Discrete optimization methods for sparse problems

Théo Guyard

Inria, Centre de l'Université de Rennes, France

Journée Doctorant-e-s Rennais-e-s en Statistique 18th of March, 2024 Rennes. France

Sparse problems

Two goals, one problem

Sparse GLM

Features
$$A \in \mathbb{R}^{m \times n}$$

Targets $y \in \mathbb{R}^m$

$$max_x \mathcal{L}(Ax, y)$$

No unique solution when $m \ll n$

 $\max_{x} \mathcal{L}(Ax, y)$ with x sparse

Sparse PCA

Features
$$A \in R^{m \times n}$$

Covariance $\Sigma = A^{T}A$

$$\text{max}_{\|\textbf{x}\|_{\textbf{2}}=1} \ \textbf{x}^T \boldsymbol{\Sigma} \textbf{x}$$

Not relevant when $m \ll n$

 $\max_{\|\mathbf{x}\|_2=1} \ \mathbf{x}^{\mathrm{T}} \mathbf{\Sigma} \mathbf{x}$ with \mathbf{x} sparse

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Disease	 Blood pressure	Cholesterol	Sex	Age
No	 95 mm/hg	50.3 mg/dl	М	31
Yes	 98 mm/hg	54.9 mg/dl	F	35
Yes	 92 mm/hg	49.8 mg/dl	F	42
No	 89 mm/hg	59.1 mg/dl	М	37

Objective, constraint or both?

Objective, constraint or both?

Constrainted version

 $\min_{\mathbf{x}} F(\mathbf{x}) \text{ s.t. } \|\mathbf{x}\|_0 \le \kappa$

Minimized version

 $\min_{\mathbf{x}} \|\mathbf{x}\|_{\mathbf{0}} \text{ s.t. } F(\mathbf{x}) \leq \epsilon$

Penalized version

$$\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0}$$

Mixed-Integer Optimization

Handeling the L0-norm with MIO tools

Handeling the L0-norm with MIO tools

Handeling the L0-norm with MIO tools

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|x\|_0 = 1^{\mathrm{T}}z \quad \text{ if } \quad x\odot (1-z) = 0$$

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|x\|_0 = 1^T z \quad \text{ if } \quad x \odot (1-z) = 0$$

$$\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Linearizing the ℓ_0 -norm

Real vector $x \in \mathbb{R}^n$ and binary vector $z \in \mathbb{B}^n$:

$$\|x\|_0 = \mathbf{1}^{\mathrm{T}}z \quad \text{ if } \quad x\odot(1-z) = 0$$

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|x\|_0 = 1^{\mathrm{T}}z \quad \text{ if } \quad x\odot(1-z) = 0$$

Linearizing the ℓ_0 -norm

Real vector $\mathbf{x} \in \mathbb{R}^n$ and binary vector $\mathbf{z} \in \mathbb{B}^n$:

$$\|x\|_0 = \mathbf{1}^{\mathrm{T}}z \quad \text{ if } \quad x\odot (1-z) = 0$$

7/10

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Branch-and-Bound

"Explore regions in the feasible space and discard those that cannot contain solutions."

Cutting Planes

Ongoing Research Directions

on-exhaustive list

Inria / Insa / Ensai / CentraleSupélec T. Guyard, C. Herzet, C. Elvira, A. Arslan Generalization, acceleration

Ongoing Research Directions

Non-exhaustive list

Ongoing Research Directions

Non-exhaustive list

Take-home message

- ℓ_0 -norm problems arise in many applied mathematical fields
- Mixed-integer optimization tools to address them
- Structure exploitation is the key to achieve competitive performances
- Active research area
 - → Theoretical results
 - → Efficiency, flexibility and accessibility of solution methods
 - → Software development
 - → Diffusion to other communities

Question time

