Chapter 1

Solutions to selected exercises

Many of the exercises may be answered correctly in different ways. Where that is the case, the solution here represents one possible correct answer.

Chapter ?? Ex ??:

- 1. I should take my sunglasses.
- 2. It must have been sunny.
- 3. You took the cookie from the cookie-jar.
- 4. Colonel Mustard did it in the kitchen with the lead pipe.

- 1. Yes, valid arguments can have a mix of true and false premises. e.g., You are a lizard (false). If you are a lizard, you are a reptile (true). Therefore, you are a reptile.
- 2. Yes, a valid argument can have only false premises. e.g., You are a lizard (false). If you are a lizard, you are a mammal (false). Therefore, you are a mammal.
- 3. Yes, a valid argument can have false premises and conclusion. e.g., You are a lizard (false). If you are a lizard, you are a fish (false). Therefore, you are a fish.
- 4. Yes, an invalid argument can be made valid by adding a new premise. e.g., You are alive. Therefore you breathe. This is invalid. But adding 'Everything that is alive breathes' makes the argument valid.
- 5. No, you can't make a valid argument invalid by adding a new premise. Adding new premises just makes it harder to make all the premises true. Recall that a valid argument has a true conclusion whenever its premises are true, so adding premises can only make it easier to be valid.

Chapter ?? Ex ??: Are these logical truths, falsehoods, or contingent?

- 1. contingent
- 2. contingent
- 3. logical truth
- 4. logical falsehood
- 5. contingent

Chapter ?? Ex ??: Which pairs of statements are logically equivalent?

- 1. Not equivalent
- 2. Not equivalent
- 3. Not equivalent
- 4. Equivalent
- 5. Equivalent

Chapter ?? Ex ??:

- 1. Consistent.
- 2. Consistent.
- 3. Inconsistent.
- 4. Consistent.
- 5. Inconsistent.
- 6. Inconsistent.
- 7. Inconsistent.

- 1. Possible. 20=30. Therefore 2=3.
- 2. Impossible. Invalid arguments have counter-examples. Counter-examples make the conclusion false. Logical truths can never be false.
- 3. Impossible. Valid arguments have a true conclusion if the premises are true, and they are true always, so the conclusion is true always.
- 4. Impossible. Contingent statements are those that are neither logical truths nor falsehoods.
- 5. Possible. Any two logical truths are equivalent.
- 6. Impossible. The contingent statement will be false in a situation where the logical truth is true, so they are not equivalent.
- 7. Possible. Any two logical falsehoods are equivalent, and inconsistent.
- 8. Impossible. A falsehood is never true, so all the statements can't be true.
- 9. Possible. As long as the other statements are mutually inconsistent, adding a logical truth won't make the other statements all true.

3

Chapter ?? Ex ??:

- 1. $(R \wedge W)$
- 2. $(R \wedge \neg S)$
- 3. $\neg (R \land S)$
- 4. $\neg (R \vee S)$
- 5. $(R \to (W \land G))$
- 6. $(G \land \neg W)$
- 7. $(R \to (W \land \neg S))$
- 8. $((R \to W) \land \neg S)$

Chapter ?? Ex ??:

The letters in your symbolisation keys may differ from ours.

- 1. $(\neg Z \rightarrow \neg C), (Z \rightarrow T), (T \rightarrow \neg C) \therefore \neg C.$
- 2. $(R \to S), (R \to E)$ \therefore $(\neg E \to (\neg R \land \neg S)).$
- 3. $(R \to \neg D), (P \to M), ((P \to M) \to (\neg D \to \neg N))$ \therefore $(N \to \neg R)$.

Chapter ?? Ex ??:

- $1. \neg M$
- 2. $(M \vee \neg M)$
- 3. $(G \vee C)$
- 4. $\neg (C \lor G)$
- 5. $C \to \neg (G \vee M)$
- 6. $\neg M \rightarrow (C \lor G)$

- 1. $(A \wedge B)$
- $2. (C \rightarrow E)$
- 3. $(C \vee A)$
- 4. $(B \wedge \neg F)$
- 5. $(\neg A \land \neg B)$
- 6. $(A \wedge B \wedge \neg (E \vee F))$
- 7. $(F \rightarrow D)$
- 8. $((\neg A \rightarrow \neg B) \land (A \rightarrow B))$
- 9. $(E \leftrightarrow \neg F)$
- 10. $((B \land D) \rightarrow F)$
- 11. $\neg (B \land D)$

4

Chapter ?? Ex ??:

- 1. $(A \wedge B)$
- 2. $((A \lor B) \to C)$
- 3. $(\neg(A \lor B) \to \neg C)$
- 4. $(E \vee C)$
- 5. $((C \vee \neg C) \wedge E)$
- 6. $((A \lor B) \land \neg (A \land B))$

Chapter ?? Ex ??:

The letters in your symbolisation keys may differ from ours.

- 1. $(A \to E), (\neg D \to A)$ \therefore $(\neg E \to D)$.
- 2. $(R \vee S), (R \rightarrow D), (S \rightarrow C)$ \therefore $(D \vee C)$.
- 3. $(R \to (C \land \neg N)), (\neg R \to (N \land \neg C))$ \therefore $((N \lor C) \land \neg (N \land C)).$
- 4. $(\neg M \to D), (\neg D \to M), \neg (M \land D)$ \therefore $((M \lor D) \land \neg (M \land D)).$

1.
$$\neg (S \leftrightarrow (P \rightarrow S))$$

$$P \quad S \mid \neg \quad (S$$

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$2. \neg ((X \land Y) \lor (X \lor Y))$$

3.
$$((\neg P \lor \neg M) \leftrightarrow M)$$

4.
$$((A \to B) \leftrightarrow (\neg B \leftrightarrow \neg A))$$

•	((A	$\rightarrow L$) < → ($\cup D$.	→ 1/	1))						
	A	B	((A	\rightarrow	B)	\leftrightarrow	$(\neg$	B	\leftrightarrow	\neg	A))	
	1	1	1	1	1	1	0	1	1	0	1	
	1	0	1	0	0	1	1	0	0	0	1	
	0	1	0	1	1	0	0	1	0	1	0	
	0	0	0	1	0	1	1	0	1	1	0	

5. $\neg \neg (\neg A \land \neg B)$ B $(\neg$ A \wedge

6. $(((D \land R) \to I) \to \neg(D \lor R))$ (DR))Ι $R \mid$ $((D \land$ RI)()

7. $((C \leftrightarrow (D \lor E)) \land \neg C)$ DE((C \leftrightarrow (D \vee E))C \wedge

8. $(\neg(G \land (B \land H)) \leftrightarrow (G \lor \neg(B \lor H)))$ H))GH $(\neg$ (G \wedge (BH))(G $(B \lor$ \land \leftrightarrow ()

Chapter ?? Ex ??:

1. $A \to A$, $\neg A \to \neg A$, $A \land A$, $A \lor A$ are mutually consistent.

A	(A	\rightarrow	A)	(¬	A	\rightarrow	\neg	A)	A	\wedge	A)	(A	\vee	A)
1	1	1	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	0	1	0	1	1	0	0	0	0	0	0	0

6

2. $A \vee B$, $A \to C$, $B \to C$ are mutually consistent.

									$\mid (B \mid$		
									1		
1	1	0	1	1	1	1	0	0	1	0	0
1	0	1	1	1	0	1	1	1	1 0	1	1
1	0	0	1	1	0	1	0	0	0 1	1	0
0	1	1	0	1	1	0	1	1	1	1	1
0	1	0	0	1	1	0	1	0	1	0	0
									0		
0	0	0	0	0	0	0	1	0	0	1	0

3. $B \wedge (C \vee A), A \rightarrow B, \neg (B \vee C)$ are mutually inconsistent.

	(/	,		'		,							
A	B	C	$\mid (B \mid$	\wedge	(C	\vee	A))	(A	\rightarrow	B)	(¬	(B	\vee	C))
1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
1	1	0	1	1	0	1	1	1	1	1	0	1	1	0
1	0	1	0	0	1	1	1	1	0	0	0	0	1	1
1	0	0	0	0	0	1	1	1	0	0	1	0	0	0
0	1	1	1	1	1	1	0	0	1	1	0	1	1	1
0	1	0	1	0	0	0	0	0	1	1	0	1	1	0
0	0	1	0	0	1	1	0	0	1	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1	0	1	1	0	0
			1											

4. $A \leftrightarrow (B \lor C), C \rightarrow \neg A, A \rightarrow \neg B$ are mutually consistent.

A	\dot{B}	C	(A	\leftrightarrow	(B	\vee	C))	C	\rightarrow	\neg	A)	(A	\rightarrow	\neg	B)
1	1	1	1	1	1	1	1	1	0	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0	1	0	1	1	0	0	1
1	0	1	1	1	0	1	1	1	0	0	1	1	1	1	0
1	0	0	1	0	0	0	0	0	1	0	1	1	1	1	0
0	1	1	0	0	1	1	1	1	1	1	0	0	1	0	1
0	1	0	0	0	1	1	0	0	1	1	0	0	1	0	1
0	0	1	0	0	0	1	1	1	1	1	0	0	1	1	0
0	0	0	0	1	0	0	0	0	1	1	0	0	1	1	0

Chapter ?? Ex ??:

1. $A \rightarrow A$. A is invalid.

2. $A \to (A \land \neg A)$. $\neg A$ is valid.

3. $A \lor (B \to A)$. $\neg A \to \neg B$ is valid.

A	B	A	\vee	(B	\rightarrow	A)		A	\rightarrow	\neg	B)
1	1	1	1	1	1	1	0	1	1	0	1
1	0	1	1	0	1	1	0	1	1	1	0
0	1	0	0	1	0	0	1	0	0	0	1
0	0	0	1	0	1	0	1	0	1	1	0

7

4. $A \vee B, B \vee C, \neg A : B \wedge C$ is invalid.

•	4 I V	$_{-}$	<i>,</i> , ,	~ , · <u>~ </u>		,,,,	10 111	V COLIC	4.					
	A	B	C	A	\vee	B)	$\mid (B \mid$	\vee	C)	_	A	$\mid (B \mid$	\land	C)
	1	1	1	1	1	1	1	1	1	0	1	1	1	1
	1	1	0	1	1	1	1	1	0	0	1	1	0	0
	1	0	1	1	1	0	0	1	1	0	1	0	0	1
	1	0	0	1	1	0	0	0	0	0	1	0	0	0
	0	1	1	0	1	1	1	1	1	1	0	1	1	1
	0	1	0	0	1	1	1	1	0	1	0	1	0	0
	0	0	1	0	0	0	0	1	1	1	0	0	0	1
	0	0	0	0	0	0	0	0	0	1	0	0	0	0

5. $(B \land A) \rightarrow C, (C \land A) \rightarrow B$. $(C \land B) \rightarrow A$ is invalid.

A	B	C	$((B \wedge A)$	\rightarrow	C)	$((C \wedge A)$	\rightarrow	B)	$((C \wedge B)$	\rightarrow	A)
1	1	1	1 1 1	1	1	1 1 1	1	1	1 1 1	1	1
1	1	0	1 1 1	0	0	0 0 1	1	1	0 0 1	1	1
1	0	1	0 0 1	1	1	1 1 1	0	0	1 0 0	1	1
1	0	0	0 0 1	1	0	0 0 1	1	0	0 0 0	1	1
0	1	1	1 0 0	1	1	1 0 0	1	1	1 1 1	0	0
0	1	0	1 0 0	1	0	0 0 0	1	1	0 0 1	1	0
0	0	1	0 0 0	1	1	1 0 0	1	0	1 0 0	1	0
0	0	0	0 0 0	1	0	0 0 0	1	0	0 0 0	1	0

Chapter ?? Ex ??:

- 1. \mathcal{A} and \mathcal{B} have the same truth value on every line of a complete truth table, so $\mathcal{A} \leftrightarrow \mathcal{B}$ is true on every line. It is a logical truth.
- 2. $(A \wedge B) \to C$ is false on some line of a complete truth table. On that line, A and B are true and C is false. So the argument is invalid.
- 3. Since \mathcal{A} , \mathcal{B} and \mathcal{C} are mutually inconsistent, there is no line on which all three are true, so their conjunction will be a logical falsehood.
- 4. Since \mathcal{A} is false on every line of a complete truth table, there is no line on which \mathcal{A} and \mathcal{B} are true and \mathcal{C} is false. So the argument is valid.
- 5. Since \mathcal{C} is true on every line of a complete truth table, there is no line on which \mathcal{A} and \mathcal{B} are true and \mathcal{C} is false. So the argument is valid.
- 6. $(A \vee B)$ is equivalent to A. So $(A \vee B)$ is a logical truth iff A is; a contradiction iff A is; and contingent iff A is.
- 7. \mathcal{A} and \mathcal{B} have different truth values on at least one line of a complete truth table, and $(\mathcal{A} \vee \mathcal{B})$ will be true on that line. On other lines, it might be true or false. So $(\mathcal{A} \vee \mathcal{B})$ is either a logical truth or it is contingent; it is *not* a contradiction.

Chapter ?? Ex ??:

1. A, $\neg A$ are not equivalent.

$$\begin{array}{c|cccc} A & A & \neg & A \\ \hline 1 & 1 & 0 & 1 \end{array}$$

- 2. $A, A \lor A$ are equivalent.
- 3. $A \to A$, $A \leftrightarrow A$ are equivalent.
- 4. $A \vee \neg B$, $A \to B$ are not equivalent.

- 5. $A \wedge \neg A$, $\neg B \leftrightarrow B$ are equivalent.
- 6. $\neg (A \land B), \neg A \lor \neg B$ are equivalent.
- 7. $\neg (A \to B), \neg A \to \neg B$ are not equivalent.

A	B	_	(A	\rightarrow	B)	_	A	\rightarrow	\neg	B
0	0	0	0	1	0	1	0	1	1	0
1	1	0	1	1	1	0	1	1	0	1

8. $(A \to B)$, $(\neg B \to \neg A)$ are equivalent.

Chapter ?? Ex ??:

1. $A \lor (A \to (A \leftrightarrow A))$. A is invalid. $A \mid (A \lor (A \to (A \leftrightarrow A)) \mid A \to (A \leftrightarrow A)) \mid A \to (A \to A)$

3.
$$A \to B, B$$
. A is invalid.
 $A B | (A \to B) | B | A$
 $0 1 0 1 1 1 0$

- 4. $A \vee B$, $B \vee C$, $\neg B$. $A \wedge C$ is valid.
- 5. $A \leftrightarrow B, B \leftrightarrow C$. $A \leftrightarrow C$ is valid.

Chapter ?? Ex ??:

- 1. The root of a truth tree is the list of formulas at the beginning of the tree. Trees test whether the root is consistent.
- 2. You should tick (\checkmark) a formula when you've decomposed it on every open branch below that formula. This is simply to remind yourself that it has been decomposed, and so avoid decomposing it again.
- 3. A truth tree branch represents a potential valuation that may make the root formulas all true.
- 4. You should create branches when the formula being decomposed has more than one valuation that would make it true.
- 5. You should close a branch when it contains any formula and its negation, as we know that branch represents an impossible valuation.
- 6. An open branch is complete when all the formulas above it either have a check mark, or are atomic. Once you have found a complete open branch, you can stop growing the tree.
- 7. The collection of atomic formulas in an open branch describe a valuation under consideration. A *complete* open branch represents a valuation where all the formulas in the root are true.

Chapter ?? Ex ??: To be updated shortly. Chapter ?? Ex ??:

- 1. (a) $\{P, P \to Q, Q \to \neg P\}$; (b) false.
- 2. (a) $\neg((P \to Q) \leftrightarrow (Q \to P))$; (b) true.
- 3. (a) $\{P \wedge Q, \neg R \rightarrow \neg Q, \neg (P \wedge R)\}$; (b) true.
- 4. (a) $\{A \vee B, B \to C, A \leftrightarrow C, \neg C\}$; (b) true.

- 5. (a) $A \leftrightarrow \neg A$; (b) true.
- 6. (a) $\{P, P \to Q, \neg Q, \neg A\}$; (b) true. 7. (a) $\{P \to Q, \neg P \lor \neg Q, Q \to P\}$; (b) false.

Chapter ?? Ex ??:

1. $P,P \rightarrow Q,Q \rightarrow \neg P$ are NOT mutually consistent

2. $(P \to Q) \leftrightarrow (Q \to P)$ is NOT a tautology.

3. $P \wedge Q$, $\neg R \rightarrow \neg Q$... $P \wedge R$ is valid.

1.
$$P \land Q \checkmark$$
 Premise
2. $\neg R \rightarrow \neg Q \checkmark$ Premise
3. $\neg (P \land R) \checkmark$ Neg Conc
4. P 1 \land
5. Q 1 \land
6. $\neg \neg R$ $\neg Q$ 2 \rightarrow
 \times
7. $\neg P$ $\neg R$ $\stackrel{5}{,}6$ 3 $\neg \land$
 \times \times
 $4,7$ $6,7$

4. Every valuation making $P, P \rightarrow Q$, and $\neg Q$ true also makes A true.

1.
$$P$$
 Premise
2. $P \rightarrow Q$ Premise
3. $\neg Q$ Premise
4. $\neg A$ Neg Conc
5. $\neg P \quad Q$ 2 \rightarrow
 $\times \quad \times$

5. $A \vee B$, $B \to C$, and $A \leftrightarrow C$ cannot all be true but C false.

```
A \vee B \checkmark
1.
                                                        Root
                          B \to C \checkmark
2.
                                                        Root
                          A \leftrightarrow C \checkmark
3.
                                                        Root
                                 \neg C
                                                       Root
5.
                        \neg B
                                           C
                                                       2 \rightarrow
                                                       1 V; 5 V
6.
7.
                                                        3 \leftrightarrow
8.
                                                        3 \leftrightarrow
                       \times
```

6. $A \leftrightarrow \neg A$ is a contradiction.

1.
$$A \leftrightarrow \neg A \checkmark$$
 Root
2. $A \neg A$ 1 \leftrightarrow
3. $\neg A \neg \neg A$ 1 \leftrightarrow

7. $P \to Q, \neg P \lor \neg Q$, and $Q \to P$ are mutually consistent.

1.
$$P \to Q$$
 Root
2. $\neg P \lor \neg Q$ Root
3. $Q \to P$ Root
4. $\neg P Q$ 1 \to
5. $\neg P \neg Q$ 2 \lor
6. $\neg Q P$ 3 \to
 \uparrow \times
4.6 $\to Q Q$ $\to Q$ \to

Chapter ?? Ex ??:

1.
$$A \leftrightarrow B \checkmark$$
 Premise
2. $\neg B \rightarrow (C \lor D) \checkmark$ Premise
3. $E \rightarrow \neg C \checkmark$ Premise
4. $(\neg D \land F) \lor G \checkmark$ Premise
5. $\neg A \land E \checkmark$ Premise
6. $\neg (H \lor G) \checkmark$ Neg Conc
7. $\neg A$ 5 \land
8. E 5 \land
9. $\neg H$ 6 $\neg \lor$
10. $\neg G$ 6 $\neg \lor$
11. $\neg E$ $\neg C$ 3 \rightarrow
12. 8,11 $\neg D \land F \checkmark G$ 4 \lor
13. $\neg D \times 12 \land$
14. F 10,12 $12 \land$
15. $\neg \neg B \checkmark C \lor D \checkmark$ 2 \rightarrow
16. $C D$ 15 \lor
17. $B \times \times \times$
18. $A \neg A$ 1 \leftrightarrow
19. $B \neg B$ 1 \leftrightarrow
19. $B \rightarrow B$ 1 \leftrightarrow
19. $A \rightarrow B$ 1 \leftrightarrow
10. $A \rightarrow B$ 1 \leftrightarrow
11. $A \rightarrow B$ 1 \leftrightarrow
12. $A \rightarrow A$ 1 \leftrightarrow
13. $A \rightarrow A$ 1 \leftrightarrow
14. $A \rightarrow A$ 1 \leftrightarrow
15. $A \rightarrow A$ 1 \leftrightarrow
16. $A \rightarrow A$ 1 \leftrightarrow
17. $A \rightarrow B$ 1 \leftrightarrow
18. $A \rightarrow A$ 1 \leftrightarrow
19. $A \rightarrow B$ 1 \leftrightarrow
19. $A \rightarrow B$ 1 \leftrightarrow
19. $A \rightarrow B$ 1 \leftrightarrow

This argument is valid.

- 1. The scope of $\exists x \text{ is } Fx \text{ and the scope of } \exists y \text{ is } Gy.$
- 2. The scope of $\exists x \text{ is } Fx \text{ and the scope of } \exists y \text{ is } Fy.$
- 3. The scope of $\exists x \text{ is } (Fx \land \exists yGy) \text{ and the scope of } \exists y \text{ is } Gy.$
- 4. The scope of $\exists x$ is $(Fx \to \exists y((Gy \lor Hy) \land \neg \forall z(Fx \lor Gz)))$, the scope of $\exists y$ is $((Gy \lor Hy) \land \neg \forall z(Fx \lor Gz))$ and the scope of $\forall z$ is $(Fx \lor Gz)$.
- 5. The scope of $\exists x \text{ is } (Ga \land Hx)$).

Chapter ?? Ex ??:

- 1. $Za \wedge Zb \wedge Zc$
- 2. $Rb \wedge \neg Ab$
- 3. $Lcb \rightarrow Mb$
- 4. $(Ab \wedge Ac) \rightarrow (Lab \wedge Lac)$
- 5. $\exists x (Rx \land Zx)$
- 6. $\forall x(Ax \to Rx)$
- 7. $\forall x [Zx \to (Mx \lor Ax)]$
- 8. $\exists x (Rx \land \neg Ax)$
- 9. $\exists x (Rx \land Lcx)$
- 10. $\forall x [(Mx \wedge Zx) \rightarrow Lbx]$
- 11. $\forall x [(Mx \wedge Lax) \rightarrow Lxa]$
- 12. $\exists x Rx \rightarrow Ra$
- 13. $\forall x (Ax \rightarrow Rx)$
- 14. $\forall x [(Mx \land Lcx) \rightarrow Lax]$
- 15. $\exists x (Mx \land Lxb \land \neg Lbx)$

Chapter ?? Ex ??:

- 1. $\forall x [Cxp \rightarrow Dx]$
- 2. $Cjp \wedge Fj$
- 3. $\exists x [Cxp \land Fx]$
- 4. $\neg \exists x [Sxj]$
- 5. $\forall x [(Cxp \land Mx) \rightarrow Dx]$
- 6. $\neg \exists x [Cxp \land Mx]$
- 7. $\exists x [Cjx \land Sxe \land Fj]$
- 8. $Spe \wedge Mp$
- 9. $\forall x [(Sxp \land Mx) \rightarrow \neg \exists y Cyx]$
- 10. $\exists x[Sxj \land \exists y[Cyx] \land Fj]$
- 11. $\forall x | Dx \to \exists y (Sxy \land My \land Dy)|$
- 12. $\forall x [(Fx \land Dx) \rightarrow \exists y [Cxy \land Dy]]$

- 1. $\forall x [Cx \to (Bx \land Sx)].$
- 2. $\neg \exists x [Wx \land Sx]$
- 3. $\exists x \exists y [Cx \land Cy \land x \neq y]$
- 4. $\exists x \exists y [Jx \land Ox \land Jy \land Oy \land x \neq y]$
- 5. $\forall x \forall y \forall z [(Jx \land Ox \land Jy \land Oy \land Jz \land Oz) \rightarrow (x = y \lor x = z \lor y = z)]$
- 6. $\exists x \exists y [Jx \land Bx \land Jy \land By \land x \neq y \land \forall z [(Jz \land Bz) \rightarrow (x = z \lor y = z)]]$
- 7. $\exists x_1 \exists x_2 \exists x_3 \exists x_4 \left[Dx_1 \land Dx_2 \land Dx_3 \land Dx_4 \land x_1 \neq x_2 \land x_1 \neq x_3 \land x_1 \neq x_4 \land x_2 \neq x_3 \land x_2 \neq x_4 \land x_3 \neq x_4 \land \neg \exists y \left[Dy \land y \neq x_1 \land y \neq x_2 \land y \neq x_3 \land y \neq x_4 \right] \right]$

- 8. $\exists x | Dx \wedge Cx \wedge \forall y [(Dy \wedge Cy) \rightarrow x = y] \wedge (Bx \wedge Sx)|$
- 9. $\forall x [(Ox \land Jx) \to Wx] \land \exists x [Mx \land \forall y [My \to x = y] \land Wx]$
- 10. $\exists x [Dx \land Cx \land \forall y [(Dy \land Cy) \rightarrow x = y] \land (Wx \land Sx)] \rightarrow$ $\exists x \forall y [(Wx \land Sx) \leftrightarrow x = y]$
- 11. wide scope: $\neg \exists x [Mx \land \forall y (My \rightarrow x = y) \land Jx]$ narrow scope: $\exists x [Mx \land \forall y (My \rightarrow x = y) \land \neg Jx]$
- 12. wide scope: $\neg \exists x \exists z [Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y] \land x = y]$ $\forall y[(My \rightarrow z = y) \land x = z]]$ narrow scope: $\exists x \exists z [Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y] \land \exists x \exists z [Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y] \land \exists x \exists x \exists x [(Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y]) \land \exists x \exists x [(Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y]) \land \exists x \exists x [(Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dy \land Cy) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dy \land Cx) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dx \land Cx) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dx \land Cx) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dx \land Cx) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dx \land Cx) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Mz \land \forall y [(Dx \land Cx) \rightarrow x = y]) \land \exists x [(Dx \land Cx \land Cx) \rightarrow x = y] \land \exists x [(Dx \land Cx) \rightarrow x = y] \land \exists x$ $\forall y[(My \to z = y) \land x \neq z]]$

Chapter ?? Ex ??:

- 1. True
- 2. False
- 3. True
- 4. False
- 5. False
- 6. False
- 7. True
- 8. True
- 9. False
- 10. True
- 11. True 12. False
- 13. True
- 14. False
- 15. True

Chapter ?? Ex ??:

1. $\forall x \forall y (Gxy \rightarrow \exists z Gxz)$

1.	$\neg \forall x \forall y Gxy \to \exists z [Gxz] \checkmark$	Root
2.	$\exists x \neg \forall y Gxy \to \exists z [Gxz] \checkmark a$	$1 \neg \forall$
3.	$\neg \forall y Gay \rightarrow \exists z [Gaz] \checkmark$	$2 \exists a$
4.	$\exists y \neg (Gay \rightarrow \exists z [Gaz]) \checkmark b$	$3 \neg \forall$
5.	$\neg (Gab \to \exists z [Gaz])$	4 ∃ b
6.	Gab	$5 \neg \rightarrow$
7.	$\neg \exists z [Gaz] \checkmark$	$5 \neg \rightarrow$
8.	$\forall z \left[\neg Gaz \right] \setminus b$	$7 \neg \exists$
9.	$\neg Gab$	$8 \forall b$
	\checkmark	

2. $\forall x Fx \lor \forall x (Fx \to Gx)$

1.
$$\neg(\forall x [Fx] \lor \forall x [Fx \to Gx]) \checkmark$$
 Root
2. $\neg \forall x [Fx] \checkmark$ 1 $\neg \lor$
3. $\neg \forall x [Fx \to Gx] \checkmark$ 1 $\neg \lor$
4. $\exists x [\neg Fx] \checkmark a$ 2 $\neg \forall$
5. $\neg Fa \checkmark$ 4 $\exists a$
6. $\exists x [\neg(Fx \to Gx)] \checkmark b$ 3 $\neg \forall$
7. $\neg(Fb \to Gb) \checkmark$ 3 $\exists b$
8. Fb 7 $\neg \to$
9. $\neg Gb$ 7 $\neg \to$

3. $\forall x(Fx \to (\neg Fx \to \forall yGy))$

1.
$$\neg \forall x \left[Fx \rightarrow (\neg Fx \rightarrow \forall y \left[Gy \right]) \right] \checkmark$$
 Root
2. $\exists x \left[\neg (Fx \rightarrow (\neg Fx \rightarrow \forall y \left[Gy \right])) \right] \checkmark$ 1 $\neg \forall$
3. $\neg (Fa \rightarrow (\neg Fa \rightarrow \forall y \left[Gy \right])) \checkmark$ 2 \exists a
4. Fa 3 $\neg \rightarrow$
5. $\neg (\neg Fa \rightarrow \forall y \left[Gy \right])$ 3 $\neg \rightarrow$
6. $\neg Fa$ 5 $\neg \rightarrow$
7. $\neg \forall y \left[Gy \right]$ 5 $\neg \rightarrow$

4. $\exists xJx \leftrightarrow \neg \forall x\neg Jx$

1.
$$\neg(\exists x [Jx] \leftrightarrow \neg \forall x [\neg Jx]) \checkmark \qquad \text{Root}$$
2.
$$\exists x [Jx] \checkmark a \qquad \neg \exists x [Jx] \qquad 1 \neg \leftrightarrow 0$$
3.
$$\neg \neg \forall x [\neg Jx] \checkmark \qquad \neg \forall x [\neg Jx] \qquad 1 \neg \leftrightarrow 0$$
4.
$$\forall x [\neg Jx] \checkmark \qquad \qquad 3 \neg \neg 0$$
5.
$$Ja \qquad \qquad 2 \exists a \qquad 0$$
6.
$$\neg Ja \qquad \qquad 4 \forall a \qquad 0$$
7.
$$\forall x [\neg Jx] \land b \qquad 2 \neg \exists a \qquad 0$$
8.
$$\exists x [\neg \neg Jx] \land b \qquad 3 \neg \forall 0$$
9.
$$\exists x [\neg \neg Jx] \checkmark b \qquad 3 \neg \forall 0$$
9.
$$\neg \neg Jb \qquad 8 \exists b \qquad 0$$
10.
$$\neg Jb \qquad 7 \forall b \qquad 0$$

5. $\exists x (Fx \vee \neg Fx)$

1.
$$\neg \exists x [Fx \lor \neg Fx] \checkmark$$
 Root
2. $\forall x [\neg (Fx \lor \neg Fx)] \backslash a$ 1 $\neg \exists$
3. $\neg (Fa \lor \neg Fa) \checkmark$ 2 \forall a
4. $\neg Fa$ 3 $\neg \lor$
5. $\neg \neg Fa$ 3 $\neg \lor$

6. $\forall x(Fx \lor Gx) \to (\forall yFy \lor \exists xGx)$

1.	$\neg(\forall x \left[Fx \vee Gx\right] \to (\forall y \left[Fy\right] \vee \exists x \left[Gx\right])) \checkmark$	Root
2.	$\forall x \left[Fx \vee Gx \right] \setminus a$	$1 \neg \rightarrow$
3.	$\neg(\forall y [Fy] \lor \exists x [Gx]) \checkmark$	$1 \neg \rightarrow$
4.	$\neg \forall y \left[Fy \right] \checkmark$	$3 \neg \lor$
5.	$\neg \exists x [Gx] \checkmark$	$3 \neg \lor$
6.	$\exists y [\neg Fy] \checkmark a$	$4 \neg \exists$
7.	$\neg Fa$	$6 \neg \exists$
8.	$\forall x \left[\neg Gx \right] \setminus a$	$5 \neg \exists$
9.	$Fa \lor Ga$	$2 \forall a$
10.	Fa Ga	$9 \vee$
11.	\times $\neg Ga$	$8 \ \forall \ a$
	×	

Chapter ?? Ex ??:

1. $Fa, Ga : \forall x(Fx \rightarrow Gx)$

1.	Fa	Premise
2.	Ga	Premise
3.	$\neg \forall x \left[Fx \to Gx \right] \checkmark$	Neg Conc
4.	$\exists x \left[\neg (Fx \to Gx) \right] \checkmark b$	$3 \neg \forall$
5.	$\neg (Fb \to Gb)$	4 ∃ b
6.	Fb	$5 \neg \rightarrow$
7.	$\neg Gb$	$5 \neg \rightarrow$
	†	

2. Fa, Ga $\therefore \exists x (Fx \land Gx)$

1.
$$Fa$$
 Premise
2. Ga Premise
3. $\neg \exists x [Fx \land Gx] \checkmark$ Neg Conc
4. $\forall x [\neg (Fx \land Gx)] \land a$ $3 \neg \exists$
5. $\neg (Fa \land Ga) \checkmark$ $4 \forall a$
6. $\neg Fa \neg Ga$ $5 \neg \land$
 \times \times

3. $\forall x \exists y Lxy$ $\therefore \exists x \forall y Lxy$

1.
$$\forall x \exists y [Lxy] \setminus a$$
 Premise
2. $\neg \exists x \forall y [Lxy] \checkmark$ Neg Conc
3. $\forall x \neg \forall y [Lxy] \setminus a$ 2 $\neg \exists$
4. $\exists y [Lay] \checkmark b$ 1 \forall a
5. Lab 4 \exists b
6. $\neg \forall y [Lay] \checkmark$ 3 \forall a
7. $\exists y [\neg Lay] \checkmark c$ 6 $\neg \forall$
8. $\neg Lac$ 7 \exists c

Note that this tree is infinite, as both #1/#4 and #3/#6 will generate new atomic letters every time they are decomposed. The greyed values are not read from the tree, but instead 'guessed' to complete the counter-example.

4. $\exists x(Fx \land Gx), Fb \leftrightarrow Fa, Fc \rightarrow Fa \therefore Fa$

1.
$$\exists x [Fx \land Gx] \checkmark$$
Premise2. $Fb \leftrightarrow Fa$ Premise3. $Fc \rightarrow Fa$ Premise4. $\neg Fa$ Neg Conc5. $Fd \land Gd$ $1 \exists d$ 6. $\neg Fc$ Fa $3 \rightarrow$ 7. Fb $\neg Fb$ $2 \leftrightarrow$ 8. Fa $\neg Fa$ $2 \leftrightarrow$ 9. \times Fd $5 \land$ 10. Gd $5 \land$

5. $\forall x \exists y Gyx : \forall x \exists y (Gxy \lor Gyx)$

Chapter ?? Ex ??:

```
1. b = b \rightarrow (Rca \lor Pb), a = b \rightarrow (Rcb \lor Pb), b = b \rightarrow (Rcb \lor Pb)

2. a = a \rightarrow (Rca \lor Pb), a = b \rightarrow (Rca \lor Pa), a = a \rightarrow (Rca \lor Pa).

3. c = b \rightarrow (Rca \lor Pb), a = b \rightarrow (Rcc \lor Pb), c = b \rightarrow (Rcc \lor Pb).

4. a = b \rightarrow (Raa \lor Pb).

5. a = c \rightarrow (Rca \lor Pb), a = b \rightarrow (Rca \lor Pc), a = c \rightarrow (Rca \lor Pc).

6. a = b \rightarrow (Rba \lor Pb).
```

1.
$$\forall x(x=a \lor x=b), \neg (Fa \land Ga), Gb \rightarrow Hb : \forall x((Fx \land \neg Hx) \rightarrow \neg Gx)$$

1.
$$\forall x [x = a \lor x = b] \lor c$$
 Premise
2. $\neg(Fa \land Ga) \checkmark$ Premise
3. $Gb \rightarrow Hb \checkmark$ Premise
4. $\neg \forall x [(Fx \land \neg Hx) \rightarrow \neg Gx] \checkmark$ Neg Conc
5. $\exists x [\neg((Fx \land \neg Hx) \rightarrow \neg Gx)] \checkmark a$ $4 \neg \forall$
6. $\neg((Fc \land \neg Hc) \rightarrow \neg Gc) \checkmark$ 5 $\exists c$
7. $Fc \land \neg Hc \checkmark$ 6 $\neg \rightarrow$
8. $\neg \neg Gc \checkmark$ 6 $\neg \rightarrow$
9. Gc 8 $\neg \neg$
10. Fc 7 \land
11. $\neg Hc$ 7 \land
12. $c = a \lor c = b \checkmark$ 1 $\forall c$
13. $c = a \lor c = b \checkmark$ 1 $\forall c$
14. $\neg(Fc \land Gc) \checkmark$ 2,13 $[a/c]$
15. $\neg Fc \neg Gc$ 14 $\neg \land$
16. $\times \times \times Gc \rightarrow Hc \checkmark$ 3,13 $[b/c]$
17. $\neg Gc \lor Hc$ 16 \rightarrow

```
2. \exists x Fx, \forall x \forall y ((Fx \land Fy) \rightarrow x = y) : \exists x \forall y (Fy \leftrightarrow (x = y))
                  1.
                                                               \forall x [Fx] \checkmark a
                                                                                                                    Premise
                  2.
                                             \forall x \, \forall y \, [(Fx \wedge Fy) \rightarrow x = y] \setminus a
                                                                                                                    Premise
                  3.
                                                 \neg \exists x \, \forall y \, [Fy \leftrightarrow (x=y)] \checkmark
                                                                                                                    Neg Conc
                  4.
                                              \forall x \left[ \neg (\forall y \left[ Fy \leftrightarrow (x=y) \right]) \right] \setminus a
                                                                                                                   3 \neg \exists
                                                                        Fa
                                                                                                                    1 \exists a
                  5.
                                                   \neg(\forall y [Fy \leftrightarrow (a=y)]) \checkmark
                  6.
                                                                                                                   4 \forall a
                  7.
                                                 \exists y \left[ \neg (Fy \leftrightarrow (a=y)) \right] \checkmark b
                                                                                                                    6 \neg \forall
                  8.
                                                        \neg (Fb \leftrightarrow (a=b)) \checkmark
                                                                                                                    7 ∃ b
                                                        Fb
                  9.
                                                                                        \neg Fb
                                                                                                                    8 \neg \leftrightarrow
                  10.
                                                  \neg (a=b)
                                                                                      a = b
                                                                                                                    8 \neg \leftrightarrow
                                                                                                                    2 \forall a
                  11.
                               \forall y \left[ (Fa \wedge Fy) \rightarrow a = y \right] \setminus b
                  12.
                                         (Fa \wedge Fb) \rightarrow a \checkmark
                                                                                                                    11 \forall b
                  13.
                                                                                        \neg Fa
                                                                                                                   9,10 [b/a]
                  14.
                                                                                                                    12 \rightarrow
                                                                                          \times
                               \neg (Fa \wedge Fb) \checkmark
                                                                  a = b
                                                                      X
                                                                                                                    14 \neg \land
                  15.
                                  \neg Fa
                                                 \neg Fb
                                    \times
                                                   X
3. \forall x \forall y (Fx \rightarrow x = y), \forall x (Fx \lor Gx) : (\forall x Fx \lor \forall x Gx)
                                                \forall x \, \forall y \, [Fx \to x = y] \setminus b
                                                                                                         Premise
                          1.
                          2.
                                                       \forall x [Fx \vee Gx] \setminus b
                                                                                                         Premise
                                                \neg(\forall x [Fx] \lor \forall x [Gx]) \checkmark
                          3.
                                                                                                         Neg Conc
                                                            \neg \forall x [Fx] \checkmark
                                                                                                         3 \neg \lor
                          4.
                                                                                                         3 \neg \lor
                          5.
                                                           \neg \forall x [Gx] \checkmark
                          6.
                                                           \exists x \left[ \neg Fx \right] \checkmark a
                                                                                                         4 \neg \forall
                          7.
                                                                   \neg Fa
                                                                                                         6 \exists a
                          8.
                                                           \exists x [\neg Gx] \checkmark b
                                                                                                         5 \neg \forall
                          9.
                                                                                                         8 ∃ b
                                                                   \neg Gb
                          10.
                                                             Fb \vee Gb \checkmark
                                                                                                         2 \forall b
                                                       Fb
                          11.
                                                                                   Gb
                                                                                                         10 V
                                      \forall y \left[ Fb \to b = y \right] \setminus a
                                                                                                         1 \forall b
                          12.
                                            Fb \to b = a \checkmark
                                                                                                         12 \forall a
                          13.
                                              \neg Fb
                          14.
                                                            b = a
                                                                                                         13 \rightarrow
                                                               Fa
                                                                                                         11, 14 [b/a]
                          15.
                                                \times
                                                                X
```

4. $\exists x \forall y (Fy \leftrightarrow (x = y))$ $\therefore \exists x Fx$

1.
$$\exists x \left[\forall y \left[Fy \leftrightarrow (x=y) \right] \right] \checkmark a$$
 Premise
2. $\neg \exists x \left[Fx \right] \checkmark$ Neg Conc
3. $\forall x \left[\neg Fx \right] \backslash a$ 2 $\neg \exists$
4. $\forall y \left[Fy \leftrightarrow (a=y) \right] \backslash a$ 1 \exists a
5. $\neg Fa$ 3 \forall a
6. $Fa \leftrightarrow (a=a)$ 4 \forall a
7. $Fa \rightarrow Fa$ 6 \leftrightarrow
8. $a=a \rightarrow (a=a)$ 6 \leftrightarrow
9. \times $a=a$ Identity

5. $\exists x \forall y (Fy \leftrightarrow (x=y)) : \forall x \forall y ((Fx \land Fy) \rightarrow (x=y))$

1.
$$\exists x \forall y [Fy \leftrightarrow (x = y)] \checkmark c$$
 Premise
2. $\neg \forall x \forall y [(Fx \land Fy) \rightarrow (x = y)]] \checkmark a$ Neg Conc
3. $\exists x [\neg \forall y [(Fx \land Fy) \rightarrow (x = y)]] \checkmark a$ 2 $\neg \forall$
4. $\neg \forall y [(Fa \land Fy) \rightarrow (a = y)] \checkmark$ 3 \exists a
5. $\exists y [\neg ((Fa \land Fy) \rightarrow (a = y))] \checkmark b$ 4 $\neg \forall$
6. $\neg ((Fa \land Fb) \rightarrow (a = b)) \checkmark$ 5 \exists b
7. $Fa \land Fb \checkmark$ 6 $\neg \rightarrow$
8. $\neg (a = b) \checkmark$ 6 $\neg \rightarrow$
9. Fa 7 \land
10. Fb 7 \land
11. $\forall y [Fy \leftrightarrow (c = y)] \land a, b$ 1 \exists c
12. $Fa \leftrightarrow (c = a) \checkmark$ 11 \forall a
13. Fa $\neg Fa$ 12 \leftrightarrow
14. $c = a$ $\neg (c = a)$ 12 \leftrightarrow
15. $Fb \leftrightarrow (c = b) \checkmark \times$ 11 \forall b
16. Fb $\neg Fb$ 15 \leftrightarrow
17. $c = b$ $\neg (c = b)$ 15 \leftrightarrow
18. $a = b$ \times 14, 17 $[c/a]$

6. $\exists x \forall y (Fy \leftrightarrow (x=y)), \ \forall x (Fx \lor Gx) \ \therefore \ \forall x \forall y ((Gx \lor Gy) \lor x=y)$

1.
$$\exists x \left[\forall y \left[Fy \leftrightarrow (x=y) \right] \right] \checkmark c$$
 Premise
2. $\forall x \left[Fx \vee Gx \right] \setminus a, b$ Premise
3. $\neg \forall x \left[\forall y \left[(Gx \vee Gy) \vee x=y \right] \right] \checkmark$ Neg Conc
4. $\exists x \left[\neg \forall y \left[(Gx \vee Gy) \vee x=y \right] \right] \checkmark a$ $\exists \neg \forall y \left[(Ga \vee Gy) \vee a=y \right] \checkmark a$
5. $\neg \forall y \left[(Ga \vee Gy) \vee a=y \right] \checkmark a$ $\exists a$
6. $\exists y \left[\neg ((Ga \vee Gy) \vee a=y) \right] \checkmark b$ $5 \neg \forall$
7. $\neg ((Ga \vee Gb) \vee a=b) \checkmark a$ $6 \exists b$
8. $\neg (Ga \vee Gb) \checkmark a=b) \checkmark a$ $7 \neg \vee a$
9. $\neg (a=b) \checkmark a$ $7 \neg \vee a$
10. $\neg Ga a$ $8 \neg \vee a$
11. $\neg Gb a$ $8 \neg \vee a$
12. $\forall y \left[Fy \leftrightarrow (c=y) \right] \setminus a, b$ $1 \exists c$
13. $\Rightarrow Fa \vee Ga \vee a$ $1 \Rightarrow c$
14. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
15. $\Rightarrow Fb \vee Gb \wedge a$ $1 \Rightarrow c$
16. $\Rightarrow Gb \wedge Fb \wedge a$ $1 \Rightarrow c$
17. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
18. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
19. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
10. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
11. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
12. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
13. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
14. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
15. $\Rightarrow Fb \wedge Gb \wedge a$ $1 \Rightarrow c$
16. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
17. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
18. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
19. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow c$
10. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow C \wedge Ga \wedge a$
11. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow C \wedge Ga \wedge a$
12. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow C \wedge Ga \wedge a$
13. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
14. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
15. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
16. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
17. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
18. $\Rightarrow Fa \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
19. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
10. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
11. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
12. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
13. $\Rightarrow Ca \wedge Ga \wedge a$
14. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
15. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
16. $\Rightarrow Ca \wedge Ga \wedge a$ $1 \Rightarrow Ca \wedge Ga \wedge a$
17. $\Rightarrow Ca \wedge Ga \wedge a$
18. $\Rightarrow Ca \wedge Ga \wedge a$
19. $\Rightarrow Ca \wedge Ga \wedge a$
10. $\Rightarrow Ca \wedge Ga \wedge a$
11. $\Rightarrow Ca \wedge Ga \wedge a$
12. $\Rightarrow Ca \wedge Ga \wedge a$
13. $\Rightarrow Ca \wedge Ga \wedge a$
14. $\Rightarrow Ca \wedge Ga \wedge a$
15. $\Rightarrow Ca \wedge Ga \wedge a$
16. $\Rightarrow Ca \wedge Ga \wedge a$
17. $\Rightarrow Ca \wedge Ga \wedge a$
18. $\Rightarrow Ca \wedge Ga \wedge a$
19. $\Rightarrow Ca \wedge Ga \wedge a$
10. $\Rightarrow Ca \wedge Ga \wedge a$
11. $\Rightarrow Ca \wedge Ga \wedge a$
12. $\Rightarrow Ca \wedge Ga \wedge a$
13. $\Rightarrow Ca \wedge Ga \wedge a$
14. $\Rightarrow Ca \wedge Ga \wedge a$
15. $\Rightarrow Ca \wedge Ga \wedge$