$R_scripts_AMRIWA_metagenomes$

Melina Markkanen

27/1/2022

Contents

Plot ordinations in figure panel

Set working directory	2
Load required libraries	2
Load data	3
metadata	3
Metaxa2 results	3
rpoB	5
Metaphlan3 results	5
ResFinder results	6
MGE results	8
Correlation between SSU & rpoB counts	10
Modelling ARG abundance	10
Gather data into data frame	10
Draw maps	11
Data exploration using library HighstatLabv13	12
Plot model (ARGs)	13
Plot model (MGEs)	14
Plot model (intI1)	15
Plot figures in grids	16
Plot models by hospitals / hospital sections (ARGs)	16
Ordinations	17
ARGs (ResFinder)	17
Taxa (Metaphlan3)	18
MGEs	18

19

DESeq2	20
ARGs	20
Taxa (Metaphlan3), Species, Benin-Finland	23
Taxa (Metaphlan3), Genus, Benin-Finland	24
Taxa (Metaphlan3), Species, Burkina Faso-Finland	25
Taxa (Metaphlan3), Genus, Burkina Faso-Finland	26
Heatmap for clinically relevant taxa	26
15 most abundant ARGs in HWWs from each country	28
Most abundant ARGs in other than HWW samples	29
Interesting ARGs	29
MCR	29
Carbapenemases	30
15 most abundant taxa	34
Correlation between MGE/intI1 & all ARGs	34
Save correlation data for intI & qacEdelta and all ARGs	35
$Figures \ for \ correlations \ for \ differentially \ abundant \ ARGs \ across \ countries \ (from \ DESeq2) \ \& \ int I1/qac Edelta \ . \ . \ .$	37
"Core" resistome and unique ARGs	41
Set working directory	
setwd("~/Desktop/Git/AMRIWA/RFiles")	

Load required libraries

```
library(phyloseq)
library(stringr)
library(vegan)
library(RColorBrewer)
library(ggplot2)
library(knitr)
library(ggpubr)
library(pheatmap)
library(MASS)
library(gplots)
library(grid)
library(cowplot)
library(DESeq2)
library(multcomp)
library(ggrepel)
library(ggcorrplot)
library(dplyr)
library(VennDiagram)
```

```
library(psych)
library(usefun)
library(patchwork)
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(ggspatial)
library(rgeos)
library(maps)
library(Hmisc)
```

Load data

metadata

Metaxa2 results

```
metaxa_genus <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/metaxa_genus.txt")
# Create OTU table
OTU_metaxa <- metaxa_genus[,-1]
# Match sample ID order with metadata file
match <- match(rownames(metadata), colnames(OTU_metaxa))</pre>
OTU_metaxa <- OTU_metaxa[,match]</pre>
all(colnames(OTU_metaxa) == rownames(metadata))
# Create tax table
tax_table_metaxa <- data.frame(str_split_fixed(data.frame(metaxa_genus) [,1], ";", 6))</pre>
colnames(tax_table_metaxa) <- c("Domain", "Phylum", "Class", "Order", "Family", "Genus")</pre>
# Check if samples are in order
identical(rownames(metadata), colnames(OTU_metaxa))
# Combine into phyloseq object
metaxa_PHY <- phyloseq(otu_table(OTU_metaxa,</pre>
    taxa_are_rows=TRUE), tax_table(as.matrix(tax_table_metaxa)), sample_data(metadata))
# Exclude taxa "Unknown", "Unclassified", "Eukaryota", "Mitochondria", "Archaea", "Chloroplast"
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Unknown"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Unclassified"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Eukaryota"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Mitochondria"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Archaea"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Chloroplast"))</pre>
# Add SSU counts to metadata
metadata$SSU_counts <- sample_sums(metaxa_PHY)</pre>
```

```
## Exclude biological / technical replicates
metaxa_PHY <- subset_samples(metaxa_PHY, alias != "BH31" & alias != "BH33" & alias != "BH34B" &
                               alias != "BH10" & alias != "BFH38B" & alias != "FH8" &
                               alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseg object with only HWW samples
metaxa_PHY_stat <- subset_samples(metaxa_PHY, category == "WA hospital effluent" |</pre>
                                    category == "North Eu hospital effluent")
# Create phyloseq objects (x 3) with equal group sizes for the statistical testing
alias = data.frame(metaxa PHY stat@sam data[["alias"]])
colnames(alias) = "sample"
BH <- data.frame(alias[grepl("BH.", alias$sample), ])
colnames(BH) <- c("sample")</pre>
## Include 8 random samples per country
random_BH_1 <- sample_n(BH, 8)</pre>
random_BH_2 <- sample_n(BH, 8)</pre>
random_BH_3 <- sample_n(BH, 8)
# Create phyloseq objects (x 3) with equal group sizes for the statistical testing
alias = data.frame(metaxa_PHY_stat@sam_data[["alias"]])
colnames(alias) = "sample"
BFH <- data.frame(alias[grepl("BFH.", alias$sample), ])</pre>
colnames(BFH) <- c("sample")</pre>
## Include 8 random samples per country
colnames(BFH) <- c("sample")</pre>
random_BFH_1 <- sample_n(BFH, 8)</pre>
random_BFH_2 <- sample_n(BFH, 8)
random_BFH_3 <- sample_n(BFH, 8)
# Sample set 1
metaxa_PHY_stat_equal1 <- subset_samples(metaxa_PHY, alias == paste(random_BFH_1$sample[1]) |
    alias == paste(random_BFH_1$sample[2]) | alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
    alias == paste(random_BFH_1$sample[6]) |
                                                alias == paste(random_BFH_1$sample[7]) |
    alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
    alias == paste(random_BH_1$sample[2]) |
                                                alias == paste(random_BH_1$sample[3]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) |
                                                alias == paste(random_BH_1$sample[7]) |
                                                                                    alias == "FH3" |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" |
                                                                alias == "FH2" |
    alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Sample set 2
metaxa_PHY_stat_equal2 <- subset_samples(metaxa_PHY, alias == paste(random_BFH_2$sample[1]) |
    alias == paste(random_BFH_2$sample[2]) | alias == paste(random_BFH_2$sample[3]) |
    alias == paste(random_BFH_2$sample[4]) | alias == paste(random_BFH_2$sample[5]) |
    alias == paste(random_BFH_2$sample[6]) |
                                                alias == paste(random_BFH_2$sample[7]) |
    alias == paste(random_BFH_2$sample[8]) | alias == paste(random_BH_2$sample[1]) |
    alias == paste(random_BH_2$sample[2]) |
                                                alias == paste(random_BH_2$sample[3]) |
    alias == paste(random_BH_2$sample[4]) | alias == paste(random_BH_2$sample[5]) |
    alias == paste(random_BH_2$sample[6]) |
                                               alias == paste(random_BH_2$sample[7]) |
    alias == paste(random_BH_2$sample[8]) | alias == "FH1" | alias == "FH2" | alias == "FH3" |
    alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Sample set 3
metaxa_PHY_stat_equal3 <- subset_samples(metaxa_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
```

```
alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias == "FH3" |
alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
```

rpoB

```
HMM_RESULT_TABLE <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/HMM_RESULT_TABLE.txt", row.name
HMM_RESULT_TABLE$SUM = rowSums(HMM_RESULT_TABLE[,c(2,3)])

# Sum of counts for R1 and R1 reads
# Reorder samples to match metadata and add to metadata
match <- match(rownames(metadata), rownames(HMM_RESULT_TABLE))
rpoB_counts <- HMM_RESULT_TABLE[match,]
metadata$rpoB_counts <- rpoB_counts$SUM

# Only R1 reads
# Reorder samples to match metadata
match <- match(rownames(metadata), rownames(HMM_RESULT_TABLE))
R1_rpoB_counts <- HMM_RESULT_TABLE[match,]
metadata$R1_rpoB_counts <- rpoB_counts$R1</pre>
```

Metaphlan3 results

```
OTU_metaphlan <-
 read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/mod_merged_abundance_table_species.txt", header=T
# Match sample order
tax table metaphlan <-
  read.table("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan", quote="\"", comment.char=""
identical(tax_table_metaphlan$V1, OTU_metaphlan$clade_name)
tax_table_metaphlan <-
 read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan", header=FALSE, sep=";")
colnames(tax_table_metaphlan) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
tax_table_metaphlan <- apply(tax_table_metaphlan, 2, function(y) (gsub(".__", "", y)))</pre>
match <- match(rownames(metadata), colnames(OTU_metaphlan))</pre>
OTU_metaphlan <- OTU_metaphlan[,match]
all(rownames(metadata) == colnames(OTU_metaphlan))
# Combine into phyloseq object
metaphlan_PHY <- phyloseq(otu_table(OTU_metaphlan, taxa_are_rows=TRUE),</pre>
                       tax_table(as.matrix(tax_table_metaphlan)), sample_data(metadata))
# Check that sums are ~100
#sample_sums(metaphlan_PHY)
# Exclude Viruses, Eukaryota & Archaea
metaphlan_PHY <- subset_taxa(metaphlan_PHY, Kingdom != "Viruses" & Kingdom != "Eukaryota" & Kingdom != "Archae
## Exclude biological / technical replicates
metaphlan_PHY <- subset_samples(metaphlan_PHY, alias != "BH31" & alias != "BH33" & alias != "BH34B" &
```

```
alias != "BH10" & alias != "BFH38B" & alias != "FH8" &
                              alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseg object with only HWW samples
metaphlan_PHY_stat <- subset_samples(metaphlan_PHY, category == "WA hospital effluent" |
                                      category == "North Eu hospital effluent")
# Create phyloseq objects (x 3) with equal group sizes for the statistical testing
# Sample set 1
metaphlan_PHY_stat_equal1 <- subset_samples(metaphlan_PHY, alias == paste(random_BFH_1$sample[1]) |
   alias == paste(random_BFH_1$sample[2]) |
                                               alias == paste(random_BFH_1$sample[3]) |
   alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
   alias == paste(random_BFH_1$sample[6]) |
                                               alias == paste(random_BFH_1$sample[7]) |
   alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
   alias == paste(random_BH_1$sample[2]) |
                                               alias == paste(random_BH_1$sample[3]) |
   alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
   alias == paste(random_BH_1$sample[6]) |
                                               alias == paste(random_BH_1$sample[7]) |
                                                                                  alias == "FH3" |
   alias == paste(random_BH_1$sample[8]) | alias == "FH1" |
                                                               alias == "FH2" |
   alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" |
                                                                               alias == "FH9")
# Sample set 2
metaphlan_PHY_stat_equal2 <- subset_samples(metaphlan_PHY, alias == paste(random_BFH_2$sample[1]) |
   alias == paste(random_BFH_2$sample[2]) |
                                               alias == paste(random_BFH_2$sample[3]) |
   alias == paste(random BFH 2$sample[4]) | alias == paste(random BFH 2$sample[5]) |
   alias == paste(random BFH 2$sample[6]) |
                                               alias == paste(random_BFH_2$sample[7]) |
   alias == paste(random_BFH_2$sample[8]) | alias == paste(random_BH_2$sample[1]) |
   alias == paste(random_BH_2$sample[2]) |
                                              alias == paste(random_BH_2$sample[3]) |
   alias == paste(random_BH_2$sample[4]) | alias == paste(random_BH_2$sample[5]) |
   alias == paste(random_BH_2$sample[6]) | alias == paste(random_BH_2$sample[7]) |
   alias == paste(random_BH_2$sample[8]) | alias == "FH1" | alias == "FH2" |
                                                                                  alias == "FH3" |
   alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Sample set 3
metaphlan_PHY_stat_equal3 <- subset_samples(metaphlan_PHY, alias == paste(random_BFH_3$sample[1]) |
   alias == paste(random_BFH_3$sample[2]) |
                                               alias == paste(random_BFH_3$sample[3]) |
   alias == paste(random BFH 3$sample[4]) | alias == paste(random BFH 3$sample[5]) |
   alias == paste(random_BFH_3$sample[6]) |
                                               alias == paste(random_BFH_3$sample[7]) |
   alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
   alias == paste(random_BH_3$sample[2]) |
                                               alias == paste(random_BH_3$sample[3]) |
   alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
   alias == paste(random BH 3$sample[6]) |
                                               alias == paste(random BH 3$sample[7]) |
   alias == paste(random BH 3$sample[8]) | alias == "FH1" |
                                                               alias == "FH2" | alias == "FH3" |
   alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
```

ResFinder results

```
# Reorder columns
col order <- c("Class", "Cluster name", "Gene")</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[, col_order]</pre>
# Reorder tax_table to match
match <- match(rownames(OTU_resfinder), clusters_tax_table_resfinder$Gene)</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[match,]</pre>
all(rownames(OTU_resfinder) == clusters_tax_table_resfinder$Gene)
# Divide by ARG gene lengths
resfinder_lengths <-
  read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/resfinder_lengths.txt",
  header=FALSE, comment.char="#")
all(rownames(clusters_tax_table_resfinder$Gene) == resfinder_lengths$V1)
OTU_resfinder_length_norm <- OTU_resfinder/resfinder_lengths[, 2]
# Normalization with Metaxa2 SSU counts
OTU_resfinder_length_SSU_norm <- t(t(OTU_resfinder_length_norm)/metadata$SSU_counts) * 1540
all(rownames(metadata) == colnames(OTU_resfinder_length_SSU_norm))
identical((OTU_resfinder_length_norm[3, 5]/metadata$SSU_counts[5]) * 1540,
          OTU_resfinder_length_SSU_norm[3, 5])
all(rownames(OTU_resfinder_length_norm) == clusters_tax_table_resfinder$Gene)
# Hide rownames
dim(OTU_resfinder_length_SSU_norm)
rownames(OTU_resfinder_length_SSU_norm) <- c(1:3104)</pre>
dim(clusters_tax_table_resfinder)
rownames(clusters_tax_table_resfinder) <- c(1:3104)</pre>
# Combine to phyloseq object
resfinder_PHY <- phyloseq(otu_table(OTU_resfinder_length_SSU_norm, taxa_are_rows = TRUE),
  sample_data(metadata), tax_table(as.matrix(clusters_tax_table_resfinder)))
## Exclude biological / technical replicates
resfinder_PHY <- subset_samples(resfinder_PHY, alias != "BH31" & alias != "BH33" & alias != "BH34B" &
                                  alias != "BH10" & alias != "BFH38B" & alias != "FH8" &
                                  alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
resfinder_PHY_stat <- subset_samples(resfinder_PHY, category == "WA hospital effluent" |
                                       category == "North Eu hospital effluent")
# Create phyloseq objects (x 3) with equal group sizes for the statistical testing
# Sample set 1
resfinder_PHY_stat_equal1 <- subset_samples(resfinder_PHY, alias == paste(random_BFH_1$sample[1]) |
    alias == paste(random_BFH_1$sample[2]) |
                                                alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
    alias == paste(random_BFH_1$sample[6]) |
                                                alias == paste(random_BFH_1$sample[7]) |
    alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
                                               alias == paste(random_BH_1$sample[3]) |
    alias == paste(random_BH_1$sample[2]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) |
                                               alias == paste(random_BH_1$sample[7]) |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" |
                                                                alias == "FH2" |
                                                                                     alias == "FH3" |
    alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Sample set 2
resfinder_PHY_stat_equal2 <- subset_samples(resfinder_PHY, alias == paste(random_BFH_2$sample[1]) |
    alias == paste(random_BFH_2$sample[2]) | alias == paste(random_BFH_2$sample[3]) |
```

```
alias == paste(random_BFH_2$sample[4]) | alias == paste(random_BFH_2$sample[5]) |
                                               alias == paste(random_BFH_2$sample[7]) |
   alias == paste(random_BFH_2$sample[6]) |
   alias == paste(random_BFH_2$sample[8]) | alias == paste(random_BH_2$sample[1]) |
   alias == paste(random_BH_2$sample[2]) |
                                               alias == paste(random_BH_2$sample[3]) |
   alias == paste(random_BH_2$sample[4]) | alias == paste(random_BH_2$sample[5]) |
   alias == paste(random_BH_2$sample[6]) | alias == paste(random_BH_2$sample[7]) |
                                                                                  alias == "FH3" |
   alias == paste(random BH 2$sample[8]) | alias == "FH1" | alias == "FH2" |
   alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Sample set 3
resfinder_PHY_stat_equal3 <- subset_samples(resfinder_PHY, alias == paste(random_BFH_3$sample[1]) |
   alias == paste(random BFH 3$sample[2]) |
                                               alias == paste(random_BFH_3$sample[3]) |
   alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
   alias == paste(random_BFH_3$sample[6]) |
                                               alias == paste(random_BFH_3$sample[7]) |
   alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
   alias == paste(random_BH_3$sample[2]) |
                                               alias == paste(random_BH_3$sample[3]) |
   alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
   alias == paste(random_BH_3$sample[6]) |
                                             alias == paste(random_BH_3$sample[7]) |
   alias == paste(random_BH_3$sample[8]) | alias == "FH1" |
                                                              alias == "FH2" | alias == "FH3" |
   alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
```

MGE results

```
OTU_MGE <-as.matrix(read.table("cp_MGE_genemat.txt", header= T, check.names = F, row.names = 1))
# Reorder to match metadata
match <- match(rownames(metadata), colnames(OTU_MGE))</pre>
OTU MGE <- OTU MGE[,match]
all(colnames(OTU_MGE) == rownames(metadata))
# Tax table
MGE_tax_table_trim <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/MGE_tax_table_trim.txt",
                                  header=FALSE)
colnames(MGE_tax_table_trim) <- c("Gene", "Element", "Class")</pre>
# Reorder tax_table to match
match <- match(rownames(OTU_MGE), MGE_tax_table_trim$Gene)</pre>
MGE_tax_table_trim <- MGE_tax_table_trim[match,]</pre>
all(rownames(OTU_MGE) == MGE_tax_table_trim$Gene)
# Normalization to MGE lengths
MGE_lengths <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/MGE_lengths.txt",
                           header=FALSE, comment.char="#", check.names = F)
match <- match(rownames(OTU_MGE), MGE_lengths$V1)</pre>
MGE_lengths <- MGE_lengths[match,]
all(rownames(MGE_tax_table_trim$Gene) == MGE_lengths$V1)
OTU_MGE_length_norm <- OTU_MGE/MGE_lengths[, 2]
# Normalization with Metaxa2 SSU counts
OTU_MGE_length_SSU_norm <- t(t(OTU_MGE_length_norm)/metadata$SSU_counts) * 1540
all(rownames(metadata) == colnames(OTU_MGE_length_SSU_norm))
all(rownames(OTU_MGE_length_SSU_norm) == MGE_tax_table_trim$Gene)
# Hide rownames
dim(OTU_MGE_length_SSU_norm)
rownames(OTU_MGE_length_SSU_norm) <- c(1:2709)
```

```
dim(MGE_tax_table_trim)
rownames(MGE_tax_table_trim) <- c(1:2709)</pre>
# Combine to phyloseq object
MGE_PHY <- phyloseq(otu_table(OTU_MGE_length_SSU_norm, taxa_are_rows = TRUE),
                    sample_data(metadata), tax_table(as.matrix(MGE_tax_table_trim)))
## Exclude biological / technical replicates
MGE_PHY <- subset_samples(MGE_PHY, alias != "BH31" & alias != "BH33" & alias != "BH34B" &
                            alias != "BH10" & alias != "BFH38B" & alias != "FH8" &
                            alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
MGE_PHY_stat <- subset_samples(MGE_PHY, category == "WA hospital effluent" |
                                 category == "North Eu hospital effluent")
# Create phyloseq object with equal group for the statistical analysis
MGE_PHY_stat_equal1 <- subset_samples(MGE_PHY, alias == paste(random_BFH_1$sample[1]) |
    alias == paste(random_BFH_1$sample[2]) |
                                               alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
   alias == paste(random_BFH_1$sample[6]) |
                                               alias == paste(random_BFH_1$sample[7]) |
   alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
   alias == paste(random BH 1$sample[2]) |
                                               alias == paste(random BH 1$sample[3]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) |
                                              alias == paste(random_BH_1$sample[7]) |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" | alias == "FH2" |
                                                                                   alias == "FH3" |
    alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Sample set 2
MGE_PHY_stat_equal2 <- subset_samples(MGE_PHY, alias == paste(random_BFH_2$sample[1]) |
    alias == paste(random_BFH_2$sample[2]) |
                                               alias == paste(random_BFH_2$sample[3]) |
    alias == paste(random_BFH_2$sample[4]) | alias == paste(random_BFH_2$sample[5]) |
    alias == paste(random_BFH_2$sample[6]) |
                                               alias == paste(random_BFH_2$sample[7]) |
    alias == paste(random_BFH_2$sample[8]) | alias == paste(random_BH_2$sample[1]) |
    alias == paste(random_BH_2$sample[2]) |
                                               alias == paste(random_BH_2$sample[3]) |
    alias == paste(random_BH_2$sample[4]) | alias == paste(random_BH_2$sample[5]) |
    alias == paste(random_BH_2$sample[6]) |
                                             alias == paste(random_BH_2$sample[7]) |
                                                                                   alias == "FH3" |
    alias == paste(random_BH_2$sample[8]) | alias == "FH1" |
                                                               alias == "FH2" |
                                                                               alias == "FH9")
    alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" |
# Sample set 3
MGE_PHY_stat_equal3 <- subset_samples(MGE_PHY, alias == paste(random_BFH_3$sample[1]) |
                                               alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[2]) |
   alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
   alias == paste(random BFH 3$sample[6]) |
                                               alias == paste(random_BFH_3$sample[7]) |
   alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
   alias == paste(random_BH_3$sample[2]) |
                                              alias == paste(random_BH_3$sample[3]) |
   alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" |
                                                                                   alias == "FH3" |
    alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias == "FH9")
# Get class 1 integrons
MGE_PHY_int <- tax_glom(MGE_PHY, taxrank = "Class")</pre>
MGE_PHY_int <- subset_taxa(MGE_PHY_int, Class == "intI1")</pre>
MGE_PHY_int_stat <- tax_glom(MGE_PHY_stat, taxrank = "Class")</pre>
MGE_PHY_int_stat <- subset_taxa(MGE_PHY_int_stat, Class == "intI1")</pre>
```

```
MGE_PHY_qac_stat <- tax_glom(MGE_PHY_stat, taxrank = "Class")
MGE_PHY_qac_stat <- subset_taxa(MGE_PHY_qac_stat, Class == "qacEdelta")</pre>
```

Correlation between SSU & rpoB counts

```
SSU_counts <- data.frame(sample_data(resfinder_PHY_stat)$SSU_counts)
R1_rpoB_counts <- data.frame(sample_data(resfinder_PHY_stat)$R1_rpoB_counts)
bacterial counts <- cbind(SSU counts, R1 rpoB counts)</pre>
colnames(bacterial_counts) <- c("SSU_counts", "R1_rpoB_counts")</pre>
p <- ggplot(bacterial_counts, aes(x=SSU_counts, y=R1_rpoB_counts)) +
  geom_point(size=7, shape=19, color = "#3110D2") +
  geom_smooth(method="lm", se=TRUE, fullrange=FALSE,
    level=0.95, color = "#FB2A38", fill = "#8A91F8") +
  theme_bw() + theme(axis.title = element_text(size = 30, family = "Times"),
  axis.text = element_text(size = 32, family = "Times"),
  plot.title = element_text(size = 36, family = "Times");
  plot.subtitle = element_text(size = 28, family = "Times")) +
  xlab("16s rRNA counts") + ylab("R1 rpoB counts") +
  labs(title= "Correlation of 16s rRNA and rpoB counts",
  subtitle = "Hospital WWs in Benin (25), BF (34) and Finland (8)")
cor <- p + stat_cor(method = "pearson", label.x = 100000, label.y = 1000, )</pre>
correl<-corr.test(SSU_counts, R1_rpoB_counts, use="pairwise", method="pearson",
  adjust="fdr",alpha=.05,ci=TRUE)
r <- data.frame(correl$r)</pre>
p <- data.frame(correl$p)</pre>
p.ad <- data.frame(correl$p.adj)</pre>
#qqsave(filename = "SSU_rpoB_cor_new.pnq",
        width = 16, height = 13, dpi = 300, units = "in", device='pnq', scale = 1)
```

Modelling ARG abundance

Gather data into data frame

```
df<-data.frame(ARG_SUM=sample_sums(resfinder_PHY_stat),
   intI1_SUM=sample_sums(MGE_PHY_int_stat),
   MGE_SUM=sample_sums(MGE_PHY_stat),
   hospital_section=as.factor(sample_data(resfinder_PHY_stat)$hospital_section),
   SSU_counts=as.factor(sample_data(resfinder_PHY_stat)$SSU_counts),
   rpoB_counts=as.factor(sample_data(resfinder_PHY_stat)$R1_rpoB_counts),
   hospital=as.factor(sample_data(resfinder_PHY_stat)$hospital),
   country=as.factor(sample_data(resfinder_PHY_stat)$country),
   no_of_beds=as.factor(sample_data(resfinder_PHY_stat)$no_of_beds),
   long=as.factor(sample_data(resfinder_PHY_stat)$long),
   lat=as.factor(sample_data(resfinder_PHY_stat)$lat),
   A260_280=as.numeric(sample_data(resfinder_PHY_stat)$DNA_ng_pl),
   M_Seqs_trimmed=as.numeric(sample_data(resfinder_PHY_stat)$DNA_ng_pl),
   M_Seqs_trimmed=as.numeric(sample_data(resfinder_PHY_stat)$M_Seqs_trimmed))</pre>
```

```
df$SSU_counts <- as.numeric(df$SSU_counts)
df$rpoB_counts <- as.character(df$rpoB_counts)
df$rpoB_counts <- as.numeric(df$rpoB_counts)
df$no_of_beds <- as.character(df$no_of_beds)
df$no_of_beds <- as.numeric(df$no_of_beds)</pre>
```

Draw maps

```
# Plot maps for sample sites in Benin and Burkina Faso
world <- ne_countries(scale = "medium", returnclass = "sf")</pre>
class(world)
gps0 <- metadata[!duplicated(metadata[,c('lat','long')]),]</pre>
gps0 <- gps0[ , c("country", "lat", "long", "hospital")]</pre>
gps0 <- subset(gps0, country=="Benin" | country == "Burkina Faso")</pre>
gps <- data.frame("Burkina Faso", "12.500000", "-1.666670", "H")</pre>
rownames(gps) <- "BFH13_S131"</pre>
colnames(gps) <- c("country", "lat", "long", "hospital")</pre>
gps <- rbind(gps0, gps)</pre>
# Add important cities
gps_labels <- data.frame(</pre>
  country = c("country_name", "Benin", "Benin", "country_name",
               "Burkina Faso", "Burkina Faso", "ocean"),
  lat = c("10.544904033009432", "6.3676953", "9.3400159", "13.740788326149952",
            "12.3681873", "11.1757783", "4.944956754100344"),
  long = c("2.3165032566686428", "2.4252507", "2.6278258", "-1.0794179365270806",
              "-1.5270944", "-4.2957591", "2.376996878456601"),
  hospital = c("nd", "nd", "nd", "nd", "nd", "nd", "nd"))
rownames(gps_labels) <- c("Benin", "Cotonou", "Parakou", "Burkina Faso",</pre>
                           "Ouagadougou", "Bobo Dioulasso", "Gulf of Guinea")
gps_data <- rbind(gps, gps_labels)</pre>
gps_data$Label <- c("nd", "nd", "nd", "nd", "nd", "nd", "nd", "nd", "nd", "nd", "nd",
                     "Benin", "Cotonou", "Parakou", "Burkina Faso",
                     "Ouagadougou", "Bobo Dioulasso", "Gulf of Guinea")
gps_data$lat <- as.numeric(gps_data$lat)</pre>
gps_data$long <- as.numeric(gps_data$long)</pre>
# Add sampling sites
p_map1 <- ggplot(data = world) + geom_sf() + borders("world", colour="black", fill="wheat1") +</pre>
  theme(panel.background = element_rect(fill = "azure1", colour = "azure1")) +
  geom_point(data = subset(gps_data, Label == "nd"), aes(x = long, y = lat),
    size = 4, shape = 16, color = "#B2182B") +
  geom_text_repel(data = subset(gps_data, Label == "nd"),
    mapping = aes(x = long, y = lat, label = hospital, family = "Times"),
    size = 11, point.padding = 1e-06) +
  coord_sf(ylim = c(4.5, 14.75), xlim = c(-6, 3.95), expand = T) +
  theme(axis.text = element_text(family = "Times", size = 16),
    axis.title = element_blank()) +
  annotation_scale(location = "bl", width_hint = 0.2, height = unit(0.3, "cm"))
# Add countries
p_map2 \leftarrow p_map1 +
  geom_point(data = subset(gps_data,
      Label == "Benin" | Label == "Burkina Faso" | Label == "Gulf of Guinea"),
```

```
aes(x = long, y = lat), size = 0, shape = 16, color = "black") +
  geom_text_repel(data = subset(gps_data,
      Label == "Benin" | Label == "Burkina Faso" | Label == "Gulf of Guinea"),
      aes(x = long, y = lat, label = Label), color = "#4C4B49", size = 16, family = "Times")
# Add cities
p map3 \leftarrow p map2 +
  geom_point(data = subset(gps_data,
      Label == "Porto Novo" | Label == "Cotonou" |
      Label == "Parakou" | Label == "Ouagadougou" | Label == "Bobo Dioulasso"),
      aes(x = long, y = lat), size = 5, shape = 9, color = "black") +
  geom_label_repel(data=subset(gps_data,
      Label == "Porto Novo" | Label == "Cotonou" |
      Label == "Parakou" | Label == "Ouagadougou" | Label == "Bobo Dioulasso"),
      aes(x = long, y = lat, label = Label), color = "black", size = 8, family = "Times", box.padding = 1.75)
# Save with or without the city labels
#ggsave(filename = "p_map_notext.png",
        width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
#p_map3
#qqsave(filename = "p_map.pnq",
        width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
# Plot maps for sample sites in Finland
gps <- metadata[!duplicated(metadata[,c('lat','long')]),]</pre>
gps <- gps[ , c("country", "lat", "long")]</pre>
gps_Fin <- subset(gps, country=="Finland")</pre>
Fin_map <- ggplot(data = world) +</pre>
    geom_sf() +
    borders("world", colour="black", fill="wheat1") +
    theme(panel.background = element_rect(fill = "azure1", colour = "azure1")) +
    geom_point(data = subset(gps_Fin),
     aes(x = long, y = lat), size = 4, shape = 16, color = "#B2182B") +
    coord_sf(ylim = c(60, 67), xlim = c(18, 33), expand = T) +
    theme(axis.text = element_text(family = "Times", size = 16),
      axis.title = element_blank()) +
    annotation_scale(location = "bl", width_hint = 0.1)
Fin_map <- Fin_map + theme(plot.margin = ggplot2::margin(0, 0, 0, 0, "cm"))
```

Data exploration using library HighstatLabv13

```
# Homogeneity
# Plot residuals vs fitted values
#F1 <- fitted(MO)
#E1 <- resid(MO, type = "pearson")
\#par(mfrow = c(1,1), cex.lab = 1.5, mar = c(5,5,2,2))
                               xlab = "Fitted values",
\#plot(x = F1,
                y = E1,
                                                            ylab = "Pearson residuals")
\#abline(h = 0, lty = 2)
# No patterns, we are good.
#boxplot(E1 ~ country, data = df, ylab = "Residuals")
\#abline(h = 0)
# Looks good.
# Influential observations
\#par(mfrow = c(1, 1))
\#plot(cooks.distance(MO), type = "h", ylim = c(0, 1))
\#abline(h = 1)
# There are no influental observations
# Normality
\#par(cex.lab = 1.5, mar = c(5,5,2,2))
#E1 <- resid(MO)
#hist(E1, breaks = 15, xlab = "Residuals", main = "")
# Independence due to model misfit
#df$E1 <- E1
#MySel <- c("SSU_counts", "intI1_SUM", "country")</pre>
#MyMultipanel.ggp2(Z = df,
#
                   varx = MySel,
#
                   vary = "E1",
                   ylab = "Residuals",
#
#
                   addSmoother = TRUE,
#
                   addRegressionLine = FALSE,
                   addHorizontalLine = TRUE)
# Some / No clear non-linear patterns in these graphs.
# Check for spatial dependency
\#MyCex \leftarrow 3 * abs(E1) / max(E1)
\#MyCol \leftarrow ifelse(E1 > 0, "red", "blue")
#xyplot(long ~ lat, data = df, cex = MyCex, col = MyCol)
# In general, that no sig. spatial dependency can be detected.
```

Plot model (ARGs)

```
"Benin", "Finland", 0.001,
                      "Finland", 0.0105
    "Burkina Faso",
  )
pvalues
dfA <- cbind(df, Mean = predict(MO, newdata = df, type = "response"), SE = predict(MO,
    newdata = df, type = "response", se.fit = T)$se.fit)
resfinder_MO <- ggplot(dfA, aes(x = country, y = Mean)) + scale_color_manual(values=cols) +
  geom_line() +
  geom_jitter(data = dfA, aes(x = country, y = ARG_SUM, color = country),
        size = 7.5, alpha = 1, width = 0.3) +
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), width = 0.5, lwd = 0.75) +
  geom_point(size = 0.9) + theme_linedraw() +
  theme(axis.text.x = element_text(angle = 0, size = 18, family = "Times", face = "bold"),
        axis.title.x = element_blank(), axis.text.y = element_text(size = 16, family = "Times"),
        axis.title.y = element_text(size = 16, family = "Times"), legend.position = "none",
        plot.title = element_text(size = 18, family = "Times", face = "bold")) +
  labs(y = "Normalized to 16S rRNA", x = "") +
  guides(color = "none", alpha = "none") + labs(title = "Relative sum abundance of ARGs")
ARG_sum <- resfinder_MO +
  stat_pvalue_manual(pvalues, label = "p", y.position = 2.3, step.increase = 0.05, tip.length = 0.01, size = 5
#ARG sum
#ggsave(filename = "resfinder_sum_MO.png",
      width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
```

Plot model (MGEs)

```
M1 <- glm(MGE_SUM ~ country,
           data = df, family="Gamma"(link="log"))
summary(M1)
glht.M1 <- glht(M1, mcp(country = "Tukey"))</pre>
summary(glht(glht.M1))
# Add the p values obtained above
pvalues <- tibble::tribble(</pre>
  ~group1, ~group2, ~p,
    "Benin",
                 "Burkina Faso", 0.991,
    "Benin",
                 "Finland", 0.879,
    "Burkina Faso",
                       "Finland", 0.911
  )
pvalues
dfA <- cbind(df, Mean = predict(M1, newdata = df, type = "response"), SE = predict(M1,
    newdata = df, type = "response", se.fit = T)$se.fit)
cols <- get_palette(c("#B2182B", "#44AA99", "#2585E7"), 3)</pre>
MGE M1 <- ggplot(dfA, aes(x = country, y = Mean)) +
  scale_color_manual(values=cols) + geom_line() +
  geom_jitter(data = dfA, aes(x = country, y = MGE_SUM, color = country),
        size = 7.5, alpha = 1, width = 0.3) +
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), width = 0.5, lwd = 0.75) +
  geom_point(size = 0.9) + theme_linedraw() +
```

Plot model (intI1)

```
M2 <- glm(intI1_SUM ~ country,
           data = df, family="Gamma"(link="log"))
summary(M2)
glht.M2 <- glht(M2, mcp(country = "Tukey"))</pre>
summary(glht(glht.M2))
# Add the p values obtained above
pvalues <- tibble::tribble(</pre>
  ~group1, ~group2, ~p,
    "Benin",
                "Burkina Faso", 0.013,
    "Benin",
                 "Finland", 0.001,
                      "Finland", 0.001
    "Burkina Faso",
  )
pvalues
dfA <- cbind(df, Mean = predict(M2, newdata = df, type = "response"), SE = predict(M2,
    newdata = df, type = "response", se.fit = T)$se.fit)
cols <- get_palette(c("#B2182B", "#44AA99", "#2585E7"), 3)
intI1_M2 \leftarrow ggplot(dfA, aes(x = country, y = Mean)) +
  scale_color_manual(values=cols) +
  geom line() +
  geom_jitter(data = dfA, aes(x = country, y = intI1_SUM, color = country),
        size = 7.5, alpha = 1, width = 0.3) +
  geom_errorbar(aes(ymin = Mean - SE, ymax = Mean + SE), width = 0.5, lwd = 0.75) +
  geom_point(size = 0.9) + theme_linedraw() +
  theme(axis.text.x = element_text(angle = 0, size = 18, family = "Times", face = "bold"),
        axis.title.x = element_blank(), axis.text.y = element_text(size = 16, family = "Times"),
        axis.title.y = element_blank(), legend.position = "none",
        plot.title = element_text(size = 18, family = "Times", face = "bold")) +
  labs(y = "Normalized to 16S rRNA", x = "") +
  guides(color = "none", alpha = "none") +
  labs(title = "Relative sum abundance of intI1")
intI1_sum <- intI1_M2 +
  stat_pvalue_manual(pvalues, label = "p", y.position = 1.05, step.increase = 0.05, tip.length = 0.01, size =
#intI1_sum
#ggsave(filename = "intI1_sum_M2_new.png",
```

```
# width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
```

Plot figures in grids

```
design <-"
###
ABC
###
"

#ARG_sum + MGE_sum + intI1_sum + plot_layout(design = design) + plot_annotation(tag_levels = c("A", "B", "C"))
# theme(plot.tag = element_text(size = 24, family = "Times"))

#ggsave(filename = "sums_grid.png",
# width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)</pre>
```

Plot models by hospitals / hospital sections (ARGs)

```
# Benin
resfinder_PHY_stat_Ben <- subset_samples(resfinder_PHY_stat, country == "Benin")
df<-data.frame(ARG_SUM=sample_sums(resfinder_PHY_stat_Ben),</pre>
  hospital=as.factor(sample_data(resfinder_PHY_stat_Ben)$hospital))
# Fit model
M3 <- glm(ARG_SUM ~ hospital,
           data = df, family="Gamma"(link="log"))
summary(M3)
glht.M3 <- glht(M3, mcp(hospital = "Tukey"))</pre>
summary(glht(glht.M3))
# BF
resfinder_PHY_stat_BF <- subset_samples(resfinder_PHY_stat, country == "Burkina Faso")
df<-data.frame(ARG_SUM=sample_sums(resfinder_PHY_stat_BF),</pre>
  hospital=as.factor(sample_data(resfinder_PHY_stat_BF)$hospital))
# Fit model
M3 <- glm(ARG_SUM ~ hospital,
           data = df, family="Gamma"(link="log"))
summary (M3)
glht.M3 <- glht(M3, mcp(hospital = "Tukey"))</pre>
summary(glht(glht.M3))
# Finland
resfinder_PHY_stat_Fin <- subset_samples(resfinder_PHY_stat, country == "Finland")</pre>
df<-data.frame(ARG_SUM=sample_sums(resfinder_PHY_stat_Fin),</pre>
  hospital=as.factor(sample_data(resfinder_PHY_stat_Fin)$hospital))
# Fit model
M3 <- glm(ARG_SUM ~ hospital,
           data = df, family="Gamma"(link="log"))
summary(M3)
glht.M3 <- glht(M3, mcp(hospital = "Tukey"))</pre>
summary(glht(glht.M3))
```

Ordinations

ARGs (ResFinder)

```
resfinder_PHY_ord <- ordinate(resfinder_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(resfinder_PHY_stat, resfinder_PHY_ord, color = "country")</pre>
resfinder.p_ord <- p_ord +
  scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
 geom_point(size = 3.5) +
 stat_ellipse(level = 0.90, linetype = 1) +
 geom_text_repel(mapping = aes(label = alias),
                  size = 4, family = "Times", hjust = 1.2, vjust = 0.3) +
 theme_minimal() + labs(title= "Resistome",
                         subtitle = "Hospital WWs in Benin, Burkina Faso and Finland") +
 theme(plot.title = element_text(size = 36, family = "Times", face = "bold"),
        plot.subtitle = element_text(size = 20, family = "Times"),
        legend.text = element_text(size = 18, family = "Times"),
        legend.title = element_blank(),
        axis.title = element_text(size = 36, family = "Times"),
        axis.text = element_text(size = 18, family = "Times")) +
 guides(fill = guide_legend(override.aes = list(linetype = 0)),
         color = guide_legend(override.aes = list(linetype = 0, size=5)))
#leg_ord <- get_legend(resfinder.p_ord)
# Convert to a ggplot and print
#as_ggplot(leg_ord)
# Save
#ggsave(filename = "ord_resfinder_new.png",
        width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
# Test significance using pair-wise adonis
\#resfinder\_temp <- subset\_samples(resfinder\_PHY\_stat\_equal1, (country == "Benin" | country == "Finland"))
\#resfinder\_dist \leftarrow vegdist(t(otu\_table(resfinder\_temp)), dist = "horn")
\#adonis(resfinder\_dist \sim country, data = data.frame(sample\_data(resfinder\_temp), permutations = 9999))
\#resfinder\_temp <- subset\_samples(resfinder\_PHY\_stat\_equal1, (country == "Benin" | country == "Burkina Faso"))
#resfinder_dist <- vegdist(t(otu_table(resfinder_temp)), dist = "horn")</pre>
\#adonis(resfinder\_dist \sim country, data = data.frame(sample\_data(resfinder\_temp), permutations = 9999))
\#resfinder\_temp <- subset\_samples(resfinder\_PHY\_stat\_equal1, (country == "Burkina Faso" | country == "Finland")
#resfinder_dist <- vegdist(t(otu_table(resfinder_temp)), dist = "horn")
```

#adonis(resfinder_dist ~ country, data = data.frame(sample_data(resfinder_temp), permutations = 9999))

Taxa (Metaphlan3)

```
PHY = transform_sample_counts(metaphlan_PHY_stat, function(x) 1E6 * x/sum(x))
metaphlan_PHY_ord <- ordinate(PHY, method = "PCoA", distance = "horn")</pre>
p_ord <- plot_ordination(PHY, metaphlan_PHY_ord, color = "country")</pre>
metaphlan.p_ord <- p_ord +</pre>
    scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
   geom_point(size = 3.5) +
    stat_ellipse(level = 0.90, linetype = 1) +
   geom_text_repel(mapping = aes(label = alias),
                size = 4, family = "Times", hjust = 1.2, vjust = 0.3) +
   theme_minimal() + labs(title= "Taxonomical composition",
               subtitle = "Hospital WWs in Benin, Burkina Faso and Finland") +
   theme(plot.title = element_text(size = 36, family = "Times", face = "bold"),
                plot.subtitle = element_text(size = 20, family = "Times"),
                legend.text = element_text(size = 50, family = "Times"),
                legend.title = element_blank(),
                axis.title = element_text(size = 36, family = "Times"),
                axis.text = element_text(size = 18, family = "Times")) +
   guides(fill = guide_legend(override.aes = list(linetype = 0)),
                 color = guide_legend(override.aes = list(linetype = 0, size=5)))
# Save
#ggsave(filename = "ord_metaphlan_new.png",
                width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
# Test significance using pair-wise adonis
\#metaphlan\_temp <- subset\_samples(metaphlan\_PHY\_stat\_equal1, (country == "Benin" | country == "Finland"))
\#metaphlan\_dist \leftarrow vegdist(t(otu\_table(metaphlan\_temp)), dist = "horn")
\#adonis(metaphlan\_dist \sim country, data = data.frame(sample\_data(metaphlan\_temp), permutations = 9999))
\#metaphlan_temp <- subset_samples(metaphlan_PHY_stat_equal1, (country == "Benin" | country == "Burkina Faso"))
#metaphlan_dist <- veqdist(t(otu_table(metaphlan_temp)), dist = "horn")
\#adonis(metaphlan\_dist \sim country, data = data.frame(sample\_data(metaphlan\_temp), permutations = 9999))
\#metaphlan\_temp \leftarrow subset\_samples(metaphlan\_PHY\_stat\_equal1, (country == "Burkina Faso" | country == "Finland" | formula for the formula for 
#metaphlan_dist <- vegdist(t(otu_table(metaphlan_temp)), dist = "horn")</pre>
#adonis(metaphlan_dist ~ country, data = data.frame(sample_data(metaphlan_temp), permutations = 9999))
```

MGEs

```
MGE_PHY_ord <- ordinate(MGE_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(MGE_PHY_stat, MGE_PHY_ord, color = "country")
MGE.p_ord <- p_ord +
    scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
    geom_point(size = 3.5) +
    stat_ellipse(level = 0.90, linetype = 1) +
    geom_text_repel(mapping = aes(label = alias),
        size = 4, family = "Times", hjust = 1.2, vjust = 0.3) +
    theme_minimal() + labs(title= "Mobilome",
        subtitle = "Hospital WWs in Benin, Burkina Faso and Finland") +
    theme(plot.title = element_text(size = 36, family = "Times", face = "bold"),
        plot.subtitle = element_text(size = 20, family = "Times"),
        legend.text = element_text(size = 50, family = "Times"),
        legend.title = element_text(size = 36, family = "Times"),
        legend.title = element
```

```
axis.text = element_text(size = 18, family = "Times")) +
  guides(fill = guide_legend(override.aes = list(linetype = 0)),
         color = guide_legend(override.aes = list(linetype = 0, size=5)))
# Save
#ggsave(filename = "ord_mge_new.png",
        width = 16, height = 13, dpi = 300, units = "in", device = 'pnq', scale = 1)
# Test significance using pair-wise adonis
\#MGE\_temp \leftarrow subset\_samples(MGE\_PHY\_stat\_equal1, (country == "Benin" | country == "Finland"))
#MGE dist <- vegdist(t(otu table(MGE temp)), dist = "horn")
\#adonis(MGE\_dist \sim country, data = data.frame(sample\_data(MGE\_temp), permutations = 9999))
\#MGE\_temp \leftarrow subset\_samples(MGE\_PHY\_stat\_equal1, (country == "Benin" | country == "Burkina Faso"))
#MGE_dist <- vegdist(t(otu_table(MGE_temp)), dist = "horn")
\#adonis(MGE\_dist \sim country, data = data.frame(sample\_data(MGE\_temp), permutations = 9999))
\#MGE\_temp \leftarrow subset\_samples(MGE\_PHY\_stat\_equal1, (country == "Burkina Faso" | country == "Finland"))
\#MGE\_dist \leftarrow vegdist(t(otu\_table(MGE\_temp)), dist = "horn")
\#adonis(MGE\_dist \sim country, data = data.frame(sample\_data(MGE\_temp), permutations = 9999))
```

Plot ordinations in figure panel

```
resfinder PHY ord <- ordinate(resfinder PHY stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(resfinder_PHY_stat, resfinder_PHY_ord, color = "country")</pre>
arg <- p_ord +
  scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
  geom_point(size = 2) +
  stat_ellipse(level = 0.90, linetype = 1) +
  geom_text_repel(mapping = aes(label = hospital), size = 4, family = "Times", hjust = 1.2) +
  theme_minimal() + labs(title = "Resistome") +
  theme(plot.title = element_text(size = 20, family = "Times", face = "bold"),
        legend.position = "none",
  axis.title = element_text(size = 18, family = "Times"),
  axis.text = element_text(size = 18, family = "Times")) +
  theme(plot.margin = unit(c(0.1, 0.1, 0.1, 1), "cm")) +
  coord fixed() +
  guides(fill = guide_legend(override.aes = list(linetype = 0)),
         color = guide_legend(override.aes = list(linetype = 0, size=5)))
# Data into counts
PHY = transform_sample_counts(metaphlan_PHY_stat, function(x) 1E6 * x/sum(x))
metaphlan_PHY_ord <- ordinate(PHY, method = "PCoA", distance = "horn")</pre>
p_ord <- plot_ordination(PHY, metaphlan_PHY_ord, color = "country")</pre>
mp <- p_ord +
  scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
  geom_point(size = 2) +
  stat_ellipse(level = 0.90, linetype = 1) +
  geom_text_repel(mapping = aes(label = hospital), size = 4, family = "Times", hjust = 1.2) +
  theme_minimal() + labs(title= "Taxonomical composition") +
  theme(plot.title = element_text(size = 20, family = "Times", face = "bold", hjust = 0.5),
        legend.position = "none",
        axis.title = element_text(size = 18, family = "Times"),
  axis.text = element_text(size = 18, family = "Times")) +
  theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm")) +
  coord_fixed() +
```

```
guides(fill = guide_legend(override.aes = list(linetype = 0)),
         color = guide_legend(override.aes = list(linetype = 0, size=5)))
MGE_PHY_ord <- ordinate(MGE_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(MGE_PHY_stat, MGE_PHY_ord, color = "country")</pre>
mge <- p_ord +
  scale color manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
  geom_point(size = 2) +
  stat_ellipse(level = 0.90, linetype = 1) +
  geom_text_repel(mapping = aes(label = hospital), size = 4, family = "Times", hjust = 1.2) +
  theme minimal() + labs(title= "Mobilome") +
  theme(plot.title = element_text(size = 20, family = "Times", face = "bold", hjust = 0.5),
        legend.position = "none",
        axis.title = element_text(size = 18, family = "Times"),
  axis.text = element_text(size = 18, family = "Times")) +
  theme(plot.margin = unit(c(0.1, 0.1, 0.1, 0.1), "cm")) +
  coord_fixed() +
  guides(fill = guide_legend(override.aes = list(linetype = 0)),
         color = guide_legend(override.aes = list(linetype = 0, size=5)))
p <- arg + mp + mge +
  plot_layout(nrow = 2) + plot_annotation(tag_levels = list(c("A", "B", "C"))) &
  theme(plot.tag = element_text(size = 24, family = "Times"), plot.tag.position = c(0, 1))
\#p\_leg \leftarrow p + inset\_element(leg\_ord, left = 1, bottom = 1, right = 1.7, top = 0)
# Save
#ggsave(filename = "ord_patch_supp.png",
      width = 16, height = 13, dpi = 300, units = "in", device = 'png', scale = 1)
```

DESeq2

ARGs

Finland-Benin

```
OTU_resfinder <-as.matrix(read.table("ARG_genemat.txt",
                                       header= T, check.names = F, row.names = 1))
# Reorder to match metadata
match <- match(rownames(metadata), colnames(OTU_resfinder))</pre>
OTU_resfinder <- OTU_resfinder[,match]</pre>
all(colnames(OTU_resfinder) == rownames(metadata))
# Tax table
clusters_tax_table_resfinder <-</pre>
  read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/clusters_tax_table.txt",
                                           header=FALSE, sep=";")
colnames(clusters_tax_table_resfinder) <- c("Gene", "Cluster_name", "Class")
# Reorder columns
col_order <- c("Class", "Cluster_name", "Gene")</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[, col_order]</pre>
# Reorder tax_table to match
match <- match(rownames(OTU_resfinder), clusters_tax_table_resfinder$Gene)</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[match,]</pre>
```

```
all(rownames(OTU_resfinder) == clusters_tax_table_resfinder$Gene)
# Divide by ARG gene lengths
resfinder_lengths <-
  read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/resfinder_lengths.txt",
                                header=FALSE, comment.char="#")
all(rownames(clusters tax table resfinder $Gene) == resfinder lengths$V1)
OTU_resfinder_length_norm <- OTU_resfinder/resfinder_lengths[, 2]
# Normalization with Metaxa2 SSU counts
deseq OTU resfinder <- t(t(OTU resfinder length norm)/metadata$SSU counts) * 1540
all(rownames(metadata) == colnames(deseq_OTU_resfinder))
identical(OTU_resfinder_length_norm[2025, 5]/metadata$SSU_counts[5], deseq_OTU_resfinder[2025, 5])
all(rownames(OTU_resfinder_length_norm) == clusters_tax_table_resfinder$Gene)
# Deseq
deseq_OTU <- deseq_OTU_resfinder[, ] * 10^5 + 1</pre>
# Hide rownames
dim(deseq_OTU)
rownames(deseq_OTU) <- c(1:3104)</pre>
dim(clusters_tax_table_resfinder)
rownames(clusters_tax_table_resfinder) <- c(1:3104)</pre>
resfinder_deseq <- phyloseq(otu_table(deseq_OTU, taxa_are_rows = T),</pre>
  sample_data(metadata), tax_table(as.matrix(clusters_tax_table_resfinder)))
## Exclude biological / technical replicates
resfinder_deseq <- subset_samples(resfinder_deseq, alias != "BH31" & alias != "BH33" & alias != "BH34B" &
                                     alias != "BH10" & alias != "BFH38B" & alias != "FH8" &
                                     alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
resfinder_deseq_stat <- subset_samples(resfinder_deseq, category == "WA hospital effluent" |
                                          category == "North Eu hospital effluent")
# Take pair wise comparisons
deseq_PHY = subset_samples(resfinder_deseq_stat, country == "Benin" | country == "Finland")
#hist(log10(apply(otu_table(deseq_PHY), 1, var)), xlab = "log10(variance)")
# Let's set a threashold for the variance
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Benin", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
res = res[order(res$padj, na.last=NA), ]
alpha = 0.05
sigtab_resfinder = res[which(res$padj < alpha), ]</pre>
sigtab_resfinder = cbind(as(sigtab_resfinder, "data.frame"),
```

Burkina Faso-Finland

```
# Take pair wise comparisons
deseq_PHY = subset_samples(resfinder_deseq_stat,
      country == "Burkina Faso" | country == "Finland")
\#hist(log10(apply(otu_table(deseq_PHY), 1, var)), xlab = "log10(variance)")
# Let's set a threashold for the variance
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Burkina Faso", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
#resultsNames(dds)
res = res[order(res$padj, na.last=NA), ]
alpha = 0.05
sigtab_resfinder = res[which(res$padj < alpha), ]</pre>
sigtab_resfinder = cbind(as(sigtab_resfinder, "data.frame"),
  as(tax_table(deseq_PHY)[rownames(sigtab_resfinder), ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0</pre>
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
sigtab_resfinder = merge(sigtab_resfinder, as.data.frame(n), by = 0)
sorted_sigtab <- sigtab_resfinder[order(-sigtab_resfinder$log2FoldChange), ]</pre>
# Save BF
```

Taxa (Metaphlan3), Species, Benin-Finland

```
OTU_metaphlan <-
  read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/mod_merged_abundance_table_species.txt",
  header=T)
# Match sample order
tax_table_metaphlan <-
  read.table("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan",
  quote="\"", comment.char="")
identical(tax_table_metaphlan$V1, OTU_metaphlan$clade_name)
tax_table_metaphlan <-
  read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan", header=FALSE, sep=";")
colnames(tax_table_metaphlan) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
# Remove "__"
tax_table_metaphlan <- apply(tax_table_metaphlan, 2, function(y) (gsub(".__", "", y)))</pre>
match <- match(rownames(metadata), colnames(OTU_metaphlan))</pre>
OTU_metaphlan <- OTU_metaphlan[,match]</pre>
all(rownames(metadata) == colnames(OTU_metaphlan))
OTU_metaphlan_deseq = OTU_metaphlan
# Multiply with SSU counts from Metaxa2
vec <- as.vector(metadata$SSU_counts)</pre>
deseq_OTU <- mapply(FUN = `*`, as.data.frame(OTU_metaphlan_deseq), vec)</pre>
metaphlan_deseq <- phyloseq(otu_table(deseq_OTU, taxa_are_rows = T), sample_data(metadata),</pre>
    tax_table(as.matrix(tax_table_metaphlan)))
## Exclude biological / technical replicates
metaphlan_deseq_stat <- subset_samples(metaphlan_deseq, alias != "BH31" & alias != "BH33" &
                                          alias != "BH34B" & alias != "BH10" & alias != "BFH38B" &
                                          alias != "FH8" & alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
metaphlan_deseq_stat <- subset_samples(metaphlan_deseq_stat,</pre>
                                       category == "WA hospital effluent" |
                                       category == "North Eu hospital effluent")
metaphlan_deseq_stat <- prune_taxa(taxa_sums(metaphlan_deseq_stat) > 0, metaphlan_deseq_stat)
# Take pair wise comparisons
deseq_PHY = subset_samples(metaphlan_deseq_stat, country == "Benin" | country == "Finland")
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
```

```
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Benin", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
#resultsNames(dds)
res = res[order(res$padj, na.last=NA), ]
alpha = 0.05
sigtab_metaphlan = res[which(res$padj < alpha), ]</pre>
sigtab_metaphlan = cbind(as(sigtab_metaphlan, "data.frame"),
  as(tax_table(deseq_PHY)[rownames(sigtab_metaphlan), ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0</pre>
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu table(deseq PHY))</pre>
sigtab_metaphlan = merge(sigtab_metaphlan, as.data.frame(n), by = 0)
sorted_sigtab <- sigtab_metaphlan[order(-sigtab_metaphlan$log2FoldChange), ]</pre>
#head(sorted_sigtab)
\#write.table(sorted\_sigtab, "~/Documents/Metagenomes\_AMRIWA/R/AMRIWA/RFiles/metaphlan3\_DESeq2\_Ben\_Fin\_s.txt",
             row.names=T, sep = "\t", col.names = T)
```

Taxa (Metaphlan3), Genus, Benin-Finland

Taxa (Metaphlan3), Species, Burkina Faso-Finland

```
# Take pair wise comparisons
deseq_PHY = subset_samples(metaphlan_deseq_stat,
  country == "Burkina Faso" | country == "Finland")
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Burkina Faso", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
#resultsNames(dds)
res = res[order(res$padj, na.last=NA), ]
alpha = 0.05
sigtab_metaphlan = res[which(res$padj < alpha), ]</pre>
sigtab_metaphlan = cbind(as(sigtab_metaphlan, "data.frame"),
  as(tax_table(deseq_PHY)[rownames(sigtab_metaphlan), ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
sigtab_metaphlan = merge(sigtab_metaphlan, as.data.frame(n), by = 0)
sorted_sigtab <-
  sigtab_metaphlan[order(-sigtab_metaphlan$log2FoldChange), ]
#head(sorted_sigtab)
```

```
\#write.table(sorted\_sigtab, "~/Documents/Metagenomes\_AMRIWA/R/AMRIWA/RFiles/metaphlan3\_DESeq2\_BF\_Fin\_s.txt", \\ \#row.names=T, sep = "\t", col.names = T)
```

Taxa (Metaphlan3), Genus, Burkina Faso-Finland

```
# Take pair wise comparisons
deseq_PHY = subset_samples(metaphlan_deseq_stat,
  country == "Burkina Faso" | country == "Finland")
# Get genus
deseq_PHY <- tax_glom(deseq_PHY, taxrank = "Genus")</pre>
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Burkina Faso", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
#resultsNames(dds)
res = res[order(res$padj, na.last=NA), ]
alpha = 0.05
sigtab_metaphlan = res[which(res$padj < alpha), ]</pre>
sigtab_metaphlan = cbind(as(sigtab_metaphlan, "data.frame"),
  as(tax_table(deseq_PHY)[rownames(sigtab_metaphlan), ], "matrix"))
otu table(deseq PHY)[otu table(deseq PHY) == 1] <- 0
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
sigtab_metaphlan = merge(sigtab_metaphlan, as.data.frame(n), by = 0)
sorted_metaphlan_sigtable <-</pre>
  sigtab_metaphlan[order(-sigtab_metaphlan$log2FoldChange), ]
#head(sorted_metaphlan_sigtable)
\#write.table(sorted\_metaphlan\_sigtable, "\sim/Documents/Metagenomes\_AMRIWA/R/AMRIWA/RFiles/metaphlan3\_Genus\_DESeq
              row.names=T, sep = "\t", col.names = T)
```

Heatmap for clinically relevant taxa

```
| Species == "Acinetobacter_bouvetii"
                          | Species == "Acinetobacter_johnsonii"
                          | Species == "Acinetobacter_radioresistens"
                          | Species == "Acinetobacter_lwoffii"
                          | Species == "Acinetobacter_calcoaceticus"
                          | Species == "Acinetobacter_haemolyticus"
                          | Species == "Acinetobacter bereziniae"
                         | Species == "Acinetobacter_venetianus"
                          | Species == "Acinetobacter_calcoaceticus"
                         | Species == "Acinetobacter_pittii"
                          | Species == "Acinetobacter_guillouiae"
                         | Species == "Acinetobacter_schindleri"
                          | Species == "Acinetobacter_bereziniae"
                          | Species == "Acinetobacter_kyonggiensis"
                          | Species == "Enterobacter_cloacae_complex"
                         | Species == "Enterococcus_faecium"
                         | Species == "Klebsiella_pneumoniae"
                          | Species == "Staphylococcus_aureus"
                          | Species == "Pseudomonas_aeruginosa_group"
                          | Species == "Escherichia_coli")
# Filter out low abundance taxa
selected <- subset_taxa(selected, taxa_sums(selected) != 0)</pre>
# OTU matrix
heat_OTU = as(otu_table(selected), "matrix")
# Coerce to data.frame
heat.df = as.data.frame(heat OTU)
# Tax table matrix
heat_tax = as(tax_table(selected), "matrix")
# Swap colnames
match <- match(rownames(heat.df), rownames(heat_tax))</pre>
temp <- heat_tax[match,]</pre>
all(rownames(temp) == rownames(heat_OTU))
all(rownames(temp) == rownames(heat_tax))
rownames(heat.df) <- temp[, 7]</pre>
new_df <- heat.df[ order(row.names(heat.df)), ]</pre>
new tax = heat tax
rownames(new_tax) <- paste(selected@tax_table[,7])</pre>
new_tax[ order(row.names(new_tax)), ]
# Col annotation
country <- as.matrix(sample_data(selected)[["country"]])</pre>
country <- as.factor(country)</pre>
country <- data.frame(country)</pre>
colnames(country) <- c("country")</pre>
rownames(country) <- as.matrix(colnames(otu_table(selected)))</pre>
country$country <- gsub(" ", "_", country$country)</pre>
ann_colors <- list(country = c("Benin" = "#B2182B",
                                      "Burkina_Faso" = "#44AA99",
                                      "Finland" = "#2166AC"))
colnames(new_df) <- gsub(pattern = "_[A-Z].*", replacement = "_", colnames(new_df))</pre>
rownames(new_df) <- gsub(patter = "_", replacement = " ", rownames(new_df))</pre>
```

```
## Plot log
newnames <- lapply(
  rownames(new_df),
  function(x) bquote(italic(.(x))))
# Plot
#heat <- pheatmap(sqrt(new_df), cluster_rows = F, cluster_cols = T,
#
                  border_color = "grey",
                  color {\it RampPalette} (brewer.pal(9, "Blues")) (100),
#
#
                 main = "Relative abundance of clinically relevant species\n (Metaphlan3, square root transfor
#
                  angle_col = 90, legend = TRUE, fontsize_row = 11,
#
                 labels_row = as.expression(newnames),
#
                 filename = "eskape_heat.png",
#
                 annotation_col = country,
#
                 clustering_distance_cols = "euclidean",
#
                 show\_colnames = T,
#
                  cellwidth = 13,
#
                 cellheight = 26,
                  qaps row = rep(c(12)),
                  annotation_colors = ann_colors)
```

15 most abundant ARGs in HWWs from each country

```
# Benin
resfinder_PHY_stat_Ben <- subset_samples(resfinder_PHY_stat, country == "Benin")</pre>
resfinder_PHY_stat_Ben_abun <- tax_glom(resfinder_PHY_stat_Ben, taxrank = "Gene")
# Take 15 most abundant
resfinder_PHY_stat_Ben_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_stat_Ben_abun),
    TRUE)[1:15]), resfinder_PHY_stat_Ben_abun)
# Burkina Faso
resfinder_PHY_stat_BF <- subset_samples(resfinder_PHY_stat, country == "Burkina Faso")
resfinder_PHY_stat_BF_abun <- tax_glom(resfinder_PHY_stat_BF, taxrank = "Gene")
# Take 15 most abundant
resfinder_PHY_stat_BF_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_stat_BF_abun),
    TRUE)[1:15]), resfinder_PHY_stat_BF_abun)
# Finland
resfinder_PHY_stat_Fin <- subset_samples(resfinder_PHY_stat, country == "Finland")</pre>
resfinder_PHY_stat_Fin_abun <- tax_glom(resfinder_PHY_stat_Fin, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_stat_Fin_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_stat_Fin_abun),
    TRUE)[1:15]), resfinder_PHY_stat_Fin_abun)
# Create dataframe
Benin <- data.frame(resfinder_PHY_stat_Ben_abun@tax_table)$Gene</pre>
BF <- data.frame(resfinder_PHY_stat_BF_abun@tax_table)$Gene</pre>
Finland <- data.frame(resfinder_PHY_stat_Fin_abun@tax_table)$Gene
top_ARGs <- data.frame(Benin, BF, Finland)</pre>
```

Most abundant ARGs in other than HWW samples

```
## Sample sums
# feces
resfinder_PHY_feces <- subset_samples(resfinder_PHY,</pre>
                                       alias == "BH20" | alias == "BH22" | alias == "BH24" | alias == "BH25")
resfinder_PHY_feces <- tax_glom(resfinder_PHY_feces, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_feces_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_feces),
    TRUE)[1:15]), resfinder_PHY_feces)
resfinder_PHY_feces_abun@tax_table
# drinking
resfinder_PHY_ben_drink <- subset_samples(resfinder_PHY,</pre>
                                           alias == "BSE100" | alias == "BSE74" | alias == "BSE79"
                                     | alias == "BSE93" | alias == "BH11")
resfinder_PHY_ben_drink <- subset_taxa(resfinder_PHY_ben_drink, taxa_sums(resfinder_PHY_ben_drink) != 0)
resfinder_PHY_ben_drink <- tax_glom(resfinder_PHY_ben_drink, taxrank = "Gene")
# Take 15 most abundant
resfinder_PHY_ben_drink_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_ben_drink),
    TRUE)[1:15]), resfinder_PHY_ben_drink)
resfinder_PHY_ben_drink_abun@tax_table
# other, Benin
resfinder_PHY_ben_other <- subset_samples(resfinder_PHY,
                                           alias == "BH13" | alias == "BH14"|
                                             alias == "BH32" | alias == "BH52")
resfinder_PHY_ben_other <- subset_taxa(resfinder_PHY_ben_other, taxa_sums(resfinder_PHY_ben_other) != 0)
resfinder_PHY_ben_other <- tax_glom(resfinder_PHY_ben_other, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_ben_other_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_ben_other),
    TRUE) [1:15]), resfinder_PHY_ben_other)
resfinder_PHY_ben_other_abun@tax_table
# other, BF
resfinder_PHY_BF_other <- subset_samples(resfinder_PHY,</pre>
                                          alias == "BFH27" | alias == "BFH42" | alias == "BFH26")
resfinder_PHY_BF_other <- subset_taxa(resfinder_PHY_BF_other, taxa_sums(resfinder_PHY_BF_other) != 0)
resfinder_PHY_BF_other <- tax_glom(resfinder_PHY_BF_other, taxrank = "Gene")
# Take 15 most abundant
resfinder_PHY_BF_other_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_BF_other),</pre>
    TRUE)[1:15]), resfinder_PHY_BF_other)
resfinder_PHY_BF_other_abun@tax_table
```

Interesting ARGs

MCR

```
# Save sums
resfinder_PHY_mcr <- subset_taxa(resfinder_PHY_stat, Class == "Polymyxin")
resfinder_PHY_mcr <- tax_glom(resfinder_PHY_mcr, taxrank = "Cluster_name")
name <- data.frame(unique(resfinder_PHY_mcr@tax_table))

resfinder_PHY_mcr_1 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-1.11_1_clust")
mcr <- data.frame(sample_sums(resfinder_PHY_mcr_1))
resfinder_PHY_mcr_2 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-2.1_1_clust")</pre>
```

```
mcr$"mcr-2.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_2))</pre>
resfinder_PHY_mcr_3.1 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-3.1_1_clust")
mcr$"mcr-3.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_3.1))</pre>
resfinder_PHY_mcr_3.17 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-3.17_1")
mcr$"mcr-3.17_1" <- data.frame(sample_sums(resfinder_PHY_mcr_3.17))</pre>
resfinder_PHY_mcr_4 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-4.1_1_clust")
mcr$"mcr-4.1 1 clust" <- data.frame(sample sums(resfinder PHY mcr 4))</pre>
resfinder_PHY_mcr_5 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-5.1_1_clust")</pre>
mcr$"mcr-5.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_5))</pre>
resfinder_PHY_mcr_6 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-6.1_1")
mcr$"mcr-6.1 1" <- data.frame(sample sums(resfinder PHY mcr 6))</pre>
resfinder_PHY_mcr_7 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-7.1_1")
mcr$"mcr-7.1_1" <- data.frame(sample_sums(resfinder_PHY_mcr_7))</pre>
resfinder_PHY_mcr_8 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-8_1")
mcr$"mcr-8_1" <- data.frame(sample_sums(resfinder_PHY_mcr_8))</pre>
resfinder_PHY_mcr_9 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-9_1")
mcr$"mcr-9_1" <- data.frame(sample_sums(resfinder_PHY_mcr_9))</pre>
resfinder_PHY_mcr_10 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-10_1")
mcr$"mcr-10_1" <- data.frame(sample_sums(resfinder_PHY_mcr_10))</pre>
```

Carbapenemases

```
resfinder PHY Cluster 1 <- subset taxa(resfinder PHY stat, Cluster name == "blaKPC-34 1 clust"|
          Cluster_name == "blaNDM-18_1_clust" | Cluster_name == "blaVIM-48_1_clust" |
          Cluster_name == "blaIMP-1_1_clust" | Cluster_name == "blaOXA-397_1_clust")
resfinder_PHY_Cluster_3 <- subset_taxa(resfinder_PHY_stat, Gene == "blaGES-2_1_AF326355" |
    Gene == "blaGES-4_1_AB116723" | Gene == "blaGES-5_1_DQ236171" |
    Gene == "blaGES-6_1_AY494718" | Gene == "blaGES-14_1_GU207844" |
    Gene == "blaGES-16_1_HM173356" | Gene == "blaGES-18_1_JQ028729"|
    Gene == "blaGES-20_1_JN596280" | Gene == "blaOXA-48_1_AY236073" |
    Gene == "bla0XA-162_1_GU197550" | Gene == "bla0XA-181_1_CM004561" |
    Gene == "blaOXA-199_1_JN704570" | Gene == "blaOXA-204_1_KP027885" |
    \label{eq:Gene} \texttt{Gene} \ \mbox{\tt == "bla0XA-232\_1\_JX423831" | Gene} \ \mbox{\tt == "bla0XA-244\_1\_KP659189" |}
    Gene == "bla0XA-245_1_JX438001" | Gene == "bla0XA-247_1_JX893517" |
    Gene == "blaOXA-247_1_JX893517" | Gene == "blaOXA-514_1_KU866382" |
    Gene == "blaOXA-515_1_KU866383" | Gene == "blaOXA-517_1_KU878974") # blaOXA-48-like
resfinder_PHY_Cluster <- merge_phyloseq(resfinder_PHY_Cluster_1, resfinder_PHY_Cluster_3)
cols <- get_palette(c("#332288", "#117733", "#52BFAD", "#88CCEE", "#DDCC77", "#FDA4B3",</pre>
                      "#F22D3D", "#882255", "#5F5E98", "#E4C960", "#FD8FD9"), 11)
                                                               "H",
                                                       "H",
hospital <- factor(c("F", "G", "G", "G", "H",
                                                             "H",
                         "I", "I",
    "I",
                  "J",
    "J",
            "J",
                  "J",
    "J",
           "F",
                 "A",
           "A",
    "B",
           "B",
                  "B",
    "D",
           "D",
                  "K",
                                                                   "M", "N"))
rfc <- plot_bar(resfinder_PHY_Cluster, fill = "Cluster_name")</pre>
rfc_plot <- rfc + geom_bar(stat="identity", color = NA, size = 0) + scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Hospital wastewaters") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_Cluster)))),
  labels=hospital, expression(bar("x"))) + theme_minimal() +
```

```
theme(axis.text.x = element_text(size = 19, family = "Times", angle = 0, hjust = 0.6, vjust = 1),
  axis.text.y = element_text(size = 16, family = "Times", angle = 0),
  axis.title.y = element_blank(), axis.title.x = element_blank(),
  #legend.text = element_text(size = 14, family = "Times", face = "italic"), # run first with these
  #legend.title = element_blank(),
                                                                                 # to get the legend
  #legend.key = element_rect(size = 1, color = "white"),
  \#legend.key.size = unit(0.5, "cm"),
  \#legend.spacing.y = unit(2, "char"),
  legend.position = "none",
                                                                               # then with this
  panel.background = element_rect(fill = "#FFFDF9"),
  panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
  plot.title = element_text(size = 26, family = "Times", face = "bold")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
  breaks=seq(0, 0.1, 0.05)) + facet_grid(~country, scales = "free", space = "free") +
  theme(strip.text.x= element_text(size = 16,
  family = "Times", hjust = 0, vjust = 0.5, angle = 0, face = "bold"),
  strip.background = element_rect(colour = "white")) + guides(fill=guide_legend(ncol=1))
# Save legend
leg <- get_legend(rfc_plot)</pre>
# Convert to a ggplot and print
#as_ggplot(leg)
# Other than HWW
resfinder_PHY_Cluster_1 <- subset_taxa(resfinder_PHY, Cluster_name == "blaKPC-34_1_clust" |
    Cluster_name == "blaNDM-18_1_clust" | Cluster_name == "blaVIM-48_1_clust" |
    Cluster_name == "blaIMP-1_1_clust" | Cluster_name == "blaOXA-397_1_clust")
resfinder_PHY_Cluster_3 <- subset_taxa(resfinder_PHY, Gene == "blaGES-2_1_AF326355" |
    Gene == "blaGES-4_1_AB116723" | Gene == "blaGES-5_1_DQ236171" |
    Gene == "blaGES-6_1_AY494718" | Gene == "blaGES-14_1_GU207844" |
    Gene == "blaGES-16_1_HM173356" | Gene == "blaGES-18_1_JQ028729" |
    Gene == "blaGES-20_1_JN596280" | Gene == "blaOXA-48_1_AY236073" |
    Gene == "blaOXA-162_1_GU197550" | Gene == "blaOXA-181_1_CM004561" |
    Gene == "blaOXA-199_1_JN704570" | Gene == "blaOXA-204_1_KP027885" |
    Gene == "blaOXA-232_1_JX423831" | Gene == "blaOXA-244_1_KP659189" |
    Gene == "blaOXA-245_1_JX438001" | Gene == "blaOXA-247_1_JX893517" |
    Gene == "bla0XA-247_1_JX893517" | Gene == "bla0XA-514_1_KU866382" |
    Gene == "blaOXA-515_1_KU866383" | Gene == "blaOXA-517_1_KU878974") # blaOXA-48-like
resfinder_PHY_Cluster <- merge_phyloseq(resfinder_PHY_Cluster_1, resfinder_PHY_Cluster_3)
## Benin
# Feces
resfinder_PHY_feces <- subset_samples(resfinder_PHY_Cluster, alias == "BH20" | alias == "BH22" |
                                        alias == "BH24" | alias == "BH25")
df <- sample_sums(resfinder_PHY_feces)</pre>
names <- paste(resfinder_PHY_feces@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_feces, fill = "Cluster_name")</pre>
rfc_plot1 <- rfc + geom_bar(stat="identity", color = NA, size = 0) +
  ggtitle("Benin") + scale_fill_manual(values = cols,
      labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Benin") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_feces)))),
      labels=names, expression(bar("x"))) + theme_minimal() +
  theme(axis.text.x = element_text(size = 20, family = "Times", angle = 0, face = "bold"),
      axis.text.y = element_text(size = 16, family = "Times", angle = 0),
```

```
axis.title.y = element_text(size = 24, family = "Times"),
      axis.title.x = element_blank(), legend.position = "none",
      panel.background = element_rect(fill = "#FFFDF9"),
      panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
      plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(limits = c(0, 0.002), labels = scales::number_format(accuracy = 0.001),
      breaks = seq(0, 0.002, by = 0.001)) + facet_grid(~plot_name,
      scales = "free", space = "free", labeller = label_wrap_gen(width = 30, multi_line = TRUE)) +
  theme(strip.text.x= element_text(size = 14, family = "Times", hjust = 0, vjust = 0.5, angle = 0),
      strip.background = element_rect(colour = "white")) + guides(fill=guide_legend(ncol=1))
# Drinking
resfinder_PHY_ben_drink <- subset_samples(resfinder_PHY_Cluster, alias == "BSE100" |
                                             alias == "BSE74" | alias == "BSE79"|
                                             alias == "BSE93" | alias == "BH11")
df <- sample_sums(resfinder_PHY_ben_drink)</pre>
names <- paste(resfinder_PHY_ben_drink@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_ben_drink, fill = "Cluster_name")</pre>
rfc_plot2 <- rfc + geom_bar(stat="identity", color = NA, size = 0) +</pre>
  scale_fill_manual(values = cols,
    labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Benin") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_ben_drink)))),
    labels=names, expression(bar("x"))) + theme_minimal() +
  theme(axis.text.x = element_text(size = 20,
    family = "Times", angle = 0, face = "bold"),
    axis.text.y = element_text(size = 16, family = "Times", angle = 0),
    axis.title.x = element_blank(), axis.title.y = element_blank(),
    legend.position = "none", panel.background = element_rect(fill = "#FFFDF9"),
    panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
    plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(limits = c(0, 0.002), labels = scales::number_format(accuracy = 0.001),
    breaks = seq(0, 0.002, by = 0.001)) + facet_grid(~plot_name, scales = "free", space = "free",
    labeller = label_wrap_gen(width = 20, multi_line = TRUE)) +
  theme(strip.text.x= element_text(size = 14,
    family = "Times", hjust = 0, vjust = 0.5, angle = 0),
    strip.background = element_rect(colour = "white")) +
  guides(fill=guide_legend(ncol=1))
# other
resfinder_PHY_ben_other <- subset_samples(resfinder_PHY_Cluster,</pre>
  alias == "BH13" | alias == "BH14" | alias == "BH32" | alias == "BH52")
df <- sample_sums(resfinder_PHY_ben_other)</pre>
names <- paste(resfinder_PHY_ben_other@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_ben_other, fill = "Cluster_name")</pre>
rfc_plot3 <- rfc + geom_bar(stat="identity", color = NA, size = 0) +
  scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Benin") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_ben_other)))),
    labels=names, expression(bar("x"))) + theme_minimal() +
  theme(axis.text.x = element_text(size = 20,
    family = "Times", angle = 0, face = "bold"),
    axis.text.y = element_text(size = 16, family = "Times", angle = 0),
    axis.title.y = element_blank(), axis.title.x = element_blank(),
```

```
legend.position = "none", panel.background = element_rect(fill = "#FFFDF9"),
    panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
    plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(limits = c(0, 0.01),
    labels = scales::number format(accuracy = 0.001),
    breaks = seq(0, 0.01, by = 0.005)) +
  facet_grid(~plot_name, scales = "free", space = "free",
    labeller = label_wrap_gen(width = 20, multi_line = TRUE)) +
  theme(strip.text.x= element_text(size = 14, family = "Times", hjust = 0, vjust = 0.5, angle = 0),
    strip.background = element_rect(colour = "white")) +
  guides(fill=guide legend(ncol=1))
## Burkina Faso
# other
resfinder_PHY_BF_other <- subset_samples(resfinder_PHY_Cluster,</pre>
  alias == "BFH27" | alias == "BFH42" | alias == "BFH26")
df <- sample_sums(resfinder_PHY_BF_other)</pre>
names <- paste(resfinder_PHY_BF_other@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_BF_other, fill = "Cluster_name")</pre>
rfc_plot4 <- rfc + geom_bar(stat="identity", size = 0, color = NA) +
  scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Burkina Faso") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_BF_other)))),
    labels=names, expression(bar("x"))) + theme_minimal() +
  theme(axis.text.x = element text(size = 20,
    family = "Times", angle = 0, face = "bold"),
    axis.text.y = element_text(size = 16, family = "Times", angle = 0),
    axis.title.y = element_blank(), axis.title.x = element_blank(),
    legend.position = "none", panel.background = element_rect(fill = "#FFFDF9"),
    panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
    plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
    breaks=seq(0, 0.02, 0.01)) +
  facet_grid(~plot_name, scales = "free", space = "free",
    labeller = label_wrap_gen(width = 25, multi_line = TRUE)) +
  theme(strip.text.x= element_text(size = 11,
    family = "Times", hjust = 0, vjust = 0.5, angle = 0),
    strip.background = element_rect(colour = "white")) +
  guides(fill=guide_legend(ncol=1))
layout <- "
AAAAA
AAAAA
AAAAA
BBBCCC
DDDEE#
p <- rfc_plot + rfc_plot1 + rfc_plot2 + rfc_plot3 + rfc_plot4 +
  plot_layout(design = layout) + plot_annotation(tag_levels = list(c("A", "B"))) &
  theme(plot.tag = element_text(size = 24, family = "Times"))
p_leg <- p + inset_element(leg, left = 1.65, bottom = 1, right = 1, top = 0)
#qqsave(filename = "carbapenemases_grid.png",
  width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
```

15 most abundant taxa

```
# 15 most abundant taxa in hospital WW in each country
metaphlan_PHY_Ben <- subset_samples(metaphlan_PHY_stat, country == "Benin")</pre>
metaphlan_PHY_BF <- subset_samples(metaphlan_PHY_stat, country == "Burkina Faso")</pre>
metaphlan_PHY_Fin <- subset_samples(metaphlan_PHY_stat, country == "Finland")</pre>
# At genus level
metaphlan_PHY_Genus <- tax_glom(metaphlan_PHY_Ben, taxrank = "Genus")</pre>
metaphlan_PHY_Genus_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Genus),</pre>
  TRUE)[1:15]), metaphlan_PHY_Genus)
#tax_table(metaphlan_PHY_Genus_abund)
# At species level
metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_Ben, taxrank = "Species")
metaphlan_PHY_Species_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Species),</pre>
  TRUE)[1:15]), metaphlan_PHY_Species)
\#tax\_table(metaphlan\_PHY\_Species\_abund)
# At genus level
metaphlan_PHY_Genus <- tax_glom(metaphlan_PHY_BF, taxrank = "Genus")</pre>
metaphlan_PHY_Genus_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Genus),</pre>
  TRUE)[1:15]), metaphlan_PHY_Genus)
#tax_table(metaphlan_PHY_Genus_abund)
# At species level
metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_BF, taxrank = "Species")</pre>
metaphlan_PHY_Species_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Species),</pre>
  TRUE)[1:15]), metaphlan_PHY_Species)
#tax_table(metaphlan_PHY_Species_abund)
# At genus level
metaphlan_PHY_Genus <- tax_glom(metaphlan_PHY_Fin, taxrank = "Genus")</pre>
metaphlan_PHY_Genus_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Genus),
  TRUE)[1:15]), metaphlan_PHY_Genus)
#tax_table(metaphlan_PHY_Genus_abund)
# At species level
metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_Fin, taxrank = "Species")</pre>
metaphlan_PHY_Species_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Species),</pre>
  TRUE)[1:15]), metaphlan_PHY_Species)
#tax_table(metaphlan_PHY_Species_abund)
```

Correlation between MGE/intI1 & all ARGs

```
ARG_relative_sum <- data.frame(sample_sums(resfinder_PHY_stat))

MGE_relative_sum <- data.frame(sample_sums(MGE_PHY_stat))

intI1_relative_sum <- data.frame(sample_sums(MGE_PHY_int_stat))

all(rownames(ARG_relative_sum) == rownames(MGE_relative_sum))

all(rownames(ARG_relative_sum) == rownames(intI1_relative_sum))

## MGEs

# Join data

mge_res <- cbind(ARG_relative_sum, MGE_relative_sum)

colnames(mge_res) <- c("ARGs", "MGEs")

# Plot

cor <- ggplot(mge_res, aes(x=ARGs, y=MGEs)) +
    geom_point(size=7, shape=19, color = "#3110D2") +
```

```
geom_smooth(method="lm", se=TRUE, fullrange=FALSE,
        level=0.95, color = "#FB2A38", fill = "#8A91F8") +
 theme_bw() +
 theme(axis.title = element_text(size = 30, family = "Times"),
        axis.text = element_text(size = 28, family = "Times"),
        plot.title = element_text(size = 36, family = "Times"),
        plot.subtitle = element_text(size = 28, family = "Times")) +
xlab("ARG") + ylab("MGEs") +
 labs(title= "Correlation of relative sums of ARGs and MGEs",)
cor2 <- cor + stat_cor(method = "pearson", label.x = 2, label.y = 1.5)</pre>
#ggsave(filename = "ARG_MGE_cor_new.png",
        width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
## Intl1
# Join data
intl_res <- cbind(ARG_relative_sum, intI1_relative_sum)</pre>
colnames(intl_res) <- c("ARGs", "intI1")</pre>
# Plot
cor <- ggplot(intl_res, aes(x=ARGs, y=intI1)) +</pre>
 geom_point(size=7, shape=19, color = "#3110D2") +
 geom_smooth(method="lm", se=TRUE, fullrange=FALSE,
        level=0.95, color = "#FB2A38", fill = "#8A91F8") +
 theme bw() +
 theme(axis.title = element_text(size = 30, family = "Times"),
        axis.text = element_text(size = 28, family = "Times"),
        plot.title = element_text(size = 36, family = "Times"),
        plot.subtitle = element_text(size = 28, family = "Times")) +
xlab("ARG") + ylab("intI1") +
 labs(title= "Correlation of relative sums of ARGs and Int1",
       subtitle = "Hospital WWs in Benin, Burkina Faso and Finland")
cor2 <- cor + stat_cor(method = "pearson", label.x = 1, label.y = 1.5)</pre>
#qqsave(filename = "ARG_intl1_cor_new.pnq",
   width = 16, height = 13, dpi = 300, units = "in", device = 'png', scale = 1)
```

Save correlation data for intI & qacEdelta and all ARGs

```
# intI1
tax <- data.frame(clusters_tax_table_resfinder)
tax$n <- rownames(tax)
tax$sp <- rep("sp", times = 3104)
rownames(tax) <- paste(tax$sp, tax$n, sep="")
tax <- tax[c(-4, -5)]
args <- resfinder_PHY_stat
int <- MGE_PHY_int_stat

arg_matrix <- as.data.frame(otu_table(args))
arg_matrix$n <- rownames(arg_matrix)
arg_matrix$sp <- rep("sp", times = 3104)
rownames(arg_matrix) <- paste(arg_matrix$sp, arg_matrix$n, sep="")
arg_matrix <- arg_matrix[c(-68, -69)]
arg_matrix <- arg_matrix[which(rowSums(arg_matrix) > 0), ]
```

```
match <- match(rownames(arg_matrix), rownames(tax))</pre>
arg_tax <- tax[match,]</pre>
rownames(arg_matrix) <- arg_tax$Gene</pre>
int_matrix <- data.frame(sample_sums(otu_table(int)))</pre>
arg_matrix <- t(arg_matrix)</pre>
correl<-corr.test(arg_matrix, int_matrix, use="pairwise", method="pearson",
                               adjust="fdr",alpha=.05,ci=TRUE)
r <- data.frame(correl$r)</pre>
p <- data.frame(correl$p)</pre>
p.ad <- data.frame(correl$p.adj)</pre>
cor_data <- data.frame(r, p, p.ad)</pre>
cor_data$Gene <- rownames(cor_data)</pre>
colnames(cor_data) <- c("r", "p", "p.ad", "Gene")</pre>
cor_data_filt <- cor_data[which(cor_data$p < 0.05), ]</pre>
pos_all <- cor_data_filt[which(cor_data_filt$r > 0), ]
neg_all <- cor_data_filt[which(cor_data_filt$r < 0), ]</pre>
#write.table(pos_all, "~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/pos_all.txt",
              row.names=F, sep = "\t", col.names = T)
#write.table(neg_all, "~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/neg_all.txt",
              row.names=F, sep = "\t", col.names = T)
# qacEdelta
tax <- data.frame(clusters_tax_table_resfinder)</pre>
tax$n <- rownames(tax)</pre>
tax$sp \leftarrow rep("sp", times = 3104)
rownames(tax) <- paste(tax$sp, tax$n, sep="")</pre>
tax < -tax[c(-4, -5)]
args <- resfinder_PHY_stat</pre>
qac <- MGE_PHY_qac_stat</pre>
arg_matrix <- as.data.frame(otu_table(args))</pre>
arg_matrix$n <- rownames(arg_matrix)</pre>
arg_matrix$sp <- rep("sp", times = 3104)</pre>
rownames(arg_matrix) <- paste(arg_matrix$sp, arg_matrix$n, sep="")</pre>
arg_matrix <- arg_matrix[c(-68, -69)]</pre>
arg_matrix <- arg_matrix[which(rowSums(arg_matrix) > 0), ]
match <- match(rownames(arg_matrix), rownames(tax))</pre>
arg_tax <- tax[match,]</pre>
rownames(arg_matrix) <- arg_tax$Gene</pre>
qac_matrix <- data.frame(sample_sums(otu_table(qac)))</pre>
arg_matrix <- t(arg_matrix)</pre>
correl<-corr.test(arg_matrix, qac_matrix, use="pairwise", method="pearson",
                               adjust="fdr",alpha=.05,ci=TRUE)
```

Figures for correlations for differentially abundant ARGs across countries (from DESeq2) & intI1/qacEdelta

```
intI1 <- data.frame(sample_sums(MGE_PHY_int_stat))</pre>
colnames(intI1) <- c("intI1")</pre>
qacEdelta <- data.frame(sample_sums(MGE_PHY_qac_stat))</pre>
colnames(qacEdelta) <- c("qacEdelta")</pre>
# DESeq2: Fin-Ben
# Benin
BenFin20 <- Ben_Fin[1:20,]</pre>
pattern_Ben_Fin <- as.matrix(BenFin20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_Ben_Fin, ]</pre>
all(rownames(arg_data) == BenFin20$Row.names)
rownames(arg_data) <- BenFin20$Gene
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\", replacement = "", rownames(arg_data))
rownames(arg_data) <-
  c("lnu_F_3", "qnrVC4", "qnrVC5", "aac_6_IIc", "blaCARB_2",
    "ant_2_Ia_6", "blaOXA_129", "dfrA22", "blaVEB_1_3", "blaAER_1",
    "ant_2_Ia_10", "aph_2_Id", "blaVEB_1_1", "catQ_1", "blaVEB_5",
    "blaCARB_11", "blaCARB_1", "sul3_2", "dfrA15", "cmlA1")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
par(family="Times New Roman", cex=1.5)
cor <- rcorr(as.matrix(df))</pre>
```

```
M <- cor$r
p_mat <- cor$P</pre>
M1 \leftarrow M[, -c(1:20)]
M1 \leftarrow M1[-c(21:22),]
p_mat1 <- p_mat[ , -c(1:20)]</pre>
p_mat1 \leftarrow p_mat1[-c(21:22),]
# Finland
FinBen20 <- Fin_Ben[1:20,]</pre>
pattern_Fin_Ben <- as.matrix(FinBen20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_Fin_Ben, ]</pre>
all(rownames(arg_data) == FinBen20$Row.names)
rownames(arg_data) <- FinBen20$Gene</pre>
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\'", replacement = "", rownames(arg_data))
rownames(arg_data) <-</pre>
  c("blaOXA_211", "blaOXA_299", "blaOXA_212", "blaOXA_334",
    "aac_6_Ig", "blaOXA_373", "blaOXA_296", "blaOXA_333", "blaOXA_309",
    "blaOXA_427", "dfrA3", "VanHOX_1", "blaOXA_281", "blaOXA_280", "cphA1",
    "VanHAX_1", "cphA2", "blaMOX_3", "VanHBX_1", "tet_39")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
par(family="Times New Roman", cex=1.5)
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
p_mat <- cor$P</pre>
M2 \leftarrow M[, -c(1:20)]
M2 \leftarrow M2[-c(21:22),]
p_mat2 <- p_mat[ , -c(1:20)]</pre>
p_{mat2} \leftarrow p_{mat2}[-c(21:22),]
# DESeq2: Fin-BF
# BF
BFFin20 <- BF_Fin[1:20,]</pre>
pattern_BF_Fin <- as.matrix(BFFin20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_BF_Fin, ]</pre>
all(rownames(arg_data) == BFFin20$Row.names)
rownames(arg_data) <- BFFin20$Gene
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\'", replacement = "", rownames(arg_data))</pre>
rownames(arg_data) <-
```

```
c("dfrB5", "blaCMY_4", "sul4", "dfrA15_2", "blaOXA_46", "blaOXA_101",
    "dfrA15_1", "blaOXA_7", "qnrVC1", "lnu_F_3", "nimA_1", "blaVIM_5", "dfrA15_4",
    "blaOXA_56", "catQ_1", "blaVIM_38", "blaCMY_130", "blaCMY_59", "qnrVC4", "blaVIM_25")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
p_mat <- cor$P
M3 \leftarrow M[, -c(1:20)]
M3 \leftarrow M3[-c(21:22),]
p_mat3 <- p_mat[ , -c(1:20)]</pre>
p_mat3 <- p_mat3[-c(21:22),]</pre>
# Finland
FinBF20 <- Fin_BF[1:20,]
pattern_Fin_BF <- as.matrix(FinBF20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_Fin_BF, ]</pre>
all(rownames(arg_data) == FinBF20$Row.names)
rownames(arg_data) <- FinBF20$Gene
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\'", replacement = "", rownames(arg_data))</pre>
rownames(arg_data) <-
  c("blaOXA_299", "blaOXA_334", "blaOXA_296", "blaOXA_333", "blaOXA_211", "aac_6_Ig",
    "blaOXA_281", "blaOXA_373", "blaOXA_212", "blaOXA_309", "VanHOX_1", "VanHAX_2",
    "VanHBX_1", "blaOXA_275", "aadA11", "VanHAX_1", "qnrB21", "VanC4XY_1", "mef_A_3", "cphA2")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
p_mat <- cor$P</pre>
M4 \leftarrow M[, -c(1:20)]
M4 \leftarrow M4[-c(21:22),]
p_mat4 <- p_mat[ , -c(1:20)]</pre>
p_mat4 \leftarrow p_mat4[-c(21:22),]
# Plot with ggcorrplot
# For the legend
p_mat1[is.na(p_mat1)] = 0
p_mat2[is.na(p_mat2)] = 0
p_mat3[is.na(p_mat3)] = 0
p_mat4[is.na(p_mat4)] = 0
m0 <- ggcorrplot(M1, p.mat = p_mat1, type = "full", insig = "blank", method = "square",
  ggtheme = ggplot2::theme_classic() +
  theme(axis.text = element_text(face = "italic", family = "Times", size = 9, angle = 20),
  plot.title = element_text(size=9, face="bold", family = "Times"),
```

```
legend.title = element_blank(),
  legend.text = element_text(family = "Times", size = 20),
  legend.key.size = unit(1.4, "cm")))
title1 <- ggdraw() +
  draw_label("Differentially abundant ARGs in HWWs from Benin vs. Finland",
    fontface = 'bold', x = 0.32, hjust = 0.1, y = 0.35, fontfamily = "Times", size = 24)
title2 <- ggdraw() +
  draw_label("Differentially abundant ARGs in HWWs from Burkina Faso vs. Finland",
    fontface = 'bold', x = 0.32, hjust = 0.1, y = 0.35, fontfamily = "Times", size = 24)
m1 <- ggcorrplot(M1, p.mat = p_mat1, type = "full", insig = "blank", method = "square",
  ggtheme = ggplot2::theme_classic() +
  theme(axis.text = element_text(face = "italic", family = "Times"),
  legend.position = "none", plot.margin = unit(c(0, 0, 0, 0), "cm"),
  axis.text.y.left = element_text(angle = 0, face = "bold.italic", size = 20),
  axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
  plot.title = element_text(size=24, family = "Times"))) + ggtitle("Benin")
m2 <- ggcorrplot(M2, p.mat = p_mat2, type = "full", insig = "blank", method = "square",
  ggtheme = ggplot2::theme_classic() +
  theme(axis.text = element_text(face = "italic", family = "Times"),
  legend.position = "none", plot.margin = unit(c(0, 0, 0, 0), "cm"),
  axis.text.y.left = element_text(angle = 0, face = "bold.italic", size = 20),
  axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
  plot.title = element_text(size=24, family = "Times"))) + ggtitle("Finland")
m3 <- ggcorrplot(M3, p.mat = p_mat3, type = "full", insig = "blank", method = "square",
  ggtheme = ggplot2::theme_classic() +
  theme(axis.text = element_text(face = "italic", family = "Times"),
  legend.position = "none", plot.margin = unit(c(0, 0, 0, 0), "cm"),
  axis.text.y.left = element_text(angle = 0, face = "bold.italic", size = 20),
  axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
  plot.title = element_text(size=24, family = "Times"))) + ggtitle("Burkina Faso")
m4 <- ggcorrplot(M4, p.mat = p_mat4, type = "full", insig = "blank", method = "square",
  ggtheme = ggplot2::theme_classic() +
  theme(axis.text = element_text(face = "italic", family = "Times"),
  legend.position = "none", plot.margin = unit(c(0, 0, 0, 0), "cm"),
  axis.text.y.left = element_text(angle = 0, face = "bold.italic", size = 20),
  axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
  plot.title = element_text(size=24, family = "Times"))) + ggtitle("Finland")
# Extract the legend from one of the plots
#legend <- get_legend(m0)</pre>
# Some inception with cowplot...
A <- plot_grid(title1, m1,m2, NULL, ncol = 1, rel_heights = c(0.5, 1, 1, 0.1))
B \leftarrow plot_grid(NULL, title2, m3, m4, ncol = 1, rel_heights = c(0.1, 0.5, 1, 1))
AB <- plot_grid(A, B, ncol = 1)
#qqsave(filename = "ARGs_corr_deseq.pnq",
        width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
```

"Core" resistome and unique ARGs

```
Ben_temp <- otu_table(subset_samples(resfinder_PHY_stat, country %in%</pre>
  c("Benin")))[rowSums(otu_table(subset_samples(resfinder_PHY_stat,
  country %in% c("Benin")))) > 0]
nrow(Ben_temp) # 1738
BF_temp <- otu_table(subset_samples(resfinder_PHY_stat, country %in%
  c("Burkina Faso")))[rowSums(otu_table(subset_samples(resfinder_PHY_stat,
  country %in% c("Burkina Faso")))) > 0]
nrow(BF_temp) # 2131
Fin_temp <- otu_table(subset_samples(resfinder_PHY_stat, country %in%
  c("Finland")))[rowSums(otu_table(subset_samples(resfinder_PHY_stat,
  country %in% c("Finland")))) > 0]
nrow(Fin_temp) # 1555
length(intersect(row.names(Ben_temp), (row.names(BF_temp)))) # 1664
length(intersect(row.names(BF_temp), (row.names(Fin_temp)))) # 1414
length(intersect(row.names(Ben_temp), (row.names(Fin_temp)))) # 1295
#grid.newpage()
\#ven.p < -draw.triple.venn(area1 = nrow(Ben_temp), area2 = nrow(BF_temp), area3 = nrow(Fin_temp),
                  n12 = length(intersect(row.names(Ben_temp), (row.names(BF_temp)))),
#
                   n23 = length(intersect(row.names(BF_temp), (row.names(Fin_temp)))),
                  n13 = length(intersect(row.names(Ben\_temp), (row.names(Fin\_temp)))),
#
                  n123 = length(intersect(intersect(row.names(Ben_temp)), (row.names(BF_temp))), row.names(Fin_temp))
#
                   fontfamily = "Times", category = c("Benin", "Burkina Faso", "Finland"),
                   lty = "blank", fill = c("\#B2182B", "\#44AA99", "\#2166AC"),
#
                   alpha = 0.75, cex = 4.5, cat.cex = 6, rotation.degree = 0, label.col = "white", cat.dist =
                   filename = "Venn_diagram.png", output=TRUE, imagetype="png", margin = 0.08)
#qrid.draw(ven.p)
# And which ARGs are those?
tax <- data.frame(clusters_tax_table_resfinder)</pre>
tax$n <- rep(1:3104, each=1)
colnames(tax) <- c("Class", "Cluster_name", "Gene", "n")</pre>
rownames(tax) <- paste(tax$n, sep="")</pre>
tax \leftarrow tax[c(-4)]
match <- match(rownames(Ben_temp), rownames(tax))</pre>
Ben names <- tax[match,]
match <- match(rownames(BF_temp), rownames(tax))</pre>
BF_names <- tax[match,]</pre>
match <- match(rownames(Fin_temp), rownames(tax))</pre>
Fin_names <- tax[match,]</pre>
/#write.table(Ben_names, "~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/counts_Ben.txt", row.names=F, sep = "\
\#write.table(BF\_names, "~/Documents/Metagenomes\_AMRIWA/R/AMRIWA/RFiles/counts\_BF.txt", row.names=F, sep = "\t"
#write.table(Fin_names, "~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/counts_Fin.txt", row.names=F, sep = "\
# What about the unique ARGs?
# Core
counts <- data.frame(otu_table(resfinder_PHY_stat))</pre>
counts[counts > 0] <- 1
```

```
core <- counts[rowSums(counts)==67,]</pre>
tax <- data.frame(clusters_tax_table_resfinder)</pre>
tax$n \leftarrow rep(1:3104, each=1)
colnames(tax) <- c("Class", "Cluster_name", "Gene", "n")</pre>
rownames(tax) <- paste(tax$n, sep="")</pre>
tax \leftarrow tax[c(-4)]
match <- match(rownames(core), rownames(tax))</pre>
core_names <- tax[match,]</pre>
\#write.table(core\_names, "~/Documents/Metagenomes\_AMRIWA/R/AMRIWA/RFiles/core\_names.txt", row.names=F, sep = "
# Unique for Benin
temp1 <- intersect(row.names(Ben_temp), row.names(Fin_temp))</pre>
temp2 <- intersect(row.names(Ben_temp), row.names(BF_temp))</pre>
temp <- c(temp1, temp2)</pre>
temp <- data.frame(temp)</pre>
temp <- data.frame(unique(temp))</pre>
rownames(temp) <- temp$temp</pre>
unique_Ben <- data.frame(names = outersect(rownames(temp), rownames(Ben_temp)))</pre>
rownames(unique_Ben) <- unique_Ben$names</pre>
match <- match(rownames(unique_Ben), rownames(tax))</pre>
unique_Ben <- tax[match,]
#write.table(unique Ben, "~/Documents/Metagenomes AMRIWA/R/AMRIWA/RFiles/unique Ben.txt", row.names=F, sep =
# Unique for Burkina Faso
temp1 <- intersect(row.names(BF_temp), row.names(Fin_temp))</pre>
temp2 <- intersect(row.names(BF_temp), row.names(Ben_temp))</pre>
temp <- c(temp1, temp2)
temp <- data.frame(temp)</pre>
temp <- data.frame(unique(temp))</pre>
rownames(temp) <- temp$temp</pre>
unique_BF <- data.frame(names = outersect(rownames(temp), rownames(BF_temp)))</pre>
rownames(unique_BF) <- unique_BF$names</pre>
match <- match(rownames(unique_BF), rownames(tax))</pre>
unique_BF <- tax[match,]
\#write.table(unique\_BF, "\sim/Documents/Metagenomes\_AMRIWA/R/AMRIWA/RFiles/unique\_BF.txt", row.names=F, sep = "\tilde{t}
# Unique for Finland
temp1 <- intersect(row.names(Fin_temp), row.names(BF_temp))</pre>
temp2 <- intersect(row.names(Fin_temp), row.names(Ben_temp))</pre>
temp <- c(temp1, temp2)</pre>
temp <- data.frame(temp)</pre>
temp <- data.frame(unique(temp))</pre>
rownames(temp) <- temp$temp
unique_Fin <- data.frame(names = outersect(rownames(temp), rownames(Fin_temp)))</pre>
rownames(unique_Fin) <- unique_Fin$names</pre>
match <- match(rownames(unique_Fin), rownames(tax))</pre>
unique_Fin <- tax[match,]
```

 $\#write.\ table (unique_Fin,\ "`~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/unique_Fin.\ txt",\ row.names=F,\ sep="table table t$