RNA-Seq Pre-processing

Lauren Vanderlinden BIOS 6660 Spring 2019

Overview from Last Time

Total RNA

- Talked about RNA-Sequencing
- Importance of RNA expression
- Technology used to get sequences

• Now you have raw reads!

Pre-processing Pipeline

Raw Reads

Trim Reads

Genome Alignment

Optional: Transcriptome Reconstruction

Quantitate

Lecture 12: 28 Feb 2019 BIOS 6660 Spring 2019 3

Folder Structure

- For a typical coverage where the main goal is differential expression (25-30 million reads/sample) raw files range around 2-3.8 GB
- Find it useful to have these files in separate folders for each part of the process:
 - rawReads
 - trimmedReads
 - alignedReads
 - quantitation
 - data (matrix form finally)
- Suggestion only

FASTQ Format

vanderll@sysgen:~>gzip -cd /data/home/sabal/Britt/RNA-Seq.2017-11-06/rawReads/A1 talked about SO1 S1 R1 001.fastq.qz | head @NS500358:142:HLKWMBGX3:1:11101:14573:1049 1:N:0:CTATAC Sequence Quality @NS500358:142:HLKWMBGX3:1:11101:25309:1049 1:N:0:CTATAC

Notice I'm using the pipping Pam

- Single-end technology will give you 1 fastq file/sample
- Paired end technology will give you 2 fastq files/sample
- 4 lines for each read
- Unique Read ID: begins with '@' character and is followed by a sequence identifier and an optional description 1. (like a FASTA title line).
- 2. Raw sequence letters
- Begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again. 3.
- Encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in 4. the sequence.

FASTQ Illumina ID Format

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name			
6	flowcell lane			
73	tile number within the flowcell lane			
941	'x'-coordinate of the cluster within the tile			
1973	'y'-coordinate of the cluster within the tile			
#0	index number for a multiplexed sample (0 for no indexing)			
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only,			

Source: wikipedia

Phred Quality (Q) Score

- A score assigned to each individual base called
- Developed to help in the automation of DNA sequencing in the Human Genome Project
- Phred score is logarithmically related to the base-calling error probabilities

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Illumina standards say Phred of 30 or higher considered "high quality"

Source: wikipedia

FASTQ and Phred Quality Score

 FASTQ score represented as ASCII-33 characters

Q	P_error	ASCII									
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
.0	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Source: USEARCH

How many reads do I have?

- One of the first questions before anything else is how many reads do my samples have?
- Make a bash script to count the number of reads you have

- Notice I'm counting the number of lines which start with @D00289, not the total lines in the file
- Writes a text file with your fastq name and number of reads

Trim Reads

- Adapter Trimming
 - Trimming off the adapter sequences of reads
 - ABSOLUTE MUST for small RNA
 - Improves de novo assemblies
- Quality Trimming
 - May increase mapping rates
 - May also loose information
- Software Programs
 - BBDuk
 - Cutadapt
 - Trim Galore!
 - PRINSEQ
 - Trimmomatic
 - Sickle/Sythe
 - FASTX Toolkit

Source: SciLifeLab

Cutadapt code

Cutadapt is on yampa

Extra options I've used:

- -q quality score cut-off before adapter removal
- -m minimum length if read to keep after trimming
- -u remove a specified length of bases from beginning

```
Usage:
    cutadapt -a ADAPTER [options] [-o output.fastq] input.fastq

For paired-end reads:
    cutadapt -a ADAPT1 -A ADAPT2 [options] -o out1.fastq -p out2.fastq in1.fastq in2.fastq
```

Example bash script

FastQC

- FastQC installed on yampa
- Program which evaluates quality of reads
- Use this to check the trimming went well
- Want to stay in the green zone
- Really want green checks on:
 - Per sequence quality scores
 - Per base sequence content
- Look at example report

fastqc /path/sample.fastq.gz

FastQC Pre and Post Quality Trimming

cutadapt -q 20 -m 20 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTA
TCATT -o \$f_trimmed -p \$f2_trimmed \$f\$f2

Removing an extra 15 bases from start

cutadapt -u 15 -u 15 -u 20 -m 20 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCG
GTGGTCGCCGTATCATT -o \$f_trimmed -p \$f2_trimmed \$f\$ \$f2

dm6

rn6

Align Reads to Genome

- Align reads to a reference genome
 - Humans: Genome Reference Consortium human genome build 38 (GRCh38, aka hg38)
 - hg19 is still commonly used

Alignment Tools

- 1. Unspliced Aligners (No Gaps Allowed)
 - BWA
 - Bowtie/Bowtie2
 - NovoAlign, SeqMap, SEAL
- 2. Spliced Aligners (Allows Splice-Junctions)
 - Erange
 - SpliceSeq
 - BBMap
 - Hisat/Hisat2
 - STAR
 - TopHat

Annotated Guided Aligners

De Novo Splice Aligners

Hisat2 Reference Genome

- Hisat2 is on yampa
- For any alignment tool, you need reference files

hisat2-build reference.fa reference.hisat

https://uswest.ensembl.or g/info/data/ftp/index.html

Hisat2 Alignment

hisat2 -x /BIOS6660/Homework6/indexFiles -1 sample_1.fq.gz -2 sample_2.fq.gz | samtools view -bS - > alignedSample. bam

- Options you might want:
 - --un writing an output file for those that don't align
 - -N # mismatches you will allow (default 0)
- For paired-end reads, you will now go from 2 files/sample down to 1 file/sample
- BAM output file is a compressed binary version of a SAM file
- SAM = Sequence Alignment/Map format

Message it prints after running:

```
20000 reads; of these:

20000 (100.00%) were unpaired; of these:

1247 (6.24%) aligned 0 times

18739 (93.69%) aligned exactly 1 time

14 (0.07%) aligned >1 times

93.77% overall alignment rate
```

Batch Alignment

- Python script called: alignBatch.genome.hisat.py
- Written by Spencer Mahaffey (thank you!)
- This gives you 4 files:
 - Aligned.bam
 - Splice_junct.bed
 - Summary.txt
 - Unmapped.bam
- Look at py script

Spencer Mahaffey smahaffey

python /data/home/vanderll/teaching/BIOS6660_spring2019/programs/alignBatch.genome.hisat.py --input-s uffix .fastq.gz --index-dir /data/home/vanderll/annotation/dm6.hisat2.reference -P /data/home/vanderl l/teaching/BIOS6660 spring2019/data/hw6/subsetFASTQpairs

Alignment Error Example

- I got this following error after alignment one time
- Saying that there is a read that has more bases than scores assigned to it
- It did output a bam file up to this point
- What the issue was that the core uploaded the fastq files to the web and at some point their connection was interrupted so the fastq file was only partially uploaded

[samopen] SAM header is present: 1870 sequences. Error: Read D00289:29:CCT5JANXX:5:2316:4056:36315 1:N:0:CAGGCG+CTTGTA has more read characters than quality values.

terminate called after throwing an instance of 'int' (ERR): hisat2-align died with signal 6 (ABRT) (core dumped)

BAM Files: Alignment Output

samtools view sample.sorted.bam | head

```
OHD VN:1.6 SU:coordinate

OSQ SN:ref LN:45

r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC *
r003 2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,254}	Query template NAME
2	FLAG	Int	$[0, 2^{16} - 1]$	bitwise FLAG
3	RNAME	String	* [:rname:^*=][:rname:]*	Reference sequence NAME ⁹
4	POS	Int	$[0, 2^{31} - 1]$	1-based leftmost mapping POSition
5	MAPQ	Int	$[0, 2^8 - 1]$	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [:rname:^*=][:rname:]*	Reference name of the mate/next read
8	PNEXT	Int	$[0, 2^{31} - 1]$	Position of the mate/next read
9	TLEN	Int	$[-2^{31}+1, 2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-"]+	ASCII of Phred-scaled base QUALity+33

Source: samtools manual

- Optional header '@'
- Alignment info
- Example: first read starts at chr4: 1,076,030

SAM Flags

https://www.samformat.info/sam-format-flag

Transcriptome Reconstruction

- This is an optional step in the process and I actually don't perform it very often
- You need paired-end reads and deep coverage
- Software:

Lecture 12: 28 Feb 2019 BIOS 6660 Spring 2019 22

Reference Guided Assemblies

- Splice junctions are the main guiding force in the reconstruction
- See which exons of these splice junctions overlap
- Estimate your isoforms

Source: Martin & Wang 2015

De Novo Assemblies

- Depends on De Brujin graph
- Combinatorial mathematics, creates every possible combinations of length k
- Identify indels and SNPs/errors
- Estimate your isoforms
- Computationally much more time than reference based approach

Source: Martin & Wang 2015

Lecture 12: 28 Feb 2019 BIOS 6660 Spring 2019 24

Gene Transfer Format (GTF)

- Transcriptome file format
- Can get references from ENSEMBL: Gene sets
- Easy to look at using R/rtracklayer


```
isoref.oldschool <- read.delim(file="Y:/RNAsegProcessing/data/brain/HRDP.processing/getOualityTranscripts/gffcmp.an
notated.cleaned.gtf", sep="\t", header=FALSE)
head(isoref.oldschool)
              V2
                        V3 V4 V5 V6 V7 V8
## 1 1 StringTie transcript 12358 13306 . + .
## 2 1 StringTie
                   exon 12358 13306 . + .
## 3 1 StringTie transcript 12639 13301 . + .
## 4 1 StringTie
                      exon 12639 12834 . + .
## 5 1 StringTie
                      exon 13255 13301 . + .
## 6 1 StringTie transcript 12914 13309 . + .
## 1 transcript_id MSTRG.2.1; gene_id MSTRG.2; xloc XLOC_000001; class_code u; tss_id TSS1;
                                 transcript_id MSTRG.2.1; gene_id MSTRG.2; exon_number 1;
## 3 transcript id MSTRG.2.2; gene id MSTRG.2; xloc XLOC 000001; class code u; tss id TSS2;
## 4
                                 transcript id MSTRG.2.2; gene id MSTRG.2; exon number 1;
                                 transcript_id MSTRG.2.2; gene_id MSTRG.2; exon_number 2;
## 6 transcript_id MSTRG.2.3; gene_id MSTRG.2; xloc XLOC_000001; class_code u; tss_id TSS3;
```

EMBL_IØ

GTF# GFF

Tuxedo Suite

This Johns Hopkins group produces all the "Tuxedo Tools"

Bowtie Extremely fast, general purpose short read aligner

TopHat Aligns RNA-Seq reads to the genome using Bowtie Discovers splice sites

CummeRbund Plots abundance and differential expression results from Cuffdiff

Source: Trapnell et al, 2012

New version of tophat is hisat2

Newer version of cufflinks is stringtie

This suite is extremely popular

Lecture 12: 28 Feb 2019 BIOS 6660 Spring 2019 26

Quantitate Reads

- Summarize on either the gene level or isoform level
- HTSeq (python module) or RSEM
- HTSeq not good for overlapping reads (i.e. not good for isoforms)

- RNA-Seq Expectation Maximization (RSEM). Li et al, 2010
- Say you have a gene with 2 isoforms. Each has it's own unique exon

```
(isoform 1) AAAAAAAAAA
(isoform 2) UUUUUUUUUU
```

Say you have 3 reads for these

```
(read 1) AAAAAAA
(read 2) UUUUUUU
(read 3) AAAAAAA
```

Would say 2/3 of your reads for this gene come from isoform 1

- However, example was extremely simplified as isoforms are highly similar and many don't have completely unique exons.
 - Isoform 1: Exon1-Exon2-Exon3-Exon4
 - Isoform 2: Exon1-Exon3-Exon4
 - Isoform 3: Exon2-Exon3-Exon4
- Notation
 - N = total # of reads (library size)
 - M = # known isoforms
 - L = read length
 - Li = length isoform
 - τi = TPM (fraction of transcripts belong to isoform i out of all transcripts in sample * million)
 - Θ i = prior probability any single read derived from isoform i
- Take away θ has a constant (uniform) probability density

$$\theta_i = \frac{\tau_i * l_i}{\sum_{k=1}^{M} \tau_k * l_i}$$

$$\tau_i = \frac{\theta_i / l_i}{\sum_{k=1}^{M} \theta_k / l_i}$$

$$\theta_i \propto \tau_i * l_i$$

 $\sum_{i} \theta_{i} = \sum_{i} \tau_{i} = 1$

- What does an estimate of Θ (or τ) look like?
- Full posterior distribution is $p(\Theta|R)$ or $p(\tau|R)$
- Li et al 2010, describe following Bayesian network (a probabilistic graphical model):

- Gn is isoform and Sn is starting position
- Probability of a read coming from a specific gene with influence the number of reads you see in your data

Start with a joint probability:

$$p(G,S,R| heta) = \prod_{n=1}^N p(G_n,S_n,R_n| heta) = \prod_{n=1}^N p(G_n| heta)p(S_n|G_n)p(R_n|G_n,S_n).$$

With lots of math:

$$p(\theta|R) = rac{p(R|\theta)p(\theta)}{p(R)}.$$

Start an estimate of $\Theta 1$ and $\Theta 2$ (assuming a simple 2 isoform dataset with N1 # reads aligning uniquely to isoform 1 and N2 # reads aligning uniquely to isoform 2 $\theta_1^{(0)} = N_1/(N_1 + N_2)$,

 $heta_2^{(0)} = N_2/(N_1+N_2).$

- Start doing expectation maximization for finding the maximum a posteriori estimate of Θ $heta_i^{(1)} = rac{N_i + N_{12} \cdot au_i^{(0)}}{N}.$
 - N12 = # reads overlapping both isoforms
 - N = # read total (N1 N2 + N12)
- Repeat this cycle till $\theta^{(r+1)}$ does differ too much from $\theta^{(r)}$
- Simulation example:

Trut	Truth						
i	l_i	θ_i					
1	300	0.60					
2	1000	0.10					
3	2000	0.30					

Counts
$$N_1=111 \quad N_{12}=69 \quad N_{123}=144 \ N_2=26 \quad N_{13}=311 \ N_3=186 \quad N_{23}=153$$

RSEM iterations

i	$\theta_i^{(0)}$	$ heta_i^{(1)}$	$\theta_i^{(2)}$	$\theta_i^{(3)}$	$\theta_i^{(4)}$
1	0.34	0.53	0.58	0.59	0.59
2	0.08	0.07	0.07	0.08	0.08
3	0.58	0.40	0.58 0.07 0.34	0.33	0.32

RSEM Code

- Like alignment tools, you need to build a reference
- It is actually aligning to the **transcriptome** within this process (bowtie)

rsem-prepare-reference --gtf referenceTranscriptome.gtf --bowtie2 referenceGenome.fa /pathToIndexOut
put/suffix

RSEM on sample:

rsem-calculate-expression -p 8 --time --seed 2020 --bowtie2 --paired-end --seed-length 20 /data/hi -seq/MuKO.Brain.Mouse/alignedReads/HISAT2/rRNA/MuKOHet_2.rRNA/sample1.end1.fq /data/hi-seq/MuKO.Brain.Mouse/alignedReads/HISAT2/rRNA/MuKOHet_2.rRNA/sample1.end2.fq /data/hi-seq/MuKO.Brain.Mouse/quantita tion/MuKOHet/RSEM.ensembl MuKOHet_2

Lecture 12: 28 Feb 2019 BIOS 6660 Spring 2019 33

RSEM Batch

- Python script called: runRSEM_batch.py
- Written by Spencer Mahaffey (thank you again!)

Spencer Mahaffey smahaffey

python runRSEM_batch.py --rsem-time --rsem-seedLen 20 --rsem-seed 2020 --rsem-bowtie2 --rsem-noBam - -rsem-fwProb 0.0 --paired -d _R -o /data/home/vanderll/Britt/RNAseq.20171106/RSEMquant.ENSEMBL/ -i tr immed.fastq.gz /data/home/sabal/Britt/RNA-Seq.2017-11-06/trimmedReads/ /data/home/vanderll/Britt/RNAseq.20171106/index/ dm6.ensembl 8

RSEM Output

- Folder with sample name:
 - 3 files regarding mathematical files
 - 1 files for count estimated at each iteration
 - 1 file for other mathematical estimates in model
- 4 Files per sample:
 - sampleName.genes.results
 - sampleName.isoforms.results
 - sampleName.rsem.out
 - sampleName.time

RSEM Output 2

• The genes.results and isoforms.results files have the same format

```
rsem <- read.table(file="Y:/Britt/RNAseq.20171106/RSEMquant.ENSEMBL/A1 S01 S1.isoforms.results", sep=
"\t", header=TRUE)
head (rsem)
                    gene id length effective length expected count
## transcript id
## 1 FBtr0081624 FBgn0000003
                              299
                                            99.47
                                                         981.00 772.69
                                          4644.16
## 2 FBtr0071763 FBgn0000008 4847
                                                         309.96 5.23
## 3 FBtr0071764 FBgn0000008 5173
                                          4970.16
                                                         19.51 0.31
## 4 FBtr0100521 FBgn0000008 4665
                                          4462.16
                                                         200.53 3.52
## 5 FBtr0342981 FBgn0000008 3897
                                          3694.16
                                                         0.00 0.00
## 6 FBtr0083387 FBgn0000014
                                          4255.16
                                                        0.00 0.00
                            4458
      FPKM IsoPct
## 1 656.75 100.00
## 2 4.44 57.73
## 3 0.26 3.40
## 4 2.99 38.87
      0.00 0.00
      0.00 0.00
```

RSEM Merge Data

```
wd = "Y:/Britt/RNAseq.20171106/RSEMquant.ENSEMBL/"
getGeneResults = function(a) {
 b = a[grep(".gene",a)]
 return(b)
files = paste(wd, getGeneResults(list.files(wd)), sep="")
#load in the data
for(i in 1:nrow(files.v2)){
 x = read.table(file=files.v2[i, "file"], sep="\t", header=TRUE)
 x = x[,c("gene id", "expected_count")]
 colnames(x)[2] = files.v2[i, "sample"]
 if(files.v2[i, "file"]!=files.v2[1, "file"]) rsem = merge(x, rsem, by=c("gene id"), all=TRUE)
 if(files.v2[i, "file"]==files.v2[1, "file"]) rsem = x
x = read.table(file=files.v2[i, "file"], sep="\t", header=TRUE)
estCnts = rsem[,-1]
rownames(estCnts) = rsem$gene id
counts = round(estCnts,0)
save(counts, file="Y:/Britt/RNAseq.20171106/data/RSEM.ensembl.estCounts.noFiltering.Rdata")
```

Reporting Preprocessing

- Data
 - When downloaded
 - Where saved
- Processing code
 - Just referencing where or what was run
 - Versions of programs
- Summary of reads at each step
- If quantitating to a known reference transcriptome, like to check out percentage Ensembl "biotype" aligned to
- Look at Rmarkdown report
- The Rmd and html will be available on yampa under:

References

Hansen KD, Brenner SE, Dudoit S (2010). Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 38(12):e131.

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. (2015) *StringTie enables improved reconstruction of a transcriptome from RNA-seq reads*. Nat Biotechnol. 33(3):290-5.

Martin JA, Wang Z. (2011) Next-generation transcriptome assembly. Nat Rev Genet. 12(10):671-82.

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn, and Lior Pachter (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012 Mar 1; 7(3): 562–578.

Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A. & Dewey, C.N. (2010). RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics **26**, 493–500.

https://www.biostat.wisc.edu/bmi776/lectures/rnaseq.pdf

Lecture 12: 28 Feb 2019 BIOS 6660 Spring 2019 39