Stat E-150 Section #12

Neha Dhawan

dhawan@g.harvard.edu

Office hours by request for one-one help

Multiple Logistic Regression

Model:

Log(odds) or
$$\log(\pi/1-\pi) = \beta_0 + \beta_1 X + \beta_2 X$$

We say log(odds) but its actually the ln(odds)

Probability form of the model:

$$\pi^{*} = \underline{e^{*}(\beta_{\underline{0}} + \beta_{\underline{1}}X + \beta_{\underline{2}}X)}$$
$$1 + e^{*}(\beta_{0} + \beta_{1}X + \beta_{2}X)$$

Example

 Suppose interested in testing birthweight and number of drinks mom had while pregnant help us predict odds survival of infants. They took the data from a small town hospital in MA which had 50 cases the past year.

Model:

Log(odds surviving) = $\beta_0 + \beta_1$ Birthweight + β_2 Drinks

Probability of surviving
$$\pi^{\wedge} = e^{\beta 0 + \beta 1 Birthweight} + \beta 2 Drinks$$

$$1 + e^{\beta 0 + \beta 1 Birthweight} + \beta 2 Drinks$$

Assumptions

- Linearity:
 - Box-Tidwell test (for each individual predictor)
- Randomness:
 - Random selection or random assignment?
- Independence:
 - No pairing or clustering of the data in space or time (no time/space order)

No e so don't have to worry about normality or equal variance

Linearity

Box-Tidwell test for each predictor

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	Birthweight	100	.050	4.060	1	.044	.905
	xbylogx	.012	.006	4.094	1	(.043)	1.012
	Constant	20.907	10.995	3.616	1	.057	1201354381

a. Variable(s) entered on step 1: Birthweight, xbylogx.

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	Drinks_1	33.842	49778.796	.000	1	999	4.983E+14
	xbylogx	-21.916	21711.177	.000	1	(.999)	.000
	Constant	-11.743	76457.433	.000	1	1.000	.000

a. Variable(s) entered on step 1: Drinks_1, xbylogx.

Linearity

Birthweight:

$$H_0: \beta_2 = 0$$

$$H_a$$
: $\beta_2 \neq 0$

Since the p<0.05, we can reject our null hypothesis. This suggests that we do not meet the assumption of linearity.

Drinks:

$$H_0: \beta_2 = 0$$

$$H_a$$
: $\beta_2 \neq 0$

Since the p>0.05, we fail to reject our null hypothesis. This suggests that we meet the assumption of linearity.

Other assumptions

- Randomness
 - Random selection or random assignment?
 - Spinner model accurate?
 - Is there a bias? Representative sample?
- Independence
 - Is there a time-ordered relationship?
 - Is there a spatial relationship?
 - Yes/no decision?

Assessing the model

Omnibus test

 $H_0: \beta_1 = \beta_2 = 0$

H_a: at least one

beta is not 0

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	30.498	3	.000
	Block	30.498	3	.000
	Model	30.498	3	.000

Since the p<0.05, we can reject our null hypothesis. This suggests that the baby birthweight and number of drinks together are useful in predicting whether a baby will survive or not

Assessing the model

Classification table

Classification Table^a

				Predicte	d
			Sun	vive	Percentage
Observed		0	1	Correct	
Step 1	Survive	0	11	0	100.0
		1	0	11	100.0
	Overall P	ercentage			100.0

a. The cut value is .500

The model predicts 100% of the cases.

Testing our Betas

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1ª	Drinks	.165	.103	2.543	1	.111	0.179
	Birthweight	4.676	1.642	8.115	1	.004	1.07
	Constant	-22.373	6.454	12.017	1	.001	.000

 $H_0: \beta_1 = 0$

 H_a : $\beta_1 \neq 0$

Since the p>0.05, we fail to reject our null hypothesis. This suggests that number of drinks doesn't significantly predict whether the baby will survive or not, **after accounting** for birthweight

Testing our Betas

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1ª	Drinks	.165	.103	2.543	1	.111	0.179
	Birthweight	4.676	1.642	8.115	1	.004	1.07
	Constant	-22.373	6.454	12.017	1	.001	.000

$$H_0: \beta_2 = 0$$

$$H_a$$
: $\beta_2 \neq 0$

Since the p<0.05, we can reject our null hypothesis. This suggests that there is a significant log-linear relationship between birthweight and whether the baby will survive or not, **after accounting** for number of drinks

Interpretation:

Variables	in	the	Eq	uation
------------------	----	-----	----	--------

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	Drinks	.165	.103	2.543	1	.111	0.179
	Birthweight	4.676	1.642	8.115	1	.004	1.07
	Constant	-22.373	6.454	12.017	1	.001	.000

Drinks:

For each additional drink, the odds of surviving decrease by a factor of 0.179, after accounting for birthweight

Birthweight:

For each additional gram in birthweight, the odds of surviving increase by a factor of 1.07 **after accounting for** number of drinks

Maybe there is an interaction?

- Maybe adding another variable will help the model?
- Nested likelihood ratio test!
- Drop in deviance test
- Full model vs. nested model

```
Nested Model: Log(odds surviving) = \beta_0 + \beta_1Birthweight + \beta_2Drinks
```

```
Full model(with added term): Log(odds surviving) = \beta_0 + \beta_1Birthweight + \beta_2Drinks + \beta_3Drinks*Birthweight
```

 H_0 : $\beta_i = 0$ for all predictors in subset

 H_a : $\beta_i = /0$ for at least one predictor in subset V_s .

 H_0 : $\beta_{\text{Drinks*Birthweight}} = 0$ [beta(s) different between the full and nested model

H_a: Not all betas are zero

Test statistic= -2log(nested) - -2log(full)

DF= number of betas in full model – number of betas in nested model [i.e. #betas being tested]

Comparing models

- -2 log Likelihood is a measure of how well the data fit the model
 - Unexplained variability
 - Want a smaller number

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	28.120 ^a	.102	.137

Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	10.000 ^a	7.50	1.500

Estimation terminated at iteration number 20
 because maximum iterations has been reached.

Nested Full

$$H_0: \beta_3 = 0$$

$$H_a$$
: $β_3$ ≠ 0

Test statistic= 28.120- 10.0= 18.120

DF=1

https://www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html

p-value = 0.0001

 $H_0: \beta_3 = 0$

 H_a : $\beta_3 \neq 0$

p-value = 0.0001

Since p<0.05, we can reject the null and conclude that the interaction term significant predicts the odds of a baby surviving **after accounting for** drinks and birthweight.

Individual beta test?

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	Birthweight	-8.657	63.857	.018	1	.000	.892
	Drinks	-9598.896	70962.139	.018	1	.892	.921
	int	448	4.486	.010	1	.000	.639
	Constant	30949.391	228014.825	.018	1	.892	

a. Variable(s) entered on step 1; Birthweight, Drinks, int.

 $H_0: \beta_3 = 0$

 H_a : $\beta_3 \neq 0$

Always go with LRT if two don't agree

Since the p<0.05, we can reject our null hypothesis. This suggests that the interaction term significantly predicts whether the baby will survive or not, **after accounting** for birthweight and number of drinks

Centering

 Instead of starting our axis at 0 we 'center' it to the mean value

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Birthweight	22	1122	3573	2317.73	798.835
Drinks	22	0	4	1.18	1.402
Valid N (listwise)	22				

 Subtract mean from every value for each predictor to center it

Centering

Useful when we have interactions and categorical predictors

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	CBirthweight	-8.657	63.857	.018	1	.000	. 63
	CDrinks	-9598.896	70962.139	.018	1	.892	. 21
	cint	448	4.486	.010	1	.000	2.13
	Constant	30949.391	228014.825	.018	1	.892	.448

a. Variable(s) entered on step 1: Birthweight, Drinks, int.

- Interpret the constant
 - For an average birthweight baby from a mom who drinks an average number of drinks, the odds of survival decrease by a factor of .448

Don't forget about Course Evals!