# Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

**Brian Russin** 



## Module 6B Continuity Considerations



### Joining Parametric Curves

- A parametric curve may consist of a number of curve segments joined together
  - Continuity constraints used to join them
  - Also called piecewise construction of a curve
    - Each curve segment is defined by a set of control points
- Parametric or curve continuity depends on how the derivatives of adjoining curve sections compare at the boundary
  - Zero-order parametric continuity C<sup>0</sup>
    - Parametric components are equal at a common endpoint
  - First-order parametric continuity C<sup>1</sup>
    - First derivatives of the parametric equations match at the join point
      - Tangent vectors or slope of the curves are equal (direction and magnitude)
  - Second-order parametric continuity C<sup>2</sup>
    - Second derivatives of the parametric equations match at the join point
      - Curvature (rate of change of the tangent vectors) matches at the join point



### Geometric Continuity Properties

- Alternative set of joining conditions are called geometric continuity conditions
- Zero-order geometric continuity G<sup>o</sup>
  - Simply joining two curve segments at a common endpoint
- First-order geometric continuity G<sup>1</sup>
  - In addition, first derivatives at the common endpoint match to within a constant
    - Tangent vectors have equal direction, possibly different magnitude
- Second-order geometric continuity G<sup>2</sup>
  - In addition, second derivatives at the common endpoint match to within a constant
    - Curvature of the two curve sections are proportional
- Figure 17.10 (13.9 3rd Edition) illustrates C<sup>0</sup>, G<sup>1</sup> and C<sup>1</sup> continuity
  - Note: C¹ continuity implies G¹, but not vice-versa



### Continuity



Curve segment P joined to 3 other curves: C<sub>0</sub>, C<sub>1</sub>, C<sub>2</sub>

 $\mathrm{C}^{\scriptscriptstyle{0}}$  parametric continuity between P and  $\mathrm{C}_{\scriptscriptstyle{0}}$ 

 $\mathrm{C}^{\scriptscriptstyle 1}$  parametric continuity between P and  $\mathrm{C}_{\scriptscriptstyle 1}$ 

 $\mathrm{C}^2$  parametric continuity between P and  $\mathrm{C}_2$ 

Visual difference between  $C_1$  and  $C_2$  is slight near the join point, but obvious further away



### **Continuity Conditions**

- Second-order continuity is required for precise CAD and animation
  - Tangent line transitions smoothly from one curve segment to the next
  - First-order continuity tangents match but the curvature can be very different
- Example: camera motion
  - Moving a camera along piecewise curves in equal time steps
  - First derivative is the camera velocity
  - Second derivative is the acceleration
  - Want to match velocity and acceleration at the join points
    - To avoid any abrupt changes in the animation sequence
- First-order continuity adequate for digitizing drawings and some lower precision design applications

