SEANCE 12

Objectifs : Savoir appliquer les lois de Hess aux réactions chimiques ; savoir utiliser l'enthalpie de formation et l'énergie de liaison dans les calculs de l'effet énergétique d'une réaction. Savoir interpréter la variation de l'entropie lors d'une transformation ; généraliser l'utilisation de l'énergie libre A et l'enthalpie libre (énergie de Gibbs) G pour la prévision des possibilités des transformations.

Consignes/Activités d'introduction : déterminer l'effet énergétique d'une réaction. En utilisant le deuxième et le troisième principe de thermodynamique, notion de l'entropie, l'enthalpie libre et l'énergie libre, déterminer la possibilité d'une transformation

Contenu : Travaux Dirigés Le premier principe de thermodynamique ; Travaux Dirigés Le deuxième et troisièmes principes de thermodynamique

Le premier principe de thermodynamique et les fonctions d'état du système : l'énergie interne, l'enthalpie, les lois de Hess et leurs applications. Détermination de la possibilité d'une réaction.

Activités:

- 1. Calculer l'effet énergétique d'une réaction en utilisant les méthodes des combinaisons linéaires, de cycle de Hess et la loi de Hess,
- 2. L'utilisation de l'enthalpie de formation et de l'énergie de liaison dans les calculs de l'effet énergétique d'une réaction,
- 3. Comparer l'utilisation de l'enthalpie de formation et l'énergie de liaison pour calculer les effets thermiques des réactions
- 4. Faire les exercices d'application :
 - Calculer la variation de l'entropie,
 - Calculer la variation de l'énergie de Gibbs,
 - Prévoir la possibilité d'une réaction.

1. Calculer l'enthalpie de la réaction suivante : $CH_3OH\left(I\right) + H_2(g) = CH_4(g) + H_2O\left(I\right)$:

- En appliquant la combinaison d'équations et connaissant les enthalpies standard de combustion de CH₂OH (l)(-726.6 kJ/mol), H₂(g) (-285.9kJ/mol) et CH₄(g) (-890.4 kJ/mol).
- A partir des enthalpies standard de formation des réactifs et des produits: Δh_l CH₃OH (1)=-238.7 kJ/mol; Δh_l CH₄(g)=-74.8 kJ/mol; Δh_l H₂O (1)=-285.2 kJ/mol,
- · A partir des enthalpies de liaison :

Les énergies de linison : C-O=-350 kJ/mol, H-H=-436 kJ/mol, C-H=-415 kJ/mol, H-O=-463 kJ/mol.

Les enthalpies d'évaporation : $\Delta h_{ev}(H_2O) \rightarrow 44 \text{ kJ/mol}, \quad \Delta h_{ev}(CH_3OH) = 35.3 \text{kJ/mol}.$

- 2. Calculer affinité protonique de NH3. On donne :
 - Enthalpie de formation de NH₃(g); Δhf(NH₃g)=-11 kcal/m
 - Enthalpie de formation de NH₄Cl(s); Δhf(NH₄Cl s)=-75 kcal/m
 - Energie réticulaire (énergie de formation d'une mole de substance à l'état cristal à partir des ions en phase gazeuse) de NH₄Cl(s); E₁=-163 kcal/m
 - Enthalpie de formation de H⁺(g); Δhf(H⁺ g)=366 kcal/m
 - Enthalpie de formation de CΓ (g); Δhf(CΓ g)=-58 kcal/m
- 3. Calculer l'énergie réticulaire AH, du cristal KBr à partir des données suivantes :
 - Enthalpie de formation du cristal KBr; Δhf(KBr s)=-392 kj/m
 - Enthalpie de vaporisation du Brome Br₂; ΔHv=30.7 kj/m
 - Energie de liaison Br-Br; ΔE(Br-Br)=-193 kj/m
 - Affinité électronique de l'atome de Brome ; ΔA(Br)=-333 kj/m
 - Energie d'ionisation de l'atome de K ; I(K)=419 kj/m
 - Enthalpie de sublimation de K(s); ΔH(sub)=90 kj/m.
- 4. Calculer l'effet thermique de la réaction suivante :

$$CO(g) + H_2O(g) = CO_2(g) + H_2(g)$$

À la température de 1000°K.

On donne:

- Les effets thermiques des réactions de combustion de CO(g) et H₂(g)) 300°K
 ΔU(CO)=-2.847.10⁵ kj/kmole ; ΔU(H₂)=-2.42.10⁵ kj/kmole
- Les capacities calorifiques molaires:
 Cv(co)=19.59+4.2.10° T kj/km °K
 Cv(H₂)=19.46+3.1.10° T kj/km °K
 Cv(H₂O)=24.074+6.5.10° T+7.863.10° T² kj/km °K
 Cv(CO₂)=21.38+1.4.10° T-3.677.10° T² kj/km °K
- Evaluer l'enthalpie de sublimation de la glycine NH₂CH₂COOH à 25°C et 1 atm à partir des données suivantes : enthalpie de combustion de la glycine solide à 25°C;
 ΔHc=-234.0 kj/m, enthalpie de sublimation du graphite; ΔHs=718.4 kj/m.

Enthalpies de formation :

Substance	H(g)	O(g)	N(g)	CO2(8)	H ₂ O(1)
Δhf, kj/m	218.0	201.0	473.2	-393.5	-286.1

Energies de linison

Liaison	C=0	C-O	O-H	C-C	C-N	C-H	N-11
ΔE, kj/m	-719.6	-351.5	-464.0	-347.7	-291.6	-410.0	-390 X

6. L'hydrazine a pour fonnule développée :

Calculer l'énergie de liaison N-N dans l'hydrazine à partir des enthalpies standards de formation suivantes :

Substances	NH; (g)	$N_2H_4(g)$	N(g)	H(g)
Δhf, kj/m	-46.02	93.72	472.8	217.52

Justifier l'emploi de Ahf de l'ammoniac au cours de ce calcul.

7. La transformation sous 1atm de 142g d'acide stéarique solide C₁₇H₃₅COOh à 50°c en acide stéarique liquide à 100°C nécessite un apport total de chaleur de 42.8 kj. Quelle est 70°C la chaleur de fusion de l'acide stéarique, sachant que la température de fusion de l'acide stéarique solide sous 1atmm est 70°C?

On donne les capacités calorifiques molaires à pression constante de l'acide stéarique : Cp(s)=475 j/°Km Cp(l)=655 j/°Km

8. Déterminer le sens de la réaction suivante à 1000°K:

$$\begin{split} 4HCl_{(g)} + O_{2(g)} &= 2H_2O_{(g)} + 2Cl_{2(g)} \\ On \ donne &: \end{split}$$

composé	C _p ,(298-1000)°K, J/mol.°K	Δh _{formation,298°} , kJ/mol	S _{298°} , kJ/mol
HC1	29.88	-92.4	186.9
O_2	21.14	0	205.2
H ₂ O	37.06	-242	188.9
Cl_2	36.5	0	223

9. Déterminer la possibilité de transformation du soufre rhombique en soufre monoclinique à la température de 25°C.

S(rhombique) = S(monoclinique)

On donne à la température t=25°C:

 $S^{\circ}(S \text{ rhombique}) = 7.78 \text{ cal/mol}^{\circ}K$ $S^{\circ}(S \text{ monoclinique}) = 7.62 \text{ cal/mol}^{\circ}K$

Et les enthalpies de combustion à 25°C:

 Δ H (S rhombique)=-70940cal/mol Δ H (S monoclinique)=-71020 cal/mol.

$$S(r) + O_2(g) = SO_2(g)$$
 $S(m) + O_2(g) = SO_2(g)$

10. Calculer la variation standard d'enthalpie libre Δ G , qui accompagne à 373°K, la réaction :

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$$

On supposera que les ΔH° et ΔS° utilisées dans les calculs ne dépendent pas de la température.

- Que peut-on déduire de la valeur obtenue pour ΔG° quant à la possibilité que cette réaction se réalise spontanément, à 373°K,
- A quelle température cette réaction serait-elle spontanée, dans les conditions standard, on admettra que les ΔH° et ΔS° sont constants.

$$\begin{array}{l} \Delta h_f \ CH_4(g) = -74.8 \ kJ/mol, \ \Delta h_f \ H_2O \ (g) = -241.8 \ kJ/mol, \ \Delta h_f CO(g) = -110.5 kJ/mol \\ \Delta S \ CH_4(g) = 186.2 \ J/^\circ Kmol, \ \Delta S \ H_2O \ (g) = 188.7 \ J/^\circ Kmol, \ \Delta S \ CO(g) = 197.6 \ J/^\circ Kmol \\ \Delta S \ H_2(g) = 130.6 \ J/^\circ Kmol. \end{array}$$

4. Expliquer pourquoi parmi les deux réactions suivantes thermodynamiquement impossibles dans les conditions standards une seule devienne réalisable à haute température.

$$N_2(g) + \frac{1}{2}O_2(g) \rightarrow N_2O(g)$$
 $\Delta H1=19.5 \text{ kcal/mol}$

$$1/2 N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g)$$
 $\Delta H2=21.6 \text{ kcal/mol}$

On donne les valeurs d'entropie à 25°C

Substances	$N_2O(g)$	NO (g)	$N_2(g)$	$O_2(g)$
Entropie S, cal/°Kmol	52.55	50.34	45.75	49.01