Outils pour la gestion de projet (IT-S601)

Stéphane Genaud

September 24, 2010

Plan

- 1 Le contexte de la gestion de projet
- 2 Les acteurs
- 3 Le découpage
- 4 L'estimation d'un projet
- 6 La planification

Plan

- Le contexte de la gestion de projet
 - Projet: origine, définitions
 - Assurer le lancement du projet: l'évaluation
- 2 Les acteurs
- 3 Le découpage
- L'estimation d'un projet
- 5 La planification

Techniques de planification

Objectif : gérer le découpage temporel et structurel

Techniques:

- Graphe PERT pour :
 - mettre en évidence les dépendances entre tâches
 - mettre en évidence le parallélisme potentiel
 - calculer la durée minimum du projet
 - mettre en évidence les temps d'attente
- Diagramme Gantt pour :
 - faire des hypothèses sur les ressources
 - faire des hypothèses sur les disponibilités
 - établir un calendrier de travail

Méthode PERT

Project Evaluation and Review Technique (PERT)

- Établissement de l'ensemble des tâches et leurs durée estimée
- Ordonnancement des tâches selon dépendances

Méthode PERT (2)

fin-début

début-début

fin-fin

début-fin

Graphe PERT

- Le projet est caractérisé par
 - un ensemble de tâches T
 - ▶ une date de début t₀
 - ▶ une date de fin t_f
- Une tâche T_i possède :
 - une durée $d(T_i)$
 - ▶ un ensemble de prédécesseurs *Pred*(*T_i*)
 - un ensemble de successeurs $Succ(T_i)$
- ⇒ Objectif : définir
 - la date au plus tôt de chaque tâche
 - la date au plus tard de chaque tâche
 - le chemin critique

Dates au plus tôt

la tâche ne peut débuter avant $d_{tot}(T_i)$ la tâche ne peut finir avant $f_{tot}(T_i)$

$$d_{tot}(T_i) = egin{cases} max(f_{tot}(Pred(T_i))) & ext{si } Pred(T_i)
eq \{\} \ t_0 & ext{sinon} \end{cases}$$
 $f_{tot}(T_i) = d_{tot}(T_i) + d(T_i)$

★ : si tous les liens sont de type fin-début

Dates au plus tard

la tâche doit débuter au plus tard à $d_{tard}(T_i)$ la tâche doit finir au plus tard à $f_{tard}(T_i)$

$$f_{tard}(T_i) = \begin{cases} \min(d_{tard}(Succ(T_i))) & \text{si } Succ(T_i) \neq \{\} \\ t_f & \text{sinon} \end{cases}$$
$$d_{tard}(T_i) = f_{tard}(T_i) - d(T_i)$$

* : si tous les liens sont de type fin-début

Exemple dates au plus tôt

Remarquer la tâche T_5 avec plusieurs prédécesseurs :

$$d_{tot}(T_5) = max(\{f_{tot}(T_2); f_{tot}(T_3)\})) = max(\{7, 10\}) = 10$$

Exemple dates au plus tard

Supposons $t_f = 15$ (estimation de la fin du projet)

Marges et chemin critique

- Marge (de manœuvre) : $m(T_i) = d_{tard}(T_i) d_{tot}(T_i)$ = $f_{tard}(T_i) - f_{tot}(T_i)$
- Chemin critique : chemin tel que la somme des marges est minimale
- Cas particulier avec uniquement liens fin-début Chemin critique
 ⇔ Chemin le plus long

lci : le chemin critique est $\{T_1; T_3; T_5\}$

Exercice graphe PERT

Tâche	durée	lien
t_1	5	fin t_1 - début t_3
t ₂	2	fin t_2 - début t_4 , t_5
t ₃	10	fin t ₃ - début t ₆ , t ₈
t ₄	8	fin t ₄ - début t ₆
t ₅	10	fin t ₅ - début t ₇
t ₆	25	fin t_6 - début t_{11}
t ₇	4	fin t_7 - début t_{11}
t ₈	10	fin t_8 - début t_9 , t_{10} , t_{11}
t ₉	2	fin t ₉ - début t ₁₃
t ₁₀	1	fin t_{10} - début t_{13}
t ₁₁	15	début t_{11} - début t_{12}
		fin t_{11} - début t_{13}
t ₁₂	10	fin t_{12} - début t_{14}
t ₁₃	12	fin t ₁₃ - fin
t ₁₄	30	fin t ₁₄ - fin

PERT Probabiliste

- Objectif: Inclure risque et incertitude dans la durée
- Durée d'une tâche considérée comme une variable aléatoire. Des études ont montré que la durée d'une tâche peut être modélisée une loi Beta.
- La durée d'un chemin est la somme de telles variables aléatoires.
 Théorème centrale limite ⇒ La durée d'un chemin suit une loi normale.
- Conditions
 - nombre suffisant de tâches
 - ordre de grandeur semblables pour les durées
 - indépendances entre durées des tâches

PERT Probabiliste en pratique

Les travaux de C. Clarke (1962) ont donné une méthode pour contrôler les paramètres de la loi de distribution Beta α et β à partir de 3 paramètres plus simples :

opt : durée optimistepes : durée pessimistevrai : durée vraisemblable

PERT probabiliste (2)

Pour une tâche :

• Calculer la durée probable d'une tâche i :

$$prob_i = \frac{opt_i + 4 \ vrai_i + pes_i}{6}$$

• Mesurer l'incertitude de l'estimation en calculant l'indicateur de dispersion de la durée de la tâche *i*:

$$d_i = \frac{pes_i - opt_i}{6}$$

PERT probabiliste (3)

Pour un chemin constitué des tâches {1; 2; ...; n}

Mesurer la durée estimée du chemin

$$D = \sum_{i=1}^{n} prob_i$$

• Mesurer l'écart-type de l'estimation pour le chemin :

$$E = \sqrt{\sum_{i=1}^{n} d_i^2}$$

PERT probabiliste (4)

Idée: on cherche une borne supérieure t de la durée d'un chemin avec un certain degré de confiance p.

Soit F(t) est la fonction de répartition (ou CFD) de $\mathcal{N}(0,1)$, on cherche

$$t$$
 telle que $F(t) \leq p$

PERT probabiliste (5)

Le comportement stochastique s'applique à l'incertitude déclarée sur le chemnin : *E*.

Si on appelle $G = F^{-1}$,

La durée maximum du chemin avec une probabilité p est:

$$\mathcal{D}(p) = D + E \times G(p)$$

On utilise une table (ou calculatrice):

G(p)	p	G(p)
3,00	89,1	1,23
2,31	85,1	1,04
2,06	70,2	0,53
1,88	50	0
1,65	42,1	-0,2
1,41	34,5	-0,4
1,28	27,4	-0,6
	3,00 2,31 2,06 1,88 1,65 1,41	3,00 89,1 2,31 85,1 2,06 70,2 1,88 50 1,65 42,1 1,41 34,5

PERT probabiliste (4)

Exemple : Les estimations sont D = 100 et E = 15. La durée probable à 90% est

$$\mathcal{D}(0,9) = 100 + 15 \times G(0,9)$$

= 100 + 15 × 1,28
 ≈ 119

La durée probable à 70% est

$$\mathcal{D}(0,7) = 100 + 15 \times G(0,7)$$

= 100 + 15 \times 0,53
\approx 108

La probabilité de terminer en 90 jours est

90 =
$$100 + 15 \times G(p)$$

 $G(p) = -10/15 = -2/3$

d'où $p \approx 27\%$

Exercice PERT probabiliste

ti	Description	opt	pes	vrai
t_1	faire fondre le beurre et le chocolat	6	9	7,5
t_2	séparer les oeufs en jaunes et blancs	1	4,5	3
t ₃	ajouter les jaunes au mélange, faire cuire	6	8	7
t ₄	monter les blancs en neige	2	12	5
t_5	arrêter la cuisson du mélange,			
	et incorporer les blancs au mélange	2	6	3
t ₆	faire cuire au four	16	22	18

- Tracer le graphe PERT (sans contrainte de ressources)
- 2 Calculer la durée probable, l'écart-type de chaque chemin
- Oéterminer le chemin critique
- Quelle est la durée estimée de préparation du gâteau,
 - avec une probabilité de 90% ?
 - avec une probabilité de 95% ?
- Quelle est la probabilité de terminer en 37 minutes ?

Diagramme Gantt

Etablir un planning

- Un réseau PERT donne les dates (au plus tôt, au plus tard) sans tenir compte des contraintes de ressources
- Planning ⇒ faire des hypothèses sur les ressources
- Diagramme Gantt : qui fait quoi et quand ?
- Possibilité de modifier le planning en
 - jouant sur les ressources affectées
 - jouant sur le chargement (au plus tôt, au plus tard)

Diagramme Gantt (2)

Hypothèses : ressources R1 et R2, et chargement au plus tôt

		_											,		
Périodes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ressources R1	T1														
Ki				Т3											
											T5				
												1			
R2				T2				Ε	Ξ	=	Ξ	L			
											T4			=	

Diagramme de Gantt (3)

Hypothèses : ressources R1 et R2, et chargement au plus tard

Périodes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ressources															
R1		T1			İ										
					Т	3									
												T5			
								T2							
R2								12					_		
102												T4			
														l	

Diagramme Gantt : le nivellement

Le nivellement : limiter les ressources utilisées

Diagramme Gantt : le lissage

Le lissage : répartir l'utilisation d'une ressource dans le temps

