## Lecture #5

# Reading:

## 1.9-Atomic Orbitals

Topics: Hydrogen Atom Wavefunctions

I. Wavefunctions (orbitals) for the hydrogen atom  $(H\underline{\Psi} = \underline{E}\underline{\Psi})$ 

II. Shapes of H-atom wavefunctions: s orbitals

III. Radial probability distributions

#### ENERGY LEVELS (continued from Lecture #5)

The Rydberg formula can be used to calculate the frequency (and also the E or  $\lambda$ , using E = hv or  $\lambda$  = c/v) of light emitted or absorbed by any 1-electron atom or ion.

$$\begin{split} \nu &= \frac{Z^2 R_H}{h} \Biggl( \frac{1}{n_f^2} - \frac{1}{n_i^2} \Biggr) \\ &\qquad \nu &= \frac{Z^2 R_H}{h} \Biggl( \frac{1}{n_i^2} - \frac{1}{n_f^2} \Biggr) \\ &\qquad \qquad \text{for } n_f > n_f \end{split}$$

 $n_i > n_i$  in \_\_\_\_\_\_. Electrons absorb energy causing them to go from a lower to a higher E level.

n<sub>i</sub> > n<sub>f</sub> in \_\_\_\_\_\_. Electrons emit energy causing them to go from a higher to a lower E level.

#### I. WAVEFUNCTIONS (ORBITALS) FOR THE HYDROGEN ATOM

When solving  $H\Psi = E\Psi$ , the solutions are  $E_n$  and  $\Psi(r,\theta,\phi)$ .

 $\Psi(r,\theta,\phi)$  = stationary state wavefunction: time-independent In solutions for  $\Psi(r,\theta,\phi)$ , two new quantum numbers appear! A total of 3 quantum numbers are needed to describe a wavefunction in 3D.

- n ≡ principal quantum number
   n = 1, 2, 3 ... ... ∞
   determines binding energy
- l ≡ angular momentum quantum number

$$l = \frac{0, 1, 2, 3, \dots, n-1}{l \text{ is related to n}}$$
largest value of  $l = n - 1$ 
determines angular momentum

### m ≡ magnetic quantum number

To completely describe an orbital, we need to use all three quantum numbers:

$$\Psi_{nlm}(\mathbf{r},\theta,\phi)$$

An orbital is (the spatial part) of a wavefunction; n(shell) 1(subshell) m(orbital)

$$\ell = 0 \Rightarrow \underline{s}$$
 orbital  $\ell = 1 \Rightarrow \underline{p}$  orbital  $\ell = 2 \Rightarrow \underline{d}$  orbital  $\ell = 3 \Rightarrow \underline{f}$  orbital for  $\ell = 1$ :  $m = 0$   $\underline{p}_{\underline{x}}$  orbital,  $m = \pm 1$  states combine to give  $\underline{p}_{\underline{x}}$  and  $\underline{p}_{\underline{y}}$  orbitals

|                             | State label | wavefunction         | orbital | E <sub>n</sub>                  | $E_n[J]$                    |
|-----------------------------|-------------|----------------------|---------|---------------------------------|-----------------------------|
| $n = 1$ $\ell = 0$          | 100         | Ψ100                 | 1s      | -R <sub>H</sub> /1 <sup>2</sup> | -2.18 × 10 <sup>-18</sup> J |
| $\mathbf{m} = 0$            | 100         |                      |         |                                 |                             |
| n = 2                       |             |                      |         |                                 |                             |
| <b>!</b> = 0                | 200         | 200                  | 2s      | -R_H/2^2                        | $-5.45 \times 10^{-19}$ J   |
| m = 0                       |             |                      |         |                                 |                             |
| $n = 2$ $\ell = 1$          | 211         | 211                  | 2P_z    | -R H/2^2                        | -5.45 × 10 <sup>-19</sup> J |
| m = +1                      |             |                      |         |                                 |                             |
| $n = 2$ $\ell = 1$ $m = 0$  | 210         | Ψ210                 | 2P_x    | -R <sub>H</sub> /2 <sup>2</sup> | -5.45 × 10 <sup>-19</sup> J |
| $n = 2$ $\ell = 1$ $m = -1$ | 21-1        | $\psi_{21\text{-}1}$ | 2P_y    | -R <sub>H</sub> /2 <sup>2</sup> | -5.45 × 10 <sup>-19</sup> J |

For a  $\frac{\text{H-atom}(}{}$  orbitals with the same n value have the same energy:  $E = -R_{H}/n^{2}$ .

- Degenerate 

  having the same energy
- For any principle quantum number, n, there are \_\_n^2 degenerate orbitals in hydrogen (or any other 1 electron atom).

#### II. SHAPES OF H-ATOM WAVEFUNCTIONS: S ORBITALS

#### THE PHYSICAL INTERPRETATION OF A WAVEFUNCTION

Max Born (German physicist, 1882-1970). The probability of finding a particle (the electron!) in a defined region is proportional to the square of the wavefunction.

$$[\Psi_{\text{nlm}}(r,\theta,\varphi)]^2 = PROBABLITY \ DENSITY \\ probability of finding an electron per unit volume at r, \theta, \varphi$$

To consider the shapes of orbitals, let's first rewrite the wavefunction as the product of a radial wavefunction,  $R_{nl}(r)$ , and an angular wavefunction  $Y_{lm}(\theta,\phi)$ 

$$\Psi_{nim}(\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\phi})] = \underbrace{R_n I(\mathbf{r})}_{\mathbf{x}} \times \underbrace{Y_{-}Im(\cdot, \cdot)}_{\mathbf{x}}$$

for a ground state H-atom:

where 
$$a_0 =$$
 Bohr radius (a constant) = 52.9 pm (

- s-orbitals are spherically symmetrical independent of \_\_\_\_\_ and \_\_\_\_.

Probability density plot of s orbitals: density of dots represent probability density



NODE: A value for r,  $\theta$ , or  $\phi$  for which  $\Psi$  (and  $\Psi^2$ ) = \_\_\_\_\_. In general, an orbital has n-1 nodes.

RADIAL NODE: A value for  $\underline{\hspace{0.1cm}}^{\Gamma}$  for which  $\Psi$  (and  $\Psi^2$ ) = 0. In other words, a radial node is a distance from the radius for which there is no probability of finding an electron.

In general, an orbital has n-1-l radial nodes.

3s: 
$$\frac{2}{1} - \frac{1}{1} - \frac{0}{1} = \frac{2}{1}$$
 radial nodes

#### III. RADIAL PROBABILITY DISTRIBUTION

Probability of finding an electron in a spherical shell of thickness dr at a distance r from origin.

Radial Probability Distribution (for s orbitals ONLY) =  $4\pi r^2 \Psi^2 dr$ 

We can plot the radial probability distribution as a function of radius. Radial probability distribution for a hydrogen 1s orbital:



Maximum probability or most probable value of r is denoted r.m.p.

$$r_{mp}$$
 for a 1s H atom =  $a_0 = 0.529 \times 10^{-10} \,\text{m} = 0.529 \,\text{Å}$   $a_0 \equiv BOHR$  radius

1913 Niels Bohr (Danish scientist) predicted quantized levels for H atom prior to



But, an electron does not have well-defined orbits! The best we can do is to find the probability of finding e<sup>-</sup> at some position r.

Knowing only probability is one of main consequences of Quantum Mechanics. Unlike CM, QM is non-deterministic. The uncertainty principle forbids us from knowing r exactly.



5