Recursive Functionals

- A recursive functional Φ maps functions to functions, i.e. $\Phi: F(\mathbb{N}^k) \to F(\mathbb{N}^h)$ where $F(\mathbb{N}^k)$ is the set of total functions from \mathbb{N}^k to \mathbb{N} .
- Φ is recursive if there exists a computable function $\phi: \mathbb{N}^{h+1} \to \mathbb{N}$ such that for any $f \in F(\mathbb{N}^k)$ and any $y \in \mathbb{N}^h$, $\Phi(f)(y) = y$ iff there is a finite subfunction $\theta \subseteq f$ such that $\phi(\tilde{\theta}, y) = y$.
- Intuitively, $\Phi(f)$ is computable in a finite number of steps using a finite amount of information about f. The finite subfunction θ provides the relevant information about f needed to compute $\Phi(f)(y)$.
- If Φ is a recursive functional, then for any computable function f, $\Phi(f)$ is also computable. Recursive functionals preserve computability.

Myhill-Shepherdson Theorem

- This theorem characterizes recursive functionals in terms of extensional functions on indices.
- Part 1: If $\Phi: F(\mathbb{N}^k) \to F(\mathbb{N}^h)$ is a recursive functional, then there exists a total computable extensional function $h: \mathbb{N} \to \mathbb{N}$ such that for all $e \in \mathbb{N}$, $\Phi(\phi_e) = \phi_{h(e)}$.
 - In other words, the behavior of Φ on computable functions is captured by an extensional function h on indices. If $\phi_e = \phi_{e'}$, then $\Phi(\phi_e) = \Phi(\phi_{e'}) = \phi_{h(e)} = \phi_{h(e')}$.
- Part 2: If $h: \mathbb{N} \to \mathbb{N}$ is a total computable extensional function, then there is a unique recursive functional Φ_h such that for all $e \in \mathbb{N}$, $\Phi_h(\phi_e) = \phi_{h(e)}$.
 - An extensional function h that transforms indices induces a recursive functional Φ_h on the actual computable functions. Φ_h is uniquely determined by h.

First Recursion Theorem

- This theorem states that any recursive functional $\Phi: F(\mathbb{N}^k) \to F(\mathbb{N}^k)$ has a least computable fixed point f_{Φ} .
- A function f is a fixed point of Φ if $\Phi(f)=f$. The least fixed point f_{Φ} satisfies:
 - 1. $\Phi(f_{\Phi}) = f_{\Phi}$
 - 2. For any $g \in F(\mathbb{N}^k)$, if $\Phi(g) = g$ then $f_\Phi \subseteq g$
 - 3. f_{Φ} is computable
- This allows defining computable functions by very general recursive schemes. As long as each recursive definition corresponds to a recursive functional Φ , the theorem guarantees the existence of a computable function satisfying the recursive equations.

Regarding the fixed point part:

The First Recursion Theorem deals with recursive functionals of the form $\Phi: F(\mathbb{N}^k) \to F(\mathbb{N}^k)$, i.e., functionals that map functions of k arguments to functions of k arguments.

A function f is a fixed point of Φ if applying Φ to f yields f itself, i.e., $\Phi(f) = f$. In other words, f is a solution to the recursive equation defined by Φ .

The theorem states that every such recursive functional has a least fixed point f_{Φ} which is computable. "Least" here means that for any other fixed point g of Φ , f_{Φ} is a subfunction of g (denoted $f_{\Phi} \subseteq g$). This implies that f_{Φ} is in some sense the "smallest" or "minimal" solution to the recursive equation defined by Φ .

The significance of this theorem is that it allows defining computable functions recursively using very general schemes. As long as the recursive definition can be expressed as a recursive functional Φ , the theorem guarantees that there is a computable function f_{Φ} that satisfies this definition. Moreover, this function is the least solution in the sense described above.

This provides a powerful tool for defining and reasoning about computable functions. It shows that recursive definitions, as long as they correspond to recursive functionals, always have a well-defined computable solution. This result is fundamental in the theory of computability and in the study of recursive function definitions.