Meine Antwort zum erweiterten Wigner's Freund Gedankenexperiment

Jannis Naske

April 22, 2019

Abstract

In diesem Dokument schlage ich zwei mögliche Korrekturen zum erweiterten Wigner's Freund Gedankenexperiment von Renner und Frauchiger vor. Durch diese Verbesserungen wird der Widerspruch vernichtet, und alle drei Annahmen, (Q), (C), und (S), bleiben unverletzt. Zudem schlage ich eine Methode zur Berechnung von Messungen an einem geschachtelten Quantensystem vor, die Einsatz in der zweiten Korrektur findet.

Der erste Fehler

Im Artikel von Renner und Frauchiger wird folgendes Statement hergeleitet:

• Statement 1 by F_1 : "If I get t, I know that W_2 will measure plus"

Der Beweis, welcher benutzt wird, ist folgender(ich lasse in diesem Dokument die doppelten Symbole weg, da dies in diesem Fall redundante Information ist):

Nachdem F_1 t gemessen hat, setzt er den Spin für F_2 in die Superposition $\frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$. In der Basis $\{|+\rangle_{L_2}, |-\rangle_{L_2}\}$, mit $|+\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$, $|-\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle - \frac{1}{\sqrt{2}} |\uparrow\rangle$, ist diese Superposition dargestellt als $|+\rangle_{L_2}$, und W_2 wird somit $|+\rangle_{L_2}$ messen, und die Aussage folgt.

Jedoch wurde bei diesem Beweis weggelassen, dass die Superposition durch das Messen von W_1 verändert wird. Wenn W_1 nach Annahme $|-\rangle_{L_1} = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ misst, geht die Superposition, nach dem Artikel, in $|-\rangle_{L_1} |\uparrow\rangle = \frac{1}{\sqrt{2}} |h\rangle |\uparrow\rangle - \frac{1}{\sqrt{2}} |t\rangle |\uparrow\rangle = \left(\frac{1}{\sqrt{2}} |h\rangle - \frac{1}{\sqrt{2}} |t\rangle\right) \left(|+\rangle_{L_2} - |-\rangle_{L_2}\right) = \frac{1}{2} |h\rangle |+\rangle_{L_2} - \frac{1}{2} |t\rangle |+\rangle_{L_2} - \frac{1}{2} |h\rangle |-\rangle_{L_2} + \frac{1}{2} |t\rangle |-\rangle_{L_2}$ über. Es ist also doch möglich, dass $W_2 |t\rangle |-\rangle_{L_2}$ misst, und Statement 1 stellt sich als falsch heraus.

Zum Schluss misst W_2 nach Annahme noch $|-\rangle_{L_2}$, und der Zustand geht in $\frac{1}{\sqrt{2}}|t\rangle\,|-\rangle-\frac{1}{\sqrt{2}}|h\rangle\,|-\rangle=\frac{1}{2}|t\rangle\,|\downarrow\rangle-\frac{1}{2}|t\rangle\,|\uparrow\rangle-\frac{1}{2}|h\rangle\,|\downarrow\rangle+\frac{1}{2}|h\rangle\,|\uparrow\rangle$ über.

Der zweite Fehler

Da das Statement 1 nicht mehr gilt, verschwindet die sich widersprechende Aussage aus dem ursprünglichen Bericht. Jedoch gibt es noch ein Problem. Oben haben wir den Zustand $\frac{1}{2}|t\rangle|\downarrow\rangle-\frac{1}{2}|t\rangle|\uparrow\rangle-\frac{1}{2}|h\rangle|\downarrow\rangle+\frac{1}{2}|h\rangle|\uparrow\rangle$ als Schlusszustand hergeleitet, worauf die Korrektur des ersten Fehlers keinen Einfluss hat. Wenn aber in diesem Zustand in den Standardbasen gemessen wird, ist es möglich, den Zustand $|h\rangle|\uparrow\rangle$ zu messen. Dies scheint aber aus der Perspektive von F_1 nicht möglich zu sein; Wenn er $|h\rangle$ misst, wird er das Qubit, dass er dann an F_2 weiterleitet, in den Zustand $|\downarrow\rangle$ versetzen. Ist dies ein anderer Widerspruch? Um diese Frage zu beantworten, betrachten wir zuerst ein simpleres Problem, und wenden dann unsere Erkenntnis auf das Ursprüngliche Problem an.

Der Aufbau des Experiments ist in Bild 1.1 dargestellt. Q_1 und Q_2 stellen Quantenbits dar, der Freund, F, befindet sich mit den Bits in einer Isolation, die dann von Wigner, W, gemessen wird. Q_1 kann die Zustände $|t\rangle$, $|h\rangle$ annehmen, und Q_2 $|\downarrow\rangle$, $|\uparrow\rangle$. Eine Umrandung um Elemente bedeutet, dass die Umrandung isoliert ist, der Inhalt sich also in eine Superposition versetzen lässt. Die Ellipse um Q_1 verdeutlicht hierbei, dass Q_1 von F gemessen wird. Es werden die gleichen Messregeln wie im originalen Artikel angewendet. Der Plan läuft wie folgt ab:

- Schritt 1: F setzt Q_1 in eine Superposition $\frac{1}{\sqrt{2}}|h\rangle + \frac{1}{\sqrt{2}}|t\rangle$.
- Schritt 2: F misst Q_1 . Ist das Ergebnis $|h\rangle$, setzt er Q_2 als $|\downarrow\rangle$, sonst setzt er Q_2 als $|\uparrow\rangle$.
- Schritt 3: W misst sein Labor in der Basis $\{|+\rangle, |-\rangle\}$, mit $|+\rangle = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ und $|-\rangle = \frac{1}{\sqrt{2}} |h\rangle \frac{1}{\sqrt{2}} |t\rangle$.

Nach Schritt 2 hat das Labor von W den Zustand $\frac{1}{\sqrt{2}}\ket{h}\ket{\downarrow}+\frac{1}{\sqrt{2}}\ket{t}\ket{\uparrow}=$ $\frac{1}{2} |+\rangle |\downarrow\rangle + \frac{1}{2} |-\rangle |\downarrow\rangle + \frac{1}{2} |+\rangle |\uparrow\rangle - \frac{1}{2} |-\rangle |\uparrow\rangle. \text{ Wir nehmen nun an dass } W |-\rangle$ misst. Der Endzustand lautet: $\frac{1}{\sqrt{2}} |-\rangle |\downarrow\rangle - \frac{1}{\sqrt{2}} |-\rangle |\uparrow\rangle = \frac{1}{2} |h\rangle |\downarrow\rangle - \frac{1}{2} |t\rangle |\downarrow\rangle - \frac{1}{2} |t\rangle |\downarrow\rangle - \frac{1}{2} |t\rangle |\downarrow\rangle - \frac{1}{2} |t\rangle |\downarrow\rangle$ $\frac{1}{2}|h\rangle|\uparrow\rangle+\frac{1}{2}|t\rangle|\uparrow\rangle$. Auch hier sehen wir, dass aus Sicht von F die Werte $|t\rangle|\downarrow\rangle$ und $|h\rangle |\uparrow\rangle$ nicht in Frage kommen. Wie kann es aber sein, dass unsere Berechnungen zu so einer Wahrscheinlichkeitsverteilung führen? Meine Behauptung: Die Annahmen, die wir bei der Berechnung beim Messen machen, sind falsch. Wir betrachten bei unserer Annahme ein Quantenregister mit zwei Qubits, im Zustand $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle + \frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle$, siehe Bild 1.2. W misst hier das Quantenregister, welches in einer Superposition ist. Dieses Modell entspricht aber nicht der wirklichen Situation! Im richtigen Modell haben wir ein geschachteltes System: Q_2 ist ein Qubit im Labor von F, welches im Labor von W ist(wobei Q_2 nicht unbedingt isoliert sein muss, da es nicht in eine Superposition gesetzt wird; Hier würde auch ein normales Bit ausreichen). Die Schachtelung entsteht dadurch, dass F auch eine Messungen durchführt, aber F's Handlungen selber nur eine Superposition im Labor von W sind. Um die Superposition richtig zu messen, schlage ich vor, das zweite Qubit bei der Berechnung zu ignorieren, und es nachher wieder richtig einzufügen. Die physikalische Interpretation wäre hierbei, dass wir die Isolation zu F's Labor zerbrechen, aber nicht die Isolation zwischen F's Labor und Q_2 . Konkret bedeutet das mathematisch: Wir stellen den Zustand nach Schritt 2, $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle + \frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle$, so dar, dass wir Q_2 entfernen: $\frac{1}{\sqrt{2}}|h\rangle + \frac{1}{\sqrt{2}}|t\rangle = |+\rangle$. W wird nun ausschliesslich $|+\rangle$ messen. Wir schreiben nun $|+\rangle$ in der Standardbasis, und fügen Q_2 wieder hinzu, und erhalten wieder: $\frac{1}{\sqrt{2}}|h\rangle|\downarrow\rangle + \frac{1}{\sqrt{2}}|t\rangle|\uparrow\rangle$. Ich rechtfertige diesen Schritt dadurch, dass das Setzen von Q_2 prinzipiel keinen Einfluss auf das Gesamtsystem hat, da Q_2 nicht in eine Superposition gesetzt wird. Das Ergebnis muss also das Gleiche sein wie das Ergebnis wenn Q_2 aus dem Experiment entfernen. Dies ist zwar ein schlechtes Beispiel, da in diesem Fall das Messen keine Änderung am System bewirkt, in unserer Anwendung beim erweiterten Wigner's Freund Gedankenexperiment, weiter unten, wird dies eine Änderung bewirken.

1.1: Situation des simplen Problems

1.2: Wie das Problem fälschlicherweise gemessen wird

Nun zum erweiterten Wigner's Freund Gedankenexperiment. Zuerst schlage ich aber noch eine Vereinfachung des Gedankenexperiments vor: Die Aufgaben von W_1 und W_2 lassen sich auf eine einzelne Person, W, übertragen, da sich W_1 und W_2 selber nicht in einer Superposition befinden und in der gleichen Umgebung sind. Dies wird auch in den Abbildungen so sein. Im Artikel wird das Modell ähnlich grafisch dargestellt wie in Abbildung 2.1. Messtechnisch gesehen ist es aber korrekter das Modell darzustellen wie in Abbildung 2.2. Mein Argument dafür ist folgendes: F_1 misst das Zufallsbit Q_1 , und prepariert Q_2 entsprechend nach dem Ergebnis der Messung von Q_1 , bevor Q_2 zu F_2 verschickt wird. Um aber das Qubit nach F_2 zu schicken, darf F_2 erst isoliert werden, wenn F_2 das Qubit empfangen hat. Da aus W's Sicht das Ganze aber in einer Superposition geschehen muss, muss die Isolation von F_2 im Labor von F_1 stattfinden. Praktisch sähe dies so aus, dass F_1 das Qubit Q_2 zusammen mit F_2 in F_1 's Labor isoliert, und dass dann F_2 innerhalb der Isolation Q_2 misst. Anschaulicher lässt sich dies mit einem Quantencomputer darstellen: Man misst ein Quantenbit in einer Superposition, und übergibt das Resultat zusammen mit dem Programm(oder sonst das Programm dem Resultat anpassen), und der Quantencomputer führt in Isolation das Programm aus.

Da wir nun das Modell geschachtelt dargestellt haben, können wir unsere Erkenntnis aus dem simpleren Problem darauf anwenden. Ich starte die Analyse kurz vor t_2 im Originaldokument, also kurz bevor W_1 seine Messung durchführt.

• Vor t_2 : Der Zustand ist gleich wie im Originaldokument: $\frac{1}{\sqrt{3}} |h\rangle |\downarrow\rangle + \sqrt{\frac{2}{3}} |t\rangle \left(\frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle\right)$

- 2.1: Wie das Gedankenexperiment dargestellt wird
- 2.2: Wie das Gedankenexperiment logisch dargestellt werden sollte
- t_2 : W_1 misst nun das Labor von F_1 in der basis $\left\{ |+\rangle_{L_1} , |-\rangle_{L_1} \right\}$. Wie im simpleren Beispiel entfernen wir zuerst Q_2 : $\frac{1}{\sqrt{3}} |h\rangle + \sqrt{\frac{2}{3}} |t\rangle = \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}} \right) |+\rangle_{L_1} + \left(-\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}} \right) |-\rangle_{L_1}$. Nach Annahme, wie im Originaldokument, misst $W_1 |-\rangle_{L_1}$, was $\frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ entspricht. Nun fügen wir Q_2 wieder zu dem richtigen Summanden hinzu: $\frac{1}{\sqrt{2}} |h\rangle |\downarrow\rangle + \frac{1}{\sqrt{2}} |t\rangle \left(\frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle \right) = \frac{1}{\sqrt{2}} |h\rangle |\downarrow\rangle + \frac{1}{2} |t\rangle |\downarrow\rangle + \frac{1}{2} |t\rangle |\uparrow\rangle$.
- t_3 : W_2 misst nun das Labor von F_1 in der basis $\left\{ |+\rangle_{L_2}, |-\rangle_{L_2} \right\}$. Wir entfernen nun aus $\frac{1}{\sqrt{2}} |h\rangle |\downarrow\rangle + \frac{1}{2} |t\rangle |\downarrow\rangle + \frac{1}{2} |t\rangle |\uparrow\rangle = \left(\frac{2}{\sqrt{6}} |h\rangle + \frac{1}{\sqrt{3}} |t\rangle\right) \frac{\sqrt{3}}{2} |\downarrow\rangle + \frac{1}{2} |t\rangle |\uparrow\rangle$ dasmal Q_1 : $\frac{\sqrt{3}}{2} |\downarrow\rangle + \frac{1}{2} |\uparrow\rangle = \frac{1}{4} (\sqrt{2} + \sqrt{6}) |+\rangle_{L_2} + \frac{\frac{\sqrt{3}}{2} \frac{1}{2}}{\sqrt{2}} |-\rangle_{L_2}$. Wieder nach Annahme misst $W_2 |-\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle \frac{1}{\sqrt{2}} |\uparrow\rangle$. Wir fügen nun wieder Q_1 hinzu, worauf das Endergebnis $\left(\frac{2}{\sqrt{6}} |h\rangle + \frac{1}{\sqrt{3}} |t\rangle\right) \frac{1}{\sqrt{2}} |\downarrow\rangle \frac{1}{\sqrt{2}} |t\rangle |\uparrow\rangle = \frac{1}{\sqrt{3}} |h\rangle |\downarrow\rangle \frac{1}{\sqrt{6}} |t\rangle |\downarrow\rangle \frac{1}{\sqrt{2}} |t\rangle |\uparrow\rangle$ lautet.

Man sieht jetzt, dass $|h\rangle |\uparrow\rangle$ nicht mehr gemessen werden kann, das Problem ist also behoben. Ich muss aber anmerken, dass ich zum jetztigen Zeitpunkt(als ich das Dokument geschrieben habe) nicht weiss ob die Messmethode, die ich hier eingeführt habe, schonmal eingeführt wurde, oder sogar gebräuchlich ist.

Referenzen

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143649/
- https://en.wikipedia.org/wiki/Wigner%27s_friend
- https://link.springer.com/book/10.1007/978-3-658-10455-9