

Machine learning: neural networks

Non-linear predictors

Linear predictors:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x)$$
, $\phi(x) = [1, x]$

Non-linear (quadratic) predictors:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x), \ \phi(x) = [1, x, x^2]$$

Non-linear neural networks:

$$f_{\mathbf{w}}(x) = \mathbf{w} \cdot \boldsymbol{\sigma}(\mathbf{V}\boldsymbol{\phi}(x)), \ \boldsymbol{\phi}(x) = [1, x]$$

Motivating example

Example: predicting car collision-

Input: positions of two oncoming cars $x = [x_1, x_2]$

Output: whether safe (y = +1) or collide (y = -1)

Unknown: safe if cars sufficiently far: $y = \text{sign}(|x_1 - x_2| - 1)$

 x_1

CS221

Decomposing the problem

Test if car 1 is far right of car 2:

$$h_1(x) = \mathbf{1}[x_1 - x_2 \ge 1]$$

Test if car 2 is far right of car 1:

$$h_2(x) = \mathbf{1}[x_2 - x_1 \ge 1]$$

Safe if at least one is true:

$$f(x) = sign(h_1(x) + h_2(x))$$

x	$h_1(x)$	$h_2(x)$	f(x)
[0, 2]	0	1	+1
[2, 0]	1	0	+1
[0, 0]	0	0	-1
[2, 2]	0	0	-1

Rewriting using vector notation

Intermediate subproblems:

$$h_1(x) = \mathbf{1}[x_1 - x_2 \ge 1] = \mathbf{1}[[-1, +1, -1] \cdot [1, x_1, x_2] \ge 0]$$

$$h_2(x) = \mathbf{1}[x_2 - x_1 \ge 1] = \mathbf{1}[[-1, -1, +1] \cdot [1, x_1, x_2] \ge 0]$$

$$\mathbf{h}(x) = \mathbf{1} \begin{bmatrix} -1 & +1 & -1 \\ -1 & -1 & +1 \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \ge 0$$

Predictor:

$$f(x) = sign(h_1(x) + h_2(x)) = sign([1, 1] \cdot \mathbf{h}(x))$$

Avoid zero gradients

Problem: gradient of $h_1(x)$ with respect to \mathbf{v}_1 is 0

$$h_1(x) = \mathbf{1}[\mathbf{v_1} \cdot \phi(x) \ge 0]$$

Solution: replace with an **activation function** σ with non-zero gradients

- Threshold: $\mathbf{1}[z \geq 0]$
- Logistic: $\frac{1}{1+e^{-z}}$
- ReLU: $\max(z,0)$

 $h_1(x) = \sigma(\mathbf{v_1} \cdot \phi(x))$

Two-layer neural networks

Intermediate subproblems:

$$\mathbf{h}(x) \qquad \mathbf{V} \qquad \qquad \mathbf{h}(x) = \sigma(\mathbf{v})$$

Predictor (classification):

$$f_{\mathbf{V},\mathbf{w}}(x) = \mathrm{sign} \left(\begin{array}{c} \mathbf{h}(x) \\ \mathbf{w} \\ \end{array} \right)$$

Interpret h(x) as a learned feature representation!

Hypothesis class:

CS221

$$\mathcal{F} = \{ f_{\mathbf{V}, \mathbf{w}} : \mathbf{V} \in \mathbb{R}^{k \times d}, \mathbf{w} \in \mathbb{R}^k \}$$

12

Deep neural networks

1-layer neural network:

$$\phi(x)$$
score = \bullet

2-layer neural network:

$$\mathbf{v}$$

$$\mathbf{v}$$

$$\mathbf{v}$$

$$\mathbf{v}$$

$$\mathbf{v}$$

$$\mathbf{v}$$

$$\mathbf{v}$$

3-layer neural network:

14

Layers represent multiple levels of abstractions

CS221

Why depth?

Intuitions:

- Multiple levels of abstraction
- Multiple steps of computation
- Empirically works well
- Theory is still incomplete

18

Summary

$$\mathbf{v}$$
 score = $\mathbf{v} \cdot \sigma$

- Intuition: decompose problem into intermediate parallel subproblems
- Deep networks iterate this decomposition multiple times
- Hypothesis class contains predictors ranging over weights for all layers
- Next up: learning neural networks

CS221 20