QUANTITATIVE STABILITY INEQUALITIES FOR VLASOV-POISSON AND HMF MODELS

Mohammed Lemou

CNRS, Université of Rennes 1 & ENS Rennes

Kinetic conference, sept. 7-11, 2015, London

General motivation

Get quantitative stability results of steady states f₀

$$f_0(x) = F(\sigma_0(x)),$$
 with montonic F ,

for evolution equations that essentially preserve the measure (or the rearrangement) and some functional (energy, momentum, etc):

$$\int G(f(t,x))dx = \int G(f(0,x))dx, \quad \forall G. \quad f(t)^* = f(0)^*$$

$$\mathcal{H}(f(t)) = \mathcal{H}(f(0)).$$

Quantitative means that the deviation at time t is controlled by the initial deviation from a steady state q:

$$||f(t) - f_0|| \le C||f(0) - f_0||$$
, $\forall t$. up to symmetries

Examples are: Vlasov-Poisson, HMF and 2D Euler systems. Most of the known stability results in these contexts are obtained via compactness arguments.

Two key estimates

Goal here: Quantitative functional inequality of the generic form (up to symmetries of the system ...)

$$||f - f_0||_{L^1}^2 \le C_1 \mathcal{F}(f^*, f_0^*) + C_2 (\mathcal{H}(f) - \mathcal{H}(f_0)).$$

Minimal regularity assumptions on the perturbation. For compactly supported steady states f_0 :

$$\mathcal{F}(f^*,f_0^*) \leq C \|f^* - f_0^*\|_{L^1}.$$

ightharpoonup First rearrangement inequality \implies Stability criteria, under which on has

$$\int \sigma_0(x)[f(x) - f_0(x)]dx \le \mathcal{H}(f) - \mathcal{H}(f_0) + \mathcal{F}_1(f^*, f_0^*)$$

with $\mathcal{F}_1(f, f) = 0$, up to symmetries of the problem.

➤ Refined rearangement inequality ⇒ Stability estimate:

$$||f-f_0||_{L^1}^2 \leq \int \sigma_0(x)[f(x)-f_0(x)]dx + \mathcal{F}_2(f^*,f_0^*).$$
 with $\mathcal{F}_2(f,f)=0 \ \forall f.$

Plan

- ➤ A generalized notion of rearrangement
- An extended Hardy-Littlewood type inequality: leading to a stability criteria on the steady state.
- ➤ A refined Hardy-Littelwood type inequality (RHL) for rearrangements: leading to a quantitative control of the whole distribution function.
- Applications to VP and HMF

Equimeasurability and Schwarz rearrangement

Equimeasurability: two nonnegative functions $f, g \in L^1(\Omega)$ are equimeasurable if and only if:

$$\int_{\Omega} \mathcal{C}(f(x)) dx = \int_{\Omega} \mathcal{C}(g(x)) dx, \quad \forall C$$

or equivalently: $\forall \lambda \geq 0$,

$$\mu_f(\lambda) = \text{meas}\{x \in \Omega; f(x) > \lambda\} = \text{meas}\{x \in \Omega; g(x) > \lambda\} = \mu_g(\lambda).$$

We denote by Eq(f) the set of functions equimeasurable with f.

- **The standard Schwarz symmetrization.** Let $f \in L^1(\Omega)$, then there exists a unique function $f^* \in L^1(\Omega)$ which is nonincreasing function of |x| such that f^* is equimeasurable with f.
- \blacktriangleright In other terms: if f^{\sharp} is the pseudo inverse of of μ_f , then

$$f^*(x) = f^{\sharp} \left(\mathsf{meas}(B_d(0,|x|) \cap \Omega) \right), \quad \forall \ x \in \Omega.$$

 f^* is essentialy the unique decreasing function of |x| which is equimeasurable with f.

The Hardy-Littlewood inequality

Hardy, Littlewood, Pólya: Inequalities, 1934, Cambridge press.

Lieb and Loss: Analysis.

Burton, Annales de l'IHP (1987), Math. Ann. (1989)

Let Ω be a measurable subset of \mathbb{R}^d and let f and g be two nonnegative measurable functions on Ω . Then

$$\int_{\Omega} f(x)g(x)dx \leq \int_{\Omega} f^*(x)g^*(x)dx,$$

In particular

$$\int_{\Omega} |x|(f(x)-f^*(x))dx \geq 0.$$

A well known tool to prove symmetry properties of minimizers.

Generalized rearrangement

Let σ be a nonnnegative measurable function of $\Omega \subset \mathbb{R}^d$, $d \geq 1$ such that for all $e \in [0, e_{max})$

$$meas\{x \in \Omega, \sigma(x) = e\} = 0.$$

Let

$$a_{\sigma}(e) = \text{meas}\{x \in \Omega, \sigma(x) < e\}, \quad a_{\sigma}(e_{max}) = |\Omega|.$$

For all $f \in L^1(\Omega)$, we define its rearrangement $f^{*\sigma}$ with respect to σ by

$$f^{*\sigma}(x) = f^{\sharp}(a_{\sigma}(\sigma(x))), \quad \forall x \in \Omega,$$

In particular $f^{*\sigma}$ is a decreasing function of $\sigma(x)$ and is equimeasurable with f.

Extended Hardy-Littlewood inequality

Let σ be as above. Then for any nonnegative functions $f, g \in L^1(\Omega)$ we have

$$\int_{\Omega} f(x)g(x)dx \leq \int_{\Omega} f^{*\sigma}(x)g^{*\sigma}(x)dx,$$

In particular

$$\int_{\Omega} \sigma(x)(f(x) - f^{*\sigma}(x)) dx \ge 0.$$

Does this nonnegative quantity control some strong norm $||f - f^{*\sigma}||$?

➤ Weak answer: Saturating the inequality ⇒ Compactness

if
$$\int_{\Omega} \sigma(x) (f_n(x) - f_n^{*\sigma}(x)) dx \to 0$$
, and if $\|f_n^{*\sigma} - f_0\|_{L^1} \to 0$ then

$$||f_n - f_0||_{L^1} \to 0.$$

In the same spirit as in Burchard-Guo (JFA, 2004) concerning the Riez rearrangement inequality.

Refined HL inequalities

Theorem: refined HL inequality (ML)

Let σ be as above and b_{σ} the pseudo inverse of a_{σ} . Then for any nonnegative function $f \in L^1(\Omega)$ we have

$$||f - f^{*\sigma}||_{L^1}^2 \le K(f^*, \sigma) \int_{\Omega} \sigma(x) (f(x) - f^{*\sigma}(x)) dx,$$

where $K(f^*, \sigma)$ is a constant depending only on f^* and σ . More generally, for any nonnegative $f, f_0 \in L^1(\Omega)$

$$(\|f - f_0^{*\sigma}\|_{L^1} + \|f_0\|_{L^1} - \|f\|_{L^1})^2 \leq K(f_0^*, \sigma) \left[\int_{\Omega} \sigma(x) (f(x) - f_0^{*\sigma}(x)) dx + \int_{\Omega} b_{\sigma} [2\mu_{f_0}(s)] \beta_{f^*, f_0^*}(s) ds \right],$$

with $\beta_{f,g}(s) = \text{meas}\{x \in \Omega : f(x) \le s < g(x)\}.$

A particular case:

Case of Schwarz symmetrization:

Corollary

For all $f \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$, $d \ge 1$, and all $0 \le m \le d$, we have

$$\int_{\mathbb{R}^d} |x|^m (f(x) - f^*(x)) dx \ge K_d ||f||_{L^{\infty}}^{-m/d} ||f||_{L^1}^{-1+m/d} ||f - f^*||_{L^1}^2,$$

$$K_d = 2^{-1+m/d} \frac{m^2}{4d^2} |B_d|.$$

This covers the Marchioro-Pulvirenti estimate used for 2D-Euler (1985): m = 2, and d = 2, and for homogeneous steady states for VP systems.

This estimate was used by Caglioti and Rousset to study long time behavior of some N particles systems (2007): homogeneous steady states to regularized VP, and Euler 2D.

First example: Vlasov-Poisson equations

$$\partial_t f + v \cdot \nabla_x f - \nabla_x \phi_f \cdot \nabla_v f = 0, \qquad f(t = 0, x, v) = f_0(x, v)$$

$$\phi_f(t,x) = -\frac{\gamma}{4\pi} \int_{\mathbb{R}^3} \frac{\rho_f(t,y)}{|x-y|} dy, \quad \rho_f(t,x) = \int_{\mathbb{R}^3} f(t,x,v) dv.$$

Poisson equation: $\Delta \phi_f = \gamma \rho_f$.

- ➤ Gravitational systems, $\gamma = +1$: galaxies, star clusters, etc.
- > Systems of charged particles , $\gamma=-1$: Coulomb interactions. One has to bound the space domain or to confine the system by adding a given potential.

Basic properties of VP

► Conservation of the energy: $\mathcal{H}(f) = E_{kin}(f) - \gamma E_{pot}(f)$

$$E_{\mathit{kin}}(f) = rac{1}{2} \int_{\mathbb{R}^6} |v|^2 \mathit{fdxdv}, \hspace{0.5cm} E_{\mathit{pot}}(f) = rac{1}{2} \int_{\mathbb{R}^3} |
abla_x \phi_f|^2 \mathit{dx}$$

- ► Conservation of the Casimir functionals $\int_{\mathbb{R}^6} G(f) dx dv$.
- Isotropic galactic models:

$$f_0(x,v) = F\left(\frac{|v|^2}{2} + \phi_{f_0}(x)\right).$$

Relative Hamiltonian:

$$\mathcal{H}(f)-\mathcal{H}(f_0)=\int_{\mathbb{R}^6}\left(\frac{|v|^2}{2}+\phi_0(x)\right)(f-f_0)dxdv-\frac{\gamma}{2}\int_{\Omega}|\nabla\phi_f(x)-\nabla\phi_0(x)|^2dx$$

Known stability results: Vlasov-Poisson system

- Linear stability Physics literature: Gardner, Antonov, Lynden-Bell (1960'), , Kandrup-Signet (1980'), Aly-Perez (1990'), Chavanis (2000'), ..., see also Binney-Tremaine. Most rigorous result: Doremus-Baumann-Feix (1970'). Key assumption: F decreasing.
- Non linear stability: Essentially a Mathematics literature in the two last decades.
 - Stability of a subclass of steady states under general perturbations: Wolansky, Guo, Rein, Dolbeault, Lin, Hadzic, Sanchez, Soler, Lemou-Méhats-Raphaël, Rigault ...
 - Stability of the whole class of steady states $Q_0(x, v) = F\left(\frac{|v|^2}{2} + \phi_0(x)\right)$, with F decreasing: Lemou-Méhats-Raphaël 2012.
 - A different important context: If periodic domain in space: Homogeneous steady states:

$$f(x,v)=g_0(|v|).$$

Asymptotic stability under Penrose conditions and regularity assumptions: Landau damping, Mouhot-Villani 2011.

Statement of stability inequalities for VP

The energy space

$$\mathcal{E} = \{ f \in L^{\infty} : f \ge 0, \ \|(1 + |v|^2)f\|_{L^1} < \infty \}.$$

Theorem: Quantitative stability (ML).

We have the following

i) There exist a constant $K_0 > 0$ depending only on f_0 such that or all $f \in \mathcal{E}$

$$\begin{split} \|f - f_0\|_{L^1} &\leq \quad \|f^* - f_0^*\|_{L^1} + \\ K_0 \left[\mathcal{H}(f) - \mathcal{H}(f_0) + 2|\phi_{f_0}(0)| \|f^* - f_0^*\|_{L^1} + \|\nabla \phi_f - \nabla \phi_{f_0}\|_{L^2}^2 \right]^{1/2}. \end{split}$$

ii) There exist constants K_0 , $R_0 > 0$ depending only on f_0 such that, for all $f \in \mathcal{E}$ satisfying

$$\inf_{z\in\mathbb{R}^3}\left(\|\phi_f-\phi_{f_0}(.-z)\|_{L^\infty}+\|\nabla\phi_f-\nabla\phi_{f_0}(.-z)\|_{L^2}\right)< R_0,$$

there holds:

$$||f - f_0(. - Z_{\phi_f})||_{L^1} + ||\nabla \phi_f - \nabla \phi_{f_0}(. - Z_{\phi_f})||_{L^2} \le ||f^* - f_0^*||_{L^1} + K_0 ||f(f) - \mathcal{H}(f_0) + K_0 ||f^* - f_0^*||_{L^1}|^{1/2}$$

Second example: HMF model

The Hamiltonian Mean Field (HMF) model is a kinetic model describing particles on a unit circle interacting via an inifinite range attractive cosine potential: $f(t, \theta, v), \theta \in [0, 2\pi], v \in \mathbb{R}$.

$$\partial_t f + v \ \partial_\theta f - \partial_\theta \phi_f \ \partial_v f = 0, \qquad f(t=0,\theta,v) = f_0(\theta,v)$$

$$\phi_f(t,\theta) = -\int_0^{2\pi} \rho_f(t,\theta') \cos(\theta-\theta') d\theta', \quad \rho_f(t,\theta) = \int_0^{2\pi} f(t,\theta,v) dv.$$

Magnetization vector:

$$M_f = \int_0^{2\pi} \rho_f(\theta) u(\theta) d\theta, \quad u(\theta) = (\cos \theta, \sin \theta)^T.$$

$$\phi_f(\theta) = -M_f \cdot u(\theta).$$

Hamiltonian:

$$\mathcal{H}(f) = \frac{1}{2} \iint v^2 f(\theta, v) d\theta dv - \frac{1}{2} |M_f|^2.$$

steady states of the HMF model

Consider the following class of steady states

$$f_0(\theta, v) = F(e_0(\theta, v)), \quad \text{with} \quad e_0(\theta, v) = \frac{v^2}{2} + \phi_0(\theta),$$

$$\phi_0(\theta) = -m_0 \cos \theta, \qquad m_0 > 0.$$

Note that f_0 may have an unbounded support.

The relative Hamiltonian writes

$$\mathcal{H}(f) - \mathcal{H}(f_0) = \iint \left(\frac{v^2}{2} + \phi_0(x)\right) (f - f_0) d\theta dv - \frac{1}{2} |M_f - M_{f_0}|^2$$

No stability result in this case. Formal linear stability criteria has been given by Barré et al 2011 and more explicitly by Ogawa, 2013.

Non linear stability Criteria for HMF

Steady states of the form

$$f_0(\theta, v) = F(e_0(\theta, v)), \quad e_0(\theta, v) = \frac{v^2}{2} - m_0 \cos \theta, \quad m_0 > 0.$$

Assume F is decreasing and let

$$\kappa_0 = \int_0^{2\pi} \int_{-\infty}^{+\infty} \left| F'(e_0(\theta, v)) \right| \left(\frac{\int_{\mathcal{D}} (\cos \theta - \cos \theta') (e_0(\theta, v) - \phi_0(\theta'))^{-1/2} d\theta'}{\int_{\mathcal{D}} (e_0(\theta, v) - \phi_0(\theta'))^{-1/2} d\theta'} \right)^2 d\theta dv.$$

We prove that if $\kappa_0 < 1$, then f_0 is orbitally stable.

The same criteria has been obtained formally for the linear stability by Barré et al (2011) and more explicitly by Ogawa (2013).

 \succ f_0 may have an unbounded support, but in this case we assume

$$||f_0||_{L^p} < +\infty, \quad \forall \ 0 < p < 1/3.$$

Non linear stability for HMF (L, Luz, Méhats)

There exists $\delta > 0$ such that, for all $f \in L^1\left((1+|v|^2)d\theta dv\right)$ satisfying $|M_f - M_{f_0(\cdot -\theta_f)}| < \delta$, we have

$$egin{aligned} \|f-f_0(\cdot- heta_f)\|_{L^1}^2 &\leq C\left(\mathcal{H}(f)-\mathcal{H}(f_0)+C(1+\|f\|_{L^1})\|f^*-f_0^*\|_{L^1}
ight. \ &+C\int_0^{+\infty} s^2\left(f_0^\sharp(s)-f^\sharp(s)
ight)_+ ds + C\int_0^{+\infty} \mu_{f_0}(s)^2eta_{f^*,f_0^*}(s)ds
ight), \end{aligned}$$

where

 $\beta_{f^*,f^*_0}(s) = \text{meas} \{(\theta,v) \in [0,2\pi] \times \mathbb{R} : f^*(\theta,v) \leq s < f^*_0(\theta,v) \}$, for all $s \geq 0$, and where C is a positive constant depending only on f_0 . The parameter θ_f is defined by $M_f = |M_f|(\cos\theta_f,\sin\theta_f)^T$. In particular, if f_0 is a compactly supported steady state, then

$$\|f - f_0(\cdot - \theta_f)\|_{L^1}^2 \leq C \left(\mathcal{H}(f) - \mathcal{H}(f_0) + C(1 + \|f\|_{L^1}) \|f^* - f_0^*\|_{L^1} \right).$$

Main lines of the proof: i) reduce to a functional of M_f .

We write the relative Hamiltonian in the following form $(\phi_f(\theta) = M_f \cdot u(\theta))$

$$\mathcal{D} = \mathcal{H}(f) - \mathcal{H}(f_0) = \iint \left(\frac{v^2}{2} + \phi_f(x)\right) (f - f_0) d\theta dv + \frac{1}{2} |M_f - M_0|^2.$$

We take : $\sigma(\theta, \mathbf{v}) = \frac{\mathbf{v}^2}{2} + \phi + \max \phi$ and denote $f^{*\sigma} = f^{*\phi}$. Note that: $f_0 = f_0^{*\phi_0}$.

$$\mathcal{D} = \iint \left(\frac{|v|^2}{2} + \phi + \max \phi\right) (f - f^{*\phi}) d\theta dv + \iint \left(\frac{v^2}{2} + \phi\right) (f^{*\phi} - f_0^{*\phi}) d\theta dv + \iint \left(\frac{v^2}{2} + \phi\right) (f_0^{*\phi} - f_0) d\theta dv + \frac{1}{2} |M_f - M_0|^2.$$

We get

$$\begin{split} \frac{\mathcal{J}(|M_f|) - \mathcal{J}(|M_{f_0}|) \leq \mathcal{H}(f) - \mathcal{H}(f_0) +}{\int_0^{+\infty} s^2 \left(f_0^{\sharp}(s) - f^{\sharp}(s) \right)_+ ds + C(1 + \|f\|_{L^1}) \|f^* - f_0^*\|_{L^1}} \cdot \\ \mathcal{J}(|M_f|) = \iint \left(\frac{v^2}{2} + \phi \right) f_0^{*\phi} d\theta dv + \frac{1}{2} |M_f|^2. \end{split}$$

ii) Stability criteria for HMF

The stability criteria: the quadratic form

$$\mathcal{J}''(m_0) = 1 - \kappa_0 > 0, \qquad \phi_0(\theta) = -m_0 \cos \theta.$$

- ➤ In case of VP, this leads to a criteria which was proved to hold true in L-Méhats-Raphaël, 2012, thanks to a new Poincaré type inequality.
- ➤ We have (locally)

$$\mathcal{J}(m)-\mathcal{J}(m_0)\geq C(m-m_0)^2, \qquad \forall \ m>0.$$

Now we first write the relative Hamiltonian in the following form

$$\mathcal{H}(f) - \mathcal{H}(f_0) = \iint \left(\frac{v^2}{2} + \phi_0(\theta)\right) (f - f_0) d\theta dv - \frac{1}{2} |M_f - M_{f_0}|^2.$$

$$\sigma(x, v) = \frac{v^2}{2} + \phi_0(\theta) + m_0, \qquad f^{*\sigma} \equiv f^{*\phi_0}, \qquad f_0^{*\phi_0} = f_0.$$

$$a_{\sigma}(e) = \int_0^{2\pi} (e + m_0 \cos \theta)_+^{1/2} d\theta.$$

$$\|f - f_0\|_{L^1}^2 \le C \left(\mathcal{H}(f) - \mathcal{H}(f_0) + C(1 + \|f\|_{L^1}) \|f^* - f_0^*\|_{L^1} + \frac{1}{2} |M_f - M_0|^2 \right) + C \int_0^{+\infty} a_\sigma^{-1}(2\mu_0(s)) \operatorname{meas}\{f^* \le s < f_0^*\} \ ds.$$

In summary

There exists $\delta > 0$ such that:

If f(t) is the solution the HMF model with initial data f_{init} then we have

$$\|f(t) - f_0(\cdot - \theta_{f(t)})\|_{L^1}^2 \le C \left[\mathcal{H}(f_{init}) - \mathcal{H}(f_0) + C(1 + \|f_{init}\|_{L^1}) \|f_{init}^* - f_0^*\|_{L^1} + \int_0^{+\infty} s^2 \left(f_0^\sharp(s) - f_{init}^\sharp(s) \right)_+ ds + \int_0^{+\infty} \mu_0(s)^2 \text{meas} \{ f_{init}^* \le s < f_0^* \} \ ds.
ight]$$

provided that

$$|M_{f_{init}} - M_{f_0(.+\theta_0)}| < \delta.$$

