MAM5 INUM Deep Learning

Examen final - 5 février 2021 - Durée: 1 h

Document interdit, téléphone interdit, calculatrice interdite. Les réponses doivent être **détaillées**.

om:		Prénon	n:		
Ex. 1:	Ex. 2:	Ex. 3:	Ex. 4:	Ex. 5:	Total (/20):
onsidérons u		qui peut pren	dre <i>K</i> valeurs		
seau de de neuro	neurones est pones doit comp	une couche p oorter cette de	leinement cor ernière couche	nnectée ("full ? Quelle fonc	a dernière couche du s y connected"). Combi tion faut-il appliquer à arable avec <i>y</i> ?
			entropy" <i>L</i> (ŷ, y te y encodée a		our mesurer la qualité ot encoding".

Exercice 2	(Approximation	ReLII.	≃ 5 1	nts)
LACICICE 2	(11ppi omiliauoli	ICLU,		

1. Dessiner la fonction f(x) approchée par le réseau ReLU à une couche cachée suivant

$$f(x) = \text{ReLU}(\text{ReLU}(x) - \text{ReLU}(2x - 1)).$$

2. Soit g(x) la fonction linéaire par morceau définie par

$$\begin{cases} x & \text{if } x \in [0,1], \\ 2-x & \text{if } x \in [1,2], \\ 0 & \text{sinon.} \end{cases}$$

Contruire un réseau de neurones avec 1 couche cachée et la fonction d'activation ReLU pour approximer la fonction g(x).

au. La fonction σ
ndient, calculer $\frac{\partial f}{\partial w}$
$\frac{\partial w}{\partial w}$

MAM5 INUM Deep Learning

2. On suppose que les poids w_1 , w_2 , w_3 vérifient $-1 \le w_i \le 1$ pour $i=1,2,3$. Montrer que
$\left \frac{\partial f}{\partial w_1}(x)\right \le \left(\frac{1}{4}\right)^{\frac{1}{3}} x .$
3. Expliquer à partir de la question précédente ce qu'on appelle le problème de la dispar tion du gradient ("vanishing gradient").

Exercice 4 (Fast-RCNN, \simeq 4 pts)

Décrire, à l'aide d'un schéma, l'architecture du détecteur d'objet Fast-RCNN. On ne vous demande pas de donner tous les détails de l'architecture mais les éléments principaux doivent être clairement mis en avant et expliqués.

MAM5 INUM

Deep Learning

MAM5 INUM Deep Learning