Integers

Paolo Bettelini

Contents

1	Divide operator		
	1.1	Definition	2
	1.2	Properties	2
	1.3	Division with remainder	2
	1.4	Euclidean algorithm	2
	1.5	Bézout's identity	2

1 Divide operator

1.1 Definition

Given two integers a and b, we say that $a \mid b$ if a divides b, meaning that

$$\exists x \mid ax = b$$

.

1.2 Properties

Given the integers a, b and c

$$a \mid b \iff -a \mid b \iff a \mid -b$$
$$\mid a \mid \leq \mid b \mid, \quad b \neq 0$$
$$a \mid b \implies a \mid bc$$
$$a \mid b \land b \mid c \implies a \mid c$$

1.3 Division with remainder

Given two integers a and b with b > 0,

$$\exists_{=1}q, r \mid a = bq + r, \quad 0 \le r < b$$

Let q and r be the quotient and remainder of the division of b by a. The common divisors of a and b are equivalent to the common divisors of r and q.

1.4 Euclidean algorithm

Euclid's algorithm, is an efficient method for computing the greatest common divisor of two integers a and b where b > 0.

1.5 Bézout's identity

Let a and b be integers with greatest common divisor d. Then, there exist integers x and y such that

$$ax + by = d$$

Furthermore, the integers az + bt are multiples of d.