Instituto Tecnológico de Costa Rica Área Académica de Ingeniería en Computadores Proyecto de Diseño en Ingeniería en Computadores

Design Document v1

Daniel Moya Sánchez

Table 1: Revision History

Date	Version	Description	Author
02 March 2018	1.0	Design Document for Design of (ASIPs) for Approximate Computing	Daniel Moya

1 Introduction

1.1 Purpose

The primary purpose of this document is to present a description of the design elements of an ASIP in a general approximate application.

1.2 Scope

This research concerns the selection and optimization of error-tolerant applications. For this, ASIP configurations using specific approximate instructions for the selected applications are to be delivered. Furthermore, each ASIP configuration will be described by a set of parameters that the final system will possess, such as energy efficiency, area, execution time, and output error. This project is expected to help approximate computing to be a more widespread tendency and generate a strong base knowledge for future projects where there is freedom to choose the parameters of hardware running a certain type of application in terms of resource consumption and accepted error.

1.3 Context

Since approximated computing is still in its infancy, a lot of research and testing is still needed, so the users of the developed ASIPs are the same research groups behind this project.

Figure 1 shows the general scheme for an approximate possible application.

As shown in figure 1, the approximate application is expected to have a pipeline structure, where one of its stages or sections (in that case the n-th stage) can be approximate. The purpose of the ASIP configuration is to provide the user flexibility between the original version of an application and the optimized one, allowing for a customized balance between resource consumption and output error. The approximate section needs to perform the original action but with less resource consumption, and still allowing for a acceptable output error, considering that a quality change in a specific section can have a big impact on other sections that depend of it.

Figure 1: General context of the application.

1.4 Summary

References

2 Glossary

Table 2: Definitions

Term	Definition
ASIP	Application Specific Instruction Set Processor. This means that, although the
	processor can execute a wide range of applications, it is optimized for a specific
	one, in which it can execute with improved performance (for instance, energy
	consumption or execution time would be lower) compared to a General Purpose
	Procesor (GPP).
GPP	General Purpose Processor. In general, they show better flexibility than ASIPs
	because all the programs are executed in general-purpose components, but since
	they are not optimized, they show less resource efficiency.
ASIC	Application Specific Integrated Circuit. In general, they show better performance
	results than ASIPs, nevertheless, they are less flexible when executing anything
	other than the specific application they are meant to.
ITCR	Instituto Tecnológico de Costa Rica. Place from where this project is being
	developed.

3 Composition

4 Logical

Since the selected application is not going to be altered, this section does not apply.

Figure 2: Componnent

5 Dependency

The approximate functions or instructions are expected to have to retain the original dependencies in a specific application.

6 Information

This section does not apply.

7 Patterns

This section does not apply.

8 Interfaces

This section does not apply.

8.1 User interface

Since the actual results of this research is knowledge, no user interface is made.

9 Structure

The hardware structure of the generated ASIPs will consist of the usual components for a pipeline processor (e.g ALU, registers) but with additional specialized components (according to the application) and reduced generic hardware (e.g ALU may only have needed operations).

10 Interaction

The interaction between the hardware components will follow a general pipeline scheme.

11 State dynamics

This section does not apply-

12 Algorithm

This section does not apply.

13 Resources

Since the resources consumption in an approximate application is one of this research's objetives topics, this section does not apply.