Optimization & Operational Research : First Part

levgen Redko

January 2020 - Semester II

Topic of the course

Headline

- ▶ Mathematical background : Convex sets and derivatives.
- ► Convex function and their properties.
- ► What is a convex optimization problem?
- ► Algorithms for convex optimization.

Linear Algebra

► K.B Petersen, M.S Pedersen, *The Matrix Cookbook*,2012. Available at: http://matrixcookbook.com

Convex Optimization

► Stephen Boyd & Lieven Vandenberghe, *Convex Optimization*, Cambridge University Press, 2014

Mathematical Background

Given $x, y \in \mathbb{R}^n$, the inner product is given by :

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$$

The inner product of x with itself is called the square of the norm of x

$$\langle x, x \rangle = ||x||^2.$$

Definition

Let E be a \mathbb{R} -vector space, then the application $\|.\|$ is said to be a norm if for all $u,v\in E$ and $\lambda\in\mathbb{R}$

- 1. (positive) $||u|| \ge 0$,
- 2. (definite) $||u|| = 0 \iff u = 0$.
- 3. (scalability) $\|\lambda u\| = |\lambda| \|u\|$,
- 4. (triangle inequality) $||u+v|| \le ||u|| + ||v||$

Given $x, y \in \mathbb{R}^n$, the inner product is given by :

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$$

The inner product of x with itself is called the square of the norm of x

$$\langle x, x \rangle = ||x||^2.$$

Definition

Let E be a $\mathbb{R}\text{-vector}$ space, then the application $\|.\|$ is said to be a norm if for all $u,v\in E$ and $\lambda\in\mathbb{R}$

- 1. (positive) $||u|| \ge 0$,
- 2. (definite) $||u|| = 0 \iff u = 0$.
- 3. (scalability) $\|\lambda u\| = |\lambda| \|u\|$,
- 4. (triangle inequality) $||u+v|| \le ||u|| + ||v||$

Given $x, y \in \mathbb{R}^n$, the inner product is given by :

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$$

The inner product of x with itself is called the square of the norm of x

$$\langle x, x \rangle = ||x||^2.$$

Definition

Let E be a \mathbb{R} -vector space, then the application $\|.\|$ is said to be a norm if for all $u,v\in E$ and $\lambda\in\mathbb{R}$

- 1. (positive) ||u|| > 0.
- 2. (definite) $||u|| = 0 \iff u = 0$.
- 3. (scalability) $\|\lambda u\| = |\lambda| \|u\|$,
- 4. (triangle inequality) $||u+v|| \le ||u|| + ||v||$.

Given $x, y \in \mathbb{R}^n$, the inner product is given by :

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$$

The inner product of x with itself is called the square of the norm of x

$$\langle x, x \rangle = ||x||^2.$$

Definition

Let E be a \mathbb{R} -vector space, then the application $\|.\|$ is said to be a norm if for all $u, v \in E$ and $\lambda \in \mathbb{R}$

- 1. (positive) ||u|| > 0.
- 2. (definite) $||u|| = 0 \iff u = 0$.
- 3. (scalability) $\|\lambda u\| = |\lambda| \|u\|$,
- 4. (triangle inequality) ||u+v|| < ||u|| + ||v||.

5 / 108 levgen Redko OOR Course Master

The norm can be seen as distance between two vectors $\boldsymbol{x}, \boldsymbol{y}$ in the same vector space

$$\mathsf{dist}(x,y) = \|x - y\|.$$

Example of usual norms:

- $\blacktriangleright ||x||_1 = \sum_{i=1}^n |x_i| \text{ (Manhattan)}$
- $\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ (Euclidean)
- $||x||_{\infty} = \max\left(|x_1|, \dots, |x_n|\right)$
- ▶ More generally we define the norm $\|.\|_p$ for all integers p as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

The norm can be seen as distance between two vectors $\boldsymbol{x}, \boldsymbol{y}$ in the same vector space

$$\mathsf{dist}(x,y) = \|x - y\|.$$

Example of usual norms:

- $\blacktriangleright ||x||_1 = \sum_{i=1}^n |x_i| \text{ (Manhattan)}$
- $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ (Euclidean)
- $||x||_{\infty} = \max\left(|x_1|, \dots, |x_n|\right)$
- ▶ More generally we define the norm $\|.\|_p$ for all integers p as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

The norm can be seen as distance between two vectors $\boldsymbol{x}, \boldsymbol{y}$ in the same vector space

$$\mathsf{dist}(x,y) = \|x - y\|.$$

Example of usual norms:

- $\blacktriangleright ||x||_1 = \sum_{i=1}^n |x_i| \text{ (Manhattan)}$
- $\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ (Euclidean)
- $||x||_{\infty} = \max\left(|x_1|, \dots, |x_n|\right)$
- ▶ More generally we define the norm $\|.\|_p$ for all integers p as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

The norm can be seen as distance between two vectors $\boldsymbol{x}, \boldsymbol{y}$ in the same vector space

$$\mathsf{dist}(x,y) = \|x - y\|.$$

Example of usual norms:

- $\blacktriangleright \|x\|_1 = \sum_{i=1}^n |x_i| \text{ (Manhattan)}$
- $\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ (Euclidean)
- $||x||_{\infty} = \max\left(|x_1|, \dots, |x_n|\right)$
- ▶ More generally we define the norm $||.||_p$ for all integers p as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Example 1/2

We will show that the Euclidean norm is a true norm. Let $x,y\in\mathbb{R}^n$ and $\lambda\in\mathbb{R}$ then

- 1. It is obvious that $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ is positive.
- 2. As $|x_i|^2 \ge 0$ then $\sum_{i=1}^n |x_i|^2 = 0$ if and only if $\forall i, x_i = 0$
- 3. Finally,

$$\|\lambda x\|_2 = \sqrt{\sum_{i=1}^n |\lambda x_i|^2}$$

$$= \sqrt{\sum_{i=1}^n |\lambda|^2 |x_i|^2}$$

$$= |\lambda| \sqrt{\sum_{i=1}^n |x_i|^2}.$$

To prove the last point we will use the Cauchy-Schwartz Inequality:

$$\langle x, y \rangle \le ||x|| ||y||.$$

We have.

$$\begin{aligned} \|x+y\|_2^2 &= \|x\|_2^2 + 2\langle x,y\rangle + \|y\|_2^2 \\ &\leq \|x\|_2^2 + 2\|x\|_2\|y\|_2 + \|y\|_2^2 \\ &\leq (\|x\|_2 + \|y\|_2)^2 \,. \end{aligned}$$

By taking the square root, which is an increasing function, we get the result.

Unit ball for the norms $\|\|_p$ for p=1,2 and p>2

Exercise

- 1. Represent the unit ball for the norm $\|.\|_{\infty}$.
- 2. Show that $||x||_1 = \sum_{i=1}^n |x_i|$ is a norm.

Correction

- The Unit Ball using the $\|.\|_{\infty}$ is a full square.
- We have to check the four points of the definition.
 - 1. $||x||_1 = \sum_{i=1}^n |x_i| \ge 0$ by definition of the absolute value.
 - 2. $||x||_1 = \sum_{i=1}^n |x_i| \ge 0 \implies x = 0$ because the sum of positive numbers is equal to zero if and only if all the terms are equal to zero.
 - 3. $\|\lambda x\|_1 = \sum_{i=1}^n |\lambda x_i| = |\lambda| \sum_{i=1}^n |x_i| = |\lambda| \|x\|_1$.
 - 4. $||x+y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_1 + ||y||_1.$

Norms on matrices

It is also to define an inner product and a norms on matrices :

1. Given two matrices $X,Y \in \mathbb{R}^{m \times n}$ the **inner product** is defined by :

$$\langle X, Y \rangle = Tr\left(X^TY\right) = \sum_{i=1}^m \sum_{j=1}^n x_{ij} y_{ij}.$$

2. A classical norm used with matrices is the Frobenius norm:

$$||X||_F = \sqrt{Tr(X^T X)} = \left(\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2\right)^{1/2}.$$

What is the inner product of the symmetric matrices $X,Y\in\mathcal{S}^n(\mathbb{R})$?

Convex Sets

Definition

A set C is said to be convex if, for every $(u,v)\in C$ and for all $t\in [0,1]$ we have :

$$tu + (1-t)v \in C$$
.

In other words, C is said to be convex if every point on the segment connecting u and v is in the set.

Definition

A set C is said to be convex if, for every $(u,v)\in C$ and for all $t\in [0,1]$ we have :

$$tu + (1-t)v \in C.$$

In other words, C is said to be convex if every point on the segment connecting u and v is in the set.

Proposition

Let (u_1, u_2, \ldots, u_n) be a set of n points belonging to a convex set C. Then for every reel numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$:

$$v = \sum_{i=1}^{n} \lambda_i u_i \in C.$$

Definition

A set C is said to be convex if, for every $(u,v)\in C$ and for all $t\in [0,1]$ we have :

$$tu + (1-t)v \in C.$$

In other words, C is said to be convex if every point on the segment connecting u and v is in the set.

Proposition

Let (u_1, u_2, \ldots, u_n) be a set of n points belonging to a convex set C. Then for every reel numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $\sum_{i=1}^n \lambda_i = 1$:

$$v = \sum_{i=1}^{n} \lambda_i u_i \in C.$$

Every convex combination of points in a convex set is in the convex set.

Convex Sets

- 1. $\mathcal{B} = \{u \in \mathbb{R}^n \mid ||u|| \le 1\}$ is convex.
- 2. Every segment in \mathbb{R} is convex.
- 3. Every hyperplane $\{x \in \mathbb{R}^n \mid a^Tx = b\}$ is convex.
- 4. If C_1 and C_2 are two convex sets, then the intersection $C=C_1\cap C_2$ is also convex.

Examples of Convex Sets

- 1. $\mathcal{B} = \{u \in \mathbb{R}^n \mid ||u|| \le 1\}$ is convex.
- 2. Every segment in \mathbb{R} is convex.
- 3. Every hyperplane $\{x \in \mathbb{R}^n \mid a^T x = b\}$ is convex.
- 4. If C_1 and C_2 are two convex sets, then the intersection $C=C_1\cap C_2$ is also convex.

Exercise

- 1. Prove that the Fuclidean Unit Ball is convex.
- 2. (At home) Prove that a set A is convex if and only if its intersection with any line is convex.

Correction

- ullet For the first point, consider $\lambda \in [0,1]$ and u,v two vectors in the unit ball. Then set $z=\lambda u+(1-\lambda)v$. (i) take the norm of z, (ii) apply the triangle inequality and (iii) the scalability of the norm.
- Use the definition of convexity

For a convex set and a set of point $x_1, \ldots x_n$, it is possible to build a convex set. This new set is called the convex hull \mathcal{H} of a set of points

$$\mathcal{H} = \{ y = \sum_{i=1}^{n} \lambda_i x_i \mid \sum_{i=1}^{n} \lambda_i = 1 \}.$$

Derivative for real functions

Recall

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and $x_0 \in \mathbb{R}$. We say that f is differentiable at x_0 if the limit :

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h},$$

exists and is finite.

If f is continuously differentiable at x_0 , so for $h \simeq 0$ we have

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \varepsilon(h).$$

This formula (Taylor's Formula) can be generalized to a function g n-times continuously differentiable :

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^{n} \frac{h^{(i)}}{i!} f^{(n)}(x_0) + \varepsilon(h^n).$$

Definition

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a C^0 application and $x \in \mathbb{R}^m$. Then f is differentiable at x_0 if it exists $J \in \mathbb{R}^{m \times n}$ such that :

$$\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - Jf(x_0)(x - x_0)\|}{\|x - x_0\|} = 0.$$

D is called the Jacobian of the application f.

For all i, j the elements of the matrix J are given by :

$$J_{ij}f(x_0) = \left. \frac{\partial f_i(x)}{\partial x_j} \right|_{x=x_0}$$

First order derivative

Remark

Usually $f:\mathbb{R}^m\to\mathbb{R}$ so the Jacobian of the application f (also called the gradient) will be a **vector** $\nabla f(x_0)$

The gradient gives the possibility to approximate the function near the point its gradient is calculated. For all $x \in V(x_0)$ we have

$$f(x) \simeq f(x_0) + \nabla f(x_0)(x - x_0)$$

This affine approximation of the function f will help us to characterize convex functions.

First order derivative : example

Let us consider a function $f: \mathbb{R}^3 \to \mathbb{R}$ defined by

$$f(x, y, z) = 3x^2 + 2xyz + 6z + 5yz + 9xz.$$

We want to calculate the Jacobian of this function. To do so, we need to calculate : $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$. The Jacobian of f at (x, y, z) is given by :

$$J_{f(x,y,z)} = (6x + 2yz + 9z, 2xz + 5z 2xy + 6 + 5y + 9x)$$

First order derivative

Exercise

1. Let $x, y, z \in \mathbb{R}^n$. Calculate the Jacobian of the function

$$f(x, y, z) = exp(xyz) + x^2 + y + log(z).$$

2. Linear Regression. Let $Y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times d}$ and $\beta \in \mathbb{R}^d$. Calculate the derivative of the function

$$f(\beta) = \|Y - X\beta\|_2^2$$

3. Log-Sum-Exp. Let $x,b\in\mathbb{R}^n$. Calculate the derivative of the function

$$f(x) = \log \sum_{i=1}^{n} \exp(x_i + b_i)$$

Correction

• You simply have to apply the definition as it we have done in the previous example and you will have :

$$\nabla f(x,y,z) = \left(yz\exp(xyz) + 2x, xz\exp(xyz) + 1, xy\exp(xyz) + \frac{1}{z}\right).$$

• Here, you have to use the face that : $||x||^2 = \langle x, x \rangle$. Then you compute the derivative using the fact that f is defined as a product of two functions of β .

$$\nabla f(\beta) = -X^{T}(Y - X\beta) + ((Y - X\beta)^{T}(-X))^{T} = -2X^{T}(Y - X\beta).$$

 \bullet Remember that the Jacobian $\nabla_f = J_f$ is a vector where each entry i is equal to :

$$\nabla f(x)_i = \frac{\exp(x_i + b_i)}{\sum_{i=1}^n \exp(x_i + b_i)}.$$

Definition

Let $f:\mathbb{R}^m\to\mathbb{R}$ be a real function. Provided that this function is twice diffentiable, the second derivative H, (also called the Hessian)of f at x_0 is given by :

$$H_{ij}f(x_0) = \left. \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right|_{x=x_0},$$

and $H \in \mathbb{R}^{m \times m}$

Hessian is useful to prove that a function f is **convex** or not and also to build efficient algorithms.

Let us consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = 4x^2 + 6y^2 + 3xy + 2(\cos(x) + \sin(y))$$

and calculate the Hessian of this function. We first have to calculate the Jacobian of the matrix and then the Hessian.

$$J_{f(x,y)} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} 8x + 3y - 2\sin(x) & 12y + 3x + 2\cos(y) \end{pmatrix}$$

$$H_{f(x,y)} = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial^2 y} \end{pmatrix} = \begin{pmatrix} 8 - 2\cos(x) & 3 \\ 3 & 12 - 2\sin(y) \end{pmatrix}$$

Second order derivative : example

Exercise

Calculate the second order derivative of the following functions :

•
$$f(x,y) = \log(x+y) + x^2 + 2y + 4$$

•
$$f(x, y, z) = \frac{6x}{1+y} + \exp(xy) + z$$

Correction

The process is similar as in the previous example, so I only give the results.

$$H_{f(x,y)} = \left(\begin{array}{cc} \frac{\partial^2 f}{\partial^2 x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial^2 y} \end{array} \right) = \left(\begin{array}{cc} 2 - \frac{1}{(x+y)^2} & -\frac{1}{(x+y)^2} \\ -\frac{1}{(x+y)^2} & -\frac{1}{(x+y)^2} \end{array} \right)$$

$$H_{f(x,y)} = \begin{pmatrix} y^2 \exp(xy) & -\frac{6}{(1+y)^2} + (xy+1) \exp(xy) \\ -\frac{6}{(1+y)^2} + (xy+1) \exp(xy) & \frac{12x}{(1+y)^3} + x^2 \exp(xy) \\ 0 & 0 \end{pmatrix}$$

Convexity

Given a convex function $f:\mathbb{R}^n \to \mathbb{R}$ we would solve the problem :

$$\hat{x} = \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad f(x).$$

The aim of this part is to introduce algorithms building a series $(x_n)_{n\in\mathbb{N}}$ which converges to \hat{x} .

levgen Redko OOR Course Master 28 / 108

Optimization

It exists several type of optimization problem :

- ► convex optimization as presented before
- ► constraint optimization problem,
- ▶ non convex optimization problem,
- ▶ non differentiable convex optimization problem
- •

we only focus on convex optimization problem!

levgen Redko OOR Course Master 29 / 108

Why do we study them

- 1. Cornerstone in modern Machine Learning.
- 2. Convex function admit better better algorithms than classical methods (**Gradient Descent** vs **Newton's Method**.)

levgen Redko OOR Course Master 30 / 108

Convex Functions

Which of the following functions are convex graphically?

levgen Redko OOR Course Master 31/108

Convex Functions

Definition

Let \mathcal{U} be an on empty set of a vector space $(\mathcal{U}=\mathbb{R}^n)$. A function $f:\mathcal{U}\to\mathbb{R}$ is said to be convex if, for every $(u,v)\in\mathcal{U}$ and for all $t\in[0,1]$, we have :

$$f(tu + (1-t)v) \le tf(u) + (1-t)f(v).$$

- ► A linear function is convex,
- $ightharpoonup f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2,$
- $ightharpoonup f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \exp(x).$

levgen Redko OOR Course Master 32 / 108

A convex function and its chord

levgen Redko OOR Course Master 33 / 108

Convex Functions and line segment

Proposition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if and only the function g(t) = f(x + tv) is convex for all x, v such that x + tv belongs to the domain of definition of f(f is concave if and only if g is concave).

> levgen Redko OOR Course Master 34 / 108

Convex Functions

Exercise

Show that the function $F: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is convex.

Solution: we need to show
$$(tx + (1-t)y)^2 \le tx^2 + (1-t)y^2$$
.

$$\iff t^2 x^2 + 2t(1-t)xy + (1-t)^2 y^2 \le tx^2 + (1-t)y^2,$$

$$\iff (t^2 - t)x^2 + 2t(1-t)xy + ((1-t)^2 - (1-t))y^2 \le 0,$$

$$\iff t(t-1)x^2 - 2t(t-1)xy + t(t-1)y^2 \le 0,$$

$$\iff t(t-1)(x-y)^2 \le 0.$$

levgen Redko OOR Course Master 35 / 108

Convex functions

Equivalent definition

A function f is convex on \mathcal{U} if and only if its epigraph E is convex, where $E = \{(x,y) \in \mathcal{U} \mid f(x) \leq y\}.$

Epigraph is the blue domain, which is convex

levgen Redko OOR Course Master 36 / 108

Concavity

Remark

Let \mathcal{U} be an on empty set of a vector space $(\mathcal{U}=\mathbb{R}^n)$. A function $f:\mathcal{U}\to\mathbb{R}$ is said to be concave if, for every $(u,v)\in\mathcal{U}$ and for all $t\in[0,1]$, we have :

$$f(tu + (1-t)v) \ge tf(u) + (1-t)f(v).$$

If f is concave, then -f is a convex function.

The function f defined by $f(x) = \ln(x)$ is concave.

levgen Redko OOR Course Master 37 / 108

Convex Functions

- 1. Given two convex functions f and g defined on \mathcal{U} , the sum f+g is also a convex function.
- 2. If f is an increasing and convex function, q a convex function, then $f \circ q(x)$ is convex.
- 3. If f and g are convex functions, then h defined by $h(u) = \max(f(u), g(u))$ is also convex

Exercise

Prove the two first points using the definition of convexity.

OOR Course Master levgen Redko 38 / 108

Correction

1. For this one, you have to notice that (f+g)(x)=f(x)+g(x) and apply the definition of convexity

2.

$$\begin{array}{lcl} g(tx+(1-t)y)) & \leq & tg(x)+(1-t)g(y) \\ f(g(tx+(1-t)y))) & \leq & f(tg(x)+(1-t)g(y)) \\ f(g(tx+(1-t)y))) & \leq & tf(g(x))+(1-t)f(g(y)) \\ f \circ g(tx+(1-t)y) & \leq & tf \circ g(x)+(1-t)f \circ g(y) \end{array}$$

levgen Redko OOR Course Master 39 / 108

Convex Loss Functions

levgen Redko OOR Course Master 40 / 108

Proposition

Let f be a continuously differentiable function (C^1) on \mathcal{U} . Then f is convex if and only if, for all $(u,v)\in\mathcal{U}$, we have :

$$f(v) > f(u) + \nabla f(u)(v - u).$$

Equivalently if and only if, for all $(u, v) \in \mathcal{U}$, we have :

$$(\nabla f(v) - \nabla f(u))(v - u) \ge 0$$

levgen Redko OOR Course Master 41 / 108

levgen Redko OOR Course Master 42 / 108

Definition

Let f be a function of class C^2 on $\mathcal U$ and let H be its Hessian. Then f is convex if :

- $ightharpoonup
 abla^2 f(u) > 0 \text{ for all } u \in \mathcal{U}.$
- ▶ H is a positive semi definite (PSD), i.e, $\forall u \in \mathcal{U}$

$$u^T H u > 0.$$

Recall

A matrix H is PSD if and only if all of it's eigenvalues are **non-negative**

levgen Redko OOR Course Master 43 / 108

Interpretation

Positive eigenvalues imply that the gradient is an increasing function along each direction of the space

We consider a 2×2 matrix A:

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right),$$

where a,b,c,d are real numbers. We denote by λ_1,λ_2 the eigenvalues of this matrix (roots of the polynomial $\det(XI_2-A)$).

levgen Redko OOR Course Master 44 / 108

- 1. We'll show why, for a 2×2 matrix, we have the following equivalence : A is PSD $\iff Tr(A) \ge 0$ and $\det(A) \ge 0$.
- 2. We have $det(XI_2 A)) = x^2 (a + d)x + ad bc$. The roots of this polynomial are exactly the eigenvalues of the matrix A (by definition), so

$$\det(XI_2 - A) = (x - \lambda_1)(x - \lambda_2) = x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2$$

So we have, for all $x \in \mathbb{R}$:

$$x^{2} - (a+d)x + ad - bc = x^{2} - (\lambda_{1} + \lambda_{2})x + \lambda_{1}\lambda_{2}$$

3. It implies : $\lambda_1 + \lambda_2 = a + d = Tr(A)$ and $\lambda_1 \lambda_2 = ad - bc = \det(A)$.

levgen Redko OOR Course Master 45 / 108

- 1. We'll show why, for a 2×2 matrix, we have the following equivalence : A is PSD $\iff Tr(A) \geq 0$ and $\det(A) \geq 0$.
- 2. We have $det(XI_2 A)) = x^2 (a + d)x + ad bc$. The roots of this polynomial are exactly the eigenvalues of the matrix A (by definition), so

$$\det(XI_2 - A) = (x - \lambda_1)(x - \lambda_2) = x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2.$$

So we have, for all $x \in \mathbb{R}$:

$$x^{2} - (a+d)x + ad - bc = x^{2} - (\lambda_{1} + \lambda_{2})x + \lambda_{1}\lambda_{2}.$$

3. It implies : $\lambda_1 + \lambda_2 = a + d = Tr(A)$ and $\lambda_1 \lambda_2 = ad - bc = \det(A)$.

levgen Redko OOR Course Master 45 / 108

- 1. We'll show why, for a 2×2 matrix, we have the following equivalence : A is PSD $\iff Tr(A) > 0$ and $\det(A) > 0$.
- 2. We have $det(XI_2 A)) = x^2 (a + d)x + ad bc$. The roots of this polynomial are exactly the eigenvalues of the matrix A (by definition), so

$$\det(XI_2 - A) = (x - \lambda_1)(x - \lambda_2) = x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2.$$

So we have, for all $x \in \mathbb{R}$:

$$x^{2} - (a+d)x + ad - bc = x^{2} - (\lambda_{1} + \lambda_{2})x + \lambda_{1}\lambda_{2}.$$

3. It implies : $\lambda_1 + \lambda_2 = a + d = Tr(A)$ and $\lambda_1 \lambda_2 = ad - bc = \det(A)$.

levgen Redko OOR Course Master 45 / 108

1. (\Rightarrow) If the eigenvalues are positive, we immediately see that both :

$$Tr(A) > 0$$
 and $det(A) \ge 0$.

2. (\Leftarrow) Conversely, if $\det(A) \geq 0$ it means that the two eigenvalues have the same sign. Moreover, if the trace is positive then the two eigenvalues are positive.

levgen Redko OOR Course Master 46 / 108

Remark

A matrix A is said to be NSD (Negative Semi-Definite) if its eigenvalues are non-positive. A 2×2 matrix A is NSD if we have :

$$Tr(A) < 0$$
 and $det(A) \ge 0$.

levgen Redko OOR Course Master 47 / 108

Examples

- ▶ If for all i = 1, ..., n, $\lambda_i \ge 0$, then $H = \text{diag}(\lambda_i)$ is PSD.
- ▶ The function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2$ is convex.

levgen Redko OOR Course Master 48 / 108

Examples

- ▶ If for all i = 1, ..., n, $\lambda_i > 0$, then $H = \text{diag}(\lambda_i)$ is PSD.
- ▶ The function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2$ is convex.

Exercises

- ▶ Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = 2x^2 + 2xy + 2y^2$ is convex.
- ▶ Show that the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined by $f(x, y, z) = 5x^2 + 2\sqrt{2}xy + 6y^2 + 3z^2$ is convex.
- ▶ Show that the function $f: \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = \log\left(\sum_{i=1}^{N} e^{x_i}\right)$ is convex.

levgen Redko OOR Course Master 48 / 108

Correction 1/6

For the two first functions, you have to check that all the eigenvalues of the Hessian Matrix are non-negative. So you need : 1) to compute the Hessian Matrix of the given function and 2) to compute the eigenvalues of this last. Remember that the eigenvalues of a given matrix H are given by finding the roots of the following polynomial in λ :

$$det(H - \lambda I_d)$$

levgen Redko OOR Course Master 49 / 108

Correction 2/6

• For the first function, the Hessian Matrix is given by :

$$H_f(x,y) = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix},$$

The eigenvalues are then given by finding the roots of the polynom:

$$\det\left(H_f(x,y)-\lambda I_2\right)=\det\left(\begin{array}{cc}4-\lambda & 2\\ 2 & 4-\lambda\end{array}\right)=(4-\lambda)^2-2^2=(\lambda-2)(\lambda-6).$$

The eigenvalues are 2 and 6, they are non-negative so the function f is convex.

levgen Redko OOR Course Master 50 / 108

Correction 3/6

• For the second function, the Hessian Matrix is given by :

$$H_f(x,y) = \begin{pmatrix} 10 & 2\sqrt{2} & 0\\ 2\sqrt{2} & 12 & 0\\ 0 & 0 & 6 \end{pmatrix},$$

The eigenvalues are then given by finding the roots of the polynom:

$$\det \left(H_f(x,y) - \lambda I_3 \right) = \det \left(\begin{array}{ccc} 10 - \lambda & 2\sqrt{2} & 0 \\ 2\sqrt{2} & 12 - \lambda & 0 \\ 0 & 0 & 6 - \lambda \end{array} \right).$$

$$det(H_f(x,y) - \lambda I_3) = (6-\lambda)[(10-\lambda)(12-\lambda) - 8] = (6-\lambda)(\lambda - 8)(\lambda - 14).$$

The eigenvalues are 6,8 and 14, they are non-negative so the function f is convex.

levgen Redko OOR Course Master 51 / 108

Correction 4/6

• For this last function, we will use the expression of the Jacobian previously computed :

$$J_f(x) = \frac{1}{\sum_{i=1}^{n} \exp(x_i)} (\exp(x_1, ..., \exp(x_n)))$$

Then we compute the Hessian, we will seperate the diagonal terms with the non-diagonal one. For convenience, we will set $z_i = \exp(x_i)$, $Z = \sum_{i=1}^n \exp(x_i)$ and $z = (z_1, ..., z_n)$.

$$H_f(x,y)_{(i,j)} = \begin{cases} \frac{z_i Z - z_i^2}{Z^2} & if \quad i = j \\ -\frac{z_i z_j}{Z^2} & if \quad i \neq j \end{cases}$$

levgen Redko OOR Course Master 52 / 108

Correction 5/6

Using the previous notations, we can write :

$$H_f(x,y)_{(i,j)} = \frac{1}{Z}diag(z) - \frac{1}{Z^2}zz^T.$$

To proove that this function is convex, we will show that for vector $u \in \mathbb{R}^n$ we have $u^T H_f u \geq 0$.

$$u^{T}H_{f}u = \frac{1}{Z^{2}} \left(\left(\sum_{i=1}^{n} u_{i}^{2} z_{i} \right) \left(\sum_{i=1}^{n} z_{i} \right) - \left(\sum_{i=1}^{n} u_{i} z_{i} \right)^{2} \right).$$

We need to show that is expression is non-negative. For that, we use the **Cauchy-Schwarz Inequality**. So we will introduce inner product and norms.

levgen Redko OOR Course Master 53 / 108

Correction 6/6

Note that : $\sum_{i=1}^n u_i^2 z_i = \|u_i \sqrt{z_i}\|_2^2$, $\sum_{i=1}^n z_i = \|\sqrt{z_i}\|_2^2$ and $(\sum_{i=1}^n u_i z_i)^2 = \|u_i z_i\|_2^2$. So that :

$$u^T H_f u = \frac{1}{Z^2} \left(\|u\sqrt{z}\| \|\sqrt{z}\| - \langle u\sqrt{z}, \sqrt{z}\rangle^2 \right).$$

We can bound the inner product as follow:

$$\langle u\sqrt{z}, \sqrt{z}\rangle^2 < ||u\sqrt{z}|| ||\sqrt{z}||.$$

We conclude that :

$$u^T H_f u \ge 0.$$

levgen Redko OOR Course Master 54 / 108

Convex Optimization

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. We say that $u \in \mathbb{R}^n$ is a local minimum of f if it exists a neighborhood $V \subset \mathbb{R}^n$ of u such that :

$$f(u) < f(v), \quad \forall v \in V.$$

u is a global minimum of the function f if and only if :

$$f(u) \le f(v), \quad \forall v \in \mathbb{R}^n.$$

levgen Redko OOR Course Master 56 / 108

- x_1 and x_2 are two local minima of f.
- x_2 is the global minimum of the function f

levgen Redko OOR Course Master 57 / 108

Proposition: - Euler's Equation -

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function and differentiable at $u \in \mathbb{R}^n$. If u is a local minimum then we have : $\nabla f(u) = 0$.

levgen Redko OOR Course Master 58 / 108

Proposition: - Euler's Equation -

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function and differentiable at $u \in \mathbb{R}^n$. If u is a local minimum then we have : $\nabla f(u) = 0$.

Proof : In fact, using the definition : $\forall v \in \mathbb{R}^n, \exists t>0$ such that $u+tv \in V$ a neighborhood of u.

$$f(u) \leq f(u+tv) = f(u) + \nabla f(u)(tv) + tv \ \varepsilon(tv), \quad t \ll 1$$

$$\iff 0 \leq \nabla f(u)(tv) + tv \ \varepsilon(tv)$$

Dividing by t>0 and taking the limit $t\to 0$ we have $0\le \nabla f(u)v$. Same thing by replacing $v\to -v$ we have $0\le -\nabla f(u)v$. So $\forall v\in \mathbb{R}^n, \quad \nabla f(u)v=0\Rightarrow \nabla f(u)=0$.

levgen Redko OOR Course Master 58 / 108

The solution of *Euler's Equation* gives us the points where the function f reaches a local extremum (a minimum or maximum (local or global)).

Given a solution u of $\nabla f(u) = 0$, we can say that :

- u is local minimum if $\nabla^2 f(u) = H_f(u) \geq 0$, i.e. the Hessian matrix evaluated at the point u is PSD. This point is a global minimum if the function is convex everywhere or if for all $v \neq u$ we have $f(u) \leq f(v)$.
- u is local maximum if $\nabla^2 f(u) = H_f(u) \leq 0$, i.e. the Hessian matrix evaluated at the point u is NSD. This point is a global maximum if the function is concave everywhere or if for all $v \neq u$ we have f(u) > f(v).

levgen Redko OOR Course Master 59 / 108

Definition

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a continuous function and $\mathcal U$ a non empty set. We say that f has a relative minimum u if

$$f(u) \le f(v), \quad \forall v \in \mathcal{U}.$$

Proposition: - Euler's Inequality -

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function and \mathcal{U} a non empty and convex set. Furthermore, let $u \in \mathcal{U}$ be a relative minimum of f. If f is differentiable at u we have : $\nabla f(u)(v-u) > 0 \ \forall v \in \mathcal{U}$.

levgen Redko OOR Course Master 60 / 108

- Let f defined by $f(x,y) = (4-2y)^2 + 5x^2 + x + 3y + 4xy$
 - 1. Is the function f convex?
 - 2. What is the global minimum of f?
- Let f defined by $f(x,y) = 2x^2 + 4(y-2)^2 + 4x + 6y 2xy + 2y^3$.
 - 1. Is f convex?
 - 2. Give a condition on y so that f is convex.
 - 3. (Optional) For the previous condition on y, find the local minimum of f

OOR Course Master levgen Redko 61/108

$$H_{f(x,y)} = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial^2 y} \end{pmatrix} = \begin{pmatrix} 10 & 4 \\ 4 & 8 \end{pmatrix}.$$

Because f is convex, if we find (x,y) such that $\nabla f(x,y)=0$ then (x,y) is the Argmin of f.

$$J_{f(x,y)} = (10x + 4y + 1, 4x + 8y - 13) = (0,0).$$

The solution is $(x,y) = (-\frac{15}{16}, \frac{67}{32}).$

levgen Redko OOR Course Master 62 / 108

2) Same as before, we calculate the Hessian matrix :

$$H_{f(x,y)} = \left(\begin{array}{cc} 4 & -2 \\ -2 & 12y + 8 \end{array} \right).$$

We have Tr(H)=12y+12 and det(H)=48y+28. These quantities are both positie if and only if $y\geq -\frac{28}{48}=-\frac{7}{12}$. So the function is not convex on \mathbb{R}^2 , but it is on $\mathbb{R}\times[-\frac{7}{12},\infty[$.

levgen Redko OOR Course Master 63 / 108

• You have to solve the following system :

$$4x + 4 - 2y = 0,$$

$$6y^2 + 8y - 2x - 10 = 0.$$

$$4x + 4 - 2y = 0,$$

$$6y^2 + 7y - 8 = 0.$$

You solve the following system, keeping the appropriate value of \boldsymbol{y} and then you calculate $\boldsymbol{x}.$

levgen Redko OOR Course Master 64 / 108

Convex Problems

levgen Redko OOR Course Master 65 / 108

Given a vector space E and a function $f:E\to\mathbb{R}$, an optimization problem consists of solving the following problem :

$$\min_{x \in E} f(x).$$

- \bullet The function f is sometimes called the cost function (ie, cost for a company to store goods).
- ullet Most of times, we want to minimize the function f under some constraints.

levgen Redko OOR Course Master 66 / 108

Linear Regression 1/3

Let us first consider the linear regression:

• Given a response vector $Y \in \mathbb{R}^n$ and feature vectors $X = (x_1, \dots, x_n)^T, x_i \in \mathbb{R}^m$ where m + 1 < n. We'd like to find a vector β that explain the value of Y using X with the following model

$$Y = X\beta + \varepsilon$$
, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

• ε represent the error due to the model. To find the best vector β we have to minimize this error, i.e. to solve :

$$\min_{\beta \in \mathbb{R}^{m+1}} \varepsilon \|Y - X\beta\|^2$$

levgen Redko 67 / 108 OOR Course Master

Linear Regression 2/3

levgen Redko OOR Course Master 68 / 108

Linear Regression 3/3

We easily check that is problem is convex :

$$\nabla_{\beta} \varepsilon = -2X^T (Y - X\beta),$$

and

$$\nabla_{\beta}^2 = 2X^T X,$$

which is positive semi definite.

The solution given by

$$\beta = (X^T X)^{-1} X^T Y.$$

Analytic solution exists but this is not always the case

levgen Redko OOR Course Master 69 / 108 We want to find a model that predict the class of our data.

levgen Redko OOR Course Master 70 / 108

• To predict the class of the individual we use a model of the form :

$$g(x, a) = \log \left(\frac{\mathbb{P}(X \mid Y = 1)}{1 - \mathbb{P}(X \mid Y = 1)} \right) = a_0 + a_1 x_1 + \dots + a_m x_m.$$

• Solved by maximizing the (log-)likelihood of our data :

$$l(x,a) = \sum_{i=1}^{n} y_i \log(p_i) + (1 - y_i) \log(1 - p_i), \ p_i = \frac{1}{1 + \exp(-\sum_{j=1}^{m} a_j x_{ij})}.$$

No analytic solution, we need a way to approximate it step by step.

levgen Redko OOR Course Master 71 / 108

Algorithms

Setup

Given a function f and a non empty set $\mathcal U$ and knowing there is a solution to the problem : $f(u)=\min_{v\in\mathcal U}f(v).$

Idea: build a series $(u_k)_{k\in\mathbb{N}}$ which converges to u.

levgen Redko OOR Course Master 73 / 108

Given a function f and a non empty set \mathcal{U} and knowing there is a **solution** to the problem : $f(u) = \min_{v \in \mathcal{U}} f(v)$.

Idea: build a series $(u_k)_{k\in\mathbb{N}}$ which converges to u.

Algorithm:

- Take an initial value u_0 .
- $u_k \to u_{k+1}$: Choose a direction d_k and minimize the function f along this direction.
- Solve $\arg\min\,f(u_k - \rho d_k) = \rho_k$ $\rho > 0$
- $u_{k+1} = u_k \rho_k d_k$

levgen Redko OOR Course Master 73 / 108

How to choose the direction d_k ?

Some ways seem to be faster than others to reach the solution

levgen Redko OOR Course Master 74 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Change ... to initialize the election
 - set $u_{i+1} = u_i = a_i \nabla f(u_i)$ for $a_i > 0$
 - till $\|\nabla f(u_k)\| < \varepsilon$.

levgen Redko OOR Course Master 75 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Chance to initialize the algorithm
 - set $u_{n+1} = u_n o_n \nabla f(u_n)$ for $o_n > 0$
 - till $\|\nabla f(u_k)\| < \varepsilon$.

levgen Redko OOR Course Master 75 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)

levgen Redko OOR Course Master 75 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u_0 to initialize the algorithm.
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| < \varepsilon$.

levgen Redko OOR Course Master 75 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u_0 to initialize the algorithm.
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| < \varepsilon$.

levgen Redko OOR Course Master 75 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm.
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| < \varepsilon$.

levgen Redko OOR Course Master 75 / 108

1. Recall that

$$f(u_k - \rho d_k) = f(u_k) - \rho \langle \nabla f(u_k), d_k \rangle + \rho \varepsilon(\rho)$$

when ρ is close to 0

- 2. To minimize f we choose d_k that maximizes $\langle \nabla f(u_k), d_k \rangle$
- 3. Due to Cauchy-Scwhartz Inequality, we have $d_k = \nabla f(u_k)$ (assuming $||d_k|| = 1$)
- 4. Leads to the algorithm
 - Choose u₀ to initialize the algorithm.
 - set $u_{k+1} = u_k \rho_k \nabla f(u_k)$ for $\rho_k > 0$
 - till $\|\nabla f(u_k)\| < \varepsilon$.

75 / 108 levgen Redko OOR Course Master

Summing up

- 1. There exists several ways to use the gradient
- 2. We focus on gradient descent algorithms and their variants.
 - ► Gradient Descent, Line Search, Newton's Method,...

Other algorithms that do not rely on the derivatives of the function.

levgen Redko OOR Course Master 76 / 108

levgen Redko OOR Course Master 77 / 108

levgen Redko OOR Course Master 78 / 108

- If the step is too large, the sequence oscillates near the optimum.
- If the step is too small, the algorithm needs a large number of iterations.

Can choose the step for the gradient descents method optimally!

levgen Redko OOR Course Master 79 / 108

Idea : choose the step that minimizes the objective function along a given direction.

levgen Redko OOR Course Master 80 / 108

Idea : choose the step that minimizes the objective function along a given direction.

- Choose u_0 to initialize the algorithm,
- for $k = 0, 1, \ldots$ solve $\underset{\rho>0}{\arg\min} f(u_k \rho \nabla f(u_k))$,
- set $u_{k+1} = u_k \rho_k \nabla f(u_k)$
- till $\|\nabla f(u_k)\| \le \varepsilon$.

levgen Redko OOR Course Master 80 / 108

Idea: choose the step that minimizes the objective function along a given direction.

- Choose u_0 to initialize the algorithm,
- for $k = 0, 1, \ldots$ solve $\underset{\rho>0}{\arg\min} f(u_k \rho \nabla f(u_k))$,
- set $u_{k+1} = u_k \rho_k \nabla f(u_k)$
- till $\|\nabla f(u_k)\| \le \varepsilon$.

This algorithm is called the Gradient Descent with optimal step.

levgen Redko OOR Course Master 80 / 108

Definition

Let f be a convex and continuously differentiable function on \mathbb{R}^n . We say that f is strongly convex or α -elliptical if it exists $\alpha > 0$ such that

$$\langle \nabla f(v) - \nabla f(u), v - u \rangle \ge \alpha ||v - u||, \ \forall u, v \in \mathbb{R}^n$$

What can we say about
$$\langle \nabla f(u_{k+1}), \nabla f(u_k) \rangle$$
 based on $\rho_k = \operatorname*{arg\,min}_{\rho>0} f(u_k - \rho d_k)$?

OOR Course Master 81 / 108 levgen Redko

If ρ_k minimize $f(u_k - \rho_k d_k)$ we have :

$$\frac{\partial}{\partial \rho} f(u_k - \rho \nabla f(u_k))|_{\rho = \rho_k} = 0,$$

$$\iff \langle \nabla f(u_k - \rho_k \nabla f(u_k), \nabla f(u_k)) \rangle = 0,$$

$$\iff \langle \nabla f(u_{k+1}), \nabla f(u_k) \rangle = 0.$$

The last equality is called the optimality condition.

Proposition

If f is a **strongly convex** then GD with optimal step converges

OOR Course Master levgen Redko 82 / 108

Let A be a symmetric and PSD and $b \in \mathbb{R}^n$. We want to optimize

$$f(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle$$

- Calculate the gradient : $\nabla f(u_k) = Au_k b$
- We then have to solve : $\rho_k = \underset{\rho>0}{\arg\min} f(u_k \rho d_k)$. The optimality condition gives us : $\langle \nabla f(u_k), \nabla f(u_{k+1}) \rangle = 0$

$$\nabla f(u_{k+1}) = Au_{k+1} - b$$

$$= A(u_k - \rho_k(Au_k - b) - b)$$

$$= Au_k - b - \rho_k A(Au_k - b)$$

levgen Redko OOR Course Master 83 / 108

$$\Rightarrow \langle Au_k - b, Au_k - b - \rho_k A(Au_k - b) \rangle = 0$$

$$\Rightarrow \langle Au_k - b, Au_k - b \rangle = \langle Au_k - b, \rho_k A(Au_k - b) \rangle$$

$$\Rightarrow \rho_k = \frac{\langle Au_k - b, \rho_k A(Au_k - b) \rangle}{\langle Au_k - b, A(Au_k - b) \rangle}$$

We finally have the following algorithm:

- Initialize $u_0 \in \mathbb{R}^n$
- At each step, calculate $\rho_k = \frac{\|Au_k b\|^2}{\|Au_k b\|^2}$.
- Set $u_{k+1} = u_k \rho_k (Au_k b)$
- Stop if $\|\nabla J(u_{k+1})\| = \|Au_{k+1} b\| < \epsilon$

levgen Redko OOR Course Master 84 / 108

Exercise

Consider the matrices $A=\begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix}$ and $b=\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and the application fdefined by $f(v) = \langle Av, v \rangle + \langle b, v \rangle$

- 1. Explain why f in convex.
- 2. Solve the problem $u = \arg \min f(v)$.
- 3. For a given vector u_k , calculate ∇f_{uk} and ρ_k .
- 4. Implement the presented method to solve this problem.

levgen Redko OOR Course Master 85 / 108

Correction

- f is defined as a quadratic function where A is PSD, so f is convex.
- We have to solve :

$$J_{f(x,y)} = (12x + 4y + 2, 4x + 8y + 3) = (0,0).$$

The solution is
$$\left(-\frac{1}{20}, -\frac{7}{20}\right)$$
.

• Let set $u_k = (v_1, v_2)$ then :

$$\nabla f_{u_k} = \begin{pmatrix} 12v_1 + 4v_2 + 2, & 4v_1 + 8v_2 + 3 \end{pmatrix},$$

and
$$\rho_k = \frac{\|2Au_k - b\|_2^2}{\|2Au_k - b\|_A^2}$$

levgen Redko OOR Course Master 86 / 108

Exercise

Let f be the function defined by : $f(x,y) = 4x^2 - 4xy + 2y^2$.

- 1. Is the function f convex?
- 2. Apply the gradient descent with optimal step to calculate the three first steps of the algorithm using $(x_0, y_0) = (1, 1)$.

levgen Redko OOR Course Master 87 / 108

- $\bullet \text{ The function } f \text{ can be rewritten as } : f(u) = \frac{1}{2} u^T A u b^T u \text{, where } \\ b = (0,0)^T \text{ and } A = \left(\begin{array}{cc} 8 & -4 \\ -4 & 4 \end{array} \right) \text{. The function } f \text{ is a quadratic } \\ \text{function, furthermore the matrix } A \text{ is PSD so the function } f \text{ is convex.}$
- The optimal learning rate is given by :

$$\rho_k \frac{\|Au_k - b\|_2^2}{\|Au_k - b\|_2^2},$$

where the matrix A and the vector b were previously introduced.

levgen Redko OOR Course Master 88 / 108

Correction 2/3

 $\bullet \text{ The function } f \text{ can be rewritten as } : f(u) = \frac{1}{2} u^T A u - b^T u \text{, where } \\ b = (0 \ 0)^T \text{ and } A = \left(\begin{array}{cc} 8 & -4 \\ -4 & 4 \end{array} \right) \text{. The function } f \text{ is a quadratic } \\ \text{function, furthermore the matrix } A \text{ is PSD so the function } f \text{ is convex.}$

• The optimal learning rate is given by :

$$\rho_k = \frac{\|Au_k - b\|_2^2}{\|Au_k - b\|_2^2},$$

where the matrix A and the vector b were previously introduced. Recall that the process is defined by :

$$u_{k+1} = u_k - \rho_k \nabla f(u_k).$$

We will now apply this process to compute the three first iterations.

levgen Redko OOR Course Master 89 / 108

Correction 3/3

1. For the first iteration : $\rho_0=\frac{\|Au_0\|_2^2}{\|Au_0\|_A^2}=\frac{16}{128}=\frac{1}{8}.$ And $\nabla f(u_0)=Au_0=(4\ 0)^T.$

$$u_1 = (1\ 1)^T - \frac{1}{8}(4\ 0)^T = (0.5\ 1)^T.$$

2. For the second iteration : $\nabla f(u_1) = Au_1 = (0\ 2)^T$. The learning rate is given by : $\rho_1 = \frac{\|Au_1\|_2^2}{\|Au_1\|_A^2} = \frac{4}{16} = \frac{1}{4}$. Thus u_2 is given by :

$$u_2 = (0.5 \ 1)^T - \frac{1}{4}(0 \ 2)^T = (0.5 \ 0.5)^T.$$

3. For the third iteration : $\nabla f(u_2) = Au_2 = (2\ 0)^T$. The learning rate is given by : $\rho_2 = \frac{\|Au_2\|_2^2}{\|Au_2\|_A^2} = \frac{4}{32} = \frac{1}{8}$. Thus u_3 is given by :

$$u_3 = (0.5 \ 0.5)^T - \frac{1}{8}(2 \ 0)^T = (0.25 \ 0.5)^T.$$

levgen Redko OOR Course Master 90 / 108

Gradient Descent: Armijo Criterium

Idea : use a linear search to find the **learning rate**. Given a $\theta \in]0,1[$, choose the greatest ρ such that :

$$f(u_k - \rho \nabla f(u_k)) < f(u_k) - \theta \rho ||\nabla f(u_k)||^2.$$

At each step, we reduce the function's value of at least $\theta \|\nabla f(u_k)\|$.

levgen Redko OOR Course Master 91 / 108

Gradient Descent : Armijo Criterium

Idea: use a linear search to find the **learning rate**. Given a $\theta \in]0,1[$, choose the greatest ρ such that :

$$f(u_k - \rho \nabla f(u_k)) \le f(u_k) - \theta \rho ||\nabla f(u_k)||^2$$
.

At each step, we reduce the function's value of at least $\theta \|\nabla f(u_k)\|$.

Armijo's condition:

- ► Choose $\alpha_0 > 0$ and $0 < \theta < 1$.
- ▶ Choose the greatest $s \in \mathbb{Z}$ such that :

$$f(u_k - \alpha_0 2^s \nabla f(u_k)) \le f(u_k) - 2^s \alpha_0 \theta \|\nabla f(u_k)\|^2.$$

 \blacktriangleright Set $u_{k+1} \leftarrow u_k - \alpha_0 2^s \nabla f(u_k)$.

levgen Redko OOR Course Master 91 / 108

Theorem

If the function f is **strictly convex** and if its gradient ∇f is **Lipschitz**, then the Armijo's algorithm **converge**.

If we add the following condition to the previous one, given $0<\theta<\eta<1$:

$$\langle \nabla f(u_k), \nabla f(u_k - \rho \nabla f(u_k)) \rangle \ge \eta \|\nabla f(u_k)\|^2,$$

we get the Wolfe's Criteria

levgen Redko OOR Course Master 92 / 108

Conjugate Gradient

Definition

Let A be a **symmetric PD** matrix and u,v two vectors. u,v are **conjugate** with respect to A if

$$\langle Au, v \rangle = 0$$

levgen Redko OOR Course Master 93 / 108

Conjugate Gradient

Definition

Let A be a **symmetric PD** matrix and u,v two vectors. u,v are **conjugate** with respect to A if

$$\langle Au, v \rangle = 0$$

Let A be a **symmetric PD** matrix and f the function defined by

$$f(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle.$$

The objective is to build a series of conjugate descent direction

levgen Redko OOR Course Master 93 / 108

• Let $u_0 \in \mathbb{R}^n$, define a first direction of descent $d_0 = \nabla f(u_0)$ and minimize f along this direction :

$$\underset{\alpha_0}{\operatorname{arg\,min}} f(u_0 - \alpha_0 d_0).$$

• Solving this problem we get :

$$\alpha_0 = \frac{\langle \nabla f(u_0), d_0 \rangle}{\langle Ad_0, d_0 \rangle}.$$

- We set $u_1 = u_0 \alpha_0 d_0$
- To build $d_1 = \nabla f(u_1) + \beta_0 d_0$, we need to find the value of $\beta_0 \in \mathbb{R}$ such that

$$\langle Ad_1, d_0 \rangle = 0.$$

levgen Redko OOR Course Master 94 / 108

Conjugate Gradient

• We then have to solve $\langle A\nabla f(u_1), d_0 \rangle + \langle A\beta_0 d_0, d_0 \rangle = 0$. The solution is given by

$$\beta_0 = -\frac{\langle A\nabla f(u_1), d_0 \rangle}{\langle Ad_0, d_0 \rangle}.$$

Once it's done, you'll do as before.

You set
$$\alpha_1 = \arg\min_{\alpha} f(u_1 - \alpha d_1)$$
.

Set
$$u_2 = u_1 - \alpha_1 d_1$$
. And so on ...

levgen Redko OOR Course Master 95 / 108

Conjugate Gradient : Summary

Algorithm:

- \blacktriangleright Choose $u_0 \in \mathbb{R}^n$ and $d_0 = \nabla f(u_0)$.
- ▶ Set $\alpha_0 = \frac{\langle \nabla f(u_0), d_0 \rangle}{\langle Ad_0, d_0, \rangle}$ and $u_1 = u_0 \alpha_0 d_0$.
- $\beta_0 = -\frac{\langle A\nabla f(u_1), d_0 \rangle}{\langle Ad_0, d_0 \rangle}.$

For k > 1 do.

- \blacktriangleright Set $d_k = \nabla f(u_k) + \beta_{k-1} d_{k-1}$.
- ▶ Set $\alpha_k = \frac{\langle \nabla f(u_k), d_k \rangle}{\langle Ad_k, d_k, \rangle}$ and $u_{k+1} = u_k \alpha_k d_k$.
- $\blacktriangleright \text{ Set } \beta_k = \frac{\langle A\nabla f(u_{k+1}), d_k \rangle}{\langle Ad_k, d_k \rangle}$

Untill $\|\nabla f(u_{k+1})\| \leq \varepsilon$.

levgen Redko OOR Course Master 96 / 108

Conjugate Gradient: Results

Proposition

For all $1 \le k \le n$ such that $\nabla f(u_0), \dots, \nabla f(u_n)$ are non equal to zero, we have the following relations for all $0 \le l \le k-1$:

$$\langle \nabla f(u_k), \nabla f(u_l) \rangle = 0$$

and

$$\langle Ad_k, d_l \rangle = 0.$$

Theorem

If A is a symetric positive and definite matrix, then the conjugate gradient method converges with **at most** n **steps**.

Try to prove the proposition by induction at home

levgen Redko OOR Course Master 97 / 108

Newton's Method

The Newton's Method is a gradient descent algorithm that refines the direction of the descent as follows:

$$u_{k+1} \leftarrow u_k - \left(\nabla^2 f(u_k)\right)^{-1} \cdot \nabla f(u_k).$$

- Requires less iterations to converge
- Requires the inverse of the Hessian of the function we want to optimize ($\Theta(n^3)$).
- × The Hessian is not always invertible at a given point.

OOR Course Master levgen Redko 98 / 108 Let's come back to the logistic regression.

We want to find a model that predict the class of our data.

 \rightarrow An example of straight line that separate the two classes using logistic regression.

levgen Redko OOR Course Master 99 / 108

Newton's Method

For Logistic Regression, we want to maximize l(x, a) with a **possible** solution given by solving the equation :

$$\nabla_a l(x, a) = \nabla_a \left(\sum_{i=1}^n y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right) = 0,$$

where
$$p = (1 + \exp(-a^T x))^{-1}$$
.

Explain why the log-likelihood is **concave**. Calculate the **first and second derivatives** of the function *l*.

> levgen Redko OOR Course Master 100 / 108

Newton's Method

If we apply the Newton's Method to the logistic regression we have

$$\nabla_a l(x, a) = \sum_{i=1}^n (y_i - p_i) x_i, \quad \nabla_a^2 l(x, a) = -\sum_{i=1}^n p_i (1 - p_i) x_i x_i^T$$

We can then write the algorithm:

- \blacktriangleright Choose a_0 .
- ► Calculate $\nabla_a l(x,a)$ and $(\nabla_a^2 l(x,a))^{-1}$
- ▶ Set $a_{k+1} \leftarrow a_k \left(\nabla_a^2 l(x,a)\right)^{-1} \nabla_a l(x,a)$
- ▶ Stop when $\|\nabla_a l(x, a)\| < \varepsilon$.

levgen Redko 101 / 108 OOR Course Master

Quasi-Newton's Method: Motivation

Idea: avoid calculating the inverse of the Hessian matrix H_k^{-1} as follows:

$$u_{k+1} = u_k - M_k \nabla f(u_k),$$

$$M_{k+1} = M_k + C_k.$$

Approximate the H_k^{-1} by matrix M_k at which, we add a matrix of correction C_k at each step

> OOR Course Master 102 / 108 levgen Redko

Quasi-Newton's Method: Motivation

Recall that:

$$\nabla f(u_k) = \nabla f(u_{k+1} + (u_k - u_{k+1})) \sim \nabla f(u_{k+1}) + \nabla^2 f(u_{k+1})(u_k - u_{k+1}),$$

we then have :

$$(\nabla^2 f(u_{k+1}))^{-1} (\nabla f(u_{k+1}) - \nabla f(u_k)) \sim u_{k+1} - u_k.$$

If we set:

$$M_{k+1} = (\nabla^2 f(u_{k+1}))^{-1}, \ \gamma_k = \nabla f(u_{k+1}) - \nabla f(u_k)$$

and $\delta_k = u_{k+1} - u_k$, we get the Quasi Newton's Condition :

$$M_{k+1}\gamma_k = \delta_k$$

levgen Redko OOR Course Master 103 / 108

Quasi-Newton's Method: Davidon-Fletcher-Powell

- Assume C_k is of rank 1, ie, C_k as $v_k v_k^T$ where $v_k \in \mathbb{R}^n$.
- The update becomes :

$$M_{k+1} = M_k + v_k v_k^T$$

The Quasi Newton's Condition gives :

$$(M_k + v_k v_k^T) \gamma_k = \delta_k,$$

$$M_k \gamma_k + v_k v_k^T \gamma_k = \delta_k,$$

$$v_k v_k^T \gamma_k = \delta_k - M_k \gamma_k,$$

$$v_k = \frac{\delta_k - M_k \gamma_k}{v_k^T \gamma_k}.$$

And the second line gives us:

$$v_k^T \gamma_k = \left(\gamma_k \delta_k - \gamma_k M_k \gamma_k\right)^{1/2}.$$

levgen Redko OOR Course Master 104 / 108

Quasi-Newton's Method: Broyden Algorithm

Broyden Algorithm

Algorithm

- ▶ Initialize $u_0 \in \mathbb{R}^n$ and M_0 (usually $M_0 = Id$),
- \blacktriangleright for k > 0 do

▶ set
$$\rho_k = \arg\min f(u_k - \rho M_k \nabla f(u_k))$$
,

$$\blacktriangleright$$
 set $u_{k+1} = u_k - \rho_k M_k \nabla f(u_k)$,

$$\blacktriangleright \operatorname{set} M_{k+1} = M_k + \frac{(\delta_k - M_k \gamma_k)(\delta_k - M_k \gamma_k)^T}{(\delta_k - M_k \gamma_k)^T \gamma_k},$$

Untill
$$\|\nabla f(u_{k+1})\| \leq \varepsilon$$
.

105 / 108 levgen Redko OOR Course Master

Broyden-Fletcher-Goldfarb-Shanno

- Assume C_k is of rank 1, ie, C_k as $v_k v_k^T$ where $v_k \in \mathbb{R}^n$.
- The inverse of the Hessian, at each step, is then approximated by :

$$M_{k+1} = M_k + \left[1 + \frac{\langle M_k \gamma_k, \gamma_k \rangle}{\langle \delta_k, \gamma_k \rangle}\right] \frac{\delta_k \delta_k^T}{\langle \delta_k, \gamma_k \rangle} - \frac{\langle \delta_k, \gamma_k \rangle M_k + M_k \gamma_k \delta_k^T}{\langle \delta_k, \gamma_k \rangle}.$$

The algorithm is the same as the previous one.

levgen Redko OOR Course Master 106 / 108

Conclusion

- Gradient descent with a constant learning rate :
 - Easy to implement
 - Convergence depends on the value of the learning rate
- Gradient descent with an optimal step :
 - Faster then simple gradient descent
 - More costly in terms of time
- Newton's Method :
 - Faster than the two others.
 - Requires less iterations.
 - Requires to invert the Hessian matrix

levgen Redko OOR Course Master 107 / 108

To go further

- 1. A more advanced Adam algorithm (used currently for DNNs)
- 2. Projected gradient descent seen later in the course

levgen Redko OOR Course Master 108 / 108