

CUDA NA KIJU

* Logarytm

$$\log_{a} \times , \text{ gdze } \left\{ \begin{array}{l} a > 0 : a \neq 1 \\ x > 0 \end{array} \right\}$$

$$\log_{a} \times > b$$
 gdy $\alpha \in (0,1) \times < \alpha$ [2MIANA]

 $\log_{a} \times > b$ gdy $\alpha \in (1,+\infty) \times > \alpha^{b}$

- ★ diedzina arccos → wantość musi bys z zakresu <-1,1>
- * want bezwzględna -> zalitudam, że coś jest więknie lub mnejsie od zeru 12 przpadki
- * monotoniczność i extrema pnyktad

$$f(x) = (x^2 - 2x) \ln x - \frac{3}{2} x^2 + 4x$$

7	7/7
Max	min
1) 2	3 9

-	×	hawias 1	nowless 2	nawiasy 1+2
	0,1		_	+
	1, e	_	+	-
	e,+00	+	+	+

* granica ciaga - wzór
$$e^{\ln x} = x$$
 w praktyce
$$\lim_{n \to \infty} \sqrt{\frac{5^n + 6^n}{6^n + 7^n}} = \lim_{n \to \infty} \frac{\left(5^n + 6^n\right)^{\frac{2}{n}}}{\left(6^n + 7^n\right)^{\frac{2}{n}}} = \lim_{n \to \infty} \frac{\left(6^n \left(\frac{5^n}{6^n} + 1\right)\right)^{\frac{2}{n}}}{\left(7^n \left(1 + \frac{6^n}{7^n}\right)\right)^{\frac{2}{n}}} = \frac{6}{7} \cdot \left(\frac{\left(\frac{5^n}{6^n} + 1\right)}{\left(\frac{6^n}{7^n} + 1\right)}\right) = \frac{6}{7} \cdot e^{\frac{5^n + 6^n}{7^n}}$$

$$\lim_{n\to\infty} \frac{6}{7} \cdot e^{\frac{5^n+1}{\frac{6^n+1}{7^n+1}}} = \lim_{n\to\infty} \frac{6}{7} \cdot e^{\frac{\ln\left(\frac{5^n+1}{6^n+1}\right)}{7} + \ln 1} \Rightarrow \ln 1 = 0$$

$$\lim_{n\to\infty} \frac{6}{7} \cdot e^{\frac{5^n+1}{\frac{6^n+1}{7^n+1}}} = \lim_{n\to\infty} \frac{6}{7} \cdot e^{\frac{5^n+1}{7^n+1}} \Rightarrow \ln 1 = 0$$

$$\lim_{n\to\infty} \frac{6}{7} \cdot e^{\frac{5^n+1}{7^n+1}} = \lim_{n\to\infty} \frac{6}{7} \cdot e^{\frac{5^n+1}{7^n+1}} \Rightarrow \ln 1 = 0$$

* wymuszane wzonu pona Hospitala

$$\lim_{x \to \infty} x^2 \left(1 - \cos \frac{1}{x}\right) = \lim_{x \to \infty} \frac{1 - \cos \frac{1}{x}}{\frac{\Lambda}{x^2}}$$

UZYWAJ ZAWSZE dziel pnez odwrotność

tutaj tei tego niylem

* granica funkcji - wzór e = x w praktyce

- lim tgx = lim e tgo x = lim e tgo x = lim (lntgx ty2x) = lim 1 tgx x tg2x