Introduction to Combinatorics

Combinatorics (think combinations) is a branch of math focused mainly on ways to list objects (**enumeration**) and determine how many (**counting**). It also includes studying ways to create finite structures with certain properties (**design**), such as networks and graphs.

This activity introduces four types of counting problems.

Counting Problem #1.

4 songs are on your device: {Aura, Believe, Candle, Dandy}

You want to choose 2 songs for a playlist.

You may choose the same song twice, and it matters to you which song comes first.

List all the playlists! How many are there?

AA

AB

BA

Counting Problem #2.

4 kinds of fruit are available: {Apple, Banana, Clementine, Drupe} People are asked to choose their favorite and their second favorite.

List all the possibilities! How many are there?

Counting Problem #3.

5 candidates run for student council: {Abacus, Bobathy, Cawdor, Dalia, Elephant} 2 of the candidates will be elected.

List all the possibilities! How many are there?

Counting Problem #4.

4 pieces of (identical) candy will be given to 3 people: {Abacus, Bobathy, Cawdor} Not everyone needs a piece of candy, and the sharing doesn't need to be fair.

List all the possibilities! How many are there?

Sampling Problems

A sampling problem asks how many ways there are to choose objects from a set. Different kinds of rules can change the answer.

Issue 1. When you pick an object, do you put it back or keep it out?

- If you put it back, you are sampling with replacement.
- If you keep it out, you are **sampling without replacement**.

Issue 2. Do you care about the order in which you pick the objects?

- If you care about which objects are picked first, second, etc, then **order matters**.
- If you only care about which objects are picked, then **order doesn't matter**.

The Counting Problems are examples of sampling problems, but with different rules. Think about each one carefully and fill in the table below.

	with replacement or without replacement?	order matters or order doesn't matter?
Counting Problem #1		
Counting Problem #2		
Counting Problem #3		
Counting Problem #4		

The four possibilities each relate to different kind of mathematical structure:		
Sampling with replacement, order matters	sequence	
Sampling without replacement, order matters	sequence of distinct elements	
Sampling without replacement, order doesn't matter	set	
Sampling with replacement, order doesn't matter	multiset	

Sampling with Replacement, Order Matters

You want to sample from a basket with 5 balls: {A,B,C,D,E}

You pick one at a time **with replacement** (putting it back each time), and the **order matters** to you.

- How many ways are there to select 1 ball?
- How many ways are there to select 2 balls?
- How many ways are there to select 3 balls?
- How many ways are there to select 4 balls?

What pattern do you see?

Question. With these rules, if you have **N** balls, how many ways are there to select **K** objects?

Does this help confirm your answer to Counting Problem #1?

Sampling without Replacement, Order Matters

You want to sample from a basket with 5 balls: {A,B,C,D,E}

You pick one at a time **without replacement** (keep what you pick), and **order matters** to you.

- How many ways are there to select 1 ball?
- How many ways are there to select 2 balls?
- How many ways are there to select 3 balls?
- How many ways are there to select 4 balls?

What pattern do you observe?

Question. With these rules, if you have **N** balls, how many ways are there to select **K** objects?

It may be helpful to know about **factorial**, which is written using an exclamation point.

$$1! = 1$$

$$2! = 2 \times 1 = 2$$

$$3! = 3 \times 2 \times 1 = 6$$

$$4! = 4 \times 3 \times 2 \times 1 = 24$$

$$N! = N \times (N-1) \times \cdots \times 2 \times 1$$

Bonus: Can you rewrite your answer to the above Question using *N*, *K*, and factorials?

Sampling without Replacement, Order Doesn't Matter

You want to sample from a basket with 5 balls: {A,B,C,D,E}

You pick them one at a time without replacement (keep what you pick), and order doesn't matter to you.

- How many ways are there to select 1 ball?
- How many ways are there to select 2 balls?
- How many ways are there to select 3 balls?
- How many ways are there to select 4 balls?

What pattern do you observe?

Question. With these rules, if you sample from **N** balls, how many ways are there to select **K** objects? Feel free to explain your ideas in words.

The answer to this question is so important that mathematicians have given it a special symbol: $\binom{N}{K}$ or ${}_{N}\mathbf{C}_{K}$ on a calculator. It is pronounced "**N** Choose **K**".

Bonus: Can you write $\binom{N}{K}$ using **N**, **K**, and factorials?

Sampling with Replacement, Order Doesn't Matter

You want to sample from a basket with 5 balls: {A,B,C,D,E}

You select them one at a time **with replacement** (putting it back each time), and **order doesn't matter** to you.

Before trying to count the possibilities, it helps to know a good way to write them. The trick is to think of putting the balls you pick into baskets, each containing zero or more balls.

For example, if you sample 7 items, you could organize the balls you pick using 5 baskets:

We can "code" this sample using symbols for the balls and a separator symbol:

00 | 0 000 | 0

This requires a total of 11 symbols: 7 balls and 4 separators.

Discuss this [as a group or class].

Question. With these rules, If you sample from **N** balls, select **K** items, and code it this way, how many symbols must you use?

Big bonus: With these rules, if you sample from **N** balls, how many ways are there to select **K** objects? Write the answer using the Choose idea from before.