## How to determine MW in free radical polymerization

## **Kinetic Chain Length**

v = # of monomers added per effective free radical

$$\nu = \frac{\text{rate of chain growth}}{\text{rate of chain initiation}} = \frac{\text{rate of chain growth}}{\text{rate of chain termination}}$$

$$v = \frac{R_p}{R_i} = \frac{R_p}{R_t} = \frac{k_p[M]}{2(fk_dk_t[I])^{\frac{1}{2}}}$$

 $\overline{p_n} = v$  if termination is by disproportionation process

 $\overline{p_n} = 2\nu$  if termination is by coupling

Generally, (if no chain transfer):

$$\overline{p_n} = 2av$$
 where  $\frac{1}{2} \le a \le 1$ 

100%
disproportionation

$$\overline{M_n} = M_n \cdot \overline{p_n}$$
molecular weight of vinyl monomer unit

What happens more often?

- Coupling usually greater than disproportionation
- Percent of coupling increases if: steric factors prevent effective coupling:

$$\begin{array}{ccccc} \mathsf{CH_3} & \mathsf{CH_3} \\ & & \mathsf{CH_3} \\ \mathsf{C} \cdot & & \mathsf{CH_3} \\ & & \mathsf{CH_3} \end{array}$$

or if:  $\beta$ -hydrogens are more reactive:



Consider 
$$v = \frac{k_p[M]}{2(fk_dk_t[I])^{\frac{1}{2}}}$$

$$R_p = k_p \left( \frac{f k_p [I]}{k_t} \right)^{\frac{1}{2}} [M]$$

Increase  $R_p$  by:  $[M]^{\uparrow}$ ,  $[I]^{\uparrow}$ But increase  $v \to [M]^{\uparrow}$ ,  $[I]^{\downarrow}$ 

Thus you want to increase [M]

## Chain Transfer

1.

Mn 
$$\cdot$$
 + X'—Y  $\xrightarrow{k_{tr}}$  Mn—X' + Y.  $k_{tr}$  = transfer constant

$$R_{tr} = \frac{d[Y \cdot]}{dt} = k_{tr}[M \cdot][X' - Y]$$
Chain transfer can occur are solvent impurities

can be advantageous.

Chain transfer can occur when there are solvent impurities. But sometimes using chain transfer

2.

$$Y. + M \xrightarrow{k_a} YM.$$

3.

$$YM \cdot + M \xrightarrow{k_p} YMn \cdot$$

Chain transfer agent → CTA Used to decrease MW in polymerization

 $k_p >> k_{tr}$  and  $k_p \approx k_a \Rightarrow R_p$  is the same  $\overline{p_n} \downarrow$ slightly - moderately depending on CTA

$$k_p << k_{tr}$$
 and  $k_p \approx k_a \Rightarrow R_p \sim$  same  $\overline{p_n} \downarrow$  dramatically  $k_p >> k_{tr}$  and  $k_a < k_p \Rightarrow R_p \downarrow$  slightly and  $\overline{p_n} \downarrow$  slightly  $k_p << k_{tr}$  and  $k_a < k_p \Rightarrow R_p \downarrow$  drastically and  $\overline{p_n} \downarrow$  drastically

## Transfer Types:

1. to monomer: 
$$k_{tr,m}$$
  $M_{n^{\cdot}} + M \rightarrow M_{n} + M_{\cdot}$ 

2. to solvent or impurity 
$$\left.\begin{array}{ll} k_{tr,s} & M_{n^{\cdot}} + S \rightarrow M_{n} + S \end{array}\right.$$

3. to initiator:  $k_{tr,I}$   $M_{n^{\cdot}}+I \rightarrow M_{n}+I \cdot$ 

All act to decrease  $\overline{p_n}$ : (assume coupling)

$$\overline{p_n} = \frac{R_p}{\frac{R_t}{2} + R_{tr,m} + R_{tr,s} + R_{tr,I}} = \frac{R_p}{\frac{R_t}{2} + k_{tr,m}[M \cdot [M] + k_{tr,s}[M \cdot [S] + k_{tr,I}[M \cdot [I]]]}$$

Use resistor analogy: (resistors in series)

C = transfer constant

= relative rate const vs. R<sub>p</sub>

$$C_m = \frac{k_{tr,m}}{k_p}$$
 ,  $C_S = \frac{k_{tr,S}}{k_p}$  ,  $C_I = \frac{k_{tr,I}}{k_p}$ 

since  $R_p = k_p[M \cdot ][M]$ 

Often only have transfer to CTA (or impurity)

$$\frac{\frac{1}{\overline{p_n}} = \frac{R_i}{2R_p} + C_S \frac{[S]}{[M]}}{\underbrace{\frac{(fk_d k_t[I])^{\frac{1}{2}}}{k_p[M]}} = \frac{1}{2\nu}$$

For a given amount of initiator [I] and monomer [M]

$$\frac{1}{\overline{p_n}} = \left(\frac{1}{\overline{p_n}}\right)_o + C_S \frac{[S]}{[M]}$$



Useful to control MW is free radical with high  $k_{\text{\tiny p}}$  and/or really low  $k_{\text{\tiny t}}$ 

 $\ensuremath{C_s}$  values for different compounds:

• alkanes (weakest)

• cyclic hydrocarbons

• benzenes, aromatics



unstable negative charge → H- extraction unlikely

Increasing radical stability

High C<sub>s</sub> values:

- weak C-H bonds
- stabilized by conjugation

• weak C-Cl, C-Br, C-I

weakest largest Cs

| CTA (chain-transfer-agents)    | C <sub>S</sub> x 10 <sup>4</sup> | C <sub>S</sub> x 10 <sup>4</sup> |
|--------------------------------|----------------------------------|----------------------------------|
|                                | For styrene                      | Vinyl acetate                    |
| Benzene                        | 0.023                            | 1.2                              |
| Cyclohexane                    | 0.031                            | 7.0                              |
| Heptane                        | 0.42                             | 17.0                             |
| n-butyl alcohol                | 1.6                              | 20.0                             |
| CHCl <sub>3</sub> (chloroform) | 3.4                              | 150.0                            |
| Tri-methyl amine               | 7.1                              | 370                              |
| n-butyl mercaptan              | 210,000                          | 480,000                          |
| SH                             |                                  |                                  |