Computer Systems and Architecture Data Representation

Stephen Pauwels

Academic Year 2021-2022

• Convert $(23.375)_{10}$ to base 2.

- Convert $(23.375)_{10}$ to base 2.
 - Step 1. Remainder method: convert (23)_{10 to} base 2

	Remainder	
23 / 2 = 11	1	LSB
11 / 2 = 5	1	
5 / 2 = 2	1	
2 / 2 = 1	0	
1 / 2 = 0	1	MSB

• $(23)_{10} = (10111)_2$

- Convert $(23.375)_{10}$ to base 2.
 - Step 1. Remainder method: convert (23)_{10 to} base 2
 - Step 2. Multiplication method: convert (.375)₁₀ to base 10

$$.375 \times 2 = 0.75$$

$$.75 \times 2 = 1$$
 .5

$$.5 \times 2 = 1$$
 .0

•
$$(.375)_{10} = (.011)_2$$

- Convert $(23.375)_{10}$ to base 2.
 - Step 1. Remainder method: convert (23)_{10 to} base 2
 - Step 2. Multiplication method: convert $(.375)_{10}$ to base 10
 - Step 3. Total: (23.375)₁₀
 - $(10111.011)_2$

Base 2 to Base 10

- Number in base 2:
 - $b_n b_{n-1} ... b_1 b_0 ... b_{-1} b_{-2} ... b_{-m}$
- Value in base 10
 - $\sum_{i=-m}^{n-1} b_i * 2^i$
- Weighted Position Code
- Polynomial method

Base 2 to Base 10

- Convert (1010.01)₂ to base 10
- $(1010.01)_2$ = $(1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 + 0 * 2^{-1} + 1 * 2^{-2})_{10}$ = $(8 + 0 + 2 + 0 + 0 + .25)_{10}$ = $(10.25)_{10}$

Converting to other bases

- Conversion between base k and base 10
 - Remainder method
 - Divide by *k*
 - Multiplication method
 - Multiply by k
 - Polynomial method
 - $\sum_{i=-m}^{n-1} b_i * k^i$

- Signed Magnitude
 - First bit as sign
 - $(+12)_{10} = (00001100)_2$ $(-12)_{10} = (10001100)_2$

- Signed Magnitude
- One's Complement
 - Convert all zero's in 1's and 1's in zero's
 - $(+12)_{10} = (00001100)_2$ $(-12)_{10} = (11110011)_2$

- Signed Magnitude
- One's Complement
- Two's Complement
 - Take the one's complement, and add 1
 - $(+12)_{10} = (00001100)_2$
 - $(-12)_{10} = (11110100)_2$

- Signed Magnitude
- One's Complement
- Two's Complement
- Excess
 - Add bias to every number and convert it as a positive number
 - $(+12)_{10} = (100001100)_2$ (12 + 128 = 140) $(-12)_{10} = (01110100)_2$ (-12 + 128 = 116)

Floating Point

- Wide range of numbers in a limited number of bits
- Example: $+6.023 * 10^{23}$

Normalization

- Different representations for the same number
 - 254 * 10⁰
 25.4 * 10¹
 0.0254 * 10⁴
 254000 * 10⁻³
- Normalization: the dot is placed right of the leftmost digit
 - $2.54 * 10^2$
- Hidden bit: in base 2 the leftmost bit can be discarded
 - $1.1010 \rightarrow 1010$

Conversion

- Convert $(9.375 * 10^{-2})_{10}$ to base 2 (scientific notation)
 - 1. Fixed point: $(.09375)_{10}$
 - 2. Multiplication method: $(.0011)_2$
 - 3. Normalize: $.0011 = 0.0011 * 2^0 = 1.1 * 2^{-3}$

IEEE-754

- Sign bit
- Exponent: Excess 127 1023
- Number representation with hidden bit

IEEE-754

- Represent (-12.625)¹⁰ in IEEE-754 Single Precision format
 - 1. Convert to base 2
 - $(-12.625)_{10} = (-1100.101)_2$
 - 2. Normalize
 - $(-1100.101)_2 = (-1.100101)_2 * 2^3$
 - 3. Calculate exponent in excess 127
 - - 1 1000 0010 100 1010 0000 0000 0000 0000

IEEE-754 – Special Cases

- +0
 - 0 0000 0000 000 0000 0000 0000 0000
- +∞
- + NaN
 - 0 1111 1111 001 0010 0000 0100 1000 0000
- 2⁻¹²⁸ (Denormalized): (1 * 2⁻²) * 2⁻¹²⁶
 - 0 0000 0000 010 0000 0000 0000 0000

Exercises

- Blackboard
- Course webpage
 - http://msdl.uantwerpen.be/people/hv/teaching/ComputerSystemsArchitecture/#CS4