Prova scritta di Algebra per Informatica, 14/7/2022 – prof. P. Papi

Nome, Cognome, Numero di Matricola:

- 1. Non sono ammessi appunti, libri di testo, calcolatrici né l'uso del computer (al di fuori di exam.net)
- 2. Spiegare il procedimento ed i calcoli eseguiti, e giustificare ogni risposta. La valutazione terrà conto della presentazione: leggibilità, grammatica, sintassi, ordine, chiarezza, capacità di sintesi.
 - 3. Una risposta giusta con giustificazione sbagliata viene valutata ≤ 0 .
 - 4. Per gli esercizi da 1 a 4, riportare la risposta sintetica nella colonna centrale della tabella sottostante.
 - 5. Il tempo a disposizione è due ore.

Esercizio	$Risposta\ sintetica$	Valutazione
1.a		3
1.b		4.5
2.a		1
2.b		3
2.c		3,5
3.a		3
3.b		2.5
3.c		2
4.a		3
4.6		4,5

Esercizio 1.

a) Si verifichi che la relazione binaria definita su \mathbb{Z} da

$$x \sim y \iff \frac{x-y}{2} \in \mathbb{Z} \ e \ 3 \ divide \ \frac{x-y}{2}.$$

è una relazione di equivalenza.

b) Determinare, se esiste, un sottogruppo N di \mathbb{Z} tale che

$$\mathbb{Z}/N = \mathbb{Z}/\sim$$

 $(\mathbb{Z}/\sim \grave{e}\ l'insieme\ quoziente\ di\ \mathbb{Z}\ modulo\ la\ relazione\ \sim).$

e) Verifichiems le propriété deflemée, sometre

$$\frac{x-x}{2} = 0 \in \mathbb{Z}$$

$$3 \left| \frac{x-x}{2} = 0 \right|$$

$$\frac{x-y}{2} = 2$$
 $\varphi = 3k$

$$\frac{x-y}{2} = 0, a = 3k$$
 $\frac{y-t}{2} = 5, b = 3k$

b) Describent cle & \times ry, And \times , y here le sterre portor.

Dicromo cle $\mathbb{Z}/n = \mathbb{Z}/6\pi$; & \times ray e $\times = 2011$, y = 2b+1 & $\times = 2e$, y = 2b, $3 \mid e-5$ Quind: $6 \mid 2(e-b) = \times -y$, $(aoe') \times = y$ mode.

Vicanse $x \times -y = 6h$, $\frac{x-y}{z} = 3h$ $\in \mathbb{Z}$ e $3 \mid \frac{x-y}{z}$, $aoe' \times xy$

Esercizio 2. Si consideri il gruppo U_{16} degli elementi invertibili di \mathbb{Z}_{16} .

- a) Elencare gli elementi di U_{16} .
- b) Determinare l'ordine di ogni elemento di U_{16} ; stabilire se U_{16} è ciclico.
- c) Stabilire se U_{16} è prodotto diretto di gruppi ciclici.

$$V_{u} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{m}, \overline{13}, \overline{15}\}$$

Ricordon de che un clevent e il suo servents heurs la stino ortre, z' ho,

per venfica telle

$$O(15) = 6(-1) = 2$$

Non essendovi element + ndice &, Ua men l'aiclies

c) Ricordando de 15 = -1, & che <3> = 1,3,5,514, è chiono de $U_{16} = 17,3,7,114 \times 17,-19$ = $(3) \times (15)$ Esercizio 3. Si considerino i seguenti sottospazi vettoriali di \mathbb{C}^3

$$V_1 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 + z_2 + z_3 = 0\},\$$

$$V_2 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_2 + iz_3 = 0\}.$$

- a) Determinare basi di V_1, V_2 .
- **b)** Determinare una base di $V_1 \cap V_2$.
- c) Stabilire, motivando la risposta, se ogni vettore di \mathbb{C}^3 si scrive in modo unico come somma di un vettore di V_1 e un vettore di V_2 .

Dengue il anterime à Egui valente à $\begin{cases}
 \frac{2}{4} = (i-1)^2 \\
 \frac{2}{3}
 \end{cases}$ (-a) bre L' solute c) Se opi vettae & [3 Si scrivene jue mudo lenico came dema d un cettre de V, e d'en Vettre de N2, risalterelle (3 - V, DV2, ine portuelee V, 1 Ve = 1.5. Abhiens Visto in 6) che coi eon accede.

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right)$$

si consideri l'operatore lineare $F: \mathbb{M}_{3,2}(\mathbb{R}) \to \mathbb{M}_{3,2}(\mathbb{R})$,

$$F(X) = XA$$

$$ove \ X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \\ x_5 & x_6 \end{pmatrix} \ .$$

- a) Scrivere la matrice di F rispetto alla base di $M_{3,2}(\mathbb{R})$ formata dalle matrici elementari $\{e_{11}, e_{12}, e_{21}, e_{22}, e_{31}, e_{32}\}$.
- b) Determinare una base di $M_{3,2}(\mathbb{R})$ formata da autovettori per F.

$$= \begin{cases} 2x_1 + x_2 & x_1 + 2x_2 \\ 2x_3 + x_4 & x_3 + 2x_4 \\ 2x_5 + x_6 & x_5 + 2x_6 \end{cases}$$

e la sustrice recluierte, sia B, es

b) Il foliciem Correttenstro J. $B = \begin{pmatrix} 21 \\ 12 \end{pmatrix}$ $\begin{vmatrix} 2 - t & 1 \\ 1 & 2 - t \end{vmatrix} = (2 - t)^{2} = t^{2} - 4t + 7$ = (t - 1)(t - 3)Duge I peliam corettuste d'Be' (t-13(t-3). Cpl. omfostor. 1.8 relatir a 1,3 sous questi de (1) (1) respektente. Port. gell. I B som genet' Le lu députée, le bre rechierte «

Esercizio 5.

- 1. Dare la definizione di classe laterale sinistra di un elemento g di un gruppo G modulo un sottogruppo H. Ai fini della definizione, è necessario che H sia un sottogruppo normale ?
- 2. Enunciare e dimostrare il teorema di Lagrange.
- 3. Sia G in gruppo di ordine 56; stabilire se la seguente implicazione è vera o falsa

$$g^{15} = 1 \implies g = 1$$

1.2: 2° veden test' = t-gens 3. Del terem to heeperge, te 966, 6 gupo hob, o(g)/161, le aclose g = 1 cuepacle O(g) = 1, o(g) = 5 apre dg)=3 Rado' 5 f 56, 3 f 56 segue g = 1.