

Tensor Decomposition Using Numerical (Non)Linear Algebra

SIAM Conference on Applied Linear Algebra (LA24)

Leonie Kayser (feat. Fulvio Gesmundo & Simon Telen)

leokayser.github.io
May 14, 2024

Mathematics > Commutative Algebra

(Submitted on 5 Jul 2023)

Hilbert Functions of Chopped Ideals

Fulvio Gesmundo, Leonie Kavser, Simon Telen

A chopped ideal is obtained from a homogeneous ideal by considering cases in which the chopped ideal defines the same finite set of points a computing these points from the chopped ideal is governed by the Hill these invariants and prove them in many cases. We show that our conjudecomposition.

What is a tensor?

A tensor...

- $riangleright \ldots$ is an element of a tensor product of vector spaces $U \otimes V \otimes W$

▷ Symmetric tensors can be identified with homogeneous polynomials

$$\mathbb{C}[x_1, \dots, x_n]_d \ni x_{i_1} \cdots x_{i_d} \quad \longleftrightarrow \quad \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_d} x_{i_{\sigma(1)}} \otimes \cdots \otimes x_{i_{\sigma(d)}} \in \operatorname{Sym}^d \mathbb{C}^n \subseteq (\mathbb{C}^n)^{\otimes d}$$

Tensor decomposition and rank

- \triangleright A tensor of the form $(u_i v_j w_k)_{i,j,k} = u \otimes v \otimes w$ is simple
- ▷ Every tensor is a linear combination of simple tensors

$$A = \sum_{i=1}^{r} \lambda_i u^{(i)} \otimes v^{(i)} \otimes w^{(i)}$$

$$\approx$$

$$\text{Rank-one tensor} + \cdots +$$

$$\text{Rank-one tensor} + \cdots +$$

$$\text{Rank-one tensor} + \cdots +$$

$$\text{Rank-one tensor} + \cdots + \cdots + \cdots$$

- \triangleright The smallest such r is the tensor rank of A
- ightharpoonup Generalizes matrix rank: $\mathbb{C}^{m \times n} \ni A = S \cdot \operatorname{diag}(\underbrace{1, \dots, 1}_{\operatorname{rank} A}, 0, \dots) \cdot T = \sum_{i=1}^r S_{*,i} \cdot T_{i,*}$
- ho Symmetric case: Simple tensor $v^{\otimes d} = \ell^d$ powers of linear forms, $F = \sum_{i=1}^r \lambda_i \ell_i^d$
- > Symmetric tensor rank, identifiability, . . .

Forms of small rank often have unique decompositions

Let $T_d = \mathbb{C}[X_0, \dots, X_n]_d \cong \mathbb{C}^{\binom{n+d}{n}}$ be the vector space of degree d forms

- > (Alexander-Hirschowitz)
 - A general form $F \in T_d$ has rank $\left\lceil \frac{1}{n+1} \binom{n+d}{n} \right\rceil$ except in a few cases
- ▷ (Ballico, Mella, Chiantini–Ottaviani–Vannieuwenhoven, ...)
 For $r < \frac{1}{n+1} \binom{n+d}{d}$ a general form of rank r is identifiable except in a few cases

Running example

A general $F \in \mathbb{C}[X_0, X_1, X_2]_{10}$ has $\operatorname{rk} F = \frac{1}{3} \binom{2+10}{2} = 22$. The set of such forms of rank 18 has dimension 54 in \mathbb{C}^{66} . A random such F has a *unique* decomposition

$$F = \ell_1^{10} + \dots + \ell_{18}^{10}, \qquad \ell_i \in \mathbb{C}[X_0, X_1, X_2]_1.$$

The catalecticant method

- \triangleright Fix general $F = \sum_{i=1}^r \ell_i^d \in T_d$ of rank r
- ho Linear forms as points in projective space $[\ell_i] \in \mathbb{P}(T_1) \cong \mathbb{P}^n_{\mathbb{C}}$ $\mathbb{P}(V) = (V \setminus 0)/\mathbb{C}^{\times}$
- \triangleright Catalecticant method give polynomials vanishing on $Z = \{[\ell_1], \ldots, [\ell_r]\} \subseteq \mathbb{P}^n$

- \triangleright In fact: Obtain all homog. equations of degree $\le d/2$ vanishing on Z
- \rightsquigarrow Hope: Solutions to equations are exactly the $[\ell_i]!$

The algorithm

Equations via kernel of catalecticant maps

$$\operatorname{Cat}_{j}(F) \colon \mathbb{C}[y_{0}, \dots, y_{n}]_{j} \to T_{d-j}, \qquad g \mapsto g(\partial_{X_{0}}, \dots, \partial_{X_{n}})F(X_{0}, \dots, X_{n})$$

- ▷ Algorithmic approach:
 - 1. Compute kernel basis \mathcal{F} of the *linear* catalecticant map $\operatorname{Cat}_{\lfloor d/2 \rfloor}(F)$
 - 2. Solve polynomial system $\{\mathcal{F}=0\}$ to get $\mathbb{Z}eros(\mathcal{F})\stackrel{?}{=}\{[\ell_1],\ldots,[\ell_r]\}$,
 - 3. Solve *linear* equations to get λ_i in $F = \sum_{i=1}^r \lambda_i \ell_i^d$
- ▷ (At least) three common approaches:
 - Gröbner bases computation (symbolic)
 - Homotopy continuation (numerical)
 - Eigenvalue/normal form methods (numerical/mixed)
- → Focus on the eigenvalue method approach here

Eigenvalue methods for polynomial system solving

- Task: Given 0-dim'l system $\{\mathcal{F}=0\}$, compute finite set $Z=\{z_1,\ldots,z_r\}=\mathcal{Z}\!\textit{eros}(\mathcal{F})\subseteq\mathbb{P}^n$
 - ho Consider ideal $J \coloneqq \langle \mathcal{F} \rangle_S = \bigoplus_{t \geq 0} J_t$, this is a graded subspace of S with

$$J_t = S_{t-\deg f_1} f_1 + \dots + S_{t-\deg f_s} f_s \subseteq S_t$$

- ho For t large enough the Hilbert function $h_{S/J}(t) \coloneqq \dim_{\mathbb{C}}(S/J)_t$ is constant r
- \triangleright Multiplication map for $g \in S_e$:

$$M_g \colon (S/J)_d \xrightarrow{\cdot g} (S/J)_{d+e}$$

ho Under "suitable conditions" $M_h^{-1}M_g\colon (S/J)_d \to (S/J)_d$ has left eigenpairs

$$\{ (\operatorname{ev}_{z_i}, \frac{g}{h}(z_i)) \mid i = 1, \dots, r \}, \quad \operatorname{ev}_{z_i}(f) = f(z_i)/h(z_i)$$

- ~> Translate problem into large eigenvalue problem, solve numerically
- \triangleright For this need $h_{S/J}(d+e)=h_{S/J}(d)=r$, want d,d+e as small as possible

Non-saturated systems are harder to solve

- riangleright Z general set of points, $I=\{\,f\in S\mid f(Z)=0\,\}$, then $h_{S/I}(t)=\min\{h_S(t),\,r\}$ $d=\min\{\,t\mid h_S(t)\geq r\,\}$ and e=1 work.
- ▷ In general, larger saturation gap can be encountered
- \triangleright Saturation gap governs algorithmic complexity of solving J with eigenvalue methods

Bigger example

For a general set $Z \subseteq \mathbb{P}^3$ of 52 points and $J = I_{\langle 5 \rangle}(Z) \coloneqq \langle \{ f \in S_5 \mid f(Z) = 0 \} \rangle_S$, we have the Hilbert function pictured below. Smallest choice: d = 5, d + e = 11.

Recap

We are lead to the following setup:

- ho Given a general form $F=\sum_{i=1}^r \ell_i^d \in \mathbb{C}[X_1,\dots,X_n]_d$ of "small" rank r
- ho Decomposition is unique, want to find $Z=\{[\ell_1],\ldots,[\ell_r]\}\in\mathbb{P}^n$
- ho Want to solve Catalecticant polynomial system ${\mathcal F}$ using the eigenvalue method
- \triangleright Is $\mathbb{Z}eros(\mathcal{F}) = \mathbb{Z}$? With(out) multiplicities?
- \triangleright What is the Hilbert function of the ideal $\langle \mathcal{F} \rangle_S \subseteq S$? When = r?

Running example

n=2, d=10, r=18, equations \mathcal{F} have degree d/2=5.

$$F = \sum_{i=1}^{18} \ell_i^{10} \in \mathbb{C}[X_0, X_1, X_2]_{10}, \qquad [\ell_i] \in \mathbb{P}(\mathbb{C}[X_0, X_1, X_2]_1) = \mathbb{P}^2$$

8

Example: Z=18 points in the plane

t	 3	4	5	6	7
$h_S(t)$	 10	15	21	28	36
$h_I(t)$	 0	0	3	10	18
$h_{I_{\langle 5 \rangle}}(t)$	 0	0	3	9	18

t	0	1	2	3	4	5	6	7
$h_S(t)$	1	3	6	10	15	21	28	36
$h_{S/I}(t)$	1	3	6	10	15	18	18	18
$h_{S/I_{\langle 5 \rangle}}(t)$	1	3	6	10	15	18	19	18

Figure 1: Three quintics $\langle q_1, q_2, q_3 \rangle_{\mathbb{C}} = I_5$ passing through 18 general points.

For which forms is our algorithmic approach even possible?

ightharpoonup For a set of points Z consider the vanishing ideal and chopped ideal

$$I = \{ f \in S \mid f(Z) = 0 \}, \qquad I_{\langle d \rangle} = \langle \{ f \in S_d \mid f(Z) = 0 \} \rangle_S$$

 $\quad \triangleright \ \, \mathsf{Generally} \,\, I_{\langle d \rangle} \subsetneq I, \,\, \mathsf{we} \,\, \mathsf{need} \,\, \underbrace{\mathcal{Z}eros}(I) \overset{?}{=} \underbrace{\mathcal{Z}eros}(I_{\langle d \rangle}) \subseteq \mathbb{P}^n$

Theorem

Let $Z \subseteq \mathbb{P}^n$ be a general set of r points and $d \in \mathbb{N}$. Then

$$\mathcal{Z}eros(I) = \mathcal{Z}eros(I_{\langle d \rangle}) \iff r < \binom{n+d}{n} - n \text{ or } r = 1 \text{ or } (n,r,d) = (2,4,2).$$

The conjectural Hilbert function

Expected syzygy conjecture (ESC)

For a general set of $r<\binom{n+d}{n}-n$ points in \mathbb{P}^n the ideal $I_{\langle d\rangle}$ has Hilbert function

$$h_{S/I_{\langle d \rangle}}(t) = \begin{cases} \sum_{k \ge 0} (-1)^k \cdot \binom{n+t-kd}{n} \cdot \binom{\binom{n+d}{n}-r}{k} & t < t_0, \\ r & t \ge t_0, \end{cases}$$

where t_0 is the first integer > d such that the sum is $\leq r$.

- Done can extract the saturation gap length from this formula
- > This is always a (lexicographic) lower bound due to Fröberg
- ightharpoonup If $W\subseteq S_d$ is a random vector subspace of dim. $\binom{n+d}{n}-r$, then this sum is the expected Hilbert function of $S/\langle W\rangle_S$ (until sum ≤ 0)

Main results

Theorem (Gesmundo, Kayser & Telen)

Conjecture (ESC) is true in the following cases:

- $ho r_{\max} := \binom{n+d}{n} (n+1)$ for all d in all dimensions n.
- ho In the plane for $r_{\min}=rac{1}{2}(d+1)^2$ when d is odd.
- $> r \le \frac{1}{n} \left((n+1) \binom{n+d}{n} \binom{n+d+1}{n} \right) \text{ and } [n \le 4 \text{ or } d \gg 0]$
- ▷ In a large number of individual cases in low dimension (table below).

The length of the saturation gap is bounded above by

$$\min \{ e > 0 \mid (I_{\langle d \rangle})_{d+e} = I_{d+e} \} \le (n-1)d - (n+1).$$

n	2	3	4	5	6	7	8	9	10	
r	≤ 1825	≤ 1534	≤ 991	≤ 600	≤ 447	≤ 316	≤ 333	≤ 204	≤ 259	
d	≤ 58	≤ 18	≤ 9	≤ 6	≤ 4	≤ 3	≤ 3	≤ 2	≤ 2	

12

Visualization of the saturation gaps in \mathbb{P}^2

 ${\,\vartriangleright\,}$ ESC predicts exactly how large the difference between I and $I_{\langle d \rangle}$ is

Thank you! Questions?

arXiv:2307.02560

Mathematics > Commutative Algebra

[Submitted on 5 Jul 2023]

Hilbert Functions of Chopped Ideals

Fulvio Gesmundo, Leonie Kayser, Simon Telen

A chopped ideal is obtained from a homogeneous ideal by considering only the generators of a fixed degree. We investigate cases in which the chopped ideal defines the same finite set of points as the original one-dimensional ideal. The complexity of

WWW

Visualization of the saturation gaps in \mathbb{P}^3

References i

- Chwas Ahmed, Ralf Fröberg, and Mohammed Rafiq Namiq.

 The graded betti numbers of truncation of ideals in polynomial rings, 2022.
- A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto. The hitchhiker guide to: Secant varieties and tensor decomposition. *Mathematics*, 6(12):314, 2018.
 - Ralf Fröberg.

 An inequality for hilbert series of graded algebras.

 Mathematica Scandinavica, 56(2), 1985.
 - Fulvio Gesmundo, Leonie Kayser, and Simon Telen.

 Hilbert functions of chopped ideals, 2023.

References ii

The minimal resolution conjecture.

Journal of Algebra, 156(1), 1993.

Solving Systems of Polynomial Equations.

PhD thesis, KU Leuven, Leuven, Belgium, 2020.

Simon Telen and Nick Vannieuwenhoven.

A normal form algorithm for tensor rank decomposition.

ACM Trans. on Math. Soft., 48(4):1-35, 2022.