 0.1% SDS, 1 x Denhardt's and 100 µg/ml salmon sperm DNA at 65°C. Filters are 25 washed twice in 2 x SSC, 0.1% SDS and twice in 0.2 x SSC at 65°C for 20 minutes. A total of 3.2 x 105 recombinants are screened, resulting in 5 positives. cDNA inserts of plaque-purified positive clones are isolated in pBluescript® SK by in vivo excision.

30 Example 2

DNA clones prepared in Example 1 are sequenced and compared with previously reported sequences in this Example.

DNA sequencing is performed by the dideoxy chain termination method using Sequenase® (U.S. Biochemical, Cleveland, OH). Bluescript SK/KS primers or cDNA specific 20-mers are used. Sequence is verified from overlapping clones or by sequencing both strands of DNA. Sequence compressions are resolved using dITP nucleotides. After labelling, the reactions are incubated at 37°C for 30 minutes in the presence of 1 x reaction buffer, 1 mM dNTPs (pH 7.0) and 0.5 U terminal deoxynucleotidyl transferase to prevent premature termination caused by the use of dITP. Sequence analyses are performed using the University of Wisconsin Genetics Computer Group programs.

For the rat BEHAB sequence, the composite sequence obtained from the overlapping clones identified after 15 subcloning into pBluescript® KS+ as described in the previous Example is used (SEQ ID NO 1; sequence data are recorded in EMBL/GenBank/DDBJ under accession number Z28366). The complete BEHAB coding sequence is 1,113 base pairs. The nucleotide sequence preceding the first 20 AUG contains a consensus sequence for translation initia-In the 3' untranslated region, only that sequence verified from three clones is presented. The deduced amino acid composition of the BEHAB protein is comprised of 371 amino acids and includes a putative signal peptide 25 cleavage site at Ala-22. The resulting mature protein has a predicted molecular mass of 38,447 kD. Analysis of the deduced amino acid sequence indicates the presence of two NX(S/T) consensus sequences for potential N-qlycolsation.

30 Similarly, the composite cat BEHAB sequence is obtained from the overlapping clones obtained in the pBluescript® SK excision as described in the above Example. The results are set out in SEQ ID NO 2 (sequence data are recorded in EMBL/GenBank/DDBJ under accession number Z28367). The complete coding sequence for cat

BEHAB is 1,134 base pairs. The first AUG is preceded by both an in-frame termination codon and the translation initiation consensus sequence. The cat BEHAB sequence encodes 378 amino acids which, like the rat, contains a 22 residue signal peptide. However, cat BEHAB contains 6 additional amino acids at the carboxy terminus, resulting in a predicted molecular mass of 38,955 kD. In the cat, Trp-373 is encoded by TGG, while the corresponding rat sequence of TAG results in the termination. This termination sequence is verified in three rat clones and by sequencing both strands of a cat clone. Cat BEHAB also contains one additional site for potential N-glycosylation not present in the rat.

Database analyses at both the nucleic acid and 15 amino acid levels indicate that BEHAB is a previously unreported member of the PTR family of HA-binding proteins. BEHAB has a substantial degree of amino acid identity to the other members of the PTR family, which includes rat aggregan, SEQ ID NO 3 (48%); rat neurocan, 20 SEQ ID NO 4 (48%); human versican, SEQ ID NO 5 (46%); and rat link protein, SEQ ID NO 6 (42%). See Figure 1. NH2-terminal domain of this family is defined by two structural motifs, (a) an immunoglobulin (Ig) fold and (b) two PTR folds (PTR1 and PTR2). The PTR folds have 25 been suggested to mediate binding to HA. The Ig domain contains two clusters of conserved amino acids around the cysteine residues which generate the disulfide bond of the loop. The consensus sequence YxCxVxH in the COOHterminal cluster is present in all immunoglobulin and 30 major histocompatability complex proteins, and is also present in BEHAB (Figure 1). The most conserved region of the PTR family's HA-binding protein domain is the sequence CDAGWL(A/S)D(Q/G)(T/S)VRYPI found in PTR1 and PTR2. Two copies of this sequence are also found in BEHAB. The degree of identity of BEHAB between rat and 35 cat is high (84% overall), with the greatest conservation

25

30

in PTR1. The identity in PTR1 is 95% over the entire domain and 100% over 44 amino acids of the domain. PTR2 shows the next highest homology (86%), followed by the Ig domain (84%). The relative degree of homology between the PTR1, PTR2, and Ig domains observed in rat and cat is also observed between BEHAB and other members of the PTR family (Table I and Figure 1).

Table I. Percent Identity of rat BEHAB to Other Members of the PTR Family of HA-Binding Proteins

10	Protein	Ig	PTRl	PTR2
	Cat BEHAB	84%	95%	86%
	Aggrecan	40%	60%	51%
	Neurocan	37%	56%	57%
	Versican	36%	59%	48%
15	Rat Link	34%	48%	53%
	CD44		22%	and the second

Sequence homology is similarly observed for human BEHAB (SEQ ID NO 7). To determine the human BEHAB sequence, total RNA is extracted from a sample of human brain and reverse transcriptase polymerase chain reactions (PCR) performed using degenerate oligonucleotide primers corresponding to the ends of the PTR1 domain in rat and cat. PCR products are subcloned into the TA vector and sequenced by the dideoxy chain termination method described above.

Example 3

In this Example, tissue distribution of BEHAB mRNA is determined by Northern blot analysis and the spatial distribution, by in situ hybridization on central nervous system tissue sections.

For Northern analysis, 25 µg total RNA is denatured in 2.2 M formaldehyde, 50% formamide, 1 x MOPS (3--(N-morpholino) propanesul fonic acid) buffer at 65°C for 15 minutes. The RNA is electrophoresed on a 1.0% agarose-5 formaldehyde gel with 1 x MOPS buffer at 50V with buffer recirculation. The gel is briefly neutralized in transfer buffer (20 x SSC) and RNA blotted to Zetaprobe® (Bio-Rad Labs., Hercules CA) by capillary transfer. Filters are rinsed briefly in 2 x SSC, and RNA is immobilized 10 both by UV cross-linking and baking in vacuuo (80°C for 1 hour). Hybridization in 7% SDS, 1% BSA, 0.5 M phosphate buffer (PB, pH 6.8), 1 mM EDTA and 0.5-2.5 \times 106 cpm rat H1 probe/ml are carried out for at least 8 hours at 65°C. Filters are washed twice in 5% SDS, 0.5% BSA, 40 mM PB, 1 mM EDTA and twice in 1% SDS, 40 mM PB, 1 mM EDTA at 65°C, and exposed to film (Hyperfilm, Amersham) at -70°C. lecular sizes are determined relative to RNA molecular weight standards (GIBCO BRL) and 285 and 185 ribosomal RNA observed during UV illumination. The ubiquitously expressed, non-developmentally regulated gene cyclophilin 20 is used to determine equal loading of lanes. Densitometry is performed using the NIH Image program. The two clones recognize the same size mRNA transcript.

Tissue distribution of rat BEHAB mRNA using this
procedure shows a single 3.9-kb mRNA transcript detected
in adult rat cortex, spinal cord and cerebellum. This
transcript is not detected in liver, kidney, spleen, lung
or muscle, even with long film exposures. Observed
amounts of human BEHAB mRNA is markedly (i.e., at least
about four-fold) higher in brain glioma tissue in comparison to what is seen in normal brain tissue using the
procedure. Moreover, BEHAB is not detected in non-brain
tumor tissues, including breast, lung, or colon tumors.

These observations are confirmed by in situ hy-35 bridization to whole embryos, which show that BEHAB ex-

pression is restricted to the central nervous system. situ hybridization is performed on 12 to 14 micron thick frozen sections thaw-mounted onto gelatin-coated slides and postfixed in 0.1 M sodium phosphate buffered 4% paraformaldehyde (pH 7.4). Sections are rinsed in 1 x PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂PO₄, 1.8 mM KH₂PO₄) 2 \times SSC and acetylated with 0.5% acetic anhydride in 0.1 M triethanolamine (pH 8.0). Sections are then rinsed in 2 x SSC, 1 x PBS, dehydrated in ethanol and delipidated in 10 chloroform. Sections are prehybridized in 2 x SSC, 50% formamide at 50°C for 1 hour, and then hybridized in 0.75 M NaCl, 50% formamide, 1 x Denhardt's, 10% dextran sulfate, 30 mM DTT, 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 100 μg/ml salmon sperm DNA, 0.5 mg/ml yeast tRNA and 106 cpm 15 probe per slide at 50°C for 12 to 15 hours. (New England Nuclear, Boston MA) labelled cRNA probes are synthesized using T3 (GIBCO BRL), SP6, and T7 RNA polymerases (New England Biolabs inc., Beverly, MA). hybridization, sections are washed in 2 x SSC, 50% form-20 amide, 0.1% BME (β-mercaptoethanol) at 50°C for 1 hour and treated with 20 µg/ml RNase A in 0.5 M NaCl, 10 mM Tris-HCl (pH 8.0) at 37°C for 30 minutes. Sections are then washed in 2 x SSC, 50% formamide, 0.1% BME at 58°C for 30 minutes and 0.1 x SSC, 0.1% BME at 63°C for 30 25 minutes and dehydrated. For initial localization of probe, the slides are exposed to film (Hyperfilm, Amersham) for 4 days. Autoradiograms are used as negatives for prints. For higher resolution, the slides are dipped in NTB-2 emulsion (Kodak), developed after 5 days and counterstained with cresyl violet. Neurofilament-middle 30 (NF) antisense and rat clone sense probes are used as positive and negative controls, respectively.

The spatial distribution of BEHAB mRNA within the nervous system is determined at higher resolution by in

35 situ hybridization on tissue sections from P21 rat forebrain, brainstem, spinal cord, and cerebellum. Near

30

adjacent sections are probed with an antisense cRNA probe of a rat clone and positive and negative controls. these procedures, BEHAB expression is found to be widely distributed in the brain, in both gray and white matter. The cortex exhibits diffuse hybridization with no laminar specification. Hybridization is detected in white matter tracts, including the corpus callosum, the fimbria of the hippocampus, and the anterior commissure. In the hippocampus, the most intense hybridization is present over 10 neurons; it is highest in the CAl subfield. of NF hybridization in the hippocampus is essentially reciprocal to that of BEHAB; the NF probe hybridizes most intensely in subfields CA2, CA3, and in the dentate gyrus. BEHAB hybridization is also seen throughout the inferior colliculus and less intensely in the superior 15 colliculus. In addition to the hippocampus, BEHAB hybridization in gray matter is most intense in the substantia nigra. The rat sense probe generates almost no signal in most of the brain, but a low level of hybridization is seen in the hippocampus and dentate gyrus. 20

In the brainstem, BEHAB is expressed throughout the reticular formation. Several brainstem nuclei also express BEHAB, including the superior olivary nucleus, the vestibular nuclei, the abducens nucleus and the dorsal column nuclei. A similar hybridization pattern is observed with NF, while no hybridization signal is detected with the sense probe.

BEHAB expression in the spinal cord is greater in the gray matter than in white matter. In the gray matter, BEHAB expression is slightly greater in the ventral than in the dorsal horn. BEHAB hybridization is lacking in the substantia gelatinosa. In the ventral horn, hybridization is seen over motor neurons. In the spinal cord white matter, the size of labelled cells and their distribution indicates that BEHAB is expressed by glial

cells. Like BEHAB, NF expression is greater in the ventral horn than in the dorsal horn; however, unlike BEHAB, NF is not detected in the spinal white matter. As observed in the brainstem, no hybridization signal is detected in the spinal cord with the sense probe.

In the cerebellum, BEHAB expression is greatest in the deep cerebellar nuclei. In the cerebellar cortex, labeling is detected in all three cortical layers. In the molecular layer, the distribution of silver grains parallels the distribution of basket and stellate cells. In the Purkinje cell layer, labeling is clustered over Purkinje cells and, in the granule cell layer, it is clustered over Golgi II cells. The white matter of the cerebellar cortex also shows hybridization signal. NF is primarily expressed by Purkinje cells and by cells of the deep cerebellar nuclei. The sense probe generates a low level of diffuse hybridization signal throughout the granule cell layer.

To determine the temporal regulation of BEHAB mRNA expression, Northern blot analysis is performed using total RNA from embryonic and postnatal rat cortex and spinal cord. The non-developmentally regulated gene cyclophilin is used as a control probe to verify equal loading. Unlike actin and tubulin, which exhibit variation of abundance with development, cyclophilin maintains a constant relative abundance throughout the central nervous system with development. The Northern blots are analyzed by densitometry, and band intensity of BEHAB is standardized by calculating a ratio of the abundance of BEHAB to cyclophilin at each developmental age.

20

25

30

In the cortex, BEHAB recognizes a single 3.9-kb mRNA transcript. BEHAB expression is detected at embryonic day 17 and gradually increases to attain adult levels by postnatal day 21. In the spinal cord, BEHAB also

recognizes a 3.9-kb mRNA transcript. At all ages except the adult, BEHAB expression is greater in the spinal cord than in the cortex. Like the cortex, BEHAB is present in the spinal cord at embryonic day 17 and gradually increases with age until reaching a maximal level at postnatal day 14. Unlike the cortex, BEHAB expression in the spinal cord then declines slightly.

The expression of BEHAB in the embryo, like in the postnatal animal, is restricted to the central nervous system. BEHAB expression is absent in dorsal root gan-10 glia, a peripheral nervous system structure. Tissues in the embryo that express high levels of closely related genes such as cartilage (which expresses aggrecan) also show no hybridization signal for BEHAB. The distribution of BEHAB expression in the embryonic central nervous sys-15 tem differs slightly from the postnatal brain. est levels of BEHAB expression are found in regions that contain mitotically active cells, such as the ventricular zone of the medulla, midbrain, and spinal cord. 20 sion of BEHAB is heterogenous in the developing brain.

The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention as defined in the appended claims. The claims are meant to cover the claimed components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.

25

SEQUENCE LISTING

- (1) GENERAL INFORMATION
 - (i) APPLICANTS: Susan Hockfield

 Diane M. Jaworski
 - (ii) TITLE OF INVENTION: BEHAB, A Brain Hyaluronan-Binding Protein
 - (iii) NUMBER OF SEQUENCES: 7
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: St. Onge Steward Johnston & Reens
 - (B) STREET: 986 Bedford Street
 - (C) CITY: Stamford
 - (D) STATE: CT
 - (E) COUNTRY: United States
 - (F) ZIP: 06905
 - (v) COMPUTER READABLE FORM
 - (A) MEDIUM TYPE: 3.5" 1.44 Mb diskette
 - (B) COMPUTER: IBM PC
 - (C) OPERATING SYSTEM: MS DOS
 - (D) SOFTWARE: Word Processor
 - (viii) ATTORNEY INFORMATION
 - (A) NAME: Mary M. Krinsky
 - (B) REGISTRATION NUMBER: 32423
 - (C) DOCKET NUMBER: 1751-P0004
 - (ix) TELECOMMUNICATION INFORMATION
 - (A) TELEPHONE NUMBER: 203-324-6155
 - (B) TELEFAX NUMBER: 203-327-1096

PCT/US95/04353

WO 95/27785

- 24 -

GCC GCG CCG GGC TTT CCC CGA GTC AAA TGG ACC TTC CTG TCC Ala Ala Pro Gly Phe Pro Arg Val Lys Trp Thr Phe Leu Ser

GGG Gly	GAC Asp	CGG Arg 85	GAG Glu	GTG Val	GAG Glu	GTG Val	CTG Leu 90	GTG Val	GCG Ala	CGC Arg	GGG Gly	CTG Leu 95	CGC Arg	538
GTC Val	AAG Lys	GTA Val	AAC Asn 100	GAA Glu	GCC Ala	TAT Tyr	CGG Arg	TTC Phe 105	CGC Arg	GTG Val	GCG Ala	CTG Leu	CCT Pro 110	580
GCC Ala	TAC Tyr	CCC Pro	GCA Ala	TCG Ser 115	CTC Leu	ACA Thr	GAT Asp	GTG Val	TCT Ser 120	TTA Leu	GTA Val	TTG Leu	AGC Ser	622
GAA Glu 125	CTG Leu	CGG Arg	CCC Pro	AAT Asn	GAT Asp 130	TCC Ser	GGG Gly	GTC Val	TAT Tyr	CGC Arg 135	TGC Cys	GAG Glu	GTC Val	664
CAG Gln	CAC His 140	GGT Gly	ATC Ile	GAC Asp	GAC Asp	AGC Ser 145	AGT Ser	GAT Asp	GCT Ala	GTG Val	GAA Glu 150	GTC Val	AAG Lys	706
GTC Val	AAA Lys	GGG Gly 155	GTC Val	GTC Val	TTC Phe	CTC Leu	TAC Tyr 160	CGA Arg	GAG Glu	GGC Gly	TCT Ser	GCC Ala 165	CGC Arg	748
TAT Tyr	GCT Ala	TTC Phe	TCC Ser 170	TTC Phe	GCT Ala	GGA Gly	GCC Ala	CAG Gln 175	GAA Glu	GCC Ala	TGT Cys	GCT Ala	CGC Arg 180	790
ATC Ile	GGA Gly	GCC Ala	CGA Arg	ATT Ile 185	GCC Ala	ACC Thr	CCT Pro	GAG Glu	CAG Gln 190	CTG Leu	TAT Tyr	GCT Ala	GCC Ala	832
TAC Tyr 195	CTC Leu	GGC Gly	GGC Gly	TAT Tyr	GAA Glu 200	CAG Gln	TGT Cys	GAT Asp	GCT Ala	GGC Gly 205	TGG Trp	CTG Leu	TCC Ser	874
GAC Asp	CAA Gln 210	ACC Thr	GTG Val	AGG Arg	TAC Tyr	CCC Pro 215	ATC Ile	CAG Gln	AAC Asn	CCA Pro	CGA Arg 220	GAA Glu	GCC Ala	916
TGT Cys	TAT Tyr	GGA Gly 225	GAC Asp	ATG Met	GAT Asp	GGC Gly	TAC Tyr 230	CCT Pro	GGA Gly	GTG Val	CGG Arg	AAT Asn 235	TAC Tyr	958
GGA Gly	GTG Val	GTG Val	GGT Gly 240	CCT Pro	GAT Asp	GAT Asp	CTC Leu	TAC Tyr 245	GAT Asp	GTC Val	TAC Tyr	TGT Cys	TAT Tyr 250	1000
GCC Ala	GAA Glu	GAC Asp	CTA Leu	AAT Asn 255	GGA Gly	GAA Glu	CTG Leu	TTC Phe	CTA Leu 260	GGT Gly	GCC Ala	CCT Pro	CCC Pro	1042
GGC Gly 265	AAG Lys	CTG Leu	ACG Thr	TGG Trp	GAG Glu 270	GAG Glu	GCT Ala	CGG Arg	GAC Asp	TAC Tyr 275	TGT Cys	CTG Leu	GAA Glu	1084

NOT TAKEN INTO CONSIDERATION FOR THE PURPOSES OF INTERNATIONAL PROCESSING - 27 -

(A) NAME: cat brain BEHAB

(xi) SEQUENCE DESCRIPTION: SEQ ID NO 2:

CCCCA	CGAG CTCGTGCCGA 19										
ATTCGGCACA GAGGGACCGA GCGTGGACCC GGAGGA	GAGC CCGGAGGAGA 69										
GCCCGGAGGA GGCGCAAACT TGGCGGTGCG CACCCT	AGCC CCGGCCCTCG 119										
GCCTGCCGGA AGAAAACAAA GGCCCTGAGA GCTTAAGGAA CTTGCAGCAA											
GTTGACTAGC GCCCAGGTCT TGGTTCCGAG GAGGAA	TCCT GGTGGGGAGA 219										
CAGGATCAGA AGCGAGGGTG TTAACAGTGA GTCCTT	CCAG CAGCCTGAGC 269										
ATG GCC CCA CTG TTC CTG CCC CTG CTG ATA Met Ala Pro Leu Phe Leu Pro Leu Leu Ile 5 10	Ala Leu Ala Leu										
GCC CCG GGC CCC ACG GCC TCA GCT GAT GTC Ala Pro Gly Pro Thr Ala Ser Ala Asp Val 15 20	CTG GAA GGG GAC 353 Leu Glu Gly Asp 25										
AGC TCA GAG GAC CGG GCC TTC CGC GTG CGC Ser Ser Glu Asp Arg Ala Phe Arg Val Arg 30 35											
GCG CCG CTG CAG GGC GTG CTG GGC GGC GCC Ala Pro Leu Gln Gly Val Leu Gly Gly Ala 45 50											
TGC CAC GTT CAC TAC CTG CGG CCG CCG Cys His Val His Tyr Leu Arg Pro Pro Pro 60. 65											
GTG CTG GGC TCC CCG CGG GTC AAG TGG ACC Val Leu Gly Ser Pro Arg Val Lys Trp Thr 75 80	Phe Leu Ser Gly										
GGC CGG GAG GCC GAG GTG CTG GCG CGG Gly Arg Glu Ala Glu Val Leu Val Ala Arg 85 90											
AAG GTG AGC GAG GCC TAC CGG TTC CGC GTG Lys Val Ser Glu Ala Tyr Arg Phe Arg Val 100 105											
TAC CCG GCG TCC CTC ACC GAC GTC TCC CTG Tyr Pro Ala Ser Leu Thr Asp Val Ser Leu 115 120											
CTG CGG CCC AAC GAC TCT GGC ATC TAC CGC Leu Arg Pro Asn Asp Ser Gly Ile Tyr Arg 130											

	~~~	3.003	C 3 O	C	3.00	3.00	C3.0	~~~	cmc	CNC	C.T.C.	220	cmc	701
											GTC Val			731
											GCC Ala			773
											GCC Ala 180			815
											GCT Ala			857
											CTG Leu			899
											GAG Glu			941
											AAC Asn			983
											TGC Cys 250		GCT Ala	1025
											CCT Pro		GAC Asp	1067
													CGG Arg 280	1109
										Tyr			TGG Trp	1151
GAT Asp 295	GGC Gly	GGC Gly	CTG Leu	GAC Asp	CGC Arg 300	TGC Cys	AGC Ser	CCC Pro	GGC Gly	TGG Trp 305	CTG Leu	GCC Ala	GAT Asp	1193
											CAG Gln 320		TGC Cys	1235
GGT Gly	GGG Gly	GGC Gly 325	CTG Leu	CCT Pro	GGC Gly	GTC Val	AAG Lys 330	ACT Thr	CTC Leu	TTC Phe	CTC Leu	TTC Phe 335	CCC Pro	1277

- 29 -

												AAC Asn		1319
												CCT Pro		1361
												TCA Ser		1403
TGA	CAGAC	BAC C	CCTAC	GAGG	AG C	CCA	CGTG	C CG	CGGG2	AAGC	TGT	GGAG	AGC	1453
GAG	rccc	GGG (	GAGC	CATC	ra c	rccg	rccc	CAT	rgtgo	GAGG	ATG	GGA	GGT	1503
GCAZ	AGGT	cee d	CCTC	CA										1519

## (4) INFORMATION FOR SEQ ID NO: 3

- (i) SEQUENCE CHARACTERISTICS
  - (A) LENGTH: 334 residues
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE
  - (A) DESCRIPTION: polypeptide
- (v) FRAGMENT TYPE: functional domains
- (ix) FEATURE
  - (A) NAME: rat aggrecan
- (x) PUBLICATION INFORMATION
  - (A) AUTHOR: Doege, K., Sasaki, M., Horigan, E., Hassell, J.R., and Yamada, Y.
  - (B) TITLE: Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones.
  - (C) JOURNAL: J. Biol. Chem.
  - (D) VOLUME: 262
  - (F) PAGES: 17757-17767
  - (G) DATE: 1987
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 3:

Glu	Glu	Val	Pro	Asp 5	His	Asp	Asn	Ser	Leu 10	Ser	Val	Ser	Ile	Pro 15
Gln	Pro	Ser	Pro	Leu 20	Lys	Ala	Leu	Leu	Gly 25	Thr	Ser	Leu	Thr	Ile 30
Pro	Cys	Tyr	Phe	Ile 35	Asp	Pro	Met	His	Pro 40	Val	Thr	Thr	Ala	Pro 45
Ser	Thr	Ala	Pro	Leu 50	Thr	Arg	Ile	Lys	Trp 55	Ser	Arg	Val	Ser	Lys 60
Glu	Lys	Glu	Val	Val 65	Leu	Leu	Val	Ala	Thr 70	Glu	Gly	Gln	Val	Arg 75
Val	Asn	Ser	Ile	Tyr 80	Gln	Asp	Lys	Val	Ser 85	Leu	Pro	Asn	Tyr	Pro 90
Ala	Ile	Pro	Ser	Asp 95	Ala	Thr	Leu	Glu	Ile 100	Gln	Asn	Leu	Arg	Ser 105
Asn	Asp	Ser	Gly	Ile 110	Tyr	Arg	Cys	Glu	Val 115	Met	His	Gly	Ile	Glu 120
Asp	Ser	Glu	Ala	Thr 125	Leu	Glu	Val	Ile	Val 130	Lys	Gly	Ile	Val	Phe 135
His	Tyr	Arg	Ala	Ile 140	Ser	Thr	Arg	Tyr	Thr 145	Leu	Asp	Phe	Asp	Arg 150
Ala	Gln	Arg	Ala	Cys 155	Leu	Gln	Asn	Ser	Ala 165	Ile	Ile	Ala	Thr	Pro 170
Glu	Gln	Leu	Gln	Ala 175	Ala	Tyr	Glu	Asp	Gly 180	Phe	His	Gln	Cys	Asp 185
Ala	Gly	Trp	Leu	Ala 190	Asp	Gln	Thr	Val	Arg 195	Tyr	Pro	Ile	His	Thr 200
Pro	Arg	Glu	Gly	Cys 205	Tyr	Gly	Asp	Lys	Asp 210	Glu	Phe	Pro	Gly	Val 215
Arg	Thr	Tyr	Gly	Ile 220	Arg	Asp	Thr	Asn	Glu 225	Thr	Tyr	Asp	Val	Tyr 230
Cys	Phe	Ala	Glu	Glu 235	Met	Glu	Gly	Glu	Phe 240	Tyr	Ala	Thr	Ser	Pro 245
Glu	Lys	Phe	Thr	Phe 250	Gln	Glu	Ala	Ala	Asn 255	Glu	Cys	Arg	Thr	Val 260
Gly	Ala	Arg	Leu	Ala 265	Thr	Thr	Gly	Gln	Leu 270	Tyr	Leu	Ala	Trp	Gln 275

		_		280				-	285			•		290
Gly	Gly	Met	Asp	Met	Cys	Ser	Ala	Gly	Trp.	Leu	Ala	Asp	Arq	Ser

Val Arg Tyr Pro Ile Ser Lys Ala Arg Pro Asn Cys Gly Gly Asn 295 300 305

Leu Leu Gly Val Arg Thr Val Tyr Leu His Ala Asn Gln Thr Gly 310 315

Tyr Pro Asp Pro Ser Ser Arg Tyr Asp Ala Ile Cys Tyr Thr 325 330

## (5) INFORMATION FOR SEQ ID NO: 4

- (i) SEQUENCE CHARACTERISTICS
  - (A) LENGTH: 333 residues
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE
  - (A) DESCRIPTION: polypeptide
- (v) FRAGMENT TYPE: functional domains
- (ix) FEATURE
  - (A) NAME: rat neurocan
- (x) PUBLICATION INFORMATION
  - (A) AUTHOR: Rauch, U., Karthikeyan, L., Maurel, P., Margolis, R.U., and Margolis, R.K.
  - (B) TITLE: Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain.
  - (C) JOURNAL: J. Biol. Chem.
  - (D) VOLUME: 267
  - (F) PAGES: 19536-19547
  - (G) DATE: 1992
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO 4:

Asp Thr Gln Asp Thr Thr Thr Glu Lys Gly Leu His Met Leu
5 10 15

Lys	Ser	Gly	Ser	Gly 20	Pro	Ile	Gln	Ala	Ala 25	Leu	Ala	Glu	Leu	Val 30
Ala	Leu	Pro	Cys	Phe 35	Phe	Thr	Leu	Gln	Pro 40	Arg	Gln	Ser	Pro	Leu 45
Gly	Asp	Ile	Pro	Arg 50	Ile	Lys	Trp	Thr	Lys 55	Val	Gln	Thr	Ala	Ser 60
Gly	Gln	Arg	Gln	Asp 65	Leu	Pro	Ile	Leu	Val 70	Ala	Lys	Asp	Asn	Val 75
Val	Arg	Val	Ala	Lys 80	Gly	Trp	Gln	Gly	Arg 85	Val	Ser	Leu	Pro	Ala 90
Tyr	Pro	Arg	His	Arg 95	Ala	Asn	Ala	Thr	Leu 100	Leu	Leu	Gly	Pro	Leu 105
Arg	Ala	Ser	Asp	Ser 110	Gly	Leu	Tyr	Arg	Cys 115	Gln	Val	Val	Lys	Gly 120
Ile	Glu	Asp	Glu	Gln 125	Asp	Leu	Val	Thr	Leu 130	Glu	Val	Thr	Gly	Val 135
Val	Phe	His	Tyr	Arg 140	Ala	Ala	Arg	Asp	Arg 145	Tyr	Ala	Leu	Thr	Phe 150
Ala	Glu	Ala	Gln	Glu 155	Ala	Cys	His	Leu	Ser 160	Ser	Ala	Thr	Ile	Ala 165
Ala	Pro	Arg	His	Leu 170	Asn	Ala	Ala	Phe	Glu 175	Asp	Gly	Phe	Asp	Asn 180
Сув	Asp	Ala	Gly	Trp 185	Leu	Ser	Asp	Arg	Thr 190	Val	Arg	Tyr	Pro	Ile 195
Thr	Gln	Ser	Arg	Pro 200	Gly	Cys	Tyr	Gly	Asp 205	Arg	Ser	Ser	Leu	Pro 210
Gly	Val	Arg	Ser	Tyr 215	Gly	Arg	Arg	Asp	Pro 220	Gln	Glu	Leu	Tyr	Asp 225
Val	Tyr	Cys	Phe	Ala 230	Arg	Glu	Leu	Gly	Gly 235	Glu	Phe	Tyr	Val	Gly 240
Pro	Ala	Arg	Arg	Leu 245	Thr	Leu	Ala	Gly	Ala 250	Arg	Ala	Leu	Cys	Gln 255
Arg	Gln	Gly	Ala	Ala 260	Leu	Ala	Ser	Val	Gly 265	Gln	Leu	His	Leu	Ala 270
Trp	His	Glu	Gly	Leu 275	Asp	Gln	Cys	Asp	Pro 280	Gly	Trp	Leu	Ala	Asp 285

Gly Ser Val Arg Tyr Pro Ile Gln Thr Pro Arg Arg Cys Gly
290 295 300

Gly Ser Ala Pro Gly Val Arg Thr Val Tyr Arg Phe Ala Asn Arg 305 310 315

Thr Gly Phe Pro Ala Pro Gly Ala Arg Phe Asp Ala Tyr Cys Phe 320 325 330

Arg Ala His

- (6) INFORMATION FOR SEQ ID NO: 5
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 328 residues
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE
    - (A) DESCRIPTION: polypeptide
  - (v) FRAGMENT TYPE: functional domains
  - (ix) FEATURE
    - (A) NAME: human versican
  - (x) PUBLICATION INFORMATION
    - (A) AUTHOR: Zimmermann, D.R., and Ruoslahti, E.
    - (B) TITLE: Multiple domains of the large fibroblast proteoglycan, versican.
    - (C) JOURNAL: EMBO (Eur. Mol. Biol. Organ.) J.
    - (D) VOLUME: 8
    - (F) PAGES: 2975-2981
    - (G) DATE: 1989
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO 5:

Leu His Lys Val Lys Val Gly Lys Ser Pro Pro Val Arg Gly Ser
5 10 15

Leu Ser Gly Lys Val Ser Leu Pro Cys His Phe Ser Thr Met Pro 20 25 30

Thr Leu Pro Pro Ser Tyr Asn Thr Ser Glu Phe Leu Arg Ile Lys 35 40 45

Trp	Ser	Lys	Ile	Glu 50	Val	Asp	Lys	Asn	Gly 55	Lys	Asp	Leu	Lys	Glu 60
Thr	Thr	Val	Leu	Val 65	Ala	Gln	Asn	Gly	Asn 70	Ile	Lys	Ile	Gly	Gln 75
Asp	Tyr	Lys	Gly	Arg 80	Val	Ser	Val	Pro	Thr 85	His	Pro	Glu	Ala	Val 90
Gly	Asp	Ala	ser	Leu 95	Thr	Val	Val	Lys	Leu 100	Leu	Ala	ser	Asp	Ala 105
Gly	Leu	Tyr	Arg	Cys 110	Asp	Val	Met	Tyr	Gly 115	Ile	Glu	Asp	Thr	Gln 120
Asp	Thr	Val	Ser	Leu 125	Thr	Val	Asp	Gly	Val 130	Val	Phe	His	Tyr	Arg 135
Ala	Ala	Thr	Ser	Arg 140	Tyr	Thr	Leu	Asn	Phe 145	Glu	Ala	Ala	Gln	Lys 150
Ala	Cys	Leu	Asp	Val 155	Gly	Ala	Val	Ile	Ala 160	Thr	Pro	Glu	Gln	Leu 165
Phe	Ala	Ala	Tyr	Glu 170	Asp	Gly	Phe	Glu	Gln 175	Cys	Asp	Ala	Gly	Trp 180
Leu	Ala	Asp	Gln	Thr 185	Val	Arg	Tyr	Pro	Ile 190	Arg	Ala	Pro	Arg	Val 195
Gly	Cys	Tyr	Gly	Asp 200	Lys	Met	Gly	Lys	Ala 205	Gly	Val	Arg	Thr	Tyr 210
Gly	Phe	Arg	Ser	Pro 215	Gln	Glu	Thr	Tyr	Asp 220	Val	Tyr	Cys	Tyr	Val 225
Asp	His	Leu	Asp	Gly 230	Asp	Phe	His	Leu	Thr 235	Val	Pro	Ser	Lys	Phe 240
Thr	Phe	Glu	Glu	Ala 245	Ala	Lys	Glu	Cys	Glu 250	Asn	Gln	Asp	Ala	Arg 255
Leu	Ala	Thr	Val	Gly 260	Glu	Leu	Gln	Ala	Ala 265	Trp	Arg	Asn	Gly	Phe 270
Asp	Gln	Cys	Asp	Tyr 275	Gly	Trp	Leu	Ser	Asp 280	Ala	Ser	Val	Arg	His 285
Pro	Val	Thr	Val	Ala 290	Arg	Ala	Gln	Cys	Gly 295	Gly	Gly	Leu	Leu	Gly 300
Val	Arg	Thr	Leu	Tyr 305	Arg	Phe	Glu	Asn	Gln 310	Thr	Gly	Phe	Pro	Pro 315

Pro Asp Ser Arg Phe Asp Ala Tyr Cys Phe Lys Arg Arg 320 325

- (7) INFORMATION FOR SEQ ID NO: 6
  - (i) SEQUENCE CHARACTERISTICS
    - (A) LENGTH: 326 residues
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE
    - (A) DESCRIPTION: polypeptide
  - (V) FRAGMENT TYPE: functional domains
  - (ix) FEATURE
    - (A) NAME: rat link protein
  - (x) PUBLICATION INFORMATION
    - (A) AUTHOR: Doege, K., Hassell, J.R., Caterson, B., and Yamada, Y.
    - (B) TITLE: Link protein cDNA sequence reveals a tandemly repeated protein sequence.
    - (C) JOURNAL: Proc. Natl. Acad. Sci. USA
    - (D) VOLUME: 83
    - (F) PAGES: 3761-3765
    - (G) DATE: 1986
    - (xi) SEQUENCE DESCRIPTION: SEQ ID NO 6:

Asp Arg Val Ile His Ile Gln Ala Glu Asn Gly Pro Arg Leu Leu
5 10 15

Val Glu Ala Glu Gln Ala Lys Val Phe Ser His Arg Gly Gly Asn 20 25 30

Val Thr Leu Pro Cys Lys Phe Tyr Arg Asp Pro Thr Ala Phe Gly

Ser Gly Ile His Lys Ile Arg Ile Lys Trp Thr Lys Leu Thr Ser 50 55 60

Asp Tyr Leu Arg Glu Val Asp Val Phe Val Ser Met Gly Tyr His
65 70 75

Lys	Lys	Thr	Tyr	Gly 80	Gly	Tyr	Gln	Gly	Arg 85	Val	Phe	Leu	Lys	Gly 90
Gly	Ser	Asp	Asn	Asp 95	Ala	Ser	Leu	Ile	Ile 100	Thr	Asp	Leu	Thr	Leu 105
Glu	Asp	Tyr	Gly	Arg 110	Tyr	Lys	Cys	Glu	Val 115	Ile	Glu	Gly	Leu	Glu 120
Asp	Asp	Thr	Ala	Val 125	Val	Ala	Leu	Glu	Leu 130	Gln	Gly	Val	Val	Phe 135
Pro	Tyr	Phe	Pro	Arg 140	Leu	Gly	Arg	Tyr	Asn 145	Leu	Asn	Phe	His	Glu 150
Ala	Arg	Gln	Ala	Cys 155	Leu	Asp	Gln	Asp	Ala 160	Val	Ile	Ala	Ser	Phe 165
Asp	Gln	Leu	Tyr	Asp 170	Ala	Trp	Arg	Gly	Gly 175	Leu	Asp	Trp	Cys	Asn 180
Ala	Gly	Trp	Leu	Ser 185	Asp	Gly	Ser	Val	Gln 190	Tyr	Pro	Ile	Thr	Lys 195
Pro	Arg	Glu	Pro	Cys 200	Gly	Gly	Gln	Asn	Thr 205	Val	Pro	Gly	Val	Arg 210
Asn	Tyr	Gly	Phe	Trp 215	Asp	Lys	Asp	Ser	Arg 220	Tyr	Asp	Val	Phe	Cys 225
Phe	Thr	Ser	Asn	Phe 230	Asn	Gly	Arg	Phe	Tyr 235	Tyr	Leu	Ile	His	Pro 240
Thr	Lys	Leu	Thr	Tyr 245	Asp	Glu	Ala	Val	Gln 250	Ala	Cys	Leu	Asn	Asp 255
Gly	Ala	Gln	Ile	Ala 260	Lys	Val	Gly	Gln	Ile 265	Phe	Ala	Ala	Trp	Lys 270
Leu	Leu	Gly	Tyr	Asp 275	Arg	Cys	Asp	Ala	Gly 280	Trp	Leu	Ala	Asp	Gly 285
Ser	Val	Arg	Tyr	Pro 290	Ile	Ser	Arg	Pro	Trp 295	Arg	Arg	Cys	Ser	Pro 300
Thr	Glu	Ala	Ala	Val 305	Arg	Phe	Val	Gly	Phe 310	Pro	Asp	Lys	Lys	His 315
Lys	Leu	Tyr	Gly	Val 320	Tyr	Cys	Phe	Arg	Ala 325	Tyr				

(8)	8) INFORMATION FOR SEQ ID NO: 7													
	(i) SEQUENCE CHARACTERISTICS													
	(A) LENGTH: 156 bases encoding 52 amino acids													
	(B) TYPE: nucleic acid and amino acid													
	(C) STRANDEDNESS: double													
	(D) TOPOLOGY: linear													
	(ii) MOLECULE TYPE													
	(A) DESCRIPTION: DNA encoding a polypeptide													
	(v) FRAGMENT TYPE: partial sequence, PTR1 domain													
	(vi)	MI	MEDI	ATE	SOUR	CE:	huma	n br	ain					
	(ix)	FEA	TURE											
	(A) NAME: human BEHAB													
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	n: s	EQ I	D NO	7:				
a 2 a	3.00	c.cm	ome	000	m 3 m	COM	mmo.	moo.	mmm	mem	666	600	CAG	42
	Arg													42
	_			5	_				10		_			
GAG	GCT	TGT	GCC	CGC	ATT	GGA	GCC	CAC	ATC	GCC	ACC	CCG	GAG	84
Glu 15	Ala	Cys	Ala	Arg	Ile 20	Gly	Ala	His	Ile	Ala 25	Thr	Pro	Glu	
15					20					25				
													GAT	126
GIN	Leu 30	TYF	Ald	ATA	TYT	35	GTA	GIY	TYE	GIU	40	Cys	Asp	
a a		maa	oma	maa	a. m	01.0		ama	202					350
	GGC Gly													156
		45			•		50							

WO 95/27785 PCT/US95/04353

- 38 -

#### **CLAIMS**

- 1. A purified and isolated DNA fragment comprising a DNA sequence encoding mammalian brain enriched hyaluronan binding protein.
- 2. A purified and isolated DNA fragment according to claim 1, wherein the fragment comprises a DNA sequence which hybridizes under stringent conditions with a sequence encoding mammalian brain enriched hyaluronan binding protein.
- 3. A purified and isolated DNA fragment according to claim 2, wherein the fragment comprises a DNA sequence which hybridizes under stringent conditions with the nucleotides numbered 251 to 1363 of SEQ ID NO 1.
- 6. A purified and isolated DNA fragment according to claim 2, wherein the fragment comprises a DNA sequence which hybridizes under stringent conditions with the nucleotides numbered 270 to 1403 of SEQ ID NO 2.
- 7. A purified and isolated DNA fragment according to claim 2, wherein the fragment comprises a DNA sequence which hybridizes under stringent conditions with the nucleotides of SEQ ID NO 7.
- 8. A polypeptide encoded by the DNA sequence according to claims 1 to 7.
- 9. An RNA sequence corresponding to the DNA sequence according to claims 1 to 7.

PCT/US95/04353 WO 95/27785

- 39 -

10. A process for producing a polypeptide encoded by a DNA sequence for mammalian brain enriched hyaluronan binding protein comprising

5

15

- (a) preparing a biologically functional plasmid or viral DNA vector containing a purified and isolated DNA fragment encoding mammalian brain enriched hyaluronan binding protein or a DNA fragment that hybridizes under stringent conditions with a sequence encoding mammalian 10 brain enriched hyaluronan binding protein or any DNA fragments according to claims 1 to 7;
  - (b) transforming or transfecting a procaryotic or eucaryotic host cell with the plasmid or vector in a manner allowing the host cell to express the polypeptide encoded by the DNA; and
    - (c) isolating the polypeptide thereby produced.

#### AMENDED CLAIMS

[received by the International Bureau on 11 September 1995 (11.09.95); original claims 3-5, 7-10 amended; remaining claims unchanged (2 pages)]

- 1. A purified and isolated DNA fragment comprising a DNA sequence encoding mammalian brain enriched hyaluronan binding protein.
- 2. A purified and isolated DNA fragment according to claim 1, wherein the fragment comprises a DNA sequence which hybridizes under stringent conditions with a sequence encoding mammalian brain enriched hyaluronan binding protein.
- 3. A purified and isolated DNA fragment according to claim 2, wherein the fragment comprises a DNA sequence encoded by nucleotides 251 to 1363 of SEQ ID NO 1 or a DNA sequence which hybridizes under stringent conditions with the nucleotides numbered 251 to 1363 of SEQ ID NO 1.
- 4. A purified and isolated DNA fragment according to claim 2, wherein the fragment comprises a DNA sequence encoded by nucleotides numbered 270 to 1403 of SEQ ID NO 2 or a DNA sequence which hybridizes under stringent conditions with the nucleotides numbered 270 to 1403 of SEQ ID NO 2.
- 5. A purified and isolated DNA fragment according to claim 2, wherein the fragment comprises the nucleotide sequence set out in SEQ ID NO 7 or a DNA sequence which hybridizes under stringent conditions with the nucleotides of SEQ ID NO 7.
- 6. A polypeptide encoded by the DNA sequence according to claims 1 to 5.

- 7. A process for producing a polypeptide encoded by a DNA sequence for mammalian brain enriched hyaluronan binding protein comprising
- (a) preparing a biologically functional plasmid or viral DNA vector containing a purified and isolated DNA fragment encoding any DNA fragments according to claims 1 to 5;
- (b) transforming or transfecting a procaryotic or eucaryotic host cell sith the plasmid or vector in amanner allowing the host cell to express the polypeptide encoded by the DNA; and
  - (c) isolating the polypeptide thereby produced.
  - 8. A method for screening for the presence of a pathologic condition in the nervous system of an adult animal or human being which comprises:
  - (a) obtaining a biological blood or body fluid sample from said animal or human being;
    - (b) assaying for the presence of brain enriched hyaluronan binding protein in said sample; and
- (c) determining the presence of said pathologic condition by observation of detectable levels of saidprotein in said sample.
  - 9. A method according to claim 9 wherein said pathologic condition is a brain tumor.
  - 10. A method according to claims 8 or 9 wherein said pathologic condition is human glioma.



Figure 1.

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/04353

A. CLASSIFICATION OF SUBJECT MATTER								
IPC(6) :C12N 15/12, 15/63, 5/10, 1/13, 1/15; C07K 14/47 US CL :536/23.5; 435/320.1, 240.2, 253.3, 254.11, 69.1; 530/395, 350								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followe	d by classification symbols)	1.						
U.S. : 536/23.5; 435/320.1, 240.2, 253.3, 254.11, 69.1; 530/395, 350								
Documentation searched other than minimum documentation to the	e extent that such documents are included	in the fields searched						
Documentation seatened other than infilming a decimenation to the	C Oxion that such documents are merses							
Electronic data base consulted during the international search (n	ame of data base and, where practicable,	search terms used)						
Please See Extra Sheet.								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
		Delevent to alaim No						
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.						
X Journal of Cell Biology, Volume 1:		1-4						
1994, D. M. Jaworski et al., "BEH								
Y Proteoglycan Tandem Repeat Far	• • • • • • • • • • • • • • • • • • • •	5-8						
Proteins That is Restricted to th								
especially the abstract and Figure	s 2 and 3.							
X Journal of Biological Chemistry,	Journal of Biological Chemistry, Volume 269, Number 13, 1-3							
	Journal of Biological Chemistry, Volume 269, Number 13, issued 01 April 1994, H. Yamada et al., "Molecular Cloning"							
	Aggrecan/Versican Family", pages 10119-10126, especially							
page 10119 and Figure 3.	, , , , , , , , , , , , , , , , , , , ,							
page 10 may and 10 gard 10								
X Further documents are listed in the continuation of Box C. See patent family annex.								
Special categories of cited documents:  "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention								
to be of particular relevance: the claimed invention cannot be								
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step  'L' document which may throw doubts on priority claim(s) or which is when the document is taken alone								
cited to establish the publication date of another citation or other								
special reason (as specified)  document referring to an oral disclosure, use, exhibition or other means  comsidered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a persons skilled in the art								
"P" document published prior to the international filing date but later than	*&* document member of the same patent family							
the priority date claimed  Date of the actual completion of the international search  Date of mailing of the international search report								
18 MAY 1995 1 0 . 0 7 . 9 5								
Name and mailing address of the ISA/US								
Commissioner of Patents and Trademarks	Authorized officer  DAVID L. FITZGERALD							
Box PCT Washington, D.C. 20231								
Facsimile No. (703) 305-3730	Telephone No. (703) 308-0196							

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/04353

C-1		Relevant to claim No
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
К,Р  И,Р	GenBank database record, Accession Number X79881, issued 27 July 1994, I. C. Seidenbecher et al., "R. norvegicus mRNA for aggrecan-like protein/brevican", see the entire document.	1, 2  3-8
<b>\</b>	Genbank database record, Accession Number T04913, issued 30 June 1993, M. D. Adams et al., "EST02801 Homo sapiens cDNA clone HFBCE05 similar to Large aggregating cartilage proteoglycan core protein", see entire document.	1, 2, 5, 7
	Nature Genetics, Volume 4, issued July 1993, M. D. Adams et al., "3,400 new expressed sequence tags identify diversity of transcripts in human brain", pages 256-267.	1, 2, 5, 7
	Anticancer Research, Volume 9, issued 1989, D. Stavrou et al., "Antigenic Heterogeneity of Human Brain Tumors Defined by Monoclonal Antibodies", pages 1489-1496.	1-8
.,P	Journal of Neuroscience, Volume 15, Number 2, issued February 1995, D. M. Jaworski et al., "The CNS-Specific Hyaluronan-binding Protein BEHAB is Expressed in Ventricular Zones Coincident with Gliogenesis", pages 1352-1362.	1-8
		i.
1		

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/04353

B. FIELDS SEARCHED Electronic data bases consulted (Name of d	lata base and where practicable terms t	used):						
Sequence databases: GenBank/EMBL/DDBJ, GeneSeq, SwissProt, PIR Keyword databases: Medline, Biosis, Embase, CAS, Pascal, SciSearch, Derwent WPI, USPTO-APS search terms: BEHAB, brevican; hyaluron?, bind?; proteoglycan; neuron?, nervous, brain								
,								