Mémoire M2

Wei ZHOU

 $1^{\rm er}$ septembre 2016

1 Définition et le couplage pour la dimension 2

Dans cette partie, on définit l'interface d'abord à l'aide de la percolation dynamique et d'un couplage. On utilise les notations suivantes :

- $\Lambda_{l,h}$: le rectangle $[-l,l] \times [-h,h]$;
- T: le coté $[-l, l] \times (0, h)$ soit le côté haut de $\Lambda_{l,h}$, B: le coté $[-l, l] \times (0, -h)$, le coté bas du rectangle;
- $x \leftrightarrow y$: les deux sommets x et y sont reliés par un chemin ouvert ou fermé, on va considérer que le chemin est ouvert si ce n'est pas précisé;
- E l'ensemble d'arêtes d'un graphe G, ici G sera le réseau \mathbb{Z}^2 ou le rectangle $\Lambda_{l,h}$ avec les arêtes à l'intérieur.

1.1 La percolation dynamique

On définit d'abord la percolation dynamique dans un réseau \mathbb{Z}^2 . Soit $p \in [0,1]$, on munit indépendamment chaque arête e de \mathbb{Z}^2 d'une horloge exponentielle T_e de paramètre 1. Le processus de percolation dynamique X(t) est le processus de sauts à valeurs dans $\{0,1\}^E$. Quand chaque horloge T_e sonne, l'état de l'arête e est déterminé selon une variable de loi $p\delta_1 + (1-p)\delta_0$ (indépendante de tout le reste).

On peut remarquer d'abord que pour une arête fixée e, le nombre sauts entre 0 et t est majoré par une loi de Poisson t. De même pour le nombre d'ouverture(resp. fermeture) de e est majoré par pt(resp. (1-p)t).

On remarque dans une boite finie $\Lambda_{l,h}$, on peut remplacer X(t) par une chaîne de Markov en temps discret X_n à valeurs dans $\{0,1\}^E$, où E est l'ensemble des arêtes dans $\Lambda_{l,h}$. A l'instant n, on choisit une arête e dans E uniformément et on change son état selon une variable de loi $p\delta_1 + (1-p)\delta_0$.

1.2 L'interface

On définit l'interface \mathcal{I} à l'aide de la percolation dynamique. On considère la boite $\Lambda_{l,h}$ et le processus de percolation dynamique X_n dans la boite. On définit un couplage suivant :

Définition 1. Soit X_n le processus de percolation dynamique de paramètre p dans $\Lambda_{l,h}$ qui vérifie $T \stackrel{X_0}{\leftrightarrow} B$, soit Y_n un processus à valeurs dans $\{0,1\}^E$ avec $Y_0 = X_0$ et à l'instant n, soit e l'arête choisi par le processus X et U_n la variable uniforme dans [0,1], on détermine (X_{n+1},Y_{n+1}) ainsi :

$$(X_{n+1}, Y_{n+1}) = \begin{cases} (1,1) & U_n < p, T \leftrightarrow B \ dans \ X_{n+1} \\ (1,0) & U_n < p, T \leftrightarrow B \ dans \ X_{n+1} \\ (0,0) & U_n > p \end{cases}.$$

Le processus Y est une percolation dynamique conditionnée à ce qu'il n'existe pas de chemin ouvert entre T et B. On définit l'interface à partir du couplage :

Définition 2. Soit $(X_n, Y_n)_{n \leq 0}$ un couplage défini précédemment, on appelle une interface dans $\Lambda_{l,h}$ notée $\mathcal{I}_n^{l,h}$ l'ensemble aléatoire des arêtes qui sont ouverts dans X_n et fermé dans Y_n :

$$\mathcal{I}_n^{l,h} = \{ e \in E | X_n^e = 1, Y_n^e = 0 \}.$$

Le chaîne de Markov X est irréductible et finie donc elle admet une probabilité invariante qui est la probabilité de la percolation Bernoulli de paramètre p. La chaîne Y est aussi irréductible car toute configuration de Y est reliée à la configuration où toutes les arêtes sont fermées, en effet, il suffit de fermer toute arête choisie à toute instant de saut dans la chaîne X. Le théorème suivant donne la probabilité invariante de Y.

Théorème 1. Soit Z_n une chaîne de Markov réversible dans E de probabilité invariante π , soit $A \subset E$, on définit Z_n^A par sa probabilité de transition :

$$p^{A}(x,y) = \begin{cases} p(x,y) & y \in A, x \neq y \\ 0 & y \notin A \\ 1 - \sum_{y \neq x} p^{A}(x,y) & x = y \end{cases}$$

alors Z^A admet une probabilité invariante qui est $\frac{\mathbf{1}_A(\boldsymbol{\cdot})\pi(\boldsymbol{\cdot})}{\pi(A)}$ soit la probabilité invariante de la chaîne conditionnée à rester dans A.

On applique le théorème à Y et on obtient la probabilité invariante de Y qui est la loi de percolation de Bernoulli de paramètre p conditionnée à $T \leftrightarrow B$.

1.3 Condition aux bords

Pour étudier le comportement d'une interface par rapport à la taille de la boîte $\Lambda_{l,h}$, on introduit la condition aux bords suivantes. Pour instant, on traite uniquement le cas où seulement l varie et on ajoute les conditions aux bords seulement sur le côté gauche et le côté droite. On fixe alors un entier h et on note Λ_l la boite de hauteur 2h et de longueur 2l.

Définition 3. Soit $l, m \in \mathbb{N}$ avec l < m, on considère une boîte Λ_m et la boîte Λ_l à l'intérieur de Λ_m , une condition aux bords $\Pi_{l,m}$ est une application de $\partial_X \Lambda_l = (\{-l\} \times [-h,h]) \cup (\{l\} \times [-h,h])$ dans $\{top, bot, null\}$ définie ainsi, $\forall x \in \partial_X \Lambda_l$:

$$\Pi_{l,m}(x) = \begin{cases} top & x \overset{\Lambda_m \backslash \Lambda_l}{\leftrightarrow} T \\ bot & x \overset{\Lambda_m \backslash \Lambda_l}{\leftrightarrow} B \\ null & x \overset{\Lambda_m \backslash \Lambda_l}{\leftrightarrow} T \cup B \end{cases},$$

la notation $x \overset{\Lambda_m \backslash \Lambda_l}{\leftrightarrow} T(resp.B)$ signifie que le sommet x est relié à T(resp.B) uniquement par un chemin ouvert dont les arrêtes sont dans l'ensemble $(\Lambda_m \backslash \Lambda_l) \cup \partial \Lambda_l$.

Figure 1 – Exemples d'une condition aux bords

2 Quelques résultats géométriques

On va étudier la probabilité qu'une arrête fixée soit dans l'interface. Dans la suite, on considère le régime surcritique, ceci correspond au cas $p > \frac{1}{2}$ en dimension 2. On fait varier seulement la longueur du rectangle, soit $l \to \infty$ et on veut montrer que la probabilité $\mathbb{P}(E_0 \in I_t^l)$ converge pour t fixé avec E_0 l'arête entre (0,0) et (0,1).

Intuitivement, on peut deviner que l'influence d'une condition aux bords disparaît quand la taille de la boîte devient très grande. Plus précisément, on considère un couplage de processus de percolation dynamique conditionné à la condition $T \leftrightarrow B$ dans deux boîtes de taille l munies de deux conditions aux bords qui diffèrent à un seul sommet v_0 . La proposition suivante décrit la façon dont cette différence au bord induit une différence à l'arête E_0 .

Avant d'énoncer la proposition, on introduit le graphe dual qui est particulièrement adapté pour les problèmes en dimension 2.

Définition 4. Le graphe dual d'une percolation sur le réseau \mathbb{Z}^2 est un réseau sur $\mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$, dont une arête e^* est ouverte ssi l'arête e dans \mathbb{Z}^2 qui l'intersecte est ouverte.

Proposition 1. Soit Λ_l, Λ'_l deux boites munis des processus Y, Y' couplés avec un processus de percolation dynamique X en commun démarrés avec la même configuration initiale et de condition aux bords qui diffèrent au sommet v_0 . Soit t > 0 premier instant où E_0 diffère dans les deux boites,

FIGURE 2 – un réseau \mathbb{Z}^2 (noir) et son dual(gris)

alors $\exists N \in \mathbb{N}$, une suite d'arête $\epsilon_1, \ldots, \epsilon_N$ et des instant $0 < t_1 < t_2 < \cdots < t_N = t$ tels que à t_1 , ϵ_1 devient différente et deux chemins fermés relient ϵ_1^* et le bord contenant v_0 , de plus, $\forall i > 1$, l'arête ϵ_i devient différente à t_i et deux chemins fermés p_i^1, p_i^2 distincts relient ϵ_{i-1}^* et ϵ_i^* en graphe dual.

Démonstration. Sans perte de généralité, on peut supposer que à l'instant 0, toutes les arêtes dans les deux boîtes soient fermées. On considère maintenant la première arête e_1 qui devient différente dans les deux boites. Par symétrie, on peut supposer que v_0 soit dans le bord gauche et que e_1 soit fermée dans Λ'_l .

Cette arête devient différente car il existe dans une boite un chemin ouvert entre T et B si elle est ouverte et pas dans l'autre boîte. Il existe alors un chemin ouvert entre cette arête et le sommet v_0 au bord. Sans perte de généralité, on suppose que $\Pi'_l(v_0) = T$, il existe alors dans Λ_l et Λ'_l un chemin identique qui relie une extrémité de e_0 et B. On considère maintenant le cluster ouvert de ce chemin dans la boite Λ'_l , il n'est pas connecté à B par la condition $T \nleftrightarrow B$ dans Λ'_l , de plus, il n'est pas connecté à T car s'il l'était, $T \leftrightarrow B$ dans la boîte Λ_l où e_0 est ouverte. Il existe donc dans le graphe dual un contour fermé C_1 qui sépare ce cluster de T et de B. L'arête e_1^* sépare donc ce contour en deux parties disjointes (voir Figure 3).

FIGURE 3 – La configuration dans les deux boites quand e_1 devient différente et le contour C_1 en rouge

On considère maintenant une arête e_i qui devient différente à cause d'une

autre arête e_j , j < i qui est déjà différente. Par symétrie, on suppose que e_j est ouverte dans Λ_l et fermée dans Λ_l' , e_i est fermée dans Λ_l et ouverte dans Λ_l' . Comme pour la première arête e_0 , il y a un chemin ouvert qui relie e_i et e_j . Sans perte de généralité, on suppose que e_j est reliée à T dans les deux boîtes et e_i est reliée à B. Quitte à fermer toutes les arêtes e_k , $k \neq i, j$, on peut considérer le cluster ouvert de ce chemin dans les deux boîtes arrêté à e_j et e_i . Ce cluster n'est pas connecté à B dans Λ_l car e_j est ouverte, il n'est pas connecté à T dans Λ_l' car e_i est ouverte. On peut donc trouver un contour fermé C_i dans le graphe dual qui sépare ce cluster de T, B qui traverse e_i et e_j . Donc e_i et e_j sépare C_i en deux chemins fermés disjoints.

FIGURE 4 – La configuration dans les deux boites quand e_i devient différente avec le contour C_i en rouge

Enfin, pour obtenir la suite dans l'énoncé, on part de l'instant t pour trouver l'arête qui a causé la différence à E_0 , ensuite on répète ce procédure à l'instant où cette arête est devenue différente jusqu'à arriver au bord. Comme chaque ouverture ou fermeture d'une arête est donnée par une horloge exponentielle, il y a presque sûrement un nombre fini d'arêtes qui sont devenues différentes avant t. On peut donc trouver une suite finie d'arêtes f_0, f_1, \ldots, f_N avec $f_N = E_0$ et des instants $t_1 < \cdots < t_N = t$ qui vérifient l'énoncé.

On estime maintenant la probabilité pour qu'une arête deviennent différente à cause d'une autre arête ou directement à cause du bord.

Définition 5. Soit Λ_l une boîte de longueur l, un cut C est un ensemble d'arête fermé dont le dual contient un chemin fermé de gauche à droite de Λ_l . Un cut minimal est un cut dont l'ouverture d'un sous-ensemble produit un chemin ouvert de T à B.

On voit bien que l'existence d'un cut dans une boite Λ_l est équivalent à $T \nleftrightarrow B$.

Corollaire 1. Avec les notation précédente, $\forall i > 1$, à l'instant t_i , il existe un cut C_i et un chemin fermé c_i^* dans le graphe dual disjoint de C_i qui vérifie les conditions suivantes :

 $\begin{array}{ll} - \ c_i^* \subset (p_i^1 \cup p_i^2) \ ; \\ - \ |c_i^*| \geqslant \frac{1}{2} |p_i^1 \cup p_i^2| \ . \end{array}$

Démonstration. On considère le contour fermé formé par p_i^1 et p_i^2 , la condition $T \leftrightarrow B$ impose qu'il existe un cut K_i qui contient ϵ_i dans la configuration où elle est fermée. Quitte à ouvrir les arêtes de K_i qui ne sont pas pivotes, on peut supposer K_i minimal. On considère le dual de K_i , qui est un chemin fermé simple de gauche à droite. On peut numéroter les arêtes de K_i de la façon suivante :

- on pose $\epsilon_i^* = k_0$;
- si ϵ_i^* est horizontale, on pose k_{-1} l'arête qui partage le sommet gauche de ϵ_i^* et k_1 l'arête qui partage le sommet droite. S'il ϵ_i^* est verticale, on pose k_{-1} l'arête en bas et k_1 celle en haut.
- On éloigne de ϵ_i , jusqu'à avoir numéroté toutes les arêtes. Dans la direction négative, on diminue l'indice de 1 à chaque pas et on augmente de 1 par pas dans la direction positive.

On considère maintenant l'arête minimale et l'arête maximale de l'ensemble $K_i \cap (p_i^1 \cup p_i^2)$ qu'on note k_{min} et k_{max} . Les deux arêtes k_{min} et k_{max} coupe K_i en 3 parties disjointes : C_i^g un chemin entre le bord gauche et k_{min} ; C_i^d un chemin entre le bord droite et k_{max} ; l'union d'un chemin entre k_{min} et k_{max} et ces deux arêtes. De plus, les deux sommets qui séparent ces trois parties coupent le contour $p_i^1 \cup p_i^2$ en deux chemins disjoints c_i^1 et c_i^2 . Quitte à échanger les numéros, on suppose que $|c_i^1| \ge |c_i^2|$.

FIGURE 5 – construction d'un chemin fermé disjoint d'un cut

Enfin on pose $C_i^* = C_i^g \cup C_i^d \cup c_i^2$ un chemin fermé du bord gauche au bord droite dans le graphe dual et $c_i^* = c_i^1$. On pose C_i le dual de C_i^* qui est un cut. Or $|c_i^1| \geqslant |c_i^2|$, on obtient $|c_i^*| \geqslant \frac{1}{2} |p_i^1 \cup p_i^2|$. Par construction, C_i et c_i^* sont disjoints.

3 Quelques inégalités préliminaires

On va énoncer quelques inégalités utiles pour montrer la convergence en loi de l'interface quand la taille de la boîte tend vers infini. On commence par une inégalité de type BK adaptée au problème. On commence par généraliser la notion de l'occurrence disjointe.

Définition 6. Soit Λ_l une boîte de longueur l, soit A l'événement $x \leftrightarrow y$ à l'instant s, B l'événement $u \leftrightarrow v$ à l'instant t, soit $K(\omega) = \{e : e = 1\}$, on définit l'occurrence disjointe de A et B noté par $A \circ B$ par :

- $si s = t, A \circ B = \{\omega : \exists \omega_1 \in A, \exists \omega_2 \in B, K(\omega_1) \cap K(\omega_2) = \emptyset, K(\omega_1) \cup K(\omega_2) \subset K(\omega)\};$
- $si s < t, A \circ B = \{\omega : \exists \omega_1 \in A, \exists \omega_2 \in B, K(\omega_1) \cup K(\omega_2) \subset K(\omega), \forall e \in (\omega_1) \cap K(\omega_2), \exists r \in [s, t], e(r) = 1\}.$

On énonce l'inégalité de BK pour la percolation dynamique :

Proposition 2. Soit Λ_l une boîte de longueur l, $0 < s \le t$, soit A l'événement $x \leftrightarrow y$ à l'instant s, B l'événement $u \leftrightarrow v$ à l'instant t, alors $P(A \circ B) \le P(A)P(B)$ quand p est assez proche de 1.

Démonstration. Pour le premier cas, c'est l'inégalité de BK classique. On traite uniquement le deuxième cas où les instants sont différents. Soit $\Gamma = \{f: [s,t] \to \{0,1\} \text{ càdlàg}\}^{|\Lambda_l|}$. On introduit deux espaces de probabilité identiques $S_1 = (\Gamma_1, \mathcal{F}_1, P_1), S_2 = (\Gamma_2, \mathcal{F}_2, P_2)$, on définit S l'espace produit de S_1, S_2 . On écrit $x \times y$ un point de $\Gamma_1 \times \Gamma_2$. On note $A' = A \times \Gamma_2$, $B'_k = \{x \times y : (y_1, \dots, y_k, x_{k+1}, \dots, x_{|\Lambda_l|}) \in B\}$. On note P_{12} la probabilité produit de P_1, P_2 . On voit bien que $P(A \circ B) = P_{12}(A' \circ B'_0)$ et $P_{12}(A' \circ B'_1) = P(A)P(B)$. On montre maintenant :

$$\forall k > 0, P_{12}(A' \circ B'_{k-1}) \leqslant P_{12}(A' \circ B'_{k})$$

On considère $x\times y\in A'\circ B'_{k-1},$ donc $x\in A$ et $(y_1,\ldots,y_{k-1},x_k,\ldots,x_{|\Lambda_l|})\in B.$

On considère d'abord le cas où e_k n'est pas pivot pour B. On vérifie facilement $x \times y \in A' \circ B'_k$.

On considère maintenant l'arête e_k est pivot pour A et B. On a donc $x_k(s) = 1, x_k(t) = 1, \exists r \in [s, t], x_k(r) = 0$. On pose

$$x' = (x_1, \dots, x_{k-1}, \bar{x}_k, x_{k+1}, \dots, x_{|\Lambda_l|})$$

$$y' = (y_1, \dots, y_{k-1}, x'_k, y_{k+1}, \dots, y_{|\Lambda_l|})$$

où x_k' une copie indépendante de x_k . $x \times y' \in A' \circ B_k'$ et \bar{x}_k vérifie $\bar{x}_k(s) = 1$. On a donc $P_{12}(x \times y \in A' \circ B_k'; e_k \text{ pivot } A, B) = pP_{12}(x \times y \in A' \circ B_{k-1}'; e_k \text{ pivot } A, B)$.

Il reste le cas e_k pivot pour B mais pas pour A. On a maintenant $x_k(t) = 1$, on pose

$$x' = (x_1, \dots, x_{k-1}, f_k, x_{k+1}, \dots, x_{|\Lambda_l|})$$

$$y' = (y_1, \dots, y_{k-1}, x'_k, y_{k+1}, \dots, y_{|\Lambda_l|})$$

où $f_k:[s,t]\to\{0,1\}$ une fonction càdlàg et x_k' une copie indépendante de x_k . On a $x'\times y'\in A'\circ B_k'$, et $P_{12}(x\times y\in A'\circ B_k';e_k$ pivot $B)=\frac{1}{p}P_{12}(x\times y\in A'\circ B_{k-1}';e_k$ pivot B).

On montre maintenant $P(e_k \text{ pivot } A, B) \leq P(e_k \text{ pivot } B)$ quand p proche de 1. En effet,

$$P(e_k \text{ pivot } A, B) \leqslant P(x_k(s) = 1, x_k(t) = 1, \exists r \in [s, t], x_k(r) = 0)$$

 $\leqslant 1 - \exp(-(1 - p)(t - s))$

$$P(e_k \text{ pivot } B) \geqslant P(e_k \text{ ne change pas d'état}) \geqslant \exp(-(t-s))$$

Pour p assez proche de 1, on a l'inégalité demandée. On a donc

$$P_{12}(A' \circ B'_{k-1}) = P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } A, B) + P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } B)$$

$$+ P_{12}(A' \circ B'_{k-1}; e_k \text{ non pivot })$$

$$\leq pP_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } A, B) + \frac{1}{p}P_{12}(A' \circ B'_{k-1}; e_k \text{ pivot } B)$$

$$+ P_{12}(A' \circ B'_{k-1}; e_k \text{ non pivot })$$

$$\leq P_{12}(A' \circ B'_{k}; e_k \text{ pivot } A, B) + P_{12}(A' \circ B'_{k}; e_k \text{ pivot } B)$$

$$+ P_{12}(A' \circ B'_{k}; e_k \text{ non pivot })$$

$$\leq P_{12}(A' \circ B'_{k})$$

Avec une récurrence sur k, on a l'inégalité demandée dans la proposition. \square

On sait déjà qu'un chemin fermé admet la propriété de décroissance exponentielle en fonction de son cardinal dans la phase surcritique, on montre maintenant une propriété similaire pour la percolation dynamique sur son comportement temporel :

Proposition 3. Soit $p > \frac{1}{2}$, c un chemin fermé à l'instant s de cardinal m, soit $P_{c,c'}$ la probabilité qu'il ne soit pas disjoint d'un chemin c' à l'instant t > s, on a $P_{c,c'} \leq me^{-\gamma(t-s)}$ avec γ une constante indépendante de c et de c'.

Démonstration. On considère une arête (x,y) fermé et une modification locale M pour l'ouvrir suivante : on ferme deux arêtes perpendiculaires de même côté qui contiennent respectivement un sommet x,y et l'arête qui relie ces deux arêtes; ensuite on ouvre l'arête (x,y). Chaque étape de la modification est déterminée par une horloge exponentielle et elle respecte la condition de $T \nleftrightarrow B$. Entre [0,1], cette modification a une probabilité

positive r pour se réaliser. On en déduit qu'il existe une constante γ pour qu'entre [s,t], la probabilité que cette modification ne se réalise pas est inférieur à $e^{-\gamma(t-s)}$.

On considère maintenant deux arêtes e,e' voisines, on peut choisir les arêtes qu'on modifie pour que e,e' soient modifiées indépendamment. En effet, si les e,e' sont colinéaires alors on effectue les modifications à différents côtés; si e,e' sont perpendiculaires, alors on effectue la modification à l'extérieur de l'angle formé par e,e', voir figure 6.

Figure 6 – deux arêtes voisines et les arêtes à modifier en rouge

On a donc

$$P(c \coprod c') \geqslant P(\forall e \in c, M \text{ se réalise sur } e)$$

 $\geqslant (1 - e^{-\gamma(t-s)})^m \geqslant 1 - me^{-\gamma(t-s)}$

On introduit la notion de space-time chemin, en prolongeant la connexion dans le temps, c'est-à-dire si une arête e=(x,y) reste ouverte (resp. fermée) entre s et t alors $(x,s) \leftrightarrow (y,t)$ par un space-time chemin ouvert (resp.fermé). On montre aussi une décroissance exponentielle avec les space-time chemin.

Proposition 4. Soit $n \in \mathbb{N}$, t > 0, $p > \frac{1}{2}$, soit A(n,t) l'événement $(O,0) \leftrightarrow (n\mathbf{e}_1,t)$ par un space-time chemin fermé ou $\mathbf{e}_1 = (1,0)$, alors $\exists \gamma(p,t)$, une constante qui dépend de p,t tel que $P(A(n,t)) \sim e^{-\gamma(p,t)n}$.

Démonstration. On montre cette équivalence par le lemme sous-additif. En fait,

$$P((O,0) \leftrightarrow ((n+m)\mathbf{e}_1,s+t)) \geqslant P((O,0) \leftrightarrow (n\mathbf{e}_1,s))P((n\mathbf{e}_1,s) \leftrightarrow ((m+n)\mathbf{e}_1,s+t))$$

$$\leqslant P((O,0) \leftrightarrow (n\mathbf{e}_1,s))P((O,0) \leftrightarrow (m\mathbf{e}_1,t))$$

Car on a l'invariance par translation. On conclut avec le lemme sous additif.

4 La probabilité d'une influence du bord

On montre maintenant que la probabilité d'avoir une influence du bord sur une arête à l'intérieur de la boîte.

Théorème 2. Soit $p \ge \frac{1}{2}$, E l'arête au centre de la boîte Λ_l , Λ'_l décrit dans la proposition 1, il existe une constante $\lambda > 0$ tel que $P(Y(E) \ne Y'(E)) \le e^{-\lambda l} P(T \leftrightarrow B \text{ entre } [0,t])$.

Démonstration. On utilise les notations de la proposition 1 et son corollaire. D'après la proposition 1, on sait qu'il existe une suite d'arêtes ϵ_1, ϵ_n qui sont reliées l'une après l'autre à différentes instants. On note x_i, y_i les extrémités de c_i^* chemin fermé dans le graphe dual et de C_i le cut, on note aussi k_i le cardinal de $p_i^1 \cup p_i^2$. On sépare la suite en différentes sous suites selon l'indépendance, plus précisément, si c_j^* et c_{j+1}^* est de l'occurrence disjointe, alors on coupe la suite à l'indice j. Ainsi, on obtient les indices j_1, \ldots, j_r telles que $\forall 1 \leqslant u \leqslant r, c_{j_u}^*$ et $c_{j_{u+1}}^*$ sont disjoints, $\forall j_k \leqslant v \leqslant j_{k+1}, c_k^*$ et c_{k+1}^* ne sont pas disjoints.

$$P(Y(E) \neq Y'(E)) = P(\exists \epsilon_{1}, \dots, \epsilon_{n}, \forall i, \exists p_{i}^{1}, p_{i}^{2}, \epsilon_{i-1} \overset{p_{i}^{1}, p_{i}^{2}}{\leftrightarrow} \epsilon_{i})$$

$$\leq P(\exists x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}c_{1}^{*}, \dots, c_{n}^{*}, C_{1}, \dots, C_{n})$$

$$\leq \sum_{j_{1}, \dots, j_{r}} \prod_{1 \leq k \leq r} P\begin{pmatrix} \exists x_{j_{k-1}+1}, \dots, x_{j_{k}}, \\ y_{j_{k-1}+1}, \dots, y_{j_{k}}, \\ c_{j_{k-1}+1}, \dots, c_{j_{k}}^{*}, \\ C_{j_{k-1}+1}, \dots, C_{j_{k}} \text{ cut}, \\ \forall j_{k-1}+1 \leq m \leq j_{k}, x_{m} \overset{c_{m}^{*}}{\leftrightarrow} y_{m}, c_{m}^{*} \circ C_{m} \end{pmatrix}$$

On utilise la proposition 4 pour majorer chaque terme du produit. Or les $\forall j_{k-1} + 1 \leqslant c_m^* \leqslant j_k$, les c_m^* ne sont pas d'occurrence disjointe, on a un space-time chemin σ_k qui relie $x_{j_{k-1}+1}$ et y_{j_k} . Donc elle est bornée par $|\sigma_k|^4 e^{-\gamma(p,t_{j_k}-t_{j_{k-1}+1})|\sigma_k|} P(\exists C_{j_{k-1}+1},\ldots,C_{j_k} \text{ cut})$ car $x_{j_{k-1}+1}$ et y_{j_k} sont dans un carré de taille inférieure à $|\sigma_k|$. Or $\exists \delta > 0$ tel que $\forall x > 1, x^4 e^{-x} \leqslant e^{-\delta x}$, on a

$$|\sigma_k|^4 e^{-\gamma(p,t_{j_k}-t_{j_{k-1}+1})|\sigma_k|} \le |\sigma_k|^4 e^{-\gamma(p,t)|\sigma_k|} \le e^{-\delta\gamma(p,t)|\sigma_k|}$$

On part de E, $x_{j_{n-1}+1}$ est de distance inférieure à $2|\sigma_r|$ de E, on a donc

$$\sum_{1=j_1<\dots< j_r=n} \prod_{1\leqslant k\leqslant r} e^{-\delta\gamma(p,t)|\sigma_k|} P(\exists C_{j_{k-1}+1},\dots,C_{j_k} \text{ cut})$$

$$\leqslant P(\exists C_1,\dots,C_n \text{ cut}) \sum_{1=j_1<\dots< j_{r-1}} 4|\sigma_r|^2 e^{-\delta\gamma(p,t)|\sigma_r|} \prod_{1\leqslant k\leqslant r-1} e^{-\delta\gamma(p,t)|\sigma_k|}$$

$$\leqslant P(\exists C_1,\dots,C_n \text{ cut}) \sum_{1=j_1<\dots< j_{r-1}} 4e^{-\delta^2\gamma(p,t)|\sigma_r|} \prod_{1\leqslant k\leqslant r-1} e^{-\delta\gamma(p,t)|\sigma_k|}$$

$$\leqslant 4^r e^{-\delta^2\gamma(p,t)\sum_1^r |\sigma_k|} P(\exists C_1,\dots,C_n \text{ cut})$$

Enfin, r est borné par une variable aléatoire de loi de Poisson de paramètre $l^2(1-p)t,$ on a le résultat. $\hfill\Box$