S Chapter 13.0 2-4 Trees 2-4 Trees

- · Multi-searching trees , but not necessarily binary.
 - · They can have [2,4] children, ie.

veach node

· has at least 2 children

o store a collection of item (\mathbf{x}, \mathbf{x}) .

y element chitch ro

contains d-1 items,
 number of children

· has pointer to children

Pall keys between in the subtree rooted at the child fall between keys of those items.

The searching procedure

If search key $S < R_i$, search leftmost child

s > kd-1, right most.

2. (2,4) trees

· Properties: have at most 4 children all leaf nodes at the same bad

- Hight log₄n ≤ h ≤ log₄n
- · Search process: Glogn

 multiple nodes and multiple
 comparism

Insert 21. Insert 23. Insert 60 23 24

"No problem if there are empty slots

* Nodes get split if there's insulficient space

In this manner it can split cascade.

Directe a new node if the cascade is NIL. Will end up in

at least 2 keys. (Delete 218,24)

- D If the key to be deled is our internal node.

 D swap it with pre decessor (leaf), go to case 1.

 D delete that was (Delete
- If after deleting a key a node becomes empty then we borrow a key from its sibling (like rotation) Example. Delete 20.

D If sibling has only 1 keg then we merge with it.

(Delete 23)

- 10 Moving a key down from parents corrsponds to deletion in the parent node
- D Same for the leng node
 Can lead to cascade (Reduced by 1).