Insper

Sistemas Hardware-Software

Aula 2 – Números fracionários

2020 - Engenharia

Igor Montagner, Fábio Ayres

Números fracionários

 Representamos inteiros usando bits, sendo que cada posição equivale a uma multiplicação por potência de 2.

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Bit de sinal

Exercício - precisão

Usando Python, teste o seguinte:

```
>> 0.1
>> format(0.1, `.24f')
>>0.9
>> format(0.9, `.24f')
>> 0.5
>> format(0.5, `.24f')
```

Pergunta: todos números são representáveis de maneira exata?

Exercício - dígitos finitos

Calcule (na mão) a seguinte soma:

Regra: sempre que fizer uma soma, arredonde o resultado para 2 dígitos apenas. Exemplos: $2.34 \rightarrow 2.3$, $10.1 \rightarrow 10$

- a) Some da esquerda para direita
- a) Some da direita para esquerda

O que aconteceu?

Números fracionários

- Precisam ser escritos usando bits
- Usam número fixo de bits (32 ou 64)
- Precisão é um problema: o espaçamento entre números consecutivos pode mudar conforme números ficam maiores

Alguma ideia de como resolver isso?

Ponto fixo

Número fixo de bits para a parte decimal

- 16 bits para a parte inteira
- 16 bits para a parte fracionária

Equivalente a dividir a representação binária por uma fator escala!

Expoente é fixo!

Revisão: números decimais fracionários

$$3x10^2 + 1x10^1 + 4x10^0 + 1x10^{-1} + 5x10^{-2}$$

$$-(3x10^2 + 1x10^1 + 4x10^0 + 1x10^{-1} + 5x10^{-2})$$

Números binários fracionários

Já sabemos o que significam números inteiros representados em base 2:

$$10110_2 = 1x2^4 + ... + 0x2^0 = 22_{10}$$

-1101₂ = -(1x2³ + ... + 1x2⁰) = -13₁₀

Sabemos também o que significam números fracionários decimais

O que seriam números fracionários em base 2?

$$11.0110_2 = ?$$

Números binários fracionários

Já sabemos o que significam números inteiros representados em base 2: $10110_2 = 1x2^4 + ... + 0x2^0 = 22_{10}$ $-1101_2 = -(1x2^3 + ... + 1x2^0) = -13_{10}$

Sabemos também o que significam números fracionários decimais

O que seriam números fracionários em base 2?

$$11.0110_2 = ?$$

Resposta:

$$11.0110 = 1x2^{1} + 1x2^{0} + 0x2^{-1} + 1x2^{-2} + 1x2^{-3} + 0x2^{-4}$$
$$= 2 + 1 + 0 + 0.25 + 0.125 + 0$$
$$= 3.37510$$

- 1. Calcule o valor dos seguintes valores binários em decimal:
- a) 101.11₂
- b) -0.001_2
- c) 11.0_2

1. Calcule o valor dos seguintes valores binários em decimal:

- a) 101.11₂ 5,75
- b) -0.001₂ -0,125
- c) 11.0₂ 3

Números decimais em notação científica

$$314.15 = 3.1415 \times 10^{2}$$
Mantissa Base

$$-314.15 = -1 \times 3.1415 \times 10^{2}$$

= $(-1)^{1} \times 3.1415 \times 10^{2}$

Bit de sinal

Números decimais em notação científica

Todo número real pode ser arredondado para um número real escrito da seguinte forma:

$$x = (-1)^s \times M \times 10^E$$

onde:

- s é o bit de sinal (0: positivo, 1: negativo)
- M é a mantissa
- E é o expoente

Números binários em notação científica

Vamos fazer a mesma coisa que fizemos para os números decimais:

$$x = (-1)^s \times M \times 2^E$$

onde:

- s é o bit de sinal (0: positivo, 1: negativo)
- M é a mantissa
- E é o expoente

Exemplo

$$10.1_2$$
= $(-1)^0 \times 1.01_2 \times 2^1$

$$s = 0$$
 $M = 1.01_2 = 1.25$
 $E = 1$

Determine o bit de sinal, a mantissa e o expoente (de base 2) dos seguintes números reais representados em base 2:

101.112

 -0.001_2

 11.0_{2}

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11 ₂			
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_2 = $(-1)^0$ x 1.0111_2 x 2^2			
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_2 = $(-1)^0$ x 1.0111_2 x 2^2	0		
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_2 = $(-1)^0$ x 1.0111_2 x 2^2	0	1.0111_{2} = 1 + 0.25 + 0.125 + 0.0625 = 1.4375	
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_2 = $(-1)^0$ x 1.0111_2 x 2^2	0	1.01112 = 1 + 0.25 + 0.125 + 0.0625 = 1.4375	2
-0.001 ₂			
11.0 ₂			

Valor	Bit de sinal (s)	Mantissa (M)	Expoente (E)
101.11_2 = $(-1)^0$ x 1.0111_2 x 2^2	0	1.01112 = 1 + 0.25 + 0.125 + 0.0625 = 1.4375	2
-0.001_2 = $(-1)^1 \times 1.0_2 \times 2^{-3}$	1	1.0 ₂ = 1	3
11.0_2 = $(-1)^0$ x 1.1_2 x 2^1	0	1.1 ₂ = 1.5	1

Representando números reais no computador

- Vamos adotar essa ideia de representação em notação científica binária para armazenar números reais no computador!
 - 1 bit para guardar o sinal
 - Seguido de alguns bits para guardar a mantissa
 - E mais alguns bits para guardar o expoente

Padrão IEEE 754

- No início era a baderna...
 - Cada fabricante de CPU definia seu próprio formato de número em ponto flutuante
- Padrão IEEE 754
 - Surgiu em 1985 para uniformizar operações em pontoflutuante
 - Adotado por todas as CPUs mais importantes do mercado
- Criado principalmente por razões matemáticas
 - Arredondamento, overflow, underflow tem propriedades bem bacanas
 - Mas é difícil de implementar eficientemente em hardware!
 - FPUs

Precisão

Precisão simples (single precision): 32 bits

float

s	ехр	frac
1	8-bits	23-bits

Precisão dupla (double precision): 64 bits

double

s	ехр	frac
1	11-bits	52-bits

Precisão estendida (extended precision): 80 bits (apenas Intel)
 long double

s	ехр	frac
1	15_hite	63 or 64-bits

Insper

Representando valores float

Normalizado

s	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

Desnormalizado

s	00000000	frac
1	8-bits	23-bits

Infinito

s	11111111	0000000000000000000
1	8-bits	23-bits

NaN

s	11111111	≠ 0
1	8-bits	23-hits

Valores normalizados

	Normalizado		
:	s	exp ≠ 0 e ≠ 255	frac
	1	8-bits	23-bits

Desnormalizado

S	00000000	frac
1	8-bits	23-bits

Infinito

S	11111111	0000000000000000000
1	8-bits	23-bits

NaN

S	11111111	≠ 0
1	8-bits	23-bits

Valores normalizados

Normalizado

s	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

onde:

- s é o bit de sinal
- M = 1.frac
 - Assuma que já tem um bit 1 implícito lá e que frac representa os bits da parte fracionária
- $E = \exp Bias$
 - Tomando exp como inteiro sem sinal, subtraia o valor do bias. Tipo float: bias = 127

Aplicável quando $0 < \exp < 255$

Ou seja, quando -126 ≤ E ≤ 127

Exemplo

Determine os bits de uma variável do tipo float que armazene o número matemático $101.11_2\,$

Resposta:

```
Passo 1: Lembrando que 101.11_2 = (-1)^0 \times 1.0111_2 \times 2^2
```

temos
$$s = 0$$
, $M = 1.0111_2$ e $E = 2$

Passo 2: Como E >= -126, vamos usar float normalizado.

Passo 3:

• De M = 1.0111_2 temos frac = 0111 0000 0000 0000 0000

23 bits

• De E = 2 temos exp = E + Bias = 129 = 1000 0001

Resultado final:
$$0100\ 0000\ 1011\ 1000\ 0000\ 0000\ 0000$$

Determine o bit de sinal, o valor de frac e o expoente float (pode ser em decimal) dos seguintes números reais representados em base 2:

101.112

 -0.001_2

11.0₂

Valores desnormalizados

Normalizado

S	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

Desnormalizado

s	00000000	frac
1	8-bits	23-bits

Infinito

S	11111111	0000000000000000000
1	8-bits	23-bits

NaN

S	11111111	≠ 0
1	8-bits	23-bits

Valores desnormalizados

Desnormalizado

s	00000000	frac
1	8-bits	23-bits

$$V = (-1)^s \times M \times 2^E$$

onde:

- s é o bit de sinal
- M = 0.frac
 - Assuma que o bit mais alto agora é zero. Novamente, frac representa os bits da parte fracionária
- E = 1 Bias = -126

São os números de magnitude menor que 2⁻¹²⁶. Inclui o valor matemático zero (e também o bizarro menos zero!)

Valores especiais

Normalizado

S	exp ≠ 0 e ≠ 255	frac
1	8-bits	23-bits

Desnormalizado

S	00000000	frac
1	8-bits	23-bits

Infinito

s	11111111	000000000000000000
1	8-hits	23-hits

NaN

s	11111111	≠ 0
1	8-bits	23-bits

Valores especiais

- Infinito
 - Tanto positivo como negativo
 - Aparece em operações que resultam em overflow
- NaN
 - "Not-a-Number"
 - Aparece em operações que não resultam em número real

Visualizando a reta numérica

Insper

www.insper.edu.br