```
########################
            Filename: Proj Resonance Lorentzian GitHub Run Me.ipynb
            Date : Aug 25, 2015
            What : Runs the main file, which is def resonance lorentzian.p
       #
       #
                  You must give it four parameters
       import scipy
       import numpy as np
       import def_resonance_lorentzian_for_github as drl
       import matplotlib.pyplot as plt
       %matplotlib inline
       plt.rcParams['figure.figsize']=(18,6)
       ''' Tell me the file which you wanna look at'''
       dset = np.load('/Users/TzeGoh/Desktop/2015-07-01-starcryo-nevins-in
       itial-sweep.npz')
       dset.keys()
       print "Keys:",dset.keys()
       Keys: ['lo', 'freq', 'data']
       ''' This cell tells you the main variables --> x-axis(freq) and y-a
In [2]:
       xis (data)'''
       input x = raw input ("What is the frequency? usually 'freq', don't
       put parathensis: ")
       input y = raw input ("What is the data? usually 'data', do not put
       parathensis: ")
       freq = dset[input x]
       raw data = dset[input y]
       data = raw data.copy()
       print 'Length of data:', len(data)
       What is the frequency ? usually 'freq', don't put parathensis: fre
       What is the data ? usually 'data', do not put parathensis: data
       Length of data: 32768
In [3]: ''' Just toggle these 4 parameters'''
       flat = 1.2
                            # flat is the gradient of the points around
       centre // flat = 1.2
       move = 5
                             # move is the number of points around of ce
       ntre // move = 5
       noise = 5
                             # noise is how many points away from 'move'
       // noise = 5
       tol = 1
                             # tolerance determine spread of lorentz fun
       ction // tol = 1
```

```
In [4]:
    ''' This cell fixes x and y for the rest of the programme, as well
    as where to look for the minimums '''
    a = freq
    b = data
    x = a
    y = 20 * np.log10(np.abs(b))
    locmins,order_of_mins = drl.resonators(flat,move,noise,tol,x,y)
    ranges_to_look, freq_to_look, data_to_look = drl.where_do_i_look(locmins,x,y)
    xstart, xend, ystart, yend = drl.box_in_the_plot(ranges_to_look, freq_to_look, data_to_look)
```

```
In [5]: '''This shows you the main plot'''
drl.main_plot_with_noise(x,y,xstart,xend,ystart,yend)
plt.figure()

'''This shows you where the resonators are, and prints out those po
ints for you'''
drl.show_me_resonators(order_of_mins,data,x,y,xstart,xend,ystart,ye
nd)
plt.figure()
```

length of data 32768

There are	36 resonators, and	they occur at'
Resonator		data numbers
1	1220.9765625	-33.1219951956
2	1221.25	-32.8532786777
3	1226.171875	
4	1227.46875	
5	1236.9609375	
6	1248.1484375	
7	1251.75	-32.9079550993
8	1252.0859375	
9	1263.9765625	
10	1268.703125	-33.6111148132
11	1275.3984375	-29.6476439313
12	1283.171875	-30.4361533103
13	1288.8203125	-27.6973588984
14	1291.328125	-35.6302226431
15	1297.7265625	-27.7788344157
16	1304.0390625	-26.4336752332
17	1305.1015625	-34.5468471503
18	1310.0625	-27.8254459921
19	1318.4921875	-33.5482191418
20	1346.328125	-25.2203384846
21	1352.125	-28.5604651254
22	1356.1640625	-27.7355898259
23	1359.65625	-25.8192480918
24	1368.8828125	-25.1404558801
25	1372.59375	-29.3762206551
26	1385.734375	-25.5779921556
27	1387.3984375	-30.1442885274
28	1389.4453125	-24.8547588908
29	1402.1328125	-28.4974608824
30	1402.328125	-35.1776781685
31	1418.140625	-25.7348940454
32	1426.3515625	-31.5536835678
33	1434.9453125	-32.1421898909
34	1437.9453125	-30.1347538849
35	1444.921875	-34.8617774542
36	1452.6015625	

Out[5]: <matplotlib.figure.Figure at 0x10884ff10>

<matplotlib.figure.Figure at 0x10884ff10>

```
In [6]:
        '''And now, you get the option to see the resonators close up, and
        their chi-squared to the Lorentz function'''
        input a = raw input ( "Enter : \
        1)See Resonance close up \
        2) See Resonance close-up w/ Lorentzian only ( This is usually enoug
        h ) \
        3) See Resonance close-up, and then see Resonance close-up Lorentzia
        n "
        if input a == '1':
            drl.show me resonators in close range(ranges to look, freq to lo
        ok, data to look, \
                                                    x,y,order of mins)
        elif input a == '2':
            count chi, count chi less than 1, chi squared_total,freq_point
        s total, \
             length of chi squared total = drl.show me resonators in close r
        ange with lorentzian\
                ranges to look, freq to look, data to look, x, y, move, noise, to
        1,flat,\
             order of mins, locmins\
            drl.print me those chi square
             (count chi, count chi less than 1, chi squared total, freq point
        s_total)
        elif input a == '3':
            drl.show me resonators in close range(ranges to look, freq to lo
        ok, data to look,
                                                    x,y,order of mins)
            count_chi, count_chi_less_than_1, chi_squared_total,freq_point
        s total, \
             length of chi squared total = drl.show me resonators in close r
        ange with lorentzian\
             (
                ranges to look, freq to look, data to look, x, y, move, noise, to
        l,flat,\
             order of mins, locmins
            drl.print me those chi square(count chi,count chi less than 1,c
        hi squared total,\
                                           freq points total)
        else :
            print "I'm sorry, I don't recognise that input. Please try agai
        n"
```

Enter: 1)See Resonance close up 2)See Resonance close-up w/ Loren tzian only (This is usually enough) 3)See Resonance close-up, an d then see Resonance close-up Lorentzian 2

The number of fits with Chi_square more than 100 is 2 The number of fits with Chi_square less than 1 is 7

		are reporting in the 7
Resonator	Chi_square	at these Frequencies 1220.9765625
1	3.20781440324	1220.9765625
2	1.97168993574	1221.25
3	1.97168993574 0.14749572427 65.3081690897 11.1658294688 77.3980218632	1226.171875
4	65.3081690897	1227.46875
5	11.1658294688	1236.9609375
6	77.3980218632	1248.1484375
7	16.5930376968	1251.75
8	9.11888516869	1252.0859375
9	60.4072291613	1263.9765625
10	173.512355778 37.326653699	1268.703125
11	37.326653699	1275.3984375
12	21.5959235042	1283.171875
13	0.586312173621	1288.8203125
14	178.122720952	1291.328125
	0.475124614128	
	2.07146184792	
17	62.4713465476	1305.1015625
18	8.09197532611	1310.0625
19	96.6829821473	1318.4921875
20	1.98255774937	1346.328125
21	13.3925015828	1352.125
	6.17114624302	
	0.821559112864	
	1.69045310215	
	23.8088802121	
	0.221762536531	
	17.799291693	
28	1.92953767497	1389.4453125
	0.364718901825	
	5.3092631849	
31	0.180412784934	1418.140625
32	2.44229591983 11.9452269703 1.66069380506	1426.3515625
33	11.9452269703	1434.9453125
34	1.66069380506	1437.9453125
35	16.8936605692	1444.921875
36	26.1684723843	1452.6015625

//anaconda/lib/python2.7/site-packages/matplotlib/pyplot.py:424: R untimeWarning: More than 20 figures have been opened. Figures crea ted through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)

<matplotlib.figure.Figure at 0x111bab250>

In []:	
---------	--