

N-Channel Logic Level Enhancement Mode Field Effect Transistor

Product Summary:

BVDSS	25V
RDSON (MAX.)	$6m\Omega$
lo	80A

UIS, Rg 100% Tested

Pb-Free Lead Plating & Halogen Free

ABSOLUTE MAXIMUM RATINGS (T_c = 25 °C Unless Otherwise Noted)

PARAMETERS/TES	T CONDITIO	SYMBOL	LIMITS	UNIT			
Gate-Source Voltage			ource Voltage		V_{GS}	±20	V
Continuous Drain Current		I _D	80				
		T _C = 100 °C	טי	50	А		
Pulsed Drain Current ¹		I _{DM}	170				
Avalanche Current		I _{AS}	53				
Avalanche Energy	L = 0.1m	iH, ID=53A, RG=25 Ω	E _{AS}	140	mJ		
Repetitive Avalanche Energy ²	L = 0.05	mH	E _{AR}	40	5		
Power Dissipation	T _C = 25 °	'C	P _D	69	W		
	T _C = 100	°C	. D	27	•••		
Operating Junction & Storage Tempe	erature Rang	T _j , T _{stg}	-55 to 150	°C			

100% UIS testing in condition of $V_D \! = \! 15 V,\, L \! = \! 0.1 mH,\, V_G \! = \! 10 V,\, I_L \! = \! 40 A,\, Rated\,\,V_{DS} \! = \! 25 V$ N-CH

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNIT	
Junction-to-Case	$R_{ heta JC}$		1.8	°C/W	
Junction-to-Ambient	$R_{ heta JA}$		75	C/ W	

¹Pulse width limited by maximum junction temperature.

²Duty cycle $\leq 1\%$

ELECTRICAL CHARACTERISTICS (T_c = 25 °C, Unless Otherwise Noted)

PARAMETER	SYMBOL	TEST CONDITIONS		LIMITS			
			MIN	TYP	MAX		
		STATIC					
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 250 \mu A$	25			٧	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1	1.5	3		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 20V$			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 20V, V_{GS} = 0V$			1	μΑ	
		V_{DS} = 20V, V_{GS} = 0V, T_J = 125 °C			25		
On-State Drain Current ¹	I _{D(ON)}	$V_{DS} = 10V, V_{GS} = 10V$	80			Α	
Drain-Source On-State Resistance ¹	R _{DS(ON)}	$V_{GS} = 10V, I_D = 30A$		5.3	6	mΩ	
		V_{GS} = 5V, I_D = 24A		7.6	9.5	11152	
Forward Transconductance ¹	g_{fs}	$V_{DS} = 5V$, $I_{D} = 24A$		25		S	
		DYNAMIC					
Input Capacitance	C _{iss}			1800			
Output Capacitance	C _{oss}	$V_{GS} = 0V$, $V_{DS} = 15V$, $f = 1MHz$		480		pF	
Reverse Transfer Capacitance	C _{rss}			220			
Gate Resistance	R_{g}	V_{GS} = 15mV, V_{DS} = 0V, f = 1MHz		1.2		Ω	
Total Gate Charge ^{1,2}	$Q_g(V_{GS}=10V)$			34.5			
	$Q_g(V_{GS}=5V)$	$V_{DS} = 15V, V_{GS} = 10V,$		22		nC	
Gate-Source Charge ^{1,2}	Q_{gs}	$I_D = 30A$		4.8			
Gate-Drain Charge ^{1,2}	Q_{gd}			12.5			
Turn-On Delay Time ^{1,2}	t _{d(on)}			20			
Rise Time ^{1,2}	t _r	$V_{DS} = 15V$,		15		nS	
Turn-Off Delay Time ^{1,2}	t _{d(off)}	I_D = 25A, V_{GS} = 10V, R_{GS} = 2.7 Ω		50			
Fall Time ^{1,2}	t _f			20			
SOURCE-D	RAIN DIODE RA	TINGS AND CHARACTERISTICS ($T_c = 25$	°C)				
Continuous Current	I _S				80	Α	
Pulsed Current ³	I _{SM}				170		
Forward Voltage ¹	V_{SD}	$I_F = I_S$, $V_{GS} = 0V$			1.3	V	
Reverse Recovery Time	t _{rr}			32		nS	
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F = I_S$, $dI_F/dt = 100A / \mu S$		200		Α	
Reverse Recovery Charge	Q _{rr}			12		nC	

 $^{^{1}}$ Pulse test : Pulse Width ≤ 300 μsec, Duty Cycle ≤ 2%.

²Independent of operating temperature.

Ordering & Marking Information:

Device Name: EMA06N03AN for DPAK (TO-252)

³Pulse width limited by maximum junction temperature.

EMA06N03AN

TYPICAL CHARACTERISTICS

EMA06N03AN

杰力科技股份有限公司 Excelliance MOS Corporation

EMA06N03AN

Dimension	А	A1	В	B1	B2	С	D	D2	D3	E	E2	Н	L	L1	L2	L3	Р
Min.	2.10	0.95	0.30	0.40	0.60	0.40	5.30	6.70	2.20	6.40	4.80	9.20	0.89	0.90	0.50	0.00	2.10
Max.	2.50	1.30	0.85	0.94	1.00	0.60	6.20	7.30	3.00	6.70	5.45	10.15	1.70	1.65	1.10	0.30	2.50

Footprint

