

ECE 802, Electric Motor Control

Indirect Vector Control

Indirect Vector Control (Chapter 14)

- High-performance fast-response control
- Based on dynamic *q-d* model
- Rotor oriented (using rotor equations)

structure

Rotor Equations

induction motor model in the synchronous reference frame

$$v_{qr}^{\prime e} = r'_{r}i_{qr}^{\prime e} + (\omega_{e} - \omega_{r})\lambda_{dr}^{\prime e} + p\lambda_{qr}^{\prime e} = 0$$
 (1)

$$v_{dr}^{\prime e} = r'_{r}i_{dr}^{\prime e} - (\omega_{e} - \omega_{r})\lambda_{qr}^{\prime e} + p\lambda_{dr}^{\prime e} = 0$$
 (2)

$$\lambda_{qr}^{\prime e} = L'_{rr} i_{qr}^{\prime e} + L_{M} i_{qs}^{e} \tag{3}$$

$$\lambda_{dr}^{\prime e} = L'_{rr} i_{dr}^{\prime e} + L_{M} i_{ds}^{e} \tag{4}$$

$$T_{e} = \frac{3}{2} \frac{P}{2} (\lambda_{qr}'^{e} i_{dr}'^{e} - \lambda_{dr}'^{e} i_{qr}'^{e})$$
 (5)

Note: Torque equation is not as straightforward as with the PMSM

If λ_{qr} 'e = 0, torque equation is straightforward

Design vector control so that

$$\omega_e - \omega_r = \frac{-r'_r i_{qr}^{\prime e}}{\lambda_{dr}^{\prime e}} \tag{6}$$

Note, from (1) and (6)

$$p\lambda_{qr}^{\prime e} = -r'_r i_{qr}^{\prime e} - (\omega_e - \omega_r) \lambda_{dr}^{\prime e} = 0$$

so
$$\lambda_{qr}^{\prime e} = \lambda_{qr}^{\prime e}|_{t=0} = 0$$
 (if motor is not energized at $t=0$)

then
$$\lambda_{qr}^{\prime e} = 0$$

From (2) with λ_{ar} ' e = 0

$$r'_{r}i_{dr}^{\prime e} + p\lambda_{dr}^{\prime e} = 0$$
 (7)

Substitute (4) into (7)

$$r'_{r}i_{dr}^{\prime e} + L'_{rr}pi_{dr}^{\prime e} + L_{M}pi_{ds}^{e} = 0$$

From modulation (hysterisis or sine-triangle with compensation)

$$i^e_{ds}=i^{e^*}_{ds} \qquad \qquad i^e_{qs}=i^{e^*}_{qs}$$

Command constant *d*-axis current so $pi_{ds}^{e^*} = 0$

Then
$$pi_{dr}^{\prime e} = \frac{-r'_r}{L'_{rr}} i_{dr}^{\prime e}$$

Solution is: $i_{dr}^{\prime e} = Ae^{-t/\tau_r}$

$$\tau_r = \frac{L'_{rr}}{r'_r}$$
 (rotor time constant)

$$A \xrightarrow{\tau_r} t$$

after $t = 5 \tau_r$, $i_{dr}'^e \approx 0$ (with constant i_{ds}^e *)

with
$$i_{dr}^{'e} = 0$$
 $p\lambda_{qr}^{'e} = 0$ $\lambda_{qr}^{'e} = 0$

$$\omega_e - \omega_r = \frac{-r'_r i_{qr}^{\prime e}}{\lambda_{dr}^{\prime e}} \tag{8}$$

$$L'_{rr}i_{ar}^{e} + L_{M}i_{as}^{e} = 0 (9)$$

$$\lambda_{dr}^{\prime e} = L_{M} i_{ds}^{e} \tag{10}$$

$$T_{e} = -\frac{3}{2} \frac{P}{2} \lambda_{dr}^{'e} i_{qr}^{'e} \tag{11}$$

Substitute (9) into (11)

$$T_{e} = \frac{3}{2} \frac{P}{2} \lambda_{dr}'^{e} \frac{L_{M}}{L'_{m}} i_{qs}^{e}$$
 (12)

With knowledge of λ_{dr} 'e and L_{M}

$$i_{ds}^{e^*} = \frac{\lambda_{dr}^{'e^*}}{L_{M}}$$

Specifically command $i_{ds}^{e^*} = \frac{\lambda_{dr}^{e^*}}{L_{m}}$ $\lambda_{dr}^{e^*}$ desired or rated $\lambda_{dr}^{e^*}$

From (10)
$$\lambda_{dr}^{'e} = L_{M} i_{ds}^{e} = L_{M} i_{ds}^{e^*} = \lambda_{dr}^{'e^*}$$

$$\lambda_{dr}^{'e} = \lambda_{dr}^{'e^*}$$

For the *q*-axis, specifically command, $i_{qs}^{e^*} = \frac{2}{3} \frac{2}{P} \frac{L'_{rr}}{L_{M}} \frac{T_{e^*}}{\lambda_{dr}'^{e^*}}$

From (12)
$$T_e = \frac{3}{2} \frac{P}{2} \lambda_{dr}'^e \frac{L_M}{L'_{rr}} \left(\frac{2}{3} \frac{2}{P} \frac{L'_{rr}}{L_M} \frac{T_e^*}{\lambda_{dr}'^{e*}} \right)$$

$$T_e = T_e^*$$

From (8) and (9)

$$\omega_e - \omega_r = \frac{r'_r}{L'_{rr}} \frac{L_M}{\lambda_{dr}'^e} i_{qs}^e$$

In terms of commanded current,

$$\omega_e - \omega_r = \frac{r'_r}{L'_{rr}} \frac{i_{qs}^{e^*}}{i_{ds}^{e^*}}$$

Vector Control Implementation Steps

Example: 5hp (3.7 kW) induction motor

- command $\lambda_{dr}'^{e^*} = \sqrt{2} \left| \tilde{\Lambda}'_{ar} \right| = 0.385 \, \text{V} \cdot \text{s}$
- wait $5\tau_r = 1.5 \operatorname{sec}$
- command step in torque

constant speed

$$\omega_{rm} = 1750 \text{rpm} = 183.3 \text{ rad/sec}$$

hysteresis h = 0.5A

IM parameters

$$RPM := \frac{2 \cdot \pi \cdot rad}{60 \, s}$$

$$r_s := 0.4\Omega$$

$$P := 4$$

$$r'_{r} := 0.2266\Omega$$

$$lagging := 1$$

$$L_{ls} := 5.73 \,\text{mH}$$
 $L_{lr} := 4.64 \,\text{mH}$ $L_{lr} := 4.64 \,\text{mH}$

$$L_{M} := 64.4 \, \text{mH}$$

$$L_{lr} := 4.64 \, \text{mH}$$

$$L_{SS} := L_{IS} + L_{M}$$
 $L_{SS} = 70.1 \text{mH}$

$$L_{SS} = 70.1 \text{mH}$$

$$L'_{rr} := L'_{lr} + L_M$$
 $L'_{rr} = 69mH$

$$L'_{rr} = 69 mH$$

operating conditions

$$f_e := 60 \, \text{Hz}$$

$$\omega_e := 2 \cdot \pi \cdot f_e$$

$$\omega_e = 377 \frac{\text{rad}}{\text{s}}$$

$$\omega_{rm} := 1750 RPM$$

$$\omega_{\rm rm} = 183.3 \frac{\rm rad}{\rm s}$$

$$V_{LL} := 220 \text{ V}$$

$$V_{s} := \frac{V_{LL}}{\sqrt{3}}$$

$$V_s = 127V$$

synchronous speed (no-load speed)

$$\omega_{\text{em}} := \left(\frac{2}{P}\right) \cdot \omega_{\text{e}}$$

$$\omega_{em} = 188.5 \frac{\text{rad}}{\text{s}}$$

slip

$$\omega_{em} = 1800 RPM$$

$$\omega_{\mathbf{r}} := \frac{\mathbf{P}}{2} \cdot \omega_{\mathbf{rm}}$$

$$\omega_{\rm r} = 366.5 \frac{\rm rad}{\rm s}$$

$$s:=\frac{\omega_e-\omega_r}{\omega_e}$$

$$s = 0.0278$$

impedances

$$Z_s := r_s + j \cdot \omega_e \cdot L_{ls}$$

$$|Z_{\rm S}| = 2.2\Omega$$

$$arg(Z_s) = 79.5 deg$$

$$Z_m := j \!\cdot\! \omega_e \!\cdot\! L_M$$

$$|Z_{\rm m}| = 24.3\Omega$$

$$arg(Z_m) = 90deg$$

$$Z'_r := \frac{r'_r}{s} + j \cdot \omega_e \cdot L'_{lr}$$

$$|Z_r'| = 8.34\Omega$$

$$arg(Z'_r) = 12.1deg$$

$$Z_f := \frac{1}{\frac{1}{Z_m} + \frac{1}{Z_r'}}$$

$$|Z_f| = 7.43\Omega$$

$$arg(Z_f) = 29.5deg$$

$$Z_{in} := Z_s + Z_f$$

$$|Z_{in}| = 9\Omega$$

$$arg(Z_{in}) = 40.3deg$$

currents

$$V_{as} := V_s \!\cdot\! e^{j \cdot 0}$$

$$I_{as} := \frac{V_{as}}{Z_{in}}$$

$$\left| \mathbf{I}_{as} \right| = 14.1 \mathrm{A}$$

$$arg(I_{as}) = -40.3deg$$

$$I'_{ar} := -I_{as} \cdot \frac{Z_m}{Z_m + Z'_r}$$

$$\left| I'_{ar} \right| = 12.6A$$

$$arg(I'ar) = 157.1deg$$

torque and power

$$\begin{split} T_e &:= 3 \cdot \frac{P}{2} \cdot \left(\left| T_{ar} \right| \right)^2 \cdot \frac{r'_r}{s \cdot \omega_e} & T_e = 20.5 \text{N·m} \\ \\ T_e &:= \frac{3 \cdot \left(\frac{P}{2} \right) \cdot \omega_e \cdot L_M^2 \cdot r'_r \cdot s \cdot \left(\left| V_{as} \right| \right)^2}{\left[r_s \cdot r'_r + s \cdot \omega_e^2 \cdot \left(L_M^2 - L_{ss} \cdot L'_{rr} \right) \right]^2 + \omega_e^2 \cdot \left(r'_r \cdot L_{ss} + s \cdot r_s \cdot L'_{rr} \right)^2} & T_e = 20.5 \text{N·m} \\ \\ \theta &:= \arg \left(Z_{in} \right) & \theta = 40.3 \text{deg} \\ \text{pf} &:= \cos \left(\theta \right) & \text{pf} = 0.763 \text{lagging} \\ P_{in} &:= 3 \cdot \left| V_{as} \right| \cdot \left| I_{as} \right| \cdot \text{pf} & P_{in} = 4.104 \text{kW} \\ P_{out} &:= T_e \cdot \omega_{rm} & P_{out} = 3.757 \text{kW} \\ \text{eff} &:= \frac{P_{out}}{P_{in}} & \text{eff} = 91.6\% \end{split}$$

magnetizing flux linkage

$$I_{am} := I_{as} + I'_{ar}$$

$$\left| I_{am} \right| = 4.32A$$

$$arg(I_{am}) = -100.8deg$$

$$\Lambda_m := L_M \cdot I_{am}$$

$$|\Lambda_{\rm m}| = 0.278 \text{V} \cdot \text{sec}$$

$$V_m := V_{as} - Z_s \cdot I_{as}$$

$$|V_m| = 105 V$$

$$arg(V_m) = -10.8deg$$

$$\Lambda_m := \frac{V_m}{\omega_e}$$

$$|\Lambda_{\mathbf{m}}| = 0.278 \text{V} \cdot \text{sec}$$

rotor flux linkage

$$\Lambda'_r := \frac{-I'_{ar} \cdot \frac{r'_r}{s}}{j \cdot \omega_e}$$

$$|\Lambda'_{\mathbf{r}}| = 0.272 \text{V-sec}$$

$$\sqrt{2} \cdot \left| \Lambda'_{r} \right| = 0.385 \text{V} \cdot \text{sec}$$

rotor time constant

$$\tau_r := \frac{L'_{rr}}{r'_r}$$

$$\tau_r = 0.3s$$

$$5 \cdot \tau_r = 1.5$$
s

Vector controlled induction motor with hysteresis control

$$P = 4$$

$$r_s = 0.3996 \Omega$$

$$L_M = 64.43 \text{ mH}$$

$$\lambda_{dre}$$
'* = 0.385 V-sec

$$h = 0.5 \text{ A}$$

$$r_s = 0.3996 \Omega$$
 $r_r' = 0.2266 \Omega$

$$r_r' = 0.2266 \Omega$$

$$T_e * = 20 \text{ N-m}$$

$$L_{ls} = 5.73 \text{ mH}$$

$$L_{ls} = 5.73 \text{ mH}$$
 $L_{lr}' = 4.64 \text{ mH}$

$$\omega_{rm} = 1750 \text{ RPM} = 183.3 \text{ rad/sec}$$

Vector controlled induction motor with hysteresis control

$$P = 4$$

$$L_M = 64.43 \text{ mH}$$

$$\lambda_{dre}'^* = 0.385 \text{ V-sec}$$

$$h = 0.5 \, \text{A}$$

$$r_{s} = 0.3996 \ \Omega$$

$$r_r' = 0.2266 \Omega$$

$$T_e$$
* = 20 N-m

$$L_{ls} = 5.73 \text{ mH}$$

$$L_{ls} = 5.73 \text{ mH}$$
 $L_{lr}' = 4.64 \text{ mH}$

$$\omega_{rm} = 1750 \text{ RPM} = 183.3 \text{ rad/sec}$$

Vector Control Terminology

Define vectors
$$\vec{\lambda}_{qdr}$$
' $^e = \lambda_{qr}$ ' $^e - j\lambda_{dr}$ ' \vec{i}_{qdr} ' $^e = i_{qr}$ ' $^e - ji_{dr}$ ' e

Vector control ensures, $\lambda_{qr}^{\prime e} = 0$ $i_{dr}^{\prime e} = 0$

$$\vec{\lambda}_{qdr}^{\prime e} = -j\lambda_{dr}^{\prime e} \quad \vec{i}_{qr}^{\prime e} = i_{qr}^{\prime e}$$

For motor operation $T_e^* > 0$ so $i_{qs}^{e^*} > 0$

$$i_{qr}'^{e} = \frac{-L_{M}}{L_{rr}} i_{qs}^{e*}$$
 so $i_{qr}'^{e} < 0$

Synchronous reference frame vectors

Note
$$\left|\vec{\lambda}_{qdr}^{\prime e} \times \vec{i}_{qdr}^{\prime e}\right| = \left|\vec{\lambda}_{qdr}^{\prime e}\right| \left|\vec{i}_{qdr}^{\prime e}\right| \sin\left(\angle \vec{i}_{qdr}^{\prime e} - \angle \vec{\lambda}_{qdr}^{\prime e}\right) = \lambda_{dr}^{\prime e} i_{qr}^{\prime e}$$

from before,
$$T_e = \frac{3}{2} \frac{P}{2} (\lambda_{qr}^{\prime e} i_{dr}^{\prime e} - \lambda_{dr}^{\prime e} i_{qr}^{\prime e})$$

with
$$\lambda_{qr}^{'e} = 0$$
 $i_{dr}^{'e} = 0$ $T_e = -\frac{3}{2} \frac{P}{2} \lambda_{dr}^{'e} i_{qr}^{'e}$

Cross-Coupling Compensation Control

Interface vector control to voltage-source modulation

Compensation Control

add $\omega_e \lambda_{qs}^e$ and $\omega_e \lambda_{ds}^e$ to $v_{qs}^{e^*}$ and $v_{ds}^{e^*}$

command

$$v_{qs}^{e^*} = \left(K_{pc} + \frac{K_{ic}}{s}\right) \left(i_{qs}^{e^*} - i_{qs}^{e}\right) + \omega_e \lambda_{ds}^{e}$$

$$v_{ds}^{e^*} = \left(K_{pc} + \frac{K_{ic}}{S}\right) \left(i_{ds}^{e^*} - i_{ds}^{e}\right) - \omega_e \lambda_{qs}^{e}$$

Next step : Compute λ_{qs}^{e} and λ_{ds}^{e} from i_{qs}^{e} , i_{ds}^{e}

Stator Flux Linkage from Commanded Currents

Note: Vector control ensures $\lambda_{qr}^{\prime e} = 0$ $i_{dr}^{\prime e} = 0$

From machine equations:

$$\lambda_{ds}^{e} = L_{ls}i_{ds}^{e} + L_{M}\left(i_{ds}^{e} + i_{dr}^{'e}\right) = L_{ss}i_{ds}^{e} + L_{M}i_{dr}^{'e}$$

$$\lambda_{ds}^{e} = L_{ss}i_{ds}^{e*}$$

$$\lambda_{qr}^{'e} = L'_{lr}i_{qr}^{'e} + L_{M}\left(i_{qs}^{e} + i_{qr}^{'e}\right) = L'_{rr}i_{qr}^{'e} + L_{M}i_{qs}^{e} = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$\lambda_{qs}^{e} = L_{ls}i_{qs}^{e} + L_{M}\left(i_{qs}^{e} + i_{qr}^{'e}\right) = L_{ss}i_{qs}^{e} + L_{M}i_{qr}^{'e} = L_{ss}i_{qs}^{e} - \frac{L_{M}^{2}}{L_{rr}^{'}}i_{qs}^{e}$$

$$\lambda_{qs}^{e} = \left(L_{ss} - \frac{L_{M}^{2}}{L'_{rr}}\right) i_{qs}^{e^{*}}$$

Compensation Control Block Diagram

Practical Current Measurement Technique

 τ = low-pass filter time constant (sec)

 f_c = low-pass filter cut-off frequency (Hz)

set f_c lower than the switching frequency but higher than the fundamental frequency

Determine T1 - T6 from $v_{qs}^{e^*}, v_{ds}^{e^*}$

modulation index

$$V_{s}^{*} = \frac{1}{\sqrt{2}} \sqrt{\left(v_{qs}^{e^{*}}\right)^{2} + \left(v_{ds}^{e^{*}}\right)^{2}}$$

$$d = 2\sqrt{2} \frac{V_s^*}{v_{dc}}$$

phase shift

$$\phi_{v}^{*} = \tan^{-1} \left(\frac{-v_{ds}^{e^{*}}}{v_{qs}^{e^{*}}} \right)$$

$$\theta_c = \theta_e + \phi_v^*$$

duty cycles

$$d_a = d\cos(\theta_c) - \frac{d}{6}\cos(3\theta_c)$$

$$d_b = d\cos\left(\theta_c - \frac{2\pi}{3}\right) - \frac{d}{6}\cos(3\theta_c)$$

$$d_c = d\cos\left(\theta_c + \frac{2\pi}{3}\right) - \frac{d}{6}\cos(3\theta_c)$$

compare to a triangle waveform to obtain T1 - T6

Example from before: 5hp (3.7 kW) motor constant speed with cross-coupling compensation control

• command
$$\lambda_{dr}'^{e^*} = \sqrt{2} \left| \tilde{\Lambda}'_{ar} \right| = 0.385 \, \text{V} \cdot \text{s}$$

- wait $5\tau_r = 1.5 \operatorname{sec}$
- command step in torque

 $K_{pc} = 50 \text{ V/A}$ $K_{ic} = 50 \text{ V/A-sec}$

Vector controlled induction motor with sine-triangle modulation

 $\lambda_{dre}'^* = 0.385 \text{ V-sec}$ P = 4 $L_M = 64.43 \text{ mH}$ T_e * = 20 N-m $r_{s} = 0.3996 \Omega$ $r_r' = 0.2266 \ \Omega$ $L_{lr}' = 4.64 \text{ mH}$ $L_{ls} = 5.73 \text{ mH}$ $\omega_{rm} = 1750 \text{ RPM} = 183.3 \text{ rad/sec}$ $K_{pc} = 50 \text{ V/A}$ $K_{ic} = 50 \text{ V/A-sec}$

Vector controlled induction motor with sine-triangle modulation

$$P=4$$
 $L_{M}=64.43 \text{ mH}$ $\lambda_{dre}'^{*}=0.385 \text{ V-sec}$ $r_{s}=0.3996 \ \Omega$ $r_{r}'=0.2266 \ \Omega$ $T_{e}^{*}=20 \text{ N-m}$ $L_{ls}=5.73 \text{ mH}$ $L_{lr}'=4.64 \text{ mH}$ $\omega_{rm}=1750 \text{ RPM}=183.3 \text{ rad/sec}$ $K_{pc}=50 \text{ V/A}$ $K_{ic}=5000 \text{ V/A-sec}$

Indirect Vector Control

Based on rotor equations formulated in the synchronous reference frame

Based on controlling the flux and current to be at 90 degrees. The *d*-axis current sets the flux much like the field of a dc machine. The *q*-axis current sets the torque much like the armature of a dc machine.

Implementation is straightforward if the machine parameters are known. The vector control can be followed by a current regulated control or a voltage-source control with cross-coupling compensation.

Speed and Position Control

mechanical systems

- Regulator applications keep output constant despite disturbances (inertia helps)
- Servo applications rapidly change system output (inertia hinders)

system control

Speed Control Example

Motor from before 5hp (3.7 kW) $J = 0.15 \text{ kg} \cdot \text{m}^2$

- ramp speed command from zero to rated
- step load torque from zero to rated
- ramp speed from rated to zero while rated load torque is applied

Vector controlled induction motor with sine-triangle modulation and speed control

$$P = 4$$

$$L_M = 64.43 \text{ mH}$$

$$\lambda_{dre}'^* = 0.385 \text{ V-sec}$$

$$r_s = 0.3996 \Omega$$
 $r_r' = 0.2266 \Omega$

$$r_{r}' = 0.2266 \ \Omega$$

$$\omega_{rm} = 0$$
 to 1750 RPM (183.3 rad/sec)

$$L_{ls} = 5.73 \text{ mH}$$

$$L_{lr}' = 4.64 \text{ mH}$$

$$L_{ls} = 5.73 \text{ mH}$$
 $L_{lr}' = 4.64 \text{ mH}$ $T_L = 0 \text{ to } 20 \text{ N-m}$

$$K_{nc} = 50 \text{ V/A}$$

$$K_{pc} = 50 \text{ V/A}$$
 $K_{ic} = 50 \text{ V/A-sec}$

$$K_p = 10 \text{ N-m-sec}$$
 $K_i = 5 \text{ N-m}$

$$K_i = 5 \text{ N-m}$$

Vector controlled induction motor with sine-triangle modulation and speed control

$$\begin{array}{llll} P = 4 & L_{M} = 64.43 \text{ mH} & \lambda_{dre}'^{**} = 0.385 \text{ V-sec} \\ r_{s} = 0.3996 \ \Omega & r_{r}' = 0.2266 \ \Omega & \omega_{rm} = 0 \text{ to } 1750 \text{ RPM (183.3 rad/sec)} \\ L_{ls} = 5.73 \text{ mH} & L_{lr}' = 4.64 \text{ mH} & T_{L} = 0 \text{ to } 20 \text{ N-m} \\ K_{pc} = 50 \text{ V/A} & K_{ic} = 50 \text{ V/A-sec} & K_{p} = 10 \text{ N-m-sec} & K_{i} = 5 \text{ N-m} \end{array}$$

Position Control Example

Motor from before 5hp (3.7 kW)

- change position from zero to 90 degrees
- step torque from zero to rated

Vector controlled induction motor with sine-triangle modulation and position control

$$P = 4 \qquad L_{M} = 64.43 \text{ mH} \qquad \lambda_{dre}'^{*} = 0.385 \text{ V-sec}$$

$$r_{s} = 0.3996 \Omega \qquad r_{r}' = 0.2266 \Omega \qquad \omega_{rm} = 0 \text{ to } 1750 \text{ RPM (183.3 rad/sec)}$$

$$L_{ls} = 5.73 \text{ mH} \qquad L_{lr}' = 4.64 \text{ mH} \qquad T_{L} = 0 \text{ to } 20 \text{ N-m}$$

$$K_{pc} = 50 \text{ V/A} \qquad K_{ic} = 50 \text{ V/A-sec} \qquad K_{p} = 10 \text{ N-m-sec} \qquad K_{i} = 5 \text{ N-m}$$

$$K_{pt} = 50 \text{ sec} \qquad K_{it} = 20$$

Vector controlled induction motor with sine-triangle modulation and position control

$$P=4$$
 $L_{M}=64.43 \text{ mH}$ $\lambda_{dre}'^{*}=0.385 \text{ V-sec}$ $r_{s}=0.3996 \Omega$ $r_{r}'=0.2266 \Omega$ $\omega_{rm}=0 \text{ to } 1750 \text{ RPM } (183.3 \text{ rad/sec})$ $L_{ls}=5.73 \text{ mH}$ $L_{lr}'=4.64 \text{ mH}$ $T_{L}=0 \text{ to } 20 \text{ N-m}$ $K_{pc}=50 \text{ V/A}$ $K_{ic}=50 \text{ V/A-sec}$ $K_{p}=10 \text{ N-m-sec}$ $K_{i}=5 \text{ N-m}$ $K_{pt}=50 \text{ sec}$ $K_{it}=20$

Speed and Position Control Examples

Traditional PI controllers to regulated speed and position

The drive was implemented with a vector controlled induction machine using voltage-source modulation

Speed and position are commanded to move along a ramp and parabolic curve respectively to avoid commanding a step change in speed which realistically cannot be achieved