МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Отчет по лабораторной работе «Численное решение задачи Коши для ОДУ»

Выполнил:

студент группы 381706-2 Крюков Дмитрий Алексеевич

Проверил:

Ассистент кафедры дифференциальных уравнений, математического и численного анализа Морозов Кирилл Евгеньевич

Содержание

Постановка задачи	3
Метод Рунге-Кутты для обыкновенного дифференциального	
уравнения второго порядка	4
Программная реализация	5
Пример работы	6
Заключение	7
Литература	8
Приложение	9

Постановка задачи

Рассмотрим обыкновенное дифференциальное уравнение 1-го порядка, разрешенное относительно первой производной

$$y' = f(x, y)$$

на отрезке [a, b] с начальным условием $y(x_0) = y_0$, $x_0 \in [a,b]$

или, как говорят, задачу Коши.

Решением задачи Коши является функция, которая при подстановке ее в уравнение обращает данное уравнение в тождество, и удовлетворяет начальному условию.

При численном решении задач чаще всего требуется найти решение для значений $x > x_0$, т.е. $a=x_0$.

При решении задачи приближенными методами возникает вопрос о том, что является приближением решения. Чаще всего используют приближение искомой функции таблично заданной функцией.

Пусть n — натуральное число. Разобьем отрезок [a,b] на n равных частей. Шаг изменения x

обозначим через h. Точки деления обозначим: $\Lambda_0, \Lambda_1, \Lambda_2, \dots, \Lambda_{n-1}, \Lambda_n$, причем

$$\mathbf{x_0} = \mathbf{a}$$
, $\mathbf{x_n} = \mathbf{b}$, $\mathbf{x_i} = \mathbf{a} + \mathbf{i}\mathbf{h}$, где $h = (b-a)/n$, $i = 1,2,\dots,n-1$. Вместе с

концами отрезка назовем их узлами. Обозначим приближенные значения искомой функции в узлах $y(x_i) = y_i$.

Метод Рунге-Кутты для обыкновенного дифференциального уравнения второго порядка

Рассмотрим уравнение второго порядка, разрешенное относительно второй производной:

$$y'' = f(x, y, y')$$

На отрезке [a, b] с начальными условиями:

$$y(a) = y_0, y'(a) = y_0^1$$

Это уравнение легко свести к системе уравнений первого порядка с помощью замены

переменных: y' = z . Тогда y'' = z' и уравнение сводится к системе первого порядка

$$\begin{cases} y' = f_1(x, y, z) \\ z' = f_2(x, y, z) \end{cases} \qquad y(a) = y_0 \ , \ z(a) = z_0$$

Напишем формулы метода для системы двух уравнений:

$$\begin{split} y_{i+1} &= y_i + (k_1 + 2k_2 + 2k_3 + k_4)/6 \\ z_{i+1} &= z_i + (l_1 + 2l_2 + 2l_3 + l_4)/6, \\ k_1 &= h \cdot f_1(x_i, y_i, z_i) \;,\; l_1 = h \cdot f_2(x_i, y_i, z_i), \\ k_2 &= h \cdot f(x_i + h/2, y_i + k_1/2, z_i + l_1/2), \\ l_2 &= h \cdot f(x_i + h/2, y_i + k_1/2, z_i + l_1/2), \\ k_3 &= h \cdot f_1(x_i + h/2, y_i + k_2/2, z_i + l_2/2) \;, \\ k_3 &= h \cdot f_1(x_i + h/2, y_i + k_2/2, z_i + l_2/2), \\ k_4 &= h \cdot f_1(x_i + h, y_i + k_3, z_i + l_3) \;, \\ l_4 &= h \cdot f(x_i + h, y_i + k_3, z_i + l_3). \end{split}$$

Приведенные формулы k1, l1, k2, l2, k3, l3, k4, l4 последовательно вычисляются на каждом шаге, после чего вычисляются yi+1, zi+1

Программная реализация

Данная программа реализовано численное решение задачи Коши для уравнение маятника с диссипацией:

$$\ddot{x} + \delta \dot{x} + \sin x = 0$$

Программ выполнена на языке python, листинг основных функция смотреть в приложении

Программа представляет собой оконное приложение в котором присутствуют поля для ввода:

- Шаг изменения независимой переменной
- Начальные условия задачи Коши
- Параметр ДУ
- Количество точек которые будут просчитаны

Для отрисовки построенного решения задачи Коши нажать кнопку plot, построенные ранее фазовые траектории не стираются, для того чтобы очистить график нужно нажать на кнопку clear

Пример работы

Построим фазовый портрет для ДУ

```
\ddot{x} + \delta \dot{x} + \sin x = 0
```

при $\delta = 1$

Решим задачу Коши для

1.

x0 = 0

x'0 = 3

2.

x0 = 0

x'0 = 2

3.

 $\mathbf{x}0 = 0$

x'0 = 1

4.

x0 = 0

x'0 = -1

5.

x0 = 0

x'0 = -2

6.

x0 = 0

x'0 = -3

Таким образом на графике получаем состояние равновесия устойчивый фокус.

Заключение

В данной работе реализовано численное решение задачи Коши для ОДУ методом Рунге-Кутты. В программе предусмотрено отображение решения задачи Каши на график, за счет чего с ее помощью возможно рисование фазового портрета

Литература

- 1. Численные методы решения обыкновенных дифференциальных уравнений и систем https://vunivere.ru/work4559
- 2. А.А.Самарский П.Н.Вабищевич Е.А. Самарская. Задачи и упражнения по численным методам: Учебное пособие. М.: Эдиториал УРСС, 2000. 208 с.

Приложение

Реализация метода Рунге-Кутты на языке python

```
values_y = [0 for x in range(n)]
values_x = [0 for x in range(n)]

values_x[0] = x0
values_y[0] = deriv_x

for i in range(1, n):
    k1 = h * values_y[i-1]
    11 = h * func(delta, values_x[i-1], values_y[i-1])
    k2 = h * (values_y[i-1]+11/2)
    12 = h * func(delta, values_x[i-1] + k1/2, values_y[i-1] + 11/2)
    k3 = h * (values_y[i-1] + 12/2)
    13 = h * func(delta, values_x[i-1] + k2/2, values_y[i-1] + 12/2)
    k4 = h * (values_y[i-1] + 13)
    14 = h * func(delta, values_x[i-1] + k3, values_y[i-1] + 13)
    values_x[i] = values_x[i-1] + (k1 + 2*k2 + 2*k3 + k4)/6
    values_y[i] = values_y[i-1] + (11 + 2*12 + 2*13 + 14)/6
```