第一章 行列式

	行列式的概念	定义
	重要行列式	上(下)三角,主对角行列式 副对角行列式
		副对角行列式
		$\left\{ ab$ 型行列式
		拉普拉斯展开式
		范德蒙行列式
行 列 式	展开定理	ab型行列式 拉普拉斯展开式 范德蒙行列式 $\begin{cases} a_{i1}A_{j1} + \ldots + a_{in}A_{jn} = \begin{cases} A & i = j \\ 0 & i \neq j \end{cases} \\ a_{1i}A_{1j} + \ldots + a_{ni}A_{nj} = \begin{cases} A & i = j \\ 0 & i \neq j \end{cases}$
		$\begin{cases} 0 & i \neq j \end{cases}$
		$\begin{vmatrix} a_{1i}A_{1i} + \ldots + a_{ni}A_{ni} = \begin{cases} A & i = j \end{cases}$
		$ \left(\begin{array}{ccc} 1 & i & & \\ & & & \\ & & & \\ \end{array} \right) $
	行列式公式	$\begin{cases} kA = k^n A & AB = A B \end{cases}$
		$ A^T = A A^{-1} = A ^{-1}$
		$\begin{cases} kA = k^n A & AB = A B \\ A^T = A & A^{-1} = A ^{-1} \\ A^* = A ^{n-1} & \\ \forall A \text{ 的特征值为} \lambda_1 \dots \lambda_n, \mathbb{M} A = \prod_{i=1}^n \lambda_i \\ \forall A \text{ 与} B \text{ 相似, } \mathbb{M} A = B \end{cases}$
		设 A 的特征值为 $\lambda_1 \dots \lambda_n$,则 $ A = \prod_{i=1}^n \lambda_i$
	Grammer 法则	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}$

拉普拉斯展开式 (上, 下三角分块行列式的结论)

$$D = \begin{vmatrix} A & C \\ \mathbf{0} & D \end{vmatrix} = \begin{vmatrix} A & \mathbf{0} \\ C & D \end{vmatrix} = \det(A)\det(D)$$

对于一般分块矩阵

$$A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

若 B 可逆,则有如下结论

$$\det(A) = \det(B) \cdot \det(E - DB^{-1}C)$$

1.1 数字行列式的计算

Remark

基本方法

- (1) 利用行列式的性质 (5条) 来化简
- (2) 要么出现重要行列式 (5组)
- (3) 要么展开定理 (0 比较多的时候)
- 1. 设

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$

则方程 f(x) = 0 根的个数为 ____

Solution

第一列乘 -1 加到其他列

则 x = 0 或 x = 1

$$f(x) = \frac{\widehat{x} - 2 + 1}{2x - 2 + 1} = \frac{x - 2}{2x - 2} = \frac{1}{2x - 2} = \frac{0}{2x - 2} = \frac{1}{3x - 3} = \frac{0}{3x - 3} = \frac{1}{3x - 3} = \frac{1}{3x$$

2. 利用范德蒙行列式计算

范德蒙行列式
$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ac \\ c & c^2 & ab \end{vmatrix} = \underline{\qquad}$$

Solution

原式
$$=$$
 第一列乘以 (a+b+c) 加到第三列 $\begin{vmatrix} a & a^2 & a^2 + ac + ab + bc \\ b & b^2 & a^2 + ac + ab + bc \\ c & c^2 & a^2 + ac + ab + bc \end{vmatrix}$

第二列乘-1 加到最后一列, 提取公因式, 并交换
$$(ab+ac+bc)$$
 $\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$

$$= (ac + bc + ab)(b - a)(c - a)(c - b)$$

3. 设
$$x_1x_2x_3x_4 \neq 0$$
,则
$$\begin{vmatrix} x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix} = \underline{\qquad}.$$

Solution

考虑加边法,为该行列式增加一行一列,变成如下行列式

原行列式 =
$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ a_1 & x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2 & a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3 & a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4 & a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix}$$

将第一行分别乘以 $-a_1,-a_2...$,分别加到第2,3,...列

从下往上消,分别乘以 $\frac{a_i}{x_i}$,加到第一行

$$\begin{vmatrix} 1 + \sum_{i=1} \frac{a_i^2}{x_i} & 0 & 0 & 0 & 0 \\ a_1 & x_1 & 0 & 0 & 0 \\ a_2 & 0 & x_2 & 0 & 0 \\ a_3 & 0 & 0 & x_3 & 0 \\ a_4 & 0 & 0 & 0 & x_4 \end{vmatrix}$$

$$= (x_1 x_2 x_3 x_4) (1 + \sum_{i=1}^4 \frac{a_i^2}{x_i})$$

爪型行列式

关键点在于化简掉一条爪子

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

4. 计算三对角线行列式

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

 $D_1 = \alpha + \beta$

Solution

(法一) 递推法

$$D_{2} = \alpha^{2} + \alpha\beta + \beta^{2}$$

$$\cdots$$

$$D_{n} = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2}$$

$$D_{n} - \alpha D_{n-1} = \beta(D_{n-1} - \alpha D_{n-2})$$

$$= \beta^{2}(D_{n-2} - \alpha D_{n-3})$$

$$\cdots$$

$$= \beta^{n-1}(D_{2} - D_{1}) = \beta^{n}$$

$$D_{n} = \beta^{n} + \alpha D_{n-1} = \beta^{n} + \alpha(\beta^{n-1} + \alpha D_{n-2})$$

$$\cdots$$

$$= \beta^{n} + \alpha\beta^{n-1} + \dots + \alpha^{n}$$

(法二) 数学归纳法

if
$$\alpha = \beta, D_1 = 2\alpha, D_2 = 3\alpha^2, assume, D_{n-1} = n\alpha^{n-1}$$

then $D_n = D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2} = (n+1)\alpha^n$
when $\alpha \neq \beta, D_1 = \frac{\alpha^2 - \beta^2}{\alpha - \beta}, D_2 = \frac{\alpha^3 - \beta^3}{\alpha - \beta},$
Assume, $D_{n-1} = \frac{\alpha^n - \beta^n}{\alpha - \beta}, then,$
 $D_n = \dots = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$

(法三) 二阶差分方程

$$D_n - (\alpha + \beta)D_{n-1} + \alpha\beta D_{n-2} = 0$$
$$D_{n+2} - (\alpha + \beta)D_{n+1} + \alpha\beta D_n = 0$$

类似于二阶微分方程解特征方程

$$r^{2} - (\alpha + \beta)r + \alpha\beta = 0$$
$$r_{1} = \alpha \qquad r_{2} = \beta$$

差分方程的关键 r^n 代换 e^{rx}

如果 $\alpha = \beta$

$$D_n = (C_1 + C_2 n)\alpha^n, D_1 = 2\alpha, D_2 = 3\alpha^2$$

得到 $C_1 = C_2 = 1, \Box D_n = (n+1)\alpha^n$

如果 $\alpha \neq \beta$

$$D_n = C_1 \alpha^n + C_2 \beta^n, \, \text{th} \, D_1 = 2\alpha, D_2 = 3\alpha^2$$

$$C_1 = \frac{\alpha}{\alpha - \beta}, C_2 = \frac{-\beta}{\alpha - \beta}$$

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

1.2 代数余子式求和

8

Corollary

如下行列式有和例题 4 完全相等的性质

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end{vmatrix}$$

$$D_n = \begin{cases} (n+1)\alpha^n, & \alpha = \beta \\ \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, & \alpha \neq \beta \end{cases}.$$

1.2 代数余子式求和

Remark

代数余子式求和的基本办法

- (1) 代数余子式的定义(求一个的时候使用)
- (2) 展开定理(求一行或者一列的时候使用)
- (3) 利用伴随矩阵的定义(求全部代数余子式的时候使用)
- 1. 已知

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix} = 27$$

1.2 代数余子式求和

9

Solution

(法一) 利用展开定理构建新的矩阵来计算

$$A_{41} + A_{42} + A_{43} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

$$A_{44} + A_{45} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 1 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

但这样 |A| = 27 的条件就没用到

(法二) 直接对第四行使用展开定理,则

$$|A| = A_{41} + A_{42} + A_{43} + 2A_{44} + 2A_{45} = 27$$

直接对第二行使用展开定理,则

$$|A| = 2A_{41} + 2A_{42} + 2A_{43} + A_{44} + A_{45} = 0$$

相当于解 A+2B=27, 2A+B=0, 容易计算 $A_{41}+A_{42}+A_{43}=-9, A_{44}+A_{45}=18$

2. 设

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

则 |A| 的所有代数余子式的和为__

Solution

对于求所有代数余子, 基本都是考察 A* 的定义, 即

$$A^* = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix},$$

又由于 $A^* = |A| A^{-1}$, 对于这道题

$$|A| = (-1)^{(n+1)} n!$$

 A^{-1} 可以通过分块矩阵来求

$$|A|A^{-1} = |A| \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ \hline n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= |A| \begin{pmatrix} 0 & & \left| \frac{1}{n} \right| \\ \overline{diag(1, \frac{1}{2}, \dots, \frac{1}{n-1})} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \left| \frac{1}{n} \right| A| \\ \overline{diag(|A|, \frac{|A|}{2}, \dots, \frac{|A|}{n-1})} & 0 \end{pmatrix}$$

则所有代数余子式之和为

$$(-1)^{(n+1)}n!\sum_{i=1}^{n}\frac{1}{i}$$

1.3 抽象行列式的计算

Remark

抽象行列式的计算方法

- (1) 通过行列式的性质
- (2) 行列式的公式 (7个)
- 7. (2005, 数一、二) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$. 若 |A| = 1, 则 |B| =______

Solution

(法一) 利用性质

$$B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$$

$$= (\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_2 + 5\alpha_3)$$

$$= 2(\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_3)$$

$$= 2(\alpha_1, \alpha_2, \alpha_3)$$

$$|B| = 2|A| = 2$$

(法二) 分块矩阵

$$B = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{pmatrix}$$
$$|B| = |A| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{vmatrix} = |A|(2-1)(3-1)(3-2) = 2$$

8. 设 A 为 n 阶矩阵, α, β 为 n 维列向量. 若 |A| = a, $\begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} = 0$, 则 $\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} =$

Solution

这道题的关键在于巧妙构建行列式的和

$$\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} = \begin{vmatrix} A & \alpha + 0 \\ \beta^T & b + c - b \end{vmatrix}$$
$$= \begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} + \begin{vmatrix} A & 0 \\ \beta^T & c - b \end{vmatrix}$$
$$= |A| (c - b) = a(c - b)$$

9. 设 A 为 2 阶矩阵, $B = 2\begin{pmatrix} (2A)^{-1} - (2A)^* & 0 \\ 0 & A \end{pmatrix}$ 若 |A| = -1, 则 |B| =______

Solution

这道题比较纯粹就是行列式公式的应用

$$|B| = 2^{4} |A| \cdot \left| (2A)^{-1} - (2A)^{*} \right|$$

$$= 2^{4} |A| \cdot \left| \frac{1}{2} A^{-1} - 2A^{*} \right|$$

$$= 2^{4} \left| \frac{1}{2} E - 2|A| \right| = 100$$

10. 设 n 阶矩阵 A 满足 $A^2 = A, A \neq E$, 证明 |A| = 0

易错点

由 $|A|^2 = |A| \implies |A| = 1$ 或 = 0, 又 $A \neq E \implies |A| \neq 1$, 故 |A| = 0 注意矩阵不等关系是无法推出行列式的不等关系的, 矩阵式数表只要顺序不同就不一样, 但不一样的矩阵其行列式完全有可能相等.

等于1的矩阵并非只能是 E

Solution

(法一) 反证法

若 $|A| \neq 0$, 则 A 可逆, 对于等式 $A^2 = A$ 两边同乘 A^{-1} , 则 A = E 与题设矛盾, 故 $|A| \neq 0$

(法二) 秩

由于 $A(A-E)=0 \implies r(A)+r(A-E) \le n,$ 又 $A\ne E, r(A-E)\ge 1,$ 故 $r(A)\le n,$ 故 |A|=0

(法三) 方程组

由于 A(A-E)=0, 且 $A\neq E$ 可知方程 AX=0 有非零解即 (A-E) 中的非零列, 故 r(A)< n, |A|=0

(法四) 特征值与特征向量

由于 $A(A-E)=0, A\neq E$, 取 A-E 的非零列向量 $\beta\neq 0, A\beta=0$ 故由特征值与特征值向量的定义,A 由特征值 0, 而 $|A|=\prod_{i=1}^n \lambda_i=0$

总结

若 AB = 0有如下结论

- $(1) r(A) + r(B) \le n$
- (2)B 的列向量均为方程 AX = 0 的解
- (3) 若 $A_{n\times n}$, 则 B 的非零列向量均为 A 的特征值为 0 的特征向量