

6.1 无穷小量的阶

无穷小量的比较

 $\lim_{x \to 0} \frac{\sin x}{3x} = \frac{1}{3};$

 $\lim_{x \to 0} \frac{\sin x}{x^2} = \infty.$

例如 $x \to 0$ 时, $3x, x^2, \sin x$ 都是无穷小, 但

2 若 $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$, 称 β 比 α 低阶.

无穷小量的阶

3 若 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$, 称 β 和 α 同阶. ★ 若 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 1$, 称 β 和 α 等价, 记为 $\beta \sim \alpha$.

定义 设 α 、 β 是同一变化过程中的两个无穷小量.

1 若 $\lim_{\alpha} \frac{\beta}{\alpha} = 0$, 称 β 比 α 高阶, 记为 $\beta = o(\alpha)$.

注 若 $\lim \frac{\beta}{\alpha k} = c \neq 0, k > 0$, 则称 β 是关于 α 的 k 阶无穷小.

第六节・无穷小量的比较 无穷小量的阶

可见无穷小趋于 () 的速度是多样的.

∆ 3/26 ♥

第六节・无穷小量的比较 ▶ 无穷小量的阶

例如 章节 1.5 中已知

无穷小量的阶

 $\lim_{x \to 0} \frac{\sin x}{x} = 1; \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1$ $\lim_{x \to 0} \frac{\arcsin x}{x} = 1; \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1$

因此, $\mathbf{r} \times \mathbf{r} \to 0$ 时, 分子分母互为等价无穷小,

$$\frac{\tan x}{x} = 1$$

因此, 在 $x \to 0$ 时, $1 - \cos x$ 是关于 x 的二阶无穷小, 或由 $\lim_{x\to 0} \frac{1-\cos x}{\frac{1}{8}x^2} = 1$, 得等价关

第六节・无穷小量的比较 ▶ 无穷小量的新

例如 章节 1.5 中已知

无穷小量的阶

$$1 - \cos x \sim \frac{1}{2}x^2.$$

 $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$

第六节・无穷小量的比较 ▶ 无穷小量的阶 例1 证明 $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{\frac{1}{x}}=1.$

证明 记 $a^n - b^n = (a - b) (a^{n-1} + a^{n-2}b + \cdots + b^{n-1})$

令
$$\sqrt[n]{1+x} = t$$
, 则 $x \to 0 \Rightarrow t \to 1$, 且 $x = t^n - 1$. 原式 $= \lim_{t \to 1} \frac{t-1}{\frac{1}{n} \cdot (t^n - 1)}$ $= \lim_{t \to 1} \frac{n(t-1)}{(t-1)(t^{n-1} + t^{n-2} + \dots + t + 1)}$

 $=\frac{n}{1+1+1+1}=\frac{n}{n}=1.$ 即有等价关系 $\sqrt[n]{1+x} - 1 \sim \frac{1}{-x}$ 例2 证明: 当 $x \to 0$ 时, $e^x - 1 \sim x$. 证明 令 $y = e^x - 1$, 则 $x \to 0 \Rightarrow t \to 0$, 且 $x = \ln(1+t)$.

原式 = $\lim_{t \to 0} \frac{t}{\ln(1+t)} = \lim_{t \to 0} \frac{1}{\frac{1}{2} \ln(1+t)}$ $=\lim_{t\to 0}\frac{1}{\ln(1+t)^{1/t}}\frac{?}{=}\frac{1}{\ln c}=1$

$$e^x - 1 \sim x; \quad \ln(1+x) \sim x$$

更一般地, 我们有 (章节 1.7 例 4.5)

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a; \quad \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

第六节・无穷小量的比较 ▷ 无穷小量的阶

$$x\rightarrow 0$$

即有等价关系

A 6/26 ♥

Δ 8/26 ♥

常用的等价无穷小量

当 $x \to 0$ 时, 有如下这些常用的等价无穷小量:

(1)
$$\sin x \sim x$$

(5)
$$\ln(1+x) \sim x$$

(6)
$$e^x - 1 \sim x$$

(3)
$$\arcsin x \sim x$$

(7)
$$1 - \cos x \sim \frac{1}{2}x^2$$

(4)
$$\arctan x \sim x$$
 (8) $\sqrt[n]{1+x} - 1 \sim \frac{1}{n}x$

第六节・无穷小量的比较 ▶ 无穷小量的阶 等价无穷小量代换

定理 1 设 $\alpha \sim \alpha'$ 、 $\beta \sim \beta'$, 且 $\lim \alpha' \beta'$, $\lim \frac{\alpha'}{\beta'}$ 存在,

则有

(1) $\lim_{x \to x_0} \alpha \beta = \lim_{x \to x_0} \alpha' \beta'$ (2) $\lim_{x \to x_0} \frac{\alpha}{\beta} = \lim_{x \to x_0} \frac{\alpha'}{\beta'}$

证明

$$\lim \frac{\beta}{\alpha} = \lim \left(\frac{\beta}{\beta'} \frac{\beta'}{\alpha'} \frac{\alpha'}{\alpha}\right) = \lim \frac{\beta}{\beta'} \lim \frac{\beta'}{\alpha'} \lim \frac{\alpha'}{\alpha} = \lim \frac{\beta'}{\alpha'}$$

定理1可知, 求两个无穷小量商的极限时, 如果分子, 分母的等 价无穷小量存在,则就可用它们各自的等价无穷小量来代换原来

6.2 等价无穷小量代换原理

等价无穷小量代换

例3 求 $\lim_{r\to 0} \frac{\tan 2x}{\sin 3x}$

解 当 $x \to 0$ 时, $\tan 2x \sim 2x$, $\sin 3x \sim 3x$.

原式 = $\lim_{x \to 0} \frac{2x}{3x} = \frac{2}{3}$.

等价无穷小量代换

例4 求
$$\lim_{x\to 0} \frac{(1+x^2)^{\frac{1}{3}}-1}{\cos x-1}$$
.

解 当
$$x \to 0$$
 时, $\left(1 + x^2\right)^{\frac{1}{3}} - 1 \sim \frac{1}{3}x^2$, $\cos x - 1 \sim -\frac{1}{2}x^2$.

原式 =
$$\lim_{x \to 0} \frac{\frac{1}{3}x^2}{-\frac{1}{2}x^2} = -\frac{2}{3}$$
.

6.3 等价无穷小量运算规则

等价无穷小量代换

注 当
$$\alpha \sim \alpha'$$
、 $\beta \sim \beta'$ 时,下列等式总是成立:
$$\alpha \cdot \beta \stackrel{\checkmark}{\sim} \alpha' \cdot \beta', \qquad \frac{\alpha}{\beta} \stackrel{\sim}{\sim} \frac{\alpha'}{\beta'}$$

但下列等式未必成立:

$$\alpha \pm \beta \stackrel{\times}{\sim} \alpha' \pm \beta'$$

例如 当
$$x \to 0$$
 时, 有

$$x + x^2 \sim x + x^3$$
 两边同时相减 $x \sim x$

化某些极限运算的下述规则

运算规则 1

11 和差取大规则: 若 $\beta = o(\alpha)$. 则 $\alpha + \beta \sim \alpha$.

注 大相对于无穷小而言的, β 是高阶于 α 无穷小, 故 α 比, β 大,

设对同一变化过程。0.8 为无穷小、由等价无穷小的性质。可得简

例如 $\lim_{x\to 0} \frac{\sin x}{x^3+2x} = \lim_{x\to 0} \frac{x}{2x} = \frac{1}{2}$.

运算规则 2

2 和差代替规则: 若 α 与 β 不等价, $\alpha \sim \alpha'$, $\beta \sim \beta'$, 则有

$$\alpha - \beta \sim \alpha' - \beta'$$
.

此时若
$$\gamma \sim \gamma'$$
, 则有 $\lim \frac{\alpha - \beta}{\gamma} = \lim \frac{\alpha' - \beta'}{\gamma'}$.

例如 $\lim_{x \to 0} \frac{\tan 2x - \sin x}{\sqrt{1+x-1}} = \lim_{x \to 0} \frac{2x-x}{\frac{1}{2}x} = 2$.

注 $\alpha \sim \beta$ 时此结论未必成立, 如例6.

3 因式代替规则: 若 $\alpha \sim \beta$, 且 $\phi(x)$ 极限存在或有界, 则

$$\lim \alpha \varphi(x) = \lim \beta \varphi(x)$$

例如 $\lim_{x\to 0} \arcsin x \cdot \sin \frac{1}{x} = \lim_{x\to 0} x \cdot \sin \frac{1}{x} = 0$.

注 在求和差运算的极限时,须慎用无穷小量的等价替换.在求乘除运算的极限时,可以大胆使用无穷小量的等价替换.

第六节·无穷小量的比较 ▷ 等价无穷小量运算规则

∇

市・无穷小量的比较 ▷ 等价无穷小量运算规

+ 10/06 r

例 5 $\lim_{x\to 0} \frac{(x+1)\sin x}{\arcsin x}$.

解 当 $x \to 0$ 时, $\sin x \sin x$, $\arcsin x \sim x$.

原式 = $\lim_{x \to 0} \frac{(x+1)x}{x}$ = $\lim_{x \to 0} (x+1) = 1$

注 只能代换无穷小量,不能代换非无穷小量.

例 6 求函数极限 $\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$.

解 当 $x \to 0$ 时, $\sin x \sin x$, $\arcsin x \sim x$.

原式 = $\lim_{x \to 0} \frac{\tan x (1 - \cos x)}{x^3}$ = $\lim_{x \to 0} \frac{x \cdot \frac{1}{2}x^2}{x^3} = \frac{1}{2}$

注 只能分别代换乘除项,不能分别代换加减项.

6.4 等价无穷小量性质

等价无穷小量性质

性质 设 α 、 β 是同一变化过程中两个无穷小量,则

(1)
$$\alpha \sim \beta$$
 $\Leftrightarrow \alpha - \beta = o(\alpha)$

(2)
$$\alpha$$
 与 β 同阶不等价 \Leftrightarrow $\alpha - \beta$ 与 α 同阶不等价

(3)
$$\alpha$$
 比 β 低阶 $\Leftrightarrow \alpha - \beta \sim \alpha$

证明 设
$$\lim \frac{\beta}{\alpha} = c$$
, $\lim \frac{\alpha - \beta}{\alpha} = d$, 则 $d = 1 - c$. 因此

(1)
$$c = 1$$
 等价于 $d = 0$.

(2)
$$c \neq 0.1$$
 等价于 $d \neq 0.1$.

(3)
$$c = 0$$
 等价于 $d = 1$.

第六节·无穷小量的比较 > 等价无穷小量性质

第六节·无穷小量的比较 > 等价无穷小量性质

等价无穷小量的充要条件

Δ 21/26 ♥

性质 (1) 称为等价无穷小量的充要条件, 即

$$\alpha \sim \beta \rightleftharpoons \beta = \alpha + o(\alpha)$$

例如 当 $x \to 0$ 时, $\sin x \sim x$, $\tan x \sim x$, 故

当 $x \to 0$ 时.

$$\sin x = x + o(x), \tan x = x + o(x).$$

6.5 内容小结

内容小结

- 无穷小的比较: 高阶, 低阶, 同阶, 等价, k 阶.
- 2 常用等价无穷小
- 3 等价无穷小量替换定理, 定理 1
- 等价无穷小量在极限运算的下述规则: 和差取大, 和差代替, 因式代替
- 5 等价无穷小量的性质及充要条件

本节完!