Versuch 14

Tomographie

Jonah Nitschke Sebastian Pape lejonah@web.de sepa@gmx.de

> Durchführung: 10.01.2018 Abgabe: 23. Januar 2018

1 Einleitung

Der Versuch V14 umfasst die Anwendung des Verfahrens der Tomographie mittels γ -Strahlung. Das Ziel des Versuches ist es, die materielle Zusammensetzung zwei bekannter sowie eines unbekannten Objektes zu untersuchen.

2 Theorie

Die Tomgraphie ist ein bildgebendes Verfahren, welches auf dem Prinzip der Absorption basiert. Dabei wird ein Objekt von γ -Strahlung, oder auch Teilchen wie Elektronen oder Neutronen durchdrungen. Die Anfangsintensität I_0 und Endintensität $I_{\rm f}$ werden vermessen, sodass die Absorptionskonstante μ des durchdrungenen Materials bestimmt werden kann.

In dem Versuch wird ausschließlich γ -Strahlung verwendet. Diese wechselwirkt mit Materie über drei Prozesse, den Photoeffekt, den Compton-Effekt und der Paarbildung. Die Wirkungsquerschnitte der Prozesse sind abhängig von der Photonenenergie der γ -Strahlung, sodass gilt $\sigma_i = \sigma_i \left(E_\gamma \right)$. Eine exemplarische Darstellung der Wirkungsquerschnitte der drei Effekte ist in Abb. 1 anhand des Absorptionskoeffizienten von Blei dargestellt.

Die Intensitäten der materialdurchdringenden Photonen hängen über einen exponentiellen Zusammenhang mit der Absorptionskonstate und der Materialdicke d zusammen.

$$I_{\rm f} = I_0 \exp\left(-\sum_i \mu \cdot d_i\right) \tag{1}$$

Die Absorptionskonstate ist materialspezifisch, weshalb aufgrund ihres Wertes auf das Material zurückgeschlossen werden kann. Das einmaligen Durchführen des Verfahren gibt lediglich einen Eindruck von einem Querschnitt des Objektes. Deshalb ist eine mehrfach Ausführung mit verschiedenen Durchdringungsrichtungen notwendig, um das Gesamtobjekt zu vermessen.

Die Gleichung (1) kann umgestellt werden, sodass ein Gleichungssystem der Form:

$$\underline{A} \cdot \vec{\mu} = \vec{I} \tag{2}$$

entsteht.

In dem Versuch wird ein $3 \times 3 \times 3$ Würfel untersucht. Deshalb ist die Dicke der einzelnen Würfel d_i gleich, d=1 cm für alle Einheitswürfel. Das bedeutet, dass insgesamt neun verschiedene Absorptionskonstanten $\mu_1, \mu_2, ..., \mu_9$ in einer Ebene des Würfels vorliegen. Dementsprechend werden mindestens neun verschiedene Projektionen benötigt, um das

Abbildung 1: Beiträge von Photoeffekt, Compton-Effekt und Paarbildung zum Absorptionskoeffizienten von Blei in Abhängigkeit von der Photonenenergie.[1]

Gleichungssystem (2) zu lösen. Die Messgenauigkeit wird durch eine Überbestimmung des Gleichungssystems erhöht, weshalb anstelle der nötigen neun Projektionen zwölf Projektionen gewählt werden. Eine Darstellung der gewählten Projektionen ist in Abb. 2 zu sehen.

Die gewählten Projektionen erzeugen ein Gleichungssystem der Form:

Abbildung 2: Schematische Darstellung der zwölf verwendeten Projektionen I_1 – I_{12} .[3]

,wobei die Größe y gemäß Formel (12) aus der Anfangsintensität sowie der berechneten Intensität der jeweiligen Projektion bestimmt wird. Aufrund der Überbestimmtheit von (3) wird die "Methode der kleinsten Quadrate" verwendet, wodurch (3) in eine Normalengleichung der Form $\left(\underline{\underline{A}}^T\underline{\underline{A}}\right)\cdot\vec{\mu}=\left(\underline{\underline{A}}^T\cdot\vec{y}\right)$ überführt wird. Umgestellt nach $\vec{\mu}$ ergibt:

$$\vec{\mu} = \left(\underline{\underline{A}}^T \underline{\underline{A}}\right)^{-1} \underline{\underline{A}}^T \cdot \vec{y}. \tag{4}$$

Die Varianz des Vektors \vec{y} ist durch eine Diagonalmatrix gegeben (vgl. (5)).

$$V[\vec{y}] = diag\left(\sigma_{y_1}^2, \sigma_{y_2}^2, ..., \sigma_{y_{12}}^2\right)$$
(5)

Daraus ergibt sich die Kovarianzmatrix von $\vec{\mu}$ zu:

$$V[\vec{\mu}] = \left(\underline{\underline{A}}^T V^{-1}[\vec{y}]\underline{\underline{A}}\right)^{-1}.$$
 (6)

Damit muss $\vec{\mu}$ umgeschrieben werden zu:

$$\vec{\mu} = V[\vec{\mu}] \underline{A}^T V^{-1}[\vec{y}] \cdot \vec{y}. \tag{7}$$

3 Durchführung

Die Durchführung des Versuches benötigt eine γ -Strahlungsquelle, einen Szintillationsdetektor, einen Vielkanalanalysator, Bleiabschrimungen und einen Computer, der die Daten des Vielkanalanalysators aufnimmt und mit geeigneter Software verarbeitet. Eine Abbildung des verwendeten Aufbaus ist in 3 dargestellt. Auf der Abbildung fehlen die Bleiabschirmungen, die geeignet den Versuch positioniert werden, sodass die Sicherheit vor Streuustrahlung gewährleistet ist.

Als γ -Strahlungsquelle wurde das Caesium-Isotop ¹³⁷Cs verwendet, welches γ -Strahlung mit einer Energie von $E_{\gamma} \approx 0,6617\,\mathrm{MeV}$ besitzt. Die Photonenenergie ist kleiner als die Energie, bei der Paarbildung auftritt. Damit sind die beiden relevanten Prozesse der Photonenwechselwirkung mit Materie der Photoeffekt und der Compton-Effekt.

Die untersuchten Objekte sind die bereits erwähnten $3\times3\times3$ Würfel, die aus insgesamt 27 Einheitswürfel aufgebaut sind. Insgesamt werden drei Proben, sowie eine Referenzprobe untersucht. Die Referenzprobe P_1 ist ein $3\times3\times3$ Würfel, der nur aus der Ummantelung besteht und dessen Einheitswürfel aus Luft bestehen. Dieser dient dazu den Wert der eingehenden Anfangsintensität I_0 zu bestimmen und es werden für diese Probe lediglich die Projektionen I_2, I_3 und I_6 ausgemessen.

Weiterhin gibt es zwei Proben aus bekannten Materialien (P_2 : Aluminium und P_3 : Blei) und eine unbekannte Probe P_4 . Die Einheitswürfel von P_4 sind entweder aus Blei oder aus Aluminium, aber die Zusammensetzung ist a priori nicht bekannt und gilt als zu ermitteln. Für diese Proben sind alle zwölf Projektionen auszumessen.

Abbildung 3: Verwendeter Veruschsaufbau. Nahaufnahme der Messaparatur.[2]

Zu Beginn wird das Computerprogramm gestartet und auf seine Funktionsfähigkeit überprüft. Danach wird die Proben P_2 in die in Abb. 3 dargestellt Halterung eingebracht und so ausgerichtet, dass die erste Projektion I_1 von dem Photonenstrahl hin zum Detektor realisiert wird. Die weiteren Projektionen können durch Drehen und Kalibrieren der Halterung eingestellt werden. Die anderen Proben werden im gleichen Verfahren in der Reihenfolge P_3, P_1 und P_4 ausgemessen.

Bei den Proben P_1 und P_4 werden solange Messwert genommen, bis in einem Bereich von 10 bis 14 Kanälen um den Peak herum im Vielkanalanalysator 12 500 bis 15 000 Ereignisse sind.

Die Proben P₂ und P₃ werden nur solange vermessen, bis die statistische Unsicherheit in 5 bis 7 Kanälen um den Peak herum $\leq 3\%$ ist. Dies entspricht ca. 1200 Ereignissen, da $\frac{\sqrt{N}}{N}=3\%$ für N=1200 realisiert ist, dabei ist N die Anzahl der Ereignisse.

4 Auswertung

Für die Rechnungen der Auswertung wird das Programm *Python* mit dem Packet *numpy* verwendet. Zur Berechnung des Mittelwertes der Absorptionskoeffizienten wird die automatische Fehlerrechnung mit dem Packet *uncertainties* durchgeführt. In den Abschnitten, in denen die Fehler per Hand mithilfe der Gauß'schen Fehlerfortpflanzung (8) berechnet werden, ist die verwendete Fehlerformel mit angegeben.

$$\sigma_{y} = \sqrt{\sum_{i} \left(\frac{\partial y}{\partial x_{i}} \cdot \sigma x_{i}\right)^{2}} \tag{8}$$

Für die Auswertung werden bei den einzelnen Messungen nur die Counts in einem bestimmten Intervall verwendet. Die verwendeten Intervalle, sowie die Anzahl an Counts, deren Fehler und die Messzeit sind in Kapitel 4.2 in den Tabellen 1 bis 4 dargestellt. Die Messdaten sind Poissonverteilt, weshalb als Fehler immer die Wurzel der Anzahl der Count verwendet wird.

4.1 Spektrum von ¹³⁷Cs

In Abbildung 4 ist das aufgenommene Spektrum bei der Messung der Projektion I_6 des mit Luft gefüllten Würfels dargestellt.

Der Anfangsbereich, in dem keine Zählrate angezeigt wird, entsteht durch den vorgeschlossenen Diskriminator. Dadurch werden erst Stromstärken über einem gewissen Schwellenwert registriert, wodurch auch bei Aufnahme des Spektrums unter einem gewissen Energiewert keine im Szintillator ausgelösten Lichtblitze registriert werden. Bei dem kleineren Peak handelt es sich um einen Rückstreupeak, welcher durch die Rückstreuung aufgrund von Compton-Stößen außerhalb des Szintillators entsteht.

Der flache Bereich ist das Compton-Kontinuum, welches durch die Streuung des Photons an den Elektronen des Szintillatormaterials entsteht. Dabei wird nicht die ganze Energie des Photons abgegeben, so dass der Energierest im Szintillator registriert werden kann. Die abgegebene Energie ist nach der Compton-Formel ((9), [4]) abhängig vom Streuwinkel. Dies erklärt auch die Kante bzw. den Einbruch der Zählrate vor dem Photopeak, bei dem ein Streuwinkel von 180° vorhanden ist.

$$E_{\rm C} = E_{\rm Ph} - \frac{E_{\rm Ph}}{1 + \frac{E_{\rm Ph}}{E_{c,0}} \cdot (1 - cos(\theta))}$$
 (9)

Bei dem rechten großen Peak handelt es sich um den Photopeak des Caesium-Präparates. Hier ist die Energie groß genug um im Szintillatormaterial zum Photoeffekt zu führen. Dieser Peak bzw. die Intensität wird im Folgenden auch als Messwert für die Abschirmung bei den verschiedenen Projektionen verwendet.

Abbildung 4: Spektrum der 137 Caesium Quelle bei einem leeren Würfel

4.2 Bestimmung der Absorptionskoeffizienten

Um die Intensität der einzelnen Projektionen zu bestimmen, werden die gemessenen Counts bei jeder Projektion mittels der Messzeit normiert. Der Fehler der Rate ergibt sich dann über Gauß'sche Fehlerfortpflanzung. Die Messzeit wird hierbei als fehlerfrei angenommen.

$$I_{\rm j} = \frac{N_{\rm j}}{T_{\rm i}} \tag{10}$$

$$I_{\rm j} = \frac{N_{\rm j}}{T_{\rm j}}$$

$$\sigma_{\rm I_{\rm j}} = \frac{1}{T_{\rm j}} \cdot \sigma_{\rm N_{\rm j}}.$$

$$(10)$$

Über die Rate lässt sich dann auch die wie folgt definierte Größe y bestimmen:

$$y_{\rm j} = \ln\left(\frac{I_0}{I_{\rm j}}\right) \tag{12}$$

$$y_{j} = \ln\left(\frac{I_{0}}{I_{j}}\right)$$

$$\sigma_{y_{j}} = \sqrt{\left(\frac{\sigma_{I}}{I}\right)^{2} + \left(\frac{\sigma_{I_{0}}}{I_{0}}\right)^{2}}.$$

$$(12)$$

Der Fehler ergibt sich ebenfalls aus der Gauß'schen Fehlerfortpflanzung. Mit ${\cal I}_0$ ist hierbei die gemessene Rate bei einem leeren Würfel gemeint. Diese wurde für jede Art von Projektion einmal gemessen $(I_2, I_3 \text{ und } I_6)$.

Tabelle 1: ${\cal I}_0$ für die verschiedenen Projektionen des leeren Würfels.

Projektion	Kanäle	T in s	N	$\sigma_{ m N}$	$I \text{ in cm}^{-1}$	$\sigma_{\rm I}~{\rm in}~{\rm cm}^{-1}$
I_2	55-62	87	16042	127	184,4	1,5
I_3	55-62	87	16115	127	185,2	1,5
I_6	55-62	83	15341	124	184,8	1,5

Tabelle 2: I für die verschiedenen Projektionen des Aluminiumwürfels.

Projektion	Kanäle	T in s	N	$\sigma_{ m N}$	$I \text{ in cm}^{-1}$	$\sigma_{\rm I}~{\rm in}~{\rm cm}^{-1}$	y	$\sigma_{ m y}$
$\overline{I_1}$	63-69	84	8206	91	97,7	1,1	0,64	0,01
I_2	62-68	30	2268	48	75,6	1,6	0,89	0,02
I_3	61-66	26	2135	46	82,1	1,8	0,81	0,02
I_4	59-65	26	2336	48	89,9	1,9	0,72	0,02
I_5	59-65	30	2837	53	94,6	1,8	$0,\!67$	0,02
I_6	59-65	24	2186	47	91,1	2,0	0,71	0,02
I_7	59-65	24	2138	47	89,1	1,9	0,73	0,02
I_8	59-65	29	2204	47	76,0	1,6	$0,\!89$	0,02
I_9	58-65	34	3057	55	89,9	1,6	0,72	0,02
I_{10}	58-64	26	2504	50	96,3	1,9	0,65	0,02
I_{11}	58-64	24	2228	47	92,8	2,0	0,69	0,02
I_{12}	57-64	23	2446	50	106,3	2,2	$0,\!55$	0,02

Tabelle 3: I für die verschiedenen Projektionen des Bleiwürfels.

Projektion	Kanäle	T in s	N	$\sigma_{ m N}$	$I \text{ in cm}^{-1}$	$\sigma_{\rm I}~{\rm in}~{\rm cm}^{-1}$	y	$\sigma_{ m y}$
I_1	57-64	110	1218	35	11,1	0,3	2,81	0,05
I_2	57-64	375	1197	35	3,2	0,1	4,06	0,10
I_3	57-64	203	1203	35	5,9	0,2	3,44	0,07
I_4	57-64	161	1198	35	7.4	0,2	$3,\!21$	0,06
I_5	57-64	183	1205	35	6,6	0,2	$3,\!33$	0,07
I_6	56-62	187	1206	35	6,4	0,2	3,36	0,07
I_7	56-62	99	1212	35	12,2	$0,\!4$	2,72	0,05
I_8	56-62	424	1197	35	2,8	0,1	$4,\!18$	0,10
I_9	56-62	182	1240	35	6,8	0,2	3,30	0,07
I_{10}	56-62	124	1255	35	10,1	0,3	2,90	0,05
I_{11}	56-62	192	1207	35	6,3	0,2	$3,\!38$	0,07
I_{12}	56-61	195	1207	35	6,2	0,2	3,40	0,07

Tabelle 4: I für die verschiedenen Projektionen des unbekannten Würfels.

Projektion	Kanäle	T in s	N	$\sigma_{ m N}$	$I \; \mathrm{in} \; \mathrm{cm}^{-1}$	$\sigma_{\rm I} \ {\rm in} \ {\rm cm}^{-1}$	y	$\sigma_{ m y}$
$\overline{I_1}$	51-65	822	12575	112	15,3	0,1	2,82	0,03
I_2	51-65	1503	12758	113	8,5	0,1	4,06	0,03
I_3	51-65	690	12622	112	18,3	$0,\!2$	$3,\!44$	0,02
I_4	52-64	648	12916	114	19,9	0,2	3,21	0,02
I_5	52-64	700	12965	114	18,5	0,2	$3,\!33$	0,02
I_6	52-64	683	13018	114	19,1	$0,\!2$	3,36	0,02
I_7	52-64	341	12905	114	37,8	0,3	2,72	0,02
I_8	52-64	1345	12840	113	9,5	0,1	4,18	0,03
I_9	52-64	1193	12898	114	10,8	0,1	3,30	0,03
I_{10}	51-63	125	12888	114	103,1	0,9	2,90	0,01
I_{11}	49-63	1407	12510	112	8,9	0,1	$3,\!38$	0,03
I_{12}	49-63	799	12536	112	15,7	0,1	3,40	0,03

Gemäß der Formel (5) lässt sich nun die Varianzmatrix $V[\vec{y}]$ bestimmen. Mit ihr wird über Formel (6) die Varianzmatrix der Absoprtionskoeffizienten bestimmt. Mit den Einträgen auf der Diagonale lassen sich die Fehler der einzelnen Absorptionskoeffizienten bestimmen. Zudem werden über Formel (7) die Absorptionskoeffizienten berechnet. Die Fehler der einzelnen Koeffizienten lassen sich aus den Diagonalelementen von $V[\vec{\mu}]$ entnehmen:

$$\sigma_{\mu} = \sqrt{V[\vec{\mu}]_{ii}}.\tag{14}$$

Bei Aluminum und Blei wird mithilfe der automatischen Fehlerrechnung von Python der Mittelwert der Absorptionskoeffizienten bestimmt. In Tabelle 5 sind die bestimmten Koeffizienten, deren Fehler sowie die Abweichung zu dem Literaturwert zu sehen.

Tabelle 5: Bestimmte Absorptionskoeffizienten von Aluminium und Blei und die Abweichung zu den Literaturwerten. [5]

Material	$\mu_{\rm exp}$ in cm ⁻	$\sigma_{ m mu_{exp}}$ in cm ⁻	μ_{lit} in cm ⁻	$\Delta\mu$ in cm ⁻
Aluminium	0,227	0,003	0,202	$0,0248 \pm 0,003$
Blei	1,059	0,013	$1,\!25$	$0{,}191\pm0{,}013$

Für den Würfel unbekannter Zusammensetzung wird gleich Verfahren, um die einzelnen Absorptionskoeffizienten zu ermitteln. Damit die einzelnen Würfel einem bestimmten Material zugeordnet werden können, sind in Tabelle 6 die Absorptionskoeffizienten, sowie deren absolute Abweichung zu den experimentell bestimmten Werten und den Literaturwerten eingetragen. Die Abweichung wird durch ΔM bezeichnet, wobei M immer der zum Abgleich gezogenen Koeffizient ist. Die Fehler der Abweichung sind nicht von Interesse und werden deswegen nicht mit angegeben.

Tabelle 6: Bestimmte Koeffizienten für den unbekannten Würfel sowie die Abweichungen zu den anderen Materialien ($|\Delta M|$ in cm⁻¹).

$\mu_{ m i}$	$\mu \text{ in cm}^-$	$\sigma_{\mu} \ {\rm in} \ {\rm cm}^-$	$ \Delta\mu_{\rm Alu,lit} $	$ \Delta\mu_{\mathrm{Alu,exp}} $	$ \Delta\mu_{\rm Blei,lit} $	$ \Delta\mu_{\mathrm{Blei,exp}} $	Δ_{\min}
$\mu 1$	0,05	0,01	0,15	0,18	1,20	1,01	$\mu_{ m Alu}$
$\mu 2$	1,29	0,01	1,09	1,07	0,04	$0,\!23$	$\mu_{ m Blei}$
$\mu 3$	0,82	0,02	$0,\!61$	$0,\!59$	$0,\!43$	$0,\!24$	$\mu_{ m Blei}$
$\mu 4$	0,28	0,01	0,08	0,06	0,97	0,76	$\mu_{ m Alu}$
$\mu 5$	1,08	0,01	0,88	0,86	$0,\!17$	0,02	$\mu_{ m Blei}$
$\mu6$	0,92	0,01	$0,\!62$	$0,\!59$	$0,\!43$	$0,\!24$	μ_{Blei}
$\mu 7$	0,28	0,01	0,08	0,05	0,97	0,78	$\mu_{ m Alu}$
$\mu 8$	0,87	0,01	$0,\!67$	$0,\!65$	$0,\!38$	0,19	μ_{Blei}
$\mu9$	0,96	0,02	0,76	0,74	0,29	0,10	μ_{Blei}

5 Diskussion

In Tabelle 6 ist zu erkennen, dass sich sowohl bei Vergleich der Koeffizienten mit den experimentell bestimmten Werten, als auch den Literaturwerten für Aluminium und Blei der gleiche Aufbau für den unbekannten Würfel ergibt.

Zudem ergab eine Rechnung mit dem Packet *uncertainties* ohne Verwendung der Varianzmatrizen ähnliche Werte. Lediglich bei sehr geringen Absorptionskoeffizient ist eine deutliche Abweichung vorhanden, da diese meist in der 2. Nachkommastelle auftritt.

Obwohl bei der Anzahl N der Counts ein Fehler von \sqrt{N} angenommen wurde, sind die daraus resultierenden Fehler bei den Absorptionskoeffizienten gering.

Bei der verwendeten Messmethode wurden durch die Mehrfachmessung jedes Würfels die Absorptionskoeffizienten in Abhängigkeit voneinander bestimmt. Sichtbar ist dies an der Kovarianzmatrix, in der auch die nicht auf der Hauptdiagonale liegenden Elemente ungleich Null sind. Diese Abhängigkeit untereinander kann unter anderem die teilweise starken Abweichungen zu den Literaturwerten erklären.

Eine Fehlerquelle bei diesem Versuch ist unter anderem die Ausdehnung des Strahles, welcher auch teilweise in benachbarten Blöcken absorbiert wird, wodurch es eine stärkere Absorption gibt als eigentlich der Fall wäre. Wichtig ist hierbei auch die Positionierung des Blockes. Bei Messung der Diagonalen ist eine Abweichung von der theoretischen Projektion nur schwer vermeidbar.

Eine weitere Fehlerquelle ist der umgebende Aluminiumkörper. Zwar wird am Anfang des Experimentes der Körper vermessen um diese reduzierte Intensiät als Referenzwert I_0 zu verwenden. Jedoch ist die Dicke des Aluminiummantels nicht überall gleich, wodurch die Ergebnisse verfälscht werden.

Literatur

- [1] Prof. Dr. Helmut Winter et al. Absorption von Strahlung. Version 13.01.2018. URL: http://pgd5.physik.hu-berlin.de/pgd/absorpt.htm.
- [2] TU-Dortmund. Versuch B14: Tomographie mittels -Strahlung. Version 13.01.2018. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/FP/SKRIPT/BTomographie.pdf.
- [3] Joshua Luckey. tikz-Projektionen.pdf. Version 13.01.2018. URL: https://github.com/LuckyJosh/PhysikFP2015/blob/master/01_TomographieGamma%5BX%5D/Grafiken/Tikz/tikz-Projektionen.pdf.
- [4] Leifi Physics. Gammaspektren. Version 19.01.2018. URL: http://archive.is/XAO5R.
- [5] physics.nist. X-Ray Mass Attenuation Coefficients. Version 17.01.2018. URL: https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html.