

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Metodi numerici per equazioni differenziali ordinarie Lezione 6.4b

Convergenza per i metodi di Eulero in avanti ed Eulero all'indietro

Consideriamo la seguente EDO

$$\begin{cases} y'(x) = -y^2 & x \in (0,3] \\ y(0) = 1 \end{cases}$$

> Applicando Eulero in Avanti (EA)

$$u_{k+1} = u_k + hf(x_k, u_k) \quad k \ge 0$$

$$h = 1.5 \longrightarrow \lim_{k \to \infty} x_k = -\infty$$

$$h = 0.5$$

$$h = 0.5$$

$$0.8$$

$$0.6$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0$$

h	E
0.5	0.1667
0.25	0.0573
0.125	0.0252
0.0625	0.0120

 \blacktriangleright L'errore di approssimazione E è <u>il massimo commesso</u> nei vari nodi

$$E = \max_{k=0,\dots,n} |y_k - u_k| = \max_{k=0,\dots,n} \left| \frac{1}{1+x_k} - u_k \right|$$

h	E
0.5	0.1667
0.25	0.0573
0.125	0.0252
0.0625	0.0120

Per h che si dimezza si dimezza anche l'errore

> Per il **metodo di EA** (esplicito)

Per h che si dimezza si dimezza anche l'errore

Comportamento lineare rispetto ad h

> EA è basato sulle Differenze Finite (DF) in avanti

(DF in avanti)
Differenza Finita
in avanti

$$y'(x_k) = \frac{y_{k+1} - y_k}{h} + O(h)$$

Consideriamo la seguente EDO

$$\begin{cases} y'(x) = -y^2 & x \in (0,3] \\ y(0) = 1 \end{cases}$$

> Applicando Eulero all'indietro (EI)

$$u_{k+1} = u_k + hf(x_{k+1}, u_{k+1})$$

$$u_{k+1} = u_k + h u_{k+1}^2$$
 $k = 0, \dots, n-1$

 \blacktriangleright In questo caso il termine u^2 è valutato in k+1

$$F(z) = z + hz^2 - u_k = 0$$
 Equazione non lineare
$$z = u_{k+1}$$

 \blacktriangleright Utilizzando **EI**, ad ogni passo k, si deve risolvere

$$F(z) = z + hz^2 - u_k = 0$$
 Equazione non lineare $z = u_{k+1}$

 \succ Possiamo utilizzare il **metodo di Newton**, per determinare z

$$z^{(m+1)} = z^{(m)} - \frac{F(z^{(m)})}{F'(z^{(m)})} \qquad F'(z) = 1 + 2hz$$

> Risolvendo il metodo di Newton si ricava la radice

$$z = u_{k+1}$$

$$F(u_{k+1}) = 0 \longrightarrow u_{k+1}$$

> Riducendo h l'approssimazione numerica migliora significativamente

 \blacktriangleright L'errore di approssimazione E è <u>il massimo commesso</u> nei vari nodi

