Professor: SEIBUM CHOI

Group Member: Geonhee Jin Wook Taehong Taeyeon Vivek Woo Seok Yesung

CAPSTONE DESIGN 2

TEAM SBC

TABLE OF CONTENTS

- 1. Hardware Overview
- 2. Software Overview
- 3. Challenge Faced
- 4. Comparison between Capstone 1 and 2
- 5. Demonstration Video
- 6. Strength of our system
- 7. What we've learn

Super Ball Collector Specifications

Specifications		
Height	430mm	
Width	225mm	
Length	712mm	
Weight	9.4kg	
Maximum Suction Mass (by experiment)	~ 40g	
Gear Ratio	3:1	
Wheel Radius	30mm	

<Super Ball Collector>

1. Structure

SLAM

2 Sensor

3. Actuator

Ball suction

4. Mnor Details

Software Overview

1. Need for verification of the collected balls

< ROS code >
While (DQN)
If (do Suction)
Collecting Ball
Ball collected + 1
If (Ball collected = 6)
DQN Finish!

Unexpected suction failure

1. Need for verification of the collected balls

< ROS code >
While (DQN)
If (do Suction)
Collecting Ball
Ball collected + 1
If (Ball collected = 6)
DQN Finish!

1. Need for verification of the collected balls

< Feedback ROS code > Subscribe Sensor collected While (DQN) If (do Suction) **Collecting Ball** If (Sensor collected not changed) Go backward If (Sensor collected = 6) DQN Finish!

Expected working of Laser Sensor

1. Need for verification of the collected balls

Problem

Ball's moving speed is faster than we expected

Noise is MUCH bigger than we expected

Implementation of Filter

1. Need for verification of the collected balls

Noise Filtering: Point by point Butterworth Filter

$$|H_a(j\omega)|^2 = rac{1}{1 + \left(rac{\omega}{\omega_c}
ight)^{2N}}$$

<Magnitude equation>

<Butterworth Filter's Magnitude graph>

Filter's order & cut-off frequency

$$N \geq rac{\log_{10}\!\sqrt{rac{\delta_p^2-1}{\delta_s^2-1}}}{\log_{10}\!\left(rac{oldsymbol{\omega}_p}{oldsymbol{\omega}_s}
ight)} \hspace{0.5cm} oldsymbol{\omega}_c = rac{oldsymbol{\omega}_p}{\left(rac{1}{\delta_p^2}-1
ight)^{1/2N}}$$

Required Filter's $(\omega_p, \delta_p)(\omega_s, \delta_s)$ = $(13\pi, 0.95), (20\pi, 0.05)$

$$N \ge 2.699 \ (N=3)$$

 $\omega_c = 59.179 \, \text{rad/s}$

1. Need for verification of the collected balls

Strengths of SBC-Laser sensor

2 Limited Camera's Field of View

Dilemma

1. If we want to see **Aruco markers**:

We cannot see **the ball** in front of suction entrance

2. If we try to see the ball:

We cannot see **Aruco markers**

2 Limited Camera's Field of View

Problem 1

How to handle this area?

Solution 1

Aruco markers: Upper Cam

Balls: Divide the detection area

(by ROS code)

Devised solution – Dual Camera

2 Limited Camera's Field of View

Problem 2

Two cameras have different view

How to get real ball's position?

Solution 2

Give TF function!

Devised solution – Dual Camera

TFImplementation

Car_base

2 Limited Camera's Field of View

$$T_{BU} = \begin{bmatrix} \cos\theta_u & 0 - \sin\theta_u & x_u \\ 0 & 1 & 0 & y_u \\ \sin\theta_u & 0 & \cos\theta_u & z_u \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.9063 & 0 & -0.4226 & 300 \\ 0 & 1 & 0 & 0 \\ 0.4226 & 0 & 0.9063 & 330 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{BD} = \begin{bmatrix} \cos\theta_d & 0 - \sin\theta_d & x_d \\ 0 & 1 & 0 & y_d \\ \sin\theta_d & 0 & \cos\theta_d & z_d \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.9397 & 0 & -0.3420 & 342 \\ 0 & 1 & 0 & 0 \\ 0.3420 & 0 & 0.9397 & 104 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{\cdot \cdot} \begin{pmatrix} x_b \\ y_b \\ z_b \\ 1 \end{pmatrix} = T_{BU}^{-1} \begin{pmatrix} x_u \\ y_u \\ z_u \\ 1 \end{pmatrix} \qquad \mathbf{\cdot \cdot} \begin{pmatrix} x_b \\ y_b \\ z_b \\ 1 \end{pmatrix} = T_{BD}^{-1} \begin{pmatrix} x_d \\ y_d \\ z_d \\ 1 \end{pmatrix}$$

DQNLearning Process


```
1129 23:5/:52.747951 140103757/13152 a
segfeat.name, segNumber)]] not found,
1130 04:15:19.535338 Thread-29 applica
)]] not found, sending 404
1130 04:15:19.535337 140163732535040 a
t.name)]] not found, sending 404
1130 04:15:19.539214 Thread-30 applicat
at.name)]] not found, sending 404
11130 04:15:19.539213 140163749320448 ap
eSrc(feat.name)]] not found, sending 404
√1130 04:15:19.543550 Thread-31 applicat
at.name, seqNumber)]] not found, sending
W1130 04:15:19.543550 140165687002880 ap
(seqfeat.name, seqNumber)]] not found, s
W1130 04:15:19.546848 Thread-32 applicat
c(segfeat.name, segNumber)]] not found,
W1130 04:15:19.546848 140163740927744 app
mageSrc(seqfeat.name, seqNumber)]] not fo
```

DQNVideo

Robust System

Dual Camera

Feedback Control

Capstone 1 vs Capstone 2

	Capstone 1 (Control Method)	Capstone 2 (Deep Learning)
Pros	 Efficient use of data Less room for error 	 Can be used for more general missions We got to learn and apply new technology Became "Deep Learning Master"
Cons	Have to consider every situation	 Not efficient for simple missions Requires a large amount of data Time consuming Hard to comprehend

Before Capstone Design

After Capstone Design

Thank you for listening!