Chapter 2 Simulation Examples

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simulation steps using Simulation Table

- Determine the characteristics of each of the inputs to the simulation (probability distributions).
- Construct a simulation table (repetition 1).
- For each repetition *i*, generate a value for the inputs, and evaluate function, calculating a value of response y_i.

Repetitions	Inputs				Response
	X _{i1}	X _{i2}			y _i
1					
2					
n					

Example 2.1 : Grocery Center

- One checkout counter
- Arrival time between customers are 1 to 8 minutes (equal probability)
- Service time vary from 1 to 6 (service time table)
- We are going to analysis for 100 customers.

A

Outputs

- Average waiting time=174/100=1.74 minutes
- The probability that a customer has to wait=0.46
- The proportion of idle time of the server=101/418=0.24
- Average service time=317/100=3.17

٩

Question How can we compute the π value?