

How Minds Work Working & Episodic Memory

Stan Franklin

Computer Science Division & Institute for Intelligent Systems The University of Memphis

Memory Systems

Percept

- Result of filtering in PAM
- Slipnet nodes are perceptual symbols
- Uniform representation throughout
- Includes sensory data, object recognition, categorization
- Preconscious
- May become conscious

Working Memory

- A process to the psychologists
- Includes action selection & attention
- Attention a euphemism for consciousness
- Baddeley's model of cognition
- Decays within a few tens of seconds
- Limited capacity—seven plus or minus two

Working Memory Diagram

Working Memory in the Brain

Percept to Working Memory

- Preconscious working memory buffers
- One for each sensory modality (?)
- One for binding (? Controversial)
 - May occur during perception
 - Or in the episodic buffer
- Decays over a relatively few cycles

Episodic Memory

- Memory for events
- What, where, when
- Usually assumes conscious recall, internal virtual reality
- Episodic-like memory
- Experiment with scrub jays

Transient Episodic Memory

- Memory for
 - Where I parked my car in the garage
 - What I had for lunch yesterday
- Interference affects
- Decays in humans in hours or a day

Declarative Memory

- Autobiographical Memory
- Semantic Memory
 - Memory for facts
 - Where and when have been lost
- Consolidation required
- Short and very long term

Hippocampus

- Part of limbic system
- No consolidation without it
- No encoding in transient episodic memory without it
- Clive Wearing movie

Local Associations

- Working memory contents cue
 - Transient episodic memory
 - Declarative memory
- Contents may include previous percepts
- Produces local associations in long-term working memory
- Including prior feelings and actions
- Long-term WM includes (=?) WM

SDM as Memory

- Random (vs sequential access)
 - Retrieve in equal time from any location
- Content addressable
 - Find complete contents from a part
- Associative
 - Find contents similar to a cue

Addresses in SDM

- Addresses Boolean vectors of length 1000
- Address space = B_{1000}
- Too enormous to ever implement
- Each dimension a feature, either on (1) or off (0)
- 1000 not many features

Hard Locations in SDM

- Choose 2²⁰ (~1,000,000) hard locations
- Uniformly distributed in address space
- 2²⁰ hard locations out of 2¹⁰⁰⁰ locations, ratio is 1/2⁹⁸⁰ very sparse indeed
- median distance from random location to nearest hard location is 424
- Hard locations are certainly sparse

Counters

- Each hard location has 1000 counters
- Each counter has range -40 to 40
- Takes about a gigabyte of memory
- Writing a 1 to a counter increments it;
 writing a 0 decrements it
- Write to a hard location
 — write each
 coordinate to the corresponding counter

Access Sphere

- Access sphere at some location x sphere of radius 451 centered at x
- Contains about 1000 hard locations
- To write to a location x write to each hard location in its access sphere
- Distributed representation
- Hence Sparse Distributed Memory

Reading from a Hard Location

- If the ith counter of the hard location is
 - Positive, put a 1 in the ith dimension
 - Negitive, put a 0 in the ith dimension
- This is majority rule at each dimension
- A Boolean vector of the right dimension results
- It may differ from any previously written

Reading from any Location

- Find the access circle centered at the given location
- Read at each hard location in the circle
- Majority rule over these reading
- Iterate using the result as a new location
- Stop if the itteration stabilizes

Retrieval

- Items read in (with themselves as address) can be reconstructed
- Iterated reading allows reconstruction from a partial or noisy cue
- Reconstructions may not be exact
- Interference affects occur

Dimensions as Features

- Each dimension a (primitive?) feature (perceptual symbol)
- Event a collection of features
- Local associations interpreted by PAM

Modified SDM

- Implement TEM with
 - ternary memory space (0, 1 & "don't care" [*])
 - binary address space for the hard locations
- Memory writes with partial feature-sets
- Flexible cuing with fewer features
- Missing features represented by "*"

Readings

- Read about Perceptual Symbols in
 - Barsalou, L. W. 1999. Perceptual symbol systems.
 Behavioral and Brain Sciences 22:577-609.
- Read about Working Memory in
 - Baddeley, A. D. 2000. The episodic buffer: a new component of working memory? *Trends in Cognitive Science* 4:417-423.
 - Baars, B. J., and S. Franklin. 2003. How conscious experience and working memory interact. *Trends in Cognitive Science* 7:166-172.
- Read about Transient Episodic Memory
 - Conway, M. A. 2002. Sensory-perceptual episodic memory and its context: autobiographical memory. In *Episodic Memory*, ed. A. Baddeley, M. Conway, and J. Aggleton. Oxford: Oxford University Press

Email and Web Addresses

- Stan Franklin
 - franklin@memphis.edu
 - www.cs.memphis.edu/~franklin
- "Conscious" Software Research Group
 - www. csrg.memphis.edu/

