Билеты ТНХ летняя сессия

БХМ 192

Содержание

1.	Воп	росы 1	2		
2. Вопросы 2					
3.	Вопросы 3				
	3.1.	Природа связи металл-лиганд. Основные положения теории	2		
	3.2.	кристаллического поля	2		
		кристаллическим полем	3		
	3.3.				
		тральные свойства комплексных соединений переходных металлов	6		
	3.4.	Вопрос 3. Эффект Яна-Теллера	8		
	3.5.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	3.6.	лярных орбиталей	10 11		
	3.7.		16		
	3.8.	- · · · · · · · · · · · · · · · · · · ·	10		
		розильных комплексов. Описание связи металл - нитрозил.			
	0.0	Сравнение со связью M-CO. Природа связи M-CO и M-NO	22		
	3.9.	Особенности электронного и геометрического строения олефиновых комплексов, по сравнению с карбонильными. Мо-			
		дель Дьюара-Чатта-Дункансона	22		
		3.9.1. Модель Дьюара-Чатта-Дункансона	23		
	3.10.	Электронное строение (с позиций ММО) бисциклопентадие-			
		нильных комплексов переходных металлов	23		
		Ареновые соединения металлов	24		
	3.12.	Тенденции изменения энергий ионизации для различных сэндвичевых соединений	26		
	3.13.	Магнитные свойства сэндвичных соединений	$\frac{20}{28}$		

1. Вопросы 1

2. Вопросы 2

3. Вопросы 3

3.1. Природа связи металл-лиганд. Основные положения теории кристаллического поля

По методу валентных связей образование комплекса представляет собой реакцию между основанием Льюиса (лигандами L) и кислотой Льюиса (центральным атомом) с формированием ковалентных связей M-L.

По ТКП к катиону приближается электроотрицательный атом, например F^- . Он будет садиться на металл с избыточной электронной плотностью. Анион доходит до оболочки инертного газа, электронная плотность выдавливается. Происходит поляризация. За счёт поляризации анион подойдёт ближе, и будет выигрыш в энергии.

Согласно ТКП, взаимодействие между переходным металлом и лигандами возникает вследствие притяжения между положительно заряженным катионом металла и отрицательным зарядом электронов на несвязывающих орбиталях лиганда. Теория рассматривает изменение энергии пяти вырожденных d-орбиталей в окружении точечных зарядов лигандов. По мере приближения лиганда к иону металла, электроны лиганда становятся ближе к некоторым d-орбиталям, чем к другим, вызывая потерю вырожденности. Электроны d-орбиталей и лигандов отталкиваются друг от друга как заряды с одинаковым знаком. Таким образом, энергия тех d-электронов, которые ближе к лигандам, становится выше, чем тех, которые дальше, что приводит к расщеплению уровней энергии d-орбиталей.

ТКП: Металл мы рассматриваем структурированно, а лиганд точечно и с отрицательным зарядом.

На расщепление влияют следующие факторы:

- Природа иона металла.
- Степень окисления металла. Чем выше степень окисления, тем выше энергия расщепления.
- Расположение лигандов вокруг иона металла.
- Природа лигандов, окружающих ион металла. Чем сильнее эффект от лигандов, тем больше разность между высоким и низким уровнем энергии.

3.2. Симметрия расщеплений d-орбиталей. Энергия стабилизации кристаллическим полем.

ЭСКП

Энергия стабилизации кристаллическим полем (ЭСКП) — энергия электронной конфигурации иона переходного металла относительно средней энергии орбиталей. Стабилизация возникает вследствие того, что в поле лигандов энергетический уровень некоторых орбиталей ниже, чем в гипотетическом сферическом поле, в котором на все пять d-орбиталей действует одинаковая сила отталкивания, и все d-орбитали вырождены. Например, в октаэдрическом случае уровень t_{2g} ниже, чем средний уровень в сферическом поле. Следовательно, если в данных орбиталях находятся электроны, то ион металла более стабилен в поле лигандов относительно сферического поля. Наоборот, энергетический уровень орбиталей e_g выше среднего, и электроны, находящиеся в них, уменьшают стабилизацию.

Рис. 1: диарграмма расщепления

Типичные расщепления

Для получения этих расщеплений обычно рассмтривают изолированные орбитали d, к которым "придвигают"8 заместителей, получая октаэдрическое расщепление, от которого потом постепенно "убирают" заместители.

Рис. 2: Тетраэдрическое расщепление

Рис. 3: Тригонально-бипирамидальное расщепление

Рис. 4: Пентагонально-бипирамидальное расщепление

Рис. 5: Плоскоквадрвтное расщепление

Рис. 6: Квадратно-пирамидальное расщепление

Рис. 7: Квадратно-антипризматическое расщепление

3.3. Сильное и слабое кристаллическое поле. Магнитные и спектральные свойства комплексных соединений переходных металлов

Лиганды делятся на две группы — сильного поля, которые расщепляют сильно-низкоспиновые комплексы, и лиганды слабого поля-высокоспиновые комплексы, которые расщепляют слабо.

Интенсивность поля возрастает в следующем ряду:

$$I^{-} < Br^{-} < SCN^{-} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < H_{2}O < NCS^{-} < CH_{3}CN < NH_{3} < Py < En < NO_{2}^{-} < CN^{-} < CO,$$

Октаэдрическое поле

схема заполнения электронов представлена на картинке

- для $d^1 d^3$ ситуация не зависит от расщепления
- для d⁴ ситуация меняется есть два варианта: для слабого(нижняя диаграмма) расщепления разница в энергии невелика и электроны остаются неспаренными. Образуются 4 неспаренных электрона для сильного расщепления разница в энергии уровней больше чем энергии спаривания, поэтому получается выигрыш в энергии, когда электрон опускается вниз и спариваются
- для d^5 в низкоспиновом комплексе 2 спаренных электрона и 1 неспаренный в высокоспиновом комплексе пять неспаренных электронов для d^6 в низкоспиновом комплексе получится полностью заполненные d_{xz}, d_{xy}, d_{yz} орбитали-диамагнитный комплекс в высокоспиновом комплексе 4 неспаренных электрона
- \bullet для d^7 в низкоспиновом комплексе 1 неспаренный электрон в высокоспиновом комплексе 3 неспаренных электрона
- для d^8 - d^9 в низкоспиновом комплексе и в высокоспиновом комплексе будут одинаковые картины- по 2(для d^8) и 3(для d^9) электронов

Тетраэдрическое поле

тетраэрдрические комплексы формируются только лиганды со слабым полем(высокоспиновые)-почему? потому что $0.5\Delta_{oct} = \Delta_{tetr}$ (расщепление мало) и спариваться электронам не нужно

а почему расщепление меньше?

- расстояние до лигандов в тетраэдрическом поле больше, взаимодействие хуже
- количество лигандов меньше, чем в окаэдрическом поле и поэтому отталкивание меньше энергия спаривания электронов (P) больше, чем $10D_q$ и первые 5 электронов заполняют по одному пять орбиталей и шестой(и последующие) электроны с обратным спином дополняют каждую орбитали.

магнитные свойства

магнитный момент у низкоспиновых меньше, так как электроны спариваются, а не переходят на другие уровни

$$\mu = 2\sqrt{s(s+1)} = \sqrt{n(n+2)}$$

s-суммарный спин n-число неспаренных электронов

Спектральные свойства

В зависимости от лигандов комплекс имеет разные цвета. При замещении лиганда изменяется не только число неспаренных электронов, но еще и цвет. В случае высокоспинового комплекса энергия расщепления меньше($E=h\nu$), следовательно частота перехода с d_{xy},d_{xz},d_{yz} на d_z^2 , $d_x^2-d_y^2$ меньше, а длина волны поглощаемого цвета больше В случае низкоспинового комплекса ситуация обратная, энергия расщепления больше($E=h\nu$), следовательно частота перехода сс d_{xy},d_{xz},d_{yz} на d_z^2 , $d_x^2-d_y^2$ больше, а длина волны поглощаемого цвета меньше (будет поглощать более коротковолновые волны)

Соответствие частот и цветов

3.4. Вопрос 3. Эффект Яна-Теллера

определение

Любая нелинейная молекула в вырожденном электронном состоянии будет искажаться и понижать свою симметрию, тем самым приводя к снятию вырождения.

Z-лиганды могут удаляться или приближаться к центральному атому, уменьшая взаимодействие L с орбиталями $d_z^2,\,d_{xz},\,d_{yz}.$

Ниже показаны эффекты Я.-Т. для каждого из вариантов заполнения d орбитали.

elongated or compressed.)

Статический и динамический эффекты

Динамический эффект Я.-Т. – переходы между жвумя минимумами. Требует низкого барьера между минимумами.

Статический эффект Я.-Т. – большой барьер между минимумами, стабильное нахождение в одном из минимумов.

3.5. Спектрохимический ряд лигандов с позиций метода молекулярных орбиталей

Одним из главных достоинств ММО в применении к комплексам является возможность объяснения спектрохимического ряда лигандов. Для этого нужно принять во внимание пи-взаимодействие между несвязывающими молекулярными орбиталями с атомными орбиталями лигандов, имеющих симметрию π -типа относительно линии связи металл-лиганд. Кроме электронных пар лигандов, ориентированных в направлении сигма-связи, у них остаются по две негибридизированные р-орбитали, ориентированные перпендикулярно линии связи металл-лиганд. Эти орбитали во многом определяют энергию расщепления Δ_{oct} а, следовательно, и объясняют расположение лигандов в спектрохимическом ряду.

Рис. 13. Снижении энергии расшепления кристаллическим полем в результате π -взаимодействия металл-лиганды. Неподеленные пары электронов на π -орбиталях лигандов СГ отталкивают электроны, находящиеся на d_{xy} -, d_{yz} - и d_{xz} -орбиталях металла (М), вследствие чего эти орбитали становятся менее устойчвыми. Соответствующий энергетический уровень t_{zg} повышается, и энергия расщепления Δ_n уменьшается

Если на dxy-орбитали комплексообразователя есть электроны, то возникают силы отталкивания между электронными парами лигандов и электронами на несвязывающей орбитали. В результате орбиталь становится менее устойчивой, их энергия повышается, а энергия расщепления уменьшается. К числу таких лигандов относятся ОН-, Cl-, Br-, I-, которые являются лигнадами слабого поля. Описанный эффект называется L-М- π -взаимодействием. Лиганды со свободными орбиталями π -типа, например CN-, ведут себя по-другому. Большая часть электронной плотности находится в межъядерном пространстве, а не в направлении комплексообразователя, поэтому дестабилизирующий эффект оказывается небольшим. Но разрыхляющая π -орбиталь свободна, поэтому электроны с орбиталей комплексообразователя получают возможность переместиться на π^* -орбиталь

лиганда. Этот эффект стабилизирует t2g-орбиталь, понижая ее энергию. В результате энергия расщепления повышается и данное π -взаимодействие металла с лигандом можно рассматривать как дативное π -взаимодействие. Такие лиганды называются лигандами сильного поля (CN-, CO, NO2-)

Рис. 14. Влияние π-связывания в циано-комплексах

3.6. Галогенидные комплексы 6 и 10 групп

VI группа

Для него характерно координационное число 6, что соответсвует октаэдру. МО комплекса $[CrCl_6]^{3-}$:

Мы рассматриваем р-орбитали хлора, т.к. на них есть нужные для связывания электроны, связывание может происходить по сигма- и пи-типу. Орбитали хлора ниже d-орбиталей хрома, т.к. хлор более электроотрицателен. Хорошо бы сравнить результаты с ТКП, которую использоывать сильно проще. Здесь это так и получается, t_{2g}^* -орбитали имеют по 1 электрону. Первые заполненные 6 орбиталей связывающие $\Pi C = (12-3)/2 = 9/2$, KC = 9/8 (больше 1, коплекс прочный).

Магнитный момент, надеюсь, помним, как считать, с этим справитесь. Комплекс окрашен, т.к. щель по энергии маленькая. На это диаграмме видно, почему Cr^{2+} неустойчив, поле слабое и присоединение 1 электрона привело бы к заполнению e_g^* -орбиталей, чтего комплексу не очень хочется. Для молибдена и вольфрама ситуация несколько иная. Они сильно выше по энергии, чем хром, в их комплексах поле сильное, они также образуют октаэдры (иногда встречаются тригональные призмы, но это экзотика):

Симметрия здесь абсолютно такая же. Здесь важно то, что t_{2g} связываются сильно хуже из-за плохого перекрывания, а вот e_g , наоборот, очень сильно, что делает расщепление большим. Окрашивания либо совсем нет, либо оно слабое из-за большой энергетической щели. В данно комплексе молибден имеет степень окисления +3, однако орбитали t_{2g}^* лежат довольно высоко. Это объясняет большую склонность молибдена и вольфрама к $\text{C.O.}{=}+6$, когда разрыхляющие орбитали пусты.

Х группа

Здесь комплексы никеля тетраэдрические, поле слабое:

Здесь лучшее перекрывание с орбиталями t_2 , хуже – с орбиталями е, что можно увидеть из ТКП. ПС= (12-8)=2, КС=1/2, комплекс не такой прочный. Всё остальное считаем сами, скажу лишь, что он окрашен, т.к. щель маленькая.

Палладий и платина

Комплексы палладия и платины квадратные, поле сильное:

Здесь следует сказать об орбиталях a_{1g} . s-орбиталь перекрывается хорошо, даёт связывающую и разрыхляющую. d_z^2 даёт существенно несвязывающую. Результат согласуется с ТКП. $\Pi C = (12\text{-}6)/2 = 3$, KC = 3/4, что больше, чем в тетраэдрических комплексах, конфигурация металла d^8 , что соответсвует квадратному расщеплению. Окраски практически нет, диамагнитен.

3.7. Цианидные комплексы 8 и 10 групп

Цианиды — лиганды сильного поля. Для 8 группы характерны октаэдрические комплексы, для 10 — квадратные. Начнём с 8 группы.

Красная кровяная соль(VIII гр.)

Стоит отметить, что точную форму разрыхляющих орбиталей можно определить только с помощью оператора проектрирования, мы же основываем наши рассуждения на предположении, что разрыхляющие орбитали CN^- взаимно-перпендикулярны, что не является грубым приблежением. Тогда симметрия аналогична галогенидным октаэдрическим комплексам. Разрыхляющие орбитали CN^- расположены высоко по энергии, в силу чего поле в комплексе сильное. ТКП с этим вполне согласна. $\Pi C = 5.5$, Kc = 0.9

Отмечу, что при добавлении 1 электрона на связывающую орбиталь t_{2g} мы получим анион жёлтой кровяной соли($\Pi C=1$), что объясняет устойчивость Fe^{2+} в комплексах с лигандами сильного поля. Окраска этих комплексов обусловлена другими факторами, так как перепрыгивание электрона на e_g^* -орбитали требует высокоэнергетической волны, длина которой, скорее будет в зоне ультрафиолета.

При переходе к рутению и осмию картина изменится несильно. Орбитали металла будут выше по энергии, перекрывание ед будет лучше, t_{2g} – не сильно лучше, если не хуже. Это приведёт к увеличению энергетической щели.

Тетрацианидникель(Х гр.)

Симметрия, опять-таки аналогична галогенидным квадратным коплексам. Интересно то, что с лигандами слабого поля Ni^{2+} даёт тетраэдры, а с лигандами сильного поля – квадраты. Расщепление здесь соответсвтвует квадратному из ТКП. Отмечу, что орбиталь b_{2g} будет почти несвязывающей из-за плохого перекрывания. $\Pi C=4$, KC=1, комплекс диамагнитный. При переходе к палладию или платине картина почти не изменится, т.к. их орбитали выше, чем у никеля.

Карбонилы 6 и 10 групп

Карбонильные лиганды очень похожи на цианидные, однако в их случае ориентироваться на ТКП не рекомендуется, ведь CO, как и металл, не

заряжен.

VI гр.

Строение октаэдрическое. Здесь выполняется правильно Сиджвика. Заполнены все связывающие орбитали, комплекс довольно прочный. Диамагнитен, окрашивания почти не видно. $\Pi C = 6$, K C = 1.

Если идти к молибдену и вольфраму, то там орбитали металла ещё выше. Связывание с e_g и a_{1g} ухудшается, прочность комплексов падает.

Х гр.

Рассмотрим $Ni(CO)_4$, который имеет форму тетраэдра:

Здесь ситуация интереснее, т.к. заполнена и часть разрыхляющих орбиталей, что подтверждается меньшей устойчивостью этого комплекса. Он

диамагнитен и бесцветен, т.к. орбиталь a_1^* сильно выше, чем t_2^* (просто масштаб хреновый). Для платины и палладия таких карбонилов не зафиксировано, т.к. они не склонны к отдаче электронов на π^* -орбитали CO.

3.8. Особенности электронного и геометрического строения нитрозильных комплексов. Описание связи металл - нитрозил. Сравнение со связью М-СО. Природа связи М-СО и М-NO

Электронное строение

похоже на CO, но с 1 е на π^* орбитали. Донирование 3 е. π -орбитали лежат низко На π^* есть1 е, который может участвовать в связывании $NO^(+)$ изоэлектронен CO

Геометрия

может донировать 3 е или 1 е. 1е: 9гол MNO - не 180 град., связь 1М-N длиннее 13е: 19гол 180 град., связь 180 град., связь 180 град.

Связь М-NO и М-СО

электронов донируется	1е или 3е	2e
π-акцептор	редко	хорошо
ионность	отн. выскокая	малая

Угол MNO зависит от: природы лиганда; других лигандов металла; стерического фактора

3.9. Особенности электронного и геометрического строения олефиновых комплексов, по сравнению с карбонильными. Модель Дьюара-Чатта-Дункансона

Строение олефиновых комплексов на примере соли Цейзе

$$[PtCl_{4}]^{2-} + EtOH => [Pt(C_{2}H_{4})Cl_{3}] + Cl^{-} + H_{2}O$$

Ось связи CC перпендикулярна комплексу.

Между молекулой этилена и центральным атомом - боковая дативная связь: частичная передача электронной плотности с π -орбитали лиганда на вакантнуюорбиталь M и с заполненной d-AO M на вакантную π^*-L .

- Высокое сродство к электрону металла увеличивает σ -донирования M->olephine в химическую связь
- Низкое значение энергии возбуждения увеличивает вклад $\pi-$ компоненты M->olephine
 - Ni: $PE=1.72eV,\,d^{10},\,E_A=1.20eV$ хороший π —донор
 - Hg: $PE=12.8eV,\,d^{10},\,E_A=16.9eV$ хороший $\pi-$ акцептор
 - Pd: $PE = 3.05 eV, d^8, E_A = 18.56 eV$ хороший $\pi-$ донор и $\pi-$ акцептор
- Олефин способен сохранить как в роли кислоты, так и основания Льюиса, тем самым сохраняя низкую полярность связи.
- Энергия связи M-олефин определяется вкладом обр. π -донирования.

Модель Дьюара-Чатта-Дункансона

Данная модель рассматривает оба механизма - как прямое, так и обратное донирование. От того, какие заметсители и лиганды есть у олефина и лиганда соответственно, зависит то, какой из механизмов будет преобладать:

- Донорные заместители у олефина увеличивают вклад $\pi-olefine => d-Me$
- Акцепторные заместители у олефина увеличивают вклад $d-Me=>\pi^*-olefine$
- Акцепторные лиганды металла увеличивают вклад $\pi-olefine=>d-Me$
- Донорные лиганды у металла увеличивают вклад $d-Me => \pi^* olefine$

3.10. Электронное строение (с позиций MMO) бисциклопентадиенильных комплексов переходных металлов

Металлоцены

Ферроцен - устойчив кинетически, но не термодинамически. Соединения устойчивы в довольно широком диапазоне:

$$Cp_2V, Cp_2Cr, Cp_2Mn, Cp_2Fe, Cp_2Co, Cp_2Ni$$

Все эти соединения идентичны структурно, по составу тоже, только иимеют разные длины связи.

$$Cp_2Fe - D_{5h}$$

Рис. 8

- Всего 59 орбиталей, из них 40 обеспечивают связи в кольце и не учитаваются при рассмотрении
- Сильно переурывание по $\pi(Cp(e_1) d_{xz}, Cp(e_1) d_{yz})$, почти равно нулю $\sigma(Cp(e_1) d_z^2)$.
- Слабосвязывающие орбитали: e_2 , e_1 , из-за этого устойчивы $Cp_2V(16e)$, $Cp_2Cr(16e)$, $Cp_2Mn(17e)$
- Cp σ -донор, сильный π -донор, слабый σ -акцептор.

3.11. Ареновые соединения металлов

$$PhH_2Cr - D_{6h}$$

• a_{1g} взаимодействует с s и d_z^2 (с первой лучше, так как она более диффузна)

- a_{2u} с p_z энергии очень далеки, слабосвяз. и слаборазр.
- e_{1g} с d_x^2 и $d_y^2(\pi-$ связывание, хорошее перекрывание, направлены к L)
- e_{1u} с p_x, p_y большая разность в энергиях, слабосвяз. и слаборазр., параллельно L
- e_{2q} с $d_{xy}, d_{x^2-y^2}$ (σ -связывание, параллельно L)

Особенности:

- \bullet орбитали металла более диффузны, из-за нулевого, в не 2+ заряда, как у Ср
- \bullet L хороший σ и π донор
- e_{2g} связывает сильнее чем в Cp_2Fe , из-за лучшего перекрывания (цикл больше), и меньшей разности энергий

3.12. Тенденции изменения энергий ионизации для различных сэндвичевых соединений

Циклопентадиенил

Нарисовать для правильного ответа достаточно лишь выделенное красным

Потенциалы ионизации объясняются исходя из диаграммы МО сэндвичевых соединений. Для Cp закономерность: потенциал ионизации уменьшается до кобальтоцена, а затем возрастает.

Потенциал ионизации кобальтоцена близок к натрию, так как у него имеется один электрон на разрыхляющей орбитали e_{1g} , который выгодно отдать и образовать 18-ти электронную конфигурацию. К тому же e_{1g} орбиталь близка по энергии к s орбитали металла (если бы кобальт был s металлом, то электрон уходил бы именно оттуда). У манганоцена потенциал ионизации больше (не намного), чем у ферроцена, так как меньше электронов на несвязывающей орбитали.

Хромоцен (16-ти электронная система) – заполнено e_{2g} . Потенциал ионизации так же больше, чем у ферроцена и манганоцена. У никелоцена 20 электронов, по одному электрону на e_{1g} орбиталях (не выгодно по энергии). Потенциал ионизации никелоцена больше, чем у кобальтоцена, так как у кобальтоцена при отрывании одного электрона образуется выгодная конфигурация с 18 электронами (резкий выигрыш по энергии) в отличие от никелоцена, у которого при отрывании остается один электрон на разрыхляющей орбитали. Потенциалы ионизации сэндвичей ранних переходных металлов (до кобальтоцена) в целом несильно отличаются друг от друга. Чем меньше электронов, тем сложнее их оторвать и тем больше потенциал ионизации.

Бензол

Закономерность изменения потенциала ионизации: уменьшается до дибензолмарганца, а затем возрастает.

Чем меньше электронов – тем больше потенциал ионизации. Однако у дибензолмарганца появляется неспаренный электрон на разрыхляющей, что создает невыгодную по энергии ситуацию – электрон легче отдать – энергия ионизации уменьшается. Дальнейшее заполнение e1g орбиталей приводит к увеличению энергии ионизации – отдавать электрон уже не так выгодно, так как это не приводит к образованию устойчивой 18-ти электронной конфигурации. Если рассмотреть ферроцен и дибензолхром – у дибензолхрома при ионизации электроны уходят с a_{1g} орбитали, которая находится на уровне d орбиталей хрома, а у ферроцена эта орбиталь на уровне d орбиталей железа. У хрома энергия d-орбитали выше, чем у железа, следовательно, электрон проще оторвать от хрома, чем от железа. У дибензолхрома оторвать электрон легче, чем у ферроцена. Когда у металла имеется положительный заряд (как в случае с Cp), оторвать электрон сложнее - у ферроцена сложнее оторвать электрон.

3.13. Магнитные свойства сэндвичных соединений

Многие магнитные свойства можно предсказать из МО для большинства металлов. Все электроны спарены — диамагнитная молекула, есть неспаренные — парамагнитная.

Электронная конфигурация и магнетизм металлоценов

	Электронная Число неспаренных Значение конфигурация электронов n $\sqrt{n(n-2)}$,			Магнитный момент, м. Б.		
	${\left\{(a_{_{1g}})^2(a_{_{2u}})^2\\(e_{_{1g}})^4(e_{_{1u}})^4\right\}}^+$		только спином	ожидаемый	найденный	
Cp ₂ Tl+	(e _{2g}) ¹	1	1.73	> 1.73	2.29±0.05	
Cp ₂ V ²⁺	$(e_{2g})^1$	1	1.73	> 1.73	1.90±0.05	
Cp ₂ V+	$(e_{2g})^2$	2	2.83	2.83	2.86±0.06	
Cp ₂ V	$(e_{2g})^2(a'_{1g})^1$	3	3.87	3.87	3.84±0.04	
Cp ₂ Cr+	(e _{2g}) ² (a' _{1g}) ¹	3	3.87	3.87	3.73±0.08	
Cp ₂ Cr	$(e_{2g})^3(a'_{1g})^1$	2	2.83	>2.83	3.20±0.16	
Cp₂Fe⁺	$(e_{2g})^3(a'_{1g})^2$	1	1.73	>1.73	2.34±0.12	
Cp ₂ Fe	(e _{2g}) ⁴ (a' _{1g}) ²	0	0	0	0	
Cp ₂ Mn	$(e_{2g})^2(a'_{1g})^1(e^*_{1g})^2$	5	5.92	5.92	5.81	
Cp ₂ Co+	(e _{2g}) ⁴ (a' _{1g}) ²	0	0	0	0	
Cp ₂ Co	$(e_{2g})^4(a'_{1g})^2(e^*_{1g})^1$	1	1.73	>1.73	1.76±0.07	
Cp ₂ Ni ⁺	$(e_{2g})^4(a'_{1g})^2(e^*_{1g})^1$	1	1.73	>1.73	1.82±0.09	
Cp ₂ Ni	$(e_{2g})^4(a'_{1g})^2(e^*_{1g})^2$	2	2.83	2.83	2.86±0.11	

Манганоцен в кристалле образует цепи без индивидуальных сэндвичевых молекул. При выше 432 К имеет магнитный момент 5.9 м.Б., что соответсвует электронной конфигурации $(e_{2g})^2(a_{1g})^1(e_{1g}^*)^2$, Декаметилманганоцен Cp_2Mn имеет «нормальную» сэндвичевую структуру и магнитный момент = 2,18 м. Б. (конфигурация основного состояния $(e_{2g})^2(a_{1g}^*)^1$, соответствует низкому спину). Диметилманганоцен состоит из смеси высокого и низкого спинов.

Магнитные свойства бисареновых комплексов металлов

	Число Σ ВЭ		Магнитный момент (в магнетонах Бора)		
	неспаренных электронов		Значение, определяемое только спином	Экспериментальное значение	
(C ₆ H ₆) ₂ Ti	0	16	0	0	
(C ₆ H ₆) ₂ V	1	17	1.73	1.68±0.08	
[(C ₆ H ₆) ₂ V] ⁻	0	18	0	0	
$[(C_6Me_3H_3)_2V]^+$	2	16	2.83	2.80±0.07	
(C _e H _e) ₂ Cr	0	18	0	0	
(C _e H _e) ₂ Mo	0	18	0	0	
$[(C_6H_6)_2Cr]^+$	1	17	1.73	1.77	
[(C _e Me _e) ₂ Fe] ²⁺	0	18	0	0	
[(C ₆ Me ₆) ₂ Fe]+	1	19	1.73	1.89	
(C ₆ Me ₆) ₂ Fe	2	20	2.83	3.08	
[(C ₆ Me ₆) ₂ Co] ²⁺	1	19	1.73	1.73±0.05	
[(C ₆ Me ₆) ₂ Co] ⁺	2	20	2.83	2.95±0.08	
(C ₆ Me ₆) ₂ Co	1	21	1.73	1.86	
[(C ₆ Me ₆) ₂ Ni] ²⁺	2	20	2.83	3.00±0.09	