(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 29 April 2004 (29.04.2004)

PCT

(10) International Publication Number WO 2004/035545 A2

(51) International Patent Classification7: C07D 231/00

(21) International Application Number:

PCT/US2003/032965

(22) International Filing Date: 15 October 2003 (15.10.2003)

(25) Filing Language: linglish

(26) Publication Language: English

(30) Priority Data:

50/419,696 18 October 2002 (18,10,2002) US 50/473,866 27 May 2003 (27,05,2003) US

- (71) Applicant (for all designated States except US); E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Stasst, Wilmington, DE 19898 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CHAN, Dominic, Ming-Tak [US/US]; 4655 Dartmoor Drive, Wilmington, DE 19803 (US). KAMHREDDY, Balreddy [US/US]; 204 Golding Court, Hockessin, DE 19707 (US). KIM, Hyeong, Bulk [US/US]; 10 Fir Court, Newark, DE 19711.

(US). PATEL, Kanu, Maganbiai [US/US]; 146 Faishill Drive. Wilmington. DE 19808 (US). SHARPE, Paula, Louise [US/US]; 14 Dunswell Drive, Middletown. DE 19709 (US). CASINI, Mark, 8. [US/US]; 34 Moniteau Drive. Newark, DE 19702 (US). XU, Ming [CN/US]; 25 S. Perch Creek Drive, Newark, DE 19702 (US). ARMEL, Gregory, Russell [US/US]; 514 Tumberry Court, Bear; DE 19701 (US). STEVENSON, Thomas, Martin [US/US]; 103 froqueis Court, Newark, DE 19702 (US).

- (74) Agent: BIRCH, Linda, D., E.I. DU PONT DE NEMOURS AND COMPANY, LEGAL PATEINT RECORDS CENTER, 4417 Lancaster Pike, Wilmington, DE 19805 (US).
- (81) Designated States (emboral): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BB, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JF, KE, KG, KF, KB, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, 8D, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH. GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW);

[Continued on nest page]

(54) Title: AZOLECARBOXAMIDE HERBICIDES

(57) Abstract: Compounds of Formula (I), and their N-oxides and agriculturally suitable salts, are disclosed which are useful for controlling undesired vegetation, wherein J is (J-1), (J-2), (J-4), (J-5), (J-6), (J-7), (J-8) and R¹³, R¹⁶, R¹⁶, R²⁶, R²⁶, R²⁶, R³, R³,

WO 2004/035545 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, BS, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SL, SK, TR). OAPI patent (BP, BJ, CF, CG, CJ, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gasette.

Published:

 without international search report and to be republished upon receipt of that report WO 2004/035545 PCT/US2003/032965

TITLE AZOLECARBOXAMIDE HERBICIDES

FIELD OF THE INVENTION

This invention relates to certain azolecarboxamides their N-oxides, agriculturally suitable salts and compositions, and methods of their use for controlling undesirable vegetation.

BACKGROUND OF THE INVENTION

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, corn (maize), potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds which are more effective, less costly, less toxic, environmentally safer or have different modes of action.

J. J. Parlow, D. A. Mischke and S. S. Woodard, J. Org. Chem. 1997, 62, 5908-5919 and J. J. Parlow, J. Heterocyclic Chem. 1998, 35, 1493-1499 disclose certain pyrazole-carbonylaminobenzene- and pyridinecarboxamides as herbicides. The present Applicants have discovered azolecarboxamides not disclosed by these two publications and which have significantly improved herbicidal utility. Additionally the present Applicants have discovered more efficacious or selective herbicidal compositions and improved methods of weed control from combination of azolecarboxamides with other herbicides and/or herbicide safeners.

SUMMARY OF THE INVENTION

This invention is directed to a compound of Formula I including all geometric and stereoisomers, N-oxides or agriculturally suitable salts thereof, agricultural compositions containing them and their use as herbicides:

5

10

15

20

25

T is CR6 or N;

U is CR7 or N;

Y is CR8 or N;

5 Z is CR^9 or N;

 R^{1a} is H, C_1 - C_4 alkyl, C_1 - C_4 fluoroalkyl, C_2 - C_4 alkenyl, C_2 - C_4 fluoroalkynyl, C_2 - C_4 alkynyl or C_2 - C_4 fluoroalkynyl;

 R^{1b} is halogen, C_1 – C_4 alkyl, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkenyl, C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl;

10 R^{1c} is H;

15

 R^{2a} is C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, C_2-C_6 alkylthioalkyl, $C_2-C_6 \text{ alkenyl}, \ C_3-C_6 \text{ haloalkenyl}, \ C_2-C_6 \text{ alkynyl}, \ C_2-C_6 \text{ haloalkynyl}, \\ C_3-C_6 \text{ cycloalkyl}, \ C_4-C_6 \text{ alkylcycloalkyl}, \ C_3-C_6 \text{ halocycloalkyl}, \ C_4-C_6 \text{ cycloalkylalkyl}, \ C_5-C_6 \text{ alkylcycloalkylalkyl}, \ -CR^{20}(OR^{21})(OR^{22}) \text{ or } \\ \text{SiR}^{23}\text{R}^{24}\text{R}^{25};$

$$\begin{split} R^{2b} &\text{ is } C_1-C_6 \text{ alkyl}, C_1-C_6 \text{ haloalkyl}, C_2-C_6 \text{ alkoxyalkyl}, C_2-C_6 \text{ alkylthioalkyl}, \\ &C_2-C_6 \text{ alkenyl}, C_2-C_6 \text{ haloalkenyl}, C_2-C_6 \text{ alkynyl}, C_2-C_6 \text{ haloalkynyl}, \\ &C_3-C_6 \text{ cycloalkyl}, C_4-C_6 \text{ alkylcycloalkyl}, C_3-C_6 \text{ halocycloalkyl}, C_4-C_6 \\ &\text{ cycloalkylalkyl} \text{ or } C_5-C_6 \text{ alkylcycloalkylalkyl}; \end{split}$$

20 R^3 is H, F or C_1 - C_2 alkyl; or

 R^{2a} or R^{2b} is taken together with R^3 as $-C(R^{26a})(R^{26b})-(Y^1)_g-(CH_2)_f-(Y^2)_{g^+}$ or $-C(R^{26a})(R^{26b})-(Y^1)_{\chi^+}$ -CH=CH- $(Y^2)_{w^+}$ wherein the left end of the radical is connected as R^{2a} or R^{2b} , and the right end of the radical is connected as R^3 :

20

30

- R^4 is H, C_1 – C_2 alkyl, C_2 – C_6 alkylcarbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkoxyalkyl or C_2 – C_6 alkylthioalkyl;
- R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, C(NOR¹⁴)R¹⁵, -CN, OR¹⁶, S(O)_mR¹⁷ S(O)₂NR¹⁸R¹⁹, OS(O)₂R²⁷ or OP(O)R²⁸aR²⁸b;
- 5 R^6 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio; or
 - R⁵ and R⁶ are taken together as a radical selected from -C(W¹)N(R¹¹)(CH₂)_n- and -C(NOR¹⁴)CH₂(CH₂)_n- wherein the right end of the radical is connected to the ring at T;
- 10 R⁷ is H, F, C₁-C₂ alkyl, C₁-C₂ fluoroalkyl, C₁-C₂ alkoxy, C₁-C₂ fluoroalkoxy, C₁-C₂ alkylthio or C₁-C₂ fluoroalkylthio;
 - R^8 and R^9 are independently selected from H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio and C_1 – C_2 fluoroalkylthio;
 - R^{10} is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_4 alkoxymethyl or C_2 - C_4 alkylthiomethyl;
 - R^{11} is H, C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 cycloalkyl, C_4 – C_5 cycloalkyl, C_1 – C_3 alkoxy, C_2 – C_5 alkoxyalkyl or C_2 – C_5 alkylthioalkyl; or
 - R^{10} and R^{11} are taken together as $-(CH_2)_{4^-}$, $-(CH_2)_{5^-}$, $-CH_2CH=CHCH_{2^-}$ or $-(CH_2)_2O(CH_2)_{2^-}$, each optionally substituted with 1-2 C_1-C_2 alkyl;
 - each R^{12} is independently C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_4 alkoxyalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 cycloalkyl or C_4 – C_5 cycloalkylalkyl;
 - R^{13} is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or cyclopropyl;
- 25 R¹⁴ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₆ alkylearbonyl or C₂-C₆ alkoxycarbonyl;
 - R^{15} is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or cyclopropyl;
 - R^{16} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_3 alkoxyalkyl, C_2 – C_3 alkylthioalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_5 cycloalkyl or cyclopropylmethyl;
 - R^{17} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_4 cycloalkyl or cyclopropylmethyl;
 - each R^{18} is independently H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_4 alkenyl, C_2 – C_4 alkylthiomethyl;
 - 35 each R¹⁹ is independently H, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₅ alkenyl, C₃-C₅ haloalkenyl, C₃-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₃ alkoxy, C₂-C₅ alkoxyalkyl or C₂-C₅ alkylthioalkyl;
 - R²⁰ is C₁-C₄ alkyl, cyclopropyl, cyclopropylmethyl or methylcyclopropyl;

R²¹ is C₁-C₃ alkyl;

 \mathbb{R}^{22} is \mathbb{C}_1 - \mathbb{C}_3 alkyl; or

R²¹ and R²² are taken together as -CH₂CH₂- or -CH₂CH₂-, each optionally substituted with 1-2 methyl;

5 R^{23} is C_1 – C_2 alkyl or C_1 – C_2 haloalkyl;

R²⁴ is C₁-C₂ alkyl or C₁-C₂ haloalkyl;

 R^{25} is C_1-C_2 alkyl or C_1-C_2 haloalkyl;

R^{26a} and R^{26b} are independently H or C₁-C₂ alkyl;

R²⁷ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;

10 R^{28a} and R^{28b} are independently C_1-C_2 alkyl or C_1-C_2 alkoxy;

W is O or S;

W1 is O or S:

Y¹ and Y² are independently CH₂, O, S, NH or NCH₃;

m is 0, 1 or 2;

15 n is 1 or 2;

20

s is 0 or 1; t is 1 or 2; and u is 0 or 1; provided that the sum of s, t and u is 2 or 3; and v is 0 or 1; w is 0 or 1; provided that the sum of v and w is 0 or 1; provided that

- (a) when J is J-1, R^{1a} is CH_3 and R^5 is $C(W^1)NR^{10}R^{11}$, $C(O)OR^{12}$, COR^{13} , OR^{16} or $S(O)_{m}R^{17}$, then at least one of T, U, Y and Z is N or C-F;
- (b) when J is J-1, R^{1a} is CH_3 , R^5 is $C(W^1)NR^{10}R^{11}$, $C(O)OR^{12}$, COR^{13} , OR^{16} or $S(O)_mR^{17}$ and T is N, then at least one of U, Y and Z is N or C-F;
- (c) when R^5 is $C(W^1)NR^{10}R^{11}$ or $C(NOR^{14})R^{15}$, then R^9 is other than alkoxy or alkylthio:
- 25 (d) when R⁵ is C(W¹)NR¹⁰R¹¹, then R⁶ is other than alkyl or alkoxy;
 - (e) when R⁵ is COR¹³, then R^{1a} or R^{1b} is selected from the radicals of the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃ fluoroalkenyl, C₂-C₃ alkynyl or C₂-C₃ fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring;
- 30 (f) when R⁵ and R⁶ are taken together as -C(W¹)N(R¹⁰)(CH₂)_n- and n is 1, then R¹⁰ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₄ alkoxymethyl or C₂-C₄ alkylthiomethyl;
 - (g) when at least one of \mathbb{R}^{10} and \mathbb{R}^{11} is haloalkyl, then \mathbb{R}^{1a} or \mathbb{R}^{1b} is CH_2CH_3 or CH_2CF_3 and \mathbb{R}^{2a} or \mathbb{R}^{2b} is *tert*-butyl, isopropyl or cyclopropyl;
- 35 (h) when J is J-2 or J-6, then R^7 and R^9 are H;
 - (i) when I is I-2 or I-6, and R^{2b} is C_1-C_2 alkyl, then R^{1b} is halogen, C_2-C_4 alkyl, C_1-C_4 fluoroalkyl, C_2-C_4 alkenyl, C_2-C_4 fluoroalkenyl, C_2-C_4 alkynyl or C_2-C_4 fluoroalkynyl;

10

- (j) when R^{1a} is CH_3 and R^5 is $C(NOR^{14})R^{15}$, then R^7 is other than alkyl;
- (k) when T is N, then Z is CR9;
- (l) when T is N, R⁷ is alkoxy, then R¹¹ is H;
- (m) when R^7 and R^9 are F, and one of R^{10} and R^{11} is H, then the other of R^{10} and R^{11} is other than H;
- (n) when Z is N and one of R^{10} and R^{11} is H, then the other of R^{10} and R^{11} is other than trifluoroethyl;
- (o) when I is J-8 and R^{2b} is C₅-C₆ cycloalkyl, then R⁵ is C(O)NR¹⁰R¹¹; and
- (p) when J is J-8 and \mathbb{R}^7 is other than H, then \mathbb{R}^{2b} is *tert*-butyl and \mathbb{R}^5 is $C(O)\mathbb{N}\mathbb{R}^{10}\mathbb{R}^{11}$.

More particularly, this invention pertains to a compound of Formula I, including all geometric and stereoisomers, N-oxides or agriculturally suitable salts thereof. This invention also relates to a herbicidal composition comprising a herbicidally effective amount of a compound of Formula I and at least one of a surfactant, a solid diluent or a liquid diluent.

This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Formula I (e.g., as a composition described herein). This invention also relates to a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of Formula I and an antidotally effective amount of a safener.

The present invention also relates to a herbicidal mixture comprising a herbicidally effective amount of a compound of Formula **Iz** including all geometric and stereoisomers, *N*-oxides and agriculturally suitable salts thereof

ĬZ

25 wherein

Ó

T is CR6 or N;

U is CR7 or N:

Y is CR8 or N;

5 Z is CR^9 or N:

 R^{1a} is H, C_1 – C_4 alkyl, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkenyl, C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl;

 R^{1b} is halogen, C_1 – C_4 alkyl, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkynyl; C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl;

 R^{lc} is H:

15

25

 R^{2a} is C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, C_2-C_6 alkylthioalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkynyl, C_2-C_6 haloalkynyl, C_3-C_6 cycloalkyl, C_4-C_6 alkylcycloalkyl, C_3-C_6 halocycloalkyl, C_4-C_6 cycloalkylalkyl, C_5-C_6 alkylcycloalkylalkyl, $-CR^{20}(OR^{21})(OR^{22})$ or $SiR^{23}R^{24}R^{25};$

$$\begin{split} R^{2b} \text{ is } C_1-C_6 \text{ alkyl, } C_1-C_6 \text{ haloalkyl, } C_2-C_6 \text{ alkoxyalkyl, } C_2-C_6 \text{ alkylthioalkyl, } \\ C_2-C_6 \text{ alkenyl, } C_2-C_6 \text{ haloalkenyl, } C_2-C_6 \text{ alkynyl, } C_2-C_6 \text{ haloalkynyl, } \\ C_3-C_6 \text{ cycloalkyl, } C_4-C_6 \text{ alkylcycloalkyl, } C_3-C_6 \text{ halocycloalkyl, } C_4-C_6 \\ \text{cycloalkylalkyl or } C_5-C_6 \text{ alkylcycloalkylalkyl;} \end{split}$$

20 R^3 is H, F or C_1 - C_2 alkyl; or

 R^{2a} or R^{2b} is taken together with R^3 as $-C(R^{26a})(R^{26b})-(Y^1)_s-(CH_2)_t-(Y^2)_u$ or $-C(R^{26a})(R^{26b})-(Y^1)_v-CH=CH-(Y^2)_w$ wherein the left end of the radical is connected as R^{2a} or R^{2b} , and the right end of the radical is connected as R^3 ;

 R^4 is H, C_1 – C_2 alkyl, C_2 – C_6 alkylcarbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkoxyalkyl or C_2 – C_6 alkylthioalkyl;

R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, C(NOR¹⁴)R¹⁵, -CN, OR¹⁶, S(O)_mR¹⁷ S(O)₂NR¹⁸R¹⁶, OS(O)₂R²⁷ or OP(O)R²⁸aR²⁸b;

 R^6 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio; or

30 R5 and R6 are taken together as a radical selected from -C(W1)N(R11)(CH₂)_n- and -C(NOR14)CH₂(CH₂)_n- wherein the right end of the radical is connected to the ring at T;

20

25

- R^7 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio;
- R^8 and R^9 are independently selected from H, F, C_1 - C_2 alkyl, C_1 - C_2 fluoroalkyl, C_1 - C_2 alkoxy, C_1 - C_2 fluoroalkoxy, C_1 - C_2 alkylthic and C_1 - C_2 fluoroalkylthic;
- R^{10} is H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_4 alkenyl, C_2 – C_4 alkoxymethyl or C_2 – C_4 alkylthiomethyl;
 - R^{11} is H, C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 cycloalkyl, C_4 – C_5 cycloalkylalkyl, C_1 – C_3 alkoxy, C_2 – C_5 alkoxyalkyl or C_2 – C_5 alkylthioalkyl; or
- 10 R¹⁰ and R¹¹ are taken together as -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂-, each optionally substituted with 1-2 C₁-C₂ alkyl;
 - each R^{12} is independently C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_4 alkoxyalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 eycloalkyl or C_4 – C_5 cycloalkylalkyl;
- 15 R¹³ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;
 - R^{14} is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_6 alkylcarbonyl; or C_2 - C_6 alkoxycarbonyl;
 - R^{15} is C_1 – C_3 alkyl, C_1 – C_3 haloalkyl or cyclopropyl;
 - R^{16} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_3 alkoxyalkyl, C_2 – C_3 alkylthioalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_5 cycloalkyl or cyclopropylmethyl;
 - R^{17} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_4 cycloalkyl or cyclopropylmethyl;
 - each R^{18} is independently H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_4 alkenyl, C_2 – C_4 alkoxymethyl or C_2 – C_4 alkylthiomethyl;
 - each R^{19} is independently H, C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 cycloalkyl, C_4 – C_5 cycloalkylalkyl, C_1 – C_3 alkoxy, C_2 – C_5 alkoxyalkyl or C_2 – C_5 alkylthioalkyl;
 - R^{20} is C_1 - C_4 alkyl, cyclopropyl, cyclopropylmethyl or methylcyclopropyl;
- 30 \mathbb{R}^{21} is \mathbb{C}_1 - \mathbb{C}_3 alkyl;
 - \mathbb{R}^{22} is C_1-C_3 alkyl; or
 - R²¹ and R²² are taken together as -CH₂CH₂- or -CH₂CH₂-, each optionally substituted with 1-2 methyl;
 - R^{23} is C_1 – C_2 alkyl or C_1 – C_2 haloalkyl;
- 35 \mathbb{R}^{24} is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;
 - \mathbb{R}^{25} is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;
 - R^{26a} and R^{26b} are independently H or C_1 – C_2 alkyl;
 - R²⁷ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;

 R^{28a} and R^{28b} are independently C_1 - C_2 alkyl or C_1 - C_2 alkoxy;

W is O or S:

W1 is O or S;

Y¹ and Y² are independently CH₂, O, S, NH or NCH₃;

5 m is 0, 1 or 2;

15

25

30

5

n is 1 or 2;

s is 0 or 1; t is 1 or 2; and u is 0 or 1; provided that the sum of s, t and u is 2 or 3; and v is 0 or 1; w is 0 or 1; provided that the sum of v and w is 0 or 1; provided that

- (a) when R⁵ is C(W¹)NR¹⁶R¹¹ or C(NOR¹⁴)R¹⁵, then R⁹ is other than alkoxy or alkylthio;
 - (b) when R⁵ is C(W¹)NR¹⁰R¹¹, then R⁶ is other than alkyl or alkoxy;
 - (c) when R⁵ is COR¹³, then R^{1a} or R^{1b} is selected from the radicals of the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃ fluoroalkenyl, C₂-C₃ alkynyl or C₂-C₃ fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring;
 - (d) when R^5 and R^6 are taken together as $-C(W^1)N(R^{10})(CH_2)_{n^-}$ and n is 1, then R^{10} is C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_3-C_4 alkenyl, C_2-C_4 alkoxymethyl or C_2-C_4 alkylthiomethyl;
- 20 (e) when at least one of R¹⁰ and R¹¹ is haloalkyl, then R^{1a} or R^{1b} is CH₂CH₃ or CH₂CF₃ and R^{2a} or R^{2b} is tert-butyl, isopropyl or cyclopropyl;
 - (f) when J is J-2 or J-6, then \mathbb{R}^7 and \mathbb{R}^9 are H;
 - (g) when J is J-2 or J-6, and R^{2h} is C_1-C_2 alkyl, then R^{1h} is halogen, C_2-C_4 alkyl, C_1-C_4 fluoroalkyl, C_2-C_4 alkenyl, C_2-C_4 fluoroalkenyl, C_2-C_4 alkynyl or C_2-C_4 fluoroalkynyl;
 - (h) when R¹ⁿ is CH₃ and R⁵ is C(NOR¹⁴)R¹⁵, then R⁷ is other than alkyl:
 - (i) when T is N, then Z is CR9;
 - (i) when T is N, R⁷ is alkoxy, then R¹¹ is H;
 - (k) when R^7 and R^9 are F, and one of R^{10} and R^{11} is H, then the other of R^{10} and R^{11} is other than H:
 - (I) when Z is N and one of R¹⁰ and R¹¹ is H, then the other of R¹⁰ and R¹¹ is other than trifluoroethyl;
 - (m) when I is J-8 and R^{2b} is C_5 - C_6 cycloalkyl, then R^5 is $C(O)NR^{10}R^{11}$; and
 - (n) when J is J-8 and R⁷ is other than H, then R^{2b} is *tert*-butyl and R⁵ is C(O)NR¹⁰R¹¹:

and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener. The present invention further

relates to a herbicidal composition comprising said herbicidal mixture and at least one of a surfactant, a solid diluent or a liquid diluent.

The present invention also relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Formula Iz and effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener (e.g., in the form of the aforedescribed herbicidal mixture or herbicidal composition). A particular aspect of the present invention relates to a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of a crop with an effective amount of a compound of Formula Iz and an antidotally effective amount of a herbicide safener (e.g., safener applied as a seed treatment).

DETAILS OF THE INVENTION

10

15

20

25

30

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. The term "1-2 alkyl" indicates that one or two of the available positions for that substituent may be alkyl which are independently selected. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, I-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include mojeties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy and pentoxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CCH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio and pentylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH₃SCH₂, CH₃SCH₂CH₂, CH₃CH₂SCH₂, CH₃CH₂CH₂CH₂SCH₂ CH₂CH₂CH₂CH₂. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₃)₂CHS(O)₂ and the different butylsulfonyl isomers. "Alkenylthio", "alkenylsulfinyl", "alkenylsulfonyl", "alkynylthio", "alkynylsulfinyl", "alkynylsulfonyl", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. The term "cycloalkoxy" includes the same groups linked through an oxygen atom such as evelopropyloxy and cyclobutyloxy. Examples of "cycloalkylalkyl" include WO 2004/035545

5

10

20

cyclopropylmethyl, cyclopentylethyl, and other cycloalkyl moieties bonded to straight-chain "Cycloalkylalkoxy" includes cyclopropylmethoxy. or branched alkyl groups. "Alkyleycloalkyl" denotes alkyl substitution on a cycloalkyl moiety. Examples include 4-methylcyclohexyl and 3-ethylcyclopentyl. The term "carbocyclic ring" denotes a ring wherein the atoms forming the ring backbone and selected only from carbon. "Saturated carbocyclic" refers to a ring having a backbone consisting of carbon atoms linked to one another by single bonds; unless otherwise specified, the remaining carbon valences are occupied by hydrogen atoms. The term "aromatic ring system" denotes fully unsaturated carbocycles and heterocycles in which the polycyclic ring system is aromatic. Aromatic indicates that each of ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and in which $(4n + 2) \pi$ electrons, where n is 0 or a positive integer, are associated with the ring to comply with Hückel's rule. The term "aromatic carbocyclic ring system" includes fully aromatic carbocycles and carbocycles in which at least one ring of a polycyclic ring system is aromatic. The term "nonaromatic carbocyclic ring system" denotes fully saturated carbocycles as well as partially or fully unsaturated carbocycles wherein none of the rings in the ring system are aromatic. The terms "aromatic heterocyclic ring system" and "heteroaromatic ring" include fully aromatic heterocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic. The term "nonaromatic heterocyclic ring system" denotes fully saturated heterocycles as well as partially or fully unsaturated heterocycles wherein none of the rings in the ring system are aromatic. The heterocyclic ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen. One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen-containing heterocycles which can form N-oxides. Synthetic methods for the 25 preparation of N-oxides of heterocycles are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethydioxirane. These methods for the preparation of N-oxides have been extensively described and 30 reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and 35 B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in

10

15

20

25

30

35

Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. The term "1-2 halogen" indicates that one or two of the available positions for that substituent may be halogen which are independently selected. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F3C, ClCH2, CF3CH2 and CF3CCl2. The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", "haloalkylthio", and the like, are defined analogously to the Examples of "haloalkenyl" include (CI)2C=CHCH2 and term "haloalkyl". CF₃CH₂CH=CHCH₂. Examples of "haloalkynyl" include HC≡CCHCl, CF₃C≡C, CCl₃C≡C and FCH₂C≡CCH₂. Examples of "haloalkoxy" include CF₃O, CCl₃CH₂O, HCF₂CH₂CH₂O and CF3CH2O. Examples of "haloalkylthio" include CCl3S, CF3S, CCl3CH2S and Examples of "haloalkylsulfinyl" include CF3S(O), CCl3S(O), CICH2CH2CH2S. $CF_3CH_2S(O) \ \ and \ \ CF_3CF_2S(O). \quad Examples \ \ of \ \ \text{``haloalkylsulfonyl''} \ \ include \ \ CF_3S(O)_2,$ CCl₃S(O)₂, CF₃CH₂S(O)₂ and CF₃CF₂S(O)₂. Similarly, "fluoroalkyl", "fluoroalkenyl" and "fluoroalkynyl" may be partially or fully substituted with fluorine atoms.

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 6. For example, C₁-C₃ alkyl designates methyl through propyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂OC(=O), CH₃CH₂OC(=O), and the different butoxy- or pentoxycarbonyl isomers.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents. Further, when the subscript indicates a range, e.g. $(R)_{i\rightarrow j}$, then the number of substituents may be selected from the integers between i and j inclusive.

When a group contains a substituent which can be hydrogen, for example R^6 or R^{10} , then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a position on a group is said to be "not substituted" or "unsubstituted", then hydrogen atoms are attached to take up any free valency.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One

15

23

skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

The agriculturally suitable salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The agriculturally suitable salts of the compounds of the invention also include those formed with strong bases (e.g., hydrides or hydroxides of sodium, potassium or lithium). One skilled in the art recognizes that because in the environment and under physiological conditions salts of the compounds of the invention are in equiprium with their corresponding nonsalt forms, agriculturally suitable salts share the biological utility of the nonsalt forms.

Preferred for reason of cost, ease of synthesis and/or biological efficacy is:

- Preferred 1. A compound of Formula I wherein when J is J-1 and R^{1a} is CH₃ then at least one of T and U is N or C-F.
- 20 Preferred 2. A compound of Preferred 1 wherein when J is I-1 and R is CH₃ then at least one of T and U is C-F.
 - Preferred 3. A compound of Formula I wherein when J is I-1, R^{1a} is CH₃ and T is N then U is N or C-F.
 - Preferred 4. A compound of Preferred 3 wherein when J is J-1, R^{1a} is CH₃ and T is N then U is C-F.
 - Preferred 5. A compound of Formula I wherein at most one of T, U, Y and Z is N.
 - Preferred 6. A compound of Formula I wherein W is O.
 - Preferred 7. A compound of Formula I wherein I is J-1, J-2, J-3, J-4, J-5 or J-8.
 - Preferred 8. A compound of Preferred 7 wherein J is J-1, J-3 or J-5.
- 30 Preferred 9. A compound of Preferred 8 wherein J is J-1 or J-3.
 - Preferred 10. A compound of Formula I wherein R^{1a} is C_1 – C_4 alkyi, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkenyl, C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl.
- Preferred 11. A compound of Formula I wherein R^{1a} or R^{1b} is selected from the radicals in the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃ fluoroalkenyl, C₂-C₃ alkynyl or C₂-C₃ fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring.

10

- Preferred 12. A compound of Preferred 11 wherein R^{1a} or R^{1b} is CH₂CH₃, CH₂CH₂F, CH₂CH₇, CH₂CF₃ or CH=CH₂.
- Preferred 13. A compound of Preferred 12 wherein R1a or R1b is CH2CH3 or CH2CF3.
- Preferred 14. A compound of Formula I wherein R^{2a} or R^{2b} is *tert*-butyl, isopropyl or cyclopropyl.
- Preferred 15. A compound of Preferred 14 wherein R^{2a} or R^{2b} is tert-butyl or isopropyl.
- Preferred 16. A compound of Formula I wherein Y^1 and Y^2 are independently CH_2 or O;
- Preferred 17. A compound of Preferred 16 wherein the sum of s, t and u is 2 and the sum of v and w is 0;
- Preferred 18. A compound of Preferred 16 wherein R^{26a} is C₁-C₂ alkyl.
- Preferred 19. A compound of Preferred 18 wherein R^{26a} and R^{26b} are CH₃.
- Preferred 20. A compound of Formula I wherein R³ is H.
- Preferred 21. A compound of Formula I wherein R⁴ is H.
- 15 Preferred 22. A compound of Formula I wherein the carbon atom of R¹² linking to oxygen is bonded to at least one hydrogen atom.
 - Preferred 23. A compound of Formula I wherein R⁵ is CONR¹⁰R¹¹ or C(O)OR¹²; R¹⁰ is H or C₁-C₄ alkyl; R¹¹ is C₁-C₄ alkyl; or R¹⁰ and R¹¹ are taken together as -CH₂CH=CH₂CH-; and R¹² is C₁-C₃ alkyl.
- Preferred 24. A compound of Preferred 23 wherein R⁵ is CONR¹⁰R¹¹; R¹⁰ is H or C₁-C₂ alkyl; and R¹¹ is C₁-C₃ alkyl; or R¹⁰ and R¹¹ are taken together as -CH₂CH=CH₂CH-.
 - Preferred 25. A compound of Formula I wherein R⁶ is H or F.
 - Preferred 26. A compound of Formula I wherein R⁷ is H or F.
- 25 Preferred 27. A compound of Formula I wherein R⁸ and R⁹ are H or F.
 - Preferred 28. A compound of Formula I wherein T is C-F or N.
 - Preferred 29. A compound of Formula I wherein U is C-F or N.
 - Of note is a compound of Formula I wherein J is J-1 and R^{1a} is H, which is particularly useful as a synthetic intermediate.
- 30 Combinations of preferred groups are illustrated by:
 - Preferred A. A compound of Formula I wherein J is J-1, J-2, J-3, J-4, J-5 or J-8.
 - Preferred B. A compound of Preferred A wherein R^{1a} or R^{1b} is CH₂CH₃, CH₂CH₂F, CH₂CHF₂, CH₂CF₃ or CH=CH₂; R^{2a} or R^{2b} is *tert*-butyl, isopropyl or cyclopropyl; R³ is H; R⁴ is H; and W is O.
- 35 Preferred C. A compound of Preferred B wherein at most one of T, U, Y and Z is N.
 - Preferred D. A compound of Preferred C wherein \mathbb{R}^5 is $CONR^{10}R^{11}$ or $C(O)OR^{12}$; R^{10} is H or C_1 – C_4 alkyl; R^{11} is C_1 – C_4 alkyl; or R^{10} and R^{11} are taken together as -CH₂CH=CH₂CH-; and R^{12} is C_1 – C_3 alkyl.

10

20

25

30

- Preferred E. A compound of Preferred D wherein R⁶ is H or F and R⁷ is H or F.
- Preferred F. A compound of Preferred E wherein J is J-1, J-3 or J-5,
- Preferred G. A compound of Preferred F wherein R^5 is $CONR^{10}R^{11}$; R^{10} is H or C_1 – C_2 alkyl; and R^{11} is C_1 – C_3 alkyl; or R^{10} and R^{11} are taken together as – $CH_2CH=CH_2CH$ -.
- Preferred H. A compound of Preferred G wherein R^{2a} is *tert*-butyl or isopropyl; and R⁸ and R⁹ are H or F.
- Preferred I. A compound of Formula I wherein at most one of T, U, Y and Z is N; R^{1a} or R^{1b} is selected from the radicals in the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃ fluoroalkenyl, C₂-C₃ alkynyl or C₂-C₃ fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring; R⁶ is H or F; R⁷ is H or F; R⁴ is H; R^{26a} is C₁-C₂ alkyl; W is O; Y¹ and Y² are independently CH₂ or O; the sum of s, t and u is 2; and the sum of v and w is 0.
- Preferred J. A compound of Preferred I wherein R^{1a} or R^{1b} is CH₂CH₃, CH₂CH₂F, CH₂CHF₂, CH₂CF₃ or CH=CH₂, R^{2a} or R^{2b} is tert-butyl, isopropyl or cyclopropyl, and R³ is H.
 - Preferred K. A compound of Preferred J wherein R^5 is $CONR^{10}R^{11}$ or $C(O)OR^{12}$; R^{10} is H or C_1 – C_4 alkyl; R^{11} is C_1 – C_4 alkyl; or R^{10} and R^{11} are taken together as -CH₂CH=CH₂CH-; and R^{12} is C_1 – C_3 alkyl.
 - Preferred L. A compound of Preferred K wherein R^{2a} or R^{2b} is ten-butyl or isopropyl.
 - Preferred M. A compound of Preferred L wherein J is J-1, J-2, J-3, J-4, J-5 or J-8.
 - Preferred N. A compound of Preferred M wherein R^5 is CONR¹⁰R¹¹; R^{10} is H or C_1 – C_2 alkyl; and R^{11} is C_1 – C_3 alkyl; or R^{10} and R^{11} are taken together as -CH₂CH=CH₂CH-.
 - Preferred O. A compound of Preferred N wherein \mathbb{R}^8 and \mathbb{R}^9 are H or F.
 - Preferred P. A compound of Preferred O wherein J is J-1, J-3 or J-5.
 - Specifically preferred is a compound of Preferred I selected from the group:
 - 3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylamino)carbonyl)-2-fluorophenyl]1H-pyrazole-5-carboxamide;
 - N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide;
 - 2-[[(3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*,*N*-dimethyl-4-pyridinecarboxamide;
- 35 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*-ethyl-4-pyridinecarboxamide;

WO 2004/035545 PCT/US2003/032968

15

N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-1-ethyl-3-(1-methylethyl)-1H-pyrazole-5-carboxamide;

N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxamide;

5 3-(1,1-dimethylethyl)-1-(2-fluoroethyl)-N-[3-[(1E)-1-(hydroxyimino)ethyl]phenyl]-1H-pyrazole-5-carboxamide;

3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylmethylamino)carbonyl]-2-fluorophenyl]-1H-pyrazole-5-carboxamide;

3-(1,1-dimethylethyl)-1-ethyl-*N*-[3-[(ethylamino)carbonyl]-4-fluorophenyl]-1*H*-pyrazole-5-carboxamide;

N-[5-[(2,5-dihydro-1H-pyrrol-1-yl)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide; and

10

30

3-(1,1-dimethylethyl)-1-ethyl-N-[3-(trifluoromethoxy)phenyl]-1*H*-pyrazole-5-carboxamide.

Of note are compounds of Formula I wherein J is J-1, J-2, J-3 or J-4 wherein R^{2a} is 15 $C_1-C_6 \ \text{alkyl}, \ C_1-C_6 \ \text{haloalkyl}, \ C_2-C_6 \ \text{alkoxyalkyl}, \ C_2-C_6 \ \text{alkylthioalkyl}, \ C_2-C_6 \ \text{alkenyl},$ C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, C_4 - C_6 alkyleycloalkyl, C3-C6 halocycloalkyl, C4-C6 cycloalkylalkyl or C5-C6 alkyleycloalkylalkyl. Also of note are compounds of Formula I wherein J is J-1, J-2, J-3, J-4, J-5, J-6 or J-7. Also of note are compounds of Formula I wherein R2a is C1-C6 alkyl, C1-C6 haloalkyl, 20 C2-C6 alkoxyalkyl, C2-C6 alkylthioalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, C3-C6 cycloalkyl, C4-C6 alkylcycloalkyl, C3-C6 halocycloalkyl, C₄-C₆ cycloalkylalkyl, C₅-C₆ alkylcycloalkylalkyl, -CR²⁰(OR²¹)(OR²²) or $SiR^{23}R^{24}R^{25}$; R^{2b} is C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, C_2-C_6 alkylthioalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl, C2-C6 haloalkynyl, 23 C3-C6 cycloalkyl, C4-C6 alkylcycloalkyl, C3-C6 halocycloalkyl, C4-C6 cycloalkylalkyl or $C_5-C_6 \ \ alkyleycloalkylalkyl; \ R^3 \ \ is \ \ H, \ \ F \ \ or \ \ C_1-C_2 \ \ alkyl; \ \ and \ \ R^5 \ \ is \ \ C(W^1)NR^{10}R^{11},$ C(O)OR12, COR13, C(NOR14)R15, -CN, OR16, S(O), R17 or S(O), NR18R19.

The preferred herbicidal compositions of the present invention are those involving the above preferred compounds.

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). The preferred methods of use are those involving the above preferred compounds.

35 This invention also relates to a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a WO 2004/035545

10

15

20

25

30

herbicidally effective amount of the compounds of the invention and an antidotally effective amount of a safener. The preferred methods of use are those involving the above preferred compounds.

The compounds of Formulae I and Iz can be prepared by one or more of the following methods and variations as described in Schemes 1 through 20 and accompanying text. Formula I is a subgenus of Formula Iz; Formulae I and Iz share the same substituent group definitions, but the scope of Formula Iz is not constrained by provisos (a) and (b) of Formula I. The definitions of J, W, R^{1a}, R^{1b}, R^{1c}, R^{2a}, R^{2b}, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, R^{26a}, R^{26b}, R²⁷, R^{28a}, R^{28b}, W, W¹, T, U, Y, Z, m, n, s and v in the compounds of Formulae I through Ig, Iz and 1 through 63 below are as defined above in the Summary of the Invention unless otherwise indicated. Compounds of Formulae Ia through Ig are various subsets of the compounds of Formulae I and Iz, compounds of Formulae 2a and 2b are subsets of the compounds of Formula 2, and compounds of Formulae 17a through 17j are subsets of the compounds of Formula 17.

Compounds of Formula Ia (Formula I or Iz wherein W is O) can be prepared by coupling the appropriately substituted azole acyl chloride of Formula I with the appropriately substituted amino compound of Formula 2 as shown in Scheme I.

The reaction is carried out in an anhydrous aprotic solvent such as dichloromethane or tetrahydrofuran, preferably in the presence of a base such as triethylamine, pyridine, 4-(dimethylamino)pyridine or N,N-diisopropylethylamine, at a temperature typically between room temperature and 70 °C to provide the amide of Formula Ia. When R⁴ is alkylcarbonyl or alkoxycarbonyl, a strong base such as sodium hydroxide and phase transfer conditions such as those described by M. J. Haddadin et al., Heterocycles 1984, 22, 773 may be advantageous. The reaction of Scheme I is illustrated in Step F of Example 1, Step C of Example 4, Step D of Example 7, Step D of Example 8, Step C of Example 12, Step B of Example 13, Step D of Example 14, Step C of Example 15, Step C of Example 16, Step D of Example 19, and Step E of Example 25, which follow.

Alternatively, compounds of Formula Ia can be prepared by coupling the appropriately substituted azole carboxylic acid of Formula 3 with appropriately substituted amino compound of Formula 2 as shown in Scheme 2.

WO 2004/035545 PCT/US2003/032968

17

This reaction is carried out in the presence of a dehydrating coupling reagent such as dicyclohexyl carbodiimide, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, 1-propane-phosphonic acid cyclic anhydride or carbonyl diimidazole in the presence of a base such as triethylamine, pyridine, 4-(dimethylamino)pyridine or *N*,*N*-diisopropylethylamine in an anhydrous aprotic solvent such as dichloromethane or tetrahydrofuran at a temperature typically between room temperature and 70 °C. The method of Scheme 2 is illustrated in Step D of Example 10, Step C of Example 17, Example 18, Step B of Example 20 and Step E of Example 22.

10

15

20

25

30

As shown in Scheme 3, compounds of Formula Ib (Formula I or Iz wherein W is S) can be prepared from corresponding compounds of Formula Ia by treatment with a thionating reagent such as P_2S_5 (see for example, E. Klingsberg et al., J. Am. Chem. Soc. 1951, 72, 4988; E. C. Taylor Ir. et al., J. Am. Chem. Soc. 1953, 75, 1904; R. Crossley et al., J. Chem. Soc. Perkin Trans. 1 1976, 977; I. Voss et al., Justus Liebigs Ann. Chem. 1968, 716, 209) or Lawesson's Reagent (2,5-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide; see, for example, S. Prabhakar et al. Synthesis, 1984 (10), 829).

Scheme 3

Ib

Alternatively, compounds of Formula **Ib** can be directly prepared from the corresponding carboxylic acid of Formula **3** and amino compound of Formula **2** by treatment with (EtO)₂P(S)SH according to the general procedure of N. Borthakur et al., *Tetrahedron Lett.* **1995**, 36(37), 6745. Also, compounds of Formula **Ia** or **Ib** wherein R⁴ is alkyl, alkylcarbonyl, alkoxycarbonyl, alkoxyalkyl or alkylthioalkyl can be prepared from the corresponding compounds of Formula **Ia** or **Ib** wherein R⁴ is H by treatment with the appropriate alkylating or acylating reagents in the presence of base using methods well known in the art.

Acyl chlorides of Formula 1 can be prepared from the carboxylic acids of Formula 3 by using methods well known in the ari such as treatment with oxalyl chloride and catalytic NN-dimethylformamide in dichloromethane or treatment with thionyl chloride. This

15

20

25

preparation is illustrated in Step E of Example 1, Step C of Example 12, Step B of Example 13, Step D of Example 14, and Step E of Example 25.

In some instances compounds of Formula I (or Iz) can be prepared from other compounds of Formula I (or Iz). For example, a compound of Formula Ic wherein R³⁰ is NR¹⁰R¹¹ or OR¹² (Formula I or Iz wherein R⁵ is C(O)NR¹⁰R¹¹ or C(O)OR¹²) can be prepared from the corresponding carboxylic acid of Formula 4, which is in turn prepared from a compound of Formula Ic wherein R³⁰ is OR¹² as shown in Scheme 4.

Scheme 4

In this method, the ester compound of Formula Ic wherein R³⁰ is OR¹² is converted to the corresponding carboxylic acid of Formula 4 by general procedures well known in the art such as by treatment with aqueous lithium hydroxide in tetrahydrofuran, followed by acidification. The carboxylic acid of Formula 4 is then converted to the corresponding carboxamide of Formula Ic wherein R³⁰ is NR¹⁰R¹² or ester of Formula Ic wherein R³⁰ is OR¹² by amidation or esterification procedures well known in the art. One procedure illustrated in Scheme 4 involves conversion of the carboxylic acid of Formula 4 to an intermediate carbonyl chloride by treatment with oxalyl chloride preferably in the presence of N,N-dimethylformamide and an inert solvent such as dichloromethane, and then contacting the intermediate carbonyl chloride with the appropriate amine of Formula 5 or alcohol of Formula 6 to prepare the carboxamide or ester, respectively. As an alternative to preparing the intermediate carbonyl chloride, a dehydrating coupling reagent can be used analogous to the method of Scheme 2. The method of Scheme 4 is illustrated in Examples 2, 3, 5, 6 and 9, Steps A and B of Example 11, and Example 23.

In other instances compounds of Formula I (or Iz) can be prepared from compounds structurally related to Formula I (or Iz). For example, as shown in Scheme 5, compounds of Formula Id can be prepared from corresponding compounds of Formula 7 by treatment with the corresponding sulfonating reagent of Formula 8 wherein X^1 is a leaving group such as halogen or $OS(O)_2R^{27}$. For reason of cost, X^1 is preferably Cl.

The reaction is conducted in the presence of a base such as pyridine, triethylamine or 4-(dimethylamino)pyridine in solvents such as dichloromethane or tetrahydrofuran at temperatures typically between 0 and 70 °C under an inert atmosphere. Compounds of Formula 7 can be prepared by methods analogous to Schemes 1 and 2, starting with the appropriate amino compound analogous to Formula 2 wherein R⁵ is replaced by a hydroxy group. Although the hydroxy group can be converted to a protecting group before the reaction with the compound of Formulae 1 or 3 and then deprotected to give the compound of Formula 7, such protection is generally unnecessary, because the amino group is more reactive than the hydroxy group.

5

10

15

20

25

As shown in Scheme 6, compounds of Formula Ie can be prepared from corresponding compounds of Formula 7 by treatment with the corresponding phosphorating reagent of Formula 9 wherein X^2 is a leaving group such as halogen. For reason of cost, X^2 is preferably Cl.

The reaction is conducted in the presence of a base such as pyridine, triethylamine or 4-(dimethylamino)pyridine in solvents such as dichloromethane or tetrahydrofuran at temperatures typically between 0 and 70 °C under an inert atmosphere.

ie

Compounds of Formula I (or Iz) can also be prepared from other compounds of Formula I (or Iz) wherein substituents on the I groups are introduced or elaborated. For example, halogens can be attached using electrophilic addition reactions. Example 21 illustrates the addition of fluorine as R³ wherein I of Formula I (or Iz) is I-1.

Carboxylic acids of Formula 3 can be prepared from corresponding esters of Formula 17 wherein R³¹ is a carbon-based radical such as alkyl (e.g., methyl, ethyl), benzyl, etc. as shown in Scheme 7.

WO 2004/035545 PCT/US2003/032968

20

Scheme 7

J-C(O)OR³¹ Ester cleavage conditions 3

A wide range of ester cleavage conditions known in the art can be used for this method. Particularly suitable are conditions involving treatment with hydroxide, such as aqueous sodium hydroxide or aqueous lithium hydroxide in tetrahydrofuran, followed by acidification, typically with a strong mineral acid such as hydrochloric or sulfuric acid. For cleaving esters of Formula 17 wherein R³¹ is benzyl, hydrogenation over palladium catalyst according to general procedures known in the art can be particularly advantageous. The method of Scheme 7 is illustrated in Step D of Example 1, Step B of Example 12, Step A of Example 13, Step C of Example 14, and Step D of Example 22, and Step D of Example 25.

Carboxylic esters of Formula 17a (Formula 17 wherein J is J-1 and R³¹ is ethyl) can be prepared according to the general method described by J. J. Parlow et al., *J. Org. Chem.* 1997, 62, 5908–5919 and modifications thereof as discussed for Scheme 8.

Scheme 8

15

20

10

This method involves base-induced condensation of a ketone of Formula 18 with diethyl oxalate (19) to give a tricarbonyl compound of Formula 20, which is condensed with a hydrazine of Formula 21 to prepare the pyrazolecarboxylate of Formula 17a. The condensation of the tricarbonyl compound of Formula 20 with the hydrazine of Formula 21 is typically conducted in an alcohol, ester or carbonate diester solvent. The hydrazine of Formula 21 can be in the form of a salt. As a modification of the general method of Scheme 8, when R³ is H, the diketoester of Formula 20 can be alkylated or fluorinated to provide the corresponding diketoester of Formula 20 wherein R³ is alkyl or fluorine. The method of Scheme 8 is illustrated in Steps A and B of Example 1 and Steps A and B of Example 25.

WO 2004/035545 PCT/US2003/032965

21

As another modification of general method of Scheme 8, when R^{1a} is H, the pyrazolecarboxylate of Formula 17a can be alkylated with the appropriate alkylating agent in the presence of a base and solvent to give a pyrazolecarboxylate of Formula 17a wherein R^{1a} is alkyl, fluoroalkyl, alkenyl, fluoroalkenyl, alkynyl or fluoroalkynyl. Appropriate alkylating agents are typically of the formula R^{1a}X (22) wherein X is a nucleophilic reaction leaving group (e.g., bromide, iodide, mesylate (OS(O)₂CH₃), triflate (OS(O)₂CF₃), tosylate (OS(O)₂Ph-4-CH₃), etc.). Typical bases include potassium *tert*-butoxide, potassium carbonate, sodium hydride and potassium hydroxide. Typical solvents include N,N-dimethylformamide, acetonitrile and tetrahydrofuran. A particularly useful combination of base and solvent is potassium carbonate in acetonitrile. Alkylation isomers can be separated by common methods such as chromatography and crystallization. This modification is illustrated in Step C of Example 1 and Step C of Example 25.

10

15

20

25

30

35

Also, some of the R^{1a} groups can be converted to others on compounds of Formula 17a. For example, when R^{1a} is 2-hydroxyethyl, treatment with DAST (diethylaminosulfur trifluoride) typically gives a mixture of 2-fluoroethyl and vinyl for R^{1a}. The product compounds of Formula 17a wherein R^{1a} is 2-fluoroethyl and vinyl can then be separated by methods known in the art such as chromatography on silica gel and crystallization.

Compounds of Formula 18 are commercially available or can be prepared by methods well known in the art. For example, compounds of Formula 18 wherein R2a is -CR20(OR21)(OR22) can be prepared according to the general procedure described by B. Tellegen, Reck Trav. Chim. Pays-Bas 1938, 57, 133-141. Alternate approaches to construct R^{2a} using variations of the process of Scheme 8 are feasible. For example, a compound of Formula 17a wherein R2a is a 1,1-dimethyl-2-haloethyl group can be prepared by first including \mathbb{R}^{2n} in Formula 18 as a 1,1-dimethyl-2-hydroxyethyl group protected as a tetrahydropyranyl ether (e.g., prepared from dihydropyran and pyridinyl p-tosylate (PPTS) using the general procedure of M. Miyashita et al., J. Org. Chem. 1977, 142(23), 3772-3774), and then after preparation of the pyrazole ring according to the process of Scheme 8, deprotecting using PPTS to give the corresponding alcohol, which can then be converted to the mesylate using methanesulfonyl chloride and base, which is then displaced using an appropriate inorganic halide salt in N.N-dimethylformamide according to the general methods disclosed by P. Sulmon et al., Organic Preparations and Procedures Int. 1989, 21(1), 91-104 and European Patent EP-25,948-B1. Similarly, substituents can be completed after conducting the processes of other Schemes described herein as an alternative to including the substituents in final form in the starting materials for the processes.

Carboxylic esters of Formula 17b (Formula 17 wherein J is J-2 and R³¹ is ethyl) and Formula 17c (Formula 17 wherein J is J-3 and R³¹ is ethyl) wherein R^{1b} is alkyl, fluoroalkyl, alkenyl, fluoroalkenyl, alkynyl or fluoroalkynyl can be prepared from sydnones of Formula 23 and alkynes of Formula 24 according to the general method of J. Heterocycl, Chem.

1993, 30, 365-371 and J. Heterocycl. Chem. 1996, 33, 719-726 as depicted in Scheme 9. (One skilled in the art recognizes that to prepare 17b without a substituent at the pyrazole 5-position as specified for Formula 17b (J-2), the R³ radical in the sydnone of Formula 23 must be hydrogen.)

5

15

20

In this method, sydnones of Formula 23 are heated with alkynes of Formula 24 in higher boiling solvents (e.g., xylenes, toluene, dioxane, ethylene glycol) for typically 12–72 hours. The isomers 17b and 17c then can be separated by the usual methods such as column chromatography and distillation. The sydnones of Formula 23 can be prepared using the general methods described in *J. Heterocycl. Chem.* 1993, 30, 365–371, *J. Heterocycl. Chem.* 1996, 33, 719–726 and the references cited therein. The method of Scheme 9 is illustrated in Step A of Example 12 and Step A of Example 14.

Carboxylic esters of Formula 17d (Formula 17 wherein J is J-3 but R^{2c} can be H as well as R^{2b}; R³ is H and R³¹ is ethyl) wherein R^{1b} is alkyl, fluoroalkyl, alkenyl, fluoroalkenyl, alkynyl or fluoroalkynyl can also be prepared according to the method depicted in Scheme 10 wherein R³² is NMe₂ or OEt when (MeO)₂CHNMe₂ or HC(OEt)₃, respectively, is used to prepare intermediate 26.

In this method the intermediate of Formula 26 is prepared from the ketoester of Formula 25 according to the general procedures published in *J. Heterocycl. Chem.*, 1987, 24, 693-695. The starting ketoesters of Formula 25 can, in turn, be prepared according to the general

10

15

20

25

procedures of J. Org. Chem. 1997, 62, 5908-5919. The condensation of the ketoester of Formula 26 with the hydrazine of Formula 27 is typically conducted in an alcohol, ester or carbonate diester solvent. The hydrazine of Formula 27 can be in the form of a salt.

When R^{2c} is H, the pyrazolecarboxylate of Formula 17d can be alkylated with the appropriate alkylating agent in the presence of a base and solvent to give a pyrazolecarboxylate of Formula 17d wherein R^{2c} is R^{2b}. Appropriate alkylating agents are typically of the formula R^{2b}X (28) wherein X is a nucleophilic reaction leaving group (e.g., bromide, iodide, mesylate (OS(O)₂CH₃), triflate (OS(O)₂CF₃), tosylate (OS(O)₂Ph-4-CH₃), etc.). Typical bases include potassium tert-butoxide, potassium carbonate, sodium hydride and potassium hydroxide. Typical solvents include N,N-dimethylformamide, acetonitrile and tetrahydrofuran. Alkylation isomers can be separated by common methods such as chromatography and crystallization.

Compounds of Formula 17b (i.e. pyrazole isomer J-2) can also be prepared using methods or slight modification thereof taught in: J. Heterocycl. Chem. 1999, 36(1), 217-220, Agric. Biol. Chem. 1984, 48(1), 45-50, Bull. Soc. Chim. Fr. 1978, (7-8, Pt. 2), 401-14, Khim. Geterotsikl. Soedin. 1968, 4(4), 685-94, European Patent Application Publication EP 419917 and Spanish Patent ES 493459 (1981). Compounds of Formula 17c (i.e. pyrazole isomer J-3) can also be prepared using methods or slight modification thereof taught in: J. Heterocycl. Chem. 1991, 28(6), 1545-7, J. Heterocycl. Chem. 1987, 24(6), 1669-75, J. Chem. Res., Synop. 1986, (5), 166-7, Aust. J. Chem. 1983, 36(1), 135-47, Japanese Patent Application Publications JP 01061463, JP 01106866, JP 01061463 and JP 04021671, and Japanese Patents JP 2000212166 and JP 2000044541.

As shown in Scheme 11, pyrazoles of Formulae 17b and 17c (wherein R^{1b} is halogen) can be prepared from corresponding pyrazoles of Formula 17e (Formula 7 wherein J is J-2 but R^{1b} is H; and R³¹ is ethyl) and Formula 17f (Formula 17 wherein J is J-3 but R^{1b} is H; and R³¹ is ethyl), respectively.

Scheme 11

R^{2b}

CO₂B

halogenating reagent

CO₂B

17e

WO 2004/035545 PCT/US2003/032965

One variation of method of Scheme 11 involves heating a compound of Formula 17e or 17f with N-chloro- or N-bromosuccinimide in an organic solvent such as N,N-dimethyl-formamide, at temperatures between 30 and 110 °C, preferably at about 60 °C. Alternatively, bromine or chlorine can be added at or below room temperature to a compound of Formula 17e or 17f in a halocarbon solvent such as dichloromethane, trichloromethane or tetrachloromethane to give the corresponding compound of Formula 17b or 17c, respectively. The method of Scheme 11 is illustrated in Step B of Example 14.

5

10

15

20

Pyrazoles of Formula 17b and 17c wherein R^{1b} is halogen can also be prepared using the general methods taught in: Bulletin of the Korean Chemical Society 1998, 19(7), 725–726, Izv. Akad. Nauk SSSR, Ser. Khim. 1981, (6), 1342–8, Izv. Akad. Nauk SSSR, Ser. Khim. 1980, (5), 1071–7, J. Heterocycl. Chem. 1997, 34(2), 537–540, J. Heterocycl. Chem. 1991, 28(8), 1849–52, J. Fluorine Chem. 1988, 39(3), 435–40, U.S. Patent No. 5201938, German Patent Application Publication DE 19632945-A1, and Japanese Patent Application Publications JP 10114750, JP 06056793, JP 05339242, JP 05043553, JP 03133961 and JP 01029364.

Thiazolecarboxylates of Formula 17g (Formula 17 wherein J is J-4) can be prepared as illustrated in Scheme 12.

This method starts with an acyl chloride of Formula 29, which can be prepared by a variety of general methods known in the art; many acyl chlorides of Formula 29 are commercially available. The acyl chloride of Formula 29 is treated with an ammonia solution to prepare the carboxamide of Formula 30, which is in turn treated with a thionating reagent such as

Lawesson's Reagent (2,4-bis(methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide) to prepare the thioamide of Formula 31. The thioamide of Formula 31 is then reacted with the chloro compound of Formula 32 to provide the thiazolecarboxylate of Formula 17g.

Carboxylic esters of Formula 17h (Formula 17 wherein J is J-5) can be prepared by the general method shown in Scheme 13.

Scheme 13

In this method, an alpha-bromo ketone of Formula 33 is converted to a Wittig reagent of Formula 34 and then condensed with a 2-oxocarboxylic acid ester of Formula 35 to provide a 4-oxo-2-pentenoic ester of Formula 36 according to the general procedure of P. F. Schuda et al., Synthesis 1987 (12), 1055-7. The 4-oxo-2-pentenoic ester of Formula 36 is then condensed with a hydrazine of Formula 37 to form the carboxylic ester of Formula 17h according to the general procedures of G. Westphal & H. H. Stroh, Liebigs Ann. Chem. 1968, 716, 160-163 and R. C. Moreau & P. Loiseau, Annales Pharmaceutiques Françaises 1978, 36 (1-2), 67-75. This method is illustrated by Steps A through C of Example 22.

Carboxylic esters of Formula 17i (Formula 17 wherein J is J-6 and R³¹ is ethyl) wherein R^{1d} is H, alkyl, fluoroalkyl, alkenyl, fluoroalkenyl, alkynyl or fluoroalkynyl can be prepared from sydnones of Formula 23 and alkenes of Formula 38 according to the general methods described in Z. *Obshch. Khim.* 1962, 32(5), 1446–1451 as depicted in Scheme 14.

20

15

10

15

20

25

In this method, sydnones of Formula 23 are heated with alkenes of Formula 38 in higher boiling solvents (e.g., xylenes, toluene, dioxane, ethylene glycol) for typically 12–72 hours. The isomer 17i can then be isolated by the usual methods such as column chromatography and distillation.

The ester of Formula 17i can then be converted to the corresponding carboxylic acid as described for Scheme 7 and coupled to form the compound of Formula Ia as described for Schemes 1 and 2. Most R^{1b} substituents can be introduced as R^{1d} in the method of Scheme 14, but halogen cannot. Halogen as well as other R^{1b} substituents can be introduced in the method shown in Scheme 15.

In this method, the compound of Formula If wherein R^{1d} is R^{1b} is prepared from the compound of Formula If wherein R^{1d} is H. The compound of Formula If wherein R^{1d} is H is then deprotonated using a strong base such as lithium disopropylamide (LDA) and then reacted with an electrophile introducing R^{1b}. This general method is discussed by T. M. Stevenson et al., "1-Arylpyrazoline-3-carboxanilides" in *Synthesis and Chemistry of Agrachemicals IV* (D. R. Baker et al., Eds., American Chemical Society, Washington, D.C., 1995) Chapter 26, pp. 291–299. For halogenation, the electrophile can be elemental halogen (e.g., Cl₂, Br₂) or a halogen derivative such as N-bromosuccinimide or N-chlorosuccinimide. When R^{1b} is alkyl, fluoroalkyl, alkenyl, fluoroalkenyl, alkynyl or fluoroalkynyl the electrophile is typically of the formula R^{1b}X (39) wherein X is a nucleophic reaction leaving group as already described for the compound of Formula 22 in connection with the modified method of Scheme 8.

Carboxylic esters of Formula 17j (Formula 17 wherein J is J-7) wherein R^{1c} is H can be prepared by the general method shown in Scheme 16.

10

.

13

20

In this method, a 3-oxo-carboxylic acid ester of Formula 40 is condensed with an aldehyde of Formula 41 to provide an unsaturated ester of Formula 42, which is condensed with a hydrazine of Formula 43 to provide the carboxylic ester of Formula 17j according to the general procedure of P. S. Engel et al., J. Am. Chem. Soc. 1997, 119 (26), 6059-6065.

The ester of Formula 17j can then be converted to the corresponding carboxylic acid as described for Scheme 7 and coupled to form the compound of Formula Ia as described for Schemes 1 and 2. Alternatively as shown in Scheme 17, the coupling can be conducted first to prepare the amide of Formula 44, which is then condensed with the aldehyde of Formula 41 to prepare the unsaturated amide of Formula 45, which is condensed with the hydrazine of Formula 43 to prepare the compound of Formula Ig wherein R^{1c} is H.

The method of Scheme 17 is illustrated in Steps A and B of Example 24.

Carboxylic esters of Formula 17k (Formula 17 wherein J is J-8) can be prepared by the general method shown in Scheme 18.

Scheme 18

In this method, an alkynecarboxylic acid ester of Formula 24 is heated with an excess of azidotrimethylsilane at a temperature of about 100-110 °C under an inert atomosphere. The reaction is worked up by treating the cooled reaction mixture with excess methanol to consume remaining trimethylsilyl azide and desilylate the azide adduct. Evaporation leaves the 1,2,3-triazole of Formula 46. These conditions are described by R. S. Klein et al., J.

15

20

25

30

Heterocycl. Chem. 1976, 13, 589-592 and illustrated by Step A of Example 26. The triazole of Formula 46 is then converted to the triazole of Formula 17k by alkylation with $R^{2b}X^3$ (47) wherein X^3 is a nucleophilic reaction leaving group such as Cl, Br, I, sulfonates such as p-toluenesulfonate, methanesulfonate or trifluoromethanesulfonate, or sulfates such as $-OSO_2OR^{2b}$. Preferably, X^3 is a strong leaving groups such as I. The reaction is conducted in the presence of a base such as potassium carbonate in a polar aprotic solvent such as acetonitrile at a temperature commonly between 40 and 80 °C, typically about 50-60 °C. Filtration to remove solid byproducts and evaporation of the solvent leaves a crude product containing the triazole of Formula 17k typically together with other alkylation regioisomers. The triazole of Formula 17k can be isolated and purified by the usual methods known to those skilled in the art such as chromatography and crystallization. This method is illustrated by Step B of Example 26.

When R^{2b} is a tertiary alkyl group such as *tert*-butyl, alkylation with R^{2b}X³ may give low yields. Compounds of Formula 17k wherein R^{2b} is a tertiary alkyl group can be satisfactorily prepared from compounds of Formula 46 by reaction with the appropriate alcohol R^{2b}OH (47) in trifluoroacetic acid solution in the presence of concentrated sulfuric acid according to the general procedure of J. W. Tilley et al., J. Med Chem. 1991, 34(3), 1125–1134. This method is illustrated by Step A of Example 28.

Although ethyl esters are shown for the compounds of Formulae 24, 46 and 17k, one skilled in the art recognizes that corresponding esters wherein ethyl is replaced by other carbon-based radicals, e.g., R³¹, can be used as well for this method. Also known in the art are other methods to prepare 1,2,3-triazole rings, such as those described in PCT Patent Publication WO 02/096258.

Amino compounds of Formula 2 can be prepared by a wide variety of methods available to the synthetic organic chemist. Many of these methods involve converting one substitutent to another on the aromatic ring. For example, the amino function of Formula 2a (Formula 2 wherein R⁴ is H, T is CR⁶, U is CR⁷, Y is CR⁸ and Z is CR⁹) can be obtained by reduction of the nitro compound of Formula 60 as shown in Scheme 19.

The nitro compound of Formula 60 can be reduced to the aniline of Formula 2a by a variety of reducing agents known in the art, such as iron in acetic acid, tin(II) chloride or

10

15

20

25

30

hydrogenation over a palladium or platinum sulfide catalyst. The nitro function of Formula 60 can be added by well known nitration reactions. The method of Scheme 19 is illustrated in Step B of Example 4, Step C of Example 7, Step B of Example 16 and Step B of Example 17. Many compounds of Formula 60 are commercially available. When T, U and/or Z are N, the aryl ring of Formula 2 is activated to nucleophilic substitution facilitating introduction of amino by displacement of leaving groups such as halogen.

As another example of conversion of one substituent to another, compounds of Formula 2b (Formula 2 wherein R^4 is H and R^5 is CO_2R^{12}) wherein T is CR^6 or N; U is CR^7 or N; Y is CR^8 or N; Z is CR^9 or N; R^6 , R^7 , R^8 and R^9 are each independently H or F; and R^{12} is C_1 - C_5 alkyl, C_2 - C_5 haloalkyl, C_3 - C_5 alkenyl, C_3 - C_5 haloalkyl or C_4 - C_5 cycloalkylalkyl can be prepared as shown in Scheme 20.

In the method of Scheme 20, the amino function of a compound of Formula 61 is protected as the acetamide by treatment with acetic anhydride. Treatment with potassium permanganate then oxidizes the aromatic methyl radical to a carboxylic acid function to provide the compound of Formula 62. The compound of Formula 63 is then treated with strong acid, such as hydrochloric acid and alcohol of Formula 63 to form the ester group and deprotect the amino radical. This method works particularly well for short aliphatic alcohols (e.g., R¹² is Me or Et). The method of Scheme 20 is illustrated in Steps A through C of Example 8 and Steps A through C of Example 10. Other synthetic approaches to prepare compounds of Formula 2b are also feasible, as is illustrated by Steps A through C of Example 19. Compounds of Formula 2b wherein R¹² is methyl or ethyl can be coupled to form compounds of Formula Ia wherein R⁴ is H and R⁵ is CO₂R¹² according to the methods of Schemes 1 and 2, and then R¹² converted to other radicals or CO₂R¹² converted to other groups such C(O)NR¹⁰R¹¹ according to the method of Scheme 4 and other methods known to those skilled in the art. This conversion is illustrated by Example 20.

As still another example of conversion of one substituent to another, amides of Formula 2 wherein R⁵ is C(O)NR¹⁰R¹¹ can be converted to thioamides of Formula 2 wherein R⁵ is C(S)NR¹⁰R¹¹ using the thionating reagents already described for the method of Scheme 3.

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I or Iz may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I or Iz. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I or Iz.

5

10

15

20

25

30

35

One skilled in the art will also recognize that compounds of Formula I (or Iz) and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; ¹⁹F NMR spectra are reported in ppm relative to CF₃CCl₃; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets, "dt" means doublet of triplets, "dq" means doublet of quartets, "br s" means broad singlet, "br d" means broad doublet.

EXAMPLE I

Preparation of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]benzoate (Compound 80)

Step A: Preparation of ethyl 2-hydroxy-5,5-dimethyl-4-oxo-2-hexenoate

To a solution of sodium ethoxide in ethanol (250 mL, 21% by weight in ethanol, 670 mmol) was added dropwise a solution of diethyl oxalate (45.2 mL, 332.5 mmol) and pinacolone (alternatively named 3,3-dimethyl-2-butanone) (41.7 mL) in ethanol (300 mL) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at room temperature overnight, concentrated to its half volume and poured into ice. Concentrated hydrochloric acid was added to lower the pH to approximately 4, and then the mixture was

extracted with ethyl acetate. The extracts were dried over magnesium sulfate and concentrated to give the title compound as an oil (60 g, yield 90%).

Step B: Preparation of ethyl 5-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylate

3

10

15

25

30

To a solution of ethyl 2-hydroxy-5,5-dimethyl-4-oxo-2-hexenoate (i.e. the product of Step A) (45.3 g, 226 mmol) in ethanol (200 mL) and acetic acid (2 mL) was added hydrazine monohydrate (12.1 mL, 249 mmol) dropwise under nitrogen atmosphere at room temperature. The reaction mixture was stirred at room temperature overnight and concentrated to give 40.8 g of the title compound.

¹H NMR (CDCl₃) 8 6.7 (s, 1H), 6.60 (br s, 1H), 4.40 (q, 2H), 1.40 (t, 3H), 1.32 (s, 9H).

Step C: Preparation of ethyl 3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxylate

To a solution of ethyl 5-(1,1-dimethylethyl)-1*H*-pyrazole-3-carboxylate (i.e. the product of Step B) (20.0 g, 102 mmol) in anhydrous *N*,*N*-dimethylformamide (DMF) (100 mL) was added sequentially potassium carbonate (28.2 g, 204 mmol) and iodoethane (11.4 mL, 143 mmol) at room temperature. After stirring at room temperature in an inert atmosphere for 6 h, the reaction mixture was diluted with ethyl acetate (400 mL) and washed with water (2x50 mL). The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the desired isomer (i.e. the title compound) as a white solid (13.8 g, 64% yield) and a minor isomer (2.1 g, 10% yield).

¹H NMR (CDCl₃) 8 6.7 (s, 1H), 4.55 (q, 2H), 4.32 (q, 2H), 1.40 (m, 6H), 1.32 (s, 9H).

20 ¹H NMR (CDCl₃) (minor isomer) ô 6.7 (s, 1H), 4.20 (q, 2H), 4.30 (q, 2H), 1.36 (m, 6H), 1.32 (s, 9H).

Step D: Preparation of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carboxylic acid

A solution of ethyl 3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxylate (i.e. the product of Step C) (6.9 g. 30.8 mmol) in ethanol (200 mL) was stirred with an aqueous solution of sodium hydroxide (10%, 19 mL) at room temperature for 6 h. The mixture was then concentrated and acidified with 1 N hydrochloric acid. The precipitated solids were filtered and dried to give 6 g of the title acid as a white solid.

¹H NMR (CDCl₃) & 10.00 (s, 1H), 6.80 (s, 1H), 4.60 (q, 2H), 1.40 (t, 3H), 1.32 (s, 9H).

Step B: Preparation of 3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carbonyl chloride

A solution of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carboxylic acid (i.e. the product of Step D) (1.2 g, 6.11 mmol) and oxalyl chloride (2 mL) in dichloromethane (30 mL) in the presence of anhydrous DMF (0.1 mL) was stirred under nitrogen atmosphere at room temperature for 4 h. The reaction mixture was then concentrated to yield the title acid chloride as a liquid.

15

20

25

30

35

PCT/US2003/032965

Step F: Preparation of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]-carbonyl]amino]benzoate

A solution of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carbonyl chloride (i.e. the product of Step E) (1.3 g) in dichloromethane (30 mL) was added to a solution of ethyl 3-aminobenzoate (1.21 g) in dichloromethane (10 mL) in the presence of triethylamine (2 mL) and 4-(dimethylamino)pyridine (DMAP) (0.1 g). After stirring at room temperature overnight the reaction mixture was diluted with dichloromethane (50 mL) and washed with 1 N hydrochloric acid. The organic phase was separated, dried (MgSO₄) and concentrated. The residue was purified by chromatography on silica gel to give the title compound (1.7 g, 81% yield), a compound of present invention, as a solid.

¹H NMR (CDCl₃) δ 8.01 (m, 2H), 7.80 (d, 1H), 7.42 (t, 1H), 6.53 (s, 1H), 4.57 (q, 2H), 4.38 (q, 2H), 1.38 (m, 6H), 1.34 (s, 9H).

EXAMPLE 2

Preparation of 2-fluoroethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]-carbonyl[amino]benzoate (Compound 82)

Step A: Preparation of 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]benzoic acid

A solution of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]benzoate (i.e. the product of Example 1, Step F) (4.8 g, 14 mmol) in methanol (30 mL) was stirred with an aqueous solution of sodium hydroxide (10%, 17 mL) at room temperature for δ h. The reaction mixture was then concentrated and acidified with 1 N hydrochloric acid. The precipitated solids were filtered and dried to give the title acid as a white solid (4.3 g).

¹H NMR (CDCl₃) 8 10.6 (s, 1H), 8.38 (s, 1H), 8.00 (d, 1H), 7.62 (d, 1H), 7.40 (t, 1H), 4.47 (q, 2H), 1.34 (t, 3H), 1.20 (s, 9H).

Step B: Preparation of 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]benzoyl chloride

A solution of the 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-benzoic acid (i.e. the product of Step A) (1.2 g, 3.80 mmol), oxalyl chloride (1.72 mL) and anbydrous DMF (0.1 mL) in dichloromethane (10 mL) was stirred under nitrogen atmosphere at room temperature for 4 h. The reaction mixture was then concentrated to yield the title acid chloride.

Step C: Preparation of 2-fluoroethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]benzoate

To a solution of the 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]benzoyl chloride (i.e. the product of Step B) (0.2 g) in dichloromethane (5 mL) was

30

35

added a solution of 2-fluoroethanol (0.1 mL), triethylamine (0.2 mL) and DMAP (20 mg) under nitrogen atmosphere at room temperature. After stirring at room temperature for 6 h, the reaction mixture was diluted with dichloromethane (15 mL) and washed with 1 N hydrochloric acid (5 mL). The organic phase was dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound (155 mg), a compound of present invention.

¹H NMR (CDCl₃) & 8.05 (m, 1H), 7.88 (d, 1H), 7.70 (br s, 1H, NH), 7.42 (t, 1H), 6.50 (s, 1H), 4.60 (m, 6H), 1.42 (t, 3H), 1.34 (s, 9H).

EXAMPLE 3

10 Preparation of 3-(1,1-dimethylethyl)-1-ethyl-N-[3-[[(2,2,2-trifluoroethyl)amino]carbonyl]phenyl]-1H-pyrazole-5-carboxamide (Compound 43)

To a solution of 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-benzoyl chloride (i.e. the product of Example 2, Step B) (0.2 g) in dichloromethane (5 mL) was added sequentially 2,2,2-trifluoroethylamine (0.1 mL), triethylamine (0.2 mL) and DMAP (20 mg) at room temperature. After stirring at room temperature for 6 h, the reaction mixture was diluted with dichloromethane (15 mL) and washed with hydrochloric acid (1 N, 5 mL). The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound (155 mg), a compound of present invention.

¹H NMR (CDCl₃) δ 7.44 (m, 3H), 7.12 (dd, 1H), 6.76 (s, 1H), 6.42 (s, 1H, NH), 4.60 (q, 2H), 4.12 (m, 2H), 1.42 (t, 3H), 1.38 (s, 9H).

EXAMPLE 4

Preparation of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino-4-fluorobenzoate (Compound 70)

25 Step A: Preparation of ethyl 4-fluoro-3-nitrobenzoate

A mixture of 4-fluoro-3-nitrobenzoic acid (10 g, 54 mmol), diethyl sulfate (8.5 mL) and potassium carbonate (10 g) in anhydrous acetone (120 mL) was heated to reflux for 6 h. The reaction mixture was then filtered, and the filtrate was concentrated. The residue was purified by chromatography on silica gel to give the title compound (11.2 g) as a yellow oil. ¹H NMR (CDCl₃) δ 8.64 (dd, 1H), 8.32 (m, 1H), 7.38 (t, 1H), 4.44 (q, 2H), 1.40 (t, 3H).

Step B: Preparation of ethyl 3-amino-4-fluorobenzoate

A solution of ethyl 4-fluoro-3-nitrobenzoate (the product of Step A) (5.7 g, 26.7 mmol) in acetic acid (50 mL) and ethyl acetate (60 mL) was added dropwise over 20 minutes to a suspension of iron powder (6.0 g) in acetic acid (5% wt, 30 mL) at 80 °C. After the addition, the reaction mixture was stirred at 80 °C for additional 20 minutes. The mixture was then cooled to room temperature. Solids were removed by filteration through

15

25

Celite® diatomaceous filter aid, and the filtrate was concentrated. The residue was diluted with ethyl acetate (100 mL) and washed sequentially with water (25 mL) and aqueous sodium bicarbonate solution (5%, 25 mL). The organic layer was dried and concentrated to give the title compound (4.5 g).

¹H NMR (CDCl₃) 8 7.60 (dd, 1H), 7.42 (m, 1H), 7.08 (t, 1H), 4.34 (q, 2H), 3.90 (br s, 2H), 1.34 (t, 3H).

Step C: Preparation of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]-carbonyl]amino-4-fluorobenzoate

A solution of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carbonyl chloride (i.e. the product of Example 1, Step E) (4.7 g) in dichloromethane (40 mL) was added to a solution of ethyl 3-amino-4-fluorobenzoate (i.e. the product of Step B) (4.46 g, 24.3 mmol) and *N*,*N*-diisopropylethylamine (8.5 mL) in dichloromethane (10 mL). After stirring at room temperature overnight, the reaction mixture was diluted with dichloromethane (100 mL) and washed with 1 N hydrochloric acid. The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound (6.6 g), a compound of the present invention.

¹H NMR (CDCl₃) § 8.14 (m, 1H), 8.00 (dd, 1H), 7.26 (s, 1H), 6.26 (s, 1H), 4.34 (m, 4H), 1.41 (m, 6H), 1.20 (s, 9H).

EXAMPLE 5

20 Preparation of 3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylamino)carbonyl]-2-fluorophenyl]
1H-pyrazole-5-carboxamide (Compound 2)

Step A: Preparation of 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]-4-fluorobenzoic acid

A solution of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino-4-fluorobenzoate (i.e. the product of Example 4, Step C) (6.6 g, 18.3 mmol) in methanol (40 mL) and aqueous sodium hydroxide (10%, 17 mL) was stirred at room temperature for 6 h. The reaction mixture was then concentrated and acidified with 1 N hydrochloric acid. The precipitated solids were filtered and dried to give 5.3 g of the title acid as a white solid.

30 ¹H NMR (DMSO-d₆) δ 10.54 (s, 1H), 8.22 (dd, 1H), 7.86 (m, 1H), 7.40 (t, 1H), 6.89 (s, 1H), 4.44 (q, 2H), 1.32 (t, 3H), 1.30 (s, 9H).

Step B: Preparation of 3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylamino)carbonyl]-2-fluorophenyl]-1H-pyrazole-5-carboxamide

To a solution of 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-35 4-fluorobenzoic acid (i.e. the product of Step A) (200 mg) in dichloromethane (5 mL) was added sequentially 1-propanephosphonic acid cyclic anhydride (50% in ethyl acetate, 4 mL). ethylamine (0.3 mL) and DMAP (0.2 g) at room temperature. After stirring at room temperature overnight, the reaction mixture was diluted with dichloromethane (10 mL) and washed with 1 N hydrochloric acid (5 mL). The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound, a compound of present invention, as white solid, m.p. 188.5 °C.

EXAMPLE 6

Alternate Preparation of 3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylamino)carbonyl]-2-fluorophenyl]-1H-pyrazole-5-carboxamide (Compound 2)

To a solution of 3-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-4-fluorobenzoic acid (i.e. the product of Example 5, Step A) (200 mg) in dichloromethane (5 mL) was added oxalyl chloride (0.5 mL) and anhydrous DMF (0.1 mL). After stirring at room temperature for 2 h, the reaction mixture was concentrated under reduced pressure. To a solution of the residue (200 mg) in dichloromethane (5 mL) at room temperature was added sequentially ethylamine (0.3 mL), triethylamine (0.5 ml) and DMAP (0.1 g). After stirring at room temperature for 6 h, the reaction mixture was diluted with dichloromethane (10 mL) and washed with hydrochloric acid (1 N, 5 mL). The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound, a compound of present invention, as white solid, m.p. 188.5 °C.

EXAMPLE 7

Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide (Compound 6)

Step A: Preparation of 4-fluoro-3-nitrobenzoyi chloride

10

15

20

25

30

35

A solution of 4-fluoro-3-nitrobenzoic acid (13 g, 70 mmol), oxalyl chloride (8.5 mL) and DMF (0.5 mL) in anhydrous dichloromethane (200 mL) was stirred at room temperature under nitrogen atmosphere for 2 h. The reaction mixture was then concentrated to remove the solvent, and the crude title compound was used for the next reaction without further purification (13 g).

Step B: Preparation of 4-fluoro-N,N-dimethyl-3-nitrobenzamide

To a solution of 4-fluoro-3-nitrobenzoyl chloride (i.e. the product of Step A) (4.1 g) in dichloromethane (50 mL) was added dimethylamine hydrochloride (2.13 g) and N,N-diisopropylethylamine (4 mL) at room temperature. After stirring at room temperature for 6 h, the reaction mixture was diluted with dichloromethane (100 mL) and washed with 1 N hydrochloric acid (15 mL). The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound (3.4 g) as white solid.

S

15

20

25

30

Step C: Preparation of 3-amino-4-fluoro-N,N-dimethylbenzamide

A solution of 4-fluoro-N,N-dimethyl-3-nitrobenzamide (i.e. the product of Step B) (1.8 g, 8.5 mmol) in acetic acid (9 mL) and ethyl acetate (10 mL) was added dropwise over 20 minutes to a suspension of iron powder (1.5 g) in acetic acid (5%, 5 mL) at 80 °C. After the addition, the reaction mixture was stirred at 80 °C for additional 20 minutes. The mixture was then cooled to room temperature. Solids were removed by filteration through Celite® diatomaceous filter aid, and the filtrate was concentrated. The residue was diluted with ethyl acetate (50 mL) and washed sequentially with water (10 mL) and aqueous sodium bicarbonate solution (5%, 15 mL). The organic layer was dried and concentrated to give the title compound (1.1 g).

Step D: Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide

A solution of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carbonyl chloride (i.e. the product of Example 1, Step E) (1.2 g) in dichloromethane (10 mL) was added to a solution of 3-amino-4-fluoro-*N*,*N*-dimethylbenzamide (i.e. the product of Step C) (1.1 g) and *N*,*N*-diisopropylethylamine (2.5 mL) in dichloromethane (5 mL). After stirring at room temperature for 6 h, the reaction mixture was diluted with dichloromethane (20 mL) and washed with 1 N hydrochloric acid. The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound (1.8 g), a compound of present invention.

¹H NMR (CDCl₃) δ 8.40 (dd, 1H), 8.02 (br s, 1H, NH), 7.22 (m, 2H), 6.54 (s, 1H), 4.58 (q, 2H), 3.10 (s, 3H), 3.03 (s, 3H), 1.44 (t, 3H), 1.34 (s, 9H).

EXAMPLE 8

Preparation of methyl 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]2-pyridinecarboxylate (Compound 143)

Step A: Preparation of N-(6-methyl-2-pyridinyl)acetamide

A solution of 2-amino-6-picoline (20 g, 185 mmol) and acetic anhydride (35 mL) in anhydrous tetrahydrofuran (THF) (150 mL) was heated at reflux for 10 h. The reaction mixture was then cooled to room temperature and concentrated to leave a thick oily residue. The residue was dissolved in dichloromethane (400 mL) and washed sequentially with hydrochloric acid (1 N, 50 mL) and water (50 mL). The organic phase was dried and concentrated to give the title compound as a white solid (27.6 g, 99% yield).

¹H NMR (CDCl₃) & 8.02 (d, 1H), 8.00 (br s, 1H, NH), 7.61 (t, 1H), 6.90 (d, 1H), 2.44 (s, 3H), 2.20 (s, 3H).

Step B: Preparation of 6-(acetylamino)-2-pyridinecarboxylic acid

To a suspension of N-(6-methyl-2-pyridinyl)acetamide (i.e. the product of Step A) (27 g, 184 mmol) in water (250 mL) at 90 °C was added potassium permanganate (29.1 g, 184 mmol) in small portions. After the addition, the mixture was heated to 90 °C for 6 h. The mixture was then cooled and filtered through a pad of Celite® diatomaceous filter aid. The filtrate was concentrated to half of its volume and acidified with concentrated hydrochloric acid. The precipitated solids were isolated by filtration and dried to give 20 g of the title compound.

Step C: Preparation of methyl 6-amino-2-pyridinecarboxylate

5

10

20

35

Hydrogen chloride gas was bubbled through a suspension of 6-(acetylamino)-2-pyridinecarboxylic acid (i.e. the product of Step B) (20 g) in methanol (100 mL) for 1 h. The reaction mixture was then heated to reflux overnight. Concentration followed by purification on silica gel column provided the title compound (12 g).

¹H NMR (CDCl₃) δ 7.52 (m, 2H), 6.69 (d, 1H), 4.80 (br s, 2H, NH2), 3.96 (s, 3H).

15 Step D: Preparation of methyl 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]-carbonyl]amino]-2-pyridinecarboxylate

To a solution of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carbonyl chloride (i.e. the product of Example 1, Step E) (1.2 g) in dichloromethane (10 mL) was added sequentially a solution of methyl 6-amino-2-pyridinecarboxylate (i.e. the product of Step C) (1.03 g) in dichloromethane (5 mL) followed by triethylamine (2 mL) and then DMAP (0.1 g). After stirring at room temperature for 6 h, the reaction mixture was diluted with dichloromethane (20 mL) and washed with 1 N hydrochloric acid. The organic phase was separated, dried and concentrated. The residue was purified by chromatography on silica gel to give the title compound (1.24 g), a compound of the present invention.

25 ¹H NMR (CDCl₃) δ 8.72 (s, 1H, NH), 8.42 (m, 1H), 7.82 (d, 2H), 6.64 (s, 1H), 4.48 (q, 2H), 4.01 (s, 3H), 1.45 (t, 3H), 1.31 (s, 9H).

EXAMPLE 9

Preparation of 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-2-pyridinecarboxamide (Compound 162)

30 Step A: Preparation of 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino-2-pyridinecarboxylic acid

A solution of methyl 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]-2-pyridinecarboxylate (i.e. the product of Example 8, Step D) (1.02 g, 3.09 mmol) in methanol (50 mL) was stirred at room temperature with an aqueous solution of sodium hydroxide (10 wt%, 2 mL) for 6 h. The reaction mixture was then concentrated and acidified

15

20

25

30

with I N hydrochloric acid. The precipitated solids were isolated by filtration and dried to give the title acid as a white solid (0.9 g).

¹H NMR (DMSO- d_6) δ 8.28 (d, 1H), 8.00 (t, 1H), 7.82 (d, 2H), 6.60 (s, 1H), 4.40 (q, 2H), 1.45 (t, 3H), 1.31 (s, 9H).

5 Step B: Preparation of 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]-2-pyridinecarboxamide

A procedure analogous to that of Example 6 was used to convert 6-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino-2-pyridine-

carboxylic acid (520 mg) (i.e. the product of Step A) and dimethylamine (0.5 mL, 2.0 M in THF) to the title compound, a compound of present invention.

¹H NMR (CDCl₃) δ 8.46 (s, 1H, NH), 8.38 (d, 1H), 7.80 (t, 1H), 7.32 (dd, 1H), 6.55 (s, 1H), 4.60 (q, 2H), 3.14 (s, 3H), 3.02 (s, 3H), 1.43 (t, 3H), 1.30 (s, 9H).

EXAMPLE 10

Preparation of methyl 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-4-pyridinecarboxylate (Compound 151)

Step A: Preparation of N-(4-methyl-2-pyridinyl)acetamide

A solution of 2-amino-4-picoline (25 g, 231 mmol) in acetic anhydride (150 mL) was heated to reflux for 10 h. The reaction mixture was then cooled to room temperature and concentrated to give a thick oily residue. The residue was dissolved in dichloromethane (400 mL) and washed sequentially with 1 N hydrochloric acid (50 mL) and water (50 mL). The organic phase was dried and concentrated to give the title compound as a white solid (30 g).

Step B: Preparation of 4-(acetylamino)-2-pyridinecarboxylic acid

A procedure analogous to that of Example 8, Step B was used to convert N-(4-methyl-2-pyridinyl)acetamide (10 g) (i.e. the product of Step A) to the title acid, which was obtained as a solid (3.4 g).

Step C: Preparation of methyl 4-amino-2-pyridinecarboxylate

A procedure analogous to that of Example 8, Step C was used to convert 4-(acetylamino)-2-pyridinecarboxylic acid (i.e. the product of Step B) (3.4 g) to the title compound (0.92 g).

¹H NMR (CDCl₃) δ 8.2 (d, 1H), 7.17 (d, 1H), 7.06 (s, 1H), 4.59 (br s, 2H, NH2), 3.92 (s, 3H).

15

25

30

35

Step D: Preparation of methyl 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]-carbonyl]amino]-4-pyridinecarboxylate

A procedure analogous to that of Example 5, Step B was used to convert 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carboxylic acid (i.e. the product of Example 1, Step D) (1.0 g) and methyl 4-amino-2-pyridinecarboxylate (i.e. the product of Step C) (0.78 g) to the title compound (0.85 g), a compound of present invention.

¹H NMR (CDCl₃) δ 8.60 (d, 1H), 7.92 (s, 1H, NH), 7.80 (d, 1H), 6.28 (s, 1H), 4.38 (q, 2H), 3.96 (s, 3H), 1.45 (t, 3H), 1.21 (s, 9H).

EXAMPLE 11

Preparation of 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]
N,N-dimethyl-4-pyridinecarboxamide (Compound 156)

Step A: Preparation of 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino-4-pyridinecarboxylic acid

A procedure analogous to that of Example 9, Step A was used to convert methyl 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-4-pyridinecarboxylate (i.e. the compound of Example 10, Step D) (1.02 g, 3.09 mmol) to the title acid as a white solid (0.9 g).

¹H NMR (DMSO-*d*₆) 8 10.84 (s, 1H) 8.64 (s, 1H), 8.52 (d, 1H), 7.60 (d, 1H), 7/18 (s, 1H), 4.40 (q, 2H), 1.32 (t, 3H), 1.23 (s, 9H).

20 Step B: Preparation of 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino]-*N*,*N*-dimethyl-4-pyridinecarboxamide

A procedure analogous to that of Example 5, Step B was used to convert 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino-4-pyridinecarboxylic acid (i.e. the compound of Step A) (200 mg) and dimethylamine to the title compound (110 mg), a compound of present invention.

¹H NMR (CDCl₃) & 8.68 (s, 1H, NH), 8.40 (d, 2H), 7.04 (d, 1H), 6.61 (s, 1H), 4.58 (q, 2H), 3.18 (s, 3H), 3.00 (s, 3H), 1.42 (t, 3H), 1.31 (s, 9H).

EXAMPLE 12

Preparation of N-[3-[(diethylamino)carbonyl]phenyl]-1-(1,1-dimethylethyl)-4-ethyl-1H-pyrazole-3-carboxamide (Compound 168)

Step A: Preparation of ethyl 1-(1,1-dimethylethyl)-3-ethyl-1*H*-pyrazole-4-carboxylate and ethyl 1-(1,1-dimethylethyl)-4-ethyl-1*H*-pyrazole-3-carboxylate

Ethyl 2-pentynoate (5.32 g, 42.2 mmol) was added to a solution of 3-(1,1-dimethylethyl)sydnone (6 g, 42.2 mmol) in xylenes (75 mL) under a nitrogen atmosphere. The reaction mixture was heated to reflux for three days and cooled to room temperature.

15

20

25

30

40

The resulting white solids were removed by filtration using xylenes for rinsing. The filtrate was concentrated to leave a liquid, which was applied to a silica gel flash column (eluted with hexanes followed by 5:95 ethyl acetate—hexanes) to give the two title isomeric products as oils. Ethyl 1-(1,1-dimethylethyl)-3-ethyl-1*H*-pyrazole-4-carboxylate (3.62 g) was the major isomer. Ethyl 1-(1,1-dimethylethyl)-4-ethyl-1*H*-pyrazole-3-carboxylate (0.78 g) was the minor isomer.

¹H NMR (CDCl₃) δ major isomer: 7.92 (s, 1H), 4.2 (q, 2H), 2.88 (q, 2H), 1.57 (s, 9H), 1.3 (t, 3H), 1.2 (t, 3H); minor isomer: 7.34 (s, 1H), 4.4 (q, 2H), 2.7 (q, 2H), 1.6 (s, 9H), 1.39 (t, 3H), 1.20 (t, 3H).

Step B: Preparation of 1-(1,1-dimethylethyl)-4-ethyl-1H-pyrazole-3-carboxylic acid

A solution of ethyl 1-(1,1-dimethylethyl)-4-ethyl-1*H*-pyrazole-3-carboxylate (i.e. minor isomer product of Step A) (0.75 g, 3.34 mmol) in ethanol (13 mL) was stirred at room temperature with aqueous sodium hydroxide (3 M, 6.7 mL, 20.0 mmol) for 2 days. The reaction mixture was then concentrated, and the pH of the resulting residue was adjusted to 2 with 1 N hydrochloric acid. The aqueous layer was extracted with diethyl ether (3x). The combined organic extracts were washed with brine solution, dried (Na₂SO₄) and concentrated to leave an oil (0.82 g). The oil solidified on standing, and the resulting solids were isolated using filtration and rinsed with hexanes to yield the title acid as a solid (0.53g). ¹H NMR (CDCl₃) δ 7.38 (s, 1H), 2.77 (q, 2H), 1.6 (s, 9H), 1.21 (t, 3H).

Step C: Preparation of N-[3-[(diethylamino)carbonyl]phenyl]-1-(1,1-dimethylethyl)-4-ethyl-1H-pyrazole-3-carboxamide

A solution of 1-(1,1-dimethylethyl)-4-ethyl-1*H*-pyrazole-3-carboxylic acid (i.e. product of Step B) (0.1 g, 0.51 mmol) in thionyl chloride (5 mL) was heated at reflux for about four hours. The reaction mixture was concentrated to yield the corresponding acid chloride as a liquid. The acid chloride was added to a solution of 3-amino-*N*,*N*-diethylbenzamide (0.117 g, 0.611 mmol) and triethylamine (107 μL, 0.764 mmol) in dichloromethane (2 mL). After stirring at room temperature overnight, the reaction mixture was concentrated and the resulting residue was partitioned between dichloromethane and 1 N hydrochloric acid. The dichloromethane layer was washed sequentially with 1 N hydrochloric acid and brine, dried and concentrated to give an oil. The oil was purified by column chromatography on silica gel to give the title compound (60 mg), a compound of present invention.

¹H NMR (CDCl₃) δ 8.86 (br s, 1H), 7.8 (d, 1H), 7.6 (s, 1H), 7.36 (t, 1H), 7.08 (d, 1H), 3.5 (m, 2H), 3.3 (m, 2H), 2.87 (q, 2H), 1.6 (s, 9H), 1.3 (m, 3H), 1.24 (t, 3H), 1.1 (m, 3H).

WO 2004/035545 PCT/US2003/032968

41

EXAMPLE 13

Preparation of N-[3-[(diethylamino)carbonyl]phenyl]-1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxamide (Compound 182)

Step A: Preparation of 1-(1,1-dimethylethyl)-3-ethyl-1*H*-pyrazole-4-carboxylic acid

A procedure analogous to that of Example 12, Step B was used to convert ethyl 1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxylate (i.e. the major isomer product of Example 12, Step A) (1.76 g, 7.76 mmol) to the title scid (1.08 g).

¹H NMR (CDCl₃) δ 8.0 (s, 1H), 2.9 (q, 2H), 1.58 (s, 9H), 1.26 (t, 3H).

5

10

20

25

35

Step B: Preparation of N-[3-[(diethylamino)carbonyl]phenyl]-1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxamide

A procedure analogous to that of Example 12, Step C was used to convert 1-(1,1-dimethylethyl)-3-ethyl-1*H*-pyrazole-4-carboxylic acid (i.e. the product of Step A) (100 mg) and 3-amino-*N*,*N*-diethylbenzamide (0.117g, 0.611 mmol) to the title compound (91 mg), a compound of present invention.

15 ¹H NMR (CDCl₃) δ 8.0 (s, 1H), 7.7 (br s, 1H), 7.6 (d, 1H), 7.5 (s, 1H), 7.3 (t, 1H), 7.0 (d, 1H), 3.5 (m, 2H), 3.3 (m, 2H), 2.9 (q, 2H), 1.6 (s, 9H), 1.32 (t, 3H), 1.3 (m, 3H), 1.1 (m, 3H).

EXAMPLE 14

Preparation of 4-bromo-1-(1,1-dimethylethyl)-N-[3-[(ethylamino)carbonyl]phenyl]-1H-pyrazole-3-carboxamide (Compound 221)

Step A: Preparation of ethyl 1-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylate

Ethyl propiolate (6.9 g, 70.3 mmol) was added to a solution of 3-(1,1-dimethylethyl)-sydnone (65 g, 35.2 mmol) in toluene (60 mL) under a nitrogen atmosphere. The reaction mixture was heated to reflux for two days and cooled to room temperature. The resulting white solid was removed by filtration using hexanes for rinsing. The filtrate was concentrated to leave a liquid, which was applied to a silica gel flash column (eluted with 100% hexanes followed by 10:90 ethyl acetate—hexanes) to give the title product (2.61 g) as a major isomer.

¹H NMR (CDCl₃) δ 7.5 (s, 1H), 6.7 (m, 1H), 4.4 (q, 2H), 1.63 (s, 9H), 1.39 (t, 3H).

30 Step B: Preparation of ethyl 4-bromo-1-(1,1-dimethylethyl)-1*H*-pyrazole-3-carboxylate

To a solution of ethyl 1-(1,1-dimethylethyl)-1*H*-pyrazole-3-carboxylate (i.e. the product of Step A) (0.1 g, 0.509 mmol) in DMF (3.0 mL) at room temperature was added *N*-bromosuccinimide (0.90 mg, 0.509 mmol). After heating to 60 °C for 4 h, the reaction mixture was cooled to room temperature and partitioned between water and diethyl ether

15

20

25

35

WO 2004/035545 PCT/US2003/032965

42

(3x50 mL). The organic extracts were washed with water (4x) and brine, dried (Na₂SO₄) and then concentrated to give the title product as an oil (0.126 mg).

¹H NMR (CDCl₃) δ 7.6 (s, 1H), 4.4 (q, 2H), 1.6 (s, 9H), 1.4 (t, 3H).

Step C: Preparation of ethyl 4-bromo-1-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylic acid

A procedure analogous to that of Example 12, Step B was used to hydrolyze ethyl 4-bromo-1-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylate (i.e. the product of Step B) (0.61 g, 2.18 mmol) to give the title acid (0.4 g) as a solid.

¹H NMR (CDCl₃) δ 7.6 (s, 1H), 1.6 (s, 9H).

10 Step D: Preparation of 4-bromo-1-(1,1-dimethylethyl)-N-[3-[(ethylamino)carbonyl]phenyl]-1H-pyrazole-3-carboxamide

A procedure analogous to that of Example 12, Step C was used to convert ethyl 4-bromo-1-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylic acid (i.e. product of Step C) (100 mg, 0.405 mmol) and 3-amino-N-ethylbenzamide (70 mg, 0.425 mmol) to the title compound (72 mg), a compound of present invention.

¹H NMR (CDCl₃) 8 8.82 (br s, 1H), 8.18 (s, 1H), 7.81 (d, 1H), 7.6 (s, 1H), 7.56 (d, 1H), 7.42 (t, 1H), 6.27 (br s, 1H), 3.5 (m, 2H), 1.6 (s, 9H), 1.27 (t, 3H).

EXAMPLE 15

Preparation of N-(2,3-dihydro-2-methyl-1-oxo-1H-isoindol-4-yl)-3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-S-carboxamide (Compound 55)

Preparation of 2,3-dihydro-2-methyl-4-nitro-1H-isoindol-1-one Step A:

To a solution of methyl 2-(bromomethyl))-3-nitrobenzoate (2.97 g, 10.8 mmol) prepared according to P. Japtap et al. (PCT Application Publication WO 01/77075 A2) in methanol (6 mL) was added a solution of methylamine in methanol (2.0 M, 20 mL). After stirring at room temperature for 3 h, the methanol was evaporated in vacuum and the residue was washed with ether and water to give the title compound as a white solid (0.98 g, 50% yield).

¹H NMR (CDCl₃): δ 8.39 (d, 1H), 8.18 (d, 1H), 7.70 (t, 1H), 7.27 (s, 1H), 4.87 (s, 2H), 3.27 (t, 3H).

30 Preparation of 4-amino-2,3-dihydro-2-methyl-1H-isoindol-1-one Step B:

A slurry of 2,3-dihydro-2-methyl-4-nitro-1H-isoindol-1-one (i.e. product of Step A) (0.97 g, 5.1 mmol) and 10% palladium on carbon (0.24 g) in ethyl acetate (35 mL) was hydrogenated at 45 psi (310 kPa) at room temperature for 5.5 h. The mixture was then filtered through a pad of Celite® diatomaccous filter aid, and the Celite® was extracted with ethyl acetate. The filtrate was concentrated under vacuum to give the title compound (0.81 g, 97% yield).

¹H NMR (CDCl₃): 8 7.29 (m, 2H), 6.80 (d, 1H), 4.21 (s, 2H), 3.20 (s, 3H).

Step C: Preparation of N-(2,3-dihydro-2-methyl-1-oxo-1H-isoindol-4-yl)-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide

4-Amino-2,3-dihydro-2-methyl-1*H*-isoindol-1-one (i.e. the product of Step B) (0.15 g. 0.9 mmol) and triethylamine (0.187 g) was dissolved in dichloromethane (4 mL). 3-(1,1-Dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carbonyl chloride (i.e. the product of Example 1, Step E) (0.318 g) was added to the reaction mixture, which was then stirred at room temperature for 2 days. Ethyl acetate (20 mL) and water (2 mL) were added, and the reaction mixture was passed through a Varian Chem Elut filter containing diatomaceous filter aid. The solvent was removed under vacuum, and the residue was triturated with 30% ethyl acetate in hexane to give the title compound, a compound of the invention, as a white solid (0.19 g, 55% yield).

¹H NMR (CDCl₃): § 7.74 (d, 1H), 7.72 (s, 1H), 7.58 (d, 1H), 7.55 (t, 1H), 6.52 (s, 1H), 4.57 (q, 2H), 4.43 (s, 2H), 3.20 (s, 3H), 1.45 (t, 3H), 1.34 (s, 9H).

15 EXAMPLE 16

5

10

20

25

30

35

Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxamide (Compound 222)

Step A: Preparation of 4-fluoro-N,N-dimethyl-3-nitrobenzamide

4-Fluoro-3-nitrobenzoic acid (5 g, 27.0 mmol) was heated at reflux in thionyl chloride (20 mL) for 4 h. The reaction mixture was concentrated, diluted with dichloromethane and then reconcentrated to provide the acid chloride as a liquid. The acid chloride was then diluted with dichloromethane (50 mL). Half of the acid chloride solution was placed in a round-bottom flask and further diluted with dichloromethane to give a total volume of 50 mL. The acid chloride solution was cooled to 0 °C. Triethylamine (3.0 g, 29.7 mmol) was added to the reaction mixture, and then a solution of 40% aqueous solution of dimethylamine (1.52 g, 13.5 mmol) in dichloromethane (20 mL) was added dropwise to the reaction mixture at such a rate that the temperature of the reaction mixture did not exceed 5 °C. The cooled reaction mixture was stirred for 15 minutes more, and then hydrochloric acid (1 N) was added. The layers were separated, and the organic layer was washed with water, saturated aqueous sodium bicarbonate solution and brine, and then dried over sodium sulfate and concentrated to give the title compound (1.87 g).

¹H NMR (CDCl₃): δ 8.1 (m, 1H), 7.7–7.8 (m, 1H), 7.3–7.4 (m, 1H,), 3.1(s, 3H), 3.0 (s, 3H). ¹⁹F NMR (CDCl₃): δ –115.5.

Step B: Preparation of 3-amino-4-fluoro-N,N-dimethylbenzamide

4-Fluoro-N,N-dimethyl-3-nitrobenzamide (i.e. the product of Step A) (1.76 g, 8.29 mmol) was dissolved in acetic acid (22 mL). The reaction mixture was heated to 85 °C,

15

25

44

and then iron powder (1.39 g) was added in portions. After the addition was complete, the reaction mixture was stirred at 85 °C for an additional 20 minutes. The mixture was then cooled to room temperature and concentrated. Solids were removed by filtration through Celite® diatomaceous filter aid, using ethyl acetate and water for rinsing. The layers in the filtrate were separated. The organic layer was washed sequentially with water, aqueous saturated sodium bicarbonate solution and brine, and then dried over sodium sulfate and concentrated to give the title compound (1.5 g).

¹H NMR (CDCl₃): δ 6.9–7.0 (m, 1H), 6.8 (m, 1H), 6.69–7.78 (m, 1H), 3.8 (br s, 2H, NH₂), 3.0 (s, 3H), 2.9 (s, 3H).

Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-10 Step C: 1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxamide

A procedure analogous to that of Example 12, Step C was used to convert 1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxylic acid (i.e. the product of Example 13, Step A) (100 mg) and 3-amino-4-fluoro-N,N-dimethylbenzamide (92 mg, 0.509 mmol) (i.e. the product of Step B of Example 16) to the title compound (117 mg), a compound of present invention.

¹H NMR (CDCl₃): δ 8.5 (m, 1H), 7.9 (s, 1H), 7.7 (br s, 1H, NH), 7.1–7.2 (m, 2H), 3.1(s, 3H), 3,0 (s, 3H), 2.9 (q, 2H), 1.6 (s, 9H), 1.3 (t, 3H).

¹⁹F NMR (CDCl₃): δ –130.2.

EXAMPLE 17 20

> Preparation of 1-(1,1-dimethylethyl)-3-ethyl-N-[3-[(ethylamino)carbonyl]-4-fluorophenyl]-1H-pyrazole-4-carboxamide (Compound 241)

Preparation of N-ethyl-2-fluoro-5-nitrobenzamide Step A:

A procedure analogous to that of Example 16, Step A was used to convert 2-fluoro-5-nitrobenzoic acid (5 g, 27.0 mmol) and ethylamine (2 M in THF, 10 mL, 19.8 mmol) to give the title compound (1.6 g).

1H NMR (CDCl₃): 8 8.9-9.0 (m, 1H), 8.3-8.4 (m, 1H), 7.2-7.3 (m, 1H), 6.6 (t, 1H), 3.5 (q, 2H), 1.2 (t, 3H).

¹⁹F NMR (CDCl₃): δ –105.2.

Preparation of 5-amino-N-ethyl-2-fluorobenzamide 30 Step B:

A procedure analogous to that of Example 16, Step B was used to convert N-ethyl-2-fluoro-5-nitrohenzamide (0.78 g, 3.68 mmol) and iron powder (0.62 g, 11.0 mmol) of acetic acid (10 mL) to give the title compound (0.62 g, oil).

1H NMR (CDCI₃): 87.3 (m, 1H), 6.8-6.9 (m, 1H), 6.6-6.7 (m, 2H), 3.5 (q, 2H), 1.2 (t, 3H).

Step C: Preparation of 1-(1,1-dimethylethyl)-3-ethyl-N-[3-[(ethylamino)carbonyl]-4-flucrophenyl]-1H-pyrazole-4-carboxamide

5

10

15

20

25

30

35

To a solution of 1-(1,1-dimethylethyl)-3-ethyl-1*H*-pyrazole-4-carboxylic acid (i.e. the product of Example 13, Step A) (150 mg, 0.76 mmol) in dichloromethane (4 mL) was added sequentially 1-propanephosphonic acid cyclic anhydride (50% in ethyl acetate, 365 mg, 1.14 mmol), 4-(dimethylamino)pyridine (140 mg, 1.14 mmol), 5-amino-*N*-ethyl-2-fluorobenzamide (i.e. the product of Step B) (146 mg, 0.80 mmol) at room temperature. After stirring at room temperature overnight, the reaction mixture was diluted with 1 N hydrochloric acid (3.5 mL) and then filtered thru an ExtubeTM (tube containing diatomaceous earth marketed by Varian, Inc., 24201 Frampton Avenue, Harbor City, CA 90710 USA), which was rinsed well with dichloromethane. The filtrate was concentrated to leave the crude product as an oil. The crude product was purified by chromatography on silica gel to give an oil. Trituration with diethyl ethyl and hexanes provided the title product, a compound of the present invention, as a white solid, m.p. 168–169 °C.

¹H NMR (CDCl₃): δ 8.2–8.3 (m, 1H), 7.9 (s, 1H), 7.8 (m, 1H), 7.7 (br s, 1H, NH), 7.1–7.2 (m, 1H), 6.7 (t, 1H), 3.5 (q, 2H), 2.9 (q, 2H), 1.59 (s, 9H), 1.3 (t, 3H), 1.2 (t, 3H).

¹⁹F NMR (CDCl₃): δ –120.2.

EXAMPLE 18

Preparation of N-[3-[(dimethylamino)carbonyl]-4-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide (Compound 236)

A procedure analogous to that of Example 17, Step C was used to convert 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carboxylic acid (i.e. the product of Example 1, Step D) (200 mg, 1.0 mmol), 1-propanephosphonic acid cyclic anhydride (50% in ethyl acetate, 490 mg 1.5 mmol), 4-(dimethylamino)pyridine (187 mg, 1.5 mmol) and 5-amino-*N*,*N*-dimethyl-2-fluorobenzamide (195 mg, 1.0 mmol) in dichloromethane (4 mL) to the title product, a compound of the present invention, m.p. 93-95 °C.

¹H NMR (CDCl₃): δ 8.7 (br s, 1H, NH), 7.7–7.8 (m, 1H), 7.4 (m, 1H), 6.9–7.0 (m, 1H), 6.6 (s, 1H), 4.5 (q, 2H), 3.1 (s, 3H), 2.9 (s, 3H), 1.42 (t, 3H), 1.4 (s, 9H).

¹⁹F NMR (CDCl₃): δ –121.0.

EXAMPLE 19

Preparation of ethyl 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino-3-pyridinecarboxylate (Compound 255)

Step A: Preparation of 5-bromo-3-pyridinecarboxylic acid

Thionyl chloride (96.74 g. 58.9 mL, 0.813 mol) was added to 3-pyridinecarboxylic acid (also named nicotinic acid) (20 g, 0.163 mol) and heated at reflux (~80 °C) for 3 h. The thionyl chloride was then distilled off under reduced pressure. The resulting acid chloride

10

15

20

30

35

was cooled to 0 to -5 °C, and bromine (13 mL, 0.163 mol) was added. The reaction mixture was heated at 155 °C for 8-10 h, then cooled to room temperature and quenched with ice-cold water (200 mL) added dropwise, causing a white solid to form. The solid was collected using filtration and dried to provide the title compound (31.5 g, 94% yield).

Step B: Preparation of 5-amino-3-pyridinecarboxylic acid

To a mixture of 5-bromo-3-pyridinecarboxylic acid (i.e. the product of Step A) (25 g, 0.124 mol) in aqueous ammonia (67.32 mL) was added copper sulphate pentahydrate (8.41 g), and the reaction mixture heated in an autoclave at 120 °C for 16 h. Progress of the reaction was monitored by thin layer chromatography, using ninhydrin to visualize the product. The reaction mixture was washed with saturated solution of sodium sulfide to remove copper ions and was then acidified to a pH of about 4–5 using concentrated hydrochloric acid, causing a solid to separate as the acidified mixture cooled. The solid was collected using filtration and dried to provide the title compound (12.9 g, 74% yield).

Step C: Preparation of methyl 5-amino-3-pyridinecarboxylate

Over 30 minutes hydrogen chloride gas was bubbled through dry methanol (60 mL) cooled to 0-5 °C. Then 5-amino-3-pyridinecarboxylic acid (i.e. the product of Step B) (6.0 g, 43 mmol) was added, and the reaction mixture was heated at 75 °C for 3 h. The reaction mixture was concentrated, the residue was poured into cold water (30 mL), and the pH of the resulting mixture was increased to 4-5 by adding sodium bicarbonate. The mixture was then extracted with ethyl acetate, and the ethyl acetate extract was washed with water and brine, and then dried (Na₂SO₄) and concentrated. The residue was triturated with ethyl acetate-petroleum ether to yield the title compound (4.2 g, 63% yield).

¹H NMR (CDCl₃): 8 8.63 (s, 1H, ArH), 8.25 (s, 1H, ArH), 7.57 (s, 1H, ArH), 3.93 (s, 3H, CH₃), 3.87 (br s, 2H, NH₂).

25 Step D: Preparation of ethyl 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino-3-pyridinecarboxylate

To a solution of 3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazole-5-carboxylic acid (i.e. the product of Example 1, Step D) (4.00 g, 2.84 mmol) in dry dichloromethane (35 mL) was added oxalyl chloride (3.88 g, 2.47 mL, 30.6 mmol) followed by a few drops of *N*,*N*-dimethylformamide. The resulting solution was stirred and heated to 45 °C for 2.5 h. The dichloromethane solvent and excess oxalyl chloride were removed by distillation under reduced pressure. The resulting residue was diluted with dichloromethane (20 mL) and added to a mixture of methyl 5-amino-3-pyridinecarboxylate (i.e. the product of Step C) (2.98 g, 24.4 mmol) and triethylamine (4.12 g, 5.67 mL, 42.8 mmol) in dichloromethane (20 mL) at 0 °C. The reaction mixture was gradually warmed to room temperature and then heated at 45 °C for 12 h. The dichloromethane solvent was removed by distillation under reduced pressure, and the residue was quenched with ice water and extracted with

dichloromethane (3 x 30 mL). The combined organic extracts were then washed with water and brine. The solution was dried over sodium sulfate and filtered, and the solvent was removed to give the crude product. The crude product was purified by column chromatography (60–120 mesh silica gel, 20% ethyl acetate-petroleum ether) to provide the title product (5.1g, 78% yield), a compound of the present invention.

¹H NMR (CDCl₃): δ 9.0 (m, 2H, ArH), 8.71 (s, 1H, ArH), 8.01 (s, 1H, ArH), 6.58 (s, 1H, ArH), 4.58 (q, J = 7.2 Hz, 2H, CH₂), 3.98 (s, 3H, CH₃), 1.46 (t, J = 7.2 Hz, 3H, CH₃), 1.34 (s, 9H, 3 CH₃).

EXAMPLE 20

10 Preparation of 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]
N,N-diethyl-3-pyridinecarboxamide (Compound 261)

Step A: Preparation of 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-3-pyridinecarboxylic acid

15

20

25

30

35

To a solution of ethyl 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]-amino-3-pyridinecarboxylate (i.e. the product of Example 19, Step D) (3.11 g, 9.77 mmol) in tetrahydrofuran (20 mL) was added a solution of lithium hydroxide (0.938 g, 39 mmol) in water (10 mL). The reaction mixture was stirred at room temperature for 24 h. The solvent was then evaporated under reduced pressure, and the residue was diluted with water, acidified with hydrochloric acid (1.5 N) to a pH of about 4-5 and extracted with ethyl acetate (2 x 15 mL). The combined organic extracts were washed with cold water and brine, and then dried (Na₂SO₄). The solvent was removed by evaporation to leave the title compound (2.4 g, 92% yield).

¹H NMR (DMSO- d_6): δ 13.50 (br s, 1H, OH), 10.49 (s, 1H, NH), 9.10 (s, 1H, ArH), 8.80 (s, 1H, ArH), 8.71 (s, 1H, ArH), 7.00 (s, 1H, ArH), 4.46 (q, J = 6.78 Hz, 2H, CH₂), 1.15–1.35 (m, 12H, 4 CH₃).

Step B: Preparation of 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*,*N*-diethyl-3-pyridinecarboxamide

To a solution of 5-[[[3-(1,1-dimethylethyl)-1-ethyl-1*H*-pyrazol-5-yl]carbonyl]amino]-3-pyridinecarboxylic acid (i.e. the product of Step A) (250 mg, 0.793 mmol) in dichloromethane (5 mL) at room temperature under nitrogen atmosphere was added sequentially 1-propanephosphonic acid cyclic anhydride (50% in ethyl acetate, 2 mL, 3.4 mmol), diethylamine (0.5 mL, 5 mmol) and 4-(dimethylamino)pyridine (0.1 g, 0.8 mmol). The reaction mixture was stirred at room temperature for 6 h and then diluted with additional dichloromethane (10 mL) and washed with hydrochloric acid (1 N, 5 mL). The organic phase was separated, dried and concentrated, and the residue was purified using flash

10

15

20

25

35

48

chromatography to provide the title product, a compound of the present invention, as a solid (256 mg, 84% yield).

¹H NMR (CDCl₃): 8 8.70 (s, 1H,), 8.42 (s, 1H), 8.18 (m, 1H,), 6.58 (s, 1H), 4.57 (q, 2H), 3.60 (m, 4H), 1.46 (t, 3H), 1.34 (s, 9H), 1.26 (m, 6H).

EXAMPLE 21

Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-4-fluoro-1H-pyrazole-5-carboxamide (Compound 276)

A solution of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide (i.e. the product of Example 7, Step D) (0.32 g, 0.88 mmol) and SELECTFLUOR™ fluorinating reagent (1-(chloromethyl-4-fluoro-1,4-diazonia-bicyclo[2.2.2]octane bis(tetrafluoroborate)) (0.72 g, 1.97 mmol) in acetonitrile (10 mL) was heated to reflux for 5 h. The mixture was cooled to room temperature and concentrated, and the residue was diluted with equal volumes of water and dichloromethane. The organic layer was separated and concentrated. The residue was purified by flash column chromatography on silica gel to provide the title product, a compound of the present invention, as a white solid (0.14 g, 42% yield).

³H NMR (CDCl₃): § 8.5 (d, 1H), 8.3 (d, 1H), 7.2 (br s, 1H), 7.17 (m, 1H), 4.55 (q, 2H), 3.1 (d, 6H), 1.43 (t, 3H), 1.37 (s, 9H).

EXAMPLE 22

Preparation of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1*H*-pyrazol-5-yl]carbonyl]amino]-4-fluorobenzoate (Compound 267)

Step A: Preparation of 3,3-dimethyl-1-(triphenylphosphoranylidene)-2-butanone

To a solution of triphenylphosphine (10.74 g, 40.9 mmol) in chloroform (25 mL) was added dropwise 1-bromo-3,3-dimethyl-2-butanone (7.33 g, 40.9 mmol). The cloudy solution was stirred at room temperature overnight. The solvent was removed in vacuo to give a white solid, which was then stirred overnight with saturated aqueous sodium bicarbonate (200 mL) at room temperature. The white solid was then collected by filtration and dried in a vacuum oven to a constant weight of the title compound (13.7 g).

¹H NMR (CDCl₃): δ 7.8–7.3 (m, 15H), 3.80 (d, 1H), 1.20 (s, 9H).

30 Step B: Preparation of butyl (2E)-5,5-dimethyl-4-oxo-2-hexenoate

A slurry of the 3,3-dimethyl-1-(triphenylphosphoranylidene)-2-butanone (i.e. the product of Step A) (12.5 g, 34.5 mmol) and butyl oxoacetate (4.5 g, 34.5 mmol) in toluene (200 mL) was stirred for 3 days at room temperature. The toluene solvent was removed in vacuo to leave an orange solid as crude product, which was then purified by column chromatography (10% ethyl acetate in hexane) to provide the title compound (5 g) as the trans isomer.

¹H NMR (CDCl₃): 8 7.51 (d, 1H), 6.77 (d, 1H), 4.21 (t, 2H), 1.68 (m, 2H), 1.41 (m, 2H), 1.20 (s, 9H), 0.95 (t, 3H).

Step C: Preparation of butyl 3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1*H*-pyrazole-5-carboxylate

5

10

15

20

25

30

35

A slurry of butyl (2*E*)-5,5-dimethyl-4-oxo-2-hexenoate (i.e. the product of Step B) (6.5 g, 30.9 mmol), ethylhydrazine ethanedioate (1:1) (5.6 g, 37.1 mmol), and *N*,*N*-diisopropylethylamine (5.2 g, 40.2 mmol) in methanol (65 mL) was stirred for 5 days at room temperature. The solvent was removed in vacuo, and the residue was purified by column chromatography (3–13% ethyl acetate in hexane) to give the title compound (4.8 g). ¹H NMR (CDCi₃): δ 4.18 (m, 2H), 3.62 (dd, 1H), 3.06 (m, 2H), 2.95 (m, 2H), 1.62 (m, 2H), 1.39 (m, 2H), 1.18 (t, 3H), 1.15 (s, 9H), 0.94 (t, 3H).

Step D: Preparation of 3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1*H*-pyrazole-5-carboxylic acid

Butyl 3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1*H*-pyrazole-5-carboxylate (i.e. the product of Step C) (1.8 g, 7.1 mmol) was dissolved in ethanol (20 mL), and aqueous sodium hydroxide (10%, 5.7 g) was added. The solution was stirred overnight at room temperature. Most of the ethanol solvent was removed in vacuo, and then the pH of the residual solution was adjusted to 2 using hydrochloric acid (1 N). The cloudy mixture was extracted with ethyl acetate (2x). The combined organic extracts were dried (MgSO₄), and the solvent was removed in vacuo to provide the title compound (0.64 g).

¹H NMR (CDCl₃): 8 3.75 (dd, 1H), 3.24 (m, 1H), 3.05 (m, 1H), 2.92 (dd, 1H), 1.18 (t, 3H), 1.16 (s, 9H).

Step E: Preparation of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1*H*-pyrazol-5-yl]carbonyl]amino]-4-fluorobenzoate

To a stirred solution of 3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1*H*-pyrazole-5-carboxylic acid (i.e. the product of Step D) (0.8 g, 4.1 mmol) in dichloromethane (5 mL) was added 1-propanephosphonic acid cyclic anhydride (50 wt % solution in ethyl acetate, 3.9 g, 6.14 mmol) followed by 4-(dimethylamino)pyridine (0.75 g, 6.14 mmol). After stirring for 1 h, ethyl 3-amino-4-fluorobenzoate (0.68 g, 3.7 mmol) was added, and the resulting solution was stirred at room temperature overnight. The solvent was removed in vacuo and partitioned between water (50 mL) and ethyl acetate (100 mL). The aqueous layer was extracted with ethyl acetate (30 mL). The organic layer was washed with aqueous saturated sodium bicarbonate (50 mL) and water (50 mL), and dried (MgSO₄). The solvent was removed in vacuo to provide the title product, a compound of the present invention, as an oil (1.36 g).

¹H NMR (CDCl₃): δ 9.3 (s, 1H), 8.95 (d, 1H), 7.80 (m, 1H), 7.16 (t, 1H), 3.70 (t, 1H), 3.33 (dd, 1H), 3.18 (dq, 1H), 2.95 (dq, 1H), 2.83 (dd, 1H), 1.39 (t, 3H), 1.21 (t, 3H), 1.17 (s, 9H).

EXAMPLE 23

5 Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)1-ethyl-4,5-dihydro-1H-pyrazole-5-carboxamide (Compound 268)

10

15

20

25

35

To a solution of ethyl 3-[[[3-(1,1-dimethylethyl)-1-ethyl-4,5-dihydro-1H-pyrazol-5-yl]carbonyl]amino]-4-fluorobenzoate (i.e. the product of Example 22) (1.0 g, 2.7 mmol) in ethanol (10 mL) was added aqueous sodium hydroxide (10%, 2.2 g). The solution was stirred overnight at room temperature and then concentrated in vacuo. The pH of the solution was adjusted to 2 using hydrochloric acid (1 N). Most of the water was removed in vacuo, and then the cloudy solution was extracted with ethyl acetate. The solvent was removed in vacuo from the organic extract to provide the acid in crude form (0.64 g), which was then dissolved in dichloromethane (20 mL), and oxalyl chloride (0.31 g) and N.N-dimethylformamide (one drop) were added. The resulting solution was stirred at room temperature overnight. The solvent was removed in vacuo, and more dichloromethane was added, and the solvent was again removed in vacuo. This process was repeated once more to provide the acid chloride in crude form (0.61 g). The acid chloride (0.3 g) was combined with a tetrahydrofuran solution of dimethylamine (2 M, 5 mL), and the reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo, and the residue was diluted with ethyl acetate and washed with water. The ethyl acetate solution was dried (MgSO₄) and evaporated to leave the title product, a compound of the present invention, as an oil (0.20 g).

¹H NMR (CDCl₃): δ 9.3 (s, 1H), 8.42 (d, 1H), 7.15 (m, 2H), 4.12 (m, 1H), 3.70 (t, 1H), 3.30 (dd, 1H), 3.15 (m, 1H), 3.02 (br d, 6H), 2.95 (m, 1H), 2.80 (dd, 1H), 1.34–1.20 (m, 3H), 1.17 (s, 9H).

EXAMPLE 24

Preparation of 1-(1,1-dimethylethyl)-3-ethyl-N-[5-[(ethylamino)carbonyl]-2-fluorophenyl]-4,5-dihydro-1*H*-pyrazole-4-carboxamide (Compound 336)

30 Step A: Preparation of 3-[(1,3-dioxopentyl)amino]-N-ethyl-4-fluorobenzamide

A solution of 3-amino-N-ethyl-4-fluorobenzamide (0.50 g, 1.8 mmol) and methyl 3-oxopentanoate (alternatively named methyl propionylacetate; 1.50 g, 11.5 mmol) was heated at 73–80 °C for 60 h. Upon cooling to room temperature, an off-white solid precipitated out; this was collected by filtration and washed successively with hexane and diethyl ether. The solid was dried under vacuum to give the title compound (0.42 g).

¹H NMR (CDCl₃): 8 9.65 (br s, 1H), 8.64 (dd, 1H), 7.63 (m, 1H), 7.17 (dd, 1H), 6.15 (br s, 1H), 3.61 (s, 2H), 3.48 (g, 2H), 2.62 (g, 2H), 1.24 (t, 3H), 1.14 (t, 3H).

Step B: Preparation of 1-(1,1-dimethylethyl)-3-ethyl-N-[5-[(ethylamino)carbonyl]-2-fluorophenyl]-4,5-dihydro-1*H*-pyrazole-4-carboxamide

S

10

15

25

35

A solution of 3-[(1,3-dioxopentyl)amino]-N-ethyl-4-fluorobenzamide (i.e. the product of Step A) (0.36 g, 1.3 mmol) in methanol (2 mL) was added dropwise to a slurry of sodium acetate (0.165 g) and aqueous formaldehyde (37%, 0.145 g) over 2 minutes. The resulting yellowish solution was stirred at room temperature for 3 h and then partitioned between ethyl acetate (40 mL) and water (10 mL). The organic layer was washed with water (10 mL) and dried (MgSO₄), and the solvent was removed in vacuo to leave a gummy solid. This was then stirred with a mixture of tert-butylhydrazine hydrochloride (0.177 g) and anhydrous sodium carbonate (0.148 g) in methanol (3 mL) at room temperature for 20 h. Then the solvent was removed using a rotary evaporator, and the residue was purified by column chromatography (ethyl acetate – hexane) to provide 0.17 g of the title compound, a compound of the present invention, as a solid (0.17 g).

¹H NMR (CDCl₃): δ 9.42 (br s, 1H), 8.63 (dd, 1H), 7.61 (m, 1H), 7.13 (dd, 1H), 6.25 (br s, 1H), 3.64 (dd, 1H), 3.54 (dd, 1H), 3.46 (m, 2H), 3.25 (t, 1H), 2.41 (m, 2H), 1.23 (s, 9H), 1.23 (t, 3H), 1.17 (t, 3H).

EXAMPLE 25

20 Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxamide (Compound 352)

Step A: Preparation of ethyl 2-hydroxy-3,3-dimethyl-α-oxo-1-cyclopentene-1-acetate

2,2-Dimethylcyclopentanone (9.6 g) was added to a mixture of diethyl oxalate (11.6 mL), 21% solution of sodium ethoxide in ethanol (11.6 mL) and ethanol (20 mL). The mixture was stirred at room temperature for 18 h. The mixture was then poured onto ice-cold water (200 mL) and acidified to pH 4-5 using acetic acid and extracted with diethyl ether (3 x 50 mL). The organic extracts were washed with water (3 x 50 mL) and dried (MgSO_d) and concentrated to provide the title compound as an oil (17.58 g).

¹H NMR (CDCl₃): 8 12.9 (br s, 1H), 4.36 (q, 2H), 2.9(t, 2H), 1.83 (t, 2H), 1.4 (t, 3H), 1.13 (s, 6H).

Step B: Preparation of tautomeric mixture of ethyl 2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopyrazolecarboxylate and ethyl 1,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate

Hydrazine hydrate (2.5 mL) was added dropwise to ethyl 2-hydroxy-3,3-dimethyl-α-oxo-1-cyclopentene-1-acetate (i.e. the product of Step A) (10 g) dissolved in acetic acid (25 mL) at room temperature, and the mixture was stirred for a further 2 h. The reaction

mixture was poured onto ice water (200 mL) and extracted with ethyl acetate (4 x 50 mL), dried (MgSO₄) and concentrated to provide a yellow solid residue. The residue was chromatographed on silica gel using 6:4 hexanes—ethyl acetate as cluant to provide the title tautomeric mixture as an orange solid (7.8 g)

5 ¹H NMR (CDCl₃): δ 4.36 (q, 2H), 2.8 (t, 2H), 2.29 (t, 2H), 1.4–1.2 (m, 9H).

Step C: Preparation of ethyl 2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl3-cyclopentapyrazolecarboxylate and ethyl 1-ethyl-1,4,5,6-tetrahydro-6,6dimethyl-3-cyclopentapyrazolecarboxylate

To a solution of a fautomeric mixture of ethyl 2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopyrazolecarboxylate and ethyl 1,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazole-10 carboxylate (i.e. the product of Step B) (7.69 g) in N.N-dimethylformanide (50 mL), potassium carbonate (7.71 g) and tetrabutylammonium bromide (100 mg) were added. Ethyl iodide (4.44 ml.) was added at once, and the mixture was stirred at room temperature for 18 h. The mixture was poured into water (200 mL) and extracted with diethyl ether (3 x 100 mL). The organic phase was washed with water (3 x 50 mL) and dried (MgSO₄) and 15 concentrated to provide residue containing mixture of ethyl 2-ethyl-2,4,5,6-tetrahydro-6,6-1-ethyl-1,4,5,6-tetrahydro-6,6dimethyl-3-cyclopentapyrazolecarboxylate and ethyl dimethyl-3-cyclopentapyrazolecarboxylate. The residue was chromatographed on silica gel using as cluant hexanes-ethyl acetate (9:1, 8:2, 7:3 and 1:1); the earlier fractions contained 2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate. 20 fractions were combined and concentrated to provide ethyl 2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate (3.7 g). The later fractions contained ethyl 1-ethyl-1.4.5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate. These fractions were combined and concentrated to provide 1-ethyl-1,4,5,6-tetrahydro-6,6-dimethyl-25 3-cyclopentapyrazolecarboxylate (3.5 g).

Ethyl 2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate:

¹H NMR (CDCl₃): 8 4.53 (q. 2H), 4.31 (q. 2H), 2.75 (t. 2H), 2.21 (t. 2H), 1.42–1.3 (m. 12H).

Ethyl 1-ethyl-1,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate:

30 ¹H NMR (CDCl₃): δ 4.37 (q, 2H), 4.13 (q, 2H), 2.73 (t, 2H), 2.36 (t, 2H), 1.49 (t, 3H), 1.39(m, 9H).

Step D: Preparation of 2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylic acid

To a solution of ethyl 2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylate (i.e. first eluted product of Step C) (3.63g) in tetrahydrofuran (25 mL), aqueous sodium hydroxide (1 N, 23.1 mL) was added, and the mixture was stirred at room temperature for 18 h. Then the mixture was acidified with hydrochloric acid (6 N) and

10

15

20

25

30

35

extracted with dichloromethane (3 x 25 mL), dried (MgSO₄) and concentrated to provide the title compound as a white solid (3.1 g).

¹H NMR (CDCl₃): δ 4.56 (q, 2H), 2.84 (m, 2H), 2.24 (m, 2H), 1.42 (t, 3H), 1.32 (s, 6H).

Step E: Preparation of N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-2-ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxamide

2-Ethyl-2,4,5,6-tetrahydro-6,6-dimethyl-3-cyclopentapyrazolecarboxylic acid (i.e. the product of Step D) (0.6 g) was dissolved in dichloromethane (2 mL), and one drop of N,N-dimethylformamide was added, followed by oxalyl chloride (0.25 mL), and the mixture was stirred at room temperature for 1 h and concentrated. The residue was dissolved in dichloromethane (2 mL) and then added to solution of 3-amino-4-fluoro-N,N-dimethylbenzamide (i.e. the product of Example 7, Step C) (0.6 g) and triethylamine (0.5 mL). The mixture was stirred at room temperature for 2 h and then chromatographed on a column containing silica gel (10 g), using dichloromethane as eluant to provide the title product, a compound of the present invention, as a white solid (0.5 g).

¹H NMR (CDCl₃): 8.6 (d, 1H), 7.8 (br s, 1H), 7.19 (d, 2H), 4.6 (q, 2H), 3.1 (d, 6H), 2.95 (t, 2H), 2.4 (t, 2H), 1.44 (t, 3H), 1.26 (s, 6H).

EXAMPLE 26

Preparation of ethyl 3-[[[5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazol-4-yl]carbonyl]amino]benzoate (Compound 367)

Step A: Preparation of ethyl 5-ethyl-1,2,3-triazole-4-carboxylate

Ethyl 2-pentynoate (16.6 g, 0.132 mol) and trimethylsilylazide (38.0 g, 0.333 mol) were stirred at 100-110 °C under nitrogen for 70 h. After cooling and dilution with methanol (60 mL) a white solid precipitated. After evaporation of the mixture under reduced pressure, the residue was crystallized from ethyl ether to afford the title product as a white solid (15.7 g, 0.093 mol, 70% yield).

¹H NMR (CDCl₃): 4,42 (q, 2H), 3,07 (q, 2H), 1,37 (t, 3H), 1,32 (t, 3H).

Step B: Preparation of ethyl 5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazole-4-carboxylate and ethyl 4-ethyl-1-(1-methylethyl)-1H-1,2,3-triazole-5-carboxylate

A mixture of ethyl 5-ethyl-1,2,3-triazole-4-carboxylate (i.e. the product of Step A) (3.84 g, 22.7 mmol), potassium carbonate (5.64 g, 40.9 mmol) and 2-iodopropane (6.95 g, 40.9 mmol) in acetonitrile (68 mL) was stirred at 50-60 °C under nitrogen for 2 h. After cooling to room temperature, the mixture was filtered through a short pad of silica gel and rinsed with ethyl acetate. The solution was concentrated and the residue was purified by column chromatography to provide ethyl 5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazole-4-carboxylate (2.87 g, 13.6 mmol, 60% yield), followed by its isomer ethyl 4-ethyl-

1Ü

15

20

25

30

35

1-(1-methylethyl)-1H-1,2,3-triazole-5-carboxylate (0.96 g, 4.54 mmol, 20% yield) as white solids.

Ethyl 5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazole-4-carboxylate:

¹H NMR (CDCl₃): 4.82 (m, 1H), 4.42 (q, 2H), 2.95 (q, 2H), 1.58 (d, 6H), 1.41 (t, 3H), 1.28 (t, 3H).

Ethyl 4-ethyl-1-(1-methylethyl)-1H-1,2,3-triazole-5-carboxylate:

1H NMR (CDCl₃): 5.42 (m, 1H), 4.42 (q, 2H), 2.94 (q, 2H), 1.58 (d, 6H), 1.39 (t, 3H), 1.28 (t, 3H).

Step C: Preparation of ethyl 3-[[[5-ethyl-2-(1-methylethyl)-2*H*-1,2,3-triazol-4-yl]carbonyl]amino]benzoate

a stirred solution of ethyl 5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazole-4-carboxylate (i.e. the first cluted product of Step B) (1.119 g. 5.64 mmol) in tetrahydrofuran (15 mL) was added a solution of lithium hydroxide (0.54 g, 22.56 mmol) in water (15 mL). The mixture was stirred at room temperature overnight, and then partitioned between ether and water. The aqueous layer was acidified with hydrochloric acid (6 N) to pH 1-2 and extracted with ethyl acetate, dried (Na2SO4) and concentrated to provide the carboxylic acid intermediate as a white solid (0.94 g, 5.08 minol, 90% yield). To a stirred solution of the carboxylic acid intermediate (0.78 g, 4.22 mmol) in dichloromethane (25 mL) was added oxalyl chloride (1.61 g, 12.7 mmol) dropwise at room temperature. After stirring the reaction mixture for 10 minutes, N,N-dimethylformamide (two drops) was added. The mixture was stirred for an additional 1.5 h and then concentrated to provide the acid chloride intermediate as a pale yellow oil. To a stirred solution of ethyl 3-aminobenzoate (0.70 g. 4.22 mmol), N.N-diisopropylethylamine (1.09 g, 8.44 mmol) in dichloromethane (15 mL) was added a solution of the acid chloride intermediate in dichloromethane (5 mL). The reaction mixture was stirred at room temperature for 2 h and then concentrated. The residue was chromatographed to afford the title product, a compound of the present invention, as a white solid (1.36 g, 4.10 mmol, 97% yield).

¹H NMR (CDCl₃): 8.62 (br s, 1H), 8.14 (d, 1H), 8.10 (s, 1H), 7.81 (d, 1H), 7.43 (t, 1H), 4.80 (m, 1H), 4.40 (q, 2H), 3.04 (q, 2H), 1.61 (d, 6H), 1.41 (t, 3H), 1.32 (t, 3H).

EXAMPLE 27

Preparation of N-[3-[(dimethylamino)carbonyl)phenyl]-5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazole-4-carboxamide (Compound 358)

To a stirred solution of ethyl 3-[[[5-ethyl-2-(1-methylethyl)-2H-1,2,3-triazol-4-yl]carbonyl]amino]benzoate (i.e. the product of Example 26, Step C) (1,34 g, 4.04 mmol) in tetrahydrofuran (15 mL) was added a solution of lithium hydroxide (0.48 g, 20.2 mmol) in water (15 mL). The mixture was stirred at room temperature overnight, then partitioned between ether and water. The aqueous layer was acidified with hydrochloric acid (6 N) to pH

15

20

25

30

35

1–2 and extracted with ethyl acetate, dried (Na₂SO₄) and concentrated to provide the carboxylic acid intermediate as a white solid (1.10 g, 3.62 mmol, 90% yield). A mixture of the carboxylic acid intermediate (130 mg, 0.43 mmol), 4-(dimethylamino)pyridine (78 mg, 0.64 mmol), 1-propanephosphonic acid cyclic anhydride (50 wt % in EtOAc, 423 mg, 0.66 mmol), and dimethylamine (2.0 M in THF, 0.66 mL, 1.32 mmol) in dichloromethane (3 mL) was stirred at room temperature overnight. The mixture was concentrated and the residue was purified by column chromatography to afford the title product, a compound of the present invention, as a white solid (130 mg, 0.40 mmol, 92% yield).

¹H NMR (CDCl₃): 8.62 (br s, 1H), 7.77 (s, 1H), 7.71 (d, 1H), 7.39 (t, 1H), 7.18 (d, 1H), 4.80 (m, 1H), 2.98–3.10 (m, 8H), 1.60 (d, 6H), 1.32 (t, 3H).

EXAMPLE 28

Preparation of ethyl 3-[[[2-(1,1-dimethylethyl)-5-ethyl-2*H*-1,2,3-triazol-4-yl]carbonyl]amino]benzoate (Compound 360)

Step A: Preparation of ethyl 2-(1,1-dimethylethyl)-5-ethyl-2*H*-1,2,3-triazole-4-carboxylate and ethyl 1-(1,1-dimethylethyl)-4-ethyl-1*H*-1,2,3-triazole-5-carboxylate

To a stirred solution of 5-ethyl-1,2,3-triazole-4-carboxylic acid ethyl ester (i.e. product of Step A of Example 26) (1.05 g, 6.25 mmol) and tert-butyl alcohol (0.93 g, 12.5 mmol) in trifluoroacetic acid (6 mL) was added concentrated sulfuric acid (0.61 g, 6.25 mmol). After stirring at room temperature for 14 h, the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water, saturated aqueous sodium carbonate and brine, and then dried (Na₂SO₄). After concentration, the residue was purified by column chromatography to afford ethyl 2-(1,1-dimethylethyl)-5-ethyl-2H-1,2,3-triazole-4-carboxylate (0.74 g, 3.76 mmol, 64% yield), followed by its isomer ethyl 1-(1,1-dimethylethyl)-4-ethyl-1H-1,2,3-triazole-5-carboxylate (0.24 g, 1.22 mmol, 21% yield) as colorless oils.

Ethyl 2-(1,1-dimethylethyl)-5-ethyl-2*H*-1,2,3-triazole-4-carboxylate: ¹H NMR (CDCl₃): 4.41 (q, 2H), 2.93 (q, 2H), 1.68 (d, 9H), 1.40 (t, 3H), 1.27 (t, 3H). Ethyl 1-(1,1-dimethylethyl)-4-ethyl-1*H*-1,2,3-triazole-5-carboxylate: ¹H NMR (CDCl₃): 4.40 (q, 2H), 2.87 (q, 2H), 1.77 (d, 6H), 1.42 (t, 3H), 1.29 (t, 3H).

Step B: Preparation of ethyl 3-[[[2-(1,1-dimethylethyl)-5-ethyl-2H-1,2,3-triazol-4-yl]carbonyl]amino]benzoate

The title product, a compound of the present invention, was prepared from ethyl 2-(1,1-dimethylethyl)-5-ethyl-2H-1,2,3-triazole-4-carboxylate (i.e. the first cluted product of Step A) following a procedure analogous to Step C of Example 26.

¹H NMR (CDCl₃): 8.62 (br s, 1H), 8.14 (d, 1H), 8.09 (s, 1H), 7.81 (d, 1H), 7.44 (t, 1H), 4.80 (m, 1H), 4.40 (q, 2H), 3.04 (q, 2H), 1.70 (s, 9H), 1.41 (t, 3H), 1.31 (t, 3H).

EXAMPLE 29

Preparation of 2-(1,1-dimethylethyl)-5-ethyl-N-[3-[(ethylamino)carbonyl]phenyl]-2H-1,2,3-triazole-4-carboxamide (Compound 365)

The title product, a compound of the present invention, was prepared from ethyl 3-[[[2-(1,1-dimethylethyl)-5-ethyl-2H-1,2,3-triazol-4-yl]carbonyl]amino]benzoate (i.e. the product of Step B of Example 28) following a procedure analogous to Example 27.

¹H NMR (CDCl₃): 8.72 (br s, 1H), 8.06 (s, 1H), 7.88 (d, 1H), 7.53 (d, 1H), 7.36 (t, 1H), 6.71 (br s, 1H), 3.47 (q, 2H), 3.02 (q, 2H), 1.68 (s, 9H), 1.31 (t, 3H), 1.23 (t, 3H).

By the procedures described herein together with methods known in the art, the following compounds of Tables I to 15 can be prepared. The following abbreviations are used in the Tables which follow: *t* means tertiary, *s* means secondary, *n* means normal, *i* means iso, *c* means cyclo, Me means methyl, Et means ethyl, Pr means propyl, *i*-Pr means isopropyl, Bu means butyl, Ph means phenyl, OMe means methoxy, OEt means ethoxy, SMe means methylthio, SEt means ethylthio, CN means cyano, NO₂ means nitro, TMS means trimethylsilyl, S(O)Me means methylsulfinyl, and S(O)₂Me means methylsulfonyl. Furthermore, 1-pytrolyl means -N(-(CH₂)₅-), 3-pytrolin-1-yl means -N(-CH₂CH=CHCH₂-), and 4-morpholinyl means -N(-(CH₂)₂O(CH₂)₂-).

TABLE 1

20

3

10

15

place Fr. 222 is some Rus Till V and Z are CH

\mathbb{R}^{10} is Et; \mathbb{R}^{20} is ten-	Bu; T, U, Y and Z are CH	o.	
R5	<u>R5</u>	<u>185</u>	R5
CO _Z Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEi2
CO ₂ CH ₃	C(NOH)CH2CH2Cl	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH ₃	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO2CH2CH2CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ Cl	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
CO ₂ CH ₂ C≡CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMcCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH2CH2F	C(O)NM#CH2CH2CI

R ⁵	R3	<u>R</u> 5	<u>R</u> 5
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
со ₂ сн ₂ осн ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O)2CH2CH2CI	C(O)NMcCH2C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(0)CH ₂ CH ₃	осн ₂ осн ₃	S(O) ₂ NMe ₂	C(O)NMcCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O)2NHEt	C(O)NMeEa
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(0)CH2Cl	S(O)CH ₃	S(O)2NH(CH2)2CH3	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHEt	C(O)-(1-pyrrolyl)
C(NOH)CH2Br	S(O)CF3	C(O)NH ₂	C(S)NHEt
C(O)CF2H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe ₂	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₂	OS(O)>CH>Cl	OP(O)Me(OMe)	OP(O)(OMe)2

R^{1a} is Et; R^{2a} is tert-Bu; T, U and Y are CH; Z is CF

<u>R</u> 5	<u>R5</u>	<u>R³</u>	<u>R</u> 5
CO ₂ Et	C(NOCH3)CH2CH3	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2C1	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ CI	OCH3	S(CH ₂) ₂ CH ₂ Cl	C(0)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
со ₂ сн ₂ сн ₂ сі	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH2CH2CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ CI
CO ₂ CH ₂ C≡CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMcOMc
CO2CH2OCH3	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMaCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O)2NHEt	C(O)NMeEi
C(NOH)CH2CH3	SCH ₃	S(O)2NEt2	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(0)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)

 $C(0)CF_2H$

C(O)CH₂CH₂CI

 $OS(O)_2CH_2CH_3$

 $S(O)_2CF_3$

 SCH_2CH_3

 $OS(O)_2CH_2CI$

		58	
R ^{la} is Et ; R ^{2a} is <i>tert</i> -	Bo; T, U and Y are CH; Z	is CF	
<u>R</u> 5	R5	<u>R</u> 5	<u>R5</u>
C(O)CH ₂ Br	S(O)2CH3	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHEt	C(O)-(1-pymolyl)
C(NOH)CH2Br	S(O)CF ₃	C(O)NH ₂	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(0)CH ₂ CH ₂ Cl	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ Cl	OP(O)Me(OMe)	OP(O)(OMe) ₂
\mathbb{R}^{1a} is Et; \mathbb{R}^{2a} is ten-	Bu; U is CF; T. Y and Z ar	e CH	w.
<u>R</u> 5	<u>R</u> 5	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt ₂
CO ₂ CH ₃	C(NOH)CH2CH2CI	8(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	СИ	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	ОСН3	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	осн ₂ сн ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Ci
со ₂ сн ₂ сн ₂ сі	O(CH ₂) ₃ CH ₃	\$(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂)3CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ Ci	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Ci
со₂сн₂с≈сн	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMsCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO ₂ -cyclopemyl	O(CH ₂) ₃ CH ₂ CI	\$(O)2CH2CH2F	C(O)NMcOMc
со ₂ сн ₂ осн ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH ₂ C≡CH
C(0)CH ₃	O-cyclopropyi	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CHZ
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O)2NHE	C(O)NMcEt
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEt ₂	C(O)-(3-pymolin-1-yl)
C(0)CH ₂ CI	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHEt	C(O)-(1-pymolyl)
C(NOH)CH ₂ Br	S(O)CF3	C(O)NH ₂	C(S)NHEt
1	*	N	1

C(O)NHMe

C(O)NMe2

OP(O)Me(OMe)

 $C(S)NMe_2$

 $OS(O)_2CH_3$

 $OP(O)(OMe)_2$

<u>RS</u>	<u>R</u> 5	R ³	<u>g5</u>
CO ₂ Bt	C(O)NHEi	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
со2сн3	C(O)NH2	C(0)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(0)NEt2	C(0)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMøCH2CH2Cl	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMcOMe	C(O)-(1-pyrrolyl)
R ^{1a} is Me ; R ^{2a} is ten	e-Bn ; U is CF ; T, Y and Z &	ire CH	
<u>R⁵</u>	<u>R</u> 5	<u>R5</u>	<u>R</u> 5
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NBt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CM	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH2)2CH3
CO2(CH2)2CH2F	OCH ₂ CH ₃	\$(0)CH ₂ CH ₃	C(O)NH(CH2)2CH2F
CO2CH2CH2F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂)3CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ CI
со₂сн₂с≡сн	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Ci	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2Cl	C(O)NHCH2C™CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)NMeCH2C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH2CH3	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NREt	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEt ₂	C(O)-(3-pymolin-1-yl)
C(O)CH ₂ Cl	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	5(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2Cl	SCF ₃	C(O)NHE	C(O)-(1-pyrrolyl)
C(NOH)CH2Bt	S(O)CF ₃	C(0)NH ₂	C(S)NHE
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O)2CH3
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ Cl	OP(O)Me(OMe)	OP(O)(OMe)2

<u>R5</u>	<u>R5</u>	R5	<u>R</u> 5
C(NOH)CH ₃	C(NOCH3)CH2CH3	S(O) ₂ NHMe	S(O)2NEi2
C(NOH)CH2CH3	C(NOH)CH2CH2CI	S(O) ₂ NMe ₂	S(O)2NH(CH2)2CH3
C(NOH)CH2CI	CN	S(O)2NHEt	S(O) ₂ NH(CH ₂) ₃ CH ₃
C(NOH)CH2Bi	C(O)-(3-pyrrolin-1-yl)	C(O)-(1-pyrrolyl)	
\mathbb{R}^{1a} is Et ; \mathbb{R}^{2a} is isop	ropyl; T, U, Y and Z are CE		8°
R ^S	RS	<u>R</u> 5	<u>R</u> 5
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	осн ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	\$(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
со₂сн₂с≋сн	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMcCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ C1	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
СО2СН2ОСН3	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NM±CH2C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH2CH3	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEt
C(NOH)CH ₂ CH ₃	SCH3	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholimyl)
C(O)CH ₂ Bt	S(O) ₂ CH ₃	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH ₂ Cl	SCF ₃	C(O)NHE	C(O)-(1-pymolyl)
C(NOH)CH ₂ Br	S(O)CF ₃	C(O)NH ₂	C(5)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH ₂ CH ₂ Cl	SCH ₂ CH ₃	C(O)NMe ₂	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ Cl	OP(O)Mc(OMe)	OP(O)(OMe)2
$\mathbb{R}^{1_{\mathbf{a}}}$ is Et ; $\mathbb{R}^{2_{\mathbf{a}}}$ is isop	ropyl; U is CF; T, Y and Z	ne CH	
<u>R5</u>	<u>R5</u>	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NE ₁₂

<u>k5</u>	<u>R5</u>	<u>R</u> 5	<u>R5</u>
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	осн ₃	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH2F
CO ₂ CH ₂ CH=CH ₂	OCH2CH2CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
CO ₂ CH ₂ C≅CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ CH ₂ F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2Cl
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ CI	C(O)NHCH ₂ C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)NMcCH2C≡CH
C(0)CH ₃	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	осн ₂ осн ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHE)	C(O)NMeEi
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEi ₂	C(O)-(3-pymolin-1-yl)
C(0)CH ₂ Cl	S(O)CH3	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2Cl	SCF ₃	C(O)NHEt	C(O)-(1-pyrrolyl)
C(NOH)CH2Br	S(O)CF3	C(0)NH ₂	C(S)NHEt
C(0)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH ₂ CH ₂ Cl	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2Cl	OP(O)Me(OMe)	OP(O)(OMe)2

 \mathbb{R}^{1a} is Et ; \mathbb{R}^{2a} is cyclopropyl ; T, U, Y and Z are CH

The state of the state of the state of the state of	a ferrantistical and a second and an arrangement	71.77	W
<u>k</u> 5	<u>R5</u>	<u>g5</u>	<u>R</u> 5
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt ₂
со2СН3	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Ci	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(0)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ Cl	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(0)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH2F
CO2CH2CH=CH2	OCH ₂ CH ₂ Cl	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ CI

 R^{1a} is Et ; R^{2a} is cyclopropyl ; T, U, Y and Z are CH $_{i}$

<u>R</u> 5	<u>R2</u>	<u>R</u> 5	<u> R</u> 5
CO ₂ CH ₂ C≡CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH2CH2F	C(O)NMeCH2CH2Cl
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMc
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO2CH2SCH3	O-cyclopentyl	\$(0) ₂ CH ₂ CH ₂ CI	C(O)NMcCH2C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH2OCH3	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O)2NHEt	C(O)NMeE:
C(NOH)CH2CH3	SCH3	S(O) ₂ NEi ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(O)CH3	S(O)2NH(CH2)2CH3	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHE	C(O)-(1-pymolyl)
C(NOH)CH2B1	S(O)CF3	C(O)NH2	C(S)NHEt
C(0)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(0)CH ₂ CH ₂ Cl	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
OS(O)2CH2CH3	OS(O) ₂ CH ₂ Cl	OP(O)Mc(OMe)	OP(O)(OMe)2

\mathbb{R}^{1n} is $\mathrm{CH_2CH_2F}$; \mathbb{R}^{2n} is ten-Bu ; T, U, Y and Z are CH

<u>R</u> 5	<u>R5</u>	<u>R</u> 5	<u>R5</u>
CO ₂ Ei	C(O)NHEt	C(0)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH2	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C=CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH2)3CH3	C(O)NHCH2CH=CH2
CO2CH2CH=CH2	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO2CH2C≡CH	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)

R^{1a} is $\text{CH}_2\text{CH}_2\text{F}$; R^{2a} is tert-Bu ; U is CF ; T , Y and Z are CH

<u>R</u> 5	<u>R</u> 5	R5	<u>R5</u>
CO ₂ Et	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
со2СН3	C(0)NH2	C(O)NH(CH ₂) ₂ CH ₂ CI	C(O)NMeCH2C=CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NE ₁₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMcEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(0)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pymolyl)

<u>R5</u>	<u>R</u> 5	<u>R</u> 5	<u>R</u> 5
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
СО2СН3	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH2F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH2)3CH2CI
со₂сн₂с≡сн	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMcOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH2C≡CH
C(0)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(0)CH2CH3	осн ₂ осн ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O)2NHE	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O)2NEt2	C(O)-(3-pymolin-1-yl)
C(O)CH ₂ Cl	S(O)CH3	S(O)2NH(CH2)2CH3	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	\$(O)2CH3	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH2)2CH3
C(NOH)CH2CI	SCF ₃	C(O)NHEi	C(O)-(1-pymolyl)
C(NOH)CH ₂ Bt	S(O)CF3	C(O)NH2	C(S)NHE:
C(O)CF ₂ H	s(0)2CF3	C(O)NHMa	C(S)NMe ₂
C(0)CH2CH2Cl	SCH ₂ CH ₃	C(O)NMe ₂	OS(O) ₂ CH ₃
OS(O)2CH2CH3	OS(O)2CH2CI	OP(O)Me(OMe)	OP(O)(OMe)2

\mathbb{R}^{1a} is $\mathrm{CH}_2\mathrm{CF}_3$:	R ^{aa} is <i>tert</i> -Bu ;	${ m T.U.Y}$ and ${ m Z}$	are CH
ນວິ	_R 5		p.5

<u>R</u> 5	R5	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	sch ₂ ch ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
$CO_2(CH_2)_2CH_3$	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH3	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	осн ₂ сн ₃	S(O)CH2CH3	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃

R^{1a} is CH₂CF₃; R^{2a} is tert-Bu; T, U, Y and Z are CH

<u>R⁵</u>	<u>R5</u>	<u>R5</u>	RŠ
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH2CH2CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
СО2СН2С≡СН	O(CH ₂) ₂ CH ₂ F	\$(0) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMcCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH ₂ C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	оси ₂ оси ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NHE	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NE ₁₂	C(O)-(3-pytrolin-1-yl)
C(O)CH ₂ CI	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHE	C(O)-(1-pymolyl)
C(NOH)CH2Bt	S(O)CF3	C(O)NH ₂	C(S)NHE1
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH ₂ CH ₂ Cl	SCH ₂ CH ₃	C(O)NMe ₂	OS(O) ₂ CH ₃
OS(O)2CH2CH3	OS(O)2CH2Cl	OP(O)Me(OMe)	OP(O)(OMe)7

 R^{1a} is Me ; R^{2a} is $\mathit{tert}\text{-}Bu$; U is N ; T, Y and Z are CH

<u>R</u> 5	<u>R</u> 5	<u>R</u> 5	<u>R</u> 5
CO ₂ Ei	C(NOCH ₃)CH ₂ CH ₃	SCH2CH2F	C(O)NEi2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ CI	осн ₃	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO2CH2CH2CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH3
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH2F
СО2СН2СН=СН2	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
CO ₂ CH ₂ C≅CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO2-cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O)2CH2CH2F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NM¢CH2C≡CH
C(O)CH ₃	O-cycloprepyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2

\mathbb{R}^{1a} is Me; \mathbb{R}^{2a} is ter	auBu; U is N ; T , Y and Z	are CH	
<u>R</u> 5	<u>R</u> 5	<u>R5</u>	<u>R</u> 5
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O)2NHEt	C(O)NMeEt
C(NOH)CH2CH3	SCH3	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ CI	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	\$(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHEt	C(O)-(1-pyrrolyl)
C(NOH)CH ₂ Br	S(O)CF3	C(O)NH ₂	C(S)NHEt
C(O)CF2H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMs2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2CI	OP(O)Ms(OMe)	OP(O)(OMe)2

 R^{1a} is Et; R^{2a} is terr-Bu; U is N; T, Y and Z are CH

<u>85</u>	<u>25</u>	<u>R</u> 5	<u>n5</u>
CO ₂ Ei	C(NOCH3)CH2CH3	SCH ₂ CH ₂ F	C(O)NEt2
со2сн3	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2Cl
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH3	S(CH ₂) ₂ CH ₂ CI	C(0)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO2CH2CH2Cl	O(CH ₂) ₃ CH ₃	\$(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO2CH2CH=CH2	OCH ₂ CH ₂ CI	S(0)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ Cl
CO ₂ CH ₂ C≡3H	O(СИ ₂) ₂ СН ₂ F	$S(O)_2(CH_2)_2CH_2CI$	C(O)NMsCH2CH2F
CO2-cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH ₂ CH ₂ F	C(O)NMeCH ₂ CH ₂ CI
CO2-cyclopentyi	O(CH ₂) ₃ CH ₂ CI	\$(0) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
СО2СИ2ОСИ3	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ CI	C(O)NHCH2C≡CH
CO2CH2SCH3	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH2C≡CH
C(O)CH3	Q-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	оси ₂ оси ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEi	C(O)NMeEt
C(NOH)CH2CH3	SCH3	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH2CI	S(O)CH ₃	\$(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ B ₁	S(O) ₂ CH ₃	$S(O)_2NH(CH_2)_3CH_3$	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF3	C(O)NHEt	C(O)-(1-pymolyl)
C(NOH)CH ₂ Bt	S(O)CF3	C(O)NH ₂	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂

R^{1a} is Et; R^{2a} is tent-Bo	a; U is N; T, Y and Z are C	II	3
<u>R5</u>	R ⁵	R5	<u>R</u> Š
C(0)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O)2CH3
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2C1	OP(O)Me(OMe)	OP(O)(OMe)2
\mathbb{R}^{1a} is Et ; \mathbb{R}^{2a} is tert-B	r; T is N; U, Y and Z are C	H	· 우 .
<u>R</u> 3	<u>R</u> 5	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
СО2СН3	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO2CH2CH2F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH2CH2CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ Cl
CO ₂ CH ₂ C≡CH	O(CH ₂) ₂ CH ₂ F	\$(0) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2Ci
CO2-cyclopentyl	O(СН ₂)3СН ₂ С1	S(O)2CH2CH2F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	\$(O)CH ₂ CH ₂ Cl	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	s(O) ₂ CH ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
C(0)CH ₃	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH2OCH3	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NHEI	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O)2NEt2	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(O)CH ₃	\$(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholiny()
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF3	C(O)NHEt	C(O)-(1-pyrrolyl)
C(NOH)CH2Bt	S(O)CF ₃	C(O)NH2	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe ₂	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ Cl	OP(O)Me(OMe)	OP(O)(OMe)2
\mathbb{R}^{1a} is Et ; \mathbb{R}^{2a} is tert-B	u; T is N; U, Y and Z are C	н	¥
<u>R</u> 5	<u>R5</u>	<u>R</u> 5	<u>R</u> 5
CO ₂ Et	C(NOCH3)CH2CH3	SCH ₂ CH ₂ F	C(O)NEt2
со2сн3	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI

<u>R5</u>	<u>R</u> 5	<u>R</u> 5	<u>R</u> 5
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	осн ₂ сн ₃	S(O)CH ₂ CH ₃	C(0)NH(CH ₂) ₂ CH ₂ F
СО₂СН₂СН₂ <mark>Г</mark>	O(CH ₂) ₂ CH ₃	S(O)2CH2CH3	C(O)NH(CH2)2CH2CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(0)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ CI
СО2СН2С≒СН	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2Cl
CO ₂ -cyclopeniyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
СО2СН2ОСН3	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ Cl	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O)2CH2CH2CI	C(O)NMeCH2C=CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEi
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEi ₂	C(O)-(3-pyrrolin-1-yl)
C(0)CH2CI	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	\$(O) ₂ CH ₃	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF3	C(O)NHE	C(O)-(1-pyrrolyl)
C(NOH)CH2B1	S(0)CF3	C(O)NH ₂	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH2CH2CI	SCH2CH3	C(O)NMe2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ CI	OP(O)Me(OMe)	OP(O)(OMe)2
R ^{1a} is Et : R ^{2a} is tert-	Bo;T,U and Y are CH;Z	is N	
<u>8</u> 5	RŽ	<u>R</u> 5	\ k 5
	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C=CH
	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₃ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(0)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMsCH2CH=CH3
со₂сн₂с≡сн	C(O)NE ₁₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
⊃(NOH)CH3	C(O)NHCH ₂ CH ₂ CI	C(O)NMeCH2CH2Cl	C(O)-(3-pymolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)
pla _{io} ru _m rum p2a	is Si(CH ₃) ₃ ; T, U, Y and Z	Cone STAT	
	R5	<u>R3</u>	R5
<u>K</u> 2	1 13 - 2	1 37-3	1 10 1

and the second	and a second of		TRACE AND THE TRACE	1. 1. 1. 1. 1.	and the second second
	mark mark	AN ACT A	The state of the state of the state of	. AND THE WAY IN CO.	the street of the street of
Sec 4 14 12 12	Line idea	10 - 12 E	The second second second	1 11 3 30	54 1 6000 6 63
7.5	CITICIA.		A COLUMN TO A COLU		d Z are CH

R ⁵	RŽ	R5	<u>R</u> 5
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NEt2	C(O)NH(CH2)3CH2CI	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2Ci	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH2)2CH3	C(O)NMeOMe	C(O)-(1-pymolyl)

TABLE 2

R^3	<u>R</u> ⁴	W	R ⁵	T	<u>u</u>	Y	Z	
. \$2°	H	O	$C(O)NMe_2$	CH	CH	CH	CH	
Me	H	O	C(O)NHE:	CH	CF	СН	CH	
Et	H	0	$C(O)NMe_2$	CH	N	CH	CH	
H	Me	O	$C(O)NMe_2$	CH	CH	СН	CH	
H	Et	O	C(O)NHEt	CH	CF	CH	CH	
Ħ	C(O)Et	0	$C(O)NMe_2$	CH	CH	CH	CH	
H	C(O)O- n -Pr	O	C(O)NHE	CH	N	СН	CH	
H	CH ₂ OMe	0	C(O)NMe2	CH	CH	СН	CH	
Н	CH ₂ S-n-Bu	0	C(O)NHEt	CH	CF	CH	CH	
H	H	S	C(O)NMe2	CH	CH	CH	CH	
H	H	\$	C(O)NHEt	CH	CF	СН	CH	
H	$\mathbf{H}_{\mathbf{u}}$	O	C(O)NMe2	N	N	CH	CH	
H	H	0	C(O)NHEt	CH	N	CH	N	
H	B	0	$C(O)NMe_2$	СН	N	N	CH	
Н	H	O	C(O)NHE	N	N	CH	N	
H	H	0	C(O)NMe2	CH	CCF ₃	СН	CH	
Ħ	H	O	C(O)NHEt	СН	COEi	CH	CH	
H	11	O	C(O)NMe2	СН	COCF ₂ H	CH	CH	
H	H	O	C(O)NHE	CH	CMe	CH	CH	
H	11	O	C(O)NMe2	CH	CEt	CH	CH	
Н	н	O	C(O)NHE	CH	CSMe	CH	CH	
H	11	O	C(O)NMe2	CH	CSEt	CH	CH	

-X	A			order	á s		
<u>R3</u>	84	W	<u>R</u> 5	I	<u>u</u>	X	2
H	H	O	C(O)NHE	CH	COMe	CH	CH
H	H	0	C(O)NMe2	CH	CH	CF	CH
H	11	О	C(O)NHEt	CH	СН	CCH3	CH
H	н	o	C(O)OEt	CCF3	CH	CH	CH
H	Ħ	0	C(O)OMe	CSMe	CH	CH	CH
H	H	O	C(O)OEt	COCF ₂ H	CH	CH	CH
H	H	0	C(O)OMe	CMc	CH	CH	СН
H	H	0	C(O)OEt	COMe	СН	CH	CH
H	Ħ	Ŏ	C(O)OMe	CH	CH	CH	COMe
H	H	O	C(O)OEt	CH	CH	CH	COCF ₂ H
H	H	0	C(O)OMe	CH	CH	CH	СМе
H	H	O	C(0)0Ei	CH	CH	СН	CCF3
H	H	0	C(O)OMe	CH	CH	СН	CSMe
\mathbf{H}	H	O	-C(O)N	HCH ₂ -	CH	CH	CH
111	H	O.	-C(O)N	MeCH ₂ -	CH	CH	CH
H	H	0	-C(O)N	EtCH ₂ -	CH	CH	CH
\mathbf{H}	Ħ	0	-C(O)N(cyc	do-Pr)CH ₂ -	CH	CH	CH
H	Н	O	-C(O)N(i	-Pr)CH ₂ -	CH	CH	CH
\mathbf{H}	В	O	-C(0)NI	McCH ₂ -	N	CH	CH
H	Ħ	O	-C(O)N	EiCH2-	CF	CH	CH
H	H	O	-C(O)NMc	CH ₂ CH ₂ -	CH	CH	CH

TABLE 3

<u>R²⁶</u>	<u>R27</u>	χ^2	ñ	R^{10}	<u> 811</u>	<u>R²⁶</u>	<u>R27</u>	χ^2	Ų	<u>R10</u>	811
Me	Me	СН2	CH	Me	Me	Me	H	CH_2	CF	H	Εt
Me	Me	0	CF	H	Et	Et	H	CH_2	N	Me	Me
Me	Me	S	N	Me	Me	Et	Me	CH_2	CH	H	Ei
Me	Me	NH	CH	H	Et	Et	Et	CH_2	CF	Me	Me
Me	Me	NCH ₃	CF	Me	Me	Me	Me	СН	CH	H	Et

\$

TABLE 4

$$\begin{array}{c} R^{27} \\ R^{26} \\ \\ \\ CH_2CH_3 \\ \end{array}$$

<u>R²⁶</u>	$R^{2\gamma}$	$\underline{\mathbf{x}}_{1}$	<u>u</u>	<u>R10</u>	<u>R11</u>	<u>R</u> 26	<u>R²⁷</u>	$\mathbf{x_i}$	<u>U</u>	<u>R10</u>	R_{11}
Me	Me	CH ₂	CH	Me	Me	Me	Ħ	CH_2	CF	H	Et
Me	Me	0	CF	H	Et	Eι	H	CH ₂	N	Me	Me
Me	Me	S	N	Me	Me	13	Me	CH_2	CH	Н	Et
Me	Me	NH	CH	H	Et	Et	Et	CH_2	CF	Me	Me
Me	Me	NCH ₃	CF	Me	Me	Me	Me	СН	CH	H	Ei

TABLE 5

<u>R26</u>	\mathbb{R}^{27}	U	R^{10}	\underline{Rii}	8^{26}	<u>R27</u>	U	<u>R10</u>	R^{11}
Me	Me	CH	Me	Me	Me	H	CF	\mathbf{H}	Ei
Me	Me	CF	H	Bi	Et	H	N	Me	Me
Me	Me	N	Me	Me	Eŧ	Me	CH	H	Et
Me	Me	CH	H	Et	Et	Ei	CF	Me	Me
Me	Me	CF	Me	Me	Me	Me	N	ŧ÷	Et

TABLE 6

4.4	 20					
Sec. 1 18 6 10	 	2.000	- Company	Acres 1 miles	and Z are	1000000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Acres & Acres	2 4.4
20 10 1	 \$3.335	23-13-11	A 18.4.	£ 5 3	MIRL E. REG	F L.Z.

- 1 / 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ar an early and the same and the same and the same	9.	v.
<u>R</u> 5	<u>r5</u>	85	<u>R5</u>
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ CI	осн ₃	S(CH ₂) ₂ CH ₂ Cl	C(0)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	ОСН ₂ СН ₃	S(O)CH2CH3	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH2F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ CI
СО ₂ СН ₂ С≡СН	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Ct	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
со ₂ сн ₂ осн ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH ₂ C≡CH
C(0)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(0)CH2CH3	осн ₂ осн ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NHE	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEi ₂	C(O)-(3-pyrrolin-1-yl)
C(0)CH ₂ Cl	S(O)CH ₃	S(O)2NH(CH2)2CH3	C(O)-(4-merpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHEt	C(O)-(1-pymolyl)
C(NOH)CH2Bs	S(O)CF ₃	C(O)NH ₂	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O)2CH3
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ CI	OP(O)Me(OMs)	OP(O)(OMe)2
			The second of th

 \mathbb{R}^{1b} is Me ; \mathbb{R}^{2b} is teri-Bu ; T, U, Y and Z are CH

<u>R</u> 5	<u>R5</u>	R3	<u>R5</u>
CO ₂ Et	C(O)NHFt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH ₂ C≡CH
CO ₂ CH ₃	C(O)NH2	C(0)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH ₂ CH=CH ₂
CO _Z CH ₂ C≡CH	C(O)NBi2	C(O)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pytrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)

Rlb is Et : R2b		

<u>R</u> 5	<u>R</u> 5	<u>R5</u>	<u>R5</u>
CO ₂ Ei	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt ₂
С0 ₂ СН ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	оси3	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH2)2CH2CI
СО ₂ СН ₂ СН ₂ СІ	O(CH ₂) ₃ CH ₃	\$(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	\$(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	\$(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ CI
CO ₂ CH ₂ C≅CH	O(CH ₂) ₂ CH ₂ F	\$(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2CI
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ CI	$S(O)_2CH_2CH_2F$	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	8(0)CH ₂ CH ₂ Cl	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)NMeCH2C≡CH
C(0)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMcCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O)2NEt2	C(O)-(3-pyrrolin-1-yi)
C(0)CH ₂ Cl	S(O)CH ₃	$S(O)_2NH(CH_2)_2CH_3$	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH₂CI	SCF3	C(O)NHEt	C(O)-(1-pyrrolyl)
C(NOH)CH2Br	S(O)CF3	C(0)NH2	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(8)NMe2
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe ₂	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2CI	OP(O)Me(OMe)	OP(O)(OMe)2

 \mathbb{R}^{1b} is Et ; \mathbb{R}^{2b} is terr-Bu ; T is N ; U, Y and Z are CH

<u>R5</u>	Z ⁵	R5	R5
CO ₂ Et	C(O)NHEt	C(0)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH2	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMcCH2C≅CH
$CO_2(CH_2)_2CH_3$	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH2)3CH2F	C(O)NMeCH2CH=CH2
со₂сн₂с≡сн	C(O)NE ₁₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(0)NMeEt
C(NOH)CH3	C(O)NHCH2CH2Ci	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(0)NH(CH ₂) ₂ CH ₃	C(O)NHMe(CH ₂) ₂ CH ₃	C(O)-(1-pyrrolyl)

TABLE 7

 R^{1b} is Et; R^{2b} is test-Bu; T, U, Y and Z are CH

w. is cr' w is ten-t	ou, i, o, i ans a are car	8 -	V
R2	<u>R</u> S	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ CI	OCH ₃	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	ОСН ₂ СН ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO2CH2CH2F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ Cl	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH2)3CH2F
CO ₂ CH ₂ CH≂CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ Cl
CO ₂ CH ₂ C≡CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ CH ₂ F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2Cl
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	\$(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)NMeCH ₂ C≕CH
C(O)CH ₃	O-cyclopropyi	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(0)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH ₂ CH=CH ₂
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NHE(C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ CI	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Bt	S(O) ₂ CH ₃	\$(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHEt	C(O)-(1-pymolyl)
C(NOH)CH2Br	S(0)CF3	C(O)NH ₂	C(S)NIEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(0)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O)2CH3
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2CI	OP(O)Me(OMe)	OP(O)(OMe)2

 \mathbb{R}^{1b} is Et ; \mathbb{R}^{2b} is tent-Bu ; U is CF ; T, Y and Z are CH

<u>g5</u>	<u>R</u> 5	<u>R⁵</u>	<u>R5</u>
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F

Rlb is Et.; R2b	is tert-Bu; U is CF	T, Y and Z are CH
in the state of th	1e	

\mathbb{R}^{10} is Eq.; \mathbb{R}^{20} is tert-1	Bu ; \mathbf{U} is \mathbf{CF} ; \mathbf{T} , \mathbf{Y} and \mathbf{Z}	are CH	er.
R5	<u>R⁵</u>	<u>R5</u>	<u>R</u> 5
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
СО ₂ (СН ₂) ₂ СН ₂ СІ	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH2CH3	C(O)NH(CH ₂) ₂ CH ₂ F
СО2СН2СН2Б	O(CH ₂) ₂ CH ₃	\$(0) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO2CH2CH2CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ Cl	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
СО2СН2С≡СН	O(CH ₂) ₂ CH ₂ F	S(O)2(CH2)2CH2Cl	C(O)NMcCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	0(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
СО2СН2ОСН3	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMcCH ₂ C≡CH
C(0)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMcCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEi ₂	C(O)-(3-pynolin-1-yl)
C(O)CH2CI	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2Cl	SCF ₃	C(O)NHE	C(O)-(1-pymolyf)
C(NOH)CH2Br	S(O)CF ₃	C(O)NH2	C(S)NHE
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH2CH2CI	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2Cl	OP(O)Me(OMe)	OP(O)(OMe)2

 \mathbb{R}^{1b} is Me ; \mathbb{R}^{2b} is tert-Bu ; \mathbb{T} , \mathbb{U} , \mathbb{Y} and \mathbb{Z} are CH

<u>R</u> 5	<u>R3</u>	<u>R5</u>	R5
CO ₂ Et	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(0)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C=CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH≈CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH ₂ CH=CH ₂
CO ₂ CH ₂ C≡CH	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrralyl)

\mathbb{R}^{1b} is Me: \mathbb{R}^{2b}		

RŽ	R5	<u>R</u> 3	R ⁵
CO ₂ Rt	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≌CH
CO ₂ CH ₃	C(O)NH2	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(0)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH≈CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NEi2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pymolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)

R^{1b} is Et; R^{2b} is ten-Bu; U is N; T, Y and Z are CH

		•	"Y"
<u>R⁵</u>	R ⁵	R5	R ⁵
CO ₂ Ei	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEi2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ CI	осн3	S(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	\$(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ CI
СО2СН2С≡СН	O(CH ₂) ₂ CH ₂ F	\$(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NM¢CH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH ₂ CH ₂ F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO2CH2OCH3	O(CH ₂) ₃ CH ₂ F	\$(0)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH ₂ C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(0)CH ₂ CH ₃	осн ₂ осн ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O)2NEt2	C(O)-(3-pymolin-1-yl)
C(0)CH ₂ Cl	S(O)CH ₃	S(0) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF ₃	C(O)NHE:	C(O)-(1-pyrrolyl)
C(NOH)CH ₂ Br	S(O)CF ₃	C(0)NH ₂	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH2CH2CI	SCH ₂ CH ₃	C(O)NMe ₂	OS(O)2CH3
$OS(O)_2CH_2CH_3$	08(0) ₂ CH ₂ CI	OP(O)Me(OMe)	OP(O)(OMe) ₂

R1b is Et; R2b is tert-	Bu; T is N; U, Y and Z are	СН	
R5	<u>R5</u>	<u>R</u> 5	R ⁵
CO ₂ Ei	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH2)3CH3	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NEt ₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2Cl	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pymolyl)

TABLE 8

<u>R</u> 3	<u>R</u> 4	W	<u>R</u> 5	I	<u>u</u>	Y.	Z
F	\mathbf{H}_{i}	0	C(O)NMe2	CH	CH	CH	CH
Me	H	O	C(O)NHEt	CH	CF	CH	CH
Et	H	O	C(O)NMe2	CH	N	CH	CH
H	Me	O	C(O)NMe ₂	CH	CH	CH	CH
11	C(O)Me	O	C(O)NMe2	CH	CH	CH	CH
H	C(O)OEt	0	C(O)NHEL	CH	N	CH	CH
H	CH ₂ OMe	O	$C(O)NMe_2$	CH	CH	CH	CH
н	H	S	C(O)NMe ₂	CH	CH	CH	CH
H	Ħ	S	C(O)NHEt	CH	CF	CH	CH
H	11	0	C(O)NMe2	N	N	CH	CH
H	H	0	C(O)NMe ₂	CH	CCF3	CH	CH
H	H	O.	C(O)NHEt	CH	CMe	CH	CH
В	H	Q	C(O)NMc2	CH	CH	CF	CH
H	н	O	C(O)NHEt	CH	CH	CCH ₃	CH
H	H	O	C(O)OMe	CMe	CH	CH	CH
H	H	0	C(O)OEt	COMe	CH	CH	CH
H	Ħ	O	C(O)OMe	CH	CH	СН	COMe
H	H	0	C(O)OMe	CH	CH	CH	CMe

77

TABLE 9

 \mathbb{R}^{1b} is Et; \mathbb{R}^{2a} is ten-Bu; T, U, Y and Z are CH

<u>R</u> 5	R5	<u>R5</u>	<u>R</u> 5
CO ₂ Et	C(NOCH3)CH2CH3	SCH ₂ CH ₂ F	C(O)NEt ₂
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Ci	OCH3	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	оси ₂ си ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ CI
CO ₂ CH ₂ C≡CH	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH ₂ CH ₂ F	C(O)NMeCH ₂ CH ₂ Cl
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ CI	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
со2сн2осн3	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ CI	C(O)NMeCH ₂ C≡CH
C(O)CH ₃	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMaCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O)2NHE	C(O)NMeEi
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NE ₁₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ CI	S(O)CH3	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH ₂ CI	SCF ₃	C(O)NHE	C(O)-(1-pymolyl)
C(NOH)CH ₂ Br	S(O)CF ₃	C(O)NH ₂	C(S)NHEt
C(O)CF2H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
$C(O)CH_2CH_2CI$	SCH ₂ CH ₃	C(O)NMe2	O8(O) ₂ CH ₃
OS(0) ₂ CH ₂ CH ₃	OS(0) ₂ CH ₂ Cl	OP(O)Me(OMe)	OP(O)(OMe) ₂

 R^{1b} is Et ; R^{2a} is rerr-Bu ; U is CF ; T, Y and Z are CH

<u>R</u> 5	8.5	R ^S	R.S
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt ₂
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F

<u> </u>	<u>R5</u>	<u>R5</u>	<u>R</u> 5
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO2(CH2)2CH2Cl	OCH3	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ CI
СО₂СН₂С≡СН	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ CI	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O)2CH2CH2C1	C(O)NMcCH2C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	осн ₂ осн ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
С(NOH)СН3	OCH ₂ SCH ₃	S(O)2NHE	C(O)NMeEi
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(O)CH3	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH2CI	SCF3	C(O)NHEt	C(O)-(1-pyrrolyl)
C(NOH)CH ₂ Br	S(O)CF3	C(O)NH ₂	C(S)NHEt
C(O)CF2H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
O5(O) ₂ CH ₂ CH ₃	OS(O)2CH2CI	OP(O)Me(OMe)	OP(O)(OMe) ₂
R ^{1b} is Me ; R ^{2a} is teri	-Bu; T, U, Y and Z are CH		v.
R ³	<u>R</u> 5	<u>R</u> 5	R ⁵
CO ₂ EI	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(0)NH2	C(O)NH(CH ₂) ₂ CH ₂ CI	C(O)NMcCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMcEi
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-y!)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)

 $C(0)CH_2CH_3$

C(NOH)CH3

C(O)CH₂Cl

 $C(0)CH_2Bt$

 $C(0)CF_2H$

C(NOH)CH2CI

C(NOH)CH2Br

 $C(0)CH_2CH_2CI$

 $OS(O)_2CH_2CH_3$

C(NOH)CH2CH3

OCH2OCH3

OCH₂SCH₃

S(O)₂CH₃ SCF₃

S(O)CF3

S(O)2CF3

SCH2CH3

 $OS(O)_2CH_2CI$

SCH₃ S(O)CH₃ C(O)NMcCH2CH=CH2

C(O)-(3-pyrrolin-1-yl)

C(O)-(4-morpholinyl)

C(O)NMe(CH2)2CH3

C(O)-(1-pytrolyl)

C(S)NHEt

 $C(8)NMe_2$

OS(O)2CH3

 $OP(O)(OMe)_2$

C(O)NMeBi

A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
		79	
R ^{lb} is Me; R ^{2a} is ter	t-Bu; Uis CF; T, Y and Z.	ire CH	
<u>R</u> 5	<u>R</u> 5	<u>R3</u>	<u>R5</u>
CO ₂ Et	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(0)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C=CH
СО2(СИ2)2СИ3	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
СО2СН2С≡СН	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(0)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)
R ^{Ib} is Ei : R ^{2a} is tert-	Bu ; U is N ; T, Y and Z are	CH ·	
<u>R</u> 5	185	<u>R5</u>	R5
CO ₂ Et	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2Cl
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH ₃	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	осн ₂ сн ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO2CH2CH2F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(0)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH2CH2CI	S(O)(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₃ CH ₂ Cl
со₂сн₂с≔сн	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Ci	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO ₂ -cyclopentyl	O(CH ₂) ₃ CH ₂ Ci	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C=CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	\$(0) ₂ CH ₂ CH ₂ CI	C(O)NMeCH2C#CH
C(0)CH ₃	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
10 A 10 A 10 B 10 B 10 B 10 B 10 B 10 B	Language and and a	A Local Care	I william a man man

S(O)2NMe2

 $S(O)_2NHE$ t

 $S(O)_2NEt_2$

C(O)NHEt

 $C(O)NH_2$

C(O)NHMe

 $C(O)NMe_2$

OP(O)Me(OMe)

 $S(O)_2NH(CH_2)_2CH_3$

 $S(O)_2NH(CH_2)_3CH_3$

1.41						
3.3.						
Y (1) 1	. 10 11.63	A 3)	. T	33 . T. Y	Same S	marks of the
M	8 124 2 16.	is tert-Bu	1 2 38	19	111111111111111111111111111111111111111	MC VII

<u>R</u> 5	<u>R5</u>	<u>12</u>	<u>R</u> 5
CO ₂ Et	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH2	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMcCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
СО2СН2С≡СН	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEi
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pymolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pynolyl)

TABLE 10

R ^{1a} is Et; R ^{2a} is tert-	Bu; T, U, Y and Z are CH		
<u>R</u> 5	<u>R</u> 5	<u>R3</u>	<u>R5</u>
CO ₂ Ei	C(NOCH ₃)CH ₂ CH ₃	SCH2CH2F	C(O)NEt ₂
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH3	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH2)2CH2CI
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	\$(0)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ Cl	\$(0)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ CI
со₂сн₂с≔сн	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ CI	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
CO ₂ CH ₂ OCH ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)MMeCH ₂ C≡CH
C(O)CH ₃	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	оси2оси3	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMcEi
C(NOH)CH2CH3	SCH ₃	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(O)CH ₃	S(O)2NH(CH2)2CH3	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O) ₂ CH ₃	S(O) ₂ NH(CH ₂) ₃ CH ₃	C(O)NMe(CH ₂) ₂ CH ₃

R ^{la} is Et; R ^{2a} is ten-	Bu; T, U, Y and Z are CH	W	×
<u>R5</u>	<u>k</u> 5	<u>R5</u>	<u>R</u> 5
C(NOH)CH2CI	SCF ₃	C(O)NHE	C(O)-(1-pyrrolyl)
C(NOH)CH2Bt	S(O)CF3	C(O)NH2	C(S)NHEt
C(O)CF2H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe2
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
$OS(O)_2CH_2CH_3$	OS(O) ₂ CH ₂ CI	OP(O)Me(OMe)	OP(O)(OMe) ₂
R ¹ a is Et ; R ² a is tert-	Bu; U is CF; T, Y and Z are	СН	
<u>R</u> 5	R5	RS	<u>R5</u>
CO ₂ Et	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH ₂ C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH2)3CH2F	C(O)NMcCH2CH=CH2
СО2СН2С≅СН	C(O)NE(2	C(O)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEt
C(NOH)CH3	C(O)NECH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)
R ^{1a} is Et; R ^{2a} is tert-	Bn; U is N; T, Y and Z are	CH	· 홍
<u>R</u> Ž	R5	<u>R</u> 5	<u>R</u> 5
CO ₂ Et	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO2CH2CH=CH2	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH ₂ CH=CH ₂
CO2CH2C≡CH	C(O)NEt ₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMcEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-i-yl)
C(NOH)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)
Rla is Et : R ^{2a} is tert-	Bo; T is N; U, Y and Z are	CH.	
R ⁵	<u> 1</u> 23	R5	R5
CO ₂ Ei	C(O)NHE:	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH2	C(O)NH(CH ₂) ₂ CH ₂ CI	C(O)NMeCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH2)3CH2F	C(O)NMaCH ₂ CH=CH ₂
CO ₂ CH ₂ C≅CH	C(O)NEt ₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pymolim-1-yl)
C(NOH)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)
and the state of t		and the second s	10 A

TABLE 11

<u>R1c</u>	\mathbb{R}^3	<u>R4</u>	\overline{M}	<u>R5</u>	\mathbf{r}	<u>u</u>	X	<u>Z</u> .
H	F	H	Ö	C(O)NMe2	CH	CH	CH	CH
H	Me	H	O	C(O)NHEt	CH	CF	CH	CH
H	Et	H	Ø	C(O)NMe ₂	CH	N	CH	CH
H	H	Me	0	C(O)NMe2	CH	CH	CH	CH
H	H	C(O)Me	o	C(O)NMe ₂	CH	CH	CH	CH
H	H	C(O)OEt	О	C(O)NHEt	CH	N	CH	CH
H	H	CH ₂ OMe	О	C(O)NMe2	CH	CH	CH	CH
H	H	H	S	C(O)NMe2	СН	CH	CH	CH
Н	H	н	\$	C(O)NHEt	CH	CF	CH	CH
Н	H	Ħ	O	C(O)NMe2	N	N	CH	CH
H	H	Н	O	C(O)NMe2	CH	CCF ₃	CH	CH
111	H	Н	0	C(O)NHEt	CH	CMe	CH	CH
H	H	H	O	C(O)NMe ₂	CH	CH	CF	СН
H	H	H	O	C(O)NHEi	CH	СН	ссн3	CH
H	H	H	0	C(O)OMe	CMe	CH	CH	CH
H	H	н	O	C(O)OEi	COMe	CH	CH	CH
Н	H	H	O	C(O)OMe	CH	СН	СН	COMe
H	В	H	0	C(O)OMe	CH	CH	CH	CMe

TABLE 12

R^{1b} is Et; R^{2b} is test-Bu; T, U, Y and Z are CH

R ⁵	R ^S	<u>R</u> 5	<u>R</u> 5
CO ₂ Et	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH ₂ C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(0)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH2)3CH3	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH ₂ CH=CH ₂

The second secon	4 g f			*	
Rib is Et; R2b	arina da ar	**	AX 20		T 200
DAG IN BY VEST	410 4 33 500	1235	* Y	2111	2721 11
X 12 32 1 1 1	12 10 10	A		CALLEY CO.	**** X* X X

<u> R</u> 5	<u>R</u> 5	<u>R</u> 5	<u>RS</u>
CO ₂ CH ₂ C≡CH	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyi)

R^{1b} is Et ; R^{2b} is tent-Bu ; U is N ; T, Y and Z are CH

<u>R</u> 5	<u>R</u> 5	RS	<u>R5</u>
CO ₂ Et	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH ₂ C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH2)3CH2F	C(O)NMeCH2CH=CH2
СО2СН2С≡СН	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(0)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pymolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH2)2CH3	C(O)NMeOMe	C(O)-(1-pynolyl)

\mathbb{R}^{1b} is Et; \mathbb{R}^{2b} is tert-Bu; T is N; U, Y and Z are CH

<u>R</u> 5	<u>R</u> 5	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(O)NHEt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(0)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ CI	C(O)NMcCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NEI2	C(O)NH(CH2)3CH2CI	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMcCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMsOMs	C(O)-(1-pynolyl)

TARLE 13

RID is Et : R2h is tert Bu : T. U. Y and Z are CH

77 12 121 ' V 12 1011.	Data to a min come,	cas.	±β.
<u>R3</u>	R ⁵	R5	<u> 182</u>
CO ₂ Et	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≅CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2

<u>R</u> 5	<u>R</u> 5	<u>125</u>	<u>R5</u>
CO ₂ CH ₂ C≡CH	C(O)NEt ₂	C(O)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEi
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pymolin-1-yl)
С(NОН)СН2СН3	С(0)NH(СН ₂) ₂ СН ₃	C(O)NMeOMe	C(O)-(1-pyrrelyl)
R ^{lb} is Et ; R ^{2h} is ten-	Bu; U is CF; T, Y and Z ar	re CH	
<u>R</u> 5	R ⁵	R ⁵	R ⁵
CO ₂ Et	C(O)NHE	C(O)NH(CH2)2CH2F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(0)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMcCH2CH=CH2
CO ₂ CH ₂ C≅CH	C(O)NEt2	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
С(NOH)СН ₂ СН ₃	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pytrolyl)
\mathbb{R}^{1b} is Et ; \mathbb{R}^{2b} is tert	Bu; U is N; T, Y and Z are	CH	
<u> 187</u>	<u>R5</u>	<u>R</u> 5	<u>R5</u>
CO ₂ Et	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(0)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(0)NMeCH2CH=CH2
СО2СН2С≡СИ	C(O)NEt ₂	C(0)NH(CH ₂) ₃ CH ₂ CI	C(O)NMeEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pytrolin-1-yl)
C(NOH)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pytmilyl)
R ^{ib} is Et ; R ^{2b} is tert	Bu; T is N; U, Y and Z are	СН	
<u>R5</u>	<u>R5</u>	R5	<u>R5</u>
CO ₂ Ei	C(O)NHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe ₂	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(0)NE ₁₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH3	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pynolin-1-yl)
C(NOH)CH2CH3	C(0)NH(CH ₂) ₂ CH ₃	C(O)NMeOMe	C(O)-(1-pyrrolyl)

TABLE 14

Ric	\mathbb{R}^3	<u>R</u> 4	\overline{M}	<u>R5</u>	T	U	Y	Z
H	F	H	O	C(O)NMe ₂	CH	CH	CH	СН
Ħ	Me	H	0	C(O)NHEt	СН	CF	CH	CH
111	H	Me	O	C(O)NMe ₂	CH	CH	CH	CH
H	Н	C(O)Me	O	C(O)NMo2	CH	CH	CH	CH
H	н	н	S	C(O)NMe ₂	СН	CH	CH	CH
H	H	Н	O	C(O)NMe2	N	N	CH	CH
н	H	H	O	C(O)NMe2	СН	CCF ₃	CH	CH
.11	H	H	O	C(O)NHE	CH	CMe	СН	CH
H	H	H	O	C(O)NMe ₂	CH	CH	CF	СН
н	H	H	O	C(O)NHEt	CH	CH	ССН3	CH
H	H	H	Q	C(O)OMe	СМе	CH	CH	CH
H	H	Ħ	O	C(O)OMe	CH	CH	CH	СМе
H	Me	H .	O	C(O)-(3-pyrrolin-1-yl)	CH	CH	СН	CH
H	H	C(O)OEt	O	C(O)-(1-pyrrolyl)	CH	CF	CH	CH

TABLE 15

 \mathbb{R}^{1b} is Et ; \mathbb{R}^{2b} is test-Bu ; T, U, Y and Z are CH

<u>R</u> 5	25	<u>R5</u>	R ⁵
CO ₂ Ei	C(NOCH ₃)CH ₂ CH ₃	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ CI	OCH3	S(CH ₂) ₂ CH ₂ Cl	C(O)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH2CH3	C(O)NH(CH ₂) ₂ CH ₂ F
CO ₂ CH ₂ CH ₂ F	O(CH ₂) ₂ CH ₃	S(O) ₂ CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ Cl
CO2CH2CH2CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F

R5	<u>85</u>	105	<u>R5</u>
CO ₂ CH ₂ CH≒CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH2)3CH2CI
СО2СН2С≡СН	O(CH ₂) ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₂ Cl	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ CI	S(O)CH2CH2F	C(O)NMeCH2CH2CI
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Cl	S(O) ₂ CH ₂ CH ₂ F	C(O)NMcOMc
со ₂ сн ₂ осн ₃	O(CH ₂) ₃ CH ₂ F	S(O)CH ₂ CH ₂ Cl	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O) ₂ CH ₂ CH ₂ Cl	C(O)NMeCH ₂ C≡CH
C(O)CH3	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(0)CH ₂ CH ₃	OCH2OCH3	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH
C(NOH)CH3	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEt
C(NOH)CH ₂ CH ₃	SCH3	S(O) ₂ NEt ₂	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ Cl	S(O)CH ₃	S(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ Br	S(O)2CH3	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH ₂ Cl	SCF ₃	C(O)NHBt	C(O)-(1-pyrrolyl)
C(NOH)CH ₂ Br	S(O)CF3	C(O)NH ₂	C(S)NHE
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH ₂ CH ₂ CI	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O) ₂ CH ₂ Cl	OP(O)Me(OMe)	OP(O)(OMe)2
R ¹⁶ is Me ; R ²⁶ is ter	t-Bu; T, U, Y and Z are CH	1	√
<u>R</u> 5	<u>8</u> 5	<u> 12.5</u>	RŽ
CO ₂ Et	C(O)NHBt	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ CI	C(O)NMcCH ₂ C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NMe2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH
CO ₂ CH ₂ C≡CH	C(O)NEt ₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pyrrolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NMcOMe	C(O)-(1-pymolyl)
\mathbb{R}^{1b} is Et ; \mathbb{R}^{2b} is ten	-Bu; U is N; T, Y and Z are	CH	
<u>R⁵</u>	<u>R5</u>	<u>R</u> 5	<u>R</u> 5
CO ₂ Et	C(NOCH3)CH2CH3	SCH ₂ CH ₂ F	C(O)NEt2
CO ₂ CH ₃	C(NOH)CH2CH2CI	S(CH ₂) ₂ CH ₃	C(O)NHCH2CH2F
CO ₂ (CH ₂) ₂ CH ₃	CN	S(CH ₂) ₂ CH ₂ F	C(O)NHCH2CH2CI
CO ₂ (CH ₂) ₂ CH ₂ Cl	OCH3	S(CH ₂) ₂ CH ₂ CI	C(0)NH(CH ₂) ₂ CH ₃
CO ₂ (CH ₂) ₂ CH ₂ F	OCH ₂ CH ₃	S(O)CH ₂ CH ₃	C(O)NH(CH ₂) ₂ CH ₂ F
A. C. A.			- A

R1b is Et; R2b is tert-	Bu; U is N; T, Y and Z a	tte CH	¥': 5
<u>R</u> 5	<u>R5</u>	<u>25</u>	R ⁵
CO ₂ CH ₂ CH ₂ CI	O(CH ₂) ₃ CH ₃	S(O)(CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₃
CO ₂ (CH ₂) ₃ CH ₃	OCH ₂ CH ₂ F	S(O) ₂ (CH ₂) ₂ CH ₃	C(O)NH(CH ₂) ₃ CH ₂ F
CO ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₂ CI	S(O)(CH ₂) ₂ CH ₂ CI	C(O)NH(CH ₂) ₃ CH ₂ Cl
СО2СН2С≌СН	O(CH ₂) ₂ CH ₂ F	S(O)2(CH2)2CH2CI	C(O)NMeCH2CH2F
CO ₂ -cyclopropyl	O(CH ₂) ₂ CH ₂ Cl	S(O)CH2CH2F	C(O)NMcCH2CH2Cl
CO2-cyclopentyl	O(CH ₂) ₃ CH ₂ Ci	S(O) ₂ CH ₂ CH ₂ F	C(O)NMeOMe
СО2СН2ОСИ3	O(CH ₂) ₃ CH ₂ F	S(O)CH2CH2CI	C(O)NHCH2C≡CH
CO ₂ CH ₂ SCH ₃	O-cyclopentyl	S(O)2CH2CH2CI	C(O)NM¢CH2C≡CH
C(0)CH ₃	O-cyclopropyl	S(O) ₂ NHMe	C(O)NHCH2CH=CH2
C(O)CH ₂ CH ₃	OCH ₂ OCH ₃	S(O) ₂ NMe ₂	C(O)NMeCH2CH=CH2
C(NOH)CH ₃	OCH ₂ SCH ₃	S(O) ₂ NHEt	C(O)NMeEt
C(NOH)CH2CH3	SCH ₃	S(O)2NEt2	C(O)-(3-pyrrolin-1-yl)
C(O)CH ₂ CI	S(O)CH ₃	\$(O) ₂ NH(CH ₂) ₂ CH ₃	C(O)-(4-morpholinyl)
C(O)CH ₂ B ₁	S(O) ₂ CH ₃	S(O)2NH(CH2)3CH3	C(O)NMe(CH ₂) ₂ CH ₃
C(NOH)CH _Z CI	SCF3	C(O)NHE	C(O)-(1-pyrrolyl)
C(NOH)CH ₂ B ₇	5(O)CF3	C(O)NH2	C(S)NHEt
C(O)CF ₂ H	S(O) ₂ CF ₃	C(O)NHMe	C(S)NMe ₂
C(O)CH ₂ CH ₂ Cl	SCH ₂ CH ₃	C(O)NMe2	OS(O) ₂ CH ₃
OS(O) ₂ CH ₂ CH ₃	OS(O)2CH2CI	OP(O)Me(OMe)	OP(O)(OMe)2

nth saus	1000		of the state of the	5 a 4 da 4	-1.5
- IN		 ***			2.11

R.5	<u>R</u> 5	<u>R5</u>	<u>85</u>
CO ₂ Et	C(O)NIHE	C(O)NH(CH ₂) ₂ CH ₂ F	C(O)NHCH2C≡CH
CO ₂ CH ₃	C(O)NH ₂	C(O)NH(CH ₂) ₂ CH ₂ CI	C(O)NMeCH2C≡CH
CO ₂ (CH ₂) ₂ CH ₃	C(O)NHMe	C(O)NH(CH ₂) ₃ CH ₃	C(O)NHCH2CH=CH2
CO ₂ CH ₂ CH=CH ₂	C(O)NM#2	C(O)NH(CH ₂) ₃ CH ₂ F	C(O)NMeCH2CH=CH2
CO ₂ CH ₂ C≡CH	C(O)NEt ₂	C(O)NH(CH ₂) ₃ CH ₂ Cl	C(O)NMeEt
C(NOH)CH ₃	C(O)NHCH2CH2CI	C(O)NMeCH2CH2CI	C(O)-(3-pymolin-1-yl)
C(NOH)CH2CH3	C(O)NH(CH ₂) ₂ CH ₃	C(O)NHMe(CH ₂) ₂ CH ₃	C(O)-(1-pymolyl)

Formulation/Utility

5

Compounds of Formula I or Iz will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations

include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts, powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

5

10

15

20

25

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.

	Weight Perce	Weight Percent				
	Active Ingredient	Diluent	Surfactant			
Water-Dispersible and Water- soluble Granules, Tablets and Powders.	5-90	0-94	1–15			
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5-50	40-95	0-15			
Dusts	1-25	70-99	0-5			
Granules and Pellets	0.01-99	5-99,99	0-15			
High Strength Compositions	90-99	0-10	0-2			

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, N,N-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays

89

such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, tale, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, N,N-dimethylformanide, dimethyl sulfoxide, N-alkylpyrrolidone, ethylene glycol, polypropylene glycol, propylene carbonate, dibasic esters, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol, benzyl and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147–48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8–57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

10.

20)

30

For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox - Product Forms for Modern Agriculture" in *Pesticide Chemistry and Bioscience, The Food-Environment Challenge*, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; and Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Tables A-K.

90

Example A

	twister is	
	High Strength Concentrate	
	Compound 2	98.5%
	silica aerogel	0.5%
5	synthetic amorphous fine silica	1.0%.
	Example B	
	Wettable Powder	
	Compound 6	65.0%
	dodecylphenol polyethylene glycol ether	2.0%
10	sodium ligninsulfonate	4.0%
	sodium silicoaluminate	6.0%
	montmorillonite (calcined)	23.0%.
	Example C	
	Granule	
15	Compound 156	10.0%
	attapulgite granules (low volatile matter,	
	0.71/0.30 mm; U.S.S. No. 25-50 sieves)	90.0%.
	Example D	
	Aqueous Suspension	
20	Compound 2	25.0%
	hydrated attapulgite	3.0%
	crude calcium ligninsulfonate	10.0%
	sodium dihydrogen phosphate	0.5%
	water	61.5%.
25	Example E	
	Extruded Pellet	
	Compound 6	25.0%
	anhydrous sodium sulfate	10.0%
	crude calcium ligninsulfonate	5.0%
30	sodium alkylnaphthalenesulfonate	1.0%
	calcium/magnesium bentonite	59.0%.

Test results indicate that the compounds of the present invention are highly active preemergent and postemergent herbicides or plant growth regulants. Many of the compounds of this invention, by virtue of selective metabolism in crops versus weeds, or by selective activity at the locus of physiological inhibition in crops and weeds, or by selective placement on or within the environment of a mixture of crops and weeds, are useful for the

35

selective control of grass and/or broadleaf weeds within a crop/weed mixture. Compounds of this invention may show tolerance to important agronomic crops including, but not limited to, alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, sunflower, rice, oats, peanuts, vegetables, tomato, potato and perennial plantation crops. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Compounds of the invention are particularly useful for selective control of weeds in perennial plantation crops, transplanted rice, maize and cool-season cereal crops. Of particular note is the use of compounds of the invention for selective weed control in perennial plantation crops (also known as permanent crops) including: finit trees such as citrus (e.g., orange, lemon, lime, grapefruit, tangerine), pome fruits (e.g., apple, pear, quince) and stone fruits (e.g., peach, nectarine, apricot, plum, cherry), nut trees (e.g., almond, hickory, pecan, walnut, cashew, chestnut, filbert, macademia, pistachio), forest trees such as hardwoods (e.g., eucalyptus, oak, maple, birch, ash) and softwoods (i.e. conifers such as fir, redwood, spruce, cedar, cypress, larch, hemlock, loblolly and other pines), banana, plantain, pineapple, hops, coffee, tea, cocoa, oilseed palm, rubber, sugarcane, grapes (e.g., Vitus vinifera, V. labrusca, V. rotundifolia), and perennial turf grasses (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue, Bermuda grass). Alternatively, the subject compounds are useful to modify plant growth. The formulated compounds can be applied to the soil, for example, as a treatment spray mixture, mixed with solid fertilizer or included in irrigation water.

10

15

20

25

30

35

Many of the compounds have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. One skilled in the art will recognize that the preferred combination of these selectivity factors within a compound or group of compounds can readily be determined by performing routine biological and/or biochemical assays.

As the compounds of the invention have both preemergent and postemergent herbicidal activity, to control undesired vegetation by killing or injuring the vegetation or reducing its growth, the compounds can be usefully applied by a variety of methods which can include banding, directed sprays, or broadcast applications that involve contacting a herbicidally effective amount of a compound of the invention, or a composition comprising said compound and at least one of a surfactant, a solid diluent or a liquid diluent, to the foliage or other part of the undesired vegetation or to the environment of the undesired vegetation such as the soil or water in which the undesired vegetation is growing or which surrounds the seed or other propagule of the undesired vegetation.

A herbicidally effective amount of the compounds of Formula I or Iz is determined by a number of factors. These factors include: formulation selected, method of application,

amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is about 0.1 g/ha to 20 kg/ha, with a preferred range of about 1 g/ha to about 5000 g/ha and a more preferred range of about 4 to about 3000 g/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

10

15

20

25

30

35

The compounds of Formula Iz (including Formula I) may be used in combination with other herbicides, insecticides, or fungicides, and other agricultural chemicals such as fertilizers. Other herbicides, insecticides and fungicides can include biological agents such as the herbicidal microbes Alternaria destruens, Colletotrichum gloesporiodes, Drechsiera monoceras (MTB-951) and Puccinia thlaspeas. Mixtures of compounds of Formula Iz (or I) with other herbicides can broaden the spectrum of activity against additional weed species, and suppress the proliferation of any resistant biotypes. Mixtures of compounds of Formula Iz (or I) with other herbicides can also provide greater than expected (i.e. synergistic) control of weeds and/or less than expected (i.e. safening) effect on crops. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a herbicidally effective amount of a compound of Formula Iz and an effective amount of another herbicide. Of note is said herbicidal mixture wherein the compound of Formula Iz is a compound of Formula I. A mixture of one or more of the following other herbicides with a compound of Formula Iz may be particularly useful for weed control: acetochlor, acifluorfen and its sodium sait, aclonifen, acrolein (2-propenal), alachlor, alloxydim, Alternaria destruens, ametryn, amicarbazone, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac and its sodium salt, bromacil, bromobutide, bromoxynil, bromoxynil octanoate, butachlor, butafenacil, butamifos, butralin, butroxydim butylate, carbetamide, carfentrazone-ethyl, catechin, cafenstrole. caloxydim (BAS 620H), chloramben. chlorbromuron, chlorflurenol-methyl, chloridazon, chlomethoxyfen, chlornitrofen. chlorotoluron, chlorpropham, chlorsulfuron, chlorimuron-ethyl, chlorthal-dimethyl, chlorthiamid, cividon-ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid-olamine, cloransulammethyl, Colletotrichum gloesporiodes, cumyluron, cyanazine, cycloate, cyclosulfamuron. cycloxydim, cyhalofop-butyl, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, diclosulam, difenzoquat metilsulfate, diffufenican, diffufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethipin, dimethylarsinic acid and its sodium salt, dinitramine, dinoterb,

diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, Drechsiera monoceras, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethofumesate, ethoxysulfuron, etobenzanid, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fentrazamide, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfurou, florasulam, fluazifop-butyl, fluazifop-P-butyl, fluazolate, flucarbazone, fluchloralin, flufenacet, flumiclorac-pentyl. flumioxazin. fluometuron. flumetsulain. flufenpyr-ethyl, fluorogiycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine-ammonium, furilazole, glufosinate and its salts such as particularly glufosinateammonium, glyphosate and its salts such as particularly glyphosate-ammonium, 10 glyphosate-isopropylammonium, glyphosate-sodium, glyphosate-potassium and glyphosatehaloxyfop-etotyl, haloxyfop-methyl, hexazinone, halosulfuron-methyl, trimesium, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, iodosulfuron-methyl, ioxynil, ioxynil octanoate, ioxynil-sodium, isoproturon, isouron, isoxaben, isoxaflutole, 15 lactofen, lenacil, linuron, maleic hydrazide, MCPA and its dimethylammonium, potassium and sodium salts, MCPA-isoctyl, MCPB and its sodium salt, MCPB-ethyl, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron-methyl, mesotrione, metam-sodium, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyldymron, methyl [[[1-[5-20 [2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]amino]oxy]acetate (AKH-7088), methyl 5-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]-(NC-330), metobenzuron. sulfonyl]-1-(2-pyridinyl)-1H-pyrazole-4-carboxylate metribuzin. metobromuron, metolachlor, S-metholachlor, metosulam, metoxuron, metsulfuron-methyl, molinate, monolinuron, naprosnilide, napropamide, naptalam, neburon, 25 nicosulfuron, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentoxazone, perfluidone, pethoxamid, phenmedipham, pentanochlor. picloram-potassium, picolinafen, piperofos, pretilachlor, primisulfuron-methyl, prodiamine, 2-[1-[[2-(4-chlorophenoxy)propoxy]imino]butyl]-3-hydroxy-(BAS625H, 30 profoxydim 5-(tetrahydro-2H-thiopyran-3-yl)-2-cyclohexen-1-one), prometon, prometryn, propachlor, propaguizatop, propham, propisochlor, propoxycarbazone, propazine, propanil, propyzamide, prosulfocaro, prosulfuron, Puccinia thlaspeos, pyraflufen-ethyl, pyrazolynate, pyrazoxyfen, pyrazosulfuron-ethyl, pyribenzoxim, pyributicarb, pyridate, pynftalid, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, 35 quizalofop-cthyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, sethoxydim, siduron, simazine, simetryn, sulcotríone, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2.3.6-TBA, TCA, TCA-sodium, tebutam, tebuthiuron, tepraloxydim, terbacil, terbumeton,

94

terbuthylazine, terbutryn, thenylchlor, thiafluamide (BAY 11390), thiazopyr, thifensulfuron-methyl, thiobencarb, tiocarbazil, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron and vernolate. Combinations of compounds of the invention with other herbicides can result in a greater-than-additive (i.e. synergistic) effect on weeds and/or a less-than-additive effect (i.e. safening) on crops or other desirable plants. For example, combination of a sulfonylurea herbicide such as thifensulfuron-methyl and tribenuron-methyl with a compound of the invention can reduce phytotoxicity to certain crops.

5

1.0

15

20

25

30

35

In certain instances, combinations with other herbicides having a similar spectrum of control but a different mode of action will be particularly advantageous for preventing the development of resistant weeds.

Preferred for better control of undesired vegetation (e.g., lower use rate such as from synergism, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds is a herbicidal mixture of a compound of Formula Iz (including Formula I) with an other herbicide selected from the group consisting of atrazine, bromacil, diuron, hexazinone, terbacil, glyphosate (particularly glyphosate-ammonium, glyphosate-isopropylammonium, glyphosate-sodium, glyphosate-potassium, glyphosatetrimesium), glufosinate (particularly glufosinate-ammonium), rimsulfuron, metsulfuronmethyl, sulfometuron-methyl, ametryn and paraquat. Specifically preferred mixtures (wherein compound A is N-[3-[(dimethylamino)carbonyl]phenyl]-3-(1,1-dimethylethyl)-1-methyl-1*H*-pyrazole-5-carboxamide (Formula Iz wherein J is J-1, \mathbb{R}^{1a} is Me, \mathbb{R}^{2a} is t-Bu. R³ is H, W is O, R⁴ is H, T, U, Y and Z are CH, and R⁵ is C(O)NMe₂); other compound numbers refer to compounds in Index Tables A-K) are selected from the group: compound 2 and atrazine; compound 6 and atrazine; compound 14 and atrazine; compound 115 and atrazine; compound 152 and atrazine; compound 156 and atrazine; compound 162 and atrazine; compound 193 and atrazine; compound 222 and atrazine; compound A and strazine, compound 2 and bromacil; compound 6 and bromacil; compound 14 and bromacil; compound 115 and bromacil; compound 152 and bromacil; compound 156 and bromacil; compound 162 and bromacil; compound 193 and bromacil; compound 222 and bromacii; compound A and bromacii; compound 2 and diuron; compound 6 and diuron; compound 14 and diuron; compound 115 and diuron; compound 152 and diuron; compound 156 and diuron; compound 162 and diuron; compound 193 and diuron; compound 222 and diuron; compound A and diuron; compound 2 and hexazinone; compound 6 and hexazinone; compound 14 and hexazinone; compound 115 and hexazinone; compound 152 and hexazinone; compound 156 and hexazinone; compound 162 and hexazinone; compound 193 and hexazinone; compound 222 and hexazinone; compound A and hexazinone; compound 2 and terbacil; compound 6 and

WO 2004/035545

10

13

20

25

30

35

terbacil; compound 14 and terbacil; compound 115 and terbacil; compound 152 and terbacil; compound 156 and terbacil; compound 162 and terbacil; compound 193 and terbacil; compound 222 and terbacil; compound A and terbacil; compound 2 and glyphosate; compound 6 and glyphosate; compound 14 and glyphosate; compound 115 and glyphosate; compound 152 and glyphosate; compound 156 and glyphosate; compound 162 and glyphosate; compound 193 and glyphosate; compound 222 and glyphosate; compound A and glyphosate; compound 2 and glufosinate; compound 6 and glufosinate; compound 14 and glufosinate; compound 115 and glufosinate; compound 152 and glufosinate; compound 156 and glufosinate; compound 162 and glufosinate; compound 193 and glufosinate; compound 222 and glufosinate; compound A and glufosinate; compound 2 and rimsulfuron; compound 6 and rimsulfuron; compound 14 and rimsulfuron; compound 115 and rimsulfuron; compound 152 and rimsulfuron; compound 156 and rimsulfuron; compound 162 and rintsulfuron; compound 193 and rimsulfuron; compound 222 and rimsulfuron; compound A and rimsulfuron; compound 2 and metsulfuron-methyl; compound 6 and metsulfuronmethyl; compound 14 and metsulfuron-methyl; compound 115 and metsulfuron-methyl; compound 152 and metsulfuron-methyl; compound 156 and metsulfuron-methyl; compound 162 and metsulfuron-methyl; compound 193 and metsulfuron-methyl; compound 222 and metsulfuron-methyl; compound A and metsulfuron-methyl; compound 2 and sulfometuronmethyl; compound 6 and sulfometuron-methyl; compound 14 and sulfometuron-methyl; compound 115 and sulfometuron-methyl; compound 152 and sulfometuron-methyl; compound 156 and sulfometuron-methyl; compound 162 and sulfometuron-methyl; compound 193 and sulfometuron-methyl; compound 222 and sulfometuron-methyl; compound A and sulfometuron-methyl; compound 2 and ametryn; compound 6 and ametryn; compound 14 and ametryn; compound 115 and ametryn; compound 152 and ametryn; compound 156 and ametryn; compound 162 and ametryn; compound 193 and ametryn; compound 222 and ametryn; compound A and ametryn; compound 2 and paraquat; compound 6 and paraquat; compound 14 and paraquat; compound 115 and paraquat; compound 152 and paraguat; compound 156 and paraguat; compound 162 and paraguat; compound 193 and paraquat; compound 222 and paraquat; compound A and paraquat. Particularly preferred because of greater than additive (i.e. synergistic) efficacy on certain weeds are mixtures of compound 2 and diuron; compound 2 and terbacil; compound 6 and atrazine; compound 6 and diuron; compound 6 and hexazinone; and compound 6 and terbacil. Herbicidally effective amounts of compounds of Formula Iz (including Formula I) as well as herbicidally effective amounts of other herbicides can be easily determined by one skilled in the art through simple experimentation. Synergistically effective amounts of these herbicidal compounds can likewise be easily determined.

Mixtures of compound 6 with diuron and hexazinone are especially notable for their synergistic activity in controlling *Urochloa* species (previously classified in genus

Brachiaria) such as Urochloa decumbens (Staph) R. D. Webster, which is commonly known as Surinam grass or signal grass. U. decumbens is native to central Africa, but because it grows satisfactorily on poor soils, it has been planted in other tropical and subtropical regions for use as cattle forage. Unfortunately this species has subsquently become widespread and troublesome in many crops. As reported by R. A. Pitelli et al., "Brachiaria decumbens, a major exotic invasive plant in Brazil", Weed Science Society of America Abstracts 2003, 43, 23, this species has become a major weed in forestry, citrus, sugarcane, horse pastures and roadsides as well as soybean, maize and cotton crops. Therefore a preferred embodiment of the present invention is a method for controlling the growth of undesired vegetation comprising Urochloa decumbens (Staph) R. D. Webster comprising contacting the vegetation or its environment with herbicidally effective amounts of the compound of Formula I (or Iz) which is N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-cthyl-1H-pyrazole-5-carboxamide (compound 6) and at least one other herbicide selected from the group consisting of diuron and hexazinone. In said method compound 6 is typically applied at an application rate between about 60 and 600 g/ha, preferably between about 120 and 450 g/ha, and more preferably between about 240 and 360 g/ha; diuron is typically applied between about 250 and 2500 g/ha, preferably between about 500 and 2000 g/ha, and more preferably between about 960 and 1440 g/ha; and hexazinone is typically applied between about 100 and 600 g/ha, preferably between about 200 and 450 g/ha, more preferably between about 240 and 360 g/ha. Typical use rate ratios by weight for compound 6 to diuron (compound 6: diuron) are in the range of about 1:40 to 2:1, preferably about 1:17 to 1:1, and more preferably about 1:6 to about 1:3. Typical use rate ratios by weight for compound 6 to hexazinone are in the range of about 1:10 to 6:1, preferably about 1:4 to 2:1, and more preferably about 2:3 to 3:2.

10

15

20

25

30

35

Compounds of Formula Iz (including Formula I) can also be used in combination with herbicide safeners such as benoxacor, BCS (1-bromo-4-[(chloromethyl)sulfonyl]benzene), cloquintocet-mexyl, cyometrinil, dichlormid, 2-(dichloromethyl)-2-methyl-1,3-dioxolane (MG 191), fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-ethyl, methox yphenone ((4-methoxy-3-methylphenyl)(3-methylphenyl)methanone), naphthalic anhydride (1,8-naphthalic anhydride) and oxabetrinil to increase safety to certain crops. Antidotally effective amounts of the herbicide safeners can be applied at the same time as the compounds of this invention, or applied as seed treatments. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a compound of Formula Iz and an antidotally effective amount of a herbicide safener. Seed treatment is particularly useful for selective weed control, because it physically restricts antidoting to the crop plants. Therefore a particularly useful embodiment of the present invention is a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a

97

compound of Formula Iz wherein seed from which the crop is grown is treated with an antidotally effective amount of safener. Seed treatment with 1,8-naphthalic anhydride works well in a wide variety of crops such as maize, wheat, barley and sugarbeets. Of note is said method wherein the compound of Formula Iz is a compound of Formula I. Antidotally effective amounts of safeners can be easily determined by one skilled in the art through simple experimentation.

10

15

20

30

35

A compound of Formula Iz can thus be applied in admixture with other herbicides and/or herbicide safeners, in binary or multiple combinations in order to achieve optimal weed control spectrum and duration of weed control, suppress proliferation of resistant biotypes, benefit from synergy against particularly troublesome weeds and/or reduce injury to crops. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a herbicidally effective amount of a compound of Formula Iz, an N-oxide or an agriculturally suitable salt thereof, and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener. Typically the herbicidal mixture is applied in the form of a herbicidal composition comprising the herbicidal mixture and at least one of a surfactant, a solid diluent or liquid diluent. Related to this herbicidal mixture and herbicidal composition is a method for controlling the growth of undesired vegetation by applying a herbicidally effective amount of said herbicidal mixture or herbicidal composition to the locus of the undesired vegetation. Of note are said herbicidal mixture, herbicidal composition and method wherein the compound of Formula Iz is a compound of Formula I. Also of note are said herbicidal mixture, herbicidal composition and method wherein the compound of Formula Iz is selected from Formula Iz wherein: J is J-1, R is is Me, R is t-Bu, R is H, W is O, R is H, T, U, Y and Z are CH, and R⁵ is C(O)NMe₂; J is J-1, R^{1a} is Me, R^{2a} is t-Bu, R³ is H, W is O, R4 is H, T, U, Y and Z are CH, and R5 is C(O)NHMe; J is J-1, R1a is Me, R2a is t-Bu, R3 is H. W is O, R4 is H. T, U, Y and Z are CH, and R5 is C(O)NH-n-Pr; J is J-1, R1a is Me, R^{2a} is t-Bu, R³ is H, W is O, R⁴ is H, T, U, Y and Z are CH, and R⁵ is C(O)NEt₂; or J is J-1, R^{1a} is Me, R^{2a} is t-Bu, R³ is H, W is O, R⁴ is H, U, Y and Z are CH, T is N, and R⁵ is C(O)NEt2 (or the pyridine N-oxide thereof, i.e. T is N(O)).

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Tables A–K for compound descriptions. The following abbreviations are used in the Index Tables which follow: t means tertiary, s means secondary, n means normal, t means iso, t means cyclo, Me means methyl, Et means ethyl, Pr means propyl, t-Pr means isopropyl, Bu means butyl, Ph means phenyl, OMe means methoxy, OBt means ethoxy, SMe means methylthio, SEt means ethylthio, CN means cyano, NO₂ means nitro, TMS means trimethylsilyl, S(O)Me means methylsulfinyl, and S(O)₂Me means methylsulfonyl. The abbreviation "dec" indicates that the compound appeared to

decompose on melting. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

R can be one or more substituents; a dash ("-") indicates no substituents.

Compound	Rla	<u> </u>	\mathbb{R}^3	<u>R4</u>	R	<u>R</u> 5	<u>m.p. (°C)</u>
1	Et	t-Bu	H	H	6-F	C(O)N{CH2CH=CHCH2}	***
2 (Ex. 5, 6)	Et	1-Bu	H	H	6-F	C(O)NHCH2CH3	188.5
3	Et	r-Bu	Ħ	\mathbf{H}	6-F	$C(O)$ NHCH $_2$ CH $_2$ F	*
4	Et	<i>t-</i> Bu	H	H	6-F	$C(O)N(CH_2CH_3)_2$	*
5.	Et	r-Bu	H	H	6-F	C(O)NHCH2CF3	****
6 (Ex. 7)	Et	t-Bu	Ħ	H	6-F	$C(O)N(CH_3)_2$	**
7	Et	t-Bu	H	H	6.13	C(O)NHCH3	250-252
8	Et	t-Bu	H	H	2,4,5-tri-F	C(O)NHCH2CH3	*
9	Et	t-Bu	H	H	6-F	C(O)N(CH ₃)CH ₂ CH=CH ₂	**
10	Et	t-Bu	H	H	6-F	C(O)N(CH ₃)CH ₂ C≡CH	*
1.1	Et	<i>t</i> -Bu	H	H	6-F	$C(O)$ NHCH $_2$ CH $_2$ OCH $_3$	8
12	Et	r-Bu	H	H	6-F	$C(O)N(CH_3)CH_2CH(CH_3)_2$	*
13	Et	1-Pr	H	H	6- F	C(O)NHCH2CH3	*
14	Et	i-Pr	11	H	6-F	$C(O)N(CH_3)_2$	*
15	Es	i-Pr	H	H	6-F	$C(O)N(CH_2CH_3)_2$	*
16	Et	r-Bu	H	H	6-F	C(O)N(CH ₃)CH ₂ CH ₃	*
17	Et	t-Bu	Ħ	H	6-F	$C(O)N(CH_3)CH_2CH_2CH_3$	**
18	Et	c-Pr	Ħ	H	6-F	C(O)N(CH ₃) ₂	*
19	Et	c-Pr	H	H	6-F	C(O)N(CH ₂ CH ₃) ₂	*
20	Et	c-Pr	Н	н	6-F	C(O)NHCH2CH3	88
21	Ei	c-Pr	H	Ħ	6-P	$C(O)N(CH_3)CH_2CH=CH_2$	*
22	Et	i-Bu	H	H	6-F	C(O)N(CH ₃) ₂	
23	Et	i-Bu	Н	H	6-P	$C(O)N(CH_2CH_3)_2$	84
24	Et	i-Bu	H	H	6-F	C(O)NHCH2CH3	्ॐ
25	Et	i-Bu	H	H	6-F	$C(O)N(CH_3)CH_2CH=CH_2$	· · · · *%

				1709			
Compound	<u>R18</u>	R^{2a}	<u>R3</u>	<u>R</u> 4	R	<u> 82</u>	<u>m.p. (°C)</u>
26	Et	t-Bu	H	H	- (LLC)	C(O)NICH(CH3)(CH2)41	197-198
27	Eŧ	t-Bu	H	H		C(O)NHCH2CH3	176-179
28	Et	1-Bu	H	н	(Seeding)	$C(0)N(CH_2CH_3)_2$	153-155
29	Et	t-Bu	Ħ	H	- 	C(O)NHCH ₃	195-197
30	CH ₂ CF ₃	t-Bu	\mathbf{H}	H	1- 2-1 -	C(O)NHCH3	204-206
31	CH ₂ CF ₃	1-Bu	н	H	.,	C(O)NHCH2CH3	*
32	CH ₂ CF ₃	t-Bu	H	\mathbf{H}	- Signal	C(O)N(CH2CH3)2	**
33	CH=CH ₂	<i>t</i> -Bu	H	H	See.	C(O)NHCH2CH3	***
34	CH=CH ₂	t-Bu	H	H	<u> </u>	$C(O)N(CH_2CH_3)_2$	***
35	CH ₂ CH ₂ F	r-Bu	Ħ	H	(dun)	C(O)NHCH2CH3	*
36	CH ₂ CH ₂ F	t-Bu	Ħ	H		C(O)N(CH2CH3)2	8 (8 8)
37	CH=CH ₂	t-Bu	H	H	-	C(O)NHCH ₂ CF ₃	***
38	CH≕CH ₂	t-Bu	H	H	pilo.	C(O)NHCH2CH2CI	- J.
39	$CH=CH_2$	r-Bu	H	Н) jes t	C(O)NH(c-Pr)	1:30
40	n-Bu	≽Bu	\mathbf{H}	H	A.	C(O)N(CH ₂ CH ₃) ₂	154-156
41	n-Bu	6-Bu	H	H	.com	C(O)NHCH2CH3	139-141
42	i-Bu	t-Bu	H	H	,	C(O)NHCH2CH3	*
43 (Ex. 3)	Et	z-Bu	H	H	,000,	C(O)NHCH2CF3	**
44	Et	/-Bu	H	\mathbf{H}	See. See. See. See. See. See. See. See.	C(O)NH(c-Pr)	4 j a
45	Et	1-Bu	H	H	jege.	C(O)NHCH2CH2F	÷ 🎉
46	Et	t-Bu	H	Ħ	Seed.	C(O)NHCH2CH=CH2	**
47	Et	<i>t</i> -Bu	H	H	in the second	C(O)NHCH2C≡CH	*
48	Est	r-Bu	H	H	See P	$C(O)N(CH_3)CH_2CH_3$	*
49	Et	i-Bu	H	H	t opie .	C(O)N(CH ₃) ₂	ૺૹ૽
50	CH ₂ C≕CH	t-Bu	H	H	NA.	C(O)NHCH2CH3	* \$
51	Et	1-Bu	H	H	, 	$C(O)NH(i \cdot Pr)$	***
52	Et	t-Bu	H	H		2-H(CH ₂) ₂ INHC(O)-	*
53	Me	r-Bu	H	H		24(CH ₂) ₂ INHC(O)-	: : ※ .
54	Me	1-Bn	H	H		2-f(CH ₂) ₂ jNMeC(O)-	***
55 (Ex. 15)	Et	t-Bu	H	H		2-f(CH ₂) ₂ FNMeC(O)-	**
56	CH ₂ CH=CH ₂	r-Bu	Ħ	H		C(O)NHCH2CH3	*
57	n-Pr	t-Bu	H	H	(1999)	C(O)NHCH2CH3	162-163
58	Et	t-Bu	Ħ	H	4-F	C(O)NHCH2CH3	g - \$
59	E	r-Bu	Ħ	H	4-F	$C(O)N(CH_2CH_3)_2$: **
60	Et	t-Bu	н	H	4-F	C(O)NHCH2CH2F	*
61	Er	r-Bu	H	H	(hogis) - 2	C(O)NH(i-Ba)	i 🤟
62	Et	t-Bu	\$ \$	H		C(O)NHCH2(c-Pr)	*

Compound	<u>R^{ls}</u>	8 ^{2a}	<u>R3</u>	<u>R</u> 4	8	<u>R</u> 5	m.p. (°C)			
63	Et	r-Bu	H	H		CH ₂) ₂ 3NEtC(O)-	*			
64	Br	ı-Bu	H	H		2-RCH ₂) ₂ JN(e-Pr)C(O)-				
65	Et	r-Bu	H	H		H ₂) ₂ 3N(n-Pt)C(O)-	* * *			
66	Et	t-Bu	H	H	and the second s	2)2JN(c-pentyl)C(O)-	*			
67	Et	<i>t</i> -Bn	H	н	e de la companya de La companya de la co	C(O)NHOCH ₃	*			
68	Et	t-Bu	н	H	4-CH ₃	C(O)NHCH2CH3	*			
69	Et	ı-Bu	H	H	4-CH ₃	C(O)N(CH2CH3)2	*			
70 (Ex. 4)	Et	1-Bu	н	Н	6-F	CO ₂ CH ₂ CH ₃	**			
71	Et	<i>t</i> -Bu	H	н	6-F	CO ₂ (t-Bn)	§ • * •			
72	Et	i-Bu	H	н	6-F	CO2CH2CH3	***			
73	Et	i-Pr	H	H	6-F	CO ₂ CH ₂ CH ₃	*			
74	Et	e-Pr	H	H	6-F	CO ₂ CH ₂ CH ₃	· .*			
75	Et	⊱Bu	H	H	6-F, 4-OCH ₃	CO ₂ CH ₃	*			
76	Et	t-Bu	H	Н	6-F, 4-OCH ₃	CO ₂ CH ₂ CH ₃	**			
77	Et	7-Bu	H	H	6-F, 4-OCH ₃	CO ₂ (i-Pt)	*			
78	CH=CH ₂	t-Bu	Н	H		CO ₂ CH ₂ CH ₃	*			
79	CH ₂ CH ₂ F	t-Bu	\mathbf{H}	H	4.	$CO_2CH_2CH_3$	· *			
80 (Ex. 1)	Et	r-Bu	H	H		CO ₂ CH ₂ CH ₃	**			
81	Et	t-Bu	11	H	وخجن	CO ₂ CH ₃	***			
82 (Ex. 2)	Et	t-Bu	H	H	44	CO2CH2CH2F	**			
83	Et	s-Bu	H	H	بيب	CO ₂ CH ₂ CF ₃	· 🐯			
84	Ei	1-Bu	Ħ	H	, many	CO ₂ CH ₂ C≅CH	*			
85	Et	r-Bu	H	H	(see)	CO ₂ CH ₂ CH=CH ₂	**			
86	Et	r-Bu	H	H	200	CO ₂ (CH ₂) ₃ CH ₃	**			
87	Et	t-Bu	H	H	2-CH ₃	CO ₂ CH ₃	* *			
88	Et	t-Bu	Ħ	\mathbf{H}	2-CH ₃	CO ₂ CH ₂ CH ₃	*			
89	Et	t-Bu	H	н	4 F	CO2CH2CH3	* **			
90	Et	t-Bu	H	H	2-CH ₃	CO ₂ (CH ₂) ₂ CH ₃	*			
91	Et	1-Bu	H	H	2-CH ₃	CO ₂ CH ₂ CH ₂ F	*			
92	Et	1-Bu	H	H	2-CH ₃	$CO_2(i-Pr)$	· **			
93	Et	i-Bu	\mathbf{H}	11	2-CH ₃	CO ₂ CH ₂ (c-Pr)	*			
94	Et	t-Bu	H	\mathbf{H}	2-CH ₃	CO2CH2CH=CH2	*			
95	Et	r-Bu	H	H	4-OEt	CO ₂ CH ₂ CH ₃	* *			
96	Et	<i>t</i> -Bu	Ħ	H	4-OMe	CO2CH2CH3	88			
97	Et	t-Bu	H	Н	2-OMe	CO2CH2CH3	4.56			
98	Ei	t-Bu	H	H	Seest.	CO ₂ (t-Bu)	***			
99	Et	t-Bu	H	H	4-CH3	CO ₂ CH ₂ CH ₃	4 %			

101

Compound	R ^{la}	<u>R^{2a}</u>	<u>R</u> 3	<u>R</u> 4	<u>R</u> .	<u>R</u> 5	m.p. (*C)
100	E	r-Bu	н	H	4-CH ₃	CO ₂ (i-Pr)	*
101	Et	t-Bu	H	H	4-OMe	CO ₂ (<i>i</i> -Pr)	: \$ \$*
102	Me	t-Bu	H	\mathbf{H}	·()	C(=NOH)CH3	189-191
103	Me	CF3	H	H	, in the second	C(=NOH)CH3	189-191
104	Me	t-Bu	\mathbf{H}	H	6-OMe	C(=NOH)CH ₃	196-197
105	Me	r-Bu	H	H	. Tower).	C(=NOCH ₂ CH ₃)CH ₃	94-95
106	Me	r-Bu	H	H	إمتنعر	C(=NOCH3)CH3	125-126
107	Me	t-Bu	H	H	(minus)	C(=NOH)CH3	*
108	Et	t-Bu	H	H	المعنى	C(≠NOH)CH3	172-174
109	Me	r-Bu	H	H	4-17	C(=NOH)CH3	165-167
110	<i>i-</i> Pr	t-Bu	H	H	e distribution de la constantia	C(=NOH)CH ₃	*.
111	Me	r-Bu	Н	H		2-f(CH ₂) ₂ fC(=NOH)-	*
112	CH ₂ CF ₃	<i>t</i> -Bn	H	H	SECTION SECTION	C(=NOH)CH3	145-147
113	n-Pr	r-Bu	H	H	1,000	C(=NOH)CH3	173-175
114	CH=CH ₂	/-Bu	H	H	e Spirite	C(=NOH)CH ₃	*
115	$\mathrm{CH_2CH_2F}$	t-Bu	H	H	*coor,	C(=NOH)CH3	*
116	Me	t-Bu	н	H		2-{(CH ₂) ₃ }C(=NOH)-	*
117	CH2CH=CH2	t-Bu	Ħ	\mathbf{H}	ege.	C(=NOH)CH3	*
118	Mc	t-Bu	H	H		C(=NOH)CH2CH3	188-190
119	n-Bu	t-Bu	H	H	State of a	C(=NOH)CH3	161-163
120	Me	s-Bu	H	H	(sass)	C(=NOH)CH3	139-141
121	Me	r-Bu	H	H	7	CN	95-99
122	Ei	t-Bu	\mathbf{H}	H	Service Control	C(O)CH ₃	106-108
123	Ме	r-Bu	H	H	4-F	C(O)CH ₃	124-127
124	Me	t-Bn	H	Н	Success	$S(O)_2NH(i-Pr)$	*
125	Me	t-Bu	H	H	. بينيد.	S(O)2NH(CH2)3CH3	* * *
126	CH ₂ CF ₃	r-Bu	H	H	Vane.	C(O)CH3	108-109
127	CH=CH ₂	t-Bu	\mathbf{H}	H	States St	C(O)CH ₃	. % . :
128	CH ₂ CH ₂ F	<i>1-</i> Bu	H	H		C(O)CH ₃	***
129	CH ₂ CH=CH ₂	r-Bu	H	H	, , , , , , , , , , , , , , , , , , , 	C(O)CH3	***
130	Et	t-Bu	H	H	Section 1	scr ₃	**
131	Et	t-Bu	H	H	(Personal)	SCH ₃	*
132	$\mathrm{CH}_2\mathrm{CH}_2\mathrm{F}$	r-Bu	H	H	See.	SCF ₃	*
133	Et	t-Bu	H	H	444.	S(O) ₂ CH ₃	* *
134	Et	r-Bu	H	Н	o es e.	S(O) ₂ CF ₃	+ [36] + (10) + (10)
135	Et	r-Bu	Ħ	H	منتد	S(O)CF3	**
136	Et	t-Bu	H	H	(page)	OCH ₂ CH ₃	***

102									
Compound	<u>gla</u>	<u> R^{2a} I</u>	3	<u>R</u> 4	8	<u>R</u> 5	<u>m.p. (°C)</u>		
137	Eit	r-Bn	H	H	4	O(CH ₂) ₃ CH ₃	*		
138	Et	t-Bu	H	Ħ	and the second	O(CH ₂) ₂ CH ₂ F	a, ≋ , a, 11		
139	Et	r-Bu	H	H	News'	CN	\$ -1		
140	Έt	<i>t</i> -Bu	H	H	6-F	CN	153-154		
141	Ei	1-Bu	n c	(O)Me	4-Me	CO ₂ CH ₂ CH ₃	**		
236 (Ex. 18)	Et	<i>t</i> -Bu	H	Н	4-F	C(O)N(CH ₃) ₂	***		
242	Et.	<i>t-</i> Bu	H	H	6-F	C(O)N{CH2CH2CH2CH2}	%], 4		
243	Eŧ	r-Bu	Н	H	6-F	C(O)N{CH2CH2OCH2CH2}			
244	Et	<i>t-</i> Bu	H	H	6-F	C(O)N(CH ₃)OCH ₃	*:		
248	Et	<i>t</i> -Bu	H	Ħ	4,6-di-F	$CO_2(i\text{-Pi})$	*		
249	Et	r-Bu	H	H	4,6-di-F	CO ₂ CH ₂ CH ₂ CH ₃	***		
250	Et	1-Bu	H	H	4,6-di-F	CO ₂ CH ₂ CH ₃	№ . ¹		
251	Bt	t-Bu	H	н	4,6-di-F	C(O)NHCH3	*		
252	Et	t-Bu	H	H	4,6-di-F	C(O)NHCH2CH3	***		
253	Bt	1-Bu	H	H	4,6-di-F	C(O)N(CH2CH3)2	*		
254	Et	t-Bu	H	\mathbf{H}	4,6-di-F	C(O)N(CH3)CH2CH3	**		
270	Et	t-Bu	H	H	4,6-di-F	C(O)N(CH ₃) ₂	* -		
271	Bt	t-Bu	H	H	6-F	$C(O)NH_2$. 🦠		
272	Et	(-Bu	H	H	olius .	OCF3	3		
273	Et	<i>1</i> -Bu	Н	H	- 	OCH(CH ₃) ₂	*		
275	Et	t-Bu	F	H	6-F	C(O)NECH2CH3	*.		
276 (Ex. 21)	Et	t-Bu	F	H	6-F	$C(O)N(CH_3)_{\mathfrak{I}}$	***		
285	Et	<i>t</i> -Bu	H	H	(phot),	C(O)N(CH ₃)CH ₂ CH=CH ₂	- % - 2		
286	Et	r-Bu	H	H		C(O)N[CH2CH=CHCH2}	3 € ² :		
294	Et	1-Bu	H	H	6-F	C(8)N(CH ₃) ₂	. %		
295	Et	1-Me-c-Pr	H	H	species.	CO ₂ CH ₂ CH ₃	****		
296	Et	t-Me-c-Pr	H	\mathbf{H}	6-F	CO ₂ CH ₂ CH ₃	*.		
297	Et	<i>t</i> -Bu	H	H	6-OCH ₃	OCH ₃	***		
298	Et	r-Bu	H	H	4-OCH ₃	OCH ₃	· 😻 ·		
299	Et	I-Me-c-Pr	33	H	6-F	$C(O)N(CH_3)_2$	*		
300	Et	i-Me-c-Pr	H	H	6-F	C(O)NHCH2CH3	e 🗯 , :		
301	Et	I-Me-c-Pr	H	H	6-F	C(O)N{CH2CH=CHCH2}	* * *		
302	Et	1-Me-c-Pr	H	H	6-F	C(O)NHCH ₂ C≡CH	*		
303	Et	1-Me-c-Pr	H	H	900g. 33	$C(O)N(CH_3)_2$	***		
304	Et	1-Me-c-Pr	H	H		C(O)N{CH2CH=CHCH2}	* * *		
306	Et	1-Me-c-Pr	H	H	1966	C(O)NHCH ₂ CH ₃	*		
311	H	1-Bu	H	H	- - 1444 - 1	C(=NOH)CH ₃	- 80		

103

Compound	Rla	<u>R^{2a}</u>	<u>R3</u>	<u>R</u> 4	<u>R</u>	85	<u>m.p. (°C)</u>
329	Et	r-Bu	H	H	, <u></u>	C(O)NHCH2SCH2CH3	*
332	Ei	t-Bu	H	н	<u></u>	OCHF ₂	*, '
333	Eŧ	<i>t</i> -Bu	H	н	s ię -	OCF2CHF2	% *,
338	Et	1-Bu	H	H	6-F	OCF3	₩ ₁ .
347	Et	i-Bu	H	H	6-F	OCH3	8 . ³
348	Et	<i>t</i> -Bu	H	H	6-F	OCH ₂ CH ₃	*
349	Et	r-Bu	H	H.	6-F	C(S)NHCH2CH3	*
350	Et	t-Bu	\mathbf{H}	H	6-F	OCH ₂ CH ₂ F	***
351	H.,	r-Bu	H	H	e Alexandra	C(O)NHCH2CH3	*

^{*} See Index Table K for ¹H NMR data.

INDEX TABLE B

5 R can be one or more substituents; a dash ("--") indicates no substituents.

Compound	Rla	<u>R^{2a}</u>	\mathbb{R}_3	<u>R4</u>	2	<u>R</u> 5	$m.p.(^{\circ}C)$
352 (Ex. 25)	Et	-(CH ₃) ₂ Ct(CH	2)2}-	Ħ	6-F	C(O)N(CH ₃) ₂	**
333	Et	-(CH3)2CHCH	2)2}-	Ħ	6-F	C(O)NHCH2CH3	3 % :

^{*} See Index Table K for ¹H NMR data.

INDEX TABLE C

Compound	Rin	R ^{2a}	\aleph_3	\mathfrak{X}	<u>u</u>	Y	Z	<u>R</u> Š	m.p. (°C)
142	Et	t-Bu	H	CH	N	CH	CH	$C(O)N\{CH_2CH=CHCH_2\}$	*
143 (Ex. 8)	Βŧ	1-Bu	н	N	CH	CH	CH	CO ₂ CH ₃	**

^{**} See synthesis example for ¹H NMR data

^{**} See synthesis example for ¹H NMR data.

					TO THE			
Compound	Rla	<u>R^{2a} R³</u>	\mathbf{r}	<u>U</u>	Y	Z	<u>R</u> 5	<u>m.p. (°C)</u>
144	Et	t-Bu H	N	CH	СН	CH	C(O)NHCH2CH3	*
145	Ĕŧ	r-Bu H	N	CH	CH	CH	C(O)N(CH2CH312	***
146	Et	t-Bu H	N	CH	CH	CH	C(O)NH(c-Pr)	*
147	Et	r-Bu H	N	CH	CH	CH	C(O)NHCH2C≡CH	*
148	Et	1-Bu H	CH	N	CCH ₃	CH	CO ₂ CH ₃	**
149	Et	<i>t</i> -Bu H	CH	N	CCH ₃	CH	C(O)NHCH2CH3	*
150	Et	t-Bu H	N	CH	CCH_3	СН	C(O)NHCH2CH3	* .
151 (Bx. 10)	Eŧ	t-Bu H	СН	N	CH	CH	CO2CH3	- 465
152	Ei	r-Bu H	СН	N	CH	CH	C(O)NHCH2CH3	*
153	Et	4-Bu H	CH	N	CH	СН	C(O)N(CH2CH3)2	*
154	Eŧ	t-Bu H	CH	N	CH	CH	C(O)NH(I-Bu)	**
155	Et	/-Bu H	CH	N	CH	СН	C(O)NHCH2(c-Pt)	*
156 (Ex. 11)	Et	t-Bu H	СН	N	CH	СН	C(O)N(CH ₃) ₂	**
157	Et	t-Bu H	CH	N	\mathbf{CH}	CH	CO ₂ CH ₂ CH ₃	***
158	Es	t-Bu H	N	CH	CH	CH	C(O)N(CH ₃)CH ₂ CN	- 88
159	Ei	1-Bu H	CH	N	CH	CH	C(O)N(CH ₃)CH ₂ CH=CH ₂	**
160	Et	t-Bn H	СН	N	CH	CH	$C(O)N(CH_3)CH_2C \equiv CH$	* *
161	Вt	t-Bu H	CH	N	CH	CH	C(O)NH(CH ₂) ₂ OCH ₃	**
162 (Ex. 9)	Et	/-Bu H	N	CH	CH	СН	C(O)N(CH ₃) ₂	***
163	Et	<i>t-</i> Bu H	N	CH	CH	CH	C(O)N(CH ₃)CH ₂ CH=CH ₂	**
164	Me	t-Ba H	N	N	CH	CH	C(=NOH)CH3	196-197
165	Et	r-Bu H	N	N	СН	СН	OCH ₃	1 × 💖
166	Et	t-Bu H	N	N	COCH ₃	CH	OCH ₃	*
167	Et	€Bu H	N	N	COCH ₃	СН	SCH ₂ F	*
245	Et	r-Bu H	N	CH	CH	CH	$C(O)N[CH_2CH_2CH_2CH_2]$	*
246	Et	1-Bu H	N	CH	CH	СН	$C(O)N(CH_3)OCH_3$	*
247	£ŧ	<i>i</i> -Bn H	N	CH	CH	CH	C(O)N[CH2CH2OCH2CH2]	*
255 (Ex. 19)	Ei	r-Bu H	СН	CH	N	CH	CO ₂ CH ₂ CH ₃	**
256	Et	1-Bu H	CH	СН	CH	N	C(O)N(CH ₃) ₂	*
257	Et	<i>t-</i> Bu H	СН	CH	CH	N	C(O)NHCH2CH3	* * .
258	Et	<i>t</i> -Bu H	CH	СН	N	СН	C(O)N(CH ₃) ₂	. *
259	Et	t-Bu H	CH	СН	N	CH	C(O)NHCH2CH3	*
260	Et	<i>t</i> -Bu H	CH	СН	N	СН	C(O)N[CH2CH=CHCH2}	86
261 (Ex. 20)	Et	1-Bu H	CH	CH	N	CH	$C(O)N(CH_2CH_3)_2$	**
262	Eŝi	rBu H	СН	CH	М	СН	$C(O)N(CH_2CH=CH_2)_2$	* *
263	Ei	t-Bu H	CH	CH	N	СН	C(O)N(CH ₃)CH ₂ CH ₃	*· *·
264	Eŧ	r-Bu H	СН	СН	N	CH	C(O)NHCH ₂ C≡CH	*

105

Compound	<u>g la</u>	R ^{2a}	\mathbb{R}^3	I	U	Y	Z	<u>R</u> ∑	m.p. C°Cì
265	Et	t-Bu	H	N	сосн3	CH	CH	CO_2CH_3	*
266	Et	r-Bu	H	N	COCH3	CH	CH	C(O)NHCH2CH3	· *
274	Et	s-Bu	F	N	СН	CH	CH	C(O)N(CH ₃) ₂	*
277	Et	t-Bu	H	N	CF	CH	СН	C(O)N(CH ₃) ₂	89
278	Et	<i>t</i> -Bu	H	N	CF	CH	CH	C(O)NHCH2CH3	*
279	Et	t-Bu	H	N	CF	CH	CH	C(O)NHCH2C≡CH	*
280	Et	t-Bu	Н	N	CF	CH	CH	C(O)N(CH ₃)CH ₂ CH ₃	*
281	Et	1-Bu	H	N	CF	CH	CH	C(O)N(CH2CH=CHCH2}	***
282	Et	1-Bu	H	CH	CH	CH	N	C(O)N{CH2CH=CHCH2}	ak.
283	Et	<i>t</i> -Bu	н	СН	СН	СН	N	C(O)NHCH2C≡CH	2 %
284	Et	t-Bu	H	CH	CH	CH	N	C(O)NHCH2CH2F	*
287	Et	t-Bu	Н	N	CH	N	CH	C(O)N(CH ₃) ₂	***
288	Et	r-Bu	Ħ	N	CH	N	CH	C(O)NHCH2CH3	**
289	Et	t-Bu	H	N	CH	N	СН	C(O)NHCH2C≡CH	*
290	Et	t-Bu	ы	N	СН	N	CH	C(O)N{CH2CH=CHCH2}	, *
291	Ei	<i>t</i> -Bu	Ħ	N	СН	N	CH	C(O)NHCH2CF3	* .
312	Me	<i>t-</i> Bu	Ħ	N	CH	CH	CH	CO ₂ CH ₃	*
313	Me	t-Bu	H	N	CH	CH	СН	CO ₂ CH ₂ CH ₃	**
314	Me	1-Bu	H	N	СН	CH	CH	$C(O)N(CH_2CH_3)_2$	*
315	Me	1-Bu	H	N	CH	CH	CH	C(O)NH(c-Pr)	36 - 5
316	Me	t-Bu	$^{\rm H}$	N	СН	CH	CH	C(O)NHCH2C≢CH	: 🕸 .
317	Me	1-Bu	н	N	CH	CH	СН	CO ₂ CH ₂ C≢CH	*
318	Me	<i>t</i> -Bu	H	N	CH	CH	CH	C(O)NHCH2CH=CH2	*
334	Et	r-Bu	B	CH	N	CH	CH	C(8)N(CH ₃) ₂	170-172

^{*} See Index Table K for ¹H NMR data.

INDEX TABLE D

^{**} See synthesis example for ¹H NMR data.

106

Compound	<u>R</u> 1a	<u>R^{2a}</u>	R	R2	<u>m.p. (°C)</u>
305	Et	/·Bu	6-F	$C(S)N(CH_3)_2$	90-92
346	Et	/-Bu	64F	CO ₂ CH ₂ CH ₃	***

* See Index Table K for ¹H NMR data.

INDEX TABLE E

Compound	Rib	<u>R2b</u>	1	u	<u>R</u> 5	m.p.(°C)
168 (Ex. 12)	Et	t-Bu	CH	CH	$C(O)N(CH_2CH_3)_2$	**
169	CF ₃	t-Bu	CH	CH	$C(O)N(CH_2CH_3)_2$	*
170	CF ₃	r-Bu	CH	CH	C(O)NHCH2CH3	*:
171	CF3	<i>t</i> -Bu	CH	CH	C(≈NOH)CH ₃	*
218	Cl	t-Bu	CH	CH	C(O)N(CH2CH3)2	
219	Cl	<i>t-</i> Bu	CH	CH	C(O)NHCH2CH3	· 🐒 ·
220	Br	t-Bu	CH	CH	$C(O)N(CH_2CH_3)_2$	₩ ,:
221 (Ex. 14)	Br	r-Bu	CH	CH	C(O)NHCH2CH3	**
232	Et	r-Bu	CH	N	C(O)N(CH ₃) ₂	163-165
233	Et	t-Bu	CH	N	C(O)NHCH2CH3	141143
234	Et	t-Bu	CH	N	$C(O)N(CH_2CH_3)_2$	90-91
235	Et	r-Bu	CH	N	C(O)N(CH ₃)CH ₂ CH ₃	103-105
330	Et	r-Bu	N	CH	C(O)N(CH ₃) ₂	159~160

^{*} See Index Table K for ¹H NMR data.

INDEX TABLE F

R can be one or more substituents; a dash ("-") indicates no substituents.

Compound	RIP	R^{2b}	r	U	<u>R</u>	R_2	<u>m.p. (°C)</u>
172	CF_3	Et	CH	CH		C(O)NHCH2CH3	

^{5 **} See synthesis example for ¹H NMR data.

PCT/US2003/032968

Compound	Rlb	R^{2b}	I	Ü	R	<u>R</u> 2	m.p. (°C)
179	Me	i-Pr	СН	CH		C(O)CH ₃	116-118
180	Me	i-Pr	CH	CH	: \$88.	C(=NOH)CH3	192-193
181	Et	t-Bu	CH	CH	بنيند	C(O)NHCH2CH3	160-163
182 (Ex. 13)	Et	r-Bu	CH	СН	9444	$C(O)N(CH_2CH_3)_2$	**
183	Me	1-Bu	CH	CH	(Same)	C(O)NHCH2CH3	. 8 8 - 2
184	Me	1-Bu	CH	СН	Agency .	C(O)N(CH2CH3)2	*
185	n-Pr	<i>i-</i> Bn	СН	CH	(contact)	C(O)N(CH2CH3)2	*
186	Et	ı-Bu	CH	CH	rees:	CO ₂ CH ₂ CH ₃	***
187	Et	i-Bu	CH	CH	, see ;	C(O)CH ₃	**
188	Et	t-Bu	CH	CH	-	C(=NOH)CH3	*,
189	Me	r-Bu	CH	CH	-	O(iPt)	*
190	Me	r-Bu	CH	CH	âm.	OCH ₂ CH ₃	-
191	CF ₃	t-Bu	CH	CH	-	C(O)N(CH2CH3)2	**
192	CF3	<i>i-</i> Bu	CH	CH	desp.	C(O)NHCH2CH3	*
193	Et	t-Bu	СН	CF	بين	C(O)NHCH2CH3	- 100 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m
194	Et	<i>t-</i> Bu	CH	CF	(Separat	C(O)NHCH3	*
222 (Ex. 16)	Et	<i>t-</i> Bu	CH	CF	diseas).	$C(O)N(CH_3)_2$	**
223	Es	<i>1-</i> Bu	CH	CF		$C(0)N(CH_2CH_3)_2$	179-180
224	Bt	1-Bu	CH	CF	e. Grante	C(O)N(CH ₃)CH ₂ CH ₃	138-139
238	Et	t-Bu	CH	N	÷.	CO ₂ CH ₂ CH ₃	*
239	Et	r.Bu	CH	CH	4-17	C(O)N(CH ₃) ₂	170-171
240	Et	t-Bu	CH	CH	4-F	C(O)N(CH2CH3)2	163-165
241 (Ex. 17)	Et	t-Bu	CH	CH	4-P	C(O)NHCH2CH3	**
292	Et	z-Bu	N	CH	e e ge e	C(O)N(CH ₃) ₂	148-149
293	Et	1-Bu	CH	N	Server 1	C(O)N(CH ₃) ₂	150-151
344	Me	1-Bu	CH	СН	6-F	C(O)N(CH ₃) ₂	201-202
345	Me	<i>t-</i> Bu	CH	CH	6-F	C(O)NHCH ₂ CH ₃	203-204

^{*} See Index Table K for ${}^{1}\mathrm{H}$ NMR data.

INDEX TABLE G

 $[\]ensuremath{^{3\%}}$ See synthesis example for $\ensuremath{^{1}H}$ NMR data.

WO 2004/035545 PCT/US2003/032965

108

R can be one or more substituents; a dash ("-") indicates no substituents.

Compound	<u>R1b</u>	<u>R²a</u>	$\underline{\mathbf{T}}$	R	<u>w</u>	m.p. (°C)
195	Me	t-Bu	CH		C(=NOH)CH3	4
196	Me	r-Bu	CH	. انسیر	C(O)CH3	· .w.
197	Me	t-Bu	CH	arke 200	CO ₂ CH ₃	. **
198	Me	<i>t-</i> Bu	CH	:	C(O)NHCH2CH3	***
199	Me	t-Bu	СН	, .	$C(O)N(CH_2CH_3)_2$	9 14
200	Me	<i>j-</i> Bu	CH	, special	C(O)NHCH2CH2F	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
201	Me	<i>l</i> -Bu	CH	10 000	C(O)NHCH2CF3	- 1 -3 €
202	Me	<i>t</i> -Bu	CH	same.	C(O)NHCH2CH=CH2	*
203	Me	e-Bu	CH	News C	C(O)NHCH2C≡CH	**
204	Eŧ	t-Bu	CH	-	CO ₂ CH ₂ CH ₃	**
205	Ei	1-Bu	СН	, (22 -	C(O)N(CH ₂ CH ₃) ₂	**
206	Æt	t-Bu	CH	10 44 0	C(O)NHCH2CF3	**
207	Et	r-Bu	CH	بيسي	C(O)NHCH2CH=CH2	*
209	Et	r-Bu	CH	(pass)	C(O)NHCH2CH2F	**
210	Et	r-Bu	CH	Sec. S.	C(O)NHCH2CH3	*
211	Et	r-Bu	CH	, seems	C(O)NH(I-Bu)	*
212	Et	1-Bu	CH	[# ** *]	C(O)NHCH ₂ (c-Pr)	*
213	Et	t-Bu	N	(case)	C(O)NHCH2CH3	**
214	Et	r-Bu	N	بإحمد	C(O)N(CH2CH3)2	*
215	Et	t-Bu	N	oui _t	C(O)NHCH2(c-Pr)	*
216	Et	i-Bn	N	"Associa"	C(O)NH(t-Bu)	*
217	Et	<i>t</i> -Bu	N	- soft	C(O)NHCH2C≡CH	*
225	Et	t-Bu	CH	6-F	C(O)N(CH ₃) ₂	4.
226	Et	<i>i-</i> Bu	CH	6-F	C(O)NHCH2CH3	*
227	Me	r-Bu	CH	.wwj.	C(O)N(CH ₃)CH ₂ CH ₃	* *
228	Et	t-Bu	CH	esse.	C(O)N(CH ₃) ₂	*
229	Et	t-Bu	CH	ser Se ries e	C(O)N(CH ₃)CH ₂ CH ₃	*
230	Et	<i>រ-</i> Bu	cH	6-F	$C(O)N(CH_2CH_3)_2$	4. 🌺
231	Et	t-Bu	CH	6-F	C(O)N(CH ₃)CH ₂ CH ₃	*
237	1-Bu	Et	CH	6-F	C(O)NHCH2CH=CH2	₩.,
319	Et	<i>t-</i> Bu	CH		C(O)NHCH2C≡CH	8
326	Me	r-Bu	CH	(kận)	C(O)N(CH ₃) ₂	*
327	1-Bu	Et	CH	6-F	$C(O)N(CH_2CH=CH_2)_2$	***
* Ses I	ndex Table	K for ¹ H	NMR dat	u.		

INDEX TABLE H

R can be one or more substituents; a dash ("-") indicates no substituents.

Compound	Rla	$\mathbb{R}^{2\mathbf{a}}$	Ric	R	<u>R</u> 5	<u>m.p. (°C)</u>
267 (Ex. 22)	Et	<i>t</i> -Bu	H	6-F	CO ₂ CH ₂ CH ₃	**
268 (Ex. 23)	Et	t-Bu	H	6-F	C(O)N(CH ₃) ₂	**
269	Et	t-Bu	Н	6-F	C(O)NHCH2CH3	*
307	Et	r-Bu	H	6-F	$C(O)N(CH_3)CH_2CH_3$	* : ***
308	Et	t-Bu	H	6-F	C(O)N(CH ₂ CH ₃) ₂	*
309	Et	t-Bu	H	6-3	C(O)N{CH2CH2CH2CH2}	**
310	Et	t-Bu	\mathbf{H}	6.F	C(O)N{CH2CH=CHCH2}	· %
331	Et	t-Bu	H	6-F	C(O)N{CH2CH2CH2CH2CH2CH2}	**

* See Index Table K for ¹H NMR data...

5 ** See symbosis example for ¹H NMR data.

INDEX TABLE 1

R can be one or more substituents; a dash ("-") indicates no substituents.

Compound	RIb	<u>R^{2b}</u>	Ric	R	<u>R</u> 5	m.p. (°C)
335	Et	<i>1</i> -8 n	H	8-F	CO2CH2CH3	***
336 (Ex. 24)	Et	<i>t</i> -Bu	H	6-F	C(O)NHCH2CH3	***
340	Et	r-Bu	Ħ	6-F	C(O)N{CH2CH=CHCH2}	*
341	Et	t-Bu	H	6-F	C(O)NICH2CH2CH2CH2I	8
342	Ei	r-Bu	H	6-F	C(O)N(CH ₃)CH ₂ CH ₃	· *
343	Et	1-Bu	H	6-F	C(O)N(CH3)2	**

* See Index Table K for ¹H NMR data.

** See synthesis example for $^{\mathrm{I}}\mathrm{H}$ NMR data.

WO 2004/035545 PCT/US2003/032968

110

INDEX TABLE J

R can be one or more substituents; a dash ("—") indicates no substituents.

Compound	<u>Rîb</u>	<u>R</u> 2b	R	<u>R</u> 5	<u>m.p. (°C)</u>
354	Et	c~pentyi	(dia)	C(O)N\CH2CH=CHCH2\}	*
355	Et	c-pentyl	(spinor)	C(O)N(CH3)2	*
356	Et	c-pentyl	çanı,	C(O)NHCH2CH3	
357	Et	i-Pr	(dans)	C(O)NHCH2CH3	8 %
358 (Ex. 27)	Fi	i-Pr	entro.	C(O)N(CH ₃) ₂	**
359	Et	i-Pr	in.	C(O)N{CH2CH=CHCH2}	**
360 (Ex. 28)	Ei	6Bu	Water 1	CO ₂ CH ₂ CH ₃	**
361	Et	t-Bu	6-F	C(0)N(CH ₃) ₂	***
362	Et	s-Bu	6-F	C(O)NCH2CH3	*
363	Ei	s-Bu	6-F	C(O)N{CH2CH=CHCH2}	% * ≠
364	Et	t-Bu	- all ine	C(O)N(CH ₃) ₂	*.
365 (Ex. 29)	Et	∕-Bu	ine.	C(O)NCH ₂ CH ₃	**
366	Et	r-Bu	go Sweet	C(O)N{CH2CH=CHCH2}	*
367 (Ex. 26)	Et	i - \mathbf{P}_{E}	Sec.	CO ₂ CH ₂ CH ₃	**

^{*} See Index Table K for ¹H NMR data.

5

INDEX TABLE K

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ²
1:	å 8.56 (dd, 1H), 8.00 (br s, 1H, NH), 7.24 (m, 2H), 6.54 (s, 1H), 5.92 (m, 1H), 5.82 (m, 1H), 4.57 (q, 2H), 4.42 (m, 2H), 4.20 (m, 2H), 1.42 (t, 3H), 1.28 (s, 9H).
3	8 8.82 (m, 1H), 7.92 (br s, 1H, NH), 7.62 (m, 1H), 7.24 (s, 1H), 6.56 (br s, 1H, NH), 6.42 (s, 1H), 4.56 (m, 4H), 3.78 (m, 2H), 1.46 (t, 3H), 1.33 (s, 9H).
4	8 8.42 (m, iH), 7.92 (br s, 1H, NH), 7.24 (m, 2H), 6.42 (s, iH), 4.52 (q, 2H), 3.42 (m, 4H), 1.46 (m, 6H), 1.30 (s, 9H).
\$	å 8.80 (m, 1H), 7.92 (br s, 1H, NH), 7.64 (m, 1H), 7.24 (m, 1H), 6.56 (t, 1H, NH), 6.51 (s, 1H), 4.56 (q, 2H), 4.06 (m, 2H), 1.46 (t, 3H), 1.33 (s, 9H).
8	5 8.20 (m, 1H), 8.12 (s, 1H), 8.08 (br s, 1H), 6.57 (s, 1H), 6.30 (s, 1H), 3.50 (m, 2H), 1.51 (t, 3H), 1.43 (t, 3H), 1.33 (s, 9H), 1.25 (t, 3H).

^{**} See synthesis example for ¹H NMR data.

Capel

No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
ÿ	δ 8.40 (dd, 1H), 8.14 (br s, 1H, NH), 7.22 (m, 2H), 6.56 (s, 1H), 5.86 (m, 1H), 5.28 (m, 2H), 4.58 (g, 2H), 3.08 (s, 3H), 1.44 (t, 3H), 1.34 (s, 9H).
10	8 8.52 (dd, 1H), 7.92 (br s, 1H, NH), 7.22 (m, 2H), 6.58 (s, 1H), 4.60 (q, 2H), 4.02 (m, 2H), 3.20 (s, 3H), 2.40 (s, 1H), 1.44 (t, 3H), 1.34 (s, 9H).
11	8 8.68 (dd, 1H), 7.84 (br s, 1H, NH), 7.62 (m, 1H), 7.24 (m, 1H), 6.60 (s, 1H, NH), 6.49 (s, 1H), 4.60 (q, 2H), 3.62 (m, 4H), 3.39 (s, 3H), 1.44 (t, 3H), 1.34 (s, 9H).
12	8 8.40 (dd, 1H), 8.00 (br s, 1H, NH), 7.24 (m, 2H), 6.56 (s, 1H), 4.60 (q, 2H), 3.42 (m, 2H), 3.00 (s, 3H), 1.44 (t, 3H), 1.34 (m, 1H), 1.28 (s, 9H), 1.00 (d, 6H).
13	8.62 (dd, 1H), 7. 92 (br s. 1H, NH), 7.66 (m, 1H), 7.24 (m, 1H), 6.48 (s, 1H), 6.32 (br s, 1H, NH), 4.56 (q, 4H), 3.48 (q, 2H), 3.00 (m, 1H), 1.31 (t, 3H), 1.28 (t, 3H), 1.24 (d, 6H).
14	8 8.40 (dd, 1H), 8.00 (br s, 1H, NH), 7.18(m, 2H), 6.51 (s, 1H), 4.56 (q, 2H), 3.10 (s, 3H), 3.08 (m, 1H), 3.03 (s, 3H), 1.41 (s, 3H), 1.24 (d, 6H).
15	8 9.00 (s, 1H, NH), 8.60 (dd, 1H), 7.12 (m, 2H), 6.55 (s, 1H), 4.16 (q, 2H), 3.42 (m, 4H), 3.03 (m, 1H), 1.41 (t, 3H), 1.24 (d, 6H).
16	8 8.40 (br s. 1H), 8.20 (m, 1H), 7.20 (dd, 2H), 6.52 (s. 1H), 4.57 (q, 2H), 3.40 (m, 2H), 3.00 (s, 3H), 1.44 (t, 6H), 1.34 (s, 9H).
17	δ 8.38 (dd, 1H), 8.02 (br s, 1H, NH), 7.12 (m, 2H), 6.60 (s, 1H), 4.57 (q, 2H), 3.60 (t, 2H), 3.20 (t, 3H), 3.00 (s, 3H), 1.60 (m, 2H) 1.44 (t, 6H), 1.34 (s, 9H).
18	6 8.40 (dd, 1H), 8.04 (br s, 1H, NH), 7.18(m, 2H), 6.41 (s, 1H), 4.56 (q, 2H), 3.10 (s, 3H), 3.08 (m, 1H), 3.03 (s, 3H), 1.96 (m, 1H) 1.34 (t, 3H), 0.94 (m, 4H).
19	8 8.34 (dd, 1H), 8.06 (br s, 1H, NH), 7.18(m, 2H), 6.41 (s, 1H), 4.56 (q, 2H), 3.40 (m, 4H), 1.96 (m, 1H) 1.34 (t, 3H), 1.24 (m, 6H) 0.94 (m, 4H).
20	δ 8.82 (dd, 1H), 8.00 (br s, 1H, NH), 7.18(m, 2H), 6.41 (s, 1H), 6.24 (br s, 1H, NH) 4.56 (q, 2H), 3.42 (g, 2H), 1.96 (m, 1H) 1.34 (t, 3H), 1.26 (t, 3H), 0.98 (m, 2H), 0.80 (m, 2H).
21	8 8.36 (br s, 1H, NH), 8.20 (dd, 1H), 7.12(m, 2H), 6.42 (s, 1H), 5.80 (m, 1H), 5.24 (m, 2H), 4.56 (q, 2H), 4.16 (m, 2H), 3.10 (s, 3H), 1.98 (m, 1H) 1.42 (t, 3H), 1.26 (t, 3H) 0.94 (m, 2H), 0.80 (m, 2H).
22	8 9.00 (br s. 1H, NH), 8.62 (dd, 1H), 7.18(m, 2H), 6.56 (s. 1H), 4.18 (q, 2H), 3.10 (s. 3H), 3.06 (s. 3H), 2.42 (d, 2H), 1.98 (m, 1H) 1.46 (t. 3H), 0.98 (d. 6H).
1.00	and the control of th

- 23 8 9.00 (br s, 1H, NH), 8.60 (dd, 1H), 7.18(m, 2H), 6.52 (s, 1H), 4.14 (q, 2H), 3.40 (m, 4H), 2.44 (d, 2H), 1.98 (m, 1H) 1.46 (t, 3H), 1.20 (t, 6H), 0.98 (d, 6H).
- 25 5 9.00 (br s, 1H, NH), 8.60 (dd, 1H), 7.62 (m, 1H), 7.20 (m, 2H), 6.60 (s, 1H), 5.82 (m, 1H), 5.28 (m, 2H), 4.12 (q, 2H), 3.00 (s, 3H), 2.52 (d, 2H), 1.98 (m, 1H) 1.48 (t, 3H), 1.00 (d, 6H).
- 31 8 8.60 (1H, NH), 8.00 (d, 1H), 7.90 (dd, 1H), 7.40 (m, 2H), 6.71 (s, 1H), 6.20 (t, 1H, NH), 5.22 (m, 2H), 3.42 (m, 2H), 1.35 (s, 9H), 1.22 (t, 3H).
- 32 8 9.23 (1H, NH), 7.64 (dd, 1H), 7.30 (m, 2H), 7.23 (dd, 1H), 6.91 (s, 1H), 5.33 (m, 2H), 3.62 (q, 2H), 3.20 (q, 2H), 1.35 (s, 9H), 1.22 (t, 3H), 1.10 (t, 3H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
33	69.00 (1H, NH), 8.00 (m, 2H), 7.45 (m, 2H), 6.71 (s, 1H), 6.42 (t, 1H, NH), 5.82 (d, 1H), 3.46 (q, 2H), 1.36 (t, 3H), 1.28 (s, 9H).
34	8 9.20 (1H, NH), 8.00 (m, 1H), 7.60 (dd, 1H), 7.20 (m, 2H), 6.91 (dd, 1H), 6.87 (s, 1H), 5.82 (d, 1H), 3.56 (q, 2H), 3.20 (q, 2H), 1.35 (s, 9H), 1.22 (t, 6H).
35	δ 8.80 (s, 1H, NH), 8.00 (d, 1H), 7.90 (d, 1H), 7.42 (m, 2H), 6.70 (s, 1H), 6.40 (br s, 1H, NH), 4.82 (m, 4H), 4.18 (m, 2H), 1.31 (s, 9H), 1,18 (t, 3H).
36	8 9.20 (s, 1H, NH), 7.70 (dd, 1H), 7.32 (m, 2H), 6.92 (dd, 1H), 6.80 (s, 1H), 4.82 (m, 4H), 3.48 (m, 4H), 1.31 (s, 9H), 1.25 (t, 6H).
37	8 8.20 (br s, 1H, NH), 7.86 (m, 3H), 7.45 (dd, 1H), 7.40 (t, 1H), 6.45 (s, 1H), 5.82 (d, 1H), 5.00 (d, 1H), 4.06 (m, 2H), 1.28 (s, 9H).
38	6 8.06 (m, 3H), 7.45 (m, 2H), 6.55 (s, 1H), 5.87 (d, 1H), 5.00 (d, 1H), 3.86 (m, 4H), 1.28 (s, 9H).
30	ô 8.26 (br s, 1H, NH), 7.86 (m, 3H), 7.45 (m, 2H), 6.65 (s, 1H), 6.40 (br s, 1H, NH), 5.82 (d, 1H), 5.00 (d, 1H), 2.80 (m, 1H), 1.28 (s, 9H), 0.90 (m, 2H), 0.60 (m, 2H).
44	8 7.44 (m, 3H), 7.12 (dd, 1H), 6.76 (s, 1H), 4.60 (q, 2H), 2.86 (m, 1H), 1.42 (t, 3H), 1.38 (s, 9H), 0.86 (m, 2H), 0.68 (m, 2H).
45	δ 7.44 (m, 3H), 7.12 (dd, 1H), 6.70 (s, 1H), 4.60 (m, 4H), 3.82 (m, 2H), 1.42 (t, 3H), 1.38 (s, 9H).
46	ô 7.42 (m, 3H), 7.10 (dd, 1H), 6.80 (s, 1H), 6.52 (s, 1H, NH), 5.92 (m, 1H), 5.20 (m, 2H), 4.60 (m, 2H), 4.02 (m, 2H), 1.42 (t, 3H), 1.38 (s, 9H).
47	8 7.42 (m, 3H), 7.10 (dd, 1H), 6.80 (s, 1H), 6.52 (s, 1H, NH), 4.60 (m, 2H), 4.20 (m, 2H), 2.20 (m, 1H), 1.42 (t, 3H), 1.38 (s, 9H).
48	(Acetone-d ₆) 5 1.18 (i, 3Fl), 1.3 (s, 9H), 1.4 (i, 3H), 3.0 (s, 3H), 3.4 (m, 2H), 4.5 (q, 2H), 6.9 (s, 1H), 7.1 (i, 1H), 7.4 (d, 1H), 7.8 (d, 1H), 7.9 (s, 1H), 9.5 (br s, 1H).
49	(Acetone-d ₆) 8 1.29 (s, 9H), 1.39 (t, 3H), 3.0 (m, 6H), 4.5 (q, 2H), 6.8 (s, 1H), 7.1 (d, 1H), 7.4 (t, 1H), 7.8 (d, 1H), 7.9 (s, 1H), 9.5 (br s, 1H).
50	(DMSO-d ₆) & 1.13 (t, 3H), 1.29 (s, 9H), 3.3 (q, 2H), 5.31 (d, 2H), 7.0 (s, 1H), 7.4 (t, 1H), 7.59 (d, 1H), 7.89 (d, 1H), 8.16 (s, 1H), 8.47 (t, 1H), 10.3 (br s, 1H).
51	8 7.82 (s, 1H), 7.80 (dd, 1H), 7.62 (s, 1H, NH), 7.40 (m, 2H), 6.48 (s, 1H), 6.00 (s, 1H, NH), 4.58 (q, 2H), 4.24 (m, 1H), 1.42 (t, 3H), 1.38 (s, 9H), 1.26 (d, 3H), 1.20 (d, 3H).
52	8 8.02 (d, 1H), 7.72 (d, 1H), 7.50 (s, 1H), 7.42 (t, 1H), 6.45 (s, 1H), 6.05 (s, 1H), 4.56 (q, 2H), 3.58 (m, 2H), 2.95 (t, 2H), 1.44 (t, 3H), 1.34 (s, 9H).
53	8 8.02 (d, 1H), 7.68 (d, 1H), 7.65 (s, 1H), 7.40 (t, 1H), 6.54 (s, 1H), 6.28 (s, 1H), 4.15 (s, 3H), 3.56 (d of t, 1H), 2.94 (t, 2H), 1.34 (s, 9H).
54	8 7.85 (d, 1H), 7.57 (t, 1H), 7.39 (d, 1H), 6.22 (s, 1H), 4.29 (s, 1H), 3.99 (s, 3H), 3.18 (s, 2H), 1.22 (s, 9H).
56	(Acetone-d ₀) 5 1.2 (t, 3H), 1.30 (s, 9H), 3.4 (q, 2H), 5.0-5.1 (m, 1H), 5.17 (dd, 2H), 6.0-6.1 (m,

1H), 6.96 (s, 1H), 7.4 (t, 1H), 7.6 (d, 1H), 7.7 (br s, 1H), 7.9 (d, 1H), 8.2 (s, 1H), 9.5 (br s, 1H).

8 8 20 (m, 1H), 7.96 (m, 1H), 7.80 (br s, 1H, NH), 7.20 (m, 1H), 6.49 (s, 1H), 4.62 (q, 2H), 3.50

(q, 2H), 1.42 (t, 3H), 1.32 (s, 9H), 1.26 (t, 3H).

1.28 (s, 9H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
59	8 9.32 (br s, 1H, NH), 7.66 (m, 1H), 7.18 (dd, 1H), 7.00 (t, 1H), 6.69 (s, 1H), 4.62 (g, 2H), 3.60 (g, 2H), 3.34(g, 2H), 1.42 (t, 6H), 1.32 (s, 9H), 1.26 (t, 3H).
60	δ 8.30 (br s, 1H, NH), 8.16 (m, 1H), 7.90 (m, 1H), 7.20 (t, 1H), 6.59 (s, 1H), 4.62 (m, 4H), 3.80 (m, 2H), 1.42 (t, 3H), 1.32 (s, 9H).
61	δ 8.32 (s, 1H, NH), 7.86 (m, 2H), 7.58 (m, 2H), 6.58 (s, 1H), 6.30 (s, 1H, NH), 4.58 (q, 2H), 3.24 (t, 2H), 1.92 (m, 1H), 1.42 (t, 3H), 1.31 (s, 9H), 0.96 (d, 6H).
62	8.38 (s, 1H, NH), 7.86 (m, 2H), 7.58 (m, 2H), 6.58 (s, 1H), 6.30 (s, 1H, NH), 4.58 (q, 2H), 3.28 (m, 2H), 1.92 (m, 1H), 1.42 (t, 3H), 1.31 (s, 9H), 1.00 (m, 1H), 0.66 (m, 2H), 0.32 (m, 2H).
63	8 7.78 (s, 1H), 7.73 (d, 1H), 7.58 (d, 1H), 7.58 (t, 1H), 6.53 (s, 1H), 4.57 (q, 2H), 4.43 (s, 2H), 3.67 (d, 2H), 1.45 (t, 3H), 1.34 (s, 9H) 1.27 (t, 3H).
64	8 7.72 (d, 1H), 7.69 (s, 1H), 7.57 (d, 1H), 7.58 (t, 1H), 6.53 (s, 1H), 4.57 (q, 2H), 4.37 (s, 2H), 2.94 (m, 1H), 1.45 (t, 3H), 1.34 (s, 9H) 0.97 (m, 2H).
65	8 7.80 (s, 1H), 7.73 (d, 1H), 7.71 (d, 1H), 7.47 (t, 1H), 6.54 (s, 1H), 4.59 (q, 2H), 4.42 (s, 2H), 3.58 (t, 2H), 1.66 (m, 2H), 1.45 (t, 3H), 1.35 (s, 9H), 0.95 (t, 3H).
66	8 7.75 (d, 1H), 7.66 (s, 1H), 7.55 (d, 1H), 7.48 (t, 1H), 6.52 (s, 1H), 4.76 (m, 1H), 4.57 (q, 2H), 4.39 (s, 2H), 2.00 (m, 2H), 2.70 (m, 6H), 1.45 (t, 3H), 1.35 (s, 9H).
67	8 9.58 (s, 1H), 7.87 (s, 1H), 7.86 (d, 1H), 7.15 (t, 1H), 6.71 (s, 1H), 4.34 (q, 2H), 3.62 (s. 3H), 1.12 (t, 3H), 1.11 (s, 9H).
68	8 9,24 (s, 1H), 7.57 (s, 1H), 7.55 (d, 1H), 7.04 (d, 1H), 6.70 (s, 1H), 6.70 (br s, 1H), 4.45 (q, 2H), 3.33 (q, 2H), 2.28 (s, 3H), 1.30 (t, 3H), 1.32 (t, 3H), 1.12 (s, 9H).
69	8 8.23 (s, 1H), 7.58 (d, 1H), 7.22 (s, 1H), 7.17 (d, 1H), 6.62 (s, 1H), 4.56 (q, 2H), 3.8-3.6 (br m, 2H), 3.16 (br q, 2H), 2.20 (s, 3H), 1.43 (t, 3H), 1.33 (s, 9H), 1.25 (t, 3H), 1.06 (t, 3H).
71	8 8.86 (dd, 1H), 7.80 (m, 1H), 7.16 (m, 1H), 6.42 (s, 1H), 4.58 (q, 2H), 1.51 (s, 9H), 1.42 (t, 3H), 1.32 (s, 9H).
72	8 9.04 (br s, 1H, NH), 8.78 (dd, 1H), 7.62 (m, 1H), 7.20 (t, 1H), 6.60 (s, 1H), 4.18 (g, 2H), 2.46 (d, 2H), 1.98 (m, 1H) 1.48 (t, 3H), 1.02 (d, 6H).
73	5 8.62 (dd, 1H), 7, 92 (br s, 1H, NH), 7.66 (m, 1H), 7.24 (m, 1H), 6.48 (s, 1H), 4.56 (q, 4H), 4.18 (q, 2H), 3.00 (m, 1H), 1.31 (t, 3H), 1.28 (t, 3H), 1.24 (d, 6H).
74	8 8.52 (dd, 1H), 7, 80 (br.s., 1H, NH), 7.62 (m, 1H), 7.28 (m, 1H), 6.48 (s. 1H,), 4.56 (q. 4H), 4.20 (q. 2H), 3.00 (m, 1H), 1.31 (t. 3H), 1.28 (t. 3H), 1.24 (d. 6H).
75	8 8,66 (d, 1H), 7.26 (s, 1H), 6.78 (d, 1H), 6.47 (s, 1H), 4.57 (q, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 1.44 (t, 3H), 1.33 (s, 9H).
76	8 8.57 (d, 1H), 7.60 (s, 1H), 6.78 (d, 1H), 6.47 (s, 1H), 4.56 (q, 2H), 4.36 (q, 2H), 3.89 (s, 3H), 1.44 (t, 3H), 1.38 (t, 3H), 1.33 (s, 9H).
ng.	5 8.55 (d, 1H), 7.57 (s, 1H), 6.78 (d, 1H), 6.47 (s, 1H), 5.22 (septet, 1H), 4.56 (q, 2H), 4.36 (q, 2H), 3.89 (s, 3H), 1.47 (t, 3H), 1.34 (d, 6H), 1.33 (s, 9H).

 $5\;8.00\;(m,\,4H),\,7.45\;(i,\,1H),\,6.61\;(s,\,1H),\,5.86\;(d,\,1H),\,4.92\;(d,\,1H),\,4.40\;(q,\,2H),\,1.36\;(c,\,3H),\,4.90\;(d,\,2H),\,2.91\;(d,\,2H)$

9H), 1.44 (t, 3H), 1.33 (s, 9H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ¹¹
79	8 8.00 (s, 1H), 8.00 (dd, 1H), 7.90 (d, 1H), 7.42 (t, 1H), 6.54 (s, 1H), 6.40 (br s, 4.92 (m, 4H), 4.40 (q, 2H), 1.36 (t, 3H), 1.28 (s, 9H).
81	(DMSO-d _G) & 1.29 (s, 9H), 1.3 (t, 3H), 3.88 (s, 3H), 4.4 (q, 2H), 7.0 (s, 1H), 7.5 (t, 1H), 7.7 (d, 1H), 8.0 (d, 1H), 8.4 (s, 1H), 10.3 (br s, 1H).
83	δ 8.04 (d, 1H), 7.80 (d, 1H), 7.42 (t, 1H), 6.52 (s, 1H), 4.73 (q, 2H), 4.58 (m, 2H), 1.42 (t, 3H), 1.38 (s, 9H).
84	δ 8.34 (s, 1H), 8.64 (d, 1H), 7.82 (d, 1H), 7.42 (t, 1H), 6.62 (s, 1H), 4.90 (d, 2H), 4.62 (q, 2H), 2.52 (t, 1H), 1.42 (t, 3H), 1.38 (s, 9H).
85	8 8.24 (s, 1H), 8.06 (d, 1H), 7.82 (dd, 1H), 7.42 (t, 1H), 6.58 (s, 1H), 6.00 (m, 1H), 5.32 (m, 2H), 4.80 (d, 2H), 4.60 (q, 2H), 2.52 (t, 1H), 1.42 (t, 3H), 1.38 (s, 9H).
86	8 8.24 (s, 1H), 8.06 (d, 1H), 7.82 (dd, 1H), 7.42 (t, 1H), 6.58 (s, 1H), 4.60 (d, 2H), 4.32 (t, 2H), 1.76 (m, 2H), 1.42 (t, 3H), 1.38 (s, 9H).
67	8 7.90 (d, 1H), 7.72 (d, 2H), 7.55 (s, 1H), 7.30 (t, 1H), 6.50 (s, 1H), 4.56 (q, 2H), 3.91 (s, 3H), 2.52 (s, 3H), 1.44 (t, 3H), 1.34 (s, 9H).
88	8 7.92 (d, 1H), 7.71 (d, 2H), 7.52 (s, 1H), 7.30 (t, 1H), 6.47 (s, 1H), 4.57 (q, 2H), 4.37 (q, 2H), 2.52 (s, 3H), 1.42 (t, 3H), 1.40 (t, 3H), 1.34 (s, 9H).
89	8 8.00 (m, 2H), 7, 70 (br s, 1H, NH), 7.18 (t, 1H), 6.48 (s, 1H,), 4.55 (q, 4H), 4.42 (q, 2H), 1.31 (m, 6H), 1.24 (s, 9H).
90	8 7.93 (d, 1H), 7.73 (d, 1H), 7.53 (s, 1H), 7.30 (t, 1H), 6.47 (s, 1H), 4.57 (q, 2H), 4.27 (t, 2H), 2.53 (s, 3H), 1.80 (m, 2H), 1.44 (t, 2H), 1.35 (s, 9H), 1.04 (t, 3H).
91	8 7.95 (d, 1H), 7.75 (d, 1H), 7.75 (s, 1H), 7.32 (t, 1H), 6.48 (s, 1H), 4.80 (m, 1H), 4.65-4.50 (m, 5H), 4.59 (q, 2H), 2.53 (s, 3H), 1.45 (t, 3H), 1.35 (s, 9H).
92	8 7.90 (d, 1H), 7.68 (d, 1H), 7.52 (s, 1H), 7.30 (t, 1H), 6.47 (s, 1H), 5.23 (septet, 1H), 4.57 (q, 2H), 2.52 (s, 3H), 1.42 (t, 2H), 1.37 (d, 6H), 1.35 (s, 9H).
93	8 7.92 (d, 1H), 7.73 (d, 1H), 7.54 (s, 1H), 7.31 (t, 1H), 4.57 (q, 2H), 4.15 (d, 2H), 2.53 (s, 3H), 1.44 (t, 2H), 1.35 (s, 9H), 1.29 (m, 1H), 0.64 (m, 2H), 0.36 (m, 2H).
94	8 7.93 (d, 1H), 7.75 (d, 1H), 7.53 (s, 1H), 7.31 (t, 1H), 6.47 (s, 1H), 6.05 (dd of t, 1H), 5.42 (d, 1H), 5.25 (d, 1H), 4.82 (m, 2H), 4.57 (q, 2H), 2.53 (s, 3H), 1.44 (t, 2H), 1.35 (s, 9H).
95	6 7.86 (d, 1H), 7.78 (d, 1H), 7.63 (s, 1H), 6.97 (d, 1H), 6.45 (s, 1H), 4.56 (g, 2H), 4.36 (q, 2H), 4.11 (q, 2H), 1.40 (m, 9H), 1.32 (s, 9H).
96	8 7.86 (dd, 1H), 7.59 (s, 1H), 6.97 (d, 1H), 6.45 (s, 1H), 4.56 (q, 2H), 4.36 (q, 2H), 3.91 (s, 3H), 1.44 (t, 3H), 1.39 (t, 3H), 1.33 (s, 9H).
97	8 8.60 (d, 1H), 8.43 (s, 1H), 7.62 (d, 1H), 7.20 (t, 1H), 6.44 (s, 1H), 4.60 (q, 2H), 4.42 (q, 2H), 3.94 (s, 3H), 1.46 (t, 3H), 1.42 (t, 3H), 1.34 (s, 9H).
1 - 15	

99 5 7.92 (s, 1H), 7.80 (d, 1H), 7.65 (s, 1H), 7.24 (d, 1H), 6.47 (s, 1H), 4.56 (g, 2H), 4.37 (q, 2H), 2.57 (s, 3H), 1.44 (t, 3H), 1.40 (t, 3H), 1.33 (s, 9H).

6 8.04 (d, 1H), 7. 94 (br s, 1H, NH), 7.80 (m, 2H), 7.40 (t, 1H), 6.48 (s, 1H), 4.58 (q, 4H), 1.61 (s,

3H), 1,38 (s, 9H).

Cmpd	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
<u>No.</u> 100	8 7.85 (d, 1H), 7.83 (s, 1H), 7.64 (s, 1H), 7.24 (d, 1H), 6.47 (s, 1H), 5.25 (septet, 1H), 4.56 (q, 2H), 2.57 (s, 3H), 1.44 (t, 3H), 1.38 (d, 6H), 1.33 (s, 9H)
101	8 8.30 (s, 1H), 7.87 (d, 1H), 7.77 (s, 1H), 6.92 (d, 1H), 6.58 (s, 1H), 5.21 (septet, 1H), 4.56 (q, 2H), 3.84 (s, 3H), 1.42 (i, 3H), 1.32 (d, 6H), 1.28 (s, 9H).
107	(DMSO-d ₆) 8 1.0 (s, 9H), 2.0 (s, 3H), 3.38 (s, 3H), 3.8 (s, 3H), 5.4 (s, 1H), 7.2 (d, 1H), 7.3 (t, 1H), 7.4 (s, 1H), 7.5 (d, 1H), 11.3 (s, 1H).
110	δ \$.7 (br s, 1H), 7.83-7.88 (m, 2H), 7.36-7.38 (m, 2H), 6.6 (s, 1H), 4.7 (m, 1H), 2.3 (s, 1H), 1.55 (s, 3H), 1.53 (s, 3H), 1.4 (s, 9H).
111	8 7.96 (d, 1H), 7.55 (d, 1H), 7.47 (s, 1H), 7.34 (r, 1H), 6.45 (s, 1H), 4.16 (s, 1H), 3.04 (m, 4H), 3.18 (s, 2H), 1.34 (s, 9H).
114	δ 11.20 (s, 1H), 10.30 (s, 1H), 8.14 (s, 1H), 7.94 (m, 1H), 7.74 (m, 1H), 7.40 (m, 2H), 7.11 (s, 1H), 5.68 (d, 1H), 4.90 (d, 1H), 2.15 (s, 3H), 1.32 (s, 9H).
115	δ 8.00 (m, 2H), 7, 64 (s, 1H), 7,40 (m, 2H), 6.54 (s, 1H), 4.91 (m, 4H), 2.28 (s, 3H), 1,32 (s, 9H)
116	8 7.88 (d, 1H), 7.65 (d, 1H), 7.47 (s, 1H), 7.27 (t, 1H), 6.48 (s, 1H), 4.16 (s, 1H), 2.81 (t, 2H), 2.71 (t, 2H), 1.90 (m, 2H), 3.18 (s, 2H), 1.34 (s, 9H).
117	(DMSO-d _G) § 11.2 (s, 1H), 10.2 (br s, 1H), 8.0 (s, 1H), 7.7 (d, 1H), 7.35–7.38 (m, 3H), 7.0 (s, 1H), 6.0 (m, 1H), 5.1 (d, 2H), 4.9 (d, 1H), 2.51 (s, 3H), 1.29 (s, 9H).
124	8 8.04 (m, 2H), 7. 60 (dd, 1H), 7.46 (t, 2H), 6.64 (s, 1H), 4.16 (s, 3H), 3.40 (m, 1H), 1.32 (s, 9H), 1.13 (d, 6H).
125	8 8.36 (s, 1H), 8.16 (dd, 1H), 7, 94 (s, 1H), 7.60 (m, 1H), 7.52 (t, 1H), 6.54 (s, 1H) 4.15 (s, 3H), 3.00 (m, 2H), 1.35 (m, 4H), 1.28 (s, 9H), 0.90 (t, 3H).
127	\$ 8.14 (s, 1H), 7. 94 (m, 3H), 7.64 (m, 1H), 7.44 (t, 1H), 6.61 (s, 1H), 5.88 (d, 1H), 4.93 (d, 1H), 2.65 (s, 3H), 1.32 (s, 9H).
128	8 8.10 (m, 1H), 8.00 (m, 1H), 7.90 (br s, 1H), 7.60 (dd, 1H), 7.42 (t, 1H), 6.56 (s, 1H), 4.71 (m, 4H), 2.62 (s, 3H), 1.32 (s, 9H).
129	(DMSO-d ₆) \$ 10.3 (br s, 1H), 8.0 (d, 1H), 7.7 (d, 1H), 7.5 (t, 1H), 7.0 (s, 1H), 6.0 (m, 1H), 5.1 (d, 2H), 4.9 (d, 1H), 2.58 (s, 3H), 1.29 (s, 9H).
130	8 7.82 (s, 1H), 7.80 (dd, 1H), 7.62 (s, 1H, NH), 7.40 (d, 2H), 6.48 (s, 1H), 4.58 (q, 2H), 1.42 (t, 3H), 1.38 (s, 9H).
131	8 8.42 (s, 1H, NH), 8.20 (dd, 1H), 8.00 (s, 1H, NH), 7.74 (d, 1H), 7.40 (t, 1H), 6.68 (s, 1H), 4.58 (q, 2H), 2.92 (s, 3H), 1.42 (t, 3H), 1.38 (s, 9H).
132	8 8.40 (s, 1H, NH), 8.20 (dd, 1H), 7.80 (s, 1H, NH), 7.74 (d, 1H), 7.40 (t, 1H), 6.68 (s, 1H), 4.40 (m, 4H), 1.38 (s, 9H).
133	8 8.42 (s, 1H, NH), 8.20 (dd, 1H), 8.00 (s, 1H, NH), 7.74 (d, 1H), 7.40 (i, 1H), 6.68 (s, 1H), 4.58 (g, 2H), 3.22 (s, 3H), 1.42 (i, 3H), 1.38 (s, 9H).
134	5 \$.22 (s, 1H, NH), 8.20 (dd, 1H), 8.00 (s, 1H, NH), 7.74 (d, 1H), 7.40 (t, 1H), 6.68 (s, 1H), 4.58 (q, 2H), 1.42 (t, 3H), 1.38 (5, 9H).
135	8 7.86 (s, 1H), 7.80 (dd, 1H), 7.60 (s, 1H, NH), 7.40 (d, 2H), 6.48 (s, 1H), 4.58 (q, 2H), 1.42 (t,

3H), 2.22 (m, 1H), 1.46 (t, 3H), 1.31 (s, 9H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
136	8 7.62 (s, 1H, NH), 7.36 (m, 2H), 7.08 (dd, 1H,), 6.86 (dd, 1H), 6.60 (dd, 1H), 6.42 (s, 1H), 4.58 (q, 2H), 4.00 (q, 2H), 1.42 (m, 6H), 1.31 (s, 9H).
137	8 7.60 (s. 1H, NH), 7.364(m, ZH), 7.08 (dd, 1H), 6.86 (dd, 1H), 6.60 (dd, 1H), 6.40 (s. 1H), 4.58 (q, 2H), 4.00 (i, 2H), 1.90 (m, 2H), 1.52 (m, 2H), 1.42 (t, 3H), 1.31 (s. 9H), 0.97 (s. 3H).
138	8 7.62 (s, 1H, NH), 7.36 (m, 1H), 7.28 (m, 1H), 7.00 (m, 1H), 6.60 (dd, 1H), 6.40 (s, 1H), 4.58 (g, 2H), 4.24 (t, 2H), 2.20 (m, 2H), 1.52 (m, 2H), 1.42 (t, 3H), 1.31 (s, 9H).
139	8.01 (s, 1H), 7.80 (m, 2H), 7.22 (m, 2H), 7.20 (t, 1H), 6.52 (s, 1H), 4.56 (q, 2H), 1.43 (t, 3H), 1.33 (s, 9H).
141	8 7.92 (s, 1H), 7.80 (d, 1H), 7.65 (s, 1H), 7.24 (d, 1H), 6.47 (s, 1H), 4.56 (q, 2H), 4.37 (q, 2H), 2.57 (s, 3H), 1.44 (t, 3H), 1.40 (t, 3H), 1.33 (s, 9H).
142	8 8.60 (s, 1H, NH), 8.46 (s, 1H), 8.40 (d, 1H), 7.20 (d, 1H), 6.60 (s 1H), 5.90 (m, 1H), 5.80 (m, 1H), 4.54 (q, 2H), 4.40 (m, 2H), 4.20 (m, 2H), 1.42 (t, 3H), 1.31 (s, 9H).
144	8 8.42 (d, 1H), 7.92 (m, 2H), 7.80 (s, 1H, NH), 6.60 (s, 1H), 4.60 (q, 2H), 3.40 (q, 2H), 1.40 (t, 3H), 1.31 (s, 9H).
145	8 8.50 (s, 1H, NH), 8.22 (d, 1H), 7.80 (t, 1H), 7.30 (d, 1H), 6.60 (s, 1H), 4.60 (q, 2H), 3.56 (q, 2H), 3.32 (q, 2H), 1.43 (s, 9H), 1.30 (t, 3H), 1.15 (t, 3H).
146	\$ 8.39 (d, 1H), 8.20 (s, 1H, NH), 7.92 (d, 1H), 7.84 (t, 1H), 7.80 (s, 1H), 6.60 (s, 1H), 4.60 (q, 2H), 2.96 (m, 1H), 1.40 (t, 3H), 1.31 (s, 9H), 0.88 (m, 2H), 0.68 (m, 2H).
147	5 8.42 (m, 2H), 7.92 (m, 3H, NH), 6.60 (s, 1H), 4.60 (q, 2H), 4.20 (m, 2H), 2.22 (m, 1H), 1.46 (t, 3H), 1.31 (s, 9H).
148	8 8.62 (s, 1H), 8.32 (s, 1H), 7.42 (s, 1H), 6.60 (s, 1H), 4.60 (q, 2H), 3.96 (s, 3H), 2.52 (s, 3H), 1.46 (t, 3H), 1.31 (s, 9H).
149	8 8.52 (s, 1H), 8.32 (s, 1H), 7.42 (s, 1H), 6.60 (s, 1H), 6.42 (t, 1H, NH), 4.60 (q, 2H), 3.40 (q, 2H), 2.52 (s, 3H), 1.46 (t, 3H), 1.31 (s, 9H).
150	δ 8,22 (s, 1H), 8.18 (s, 1H), 7.82 (s, 1H), 7.64 (t, 1H), 6.57 (s, 1H), 4.60 (q, 2H), 3.40 (q, 2H), 2.52 (s, 3H), 1.46 (t, 3H), 1.31 (s, 9H).
152	8 8.60 (s, 1H, NH), 8.38 (d, 2H), 7.60 (d, 1H), 6.58 (s, 1H), 6.40 (t, 1H, NH), 4.58 (q, 2H), 3.60 (q, 2H), 1.45 (t, 3H), 1.31 (s, 9H), 1.28 (t, 3H).
153	8 8.60 (s, 1H, NH), 8.38 (d, 2H), 7.04 (d, 1H), 6.58 (s, 1H), 4.58 (q, 2H), 3.60 (q, 2H), 3.28 (q, 2H), 1.40 (t, 3H), 1.31 (s, 9H), 1.28 (t, 3H).
154	8 \$.60 (s, 1H, NH), 8.40 (d, 2H), 7.60 (d, 1H), 6.58 (s, 1H), 6.40 (t, 1H, NH), 4.58 (q, 2H), 3.40 (t, 2H), 1.96 (m, 1H), 1.31 (s, 9H), 1.28 (t, 3H), 1.4 (d, 6H).
155	8 8.60 (s, 1H, NH), 8.40 (d, 2H), 7.60 (d, 1H), 6.58 (s, 1H), 6.30 (t, 1H, NH), 4.58 (q, 2H), 3.36 (t, 2H), 1.90 (m, 1H), 1.31 (s, 9H), 1.30 (t, 3H), 1.28 (t, 3H), 0.62 (m, 2H), 0.36 (m, 2H).
157	8 8.80 (s, 1H), 8.42 (d, 1H), 7.64 (d, 1H), 6.58 (s, 1H), 4.58 (q, 2H), 4.26 (q, 2H), 1.45 (m, 6H), 1.21 (s, 9H).
158	8 8.42 (m, 2H), 7.92 (m, 3H, NH & aromatic), 6.60 (s, 1H), 4.60 (q, 2H), 4.20 (m, 2H), 3.12 (s.

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
159	8.68 (s, 1H, NH), 8.40 (d, 2H), 7.04 (d, 1H), 6.61 (s, 1H), 5.86 (m, 1H), 5.22 (m, 2H), 4.58 (q, 2H), 4.20 (d, 1H), 3.80 (d, 1H), 3.08 (s, 3H), 1.42 (t, 3H), 1.31 (s, 9H)
160	8 8.80 (s, 1H, NH), 8.40 (d, 1H), 7.14 (dd, 1H), 6.61 (s, 1H), 4.58 (q, 2H), 4.40 (d, 1H), 4.00 (d, 1H), 3.17 & 3.06 (2xs, 3H), 2.20 (m, 1H), 1.42 (t, 3H), 1.31 (s, 9H).
161	8 8.68 (s, 1H, NH), 8.52 (s, 1H), 8.40 (d, 1H), 7.46 (d, 1H), 6.80 (t, 1H, NH), 6.61 (s, 1H), 4.58 (q, 2H), 3.60 (m, 4H), 3.40 (s, 1H), 1.48 (t, 3H), 1.31 (s, 9H).
163	8 8.46 (m, 2H, NH and 1 aromatic), 7.80 (m, 1H), 7.32 (dd, 1H), 6.55 (s, 1H), 5.82 (m, 1H), 5.34 (m, 2H), 4.60 (q, 2H), 4.20 (d, 1H), 3.92 (d, 1H), 3.09 (2 s, 3H), 1.43 (t, 3H), 1.30 (s, 9H).
165	8.40 (d, 1H), 8.36 (br s, 1H), 6.58 (s, 1H), 6.48 (d, 1H), 4.60 (q, 2H), 3.99 (s, 3H), 1.45 (q, 3H), 1.30 (s, 9H).
166	8 8.20 (br 5, 1H), 6.51 (s, 1H), 5.80 (s, 1H), 4.60 (q, 2H), 3.96 (s, 6H), 1.45 (q, 3H), 1.30 (s, 9H).
167	8 8.16 (br s, 1H), 6.56 (s, 1H), 6.02 (s, 1H), 5.00 (br s, 1H), 4.54 (q, 2H), 3.90 (s, 3H), 1.30 (s, 9H), 1.26 (t, 3H).
169	8.74 (br 5, 1H), 7.87 (s, 1H), 7.82 (d, 1H), 7.82 (d, 1H), 7.6 (m, 1H), 7.3 (t, 1H), 7.1 (d, 1H) 3.5 (m, 2H), 3.3 (m, 2H), 1.66 (s, 9H), 1.2 (m, 3H), 1.1 (m, 3H).
170	8 8.83 (br s, 1H), 8.14 (s, 1H), 7.84-7.88 (m, 2H), 7.56 (d, 1H), 7.42 (t, 1H), 6.28 (br s, 1H), 3.4 (q, 2H), 1.6 (s, 9H), 1.27 (t, 3H).
171	5 8.75 (br s, 1H), 7.86-7.89 (m, 3H), 7.36-7.39 (m, 2H), 2.3 (s, 3H), 1.66 (s, 9H).
172	8 8.0 (s, 1H), 7.99 (s, 1H), 7.92 (br s, 1H), 7.7 (d, 1H), 7.5 (d, 1H), 7.4 (t, 1H), 6.2 (m, 1H), 4.2 (q, 2H), 3.5 (m, 2H), 1.5 (t, 3H), 1.2 (t, 3H).
183	8 7.99 (s, 1H), 7.96 (s, 1H), 7.78 (d, 1H), 7.7 (br s, 1H), 7.47 (d, 1H) 7.4 (t, 1H), 6.2 (br s, 1H), 3.4 (q, 2H), 2.56 (s, 3H), 1.59 (s, 9H), 1.2 (t, 3H).
184	8 8.0 (s, 1H), 7.88 (br s, 1H), 7.6 (d, 1H), 7.4 (s, 1H), 7.3 (t, 1H), 7.0 (d, 1H), 3.5 (m, 2H), 3.3 (m, 2H), 2.55 (s, 3H), 1.6 (s, 9H), 1.3 (m, 3H), 1.1 (m, 3H).
185	δ 8.0 (s, 1H), 7.9 (br s, 1H), 7.6 (d, 1H), 7.4 (s, 1H), 7.3 (t, 1H), 7.0 (d, 1H), 3.5 (m, 2H), 3.3 (m, 2H), 2.89 (t, 2H), 1.7 (q, 2H), 1.6 (s, 9H), 1.3 (m, 3H), 1.1 (m, 3H), 0.99 (t, 3H).
186	δ 8.0 (dd, 1H), 7 98 (s, 1H), 7.94 (s, 1H), 7.79 (dd, 1H), 7.55 (br s, 1H), 7.4 (t, 1H), 4.38 (q, 2H), 2.96 (q, 2H), 1.59 (s, 9H), 1.4 (t, 3H), 1.33 (t, 3H).
187	8 8.02 (d, 1H), 8.0 (s, 1H), 7.96 (s, 1H), 7.7 (d, 1H), 7.6 (br s, 1H), 7.4 (t, 1H), 2.9 (q, 2H), 2.62 (s, 3H), 1.6 (s, 9H), 1.34 (t, 3H).
188	(DMSO-d ₆) \$ 11.2 (s, 1H), 9.6 (br s, 1H), 8.5 (s, 1H), 8.0 (d, 1H), 7.0–7.7 (m, 1H), 7.29–7.36 (m, 2H), 2.8 (q, 2H), 2.15 (s, 3H), 1.54 (s, 9H), 1.16 (t, 3H).
189	8 7.9 (s, 1H), 7.34-7.36 (m, 2H), 7.2 (t, 1H), 7.0 (dd, 1H), 6.6 (dd, 1H), 4.5 (m, 1H), 2.55 (s, 3H), 1.59 (s, 9H), 1.35 (s, 3H), 1.33 (s, 3H).
190	8 7.93 (s, 1H), 7.36-7.37 (m, 2H), 7.22 (t, 1H), 7.0 (dd, 1H), 6.6 (dd, 1H), 4.0 (q, 2H), 2.56 (s, 3H), 1.59 (s, 9H), 1.41 (t, 3H).
191	8.2 (s, 1H), 7.8 (br s, 1H), 7.59-7.62 (m, 2H), 7.39 (t, 1H), 7.15 (d, 1H), 3.5 (m, 2H), 3.3 (m,

2H), 1.6 (s, 9H), 1.2 (m, 3H), 1.1 (m, 3H).

Crupd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ²
192	ô 8,18 (s, 1H), 8.0 (s, 1H), 7.8 (br s, 1H), 7.7 (d, 1H), 7.57 (d, 1H), 7.4 (t, 1H), 6.2 (br s, 1H), 3.5 (m, 1H), 1.6 (s, 9H), 1.26 (t, 3H).
193	8 8.7 (dd, 1H), 7.94 (s, 1H), 7.65–7.7 (m, 2H), 7.15–7.22 (m, 1H), 6.2 (br s, 1H), 3.4 (m, 2H), 2.9 (q, 2H), 1.6 (s, 9H), 1.35 (t, 3H), 1.25 (t, 3H).
194	8 8.79 (dd, 1H), 7.93 (s, 1H), 7.66-7.7 (m, 1H), 7.16-7.23 (m, 1H), 6.3 (br s, 1H), 3.0 (d, 3H), 1.6 (s, 9H), 1.35 (t, 3H).
195	8 11.20 (s, 1H), 8.00 (s, 1H), 7.84 (d, 1H), 7.60 (s, 1H, NH), 7.46 (d, 1H), 7.40 (t, 1H), 2.73 (s, 3H), 2.16 (s, 3H), 1.45 (s, 9H).
196	8 8.00 (s, 1H), 7.84 (d, 1H), 7.60 (s, 1H, NH), 7.46 (d, 1H), 7.40 (t, 1H), 2.73 (s, 3H), 2.24 (s, 3H), 1.45 (s, 9H).
197	8 7.97 (s, 1H), 7.74 (d, 1H), 7.62 (s, 1H, NH), 7.46 (d, 1H), 7.40 (t, 1H), 3.40 (s, 3H), 2.73 (s, 3H), 1.45 (s, 9H).
198	8 8.00 (s, 1H), 7.84 (d, 1H), 7.60 (s, 1H, NH), 7.46 (d, 1H), 7.40 (t, 1H), 6.26 (br s, 1H, NH), 3.50 (q, 2H), 2.73 (s, 3H), 1.45 (s, 9H), 1.20 (t, 3H).
199	8 8.00 (s, 1H, NH), 7.64 (dd, 1H), 7.52 (d, 1H), 7.32 (t, 1H), 7.02 (dd, 1H), 3.50 (m, 2H), 3.28 (m, 2H), 2.71 (s, 3H), 1.45 (s, 9H), 1.22 (m, 6H).
200	5 8.00 (s, 1H), 7.84 (d, 1H), 7.60 (m, 2H, NH & aromatic), 7.40 (t, 1H), 6.56 (br s, 1H, NH), 4.69 (t, 1H), 4.53 (t, 1H), 3.80 (m, 2H), 2.73 (s, 3H), 1.45 (s, 9H).
201	8 8.00 (s, 1H), 7.84 (d, 1H), 7.60 (d, 1H, aromatic), 7.46 (s, 1H, NH), 7.36 (t, 1H), 6.46 (br s, 1H, NH), 4.18 (m, 2H), 2.73 (s, 3H), 1.45 (s, 9H).
202	5 8.00 (s, 1H), 7.84 (d, 1H), 7.80 (s, 1H, NH), 7.60 (d, 1H), 7.36 (t, 1H), 6.46 (br s, 1H, NH), 5.88 m, 1H), 5.24 (m, 2H), 4.06 (t, 2H), 2.73 (s, 3H), 1.45 (s, 9H).
203	δ 8.00 (s, 1H), 7.84 (d, 1H), 7.80 (s, 1H, NH), 7.60 (d, 1H), 7.36 (t, 1H), 6.46 (br s, 1H, NH), 4.26 (m, 2H), 2.73 (s, 3H), 1.45 (s, 9H).
204	8 8,00 (s, 1H), 7.84 (d, 1H), 7.60 (s, 1H, NH), 7.46 (d, 1H), 7.40 (t, 1H), 4.20 (q, 2H), 3.50 (q, 2H), 1.45 (s, 9H), 1.20 (m, 6H).
205	8 8.20 (s, 1H, NH), 7.64 (dd, 1H), 7.52 (d, 1H), 7.32 (t, 1H), 7.02 (dd, 1H), 3.50 (m, 2H), 3.28 (m, 2H), 3.18 (q, 2H), 1.42 (s, 9H), 1.22 (m, 9H).
206	8 8.00 (s, 1H), 7.84 (d, 1H), 7.60 (s, 1H, NH), 7.56 (d, 1H), 7.40 (t, 1H), 6.56 (br s, 1H, NH), 4.08 (m, 2H), 3.20 (q, 2H), 1.45 (s, 9H), 1.20 (t, 3H).
207	8 8.00 (s, 1H), 7.86 (s, 1H, NH), 7.80 (dd, 1H), 7.52 (d, 1H), 7.42 (t, 1H), 6.40 (t, 1H, NH), 5.92 (m, 1H), 5. 24 (m, 2H), 4.04 (m, 2H), 3.18 (q, 2H), 1.42 (s, 9H), 1.22 (t, 3H).
209	6 8.00 (s, 1H,), 7.80 (dd, 1H), 7.66 (s, 1H, NH), 7.62 (d, 1H,), 7.42 (t, 1H), 6.60 (t, 1H, NH), 4.64 (m, 1H), 4.52 (m, 1H), 3.80 (m, 2H), 3.04 (q, 2H), 1.42 (s, 9H), 1.22 (t, 3H).
210	8 8.00 (s, 1H,), 7.80 (dd, 1H), 7.66 (s, 1H, NH), 7.62 (d, 1H,), 7.42 (t, 1H), 6.20 (t, 1H, NH), 3.50 (q, 2H), 3.04 (q, 2H), 1.42 (s, 9H), 1.22 (t, 3H).
211	8 8,00 (s, 1H.), 7,90 (s, 1H, NH), 7,80 (dd, 1H), 7,62 (d, 1H.), 7,42 (t, 1H), 6,40 (t, 1H, NH), 3,20 (m, 2H), 3,04 (q, 2H), 1,80 (m, 1H), 1,42 (s, 9H), 1,22 (t, 3H).

3H), 1.33 (s, 9H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
212	8 8.00 (s, 1H ₂), 7.90 (s, 1H, NH), 7.80 (dd, 1H), 7.62 (d, 1H ₂), 7.40 (t, 1H), 6.40 (t, 1H, NH), 3.20 (m, 2H), 3.04 (q, 2H), 1.35 (s, 9H), 1.22 (t, 3H), 1.00 (m, 1H), 0.58 (m, 2H), 0.30 (m, 2H).
213	8 8.40 (d, 1H), 8.04 (s, 1H, NH), 8.00 (d, 1H), 7.82 (t, 1H), 7.60 (t 1H, NH), 3.54 (q, 2H), 3.06 (q, 2H), 1.42 (s, 9H), 1.32 (m, 6H).
214	δ 8.34 (d, 1H), 8.04 (s, 1H, NH), 7.82 (t, 1H), 7.22 (d, 1H), 3.54 (q, 2H), 3.36 (q, 2H), 3.06 (q, 2H), 1.42 (s, 9H), 1.32 (m, 9H).
215	5 8.40 (d, 1H), 8.04 (s, 1H, NH), 8.00 (m, 2H), 3.34 (q, 2H), 3.06 (q, 2H), 1.42 (s, 9H), 1.32 (t, 3H), 1.00 (m, 1H), 0.56 (m, 2H), 0.36 (m, 2H).
216	8.840 (d, 1H), 8.04 (s, 1H, NH), 7.96 (d, 1H), 7.84 (t, 1H), 7.60 (br s, 1H, NH), 3.30 (t, 2H), 3.06 (q, 2H), 1.90 9m, 1H), 1.42 (s, 9H), 1.32 (t, 3H), 1.00 (d, 6H).
217	6 8.40 (d, 1H), 8.04 (s, 1H, NH), 7.96 (m, 3H, NH & aromatic), 4.22 (m, 2H), 3.06 (q, 2H), 2.22 (m, 1H), 1.42 (s, 9H), 1.32 (t, 3H).
218	δ 8,8 (br s, 1H), 7.75 (d, 1H), 7.70 (s, 1H), 7.59 (s, 1H), 7.38 (t, 1H), 7.11 (d, 1H), 3.5 (m, 2H), 3.3 (m, 2H), 1.6 (s, 9H), 1.3 (m, 3H), 1.1 (m, 3H).
219	δ 8.77 (br s, 1H), 8.18 (s, 1H), 7.81 (d, 1H), 7.6 (s, 1H), 7.56 (d, 1H), 7.42 (t, 1H), 6.27 (br s, 1H), 3.5 (m, 2H), 1.6 (s, 9H), 1.26 (t, 3H).
220	8 8.74 (br s, 1H), 7.78 (d, 1H), 7.70 (s, 1H), 7.6 (s, 1H), 7.6 (s, 1H), 7.37 (t, 1H), 7.1 (d, 1H), 3.5 (m, 2H), 3.3 (m, 2H), 1.6 (s, 9H), 1.3 (m, 3H), 1.1 (m, 3H).
225	8.42 (iid, 1H), 7.74 (s, 1H), 7.19 (m, 2H), 3.12 (q, 3H), 3.03 (s, 3H), 3.00 (s, 3H), 1.37 (s, 9H).
226	8 8.70 (dd, 1H), 7.74 (s, 1H), 7.70 (m, 1H,), 7.20 (t, 1H), 3.42 q, 2H), 3.08 (q, 2H), 1.28 (s, 9H), 1.26 (t, 3H), 1.20 (t, 3H).
227	δ 8.45 (s, 1H), 7.64 (dd, 1H), 7.58 (s, 1H), 7.36 (t, 1H), 7.08 (d, 1H), 3.20 (m, 2H), 2.99 (s, 3H), 2.70 (s, 3H), 1.44 (s, 9H), 1.05 (t, 3H).
228	δ 8.34 (s, 1H), 7.74 (d, 1H), 7.60 (s, 1H), 7.34 (t, 1H), 7.16 (s, 1H), 3.12 (q, 2H), 3.06 (s, 3H), 3.00 (s, 3H), 1.42 (s, 9H), 1.25 (t, 3H).
229	\$ 8.20 (s, 1H.), 7.68 (dd, 1H), 7.60 (s, 1H.), 7.32 (t, 1H), 7.02 (dd, 1H), 3.32 (m, 2H), 3.28 (m, 2H), 3.10 (s, 3H), 1.45 (s, 9H), 1.22 (m, 6H).
230	8 8.40 (d. 1H), 7.80 (d. 1H), 7.22 (dd. 1H), 3.50 (m. 4H), 3.18 (q. 2H), 1.42 (s. 9H), 1.22 (m. 6H).
231	8 8.40 (d, 1H), 7.74 (s, 1H), 7.18 (m, 2H), 3.28 (m, 2H), 3.08 (q, 2H), 3.02 (s, 3H), 1.45 (s, 9H), 1.32 (c, 3H), 1.26 (c, 3H).
237	δ 8.80 (dd, 1H), 7.72 (m, 1H), 7.20 (m, 1H), 6.36 (s, 1H), 5.86 (m, 1H,), 5.22 (m, 2H), 4.10 (m, 2H), 3.08 (q, 2H), 1.35 (s, 9H), 1.32 (t, 3H).
238	8 1.3 (t, 3H), 1.4 (t, 3H), 1.6 (s, 9H), 3.0 (q, 2H), 4.4 (q, 2H), 7.6 (d, 1H), 8.0 (s, 1H), 8.3 (d, 1H), 8.6 (br s, 1H, NH), 8.8 (s, 1H).
242	8 8.6 (dd, 1H), 7.95 (br s, 1H,NH), 7.3 (m, 2H), 7.2 (m, 1H), 6.48 (s, 1H), 4.6 (m, 2H), 3.63 (m, 2H), 3.49 (m, 2H), 1.95 (m, 4H), 1.44 (t, 3H), 1.34 (s, 9H).
243	8 8.5 (dd, 1H), 7.9 (br s, 1H, NH), 7.18 (m, 2H), 6.48 (s, 1H), 4.57 (m, 2H), 3.7 (m, 8H), 1.44 (t,

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
244	8 8.75 (dd, 1H), 7.8 (br s, 1H, NH), 7.45 (m, 1H), 7.2 (m, 1H), 6.49 (s, 1H), 4.59 (m, 2H), 3.63 (s, 3H), 3.36 (s, 3H), 1.42 (t, 3H), 1.26 (s, 9H).
245	\$ 8.35 (d, 1H), 8.33 (br s, 1H, NH), 7.8 (t, 3H), 7.43(d, 1H), 6.54 (s, 1H), 4.6 (q, 2H), 3.62 (m, 4H), 2.00 (m, 4H), 1.4 (t, 3H), 1.29 (s, 9H).
246	8 8.4 (d, 1H), 8.37 (br s, 1H, NH), 7.8 (t, 1H), 7.4 (d, 1H), 6.55 (s, 1H), 4.6 (q, 2H), 3.66 (s, 3H), 3.4 (s, 3H), 1.5 (t, 3H), 1.31 (s, 9H).
247	8 8.4 (d, 1H), 8.39 (br s, 1H, NH), 7.85 (t, 1H), 7.29 (d, 1H), 6.55 (s, 1H), 4.6 (q, 2H), 3.3-4.00 (m, 8H), 1.33 (t, 3H), 1.26 (s, 9H).
248	8 8.88 (t, 1H), 7.65 (s, 1H), 6.98 (t, 1H), 6.48 (s, 1H), 5.22 (m, 1H), 4.57 (q, 2H), 1.46 (t, 2H), 1.40 (d, 6H), 1.33 (s, 9H).
249	8 8.83 (t, 1H), 7.65 (s, 1H), 6.99 (t, 1H), 6.48 (s, 1H), 4.56 (q, 2H), 4.30 (t, 2H), 1.80 (m, 2H), 1.47 (t, 2H), 1.33 (s, 9H), 1.03 (t, 3H).
250	8 8.83 (t, 1H), 7.64 (s, 1H), 6.98 (t, 1H), 6.45 (s, 1H), 4.58 (q, 2H), 4.40 (q, 2H), 1.45 (t, 3H), i.41 (t, 2H), i.33 (s, 9H).
251	8 8.83 (m, 1H), 7.62 (s, 1H), 6.98 (t, 1H), 6.55 (br s, 1H), 6.45 (s, 1H), 4.56 (q, 2H), 3.03 (d, 3H), 1.43 (t, 3H), 1.33 (s, 9H).
252	8 8.83 (m, 1H), 7.62 (s, 1H), 6.98 (t, 1H), 6.55 (br s, 1H), 6.49 (s, 1H), 4.56 (q, 2H), 3.52 (m, 2H), 1.43 (t, 3H), 1.33 (s, 9H), 1.25 (t, 3H).
253	8 8.23 (m, 1H), 7.92 (s, 1H), 6.97 (t, 1H), 6.53 (s, 1H), 4.56 (q, 2H), 3.55 (q, 2H), 3.22 (q, 2H), 1.43 (t, 3H), 1.33 (s, 9H), 1.27 (t, 3H), 1.14 (t, 3H).
254	δ 8.23 (m, 1H), 8.02 (s, 1H), 6.97 (m, 1H), 6.53 (s, 1H), 4.54 (q, 2H), 3.50 and 3.35 (q, 2H, amide isomers), 3.09 and 2.93 (s, 3H, amide isomers), 1.43 (t, 3H), 1.33 (s, 9H), 1.25 and 1.16 (t, 3H, amide isomers).
256	8 8.82 (s, 1H), 8.52 (d, 1H), 8.00 (m, 1H), 7.72 (s, 1H), 6.66 (s, 1H), 4.62 (q, 2H), 3.10 (s, 3H), 3.09 (s, 3H), 1.42 (t, 3H), 1.33 (s, 9H).
0.57	2 2 70 /- 111 0 42 /4 111 0 11/m 111 7 02 /6 111 7 72 /6 111 6 66 /6 110 4 62 /4 211

- 257 & 8.78 (s, 1H), 8.42 (d, 1H), 8.10 (m, 1H), 7.82 (s, 1H), 7.72 (s, 1H), 6.66 (s, 1H), 4.62 (q, 2H), 3.82 (q, 2H), 1.42 (t, 3H), 1.33 (s, 9H), 1.30 (t, 3H).
- 258 \$ 8.72 (s, 1H), 8.41 (s, 1H), 8.26 (s, 1H), 8.12 (s, 1H), 6.59 (s, 1H), 4.57 (q, 2H), 3.14 (s, 3H), 3.05 (s, 3H), 1.45 (t, 3H), 1.34 (s, 9H).
- 259 8 8.90 (s, 1H), 8.78 (s, 1H), 8.50 (s, 1H), 8.04 (s, 1H), 6.56 (s, 1H), 6.20 (s, 1H), 4.58 (q, 2H), 3.52 (q, 2H), 1.48 (t, 3H), 1.32 (s, 9H), 1.26 (t, 3H).
- 260 8.70 (s, 1H), 8.58 (s, 1H), 8.40 (s, 1H), 7.80 (s, 1H), 6.54 (s, 1H), 6.0 (m, 1H), 5.80 (m, 1H), 4.57 (q, 2H), 4.51 (m, 2H), 4.30 (m, 2H), 1.47 (t, 3H), 1.34 (s, 9H).
- 262 8 10.50 (s, 1H), 9.00 (s, 1H,), 8.40 (s, 1H), 8.20 (s, 1H), 6.96 (s, 1H,), 5.92 (m, 2H), 5.30 (m, 4H), 4.32 (q, 2H), 4.12(m, 2H), 3.80 (m, 2H), 1.32 (t, 3H), 1.30 (s, 9H).
- 263 8 8.70 (s, 1H,), 8.42 (s, 1H), 8.18 (m, 1H,), 8.08 (s, 1H), 6.58 (s, 1H), 4.57 (q, 2H), 3.60 (q, 2H), 3.10 (s, 3H), 1.46 (t, 3H), 1.34 (s, 9H), 1.26 (m, 3H).
- 264 8 8.68 (s, 1H), 8.41 (s, 1H), 8.26 (s, 1H), 8.12 (s, 1H), 6.59 (s, 1H), 4.57 (q, 2H), 3.86 (s, 2H), 2.12 (m, 1H), 1.45 (t, 3H), 1.34 (s, 9H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
265	8 8.78 (d, 1H.), 8.12 (d, 1H.), 6.47 (s, 1H), 4.42 (q, 2H), 3.82 (s, 3H), 3.76 (s, 3H), 1.36 (t, 3H), 1.29 (s, 9H).
266	8 8.80 (d, 1H,), 8.08 (s, 1H), 8.02 (d, 1H,), 6.47 (s, 1H), 4.42 (q, 2H), 4.02 (q, 2H), 1.36 (m, 6H), 1.29 (s, 9H).
269	8 9.3 (s, 1H), 8.70 (d, 1H), 8.65 (m, 1H), 7.15 (t, 1H), 6.20 (br s, 1H), 4.12 (m, 1H), 3.70 (t, 1H), 3.50 (m, 2H), 3.30 (dd, 1H), 3.15 (m, 1H), 2.95 (m, 1H), 2.80 (dd, 1H), 1.34–1.20 (m, 6H), 1.17 (s, 9H).
270	δ 8.37 (t, 1H), 7.90 (s, 1H), 6.93 (t, 1H), 6.52 (s, 1H), 4.55 (q, 2H), 3.12 (s, 3H), 2.97 (s, 3H), (4.43 (t, 3H), 1.33 (s, 9H).
271	8.90 and 8.75 (d, 1H, amide isomers), 8.18 and 8.13 (s, 1H, amide isomers), 7.88 and 7.70 (m, 1H), 7.22 and 7.19 (t, 1H, amide isomers), 4.58 (q, 2H), 1.45 (t, 3H), 1.34 (s, 9H).
272	δ 7.82 (s, 1H), 7.60 (s, 1H), 7.45 (d, 1H), 7.36 (t, 1H), 7.00 (d, 1H), 6.50 (s, 1H), 4.55 (q, 2H),

- 1.43 (t, 3H), 1.32 (s, 9H).
- 273 8 7.65 (s, 1H), 7.28 (s, 1H), 7.21 (t, 1H), 7.02 (d, 1H), 7.72 (d, 1H), 6.45 (s, 1H), 4.45 (m, 3H), 1.42 (t, 3H), 1.33 (d, 6H), 1.32 (s, 9H).
- 274 5 8.8 (br m 1H, NH), 8.3 (d, 1H), 7.8 (m, 1H), 7.4 (d, 1H), 8.6 (q, 2H), 3.14 (s, 3H), 3.06 (s, 3H), 1.42 (t, 3H), 1.36 (s, 9H).
- 275 & 8.8 (dd, 1H), 8.33 (br m, 1H, NH), 7.7 (m, 1H), 7.2 (m, 1H), 6.2 (br s, 1H), 4.6 (q, 2H), 3.5 (q. 2H), 1.37 (t, 3H), 1.29 (s, 9H), 1.24 (t, 3H).
- 276 8 8.26 (dd, 1H), 8.3 (br m, 1H, NH), 7.2 (br s, 1H), 7.17 (m, 1H), 4.55 (q, 2H), 3.1 (s, 3H), 3.03 (s, 3H), 1.43 (t, 3H), 1.37 (s, 9H).
- 277 8 8.78 (s. 1H), 8.52 (m. 1H), 7.60 (t. 1H), 6.52 (s. 1H), 4.59 (q. 2H), 3.42 (q. 2H), 1.37 (t. 3H), 1.34 (s. 9H), 1.28 (t. 3H).
- 278 8 8.46 (dd, 1H), 8.32 (s, 1H), 7.62 (t, 1H), 6.60 (s, 1H), 4.59 (q, 2H), 4.28 (d, 2H), 2.30 (t, 1H), 1.42 (t, 3H), 1.34 (s, 9H).
- 279 8 8.40 (s, 1H), 8.36 (m, 1H), 7.42 (t, 1H), 6.46 (s, 1H), 4.50 (q, 2H), 3.28 (q, 2H), 3.13 (s, 3H), 1.42 (t, 3H), 1.34 (s, 9H), 1.30 (t, 3H).
- 280 8 8.40 (s, 1H), 8.38 (dd, 1H), 7.60 (t, 1H), 6.53 (s, 1H), 5.90 (m, 1H), 5.80 (m, 1H), 4.56 (q, 2H), 4.46 (m, 2H), 4.20 (m, 2H), 1.42 (t, 3H), 1.34 (s, 9H).
- 281 8 9.24 (s, 1H), 8.58 (d, 1H), 8.22 (dd, 1H), 8.00 (d, 1H), 6.68 (s, 1H), 5.81 (m, 2H), 4.60 (m, 2H), 4.46 (m, 2H), 4.28 (m, 2H), 1.46 (t, 3H), 1.30 (s, 9H).
- 283 6 8.51 (d, 1H), 8.42 (t, 1H), 8.38 (s, 1H), 8.22 (dd, 1H), 6.63 (s, 1H), 4.59 (q, 2H), 4.00 (m, 2H), 1.45 (t, 3H), 1.36 (s, 9H).
- 284 8 9.00 (s, 1H), 8.48 (d, 1H), 8.40 (t, 1H), 8.36 (dd, 1H), 8.00 (s, 1H), 6.74 (s, 1H), 4.58 (m, 2H), 4.40 (t, 2H), 3.60 (m, 2H), 1.46 (t, 3H), 1.32 (s, 9H).
- 285 6 8.80 (s, 1H), 7.84 (dd, 1H), 7.60 (s, 1H), 7.32 (m, 1H), 7.02 (m, 1H), 6.53 (s, 1H), 5.82 (m, 1H), 5.20 (m, 2H), 4.56 (q, 2H), 4.20 (m, 2H), 3.00 (s, 3H), 1.42 (t, 3H), 1.24 (s, 9H).

3H), 1.17 (s, 9H).

Cmpd No.	H NMR Data (CDCl3 solution unless indicated otherwise) ^a
286	8 8.40 (s, 1H), 7.68 (m, 2H), 7.40 (m; 2H), 6.53 (s, 1H), 5.80 (m, 2H), 4.56 (q, 2H), 4.40 (m, 2H), 4.30 (m, 2H), 1.42 (t, 3H), 1.24 (s, 9H).
287	8 9.60 (s, 1H), 8.60 (s, 1H), 8.40 (s, 1H), 6.59 (s, 1H), 4.58 (m, 2H), 3.16 (s, 3H), 3.08 (s, 3H), 1.44 (t, 3H), 1.32 (s, 9H).
288	8 9.80 (s, 1H), 9.20 (s, 1H), 9.00 (s, 1H), 8.20 (s, 1H), 6.59 (s, 1H), 4.58 (m, 2H), 3.36 (q, 2H), 1.34 (t, 3H), 1.32 (s, 9H), 1.26 (t, 3H).
289	6 9.78 (s, 1H), 9.18 (s, 1H), 8.40 (s, 1H), 7.72 (s, 1H), 6.64 (s, 1H), 4.58 (m, 2H), 4.26 (q, 2H), 2.24 (t, 1H), 1.34 (t, 3H), 1.32 (s, 9H).
290	δ 9.68 (s, 1H), 8.80 (s, 1H), 8.20 (s, 1H), 7.72 (s, 1H), 6.56 (s, 1H), 5.88 (m, 2H), 4.56 (q, 2H), 4.48 (m, 4H), 1.34 (t, 3H), 1.32 (s, 9H).
291	8 9.82 (s. 1H), 9.20 (s. 1H), 8.40 (s. 1H), 7.82 (t. 1H), 6.66 (s. 1H), 4.58 (m. 2H), 4.06 (m. 2H), 1.34 (t. 3H), 1.32 (s. 9H), 1.26 (t. 3H).
294	8 8.4 (d, 1H), 7.85 (br s, 1H), 7.1 (m, 2H), 6.5 (s, 1H), 4.5 (q, 2H), 3.6 (s, 3H), 3.2 (s, 3H), 1.4 (t, 3H), 1.3 (s, 9H).
295	δ 8.40 (s, 1H), 8.16 (s, 1H), 8.02 (d, 1H), 7.80 (dd, 1H), 7.40 (t, 1H), 6.56 (s, 1H), 4.54 (q, 2H), 4.40 (m, 2H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.80 (m, 2H).
296	8 9.00 (dd, 1H), 7.80 (m, 1H), 7.76 (s, 1H), 7.20 (t, 1H), 6A2 (s, 1H), 4.54 (q, 2H), 4.40 (m, 2H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.80 (m, 2H).
297	8 8.40 (s, 1H), 8.20 (d, 1H), 6.80 (d, 1H), 6.60 (dd, 1H), 6.42 (s, 2H), 4.56 (q, 2H), 3.92 (s,3H), 3.80 (s, 3H), 1.42 (t, 3H), 1.24 (s, 9H).
298	8 7.80 (s, 1H), 7.60 (d, 1H), 7.00 (d, 1H), 6.80 (dd, 1H), 6.42 (s, 2H), 4.56 (q, 2H), 3.82 (s, 6H), 1.42 (s, 3H), 1.24 (s, 9H).
299	8.8.40 (dd, 1H), 7.90 (s, 1H), 7.20 (m, 2H), 6.42 (s, 1H), 4.54 (q, 2H), 3.10 (s, 3H), 3.08 (s, 3H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.84 (m, 2H).
300	δ 8.48 (d, 1H), 8.00 (s, 1H), 7.90 (s, 1H), 7.62 (m, 2H), 6.42 (s, 1H), 4.54 (q, 2H), 3.40 (q, 2H), 1.45 (s, 3H), 1.42 (t, 3H), 1.20 (t, 3H), 1.00 (m, 2H), 0.84 (m, 2H).
301	8.60 (dd, 1H), 7.90 (s, 1H), 7.20 (m, 2H), 6.42 (s, 1H), 5.84 (m, 2H), 4.51 (q, 2H), 4.30 (m, 4H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.84 (m, 2H).
302	8 8.80 (m, 1H), 7.90 (s, 1H), 7.60 (m, 1H), 7.20 (m, 1H), 6.60 (s, 1H), 6.42 (s, 1H), 4.50 (q, 2H), 4.20 (m, 2H), 2.30 (m, 1H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.84 (m, 2H).
303	δ 8.20 (s, 1H), 7.70 (d, 1H), 7.60 (s, 2H), 7.40 (t, 1H), 7.20 (d, 1H), 6.42 (s, 1H), 4.54 (q, 2H). 3.10 (s, 3H), 3.00 (s, 3H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.84 (m, 2H).
304	8 7.90 (s, 1H), 7.82 (s, 1H), 7.62 (dd, 1H), 7.40 (t, 1H), 7.30 (d, 1H), 6.42 (s, 1H), 5.80 (m, 2H), 4.54 (q, 2H), 4.40 (m, 4H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.84 (m, 2H).
306	8 8.08 (6, 1H), 8.00 (s, 1H), 7.82 (dd, 1H), 7.40 (m, 2H), 6.42 (s, 1H), 6.20 (br s, 1H), 4.54 (q, 2H), 3.44 (q, 2H), 1.45 (s, 3H), 1.42 (m, 6H), 1.00 (m, 2H), 0.84 (m, 2H).
307	8 9.32 (s, 1H), 8.58 (d, 1H), 7.15 (m, 2H), 3.68 (t, 1H), 3.57 and 3.33 (br m, 2H), 3.32 (dd, 1H), 3.18 (dq, 1H), 3.50 and 2.95 (br s, 3H, amide isomers), 2.94 (dq, 1H), 2.81 (d d, 1H), 1.23 (t,

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ⁸
308	8 9.32 (s, 1H), 8.42 (d, 1H), 7.12 (d, 2H), 3.68 (t, 1H), 3.5 (br s, 2H), 3.3 (br s, 2H), 3.3 (dd, 1H) 3.18 (m, 1H), 2.95 (m, 1H), 2.80 (dd, 1H), 1.34-1.17 (m, 18H).
309	8 9.32 (s, 1H), 8.55 (d, 1H), 7.28 (m, 1H), 7.13 (dd, 1H), 3.68 (t, 1H), 3.62 (br m, 2H), 3.48 (t m, 2H), 3.31 (dd, 1H), 3.17 (dq, 1H), 2.95 (dq, 1H), 2.81 (dd, 1H), 1.9 (m, 4H), 1.23 (t, 3H), 1.17 (s, 9H).
310	8 9.32 (s, 1H), 8.58 (d, 1H), 7.28 (m, 1H), 7.17 (dd, 1H), 5.92 (br s, 1H), 5.75 (br s, 1H), 4.43 (s, 2H), 4.29 (br s, 2H), 3.69 (t, 1H), 3.31 (dd, 1H), 3.17 (dq, 1H), 2.95 (dq, 1H), 2.81 (dd, 1H), 1.23 (t, 3H), 1.17 (s, 9H).
311	87.7 (m, 1H), 7.6 (m, 1H), 7.33-7.36 (m, 3H), 2.2 (s, 3H), 1.3 (s, 9H).
312	8 8.70 (s, 1H, NH), 8.42 (m, 1H), 7.82 (d, 2H), 6.64 (s, 1H), 4.12 (s, 3H), 4.01 (s, 3H), 1.31 (9H),
313	8 8.42 (d, 1H), 7.92 (m, 2H), 7.80 (s, 1H, NH), 6.60 (s, 1H), 4.04 (s, 3H), 3.40 (q, 2H), 1.31 (9H).
314	8 8.50 (s, 1H, NH), 8.22 (d, 1H), 7.80 (t, 1H), 7.30 (d, 1H), 6.60 (s, 1H), 4.04 (s, 3H), 3.56 (2H), 3.32 (q, 2H), 1.43 (s, 9H), 1.30 (t, 3H), 1.15 (t, 3H).
315	8 8.39 (d, 1H), 8 20 (s, 1H, NH), 7.92 (d, 1H), 7.84 (t, 1H), 7.80 (s, 1H), 6.60 (s, 1H), 4.02 3H), 2.96 (m, 1H), 1.31 (s, 9H), 0.88 (m, 2H), 0.68 (m, 2H).
316	8 8,42 (m, 2H), 7,92 (m, 1H, NH), 7,80 (s, 1H), 6.60 (s, 1H), 4.12 (m, 2H), 4.00 (s, 3H), 2.22 (1H), 1.31 (s, 9H).
317	8 8.42 (m, 2H), 7.92 (m, 1H, NH), 7.80 (s, 1H), 6.60 (s, 1H), 4.12 (m, 2H), 4.00 (s, 3H), 2.22 (th), 1.31 (s, 9H).
318	8 8.46 (m, 2H, NH and 1 aromatic), 7.80 (m, 1H), 7.32 (dd, 1H), 6.55 (s, 1H), 5.82 (m, 1H), 5. (m, 2H), 4.20 (d, 2H), 4.02 (s, 3H), 1.30 (s, 9H).
319	8 8.34 (s, 1H), 7.74 (d, 1H), 7.60 (s, 1H), 7.34 (t, 1H), 7.16 (s, 1H), 4.10 (m, 2H), 3.12 (q, 2H), 2.20 (m, 1H), 1.42 (s, 9H), 1.25 (t, 3H).
326	8 8.45 (s, 1H), 7.72 (dd, 1H), 7.60 (s, 1H), 7.32 (t, 1H), 7.08 (d, 1H), 3.05 (s, 3H), 2.99 (s, 3H), 2.70 (s, 3H), 1.44 (s, 9H).
327	8 8.80 (dd, 1H), 7.72 (m, 1H,), 7.20 (m, 1H), 5.86 (m, 2H,), 5.22 (m, 4H), 4.10 (m, 4H), 3.08 2H), 1.35 (s, 9H), 1.32 (t, 3H).
329	δ 7.42 (m, 3H), 7.10 (dd, 1H), 6.80 (s, 1H), 6.52 (s, 1H, NH), 4.50 (q, 2H), 4.20 (ι, 2H), 2.28 2H), 2.20 (q, 2H), 1.42 (m, 6H), 1.38 (s, 9H).
331	8 9.36 (br s, 1H), 8.42 (dd, 1H), 7.27 (m, 2H), 3.68 (t, 1H), 3.68 (br s, 2H), 3.38 (br s, 2H), 3. (dd, 1H), 3.18 (d of q, 1H), 2.95 (d of q, 1H), 2.80 (dd, 1H), 1.58-1.70 (m, 6H), 1.25 (t, 31 1.17 (s, 9H).
332	8 7.62 (br s, 1H), 7.54 (br s, 1H), 7.36 (m, 2H), 6.90 (m, 1H), 6.47 (s, 1H), 4.56 (q, 2H), 1.45 3H), 1.32 (s, 9H)
333	8 7.70 (br s, 1H), 7.60 (br s, 1H), 7.44 (d, 1H), 7.39 (t, 1H), 7.02 (d, 1H), 6.47 (s, 1H), 4.56

2H), 1.45 (t, 3H), 1.31 (s, 9H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ^a
335	8 9.38 (br s, 1H), 8.93 (dd, 1H), 7.67 (m, 1H), 7.13 (dd, 1H), 4.36 (q, 2H), 3.64 (dd, 1H), 3.53 (dd, 1H), 3.23 (t, 1H), 2.41 (m, 2H), 1.38 (t, 3H), 1.25 (s, 9H), 1.17 (t, 3H)
338	8 5.41 (m, 1H), 7.83 (br s, 1H), 7.16 (dd, 1H), 6.92 (m, 2H), 7.47 (s, 1H), 4.56 (q, 2H), 1.45 (t, 3H), 1.32 (s, 9H).
340	8 9.38 (br s, 1H), 8.47 (dd, 1H), 7.26 (m, 1H), 7.13 (dd, 1H), 5.90 (m, 1H), 5.73 (m, 1H), 4.43 (m, 2H), 4.32 (m, 2H), 3.64 (dd, 1H), 3.53 (dd, 1H), 3.24 (t, 1H), 2.41 (m, 2H), 1.25 (s, 9H), 1.17 (t, 3H).
341	8.9.38 (br.s., 1H), 8.45 (dd, 1H), 7.26 (m, 1H), 7.13 (dd, 1H), 3.62 (m, 3H), 3.43 (m, 3H), 3.23 (t, 1H), 2.41 (m, 2H), 1.90 (m, 2H), 1.23 (s, 9H), 1.16 (t, 3H).
342	δ 9.38 (br s, 1H); 8.38 (d, 1H), 7.13 (m, 2H); 3.62 (dd, 1H); 3.58 (br s, 1H); 3.53 (dd; 1H); 3.25 (br s, 1H); 3.23 (t, 1H); 3.02, 2.98 (br s, 3H); 2.41 (m, 2H); 1.23 (s, 9H); 1.16 (t, 3H); 1.14 (t, 3H).
343	8 9.38 (br s, 1H); 8.38 (dd, 1H), 7.13 (m, 2H); 3.62 (dd, 1H); 3.52 (d of d; 1H); 3.23 (t, 1H); 3.09 (br s, 3H), 2.99 (br s, 3H); 2.41 (m, 2H); 1.23 (s, 9H); 1.16 (t, 3H).
346	8 9.0 (br s 2H), 8.0 (m, 1H), 7.25 (m, 1H), 6.4 (s, 1H), 4.6 (q, 2H), 4.4 (q, 2H), 1.45 (t, 3H), 1.4 (t, 3H), 1.3 (s, 9H).
347	8 8.56 (dd, 1H), 8.00 (br s. 1H, NH), 7.24 (m, 2H), 6.54 (s, 1H), 4.57 (q, 2H), 3.92 (s, 2H), 1.42 (t, 3H), 1.28 (s, 9H).
348	8 8.14 (m, 1H), 8.00 (dd, 1H), 7.26 (s, 1H), 6.26 (s, 1H), 4.54 (q, 2H), 4.12 (q, 2H), 1.41 (m, 6H), 1.20 (s, 9H).
349	8.65 (dd, 1H), 7.85 (br s, 1H), 7.65 (m, 1H), 7.6 (br s, 1H), 7.15 (dd, 1H), 6.5 (s, 1H), 4.6 (q, 2H), 3.85 (m, 2H), 1.4 (m, 3H), 1.3 (m, 3H), 1.25.
350	8 8.56 (dd, 1H), 8.00 (br s, 1H, NH), 7.24 (m, 2H), 6.54 (s, 1H), 4.57 (q, 2H), 3.92 (m, 2H), 3.10 (m, 2H), 1.42 (t, 3H), 1.28 (s, 9H).
351	(DMSO-d ₆) ô 13.1 (br s, NH), 10.0 (br s, NH), 8.4 (s, 1H), 8.2 (s, 1H), 7.9 (d, 1H), 7.5 (d, 1H), 7.3 (i, 1H), 6.5 (s, 1H) 3.2 (m, 2H), 1.3 (s, 9H), 1.1 (t, 3H).
353	8 8.8 (m, 1H), 7.8(m, 1H), 7.7(m, 1H), 7.2(m, 1H), 6.2(br s, 1H), 4.63(q, 2H), 3.5(m, 2H), 2.9(t, 2H), 2.63 (t, 2H), 1.48(t, 3H), 1.35(s, 6H), 1.29(t, 3H).
354	δ 8.64 (br s. 1H), 7.91 (s. 1H), 7.71 (d. 1H), 7.40 (t. 1H), 7.28 (d. 1H), 5.90 (m. 1H), 5.76 (m. 1H), 4.96 (m. 1H), 4.45 (m. 2H), 4.28 (m. 2H), 3.03 (q. 2H), 2.20 (m. 4H), 1.93 (m. 2H), 1.74 (m. 2H), 1.31 (t. 3H).
355	8 8.63 (br s. 1H), 7.76 (s, 1H), 7.72 (d, 1H), 7.38 (t, 1H), 7.16 (d, 1H), 4.96 (m, 1H), 3.06–3.16 (m, 8H), 2.20 (m, 4H), 1.93 (m, 2H), 1.74 (m, 2H), 1.31 (t, 3H).
356	8 8.66 (br s. 1H), 8.06 (s. 1H), 7.83 (d. 1H), 7.54 (d. 1H), 7.39 (t. 1H), 6.41 (br s. 1H), 4.96 (m. 1H), 3.49 (m. 2H), 3.02 (q. 2H), 2.20 (m. 4H), 1.93 (m. 2H), 1.74 (m. 2H), 1.31 (t. 3H), 1.25 (t.

357 8 8.62 (br s1H), 8.10 (s, 1H), 7.83 (d, 1H), 7.55 (d, 1H), 7.38 (t, 1H), 6.60 (br s 1H), 4.80 (m, 1H), 3.50 (m, 2H), 3.02 (q, 2H), 1.60 (d, 6H), 1.32 (t, 3H), 1.25 (t, 3H).

Cmpd No.	¹ H NMR Data (CDCl ₃ solution unless indicated otherwise) ⁸
359	8 8.64 (br s 1H), 7.92 (s, 1H), 7.71 (d, 1H), 7.41 (t, 1H), 7.28 (d, 1H), 5.91 (m, 1H), 5.76 (m, 1H), 4.79 (m, 1H), 4.45 (m, 2H), 4.28 (m, 2H), 3.03 (q, 2H), 1.60 (d, 6H), 1.31 (t, 3H).
361	\$ 8.88 (br ±1H), 8.58 (d, 1H), 7.18 (m, 2H), 3.40 (m, 8H), 1.70 (s, 9H), 1.32 (t, 3H).
362	8 8.88 (br s 1H), 8.81 (dd, 1H), 7.67 (m, 1H), 7.18 (t, 1H), 6.60 (br s 1H), 3.48 (m, 2H), 3.01 (q, 2H), 1.70 (s, 9H), 1.31 (t, 3H), 1.25 (t, 3H).
363	\$ 8.80 (br s 1H), 8.72 (dd, 1H), 7.30 (m, 1H), 7.19 (dd, 1H), 5.91 (m, 1H), 5.76 (m, 1H), 4.45 (m, 2H), 4.31 (m, 2H), 3.03 (q, 2H), 1.70 (s, 9H), 1.31 (t, 3H).
364	8 8.67 (br s 1H), 7.75 (s, 1H), 7.74 (d, 1H), 7.38 (t, 1H), 7.16 (d, 1H), 3.04 (m, 8H), 1.70 (s, 9H), 1.31 (t, 3H).
366	8 8.67 (br s 1H), 7.90 (s, 1H), 7.74 (d, 1H), 7.40 (t, 1H), 7.28 (d, 1H), 5.91 (m, 1H), 5.76 (m, 1H), 4.45 (m, 2H), 4.28 (m, 2H), 3.04 (q, 2H), 1.69 (s, 9H), 1.31 (t, 3H).

4 1H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (f)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets, (dq)-doublet of quartets, (br s)-broad singlet, (br d)-broad d, (br m)-broad multiplet

BIOLOGICAL EXAMPLES OF THE INVENTION

5 TEST A

10

15

Seeds of plant species selected from barnyardgrass (Echinochloa crus-galli (L.) Beauv.), downy bromegrass (Bromus tectorum L.), large crabgrass (Digitaria sanguinalis (L.) Scop.), giant foxtail (Setaria faberi Herrm.), morningglory (Ipomoea spp.), redroot pigweed (Amaranthus retroflexus L.) and velvetleaf (Abutilon theophrasti Medik.) were planted into a sandy loam soil and treated preemergence with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time plants selected from these species were also treated postemergence by spraying to runoff with test chemicals formulated.

Plants ranged in height from 2 to 10 cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately ten days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (–) response means no test results.

20	Table A		Compounds													
	2006 g ai/ha	2	3	4	5	8	8	27	28	30	33	34	35	38	40	
	Postemergence															
	Barnyardgrass	100	100	100	90	90	0	75	65	70	90	80	85	80	0	
	Crabgrass, Large	100	95	70	50	90	0	70	20	25	88	5.0	60	1.0	0	
25	Foxtail, Giant	100	100	8.0	45	70	Ü	70	25	55	85	40	70	35	0	

	Morningglory	80	30	35	15	30	0	100	25	0	25	30	1.0	10	0
	Pigweed	100	100	100	90	100	45	90	80	65	85	90	95	85	0
	Velveileaf	75	60	45	20	95	·	4.5	25	20	40	30	40	20	0
	Table A	Table A Compounds													
5	2000 g ai/ha	41	43	বর	45	46	47	52	53	54	55	58	59	60	63.
	Postemergence														
	Barnyardgrass	60	100	100	100	100	100	55	0	10	1.00	80	30	70	90
	Crabgrass, Large	60	90	80	.90	90	100	20	0	15	100	75	30	55	45
	Foxtail, Giant	35	70	90	95	100	85	25	0	5	80	60	20	60	85
10	Morningglory	10	30	45	25	S .S	25	0	0	30	25	0	10	20	20
	Pigweed	60	100	100	100	100	100	35	0	20	1.00	90	75	95	95
	Velvetleaf	2\$	30	85	65	75	40	30	0	5	40	40	20	20	15
	Table A						€	Compc	unds	·					
	2000 g ai/ha	62	63	64	65	66	\$7	7.0	71	78	79	80	82	83	84
15	Postomergence														
	Barnyardgrass	100	90	75	75	0	25	30	Ö	40	40	90	20	20	10
	Crabgrass, Large	60	80	80	60	0	20	3.0	ij	35	55	90	30	25	20
	Foxtail, Giant	85	80	55	55	Q.	20	្ឋប្	0	60	40	90	20	20	10
	Morningglory	20	15	10	10	0	20	30	Ŏ	25	25	50	10	10	10
20	Pigweed	100	100	95	70	10	85	75	Q	90	85	100	50	55	45
	Velvetleaf	38	5.5	30	25	0	1.5	30	0	50	50	75	30	20	30
	Table A	Compounds													
	2000 g ai/ha	85	86	87	38	89	90	91	92	93	94	95	96	97	98
	Postemergence														
25	Barnyardgrass	25	20	35	100	20	20	ø	0	25	35	55	80	1.0	0
	Crabyrass, Large	30	25	60	98	25	25	20	10	15	30	60	70	10	0
	Foxtail, Giant	30	50	50	60	20	20	0	0	10	15	50	80	10	0
	Morningglory	35	35	20	40	15	1.0	0	0	1.0	20	15	15	O	0
	Pigweed	70	95	35	100	30	40	20	0	30	30	100	100	25	10
30	Velvetleaf	20	30	25	55	20	30	10	0	15	25	50	70	10	8
	Table A	Table A Compounds													
	2000 g ai/ha	102	103	107	108	109	111	112	1.1.4	115	116	117	120	121	1.22
	Postemergence														
	Barnyardyrass	75	75	55	100	90	0	45	40	80	25	75	65	35	85
35	Crabgrass, Large	80	30	40	85	55	10	30	60	80	10	65	65	10	65
	Foxtail, Giant	65	0.5	35	100	90	0	35	55	80	Ø	55	30	25	80
	Morningglory	55	35	40	40	40	. 0	15	25	30	0	70	40	20	65

									:						
	Figweed	100	100	100	100	100	10	60	100	100	8	95	85	100	100
	Velvetleaf	20	45	9	100	45	0	35	20	40	0	65	30	15	70
	Table A	Compounds													
	2000 g ai/ha	123	124	125	127	128	130	136	137	138	139	143	144	145	146
5	Postemergence														
	Barnyardgrass	20	0	Q	50	80	20	60	25	30	60	25	100	100	75
	Crabgrass, Large	10	10	0	35	70	20	70	60	30	30	30	90	85	55
	Foxtail, Glant	10	0	Ü	3.0	60	10	50	30	35	40	1.5	100	60	40
	Morningglory	10	0	0	20	15	25	40	40	40	35	25	35	30	Ö.
10	Pigweed	15	40	20	50	80	65	85	100	100	100	35	100	100	100
	Velvetleaf	1.0	1.0	ij.	0	35	20	75	70	60	40	15	75	55	35
	Table A Compounds														
	2000 g ai/ha	147	148	149	150	151	153	154	164	165	166	167	172	179	180
	Postemergence														Thurst.
15	Barnyardgrass	95	25	85	65	10	100	90	1,0	0	10	0	0	10	30
	Crabgrass, Large	90	10	75	50	10	20	30	10	0	0	5	Q	1.0	35
	Foxtail, Giant	90	15	65	25	2.0	90	20	.0	0	20	Ø) 0	10	20
	Morningglory	30	1.0	60	10	20	85	40	5	.5	10	1.0	10	30	15
	Pigweed	100	15	90	75	70	100	100	0	5	25	0	60	10	98
20	Velvetleaf	50	1.5	40	15	60	65	30	Ü	20	30	20	15	5	1.5
	Table A						16	Comp	nindi	š					
	2000 g ai/ha	189	190	195	196	197					202	203	204	205	206
	Postemergence											* * *.			
	Barnyardgrass	1.0	Ũ	50	30	0	80	80	35	20	80	30	30	65	10
25	Crabgiass, Large	10	15	25	0	10	65	50	25	20	65	15	30	3.0	5
	Foxtail, Giant	ø	Ö	0	Ù	5	65	65	20	1.0	50	20	25	25	0
	Morningglory	10	25	10	Q	0	75	70	45	30	75	55	15	20	Q
	Pigweed	45	20	25	0	S	75	80	60	55	90	80	60	65	20
	Velvetleaf	5	15	15	Ŏ	5	35	35	10	10	30	10	60	30	20
30	Table A						1	lomp	sundi	3					
	2000 g ai/ha	207	209	210	211	212		i sa lata s			217	222	223	255	267
	Postemergence														
	Barnyardgrass	7.0	70	80	55	90	45	15	25	15	0	90	55	70	65
	Crabgrass, Large	65	40	65		60		10		20	20	85	25	40	75
35	Foxtail, Giant	50	25	75	30	80	25	40	40	20	0	85	10	55	55
	Morningglory	15	15	25	15	20	10	10	35	20	25	95	60	25	45
	Figweed	45	50	80	25	90	40	50	80	55	25	100	55	100	60

WO 2004/035545 PCT/US2003/032968

	Velvetleaf	25	50	65	25	35	25	20	30	35	30	100	35.	50	35	
	Table A						Ö	(cape	unds	3						
	2000 g ai/ha	268	269	270	271	272	273	277	278	279	280	281	282	283	284	
	Postemergence															
5	Barnyardgrass	80	80	30	30	90	75	50	60	40	25	65	80	35	60	
	Crabgrass, Large	7.5	80	1.0	10	90	65	0	5	20	0	10	25	10	20	
	Foxtail, Giant	80	65	0	20	98	70	0	15	20	0	25	25	25	35	
	Morningglory	40	35	20	30	1.00	7.5	9	5	5	1.0	15	15	Ð	15	
	Pigweed	85	50	0	90	100	100	35	70	60	70	70	100	100	100	
10	Velvetlsaf	45	33	28	40	100	95	30	25	20	3.0	40	50	35	35	
	Table A						ď	Compe	ound	S 3						
	2000 g ai/ha	285	286	287	288	289	290	291	300	312	313	314	315	316	317	
	Postemergence															
	Barnyardgrass	80	80	90	65	40	70	40	90	0	95	75	20	45	Ō	
15	Crabgrass, Large	35	25	60	15	20	10	25	90	0	100	60	20	45	10	
	Poxtail, Giant	55	75	90	10	70	70	75	90	0	80	70	0	30	[8]	
	Morningglory	50	35	15	20	20	30	10	95	Ö	55	50	.0	30	0	
	Pigweed	3.00	85	80	40	50	60	30	100	Û	100	100	30	80	10	
	Velvetleaf	75	50	65	20	5	30	10	80	0	50	30	Q	30	Q	
20	Table A				Co	ແນວດູນ	nds									
	2000 g ai/ha	318	319	329	338	347	348	354	355	356						
	Postemergence															
	Barnyardgrass	30	60	20	35	, · · · · · ·	0	70	75	40						
	Crabgrass, Large	70	50	5	45	: 0	.0	20	30	15						
25	Foxtail, Giant	90	40	20	30	0	Q	50	45	10						
	Morningglory	55	25	20	70	0	0	85	75	20						
	Pigweed	100	40	45	95	0	Ŏ	80	90	70						
	Velvetleaf	50	3.0	25	50	0	0	70	65	10						
	Table A				Comp	ound	ls									
30	1000 g ai/ha	31	. 32	39	131	132	133	134	135							
	Postemergencs															
	Barnyardgrass	75	() 55	i 60	30	55	70	50	Ře.						
	Crabgrass, Large	40		35	40	25	20	35	30)						
	Fowtail, Giant	3(). () 48	i 15	50	20	35	30	k;						
35	Morningglory	20	}: }) () 15	20	20	20	1.0	Ş -						
	Pigweed	80	}	7.5			75	1.00	85							
	Velvetleaf	30) · . () 1(10	3.0	1.5	20	25	Š :						

	Table A						£	Compo	ounds	2					
	500 g ai/ha	2	3	4	5	ő	8	27	28	30	33	34	35	36	38
	Postemergence														
	Barnyardgrass	100	100	80	30	80	0	80	65	70	75	45	70	35	55
5	Crabgrass, Large	85	75	20	20	80	0	50	30	25	65	30	55	10	60
	Foxtail, Giant	95	95	20	35	70	Ü	60	20	50	70	30	50	20	60
	Morningglory	45	25	15	10	10	0	35	5	0	10	10	10	1.0	0
	Pigweed	100	100	95	25	1,00	20	90	70	60	85	90	85	80	7.0
	Velvetleaf	40	40	50	10	90	5	25	25	25	30	20	25	15	20
10	Table A							ි ගැන	ುರ್ಬಾಡೆಕ	£ .					
	500 g ai/hs	40	41	43	44	45	46	47	51	52	53	54	55	58	59
	Postemergence														
	Barnyardgrass	0	30	90	90	1,00	100	90	75	25	0	10	90	70	20
	Crabgrass, Large	15	20	55	55	80	75	85	30	0	3	10	25	40	15
15	Foxtail, Giant	0	20	70	50	90	80	90	40	25	Ü	10	30	45	15
	Morningglory	ō.	10	20	15	25	40	20	35	0	0	Q	20	3.0	1.0
	Pigweed	Đ.	40	100	100	100	100	100	85	30	Q	20	90	70	40
	Velvetleaf	0	25	15	45	40	\$ 5	25	40	10	0	0	35	20	15
	Table A						1	Compo	ounds	; .					
20	500 g al/ha	60	61	62	63	64	65	56	67	70	71	78	79	80	82
	Postemergence														
	Barnyardgrass	35	35	65	60	30	45	Ø	0	25	0	30	40	90	20
	Crabgrass, Large	20	30	25	40	30	30	0	30	25	0	20	20	70	20
	Foxtail, Giant	30	30	55	50	30	30	Ø	1.0	20	0	20	3.0	80	20
25	Morningglory	10	10	10	15	10	1.0	0	5	25	0	15	15	40	20
	Pigweed	40	85	100	95	65	70	10	50	60	0	85	95	100	50
	Velvatleaf	20	15	1.0	40	20	25	. 0	20	20	0	45	45	60	30
	Table A						Ċ	compo	ounds	: } .					
	500 g ai/ha	83	84	85	86	87	88	89	90	91	92	93	94	95	96
30	Postemergence														
	Barnyardgrass	5	15	20	28	15	85	20	20	0	0	20	20	30	60
	Crabgrass, Large	30	30	20	20	20	85	50	15	10	Ď.	10	10	25	30
	Foxtail, Giant	30	15	20	3.0	30	20	20	20	Ø	Q	10	10	20	50
	Morningglory	10	S	20	20	1.5	35	30	10	0	0	S	20	10	10
35	Pigweed	45	50	75	55	10	90	29	20	0	0	20	25	85	95
	Velvetleaf	20	30	30	ĄŬ	10	ØŎ.	20	10	5	0	10	20	45	70

	Table A							QmcQ	ound	8						
	500 g ai/ha	97	98	102	103	107			9 (1994)		113	334	(11)5	116	117	
	Postemergence												. in the sales			
	Barnyardgrass	5	0	55	45	20	85	75	30	0	3.5	30	70	0	45	
5	Crabgrass, Large	10	0	60	15	25	65	20	30							
	Foxtail, Giant	5	0	45	10	20	90	55	25						. **	
	Morningglory	0	Ů.	35	25	30	40	25	10	5				- 10		
	Pigweed	, O	5	95	85	95	100	100	50	5	40					
	Velvetleaf	5	9	10	10	O	90	25	10	0	25	20	40	0		
10	Table A						ં	Comp	briuc	S						
	500 g ai/ha	120	121	132	123	124	125	127	128	130	136	137	138	139	143	
	Postemergence															
	Barnyardgrass	45	10	75	\$	O	0	30	70	20	55	20	15	35	10	
	Crabgrass, Large	50	10	35	10	10	Đ	15	60	20	35	30	20	Ö	20	
15	Foxtail, Giant	20	15	80	0	0	Ö	30	45	10	25	30	30	20	10	
	Morningglory	20	30	30	0	5	0	10	10	20	20	25	15	30	3.0	
	Pigweed	50	90	60	Ø	30	20	40	50	50	65	90	60	75	20	
	Velvetleaf	25	10	45	Q	10	Ü	0	20	20	55	60	26	25	0	
	Table A						Ċ	ompo	omds	}						
20	Table A 560 g ai/ha	144	145	146	147	148		***			154	164	165	166	167	
20		144	145	146	147	148		***			154	164	165	166	167	
20	560 g ai/ha	14 4 85	145	146 50	147 55	148 20		***			154 50	164 10	165	166	167	
20	500 g ai/ba Postemergence	÷.					149	150	151	153					# ¹ 1	
	500 g ai/ha Postemergence Barnyarăgrasa	85	40	50	55	20	149 45	150 30	151	153 75	50	10	0	0	0	
20	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large	83 55	40 30	50 15	55 40	20 5	149 45 40	150 30 15	151 10 5	153 75	50 20	10	0	0	0	
	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed	83 55 80	40 30 40	30 35	55 40 45	20 \$ 15	143 45 40 40	30 15 20	151 10 5	153 75 10 20	20 20 50	10 10 0	0	0	0 0	
	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory	85 55 80 25	40 30 40 15	50 15 15	55 40 45 20	20 5 15	143 45 40 40 30	30 15 20 0	151 10 5 10 10	153 75 10 20 35 95	50 20 20 20	10 10 0	0 0 0 5	0	0	
	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed	83 55 80 25 100	40 30 40 15	50 15 15 5	55 40 45 20	20 5 15 15	143 45 40 40 30 65 30	30 15 20 0 80 25	151 10 5 10 10	153 75 10 20 35 95	50 20 20 20 20	10 10 0 10	0 0 0 5	0 0 0 0	0 0 0 0	
	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed Velvetleaf	83 55 80 25 100	40 30 40 15 90	50 15 15 3 85 20	55 40 45 20 90	20 5 15 15 0 20	143 45 40 40 30 65 30	150 30 15 20 0 80 25	151 10 5 10 10 35 35 unds	153 75 10 20 35 95	50 20 20 20 20 90	10 10 0 10 5	0 0 5 0	0 0 0 0 20 20	0 0 0 0 0 0 10	
	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	83 55 80 25 100 55	40 30 40 15 90	50 15 15 3 85 20	55 40 45 20 90	20 5 15 15 0 20	143 45 40 40 30 65 30	150 30 15 20 0 80 25	151 10 5 10 10 35 35 unds	153 75 10 20 35 95	50 20 20 20 20 90	10 10 0 10 5	0 0 5 0	0 0 0 0 20 20	0 0 0 0 0 0 10	
25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha	83 55 80 25 100 55	40 30 40 15 90 30	50 15 15 3 85 20	55 40 45 20 90	20 5 15 15 0 20	143 45 40 40 30 65 30	150 30 15 20 0 80 25	151 10 5 10 10 35 35 unds	153 75 10 20 35 95	50 20 20 20 20 90	10 10 0 10 5	0 0 5 0 10	0 0 0 0 20 20	0 0 0 0 0 0 10	
25	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Postemergence	85 55 80 25 100 55	40 30 40 15 90 30	50 15 15 3 85 20	55 40 45 20 20 30	20 5 15 15 0 20	143 40 40 30 65 30 C	30 15 20 80 25 cmpo	151 10 5 10 35 35 unds	75 10 20 35 95 40	50 20 20 20 90 10	10 10 0 10 5	0 0 5 0 10	0 0 0 20 20 20	0 0 0 0 10	
25	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ba Postemergence Barnyarôgrass	83 55 80 25 100 55	40 30 40 15 90 30	50 15 15 3 85 20 180	55 40 45 20 90 30 189	20 5 15 15 0 30	143 45 40 40 30 65 30 C 195	30 15 30 0 80 25 cmpo 196	151 10 5 10 35 35 unds 197	153 75 10 20 35 95 40 198 45 20	50 20 20 20 90 10	10 10 0 10 5 200	0 0 5 0 10 201	0 0 0 20 20 202	0 0 0 0 10 203	
30	500 g ai/ba Postemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large	85 55 80 25 100 55 172	40 30 40 15 90 30 179	50 15 15 3 85 20 180	55 40 45 20 90 30 189	20 5 15 15 0 20 190	143 45 40 40 30 65 30 C 195	30 15 20 0 80 25 0mpo 196	151 10 5 10 10 35 35 unds 197 10 5	153 75 10 20 35 95 40 198 45 20	50 20 20 20 90 10 199 10 15	10 10 0 10 5 200	0 0 0 5 0 10 201 10	0 0 0 23 20 203 45 30	0 0 0 0 10 203	
25	Foxtail, Giant Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Figweed Velvetleaf Table A Fostemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	85 55 80 25 100 55 172 0	40 30 40 15 90 30 179 5	50 15 15 3 85 20 180 20 20	55 40 45 20 90 30 189 0	20 5 15 15 0 30 190 10 0	143 45 40 40 30 65 30 C 195 15	150 30 15 20 80 25 cmpc 196 0	151 10 5 10 10 35 35 unds 197 10 5 0	153 75 10 20 35 95 40 198 45 20 30 60	50 20 20 20 90 10 199 10 15	10 10 0 10 5 300 18 10	0 0 5 0 10 201 10 0	0 0 0 20 20 203 45 30	0 0 0 0 10 203 10 10	

	Table A						(lompa	ounds	3					
	500 g ai/ha	204	205	206	207	209			1.04		214	215	216	217	222
	Postemergence														
	Barnyardgrass	25	45	5	40	30	80	25	50	25	0	Ü	0	0	75
5	Crabgrass, Large	30	10	0	20	20	40	20	45	20	5	20	20	0	80
	Foxtail, Giant	25	10	0	1.0	15	40	20	45	20	15	25	20	0	65
	Morningglory	20	25	0	20	ŋ	20	20	15	20	0	25	20	15	80
	Pigweed	50	50	15	30	40	60	25	75	30	20	7.0	30	10	75
	Velvetleaf	40	20	5	50	10	40	15	35	30	15	30	25	5	80
10	Table A						(Compa	ounds	3.					
	500 g ai/ha	223	255	267	268	269	270	271	272	273	277	278	279	280	281
	Postemergence														
	Barnyardgrass	10	40	40	80	70	0	10	55	55	Ø,	30	50	Ó	30
	Crabgrass, Large	20	20	45	50	35	0	1.0	55	25	0	10	10	: 5	5
15	Foxtail, Giant	10	30	30	55	35	0	10	45	50	0	5	10	0	O.
	Morningglory	50	10	30	20	20	20	1.0	100	70	Ü	10	ğ	0	3.0
	Pigweed	50	70	40	35	35	20	45	100	100	10	60	70	55	70
	Velvetleaf	40	35	30	45	25	1.5	10	100	90	25	30	20	30	35
	Table A						(්පක්තුවේ.	ວນກຕົ	3					
20	Table A 500 g ai/ha	282	283	284	285	285	287	1		3 390	291	OOE	311	312	313
20		282	283	284	285	286		1			291	300	311	312	313
20	500 g ai/ha	282 40	283	284 30	285 35	786 60		1			291 25	300 75	311	312	313
20	500 g ai/ha Postemergence	in in					287	288	289	390					
20	500 g ai/ha Postemergence Barnyardgrass	40	10	30	35	60	287 70	289 5	289 10	290 55	25	75	2.0	ø	80
20 25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large	40 10	10 10	30 30	35 15	30 60	287 70 19	288 5 0	289 10 20	390 55 10	25 5	75 55	10 10	0	80 70
	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	40 10 20	10 10 10	30 20	35 15 25	60 20 35	287 70 10	288 5 0	289 10 20 10	290 55 10 15	25 5 30	75 55 55	2.0 2.0 0	0	80 70 70
	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	40 10 20 15	10 10 10	30 20 20 10 95	55 15 25 40 80	60 20 35 20 55	287 70 10 40 20 50	288 5 0 0 20 20	289 10 20 10	390 55 10 15 20	25 5 30 5 20	75 55 55 80 90	2.0 2.0 0	0 0 0	80 70 70 30
	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	40 10 20 15 75	10 10 10 0	30 20 20 10 95	55 15 25 40 80	60 20 35 20 55	287 70 10 40 20 50 55	288 5 0 0 20 20	289 10 20 10 10 20	390 55 10 15 20	25 5 30 5 20	75 55 55 80 90	2.0 2.0 0 0	0 0	80 70 70 30 100
	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	40 10 20 15 75 50	10 10 10 0 80 15	30 20 20 10 95	35 15 25 40 80	60 20 35 20 55 30	287 70 10 40 20 50 55 Cor	288 5 0 20 20 20	289 10 20 10 20 0	390 55 10 15 20 30 20	25 5 30 5 20	75 55 55 80 90 60	1.0 1.0 0 0	0 0 0 0	80 70 70 30 100
	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	40 10 20 15 75 50	10 10 10 0 80 15	30 20 20 10 95 30	35 15 25 40 80	60 20 35 20 55 30	287 70 10 40 20 50 55 Cor	288 5 0 20 20 20	289 10 20 10 20 0	390 55 10 15 20 30 20	25 5 30 5 20	75 55 55 80 90 60	1.0 1.0 0 0	0 0 0 0	80 70 70 30 100
25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha	40 10 20 15 75 50	10 10 10 0 80 15	30 20 20 10 95 30	35 15 25 40 80	60 20 35 20 55 30	287 70 10 80 20 50 55 Con 319	288 5 0 20 20 20	289 10 20 10 20 0 ads 338	390 55 10 15 20 30 20	25 5 30 5 20	75 55 55 80 90 60	2.0 2.0 0 0 1.0	0 0 0 0	80 70 70 30 100
25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Postemergence	40 10 20 15 75 50	10 10 10 80 15	30 20 20 10 95 30	35 15 25 40 80 60	60 20 35 20 55 30	287 70 10 80 20 50 55 Con 319	388 5 0 20 20 20 339	289 10 20 10 20 0 mds 338	390 55 10 15 20 30 20	25 30 5 30 5 30 5	75 55 80 90 60	2.0 2.0 0 0 1.0	0 0 0 0 0	80 70 70 30 100
25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Postemergence Barnyardgrass	40 10 20 15 75 50 314	10 10 0 80 15 315 20	30 20 20 95 30 316	35 15 25 40 80 60	60 20 35 20 55 30	287 70 10 40 20 50 55 Con 319	389 0 20 20 20 329 339	289 10 20 10 20 0 338 20 20	390 55 10 15 20 20 347	25 30 5 30 5 30 5	75 55 55 80 90 60 354	2.0 2.0 0 0 1.0 355	0 0 0 0 0 0 358	80 70 70 30 100
25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large	40 10 20 15 75 50 314 35	10 10 0 80 15 315 20	30 20 20 10 95 30 316 25	35 15 25 40 80 60 317	60 20 35 20 55 30 318 65 30	287 70 10 80 20 55 Con 319 10 10	269 5 0 20 20 20 329 15	289 10 20 10 20 0 ads 338 20 20	390 55 10 15 20 30 20	25 30 5 30 5 30 5	75 55 80 90 60 354 20	2.0 1.0 0 0 1.0 355 40	0 0 0 0 0 356 25	80 70 70 30 100
25	500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Postemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	40 10 20 15 75 50 314 35 20	10 10 0 80 15 315 20	30 20 20 10 95 30 316 25 25	35 15 25 40 80 60 317 0	60 20 35 20 55 30 318 65 30 50	287 70 10 40 20 55 Con 319 10 6	288 0 20 20 20 329 15 10	289 10 20 10 20 0 038 338 20 20 20 25	390 55 10 15 20 30 347 0 0	25 5 30 5 30 5 348 0 0	75 55 55 80 90 60 354 20 10	10 0 0 0 10 355 40 10	0 0 0 0 0 0 358 25 10 10	80 70 70 30 100

WO 2004/035545 PCT/US2003/032965

	Table A			C	(១៣ភូវ	ounds	\$								
	250 g ai/ha	31	32	39	131	132	133	134	135						
	Postemergence														
	Barnyardgrass	65	Ü	10	25	20	20	30	30						
5	Crabgrass, Large	30	0	10	20	20	10	20	20						
	Foxtail, Giant	45	0	10	10	15	10	15	20						
	Morningglory	5	0	0	15	10	10	10	1.0						
	Pigweed	55	0	70	45	75	30	85	80						
	Velvetleaf	20	0	10	1.5	20	10	20	18						
10	Table A	c	ാത്യാ	ounds	3										
	125 g ai/ha	38	51	110	311										
	Postemergance														
	Barnyardgrass	40	50	30	0										
	Crabgrass, Large	30	30	25	ō										
15	Foxtail, Giant	50	20	20	0										
	Morningglory	Q	10	.0	0.										
	Figweed	50	50	40	0										
	Velvetleaf	10	40	10	O.										
	Table A							Comp	ounds	3 .					
20	2000 g ai/ha	2	3	4	5	6	8	27	28	3.0	33	34	35	36	40
	Preemergance														
	Barnyardgrass	3.00	90	95	95	100	10	90	65	75	80	86	90	75	15
	Crabgrass, Large	100	90	95	95	100	10	90	55	50	95	100	100	70	15
	Foxteil, Giant	100	100	95	80	100	5	100	45	65	95	85	100	8.5	5
25	Morningglory	100	90	60	3.0	80	**	80	30	50	70	50	85	70	10
	Figwaed	100	100	100	100	100	75	100	90	100	100	100	100	100	15
	Velvetleaf	100	90	100	75	100	25	100	75	5,5	80	25	95	90	15
	Table A						- \$	Comp	ound	≅.					
	2000 g ai/ha	41	43	44	45	46	47	52	53	54	55	58	59	80	61
30	Preemergence														
	Barnyardgrass	75	90	90	95	100	95	90	10	25	95	75	60	85	75
	Crabgrass, Large	80	90	90	75	90	90	90	40	3.5	100	95	4,5	95	90
	Foxtail, Giant	70	100	100	100	1.00	100	60	0	1.5	100	95	65	90	75
	Morningglory	45	40	30	75	65	30	10	0	15	20	40	40	40	50
35	Pigweed	85	100	100	100	100	100	80	40	65	100	100	100	100	65
	Velvetleaf	40	60	35	65	85	95	50	Ō	0	70	65	5.5	95	85

WO 2004/035545 PCT/US2003/032965

	Table A						Ó	iompc	unds	ž.					
	2000 g ai/ha	62	63	64	65	66	67	70	71	78	79	80	82	83	84
	Presmergence	77					.,,,,	• •			•••				
	Barnyardgrass	95	100	85	70	20	30	20	()	45	35	35	0	0	0
5	Crabgrass, Large	85	100	100	100	٥	55	45	0	90	55	30	Ω	0	0
	Foxtail, Giant	100	100	90	80	Ü	30	55	0	70	40	70	0	Ũ	ō.
	Morningglory	75	70	5	5	0	30	1.0	Û	40	60	30	15	10	
	Pigweed	100	100		100	0	30	5	0	90	90	90	35	0	G
	Velvetleaf	95	70	35	30	Û	75	20	Ò	50	70	10	0	0	0
10	Table A						Ę	Compo	unds	ş:-					
- 1	2000 g ai/ha	85	36	87	88	89	90	91	92	93	94	95	96	97	98
	Preemergence														
	Barnyardgrass	Q	0	90	90	0	50	15	0	40	65	50	90	0	0
	Crabgrass, Large	5	0	95	100	0	75	35	3	70	60	90	100	O	Ŭ
15	Foxtail, Giant	Q	Ü	90	90	100	60	30	0	50	65	90	95	0	0
	Morningglory	S	15	15	40	10	30	10	Ô	20	10	55	70	Ü	0
	Pigweed	5	55	95	100	10	70	55	35	70	85	100	100	0	0
	Velvetleaf	0	1.0	65	7.0	10	35	30	0	25	25	80	100	0	0
	Table A							Compo	nınds	3					
20	2000 g ai/ha	102	103	107	108	109	1,1,1	112	114	115	116	117	120	121	122
	Freemergence														
	Barnyardgrass	85	85	35	90	90	10	50	40	85	70	70	85	40	95
	Bromegrass, Downy	50	, A	÷	,ca	*	*		- in	engi.		, <u></u>			n ak a Naka
	Crabgrass, Large	100	55	90	100	95	30	55	85	1.00	80	75	75	75	95
25	Poxtail, Giant	85	15	80	100	90	75	50	45	80	35	60	55	75	85
	Morningglory	90	10	100	75	45	0	48	70	90	10	75	55	20	30
	Pigweed	30	95	95	100	100	10	90	90	100	0	90	50	100	90
	Velvetleaf	60	20	0	90	25	0	50	60	95	0	65	40	3.0	70
	Table A						·(ompo	ounds	3					
30	2000 g ai/ha	123	124	125	127	128	130	136	137	138	139	143	144	145	146
	Presmergence														
	Barnyardgrass	50	10	0	30	85	30	85	60	80	60	0	100	100	80
	Crabyrass, Larys	0	15	0	85	100	60	90	90	90	75	3.5	90	90	80
	Foxtail, Giant	Q	0	0	35	65	55	70	80	90	75	Q	100	100	45
35	Morningglory	Ŭ	15	0	30	85	1.5	45	35	45	\$ 5	0	75	25	50
	Pigweed	Đ	75	Ö	50	95	65	85	90	95	100	0	100	100	95
	velvetleaf	Q	18	Q	30	85	39	30	35	50	80	O	90	90	25

	Table A						- {	20mp	oundi	š					
	2000 g ai/ha	147	148	149	150	151	153	154	164	165	166	167	172	179	180
	Preemergence														
	Barnyardgrass	95	20	90	80	0	90	95	0	0	10	3	. O	40	0
5	Crabgrass, Large	90	15	100	50	0	25	85	0	0	30	5	Ŭ.	50	50
	Foxtail, Giant	95	10	100	55	0	60	70	0	0	10	10	Û	10	10
	Morningglory	45	5	65	35	Ö	55	30	0	Q	5	5	0	5	10
	Pigweed	100	25	95	T00	0	100	100	Ø	20	30	50	40	35	90
	Velvetleaf	85	10	25	50	10	80	60	0	5	5	10	Ũ	0	15
10	Table A						i.	Comp	oundi	ä					
	2000 g ai/ha	189	190	195	196	197	198	199	200	201	202	203	204	205	206
	Preemergence														
	Barnyardgrass	65	40	45	55	0	90	95	45	50	80	60	5	90	60
	Crabgrass, Darge	75	70	95	56	Ø	90	100	75	70	100	75	1.0	95	30
15	Foxtail, Giant	20	10	45	20	Q	95	100	60	15	80	75	10	100	20
	Morningglory	30	25	10	10	5	85	55	60	5	70	15	25	45	25
	Pigweed	40	85	0	15	Q	100	100	95	95	100	90	10	100	60
	Velvetleaf	25	1.5	15	0	1.0	85	90	3.5	35	85	35	25	100	10
	Table A						ा	20mp	ound	â					
20	Table A 2000 g ei/ha	207	209	210	211	212					217	222	223	255	267
20		207	209	210	211	212					217	222	223	255	267
20	2000 g el/ha	207 80	209 80	210 90	211 70	212 85					217	222	223 80	255 75	267 80
20	2000 g si/ha Preemergence						213	214	215	216					
20	2000 g ei/ha Preemergence Barnyardgrass	80	80	90 100	70	85	213 70	214 30	215 35	215 35	0	100	80	75	80
20	2000 g ei/ha Presmergence Barnyardgrasa Crabgrass, Large	80 90	80 95 90	90 100	70 65	85 95	213 70 95	214 30 65	215 35 55	316 35 55	0	100 95	80 90	75 55	80 90
× ,	2000 g ei/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	80 90 90	80 95 90	90 100 100	70 85 70 25	8 5 95 95	213 70 95 85	214 30 65 55	215 35 55 78	315 35 55 70	0 10 10	100 95 100	80 90 90	75 55 60	80 90 85
× ,	2000 g ei/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	80 90 90	80 95 90 40	90 100 100	70 85 70 25	85 95 95 65	213 70 95 85 60 95	30 65 55 30	215 35 55 75 35	316 35 55 70	0 10 10 0	100 95 100 100	80 90 90 55	75 55 60 70	80 90 85 45
× ,	2000 g ei/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	80 90 90 85 100	80 95 90 40	90 100 100 100	70 85 70 25	85 95 95 65	213 70 95 85 60 95 35	214 30 65 55 30 95 20	215 35 55 75 35	315 35 55 70 15 70	0 10 10 0	100 95 100 100	80 90 90 55	75 55 60 70	80 90 85 45
× ,	2000 g si/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velverleaf	80 90 90 85 100	80 95 90 40 100 75	90 100 100 100 100	70 85 70 25 40 65	85 95 95 65 100	213 70 95 85 60 95 35	214 30 65 30 95 20	215 35 55 35 35 85 30	315 35 55 70 15 70 30	0 10 10 0 40 5	100 95 100 100 90	80 90 90 55 90 85	75 55 60 70 100 50	80 90 85 45 80
× ,	2000 g ei/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velverleaf Table A	80 90 90 85 100	80 95 90 40 100 75	90 100 100 100 100	70 85 70 25 40 65	85 95 95 65 100	213 70 95 85 60 95 35	214 30 65 30 95 20	215 35 55 35 35 85 30	315 35 55 70 15 70 30	0 10 10 0 40 5	100 95 100 100 90	80 90 90 55 90 85	75 55 60 70 100 50	80 90 85 45
25	2000 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velverleaf Table A 2000 g ai/ha	80 90 90 85 100 100	80 95 90 40 100 75	90 100 100 100 95	70 85 70 25 40 65	85 95 95 65 100	213 70 95 85 60 95 35 7	214 30 65 30 95 20	215 35 55 75 85 30 2000de 278	315 35 55 70 15 70 30	0 10 10 0 40 5	100 95 100 100 90	80 90 90 55 90 85	75 55 60 70 100 50	80 90 85 45 80
25	2000 g ei/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 2000 g ai/ha Preemergence	80 90 90 85 100 100	80 95 90 40 100 75	90 100 100 100 95	70 85 70 25 40 65 271	85 95 65 100 100	213 70 95 85 60 95 35 273	214 30 65 30 95 20 Compo	215 35 55 75 85 30 2000de 278	315 35 55 70 15 70 30 8	0 10 10 6 40 5	100 95 100 100 90 100	80 90 90 55 90 85	75 55 60 70 100 50	80 90 85 80 80 60
25	2000 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velverleaf Table A 2000 g ai/ha Preemergence Barnyardgrass	80 90 90 85 100 100 268 100	80 95 90 40 100 75 269	90 100 100 100 95 370	70 85 70 25 40 65 271 75	85 95 95 65 100 100	213 70 95 85 60 95 35 273 95 100	214 30 65 30 95 20 Comp	215 35 55 75 85 30 278 80 80	315 35 55 70 15 70 30 279	0 10 10 40 5 380 48	100 95 100 100 90 100 281	80 90 90 55 90 85 282 75 65	75 55 60 70 100 50 283	80 85 45 80 60 284
25	2000 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velverleaf Table A 2000 g ai/ha Preemergence Barnyardgrass Crabgrass, Large	80 90 90 85 100 100 268 100	80 95 90 40 100 75 269 100 100	90 100 100 100 95 370 90 35	70 85 70 25 40 65 271 75	85 95 95 100 100 272 100	213 70 95 85 60 95 35 273 95 100	214 30 65 55 30 95 20 277 70 25	215 35 55 75 85 30 2000 278 60 60	216 35 55 70 15 70 30 279 55 70	0 10 10 40 5 380 45 45	100 95 100 100 100 281 75 65	80 90 90 55 90 85 282 75 65	75 55 60 70 100 50 283 30 90	80 90 85 85 80 60 284 85
25	2000 g ei/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 2000 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	80 90 90 85 100 100 268 100 100 100	80 95 90 40 100 75 269 100 100	90 100 100 100 95 370 90 35 70	70 85 70 25 40 65 271 75 15 70	85 95 95 100 100 272 100 100	213 70 95 85 60 95 38 273 95 100 80	214 30 65 55 30 95 20 20 277 70 25 55	215 35 55 75 35 30 278 80 60 85	216 35 55 70 15 70 30 279 55 70 60	0 10 10 40 5 380 45 45	100 95 100 100 100 281 75 65	80 90 90 55 90 85 282 75 65 40	75 55 60 70 100 50 283 30 90 50	80 90 85 80 60 384 85 80 55

	Table A						1	Compo	ound	8					
	2000 g ai/ha	285	286	287	388	289	290	291	300	312	313	314	315	316	317
	Proemergence														
	Barnyardgrass	90	85	100	75	50	90	25	1.00	0	90	90	5	10	0
5	Crabgrass, Large	85	70	100	10	55	25	10	100	0	95	90	15	35	10
	Poxtail, Giant	90	100	100	75	40	90	0	100	Ö	90	90	10	0	0
	Morningglory	45	40	50	30	15	40	0	100	0	55	30	10	0.	0
	Pigweed	100	95	100	70	75	95	35	100	Q	100	90	45	65	30
	Velvetleaf	40	70	100	40	20	30	0	100	0	80	80	30	15	30
10	Table A				Cor	spou	nds								
	2000 g ai/hs	318	319	339	338	347	348	354	355	356					
	Preemergence														
	Barnyardgrass	95	80	.5	98	0	0	55	80	45					
	Crabgrass, Large	70	100	0	100	0	0	20	50	20					
15	Fortail, Giant	85	80	5	100	Ü	0	80	60	45					
	Mormingglory	50	60	10	40	0	0	20	40	15					
	Figweed	100	100	10	90	Ŏ	0	70	50	80					
	Velvetlesf	80	45	10	50	O	0	45	55	20					
	Table A			. 1	Compa	ound	S								
20	1000 g ai/ha	31	32	39	131	132	133	134	135						
	Preemargence														
	Barnyardgrass	80	0	25	50	10	45	45	\$5						
	Crabgrass, Large	4.5	Ō	85	85	35	80	95	90						
	Foxtail, Giant	50	0	40	73	40	30	45	50						
25	Morningglory	55	0	20	35	10	Ö	3.0	25						
	Pigweed	80	0	100	90	40	65	100	85						
	Velvetleaf	35	0	20	60	20	35	40	50						
	Table A							gmo:	ound	\$					
	500 g ai/ha	2	3	Ą	5	6	8	27	28	30	33	34	35	36	38
30	Preemergence														
	Barnyardgrass	100	30	90	50	1.00	0	75	4.5	45	55	55	70	45	3
	Crabyrass, Large	100	95	90	80	100	10	85	75	50	90	60	95	1.0	10
	Foxtail, Giant	100	100	90	40	100	10	90	30	30	80	40	80	5	0
	Morningglory	80	55	15	10	45	0	55	45	25	35	35	25	30	10
35	Pigweed	100	100	100	80	100	40	100	95	90	100	100	100	98	0
	Velvetleaf	100	95	80	25	1.00	0	75	60	50	30	30	35	20	5

	Table A						- (Comp	ound	\$						
	500 g ai/ha	40	41	43	44	45	46	47	51	52	53	54	55	58	59	
	Preemergence															
	Barnyardgrass	Ü	40	60	75	80	90	90	85	25	0	5	80	65	25	
5	Crebgrass, Large	5	40	75	45	55	65	55	80	70	0	25	75	70	25	
	Foxtail, Giant	Ō	30	55	65	75	90	90	100	20	Ü	0	60	85	5	
	Morningglory	5	20	10	10	15	40	20	15	ø	0	0	5	20	10	
	Figweed	Q	65	100	1,00	95	100	100	100	90	30	1.0	100	100	90	
	Velvetleaf	5	25	S	20	25	30	20	100	15	0	0	20	70	15	
10	Table A						ंट्र	* comovie	ounds	ž						
	500 g ai/ha	60	61	62	63	64	65	66	67	7.0	71	78	7.9	80	82	
	Preemergence	7		• • • • • • • • • • • • • • • • • • • •				9.4	 , c.	, @ ;	. 1, . 34.	i A	1,00			
	Barnyardgrass	50	40	50	70	53	55	0	0	20	0	20	20	10	: :0	
	Crabgrass, Large	75	75	70	90	70	95	0	15	35	0	60	50	10	0	
15	Foxtail, Giant	55	20	75	95	40	40	0	0	40	0	55	10	20	0	
	Morningglory	10	20	30	10	0	5	0	0	20	0	35	20	15	0	
	Pigweed	95	95	100	100	100		Q	0	0	: 0 ::	80	45	70	5	
	Velvetlesf	65	55	70		10	10	0	30	10	0	30	30	10	0	
	Table A						?	Yourself	ounds	\$						
20	500 g ai/ha	83	84	85	86	87	88	.ce. 89	90	91	92	93	94	98	96	
	Preemergence	22	. es	36.56	200	ANG AS	.03.00	9.0	J. 14		: ::::::::::::::::::::::::::::::::::::	38.48			ne A.	
	Barnyardgrass	:O	Ö	0	8	55	75	0	20	Q.	:0·	25	20	30	70	
	Crabgrass, Large	Ö.	Q.		ņ	90	45	0	35	0		35	35	50	80	
	Foxtail, Giant	O.	0	O	0	35	55	0	25	0		35	45	70	75	
25	Morningglory	30	Ü	0	0	15	10	0	0	0		Š	10	30	ੰ 25	
	Pigweed	0	0	0	0	60	90	0	25	ŭ	0	40	35	100		
	Velvetleaf	Q	Ō	0	0	25	45	0	20	5	0	3.0	S	50	95	
	Table A							Y	ounds							
	500 g ai/ha	97	o a	182	102	1.89			110		4.5.7	7.7.3	31.55 SEC.	112		
30	Preemergence		30.	2.13	* 0.3	2.63.3		103	440	* 3. 4	A SA SA SA	77.4	. C 2.2.	770	446	
2X XX	Barnyardgrass	0	0	70	55	0	85	85	5	ñ	25	カニ	70	3.5	3.0	
	Bromegrass, Downy		***	60	-			e e	نين	Sage Company	39.0	****	7.50	المالية المالية		
	Crabgrass, Large	0	ō	95	35	65	85	80	20	35	45	40	100	45	45	
	Foxtail, Giant	Q	0		0	10	95	80		45	25	30	50	20		
35	Morningglory	ű.	ō	65		95		35	20	0	30	38	70	.0	45	
77 77;	Pigweed	Q.	0	80	80		100	75	10	10	65	85	95	0	55	
	Velvetleaf	Ö	0	30	20	0	55	15	10	0	25	35	85	ø	50	

	Table A						. (gmot	nındı	9					
	500 g ai/ha	120	121	122	123	124	125	127	128	130	136	137	138	139	143
	Freemergence					.,.									
	Barnyardgrass	3.0	15	90	5	0	0	20	55	40	65	30	30	40	0
5	Crabgrass, Large	43	10	70	15	30	0	75	90	45	85	55	70	45	0
	Foxtail, Giant	25	25	65	0	0	ō	20	15	50	60	50	30	60	0
	Morningglery	20	5	25	0	5	ğ.	30	45	10	20	20	15	30	ij
	Pigweed	20	95	85	Ó	20	0	40	60	35	70	60	80	100	0
	Velvetleaf	20	10	40	0	Q	ű	10	75	30	25	20	30	50	Ö
10	Table A						:3	Compi	ounds	3					
	S00 g ai/ha	144	145	1.46	147	148	149	150	151	153	154	164	165	166	167
	Preemergence														
	Barnyardgrass	100	95	70	40	Q	70	50	Ô.	80	30	0	0	0	0
	Crabgrass, Larga	90	70	70	85	ō	95	25	0	25	25	0	0	0	0
15	Foxtail, Giant	90	85	45	60	Ō	70	15	Ü	15	20	0.	Ü	0	.0
	Morningglory	20	30	5	20	ō.	30	10	0	10	10	0	0	Ů.	0
	Pigweed	100	95	85	85	0	90	75	0	100	85	Q	0	Ü	0
	Velvetleaf	70	75	20	25	Ø.	0	20	9	15	15	0	Ü	0	5
							٠			i de Se					
	Table A						.\$	Compe	oundi	i.					
20	Table A 500 g al/ha	172	179	180	189	190					199	200	201	202	203
20	# 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	172	179	180	189	190					199	200	201	202	203
20	500 g al/ha	172		180	189	190 20					199 55	200 35	201 0	202 45	203
20	500 g si/ha Preemergence						198	196	197	198					
20	500 g al/ba Preemergence Barnyardgrass	0	0	0	35	20	198 20	196 15	197	198 55	55	35	0	45	10
20	500 g mi/hm Preemergence Barnymrdgrass Crabgrass, Large	0	0	0	35 55	20 40	198 20 75	196 15 25	197 0 0	198 55 80	55 70	35 70	0 35	45 85	10 50
	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	(0 (0 (0	0	6 10 0	35 55 5	20 40 0	195 20 75 30	196 15 25	197 0 0	198 55 80 90	55 70 80	35 70 35	0 35 0	45 85 55	10 50 30
	500 g al/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	0 0 0	0 0	0 10 0 0	35 55 5	10 40 20	195 20 75 30	196 15 25 0	197	198 55 80 90 45	55 70 80 15	35 70 35 15	0 35 0	45 85 55 15	10 50 30
	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	0 0 0	0 0	0 10 0 0	35 55 5 15 25	20 40 0 10	195 20 75 30 5 0	196 15 25 0	197 0 0 0 0	198 55 80 90 45 95	55 70 80 15	35 70 35 15	0 35 0 0	45 85 55 15	10 50 30 10
	500 g mi/hm Premmergence Barnymrdgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf	0 0 0	0 0	0 10 0 0 0	35 55 18 25	20 40 0 10 25	195 30 75 30 5 0	196 15 25 0 0 0	197 0 0 0 0 0	198 55 80 90 45 95 45	55 70 80 15 100 35	35 70 35 15 80 20	0 35 0 0 40	45 85 55 13 100 35	10 50 30 10 90
	500 g si/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	0 0 0	0 0	0 10 0 0 0	35 55 18 25	20 40 0 10 25	195 30 75 30 5 0	196 15 25 0 0 0	197 0 0 0 0 0	198 55 80 90 45 95 45	55 70 80 15 100 35	35 70 35 15 80 20	0 35 0 0 40	45 85 55 13 100 35	10 50 30 10 90
25	500 g si/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g si/ha	0 0 0	0 0 0 0	0 10 0 0 0 0	35 55 18 25	20 40 0 10 25	195 75 30 5 6 0	196 15 25 0 0 0	197 0 0 0 0 0	198 55 80 90 45 95 45	55 70 80 15 100 35	35 70 35 15 80 20	0 35 0 0 40	45 85 55 13 100 35	10 50 30 10 90
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Preemergence	0 0 0	0 0 0 0 0	0 10 0 0 0 0	35 55 15 25 10	20 40 0 10 25 0	195 75 30 5 6 0	196 25 0 0 0 20mp 211	197 0 0 0 0 0 0 cund: 213	198 55 80 90 45 95 45 213	55 70 80 15 100 35	35 70 35 15 80 20	0 35 0 0 40 0	45 85 55 100 35	10 50 30 10 90 15
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Preemergence Barnyardgrass	0 0 0 0	0 0 0 0 0 205 80	0 0 0 0 0 206	35 55 15 25 10 207	20 40 0 10 25 0 209 60 75	195 20 75 30 5 0 (210	196 15 25 0 0 0 20mp 211	197 0 0 0 0 0 0 0 0 0 212 80 30	198 55 80 90 45 95 45 45	55 70 80 15 100 35	35 70 35 15 80 20 215	0 35 0 0 40 0 216	45 85 55 100 35	10 50 30 10 90 15 222
25	500 g si/ha Presmergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g si/ha Preemergence Barnyardgrass Crabgrass, Large	0 0 0 0 0 0	0 0 0 0 0 205 80 80 85	0 10 0 0 0 0 206 10 20	35 55 15 25 10 207 70 95	20 40 0 10 25 0 209 60 75	195 30 75 30 5 0 210 85 90	196 15 25 0 0 0 20mp 211 59 75	197 0 0 0 0 0 cund: 212 80 90	198 55 80 90 45 95 45 213 40 55	55 70 80 15 100 35 214	35 70 35 15 80 20 215 15 30 50	0 35 0 40 0 216 15	45 85 55 18 100 35 217 0	10 50 30 10 90 15 222 95
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	0 0 0 0 0 0 20& 0 0	0 0 0 0 0 205 80 80 85	0 10 0 0 0 0 206 10 20 5	35 55 15 25 10 207 70 95 75	20 40 0 10 25 0 209 60 75 50 20	195 20 75 30 5 0 210 85 30 100	196 15 25 0 0 0 20mp* 211 59 75 45	197 0 0 0 0 0 0 0 0 0 0 212 80 90 70	198 55 80 90 45 95 45 213 40 55	55 70 80 15 100 35 214 0 55 60 5	35 70 35 15 80 20 215 15 30 50	0 35 0 40 0 216 15 15	45 85 55 18 100 35 217 0	10 50 30 10 90 15 222 95 100 95

WO 2004/035545 PCT/US2003/032968

	Table A						į C	compo	runds	Š					
	SOO g ai/ha	223	255	267	268	269	270	271	272	273	277	278	279	280	281
	Preemergence														
	Barnyardgrass	55	55	70	100	95	60	5	70	70	0	50	5	Ü	60
5	Crebgrass, Large	90	35	15	85	65	5	0	85	75	Ü	25	70	0	20
24.7	Foxtail, Glant	75	45	75	100	100	20	0	90	85	Q	60	25	5	50
	Morningglory	35	3.0	20	5	20	0	0	20	45	0	1.0	10	0	5
	Pigweed	95	90	5	100	100	15	60	100	100	40	85	35	15	90
	Velvetleaf	55	30	25	95	40	30	0	1.5	60	5	26	10	0	0.0
10	Table A						: C	iompe	oundi	13 ja –					
	500 g ai/hs	282	283	284	285	286	287	288	289	290	291	300	311	312	313
	Preemergence														
	Barnyarügrass	30	8	10	70	75	95	20	Q	40	0	90	0	Ō.	86
	Crabgrass, Large	40	15	15	60	15	75	0	0	5	0	9.0	.0	0	85
15	Foxtail, Giant	10	10	30	50	60	65	15	10	50	O.	95	0	0	75
	Morningglory	10	Ü		25	30	10	5	0	10	Q	80	0	D.	20
	Pigweed	90	60	85	100	85	100	25	0	10	0	95	0	0	95
	Valvetleaf	20	Q	1.0	35	20	50	10	0	1.5	Ö	85	0	Ö	65
	Table A						Cor	moon	nds						
20	Table A 500 g ai/ha	314	315	316	317	318				347	348	354	355	356	
20		314	315	318	317	318				347	348	354	355	356	
20	500 g ai/ha	314 50	315	318	317	318 65					348	354		356 5	
20	500 g ai/hs Preemergence			ō	0		319	329	338	.0		0	50	5.	
20	500 g ai/ha Presmergence Barnyardgrass	50	5	Q	o o	65	319 55	329	338 60 65	.0	0	0	50 20	5.	
20	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large	50 55	5 5	10	0	65 55	319 55 85	329	338 60 65	0	0 0	0 10 15	50 20	5 10 20	
	500 g ai/ba Preemergence Barnyardgrass Crabgrass, Large Poxtail, Giant	50 55 80	5 5	0 10 0	0	55 55 40 20	319 55 85 55 20	329	338 60 65 80	0	0 0 0	0 10 15	50 20	5 10 20	
	500 g ai/ha Preemargence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory	50 55 80 10	5 5 0	0 0 0	0	55 55 40 20 75	319 55 85 55 20	329 0 0 0 5	338 60 65 80 10 55	0 0 0	0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed	50 55 80 10	5 5 9 5	0 0 0	0 0 0 20	55 55 40 20 75 30	319 55 85 55 20 100 35	329 0 0 0 5	338 60 65 80 10	0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Poxtail, Giant Morningglory Pigweed Velvetleaf	50 55 80 10	5 0 5 15	0 0 0 0	0 0 0 20	65 55 40 20 75 30	319 55 85 30 100 35	329 0 0 0 5	338 60 65 80 10 55 20	0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A	50 55 80 10 80 40	5 0 5 15	0 0 0 0	0 0 0 20 0 Comp	65 55 40 20 75 30	319 55 85 30 100 35	329 0 0 0 5	338 60 65 80 10 55 20	0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 250 g ai/ha	50 55 80 10 80 40	5 5 0 5 15 10	0 0 0 0 5 39	0 0 0 20 0 Comp 131	65 55 40 20 75 30 ound	319 55 85 55 20 100 35 8	329 0 0 0 5 0	338 60 65 80 10 55 20	0 0 0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 250 g ai/ha Preemergence	50 55 80 10 80 40	5 8 0 5 13 10	10 0 0 0 5 39	0 0 0 20 0 Comp 131	55 \$5 \$0 20 75 30 ound 132	319 55 85 30 100 35 8	329 0 0 0 5 0	338 60 65 80 10 55 20 135	0 0 0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 250 g ai/ha Preemergence Barnyardgrass	50 55 80 10 80 40 31	5 8 9 5 15 10 32	0 10 0 0 5 39 15	0 0 0 20 0 Comp 131 45	65 55 40 20 75 30 cumd 132 0 20	319 55 85 55 20 100 35 8 133 0	329 0 0 0 5 0 134 35	338 60 65 80 10 55 20 135 35	0 0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 250 g ai/ha Preemergence Barnyardgrass Crabgrass, Large	50 55 80 10 80 40 31	5 8 9 5 15 10 0 0	0 0 0 0 5 39 15 35	0 0 0 20 0 Comp 131 45 20	65 55 40 20 75 30 0 132 0 20 25	319 55 85 50 100 35 8 133 0 35 0	329 0 0 0 5 0 134 35 35	338 60 65 80 10 55 20 135 35 80	0 0 0 0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	
25	500 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant Morningglory Pigweed Velvetleaf Table A 250 g ai/ha Preemergence Barnyardgrass Crabgrass, Large Foxtail, Giant	50 55 80 10 80 40 31 40 20	5 5 8 9 5 15 10 0 0 0 0 0 0	10 0 0 0 5 39 15 35 20	0 0 0 20 20 131 45 30 10	55 55 40 20 75 30 0 132 0 20 25	319 55 85 55 20 100 35 8 133 0 25 0	329 0 0 0 5 0 134 35 35 30	338 60 65 80 10 55 20 135 35 60 10	0 0 0 0 0	0 0 0 0	0 10 15 15	50 20 20 10	5 10 20 5 25	

WO 2004/035545 PCT/US2003/032965

139

	Table A	C	omp	oundi	3
	125 g ai/ha	38	51	110	311
	Preemergence				
	Barnyardgrass	O	60	10	0
5	Crabgrass, Large	0	80	15	0
	Foxtail, Giant	0	70	0	Ö
	Morningglory	5	10	10	0
	Pigweed	0	100	10	0
	Velvetleaf	: Q	20	10	()

10 TEST B

15

20

25

Seeds selected from barnyardgrass (Echinochloa crus-galli (L.) Beauv.), Surinam grass (Urochloa decumbens (Staph) R. D. Webster, previously named Brachiaria decumbens Stapf), cocklebur (Xanthium strumarium L.), corn (Zea mays L.), large crabgrass (Digitaria sanguinalis (L.) Scop.), giant foxtail (Setaria faberi Herrm.), lambsquarters (Chenopodium album L.), morningglory (Ipomoea coccinea L.), pigweed (Amaranthus retroflexus L.), rice (Oryza sativa L.) and velvetleaf (Abutilon theophrasti Medik.) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also blackgrass (Alopecurus myosuroides Huds.), wheat (Triticum aestivum L.) and wild out (Avena fatua L.) were treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flooded paddy test consisted of rice (Oryza sativa L.), small flower umbrella sedge (Cyperus difformis L.), ducksalad (Heteranthera limosa (Sw.) Willd.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv.) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table B, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

30	Table B	Compounds													
	1000 g ai/ha	1	2	3	4	3	õ	7	8	3	10	1.1	12	13	14
	Flooded Paddy														
	Sarnyardgrass	80	90	80	80	50	90	80	0	70	80	30	10	80	90
	Ducksalad	90	90	80	90	80	90	90	O	80	90	70	80	90	90
35	Rice	80	70	80	70	40	80	70	20	80	80	90	50	70	80
	Sedge, Umbrella	90	30	90	90	80	90	90	0	80	70	70	3.0	70	50

	Table B	Compounds													
	1000 g ai/ha	1,5	16	17	18	19	20	21	22	23	24	25	26	27	38
	Flooded Paddy	1, 41 16	6. 5.									1.50			
	Barnyarögrass	60	80	70	80	20	40	70	0	D	Ŏ	0	0	80	80
5	Ducksalad	90	90	90	90	70	90	90	Q	0	Q	0	Ũ	90	80
	Rice	50	90	80	80	0	70	60	.0	Ó	Q	Ó	0	30	80
	Sedge, Umbrella	80	70	70	70	60	80	60	0	0	50	.0	0	30	80
			5.					and the state of the same	unda						
	Table B	29	30	34.	32	3.3	34	35	36	37	40	41	42	43	44
10	1000 g ai/ha Flooded Paddy	40.00	~ ~ ~	nd (d.		Se 22	. J	9.3	24	20.1	-30 W	37.77	4.63		
\$3.2	Barnyardgrass	90	60	80	0	90	80	90	70	30	0	50	6	80	70
	Ducksalad	80	80	80	0	30	80	80	90	60	0	60	50	70	70
	Rice	70	60	80	0	60	50	60	40	50	0	20	0	50	70
	Sedge, Umbrella	80	70	50	20	90	80	90	60	90		76	5.0	70	70
	and the Market of the Control of the	<u> </u>		17.3											
15	Table B	16.00		Č.					រាយថ្មខ			المراسوة	ي پري	F 0	or no.
	1000 g ai/ha	45	46	47	48	49	50	51	52	54	55	56	57	58	59
	Flooded Paddy	454.	خد		á.	.02.14	e A	see see	^^	- 25	~ ~	ກຕ	£ 35	άX	0
	Barnyardgrass	80	90	90	80	70	70	90	2.0	0	90	80	60 = 0	80	0
- A.A	Ducksalad	80	90	80	80	80	70	80	20	0	80	80	50 60	80 60	0
20	- Rice - The Common Laborator	70	70	70	80	38	60	70	0	0	70 80	70 80	ои 60	80	0
	Sedge, Umbrella	70	80	80	80	30	80	80	40	Q.	80	0.0	ΟV	S. C.	Ų.
	Table B						C	cmpo	unds	ķ:					
	1090 g ai/ha	60	61	62	63	54	65	66	67	68	69	70	71	72	73
	Flooded Paddy														
25	Barnyardgrass	60	30	70	80	3.0	80	10	60	0	0	10	0	0	30
	Ducksalad	70	80	80	90	90	90	0	80	Û	Q	0	0	Q	16
	Rice	50	0	30	50	50	50	Ù	60	Ŭ	0	10	Q	0	50
	Sedge, Umbrella	60	60	80	100	90	90	1.0	80	0	Ű.	30	. 0	Ü	80
	Table B						Ç	comp:	nunds	š.:					
30	1000 g ai/ha	74	75	76	77	78	79	80	81	83	83	84	85	88	87
	Flooded Paddy														
	Barnyardgrass	0	80	70	40	30	60	80	50	30	10	10	40	30	20
	Ducksalad	0	90	100	40	30	80.	9.0	80	20	30	20	20	20	20
	Rice	Ó	90	60	70	40	70	60	ŭ0	40	10	0	40	50	10
35	Sedge, Umbrella	70	70	60	80	80	90	80	80	40	50	70	50	70	80

WO 2064/035545 PCT/US2003/032965

	Table B	Compounds													
	1000 g ai/ha	88	89	90	91	92	93	94	95	96	9.7	98	99	100	101
	Flooded Paddy														
	Barnyardgrass	70	10	10	0	Ü	0	20	50	80	0	6	0	0	70
5	Ducksalad	80	0	30	30	0	10	30	80	90	50	0	0	0	90
	Rice	40	10	1.0	1.0	0	20	10	60	70	0	0	0	0	80
	Sedge, Umbrella	80	60	50	60	0.00	70	50	80	90	70	0	40	0	80
	Table B						i Ç	compa	amds	\$:					
	1000 g ai/ba	102	104	105	106	107	108	109	110	112	113	114	115	117	118
10	Flooded Paddy														
	Barnyardgrass	80	0	20	Q	Ö	80	80	30	50	70	70	90	70	50
	Ducksalad	90	60	70	80	50	90	90	0	80	90	80	90	80	80
	Rice	50	0	0.	Û	0	70	70	20	70	60	50	60	50	80
	Sedge, Umbrella	100	70	70	90	60	90	60	20	80	90	90	90	90	80
15	Table B						-(lompo	undi	š					
	1000 g ai/ha	119	120	121	122	123	124	125	126	127	128	129	130	131	132
	Flooded Paddy														
	Barnyarögrass	0	30	Ü	60	0	0	Ø	10	50	70	30	40	70	30
	Ducksalad	O:	70	Q	80	50	70	Ø	80	90	90	70	1.0	80	10
20	Rice	0	Ŭ.	Q	70	0	0	0	20	50	60	10	0	60	0
	Sedge, Umbrella	Ø	10	۵	80	30	0	0	80	1.00	90	80	Û	80	40
	Table B						- 1	Comp	วนทดัเ	3					
	1000 g ai/ba	133	134	135	136	137	138	139	140	141	142	143	144	145	146
	Flooded Paddy														
25	Barnyarügrass	20	60	60	60	20	10	70	70	10	90	Q	80	70	60
	Ducksalad	50	90	80	90	30	80	80	80	80	90	Q	90	70	80
	Rice	0	60	60	30	30	50	50	30	0	70	0	70	40	40
	Sedge, Umbrella	40	80	70	90	90	80	80	80	90	80	0	90	90	30
	Table B						H	Comp	ound	ន					
30	1000 g ai/ha	147	148	149	150	151	152	153	154	155	158	157	1.58	159	160
	Flooded Paddy														
	Barnyardgrass	60	20	70	70	Ü	80	40	50	70	100	20	70	80	70
	Ducksalad	80	Ü	90	30	O	80	80	80	100	100	٥	9.0	90	90
	Rice	50	0	50	40	0	70	60							90
35	Sedge, Ombrella	90	70	60	50	60	90	7.0	20	90	30	40	80	70	80

	Table B	Compounds													
	1000 g ai/ha	161	162	163	154	165	166	167	1.68	169	170	171	179	180	181
	Flooded Paddy														
	Barnyardgrass	0.8	80	70	0	0	0.0	0	50	0	10	Ü	Q	20	80
5	Ducksalad	80	80	80	0	0	0	0	70	0	Ö.	0	0	20	90
	Rice	40	0.8	60	0	Ö	0	0	40	Û	20	0	Ü	0	80
	Sedge, Umbrella	60	80	70	٥	Q	30	Û	90	٥	20	0	٥	0	80
	Table B							Towns.	ound	et.					
	1000 g ai/he	182	183	184	185	186					191	192	193	194	195
10	Flooded Paddy						. užses	77 T. T.		Sec. Com.	1100 00.				man.
	Barnyardgrass	40	60	0	0	30	60	60	60	30	20	80	80	80	60
	Ducksalad	60	70	0	0	90	90	នូវ	70	60	20	80	90	90	40
	Rice	0	0	Û	Ø	30	30	70	40	ű	0	70	ខូល	60	30
	Sedge, Umbrella	80	80	30	60	90	80	80	70	60	90	80	80	80	50
15	Table B							comp.	oundi	ŝ					
	1000 g si/ha	196	197	198	199	200					205	206	207	209	210
	Flooded Paddy														
	Barnyardgrass	20	Ó	20	10	0	0	40	Q.	20	70	10	80	60	80
	Ducksalad	30	0	70	Ö	Û	0	50	Ŭ.	40	50	40	90	80	80
20	Rice	Q	Õ	20	30	0	Ŏ	30	0	30	60	30	60	50	70
	Sedge, Umbrells	30	0	70	1.0	50	0	50	Q	80	60	50	80	90	80
	Table B						· (X	ompo	ounds	3					. 47
	1000 g ai/ha	211	212	213	214	215					220	221	222	223	224
	Flooded Paddy											and the second			
25	Barnyardgrass	30	30	50	0	30	20	Q.	0	0	0	40	90	40	90
	Ducksalad	80	80	70	30	90	86	0	0	30	40	50	80	90	80
	Rice	20	70	40	0	30	30	0	Q	0	ij	20	90	70	90
	Sedge, Umbrella	30	7.0	80	50	90	90	0	20	80	80	80	70	80	80
	Table 8						- C	'೧೫(೦	nuncîs	3					
30	1000 g ai/ha	225	226	227	228	229	230	231	232	233	234	235	236	237	338
	Flooded Paddy														
	Barnyardgrass	90	80	70	96	90	50	80	40	Ø	Q	40	80	60	10
	Ducksalad	90	70	80	90	90	60	90	80	50	Ö	90	90	80	0
	Rice	90	80	70	90	90	60	80	50	30	0	40	70	50	30
35	Sedge, Umbrella	90	80	\$0	80	80	70	90	90	80	9	80	30	40	80

	Table B						.5	ompo	nerels						
	The state of the s	230	286	200	つがつ	242					248	24.9	256	251	252
	1000 g ai/ha	200	244	ं करा	\$ *	442	2.2.2	22.2	2.40	- 15 150 1	220	40.00	woo	A 48,44	
	Flooded Paddy	n	0	80	90	90	90	90	50	70	40	0	0	0	70
æ	Barnyardgrass	0	Û	70	90	90	90	80	50	80	30	0	40	30	90
5	Ducksalad	4.5			***		90	50	60	80	50	0	50	40	80
	Rice	30	0		90	90			50	70	50	30	70	40	80
	Sedge, Umbrella	70	60	80	90	80	80	50	သူမ	70	3n	2.0	r w	άħ	ov.
	Table B						Ţ.	Compa	oundi	₫.					
	1000 g ai/ha	253	254	255	256	257	258	259	260	261	262	263	264	265	266
10	Flooded Paddy														
	Barnyardgrass	0	30	70	30	0	70	30	60	0	ğ	60	0	Ð.	80
	Ducksalad	60	90	80	90	50	90	90	90	80	0	90	90	0	90
	Rice	50	80	70	50	30	80	70	70	60	Q	70	0	0	80
	Sedge, Umbrella	20	60	80	70	Ø	70	70	70	30	Ö	80	50	: ()	80
15	Table B						1	Comp	ound:	S					
	1000 g ai/ha	267	268	269	270	271	272	273	274	275	276	277	278	279	280
	Flooded Paddy														
	Barnyardgrass	60	90	90	50	0	50	60	70	2.0	70	0	60	10	0
	Ducksalad	0	90	80	70	40	80	90	7.0	60	80	Ø	80	60	20
20	Rice	70	90	80	70	20	40	40	80	20	70	0	60	40	Q
	Sedge, Umbrella	70	80	80	60	40	80	80	80	80	8.0	Q	70	60	30
	Table B						- 5	Comp	ound	S					
	1000 g ai/ha	281	282	283	284	285	286	287	288	289	290	291	292	293	294
	Flooded Paddy														
25	Barnyardgrass	70	20	20	3.0	90	90	80	0	0	70	0	20	90	90
	Ducksalad	80	80	70	7.0	90	90	80	0	ō	70	0	0	80	90
	Rice	70	20	10	10	80	70	70	Û	0	60	0	30	90	90
	Sedge, Umbrella	70	Ü	80	Ö	90	80	80	60	0	70	Ö	80	60	80
	Table B						i,	Comp	ರಾಣದ	Si.					
30	1000 g ai/ha	295	296	297	298	299	300	301	302	303	304	305	306	307	308
	Flooded Paddy														
	Barnyardgrass	60	80	30	90	90	90	90	70	90	80	90	80	90	90
	Ducksalad	70	80	30	90	90	90	90	90	90	90	80	80	80	90
	Rice	50	60	20	80	90	90	90	70	90	90	70	60	90	70
35	Sedge, Umbrella	80	80	80	70	90	90	90	86	9.0	90	90	80	90	90

	Table B							Compo	ound:	3.					
	1000 g ai/ha	309	310	311	312	323	314	315	316	317	318	319	329	330	331
	Flooded Paddy														
	Barnyardgrass	90	30	50	0	70	30	Ü	Ű	0	70	10	0	0	80
5.5	Ducksalad	90	90	60	Ŏ	80	0	Ø	0	0	70	90	0	Ü	90
	Nice	80	80	60	Ω	80	0	0	Q	Ď	40	70	0	Ü	60
	Sedge, Umbrella	80	80	30	Q	80	δ0	0	0	Q	80	80	0		90
	Table B						, 3(Comp	ວບກຸດີເ	S					
	1000 g ai/ha	332	333	334	335	336	338	340	341	342	343	344	345	346	347
10	Flooded Paddy														
	Barnyardgrass	60	50	.90	60	90	40	90	90	90	90	60	30	40	0
	Ducksalad	90	80	90	50	96	60	90	90	80	90	80	70	60	Ø.
	Rice	50	20	80	70	80	30	80	70	70	80	70	40	40	0
	Sedge, Umbrella	90	80	80	80	80	80	80	80	7.0	90	80	80	80	Q.
15	Table B							Comp	ound	8					
	1000 g ai/ha	348	349	350	351	352	353	354	355	356	357	358	359	360	361
	Flooded Paddy														
	Barnyardgrass	O	80	0	Q	90	70	40	50	50	7.0	80	70	4.0	80
	Ducksalad	0	90	0	- 0	90	80	50	70	60	80	90	70	70	90
20	Rice	0	70	0	Ø.	70	40	50	50	50	70	70	70	50	90
	Sedge, Umbrella	Ü	80	0	0	80	90	50	70	70	80	80	80	90	90
	Table B		Co	mpou	nds										
	1000 g ai/ha	362	363	354	365	366									
	Flooded Faddy														
25	Barnyardgrass	50	60	90	90	80									
	Ducksalad	90	90	100	90	100									
	Rice	60	60	90	90	70									
	Sedge, Umbrella	90	80	100	90	90									
	Table B						-	Comp	ಲಭಾರೆ	s					
30	500 g ai/ha	1	3	3	4	5	5	7	8	9	10	11	1,2	13	14
	Postemergence														
	Barnyardgrass	30	70	20	30	20	80	0	Ō	40	10	0	0	10	20
	Blackgrass	40	30	20	10	0	90	0	Q	50	50	40	30	30	60
	Cocklebur	90	80	70	70	70	80	Q	0	70	80	10		50	30
35	Corn	20	20	20	20	30	60	10	0	10	0	Ü	0	0	0
	Crabgrass, Large	0	30	10	30	20	30	0	. 0	20	20	10	0	30	30
	Foxtail, Giant	30	30	20	30	30	20	0	Q	30	20	3.0	30	30	40

	Lambsquarters	80	90	60	160	80	100	20	10	80	90	70	70	70	70
	Morningglery	60	70	50	50	20	0	0	0	0	20	10	10	10	50
	Oat, Wild	50	30	30	20	20	70	0	Q	20	30	20	10	30	40
	Pigweed	70	70	40	86	60	70	0	1.0	80	90	20	30	70	60
5	Surinam Grass	20	50	1.6	30	30	60	0	0	0	30	10	26	20	20
	Velvetleaf	80	50	10	30	30	60	0	0	70	70	30	20	50	50
	Wheat	10	20	1.0	1.0	10	40	Û	0	20	20	10	1.0	10	20
	Table S						C	ompo	ນກດີຮ						
	500 g ai/ha	15	16	17	1.8	19	20	21	22	23	24	25	26	27	28
10	Postemergence														
	Barnyardgrass	10	60	10	10	0	1.0	0	0	0	0	0	10	60	40
	Blackgrass	20	70	50	30	40	40	30	30	30	30	40	0.	80	30
	Cocklebur	20	20	70	20	50	50	· [394].	'weg'	1.0	40	Q	0	50	80
	Corn	Ď.	30	30	20	20	20	0	Q	20	: 0	0	10	40	20
15	Crabgrass, Large	10	1.0	10	10	10	10	10	10	0	1.0	()	10	80	30
	Foxtail, Glant	40	3.0	40	30	20	3.0	20	20	0	20	Ŏ	10	100	50
	Lambsquarters	70	70	90	50	50	40	40	60	20	10	0	10	100	90
	Morningglory	Ö.	20	10	20	10	40	20	30	30	20	20	Q	50	40
	Oat, Wild	30	40	30	30	30	40	30	1.0	20	30	30	0	80	30
20	Pigweed	30	50	60	40	50	60	30	20	20	30	10	50	100	100
	Surinam Grass	10	20	20	10	20	10	10	O	10	20	- 0	10	80	30
	Velvetleaf	30	60	60	20	10	30	2.0	3.0	Ũ	10	Ø	0	70	60
	Wheat	10	20	30	20	10	30	30	0	0	20	10	Ŏ	20	30
	Table B							Jompo	sındı						
25	500 g ai/ha	29	30	3.1	32	33	34	35	36	37	40	&I.	42	43	44
	Postemergence														
	Barnyardgrass	50	10	50	10	30	30	30	20	20	1.0	20	30	70	50
	Blackgrass	20	30	50	0	20	20	30	20	10	20	20	1.0	20	20
	Cocklebur	80	70	90	20	100	90	100	50	80	50	40	20	90	80
30	Corn	20	30	30	10	ىين			,	yes See		1- 1	20	30	3.0
	Crabgrass, Large	70	1.0	30	10	3.0	20	20	20	20	20	3.0	70	90	90
	Poxtail, Gient	40	20	30	10	30	30	20	30	20	20	20	10	50	36
	Lambsquarters	100	90	90	90	9.0	90	90	90	90	70	70	70	90	90
	Morningglory	70	60	70) Ö	ų	e in the second	<u>.</u>	de:				50	100	90
35	Cat, Wild	40	30	30	20	3.0	10	10	30	20	10	10	20	30	20
	Figweed	100	100	9.0	50	9.0	90	100	90	90	60	70	70	100	100
	Surinam Grass	30	40	61	10	30	50	40	10	20	20	50	20	80	20

	Velvetleaf	70	50	50	30	60	50	50	40	40	20	30	60	90	80
	Wheat	10	10	10	10	30	30	20	3.0	20	30	10	30	30	20
	Table B						C	ටගුනර	unds	į.					
	500 g ai/ha	45	46	47	48	50	51	52	55	56	57	58	59	60	61
5	Postemergence														
	Barnyardgrass	30	50	40	80	70	80	·.(i)	10	20	30	60	20	10	30
	Blackgrass	20	20	10	10	30	0	0	10	10	1.0	30	0	0	0
	Cocklebur	80	90	100	70	90	80	40	40	80	60	100	40	70	3.00
	Corn	30	30	30	30	40	0	40	30	30	30	20	20	20	40
10	Crabgrass, Large	38	90	70	20	30	50	10	1.0	30	20	30	20	20	30
	Foxtail, Giant	30	40	30	30	30	0	10	10	20	30	2.0	30	26	30
	Lambsquarters	90	90	90	90	90	90	80	70	90	90	90	90	90	100
	Morningglory	90	90	100	50	70	0	Ü	1.0	30	.10	30	20	20	50
	Oat, Wild	20	10	30	30	20	10	10	20	20	30	3.0	30	20	20
15	Pigweed	100	90	100	70	100	100	10	40	90	80	90	80	70	60
	Surinam Grass	30	40	40	80	40	20	Ü	10	30	20	3.0	20	20	30
	Velvetleaf	70	80	70	80	60	70	20	40	50	30	70	30	60	70
	Wheat	30	30	3.0	20	30	30	0	10	20	10	20	10	0	10
	Table B						C	ogm o !	und	8					
20	500 g ai/ha	62	63	64	65	66	67	68	69	70	71	75	76	77	78
	Postemergence														
	Barnyardgrass	50	20	10	1.0	10	10	0	0	20	10	20	20	0	3.0
	Blackgrass	7.0	20	10	10	20	1.0	30	30	20	0	30	.50	3.0	30
	Cocklebur	100	70	50	80	30	70	10	٥	100	Ü	30	.90	Q	100
25	Corn	20	20	20	20	20	1.0	Ø	0	20	10	20	30	10) sape
	Crabgrass, Large	20	20	10	20	1.0	10	0	0	3.0	10	10	20	40	30
	Foxtail, Glant	30	20	10	20	20	1.0		Q	30	10	20	4.0	40	3.6
	Lambsquarters	90	80	70	70	70	60	10	10	80	20	40	60	90	80
	Morningglory	60	20	20	20	20	10	0	0	30	0	50	10	70	, .
30	Oat, Wild	30	30	20	20	10	30	20	20	30	0	40	40	40	20
	Pigweed	90	70	50	60	30	20	3.0	20	50	26	70	100	96	90
	Surinam Grass	70	20	10,	20	10	10	O	O	20	1.0	20	20	20	30
	Velvetleaf	70	50	10	1.0	10	10	0	0	50	0	20	À 0	30	80
	Wheat	10	30	10	10	1.0	10	0	0	20	0	20	30	20	30

	Table S						C	compc	unds	.					
	500 g ai/ha	79	80	81	82	83	84	85	86	87	88	89	90	91	92
	Postemergence														
	Barnyardgrass	40	90	90	20	50	40	80	80	0	60	20	30	0	Ŏ
5	Blackgrass	30	40	20	10	0	10	20	20	0	0	10	10	0	0
	Cocklebur	80	100	90	100	20	100	100	100	0	50	90	60	10	0
:	Corn	, A c	50	30	30	30	20	30	30	0	70	20	10	10	10
	Crabgrass, Large	30	100	20	20	30	50	80	90	60	60	20	10	10	10
	Foxtail, Giant	40	90	50	10	10	3.0	50	60	0	40	20	1.0	0	Q
10	Lambaquarters	80	80	50	50	60	60	60	90	O	100	60	50	30	20
	Morningglory	výč	100	30	70	30	60	100	100	ŋ	0	50	40	0	Ö
	Oat, Wild	30	50	30	30	20	20	50	60	0	Q	30	30	10	0
	Pigweed	100	100	90	100	100	100	100	100	0	60	4.0	40	10	10
	Surinam Grass	40	90	60	60	40	60	70	100	0	Û	20	10	10	10
15	Velvetleaf	80	100	90	30	70	100	80	70	Ü	70	50	30	3.0	Q
	Wheat	40	30	40	30	30	30	50	40	0	ņ	30	10	10	0
	Table B						3	Compo	oundi	\$					
	500 g si/ha	93	94	95	96	97	98	99	100	101	102	104	1.05	105	107
	Postemergence														
20	Barnyardgress	10	10	30	50	0	10	O	0	20	40	0	0	Q	0
	Blackgrass	10	10	0	20	0	0	40	30	40	20	Ö	0	0	Ü
	Cocklebur	50	50	70	100	7.0	20	30	0	80	50	Q	30	50	0
	Corn	30	20	10	20	.0	10	30	0	40	40	0	B	10	0
	Crabgrass, Large	10	10	50	50	0	20	10	Û	20	70	Ü	0	10	0
25	Foxtail, Giant	10	1.0	30	50	Ø	1,0	30	0	30	30	0	Ü	0	9.
	Lambsquarters	90	80	100	100	70	30	90	50	90	30	20	80	90	20
	Morningglory	40	1.0	80	0	Ü	20	20	0	1.0	30	0	10	10	0
	Oat, Wild	1.6	10	20	30	0	10	40	40	50	40	0	10	20	0
	Pigweed	30	30	100	100	0	30	70	60	90	100	1.0	80	20	10
30	Surinam Grass	10	10	20	30	Q	20	20	20	20	100	10	10	10	10
	Velvetleaf	1.0	.20	60	80	60	10	40	0	30	20	.0.	0	20	0
	Wheat	10	3,0	10	20	ū	.0	30	10	3.0	30	0	0	Q	0
	Table B							Comp	ound	s					
	500 g ai/ha	108	109	110	112	113	114	115	117	118	119	120	121	132	123
35	Postemergence														
	Barnyardgrass	70	20	30	70	80	30	50	30	30	10	1.0	0	20	Ö
	Blackgrass	20	30	Q	20	30	3.0	20	10	10	10	10	Ď	10	0

	Cocklebur	90	70	40	100	100	90	90	90	90	60	60	20	90	Ů.
	Corn	30	20	20	40	30		, New	ر نه	40	30		1.0	10	0
	Crabgrass, Large	70	1.0	30	30	80	40	30	30	30	20	20	10	10	0
	Foxtail, Giant	30	20	10	30	40	30	30	20	20	10	10	10	20	Q
5	Lambsquarters	100	30	60	100	100	90	100	90	20	60	50	80	Ø.	0
	Morningglory	100	10	30	30	100			·	70	40	360	0	0	0
	Oat, Wild	50	30	Ů.	40	60	10	30	20	2.0	20	10	30	40	0
	Pigweed	100	70	50	100	100	100	100	90	100	30	70	50	10	0
	Surinam Grass	1.0	30	30	20	60	20	50	40	40	10	50	30	10	Û
10	Velvetleaf	70	30	40	70	60	60	80	50	40	50	30	20	20	0
	Wheat	20	30	30	30	30	20	30	20	10	0	10	0	1.0	0
	Table B						:1	Compo	oundi	3					
	500 g ai/ha	124	125	126	127	128	129	130	131	132	1.33	134	135	136	137
	Postemergence														
15	Barnyardgrass	0	0	30	20	30	0	80	50	60	40	40	40	90	40
	Blackgrass	0	Q	0	10	10	0	60	20	40	10	20	0	60	20
	Cocklebur	10	0.	100	80	100	60	100	100	90	60	100	90	100	100
	Corn	1.0	0	20	<u> </u>	(m(n)	(mg/	40	20	20	20	30	30	30	20
	Crabgrass, Large	10	0	40	30	20	10	90	30	40	30	30	30	7.0	30
20	Poxtail, Giant	10	Q	30	30	20	10	60	30	40	20	40	40	10	20
	Lambaquarters	70	20	60	80	60	10	100	90	100	70	90	80	100	80
	Morningglory	10	0	30	- L	.4.	~ 4,	100	60	70	20	40	50	100	60
	Ost, Wild	1.0	0	50	10	10	Û	60	20	20	20	30	20	60	70
	Pigweed	70	0	40	60	SO	1.0	100	60	90	50	90	99	90	100
25	Surinam Grass	20	1.0	30	10	30	20	90	60	60	50	40	QQ	70	70
	Velvetleaf	10	0	40	10	60	20	70	40	60	50	40	30	70	60
	Wheat	0	0	0	10	20	0	40	20	20	Û	20	30	40	20
	Table B						. 6	Comp	ound	8					
	500 g ai/ha	138	139	140	141	142	143	144	145	146	147	148	149	150	151
30	Postemergence														
	Barnyardgrass	2.0	1.0	0	10	10	0	80	40	60	30	20	30	50	10
	Blackgrass	20	10	G	20	40	Q	60	10	30	20	0	40	10	3.0
	Cocklebur	90	1.00	50	20	40	Ø	100	30	80	80	70	100	80	Q.
	Corn	30	20	10	10	Q	10	30	30	30	30	10	30	50	10
35	Crabgrass, Large	20	20	0	30	10	0	100	10	20	70	10	30	10	0
	Foxtail, Giant	30	20	Đ	20	30	0	90	40	20	40	10	10	10	30
	Lambsquarters	90	90	80	90	80	20	90	70	90	90	10	80	70	50

						145										
	Morningglory	60	100	0	30	50	Ö	80	20	20	30	10	40	40	30	
	Ost, Wild	30	10	Q	20	20	30	50	3.0	20	30	10	30	20	30	
	Pigweed	90	30	0	80	60	20	100	100	90	90	20	70	90	30	
	Surinam Grass	30	20	0	20	20	10	90	20	30	30	1.0	20	40	10	
5	Velvetleaf	50	60	0	80	60	20	100	60	60	60	2.0	50	60	20	
	Wheat	30	10	0	20	10	Ũ	30	20	1.0	20	30	10	10	20	
	Table B						-8	Comp	ound	S						
	500 g ai/ha	153	154	155	156	157	158	159	160	161	162	163	164	165	166	
	Postemergence													10.00		
10	Barnyardgrass	30	50	20	40	20	0	0	10	10	30	Ű,	0	0	0.	
	Blackgrass	10	10	50	60	20	30		50	40	50	50	0	Ü	Q	
	Cocklebur	100	70	80	80	90	70	88	90	30	60	60	0	Q	0	
	Corn	20	20	20	10	0	1.0	0	.0	0	8	0	1.0	0	Q	
	Crabgrass, Large	20	20	40	1.0	20	30	0	0	10	40	40	0	Ű	Ø	
15	Foxtail, Giant	20	20	30	40	40	30	50	30	30	39	40	0	0	Q	
	Lambsquarters	80	90	90	80	70	86	90	80	70	90	80	10	0	0	
	Morningglory	70	70	60	50	30	50	10	70	20	50	0	Q	0	0	
	Oat, Wild	50	30	5.0	40	40	40	,444	30	40	40	30	0	Û	O	
	Figweed	70	80	1.00	60	80	70	80	80	60	80	80	0	0	Ŏ.	
20	Surinam Grass	3.0	60	30	20	20	0	20	10	20	40	40	10	Ů.	O.	
	Velvetlmaf	60	60	70	90	80	50	70	70	50	80	80	0	0	0	
	Wheat	1.0	10	20	20	30	10	Sept.	1.0	10	10	1.0	0	ø	0	
	Table B						C	Jongse	nunds	ŧ.						
	500 g ai/ha	167	169	170	171	179	180	181	182	183	184	185	186	187	188	
25	Postemergence															
	Barnyardgrass	0	10	10.	10	O	0	10	50	Ů.	Ó	50	50	10	20	
	Blackgrass	Û.	10	Q	.0	0	0	10	Ď	10	0	Q	30	ø	10	
	Cocklebur	0	ð	0	Ö	0	0	70	60	90	60	50	90	70	90	
	Corn	Q	10	10	10	Q	Ü	30	30	20	30	30	20	30	50	
30	Crabgrass, Large	O	10	10	10	0	Ü	20	30	30	30	40	10	10	10	
	Poxtail, Glant	Ø	0	10	20	0	D	20	20	30	40	30	20	10	10	
	Lambaquarters	0	60	70	20	0	0	90	70	80	70	70	30	0	70	
	Morningglory	a	70	80	0	0	Ŏ.	20	70	70	60	70	30	20	60	
	Oat, Wild	O	10	10	Q	0	0	30	30	20	3.0	30	20	20	20	
35	Figweed	0	40	50	20	0	0	90	70	80	60	80	60	20	70	
	Surinam Grass	0	10	10	10	Ũ	Ü	30	30	50	20	30	30	10	10	
	Velvetleaf	0	Ø	20	Ø	Ö	Ø	20	60	80	60	50	60	10	20	

						100000000000000000000000000000000000000										
	Wheat	0	0	0	0	0	0	0	10	0	0	10	20	Q	10	
	Table B						÷j	Comp	ound	S						
	500 g ai/ha	189	190	193	194	195					200	201	202	203	204	
	Postemergence															
5	Barnyardgrass	1.0	10	10	10	90	30	10	30	10	10	0	0	Ü	10	
	Blackgrass	0	0	20	o	10	0	Ú	1.0	10	10	0	0	0		
	Cocklebur	10	10	70	20	50	20	10	90	60	20	10	40	10		
	Corn	10	10	20	O	30	10	20	70	20	30	20	10	10	20	
	Crabgrass, Large	20	20	10	10	50	30	0.	20	10	10	10	10	10	1.0	
10	Foxtail, Giant	10	10	20	0	20	· o	0	30	10	10	ΰ	10	10	20	
	Lambsquarters	50	80	90	30	60	30	Ü	70	70	60	40	50	50	50	
	Morningglory	90	90	70	1.0	60	0	0	80	60	40	30	40	3.0	40	
	Cat, Wild	10	20	0	0	30	0	30	30	10	10	10	10	1.0	20	
	Pigweed	80	70	60	30	80	30	10	50	40	40	40	40	10	70	
15	Surinam Grass	30	20	10	1.0	30	§ 0	20	20	20	20	10	10	20	50	
	Velvetleaf	20	40	70	10	40	Ö	20	20	30	30	0	30	1.0	70	
	Wheat	Ü	0	10	, O	20	0	10	10	10	Q	0	0	0	3.0	
	Table B						14	ධ්පාතුව	sund	ă:						
	500 g ai/ha	205	206	207	209	210	211	212	2,1,3	214	215	216	217	218	219	
20	Postemergence															
	Barnyardgrass	20	10	20	30	40	10	30	50	0	20	10	Ü	0	0	
	Blackgrass	20	20	10	30	30	10	30	40	: :Q	O,	ø	o o	0	0	
	Cocklebur	80	40	80	40	90	60	90	70	0	80	70	0	0	20	
	Corn	20	20	20	30	60	10	40	20	20	1.0	10	Ü	10	10	
25	Crabgrass, Large	20	30	20	20	20	10	10	30	Ő	0	O	0	10	10	
	Foxtail, Giant	30	30	20	30	30	10	40	30	20	20	20	Û	: Q	10	
	Lambsquarters	70	80	80	40	80	7.0	100	40	0	Q	0	Ø	10	10	
	Morningglory	50	20	20	20	70	30	50	30	Q.	40	Ü	1.0	10	60	
	Qat, Wild	30	50	30	20	20	1.0	20	20	O.	30	Q	a	Q.	0	
30	Pigweed	50	40	60	40	70	30	90	2.0	0	70	20	0	20	20	
	Surinam Grass	20	20	30	20	30	10	50	20	10	1.0	20	10	10	1.0	
	Velvetieař	40	20	30	20	70	30	70	60	10	60	50	10	0	10	
	Wheat	20	20	20	20	20	1.0	20	30	Ö	20	10	Ŏ	Ü	0	
	Table B						C	රියකල්ව	amds	5 :						
35	500 g ai/ha	220	321	222	223	224	225	226	227	228	229	230	231	232	233	
	Postemergence															
	Earnyardgrass	Q	10	20	20	30	30	20	المؤمرة	70	50	20	40	.~~;		

	Blackgrass	Ø	Ü	20	٥	10	40	20	30	40	30	30	30	0	10	
	Cocklebur	1.0	20	80	30	40	20	20	30	80	70	10	40	30	20	
	Corn	10	10	20	20	20	20	40	40	30	20	20	20	20	30	
	Crabgrass, Large	10	10	20	20	20	20	20	30	40	20	29	20	20	10	
5	Foxtail, Giant	10	1.0	30	20	30	20	20	60	50	50	20	30	30	30	
	Lambsquarters	20	20	70	80	70	70	60	70	80	80	60	70	60	70	
	Morningglory	Q	0	80	80	70	40	80	60	80	70	70	70	70	80	
	Oat, Wild	10	10	2.0	30	30	30	30	O	50	50	40	40	0	20	
	Pigweed	10	20	60	70	60	70	60	1995	80	80	60	70	40	70	
10	Surinam Grass	10	10	30	10	30	20	20	30	40	30	10	30	20	20	
	Velvetleaf	0	ũ	60	20	60	40	20	70	80	70	3.0	50	40	50	
	Wheat	Q	1.0	20	0	30	30	30	10	40	40	20	40	0	10	
	Table B						C	iompo	ninds	\$:						
	500 g ai/ha	234	235	236	237	238	239	240	241	242	243	244	245	246	247	
15	Postemergence															
	Barnyardgrass	***	- 👙	(esc)	4-4	Ď.	0	O	0	60	20	50	70	70	10	
	Blackgrass	Ü	30	1.0	10	10	Ŏ	1.0	10	20	0	20	0	0	O	
	Cocklebur	20	30	40	40	20	30	20	30	90	30	80	80	30	30	
	Corn	20	40	40	40	Ö	30	10	10	40	10	30	30	10	20	
20	Crabgrass, Large	20	20	20	20	Ü	29	20	1.0	50	10	30	50	20	10	
	Foxtail, Giant	30	30	40	20	0	Ü	0	9	30	20	30	60	30	30	
	Lambsquarters	40	50	70	70	Ø	30	50	50	90	80	70	90	70	70	
	Morningglory	70	70	60	60	0	10	30	70	40	20	30	60	10	30	
	Oat, Wild	20	20	20	30	10	0	0	20	30	20	50	30	30	10	
25	Pigweeä	30	40	70	60	0	50	50	50	80	60	70	80	60	60	
	Surinam Grass	10	10	20	20	0	30	20	20	60	20	30	60	20	20	
	Velvetleaf	30	30	50	50	10	1.0	10	10	60	60	60	80	60	70	
	Wheat	10	20	20	20	20	0	20	10	10	Đ,	20	20	3.0	Ö	
	Table B						, 3	Comp	ound	8						
30	500 g ai/ha	248	249	250	252	253	254	256	257	358	259	260	251	262	263	
	Postemergence															
	Barnyardgrass	40	30	20	10	1.0	10	60	0	0	0	O	Ü	10	10	
	Blackgrass	30	30	40	20	20	10	20	10	10	20	10	50	20	20	
	Cocklebur	50	30	40	40	20	20	0	70	30	20	20	10	10	10	
35	Corn	30	20	30	10	ũ	10	10	0	1.0	20	0	20	30	10	
	Crabgrass, Large	30	30	30	10	0	10	20	10	Ű.	20	10	10	20	20	
	Foxtail, Giant	30	30	3.0	30	Ü	O	50	Ø	Q	Ü	Ü	0	30	20	

	Lambsquarters	70	20	40	30	30	20	60	50	70	30	30	60	80	80
	Morningglory	50	30	30	20	30	30	10	0	10	0	10	Û	0	30
	Oat, Wild	60	40	40	30	30	20	30	30	30	20	30	50	0	20
	Pigweed	80	80	70	30	30	30	60	80	60	90	70	30	80	90
5	Surinam Grass	20	30	30	20	0	10	20	20	10	20	20	20	20	10
	Velvetleaf	30	20	30	30	10	10	30	10	0	Ü	20	ŭ	20	20
	Wheat	40	30	40	20	30	20	30	20	20	20	40	20	10	20
	Table B						C	iompo	unds	X.					
	500 g ai/ha	264	265	266	267	268	269	270	271	272	273	274	275	276	277
10	Postemergence	î. A													
	Barnyardgrass	0	0	Û	90	30	30	0	0	80	70	10	20	10	0
	Blackgrass	20	10	20	40	50	50	20	20	100	70	30	40	40	20
	Cocklebur	Ö.	0	0	90	50	50	0	0	90	80	10	10	10	0
	Corn	0	1.0	Q	40	30	30	1.0	20	40	20	20	0	20	10
15	Crabgrass, Large	0	Ø	٥	40	20	30	Ø	Û	70	50	0	10	20	ð
	Foxtail, Gient	Ď:	O	20	50	20	30	0	O.	30	20	50	0	40	0
	Lambaquartera	Ø	Û	100	50	70	70	10	60	100	90	70	70	50	30
	Morningglory	Q.	10	50	0.0	20	40	10	0	100	70	60	10	30	20
	Oat, Wild	30	10	20	40	50	30	0	30	90	50	40	40	40	20
20	Pigweed	Ω	20	100	90	50	60	0	80	100	90	60	70	70	10
	Surinam Grass	0	0	20	50	50	20	10	0	60	40	30	3.0	20	Ω
	Velvetleaf	O	10	ð	70	60	20	0	0	100	70	1.0	30	40	20
	Wheat	1.0	10	30	3.0	30	30	Q	30	30	40	20	30	30	30
	Table B						: }	Comp	ಂಬಣದೆ	S.					
25	500 g ai/ha	278	279	280	281	282	283	284	285	286	287	288	289	290	291
	Postemergende														
	Barnyardgrass	10	1.0	0	0	20	0	0	10	0	20	. 0	0	Q	30
	Blackgrass	30	30	20	30	30	40	40	30	20	30	20	10	30	1.0
	Cocklebur	30	20	30	20	20	Ũ	0	30	20	10	0	.0	1.0	10
30	Corn	20	10	1.0	10	20	10	3.0	10	10	70	Ö	0	10	60
	Crabgrass, Large	10	1.0	0	10	10	10	10	20	10	Ø	0	0	Ü	30
	Foxtail, Giant	10	0	0	10	20	0	Q	50	50	80	30	\$0	60	80
	Lambsquarters	30	20	20	30	60	30	50	70	70	20	30	30	30	60
	Morningglory	20	20	10	10	20	30	0	30	0	2.0	0	0	0	40
35	Oat, Wild	30	20	20	20	20	10	30	50	40	40	40	30	40	20
	Pigweed	40	30	20	3.0	60	20	70	80	100	30	20	20	1.0	30
	Surinam Grass	1.0	10	10	20	10	10	20	30	20	10	0	0	30	60
	and the second s														

	Velvetleaf	10	10	30	20	20	0	o.	40	60	60	20	10	10	60
	Wheat	30	30	30	30	30	20	30	40	30	30	30	20	3.0	0
	Table B						C	ompc	unds	ž.					
	500 g ai/ha	292	293	294	295	296	297	298	299	300	301	302	303	304	305
5	Postemergence														
	Barnyardgrass	0	10	60	50	80	20	50	90	50	60	40	40	20	0
	Blackgrass	20	30	60	40	40	20	50	50	30	40	26	40	40	30
	Cocklebur	10	30	30	90	ŏΟ	0	50	70	50	50	10	30	100	10
	Corn	20	30	50	20	70	1,00	10	20	30	50	50	70	80	70
10	Crabgrass, Large	1,0	20	30	60	60	30	70	90	30	60	10	80	10	Ð
	Foxtail, Giant	20	30	50	70	60	30	50	80	30	20	20	50	30	20
	Lambsquarters	70	70	80	60	70	20	90	1.00	85	80	70	90	90	80
	Morningglory	20	70	20	100	80	30	70	80	90	90	60	90	100	0
	Oat, Wild	40	50	50	50	40	20	40	40	30	40	10	40	40	30
15	Pigweed	3.0	40	70	100	100	40	90	1.00	90	90	90	90	90	70
	Surinam Grass	20	20	40	60	50	30	50	80	1.0	30	10	30	10	50
	Velvetleaf	10	3.0	80	100	100	10	60	100	70	100	10	70	60	20
	Wheat	20	30	40	3.0	30	10	30	30	20	30	10	20	20	1.0
	Table B						- 1	Compa	sund:	8					
20	500 g si/ha	306	307	308	309	310	311	312	313	314	315	316	317	318	319
	Postemergence														
	Barnyardgrass	10	10	10	40	20	9	ũ	50	30	20	40	Ŏ	70	20
	Blackgrass	30	30	30	30	30	ø	9	10	20	Q	ប	0	10	0
	Cocklebur	70	30	40	70	20	0	0	90	30	20	20	0	80	40
25	Corn	30	10	10	60	20	Ö	ŋ	20	20	20	20	Q	20	20
	Crabgrass, Large	50	30	30	40	30	0	0	20	20	10	10	0	60	20
	Foxtail, Giant	40	30	20	40	40	0	0	50	20	1.0	20	0	10	30
	Lambsquarters	80	80	60	80	80	0	20	90	60	60	70	50	80	60
	Morningglory	70	0	20	40	50	0	30	80	80	20	10	0	80	20
30	Oat, Wild	30	20	20	40	40	Ü	0	30	30	3.0	20	0	30	20
	Pigweed	100	60	70	70	30	Û	20	70	70	50	50	0	100	40
	Surinam Grass	30	30	20	40	20	0	ō	20	20	20	10	0.0	20	20
	Velvetleaf	50	60	20	40	50	Ö	0	70	30	20	4.0	0	80	20
	Wheat	20	20	20	30	30	Ø	0	1.0	10	0	0	0	10	30

	Table B						Ç	comp c	unds	i e					
	500 g si/ha	329	330	331	332	333	334	335	336	338	340	341	342	343	344
	Postemergence														
	Barnyardgrass	1.0	0	20	60	40	60	50	30	40	20	20	20	50	10
5	Blackgrass	20	0	20	80	70	70	30	20	40	30	20	30	10	Ó
	Cocklebur	30	0	30	70	80	70	70	50	10	20	20	20	20	10
	Corn	20	0	0	1.0	10	20	20	20	20	20	1.0	30	30	10
	Crabgrass, Large	10	0	10	80	1.00	50	40	50	60	20	20	20	50	1.0
	Foxtail, Giant	30	0	30	50	40	60	40	40	30	4.0	3.0	50	50	10
10	Lambsquarters	70	10	70	100	100	90	30	90	50	70	100	100	100	40
	Morningglory	20	10	16	70	60	80	40	70	100	40	40	80	80	50
	Oat, Wild	30	20	30	60	60	30	40	20	40	3.0	30	30	10	Ŏ.
	Pigweed	80	0	50	100	100	70	70	70	80	80	60	80	90	50
	Surinam Grass	20	ő	20	40	30	50	30	20	40	20	20	20	40	10
15	Velvetleaf	30	10	30	90	60	60	60	30	50	40	3.0	50	50	30
	Wheat	30	0	20	30	30	20	20	10	10	1.0	20	10	0	10
	Table B						.(lompe	oundi	3 . P					
	500 g ai/ha	345	347	348	349	350	351	353	353	354	355	356	357	358	359
	Postemergence														
20	Sarnyardgrass	0	0	Ø	10	Ö	Q:	10	10	0	10	0	10	20	1.0
	Blackgrass	0	30	40	80	0	0	30	40	20	20	10	30	40	50
	Cocklebur	Ŏ	0	0	20	30	0	10	20	30	10	0	20	20	30
	Corn	Q	0	0	10	20	1.0	10	20	0	0	0	20	0	10
	Crabgrass, Large	0	ø	Ö	20	10	10	20	10	10	10	30	10	1.0	20
25	Foxtail, Giant	0	0	0	3.0	30	Ŭ	30	30	20	30	30	40	30	20
	Lambsquarters	20	10	0	80	10	10	69	40	50	70	50	60	50	50
	Morningglery	10	3.0	O	50	ş.	0	60	: :	50	40	10	30	50	10
	Oat, Wild	1,0	20	30	40	Q	Ö	20	40	20	30	20	30	30	30
	Pigweed	20	1.0	0	70	60	50	60	70	50	50	70	40	40	50
30	Surinam Grass	Ø	0	Ø	20	10	0	40	10	20	20	20	20	10	10
	Velvetleaf	10	O	0	40	10	, Ç	60	20	10	50	. 0	20	20	30
	Wheat	0.	0	20	10	Ø	0	20	10	20	20	10	ű	10	20
	Table B			Co	mpou	nds									
	300 g ai/ha	380	361	362	363	364	365	366							
35	Postemergence														
	Barnyarügrass	30	10	0	0	70	10	10							
	Blackgrass	50	40	20	70	80	90	50							

	Cocklebur	20	20	30	30	50	60	50								
	Corn	20	0	0	Û	40	20	20								
	Crabgrass, Large	20	10	0	10	70	80	20								
	Foxtail, Giant	50	30	10	1,0	50	70	4.0								
5	Lambsquarters	20	70	30	70	90	100	90								
	Morningglory	10	80	80	70	80		100								
	Oat, Wild	60	20	40	40	50	50	50								
	Pigweed	40	40	50	3 0	90	. 4	80								
	Surinam Grass	30	16	10	20	70	20	20								
10	Velvetleaf	50	30	Ò	20	50	40	60								
	Wheat	40	Ø	1,0	20	30	30	20								
	Table B			Con	mod	າຕ໌ຮ										
	250 g ai/hs	54	7.2	73	74	152	191	192								
	Postemergence															
15	Barnyardgrass	· 8	0	10	Q	40	1.0	10								
	Elackgrass	0	50	30	50	2.0	1.0	O								
	Cocklebur	1.0	0	20	Ŏ	90	10	60								
	Corn	jav	0	30	Q	30	10	10								
	Crabgrass, Large	0	0	10	10	50	20	20								
20	Foxtail, Giant	0	Ö	30	10	20	20	20								
	Lambsquarters	40	1.0	10	10	80	80	80								
	Morningglory		0	10	10	60	90	100								
	Oat, Wild	ō	30	40	40	20	20	20								
	Pigweed	10	0	20	20	90	70	60								
25	Surinam Grass	, was	0	10	1.0	40	10	10								
	Velvetleaf	Ü	0	50	30	30	20	50								
	Wheat	0.	10	30	20	10	0	0								
	Table B						i, C	lomps	unds							
	125 g ai/ha	1	2	3	4	300	6	7	8	Ä	10	11	12	13	14	
30	Postemergence															
	Barnyardgrass	8	30	10	10	10	0	O	0	0	0	0	0	10	1.0	
	Blackgrass	20	1.0	Q	0	0	20	0	0	30	40	40	1.0	10	20	
	Cocklebur	60	50	30	3.0	20	Ö	O.	Ö	50	20	10	10	10	10	
	Corn	0	20	30	20	20	0	0	Ø	G	0	0	0	0	0	
35	Crabgrass, Large	0	20	0	50	20	20	0	O.	0	10	0	Ü	20	10	
	Poxtail, Giant	20	30	20	20	20	1.0	0	Ø.	ŋ	20	20	0	30	20	
	Lambsquarters	60	80	60	80	50	30	Ø	0	70	80	60	20	50	50	

	Morningglory	0	30	20	40	, Ø ,	Ü	0	0	0	20	9	0	10	0	
	Oat, Wild	40	30	20	20	20	10	0	0	40	30	20	10	10	10	
	Pigweed	50	60	30	40	30	20	Ö	0	70	80	20	Ü	30	30	
	Surinam Grass	0	20	1.0	10	20	10	0	Q	Ü	30	10	0	10	1.0	
5	Velvetleaf	40	20	10	20	20	0	0	Ü	20	70	10	0	20	40	
	Wheat	10	50	0	10	0	0	0	Ø	10	10	10	10	0	0	
	Table B						e	ompo	unds							
	135 g ai/ha	1.5	16	17	18	19	20	21	22	23	24	25	26	27	28	
	Postemergence															
10	Barnyardgrass	Q	10	G	10	0	Q	:0:	Û	Ö	0	0	ij.	0	10	
	Blackgrass	10	50	20	20	10	30	30	1.0	20	30	30	0	60	3.0	
	Cocklebur	0	, primite	10	1.0	ű	0	0	0	0	1.0	0	Ŭ	Q	30	
	Corn	0	1.0	10	0	Q	Ö.	0	0	0	0	Ŏ.	Ü	30	0	
	Crabgrass, Large	10	10	Ü	0	10	10	10	Q	0	:0	0	0	70	10	
15	Foxtail, Giant	20	10	10	10	0	10	10	0	O.	0	0	0.0	30	30	
	Lambsquarters	20	60	80	10	10	30	10	0	0	10	Ø	Ö.	90	80	
	Morningglory	Ø	0	O :	10	10	10	0	10	Ü	1.0	0	Û	20	0	
	Oat. Wild	10	3,0	30	20	1.0	30	10	1.0	0	20	30	0	50	50	
	Pigweed	20	40	30	1.0	10	10	30	10	1.0	20	0	0	90	90	٠.
20	Surinam Grass	10	10	10	10	2.0	10	10	0	O:	0	0	Ö.	40	20	
	Velvetlesf	10	40	10	30	Ď.	20	10	ŭ	0	10	Û	0	3.0	30	
	Wiest	10	30	20	0	0	20	10	0	Q _j	20	10	0	10	10	
	Table 3						C	ompo	unds							
	125 g ai/ha	29	30	31.	32	33	34	35	36	37	40	41	43	44	45	
25	Postemergence				,											
	Barnyardgrass	0	10	16	0	20	20	10	20	20	10	10	20	20	20	
	Blackgrass	0	10	٥	0	20	1.0	20	10	10	10	10	20	10	10	ĝ
	Cocklebur	50	70	86	10	80	40	50	30	60	1.0	10	10	40	20	í,
	Cora	10	10	30	10	. ***	,		-jan-	, ***	.,44,	,,,545	20	50	20	ţ.
30	Crabgrass, Large	20	10	20	Ü	20	20	20	30	10	10	20	30	20	30	ŀ
	Foxtail, Giant	10	10	20	Q	30	30	20	20	20	0	10	30	20	20	1
	Lambaquarters	70	80	90	70	90	80	80	80	80	40	50	90	80	80):
	Morningglory	0	10	30	0	, 4	, week			عبرا	Sec.); ~~ :	80	30	40	Ļ
	Oat, Wild	10	20	20	10	10	10	: (Ö)	30	10	0	10	3.0	20	C	į,
35	Pigweed	100	3.0	50	40	80	90	80	80	60	20	50	100	90	90	į
7.5	Surinam Grass	28	30	30	10	10	20	20	10	10	10	10	40	20	20	ì
	Velvetleaï	60	2.0	30	10	50	40	30	30	20	10	3.0	80	50	60	1

	Wheat	Q.	0	10	Ø	20	30	20	10	20	10	O	20	20	20
	Table B						Ç	lomp c	runds						
	125 g ai/ha	46	47	48	49	50	51	52	55	56	57	58	59	60	61
	Postemergence											- ,	20.00		
5	Barnyardgrass	10	20	40	30	50	60	Ø	10	20	10	30	0	10	20
	Blackgrass	1.0	1.0	0	9	20	0	0	-	0	Ŭ	10	0	Ü	0
	Cocklebur	30	10	Ü	20	90	70	20	10	80	30	80	10	40	60
	Corn	20	10	0	20	30	0	10	20	20	20	10	10	10	20
	Crabgrass, Large	30	1.9	10	10	1.0	20	Ω	10	10	1.0	20	10	10	30
10	Foxtail, Giant	30	30	20	10	30	0	10	Q.	20	20	20	0	10	20
	Lambaquarters	80	80	60	50	80	80	0	70	80	70	90	80	80	90
	Morningglory	0	30	Ø	ŷ	70	0	0	10	0	10	20	20	10	20
	Oat, Wild	0	10	10	10	20	Ö	0	10	20	30	20	20	20	20
	Figweed	90	90	50	30	80	80	9	10	60	70	60	70	70	30
15	Surinam Grass	30	20	30	10	30	10	0	10	20	10	10	10	10	20
	Velvetleaf	60	60	10	30	40	60	1.0	20	40	20	50	20	20	30
	Wheat	20	20	0	Ø	3.0	20	0	10	10	1.0	0	8	Ö	10
	Table B						C	ogmo:	unds						
	125 g ai/ha	62	63	64	65	66	67	68	69	70	71	75	76	77	78
20	Postemergence														
	Barnyardgrass	20	10	10	1.0	Q	3.0	Q	0	30	Q	10	10	0	30
	Blackgrass	10	10	0	10	0	10	10	10	10	0	10	10	20	30
	Cocklebur	70	80	30	60	20	Q	10	Q	50	Ũ	10	40	0	80
	Corn	10	20	19	20	10	10	0	Ŭ.	20	D	10	10	10	
25	Crabgrass, Large	10	10	3.0	10	Ü	20	0	0	20	0	10	10	0	20
	Foxtail, Giant	10	10	10	10	0	10	0	0.	20	Ü	20	20	ū	30
	Lambsquarters	80	80	70	70	60	40	0	0	80	0	40	30	50	70
	Morningglory	20	30	0	10	20	Ø	: 0	O.	20	0	20	1.0	0	orginal series
	Oat, Wild	10	30	20	10	10	10	10	10	20	: ₽	10	30	40	10
30	Pigweed	80	40	20	40	50	Ü	10	3.0	30	0	50	100	70	80
	Surinam Grass	50	10	10	20	10	3.0	0	0	20	Ö	3.0	20	0	20
	Velvetleaf	60	40	10	10	10	10	0	Ø,	20	្ត្	20	40	50	70
	Wheat	0	10	Ø	0	0	1.0	0	0.0	10	0	10	30	10	30
	Table B						C	ompc	nınds						
35	125 g si/ha	79	80	81	82	83	84	85	86	87	88	89	90	91	92
	Fostemergence														
	Barnyardgrass	30	80	70	10	10	20	60	50	0	30	10	0	0	0

	nage of Carolines (1975)		88.	0		0	0	10	10	0	- Q:	0	0	0	0
	Blackgrass	20	20		0	**		19.1		0	10	70	10	8	0
	Cocklebur	80	70	70	80	0	30	90	20 20	ŏ.	10	10	1.0	10	10
	Com	neger Search and self-	20	10	20	10	10	20						20	40
. 25.	Crabgrass, Large		100	10	10	30	20	50	60	0	30	10	10	17	
5	Foxtsil, Giant	30	50	50	10	Q	10	20	40	0	30	20	1.0	0	0
	erstraupadmai	70	70	Q	20	0	0	50	80	9	70	30	50	20	50
	Morningglory	40.00	100	O	10	Ö	30	50	60	0	0	20	10	0	0
	Oat, Wild	20	30	20	10	10	20	20	30	0	Q	20	10	Ũ	0
	Pigweed	70	100	50	80	70	80	100	100	0	50	20	30	10	Ü
10	Surinam Grass	30	90	40	30	20	50	60	70	0	0	10	10	10	0
	Velvetleaf	70	90	80	80	50	60	50	60	i Q	30	30	1.0	ij	0
	Wheat	30	30	20	20	20	20	50	30	0	0	20	10	0	0
	Table B						C	ompo	ಯಾರೆಕ	3					
	125 g ai/ha	93	94	95	96	97	98	99	100	1.01	102	1.04	105	106	107
15	Postemergence														
	Barnyardgrass	10	10	0	0	Q.	10	0	0	1.0	Ö	0	.0	0	0
	Blackgrass	10	Q	0	Ü	0	0	20	10	20	Q	O	0	0	0
	Cocklebur	50	20	60	90	0	Ü	Q	0	20	30	Ø	30	30	Ŏ
	Corn	10	20	10	10	0	10	10	0	10	20	0	0	10	Ü
20	Crabgrass, Large	10	10	Q	40	0	20	10	Ũ	3.0	10	Q	0	Ö	0
	Foxtail, Giant	10	10	10	30	Q.	10	1.0	Q	20	10	0	0	0	Q
	Lambaquarters	60	50	100	100	50	20	70	0	80	1.0	Ü	50	50	1.0
	Morningglory	10	1.0	Ü.	0	0	0	Ö	0	10	10	Q	0	10	Ü
	Oat, Wild	10	10	10	20	0	0	30	20	30	20	0	Q	10	0
25	Pigweed	10	10	90	70	0	1.0	20	Q	80	80	10	0	10	Û
	Surinam Grass	10	10	20	20	Q.	10	1,0	O	10	70	0	0	10	10
	Velvetleaf	10	10	50	70	Ø	10	30	Ö	20	0	Q	D	0	0
	Wheat	10	0	10	10	Ø	Ö	26	10	10	Ü	0	0	0	Ø
	Table S						, i (Comp	ಯಾದೆ	ez.					
30	125 g ai/ba	108	109	110	112	113	114	115	117	118	119	120	121	122	123
	Postemergence														
	Bernyardgrass	10	10	10	50	30	20	10	20	1.0	0	10	0	0	0
	Blackgrass	Ø	0	0	20	3.0	1.0	10	O	O.	o.	O	O	0	0
	Cocklebur	7.0	30	10	60	100	80	80	30	70	0	30	10	70	0
35	Corn	10	10	10	40	30		e.ed-	pec	20	1.0		0	10	Ø
14	Crabgrass, Large	20	1.0	10	20	30	30	10	10	20	30	10	10	10	Ø
	Foxtail, Giant	10		1.0	20	30	30	28	10	10	10	10	Ü	10	
	American Color (March Millian)														

						المرجد بدر									
	Lambsquarters	90	10	40	90	90	80	80	60	0	0	0	80	0	0
	Normingglory	30	ij.	20	20	20	Sec.	انهذ	see.	20	0	· •	0	O.	Ø
	Cat, Wild	20	30	0	40	40	10	1,0	10	20	10	10	10	10	0
	Figweed	80	20	20	90	90	90	80	50	60	O.	10	30	Ø	0
5	Surinam Grass	10	10	20	30	40	10	60	30	40	10	20	10	1.0	0
	Velvetleaf	50	1.0	30	30	20	50	60	20	20	0	10	10	10	0
121	Wheat	10	10	1.0	20	10	20	30	1.0	10	O	10	0	0	.0
	Table B						Ç	lomp:	ounds	3					
	125 g ai/ha	124	125	126	127	128	130	131	132	133	134	135	136	137	138
10	Postemergence														
	Barnyardgrass	0	0	0	10	20	50	10	50	0	20	20	50	30	10
	Blackgrass	0	0	0	10	10	20	10	10	ŭ	0	ö	30	10	g
	Cocklebur	ō.	0	50	3.0	90	100	70	90	10	80	40	100	50	40
	Corn	0	0	0		-	20	20	20	10	20	20	10	10	20
15	Crabgrass, Large	10	0	40	20	20	70	20	30	1.0	30	20	10	1.0	20
	Foxtail, Giant	0	٥	30	20	20	20	20	30	0	30	30	10	10	20
	Lambsquarters	30	Ø	0	70	ŭ	90	80	100	60	80	4.0	100	80	80
	Morningglary	Q	0	0			100	20	60	10	20	30	20	0	20
	Oat, Wild	0	Ũ	30	10	10	40	20	20	20	3.0	20	50	30	20
20	Figweed	20	0	40	30	20	100	30	70	20	80	80	60	90	6.0
	Surinem Grass	10	0	30	10	10	50	2.0	40	0	30	30	20	20	20
	velvetleaf	O	O	0	0	50	70	10	60	1.0	30	20	80	40	20
	Wheat	0	0	Ø	Ō	o	20	10	10	.0	1.0	50	20	10	20
	Table B						(Comp	ound	S					
25	125 g ai/ha	139	140	1.4.1	142	143	144	145	146	147	1.48	149	156	151	153
	Postemergance														
	Barnyardgrass	10	0	Q	0	0	7.0	0	20	20	0	0	10	0	30
	Blackgrass	Ď.	Ü	20	40	0	20	10	10	1.0	0	1.0	0	10	10
	Cocklebur	20	0	0	40	0	3.0	ũ	20	Q	30	30	60	0	50
30	Corn	10	0	0	Q	Q	20	10	1.0	10	10	1.0	10	10	3.0
4:	Crabgrass, Large	10	Ø	10	0	Ů.	30	10	10	20	10	1.0	10	O	10
	Foxtail, Giant	10	0	20	30	0	40	36	20	3.0	1.0	10	O	10	1.0
	Lambsquarters	80	20	60	60	0	3 0	60	80	80	10	20	50	O	80
	Morningglory	10	0	20	0	8	50	Ø	Q	0	10	30	20	1.0	10
35	Oat, Wild	10	0	10	20	0	30	1.0	10	Ō	10	10	20	10	20
	Pigweed	60	0	30	50	Ö	100	30	80	80	10	50	70	10	30
	Surinam Grass	10	0	10	10	10	60	20	10	20	1.0	10	10	10	30

	Velvet.leaf	20	Ð	20	10	0	80	50	50	60	10	10	20	10	50
	Wheat	10	Õ	20	10	Ü	20	0	Ô	0	10	10	10	1.0	10
	Table B						. (lompe	ound.	S					
	125 g ai/ha	154	155	156	157	158	159	160	151	162	163	164	165	166	167
5	Postemergence														
	Barnyardgrass	30	10	10	0	0	Ø	0	10	0	0	0	0	0	0
	Blackgrass	10	40	30	3.0	20		, inches	40	20	10	0	0	0	0
	Cocklebur	60	60	40	10	20	80	20	20	10	1.0	0	0	Ø	
	Corn	10	10	0	Ŭ.	0	0	0	Ŭ	0	0	0	Ø	Đ	Ø
10	Crabgrass, Large	10	20	10	Ġ	30	0	O	0	30	30	0	0	0	Q
	Foxtail, Giant	10	20	20	30	Ø	40	30	20	30	0	0	0	0	0
	Lambsquarters	80	70	60	20	80	90	70	70	80	50	0	0	0	0
	Morningglory	60	30	30	0	Ü	10	Ø	20	0	0	0	0	Q.	0
	Oat, Wild	10	40	40	10	30	,221.	10	30	30	10	0	0	0	0.0
15	Pigweed	20	60	30	40	50	80	40	30	40	60	0	Ü	0	0
	Surinam Grass	30	20	10	20	Ø	0	10	30	0	0	0	0	0	: Q ₁
	Velvetleaf	30	20	60	50	50	20	70	20	60	40	0	0	Q	0.0
	Wheat	10	20	30	1.0	10	***	() () page	1.0	10	Ø	0	0	0	0
	Table B						1)ampo	nındı	Š					
20	125 g ai/ha	168	169	170	171	179	180	181	182	183	184	185	186	187	1.88
	Postemergence														
	Barnyardgrass	50	0	Ö	0	0	0	Ð.	30	0	0	30	10	1.0	10
	Blackgrass	10	0	0	Ü	0	Ü	0	0	0	Ŭ	0	10	0.	10
	Cocklebur	70	0	0	0	0	· · · · · · · · · · · · · · · · · · ·	20	50	50	30	20	60	3.0	20
25	Corn	50	10	0	Q	0	0	20	30	20	30	20	20	0	10
	Crabgrass, Large	20	10	10	0	0	Ω	3.0	30	20	20	20	10	10	10
	Foxtail, Giant	20	0	Ü	10	0	0	20	Q	30	30	20	10	1.0	1.0
	Lambsquarters	70	40	60	10	0	0.0	70	60	70	60	60	16	Q	60
	Morningglory	70	20	30	Ø	0	0	20	30	60	0	40	20	20	20
30	Oat. Wild	20	10	10	0	Ø	0	20	20	10	20	10	10	10	20
	Pigweed	70	20	3.0	10	0	Q	40	50	70	30	60	80	20	50
	Surinam Grass	20	Û	10	10	Q.	.0	20	10	O	10	20	10	10	1.0
	Velvetleaf	20	0	10	0	0	0.0	10	Q	40	30	30	60	Ü	10
	Wheat	20	Ü	0	0	0	0	0	0	0	Ü	0	1.0	Q	Ö

	Table B						. (comp ^o	nunds	\$					
	125 g ai/ha	189	190	193	194	195					200	201	303	203	204
	Postemergence		25.5	** ***											
	Barnyardgrass	Ð	Q	0	Q.	40	0	0	ø	0	0	0	0	0	10
5	Blackgrass	Q	0	0	0	0	Ò	0	8	3	0	0	Ø	0	20
	Cocklebur	0	Ō	20	1.0	30	0	0	60	1.0	1.0	10	30	Ü	90
	Corn	10	1.0	10	Q	20	0	10	20	10	10	10	10	0	20
	Crabgrass, Large	10	10	10	10	20	30	0	10	1.0	Ø	0	0	0	10
	Foxtail, Giant	0	10	10	Ø	20	Ō	0	20	10	10	0	10	Q	10
10	Lambsquarters	50	30	90		Ũ	0	Û	70	60	60	40	50	10	30
	Morningglory	80	50	30	10	0	Ŭ	0	60	40	0	0	20	۵	20
	Oac, Wild	1.0	10	0	9	10	0	10	20	10	0	10	10	Ö	1.0
	Pigweed	30	30	20	30	70	10	9	50	10	10	10	30	0	50
	Surinam Grass	10	10	10	10	10	Ø	1.0	30	10	10	0	1.0	10	30
15	Velvetleaf	20	20	30	10	30	Q	0	20	20	10	0	10	Ó	59
	Wheat	0	Q	10	0	10	, O	Û	Ŏ	0	0	Q	Ø.	0	10
	Table B						: (Zompe	oundi	3					
	125 g ai/ha	205	206	207	209	210	211	212	213	214	215	216	217	218	219
	Postemergence														
20	Barnyardgrass	10	Ö	20	10	20	1.0	10	0	0	Q	0	ð	0	Q
	Blackgrass	O.	0	Q	0	1.0	10	10	20	Ü	0	0	Q	0	0
	Cocklebur	40	20	40	30	60	30	80	Ø	0	30	0	0	Ü	Ü
	Corn	20	20	20	20	20	10	20	0	0.	0	0	0	0	Q
	Crabgrass, Large	10	10	20	20	20	10	10	Ŭ	Q	Û	0	Q	0	O
25	Foxtail, Giant	20	20	20	20	20	1.0	10	Q	0	Q	ij.	0.	Q	Ŭ.
	Lambsquarters	60	30	50	40	70	60	90	0	Ü	0	0	Ü	0	0
	Morningglory	30	2.0	10	20	30	10	10	1.0	Ø	0	0	0	Ŏ	0
	Oat, Wild	20	20	20	29	20	1,0	20	10	Ø	10	0	0	0	Ď
	Pigweed	40	30	30	3.0	40	10	60	. 0	Ø	20	0	0	0	1.0
30	Surinam Grass	30	10	30	20	20	10	30	10	Ű.	Ü	0	0	Ö	0
	Velvetleaf	20	20	20	20	30	30	50	D	0	40	.0	0	Q	Đ,
	Wheat	10	20	20	1.0	20	10	1.0	0	0	0	Ō	0	0	9
	Table B						į	Comp	ound	a.					
	125 g ai/he	220	331	222	223	224	225	226	227	228	229	230	231	232	233
35	Postemergence														
	Barnyardgrass	0	Ö	10	10	10	10	10	1	30	20	0	10	. magg	, S.
	Blackgrass	0	Q	0	Q	0	20	20	20	30	30	30	20	0	· • • • • • • • • • • • • • • • • • • •

	Cocklebur	0	0	20	10	10	20	10	30	30	20	0	1.0	10	20	
	Corn	10	10	Ü	10	1.0	10	10	30	10	10	10	10	10	10	
	Crabgrass, Large	1.0	0	1.0	10	10	10	20	30	28	1.0	10	20	10	10	
	Foxtail, Giant	0	10	1.0	10	20	1.0	20	10	30	30	10	20	10	0.0	
5	Lambsquarters	10	0	50	60	60	50	4.6	50	70	70	50	80	50	50	
	Morningglory	Ŭ	Q	40	40	30	1.0	30	50	70	10	20	20	30	50	
	Oat, Wild	0	0	0	· Q	0	0	30	Ø	40	30	20	20	0	0	
	Pigweed	10	1,0	40	60	40	40	30	50	50	60	40	50	144	60	
	Surinam Grass	Ö	0	1.0	10	10	10	10	10	20	10	10	10	10	10	
10	Velvetleaf	0	6	50	20	20	30	20	20	60	60	20	30	30	30	
	Wheat	0	0	0	Ŏ	Q	10	20	Ö	30	30	10	20	.0.	:∅.	
	Table 8						: (ompo	ound:	\$						
	125 g ai/ha	234	235	236	237	238	239	240	241	242	243	244	245	246	247	
	Postemergence															
15	Barnyardgrass	34-	-000	1	res)	0	0	Ü	0	50	1.0	10	40	30	0	
	Elackgrass	O	0	0	. 0	0	Ω	0	g	10	0	10	0	0	Ď	
	Cocklebur	1.0	0	20	10	Ü	0	Ö	20	40	10	30	40	20	0	
	Corn	0	20	20	20	0	0	0	0	10	10	10	10	0	Ũ	
	Crabgrass, Large	10	10	0	10	0	O	0	0	30	10	10	10	10	10	
20	Foxtail, Giant	0	10	10	10	0	0	0	0	20	10	20	30	30	10	
	Lambsquarters	30	40	60	60	0	O	20	30	90	70	40	80	50	60	
	Morningglory	30		10	20	Û	0	20	20	20	0	10	10	0	20	
	Oat, Wild	20	10	30	0	Q	0	0	0	1.0	0	30	20	10	0	
	Pigweed	30	30	60	3.0	0	30	0	30	60	20	50	60	50	60	
25	Surinam Grass	·Q	1.0	0	20	Q.	0	Q.	10	30	10	20	30	30	10	
	Velvetleaf	20	20	29	30	Q	Ü	0	10	50	50	40	70	30	30	
	Wheat	Ö	0	10	10	0	0	Ü	0	10	Ö	10	10	0	0	
	Table 8						- 6	Comp	ound	S						
	125 g ai/ha	248	249	250	252	253	254	256	257	258	259	260	261	262	263	
30	Postemergence															
	Barnyardgrass	10	10	20	0	0	Ü	0	Q	0	0	Q	Q	0	Q	
	Blackgrass	20	20	2.0	7.0	20	Q	Ü	0	10	10	10	0	0	10	
	Cocklebur	30	30	30	20	1.0	30	0	Ü	5.0	O	10	O	0	. O	
	Corn	20	1.0	50	1.0	Ò	Ø	٥	0	0	10	Û	1.0	0	0	
35	Crabgrass, Large	10	10	20	0.0	0	10	Ω	0	Ö	0	0	Q	Ü	10	
	Foxtail, Giant	30	20	20	26	0	ŭ.	0	Ü	0	Ç	0	ø	10	Ü	
	Lambsquarters	60	10	0	30	30	10	30	50	30	10	10	1.0	50	70	

						7.0%										
	Merningglory	20	20	20	20	Q	20	0	0	Ü	0	0	0	Ø	Q	
	Oat, Wild	3.0	30	30	20	30	20	10	10	20	10	20	0	0	1.0	
	Pigweed	60	20	30	20	20	10	30	60	50	30	20	20	70	60	
	Surinam Grass	10	10	10	10	Q	10	0	Đ	0	10	0	O	0	10	
5	Velvetleaf	20	10	20	30	10	10	10	0	0	0	ð	Ü	20	30	
	Wheat	30	30	20	20	20	10	10	0	20	10	20	0	0	1.0	
	Table B						£	ogmo!	unds	š.						
	125 g ai/hs	264	265	266	267	368	269	270	271	272	273	274	275	276	277	
	Postemergence															
10	Barnyardgrass	G.	0	0	4.0	Ü	10	0	0	20	20	ij	0	0	0	
	Blackgrass	Ø	10	20	20	30	20	0	10	60	50	30	40	30	10	
	Cocklebur	0	0	0	30	20	20	Q	0	40	20	0	0	10	Ü	
	Corn	0	Ø	0	20	20	10	0	Ŏ	30	10	0	0	0	0	
	Crabgrass, Large	Ü	0	0	20	0	1.0	0	0	10	30	Ü	0	1.0	0	
15	Foxtail, Giant	0	Ŭ	0	40	1.0	3.0	0	0	10	10	20	0	10	0	
	Lambsquarters	Q	Q	60	30	60	50	0	1.0	100	60	40	50	20	20	
	Morningglory	O.	Ø	30	30	10	20	Q	0	90	20	0	ũ	10	0	
	Oat, Wild	Ø.	0	10	30	30	30	0	30	60	3.0	30	30	30	10	
	Pigweed	0	0	20	60	20	60	0	50	100	80	40	60	40	Ŭ	
20	Surinam Grass	0	0	10	30	10	10	0	Ö	10	30	20	10	10	0	
	Velvetleaf	Ø	0	0	50	20	1.0	Ō	0	50	40	10	0	10	20	
	Wheat	0	O	20	20	3.0	20	0	30	20	30	30	20	20	20	
	Table B							Comp	ound	Š :						
	125 g ai/ha	278	279	280	281	383	283	284	285	286	287	288	289	290	291	
25	Postemergence															
	Barnyardgrass	0	0	ð	0	Q	Û	Ø	0	0	Ö	0	Q	0	0	
	Blackgrass	20	10	20	20	20	20	20	30	10	10	20	1.0	20	0	
	Cocklebur	1.0	()	Q	30	10	0	Ü	10	10	10	0	Ü	Q	Ø	
	Corn	10	10	Ü	i ğ	10	Ü	0	10	0	Ö	Q	0	0	0	
30	Crabgrass, Large	0	0	0	10	10	0	Ü	0	Ü	0	S	0	0	Ü	
	Foxtail, Giant	0	0	ð	10	30	0	0	30	30	26	0	20	20	1.0	
	Lambsquarters	20	10	1.0	30	10	0	50	ψĐ	10	1.0	6	0	10	30	
	Morningglory	0	0	0	0	10	0	9	20	O.	0	0	.0	0	Ø	
	Oat, Wild	20	20	1.0	10	0	0	10	40	30	20	20	20	20	10	
35	Pigweed	10	30	10	20	20	0	69	70	50	20	10	10	10	ũ	
	Surinam Grass	10	10	C	10	10	Ŏ	0	10	10	0	Û	0	0	0	
	Velvetleaf	10	10	16	į į	10	0	0	10	10	Q	10	Q	Ö	0	

	Wheat	30	30	20	30	30	20	20	30	20	10	20	20	20	Ü
	Table B						C	ompe	ແກດ້ຮ	\$:					
	125 g ai/ha	292	293	294	295	298	297	298	299	300	301	302	303	304	305
	Postemergence														
5	Barnyardgrass	0	0	20	3.0	30	10	10	10	30	20	10	40	20	O
	Blackgrass	10	30	20	30	30	10	20	20	10	1.0	1.0	20	10	20
	Cocklebur	O	20	30	40	50	0	20	20	10	10	10	1.0	Q	10
	Corn	10	10	1.0	10	30	10	0	0	30	50	10	70	40	70
	Crabgrass, Large	Û	0	10	30	30	20	20	10	10	20	0	10	10	0
10	Foxtail, Giant	0	20	30	60	60	20	10	10	30	1.6	ű	50	36	20
	Lambsquarters	30	50	70	40	50	10	40	40	70	70	60	80	80	50
	Morningglory	0	.30	10	50	50	6	60	70	90	60	30	80	100	0
	Oat, Wild	10	30	40	40	30	0	30	20	30	20	Q	30	30	10
	Pigweed	20	10	30	100	80	Q.	80	90	80	08	80	70	90	Ó
15	Surinam Grass	0	10	30	50	40	20	20	20	10	10	<u>a</u>	1.0	0	Ű
	Velvetleaf	10	1.0	40	70	90	Ü	50	ឲ្យ	40	30	10	30	10	20
	Wheat	0	20	3.0	20	20	Ů,	30	20	10	10	.0	10	1.0	· • • • • • • • • • • • • • • • • • • •
	Table B						3	Compo	oundi	3.1					
	125 g ai/ha	306	307	308	309	310	311	312	313	314	315	316	317	318	319
20	Postemergence														
	Barnyardgrass	10	0	Ü	5.0	0	0	0	30	1.0	10	0	0	40	Q
	Blackgrass	10	10	10	1.0	10	0	Ü	0	10	0	0	0	1.0	0
	Cocklebur	30	20	Q	40	Q	0	8	Ü	10	20	0	Ŭ	1.0	20
	Corm	30	· sist	0	20	0	0	0	1.0	1.0	10	10	Q	20	30
25	Crabgrass, Large	2.0	2.0	0	0	10	0	Q	10	1.0	0	10	0	10	20
	Fortail, Ciant	10	20	1.0	20	1.0	D	0	20	20	0	0	0	10	20
	Lambsquarters	70	60	50	40	\$0	0	1.0	60			40			
	Morningglory	*484	0	0	0	0	0	0	0	20				0	1.0
	Oat, Wild	20	0	1.0	20	30	0	Ü.	20	10	0				30
30	Pigweed	7.0	50	80	50	50	0	0	60	60	10	2.5		70	30
	Surinam Grass	10	10	10	10	10	0	0	10	50	20	10	0	10	
	Velvetleaf	40	10	10	20	30	0	Ü	60	20	2.0			40	
	Wheat	1.0	0	10	20	10	0	0	Q	0	0	Ü	Ü	0	1.0
	Table B						1.1	Comp	ound	s					
35	125 g ai/ha	329	330	331	332	333	334	335	336	338	340	341	342	343	344
	Postemergence														
	Barnyardgrass	į. Č	Û	10	20	10	0	ß	10	20	10	10	10	10	0

														24		
	Blackgrass	20	0	10	40	30	3.0	10	10	30	20	10	30	0	0	
	Cocklebur	Ŏ.	0	1.0	3.0	20	20	10	0	10	0	10	10	0	0	
	Corr	ŋ.	Ũ	Q	Ó	10	Ü	10	10	18	0	0	10	10	10	
	Crabgrass, Large	Ŏ	0	10	50	40	1.0	10	20	20	10	10	1.0	20	0	
5	Foxtail, Giant	10	Ũ	0	30	30	10	20	20	20	30	30	20	30	10	
	Lambsquarters	30	0	60	80	90	70	10	60	10	30	30	60	40	3.0	
	Morningglory	0	10	0	40	30	50	10	40	60	10	30	30	30	10	
	Oat, Wild	20	0	10	40	40	20	20	10	0	30	0	26	10	0	
	Pigwaed	50	0	10	100	90	40	20	60	60	50.	30	40	40	30	
10	Surinam Grass	10	Ü	10	20	20	20	10	50	30	10	10	10	10	0	
	Velvetleaf	10	ũ	10	60	50	50	30	20	30	20	20	30	30	30	
	Wheat	20	Q	20	30	20	1.0	1.0	0	0	Ü.	10	Ö	0	Ö.	
	Table B						C	ompo	unds	(*						
	125 g ai/ha	345	346	347	348	349	350				354	355	356	357	358	
15	Postemergence						1									
	Barnyardgrass	0	20	0	0	Q	O	Q	Q.	10	Q	0	Ö	0	10	
	Blackgrass	Q.	40	30	20	20	0	0	10	10	10	Û	0	0.	10	
	Cocklebur	Ō.	30	0	Ü	0	Q	Ö	0	1.0	10	.0	بين	10	0	
	Corn	0	0	Q	0	0	0	0	()	10	0	Ŏ	0	Û	0	
20	Crabgrass, Large	0	ŷ.	0	Ü	20	Q	Ü	20	1.0	Ü	10	10	Q	10	
	Foxtail, Glant	Ö.	20	Ü	0	Ō	Ŏ.	0	10	20	10	30	30	30	10	
	Lambsquarters	20	30	1.0	Ö	0	Q	Ü	10	20	10	10	10	30	30	
	Morningglory	10	1.0	0	0	Ŏ	0	0	10	10	30	10	0	10	30	
	Ost, Wild	0	40	0	20	1.0	Ø	Ø	0	10	Ø	ũ	0	0	30	
25	Pigweed	20	70	0	0	0	0	Q	10	30	20	30	30	20	20	
	Surinam Grass	0	10	0	Ō	0	0	0	10	0	0	10	10	10	1.0	
	Velvetlesf	10	1.0	0	0	Ø	0	0	10	3.0	, in	3.0	100	20	10	
	Wheat	O	20	ß	20	0	Q.	Ü	10	0	Q	0	0	Q	0	
	Table B			ж.	Comp	ound	S									
30	125 g ai/ha	359	360				364	365	366							
Ç.	Postemergence			" - "												
	Barnyardgrass	10	0	-0	. 10	0	10	0	10							
	Blackgrass	20			10	20	30	40	40							
	Cocklebur	1.0						20	30							
35	Corn	10		2.7.5				0								
**************************************	Crabgrass, Large	10														
	poxtail, Giant	20				•										
	The state of the s	رون دت		· // // *												

						Ser Ser Ser					
	Lambsquarters	40	0	70	10	30	70	90	80		
	Morningglory	10	ũ	10	10	50	20	80	· \$		
	Cat, Wild	30	40	Ü	20	30	20	30	40		
	Pigweed	20	30	20	20	30	40	40	50		
5	Surinam Grass	1.0	10	10	10	10	30	10	10		
	Velvetleaf	20	4.0	10	0	10	20	10	10		
	Wheat	Ó	30	0	Û.	10	10	20	20		
	Table B				Cos	pour	ads				
	62 g ai/ha	54	72	73	74	129	152	191	192	251	
10	Postemergence										
	Barnyardgrass	Q	Q.	Ü	Q	0	30	0	0	0	
	Blackgrass	0	4.0	30	30	0	20	0	O	50	
	Cocklebur	3.0	0.0	20	0	60	60	Ü	0	0	
	Corn	10	0	.0	0	(444)	20	10	10	0	
15	Crabgrass, Large	O	Ü	0	0	0	10	20	10	Ø	
	Foxtail, Giant	0.	0	10	10	1.0	10	10	10	0	
	Lambsquarters	40	0	ů.	0	0	70	50	70	10	
	Morningglory	10	0	10	Ŭ	jesse	50	40	60	0	
	Oat, Wild	0	20	20	30	0	10	10	10	20	
20	Pigweed	0	0	10	20	Q	50	30	30	10	
	Surinam Grass	Q	0	1.0	0	Ø	30	10	10	Ø	
	Velvetleaf	Q.	0	30	Q	Ø	50	10	20	10	
	Wheat	0	10	20	20	0	10	0	0	20	
	Table B	Con	moag	ds		į	Tabl	e B			Compound
	31 g ai/ha	49	188	346			16 g	ai/	ha		251
	Postemergenca					43.	Post	emer	gena	8	
	Barnyardgrass	10	0	0		. :	Bann	yard	gras	s	0
	Blackgrass	0	0.0	30		:	Blac	kgra	88		10
	Cocklebur	10	30	1.0		9	Cock	lebu	ε.		0
	Corn	10	10	Q			Corn				0
	Crabgrass, Large	10	1,0	0			Crab	gras	s, L	arge	, O
	Foxtail, Giant	Q	: Ö	0			Foxt	ail,	Gia	nr	0
	Lambsquarters	30	50	0		:	Cambi	sgua	rter	S	0
	Morningglory	0	50	0		. :	Morn	ingg	lory		Ö
	Oat, Wild	0	10	30		:	Ost,	wil	đ		20
	Pigweed	10	50	60		:3	Pigw	eed			o
	Surinam Grass	10	10	Ø		1.0	Suri	mam	Gras	S	O

	Velvetleaf	10	1.0	o.			Velv	etlea	ıŤ			Ö.			
	Wheat	0	100	10			Whea					20			
		*	,												
	Table B	-81	570		. 3.	·		Compo			31.30		1.0	- 12 m	9. 8
	500 g ai/ha	1.	3	3	d.	5	6	7	8	9	10	11	12	13	14
	Preemergence	المارية المارية		al ala		4.4	بدندند			ar n n	* * *		3.4	a wa	
	Barnyardgrass		100				100	90			100				100
5	Cocklebur	100	90	50	0		100	70	0		100	50	0) very	80
	-Coxn	70	80	60		Q		70	Ø	60	50	80	0	70	
	Crabgrass, Large	100	100			10.00	100				100			100	
	Foxtail, Giant		190	***								100		100	
a sale	Lambaquarters	100	100				100	1				100		100	
10	Morningglory	70	90	60	3.0	0	39 3	90	0	30		10	30		100
	Pigweed	100	100		100				30		100		0		100
	Rice	80	90	90	60		100	80	1.0	90			0	90	100
	Surinam Grass	90	100	90	90	50	1.00	50	Ŭ	90		100		100	100
	Velvetleaf	100	100	100	100	60	100	70	0	100	100	80	1.0	300	100
15	Wheat	 .,	~	ju.,	, .	<u>,,,,</u>	****	,••.	-	, we	(***)	, y-	per "	, ***.	(See)
	Table B						Ţ	ියකුතුව	minds	ŝ					
	500 g ai/ha	15	16	1.7	18	19	20	21	22	23	24	25	26	27	28
	Preemargenca														
	Barnyardgrass	100	100	100	90	70	70	80	0	0	30	Q.	O	100	90
20	Cocklebur	0	100	100	60	100	30	, Ø	0	Ŏ	0	han ".	0	60	0
	Corn	30	70	60	50	0	10	0	Ò	0	Ö	0	0	90	1.0
	Crabgrass, Large	100	100	90	100	100	100	100	1.0	10	60	0	ŋ	100	50
	Foxtail, Giant	100	100	90	100	90	70	40	10	0	80	O	ð.	100	60
	Lambsquarters	100	100	100	100	90	90	80	0	0	0	Q		100	100
25	Morningglory	10	50	1.0	100	60	80	20	1.0	0	0	Ö	Q	40	30
	Pigweed	100	100	100	100	1,00	100	80	0	0	100	ß	0	100	100
	Rice	50	90	70	90	40	50	30	Ü	0	O	0	0		
	Surinam Grass	90	90	76	70	70	60	50	Q		10	0	0	90	70
	Velvetleaf	80	100	100	1.00	100	30	30	0	0	0	Ö,	0	100	100
30	Table B							Iompo	ounds	5					
	500 g ai/ha	29	30	31	32	33	34	35	36		40	41	42	43	44
	Preemergence		1997		a =		in an		44.75	215.		1-21-20m.	·		,)
	Barnyardgrass	100	90	90	60	90	80	100	80	ទ០	40	80	30	100	100
	Cocklebur	90	1.0	40	Đ	30	10	30	0	8		0	0	10	20
35	Corn	50	10	20	0	30	ŏ	40	1.0	10	0	1-	0		

	Crabgrass, Large	100	60	50	60	100	100	90	20	90	70	100	70	100	100	
	Foxtail, Giant	100	80	90	1.0	100	90	100	30	60	10	70	10	80	70	
	Lambequarters	90	100	100	100	100	100	100	100	100	80	100	80	100	100	
	Merningglory	1.00	60	80	60	v-	20	10	10	0	10	10	10	10	10	
5	Pigweed	1.00	1.00	100	70	100	1.00	1.00	100	100	60	70	40	100	100	
	Surinam Grass	80	20	60	30	80	80	80	50	40	10	60	50	50	40	
	Velvetleaf	90	70	90	70	80	60	60	50	20	10	1,0	10	1,00	100	
	Table B						C	cmp:	nund	3						
	500 g ai/ha	45	46	47	48	50	51	52	55	56	57	58	59	60	61.	
10	Preemergence															
	Barnyardgrass	100	100	90	90	80	100	60	100	80	70	100	70	100	60	
	Cocklebur	80	30	40	50	0	50	1.0	10	20	10	1.00	Q	0	0	
	Corn	30	10	10	0	10	50	· O	20	20	Ü	30	0	0	1.0	
	Crabgrass, Large	90	100	100	80	90	100	90	100	100	100	100	20	100	100	
15	Foxtail, Giant	100	100	90	90	100	100	60	100	100	100	100	40	100	80	
	Lambsquarters	100	100	100	90	1.00	100	90	100	100	100	100	100	90	100	
	Morningglory	30	30	30	40	40	Ũ	0	3.0	20	0	30	10	26	20	
	Pigweed	100	100	100	100	100	100	90	100	100	100	100	100	100	100	
	Rice	,100	- 1	·**	წ0	50	50	80	70	70		80	0	50	Q.	
20	Surinam Grass	50	70	70	80	50	80	30	80	80	40	60	10	50	30	
	Velvetleaf	100	100	100	100	50	100	20	30	100	Û	100	40	90	90	
	Table B						٤	gmai	und:	8						
	500 g ai/ha	62	63	64	§ 5	ซ์ซ์	67	68	69	70	71	75	76	77	78	
	Preemergence															
25	Barnyardgrass	80	100	90	90	30	80	1.0	Q	50	Ø	90	100	70	0	
	Cocklebur	1.0	10	0	0	0	Ü	Û	بند	0	Ö	10	40	0	0	
	Corn	1.0	30	0	10	0		0	D.	20	0	30	50	40	0	
	Crabgrass, Large	100	100	100	88	10	20	0	0	100	Õ	70	90	80	10	
	Foxtail, Giant	90	100	100	80	10	10	Ö	0	100	Ø	90	1.00	60	30	
30	Lambsquarters	100	100	100	100	50	10	90	40	Û	0	80	90	90	0	
	Morningglory	10	10	0	1.0	Q	0	30	20	20	0	10	80	0	10	
	Pigweed	100	1.00	100	100	30	60	90	Ō	50	0	90	100	100	30	
	Rice	10	80	60	50	Ü	50	o O	0	10	0	70	60	60		
	Surinam Grass	40	80	50	50	1.0	50	Q	0	40	0	70	90	40	10	
35	Velvetleaf	100	70	40	60	0	30	10	0	70	O.	70	96	30	16	

	Table B						C	ompo	unds	¥					
	500 g si/ha	79	80	81	82	83	84	85	86	87	88	89	90	91	92
	Preemergence														
	Barnyardgrass	10	20	60	Ö.	0	Ø.	Q	ij.	70	90	0	20	10	0
5	Cocklebur	0	Õ	Ø	0	0		0	0	Ü	0	0	0		0
	Corn	0	10	0	0	0	0	ij.	0	0	60	0	20	1.0	0
	Crabgrass, Large	Q.	0	10	0	O	Û	0	Ø.	100	100	30	70		10
	Foxtail, Giant	10	70	60	Ŭ	0	Ø	0	0	80	90	0	60	10	10
	Lambsquarters	0	Q.	0	0	Ü	0	0	0	100	100	0	90	30	O
10	Morningglory	0	30	60	0	Q	0	0	Şeş	0	0	Ď	10	10	0
	Pigweed	ŭ	0	80	Ø	0	0.	0	Ŭ.	90	100	0	80	0	Ü
	Rice	<u></u>	4	Q.	0	0	Ü	0	0	60	60	ũ	Ü	10	3
	Surinam Grass	10	10	10	Ø	0	ρ	0	0	20	80	Ş	20	(v)****	0
	Velvetleaf	1.0	20	80	0	Q	0	0	Ü	40	50	0	20	·şii.	Ö
15	Table B						-E	empc	undi	ž:					
	500 g æi/ha	93	94	95	96	97	98	99	100	101	103	104	105	106	107
	Preemergence														
	Harnyardgrass	20	20	80	90	0:	0	30	0	70	90	80	30	70	Ü
	Cocklebur	0	0	Ü	0	0	Q	0	0	90	ŋ.	Û	0	0	Q
20	Corn	10	Q	60	70	0	0	0	0	40	50	0	0	Ø	0
	Crabgrass, Large	20	20	90	100	Ò	Ö	70	ŋ	90	100	90	90	100	10
	Poxtail, Giant	30	30	100	90	0	0	20	Q	60	80	30	10	40	0
	Lambsquarters	70	0	100	100	0	0	20	O:	100	100	80	80	100	30
	Morningglory	10	0	· venn	10	0	Ü	0	0	10	100	20	1.0	3.0	10
25	Figweed	70	20	100	1.00	0	Q	l) gasan	0	100	100	70	Ű8	70	Q.
	Rice	0	0	50	70	0	Ō	0	0	40			j. Per	, a, a :	i i nte
	Surinam Grass	0	Ö	70	80	0	0	30	0	30	40	20	10	20	10
	Velvetlesf	10	Ø	60	90	Ŭ	Ď.	20	0	50	70	0	()	0	0
	Table B						.\$	lompo	nind	S					
30	500 g ai/ha	1.08	1.09	110	112	113	114	115	117	118	119	120	121	155	123
	Preemergence														
	Barnyardgrass	90	100	10	70	90	80	100	90	90	10	90	80	90	ିପ୍ର.
	Cocklebur	30	20	10	0	20	10	40	30	1.0	. 0	0	0	70	0
	Corn	30	10	0	O.	0	1.0	30	30	10	0	Q	0	30	0
35	Crabgrass, Large	100	100	100	90	100	100	100	100	100	80	90	5.0	100	Q
	Foxtail, Giant	100	100	20	20	3.0	90	100	80	70	0	70	7.0	80	0
	Lambaquarters	100	90	90	90	100	100	100	100	0	0	30	100	100	Ø

	Morningglory	70	100	60	60	50	ينخر	90	60	50	20		20	70	O
	Pigweed	100	100	10	90	100	100	100	90	90	Ç.	30	100	80	0
	Surinam Grass	80	80	10	20	10	30	70	60	50	10	Ø	20	70	0
	Velvetleaf	100	60	1.0	50	20	60	100	70	10	10	40	20	60	0
5	Table 8						(Comp	ounds	3					
	500 g ai/ha	124	132	126	127	128	129	130	131	132	133	134	135	136	137
	Preemergance														
	Barnyardgrass	10	0	60	7.0	90	80	70	90	50	60	80	50	100	70
	Cocklebur	0	0	Q	20	20	20	Ü	10	0	.0	Đ	0	10	Ω
10	Corn	0	0	0	0	20	0	20	0	10	. 0	10	0	30	10
	Crabgrass, Large	Q.	0	30	1,00	100	90	100	100	100	90	100	90	100	100
	Foxtail, Giant	1.0	Ü	0	70	60	20	70	70	80	40	70	20	100	80
	Lambsquarters	80	0	90	70	70	20	70	100	90	100	100	100	100	80
	Morningglory	0	· •	20	٠ ــــــــــــــــــــــــــــــــــــ	30	Û	10	30	20	10	20	.~•j.	70	20
15	Figweed	90	0	7.0	70	80	30	100	100	100	100	100	100	100	100
	Rice	÷	·	المعيد		s lune		0	50	0	40	50	30	50	10
	Surinam Grass	10	, d Ö	20	60	60	10	80	60	70	3.0	50	30	.90	80
	Velvetleaf	0	0	20	20	80	10	90	100	70	70	90	50	100	60
	Table B						i	Comp	ounds	\$					
20	500 g ai/ha	138	139	140	141	142	143	144	145	146	147	148	149	150	151
	Preemergence														
	Barnyardgrass	70	90	80	ø	100	Q	100	100	90	90	10	90	80	10
	Cocklebur	10	10	9.0	10	40	0	30	20	0	1.0	Q	D.	.0	O
	Corn	10	40	Q	.0	Q	Ď	10	10	Q	10	0	50	20	Ø
25	Crabgrass, Large	100	100	100	20	100	Q	100	100	100	100	0	100	1.0	1.0
	Foxtail, Giant	70	100	80	20	100	0	100	100	90	100	20	100	60	10
	Lambsquarters	100	100	100	0	100	Ö	100	100	100	100	1000	100	100	O
	Morningglory	20	30	-	30	30	Q	1.00	40	10	3.0	Ű	40	20	O
	Pigweed	100	100	80	30	100	0	100	100	100	1.00	0	100	100	0
30	Rice	40	60	70	Ø	80	.,	30	20	40	10	10	30	40	Q
	Surinam Grass	30	90	60	10	60	Q	100	80	30	80	Ü	80	1.0	10
	Velvetleaf	40	80	20	50	100	Q	100	100	90	80	0	40	10	Õ
	Table B						. (Comp	ounds	ŝ.					
	500 g ai/ha	153	154	155	156	157	158	159	160	161	162	1.63	164	165	186
35	Preemergence														
	A CONTRACTOR STATE OF THE	90	80	93	1.00	- 25	5 Fe85	0.0	130	1:03/3	100	90	0	Q	0
	Barnyardgrass	20	00	90	100	- 32	200	32.02	. e. 25 es.	Section 4.	200		1.0	N	

						* 1 &										
	Corn	20	0	30	80	0	60	0	30	10	80	40	0	0	0	
	Crabgrass, Large	80	80	100	100	30	100	70	80	100	100	90	0	0	Ø	
	Poxtail, Giant	50	30	90	100	û	100	60	70	100	100	80	0	0	Ô	
	Lambsquarters	100	90	100	100	30	100	100	100	100	100	100	0	0	0	
5	Morningglory	10	0	40	100	40	50	40	90	40	80	70	Q	0	0	
	Pigweed	100	100	100	100	40	100	100	100	100	100	100	Q	0	0	
	Rice	30	Q	50	1.00	0	90	70	80	40	90	80	30 00 0	Q	Ü	
	Surinam Grass	70	10	50	100	Q	90	70	70	60	100	70	3	0	0	
	Velvetleaf	1.00	70	70	100	Ō	80	90	80	70	100	90	Q	Û	Q	
10	Table S						:(Comp	spance	3						
	500 g ai/ha	167	169	170	171	179	180	181	182	183	184	185	186	187	188	
	Preemergance															
	Barnyardgrass	Ö	10	30	Q.	0	0	90	80	70	60	70	10	90	100	
	Cocklebur	ow.	0	0	0	0	0	20	C	0	0	0	Ŭ	0	Ō	
15	Corn	· Ø	Ũ	0	Ũ	0	Ü	40	D.	0	0	0	10	60	50	
	Crabgrass, Large	0	40	80	30	0	0	100	100	90	100	50	10	100	100	
	Foxtail, Giant	0	10	30	Ü	0	0	100	100	80	70	70	1.0	70	1.00	
	Lambsquarters	0	60	80	Ø	0	8	100	100	100	80	80	0	40	100	
	Morningglory	Ö	70	1.0		0	0	20	30	10	50	50	Ü	30		
20	Pigweed	ņ	100	90	9	0	Ü	100	100	100	100	100	Ö.	60	7.0	
	Rice	0	0	0	0	e de	155	70	50	80	Ø	Q	50	80	3.0	
	Surinam Grass	O	10	30	Ü	0.	0	70	60	50	3.0	20	10	70	70	
	Velvetleaf	0	. 0	20	30	0	ņ	10	70	50	50	50	20	30	100	
	Table B						:	Comp	ound	8						
25	500 g ai/ba	189	190	193	194	195	196	197	198	199	300	503.	202	203	204	í.
	Preemergence															
	Barnyardgrass	30	30	100	90	90	40	10	90	90	20	1.0	90	10		
	Cocklebut	O	0	70	30	Ü	0	. 0	20	Ö	0	Q	10	1.0	. 0	1
	Corn	0	0	100	50	0	Ü	0	40	10	Û	Q	20	0	0	Ć:
30	Crabgrass, Large	60	80	100	100	100	100	Ü	100	100	90	60	100	80		
	Foxtail, Giant	1.0	10	100	80	60	0	0	1.00	100	10		30	10		
	Lambsquarters	30	50	100		80	0	. 0	100	90	80	30	100	30		
	Morningglory	30	0	100	50	40	0	0	80	60	10	10	30	10		
	Pigweed	100	90	100	1.00	90	0	Õ	100	100	90	20	90	90	10	ļ.,.
35	Rice	50	30	100	70			0								
	Surinam Grass	20	10	100	60								60			
	Velvetlesf	20	10	100	60	20	20) <u>(</u>	60	60	20	10	20	30	0	ł.

	Table S						Ç	Jongs (mids						
	500 g ai/ha	205	206	207	209	210	211	212	213	214	215	216	217	218	219
	Preemergence														
	Barnyardgrass	90	70	90	90	90	50	90	80	20	60	40	Ü	Ö	20
5	Cocklebur	20	Ü	20	30	40	Q	50	0	0	0	0	0	0	0
	Corn	40	40	50	50	70	3.0	30	10	0.	0	0	Ó	0	Q.
	Crabgrass, Large	90	60	100	60	90	70	100	70	70	80	40	0	20	100
	Foxtail. Giant	100	20	90	60	1.00	50	100	90	90	80	60	0	Ø	0
	Lambsquarters	100	30	100	100	100	80	100	100	80	100	100	0	Q	Ů.
10	Morningglory	30	20	40	20	30	1.6	60	20	0	20	0	0	0	
	Pigweed	100	80	100	100	100	30	100	100	100	1.00	90	O	0	80
	Rice	70	30	70	70	80	1.0	20	40	Ü	0	70	0	Ö	0
	Surinam Grass	80	20	60	50	70	30	70	40	30	70	70	Ŏ	0	Û
	Velvetleaf	80	10	60	50	70	10	80	80	Ø	60	Ø:	Q	0	1.0
15	Table B						•	ටිප්සල (ounds	ŝ					
	500 g ai/ha	220	221	222	223	224	225	226	227	228	229	230	231	232	233
	Preemargance														
	Barnyardgrass	Q.	90	100	80	90	90	60	50	100	90	50	80	60	1.0
	Cocklebur	0	Ū.	80	20	50	40	0	0	8.0	40	Q	30	0	0
20	Corn	0	Q	90	80	70	70	30	50	80	40	3.0	50	0	Đ
	Crabgrass, Large	100	100	100	100	100	1.00	100	100	100	100	70	90	100	90
	Foxtail, Giant	1.0	70	90	80	70	100	70	70	100	80	80	90	30	0
	Lambsquarters	70	100	100	100	100		90	90	100	100	90	100	90	3.0
	Morningglory	Ø	g	100	30	30	10	10	30	40	20	10	10	30	0
25	Pigweed	100	100	100	100	100	100	70	100	100	100	80	100	90	នប
	Sice	0	20	100	30	80	90	30	70	90	70	0	50	50	0
	Surinam Grass	10	30	100	90	100	90	40	70	100	80	10	60	30	20
	Velvetleaf	O	50	100	1,00	100	100	50	100	100	100	30	90	40	10
	Table B						į	Quag	ound	S					
30	500 g ai/ha	234	235	236	237	238	239	240	241	242	243	244	245	246	247
	Presmargence														
	Barnyardgrass	.0	50	90	50	0	60	70	80	100	90	90	100	90	80
	Cocklebur	Ö	Q	20	0	0	O	0	0	40	20	20	. 0	0	0
	Corn	, new	20	10	20	0	0.0	0	30	60	50	60	10	20	30
35	Crabgrass, Large	40	2 0	70	90	Q	100	100	1.00	100	100	100	100	100	80
	Foxtail, Siant	10	50	50	40	Ö	0	80	90	90	80	90	90	90	70
	Lambaquarters	50	9ŭ	100	90	0	70	80	100	100	100	100	100	100	100

						1000									
	Morninggloty	0	10	20	30	0	0	Ŭ	0	10	0	20	20	10	10
	Pigweed	40	100	90	79	0	70	100	100	100	100	100	106	100	100
	Rice	Ŏ.	20	60	30	0	Ø	0	80	80	80	80	50	70	40
	Surinam Grass	0	60	50	3.0	0	0	20	90	90	80	90	80	80	50
S	Velvetleaf	O	30	80	60	Ç.	Ö.	w.	100	100	100	100	90	90	100
	Table B						C	ompo	ounds	\$					
	500 g ai/ha	248	249	250	252	253	254	256	257	258	259	260	261	262	263
	Preemergence														
	Barnyardgrass	20	0	10	70	10	40	70	20	90	70	70	30	1.0	40
10	Cocklebur	Ü	Ω	Ŭ	0	₿.	Ü	0	Đ,	0	Ó	0	0	(Vector	***
	Corn	Q	0	0	60	0	0	9	Q	Ø.	0	Ø	0	Q	0
	Crabgrass, Large	40	Û	10	100	•	1.00	100	,-**;	50	50	. 4	50	30	60
	Poxtail, Giant	60	0	10	90	30	30	60	50	20	70	30	0	9	20
	Lambsquarters	(Gas)		: ::	1.00	990	100	100	1995	100	iner.	100		90	1.00
15	Morningglory	0	10	0.0	0	0	10	0	0	10	90	0	0	Ø	0
	Pigweed	,	Ø		100	Ļ.	100	100	- M	100	100	100	÷	100	100
	Rice	Ö	0	10	50	0	20	80	0	90	Ó	30	60	Ũ.	10
	Surinam Grass	60	20	30	70	30	40	60	0	30	30	10	0	10	30
	Velvetleaf	20	0	20	60	20	20	80	0	60	Ŏ	10	20	80	90
20	Table B						ä	Comp	ound	\$					
	500 g ai/ha	264	265	266	267	268	269	270	271	272	273	274	275	276	277
	Preemergence														
	Barnyardgrass	10	0	80	70	100	100	50	Ö	90	90	100	60	80	0
	Cocklebur	Ō	0	10	Ŭ	9.0	70	0	Ü	0	0	0	0	30	10
25	Corn	0	0	90	2.0	90	80	50	10	10	30	80	30	60	Ö
	Crabgrass, Large	5.0		100	100	100	100	30	0	100	100	100	0	70	.0
	Foxtail, Giant	10	50	100	80	100	100	50	Û	90	90	90	20	90	Ö
	Lambsquarters	100	0	100		100	100	No.	60	100	100	100	100	100	80
	Morningglory	0	Q	10	30	20	20	Ó	Ø	30	10	1.0	40	10	Q
30	Pigweeč	100	0	100		100	100	, ,	20	100	100	100	40	100	100
	Rica	0	0	80	40	90	90	60	0	20	40	80	60	80	20
	Surinam Grass	1.0	40	9.0	50	100	100	20	0	70	50	80	10	80	0
	Velvetleaf	10	10	100	50	100	100	70	0	50	40	70	0	50	4.0
	Table B							Comp	ອນຄວີ	s					
35	500 g ai/ha	278	279	280	281	283	283	284	285	286	287	288	289	290	291
	Presmergence														
	Barmyerdgrass	80	40	10	90	50	10	80	90	90	100	70	Ō	80	0
	and the second second second second														

						S. 3.46									
	Cocklebur	Ö	Q	0	Ö	0	Ø.	Ø	0	O	60	0	0	0	0
	Corn	20	Ö	0	0	Q.	0	0	40	50	30	0	0	0	ũ
	Crabgrass, Large	80	80	1.0	70	80	50	90	70	100	100	0	20	90	0
	Foxtail, Giant	80	30	10	60	20	1.0	10	80	90	90	10	0	80	Q.
5	Lambsquarters	100	100	86	100	100	100	100	1.00	100	100	90	100	100	0
	Morningglory	10	Ü	0	20	0	Q	Ŭ	10	0	10	Ø	0	0	0
	Pigweed	3,00	100	100	100	100	100	100	100	100	100	96	100	1.00	0
	Rice	80	50	1.0	60	40	Ö	20	80	80	96	70	0	80	0
	Surinam Grass	60	40	10	40	20	0	10	70	60	80	Ü	Û	10	Ö
10	Velvetleaf	60	20	20	70	30	0	60	100	60	100	0	ð	0	Ü
	Table B						()	cmo	oundi	\$.					
	500 g ai/ha	292	293	294	295	296	297	298	299	300	301	302	303	304	305
	Preemergence														
	Barnyardgrass	90	100	100	20	60	20	90	100	90	300	60	90	70	30
15	Cocklebur	40	90	100	0	0	0	0	60	30	Ö	0	30	0	70
	Corn	80	100	100	10	40	0	70	90	70	10	10	70	أمعأ	60
	Crabgrass, Large	100	100	100	80	100	80	100	1.00	100	100	100	100	100	100
	Foxtail, Glant	70	1,00	100	70	90	60	100	100	100	90	30	100	90	100
	Lambsquarters	100	100	100	· 44.	100	89	100	100	100	100	100	100	1.00	100
20	Morningglory	3.9	1.00	20	20	20	10	40	1.00	60	80	10	50	10	0
	Pigweed	100	100	100	<u>.</u>	80	40	100	100	100	100	3.00	100	100	100
	Rice	90	100	100	20	40	10	60	90	70	70	10	80	20	80
	Surinam Grass	100	100	100	20	60	20	300	100	100	100	30	100	70	100
	Velvetleaf	7.0	100	100	60	80	10	60	100	100	100	80	100	100	100
25	Table B						1	Comp	ound	s					
	500 g ai/ha	306	307	308	309	310	311	312	313	314	315	31.6	317	318	319
	Presmergence														
	Barnyardgrass	90	100	80	100	90	0	0	90	90	20	Q	0	90	80
	Cocklebur	50	100	0	80	50	0	0	1.0	.0	0	0	Ű	0	10
30	Corn	100	80	70	90	70	0	Q	30	20	0	Ü	0	Û	40
	Crabgrass, Large	100	100	70	100	100	0	Ø	90	30	20	20	0	90	100
	Poxtail, Giant	100	90	90	100	100	0	ð	100	100	30	0	Û	90	50
	Lambsquarters	100	100	100	90	100	0	0	100	80	80	60	0	100	100
	Morningglory	10	10	1.0	0	1.0	Ü	0	40	20	0	Q	Ó	30	20
35	Figweed	100	100	100	100	100	0	0	100	100	100	90	0	100	100
	Rice	80	90	50	90	80			40	10	O	Q	0	50	70
	Surinam Gress	90	90	60	100	70	0	Ü	80	80	1.0	0	0	40	60

	Velvetleaf	100	100	100	100	100	Ø	0	100	100	50	20	0	المنجود ا	3.0
	Table 8						C	ompe	unds	\$					
	500 g ai/ha	329	330	331	332	333	334	335	336	338	340	341	342	343	344
	Freemergence														
5	Barnyardgrass	0	0	70	60	20	100	60	100	80	100	100	100	1.00	70
	Cocklebur	C	0	0	Q.	0	100	10	40	0	50	100	90	90	70
	Corn	O	Ŏ	40	0	0	70	50	100	10	es e sp	<u>.</u> .		.	90
	Crabgrass, Large	0	ij.	80	100	70	1.00	100	100	100	100	100	100	100	-
	Foxtail, Giant	Ö	0	80	60	20	100		100			99		100	60
10	Lambsquarters	News,	0.	100	1.00	100	100	1.0	100	100	100	100	100	100	100
	Morningglory	0	0	Q	30	1.0	70	10		10		30		100	80
	Pigweed	.0	0	50	100	100	100	10	100	100	100	100	100	100	90
	Rice	0	0	40	40	Ō		', siping	·		ů.	o ge n.)un.	177	jane)
	Surinam Grass	0	0	60	30	20	160	40	100			100			
15	Velvetleaf	O	0	86	30	80	100	70	100	80	100	100	100	100	100
	Wheat	ssol.	·~·	in the	j s .		90	30	100	30	100	100	100	100	80
	Table B						· ś	ಭಣದಲ್	ound	S:					
	500 g ai/ha	345	347	348	349	350	351	3.52	353	354	355	356	357	358	359
	Preemergence														
20	Barnyardgrass	30	0	0	100	G	0	90	90	60	90	80	80	100	90
	Cocklebur	10	0	0	80	Ō	0	0	20	0	10	20	30	90	3.0
	Corn	10	0	0	80	Q	Ü	80	, •••	20	60	50	80	100	60
	Crabgrass, Large	90	0	Ü	100	0	0	100	80	80	100	90	100	100	100
	Foxtail, Glant	30	0	0	100	0	Ü	100	50	70	90	80	100	100	100
25	Lambsquarters	100	0	Q	100	0	0	100		100	100	100	100	100	100
	Morningglory	50	Ü	0	30	0	0							100	
	Pigweed	100	0	0	100	0	0	70	ke ya	90	100	100	100	100	100
	Rice	9965			o de	u.	Ü		ds. (**	e de		ندرا .	(i.e.	, <u>,</u>	:
	Surinam Grass	70	p	0	90	0	0	100	30	20	80	60	80	100	70
30	Velvetleaf	40	O	C	1.00	ū	0	100	50	50	r C	7.0	60	100	
	Wheat	20	Ü	C	90	0		- 7(30	10	30	50	90	50	70
	Table B			Cc	mpou	nds									
	500 g ai/ha	360	361	362	363	364	365	386	Š						
	Preamergence														
35	Barnyardgrass	40	100	78	90	100	100	91)						
	Cocklebur	0	50	1.0	10	100	60) 2()						
	Corn	40	71) 6(30	100	100	} 71	3						

	Crabgrass, Large	80	1.00	1.00	90	100	1.00	100								
	Foxtail, Giant	90	100	80	90	100	100	90								
	Lambsquarters	40	100	70	80	100	100	90								
	Morningglory	10	60	10	0	100	90	50								
5	Pigweed	50	100	100	60	100	1,00	100								
	Surinam Grass	50	90	50	60	100	100	80								
	Velvatleaf	40	80	20	30	100	100	60								
	Wheat	40	80	30	30	100	100	90								
	Table B			Coi	mpou	nds										
10	250 g ai/ha	54	72	73	74	152	191	192								
	Preemergence															
	Sarnyardgrass	10	0	10	Ò	90	10	7.0								
	Cocklebur	0		Ö	1.0	10	Q	0								
	Corn	Ó	Ö	50	Ű	50	Ö	40								
15	Crabgrass, Large	40	0	10	0	100	40	90								
	Fortail, Giant	10	Ŭ	20	10	100	1.0	60								
	Lambsquarters	Q.	0	10	Ŭ	100	80	3.00								
	Morningglory	10	٥	10	10	60	10	20								
	Pigweed	0	0	0	0	100	90	100								
20	Rice	Ü	Q	20	0	60	0	30								
	Surinam Grass	Q	0	1.0	0	90	30	50								
	Velvetleaf	0	Q	20	0	100	0	10								
	Table B						e e	lompo	und	S						
	125 g ai/hs	4.	2	3	4	5	S	7	8	9	10	1.1	12	13	14	
25	Preemergence															
	Barnyardgrass	80	90	90	70	30	100	50	Ò	90	100	80	10	80	100	
	Cocklebur	30	···	20	0	Ũ	90	Ø	0	40	60	0	0	0		
	Corn	50	80	20	0	0	70	Q	0	20	0	0	0	Ø	30	
	Crabgrass, Large	100	100	1.00	80	70	100	90	Ü	70	80	1.00	i O	90	100	
30	Foxtail, Giant	100	100	100	60	20	100	80	0	80	70	90	10	60	100	
	Lambaquarters	100	100	90	100	80	100	100	0	100	100	100	0	90	100	
	Morningglory	€0	30	20	Ō	Ü	40	10	Q		1.0	0	0	20	20	
	Figweed	100	100	1.00	100	90	100	100	Ö.	100	100	90	O	100	100	
	Rice	70	70	40	30	Ö	90	70	Q	70	60	50	0	50	90	
35	Surinam Grass	70	90	80	50	20	100	30	0	70	50	50	0	7.0	100	
	Velvetleaf	60	100	90	30	50	100	60	Ò	70	100	1.0	O	50	90	

						177	3									
						3,73										
	Table B						1	Compe	bnnc	8						
	125 g ai/ha	15	1.6	17	18	19	30	21	22	2.3	24	25	26	27	28	
	Freemergence															
	Barnyardgrass	3.0	100	80	50	10	10	10	0	()	0	0	ø	100	80	
5	Cocklebur		100	100		0	0	(ma)	0	0	0	0	o o	Ö	·	
	Corn	Ö	50	30	0	Ø	Ó	0	0	0	0	Q	0	60	0	
	Crabgrass, Large	76	100	60	100	0	20	20	0	Ũ	10	0	0	100	·	
	Foxtail, Giant	10	90	70	20	0	Q	0	0	0	Ů	0	0	100	10	
26	Lambsquarters	70	100	100	80	10	20	0	Ø	0	0	0	Ď	100	90	
10	Morningglory	Q	Ü	0	100	0	.10	10	0	Ö	0	O	0	·	30	
	Pigweed	90	1.00	80	80	0	30	0	0	0	0	ŋ	ð	100	90	
	Rice	10	70	40	30	0	10	10	0	0	0	0	Ü		إغفار	
	Surinam Grass	10	90	60	30	Ô	10	0	0	0	0	Ö	0	60	30	
	Velverleaf	20	100	30	40	20	Ũ	0	0	0	0	0	0	100	60	
15	Table B						· . §	camos	und	83						
	125 g ai/ha	39	30	31	32	33	34	35	36	37	40	41	43	44	45	
	Preemergence															
	Barnyardgress	70	80	80	20	60	50	40	30	10	0	40	100	100	100	
	Cocklebur		0	10	Ü	20	0	20	0	Ō	0	0	()	0	Ö	
20	Corn	0	10	0	Q	0	0	Ü	0	0	0	0	Q	0	Q	
	Crabgrass, Large	100	20	10	30	90	80	70	10	3.0	0	70	40	0	40	
	Poxtail, Giant	80	30	60	Q	80	30	80	Q	20	Q	10	10	0	10	
	Lambsquarters	90	30	90	100	100	80	90	80	10	40	80	90	80	1.00	
	Morningglory	10	0	-	50	10	0	10	10	0		0	0	Q	10	
25	Pigweed	1.00	80	70	0	100	100	100	90	80	3.0	70	100	100	1.00	
	Surinam Grass	60	0	30	Ø	30	20	40	10	10	Ö	10	30	0	20	
	Velvetleaf	50	10	80	0	40	30	50	20	20	Q	0	30	20	20	
	Table B						ĩ	lompo	undi	3						
	125 g si/ha	46	47	48	§3	50	51	52	55	56	57	58	59	60	61	
30	Preemergence															
	Barnyardgrass	60	70	70	30	40	80	10	80	50	50	90	10	50	30	
	Cocklebur	2.0	Ŭ.	10	Ð	O	0	Ů.	U	0	0	0	0	0	۵	
	Corn	10	0	Q:	0	Q	0	0	Ü	0	Ø	20	0	0	0	
	Crabgrass, Large	90	80	20	20	30	90	20	90	70	40	100	10	90	50	
35	Foxtail, Giant	60	40	70	Q	20	100	10	60	60	30	100	0	40	20	
	Lambaquarters	100	100	90	70	90	100	0	70	100	100	100	90	90	100	
	Morningglory	1.0	20	10	ø	10	0	0	0	20	0	(j)	0	10		

	Pigweed	100	100	100	90	100	100	0	80	30	90	100	100	90	80
	Rice			10	40	10	0	O	50	40	30	66	0	30	Ŭ.
	Surinam Grass	20	20	10	10	20	30	Q.	50	30	20	30	o	10	10
	Velvetleaf	50	30	90	0	20	50	0	0	0	Q	60	10	10	70
5	Table B						. 0	Compo	ວນກຸດີ	\$					
	125 g ai/ha	62	63	64	65	66	67	68	69	70	71	75	76	77	78
	Preemergence								- ".			1 18			7 77
	Barmyardgrass	20	60	50	50	Ò	0	0	0	40	0	50	80	Û	0
	Cocklebur	0	0	o.	ij.	Q	0	0	Û	0	0.	Ð		Q	
10	Corn	ð	0	0	0	0	0	Ö.	0	10	บ	8	30	O.	0
	Crabgrass, Large	80	70	20	20	0	0	ō,	0	100	o.	10	80	Q	0
	Foxtail, Giant	70	60	10	20	o	0	0	0	90	0	30	90	0	10
	Lambsquarters	100	90	60	80	Q	0	20	ġ.	igen.	o.	20	50	60	0
	Morningglory	10	0	0	Ũ	0	0	20	o	10	0	0	10	Ö	0
15	Pigweed	1.00	100	100	90	0	Ø.	70	0	30	0	30	100	90	0
	Rice	Q	50	Q.	10	0	0	0	Õ	0	Ō	40	50	Ö	
	Surinam Grass	10	20	10	10	0	0	Ü	ø	40	Q	30	70	0	0
	Velvetleaf	80	10	٥	10	6	Q	Ŋ.	Ø	30	0	50	30	0	10
	Table B						c	ටකු වර	unds	*					
20	125 g mi/ha	79	80	81	82	83	84	85	86	87	88	89	90	91	92
	Preemergence														
	Barnyardgræss	0	0	10	Ø	0	0	0	0.	20	70	0	10	Q	Ø
	Cocklebur	Q	0	Q	0	33	0	0	0	0	Q	0	Q	5 <u>4</u> 6	Đ
	Corn	Ø	ø	2 O	Ů,	0	0	Ø	.0	0	0	: ⊘	0	0	Ü
25	Crabgrass, Large	Q:	0	0	Q.	0	Ò	Ø	0	90	90	0	10		0
	Foxtail, Giant	10	20	10	Ö	0	0	Q.	0	1.0	70	0	10	10	Ü
	Lambsquarters	Q	Ü	Q	0	0	0	0	Ω	70	100	0	0	- 10 - 10	0
	Morningglory	0	Ü	10	0	0	0	0	0	0	Ø	0	ŭ	Q	0
	Pigweed	0	0	30	0	0	O	0	0	40	100	Q	1.0	Ó	O
30	Rice	gases):	(See	0	0	Q	Q.	0	0	0	20	0	0	Ø	0
	Surinam Grass	Ü	ŭ.	0.	0	0	0	0	0	0	20	0	0	1944	O.
	Velvetlear	1.0	20	0	Ø.	n.	0	0	Ü	0	40	0	0	· . 4	0
	Table B						C	nogac	ınds						
	125 g ai/ha	93	94	95	96	97	98	99 1	00	101	102	104	105	106	107
35	Preemergence														
	Barnyardgrass	0	10	50	70	0	0	0	0	40	80	0	0	, cas	0
	Cocklebur	Ü	0	0	0	0	0	0	Q	0	0	Ü	0	0	ō

	Corn	3.0	()	60	40	٥	0	(0	20	ū	0	0	is eQ	0	
	Crabgrass, Large	2.0	10	60	20	D	O	20	0	50	100	80	į	90	0	
	Poxtail, Giant	10	10	50	60	0	0	10	o q	26	30	0	10	10	0	
	Lambsquarters	o	0	1.00	100	0	0	0) Q	100	100	50	0	0	0	
5	Morningglory	O	0	10	0	Ü	0	. [G	0	10	50	0	0		0.	
	Pigweed	0	0	100	100	0	0	Q	0	100	90	60	Ũ	0	0	
	Rice	o	0	30	60	0	0	0	0	30		ن ټر		***		
	Surinam Grass	Ü	Ű	20	20	0	0	10	Q	10	20	: 0	0	Ð	ũ	
	Velvetleaf	0	0	0	50	Ü	Ö	10	0	20	0	0	0	Ø	0	
10	Table B						. 4	Comp	ound	S						
	125 g ai/ha	108	109	110	112	113	114		117		119	130	121	122	123	
	Preemergence															
	Barnyardgrass	80	80	10	50	60	50	80	60	10	0	Ů.	Ø	80	0	
	Cocklebur	10	0	0	0	0	10	20	20	Ø	0				Ö	
15	Corn	10	Q	ij	0	0	0	0	0	0	0	0		0	0	
	Crabgrass, Large	100	80	80	20	100	90	80	90	90	20	70	0	90	0	
	Foxtail, Glant	90	7.0	10	10	10	50	80	20	1.0	0	Ò	O	50	ŏ	
	Lambsquarters	100	20	20	0	80	100	100	90	0	: 0	0	70	80	Ø	
	Morningglory	50	1.0	20	Q	Û	10	30	.,	10	Q	10	0	20	Ø	
20	Pigweed	90	30	0	0	0	80	80	60	60	0	G	80	70	0	
	Surinam Grass	50	60	10	20	10	30	70	30	10	0	0	Ö	20	0	
	Velvetleaf	80	20	ð	Q	20	40	80	60	Ü	0	20	Q	40	Ü	
	Table B						ି(Comp	ounds	3						
	125 g ai/ha	1.24	125	126	127	128			132		134	135	136	137	138	
25	Presmargence								5.							
	Barnyardgrass	0.	0	40	20	80	10	70	10	10	50	40	90	10	1.0	
	Cocklebur	Ü	Ø	0	10	20	0	0	0	0	Ŭ	0	Ö	0	0	
	Corn	Q	0	0	()	0	3.0	0	10	Ü	Q	Ŏ	10	10	O	
	Crabgrass, Large	0	0	ũ	90	90	90	50	90	20	80	50	100	80	40	
30	Foxtail, Giant	0	O.	6	30	40	20	10	30	0	30	10	80	40	30	
	Lambaquartera	Ø	0	0	0	0	Ø	100	60	50	100	30	100	1.0	0	
	Morningglory	Q	0	0	0	20	10	10	10	10	3.0	10	50	0	0	
	Pigweed	30	Q	O.	40	50	20	100	100	100	100	60	100	80	60	
	Rice	· <u>+</u>	(less)	مغود	34 0.		0	20	Ũ	0	Ü	0	20	O	ø	
35	Surinam Grass	Q	0	0	50	40	60	10	40	Ø	30	10	40	20	0	
	Velvetleaf	0	0	0	10	70	1.0	50	30	20	30	30	50	10	0	

	Table B							Comp	ound	is.					
	135 g ai/ha	139	140	141	142	143	144	145	146	147	148	149	150	151	153
	Preemergence													****	
	Barnyardgrass	80	20	0	70	0	90	70	40	70	0	80	30	0	60
5	Cocklebur	Ö		0	30	0	10	Q	0	Ø	0	0	0	0	
	Corn	10	0	0	Ü	Q	10	Q	0	1,0	0	10	0		
	Crabgrass, Large	60	Ü	1.0	80	0	80		10	90	0	90	0	0	50
	Foxtail, Giant	70	0	10	60	0	100	80	10	70	0	60	Q	0	g.
	Lambaquarters	100	G	0	100	0	100	80	80	90	0	60	0	0	100
10	Morningglory	10		20	- Carlo	0	100	30	0	Ð	0	20	0	0	Ü
	Pigweed	90	Ŭ	0	100	0	100	100	100	100	ō	100	70	0	100
	Rice	30	0	0	30	· 4	20	Ü	10	0	0	20	0	0	10
	Surinam Grass	30	0	0	10	0	60	30	10	20	0	40	10	Ü	10
	Velvetlesf	50	Ð	0	80	Ŭ	100	80	20	30	0	Q	ij.	o	40
15															
	Table 3						1	South	ounds	3					
	125 g ai/ha	154	155	156	157	158		1.0			1.63	164	365	166	167
	Freemergence								V		7/2-1				
	Barnyardgrass	10	60	100	0	70	70	70	50	100	60	Ü	0	:0:	0
20	Cocklebur	0.0	0	100	0	40	90	à0	0	30	7.0	0	0.	ŋ.	
	Corn	O	ø	40	0	0	õ	0	Ŏ.	30	Q.	0	Ü	0	[see]
	Crabgrass, Large	50	60	90	0	80	40	20	80	100	60	Ö	ø	0	Û
	Foxtail, Giant	0	20	100	0	50	50	10	20	100	20	Q	0	Q	Ω.
	<i>Lambaquarters</i>	70	100	100	Ü	70	100	100	100	100	80	0	0	0	0
25	Morningglory	0	30	60	0	50	3.0	20	10	20	60	Ü	0	0	0
	Pigweed	90	100	100	Ü	100	100	100	100	100	90	Ģ	Q	Ü	(Q)
	Rice	O	20	90	Q	80	19 44 .	وننده	0	90	80	. _j :+:	· · · Ó	Q	0
	Surinam Grass	Q.	10	90	0	30	60	20	10	90	50	O.	Q	0	o
	Velvetleaf	70	20	100	0	50	80	50	20	90	70	0	ø	0	0
30	Table B						C	compc	nında						
	125 g ai/ha	1.68	169	170	171	179					184	185	186	187	188
	Freemergence													11.2	3 4
	Barnyarúgrass	70	0	Q	0	0	ō.	30	20	20	0	.0:	Q	70	80
	Cocklebur	Ö	0	0	Ŏ.	Ō	0	10	0	ŭ	0	Q	0	Q	0
35	Corn	0	0	Ø.	ij.	0	0	0	0	0	0	0	0	20	10
	Crabgrass, Large	100	0	20	Ö.	0	Ü	50	70	10	30	O	0	70	1.00
	Foxtail, Giant	96	0	0	: 441	0	0	20	30	0	O	0	0	10	50

	Lambsquarters	90	0	0	0	0	9	50	20	50	50	20	0	30	90
	Morningglory	Ŏ	Q.	0	0	0	0	0	7.0	10	10	0	Ö	30	10
	Pigweed	100	O	Û	Ø	0	0	30	100	100	100	0	0	20	40
	Rice	Q.	0	0	0	() 44 ()	***	40	0	0	0	0	Ø	30	50
5	Surinam Grass	50	0	Ø	ive.	Ü	0	30	20	20	0	10	0	30	30
	Velvetlesf	60	Q	0	0	0	Ø	Ü	0	10	1.0	1.0	10	10	70
	Table B	ž ,					Ç	amo:	ounds	\$:					
	125 g ai/ha	189	190	193	194	195	198	197	198	199	300	201	202	203	204
	Preemergence														
10	Barnyardgrass	O	0	90	0	46	0	0	40	20	0	0	20	Ü	0
	Cocklebur	Q.	0	10	0	Ō.	0	0	0	Ø	Ü	0	Q	, O	0
	Corn	Ű	0	70	0	0	0.	0	O.	0	ø	Ü	0	0	Ö
	Crabgrass, Large	30	30	100	100	80	0	Ŭ	8.0	90	50	Ů.	60	30	0
	Foxtail, Giant	0	0	100	10	20	0	0	20	10	0	0	10	0	0
15	Lambsquarters	٥	0	100	30	0	.0	Ø	100	80	30	0	30	10	0
	Morningglory	(sec)	0	40	20	10	Q	0.	10	0	Û	0	: .0	0	(case)
	Pigwsed	90	30	100	ij.	90	Ü	0	90	30	10	0	10	10	0
	Rice	Q	Ø	80	0	10	يسر	ũ	30	0	Ŏ	0	3.0	0	0
	Surinam Grass	Ŏ	0	80	0	10	0	0	10	10	Û	Ö	Ö	0	Ü
20	Velvetlesf	0	Q	70	20	10	0	Ò	O	9	0	0	10	Ü	0
	Table B						. }	amo	ound:	8					
	125 g si/ha	205	206	207	209	210	211	212	213	214	215	216	217	218	219
	Preemorgence														
	Barryardgrass	50	10	80	50	70	10	80	10	Ü	10	0	Q	0	0
25	Cocklebur	10	0	1.0	1.0	10	Ø	Q	Ŏ.	.0	0	0	0	Û	0
	Corn	10	0	10	Ü	20	Q	10	Ü	0	0	ū	0	0	0
	Crabgrass, Large	60	10	70	40	90	1.0	60	1.0	ų.Ω	. 0	Q	Ø	Ö	. 0
	Foxtail, Giant	50	0	50	30	80	10	70	20	Q	0	Ű	Ű	o o	Ü
	Lambsquarters	80	0	80	60	100	10	100	30	0	90	90	0	0.	0
30	Morningglosy	Ü	0	20	10	20	Q	Û	0	0	1.0	0	0	O	O
	Pigweed	100	0	90	70	100	0	100	30	0	80	Ü	0	0	0
	Rice	10	0	50	30	60	0	10	Ø	. 0	0	0	Û	Ũ	0
	Surinam Grass	20	0	40	20	60	O	50	Q	0	0	0	0	0	Û
	Velvetlesf	30	0	20	10	10	0	1.0	0	0	0	: :0	0	0	0

	Table 3						:C	omp:	ounds	3					
	125 g ai/ha	220	221	222	223	224					229	230	231	232	233
	Presmergence														
	Barnyardgrass	0	ø	90	20	30	60	10	Ō.	80	50	10	50	30	1.0
5	Cocklebur	0	Û	30	0	20	0	0	0	30	0	0	Ü	0	0
	Corn	0	0	60	10	20	30	6	0	60	1,0	0	0	Ø	0
	Crabgrass, Large	3.0	80	90	50	30	10	20	40	60	40	20	30	60	20
	Foxtail, Giant	0	0	50	10	10	60	30	10	70	50	10	60	0	O
	Lambsquerters	Ü	20	100	80	100	80		Đ	100	90	20	80	80	0
10	Morningglory	0	0	-	10	**	0	Ó	Q	10	10	10	10	10	Ũ
	Pigwsed	0	50	90	90	80	70	40	0	90	100	40	60	90	0
	Rice	0		90	Q.	30	50	20	1.0	80	30	Q	20	1.0	0
	Surinam Grass	0	0	90	20	60	20	10	30	60	40	0	20	Ü	Ü
	Velvetleaf	0	0	100	30	70	30	10	30	100	40	10	30	20	10
15	Table B						į	Como	ound	s					
. Mr. svý.	125 g ai/ha	234	235	236	237	238	239				243	244	245	248	247
	Preemergence														
	Barnyardgrass	0	10	50	30	0	0	0	0	80	70	80	70	60	30
	Cocklebur	0	Û	Ö	0	Ó	0	0	Ö	10	0	Ö	0	Q	0
20	Corn	0	0	ņ	0	Q	0	Ø	Q	30	30	30		0	0
	Crabgrass, Large	Q	40	30	30	0	Ø	20	90	90	60	90	60	70	20
	Foxtail, Giant	0	0	10	0	Q	Q	Q	10	80	50	80	60	30	10
	Lambsquarters	ŭ	50	50	7.0	0	20	0	80	100	90	90	90	70	80
	Morningglory	Q	10	O	Ü	0	Q	Ŏ	0	0	0	0	10	0	0
25	Pigweed	Q	30	30	30	.0	0	Q	100	100	60	90	100	100	100
	Rice	o	0	40	0	0	0	0	0	50	.20	60	20	40	10
	Surinam Grass	O	10	20	10	Q	0	ņ	10	70	60	70	4.0	30	30
	Velvetlesi	0	1.0	20	30	0	Q	0	20	50	40	70	40	60	20
	Table B							Comp	ound	8					
30	125 g ai/ba	248	249	250	252	253	254	256	257	258	259	260	261	262	263
	Preemergence														
	Barnyardgrass	O	0	. 0	٥	Ú	0	0	0	70	0	0	Q	9	1.0
	Cocklebur	0	0	0	0	0	0	Ò	0	Ü	0	Ø	Q	Ō	
	Cora	្ស	0	0	Ű	0	Q	Ø	C	r ()	Ø	0	· ·	0	, Q
35	Crabgrass, Large	20	0	0	80	20	1.0	10	0	1.0		Ö	50	Ŏ	10
	Foxtail, Giant	30	0	0	10	Q	0	Ω	Ċ	. 0	0	0	0	0	0
	Lambsquarters	0	Ø	0	į ų	Ç	j		C	¥. ∮ ² 7	Ø		: :::	40	70

		<u>.</u>	- A	0.000	186	A	ŋ	0	ij.	0	0	0	0	0	Ŏ.	
	Morningglory	Q ;	9	Ü	Ü	0							0	50	80	
	Pigweed	Ö.	0	Q	Sec. 3	in the second	0	i <u>si</u>	0.	0	0					
	Rice	p.	0	0	30	0	0	30	0	20	0	0	0	0	0	
	Surinam Grass	50	0	10	10	10	0	60	0	Ü	0	0	0	0	10	
5	Velvetleaf	O.	Ö	0	Ŏ.	0	0	Q	0	0	0	Q	Ŋ.	Q	1.0	
	Table B						¢	ogmo:	unde	.						
	125 g ai/ha	264	265	266	267	268	269	270	271	272	273	274	275	276	277	
	Preemergence															
	Barnyardgrass	0	0	60	2.0	100	80	Ũ	0	10	3.0	50	Ü	60	Ü	
10	Cocklebur	0	o O	0	0.	80	30	0	0	0	Û	0	0	Ŏ	0	
	Corn	Ü	0	Q	6	80	60	Ů.	Ü	Ŏ	0	Ŋ.	0	30	0	
	Crabgrass, Large	10	+	50	40	100	100	ß.	0	80	80	10	0	10	0	
	Foxtail, Giant	0	0	80	3.0	100	80	0	Ø	30	50	10	0	30	Ø	
	Lambsquarters	6	,	100	8	100	100	, '***,	0	100	70	70	jan-	40	40	
15	Morningglory	0	0	0	20	Q	10	0	Q.	Ŏ	0	.00	0	9	0	
	Pigweed	0	0	100		1.00	100	Ø	0	90	70	30	0	30	80	
	Rice	Ö	0	70	20	90	70	0	O.	0	0	30	Q	50	0	
	Surinam Grass	Û	0	60	10	80	50	Ü	Q	10	30	50	O	10	Ö	
	Velvetleaf	0	0	20	20	100	60	50	0	10	10	20	()	ű	0	
20	Table B						્ક	Compo	sunds	3						
e de la	125 g ai/ha	278	279	380	281	283	283	284	285	286	287	288	289	290	291	
	Preemergence															
	Barnyardgrass	30	30	0	20	30	0	Ø	30	30	80	Q	Q	0	0	
	Cocklebur	0	0	0	-0	0	0	0	.0	0	Q	Ø	0	Ø	0	
25	Corn	g	Ō	0	. 0	0	. 4.4		Q	٥	Ø	0	Ŏ	Q	ŭ	Ý
	Crabgrass, Large	20	10	0	10	1.0	Q	0	20	Q	70	0	0	0	0	i,
	Foxtail, Giant	20	10	0	10	10	0	0	10	1.0	10	0	Q	10	Q	í.
	Lambsquarters	100	100		90	100	O	90	100	100	100	0	0	100	0	
	Morningglary	C	0	0	Ö	0	0	Ü	0	i O	0	0	0	Ø	0	
30	Pigweed	100	90	70	100	100	0	90	100	100	30	Ü	Ü	0	Q	
	Rice	3.0	20	Q	20	1.0	Q	0	40	30	80	0	Q	Ũ	0	
	Surinam Grass	20	0	0	10	0		0	10	10	50	0	Û	Q	Ø	
	Velvetleaf	E	0	1.0	10	10	Ŭ	. 0	30	0	70	Q	0	0	. 0	į
	Table B							Comp	ound	S						
35	125 g ai/ha	292	293	294	. 295	296					301	303	303	304	305	ì
175.	Preemergence															
	Barnyardgrass	1(90	100	10	30	Q	70	90	70	60	Ö	70	10	80	}
						•										

	Cocklebur	0	60	90	Ø.	0	0	0	30	10	0.0	0	0	0	50	
	Corn	Ŭ	70	80	0	30	0	30	50	Û	0	0	Section	Ü	10	
	Crabgrass, Large	80	100	100	10	40	20	100	1.00	100	200	70	100	10	90	
	Foxtail, Giant	0	60	90	10	70	1.0	80	100	80	70	0	50	10	80	
5	Lambsquarters	70	80	100	Ŏ	90	()	100	100	100	100	0	100	100	100	
	Morningglory	0	40	0	0	10	10	10	40	10	10	0	10	10	Ō	
	Pigweed	40	1.0	100	Q	70	0	100	100	100	700	100	1.00	100	100	
	Rice	· Q	90	90	10		0	40	30	40	1.0	0	70	0	70	
	Surinam Grass	20	90	100	0	20	10	80	100	80	90	10	50	10	80	
10	Velvetleaf	30	100	100	50	70	0	10	100	90	100	Ü	10	90	80	
	Table B						3	Compo	ounda	3						
	125 g ai/ha	306	307	308	309	310	311	312	313	314	315	316	317	318	329	
	Preemergence															
	Barnyardgrass	59	80	20	80	60	0	0	80	10	0	ŭ	0	40	50	
15	Cocklebur	0	80	Q	30	10	0	Q	0	0	0	0	Ů.	0	Ö	
	Corn	70	70	20	60	40	Ü	0	10	0	ŭ	0	ņ	Ø	10	
	Crabgrass, Large	100	90	40	60	90	Q	Ű	30	20	Q	O	0	10	50	
	Foxtail, Giant	40	90	10	80	50	O	0.0	40	30	0	0	0	Ü	20	
	Lambsquarters	100	100	100	90	100	0	0	100	20	0	0	0	90	20	
20	Morningglory	10	Ö.	0	0	0	Ŏ	Ö	10	0	0	0	Ü	0	10	
	Pigweed	1.00	100	80	70	80	0	0	100	90	20	Ü	0	90	60	
	Rice	60	80	20	70	40	.4		20	Ŭ	0	0	Ü	0	30	
	Surinam Grass	30	70	30	60	30	Ö	0	30	30	Ű	Ö	0	Q	20	
	Velvetlesf	30	100	50	80	60	0	Ö	30	30	10	0	0	20	Q	
25	Table B							Comp	ound	S .						
	125 g ai/ha	329	330	331	332	333	334	335	336	338	340	341	342	343	344	
	Preemergence															
	Barnyardgrass	: 0	Û	60	10	0	90	50	100	20	80	80	70	70	20	
	Cocklebur	୍ଷ	0	ð	0	Q	60	0	10		20	40	40		20	
30	Corn	0	0	20	0	i Q	30	3.0	50	10). ~		بيد :	ं , ,	10	
	Crabgrass, Large	0	ű	60	40	40	90	50	90	80	80	90	40	40	60	
	Foxtail, Giant	Ü	- 10	20	20	10	90	60	60	30	60	50	40	30	10	2
	Lambsquarters	0	Ű)	90	40	100). · (0	90	61	90	1.00	80	90	30	
	Morningglory	C		0	10	0	£) 0	20	1	30		1.0	50	10	
35	Pigweed	C	C	40	100	90	60) (100	7(100	90	80	90	90	i,
	Rice	£		30	20	Ü	if in		is w		u(i) (re		: 4-	· .) (See	
	Surinam Grass	- (į (40	1.0	10	80	30	90	3.0	80	100	50	50	30	5

	Velvetleaf	0	0	30	30	10	100	40	30	·	70	60	70	100	40
	Wheat	: بىش.			Sec		90	0	40	Ø.	90	100	80	100	10
	Table B						(ompc:	unds						
	125 g ai/ha	345	346	347	348	349	350	351	352	353	354	355	358	357	358
5	Preemargence														
	Barnyardgrass	30	Ō	0	0	80	0	0	70	40	0	70	60	30	70
	Cocklebur	Ō	Q	0	0	0	Ω	Ü	0	Û	0	Ø	0	Ü	40
	Corn	0	0	0	0	70	0.	0	60	÷	30	20	10	ij	60
	Crabgrass, Large	30	50	0	Ō	100	Ü	0	90	20	20	70	40	70	100
10	Foxtail, Giant	10	50	Ů	0	70	0	Ü	70	0	10	16	10	20	60
	Lambsquarters	70	0	Ŋ.	0	100	0	0	30	÷		80	40	90	100
	Morningglory	20	0	0	0	0	Q	Ŭ	0	cones)	0	10	0	10	50
	Pigweed	60	0	0	0	100	Q	0	50	0	Ü	50	70	100	70
	Rice	غنز	. rining	u.i.	4			0	a.			مين	- Ac	Light	
15	Surinam Grass	20	10	0	0	50	0	0	90	0	0	40	10	30	50
	Velvetlesf	30	0	0	Q	30	Q	Ŏ	30	10	Ø	0	0	0	50
	Wheat	0		Ŭ	0	80	0		10	Q	0	10	Q	40	40
	Table B				Comp	oundi	8								
	125 g ai/ha	359	360	351	362	363	364	355	366						
20	Preemergance														
	Barnyardgrass	0	10	80	10	0	100	90	70						
	Cocklebur	0	0	0	0	0	70	10	0						
	Corn	Q	10	39	0	0	80	90	40						
	Crabgrass, Large	90	40	80	30	20	100	100	40						
25	Foxtail, Giant	60	50	50	10	20	100	100	50						
	Lambsquarters	. 0	0	80	0	Õ	1.00	100	, Pages						
	Morningglory	0	0	1.0	0	0	70	50	30						
	Figweed	0	20	80	0	0	1.00	100	70						
	Surinam Grass	30	20	50	10	Ü	100	70	30			:-			
30	Velvetleaf	0	ZÕ	20	0	0	100	50	Ŭ						
	Wheat	10	30	10	O	10	100	70	30	:					
	Table B				Co	mpou	nds								
	62 g ai/ba	54	72	73	74	129	152	191	192	251					
	Preemergence														
35	Barnyardçıass	Õ	0	0	0	10	50	Ö.	20	0					
	Cocklebur	0	0	Ø	0	0	Ø.	0	0	0					
	Corn	Ø	Ü	Q	0	Ü	0	Q	Ü	0					

186

	Crabgrass, Large	8	0	0	0	40	90	10	30	Ō	
	Foxtail, Giant	0	0	10	Ô	Ô	90	0	10	0	
	Lambsquarters	ō	0	Ø	Q.	0	100	50	60	***	
	Morningglory	Ø	0	Ö	0	, major .	,	0	Ō.	Ŏ	
5	Pigweed	0	0	0	Ů.	Ů.	100	10	30	. .	
	Rice	0	Q	20	0	÷.	10	Ü	0	0	
	Surinam Grass	õ	0	0	0	10	40	0	10	0	
	Velvetleaf	0	0	Q	0	Ŭ	80	Ö	0	0	
	Table B	Con	poun	ds		: :t	rable	: B			Compound
	31 g ai/ha	43	168	346			16 g	ai/t)ā		251
	Freemergence					. 1	Preen	engi	nce		
	Bernyardgrass	,0	0	0		3	Sarny	ardç	rass		0.0
	Cocklebur	0,	()	0		:.(lockl	ebui			0.
	Corn	0	Ø	0		E	Corn				0.0
	Crabgrass, Large		90	0		(Irabg	rass	i, ida	rge	Q
	Foxtail, Giant	Q	0	Ú		- 3	Foxta	11,	Gian	t	0
	Lambsquarters	0	50	0		3	ambs	quar	ters		ŭ
	Morningglory	0	0.0	Ø		.3	forni	nggl	ory		0
	Pigweed	60	90	Ü		į	, j dwe	ed			0
	Rice	10	Ŏ	jan.		1	lice				0
	Surinam Gress	0	0	0		5	Jurin	am G	rass		0
	Velverleaf	0	1.0	Q.		÷Š.	/elve	tles	Ě		o i
	Wheat	one)	(Sec.)	O							

TEST C

Seeds of plant species selected from bermudagrass (Cynodon dactylon (L.) Pers.),
Surinam grass (Urochloa decumbens (Staph) R. D. Webster, previously named Brachiaria
decumbens Stapf), cocklebur (Xanthiam strumarium L.), com (Zea mays L.), large crabgrass
(Digitaria sanguinalis (L.) Scop.), woolly cupgrass (Eriochloa villosa (Thomb.) Kunth),
giant foxtail (Setaria faberi Herrm.), goosegrass (Eleusine indica (L.) Gaertn.), johnsongrass
(Sorghum halepense (L.) Pers.), kochia (Kochia scoparia (L.) Schrad.), lambsquarters
(Chenopodium album L.), morningglory (Ipomoea coccinea L.), eastern black nightshade
(Solanum prycanthum Dunal), yellow nutsedge (Cyperus esculentus L.), pigweed
(Amaranthus retroflexus L.), common ragweed (Ambrosia elatior L.), soybean (Glycine max
(L.) Merr.), common (oilseed) sunflower (Helianthus annuus L.) and velvetleaf (Abutilon
theophrasti Medik.) were planted and treated preemergence with test chemicals formulated
in a non-phytotoxic solvent mixture which included a surfactant.

WO 2004/035545

5

10

15

At the same time, plants selected from these crop and weed species and also winter barley (Hordeum vulgare L.), blackgrass (Alopecurus myosuroides Huds.), canarygrass (Phalaris minor Retz.), chickweed (Stellaria media (L.) Vill.), downy bromegrass (Bromus tectorum L.), green foxtail (Setaria viridis (L.) Beauv.), Italian ryegrass (Lolium multiflorum Lam.), wheat (Triticum aestivum L.), wild oat (Avena fatua L.) and windgrass (Apera spicaventi (L.) Beauv.) were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Plant species in the flooded paddy test consisted of tice (Oryza sativa), smallflower umbrella sedge (Cyperus difformis L.), ducksalad (Heteranthera limosa (Sw.) Willd.) and barnyardgrass (Echinochloa crus-galli (L.) Beauv.) grown to the 2-leaf stage for testing. Treated plants and controls were maintained in a greenhouse for 12 to 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table C, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

	Table C						× (Comp	ound:	S						
	500 g al/ha	1	3	3	4	S	Ę.	7	Ģ	10	11	13	14	1.5	16	
	Flooded Paddy															
	Barnyardgrass	75	90	60	80	10	90	90	70	80	90	90	95	75	95	
20	Ducksalad	95	95	90	90	70	100	80	95	90	80	85	85	30	90	
	Rice	95	85	70	75	0	90	75	80	90	80		85	50	90	
	Sødge, Umbrella	 	95	90	25	70	90	80	(Mer	85	80	90	95	70	90	
	Table C						(ompo	unds	ğ .						
	500 g ai/ha	17	1.8	20	21	27	28	29	31	34	43	45	47	49	51	
25	Flooded Paddy															
	Barnyardgrass	80	85	15	70	85	60	85	75	65	50	80	40	80	75	
	Ducksalad	85	70	25	65	80	70	85	60	7.5	70	60	80	80	85	
	Rice	80	80	30	45	80	35	80	50	55	20	65	50	90	50	
	Sedge, Umbrella	85	85	80	50	80	25	90	55	90	80	80	80	80	80	
30	Table C						Q	(កពរព្ធព	unds	\$						
	500 g ai/ha	55	58	58	62	83	64	65	67	75	76	79	80	81	88	
	Flooded Paddy															
	Barnyardgrass	75	80	85	55	50	35	60	25	70	90	80	€0	30	45	
	Ducksalad	80	75	60	90	85	40	85	40	70	80	55	40	20	75	
35	Rice	60	35	75	65	50	25	30	30	24.1	90	30	40	4.0	45	
	Sedge, Umbrella	80	90	65	85	90	75	80	75		90	85	311	នព	8.0	

	Table C							lompo	yunds	le .						
	500 g ai/ha	95	98	101	102	1,06	108	112	115	117	118	122	126	127	128	
	Flooded Paddy															
	Barnyardgrass	60	80	50	70	0	70	30	75	50	50	80	25	55	65	
5	Ducksalad	90	90	75	90	0	90	100	90	60	50	80	30	80	95	
	Rice	65	75	25	80	20	50	30	75	65	50	50	0	25	70	
	Sedge, Umbrella	95	95	90	80	80	80	50	95	80	50	80	50	8.5	95	
	Table C							Comp	ounds	i, c						
	500 g ai/ha	131	134	136	138	139	140	141	142	144	146	152	155	158	159	
10	Flooded Paddy															
	Barnyardgrass	30	50	80	30	65	15	10	90	60	20	85	65	35	80	
	Ducksalad	80	90	90	70	90	20	Q	100	80	20	85	90	50	100	
	Rice	1.0	60	70	40	60	0	0	70	30	20	80	35	60	90	
	Sedge, Umbrella	80	85	85	95	85	65	45	90	90	90	85	75	80	80	
15	Table C						÷	Comp	oundi	3						
	500 g ai/ha	160	161	162	181	183	186	187	188	192	193	194	207	209	210	
	Flooded Paddy															
	Barnyardgrass	85	75	90	0	0	70	75	85	70	.90	35	85	80	85	
	Ducksalad	90	90	100	80	20	80	90	85	60	90	40	85	80	90	
20	Rice	95	65	75	0	Ø	65	65	7,5	70	78	45	60	65	75	
	Sedge, Umbrella	85	40	, å	85	50	85	85	85	90	85	75	90	80	90	
	Table C							ටෲයට	ound	S.						
	500 g al/ha	215	216	219	222	223	225	226	227	228	329	231	232	235	236	
	Flooded Paddy															
25	Barnyardyrass	50	30	0	95	45	90	60	O.	95	80	80	15	0	40	
	Ducksalad	80	40	Q	95	55	85	65	55	90	85	80	80	75	80	
	Rice	20	30	0	85	75	80	7.0	55	85	90	80	60	35	7.0	
	Sedge, Umbrella	90	50	20	90	85	80	70	1.5	85	80	75	85	80	55	
	Table C							Comp	രവാറി	S						
30	500 g ai/ha	241	242	243	244	245	247	252	255	256	258	259	280	263	266	
	Flooded Faddy															
	Barnyardgrass	30	95	8.5	80	70) (4.5	35	0	45	(· · · · · · · · · · · · · · · · · · ·	35	0		
	Ducksalad	15	95	90	99	75	5 8(80	40	65	90	75				
	Rice	65	90	9(7.5	73	3 7.	5 60	50	15	70	Š	15	25		
35	Sedge, Umbrella	85	85	86) S:	7 (7.5	7.	3 45	60	80	7.0	85	50	80	

	Table C						· (c	Compo	unds	į:					
	500 g ai/ha	268	269	272	273	274	276	278	281	283	285	286	287	290	293
	Flooded Paddy														
	Barnyardgrass	95	90	30	70	õ0	70	25	85	10	75	80	25	40	80
5	Ducksalad	90	85	85	75	20	85	20	85	Õ	90	90	45	70	95
	Rice	90	80	20	60	45	70	30	50	Q	65	75	55	4.5	80
	Sedge, Umbrella	95	85	75	75	75	85	75	90	0	65	90	75	70	90
	Table C							Compo	nunds	· ·					
	500 g ai/ha	294	295	296	298	299		301			364	305	306	307	308
10	Flooded Paddy	- in a lai			المالك فيسا	12.00		100 (0.0							
	Earnyardgrass	100	40	65	90	95	95	95	35	95	95	100	70	95	65
	Ducksalad	95	30	70	90	95	90	95	85	85	95	0	90	90	7.5
	Rice	90	40	60	75	85	75	85	55	85	75	85	70	80	76
	Sedge, Umbrella	90	80	85	80	95	90	95	85	90	95	90	90	85	80
15	Table C						. 4	Compr	ುಬಗಡು	5					
***	500 g ai/ha	309	310	319	331	333		334			340	341	342	343	344
	Flooded Paddy	7,77	or et al.		17 17										
	Barnyardgrass	90	90	65	65	50	30	95	65	80	70	60	60	80	Ö
	Ducksalad	90	90	85	85	95	25	90	70	90	90	60	80	90	45
20	Rice	75	80	70	65	70	20	85	55	75	80	70	80	80	15
	Sedge, Umbrella	80	85	80	65	85	80	95	95	90	90	60	80	90	85
	Table C		9	Comp	ound	8									
	500 g ai/ha	349	352	353	357	358	359								
	Flooded Paddy														
25	Barnyardgrass	95	90	20	55	85	75								
	Ducksalad	95	95	30	95	95	90								
	Rice	70	70	40	70	85	80								
	Sedge, Umbrella	95	95	50	95	85	95								
	Table C							Comp	ound	S					
30	250 g ai/ha	1.	2	3	Ą	5	ક	7	9	10	1.1	. 13	14	15	16
	Flooded Paddy														
	Barnyardgrass	65	75	20	65	0.	90	75	65	70	70	80	90	25	90
	Ducksalad	95	85	80	90	50	90	80	95	90	80	75	80	20	85
	Rice	75	63	1.0	65	Ø	80	65	60	70	80	65	75	25	80
35	Sedge, Umbrella	بعور	85	80	85	60	90	80	نېدن .	75	70	80	90	55	90

						15 To No.										
	Wable C						٥	රුණුර	unds							
	250 g ai/ha	17	18	20	21	27	28	29	31	34	43	45	47	49	51	
	Flooded Paddy															
	Barnyardgrass	75	65	0	15	60	35	60	70	45	40	60	40	70	20	
5	Ducksalad	80	65	20	40	80	40	75	40	25	60	60	80	80	75	
	Rice	30	50	0	30	65	0	60	40	50	20	35	20	70	15	
	Sedge, Umbrella	80	80	50	30	80	20	60	40	80	70	80	80	80	65	
	Table C						<u>6</u>	ogpo	unds	(
	250 g ai/ha	55	56	58	62	63	64	65	67	75	76	79	80	81	88	
10	Flooded Paddy															
	Barnyardgrass	25	65	35	30	20	0	30	10	65	80	25	40	0	15	
	Ducksalad	55	70	20	90	70	25	75	40	55	75	15	20	20	40	
	Rice	15	25	35	45	15	Ü	25	Q	55	85	20	40	30	20	
	Sedge, Umbrella	75	90	50	80	80	35	75	75	80	85	80	70	80	80	
15	Table C						Č	lompo	nunds	\$						
	250 g ai/ha	95	96	101	102	106	108	112	115	117	118	122	126	127	128	
	Flooded Paddy															
	Barmyardgrass	55	70	30	50	0	60	10	65	50	50	60	20	30	60	
	Ducksalad	75	75	40	90	Ü	30	Q	85	Ü	50	80	25	20	35	
20	Rice	55	70	0	40	0	30	10	75	45	40	10	0	25	70	
	Sedge, Umbrella	95	90	80	70	30	80	25	90	75	50	70	20	80	95	
	Table C						(Compo	วนสติ	共						
	250 g ai/ha	131	134	136	1.38	139	140	141	142	144	146	152	1.55	159	159	
	Flooded Paddy															
25	Barnyardgrass	10	50		1.5		0	0	80		Ü		50	1.5	70	
	Ducksaled	45	90	45	55	85	Ü	0	95						90	
	Rice	0	55	50	5	45	0	0	70				0	35	80	
	Sedge, Umbrella	70	85	85	75	85	45	30	80	80	90	85	65	70	60	
	Table C						Ĵ	Comp	ound	S						
30	250 g ai/ha	160	161	1.63	181	183	186	187	188	192	193	194	207	309	210	
	Flooded Paddy															
	Barnyardgrass	7.0	30	75	0	0	45	60	75	0	85	0	75	70	85	
	Ducksalad	90	80	95	0	10	65	85	75	25	90	0	80	55	85	
	Rice	75	50	70	Ŏ	0	ଞ୍ଚ	50	65	45	76	25	50	4.5		
35	Sedge, Umbrella	80	25	75	80	10	80	80	80	85	80	35	75	65	85	

	Table C						É	omp(unds	Ś					
	250 g ai/ha	215	216	219	222	223	225	336	227	338	229	231	233	235	236
	Flooded Paddy														
	Barnyardgrass	40	Ö	0	90	Q	80	50	Ö.	95	75	75	0	0	15
5	Ducksalad	60	30	0.	85	25	85	40	0	90	80	70	30	0	55
	Rice	0	0	0	85	45	75	45	25	80	80	75	35	25	60
	Sedge, Umbrella	70	30	0	85	65	75	40	ŋ	80	80	65	55	55	45
	Table C				1000		(ogmo!	oundi	3					
	250 g ai/ha	241	242	243	244	245	247	252	255	256	258	259	260	263	266
10	Flooded Faddy														
	Barnyardgrass	0	90	75	75	45	0	15	25	0	15	0	20	6	50
	Ducksalad	Q	95	90	85	75	0	15	35	15	70	65	75	75	75
	Rice	30	90	80	75	70	30	55	45	0	5	Ø	0	Ũ	55
	Sedge, Umbrella	55	85	80	70	70	15	50	35	60	70	55	65	30	55
15	Table C						į.	Comp	ound	\$					
	250 g si/ha	268	269	272	273	274	276	278	281	283	285	286	287	390	293
	Flooded Paddy														
	Barnyardgrass	95	75	3.6	69	30	50	0	30	0	55	70	Q	25	70
	Ducksalad	85	80	40	75	0	70	.0	70	Ø	90	90	40	45	80
20	Rice	90	75	15	50	15	50	15	15	0	45	65	25	15	65
	Sedge, Umbrella	80	80	75	75	70	80	6 5	40	0	50	90	70	65	80
	Table C						-3	Comp	ound	8					
	250 g ai/ha	294	295	296	298	299	300	301	302	303	304	305	306	307	308
	Flooded Paddy			***											
25	Barnyardgrass	95	25	50	65	95	90	90	10	80	85	95	55	80	25
	Ducksalad	95	25	40	80	95	85	90	30	80	95	ũ	80	90	15
	Rice	85	40	40	65	80	70	75	0	80	70	85	55	65	ნ3
	Sedge, Umbrella	90	80	75	70	95	85	90	75	85	95	90	90	30	70
	Table C						4	Comp	ound	s					
30	250 g ai/ba	309	310	31.9	331	332	333	334	335	335	340	341	342	343	344
	Flooded Paddy														
	Barnyarðgrass	85	70	50	40	50	10	95	40	60	60	50	50	60	0
	Ducksalad	90	80	45	65	95	0	85	50	75	70	50	80	90	20
	Rice	75	70	35	50	45	15	80	55	75	70	60	60	70	.0
35	Sedge, Umbrella	80	85	70	25	85	30	90	90	85	70	60	70	80	75

	Table C		1	Comp	ounds	3									
	250 g ai/ha	349	352	353	357	358	359								
	Flooded Paddy														
	Barnyardgrass	90	65	20	30	75	75								
5	Ducksalad	85	85	3.0	45	90	85								
1.44	Rice	60	60	20	45	70	65								
	Sedge, ümbrella	90	90	50	90	85	90								
	Table C						C	ORDC	ounds	\$					
	125 g si/ha	1	2	3	4	5	٤	7	9	10	11	13	14	15	16
10	Flooded Paddy			.:											
	Barnyardgrass	60	75	0	50	0	90	50	50	65	20	55	80	0	80
	Ducksalad	90	80	65	75	15	90	60	95	90	80	35	75	Q	80
	Rice	70	50	5	50	Q	80	55	55	60	40	50	70	0	75
	Sedge, Umbrella	80	75	65	75	1.5	90	80	, vi	70	60	75	80	10	85
15	Table C						C	ompo	ounds	ŝ					
~~	125 g ai/ha	17	18	20	21.	27	28	29	31	34	43	45	47	48	49
	Finoded Paddy														
	Barnyardgrass	65	20	Ö	Ŏ	35	ù	25	30	35	0	30	0	0	60
	Ducksalad	80	40	10	40	60	ņ	45	20	25	0	0	70	40	50
20	Rica	70	40	. 0	0	20	0	25	10	0	0	30	20	20	25
	Sedge, Umbralla	45	60	15	25	70	15	60	35	8.0	50	\$0	70	\$0	45
	Table C						i C	ompe	aunds	ġ.					
	125 g ai/ha	51	55	5.6	5,8	62	63	64	65	67	75	7.6	79	80	81
	Flooded Feddy														
25	Barnyardgrass	0	0	20	10	10	0	0	Ü	Ũ	25	70	28	20	0
	Ducksalad	55	Q	55	15	35	50	10	45	3.0	30	50	0	20	0
	Rice	Q	0	15	35	35	0	Ø	Ű	0	25	80	20	40	30
	Sedge, Umbrella	50	20	85	20	60	70	25	20	50	75	88	75	70	70
	Table C						Ç	ිකත	ound:	S\$					
30	125 g ai/ha	88	95	96	101	102	106	108	112	115	117	118	1.22	126	127
	Flooded Paddy														
	Barnyardgrass	0	45	45	2.0	50	0	40	Ü	45	20	20	50	. 0	30
	Ducksalad	15		45	0	80	Û	70	0	75	ğ	50	80	10	15
	Rice	G	10	45	Ü	30	0	0	0	65	15	30	10	Ü	25
35	Sedge, Umbreila	5.0	90	9.0	79	70	i i	80	0	85	55	50	60	2.0	80

	Table C						(Compo	nınds	:						
	125 g ai/ha	128	131	134	136	138	139	140	141	142	144	146	147	152	155	
	Flooded Paddy															
	Barnyarógrass	35	0	25	25	Q	40	0	Ů.	65	20	0	ß	75	25	
5	Ducksalad	95	20	70	0	20	70	0.	D.	90	50	9	Ø	85	80	
	Rice	40	0	4.5	35	5	35	0	0.	70	20	0	0	75	Ö	
	Sedge, Umbrella	90	65	75	80	40	80	20	Q	80	80	80	50	80	30	
	Table C						: 3	Comp	ounds	ş ·						
	125 g ai/ha	158	159	160	161	162	181	183	186	187	188	192	193	194	207	
10	Flooded Paddy															
56.4	Barnyardgrass	0	50	60	0	65	0	G	30	25	95	0	55	0	65	
	Ducksalad	g	90	85	65	85	0	0	4.0	40	65	ő,	70	0	80	
	Rice	Q.	60	70	10	60	0	0	55	30	45	15	50	25	45	
	Sedge, Umbrella	45	40	70	Ü	-	20	0.0	80	65	75	75	75	0	75	
15	Table C						ं	Comp	ounds	\$:						
	125 g ai/ha	209	210	215	216	219	222	223	225	226	227	338	229	231	232	
	Flooded Paddy															
	Barnyardgrass	55	70	Ö	0	0	75	0	60	0	Q	85	45	45	Ø	÷
	Ducksalad	55	55	40	20	0	75	ø	75	Ö	0	85	0	60	0	
20	Rice	45	55	0	Ü	0	70	0	70	25	Ø	80	35	55	30	
	Sedge, Umbrella	55	80	40	3.0	Ó	75	0	75	10	0	80	40	55	35	
	Table C						. 9	Comp	nund	S\$.						
	125 g ai/ha	235	236	241	243	243	244	245	247	252	255	256	258	259	260	
	Flooded Paddy															
25	Barnyardgrass	0	Ü	0	73	65	70	35	0	0	1.0	Ō	0	Q	Ü	
	Ducksalad	0	40	Q	95	85	85	75	0	Q	10	0	45	60	70	
	Rice	0	30	0	85	75	70	65	0	45	0	0	0	0	Ű	
	Sedge, Umbrella	50	20	0	75	80	65	70	0	40	50	Ü	20	35	40	
	Table C							Comp	ound	S						
30	135 g ai/ha	263	266	268	269	272	273	274	276	278	281	283	285	286	287	
	Flooded Faddy															
	Barnyardgrass	0	25	90	\$5	0	40	10	15	0	20	0	25	55	Ô	
	Ducksslad	Ö	15	70	80	20	50	0	20	0	0	Ö	80	75	30	
	Rice	0	10	85	50	1.0	40	0	15	0	0	0	40	55	20	
35	Sedge, Umbrella	² 8	50	70	80	65	75	50	75	35	20	į į	35	70	3.5	į.

	Table C							ompo					na kaliffi	. 2 . 2 82	_ 4.4	, .
	125 g ai/ha	290	293	294	295	296	298	299	300	301	302	303	304	305	306	
	Flooded Paddy														* *	
	Barnyardgrass	0	30	90	15	25	50	85	50	75	ŋ	45	50		\$5	
5	Ducksalad	0	65	95	0	Ü	40	95	80	90	25	75	85	0	80	į:
	Rice	0	30	75	10	20	60	80	55	55	Û	65	60		40	ķ:
	Sedge, Umbrella	25	75	85	80	75	0	95	80	90	50	85	90	90	90) : -
	Table C						(Compr	ounds	ä						
	125 g ai/ha	307	308	309	310	313	319	331	332	333	334	335	336	340	34)	k.
10	Flooded Faddy															
	Barnyardgrass	65	Q.	60	50	0	25	10	25	Q	90	25	0	50	30)
	Ducksalad	70	Ø.	90	75	30	ប	50	90	0	85	35	55	70	5()
	Rice	60	25	70	60	20	35	15	Ó	Ö	75	25	45	40	5(3.
	Sedge, Umbrella	70	35	80	85	70	35	20	80	15	90	85	80	70	:51)
15	Table C				Co	mpov	nds									
	125 g ai/ha	342	343	344	349	352	353	357	358	359						
	Flooded Faddy															
	Barnyardgrass	20	20	Q	70	45	0	0	60	55						
	Ducksalad	50	80	0	85	65	Û	30	80	80	ed C					
20	Rice	30	50	0	55	45	0	. 0	65	45						
	Sedge, Umbrella	50	40	75	85	75	ņ	85	85	90						
	Table C							Comp	ound	E						
	62 g ai/ha	1	2	. 3	4	5					3.3	1.3	14	1 15	1	6
	Flooded Paddy															
25	Barnyanigrass	50	15	0	20	.0	50	10	35	25		25	65	0	8	Q.
	Ducksalad	90	80	15	50	15	80	20	95	8(5() 2:	5 50) 0	7	5
	Rice	65	50	Ü	25	Ç	40	1.5	50	68	1.3	5 10	2:	5 C	7	5
	Sedge, Umbrella	60		45	75	í C	7.0) 55	i e	4.5	30) 5(65	s (3	Q
	Table C							Comp	ounc	ls						
30	62 g ai/ha	17	18	20	23	. 27	2.5	3 29	33	. 34	4	3 45	š 4°	7 48	4	Ş
	Flooded Paddy															
	Barnyardgrass	50	() : () (30) (1.10) () ())) 23	3 () () 4	5
	Ducksalad	75) (} {	4:	i () () 10) 13	5	0 ()) (0 20)	0
	Rice	60		1	¥: - {) (). () (i j	<u>.</u>) , i	0 3)	0 () 1	S
35	Sedge, Umbrella	40	1.5	i ()) 5() () 20) (5) з	0 5	5 39	0 60) 4	5

	Table C						r	OMDO.	unds							
		51	55	56	58	62	63	64	65	67	75	76	79	80	81	
	62 g ai/ha Flooded Paddy	w.c.	al vil	, w. y.	C	es és	200			- ,	7,77	3.7	AA.		200	
	Barnyardgrass	0	0	0	Ö	ő	Ů.	0	0	0	0	50	10	0	0	
5	Ducksalad	0	0	3.5	0	25	0	0	15	30	0	45	0	20	Û	
3		ŭ	6	0	0	15	Q	0	0	0	0	75	20	20	20	
	Rice	45		45	0	45	0	0	0		70	80	75		70	
	Sedge, Umbrella	84.03	G	% 3	Ų:	45					,	***		\$ T	7.2	
	Table C							ompo								
	62 g ai/ha	88	95	96	101	102	106	108	112	115	117	118	122	126	127	
10	Flooded Paddy															
	Barnyardgrass	0.0	20	45	0	3.0	Ů,	30	ij.	30	10	0	20	0	20	
	Ducksalad	0	10	45	Ø	20	0	50	0	30	0	Ó.	50	0	Ö	
	Rice	Ö	1.0	40	0	50	Q	0	0	55	0	20	0	0	20	
	Sedge, Umbrella	0	85	90	20	50	0	60	0	80	40	0	50	Ó	80	
15	Table C						Č	compo	ande	š.						
	62 g si/ha	128	131	134	136	138	139	140	141	142	144	146	147	152	155	
	Flooded Faddy															
	Barnyardgrass	30	0	10	20	0	15	0	0	50	20	0	0	40	O	
	Ducksalad	80	Q	45	۵	0	0	0	0	75	20	0	Ü	85	45	
20	Rice	25	0	35	3.0	5	Q	Ö	0	70	Ø	0	0	50	0	
	Sedge, Umbrella	80	55	55	មិនិ	0	75	0	0	75	80	60	30	80	Ø	
	Table C						::€	Compa	rands	3						
	62 g si/hs	158	184	150	3.63	162	181				188	192	193	194	207	
	Flooded Paddy	www.		April 1997	W. St.	7777	777		7 - 4							
25	Barnyardgrass	Q	30	20	Ŏ.	45	0	° 6	20	Ü	35	0	30	0	45	
200	Ducksalad	0	80	75	30	70	0	0	15	20	20	.0	35	Q	55	
	Rice	0				55	0	0		15	35	ņ	25	0	30	
	Sedge, Umbrella	15		50		70		Q	80	20	30	70	75	0	70	
		-														
Sec	Table C		* .A	200	24.3	ند د د		Comp			e e e	222	ചാര	- maid	- Anna	
30	62 g ai/ha	209	210	215	216	219	353	223	382	226	227	888	- ఉభకా	234	232	
	Flooded Paddy									25		ک یہ	.07.44			
	Barnyardgrass	0											40			
	Duckselad	65					- 1									
	Rice	0														
35	Sedge, Umbrella	55	75	40	20	0	85	O	65	10	0	80	30	10	0	

	Table C						(Compo	ounds	\$					
	52 g ai/ha	235	236	241	242	243		245			255	256	258	259	260
	Flooded Paddy	ता च प	. 27. 181. 7.1.	er milet						********		. 1. 1.1			** . *.
-	The second of th	Ö	0	9	15	0	0	Ö	0	0	0	0	0	0	0
5	Ducksalad	0	ŏ	Ø	65	75	25	60	0	Q.	Ŭ	0	15	0	0
3	Rice	O	0	0	50	15	40	25	O.	Ó	Q	0	0	Ŏ	Ω
	Sedge, Umbrella	0	0	0	45	75	20	55	0	0	0	ij.	0	0	0
					47		31.0	Compo				ut.			
	Table C	nen	***	nes	0.68	ດກວ		.oo. 274			201	282	285	226	297
10	62 g ai/ha	263	266	400	823	A S	443	∡.{∞.	3.00	434	20x	200	An Activity	an eo eo	2000
333	Flooded Faddy	Ŭ	0.	65	45	0	30	0	0	Ď	0	Q	10	40	0
	Barnyardgrass Ducksalad	0:	ņ	60	55	10	20	0	0	0	0	0	45	50	. 0
	Rice	0	0	75	45	0	10	a.	Û	.0:	0	5.	25	45	0
	Sedge, Umbrella	0	0	- 55 - 55	45	30	70	0		Ů.	15	0		30	0
	Seodal Amorarra	. 12		44	72 64	20					incine.	e.	ب	. Y .Y	·
15	Table C							Comp			4 -	w 34.	22,747	18 15	<
	62 g ai/ha	290	293	294	295	296	298	399	300	301	302	303	304	305	306
	Flooded Paddy														
	Barnyardgrass	0	0	75	0	15	1.5	85	35		Ü				
	Ducksalad	0	0	90	Ö	0	35		75	85	0		65	0	50
20	Rice	ð,	0	70	5	3.0	45			50	Q.		45		30
	Sedge, Umbrella	0	20	80	80	75	0	85	80	80	15	75	75	85	85
	Table C						á	Comp	ound	ន					
	62 g ai/ha	307	308	309	310	313	319	331	332	333	334	335	336	340	341
	Flooded Paddy														
25	Barnyardgrass	30	Ø	50	35	O	Q	0	5	Ú	70	10	0	20	30
	Ducksalad	60	0	85	45	Q	. 0	, Q	20	0	75	0	45	50	20
	Rice	55	15	60	35	Q	Ð	0	Ö	0	70	25	10	20	20
	Sedge, Umbrella	40	0	80	35	30	20	Ø	55	0	80	45	25	50	30
	Table C				Co	npou	nds								
30	62 g ai/ha	342	343	344		10.00		357	358	359					
	Flooded Paddy														
	Bainyardgrass	20	30	0	45	25	0	0	0	15					
	Ducksalad	50				20		30	Ó	40					
	Rice	20				20	. 0	0	20	20					
35	Sedge, Umbrella	40	20	0	80	50	. 0	40	15	80					

WO 2004/035545

PCT/US2003/032968

							a a								
	Table C	Com	poun	ďs			elda'					ogmol			
	31 g ai/ha	48	147	313		3	សិញ្ញ	ai/h	a		3	18 14	7 33	.3	
	Flooded Paddy					Þ	lood	ed P	addy			2.			
	Sarnyardgrass	Q	O :	Q		E	larny	ardg	rass	.		Ø	0	Ö	
	Ducksalad	0	0	0		Į	ucks	alad	:			0	0	0	
	Rice	ប្	0	0		3	tice					0	0	0	
	Sedge, Umbrella	0	20	Ũ		:5	ledge	, Un	brel	la.		0	0	Ø	
	Table C						C	ogmo	unds						
	500 g ai/ha	28	31	34	46	47	50	58	82	84	85	86	96	108	112
	Postemargence														
	Bermudagrass	40	40	50		60	40	1.0	10	-	70	100	5	80	30
5	Chickweed	100		1.00	100	100	0	85	100	70	100	100	100	3.7	100
	Cocklebur	80	60	70	90	90	10	50	30	ō.	100	100	95	100	70
	Corn	60	50	70	80	ĕŬ	85	15	45	0	45	30	45	60	30
	Crabgrass, Large	60	70	50	95	90	Ü	3.0	50	50	40	40	5	100	30
	Cupgrass, Woolly		60	90	70	80	Q	20	80	Ö	85	85	50	40	70
10	Foxtail, Giant	40	40	40	70	70	Q	40	30	0	70	70	50	70	50
	Goosegrass	50	40	40	80	80	,	30	1.0	10	60	85	5	70	30
	Johnsongrass	70	30	80	90	90	0	10	1.0	O	80	30	50	90	60
	Nochie	80	70	90	100	100	10	85	70	80	90	95	90	90	80
	Lambaquarters	100	90	100	100	100	Ō	90	100	50	100	100	100	100	100
15	Morningglory	60	70	40	80	90	10	20	50	Q	80	85	50		100
	Nutsedge, Yellow	20	30	20	40	30		5	5	0	40	30	5	30	3.0
	Pigweed	100	100	100	100	100	100	85	100	100	100	100	100	100	100
	Kagweed	50	70	40	80	90	85	85	3.0	Đ	60	70	85	*	70
	Soybean	80	80	80	100	100	100	90	40	20	95	95	1.00	60	50
20	Surinam Grass	60	50	70	50	70	, ca	25	40	10	80	85	60	50	60
	Velvetleaf	80	70	70	80	90	100	60	75	Q	85	85	95	90	90
	Table C						¢	Comps	ounds	3,					
	500 g ai/ha	115	130	137	144	146	147	212	272	301	304	318	333	333	338
	Fostemergence														
25	Barley, Winter	4 <u>4</u> 4	395	30	40	÷s.	Seen!	**	35	40	45	e en	40	.000	40
	Bermudagrass	100	90	000	·~~		orgin	50	100	0,00	يټ.	80	7.0	5	5
	Blackgrass	.0 04	(Sept.)	60	40		super	÷	65	45	95		70	55	65
	Bromagrass, Downy		Sea.	40	40			~	65	40	50		65	45	45
	Camarygrass		7	40	50	·	-	190	55	Sõ	45	-	70	45	50
30	Chickweed	100	100	بخ :	100		100	700	100			8.0	100		, and

	Cocklebur	100	100	Sec.	70	20	20	70	95	"The a	Special Control	100	15	· + *	5	
	Corn	40	50	Market .	30	30	15	40	20	•• <u>•</u> •	1,000	25	5	5	10	
	Crabgrass, Large	90	90	· •	100	85	60	20	95	***		50	70	10	15	
	Cupgrass, Woolly	70	80	<u></u>	50	30	30	40	65	~ .	**	20	10	10	0	
5	Foxtail, Glant	80	3.0	in the second	70	1.0	45	60	75		-	10	20	10	1.0	
	Foxtail, Green	*(ide)	- (44)	50	60	***	,333;	****	60	65	60		70	65	50	
	Goosegrass	70	60		20	Ø	5	30	80	***	***; ·	2	60	15	10	
	Johnsongrass	100	40			0	10	35	55	, <u>44</u> ,	77	0	5	Ü	0	
	Kochia	90	85	-	85	-54	80	90	100	, n ĝ.	. **	60	100	100	90	
10	Lambsquarters	100	100	7	3.00	100	100	100	100	, -	.4.	100	100	160	75	
	Morningglory	1.00	100	**	80	0	0	70	100			Q.		10	50	
	Nutsedge, Yellow	30	0		Ō	Ü	O	20	0	(<u>1</u>	,	0	0	Ø	0	
	Oat, Wild	ينج		50	50	•	94	, sw	65	60	70		70	55	60	
	Pigweed	100	100	-	100	100	100	90	100	1	de.	1.00	95	100	80	
15	Ragweed	90	85	÷.	80	0	10	- Value	95	. Q		0	60	50	10	
	Ryegrass, Italian	[# 5 5]		60	50	· 5	•	Sec.	ថម	85	50	7	70	55	60	i.
	Soybean	90	70		90	80	70	85	95	4.0.	e e e	90	90	45	60	5
	Surinam Grass	60	50		40	20	60	50	60	***	17	1.0	3.0	10	30	
	Velvetleaf	90	85		50	40	40	70	100		'jaa	60	90	80	80	8
20	Wheat	5 \	. 4	40	30	0.66			35	40	40) (1)	35	55	45	
	Windgrass	, des	, sing.	60	70	***	4	- Ven	85	40	45	, Aven	75	88	· · · · · · · · · · · · · · · · · · ·	
	Table C	ogwol	unđ			- 2	rable	s C		į	Com	oound	3			
	500 g ai/ha	353				Ų	300 9	g aî.	/ha		33	53				
	Postemergence					;	Post	mer	gence	:						
	Barley, Winter	38	į.			4	Oat,	Wil	d		- J	60				
	Blackgrass	70	ř;				Ryeg:	rass	, Ita	lian		20				
	Bromegrass, Downy	3.5				3	Whea	t.			100	35				
	Canarygrass	20)			. 1	Wind	gras	S			10				
	Foxtail, Green	30)													
	Table C							Comp	ound:	3						
	250 g ai/ha	2	28	33	. 34	44	46	47	5.0			62	80	81	82	à
	Postemergence															
25	Barley, Winter	10	}	· ·		i i			· ~	***	.**	- 10	£ ,~			-
	Bermudagrass	31	3.0	20) 50) · · · ·	.	. ·	- 30	10		Š	100	20	į.	\$
	Blackgrass	21) ~					e 15	ej igeo	المر	.~	- 40)	q. 2-		
	Bromegrass, Downy	- 21) ÷	} v				• •	5 - 197	. 4		- 30	j			- ,
	Canarygrass	3	Ŭ		••• .;•		i		<u> </u>	·	. 4	- 40	-	ni r	-	, i

						Second Sec.									
	Chickweed	100	100	100	60	90	80	90	0	50	1.0	÷	100	100	100
	Cocklebur	80	60	40	50	70	70	70	10	20	10		100	60	5
	Com	50	40	40	50	80	80	80	85	5	0	1,440	70	40	10
	Crabgrass, Large	40	40	60	60	90	90	-44	0	15	5	ů.	90	30	Ű.
5	Cupgrass, Woolly	70	40	40	80	60	70	70	Û	30	5	19 44 19	96	5	80
	Foxtail, Giant	4.0	30	30	40	50	60	60	Ö	20	5	-	80	20	1.0
	Foxtail, Green	40	Ç.	(* 10 0)	e of the	(year)	(4) ,			-	4	50	بيث	-	ⁿ der
	Goosegrass	50	50	40	40	50	50	60	90	1.0	5	eș,	80	1.0	10
	Johnsongrass	48	50	30	70	40		90	O	5	0		90	5	5
10	Rochia	100	80	70	90	90	100	100	10	80	20	, 4 ,	100	70	50
	Lambsquarters	100	90	90	100	90	100	100	0	90	70		100	5	80
	Morningglory	40	40	80	10	80	60	70	0	10	10	3 5* *	90	10	50
	Nutsedge, Yellow	3.0	20	3.0	Õ	20	20	30	-	5	0	(444)	40	0	5
	Oar, Wild	20	3.00	Jánas L	÷.	7	-		***	: 	de d	50	**	 	(America)
15	Pigweed	100	100	100	100	100	100	100	100	70	60	,	100	40	100
	Ragweed	60	40	40	40	90	80	80	85	5	5	See.	70	60	10
	Ryegrass, Italian	2.0	Sp ec s	Quest.		i engi	بقي	***	.944	sij.	0.460	40		1995	, (pe s)
	Soybean	90	80	70	8.0	100	100	100	100	80	50	, + -	1.00	30	40
	Surinam Grass	50	60	50	50	40	50	60	50	-	ă	.بغار	80	80	30
20	Velvetleaf	70	70	70	70	**	80	80	100	35	30	**************************************	100	60	70
	Wheat	30	*sa.	*/Seeds*	insi-	: 4		-	÷.	To September 1	. .	10	•••		, de
	Windgrass	30	i in		•••	*	, 14.44	, Jee,	, ',	(49-1	year.	50		. ***	<u></u>
	Table C							Сопр	sunds	1					
	250 g ai/ha	8.4	85	85	96	108	112	114	115	130	137	139	144	146	147
25	Postemergence														
	Barley, Winter	. 94.	1,000	, an	<u>~</u>		يخ.	,444,	30.		20	, <u></u>	30		, in
	Bermudagrass	0	د معر	30	S	50	30	90	60	90	,4,	Q	, jag	0	70
	Blackgrass	ينهار		See	ų.			, <u>(44</u>)	خبر	-(+=+)	40	er egge	40	.isa	-M.
	Bromegrass, Downy	چ.	. :					بغد	<u></u>		20	ش	40		- See
30	Canarygrass	, ex		شر		. ,	ji t ura			, say	40	Ned.	40	, Spec	. 🛶
	Chickweed	70	100	100	100	. 4	100	100	100	100	:	80	100	100	90
	Cocklebur	O	100	100	90	1.00	60	30	100	96	يب.	10	7.0	10	5
	Corn	Q	35	20	35	50		4.0		45	sie:	3.0	20	10	10
	Crabgrass, Large	0	10	10	. 5	70	3.0	100	70	20	1,1,644	0	100	50	10
35	Cupgrass, Woolly	C		80	30	40	60	70	70	60	- NAT	S	50	3.0	10
~ ~	Foxtail, Giant	Q	50	50	45	·	50	1.0	60	1.5		10	50	Ü	Q
	Foxtail, Green	(See				ş » ş		v			50	<u>.</u>	60	(·	.0 je r.
	Goosegrass	8	50	80	F 5	70	30	70	7.0	60	,	5	1.0	i 0	5
	The state of the s														

						200										
	Johnsongrass	13	20	10	50	70	50	70	83	30		Q.	10	0	10	
	Kochia	10	90	95	85	90		100	90	70		50	70	20	50	
	Lambsquarters	0	50	100	95	100	100	100	100	100			100	100	100	
	Morningglory	ΰ	60	85	30	-	70		(perc)	80	المغاد	60	20	O	0	
5	Nutsedge, Yellow	0	20	10	5	30	20	10	30	0		D	0	Q	Ů.	
	Oat, Wild	544	, ici	· jug	المِينَ .	المييان	· •	,	, we	1999Y	40		50	·~·	, ce	
	Pigweed	100	100	100	100	100	100	100	100	100		80	1,00	100	100	
	Ragweed	0	40	70	80	(See	70	90	70	85		45	50	Ŏ	10	
	Ryegrass, Italian	ya.		; ;	·	- Open	-			٠.,	40		40	 .		
10	Soybean	20	80	90	100	60	50	70	80	40	نعد	35	90	30	40	
	Surinam Grass	Ü	80	70	40	40	40	20	60	30	4	Ü	40	Ŋ.	30	
	Velvetleaf	0	80	80	70	80	80	80	90	40		50	50	40	en e	
	Wheat	ing-	e nase ^e		/ La		i Light		4	a testa ti	30		30	- 100 - 100	, iii.	
	Windgrass		1	 .	- 1-	***		÷.	4	9 40	50		60	.4.	·**	
15	Table C						Con	npour	าสร							
	250 g ai/ha	212	268	272	295	296		11 11 11		220	322	334	220	चंद्र इ.स.च		
	Fostemergence		ed as a						W + W	~~~	-4.M.M.	A 54 35	450	ing and		
	Barley, Winter	,w.	30	3.5	35	45	30	35	950	40	55	30	35	20		
	Sermidagrass	10	77,75 985	100	0				.505	50			0			
20	Blackgrass		60	45	65	75	90	70	7997	100	50	95	50	60		
. '	Bromegrass, Downy	.**(40	60	45	45	40	40	÷.	5.0	45	45	40	39		
	Canarygrass		50	40	35	55	50	45	,2.	60	40	45	40	10		
	Chickweed	80		100	100				10	100			1989	Section 2		
	Cocklebur	70	4	50	1.0	7 Y	نيد	veg.	10	10	80	· +	5	na-		
25	Corn	40	. 	15	15		ر ښه	1446	10	5	5	,000,	10	, sas,		
	Crabgrass, Large	20	- 4	80	35	5000	, w.	 .	30	50	5	1990	15	(4.44)		
	Cupgrass, Woolly	30	, was	60	15	,,	i _j esser	بيقي	10	1.0	5		Ď	· ·		
	Foxtail, Giant	50	بينور	60	40	, e, e (e) .	, i	1,000	5	15	10	: <u>4</u> .	10			
	Foxtail, Green	· ·	50	45	60	60	60	50		50	50	45	40	20		
30	Goosegrass	25	- Sept.	75	50	jan.			5	15	10	,	10	ů.		
	Johnsongrass	35		45	5	production (, wije	-00	0	5	0	. 5	Q			
	Kochia	90	14 1	1.00	90	ر نمون	, (See	60	95	100		90	Same of		
	Lambaquartera	90	100	100	50	şav.	; ida	. ~~ ;	100	100	80	-	75			
	Morningglory	70		100	30	,cent	المها	- Section 1	0	80	10	, . , .	40	بمجان		
35	Nutsedge, Yellow	20		Ũ.	5	**	(m)	***	0	G	0	المشور	Q	· 		
	Oat, Wild	<u> </u>	65	55	50	60	75	60		70	60	95	50	40		
	Pigweed	70	٠	100	95		; inc.		100	95	100	- 18	80	-		
	Ragweed	80		80	40	har			Ü	40	50	ريغي	5			

	Ryegrass, Italian	ممقراء	40	48	65	65	45	50	i. a	70	50	45	50	15	
	Soybean	70	-	85	55	<u> </u>	. <u>.</u> .								
	Surinam Grass	20		35	15	عبر		بني ب	0	10	5		0	:4.	
	Velvetleaf	50	· '>=.	100	70	, 'See			40	85	50		40		
5	Wheat		28	35	45	40	59	40		35	50	75		30	
	Windgrass	٠	1.00	· .	65	65	35	40	·	65	50	75	1 11	10	
	Table C							Сощр	ound	.					
	135 g ai/ha	27	28	31	33	34					50	58	50	62	80
	Postemergence														
10	Barley, Winter	10		্ল			- Çer	e see					1977	1.0	
	Bermidagrass	30	1.0	20	30	40	20	90	100		30		0		100
	21ackgrass	20	(sec	الشاد		, pro-	-	(jeste)	·	,	يدا .		4	40	
	Bromegrass, Downy	20		, sec.		- 4	- 54				القور	,		20	, 60 1 (44)
	Canarygrass	30	1,000	275	-	4	. '599	. نېد		***	رفعار	المنا	رغض	30	es.
15	Chickweed	100	100	30	100	50	90	90	70	90	0	20	1.0		100
	Cocklebur	70	60	40	70	20	70	70	70	70	10	20	10	i de	90
	Corn	40	40	40	40	30	40	70	80	70	80	5	0	-	70
	Crabgrass, Large	30	30	60	50	40	40	90	90	· ·	Q	5	0	News.	4
	Cupgrass, Woolly	60	30	30	60	60	60	60	60	60	0		2	Owen,	90
20	Foxtail, Giant	40	20	30	30	40	40	30	60	60	0	Ş	5	المجار	80
	Foxtail, Green	40	şa.	34 -	***			,	ese.	· ·				50	
	Goosegrass	30	30	30	40	40	50	40	50	60	30	5	- 6	144	80
	Johnsongrass	40	60	20	90	70	70	30	60	30	0	0	Ó		90
	Kochia	60	40	70	90	90	90	90	**	100	10	80	20		100
25	Lambaquarters	80	70	80	90	8.0	90	90	100	100	0	70	30	Gen	100
	Morningglory	40	0	50	30	10	40	50	60	50	0	10	10	1144	90
	Nutsedge, Yellow	20	0	0	10	0	Q	20	20	20		ă	o		40
	Oet, Wild	30	lan.		***		Seg		· V-4			ين پيمان	5 ,	40	***
	Pigweed	100	90	90	100	100	100	100	100	100	100	60	4.0	.,	1.00
30	Ragweed	50	40	40	70	30	50	50	70	80	85	5	5	j es e.	70
	Rysgrass, Italian	10	بيد		÷	-	- Section 1	eger"	(mar)	(see		, week,	işe.	20	e Angelo
	Soybean	80	80	50	90	80	90	100	100	-	100	75	40	, where	90
	Surinam Grass	30	20	40	50	30	60	40	40	30	50		5	j ės .	80
	Velvetleaf	80	60	60	SC.	70	80	89	80	80	100	10	20	us)	100
35	Wheat	20	.000	jana.	÷	ide.	***	, general) Salar	1000		wis.	ing.	10	
	Windgrass	30			-		(666)	æ.	Species.	77	-	, special		40	<u>.</u>

	Table C						C	campo	ninds	(
	125 g ai/ha	81	82	84	85	86	96	108	112	114	115	130	137	139	144	
	Postemergence															
	Barley, Winter		•	***	***	,	يغير		***		<u>.</u>	٦	20	: we	20	
5	Bermudagrass	0	0		65		0	30	Ü	90	60	85	;	0	0	
	Blackgrass	(144)	· Jees	***	ļ	. 🌣	· Ne	á.			بعد		40		30	
	Bromegrass, Downy		. 	(six-	77	200		; 46 -7		. 🛶	•••	···	20	-Sec.	40	
	Canarygrass	- <u> 15</u>	-	, mij	÷	-	· Section 1	44	بنهار			رنيد.	30	; Since	40	
	Chickweed	95	95	50	100	100	100	, 150 ,	1.0		100	100	in.	70	100	
10	Cocklebur	55	3	0	80	95	10	80	30	30	90	30	jū.	10	40	
	Corn	40	1.0	0	30	20	30	50	20	30	40	45	معار	10	20	
	Crabgrass, Large	10	0	0	5	, je	0	70	10	100	70		2	Û	10	j
	Cupgrass, Woolly	5	60	0	50	70	30	40	30	70	70	50	بندر	0	30	ē
	Foxtail, Giann	10	0	0	20	20	20	50	50	- Sanigi	40	10	- 4	0	10	f
15	Poxtail, Green	i.e.	e inserti	4.	, we	- , 🕰		- 4	ميد -		- 4	بند .	50	4	60	ŀ
	Goosegrass	5	1.0	Q	40	60	5	40	20	60	60	20		Q	5	ľ
	Johnsongrass	Ü	0	0	10	i i je	50	50	20	70	50	10	ű	0	Û	ĺ
	Rochia	20	40	Ù	60	85	80	80	20	80	90	30	-4 -	50	ნ5	
	Lambaquarters	5	50	0	30.	100	80	100	20	90	100	100		1995	100	(÷
20	Morningglory	10	10	0	40	75	5	80	20	30	80	40	. <u> </u>	50		}
	Nutsedge, Yellow	0	5	0	20	5	0	30	Q	0	10	Q		Û	Û	į
	Oat, Wild				- Sept.	, medit	. 54 °	. Jun			77 7144		40	*	50	ļ
	Pigweed	10	100	100	100	100	3,00	100	60	100	100	100	y Sas	65	100	5
	Ragweed	80	0	0	10	6.3	50	1000	Ü	80	70	40		45	Ü	1
25	Ryegrass, Italian	÷.	,,	·	- 540	***	, seed		g . Jawa			غر ل	40		30):
	Soybean	30	30	Q	60	70	100	60	0	70	70	40		30	85	,
	Surinam Grass	50	10	0	30	60	40	40	40	10	40	10	, <u>j</u>	0		1
	Velvetleaf	55	10	3	75	60	70	60	0	70	90	30		50	20	j
	Wheat	1, 646	j.		•••		**		or San			i gas	30		30):
30	Windgrass		<u>, p</u>	, we	<u> </u>		-					6 14	50	K: ~	60)
	Table C							Comp	ound	8						
	125 g ai/ba	146	147	212	268	272	295	296	301	304	318	332	333	334	338	3
	Postemergence															
	Barley, Winter	بنيا		ني	15	35	35	40	30	35		35	4.5	3.0	3.)
35	Bermudagrass	وهوان	('aa,	0	, (ree	80	, Q	ja -	· -	ند د	er s e	1.0), i) · ·		į
. *	Blackgrass	· 100	157		45	4.5	65	6.5	75	50	(₁),	76	4.5	95	43	5
	Bromegrass, Downy	-		-	30	55	45	35	40	40	(s	. 40) 4	- 35	3	5
	Canarygrass	ú.	. <u>.</u>	·~	3.0	3.5	35	40) 45	40	pri des	45	3.5	35	3	9

			. v													
	Chickweed	80	30	80	1	100	100	- 😴	-	94.c	0	100		Sai.		
	Cocklebur	5	5	60	2 <u>4</u>	60	5	4.0	- 4	***	5	10	.5		O	
	Corn	5	5	35	: jiv	15	10	·	•		10	Ü	5	. **	0	
	Crabgrass, Darge	Q	0	10	*****	80	30	.÷	-	77	0	**	5	· · · · · · · · · · · · · · · · · · ·	5	
5	Cupgrass, Woolly	10	0	5		40	15	-	· -	<u></u>	Û	5	0		0	
	Foxtail, Giant	0	O	30	1	45	35	jew	(,440)	***	õ	10	5	-	5	
	Foxtail, Green	364- 107	operation of the second	() (200g) (1,2)	45	40	50	50	45	45		40	40	35	40	
	Goosegrass	0	0	10	رخت	65	20	يغني	succ	, sec.	.0	15	10	-	5	
	Johnsengrass	0	(30	· 🛶	40	\$		***	***	0	5	0	. ***	Ű	
10	Rochia	ijes,	10	80	77	1.00	85		1		10	90	100		60	
	Lambsquarters	80	100	90	. 4.	100	5	(100)	isses;	yes.	70	65	80	~	5	
	Morningglory	0	0	10	ينفن	100	10	المحاد	-44	***	Ø	10	O	بك.	Ü	
	Mutsedge, Yellow	Ü	Ø	10	jigh	Đ,	5	See		344	Û	0	Q	*	Q	
	Oat, Wild	· ·			35	45	50	60	65	60	(week)	65	60	75	4.5	
15	Pigweed	90	90	. 2.	jelen	100	-	;sec		Seed.	100	90	100	·	5	
	Ragweed	0	0	50	Open,	65	30	- Service	, rate((max)	0	30	30	in the second	5	
	Ryegrass, Italian	e e e	104		30	45	40	45	45	50		80	35	35	30	
	Soybean	20	35	60	jak.	80	50		, was		7.0	50	30	Owek .	30	
	Surinam Grass	-Q	0	5	· · ·	1.0	5	44	1,000	(Seed)	0	5	Š	upw 2	Ů.	
20	Velvetleaf	35	30		1994	95	65	art.			35	60	50	Supply .	Ü	
	Wheat	4	(444)	(com	Ü	35	45	35	45	40	,oc	30	50	75	25	
	Windgrass	, ion	Section	Sec. 1	60	70	60	50	35	35	. 1000	60	23	60	1.5	
	Table C C	ompor.	រោធិ			T	able	c			Comp	ound				
	125 g ai/ha	353				1.	25 g	ai/1	a.		35	3				
	Postemergence					90	erter	nerge	ence							
	Barley, Winter	1.5				Oa	at, D	aild			(3)	Q				
	Blackgrass	20				N	/egra	iss,	Ital	lian	1	8				
	Bromegrass, Downy	20					eat				1.					
	Canarygrass	10				Wi	ndgi	េឧឧឧ			1.					
	Foxtail, Green	20														
	Table C						C	orga	unds							
	62 g ai/ha	27	28	31	33	34	35	44	46	47	50	58	60	62	80	
25	Postemergence															
	Barley, Winter	10	·	says)	<u></u>				1,000	'see'	, aire		÷	10		
	Bermudagrass	30	10	10	20	10	0	, exec.	,	60	Ó	0	ø	, <u>1</u>	<u>*</u>	
	Blackgrass	10		50 (2		ş ü r	Psec	Seed (()-4 -)	186	**	,		40		
	Bromegrass, Downy	10	ing	4	·	<u>.</u>	:~~;	jav.	- j= 1	, and	~	5. <u>9.</u>	- 32	20	open 1	

	Canarygrass	20		; ;	i .	ا فیراد از	***	#\$\.	, see	المدا	-	.24,	. + 💠 - 1	Q.	
	Chickweed	70	90	90	90	No.	80	90	70	90	0	30	5		100
	Cocklebur	50	40	40	50	20	60	50	60	50	10	15	10	1,40	90
	Corn	30	20	40	40	30	30	70	80	70	20	ũ	Ø	, in the second	70
5	Crabgrass, Large	20	30	50	(44)	20	40	60	, sy	90	0	5	0	Same .	90
	Cupgrass, Woolly	60	30	30	60	40	40	50	40	60	0	5	0	, *** <u>*</u> *)	80
	Foxtail, Giant	20	20	20	30	20	40	30	40	60	0	0	0	-	70
	Foxtail, Green	30	,	beel	364	· ·	in.	*	E.	أميدر	19 4- 1	;- i -	44	40	
	Goosegrass	30	20	30	40	30	40	40	40	50	30	0	0		80
10	Johnsongrass	40	20	20	90	70	70	3.0	60	3.0	0	0	0		86
	Kochia	60	40	70	90	80	90	90	90	100	6	75	7.0	- : - :	100
	Lambsquarters	70	70	80	90	02	90	90	80	90	0	60	10	, see).	90
	Morningglory	40	0	50	20	10	20	50	60	50	0	10	10	-	90
	Nutsedge, Yellow	20	3	ğ	Ü.	0	0	20	20	20		0	0	-	40
15	Oat, Wild	20		, ² -,	500	.,	34.5°	o. Guin		i.e.	~ F50	(A. 4.4.4.))***)	30	720
	Figweed	90	90	30	100	100	100	100	100	100	50	60	40	vec	100
	Ragweed	30	30	30	60	20	50	50	70	70	80	0	Q	44.	70
	Ryegrass, Italian	10		e Sa na ri	**	-4	S		• 4	iles.	- 	ii.	, 4	20	eget.
	Soybean	80	70	30	80	70	90	100	100	100	100	15	20	\	90
20	Surinam Grass	20		30	50	30	40	40	40	30	10	-	. 5	4.4	80
	Velvetlesf	60	50	50	90	20	30	60	50	80	100	10	20	**	100
	Wheat	10		, sie	1+1	ja		, see	1	شې .		*	'cap'	10	**
	Windgrass	20	· · · · · · · · · · · · · · · · · · ·	•••	, 	. I we	•	Ť	isse.	, in	Sec.	in the second	a fin	30	· ·
	Table C							ට් පැහැ	ound	S.					
25	62 g ai/ha	81	82	84	85	86					115	137	139	144	146
	Postemergence														
	Barley, Winter	(And)	Š.		-ابياد		·	e san	. <u>.</u>	بغب	e s	10	<u>.</u>	0	
	Bermidagrass	Q		, iii	0			30	Ö	60	10		Q	Ü	
	Blackgrass	.544.		Spec						يىنى		40	بغب	30	1960
30	Bromegrass, Downy	; 	(see		4	es.				, gad		10	. 544	20	·
Sec.	Canarygrass	in.		-	. sec	i.	معر ان			<u></u>		5.0	: (SW)	40	
	Chickweed	95	70	O	100	100	100			100	100		O	100	10
	Cocklebur	55							Ü	3.0	90	- Out	5	1.0	
	Corn	40	4.70							30	40		ŭ	1,0	5
35	Crabgrass, Large	5									60		0	Q	Q.
JU	Cupgrass, Woolly	5													10
	Foxtail, Glant	10											0	Q	
	Foxtail, Green	30.00						e Ter S		د. غد د	' پني	30		40	· -
	Trivingical incases														

	Goosegrass	0	9	0	35	50	5	20	20	60	40	Since .	Ü	5	υ
	Johnsongrass	.0	0	0	10	10	0	20	20	70	30		0	0	Û
	Kochia	0	10	O.	30	80	80	60	0	80	80	•	50	(Sept. 1	5
	Lambsquarters	5	30	0	10	100	60	7.0	20	90	100	4.	-	1.00	40
3	Morningglory	10	1.0	Û	10	10	0	30	Q	10	50	ow, ∙	0	0	0
	Nutsedge, Yellow	0	O,	Q	10	0	0	20	0	Ö	0		0	Ω	Ũ
	Oat, Wild	900	344	7		(Jeen)	-	ر المحادث	.,	æ.,	- Apple	20	ls. ,440,	30	, we
	Pigweed	5	85	1.00	100	100	70	60	1.0	100	100	- 	50	100	80
	Ragweed	40	Ø	0	1.0	10	50	العبار	0	60	70		0	0	Ö
10	Ryegrass, Italian	desc)	, 			-	***	***	·77		-	20	.4,	20	-
	Soybean	10	20	0	55	45	100	50	0	70	60	4	20	70	30
	Surinam Grass	50	3.0	٥	25	10	0	20	30	1,0	30	77	0	0	0
	Velvetleaf	55	5	Q	60	40	40	40	0	60	60		30	0	30
	Wheat	1		-	.44		-	***	*	. 	· · · · · · · · · · · · · · · · · · ·	30		30	(me)
15	Windgrass	+		, <u>1866</u> ,	, dec	≈ ÷	, sign	. 444	1,46	, , , ,	بعد	30	e de la compansión de l	50	÷
	Table C						্ব	ට්පඟපුර	ands	3					
	62 g ai/ha	147	212	268	272	295	296	301	304	318	332	333	334	338	353
	Postemergence														
	Barley, Winter	· Vere	Chipmen's	įΩ	35	35	3.5	30	35	1 500	35	40	30	20	5
20	Bermudagrass	,500,7	Û	-	50	0	ين.	**	**	, ju	5	Ø	-	O.	- (4
	Blackgrass	<u>.</u>	in the second	30	35	45	60	55	60		60	30	90	40	0
	Bromegrass, Downy	Super.		10	30	45	35	40	40	**	35	40	30	30	10
	Canarygrass	No.	, (projet	10	35	30	30	33	40		35	35	25	20	ð
	Chickweed	5	60	15ec	95	100	. News	·w.	1995	0	60	غبر	,560,	#	2,54
25	Cocklebur	0	10	. 4	1.5	5	on.	, F	,1940.	Ø			: vec	Ü	'www'
	Com	Û	15	(مغیر	10	5	needs	, <u></u>	;	0	3			0	1000
	Crabgrass, Large	Q	Ŋ	· · ·	40	-	· Owe	. : •••	- ,	0	30	D	, de		e signif
	Cupgrass, Woolly	0	5		25				 .	Ð					(Asset)
	Foxtail, Giant	Ø	10		15			Awy.	***	0				5	3
30	Poxtail, Green	Şen.	1000	40	35			40	40		47 17				15
	Goosegrass	Û	10	-	20			5 .	**	Q					
	Johnsongrass	Q.	0	بغد	1.0	5		, in	, and	0			*		. ***
	Kochia	5	80		25	80		Sing.	cav	0	80	1.50			ş <u>i</u> e.
	Lambsquarters	90	80	بيد	100	0			%₩,	60					.000
35	Morningglory	0	10		80				÷	-01				1.00	
	Nutsedge, Yellow	0	0												* * ,
	Oat, Wild	***		· · · · · · · ·					50						10
	Pigweed	90	50	-	100	80	s) (**	1.00	85	65	: NH	0	· Š

	Ragweed	0	60	, i.e.	50	25		الرحقون	-	o i ĝ	5	5	, year	0	
	Ryegrass, Italian	See.	1989	10	30	40	35	35	50	-	60	35	30	25	10
	Soybean	10	50	(See	60	50	**	-,	.(₅₅	65	45	30	· · · · ·	10	
	Surinam Grass	O	0		5	5		naine.	المع	Q	3	5	: :	0	<u>.</u>
5	Velvetleaf	Q	Ű		85	60	***	4	, with	0	40	(***)	:***; :	0	ji.
	Wheat	, see,	-	0	30	45	35	40	35		30	40	65	25	10
	Windgrass	**	Sw	30	60	50	45	35	35	, , , ,	35	20	60	10	Q
	Table C						Com	poun	ល័ន						
	31 g ai/ha	3.4	33	35	60	62	80	81	114 3	.39	268	295	296	334	
10	Postemergence														
	Barley, Winter	Ø.	jenes .	, sec.		ð.	.44	ů.	. .	ं. . क्	()	3.5	30	20	
	Bermudagrass	20	20	-	0	. 🛶	· ** *	0	20	0	;* .	Ü.	Ç işə r	9 4 -1	
	Blackgrass	10	المعار	e(sist)	<u> 44,</u> 1	20		, east,	, 1	1.00	O	45	45	75	
	Bromegrass, Downy	1.0	444		(see (c)	10	(144)	, , ,) =		0,	45	25	20	
15	Canarygrass	10		***		Q:	***		غد	±1.	10	25	30	30	
	Chickweed	70	40	70.	5	144	90	90	80	0		85	-	. 📆	
	Cocklebur	40	·~.	20	1.0	-	70	50	30	5	, ž.,	5	de.		
	Corn	30	40	30	Ü		70	15	30	0	(ve	5		we.	
	Crabgrass, Large	30	40	0	0	i Mari	90	5	20	O	بند . ج	20	***		
20	Cupgrass, Woolly	0	50	30	0	.w.	80	5	40	0	.پ	1.0	· mi	 	
	Foxtail, Giant	30	30	10	0	T:	70	10	Q	Ŏ	:	30	, ,,		
	Foxtail, Green	30	-	pus 1		40	· ·	**	. •••	4	35	40	40	30	
	Goosegrass	3.0	40	30	0		80	0	50	0	۵	5,	in the second	1.44	
	Johnsongrass	30	70	60	Ω		80	Ü	70	0	(19 99)	0	il. Herio	- 	
25	Kochia	50	60	· Owners	5		100	0	3.0	20	÷	50	,940.		
	Lambsquarters	60	90	70	10	e e	90	0	80	,		Ü	i.e.	ų.	
	Morningglory	30	20	10	10		80	5	ð	0	, w	5	p d e	~÷.	
	Nucsedge, Yellow	20	0	0	Ů.	capt.	40	0	Q	O.	ę.	Ü	- 4.	,	
	Oat, Wild	20	'AA'	·**;		30	-mi) (************************************	البيرا	[4.44. 	30	45	35	40	
30	Pigweed	80	90	1.00	20	, see	100	Q	90	50	, ,	60	Seing.		
	Ragwead	30	.**	20	0	ميد	70	0	60	0	ببد	30	· ** *.		
	Ryegrass, Italian	1.0		, *** *,	4,4.4%	0	: ~~;	بس	.~~	3 ~	Ö	40	25	20	
	Soybean	80	80	90	30		90	5	20	20		35	. 1		
	Surinam Grass	30	50	10	0		80	50	10	0		5	منو	<u></u>	
35	Valvetleaf	50	50	50	15	. ,	100	5	30	Ö	- Sec.	60		in year	
	Wheat	10		÷.	· 📆	0	ii.	7	مينيه	النيار ده	ŋ	40	30	3.5	
	Windgrass	20	3 340	ű.		0	ow.	ű.	1 - 40 -1	خنبر	20	50	45	50	

	Table C	Compo	unds			T	able	e C			Con	pour	đs		
	16 g ai/ha	33	35			3	6 g	ai/b	ia.		3	3 3	5		
	Postemergence					2	oste	merg	ence	ŧ					
	Bermudagrass	0	O			K	ochi	.a			¢	0 2	0		
	Chickweed	30	70			I.	ambs	guax	ters		2	0 5	0		
	Cocklebur	20	20			M	lorni	nggl	ory			ß	0		
	Corn	40	30			Ž.	lutse	ıdge,	Yel	low		0	Ü		
	Crabgrass, Large		0			¥	igwe	ed			9	90 7	Q.		
	Cupgrass, Woolly	30	20			8	lagwi	eed.			ž	30 2	0.		
	Foztail, Giant	30	0			ξ	εσγοί	enti.			Ĵ	70 (i0		
	Goosegrass	30	Ü			ŝ	iurii	iam (rass	3	Š	2.0	0		
	Johnsongrass	70	50			X	/elve	etl e a	Œ		ě	10 (10		
	Table C						, (C	ogmo!	unds	•					
	500 g ai/ha	1	2	3	ő	7	9	10	11	13	1.4	16	28	30	31
	Preemergence														
	Bernudagrass	100	95	95	90	100	90	100	90	100	100	100	100	90	100
5	Cocklebur	100	80	40	100	1	200	€, Ši Šmrt.	144	30	9.0	7.5	30	20	
	Corn	80	60	35	80	80	65	60	30	75	98	80	0	i, w.	See J
	Crabgrass, Large	1.00	100	95	100	100	95	100	100	100	100	100	100	100	1.00
	Cupgrass, Woolly	65	80	70	75		30	85	70	70	100	85	20	60	60
	Fortail, Giant	80	100	100	100	100	75	100	90	100	100	100	100	90	100
10	Goosegrass	95	100	95	100	90	85	85	90	300	100	95	100	80	90
	Johnsongrass		100					100			100			90	90
	Nochia					100									
	Lambsquarters	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Morningglory	1.00	100	50	70	Ø	35	60			100		60	80	40
15	Nightshade	100	100	95	160	100	100	100	100	1.00				1.00	100
	Nutseäge, Yellow	80	. 3,		85	60	60	60		75		90			٥
	Pigweed		100			100									
	Ragweed	1.00	100	1.90	100	100	100	100	100	100	100	100	90	20	80
	Soybean	65	100	85	100	08	55	70	90	75	95	95	80	30	
20	Sunflower	35	0	0	100	0	20				100		0	30	20
	Surinam Grass		100				5.3				100				
	Velvetleaf	100	100	100	100	100	100	80	1,00	100	100	100	100	90	100

	Table C						C	ompo	umds	(· ·					
	500 g ai/ha	34	46	47	48	50	5.5	56	57	58	52	63	64	65	88
	Preemergence														
	Bermudagrass	100	100	100	95	10	100	95	100	100	95	100	90	95	95
5	Cocklebur	0	90	100	10	80	Ō	0	Q	30	Q	0	0	Ů	0
	Corn	0	10	10	Ø	10	0.0	0	.0	0	0	30	30	20	60
	Crabgnass, Large	100	100	100	90	80	100	100	100	95	1.00	100	90	100	100
	Cupgrass, Woolly	76	80	80	20	70	65	40	70	80	10	5	10	10	90
	Foxtail, Giant	100	100	90	50	10	100	100	100	100	80	80	80	60	100
10	Goosegrass	100	100	100	90	100	95	95	90	95	95	90	70	80	100
	Johnsongrass	100	100	100	85	Ö	100	90	85	100	60	100	60	1.00	70
	Kochia	100	100	40	100	100	100	95	100	100	100	90	50	90	100
	Lambsquarters	100	100	100	95	100	100	100	100	100	100	100	90	100	100
	Mermingglory	100	90	90	20	()	75	55	25	80	1.00	40	Ô	10	20
15	Nightsbade	100	100	100	100	95	95	95	100	100	90	98	95	100	95
	Nutsedge, Yellow	0.	0	0	30	80	10	30	20	50	30	40	0	0	0
	Pigweed	100	100	100	100	95	95	100	100	100	95	100	100	100	100
	Ragweed	40	90	100	100	100	80	95	100	100	80	95	30	60	20
	Soybean	Ð.	10	20	30	0	30	15	60	40	10	70	60	20	10
20	Sumflower	: 0	10	40	0	0	0	0	0	υŌ	0	30	0	Ü	Q
	Surinam Grass	70	80	80	60	85	100	75	75	100	.5	60	50	50	95
	Velvetleaf	100	100	100	70	5	100	100	100	100	100	100	60	60	50
	Table C						(lomp	ound:	\$					
	500 g ai/ha	96	102	108	115	130	134	137	140	144	145	146	147	149	152
25	Preemergence								•						
77.7	Bermudagrass	100	100	1.00	100	1.00	100	100	85	90	90	90	95	95	100
	Cocklebur	90	70	50	100	100	0	0	Q.	80	0	0	Q	Ö	100
	Corn	40	30	50	30	10	50	5	0	50	20	30	50	10	70
	Crabgrass, Large	100	100	100	1.00	95	100	100	100	100	80	70	100	100	100
30	Cupgrass, Woolly	70	40	80	90	70	45	40	45	70	40	Q	60	70	100
	Foxtail, Giant	100	80	100	100	95	85	85	85	100	70	80	100	100	1.00
	Goosegrass	95	100	100	100	50	95	100	75	80	80	60	80	90	100
	Johnsongrass	95	100	100	100	80	65	40	75	90	90	70	80	100	100
	Kochia	100	60	100	100	100	100	100	100	100	80	100	100	90	100
35	Lambsquarters		100	100	100	80	100	100	100	100	100	100	100	95	100
	Morningglory	100	80	90	80	30	75	50	Ü	90	30	50	O	60	100
	Nightshade	100	100	100	100	60	100	90	95	100	90	100	100	95	100
	Nutsedge, Yellow	1.0	30	80	20	0	0	Ü	Q	40	Q	Ŏ.	0	0	70

	Pigweed	100	100	100	100			100	100	100			100		
	Ragweed	100	100	90	100	80	100	100	95	80	20	70	70		100
	Soybean	50	20	10	0	1.0	35	1.0	0	80	60	0	5	0	100
	Sunflower	35	20	20	10	0	0	0	0	40	30	0	0	0	70
5	Surinam Grass	65	50	90	90	60	75	60	70	70	70	50	60	85	100
	Velvetleaf	100	60	100	100	100	100	100	20	100	100	1.00	90	60	100
	Table C						Ċ	ompc	nunds	\$					
	500 g ai/ha	153	156	162	182	188	193	195	198	199	303	205	207	210	212
	Preemergence														
10	Bermudagrass	100	95	40	95	100	100	65	100	100	100	100	100	100	100
	Cocklebur	0	100	75	Û	0	100	0	1.0	Q	20	0	0	5	95
	Corn	0	50	75	.0	5	100	Ö	0.	0	10	40	20	40	40
	Crabgrass, Large	80	100	100	100	100	700	70	95	95	95	100	100	100	100
	Cupgrass, Woolly	60	90	100	0	75	7.0	10	70	70	60	50	40	10	30
15	Foxtail, Glant	ŭ	95	75	៩ប	100	3.00	20	100	100	1,00	95	100	60	95
	Goosegrass	95	95	80	80	90	95	100	100	95	95	95	100	95	100
	Johnsongrass	85	100	95	7.5	75	100	Q	95	90	75	85	50	70	60
	Kochia	100	100	100	90	95	100	85	100	90	95	90	95	95	95
	Lambsquarters	100	100	100	95	100	100	95	100	3.00	100	100	93	100	100
20	Morningglory	15	100	100	100	75	100	0	89	70	85	50	0	1.0	30
	Nightshade	100	100	100	95	100	100	0	100	100	100	100	100	100	1.00
	Nutsedge, Yellow	45	85	60	0	Q	80	70	.5	0	0	10	20	30	Ö
	Figweed	100	100	100	95	100	100	90	100	100	100	100	100	100	100
	Ragweed	100	100	100	65	100	100	90	100	80	95	100	100	90	95
25	Soybean	3.5	100	100	15	0	100	0	25	30	30	60	0	0	60
	Sunflower	0	85	90	0	ប្	50	10	20	0	1.0	0	Ŏ	Q	0
	Surinam Grass	100	95	95	85	80	1.00	85	100	75	60	85	10	50	20
	Velvetleaf	100	100	100	1,00	75	100	100	100	85	100	100	80	80	100
	Table C						-	Comp	೧೮೩೦	s					
30	500 g ai/ha	213	215	221	. 222	223	242	244	268	269	287	293	294	298	299
	Preemergence														
	Bermudagrass	90	100	85	100	100	100	100	100	1.00	95	100	90	95	100
	Cocklebur	100	60		100	0	50	Ü	85	50	60	60	85	Q	95
	Corn	40	50	10	100	50	25	45	70	55		95	80	30	50
35	Crabgrass, Large	100	100	300	100	100	100	100	100	100	100	100	100	100	100
	Cupgrass, Woolly	30	50	10	100	80	100	95	95	85	35	100	88	60	100
	Foxtall, Giant	100	100	9(100	100	100	100	100	100	100	100	90	100	100

	Goosegrass	90	100	50	100	100	100	100	100	100	100	100	100	100	100
	Johnsongrass	80	85	80	100		100	100	100	100	95	100	100	90	100
	Kochia	100	100	100	100	100	٠.	oger"	100	1.00	100	100	100	100	100
	Lambsquarters	100	100	100	100	100	· ses	· /- :	100	100	100	100	100	100	100
5	Morningglory	0	40	D.	100	100	15	55	5	40	1	ιώς.	50	45	100
	Nightshade	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Nutsedge, Yellow	9	0	Ü	60	0	25	Q	70	60	85	20	90	30	80
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	Ragweed	0	100	60	100	100	100	100	100	90	100	100	100	0	100
10	Soybean	0	0	20	100	90	75	15	95	60	95	100	100	60	95
	Sunflower	0	0	30	30	30	95	20	90	15	100	Section	100	0	100
	Surinam Grass	60	50	45	100	85	100	1.00	100	95	95	100	100	70	100
	Velvetleaf	0	100	80	100	1.00	100	100	1.00	80	100	100	100	100	100
	Table C						. 8	Compo	nınds	3 :					
15	500 g si/ha	301	304	305	306	307					332	333	336	340	341
200	Preemergence	20 20 00													
	Bermudagrass	95	100	100	100	100	100	100	90	95	100	100	100	100	100
	Cocklebur	60				75	60	30		Ü	0	5	50	40	100
	Corn	45	30	45	50	45	60	10	Ø	40	5	Q	85	50	90
20	Crabgrass, Large	100		100	100	100	100	100	60	100	100	100	100	100	100
200	Cupgrass, Woolly	90	80	70	50	85	100		20	1.0	10	30	85	75	100
	Foxtail, Giant	100	90	100	100	100	100	100	70	80	80	75	90	85	80
	Goosegrass	100	190	95	100	100	100	95	85	90	100	100	1,00	90	90
	Johnsongrass	95	80	95		100	100	80	90	95	80	5	100	90	100
25	Kochia	100	100	100	100	100	100	100	70	2.00	100	100	100	100	100
	Lambsquarters	1.00	100	100	100	100	100	100	85	100	100	100	100	100	100
	Morningglory	60	10	10	20	15	40	10	40	85	0	10	1.00	50	50
	Nightshade	100	100	100	100	100	100	100	1.00	95	100	100	100	1,00	100
	Nutsedge, Yellow	20) 8	50	40	50	60	15	0	0	Ŏ	0	60	50	60
30	Pigweed	100	1.00	100	100	100	100	100	90	100	100	100	100	100	100
	Ragweed	70	7(100	100	100	100	80	60	70	70	63	100	75	100
	Soybean	4.5	3 20	100	40	100	80		40	40	10	() (C	100	10	100
	Sunflower	. (): . <u>.</u>	5 50	i C	60	60	, b	45	C	0	Ç	45	5	100
	Surinam Grass	9() 83	3 SC	9.5	90	100	50	20	60	15	20	100	85	100
35	Velvetleaf	100) 6	100	10	100	100	100	85	100	70	55	100	100	100

	Table C	Co	mpou	nda			Tabl	la C				Com	oune	ls	
	500 g ai/ha	342	343	352			500	g a:	l/ha		3	142 3	43 3	52	
	Preemergence						Pree	merç	jance	3-1					
	Bermudagrass	90	90	100			Moxi	ingç	ilon	7	ា	.00 1	.00	50	
	Cocklebur	100	100	30			Nìgh	itshe	süe			85	95 1	.00	
	Corn	90	80	50			Nuts	edge), Ye	allov	ų.	60	90	50	
	Crabgrass, Large	85	100	190			Pigw	reed.			1	00 3	00 1	.00	
	Cupgrass, Woolly	70	100	85			Ragn	reed.			1	.00 1	00	60	
	Foxtail, Giant	70	80	100			Soyì	ean.			1	00 1	.00	70	
	Goosegrass	90	85	100			Sunf	lowe	žT-		1	00 1	00	0	
	Johnsongrass	100	100	100			Suri	nam	Gras	S	1	00 1	00 1	00	
	Kochia	100	100	100			Velv	etle	af		1	00 1	00 1	00	
	Lambaquarters	100	100	100											
	Table C						, i	Comp	ound	S					
	250 g si/ha	1	2	3	6	7	9	10	11	13	14	16	27	28	29
	Presmergence														
	Bermudagrass	90	95	90	90	85	8.5	100	.50	90	85	95	100	100	100
5	Cocklebur	- rejec	85	10	100	0	100	· .	2.0	0	70	40	20	0	40
	Corn	65	35	35	80	40	55	60	80	60	75	70	20	0	ø
	Crabgrass, Large	95	100	95	95	100	95	100	85	100	100	100	100	100	100
	Cupgrass, Woolly	: ****	60	65	75	80	25	85	55	55	95	65	40	20	60
	Foxtail, Giant	75	100	100	85	80	7.0	80	80	95	95	90	100	50	100
10	Goosegrass	90	95	90	100	90	85		80	100	100	90	100	90	90
	Johnsongrass	80	100	30	90	80	75	100	90	75	100	100	100	20	90
	Nochia	100	100	100	100	100	100	100	100	95	100	100	100	90	100
	Lambsquarters	100	100	90	100	100	100	100	100	100	100	95	100	100	100
	Morningglory	15	45	25	30	0	15	80	0	100	70	Ö	100	20	in.
15	Nightshede	100	1.00	95	100	95	85	100	85	100	95	100	100	100	100
	Nutseäge, Yellow	60	90	65	80	40	55	50	50	65	70	80	20	20	0
	Pigweed	1,00	95	95	100	100	1.00	100	100	100	1,00	100	100	100	100
	Ragweed	100	100	100	100	100	100	100	100	100	100	100	ő	60	100
	Soybean	25	100	40	100	10	40	40	0	15	85	95	30	30	30
20	Sunflower	25	Q	0	100	0	0	0	0	65	1.00	75	20	0	60
	Surinam Grass	100	100	100	100	80	65	90	700	95	95	90	60	50	60
	Velvetleaf	85	100	85	100	50	100	, . 	50	100	3.00	100	1,00	100	80

	Table C							Come	ound	S.					
	250 y ai/ha	3.0	33	34	41	44					35	56	57	58	60
	Preemergence								-2 da			· ,/5: 5:	. 📆 '	.50*.50	
	Bermudagrass	90	100	90	100	20	100	100	90	Q	100	95	95	1.00	100
5	Cocklebur	20) 4() g	10	0	90	ű							
	Corn	6(} -	0	0	Q									
	Crabgrass, Large	100	100	100	100	20	100	100						95	
	Cupgrass, Woolly	30	30	70	30	10	30	60	S		6.		25	60	
	Poxtail, Giant	70	70	90	30	10	100	80	10				100	100	
10	Goosegrass	š٤	4.0	100	40	50	100	100	90	100			90	95	1 1787
	Johnsongrass	60	70	100	20	50	90	100	50	Q			80	90	
	Rochia	90	100		30	10	100	10	20	100	100		100	95	
	Lambsquarters	100	100	1.00	100	100	100	100	95	100	100	1.00	100	100	
	Morningglory	70	f	Q	80	Q	90	90	0	0	20	55	28	50	10
15	Nightshade	100	100	90	90	100	100	100	25	86	90	95	100	100	90
	Nutsedge, Yellow	20	Q	0	Ø	0	0	Ü	1.0	40	0	. 0	0	50	5
	Pigweed	100	100	100	100	90	100	100	100	95	95	100	100	100	100
	Ragweed	9	60	0	10	70	90	100	7.0	80	Q.	95	100	100	95
	Scybean	10	10	O	1.0	10	10	10	Ŏ	0	0	10	0	25	û
20	Sunflower	30	20	Ø	0	0	10	10	Ø	0	Ó	0	0	ŭ	ø
	Surinam Grass	20	30	60	20	1.6	60	60	30	80	65	50	35	80	50
	Velvetleaf	85	100	90	100	70	100	100	10	5	15	50	100	100	85
	Table C						¥	'eme	ounds	ż					
	250 g al/hs	61	62	бğ	64	65	30	88	95		1.62	108	334	118	120
25	Preemergence				447.37				7,7,	~ ~					*25
	Bermudagrass	80	95	90	85	95	10	95	100	85	100	100	100	100	100
	Cocklebur	1,64	0	O.	0	0	10	Q	10	20	20	30	30	50	70
	Corn	0	0	5	Ŭ.	10	20	5	20	30	10	50	10	20	5
	Crabgrass, Large	100	90	90	70	80	10	95	100	100	100	100		100	95
30	Cupgrass, Woolly	G	20	0	Ø	10	10	80	30	20	20	50	30	80	40
	Foxtail, Giant	40	85	10	10	20	50	85	100	100	80	100	40	100	65
	Goosegrass	7.0	85	60	50	80	10	95	85	9.5	100	100	100	100	30
	Johnsongrass	50	70	75	40	65	10	50	50	85	90	100	70	100	30
	Nochia	100	100	90	60	85	10	90	100	100	40	100	100	100	20
35	Lambsquarters	100	100	100	85	100	60	100		, in the second	100	100	100	100	80
	Morningglory	5	10	40	0.	Ü	50	Q	70	80	80	50	-	80	•
	Nightshade	40	95	95	95	100	2.0	95	95	Pr. 2"	100	* AA	25.25		
	and the state of t	37.35			~ w .	THE.	10	20.00	33.3	95	100	100	90	100	

	Pigweed	95	95	100	100	100	100	100	100	100	100	1.00	100	100	100	
	Ragwead	80	85	10	0	0	1.0	5	100	100	90	20	30	100	60	
	Soybean	0	30	10	10	20	0	0	1.0	45	Ü	0		0	.5	
	Sunflower	0	0	0	Ō	Û	10	0	0	20	20	20	30	10	ŏ	
5	Surinam Grass	5	50	45	20	0	10	50	60	40	40	90	40	70	20	
	Velvetleaf	80	70	30	50	5	100	10	80	100	20	100	30	100	100	
	Table C						ý	Comp	ound.	S						
	250 g ai/ha	131	134	137	139	140	144	145	146	1.47	149	152	153	156	162	
	Preemergence															
10	Bermudagrass	95	95	100	95	60	80	80	70	90	90	3.00	95	98	20	
	Cocklebur	25	0	0	O.	0	Q	0	Ü	Junga	0	6.5	Ó	100	83	
	Corn	0	0	5	1.5	0	40	5	10	0	10	5.0	Ö	40	75	
	Crabgrass, Large	90	95	100	100	75	85	80	الميقار	90	100	100	0	90	80	
	Cupgrass, Woolly	15	20	5	55	0	5	Q	0	10	20	100	0	80	0	
15	Foxtail, Giant	45	0	60	95	65	100	50	ĠΩ	30	60	100	Q.	85	60	
	Goosegrass	89	85	100	90	70	75	75	30	60	90	1.00	85	90	75	
	Johnsongrass	45	50	35	50	60	80	80	40	60	80	100	45	1,00	80	
	Kochia	100	100	100	100	95	100	60	85	60	60	100	190	100	100	
	Lambsquarters	100	100	100	100	95	1.00	90	90	100	95	100	100	100	100	
20	Morningglory	0	0	Ø	60	0	Specific	0	40	0	5	1.00	15	100	100	
	Nightshade	100	95	90	100	65	100	80	100	90	80	100	100	100	100	
	Nutsedge, Yellow	0	0	0	5	0	10	Ü	0	Ø	Q	40	Ü	8 5	55	
	Pigweed	1.00	100	100	100	100	100	90	95	90	100	100	100	100	100	
	Ragweed	90	90	70	95	70	5.0	0	50	0	5	100	15	100	100	
25	Soybean	15	0	0	30	Ø	60	30	0	Ü	9	50	0	85	90	
	Sunflower	0	Đ.	Ď.	20	0	0	0	ũ	Q	0	80	Q	80	70	
	Surinam Grass	15	50	30	30	€5	60	65	40	10	40	1.00	75	88	80	
	Velvetlesf	20	100	70	100	0	100	100	100	70	Ø	1.00	75	100	100	
	Table C						C	ompo	ninds							
30	250 g mi/ha	182	188	193	195	198	199	202	205	207	210	212	213	215	221	
	Freemergence															
	Bermudagrass	90	100	85	30	100	100	95	100	100	100	80	80	85	85	
	Cocklebur	0	0	÷ € •.	Ø	0	Ü	10	0	0	0	.5	100	O.	0	
	Corn	Q	0	95	0	0	10.	0	Q	5	50	30	30	20	Q	
35	Crebgrass, Large	75	95	85	5	95	90	95	100	100	98	85	100	85	100	
	Cupgrass, Woolly	0	7.0	60	10	10	40	20	10	5	5	20	0	40	Ø	
	Foxtail, Giant	60	70	80	Ü	60	80	80	80	10	10	20	95	70	4.0	

	Goosegrass	50	85	80	100	95	90	90	80	80	95	95	80	80	Ů.	
	Johnsongrass	50	35	90	0	60	60	70	60	40	50	50	60	50	10	
	Mochia	65	Q	100	10	100	90	85	90	90	90	90	100	100	85	
	Lambsquarters	95	100	100	10	100	100	100	90	95	100	100	100	100	90	
5	Morningglory	55	60	100	Ú	85	70	80	10	0	5	5	Ü	0	0	
	Nightshada	85	100	85	0	100	100	100	100	100	100	100	100	100	70	
	Muisedge, Yellow	0	ប៊	10	0	0	0	0	0	20	5	0	0	0	0	
	Pigweed	95	95	100	90	100	100	100	95	100	100	100	100	100	100	
	Ragweed	60	75	100	80	95	80	95	50	60	90	30	0	100	i vita	
10	Soybean	Ð	0	50	Ü	0	5	0	20	Q	Ŭ	0	Û	0	0	
	Sunflower	0	Ø	Q	0	10	0	10	0	0	0	0	0	Ü	0	
	Surinam Grass	25	75	95	85	30	30	40	50	Q	10	5	20	30	10	
	Velvetleaf	20	45	70	55	80	85	100	60	40	60	100	Û	40	60	
	Table C							Comp	cunda	3						
15	250 g ai/ha	222	223	242	244	268	369	287	293	294	298	299	300	301	304	
	Preemergence												4,11,111			
	Bermudagrass	1.00	100	100	100	100	100	95	100	90	80	100	100	90	100	
	Gocklebur	70	0	35	0	70	5	10	20	80	0	80		Û	0	
	Corn	60	5	20	1.0	60	40	50	80	60	15		35	40	15	
20	Crabgrass, Large	100	100	100	100	100	100	95	100	100	100	100	100	100	100	
	Cupgrass, Woolly	100		95	85	95	60	10	95	80	30	90	60	70	60	
	Foxtail, Giant	95	100	100	95	95	100	85	100	90	70	100	100	95	50	
	Goosegrass	100	80	100	100	100	95	100	95	85	100	100		100	90	
	Johnsongrass	100		100	95	100	100	95	1.00	100		100	98	85	70	
25	Nochia	100	100	,	-	100	100	100	100	100	1.00	100	100	1.00	85	
	Lembsquarters	100	100	3 300		100	100	100	100	100	100	100	100	100	100	
	Morningglory	30	5	0	20	5	10		1.00			100	100	10	10	
	Nightshade	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	Nutsedge, Yellow	20	Q	1,5			40	60		80			60	10	Q	
30	Pigweed	100	100	100	100	100	100	100	95	100	100	100	100	100	100	
	Ragweed		100						100			100	10	65	70	
	Soybean	100	80	65	10	90	50	85		100	5	30	70	7.4	20	
	Sunflower	30	0	50	15	60	5	100	65	100	0	100	5	0	0	
	Surinam Grass	1.00	70	95	100	95	85	65	100				100	80	40	
35	Velvetleaf	100	100	100	1.00	100	75							100	n pa tri	

	Table C						4	ompo:	unds	\$					
	250 g el/ha	305	306	307	309	310	314	318	332	333	334	336	340	341	342
	Preemergence														
	Bermudagrass	1.00	90	100	95	100	50	90	100	100	100	100	85	100	90
5	Cocklebur	65	0	35	60	5	0	0	0	0	70	30	Ü	50	60
	Corn	45	20	30	40	5	Ü	10	0	ø	50	85	45	85	70
	Crabgrass, Large	100	100	100	100	100	40	60	100	100	100	100	100	90	70
	Cupgrass, Woolly	60	30	70	ġΩ	70	0	0	5	0	85	60	45	100	50
	Foxtail, Glant	100	90	100	90	85	20	50	60	50	100	90	60	55	55
10	Goosegrass	95	100	100	100	95	65	80	100	85	100	100	85	85	65
	Johnsongrass	95	80	90	95	20	70	60	50	5	100	100	50	100	100
	Kochia	100	1.00	1.00	100	100	30	88	100	100	100	100	90	100	100
	Lambaquarters	100	100	100	100	100	30	100	100	100	100	100	100	100	1.00
	Morningglory	5	1,0	10	5	5	30	Ŏ	0	0	40	100	10	5	70
15	Nightsbade	100	100	100	1.00	100	90	95	95	98	1.00	100	100	100	30
	Nutsedge, Yellow	25	10	50	45	0	Ø	0	0	0	55	20	0	3.0	40
	Pigweed	100	100	100	100	100	90	100	100	100	100	100	100	100	100
	Ragweed	88	, see	100	70	50	40	70	- 5	50	100	80	2.0	100	100
	Soybean	9.0	1.5	80	80	30	40	10	0	Ü	80	50	0	70	100
20	Sunflower	0	0	60	5	0	20	Ö	0	Ø	55	30	0	50	75
	Surinam Grass	60	40	90	90	30	0	50	10	5	95	100	65	100	100
	Velvetieaf	100	, jane	100	75	10	80	100	45	50	85	100	95	100	100
	Table C	Comp	ound	S			Tabl	e C			೧೦	mpou	nds		
	250 g ai/ha	343	352				250	g ai	/ha		3	43 3	52		
	Preemarganca						Pree	merg	ence						
	Bermudagrass	90	190				Moen	ingg	lory	j:	1	üΩ	40		
	Cocklebur	80	0				Nigh	tsha	de			90	50		
	Corn	70	30				Nuts	පේදාව	, Ye	llow		60	10		
	Crabgrass, Large	80	100				Pigw	eed.			1	00 1	00		
	Cupgrass, Woolly	70	60				Ragw	reed.				90	50		
	Foxtail, Giant	70	1.00				Soyk	can			1	00	50		
	Goosegrass	80	100				Sunf	lowe	I.			80	0		
	Johnsongrass	100	90				Suri	nam	Gras	S	1	00 1	90		
	Kochia	100	100				Velv	etle	ať		3	00	70		
	Lambaquarters	100	100												

						A 15. 5	•								
	Table C							Comp	ound	S					
	125 g ai/ha	1	2	3	4	S	6	7	9	10	11	13	14	16	27
	Preemergence														
	Bermudagrass	85	90	90	95	10	90	70	65	50	30	80	55	75	100
5	Cocklebur	·	5	5	60	Q	100	0	0	0	10	Ú	65	ij	10
	Com	45	30	Ü	0	Û	60	30	25	40	70	50	70	55	0
	Crabgrass, Large	80	95	80	80	70	95	85	80	90	80	100	100	95	100
	Cupgrass, Woolly	35	60	30	20	Û	55	30	15	0	55	20	60	45	20
	Foxtail, Giant	65	100	90	70	S	80	70	60	70	60	20	95	70	100
10	Goosegrass	85	95	90	85	50	100	70	80	80	70	90	95	80	30
	Johnsongrass	75	90	70	65	20	90	50	55	90	65	60	85	80	90
	Kochia	100	100	80	پند د	10	100	80	100	100	100	90	100	1.00	100
	Lambsquarters	100	100	90	1.00	60	100	85	100	100	100	100	100	95	100
	Morningglory	0	20	3.0	20	40	Ö	0	0	10	O	90	85	0	100
15	Nightshade	100	100	95	95	300	100	€0	75	100	80	90	90	100	100
	Nutsedge, Yellow	25	65	30	25	0	70	20	25	30	0	25	55	75	30
	Pigweed	100	95	95	95	95	2.00	100	95	100	100	100	100	100	100
	Ragweed	169	100	95	80	95	100	50	100	100	100	100	100	100	0
	Soybean	Ø	40	10	35	. Q	90	Ü	20	0	0	0	35	75	10
20	Sunflower	Ø	O	0	Ü	0	50	Q	0	۵	0	Ŭ	7,5	20	20
	Surinam Grass	75	95	70	50	55	100	50	45	40	95	85	95	75	30
	Velvetleaf	85	100	8.5	90	30	100	Q	50	9669	10	100	100	100	100
	Table C							Comp	ಉಗ್ರತ್ಯ	ş					
	125 g ai/ha	28	29	30	31	3.3	34	35	41	44	46	47	48	50	55
25	Preemergence														
	Bermudagrass	90	100	90	96	90	80	100	50	Sec	100	1.00	90	0.	100
	Cocklebur	O		0	20	30	0	20	0	,,,,,,	40	0	0	10	Ø
	Corn	G.	0	Ü	20	0	Q	0	Q	0	Q	0	Ö	0	Q
	Crabgrass, Large	100	100	90	100	100	100	50	100	20	100	100	30	0	90
30	Cupgrass, Woolly	20	20	10	0	50	20	20	0	10	10	10	ő	10	25
	Foxtail, Giant	20	80	40	30	60	70	30	20	10	60	70	0	0	50
	Goosegrass	70	60	30	30	90	80	70	30	30	90	100	70	80	50
	Johnsongrass	60	(week)		30	80	80	70	***	30	80	100	20	v j es t	75
	Kochia	0	80	70	80	100	90	10	20	1.0	90	10	60	85	8.0
35	Lambsquarters	100	90	100	100	1.00	100	100	90	100	100	100	95	85	95
	Morningglory	20	100	jaragi.	40	0	0	est (Ŭ	0	0	0	(ma)	0	0
	Nightshade	100	100	90	90	100	90	90	10	90	100	100.	80	5	60
	Mitsedge, Yellow	Ø	· Sec	0	0	Ø	0	Ö	0	0	Q	0	Ü	10	0

	Pigweed	100	100	100	100	100	100	100	3.0	70	100	100	100	90	95	
	Ragweed	20	Q	0	0	10	0	80	0	30	40	80	5	40	O	
	Soybean	Q.	30	0	0	Ø	0	0	9	10	0	0	0	Ü	Ü	
	Sunflower	0	60	10	20	Ø	0	10	0	0	10	0	0	0		
5	Surinam Grass	20	30	20	20	30	20	20	20	10	30	10	5	10		
	Velvetleaf	70	80	30	70	70	60	100	40	70	100	40	0	5		
	Table C						- ģ	Comp	ound	\$						
	125 g ai/ha	56	57	58	60	61	62	63	64	65	80	88	95	96	102	
	Preemergence															
10	Bermudagrass	90	95	100	100	70	90	90	30	85	1.0	95	1.00	80	100	
	Cocklebur	0	ij.	5	O	Û	Q	8	0	0	10	0	5	5	20	
	Corn	Ü	0	0	0	Q	Ö	Ŏ	Ö	0	10	5	10	15	Q	
	Crabgrass, Large	100	100	95	90	75	90	85	40	50	1.0	95	1.00	1.00	100	
	Cupgrass, Woolly	0	Q.	40	10	0	Ö	0	0	0	10	30	10	10	10	
15	Poxtail, Giant	85	95	100	1.5	20	65	5	Ü	0	40	50	100	100	50	
	Goosegrass	85	75	95	85	40	70	45	10	30	10	90	50	80	1.00	
	Johnsongrass	70	65	80	50	30	40	60	20	40	1.0	2.0	40	60	80	
	Kochia	90	1.00	95	90	100	100	80	30	70	10	85	100	95	30	
	Lambsquarters	100	100	100	100	100	100	95	Q	95	10	95	Ç.	, grand	70	
20	Morningglory	0	0	20	5	0	0	40	0	0	No.	0	10	50	70	
	Nightshade	95	95	100	90	20	90	90	5.0	90	10	90	95	95	100	
	Nutsedge, Yellow	0.	Q	20	Ü	Q	10	.0	Û	Q	0	Ü	0	Ŭ	Q	
	Pigweed	100	100	100	100	95	95	100	70	100	100	100	100	100	100	
	Ragweed	95	100	85	80	Q	20	Q	0	Q	0	Ü	80	90	20	
25	Soybean	0	9	5	Q.	0	0	0	Ö	0	Ŏ,	Ø	0	5	8	
	Sunflower	Ω	0	0	Ü	Ü	0	9	Q	ŭ	o o	0	Q	0	20	
	Surinam Grass	15	15	55	O.	0	10	5	Š	0	10	20	10	10	ن خون	
	Velvetleaf	35	0	100	70	45	. 🟎 .	10	30	Q	100	0	60	50	20	
	Table C						Ç	`ටකුලර	unds	3.						
30	125 g ai/ha	108	114	115	113	128	130	1.31	134	137	139	140	144	145	146	
	Preemergence															
	Barmudagrass	100	90	1.00	100	100	90	90	95	100	90	0	80	60	80	
	Cocklebur	30	20	40	20	10	, Çiş	20	0	Ø	Ω	0	Ü	0	Ü	
	Corn	40	1.0	10	10	20	.5	0,	0	5	0	O	30	Ö	0	
35	Crabgrass, Large	100	100	100	100	100	90	90	95	70	100	65	70	80	-	
	Cupgrass, Woolly	50	10	30	Q	30	10	0	Ø	0	10	Ø	5	0	Ö	
	Foxtail, Giant	100	30	90	10	1.0	45	20	0	50	80	25	7.0	0	10	

	Goosegrass	100	80	80	80	.90	20	6.5	65	85	85	ņ	60	70	Ů.
	Johnsongrass	100	30	100	100	90		40	40	5	30	45	9	65	30
	Kochia	100	90	100	20	0	O	85	100	90	100	75	80	60	50
	Lambsquarters	100	100	100	60	30	30	100	100	100	100	85	95	60	90
5	Morningglory	بين	60	30	30	30	0	0	0	Ö	10	0	30	0	5
	Nightshade	100	90	100	100	90	**	95	95	85	100	0	100	70	60
	Nutsedge, Yallow	70	0	0	0	70	0	0	0	٥	0	0	0	Ó	0
	Pigweed	1.00	100	100	90	60	30	100	95	100	100	100	90	90	95
	Ragweed	20	10	80	10	20	10	50	25	0	50	0	30	0	0
10	Soybean	Ü	عود	0	10	20	0	0	0	0	1,0	بخبر	40	10	0
	Sunflower	20	30		20	50	Q	Q	0	0	1.0	0	0	0	0
	Surinam Grass	40	10	40	20	60	5	ð	15	10	20	0	40	50	0
	Velveticaf	90	30	100	40	100	10	15	30	10	30	0	100	30	40
	Table C						5	·	ounds	1					
15	125 g ai/ha	147	7.60	185	152	155	162				165	100	100	202	en se se
·	Preemergence	ar ar	en de la	and the state	.3	230	7.00	mb &	2,1313	*******	ina o	236	733	& V &	800
	Bermudagrass	70	90	90	95	93	Q	75	100	80	O	85	85	85	100
	Cocklebur	See See	0	65	0	98		0	0:	φ.υ.	0	00	03	0.0	100
	Corn	0	0	45	o o	38	70	0	0	60	ũ	0	Ü	0	0
20	Crabgrass, Large	50		100	0	85	40	25	95	85	0	85	20	95	80
	Cupgrass, Woolly	1.0		50	0	70	0	0	60	40	0	8 8	0	10	10
	Foxtail, Giant	Q.	50	100	0	83	60	0	58	50	0	10	1.0	40	
	Goosegrass	20	70	100	75	90	60	35	70	80	100	80	30	85	10 70
	Johnsongrass	40	60	100	15	85	80	35	20	85	Q Q	30	30	40	10
25	Kochia	40	10	100	95	95	75	60	0	85	0	80	85	85	90
	Lambsquarters	90	95	100	100	100	95			100	ŭ	100	95	90	90
	Morningglory	0	S	80	0		100	15	(20)	30	0	70	50	55	0
	Nightshade	70	80		100		100	80	95	50	Q	95	95		100
	Nutsedge, Yellow	0		30	Q	60	20	0	0	- ∵ : 0	ũ	0	ĩ ĩ	Q.	0
30	Pigweed			100			100	95		100		100			95
÷.	Ragweed	0	0	85		100	95	20	65		40	80	60	80	20
	Soybean	.6	î O		Ů.	50	75	0	0	30	0	ŭ.	0	0	20
	Sunflower	0	ୃତ	10	0	45	15	ũ.	0	0	0	0	0	0	0
	Surinam Grass	10	5	60	0	88	75	20	30	80	0	10	0	20	20
35	Velvetleaf	20		100	30	63	75	0	0	0	50	80	70	10	40
-	And the second s		**	*****	and the	77.5	E - N	v	ÿ	ν.	(3	424,345	, 0	- £ U	****

	Table C							Comp	ound	S						
	125 g ai/ha	207	210	212	213	215	221	222	223	242	244	268	269	287	293	
	Preemergence						., .			***			39			
	Bermudagrass	80	80	7.5	60	70	10	100	80	100	100	100	100	95	95	
5	Cocklebur	Q	0	0	- <u>-</u>	Đ	0	20	0	0	Q	60	0	0		
	Corn	0	1.0	0	0	20	0	20	0	0	1.0	45	20	٠	10	
	Crabgrass, Large	90	80	80	50	70	100	100	100	100	100	95	100	95	95	
	Cupgrass, Woolly	0	0	9	0	10	0	100	10	80	65	70	40	Ö	70	
	Foxtail, Giant	0	10	20	50	50	0	85	70	100	95	95	90	70	70	
10	Goosegrass	60	80	60	ឥប	40	0	100	80	100	95	90	85	100	85	
	Johnsongrass	1.0	20	Ű	55	20	0	100	80	95	95	90	60	85	95	
	Kochia	90	90	85	85	100	0	100	90		, au	100	100	100	100	
	Lambsquarcers	95	100	100	95	100	20	100	100	, ev		100	100	100	100	
	Morningglory	Û	0	0	0	0	0	20	0	9	15	0	- 5	, in	gaing.	
15	Nightshade	75	100	100	100	100	50	100	100	100	100	100	100	100	100	
	Nutsedge, Yellow	Ø	0	Q.	0	0	0	0	0	0	Q	50	10	15	0	
	Pigweed	100	100	100	100	100	100	100	100	100	100	100	100	100	85	
	Ragweed	50	Q	Ü	Ď	Ŏ	0	100	80	100	100	90	10	100	100	
	Soybean	0	0	Q	0	Q	.0	70	30	65	0	75	10	60	85	
20	Sunflower	0	Û	0	0	Q	0	Ü	ņ.	Õ	Ø	5	0	100	949	
	Surinam Grass	0	5	Ò	Ü	G	Ü	100	65	95	100	70	70	50	80	
	Velvetieaf	10	.0	1.00	ņ	Ø	0	50	0	100	100	100	70	95	100	
	Table C						Č	Compo	സനി							
	125 g si/ha	294	298	299	300	301		305			309	310	334	319	332	
25	Presmergence								4,7,4	-,-,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			CACAG	
	Bermudagrass	80	55	100	100	90	70	85	85	100	90	85	б0	70.	100	
	Cocklebur	40	0	40	5	ŭ		15				0	Ď.	0	0	
	Corn	60	10	25	30	19	۵	40	10	20	20	0	0	0	Ü	
	Crabgrass, Large	95	95	100	100	100	100	100			80	70	G		100	
30	Cupgrass, Woolly	75	10	7.0	50	50	10	60	15	40	70	10	Q	Ü	0	
	Poxtail, Giant	80	70	100	65	60	30	85	40	85	80	40	0	10	20	
	Goosegrass	80	95	100	100	90	85	85	70	95	85	80	40		85	
	Johnsongrass	100	40	100	85	بغبر	60	90	60	80	80	10	30	0	10	
	Kochia	100	95	100	100	100	80	1.00	90	100	100	100	0		100	
35	Lembsquarters	100	100	100	1.00	100	100	100					10		100	
	Morningglory	30	S	75	40	5	1.0	0	5	2.0	5	5	10	0	0	
	Nightshade	300	100	100	100	95	100	90	95	100	80	35	85	90	90	
	Mutsedge, Yellow	55	0	50	20	5	0	20	0	20	30	0	Ŏ	0	ø	

	Pigweed	100	100	100	100	100	100	100	100	100	100	100	60	95	100	
	Ragweed	100		100		60	0			100		0	9	40		
	Soybean	95	0	80			9	60	10			0	10	Q		
	Sunflower	50	0	85	Ü	44.790	ø		0	10	Q	0	0	Û		
5	Surinam Grass	95	5	90			5	55	10	85	70	3.0	0	20		
	Velvetleaf	100	60	80	్రే	70	Ŭ			100	70	10	0	70		
	Table C			1	Compa	oundi	3									
	125 g si/ha	333	334					343	352							
	Preemargenca															
10	Bermudagrass	83	100	100	70	80	SÕ	70	100							
	Cocklebur	Q	60	5	ø	10	30	80	0							
	Corn	9	20	35	45	50	50	70	1.5							
	Crabgrass, Large	70	100	100	70	80	60	80	85							
	Cupgrass, Woolly	0	60	10	20	80	40	65	50							
15	Poxtail, Giant	10	80	5	10	50	40	30	60							
	Coosegrass	30	100	100	80	85	65	75	85							
	Johnsongrass	0	100	95	50	85	100	80	90							
	Kochia	100	1.00	70	30	100	100	100	85							
	Lambsquarters	100	100	100	80	100	90	100	100							
20	Morningglory	Ø	20	70	5	3	5	60	5							
	Nightshade	20	100	95	90	55	80	60	0							
	Nutsedge, Yellow	0	40	5	0	0	0	10	0							
	Pigweed	100	100	100	85	95	90	90	85							
	Ragweed	0	100	55	8	200	95	90	40							
25	Scybean	0	80	25	0	20	60	80	15							
	Sunflower	0	35	10	0	Q	20	75	0							
	Surinam Grass	Ø	70	85	60	95	90	85	50							
	Velvetleaf	0	50	30	60	60	60	80	Ş							
	Table C						C	ompo	unds							
30	62 g ai/ha	1	2	3	4	5	8	7	9	10	11	13	14	16	27	
	Praemergence															
	Bermudagrass	80	85	60	85	Ü	80	60	65	50	0.0	0	45	7.0	90	
	Cocklebur	> ~	3	Q :	50	0	60	٥	0	;**		0	0	0	0	
	Corn	25	0.	0.	Ō	Ŋ.	60	0	15	35	25	0	60	20	0	
35	Crabgrass, Large	65	95	70	68	30	75	60	40	1.0	80	100	95	80	100	
	Cupgrass, Woolly	÷	40	0	Ō	0	50	Ü	0	0	10	Q.	20	15	10	
	Foxtail, Giant	55	80	10	30	0	60	Q	45	40	5	0	65	25	50	

						221										
	Goosegrass	80	90	60	60	0	85	0	65	60	50	85	95	75	30	
	Johnsongrass	70	70	50	30	0	76	10	45	50	50	Q	70	50	60	
	Kochia	95	100	50	المجود	Ũ	1.00	30	95	80	85	50	1.00	95	90	
	Lambsquarters	100	100	90	90	40	100	20	95	95	95	95	100	95	100	
5	Morningglory	9	5	. :	N és	Ö	0	Ŏ	0	0	0	75	45	0	100	
	Nightshade	100	100	90	95	90	100	50	Ü	80	50	55	75	95	100	
	Nutsedge, Yellow	15	30	0	10	Q	50	0	0	1.0	0	0	20	40	0	
	Pigweed	100	95	90	95	80	100	30	95	100	80	100	100	100	100	
	Ragweed	100	80	85	60	0	100	50	0	100	0	95	100	85	0	
10	Soybean	0	30	10	20	0	70	0	0	0	Ü	0	15	0	0	
	Sunflower	0	0	0	0	0	0	0	0	0	3	Ö	50	0	1.0	
	Surinam Grass	50	90	69	50	0	85	0	0	7 4	1.4	45	90	65	20	
	Velvetleaf	70	60	80	80	30	40	Û	25	0	1.0	85	90	100	40	
	Table C						C	lompe	und	š						
15	62 g ai/ha	28	29	30	31	33	34	35	41	44	46	47	48	50	5.5	
	Freemergence															
	Bermudagrass	90	90	10	20	80	20	90	30	0	30	90	80	0	60	
	Cocklebur	O	30	0	Ŭ	ij.	Ů.	0	O	0	0	0	0	0	Ů,	
	Corn	0	0	0	Ü	0	0	0	Ø	_e O	. 0	0	: 0	Ŏ	0	
20	Crabgrass, Large	100	100	90	90	100	80	10	90	0	100	100	0	Q	15	
	Cupgrass, Woolly	30	0	10	Ŏ.	20	10	10	Q	Ű	3.0	1.0	0	0	ij	
	Foxtail, Giant	0	20	20	20	20	10	20	20	10	10	40	Ü	Ø	0	
	Goosegrass	3.0	30	20	30	60	20	30	30	10	60	80	30	40	0	
	Johnsangrass	20	90	Ü	0	20	50	50	0	30	50	20	10	0	0	
25	Kochia	.0	30	0	0	1.00	90	10	20	0	0	10	10	30	35	
	Lambaquarters	90	90	90	90	100	90	90	50	90	100	100	85	85	80	
	Morningglory	20	100	0	or product	Ü	0	100	Q	0	0	0	٥	0	Ü	
	Nightshade	100	100	80	30	60	10		0	80	90	100	50	0	1.5	
	Nutsedge, Yellow	Ö	0	6	0	0	0	G	0	0	Ö	0	0	0	, : O,	
30	Pigweed	100	100	90	100	50	100	90	0	10	30	100	100	90	95	
	Ragweed	Û	بمفن	Q.	0	0	0	10	0	O	10	80	0	10	0	
	Soybean	0	30	Q	0.0	0	0	Q	Ü	0	0	0	0	O.	ũ	
	Sunflower	0	50	10	0	0	0	10	Ü	0	0	0	0	0	O	
	Surinam Grass	20	10	Ŭ	1.0	20	10	10	20	1.0	10	0	0	ŋ	0	
35	Velvetleaf	20	80	Q	20	944	Q	100	40	70	90	40	Q	0	Û	

	Table C						à.	Comp	ound	3					
	62 g ai/ha	56	57	58	60	61	62	63	64	65	80	88	95	96	102
	Preemergence														
	Bermudagrass	85	55	90	80	1.0	10	50	0	40	10	90	70	40	100
5	Cocklebur	0	0	0	0	0	Ü	0	Ö	0	0	0	0	Ŏ	10
	Corn	0	0	Ü	0	0	0	0	Ø	0	Ü	ð	Ŭ	15	0
	Crabgrass, Large	95	95	90	90	50	40	1.0	Ü	50	ņ	90	80	85	100
	Cupgrass, Woolly	0	Q	0	0	0	Ö	0	0	Ü	Q	20	5	5	0
	Foxtail, Giant	45	20	70	0	Ò	15	g	0	0	10	0	60	70	1.0
10	Goosegrass	60	45	90	55	0	10	10	Ö	10.	10	60	Ø	30	90
	Johnsongrass	55	20	70	10	1.0	40	30	0	10	1.0	0	0	40	50
	Kochia	75	100	95	30	10	100	30	0	10	10	0	100	90	Q
	Lambsquarters	85	100	100	100	100	100	30	Ü	20	0	95	+		0
	Morningglory	Ω	0	10	O	0	i de la	0	Q	Ŭ	20	Ü	5	0	30
15	Nightshade	90	85	95	30	٥	80	70	0	50	10	40	95	90	90
	Nutsedge, Yellow	Ö	0	1.0	0	Ü	0	0	Ü	0	0	0	0	0	Q
	Pigweed	1.00	100	100	100	Q	95	100	3.0	70	40	100	100	100	90
	Ragweed	60	65	60	10	0	1.0	0	0	0	Ŏ	0	50	50	10
	Soybean	0	0	Ü	0	Ü	0	Q	0	Q	0	0	0	0	0
20	Sunflower	Ŏ	Q	Q	0	Q	Q	0	Ü	0	(Ang)	0	Q	ij.	0
	Surinam Grass	J.Q.	ð	10	0	0	5	0	Q.	Ø	0	10	Ŏ	0	0
	Velvetleaf	20	0	80	S	0	40	10	0	0	20	0	Ò	50	ij.
	Table C						Ċ	Compo	ounds	š					
	62 g ai/ha	108	114	115	118	128					139	140	144	145	146
25	Freemargence												8		
	Bermudagrass	100	50	100	90	100	60	15	80	50	60	0	70	20	1.0
	Cocklebur	20	20	20	20	1.0	0	0	Q.	Q	0	0	0	0	0
	Corn	30	1.0	10	0	20	0	Ŭ	0	Ö	0	Q	0	0	0
	Crabgrass, Large	100	100	1.00	70	1.00	e jes	45	65	40	40	0	50	· Speedy	20
30	Cupgrass, Woolly	30	(ea	20	0	10	5	0	0	0	0	0	0	0	0
	Foxtail, Giant	100	30	40	0	10	40	30	0	10	40	Ď	40	0	0
	Goosegrass	90	40	70	20	80	10	15	20	40	60	Ü	30	50	a
	Johnsongrass	60	20	70	40	90		15	Q	Ü	20	0	Ò	50	(cas)
	Kochia	100	90	100	20	0	,Ö,	85	85	80	100	70	75	20	50
35	Lambsquarters	100	80	100	50	مجد	10	95	100	40	100	75	95	20	85
	Morningglory	40	. ,	***	20	30	0	0	Ö	Ü	0	0	Q	0	0
	Nightshade	100	70	100	100	90	30	55	90	60	95	D.	90	60	50
	Nutsedge, Yellow	50	Ö	0	Q	14	0	8	Ö	Q	8	0	0	: (0)	Ü

	Pigweed	100	100	100	70	e ja	80	95	95	100	100	100	90	85	80
	Ragweed	20	19	70	0	10	Ø	40	0	0	50	O	0	0	0
	Soybean		70	0	Ö	20	Ü	ŋ	O	0	-	0	0	رخين	0
	Sunflower	20	30	0	0	SA	0	0	0	0	0	0	0	0	Ø
5	Surinam Grass	30	10	20		3.0	5	0	0	Q	0	0	20	10	0
	Velvetleaf	60	30	20	0	30	0	0	20	0		0	20	0	0
	Table C						· ¢	Compo	ounds	3 .					
	62 g ai/ba	147	149	152	153	156	182	182	188	193	195	198	199	202	205
	Preemergence														
10	Bermudagrass	40	30	85	70	88.	0	20	75	60	Û	60	55	20	90
	Cocklebur	0	Ü	;***;	0	63		Ô	0	0	0	0	0	Ŭ.	Q
	Corn	0	()	40	0	15	20	0	0	10	0	Û	Ü	0	0
	Crabgrass, Large	Q	20	100	ð	60	35	0	95	40	Ö	80	1.0	80	60
	Cupgrass, Woolly	Q	0	40	0	3.3	0	0	0	10	Q	Ŭ.	0	0	0
15	Formail, Giant	0	0	70	Q	75	55	0	0	40	0	0	Ø	0	٥
	Goosegrass	O	10	80	55	83	60	Ö	15	60	100	50	5	20	50
	Johnsongrass	0	10	80	0	80	65	O.	0	80	0	Ö	0	0	Ø
	Kochia	944	0	100	65	95	65	0	Q.	85	Û	50	80	60	90
	Lambsquarters	70	75	100	95	100	80	25	95	50	0	85	89	40	85
20	Morningglory	Ö	0	20	0	8	45	0	0	20	0	1.0	(Ame)	0	Ü
	Nightshade	40	80	80	90	75	80	78	80	0	0	90	85	20	80
	Nutsedge, Yellow	0	0	10	0	35	Û	Ŏ	0	0	0	Đ.	0	Ø	0
	Pigweed	20	20	85	95	95	100	95	95	100	55	100	100	95	9.0
	Ragweed	0	Ö	85	0	90	95	50	0	0	30	50	55	O.	0
25	Soybeen	0	Q	O	0	33	15	Ø	0	30	0	0	.0	O	
	Sunflower	۵	Ü	Q	0	25	0	0	Ü	0	0	0	0	0	0
	Surinam Grass	Q	0	40	0	75	0	Q.	20	50	0	0	O	10	0
	Velvetleaf	5	O	0	O	43	70	0	0	0	0	5	1.0	5	10
	Table C						1	Comp	ound	s					
30	62 g ai/ha	207	210	212	213	21.5	221	222	323	242	244	268	269	287	293
	Freemergence														
	Bermudagrass	50	80	60	50	40	0	85	80	95	95	100	100	85	90
	Cocklebur	.0	0	Q		0	0	0	0	0	0	10	0	0	0
	Corn	0	0	Ö	0	0	0	Ö	Q	Ø	O	10	244		1990
35	Crabgrass, Large	80	80	60	0	Ü	0	100	100	100	100	90	95	65	95
	Cupgrass, Woolly	0	0	0	0	0	0	20	Q	75	65	50	10	Ø	45
	Poxtail, Siant	ō	g	0	30	0	0	20	40	85	80	80	50	Q	10

	Goosegrass	1.0	50	10	0	0	Ø	80	60	100	70	85	70	70	65
	Johnsongrass	0	5	0	0	0	0	85	80	65	60	70	40	55	65
	Kochia	90	Ü	85		100	0	90	85	im.		100	70	85	100
	Lambaquarters	90	100	100	80	100	O	100	95	÷	<u></u>	100	95	100	1.00
5	Morningglory	0	Ö	0	Ð	0	0	0	Ü	0	0	Ü	0		
	Nightshade	60	80	70	100	100	30	85	100	100	100	100	90	95	65
	Nutsedge, Yellow	0	0	0	0	0	0	Ŭ	0	0	0	30	5	Ø	0
	Pigweed	100	1.00	100	80	80	90	100	100	100	100	100	100	100	20
	Ragweed	40	0	Ø	0	Q	Ü	80	, See	95	95	70	5	100	85
10	Soybean	0	0	0	Ô	Ü	0	40	0	Ø	0	60	ø	Đ	0
	Sunflower	0	0	0	0	Q	0	0	0	0	0	Û	0	90	10
	Surinam Grass	0	0.	0	Ŭ	0	ŋ	80	50	85	100	70	5	S M 3	440
	Velvetleaf	0	0	20	0	Õ	0	50	0	100	15	50	5	40	80
	Table C						ì	iczmo C	ound	3					
15	62 g si/ha	294	298	299	300	301	304	305	306	307	309	310	314	318	332
	Preemergence														
	Bermudagrass	70	50	100	95	80	5	80	40	90	90	50	10	10	80
	Cocklebur	30	0	Ü	5	0	0	10	Ü	0	0	្ឋា	0	Q	0
	Corn	53	0		30	10	- Q	0	5	0	S	i vag	Ü	Q	Ø
20	Crabgrass, Large	70	85	100	100	90	35	70	100	80	,	30	0	\ _	7.5
	Cupgrass, Woolly	55	Š	50	20	10	12	20	5	. 3	40	3	0	Q	0
	Foxtail, Giant	500	20	100	30	35	5	35	5	70	7.0	5	0	0	O
	Goosegrass	80	85	100	85	50	45	80	50	90	85	70	0	Ø	80
	Johnsongrass	80	20	28	60	30	O	65	40	60	75	0	0	0	O
25	Kochia	100	80	100	60	100	e nyang	100	0	100	100	95	0	10	100
	Lambaquarters	1.00	100	100	100	100	Ö	100	100	100	100	95	O	80	100
	Morningglory	30	, 22,	5	5	5	O	0	5	0	0	0	0	0	0
	Nightshade	160	100	100	100	90	80	60	90	100	70	30	60	80	30
	Nutseäge, Yellow	50	0	40	0	0	O	10	0	5	5	0	S	Ö	O
30	Figweed	100	100	100	100	100	1.00	100	100	100	80	100	30	80	100
	Ragweed	100	Q	100	5	10	0	1.0	Ů.	80	50	0	0	0	0
	Soybean	70	0	55	0	15	0	0	5	40	30	0	Q	0	0
	Sunflower	30	0	10	0	Q	Ø	0	0	0	0	0	0	0	0
	Surinam Grass	85	5	75	30	0	Û	50	خي	70	50	5	Ò	2.0	5
35	Velveticaf	100	60			20	0	40	5	70	5	0	0	60	40

	Table C			Č	ompe	nunds	3							
	62 g ai/ha	333	334	336	340	341	342	343	352					
	Preemergence													
	Bermudagrass	40	100	95	3.0	80	45	60	95					
5	Cocklebur	0	30	0	0	0	10	30	0					
	Corn	0	0	10	5	10	1.0	40	Ø					
	Crabgrass, Large	20	85	100	50	50	60	50	55					
	Cupgrass, Woolly	ŋ	25	5	0	80	10	40	5					
	Foxtail, Giant	0	60	0	Đ.	0	Ø	40	5					
10	Goosegrass	0	100	95	5	70	60	60	80					
	Johnsongrass	Q	90	80	15	15	55	70	50					
	Kochia	80	100	5	10	80	50	90	80					
	Lambsquarters	95	100	100	70	100	70	100	83					
	Morningglory	0	5	5	Ü	0	0	5	5					
15	Nightshade	ेन्द्र.	100	85	50	50	60	69	0					
	Nutsedge, Yellow	Q	10	Q	0	0	O	5	. 0					
	Pigweed	100	100	100	70	95	80	80	40					
	Ragweed	Ü	75	30	Q	50	55	7.0	0					
	Soybean	0	15	0	0	0	10	40	0					
20	Sunflower	0	5	0	O	Q	5	10	0					
	Surinam Gress	Speci	55	SŬ	0	60	40	88	10					
	Velvetleaf	Q	\$.	5	O	30	50	60	0					
	Table C						(Compo	sund:	8				
	31 g ai/ha	4	5	27	29	33	35	43	60	62	80	95 114	118	128
25	Preemergence													
	Bermudagrass	3.0	0	20	40	50	30	30	30	0	0	10 1.0	30	90
	Cocklebur	: ; 9 :	0	0	30	0	0	0	0	0		0 0	0	10
	Corn	0	0	0	0	0	ŭ	~	O	0	0	0 10	0	20
	Crabgrass, Large	40	0	100	90	90	0	0	80	5	0	10 100	10	1.0
30	Cupgrass, Woolly	Q	Ö	0	Ü	20	10	0	0	0	0	0 0	0	10
	Foxtail, Giant	0	0	10	Q	10	0	0	Ō	5	10	0 20	0	0
	Goosegrass	10.	0	20	20	20	20	10	10	0	10	0 20	20	30
	Johnsengrass	5	Ø,	20	30	20	10	0	5	0	Ò	0 0	30	80
	Kochia	10	Q	20	0	80	0	0	80	100	1.0	80 90	10	0
35	Lambsquarters	90	0	90	08	80	0	Ų.	90	100	0	~ 40	50	10
	Morningglory	i , , ;	0	90	90	0	0	O.	0	<u> </u>	0	0 40	Ŭ,	30
	Nightshade	90	80	90	90	10	70	0	1.0	80	Ø	90 20	60	70
	Mutsedgs, Yellow	Ü	0	0.	0	9	0	0	Q	0	Q	0 0	0	70

226

	Pigweed	90	40	100	80	30	0	0	100	90	30	100	0	20	50
	Ragweed	50	G	0	Q.	0	0	0	0	Ð.	0.	10	10	0	0
	Soybean	0	0	0	30	0	0	Ũ	Ü	0	0	0	бû	0	30
	Sunflower	0	Ð	Q.	30	0	10	0	ŋ	, O	0	Ŏ	30	Ü	50
5	Surinam Grass	Ü	0	20	Ø	20	Q	10	Ű	0	Û	0	10	20	20
	Velvetleaf	5	0	0	1.0	Ø	0	Q	5	0	30	0	0	Ü	30
	Table C		Con	pour	ids										
	31 g ai/ha	131 1	39	156	300	334									
	Preemergence														
10	Bermudagrass	0.	10	6.0	80	100									
	Cocklebur	0	0	40	0	5									
	Corn	Ö.	0	0	0	0									
	Crabgrass, Large	Q	20	60	100	70									
	Cupgrass, Woolly	0	0	20	5	20									
15	Foxtail, Giant	0	0	40	1.0	30									
	Goosegrass	0	O	70	70	85									
	Johnsongrass	0	0	70	40	80									
	Kochia	85	7.0	90	60	100									
	Lambaquarters	95	100	100	80	100									
20	Morningglory	O.	Q.	Ø	5	Q									
	Nightshade	0	70) aa,	90	100									
	Nutsedge, Yellow	0	0	10	0	5									
	Pigweed	95	100	80	1.00	85									
	Ragweed	0	Q) va.	5	75									
25	Soybean	0	0	20	O.	3.0									
	Sunflower	0	0	0	0	Ō									
	Surinam Grass	0	Q	40	S	50									
	Velvetleaf	0	0	50	5	O									
	Table C			Co	mpou	nds									
30	16 g ai/ha	4	5	33	35	118	128	156							
	Preemergence														
	Bermudagrass	0	0	3.0	0	0	30	. 0							
	Cocklebur	Ø	0	0	0	0	10	(see							
	Corn	0	0	٥	0	9	20	. 0							
35	Crabgrass, Large	0	0	0	Ü	0	10	30							
	Cupgrass, Woolly	Q	0	20	10	Q	0	0							
								5							

Fextail, Giant 0 0 0 0 0 0 0

227

	Goosegrass	5	0	10	0	20	10	50
	Johnsongrass	0	0	20	10	30	0	5
	Kochia	0	Ŭ	70	0	1.0	U	80
	Lambaquarters	50	0	0	0	40	ß	85
5	Morningglery	550	nger .	Ů	0	0	20	0
	Nightshade	1	80	10	20	20	50	30
	Nutsedge, Yellow	0	Q	0	Q	Ü	10	0
	Pigweed	90	Ó	10	0	20	Ø	80
	Ragwaed	0	0	Ü	O	Û	0	0
10	Soybean	0	Ü	Q.	Ø	Ů.	20	0
	Sunflower	0	0	0	1.0	0	50	Q
	Surinam Grass	O	0	20	0	30	0	Ü
	Velverleaf	Ü	0	Ü	Q	Ö	20	0

TEST D

15

20

25

30

35

Three plastic pots (ca. 16-cm diameter) per rate were partially filled with sterilized Tama silt loam soil comprising a 35:50:15 ratio of sand, silt and clay and 2.6% organic matter. Separate plantings for each of the three pots were as follows. Seeds from the U.S. of ducksalad (Heteranthera limosa (Sw.) Willd.), smallflower umbreila sedge (Cyperus difformis L.) and purple redstem (Ammannia coccinea Rotth.), were planted into one 16-cm pot for each rate. Seeds from the U.S. of rice flatsedge (Cyperus iria L.), bearded sprangletop (Leptochloa fascicularis (Lam.) Gray), one stand of 9 or 10 water seeded rice seedlings (Oryza sativa L. cv. 'Japonica – M202'), and one stand of 6 transplanted rice seedlings (Oryza sativa L. cv. 'Japonica – M202') were planted into one 16-cm pot for each rate. Seeds from the U.S. of barnyardgrass (Echinochloa crus-galli (L.) Beauv.), late watergrass (Echinochloa oryzicola Vasinger), early watergrass (Echinochloa oryzicolas (Ard.) Fritsch) and junglerice (Echinochloa colona (L.) Link) were planted into one 16-cm pot for each rate. Plantings were sequential so that crop and weed species were at the 2.0 to 2.5-leaf stage at time of treatment.

Potted plants were grown in a greenhouse with day/night temperature settings of 29.5/26.7 °C, and supplemental balanced lighting was provided to maintain a 16-hour photoperiod. Test pots were maintained in the greenhouse until test completion.

At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. Effects of treatments on rice and weeds were visually evaluated by comparison to untreated controls after 21 days. Plant response ratings are reported on a 0 to 100 scale; where 0 is no effect and 100 is complete control. A dash (–) response means no test result.

	Table D	Compounds		Table D	Compounds
	Rate 1000 g ai/ba	3 215		Rate 750 g ai/ba	3 215
	Flooded Paddy			Flooded Paddy	
	Barnyardgrass	90 40		Barnyardgrass	60 30
	Ducksalad	100 75		Ducksalad	100 20
	Flatsedge, Rice	100 90		Flatsedge, Rice	100 80
	Junglerice	100 25		Junglerice	100 25
	Redstem	100 100		Redstem	100 100
	Rice, Transplanted	60 35		Rice, Transplanted	60 20
	Rice, Water Seeded	80 45		Rice, Water Seeded	70 45
	Sedge, Umbrella	100 100		Seägs, Umbrella	100 95
	Sprengletop, Bearded	85 20		Sprangletop, Bearded	85 20
	Watergrass, Early	60 40		Watergrass. Early	45 25
	Watergrass, Late	80 20		Watergrass, Late	60 20
	Table D	Compo	បលជីន	Table D	Compounds
	Rate 500 g ai/ha	3 155	215	Rate 250 g ai/ha	3 155 215
	Flooded Faddy			Flooded Paddy	
	Barnyardgress	20 80	Q.	Barnyardgrass	0 35 0
	Ducksalad	95 60	20	Ducksalad	85 60 0
	Flatsedge, Rice	100 70	60	Flarsedge, Rice	100 60 60
	Junglerice	70 65	30	Junglerice	30 40 0
	Redstem	100 95	100	Redstem	85 95 100
	Rice, Transplanted	50 30	20	Rice, Transplanted	30 30 10
	Rice, Water Seeded	60 40	45	Rice, Water Seeded	45 35 35
	Sedge, Umbrella	100 80	95	Sedge, Umbrella	95 75 95
	Sprangletop, Bearded	60 75	20	Sprangletop, Bearded	20 40 20
	Watergrass, Early	40 70	20	Watergrass, Early	20 35 0
	Watergrass, Lace	60 60	20	Watergrass, Late	20 30 0
	Table D	Compo	unds		
	Rate 125 g ai/ba	3 152	155 21	\$	
	Flooded Faddy				
5	Barnyardgrass	0 35	20	0	
	Ducksalad	30 90	Ö	Ö.	
	Flatsedge, Rice	70 95	30	ø	
	Junglerice	26 30	40	Q.	
	Redstem	40 90	0	Ø.	
10	Rice, Transplanted	20 45	20	Ø -	

WO 2004/035545	PCT/IIS2001/032968

	Rice, Water Seeded	40	45	25	30			
	Sedge, Umbrella	80	95	75	20			
	Sprangletop, Bearded	.0.	40	30	20			
	Watergrass, Early	20	45	25	0			
5	Watergrass, Late	0	40	20	0			
	Table D					Table D		
	Rate 64 g mi/ha	152	155			Rate 32 g ai/ha	152	155
	Flooded Paddy					Flooded Paddy		
	Barnyardgrass	10	0			Barnyardgrass	Ü	Q
	Ducksalad	80	0			Ducksalad	75	Ü
	Flatsedge, Rice	90	Ø			Flatsedge, Rice	75	0
	Junglerice	Ď	40			Junglerice	Ø.	20
	Nedstem	85	Ď			Redstem	60	0
	Rice, Transplanted	40	6			Rice, Transplanted	28	Q
	Rice, Water Seeded	40	o o			Rice, Water Seeded	30	0
	Sedge, Umbrella	85	65			Sedge, Umbrella	75	30
	Sprangletop, Bearded	35	30			Sprangletop, Bearded	30	30
	Watergrass, Early	(0)	0			Watergrass, Early	0	0.
	Watergrass, Late	20	Ö			Watergrass, Late	15	0
	Table D	Comp	branc			Table D	Compo	ound
	Rate 16 g ai/ha	152				Rate 8 g ai/ha	152	
	Flooded Paddy					Plooded Paddy		
	Barnyardgrass	Û				Barnyardgrass	0	
	Ducksalad	70				Ducksalad	:ប	
	Flatsedge, Rice	75				Flatsedge, Rice	75	
	Junglerice	0				Junglerice	0	
	Redstem	Ö				Redstem	Ü	
	Rice, Transplanted	20				Rice, Transplanted	0	
	Rice, Water Seeded	20				Rice, Water Seeded	a	
	Sedge, Umbrella	70				Sadge, Umbrella	0	
	Sprangletop, Bearded	30				Sprangletop, Bearded	30	
	Watergrass, Early	0				Watergrass, Early	Õ	
	Watergrass, Late	0				Watergrass, Late	0	

TEST E

10

Seeds of plant species selected from bipinnate beggarticks (Bidens bipinnata L.), hairy beggarticks (Bidens radiata Thuill.), bermudagrass (Cynodon dactylon (L.) Pers.), Surinam grass (Urochloa decumbens (Staph) R. D. Webster, previously named Brachiaria decumbens

WO 2004/035545

10

15

20

Stapf), large crabgrass (Digitaria sanguinalis (L.) Scop.), green foxtail (Setaria viridis (L.) P.Beauv.), geosegrass (Eleusine indica (L.) Gaertn.), johnsongrass (Sorghum halepense (L.) Pets.), kochia (Kochia scoparia (L.) Schrad.), pitted morningglory (Ipomoea lacunosa L.), purple nuisedge (Cyperus rotundus L.), common ragweed (Ambrosia elatior L.), mustard (Brassica nigra (L.) W.D.J. Koch), guineagrass (Panicum maximum Jacq.), dallisgrass (Paspalum dilatatum Poir.), barnyardgrass (Echinochloa crus-galli (L). P.Beauv.), southern sandbur (Cenchrus echinatus L.), common sowthistle (Sonchus oleraceous L.), prickly sida (Sida spinosa L.), Italian ryegrass (Lolium multiflorum Lam.), common purslane (Portulaca oleracea L.), broadleaf signalgrass (Brachiaria platyphylla (Griseb.) Nash), common groundsel (Senecio vulgaris L.), common chickweed (Stellaria media (L.) Vill/Cyr.), tropical spiderwort (Commelina benghalensis L.), annual bluegrass (Poa annua L.), downy bromegrass (Bromus tectorum L.), itchgrass (Rottboellia eochinchinensis (L.) L.f.), quackgrass (Elytrigia repens (L.) Nevski), Canada horseweed (Erigeron Canadensis L.), field bindweed (Convolvulus arvensis L.), spotted spurge (Euphorbia maculata L.), common mallow (Malva sylvestris (=s silvestris) L.), and Russian thistle (Salsola kali L. ssp. Ruthenica (Iljin) Soo) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these weed species were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for 12 to 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

25	Table E				(Congu	ound	3			
	500 g ai/ha	6	14	16	152	156	162	193	222	294	299
	Postemergence										
	Barnyardgrass	98	75	80	75	98	95	90	**	80	80
	Beggarticks, Bip.	- North	(men)	,	À.		Ş e n,	***		75	80
30	Bermudagrass	98	85	80	75	98	80	95	80	75	80
	Bindwaed, Field	100	60	40	50	100	98	50		70	95
	Black Mustard	100	100	100	100	1.00	95	0.00	95	95	100
	Bluegrass	98	90	100	85	98	98	85	90	95	100
	Bromegrass, Downy	100	.,44,	100	80	100	100	03	5	95	95
35	Chickweed	100		100	100	100	, .	100	1.00	÷.	ian.
	Crabgrass, Large	98	80	75	80	98	33	100	100	80	95
	Dallisgrass	90	70	85	75	9.0	85	90	85	70	85
	Foxtail, Green	98	80	85	85	100	95	90		85	100

231

Goosegrass 98 80 80 75 98 98 85 90 85 85

	Groundsel	100	100	75	95	100	100	100	100	چنون	. j .		
	Guineagrass	98	1.00	70	80	38	98	100	, ¹ 1777 , 1	85	85		
	Horseweed	100		in (c)	-	100	100	90	100	September 1	. **		
5	Itchgrass	95	70	95	75	98	95	75	-	80	80		
	Johnsongrass	98	70	100	95	100	100	80		90	85		
	Kochia	100	بيت	-	÷.	100		uşi.	-	***			
	Mallow	1.00	حجار	70	50	100	100	90	~	100	100		
	Morningglory	80	40	30	30	90	90	75	80	20	60		
10	Mutsedge, Purple	وهنو	70	75	75	*		70	. 55.	90	85		
	Prickly Sida	· 1950	75	100	85	Ž,	ige.	95	100	100	95		
	Purslane	100	(244) (444)	*	نېد :	100	i signat	85	. govern	90	100		
	Quackgrass	98	60	100	80	98	95	80	85	85	100		
	Ragweed	95	70	80	75	98	90	75	**	80	90		
15	Ryegrass, Italian	98	1.00	100	90	98	100	95	85	95	8.5		
	Sandbur	100	50	75	100	98	90	20	80	80	80		
	Signalgrass	98	75	70	70	98	90	80	85	70	80		
	Sowthistle	100	100	95	100	100	100	95	100	80	,ewe.		
	Spiderwort	95	80	30	80	65	65	70	,,	90	90		
20	Spurge, Spotted	·w.	100	jangan.	95	, w	-	(44)	14900	e de la compansión de l	survey.		
	Surinam Grass	98	80	75	8.0	100	100	90	i we	85	90		
	Thistle		60	75	80	i d	- 37	C 1888		80	90		
	Table E						Comp	ound	8				
	250 g ai/ha	2	6	13	14					193	222	294	299
25	Postemergence												
	Barnyardgrass	95	95	70	50	70	75	98	90	80	70	75	70
	Beggarticks, Bip.			i deser				, co.	**	,	940	70	60
	Bermidagrass		90	90	50	80	75	95	70	90	80	75	70
	Bindweed, Field		1.00		50			80	95	50	95	50	នប
30	Black Mustard	100	100	90	80	100	100	100	90	95	95	90	1.00
	Bluegrass	100	98	60	75	80	85	98	98	70	90	95	80
	Bromegrass, Downy	98	100	30	30	100	75	100	98	70	80	85	80
	Chickweed	. 44	100	95	75	95		100	100	95	100		
	Crabgrass, Large	98	98	90	70	60	75	95	90	100	90	75	95
35	Dallisgrass	90	80	7.0	50	60	75	90	70	90	85	60	75
	Foxtail, Green	95	98	60	50	60	85	100	85	50	80	80	85
	Goosegrass	98	98	50	60	7.0	60	98	95	80	90	80	80
	Groundsel	80	1.00	85	-	75	95	100	80	7.0	95	90	100

	Guineagrass	95	95	70	85	50	70	95	90	70	100	80	75
	Horseweed	444	1.00	100	95	. 444	4	100	100	70	90		· my
	Itchgrass	90	95	75	50	60	75	95	95	60	70	75	75
	Johnsongrass	100	98	30	50	70	80	100	100	70	60	80	85
3	Kochia	-	100			إخت	Jene	100	المعاد	9- 1,		e rio	-
	Mallow	80	100	50	70	40	50	95	80	90	60	50	50
	Morningglory	90	60	60	30	10	20	80	80	60	60	20	40
	Nutsedge, Purple	, <u></u> .	.نت.	40	40	75	50	90	75	40	30	80	80
	Prickly Sida	المحادة		85	60	70	80	,	, we	75	100	80	95
10	Purslane	ستر	100	70	1,75	at men	· ·	100	4	60	60	90	80
	Quackgrass	.98	95	60	50	95	80	95	90	80	80	85	95
	Ragweed	**	95	60	60	60	60	90	80	70	70	70	70
	Ryegrass, Italian	98	98	75	60	95	90	98	98	95	85	95	85
	Sandbur	95	100	10	10	60	40	80	80	10	50	75	70
15	Signalgrass	85	95	50	50	40	60	95	80	75	80	50	70
	Sowthistle	95	100	100	90	95	90	100	75	95	1.00	C _{ress})	95
	Spiderwort	7.0	90	30	30	-	10	50	60	S 0	60	70	80
	Spurge, Spotted	4	بين	-		95	- 44		, û		***	···	· in
	Surinam Grass	100	95	80	20	60	60	98	98	85	80	80	75
20	Thistle	ju.	بنيد	.coc.		70	80	80	, w	y	.565	80	70
	Table E					e é	Yestero.	ound:	at.				
	125 g ai/ha	2	S	13	14					193	222	294	299
	Fostemergence	715,		emer.		- Section						.,	m# 5
	Barnyardgrass	90	90	7.0	30	60	50	95	80	75	50	60	70
25	Beggarticks, Bip.	بها اندا انتجاز	-	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								60	60
	Bermudagrass	85	80	50	30	40	40	95	30	90	80	50	50
	Bindweed, Field	70	95	20	30	10	30	65	80	i jed	75	50	70
	Black Mustard	95	100	80		100		100	75	95		90	100
	Sluegrass	98	98	30	50	20	60	95	95			95	70
30	Sromegrass, Downy	75	98	20	10	1990		100	95			75	70
	Chickweed		100			295			100		100		
	Crabgrass, Large	95	90	70	30	50	60	80	50		80		85
	Dallisgrass	80		40	10	50	30	85	40	40	60	40	70
	Poxtail, Green	90		20	20	4.0	40	95	50	20	40	60	70
35	Goosegrass	95			40	50	50	38	80	7.0	75	60	80
	Groundsel	er in	95	50		75	30	100	30	40	70		70
	Guineagrass	75		& 0	30	50	(1000) (1000)	1.65	75	60	70	70	70
	Horseweed		100						70	50	40		4
	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			153					47.27	20.00			

	Itchgrass	30	90	50	20	50	60	95	85	60	50	70	70
	Johnsongrass	90	95	30	20	50	70	95	80	70	60	70	80
	Kochia	100	100	1,22	:		-, -'	100	· y			- 44	. بيد
	Mallow	75	95	20	. 👾		بيد	90	60	60	60	40	30
5	Morningglory	60	10	50	1.0	10	1.0	65	70	60	40	10	20
	Nutsedge, Purple	انفتار ا	95	20	30	50	30	75	***	20	10	70	75
	Prickly Sida	14 .		70	60	60	*		(**)	80	100	70	95
	Purslane	yes	90	70	· · · · · · · · · · · · · · · · · · ·		يڭ. ئارىم	100	lego.	60	30	60	75
	Quackgrass	90	90	30	20	50	70	35	70	70	75	80	75
10	Ragweed	80	90	30	20	20	50	90	75	30	80	60	60
	Ryegrass, Italian	90	35	40	50	80	90	95	95	60	80	80	80
	Sandbur	75	95	10	10	30	20	75	50	0	10	50	40
	Signalgrass	30	90	10	10	20	20	85	70	50	40	30	60
	Sowthistle	90	95	60	90	70		90	75	60	50	80	85
15	Spiderwort	n-c	75	30			~	30	10	20	40	30	80
	Spurge, Spotted	العبرا		++ .	20	95	- 350	See.	; ₁ ,	(Auto)	and,	,	enț.
	Surinam Grass	90	90	30	20	60	30	95	90	7.0	80	70	75
	Thistle	que 	.w.	w.	10	60	70	80		S.	e de la composition della comp	60	70
	Table E				උත	ແນດໝ	រជន						
20	62 g ai/ha	2	6	1.3				222	294	299			
	Postemargence												
	Barnyardgrass	80	80	10	90	60	10	50	40	40			
	Beggarticks, Bip.	9.es.	,	terri,		1000	u.	بيد	40	40			
	Bermudagrass	20	35	50	65	Ö	60	60	20	40			
25	Bindweed, Field	50	10	10	65	50	20	60	10	30			
	Black Mustard	90	95	70	98	60	60	90	70	1.00			
	Bluegrass	90	98	10	90	90	20	60	95	60			
	Bromegrass, Downy	65	98	10	90	50	20	10	60	50			
	Chickweed	غني	100	50	100	80	40	80	<u>.</u>	. <u>.</u>			
30	Crabgrass, Large	90	75	50	35	30	10	60	40	75			
	Dallisgrass	75	60	10	75	20	10	30	10	50			
	Foxtail, Green	60	30	10	75	30	10	10	40	30			
	Goosegrass	95	90	50	95	50	20	60	50	60			
	Groundsel	.44	20	30	80	20	20	40	50	· '**			
35	Guineagrass	30	80	40	60	35	20	70	50	60			
	Horseweed	.96	75	(, est)	-	70	50	20					
	Itchgrass	70	90	50	80	75	30	60	50	30			
	Johnsongrass	80	90	0	85	85	40	10	40	60			

	Kochia	41	100	(4) :	<u>.</u> ,	i	٠. %	نور بد	e ion		
	Mellow	50	65	10 8	0 4			20			
	Morningglory	. 445	Q	20 1	0 31						
	Nutsedge, Purple	4	75	0		- (50			
5	Prickly Sida	***	,	60		- 60					
	Purslane		75	30 7	5	- 20					
	Quackgrass	70	80	0 7	5 5() 0	30	60			
	Ragweed	60	75	20 8							
	Ryegrass, Italian	80	80	10 9	0 50	30	50	70	2740		
10	Sandbur	65	85	0	0 20) 0		- 2			
	Signalgrass	30	35	10 4	0 30						
	Sowthistle	90	75	50 90	0 75		er iv		30		
	Spiderwort	20	60	- 2(9 (}		40.10			
	Surinam Grass	75	75	20 80			50		70		
15	Thistle	(spec)	,	÷				30	40		
	Table E Com	pound	Tab	le E		e.	mpor	mä	Table :	pr jed	ompound
	31 g al/ha	13		g ai/	ha			3	31 g a		13
	Postemergence			segra				.0	Pursla		20
	Barnyardgrass	9		undse				0	Quackg.		ě.
	Bermudagrass	20		neagr				0	Ragwee		20
	Bindweed, Field	10		sewee				0		ss, Italis	
	Black Musterd	70		hgras:	٠.			Ů.	Sandbu		o.
	Bluegrass	10		nsong.				Q:	Signal		1.0
	Bromegrass, Downy	0		low				0	Sowthie		10
	Crabgrass, Large	3.0		ningg	lory			Q ·	Spider	e facilità de la companie de la comp	10
	Dallisgrass	ŭ		sedga.	- 1,- 7			O.	Surinar		20
	Foxtail, Green	10		okly i			Ą			and the second second	. 44.00.
	Table S				ar e		Compo				
	500 g ai/ha	2	6	7 14	16	144	152	156	162 193	222 268 3	193 294
	Preemergence										
- 578.000 ·		100 1	12	0 95	95			100	100 95	100 100 1	100 100
20	Beggarticks, Heiry			0 ~				- many	سر النبوا		L00 100
	Bermudagrass	100 1			100					100 100	95 95
		80 1		0 100					100 85		
										100 100 1	
73X 25		100 1								100 95 1	5.00
25	Bromegrass, Downy	30 1	00 S	0 90	95	80	90	100	100 90	100 100	80 100

	Chickweed	95	100	- 1	95	100	95	100	100	95	100	100	-	n dest		
	Crabgrass, Large	100	100	100	100	100	60	100	95	100	100	100	95	100	100	
	Dallisgrass	95	100	85	95	95	80	95	100	95	100	100	85	100	95	
	Foxtail, Green	100	100	50	100	100	90	100	100	100	100	100	100	100	100	
5	Goosegrass	95	100	7.0	95	85	80	90	100	95	95	95	95	100	100	
	Groundsel	100	100	, <u>.</u>	100	100	100	100	100	100	100	100	·	. ass		
	Guineagrass	100	100	100	95	80	80	100	100	1.00	100	100	100	100	100	
	Horseweed	100	100	**	100		100		100	100	100	100	jac	بنند		
	Itchgrass	95	95	70	95	85	75	80	100	100	100	95	95	100	100	
10	Johnsongrass	100	100	70	95	80	60	85	100	100	95	100	80	85	85	
	Kochia	100	100	85	100	100	90	95	100	95	100	100			ينية :	
	Mallow	80	100	70	95	95	95	90	100	100	95	95	90	85	80	
	Morningglory	80	100	10	70	40	100	40	100	100	70	95	60	90	70	
	Nucsedge, Purple	95	100	100	75	80	50	60	95		80	80	85	60	90	
15	Prickly Sida	- 44	j.	20	100	95	95	95	***	- juli	95	100	100	100	100	
	Purslane	100	1.00	30	100	95	100	100	100	100	100	100	1944	1 ·	Ģ.,	
	Quackgrass	80	100	50	95	90	80	60	100	90	95	100	95	95	95	
	Ragweed	85	95	50	95	95	46	80	1.00	95	95	95	100	100	100	
	Ryegrass, Italian	95	100	40	95	95	95	95	100	95	100	100	95	100	100	
20	Sandbur	100	100	40	80	85	60	80	80	80	60	95	100	100	300	
	Signalgrass	90	95	40	95	70	50	80	95	100	93	95	80	100	80	
	Sowthistle	95	1.00	95	95	95	95	95	100	95	95	95	100	100	100	
	Spiderwort	100	95	60	90	70	100	80	80	75	95	95	90	90	95	
	Spurge, Sported	i nasy	(jan)		100	100		100	u.i.	بنتار	en'		1944			
25	Surinam Grass	90	100	80	100	90	70	80	95	100	100	100	100	100	100	
	Thistle	80	80	10	100	80	,540)	100	100	70	-	**	100	100	100	
	Table E Co	sogac	ınd				Tabl	e E			Cor	npou	ದಿರ್ದೆ			
	500 g ai/ha	299					375	g ai	/ba		2	93 2	94			
	Presmergence						Prec	merg	ence							
	Barnyardgrass	100					Barn	yard	gras:	Š	1	00 1	00			
	Beggarticks, Hairy	100					Begg	arti	oks,	Hai	ry 1	00 1	00			
	Bermudagrass	100					Eerm	ប្រជុំងផ្ល	rass		4)s :	95			
	Bindweed, Field	95					8i.nd	weed	, ¥1.	ald	- 1	95	95			
	Black Mustard	100					Blac	k Mu	etar;	3	1	00 1	00			
	Bluegrass	95					Blue	gras	ă		1	ð5 !	95			
	Bromegrass, Downy	100					Brom	egras	3S,]	own	y.	- 1	00			
	Crabgrass, Large	100					Crab	gras	5, L	rge	1	00 1/	90			
	Dallisgrass	100				;	Dall	isgr	388		38	95	95			

		236		
Poxtail, Green	100	Foxtail, Green	95	100
Goosegrass	100	Goosegrass	95	100
Guineagrass	100	Guineagrass	100	100
Itchgrass	106	Itchgrass	100	95
Johnsongrass	100	Johnsongrass	70	85
Mallow	1.00	Mallow	80	-
Prickly Sida	100	Morningglory	50	40
Quackgrass	100	Mitsedge, Purple	50	80
Ragweed	1.00	Prickly Sida	100	100
Ryegrass, Italian	100	Quackgrass	95	95
Sandbur	100	Ragweed	100	100
Signalgrass	100	Ryegrass, Italian	95	100
Sowthistle	1.00	Sandbur	100	95

Signalgrass 100 Ryegrass, Italian 95 100
Sowthistle 100 Sandbur 100 95
Spiderwort 95 Signalgrass 95 80
Surinam Grass 100 Sowthistle 95 100
Thistle 100 Spiderwort 80 90

Thistle 95 100

Surinam Grass

100 100

75 100 95 80 95

79

90

Compounds Table E 14 16 144 152 156 162 193 222 268 293 250 g ai/ha 3 13 Preemergence 85 100 100 85 100 100 100 30 80 100 95 60. 90 85 Barnyardgrass 20 - 100 100 Beggarticks, Hairy 90 85 95 100 90 100 100 100 35 80 100 95 Bermudagrass 75 50 50 60 100 100 80 95 Bindweed, Field 70 1.0 60 85 75 95 100 80 100 100 100 100 100 100 50 100 100 Black Mustard 95 100 95 100 100 100 100 95 95 100 75 90 95 Bluegrass 10 90 95 60 50 80 85 60 60 100 90 80 90 80 80 Bromegrass, Downy 95 100 100 95 95 95 95 100 100 95 95 Chickweed 50 100 95 95 100 100 95 95 100 75 100 100 90 Crabgrass, Large 95 95 95 80 90 95 90 60 85 100 93 95 100 Dallisgrass 80 85 100 100 80 100 100 95 95 100 8.0 Foxtail, Green 100 30 15 80 80 100 95 90 90 95 90 95 40 90 90 85 Goosegrass - 100 100 100 100 100 100 80 100 100 100 Groundsel 1.00 95 60 90 95 80 50 80 100 100 100 100 100 100 Quineagrass 100 - 100 100 100 100 100 100 - 100 Horseweed

90

Itchgrass

40 60

75 70

~	

						الاقتيد										
	Johnsongrass	100	90	20	80	95	75	60	80	100	100	85	90	50	60	
	Kochia	100	100	80	75	95	70	90	85	100	95	100	100		1,9 45 , , +	
	Mallow	50	- Georgia	60	50	95	85	70	90	100	100	95	95	80	50	
	Morningglory	60	ा सूच्य	10	50	60	30	20	40	100	85	50	40	40	40	
5	Nutsedge, Purple		100	30	60	60	70	30	50	*		50	70	85	40	
	Prickly Side	يغبر	(44c)	Q	nic.	85	90	90	60	÷.		70	100	100	80	
	Purslane	100	100	Ü	100	100	95	90	50	100	100	100	100	, see	•	
	Quackgrass	70	- 75	30	60	90	80	70	50	95	75	70	100	95	80	
	Ragweed	70		20	80	95	70	40	80	95	75	80	95	100	70	
10	Ryegrass, Italian	95	. 777	40	60	85	95	80	80	100	95	100	100	95	95	
	Sandbur	80		30	20	46	80	30	70	75	80	20	70	100	100	
	Signalgrass	75	***	30	70	95	50	30	70	90	100	70	95	80	95	
	Sowthistle	95	100	95	95	95	90	90	95	100	80	95	90	100	95	
	Spiderwort	70	80	20	50	80	60	60	75	50	75	90	6 2 4 6 10	85	80	
15	Spurge, Spotted	. j .	- Carlo	de	- 4	100	3.00	(Native	100	· (****)	. 044			-	- 	
	Surinam Grass	80	- See	30	90	95	80	50	70	95	95	90	100	100	100	
	Thistle	60	70	10	, i	60	50	1944	40	100	50			100	80	
	Table 5	Comps	ounda				Table	3 E			Co	mpo).	mds			
	250 g al/ha	294	299				250	g al/	ha		2	94 2	99			
	Preemergance						Pres	marge	nce	i						
	Barnyardgrass	95	95				Koch	ia				w.	, (ve.)			
	Beggarticks, Hairy	100	100				Mall	SWC.				40	95			
	Barmudagrass	95	100				Morn	inggl	оху	r.,		10	90			
	Bindweed, Field	90	95				Nuts	edge,	P.	uple	2	80	80			
	Black Mustard	100	100				Pric	kly S	side	.	3	(00)	.00			
	Bluegrass	95	95				Purs	lane				14	12 45 5			
	Bromegrass, Downy	100	100				Quac	kçras	:8			80	95			
	Chickweed	- Guer	. شيد				Ragw	ଓଡ଼ପ୍				85	90			
	Crabgrass, Large	95	1.00				Ryeg	rass,	<u>.</u> It	alia	ın l	00	100			
	Dailisgrass	80	100				Sand	bur				80	100			
	Foxtail, Green	1.00	100				Sìgn	algr	SE			70	100			
	Goosegrass	95	100				Sowt	hist.	18			95	100			
	Groundsel		ė ė				Spid	erwo	ct			85	95			
	Guineagrass	100	100				Spur	ge, i	ioq8	ted		Sec.				
	Horseweed	÷	- 1				Suri	nam (īras	5.83		1.00	95			
	Itchgrass	75	90				This	tle			ો	100	100			
	Johnsongrass	75	80													

	Table E						Ç	ompo	າແກຕ້ອ	Y					
	125 g ai/ha	2	8	7.	13	14	16	144	152	156	162	193	222	268	293
	Preemergence														
	Barnyardgrass	80	95	30	80	80	80	60	75	100	100	75	90	85	60
5	Reggarticks, Hairy	- Seeding		10	1400	<u> </u>	أريتورا	, -	, 	انسا	**	1404	aix.	95	100
	Bermudagrass	95	95	50	95	95	90	80	90	100	80	100	100	90	90
	Bindweed, Field	نين. م	60	10	30	75	50	**	20	90	80	50	40	20	40
	Black Mustard	100	100	30	100	75	85	70	90	100	50	100	100	100	95
	Bluegrass	100	100	60	60	95	95	90	80	95	100	100	100	95	95
10	Bromegrass, Downy	90	95	10	30	30	70	50	30	80	80	30	96	80	्र
	Chickweed	90	95	· ·	90	95	95	90	95	100	95	100	100	4.	
	Crabgrass, Large	80	90	60	80	95	50	40	70	90	90	80	100	80	95
	Dallisgrass	50	95	40	75	85	80	30	80	95	95	95	80	80	60
	Foxtail, Green	80	95	1.0	30	75	60	50	70	100	85	30	50	95	50
15	Goosegrass	90	95	40	80	90	80	50	70	95	90	80	75	80	90
	Groundsel	70	100	*	100	80	20	100	100	100	40	100	100	₩.	
	Guineagrass	80	95	40	60	90	60	20	50	100	100	70	95	85	100
	Horseweed	100	100	See als	100	SA.	ω,	100	"(per)	100	1.00	100	100		·*****
	Itchgrass	70	95	30	50	70	50	70	60	100	95	7.0	95	60	10
20	Johnsongrass	90	90	10	50	70	70	50	50	100	100	75	80	50	1.0
	Kochia	100	100	0	70	95	70	80	85	100	70	100	100		5.44
	Mallow	-	100	60	50	85	60	60	80	100	70	95	80	50	40
	Morningglory	50	70	1.0	50	30	20	20	10	100	60	30	30	10	1.0
	Mutsedge, Purple	:	100	0	30	50	70	30	20		,i.,.	30	40	70	æ
25	Prickly Sida	بعدر	, van	Ŏ	· Supple	75	90	90	20			70	70	80	·
	Fursiane	100	100	Q	60	100	95	20	Ü	100	100	60	100		-
	Quackgrass	60	100	20	30	50	70	30	20	90	60	60	80	85	70
	Ragweed	60	80	20	20	60	50	30	60	90	60	50	85	60	50
	Ryegrass, Italian	80	95	40	40	70	90	60	50	95	95	90	100	95	60
30	Sandbur	70	100	30	Ü	40	70	30	30	60	70	10	40	70	10
	Signalgrass	7.0	75	20	30	60	60	20	40		70	60	60	50	50
	Sowthistle	95	95	50	90	90	60	50	80	100	60	95	90	100	75
	Spiderwort	60	75	10	50	60	10	60	20	50	40	80	e consi	70	60
	Spurge, Spotted	: •••	ينسو	eri u .		100	100	,	100					<u>.</u>	.
35	Surinam Grass	80	90	· Şiş	50	90	75	50	50	75	75	80	90	90	80
	Thistle	60	70	10		60	50	ىپ د	20	100	50	· —		60	50

WO 2004/035545 PCT/US2003/032965

	Table E	ompo	unds			Ţ.	able	E			Con	iboni	ıds		
	125 g ai/ha	294	299			1	25 g	ai/	ha		25	4 29	9		
	Preemargance					p	reen	erge	nce						
	Barnyardgrass	95	85			ĸ	ochi	â				القوا	(Away)		
	Beggarticks, Hairy	100	100			ĸ	%1,1 0	rigit .			1. <u>Ž</u>	10 7	15		
	Bermudagrass	90	100			M	orni	nggl	ory		1	0 7	15		
	Sindweed, Field	10	60			N	utse	cige,	Pur	ple	\$	30	Tellingue;		
	Black Mustard	100	100			Ş	rick	dy s	Sida		3.0	3 0	15		
	Bluegrass	9.5	95			Ъ	ursl	ane				iored.			
	Bromegrass, Downy	80	i in			Q	uack	gras	ខន		1	30 8	30		
	Chickweed	्टबंब	(A)			R	agwe	ed			4	75 8	35		
	Crabgrass, Large	75	100			R	Nedr	ass,	Ita	iliar	3 8	30 9	₹5		
	Dallisgrass	75	85			S	andl	nir				70 (50		
	Foxcail, Green	80	100			S	igna	elgr:	ass		3	50 {	30		
	Goosegrass	95	100			S	owti	nist:	le		3	30 1	00		
	Groundsel	بثند	10000			S	pide	erwo:	rt.)	35		
	Guineagrass	30	85			S	purg	je, l	3pot!	೧ಆರ		. Was .	. **		
	Horseweed	ies.	steeds)*			S	urir	iam (Grass	3	3	95	95		
	Itchgrass	***	75			7	hisi	:le			ii o	50 1	0.0		
	Johnsongrass	30	60												
	Table E						į C	ompo	ounds	5					
	62 g ai/ha	2	6	7	13	14	16	144	152	156	162	193	222	268	299
	Preemarganca														
	Barnyardgrass	60	90	Q	30	60	70	30	60	100	60	20	50	60	60
5	Beggarticks, Hairy	·	مهر	0	541		* *) (** .	(max)	.w.		Şec.	navej	40	50
	Bermudagrass	90	90	10	80	90	80	50	70	95	70	85	80	60	80
	Bindweed, Field	10	30	0	30	80	0	0	10	60	30	50	, MA	Ü	10
	Black Mustard	60	100	10	70	60	80	30	90	100	20	80	90	90	100
	Bluegrass	95	100	Ö	50	50	90	80	60	95	100	80	90	80	85
10	Bromegrass, Downy	50	30	0	0	30	7.0	20	0	60	40	1.0	30		-,25
	Chickweed	90	90	- T	90	90	70	50	90	80	i in	80	80	'see.'	•••
	Crabgrass, Large	7.0	80	20	60	95	20	0	40	Sec.	50	80	70	70	90
	Dallisgrass	60	90	40	50	40	50	Ü	50	90	70	40	50	70	75
	Foxtail, Green	40	95	Q	1.0	30	60	10	20	100	30	10	10	70	50
15	Goosegrass	80	85	0	50	70	б 0	20		95	60		60		100
	Groundsel	60	100	٠	70	80		10		41.0	10		30		
	Guineagrass	70	95	0	30	60	20	10	20	90	50	50	90	70	70

240

	Horseweed	80	200		80		Secr	70	يشر	32	100	80	100		, see	
	Itchgrass	60	90	٥	20	10	50	20	2.0	100	40	20	75	50	60	
	Johnsongrass	90	90	0	0	30	40	30	30	95	60	20	70	3.0	40	
	Kochia	90	100	0	30	10	60	Ø	ß,	100	60	100	30		1,500	
5	Mallow	30	70	Ø	50	60	60	60	40	70	50	60	70	50	50	
	Morningglory	30	20	0	Q	1.0	8	0	10	30	30	ø	,	1.0	1.0	
	Nutsedge, Purple		60	0	0	2.0	Sŭ	0	ŋ	بغند	0	Ø	10	50	50	
	Prickly Sida		ند	0	·~·	30	40	10	20	***	بغور	20	20	60	85	
	Purslane	car	100	0	40	100	0	0	0	100	100		70	,		
10	Quackgrass	3.0	95	20	0	30	40	10	10	50	20	10	10	40	80	
	Ragweed	20	50	0	10	36	20	0	20	50	20	50	30	50	20	
	Ryegrass, Italian	60	90	0	10	30	80	10	20	60	50	30	50	95	70	
	Sandbur	60	85	0	0	10	10	10	10	50	30	6	0	10	10	
	Signalgrass	50	75	0	10	20	10	10	10	85		10	10	20	60	
15	Sowthistle	90	95	0	80	30	60	10	80	60	40	80	75	80	100	
	Spiderwort	20	70	0	10	60	10	60	10	3.0	20	10	60	50	75	
	Spurge, Spotted	***		o dec	. **	90	100	ija.				(44)) (See	we.	· sec	
	Surinam Grass	50	85	ine.	20	40	60	1.0	20	50	60	10	50	60	50	
	Thistle	50	50	0	ja.	10	10	reset or	20	80	50	D	Ţ	60	100	
	Table E Com	yound	l Ts	ible	E		Cor	mpou	nđ	dsT	le E		C	ompo	ುಬಗಡೆ	
	31 g ai/ha	1,3	3.	g s	11/h	ia.		1	3	31 (j si	/ba			33	
	Preemargance		Fe	ostac	11,	Gree	n		Ü	Quar	:kgr	888			Q	
	Barnyardgrass	ŋ	G	೧೦೫ಅಭ	gras	S		j	Q	Rag	veed				Ű	
	Bermudagrass	40	G	iines	igra	.88			Ö.	Rye	gras	s, 1	tal La	n	Ø	
	Bindweed, Field	Ø	T	.chgr	cass	: \$.		a.1	O	Sane	lbur				Q	
	Black Mustard	30	J)	ohnso	mgr	ass			0	Sign	nalg	rass			1.0	
	Bluegrass	ű	Ne	schie	ž.			1	0	Sowi	chis	tle			30	
	Bromegrass, Downy	0	Ma	111os	N.			4	0	Spi	ierw	ort			Q.	
	Chickweed	40	M	uni	iggl	ory			0	Sur	inam	Gra	8S		0	
	Crabgrass, Large	0	N	ıt.se	ige,	PUL	ple		Q.							
	Dallisgrass	Q	P	arsla	ane			墳	0							

20 TEST F

25

Seeds of plant species selected from annual blugrass (*Poa annua* L.), blackgrass (*Alopecurus myosuroides* Huds.), catchweed bedstraw (*Gallium aparine* L.), common chickweed (*Stellaria media* (L.) Vill./Cyr.), downy bromegrass (*Bromus tectorum* L.), green foxtail (*Setaria viridis* (L.) Beauv.), Italian ryegrass (*Lolium multiflorum* Lam.), kochia (*Kochia scoparia* (L.) Schrad.), lambsquarters (*Chenopodium album* L.), littlesced

10

canarygrass (Phalaris minor Retz.), pigweed (Amaranthus retroflexus L.), Russian thistle (Salsola kali L. ssp. Ruthenica (Iljin) Soo), wild buckwheat (Polygonum convolvulus L.), wild mustard (Sinapis arvensis L.), wild out (Avena fatua L.), windgrass (Apera spica-venti (L.) Beauv.), winter barley (Hordeum vulgare L.), and wheat (Triticum aestivum L.) were planted and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species were treated with postemergence applications of some of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments. Treated plants and controls were maintained in a greenhouse for 12 to 14 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table F, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table F	Compound	Table F	Cas	npoun	nds
500 g ai/ha	163	250 g ai/ha	ş	162	248
Postemergence		Postemergence			
Barley, Winter	80	Barley, Winter	75	80	40
Blackgrass	100	Blackgrass	85	100	60
Bluegrass	100	Bluegrass	80	90	70
Bromegrass, Down	x a0	Bromegrass, Downy	65	80	40
Canarygrass	100	Buckwheat, Wild	60	· M	60
Chickweed	100	Canarygrass	65	100	45
Foxtail, Green	100	Chickweed	60	100	100
Kochia	100	Foxtail, Green	50	60	65
Lambsquarters	3.00	Galium	65	.(00)	б0
Mustard, Wild	100	Kochia	90	100	65
Oat, Wild	100	Lambsquarters	90	100	60
Pigweed	100	Mustard, Wild	90	100	60
Ryegrass, Italia	n 100	Cat, Wild	65	100	65
Wheat	70	Pigweed	98	1.00	70
		Rysgrass, Italian	80	90	65
		Thistle	65	C-mark	40
		Wheat	85	50	20
		Windgrass	80	· ·	50

Table F	Compounds	Table F	Compounds
125 g ai/ha	9 162 223 248	62 g si/ha	9 162 248
Postemergence		Postemergence	
Barley, Winter	30 50 0 30	Barley, Winter	20 40 30
Blackgrass	70 80 60 60	Blackgrass	40 70 50
Bluegrass	70 60 50 60	Bluegrass	50 60 50
Bromegrass, Downy	60 50 20 40	Bromegrass, Downy	30 50 40
Buckwheat, Wild	60 - 40 50	Buckwheat, Wild	60 - 50
Canarygrass	40 70 40 40	Canarygrass	0 70 40
Chickweed	60 80 60 98	Chickweed	30 70 65
Foxtail, Green	40 50 60 60	Foxtail, Green	40 50 60
Galium	45 - 60 60	Galium	40 - 50
Kochia	65 100 75 65	Kochia	65 100 60
Lambsquarters	90 100 65 60	Lambequarters	80 100 60
Mustard, Wild	90 80 65 60	Mustard, Wild	55 60 4 0
Oat, Wild	45 80 35 60	Oat, Wild	35 70 45
Pigweed	90 90 65 70	Pigweed	65 70 65
Ryegrass, Italian	65 80 45 60	Ryegrass, Italian	60 70 55
Thistle	60 - 60 30	Thistle	30 - 30
Wheat	0 40 0 5	Wheat	0 20 5
Windgrass	50 - 50 50	Windgrass	30 - 50
Table F	Compound	Table F	lompound
31 g mi/ha	248	500 g ai/ha	162
Postemergence		Preemergence	
Barley, Winter	25	Barley, Winter	100
Blackgrass	45	Blackgrass	100
Bluegrass	50	Bluegrass	100
Bromegrass, Downy	40	Bromegrass, Downy	100
Buckwheat, Wild	50	Canarygrass	100
Canarygrass	33	Chickweed	100
Chickweed	65	Foxtail, Green	100
Foxtail, Green	50	Galium	100
Galium	50	Kochis	1.00
Kochia	50	Lambsquarters	100
Lambsquarters	35	Mustard, Wild	700
Mustard, Wild	30	Oar, Wild	100
Oat, Wild	45	Pigweed	200

WO 2004/035545

Pigweed	65	Ryegrass, Italian	100
Ryegrass, Italian	45	Wheat	100
Thistle	25		
Wheat	0		
Windgrass	50		
Table F	Compounds	Table F	Compounds
250 g ai/ha	9 162 248	125 g ai/ha	9 162 223 248
Preemergence		Preemergence	
Barley, Winter	75 100 35	Barley, Winter	65 100 25 0
Blackgrass	100 100 65	Blackgrass	100 100 70 65
Bluegrass	100 100 100	Bluegrass	100 100 100 100
Bromegrass, Downy	75 100 65	Browegrass, Downy	70 100 50 50
Buckwheat, Wild	100 - 60	Buckwheat, Wild	100 - 55 45
Canarygrass	75 100 75	Canarygrass	60 100 50
Chickweed	100 100 100	Chickweed	100 100 100 100
Foxtail, Green	100 100 100	Poxtail, Green	100 100 55 100
Galium	30 100 60	Galium	30 70 50 50
Kochia	100 100 100	Kochia	100 100 75 85
Lambaquarters	100 100 100	Lambsquarters	100 100 95 100
Mustard, Wild	100 100 50	Mustard, Wild	100 80 100 50
Oat, Wild	75 100 65	Oat, Wild	65 100 70 50
Pigweed	100 100 95	Pigweed	100 100 100 95
Ryegrass, Italian	100 100 60	Ryegrass, Italian	95 100 65 50
Thistle	100 - 45	Thistle	65 ~ 60 30
Wheat	65 100 10	Wheat	60 100 0 0
Windgrass	100 - 100	Windgrass	100 - 100 100
Table F	Compounds	Table F C	fompound
62 g ai/ha	9 162 249	31 g al/ha	248
Preemergence		Preemergence	
Barley, Winter	0 70 0	Barley, Winter	₹ 0
Blackgrass	70 90 50	Blackgrass	50
Bluegrass	85 100 70	Eluegrass	70
Bromegrass, Downy	60 70 45	Bromegrass, Downy	35
Buckwhear, Wild	60 ~ 40	Buckwheat, Wild	30
Canarygrass	50 100 45	Canarygrass	40
Chickweed	100 100 100	Chickweed	100
Foxtail, Green	70 70 65	Foxtail, Green	85

WO 2004/035545	PCT/US2803/032965

2	Ì		ŀ	

Galium	30 60	\$0	Galium	30
Kochia	60 60	60	Kochia	50
Lambsquarters	100 100	40	Lambsquarters	40
Musterd, Wild	100 80	50	Mustard, Wild	40
Oat, Wild	45 100	48	Oat, Wild	40
Pigweed	100 90	75	Pigweed	70
Ryegrass, Italian	65 100	50	Ryegrass, Italian	30
Thistle	45 -	30	Thistle	30
Wheat	0 60	0.	Wheat	0
Windgrass	80 -	70	Windgrass	70

TEST G

10

15

This test evaluated the safening of compounds of the invention on com (maize; Zea mays L.) cv. 'Pioneer 33G26' by seed treatment with naphthalic anhydride (1,8-naphthalic anhydride). All com seed had been first treated with fludioxonil and metaxyl applied at the manufacturer's recommended rate as per the Pioneer 33G26 label. Some of the corn seed were subsequently also treated with naphthalic anhydride as a 1% by weight seed dressing. The corn seed were planted in pots containing pasteurized Sassafras sandy loam soil, and then treatments were applied preemergence the same day. Treatments were applied by spraying the test compounds formulated in a non-phytotoxic solvent mixture, using a flat fan nozzle and a spray volume of 280 L/ha. The treatments were triply replicated and the results subsequently averaged. The pots were placed on a greenhouse bench using a complete randomized block design except for the first replicate, which was unrandomized. The plants were grown in the greenhouse and watered as needed with a dilute nutrient solution containing 200 ppm of N. Illumination was daylight supplemented by artificial sources to maintain a photoperiod of 16 hours. The temperature was maintained at 28 ± 2 °C during the day and 23 ± 2 °C at night. The plant response was visually rated 25 days after treatment in comparison to untreated controls using a scale of 0 to 100, with 0 representing no effect and 100 representing complete plant death. The results are listed in Table G.

Table G – Results from using naphthalic anhydride to safen compounds of the invention on corn

Treatment	Application Rate (g a i./ha)	Without naphthalic anhydride seed treatment	With 1% naphthalic anhydride seed treatment
Only spray solvent	0	0	0.
Compound 2	62	65	50
	125	72	55
	250	78	68
	500	85	72
Compound 6	62	65	60
	125	68	62
	250	88	78
	500	92	70
Compound 156	62	2,7	0.00
	125	30	0
	250	65	17
	500	88	17
Compound 162	62	15	0
	125	30	25
	250	68	60
	500	- 85 -	63

TEST H

5

10

13

This test evaluated the safening of compounds of the invention on wheat (Triticum aestivum L.) ev. 'Recital' by seed treatment with naphthalic anhydride. Some of the wheat seed was treated with naphthalic anhydride as a 1% by weight seed dressing. The wheat seed were planted in pots containing pasteurized Sassafras sandy loam soil. For postemergence testing the plants were grown 8 days to the 2-leaf stage at time of treatment. Preemergence treatments were applied the same day that the seeds were planted. Treatments were applied by spraying the test compounds formulated in a non-phytotoxic solvent mixture, using a flat fan nozzle and a spray volume of 280 L/ha. The preemergence treatments were triply replicated and the results subsequently averaged. The pots were placed on a growth chamber bench using a complete randomized block design for the preemergence test except for the first replicate, which was unrandomized. The plants were grown in the growth chamber and watered as needed with a dilute nutrient solution containing 200 ppm of N. Illumination was provided by fluorescent lamps giving 200–300 µE/m²/S of photosynthetically active radiation over a 14-hour photoperiod. The temperature

was maintained at 23 \pm 2 °C during the day and 17 \pm 2 °C at night. The effects of the treatments were rated 25 days after preemergence treatment and 14 days after postemergence treatment. The plant response was visually rated in comparison to untreated controls using a scale of 0 to 100, with 0 representing no effect and 100 representing complete plant death.

5 The results for the compounds tested preemergence are listed in Table H1, and the results for the compounds tested postemergence are listed in Table H2.

Table HI – Results from using naphthalic anhydride to safen compounds of the invention applied preemergence to wheat

Treatment	Application Rate (g a.i./ha)	Without naphthalic anhydride seed treatment	With 1% naphthalic anhydride seed treatment
Only spray solvent	0	0	0
Compound 2	62	€€2	.50
	125	82	72
Compound 6	62	99	77
	125	100	100
Compound 156	62	67	7
	125	100	70
	250	100	85
	500	100	99
Compound 162	62	60	47
	125	98	62
	250	98	96

Table H2 - Results from using naphthalic anhydride to safen compounds of the invention applied postemergence to wheat

Treatment	Application Rate (g a.i./ha)	Without naphthalic anhydride seed treatment	With 1% naphthalic anhydride seed treatment
Only spray solvent	0	0	0
Compound 2	62	60	30
er de Maria. Nacional	125	75	65
Compound 6	62	75	65
	125	75	7.5
Compound 162	62	5	\$
	125	70	30

TEST I

10

15

20

25

30

35

This test evaluated the safening of Compound 6 on barley (Hordeum vulgare L.) cv. 'Boone' and wheat (Triticum aestivum L.) cy, 'Recital' by Harmony® Extra Herbicide, which comprises 50 wt% thifensulfuron-methyl and 25 wt% tribenuron-methyl. Barley and wheat seeds were planted in pots containing a pasteurized blend of Matapeake soil and sand. For postemergence testing the plants were grown 10 days so the barley seedlings were at the 2-leaf stage and the wheat seedlings were at the 2-3-leaf stage at time of treatment. Preemergence treatments were applied the day after the seeds were planted. Treatments were applied by spraying Compound 6 and/or Harmony® Express in a non-phytotoxic solvent mixture, using flat fan nozzle and a spray volume of 280 L/ha. The treatments were triply replicated and the results subsequently averaged. The pots were placed on a greenhouse bench using a complete randomized block design except for the first replicate, which was unrandomized. The plants were grown in the greenhouse and watered as needed with a dilute nutrient solution containing 200 ppm of N. Illumination was daylight supplemented by artificial sources to maintain a photoperiod of 14 hours. The temperature was maintained at 23 ± 2 °C during the day and 17 ± 2 °C at night. The effects of the treatments were rated 25 days after preemergence treatment and 15 days after postemergence treatment. The plant response was visually rated in comparison to untreated controls using a scale of 0 to 100, with 0 representing no effect and 100 representing complete plant death.

Colby's Equation was used to calculate the expected additive herbicidal effect of the mixtures of Compound 6 with Harmony® Extra (i.e. a 2:1 mixture by weight of thifensulfuron-methyl and tribenuron-methyl). Colby's Equation (Colby, S. R. "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations," Weeds, 15(1), pp 20–22 (1967)) calculates the expected additive effect of herbicidal mixtures, and for two active ingredients is of the form:

$$P_{a+b} = P_a + P_b - (P_a P_b / 100)$$

wherein P_{a+b} is the percentage effect of the mixture expected from additive contribution of the individual components,

Pa is the observed percentage effect of the first active ingredient at the same use rate as in the mixture, and

P_b is the observed percentage effect of the second active ingredient at the same use rate as in the mixture.

The results and additive effects expected from Colby's Equation for the preemergence test are listed in Table 11, and the results and additive effects expected from Colby's Equation for the postemergence test are listed in Table 12.

248

Table II - Results from using Harmony® Extra Herbicide to safen Compound 6 applied preemergence to barley and wheat

Compound 6	Thifensulfuron- methyl	Tribenuron- methyl	Ba	rley	Wheat			
(g a.i./ha)	(g.a.i./ha)	(g.a.i/ha)	Observed	Expected*	Observed	Expected*		
0	5.3	2.7	0	***	0			
0	10.7	5,3	5	-	5			
16	0	0	35		45	<u>-</u> -		
16	5,3	2.7	35	35	13	45		
16	10.7	5.3	13	38	7	48		
31	0	Ø	68	i	67	j -,		
31	5.3	2.7	65	68	55	67		
31	10.7	5.3	48	70	40	68		

^{*} Effects expected from Colby's Equation.

Table I2 – Results from using Harmony® Extra Herbicide to safen Compound 6 applied postemergence to barley and wheat

Compound 6	Thifensulfuron- methyl	Tribenuron- methyl	Ba	rley	Wheat			
(g.a.i/ha)	(g a.i./ha)	(g a.í./ba)	Observed	Expected*	Observed	Expected*		
0	5.3	2.7	0	-	0	Name :		
0	10.7	5.3	7		8			
16	0	0	47		58	, <u></u>		
16	5.3	2.7	40	47	45	58		
16	10.7	5.3	33	50	43	62		
31	0	0	73		65			
31	5.3	2.7	68	73	58	65		
31	10.7	5.3	63	75	43	68		

^{*} Effects expected from Colby's Equation.

TEST J

10

Seeds of test plants consisting of barnyardgrass (ECHCG; Echinochloa crus-galli (L.) Beauv.), blackgrass (ALOMY; Alopecurus myosuroides Huds.), Surinam grass (BRADC; Urochloa decumbens (Staph) R. D. Webster, previously named Brachiaria decumbens Stapf), cocklebur (XANST, Xanthium strumarium L.), corn (ZEAMD, Zea mays L. cv. 'Pioneer 33G26'), large crabgrass (DIGSA, Digitaria sanguinalis (L.) Scop.), giant foxtail (SETFA, Setaria faberi Herrm.), lambsquarters (CHEAL, Chenopodium album L.), morningglory (IPOCO, Ipomoea coccinea L.), pigweed (AMARE, Amaranthus retroflexus

L.), velvetleaf (ABUTH, Abutilon theophrasti Medik.) wheat (TRZAS, Triticum aestivum L. cv. 'Recital') and wild out (AVEFA, Avena fatua L.) were planted in Redi-Earth® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising spaghnum peat moss and vermiculite. Seeds of small-seeded species were planted about 1 cm deep; larger seeds were planted about 2.5 cm deep. Plants were grown in a greenhouse using supplemental lighting to maintain a photoperiod of about 14 hours; daytime and nighttime temperatures were about 24-30 °C and 22-25 °C, respectively. Balanced fertilizer was applied through the watering system. The plants were grown for 7 to 11 days so that at time of treatment the plants ranged in height from 2 to 18 cm (1- to 4-leaf stage). Treatments consisted of Compounds 2 and 6 (technical material), atrazine (90DF), terbacil (Sinbar® 80DF), hexazinone (Velpar® 75WG), diuron (Karmex® 80WP) and paraquat (Gramoxone® Extra, 37%) alone and in combination, suspended or dissolved in an aqueous solvent comprising a nonionic surfactant and applied as a foliage spray using a volume of 541 L/ha. Each treatment was triply replicated. The application solvent was observed to have no effect compared to untreated check plants. Treated plants and controls were maintained in the greenhouse and watered as needed with care to not wet the foliage for the first 24 hours after treatment. The effects on the plants 15 days after treatment were visually compared to untreated controls. Plant response ratings, listed in Table I as the means of the three replicates, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. Also listed in Table I are the expected effects for the mixtures calculated using Colby's Equation.

10

15

Table I- Observed and Expected Results from Compounds 2 and 6 Alone and in Combination with Atrazine, Diuron, Hexazinone, Terbacil and Paraquat*

Αρ	Application Rate			DIGSA		BRADC		CHEAL		AMARE		SETFA	
	(g a.i./ha)		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Ехр.	Obsd.	Ехр.	Obsd.	Exp.	
<u></u>	Atrazine	125	5		15		67	, <u></u>	38		0		
	Atrazine	250	\$	'aw'	5	**	95		75		18	-	
	Diuron	250	68		68		98	-	95	277	35		
	Diuron	500	63		85	·	100		100		67		
	Hexazinone	100	38		62		78	-	88	3.	28		
-	Hexazinone	200	53	***	70		-87	-	80		45		
بين	Terbacil	250	45		75		93		63	i.u.	Ιĕ		
	Terbacil	500	48		73		100		97		55		
~	Paraquat	31	78	,	67		95		90		72		
,	Paraquat	62	85		95		100		100		88		
Cmpd 2					1					***************************************			
62			5		8		40	3-4-3	47		28		

Application Rate (g s.i./hs)		DIC	3SA	BRADC		CHEAL		AMARE		SETFA		
		Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Бхр.	Obsd.	Exp	
125	4.		15		17		55	->	68		.32	
62	Atrazine	125	8	13	20	40	95	92	95	89	28	42
62	Atrazine	250	13	19	22	29	93	99	95	99	23	58
62	Diuron	250	45	24	85	93	98	100	98	100	63	70
62	Diuron	500	75	57	87	98	100	100	100	160	70	83
62	Hexazinone	100	48	17	73	98	87	98	87	95	37	55
62	Hexazinone	200	60	65	85	93	90	99	98	99	55	70
62	Terbacil	250	98	27	62	95	100	99	100	99	35	50
62	Terbacil	500	98	67	93	100	100	100	100	99	75	59
62	Paraquat	31	83	79	88	93	80	93	90.	100	78	88
62	Paraquat	62	83	76	100	97	100	100	97	100	92	95
Cmpd 6		•										
62	94.0		8		15		43		28	-	15	_
125		*************	13		40		68		60	-	33	_
62	Atrazine	125	- 8	13	35	28	87	81	80	55	20	15
62	Airazine	250	15	1.3	23	19	98	97	98	82	42	30
62	Diuron	250	20	71	92	73	100	99	100	96	58	4.5
62	Diuron	500	55	66	98	87	100	100	100	100	77	7:
62	Hexazinone	100	13	43	98	68	97	87	90	91	37	35
62	Hexazinone	200	63	57	92	75	98	93	98	86	58	5.
62	Terbacil	250	23	49	95	79	98	96	98	73	30	30
62	Terbacil	500	65	52	100	77	100	100	98	98	43	6
62	Paraquat	31	78	80	92	72	88	97	100	93	83	70
62	Paraquat	62	75	86	97	96	100	100	100	100	93	9

	Application Rate (g a.i./ha)			ABUTH		XANST		ECHCG		ZEAMD		IPOCO	
				Obsd.	Obsd. Exp.		Exp.	Obsd.	Ехр.	Obsd.	Exp.	Obsd.	Exp.
	-	Atrazino	125	18		45		20		3	-	52	~
	-	Amazine	250	25		72		23		12		75	
	.	Diuron	250	77		93	~-	62		20		92	
-	~	Diuron	500	100		100		98		28	i.i.	100	
		Hexazinone	100	82	-	100		15	-	45	-	92	
	-	Hexazinone	200	77	-	100	-	53		53		100	
		Terbacil	250	92	1-2	68	-	15		30	_	78	22,00

Application Rate			ABUTH		XANST		ECHCG		ZEAMD		IPOCO	
	(g a.i./ha)		Obsd.	Ехр.	Obsd.	Exp.	Obsd.	Ехр.	Obsd.	Exp.	Obsd.	Ехр
-	Terbacil	500	100		97		63	554	75		100	. ↔
	Paraquat	31	70	-	100		45		43		58	
-	Paraquat	62	92		87		77	~	63		90	
Crapd 2		*********										
62			17	-	50	, can	13		25	-	17	
125			18		58		8		65	-	27	
62	Atrazine	125	48	42	88	92	28	37	23	42	60	78
62	Atrazine	250	62	69	90	96	57	78	20	39	83	82
62	Diuron	250	75	100	98	100	67	83	25	45	80	89
62	Diama	500	100	92	98	100	90	94	55	55	100	98
62	Hexazinone	100	60	100	98	100	25	37	30	40	83	78
62	Hexazinone	200	88	98	100	100	45	52	30	46	98	96
62	Terbacil	250.	100	100	98	100	90	67	25	51	90	82
62	Terbacil	500	100	100	98	100	100	97	60	61	95	89
62	Paraquat	31	43	82	88	100	48	89	47	42	50	89
62	Paraquat	62	88	98	100	100	77	89	42	42	100	98
Cmpd 6		:										
62	-	**********	27		67		17	2.0	22	-	22	
125	-		47	-	63		63	-	28	3-4-1	28	-
62	Atrazine	125	30	38	83	82	28	34	23	24	73	63
62	Atrazine	250	63	45	92	91	75	36	18	31	78	81
62	Diaron	250	100	83	100	98	80	68	27	38	87	94
62	Diuron	500	90	100	100	100	93	98	40	44	98	100
62	Hexazinone	100	100	87	100	100	28	29	20	57	73	94
62	Hexaginone	200	97	83	100	100	45	61	28	63	95	100
62	Terbacil	250	100	94	100	89	62	29	35	45	78	83
62	Terbacil	500	100	100	100	99	97	69	48	81	87	100
62	Paraquat	31	78	78	100	100	87	54	23	56	87	67
62	Paraquat	62	97	94	100	96	87	81	23	71	98	92

-	Application Rate			AVI	3FA	TKZ	ZAS	ALOMY	
		(g a.i./ha)		Obsd.	Ехр.	Obsd.	Exp.	Obsd.	Exp.
-	-	Atrazine	125	13		3	ing.	3	Septe
-		Atrazine	250	28	4	8		28	-

Application Rate			AV3	EFA	TRA	TRZAS		ALOMY	
	Obsd.	Exp.	Obsd.	Exp.	Obsd.	Exp.			
	Diuron	250	15		30		25		
	Diuron	500	47		40		43		
	Hexazinone	100	53	-	35		40		
	Hexazinone	200	62		60		78	-	
_	Terbacii	250	68		55		62		
4-4	Terbacil	500	97	-	90	-	97	1	
	Paraquat	31	42		35		60		
	Paraquat	62	63		83		73	-	
Crupd 2									
62		***************************************	8		8		15	-	
125	300		15		10	-	13	,	
62	Atrazine	125	18	29	25	34	20	34	
62	Atrazine	250	55	36	47	37	52	43	
62	Diuron	250	30	51	33	61	32	58	
62	Diuron	500	48	72	52	66	33	72	
62	Hexazinone	100	52	74	47	68	58	70	
62	Hexazinone	200	70	94	60	93	93	93	
62	Terbacil	250	87	54	87	61	90	70	
62	Terbacil	500	92	91	95	94	97	92	
62	Paraguat	31	65	31	22	48	47	47	
62	Paraquat	62	50	51	57	61	50	93	
Cmpd 6		444410000000							
62	-	****	10		15		18	-	
125			25	-	30	-	33	-	
62	Atrazine	125	23	22	28	18	22	20	
62	Atrazine	250	30	35	32	22	33	41	
62	Diuron	250	47	24	58	41	50	39	
62	Diuron	500	70	52	63	49	67	53	
62	Hexazinone	100	72	58	63	45	65	51	
62	Hexazinone	200	93	66	92	66	92	82	
62	Terbacil	250	50	71	58	62	65	69	
62	Terbacil	500	90	97	93	92	90	98	
62	Paraquat	31	25	48	43	45	38	67	
62	Paraquat	62	47	67	58	86	92	78	

253

* Application rates are grams of active ingredient per hectare (g a.i/ha). "Obsd." is observed effect. "Exp." is expected effect calculated from Colby's Equation.

As can be seen from the results listed in Table J, many of the effects observed were close to additive, but some combinations showed considerably greater than additive (i.e. synergistic) effects or less than additive (i.e. safening) on certain plant species. Particularly noteworthy greater than additive effects were observed for mixtures of Compound 2 with diuron and particularly terbacil on crabgrass, mixtures of Compound 6 with diuron, hexazinone and terbacil on Surinam grass, mixtures of Compound 6 with atrazine on pigweed, and mixtures of Compound 6 with terbacil on barnyardgrass. Some of the mixtures also showed a less than additive effect on wheat and particularly com.

5

CLAIMS

What is claimed is:

 A compound selected from Formula I, an N-oxide or an agriculturally suitable salt thereof,

Ĭ.

5

wherein

T is CR6 or N;

U is CR7 or N:

Y is CR8 or N;

Z is CR^9 or N;

 $\begin{array}{c} R^{1a} \text{ is H, C$_1$-C$_4$ alkyl, C$_1$-C$_4$ fluoroalkyl, C$_2$-C$_4$ alkenyl, C$_2$-C$_4$ fluoroalkynyl; \\ C$_2$-C$_4$ alkynyl or C$_2$-C$_4$ fluoroalkynyl; \\ \end{array}$

 R^{1b} is halogen, C_1 – C_4 alkyl, C_1 – C_4 finoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkynyl, C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl;

15 R^{1c} is H;

$$\begin{split} R^{2a} \text{ is } C_1 - C_6 \text{ alkyl}, C_1 - C_6 \text{ haloalkyl}, C_2 - C_6 \text{ alkoxyalkyl}, C_2 - C_6 \text{ alkylthioalkyl}, \\ C_2 - C_6 \text{ alkenyl}, C_2 - C_6 \text{ haloalkenyl}, C_2 - C_6 \text{ alkynyl}, C_2 - C_6 \text{ haloalkynyl}, \\ C_3 - C_6 \text{ cycloalkyl}, C_4 - C_6 \text{ alkylcycloalkyl}, C_3 - C_6 \text{ halocycloalkyl}, C_4 - C_6 \end{split}$$

10

25

- cycloalkylalkyl, C_5 – C_6 alkylcycloalkylalkyl, - $CR^{20}(OR^{21})(OR^{22})$ or $SiR^{23}R^{24}R^{25}$:
- R^{2b} is C_1 – C_6 alkyl, C_1 – C_6 haloalkyl, C_2 – C_6 alkoxyalkyl, C_2 – C_6 alkylthioalkyl, C_2 – C_6 alkenyl, C_2 – C_6 haloalkenyl, C_2 – C_6 alkynyl, C_2 – C_6 haloalkynyl, C_3 – C_6 cycloalkyl, C_4 – C_6 alkylcycloalkyl, C_3 – C_6 halocycloalkyl, C_4 – C_6 cycloalkylalkyl or C_5 – C_6 alkylcycloalkylalkyl;
- \mathbb{R}^3 is H, F or \mathbb{C}_1 - \mathbb{C}_2 alkyl; or
- R^{2a} or R^{2b} is taken together with R^3 as $-C(R^{26a})(R^{26b})-(Y^1)_s-(CH_2)_t-(Y^2)_u$ or $-C(R^{26a})(R^{26b})-(Y^1)_v$ -CH=CH- $(Y^2)_w$ wherein the left end of the radical is connected as R^{2a} or R^{2b} , and the right end of the radical is connected as R^3 ;
- R^4 is H, C_1 – C_2 alkyl, C_2 – C_6 alkylcarbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkoxyalkyl or C_2 – C_6 alkylthioalkyl;
- R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, C(NOR¹⁴)R¹⁵, -CN, OR¹⁶, S(O)_mR¹⁷ S(O)₂NR¹⁸R¹⁹, OS(O)₂R²⁷ or OP(O)R²⁸aR²⁸b;
- 15 R^6 is H, F, C_1 - C_2 alkyl, C_1 - C_2 fluoroalkyl, C_1 - C_2 alkoxy, C_1 - C_2 fluoroalkoxy, C_1 - C_2 alkylthio or C_1 - C_2 fluoroalkylthio; or
 - R⁵ and R⁶ are taken together as a radical selected from -C(W¹)N(R¹¹)(CH₂)_n- and -C(NOR¹⁴)CH₂(CH₂)_n- wherein the right end of the radical is connected to the ring at T;
- 20 \mathbb{R}^7 is H, F, C₁-C₂ alkyl, C₁-C₂ fluoroalkyl, C₁-C₂ alkoxy, C₁-C₂ fluoroalkoxy, C₁-C₂ alkylthio or C₁-C₂ fluoroalkylthio;
 - R^8 and R^9 are independently selected from H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio and C_1 – C_2 fluoroalkylthio;
 - R^{10} is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_4 alkoxymethyl or C_2 - C_4 alkylthiomethyl;
 - R¹¹ is H, C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 cycloalkyl, C_4 – C_5 cycloalkylalkyl, C_1 – C_3 alkoxy, C_2 – C_5 alkoxyalkyl or C_2 – C_5 alkylthioalkyl; or
 - R^{10} and R^{11} are taken together as -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂-, each optionally substituted with 1–2 C₁–C₂ alkyl;
 - each R^{12} is independently C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_4 alkoxyalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 cycloalkyl or C_4 – C_5 cycloalkylalkyl;
 - R^{13} is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or cyclopropyl;
- 35 R^{14} is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_6 alkylcarbonyl; C_2 - C_6 alkoxycarbonyl;
 - \mathbf{R}^{15} is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or cyclopropyl;

256

 R^{16} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_3 alkoxyalkyl, C_2 – C_3 alkylthioalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_5 cycloalkyl or cyclopropylmethyl;

 R^{17} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_4 cycloalkyl or cyclopropylmethyl;

each R^{18} is independently H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_4 alkenyl, C_2 – C_4 alkylthiomethyl;

each R¹⁹ is independently H, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₅ alkenyl, C₃-C₅ haloalkenyl, C₃-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₃ alkoxy, C₂-C₅ alkoxyalkyl or C₂-C₅ alkylthioalkyl;

R²⁰ is C₁-C₄ alkyl, cyclopropyl, cyclopropylmethyl or methylcyclopropyl;

 \mathbb{R}^{21} is \mathbb{C}_1 - \mathbb{C}_3 alkyl;

1

10

15

30

35

 \mathbb{R}^{22} is \mathbb{C}_1 - \mathbb{C}_3 alkyl; or

R²¹ and R²² are taken together as -CH₂CH₂- or -CH₂CH₂-, each optionally substituted with 1–2 methyl;

 \mathbb{R}^{23} is \mathbb{C}_1 – \mathbb{C}_2 alkyl or \mathbb{C}_1 – \mathbb{C}_2 haloalkyl;

 \mathbb{R}^{24} is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;

 \mathbb{R}^{25} is \mathbb{C}_1 – \mathbb{C}_2 alkyl or \mathbb{C}_1 – \mathbb{C}_2 haloalkyl;

 R^{26n} and R^{26b} are independently H or C_1 – C_2 alkyl;

20 R^{27} is C_1 – C_3 alkyl, C_1 – C_3 haloalkyl or cyclopropyl;

 R^{28a} and R^{28b} are independently C_1-C_2 alkyl or C_1-C_2 alkoxy;

W is O or S;

W1 is O or S:

 Y^1 and Y^2 are independently CH_2 , O, S, NH or NCH_3 ;

25 m is 0, 1 or 2;

n is 1 or 2;

s is 0 or 1; t is 1 or 2; and u is 0 or 1; provided that the sum of s, t and u is 2 or 3; and v is 0 or 1; w is 0 or 1; provided that the sum of v and w is 0 or 1; provided that

- (a) when J is J-1, R^{1*} is CH₃ and R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, OR¹⁶ or S(O)_mR¹⁷, then at least one of T, U, Y and Z is N or C-F;
 - (b) when J is J-1, R^{1a} is CH_3 , R^5 is $C(W^1)NR^{10}R^{11}$, $C(O)OR^{12}$, COR^{13} , OR^{16} or $S(O)_mR^{17}$ and T is N, then at least one of U, Y and Z is N or C-F:
 - (c) when R^5 is $C(W^1)NR^{10}R^{11}$ or $C(NOR^{14})R^{15}$, then R^9 is other than alkoxy or alkylthio;
 - (d) when R⁵ is C(W¹)NR¹⁰R¹¹, then R⁶ is other than alkyl or alkoxy;
 - (e) when R⁵ is COR¹³, then R^{1a} or R^{1b} is selected from the radicals of the group consisting of C₁−C₃ alkyl, C₁−C₃ fluoroalkyl, C₂−C₃ alkenyl, C₂−C₃

10

fluoroalkenyl, C_2 - C_3 alkynyl or C_2 - C_3 fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring;

- (f) when R^5 and R^6 are taken together as $-C(W^1)N(R^{10})(CH_2)_n$ and n is 1, then R^{10} is C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_3-C_4 alkenyl, C_2-C_4 alkoxymethyl or C_2-C_4 alkylthiomethyl;
- (g) when at least one of R¹⁰ and R¹¹ is haloalkyl, then R^{1a} or R^{1b} is CH₂CH₃ or CH₂CF₃ and R^{2a} or R^{2b} is test-butyl, isopropyl or cyclopropyl;
- (h) when I is I-2 or I-6, then R⁷ and R⁹ are H;
- (i) when J is J-2 or J-6, and R^{2b} is C₁-C₂ alkyl, then R^{1b} is halogen, C₂-C₄ alkyl,
 C₁-C₄ fluoroalkyl, C₂-C₄ alkenyl, C₂-C₄ fluoroalkenyl, C₂-C₄ alkynyl or C₂-C₄ fluoroalkynyl;
 - (i) when R^{1a} is CH₃ and R⁵ is C(NOR¹⁴)R¹⁵, then R⁷ is other than alkyl;
 - (k) when T is N, then Z is CR9;
 - (1) when T is N, R⁷ is alkoxy, then R¹¹ is H;
- (m) when R⁷ and R⁹ are F, and one of R¹⁰ and R¹¹ is H, then the other of R¹⁰ and R¹¹ is other than H;
 - (n) when Z is N and one of R^{10} and R^{11} is H, then the other of R^{10} and R^{11} is other than trifluoroethyl;
 - (a) when J is J-8 and R^{2b} is C_5 - C_6 cycloalkyl, then R^5 is $C(0)NR^{10}R^{11}$; and
- 20 (p) when J is J-8 and R⁷ is other than H, then R^{2b} is tert-butyl and R⁵ is C(O)NR¹⁰R¹¹.
 - 2. The compound of Claim I wherein J is J-1, J-2, J-3, J-4, J-5 or J-8.
 - 3. The compound of Claim 2 wherein:

Rla or Rlb is CH2CH2, CH2CH3F, CH2CHF2, CH2CF3 or CH=CH2;

25 R^{2a} or R^{2b} is tert-buryl, isopropyl or cyclopropyl;

 \mathbb{R}^3 is H:

R4 is H; and

W is O.

- 4. The compound of Claim 3 wherein at most one of T, U, Y and Z is N.
- The compound of Claim 4 wherein

R5 is CONR10R11 or C(O)OR12;

R⁶ is H or F; and R⁷ is H or F;

 \mathbb{R}^{10} is H or \mathbb{C}_1 - \mathbb{C}_d alkyl;

 R^{11} is C_1-C_4 alkyl; or

35 R^{10} and R^{11} are taken together as -CH₂CH=CHCH₂-; and R^{12} is C₁-C₃ alkyl.

258

- The compound of Claim 5 wherein J is J-1, J-3 or J-5. 6.
- 7. The compound of Claim 6 wherein

R5 is CONR 10R 11:

R10 is H or C1-C2 alkyl; and

 R^{11} is C_1-C_3 alkyl; or 5

 R^{10} and R^{11} are taken together as -CH₂CH=CHCH₂-.

The compound of Claim 7 wherein

R^{2a} is tert-butyl or isopropyl; and

R⁸ and R⁹ are H or F.

- 10 The compound of Claim 8 which is selected from the group consisting of:
 - 3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylamino)carbonyl)-2-fluorophenyl]-1H-pyrazole-5-carboxamide;
 - N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide;
- 15 2-[[(3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazol-5-yl]carbonyl]amino]-N,N-dimethyl-4-pyridinecarboxamide;
 - 2-[[[3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazol-5-yl]carbonyl]amino]-N-ethyl-4-pyridinecarboxamide;
 - N-[5-[(dimethylamino)carbonyi]-2-fluorophenyl]-1-ethyl-3-(1-methylethyl)-
- 20 1*H*-pyrazole-5-carboxamide:
 - N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-1-(1,1-dimethylethyl)-3-ethyl-1H-pyrazole-4-carboxamide;
 - 3-(1,1-dimethylethyl)-1-(2-fluoroethyl)-N-[3-[(1E)-1-(hydroxyimino)ethyl]phenyl]-1H-pyrazole-5-carboxamide;
- 25 3-(1,1-dimethylethyl)-1-ethyl-N-[5-[(ethylmethylamino)carbonyl]-2-fluorophenyl]-1H-pyrazole-5-carboxamide;
 - 3-(1,1-dimethylethyl)-1-ethyl-N-[3-[(ethylamino)carbonyl]-4-fluorophenyl]-1H-pyrazole-5-carboxamide;
 - N-[5-[(2,5-dihydro-1H-pyrrol-1-yl)carbonyl]-2-fluorophenyl]-
- 30 3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide; and
 - 3-(1,1-dimethylethyl)-1-ethyl-N-(3-(trifluoromethoxy)phenyl]-1H-pyrazole-5-carboxamide.

- 10. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
- 11. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
- 12. A method for controlling the growth of undesired vegetation comprising Urochloa decumbers (Staph) R. D. Webster comprising contacting the vegetation or its environment with herbicidally effective amounts of the compound of Claim 1 which is N-[5-[(dimethylamino)carbonyl]-2-fluorophenyl]-3-(1,1-dimethylethyl)-1-ethyl-1H-pyrazole-5-carboxamide and at least one other herbicide selected from the group consisting of diuron and hexazinone.
- 13. A herbicidal mixture comprising a herbicidally effective amount of a compound of Formula Iz, an N-oxide or an agriculturally suitable salt thereof,

15 wherein

3

10

T is CR6 or N;

U is CR7 or N;

Y is CR8 or N;

Z is CR9 or N;

- R^{1a} is H, C_1 - C_4 alkyl, C_1 - C_4 fluoroalkyl, C_2 - C_4 alkenyl, C_2 - C_4 fluoroalkenyl, C_2 - C_4 alkynyl or C_2 - C_4 fluoroalkynyl;
- R^{1b} is halogen, C_1 - C_4 alkyl, C_1 - C_4 fluoroalkyl, C_2 - C_4 alkenyl, C_2 - C_4 fluoroalkenyl, C_2 - C_4 alkynyl or C_2 - C_4 fluoroalkynyl;

Rlc is H:

7

10

15

25

30

- R^{2a} is C_1 – C_6 alkyl, C_1 – C_6 haloalkyl, C_2 – C_6 alkoxyalkyl, C_2 – C_6 alkylthioalkyl, C_2 – C_6 alkenyl, C_2 – C_6 haloalkenyl, C_2 – C_6 alkynyl, C_2 – C_6 haloalkynyl, C_3 – C_6 cycloalkyl, C_4 – C_6 alkylcycloalkyl, C_3 – C_6 halocycloalkyl, C_4 – C_6 eycloalkylalkyl, C_5 – C_6 alkylcycloalkylalkyl, - $CR^{20}(OR^{21})(OR^{22})$ or $SiR^{23}R^{24}R^{25}$:
- R^{2b} is C_1 – C_6 alkyl, C_1 – C_6 haloalkyl, C_2 – C_6 alkoxyalkyl, C_2 – C_6 alkylthioalkyl, C_2 – C_6 alkenyl, C_2 – C_6 haloalkenyl, C_2 – C_6 alkynyl, C_2 – C_6 haloalkynyl, C_3 – C_6 cycloalkyl, C_4 – C_6 alkylcycloalkyl, C_3 – C_6 halocycloalkyl, C_4 – C_6 cycloalkylalkyl or C_5 – C_6 alkylcycloalkylalkyl;

 \mathbb{R}^3 is H, F or \mathbb{C}_1 - \mathbb{C}_2 alkyl; or

- R^{2a} or R^{2b} is taken together with R^3 as $-C(R^{26a})(R^{26b})-(Y^1)_s-(CH_2)_t-(Y^2)_{u^-}$ or $-C(R^{26a})(R^{26b})-(Y^1)_v$ -CH=CH- $(Y^2)_{w^-}$ wherein the left end of the radical is connected as R^{2a} or R^{2b} , and the right end of the radical is connected as R^3 ;
- 20 R⁴ is H, C₁-C₂ alkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylthioalkyl;
 - R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, C(NOR¹⁴)R¹⁵, -CN, OR¹⁶, S(O)_mR¹⁷ S(O)₂NR¹⁸R¹⁹, OS(O)₂R²⁷ or OP(O)R²⁸aR²⁸b;
 - R^6 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio; or
 - R⁵ and R⁶ are taken together as a radical selected from -C(W¹)N(R¹¹)(CH₂)_n- and -C(NOR¹⁴)CH₂(CH₂)_n- wherein the right end of the radical is connected to the ring at T;
 - R^7 is H, F, C_1-C_2 alkyl, C_1-C_2 fluoroalkyl, C_1-C_2 alkoxy, C_1-C_2 fluoroalkoxy, C_1-C_2 alkylthio or C_1-C_2 fluoroalkylthio;
 - R^8 and R^9 are independently selected from H, F, C_1 - C_2 alkyl, C_1 - C_2 fluoroalkyl, C_1 - C_2 alkoxy, C_1 - C_2 fluoroalkoxy, C_1 - C_2 alkylthio and C_1 - C_2 fluoroalkylthio;
 - R¹⁰ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₄ alkoxymethyl or C₂-C₄ alkylthiomethyl;
- 35 R^{11} is H, C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_3 – C_5 alkynyl, C_3 – C_5 eyeloalkyl, C_4 – C_5 eyeloalkylalkyl, C_1 – C_3 alkoxy, C_2 – C_5 alkoxyalkyl or C_2 – C_5 alkylthioalkyl; or

R¹⁰ and R¹¹ are taken together as -(CH₂)_{a-1}, -(CH₂)₅₋₁, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂-, each optionally substituted with 1-2 C₁-C₂ alkyl;

each R¹² is independently C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄ alkylthioalkyl, C2-C5 alkenyl, C3-C5 haloalkenyl, C3-C5 alkynyl, C3-C5 cycloalkyl or C₄-C₅ cycloalkylalkyl;

R¹³ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;

R¹⁴ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₆ alkylcarbonyl or C2-C6 alkoxycarbonyl;

 R^{15} is C_1-C_3 alkyl, C_1-C_3 haloalkyl or cyclopropyl;

 R^{16} is C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_7-C_3 alkoxyalkyl, C_2-C_3 alkylthioalkyl, 10 C2-C4 alkenyl, C3-C4 haloalkenyl, C3-C4 alkynyl, C3-C5 cycloalkyl or cyclopropylmethyl;

> R^{17} is C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_4 alkenyl, C_3 - C_4 haloalkenyl, C₃-C₄ alkynyl, C₃-C₄ cycloalkyl or cyclopropylmethyl;

each R¹⁸ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₄ 15 alkoxymethyl or C2-C4 alkylthiomethyl;

> each \mathbb{R}^{19} is independently H, \mathbb{C}_1 – \mathbb{C}_5 alkyl, \mathbb{C}_1 – \mathbb{C}_5 haloalkyl, \mathbb{C}_2 – \mathbb{C}_5 alkenyl, \mathbb{C}_3 – \mathbb{C}_5 haloalkenyl, C3-C5 alkynyl, C3-C5 cycloalkyl, C4-C5 cycloalkylalkyl, C1-C3 alkoxy, C2-C5 alkoxyalkyl or C2-C5 alkylthioalkyl;

R²⁰ is C₁-C₂ alkyl, cyclopropyl, cyclopropylmethyl or methylcyclopropyl; 20

 \mathbb{R}^{21} is \mathbb{C}_1 - \mathbb{C}_3 alkyl;

 R^{22} is C_1-C_3 alkyl; or

R²¹ and R²² are taken together as -CH₂CH₂- or -CH₂CH₂-, each optionally substituted with 1-2 methyl;

 \mathbb{R}^{23} is C_1 – C_2 alkyl or C_1 – C_2 haloalkyl; 25

 R^{24} is C_1-C_2 alkyl or C_1-C_2 haloalkyl;

 R^{25} is C_1-C_2 alkyl or C_1-C_2 haloalkyl;

R^{26a} and R^{26b} are independently H or C₁-C₂ alkyl;

R²⁷ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;

 R^{28a} and R^{28b} are independently C_1 – C_2 alkyl or C_1 – C_2 alkoxy; 30

W is O or S;

W1 is O or S:

Y¹ and Y² are independently CH₂, O, S, NH or NCH₃;

m is 0. 1 or 2;

35 n is 1 or 2:

> s is 0 or 1; t is 1 or 2; and u is 0 or 1; provided that the sum of s, t and u is 2 or 3; and v is 0 or 1; w is 0 or 1; provided that the sum of v and w is 0 or 1; provided that

10

1.5

25

PCT/US2003/032965

262

- (a) when R^5 is $C(W^1)NR^{10}R^{11}$ or $C(NOR^{14})R^{15}$, then R^9 is other than alkoxy or alkylthio;
- (b) when R⁵ is C(W¹)NR¹⁰R¹¹, then R⁶ is other than alkyl or alkoxy;
- (c) when R⁵ is COR ¹³, then R ^{1a} or R ^{1b} is selected from the radicals of the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃ fluoroalkenyl, C₂-C₃ alkynyl or C₂-C₃ fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring:
- (d) when R^5 and R^6 are taken together as $-C(W^1)N(R^{10})(CH_2)_{n^-}$ and n is 1, then R^{10} is C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_3-C_4 alkenyl, C_2-C_4 alkoxymethyl or C_2-C_4 alkylthiomethyl;
- (e) when at least one of R¹⁰ and R¹¹ is haloalkyl, then R^{1a} or R^{1b} is CH₂CH₃ or CH₂CF₃ and R^{2a} or R^{2b} is tert-butyl, isopropyl or cyclopropyl;
- (f) when J is J-2 or J-6, then R⁷ and R⁹ are H;
- (g) when J is J-2 or J-6, and R^{2b} is C_1-C_2 alkyl, then R^{1b} is halogen, C_2-C_4 alkyl, C_1-C_4 fluoroalkyl, C_2-C_4 alkenyl, C_2-C_4 fluoroalkynyl;
- (h) when R^{1a} is CH₃ and R⁵ is C(NOR¹⁴)R¹⁵, then R⁷ is other than alkyl;
- (i) when T is N, then Z is CR9;
- (i) when T is N, R⁷ is alkoxy, then R¹¹ is H;
- (k) when R⁷ and R⁹ are F, and one of R¹⁰ and R¹¹ is H, then the other of R¹⁰ and R¹¹ is other than H;
 - (i) when Z is N and one of R^{10} and R^{11} is H, then the other of R^{10} and R^{11} is other than trifluoroethyl;
 - (m) when I is I-8 and R2b is C5-C6 cycloalkyl, then R5 is C(O)NR10R11; and
 - (n) when J is J-8 and \mathbb{R}^7 is other than H, then \mathbb{R}^{2b} is *tert*-butyl and \mathbb{R}^5 is $C(O)\mathbb{N}\mathbb{R}^{10}\mathbb{R}^{11}$;

and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener.

- 14. A herbicidal composition comprising the herbicidal mixture of Claim 13 and at
 30 least one of a surfactant, a solid diluent or a liquid diluent.
 - 15. A herbicidal mixture of Claim 13 wherein the other herbicide is selected from atrazine, bromacil, diuron, hexazinone, terbacil, glyphosate, glufosinate, rimsulfuron, metsulfuron-methyl, sulfometuron-methyl, ametryn and paraquist.
- A herbicidal mixture of Claim 13 wherein the safener is selected from 1-bromo 4-[(chloromethyl)sulfonyl]benzene, cloquintocet-mexyl, cyometrinil, dichlormid,
 2-(dichloromethyl)-2-methyl-1,3-dioxolane, fenchlorazole-ethyl, fenclorim, flurazole,

fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-ethyl, (4-methoxy-3-methylphenyl)-(3-methylphenyl)methanone, 1,8-naphthalic anhydride and oxabetrinil.

- 17. A herbicidal mixture of Claim 13 wherein the compound of Formula Iz is a compound of Claim 1.
- 5 18. A method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of Formula Iz, an N-oxide or an agriculturally suitable salt thereof.

lz

wherein

10

T is CR6 or N;

U is CR7 or N;

Y is CR8 or N;

Z is CR9 or N;

R^{1a} is H, C₁-C₄ alkyl, C₁-C₄ fluoroalkyl, C₂-C₄ alkenyl, C₂-C₄ fluoroalkenyl, C₂-C₄ alkynyl or C₂-C₄ fluoroalkynyl;

 R^{1b} is halogen, C_1 – C_4 alkyl, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkynyl; C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl; R^{1c} is H:

15

- R^{2a} is C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, C_2-C_6 alkylthioalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkynyl, C_3-C_6 cycloalkyl, C_4-C_6 alkylcycloalkyl, C_3-C_6 halocycloalkyl, C_4-C_6 cycloalkylalkyl, C_5-C_6 alkylcycloalkylalkyl, $-CR^{2\theta}(OR^{21})(OR^{22})$ or $SiR^{23}R^{24}R^{25};$
- $$\begin{split} R^{2b} &\text{ is } C_1-C_6 \text{ alkyl, } C_1-C_6 \text{ haloalkyl, } C_2-C_6 \text{ alkoxyalkyl, } C_2-C_6 \text{ alkylthioalkyl, } \\ &C_2-C_6 \text{ alkenyl, } C_2-C_6 \text{ haloalkenyl, } C_2-C_6 \text{ alkynyl, } C_2-C_6 \text{ haloalkynyl, } \\ &C_3-C_6 \text{ cycloalkyl, } C_4-C_6 \text{ alkylcycloalkyl, } C_3-C_6 \text{ halocycloalkyl, } C_4-C_6 \\ &\text{ cycloalkylalkyl or } C_5-C_6 \text{ alkylcycloalkylalkyl; } \end{split}$$
- 10 \mathbb{R}^3 is H, F or \mathbb{C}_1 - \mathbb{C}_2 alkyl; or
 - R^{2a} or R^{2b} is taken together with R^3 as $-C(R^{26a})(R^{26b})-(Y^1)_s-(CH_2)_{t^*}(Y^2)_{u^*}$ or $-C(R^{26a})(R^{26b})-(Y^1)_v-CH=CH-(Y^2)_w$ —wherein the left end of the radical is connected as R^{2a} or R^{2b} , and the right end of the radical is connected as R^3 ;
 - R^4 is H, C_1 – C_2 alkyl, C_2 – C_6 alkylearbonyl, C_2 – C_6 alkoxycarbonyl, C_2 – C_6 alkoxyalkyl or C_2 – C_6 alkylthioalkyl;
 - R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, C(NOR¹⁴)R¹⁵, -CN, OR¹⁶, S(O)_mR¹⁷ S(O)₂NR¹⁸R¹⁹, OS(O)₂R²⁷ or OP(O)R²⁸aR²⁸b;
 - R^6 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio; or
- 20 R⁵ and R⁶ are taken together as a radical selected from -C(W¹)N(R¹¹)(CH₂)_n- and -C(NOR¹⁴)CH₂(CH₂)_n- wherein the right end of the radical is connected to the ring at T;
 - R^7 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio;
- 25 R⁸ and R⁹ are independently selected from H, F, C₁-C₂ alkyl, C₁-C₂ fluoroalkyl, C₁-C₃ alkoxy, C₁-C₂ fluoroalkoxy, C₁-C₂ alkylthio and C₁-C₂ fluoroalkylthio;
 - R^{10} is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_4 alkoxymethyl or C_2 - C_4 alkylthiomethyl;
 - $R^{(1)}$ is H, C_1 – C_5 alkyl, C_1 – C_5 haloalkyl, C_2 – C_5 alkenyl, C_3 – C_5 haloalkenyl, C_4 – C_5 cycloalkyl, C_4 – C_5 cycloalkylalkyl, C_1 – C_3 alkoxy, C_2 – C_5 alkoxyalkyl or C_2 – C_5 alkylthioalkyl; or
 - R^{10} and R^{11} are taken together as -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂-, each optionally substituted with 1–2 C₁–C₂ alkyl;
- each R¹² is independently C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄
 alkylthioalkyl, C₂-C₅ alkenyl, C₃-C₅ haloalkenyl, C₃-C₅ alkynyl, C₃-C₅
 cycloalkyl or C₄-C₅ cycloalkylalkyl;
 - R^{13} is C_1 – C_3 alkyl, C_1 – C_3 haloalkyl or cyclopropyl;

10

 R^{14} is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_6 alkylcarbonyl or C_2 - C_6 alkoxycarbonyl;

 \mathbb{R}^{15} is C_1 - C_3 alkyl, C_1 - C_3 haloalkyl or cyclopropyl;

 R^{16} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_3 alkoxyalkyl, C_2 – C_3 alkylthioalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_5 cycloalkyl or cyclopropylmethyl;

 R^{17} is C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_2-C_4 alkenyl, C_3-C_4 haloalkenyl, C_3-C_4 alkynyl, C_3-C_4 cycloalkyl or cyclopropylmethyl;

each R¹⁸ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₄ alkoxymethyl or C₂-C₄ alkylthiomethyl;

each R 19 is independently H, C₁–C₅ alkyl, C₁–C₅ haloalkyl, C₂–C₅ alkenyl, C₃–C₅ haloalkenyl, C₃–C₅ alkynyl, C₃–C₅ cycloalkyl, C₄–C₅ cycloalkylalkyl, C₁–C₃ alkoxy, C₂–C₅ alkoxyalkyl or C₂–C₅ alkylthioalkyl;

 R^{20} is C_1 - C_4 alkyl, cyclopropyl, cyclopropylmethyl or methylcyclopropyl;

15 R^{21} is C_1 – C_3 alkyl;

R²² is C₁-C₃ alkyl; or

R²¹ and R²² are taken together as -CH₂CH₂- or -CH₂CH₂-, each optionally substituted with 1–2 methyl;

 R^{23} is C_1-C_2 alkyl or C_1-C_2 haloalkyl;

20 \mathbb{R}^{24} is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;

 R^{25} is C_1 - C_2 alkyl or C_1 - C_2 haloalkyl;

 R^{26a} and R^{26b} are independently H or C_1 - C_2 alkyl;

 \mathbb{R}^{27} is $\mathbb{C}_1 - \mathbb{C}_3$ alkyl, $\mathbb{C}_1 - \mathbb{C}_3$ haloalkyl or cyclopropyl;

 R^{28a} and R^{28b} are independently C_1 – C_2 alkyl or C_1 – C_2 alkoxy;

25 Wis Oor S;

W1 is O or S;

Y¹ and Y² are independently CH₂, O, S, NH or NCH₃;

m is 0, 1 or 2;

n is 1 or 2;

- s is 0 or 1; t is 1 or 2; and u is 0 or 1; provided that the sum of s, t and u is 2 or 3; and v is 0 or 1; w is 0 or 1; provided that the sum of v and w is 0 or 1; provided that
 - (a) when R^5 is $C(W^1)NR^{10}R^{11}$ or $C(NOR^{14})R^{15}$, then R^9 is other than alkoxy or alkylthio;
- 35 (b) when R⁵ is C(W¹)NR¹⁰R¹¹, then R⁶ is other than alkyl or alkoxy;
 - (c) when R⁵ is COR¹³, then R^{1a} or R^{1b} is selected from the radicals of the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃

10

25

fluoroalkenyl, C_2 - C_3 alkynyl or C_2 - C_3 fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring;

- (d) when R⁵ and R⁶ are taken together as -C(W¹)N(R¹⁰)(CH₂)_n- and n is 1, then R¹⁰ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₄ alkoxymethyl or C₂-C₄ alkylthiomethyl;
- (e) when at least one of R¹⁰ and R¹¹ is haloalkyl, then R^{1a} or R^{1b} is CH₂CH₃ or CH₂CF₃ and R^{2a} or R^{2b} is tert-butyl, isopropyl or cyclopropyl;
- (f) when J is J-2 or J-6, then R⁷ and R⁹ are H;
- (g) when J is J-2 or J-6, and R^{2b} is C₁-C₂ alkyl, then R^{1b} is halogen, C₂-C₄ alkyl, C₁-C₄ fluoroalkyl, C₂-C₄ alkenyl, C₂-C₄ fluoroalkenyl, C₂-C₄ alkynyl or C₂-C₄ fluoroalkynyl;
 - (h) when R^{1a} is CH₃ and R⁵ is C(NOR¹⁴)R¹⁵, then R⁷ is other than alkyl;
 - (i) when T is N, then Z is CR⁹;
 - (j) when T is N, R⁷ is alkoxy, then R¹¹ is H;
- (k) when R⁷ and R⁹ are F, and one of R¹⁰ and R¹¹ is H, then the other of R¹⁰ and R¹¹ is other than H;
 - (I) when Z is N and one of R^{10} and R^{11} is H, then the other of R^{10} and R^{11} is other than trifluoroethyl;
 - (m) when J is J-8 and \mathbb{R}^{2h} is \mathbb{C}_5 - \mathbb{C}_6 cycloalkyl, then \mathbb{R}^5 is $\mathbb{C}(0)\mathbb{N}\mathbb{R}^{10}\mathbb{R}^{11}$; and
- 20 (n) when J is J-8 and R⁷ is other than H, then R^{2b} is tert-butyl and R⁵ is C(O)NR¹⁰R¹¹;

and an antidotally effective amount of a safener.

19. A method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of Formula Iz, an N-oxide or an agriculturally suitable salt thereof,

Iz

wherein

$$J \text{ is } \begin{matrix} R^{2a} & R^3 & R^{2b} \\ R^{1a} & R^{1b} & R^{2b} \\ R^{1b} & R^{1b} \end{matrix} \qquad \begin{matrix} R^{2a} & R^{2a} \\ R^{1b} & R^{2b} \\ R^{1b} \end{matrix} \qquad .$$

J-1 J-2 J-3 J-4

$$R^{2a}$$
 R^{3}
 R^{2b}
 R^{3}
 R^{2b}
 R^{2b}
 R^{3}
 R^{2b}
 R^{2b}
 R^{3}
 R^{2b}
 R^{2b

T is CR6 or N;

U is CR7 or N:

Y is CR8 or N:

Z is CR9 or N:

5 R^{1a} is H, C_1 - C_4 alkyl, C_1 - C_4 fluoroalkyl, C_2 - C_4 alkenyl, C_2 - C_4 fluoroalkenyl, C_2 - C_4 alkynyl or C_2 - C_4 fluoroalkynyl;

 R^{1b} is halogen, C_1 – C_4 alkyl, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkenyl, C_2 – C_4 alkynyl or C_2 – C_4 fluoroalkynyl;

RIc is H;

 $\label{eq:control_control_control_control} R^{2s} \text{ is } C_1-C_6 \text{ alkyl, } C_1-C_6 \text{ haloalkyl, } C_2-C_6 \text{ alkoxyalkyl, } C_2-C_6 \text{ alkylthioalkyl, } \\ C_2-C_6 \text{ alkenyl, } C_2-C_6 \text{ haloalkenyl, } C_2-C_6 \text{ alkynyl, } C_2-C_6 \text{ haloalkynyl, } \\ C_3-C_6 \text{ cycloalkyl, } C_4-C_6 \text{ alkylcycloalkyl, } C_3-C_6 \text{ halocycloalkyl, } C_4-C_6 \\ \text{cycloalkylalkyl, } C_5-C_6 \text{ alkylcycloalkylalkyl, } -CR^{20}(OR^{21})(OR^{22}) \text{ or } \\ \text{SiR}^{23}R^{24}R^{25};$

15 R^{2b} is C_1-C_6 alkyl, C_1-C_6 haloalkyl, C_2-C_6 alkoxyalkyl, C_2-C_6 alkylthioalkyl, C_2-C_6 alkenyl, C_2-C_6 haloalkenyl, C_2-C_6 alkynyl, C_2-C_6 haloalkynyl, C_3-C_6 cycloalkyl, C_4-C_6 alkylcycloalkyl, C_3-C_6 halocycloalkyl, C_4-C_6 cycloalkylalkyl or C_5-C_6 alkylcycloalkylalkyl;

 \mathbb{R}^3 is H, F or \mathbb{C}_1 - \mathbb{C}_2 alkyl; or

20 R^{2a} or R^{2b} is taken together with R^3 as $-C(R^{26a})(R^{26b})-(Y^1)_g-(CH_2)_i-(Y^2)_{u^-}$ or $-C(R^{26a})(R^{26b})-(Y^1)_{v^-}$ CH=CH- $(Y^2)_{w^-}$ wherein the left end of the radical is connected as R^{2a} or R^{2b} , and the right end of the radical is connected as R^3 ;

R⁴ is H, C₁–C₂ alkyl, C₂–C₆ alkylcarbonyl, C₂–C₆ alkoxycarbonyl, C₂–C₆ alkoxyalkyl or C₂–C₆ alkylthioalkyl;

25 R⁵ is C(W¹)NR¹⁰R¹¹, C(O)OR¹², COR¹³, C(NOR¹⁴)R¹⁵, -CN, OR¹⁶, S(O)₀₀R¹⁷ S(O)₂NR¹⁸R¹⁹, OS(O)₂R²⁷ or OP(O)R^{28a}R^{28b};

 R^6 is H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio or C_1 – C_2 fluoroalkylthio; or

Ä

- R⁵ and R⁶ are taken together as a radical selected from -C(W¹)N(R¹¹)(CH₂)_n- and -C(NOR¹⁴)CH₂(CH₂)_n- wherein the right end of the radical is connected to the ring at T;
- R^7 is H, F, C_1 - C_2 alkyl, C_1 - C_2 fluoroalkyl, C_1 - C_2 alkoxy, C_1 - C_2 fluoroalkoxy, C_1 - C_2 alkylthio or C_1 - C_2 fluoroalkylthio;
- R^8 and R^9 are independently selected from H, F, C_1 – C_2 alkyl, C_1 – C_2 fluoroalkyl, C_1 – C_2 alkoxy, C_1 – C_2 fluoroalkoxy, C_1 – C_2 alkylthio and C_1 – C_2 fluoroalkylthio;
- R^{10} is H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_4 alkenyl, C_2 – C_4 alkylthiomethyl;
- 10 R¹¹ is H, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₅ alkenyl, C₃-C₅ haloalkenyl,

 C₃-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₃ alkoxy,

 C₂-C₅ alkoxyalkyl or C₂-C₅ alkylthioalkyl; or
 - R^{10} and R^{11} are taken together as -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂-, each optionally substituted with 1–2 C₁--C₂ alkyl;
- 15 each R¹² is independently C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄ alkylthioalkyl, C₂-C₅ alkenyl, C₃-C₅ haloalkenyl, C₃-C₅ alkynyl, C₃-C₅ cycloalkyl or C₄-C₅ cycloalkylalkyl;
 - R¹³ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;
 - R^{14} is H, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_3 – C_4 alkenyl, C_2 – C_6 alkylcarbonyl;
 - R¹⁵ is C₁-C₃ alkyl, C₁-C₃ haloalkyl or cyclopropyl;
 - R^{16} is C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_2 – C_3 alkoxyalkyl, C_2 – C_3 alkylthioalkyl, C_2 – C_4 alkenyl, C_3 – C_4 haloalkenyl, C_3 – C_4 alkynyl, C_3 – C_5 cycloalkyl or cyclopropylmethyl;
- 25 R¹⁷ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkenyl, C₃-C₄ haloalkenyl, C₃-C₄ alkynyl, C₃-C₄ cycloalkyl or cyclopropylmethyl;
 - each R¹⁸ is independently H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_4 alkenyl, C_2 - C_4 alkoxymethyl or C_2 - C_4 alkylthiomethyl;
- each R¹⁹ is independently H, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₅ alkenyl, C₃-C₅

 haloalkenyl, C₃-C₅ alkynyl, C₃-C₅ cycloalkyl, C₄-C₅ cycloalkylalkyl, C₁-C₃

 alkoxy, C₂-C₅ alkoxyalkyl or C₂-C₅ alkylthioalkyl;
 - R²⁰ is C₁-C₄ alkyl, cyclopropyl, cyclopropylmethyl or methylcyclopropyl;
 - \mathbb{R}^{21} is C_1 - C_3 alkyl;
 - R²² is C₁-C₃ alkyl; or
- 35 R²¹ and R²² are taken together as -CH₂CH₂- or -CH₂CH₂-, each optionally substituted with 1-2 methyl;
 - \mathbb{R}^{23} is \mathbb{C}_1 - \mathbb{C}_2 alkyl or \mathbb{C}_1 - \mathbb{C}_2 haloalkyl;
 - R^{24} is C_1-C_2 alkyl or C_1-C_2 haloalkyl:

269

 \mathbb{R}^{25} is \mathbb{C}_1 – \mathbb{C}_2 alkyl or \mathbb{C}_1 – \mathbb{C}_2 haloalkyl;

R^{26a} and R^{26b} are independently H or C₁-C₂ alkyl;

 R^{27} is C_1 – C_3 alkyl, C_1 – C_3 haloalkyl or cyclopropyl;

 R^{28a} and R^{28b} are independently C_1 – C_2 alkyl or C_1 – C_2 alkoxy;

5 W is O or S:

W1 is O or S:

Y¹ and Y² are independently CH₂, O, S, NH or NCH₃;

m is 0, 1 or 2;

n is 1 or 2;

- s is 0 or 1; t is 1 or 2; and u is 0 or 1; provided that the sum of s, t and u is 2 or 3; and v is 0 or 1; w is 0 or 1; provided that the sum of v and w is 0 or 1; provided that
 - (a) when R^5 is $C(W^1)NR^{10}R^{11}$ or $C(NOR^{14})R^{15}$, then R^9 is other than alkoxy or alkylthio;
- 15 (b) when \mathbb{R}^5 is $C(\mathbb{W}^1)N\mathbb{R}^{10}\mathbb{R}^{11}$, then \mathbb{R}^6 is other than alkyl or alkoxy;
 - (c) when R⁵ is COR¹³, then R^{1a} or R^{1b} is selected from the radicals of the group consisting of C₁-C₃ alkyl, C₁-C₃ fluoroalkyl, C₂-C₃ alkenyl, C₂-C₃ fluoroalkenyl, C₂-C₃ alkynyl or C₂-C₃ fluoroalkynyl, each radical unbranched and connected through a terminal end carbon atom to the azole ring;
- 20 (d) when R⁵ and R⁶ are taken together as -C(W¹)N(R¹⁰)(CH₂)_n- and n is 1, then R¹⁰ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₄ alkenyl, C₂-C₄ alkoxymethyl or C₂-C₄ alkylthiomethyl;
 - (e) when at least one of R¹⁰ and R¹¹ is haloalkyl, then R^{1a} or R^{1b} is CH₂CH₃ or CH₂CF₃ and R^{2a} or R^{2b} is *tert*-butyl, isopropyl or cyclopropyl;
- 25 (f) when J is J-2 or J-6, then R⁷ and R⁹ are H;
 - (g) when J is J-2 or J-6, and R^{2b} is C_1 – C_2 alkyl, then R^{1b} is halogen, C_2 – C_4 alkyl, C_1 – C_4 fluoroalkyl, C_2 – C_4 alkenyl, C_2 – C_4 fluoroalkynyl;
 - (h) when R^{1s} is CH₃ and R⁵ is C(NOR¹⁴)R¹⁵, then R⁷ is other than alkyl;
- 30 (i) when T is N, then Z is CR⁹;

- (i) when T is N, R⁷ is alkoxy, then R¹¹ is H:
- (k) when R⁷ and R⁹ are F, and one of R¹⁰ and R¹¹ is H, then the other of R¹⁰ and R¹¹ is other than H;
- when Z is N and one of R¹⁰ and R¹¹ is H, then the other of R¹⁰ and R¹¹ is other than trifluoroethyl;
- (m) when J is J-8 and R^{2b} is C_5 - C_6 cycloalkyl, then R^5 is $C(O)NR^{10}R^{11}$; and
- (n) when J is J-8 and R⁷ is other than H, then R^{2b} is *tert*-butyl and R⁵ is C(O)NR¹⁰R¹¹;

270

wherein seed from which the crop is grown is treated with an antidotally effective amount of a safener.

- 20. The method of Claim 19 wherein the safener comprises 1,8-naphthalic anhydride.
- 5 21. The method of Claim 19 wherein the compound of Formula Iz is a compound of Claim 1.