DATASCI 207

Nedelina Teneva, PhD

School of Information, UC Berkeley

Bio

- Currently at Megagon Labs (R&D lab focusing on fundamental ML research)
- Previously at ML Science Manager at Amazon Alexa
- PhD from University of Chicago (focusing on optimization)
- Background in Molecular Biology

You?

- (Under) graduate major
- Current job/occupation (if any)
- Why a Masters in Data Science?

Announcements

Course Website

Objectives

- Intro to our first ML technique: linear regression (LR)
- Learning about how to solve LR
- Basic LR and a Tensorflow example: review after class!
 - https://github.com/MIDS-W207/nteneva/blob/main/live sessions current/week2/Week 2 Linear Regression Lipynb

Linear Regression

- Why do we use linear regression?
- What assumptions does LR make for the relationship between outcomes (y) and features (X)?

Linear Regression

- Why do we use linear regression?
- What assumptions does LR make for the relationship between outcome (y) and features (X)?
- Linear Algebra notation

X: matrix of size (n, m) - inputs/features/covariates/independent var's...

y: vector of size n (column by definition) - output/dependent var's/response...

Model: $y = X\beta + e$

 β : vector of size m - parameters/weights

e: vector of size n - error/noise

Goal: estimate β s.t. the noise/error e is minimized

Linear Regression

Source: ESL II

FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Example

Based on the data and regression line, what is:

 the actual income for the individual with 7 years of education?

\$5000

the predicted income for an individual with 7^{g/g} years of education?

\$35000

How do we compute LR?

- Direct methods
 - See https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L02%20Linear%20Regression.pdf

0

Iteratively

What is gradient descent?

Gradient descent: key components

- Model
- Parameters
- Cost function
- Objective: minimize the cost function

Optimization

- What is global minimum?
- What is local minimum?
- How how we avoid local minima?

Optimization

- What is global minimum?
- What is local minimum?
- How how we avoid local minima?

When do we stop iterating?

When do we stop iterating?

- When the validation error stops improving (i.e., difference between step t and t +1 is below some threshold)
- Based on the loss

Hyperparameters

- What are hyperparameter? Examples?
- How are they different from the parameters?

Hyperparameters

- Examples
 - Batch size
 - Learning rate
 - o Epochs

How do we set their values?

Hyperparameters

- Examples
 - Batch size
 - Learning rate
 - Epochs

- How do we set their values?
 - Hyper parameter optimization using e.g. cross validation