Projections and Least Squares

Kerem Turgutlu August 18, 2017

Intro

Why do we want to project vectors onto spaces. The simplest answers to this quesion is that we want to approximate or have a best solution to equation Ax = b when there is no solution to it. When you have many data points/equations but fewer variables there is no solution to the equation. Meaning dimension of left null space (m-r for a A_{mxn} matrix) being at least 1. Because if this was not the case we would be on the column space and wouldn't need a projection to begin with.

Let's start with a 2D example for visualization and better understanding:

Figure 1: 2D Projection

Let:

• a: Vector2

• b: Vector1

• p: projection

From the figure we can see that projection is just a vector on a which means it is a multiple of a:

$$p = xa$$

The dotted line, the closest distance from b to a, which we will call error can be then defined as:

$$e = b - ax$$

We know that if two vectors are perpendicular then their dot product should be 0:

$$a^{T}(b - ax) = 0$$

$$a^{T}b = a^{T}ax$$

$$\hat{x} = \frac{a^{T}b}{a^{T}a}$$
(1)

Knowing that p=ax then $p=a\frac{a^Tb}{a^Ta}$, and \hat{x} is our best approximation to x with minimum error.

Of course this is the case for rank 1 matrices or vectors in other words. For greater dimensions we need to introduce to matrix form.

Let:

- A be the matrix in equation $A\hat{x} = p$
- P be the proejction matrix that acts on b and gives us the projection p, Pb = p

Then we can introduce the error and the other equations as follows:

- e = b Ax
- $A^T(b-Ax)=0$
- $A^Tb = A^TAx$
- $\bullet \quad \hat{x} = (A^T A)^{-1} A^T b$

The final equation is our least squares approximation, then:

- $p = A(A^TA)^{-1}A^Tb$
- $P = A(A^TA)^{-1}A^T$

Notice that projection matrix P lives in column space of A since any linear combination of a matrix will live in the same column space. Also, notice that the error vector (b - Ax) which is perpendicular A lives in the left null space of A, $N(A^T)$.