Minimização de um AFD - Exemplo

δ	а	b
1	3	2
2	2	1
3	5	6
4	6	5
5	4	3
6	3	4

Pré-requisitos:

- AFD (ok)
- Função programa total (ok)
- Não possuir estados inacessíveis (ok)

2	X				
3	X				
4	X				
5		Х	Х	X	
6		X	X	X	
	1	2	3	4	5

Marcação direta:

- Pares não equivalentes
 - (ñ final, final) ou (final, ñ final)

 $\delta(1, a) = 3 (p_1)$ $\delta(5, a) = 4 (p_v) \rightarrow p_u \neq p_v = par \tilde{n} marcado$ ñ marcar + lista⁽¹⁾ $\delta(1, b) = 2 (p_1)$ $\delta(5, b) = 3 (p_v) \rightarrow p_v \neq p_v = par \tilde{n} marcado$ ñ marcar + lista⁽²⁾ $(q_{y}, q_{y}) = (1, 6)$ $\delta(1, a) = 3 (p_{11})$

 $\delta(6, a) = 3 (p_y) \rightarrow p_y = p_y$

ñ marcar $\delta(1, b) = 2 (p_1)$

 $\delta(6, b) = 4 (p_v) \rightarrow p_u \neq p_v = par \tilde{n} marcado$ ñ marcar + lista⁽³⁾

 $(q_{11}, q_{12}) = (2, 3)$

 $(q_{y}, q_{y}) = (1, 5)$

 $\delta(2, a) = 2 (p_1)$ $\delta(3, a) = 5 (p_v) \rightarrow p_u \neq p_v = par \in marcado!$ marcar + marcar listas (A)

 $\delta(2, b) = 1 (p_{11})$

 $\delta(3, b) = 6 (p_y) \rightarrow \text{é preciso analisar???}$

 $(q_{11}, q_{12}) = (2, 4)$

 $\delta(2, a) = 2 (p_{11})$

 $\delta(4, a) = 6 (p_y) \rightarrow p_y \neq p_y = par \in marcado!$

 $\delta(2, b) = 1 (p_{11})$

 $\delta(4, b) = 5 (p_y) \rightarrow \text{é preciso analisar???}$

Autômato resultante

Pares equivalentes: (3, 4) e (5, 6)

