РЕШЕНИЕ ЗАДАЧ ТЕОРЕТИЧЕСКОГО ТУРА Задача 1. (10 баллов) Задача 1A. 2012

Действующие в системе силы изображены на рисунке. Т.к. стержень жёсткий, нити грузов нерастяжимые, ускорения относятся как 1:2:3. Сумма моментов сил, действующих на невесомый стержень, равна нулю. Эти два условия вместе с уравнениями 2-го закона Ньютона для всех грузов дают систему уравнений

$$\begin{cases} 20ma = 20mg - T_1 \\ 12m \cdot 2a = 12mg - T_2 \\ m \cdot 3a = T_3 - mg \\ T_1l + T_2 \cdot 2l = T_3 \cdot 3l \end{cases}$$
 (1)

из которой находим

$$a = \frac{41}{77}g \ . \tag{2}$$

Однако, найденное значение ускорения второго груза $a = \frac{82}{77}g$ получается больше ускорения свободного падения. Это означает, что нить второго груза не будет натянутой, а его ускорение равно g. Также можно показать, что формально из системы уравнений (1) следует, что $T_2 < 0$, чего для нити быть не может. Следовательно, нить, к которой подвешен второй груз, на стержень не действует. Поэтому система уравнений (1) неверно описывает рассматриваемое устройство. Для расчета ускорений стержня и остальных грузов второй груз следует исключить.

Правильные значения ускорений первого и третьего грузов находятся из следующей системы уравнений

$$\begin{cases}
20ma = 20mg - T_1 \\
m \cdot 3a = T_3 - mg
\end{cases}$$

$$T_1 l = T_3 \cdot 3l$$
(3)

Окончательно получаем

$$a = \frac{17}{29} g.$$

$$a_1 = \frac{17}{29} g, \qquad a_2 = g, \qquad a_3 = \frac{51}{29} g. \tag{4}$$

Схема оценивания.

No	Содержание	баллы
1	Рисунок со всеми силами	0,4
2	Система уравнений (1)	0,8
3	Решение системы (1) для ускорения (2)	0,4
4	Исключение второго груза из рассмотрения	0,3
5	Доказательство исключения (ускорение второго груза	0,7
	больше д, сила натяжения нити отрицательна)	
6	Ускорение второго груза равно д	0,4
7	Система уравнений (3)	0,6
8	Решение системы (3) для ускорений (4)	0,4
	ВСЕГО	4,0

Задача 1.В И диоды...

Обозначим напряжение на паре параллельно соединенных диодов — U_1 , а на тройке диодов — U_2 . Суммарная сила тока в цепи I может быть найдена двумя способами:

- как удвоенной значение силы тока через один из диодов пары:

$$I = 2I_0(U_1); (1)$$

- как утроенное значение силы через один из диодов тройки

$$I = 3I_0(U_2). (2)$$

Построим графики функций $2I_0(U)$ и $3I_0(U)$. Для этого достаточно «умножить» график функции $I_0(U)$ на соответствующий коэффициент, т.е. для нескольких значений напряжения снять по данному графику соответствующие значения сил токов, умножить их на 2 и на 3 и нанести соответствующие точки на графики. При последовательном соединении суммарное напряжение равно сумме напряжений на отдельных участках цепи, поэтому

$$U_1 + U_2 = U. (3)$$

Графически это условие соответствует «горизонтальному суммированию» графиков $2I_0(U)$ и $3I_0(U)$: при заданном значении силы тока снимаются значения напряжений U_1 и U_2 , и находится их сумма, после чего полученное значение наносится на график.

Заметим, что формально решение задачи можно записать в виде (для обратных функций):

$$U(I) = U_0 \left(\frac{I}{2}\right) + U_0 \left(\frac{I}{3}\right),$$

где $U_0(I)$ — функция, обратная к графически заданной функции $I_0(U)$.

Схема оценивания.

No॒	Содержание	баллы
1	При параллельном соединении складываются силы токов	
2	Построение графиков функций $2I_{\scriptscriptstyle 0}(U)$ и $3I_{\scriptscriptstyle 0}(U)$	
3	При последовательном соединении складываются напряжения	0,3
4	«Горизонтальное» суммирование	0,7
5	Проведены вычисления для:	
	- 3 точек;	(0,3)
	- 6 точек.	0,6
6	Альтернативные варианты (реализованные идеи):	
	- аппроксимировать вид зависимости;	(0,4)
	- решить уравнения в явном виде;	(0,4)
	ВСЕГО	2,5

Задачи 1.С Плоская линза

Пластинка будет формировать изображение S', если оптическая длина пути l = SABS' для любого светового луча, вышедшего из источника и преломившегося в пластинке, будет одинакова для всех лучей (условие таутохронизма линзы).

Рассмотрим луч, попадающий на пластинку на расстоянии r от ее оси. Будем считать, что r << a, т.е. будем использовать параксиальное приближение. Расстояние |SA| найдем с помощью теоремы Пифагора и сделаем приближение, учитывая что r << a:

$$|SA| = \sqrt{a^2 + r^2} = a\sqrt{1 + \frac{r^2}{a^2}} \approx a\left(1 + \frac{1}{2}\frac{r^2}{a^2}\right),$$
 (1)

Аналогично выражается расстояние |BS'|

$$|BS'| = \sqrt{b^2 + r^2} = b\sqrt{1 + \frac{r^2}{b^2}} \approx b\left(1 + \frac{1}{2}\frac{r^2}{b^2}\right).$$
 (2)

Таким образом, оптическая длина пути SABS' равна

$$l = |SA| + n(r)h + |BS'| = a\left(1 + \frac{1}{2}\frac{r^2}{a^2}\right) + n_0\left(1 - \beta r^2\right)h + b\left(1 + \frac{1}{2}\frac{r^2}{b^2}\right) =$$

$$= a + n_0h + b + \left(\frac{1}{2a} + \frac{1}{2b} - n_0\beta h\right)r^2$$
(3)

Эта величина не будет зависеть от r (то есть, одинакова для всех лучей) при равенстве нулю множителя

$$\frac{1}{2a} + \frac{1}{2b} - n_0 \beta h = 0, \qquad (4)$$

которое можно переписать в виде

$$\frac{1}{a} + \frac{1}{h} = 2n_0 \beta h. \tag{5}$$

Это выражение совпадает по виду с формулой тонкой линзы

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{F},\tag{6}$$

где F – фокусное расстояние.

Сравнивая (5) и (6), находим фокусное расстояние пластинки

$$F = \frac{1}{2n_0 \beta h}. (7)$$

Из формулы (5) также находим расстояние от пластинки до изображения:

$$b = \frac{a}{2n_0\beta ha - 1}. (8)$$

Альтернативный вариант – приближение геометрической оптики.

Данная задача, в принципе, может быть решена и в рамках геометрической оптики. Основные этапы такого (очень сложного решения) следующие:

- использование закона преломления Снелиуса;
- выбор произвольного луча и определения угла падения на пластинку;
- угол луча после преломления на передней грани пластинки;
- получение дифференциального уравнения для траектории луча внутри пластинки;
- решение этого уравнения в квадратичном приближении;
- определение угла на выходе из пластинки (должен быть отрицательным);
- определение угла после преломления на задней грани;
- определение расстояния до точки пересечения с осью пластинки;
- доказательство постоянства этого расстояния для всех лучей;
- получение формулы линзы;
- запись формулы для фокусного расстояния.

Схема оценивания.

$N_{\underline{0}}$	Содержание	баллы
1	Основная идея – постоянство времени распространения по	
	всем путям	
2	Использование квадратичного приближения (малые углы)	0,5
3	Вычисление расстояний $ SA $ и $ BS' $	
	- точные формулы;	0,2
	- разложение по приближенной формуле;	0,4
4	Оптическая длина пути (3)	0,2
5	Получена формула тонкой линзы (4)	0,3
6	Фокусное расстояние линзы (7)	0,2
7	Расстояние до изображения (8)	0,2
	ВСЕГО	3,5

Приближение геометрической оптики (альтернативный вариант)

Ŋ <u>o</u>	Содержание	баллы
1	Закон преломления	0,1
2	Приближение малых углов (но квадратичное)	0,3
3	Начальный угол в пластинке	0,1
4	Дифференциальное уравнение для траектории луча в	0,5
	пластинке	
5	Решение уравнения в квадратичном приближении	0,5
5	Значение угла вблизи задней грани	0,2
6	Значение угла после преломления на задней грани	0,1
7	Точка пересечения с оптической осью	0,2
8	Постоянство расстояния в для всех преломленных лучей	0,1
9	Формула, аналогичная формуле тонкой линзы	0,2
10	Формула для фокусного расстояния	0,2
	ВСЕГО	3,5

Задача 2 (10 баллов)

Приключения поршня

2.1. [0.5 балла] Из условия равновесия поршня находим давление газа

$$p_1 = p_0 + \frac{Mg}{S} = p_0(1+\alpha) = 1.99 \times 10^5 \,\text{Ta}.$$
 (1)

2.2 и 2.3. [2 балла] На первой стадии газ сожмется и разогреется до некоторой температуры. Ввиду того, что стенки сосуда и поршень изготовлены из материала, который плохо проводит тепло, сжатие газа можно считать адиабатическим, но сам процесс не является равновесным и к нему нельзя применять уравнение адиабаты.

При переходе из начального состояния в конечное над системой поршень+газ внешние силы (сила тяжести и атмосферное давление) совершили работу

$$A = Mg(H - H_1) + p_0 S(H - H_1) = (Mg + p_0 S)(H - H_1),$$
(2)

По условию только половина этой работы идёт на увеличение внутренней энергии газа

$$\Delta U = \frac{A}{2},\tag{3}$$

где

$$\Delta U = \frac{\nu R}{\nu - 1} \left(T_1 - T_0 \right),\tag{4}$$

здесь ν – число молей, R – универсальная газовая постоянная.

Запишем уравнение состояния идеального газа для начального и конечного состояний

$$p_0 SH = \nu R T_0, (5)$$

$$\left(p_0 + \frac{Mg}{S}\right)SH_1 = \nu RT_1. \tag{6}$$

Решая систему уравнений (2)-(6), получим

$$T_1 = T_0 \left(1 + \frac{\gamma - 1}{\gamma + 1} \frac{Mg}{p_0 S} \right) = T_0 \left(1 + \frac{\gamma - 1}{\gamma + 1} \alpha \right) = 317 \text{ K},$$
 (7)

$$H_1 = \frac{H}{(1 + Mg / p_0 S)} \left(1 + \frac{\gamma - 1}{\gamma + 1} \frac{Mg}{p_0 S} \right) = \frac{H}{(1 + \alpha)} \left(1 + \frac{\gamma - 1}{\gamma + 1} \alpha \right) = 17.7 \text{ cm.}$$
 (8)

2.4. [0.5 балла] Так как поршень продолжает находиться в положении равновесия, то давление

$$p_2 = p_0 + \frac{Mg}{S} = p_0 (1 + \alpha) = 1.99 \times 10^5 \,\text{Ta}.$$
 (9)

2.5. [0.5 балла] Через достаточно большой промежуток времени температура газа внутри сосуда сравняется с температурой окружающей среды, то есть станет равной

$$T_2 = T_0 = 273 \,\mathrm{K}.$$
 (10)

2.6. [0.5 балла] Высота H_2 находится с помощью (9) и (10), а также уравнения состояния газа

$$H_2 = \frac{p_0 S}{p_0 S + Mg} H = \frac{H}{1 + \alpha} = 15.2 \text{ cm}. \tag{11}$$

2.7. [2 балла] Уравнение адиабаты имеет вид

$$pV^{\gamma} = const, \qquad (12)$$

отсюда получаем

$$dp = -\gamma p \frac{dV}{V} \,. \tag{13}$$

Пусть поршень отклонился от положения равновесия на маленькую высоту x, тогда согласно (13) изменение давления равно

$$\delta p = -\gamma p_2 \frac{x}{H_2} = -\gamma \frac{(p_0 S + Mg)^2}{p_0 S^2 H} x.$$
 (14)

Уравнение движения поршня записывается так

$$M\ddot{x} = -\delta pS = -\gamma \frac{\left(p_0 S + Mg\right)^2}{p_0 SH} x, \tag{15}$$

откуда находим частоту малых колебаний

$$\omega = \left(p_0 S + Mg\right) \sqrt{\frac{\gamma}{p_0 SHM}} = (1 + \alpha) \sqrt{\frac{\gamma g}{\alpha H}} = 13.5 \,\Gamma \text{H}. \tag{16}$$

2.8. [1 балл] При движении с постоянной скоростью поршень продолжает находиться в положении равновесия, поэтому давление

$$p_3 = p_0 + \frac{Mg}{S} = p_0 (1 + \alpha) = 1.99 \times 10^5 \,\text{\Pia},$$
 (17)

то есть

$$A = p_0, \qquad f(\alpha) = 1 + \alpha \tag{18}$$

2.9 и 2.10. [З балла] Пусть в сосуде установится некоторая температура. Должен соблюдаться баланс числа частиц и энергии.

Закон сохранения числа частиц имеет вид

$$\frac{p_0 + \frac{Mg}{S}}{k_B T_3} uS = \frac{p_0 + \frac{Mg}{S}}{k_B T_3} \sqrt{\frac{8k_B T_3}{\pi m}} S_O - \frac{p_0}{k_B T_0} \sqrt{\frac{8k_B T_0}{\pi m}} S_O.$$
 (19)

В законе сохранения энергии надо учесть не только кинетическую, но и вращательную энергию каждой молекулы. Поэтому полная энергия, переносимая каждой молекулой, равна

$$W_{tot} = \overline{W} + W_{rot} = 2k_B T + k_B T = 3k_B T , \qquad (20)$$

тогда закон сохранения энергии записывается в виде

$$(p_0 S + Mg)u = \frac{p_0 + \frac{Mg}{S}}{k_B T_3} \sqrt{\frac{8k_B T_3}{\pi m}} 3k_B T_3 S_O - \frac{p_0}{k_B T_0} \sqrt{\frac{8k_B T_0}{\pi m}} 3k_B T_0 S_O,$$
(21)

Решая совместно (18) и (19), окончательно получим

$$u = \frac{6S_o}{S} \sqrt{\frac{2RT_0}{\pi\mu}} \left((\alpha + 1)\sqrt{4 + 2\alpha + \alpha^2} - 2 - 2\alpha - \alpha^2 \right) = 1.91 \times 10^{-3} \,\text{m/c}, \tag{22}$$

то есть

$$B = \frac{6S_o}{S} \sqrt{\frac{2RT_0}{\pi u}}, \qquad g(\alpha) = (\alpha + 1)\sqrt{4 + 2\alpha + \alpha^2} - 2 - 2\alpha - \alpha^2, \tag{23}$$

а температура

$$T_3 = T_0 \left(5 + 4\alpha + 2\alpha^2 - 2(\alpha + 1)\sqrt{4 + 2\alpha + \alpha^2} \right) = 116 \text{ K},$$
 (24)

то есть

$$C = T_0,$$
 $h(\alpha) = 5 + 4\alpha + 2\alpha^2 - 2(\alpha + 1)\sqrt{4 + 2\alpha + \alpha^2}.$ (25)

Схема оценивания

<u>№</u>	Содержание	баллы	
2.1	Формула (1)	0,25	0,5
	Численное значение p_1	0,25	
2.2	Формула (2)	0,25	1,5
	Формула (3)	0,25	
	Формула (4)	0,25	
	Формулы (5) и (6)	0,25	
	Формула (7)	0,25	
	Численное значение T_1	0,25	
2.3	Формула (8)	0,25	0,5
	Численное значение H_1	0,25	
2.4	Формула (9)	0,25	0,5
	Численное значение р2	0,25	
2.5	Формула (10)	0,25	0,5
	Численное значение T_2	0,25	- 0,5
2.6	Формула (11)	0,25	0,5
2.0	Численное значение H_2	0,25	- U,3
2.7			2.0
2.1	Формула (12) Формула (13)	0,25 0,25	2,0
	Формула (13) Формула (14)	0,23	
	Формула (14) Формула (15)	0,5	
	Формула (16)	0,25	
	Численное значение <i>ω</i>	0,25	
2.8	Формула (18) для А	0,25	1,0
	Формула (18) для $f(\alpha)$	0,25	
	Формула (17)	0,25	+
	Численное значение p_3	0,25	
2.9	Формула (19)		2.0
۷.۶	Формула (19) Формула (20)	0,25 0,5	2,0
	Формула (20) Формула (21)	0,3	-
	Формула (21) Формула (23) для В	0,25	-
	Формула (23) для $g(\alpha)$	0,25	1
	Формула (22)	0,25	\dashv
	Численное значение и	0,25	-
2.10	Формула для (25) для <i>С</i>	0,25	1,0
	Формула для (25) для $h(\alpha)$	0,25	-, •
	Формула (24)	0,25	-
	Численное значение и	0,25	-
	inotonnoo sha tonno u	0,23	
Итого			10,0

Задача З (10 баллов) Ядерная капля

3.1 [2 балла] Вычислим полную электростатическую энергию протонов в ядре. В рамках капельной модели заряд ядра Ze равномерно распределен внутри шара радиуса R так, что его объемная плотность всюду одинакова и равна

$$\rho_q = \frac{3Q}{4\pi R^3}.\tag{1}$$

Используя теорему Гаусса, найдем электрическое поле внутри и вне шара

$$E(r)4\pi r^2 = \frac{1}{\varepsilon_0} \rho_q \frac{4\pi}{3} r^3, \tag{2}$$

$$E(r)4\pi r^2 = \frac{1}{\varepsilon_0} \rho_q \frac{4\pi}{3} R^3. \tag{3}$$

Отсюда получаем

$$E(r) = \begin{cases} \frac{\rho_q r}{2\varepsilon_0}, & r \le R \\ \frac{\rho_q R^3}{2\varepsilon_0 r^2}, & r > R \end{cases}$$

$$(4)$$

Полная электростатическая энергия определяется интегралом

$$E_{C} = \int_{0}^{\infty} w 4\pi r^{2} dr = \int_{0}^{\infty} \frac{\varepsilon_{0} E^{2}}{2} 4\pi r^{2} dr = \frac{3Q^{2}}{20\pi\varepsilon_{0}R}.$$
 (5)

3.2 **[1 балл]** Из формулы (5), Q = Ze и $R(A) = R_0 A^{1/3}$ видим, что электростатической энергии соответствует третий член в полуэмпирической формуле Вайцзеккера, поэтому

$$a_3 \frac{Z^2}{A^{1/3}} = \frac{3Z^2 e}{20\pi\varepsilon_0 R_0 A^{1/3}},\tag{6}$$

откуда

$$R_0 = \frac{3e}{20\pi\varepsilon_0 a_3} = 1.2 \times 10^{-15} \,\mathrm{M}.\tag{7}$$

3.3 [1 балл] Плотность ядерного вещества определяется формулой

$$\rho_m = \frac{3Am}{4\pi R^3} = \frac{3m}{4\pi R_0^3} = 2.3 \times 10^{17} \,\text{kg/m}^3. \tag{8}$$

3.4 [1 балл] Поверхностная энергия зависит от поверхностного натяжения

$$E_{sur} = \sigma S = 4\pi\sigma R^2 = 4\pi\sigma R_0^2 A^{2/3}.$$
 (9)

Отсюда заключаем, что поверхностной энергии соответствует второй член полуэмпирической формулы Вайцзеккера

$$4\pi\sigma R_0^2 A^{2/3} = e a_2 A^{2/3},\tag{10}$$

откуда

$$\sigma = \frac{ea_2}{4\pi R_0^2} = 1.5 \times 10^{17} \,\text{H/m}.\tag{11}$$

3.5 [2 балла] Деление ядер становится энергетически выгодным, только если потенциальная энергия взаимодействия ядер уменьшается, то есть

$$E_p(A,Z) - E_p(kA,kZ) - E_p((1-k)A,(1-k)Z) > 0,$$
 (12)

откуда получаем

$$\frac{Z^2}{A} > f(k) = -\frac{a_2 \left(1 - k^{2/3} - (1 - k)^{2/3}\right)}{a_3 \left(1 - k^{5/3} - (1 - k)^{5/3}\right)}.$$
(13)

График функции f(k) представлен ниже.

3.6 **[0.5 балла]** Функция f(k) симметрична относительно точки k = 0.50, поэтому в этой точке и достигается минимум, что соответствует значению

$$(Z^2 / A)_0 = 16. (14)$$

3.7 **[0.5 балла]** Поскольку ядро трактуется как жидкость, его объем не должен измениться. Используя формулу для объема эллипсоида и учитывая, что $\varepsilon, \lambda \square$ 1, получаем

$$V = \frac{4\pi}{3}R^3 \left(1 + \varepsilon - 2\lambda\right) = \frac{4\pi}{3}R^3,\tag{15}$$

откуда

$$\varepsilon = 2\lambda$$
. (16)

3.8 **[2 балла]** На основании формул Тейлора при малых деформациях ядра с учетом (16) площадь поверхности жидкости возрастает на

$$\Delta S = \frac{32}{5} \pi R^2 \lambda^2 = \frac{32}{5} \pi R_0^2 A^{2/3} \lambda^2 \,, \tag{17}$$

а соответствующее увеличение поверхностной энергии равно

$$\Delta E_{surf} = \sigma \Delta S = \frac{32}{5} \pi \sigma R_0^2 A^{2/3} \lambda^2. \tag{18}$$

Кулоновская энергия взаимодействия протонов уменьшается на величину

$$\Delta E_C = \frac{3Z^2 e^2}{120\pi\varepsilon_0 R} \varepsilon(\varepsilon + \lambda) = \frac{3Z^2 e^2}{20\pi\varepsilon_0 R_0 A^{1/3}} \lambda^2.$$
 (19)

Ядро является неустойчивым, если выполняется условие

$$\Delta E_C > \Delta E_{surf} \,, \tag{20}$$

откуда

$$(Z^2/A)_{crtitcal} = \frac{128\pi^2 \varepsilon_0 \sigma R_0^3}{3e^2} = 37.$$
 (21)

Схема оценивания

№	Содержание	баллы	
3.1	Формула (1)	0.5	
	Формула (1)	0.5	2.0
	Формула (1)	0.5	2.0
	Формула (1)	0.5	
3.2	Формула (6)	0.5	
	Формула (7)	0.25	1.0
	Численное значение R_0	0.25	
3.3	Формула (8)	0.75	
3.3		0.75	1.0
	Численное значение $ ho_{\scriptscriptstyle m}$	0.23	
3.4	Формула (9)	0.25	
	Формула (10)	0.25	1.0
	Формула (11)	0.25	1.0
	Численное значение σ	0.25	
		•	
3.5	Формула (12)	0.5	2.0
	Формула (13)	0.5	
	График: ось Х подписана	0.25	
	График: ось У подписана	0.25	
	График: интервал по k от 0 до 1	0.25	
	График: разумные значения на графике	0.25	
3.6	Правильное значение <i>k</i>	0.25	
3.0	Правильное значение $(Z^2/A)_0$	0.25	0.5
	, ,0		
3.7	Формула (15)	0.25	0.5
	Формула (16)	0.25	
		<u> </u>	
3.8	Формула (17)	0.5	_
	Формула (18)	0.25	
	Формула (19)	0.25	
	Формула (20)	0.5	2.0
	Формула (21)	0.25	
	Численное значение $(Z^2 / A)_{critcal}$	0.25	
11			10.0
Итого			10.0