Детектирование и классификация тарелок.

Архитектура приложения

Модели и их характеристики моделей

Model	size (pixels)	mAP ^{val} 0.5:0.95	mAP ^{test} 0.5:0.95	mAP ^{val} 0.5	Speed V100 (ms)	params (M)	FLOPS 640 (B)
YOLOv5s6	1280	43.3	43.3	61.9	4.3	12.7	17.4
YOLOv5m6	1280	50.5	50.5	68.7	8.4	35.9	52.4
YOLOv5l6	1280	53.4	53.4	71.1	12.3	77.2	117.7
YOLOv5x6	1280	54.4	54.4	72.0	22.4	141.8	222.9
YOLOv5x6 TTA	1280	55.0	55.0	72.0	70.8	-	-

Для детектирования и первичной классификации объектов используется обученная модель YOLOV5, а именно версия YOLOV5(small) поскольку это самая быстрая модель если верить данным разработчика, а для работы в реальном времени это самый важный параметр. Сама модель взята с хаба моделей pytorch.

https://pytorch.org/hub/ultralytics

Модели и их характеристики моделей

ResNet-18 Architecture

Для классификации тарелок на чистые и

Модели и их характеристики моделей

Для обучения используется датасет тарелок с сайта kaggle, для тренировок и валидации размечены по 100 грязных и чистых тарелок, каждое 5 изображение используется для валидации, остальное для тренировки. К изображениям для тренировки применяется набор случайных аугментаций для большей эффективности обучения. Обученная модель сохраняется как jit скрипт и загружается уже в основной программе, jit скрипт позволяет не определять модель при загрузке. Loss фикция и ассигасу при обучение модели:

Также был проведён тест на 100 новых изображениях из того же дата сета, и получен уровень достоверности предсказания 92 - 93%, в сравнение с ResNet50 у которого 94 - 96%

Тестирование

Тестирование

Модель плохо классифицирует тарелки с сложным узором или рисунком:

Также замечена особенность что при близком цвете тарелки и фону модели сложно детектировать тарелку:

Тестирование

Потребление памяти всей программой около 1800 MiB, установлено с помощью утилиты memory_profiler с соответствует моим приблизительным расчётам и данным из мониторинга ресурсов windows.

Быстродействие программы можно оценить в FPS (кадров, которые программа обрисовывает за секунду).

- 1. Без использования модели FPS счётчик показывает 29 27 кадров, поскольку входящий поток с камеры установлен на 30 кадров.
- 2. При использовании только модели YOLO программа показывает приблизительно 22 20 кадров.
- 3. При использовании обеих моделей программа показывает приблизительно 16 кадров, в кадре 2 тарелки.
- 4. При использовании обеих моделей программа показывает приблизительно 10 9 кадров, в кадре 7 тарелки.