CLAIMS

1	1.	An inductive energy harvester that generates electrical energy from mechanical
2		vibrations, the energy harvester comprising:
3		a magnetic field source having a first pole and a second pole that
4		generate a magnetic field;
5		an induction coil;
6		an induction coil support that positions the induction coil near the first
7		magnetic field source pole; and
8		a mechanical connector that mechanically couples the magnetic field
9		source to the induction coil support in a manner that allows relative movement
10		between the magnetic field source and the induction coil in response to the
11		vibrations.
1	2.	The inductive energy harvester of claim 1 further comprising:
2		a flux concentrator attached to the first pole in order to concentrate the
3		magnetic field emerging from the first pole in the vicinity of the induction coil.
1	3.	The inductive energy harvester of claim 1 wherein the mechanical connector
2		comprises a spiral disk spring.
1	4.	The inductive energy harvester of claim 1 wherein the mechanical connecter
2		comprises a pair of spiral disk springs.
1	5.	The inductive energy harvester of claim 1 wherein the mechanical connector
2	O.	comprises at least one leaf spring.
_		comprises at least one lear opining.
4	6	The inductive energy harvester of claim 1 wherein the mechanical connector
1	6.	•
2		comprises at least one coil spring.

- The inductive energy harvester of claim 1 further comprising a flux yoke attached to the second magnetic field source pole to provide a low reluctance flux path between the first and second magnetic field source poles.
- 1 8. The inductive energy harvester of claim 7 wherein the flux yoke surrounds the magnetic field source.
- 1 9. The inductive energy harvester of claim 7 wherein the mechanical connector attaches to the flux yoke.
- 1 10. The inductive energy harvester of claim 9 further comprising a non-magnetic housing and wherein the mechanical connecter attaches to the housing.
- 1 11. The inductive energy harvester of claim 7 wherein the flux yoke is a magnet
 2 having a polarization that enhances magnetic flux in the vicinity of the induction
 3 coil.
- 1 12. The inductive energy harvester of claim 11 wherein the flux yoke comprises an annular permanent magnet.
- 1 13. The inductive energy harvester of claim 1 wherein the induction coil surrounds one pole of the magnetic field source.
- 1 14. The inductive energy harvester of claim 1 wherein the magnetic field source is a permanent magnet.

- 1 15. The inductive energy harvester of claim 1 further comprising a second magnetic field source arranged in magnetic flux opposition to the magnetic field source.
- 1 16. The inductive energy harvester of claim 15 further comprising a magnetic flux concentrator positioned between the magnetic field source and the second magnetic field source and in the vicinity of the induction coil.
- 1 17. An inductive energy harvester that generates electrical energy from mechanical vibrations, the energy harvester comprising:
 - a permanent magnet having a first pole and a second pole that generates a magnetic field;
 - a flux concentrator attached to the first pole;

3

4

5

6

7

8

9

- an induction coil surrounding the flux concentrator;
- a spring that mechanically couples the permanent magnet to the induction coil in a manner that allows relative movement between the permanent magnet and the induction coil in response to the vibrations.
- 1 18. The inductive energy harvester of claim 17 wherein the flux concentrator is comprised of a high magnetic permeability material.
- 1 19. The inductive energy harvester of claim 17 further comprising a magnetically permeable flux yoke extending from the second pole to the first pole.
- The inductive energy harvester of claim 19 wherein the flux yoke is an annular permanent magnet with a polarization that enhances magnetic flux in the vicinity of the induction coil.
- 1 21. The inductive energy harvester of claim 19 wherein the flux yoke surrounds the permanent magnet.

1	22.	The inductive energy harvester of claim 19 further comprising a non-magnetic
2		housing and wherein the spring attaches the housing to the flux yoke.
1	23.	The inductive energy harvester of claim 22 further comprising a second spring
2		attached between the flux yoke and the housing.
1	24.	The inductive energy harvester of claim 17 wherein the spring is a spiral disk
2		spring.
1	25.	The inductive energy harvester of claim 17 wherein the spring is a leaf spring.
1	26.	The inductive energy harvester of claim 17 wherein the spring is a coil spring.
1	27.	An inductive energy harvester that generates electrical energy from mechanical
2		vibrations, the energy harvester comprising:
3		a first permanent magnet having a first pole and a second pole that
4		generates a magnetic field;
5		a second permanent magnet having a first pole in opposing flux
6		relationship with the first permanent magnet first pole and a second pole;
7		a flux concentrator attached to the first permanent magnet first pole and
8		positioned between the first permanent magnet and the second permanent
9		magnet;

a spring that mechanically couples the first and second permanent

magnets to the induction coil in a manner that allows relative movement between

the first and second permanent magnets and the induction coil in response to the

an induction coil surrounding the flux concentrator;

10

11

12

13

14

external vibrations.

- 1 28. The inductive energy harvester of claim 27 wherein the flux concentrator is comprised of a high magnetic permeability material.
- The inductive energy harvester of claim 28 further comprising a flux yoke
 extending from the first permanent magnet second pole to the second permanent
 magnet second pole.
- 1 30. The inductive energy harvester of claim 28 wherein the flux yoke surrounds the first and second permanent magnets.
- 1 31. The inductive energy harvester of claim 29 further comprising a non-magnetic housing and wherein the spring attaches the housing to the flux yoke.
- The inductive energy harvester of claim 31 further comprising a second spring attached between the flux yoke and the housing.
- 1 33. The inductive energy harvester of claim 27 wherein the spring is a spiral disk spring.
- 1 34. The inductive energy harvester of claim 27 wherein the spring is a leaf spring.
- 1 35. The inductive energy harvester of claim 27 wherein the spring is a coil spring.