

DIVIDE AND CONQUER

CS112.O11.KHTN **Team 10**

TABLE OF CONTENTS

01 02

PROBLEM GENERAL IDEA

03 04

WHY? COMPLEXITY

05 06

EXAMPLE Q&A

000

11/23/2023

TABLE OF CONTENTS

01

PROBLEM

03

WHY?

05

EXAMPLE

02

GENERALIDEA

04

COMPLEXITY

06

Q&A

01 PROBLEM

000 **01 PROBLEM** 11/23/2023

CEO

Suppose Nam is the CEO of a large company who wants to evaluate the performance of all employees in the company. The company has thousands of employees, so how will you evaluate the performance of all employees?

Finding a closest pair of points

Given a set of points {p1, . . . , pn} find the pair of points {pi , pj } that are closest together.

With the distance calculated using the formula

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

0 0 0 1 PROBLEM 11/23/2023

BRUTEFORCE

Check every pair of points

```
// A Brute Force method to return the
  smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
   float min = FLT_MAX;
    for (int i = 0; i < n; ++i)
        for (int j = i+1; j < n; ++j)
            if (dist(P[i], P[j]) < min)</pre>
                min = dist(P[i], P[i]);
    return min;
```


0 0 0 01 PROBLEM 11/23/2023

$$(\mathbf{x}_1, \mathbf{y}_1)$$

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Time Complexity: $O(N^2)$

0 0 0 01 PROBLEM 11/23/2023

Can we do it faster?

02 GENERAL IDEA

0 0 0 02 GENERAL IDEA 11/23/2023

DIVIDE AND CONQUER

OOO 02 GENERAL IDEA

11/23/2023

DIVIDE AND CONQUER

1. **Divide:** This involves dividing the problem into smaller sub-problems.

2. **Conquer:** Solve sub-problems by calling recursively until solved.

3. **Combine:** Combine the sub-problems to get the final solution of the

whole problem.

Finding a closest pair of points

Apply the idea of "divide and conquer":

- 1. Divide N points to be processed into 2 sets with a vertical line
- 2. Call recursively to find the closest pair of points for the left set and the right set
- 3. Find the shortest distance between a point in the left set and a point in the right set.

000 **02 GENERAL IDEA** 11/23/2023

Divide and Conquer

- 1. Split the points with line L so that half the points are on each side.
- 2. Recursively find the pair of points closest in each half.

0 0 0 02 GENERAL IDEA 11/23/2023

Combine: the hard case

Let $d = min\{d_{left}, d_{right}\}.$

d would be the answer, except maybe L split a close pair!

000 **02 GENERAL IDEA** 11/23/2023

Region Near L

If there is a pair {pi, pj} with dist(pi, pj) < d that is split by the line, then both pi and pj must be within distance d of L.

000 **02 GENERAL IDEA** 11/23/2023

Pseudo code

```
DAC(a, i, j)
  if(small(a, i, j))
   return(Solution(a, i, j))
  else
                              // f1(n)
   mid = divide(a, i, j)
                              // T(n/2) •
   b = DAC(a, i, mid)
   c = DAC(a, mid+1, j) // T(n/2)
   d = combine(b, c)
                         // f2(n)
 return(d)
```


IDENTITY

- 1. **Divide**: Can the problem be divided into smaller sub-problems of the same type?
- 2. **Conquer**: Can the sub-problems be directly solved when they are small enough?
- 3. **Combine**: Can the solutions of the sub-problems be combined to form a solution for the original problem?

Examples: binary search, quick-sort...

OOO 02 GENERAL IDEA

11/23/2023

Finding a closest pair of points

- 1. Divide
- 2. Conquer
- 3. Combine

Variation of DAC

1. Dynamic Programming

Divide large problems into overlapping sub-problems and optimal sub-structures.

These problems often have many correct solutions and each solution has 1 evaluation value

OOO 02 GENERAL IDEA

11/23/2023

Variation of DAC

2. Decrease and conquer

A technique used to solve problems by reducing the size of the input data at each step of the solution process Ex: binary search,..

OOO 02 GENERAL IDEA

11/23/2023

Variation of DAC

3. Transform and conquer

The problem-solving strategy of "Transform and Conquer" involves dividing the problem into smaller parts and transforming the data or structure of the original problem into a simpler form to solve it more effectively.

03 WHY?

000 **03 WHY?** 11/23/2023

Advantages

- Reusable Solutions
- Good Time Performance
- Optimization Support
- Versatility

000 **03 WHY?** 11/23/2023

Disadvantages

- Slow recursion
- Complicates sometimes
- Difficult to implement
- Only suitable for certain problems

000 **03 WHY?** 11/23/2023

Compare

"Divide and Conquer" and "Brute Force"

Feature	Divide and Conquer	Brute Force
Efficiency	Typically more efficient for large or complex problems	Typically less efficient for large or complex problems
Approach	Breaks a problem down into smaller subproblems	Tries every possible solution
Complexity	Often has a logarithmic time complexity (O(log n) or On(log n))	Often has a linear time complexity (O(n) or O(n^2))
Examples	Binary search, merge sort, quick sort	Bubble sort, insertion sort, selection sort

04 COMPLEXITY

The recurrence

$$T(n) = aT(n/b) + f(n)$$

where n = size of the problem
a = number of subproblems in the recursion and a >= 1
n/b = size of each subproblem
f(n) = cost of work done outside the recursive calls like dividing into subproblems and cost of combining them to get the solution.

000 **04 COMPLEXITY** 11/23/2023

Master theorem

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^a \\ O(n^d) & \text{if } a < b^a \\ O(n^{\log_b(a)}) & \text{if } a > b^a \end{cases}$$

Finding a closest pair of points

Classic divide and conquer recurrence:

$$T(n) = 2T(n/2) + O(n)$$

Apply Master Theorem, we have complexity is:

O(nlogn)

05 EXAMPLE

0 0 0 05 **EXAMPLE** 11/23/2023

Application

Sorting (Merge Sort, Quick Sort)

Large Integer Multiplication - Karatsuba Algorithm

Matrix Multiplication - Strassen's algorithm

Finding a closest pair of points

0 0 0 05 **EXAMPLE** 11/23/2023

Merge Sort

1. Let the given array be:

7 6 1 5 4 3

0 0 0 05 **EXAMPLE** 11/23/2023

Merge Sort

2. **Divide** the array into two halves.

000 **05 EXAMPLE** 11/23/2023

Merge Sort

Again, divide each subpart recursively into two halves until you get individual elements.

000 **05 EXAMPLE** 11/23/2023

Merge Sort

3. Now, combine the individual elements in a sorted manner. Here, **conquer** and **combine** steps go side by side.

0 0 0 05 **EXAMPLE** 11/23/2023

Large Integer Multiplication

- Common procedure in computer-assisted problem solving.
- Multiplying big numbers is not only difficult, but also timeconsuming and error-prone.

000 **05 EXAMPLE** 11/23/2023

Traditional Multiplication Method.

OOO 05 EXAMPLE

11/23/2023

Traditional Multiplication Method.

- time-consuming
- inefficient.

Complexity: O(mn)

Divide and Conquer Approach

Suppose we have to multiply 2 integers of size 2n decimal places By dividing a and b we can write a and b in the form

$$a = a_1.10^n + a_2,$$

 $b = b_1.10^n + b_2$

in there

a₁, a₂, b₁, b₂ are n-digit numbers

Apply to the Karatsuba formula:

$$ab = a_1b_1 * 10^2n + [(a_1 + a_2)(b_1 + b_2) - a_1b_1 - a_2b_2] * 10^n + a_2b_2$$

0 0 0 05 **EXAMPLE** 11/23/2023

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

a.b? Time-consuming Inefficient

How about a better way?

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

- **1.** Our algorithm separates the terms into $a_1 = 56$, $a_2 = 78$, $b_1 = 67$ and $b_2 = 89$.
- **2.** Three halves multiplications that need to be performed are:

$$\mathbf{p} = a_1b_1 = 56 \times 67 = 3752$$

 $\mathbf{q} = a_2b_2 = 78 \times 89 = 6942$
and

$$\mathbf{r} = (a_1 + a_2) \times (b_1 + b_2) = 134 \times 156 = 20904$$

0 0 0 05 **EXAMPLE** 11/23/2023

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

Therefore

= 37520000 + 1021000 + 6942

= 38547942

We have:

$$a \times b = (a_1 \cdot 10^n + a_2)(b_1 \cdot 10^n + b_2)$$

= $a_1b_110^{2n} + (a_1b_2 + a_2b_1) \cdot 10^n + a_2b_2$

000 **05 EXAMPLE** 11/23/2023

Divide and Conquer Approach

For example: a= 5678 and b= 6789.

So we have seen a multiplication with **2n digits** about **4 multiplication** with **n digits** and **2 additions**.

Complexity: O(n^1.59)

OOO **05 EXAMPLE** 11/23/2023 **Binary Search Tree** T_{left}

Binary Search Tree

The divide and conquer algorithm is the most important binary tree algorithm for the three basic traversals:

Preorder: often called NLR browsing

Inorder: often called LNR browsing

Postorder: often called LRN browsing

 $\bigcirc\bigcirc\bigcirc\bigcirc$

06Q&A

000 **Q&A** 11/23/2023

QUIZ

In the divide and conquer process, breaking the problem into smaller sub-problems is the responsibility of

- A. Sorting/Divide
- B. Conquer/Solve
- C. Merge/Combine
- DDivide/Break

000 **06 Q&A**

11/23/2023

QUIZ

The running time of merge sort can be reccursively represented by

B.
$$T(n)=2T(n/4)+O(n)$$

C.
$$T(n)=3T(n/2)+O(n)$$

D.
$$T(n)=3T(n/2)+O(n)$$

06 Q&A

 $\bigcirc\bigcirc\bigcirc\bigcirc$

THANK YOU FOR YOUR WATCHING

