Management Practice

14. Assignment in a global context

Jeroen.Bergmann@eng.ox.ac.uk

Course

Literature for the course:

Eisner, Howard. Essentials of project and systems engineering management. John Wiley & Sons, 2008.

Learning objective for this session:

- Understand what an assignment problem is
- Able to solve a Integer linear constrained optimization problem
- Able to apply the Hungarian Method
- Able to discuss difference between assignments methods

Literature for this session:

Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. *Iterative methods in combinatorial optimization*. Vol. 46. Cambridge University Press, 2011.

Assignment

Assignment is the allocation of a job or task to someone.

The assignment supports the matching of personnel to specific tasks or more generically, assigning jobs to machines.

There is a benefit if we can optimise the assignments against a certain cost parameter.

Assignment problem

- The assignment problem is one of the fundamental combinatorial optimization problems (finding in a finite set of objects the optimum).
- Combinatorial optimization explores a finite (although countably infinite is also possible) set of potential solutions in search for an optimal solution.
- A set is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers
- A criterion function that can be minimized or maximized can be used to define optimality.

Source: John and Lei, General assignment problem

Classic assignment problem

• Given a bipartite graph $G=(V_1 \cup V_2, E)$ and weight w, the objective is to match every vertex in V_1 with a distinct vertex in V_2 to minimize the total weight (cost) of the matching. This is also know as the minimum weight bipartite matching problem and is a fundamental problem in combinatorial optimisation.

Source: Lau et al, 2011

Example assignment problem

• 3 employees can be put on 3 jobs

• Each employee can only work on one job.

• The suitability of each employee for each of the jobs can be captured by a cost value. The cost will be **lower** if the employee is more suitable for that job.

Example assignment problem

• Find a maximum matching (assign jobs to as many employees as possible) for which the sum of the cost of the edges is minimized

Potential solution for assignment problem

Find all maximum matchings

$$\{E_1 \rightarrow J_1, E_2 \rightarrow J_2, E_3 \rightarrow J_3\}; \{E_1 \rightarrow J_2, E_2 \rightarrow J_1, E_3 \rightarrow J_3\}, \dots$$

 Sum the cost of the edges of each maximum matching

 Select the maximum matching with the lowest possible cost

Optimal assignment

An assignment is a set of n entry positions in the cost matrix, no two
of which lie in the same row or column.

The sum of the n entries of an assignment is its cost.

 An assignment with the smallest possible cost is called an optimal assignment.

Integer linear constrained optimization problem (IP)

• Set up cost matrix

С	J_1	J_2	J_3
E ₁	1	4	5
E ₂	5	7	6
E ₃	5	8	8

C	J_1	J_2	J ₃
E ₁	1	4	5
E ₂	5	7	6
E ₃	5	8	8

- Cost matrix $C = [c_{ij}]$ where c_{ij} is the cost of Employee i working on Job j
- A variable x_{ij} is generated that has a binary set: [0] OR [1]
- The value [1] indicates that for x_{ij} the Employee i is assigned Job j.
- The value [0] is used otherwise (no assignment took place)

IP

001

• Minimize: $1x_{11}+4x_{12}+5x_{13}+5x_{21}+7x_{22}+6x_{23}+5x_{31}+8x_{32}+8x_{33}$

С	J_1	J_2	J ₃
E ₁	1	4	5
E ₂	5	7	6
E ₃	5	8	8

100

• Solution tree (3³)

Select only maximum matching

IP

Algorithm output provides two possible options

C=15	J_1	J ₂	J_3
E ₁	0	4	0
E ₂	0	0	6
E ₃	5	0	0
C=15	J_1	J ₂	J ₃
E ₁	1	0	0
E ₂	0	0	6
E ₃	0	8	0

• This was selected from 6 possible outcomes {16, **15**, 17, **15**, 18, 17}

Simplex Algorithm for network problems

- A general purpose algorithm to find the optimum of a linear cost function with linear constraints is the Simplex Algorithm.
- A specially adapted Simplex algorithm is the Hungarian Algorithm.
- Although it was developed by Harold Kuhn, much of the work relied on the Hungarians Jenő Egerváry and Dénes Kőnig.
- If a number is added to or subtracted from all of the entries of any one row or column of a cost matrix, then on optimal assignment for the resulting cost matrix is also an optimal assignment for the original cost matrix.

Original cost matrix

С	J_1	J ₂	J_3
E ₁	1	4	5
E ₂	5	7	6
E ₃	5	8	8

(1) Subtract the smallest entry in each row from all the entries of its row.

С	J_1	J ₂	J ₃
E ₁	1	4	5
E ₂	5	7	6
E ₃	5	8	8
C	J_1	J ₂	J ₃
E ₁	0	2	4
- 1	O	3	4
E ₂	0	2	1

(2) Subtract the smallest entry in each column from all the entries of its column.

С	J_1	J ₂	J ₃
E ₁	0	3	4
E ₂	0	2	1
E ₃	0	3	3
С	J_1	J ₂	J ₃
E ₁	0	1	3
E_2	0	0	0

• (3) Draw lines through appropriate rows and columns so that all the zero entries of the cost matrix are covered and the minimum number of such lines is used.

С	J_1	J_2	J ₃
E ₁	ф	1	3
E ₂	-	0	0
E ₃	d	1	2

- (4) Test for Optimality:
- (i) If the minimum number of covering lines is *n* (number of rows or columns), an optimal assignment of zeros is possible and we are finished.
- (ii) If the minimum number of covering lines is less than *n*, an optimal assignment of zeros is not yet possible. In that case, proceed to Step 5.

С	J_1	J ₂	J ₃
E ₁	ф	1	3
E ₂	-	0	0
E ₃	d	1	2

Source: Shun Y. Cheung, 2012

n>2

• (5) Determine the smallest entry not covered by any line. **Subtract this entry from each uncovered row**, and then add it to each covered column. Return to Step 3.

C	J_1	J ₂	J ₃
E ₁	þ	1	3
E ₂		0	0
E ₃	d	1	2
C	J_1	J ₂	J ₃
-	J ₁	J ₂ 0	J ₃ 2
E ₁ E ₂	•		

• (5) Take the smallest entry that was not covered by any line. Subtract this entry from each uncovered row, and then add it to each covered column. Return to Step 3.

С	J_1	J_2	J ₃
E ₁	- <mark>1</mark>	0	2
E ₂	——	0	0
E ₃	- <mark>1</mark>	0	1
C	J_1	J_2	J ₃
E ₁	0	0	2
E ₂	1	0	0
E ₃	0	0	1

• (3) Draw lines through appropriate rows and columns so that all the zero entries of the cost matrix are covered and the minimum number of such lines is used.

4 (i) If the minimum number of covering lines is n, an optimal assignment of zeros is possible and we are finished.

Algorithm output provides two possible options

C=15	J_1	J ₂	J ₃
E ₁	0	0	2
E ₂	1	0	0
E ₃	0	0	1
C=15	J_1	J ₂	J ₃
E ₁	0	0	2
E ₂	1	0	0
E ₃	0	0	1

Algorithm output provides the same two possible options

C=15	J_1	J ₂	J ₃
E ₁	0	4	0
E ₂	0	0	6
E ₃	5	0	0
C=15	J_1	J ₂	J ₃
E ₁	1	0	0
E ₂	0	0	6
E ₃	0	8	0

• They yield similar results

Hungarian algorithm

• The original algorithm has a computational complexity of O(n⁴).

 The algorithm can be improved by scanning rows and columns in parallell.

 The computational times have been reduced by a range of improvements, but the basic idea still provides the framework for many published variations of the Hungarian algorithm.

Example: global assignment of personnel

- As more companies expand globally, they are also increasing international assignments and relying on expatriates to manage their global operations.
- Around 83 % of employers offer short-term assignments (T< 1 year), 97 % offer long-term assignments (1<T<5 years) and 61% offer permanent transfer.
- The international assignment requires additional specifications that reflect barriers in globalisation
- Determining who is suitable for an international assignment is an important decision point within international people management

International assignment

- Traditionally, organizations have relied on technical, job-related skills as the main criteria for selecting candidates for overseas assignments, but assessing global mindset is equally, if not more, important for successful assignments.
- Research points to three major attributes of successful expatriates:
 - Intellectual capital. Knowledge, skills, understanding and cognitive complexity.
 - **Psychological capital.** The ability to function successfully in the host country through internal acceptance of different cultures and a strong desire to learn from new experiences.
 - **Social capital.** The ability to build trusting relationships with local stakeholders, whether they are employees, supply chain partners or customers.
- This can be captured under a suitability value for each employee. This makes the international assignment problem a combinatorial optimization problem.

- An effective global communication plan will help expatriates feel connected to the home office and will alert them to changes that occur while they are away.
- The Internet, e-mail and intranets are inexpensive and easy ways to bring expatriates into the loop. In addition to formal e-mail communications, organizations should encourage home-office employees to keep in touch with peers on overseas assignments. Employee newsletters that feature global news and expatriate assignments are also encouraged.

Source: Society of HR management, 2017; 2018

Questions?

jeroen.bergmann@eng.ox.ac.uk

