딥러닝을 활용한 시공간 데이터 예측 Deep Learning for Spatial-Temporal Prediction and Forecast

박태준(2021-24984), 진수정(2022-22742)

딥러닝의 통계적 이해

2022년 겨울

목차

- 1. 개요
 - ① 시공간 크리깅(Spatio-Temporal Kriging)
 - ② 프로젝트 목표
- 2. 시공간 데이터 예측
 - ① 모델 구조
 - ② 실제 데이터 실험 결과
- 3. 시공간 데이터 미래 예측
 - 1 모델 구조
 - ② 실제 데이터 실험 결과
- 4. 결론

Section 1

개요

1. 개요

• 이 프로젝트를 통해 우리는 시공간 데이터(Spatio-temporal data)에 대한 예측(Prediction, Interpolation)과 미래 값에 대한 예측(Forecast, Outerpolation)을 위한 새로운 DNNs(Deep neural networks) 모델 구조를 제안한다.

1. 개요

시공간 크리깅(Spatio-Temporal Kriging)

Figure: 시공간 데이터 예시

- 시공간 크리깅이란 시공간적 의존성(Dependence)를 이용한 관측되지 않은 장소와 시간에 대한 값의 예측이다.
- 크리깅 예측은 확률과정의 가우시안(Gaussian) 가정과 시공간 공분산 함수(Covariance function)의 정상성(Stationarity) 가정 하에서 도출된다.
- 관측 데이터의 수가 매우 많으면 계산이 힘들어진다.

1. 개요

프로젝트 목표

1.

2022-02-01 01:00:00

2022-02-01 01:00:00

2022-02-01 01:00:00

2022-02-01 01:00:00

2022-02-01 01:00:00

2022-02-01 01:00:00

2.

- 1 시공간 데이터 예측에서 좋은 성능을 보인다.
- 2 시공간 데이터 미래 예측에서 좋은 성능을 보인다.

Section 2

시공간 데이터 예측

모델 구조

- 기본 MLP 네트워크 구조의 목표는 어떠한 함수 f 에 근사하는 것이라는 사실에 기반한다.
- Universal Approximation Theorem라는 이론적 근거를 통해 MLP 네트워크는 어떠한 함수든 근사할 수 있으며 이를 통해 회귀(Regression) 예측이 가능하다.
- 따라서 가우시안 가정과 정상성 가정이 성립하지 않는 복잡한 데이터에 대해서도 신경망은 이를 학습하고 좋은 예측 성능을 보일 것이다.

모델 구조

• 데이터의 분포인 시공간 확률과정(Spatio-temporal random process)

$$Y(\mathbf{s};t) = \mathbf{x}(\mathbf{s};t)^{\top} \boldsymbol{\beta} + \eta(\mathbf{s};t)$$

에 대해서 시공간 정보의 차원을 늘리기 위해 Cressie (2019)의 사실을 이용한다.

충분히 큰 K ∈ N에 대해

$$\hat{Y}(\mathbf{s};t) = \mathbf{x}(\mathbf{s};t)^{\top} \hat{\boldsymbol{\beta}} + \hat{\eta}(\mathbf{s};t)$$
$$= \mathbf{x}(\mathbf{s};t)^{\top} \hat{\boldsymbol{\beta}} + \sum_{k=1}^{K} w_k \phi_k(\mathbf{s};t).$$

으로 다시 쓸 수 있다.

2. 시공간 데이터 예측 ^{모델 구조}

$$\left(\mathbf{x}(\mathbf{s};t)^{\top},\mathbf{s},t\right)^{\top} \in \mathbb{R}^{p+d+1}$$

$$\downarrow \downarrow$$

$$\left(\mathbf{x}(\mathbf{s};t)^{\top},\phi_{1}(\mathbf{s};t),\cdots,\phi_{K}(\mathbf{s};t)\right)^{\top} \in \mathbb{R}^{p+K}$$

2. 시공간 데이터 예측 ^{모델 구조}

• 확장된 입력:

$$\left(\mathbf{x}(\mathbf{s};t)^{\top}, \phi_1(\mathbf{s};t), \cdots, \phi_1(\mathbf{s};t)\right)^{\top},$$
 \Downarrow

- \circ 입력1: $\mathbf{x}_1(\mathbf{s};t) = \mathbf{x}(\mathbf{s};t) \in \mathbb{R}^p$
- \circ 입력2: $\mathbf{x}_2(\mathbf{s};t) = (\phi_1(\mathbf{s};t), \cdots, \phi_K(\mathbf{s};t))^{\top} \in \mathbb{R}^K$
- 각각의 입력에 대해 따로 학습한 출력값을 얻은 후에 앙상블 형태로 최종 출력을 얻는다.

$$\mathbf{z} = \mathbf{x}^{\top} \boldsymbol{\beta} + \varepsilon_1$$
$$\mathbf{z} = \boldsymbol{\eta} + \varepsilon_2$$

모델 구조

2. 시공간 데이터 예측 ^{모델 구조}

Definition (Excess Risk)

The excess risk, $\mathcal{E}(f)$, compares the risk of f to the \hat{f}_{Bayes} :

$$\mathcal{E}(f) := R(f) - R(\hat{f}_{Bayes})$$

• The excess risk of the $\hat{f}^n_{\mathcal{F}}$ can be decomposed:

$$\begin{split} \mathcal{E}(\hat{f}_{\mathcal{F}}^n) &= R(\hat{f}_{\mathcal{F}}^n) - R(\hat{f}_{Bayes}) \\ &= \underbrace{R(\hat{f}_{\mathcal{F}}^n) - R(\hat{f}_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(\hat{f}_{\mathcal{F}}) - R(\hat{f}_{Bayes})}_{\text{approximation error}} \end{split}$$

모델 구조

$$R(\hat{f}_{\mathcal{F}_{MLP}}) < R(\hat{f}_{\mathcal{F}_{STUK}}) \Leftrightarrow \inf_{f \in \mathcal{F}_{MLP}} R(f) < \inf_{f \in \mathcal{F}_{STUK}} R(f)$$

 Universal Approximation Theorem, Kidger et al. (July 2020)를 이용.

실제 데이터 실험 결과

- 예측 오차를 알아보기 위해 실험을 한 데이터는 우리나라의 미세먼지(PM_{2.5}) 데이터이다.
- 미세먼지의 농도에 따라 총 3일의 데이터셋을 이용해 실험하였다.
- ① 2022년 2월 1일
 - 446개의 관측소, 24시간, 총 10704개의 관측값
 - 미세먼지 평균 농도 = 약 $29.008\mu/m^3$
- 2 2022년 1월 9일
 - 481개의 관측소, 24시간, 총 11544개의 관측값
 - 미세먼지 평균 농도 = 약 $67.419 \mu/m^3$
- ③ 2022년 6월 29일
 - 425개의 관측소, 24시간, 총 10200개의 관측값
 - 미세먼지 평균 농도 = 약 $5.153\mu/m^3$

실제 데이터 실험 결과

- Covariate: 기온, 바람, 바람의 x축 성분, 바람의 y축 성분, 강수량, 습도 (6개)
- 실제적인 적용 상황에서는 Overfitting을 줄일 수 있는 Dropout기법과 모델을 안정화 할 수 있는 Batch Normalization 기법을 적용.
- 은닉층의 개수는 3으로 설정.
- 활성함수는 ReLU 함수, 출력함수는 Linear 함수를 사용.
- GPU: GCP의 1xNVIDIA-TESLA-V100 GPU

실제 데이터 실험 결과

Figure: 2022년 2월 1일의 미세먼지 데이터

실제 데이터 실험 결과

• 검정 방법은 다음과 같다.

실제 데이터 실험 결과

• 검정 결과는 다음과 같다.

		STUK	Ours	Method1
2022.02.01.	MSE	65.416	41.488	51.995
	sd	18.889	14.646	20.575
2022.01.09.	MSE	405.095	105.832	124.278
	sd	111.846	36.108	32.412
2022.06.29.	MSE	13.616	12.402	13.372
	sd	3.170	4.937	4.552

Section 3

시공간 데이터 미래 예측

3. 시공간 데이터 미래 예측 ^{모델 구조}

LSTM

- LSTM은 이전 단계의 결과값이 다음 단계의 입력값과 연결된 구조를 가지고 있어 순차 데이터의 분석에 적합하다.
- LSTM은 RNN의 장기 의존성 문제를 보완한 기법으로, 길이가 긴 순차 데이터도 잘 처리할 수 있다.
- 따라서 LSTM을 사용하면 장기간에 걸쳐서 관측된 시공간 데이터에 대해 좋은 예측 성능을 보일 것이다.

모델 구조

LSTM

- 각 공간별로 LSTM을 사용해 시간에 따른 패턴을 파악하여 미래의 값을 예측한다.
- 예측된 값들의 공간적 의존성에 기반해서 관측치가 없는 위치의 미래의 값을 예측하려 한다.

3. 시공간 데이터 미래 예측 ^{모델 구조}

Spatial Kriging

- Spatial Kriging은 관측되지 않은 위치의 값을 관측된 데이터의 가중 평균으로 예측하는 기법으로, 이 때 가중치는 공간적 의존성을 반영한다.
- 따라서 시간이 고정된 시공간 데이터에 대해 Spatial Kriging으로 예측을 수행할 수 있다.
 - Ordinary Kriging 기법 사용.

모델 구조

LSTM + OK Architecture

- LSTM Input: $X(s, \mathbf{t}) \in \mathbb{R}^{\mathsf{History \, size} \times (p+1)}$
- LSTM Output: $\hat{Y}(s, \mathbf{t}^*) \in \mathbb{R}^{\mathsf{Target \ size} \times 1}$
- Ordinary Kriging Input: $(\hat{y}(\mathbf{s}, t^*), lat_{\mathbf{s}}, long_{\mathbf{s}}) \in \mathbb{R}^{N_s \times 3}$
- Ordinary Kriging Output: $\hat{y}(s^*, t^*) \in \mathbb{R}$ where N_s : # of locations used for ordinary kriging

실제 데이터 실험 결과

Dataset

 실험에 사용된 데이터는 우리나라의 종관기상관측(ASOS) 데이터이다.

 \bullet Time: 2021-01-01 00:00 \sim 2022-11-31 23:00 (hourly data)

• Location: 80개의 관측소

• Target: 기온

• Covariate: 강수량, 풍속, 풍향, 습도, 증기압

실제 데이터 실험 결과

Model Description: LSTM + OK

LSTM

- History size = 120, Target size = 24 로 지정.
- LSTM(8), LSTM(4)의 두 층으로 구성.
- ReLU 활성 함수, Adam 옵티마이저 사용.

Ordinary Kriging

- Matern 배리오그램 모형 사용.
- 모형의 모수는 AWLS(Approximated Weighted Least Squares)로 추정.

Model Description: Baseline

Ordinary Spatio-Temporal Kriging 모델 사용.

실제 데이터 실험 결과

Evaluation Procedure

	t_1^*	t_2^*	t_3^*	t_4^*	<i>t</i> ₅ *	t_6^*			t_{22}^*	t_{23}^*	t_{23}^*	t_{24}^*
Grp1												
Grp2												
Grp3												
Grp4												
Grp5												
Grp6												
Grp7												
Grp8												

• 80개의 관측소를 임의로 8개의 그룹으로 나누고, 관측치가 없는 그룹 24개 각각에 대해 MSPE 계산한다.

실제 데이터 실험 결과

Results

	Baseline	LSTM + OK
mean(MSPE)	83.38433	61.85546
sd(MSPE)	25.51655	25.90973

• LSTM + OK 모델의 평균적인 MSPE가 Baseline 모델보다 작게 나오는 것을 확인할 수 있다.

Section 4

결론

4. 결론

- DNN 구조를 활용하여 복잡한 시공간 데이터에서도 좋은 예측 성능을 보이는 모델 제시.
- 실험 결과, 제안한 모델이 시공간 데이터 예측과 시공간 데이터 미래 예측 각각에서 기존 모델보다 좋은 성능을 보임.

References

• 프로젝트 보고서에 수록

감사합니다.