Cellular Automata

モデル化とシミュレーション特論 2023 年度前期 佐賀大学理工学研究科 只木進一

- Discrete Modeling
- Cellular Automata
- One Dimensional CA
- Elementary One Dimensional CA
- r = 2
- Game of Life

Discrete Modeling

- discrete: eg. integer values
 - opp. continuous
- Observations with
 - b o discrete time steps
 - √ discrete space positions
 - discrete space positions as an average

https://github.com/modeling-and-simulation-mc-saga/CA

Pros and Cons of Discrete Modeling

- ✓ Motions which can not be described by differential equations
 - describing with evolution rules

- ✓ Simulations

 - v integer operations are faster than floating point ones.
 - no numerical errors

Cellular Automata

- Divide space into cells
- Evolution with discrete time steps
 - **▶●** Evolution rules
 - Next state of a cell decided by states of neighbors
- √ automata
 - plural of automaton
 - a machine that moves without human control

Example 2.1: One Dimensional CA

periodic boundaries

Periodic boundary conditions

For one dimensional cases
both ends connected like racing circuits
9 0 1 2 3 4 5 6 7 8 9 0

Example 2.2: Periodic boundaries for N cells

- $s_i : 0 \le i < N$ $s_{-1} = s_{N-1}$
 - $(0-1+N) \mod N = N-1$
- - $(N-1+1) \mod N = 0$
- General expression
 - right of i: $(i+1) \mod N$
 - left of i: $(i-1+N) \mod N$

One Dimensional CA in General

ullet Next state depending on states of 2r+1 neighbors

$$s_i(t+1) = F(s_{i-r}(t), s_{i-r+1}(t), \cdots s_i(t), \cdots s_{i+r}(t))$$
 (3.1)

- \bigvee Apply the same rule F to all cells
- Update states of all cells simultaneously
 - vo Computers can update cell states sequentially.
 - ✓ How to simulate simultaneous (parallel) updates?

General parallel updates

- ullet Prepare dummy cells to store states for the next time steps t+1
 - ullet Do not modify the states for time step t
- Overwrite the values from the dummy cells into the original cells.

Example 3.1: $s_i(t) = (s_{i-1}(t) + s_{i+1}(t)) \mod 2$

Periodic boundaries

Elementary One Dimensional CA

$$s_{i} = \{0, 1\}$$

$$r = 1$$

$$s_{i}(t+1) = F(s_{i-1}(t), s_{i}(t), s_{i+1}(t))$$

$$(4.1)$$

- The number of input patterns is 3 bit = 8
- ullet F is defined as a rule for assigning 0 or 1 for these 8 inputs.
 - $2^8 = 256$ patterns
- Wolfram's elementary CA:

 - Stephen Wolfram (1959 –)

Examples

•
$$0b10111000 = 184$$
 6 5 4 3 2 1 0 | input | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 | output | 1 | 0 | 1 | 1 | 1 | 0 |

Class design

r=1

- AbstractCA class
 - Storing values of cells
- CA class
 - Wolfram's elementary CA
 - Converting ruleNumber to ruleMap
 - update() method
- CA5 class
 - r=2 case

ruleMap array in CA class

- the size of ruleMap is 8
- ruleMap holds 0 or 1
- Example: rule 184

index	0	1	2	3	4	5	6	7
value	0	0	0	1	1	9	0	1

• mkRuleMap() method

_

• Create ruleMap corresponding to the given integer.

$\overline{r} = 2$

Rule-390097500 モデル化とシミュレーション特論

Rule-393410540

Game of Life

- John Horton Conway (1937 2020)
- Cell states: active or inactive
- Observe distribution of activities
- Apply Moore neighborhood

Time Evolution

- Active cells
 - become inactive if the number of active cells in neighborhood n is n < 2 or n > 3.
 - remain active otherwise
- Inactive cells
 - become active if n=3

