Question 1. Let (Ω, \mathcal{F}) be a σ -field. If $A, B \in \mathcal{F}$ are atoms and $A \neq B$, then $A \cap B = \emptyset$.

Proof. Recall: $A \in \mathcal{F}$ is an atom iff $A \neq \emptyset$ and for every $C \in \mathcal{F}$ with $C \subseteq A$, one has $C = \emptyset$ or C = A.

Let $A, B \in \mathcal{F}$ be atoms with $A \neq B$. Since \mathcal{F} is a σ -field, $A \cap B \in \mathcal{F}$ and $A \cap B \subseteq A$. By the defining property of an atom applied to A, either

$$A \cap B = \emptyset$$
 or $A \cap B = A$. (1)

Similarly, $A \cap B \subseteq B$, so by the atom property for B,

$$A \cap B = \emptyset$$
 or $A \cap B = B$. (2)

If $A \cap B \neq \emptyset$, then (1) and (2) force $A \cap B = A$ and $A \cap B = B$, hence A = B, contradicting $A \neq B$. Therefore $A \cap B = \emptyset$.

Thus any two distinct atoms are disjoint.

Assignment 1, Q2 Solution

Problem

Let $E_1, E_2, ..., E_n$ be mutually exclusive and exhaustive events in a sample space Ω . Determine the smallest σ -field that contains all the events E_i for $i \in \{1, ..., n\}$.

Proof

The whole problem boils down to identifying that the sets E_i mutually exhaust the sample space, and are mutually exclusive.

We thus claim that the smallest σ -field is the one which consists of all possible unions of the events E_i . This can be denoted mathematically as given below:

$$\mathcal{F} = \left\{ \bigcup_{i \in S} E_i : S \subseteq \{1, 2, ..., n\} \right\}$$

Since any σ -field must be:

- 1. Containing the sample space Ω and the empty set (\emptyset)
- 2. Containing event E_i for i = 1, ..., n
- 3. Closed under complements of sets.
- 4. Closed under countable unions of sets in the σ -field.

Also observe that,

- 1. Since $\bigcup_{i=1}^n E_i = \Omega$ (mutually exhaustive), we have $\Omega \in \mathcal{F}$ when $S = \{1, 2, 3, ..., n\}$.
- 2. The events are mutually exclusive, thus when $S = \emptyset$, we get $\bigcup_{i \in \emptyset} E_i = \emptyset$.
- 3. When it comes to closure under complements, again due to exhaustivity and exclusivity, for any $A = \bigcup_{i \in S} E_i \in \mathcal{F}$, we have:

$$A^c = \left(\bigcup_{i \in S} E_i\right)^c = \bigcap_{i \in S} E_i^c = \bigcup_{j \in \{1, \dots, n\} \backslash S} E_j$$

4. For closure under countable union, since the collection of sets \mathcal{F} is finite, any countable union of sets is equivalent to a finite union of its distinct members. For any finite collection $\{A_k\}_{k=1}^m\subseteq\mathcal{F}$ where each $A_k=\bigcup_{i\in S_k}E_i$, the union is:

$$\bigcup_{k=1}^{m} A_k = \bigcup_{k=1}^{m} \left(\bigcup_{i \in S_k} E_i \right) = \bigcup_{i \in \bigcup_{k=1}^{m} S_k} E_i$$

Let $S_{\text{final}} = \bigcup_{k=1}^{m} S_k$. As $S_{\text{final}} \subseteq \{1, ..., n\}$, the resulting union is in \mathcal{F} . This demonstrates closure.

Having satisfied all axioms, \mathcal{F} is a σ -field. Also, for any specific event E_j (where $j \in \{1, ..., n\}$), we can choose the singleton index set $S = \{j\}$ to show that $E_j \in \mathcal{F}$.

Verifying that \mathcal{F} is the smallest such σ -field

Let \mathcal{G} be any σ -field that contains all the events $E_1, E_2, ..., E_n$. We must show that $\mathcal{F} \subseteq \mathcal{G}$.

Let A be an arbitrary element of \mathcal{F} . By the definition of \mathcal{F} , A can be written as a union:

$$A = \bigcup_{i \in S} E_i$$

for some $S \subseteq \{1, 2, ..., n\}$.

By assumption, for every $i \in S$, we have $E_i \in \mathcal{G}$. Since \mathcal{G} is a σ -field, it must be closed under countable unions, which implies it is also closed under finite unions.

As S is a finite set, the union $\bigcup_{i \in S} E_i$ must be an element of \mathcal{G} . Thus, $A \in \mathcal{G}$. This implies $\mathcal{F} \subseteq \mathcal{G}$, proving that \mathcal{F} is indeed the smallest σ -field containing all the events E_i .

Thus the σ -field generated by the partition $\{E_1, ..., E_n\}$ contains 2^n distinct elements, one for each subset of the index set $\{1, ..., n\}$.

Question 3: Bounds on $P(A \cap B)$ and Examples

Lower Bound

 $P(A \cup B) \le P(\Omega) = 1$:

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

$$\geq P(A) + P(B) - 1.$$

Substitute $P(A) = \frac{3}{4}$, $P(B) = \frac{1}{3}$:

$$P(A \cap B) \ge \frac{3}{4} + \frac{1}{3} - 1$$

$$= \frac{9}{12} + \frac{4}{12} - \frac{12}{12}$$

$$= \boxed{\frac{1}{12}}.$$

Upper Bound

$$P(A \cap B) \le \min\{P(A), P(B)\} = \boxed{\frac{1}{3}}.$$

Examples for Part (b)

Work on the finite probability space

$$\Omega = \{1, 2, \dots, 12\}, \qquad P(\{\omega\}) = \frac{1}{12} \text{ for each } \omega \in \Omega.$$

Lower bound example $(P(A \cap B) = \frac{1}{12})$.

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, \qquad B = \{1, 10, 11, 12\}.$$

Upper bound example $(P(A \cap B) = \frac{1}{3})$.

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, \qquad B = \{1, 2, 3, 4\}.$$

Q.4

Number of events = 3 (three coins: HH, TT and HT).

$$P(HH) = P(TT) = P(HT) = \frac{1}{3}$$
 (all are uniform)

Required probability: $P(\text{Tails on opposite face} \mid \text{coin toss gives Heads})$ # Need to apply Bayes' Theorem and the Total Probability Theorem.

Note: Always state the formula or theorem being used in the answers.

Bayes' Theorem:

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

So,

 $P(\text{Tails on opposite side} \mid \text{Heads}) = \frac{P(\text{Heads AND Tails on opposite side})}{P(\text{Heads})}$

Total Probability Theorem:

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i), \text{ if } P(A_i) > 0, i \in [1:n]$$

$$\begin{split} P(\text{Heads}) &= P(\text{Heads} \mid \text{HH}) \cdot P(\text{HH}) + P(\text{Heads} \mid \text{HT}) \cdot P(\text{HT}) + P(\text{Heads} \mid \text{TT}) \cdot P(\text{TT}) \\ &= 1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} \\ &= \boxed{\frac{1}{2}} \end{split}$$

 $P(\text{Heads AND Tails on opposite side}) \rightarrow \text{Only coin HT contributes}.$

Essentially, this also follows from the Total Probability Theorem, where the other two coins give 0 probability for this case.

$$\begin{split} P(\text{Heads AND Tails on opp. side}) &= \tfrac{1}{3} \cdot 0 + \tfrac{1}{3} \cdot 0 + \tfrac{1}{3} \cdot \tfrac{1}{2} \\ &= P(\text{HT chosen}) \cdot P(\text{Heads on HT}) = \boxed{\tfrac{1}{6}} \\ &\therefore \ P(\text{Tails on opposite side} \mid \text{Heads}) = \tfrac{\tfrac{1}{6}}{\tfrac{1}{2}} = \boxed{\tfrac{1}{3}} \end{split}$$

Question 5. Let $C = \{A_1, A_2, ..., A_n\}$ be a collection of mutually independent events. For any chosen index $i \in \{1, 2, ..., n\}$, the collection $C' = (C \setminus \{A_i\}) \cup \{A_i^c\}$ is also a collection of mutually independent events.

Proof. Given: The collection $C = \{A_1, \ldots, A_n\}$ is mutually independent. Thus, for any subcollection $\{B_1, \ldots, B_k\} \subseteq C$:

$$\mathbf{P}\left(\bigcap_{j=1}^{k} B_j\right) = \prod_{j=1}^{k} \mathbf{P}(B_j)$$

To Prove: The collection $C' = \{A_1, \ldots, A_{i-1}, A_i^c, A_{i+1}, \ldots, A_n\}$ is mutually independent. For any subcollection $S \subseteq C'$, we must show:

$$\mathbf{P}\left(\bigcap_{B\in S}B\right)=\prod_{B\in S}\mathbf{P}(B)$$

The proof follows by considering an arbitrary subcollection $S \subseteq \mathcal{C}'$.

Case 1: $A_i^c \notin S$

If $A_i^c \notin S$, then $S \subseteq \mathcal{C}$. Since \mathcal{C} is mutually independent, the property holds for S by definition.

$$\mathbf{P}\left(\bigcap_{B\in S}B\right) = \prod_{B\in S}\mathbf{P}(B)$$

Case 2: $A_i^c \in S$

Let $S = S' \cup \{A_i^c\}$, where $S' \subseteq \mathcal{C} \setminus \{A_i\}$. Let $B_{\text{int}} = \bigcap_{B \in S'} B$. We must show $P(B_{\text{int}} \cap A_i^c) = P(B_{\text{int}})P(A_i^c)$.

From the law of total probability, $P(B_{\text{int}}) = P(B_{\text{int}} \cap A_i) + P(B_{\text{int}} \cap A_i^c)$, which implies:

$$P(B_{\text{int}} \cap A_i^c) = P(B_{\text{int}}) - P(B_{\text{int}} \cap A_i)$$

Since all events in S' and A_i are in the mutually independent collection C, we have:

$$P(B_{\text{int}}) = \prod_{B \in S'} \mathbf{P}(B)$$
$$P(B_{\text{int}} \cap A_i) = \left(\prod_{B \in S'} \mathbf{P}(B)\right) \mathbf{P}(A_i)$$

Substituting these into the equation:

$$\mathbf{P}(B_{\text{int}} \cap A_i^c) = \left(\prod_{B \in S'} \mathbf{P}(B)\right) - \left(\prod_{B \in S'} \mathbf{P}(B)\right) \mathbf{P}(A_i)$$
$$= \left(\prod_{B \in S'} \mathbf{P}(B)\right) (1 - \mathbf{P}(A_i))$$
$$= \left(\prod_{B \in S'} \mathbf{P}(B)\right) \mathbf{P}(A_i^c)$$

This is the required condition for the subcollection S.

Since the condition holds for all possible subcollections, \mathcal{C}' is mutually independent. $\hfill\Box$

Q6

We are interested in

$$P(E \mid A \cap B),$$

where

$$P(E) = \frac{1}{1000}, \qquad P(\overline{E}) = \frac{999}{1000},$$

and each witness is truthful with probability 0.9 and lies with probability 0.1. Let A denote the event that Alice asserts E occurred, and B the event that Bob asserts the same.

For a single witness,

$$P(A \mid E) = 0.9,$$
 $P(A \mid \overline{E}) = 0.1,$

and similarly for Bob.

Since Alice and Bob are independent witnesses and there is no collusion, their answers are $conditionally\ independent$ given whether E occurred. Hence,

$$P(A \cap B \mid E) = P(A \mid E) P(B \mid E) = 0.9 \cdot 0.9 = \frac{81}{100},$$

$$P(A \cap B \mid \overline{E}) = P(A \mid \overline{E}) P(B \mid \overline{E}) = 0.1 \cdot 0.1 = \frac{1}{100}.$$

Applying Bayes' theorem,

$$P(E \mid A \cap B) = \frac{P(E) P(A \cap B \mid E)}{P(E) P(A \cap B \mid E) + P(\overline{E}) P(A \cap B \mid \overline{E})}.$$

Substituting values,

$$P(E \mid A \cap B) = \frac{\frac{1}{1000} \cdot \frac{81}{100}}{\frac{1}{1000} \cdot \frac{81}{100} + \frac{999}{1000} \cdot \frac{1}{100}}$$
$$= \frac{\frac{81}{100000}}{\frac{81}{100000} + \frac{999}{100000}} = \frac{81}{1080}.$$

Reducing the fraction,

$$P(E \mid A \cap B) = \frac{3}{40}.$$

$$P(E \mid A \cap B) = \frac{3}{40}$$

Question 7

Writing down all the permutations will get very messy very quickly. A clever idea is to identify the recursive structure of the problem and exploit it.

Denote the probability of going bankrupt from a current balance of 'k' as P_k . From the Total Probability Theorem, we can write:

 $P(Bankruptcy) = P(Heads)P(Bankruptcy \mid Heads) + P(Tails)P(Bankruptcy \mid Tails)$

$$P_k = P(\text{Heads})P_{k+1} + P(\text{Tails})P_{k-1}$$

With a fair coin, where $P(\text{Heads}) = P(\text{Tails}) = \frac{1}{2}$, the equation becomes:

$$P_k = \frac{P_{k+1} + P_{k-1}}{2}$$

 P_k is the arithmetic mean of P_{k+1} and P_{k-1} . Let's analyze the boundary conditions.

• If the current balance is 0, the player is already bankrupt. So, the probability of going bankrupt is 1.

$$P_0 = 1$$

• If the player reaches the target of 2,000,000, they have won and will not go bankrupt. So, the probability of going bankrupt is 0.

$$P_{2,000,000} = 0$$

We are looking for P_{200} . Since the probabilities form an AP, the solution is of the form:

$$P_k = P_0 + \frac{(P_{2,000,000} - P_0)k}{2,000,000}$$

$$P_k = 1 - \frac{k}{2,000,000}$$

For a starting balance of k = 200:

$$P_{200} = 1 - \frac{200}{2,000,000} = 1 - 0.0001 = 0.9999$$

To build more intuition, think about how the probability of going bankrupt changes with a change in the starting position. Also, what happens if the coin is biased?

Interested students can also check out the concept of Markov Processes.