Sparse Graph Label Randomization

October 20, 2023

Preliminaries 1

Bounded Functional Encryption

We will use the notation of static, bounded functional encryption as presented in [GGLW22].

Security

We will slightly weaken the security notion such that the adversary does not choose which circuits it can learn the functional secret key for. Indeed, this is a weaker notion of functional encryption which fixes the adversary's output circuit. We will assume that we get circuit C_1, \ldots, C_d .

For completeness, we have the original security definition of [GGLW22] below:

less, we have the original security definition of [GGLW22] below
$$\begin{cases} \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{MPK},\text{MSK})} \leftarrow \text{Setup}\,(1^n,1^q) \\ \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(MPK,MSK)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{CT}} \leftarrow \text{Enc(MPK},m) \end{cases} \\ \begin{cases} \mathcal{A}^{\text{Sim}_3^{U_m(\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}}{\text{MPK}} & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{CT}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \end{cases} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,$$

whenever the following admissibility constraints and properties are satisfied:

- Sim_1, Sim_3 are stateful in that after each invocation, they updated their states $\mathbf{st}_1, \mathbf{st}_3$ respectively which is carried over to the next invocation.
- Π^m contains a list of functions f_i queried by \mathcal{A} in the pre-challenge phase along with their output on the challenge message m. That is, if f_i is the i-th function queried by A to oracle Sim_1 and $q_{[re]}$ be the number of queries A makes before outputting m, then $\Pi^m =$ $((f_1, f_1(m)), \ldots, (f_{q_{pre}}, f_{q_{pre}}(m))).$
- A makes at most q queries combined tote key generation oracle in both games.
- Sim₃ for eac queried function f_i , in the post challenge phase, makes a single query to its message oracle U_m on the same f_i itself.

Our modified security definition is as follows:

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{KeyGen}(\text{MSK},\{C_{1},\ldots,C_{d}\})}(\text{CT}) & (\text{MPK},\text{MSK}) \leftarrow \text{Setup}(1^{n},1^{q}) \\
m \leftarrow \mathcal{A}(\text{MPK},\text{SK}_{C_{1}},\ldots,\text{SK}_{C_{d}}) \\
\text{CT} \leftarrow \text{Enc}(\text{MPK},m)
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{Sim}_{3}^{U_{m}(\{C_{1},\ldots,C_{d}\})}}(\text{CT}) & (\text{MPK},\mathbf{st}_{0}) \leftarrow \text{Sim}_{0}(1^{\lambda},1^{n},q) \\
m \leftarrow \mathcal{A}^{S_{1}(\mathbf{st}_{0})}(\text{MPK},\mathbf{C}_{1},\ldots,C_{d}) \\
(\text{CT},\mathbf{st}_{2}) \leftarrow \text{Sim}_{2}(\mathbf{st}_{1},\Pi^{m})
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$(1)$$

where the admissibility constraints remain the same.

1.2 Non-malleable Bounded FE

Here, we introduce the notion of non-malleable bounded functional encryption.

We define non-malleable security of bounded functional encryption in almost the exact notion of [Pas06] for public key encryption. First, let $NM(m_1, \ldots, m_q, A)$ be a game as follows for $q = \text{poly}(\lambda)$:

- 1. $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$
- 2. $CT_1, \ldots, CT_q \leftarrow FE.Enc(MPK, m_1), \ldots FE.Enc(MPK, m_q)$
- 3. $CT'_1, \ldots, CT'_{\ell} \leftarrow \mathcal{A}(MPK, CT_1, \ldots, CT_q, 1^{|m|})$
- 4. $m_i' \leftarrow \bot$ is $CT_i = CT_j'$ for any $i \in [q], j \in [\ell]$ and $FE.Dec(SK_{identity}, c_i)$ otherwise.

Then, we say that a bounded functional encryption scheme is non-malleable if for all PPT \mathcal{A} and every PPT \mathcal{D} , there exists a negligible function negl such that for all $\{m\}_0, \{m\}_1 \in \{0,1\}^{nq}$, we have

$$\left| \mathbf{Pr}[\mathcal{D}(NM(\{m\}_0, \mathcal{A})) = 1] - \mathbf{Pr}[\mathcal{D}(NM(\{m\}_1, \mathcal{A})) = 1] \right| \le \text{negl.}$$
 (2)

As outlined in [Pas06], we can equivalently define non-mall eability in terms of a PPT recognizable relation R such that

$$\left| \mathbf{Pr} \left[NM\left(m_{1}, \dots m_{q}, \mathcal{A}(z)\right) \in \bigcup_{m \in \{m\}} R(m) \right] -$$

$$\mathbf{Pr} \left[c \leftarrow \operatorname{Sim}_{NM}(1^{n}, z); m' = \operatorname{FE.Dec}(\operatorname{SK}_{\operatorname{identity}}, c); m' \in \bigcup_{m \in \{m\}} R(m) \right] \right| \leq \operatorname{negl}(\lambda).$$
(3)

Note that in the above definition, we do not give the adversary access to any SK_{C_i} . We simply require that the scheme is public key (many message) non-malleable.

2 Using Weak Extractible Obfuscation

2.1 Graph Randomized Traversal

Say that we have a sparse, potentially exponentially sized, graph $\mathcal{G} = (V, E)$ and $\forall v \in V, \deg(v) = d$. Moreover, if the graph is a DAG, for simplicity, assume that for all v,

$$\deg^{-1}(v) = |\{u \in V \mid \exists j \in [d], \Gamma(u)_j = v\}| \le d.$$

In words, there are at most d edges into a vertex. As a note, our construction just requires that $\deg^{-1}(\cdot) = O(1)$ but for the sake of simplicity we fix $\deg^{-1}(\cdot) \leq d$.

We also require that \mathcal{G} is equipped with a neighbor function, Γ , which can be computed in polynomial time. We define a randomized and keyed labelling function $\phi : \{0,1\}^{\lambda} \times V \to \{0,1\}^{\text{poly}(\lambda)}$ such that given, $\phi(K, v_0)$ for root v_0 , an adversary, \mathcal{A} , which does not know a path from v_0 to v,

$$\Pr[\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K, v_0)) = \phi(K, v)] \le \epsilon \tag{4}$$

for function C_{Γ} where $C_{\Gamma}(\phi(K, u)) = \phi(K, \Gamma(u)_1), \dots, \phi(K, \Gamma(u)_d)$ if $\Gamma(u) \neq \emptyset$ and otherwise $\Gamma(u)$ returns a \bot string; and, \mathcal{O} represents an indistinguishable obfuscator. We fix $\epsilon \leq \mathtt{negl}(\lambda)$.

2.2 Instantiation

We define

$$\phi(K, v) = F(K, v).$$

We can now define C_{Γ} :

Algorithm 1 The circuit for the neighbor function, C_{Γ} .

```
1: function C_{\Gamma}(X, v)

2: if f(X) \neq f(F(K, v)) then

3: return \bot

4: if \Gamma(v) = \emptyset then

5: return \bot

6: u_1, \ldots u_d = \Gamma(v)

7: return F(K, u_1), F(K, u_2), \ldots, F(K, u_d)
```

We are going to show that eq. (4) holds by first showing that the non-existence of an extractor to find a path from v_0 to v implies that \mathcal{A} necessarily does not know $\phi(K,c)$ for a $c \in C_V \subset V$ where the vertices in C_V border a graph cut which separates v_0 and v. Then, we inductively build up a series of games to show that \mathcal{A} cannot learn $any \ \phi(K,v)$ for $v \in V_1$ where V_1 are the vertices on the right-hand side of the cut.

Lemma 2.1 (Base Case Game). Assuming that there is no extractor E such that $\Pr[E(\Gamma, v_0, v) = P] \ge \frac{1}{p(\lambda)}$ where $P \in \mathcal{P}$, then for any PPT \mathcal{A} , there exists some graph cut $C_E \subset E$ which separates v_0 and v and a set C_V such that

$$\mathbf{Pr}[\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K, v_0)) \in \phi(K, C_V)] \le \operatorname{negl}(\lambda). \tag{5}$$

We define $C_V \subset V$ to be

 $\{u \mid (w,u) \in C_E \text{ and } u \text{ on the side of } v\} \bigcup \{v \mid (w,u) \in C_E \text{ and } u \text{ on the side of } v\}.$

In words, C_V are the vertices just adjacent to the cut and on the same side as v.

Proof. We will show that if \mathcal{A} can break eq. (5), then we can construct an extractor, E, which finds a path from v_0 to v with non-negligible probability.

Assume that for every possible cut, \mathcal{A} is able to produce a single label in this cut for a vertex w. Then, we note that there must be at least 1 path from v_0 to w and v as otherwise, w would not be in the cut. Moreover, we note that \mathcal{A} must be able to produce a label for all vertices on at least one path from v_0 to w as otherwise, we can change the cut to include the edges between where \mathcal{A} is able to produce a label and not able to produce a label. Using the same argument, we can show that \mathcal{A} must be able to produce all labels on a path from w to v.

Note that \mathcal{A} is not given the specific cut C_E but rather C_E is chosen based off of the adversary. So, we can build an extractor to do the following:

- 1. Create an iO obfuscated circuit with a random key, K', for C_{Γ} and create circuit $\mathcal{O}(C_{\Gamma})$ as well as $\phi(K', v_0)$
- 2. Run $\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K', v_0))$ to get all labels $\phi(K', v_0), \dots \phi(K', v)$ for some path from v_0 to v.
- 3. Recreate the path from v_0 to v via checking which vertex matches to adjacent labels in the path: I.e. starting with $\ell = 0$, we can learn the $\ell + 1$ vertex via finding $j \in [d]$ such that $C_{\Gamma}(\phi(K', v_{\ell}), v_{\ell})_j \in \{\phi(K', v_0), \dots, \phi(K', v)\}$ and then setting $v_{\ell+1} = \Gamma(v_{\ell})_j$.

We can look at lemma 2.1 as a "base case" of sorts. We now inductively build up a series of games such that \mathcal{A} cannot find any label in V_1 where V_1 are the vertices on side of the cut (as defined in lemma 2.1) which contain v.

Lemma 2.2 (Inductive Game Hypothesis). Let $H \subset V$ be a "hard" set of vertices such that \mathcal{A} cannot, with non-negligible probability, produce $\phi(K,h)$ where $h \in H$. Note that the base case has $H = C_V$. Then, for any $v \notin H$ and $w \in \Gamma(h)$ for all $h \in H$, we have that

$$\mathbf{Pr}[\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, w, \phi(K, v_0)) = \phi(K, w)] < \mathit{negl}(\lambda).$$

Proof. We are going to use a series of indistinguishable hybrids along with the circuit defined in 2 to show the above

- Hyb₀: In the first hybrid, the following game is played
 - 1. $K \leftarrow \{0,1\}^{\lambda'}$ and $\phi(K,v_0) = (F(K,v_0),v)$ where K is some fixed secret drawn from a random distribution
 - 2. The challenger generates $\mathcal{O}(C_{\Gamma})$ and gives the program to \mathcal{A}
 - 3. The challenger gives the adversary w^* in plaintext.
 - 4. A outputs guess g and wins if $g = \phi(K, w^*)$
- Hyb₁: We replace C_{Γ} with $C_{\Gamma}^{w^*}$ as defined in 2. Fix the constant $z^* = f(F(K, w^*))$
- Hyb_{2,1} We replace algorithm 2 with algorithm 3 where we set $Y^* = (1, y)$ such that $\Gamma(y)_1 = w^*$. So then, we have that have $F(K, \Gamma(y)_1) = \bot$
- Hyb_{2,j} for $j \in 2, ..., \deg^{-1}(w^*)$ We replace Y^* with $Y^* \cup (j, y)$ such that $\Gamma(y)_j = w^*$. Note after the last of these hybrids, we have that $F(K, w^*)$ is always set to \bot .

• Hyb₃: Set $z^* = f(t)$ where t is chosen at random

Finally, we can note that if $Hyb_0 \stackrel{c}{\approx} Hyb_2$,

$$\mathbf{Pr}[\mathcal{A}(C_{\Gamma}, v_0, w, \phi(K, v_0)) = \phi(K, w)] \stackrel{c}{\approx} \mathbf{Pr}[\mathcal{A}(C_{\Gamma}^*, v_0, w, \phi(K, v_0)) = \phi(K, w)]$$

where z^* in C_{Γ}^* is the image on a OWF of a randomly chosen point. As we will show in lemma 2.3, lemma 2.4, and lemma 2.5, an adversaries advantage between games in Hyb_0 and Hyb_3 is at most $\epsilon/2$. Thus, if \mathcal{A} can produce $\phi(K, v) = (\sigma_v, v)$ with advantage $\epsilon/2$ in Hyb_3 , then \mathcal{A} can find a pre-image for z^* under f with non-negligible probability and thus break the security of a one way function. We then have that the advantage of the adversary in Hyb_0 cannot be more than ϵ .

Lemma 2.3. Hyb_0 and Hyb_1 are distinguishable with advantage at most $\epsilon/8$.

Proof. Note that for all inputs (z, v) to C_{Γ} as defined in algorithm 1 and algorithm 2 are equivalent and thus indistinguishable by the definition of indistinguishable obfuscation. So, if $\epsilon \in \text{poly}(\lambda)$, then an adversary cannot distinguish the hybrids with probability more than $\epsilon/8$.

Lemma 2.4. Each hybrid from Hyb_1 to $Hyb_{2,1}$ and $Hyb_{2,j-1}$ to $Hyb_{2,j}$ for $j \in 2, ..., \deg^{-1}(w^*)$ is distinguishable with advantage at most $\epsilon/(8d)$. Thus, Hyb_1 and $Hyb_{2,\deg^{-1}(w^*)}$ are distinguishable with advantage at most $\epsilon/8$.

Proof. This proof will follow very closely the simple case of weak extractible obfuscation as defined in (TODO: cite). The key idea is that if a hybrid is distinguishable with advantage more than $\epsilon/(8d)$, then \mathcal{A} can produce a label $\phi(K,h)$ for $h \in \mathcal{H}$.

First, assume towards contradiction that there exists an adversary \mathcal{A} that can distinguish two consecutive hybrids with polynomial advantage $\epsilon' > \epsilon/8d$. Following the proof sketch in (TODO: cite), say that the input size to C_{Γ} is n. Also, let C_0 be the circuit from the first hybrid and C_1 the one from the second. Let C_i^{Mid} be a circuit such that $C_i^{\text{Mid}}(X) = C_0(X)$ if $X_i = 0$ and $C_i^{\text{Mid}}(X) = C_1(X)$ if $X_i = 1$. Note that C_0 and C_1 differs on at most 1 input (which is the appended vertex y to Y^*); call this input α . Then, $C_i^{\text{Mid}} = C_0$ if $\alpha_i = 0$ and $C_i^{\text{Mid}} = C_1$ if $\alpha_i = 1$. So, if we build an adversary \mathcal{B} to tell if $C_i^{\text{Mid}} = C_0$ or C_1 with probability γ , we have that \mathcal{B} can tell if α_i is 0 or 1 with probability γ . Thus, \mathcal{B} can reconstruct α with probability at least γ^n . Note that this implies that \mathcal{B} can learn $\phi(K, y)$ where $y \in H$ by construction and thus gives our desired contradiction. So now, we just need to build \mathcal{B} to tell if $C_i^{\text{Mid}} = C_0$ or C_1 with probability $\gamma^n \geq \frac{\epsilon}{8d}$.

Then, \mathcal{A} can distinguish between C^M via the following:

- 1. Run I iterations of the following experiment to estimate advantage ϵ_b' for $b \in \{0, 1\}$
 - (a) Sample a random obfuscation of C_b via re-obfuscating the existing C_b
 - (b) Sample a random obfuscation of C_i^{Mid} via re-obfuscating C_i^{Mid}
 - (c) Have \mathcal{A} distinguish between C_b and C^{Mid}
 - (d) Output 1 if successful.

Note that we can estimate ϵ'_b as the number of successful runs, which we will denote $\sum_{j \in [I]} S_{i,j}$, divided by I.

2. If $\epsilon'_1 > \epsilon'_0$, then $C^{\text{Mid}} = C_0$, otherwise, $C^{\text{Mid}} = C_1$.

WLOG, say that $C^{\text{Mid}} = C_0$, then

$$\begin{split} \mathbf{Pr}[\epsilon_1' > \epsilon_0'] &= \mathbf{Pr}[\sum_j S_{1,j} > \sum_j S_{0,j}] \\ &\geq \mathbf{Pr}\left[\sum_j S_{1,j} > \frac{I\epsilon'}{2}\right] \cdot \mathbf{Pr}\left[\sum_j S_{0,j} < \frac{I\epsilon'}{2}\right]. \end{split}$$

We then have that

$$\mathbf{Pr}\left[\sum_{j} S_{1,j} > I\epsilon' \cdot \frac{1}{2}\right] \ge 1 - \exp\left(-\frac{I\epsilon'}{2^2 \cdot 3}\right) = 1 - \exp\left(-\frac{I\epsilon'}{96}\right). \quad \text{(by the Chernoff bound)}$$

And, if iO distinguishing advantage is at most α and $\delta = \frac{\epsilon'}{2\alpha} - 1$

$$\mathbf{Pr}\left[\sum_{j} S_{0,j} < \frac{I\epsilon'}{2}\right] = 1 - Pr\left[\sum_{j} S_{0,j} \ge (1+\delta)I\alpha\right] \ge 1 - \exp\left(-I\alpha\left(\frac{\epsilon'}{2\alpha} - 1\right)^{2} \cdot \frac{1}{3}\right)$$
(by the Chernoff bound)
$$\ge 1 - \exp\left(-\frac{I\epsilon'^{2}}{12\alpha}\right) \ge 1 - \exp\left(-\frac{I\epsilon'}{12}\right)..$$
(as $\epsilon' > \alpha$)

So we finally have that

$$\mathbf{Pr}[\epsilon_1' > \epsilon_0'] \ge 1 - \exp\left(-\frac{I\epsilon'}{12}\right) - \exp\left(-\frac{I\epsilon'}{96}\right) \ge 1 - 2\exp\left(-\frac{I\epsilon'}{96}\right). \tag{6}$$

Setting $I > \frac{\ln 2.96 \left(\ln n - \ln\left(1 - \frac{\epsilon}{8d}\right)\right)}{\epsilon'}$, we have that

$$(\mathbf{Pr}[\epsilon_1' > \epsilon_0'])^n \ge \left(1 - 2\exp\left(-\frac{I\epsilon'}{96}\right)\right)^n$$

$$\ge 1 - 2n \cdot \exp\left(-\frac{I\epsilon'}{96}\right) = 1 - 2n \cdot \exp\left(-\left(\ln n + \ln\left(1 - \frac{\epsilon}{8d}\right)\right) \cdot 2\right)$$

$$= 1 - \left(1 - \frac{\epsilon}{8d}\right) = \frac{\epsilon}{8d}$$

as desired.

Lemma 2.5. AAA

Algorithm 2 Circuit for the neighbor function, C_{Γ} with punctured PRF key $K(\{w^*\})$ and constant w^*, z^*

```
1: function C_{\Gamma}(X, v)

2: if v \neq w and f(X) \neq f(F(K, v)) then

3: return \bot

4: if v = w and f(X) \neq z^* then

5: return \bot

6: if \Gamma(v) = \emptyset then

7: return \bot

8: u_1, \ldots u_d = \Gamma(v)

9: return F(K, u_1), F(K, u_2), \ldots, F(K, u_d)
```

Algorithm 3 Circuit for the neighbor function, C_{Γ} with punctured PRF key $K(\{w^*\})$ and constant w^*, Y^*, J^*, z^*

Lemma 2.6. The game in $Hyb_1(1a)$ is indistinguishable from Hyb_0 .

Proof. As the functionality of C_{Γ} in Hyb_0 equals that of $\mathrm{Hyb}_1(1a)$, we have indistinguishable simply from the definition of indistinguishable obfuscation.

Lemma 2.7. The game in $Hyb_1(1b)$ is indistinguishable from $Hyb_1(1a)$.

Proof. Here we argue that if the game in $\mathtt{Hyb}_1(1b)$ is distinguishable from $\mathtt{Hyb}_1(1a)$, then we can construct an adversary, \mathcal{B} , which can break the security of the PRF at the punctured point.

Lemma 2.8. The game in $Hyb_1(2a)$ is indistinguishable from Hyb_0 and, by the inductive hypothesis, all previous hybrids.

Proof. Again, we have that the circuit for C_{Γ} is the same in Hyb_0 and $\mathrm{Hyb}_1(2a)$. Thus, by the definition of indistinguishable obfuscation, these games are indistinguishable.

Lemma 2.9. The game in $Hyb_1(2b)$ is indistinguishable from $Hyb_1(2a)$ and, by the inductive hypothesis, all previous hybrids.

Proof. TODO: PRF security + extractor part \Box

Abstract

References

- [GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryption from identity-based encryption. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 736–763. Springer, 2022. 1.1, 1.1
- [Pas06] Rafael Pass. Lecture 16: Non-mall eability and public key encryption, October 2006. 1.2, 1.2