

Notion de rendement

- Rendement : Quantité produite en fonction d'une quantité de moyens mis en œuvre (surface, ressources, travail, argent...)
 - Résultante à la récolte du programme morphogénétique de la plante et de l'équilibre des relations sources-puits

Ce qui est valorisé par le accept d'intrants fournis

rapport à une quantité de travail

Comment le mesurer?

- Quantité produite ? matière sèche, matière fraiche, quantité de protéines, de sucres, etc.
- En fonction de quoi ? Surface, matière sèche totale produite par la plante (indice de production), etc.

Notion de rendement

Potentiel de rendement:

Production de betterave sucrière

Energie interceptée (MJ.ha-1)

Notion de rendement

Le sens de la sélection:

Année d'obtention	Rendement (kg.ha-1)	Indice de récolte (%)	Nombre de Grains /m²	Poids de 1000 grains (g)	Date d'épiaison (Nbre de Jours avant le 1 avril)	Hauteur de tige (cm)	Verse (score 0-9)
Avant 1930	4072	35	9211	44	41	135	7,6
1931-1980	5484	45	14245	39	34	100	2,0
Après 1980	6750	51	18052	38	33	81	0,2

Le sens de la sélection:

Cultivar

Notion de rendement

Les outils de l'agriculteur:

- L'agriculteur va utiliser les outils et techniques à sa disposition pour optimiser l'utilisation des facteurs et conditions de croissance et maximiser le rendement (et la qualité)...
- Qualité : Aptitude d' un produit à satisfaire les besoins d' un utilisateur
 - Qualité alimentaire : nutritionnelle, hygiénique (non toxicité des aliments), et organoleptique (tests de dégustation (subjectifs); analyses (valeur nutritionnelle, contamination, etc.))
 - Qualité technologique : liée à la récolte, le transport et la transformation du produit agricole.

- Le peuplement végétal cultivé: définitions et concepts
- Modèles de représentation de son fonctionnement
 - Somme de températures
 - Notion de stade critique
 - Fonction de production et modèles de culture
- > Schéma général de fonctionnement du peuplement

- Modèle : Formulation simplifié imitant les phénomènes réels. Rend compte d'un fonctionnement.
 - Stochastiques : établis à partir de relations statistiques entre variables
 - Mécanistes: établis à partir de lois et fonctions physiologiques représentant les réactions d'un peuplement aux conditions et facteurs.

Somme de températures

Somme de températures

Somme de températures

- Zéro de végétation T0 : température pour laquelle la croissance est nulle
- Variable selon les espèces : blé 0° C; maïs/sorgho 8° C;
 pdt 6-8° C
- Tmoy-T0 = température efficace journalière (Tej)

Somme de températures

Evolution du poids de mille grains

Somme de températures

- Zéro de végétation T0 : température pour laquelle la croissance est nulle
- Variable selon les espèces : blé 0° C; maïs/sorgho 8° C;
 pdt 6-8° C
- Tmoy-T0 = température efficace journalière (Tej)
- allongement journalier d'un organe : DI = k(Tmoy-T0) = k(Tej)
- longueur totale : $L = \Sigma(DI)$
 - = $k \Sigma (Tmoy-T0)$ = constante

Phases Blé tendre	Σ Tej
Semis – levée	150 °C
Levée – fin tallage	500 °C
Montaison – floraison	850 °C
Floraison – maturation	850 °C
Semis – maturation	2350 °C

Σ (Tmoy-T0) nécessaire pour atteindre L est constante et espèce-dépendante

Somme de températures

Limites de l'approche:

- Variations valables dans certaines gammes de températures
- Vitesse réelle des phénomènes est différente de celle modélisée (température réelle du peuplement)
- Température moyenne sur la journée
- Notion de 0 de végétation (zéro apparent de végétation est légèrement différent)
- Quid de la prise en compte des fortes températures ?

Notion de stade critique

Notion de stade critique

67

Source: Robelin 1967

Notion de stade critique

Permet les adaptations culturales

Evolution des zones de culture du soja en France

En 1974

En 1986 A, D, C, D, E Zones de conseil (précocité, techniques de cultures)

Fonction de production et modèles

Fonctions de production

- Relie rendement et disponibilité d'un facteur
- Faible valeur prédictive
- Utiliser pour conduire la culture

Ex: D et rendement ou Q d'engrais et rendement

Modèle de culture

- Relie les fonctions de productions
- Cherche à prendre en compte les interactions
- Représente le fonctionnement du peuplement

Fonction de production et modèles

Densité optimale et rendement

Fonction de production et modèles

Quantité d'engrais et rendement

Fonction de production et modèles

Quantité d'engrais et rendement

- Attention! La relation rendement quantité d'engrais peut varier en fonction des conditions de milieu
 - Tassement du sol
 - Croissance du peuplement (en sortie d' hiver)
 - Autres facteurs limitant (eau, nutriments...)

Fonction de production et

- > Le peuplement végétal cultivé: définitions et concepts
- Modèles de représentation de son fonctionnement
- Schéma général de fonctionnement du peuplement

Schéma général

Schéma général

Schéma général

Plan de la présentation

- Introduction
- Etude du peuplement végétal cultivé
- Peuplement végétal et utilisation des ressources
- L'élaboration du rendement et son analyse

Peuplement végétal et utilisation des ressources

- Nutrition carbonée d'un peuplement végétal
 - Interception du rayonnement et photosynthèse
 - Facteurs de photosynthèse nette
 - Photosynthèse nette à l'échelle du peuplement
 - Conséquences sur les techniques agricoles
- Alimentation hydrique d' un peuplement
- Peuplement végétal cultivé et nutrition minérale
- Le partage des ressources au sein d'un peuplement

PV et ressources

Nutrition C

Schéma théorique (très) simplifié

Rayonnement + CO2

Origine de la demande

Offre de la solution du sol

Eau, N, P, K...

PV et ressources

Nutrition C

Une offre variable

PV et ressources

Nutrition C

Notion de microclimat du couvert

Vitesse du vent

Nutrition C

Notion de microclimat du couvert

Nutrition C

Notion de microclimat du couvert

Rayonnement disponible pour le peuplement

Rayonnement net : est le bilan instantané des rayonnements

Rn =
$$(1-a)G + \varepsilon(Ra - \sigma Ts^4)$$

- a: albédo
- G: rayonnement global
- ε: émissivité de la surface du sol (=0,95)
- Ra: rayonnement atmosphérique
- σ: constante de Stefan-Boltzmann
- Ts: température de surface du sol

Nutrition C

Albedo de quelques surfaces

Nutrition C

Interception du rayonnement par le peuplement

87

Rayonnement Réfléchi par le sol (Ts)

transmis (T)

Source: Varlet-Grancher, Bonhomme 1979

Utilisation pour la photsynthèse

Pour faire de la phosynthèse la plante (le peuplement) utilise seulement une partie du rayonnement:

PAR = Photosynthetically Active Radiation

Type de

plante

Rayonnement et photosynthèse

Photosynthèse nette

Rayonnement intercepté

Efficacité de la transformation

Quantité de rayonnement incident

Place du cycle Durée du cycle

Alimentation

minérale

Implantation

Alimentation azotée

Efficacité de la transformation

Coefficient de conversion biologique (en g.MJ⁻¹)

$$\Sigma MSj = Cb * \Sigma PAR_{abs}/j$$

Efficience du rayonnement intercepté

Ea = Eamax *
$$(1-e^{-k*IF})$$

- k: coefficient d'absorption ou d'extinction du rayonnement
- IF: Indice foliaire

Indice de surface foliaire

L'indice de surface foliaire d'un couvert est la surface de feuille du couvert sur une surface de sol donnée.

Nutrition C

Interception et croissance: l'effet plante

Nutrition C

Interception et croissance: l'effet peuplement

Source: Scott et Jaggard 1994

Les facteurs influençant la photosynthèse nette:

- L'espèce végétale
- Le stade de développement
- La teneur en CO2 de l'atmosphère
- Le rayonnement
- L'état hydrique de la plante
- La température
- L'état nutritionnel de la plante

Nutrition C

Photosynthèse: l'effet espèce

C4 : point de saturation plus élevé

Plantes d'ombre sont plus efficaces à faible luminosité mais saturent très vite...

Type de plante	P nette mg CO ₂ dm ⁻² h ⁻¹
C ₃ Soleil	20-45
C ₃ Ombre	4-20
C ₄	30-80

Nutrition C

Photosynthèse: l'effet rayonnement et concentration en CO2

Nutrition C

Photosynthèse: l'effet du statut hydrique de la plante

Photosynthèse: l'effet de la température

Source : Lagouarde et Cruiziat 1997

Photosynthèse: l'effet de la température

Nutrition C

A l'échelle du peuplement

- Les conditions climatiques au sein du couvert sont modifiées (microclimat) -> An variable entre feuilles
- Le rayonnement est la première ressource affectée
- En dessous d'un certain seuil, la feuille ne produit plus mais respire...

→ Besoin d'une gestion de la surface foliaire dans l'espace et le volume du peuplement

Nutrition C

Surface foliaire et ombrage

Nutrition C

Indice de surface foliaire et production

Conséquences sur les techniques agricoles

Nutrition C

Optimiser surface et durée et efficacité foliaires

Optimiser surface et durée et efficacité foliaires

Gestion du peuplement:

On joue sur...

Le potentiel de croissance foliaire

Nutrition C

Leaf Area Index et rendement de la pomme de terre

Nutrition C

Gestion du peuplement:

On joue sur...

- Le potentiel de croissance foliaire
- La place du cycle
- La durée de la surface foliaire

Nutrition C

On protège les plantes des ravageurs et maladies

Gestion du peuplement:

On joue sur...

- Le potentiel de croissance foliaire
- La place du cycle
- La durée de la surface foliaire

Nutrition C

Gestion du peuplement:

On joue sur...

- Le potentiel de croissance foliaire
- La place du cycle
- La durée de la surface foliaire
- L'assimilation nette du peuplement (par ex: / [CO₂])
- Le port du végétal

Nutrition C

Optimisation de l'interception par le port

- Activité photosynthétique
- Répartition du rayonnement incident
 Selon le port de la plante

