NP-Completeness

Reference: Computers and Intractability: A
Guide to the Theory of NP-Completeness
by Garey and Johnson,
W.H. Freeman and Company, 1979.

Young CS 331 D&A of Algo.

NP-Completeness

1

General Problems, Input Size and Time Complexity

• Time complexity of algorithms:

polynomial time algorithm ("efficient algorithm") v.s.

exponential time algorithm ("inefficient algorithm")

f (n) \ n	10	30	50
n	0.00001 sec	0.00003 sec	0.00005 sec
n ⁵	0.1 sec	24.3 sec	5.2 mins
2 ⁿ	0.001 sec	17.9 mins	35.7 yrs

Young CS 331 D&A of Algo.

NP-Completeness

"Hard" and "easy' Problems

- Sometimes the dividing line between "easy" and "hard" problems is a fine one. For example
 - Find the shortest path in a graph from X to Y. (easy)
 - Find the longest path in a graph from X to Y. (with no cycles) (hard)
- View another way as "yes/no" problems
 - Is there a simple path from X to Y with weight \leq M? (easy)
 - Is there a simple path from X to Y with weight \geq M? (hard)
 - First problem can be solved in polynomial time.
 - All known algorithms for the second problem (could) take exponential time .

Young CS 331 D&A of Algo.

NP-Completeness

3

• <u>Decision problem</u>: The solution to the problem is "yes" or "no". Most optimization problems can be phrased as decision problems (still have the same time complexity).

Example:

Assume we have a decision algorithm X for 0/1 Knapsack problem with capacity M, i.e. Algorithm X returns "Yes" or "No" to the question

"Is there a solution with profit $\geq P$ subject to knapsack capacity $\leq M$?"

Young CS 331 D&A of Algo. NP-Completeness

We can repeatedly run algorithm X for various profits(P values) to find an optimal solution. Example: Use binary search to get the optimal profit, maximum of $\lg \sum p_i$ runs. (where M is the capacity of the knapsack optimization problem) Min Bound **Optimal Profit** Max Bound Search for the optimal solution $\sum p_i$ 0 CS 331 NP-Completeness Young D&A of Algo.

The Classes of P and NP

- The class P and Deterministic Turing Machine
 - Given a decision problem X, if there is a polynomial time Deterministic Turing Machine program that solves X, then X is belong to P
 - Informally, there is a polynomial time algorithm to solve the problem

Young CS 331 D&A of Algo.

NP-Completeness

- The class NP and Non-deterministic Turing Machine
 - Given a decision problem X.

 If there is a polynomial time Non-deterministic

 Turing machine program that solves X, then X

 belongs to NP
 - Given a decision problem X.
 For every instance I of X,
 (a) guess solution S for I, and
 (b) check "is S a solution to I?"
 If (a) and (b) can be done in polynomial time, then X belongs to NP.

Young CS 331 D&A of Algo.

NP-Completeness

7

Obvious : P ⊆ NP, i.e. A
 (decision) problem in P does
 not need "guess solution".
 The correct solution can be
 computed in polynomial time.

- Some problems which are in NP, but may not in P:
 - 0/1 Knapsack Problem
 - PARTITION Problem : Given a finite set of positive integers Z.

Question: Is there a subset Z' of Z such that Sum of all numbers in Z' = Sum of all numbers in Z-Z'?

i.e.
$$\sum Z' = \sum (Z-Z')$$

Young CS 331 D&A of Algo. NP-Completeness

• One of the most important open problem in theoretical compute science :

Is P=NP?

Most likely "No".

Currently, there are many known (decision) problems in NP, and there is no solution to show anyone of them in P.

Young CS 331 D&A of Algo.

NP-Completeness

9

NP-Complete Problems

- Stephen Cook introduced the notion of NP-Complete Problems.
 - This makes the problem "P = NP?" much more interesting to study.
- The following are several important things presented by Cook:

Young CS 331 D&A of Algo. NP-Completeness

- 1. Polynomial Transformation (" ∝ ")
 - $L1 \propto L2$:

There is a polynomial time transformation that transforms arbitrary instance of L1 to some instance of L2.

- If L1 \propto L2 then L2 is in P implies L1 is in P (or L1 is not in P implies L2 is not in P)
- If L1 \propto L2 and L2 \propto L3 then L1 \propto L3

Young D&A of Algo. NP-Completeness

11

- 2. Focus on the class of NP **decision** problems only. Many intractable problems, when phrased as decision problems, belong to this class.
- 3. L is **NP-Complete**

if (#1) $L \in NP$ & (#2) for all other $L' \in NP$, $L' \propto L$

- If an NP-complete problem can be solved in polynomial time then all problems in NP can be solved in polynomial time.
- If a problem in NP cannot be solved in polynomial time then all problems in NP-complete cannot be solved in polynomial time.
- Note that an NP-complete problem is one of those hardest problems in NP.

L is **NP-Hard** if

(#2 of NP-Complete) for all other $L' \in NP$, $L' \propto L$

Note that an NP-Hard problem is a problem which is as hard as an NP-Complete problem and it's not necessary a decision problem.

5. CS 331 Young

NP-Completeness

- So, if an NP-complete problem is in P then P=NP
- if P!= NP then all NP-complete problems are in NP-P
- 4. Question: How can we obtain the first NP-complete problem L?

Cook Theorem : SATISFIABILITY is NP-Complete. (The first NP-Complete problem)

Instance: Given a set of variables, U, and a collection of clauses, C, over U.

Question: Is there a truth assignment for U that satisfies all clauses in C?

Young CS 331 D&A of Algo.

NP-Completeness

13

$$\mathbf{U} = \{\mathbf{x}_1, \, \mathbf{x}_2\}$$

$$C_1 = \{(x_1, \neg x_2), (\neg x_1, x_2)\}$$

$$= (\mathbf{x}_1 \mathbf{OR} \neg \mathbf{x}_2) \mathbf{AND} (\neg \mathbf{x}_1 \mathbf{OR} \mathbf{x}_2)$$

if
$$x_1 = x_2 = True \rightarrow C_1 = True$$

$$C_2 = (x_1, x_2) (x_1, \neg x_2) (\neg x_1) \rightarrow \text{not satisfiable}$$

"
$$\neg x_i$$
" = "not x_i " "OR" = "logical or" "AND" = "logical and"

This problem is also called "CNF-Satisfiability" since the expression is in CNF – Conjunctive Normal Form (the product of sums).

Young CS 331 D&A of Algo.

NP-Completeness

• With the Cook Theorem, we have the following property:

Lemma:

If L1 and L2 belong to NP, L1 is NP-complete, and L1 ∝ L2 then L2 is NP-complete.

i.e. L1, $L2 \in NP$ and for all other $L' \in NP$, $L' \propto L1$ and $L1 \propto L2 \rightarrow L' \propto L2$

Young CS 331 D&A of Algo.

NP-Completeness

15

- So now, to prove a (decision) problem L to be NP-complete, we need to
 - show L is in NP
 - select a known NP-complete problem L'
 - construct a polynomial time transformation f from L' to L
 - prove the correctness of f (i.e. L' has a solution if and only if L has a solution) and that f is a polynomial transformation

Young CS 331 D&A of Algo.

NP-Completeness

• P: (Decision) problems solvable by deterministic algorithms in polynomial time

• NP: (Decision) problems solved by non-deterministic algorithms in polynomial time

 A group of (decision) problems, including all of the ones we have discussed (Satisfiability, 0/1 Knapsack, Longest Path, Partition) have an additional important property:

If any of them can be solved in polynomial time, then they all can!

NP-Complete
NP

• These problems are called NP-complete problems.

Young CS 331 D&A of Algo.

NP-Completeness