EULER'S φ-FUNCTION AND SEPARABLE GAUSS SUMS

TOM M. APOSTOL

1. Introduction. Let k denote a fixed positive integer. A completely multiplicative arithmetical function χ is called a *character* modulo k if χ is periodic with period k and has the property that $\chi(n) = 0$ if and only if (n, k) > 1. It is well known that there are exactly $\phi(k)$ distinct characters modulo k and that they form a multiplicative group, the identity element being the principal character χ_1 , where $\chi_1(n) = 1$ if (n, k) = 1. Here $\phi(k)$ is Euler's totient.

A positive divisor d of k is called an *induced modulus* for χ if we have

(1)
$$\chi(n) = 1$$
 whenever $(n, k) = 1$ and $n \equiv 1 \pmod{d}$.

This implies that χ is also a character modulo d. In particular, k itself is always an induced modulus for χ . The smallest induced modulus is called the *conductor* of χ . A character χ modulo k is called *primitive* if its conductor is k, that is, if it has no induced modulus less than k.

For any character χ modulo k and any integer r we consider the Gauss sum $G(r, \chi)$ defined by the equation

(2)
$$G(r,\chi) = \sum_{h \bmod k} \chi(h) e^{2\pi i r h/k},$$

where the sum is extended over any complete residue system modulo k. We call the Gauss sum *separable* if we have

(3)
$$G(r,\chi) = \bar{\chi}(r)G(1,\chi).$$

It is well known that the Gauss sum $G(r, \chi)$ is separable if χ is a primitive character (see Lemma 3 below). This paper proves the converse. That is, if $G(r, \chi)$ is separable for every r, then χ is primitive. Therefore, we have the following alternate description of primitive characters.

THEOREM 1. A character χ modulo k is primitive if, and only if, the Gauss sum $G(r, \chi)$ is separable for every r.

2. Lemmas. The proof of Theorem 1 is based on seven lemmas. Lemma 6 describes a property of the Euler ϕ -function which is crucial to the proof of Theorem 1 and also has applications elsewhere [1], [3, p. 24], [5, p. 66]. The other lemmas deal with characters and Gauss sums.

Received by the editors June 11, 1969.

LEMMA 1. For any character χ modulo k, the Gauss sum $G(r, \chi)$ is separable whenever (r, k) = 1.

PROOF. Since (r, k) = 1 the numbers rh run through a complete residue system modulo k with h. Also, $|\chi(r)| = 1$ so we have $\chi(h) = \bar{\chi}(r)\chi(r)\chi(h) = \bar{\chi}(r)\chi(rh)$. Hence we can write

$$G(r, \chi) = \sum_{h \bmod k} \chi(h) e^{2\pi i r h/k} = \bar{\chi}(r) \sum_{h \bmod k} \chi(rh) e^{2\pi i r h/k}$$
$$= \bar{\chi}(r) \sum_{m \bmod k} \chi(m) e^{2\pi i m/k} = \bar{\chi}(r) G(1, \chi).$$

This proves that $G(r, \chi)$ is separable.

LEMMA 2. Assume (r, k) > 1. Then $G(r, \chi)$ is separable if and only if $G(r, \chi) = 0$.

PROOF. If (r, k) > 1 we have $\bar{\chi}(r) = 0$ so equation (3) holds if and only if $G(r, \chi) = 0$.

LEMMA 3. If χ is a primitive character modulo k, then the Gauss sum $G(r, \chi)$ is separable for every r.

PROOF. A proof of Lemma 3 is given in [2, Theorem 4.12, p. 312] and in [4, Lemma 1.1, p. 212].

Lemma 3, together with its converse (Lemma 7 below) give us Theorem 1. The next three lemmas are used to prove Lemma 7.

LEMMA 4. If χ is a primitive character mod k, then $|G(1, \chi)|^2 = k$.

PROOF. A proof of Lemma 4 is given in [2, Theorem 4.13, p. 313] and in [4, Lemma 1.1, p. 212].

Lemma 5. Let χ be any character modulo k and let d be the conductor of χ . Then there exists a primitive character ψ modulo d such that

$$\chi(n) = \psi(n)\chi_1(n),$$

where χ_1 is the principal character modulo k.

PROOF. We define $\psi(n)$ by the equation $\psi(n) = \chi(n)/\chi_1(n)$ if (n, d) = 1 and we let $\psi(n) = 0$ if (n, d) > 1. Then equation (4) holds for all n. It is easy to verify that ψ is a character modulo d. To prove that ψ is a *primitive* character modulo d, let q be any induced modulus for ψ . Then we have

$$\psi(n) = 1$$
 if $(n, d) = 1$ and $n \equiv 1 \pmod{q}$.

Equation (4) implies that $\chi(n) = 1$ if (n, k) = 1 and $n \equiv 1 \pmod{q}$, so q is also an induced modulus for χ . Hence $q \ge d$ since d is the conductor

of χ . Therefore the conductor of ψ is equal to d so ψ is primitive modulo d. This proves Lemma 5.

The next lemma concerns decomposition of reduced residue systems.

LEMMA 6. Let S_k denote a reduced residue system modulo k, and let d be a divisor of k. Then S_k is the union of $\phi(k)/\phi(d)$ disjoint sets, each of which is a reduced residue system modulo d.

PROOF. Consider S_k as a multiplicative group of reduced residue classes modulo k, and let S_d be the group of reduced residue classes modulo d. Let the classes of S_k be represented by integers n and those of S_d by integers r, and note that each n is congruent (mod d) to a number r since $d \mid k$. Define a mapping $f: S_k \rightarrow S_d$ as follows:

If
$$n \in S_k$$
, then $f(n) = r$, where $n \equiv r \pmod{d}$.

This mapping is a homomorphism of S_k into S_d . The homomorphism is *onto* because if (r, d) = 1 there always exists an integer n such that

$$n \equiv r \pmod{d}$$
 and $(n, k) = 1$.

In fact, we can take for n the solution to the system of congruences

$$x \equiv r \pmod{d}, \qquad x \equiv 1 \pmod{k'},$$

where k' is the product of those prime factors of k which do not divide d. Since (k', d) = 1 this system has a solution (by the Chinese remainder theorem). To prove that (n, k) = 1 we note that (n, k') = 1 because $n \equiv 1 \pmod{k'}$ and that (n, d) = 1 because $n \equiv r \pmod{d}$. Hence (n, k'd) = 1. But k and k'd have the same set of prime factors, so (n, k) = 1.

Now let K be the kernel of f, that is, $K = \{x \in S_k | x \equiv 1 \pmod{d}\}$. Then the factor group S_k/K is isomorphic to the group S_d , so we have a corresponding coset decomposition

$$S_k = \bigcup_{x \in T} xK,$$

where T is a set of coset representatives. If we take one representative from each coset we get a reduced residue system modulo d. There are $\phi(k)$ elements in S_k and $\phi(d)$ elements in each reduced residue system modulo d, so there are $\phi(k)/\phi(d)$ such residue systems altogether. This completes the proof of Lemma 6.

Note. The referee has pointed out that Lemma 6 was proved in 1923 by T. Nagell [3], and that a different proof was later given by R. Vaidyanathaswamy [5]. Our group-theoretic proof is different from each of these.

Now we use Lemmas 4, 5, and 6 to prove the converse of Lemma 3.

LEMMA 7. If a character χ modulo k has separable Gauss sums $G(r, \chi)$ for every r, then χ is primitive modulo k.

PROOF. Because of Lemmas 1 and 2, it suffices to prove that if χ is not primitive then for some r satisfying (r, k) > 1 we have $G(r, \chi) \neq 0$. Suppose, then, that χ is not primitive modulo k. This implies k > 1. Then χ has a conductor d < k. If d = 1 then $\chi = \chi_1$ and we have

$$G(r, \chi_1) = \sum_{h \mod k} \chi_1(h) e^{2\pi i r h/k} = \sum_{h \mod k; (h,k)=1} e^{2\pi i r h/h}.$$

When r=k we have $G(k, \chi_1) = \phi(k) \neq 0$. This proves the lemma for the case in which the conductor d=1.

Now suppose d>1 and let r=k/d. We have (r, k)>1 and we shall prove that $G(r, \chi) \neq 0$ for this r. By Lemma 5 there exists a character ψ modulo d such that $\chi(n) = \psi(n)\chi_1(n)$ for all n. Hence we can write

$$G(r, \chi) = \sum_{h \bmod k} \psi(h) \chi_1(h) e^{2\pi i r h/k} = \sum_{h \bmod k; (h,k)=1} \psi(h) e^{2\pi i r h/k}$$

$$= \sum_{h \bmod k; (h,k)=1} \psi(h) e^{2\pi i h/d} = \frac{\phi(k)}{\phi(d)} \sum_{h \bmod d; (h,d)=1} \psi(h) e^{2\pi i h/d},$$

where in the last step we used Lemma 6. Therefore we have

$$G(r, \chi) = \frac{\phi(k)}{\phi(d)} G(1, \psi).$$

But $|G(1, \psi)|^2 = d$ by Lemma 4 (since ψ is primitive modulo d) and hence $G(r, \chi) \neq 0$. This completes the proof of Lemma 7. As already mentioned, Lemmas 3 and 7 together prove Theorem 1.

REFERENCES

- 1. Tom M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457-462.
- 2. Raymond Ayoub, An introduction to the analytic theory of numbers, Mathematical Surveys, no. 10, Amer. Math. Soc., Providence, R. I., 1963. MR 28 #3954.
- 3. Trygve Nagell, Zahlentheoretische Notizen, Skr. Norske Vid. Akad. Oslo I 13 (1923), 23-25.
 - 4. Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957. MR 19, 393.
- 5. R. Vaidyanathaswamy, A remarkable property of the integers mod n and its bearing on group theory, Proc. Indian Acad. Sci. Sec. A 5 (1937), 63-75.

CALIFORNIA INSTITUTE OF TECHNOLOGY