Models with Disaster Risk

Nicola Borri

LUISS

This version: September 18, 2024

Barro (2006)

- This model accounts for the observed equity premium by introducing in the standard CCAPM rare disasters (i.e., low probability large aggregate negative shocks).

Disasters:

- economic events: the Great Depression, the Great Financial Crisis,
- natural disasters: earthquakes,
- epidemics of disease: Black Death, Covid-19.
- In economic terms, Barro (2006) argues that **wars** have been the most important economic disasters of the twentieth century globally.

Wars are associated with a large drop in real GDP

Part A: Twenty OECD Countries in Maddison (2003)					
Event	Country	Years	% fall in res per capita GDP		
World War I	Austria	1913-1919	35		
	Belgium	1916-1918	30		
	Denmark	1914-1918	16		
	Finland	1913-1918	35		
	France	1916-1918	31		
	Germany	1913-1919	29		
	Netherlands	1913-1918	17		
	Sweden	1913-1918	18		
Great Depression	Australia	1928-1931	20		
	Austria	1929-1933	23		
	Canada	1929-1933	33		
	France	1929-1932	16		
	Germany	1928-1932	18		
	Netherlands	1929-1934	16		
	New Zealand	1929-1932	18		
	United States	1929-1933	31		
Spanish Civil War	Portugal	1934-1936	15		
	Spain	1935-1938	31		
World War II	Austria	1944-1945	58		
	Belgium	1939-1943	24		
	Denmark	1939-1941	24		
	France	1939-1944	49		
	Germany	1944-1946	64		
	Greece	1939-1945	64		
	Italy	1940-1945	45		
	Japan	1943-1945	52		
	Netherlands	1939-1945	52		
	Norway	1939-1944	20		
Aftermaths of wars	Canada	1917-1921	30		
	Italy	1918-1921	25		
	United Kingdom	1918-1921	19		
	United Kingdom	1943-1947	15		
	United States	1944-1947	28		

Figure 1: Economic Disasters and Economic Consequences (Barro, QJE 2006)

Large disasters are rare

Figure 2: Frequency of Disasters and Size of Contraction (Barro, QJE 2006)

In GDP terms, the impact of a pandemic is less severe

Figure 3: GDP cost of Covid-19 pandemic (Statista)

Stocks tend to have a low payoffs when disasters hit

TABLE II STOCK AND BILL RETURNS DURING ECONOMIC CRISES

	Real stock return	Real bill return	
Event	(% per year)	(% per year)	
World War I			
Austria, 1914-1918	_	-4.1	
Denmark, 1914-1918		-6.9	
France, 1914-1918	-5.7	-9.3	
Germany, 1914-1918	-26.4	-15.6	
Netherlands, 1914–1918	_	-5.2	
Sweden, 1914-1918	-15.9*	-13.1	
Great Depression			
Australia, 1928-1930	-3.6	8.2	
Austria, 1929-1932	-17.3*	7.1	
Canada, 1929-1932	-23.1*	7.1	
Chile, 1929-1931	-22.3*	_	
France, 1929-1931	-20.5	1.4	
Germany, 1928-1931	-14.8	9.3	
Netherlands, 1929-1933	-14.2*	5.7	
New Zealand, 1929-1931	-5.6*	11.9	
United States, 1929–1932	-16.5	9.3	
Spanish Civil War			
Portugal, 1934-1936	13.4*	3.8	
World War II			
Denmark, 1939–1945	-3.7*	-2.2	
France, 1943-1945	-29.3	-22.1	
Italy, 1943-1945	-33.9	-52.6	
Japan, 1939-1945	-2.3	-8.7	
Norway, 1939–1945	1.7*	-4.5	
Post-WWII Depressions			
Argentina, 1998-2001	-3.6	9.0	
Chile, 1981–1982	-37.0*	14.0	
Indonesia, 1997–1998	-44.5	9.6	
Philippines, 1982–1984	-24.3	-5.0	
Thailand, 1996–1997**	-48.9	6.0	
Venezuela, 1976–1984	-8.6*	_	

Figure 4: Equity and Bill Returns during Crises (Barro, QJE 2006)

US GDP fluctuates around an upward trend at least since WWII

Figure 5: US quarterly per capital GDP. Seasonally adjusted, blue-dashed line is HP-filtered trend. Data are from FRED for the period 1947 to 2024.

Models with Disaster Risk

- Barro (QJE 2006) assumes that log consumption growth follows:

$$\Delta c_{t+1} = \mu + \sigma \epsilon_{t+1}$$
 with probability $(1 - p)$
= $\mu + \sigma \epsilon_{t+1} + \log(1 - b)$ with probability p

where $\epsilon_{t+1} \sim i.i.d. N(0, 1)$ and $b \in (0, 1)$.

- b is a rare disaster which causes a permanent drop in consumption → disasters are costly!
- Investors have standard CRRA preferences

The disaster causes a permanent drop in consumption

Risk-Free Rate (I/II)

- The risk-free rate follows from the standard Euler equation P = E(MX) and CRRA preferences:

$$R_t^f = \left\{ E_t[M_{t+1}] \right\}^{-1} = \left\{ E_t[\beta e^{-\gamma \Delta c_{t+1}}] \right\}^{-1}$$

which under the specified endowment process implies that:

$$R^{f} = \left\{ \beta(1-p)e^{-\gamma\mu + (1/2)\gamma^{2}\sigma^{2}} + \beta pe^{-\gamma\mu + (1/2)\gamma^{2}\sigma^{2} - \gamma\log(1-b)} \right\}^{-1}$$

$$= \left\{ \beta e^{-\gamma\mu + (1/2)\gamma^{2}\sigma^{2}} \left[(1-p) + p(1-b)^{-\gamma} \right] \right\}^{-1}$$

Taking logs:

$$r^{f} = -\log \beta + \gamma \mu - (1/2)\gamma^{2}\sigma^{2} - \log \left[(1-p) + p(1-b)^{-\gamma} \right]$$
 (1)

Risk-Free Rate (II/II)

- If p = 0 (no disaster), then the risk-free rate is same as with CRRA and iid log consumption growth:

$$r^f = -\log\beta + \gamma\mu - (1/2)\gamma^2\sigma^2$$

- Assume $p=1/100>0,\,b=0.2$ and $\gamma=1$ (from Barro's paper), then:

$$\log \left[(1-p) + p(1-b)^{-\gamma} \right] = 0.0025 = 25bp$$

- Intuition:
 - r^f is lower because investors save more for both intertemporal substitution and risk aversion effects,
 - the higher is *b* (disaster size), the lower is the risk-free rate.

Figure 6: Risk-free rate as function of disaster probability

Figure 7: Risk-free rate as function of disaster size

Price-Dividend Ratio

- Since Δ*c* is *i.i.d*. (i.e., disasters are unpredictable), the *PD* ratio is constant as in the standard CCAPM.

$$q \equiv rac{P_t}{D_t} = E_t \left[eta \left(rac{C_{t+1}}{C_t}
ight)^{1-\gamma} \left(rac{P_{t+1}}{D_{t+1}} + 1
ight)
ight] = E_t \left[eta \left(rac{C_{t+1}}{C_t}
ight)^{1-\gamma} (1+q)
ight]$$

- After some simple algebra:

$$q = \beta(1+q) \left[e^{(1-\gamma)\mu + \frac{(1-\gamma)^2}{2}\sigma^2} \left((1-p) + p(1-b)^{1-\gamma} \right) \right]$$
 (2)

note: we compute the PD ratio because it is useful in the derivation of the (log) equity return in the model (i.e., $log(ER^e)$).

Expected Equity Return

- The expected equity return is:

$$E_{t}(R_{t+1}^{e}) = E_{t}\left(\frac{P_{t+1} + D_{t+1}}{P_{t}}\right) = E_{t}\left(\frac{P_{t+1}/D_{t+1} + 1}{P_{t}/D_{t}}\frac{D_{t+1}}{D_{t}}\right)$$

$$= \frac{1+q}{q}E_{t}\left(\frac{D_{t+1}}{D_{t}}\right)$$

$$= \frac{1+q}{q}\left[e^{\mu+(1/2)\sigma^{2}}\left(1-p+p(1-b)\right)\right]$$

- We can derive the expected log equity return using (2) and taking the log of the equation above:

$$\log [E(R^e)] = -\log \beta + \gamma \mu - \frac{\gamma^2}{2} \sigma^2 + \gamma \sigma^2 + \log \left[\frac{1 - p + p(1 - b)}{1 - p + p(1 - b)^{1 - \gamma}} \right]$$
(3)

Equity Premium

- The (log) equity premium is then:

$$\log\left(\frac{ER^{e}}{R^{f}}\right) = \gamma\sigma^{2} + \log\left[\frac{(1-p+p(1-b))(1-p+p(1-b)^{-\gamma}))}{1-p+p(1-b)^{1-\gamma}}\right]$$
(4)

- The term in the square brackets comes from the default premium and is equal to zero if p = 0.

Equity Premium and the Disaster Probability

- The derivative of the (log) equity premium r^e with respect to p is:

$$\frac{\partial r^{\theta}}{\partial p}(p) = \underbrace{-\frac{b}{1-pb}}_{\leq 0} + \underbrace{\frac{b(1-b)^{-\gamma}}{[1-p+p(1-b)^{-\gamma}][1-p+p(1-b)^{1-\gamma}]}}_{\geq 0}$$
(5)

Note that for small p we have:

$$\frac{\partial r^e}{\partial p}(0) = -b + b(1-b)^{-\gamma} > 0$$

- Intuition:
 - for *p* small, an increase in *p* increases the risk premium,
 - for *p* large, risk premium drops because *uncertainty drops* even though disaster is large.

Figure 8: Equity premium as function of disaster probability and size

Figure 9: Equity Premium as function of disaster probability for fixed b = 0.2

TABLE V CALIBRATED MODEL FOR RATES OF RETURN (1) (2) (3) (4) (6) (7) Parameters No Low High Low Low Low disasters Baseline θ (coeff. of relative risk aversion) 4 σ (s.d. of growth rate, no 0.02 disasters) 0.02 0.02 0.02 0.02 0.02 0.02 o (rate of time preference) 0.03 0.03 0.03 0.03 0.03 0.02 y (growth rate, deterministic part) 0.025 0.025 0.025 0.025 0.025 0.020 0.025 p (disaster probability) 0 0.017 0.017 0.025 0.017 0.017 0.017 a (bill default probability in disaster) 0 0.4 0.4 0.4 0.3 0.4 0.4 Variables 0.076 0.044 0.071 0.051 0.061 Expected equity rate 0.1280.071 Expected bill rate 0.127 0.035 0.061-0.007 0.029 0.015 0.025 Equity premium 0.0016 0.036 0.016 0.052 0.042 0.036 0.036 Expected equity rate. conditional 0.1280.076 0.081 0.052 0.076 0.056 0.066 Face bill rate 0.1270.037 0.063-0.004 0.031 0.017 0.027 Equity premium. conditional 0.0016 0.039 0.019 0.056 0.045 0.039 0.039 37.0 19.6 27.8 24.4 Price-earnings ratio 9.7 19.6 17.8 Expected growth rate 0.025 0.020 0.020 0.018 0.020 0.015 0.020 Expected growth rate, conditional 0.025 0.025 0.025 0.025 0.025 0.020 0.025 Levered results (debt-equity ratio is $\lambda = 0.5$) Expected equity rate 0.129 0.084 0.071 0.092 0.069 0.079 Equity premium 0.0024 0.054 0.024 0.078 0.063 0.059 0.054 Expected equity rate,

Figure 10: Model Results (Barro, QJE 2006)

0.091 0.080 0.099 0.076 0.086

0.059 0.028 0.084 0.068 0.059 0.059

0.129

0.0024

conditional

conditional

Equity premium.

Gourio (2008)

- Barro (QJE 2006) assumes that disasters are permanent.
- However, in the data, disasters are usually followed by recoveries.
- Gourio (AER 2008) shows that the effect of recoveries hinges on the intertemporal elasticity of substitution (IES):
 - when the IES is low, recoveries may increase the equity premium implied by the model,
 - when it is high, the opposite happens.

Table 1—Measuring Recoveries (In percent)

Years after trough	All disasters (57 events)		Disaster greater than 25% (27 events)	
	Growth from trough	Loss from previous peak	Growth from trough	Loss from previous peak
0	0	-29.8	0	-41.5
ĭ	11.1	-22.8	16.1	-32.7
2	20.9	-16.8	31.3	-24.2
3	26.0	-13.7	38.6	-20.4
4	31.5	-10.2	45.5	-16.9
5	37.7	-6.1	52.2	-13.4

Note: The table reports the average of (a) the growth from the trough to 1, 2, 3, 4, 5 years after the trough and (b) the difference from the current level of output to the previous peak level, for 0, 1, 2, 3, 4, 5 years after the trough.

Figure 11: Disasters and Recoveries (Gourio, AER 2008)

Note: The disaster start (end) dates are taken from Barro (2006), and are shown with a vertical full (dashed) line.

Figure 12: Disasters and Recoveries (Gourio, AER 2008)

TABLE 2

Probability of a recovery π	0.00	0.30	0.60	0.90	1.00
IES = 0.25	3.31	4.62	5.91	7.19	7.64
IES = 0.50	3.31	3.30	3.03	2.26	1.68
IES = 1	3.31	2.69	1.94	1.00	0.54
IES = 2	3.31	2.42	1.52	0.63	0.30

Notes: Unconditional log geometric equity premium, as a function of the IES and the probability of a recovery. This table sets risk aversion at 4 and the other parameters as in Barro (2006).

Figure 13: Equity Premium and IES (Gourio, AER 2008)

Intuition I

- To understand the result, recall the present value identity in the case of power utility:

$$rac{P_t}{C_t} = E_t \sum_{k>1} eta^k \left(rac{C_{t+k}}{C_t}
ight)^{1-\gamma}$$

- The fact that a recovery may arise can increase or decrease the stock price today depending on whether $\gamma >$ 1 or $\gamma <$ 1 (recall: IES in the case of power utility is 1/ γ).

Intuition II

- Good news about the future has two effects:
 - on the one hand, it increases future dividends, which increases the stock price today (cash-flow effect),
 - 2. but on the other hand, it increases interest rates, which lowers the stock price today (discount-rate effect).
- The second effect (discount-rate) is stronger when interest rates rise more for a given change in consumption, i.e., when the IES is low.

Other relevant papers

- Some other relevant papers in the strand of the asset pricing literature incorporating disasters:
 - Lettau et al. (2014): downside risk CAPM
 - Wachter (2013): rare disasters and stock market volatility
 - Gabaix (2012): time-varying severity of disasters
 - Farhi and Gabaix (2016): rare disasters and exchange rates
 - Bernstein et al. (2019): climate risk and asset prices

References L

- Barro, R. J. 2006. Rare disasters and asset markets in the twentieth century. *The Quarterly Journal of Economics* 121:823–866.
- Bernstein, A., M. T. Gustafson, and R. Lewis. 2019. Disaster on the horizon: The price effect of sea level rise. *Journal of Financial Economics* 134:253–272.
- Farhi, E., and X. Gabaix. 2016. Rare disasters and exchange rates. *The Quarterly Journal of Economics* 131:1–52.
- Gabaix, X. 2012. Variable rare disasters: An exactly solved framework for ten puzzles in macro-finance. *The Quarterly Journal of Economics* 127:645–700.
- Gourio, F. 2008. Disasters and recoveries. *American Economic Review* 98:68–73.
- Lettau, M., M. Maggiori, and M. Weber. 2014. Conditional risk premia in currency markets and other asset classes. *Journal of Financial Economics* 114:197–225.
- Wachter, J. A. 2013. Can time-varying risk of rare disasters explain aggregate stock market volatility? *The Journal of Finance* 68:987–1035.