Correction du devoir surveillé 9.

Exercice 1

 $\mathbf{1}^{\circ}$) Sur $]0, +\infty[, (H_n) \Longleftrightarrow y'(x) + \frac{n}{x}y(x) = 0.$

Une primitive de $x \mapsto \frac{n}{x}$ sur \mathbb{R}_+^* est $x \mapsto n \ln(x)$, i.e. $x \mapsto \ln(x^n)$.

Donc les solutions de (H_n) sur \mathbb{R}_+^* sont les fonctions de la forme $x \mapsto \lambda e^{-\ln(x^n)}$ avec $\lambda \in \mathbb{R}$, i.e.

les fonctions de la forme
$$x \mapsto \frac{\lambda}{x^n}$$
 avec $\lambda \in \mathbb{R}$.

2°) a) Soient a, b, c des réels. Pour tout x > 0

$$\frac{a}{x} + \frac{bx + c}{1 + x^2} = \frac{a(1 + x^2) + bx^2 + cx}{x(1 + x^2)} = \frac{(a + b)x^2 + cx + a}{x(1 + x^2)}$$

Résolvons le système : $\left\{ \begin{array}{l} a+b=0 \\ c=0 \\ a=1 \end{array} \right. \iff \left\{ \begin{array}{l} a=1 \\ b=-1 \\ c=0 \end{array} \right. .$

Ainsi a = 1, b = -1 et c = 0 conviennent : pour tout $x > 0, \frac{1}{x(1+x^2)} = \frac{1}{x} - \frac{x}{1+x^2}$

Autre méthode: $\forall x > 0, \frac{1}{x(1+x^2)} = \frac{1+x^2-x^2}{x(1+x^2)} = \frac{1}{x} - \frac{x}{1+x^2}.$

b)

y solution de (E_0) sur $\mathbb{R}_+^* \iff \forall x \in \mathbb{R}_+^*, \ xy'(x) = \frac{1}{1+x^2}$ $\iff \forall x \in \mathbb{R}_+^*, \ y'(x) = \frac{1}{x(1+x^2)}$ $\iff \forall x \in \mathbb{R}_+^*, \ y'(x) = \frac{1}{x} - \frac{1}{2} \frac{2x}{1+x^2}$

 $\iff \exists C \in \mathbb{R}, \forall x \in \mathbb{R}_+^*, \ y(x) = \ln(|x|) - \frac{1}{2}\ln(|1+x^2|) + C \text{ car } \mathbb{R}_+^* \text{ intervalle}$

Donc l'ensemble des solutions de (E_0) sur \mathbb{R}_+^* est $\left\{x \mapsto \ln(x) - \frac{1}{2}\ln(1+x^2) + C / C \in \mathbb{R}\right\}$.

3°) Soit $\lambda: \mathbb{R}_+^* \to \mathbb{R}$ une fonction dérivable, et $y_p: x \mapsto \frac{\lambda(x)}{x^n} = \lambda(x)x^{-n}$. Par produit, y_p est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$, $y_p'(x) = \lambda'(x)x^{-n} - n\lambda(x)x^{-n-1}$. D'où :

y solution de (E_n) sur $\mathbb{R}_+^* \iff \forall x \in \mathbb{R}_+^*, \ x\left(\lambda'(x)x^{-n} - n\lambda(x)x^{-n-1}\right) + n\lambda(x)x^{-n} = \frac{1}{1+x^2}$ $\iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x)x^{-n+1} = \frac{1}{1+x^2}$ $\iff \forall x \in \mathbb{R}_+^*, \ \lambda'(x) = \frac{x^{n-1}}{1+x^2}$

Une primitive de la fonction continue $x \mapsto \frac{x^{n-1}}{1+x^2}$ sur l'intervalle \mathbb{R}_+^* est F_n , donc une solution particulière de (E_n) sur \mathbb{R}_+^* est $x \mapsto \frac{F_n(x)}{x^n}$.

Ainsi, l'ensemble des solutions de (E_n) sur \mathbb{R}_+^* est $\left[\left\{x \mapsto \frac{\lambda}{x^n} + \frac{F_n(x)}{x^n} / \lambda \in \mathbb{R}\right\}\right]$.

4°) a) Fixons $x \ge 0$. Les fonctions $u: t \mapsto \frac{t^n}{n}$ et $v: t \mapsto \frac{1}{1+t^2}$ sont de classe \mathcal{C}^1 sur [0,x], et pour tout $t \in [0,x], \ u'(t) = t^{n-1}, \ v'(t) = \frac{-2t}{(1+t^2)^2}$. Donc, par intégration par parties :

$$F_n(x) = \left[\frac{t^n}{n} \frac{1}{1+t^2}\right]_0^x - \int_0^x \frac{t^n}{n} \frac{-2t}{(1+t^2)^2} dt$$
$$F_n(x) = \frac{x^n}{n(1+x^2)} + \frac{2}{n} \int_0^x \frac{t^{n+1}}{(1+t^2)^2} dt$$

b) Soit $x \in \mathbb{R}_+$ fixé. Pour tout $t \in [0, x]$, $(1 + t^2)^2 \ge 1 > 0$, donc $0 \le \frac{1}{(1 + t^2)^2} \le 1$, et donc $0 \le \frac{t^{n+1}}{(1 + t^2)^2} \le t^{n+1}$ puisque $t^{n-1} \ge 0$.

Par croissance de l'intégrale sur $[0,x]:0\leq \int_0^x \frac{t^{n+1}}{(1+t^2)^2}\,\mathrm{d}t\leq \int_0^x t^{n+1}\,\mathrm{d}t.$

Or $\int_0^x t^{n+1} dt = \left[\frac{1}{n+2}t^{n+2}\right]_0^1 = \frac{1}{n+2}x^{n+2}$, d'où l'inégalité, pour tout $x \ge 0$:

$$0 \le \int_0^x \frac{t^{n+1}}{(1+t^2)^2} \, \mathrm{d}t \le \frac{x^{n+2}}{n+2}$$

c) Soit x > 0. En multipliant par $\frac{2}{n}$ l'encadrement précédent et en ajoutant $\frac{x^n}{n(1+x^2)}$, on obtient d'après la question a :

$$\frac{x^n}{n(1+x^2)} \le F_n(x) \le \frac{x^n}{n(1+x^2)} + \frac{2}{n(n+2)} x^{n+2}$$
$$\frac{1}{n(1+x^2)} \le \frac{F_n(x)}{x^n} \le \frac{1}{n(1+x^2)} + \frac{2}{n(n+2)} x^2 \quad \text{car } x^n > 0$$

Les membres de gauche et de droite de cet encadrement tendent vers $\frac{1}{n}$ quand x tend vers 0. Ainsi, d'après le théorème des gendarmes, $\frac{F_n(x)}{x^n} \xrightarrow[x \to 0]{} \frac{1}{n}$. De plus, la fonction $x \mapsto \frac{F_n(x)}{x^n}$ est une solution de (E_n) par la question 3.

Par ailleurs, si $\lambda \in \mathbb{R}^*$, alors $x \mapsto \frac{\lambda}{x^n}$ n'a pas de limite finie quand x tend vers 0, donc la solution $x \mapsto \frac{\lambda}{x^n} + \frac{F_n(x)}{x^n}$ de (E_n) n'a alors pas de limite finie en 0.

Finalement, la seule solution de (E_n) sur \mathbb{R}_+^* qui a une limite finie en 0 est $z_n: x \mapsto \frac{F_n(x)}{x^n}$.

5°) f_n est continue sur l'intervalle \mathbb{R}^+ , donc d'après le théorème fondamental de l'analyse, F_n est une primitive sur \mathbb{R}_+ de f_n .

Or
$$f_n(x) = x^{n-1} \left(1 - x^2 + o(x^2)\right) = x^{n-1} - x^{n+1} + o(x^{n+1}).$$

Donc, par primitivation, $F_n(x) \underset{x\to 0}{=} F_n(0) + \frac{x^n}{n} - \frac{x^{n+2}}{n+2} + o\left(x^{n+2}\right)$, et comme $F_n(0) = 0$:

$$z_n(x) = \frac{F_n(x)}{x^n} = \frac{1}{x \to 0} \frac{1}{n} - \frac{x^2}{n+2} + o(x^2)$$

On retrouve que $z_n(x) \underset{x \to 0}{\longrightarrow} \frac{1}{n} \in \mathbb{R}$, donc z_n est prolongeable par continuité en $z_n(0) = \frac{1}{n}$

La fonction ainsi prolongée en 0 est alors dérivable en 0 puisqu'elle admet un développement limité d'ordre 1 en 0, et $z'_n(0) = 0$ (puisque le coefficient devant x dans ce développement est nul).

On a également $z_n(x) - z_n(0) = -\frac{x^2}{n+2} + o\left(x^2\right)$ donc $z_n(x) - z_n(0) \sim -\frac{x^2}{n+2}$, donc $z_n(x) - z_n(0)$ est négatif au voisinage de 0: z_n admet un maximum local en z_n .

On pouvait aussi répondre : la courbe de z_n est, au voisinage de z_n en dessous de sa tangente en z_n , qui a pour équation $z_n(x) - z_n(0) \sim -\frac{x^2}{n+2}$, donc $z_n(x) - z_n(x) \sim -\frac{x^2}{n+2}$, donc $z_n($

6°) Soit $n \in \mathbb{N}^*$ et x > 0. $z_n(x) = \int_0^x \frac{t^{n-1}}{x^n(1+t^2)} dt$.

Posons $u = \frac{t}{x}$; la fonction $t \mapsto \frac{t}{x}$ est bien de classe \mathcal{C}^1 sur [0, x].

On peut écrire t = xu donc dt = x du. Si t = 0, u vaut 0, et si t = x, u vaut 1.

Ainsi:

$$z_n(x) = \int_0^1 \frac{(xu)^{n-1}}{x^n(1+(xu)^2)} x \, du = \int_0^1 \frac{u^{n-1}x^{n-1}}{x^n(1+(xu)^2)} x \, du = \boxed{\int_0^1 \frac{u^{n-1}}{1+x^2u^2} \, du}$$

7°) Soit $n \in \mathbb{N}^*$ et x > 0. Pour tout $u \in [0,1]$, $1 + x^2 u^2 \ge 1 > 0$ donc $0 \le \frac{1}{1 + x^2 u^2} \le 1$, et donc $0 \le \frac{u^{n-1}}{1 + x^2 u^2} \le u^{n-1}$ puisque $u^{n-1} \ge 0$.

Par croissance de l'intégrale sur [0, 1] :

$$0 \le z_n(x) \le \int_0^1 u^{n-1} du = \left[\frac{u^n}{n}\right]_0^1$$
 i.e. $0 \le z_n(x) \le \frac{1}{n}$

8°) Soit $n \in \mathbb{N}^*$ et x > 0. Comme z_n est solution de (E_n) sur \mathbb{R}_+^* ,

$$z'_n(x) = \frac{1}{x} \left(\frac{1}{1+x^2} - nz_n(x) \right)$$

$$= \frac{1}{x} \left(\frac{1}{1+x^2} - n\frac{F_n(x)}{x^n} \right)$$

$$= \frac{1}{x} \left(\frac{1}{1+x^2} - n\frac{1}{x^n} \frac{x^n}{n(1+x^2)} - n\frac{1}{x^n} \frac{2}{n} \int_0^x \frac{t^{n+1}}{(1+t^2)^2} dt \right) \text{ d'après la question 4a}$$

$$= -\frac{2}{x^{n+1}} \int_0^x \frac{t^{n+1}}{(1+t^2)^2} dt$$

On a x>0 et la fonction $t\mapsto \frac{t^{n+1}}{(1+t^2)^2}$ est continue, positive et non identiquement nulle sur [0,x], donc $\int_0^x \frac{t^{n+1}}{(1+t^2)^2}\,\mathrm{d}t>0$ et donc $z_n'(x)<0$ puisque $\frac{2}{x^{n+1}}>0$.

On en tire que la fonction z_n est strictement décroissante sur \mathbb{R}_+^*

Exercice 2

 $\mathbf{1}^{\circ}$) Soit $n \in \mathbb{N}^*$.

$$E(Y_n) = E(X_1 \dots X_n).$$

Les variables X_1, \ldots, X_n sont indépendantes donc $E(Y_n) = E(X_1) \ldots E(X_n)$

D'où $E(Y_n) = E(X_1)^n$ car les X_i ont toutes la même loi.

 X_1 est à valeurs dans $\{-1,1\}$, donc :

$$E(X_1) = 1 \times P(X_1 = 1) + (-1) \times P(X_1 = -1) = p - (1 - p) = 2p - 1.$$

D'où,
$$E(Y_n) = (2p-1)^n$$

$$V(Y_n) = E(Y_n^2) - E(Y_n)^2.$$

On a $Y_n^2 = X_1^2 \dots X_n^2$. Or les X_i sont à valeurs dans $\{-1,1\}$ donc, pour tout $i \in \{1,\dots,n\}, X_i^2 = 1$.

Donc $Y_n^2 = 1$, d'où $E(Y_n^2) = 1$.

Finalement,
$$V(Y_n) = 1 - (2p-1)^{2n}$$

Autre méthode si on ne se rend pas compte que $Y_n^2 = 1$:

Les X_i sont indépendantes donc les X_i^2 aussi. Ainsi, $E(Y_n^2) = E(X_1^2) \dots E(X_n^2)$.

Les X_i ont même loi donc, par la formule du transfert, les X_i^2 aussi.

Ainsi, $E(Y_n^2) = E(X_1^2)^n$.

Calculons: $E(X_1^2) = 1^2 \times P(X_1 = 1) + (-1)^2 P(X_1 = -1) = p + 1 - p = 1.$

Donc, $E(Y_n^2) = 1$.

 2°) $Y_2 = X_1 X_2$.

 X_1 et X_2 sont à valeurs dans $\{-1,1\}$ donc Y_2 est à valeurs dans $\{-1,1\}$

Pour la même raison, $(Y_2 = 1) = ((X_1 = 1) \cap (X_2 = 1)) \cup ((X_1 = -1) \cap (X_2 = -1))$; cette réunion est une réunion d'événements incompatibles donc

$$P(Y_2 = 1) = P((X_1 = 1) \cap (X_2 = 1)) + P((X_1 = -1) \cap (X_2 = -1))$$

= $P(X_1 = 1)P(X_2 = 1) + P(X_1 = -1)P(X_2 = -1)$ car X_1 et X_2 sont indépendantes
= $pp + (1 - p)(1 - p)$

$$P(Y_2 = 1) = 2p^2 - 2p + 1$$

Et enfin,
$$P(Y_2 = -1) = 1 - P(Y_2 = 1)$$
 donc $P(Y_2 = -1) = 2p - p^2$

Autre méthode :

 $((X_1 = 1), (X_1 = -1))$ est un système complet d'événements donc, par la formule des probabilités totales :

$$P(Y_2 = 1) = P(X_1 = 1)P_{(X_1 = 1)}(Y_2 = 1) + P(X_1 = -1)P_{(X_1 = -1)}(Y_2 = 1).$$

- On suppose que $X_1 = 1$. Alors $Y_2 = 1 \iff X_2 = 1$. Donc $P_{(X_1 = 1)}(Y_2 = 1) = P(X_2 = 1) = p$.
- On suppose que $X_1 = -1$. Alors $Y_2 = 1 \iff X_2 = -1$. Donc $P_{(X_1=1)}(Y_2=1) = P(X_2=-1) = 1-p$.

Ainsi,
$$P(Y_2 = 1) = p^2 + (1 - p)^2$$
 i.e. $P(Y_2 = 1) = 2p^2 - 2p + 1$

$$P(Y_2 = -1) = 1 - P(Y_2 = 1) \text{ donc } P(Y_2 = -1) = 2p - p^2$$

 3°) Soit $n \in \mathbb{N}^*$.

 $Y_n = X_1 \dots X_n$ est à valeurs dans $\{-1,1\}$ donc $((Y_n = 1), (Y_n = -1))$ est un système complet d'événements. Par la formule des probabilités totales :

$$P(Y_{n+1} = 1) = P(Y_n = 1)P_{(Y_n = 1)}(Y_{n+1} = 1) + P(Y_n = -1)P_{(Y_n = -1)}(Y_{n+1} = 1).$$

 $Y_{n+1} = X_1 \dots X_{n+1} \text{ donc } Y_{n+1} = Y_n X_{n+1}.$

- On suppose que $Y_n = 1$. Alors $Y_{n+1} = 1 \iff X_{n+1} = 1$. Donc $P_{(Y_n=1)}(Y_{n+1} = 1) = P(X_{n+1} = 1) = p$.
- On suppose que $Y_n = -1$. Alors $Y_{n+1} = 1 \iff X_{n+1} = -1$. Donc $P_{(Y_n=1)}(Y_{n+1}=1) = P(X_{n+1}=-1) = 1-p$.

Ainsi,
$$u_{n+1} = pu_n + (1 - u_n)(1 - p)$$
. Ainsi, $u_{n+1} = (2p - 1)u_n + 1 - p$.

- $\mathbf{4}^{\circ}$) $(u_n)_{n\in\mathbb{N}^*}$ est une suite arithmético-géométrique.
 - On résout pour $\ell \in \mathbb{R}$:

$$\ell = (2p-1)\ell + 1 - p \iff \ell(1 - 2p + 1) = 1 - p$$
$$\iff 2\ell(1-p) = 1 - p$$
$$\iff \ell = \frac{1}{2} \qquad \text{car } 1 - p \neq 0$$

• On pose, pour
$$n \in \mathbb{N}^*$$
, $v_n = u_n - \ell$ avec $\ell = \frac{1}{2}$. Pour $n \in \mathbb{N}^*$,

$$u_{n+1} = (2p-1)u_n + 1 - p$$

$$\ell = (2p-1)\ell + 1 - p$$

$$u_{n+1} - \ell = (2p-1)(u_n - \ell)$$

Ainsi, pour tout $n \in \mathbb{N}^*$, $v_{n+1} = (2p-1)v_n : (v_n)$ est une suite géométrique de raison 2p-1. Pour tout $n \in \mathbb{N}^*$, $v_n = (2p-1)^{n-1}v_1$.

• On en déduit, pour $n \in \mathbb{N}^*$, $u_n = \frac{1}{2} + (2p-1)^{n-1} \left(u_1 - \frac{1}{2}\right)$.

Or
$$u_1 = P(Y_1 = 1) = P(X_1 = 1) = p \text{ donc } \left[u_n = \frac{1}{2} (1 + (2p - 1)^n) \right].$$

$$0 donc $-1 < 2p - 1 < 1$ donc $\alpha = 2p - 1$ convient$$

- 5°) a) Comme les Y_i sont à valeurs dans $\{-1,1\}$, les variables Y_n et Y_{n+1} sont indépendantes ssi (*): pour tout $(i,j) \in \{-1,1\}^2$, $P((Y_n=i) \cap (Y_{n+1}=j)) = P(Y_n=i)P(Y_{n+1}=j)$ i.e. les événements $(Y_n=i)$ et $(Y_{n+1}=j)$ sont indépendants.
 - Si Y_n et Y_{n+1} sont indépendantes alors $(Y_n = 1)$ et $(Y_{n+1} = 1)$ sont indépendants.
 - Réciproquement, on suppose que les événements $(Y_n = 1)$ et $(Y_{n+1} = 1)$ sont indépendants. On sait que si des événements A et B sont indépendants alors \overline{A} et B sont indépendants, \overline{A} et \overline{B} sont indépendants.

Ainsi, les événements $(Y_n = -1)$ et $(Y_{n+1} = 1)$ sont indépendants, de même les événements $(Y_n = 1)$ et $(Y_{n+1} = -1)$ puis les événements $(Y_n = -1)$ et $(Y_{n+1} = -1)$. Donc (*) est vérifiée. Ainsi, les variables Y_n et Y_{n+1} sont indépendantes.

$$Y_n$$
 et Y_{n+1} sont indépendantes ssi $P((Y_n = 1) \cap (Y_{n+1} = 1)) = P(Y_n = 1)P(Y_{n+1} = 1)$

b) $Y_{n+1} = Y_n X_{n+1}$, donc $(Y_n = 1) \cap (Y_{n+1} = 1) = (Y_n = 1) \cap (X_{n+1} = 1)$.

Les variables $X_1, \ldots, X_n, X_{n+1}$ sont indépendantes donc, par le lemme des coalitions, les deux variables $Y_n = X_1 \ldots X_n$ et X_{n+1} sont également indépendantes. Ainsi :

$$P((Y_n = 1) \cap (Y_{n+1} = 1)) = P((Y_n = 1) \cap (X_{n+1} = 1)) = P(Y_n = 1)P(X_{n+1} = 1)$$

$$P((Y_n = 1) \cap (Y_{n+1} = 1)) = u_n p$$

On pouvait aussi utiliser la probabilité $P_{Y_{n-1}}(Y_{n+1}=1)$ en expliquant sa valeur.

c) Par ailleurs, $P(Y_n = 1)P(Y_{n+1} = 1) = u_n u_{n+1}$. D'après les questions a et b, on a donc

$$Y_n$$
 et Y_{n+1} sont indépendantes $\iff u_n p = u_n u_{n+1}$

Or $u_n = \frac{1}{2}(1 + \alpha^n)$ avec $-1 < \alpha < 1$ i.e. $|\alpha| < 1$.

Donc $|\alpha|^n < 1$, i.e. $-1 < \alpha^n < 1$, ce qui implique que $1 + \alpha^n > 0$ et donc $u_n > 0$. D'où :

 Y_n et Y_{n+1} sont indépendantes $\iff p = u_{n+1}$ car $u_n \neq 0$ $\iff \frac{1}{2}(1 + (2p-1)^{n+1}) = p$

$$\Leftrightarrow (2p-1)^{n+1} = 2p-1$$

$$\iff (2p-1)^{n+1} = 2p-1$$

$$\iff (2p-1)((2p-1)^n - 1) = 0$$

$$\iff 2p = 1 \text{ ou } (2p-1)^n = 1$$

$$\iff p = \frac{1}{2}$$
 car $(2p-1)^n \neq 1$ puisque $|2p-1| < 1$

Ainsi, Y_n et Y_{n+1} sont indépendantes ssi $p = \frac{1}{2}$.

6°) **a)** $Y_n Y_{n+m} = (X_1 \dots X_n)(X_1 \dots X_n X_{n+1} \dots X_{n+m}) = X_1^2 \dots X_n^2 X_{n+1} \dots X_{n+m}.$

Comme les X_i sont à valeurs dans $\{-1,1\}, X_1^2 \dots X_n^2 = 1$.

Ainsi,
$$Y_n Y_{n+m} = X_{n+1} \dots X_{n+m}$$

b)
$$cov(Y_n, Y_{n+m}) = E(Y_n Y_{n+m}) - E(Y_n) E(Y_{n+m}).$$
 $E(Y_n) = (2p-1)^n$ et $E(Y_{n+m}) = (2p-1)^{n+m}$ par la question 1.
 $E(Y_n Y_{n+m}) = E(X_{n+1} \dots X_{n+m}) = E(X_{n+1}) \dots E(X_{n+m})$ car les X_i sont indépendantes. Or les variables X_{n+1}, \dots, X_{n+m} ont la même loi et il y en a m donc $E(Y_n Y_{n+m}) = E(X_1)^m = E(Y_1)^m$ car $Y_1 = X_1$.

Donc, $E(Y_n Y_{n+m}) = (2p-1)^m$.

Finalement, $cov(Y_n, Y_{n+m}) = (2p-1)^m - (2p-1)^{2n+m} = (2p-1)^m (1-(2p-1)^{2n})$.

Exercice 3

1°) Soit $n \in \mathbb{N}$. z_n s'écrit : $z_n = x_n + iy_n$ où x_n et y_n sont des réels.

Ainsi, pour $n \in \mathbb{N}$, $z_{n+1} = x_{n+1} + iy_{n+1}$.

D'autre part, $z_{n+1} = \frac{|z_n| + z_n}{2} = \underbrace{\frac{|z_n| + x_n}{2}}_{\in \mathbb{R}} + i\underbrace{\frac{y_n}{2}}_{\in \mathbb{R}}$. Par unicité de l'écriture algébrique, $y_{n+1} = \frac{y_n}{2}$.

- **2°)** La suite (y_n) est géométrique de raison $\frac{1}{2}$ donc, pour tout $n \in \mathbb{N}, y_n = \frac{y_0}{2^n}$. $z_0 = e^{i\theta_0}$ donc $y_0 = \sin(\theta_0)$. Or $\theta_0 \in]-\pi, \pi[\setminus\{0\} \text{ donc } \sin(\theta_0) \neq 0$. Donc $y_0 \neq 0$. Comme $y_n = \frac{y_0}{2^n}$, il vient $y_n \neq 0$: $\operatorname{Im}(z_n) \neq 0$. Donc $z_n \neq 0$.
- **3**°) Soit $n \in \mathbb{N}$. $z_n = r_n e^{i\theta_n}$.

$$z_{n+1} = \frac{|z_n| + z_n}{2} = \frac{r_n + r_n e^{i\theta_n}}{2}$$

$$= \frac{r_n (1 + e^{i\theta_n})}{2}$$

$$= \frac{r_n e^{i\frac{\theta_n}{2}} \left(e^{i\frac{\theta_n}{2}} + e^{-i\frac{\theta_n}{2}} \right)}{2}$$

$$= \frac{r_n e^{i\frac{\theta_n}{2}} 2 \cos\left(\frac{\theta_n}{2}\right)}{2}$$

$$z_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right) e^{i\frac{\theta_n}{2}}$$

4°) Soit $n \in \mathbb{N}$. $z_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right) e^{i\frac{\theta_n}{2}}$ d'une part, et $z_{n+1} = r_{n+1}e^{i\theta_{n+1}}$ d'autre part, avec $r_{n+1} > 0$.

$$\frac{\theta_n}{2} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right] \text{ donc } \cos\left(\frac{\hat{\theta}_n}{2}\right) \geq 0. \text{ Comme } z_n \neq 0, \cos\left(\frac{\theta_n}{2}\right) \neq 0.$$

De plus, $r_n > 0$. Finalement, $r_n \cos\left(\frac{\theta_n}{2}\right) > 0$.

Par égalité de deux formes trigonométriques, il vient : $r_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right)$ et $\theta_{n+1} \equiv \frac{\theta_n}{2}$ (2π) .

Comme θ_{n+1} et $\frac{\theta_n}{2}$ sont tous les deux dans $]-\pi,\pi]$, on en déduit que : $\theta_{n+1}=\frac{\theta_n}{2}$.

5°) La suite (θ_n) est géométrique de raison $\frac{1}{2}$ donc, pour tout $n \in \mathbb{N}, \theta_n = \frac{\theta_0}{2^n}$.

On pose, pour $n \in \mathbb{N}^*, H_n : r_n = \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right).$

★ Pour n = 1, on a $r_1 = r_0 \cos\left(\frac{\theta_0}{2}\right) = \cos\left(\frac{\theta_0}{2}\right)$ car $r_0 = 1$, et $\prod_{k=1}^{1} \cos\left(\frac{\theta_0}{2^k}\right) = \cos\left(\frac{\theta_0}{2}\right)$. Donc H_1 est vraie.

 \star Soit $n \in \mathbb{N}^*$ fixé. On suppose que H_n est vraie.

$$r_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right) = \left(\prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)\right) \cos\left(\frac{\theta_0}{2^{n+1}}\right) \text{ par } H_n \text{ et } \operatorname{car} \frac{\theta_n}{2} = \frac{\theta_0}{2^{n+1}}.$$

Finalement, $r_{n+1} = \prod_{k=1}^{n+1} \cos\left(\frac{\theta_0}{2^k}\right).$

- \bigstar On a montré par récurrence que, pour tout $n \in \mathbb{N}^*, r_n = \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$
- 6°) Soit $n \in \mathbb{N}^*$. $r_n = \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$ par ce qui précède.

De plus,
$$z_n = r_n e^{i\theta_n}$$
. Donc, $\operatorname{Im}(z_n) = r_n \sin(\theta_n)$ i.e. $y_n = r_n \sin(\theta_n)$. $y_n \neq 0$ donc $\sin(\theta_n) \neq 0$ d'où $r_n = \frac{y_n}{\sin(\theta_n)} = \frac{y_0}{2^n \sin\left(\frac{\theta_0}{2^n}\right)} \operatorname{car} y_n = \frac{y_0}{2^n}$ et $\theta_n = \frac{\theta_0}{2^n}$.

Finalement,
$$\prod_{k=1}^{n} \cos \left(\frac{\theta_0}{2^k} \right) = \frac{\sin(\theta_0)}{2^n \sin \left(\frac{\theta_0}{2^n} \right)} .$$

7°) Soit $n \in \mathbb{N}^*$. θ_0 est fixé, on s'intéresse à la limite de r_n lorsque n tend vers $+\infty$. On a $r_n = \frac{\sin(\theta_0)}{2^n \sin\left(\frac{\theta_0}{2^n}\right)}$.

$$\frac{\theta_0}{2^n} \underset{n \to +\infty}{\longrightarrow} 0 \text{ car } 2 > 1 \text{ donc } \sin\left(\frac{\theta_0}{2^n}\right) \sim \frac{\theta_0}{2^n}. \text{ Ainsi, } r_n \sim \frac{\sin(\theta_0)}{\theta_0} \text{ donc } r_n \underset{n \to +\infty}{\longrightarrow} \frac{\sin(\theta_0)}{\theta_0}$$

Finalement,
$$\lim_{n \to +\infty} \prod_{k=1}^{n} \cos \left(\frac{\theta_0}{2^k} \right) = \frac{\sin(\theta_0)}{\theta_0}.$$

Exercice 4

 $\mathbf{1}^{\circ}$) Soient $(P,Q) \in E^2$ et $\lambda \in \mathbb{R}$.

$$f(\lambda . P + Q) = (\lambda P + Q)(X) - (\lambda P + Q)'(X + 1)$$

$$= \lambda P(X) + Q(X) - (\lambda P' + Q')(X + 1)$$

$$= \lambda P(X) + Q(X) - \lambda P'(X + 1) - Q'(X + 1)$$

$$= \lambda (P(X) - P'(X + 1)) + Q(X) - Q'(X + 1)$$

$$= \lambda f(P) + f(Q)$$

Ainsi, f est linéaire

- **2°)** On a $\deg(P_0) = 0$, $\deg(P_1) = 1$ et $\deg(P_k) = 1 + (k-1) = k$ pour $k \in \{2, ..., n\}$; la famille $(P_0, P_1, ..., P_n)$ est donc une famille de polynômes non nuls échelonnée en degrés ce qui justifie qu'il s'agit d'une famille libre de E. Puisque son cardinal (n+1) est égal à la dimension de $E = \mathbb{R}_n[X]$, \mathcal{B} est une base de E.
- 3°) Soit $P \in E$. Si P = 0 alors f(P) = 0 donc $\deg(f(P)) = \deg P$. Si $P \neq 0$, $\deg(P'(X+1)) = \deg(P') \times \deg(X+1) = \deg(P')$, et comme P est non nul, $\deg(P') < \deg(P)$ donc $\deg(f(P)) = \max(\deg(P), \deg(P')) = \deg(P)$. Ainsi, dans tous les cas, $\deg(f(P)) = \deg(P)$.
- 4°) D'après les deux questions précédentes, la famille \mathcal{C} est une famille de n+1 polynômes non nuls de E échelonnée en degrés ce qui permet d'appliquer le même raisonnement que dans la question 2. Donc \mathcal{C} est une base de E.

- 5°) Nous savons d'après la question 1 que f est linéaire. De plus, comme pour tout $P \in E, \deg(f(P)) = \deg P, f$ va bien de E dans E. Ainsi, f est un endomorphisme de E. L'image par l'endomorphisme f de la base $\mathcal B$ de E est la base $\mathcal C$ de E. Donc f est un automorphisme de E.
- **6**°) On a $P'_1(X+1) = 1 = P_0(X)$ et, pour tout $k \in \{2, ..., n\}$:

$$P'_{k}(X) = \frac{1}{k!} \left((X - k)^{k-1} + (k-1)X(X - k)^{k-2} \right)$$

$$\operatorname{donc} P'_{k}(X + 1) = \frac{1}{k!} \left((X + 1 - k)^{k-1} + (k-1)(X + 1)(X + 1 - k)^{k-2} \right)$$

$$P'_{k}(X + 1) = \frac{1}{k!} \left((X - (k-1))^{k-1} + (k-1)(X + 1)(X - (k-1))^{k-2} \right)$$

$$P'_{k}(X + 1) = \frac{1}{k!} (X - (k-1))^{k-2} (X - (k-1) + (k-1)(X + 1))$$

$$P'_{k}(X + 1) = \frac{kX(X - (k-1))^{k-2}}{k!} = \frac{X(X - (k-1))^{(k-1)-1}}{(k-1)!}$$

$$P'_{k}(X + 1) = P_{k-1}(X)$$

 $\mathbf{7}^{\circ}$) On a $f(P_0) = 1 = P_0$. Pour $k \in \{1, \dots, n\}$, d'après la question précédente,

$$f(P_k) = P_k(X) - P'_k(X+1) = P_k(X) - P_{k-1}(X).$$

On en tire la matrice de f dans la base $\mathcal{B} = (P_0, \dots, P_n)$:

$$A = \max_{\mathcal{B}} f = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & \ddots & \vdots & \vdots \\ \vdots & 0 & 1 & \ddots & 0 & \vdots \\ \vdots & \vdots & 0 & \ddots & -1 & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 & -1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

8°) a) On a
$$P_0 = 1$$
, $P_1 = X$

$$P_2 = \frac{X(X-2)}{2} = \frac{X^2}{2} - X \text{ et } P_3 = \frac{X(X-3)^2}{6} = \frac{X(X^2 - 6X + 9)}{6} = \frac{X^3}{6} - X^2 + \frac{3}{2}X. \text{ Ainsi :}$$

$$X^3 = 6P_3 + 6X^2 - 9X = 6P_3 + (12P_2 + 12X) - 9X = 6P_3 + 12P_2 + 3X = 6P_3 + 12P_2 + 3P_1.$$

et cette écriture est unique car \mathcal{B} est une base de $\mathbb{R}_2[X]$.

b) Soit $P \in E$, notons (a, b, c, d) ses coordonnées dans la base \mathcal{B} . Comme A est la matrice de f dans la base \mathcal{B} et que les coordonnées de X^3 dans \mathcal{B} sont (0, 3, 12, 6):

$$\begin{split} f(P) &= X^3 \Longleftrightarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 12 \\ 6 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} a-b \\ b-c \\ c-d \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 12 \\ 6 \end{pmatrix} \\ \Longleftrightarrow \begin{cases} a=b \\ b=c+3 \\ c=12+6 \\ d=6 \end{cases} \iff \begin{cases} a=21 \\ b=21 \\ c=18 \\ d=6 \end{split}$$

Donc l'unique solution est $P = 21P_0 + 21P_1 + 18P_2 + 6P_3 = 21 + 21X + 9X^2 - 18X + X^3 - 6X^2 + 9X = X^3 + 3X^2 + 12X + 21$.