Coordination in Social Networks

Chun-ting Chen

February 18, 2019

- Consider a rigid regime, where "communication barrier" is imposed to impede people to show their discontents.
- Communication barrier
 - 1 Threatened by suppression, exile, eavesdropping, etc.
 - No (fair) voting system, No (fair) mass media, No (uncensored) discussion forum, etc.
- How do Rebels made decisive collective action?

History tells us:

- An event may trigger later events.
 - Benny Tai, a leader of Occupy Central, has said "It (Umbrella Protest) is beyond what I imagined", while Occupy Central trigger the Umbrella Protest in Hong Kong.
- People communicate in their social network.
 - Ex., Gangster networks (1911 Revolution); Church networks (1989 Berlin Uprising, 2014 Umbrella Protest); Friend networks, etc.

Question

• If rational rebels know that a "tiny" event can trigger later events, how do they conduct a revolution under communication barrier?

Objective

 What kinds of social networks can conduct such decisive collective action?

Model

- Rebels communicate in network.
- Communication is not free but costly.
- 3 Communication is through taking actions.

Looking for

• An equilibrium, where the ex-post efficient outcome played repeatedly after a finite time T in the path when δ is high enough.

Related Literature

- Public good provision.
 - One strand: [Lohmann, 1993,1994], [Bolton and Harris, 1999], [Bramoullé and Kranton, 2007]
 - This paper adds network-monitoring
- Social learning.
 - One strand: [Goyal, 2012], [Acemoglu et al., 2011], [Chatterjee and Dutta, 2011].
 - This paper considers farsighted-learning in the game
- · Repeated game.
 - One strand: [Laclau, 2012], [Wolitzky, 2013], [Wolitzky, 2014]
 - This paper consider incomplete information and imperfect monitoring
 - One strand: [Fudenberg and Yamamoto, 2010] [Fudenberg and Yamamoto, 2011] [Wiseman, 2012] [Yamamoto 2014]
 - This paper consider n-person game without full-rank conditions on public or private signals generated by single-period actions.

Network

- Let $N = \{1, ..., n\}$ be the set of players.
- G_i is a subset of N, where $i \in G_i$
- G_i is i's neighborhood.
- $G = \{G_i\}_i$ is the network.

Definition

- **1** *G* is *fixed* if *G* is not random.
- **2** *G* is *finite* if *N* is finite.
- **3** *G* is undirected if $j \in G_i \Rightarrow i \in G_j$.
- A path from i to j, $i \neq j$ in an undirected G is

$$(i,l_1,...,l_q,j)$$

such that $l_1 \in G_i, ..., l_q \in G_j$ and $i, l_1, ..., l_q, l$ are all distinct.

- § *G* is *connected*: An undirected *G* is connected $\Leftrightarrow \forall i, j, i \neq j$ there is a path from *i* to *j*.
- **6** *G* is *acyclic*: An undirected *G* is acyclic \Leftrightarrow the path from *i* to *j*, for *i* ≠ *j*, is unique.

Static *k*-threshold game [Chwe 2000]

- *i*'s type
- $\theta_i \in \Theta_i = \{Rebel, Inert\}$
- $\Theta = \times_{i \in N} \Theta_i$
- $\theta \in \Theta$
- $A_{Rebel_i} = \{ revolt, stay \}; A_{Inert_i} = \{ inert \}$
- 1 ≤ *k* ≤ *n*
- Static game payoff for player *i*: $u_{\theta_i}(a_{\theta_i}, a_{-\theta_i})$

```
u_{Inert_i}(a_{Inert_i}, a_{-\theta_i}) = 1 if a_{Inert_i} = \mathbf{inert}
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 1 if a_{Rebel_i} = \mathbf{revolt} and \#\{j : a_{\theta_j} = \mathbf{revolt}\} \ge k
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = -1 if a_{Rebel_i} = \mathbf{revolt} and \#\{j : a_{\theta_j} = \mathbf{revolt}\} < k
u_{Rebel_i}(a_{Rebel_i}, a_{-\theta_i}) = 0 if a_{Rebel_i} = \mathbf{stay}
```

Repeated k-threshold game

- Time is infinite, discrete.
- Nature choose θ at o period.
- Players play the static *k*-threshold game infinitely repeatedly.

Assumption

- Players know their neighbors' types.
- Players perfectly observe their neighbors' actions only.
- *G is FFCCU (fixed, finite, connected, commonly known, undirected)*
- Payoff is hidden.
- π has full support
- Common δ.

Notations:

- $[Rebels](\theta) = \{j : \theta_j = Rebel\} \text{ for all } \theta \in \Theta.$
- τ: a strategy profile
- $h_{G_i}^m$: the history *i* can observe up to period *m*
- $\beta_i^{\pi,\tau}(\theta|h_{G_i}^m)$: i's belief for a θ at period m.

APEX

Definition

A sequential equilibrium is approaching efficient (APEX) \Leftrightarrow

 $\forall \theta$ there is a finite time T^{θ}

such that ex-post efficient outcome repeats after T^{θ} in the path.

Lemma

If a sequential equilibrium τ^* is $APEX \Rightarrow$

 $\forall \theta \ \forall i$, there is a finite time T_i^{θ}

such that $\sum_{\theta:\#[Rebels](\theta)\geq k} \beta_{G_i}^{\pi,\tau^*}(\theta|h_{G_i}^s) = 1$ or = 0 if $s \geq T_i^{\theta}$.

Leading Example

An Apex Equilibrium for k = n = 3 in

- At 1st period
 - Rebel 2 chooses **revolt** if he observes $\theta = (Rebel, Rebel, Rebel)$; Otherwise, chooses **stay** forever.
 - Rebel 1 (or Rebel 3) choose stay.
- After 1st period
 - If Rebel 2 chooses revolt in the last period, then Rebel 1 (or Rebel 3) chooses revolt forever;
 - If Rebel 2 chooses stay in the last period, then Rebel 1 (or Rebel 3) chooses stay forever.
- Any deviation ⇒
 - Choosing stay forever.

Goal

Goal

Can we generalize the result in Leading Example for all FFCCU networks?

Results

Results

- k = n: we can.
- k < n: with additional assumption,
 - acyclic FFCCU: we can .
 - FFCCU: open question.

Result: k = n

Theorem

In any FFCCU network, if the prior has full support, then for repeated k = n Threshold game, there is a δ such that a sequential equilibrium which is APEX exists.

Proof:

- **1** Some Inerts neighbors \Rightarrow play **stay** forever.
- No Inert neighbor ⇒ play revolt until stay is observed, and then play stay forever.
- 3 Any deviation \Rightarrow play **stay** forever.
- ② Since networks are FFCCU, there is a finite time T^{θ} such that ex-post efficient outcome repeats afterwards.

Result: k = n

Comments:

- **1)** stay ⇔ some Inerts is observed.
- 3 Any deviation \Rightarrow punished by shifting to **stay** forever by single player
 - Group punishment is not necessary.

Result and Conjecture: k < n

Definition

Strong connectedness ⇔ for every pair of Rebels, there is a path consisting of Rebels to connect them.

Definition

Full support on strong connectedness⇔

 $\pi(\theta)$ > 0 if and only if θ has strong connectedness.

Result and Conjecture: k < n

Theorem

In any acyclic FFCCU network, **if** θ has strong connectedness and **if** π has full support on strong connectedness, **then** for repeated k < n Threshold game, **there is** a δ such that a weak sequential equilibrium which is APEX **exists**.

Conjecture

In any FFCCU network, ...[same as above]...

Outline

- The role of Strong Connectedness
- 2 Communication by actions
- 3 Communication in equilibrium
 - 1 Step o: Build communication protocol
 - 2 Step 1: Characterize "information hierarchy" in communication.
 - Step 2: Build reporting and coordination messages in the path, and characterize the in-path belief updating.
 - 4 Step 3: Set up off-path belief.

The role of Strong Connectedness:

• Otherwise, the game is reduced to incomplete information game without communication for some θ

Example,

- **1** Let k = 2. Assume $\theta = (Rebel_1, Inert_2, Rebel_3)$.
- 2 Let

$$RB_1$$
 RB_3

- 3 Then, Inert 2 block the information transmission.
- This is an incomplete information game without communication.

Communication by actions

1 Indexing each node i as a distinct prime number x_i . For instance,

- Then, for instance,
 - If

• Rebel 3 report $x_1 \times x_7 \times x_3$ to Rebel 1 by sending a finite sequence

stay, ..., stay,
$$\underbrace{\text{revolt}, \text{stay}, ..., \text{stay}}_{x_1 \times x_7 \times x_3}$$

Communication in Equilibrium. Step o

• Characterize the time horizontal line as

$$\underbrace{\langle coordination \ period \rangle}_{o-\mathit{block}} \underbrace{\langle reporting \ period \rangle \langle coordination \ period \rangle}_{1-\mathit{block}} \dots$$

- **1** Reporting period: talking about θ
- ② Coordination period: talking about "Have some Rebels known $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k$?"
- 3 Why do I need coordination period?

Communication in Equilibrium. Step o.

- Q: Why do I need coordination period?
- A: Since higher-order belief is hard to track.
 - APEX: T^{θ} for all θ .
 - Calculating T^{θ} for all θ is tedious.
- I: If a Rebel knows $\#[Rebels](\theta) \ge k$ or $\#[Rebels](\theta) < k \Rightarrow$ sending messages to let others know.

Why do I need "Information Hierarchy"?

- ⇒ To ease the punishment scheme.
- Case 1:
- Let k = 4

- 1 Rebel 1 can only be monitored by Rebel 2.
- Given some strategies, suppose Rebel 2,3,4,5 can coordinate at period T and play revolt forever.
- **3** If Rebel 1 deviate at period T 1, Rebel 2 has no incentive to punish him.

Why do I need "Information Hierarchy"?

- ⇒ To characterize Rebels' incentives in communication.
- Case 2:
- Let k = 4

$$RB_1 - RB_2 - RB_3 - RB_4 - RB_5$$

- 1 Rebel 2 has more incentive than Rebel 1 in sending messages.
- 2 Compare Rebel 3 and Rebel 2, etc.

At o-block, let

•

$$R^{\circ} = [Rebels](\theta)$$

At 1-block, let

$$N_i^{\circ} \equiv G_i$$
 $I_i^{\circ} \equiv G_i \cap R^{\circ}$

Define ≤° by

$$i \in \leq^{\circ} \Leftrightarrow \exists j \in \bar{G}_i (I_i^{\circ} \subseteq N_j^{\circ} \cap R^{\circ})$$

Let

$$R^{\scriptscriptstyle 1} \equiv \left\{ i \in R^{\scriptscriptstyle \circ} \middle| i \notin \leq^{\scriptscriptstyle \circ} \right\}$$

Ex., Rebel 1 is a non- R^1 node. Rebel 2 is a R^1 node.

$$RB_1$$
— RB_2 — RB_3 — RB_4 — RB_5

Calculation:

$$\begin{array}{ll} I_{1}^{o} = \left\{1,2\right\} & N_{1}^{o} \cap R^{o} = \left\{1,2\right\} \\ I_{2}^{o} = \left\{1,2,3\right\} & N_{2}^{o} \cap R^{o} = \left\{1,2,3\right\} \\ I_{3}^{o} = \left\{2,3,4\right\} & N_{3}^{o} \cap R^{o} = \left\{2,3,4\right\} \end{array}$$

Main idea:

- Rebel 2 is more "important" than Rebel 1.
- Rebel 3 and Rebel 2 are equally "important", etc.

In t + 1-block, denote

$$egin{array}{ll} N_i^t &\equiv & igcup_{k \in I_i^{t-1}} G_k \ & & & & igcup_{k \in G_i \cap R^t} I_k^{t-1} \end{array}$$

- N_i^t is i's extended neighborhood given i's information I_i^{t-1}
- I_i^t is *i*'s *extended* Rebel neighbors given *j*'s information I_j^{t-1} , where *j* is a R^t Rebel.

Define \leq^t by

$$i \in \leq^t \Leftrightarrow \exists j \in \bar{G}_i (I_i^t \subseteq N_j^t \cap R^\circ)$$

Let

$$R^{t+1} \equiv \left\{ i \in R^t \middle| i \notin \leq^t \right\}$$

Ex.,

- Rebel 1 is a non- R^1 node. Rebel 2 is a R^1 node. Rebel 3 is a R^1 node.
- Rebel 1 is a non- R^2 node. Rebel 2 is a non- R^2 node. Rebel 3 is a R^2 node.

$$RB_1$$
— RB_2 — RB_3 — RB_4 — RB_5

Calculation:

at 1-block	
$I_1^{\text{o}} = \{1, 2\}$	$N_1^{\circ} \cap R^{\circ} = \{1, 2\}$
$I_2^0 = \{1, 2, 3\}$	$N_2^0 \cap R^0 = \{1, 2, 3\}$
$I_3^0 = \{2, 3, 4\}$	$N_3^{\circ} \cap R^{\circ} = \{2, 3, 4\}$
, , , ,	,
at 2-block	
$I_1^1 = \{1, 2, 3\}$	$N_1^1 \cap R^0 = \{1, 2, 3\}$
$I_2^1 = \{1, 2, 3, 4\}$	$N_2^1 \cap R^0 = \{1, 2, 3, 4\}$
$I_2^1 = \{1, 2, 3, 4, 5\}$	$N_2^1 \cap R^0 = \{1, 2, 3, 4, 5\}$

Theorem

Given θ , if the network is FFCCU and acyclic and if the state has strong connectedness $\Rightarrow \exists t^{\theta}$ such that some $R^{t^{\theta}}$ Rebels whose $I^{t^{\theta}} \supset [Rebels](\theta)$.

At *t*-block, looking for messages (strategies) such that

- The length of players' messages is the same as the length of corresponding period.
- RP^t : the reporting period

reporting period
$$\overbrace{\langle \cdots \rangle}$$

• CD^t : the coordination period

- $\langle RP^t \rangle$: the reporting messages
- $\langle CD^t \rangle$: the coordination messages

Denote

•
$$\langle I_i^{t-1} \rangle = \mathbf{s}, ..., \mathbf{s}, \underbrace{\mathbf{r}, \mathbf{s}, ..., \mathbf{s}}_{X}$$

- $X = \times_{j \in I_i^{t-1}}$ j's prime index
- $\langle stay \rangle = s, ..., s$

Ideally, (by information hierarchy theory),

- R^t : report $\langle I^{t-1} \rangle$.
- Non- R^t : report $\langle stay \rangle$.
- ⇒ some Rebels knows the state.

However, not so obvious.

- Not cheap talks.
- Consider next 3 problems, where we suppose
 - An action-irrelevant message $\langle M \rangle$.
 - Starting with a *RP* and then a *CD* follows.
 - Observing ⟨M⟩ in CD ⇒ play revolt forever; Otherwise ⇒ play stay forever.

Pivotal player case 1: Free Rider Problem. (Rebel 4 and Rebel 5)

• k = 5

 Problem: Both Rebel 4 and Rebel 5 are pivotal ⇒ they will shift to play ⟨stay⟩ if others report truthfully.

Pivotal Player Case 2 (Rebel 5)

• *k* = 6

• **Problem**: Rebel 5 is pivotal ⇒ he shifts to play (**stay**) given others' truthful reporting.

Pivotal Player Case 3 (Rebel 4)

• *k* = 6

• **Problem**: Rebel 4 is pivotal ⇒ he shifts to play (**stay**) given others' truthful reporting.

Problem

• Rebels may deviate $\langle I^{t-1} \rangle$ to $\langle \mathbf{stay} \rangle$.

Remedy

- $\langle 1 \rangle = \mathbf{s}, ..., \mathbf{s}, \mathbf{r}$, as the message used by pivotal player.
- Continuation behavior contingent on both RP and CD.

Good news.

- Pivotal problems: only above three cases.
- The free rider problem: only the above case.
 - Two nearby Rebels. (only for acyclic *G*)

Good news

- With suitable coordination messages and continuation behavior
 - 1 Pivotal players will not deviate from playing (1).
 - Only pivotal players will play (1)

Good news

- By adding a $\langle \mathbf{x}_i \rangle = \mathbf{s}, ..., \mathbf{s}, \underbrace{\mathbf{r}, \mathbf{s}, ..., \mathbf{s}}_{x_i}$.
 - To create more equilibrium paths in coordination period.
- The belief updating after CD^t , t > 0 in the equilibrium path will be

Table: Belief updating after CD^t , t > 0

In RP ^t	In $CD_{1,1}^t$	In $CD_{1,2}^t$	
<i>i</i> plays	i plays	<i>i</i> plays	The events <i>j</i> believe with probability one
⟨stay⟩	$\langle \mathbf{x}_i \rangle$	⟨stay⟩	$i \notin R^t$
$\langle I_i^{t-1} \rangle$	$\langle stay \rangle$	$\langle stay \rangle$	$\#[Rebels](\theta) < k$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle stay \rangle$	$\#[Rebels](\theta) \ge k$
$\langle I_i^{t-1} \rangle$	$\langle \mathbf{x}_i angle$	$\langle \mathbf{x}_i angle$	$i \in R^t$
(1)	⟨stay⟩	⟨stay⟩	$\#[Rebels](\theta) < k$
(1)	$\langle \mathbf{x}_i \rangle$	(stay)	$\#[Rebels](\theta) \ge k$

Off-path Belief

i detects a deviation at s period, he forms off-path belief

$$\sum_{\theta \in \{\theta: \theta_j = Inert, j \notin G_i\}} \beta_{G_i}^{\pi, \tau}(\theta | h_{G_i}^{s'}) = 1$$
 (1)

for all $s' \geq s$.

- If $\#I_i^{\circ} < k$, he will play **stay** forever.
- This off-path belief then serve as a grim trigger.

Off-path Belief

Without (1), using this grim-trigger-like belief may not sustain APEX

• *k* = 5

- **Problem**: Without (1) being considered as an in-path strategies;
- Rebel 4 is pivotal; He shifts to report $x_3 \times x_5 \times x_7$ instead of $x_3 \times x_5 \times x_7 \times x_6$.
- Coordination can be made, but Rebel 6 is out of coordination since he detects a deviation.

Result: k < n

Comments:

- **1 stay** \Leftrightarrow some Inerts be observed.
- \bigcirc Any deviation \Rightarrow punished by shifting to **stay** forever by some players.

Discussion

- From the above steps, an APEX equilibrium is constructed.
- We can relaxed the assumption that payoff is hidden.
 - payoff is perfectly observed: easy to construct an APEX equilibrium.
 - payoff is noisy: with full support assumption, the existing equilibrium is APEX
- 3 This proof is still open for FFCCU network with cycles.
- Off-path belief did not satisfy full consistency property for FFCCU network without cycles.
- Prime number indexing also works for other discreet and finite state space.

Conclusion

- I show that, without cheap talk, in this repeated *k*-threshold game played in FFCCU networks without cycles, coordination still can happen.
 - Using sequence of actions to communicate.
- The equilibrium is constructive and does not rely on public or private signals other than actions.
- We can use prime number to index the states given that states are discrete and finite.
- 4 For the network with circle, it is still remaining to tackle with.