# COMS W4701: Artificial Intelligence

Lecture 12: RL Control

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

### Today

State-action (Q) values

- Behavior and target policies
- **Exploration**,  $\varepsilon$ -greedy policies

- SARSA
- Q-learning

## Solving Sequential Decision Problems

|                                                        | Evaluate a fixed policy $\pi$ :<br>Solve for $V^{\pi}$                                                  | Learn optimal value function $V^*$ or optimal policy $\pi^*$            |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Dynamic Programming (known model <i>T</i> , <i>R</i> ) | <ul> <li>Formulate and solve linear system of equations</li> <li>Iterative policy evaluation</li> </ul> | • Value iteration for $V^*$ , followed by policy extraction for $\pi^*$ |
| Reinforcement<br>Learning (no model)                   | <ul> <li>First-visit Monte Carlo</li> <li>Constant-α Monte Carlo</li> <li>TD(0)</li> </ul>              | ???                                                                     |

#### State-Action Values

• How do we compute a policy  $\pi$  given its values  $V^{\pi}$ ?

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi}(s')]$$
don't have these!

• Idea: Directly *learn* state-action values  $Q^{\pi}(s, a)$  of the chance nodes using RL

•  $Q^{\pi}(s, a)$  is the *expected* utility of s after taking action a and then following  $\pi$  thereafter



#### Values and Policy

• Q values can be defined as functions of  $V^*$  or recursively as functions of themselves

$$Q(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$$

$$= \sum_{s'} T(s,a,s') \left[ R(s,a,s') + \gamma \max_{a'} Q(s',a') \right]$$

- To learn policies, we will first learn Q values
- Then use these to compute  $V^*$  or  $\pi^*$



$$V^*(s) = \max_a Q(s, a)$$

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

#### Example: Mini-Gridworld

Suppose we have found the following Q values:

| A | В | С |
|---|---|---|
|---|---|---|

| Q(s,a)    | s = A | s = B | s = C |
|-----------|-------|-------|-------|
| a = Left  | 4.061 | 4.364 | 0.485 |
| a = Right | 1.152 | 2.364 | 1.394 |

- Value function:  $V^* = \max_{a} Q(s, a) = (4.061, 4.364, 1.394)$
- Policy:  $\pi^* = \underset{a}{\operatorname{argmax}} Q(s, a) = (Left, Left, Right)$

#### **Behavior Policies**

- Suppose our agent is given some initial (possibly random) policy  $\pi$
- Control problem: We want to improve and make changes to  $\pi$  over time

- In RL, the agent always behaves according to the behavior policy
- E.g.,  $\pi(s) = \operatorname{argmax}_a Q(s, a)$  is a *greedy* behavior policy
- But this is only our target policy (optimal) when the Q-values are correct!

- How to behave if we are also learning Q-values at the same time?
- Instead of always acting greedily, add in some exploration

#### $\varepsilon$ -Greedy Policies

• ε-greedy behavior policy: Choose best action most of the time, but with small probability ε, execute random action instead

- Exploit and choose action  $a = \underset{a'}{\operatorname{argmax}} Q(s, a')$  with probability  $1 \varepsilon$
- Explore and choose action uniformly at random with probability  $\varepsilon$

- Exploration may lead to smaller short-term rewards, but crucial for discovering better actions and higher long-term rewards
- Exploration rate  $\varepsilon$  is yet another tunable agent parameter

#### TD Learning for Control

• Q is just a more detailed version of V, so we can apply a TD approach to learn these values as well:

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') - Q(s,a))$$

- As in TD(0), we see the transition (s, a, r, s') and then update Q(s, a)
- What do we use for a', the action in the successor state s'?
- In TD(0), the target uses  $V^{\pi}(s')$ , or the value of s' following  $\pi$
- So maybe we should select a' according to our *behavior policy* ( $\varepsilon$ -greedy)
- Another possibility: Select a' according to our *target policy* (greedy)

#### On-Policy Learning: SARSA

- On-policy learning: Q-value update is based on the successor Q-value corresponding to the action that is actually taken according to the behavior policy  $\pi$
- Given: Learning rate  $\alpha$ , exploration rate  $\epsilon$ , discount factor  $\gamma$
- Initialize  $Q(s, a) \leftarrow 0$ , behavior policy  $\pi$  (e.g.,  $\varepsilon$ -greedy)
- Loop:
  - Initialize starting state s, action  $a = \pi(s)$  if needed
  - Generate sequence  $(s, a, r, s'), a' \leftarrow \pi(s')$
  - $Q(s,a) \leftarrow Q(s,a) + \alpha (r + \gamma Q(s',a') Q(s,a))$
  - $s \leftarrow s', a \leftarrow a'$



#### Example: Mini-Gridworld

- Suppose we currently have Q(A, L) = 1, Q(B, L) = 2, Q(B, R) = 1.5
- Behavior policy is ε-greedy;  $\alpha = 0.5$ ,  $\gamma = 0.8$



- Observed (s, a, r, s') sequence: A, L, +3, B
- Suppose behavior policy generates a' = R (explore)
- Target:  $r + \gamma Q(B, R) = 3 + 0.8(1.5) = 4.2$
- Q-value update:  $Q(A, L) \leftarrow 1 + 0.5(4.2 1) = 2.6$

### Off-Policy Learning: Q-Learning

- Off-policy learning: Q-value update is based on the successor Q-value corresponding to the action that "should be" taken according to the target policy
- Given: Learning rate  $\alpha$ , exploration rate  $\epsilon$ , discount factor  $\gamma$
- Initialize  $Q(s, a) \leftarrow 0$ , behavior policy  $\pi$  (e.g.,  $\varepsilon$ -greedy)
- Loop:
  - Initialize starting state *s* if needed, action  $a = \pi(s)$
  - **Generate** sequence (s, a, r, s')

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left( r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$



 $\blacksquare s \leftarrow s'$ 

Action a' selected according to greedy policy ( $\varepsilon = 0$ )

#### Example: Mini-Gridworld

- Suppose we currently have Q(A, L) = 1, Q(B, L) = 2, Q(B, R) = 1.5
- Behavior policy is ε-greedy;  $\alpha = 0.5$ ,  $\gamma = 0.8$



- Observed (s, a, r, s') sequence: A, L, +3, B
- Target:  $r + \gamma \max_{a} Q(B, a) = r + \gamma Q(B, L) = 3 + 0.8(2) = 4.6$
- Q-value update:  $Q(A, L) \leftarrow 1 + 0.5(4.6 1) = 2.8$

#### Example: Cliff Walking

- Deterministic grid world with one terminal (goal) state
- Living reward is -1 in all states except for "cliff", which rewards -100

 Since transitions are deterministic, the optimal action at each state is to head in goal direction while ignoring the cliff

 We can use TD control to learn Q values and the corresponding policy



#### Example: Cliff Walking

- With Q-learning, all learned Q-values will reflect the assumption that the agent will always act greedily (take action to move toward goal)
- Agent prefers "optimal path" as  $\max_{a} Q(s, a)$  is highest next to the cliff
- With SARSA, learned Q-values will be overall lower, esp near cliff
- Reflect all instances when agent chose to "explore" and jump off the cliff for
  - -100 reward
- Learned policy will be to take "safer" path!



#### SARSA vs Q-Learning

- SARSA learns the optimal behavior policy, e.g.  $\varepsilon$ -greedy
- Each Q-value update just requires knowledge of the next action
- Learned values are generally lower, reflecting suboptimal actions taken

- Q-learning learns the optimal target policy, e.g. greedy
- Each Q-value update requires a max over successor state actions
- Learned values are not affected by suboptimal actions from exploration

SARSA & Q-learning are the same if behavior & target policies are as well

### Solving Sequential Decision Problems

|                                                | Evaluate a fixed policy $\pi$ :<br>Solve for $V^{\pi}$                                                  | Learn optimal value function $V^*$ or optimal policy $\pi^*$                               |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Dynamic Programming (known model <i>T, R</i> ) | <ul> <li>Formulate and solve linear system of equations</li> <li>Iterative policy evaluation</li> </ul> | • Value iteration for $V^*$ , followed by policy extraction for $\pi^*$                    |
| Reinforcement<br>Learning (no model)           | <ul> <li>First-visit Monte Carlo</li> <li>Constant-α Monte Carlo</li> <li>TD(0)</li> </ul>              | <ul> <li>SARSA</li> <li>Q-learning</li> <li>followed by max / argmax operations</li> </ul> |

#### Summary

- The RL control problem involves learning optimal policies and values from data
- We need to explore to try new states and actions; keep track of state-action (Q) values
- Simple approach is a  $\varepsilon$ -greedy behavior policy
- We can learn and update Q values using temporal difference learning
- SARSA (on-policy): Update Q value using Q value of action taken in successor state
- Q-learning (off-policy): Update current Q value using best Q value in successor state