UNIVERSITÉ D'ORLÉANS

Informatique

M1 Info Année **2012 - 2013**

Série de Travaux Dirigés : 2 - PRAM

Exercice 1. Translation

Proposer un algorithme PRAM qui étant donné un tableau de valeurs t de taille n, trouve le minimum m de ce tableau puis calcul les valeurs d'un tableau t' tel que pour tout $i \in [0, n-1]$, t'[i] = t[i] - m. Donner la complexité PRAM de votre algorithme.

Exercice 2. Statistique

On considère une suite finie de n nombres réels x_i , $1 \le i \le n$. Ces données sont stockées dans un tableau D de taille n en mémoire partagée.

1. Écrire un algorithme PRAM pour calculer la statistique

$$\sum_{i=1}^{n} (x_i - \bar{X})^2$$

où \bar{X} désigne la moyenne des x_i .

2. Donner la complexité de votre algorithme

Exercice 3. Centre de gravité

Soient deux tableaux X et Y de taille n contenant des flottants positifs et placés dans la mémoire d'une machine PRAM. La paire (X[i],Y[i]) représente un point dans le plan par ses coordonnées. Donnez un algorithme PRAM dont l'effet est de déplacer chacun des n points de 10% de sa distance vers le centre de gravité des n points. Le déplacement s'effectue par affectation dans les tableaux X et Y. Vous devez supposer que n>p le nombre de processeurs et que n est un multiple de p. Donnez la complexité de votre algorithme.

Exercice 4. Multiplication de matrices

Le but de cet exercice est d'écrire un algorithme PRAM pour la multiplication de matrices. On dispose de deux matrices A et B carrées $n \times n$ qui sont stockées en mémoire globale sous la forme de deux tableaux de dimension 2, chaque dimension étant indicée par les entiers de 1 à n. Après exécution de l'algorithme, le tableau C de même caractéristiques que les deux tableaux A et B devra contenir la matrice produit de A par B. Les deux tableaux A et B n'auront pas dû être modifiés.

- 1. Écrire un algorithme PRAM pour résoudre ce problème.
- 2. Donner la complexité de votre algorithme.
- 3. Sur quel type de PRAM cet algorithme peut-il être exécuté ?
- 4. Modifier votre algorithme pour qu'il puisse tirer avantage d'une PRAM CRCW. Précisez quel type de CRCW vous utilisez.

 $\mathbf{Rappels}$: les coefficients de la matrices C sont définis par :

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

Indications : Utilisez n^3 processeurs et un tableau auxiliaire de dimension 3, chaque dimension étant indicée par les entiers de 1 à n. Considérez que les processeurs sont désignés par un triplet (i,j,k) d'entiers compris entre 1 et n.

Exercice 5. Sans répétition

Soit un tableau de n entiers $E(1), \dots, E(n)$ dans la mémoire d'une machine PRAM CREW de p=n processeurs et une fonction f des entiers dans les entiers.

- 1. Définissez un algorithme parallèle dont l'effet est de rendre un tableau S(1),...,S(k) contenant les E(i) pour lesquels f(E(i)) est pair, en ordre croissant de i et sans répétition. La valeur de k n'est pas connue à l'avance.
- 2. Donnez la complexité en temps de votre algorithme.

Exercice 6. Filtre

Proposer un algorithme PRAM qui étant donné :

- un tableau t de taille n,
- et une fonction p sur les éléments de t qui indique si l'élément donné en paramètre vérifie une certaine propriété P,

renvoie un tableau t' (de taille à déterminer dans l'algorithme) ne contenant que les éléments de t (dans le même ordre que dans le tableau t) qui vérifient la propriété P.

Donner la complexité PRAM de votre algorithme.

Exercice 7. Polynômes

Soit le problème de calcul suivant. On dispose en entrée de deux polynomes q(x), r(x) de degré n représentés comme des tableaux "pleins" (incluant les éventuels zéros) de coefficients en ordre croissant des puissances. Par exemple le polynôme $q(x)=5x^4-4x^2+2$ sera donné comme $T_q=[|2;0;-4;0;5|]$ c'est-à-dire $T_q[0]=2$, $T_q[1]=0$ etc. Il faut calculer le polynome q(x)*r(x) représenté lui aussi comme tableau plein.

- 1. Donnez un algorithme PRAM maximalement parallèle pour ce problème, puis son ordre de complexité en temps et en processeurs.
- 2. Donnez un algorithme PRAM par blocs pour ce même problème, utilisant p < n processeurs où p divise n, puis sa complexité en temps.

Exercice 8. Tri par insertion

Le but est d'écrire un algorithmes PRAM de tri d'un tableau E d'entiers de longueur n. La version séquentielle du tri par insertion est donnée par l'algorithme suivant :

```
for i from 1 to n do
   p = 1
   for j from 1 to n do
      if (E(j)<E(i)) then
      p = p + 1
      end if
   end for
   T(p) = E(i)
end for</pre>
```

- 1. En précisant le nombre de processeurs que vous utilisez, proposez un algorithme PRAM qui réalise ce tri par insertion.
- 2. Vérifiez que vous obtenez une complexité en O(logn).
- 3. Précisez quel type de PRAM vous utilisez ? Est-il possible d'adapter votre algorithme à une PRAM EREW ?

Exercice 9. Tri par fusion

- 1. Proposez les grandes étapes d'un algorithme PRAM basé sur le tri par fusion dont la complexité séquentielle est en O(nlog(n)).
- 2. Donnez la complexité correspondante et le nombre de processeurs que vous utilisez.