

Table 8.1

		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold $voltage(V_{BS}=0)$	0.7	-0.8	V
K	Transconductance parameter(in saturation)	134	50	μ A/V 2
γ	Bulk threshold parameter	0.45	0.4	$V^{1/2}$
λ	Channel length modulation parameter	0.1	0.2	V ⁻¹
$2 \phi_F $	Surface potential at strong inversion	0.9	0.8	V

 $[*]K = \mu C_{OX}$

8.1 Calculate the differential transconductance g_{md} and the differential voltage gain A_v of an n-channel input differential amplifier shown in Figure 8.1 , with the parameters shown in table 8.1. Consider I_{ss} =100 μ A(the drain current of M5), and W_1/L_1 = W_2/L_2 = W_3/L_3 = W_4/L_4 =1. Assuming all the channel lengths are equal to 1 μ m, and V_{DD} =5V. If W_1/L_1 = W_2/L_2 =10 W_3/L_3 =10 W_4/L_4 =10, repeat the calculation

Figure 8.1

Answer:

a)
$$\left(\frac{w}{L}\right)_1 = \left(\frac{w}{L}\right)_2 = \left(\frac{w}{L}\right)_3 = \left(\frac{w}{L}\right)_4 = 1$$

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_n \left(\frac{W}{L}\right)_1 \frac{I_{SS}}{2}} = 115.8 \mu S$$

$$A_v = \frac{g_{m2}}{r_{ds2} + r_{ds4}} = \frac{2g_{m2}}{(\lambda_2 + \lambda_4)I_{SS}} = 7.72 V/V$$
b) $\left(\frac{w}{L}\right)_1 = \left(\frac{w}{L}\right)_2 = 10 \left(\frac{w}{L}\right)_3 = 10 \left(\frac{w}{L}\right)_4 = 10$

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_n \left(\frac{W}{L}\right)_1 \frac{I_{SS}}{2}} = 366.1 \mu S$$

$$A_v = \frac{g_{m2}}{g_{ds2} + g_{ds4}} = \frac{2g_{m2}}{(\lambda_2 + \lambda_4)I_{SS}} = 24.4V/V$$

8.2 Calculate the maximum($V_{IC}(max)$) and the minimum input common-mode voltages ($V_{IC}(min)$), and the input common mode voltage range (ICMR) of an n-channel input differential amplifier shown in Figure 8.1, with the parameters shown in table 8.1. Assume all MOSFETs are in saturation, all the (W/L)_i are equal to $10\mu m/1\mu m$, $I_{SS}=10\mu A$, and $V_{DD}=5V$.

Answer:

The maximum input common-mode input is given by

$$V_{(IC)}(max) = V_{DD} + V_{T1} - V_{T3} - V_{GS3} = V_{DD} + V_{T1} - V_{T3} - \sqrt{\frac{I_{SS}}{K_P \left(\frac{W}{L}\right)_3}} = 4.76V$$

The minimum input common-mode input is given by

$$V_{(IC)}(min) = V_{SS} + V_{T1} + V_{GS3} + V_{GS5} = V_{SS} + V_{T1} + \sqrt{\frac{I_{SS}}{K_n \left(\frac{W}{L}\right)_3}} + \sqrt{\frac{2 \times I_{SS}}{K_n \left(\frac{W}{L}\right)_5}} = 0.91V$$

So, the input common-mode range becomes $ICMR = V_{(IC)}(max) - V_{(IC)}(min) = 3.85V$

8.3 Find the value of the unloaded differential-transconductance, g_{md} , and the unloaded differential-voltage gain, A_v , for the p-channel input differential amplifier of Figure 8.2 when $I_{SS}=10\mu A$ and $I_{SS}=1\mu A$. What is the slew rate of the differential amplifier if a 100 pF capacitor is attached to the output? Assuming $W_1/L_1=W_2/L_2=W_3/L_3=W_4/L_4=1$, and all the channel lengths are equal to $1\mu m$. Use the transistor parameters of Table 8.1.

Answer:

Given I_{SS}=10μA,

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_p \left(\frac{W}{L}\right)_1 \frac{I_{SS}}{2}} = 22.36 \mu S$$

$$A_v = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{(\lambda_1 + \lambda_2)I_{SS}} = 14.9 V/V$$

Given I_{SS}=1µA

$$g_{md} = g_{m1} = g_{m2} = 7.07 \mu S$$

$$A_v = \frac{g_{m1}}{g_{ds2} + g_{ds4}} = \frac{2g_{m1}}{(\lambda_1 + \lambda_2)I_{SS}} = 47.13V/V$$

Slew rate can be given as

$$SR = \frac{I_{SS}}{C_L}$$

For $I_{SS} = 10 \ \mu A$ and $C_L = 100 \ pF$

$$SR = \frac{I_{SS}}{C_L} = \underline{0.1 \text{ V/}\mu\text{s}}$$

For $I_{SS} = 1$ μA and $C_L = 100$ pF

$$SR = \frac{I_{SS}}{C_L} = \underline{0.01 \text{ V/}\mu\text{s}}$$

Slew rate can be given as

$$SR = \frac{I_{SS}}{C_L}$$

For $I_{SS} = 10uA$ and $C_L = 100pF$

$$SR = 0.1V/us$$

For $I_{SS} = 1uA$ and $C_L = 100pF$

$$SR = 0.01V/us$$

- 8.4 In the circuit of Fig 8.3, assume that $I_{SS}=1$ mA, $V_{DD}=3$ V and W/L=50/0.5 for all the transistors. And $I_{D5}=I_{D6}=0.8(I_{SS}/2)$. Assuming $\lambda \neq 0$.
- (a) Determine the voltage gain.
- (b) Calculate V_b.
- (c) If I_{SS} requires a minimum voltage of 0.4V, what is the maximum differential output swing?

Figure 8.3

Answer:

Altswer.

a)
$$A_{V} \approx -\frac{g_{m1}}{g_{m3}} = -\sqrt{\frac{K_{n}I_{D1}}{K_{p}I_{D3}}} = -\sqrt{\frac{134 \times 0.5I_{SS}}{50 \times 0.2^{\frac{I}{SS}}}} = -3.66$$

b) $I_{D5} = I_{D6} = 0.8 \frac{I_{SS}}{2} = 0.4 mA, V_{b} = V_{DD} - V_{SG5} = V_{DD} - |V_{TH}| - \sqrt{\frac{2I_{D5}}{K_{p}\frac{W}{L}}} = 1.8V$

c) $(V_{out1,2}) max = min(V_{b} + |V_{TH,P}|, V_{DD} - |V_{TH,P}|) = min(1.8 + 0.8, 3 - 0.8) = 2.2V$
 $(V_{out1,2}) min = max(V_{Imin} + V_{GS1} |_{I_{D}=0.6I_{SS}} - V_{TH,N}, V_{DD} - V_{SG3} |_{I_{D}=0.2I_{SS}})$
 $V_{GS1}|_{I_{D}=0.6I_{SS}} = V_{TH,N} + \sqrt{\frac{2 \times 0.6I_{SS}}{K_{n}\frac{W}{L}}} = 0.7 + 0.299 = 0.999V$
 $V_{SG3}|_{I_{D}=0.2I_{SS}} = |V_{TH,P}| + \sqrt{\frac{2 \times 0.2I_{SS}}{K_{p}\frac{W}{L}}} = 0.8 + 0.28 = 1.08V$
 $(V_{out1,2}) min = max(0.4 + 0.999 - 0.7, 3 - 1.08) = 1.92V$
 $V_{out,swing} = 2 \times (2.2 - 1.92) = 0.56V$

- 8.5 The circuit shown in Figure 8.4 called a folded-current mirror differential amplifier and is useful for low values of power supply. Assume that all W/L values of each transistor is 100. Using the parameters shown in table 8.1,
 - a) Find the maximum input common mode voltage, $V_{IC}(max)$ and the minimum input common mode voltage, $V_{IC}(min)$. Keep all transistors in saturation for this problem.
 - b) What is the input common mode voltage range, ICMR?

c) Find the small signal voltage gain, V_{out}/V_{in} , if $V_{in} = V_1 - V_2$.

1.5V

Figure 8.4

Answer:

a)
$$v_{1(max)} = V_{GS3} + 2 \times V_{TN} = 0.7 + \sqrt{\frac{2 \times 50}{134 \times 100}} + 0.7 = 1.486V$$

$$v_{1(min)} = V_{SS} + V_{GS5} - V_{TN} + V_{GS1} = \sqrt{\frac{2 \times 100}{134 \times 100}} + (\sqrt{\frac{2 \times 50}{134 \times 100}} + 0.7) = 0.122 + 0.086 + 0.7 = 0.908V$$
 b)
$$V_{ICMR} = v_{1(max)} - v_{1(min)} = 1.486 - 0.908 V = 0.578V$$
 c)

$$g_{md} = g_{m1} = g_{m2} = \sqrt{2 \times K_N \left(\frac{W}{L}\right)_1 \frac{I_{SS}}{2}} = 1157.58 \mu S$$

$$r_{o4} = r_{o2} = \frac{2}{\lambda_n I_{SS}} = 0.2 M \Omega$$

$$r_{o7} = \frac{1}{\lambda_p I_{SS}} = 0.05 M \Omega$$

$$A_v = g_{m1} \times (r_{o2} / / r_{o4} / / r_{o7}) = 38.586 V/V$$

8.6 In the circuit of Fig 8.5, assume that $I_{SS}=0.5$ mA, $V_{DD}=3$ V, $(W/L)_{1,2}=50/0.5$ and $(W/L)_{3,4}=10/0.5$. I_{SS} current is provided by NMOS, and its W/L=50/0.5. Assuming $\lambda \neq 0$.

- a) Calculate the range of input common mode voltage.
- b) If $V_{in,CM} = 1.5V$, draw a sketch of the small signal differential voltage gain of the circuit when V_{DD} changes from 0 to 3V.
- c) If the mismatch threshold voltage of M₁ and M₂ is 1mV, calculate CMRR.
- d) If the $W_3=10\mu m$ and $W_4=11\mu m$, calculate CMRR.

Figure 8.5

Answer:

a)
$$(Vin, cm) \min = V_{GS1} + V_{odSS} = V_{TH1} + \sqrt{\frac{2ID1}{Kn(\frac{W}{L})1}} + \sqrt{\frac{2ISS}{Kn(\frac{W}{L})SS}} = 0.7V + 0.193V + 0.273V = 1.166V$$

$$(Vin, cm) \ max = V_{DD} - V_{od3} - V_{TH3} + V_{TH1} = V_{DD} - \sqrt{\frac{2ID3}{Kp(\frac{W}{L})3}}$$

$$= 3V - 0.707V - 0.8V + 0.7V = 2.193V$$

ICMR=2.193-1.166=1.027V

b)

开启电压V_{TH,P} = 0.8V

增益
$$Av = -\sqrt{\frac{Kn(\frac{W}{L})_1}{Kp(\frac{W}{L})_3}} = -3.66$$

饱和点电压VDD = Vin, cm - VTH, N + VGS3 = 1.5V - 0.7V + 0.8V + 0.707V = 2.307V

c) 由于M1和M2的阈值电压失配,因此有:
$$g_{m1} \neq g_{m2}, g_{m3} \neq g_{m4}$$
为了计算 A_{cm-dm} 有:

$$i_{D1} = g_{m1}(Vin, cm - Vp)$$
 $i_{D2} = g_{m2}(Vin, cm - Vp)$
 $Vout1 = -\frac{i_{D1}}{g_{m3}} = -\frac{g_{m1}(Vin, cm - Vp)}{g_{m3}}$
 $Vout2 = -\frac{i_{D2}}{g_{m4}} = -\frac{g_{m2}(Vin, cm - Vp)}{g_{m4}}$

$$\frac{g_{m1}}{g_{m3}} = \sqrt{\frac{Kn(\frac{W}{L})1, 2}{Kp(\frac{W}{L})3, 4}} = \frac{g_{m2}}{g_{m4}}$$

$$\therefore Vout1 = Vout2$$

$$\therefore Acm - dm = 0, CMRR = \infty$$

$$Adm - dm = -g_{m}R_{D}$$

$$Acm - dm = \frac{g_{m}R_{D}}{1 + 2g_{m}R_{SS}} - \frac{g_{m}(R_{D} + \Delta R_{D})}{1 + 2g_{m}R_{SS}} = -\frac{g_{m}\Delta R_{D}}{1 + 2g_{m}R_{SS}}$$

$$\therefore CMRR = \left| \frac{Adm - dm}{Acm - dm} \right| = \frac{1 + 2g_{m}R_{SS}}{\Delta R_{D}/R_{D}}$$

$$\therefore RD1 = \frac{1}{g_{m3}}, RD2 = \frac{1}{g_{m4}}$$

$$\therefore \frac{\Delta R_{D}}{R_{D}} = \frac{R_{D}1 - R_{D}2}{RD1} = 1 - \frac{R_{D}2}{R_{D}1} = 1 - \sqrt{\frac{2Kp(\frac{W}{L})3ID}{2Kp(\frac{W}{L})4ID}} = 1 - \sqrt{\frac{10}{11}} = 0.0465$$

$$g_{m} = \sqrt{2Kn(\frac{W}{L})1i_{D1}} = 2.588m\Omega^{-1}$$

$$\lambda = 2 \times 0.1 = 0.2$$

$$Rss = \frac{1}{\lambda ISS} = \frac{1}{0.1 \times 0.5 \times 10^{-3}} = 20k\Omega$$

$$\therefore CMRR = \frac{1 + 2 \times 2.588m\Omega^{-1} \times 20k\Omega}{0.0465} = 2270$$

8.7 A two-pole feedback system is designed such that $|\beta H(\omega p2)|=1$ and $|\omega p1|<<|\omega p2|$ (Figure 8.6). How much is the phase margin?

Figure 8.6

Answer:

45 degree.