Teorie grafů

18. přednáška z LGR

Obsah

- Orientované grafy
 - Stupně vrcholů, orientované tahy a cesty
 - Eulerovské orientované grafy
 - Kořenové stromy
- 2 Acyklické grafy
 - Topologické očíslování vrcholů
 - Jádro grafu

Obsah

- Orientované grafy
 - Stupně vrcholů, orientované tahy a cesty
 - Eulerovské orientované grafy
 - Kořenové stromy
- 2 Acyklické grafy
 - Topologické očíslování vrcholů
 - Jádro grafu

Definice č. 1

Orientovaný graf G je dvojice (V, E), kde

- V je neprázdná konečná množina, prvky nazýváme vrcholy,
- $E \subseteq V \times V$ je množina (některých) uspořádaných dvojic prvků z množiny V, její prvky nazýváme *orientované hrany*.

Pokud e=(u,v) je hrana, říkáme, že u je počáteční vrchol, v je koncový vrchol hrany e a že hrana e je incidentní s vrcholy u,v. Hranu e=(u,v) někdy značíme jen e=uv.

Hrana e = (v, v) se nazývá *smyčka*, hrany $e_1 = (u, v)$ a $e_2 = (v, u)$ jsou *antiparalelní hrany*.

Definice č. 1

Orientovaný graf G je dvojice (V, E), kde

- V je neprázdná konečná množina, prvky nazýváme vrcholy,
- $E \subseteq V \times V$ je množina (některých) uspořádaných dvojic prvků z množiny V, její prvky nazýváme *orientované hrany*.

Pokud e=(u,v) je hrana, říkáme, že u je počáteční vrchol, v je koncový vrchol hrany e a že hrana e je incidentní s vrcholy u,v. Hranu e=(u,v) někdy značíme jen e=uv.

Hrana e = (v, v) se nazývá *smyčka*, hrany $e_1 = (u, v)$ a $e_2 = (v, u)$ jsou *antiparalelní hrany*.

Definice č. 2

Orientovaný graf G je trojice (V, E, ε) , kde

- V je neprázdná konečná množina vrcholů,
- E je konečná množina orientovaných hran,
- ε je přiřazení, které každé hraně $e \in E$ přiřazuje uspořádanou dvojici (u, v), kde $u, v \in V$, a nazývá se *vztah incidence*.

Tato definice dovoluje i paralelní hrany a rozlišuje je jmény hran.

Definice č. 2

Orientovaný graf G je trojice (V, E, ε) , kde

- V je neprázdná konečná množina vrcholů,
- E je konečná množina orientovaných hran,
- ε je přiřazení, které každé hraně $e \in E$ přiřazuje uspořádanou dvojici (u, v), kde $u, v \in V$, a nazývá se *vztah incidence*.

Tato definice dovoluje i paralelní hrany a rozlišuje je jmény hran.

Úmluva

Všimněme si, že definice č. 1 dovoluje smyčky, a z pohledu definice č. 2 vymezuje prosté orientované grafy.

Nebude-li řečeno jinak, budeme používat definici č. 1 a orientovaný graf pro nás bude prostý orientovaný graf, tedy dvojice G = (V, E).

Poznámka

Prostý orientovaný graf G = (V, E) je vlastně binární relace na množině V.

Definice

Nechť G je orienovaný graf obsahující vrchol v.

Vstupní stupeň vrcholu v je počet hran s koncovým vrcholem v, značí se $d_{in}(v)$, anebo deg $_{in}(v)$ nebo $d^-(v)$.

Výstupní stupeň vrcholu v je počet hran s počátečním vrcholem v, značí se $d_{out}(v)$, anebo $\deg_{out}(v)$ nebo $d^+(v)$.

Stupeň vrcholu v je pak $d(v) = d_{in}(v) + d_{out}(v)$.

Lemma

Pro každý graf G platí $\sum_{v \in V} d_{in}(v) = |E| = \sum_{v \in V} d_{out}(v)$

Definice

Nechť G je orienovaný graf obsahující vrchol v.

Vstupní stupeň vrcholu v je počet hran s koncovým vrcholem v, značí se $d_{in}(v)$, anebo deg $_{in}(v)$ nebo $d^{-}(v)$.

Výstupní stupeň vrcholu v je počet hran s počátečním vrcholem v, značí se $d_{out}(v)$, anebo $\deg_{out}(v)$ nebo $d^+(v)$.

Stupeň vrcholu v je pak $d(v) = d_{in}(v) + d_{out}(v)$.

Lemma

Pro každý graf G platí $\sum_{v \in V} d_{in}(v) = |E| = \sum_{v \in V} d_{out}(v)$.

Definice

- Orientovaný sled (délky k) v grafu G je posloupnost vrcholů a hran $v_0, e_1, v_1, e_2, \ldots, v_{k-1}, e_k, v_k$ taková, že hrana $e_i = (v_{i-1}, v_i)$ pro každé $i = 1, 2, \ldots, k$.

 Jestliže $v_0 = v_k$, pak se jedná o uzavřený orientovaný sled.
- Orientovaný tah v grafu G je orientovaný sled, ve kterém se neopakují hrany.
- Orientovaná cesta v grafu G je orientovaný tah, ve kterém se neopakují vrcholy (s tou výjimkou, že může platit $v_0 = v_k$).
- Cyklus v grafu *G* je uzavřená orientovaná cesta, která má aspoň jednu hranu.

Poznámky

- 1) Orientovaná cesta či cyklus v grafu určují podgraf grafu *G*, neboť se v nich neopakují vrcholy ani hrany. Budeme s těmito pojmy pracovat opět podle potřeby buď jako s posloupností vrcholů a hran, nebo jako s podgrafem skládajícím se z těchto vrcholů a hran.
- 2) V orientovaném grafu mají svůj význam i původní neorientované pojmy sled, tah, cesta (kde každá hrana e_i je incidentní s vrcholy v_{i-1} a v_i , přičemž nezáleží na tom, zda je hrana orientovaná po směru, anebo proti směru sledu, tahu, cesty).

Lemma (o zkrácení na orientovanou cestu)

Pokud v grafu G existuje orientovaný sled z vrcholu u do vrcholu v, pak v něm existuje i orientovaná cesta z u do v, která není delší než daný orientovaný sled.

Důsledek: Uzavřený orientovaný (netriviální) sled obsahuje cyklus.

Definice

Vrchol v je *orientovaně dostupný* z vrcholu u, pokud v grafu *G* existuje orientovaná cesta z vrcholu u do vrcholu v.

Poznámka

Relace orientované dostupnosti je reflexivní a transitivní, ale nemusí být symetrická.

Lemma (o zkrácení na orientovanou cestu)

Pokud v grafu G existuje orientovaný sled z vrcholu u do vrcholu v, pak v něm existuje i orientovaná cesta z u do v, která není delší než daný orientovaný sled.

Důsledek: Uzavřený orientovaný (netriviální) sled obsahuje cyklus.

Definice

Vrchol v je *orientovaně dostupný* z vrcholu u, pokud v grafu G existuje orientovaná cesta z vrcholu u do vrcholu v.

Poznámka

Relace orientované dostupnosti je reflexivní a transitivní, ale nemusí být symetrická.

Definice

Graf G je silně souvislý, pokud pro každé dva jeho vrcholy u, v existuje orientovaná cesta z u do v (a tudíž i zpět).

Definice

Každý maximální podgraf grafu *G*, který je silně souvislý, se nazývá *komponenta silné souvislosti* grafu *G*.

Poznámka

Komponenta silné souvislosti je jednoznačně určena množinou svých vrcholů, je to podgraf indukovaný danou množinou vrcholů.

Definice

Eulerovský tah v orientovaném grafu *G* je orientovaný tah, který obsahuje všechny hrany (každou jednou) a všechny vrcholy grafu.

Definice

Orientovaný graf, ve kterém existuje uzavřený eulerovský tah, se nazývá *eulerovský orientovaný graf*.

Tvrzeni

Orientovaný graf je eulerovský, právě když je souvislý a pro každý jeho vrchol platí: $d_{in}(v) = d_{out}(v)$

Definice

Eulerovský tah v orientovaném grafu *G* je orientovaný tah, který obsahuje všechny hrany (každou jednou) a všechny vrcholy grafu.

Definice

Orientovaný graf, ve kterém existuje uzavřený eulerovský tah, se nazývá *eulerovský orientovaný graf*.

Tvrzení

Orientovaný graf je eulerovský, právě když je souvislý a pro každý jeho vrchol platí: $d_{in}(v) = d_{out}(v)$

Tvrzení

Orientovaný graf obsahuje otevřený eulerovský tah, právě když je souvislý a existují v něm dva vrcholy v a w, pro které platí $d_{out}(v) = d_{in}(v) + 1$, $d_{in}(w) = d_{out}(w) + 1$, přičemž všechny ostatní vrcholy splňují $d_{in}(u) = d_{out}(u)$.

Poznámka

Pro hledání eulerovského tahu v orientovaném grafu funguje stejný algoritmus jako v neorientovaném grafu, pouze hrany musíme do tahu přidávat po směru.

Tvrzení

Orientovaný graf obsahuje otevřený eulerovský tah, právě když je souvislý a existují v něm dva vrcholy v a w, pro které platí $d_{out}(v) = d_{in}(v) + 1$, $d_{in}(w) = d_{out}(w) + 1$, přičemž všechny ostatní vrcholy splňují $d_{in}(u) = d_{out}(u)$.

Poznámka

Pro hledání eulerovského tahu v orientovaném grafu funguje stejný algoritmus jako v neorientovaném grafu, pouze hrany musíme do tahu přidávat po směru.

Definice

Kořen orientovaného grafu je vrchol, z něhož vede orientovaná cesta do každého vrcholu grafu.

Tvrzení

Orientovaný graf je silně souvislý, právě když každý jeho vrchol je kořenem.

Definice

Orientovaný graf je kořenový strom, pokud je to strom a má kořen.

Tvrzení

Kořenový strom má jen jeden kořen. Navíc v kořenovém stromě je kořen jediným vrcholem, který má $d_{in}(v) = 0$.

Poznámka

Pojem strom je neorientovaný - vyžaduje (slabou) souvislost a neexistenci kružnic. Pozor na anglickou a českou terminologi

- acyclic graph = graf bez kružnic
- directed acyclic graph = (orientovaný) acyklický graf

Definice

Orientovaný graf je kořenový strom, pokud je to strom a má kořen.

Tvrzení

Kořenový strom má jen jeden kořen. Navíc v kořenovém stromě je kořen jediným vrcholem, který má $d_{in}(v) = 0$.

Poznámka

Pojem strom je neorientovaný - vyžaduje (slabou) souvislost a neexistenci kružnic. Pozor na anglickou a českou terminologii:

- acyclic graph = graf bez kružnic
- directed acyclic graph = (orientovaný) acyklický graf

Poznámka

Termín kořenový strom se používá i u neorientovaných stromů, znamená strom s vyznačeným vrcholem (orientace je implicitně míněna od kořene k listům). Takto lze každý strom jednoznačně zakořenit v libovolném vrcholu.

Hloubka (výška) stromu je délka nejdelší cesty od kořene k listu.

Příklad

Existují čtyři neisomorfní kořenové stromy o čtyřech vrcholech.

Poznámka

Termín kořenový strom se používá i u neorientovaných stromů, znamená strom s vyznačeným vrcholem (orientace je implicitně míněna od kořene k listům). Takto lze každý strom jednoznačně zakořenit v libovolném vrcholu.

Hloubka (výška) stromu je délka nejdelší cesty od kořene k listu.

Příklad

Existují čtyři neisomorfní kořenové stromy o čtyřech vrcholech.

Definice

Orientovaný graf je *acyklický*, jestliže neobsahuje žádný cyklus.

Tvrzeni

V acyklickém grafu je aspoň jeden vrchol s $d_{in}(v) = 0$ (tzv. zdroj) a aspoň jeden vrchol s $d_{out}(v) = 0$ (tzv. výlevka).

Definice

Orientovaný graf je *acyklický*, jestliže neobsahuje žádný cyklus.

Tvrzení

V acyklickém grafu je aspoň jeden vrchol s $d_{in}(v) = 0$ (tzv. zdroj) a aspoň jeden vrchol s $d_{out}(v) = 0$ (tzv. výlevka).

Definice

Očíslování vrcholů v_1, v_2, \ldots, v_n orientovaného grafu G se nazývá $topologické očíslování vrcholů, jestliže pro každou hranu <math>e = (v_i, v_j)$ platí i < j, tj. počáteční vrchol má menší číslo než koncový vrchol.

Tvrzeni

Orientovaný graf je acyklický, právě když má topologické očíslování vrcholů.

Definice

Očíslování vrcholů v_1, v_2, \ldots, v_n orientovaného grafu G se nazývá $topologické očíslování vrcholů, jestliže pro každou hranu <math>e = (v_i, v_j)$ platí i < j, tj. počáteční vrchol má menší číslo než koncový vrchol.

Tvrzení

Orientovaný graf je acyklický, právě když má topologické očíslování vrcholů.

Algoritmus na topologické očíslování vrcholů

Vstup: acyklický orientovaný graf G = (V, E)

Výstup: topologické očíslování vrcholů v_1, v_2, \dots, v_n

Myšlenka algoritmu: Očísluje nejmenším možným číslem vrchol v se vstupním stupněm $d_{in}(v)=0$ a utrhne ho z grafu (samozřejmě i s hranami). Graf G-v je opět acyklický, postup můžeme opakovat, dokud nejsou očíslovány všechny vrcholy.

Přitom trhání vrcholu nemusíme dělat v datové struktuře grafu G, stačí pouze aktualizovat vstupní stupně vrcholů.

Algoritmus na topologické očíslování vrcholů

- **1** Spočítáme vstupní stupně $d_{in}(v)$ pro všechny $v \in V$.
- ② Položíme $M := \{v \mid d_{in}(v) = 0\}, i := 1.$
- **3** Dokud $M \neq \emptyset$ opakujeme:
 - Vybereme nějaký $v \in M$ a odstraníme ho z M. Položíme $v_i := v$, i := i + 1.
 - Pro každou hranu e = (v, w) s počátečním vrcholem v provedeme:
 - $d_{in}(w) \leftarrow d_{in}(w) 1$,
 - když $d_{in}(w) = 0$, tak přidáme w do M.
- **1** Topologické očíslování vrcholů je v_1, v_2, \ldots, v_n .

Korektnost algoritmu

- Terminace variant = počet očíslovaných vrcholů.
 (Protože všechny podgrafy jsou acyklické, je množina M neprázdná, dokud nejsou očíslovány všechny vrcholy. Přitom v každém kroku je očíslován jeden další vrchol.)
- Parciální korektnost invariant = "Očíslování je topologickým očíslováním vrcholů podgrafu indukovaného množinou již očíslovaných vrcholů." (Lze dokázat indukcí.)
 Jelikož algoritmus zastaví, až když jsou očíslovány všechny vrcholy, získáme topologické očíslování vrcholů grafu G.

Poznámka

Algoritmus rozpozná nepřípustný vstup - pokud graf G není acyklický, bude množina M prázdná dříve, než budou očíslovány všechny vrcholy.

Použití topologického očíslování vrcholů

Ostré částečné uspořádání \prec na množině V odpovídá acyklickému orientovanému grafu G=(V,E): $(u,v)\in E$, právě když $u\prec v$. Fakt, že vrcholy acyklického grafu lze topologicky očíslovat, umožňuje dodefinovat porovnání pro všechny dvojice prvků. Každá částečně uspořádaná množina může být vnořena do lineárně uspořádané množiny.

Poznámka

Algoritmus rozpozná nepřípustný vstup - pokud graf G není acyklický, bude množina M prázdná dříve, než budou očíslovány všechny vrcholy.

Použití topologického očíslování vrcholů

Ostré částečné uspořádání \prec na množině V odpovídá acyklickému orientovanému grafu G=(V,E): $(u,v)\in E$, právě když $u\prec v$. Fakt, že vrcholy acyklického grafu lze topologicky očíslovat, umožňuje dodefinovat porovnání pro všechny dvojice prvků. Každá částečně uspořádaná množina může být vnořena do lineárně uspořádané množiny.

Algoritmus na topologické očíslování vrcholů

Vstup: Orientovaný graf G = (V, E), kde n = |V|, m = |E|.

Pro každý vrchol v je zadán seznam A(v)

všech hran s počátečním vrcholem v.

Výstup: Topologické očíslování vrcholů $(v_1, v_2 ..., v_n)$ nebo hláška, že graf není acyklický.

Datové struktury: Pole D délky n, kde $D(v)=d_{\it in}(v)$ v podgrafu

indukovaném ještě neočíslovanými vrcholy.

Množina M vrcholů se vstupním stupněm nula.

Algoritmus na topologické očíslování vrcholů

(inicializace)

- for all $v \in V$ do $D(v) \leftarrow 0$ enddo
- for all $e = (u, v) \in E$ do $D(v) \leftarrow D(v) + 1$ enddo
- $M \leftarrow \emptyset$
- for all $v \in V$ do if D(v) = 0 then $M \leftarrow M \cup \{v\}$ endif enddo
- $i \leftarrow 0$

Algoritmus na topologické očíslování vrcholů

(číslování vrcholů)

- while $M \neq \emptyset$ do
 - vyber $v \in M$ (a očísluj ho a utrhni viz dále)
 - $i \leftarrow i + 1, v_i \leftarrow v$
 - $M \leftarrow M \setminus \{v\}$
 - for all $e = (v, w) \in A(v)$ do
 - $D(w) \leftarrow D(w) 1$
 - if D(w) = 0 then $M \leftarrow M \cup \{w\}$ endif enddo
 - enddo
- if i = n then output (v_1, v_2, \dots, v_n) else output "G není acyklický" endif

Časová náročnost algoritmu

Výše uvedený algoritmus na topologické očíslování vrcholů pracuje v čase O(m+n).

Každou hranu zpracujeme jednou při inicializaci pole D a nejvýše jednou při jejím utrhnutí. Representace grafu je volena tak, abychom snadno našli hrany s počátečním vrcholem v, když tento vrchol chceme utrhnout.

Definice

Jádro orientovaného grafu G = (V, E) je množina $J \subseteq V$ jeho vrcholů taková, že

- 1 mezi libovolnými dvěma vrcholy z J nevede žádná hrana,
- $oldsymbol{2}$ z každého vrcholu mimo J vede aspoň jedna hrana do J.

Orientovaný graf může mít žádné, jedno či více jader. Např. cyklus délky tři nemá jádro, zatímco cyklus délky čtyři má jádra dvě.

Tvrzení

Acyklický orientovaný graf má jádro a to je určeno jednoznačně.

Algoritmus na hledání jádra

K nalezení jádra lze použít topologické očíslování vrcholů od konce: Poslední vrchol dáme do jádra a vrcholy, ze kterých do něj vede hrana, dáme mimo jádro. To opakujeme, dokud nejsou všechny vrcholy zařazeny do jádra či mimo něj.

Korektnost algoritmu

- Terminace variant = počet zařazených vrcholů. (Při každém kroku je zařazen aspoň jeden další vrchol.)
- Parciální korektnost invariant = "Aktuální množina J je jádro v podgrafu indukovaném množinou již zařazených vrcholů." (Lze dokázat indukcí.) Jelikož algoritmus zastaví, až když jsou zařazeny všechny
 - vrcholy, získáme jádro celého grafu G.

Algoritmus na hledání jádra

Vstup: Acyklický graf G = (V, E), kde n = |V|, m = |E|.

Pro každý vrchol v je zadán seznam A(v)

všech hran s počátečním vrcholem v.

Výstup: Množina *J* vrcholů jádra grafu.

Datové struktury: Pro každý vrchol v bude seznam B(v)

obsahovat všechny hrany s koncovým vrcholem v.

Booleovské pole P délky n označuje, zda může vrchol v být v jádře.

Algoritmus na hledání jádra

(inicializace)

- najdi topologické očíslování vrcholů (v₁, v₂..., v_n)
- for all $e = (v, w) \in E$ do $B(w) \leftarrow B(w) \cup \{v\}$ enddo
- $J \leftarrow \emptyset$
- for all $v \in V$ do $P(v) \leftarrow true$ enddo

(zařazení vrcholů)

- for $i \leftarrow n$ downto 1 do
 - if $P(v_i)$ then
 - $J \leftarrow J \cup \{v_i\}$
 - for all $e = (w, v_i) \in B(v_i)$ do $P(w) \leftarrow false$ enddo endif
 - enddo
- output *J*

Časová náročnost algoritmu

Výše uvedený algoritmus na hledání jádra acyklického grafu pracuje v čase O(m+n).

Přitom topologické uspořádání vrcholů najdeme v čase O(m+n), rozdělení hran do seznamů podle koncových vrcholů trvá čas O(m), zařazování vrcholů do jádra či mimo jádro vyžaduje čas O(m+n).

Použití jádra orientovaného grafu

Jádro orientovaného grafu se používá v teorii her.

Hru hrají dva hráči a prohraje ten, kdo už nemá další tah.

Orientovaný graf pro hru G=(V,E) má za vrcholy situace hry a orientované hrany $e=(S_1,S_2)$ jsou tam, kde ze situace S_1 lze přejít jedním tahem do situace S_2 .

Má-li graf jádro, pak existuje neprohrávající strategie a tou je "táhnout vždy do jádra". Pokud je graf acyklický, tak je tato strategie dokonce vyhrávající (s počáteční situací mimo jádro by vyhrál první hráč a naopak).

Literatura

- J. Demel: Grafy a jejich aplikace, Academia, 2015.
- J. Matoušek, J. Nešetřil: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum, 2000.
- M. Dostál: Cvičení k přednášce LGR (najdete v nich důkazy některých tvrzení z přednášky a mnoho dalších příkladů).