Probability Theory

Consider events A and B.

- Rule 1: $0 \le Pr\{A\} \le 1$.
- Rule 2: If there are k events A_1, A_2, \ldots, A_k that make up all possible events, then $\sum_{i=1}^k Pr\{A_i\} = 1$
- Rule 3: The probability that A does not occur is: $P\{A^C\} = 1 - Pr\{A\}$
- Rule 4: For any two events A and B, the probability of "A occurs or B occurs or both occur" is: $P\{A \text{ or } B\} = Pr\{A\} + Pr\{B\} Pr\{A \text{ and } B\}$
- Rule 5: If A and B are mutually exclusive (or disjoint), then $Pr\{A \text{ and } B\} = 0$
- Rule 6: The conditional probability of A given B has occurred is: $Pr\{A|B\} = \frac{Pr\{A \text{ and } B\}}{Pr\{B\}}$
- Rule 7: $Pr\{A \text{ and } B\} = Pr\{A|B\}Pr\{B\}$
- Rule 8: $Pr\{A \text{ and } B^c\} = Pr\{A\} Pr\{A \text{ and } B\}$
- Rule 9: $Pr\{A^C|B\} = 1 Pr\{A|B\}$
- Rule 10: If an event A is split by multiple events B_1, B_2, \ldots, B_k , then the following is true: $Pr\{A\} = Pr\{A \text{ and } B_1\} + Pr\{A \text{ and } B_2\} + \cdots + Pr\{A \text{ and } B_k\}$

For two events A and B: $Pr\{A\} = Pr\{A \text{ and } B\} + Pr\{A \text{ and } B^C\}$

- ullet For two events A and B which are independent, both of the following properties hold true:
 - 1. $Pr\{A \text{ and } B\} = Pr\{A\}Pr\{B\}$
 - 2. $Pr\{A|B\} = Pr\{A\}$

Binomial Random Variables

If Y is a binomial random variable:

- $Pr{Y = j} = \binom{n}{j} p^j (1-p)^{n-j}$ where $\binom{n}{j} = \frac{n!}{j!(n-j)!}$
- $\mu_Y = np$
- $\sigma_Y^2 = np(1-p)$

Normal Random Variables

If Y is a normal random variable with mean μ_Y , standard deviation σ_Y (i.e $Y \sim N(\mu_Y, \sigma_Y)$) then;

- $Z = \frac{Y \mu_Y}{\sigma_Y}$ is standard normal, i.e. $Z \sim N(0, 1)$.
- $Pr\{Z > a\} = 1 P(Z < a)$ for some constant a.
- $Pr\{a < Z < b\} = Pr\{Z < b\} Pr\{Z < a\}$ for some constants a and b.

• The k^{th} percentile of Y is: $Y^{(k)} = \mu_Y + Z^{(k)}\sigma_Y$ where $Z^{(k)}$ is the k^{th} percentile of a Z.

Distribution of the Sample Mean

If a random sample from a population Y with mean μ_Y and standard deviation σ_Y is taken and either

(i): The population is normally distributed, or

(ii):
$$n \ge 30$$

then the sample mean \bar{Y} is normally distributed with mean μ_Y , standard deviation $\frac{\sigma_Y}{\sqrt{n}}$ (I.e., $\bar{Y} \sim N(\mu_Y, \sigma_{\bar{Y}} = \frac{\sigma_Y}{\sqrt{n}})$).

Confidence Interval for μ

- A $(1-\alpha)100\%$ CI for μ is: $\bar{y} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ at d.f. = n - 1
- To calculate what sample size you should take for a margin of error within e: $n = \frac{t_{\alpha/2}^2 s^2}{e^2}$ where we use d.f. $= \infty$ for $t_{\alpha/2}$.

Confidence Interval for $\mu_1 - \mu_2$

• A (1- α)100% CI for $\mu_1 - \mu_2$ is: $(\bar{y}_1 - \bar{y}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ at d.f. = ν (this will be given).

Hypothesis Test for $\mu_1 - \mu_2$

- Step 1: State the null and alternative.
- Step 2: The test-statistic is: $t_s = \frac{(\bar{y}_1 \bar{y}_2) 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ at d.f. = ν (this will be given)
- Step 3: The possible p-values are: If $H_A: \mu_1 \neq \mu_2$, p-value = $2Pr\{t > |t_s|\}$ If $H_A: \mu_1 < \mu_2$, p-value = $Pr\{t < t_s\}$ If $H_A: \mu_1 > \mu_2$, p-value = $Pr\{t > t_s\}$

General Definitions

- p-value: The probability of observing our sample data or more extreme, if the null hypothesis is true.
- Type I error: When we reject the null, if in reality the null is true.
- Type II error: When we fail to reject the null, if in reality the null is false.
- Step 4: Decision Rule (for any hypothesis test): If p-value $< \alpha$, reject H_0 . If p-value $\ge \alpha$, fail to reject H_0 .

Definitions for ANOVA

- $n_i = \text{sample size for group } i$ n_{\bullet} = overall sample size = $\sum_{i=1}^{I} n_i$
- $\bar{y}_i = \text{sample mean for group } i$ $\bar{\bar{y}} = \frac{\sum_{i=1}^{I} n_i \bar{y}_i}{n_i} = \text{overall group mean}$ $s_i = \text{sample standard deviation for group } i$ I = total number of groups
- $SSB = \sum_{i=1}^{I} n_i (\bar{y}_i \bar{\bar{y}})^2$ $d.f.\{B\} = I 1$ $MSB = \frac{SSB}{d.f.\{B\}}$
- $SSW = \sum_{i=1}^{I} (n_i 1)s_i^2$ $d.f.\{W\} = n_{\bullet} I$ $MSW = \frac{SSW}{d.f.\{W\}}$
- SSTO = SSB + SSW $\begin{array}{l} d.f.\{TO\} = n_{\bullet} - 1 \\ MSTO = \frac{SSTO}{d.f.\{TO\}} \end{array}$

Hypothesis Test ANOVA

- Step 1: State the null and alternative.
- Step 2: The test-statistic is: $F_S = \frac{MSB}{MSW}$ with $d.f.\{numerator\} = I - 1$ $d.f.\{denomenator\} = n_{\bullet} - I$
- Step 3: The p-value is: $Pr\{F > F_S\}$

Confidence Intervals for ANOVA

• A $(1-\alpha)100\%$ simultaneous/overall/family-wise CI for k pairs of means is:

$$\bar{y}_a - \bar{y}_b \pm t_{\alpha/(2k)} \sqrt{MSW(\frac{1}{n_a} + \frac{1}{n_b})}$$

at d.f = $n_{\bullet} - I$

Confidence Intervals for a Proportion

• A $(1 - \alpha)100\%$ confidence interval for p (the true proportion) is:

proportion) is:
$$\tilde{p} \pm Z_{\alpha/2} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}$$
 where $\tilde{p} = \frac{y+2}{n+4}$ and you may find $Z_{\alpha/2}$ with $t_{\alpha/2}$ at d.f. $= \infty$

χ^2 Goodness of Fit Test

- Step 1: State the null and alternative.
- Step 2: $e_i = np_i$, $\chi_S^2 = \sum_{i=1}^k \frac{(o_i e_i)^2}{e_i}$ with d.f. = k 1.
- Step 3: p-value = $Pr\{\chi^2 > \chi_S^2\}$

χ^2 Independence Test

• Let there be a categorical variable A with I categories, and let there be a categorical variable B with J categories.

Step 1: State the null and alternative.

• Step 2: $e_{ij} = \frac{r_i c_j}{n}$, where $r_i = \text{row total for row } i, c_j =$

column total for column
$$j$$

$$\chi_S^2 = \sum_{alli,j} \frac{(o_{ij} - e_{ij})^2}{e_{ij}} \text{ with d.f.} = (I - 1)(J - 1)$$

• Step 3: p-value = $Pr\{\chi^2 > \chi_S^2\}$

Confidence Intervals for p_1 - p_2

• A $(1-\alpha)100\%$ confidence interval for p_1-p_2 (a difference in true probabilities/proportions) is:

$$\begin{array}{l} \tilde{p}_1 - \tilde{p}_2 \pm Z_{\alpha/2} \sqrt{\frac{\tilde{p}_1(1-\tilde{p}_1)}{n_1+2} + \frac{\tilde{p}_2(1-\tilde{p}_2)}{n_2+2}} \\ \text{where } \tilde{p}_1 = \frac{y_1+1}{n_1+2}, \, \tilde{p}_2 = \frac{y_2+1}{n_2+2} \text{ and you may find } \\ Z_{\alpha/2} \text{ with } t_{\alpha/2} \text{ at d.f.} = \infty \end{array}$$

Linear Regression

- The estimated slope is: $b_1 = r \frac{s_y}{s_z}$
- The estimated intercept is: $b_0 = \bar{y} b_1 \bar{x}$
- The estimated error is: $e_i = y_i \hat{y}_i$, where \hat{y}_i is the estimated value of y based on our regression line.
- $s_e = \sqrt{\frac{SSE}{n-2}}$
- A $(1-\alpha)100\%$ confidence interval for the slope is: $b_1 \pm t_{\alpha/2} \frac{s_e}{\sqrt{(n-1)s_X^2}}$ with d.f. = n-2
- If the assumptions of linear regression hold, $Y \sim N(\beta_0 + \beta_1 X, \sigma_{\epsilon}^2)$ for any value of X.
- The coefficient of determination is: r^2 (the correlation coefficient, squared)