

Curso: Engenharia de Software

Disciplina: Database Design

Prof. André Santos – profAndre.Santos@fiap.com.br

São Paulo - 2025

Introdução Conceitos gerais sobre Bancos de Dados

Este material de apoio é apenas um guia de estudo e não substitui a leitura da referência bibliográfica e a consulta de anotações de sala de aula.

Teoria da Informação

Definição formal:

Informação se compõe de sinais que podem ser transmitidos.

INFORMAÇÃO

Nota: O Dr. Claude E. Shannon (1916 – 2001) é considerado o criador da "Teoria da Informação", através de artigo publicado em 1948.

Exemplos :

- Numa conversa, há duas pessoas que assumem alternadamente os papéis de transmissor e receptor, o sinal está na forma verbal codificado através da linguagem, além disso deve haver um meio para transmitir as ondas sonoras, que é o ar.
- Uma escultura transmite informação visual, a imagem é composta por ondas luminosas através do espaço até um observador.
- A dor é um tipo de informação, cujo transmissor é qualquer agente que sensibilize os nervos que são o meio por onde trafegam os sinais nervosos até o cérebro que os interpreta.

 Os sinais que compõem a informação também podem ser armazenados em alguma forma de memória: em livros, em fitas cassete, discos, em gravuras e fotografias, na mente humana, etc.

Distinção entre "informação" e "dados", na Informática:

- Informação compõe-se de fatos apresentados de uma forma que possam ser compreendidos, que tenham significado para alguém
 - portanto, "informação" está mais relacionada a "conhecimento".
- Dado é uma representação (registro) de uma informação.
 - Esta representação pode ser registrada fisicamente (armazenada): em papel, num disco de computador, etc.

- As informações devem ser traduzidas (codificadas) na forma de dados para que possam ser legíveis pelos computadores. Em geral, os dados se constituem de números, símbolos, caracteres, sinais, etc.
- Os dados devem ser organizados pelos sistemas de computador para que possam ser compreendidos pelas pessoas, isto é, para que tenham significado e representem, realmente, alguma informação.
- Por definição, os computadores processam "dados", não "informação".

- No senso comum, os termos "informação" e "dados" geralmente são usados como sinônimos mesmo por profissionais de informática e não precisamos, na maioria das vezes, ser tão rigorosos com a diferença de significado exposta anteriormente.
- Mas é importante termos em mente que, tecnicamente, pode-se fazer essa distinção entre os dois vocábulos.

Conforme a abordagem tecnológica, principalmente no que se refere a organização dos registros, temos bancos de dados do tipo:

- Hierárquicos os registros (um registro pode ser denominado como "nó") são ligados um ao outro numa estrutura hierárquica: um registro "pai" pode ter vários "filhos", um "filho" somente um "pai". Há o conceito de "nó raiz".
- Rede semelhante ao modelo hierárquico, porém um "nó filho pode ter vários "pais" e não há o conceito de "nó raiz".
- Relacional baseado em relações bidimensionais (tabelas).
- Orientado a Objetos classes e objetos (um objeto encapsula dados e procedimentos).
- Objeto-Relacional relacional com suporte a objetos (estruturas de dados) complexos.

Unidades de registro de informação:

- Bit dígito binário é a menor unidade de dados que o computador pode tratar.
- Byte conjunto de 8 bits normalmente equivalente a um "caractere" (letra, algarismo, sinal ou símbolo).

OBS.: Na codificação ASCII (256 caracteres), um caractere equivale a um byte.

Já na tabela Unicode, a codificação pode ser feita com 16 bits (65.536 caracteres) — na realidade, podem ser utilizados 8 bits, 16 bits ou 32 bits (mais de 4 bilhões de códigos de caracteres possíveis).

Unidades de registro de informação:

- Campo conjunto de caracteres (bytes), formando um item de informação (atributo) referente a um ser, ou a uma coisa.
 - Geralmente um campo é identificado por um nome.
 - Exemplos:
 - Nome
 - Data de Nascimento
 - CPF
 - Peso Líquido

- Campos fornecem características (atributos) sobre seres ou coisas. Podem ter diversas finalidades, dentre as quais podemos citar:
- Identificadores realizam a função de distinguir.
 - Código, Nº do RG, CPF, Nome
- Descritores têm a função de descrever.
 - Tamanho, Peso, Cor, Forma, Idade
- Endereçamento (ou localização) determinam a localização de algo em uma região.
 - Endereço, Caixa Postal, Departamento, Prateleira
- Temporais determinam quando ocorreu um evento.
 - Data de Nascimento, Hora de Fabricação
- Quantificadores indicam uma quantidade ou valor.
 - Preço de Venda, Quantidade Produzida, Número de Dependentes
- Classificadores indicam o tipo, categoria ou classe.
 - Cargo, Função, Tipo de Transação, Classe do Cliente
- Condicionais indicam o estado (condição atual) de alguma coisa.
 - Estado Civil, Ativo, Pendente, Realizado, Com Defeito

Unidades de registro de informação:

- Registro é o conjunto de campos que se referem ao mesmo ser ou coisa.
 - Normalmente um registro possui um campo (ou conjunto de campos) identificador, cujo valor permite localizar (distinguir) o registro entre os demais.
 - Exemplos:
 - Registro de Cliente
 - Ficha de Paciente
 - Registro de Venda

Unidades de registro de informação:

- Arquivo (arquivo lógico) um conjunto de registros referentes a seres ou coisas semelhantes (do mesmo tipo).
 - Normalmente, os registros de um arquivo possuem uma mesma estrutura, isto é, os mesmos campos aparecem em todos os registros (nas mesmas posições e tamanhos).
 - Exemplos:
 - Cadastro de Clientes
 - Registros de Venda
 - Arquivo de Produtos
 - Tabela de Veículos

Armazenamento de informação:

- Banco de Dados (BD) conjunto de arquivos relacionados entre si, organizados de forma útil (acesso aos dados).
 - Em geral, um BD forma a base de um sistema de informação a respeito de uma atividade ou assunto.
 - Em inglês: database (DB).
 - Exemplo:
 - Um banco de dados de Vendas, formado pelos arquivos de Clientes, Produtos, Registros de Vendas, Vendedores.

SGBD – sistema gerenciador de banco de dados: software que permite a criação e manutenção de bases de dados (armazenamento, organização e gerenciamento de dados.

- Em inglês: DBMS Database Management System.
- Um SGBD normalmente possui recursos que possibilitam a confecção de aplicações.

Operações fundamentais de um SGBD:

- Inclusão de registros.
- Recuperação (acesso e leitura) dos dados.
- Atualização (alteração) de registros e campos.
- Exclusão de registros.

Notas:

- No desenvolvimento de aplicações, é comum a utilização do termo "CRUD" (create, read, update, delete), para programas de manutenção cadastral básica.
- Na linguagem SQL, as respectivas instruções fundamentais (para implementar um CRUD) são:
 INSERT, SELECT, UPDATE e DELETE.

Múltiplos de bytes (medidas de memória)

Tradicionalmente, para unidades de medida de dados binários, temos:

```
1 Byte (B) = 8 bits (geralmente equivalendo a 1 caractere)
1 Kilobyte (KB) = 1024 \text{ B} = 2^{10} \text{ bytes}
1 Megabyte (MB) = 1024 \text{ KB} = 2^{20} = 1.048.576 \text{ bytes}
1 Gigabyte (GB) = 1024 \text{ MB} = 2^{30} = 1.073.741.824 \text{ bytes}
1 Terabyte (TB) = 1024 \text{ GB} = 2^{40} = 1.099.511.627.776 \text{ bytes}
1 Petabyte (PB) = 1024 \text{ TB} = 2^{50} = 1.125.899.906.842.624 bytes
1 Exabyte (EB) = 1024 \text{ PB} = 2^{60} = 1.152.921.504.606.846.976 bytes
1 Zetabyte (ZB) = 1024 \text{ EB} = 2^{70} = 1.180.591.620.717.411.303.424 bytes
1 Yottabyte (YB) = 1024 \text{ ZB} = 2^{80} = 1.208.925.819.614.629.174.706.176 bytes
K [ou "k", minúsculo] (kilo) \rightarrow mil; M (mega) \rightarrow milhão; G (giga) \rightarrow bilhão; T (tera) \rightarrow trilhão;
P (peta) \rightarrow quatrilhão; E (exa) \rightarrow quintilhão; Z (zeta) \rightarrow sextilhão; Y (yotta) \rightarrow septilhão.
```

Nota: Não confundir múltiplos de "byte" ("B", maiúsculo) com os de "bit" ("b", minúsculo). Exemplo: Mbyte (MB) \neq Mbit (Mb) \rightarrow 1 Mbit = 1.000.000 bits \rightarrow ÷ 8 = 125.000 bytes.

	Processamento de Dados	SGBD Relacionais	Teoria do Modelo Relacional	Modelo de Dados (E-R)	Orientação a Objetos
	Campo	Coluna	Atributo	Atributo	Propriedade, Atributo
	Registro	Linha	Tupla	Ocorrência ou instância ("Entidade"?)	Objeto (instância)
	Arquivo (arquivo lógico)	Tabela	Relação	Entidade (ou Tipo Entidade)	Classe
	Banco de Dados	Banco de Dados (esquema)	Base de Dados (esquema)	Modelo de Dados (esquema)	Repositório / Modelo de Classes
	Campo Chave	Chave Primária	Chave Primária (Chave Candidata)	Atributo(s) Identificador(es)	Identidade do Objeto
	(chave externa, ponteiro ?)	Chave Estrangeira	Chave Estrangeira	Relacionamento	Relacionamento
	Programa, Rotina, Procedimento	Restrição de Integridade	Restrição de Integridade, Domínio	Regra de Integridade	Método, Operação

Comparação de terminologias aplicáveis:

	Data Processing	Relational DBMS	Relational Model Theory	Data Model (E-R)	Object-Oriented
	Field	Column	Attribute	Attribute	Property, Attribute
	Record	Row	Tuple	Occurrence, instance ("Entity"?)	Object (instance)
	File (logical file)	Table	Relation	Entity (Entity Type)	Class
	Database (Data Bank)	Database, Schema	Database, Schema	Data Model (schema)	Repository / Class Model
	Key Field	Primary Key (PK)	Primary Key (Candidate Key)	Identifier Attribute(s)	Objeto Identifier (OID)
	(external key, pointer ?)	Foreign Key (FK)	Foreign Key	Relationship	Relationship
-[Program, Routine, Procedure	Integrity Constraint	Integrity Constraint, Domain	Integrity Rule	Method, Operation

Linguagens computacionais utilizadas em cada paradigma:

- Processamento de dados (tradicional)
 - Linguagens de programação de 3º e 4º geração (geralmente "procedurais")
- SGBD Relacionais
 - SQL e linguagens "procedurais" embutidas
 - Interfaces gráficas baseadas em QBE (Query by Example)
- Teoria do Modelo Relacional
 - Álgebra Relacional e Cálculo Relacional
- Modelagem de Dados (Entidade-Relacionamento)
 - Notações gráficas (conforme padrões) e descrição semântica dos relacionamentos
- Orientação a Objetos (OO)
 - Linguagens de programação orientadas a objeto

Formas mais comuns de acesso em arquivos:

- Sequencial os registros são processados (pesquisa, leitura, gravação) sempre na seqüência em que foram armazenados, partindo do início do arquivo.
- Indexado o acesso aos registros é feito através de estruturas auxiliares (os índices), normalmente através algoritmo de busca em "árvore B" (B-Tree). Nos índices basicamente constam valores de campos específicos do arquivo de dados (chave de acesso), ordenados, e os respectivos endereços físicos dos registros.
- Hash utiliza algoritmos para cálculo das posições físicas dos registros, a partir dos respectivos campos-chave.

Em contraposição ao acesso sequencial, os tipo de acesso "indexado" e "hash" são classificados como acesso "direto" (também são utilizados os termos "randômico" ou "aleatório").

- A adequação (vantagens e desvantagens) de cada forma de acesso vai depender de fatores como:
 - Meios físicos de armazenamento: fitas magnéticas, discos, etc.
 - Tipo de processamento: em "batch" (lote) ou em tempo real.
 - Tamanho da base de dados versus capacidade disponível para armazenamento (memória de massa).
 - Reguisitos de desempenho (tempo de resposta) do sistema.

- "Arquivos texto" s\u00e3o recursos comuns em v\u00e1rios sistemas de processamento de dados.
- Não há um padrão único. Via de regra, a estrutura dos arquivos é determinada pelos programas aplicativos que tratam essas bases de dados.
- Há também padrões definidos. Exemplos:
 - CNAB (arquivos bancários)
 - XML (Extensible Markup Language)

- Em geral, para organização da estrutura desses arquivos texto, são estabelecidos "marcadores" (caracteres especiais) como:
 - Separador de Campos por exemplo: vírgula, ponto-e-vírgula ou tabulação (em arquivos tipo CSV).
 - Separador de Registros geralmente caracteres de quebra de linha:
 - CR carriage return (caractere ASCII 13), equivalente ao código da tecla "Enter".
 - LF line feed (caractere ASCII 10).
 - Nota: padrões nos sistemas operacionais:
 - Microsoft (Windows / DOS) = CR + LF
 - Unix / Linux = LF
 - Apple (Mac OS) = CR
 - Final de Arquivo conhecido como EOF (end of file).

- Com relação a tamanho de registros e campos:
 - Tamanho Fixo não necessitam de separadores de campo (a posição determina o campo no registro).
 - Tamanho Variável necessitam reconhecer separadores de campos (e exceções), mas oferecem melhor aproveitamento de espaço físico.

Notas:

- Na codificação ASCII (256 caracteres), um caractere equivale a um byte.
- Já na tabela Unicode (65536 caracteres ou mais), a codificação muitas vezes é feita com
 16 bits (2 bytes) na realidade, pode-se utilizar:
 - 1 byte (8 bits = 256 combinações).
 - 2 bytes (16 bits = 65536 combinações), padrão "UTF-16".
 - 4 bytes (32 bits = mais de 4 bilhões de combinações), padrão "UTF-32".
 - Obs.: No padrão "UTF-8", muito recomendado, a codificação é de tamanho variável, de 1 a 4 bytes.
- Para compatibilidade, a codificação Unicode engloba o padrão ASCII "original" (7 bits = 128 combinações, com códigos de 0 até 127).

Arquitetura ANSI/SPARC em 3 níveis para BD

Em 1975, o grupo de estudo ANSI/SPARC (*American National Standards Institute / Standards Planning And Requirements Committee*), propôs um modelo de abstração para a arquitetura de banco de dados, baseado em 3 níveis.

A maioria dos sistemas de BD atuais atendem a esses conceitos.

NÍVEL EXTERNO (visão usuários finais e aplicações)

NÍVEL CONCEITUAL (visão da comunidade de usuários, modelo de dados lógico)

NÍVEL INTERNO (estruturas de armazenamento interno)

Arquiteturas e ambientes Ambiente Mainframe

MAINFRAME (computador de grande porte)

TERMINAIS "BURROS" (monitor de vídeo, teclado e interface de comunicação)

Arquiteturas e ambientes Ambiente Mainframe

- Vantagens:
 - Altíssimo poder de processamento, confiabilidade e segurança.
- Desvantagens:
 - Alto custo (inclusive de infra-estrutura).
 - Pouca flexibilidade.

Arquiteturas e ambientes Servidor de Arquivos em Rede Local

SERVIDOR DE ARQUIVOS na Rede Local

(basicamente armazenamento)

MICROCOMPUTADORES

(estações de trabalho com processamento dos aplicativos)

Arquiteturas e ambientes Servidor de Arquivos em Rede Local

Vantagens:

- Baixo custo.
- Não necessita de infra-estrutura tão cara.
- Flexibilidade.
- Facilidade no desenvolvimento de aplicações.

Desvantagens:

- Alto tráfego de rede (problemas de desempenho).
- Baixa confiabilidade e pouca tolerância a falhas.
- Integridade de dados <u>não</u> garantida pelo servidor: dependente das aplicações do "lado cliente".

Arquiteturas e ambientes Arquitetura Cliente/Servidor (2 camadas)

SERVIDOR DE BANCO DE DADOS na Rede Local

MICROCOMPUTADORES

(estações de trabalho com
processamento dos aplicativos)

Arquiteturas e ambientes Arquitetura Cliente/Servidor (2 camadas)

- 2 camadas (two tier).
- Vantagens:
 - Redução do tráfego de rede (otimização dos recursos e melhor desempenho).
 - Grande confiabilidade e tolerância a falhas.
 - Integridade de dados garantida pelo servidor.
- Desvantagens:
 - Custo um pouco mais alto, se comparado com o ambiente de aplicações com servidor de arquivos:
 - Investimento na máquina servidora
 - Licenças de software (SGBD)
 - Desenvolvimento de sistemas aplicativos mais sofisticados: necessita de mãode-obra mais especializada.

Arquiteturas e ambientes Arquitetura Cliente/Servidor (3 camadas)

SERVIDOR DE BANCO DE DADOS

SERVIDOR DE APLICAÇÃO (regras de negócio) MICROCOMPUTADORES (estações de trabalho com pouco processamento)

Arquiteturas e ambientes Arquitetura Cliente/Servidor (3 camadas)

- Características 3 camadas (three tier):
 - Camada de interface com o usuário (apresentação)
 - Camada de aplicação (regras de negócio)
 - Camada de dados (persistência) SGBD.
- Vantagens:
 - Em comparação com a arquitetura em 2 camadas, oferece uma melhor organização (e melhor gerenciamento) através da centralização das regras de negócio.
- Desvantagens:
 - Custo mais alto:
 - Investimento em mais máquinas servidoras
 - Licenças de software (SGBD) e do(s) softwares que d\u00e3o suporte ao servidor de aplica\u00e7\u00e3o.
 - OBS.: Porém, teoricamente, o custo pode ser mais baixo, caso o parque de estações de trabalho seja constituído por microcomputadores de menor valor (thin clients) já que essa arquitetura não exige grande capacidade de processamento nas máquinas-cliente dos usuários.
 - Desenvolvimento de sistemas aplicativos mais sofisticados: necessita de mão-de-obra bem mais especializada.

Arquiteturas e ambientes Arquitetura em "n" camadas (*multi-tier*)

- Variações, normalmente com divisão (especialização) da camada de aplicação:
 - Camada de interface com o usuário (apresentação).
 - Servidor de apresentação exemplo: servidor Web.
 - Camada de aplicação (regras de negócio).
 - Camada de dados (persistência) SGBD.
- Exemplo: Arquitetura "Java Enterprise" (J2EE), com um servidor de aplicação Java ("EJB container").
- Obs.: Não confundir diferentes conceitos para o termo "camada":
 - Tier (camada "física"), mais relacionada à infraestrutura, separação dos componentes servidores (de hardware e de software) do sistema como um todo, com processos distintos.
 - Layer (camada "lógica"), corresponde à organização da aplicação (dentro do software, ou seja, do código-fonte desenvolvido), como seus componentes são agrupados (conforme suas finalidades básicas) e como devem interagir (por exemplo, seguindo o padrão "MVC" Model-View-Controller).

Principais características de um SGBD Relacional

- Segurança de acesso
- Integridade de dados
- Controle de transações
- Acesso multi-usuário
- Tolerância a falhas
- Suporte a uma linguagem de consulta e manipulação de dados
- Independência física e lógica de dados
- Dicionário de dados ("metadados")

Perfis profissionais

Profissionais de T.I. que trabalham com bancos de dados:

- DBA (Database Administrator) administrador de banco de dados.
- AD (ou DA Data Administrator) administrador de dados.
- Desenvolvedores em geral:
 - Programadores
 - Analista de sistemas
 - Arquitetos
- Analista de BI (Business Intelligence).

Perfis profissionais: DBA

DBA (Database Administrator) – administrador de banco de dados

- É o profissional responsável por manter e gerenciar servidores de banco de dados.
- É especializado em um ou mais SGBD's além de conhecimentos em sistemas operacionais, equipamentos servidores (hardware), redes e protocolos, desenvolvimento de aplicações, arquitetura de sistemas, entre outros correlatos.
- Trabalha em conjunto com outros profissionais especializados. Por exemplo: administradores de rede, administradores de sistemas, desenvolvedores e analistas de sistemas, AD's, etc.
- Em geral, ter um ambiente com SGBD exige que se tenha um DBA (ao menos em tempo parcial).

Perfis profissionais: DBA

Principais funções de um DBA:

- Instalação e configuração do SGBD.
- Definição das estruturas físicas de armazenamento (com as estratégias de acesso).
- Definição (e testes) das estratégias de backup e recuperação.
- Realização de backup's.
- Implementação do controle de acesso ao SGBD.
- Suporte à equipe de desenvolvedores (em questões técnicas que envolvam o SGBD).
- Monitoração do desempenho e disponibilidade dos servidores de BD.
- Monitoração do crescimento das bases de dados.
- Projeto e gerenciamento de bases de dados distribuídas (sincronização, replicação, integração).
- Em algumas empresas, também assume funções de AD (DA).

Perfis profissionais: AD

AD – administrador de dados (DA – data administrator)

- DBA ≠ DA
- AD é o profissional que trabalha com atividades relacionadas a projeto de bases de dados de sistemas aplicativos:
 - Modelos de dados (normalmente apoiando o trabalho dos analistas e/ou validando e homologando o trabalho destes);
 - Padrões de nomenclatura para objetos do BD (tabelas, colunas, constraints, etc.);
 - Integração de sistemas a bases de dados corporativas;
 - Manutenção de modelos e dicionário de dados corporativos.
- Poucas empresas possuem "administradores de dados" (como função dedicada e formalizada na equipe).

Perfis profissionais: Desenvolvedores

Muitas vezes, o profissional de desenvolvimento de sistemas é "multifuncional", ou seja, desempenha mais de uma função.

- Porém, dependendo da empresa, os papéis podem ser separados dentro da equipe.
- No que diz respeito a "banco de dados", sempre é desejável que os desenvolvedores tenham uma visão abrangente (metodologia, técnicas e de produtos/plataformas). Porém os conhecimentos mais pertinentes aos perfis de desenvolvimento são:
 - Analistas de Sistemas: modelagem de dados e SQL em geral, é um perfil mais próximo ao AD.
 - Arquitetos: estrutura e recursos do SGBD, frameworks de persistência em geral, é um perfil mais próximo ao DBA.
 - Programadores: SQL, linguagem procedural do SGBD, API's, recursos e técnicas de desenvolvimento do SGBD.

Perfis profissionais: Analista de BI

Analista de BI – Semelhante à função de "analista de sistemas", porém é um profissional especializado na área de B.I. (*Business Intelligence* — inteligência de negócios).

- Conhecimentos específicos:
- Indicadores de gestão de negócios.
- Análise de dados para informações gerenciais (estratégicas).
- Ambiente de DW (data warehouse) e data marts.
- Processos de ETL (extração, transformação e carga) de dados.
- Modelagem dimensional (de dados).
- Estatística (e softwares relacionados).
- Data Mining ("mineração de dados").
- OLAP (Online Analytical Processing)
- SQL, ferramentas de consulta e geradores de relatórios.

Copyright © 2025 Prof. André Luís Pereira dos Santos

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).