

Chapter 3: Representing integers in C

252-0061-00 V Systems Programming and Computer Architecture

Goal:

Introduction to integer arithmetic on computers

- Recap of how numbers are represented
- Signed and unsigned values
- Integer ranges
- Integer addition and subtraction
 - In C
 - Mathematical properties
- Integer multiplication
 - In C
 - Mathematical properties
- Integer multiplication and division using shifts

3.1: Recap: Encodings and operators

Computer Architecture and Systems Programming

Representing integers

```
int A = 15213;
int B = -15213;
long int C = 15213;
```

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

A on ia32, x86-64 A on SPARC

C on ia32 C on x86-64 C on SPARC

B on ia32, x86-64 B on SPARC

Two's complement representation

Bit-level operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (using char data type):

•	~0x41 ~01000001 ₂			\rightarrow	0 xBE 10111110 ₂
•	~0x00 ~00000000 ₂			\rightarrow	0xFF 11111111 ₂
•	0x69 01101001 ₂	&	0x55 01010101 ₂	\rightarrow	0x41 01000001 ₂
•	0x69 01101001 ₂		0x55 01010101 ₂	\rightarrow	0x7D 01111101 ₂

&	Bitwise AND	
	Bitwise OR	
~	Bitwise NOT	
^	Bitwise XOR	

Contrast: Logic operations in C

- &&, | |, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type)
 - $!0x41 \rightarrow 0x00$
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 | | 0x55 \rightarrow 0x01$

&&	Logical AND
	Logical OR
!	Logical NOT

Representing & manipulating sets

• Width w bit vector represents subsets of {0, ..., w-1}

```
• a_j = 1 if j \in A:

01101001 {0, 3, 5, 6}

76543210
```

01010101

76543210

{0, 2, 4, 6}

Operator	Operation	Result	Meaning
&	Intersection	01000001	{ 0, 6 }
1	Union	01111101	{ 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Shift operations

- Left shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right
- Undefined behavior
 - Shift amount < 0 or ≥ word size

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010	
<< 3	00010 <i>000</i>	
Log. >> 2	<i>00</i> 101000	
Arith. >> 2	11 101000	

Java writes this ">>>".

Summary

- Integer encoding
- Bit-level operators
- Set representation
- Logic operators
- Shift operators

3.2: Integer ranges

Computer Architecture and Systems Programming

Encoding integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's complement

$$\sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int x = 15213;
short int y = -15213;

• A C short is 2 bytes long:

	Decimal	Hex	Binary	
X	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

- Sign bit
 - For 2's complement, most significant bit = 1 indicates negative

Numeric ranges

- Unsigned values
 - UMin = 0
 - 000...0
 - $UMax = 2^w 1$
 - 111...1

- Two's complement values
 - TMin = -2^{w-1}
 - 100...0
 - TMax = $2^{w-1} 1$
 - 011...1

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 0000000

Values for different word sizes

	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

• Observations:

- |TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Mapping signed ↔ unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed		Unsigned
0		0
1		1
2	_	2
3	←	3
4		4
5		5
6		6
7		7
-8		8
-7		9
-6	+16	10
-5		11
-4		12
-3		13
-2		14
-1		15

Conversion visualized

- 2's Comp. \rightarrow Unsigned
 - Ordering inversion
 - Negative → big positive

2's complement range

Unsigned range

Signed vs. unsigned in C

- Constants
 - By default are considered to be signed integers
 - Unsigned if have "U" as suffix:

```
0U
4294967259U
```

- Casting
 - Explicit casting between signed & unsigned same as U2T and T2U:

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

• Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```


Casting surprises in expression evaluation

- When mixing unsigned and signed in single expression, signed values implicitly cast to unsigned
 - Including comparison operators!<, >, ==, <=, >=
- Examples for W = 32:
 - TMIN = -2,147,483,648,
 - TMAX = 2,147,483,647

Constant 1	Constant 2	Relation	Evaluation
0	0 U	==	Unsigned
-1	0	<	Signed
-1	0 U	>	Unsigned
2147483647	-2147483647-1	>	Signed
2147483647U	-2147483647-1	<	Unsigned
-1	-2	>	Signed
(unsigned)-1	-2	>	Unsigned
2147483647	2147483648U	<	Unsigned
2147483647	(int) 2147483648U	>	signed

Code security example from way back (but...)

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs...

Malicious usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

/* Declaration of library function memcpy */
    void *memcpy(void *dest, void *src, size_t n);</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

Sign extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:

Sign extension example

- Converting from smaller to larger integer data type
- C automatically performs sign extension for signed values

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
у	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

Summary

- Casting signed ← unsigned
 - Bit pattern is maintained but reinterpreted
 - Can have unexpected effects: adding or subtracting 2^{w-1}
- Expression containing signed and unsigned int
 - int is cast to unsigned!
- Expanding (e.g., short int → int)
 - Unsigned: zeros added
 - Signed: sign extension
- Truncating (e.g., unsigned → unsigned short)
 - Unsigned: modulus operation
 - Signed: similar to modulus
 - For small numbers yields expected behaviour

3.3: Integer addition and subtraction in C

Computer Architecture and Systems Programming

Negation: complement & increment

Recall the following holds for 2's complement:

$$\sim x + 1 == -x$$

Complement

Observation:
$$\sim x + x == 1111...111 == -1$$

Complete proof?

Complement & increment examples

$$x = 15213$$

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
~X	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	1111111 11111111
~0+1	0	00 00	0000000 00000000

Unsigned addition

Operands: w bits

True sum: w+1 bits

Discard carry: w bits

- Standard addition function
 - Ignores carry output
- Implements modular arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u + v, & u + v < 2^{w} \\ u + v - 2^{w}, & u + v \ge 2^{w} \end{cases}$$

Visualizing (mathematical) integer addition

- 4-bit integers u, v
- Compute true sum Add₄(u , v)
- Values increase linearly with u and v
- Forms planar surface

U

Systems@ETH zurich

Visualizing unsigned addition

- Wraps around
 - If true sum $\geq 2^{w}$
 - At most once True Sum

Mathematical properties

- Modular addition forms an Abelian group
 - Closed under addition

$$0 \le UAdd_w(u, v) \le 2^w - 1$$

Commutative

$$UAdd_w(u,v) = UAdd_w(v,u)$$

Associative

$$UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v)$$

• 0 is additive identity

$$UAdd_w(u,0) = u$$

• Every element has additive inverse

Let: $UComp_w(u) = 2^w - u$

Then: $UAdd_w(u, UComp_w(u)) = 0$

Two's complement addition

- - TAdd and UAdd have identical bit-level behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v;
```

will give:

TAdd overflow

- Functionality
 - True sum requires w+1 bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's complement addition

- Values
 - 4-bit two's comp.
 - Range from -8 to +7
- Wraps around
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \end{cases}$$

(Neg. overflow)

(Pos. overflow)

Mathematical properties of TAdd

- Group isomorphic to unsigneds with UAdd
 - Since both have identical bit patterns

$$TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$$

- 2's complement under TAdd forms a group
 - Closed, commutative, associative,
 - 0 is additive identity
 - Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

3.4: Integer multiplication in C

Computer Architecture and Systems Programming

Multiplication

- Computing exact product of w-bit numbers x, y
 - Either signed or unsigned
- Ranges
 - Unsigned (up to 2W bits):

$$0 \le x * y \le (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$$

• Two's complement min (up to 2W - 1 bits):

$$x * y \ge (-2^{w-1}) * (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$$

• Two's complement max (up to 2W - 2 bits, but only for $(TMin_w)^2$):

$$x * y \le (-2^{w-1})^2 = 2^{2w-2}$$

- Maintaining exact results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

Unsigned multiplication in C

- Standard multiplication function
 - Ignores high order w bits
- Implements modular arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Unsigned multiplication with addition forms a commutative ring:

- Addition is a commutative group
- Closed under multiplication

$$0 \le UMult_w(u, v) \le 2^w - 1$$

Multiplication is commutative

$$UMult_w(u, v) = UMult_w(v, u)$$

Multiplication is associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_w(u, 1) = u$$

Multiplication distributes over addition

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Signed multiplication in C

- Standard multiplication function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Signed multiplication

- Isomorphic algebra to unsigned multiplication and addition
 - Both isomorphic to ring of integers mod 2^w

- Comparison to (mathematical) integer arithmetic
 - Both are rings
 - True integers obey ordering properties, e.g.,

$$u > 0 \Rightarrow u + v > v$$

 $u > 0, v > 0 \Rightarrow u \cdot v > 0$

• Not the case for two's complement arithmetic:

```
TMax + 1 == TMin
15213 * 30426 == -10030 (e.g. for 16-bit words)
```


3.5: Integer multiplication and division using shifts

Computer Architecture and Systems Programming

Power-of-2 multiply with shift

Operation

- u << k gives u * 2^k
- Both signed and unsigned

Operands: w bits

k

True product: w+k bits $u \cdot 2^k$

Discard k bits: w bits $UMult_w(u, 2^k)$ ••• 0 ••• 0 0 0 0 0

- Examples
 - u << 3 == u * 8
 - (u << 5) (u << 3) == u * 24
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled multiplication code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled arithmetic operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned power-of-2 divide with shift

Quotient of unsigned by power of 2

	Division	Computed	Hex	Binary
u	15213	15213	3B 6D	00111011 01101101
u >> 1	7606.5	7606	1D B6	00011101 10110110
u >> 4	950.8125	950	03 B6	00000011 10110110
u >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled unsigned division code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java users: logical shift written as >>>

Signed power-of-2 divide w/ shift

- Quotient of Signed by Power of 2
 - s >> k gives $\lfloor s/2^k \rfloor$
 - Uses arithmetic shift Operands:

 $/2^k$ 0 0 1 0 0 0 $S/2^k$ Division: Result:

k

Signed power-of-2 divide w/ shift

- Quotient of Signed by Power of 2
 - s >> k gives $\lfloor s/2^k \rfloor$
 - Uses arithmetic shift Operands:
 - Rounds wrong direction when s < 0.

Division:

Result:

0

S

 $/2^k$

 $S/2^k$

k

010

	Division	Computed	Hex	Binary
S	-15213	-15213	C4 93	11000100 10010011
s >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
s >> 4	-950.8125	-951	FC 49	1111 1100 01001001
s >> 8	-59.4257813	-60	FF C4	1111111 11000100

Binary Point

00

Correct power-of-2 divide

- Quotient of negative number by power of 2
 - We want $\lceil s/2^k \rceil$ (round toward 0)
 - We compute it as $\lfloor (s + 2^k 1)/2^k \rfloor$
 - In C: (s + (1 << k)-1) >> k
 - Biases the dividend toward 0

Correct power-of-2 divide (Cont.)

Case 2: Rounding:

k

Compiled signed division code

- Uses arithmetic shift for int
- For Java users
 - Arith. shift written as >>

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

C function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled arithmetic operations

```
test1 %eax, %eax
js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```


Summary

Signed/unsigned multiply:

$$x * 2^k = x << k$$

Unsigned divide:

$$u / 2^k = u >> k$$

• Signed divide:

$$s / 2^k = s >> k$$
 for $s > 0$
 $s / 2^k = s + (2^k - 1) >> k$ for $s < 0$

Arithmetic shift

3.6: C Integer puzzles

Computer Architecture and Systems Programming

Integer C Puzzles

- Assume 32-bit word size, two's complement integers
- Implementation defined by hardware
- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Give an example where it is not true

•
$$x < 0$$
 \Rightarrow $((x*2) < 0)$
• $ux >= 0$
• $x & 7 == 7$ \Rightarrow $(x << 30) < 0$
• $ux > -1$
• $x > y$ \Rightarrow $-x < -y$
• $x * x >= 0$
• $x > 0 & x + y > 0$
• $x >= 0$ \Rightarrow $-x <= 0$
• $x <= 0$ \Rightarrow $-x >= 0$