Universidade Federal de Pelotas Centro de Desenvolvimento Tecnológico

Curso de Engenharia de Computação

Disciplina: 22000274 - Princípios de Comunicação

Turma: 2021/1 – T1

Professores: Alan Rossetto & Vinícius Camargo

Trabalho 4 – Processos Aleatórios

Este trabalho tem o objetivo de aumentar a compreensão discente acerca de processos aleatórios assim como seu uso na engenharia. Para tanto será utilizada a técnica de simulação Monte Carlo aplicada a processos aleatórios e então verificados os resultados obtidos pela simulação utilizando a teoria estudada em aula.

Tarefas - Utilizando o software MATLAB®, faça o que segue:

- Defina o seguinte processo aleatório: um bitstream de 50 bits aleatórios com codificação de linha de acordo com a tabela 1 (dica: crie uma função para definir este processo similar a do trabalho 3);
- Utilizando o processo de Monte Carlo, faça 1000 sorteios deste processo aleatório com sinais definidos em uma janela de tempo adequada (T).
- A partir do ensemble, calcule a potência média deste processo aleatório;
- Baseado neste *ensemble*, calcule a estimativa da função autocorrelação com τ variando de -0.5T a 0.5T. Mostre que este não é um processo estacionário;
- Utilizando a autocorrelação e a FFT, obtenha a Densidade Espectral de Potência deste processo aleatório. Compare o resultado obtido com o resultado teórico. Dica: utilize a seção 7.2.1 do livro texto da disciplina como apoio para a realização desta tarefa.
- Transmita cada um dos sinais do *ensemble* através de um filtro passa-baixas de primeira ordem utilizando o comando conv();
- Obtenha a autocorrelação e a densidade espectral de potência para as saídas deste filtro e discuta como a densidade espectral de potência foi alterada pelo sistema LTI.

Tabela 1: Especificações para trabalho 4.

Matrícula	Codificação de linha
17101170	Polar RZ
17102439	Polar RZ
14100518	Polar RZ
16102713	Polar NRZ
17102315	Polar NRZ
15101218	Polar NRZ
16103611	AMI
17102442	AMI
15200038	AMI
17100277	Manchester
16100886	Manchester
17100458	Manchester
17103628	RTN
19100591	RTN
17102515	RTN

Condições de entrega: Este trabalho deverá ser entregue na forma de relatório (em formato livre, porém com extensão *.pdf), o qual deve descrever o passo-a-passo do projeto, conter as justificativas para as escolhas realizadas, incluir as figuras e discussões e conclusões obtidas durante o desenvolvimento deste trabalho. Dois arquivos devem ser submetidos na entrega do trabalho, o *.pdf e um arquivo compactado contendo o código *.m e as funções associadas a este.