Lab #2

This lab is the first step to get farmilliar with some common Machine Learning libraries, named Pandas and Matlotlib.

· Deadline: 23:59, 18/03/2024

0. Mount Drive

from google.colab import drive
drive.mount('/content/gdrive')
%cd '/content/gdrive/MyDrive/Lab2'

Mounted at /content/gdrive
/content/gdrive/MyDrive/Lab2

1. Import libraries

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

2. Load dataset

- Load dataset (named student-dataset.csv) using read_csv from pandas
- Then, display 10 last examples

dataset = pd.read_csv("student-dataset.csv") #DataFrame
dataset.head(10)

	id	name	nationality	gender	ethnic.group	age	english.grade	math.grade	sciences.grade	language.grade	portfolio.rating	cove
0	0	Kiana Lor	China	F	NaN	22	3.5	3.7	3.1	1.0	4	
1	1	Joshua Lonaker	United States of America	М	NaN	22	2.9	3.2	3.6	5.0	5	
2	2	Dakota Blanco	United States of America	F	NaN	22	3.9	3.8	3.2	5.0	3	
3	3	Natasha Yarusso	United States of America	F	NaN	20	3.3	2.8	3.2	5.0	5	
4	4	Brooke Cazares	Brazil	F	NaN	21	3.7	2.6	3.4	1.0	4	
5	5	Rochelle Johnson	United States of America	F	NaN	21	3.4	3.1	3.7	5.0	2	
6	6	Joey Abreu	China	М	NaN	22	3.7	3.9	3.6	2.0	5	
7	7	Preston Suarez	Brazil	М	NaN	22	3.8	3.7	3.6	2.0	5	
8	8	Lee Dong	Philippines	F	NaN	24	3.9	3.6	3.2	2.0	4	
9	9	Maa'iz al-Dia	Turkey	М	NaN	22	2.4	2.8	3.8	3.0	5	

3. Show statistics of the given dataset

dataset.describe()

	id	ethnic.group	age	english.grade	math.grade	sciences.grade	language.grade	portfolio.rating	coverletter.rat
count	307.000000	0.0	307.000000	307.000000	307.000000	307.000000	307.000000	307.000000	307.000
mean	153.000000	NaN	21.964169	3.369707	3.414332	3.446580	4.396417	3.986971	4.110 ⁻
std	88.767487	NaN	1.248013	0.538724	0.476839	0.509081	0.996474	0.928749	0.823!
min	0.000000	NaN	19.000000	1.500000	2.100000	1.400000	1.000000	1.000000	1.000
25%	76.500000	NaN	21.000000	3.100000	3.100000	3.200000	4.000000	3.500000	4.000
50%	153.000000	NaN	22.000000	3.500000	3.500000	3.600000	5.000000	4.000000	4.000
75%	229.500000	NaN	23.000000	3.800000	3.800000	3.800000	5.000000	5.000000	5.000
max	306.000000	NaN	26.000000	4.000000	4.000000	4.000000	5.000000	5.000000	5.000

4. Sort dataset by *nationality*

dataset.sort_values(by="nationality")

	id	name	nationality	gender	ethnic.group	age	english.grade	math.grade	sciences.grade	language.grade	portfolio.rating
146	146	Juhaina al- Bilal	Bangladesh	F	NaN	20	3.9	3.9	3.9	5.0	
285	285	Viridiana Ballesteros	Brazil	F	NaN	22	2.8	3.5	3.9	4.0	
271	271	Jasmine Lopez	Brazil	F	NaN	21	3.8	3.8	1.5	4.0	
4	4	Brooke Cazares	Brazil	F	NaN	21	3.7	2.6	3.4	1.0	2
96	96	Mateo Cisneros	Brazil	М	NaN	23	3.0	3.4	2.9	4.0	2
147	147	Siena Ingram	United States of America	F	NaN	21	3.8	3.7	3.8	5.0	5
149	149	Vincent Webster	United States of America	М	NaN	23	2.0	3.7	3.4	5.0	2
151	151	Patrick Carnes	United States of America	М	NaN	22	2.4	3.5	3.6	5.0	3
305	305	Eliana Michelsen	United States of America	F	NaN	23	3.0	2.8	2.9	5.0	2
153	153	Jenna Whitney	United States of America	F	NaN	23	3.7	2.9	3.9	5.0	3
307 rows × 13 columns											

5. Group dataset by nationality and gender

dataset.groupby(['nationality', 'gender']).groups

{('Bangladesh', 'F'): [146], ('Brazil', 'F'): [4, 135, 180, 226, 271, 285], ('Brazil', 'M'): [7, 96, 203], ('Canada', 'F'): [111, 139, 293], ('Canada', 'M'): [18, 121, 306], ('Canada', 'other'): [104], ('Chile', 'M'): [211], ('China', 'F'): [0, 162, 189, 218, 232], ('China', 'M'): [6, 21, 24, 61, 76, 176, 194, 214], ('Colombia', 'F'): [183], ('Colombia', 'M'): [94, 185, 244, 283], ('Cuba', 'F'): [70], ('Dominican Republic', 'F'): [29], ('Egypt', 'M'): [150], ('El Salvador', 'F'): [105], ('Germany', 'F'): [128], ('India', 'F'): [35, 41, 72, 175, 198], ('India', 'M'): [172, 215, 259], ('Japan', 'F'): [15, 37, 79, 95, 164, 200, 264, 280], ('Japan', 'M'): [20, 43, 46, 97, 99], ('Korea (Republic of)', 'F'): [68, 251], ('Korea (Republic of)', 'M'): [213], ('Mexico', 'F'): [39, 49, 82, 117, 125, 140, 145, 148, 169, 188, 237, 265, 296], ('Mexico', 'M'): [13, 50, 87, 112, 141, 178, 191, 210, 236, 268], ('Mexico', 'other'): [17], ('Morocco', 'F'): [187], ('Myamar', 'F'): [85], ('Netherlands', 'F'): [190], ('Nicaragua', 'F'): [301], ('Pakistan', 'M'): [23, 59, 101], ('Peru', 'M'): [36], ('Philippines', 'F'): [8], ('Poland', 'M'): [65], ('Russian Federation', 'F'): [42, 93, 120, 134, 217], ('Russian Federation', 'M'): [177], ('Spain', 'M'): [52, 129], ('Thailand', 'F'): [230], ('United Kingdom', 'M'): [173], ('United States

of America', 'F'): [2, 3, 5, 10, 11, 16, 22, 25, 26, 28, 30, 31, 40, 44, 45, 47, 51, 53, 54, 55, 57, 60, 63, 64, 67, 69, 73, 74, 78, 84, 88, 89, 91, 92, 100, 102, 109, 110, 114, 118, 119, 126, 131, 132, 138, 142, 143, 147, 153, 154, 155, 156, 157, 158, 161, 167, 168, 181, 184, 186, 193, 205, 206, 209, 212, 216, 225, 227, 228, 229, 231, 238, 239, 241, 246, 249, 250, 255, 256, 260, 262, 266, 267, 274, 277, 279, 290, 292, 300, 303, 305], ('United States of America', 'M'): [1, 12, 14, 19, 27, 32, 33, 34, 38, 48, 56, 58, 62, 66, 71, 75, 80, 81, 83, 86, 90, 98, 103, 106, 107, 108, 113, 115, 116, 122, 123, 124, 127, 130, 133, 136, 137, 144, 149, 151, 152, 159, 160, 163, 166, 170, 174, 179, 182, 192, 195, 196, 197, 199, 201, 202, 204, 207, 208, 219, 220, 221, 222, 224, 233, 235, 242, 243, 245, 247, 248, 252, 253, 254, 257, 258, 261, 263, 269, 270, 272, 273, 275, 276, 278, 281, 282, 284, 286, 287, 288, 289, 291, 294, 295, 297, 298, 299, 302, 304], ('United States of America', 'other'): [223, 240]}

6. Use scatter plot to represent the relationship between age and refletter.rating

Rememer adding titles, xlabel, ylabel, ... to the plot

```
plt.scatter(dataset["age"], dataset["refletter.rating"], s=60, color="blue")
plt.title('Graph represent the relationship between age and refletter.rating')
plt.xlabel('x - axis')
plt.ylabel('y - axis')
plt.show()
```


7. Use scatter plot to represent the relationship between age and sciences.grade

Rememer adding titles, xlabel, ylabel, ... to the plot

```
plt.scatter(dataset["age"], dataset["sciences.grade"], s=30, color="blue")
plt.title('Graph represent the relationship between age and refletter.rating')
plt.xlabel('x - axis')
plt.ylabel('y - axis')
plt.show()
```


8. Use histogram plot to represent the distribution of Age

```
using bins=5
```

```
bins=5
plt.hist(dataset["age"], bins, color='green',histtype='bar',rwidth=0.8)
plt.xlabel('age')
plt.ylabel('No. of people')
plt.title('My histogram')
plt.show()
```


9. Create a data frame that computes the average of ages in each countries?

Hint: Use groupby, select the age column and aggregate using mean.

```
dataset.groupby(['nationality'])['age'].mean()
     nationality
     Bangladesh
                                  20.000000
                                  22.44444
     Brazil
                                 21.285714
```

Canada

```
Chile
                            21.000000
China
                           21.692308
                            21.200000
{\tt Colombia}
Cuba
                            21.000000
                           22.000000
Dominican Republic
                            20.000000
Egypt
El Salvador
                            23.000000
Germany
                           20.000000
                            21.625000
India
Japan
                           22.384615
Korea (Republic of)
                           22.000000
                            21.833333
Mexico
                            21.000000
Morocco
Myanmar
                            22.000000
Netherlands
                           21.000000
                           24.000000
Nicaragua
Pakistan
                           22.333333
Peru
                            22.000000
Philippines
                           24.000000
                           21.000000
Poland
Russian Federation
                           22.500000
Spain
                           22.500000
                            22.000000
Thailand
Tunisia
                            23.000000
Turkey
                            21.500000
                            22.000000
Ukraine
United Kingdom
                            20.500000
United States of America
                            22.020725
Name: age, dtype: float64
```

- 10. Create a dataframe including average of english.grade, math.grade,
- sciences.grade, language.grade, portfolio.rating, coverletter.rating, refletter.rating of each country

<ipython-input-11-903db137743c>:1: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecat
dataset.groupby(['nationality'])['english.grade', 'math.grade',\

		english.grade	math.grade	sciences.grade	language.grade	portfolio.rating	${\tt coverletter.rating}$	refletter.rating	
	nationality								ılı
	Bangladesh	3.900000	3.900000	3.900000	5.000000	5.000000	4.000000	5.000000	
	Brazil	3.577778	3.377778	3.055556	2.888889	4.000000	4.222222	4.333333	
	Canada	3.657143	3.014286	3.600000	5.000000	4.571429	3.857143	4.000000	
	Chile	3.700000	3.700000	4.000000	3.000000	4.000000	3.000000	5.000000	
	China	3.253846	3.784615	3.376923	3.153846	4.230769	4.230769	4.307692	
	Colombia	3.540000	3.580000	3.280000	3.200000	3.800000	4.200000	4.200000	
	Cuba	3.900000	2.800000	3.200000	3.000000	4.000000	4.000000	5.000000	
	Dominican Republic	3.400000	3.800000	4.000000	4.000000	5.000000	5.000000	5.000000	
	Egypt	1.500000	3.500000	3.200000	3.000000	3.000000	5.000000	4.000000	
	E1 0 -1 - 1 - 1	0 000000	0 000000	2 500000	0 000000	4 000000	4 000000	4 000000	
Fin	ally,								
Rem	ember renaming th	ne notebook.							
	Korea (Republic of)	3.533333	3.066667	3.200000	2.666667	3.666667	3.000000	4.000000	