MA52300 Fall 2016

Homework Assignment 2

Due Fri, Sep 9, 2016

1. Verify assertion (36) in [E,§3.2.3], that when Γ is not flat near x^0 , the noncharacteristic condition is

$$D_p F(p^0, z^0, x^0) \cdot \nu(x^0) \neq 0.$$

(Here $\nu(x^0)$ denotes the normal to the hypersurface Γ at x^0).

2. Show that the solution of the quasilinear PDE

$$u_t + a(u)u_x = 0$$

with initial conditions u(x,0) = g(x) is given implicitly by

$$u = g(x - a(u)t).$$

Show that the solution develops a shock (becomes singular) for some t > 0, unless a(g(x)) is a nondecreasing function of x.

3. Show that the function u(x,t) defined for $t \geq 0$ by

$$u(x,t) = \begin{cases} -\frac{2}{3}(t + \sqrt{3x + t^2}) & \text{for } 4x + t^2 > 0\\ 0 & \text{for } 4x + t^2 < 0 \end{cases}$$

is an (unbounded) entropy solution of the conservation law $u_t + (u^2/2)_x = 0$ (inviscid Burger's equation).