Simplifying BRDF Acquisition

Dual Degree Project

Presented by: Shubham Chitnis

Supervised by: Prof. Sharat Chandran

What is BRDF?

Determines how we perceive objects

Formal definition

The ratio of the outgoing radiance from a point on the material to the incoming irradiance for a given incidence and reflection angle pair.

Parametric Representation

ABC model based on **Microfacet theory**

Parameter estimation: 9 total (k_d RGB, ARGB, B, C, eta) estimated using least squares optimization on BRDF data with a weighted L2 loss function.

Here,

k_d: diffuse albedo

A,B,C: microfacet distribution parameters

 η : index of refraction

ABC distribution variant of Cook-Torrance

$$f_r(\mathbf{l}, \mathbf{v}) = \frac{k_d}{\pi} + \frac{F(\theta_h)G(\mathbf{n} \cdot \mathbf{l}, \mathbf{n} \cdot \mathbf{v})S(\sqrt{1 - (\mathbf{n} \cdot \mathbf{h})})}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

(Geometric attenuation)

$$G = \min \left\{ 1, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{v})}{(\mathbf{v} \cdot \mathbf{h})}, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{l})}{(\mathbf{v} \cdot \mathbf{h})} \right\}$$

(Fresnel factor)
$$F = \frac{(g-c)^2}{2(g+c)^2} \left\{ 1 + \frac{[c(g+c)-1]^2}{[c(g-c)+1]^2} \right\}$$

(ABC distribution)
$$S(f) = \frac{A}{(1+Bf^2)^C}$$
n: surface normal
$$\mathbf{c}: \mathbf{v.h}$$
l: incoming angle
$$\mathbf{g}: \eta^2 + \mathbf{c}^2 - \mathbf{1}$$
v: outgoing angle
$$\eta: \text{ index of } \eta$$

h: half angle

 η : index of refraction

Neural Layered BRDF

Inputs

- Incoming direction
- Outgoing direction
- Material-specific latent vector

Back-propagation

- For learning a new material
- Freeze network weights
- Optimize V_f using BRDF data

Problem Description

Motivations:

BRDF acquisition is expensive, requiring multiple hours (even days) for material capture forcing us to devise more efficient ways for BRDF capture.

Action items:

- We demonstrate that a small subset of *in-plane* angles sufficiently represents isotropic BRDFs.
- We further generate reduced BRDF datasets and compare their fit qualities using parametric models.

Problem Description

Data Description (MERL)

Publicly available dataset for 100+ isotropic materials

BRDF datapoints in millions (tristimulus domain)

Granularity (polar and azimuthal angles):

- 10° intervals for incoming polar angle
- 1° intervals for outgoing polar angle
- 1° intervals for outgoing azimuthal angle

Samples: tungsten carbide, blue acrylic, brass, nylon, specular black phenolic

Data Description (Packaging print)

BRDF measured for 31 wavelengths (390–730 nm at 10 nm intervals)

Granularity (incident and viewing angles):

- 5° intervals for diffuse region
- 1° intervals for specular region.

Samples: Gold, Cyan, Magenta, Gonio

Data Description

Picked materials with diverse optical properties: diffuse, light-specular, heavy-specular, goniochromatic

Parametric Representation

ABC model based on **Microfacet theory**

Parameter estimation: 9 total (k_d RGB, ARGB, B, C, eta) estimated using least squares optimization on BRDF data with a weighted L2 loss function.

Here,

k_d: diffuse albedo

A,B,C: microfacet distribution parameters

 η : index of refraction

ABC distribution variant of Cook-Torrance

$$f_r(\mathbf{l}, \mathbf{v}) = \frac{k_d}{\pi} + \frac{F(\theta_h)G(\mathbf{n} \cdot \mathbf{l}, \mathbf{n} \cdot \mathbf{v})S(\sqrt{1 - (\mathbf{n} \cdot \mathbf{h})})}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

(Geometric attenuation)

$$G = \min \left\{ 1, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{v})}{(\mathbf{v} \cdot \mathbf{h})}, \frac{2 (\mathbf{n} \cdot \mathbf{h}) (\mathbf{n} \cdot \mathbf{l})}{(\mathbf{v} \cdot \mathbf{h})} \right\}$$

(Fresnel factor)

$$F = \frac{(g-c)^2}{2(g+c)^2} \left\{ 1 + \frac{[c(g+c)-1]^2}{[c(g-c)+1]^2} \right\}$$

(ABC distribution) **n**: surface normal

$$S(f) = \frac{A}{(1 + Bf^2)^C}$$
 n: surface normal
l: incoming angle
v: outgoing angle

n: surface normal

h: half angle

c: v.h

 $g: \eta^2 + c^2 - 1$ η : index of refraction

In-plane vs Out-of-plane (ABC Model)

Renderings (MERL)

Renderings (Packaging)

gold gonio magenta cyan

BRDF and relative-rmse plots

Rendering comparison

Mitsuba living room scene

<u>link</u>

Neural Layered BRDF

Inputs

- Incoming direction
- Outgoing direction
- Material-specific latent vector

Back-propagation

- For learning a new material
- Freeze network weights
- Optimize V_f using BRDF data

In-plane vs Out-of-plane (NLB Model)

Results (NLB Model)

Renderings (MERL)

nylon

Results (NLB Model)

Renderings (Packaging)

Results (NLB Model)

BRDF and relative-rmse plots

Ablations

Progressively reduce dataset (DS1-DS4) from 900 angle pairs to 6 angle pairs

ABC parameters obtained through least squares optimization. NLB latent vector obtained using backprop shown earlier.

Dataset	θ_i interval	θ_r interval: Diffuse	θ_r interval: Glossy
DS1	5°	5°	1°
DS2	15°	10°	2°
DS3	30°	20°	3°

Dataset	Incoming angle (θ_i°)	Outgoing angle (θ_r°)
DS4	30°	$-60^{\circ}, -20^{\circ}, 20^{\circ}, 28^{\circ}, 36^{\circ}, 60^{\circ}$

Ablations (ABC Model)

Renderings (MERL)

Ablations (ABC Model)

Renderings (Packaging)

Ablations (ABC Model)

BRDF and relative-rmse plots

0.00 -

0.00 -

0.00

Ablations (NLB Model)

Renderings (MERL)

Ablations (NLB Model)

Renderings (Packaging)

Ablations (NLB Model)

BRDF and relative-rmse plots

0.00

Problem Description

Motivations:

Parametric representations for BRDFs lie in the tristimulus domain, forcing premature wavelength compression of spectral data and loss of information.

Action items:

We propose an MLP architecture that suitably learns underlying BRDF trends and provides good estimates for unseen angular and wavelength configurations.

Radiometry to Photometry

Spectral BRDF matching

Input (normalized): Incident angle, viewing angle, wavelength

Output: BRDF value

Network: 3 layer MLP, 10 nodes each layer

Results

Cyan Sample

Results

Gold Sample

Results

Gonio Sample

Summarizing

- For isotropic materials, we demonstrate the sufficiency of inplane angles for material capture.
- Both physics-based and network-based models were used to show comparable results between our chosen angles and 256x larger out-of-plane ones.
- The effect of data reduction on material capture was studied with the findings suggesting that even six angle pairs are enough in simpler materials.

Thank You!

Overview

- Problem description
- Method
- Results
- Ablations
- Summarizing

Neural networks for efficient BRDF acquisition and rendering

Radiometry-to-Photometry pipeline

Genetic algorithm parameter estimation

Scene rendering using mitsuba plugin

Radiometry BRDF matching

Input (normalized): Incident angle, viewing angle, wavelength

Output: BRDF value

Network: 3 layer MLP, 10 nodes each layer

Photometry BRDF matching

Input (normalized): Incident angle, viewing angle

Output: tristimulus BRDF value

Network: 5 layer MLP, 20 nodes each layer

Parametric Representation

Pseudo-data: Network predictions acting as a proxy for true measurements

Reduced-data: Data left after dropping certain measurements (downsampling)

- ds2: 4x downsampling
- ds4: 16x downsampling

Spectral Network Results

Parametric Renderings

ds2 renderings: visually appear

similar to the full data

ds4 renderings: change in visual appearance for Gold and Gonio more pronounced (specular nature)

Gold

Gonio

Cyan

