

ประเภทของของแข็ง (Types of solid)

1. ของแข็งผลึก (crystalline solid)

- * เป็นของแข็ง จัดเรียงตัวต่อเนื่อง อะตอม ใอออนหรือ โมเลกุลอยู่ในตำแหน่งที่ แน่นอน เช่น น้ำแข็ง ควอทซ์
- * การจัดเรียงตัวทำให้ได้แรงดึงดูคระหว่างไอออนหรือ โมเลกุลสูงสุด

ควอทซ์

2. ของแข็งอสันฐาน (Amorphous Solids)

- > ไม่มีโครงร่างผลึก
- > อะตอมจัดเรียงตัวไม่แน่นอน
- 🗲 เช่นทรายเมื่อถูกหลอม แล้วเย็นตัวลงจะได้แก้ว (SiO₂ + สารอื่น) โดยไม่

มีการตกผลึก

หน่วยเซลล์ (Unit cell)

แต่ละทรงกลมที่แทน atoms หรือ molecules หรือ ions เรียกว่า lattice point

- หน่วยเซลล์ (Unit cell) เป็นหน่วยโครงสร้างพื้นฐานซ้ำๆกันใน ผลึกของแข็ง หน่วยเซลล์ต่อกันเป็นโครงสร้าง 3 มิติ
- > จุดแลตทิช (Lattice point) อยู่ที่มุมของหน่วยเซลล์ จะแทน อะตอม ใอออนหรือ โมเลกุล ผลึกบางชนิดอาจไม่มีอะตอม ใอออน หรือ โมเลกุล
- ➤ หน่วยเซลล์ที่เป็นไปได้มี 7 ชนิด คือ simple cubic, tetragonal, orthorhombic, rhombohedral, monoclinic, triclinic และ hexagonal
- > ผลึกที่ง่ายที่สุดเป็นผลึกรูปลูกบาศก์ (simple cubic) ที่ทุกมุมและ ทุกด้านเท่ากัน

ตัวชี้วัดการจัดเรียงตัวของอนุภาค

การจัดเรียงตัวแบบไม่ชิด Non-close-packed

การจัดเรียงตัวแบบชิด

Closest-packing

- 1. จำนวนอนุภาคต่อหน่วยเซลล์
- 2. ประสิทธิภาพการบรรจุ
- 3. เลขโคออร์ดิเนชัน

การบรรจุทรงกลม (Packing Sphere)

การเรียงตัวของทรงกลมแทนอะตอม ใอออน หรือ โมเลกุล จะบอกชนิดของ หน่วยเซลล์

การจัดวางทรงกลมในเซลล์ลูกบาศก์อย่างง่าย (a) 1 ชั้น มองจากด้านบน

(b) ทรงกลมประกอบเป็น 1 หน่วยเซลล์ และ (c) เนื้อทรงกลมสุทธิในแต่ละ 1 หน่วยเซลล์

ระบบลูกบาศก์ (Cubic system)

จำนวนทรงกลมล้อมรอบที่มีผิวสัมผัสกับทรงกลมตรงกลาง

ลูกหนึ่งๆทุกทิศทาง เรียกว่า coordination number, CN

Counting Cell Occupancy

ปริมาตรอนุภาคต่อหน่วยเซลล์

• จงคำนวนจำนวนอนุภาคต่อหน่วยเซลล์ของเซลล์ลูกบาศก์ต่อไปนี้

ประสิทธิภาพการบรรจุ

SCC

- 1. จำนวนอนุภาคต่อหน่วยเซลล์ = 1
 - 2. ความสัมพันธ์ a กับ r

$$r = \alpha/2$$

$$a = 2r$$

ประสิทธิภาพการบรรจุ =
$$\frac{\frac{4}{3}\pi r^3}{a^3} \times 100 = \frac{\frac{4}{3}\pi r^3}{(2r)^3} \times 100 = \frac{\pi}{6} \times 100 = 52\%$$

bcc

1. จำนวนอนุภาคต่อหน่วยเซลล์ = 2

2. ความสัมพันธ์ a กับ r

$$\mathbf{r} = \frac{\mathbf{a}\sqrt{3}}{4}$$

ประสิทธิภาพการบรรจุ =
$$\frac{2\times\frac{4}{3}\pi r^3}{a^3} \times 100 = \frac{2\times\frac{4}{3}\pi r^3}{(\frac{4r}{\sqrt{3}})^3} \times 100 = \frac{\pi\sqrt{3}}{8} \times 100 = 68\%$$

fcc

1. จำนวนอนุภาคต่อหน่วยเซลล์ = 4

2. ความสัมพันธ์ a กับ r

$$\mathbf{r} = \frac{\mathbf{a}}{\sqrt{8}} = \frac{\mathbf{a}\sqrt{2}}{4}$$

ประสิทธิภาพการบรรจุ =
$$\frac{4 \times \frac{4}{3} \pi r^3}{a^3} \times 100 = \frac{4 \times \frac{4}{3} \pi r^3}{(2 \sqrt{2} \ r)^3} \times 100 = \frac{\pi}{3 \sqrt{2}} \times 100 = 74\%$$

ประสิทธิภาพการบรรจุ

a = 2r

$$b^{2} = a^{2} + a^{2}$$

$$c^{2} = a^{2} + b^{2}$$

$$= 3a^{2}$$

$$c = \sqrt{3}a = 4r$$

$$a = \frac{4r}{\sqrt{3}}$$

b = 4r $b^{2} = a^{2} + a^{2}$ $16r^{2} = 2a^{2}$ $a = \sqrt{8}r$

$$\mathbf{r} = \frac{\mathbf{a}}{2}$$
52 %

$$r = \frac{a\sqrt{3}}{4}$$
68 %

$$r = \frac{a}{\sqrt{8}} = \frac{a\sqrt{2}}{4}$$

ความสัมพันธ์ด้านโครงสร้างของหน่วยเซลล์ลูกบาศก์

	Simple	Body Centered	Face Centered
Lattice points per unit cell		2	4
Number of nearest neighbors	6	8	12
Distance between nearest neighbors	a	$a\sqrt{3}/2$	$a\sqrt{2}/2$
Atomic radius	<i>a</i> /2	$a\sqrt{3}/4$	$a\sqrt{2}/4$
Occupied volume	52.4%	68.0%	74.0%

^{*} The length of the unit cell is denoted a.

การบรรจุแบบชิด (Closed Packing)

* การจัดเรียงทรงกลมที่มีประสิทธิภาพสูงสุด

ชนิดของ Close-packed structures

- 1. โครงสร้างบรรจุแบบชิดเฮกแซกโกนอล (Hexagonal close-packed structure (hcp)
- 2. โครงสร้างบรรจุแบบชิดลูกบาศก์(Cubic close-packed structure, ccp)

hcp และ ccp แต่ละทรงกลมจะมีเลขโคออร์ดิเนชัน เท่ากับ 12 (ชั้นเดียวกัน 6 ชั้นบน 3 ชั้นล่าง 3)

มี CN = 12 บรรจุได้ 2 แบบได้แก่

-hexagonal close-packed (hcp) ABABAB...

-cubic close-packed (ccp) ABCABC...(แบบเดียวกับ fcc)

- ัการจัดเรียงแต่ละชั้นของ hcp เป็นแบบ ABAB โดย ชั้นที่ 2 (B) ทรงกลมถูกบรรจุลงช่องว่างของทรงกลมในชั้นที่ 1 (A) ส่วน ชั้นที่ 3 (A) ทรงกลมจะวางซ้อนทับ ตรงกับทรงกลมของชั้นที่ 1
- ♣ การจัดเรียงแต่ละชั้นของ ccp เป็นแบบ ABCA โดยชั้นที่ 2 (B) ทรงกลมถูกบรรจุลงช่องว่างของทรงกลมในชั้นที่ 1 (A) ส่วนชั้น ที่ 3 (C) ทรงกลมจะถูกบรรจุลงช่องว่างของทรงกลมในชั้นที่ 2 (B)

Cubic Close-Packed (ccp) หรือ fcc

Hexagonal Close-Packed (hcp)

-แบบ ABABAB..

ช่องว่างภายในโครงสร้างผลึก

ช่องว่างทรงเหลี่ยมสี่หน้า (Tetrahedral holes)

ช่องว่างทรงเหลี่ยมแปดหน้า (Octahedral holes)

Holes in close-packed structures

Octahedral hole fcc

Tetrahedral hole hcp

EX .1 ผลึกทองคำมีโครงสร้างแบบ ccp (fcc) จงคำนวณความหนาแน่น ของผลึกนี้ (Au มีรัศมีอะตอมเท่ากับ 144 pm)

ccp มีขอบยาว a = 8^{1/2}r , a = 8^{1/2}(144 pm) = 407 pm

V ของหน่วยเซลล์
$$V = a^3 = (407 \text{ pm})^3 \times \left(\frac{1 \times 10^{-12} \text{ m}}{1 \text{ pm}}\right)^3 \times \left(\frac{1 \times 10^{-2} \text{ m}}{1 \times 10^{-2} \text{ m}}\right)^3$$

 $V = 6.74 \times 10^{-23} \text{ cm}^3$

1 หน่วยเซลล์ มี 8 มุม 6 ด้าน จำนวนอะตอมในเซลล์ = (8x1/8) + (6x 1/2) = 4

$$m = \frac{4 \text{ atoms}}{1 \text{ unit cell}} \times \frac{197.0 \text{ g}}{1 \text{ mol}} \times \frac{1 \text{ mol}}{6.022 \times 10^{23} \text{ atoms}} \implies m = 1.31 \times 10^{-21} \text{ g/unit cell}$$

→
$$m = 1.31 \times 10^{-21}$$
 g/unit ce

ความหนาแน่น (d)
$$d = \frac{m}{V} = \frac{1.31 \times 10^{-21} \text{ g}}{6.74 \times 10^{-23} \text{ cm}^3} = 19.4 \text{ g/cm}^3$$
 อาจใช้สูตร
$$d = nM/N_A V$$

EX .2 โลหะ Mg มีโครงสร้างแบบ hcp และมี ความหนาแน่น 1.74 g/cm³ จงคำนวณของหารัศมีอะตอมของ Mg

Packing efficiency weak hcp = 74%V weak Mg atoms = $0.74 \times 14.0 \text{ cm}^3/\text{mol Mg} = 10.4 \text{ cm}^3/\text{mol Mg}$

ปริมาตรของMg1atom =
$$\frac{10.4 \text{ cm}^3}{1 \text{molMg}} \times \frac{1 \text{molMg}}{6.022 \times 10^{23} \text{ Mg atoms}}$$
$$= 1.73 \times 10^{-23} \text{ cm}^3 / \text{atom Mg}$$

ปริมาตรทรงกลม,
$$V = (4/3)\pi r^3 = 1.73 \times 10^{-23} \text{ cm}^3$$
 $r^3 = 4.13 \times 10^{-24} \text{ cm}^3$ $r = 1.60 \times 10^{-8} \text{ cm} = 160 \text{ pm}$

Ex.3 ถ้าความยาวตามขอบของหน่วยเซลล์ NaCl เท่ากับ 564 pm จงคำนวณหาความหนาแน่นของ NaCl (g/cm³)

ใน 1 หน่วยเซลล์ NaCl ประกอบด้วย Na+ 4 ใจออนและ Cl- 4 ใจออน มวลรวม = 4(22.99+35.45) amu = 233.8 amu ปริมาตรของหน่วยเซลล์ V = α³ = (564 pm)³

 $= 2.16 \text{ g/cm}^3$

(X-Ray Diffraction by Crystals)

Max von Laue (1912)

- 😊 การกระเจิงของ x-ray โดยหน่วยต่างๆของผลึกของแข็ง
- 😊 ใช้ศึกษาการจัดเรียงตัวของอนุภาคในโครงร่างผลึก
- ความยาวกลื่นของรังสีเอ็กซ์มีขนาดใกล้เคียงกับระยะห่างระหว่างจุดแลททิช ดังนั้น แลททิชจึงสามารถสะท้อนรังสีเอ็กซ์ได้
- 2. รูปแบบของ X-ray diffraction เป็นผลจากการเสริมสร้างและหักล้างกันของ คลื่นที่เกิดจากอะตอมต่างๆในผลึก

Electromagnetic radiation

รวมกันแบบหักล้างกัน

Ex.4 รังสีเอกซ์มีความยาวคลื่น 0.154 nm ตกกระทบผลึก Al ได้ มุมสะท้อน 19.3 อนุมานว่า n = 1 จงคำนวณระยะห่างระหว่าง ชั้นของ Al อะตอมในหน่วย pm

Solution

$$d = \frac{n\lambda}{2\sin\theta} = \frac{\lambda}{2\sin\theta}$$

$$d = \frac{0.154 \text{ nm} \times \frac{1000 \text{ pm}}{\text{nm}}}{2 \sin 19.3^{\circ}} = 233 \text{ pm}$$

ชนิดของผลึก (Types of Crystals)

ผลึกโอออนิก (Ionic crystals)
ผลึกโมเลกุล (Molecular crystals)
ผลึกโคเวเลนท์ (Covalent crystals)
ผลึกโลหะ (Metallic crystals)

Table 5 สมบัติทั่วไปของผลึกชนิดต่างๆ

Type of Crystal	Force(s) Holding the Units Together	General Properties	Examples
lonic	Electrostatic attraction	Hard, brittle, high melting point, poor conductor of heat and electricity	NaCl, LiF, MgO, CaCO ₃
Covalent	Covalent bond	Hard, high melting point, poor conductor of heat and electricity	C (diamond), † SiO ₂ (quartz)
Molecular*	Dispersion forces, dipole-dipole forces, hydrogen bonds	Soft, low melting point, poor conductor of heat and electricity	Ar, CO_2 , I_2 , H_2O , $C_{12}H_{22}O_{11}$ (sucrose)
Metallic	Metallic bond	Soft to hard, low to high melting point, good conductor of heat and electricity	All metallic elements; for example, Na, Mg, Fe, Cu

ชนิดผลิกขินกับแรงยืดเหนียว

30

สมบัติทั่วไปของผลึกชนิคต่างๆ

ชนิดผลึก	แรงยึดเหนี่ยว	สมบัติทั่วไป	ตัวอย่าง
ไอออนิก	แรงดึงดูดไฟฟ้าสถิตย์ (แรงคูลอมบ์)	แข็ง เปราะ จุดหลอมเหลวสูง นำไฟฟ้าและนำความร้อนตำ	NaCl LiF MgO CaCO ₃
โคเวเลนต์	พันธะโคเวเลนต์	แข็ง จุดหลอมเหลวสูง นำไฟฟ้าและนำความร้อนต่ำ	<i>C</i> (เพชร) SiO ₂ (ควอทซ์)
โมเลกุล	แรงดิสเพอร์ชัน แรงใด โพล-ไดโพล พันธะ ไฮโดรเจน	อ่อน จุดหลอมเหลวต่ำ นำไฟฟ้าและนำความร้อนต่ำ	Ar CO ₂ I ₂ H ₂ O C ₁₂ H ₂₂ O ₁₁
โลหะ	พันธะโลหะ	อ่อนถึงแข็ง จุดหลอมเหลว ต่ำถึงสูง นำไฟฟ้าและนำ ความร้อนได้ดี	โลหะทุกชนิด

1. ผลึกใอออนิก (Ionic crystals)

- ประกอบด้วยอนุภาคที่มีประจุ
- anions และ cations มีขนาดแตกต่างกันมาก

ผลึกแข็ง เปราะ จุดหลอมเหลวสูง นำไฟฟ้าและนำความร้อน

Ex.5 ใน NaCl 1 หน่วยเซลล์ ประกอบด้วย Na⁺ และ Cl⁻ กี่ไอออน

NaCl มีโครงสร้างแบบ fcc

Na⁺ มีอยู่ตรงกลาง 1 ใอออนและตามขอบ 12 ขอบ

จำนวน
$$\mathbf{Na^+} = 1 + 12 \mathbf{x} (1/4) = 4$$
 ไอออน

Cl- มีอยู่ตามมุม 8 มุมและตรงกลางหน้า 6 หน้า

จำนวน
$$CI^- = 8 \times (1/8) + 6 \times (1/2) = 4$$
 ไอออน

Note: ใน NaCl 1 หน่วยเซลล์ประกอบด้วย NaCl 4 หน่วยสูตร

มีโครงสร้างแบบ scc

มี Cs+ = 1 ไอออนและ Cl- = (1/8) x 8 = 1 ไอออน
 ของแข็งชนิดหนึ่งมีอะตอมของ A, B และ C ในผลึกหน่วยลูกบาศก์ โดยมี
 A อยู่ที่มุมทั้ง 8 B อยู่ในตำแหน่ง body-centered และ C อยู่ที่หน้าทั้ง
 6 ของหน่วยเซลล์ หน่วยสูตรของของแข็งนี้คืออะไร

ABC₃

CuCl, BeS, CdS, HgS

(a) Unit cell of ZnS, the zinc blend structure

 $\bigcirc = Zn^{2+}$

(b) Unit cell of CaF2, the fluorite structure

SrF₂, BaF₂, BaCl₂, PbF₂

(c) Unit cell of TiO2, the rutile structure

$$Ti^{4+} = 2$$

 $O^{2-} = 4$

2. ผลึกโมเลกุล(Molecular Crystals)

- 🕿 โมเลกุลอยู่ที่จุดแลตทิช แรงยึดเหนี่ยวเป็นแรงแวนเดอร์วาลส์ และ หรือพันธะไฮโดรเจน
- SO₂(s) มีแรงยึดเหนี่ยวประเภทไดโพล-ไดโพล H₂O(s) มีแรงยึด เหนี่ยวเป็นพันธะไฮโดรเจน
- ผลึกโมเลกุลอื่น เช่น I₂, P₄, S₈, C₁₀H₈
- 🕿 ผลึกโมเลกุลมีโมเลกุลอยู่ใกล้กันมาก (ยกเว้นน้ำแข็ง) แรงแวน เดอร์วาลส์ ค่อนข้างอ่อน ผลึกจึงเปราะ และ จุดหลอมเหลวต่ำกว่า 100 °C

(molecular crystals)

อะตอมหรือ โมเลกุลยึด กันด้วยแรงแวนเดอร์วาลส์ หรือพันธะไฮ โดรเจน

Ar, SO_2 , CO_2 , H_2O , I_2 , S_8

3. ผลึกโคเวเลนท์ (Covalent Crystals)

- ประกอบด้วยอนุภาคยึดกันอยู่ด้วยพันธะโคเวเลนท์ในโครงร่างสองและ สามมิติ
- แกรไฟท์ มี C เกิด sp² hybridization ยึดกันเป็นวงแหวนหกเหลี่ยมกับ 3C ส่วน unhybridized 2p ใช้ใน pi bonding จะ เคลื่อนที่รอบๆ แกรไฟต์จึงนำ ไฟฟ้าในแนวระนาบ แต่เปราะเนื่องจากแรงแวนเดอร์วาลส์ระหว่างชั้น ใช้ทำไส้ ดินสอ ริบบิ้นเครื่องคอมฯ
- ิ เพชร มี C เกิด sp³ hybridization ยึดกันแบบ 3 มิติ ผลึกจึงแข็ง จุด หลอมเหลวสูง (3550°C)
- ฿ ควอทซ์ (SiO₂) เรียงตัวคล้ายเพชร มีความแข็งค่อนข้างสูง จุดหลอมเหลว สูง (1610°C)

C(diamond), C(graphite), SiO2 (quartz), SiC

Fig 26 โครงสร้างของ (α) เพชร จับกันแบบทรงเหลี่ยมสี่หน้า และ (b) แกร ใฟต์ จับกันแบบสามเหลี่ยมแบนราบมีระยะห่างระหว่างระนาบ 335 pm

sp²C ในรูปต่างๆ (a) nanotube , (b) กลุ่ม nanotube และ (c) buckyball (C₆₀)

5. ผลึกโลหะ (metallic Crystals)

Electron sea model

พันธะโลหะเกิดจากการที่ใอออนบวกอยู่กับ
ที่ เรียงเป็นแนวอย่างเป็นระเบียบ ฝังตัวอยู่
ในทะเลของเวเลนซ์อิเล็กตรอน ซึ่ง
สามารถเคลื่อนที่ได้ทั่วผลึก จึงนำความร้อน
และนำไฟฟ้าได้ดี

- Simple cubic
- Body centered cubic
- Face centered cubic
- Hexagonal close packed

Metallic Crystals

อะตอมของโลหะอาจมี lattice แบบ bcc, fcc, hcp

Mn = simple cubic, Ga = orthorhombic, In and Sn = tetragonal, Hg = rhombohedral

Simple cubic
Body-centered cubic
Face-centered cubic
Hexagonal close-packed

The "electron sea" model

Molecular

Network covalent

Ionic

Metallic

การเปลี่ยนแปลงสถานะ (Phase Changes)

Phase ส่วนที่เป็นเนื้อเดียวกันของระบบ โดยมีขอบเขตที่ แน่นอนและแยกจากส่วนอื่นของระบบ

Phase change การเปลี่ยนจากเฟสหนึ่งไปเป็นอีกเฟสหนึ่งเมื่อ มีการให้หรือคายพลังงาน เช่น ของแข็ง => ของเหลว => แก็ส

สมดุลระหว่างสถานะ (Phase equilibrium)

สมดุลระหว่างของเหลวและใอ สมดุลระหว่างของเหลวและของแข็ง สมดุลระหว่างของแข็งและใอ

1. สมดุลระหว่างของเหลวและไอ (Liquid-Vapor Equilibrium)

Solid — Vapor

- ที่อุณหภูมิสูงกว่าจะมีจำนวนโมเลกุลที่มี
 พลังงานจลน์มากกว่า
- เมื่อโมเลกุลของเหลวมีพลังงานมากพอจะ หลุดจากผิวของของเหลว เรียกว่า การระเหย หรือ การกลายเป็นไอ (Evaporation หรือ Vaporization)
- ปี่สมดุลของใอและของเหลว เกิดความดันใอ (Vapor pressure) ที่ขึ้นอยู่กับอุณหภูมิ วัดได้ โดยมานอมิเตอร์
- ความดันไอเป็นสมบัติเฉพาะตัวของสาร
 แรงยึดเหนี่ยวระหว่างโมเลกุลต่ำ ความดันไอสูง
 จุดเดือดต่ำ

Fig 29 การกระจายพลังงานจลน์ของโมเลกุลที่อุณหภุมิ $T_2 > T_1$

Fig 30 เครื่องวัดความดันใอของของเหลว (a) ก่อนการระเหย และ (b) ที่สมดุล

Fig 31 อัตราของการระเหยและการควบแน่นที่อุณหภูมิคงที่

ความร้อนแฝงของการกลายเป็นใอและจุดเดือด (Heat of Vaporization and Boiling Point)

ความร้อนแฝงของการกลายเป็นไอต่อโมล

(Molar heat of vaporization, Δ H_{vap})

😊 พลังงานที่ใช้ในการระเหยของเหลว 1 โมล ให้เป็นไอ้หมด

$$\Delta H_{\text{vap}} = H_{\text{vapor}} - H_{\text{liquid}} = -\Delta H_{\text{condensation}}$$

😊 🛆 H_{vap} หาได้จากการทดลอง

$$\ln P = -\frac{\Delta^{\mathsf{H}} \mathsf{vap}}{\mathsf{RT}} + \mathsf{C}$$

Clausius-Clapeyron Equation

P = ความดันใอ T = อุณหภูมิสัมบูรณ์ (K)
$$C$$
 = ค่าคงที่ R = ค่าคงที่ของแก๊ส = $8.314 \ J.K^{-1}.mol^{-1}$

Fig 32 การพล๊อตของ In P vs. 1/T

$$\ln P = \frac{\Delta H_{\text{vap}}}{RT} + C$$

$$Slope = -\Delta H_{\text{vap}}/R$$

การคำนวณหาความดันไอที่อุณหภูมิอื่น

$$\begin{split} & \ln P_{1} = -\frac{\Delta H_{vap}}{RT_{1}} + C & \ln P_{2} = -\frac{\Delta H_{vap}}{RT_{2}} + C \\ & \ln P_{1} - \ln P_{2} = -\frac{\Delta H_{vap}}{RT_{1}} - \left(\frac{\Delta H_{vap}}{RT_{2}}\right) \\ & \ln P_{1} - \ln P_{2} = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right) \\ & \ln \frac{P_{1}}{P_{2}} = \frac{\Delta H_{vap}}{R} \left(\frac{T_{1} - T_{2}}{T_{1}T_{2}}\right) \end{split}$$

Fig 33 การเพิ่มขึ้นของ ความดันไอกับอุณหภูมิ

- จุดเดือดปกติ (Normal boiling point) เป็นอุณหภูมิที่ความ
 ดันใอของของเหลวเท่ากับความดันบรรยากาศ (ที่ 1 atm)
- ➡ T_b แปรผันในทิศทางเดียวกับ ∆H_{vap}

EX 6 ความดันไอของ ethyl ether เท่ากับ 401 mmHg ที่ 18.0 °C จงคำนวณหา ความดันไอของ ethyl ether ที่ 32.0 °C

$$P_1 = 401 \text{ mmHg}, T_1 = 18.0 \, ^{\circ}C = 291 \text{ K}$$

 $P_2 = ? T_2 = 32.0 \, ^{\circ}C = 305 \text{ K}$

$$\ln \frac{401}{P_2} = \frac{26,000 \text{ J.mol}^{-1}}{8.314 \text{ J.K}^{-1} \text{.mol}^{-1}} \left[\frac{291 \text{K} - 305 \text{ K}}{(291 \text{K})(305 \text{ K})} \right]$$

$$\frac{401}{P_2} = 0.6106$$

 $P_2 = 657 \text{ mmHg}$

The critical point

T เป็นอุณหภูมิสุดท้ายที่ของ เหลวทั้งหมดจะเปลี่ยนสถานะ ไปเป็นแก๊ส (จะมองไม่เห็นรอย ต่อระหว่างของเหลวกับแก๊ส)

Critical temperature (T_c): อุณหภูมิสูงสุดที่ทำให้แก๊สกลายเป็นของเหลวได้ กับ T สูงกว่านี้ไม่สามารถทำให้แก๊สกลายเป็นของเหลวได้ ไม่ว่าจะใช้ P เท่าใดก็ตาม Critical pressure (P_c): ความดันต่ำสุดที่จะทำให้แก๊สกลายเป็นของเหลวที่ อุณหภูมิวิกฤต

Some critical temperatures, T_c , and critical pressures, P_c

มีการประยุกต์ใช้ Supercritical fluid เช่น *CO*2 สกัดสารใน ห้องปฏิบัติการโดยเครื่อง Supercritical fluid extractor (SFE) และ ใช้ในอุตสาหกรรม นิยมใช้ CO2 เพราะ หา ได้ง่ายและใช้ T_c, P_c ค่อนข้างตำ

Table 7 ความร้อนแฝงของการกลายเป็นใอของสารบางชนิด

Substance	Boiling Point* (°C)	$\Delta H_{ m vap}$ (kJ/mol)	
Argon (Ar)	-186	6.3	
Benzene (C ₆ H ₆)	80.1	31.0	
Ethanol (C ₂ H ₅ OH)	78.3	39.3	
Diethyl ether $(C_2H_5OC_2H_5)$	34.6	26.0	
Mercury (Hg)	357	59.0	
Methane (CH₄)	-164	9.2	
Water (H ₂ O)	100	40.79	
* Measured at 1 atm.			

Table 8 ความร้อนแฝงของการหลอมเหลวของสารบางชนิด

Substance	Melting Point* (°C)	$\Delta H_{\rm fus}$ (kJ/mol)	
Argon (Ar)	-190	1.3	
Benzene (C ₆ H ₆)	5.5	10.9	
Ethanol (C₂H₅OH)	-117.3	7.61	
Diethyl ether ($C_2H_5OC_2H_5$)	-116.2	6.90	
Mercury (Hg)	-39	23.4	
Methane (CH₄)	-183	0.84	
Water (H₂O)	0	6.01	
* Measured at 1 atm.			

2. สมดุลระหว่างของเหลวและของแข็ง (Liquid-Solid Equilibrium)

จุดหลอมเหลว (melting point) ของของแข็ง หรือ จุดเยือกแข็งของของเหลว (freezing point) เป็นอุณหภูมิที่ของแข็งและของเหลวอยู่สมดุลกัน

$$H_2O(s) \longrightarrow H_2O(l)$$

ที่ 1 atm O °C : น้ำแข็งและน้ำอยู่ในสมดุลไดนามิก

ความร้อนแฝงของการหลอมเหลวต่อโมล

(Molar heat of fusion, ΔH_{fus})

- 🙂 พลังงานที่ใช้ในการหลอมเหลวของแข็ง 1 โมลให้เป็นของเหลวหมด
- igoplus โดยทั่วไป $\Delta \mathsf{H}_{\mathsf{fus}}$ มีค่าน้อยกว่า $\Delta \mathsf{H}_{\mathsf{vap}}$

Freezing Point

Melting Point

Supercooling เกิดจากการดึงความร้อนออกจากของเหลวเร็วไปทำให้โมเลกุลไม่ มีเวลาเรียงตัวให้เข้าที่โครงผลึก จึงเคลื่อนที่ต่อไป เมื่อบางส่วนเรียงเข้าสู่โครงผลึกมี การเกาะเพิ่มขึ้นจึงคายพลังงานศักย์ออกมา

Fig 34 กราฟการให้ความร้อนและการเย็นตัวของสาร

3. สมดุลระหว่างของแข็งและไอ

(Solid-Vapor Equilibrium)

sublimation
Solid

Vapor

deposition

ความร้อนแฝงของการระเห็ดต่อโมล

(Molar heat of sublimation, ΔH_{sub})

พลังงานที่ใช้ในการระเหิดของแข็ง 1 โมล ให้กลายเป็นไอ

ตาม Hess's Law: $\Delta H_{\text{sub}} = \Delta H_{\text{fus}} + \Delta H_{\text{vap}}$ $= -\Delta H_{\text{deposition}}$

EX 7 จงคำนวณพลังงานในหน่วย kJ ที่ต้องใช้ในการให้ความร้อนน้ำ 346 g ที่ 0 ℃ จนถึง 182 ℃ อนุมานว่าความร้อนจำเพาะของน้ำเท่ากับ 4.184 J/g. ℃ และ ความร้อน จำเพาะของไอน้ำเท่ากับ 1.99 J/g. ℃

การระเหย H₂O ที่ 100 °C, ∆H_{vap} = 40.79 kJ/mol

$$q_2 = 346 \text{ g H}_2\text{O} \times \frac{1 \text{ mol H}_2\text{O}}{18.02 \text{ g H}_2\text{O}} \times \frac{40.79 \text{ kJ}}{1 \text{ mol H}_2\text{O}} \rightarrow q_2 = 783 \text{ kJ}$$

H₂O(q) จาก 100 ถึง 182 °C

$$q_3$$
 = ms Δ t = (346g)(1.99J/g.°C)(182 - 100 °C)
= 5.65 x 10⁴ J = 56.5 kJ

$$q_{\text{Total}} = q_1 + q_2 + q_3 = 145 + 783 + 56.5 = 985 \text{ kJ}$$

Fig 35 พลังงานกับการเปลี่ยนสถานะของสาร

แผนผังเฟส Phase Diagram

Phase ส่วนที่เป็นเนื้อเคียวกันของระบบ โดยมีขอบเขตที่แน่นอนและ แยกจากส่วนอื่นของระบบ

แผนผังเฟสหรือแผนผังวัฏภาค — แสดงความสัมพันธ์ระหว่างเฟสต่างๆ ของสารเช่นของแข็ง ของเหลว แก๊ส(หรือไอ) กับอุณหภูมิและความดัน

ในแผนผังเฟส – มักประกอบด้วยเส้นสมคุล 3 เส้นได้แก่

- เส้นสมคุลระหว่างของแข็งกับแก๊สหรือไอ
- เส้นสมคุลระหว่างของแข็งกับของเหลว
- เส้นสมคุลระหว่างของเหลวกับแก๊สหรือไอ

จุดที่เส้นสมคุลทั้งสามตัดกันเรียกว่าจุดทริพเพิล(triple point) เป็นจุดที่ มีทั้งสามเฟสอยู่ในสมคุลกัน

ที่ 1 atm CO₂(s) เกิดการระเห็ด CO₂(I) ไม่สามารถเกิดขึ้นได้) สมดุลระหว่าง Liquid กับ Solid เอียงขวา slope เป็นบวก