Intervals, Transformations, and Slope Solution (version 53)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -2) \cup (3, 7)$
Negative	$(-2,3) \cup (7,8)$
Increasing	$(-7, -4) \cup (0, 6)$
Decreasing	$(-4,0) \cup (6,8)$
Domain	(-7,8)
Range	(-7,7)

Intervals, Transformations, and Slope Solution (version 53)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=61$ and $x_2=93$. Express your answer as a reduced fraction.

\overline{x}	g(x)
45	61
57	93
61	57
93	45

$$\frac{g(93) - g(61)}{93 - 61} = \frac{45 - 57}{93 - 61} = \frac{-12}{32}$$

The greatest common factor of -12 and 32 is 4. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{8}$$

2