Лабораторная работа №9

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	13
Сг	Список литературы	

Список иллюстраций

2.1	Граф сети модели «Накорми студентов»	7
2.2	Декларации модели «Накорми студентов»	8
2.3	Запуск модели «Накорми студентов»	9
2.4	Отчет модели «Накорми студентов»	10
2.5	Граф модели «Накорми студентов»	11
2.6	Анализ отчета молели «Накорми стулентов»	12

Список таблиц

1 Цель работы

Ознакомиться с Моделью «Накорми студентов». Рассмотрим пример студентов, обедающих пирогами. Голодный студент стано- вится сытым после того, как съедает пирог.

2 Выполнение лабораторной работы

Рассмотрим пример студентов, обедающих пирогами. Голодный студент становится сытым после того, как съедает пирог. Таким образом, имеем: – два типа фишек: «пироги» и «студенты»; – три позиции: «голодный студент», «пирожки», «сытый студент»; – один переход: «съесть пирожок». Рисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переход и дуги(рис.2.1).

Рис. 2.1: Граф сети модели «Накорми студентов»

В меню задаём новые декларации модели: типы фишек, начальные значения позиций, выражения для дуг. Для этого наведя мышку на меню Standart declarations, правой кнопкой вызываем контекстное меню и выбираем New Decl. После этого задаем тип s фишкам, относящимся к студентам, тип р — фишкам, относящимся к пирогам, задаём значения переменных х и у для дуг и начальные значения мультимножеств init_stud и init_food(puc.2.2).

```
    ▼ Declarations
    ▶ Standard declarations
    ▼ colset s = unit with student;
    ▼ colset p = unit with pasty;
    ▼ var x:s;
    ▼ var y:p;
    ▼ val init_stud = 3' student;
    ▼ val init_food = 5' pasty;
    ▶ Monitors
    New Page
```

Рис. 2.2: Декларации модели «Накорми студентов»

Запускаем нашу модель(рис.2.3).

Рис. 2.3: Запуск модели «Накорми студентов»

Вычисляю пространство состояний. Формирую отчёт о пространстве состояний и анализирую его. Строю граф пространства состояний(рис.2.4), (рис.2.5), (рис.2.6).

Рис. 2.4: Отчет модели «Накорми студентов»

Рис. 2.5: Граф модели «Накорми студентов»

```
Файл Правка Поиск Вид Документ Справка
CPN Tools state space report for:
<unsaved net>
Report generated: Thu Apr 3 18:52:51 2025
Statistics
 State Space
Nodes: 4
    Arcs: 3
    Secs: 0
    Status: Full
 Scc Graph
    Nodes: 4
    Arcs: 3
    Secs: 0
Boundedness Properties
 Best Integer Bounds
                            Upper Lower
    nakormi studenta'food 1 5
    nakormi_studenta'hungry_student 1
                            3
    nakormi_studenta'satisfied_student 1
 Best Upper Multi-set Bounds
    nakormi studenta'food 1
                        5`pasty
    nakormi studenta'hungry_student 1
                        3`student
    nakormi studenta'satisfied student 1
                        3`student
 Best Lower Multi-set Bounds
    nakormi studenta'food 1
                        2 pasty
    nakormi_studenta'hungry_student 1
                        empty
    nakormi studenta'satisfied student 1
                        empty
Home Properties
```

Рис. 2.6: Анализ отчета модели «Накорми студентов»

3 Выводы

Ознакомилась с Моделью «Накорми студентов». Рассмотрела пример студентов, обедающих пирогами. Голодный студент стано- вится сытым после того, как съедает пирог.

Список литературы