第六章 参数估计

- § 6.1 点估计
- § 6.2 点估计的评价标准
- § 6.3 最小方差无偏估计
- § 6.4 <u>贝叶斯估计</u>
- § 6.5 区间估计

§ 6.1 点估计

- 一点估计概念
- 二 矩估计法
- 三 极大似然估计法

实例制衣厂为了合理的确定服装各种尺码的生产比例,需要调查人们身长的分布。现从男性成人人群中随机选取100人,得到他们的身长数据为:....

若已知X服从正态分布 $N(\mu,\sigma^2)$,试估计参数的 μ,σ^2 值

已知"总体"的分布类型,对分布中的未知参数进行统计推断.

一、点估计问题

设总体 X 的分布函数形式已知, 但它的一个或多个参数为未知, 借助于总体 X 的一个样本来估计总体未知参数的值的问题称为点估计问题.

总体参数,指总体分布 $F(x;\theta)$ 的数学表达式中所含的参数 θ

例如,正态分布 $N(\mu,\sigma^2)$ 的参数为 μ,σ^2 ;泊松分布 $P(\lambda)$ 的参数为 λ 等等。

二参数的点估计

定义1.1 设 X_1, X_2, \dots, X_n 是来自总体 X的样本, θ 为 总体分布 $F(x;\theta)$ 中的未知参数,构造一个统计量 $T = T(X_1, X_2, \dots, X_n)$ 作为 θ 的估计,则称 $T = T(X_1, X_2, \dots, X_n)$ 为 θ 的估计量; 若样本 X_1, X_2, \dots, X_n 的一个观察值为 x_1, x_2, \dots, x_n 则称 $T = T(x_1, x_2, \dots, x_n)$ 为

 θ 的估计值,统称为参数 θ 的点估计,记作 θ .

即 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 为 θ 的点估计量 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为 θ 的点估计值

注1. 点估计实际上是指用统 计量的值去估计 未知参数的值 ,又指用来估计未知参数 的统计量,例如,用样本均值估计总体数 学期望,用样本方差估计总体方差 ,用频率估计概率。

注 2 若总体分布 $F(x;\theta_1,\theta_2,\cdots,\theta_r)$ 中含有 r个不同的未知参数 ,则须由样本 X_1,X_2,\cdots,X_n 建立r个统计量 $T_i(X_1,X_2,\cdots,X_n)$, $(1 \le i \le r)$ 来作为相应参数 $\theta_i(1 \le i \le r)$ 的点估计。

例如正总体 $N(u,\sigma^2)$ 有两个未知参数 μ 及 σ^2 而 $E(X) = \mu$, $D(X) = \sigma^2$, 可分别用

人样本均值 $T_1 = X$ 与样本方差 $T_2 = S^2$ 加以估计.

矩有原点矩与中心矩:

原点矩:

指随机变量 ξ k次幂的数学期望 $E\xi^k$

 $E\xi$ 1阶原点矩 $E\xi^2$ 2阶原点矩

设X是总体, X_1, X_2, X_n 是X的一个样本.

 $E(X^k)$ 称为总体X的k阶原点矩;

中心矩: $E(\xi-\mu)^k$

是指随机变量 ξ 的离差 $\xi - \mu$ 的k次幂的数学期望

$$E(\xi-\mu)^2$$
 2阶中心矩.

设X是总体, X_1, X_2, X_n 是X的一个样本.

$$E(X-\mu)^{k}$$
 称为总体X的 k 阶中心矩;

$$\sum_{n=1}^{n} (X_i - \bar{X})^k$$
 称为样本的 k 阶中心矩;

二 矩估计法

定义1.2 设总体 X的分布函数 $F(x;\theta_1,\theta_2,\dots,\theta_r)$ 中有 r个未知参数 $\theta_1,\theta_2,\dots,\theta_r$,假定总体 X的 k阶原点矩 $E(X^k)(1 \le k \le r)$ 存在,一般来说, $E(X^k)$ 依赖于未知参数 θ_1,\dots,θ_r ,记作

$$E(X^{k}) = V_{k}(\theta_{1}, \theta_{2}, \cdots, \theta_{r}) \qquad (1 \le k \le r) \qquad (1.1)$$

令它等于 k阶样本原点矩

$$\overline{X^{k}} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \quad (1.2)$$

即令

$$E(X^{k}) = V_{k}(\theta_{1}, \theta_{2}, \dots, \theta_{r}) = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$$
 $(1 \le k \le r)$

由上面的方程组解出r个值

$$\hat{\theta}_i = \hat{\theta}_i(X_1, X_2, \dots, X_n) \qquad (1 \le k \le r)$$

分别取 $\hat{\theta}_i$ 作为 θ_i 的估计量,这种求估计量的方法称之为矩估计法,由此得到的估计量称为矩估计量。若有一样本值 $x_1, x_2, ..., x_n$,则称

$$\hat{\theta}_i = \hat{\theta}_i(x_1, x_2, \dots, x_n)$$
 为矩估计值。

矩估计法:

其基本思想是替换原理,用样本k阶矩作 为总体k阶矩的估计量,建立含有待估参 数的方程或方程组,从而解出待估参数

其特点是不需要假定总体分布有明确的分布类型。

矩估计法的具体步骤:

(1).求出
$$\mu_k = E(X^k) = V_k(\theta_1, \theta_2, \dots, \theta_r)$$
 $k = 1, 2, \dots$

(2).令
$$\mu_{k} = \overline{X^{k}}$$
, 其中 $\overline{X^{k}} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$; $k = 1, 2, \dots, r$ 这是一个包含 r 个未知参数 $\theta_{1}, \theta_{2}, \dots, \theta_{r}$ 的方程组.

- (3).解出其中 $\theta_1, \theta_2, \dots, \theta_r$, 用 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_r$ 表示.
- (4).用方程组的解 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_r$ 分别作为 $\theta_1, \theta_2, \dots, \theta_r$ 的估计量,这个估计量称为矩估计 量.

矩估计量的观察值称为矩估计值.

例 设总体 X 在 $[0,\theta]$ 上服从均匀分布 ,其中 θ $(\theta > 0)$ 未知, (X_1, X_2, \cdots, X_n) 是来自总体 X 的样本,求 θ 的估计量 .

解 因为
$$\mu_1 = E(X) = \frac{\theta}{2}$$
,

,所以 $\hat{\theta} = 2\overline{X}$ 为所求 θ 的估计量 .

例2.2 设总体 X 在 [a,b]上服从均匀分布 ,其中 a,

b未知, (X_1, X_2, \dots, X_n) 是来自总体 X的样本,求a,b的估计量 .

$$\mu_{1} = E(X) = \frac{a+b}{2},$$

$$\mu_{2} = E(X^{2}) = D(X) + [E(X)]^{2} = \frac{(a-b)^{2}}{12} + \frac{(a+b)^{2}}{4},$$

$$\frac{a+b}{2} = X = \frac{1}{n} \sum_{i=1}^{n} X_{i},$$

$$\frac{(a-b)^{2}}{12} + \frac{(a+b)^{2}}{4} = \overline{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2},$$

$$\begin{cases} a+b=2\overline{X},\\ b-a=\sqrt{12(\overline{X}^2-\overline{X}^2)}. \end{cases}$$

解方程组得到a, b的矩估计量分别为

$$\hat{a} = \overline{X} - \sqrt{3(\overline{X}^2 - \overline{X}^2)} = \overline{X} - \sqrt{\frac{3}{n}} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

$$\hat{b} = \overline{X} + \sqrt{3(\overline{X}^2 - \overline{X}^2)} = \overline{X} + \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}.$$

例2.3 设总体 X 的均值 μ 和方差 σ^2 都存在,且有

 $\sigma^2 > 0$,但 μ 和 σ^2 均为未知 ,又设 X_1, X_2, \dots, X_n 是 一个样本 ,求 μ 和 σ^2 的矩估计量 .

$$\mu_{1} = E(X) = \mu,
\mu_{2} = E(X^{2}) = D(X) + [E(X)]^{2} = \sigma^{2} + \mu^{2},
\Leftrightarrow \begin{cases} \mu = \overline{X}, \\ \sigma^{2} + \mu^{2} = \overline{X^{2}}. \end{cases}$$

解方程组得到矩估计量分别为 $\hat{\mu} = \overline{X}$,

$$\hat{\sigma}^{2} = \overline{X^{2}} - \overline{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} =: S_{n}^{2}$$
(二阶中心距)

上例表明: 总体均值与方差的矩估计量的表达式不因不同的总体分布而异.

例
$$X \sim N(\mu, \sigma^2)$$
, μ, σ^2 未知,即得 μ, σ^2 的矩估计量
$$\hat{\mu} = \overline{X}, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

一般地,

用样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 作为总体 X的均值的矩估计用样本二阶中心矩 $S_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$ 作为总体

X的方差的矩估计 .

- 注. 1 定义中选用的是原点矩,也可以用中心矩,只要给定总体矩,采用相应的样本矩就可以。
- 2 若 $\hat{\theta}$ 为 θ 的矩估计量, $g(\theta)$ 为 θ 的连续函数,
 亦称 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计量。

例如, S_n^2 为总体方差 σ^2 的矩估计量,则 $S_n = \sqrt{S_n^2}$ 为标准差 σ 的矩估计量。

3 矩估计的关键是计算总体矩,因此使用矩估计法 其前提是总体矩必须存在。

例2.4 设 X_1, X_2, \dots, X_n 是来自总体X的样本,当X的分布为

- (1)正态分布 $N(\mu,\sigma^2)$
- (2)指数分布 $E(\lambda)$
- (3)均匀分布U(a,b)
- (4)二项分布B(n,p)
- (5)泊松分布 $P(\lambda)$

试求其中未知参数的矩估计。

解:(1) 因为
$$X \sim N(\mu, \sigma^2)$$
, $E(X) = \mu$, $D(X) = \sigma^2$

故有
$$\mu = X$$
, $\sigma^2 = S_n^2$

(2)
$$X \sim E(\lambda), E(X) = \frac{1}{\lambda}$$

故
$$\frac{1}{\lambda} = \overline{X}$$
, 即 $\hat{\lambda} = \frac{1}{X}$

(3)
$$X \sim U(a,b)$$
, $E(X) = \frac{a+b}{2}$, $D(X) = \frac{(b-a)^2}{12}$

故有
$$\begin{cases} \frac{a+b}{2} = \overline{X} \\ \frac{(b-a)^2}{12} = S_n^2 \end{cases}$$
 即
$$\begin{cases} a+b = 2\overline{X} \\ b-a = 2\sqrt{3}S_n \end{cases}$$

解出得:
$$\hat{a} = \overline{X} - \sqrt{3}S_n$$
 $\hat{b} = \overline{X} + \sqrt{3}S_n$

(4) $X \sim B(n,p), E(X) = np, D(X) = np(1-p)$

故有
$$\begin{cases} np = \overline{X} \\ np (1-p) = S_n^2 \end{cases}$$
 即 $\begin{cases} \hat{p} = 1 - \frac{S_n^2}{\overline{X}} \\ \hat{n} = \frac{\overline{X}}{\hat{p}} = \frac{\overline{X}^2}{\overline{X} - S_n^2} \end{cases}$

(5) $X \sim P(\lambda), E(X) = D(X) = \lambda$

故 $\hat{\lambda} = X$ 或 $\hat{\lambda} = S_n^2$

注:由此例可知,矩估计量不唯一。

例2.5 设总体X的概率密度为

$$f(x;\theta) = \begin{cases} (\theta+1)x^{\theta} & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$$

 $X_1, X_2, ..., X_n$ 是来自总体X的样本。0.1,0.2,0.9,0.8,0.7,0.7为一个样本观察值,试求 θ 的矩估计值。

解:
$$E(X) = \int_{-\infty}^{+\infty} xf(x;\theta)dx = \int_{0}^{1} x(\theta+1)x^{\theta}dx = (\theta+1)\int_{0}^{1} x^{\theta+1}dx$$

$$= (\theta+1)\frac{1}{\theta+2}x^{\theta+2}\Big|_{0}^{1} = \frac{\theta+1}{\theta+2}$$
令 $\frac{\theta+1}{\theta+2} = X$ 解之得 θ 的矩估计 $\hat{\theta} = \frac{2X-1}{1-X}$

由样本值 0.1,0.2,0.9,0.8,0.7,0.7计算得 x = 0.5667

故
$$\theta$$
的矩估计值为 $\hat{\theta} = \frac{2x-1}{1-x} = 0.3079$

例2.6 设总体X的概率密度为

$$f(x,\theta) = \frac{1}{2\theta} e^{-\frac{|x|}{\theta}} - \infty < x < +\infty, \theta > 0$$

试求 θ 的矩估计量 $\hat{\theta}$ 。

法1 解:虽然 $f(x;\theta)$ 中仅含一个未知参数 θ ,但因

$$E(X) = \int_{-\infty}^{+\infty} x \, \frac{1}{2\theta} e^{-\frac{|x|}{\theta}} dx = 0$$

不含 θ ,不能由此解出,故需 继续求出总体二阶原点 矩:

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} \frac{1}{2\theta} e^{-\frac{|x|}{\theta}} dx = \int_{0}^{+\infty} x^{2} \frac{1}{\theta} e^{-\frac{x}{\theta}} dx$$

故令
$$2\theta^2 = \overline{X^2} = \frac{1}{n} \sum_{i=1}^n X_i^2$$
, 得 θ 的矩估计量 $\hat{\theta} = \sqrt{\frac{1}{2n} \sum_{i=1}^n X_i^2}$

 \mathcal{L} 考虑 X 的数学期望,

$$E\left(\left|X\right|\right) = \int_{-\infty}^{+\infty} \left|x\right| \frac{1}{2\theta} e^{-\frac{|x|}{\theta}} dx = \int_{0}^{+\infty} x \frac{1}{\theta} e^{-\frac{x}{\theta}} dx = \theta$$

可得出 θ 的另一矩估计量 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} |X_i|$

,对同一参数,其矩估计量不唯一。

2. 最大似然估计法

(1)设总体 X 属离散型

似然函数的定义

设分布律 $P\{X = k\} = p(x;\theta), \theta$ 为待估参数 $\theta \in \Theta$

(其中 Θ 是 θ 可能的取值范围)

 X_1, X_2, \dots, X_n 是来自总体 X 的样本,

则 X_1, X_2, \dots, X_n 的联合分布律为 $\prod_{i=1}^n p(x_i; \theta).$

一个样本值 .

则样本 X_1, X_2, \dots, X_n 取到观察值 x_1, x_2, \dots, x_n 的概率 ,

即事件 $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ 发生的概率为

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta), \quad \theta \in \Theta,$$

 $L(\theta)$ 称为样本似然函数

最大似然估计法

得到样本值 x_1, x_2, \dots, x_n 时,选取使似然函数 $L(\theta)$

取得最大值的 $\hat{\theta}$ 作为未知参数 θ 的估计值 ,

$$\mathbb{P} L(x_1, x_2, \cdots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \cdots, x_n; \theta).$$

参数 θ 的最大似然估计值

参数θ的最大似然估计量

(2) 设总体 X 属连续型

似然函数的定义

设概率密度为 $f(x;\theta), \theta$ 为待估参数 , $\theta \in \Theta$, (其中 Θ 是 θ 可能的取值范围 X_1, X_2, \cdots, X_n 是来自总体 X 的样本, 则 X_1, X_2, \dots, X_n 的联合密度为 $\prod f(x_i; \theta)$. 又设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的 一个样本值 .

则随机点 (X_1, X_2, \dots, X_n) 落在点 (x_1, x_2, \dots, x_n) 的

邻域(边长分别为 dx_1, dx_2, \dots, dx_n 的n维立方体)内的概率近似地为 $\prod_{i=1}^n f(x_i; \theta) dx_i$,

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta),$$

 $L(\theta)$ 称为样本的似然函数

若
$$L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta).$$

$$\hat{\theta}(x_1, x_2, \dots, x_n)$$
 参数 θ 的最大似然估计值,

$$\hat{\theta}(X_1, X_2, \dots, X_n)$$
 参数 θ 的最大似然估计量

1 极大似然估计概念

定义1.3 设总体 X的分布函数 $F(x;\theta)$ 的形式已知 $,\theta$ 为未知参数 $,\Theta$ 为 θ 的可能取值范围 $,x_1,x_2,\cdots,x_n$ 为 X的一个样本值 ,若存在 $\hat{\theta}=\hat{\theta}(x_1,x_2,\cdots,x_n)$,使得似然函数

$$L(x_1, x_2, \dots, x_n; \theta) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta)$$

则称 $\theta = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为 θ 的极大似然估计值 ,

$$\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$$
为 θ 的极大似然估计量 ,

统称为 θ 的极大似然估计。.

注1:似然函数实际上是样本的密度函数或概率分布:

$$L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$
 (X为连续型) (1.4)

$$L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} P\{X_i = x_i; \theta\}$$
 (X为离散型) (1.5)

注 2 若总体分布中含有两个 以上的未知参数 $\theta_1, \theta_2,$ …, θ_r 时,则 θ_i 的极大似然估计 $\hat{\theta}_i$ 满足

$$L(x_1,\dots,x_n;\overset{\wedge}{\theta}_1,\dots,\overset{\wedge}{\theta}_r)=\max\ L(x_1,\dots,x_n;\theta_1,\dots,\theta_r)$$

2 求最大似然估计量的步骤:

(一) 写出似然函数

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta)$$

或
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta);$$

(二) 取对数

$$\ln L(\theta) = \sum_{i=1}^{n} \ln p(x_i; \theta) \quad \overline{\mathfrak{R}} \quad \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i; \theta);$$

解方程即得未知参数 θ 的最大似然估计值 $\hat{\theta}$.

最大似然估计法也适用于分布中含有多个未知参数的情况.此时只需令

$$\frac{\partial}{\partial \theta_i} \ln L = 0, \qquad i = 1, 2, \dots, k.$$
 对数似然方程组

解出由 k 个方程组成的方程组 ,即可得各未知参数 θ_i $(i = 1,2,\dots,k)$ 的最大似然估计值 $\hat{\theta}_i$.

例2.6 设 $X \sim B(1,p)$, X_1, X_2, \dots, X_n 是来自 X 的一个样本,求 p 的最大似然估计量 .

 \mathbf{p} 设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的 一个样本值 ,

X的分布律为 $P\{X = x\} = p^{x}(1-p)^{1-x}, x = 0,1,$ 似然函数 $L(p) = \prod_{i=1}^{n} p^{x_i}(1-p)^{1-x_i}$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i},$$

$$\ln L(p) = \left(\sum_{i=1}^{n} x_{i}\right) \ln p + \left(n - \sum_{i=1}^{n} x_{i}\right) \ln(1-p),$$

$$\Leftrightarrow \frac{d}{dp} \ln L(p) = \frac{\sum_{i=1}^{n} x_{i}}{p} - \frac{n - \sum_{i=1}^{n} x_{i}}{1-p} = 0,$$
解得 p 的最大似然估计值
$$p = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \overline{x}.$$

p 的最大似然估计量为 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$

这一估计量与矩估计量是相同的.

 X_1, X_2, \dots, X_n 是来自 X 的一个样本 ,求 λ 的最大 似然估计量 .

 \mathbf{M} 因为 X 的分布律为

$$P\{X = x\} = \frac{\lambda^{x}}{x!}e^{-\lambda}, \quad (x = 0,1,2,\dots,n)$$

所以 λ 的似然函数为

所以
$$\lambda$$
 的似然函数为
$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right) = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} (x_i!)},$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^n x_i\right) \ln \lambda - \sum_{i=1}^n (x_i!),$$

解得 λ 的最大似然估计值 $\lambda = \frac{1}{2} \sum_{i=1}^{n} x_{i} = \overline{x}$,

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x},$$

λ 的最大似然估计量为

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X}.$$

这一估计量与矩估计量是相同的.

例2. 8 设总体 $X \sim N(\mu, \sigma^2)$, μ, σ^2 为未知参数 , x_1, x_2, \dots, x_n 是来自 X的一个样本值 ,求 μ 和 σ^2 的最大似然估计量 .

解 X的概率密度为

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

X的似然函数为

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}},$$

$$\ln L(\mu,\sigma^2) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2,$$

由
$$\frac{1}{\sigma^2} \left[\sum_{i=1}^n x_i - n\mu \right] = 0$$
 解得
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x},$$

由
$$-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0$$
 解得

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

故 μ 和 σ^2 的最大似然估计量分别

估计量相同.

例2.9 设总体X的概率密度为

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & 0 < x < 1 \\ 0 & 其它 \end{cases} \qquad \theta > -1$$

0.1,0.2,0.9,0.8,0.7,0.7为一个样本观察值, 试求 θ 的极大似然估计。

$$\widehat{\mathbb{R}}: i)L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta) = \prod_{i=1}^n (\theta + 1)x_i^{\theta} = (\theta + 1)^n (\prod_{i=1}^n x_i)^{\theta}$$

 $0 \le x_i \le 1$

$$(ii) \ln L(x_1, x_2, \dots, x_n; \theta) = n \ln(\theta + 1) + \theta \sum_{i=1}^{n} \ln x_i$$

$$iii) \Rightarrow \left[\frac{d}{d\theta} \left[\ln L(x_1, x_2, \dots, x_n; \theta) \right] = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i = 0 \right]$$

$$iv$$
)解之得: $\hat{\theta} = \frac{-n}{n} - 1$ 为 θ 的极大似然估计值。
$$\sum_{i=1}^{n} \ln x_i$$

而
$$\hat{\theta} = \frac{-n}{n} - 1$$
为 θ 的极大似然估计量。
$$\sum_{i=1}^{n} \ln X_{i}$$

又由样本值计算得
$$\sum_{i=1}^{n} \ln x_i = -4.9539$$
 故得 $\hat{\theta} = \frac{-6}{-4.9539} - 1 = 0.2112$

例6.1.6 设一个试验有三种可能结果,其发

生概率 $p_1 = \theta^2$, $p_2 = 2\theta(1-\theta)$, $p_3 = (1-\theta)^2$

现做了n次试验,观测到三种结果发生的次数分别为 n_1 , n_2 , n_3 (n_1 + n_2 + n_3 = n),则似然函数为

$$L(\theta) = (\theta^{2})^{n_{1}} [2\theta(1-\theta)]^{n_{2}} [(1-\theta)^{2}]^{n_{3}}$$

$$= 2^{n_2} \theta^{2n_1+n_2} (1-\theta)^{2n_3+n_2}$$

其对数似然函数为

$$n L(\theta) = (2n_1 + n_2) \ln \theta + (2n_3 + n_2) \ln (1 - \theta) + n_2 \ln 2$$

将之关于 θ 求导,并令其为0得到似然方程

$$\frac{2n_{1}+n_{2}}{\theta}-\frac{2n_{3}+n_{2}}{1-\theta}=0$$

解之,得

$$\hat{\theta} = \frac{2n_1 + n_2}{2(n_1 + n_2 + n_3)} = \frac{2n_1 + n_2}{2n}$$

曲于
$$\frac{\partial^{2} \ln L(\theta)}{\partial \theta^{2}} = -\frac{2n_{1} + n_{2}}{\theta^{2}} - \frac{2n_{3} + n_{2}}{(1 - \theta)^{2}} < 0$$

所以 $\hat{\theta}$ 是极大值点。

(2) 利用极大似然估计定义求估计法

i) 建立似然函数

$$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_r) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_r)$$

ii) 由 x_1, x_2, \dots, x_n 确定顺序统计值

$$\left|x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}\right|$$

iii) 利用顺序统计值的函数 作出 $\theta_1, \theta_2, \dots, \theta_r$ 的相应估计 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_n$,使其满足条件

$$L(x_1, \dots, x_n; \overset{\wedge}{\theta_1}, \dots, \overset{\wedge}{\theta_n})$$

$$= \max_{(\theta_1, \dots, \theta_r) \in \Theta} L(x_1, \dots, x_n; \theta_1, \dots, \theta_r)$$

则 θ_i 即为 θ_i (1 $\leq i \leq r$)的极大似然估计。

例2. 10 设总体 X 在 [a,b] 上服从均匀分布 ,其中 a, b 未知, x_1,x_2,\cdots,x_n 是来自总体 X 的一个样本值 ,求 a,b 的最大似然估计量 .

解

记
$$x_{(1)} = \min(x_1, x_2, \cdots, x_n),$$

$$x_{(n)} = \max(x_1, x_2, \dots, x_n),$$

X 的概率密度为

$$f(x;a,b) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \sharp \text{.} \end{cases}$$

因为 $a \leq x_1, x_2, \dots, x_n \leq b$ 等价于 $a \leq x_{(1)}, x_{(n)} \leq b$,

作为a,b的函数的似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n}, & a \leq x_{(1)}, b \geq x_{(n)}, \\ 0, & \text{ 其他} \end{cases}$$

于是对于满足条件 $a \le x_{(1)}, b \ge x_{(n)}$ 的任意 a,b有

$$L(a,b) = \frac{1}{(b-a)^n} \le \frac{1}{(x_{(n)}-x_{(1)})^n},$$

即似然函数 L(a,b)在 $a=x_{(1)}, b=x_{(n)}$ 时取到最大值 $(x_{(n)}-x_{(1)})^{-n}$,a,b的最大似然估计值

$$\hat{a} = x_{(1)} = \min_{1 \le i \le n} x_i,$$
 $\hat{b} = x_{(n)} = \max_{1 \le i \le n} x_i,$

a, b 的最大似然估计量

$$\hat{a} = \min_{1 \leq i \leq n} X_i, \qquad \hat{b} = \max_{1 \leq i \leq n} X_i.$$

例2.11 设 $X_1, X_2, ..., X_n$ 是取自总体X的一个样本

$$X \sim f(x) = \begin{cases} \frac{1}{\theta} e^{-(x-\mu)/\theta}, & x \ge \mu \\ 0, & \text{其它} \end{cases}$$

其中 $\theta>0$,求 θ , μ 的极大似然估计.

解: 似然函数为
$$L(x_1, x_2, \dots x_n \theta, \mu) = \begin{cases} \prod_{i=1}^n \frac{1}{\theta} e^{-(x_i - \mu)/\theta}, & x_i \ge \mu \\ 0, & \text{其它} \end{cases}$$

$$1 \quad -\frac{1}{\theta} \sum_{i=1}^{n} (x_i - \mu)$$

 $(x_i - \mu)$

对 θ , μ 分别求偏导并令其为0,

$$\frac{\partial \ln L(\theta, \mu)}{\partial \theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^{n} (x_i - \mu) = 0$$
 (1)

$$\frac{\partial \ln L(\theta, \mu)}{\partial \mu} = \frac{n}{\theta} > 0 \quad (2) \quad \theta = \frac{1}{n} \sum_{i=1}^{n} x_i - \mu$$

由于
$$L(\theta,\mu) = \begin{cases} \frac{1}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^n (x_i - \mu)}, & x_i \ge \mu \\ 0, & \sharp \dot{\Xi} \end{cases}$$

对 $\mu \leq \min x_i, L(\theta, \mu) > 0$, 且是 μ 的增函数 μ 取其它值时, $L(\theta,\mu)=0$.

故使 $L(\theta, \mu)$ 达到最大的 μ , 即 μ 的MLE,

是
$$\hat{\mu} = \min_{1 \le i \le n} x_i$$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i - \hat{\mu}$$

例1.11 设总体X的密度函数为

$$f(x;\theta) = \begin{cases} 1 & \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2} \\ 0 & 其它 \end{cases}$$

试求未知参数 θ 的极大似然估计.

解:

$$i)L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta) = 1 \qquad \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}$$

(ii) $x_1, x_2, ..., x$ 的顺序统计值为: $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$

$$iii)L(x_1, x_2, ..., x_n; \theta)$$
与 θ 无 关 而 要 $: \theta - \frac{1}{2} \le x_1, x_2, ..., x_n \le \theta + \frac{1}{2}$

故

$$\theta - \frac{1}{2} \le x_{(1)} \le x_{(2)} \le \dots \le x_{(n)} \le \theta + \frac{1}{2}$$

故由极大似然估计定义,应有

$$\hat{\theta} - \frac{1}{2} = x_{(1)} = \min_{1 \le i \le n} \{x_i\}, \qquad \hat{\theta} + \frac{1}{2} = x_{(n)} = \max_{1 \le i \le n} \{x_i\}$$

极大似然估计的不变性

设 $\hat{\theta}$ 是 θ 的极大似然估计值, $u(\theta)$

 $(\theta \in \Theta)$ 是 θ 的函数,且有单值反函数

$$\theta = \theta(u), \quad u \in U$$

则 $\hat{u} = u(\hat{\theta})$ 是 $u(\theta)$ 的极大似然估计值.

如 在正态总体 $N(\mu,\sigma^2)$ 中, σ^2 的极大似然估计值为

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

 $\sigma = \sqrt{\sigma^2}$ 是 σ^2 的单值函数,且具有单值

反函数,故 σ 的极大似然估计值为

$$\hat{\sigma} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

 $Ig\sigma$ 的极大似然估计值为

$$\lg^{\hat{}} \sigma = \lg \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

三、小结

两种求点估计的方法: { 矩估计法 最大似然估计法 }

在统计问题中往往先使用最大似然估计法, 在最大似然估计法使用不方便时,再用矩估计法.

似然函数
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$$

或
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta);$$

§ 6.2 点估计的评价标准

6.2.1 相合性

我们知道,点估计是一个统计量,因此它是一个随机变量,在样本量一定的条件下,我们不可能要求它完全等同于参数的真实取值。但如果我们有足够的观测值,根据格里纹科定理,随着样本量的不断增大,经验分布函数逼近真实分布函数,因此完全可以要求估计量随着样本量的不断增大而逼近参数真值,这就是相合性,严格定义如下。

定义6.2.1 设 $\theta \in \Theta$ 为未知参数, $\hat{\theta}_n = \hat{\theta}_n(X_1, \cdots, X_n)$ 是 θ 的一个估计量,n是样本容量,若对任何一个 $\epsilon > 0$,有

(6.2.1)
$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \varepsilon) = 0$$

则称ê,为θ参数的相合估计。

相合性被认为是对估计的一个最基本要求,如果一个估计量,在样本量不断增大时,它都不能把被估参数估计到任意指定的精度,那么这个估计是很值得怀疑的。通常,不满足相合性要求的估计一般不予考虑。证明估计的相合性一般可应用大数定律或直接由定义来证.

若把依赖于样本量n的估计量 θ̂ 看作 一个随机变量序列,相合性就是θ̂ 依 概率收敛于θ,所以证明估计的相合性 可应用依概率收敛的性质及各种大数 定律。

在判断估计的相合性时下述两个定理是很有用的。

定理6.2.1 设 $\hat{\theta}_n = \hat{\theta}_n(x_1, \dots, x_n)$ 是 θ 的一个估计量,若 $\lim_{n \to \infty} E(\hat{\theta}_n) = \theta, \quad \lim_{n \to \infty} Var(\hat{\theta}_n) = 0$ 则 $\hat{\theta}$ 是 θ 的相合估计,

例6.2.2 设 $X_1, X_2, ..., X_n$ 是来自均匀总体 $U(0, \theta)$ 的样本,证明 θ 的极大似然估计是相合估计。

证明: 在例6.1.7中我们已经给出 θ 的极大似然估计是 $X_{(n)}$ 。由次序统计量的分布,我们知道 $X_{(n)}$ 的分布密度函数为 $p(y)=ny^{n-1}/p$, $y < \theta$,故有

$$E \hat{\theta} = \int_0^\theta n y^n dy / \theta^n = \frac{n}{n+1} \theta \to \theta$$

$$E \hat{\theta}^2 = \int_0^\theta n y^{n+1} dy / \theta^n = \frac{n}{n+2} \theta^2$$

$$Var(\hat{\theta}) = \frac{n}{n+2} \theta^2 - \left(\frac{n}{n+1} \theta\right)^2 = \frac{n}{(n+1)^2 (n+2)} \theta^2 \to 0,$$

由定理6.2.1可知, $x_{(n)}$ 是 θ 的相合估计。

由大数定律及定理6.2.2,我们可以看到: 矩估计一般都具有相合性。比如:

- > 样本均值是总体均值的相合估计;
- > 样本标准差是总体标准差的相合估计;
- > 样本变异系数是总体变异系数的相合估计。

例8 试证:样本均值 \overline{X} 是总体均值 μ 的相合估计

量,样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 及样本的二阶

中心矩
$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
都是总体方差 σ^2 的相合

估计量.

证明 由大数定律知,

$$\forall \varepsilon > 0, \quad f = \lim_{n \to \infty} P \left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| < \varepsilon \right\} = 1,$$

所以
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 是 μ 的相合估计量 .

又
$$B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i^2 - 2X_i \overline{X} + \overline{X}^2)$$

 $= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2 = A_2 - \overline{X}^2,$
 $(A_2$ 是样本二阶原点矩)

由大数定律知,

$$A_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$
依概率收敛于 $E(X^2)$,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} 依概率收敛于 E(X),$$

故
$$B_2 = A_2 - \overline{X}^2$$

依概率收敛于 $E(X^2)-[E(X)]^2=\sigma^2$,

所以 B_2 是 σ^2 的相合估计量 .

$$\sum_{n\to\infty}\frac{n}{n-1}=1,$$

所以 $S^2 = \frac{n}{n-1}B_2$ 也是 σ^2 的相合估计量 .

二无偏性

1 无偏性的定义

定义2.1 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 为未知参数 θ 的一个估计量,若

$$E(\hat{\theta}) = \theta \tag{2.1}$$

则称 $\hat{\theta}$ 为 θ 的无偏估计量,否则称 为有偏估计量。

例3.1设总体 X 的 k 阶矩 $\mu_k = E(X^k)(k \ge 1)$ 存在,

又设 X_1, X_2, \dots, X_n 是X的一个样本,试证明不 论

总体服从什么分布 , k 阶样本矩 $\overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$ 是 k

阶总体矩 μ_{k} 的无偏估计 .

证 因为 X_1, X_2, \dots, X_n 与 X 同分布,

故有
$$E(X_i^k) = E(X_i^k) = \mu_k, \quad i = 1, 2, \dots, n.$$

$$\mathbb{P}\left(\overline{X^{k}}\right) = \frac{1}{n} \sum_{i=1}^{n} E(X_{i}^{k}) = \mu_{k}.$$

故k 阶样本矩 X^k 是k 阶总体矩 μ_k 的无偏估计.

特别的:

不论总体 X 服从什么分布,只要它的数学期望存在, \overline{X} 总是总体 X 的数学期望 $\mu_1 = E(X)$ 的无偏 估计量 .

例: 从总体X~N(μ,σ²)中取一样本(X_{1.}X₂....X_n)

 $EX=\mu,DX=\sigma^2$,试证明样本均值 X与样本方差 S^2 分别是 μ 及 σ^2 的无偏估计量.

证明:
$$\partial \hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 只需证明:

因为 $(X_1, X_2, ..., X_n)$ 是总体 $X \sim N(\mu, \sigma^2)$ 的样本.

$$X_i \sim N(\mu, \sigma^2)$$
 则有: $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ 所以: $E(\hat{\mu}) = E(\overline{X}) = \mu$

故:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 是总体均值的无偏估计量.

下面证明样本方差S²是总体方差的无偏估计量.

设
$$\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

只需证明: $E\hat{\sigma}^2 = ES^2 = \sigma^2$

$$E\hat{\sigma}^2 = ES^2 = E\left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2\right]$$

$$= E\left[\frac{1}{n-1}\left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}\right)\right]$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} EX_{i}^{2} - nE\overline{X}^{2} \right)$$

$$DX = EX^{2} - (EX)^{2}$$

$$DX = EX^2 - (EX)^2$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \left[DX_i + (EX_i)^2 \right] - n \left[D\overline{X} + (E\overline{X})^2 \right] \right)$$

$$n\left[D\overline{X}+\left(E\overline{X}\right)^{2}\right]$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \left[DX_i + (EX_i)^2 \right] - n \left[D\overline{X} + (E\overline{X})^2 \right] \right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \left[\sigma^{2} + \mu^{2} \right] - n \left| \frac{\sigma^{2}}{n} + \mu^{2} \right| \right)$$

$$= \frac{1}{n-1} (n\sigma^{2} + n\mu^{2} - [\sigma^{2} + n\mu^{2}]) = \sigma^{2}$$

故: 样本方差S²是总体方差的无偏估计量.

说明1:

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 不是无偏估计量.

因为:
$$ES_n^2 = E(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2)$$

$$= \frac{n-1}{n} E\left(\frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}\right)$$

例3.3 设总体 X 在 $[0,\theta]$ 上服从均匀分布 ,参数 $\theta > 0$,

 X_1, X_2, \dots, X_n 是来自总体 X 的样本,试证明 $2\overline{X}$ 和

$$\frac{n}{n+1}$$
 max(X_1, X_2, \dots, X_n)都是 θ 的无偏估计 .

$$\frac{n}{n+1} \max(X_1, X_2, \dots, X_n)$$
 都是 θ 的无偏估计 . 证 因为 $E(2\overline{X}) = 2E(\overline{X}) = 2E(X) = 2 \times \frac{\theta}{2} = \theta$,

所以 2X 是 θ 的无偏估计量 .

因为 $X_{(n)} = \max(X_1, X_2, \dots, X_n)$ 的概率密度为

$$f(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & 0 \le x \le \theta, \\ 0, & \text{ 其他} \end{cases}$$

所以
$$E(X_{(n)}) = \int_0^\theta x \cdot \frac{nx^{n-1}}{\theta^n} dx$$

$$=\frac{n}{n+1}\theta,$$
故有 $E\left(\frac{n+1}{n}X_{(n)}\right)=\theta,$

故
$$\frac{n}{n+1}$$
 max(X_1, X_2, \dots, X_n) 也是 θ 的无偏估计量 .

2 渐近无偏估计

定义3.2 $\hat{\theta}_n$ 为 θ 的有偏估计量,但有

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta \qquad (2.2)$$

则称 $\hat{\theta}_n$ 为 θ 的渐近无偏估计量。

例3.4 样本二阶中心矩 S_n^2 是 σ^2 的渐近无偏估计量。

注: 如果 $\hat{\theta}$ 是参数 $\hat{\theta}$ 的一个估计, 我们常用 $g(\hat{\theta})$ 作为 $g(\hat{\theta})$ 的估计.但当 $\hat{\theta}$ 是 $\hat{\theta}$ 的无偏估计时, $g(\hat{\theta})$ 未必是 $g(\hat{\theta})$ 的无偏估计.

例如,样本标准差s不是总体标准差 σ 的无偏估计.

$$\therefore E(S^2) = \sigma^2 \qquad \therefore D(S) + E^2(S) = \sigma^2$$

$$\therefore D(S) \ge 0 \qquad \therefore E^2(S) = \sigma^2 - D(S) \leq \sigma^2$$

∴
$$E(S) \leq \sigma$$

即:一般说S不是o的无偏估计

无偏估计量的函数未必是无偏估计量

设总体X的方差D(X)存在,且 D(X) > 0, (X_1, X_2, \cdots, X_n) 为来自总体X的样本,试选择适当的常数C,使得

$$C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$

为D(X)的无偏估计.

而 X_1, X_2, \cdots, X_n 相互独立,且与X同分布

$$E(X_i) = E(X), \quad D(X_i) = D(X) \quad (i = 1, 2, \dots, n)$$

$$D(X_{i+1} - X_i) = D(X_{i+1}) + D(X_i) = 2D(X)$$

$$E(X_{i+1} - X_i) = E(X_{i+1}) - E(X_i) = 0$$

$$E[C \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2]$$

$$= C \sum_{i=1}^{n-1} \{D(X_{i+1} - X_i) + [E(X_{i+1} - X_i)]^2\}$$

$$= C \sum_{i=1}^{n-1} 2D(X) = C \cdot 2(n-1)D(X)$$

依题意,要求:
$$E[C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2]=D(X)$$

即 $C\cdot 2(n-1)D(X)=D(X)$
 $\therefore D(X)>0$ $\therefore C=\frac{1}{2(n-1)}$.

三、有效性

比较参数 θ 的两个无偏估计量 $\hat{\theta}_1$ 和 $\hat{\theta}_2$,如果在样本容量n相同的情况下, $\hat{\theta}_1$ 的观察值在真值 θ 的附近较 $\hat{\theta}_2$ 更密集,则认为 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 有效.

由于方差是随机变量取值与其数学期望的偏离程度, 所以无偏估计以方差小者为好.

1 有效方差

定义3.3 设 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 是 θ 的无偏估计量,若

$$D(\hat{\theta}_1) < D(\hat{\theta}_2) \tag{2.3}$$

则称 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 有效。

例7 (续例4) 在例 4中已证明 $\hat{\theta}_1 = 2\overline{X}$

和 $\hat{\theta}_2 = \frac{n+1}{n} \max\{X_1, X_2, \dots, X_n\}$ 都是 θ 的无偏估

计量,现证当 $n \geq 2$ 时, $\hat{\theta}_2$ 较 $\hat{\theta}_1$ 有效.

证明 由于
$$D(\hat{\theta}_1) = 4D(\overline{X}) = \frac{4}{n}D(X) = \frac{\theta^2}{3n}$$

$$D(\hat{\theta}_2) = D\left(\frac{n+1}{n}X_{(n)}\right) = \left(\frac{n+1}{n}\right)^2 D(X_{(n)}),$$

又因为
$$E(X_{(n)}) = \frac{n+1}{n}\theta$$
,

$$E(X_{(n)}^{2}) = \int_{0}^{\theta} \frac{n}{\theta^{n}} x^{n+1} dx = \frac{n}{n+2} \theta^{2},$$

$$D(X_{(n)}) = E(X_{(n)}^{2}) - [E(X_{(n)})]^{2}$$

$$=\frac{n}{(n+1)^2(n+2)}\theta^2,$$

故
$$D(\hat{\theta}_2) = \frac{1}{n(n+2)}\theta^2$$
,

又 $n \geq 2$, 所以 $D(\hat{\theta}_2) < D(\hat{\theta}_1)$, $\hat{\theta}_2$ 较 $\hat{\theta}_1$ 有效.

例3 设总体 X 的均值和方差均存在 $, X_1, \dots, X_n$ 是总体 X 的样本, C_1, C_2, \dots, C_n 为不全相同且满足 $\sum_{i=1}^n C_i = 1$ 的任一组常数,

- 证明: (1) 样本的线性函数 $\sum_{i=1}^{n} C_i X_i$ 是总体均值 μ 的无偏估计量;
 - (2) 总体均值的无偏估计量 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 较 $\sum_{i=1}^{n} C_i X_i$ 有效.

$$\mathbf{II}(\mathbf{1})$$
 : $E(\sum_{i=1}^{n} C_i X_i) = \sum_{i=1}^{n} C_i \cdot EX_i = \mu \sum_{i=1}^{n} C_i = \mu$: $\sum_{i=1}^{n} C_i X_i \neq \mu$ 的无偏估计量;

(2) 由柯西一许瓦兹不等式知

$$1 = \left(\sum_{i=1}^{n} C_{i}\right)^{2} < \sum_{i=1}^{n} 1^{2} \cdot \sum_{i=1}^{n} C_{i}^{2} = n \sum_{i=1}^{n} C_{i}^{2} \implies \sum_{i=1}^{n} C_{i}^{2} > \frac{1}{n}$$

$$\therefore D(\sum_{i=1}^n C_i X_i) = \sum_{i=1}^n C_i^2 \cdot DX_i = \sigma^2 \sum_{i=1}^n C_i^2 > \frac{\sigma^2}{n} = D\overline{X}.$$

这表明,在μ的所有线性无偏估计量中, 样本均值 Χ 是最有效的.

例4 设 $X_1, X_2, ..., X_n$ 和 $Y_1, Y_2, ..., Y_m$ 是两组随机样本,分别取自总体 $X^*N(\mu, 1)$ 和 $Y^*N(\mu, 2^2)$,

$$T = a \sum_{i=1}^{n} X_i + b \sum_{j=1}^{n} Y_j$$
.

- (1)当a,b满足什么关系时,T是 μ 的无偏估计?
- (2)当a,b分别取何值时,T最有效?

解:(1)
$$E(T)=a\cdot n\mu+b\cdot m\mu=(na+mb)\mu$$

⇒当
$$na+mb=1$$
时, $E(T)=\mu$

此时,T是 μ 的无偏估计

(2)
$$D(T)=a^2\cdot n+b^2\cdot 4m = na^2 + 4m\left(\frac{1-na}{m}\right)^2$$

$$= na^2 + \frac{4(1-na)^2}{m}$$

D''(a) > 0 ⇒此时D(T)最小,即T最有效

$$a = \frac{4}{4n+m}, \quad b = \frac{1}{4n+m}$$

6.2.4 均方误差

在均方误差的标准下,无偏估计不一定比有偏估计更优。

评价 ⁶ 个点估计的好坏一般可以用:点估计值 与参数真值θ的<u>距离平方的期望</u>,这就是下式给出的<u>均方误差</u>

$$MSE(\theta) = E(\theta - \theta)^{2}$$

均方误差是评价点估计的最一般的标准。我们希望估计的均方误差越小越好。

注意到 $MSE(\hat{\theta}) = Var(\hat{\theta}) + (E\hat{\theta} - \theta)^2$, 因此

- (1) 若 $\hat{\theta}$ 是 θ 的无偏估计, $MSE(\hat{\theta}) = Var(\hat{\theta})$, 这说明用方差考察无偏估计有效性是合理的。
- (2) 当 $\hat{\theta}$ 不是 θ 的无偏估计时,就要看其均方误差 $MSE(\hat{\theta})$ 。

下面的例子说明:在均方误差的含义下有些有偏估计优于无偏估计。

例 6.2.8 对均匀总体 $U(0,\theta)$, 由 θ 的极大似然估计得到的

无偏估计是 $\hat{\theta} = \frac{(n+1)}{n} X_{(n)}$,它的均方误差

$$MSE(\hat{\theta}) = Var(\hat{\theta}) = \frac{\theta^2}{n(n+2)}$$

现我们考虑 θ 的形如 $\hat{\theta}_{\alpha} = \alpha \cdot x_{(n)}$ 的估计,其均方差为

$$MSE(\hat{\theta}_{\alpha}) = \alpha^{2} \frac{n}{(n+1)^{2}(n+2)} \theta^{2} + \left(\frac{n \cdot \alpha}{n+1} - 1\right)^{2} \theta^{2}$$

用求导的方法不难求出当 $\alpha_0 = (n+2)/(n+1)$ 时上述均方误差达到最小,且其均方误差

$$MSE(\widehat{\theta}_0) = \frac{\theta^2}{(n+1)^2} < \frac{\theta^2}{n(n+2)} = MSE(\widehat{\theta})$$

所以 在均方误差的标准下,有偏估计 $\hat{\theta}_0$ 优于无偏估计 $\hat{\theta}$ 。

6.4.2 最小方差无偏估计

定义6.4.2 对参数估计问题,设 $\hat{\theta}$ 是 θ 的一个无偏估计,如果对另外任意一个 θ 的无偏估计 $\tilde{\theta}$,在参数空间 Θ 上都有

$$\operatorname{Var}_{\theta}(\hat{\theta}) \leq \operatorname{Var}_{\theta}(\hat{\theta})$$

则称 $\hat{\theta}$ 是 θ 的一致最小方差无偏估计简记为UMVUE。

1 最小方差无偏估计的判别法

定理6.4.1 设 $X=(X_1, X_2, ..., X_n)$ 是来自某总体的一个样本, $\hat{\theta} = \hat{\theta}(X)$ 是 θ 的一个无偏估计, $Var(\hat{\theta}) < \infty$. 如果对任意一个满足 $E(\varphi(X))=0$ 的 $\varphi(X)$,都有

$$\operatorname{Cov}_{\theta}(\hat{\theta}, \varphi) = 0, \quad \forall \theta \in \Theta$$

则 $\hat{ heta}$ 是heta 的UMVUE。

注

- 1 此定理是最小方差无偏估计的判别法,但无法寻求最小方差无偏估计的存在性.
- 2 由于 $\varphi(X)$ 的任意性,因而很难利用定理判别.

由下例可以看出,利用判别定理进行判别, 非常复杂,况且也无法利用此定理去寻求 UMVUE.

例6.4.2 设 $X_{\nu}X_{\nu},...,X_{n}$ 是来自指数分布 $Exp(1/\theta)$

的样本,则 $T = X_1 + ... + X_n$ 是 θ 的充分统计量, $\overline{X} = T / n$ 是 θ 的无偏估计。设 $\varphi = \varphi(X_1, X_2, ..., X_n)$ 是0的任一 无偏估计,则 $\int_{-\infty}^{\infty} \varphi(x_1, \cdots, x_n) \cdot e^{-(x_i + \cdots + x_n)/\theta} dx_1 \cdots dx_n = 0$

两端对θ求导得

$$\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{n \overline{x}}{\theta^{2}} \varphi(x_{1}, \cdots, x_{n}) \cdot e^{-(x_{i} + \cdots + x_{n})/\theta} dx_{1} \cdots dx_{n} = 0$$

这说明 $E(\bar{x}\cdot\varphi)=0$,从而 $Cov(\bar{x},\varphi)=E(\bar{x}\cdot\varphi)-E(\bar{x})\cdot E(\varphi)=0$,

由定理6.4.1,它是 θ 的UMVUE。

例

设 $X = (X_1, X_2, \cdots, X_n)^T$ 是来自总

体 (μ, σ^2) 的一个样本,已知 \overline{X} 和 S_n^{*2} 是 μ 和 σ^2 的无偏估计,证明 \overline{X} 和 S_n^{*2} 分别是 μ 和 σ^2 的MVUE.

证 设L(X)满足EL(X)=0,则

$$\int \cdots \int L \cdot \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\} dx = 0$$

两边关于 μ 求导,则

$$\int \cdots \int L \cdot \sum_{i=1}^{n} x_i \cdot \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right\} dx = 0$$

因而

$$E(L(X)X) = 0$$

故X是 μ 的MVUE.

对此式
$$\int \cdots \int L \cdot \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\} dx = 0$$
关于 μ

求二阶导数,则

$$\int \cdots \int L \cdot (\sum_{i=1}^{n} x_{i} \cdot)^{2} \exp\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\} dx = 0$$

对此式
$$\int \cdots \int L \cdot \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\} dx = 0$$
关于 σ^2

求导数,则

$$\int ... \int L \cdot \sum_{i=1}^{n} (x_i - \mu)^2 \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\} dx = 0$$

又由于
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \mu)^2 - n(\bar{x} - \mu)^2$$
,可得
$$\int \cdots \int L \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2 \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\} dx = 0$$
因而 $E(L(X)S_n^{*2}) = 0$

6.4.2 充分性原则

以下定理说明: 充分统计量是一个有力工具

定理6.4.2 设总体概率函数是 $f(x, \theta)$, $X_1, X_2, ..., X_n$ 是其样本, $T=T(X_1, X_2, ..., X_n)$ 是 θ 的充分统计量,则

对 θ 的任一无偏估计 $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$,令 $\tilde{\theta} = E(\hat{\theta} \mid T)$, $\tilde{\theta}$ 也是 θ 的无偏估 $Var(\tilde{\theta}) \leq Var(\hat{\theta})$

定理6.4.2说明:如果无偏估计不是充分统计 量的函数,则将之对充分统计量求条件期 望可以得到一个新的无偏估计,该估计的 方差比原来的估计的方差要小,从而降低 了无偏估计的方差。换言之,考虑 θ 的估 计问题只需要在基于充分统计量的函数中 进行即可,该说法对所有的统计推断问题 都是正确的,这便是所谓的充分性原则。

注 最小方差无偏估计计算方法

- 1、构造一个充分完备统计量 $T(X_1, \dots, X_n)$ 和一个 θ 的无偏估计 $\hat{\theta}$.
- 2、计算数学期望 $E(\hat{\theta} \mid T)$,即得 θ 的一个MVUE.

例6.3.1 设 $x_1, x_2, ..., x_n$ 是来自b(1, p)的样本,则 $T = n\bar{x}$ 是p的充分统计量。为估计 θ = p^2 ,可令

$$\hat{\theta}_{1} = \begin{cases} 1, & x_{1} = 1, x_{2} = 1 \\ 0, & \cancel{!} \dot{\Xi} \end{cases}$$

由于 $E(\hat{\theta}_1) = P(x_1 = 1, x_2 = 1) = p \cdot p = \theta$,所以 $\hat{\theta}_1$ 是 θ 的无偏估计。这个只使用了两个观测值的估计并不好. 下面我们用Rao-Blackwell定理对之加以改进: 求 $\hat{\theta}_1$ 关于充分统计量的条件期望,得 $T = \sum_{i=1}^{n} x_i$

$$\widehat{\theta} = E(\widehat{\theta}_1 \mid T = t) = \binom{n-2}{t-2} / \binom{n}{t} = \frac{t(t-1)}{n(n-1)}$$

6.4.4 Cramer-Rao不等式

上一节介绍了最小方差无偏估计以及相应的寻求方法。自然会引入另一个问题:最小方差无偏估计是否可以任意的小?是否有下界? 差无偏估计是否可以任意的小?是否有下界? 事实上,Rao-Cramer不等式可以回答此问题。

定义6.4.3 设总体的概率函数 $P(x,\theta)$, $\theta \in \Theta$ 满足下列条件:

- (1) 参数空间O是直线上的一个开区间:
- (2) 支撑 $S=\{x: P(x,\theta)>0\}$ 与 θ 无关;
- (3) 导数 $\frac{\partial}{\partial \theta} p(x;\theta)$ 对一切 $\theta \in \Theta$ 都存在; (4) 对 $P(x,\theta)$, 积分与微分运算可交换次序;
- (5) 期望 $E\left[\frac{\partial}{\partial \theta} \ln p(x;\theta)\right]^2$ 存在;

则称
$$I(\theta) = E \left[\frac{\partial}{\partial \theta} \ln p(x;\theta) \right]^2$$

为总体分布的费希尔(Fisher) 信息量。

费希尔信息量是数理统计学中一个基本概念,很多的统计结果都与费希尔信息量有关。如极大似然估计的渐近方差, 量有关。如极大似然估计的渐近方差, 无偏估计的方差的下界等都与费希尔信息量*I*(θ)有关。

例6.3.3 设总体为泊松分布P(1)分布,

则

$$\ln p(x;\lambda) = x \ln \lambda - \lambda - \ln(x!)$$

$$\frac{\partial}{\partial \lambda} \ln p(x;\lambda) = \frac{x}{\lambda} - 1$$

于是
$$I(\lambda) = E\left(\frac{X-\lambda}{\lambda}\right)^2 = \frac{1}{\lambda}$$

例6.3.4 设总体为指数分布, 其密度

函数为

$$p(x;\theta) = \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\}, \quad x > 0, \ \theta > 0$$

可以验证定义6.3.2的条件满足,且

$$\frac{\partial}{\partial \theta} \ln p(x;\theta) = \frac{1}{\theta} - \frac{x}{\theta^2} = -\frac{x - \theta}{\theta^2}$$

于是
$$I(\theta) = E\left(\frac{x-\theta}{\theta^2}\right)^2 = \frac{\operatorname{Var}(x)}{\theta^4} = \frac{1}{\theta^2}$$

定理6.3.4 (Cramer-Rao不等式)

设定义6.3.2的条件满足, $X_1, X_2, ..., X_n$ 是来自该总体的样本, $T=T(X_1, X_2, ..., X_n)$ 是 $g(\theta)$ 的任一个无偏估计, $g'(\theta) = \frac{\partial g(\theta)}{\partial \theta}$ 存在,且对 $\theta \in \Theta$ 中一切 θ ,微分可在积分号下进行,则有

$$Var(T) \ge \frac{[g'(\theta)]^2}{nI(\theta)}$$

- ➤ 上式称为克拉美-罗(C-R)不等式;
- $[g'(\theta)]^2/(nI(\theta))$ 称为 $g(\theta)$ 的无偏估计的方差的C-R下界,简称 $g(\theta)$ 的C-R下界。
- ▶ 特别,对 θ 的无偏估计 $\hat{\theta}$,有 $Var(\hat{\theta}) \ge (nI(\theta))^{-1}$
- ightharpoonup 如果等号成立,则称 $T=T(x_1,...,x_n)$ 是 $g(\theta)$ 的有效估计,有效估计一定是 UMIVUE。

例6.4.6 设总体分布列为 $p(x,\theta) = \theta^{x} (1-\theta)^{1-x}$,

x=0,1,它满足定义6.4.3的所有条件,可以 算得该分布的费希尔信息量 $I(\theta) = \frac{1}{\theta(1-\theta)}$, 若 $x_1, x_2, ..., x_n$ 是该总体的样本,则 θ 的C-R 下界为 $(nI(\theta))^{-1} = \theta(1-\theta)/n$ 。因为 \bar{x} 是 θ 的 无偏估计,且其方差等于 $\theta(1-\theta)/n$,达到 C-R 下界,所以 \bar{x} 是 θ 的有效估计,它也 是 θ 的UMVUE。

例6.4.7 设总体为指数分布 $Exp(1/\theta)$,它满

足定义6.3.2的所有条件,例6.3.4中已经算出该分布的费希尔信息量为 $I(\theta) = \theta^{-2}$,若 x_1 , x_2 ,..., x_n 是样本,则 θ 的C-R下界为 $(nI(\theta))^{-1} = \theta^2/n$ 。而 \bar{x} 是 θ 的无偏估计,且其方差等于 θ^2/n ,达到了C-R下界,所以, \bar{x} 是 θ 的有效估计,它也是 θ 的UMVUE。

能达到C-R下界的无偏估计不多:

例6.4.8 设总体为 $N(0,\sigma^2)$,满足定义6.3.2的条件,且费希尔信息量为 $I(\sigma^2) = \frac{1}{2\sigma^4}$,令 $\sigma = g(\sigma^2) = \sqrt{\sigma^2}$,

则 σ 的C-R下界为 $\frac{[g'(\sigma^2)]^2}{nI(\sigma^2)} = \frac{\sigma^2}{2n}$,

而**的UMVUE**为 $\hat{\sigma} = \sqrt{\frac{n}{2}} \cdot \frac{\Gamma(n/2)}{\Gamma((n+1)/2)} \sqrt{\frac{1}{n}} \sum_{i=1}^{n} x_i^2$

其方差大于C-R下界。这表明所有 σ 的无偏估计的方差都大于其C-R下界。

费希尔信息量的主要作用体现在极大似然估计。

- <u>定理6.3.5</u> 设总体X有密度函数 $p(x;\theta)$, $\theta \in \Theta$, Θ为非退化区间,假定
 - (1) 对任意的x,偏导数 $\frac{\partial \ln p}{\partial \theta}$, $\frac{\partial^2 \ln p}{\partial \theta^2}$ 和 $\frac{\partial^3 \ln p}{\partial \theta^3}$ 对所有 $\theta \in \Theta$ 都存在;

(2)
$$\forall \theta \in \Theta$$
,

 $\left| \frac{\partial p}{\partial \theta} \right| < F_1(x), \quad \left| \frac{\partial^2 p}{\partial \theta^2} \right| < F_2(x), \quad \left| \frac{\partial^3 \ln p}{\partial \theta^3} \right| < F_3(x)$,

其中函数 $F_1(x)$, $F_2(x)$, $F_3(x)$ 可积.

(3)
$$\forall \theta \in \Theta$$
, $0 < I(\theta) \equiv \int_{-\infty}^{\infty} \left(\frac{\partial \ln p}{\partial \theta} \right)^2 p(x;\theta) dx < \infty$

若 $x_1, x_2, ..., x_n$ 是来自该总体的样本,则存在未知参数 θ 的极大似然估计 $\hat{\theta}_n = \hat{\theta}_n(x_1, ..., x_n)$,且 $\hat{\theta}_n$ 具有相合性和渐近正态性: $\hat{\theta}_n \stackrel{\sim}{\sim} N\left(\theta, \frac{1}{nI(\theta)}\right)$

定理 设总体X的分布函数为 $F(x,\theta)$, $\theta \in \Theta$ 是未知参数, $X = (X_1, X_2, \cdots, X_n)^T$ 是来自总体X的一个样本,如果 $\hat{\theta} = \hat{\theta}(X_1, X_2, \cdots, X_n)$ 是 θ 的无偏估计量,则 $\hat{\theta}$ 是 θ 的有效估计的充分必要条件为:1、 $\hat{\theta}$ 是 θ 的充分估计量:

2.
$$\frac{\partial \ln L(x,\theta)}{\partial \theta} = C(\theta)[\hat{\theta}(x_1,x_2,\cdots,x_n) - \theta]$$

其中 $L(x,\theta)$ 是样本的联合分布密度, $C(\theta)$ 仅依赖参数 θ . 证明从略。

例

设X服从两点分布 $B(1,p),X_1$,

 X_2 , …, X_n 是来自X的一个样本,证明p的最大似然估计量是有效估计.

解 因为 X的分布律为

$$P{X = x} = p^{x} (1-p)^{1-x}$$
 $(x = 0,1)$

所以 p的似然函数为

$$L(p) = \prod_{i=1}^{n} (p^{x} (1-p)^{1-x}) = p^{\sum_{i=1}^{n} x_{i}} (1-p)^{n-\sum_{i=1}^{n} x_{i}}$$

$$\ln L(p) = \left(\sum_{i=1}^n x_i\right) p - \left(n - \sum_{i=1}^n x_i\right) (1-p),$$

$$\frac{\mathbf{d}}{\mathbf{dp}} \ln L(p) = \frac{\sum_{i=1}^{n} x_{i}}{p} - \frac{n - \sum_{i=1}^{n} (x_{i})}{1 - p} = \frac{n}{p(1 - p)} \{\overline{x} - p\} = 0$$

解得 p 的最大似然估计值 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$,

又因为
$$\frac{\partial \ln L(x,p)}{\partial p} = C(p)[\hat{p}(x_1,x_2,\cdots,x_n)-p],$$
其中

$$C(p) = \frac{n}{p(1-p)}$$
, 同时 X 是p的充分统计量,因而由

定理3.11可知, \overline{X} 是p的有效估计.

§ 6.4 贝叶斯估计

6.4.1 统计推断的基础

- 经典学派的观点:统计推断是根据样本信息 对总体分布或总体的特征数进行推断,这里 用到两种信息:总体信息和样本信息;
- 贝叶斯学派的观点:除了上述两种信息以外, 统计推断还应该使用第三种信息:先验信息。

- (1) 总体信息:总体分布提供的信息。
- (2) 样本信息:抽取样本所得观测值提供的信息。
- (3) 先验信息:人们在试验之前对要做的问题在经验上和资料上总是有所了解的,这些信息对统计推断是有益的。先验信息即是抽样(试验)之前有关统计问题的一些信息。一般说来,先验信息来源于经验和历史资料。先验信息在日常生活和工作中是很重要的。

基于上述三种信息进行统计推断的统计学 称为贝叶斯统计学。它与经典统计学的差 别就在于是否利用先验信息。贝叶斯统计 在重视使用总体信息和样本信息的同时, 还注意先验信息的收集、挖掘和加工,使 它数量化,形成先验分布,参加到统计推 断中来,以提高统计推断的质量。忽视先 验信息的利用,有时是一种浪费,有时还 会导出不合理的结论。

贝叶斯学派的基本观点:任一未知量 θ 都可 看作随机变量,可用一个概率分布去描述, 这个分布称为先验分布: 在获得样本之后, 总体分布、样本与先验分布通过贝叶斯公式 结合起来得到一个关于未知量 θ 新的分布— 后验分布:任何关于 θ 的统计推断都应该基 于 θ 的后验分布进行。

6.4.2 贝叶斯公式的密度函数形式

- 〉总体X依赖于参数 θ 的概率函数在贝叶斯统计中记为 $f(X \mid \theta)$,它表示在随机变量 θ 取某个给定值时总体的条件概率函数;
- \rightarrow 根据参数 θ 的先验信息可确定先验分布 $\pi(\theta)$;
- 》从贝叶斯观点看,样本 $X_1, X_2, ..., X_n$ 的产生分两步进行:首先从先验分布 $\pi(\theta)$ 产生一个样本 θ_0 ,然后从 $f(X \mid \theta_0)$ 中产生一组样本。这时样本的联合条件概率函数
- $\mathcal{F}_{p}(X_{1}, \cdots, X_{n} \mid \theta_{0}) = \prod_{i=1}^{n} f(X_{i} \mid \theta_{0})$
- 这个分布综合了总体信息和样本信息;

 $\geq \theta$ 是未知的,它是按先验分布 $\pi(\theta)$ 产生 的。为把先验信息综合进去,不能只考 虑 θ ,对 θ 的其它值发生的可能性也要加 以考虑,故要用 $\pi(\theta)$ 进行综合。这样一 来,样本 $X_1,...,X_n$ 和参数 θ 的联合分布为: $h(X_1, X_2, ..., X_n, \theta) = f(X_1, X_2, ..., X_n | \theta) \pi(\theta),$ 这个联合分布把总体信息、样本信息和 先验信息三种可用信息都综合进去了:

在没有样本信息时,人们只能依据先验分 布对θ作出推断。在有了样本观察值 x_1 , x_2 ,..., x_n 之后,则应依据 $h(x_1, x_2,..., x_n, \theta)$ 对θ作出推断。由于

 $h(x_{1}, x_{2},...,x_{n}, \theta) = \pi(\theta | x_{1}, x_{2},...,x_{n}) m(x_{1}, x_{2},...,x_{n}),$ 其中 $m(x_{1}, ...,x_{n}) = \int_{\mathbb{S}} h(x_{1}, ...,x_{n}, \theta) d\theta = \int_{\mathbb{S}} p(x_{1}, ...,x_{n}, \theta) d\theta$ 是 $x_{1}, x_{2},...,x_{n}$ 的边际概率函数,它与 θ 无关,不含 θ 的任何信息。因此能用来对 θ 作出推断的仅是条件分布 $\pi(\theta | x_{1}, x_{2},...,x_{n})$,它的计算公式是

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{h(x_1, \dots, x_n, \theta)}{m(x_1, \dots, x_n)} = \frac{p(x_1, \dots, x_n \mid \theta)\pi(\theta)}{\int_{\Theta} p(x_1, \dots, x_n \mid \theta)\pi(\theta)d\theta}$$

这个条件分布称为 θ 的后验分布,它集中了总体、样本和先验中有关 θ 的一切信息。

后验分布 $\pi(\theta|x_1,x_2,...,x_n)$ 的计算公式就是用密度函数表示的贝叶斯公式。它是用总体和样本对先验分布 $\pi(\theta)$ 作调整的结果,贝叶斯统计的一切推断都基于后验分布进行。

6.4.3 贝叶斯估计

基于后验分布 $\pi(\theta|x_1,x_2,...,x_n)$ 对 θ 所作的贝叶斯估计有多种,常用有如下三种:

- >使用后验分布的密度函数最大值作为θ的 点估计,称为最大后验估计;
- >使用后验分布的中位数作为θ的点估计, 称为后验中位数估计;
- 使用后验分布的均值作为θ的点估计,称 为后验期望估计。
 - 用得最多的是后验期望估计,它一般也简 称为贝叶斯估计,记为 ê,。

例6.4.2 设某事件A在一次试验中发生的概率为 θ ,为估计 θ ,对试验进行了n次独立观测,其中事件A发生了X次,显然 $X|\theta \sim b(n,\theta)$,即

$$P(X = x \mid \theta) = {n \choose x} \theta^{x} (1-\theta)^{n-x}, \qquad x = 0,1,\dots, n$$

假若我们在试验前对事件A没有什么了解,从而对其发生的概率θ也没有任何信息。在这种场合,贝叶斯本人建议采用"同等无知"的原则使用区间(0,1)上的均匀分布U(0,1)作为θ的先验分布,因为它取(0,1)上的每一点的机会均等。贝叶斯的这个建议被后人称为贝叶斯假设。

由此即可利用贝叶斯公式求出 θ 的后验分布。具体如下:

先写出X和 θ 的联合分布

$$h(x,\theta) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}, \qquad x = 0,1,\dots,n, \quad 0 < \theta < 1$$

$$h(x,\theta) = \binom{n}{x} \theta^{x} (1-\theta)^{n-x}, \quad x = 0,1, \dots, n, \quad 0 < \theta < 1$$
然后求X的边际分布
$$m(x) = \int_{0}^{1} \binom{n}{x} \theta^{x} (1-\theta)^{n-x} d\theta = \binom{n}{x} \frac{\Gamma(x+1)\Gamma(n-x+1)}{\Gamma(n+2)}$$

$$\pi(\theta \mid x) = \frac{h(x,\theta)}{m(x)} = \frac{\Gamma(n+2)}{\Gamma(x+1)\Gamma(n-x+1)} \theta^{(x+1)-1} (1-\theta)^{(n-x+1)-1}, \quad 0 < \theta < 1$$

最后的结果说明 θ |X ~Be(x+1,n-x+1),其后验期望估计为

$$\hat{\theta}_B = E(\theta \mid x) = \frac{x+1}{n+2}$$
 (6.4.4)

伽玛函数表达式:

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{(x-1)} dt = (x-1)\Gamma(x-1)$$

$$\Gamma(1) = 1, \Gamma(n+1) = n!$$

U(0,1)均匀分布是贝塔分布的一个特例Be(1,1)

某些场合,贝叶斯估计要比极大似然估计更合理一点。比如:"抽检3个全是合格品"与"抽检10个全是合格品",后者的质量比前者更信得过。这种差别在不合格品率的极大似然估计中反映不出来(两者都为0),而用贝叶斯估计两者分别是0.2 和 0.83。

由此可以看到,在这些极端情况下,贝叶斯估计比极大似然估计更符合人们的理念。

例6.4.3 设 $x_1, x_2, ..., x_n$ 是来自正态分布

 $N(\mu, \sigma_{0}^{2})$ 的一个样本,其中 σ_{0}^{2} 已知, μ 未知,假设 μ 的先验分布亦为正态分布 $N(\theta, \tau^{2})$,其中先验均值 θ 和先验方差 τ^{2} 均已知,试求 μ 的贝叶斯估计。

解:样本x的分布和 μ 的先验分布分别为

$$p(x \mid \mu) = (2\pi\sigma_0^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2 \right\}$$

$$\pi(\mu) = (2\pi\tau^2)^{-1/2} \exp\left\{-\frac{1}{2\tau^2}(\mu-\theta)^2\right\}$$

由此可以写出x与µ的联合分布

$$h(X, \mu) = k_1 \cdot \exp \left\{ -\frac{1}{2} \left[\frac{n\mu^2 - 2n\mu \overline{x} + \sum_{i=1}^n x_i^2}{\sigma_0^2} + \frac{\mu^2 - 2\theta\mu + \theta^2}{\tau^2} \right] \right\}$$

其中
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $k_1 = (2\pi)^{-(n+1)/2} \tau^{-1} \sigma_0^{-n}$ 。若记

$$A = \frac{n}{\sigma_0^2} + \frac{1}{\tau^2}, \quad B = \frac{n\overline{x}}{\sigma_0^2} + \frac{\theta}{\tau^2}, \quad C = \frac{\sum_{i=1}^{n} x_i^2}{\sigma_0^2} + \frac{\theta^2}{\tau^2}$$

$$h(X, \mu) = k_1 \exp\{-\frac{1}{2}[A\mu^2 - 2B\mu + C]\}$$

$$= k_1 \exp\{-\frac{(\mu - B/A)^2}{2/A} - \frac{1}{2}(C - B^2/A)\}$$

注意到A,B,C均与µ无关,由此容易算得样本的边际密度函数

$$m(x) = \int_{-\infty}^{\infty} h(x,\mu) d\mu = k_1 \exp \left\{ -\frac{1}{2} (C - B^2 / A) \right\} (2\pi / A)^{1/2}$$

应用贝叶斯公式即可得到后验分布

$$\pi(\mu \mid x) = \frac{h(x,\mu)}{m(x)} = (2\pi / A)^{1/2} \exp \left\{ -\frac{1}{2/A} (\mu - B / A)^2 \right\}$$

这说明在样本给定后, µ的后验分布为

N(B/A,1/A),
$$\exists p$$
 $\mu \mid x \sim N\left(\frac{n\overline{x}\sigma_0^{-2} + \theta \tau^{-2}}{n\sigma_0^{-2} + \tau^{-2}}, \frac{1}{n\sigma_0^{-2} + \tau^{-2}}\right)$

后验均值即为其贝叶斯估计:

$$\hat{\mu} = \frac{n / \sigma_0^2}{n / \sigma_0^2 + 1 / \tau^2} \overline{x} + \frac{1 / \tau^2}{n / \sigma_0^2 + 1 / \tau^2} \theta$$

它是样本均值 *x*与先验均值θ的加权平均。

6.4.4 共轭先验分布

若后验分布 $\pi(\theta|\mathbf{x})$ 与 $\pi(\theta)$ 属于同一个分布族,则称该分布族是 θ 的共轭先验分布(族)。

- 后验分布和先验分布是同一个类型
- 优点: 易于解释、继续试验
- 已知: $p(x|\theta)$, 选 $\pi(\theta)$
- 使得 $h(\theta \mid r) \propto p(x \mid \theta) * \pi(\theta)$ 与先验分布同类型
- · 若p(x|θ)服从正态分布,选正态分布
- · 若p(x|θ)服从两点分布,选Beta分布
- · 若p(x|θ)服从指数分布,选逆Gamma分布

§ 6.5 区间估计

点估计不能反映估计的精度,故而本节引入了区间估计.

定义6.1 设 X_1, X_2, \dots, X_n 是来自分布函数为 $F(x;\theta)$ 的总体 X的一个样本, θ 为未知参数, 对于给定值 α , $0 < \alpha < 1$,若存在两个统计量 $\hat{\theta}_L = \hat{\theta}_L(X_1, X_2, \dots X_n), \quad \hat{\theta}_U = \hat{\theta}_U(X_1, X_2, \dots X_n),$

(3.1)

使得
$$P\{\hat{\theta}_L \leq \theta \leq \hat{\theta}_U\} = 1 - \alpha$$

则称随机区间[$\hat{\theta}_{L}$, $\hat{\theta}_{v}$]为 θ 的置信水平为 $1-\alpha$ 的置信区间,或简称[$\hat{\theta}_{L}$, $\hat{\theta}_{v}$]是 θ 的 $1-\alpha$ 置信区间.

 $\hat{\theta}_L$ 和 $\hat{\theta}_v$ 分别称为 θ 的(双侧)<u>置信下限</u>和置信上限.

注:置信水平为 $1-\alpha$ 的置信区间的含义是 :

利用样本值所构造的一 个随机区间 $[\hat{\theta}_L, \hat{\theta}_U]$ 能盖住未知参数 θ 的概率为 $1-\alpha$ 。

因为这个随机区间会随 样本观察值的不同而不 同,它有时盖住了参数 θ ,有时没有盖住 θ ,

因此用这种方法作区间 估计时 ,100 次中大约 有 $100(1-\alpha)$ 个区间能盖住未知参数 $\theta,100\alpha$ 个左 右区间不能盖住 θ 。

例6.5.1 设 $x_1, x_2, ..., x_{10}$ 是来自 $N(\mu, \sigma^2)$ 的样本,

则 μ 的置信水平为 $1-\alpha$ 的置信区间为

$$\left[\overline{x} - t_{1-\alpha/2}(9) s / \sqrt{10}, \overline{x} + t_{1-\alpha/2}(9) s / \sqrt{10} \right]$$

其中, \bar{x} ,s 分别为样本均值和样本标准差。这个置信区间的由来将在6.5.3节中说明,这里用它来说明置信区间的含义。若取 α =0.10,则 t_{o} 。(9)=1.8331,上式化

$$[\bar{x} - 0.5797s, \bar{x} + 0.5797s]$$

现假定 μ =15, σ ²=4,则我们可以用随机模拟方法由N(15,4)产生一个容量为10的样本,如下即是这样一个样本: 14.85 13.01 13.50 14.93 16.97

13.80 17.9533 13.37 16.29 12.38

由该样本可以算得 $\bar{x} = 14.7053, s = 1.8438$ 从而得到 μ 的一个区间估计为

 $[14.7053 - 0.5797 \times 1.8438, 14.7053 + 0.5797 \times 1.8438] = [13.6427, 15.7679]$

该区间包含µ的真值—15。现重复这样的方法 100次,可以得到100个样本,也就得到100个 区间,我们将这100个区间画在图6.5.1上。

由可这区9参15个含值图以100个有含值外,不参值的,有含值外包真。

图6.5.1 μ的置信水平为0.90的置信区间

取 α =0.50,我们也可以 给出100个这 样的区间, 见图6.5.2。 可以看出, 这100个区间 中有50个包 含参数真值 15, 另外50 个不包含参 数真值。

图6.5.2 μ的置信水平为0.50的置信区间

例 6.1 设总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 为已知 $, \mu$ 为未知 $, \mu$

设 X_1, X_2, \dots, X_n 是来自X的样本,试求 μ 的置信度为 $1-\alpha$ 的置信区间。

解:(1)在 σ^2 已知条件下,求置信度 为1 – α 的未知 参数 μ 的置信区间,

(2) μ 的点估计为 X,故构造含 μ 的样本函数为

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$(3)\sqrt{n}\frac{\overline{X}-\mu}{\sigma}$$
落在任一区间 $[a,b]$ 内取值的概率

都能得到,即

$$P\{a \leq \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \leq b\} = \Phi(b) - \Phi(a).$$

若令
$$P\{a \leq \sqrt{n} \frac{X-\mu}{\sigma} \leq b\} = 1-\alpha$$
.

区间端点 [a,b]有无穷选择。若要使区 间长度

最短,只有取关于原点 对称的区间。

$$\mathbb{P} a = -z_{\frac{\alpha}{2}} = z_{1-\frac{\alpha}{2}}, b = z_{\frac{\alpha}{2}}.$$

由标准正态分布的上 α 分位点的定义知

即
$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right\} = 1 - \alpha$$

由 Φ
$$(z_{\alpha/2}) = 1 - \frac{\alpha}{2}$$
, 查表得 $z_{\alpha/2}$ 的值;

于是得 μ 的一个置信水平为 $1-\alpha$ 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right).$$

这样的置信区间常写成 $\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$.

其置信区间的长度为

$$2\times\frac{\sigma}{\sqrt{n}}z_{\alpha/2}$$
.

注意:置信水平为 $1-\alpha$ 的置信区间是不唯一的

如果在本例中取 n=16, $\sigma=1$, $\alpha=0.05$,

查表可得 $z_{\alpha/2} = z_{0.025} = 1.96$,

得一个置信水平为 0.95 的置信区间 $\left(\overline{X} \pm \frac{1}{\sqrt{16}} \times 1.96\right)$.

由一个样本值算得样本均值的观察值 $\bar{x} = 5.20$,

则置信区间为(5.20 ± 0.49), 即 (4.71, 5.69).

就是说估计总体的均值在4.71与5.69之间,这个估计的可信程度为95%.

若依此区间内任一值作 为 μ 的近似值 ,

其误差不大于
$$\left(\frac{1}{\sqrt{16}} \times 1.96 \times 2\right) = 0.98$$

这个误差的可信度为95%.

取
$$\alpha = 0.05$$

$$z_{\frac{\alpha}{2}} - z_{1 - \frac{\alpha}{2}} = 1.96 - (-1.96)$$
$$= 3.92$$

$$z_{\frac{2\alpha}{3}} - z_{1-\frac{\alpha}{3}} = 1.84 - (-2.13)$$
$$= 3.97$$

说明:对于概率密度的图形是单峰且关于纵坐标轴对称的情况,易证取*a*和*b*关于原点对称时,能使置信区间长度最小.

6.5.2 枢轴量法

构造未知参数θ的置信区间的最常用的方法是枢轴量 法,其步骤可以概括为如下三步:

- 1. 设法构造一个样本和 θ 的函数 $G=G(x_1, x_2, ..., x_n, \theta)$ 使得G的分布不依赖于未知参数。一般称具有这种性质的G为枢轴量。
- 2. 适当地选择两个常数c,d,使对给定的 α (0< α <1) 有 $P(c \le G \le d) = 1$ α
- 3. 假如能将 $c \le G \le d$ 进行不等式等价变形化为 $\hat{\theta}_L \le \theta \le \hat{\theta}_U$ 则 $[\hat{\theta}_L, \hat{\theta}_U]$ 是 θ 的 $1-\alpha$ 同等置信区间。

关于置信区间的构造有两点说明:

- > 满足置信度要求的c与d通常不唯一。若有可能,应选平均长度 $E(\hat{\theta}_v \hat{\theta}_L)$ 达到最短的c与d,这在G的分布为对称分布场合通常容易实现。
- 》实际中,选平均长度 $E(\hat{\theta}_v \hat{\theta}_L)$ 尽可能短的c与d,这往往很难实现,因此,常这样选择 c与d,使得两个尾部概率各为 $\alpha/2$,即 $P(G < c) = P(G > d) = \alpha/2$,这样的置信区间称为等尾置信区间。这是在G的分布为偏态分布场合常采用的方法。

6.6.3 单个正态总体参数的区间估计

设给定置信水平为 $1-\alpha$,并设 X_1,X_2,\cdots,X_n 为 总体 $N(\mu,\sigma^2)$ 的样本, \overline{X},S^2 分别是样本均值和样本方差 .

- 1.均值 μ 的置信区间
- (1) σ^2 为已知,由上节例6可知:

$$\mu$$
的一个置信水平为 $1-\alpha$ 的置信区间 $\left(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$.

例6.2 包糖机某日开工包了12包糖,称得质量(单

位: 克) 分别为506, 500, 495, 488, 504, 486, 505, 513, 521, 520, 512, 485. 假设重量服从正态分布, 且标准差为 $\sigma = 10$, 试求糖包的平均质量 μ 的 $1 - \alpha$ 置信区间 (分别取 $\alpha = 0.10$ 和 $\alpha = 0.05$).

$$\mathbf{\widetilde{m}} \qquad \sigma = 10 \,, \quad n = 12 \,,$$

计算得 $\bar{x} = 502.92$,

(1)
$$\stackrel{\text{def}}{=} \alpha = 0.10 \text{ pr}, \ 1 - \frac{\alpha}{2} = 0.95,$$

查表得
$$z_{\alpha/2} = z_{0.05} = 1.645$$
,

$$\frac{z}{x} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} = 502.92 - \frac{10}{\sqrt{12}} \times 1.645 = 498.17,$$

$$\overline{x} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} = 502.92 + \frac{10}{\sqrt{12}} \times 1.645 = 507.67$$

即 μ 的置信度为 90% 的置信区间为

(498.17, 507.67).

(2)
$$\stackrel{.}{=}$$
 $\alpha = 0.05$ $\stackrel{.}{=}$ $1 - \frac{\alpha}{2} = 0.975$,

查表得

$$z_{\alpha/2} = z_{0.025} = 1.96$$
,

同理可得 μ的置信度为 95% 的置信区间为

(497.26, 508.58).

从此例可以看出

当置信度 $1-\alpha$ 较大时,置信区间也较大, 当置信度 $1-\alpha$ 较小时,置信区间也较小

(2) σ²为未知,

 μ 的置信度为 $1-\alpha$ 的置信区间 $\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$.

推导过程如下:

由于区间
$$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$
中含有未知参数 σ ,不能

直接使用此区间 ,

但因为 S^2 是 σ^2 的无偏估计 ,可用 $S = \sqrt{S^2}$ 替换 σ ,

又根据第四章定理 4.5.1(4) 知
$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$
,

则
$$P\left\{-t_{\alpha/2}(n-1)<\frac{\overline{X}-\mu}{S/\sqrt{n}}< t_{\alpha/2}(n-1)\right\}=1-\alpha$$
,

$$\mathbb{P}\left\{\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)<\mu<\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right\}=1-\alpha\,,$$

于是得 μ 的置信度为 $1-\alpha$ 的置信区间

$$\left(\overline{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right).$$

例6.3 (续例6.2) 如果只假设糖包的重量服从正态分布

 $N(\mu,\sigma^2)$, 试求糖包重量 μ 的 95% 的置信区间 .

解 此时 σ 未知 , n=12 ,

$$\alpha = 0.05, \quad \overline{x} = 502.92, \quad s = 12.35,$$

查 t(n-1) 分布表可知 : $t_{0.025}(11) = 2.201$,

于是
$$\frac{s}{\sqrt{n}}t_{\alpha/2}(n-1) = \frac{12.35}{\sqrt{12}} \times 2.201 = 7.85$$
,

得 μ 的置信度为 95%的置信区间 (495.07,510.77).

2. 方差 σ^2 的置信区间

方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right).$$

推导过程如下:

因为 S^2 是 σ^2 的无偏估计 ,

根据第四章定理4.5.1知

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

$$\mathbb{P}\left\{\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right\} = 1-\alpha,$$

于是得方差 σ^2 的置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right).$$

进一步可得:

标准差σ的一个置信度为1-α的置信区间

$$\left(\frac{\sqrt{n-1}S}{\sqrt{\chi_{\alpha/2}^2(n-1)}}, \frac{\sqrt{n-1}S}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}}\right).$$

注意: 在密度函数不对称时,如 χ^2 分布和 F 分布,习惯上仍取对称的分位点来确定置信区间(如图).

例 6.4 (续例 6.1) 求例 1中总体方差 σ^2 和标准差 σ 的

置信度为 0.95 的置信区间 .

$$\frac{\alpha}{2} = 0.025, \qquad 1 - \frac{\alpha}{2} = 0.975, \qquad n - 1 = 11,$$

查 $\chi^2(n-1)$ 分布表可知 :

$$\chi_{0.025}^{2}(11) = 21.920, \qquad \chi_{0.975}^{2}(11) = 3.816,$$

方差 σ^2 的置信区间 (78.97, 453.64);

标准差 σ 的置信区间 (8.87, 21.30).

表3.1单个正态总体参数的区间估计一览表

被估计 参数	条件	估计统计量	服从分布	置信度为 1- α的置 信区间	α的分位数
μ	σ己知	$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	N(0,1)	$(\overline{X}\pm rac{\sigma}{\sqrt{n}}u_{lpha/2})$	$\Phi(u_{\alpha/2}) = 1 - \alpha/2$
μ	σ未知	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$	t(n-1)	$(\overline{X} \pm \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$	$P\{T > t_{\alpha/2}(n-1) = \alpha/2$
$\sigma^{^2}$	μ己知	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma^{2}}$	$\chi^2(n)$	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}(n)}\right)$	$P\{\chi^{2} > \chi_{\alpha/2}^{2}(n)\} = \alpha/2$ $P\{\chi^{2} > \chi_{1-\alpha/2}^{2}(n)\} = \alpha/2$
$\sigma^{^2}$	μ未知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$	$P\{\chi^{2} > \chi_{\alpha/2}^{2}(n-1)\} = \alpha/2$ $P\{\chi^{2} > \chi_{1-\alpha/2}^{2}(n-1)\} = \alpha/2$
σ	μ未知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	$\chi^2(n-1)$	$(\sqrt{\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}}, \sqrt{\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}})$	$P\{\chi^{2} > \chi_{\alpha/2}^{2}(n-1)\} = \alpha/2$ $P\{\chi^{2} > \chi_{1-\alpha/2}^{2}(n-1)\} = \alpha/2$

例 3.3 从一台机床加工的轴承 中,随机地抽取 200 件,测得其椭圆度,得样本观察值 X = 0.081 毫米,并由累积资料知椭圆

度 X 服从 $N(\mu,0.025^2)$, 试在置信度 0.95 下,求 μ 的置信区间的相应于样本观察值的 一个现实区间。

解:由一览表中查得, σ^2 已知条件下, μ 置信度为 $1-\alpha=0.95$ 的置信区间为

$$(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$$

其中 $z_{\alpha/2} = z_{\underline{0.05}} = 1.96$,且已知 $\sigma = 0.025$,n = 200,x = 0.081

故所求现实区间为

$$(0.081 \pm \frac{0.025}{\sqrt{200}} \times 1.96) = (0.081 \pm 0.035) = (0.0775, 0.0845)$$

例 3.4 已知某种白帜灯泡的寿 命 $X \sim N(\mu, \sigma^2)$,在一批该种灯泡中随机地抽取 10 只,测得其寿命 (以小时计算)于下:

解:(1)查一览表中查得 $,\sigma^2$ 未知条件下 $,\mu$ 的置信度为 $1-\alpha=0.95$ 的置信区间为 :

$$(\overline{X} \pm \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$$

查 t分布表得 $t_{\alpha/2}(n-1) = t_{0.05/2}(10-1) = 2.2622$

由数据计算得 x = 997.1, s = 131.5476

故得 μ的置信度为 0.95的置信区间为

$$(997.1 \pm \frac{131.5476}{\sqrt{10}} \times 2.2622) = (997.1 \pm 94.1) = (903,1091.2)$$

(2)由一览表查得 : μ 未知条件下 , σ^2 的置信度为 $1-\alpha=0.95$ 的

置信区间为

$$\left(\frac{(n-1)S^{2}}{x_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{x_{1-\alpha/2}^{2}(n-1)}\right)$$

故得 σ^2 置信区间为 0.95 的置信区间为

$$\left(\frac{9 \times 131.5476^{-2}}{19.023}, \frac{9 \times 131.5476^{-2}}{2.7}\right) = (8187.1,57682.6)$$

σ的置信度为 0.95的置信区间为

$$\left(\frac{\sqrt{9} \times 131.5476}{\sqrt{19.023}}, \frac{\sqrt{9} \times 131.5476}{\sqrt{2.7}}\right) = (90.5, 240.2)$$

设单个总体 $X \sim N(\mu, \sigma^2)$,

1.单个总体均值μ的置信区间

$$\begin{cases} (1) \ \sigma^2 为 已 知, \left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right). \\ (2) \ \sigma^2 为 未 知, \left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1) \right). \end{cases}$$

2.单个总体方差 σ^2 的置信区间

$$\left(\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right).$$

二、两个总体 $N(\mu_1,\sigma_1^2)$, $N(\mu_2,\sigma_2^2)$ 的情况

设给定置信度为 $1-\alpha$,并设 X_1,X_2,\cdots,X_n 为第一个总体 $N(\mu_1,\sigma_1^2)$ 的样本, Y_1,Y_2,\cdots,Y_n 为第二个总体 $N(\mu_2,\sigma_2^2)$ 的样本, $\overline{X},\overline{Y}$ 分别是第一、二个总体的样本均值 , S_1^2,S_2^2 分别是第一、二个总体的样本方差 .

讨论两个整体总体均值差和方差比的估计问题.

1. 两个总体均值差 $\mu_1 - \mu_2$ 的置信区间

(1) σ_1^2 和 σ_2^2 均为已知

 $\mu_1 - \mu_2$ 的一个置信度为 $1 - \alpha$ 的置信区间

$$\left(\overline{X}-\overline{Y}\pm z_{\alpha/2}\sqrt{\frac{{\sigma_1}^2}{n_1}+\frac{{\sigma_2}^2}{n_2}}\right).$$

推导过程如下:

因为 \overline{X} , \overline{Y} 分别是 μ_1 , μ_2 的无偏估计 ,

所以 $\overline{X} - \overline{Y}$ 是 $\mu_1 - \mu_2$ 的无偏估计 ,

由 \overline{X} , \overline{Y} 的独立性及

$$\overline{X} \sim N\left(\mu_1, \frac{{\sigma_1}^2}{n_1}\right), \qquad \overline{Y} \sim N\left(\mu_2, \frac{{\sigma_2}^2}{n_2}\right),$$

可知
$$\overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right),$$

或
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1),$$

于是得 $\mu_1 - \mu_2$ 的一个置信度为 $1 - \alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}\right).$$

(2) σ_1^2 和 σ_2^2 均为未知 ,

只要 n_1 和 n_2 都很大 (实用上 > 50 即可),则有

 $\mu_1 - \mu_2$ 的一个置信度为 $1 - \alpha$ 的近似置信区间

$$\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right).$$

(3)
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
, 但 σ^2 为未知 ,

$\mu_1 - \mu_2$ 的一个置信度为 $1 - \alpha$ 的置信区间

$$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right).$$

其中
$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
, $S_w = \sqrt{S_w^2}$.

为比较1,11两种型号步枪子弹的枪口速度, 例7 随机地取型子弹10发,得到枪口速度的平均值为 $\bar{x}_1 = 500 \, (\text{m/s})$,标准差 $s_1 = 1.10 \, (\text{m/s})$,随机地取|| 型子弹20发, 得枪口速度平均值为 $\bar{x}_{1}=496 \, (m/s)$, 标准差 $s_2 = 1.20 \, (m/s)$,假设两总体都可认为近似 地服从正态分布,且由生产过程可认为它们的方差 相等, 求两总体均值差 $\mu_1 - \mu_2$ 的置信度为0.95的置 信区间.

解 由题意,两总体样本独立且方差相等(但未知),

$$\frac{\alpha}{2} = 0.025, \qquad n_1 = 10, \quad n_2 = 20, \quad n_1 + n_2 - 2 = 28,$$

查 t(n-1) 分布表可知 : $t_{0.025}(28) = 2.0484$,

$$s_w^2 = \frac{9 \times 1.10^2 + 19 \times 1.20^2}{28}, \quad s_w = \sqrt{S_w^2} = 1.1688,$$

于是得 $\mu_1 - \mu_2$ 的一个置信度为0.95的置信区间

$$\left(\overline{x}_{1} - \overline{x}_{2} \pm S_{w} \times t_{0.025}(28) \sqrt{\frac{1}{10} + \frac{1}{20}}\right) = (4 \pm 0.93),$$

即所求置信区间为 (3.07, 4.93).

例8 为提高某一化学生产过程的得率,试图采用 一种新的催化剂,为慎重起见,在试验工厂先进行 试验. 设采用原来的催化剂进行了 $n_1 = 8$ 次试验, 得到得率的平均值 $\bar{x}_1 = 91.73$. 样本方差 $s_1^2 = 3.89$, 又采用新的催化剂进行了 $n_2 = 8$ 次试验,得到得率 的平均值 $\bar{x}_1 = 93.75$,样本方差 $s_2^2 = 4.02$,假设两总 体都可认为近似地服从正态分布,且方差相等,求 两总体均值差 $\mu_1 - \mu_2$ 的置信水平为0.95的置信区间.

解 由题意,两总体样本独立且方差相等(但未知),

$$B. S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = 3.96,$$

于是得 $\mu_1 - \mu_2$ 的一个置信水平为0.95的置信区间

$$\left(\overline{x}_1 - \overline{x}_2 \pm s_w \times t_{0.025}(14)\sqrt{\frac{1}{8} + \frac{1}{8}}\right) = (-2.02 \pm 2.13),$$

即所求置信区间为 (-4.15, 0.11).

2.两个总体方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间 仅讨论总体均值 μ_1 , μ_2 为未知的情况.

$$\frac{\sigma_1^2}{\sigma_2^2}$$
的一个置信度为 $1-\alpha$ 的置信区间

$$\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right).$$

推导过程如下:

$$\text{ \sharp} \frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \ \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1),$$

且由假设知
$$\frac{(n_1-1)S_1^2}{\sigma_1^2}$$
 与 $\frac{(n_2-1)S_2^2}{\sigma_2^2}$ 相互独立,

根据**F**分布的定义,知 $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1),$

$$\mathbb{P} \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\frac{(n_1-1)S_1^2}{\sigma_1^2}}{\frac{(n_2-1)S_2^2}{\sigma_2^2}} / (n_1-1) \sim F(n_1-1,n_2-1),$$

$$P\left\{F_{1-\alpha/2}(n_1-1,n_2-1)<\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}< F_{\alpha/2}(n_1-1,n_2-1)\right\}$$

 $=1-\alpha$.

$$P\left\{\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right\}$$

于是得
$$\frac{{\sigma_1}^2}{{\sigma_2}^2}$$
的一个置信度为 $1-\alpha$ 的置信区间 $\left(\frac{{S_1}^2}{{S_2}^2} + \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{{S_1}^2}{{S_2}^2} + \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$.

例9 研究由机器 A 和机器 B 生产的钢管内径, 随 机抽取机器 A 生产的管子 18 只, 测得样本方差为 $s_1^2 = 0.34 \text{ (mm}^2); \text{ 抽取机器} B 生产的管子 13 只, 测$ 得样本方差为 $s_1^2 = 0.29 (\text{mm}^2)$. 设两样本相互独 立.且设由机器 A 和机器 B 生产的钢管内径分别服 从正态分布 $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2), \mu_i, \sigma_i^2 (i = 1,2)$ 均未知, 求方差比 σ_1^2/σ_2^2 的置信度为0.90的置信 区间.

解
$$n_1 = 18$$
, $n_2 = 13$, $\alpha = 0.10$, $s_1^2 = 0.34 \text{ (mm}^2)$, $s_2^2 = 0.29 \text{ (mm}^2)$,

$$F_{\alpha/2}(n_1-1,n_2-1)=F_{0.05}(17,12)=2.59,$$

$$F_{1-\alpha/2}(17,12) = F_{0.95}(17,12) = \frac{1}{F_{0.05}(12,17)} = \frac{1}{2.38}$$

于是得 $\frac{{\sigma_1}^2}{{\sigma_2}^2}$ 的一个置信度为0.90的置信区间

$$\left(\frac{0.34}{0.29} \times \frac{1}{2.59}, \frac{0.34}{0.29} \times 2.38\right) = (0.45, 2.79).$$

例10 甲、乙两台机床加工同一种零件, 在机床甲 加工的零件中抽取9个样品,在机床乙加工的零件 中抽取6个样品,并分别测得它们的长度(单位:mm), 由所给数据算得 $s_1^2 = 0.245$, $s_2^2 = 0.357$,在置信度 0.98下,试求这两台机床加工精度之比 σ_1/σ_2 的置 信区间. 假定测量值都服从正态分布, 方差分别为 σ_1^2, σ_2^2 .

$$F_{\alpha/2}(8,5) = F_{0.01}(8,5) = \frac{1}{F_{0.99}(5,8)} = \frac{1}{6.63}$$

于是得 $\frac{\sigma_1}{\sigma_2}$ 的一个置信度为0.98的置信区间

$$\left(\sqrt{\frac{{S_1}^2}{{S_2}^2}} \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}, \sqrt{\frac{{S_1}^2}{{S_2}^2}} \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right)$$

$$= \left(\sqrt{\frac{0.245}{0.357 \times 10.3}}, \sqrt{\frac{0.245 \times 6.63}{0.357}}\right) = (0.258, 2.133).$$

第六节 (0-1)分布参数的区间估

计

- 一、置信区间公式
- 二、典型例题

在样本容量充分大时,可以用渐近 分布来构造近似的置信区间。一个典 型的例子是关于比例*p* 的置信区间。

一、置信区间公式

设有一容量 n > 50 的大样本 ,它来自 (0-1) 分布的总体 X ,X 的分布律为 $f(x;p) = p^x (1-p)^{1-x}$, x = 0, 1 ,其中 p 为未知参数 ,则 p 的置信度为 $1-\alpha$ 的置信区间是

$$\left(\frac{-b-\sqrt{b^2-4ac}}{2a}, \frac{-b+\sqrt{b^2-4ac}}{2a}\right),$$

其中 $a = n + z_{\alpha/2}^2$, $b = -(2n\overline{X} + z_{\alpha/2}^2)$, $c = n\overline{X}^2$.

推导过程如下:

因为(0-1)分布的均值和方差分别为

$$\mu = p$$
, $\sigma^2 = p(1-p)$,

设 X_1, X_2, \cdots, X_n 是一个样本 ,因为容量n较大,

由中心极限定理知
$$\frac{\sum_{i=1}^{n} X_i - np}{\sqrt{np(1-p)}} = \frac{n\overline{X} - np}{\sqrt{np(1-p)}}$$

近似地服从 N(0,1) 分布,

$$P\left\{-z_{\alpha/2}<\frac{n\overline{X}-np}{\sqrt{np(1-p)}}< z_{\alpha/2}\right\}\approx 1-\alpha,$$

不等式
$$-z_{\alpha/2} < \frac{nX - np}{\sqrt{np(1-p)}} < z_{\alpha/2}$$

等价于
$$(n+z_{\alpha/2}^2)p^2-(2n\overline{X}+z_{\alpha/2}^2)p+n\overline{X}^2<0$$
,

$$\Rightarrow p_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad p_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a},$$

其中
$$a = n + z_{\alpha/2}^2$$
, $b = -(2n\overline{X} + z_{\alpha/2}^2)$, $c = n\overline{X}^2$.

则 p 的近似置信水平为 $1-\alpha$ 的置信区间是 (p_1, p_2) .

二、典型例题

例1 设从一大批产品的100个样品中, 得一级品60个, 求这批产品的一级品率 p 的置信水平为0.95的置信区间.

解 一级品率 p 是(0-1)分布的参数,

$$n=100$$
, $\overline{x}=\frac{60}{100}=0.6$,

$$1-\alpha=0.95$$
, $z_{\alpha/2}=z_{0.025}=1.96$,

$$b = -(2n\overline{X} + z_{\alpha/2}^2) = -(2n\overline{x} + z_{\alpha/2}^2) = -123.84,$$

$$c = n\overline{X}^2 = n\overline{x}^2 = 36,$$

于是
$$p_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = 0.50$$
,

$$p_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = 0.69,$$

p的置信水平为0.95的置信区间为 (0.50, 0.69).

例2 设从一大批产品的120个样品中, 得次品9个,

求这批产品的次品率 p 的置信水平为0.90的置信区间.

解
$$n=120$$
, $\overline{x}=\frac{9}{100}=0.09$, $1-\alpha=0.90$,

则
$$a = n + z_{\alpha/2}^2 = 122.71$$
,

$$b = -(2n\overline{X} + z_{\alpha/2}^2) = -(2n\overline{x} + z_{\alpha/2}^2) = -24.31,$$

$$c = -n \overline{X}^2 = -n \overline{x}^2 = 0.972$$
,

于是
$$p_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = 0.056$$
,

$$p_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = 0.143,$$

p的置信水平为0.90的置信区间为 (0.056, 0.143).

通常,未知参数p的置信度为 $1-\alpha$ 的置信区间近似为

$$\overline{X} \pm z_{\alpha/2} \sqrt{\overline{X} (1 - \overline{X})/n}$$

第七节 单侧置信区间

- 一、问题的引入
- 二、基本概念
- 三、典型例题
- 四、小结

一、问题的引入

在以上各节的讨论中 ,对于未知参数 θ ,我们给 出两个统计量 $\underline{\theta}$, $\overline{\theta}$,得到 θ 的双侧置信区间 $(\underline{\theta},\overline{\theta})$.

但在某些实际问题中,例如,对于设备、元件的寿命来说,平均寿命长是我们希望的,我们关心的是平均寿命的"下限";与之相反,在考虑产品的废品率 p时,我们常关心参数 p的"上限",这就引出了单侧置信区间的概念.

二、基本概念

1. 单侧置信区间的定义

对于给定值 α (0 < α < 1), 若由样本 X_1, X_2, \cdots , X_n 确定的统计量 $\underline{\theta} = \underline{\theta}(X_1, X_2, \cdots, X_n)$, 对于任意 $\theta \in \Theta$ 满足

$$P\{\theta > \underline{\theta}\} \geq 1 - \alpha$$

则称随机区间 $(\underline{\theta}, + \infty)$ 是 θ 的置信水平为 $1 - \alpha$ 的单侧置信区间 $,\underline{\theta}$ 称为 θ 的置信水平为 $1 - \alpha$ 的单侧置信下限 .

又如果统计量 $\theta = \theta(X_1, X_2, \dots, X_n)$, 对于任

意 $\theta \in \Theta$ 满足 $P\{\theta < \theta\} \ge 1 - \alpha$,

则称随机区间 $(-\infty, \overline{\theta})$ 是 θ 的置信水平为 $1-\alpha$ 的单侧置信区间 $,\overline{\theta}$ 称为 θ 的置信水平为 $1-\alpha$ 的单侧置信上限 .

2. 正态总体均值与方差的单侧置信区间

设正态总体 X 的均值是 μ ,方差是 σ^2 (均为未知),

$$X_1, X_2, \cdots, X_n$$
 是一个样本 , 由 $\frac{X-\mu}{S/\sqrt{n}} \sim t(n-1)$,

有
$$P\left\{\frac{\overline{X}-\mu}{S/\sqrt{n}} < t_{\alpha}(n-1)\right\} = 1-\alpha$$

即
$$P\left\{\mu > \overline{X} - \frac{S}{\sqrt{n}}t_{\alpha}(n-1)\right\} = 1-\alpha$$
,

于是得 μ 的一个置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha}(n-1),+\infty\right),$$

 μ 的置信水平为 $1-\alpha$ 的置信下限 $\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$.

又根据
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

$$\mathbb{P}\left\{\sigma^{2}<\frac{(n-1)S^{2}}{\chi_{1-\alpha}^{2}(n-1)}\right\}=1-\alpha,$$

于是得 σ^2 的一个置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(0, \frac{(n-1)S^{2}}{\chi_{1-\alpha}^{2}(n-1)}\right),$$

 σ^2 的置信水平为 $1-\alpha$ 的单侧置信上限

$$\overline{\sigma^2} = \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}.$$

三、典型例题

例1 设从一批灯泡中,随机地取5只作寿命试验,测得寿命(以小时计)为 1050, 1100, 1120, 1250, 1280,设灯泡寿命服从正态分布,求灯泡寿命平均值的置信水平为 0.95 的单侧置信下限.

解
$$1-\alpha=0.95$$
, $n=5$, $\overline{x}=1160$, $s^2=9950$,

$$t_{\alpha}(n-1) = t_{0.05}(4) = 2.1318$$
,

 μ 的置信水平为 0.95 的置信下限

例2 设总体 X 在 $[0,\theta]$ 上服从均匀分布 ,其中 θ

 $(\theta > 0)$ 未知, (X_1, X_2, \dots, X_n) 是来自总体 X 的样本,给定 α ,求 θ 的置信水平为 $1-\alpha$ 的置信下限和置信上限 .

解
$$\Leftrightarrow X_n = \max \{X_1, X_2, \cdots, X_n\},$$

对于给定的
$$\alpha$$
,找 $0 < \underline{\theta} \le 1$,使 $P\left\{\theta > \frac{X_h}{\underline{\theta}}\right\} = 1 - \alpha$,

即
$$1-\alpha=\int_0^{\underline{\theta}}nz^{n-1}dz=\underline{\theta}^n$$
,于是 $\underline{\theta}=\sqrt[n]{1-\alpha}$,

所以
$$P\left\{\frac{X_h}{\sqrt[n]{1-\alpha}} < \theta\right\} = 1-\alpha$$
,

 θ 的置信水平为 $1-\alpha$ 的置信下限 $\underline{\theta} = \frac{\Lambda_h}{\sqrt[n]{1-\alpha}}$.

$$\underline{\theta} = \frac{X_h}{\sqrt[n]{1-\alpha}}.$$

对于给定的 α , 找 $0 < \overline{\theta} < 1$, 使 $P\left\{\theta < \frac{X_h}{\overline{\theta}}\right\} = 1 - \alpha$,

即
$$1-\alpha=\int_{\overline{\theta}}^{1}nz^{n-1}dz=1-\overline{\theta}^{n}$$
, 于是 $\overline{\theta}=\sqrt[n]{\alpha}$,

所以
$$P\left\{\theta<\frac{X_h}{\sqrt[n]{\alpha}}\right\}=1-\alpha$$
,

 θ 的置信水平为 $1-\alpha$ 的置信上限 $\overline{\theta} = \frac{X_h}{n/\alpha}$.

四、小结

正态总体均值 μ 的置信水平为 $1-\alpha$ 的单侧置信区间

$$\left(-\infty, \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)\right), \qquad \left(\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1)\right), + \infty$$
,单侧置信上限 $\overline{\mu}$ 单侧置信下限 $\underline{\mu}$

正态总体方差 σ^2 的置信水平为 $1-\alpha$ 的单侧置信区间

$$\begin{pmatrix} 0, & \frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}. \\ & & \psi$$
 单侧置信上限 σ^2

第四节 样本容量的确定

- 一确定样本容量的意义
 - 口估计均值时的样本容量
 - (三)估计比率时的样本容量

找出在规定误差 确定样本容量的意义 范围内的最小样 节省费用但 调查误差大 调查误差 样本容量 调查费用 大样本容量 找出在限定费用

范围内的最大样

调查精度高 但费用较大

二、估计均值时的样本容量

1、已知σ2时, μ的置信区间

$$[\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}]$$

区间长度:
$$L = 2Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

在给定置信度 $1-\alpha$ 和区间长度可容许的上限值l都已经给定的前提下,要使 $L \le l$,等价于

$$L = 2Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le l \to n \ge \left(\frac{2\sigma}{l} Z_{\alpha/2}\right)^2$$

例 在交通工程中需要测定车速(单位 km/h),由以往的经验知道,测量值为X, $X \sim N(\mu, \sigma^2)$ $\sigma^2 = 3.58^2$

- 1、至少作多少次观测,才能以0.99的可靠性保证平均测量值的误差在±1之间。
- 2、现在作了150次观测,试问平均测量值的误差在 ±1 之间的概率有多大?
- 解 由题意知 $X \sim N(\mu, 3.58^2)$ 用平均测量值 \overline{X} 来估计 μ 其误差 $|\overline{X} \mu|$ 由题意要求 $P\{|\overline{X} \mu| < 1\} \ge 0.99$ $\alpha = 0.01$ 由置信区间的概念,所求 μ 的0.99的 置信区间为

$$[X + \frac{\sigma}{\sqrt{n}} z_{0.025}]$$
 $\mathbb{P}\{|X - \mu| < \frac{\sigma}{\sqrt{n}} Z_{0.005}\} \ge 0.99$

$$[\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{0.025}]$$
 $\mathbb{P}\{|\overline{X} - \mu| < \frac{\sigma}{\sqrt{n}} z_{0.005}\} \ge 0.99$

$$\Rightarrow \frac{\sigma}{\sqrt{n}} Z_{0.005} = 1 \Rightarrow n = 3.58^{2} \cdot (2.576)^{2} = 86.047$$

则钢索所能承受的平均张力为 6650.9 kg/cm²

$$\therefore$$
 $n = 86$ $z_{0.005} = 2.57$

至少要作86次观测,才能以0.99的可靠性保持平均测量误差在±1之间。

2.
$$n = 150$$
 $\sigma = 3.58$

$$P\{\left|\frac{\overline{X} - \mu}{\overline{S}}\right| < 1\} = P\{\left|\frac{\overline{X} - \mu}{\overline{S}}\right| < \frac{\sqrt{n}}{\sigma}\} = 2\Phi\left(\frac{\sqrt{n}}{\sigma}\right) - 1$$

$$= 2\Phi(3.421) - 1 = 2 \cdot 0.9997 - 1 = 0.9994$$

2、未知 σ^2 时, μ 的置信区间

$$[X - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), X + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)]$$

区间长度:
$$L = 2t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}$$

在给定置信度 $1-\alpha$ 和区间长度可容许的上限值l都已经给定的前提下,要使 $L \le l$,等价于

$$L = 2t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}} \le l$$

n的下界依赖于
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$
和 $t_{\alpha/2}(n-1)$

-----Fisher问题

三、估计比率时的样本容量

1、设总体X服从(0-1)分布

$$P(X = k) = \theta^{k} (1 - \theta)^{1-k}$$
 $k = 0,1$

通常,未知参数 θ 的置信度为 $1-\alpha$ 的置信区间近似为

$$\overline{X} \pm z_{\alpha/2} \sqrt{\overline{X} (1 - \overline{X})/n}$$

在给定置信度 $1-\alpha$ 和区间长度可容许的上限值l都已经给定的前提下,要使 $L \le l$,等价于

