Aula 14 - Contadores Assíncronos

Prof. Dr. Emerson Carlos Pedrino

emerson@dc.ufscar.br

DC/UFSCar

Assíncrono x Síncrono

- Contadores Assíncronos:
 - O CLK é colocado apenas no primeiro FF (LSB)

- Contadores Síncronos:
 - O mesmo CLK é ligado em todos os FFs;

FF Tipo T - Toggle

Contador Assíncrono de 4 bits

Pulsos Ck	\mathbf{Q}_3	Q ₂	Q	Q_0
	0	0	0	0
19	0	0		010101010101010
2 º	0	0	0 1 1	0
3°	0	0	1	1
4 º	0	1	0	0
5 º	0	1	0	1
6º	0	1	1	0
7 °	0	1	1	1
8º	1	0	0	0
9 º	1	0	0	1
10°	1	0	1	0
11º	1	0	1	1
1 <u>2</u> º	1	1	0	0
13º	1	1	0	1
14º	1	1	1	0
1° 2° 3° 4° 5° 6° 7° 8° 10° 11° 12° 13° 14° 15° 16°	000000111111110	0001111000011111	001100110011	1
16º	0	0	0	0

Contador Assíncrono de 4 bits

Módulo de um Contador Binário

- Módulo = 2ⁿ (nº de estados)
- Para n FFs, pode-se dividir a f_{CK} por até 2ⁿ
- $f_n = f_{CK}/2^n$
- Um contador binário de n bits tem Q_n = MSB e Q₀ = LSB
- Também corresponde a um divisor de frequências:
 - f de Q₀ = f_{CK} / 2
 f de Q₁ = f_{Qo} / 2 = f_{CK} / 4
 - f de $Q_2 = f_{Q1} / 2 = f_{CK} / 8$
 - f de $Q_3 = f_{Q2} / 2 = f_{CK} / 16$

Contadores

- Podem ser crescentes ou decrescentes
 - Crescente: <u>inicia em zero</u> e vai até o valor máximo, dependendo do seu módulo
 - Decrescente: Inicia no valor máximo, que depende do seu módulo, e termina em zero.
- Exemplos:
 - Contador crescente de módulo 8 \rightarrow 000 111 (0 7)
 - Contador decrescente de módulo 8 → 111 000 (7 0)

Contador Crescente

- FF tipo T sensível à borda de <u>descida</u>
 - Saída Q do FF ligada no Ck do próximo FF
 - A contagem fica registrada nas saídas Q dos FF

- FF tipo T sensível à borda de <u>subida</u>
 - Saída Q do FF ligada no Ck do próximo FF
 - A contagem fica registrada nas saídas Q dos FF

Contador Assíncrono Crescente de 4 Bits

Contador Crescente e Decrescente

	Cre	scente			Dec	rescent	e
	Q_2	Q_1	Q_0		Q_2	Q_1	Q_0
0	0	0	0	7	1	1	1
1	0	0	1	6	1	1	0
2	0	1	0	5	1	0	1
3	0	1	1	4	1	0	0
4	1	0	0	3	0	1	1
5	1	0	1	2	0	1	0
6	1	1	0	1	0	0	1
7	1	1	1	0	0	0	0

Para fazer um contador decrescente de módulo = 2ⁿ, considere as saídas invertidas de um contador crescente.

Contador Decrescente

- Montar um contador <u>crescente</u> e considerar as saídas invertidas*:
- FF sensível à borda de <u>descida</u>
 - Saída Q do FF ligada no Ck do próximo FF
 - A contagem fica registrada nas saídas Q dos FF
- FF sensível à borda de <u>subida</u>
 - Saída Q do FF ligada no Ck do próximo FF
 - A contagem fica registrada nas saídas Q dos FF

Contador Decrescente

- Montar um contador decrescente*:
- FF sensível à borda de <u>descida</u>
 - Saída Q do FF ligada no Ck do próximo FF
 - A contagem fica registrada nas saídas Q dos FF
- FF sensível à borda de <u>subida</u>
 - Saída Q do FF ligada no Ck do próximo FF
 - A contagem fica registrada nas saídas Q dos FF

Contador Decrescente de Módulo 8

Contagem Crescente / Decrescente

Uso o Clear do FF para reiniciar a contagem;

- Projeto: se desejo contar até X:
 - Determinar o menor número de FFs necessários (2ⁿ ≥ X) e monte o contador assíncrono crescente
 - Conecte a saída de uma porta NAND ao Clear de todos os FFs
 - Determine quais os FFs que estão em nível <u>alto</u> na contagem (X+1) e conecte na porta NAND

Contador Assíncrono de Década - Módulo 10

Contador Assíncrono de Década - Módulo 10

Contador Assíncrono de Década - Módulo 10

Contador Crescente e Decrescente

- Crescente: <u>inicia em zero</u> e vai até o valor máximo, dependendo do seu módulo
- Decrescente: Inicia no valor máximo, que depende do seu módulo, e termina em zero.

- Exemplos:
- Contador <u>crescente</u> de módulo 10 → 0000 1001 (0 9)
- Contador decrescente de módulo 10 → 1001 0000 (9 0)

- Use o Clear do FF para reiniciar a contagem;
- Projeto: se desejo contar até X:
 - Determinar o menor número de FFs necessários (2ⁿ ≥ X) e monte o contador decrescente assíncrono*
 - Conecte a saída de uma porta NAND ao Clear apenas dos FFs que devem ir para zero no início da contagem.
 Isso dependerá do módulo do contador.
 - Conecte todas as saídas do contador na entrada dessa porta NAND.

Contagem	Q ₃	(Q_2)	(Q_1)	$\mathbf{Q_0}$	CL
9	1	0	0	1	1
8	1	0	0	0	1
7	0	1	1	1	1
6	0	1	1	0	1
5	0	1	0	1	1
4	0	1	0	0	1
3	0	0	1	1	1
2	0	0	1	0	1
1	0	0	0	1	1
0	0	0	0	0	1
360	(1	1	1	1	0*

* O clear é gerado quando todos os FF estiverem em 1, mas apenas é ligado nos FFs que devem ser zerados para reinício da contagem, nesse caso, Q₁ e Q₂.

Contadores Assíncronos de Módulo < 2ⁿ

- Na saída MSB do contador, a frequência do clock na entrada é dividida pelo módulo do contador.
- O ciclo de trabalho da onda de saída só é de 50% se o contador for de módulo = 2ⁿ
- Para contadores de módulo < 2ⁿ, o ciclo de trabalho da onda resultante será sempre menor do que 50%, sendo <u>crescente</u> ou <u>decrescente</u>.

Ex: Contador Assíncrono de Módulo 6

Ex: Contador Assíncrono Crescente de Módulo 14

Ex: Contador Assíncrono Crescente de Módulo 60

Exercício*:)

Um circuito fornece pulsos quadrados de período igual a 2 µs e ciclo de trabalho de 50%. Queremos obter um sinal de período igual a 8 µs e ciclo de trabalho de 25%. Monte o circuito usando contadores assíncronos e portas lógicas se necessário.

Referências

- Tocci, R. J. Sistemas Digitais Princípios e Aplicações. Pearson, Prentice Hall, 2011.
- SEL 0414 Sistemas Digitais. Prof. Dr.
 Marcelo Andrade da Costa Vieira.