

2024 FS CAS PML - Feature Engineering und Supervised Learning 0 Organisatorisches

Werner Dähler 2024

Vorstellungsrunde - über mich

Ausbildung

- LWB: Lehre als Elektroniker
- Uni Bern: Studium Biologie, Botanik, Vegetationsökologischer Richtung
- Uni Bern: Nachdiplomkurs Angewandte Statistik
- Div. Weiterbildungen in Data Management, Statistik, Data Mining

Tätigkeiten

- Uni Bern: Assistent / Oberassistent
- BFH: Wissenschaftlicher Mitarbeiter / Lehrbeauftragter
- BAKOM: Aufbau der Fernmeldestatistik
- BIT / SECO: Statistikapplikationsentwickler / DWH Spezialist Frontend
- div. Mandate für Statistische Beratungen (u.A. Meteotest, METAS, CSL Behring)

Moodle

die Ablagestuktur auf Moodle

- 1_slides
 die abgegebenen Folien im PDF-Format
 die Referenz "[ipynb]" in den Slides bezieht sich jeweils auf den dem jeweiligen Kapitel
 zugeordneten Code in 2_code
- 2_code den begleitenden Python Code (und noch vieles mehr) als .ipynb Datei die Nummerierung der Header entspricht den Kapitelnummerierungen in Präsentationen
- 3_data die abgegebenen Beispieldaten
- 4_workshops
 Aufgabestellungen für die Workshops, teilweise mit vorbereitendem Code
 - /solutions Lösungsvorschläge

Tooling

- in Anlehnung an die Präsentationen von Jürgen Vogel und Niklaus Johner wird auch hier mit Jupyter Notebook / Jupyter Lab gearbeitet
- Alternativen wären allenfalls
 - Spyder
 - PyCharm
 - Visual Studio Code
 - Sublime Text

Extras

- einige Folien weisen dieses Symbol auf
- dabei handelt es sich um weiterführendes Zusatzmaterial, welches aber nicht prüfungsrelevant ist

Agenda

für Feature Engineering und Supervised Learning

Kap. Kursteil (gem. Study Guide)	Thema	Tag
1 Feature Engineering	Einführung	1
	Exploration	
	Transformation	
	Konstruktion	
	Selektion	
	Implementation	
2 Supervised Learning	Klassifikation	2
3	Regression	3
1.7 Feature Engineering	Nachträge	
4 Supervised Learning	Validierung (und mehr)	4
	Deployment	
	Abschluss	

Prüfung - Modalitäten

- ► Termin: 19.09.2024, irgendwann am Vormittag, wird noch bekannt gegeben (*)
- gemäss Study Guide beträgt die Gewichtung der Prüfung an der Gesamtnote 40%
- Stoff: eigentlich alles ausser:
 - Extra Themen, vgl. Extras
 - Python Codierung
- Modus: Open Book
- Online, mit grosser Wahrschenilichkeit vor Ort (*)
- Typ: Kprim Teilpunkte, 10 Fragen a 4 Optionen (https://docs.moodle.org/311/de/Fragetyp_Kprim)
 - evtl. ein bis zwei als Textfragen
- Dauer für die Teile Feature Engineering und Machine Learning: 20 (*)
- Punkte für diese Prüfung: 37.5 (*)

Prüfung - Modalitäten

- eine Beispielfrage (Kprim)
- Klassifikation und Regression unterscheiden sich durch:
 - 1 Art des Resampling bei Validierung
 - 2 Performancemetrik
 - 3 Skalenniveau der Features
 - 4 Skalenniveau des Targets
- mit (*) markiertes wird noch zu klären sein
- Die oben gemachten Angaben betreffen die Teile Feature Engineering und Supervised Learning. Details zu Prüfungen anderer Dozierender müssen bei bei diesen direkt erfragt werden.