Multi-channel Communications Fall 2022

Lecture 13
Spatial Multiplexing – No Transmit
Channel Info

Dr. R. M. Buehrer

Introduction

- Multiple antennas are used for many purposes including
 - o Mitigating fading
 - o Mitigating interference
 - o Increasing SNR
- Today we will show that multiple antennas can also be used to increase the capacity of a channel through spatial multiplexing
- Spatial multiplexing can be divided into three general areas
 - Without channel knowledge at the transmitter
 - With partial channel knowledge at the transmitter
 - o With full channel knowledge at the transmitter

MIMO Ergodic Capacity

- MISO converges to AWGN
- o SIMO achieves logarithmic increase with number of antennas
- MIMO
 achieves
 linear
 increase with
 number of
 antennas

Spatial Multiplexing

- Spatial multiplexing refers to the use of multiple antennas to increase the data rate by transmitting different data streams on each antenna
 - Ideally this produces a linear increase in capacity with the number of antennas
- o For STBC the spatial rate is less than or equal to unity whereas the spatial rate here is between unity and N_t
- There are three basic encoding approaches
 - Horizontal encoding
 - o Vertical encoding
 - o Diagonal encoding

Horizontal Encoding

- With horizontal encoding the information is multiplexed onto parallel antennas and each antenna is encoded and transmitted independently
- o The advantage is that the receiver complexity is less than other encoding techniques
 - o Data streams can be decoded independently
- o The disadvantage is that the data does not go out over multiple antennas and thus does not gain full diversity advantage

Horizontal Encoding

Multi-Channel Communications ECE 6634 Fall 2022 r_c - temporal code rate m - bits per modulation symbol

Receiver Structures

- With horizontal encoding per-stream detection and decoding is possible and near optimal
- In general we separate modulation symbol detection and FEC decoding
- Detector structures
 - o Maximum Likelihood
 - o Zero-forcing
 - o MMSE
 - o SIC
 - o SIC w/MMSE/ZF
 - o Sphere decoding

Detection and Decoding

- Detection and decoding can be done separately with HE
- o For ML, ZF, MMSE detectors:

Detection and Decoding

o For SIC detectors:

Maximum Likelihood Detector

 Consider the received signal vector at an arbitrary time

$$\mathbf{r} = \sqrt{\frac{E_s}{N_t}} \mathbf{H} \mathbf{s} + \mathbf{n}$$

where

$$\mathbf{r} = M_r \times 1$$
 received vector
 $\mathbf{s} = N_t \times 1$ transmitted vector
 $\mathbf{H} = M_r \times N_t$ Channel Matrix
 $\mathbf{n} = M_r \times 1$ noise vector

Maximum Likelihood

o For uncoded transmit symbols the maximum likelihood detector chooses the vector of symbols which is the closest in distance from the received signal

$$\hat{\mathbf{s}} = \underset{\mathbf{s}}{\operatorname{arg\,min}} \left\| \mathbf{r} - \sqrt{\frac{E_s}{N_t}} \mathbf{H} \mathbf{s} \right\|^2$$

- o Requires knowledge of H
- o For a modulation symbol alphabet of $M = 2^k$ requires a brute force search over M^{Nt} different possible symbol vectors

Maximum Likelihood – Diversity

- By transmitting different information (i.e., different streams) over each of the antennas with horizontal encoding no diversity is provided at the transmitter
- o Since the same data is received on each receive antenna, M_r -fold diversity is achieved at the receiver
- o Overall diversity gain is M_r
 - o How does this compare to space-time block coding?

Zero-Forcing (ZF) Detector

- o Decouples the received signal vectors into N_t parallel streams (i.e., creates a separate decision metric for each symbol stream)
 - Linear complexity as compared to exponential complexity for ML
- Each decision metric is used to make N_t independent symbol decisions or create soft-decision values for decoding
- Like all zero-forcing solutions this receiver can eliminate parallel stream interference, but at the cost of enhanced noise (i.e., reduced SNR)

Zero-forcing

O Decision metric

$$\mathbf{z} = \mathbf{Tr}$$

$$= \sqrt{\frac{N_t}{E_s}} \mathbf{H}^{\dagger} \mathbf{r}$$

$$= \sqrt{\frac{N_t}{E_s}} \mathbf{H}^{\dagger} \left(\sqrt{\frac{E_s}{N_t}} \mathbf{H} \mathbf{s} + \mathbf{n} \right)$$

$$= \mathbf{s} + \sqrt{\frac{N_t}{E_s}} \mathbf{H}^{\dagger} \mathbf{n}$$

Zero forcing

 For independent Rayleigh fading channels with average SNR per channel ρ, it can be shown that the SNR per antenna stream after processing is distributed as

$$f(x) = \frac{N_t}{\gamma (M_r - N_t)!} e^{-\frac{N_t}{\gamma} x} \left(\frac{N_t}{\gamma} x\right)^{M_r - N_t} x > 0$$

- o This is a Chi-Square random variable with $2(M_r-N_t+1)$ degrees of freedom
- O Since the zero-forcing process must use N_t -1 degrees of freedom to separate the data streams, the diversity level is reduced from M_r (ML detection) to M_r - N_t +1

MMSE Detector

- o Like with temporal equalization, beamforming or many other signal processing approaches, better performance can be obtained by choosing the linear transformation that balances cross-stream interference rejection and noise reduction
- o This is accomplished via the MMSE solution

$$\mathbf{T} = \sqrt{\frac{N_t}{E_s}} \left(\mathbf{H}^H \mathbf{H} + \frac{N_t N_o}{E_s} \mathbf{I} \right)^{-1} \mathbf{H}^H$$

SIC Detector

- Successive Interference Cancellation (SIC) attempts to decode the strongest received stream in the presence of the other streams
- Once the stream is decoded, it is cancelled from the received signal
- Suffers from error propagation
 - o The first decoded stream limits performance
- Error propagation can be reduced by ordering the streams in descending received energy before detection
- This technique has limited usefulness by itself, but is relatively powerful is combined with linear detection

SIC + Linear Detector

- One technique to improve SIC (esp. with ordering) is to combine with linear detection
- The strongest data stream is detected using the ZF or MMSE receiver and then cancelled from the received signal
- After cancellation an updated version of the ZF/MMSE receiver is constructed and used to detect the second strongest stream. This stream is then cancelled
- This continues until all streams are detected.
- This algorithm with horizontal encoding was the original V-BLAST algorithm

- o $N_t = 2$
- $o M_r = 4$
- Independent Rayleigh fading
- O QPSK
- o 4 bps/Hz

- $0 N_t = 4$
- $M_r = 6$
- Independent Rayleigh fading
- O QPSK
- o 8 bps/Hz

Vertical Encoding

- Horizontal encoding has limited diversity available since a symbol is only transmitted over a single antenna
 - o M_r -fold diversity is maximum diversity gain available
- Vertical encoding performs encoding, modulation and interleaving before demulitplexing
- In this way a single coded stream is transmitted across all antennas
 - o M_rN_t diversity is possible with proper interleaving
- Receiver complexity is substantial issue (streams should be detected/decoded jointly)

Vertical Encoding

Multi-Channel Communications ECE 6634 Fall 2022 r_c - temporal code rate m - bits per modulation symbol

Diagonal Encoding

- Diagonal encoding provides a means for achieving full diversity with a simple receiver structure
- O Loss of throughput can result due to "wasted" space at the beginning and end of the horizontal blocks
- Involves horizontal encoding with antenna rotation

Diagonal Encoding

Multi-Channel Communications ECE 6634 Fall 2022 r_c - temporal code rate m - bits per modulation symbol

Diagonal Encoding (4 antenna example)

o Let data symbol block $B_{i,j}$ be the *j*th block generated by the *i*th encoder/modulator:

Fall 2022

DE Decoding (4 antenna example)

o First Demodulate/Decode Stream 1

DE Decoding (4 antenna example)

o Next cancel stream 1 by re-encoding, remodulating and cancelling:

Fall 2022

DE Decoding

- Demodulation/decoding continues with stream 2, repeating the steps
 - o Demodulate Block $B_{2,1}$ with no interference
 - o Demodulate Block $B_{2,2}$ with interference from Block $B_{3,1}$
 - o Demodulate Block $B_{2,3}$ with interference from Blocks $B_{3,2}$ and $B_{4,1}$
 - o Demodulate Block $B_{2,4}$ with interference from Blocks $B_{3,3}$, $B_{4,2}$ and $B_{1,5}$
 - o Decode stream 2
- o Cancel re-encoded Stream 2
- o Repeat for streams 3 and 4

Conclusions

- o Today we have examined techniques for spatial multiplexing when there is no channel knowledge available at the transmitter
- Three encoding structures are possible: Horizontal, Vertical, and Diagonal
- We also examined several detector structures which are primarily applicable to HE techniques
 - o Some can be applied to DE or VE