

SEQUENCE LISTING

<110> Desire, Laurent

<120> BACE455, AN ALTERNATIVE SPLICE VARIANT OF THE HUMAN
BETA-SECRETASE

<130> 67987.000002

<140> PCT/IB2004/003897

<141> 2004-11-05

<160> 33

<170> PatentIn version 3.3

<210> 1

<211> 1368

<212> DNA

<213> Homo sapiens

<400> 1

atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgtct gcctgcccac 60

ggcacccagc acggcatccg gctgcccctg cgacgcggcc tggggggcgc cccccctgggg 120

ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggggccggag gggcagcttt 180

gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240

gtgggcagcc ccccgccagac gctcaacatc ctgggtgata caggcagcag taactttgca 300

gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360

taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420

ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtcg tgccaaacatt 480

gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 540

gggctggcct atgctgagat tgccaggatc attggaggta tcgaccactc gctgtacaca 600

ggcagtctct ggtatacacc catccggcgg gagtggtatt atgaggtcat cattgtcg 660

gtggagatca atggacagga tctgaaaatg gactgcaagg agtacaacta tgacaagagc 720

attgtggaca gtggcaccac caacccgtt ttgccaaga aagtgtttga agctgcagtc 780

aaatccatca aggcagcctc ctccacggag aagttccctg atggtttctg gctaggagag 840

cagctggtgt gctggcaagc aggcaccacc ctttggaaaca ttttcccagt catctcactc 900

tacctaattgg gtgagggtac caaccaggatcc ttccgcata ccatccttcc gcagcaatac 960

ctgcggccag tggaagatgt gcccacgtcc caagacgact gttacaagg ttgcatctca 1020

cagtcatcca cgggcactgt tatgggagct gttatcatgg agggcttcta cgttgtctt 1080

gatcgccccc gaaaacgaat tggcttgct gtcagcgctt gccatgtgca cgatgagttc 1140
aggacggcag cggtgaaagg ccctttgtc accttgaca tgaaagactg tggctacaac 1200
attccacaga cagatgagtc aaccctcatg accatagcct atgtcatggc tgccatctgc 1260
gccctttca tgctgccact ctgcctcatg gtgtgtcagt ggctgtgcct ccgctgcctg 1320
cgccagcagc atgatgactt tgctgatgac atctccctgc tgaagtga 1368

<210> 2
<211> 455
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Ile Ile Gly
180 185 190

Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile
195 200 205

Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn
210 215 220

Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser
225 230 235 240

Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe
245 250 255

Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe
260 265 270

Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly
275 280 285

Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly
290 295 300

Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr
305 310 315 320

Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys
325 330 335

Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile
340 345 350

Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly
355 360 365

Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala
370 375 380

Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn
385 390 395 400

Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met
405 410 415

Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys
420 425 430

Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala
435 440 445

Asp Asp Ile Ser Leu Leu Lys
450 455

<210> 3
<211> 6
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 3

Ile Ala Arg Ile Ile Gly
1 5

<210> 4
<211> 7
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 4

Glu Ile Ala Arg Ile Ile Gly
1 5

<210> 5
<211> 8
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 5

Glu Ile Ala Arg Ile Ile Gly Gly
1 5

<210> 6
<211> 8
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 6

Ala Glu Ile Ala Arg Ile Ile Gly
1 5

<210> 7
<211> 9
<212> PRT
<213> artificial

<220>
<223> AEIARIIGG

<400> 7

Ala Glu Ile Ala Arg Ile Ile Gly Gly
1 5

<210> 8
<211> 10
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 8

Ala Glu Ile Ala Arg Ile Ile Gly Gly Ile
1 5 10

<210> 9
<211> 9
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 9

Tyr Ala Glu Ile Ala Arg Ile Ile Gly
1 5

<210> 10
<211> 10
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 10

Tyr Ala Glu Ile Ala Arg Ile Ile Gly Gly
1 5 10

<210> 11
<211> 11
<212> PRT
<213> artificial

<220>
<223> distinctive fragment

<400> 11

Tyr Ala Glu Ile Ala Arg Ile Ile Gly Gly Ile
1 5 10

<210> 12
<211> 18
<212> DNA
<213> artificial

<220>
<223> probe

<400> 12
attgccagga tcattgga 18

<210> 13
<211> 10
<212> DNA
<213> artificial

<220>
<223> primer

<400> 13
aggcatcctg 10

```

<210> 14
<211> 10
<212> DNA
<213> artificial

<220>
<223> primer

<400> 14
gggctggcct
10

<210> 15
<211> 10
<212> DNA
<213> artificial

<220>
<223> primer

<400> 15
atgctgagat
10

<210> 16
<211> 6
<212> DNA
<213> artificial

<220>
<223> primer

<400> 16
tgccag
6

<210> 17
<211> 6
<212> DNA
<213> artificial

<220>
<223> primer

<400> 17
gatcat
6

<210> 18
<211> 10
<212> DNA
<213> artificial

<220>
<223> primer

<400> 18

```

tggaggtatc	10
<210> 19	
<211> 10	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 19	
gaccactcgc	10
<210> 20	
<211> 10	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 20	
tgtacacagg	10
<210> 21	
<211> 10	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 21	
cagtctctgg	10
<210> 22	
<211> 6	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 22	
caggat	6
<210> 23	
<211> 8	
<212> DNA	
<213> artificial	
<220>	

<223> primer		
<400> 23		
ccaggatc		8
<210> 24		
<211> 10		
<212> DNA		
<213> artificial		
<220>		
<223> primer		
<400> 24		
gccaggatca		10
<210> 25		
<211> 18		
<212> DNA		
<213> artificial		
<220>		
<223> primer		
<400> 25		
attgccagga tcattgga		18
<210> 26		
<211> 21		
<212> DNA		
<213> artificial		
<220>		
<223> primer		
<400> 26		
tgactggaa caccccataa c		21
<210> 27		
<211> 19		
<212> DNA		
<213> artificial		
<220>		
<223> primer		
<400> 27		
agtgtgcgt gggagcgag		19
<210> 28		
<211> 19		
<212> DNA		

<213> artificial	
<220>	
<223> primer	
<400> 28	
cccgccagacg ctcaacatc	19
<210> 29	
<211> 21	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 29	
cagcgagtgg tcgataacctc c	21
<210> 30	
<211> 24	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 30	
gcggatccac catggcccaa gccc	24
<210> 31	
<211> 33	
<212> DNA	
<213> artificial	
<220>	
<223> primer	
<400> 31	
gggaaattca cttcagcagg gagatgtcat cag	33
<210> 32	
<211> 10	
<212> PRT	
<213> artificial	
<220>	
<223> fluorogenic App-based peptide MCA	
<400> 32	
Ser Glu Val Asn Leu Asp Ala Glu Phe Lys	
1	5
10	

<210> 33
<211> 9
<212> PRT
<213> artificial

<220>
<223> BACE inhibitor III

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is statine

<400> 33

His Glu Val Asn Xaa Val Ala Glu Phe
1 5