订

线

华南农业大学期末考试试卷(A卷)

2018-2019 学年第 2 学期		期	考试科目:_	计算机组成	<u> 发原理</u>					
考试类型: (闭卷) 考试		试	考试时间:	分钟						
学号			年级专业班级							
题号	<u> </u>	=	三	四	总分					
得分										
评阅人										
(2) <u>所有解</u>		卷上,写在试	卷有四大题, 卷上不得分 ;	共 7 页;						
(4) 考试结	東后只交答卷。	0			\H_ \/	<u> </u>				
得分										
A. DD	R B.	CDROM	C. DF	RAM	D. SRAM					
4. 交叉存储的读写		一种	_存储器,它能	と够	_执行	独立				
A. 模:	央式,并行,	多个	B. 模均	央式,串行,多	多个					
C. 整个	本式,并行,一	一个	D. 整体	本式,串行,	多个					

5.	某字长 32 位计算机内存的最大存储空间为 64M×32, 内存按字编址, 实际布局结构如
	图 1 所示,上为低位地址下为高位地址,阴影部分为不可用区域。则地址为(15A0B1F) ₁₆
	的存储单元位于。
	16M×32(ROM)
	32M×32(DRAM)
	8M×32(SRAM)
	8M×32(不用)
	图 1 计算机内存布局
	A. ROM 区域 B. DRAM 区域 C. SRAM 区域 D. 不可用区域
6.	设有 64K×32 的 DRAM 存储芯片按字编址, 其阵列结构为 256×256×32 (每行 256
	字),字长32位;地址长度为16位,其中高8位为行地址,低8位为列地址。若采用
	分散式刷新(即每一行的刷新均匀地分散插入到正常的读/写周期之中),且存储器读/
	写周期为 0.5μs, 刷新间隔不超过 8ms, 则最佳平均行刷新时间间隔为 μs。
	A. 31 B. 32 C. 15 D. 16
7.	关于 cache 的叙述,下列说法正确的是。
	A. 设置 cache 是为了增加存储容量
	B. 全相联映射方式最容易发生换行冲突导致频繁置换
	C. 直接映射在查找时的比较电路简单且跟 cache 容量没有关系
	D. 三种映射方式中组相联发生换行冲突的可能性最小
8.	假设变址寄存器 R 的内容为 1000H, 指令中的形式地址为 2000H; 内存地址 1000H中
	的内容为 2000H, 地址 2000H 中的内容为 3000H, 地址 3000H 中的内容为 4000H, 则
	变址寻址方式下访问到的操作数是。
	A. 4000H B. 3000H C. 2000H D. 1000H
9.	下列寻址方式中,最适合按下标顺序访问一维数组元素的是。
	A. 寄存器寻址 B. 相对寻址 C. 直接寻址 D. 变址寻址
10.	下列说法正确的是。
	A. 广泛使用的微机采用了精简指令系统(RISC)
	B. 现代计算机中多采用 RS 型寻址方式
	C. 对于间接寻址方式,操作数的地址在指令中

装

订

______个通用寄存器。

15		11	10	8	7	4	3	0
	OP		-		目标書	寄存器	源寄存	器

- 4. 图 2 是一个二维中断系统,中断屏蔽触发器标志 IM 设为"1"时表示 CPU 对该级的所有设备的中断请求进行屏蔽。设备 A、B、D、E 和 H 按中断响应优先级从高到低排序应为_____。若 IM2、IM1、IM0 的状态设为 001,则表明_____级的设备正在处于中断响应阶段。

图 2 多级中断结构

三、计算题(本大题共4小题,共36分)

得分

1. (10 分)已知 $f(n) = \sum_{i=0}^{n} 2^{i} = 11 \dots 1$,其中最后一个式子表示有 n+1 个 1 组成的二进制。设用下列的 C 语言函数 fl(n) 计算 f(n):

```
float f1(unsigned n) {
    float sum=1, power=1;
    for (unsigned i=0; i<=n-1; i++) {
        power *= 2;
        sum += power;
}
```

```
}
return sum;
}
```

其中 float 和 int 都假定用 32 位表示, float 用 IEEE 754 标准表示, int 及 ALU 运算结果都用补码表示; 尾数运算时采用 0 舍 1 入的处理方法,即待进行舍入操作的最高 1 位为 1 即进位,为 0 即舍去。根据f(n)的定义及函数 f1(n),试回答下列问题:

- (1) 若 f1(n)的计算结果为(7F80 0000)16, 则其二进制数真值是什么? (5 分)
- (2) 若 n=24,则 f1(n)的结果用 IEEE 754 表示为什么? (用十六进制数表示)(3分)
- (3) 若将 float 改为 int,则函数 f1(0)是否会出现死循环?理由是什么? (2分)
- 2. (9分) 某计算机 Cache 的存取周期为 50ns, 主存的为 250ns。该计算机执行一段程序时, 存取 Cache 的次数为 1900, 存取主存的次数为 100, 计算该 Cache 的命中率、平均访问时间和访问效率。
- 3. (8 分)设浮点流水线有对阶、尾数加/减、规格化及舍入处理四个流水段,各个流水段的操作时间分别为 90ns、100ns、95ns 和 75ns。现有 197 条加减法操作连续输入此流水线,试回答下列问题:
 - (1) 若此浮点流水线受统一的时钟信号进行控制,则时钟周期最小应为多少?(2分)
 - (2) 流水线的实际吞吐率(单位时间里执行完毕的加减法操作)为多少? (3分)
 - (3) 流水线的加速比为多少? (保留1位小数)(3分)
- 4. (9分)假设某温彻斯特硬盘,内有6个盘片,最上和最下的两个盘面不能使用。磁盘转速为7200转/分,找道时磁头每横越百条磁道花费1ms。盘面有效记录区域的外直径为30cm,内直径为14cm,最内层位密度为600位/cm,磁道密度为100道/cm,盘面分为50个扇区,每个格式化扇区存放512个字节。试求:
 - (1) 平均找道时间是多少? (3分)
 - (2) 读取一个格式化扇区的数据传送时间是多少? (不包括找道和等待时间) (3分)
 - (3) 格式化磁盘总容量是多少? (注:可用2和10的幂次混合表示)(3分)

四、分析题(本大题共2小题,共24分)

1. (12 分)某机器字长为 32 位,按字编址,总容量为 $64M \times 32$ 。其中,ROM 的容量为 $4M \times 32$,占用低位地址空间,由 $1M \times 16$ 的 ROM 芯片构成; RAM 的容量为 $60M \times 32$,

得分

占用高位地址空间,由 $4M \times 16$ 的 DRAM 芯片构成。ROM 芯片有 \overline{CS} 信号控制端,DRAM 芯片有 \overline{CS} 和 \overline{WE} 信号控制端,CPU 的控制信号为 R/\overline{W} (读/写)。请问:

- (1) 总共需要多少 ROM 芯片? ROM 的地址范围是多少(用十六进制表示)?(2分)
- (2) 总共需要多少 DRAM 芯片? RAM 的地址范围是多少(用十六进制表示)?(2分)
- (3) 若 ROM 和 RAM 采用顺序方式进行字、位扩充,请画出存储器 ROM 和 DRAM 同 CPU 连接的组成逻辑框图。(6分)
- (4) 若在 CPU 和内存间引入 512K 的高速缓存 Cache, 且采用 4-路组相连映射方式, 块大小为 32 字节,则 Cache 可以分为多少组?若将包含内存地址(5010 CA00)₁₆ 的块调入 Cache,则将映射到 Cache 的哪个组(下标从 0 开始)?(2 分)
- 2. (12分)某 16 位计算机主存按字节编址。存取单位为 16 位;采用 16 位定长指令格式; CPU 采用单总线结构,主要部分如图 3 所示。图中各个部分的解释如下:
- ◆ T 为暂存器, 受 Tin 控制;
- ♦ MUXop 为 0 时,常数 2 送入 ALU 的 B 端,否则将来自于 CPU 内部总线的数据送入 ALU 的 B 端;
- ◆ ALU 可实现直送 A(mova)、A 加 B(add)、A 减 B(sub)、A 与 B(and)、A 或 B(or)、非 A(not)、A 加 1(inc)、A 减 1(dec)等 8 种操作,控制信号为 ALUop,取值为括号中的缩写;
- ◆ SR 为移位寄存器,可实现直送(mov)、左移一位(left)、右移一位(right)共3 种操作,控制信号为 SRop,取值为括号中的缩写。SR 的输出受信号 SRout 控制;
- ◆ R0~R3 为通用寄存器,它们受 REn 信号控制,当 REn=0xx 时,控制寄存器 xx 的输出; 当 REn=1xx 时,控制寄存器 xx 的输入。其中 xx 代表寄存器的编号,如 00 代表 R0;
- ◆ MAR 和 IR 分别受 MAin 和 IRin 控制,输出不受控制;
- ◆ MDR 在主存总线侧受 MDc 控制,当 MDc=00 时接收主存总线的输入,当 MDc=01 时向主存总线输出信号,其它情况时无操作。MDR 在 CPU 内总线侧受 MCc 信号控制,当 MCc=00 和 01 时分别接收来自 CPU 内总线的数据和向 CPU 内总线输出数据;
- ◆ PC 受控制信号 PCc 控制,当 PCc=00 时接受输入信号,当 PCc=01 时输出 PC 值,其它情况无操作:
- ◆ 主存受 MEMop 控制,值为 0 时代表写,值为 1 时代表读。 试回答下列问题:

图 3 某 16 位计算机 CPU 模型图

(1) 现有指令 LDA R0, R1, 功能为 R0←Mem[R1]。该指令在图 3 所示的 CPU 上执行, 指令周期取指和执行的流程图如图 4 所示,请填写空格<1>-<8>的内容。(8 分)

图 4 LDA R₀, R₁的指令周期流程图

(2) 设有指令 JR OFFSET, 其功能为 PC<-PC+OFFSET。该指令在图 3 所示的 CPU 上执行,请参考图 4 画出该指令的**执行阶段**的流程图。假定 OFFSET 可以从控制器传到 CPU 内总线。(4分)