	EPI	TΑ	/	nfo	S 1
--	-----	----	---	-----	------------

Name : First name :

January 2017 Group :

Final Exam of Electronics

Calculators and documents are not allowed. The number of points per question is indicative

Answers to be written on thi document only.

<u>Exercise 1</u>: MCQ (7 points – without negative points – some questions have more than one answer!)

Surround the correct answer (s).

	3471 (*	1 1			_
1.	what is an	orarerea	displacement	of electric charge	Si

a- A resistor

c- A current

b- A voltage

d- None of this

2. The going out current is lower than the going in current through the resistor.

a- True

b- False

3. A short-circuited resistor has:

- a- An infinite current flowing through it
- b- An infinite voltage across its terminals
- $\mbox{c-} \;\; \mbox{A zero current flowing through}$

it

d- None of this

4. I_1 and I_2 are two current sources. They can be replaced by one current source I if I_1 and I_2 are:

- a- In series
- b- In parallel

c- None of this

5. What is the value of the voltage U?

a- 1*V*

c- 2V

b- -1 V

d - 2 V

6. Choose the correct formula:

a-
$$I_1 = \frac{3}{5}.I$$

c-
$$I_1 = \frac{3}{4} \cdot I$$

b-
$$I_1 = \frac{I}{4}$$

$$d- I_1 = \frac{3R}{4}I$$

- 7. To turn-off a current source, we replace it by:
 - a- A wire

c- A resistor

b- An open-switch

d- A voltage source

8. To turn-off a voltage source, we replace it by:

a- A closed switch

c- An open switch

b- A resistor

d- A current source

9. What is the expression of the voltage U?

a-
$$U = \frac{E_1 + E_2}{3}$$

c-
$$U = \frac{E_1}{3} + \frac{E_2}{2}$$

d- $U = \frac{E_1 + E_2}{3R}$

b-
$$U = \frac{E_1 - E_2}{3}$$

$$d- U = \frac{E_1 + E_2}{2}$$

- 10. The Thevenin's theorem replaces a complex circuit by :
 - a- A voltage source in parallel with a resistor
 - b- A current source in parallel with a resistor
 - c- A voltage source in series with a resistor
 - d- A current source in series with a resistor
- 11. The Norton's theorem replaces a complex circuit by:
 - a- A voltage source in parallel with a resistor
 - b- A current source in parallel with a resistor
 - c- A voltage source in series with a resistor
 - d- A current source in series with a resistor
- 12. In the Thevenin's theorem, the voltage E_{th} is also called:
 - a- The voltage of the open-circuit
- c- None of this
- b- The voltage of the short-circuit

- 13. In the Norton's theorem, the current I_N is also called :
 - a- The current of the open-circuit
- c- None of this
- b- The current of the short-circuit
- 14. The Millman's theorem is base on :
 - a- The Thevenin's theorem
 - b- The loops law

- c- The nodes law
- d- The superposition's theorem

Exercise 2: The Norton's theorem (6 points)

We consider the following circuit:

- $E = 10V, I_0 = 10mA$
- $R_1=1k\Omega$, $R_2=1,2k\Omega$, $R_3=500\Omega$, $R_4=1,5\ k\Omega$, $R_5=2k\Omega$

1. Determine the Norton's generator (I_N, R_N) seen by R_2 . You can choose the method that you want (Thevenin-Norton equivalence or the Norton's theorem) and express the result function of I_0 , E and all the resistors R_i .

2. Deduce then the current flowing through R_2 .

Exercise 3: General theorems and basic methods (7 points)

We consider the following circuit:

$$E_{1} = 20 V \quad E_{2} = 5 V$$

$$E_{4} = 10 V$$

$$I_{0} = 0.25 \, mA \, R_{0} = 1 k\Omega$$

$$R_{1} = 10 \, k\Omega \, R_{2} = 50 \, k\Omega$$

$$R_{3} = 12 \, k\Omega$$

1. Express the voltage U using the method that you think is the most appropriate (the Kirchoff laws, the superposition's theorem, the Thevenin's theorem, the Norton's theorem or the

···		

2. Determine R_4 when the voltage U	is equal to 0.
DONUIC	
<u>BONUS</u>	
We consider the following circuit. Determine the voltage U using the Millman's theorem.	R_3 R_2 U R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_6 R_7 R_8 R_8 R_9