Изучение фазовой решётки (эшелет)

Цель работы

Знакомство с работой гониометра и определение спектральных характеристик фазовой решётки (эшелета).

Оборудование

Ртутная лампа, гониометр, амплитудная и фазовая дифракционные решётки, плоскопараллельная стеклянная пластинка, призменный уголковый отражатель, щель с микрометрическим винтом.

Экспериментальная установка

Схема экспериментальной установки (вид сверху)

Теоретическая часть

Дифркационная решётка представляет собой стеклянную или металлическую пластину, на которую через строго одинаковые интервалы нанесены параллельные штрихи. Основные параметры дифракционной решётки — период d (постоянная решётки), число штрихов N. Условие дифракции Фраунгофера — решётка освещается плоской волной, а плоскость наблюдения практически находится в бесконечности.

Распределение интенсивности света при дифракции Фраунгофера на решётке

Согласно принципу Гюйгенса-Френеля распределение интенсивности в дифракционной картине определяется суперпозицией волн; амплитуды всех интерферирующих волн при φ практически одинаковы; фазы составляют арифметическую прогрессию:

$$d\sin\varphi_m=m\lambda$$
,

где $m \in \mathbb{Z}$ — порядок спектра.

Интенсивность I света, распространяющегося под углом φ к нормали:

$$I = I_1(\varphi) \frac{\sin^2(N(dk\sin\varphi)/2)}{\sin^2((dk\sin\varphi)2)},$$

где $k = \frac{2\pi}{\lambda}$ — волновое число.

Дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}$$

Согласно притерию разрешения Релея, линии становятся неразличимыми, когда расстояние между ними меньше, чем растояние от максимума одной линии до её первого минимума:

$$\frac{Nkd}{2}(\sin(\varphi + \Delta\varphi) - \sin\varphi) = \pi,$$

где $\Delta \varphi$ — угловая полуширина главного максимума, $\Delta \varphi = \frac{\lambda}{N d \cos \varphi}$ Разрешающая способность спектрального прибора R вычисляется по формуле:

$$R = \frac{\lambda}{\Delta \lambda} = m \cdot N$$

К определению разрешающей способности дифракционной решётки

Дисперсионная область G — предельная ширина спектрального интервала $d\lambda$, при которой спектры соседних порядков перекрываются только своими границами:

$$G = d\lambda = \frac{\lambda}{m}.$$

Обработка результатов экспериментов

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдается главные максимум для различных длин волн. Эшелет — отражательная решётка с треугольным профилем штриха, в которой угол Ω между рабочей гранью и плоскостью решётки не превышает 20^o Рабочий порядок $m \leq 10$, число штрихов n = 1200 штр/мм.

Угол, под которым наблюдается максимум интенсивности функции $I_1(\varphi)$, соответствует зеркальному отражению падающего луча от грани и называется углом блеска φ_6 .

$$\varphi_6 = \psi + 2\Omega,$$

где ψ — угол, под которым падает плоская монохроматическая волна λ .

Разность хода Δ кратна λ :

$$\Delta = d(\sin \varphi_m - \sin \varphi) = m\lambda.$$

Изменяя угол падения, можно добиться того, чтобы угол блеска совпал с углом дифракции спектра одного из порядков; в этом порядке спектр будет наиболее ярким. Этот порядок принять называть рабочим.

Распределение интенсивности в спектре эшелета

Чтобы устранить произвол в выборе угла падения, принято считать, что решётка должна работать в автоколлиматорном режиме. В этом случае условие $d(\sin varphi_m + \sin \varphi) = m\lambda$ принимает вид:

$$2d\sin\Omega = m_p\lambda_p$$
.

Для оценки $\Delta \varphi_m$ воспользуемся методом векторных диаграмм:

Векторные диаграммы

Направление на минимум, ближайший к максимуму любого порядка:

$$d(\sin(\varphi_m + \Delta\varphi) + \sin\psi) = m\lambda + \frac{\lambda}{N}$$

Для малой полуширины максимума получим:

$$\Delta \varphi = \frac{\lambda}{Nd\cos\phi_m}$$

Зависимость дисперсии D от параметров эшелета:

$$D = \frac{m}{d\cos\varphi_m} = \frac{m}{\sqrt{d^2 - (m\lambda - d\sin\psi)^2}}$$

Произведём юстировку гониометра и установим начало отсчёта, руководствуясь техническим описанием.

Держа эшлет в вытянутой руке, найдём отражение лампы накаливанияж вращая эшелет вокруг оси, рассмотрим спектры положительных и отрицательных порядков; определим рабочий порядок; оценим дисперсионную область и сравним её с шириной спектра лампы:

Средние значения:

$$\lambda = 600$$
 hm; $\Delta \phi = 200$ hm;

$$G=rac{\lambda}{m}=200$$
 нм; Рабочий порядок $m_p=-1.$

Проделаем дополнительную настройку столика с эшелетом; установим $\psi = 30^{o}$; подберём ширину входной щели так, чтобы хорошо разрешались линии жёлтого дублета (ширина изображения щели чуть больше промежутка между линиями двойного штриха); установим высоту щели, удобную для измерений.

Для угла $\psi=45^o$ измерим угловые координаты спектральных линий ртути в рабочем порядке. Отметим гловую координату каждой из описанных линий:

Ахроматический	93°10′30″	
Фиолетовый	$75^{o}36'45''$	$4047\dot{A}$
Синий	$74^{o}23'45''$	$4358\dot{A}$
Голубой	$72^{o}15'35''$	$4916\dot{A}$
Зелёный	70°12′35″	$5461\dot{A}$
Желтый 2	$69^{o}3'25''$	$5770\dot{A}$
Жёлтый 1	68°58′35″	$5791\dot{A}$

Для оценки разрешающей способности измерим гирину одной из линий жёлтого дублета и рассчитаем аппаратную полуширину линии $\Delta\lambda$:

Ширина линии: $68^{\circ}2'10'' - 68^{\circ}2'0'' = 10''$

$$\Delta \lambda = \frac{1}{3}\dot{A}; \quad R = \frac{\lambda}{\Delta \lambda} = \frac{5770}{20} \cdot 60 = 17810$$

Для угла $\psi = 30^o$ измерим координаты каждой из жёлтых линий во всех наблюдаемых порядках:

	Ж ₁	89°3′55″
$I_{\text{пол}}$	Ж ₂	$88^{0}55'45''$
	Ж ₁	$39^{o}50'55''$
$I_{\text{отр}}$	Ж ₂	$39^{o}55'25''$

Повторим измерения для $\psi = 45^{\circ}, 60^{\circ}$:

	\mathbb{K}_1	$68^{0}58'35''$
$I_{ m orp}$	Ж ₂	$69^{o}3'35''$
	Ж ₁	48°32′15″
$II_{\text{отр}}$	Ж ₂	$48^{o}40'50''$

Таблица 1: $\psi = 45^{o}$

	Ж ₁	$92^{o}15'5''$
$I_{ m orp}$	\mathbb{K}_2	$92^{o}20'15''$
	Ж ₁	$70^{o}51'45''$
$II_{ m orp}$	Ж ₂	71°0′35″
	Ж ₁	50°51′5″
III_{orp}	Ж ₂	51°4′45″

Таблица 2: $\psi=60^o$

Зависимость разрешающей силы от ширины пучка:

Натроим зрительную трубу на желтый дублет в рабочем порядке; определим начало отсчёта — момент открытия щели. Крест появляется при $59^{\circ}57'20''$; ширина щели — 3 деления.

Откроем щель пошире; уменьшая ширину щели, добьемся предельного разрешения желтого дублета, оценим число штри-XOB:

$$n \approx 1600 \text{ mtp/mm}; \quad \Delta \lambda = 2\dot{A}.$$

Построим график зависимости $\sin \varphi_m = f(\lambda)$ и по углу наклона определим период эшелета:

Зависимость $\sin \varphi_m$ от λ

Угол наклона графика $k = (6.5 \pm 0.1) \cdot 10^6$

Число штрихов $n \approx 650 \pm 10$ штр/мм

Период эшелета: $d=\frac{1}{0.65}=1.53\pm0.04$ мм. Угловая дисперсия в рабочем порядке для жёлтого дублета в угловых секундах на A:

$$D = 14.3 \; \frac{\text{угл} \cdot \text{сек}}{\dot{A}}$$

Экспериментальная разрешающая способность:

$$R = \frac{\lambda}{\Delta \lambda} = 2890$$

Вывод

В данной лабораторной работе мы исследовали спектральные характеристики дифракционной решётки, научились работать с гониометром, экспериментально определили период решётки и разрешающую способность.