MATHEMATICAL FOUNDATION-I

Note: Attempt five questions in all, selecting one question from each unit in addition to compulsory Question No. 1. All questions carry equal marks.

Que	estion	No. 1. All questions carry equal marks.	
X.	(a)	Compulsory Question Write down all subset of $\{1, 2, 3\}$	3
	(b)	Solve $\frac{d^2y}{dx^2} + 4y = 0$	
	(c)	Find n^{th} derivative of $\sin(2x + 1)$.	. 3
	(d)	Define order and degree of differential equa	tion.
	(4)		3
	-tel	Define lattice.	2
		Define Equivalence relation on set.	2
	(D)	UNIT-I	
2.	(a)	Which of the following lattices are Boo	olear
		algebras.	
	(i)	\mathbf{D}_{a}^{-}	

*	(ii)	D ₁₂	
	(iii)	D_{20}	
	(iv)	D_{99}	8
	(tb)	A polygon has 44 diagonals. Find the numb	er
		of its sides.	8
3./	(a)	Prove that $A - (B \cup C) = (A - B) \cap (A - C)$	8
	(45)	Define set, subset, Power set, compliment of	fa
		set.	8
		UNIT-II	
		7/X	
4.	(a)	Show that $\lim_{x\to 0} \frac{e^{1/x}}{e^{1/x}+1}$ does not exist.	8
	, ; ·		
	(b)	If $e^x + e^y = e^{x+y}$. Find $\frac{dy}{dx}$.	8
5.	(a)	Using $\in -\delta$ method definition prove that \cos	² X
		is a continuous function.	8
	(b)	Find n ⁱⁿ derivative of $\frac{x}{1-3x+2x^2}$	8
		UNIT-III	
6.	(a)	Find the differential equation of the system	of
		circles touching x-axis at the origin.	8
	(p)	Solve $(x^2 + y^2 + 2x) dx + 2y dy = 0$	8
7.	(a)	Solve $y.dx - (x + 2y^2) dy = 0$	
	(p)	Solve $(\tan^{-1} y - x) dy = (1 + y^2) dx$.	8
		UNIT-IV	
		d^2y	
8.	(a)	Solve $\frac{d^2y}{dx^2} + 4y = x \sin x$	8
	(r)	Solve $\frac{d^2y}{dx^2} + y = \sec x$	8
		ux	

9. (a) Solve
$$x^2 \frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = \frac{1}{(1-x)^2}$$

(b) Solve $\frac{d^2y}{dx^2} + y = \sin x \cos 2x$.