Assignment 9

Shaik Zeeshan Ali AI20MTECH11001

Abstract—This document is about positive definite properties of real symmetric non-singular matrix.

Download all python codes from

https://github.com/Zeeshan-IITH/IITH-EE5609/new/master/codes

and latex-tikz codes from

https://github.com/Zeeshan-IITH/IITH-EE5609

1 PROBLEM

For every 4×4 real symmetric non-singular matrix **A**, prove if there exists a positive integer p such that

- 1) $p\mathbf{I} + \mathbf{A}$ is positive definite
- 2) \mathbf{A}^p is positive definite
- 3) A^{-p} is positive definite
- 4) $exp(p\mathbf{A}) \mathbf{I}$ is positive definite

2 Construction

Definition	An $n \times n$ symmetric real matrix M is said to be positive definite if $\mathbf{x}^T \mathbf{M} \mathbf{x} > 0$ for all
	non-zero \mathbf{x} in \mathbb{R}^n
Properties	An $n \times n$ symmetric real matrix always have real eigen vectors and the set of eigen
	vectors can be selected such that they form an orthonormal basis
	$\mathbf{M} = \mathbf{Q} \Lambda \mathbf{Q}^T$ and $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$
Implication	An $n \times n$ symmetric real matrix M is said to be positive definite if
	i) Eigen values of M are all positive
	ii) The pivot elements of M are all positive

TABLE I: Properties of positive definite matrix

Proof for 1	$p\mathbf{I} + \mathbf{A} = \mathbf{Q}p\mathbf{I}\mathbf{Q}^T + \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T = \mathbf{Q}(p\mathbf{I} + \mathbf{\Lambda})\mathbf{Q}^T$
	if the eigen values of A are $\lambda_1, \lambda_2\lambda_4$, then the eigen values of $p\mathbf{I} + \mathbf{A}$ will be
	$\lambda_1 + p, \lambda_2 + p\lambda_4 + p.$ If we choose p to be $> min(\lambda_1, \lambda_2\lambda_4) $ then $p\mathbf{I} + \mathbf{A}$ will be
	positive definite.
Proof for 2	$\mathbf{A}^p = \left(\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T\right)^p = \mathbf{Q}\mathbf{\Lambda}^p\mathbf{Q}^T$
	if the eigen values of A are $\lambda_1, \lambda_2\lambda_4$, then the eigen values of A ^p will be
	$\lambda_1^p, \lambda_2^p\lambda_4^p$. If p is even then the eigen values are positive.
Proof for 3	$\mathbf{A}^{-1} = \left(\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T\right)^{-1} = \mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^T$
	if the eigen values of A are $\lambda_1, \lambda_2\lambda_4 \neq 0$ (For inverse to exist), then the eigen values
	of A^{-p} will be $\frac{1}{\lambda_1^p}, \frac{1}{\lambda_2^p} \frac{1}{\lambda_4^p}$. If p is even then the eigen values are positive.
Proof for 4	$exp(p\mathbf{A}) - \mathbf{I} = \sum_{k=0}^{\infty} \frac{1}{k!} (p\mathbf{A})^k - \mathbf{I} = p\mathbf{A} + \frac{1}{2!} (p\mathbf{A})^2 + \frac{1}{3!} (p\mathbf{A})^3 + \dots$
	$= \mathbf{Q} \left(p \mathbf{\Lambda} + \frac{1}{2!} (p \mathbf{\Lambda})^2 + \frac{1}{3!} (p \mathbf{\Lambda})^3 + \ldots \right) \mathbf{Q}^T$
	if the eigen values of A are $\lambda_1, \lambda_2\lambda_4$, then the eigen values of
	$exp(p\mathbf{A}) - \mathbf{I}$ will be $e^{p\lambda_1} - 1$, $e^{p\lambda_2} - 1$, $e^{p\lambda_4} - 1$. So if the eigen value of \mathbf{A}
	is negative then the corresponding eigen value of $exp(p\mathbf{A}) - \mathbf{I}$ is also negative
	for every positive integer p . So such a positive integer p does not exist for negative
	eigen values. If eigen values are positive then for any positive p the matrix
	$exp(p\mathbf{A}) - \mathbf{I}$ is positive definite.

TABLE II: PROOF