પ્રશ્ન 1(અ) [3 ગુણ]

8051 માઇક્રોકન્ટ્રોલરના ફીચર્સની યાદી બનાવો.

જવાબ:

8051 માઇક્રોકન્ટ્રોલરમાં કેટલાક મહત્વના ફીચર્સ છે:

ફીચર	વર્ણન	
СРИ	Control applications भाटे optimized 8-bit CPU	
Memory	4KB internal ROM, 128 bytes internal RAM	
I/O Ports	4 bidirectional 8-bit I/O ports (P0-P3)	
Timers	બે 16-bit timer/counters (Timer 0 & Timer 1)	
Interrupts	2 priority levels સાથે 5 interrupt sources	
Serial Port	Serial communication માટે full duplex UART	

મેમરી ટ્રીક: "CPU Memory Input-Output Timers Interrupts Serial" (C-MIT-IS)

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યા આપો: Opcode, Operand, Instruction cycle, Machine cycle

જવાબ:

910€	વ્યાખ્યા
Opcode	Operation code જે કરવાનું operation specify કરે છે
Operand	Data અથવા address જેના પર operation કરવામાં આવે છે
Instruction Cycle	Instruction ને fetch, decode અને execute કરવાની સંપૂર્ણ પ્રક્રિયા
Machine Cycle	Memory અથવા I/O device ને access કરવા માટે જરૂરી સમય

ડાયાગ્રામ:

મેમરી ટ્રીક: "OOID" - Opcode Operand Instruction-cycle Data-cycle

પ્રશ્ન 1(ક) [7 ગુણ]

Von Neumann અને Harvard Architecture ની સરખામણી કરો.

જવાબ:

Parameter	Von Neumann	Harvard
Memory Structure	Program અને data માટે single memory	Program અને data માટે separate memory
Bus System	Single bus system	Program અને data માટે separate bus
Speed	Bus conflicts થી slower	Simultaneous access થી faster
Cost	Lower cost	Higher cost
Complexity	Simple design	Complex design
Examples	8085, x86 processors	8051, DSP processors

ડાયાગ્રામ:

મેમરી ટ્રીક: "VSBSC vs HSDFC" (Von-Single-Bus-Simple-Cheap vs Harvard-Separate-Dual-Fast-Complex)

પ્રશ્ન 1(ક) OR [7 ગુણ]

RISC અને CISC ની સરખામણી કરો.

જવાબ:

Parameter RISC		CISC
Instruction Set	Reduced, simple instructions	Complex instruction set
Instruction Size	Fixed size instructions	Variable size instructions
Execution Time	Single clock cycle per instruction	Multiple clock cycles
Memory Access	Load/Store architecture	Memory-to-memory operations
Compiler	Complex compiler જરૂરી	Simple compiler
Examples	ARM, MIPS	8085, x86

ડાયાગ્રામ:

મેમરી ટ્રીક: "RISC-SFS vs CISC-CSS" (Simple-Fast-Complex vs Complex-Slow-Simple)

પ્રશ્ન 2(અ) [3 ગુણ]

8085 માં ઉપલબ્ધ 16-bit Registers ની યાદી બનાવો અને તેનું કાર્ય સમજાવો.

જવાબ:

Register	รเน้
PC (Program Counter)	Next instruction address નો pointer
SP (Stack Pointer)	Memory मां stack ना top नों pointer
BC, DE, HL	Data storage માટે general purpose register pairs

- PC: દરેક instruction fetch પછી automatically increment થાય છે
- **SP**: PUSH operations દરમિયાન decrement, POP દરમિયાન increment થાય છે
- **Register Pairs**: 16-bit addresses અથવા data store કરી શકે છે

મેમરી ટ્રીક: "PC SP BDH" (Program-Counter Stack-Pointer BC-DE-HL)

પ્રશ્ન 2(બ) [4 ગુણ]

8085 માં Address અને Data Bus ડી-મલ્ટિપ્લેક્સિંગ સમજાવો.

જવાબ:

De-multiplexing AD0-AD7 pins માંથી address અને data signals ને અલગ કરે છે.

પ્રક્રિયા:

- ALE (Address Latch Enable) signal આ પ્રક્રિયાને control કરે છે
- T1 state દરમિયાન: AD0-AD7 માં lower 8-bit address હોય છે
- ALE HIGH જાય છે: Address external latch (74LS373) માં latch થાય છે
- **T2-T3 દરમિયાન**: AD0-AD7 data bus બને છે

ડાયાગ્રામ:

મેમરી ટ્રીક: "ALE Latches Address Low"

પ્રશ્ન 2(ક) [7 ગુણ]

આકૃતિની મદદથી 8085 નો Pin Diagram સમજાવો.

જવાબ:

8085 એ 40-pin microprocessor છે જેમાં નીચેનું pin configuration છે:

Pin Group	รเน้	
AD0-AD7	Multiplexed Address/Data bus (Lower 8-bit)	
A8-A15	Higher order Address bus	
ALE	Address Latch Enable signal	
RD, WR	Read અને Write control signals	
IO/M	I/O અથવા Memory operation indicator	
S0, S1	Status signals	

Pin Diagram:

```
SID -- | 5 8085 36 | -- RESET IN
 TRAP -- | 6
              35 -- READY
RST7.5--|7
              34|-- IO/M
RST6.5-- 8
             33 | -- S1
              32 -- RD
RST5.5--|9
INTR -- 10
              31 -- WR
INTA -- | 11
             30 -- ALE
 AD0 -- 12
             29 | -- S0
             28 -- A15
 AD1 -- 13
 AD2 -- 14
             27|-- A14
             26|-- A13
 AD3 -- 15
 AD4 -- 16
             25 -- A12
 AD5 -- 17
             24 | -- A11
 AD6 -- 18
             23 -- A10
 AD7 -- 19
             22 | -- A9
 Vss -- 20
              21 | -- A8
       +----+
```

મુખ્ય વિશેષતાઓ:

- 40-pin DIP package
- Multiplexed bus pin count ยะเร้ છ်
- Control signals timing અને operation માટે
- Interrupt pins external device communication หเร้

મેમરી ટ્રીક: "Address Data Control Power Interrupt" (ADCPI)

પ્રશ્ન 2(અ) OR [3 ગુણ]

8085 માં Instruction Fetching Operation સમજાવો.

જવાબ:

Instruction fetching એ instruction cycle નું પહેલું પગલું છે:

પગલાં:

- 1. **PC contents** address bus (A0-A15) પર મૂકવામાં આવે છે
- 2. **ALE signal** high જાય છે address latch કરવા માટે
- 3. RD signal low જાય છે memory read કરવા માટે
- 4. **Instruction** memory માંથી data bus પર fetch થાય છે
- 5. **PC increment** થાય છે next instruction માટે

Timing:

- Machine cycle ના **T1 અને T2** states દરમિયાન થાય છે
- Simple instructions માટે **4 clock cycles** લે છે

ਮੇਮਣੀ ਟ੍ਰੀs: "PC ALE RD Fetch Increment" (PARFI)

પ્રશ્ન 2(બ) OR [4 ગુણ]

8085 નો Flag Register સમજાવો.

જવાબ:

Flag Register arithmetic/logical operations પછી status information store કરે છે:

Bit	Flag	รเช้
D7	S (Sign)	Result negative હોય તો set થાય છે
D6	Z (Zero)	Result zero હોય તો set થાય છે
D5	-	Use થતું નથી
D4	AC (Auxiliary Carry)	Bit 3 થી 4 માં carry હોય તો set
D3	-	Use થતું નથી
D2	P (Parity)	Result માં even parity હોય તો set
D1	-	Use થતું નથી
D0	CY (Carry)	Carry/borrow generate થાય તો set

ડાયાગ્રામ:

```
D7 D6 D5 D4 D3 D2 D1 D0
+---+---+---+---+---+
| S | Z | X | AC | X | P | X | CY |
+---+---+---+---+----+
```

મેમરી ટ્રીક: "S-Z-X-AC-X-P-X-CY"

પ્રશ્ન 2(ક) OR [7 ગુણ]

આકૃતિની મદદથી 8085 નું Architecture સમજાવો.

જવાબ:

8085 architecture หi ร้อยเร functional blocks છ่:

મુખ્ય Components:

- ALU (Arithmetic Logic Unit): Arithmetic અને logical operations કરે છે
- **Registers**: Data અને addresses temporarily store કરે છે
- **Control Unit**: Operation માટે control signals generate કરે છે
- **Address/Data Bus**: External devices સાથે communicate કરે છે

Block Diagram:

મુખ્ય વિશેષતાઓ:

- **8-bit microprocessor** 16-bit address bus સાથે
- Von Neumann architecture shared bus સાથે
- Register-based operations faster execution માટે
- Interrupt capability real-time applications માટે

મેમરી ટ્રીક: "ALU Registers Control Address Data" (ARCAD)

પ્રશ્ન 3(અ) [3 ગુણ]

8051 માઇક્રોકન્ટ્રોલરની Internal RAM Organization સમજાવો.

જવાબ:

8051 માં 128 bytes નું internal RAM આ પ્રમાણે organized છે:

Address Range	હેતુ
00H-1FH	Register Banks (4 banks, ะरेธभां 8 registers)
20H-2FH	Bit Addressable Area (16 bytes)
30H-7FH	General Purpose RAM (80 bytes)

Organization:

• Bank 0: 00H-07H (Default register bank)

Bank 1: 08H-0FHBank 2: 10H-17H

• Bank 3: 18H-1FH

ડાયાગ્રામ:

ਮੇਮਣੀ ਟ੍ਰੀs: "Register Bit General" (RBG)

પ્રશ્ન 3(બ) [4 ગુણ]

8051 માઇક્રોકન્ટ્રોલરના TMOD SFR ના દરેક bit નું કાર્ય સમજાવો.

જવાબ:

TMOD (Timer Mode) register Timer 0 અને Timer 1 ના operation ને control કરે છે:

Bit	નામ	ธเน้
D7	GATE1	Timer 1 gate control
D6	C/T1	Timer 1 માટે Timer/Counter select
D5	M11	Timer 1 માટે Mode bit 1
D4	M01	Timer 1 માટે Mode bit 0
D3	GATE0	Timer 0 gate control
D2	C/T0	Timer 0 માટે Timer/Counter select
D1	M10	Timer 0 માટે Mode bit 1
D0	M00	Timer 0 માટે Mode bit 0

Bit કાર્યો:

• **GATE**: 1 = External gate control, 0 = Internal control

• **C/T**: 1 = Counter mode, 0 = Timer mode

• M1,M0: Timer operating modes (00=Mode0, 01=Mode1, 10=Mode2, 11=Mode3)

મેમરી ટીક: "GATE C/T Mode1 Mode0" દરેક timer માટે

પ્રશ્ન 3(ક) [7 ગુણ]

આકૃતિની મદદથી 8051 નું Architecture સમજાવો.

જવાબ:

8051 microcontroller માં separate program અને data memory સાથે Harvard architecture છે:

મુખ્ય Components:

• 8-bit CPU Boolean processor સાથે

• **Internal ROM**: 4KB program memory

• Internal RAM: 128 bytes data memory

• **ચાર I/O Ports**: P0, P1, P2, P3 (દરેક 8-bit)

• **G Timers**: 16-bit Timer/Counter 0 અને 1

• Serial Port: Full duplex UART

Architecture Diagram:

વિશેષ વિશેષતાઓ:

• **Harvard Architecture**: Program અને data માટે separate buses

• SFR (Special Function Registers): વિવિધ peripherals ને control કરે છે

• Interrupt System: 5 interrupt sources

• Power Saving Modes: Idle ਅਜੇ Power-down modes

મેમરી ટ્રીક: "CPU ROM RAM Ports Timers Serial Interrupts" (CRRRPTI)

પ્રશ્ન 3(અ) OR [3 ગુણ]

8051 માઇક્રોકન્ટ્રોલરનો PSW SFR સમજાવો.

જવાબ:

PSW (Program Status Word) માં status flags અને register bank selection છે:

Bit	Flag	รเข้
D7	СҮ	Carry flag
D6	AC	Auxiliary carry flag
D5	F0	Flag 0 (user defined)
D4	RS1	Register bank select bit 1
D3	RS0	Register bank select bit 0
D2	ov	Overflow flag
D1	-	Reserved
D0	P	Parity flag

Register Bank Selection:

• RS1=0, RS0=0: Bank 0 (00H-07H)

• RS1=0, RS0=1: Bank 1 (08H-0FH)

• **RS1=1, RS0=0**: Bank 2 (10H-17H)

• RS1=1, RS0=1: Bank 3 (18H-1FH)

મેમરી ટ્રીક: "CY AC FO RS1 RS0 OV - P"

પ્રશ્ન 3(બ) OR [4 ગુણ]

8051 માઇક્રોકન્ટ્રોલરના SCON SFR ના દરેક bit નું કાર્ય સમજાવો.

જવાબ:

SCON (Serial Control) register serial port operation ને control કરે છે:

Bit	нін	รเข้
D7	SM0	Serial mode bit 0
D6	SM1	Serial mode bit 1
D5	SM2	Multiprocessor communication
D4	REN	Receive enable
D3	TB8	Transmit કરવાનો 9th bit
D2	RB8	Receive થયેલો 9th bit
D1	TI	Transmit interrupt flag
D0	RI	Receive interrupt flag

Serial Modes:

• Mode 0: Shift register, fixed baud rate

• Mode 1: 8-bit UART, variable baud rate

• Mode 2: 9-bit UART, fixed baud rate

• Mode 3: 9-bit UART, variable baud rate

Control કાર્યો:

• REN: Reception enable કરવા માટે set કરવું જરૂરી

• TI/RI: Hardware દ્વારા set, software દ્વારા clear

મેમરી ટ્રીક: "SM0 SM1 SM2 REN TB8 RB8 TI RI"

પ્રશ્ન 3(ક) OR [7 ગુણ]

આકૃતિની મદદથી 8051 નો Pin Diagram સમજાવો.

જવાબ:

8051 એ 40-pin DIP package ਮi available છે:

Pin Groups:

• Ports 0-3: Dual functions સાથે I/O pins

• Power: VCC, VSS pins

• Crystal: Clock भाटे XTAL1, XTAL2

• Control: RST, EA, ALE, PSEN

Pin Diagram:

```
+---\\ /---+
 P1.0 -- | 1 40 | -- Vcc
 P1.1 -- 2
                 39 -- P0.0/AD0
 P1.2 -- 3
                 38 | -- P0.1/AD1
 P1.3 -- | 4
             37|-- P0.2/AD2
 P1.4 -- | 5 8051 36 | -- P0.3/AD3
                35|-- P0.4/AD4
 P1.5 -- 6
 P1.6 -- | 7
                 34 -- P0.5/AD5
                 33 -- P0.6/AD6
 P1.7 -- 8
  RST -- | 9
                32 -- P0.7/AD7
P3.0/RXD -- | 10
                 31 -- EA/VPP
P3.1/TXD -- | 11
                  30 -- ALE/PROG
                 29 -- PSEN
P3.2/INT0--|12
P3.3/INT1--|13
                28 | -- P2.7/A15
P3.4/T0 --|14
                 27 | -- P2.6/A14
P3.5/T1 -- 15
                  26 -- P2.5/A13
P3.6/WR -- | 16
                 25 -- P2.4/A12
P3.7/RD -- 17
                 24 | -- P2.3/A11
                  23 -- P2.2/A10
XTAL2 -- | 18
XTAL1 -- | 19
                 22 -- P2.1/A9
  Vss -- 20
                  21 -- P2.0/A8
```

Port કાર્યો:

- Port 0: Multiplexed address/data bus
- Port 1: General purpose I/O
- Port 2: Higher order address bus
- Port 3: Alternate functions (UART, interrupts, timers)

ਮੇਮਣੀ ਟ੍ਰੀs: "Port Power Crystal Control" (PPCC)

પ્રશ્ન 4(અ) [3 ગુણ]

8051 માઇક્રોકન્ટ્રોલરની કોઇપણ ત્રણ Data Transfer Instructions લખો અને સમજાવો.

જવાબ:

Data transfer instructions registers, memory અને I/O વચ્ચે data move કરે છે:

Instruction	รเช้
MOV A,R0	RO ના contents Accumulator માં move કરે છે
MOV R1,#50H	Immediate data 50H ને R1 માં move કરે છે
MOV 30H,A	Accumulator ના contents address 30H પર move કરે છે

Code Examples:

```
MOV A,R0 ; A = R0

MOV R1,#50H ; R1 = 50H

MOV 30H,A ; [30H] = A
```

મુખ્ય વિશેષતાઓ:

- ક્રોઇ flags પ્રભાવિત નથી data transfer દરમિયાન
- Single cycle execution મોટાભાગની instructions માટે

મેમરી ટ્રીક: "MOV Between Register Immediate Direct" (MBRID)

પ્રશ્ન 4(બ) [4 ગુણ]

રજિસ્ટર R0 અને R1 માં રહેલ ડેટાનો ગુણાકાર કરી જવાબ R5(લોઅર બાઇટ) અને R6(હાયર બાઇટ) માં સ્ટોર કરવા માટે 8051 નો એસેમ્બલી પ્રોગ્રામ લખો.

જવાબ:

```
ORG 0000H
                    ; Origin at 0000H
START:
                    ; RO + Accumulator Hi load Sel
   MOV A,R0
                    ; R1 ने B register मां load Seो
   MOV B,R1
                    ; A અને B નો ગુણાકાર કરો
   MUL AB
   MOV R5,A
                  ; Lower byte R5 मां store કरो
                    ; Higher byte R6 मां store sरो
    MOV R6,B
    SJMP $
                    ; Program stop કरो
END
                    ; Program नो अंत
```

Program Flow:

- 1. Multiplicand load કરો R0 થી A માં
- 2. **Multiplier load કરો** R1 થી B માં
- 3. Multiplication execute કરો MUL AB use કરીને
- 4. Lower byte store કરો result નો R5 માં

5. **Higher byte store કરો** result નો R6 માં

નોંધ: MUL AB instruction automatically 16-bit result store કરે છે lower byte A માં અને higher byte B માં.

પ્રશ્ન 4(ક) [7 ગુણ]

8051 માઇક્રોકન્ટ્રોલરના Addressing Modes ની યાદી બનાવો અને દરેકને ઉદાહરણ સાથે સમજાવો.

જવાબ:

8051 કેટલાક addressing modes support કરે છે:

Mode	વર્ણન	Example	
Immediate	Instruction માં data specify કરાયો છે	MOV A,#50H	
Register	Register માં data છે	MOV A,R0	
Direct	Memory address specify કરાયો છે	MOV A,30H	
Indirect	Register मां address छे	MOV A,@R0	
Indexed	Base + offset addressing	MOVC A,@A+DPTR	
Relative	PC + offset	SJMP LABEL	
Bit	Bit-specific operations	SETB P1.0	

વિગતવાર Examples:

1. Immediate Addressing:

```
MOV A,#25H ; A = 25H (immediate data)
```

2. Register Addressing:

```
MOV A,R1 ; A = R1 d contents
```

3. Direct Addressing:

```
MOV A,40H ; A = memory location 40H +1 contents
```

4. Indirect Addressing:

```
MOV R0,#40H ; R0 = 40H (address)
MOV A,@R0 ; A = R0 ਫ਼ੀਟੀ point Sਟੀਪੌਰ location ਜੀ contents
```

મેમરી ટ્રીક: "I-R-D-I-I-R-B" (Immediate Register Direct Indirect Indexed Relative Bit)

પ્રશ્ન 4(અ) OR [3 ગુણ]

8051 માઇક્રોકન્ટ્રોલર માટેની કોઇપણ ત્રણ Logical Instructions લખો અને સમજાવો.

જવાબ:

Logical instructions bitwise operations કરે છે:

Instruction	รเช	
ANL A,R0	Accumulator અને R0 નું AND કરે છે	
ORL A,#0FH	Accumulator અને immediate data 0FH નું OR કરે છે	
XRL A,30H	Accumulator અને address 30H ના contents નું XOR કરે છે	

Code Examples:

```
ANL A,RO ; A = A AND RO
ORL A,#0FH ; A = A OR OFH
XRL A,30H ; A = A XOR [30H]
```

Applications:

• ANL: Specific bits masking (unwanted bits clear કરવા)

• ORL: Specific bits setting

• XRL: Bits toggling, checksum calculations

મેમરી ટ્રીક: "AND OR XOR" logical operations

પ્રશ્ન 4(બ) OR [4 ગુણ]

2000h મેમરી લોકેશન માં સ્ટોર કરેલ સંખ્યા માંથી 2001h મેમરી લોકેશન માં સ્ટોર કરેલ સંખ્યા બાદ કરી 2002h મેમરી લોકેશનમાં જવાબ સ્ટોર કરવા માટે 8051 નો એસેમ્બલી પ્રોગ્રામ લખો. અહીં આપેલા તમામ મેમરી લોકેશન બાહ્ય મેમરી ના છે.

જવાબ:

```
ORG 0000H
                    ; Origin at 0000H
START:
    MOV DPTR, #2001H; Minuend address 42 point Sti
    MOVX A, @DPTR ; External memory मांथी minuend load sरो
                    ; Minuend ને RO માં store કરો
    MOV RO,A
    MOV DPTR, #2000H; Subtrahend address 42 point Sel
    MOVX A, @DPTR ; External memory માંથી subtrahend load કરો
    MOV R1, A ; Subtrahend ने R1 मां store sरो
                    ; Minuend ने A मां load Sरो
    MOV A,R0
                    ; Carry flag clear Sei
    CLR C
                    ; Subtraction: A = R0 - R1
    SUBB A,R1
    MOV DPTR, #2002H ; Result address 42 point Sel
```

```
MOVX @DPTR,A ; Result ને external memory માં store કરો
SJMP $ ; Program stop કરો
END ; Program નો અંત
```

Program પગલાં:

- 1. **Minuend load કરો** external memory 2001H માંથી
- 2. Subtrahend load કરો external memory 2000H માંથી
- 3. **Subtraction કરો** SUBB instruction use કરીને
- 4. **Result store કરો** external memory location 2002H માં

નોંધ: External memory access માટે MOVX instruction નો use થાય છે.

પ્રશ્ન 4(ક) OR [7 ગુણ]

Instructions સમજાવો: (i) RET (ii) PUSH (iii) CLR PSW.0 (iv) RLC A (v) CJNE A,#DATA,LABEL (vi) NOP (vii) ANL A,#DATA

જવાબ:

Instruction	รเช้	વર્ણન
RET	Subroutine માંથી return	Stack માંથી PC pop કરે છે અને control return કરે છે
PUSH 30H	Stack પર push કરે છે	Address 30H ના contents stack પર push કરે છે
CLR PSW.0	Carry flag clear s ຂ છે	PSW નો bit 0 (Carry flag) clear કરે છે
RLC A	Carry थडी left rotate	A ને carry flag થકી left rotate કરે છે
CJNE A,#50H,NEXT	Compare અને jump	A ≠ 50H હોય તો NEXT પર jump કરે છે
NOP	કંઇ operation નહીં	કંઇ કરતું નથી, એક cycle consume કરે છે
ANL A,#0FH	Immediate સાથે AND	A = A AND 0FH

વિગતવાર સમજાવટ:

RET: Subroutine calls માંથી return કરવા માટે

```
CALL SUB1 ; Subroutine call Stì
...
SUB1:
MOV A,#10H
RET ; Caller i return Stì
```

PUSH: Stack પર data save કરે છે

```
PUSH ACC ; Accumulator i stack 42 save Sti
```

RLC A: Carry સાથે bit rotation

```
CY <- A7 <- A6 <- A5 <- A4 <- A3 <- A2 <- A1 <- A0 <- CY
```

CJNE: Conditional branching

```
CJNE A,#50H,NOT_EQUAL ; A≠50H હોય તો NOT_EQUAL પર jump
; A equals 50H
NOT_EQUAL:
; A not equal to 50H
```

ਮੇਮਰੀ ਟ੍ਰੀਡ: "Return Push Clear Rotate Compare No-op AND" (RPCRNA)

પ્રશ્ન 5(અ) [3 ગુણ]

માઇક્રોકન્ટ્રોલરની વિવિધ ક્ષેત્રે ઉપયોગોની સૂચી બનાવો.

જવાબ:

માઇક્રોકન્ટ્રોલર વિવિધ ક્ષેત્રોમાં અસંખ્ય applications માં use થાય છે:

ક્ષેત્ર	Applications
Consumer Electronics	TV remotes, washing machines, microwaves
Automotive	Engine control, ABS, airbag systems
Industrial	Process control, robotics, automation
Medical	Pacemakers, blood glucose meters, ventilators
Communication	Mobile phones, modems, routers
Home Automation	Smart thermostats, security systems, lighting

મુખ્ય ફાયદા:

- **ઓછી કિંમત** અને compact size
- ઓછી power consumption
- Real-time operation
- Sensors અને actuators સાથે **સરળ interfacing**

મેમરી ટ્રીક: "Consumer Automotive Industrial Medical Communication Home" (CAIMCH)

પ્રશ્ન 5(બ) [4 ગુણ]

8051 માઇક્રોકન્ટ્રોલર સાથે સ્ટેપર મોટર ઇન્ટરફેસ કરો અને ટૂંકમાં સમજાવો.

જવાબ:

Stepper motor interfacing માટે current requirements ને કારણે driver circuit જરૂરી છે:

Interface Circuit:

```
8051 ULN2003 Stepper Motor
P1.0 ----+---> Input1 -----> Coil A
P1.1 ----+---> Input2 -----> Coil B
P1.2 ----+---> Input3 -----> Coil C
P1.3 ----+--> Input4 -----> Coil D
```

Control Sequence (Half-Step):

Step	P1.3	P1.2	P1.1	P1.0	Binary
1	0	0	0	1	01H
2	0	0	1	1	03H
3	0	0	1	0	02H
4	0	1	1	0	06H
5	0	1	0	0	04H
6	1	1	0	0	0CH
7	1	0	0	0	08H
8	1	0	0	1	09H

Driver Circuit:

• ULN2003: Darlington driver IC current amplification provide ອ ຂ છે

• **Protection diodes**: Back EMF સામે protect કરે છે

• **Common ground**: 8051 અને motor supply વચ્ચે

ਮੇਮਰੀ ਟ੍ਰੀਡ: "Step Sequence Driver Protection" (SSDP)

પ્રશ્ન 5(ક) [7 ગુણ]

8051 માઇક્રોકન્ટ્રોલરના પોર્ટ 2.0 થી 2.3 પર ચાર LED ઇન્ટરફેસ કરો અને તેને ચાલુ-બંધ કરવા માટેનો એસેમ્બલી પ્રોગ્રામ લખો.

જવાબ:

Interface Circuit:

```
8051 Pin Resistor LED

P2.0 ----> 330Ω ----> LED1 ----> GND

P2.1 ----> 330Ω ----> LED2 ----> GND

P2.2 ----> 330Ω ----> LED3 ----> GND

P2.3 ----> 330Ω ----> LED4 ----> GND
```

Assembly Program:

```
ORG 0000H
                        ; Start address
MAIN:
                        ; બધા LEDs ON કરો (P2.0-P2.3)
   MOV P2,#0FH
   CALL DELAY
                        ; Delay subroutine call Sel
   MOV P2,#00H
                       ; બધા LEDs OFF કરો
   CALL DELAY
                       ; Delay subroutine call Sal
   SJMP MAIN
                        ; Flashing repeat sरो
DELAY:
   MOV R0,#255
                      ; Outer loop counter
LOOP1:
   MOV R1,#255
                      ; Inner loop counter
LOOP2:
                        ; Zero નહીં હોય di decrement અને jump
   DJNZ R1,LOOP2
                        ; Outer counter decrement Sel
   DJNZ RO,LOOP1
                        ; Delay मांथी return sei
   RET
                        ; Program नो अंत
END
```

Circuit Components:

- Current limiting resistors: LED current limit કરવા માટે 330Ω
- Common ground: બધા LED cathodes ground સાથે connected

Program Operation:

1. **LEDs ON કરો**: P2.0-P2.3 high set કરો

2. **Delay**: Visible flash duration માટે wait કરો

3. **LEDs OFF કરો**: P2.0-P2.3 clear કરો

4. Repeat: Continuous flashing loop

મેમરી ટ્રીક: "Resistor LED Ground Program" (RLGP)

પ્રશ્ન 5(અ) OR [3 ગુણ]

8051 માઇક્રોકન્ટ્રોલર સાથે પુશ બટન સ્વીચ અને LED નું ઇન્ટરફેસિંગ દોરો.

જવાબ:

Interface Circuit:

Circuit વર્ણન:

- Push Button: Pull-up resistor સાથે P1.0 સાથે connected
- **Pull-up Resistor**: Switch open હોય ત્યારે logic HIGH ensure કરવા માટે 10ΚΩ
- LED: Current limiting resistor દ્વારા P1.1 સાથે connected
- Current Limiting: LED ને protect કરવા માટે 330Ω resistor

Operation:

• **Switch Open**: P1.0 = 1 (HIGH)

• Switch Pressed: P1.0 = 0 (LOW)

• LED Control: P1.1 pin ผูเลเ

મેમરી ટ્રીક: "Pull-up Switch LED Current-limit" (PSLC)

પ્રશ્ન 5(બ) OR [4 ગુણ]

8051 માઇક્રોકન્ટ્રોલર સાથે રીલે ઇન્ટરફેસ કરો અને ટૂંકમાં સમજાવો.

જવાબ:

Interface Circuit:

```
8051 Transistor Relay
                    Load
P1.0 — 1KΩ — BC547 —
                    Relay Coil ---- +12V
                  (NPN)
                                 Collector NO/NC
   GND
        Base
                   Load Device
         Emitter —
                 ----GND
       Flyback Diode
       (1N4007)
```

Components:

• Transistor BC547: Relay coil หเอ switching element

- Base Resistor: Base current limit ระตา भारे 1ΚΩ
- Flyback Diode: Back EMF સામે protect કરવા માટે 1N4007
- Relay: NO/NC contacts સાથે 12V DC relay

Operation:

- 1. P1.0 પર **Logic HIGH** → Transistor ON → Relay energized
- 2. P1.0 પર **Logic LOW** → Transistor OFF → Relay de-energized
- 3. **Relay contacts** load circuit ને switch કરે છે

Protection:

- Flyback diode relay coil ના back EMF થી damage prevent કરે છે
- Base resistor girl Current limiting

મેમરી ટ્રીક: "Transistor Resistor Diode Relay" (TRDR)

પ્રશ્ન 5(ક) OR [7 ગુણ]

8051 માઇક્રોકન્ટ્રોલર સાથે 7 સેગ્મેન્ટ LED ઇન્ટરફેસ કરો અને 0 પ્રિન્ટ કરવા માટે એસેમ્બલી પ્રોગ્રામ લખો.

જવાબ:

Interface Circuit:

7-Segment Code Table:

Digit	Display	gfedcba	Hex Code
0	Display 0	0111111	3FH
1	Display 1	0000110	06H
2	Display 2	1011011	5BH

'0' Display કરવા માટે Assembly Program:

```
ORG 0000H ; Start address

MAIN:

MOV P1,#3FH ; 7-segment પર '0' display Sરો
; a,b,c,d,e,f ON, g OFF
SJMP MAIN ; Display Sરdા રહો

END ; Program નો અંત
```

'0' भाว Segment Pattern:

• **Segments ON**: a, b, c, d, e, f (bits 0-5 = 1)

• **Segment OFF**: g (bit 6 = 0)

• **Binary**: 00111111 = 3FH

Circuit વિશેષતાઓ:

• Common Cathode: બધા segment cathodes ground સાથે connected

• Current Limiting: εરેક segment માટે 330Ω resistors

• Active HIGH: Logic 1 segment ON ຣ ເ છે

અન્ય Patterns:

```
; અન્ય digits display કરવા માટે:
MOV P1,#06H ; '1' Display કરવા માટે
MOV P1,#5BH ; '2' Display કરવા માટે
```

મેમરી ટ્રીક: "Seven Segments Common Cathode Current-limit" (SSCCC)