习题5

1

1、有一个操作系统采用多级反馈队列调度,如下图所示。其中第一级采用时间片轮转算法,时间片大小为8ms,第二级同样采用时间片轮转算法,时间片大小为16ms,第三级采用先来先服务算法。

根据下表给出的5个进程的到达时间、执行时间回答下面的问题。(时间以毫秒为单位)

进程	执行时间 达到时间	
P_{I}	50	0
P_2	10	1
P_3	5	2
P_4	30	3
P_{5}	23	4

- (1) 请画出5个进程执行的甘特图。
- (2) 根据以上的调度算法,分别计算出每个进程的周转时间和响应时间。

第一问

第二问

周转时间:

 $P_1: 112ms - 0 = 112ms$

 $P_2:55ms-1ms=54ms$

 $P_3:21ms-2ms=19ms$

 $P_4: 118ms - 3ms = 115ms$

 $P_5:86ms-4ms=82ms$

响应时间:

 $P_1 : 0ms$

 $P_2:8ms-1ms=7ms$

 $P_3: 16ms - 2ms = 14ms$

 $P_4: 21ms - 3ms = 18ms$

 $P_5: 29ms - 4ms = 25ms$

2

什么是抢占式调度? 什么是非抢占式调度? 各适用什么场合?

• 抢占式调度:

- 定义:又称剥夺方式.当一个进程正在处理机上执行时,如果有一个更重要或更紧迫的进程需要使用处理机,则立即暂停正在执行的进程,将处理机分配给更重要紧迫的那个进程。
- 。 适用场景:分时操作系统,实时操作系统
- 非抢占式调度:
 - 定义:又称非剥夺方式.只允许进程主动放弃处理机。在运行过程中即便有更紧迫的任务到达,当前进程依然会继续使用处理机,直到该进程终止或主动要求进入阻塞态。
 - 。 适用场景:早期的批处理系统

3

考虑以下的一个基于优先级(优先数高优先级低)的调度算法,此算法采用根据等待时间和运行时间对优先数进行动态老化算法,具体算法如下:

- (a)处于就绪队列中的进程的优先数 p 每等待1毫秒减2;
- (b)处于运行状态的进程的优先数 p每运行1毫秒减1;
- (c)如果 2个进程的优先级相同,先进入就绪队列的优先;
- (d) 采用抢占式调度策略。

根据下表给出的 5 个进程的到达时间、执行时间回答下面的问题。(时间以毫秒为单位)

进程	执行时间	到达时间	优先级P
P_1	5	0	8
P_2	6	1	4
P_3	3	2	6
P_4	4	3	2
P_5	2	4	10

- (1) 请画出5个进程执行的甘特图。
- (2) 根据以上的调度算法,分别计算出每个进程的周转时间和响应时间。

周转时间:

 $P_1:17ms-0ms=17ms$

 $P_2: 14ms - 1ms = 13ms$

 $P_3:18ms-2ms=16ms$

 $P_4:16ms-3ms=13ms$

 $P_5: 20ms - 4ms = 16ms$

响应时间:

 $P_1:0ms$

 $P_2:0ms$

 $P_3:8ms$

 $P_4:1ms$

 $P_5:14ms$

试比较进程调度与作业调度的不同点

作业是从用户角度出发的,它由用户提交,以用户任务为单位

进程是从操作系统出发的,由系统生成,是操作系统的资源分配和独立运行的基本单位

5

考虑下面基于动态优先权的可抢占式调度算法,大优先数表示代表高优先权。当一个进程在等待 CPU 时(在就绪队列中,但未执行),优先数以 α 速率变化;当它运行时,优先数以速率 β 变化。所有进程程在进入就绪队列时被给定优先数为0。请问:

- (a) $\beta > \alpha > 0$ 时是什么算法? 为什么?
- (b) $\alpha < \beta < 0$ 时是什么算法? 为什么?

假设就绪队列中有n个进程,为 P_1 到 P_n ,假设每个进程的运行时间均为t,假设 P_1 最先进入等待队列,其次为 P_2 , P_3 ,最后为 P_n 进入等待队列.

$$1.\beta > \alpha > 0$$

先到先服务(First-Come First-Served)调度算法

原因:

假设当前运行的进程 P_n 等待时间为 t_w ,运行了的时间为 t_r ,因此 P_n 的优先数为 $\alpha*t_w+\beta*t_r$,

此时 P_{n+1} 进程仍在等待, P_{n+1} 的优先数为 $\alpha*(t_w+t_r)$

由于 $\beta > \alpha > 0$

因此
$$\alpha * t_w + \beta * t_r > \alpha * (t_w + t_r)$$

所以在 P_n 进程运行时,到达时间在 P_n 进程后的进程的优先数均小于 P_n 进程的优先数

因此满足先到达的进程先被服务

因此为 先到先服务 调度算法

$2.\alpha < \beta < 0$

后到先服务(Last-Come First-Served)调度算法

原因:

假设当前运行的进程 P_n 等待时间为 t_w ,运行了的时间为 t_r ,因此 P_n 的优先数为 $lpha*t_w+eta*t_r$,

此时 P_{n+1} 进程仍在等待, P_{n+1} 的优先数为 $lpha*(t_w+t_r)$

由于 $\alpha < \beta < 0$

因此
$$\alpha * t_w + \beta * t_r < \alpha * (t_w + t_r)$$

因此 P_n 进程一旦开始运行,优先数就会小于 P_{n+1} 进程的优先数,导致后达到的进程的优先数均大于先到达的进程的优先数

因此满足后到达的进程先被服务

因此为 后到先服务 调度算法