

Beijing Normal University-Hong Kong Baptist University United International College

FINANCIAL COMPUTING (1001) (DR. YUJIA HU)
SEMESTER 2 OF 2021-2022

1001

Stock Forecasting and Trading in different areas and methods

Author:

Yutao Chen 1930026016

Yichun Huang 1930026050

Xinyao Han 1930026040

Dixin Li 1930026063

Stock Forecasting and Trading in different areas and methods

Chen Yutao

Huang Yichun

Han Xinyao

Li Dixin

1 May, 2022

Abstract

Stocks as a security attract a huge demand for investment. In order to help investors get a higher return on their investment when investing in stocks. In this project, to find a solution to this problem, we have attempted to implement a stock prediction model to help investors accurately predict future stock movements, adjust their investment strategies and maximise their profits.

Key words: Stock market prediction Machine learning TabNet 1dCNN LGBM

1 Background

As people's living standards improve, their investment style is also changing dramatically and more and more people are becoming interested and involved in investing in the stock market. The stock market is influenced by many factors and prices are unpredictable. The study of stock price prediction is of great value and therefore the prediction of stock prices has been a problem that has been relentlessly explored by stockholders and academics since the inception of the stock market. In this project, to find a solution to this problem, we have attempted to implement a stock prediction model to help investors accurately predict future stock movements, adjust their investment strategies and maximise their profits. Theoretically, stock prices can be predicted, but there are many factors that affect stock prices, and so far,

their impact on stocks cannot be clearly defined. This is because stock forecasting is highly non-linear, which requires a forecasting model that can handle non-linearities, and because stocks are time-series in nature, we use three models, TabNet, 1dCNN and LGBM, to forecast stocks. Through the construction and training of the models, we then analyse the prediction results and give suitable investment strategies.

2 Mathematical Model

Using the mathematical model to do the stock forecasting. Using the tool called 'eviews' to test the data sample and modeling. Firstly, we need to take the logarithm of the data, and then perform a second-order difference to remove the trend of the data.

Figure 1: logarithm of the data

For this graph we can see the data set have not tendency. Then we need to test the data set. Firstly, we did the unit root testing stationary. Get this graph:

			t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic		-13.40995	0.0000
Test critical values:	1% level		-3.443863	
	5% level		-2.867392	
	10% level		-2.569950	
*MacKinnon (1996) or	ne-sided p-value	es.		
Augmented Dickey-Fu		ion		
Dependent Variable: D				
Method: Least Square Date: 05/14/22 Time				
Sample (adjusted): 11				
Included observations				
included observations	. 476 alter adju	sumerits		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D2R(-1)	-4.821530	0.359549	-13.40995	0.0000
D(D2R(-1))	2.963834	0.337130	8.791377	0.0000
D(D2R(-2))	2.261670	0.301234	7.508022	0.0000
D(D2R(-3))	1.610865	0.255577	6.302867	0.0000
D(D2R(-4))	1,122797	0.203852	5.507899	0.0000
D(D2R(-5))	0.703975	0.148785	4.731494	0.0000
	0.410761	0.095596	4.296842	0.0000
D(D2R(-6))				0.0015
	0.143113	0.045850	3,121352	
D(D2R(-6))			3.121352 -0.124700	
D(D2R(-6)) D(D2R(-7))	0.143113	0.045850	-0.124700	0.9008
D(D2R(-6)) D(D2R(-7)) C R-squared Adjusted R-squared	0.143113 -0.000205 0.816043 0.812892	0.045850 0.001642 Mean deper S.D. depend	-0.124700 ndent var dent var	-3.88E-05 0.082812
D(D2R(-6)) D(D2R(-7)) C R-squared Adjusted R-squared S.E. of regression	0.143113 -0.000205 0.816043	0.045850 0.001642 Mean depend S.D. depend Akaike info	-0.124700 ndent var dent var criterion	-3.88E-05 0.082812 -3.80182
D(D2R(-6)) D(D2R(-7)) C	0.143113 -0.000205 0.816043 0.812892	0.045850 0.001642 Mean deper S.D. depend	-0.124700 ndent var dent var criterion	-3.88E-05 0.082812 -3.80182
D(D2R(-6)) D(D2R(-7)) C R-squared Adjusted R-squared S.E. of regression	0.143113 -0.000205 0.816043 0.812892 0.035821	0.045850 0.001642 Mean depend S.D. depend Akaike info	-0.124700 ndent var dent var criterion terion	-3.88E-05 0.082812 -3.80182 -3.72306 -3.770852
D(D2R(-6)) D(D2R(-7)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.143113 -0.000205 0.816043 0.812892 0.035821 0.599239	0.045850 0.001642 Mean deper S.D. depend Akaike info Schwarz crit	-0.124700 indent var dent var criterion terion inn criter.	-3.88E-05 0.082812 -3.80182 -3.723063

Figure 2: unit root testing stationary

Because the probability=0.0000, so this is small than the 0.05, so this is the stationary. Following, we did the correlation test, and get this graph.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.513	-0.513	128.37	0.000
1 (0)		2	0.062	-0.273	130.27	0.000
III •		3	-0.105	-0.300	135.63	0.000
(in	III	4	0.102	-0.160	140.77	0.000
(5	-0.074	-0.177	143.47	0.000
- 10	d :	6	0.079	-0.075	146.54	0.000
II .		7	-0.100	-0.147	151.48	0.000
1 (1)		8	0.049	-0.141	152.66	0.000
1 1	II .	9	-0.001	-0.103	152.66	0.000
181	1 (1)	10	0.038	-0.046	153.38	0.000
of a	d ·	111	-0.059	-0.075	155.14	0.000
1 11	d ·	12	0.026	-0.071	155.49	0.000
111	1 110	13	-0.028	-0.095	155.88	0.000
(h)	1 11	14	0.048	-0.056	157.05	0.000
10 1	I di	15	-0.053	-0.099	158.47	0.000
100	1 ===	16	0.021	-0.111	158.70	0.000
111		17	-0.017	-0.125	158.84	0.000
1 100	1 11 0	18	0.065	-0.052	160.97	0.000
41 (ill i	19	-0.043	-0.048	161.91	0.000
100	1 de	20		-0.016	162.27	0.000
d ·	1 11	21	-0.069	-0.084	164.70	0.000
100	T OD	22	0.107	0.025	170.51	0.000
e i	1 (6)	23	-0.079	-0.005	173.73	0.000
111	1 11	24	0.011	-0.047	173.79	0.000
1 1	1 (1)	25	-0.003	-0.024	173.79	0.000
1111	1 (1)	26	0.014	-0.036	173.90	0.00
1 1	il ili	27	-0.001	-0.016	173.90	0.00
1 10	d die	28	0.041	0.049	174.77	0.000
d :	T do	29	-0.082	-0.011	178.23	0.000
cito	1 of c	30		-0.038	178.55	0.00
161	d		-0.013		178.63	0.000
1 (0)	1 (1)	32	0.052	-0.034	180.03	0.000
of a	d		-0.061		181.94	0.00
110	i ii	34		-0.095	182.25	0.00
1 file	1 (1)	35	0.050	0.020	183.56	0.000
ıfı.	1 ili		-0.013	0.036	183.65	0.000

Figure 3: correlation test

Also, the probability all smaller than the 0.05. So all of them are auto-correlation. We chose the MA model for 1 to 5, also be Irreversible. So we gave up this model.

Dependent Variable: D2R
Method: ARMA Conditional Least Squares (Marquardt - EViews legacy)
Date: 05/14/22 Time: 13:34
Sample (adjusted): 3 450
Included observations: 448 after adjustments
Convergence achieved after 30 iterations
MA Backcast: OFF (Roots of MA process too large)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	7.79E-06	1.02E-05	0.766016	0.4441
MA(1)	-1.015926	0.011242	-90.36588	0.0000
R-squared	0.486930	Mean depen	dent var	4.52E-05
Adjusted R-squared	0.485780	S.D. dependent var		0.045622
S.E. of regression	0.032715	Akaike info	riterion	-3.997497
Sum squared resid	0.477348	Schwarz crit	erion	-3.979172
Log likelihood	897.4394	Hannan-Qui	nn criter.	-3.990273
F-statistic	423.2778	Durbin-Wats	on stat	1.918015
Prob(F-statistic)	0.000000			
Inverted MA Roots	1.02 Estimated MA	process is no	ninvertible	

Figure 4: MA model

We chose the ARCH model, and find the probability < 0.05, so this is not stationary in the ARCH model, which means did containing the GARCH effect. Thus, we did not choose GARCH.

Dependent Variable: D2R
Method: ARMA Conditional Least Squares (Marquardt - EViews legacy)
Date: 05/14/22 Time: 13:23
Sample (adjusted): 4 450
Included observations: 447 after adjustments
Convergence achieved after 10 iterations
MA Backcast: 3

Variable Coefficient Std. Error t-Statistic Pro-

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.86E-05	1.69E-05	-1.105772	0.2694
AR(1)	0.042584	0.047516	0.896189	0.3706
MA(1)	-0.994211	0.003434	-289.5203	0.0000
R-squared	0.474938	Mean deper	ident var	2.07E-05
Adjusted R-squared	0.472573	S.D. depend	lent var	0.045670
S.E. of regression	0.033168	Akaike info	riterion	-3.967794
Sum squared resid	0.488442	Schwarz crit	erion	-3.940260
Log likelihood	889.8019	Hannan-Qui	nn criter.	-3.956939
F-statistic	200.8075	Durbin-Wats	on stat	2.001141
Prob(F-statistic)	0.000000			
Inverted AR Roots	.04			
Inverted MA Roots	.99			

Figure 5: GARCH model

According to reviewing various literature and using the exhaustive method, we finally choose to use the ARMA(1,1) model to do the forecasting.

Date: 05/14/22 Time: Sample (adjusted): 4 4 Included observations: Convergence achieved MA Backcast: 3	50 447 after adjus			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.86E-05	1.69E-05	-1.105772	0.0000
AR(1)	0.042584	0.047516	0.896189	0.0000
MA(1)	-0.994211	0.003434	-289.5203	0.0000
R-squared	0.474938	Mean depen	dent var	2.07E-05
Adjusted R-squared	0.472573	S.D. depend	ent var	0.045670
S.E. of regression	0.033168	Akaike info o	riterion	-3.967794
Sum squared resid	0.488442	Schwarz crit	erion	-3.940260
Log likelihood	889.8019	Hannan-Qui	nn criter.	-3.956939
F-statistic	200.8075	Durbin-Wats	on stat	2.001141
Prob(F-statistic)	0.000000			
Inverted AR Roots	.04			
Inverted MA Roots	.99			

Figure 6: ARMA(1,1) model

We divided the data into training set and test set, take 1-450 pieces of data as in-of-sample, and take the remaining samples as out-of-sample, and then conduct a test to test the accuracy of this model. The green line is the fitted one and the red is the actual one.

Figure 7: fit model

Finally, we can see the MSE and MAE both small in using this model to forecasting:

Forecast DSRF
Actual DSR
Forecast sample: 451 486
Included observations: 36
Included observations: 36
Included observations: 36
Included observations: 30
Included observation

Figure 8: MSE and MAE

3 Methodology

3.1 TabNet

TabNet uses the idea of Sequential Attention to mimic the behaviour of a decision tree. It can be thought of as a multi-step neural network, with two key operations applied at each step. Attentive Transformer selects the most important features to be processed in the next step and Processing the features into a more useful representation via the Feature Transformer. TabNet uses both Attentive and Feature Transformers and is able to simulate the decision making process of a tree-based model.

Figure 9: TabNet

3.2 1dCNN

Convolutional Neural Network(CNN) is good at extract features from data. By using the application of a filter to an input to get result, and put result into an activation function, repete this step to scan all the data of inputs. So we decide to use 1-dimension convolutional neural network (1D-CNN), which is good at extract features from vibration signal, as our second stock price predict model. We are trying to get more features apart from LSTM or RNN. After convolutional layer, we will add the 1D Max Pooling layer and fully connected layer as normal deep learning models do.

Figure 10: 1D-CNN

The formula of Convolutions Layer:

$$x_j^l = f\left(\sum_{i \in M_i} x_i^{l-1} * k_{ij}^l + b_j^l\right)$$

 x^{l}_{j} represent the l th feature in j th layer, i represent the i th feature in M th set of input features, k is represent the kernel, b is the bias term and f is the activation function. Activation function ReLU(x)'s formula is:

$$ReLU(x) = max(0, x)$$
 (1)

The Network structure from data input to 1- the Appendix for Figure 21 dimension convolutional neural network:

Figure 11: Network structure

The 1D Max Pooling layer(after the Conv1D): The formula is:

$$h_x^{\ l} = \max_{i=0,\dots,s} h_{x+i}^{\ l-1} \tag{2}$$

where x stand for the position of features, l represent the l th layer, s represents the kernel size. The model structure is:

Figure 12: model structure

About the fully Connected Layer can see the Appendix for Figure 21

3.3 Light Gradient Boosting Machine (LGBM)

The stock price prediction method is mainly focus on the sequences feature of Stock Price data which mainly use RNN or LSTM as their predict model. We decide to treat the stock price data as continues data and use CART (Classification and Regression Trees) idea to make the prediction of stock data. First let's talk about the decision tree idea. Decision trees are a type of supervised machine learning used to classify or make predictions based on the way a set of questions were answered previously. And because the stock price data is continuously, so the CART(Classification and Regression Trees) idea will be used in the model. The splitting rules for CART is:

$$G(t) = 1 - p(t)^{2} - (1 - p(t))^{2}$$
(3)

Gini used in the above formula, p(t) is the relative frequency of class 1 in the node.

And we could calculate the gain of left(L) and right(R) children by the formula:

$$I(P) = G(P) - qG(L) - (1 - q)G(R)$$
 (4)

q here is the fraction of data instances going to the left. And we will choose the biggest information gain to generate our new node.

And we import the LGBM idea here because of its all sorts of strength, like better prediction accuracy and faster training time. Light Gradient Boosting Machine, short as LightGBM, is a gradient boosting framework based on Decision Tree algorithm, which has better compatibility for huge dataset and high dimensions. With the advantages of low memory usage and faster training speed and higher efficiency, LGBM is widely used by data scientists. The word "light" comes mainly from its leafy tree growth fea-Unlike other models where the decision ture. tree-based algorithm splits each node of the tree at depth or level, LGBM grows new nodes on the leaves. These algorithms can improve accuracy and reduce construction time because guided algorithms have better loss reduction than other algorithms.

Figure 13: LGBM model result

Part of the structure of LGBM model result:

Figure 14: Leaf-wise tree growth

4 Data collection

Since we are using TabNet,1dCNN and LGBM to predict the stock data, we should first collect the data of one exact stock. To make sure that we collect the precise stock data, we choose the collect tha data from TUSHARE https://tushare.pro/. We crawled all the data from

this website for a stock for the years 2020-2022. The data was pre-processed to remove all null values and convert all dates in the dataset to date-time.

5 Model Evaluation

5.1 TabNet

Training Result

		MSE	MAE	R^2
TabNet	Direct Predict	1.93177280838 47163	1.110145945358 2765	0.255977626486 02995
	Rolling Window 3	0.070658048603 5437	0.194525319290 16112	0.972786049787 1733
	Rolling Window 7	0.137397569002 55676	0.218725286102 29494	0.947081320867 2243
	Rolling Window 30	0.536744261605 0845	0.445976863861 0839	0.793272926424 8517

Figure 15: TabNet

And for the Direct Predict, we use data from 2019020 for training, the data of 2022 to test. We tested our model using a rolling window of 3, 7 and 30 cells and obtained the following trend graphs, see Figure 22-25 in the appendix.

5.2 1dCNN

Training Result

		MSE	MAE	R^2
LGBM	Direct Predict	0.09568249462 215539	0.23730041783 192568	0.96314788341 38677
	Rolling Window 3	0.06533593787 715612	0.13660106570 485264	0.99738890445 98064
	Rolling Window 7	0.02911908328 573957	0.09245869329 61195	0.99881374709 71822
	Rolling Window 30	0.00592562626 1102908	0.04608953970 027	0.99973287774 50211

Figure 16: 1dCNN

And for the Direct Predict, we use data from 2019020 for training, the data of 2022 to test. We tested our model using a rolling window of 3, 7 and 30 cells and obtained the following trend graphs, see Figure 26-29 in the appendix.

5.3 LGBM

Training Result

			MSE	MAE	R^2
1DCNN	l	Direct Predict	0.13630813419 877466	0.28232459125 5188	0.94750091672 49673
		Rolling Window 3	0.12312061349 563606	0.26452980789 483777	0.99502297219 32405
		Rolling Window 7	0.04406394831 992147	0.14979778588 02401	0.99818592479 81844
		Rolling Window 30	0.03997726228 349267	0.15324952831 97473	0.99816419216 60706

Figure 17: LGBM

And for the Direct Predict, we use data from 2019020 for training, the data of 2022 to test. We tested our model using a rolling window of 3, 7 and 30 cells and obtained the following trend graphs, see Figure 30-33 in the appendix.

6 Strategies

We offer two investment strategies, the first one is the Moving Average Strategy and the second one is the Bollinger Band Strategy.

Figure 18: investment strategies

6.1 Moving Averages Strategy

The most commonly used moving averages are the 5-day, and 30-day moving averages. When the short-term moving averages fall below the medium and long-term moving averages to form a crossover, it is called a death cross. A crossover is

called a golden cross when the short term moving average breaks below the medium to long term moving average from below. At a death cross, the stock is sold; at a golden cross, we buy the stock.

Figure 19: Dual line strategy

6.2 Bollinger Bands Strategy

The Bollinger band strategy has three track lines, where the top and bottom lines can be seen as the up and down lines of the price respectively, and in between the two lines is a price average. Generally, the stock price will run in the channel formed by the up line and the down line. When the stock price is above the up line, sell the stock, when the stock is below the down line, buy the stock.

$$up = average + 2 * standarderror$$
 (5)

$$down = average - 2 * standarderror$$
 (6)

Figure 20: Dual line strategy

7 Drawbacks

As we have so little data, this may lead to inaccurate predictions. Our forecasts can therefore only be used as a guide and investors will need to take into account other market factors when making an investment.

8 Future improvement

As we do not have a large enough amount of data, the prediction results may deviate from the actual, so in the future we may try to increase our data volume and improve the accuracy of the model.

References

[1] (2012-5-22). Time Series Quantile Regressions. ZhijieXiao.

- [2] (2020-5-12). What Is an ARMA Model? Viktor Mehandzhiyski.
- [3] (2022-5-9). Stock Market Predictions. Gord Collins.
- [4] Granat, M. (2019-10-5). How to use convolutional neural networks for time series classification. https://towardsdatascience.com.
- [5] pawangfg (2021-10-16). Tabnet. https://www.geeksforgeeks.org/tabnet/.
- [6] Saha, S. (2018-12-16). A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way.

A Appendix

Figure 21: Fully Connected Layer for 1dCNN

A.1 TabNet

Figure 22: Direct Predict of TabNet

Figure 23: Test for Rolling Window 3

Figure 24: Test for Rolling Window 7

Figure 25: Test for Rolling Window 30

Figure 27: Test for Rolling Window 3

A.2 1dCNN

Direct Predict

Figure 28: Test for Rolling Window 7

Figure 26: Direct Predict of 1dCNN

Figure 29: Test for Rolling Window 30

A.3 LBGM

Direct Predict

Figure 30: Direct Predict of LGBM

Figure 31: Test for Rolling Window 3

Figure 32: Test for Rolling Window 7

Figure 33: Test for Rolling Window 30