

1 ANTICONVULSANT ENANTIOMERIC AMINO ACID DERIVATIVESFIELD OF THE INVENTION

5 The present invention relates to novel enantiomeric compounds and pharmaceutical compositions useful in the treatment of epilepsy and other CNS disorders.

10 BACKGROUND OF THE INVENTION

The predominant application of anticonvulsant drugs is the control and prevention of seizures associated with epilepsy or related central nervous system disorders. Epilepsy refers to many types of recurrent seizures produced by paroxysmal excessive neuronal discharges in the brain; the two main generalized seizures are petit mal, which is associated with myoclonic jerks, akinetic seizures, 20 transient loss of consciousness, but without convulsion; and grand mal which manifests in a continuous series of seizures and convulsions with loss of consciousness.

25 The mainstay of treatment for such disorders has been the long-term and consistent administration of anticonvulsant drugs. Most drugs in use are weak acids that, presumably, exert their action on neurons, glial cells or both of the central nervous system.

30 The majority of these compounds are characterized by the presence of at least one amide unit and one or

1 more benzene rings that are present as a phenyl group
or part of a cyclic system.

Much attention has been focused upon the
5 development of anticonvulsant drugs and today many
such drugs are well known. For example, the
hydantions, such as phenytoin, are useful in the
control of generalized seizures and all forms of
partial seizures. The oxazolidinediones, such as
10 trimethadione and paramethadione, are used in the
treatment of nonconvulsive seizures. Phenacetamide, a
phenylacetylurea, is one of the most well known
anticonvulsants employed today, while much attention
has recently been dedicated to the investigation of
15 the diazepines and piperazines. For example, U.S.
Pat. Nos. 4,002,764 and 4,178,378 to Allgeier, et al.
disclose esterified diazepine derivatives useful in
the treatment of epilepsy and other nervous disorders.
20 U.S. Pat. No. 3,887,543 to Nakanishi, et al. describes
a thieno [2,3-e][1,4]diazepine compound also having
anticonvulsant activity and other depressant activity.
U.S. Pat. No. 4,209,516 to Heckendorf, et al. relates
25 to triazole derivatives which exhibit anticonvulsant
activity and are useful in the treatment of epilepsy
and conditions of tension and agitation. U.S. Pat.
No. 4,372,974 to Fish, et al. discloses a
pharmaceutical formulation containing an aliphatic
30 amino acid compound in which the carboxylic acid and
primary amine are separated by three or four units.
Administration of these compounds in an acid pH range

1 are useful in the treatment of convulsion disorders
and also possess anxiolytic and sedative properties.

U.S. Pat. No. 5,378,729 to Kohn, et al.

5 disclose compounds and pharmaceutical compositions
having central nervous system (CNS) activity which are
useful in the treatment of epilepsy and other CNS
disorders having the following general formula:

10

15 R is hydrogen, lower alkyl, lower alkenyl,
lower alkynyl, aryl, aryl lower alkyl, heterocyclic,
heterocyclic lower alkyl, lower alkyl heterocyclic,
lower cycloalkyl, lower cycloalkyl lower alkyl, and R
is unsubstituted or is substituted with at least one
20 electron withdrawing group, or electron donating
group.

25 R₁ is hydrogen or lower alkyl, lower
alkenyl, lower alkynyl, aryl lower alkyl, aryl,
heterocyclic lower alkyl, heterocyclic, lower
cycloalkyl, lower cycloalkyl lower alkyl, each
unsubstituted or substituted with an electron donating
group or an electron withdrawing group and

30 R₂ and R₃ are independently hydrogen, lower
alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl,
aryl, heterocyclic, heterocyclic lower alkyl, lower

1 alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl
lower alkyl, or Z-Y wherein R₂ and R₃ may be
unsubstituted or substituted with at least one
5 electron withdrawing group or electron donating group;
Z is O, S, S(O)_a, NR₄, PR₄ or a chemical bond;
Y is hydrogen, lower alkyl, aryl, aryl lower
alkyl, lower alkenyl, lower alkynyl, halo,
heterocyclic, or heterocyclic lower alkyl, and Y may
10 be unsubstituted or substituted with an electron
donating group or an electron withdrawing group,
provided that when Y is halo, Z is a chemical bond, or
ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇,
OPR₄R₅, PR₄OR₅, SNR₄R₇, NR₄SR₇, SPR₄R₅, PR₄SR₇, NR₄PR₅R₆,
15 PR₄NR₅R₇,

20 R₄, R₅ and R₆ are independently hydrogen,
lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or
lower alkynyl, wherein R₄, R₅ and R₆ may be
unsubstituted or substituted with an electron
25 withdrawing group or an electron donating group,
R₇ is R₆, COOR₈ or COR₈,
R₈ is hydrogen, lower alkyl, or aryl lower
alkyl, and the aryl or alkyl group may be
30 unsubstituted or substituted with an electron
withdrawing group or an electron donating group and .

1 n is 1-4 and
5 a is 1-3.

Unfortunately, despite the many available
5 pharmacotherapeutic agents, a significant percentage
of the population with epilepsy or related disorders
are poorly managed. Moreover, none of the drugs
presently available are capable of achieving total
seizure control, but unfortunately, most have
10 disturbing side effects. Furthermore, many
anticonvulsants have associated therewith liver
toxicity.

Research is continuing in this area to find
better and more effective anticonvulsant agents.
15 Obviously, the ideal drug is one that has high
pharmacological activity, minimal side effects and is
relatively non-toxic and safe to the animal that is
being treated. More specifically, the ideal
20 anticonvulsant drug is one that satisfies the
following four criteria: (1) has a high
anticonvulsant activity, (expressed as ED_{50}); (2) has
minimal neurological toxicity, (as expressed by the
median toxic dose (TD_{50})), relative to its potency; (3)
25 has a maximum protective index (sometimes known as
selectivity or margin of safety), which measures the
relationship between the doses of a drug required to
produce undesired and desired effects, and is measured
as the ratio between the median toxic dose and the
30 median effective dose (TD_{50}/ED_{50}); and (4) is relatively
safe as measured by the median lethal dose (LD_{50})

1 relative to its potency and is non-toxic to the animal
that is being treated, e.g., it exhibits minimal
adverse effects on the remainder of the treated
5 animal, its organs, blood, its bodily functions, etc.
even at high concentrations. Thus, for example, it
exhibits little or no liver toxicity.

Heretofore, no anti-convulsant drug has been
developed that has the following characteristics:
10 maximum potency, minimal neurological toxicity,
superior protective index and minimal liver toxicity.

However, the present inventor has found such
a group of compounds that is generally potent, exhibit
minimal neurologically toxicity, has a high protective
15 index and is relatively non-toxic to the body organs,
including the liver.

SUMMARY OF THE INVENTION

20 Accordingly, the present invention is
directed to N-benzyl-2-acetamido propionamide
derivatives in the R configuration having the formula:

30 wherein

1 Ar is aryl which is unsubstituted or
substituted with halo;

Q is lower alkoxy; and

5 Q₁ is CH₃.

The present invention contemplates employing
the compound of Formula I in a pharmaceutical
composition. Moreover, the administration of an
effective amount of the present compounds in their
10 pharmaceutically acceptable forms provides an
excellent regime for the treatment of epilepsy,
nervous anxiety, psychosis, insomnia, and other
related central nervous disorders.

15 DETAILED DESCRIPTION OF THE INVENTION

The term "alkoxy" refers to an O-alkyl group
attached to the main chain through an oxygen bridge,
wherein alkyl is as defined hereinabove. The alkoxy
20 groups are lower alkoxy groups containing one to six
carbon atoms, and more preferably, one to three carbon
atoms. The most preferred alkoxy groups are propoxy,
isopropoxy, ethoxy and especially methoxy.

The term "aryl", when used alone or in
25 combination, refers to a phenyl group which is
unsubstituted or substituted with halo.

The term halo includes fluoro, chloro,
bromo, iodo and the like. The preferred halo is
30 fluoro.

1 It is preferred that Q in the compound of
formula I is alkoxy having 1-3 carbon atoms. The most
preferred alkoxy group is propoxy, isopropoxy, ethoxy
and especially methoxy.
5

The Ar group as defined herein, is phenyl,
which may be unsubstituted or substituted as defined
herein. It is most preferred that the aryl group,
i.e., phenyl, is unsubstituted or substituted with
10 only one halo group. It is more preferred that if
substituted, the halo substituent is in the para or
meta position. It is even more preferred that the
phenyl group is unsubstituted.

15 Examples of the compounds of the present
invention include:

(R)-N-Benzyl-2-acetamido-3-methoxy
propionamide,

20 (R)-N-(3-Fluorobenzyl)-2-acetamido-3-
methoxypropionamide,

(R)-N-(4-Fluorobenzyl)-2-acetamide-3-
methoxypropionamide,

(R)-N-Benzyl-2-acetamido-3-ethoxy
propionamide.

25 As indicated by the asterisk in formula I,
the compounds of the present invention contain at
least one asymmetric carbon and the stereochemistry at
the asymmetric carbon is in the R configuration. The
inventor has found that the R stereoisomer is
30 significantly more efficacious than the corresponding
S enantiomer or a racemic mixture thereof.

1 It is preferred that the compound of the
present invention be substantially pure, i.e.,
substantially free from impurities. It is most
5 preferred that the compounds of the present invention
be at least 75% pure (w/w) and more preferably greater
than about 90% pure (w/w) and most preferably greater
than about 95% pure (w/w).

It is also preferred that the compounds of
10 the present invention be substantially
enantiomerically pure, i.e., substantially free from
the corresponding S isomer. It is more preferred that
the compounds of the present invention contain at
15 least 90% (w/w) R stereoisomer, and most preferably
greater than about 95% (w/w) in the R stereoisomer.
Thus, the present invention contemplates compounds
having at most about 10% S isomer (w/w), and even more
preferably less than about 5% S isomer (w/w).

20 The compounds of the present invention in
the R form are prepared by art recognized techniques
from commercially available starting materials.

An exemplary procedure is outlined in Scheme 1 hereinbelow:

25 Scheme 1

1

5

$\xleftarrow{\text{CH}_3\text{I}}$
 $\xleftarrow{\text{Ag}_2\text{O}}$

5

4

10

A D serine molecule (1) is esterified under acylation conditions with an alcohol, such as acidic methanol, to provide the corresponding ester (2). 2 is reacted with ArCH_2NH_2 , such as benzylamine, under acylation conditions to form the corresponding amide (3). Acylation of the free amino group, with an acylating derivative of $\text{Q}_1\text{C-OH}$,

such as acetic acid, or lower alkyl ester of acetic acid, or acetic anhydride provides the hydroxymethyl derivative, i.e.,

30

35

1 The enantiopurity of 4 was determined by techniques
known in the art, including melting point, optical
rotation and ^1H NMR upon addition of an organic acid
in the R-configuration, such as R(-)- mandelic acid.
5 Crystallization of 4 was repeated until the desired
enantiopurity thereof was achieved. The product of 4
is converted to the ether under Williamson conditions
10 by reacting it with QX, wherein Q is as defined herein
above and X is good leaving groups, such as OTs, OMs,
or halide (e.g., CH_3I) and the like in the presence of
base (e.g., Ag_2O) to form the product (5) having
15 Formula I.

Another variation is depicted in Scheme 2.

Scheme 2

1 For example, beginning with D-serine (1),
treatment with an acylating derivative of acetic acid.

5 such as acetic anhydride in acetic acid, gives the
corresponding amide 6 which is then reacted with
 ArCH_2NH_2 under mixed anhydride coupling reaction
conditions, as described by Anderson, et al., in JACS,
1967, 89, 5012-5017, the contents of which are
10 incorporated herein by reference, to give the
corresponding compound of the formula:

e.g., 1. Alkylation of this R-product in the presence
of base under Williamson conditions, such as methyl
20 iodide in Ag_2O , provides a product of Formula I(8).

The active ingredients of the therapeutic
compositions and the compounds of the present
invention exhibit excellent anticonvulsant activity
when administered in amounts ranging from about 1 mg
25 to about 100 mg per kilogram of body weight per day.
This dosage regimen may be adjusted by the physician
to provide the optimum therapeutic response. For
example, several divided doses may be administered
30 daily or the dose may be proportionally reduced as
indicated by the exigencies of the therapeutic

1 situation. A decided practical advantage is that the
active compound may be administered in an convenient
manner such as by the oral, intravenous (where water
soluble), intramuscular or subcutaneous routes.

5 The active compound may be orally
administered, for example, with an inert diluent or
with an assimilable edible carrier, or it may be
enclosed in hard or soft shell gelatin capsules, or it
10 may be compressed into tablets, or it may be
incorporated directly into the food of the diet. For
oral therapeutic administration, the active compound
may be incorporated with excipients and used in the
form of ingestible tablets, buccal tablets, troches,
15 capsules, elixirs, suspensions, syrups, wafers, and
the like. Such compositions and preparations should
contain at least 1% of active compound. The
percentage of the compositions and preparations may,
20 of course, be varied and may conveniently be between
about 5 to about 80% of the weight of the unit. The
amount of active compound in such therapeutically
useful compositions is such that a suitable dosage
will be obtained. Preferred compositions or
25 preparations according to the present invention are
prepared so that an oral dosage unit form contains
between about 5 and 1000 mg of active compound.

30 The tablets, troches, pills, capsules and
the like may also contain the following: A binder
such as gum tragacanth, acacia, corn starch or
gelatin; excipients such as dicalcium phosphate; a

1 disintegrating agent such as corn starch, potato
starch, alginic acid and the like; a lubricant such as
magnesium stearate; and a sweetening agent such as
5 sucrose, lactose or saccharin may be added or a
flavoring agent such as peppermint, oil of
wintergreen, or cherry flavoring. When the dosage
unit form is a capsule, it may contain, in addition to
materials of the above type, a liquid carrier.
10 Various other materials may be present as coatings or
to otherwise modify the physical form of the dosage
unit. For instance, tablets, pills, or capsules may
be coated with shellac, sugar or both. A syrup or
elixir may contain the active compound, sucrose as a
15 sweetening agent, methyl and propylparabens as
preservatives, a dye and flavoring such as cherry or
orange flavor. Of course, any material used in
preparing any dosage unit form should be
pharmaceutically pure and substantially non-toxic in
20 the amounts employed. In addition, the active
compound may be incorporated into sustained-release
preparations and formulations. For example, sustained
release dosage forms are contemplated wherein the
25 active ingredient is bound to an ion exchange resin
which, optionally, can be coated with a diffusion
barrier coating to modify the release properties of
the resin.

30 The active compound may also be administered
parenterally or intraperitoneally. Dispersions can
also be prepared in glycerol, liquid polyethylene

1 glycols, and mixtures thereof and in oils. Under
ordinary conditions of storage and use, these
preparations contain a preservative to prevent the
growth of microorganisms.

5 The pharmaceutical forms suitable for
injectable use include sterile aqueous solutions
(where water soluble) or dispersions and sterile
powders for the extemporaneous preparation of sterile
10 injectable solutions or dispersions. In all cases the
form must be sterile and must be fluid to the extent
that easy syringability exists. It must be stable
under the conditions of manufacture and storage and
must be preserved against the contaminating action of
15 microorganisms such as bacteria and fungi. The
carrier can be a solvent or dispersion medium
containing, for example, water, ethanol, polyol (for
example, glycerol, propylene glycol, and liquid
20 polyethylene glycol, and the like), suitable mixtures
thereof, and vegetable oils. The proper fluidity can
be maintained, for example, by the use of a coating
such as lecithin, by the maintenance of the required
particle size in the case of dispersions and by the
25 use of surfactants. The prevention of the action of
microorganisms can be brought about by various
antibacterial and antifungal agents, for example,
parabens, chlorobutanol, phenol, sorbic acid,
30 thimerosal, and the like. In many cases, it will be
preferable to include isotonic agents, for example,
sugars or sodium chloride. Prolonged absorption of

1 the injectable compositions can be brought about by
the use in the compositions of agents delaying
absorption, for example, aluminum monostearate and
5 gelatin.

10 Sterile injectable solutions are prepared by
incorporating the active compound in the required
amount in the appropriate solvent with various of the
other ingredients enumerated above, as required,
15 followed by filtered sterilization. Generally,
dispersions are prepared by incorporating the various
sterilized active ingredient into a sterile vehicle
which contains the basic dispersion medium and the
required other ingredients from those enumerated
20 above. In the case of sterile powders for the
preparation of sterile injectable solutions, the
preferred methods of preparation are vacuum drying and
the freeze-drying technique which yield a powder of
25 the active ingredient plus any additional desired
ingredient from previously sterile-filtered solution
thereof.

30 As used herein, "pharmaceutically acceptable
carrier" includes any and all solvents, dispersion
media, coatings, antibacterial and antifungal agents,
isotonic and absorption delaying agents, and the like.
The use of such media and agents for pharmaceutical
active substances is well known in the art. Except
insofar as any conventional media or agent is
incompatible with the active ingredient, its use in
the therapeutic compositions is contemplated.

1 Supplementary active ingredients can also be
incorporated into the compositions.

5 It is especially advantageous to formulate
parenteral compositions in dosage unit form for ease
of administration and uniformity of dosage. Dosage
unit form as used herein refers to physically discrete
units suited as unitary dosages for the mammalian
subjects to be treated; each unit containing a
10 predetermined quantity of active material calculated
to produce the desired therapeutic effect in
association with the required pharmaceutical carrier.
The specifics for the novel dosage unit forms of the
invention are dictated by and directly, dependent on
15 (a) the unique characteristics of the active material
and the particular therapeutic effect to be achieved,
and (b) the limitations inherent in the art of
compounding such an active material for the treatment
20 of disease in living subjects having a diseased
condition in which bodily health is impaired as herein
disclosed in detail.

25 The principal active ingredient is
compounded for convenient and effective administration
in effective amounts with a suitable pharmaceutically
acceptable carrier in dosage unit form as hereinbefore
described. A unit dosage form can, for example,
contain the principal active compound in amounts
ranging from about 5 to about 1000 mg. Expressed in
30 proportions, the active compound is generally present
in from about 1 to about 750 mg/ml of carrier. In the

1 case of compositions containing supplementary active
ingredients, the dosages are determined by reference
to the usual dose and manner of administration of the
said ingredients.

5 Unless indicated to the contrary,
percentages are by weight.

As used herein, the term lower alkyl refers
to an alkyl group containing 1-6 carbon atoms which
10 may be straight chained or branched.

For a better understanding of the present
invention reference is made to the following
description and examples.

15

20

25

30

35

1

GENERAL METHODS

Melting points were determined with a Thomas
Hoover melting point apparatus and are uncorrected.
Infrared spectra (IR) were run on Perkin-Elmer 1330,
283 and a Mattson Genesis spectrometer and were
calibrated against the 1601 cm^{-1} bond of polystyrene.
Absorption values are expressed in wave-numbers (cm^{-1}).
Proton (^1H NMR) and carbon (^{13}C NMR) nuclear magnetic
resonance spectra were taken on Nicolet NT-300 and
General Electric QE-300 NMR instruments. Chemical
shifts (δ) are in parts per million (ppm) relative to
 Me_3Si and coupling constants (J values) are in hertz.
All chemical ionization mass spectral investigations
were conducted on Finnegan MAT TSQ-70 instrument.
Ethyl α -acetamido cyanoacetate was obtained from
Aldrich Chemical Co. Microanalyses were provided by
Atlantic Microlab Inc. (Norcross, Ga). Thin layer
chromatography was performed on precoated silica gel
GHLF microscope slides (2.5 x 10 cm; Analtech No.
21521).

25

30

35

1

EXAMPLE 1

5

(R)-N-Benzyl-2-Acetamido-3-
methoxypropionamide

10

15

20

25

30

Hydrochloric acid (8.00g, 219.4 mmol) was passed into MeOH (250 mL) and then D-Serine (20.00g, 190.3 mmol) was added. The reaction solution was heated at reflux (18 hours), benzylamine (81.6 mL, 761 mmol) was added and then the reaction was heated for an additional eighteen hours. The solvent was removed under reduced pressure, the insoluble salts filtered, and the excess benzylamine was removed under high vacuum (Kugelrohr). The residue was dissolved in water (100 mL), and the product was extracted with CHCl₃ (8 x 200 mL). The organic layers were combined, dried (Na₂SO₄), and the solvent was removed under reduced pressure. The residue was triturated with Et₂O (150 mL) and filtered to give 10.0 g (27%) of the product R-enriched N-benzyl 2-aminoacrylamide, as a white solid: mp 74-78°C.; [α]_D²³ (c=1, MeOH) = -1.6°, Rf 0.30 (10% MeOH-CHCl₃); ¹H NMR (DMSO-d₆) δ1.87 (br s, NH₂), 3.23 (t, J=5.4 Hz, CH), 3.39-3.55 (m, CH₂OH), 4.28 (d, J=5.7 Hz, NHCH₂) 4.76 (t, J=5.4 Hz, CH₂OH), 7.18-7.32 (m, 5PhH), 8.34 (t J=5.7 Hz, NH), ¹³C NMR (DMSO-d₆) 41.8 (NHCH₂), 56.9 (CH), 64.3 (CH₂OH), 126.6 (C_{4'}), 127.0 (2C_{2'} or 2C_{3'}), 128.1 (2C_{2'} or 2C_{3'}), 139.5 (C_{1'}), 173.3 (C(O)NH) ppm, MS (+Cl) (rel intensity),

1 195 ($M^+ +1$, 53), 117 (100), Mr(+Cl) 195.113 56 ($M^+ +1$)
(calcd. for $C_{10} H_{15} N_2 O_2$, 195.11335).

5 To a stirred methylene chloride suspension
5 (100 ml) of R enriched N-benzyl 2-aminohydracrylamide
10 (10.00 g, 51.5 mmol) was added acetic anhydride (5.8
mL, 61.8 mmol), and the reaction suspension was
stirred at room temperature (1 hour). The solvent was
removed under reduced pressure to give a white solid.
10 The product was triturated with Et_2O (250 mL) to give
7.60g (62%) of enriched R-N-benzyl-2-
acetamidohydracrylamide as a white solid. The
reaction product was recrystallized (2x) using EtOH to
give 3.50 g (29%) of the R-N-benzyl-2-
15 acetamidohydracrylamide mp 148-149°C; $[\alpha]_D^{23}$ (c=1),
MeOH)=+22.4°; Rf 0.40 (10% MeOH -CHCl₃); IR (KBr) 3295,
3090, 2964, 1642, 1533, 1376, 1281, 1051, 705 cm; ¹H
NMR (DMSO -d₆) δ1.86 (s, C(O)CH₃), 3.57 (dd, J=5.7, 5.7
Hz, CH₂ OH), 4.25-4.31 (m, CH), 4.27 (d, J=5.7 Hz,
20 NHCH₂), 4.92 (t, J=5.7 Hz, CH₂OH), 7.18-7.32 (m, 5 PhH)
7.94 (d, J=7.8Hz, NH), 8.38 (t, J=5.7 H, NH); addition
of excess R-(-) mandelic acid to a CDCl₃ solution of
R-N-benzyl 2-acetamidohydracrylamide prepared
25 hereinabove gave only one signal for the acetyl methyl
protons; ¹³C NMR (DMSO-d₆) 22.7 (C(O)CH₃), 42.0 (CH₂NH),
55.6 (CH), 61.8(CH₂OH), 126.7 (C_{4'}), 127.0 (2C_{2'} or
2C_{3'}), 128.2 (2C_{2'} or 2C_{3'}), 139.4 (C_{1'}), 169.5 (C(O)CH₃
30 or C(O)NH), 170.3 (C(O)CH₃ or C(O)NH) ppm; MS (+ Cl)
rel intensity) 237(M⁺+1, 100), 219(8); Mr(+Cl)

1 237.12388 [M⁺+1] (calcd for C₁₂ H₁₇ N₂ O₃ 237.12392);
Anal (C₁₂H₁₆N₂O₃), C, H, N.

5 To a stirred acetonitrile solution (300mL) of (R)-N-benzyl (α -Acetamido hydroacrylamide (2.36g, 10mmol) was successively added Ag₂O (11.59g, 50 mmol) and methyl iodide (6.2 mL, 100 mmol) at room temperature. The reaction mixture was stirred at room temperature for 4 days. The insoluble salts were 10 filtered, and the solvents were removed in vacuo to give a white solid. The residue was filtered with Et₂O (100 mL) to give 2.20g (88%) of the above-identified product.

15 mp 143-144°C; $[\alpha]_D^{23}$ (c=1, MeOH)=+16.4°;
Rf 0.47 (10% MeOH-CHCl₃); IR (KBr) 3289, 3086, 2923, 2876, 2819, 1636, 1547, 1138, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 2.04 (s, C(O)CH₃), 3.38 (s, OCH₃), 3.43 (dd, J=7.8, 9.0 Hz, CHH' OCH₃), 3.82 (dd, J=4.2, 9.0 Hz, CHH' OCH₃), 4.48 (d, J=6.0 Hz, NHCH₂), 4.51-4.57 (m, CH), 6.44 (br d, J=5.4 Hz, NH), 6.75 (br s, NH), 7.25-7.37 (m, 5 PhH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of (R)-18 gave only one signal for the acetyl methyl and ether methyl protons; ¹³C NMR (CDCl₃) 23.2 (C(O)CH₃), 43.5 (CH₂NH), 52.4 (CH), 59.1 (OCH₃), 71.7 (CH₂OCH₃), 127.4 (C_{4'}), 127.5 (2C_{2'} or 2C_{3'}), 128.7 (2C_{2'} or 2C_{3'}), 137.9 (C_{1'}), 169.9 (C(O)CH₃ or C(O)NH), 170.3 (C(O)CH₃ or C(O)NH) ppm; MS (+Cl) (rel intensity) 251 (M⁺+1, 100), 219(6); Mr (+Cl) 251.139 76 [M⁺+1] (calcd for C₁₃H₁₉N₂O₃ 251.139 57); Anal. (C₁₃H₁₈N₂O₃) C, H, N.

1

EXAMPLE 2

Another Synthesis of (R)-N-Benzyl 2-Acetamido-3-methoxy propionamide.

(a) Improved Synthesis of (R)-N-Benzyl 2-Acetamidohydracrylamide

To a stirred AcOH (20mL) suspension of D-serine (5.26 g, 50 mmol) was added Ac₂O (4.7 mL, 50 mmol), and then the reaction suspension was stirred at room temperature (24 hours). The AcOH was removed in vacuo to give an oily residue, and then THF (150 mL) was added to the residue. The THF suspension was cooled to -78°C under N₂ and 4-methylmorpholine (11.0 mL, 100 mmol) was added. After stirring for two minutes, isobutyl chloroformate (13.0 mL, 100 mmol) was added leading to the precipitation of a white solid. The reaction was allowed to proceed for two additional minutes and then benzylamine (10.4 mL, 100 mmol) was added at -78°C. The reaction mixture was allowed to stir at room temperature (30 minutes) and the 4-methylmorpholine hydrochloride salt was filtered. The organic layer was concentrated in vacuo. The product was purified by flash column chromatography on SiO₂ gel (10% MeOH-CHCl₃) to give 3.89 g (33%) as a white solid mp 147-148°C, [α]_D²³ (C=1, MeOH) = +21.7°; ¹H NMR (DMSO-d₆) δ 1.86 (s, C(O)CH₃), 3.57 (dd, J = 5.1, 5.1 Hz, CH₂O) 4.27-4.31 (m, CH₂NH, CH), 4.90 (t, J=5.1 Hz, OH), 7.20-7.31 (m, 5

1 PhH), 7.93, (d, J = 8.1 Hz, NH), 8.37 (t, J = 6.0 Hz,
NH), addition of excess (R)-(-)-mandelic acid to a
CDCl₃ solution of the product of (a) gave only one
5 signal for the acetyl methyl protons.

5 (b) (R)-N-Benzyl-2-Acetamido-3-methoxypropionamide.

To the compound prepared in (a) (1.42 g, 6 mmol) in a stirred solution (300 ml) of CH₃CN was successively added Ag₂O (6.95 g, 30 mmol) and methyl iodide (3.7 mL, 60 mmol) and stirred at room 10 temperature for 4 days. The insoluble salts were filtered and the solvent was removed in vacuo to give a white solid. The white solid was triturated with Et₂O (100 mL) to give 1.30 g (87%) of the above- 15 identified compound: mp 143-144°C, [α]_D²³ (c = 1, MeOH) = + 16.0°; ¹H NMR (CDCl₃) δ 2.04 (s, C(O)CH₃), 3.38 (s, OCH₃), 3.44 (dd, J=7.5, 9.0 Hz, CH H¹ OCH₃), 3.81 (dd, J = 4.2, 9.0 Hz, CHH' OCH₃), 4.48 (d, J = 5.7 Hz, NHCH₂), 4.52-4.58 (m, CH), 6.46 (br d, J = 5.7 Hz, NH), 6.78 (br, s, NH), 7.25-7.37 (m, 5 Ph H), 20 addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of the above-identified compound gave only 25 one signal for the acetyl and ether methyl protons.

25

30

35

1

EXAMPLE 3

R-N-(3-Fluorobenzyl)2-Acetamido-3-Methoxypropionamide.

(a) R-N-(3-Fluorobenzyl)-2-Acetamido-hydracrylamide.

Utilizing the procedure of Example 2(a) with the following amounts of D-serine (5.26 g, 50 mmol), Ac₂O (5.7 mL, 60 mmol), 4-methylmorpholine (11.0 mL, 100 mmol), isobutyl chloroformate (13.0 mL, 100 mmol) and substituting 3-fluorobenzylamine (11.8 mL, 100 mmol) for benzylamine, gave 4.20 g (33%) of the above compound as a white solid after purification: mp 137-138°C; [α]_D²³ (c = 1, MeOH) = +20.8°; R_f 0.32 (10% MeOH-CHCl₃); IR (KBr) 3282, 3101, 2944, 1636, 1542, 1252, 1050, 779, 690 cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.87 (s, C(O)CH₃), 3.56-3.63 (m, CH₂OH), 4.29 (d, J = 6.0 Hz, CH₂NH), 4.25-4.30 (m, CH), 4.95 (t, J = 5.4 Hz, CH₂OH), 7.00-7.09 (m, 3 ArH), 7.29-7.30 (m, 1 ArH), 7.97 (d, J = 8.1 Hz, NH), 8.44 (t, J = 6.0 Hz, NH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of this product gave only one signal for the acetyl methyl portions; ¹³C NMR (DMSO-d₆) 22.7 (C(O)CH₃), 41.6 (CH₂N), 53.4 (CH), 61.7 (CH₂ OH), 113.3 (d, J_{CF} = 20.0 Hz, (C₂' or C₄')), 113.6 (d, J_{CF} = 20.7 Hz, C₂' or C₄''), 122.9 (C₆''), 130.1 (d, J_{CF} = 8.2 Hz, C₅'), 142.6 (d, J_{CF} = 7.0 Hz, C₁'), 162.3 (d, J_{CF} = 241.4 Hz, C₃'), 169.6 (C(O)CH₃ or C(O)NH), 170.5 (C(O)CH₃ or C(O)NH) ppm; MS

1 (+Cl) (rel. intensity) 255 ($M^+ + 1$, 100); $M_r (+Cl)$
255.113 54 [$M^+ + 1$] (calcd. for $C_{12}H_{16}FN_2O_3$ 255.114 50);
Anal. ($C_{12}H_{15}FN_2O_3$) C, H, N.

5 (b) (R)-(*N*-3-Fluorobenzyl)-2-Acetamido-3-methoxypropionamide.

To the product of (a) (2.54 g, 10 mmol) in a stirred CH_3CN solution was successively added Ag_2O (11.59 g, 50 mmol) and MeI (6.2 mL, 100 mmol) at room temperature. The reaction mixture was stirred at room temperature for 2 days. The insoluble salts were filtered and the solvent was removed in vacuo to give a white solid which was triturated with Et_2O (100 mL) to give a crude product of the above identified compound. The product was further purified by flash chromatography on SiO_2 gel (10% $MeOH-CHCl_3$) to give 2.00 g (75%) of the above-identified compound: mp 150-151°C; $[\alpha]_D^{23}$ ($c = 1$, $MeOH$) = +16.5°C; R_f 0.50 (10% $MeOH-CHCl_3$); IR (KBr) 3287, 3072, 2928, 2883, 1634, 1548, 1256, 1142, 785 cm^{-1} ; 1H NMR ($CDCl_3$) δ 2.05 (s, $C(O)CH_3$), 3.40 (s, OCH_3), 3.44-3.47 (m, $CHH'OCH_3$), 3.81-3.85 (m, $CHH'OCH_3$), 4.41-4.50 (m, $NHCH_2$), 4.53-4.59 (m, CH), 6.42 (br s, NH), 6.81 (br s, NH), 6.93-7.05 (m, 3 PhH), 7.26-7.31 (m, 1 PhH); addition of excess (R)-(-)-mandelic acid to a $CDCl_3$ solution of the above identified compound gave only one signal for the acetyl methyl protons and ether methyl protons; ^{13}C NMR ($DMSO-d_6$) 22.8 ($C(O)CH_3$), 42.7 (CH_2N), 52.6 (CH), 58.9 (OCH_3), 72.0 (CH_2OCH_3), 114.0 (d, $J_{CF} = 21.5$ Hz, C_2 and C_4), 122.7 (C_6), 129.9 (d, $J_{CF} = 7.7$ Hz, C_5),

1 140.6 (d, $J_{CF} = 6.8$ Hz, C₁), 162.9 (d, $J_{CF} = 244.4$ Hz,
C₃), 170.2 (C(O)CH₃ or C(O)NH), 170.5 (C(O)CH₃ or
C(O)NH) ppm; MS (+Cl) (rel. intensity) 269 ($M^+ + 1$,
100); M_r (+Cl) 269.129 31 [$M^+ + 1$] (calcd for C₁₃H₁₈FN₂O₃
269.130 15); Anal. (C₁₃H₁₇FN₂O₃) C, H, N.

10

15

20

25

30

35

1

EXAMPLE 4

(R)-N-(4-Fluorobenzyl)2-Acetamido-3-Methoxypropanamide.

5

(a) (R)-N-(4-Fluorobenzyl)2-Acetamido-hydracrylamide.

10

Utilizing the procedure of Example 2(a) with the following amounts of D-serine (5.26 g, 50 mmol), Ac₂O (5.7 mL, 60 mmol), 4-methylmorpholine (11.0 mL, 100 mmol), and isobutyl chloroformate (13.0 mL, 100 mmol) and substituting 4-fluorobenzylamine (11.8 mL, 100 mmol) for benzylamine, the above-identified compound was prepared as a white solid after

15

purification (4.08 g, 32%); mp: 169-170°C; [α]_D²³ (c = 1, MeOH) = +17.6°; R_f 0.31 (10% MeOH-CHCl₃); IR (KBr) 3289, 3101, 3071, 2936, 1632, 1565, 1543 1508, 1214, 1053, 814 cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.86 (s, C(O)CH₃), 3.56 (s, J = 5.4 Hz, CH₂OH), 4.25 (d, J = 6.0 Hz, CH₂NH), 4.25-4.29 (m, CH), 4.91 (t, J = 5.4 Hz, CH₂OH), 7.08-7.14 (m, 2C₂.H), 7.25-7.29 (m, 2C₃.H), 7.93 (d, J = 7.8 Hz, NH), 8.39 (d, J = 6.0 Hz, NH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of the above-identified compound gave only 25 one signal for the acetyl methyl protons; ¹³C NMR (DMSO-d₆) 22.7 (C(O)CH₃), 41.3 (CH₂N), 55.3 (CH), 61.7 (CH₂OH), 114.8 (d, J_{CF} = 21.8 Hz, 2C₃.), 128.9 (d, J_{CF} = 8.0 Hz, 2C₂.), 135.6 (C₁.), 161.1 (d, J_{CF} = 240.1 Hz, C₄.), 169.4 (C(O)CH₃ or C(O)NH), 170.3 (C(O)CH₃ or C(O)NH) ppm; MS (+Cl) (rel. intensity) 255 (M⁺ + 1,

1 100); $M_r(+Cl)$ 255.113 60 [$M^+ + 1$] (calcd for $C_{12}H_{16}FN_2O_3$
255.114 50); Anal. ($C_{12}H_{15}FN_2O_3 \cdot 0.2H_2O$) C, H, N.
5 (b) R-N-(4-Fluorobenzyl)2-Acetamido-3-
methoxypropanamide.

Following the procedure of Example 3(b) to
the product of Example 4(a) (2.54 g, 10 mmol) in a
stirred CH_3CN solution (300 mL) was successively
added) Ag_2O (11.59 g, 50 mmol) and MeI (6.2 mL, 100
10 mmol) at room temperature and then stirred for 7 days.
The insoluble salts were filtered, and the solvent was
removed in vacuo to give a white solid. The white
solid was triturated with Et_2O (100 mL) to give a
crude product. The crude product was further purified
15 by flash column chromatography (10% MeOH- $CHCl_3$) to
give 2.00 g (75%) of the above product; mp: 144-
145°C; $[\alpha]_D^{23}$ ($c = 1$, MeOH) = +12.0°; R_f 0.52 (10% MeOH-
 $CHCl_3$); IR (KBr) 3281, 3102, 3072, 2959, 1632, 1547,
20 1513, 1223, 1100 cm^{-1} ; 1H NMR ($CDCl_3$) δ 2.04 (s,
 $C(O)CH_3$), 3.38 (s, OCH_3), 3.39-3.46 (m, $CHH'OCH_3$),
3.80-3.84 (m, $CHH'OCH_3$), 4.44 (br d, $J = 5.4$ Hz,
 CH_2NH), 4.48-4.56 (m, CH), 6.42 (br s, NH) 6.76 (br s,
NH), 6.99-7.05 (m, 2 PhH), 7.21-7.31 (m, 2 PhH),
25 addition of excess (R)-(-)-mandelic acid to a $CDCl_3$
solution of the above-identified product gave only one
signal for the acetyl methyl portions and ether methyl
portions, ^{13}C NMR ($CDCl_3$) 22.9 ($C(O)CH_3$), 42.6 (CH_2N),
52.5 (CH), 58.9 (OCH_3), 72.0 (CH_2OCH_3), 115.3 (d, $J_{CF} =$
30 22.0 Hz, $2C_3$), 129.0 (d, $J_{CF} = 6.9$ Hz, $2C_2$), 133.7
(C_1), 161.9 (d, $J_{CF} = 245.3$ Hz, C_4), 170.1 ($C(O)CH_3$ or

1 C(O)NH), 170.4 (C(O)CH₃ or C(O)NH) ppm; MS (+Cl) (rel.
intensity) 269 (M⁺ + 1, 100); M_r (+Cl) 269.129 66 [M⁺ +
1] (calcd for C₁₃H₁₈FN₂O₃ 269.130 15); Anal. (C₁₃H₁₇FN₂O₃)
5 C, H, N.

10

15

20

25

30

35

1

COMPARATIVE EXAMPLE 1

Preparation of N-Acetyl-D,L-alanine-N'-benzylamide

5 Acetic anhydride (2.20 g, 0.022 mol) was slowly added to a methylene chloride solution (30 mL) of D,L-alanine-N-benzylamide (3.80 g, 0.021 mol) and allowed to stir at room temperature (3h). The mixture was then successively washed with H₂O (15 mL), dried
10 (Na₂SO₄) and concentrated in vacuo. The residue was recrystallized from CH₂Cl₂.

Yield: 2.50 g (54%). mp 139°-141°C.

15 ¹H NMR (DMSO-d₆): δ 1.22 (d, J = 7.1 Hz, 3H), 1.84 (s, 3H), 4.04-4.50 (m, 3H), 7.26 (s, 5H), 8.11 (br d, J = 7.3 Hz, 1H), 8.42 (br t, J = 6 Hz, 1H).

13C NMR (DMSO-d₆): 18.2, 22.4, 41.9, 48.2, 126.5, 126.9, 128.1 139.4, 168.9, 172.4 ppm.

20 IR (CHCl₃) 3440, 3300, 3005, 1660, 1515 cm⁻¹.
Mass spectrum (CI mode), m/e: 221 (P + I);
mol wt. 220.1208 (calculated for C₁₂H₁₆N₂O₂, 220.1212).

25

30

35

1

COMPARATIVE EXAMPLES 2 AND 3

Preparation of N-Acetyl D and L-amino acid N-benzylamides

5 General procedure: The D or L amino acid amide (11 mmol) was dissolved in dichloromethane (15 mL) and then acetic anhydride (1.23g, 1.40 mL, 12 mmol) was added dropwise. The solution was stirred at room temperature (18h) and then concentrated to
10 dryness. The residue was crystallized from chloroform/hexane.

15

20

25

30

35

1

COMPARATIVE EXAMPLE 2

N-Acetyl-D-alanine-N'-benzylamide

5 Yield: 1.36 g (56%). mp 139°-141°C. $[\alpha]_D^{23}$
= +36.2 (c 2.5, MeOH).

10 ^1H NMR (80 MHz, DMSO-d₆): δ 1.25 (d, J = 7.1 Hz, 3H), 1.86 (s, 3H), 10-4.50 (m, 1H), 4.30 (d, J = 6.0 Hz, 2H), 7.26 (s, 5H), 8.09 (d, J = 7.3 Hz, 1H), 8.40 (t, J = 6.0 Hz, 1H).

15 ^{13}C NMR (80 MHz, DMSO-d₆): 18.3, 22.5, 42.0, 48.4, 126.6, 127.0 (2C), 128.2 (2C), 139.4, 169.2, 172.5 ppm.

20 IR (KBr): 3290, 1635 (br), 1540, 1455, 700, 695 cm⁻¹.

25 Mass spectrum, m/e (relative intensity):
221 (30), 114 (20), 106 (40), 91 (80), 87 (100), 77 (5), 72 (20), 65 (5).

Elemental analysis calculated for C₁₂H₁₆N₂O₂:
65.42% C; 7.34% H; 12.72% N. Found 65.31% C; 7.28% H;
12.63% N.

25

30

35

1.

COMPARATIVE EXAMPLE 3

N-Acetyl-L-alanine-N'-benzylamide

5 Yield: 1.11 g (46%). mp 139°-142°C. $[\alpha]_D^{23}$
= -35.3 (c 2.5, MeOH).

10 ^1H NMR (80 MHz, DMSO-d₆): δ 1.23 (d, J = 7.2 Hz, 3H), 1.86 (s, 3H), 4.26-4.35 (m, 1H), 4.29 (d, J = 5.8 Hz, 2H), 7.22-7.33 (s, 5H), 8.10 (d, J = 7.4 Hz, 1H), 8.42 (t, J = 5.8 Hz, 1H).

15 ^{13}C NMR (80 MHz, DMSO-d₆): 18.3, 22.6, 42.0, 48.4, 126.7, 127.0 (2C), 128.3 (2C) 139.5, 169.2, 172.6 ppm.

15 IR (KBr): 3290, 1635 (br), 1545, 1450, 700, 695 cm⁻¹.

20 Mass spectrum, m/e (relative intensity):
221 (40), 114 (40), 106 (80), 106 (80), 91 (75), 87 (100), 77 (5), 72 (15), 65 (5).

25 Elemental analysis calculated for C₁₂H₁₆N₂O₂
65.42% C; 7.34% H; 12.72% N. Found 65.58% C; 7.32% H;
12.43% N.

25

30

35

1

COMPARATIVE EXAMPLE 4

Preparation of D,

L-2-Acetamido-N-benzyl-2-methoxyacetamido

5

To a methanolic solution (180 mL) of methyl 2-acetamido-2-methoxyacetate (8.73 g, 54 mmol) was rapidly added benzylamine (8.68 g, 8.80 mL, 81 mmol) and then the mixture was stirred at 50°C (3 days) during which time a beige precipitate appeared. The solvent was removed in vacuo and the resulting precipitate was recrystallized from tetrahydrofuran (2X) to give 7.67 g (32%) of the desired product as beige crystals: R_f 0.35 (95:5 chloroform/methanol).

15

mp 145°-146°C.

^1H NMR (300 MHz, CDCl_3): δ 2.06 (s, CH_3CO), 3.37 ($2,\text{CH}_3\text{O}$), 4.40-4.35 (m, CH_2), 5.52 (d, $J = 8.7$ Hz, CH), 7.12 (d, $J = 8.7$ Hz, NH), 7.20-7.40 (m, Ph, NH).

20

^{13}C NMR (300 MHz, CDCl_3): 23.03 (CH_3CO), 43.51 (CH_2), 55.84 (CH_3O), 78.94 (CH), 127.62 (C_4''), 127.70 ($2\text{C}_2''$ or $2\text{C}_3''$), 128.70 (2C_2 or $2\text{C}_3''$), 137.45 (C_1''), 166.91 (COCH_3), 171.57 (CONH) ppm.

25

IR (KBr): 1260, 1825 (br), 1550, 1505, 1435, 1390, 1370, 1230, 1120, 1050 935, 890, 690 cm^{-1} .

Mass spectrum, m/e (relative intensity):

237 (1), 205 (2), 177 (2), 163 (4), 146 (1), 134 (1), 121 (2), 106 (26), 102 (98), 91 (95), 77 (13), 61

30

35

1 (100). Elemental analysis calculated for C₁₂H₁₆N₂O₃
61.00% C; 6.83% H; 11.86% N. Found 60.91% C; 6.85% H;
11.66% N.

5

10

15

20

25

30

35

1

COMPARATIVE EXAMPLES 5-7

Synthesis of Unsubstituted and
Substituted- α -Acetamido-N-benzyl-2-furanacetamides

5

General Procedure. 4-Methylmorpholine (1. equiv) was added to a solution of α -acetamido-2-furanacetic acid (1 equiv) in dry tetrahydrofuran (75 mL/10 mmol) at -10 to -15°C under N₂. After stirring (2 min.), isobutyl chloroformate (1 equiv) was added leading to the precipitation of a white solid. The reaction was allowed to proceed for 2 additional minutes and then a solution of the substituted benzylamine (1 equiv) in tetrahydrofuran (10 mL/10mmol) was added over 5 min. at -10 to -15°C. The reaction mixture was allowed to stir at room temperature for 5 min. and then the 4-methylmorpholine hydrochloride salt filtered. The organic layer was concentrated in vacuo, and the residue was triturated with ethyl acetate, and the remaining white solid filtered. Concentration of the ethyl acetate layer led to additional amounts of the white solid. The desired product was purified by either recrystallization or flash chromatography of the combined solid material.

30

35

1

COMPARATIVE EXAMPLE 5

(D,L)- α -Acetamido-N-benzyl-2-furanacetamide

5 Benzyl amine (0.27 g, 2.56 mmol) and racemic
 α -acetamido-2-furanacetic acid (0.47 g, 2.56 mmol)
gave the desired compound. The product was
recrystallized from ethyl acetate to give a white
solid.

10 Yield: 0.46 g (65%) R_f 0.30 (98:2
chloroform/methanol). mp 177°-178°C.

15 ¹H NMR (DMSO-d₆) δ 1.90 (s, CH₃), 4.31 (d, J =
6.0 Hz, CH₂), 5.58 (d, J = 8.1 Hz, CH), 6.27-6.33 (m,
C₃H), 6.40-6.44 (m, C₄H), 7.20-7.36 (m, 5 PhH), 7.60-
7.64 (m, C₅H), 8.57 (d, J = 8.1 Hz, NH), 8.73 (t, J =
6.0 Hz, NH).

20

25

30

35

1

COMPARATIVE EXAMPLE 6

(D)-(-) α -Acetamido-N-benzyl-2-furanacetamide

5

Starting with D- α -acetamido-2-furanacetic acid (2.45 g, 13.38 mmol) and benzylamine (1.43 g, 13.38 mmol), the desired product was obtained. Yield: 2.54 g (70%). The product was further recrystallized from ethyl acetate to give the title compound.

10

Yield: 2.30 g mp 196°-197°C. $[\alpha]^{26}D[c = 1,$
MeOH] = 78.3°. Addition of R(-)-mandelic acid to a CDCl₃ solution the product gave only one signal for the acetamide methyl protons. Mass spectrum, m/e (relative intensity) 272 (M⁺, 2), 184 (2), 165 (2), 140 (8), 139 (88), 138 (34), 97 (46), 96 (100), 91 (63).

15

Elemental analysis: calculated: 66.16% C; 5.92% H; 10.29% N. Found: 66.09% C; 6.01% H; 10.38% N.

20

25

30

35

1

COMPARATIVE EXAMPLE 7

(L)-(+)- α -Acetamido-N-benzyl-2-furanacetamide

5 L- α -acetamido-2-furanacetic acid (2.83 g,
15.46 mmol) and benzylamine (1.65 g. 15.4G mmol) gave
3.80 g of the enriched desired product. ^1H NMR
analysis with R(-)-mandelic acid showed that it was
greater than 80% enriched in the title compound. The
10 pure L-enantiomer was obtained by recrystallization
from absolute ethanol.

Yield: 1.60 g. mp 196°-197°C. $[\alpha]^{26}\text{D}[\text{C} =$
1, MeOH] = +79.0°.

15 Mass spectrum, m/e (relative intensity) 273
(M⁺ + 1,3) 229 (2), 214 (2), 184 (1), 165 (7), 157
(4), 140 (33), 139 (100), 138 (95), 97 (98), 96 (100),
91 (98).

20 Elemental analysis: calculated: 66.16% C;
5.92% H; 10.29% N. Found: 65.89% C; 5.86% H; 10.42%
N.

25

30

35

1

COMPARATIVE EXAMPLE 8

Synthesis of N-Benzyl 2-Acetamidoacrylamide

5 To an anhydrous THF solution (400 mL) of methyl- α -acetamido-N-benzylmalonamate (14.4 g, 54.5 mmol) was successively added dry LiCl (4.62 g, 109 mmol), NaBH₄ (4.13 g, 109 mmol) and EtOH (200 mL). The reaction mixture was stirred at room temperature
10 (5h). The suspension was concentration in vacuo. After continuous extraction (12h) of the product using CHCl₃ (1000 mL) and H₂O (250 mL), the organic layer was collected, dried (Na₂SO₄), and removed in vacuo to give
15 a crude white solid. The crude product was triturated with Et₂O (500 mL) to give 11.45 g (89%) of the above compound: mp 201-203°C; R_f 0.40 (10% MeOH-CHCl₃); IR (KBr) 3287, 3085, 2969, 2859, 1648, 1552, 1456, 1055, 697 cm⁻¹; ¹H NMR (DMSO-d₆) δ 1.88 (s, C(O)CH₃), 3.59 (dd, J = 5.7 Hz, 5.7 Hz, CH₂O), 4.19-4.35 (m, CH₂NH, CH), 4.92 (t, J = 5.7 Hz, OH), 7.10-7.40 (m, 5 PhH), 7.94 (d, J = 5.7 Hz, NH), 8.38 (t, J = 5.7 Hz, NH); ¹³C NMR (DMSO-d₆) 22.2 (C(O)CH₃), 41.6 (CH₂N), 54.9 (CH), 61.3 (CH₂OH), 126.2 (C₄), 126.5 (2C₂, or 2C₃), 127.7 (2C₂, or
25 2C₃), 138.9 (C₁), 169.1 (C(O)CH₃ or C(O)NH), 169.9 (C(O)CH₃ or C(O)NH) ppm; MS (+Cl) (relative intensity) 237 (M⁺ + 1, 100), 219 (9); M_r (+Cl) 237.123 88 [M⁺ + 1] (calcd for C₁₂H₁₇N₂O₃ 237.123 92); Anal. (C₁₂H₁₆N₂O₃) C, H,
30 N.

1

COMPARATIVE EXAMPLE 9

Synthesis of N-Benzyl

2-Acetamido-3-methoxypropionamide (racemic mixture)

5

To an CH₃CN solution (500 mL) of the product of Comparative Example 8 (2.36 g, 10 mmol) was successively added Ag₂O (11.59 g, 50.0 mmol) and CH₃I (6.23 mL, 100 mmol) at room temperature and then the reaction mixture was stirred at room temperature (4 d). The insoluble salts were filtered, and the solvent was removed in vacuo to give a white solid. The residue was triturated with Et₂O (50 mL) to give 2.10 g (84%) of the above-identified compound: mp 121-122°C; R_f 0.47 (10% MeOH-CHCl₃); IR (KBr) 3290, 3087, 2924, 2878, 2820, 1637, 1548, 1139, 695 cm⁻¹; ¹H NMR (CDCl₃) δ 2.04 (s, C(O)CH₃), 3.38 (s, OCH₃), 3.43 (dd, J = 7.8, 9.0 Hz, CHH' OCH₃), 3.82 (dd, J = 4.2, 9.0 Hz, CHH' OCH₃), 4.48 (d, J = 6.0 Hz, NHCH₂), 4.51-4.57 (m, CH), 6.43 (br d, J = 5.4 Hz, NH), 6.74 (br s, NH), 7.25-7.37 (m, 5 PhH); ¹³C NMR (CDCl₃) 23.2 (C(O)CH₃), 43.5 (CH₂N), 52.4 (CH), 59.1 (OCH₃), 71.7 (CH₂OCH₃), 127.4 (C₄, and 2C₂, or 2C₃), 128.7 (2C₂, or 2C₃), 137.8 (C₁), 170.0 (C(O)CH₃ or C(O)NH), 170.3 (C(O)CH₃ or C(O)NH) ppm; MS (+Cl) (relative intensity) 251 (M⁺ + 1, 100), 219 (100); M_c(+Cl) 251.139 39 [M⁺ + 1] (calcd for C₁₃H₁₈N₂O₃ 251.139 57); Anal. (C₁₃H₁₈N₂O₃) C, H, N.

1

COMPARATIVE EXAMPLE 10

(S)-N-Benzyl 2-Acetamidoacrylamide

5 To a stirred AcOH (20 mL) suspension of L-serine (2.63 g, 25 mmol) was added Ac₂O (2.5 mL, 26.3 mmol) and then the reaction suspension was stirred at room temperature (24h). The AcOH was removed in vacuo to give an oily residue, and then THF (150 mL) was
10 added to the residue. The THF suspension was cooled to -78°C under N₂ and 4-methylmorpholine (5.5 mL, 50 mmol) was added. After stirring (2 min.), isobutyl chloroformate (6.5 mL, 50 mmol) was added leading to the precipitation of white solid. The reaction was
15 allowed to proceed for two additional minutes and then benzylamine (5.5 mL, 50 mmol) was added at -78°C. The reaction mixture was allowed to stir at room temperature (30 min.) and then the 4-methylmorpholine hydrochloride salt was filtered. The organic layer
20 was concentrated in vacuo. The product was purified by flash column chromatography on SiO₂ gel (10% MeOH-CHCl₃) to give 2.20 g (37%) of the above product as a white solid: mp 146-147°C; [α]_D²³ (c = 1, MeOH) =
25 -21.5°; ¹H NMR (DMSO-d₆) δ1.86 (s, C(O)CH₃), 3.57 (dd, J = 5.1 Hz, 5.1 Hz, CH₂O), 4.25-4.32 (m, CH₂NH, CH), 4.91 (t, J = 5.1 Hz, OH), 7.20-7.33 (m, 5 PhH), 7.93 (d, J = 8.1 Hz, NH), 8.37 (t, J = 5.7 Hz, NH),
30 addition of excess (R)-(-)mandelic acid to a CDCl₃,

1 solution of the above-identified compound gave only
one signal for the acetyl methyl protons.

5

10

15

20

25

30

35

1

COMPARATIVE EXAMPLE 11

(S)-N-Benzyl 2-Acetamido-3-methoxypropionamide

5 To a stirred CH₃CN solution (300 mL) of the compound produced in Comparative Example 10 (1.18 g, 5 mmol) was successively added Ag₂O (5.80 g, 25 mmol) and MeI (3.1 mL, 10 mmol) at room temperature. The reaction mixture was stirred at room temperature (4d).

10 The insoluble salts were filtered, and the solvent was removed in vacuo to give a white solid. The white solid was triturated with Et₂O (100 mL) to give 1.00 g (80%) of the above-identified compound: mp 143-144°C
15 [α]²³D (c = 1, MeOH) = -16.4°; ¹H NMR (CDCl₃) δ 2.03 (s, C(O)CH₃), 3.38 (s, OCH₃), 3.43 (dd, J = 7.5, 9.0 Hz, CHH'OCH₃), 3.81 (dd, J = 4.2, 9.0 Hz, CHH'OCH₃), 4.47 (d, J = 5.7 Hz, NHCH₂), 4.52-4.59 (m, CH), 6.48 (br d, J = 6.0 Hz, NH), 6.81 (br s, NH), 7.25-7.37 (m, 5 PhH), addition of excess (R)-(-)-mandelic acid to a CDCl₃ solution of the above-identified compound gave only one signal for the acetyl methyl and ether methyl protons.

25

30

35

1

COMPARATIVE EXAMPLE 12

(R)-N-Benzyl 2-Acetamidohydracylamine

5

This compound was prepared in accordance
with the procedures described in Examples 1 and 2.

10

15

20

25

30

35

1

PHARMACOLOGY

Compounds were screened under the auspices
of the National Institutes of Health for
anticonvulsant activity in both male albino Carthworth
Farms No. 1 mice (ip route) and male albino Sprague
Dawley rats (oral (po) route). Activity was
established using the electrical (maximal electroshock
or MES) test. In the MES test, a drop of electrolyte
solution with anesthetic (0.5% butacaine hemisulfate
in 0.9% sodium chloride) was used in the eyes of the
animals prior to positioning the corneal electrodes
and delivery of current. A 60 cycle alternating
current was administered for 0.2 sec. in both species,
50 mA in mice and 150 mA in rats. Protection
endpoints were defined as the abolition of the hind
limb tonic extensor component of the induced seizure.
In mice, effects of compounds on forced spontaneous
motor activity were determined using the rotorod test.
The inability of animals to maintain their balance for
1 min. on a 1 inch diameter knurled rod at 6 rpms in 3
successive trials demonstrated motor impairment.
Normally under these conditions, a mouse can maintain
its balance almost indefinitely. In rats, motor
impairment is assessed by observing for overt evidence
of ataxia, abnormal gait and stance, and/or loss of
placing response and muscle tone. In the mouse
identification screening study all compounds were

1 given at three dose levels (30, 100, 300 mg/kg) and
two time periods (0.5, 4h). Typically, in the MES
seizures test one animal was used at 30 mg/kg and 300
5 mg/kg, and three animals at 100 mg/kg. In the rotorod
toxicity test four animals were used at 30 mg/kg, and
300 mg/kg, and eight animals at 100 mg/kg. If
activity was found at 30 mg/Kg, then lower dosages
were used to find the ED₅₀ values.

10 The quantitative determination of the median
effective (ED₅₀) and toxic doses (TD₅₀) were conducted
at previously calculated times of peak effect. Groups
of at least eight animals were tested using different
doses of test compound until at least two points were
15 determined between 100 and 0% protection and minimal
motor impairment. The dose of candidate substance
required to produce the defined endpoint in 50% of the
animals in each test and the 95% confidence interval
20 were calculated.

The results of various compounds of the
present invention and comparative examples are
provided in the accompanying table.

25

30

35

TABLE 1

Physical and Pharmacological Data for Functionalized N-Benzyl-
2-Acetoxypropionamide Stereoisomers of the Formula $\text{ArCH}_2\text{NHC(O)CH(R')NHC(O)CH}_3$

No.	Stereo chem.	R^1	Ar	n P^*	MES, ED_{50}	Tox, TD_{50}	MES, ED_{50}	Tox, TD_{50}	PI, $\text{TD}_{50}/\text{ED}_{50}$	PI*	PI*
Comp. Ex. 1	(R, S)	CH ₃	Ph	138-139	76.5(1) (66.6-89.0)	454 [0.5] (417-501)	5.9	48.2 [1] (32.0-71.8)	-	>20.8	
Comp. Ex. 2	(R)	CH ₃	Ph	139-141	54.8 [0.5] (50.3-59.7)	214 [0.5] (148-262)	3.9	28.4 [4] (22.4-35.0)	-	>35.2	
Comp. Ex. 3	(S)	CH ₃	Ph	139-142	54.8 [0.5] (50.3-59.7)	641 [0.5] (691-954)	1.5	-	-	-	j
Comp. Ex. 9	(R, S)	CH ₃ OCH ₃	Ph	121-122	8.3 [0.5] (7.9-9.8)	42.9 [0.25] (38.1-46.8)	5.2	3.8 [2] (2.9-5.5)	286.8 [1] (316.0-514.6)	101.8	
Ex. 1,2	(R)	CH ₃ OCH ₃	Ph	143-144	4.5 [0.5] (3.7-5.5)	26.8 [0.25] (25.5-28.0)	6.0	3.9 [0.5] (2.6-6.2)	>500 [0.5]	>128.2	
Comp. Ex. 11	(S)	CH ₃ OCH ₃	Ph	143-144	>100, <300	>300	>30	>30	>30	>30	j
Comp. Ex. 8	(R, S)	CH ₃ OH	Ph	201-203	>100, <300	>300	-	-	-	-	j
Comp. Ex. 12	(R)	CH ₃ OH	Ph	148-149	53.4 [2] (37.5-67.3)	>500 [2]	>9.4	-	-	-	j
Ex. 3	(R)	CH ₃ OCH ₃	Ph(m-F)	150-151	6.9 [0.25] (6.1-8.0)	46.3 [0.25] (40.4-54.5)	6.7	6.9 [0.5] (4.3-9.9)	>396 [0.5]	>57.7	
Ex. 4	(R)	CH ₃ OCH ₃	Ph(p-F)	144-145	4.2 [0.5] (3.5-5.1)	27.8 [0.25] (22.4-33.5)	6.6	2.6 [2] (1.9-3.6)	>125, <250	j	
Comp. Ex. 4	(R, S)	OCH ₃	Ph	145-146	98.30.	>100<300	>1, <3	-	-	-	j
Comp. Ex. 6	(R)	furyl	Ph	190-197	3.3	23.8	>2	-	-	-	j
Comp. Ex. 7	(S)	furyl	Ph	196-197	>25.	>200	-	-	-	-	j
Comp. Ex. 5	(R, S)	furyl	Ph	178-179	10.3	-40	>3.9	-	-	-	j

* Melting points ($^{\circ}\text{C}$) are uncorrected.

** The compounds were administered interperitoneally. ED₅₀ and TD₅₀ values are in mg/kg. Numbers in parentheses are 95% confidence intervals. The dose effect data was obtained at the "time of peak effect" (indicated in hours in the brackets).

*** MES = maximal electric shock seizure determined from rotarod test.

**** PI = protective index ($\text{TD}_{50}/\text{MES ED}_{50}$).

† The compounds were administered orally.

‡ No ataxia observed up to 1000 mg/kg.

§ Data not available

1

As clearly shown by the above data, the R enantiomers of the present invention have quite potent anticonvulsant activity. The inventor has found that the R stereoisomer is unexpectedly more potent than the corresponding S stereoisomer and the racemic mixture. This conclusion is quite apparent from the data in the table which shows the R isomer in the mouse model is greater than 25 times more effective than both the corresponding S isomer and the racemic mixture, while in the rat model the R isomer is greater than 7 times more effective than the corresponding S isomer.

15

The data in the table clearly demonstrates that the efficacy of most compounds of the prior art i.e., the comparative examples depicted in the table, are significantly less than those of the present invention. Only the 2-furyl derivative in the Table shows comparable potency.

20

In addition, the compounds of the present invention have relatively low neurological toxicity, considering the efficacy thereof. In fact, as clearly shown by the data, the neurological toxicity is significantly lower in rats in which the compounds were administered orally than in the mice in which the compounds were administered intraperitoneally. In fact, in rats, the neurological toxicity of the compounds of the present invention is very low.

25

30

35

1 The PI values of the compounds of the
present invention in the mice model in which the
compound was administered intraperitoneally and
5 especially in the rat model in which the compounds
were administered orally, are quite high.

It is important to place the data in the
table in proper perspective. Looking at the data, it
is quite apparent that the compounds of the present
10 invention exhibit an excellent drug profile. On the
other hand, based upon the data, except for the furyl
derivatives, the other comparative compounds are
significantly inferior drugs relative to the compounds
of the present invention. Although in some cases, the
15 neurological toxicity of the compounds of the
comparative examples is low and the PI value is
satisfactory, the data cannot be viewed in a vacuum.
It is preferred that the drug not have a low potency,
20 even if it has a low neurological toxicity. After
all, the objective is to administer as little drug as
possible to obtain an efficacious result; the more
drug administered to achieve a particular efficacious
result, the greater will be the risk that the drug
25 would have other effects, some of which are adverse,
in other areas of the animal, including man, in need
of such treatment. Thus, except for the furyl
derivatives, based upon the data in the table the
30 other comparative examples have a significantly poorer
drug profile relative to the compounds of the present
invention.

1 But, there is still another factor which
must be taken into consideration. It is known that a
major side effect of many anticonvulsants is liver
5 toxicity. Thus, the liver toxicity of the furyl
derivative was determined.

In the liver toxicity studies, various
dosages such as 25 mg/kg, 100 mg/kg, 500 mg/kg of a
particular drug was administered by oral gavage to
10 rats for a set period of time. The rats were housed
separately. The rats were periodically viewed for
mortality and moribundity. At the termination of the
study, the surviving rats were anesthetized, and
15 exsanguinated under anesthesia. Complete necropsies
were performed by appropriately trained personnel
using procedures approved by board certified
pathologists and the results were recorded.

When the D-furyl derivative of Comparative
20 Example 5 was administered to the rat, hepatocellular
necrosis was evident at 100 and 25 mg/kg in rats
treated for 13 weeks.

On the other hand, the compounds of the
present invention have significantly lower liver
25 toxicity. These compounds of the present invention
exhibit none or minimal effects at these lower dose
levels.

Thus, the compounds of the present invention
30 exhibit an excellent drug profile. They meet all of
the four characteristics outlined heretofore, high
potency, low neurological toxicity relative to its

1 potency, high protective index and low liver toxicity.
These compounds of the present invention exhibit
advantages that have not heretofore been realized.

5 The above preferred embodiments and examples
are given to illustrate the scope and spirit of the
present invention. The embodiments and examples
described herein will make apparent to those skilled
in the art other embodiments and examples. These
10 other embodiments and examples are within the
contemplation of the present invention. Therefore,
the present invention should be limited only by the
appended claims.

15

20

25

30

35

1 WHAT IS CLAIMED IS:

5 1. A compound in the R configuration
having the formula:

10 wherein

Ar is phenyl which is unsubstituted or substituted with at least one halo group;

Q is lower alkoxy, and

Q₁ is methyl.

15 2. The compound according to Claim 1 which is substantially enantiopure.

3. The compound according to Claim 1 wherein Q is lower alkoxy containing 1-3 carbon atoms.

20 4. The compound according to Claim 3 wherein Q is methoxy.

5. The compound according to Claim 1 wherein Ar is unsubstituted phenyl.

25 6. The compound according to Claim 1 wherein halo is fluoro.

7. The compound according to Claim 1 wherein Q is alkoxy containing 1-3 carbon atoms and Ar is unsubstituted phenyl.

30 8. The compound according to Claim 1 which is (R)-N-Benzyl 2-Acetamido-3-methoxypropionamide.

1

9. The compound according to Claim 8 which
is substantially enantiopure.

5

10. A therapeutic composition comprising an
anticonvulsant effective amount of a compound
according to any one of Claims 1-9 and a
pharmaceutical carrier therefor.

10

11. A method of treating central nervous
system disorders in an animal comprising administering
to said animal in need thereof an anticonvulsant
effective amount of a compound according to any one of
Claims 1-9.

15

12. The method according to Claim 11
wherein the animal is a mammal.

15

13. The method according to Claim 12
wherein the mammal is a human.

20

25

30

35

1

ABSTRACT

5 The present invention is directed to a compound in the R configuration about the asymmetric carbon in the following formula:

10

pharmaceutical compositions containing same and the use thereof in treating CNS disorders in animals.

15

20

25

30

35