6
$$\rightarrow$$
 a38 | aAc

6: A \rightarrow bAC1 \
B \rightarrow C

1) Tobela LL(2) perhu 6

2) [RII]

3) SLRII)

[L(2): (1) the: Totala tollowy, pt heale reterminable for 5'

S \rightarrow aSB

Tollowy I I I I

1: S \rightarrow aSB

4: A \rightarrow bAC

4: A \rightarrow \
5: B \rightarrow C

(13) Pass purerm \$1 \(\text{ b}\) S

Tollow'; (S) = First'; (B \rightarrow tollow'; (S)) = \{c\}\}

Follow'; (S) = First'; (B \rightarrow tollow'; (S)) = \{c\}\}

Follow'; (B) = First'; (C \rightarrow tollow'; (S)) = \{c\}\}

S \rightarrow aAC

Tollow'; (B) = First'; (C \rightarrow tollow'; (S)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (S)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (B)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow'; (B) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow'; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow'; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow'; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow'; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C)) = \{c\}\}

Tollow; (C) = First'; (C \rightarrow tollow'; (C) = First'; (C \rightarrow tollow'; (C) = First'; (C \rightarrow tollow'; (C) = First'; (C \rightarrow tollo

(3) Pas: construim tobela de analiza sintoctrea LL(2) pt G

M	3	Α	В		
aa	(0581)	evr	ew		
ab	(4Ac,2)	err	evr		
ae	(aAc,2)	err	err		
hh	err	(bAc, 3)	evr		
lic	err	(bAc, 3)	en		
cc	Bhr	(24)	(c,5)		
CA	BM	(24)	(c,5)		

se moi adaugo:

$$M[x,x] = debk x-kuminol x \neq 3$$

Se image ou: (abce\$, 3\$, >)

(abcc\$, ≤\$, x) - (abcc\$, aAc\$,2) - (bcc\$, Ac\$,2)

se wito in tobelo M pt ob si S: Mlob, S) = laAc, 2). Se inlocu-

-reste S cu a Ac si se odouga lui x, 2. Deci,

Oaco averm terminale - le scoolerm. Adica Se continuà...

1- (bcc\$, bAcc\$,23) - (cc\$, Acc\$,23) 1-1cc\$, cc\$,235)

← (c\$, c\$,235) + (\$,\$,235) - accept

Panser LR(1): $G' \rightarrow S$ $G' \rightarrow S$

Post se colouleoso multimile cononice Ix
Se incepe en To: 3'-. 8,\$

Daco im productie punctul se aflo im fota unui neterminal se copiara take productiek dun G core au im membrul stoing neterminatul aflot dupo punct.

Deci $T_{a}: S \longrightarrow S, \# \rightarrow T_{1}$ $T_{2}: S \longrightarrow a 9B, \#$ $S \longrightarrow a 9B, \#$ P. Simbolul core se pune dupa ; se colculeate dupa "formula".

De averm productia X→2. YB, V

First, IBV) — se pune dupa; la noile

productio generate de nterminales aflat dupa.

Apoi, pt frecore producte din Is se treci purpetul peste un simbol Pt frecore simbol se treci lo un noi I"

De averm mai mule productii in core punctul treci pt acclosi simbol, ambeli voi fi in acclosi I"

II: S' > 3.; \$ De punchul este la final - store finalo

 $I_2: 3 \rightarrow 0.3B; $ \rightarrow I_3$ $S \rightarrow 0.AC; $ \rightarrow I_4$ $S \rightarrow 0.AC; $ \rightarrow I_5$

S -> . bAc; C -> It

A - .; c

 I_3 : $S \rightarrow aS.B; $\Rightarrow I_g$ $B \rightarrow .c; $\Rightarrow I_g$ I4: 3 → aA. C; \$ → I10

 T_5 : $S \rightarrow a.Ae; C \rightarrow T_1$ $A \rightarrow .bAc; C \rightarrow T_4$ $A \rightarrow .; C$

Mohin S → a. SB; c → I12 S → a SB; k → I5 S → · a Ac; k → I5

In A → b. Ac; c → Fig A → . bAc; c → In A → . ; c I, S-ass. \$

Ig: B - c. , \$

In: S → aAc., \$

In S - aA. C; C - Try

Tig. S -> as. B; c -> Tis

To sobAlb Bo.cic - Ile

II3: A -> bA.c, c -> FIA

In Smale, c

Is S- asb.jc

IIc B-B., C

II+ : A → bAc.; c

P Ourm completorm tobelo?

(1) Dass punetal este la fimalul una producti

X-L.ja (general)

exemply Is g-aBB., c

overm viducere (r).

Im tobelo la lumia 15 luine de la indusele lui I, la simbolui de dupa ; lin acest coq c) se completeaso cu rk - unde k este mr productiei X -> L, im coqui nostru mon productiei 3 -> a SB core este 1.

(2) Daco punctul nu se aplo lo fimal:

- docă se oflă îm foto unui

kriminal se completa;

lo "action" pe colectia

kriminalului de după.

CU SK - spre core

K- indicela lui I spre

core treci

Pt In: S-aA.c; c-In punem pe linia 11 La colona c - S14

-doco punctul se ofto In
foto unui Aneterminal
se completano lo "goto"
pe cologna neterminalului
eu indicele lui I opre
ovu trea

QX:

In: S- a S. B; c > F15 Lo linia 12 pe colcona lui B se pune 15

S ₅	Ju 87	C	acc.	S 1 3 \$	4	8
5 /5		Sq 310	acc.	3	4	8
95		Sq 310	acc		4	8
95		Sq 310			4	8
95	S ₇	310		\$		8
95 W//	S7					
95 N//	87	W				
11/1	The second secon	14		12	11	
	1///	1/1/	111	SX/	1///	1111
	57	14			13	
			ri			
			V5			
			re			
		514				
		SIG				15
			+			
		77	1			
-	1-6					1000
			514 516 317 77	r1 15 15 14	514 516 516 517 72 73	514 516 516 317 72 73

action

9010

are intrari multiple

SLAM)

$$S' \rightarrow S$$
 $S \rightarrow a3B$
 $S \rightarrow aAc$
 $S \rightarrow aAc$
 $S \rightarrow aAc$
 $S \rightarrow aBB \rightarrow I_1$
 $S \rightarrow aBB \rightarrow I_2$
 $S \rightarrow aBB \rightarrow I_3$
 $S \rightarrow aBB \rightarrow I_3$

ollonu,	
5	1, ct, cc
٨	ell,cc
В	1 , clb , cc

Followi	
3	1,0
A	C
В	B, c

I3.	S → a 3. B B → . C	$\rightarrow I_Q$ $\rightarrow I_A$
I4:	s → aA.C	$\rightarrow T_8$

$$I_5$$
 $A \rightarrow b$ $Ac \rightarrow I_9$
 $A \rightarrow b$ $Ac \rightarrow I_5$
 $A \rightarrow b$

co lo LR.

deor eó nu mai

avenn i si un

simbol

se proadcoso

Ix S → aAc. Ig: A → bA.C → IIO

In A - bAC.

	a	l	c	#	13	Α	B
0	52				1		
1				acc		-	
2	32	35	14		3	4	0
3			54				6
		0	SX	-		.3	
4 5 6 7 8	-	35	V)	VI	1		
5-			rs	_	5	-	-
			r ₂	_	+	-	
9			Sie			-	
10			13		-		
	~	00	Hon		1	90+	0

A -> . bAc -> Is

A - .

- co lo LR eu exceptia reducerii: como o extr lo fimal; se exemple:

EX I, B - C.
EX I, A -.

Al exemplul 1:

se gasesta ma productive 3 -> aSB => 1

se colculeuro Follorul, (3) = 1\$, c4

se completeuro in tobelo pe linia 6 (IE)

pte colsoneli c, \$ eu r1.

Pl exemplul 2: Iq: B -> C.

- mi- productiei B-c este 5
- Follow, (B) = { \$, c4
- 3e completeuro in tobelo lo linia 7 pe esteoneli A, c eu 13

 \mathbb{A} exemple $\mathbb{T}_2: A \longrightarrow .$

- mr. producties A -> > este 4
- Followin (A) = 304
- 3e completeoro in toleto lo linia 2 pe cologno e cu ty

```
Tollowie (4) = First ( Ebs · Fellowie (3)) = 4ab4
        3-aABbs
       Follow, (B) = First, (63 Follow, (S)) = 164
      Followig(B) = Firsti(bs - Followig(3)) = 1 ha, b#4
                  Avem: 3 - a A 1365 - ba
                        S → \ > 5 Follow' (3) = 6#
                                            4#3
     s -angbs
    Follow, (3) = First, ( ) Follow, (S)) = Follow, (S)
    Follow, (3) = Firsto ( ) Follow, (S)) = Follow, (3)
    A -asb
  Follow, (S) = First, (b. Follow, (A)) = 164
  Follow: (3) = First: (b. Follow: (A)) = 14a3
  Iteratia I
     Averm modificari lo: (pt Folloru'z)
       3 - a A B b S
       Follow, 18) = Firstz' (65 Follow'2(S)) =
                               Los - a ABBS - ba - dejo aftet
                                  S -> > > 5. Followiz(S) = 16$,669
                                                   1$,694
                                                                   rual nova
Iteratia III
 mimi'e amodyliact.
```

Algoritm pt eolevlul Followik (A) Fie & gramatica A = (N,T, S, P) mulimus neterminables T: multimus terminalilar 3 : 3imbolw de stort P. productile G' = gramatica extinsã. Followik (A), K=1, A ∈ N (A-extern neterminal) ! mu ix eoleulcozo Folloru' (3') Algoritm : Pas 1: pentru toti AEN 1184 Follow KIA) = Ø As2: Followik(3) = 1\$1 Pass: d8 pentru dries productie de tipul A - LBY, unde BEN Indermin - Follow, (B) = Follow, (B) U First (y Follow, (A)) rubile multimile Follow KA) EN mu se mai sehimba Exemplu 1 35 se coloulere Follorui, si Folloruz! P4 8' -> 8\$ 3 - aABbs Follow, s - l Follow 2 I #,5 A - sasb \$ la A -s ac 62,58 B-sa 3-0 ABBS Follow (A) = Forst, (BbS Follow, (S)) = 1 a4

pt ca B-a