Symbols, Dimensions, and Units

Base dimensions and their SI unit symbols

$$M=$$
 mass (kg), $L=$ length (m), $T=$ time (s), $Q=$ charge (C), $\tau=$ temperature (K or $^{\circ}$ C)

TABLE A.1 Electromagnetics

Parameter and its Symbol	Dimensions	Unit Name	Unit Symbol
Charge Q	Q	coulombs	С
Electric field intensity E	$MLT^{-2}Q^{-1}$	volts/m	V/m
Electric flux density D	QL^{-2}	coulombs/m ²	C/m ²
Electric scalar potential ϕ_{ν}	$ML^2T^{-2}Q^{-1}$	volts	V
Current I	QT^{-1}	amperes	A
Current density J	$\mathrm{QL}^{-2}\mathrm{T}^{-1}$	amperes/m ²	A/m^2
Conductivity σ	$M^{-1}L^{-2}TQ^2$	siemens/m	S/m
Resistance R	$ML^2T^{-1}Q^{-2}$	ohms	Ω
Permittivity ε	$M^{-1}L^{-3}T^2Q^{-2}$	farads/m	F/m
Capacitance C	$M^{-1}L^{-2}T^2Q^{-2}$	farads	F
Magnetic field intensity H	$L^{-1}T^{-1}Q$	amperes/m	A/m
Magnetic flux density B	$MT^{-1}Q^{-1}$	webers/ m^2 = teslas	$Wb/m^2 = T$
Magnetic vector potential A	$MLT^{-1}Q^{-1}$	webers/m	Wb/m
Magnetization M	$L^{-1}T^{-1}Q$	amperes/m	A/m
Permeability μ	MLQ^{-2}	henrys/m	H/m
Inductance L	ML^2Q^{-2}	henrys	Н
Flux ϕ	$ML^2T^{-1}Q^{-1}$	webers	Wb
Reluctance $\mathcal R$	$M^{-1}L^{-2}Q^2$	amperes/weber	A/Wb

Magnetic Actuators and Sensors, Second Edition. John R. Brauer.

^{© 2014} The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

TABLE A.2 Mechanics

Parameter and its Symbol	Dimensions	Unit Name	Unit Symbol
Mass M	M	kilograms	kg
Length l	L	meters	m
Time t	T	seconds	S
Velocity V	LT^{-1}	meters/second	m/s
Force F	MLT^{-2}	newtons	N
Pressure <i>p</i>	$ML^{-1}T^{-2}$	$newtons/m^2 = pascals$	$N/m^2 = Pa$
Density ρ	ML^{-3}	kilogram/m ³	kg/m ³
Energy or work W	ML^2T^{-2}	newton meters = joules	Nm = J
Power P	ML^2T^{-3}	watts	W
Stiffness K	MT^{-2}	kilogram/second ²	kg/s ²
Damping B	MT^{-1}	kilogram/second	kg/s
Modulus of elasticity E	$\mathrm{ML}^{-1}\mathrm{T}^{-2}$	newtons/ m^2 = pascals	$N/m^2 = Pa$

TABLE A.3 Hydraulics

Parameter and its Symbol	Dimensions	Unit Name	Unit Symbol
Pressure p	$ML^{-1}T^{-2}$	newtons/m ² = pascals = 1.E-5 bar	$N/m^2 = Pa = 1.E-5 \text{ bar}$
Flow rate Q	L^3T^{-1}	$m^3/s = 1000$ liters/s	$m^3/s = 1000 L/s$
Laminar orifice resistance <i>R</i> Turbulent orifice coefficient <i>K</i> Hydraulic capacitance <i>C</i>	$\begin{array}{l} M^{-2}L^{-1}T^{-1} \\ M^{-2}L^{9}T^{3} \\ M^{-1}L^{4}T^{2} \end{array}$	pascal s/m³ m³/(N²s) m³/pascal	Pa s/m ³ m ⁷ /(N ² s) m ³ /Pa

TABLE A.4 Heat

Parameter and its Symbol	Dimensions	Unit Name	Unit Symbol
Temperature T Quantity of heat energy W Heat flow or heat flux Q Heat flux density q Thermal conductivity k Film coefficient h	$ au$ ML 2 T $^{-2}$ ML 2 T $^{-3}$ MT $^{-3}$ MLT $^{-3}\tau^{-1}$ MT $^{-3}\tau^{-1}$	kelvin = 273 + degree celsius newton meters = joules watts watts/m ² watts/(m °C) watts/(°C m ²)	$K = 273 + {}^{\circ}C$ $N m = J$ W W/m^{2} $W/(m {}^{\circ}C)$ $W/({}^{\circ}C m^{2})$