* Ripple Factor (v)

The Ac components present in the output of DC is known as Ripple Jactor. dr i's denoted by v

N = 7ms value of ac component value of Dc component

tt should be minimum as possible for effective sectifier

* Mathematical Analysis:

$$= \sqrt{\frac{Irms^2 - 1}{Tolc^2}}$$

$$\frac{Irms}{2} = \frac{Im}{2}$$

$$\frac{1}{Idc} = \frac{Im}{\pi}$$

putling the value of @ in 1)

$$\gamma = \int \frac{\text{Tyme}^2}{\text{Tdc}^2} - 1$$

$$\gamma = \sqrt{\frac{T_{\text{M}}^2}{2^2(T_{\text{M}})^2}} \times T^2 - 1$$

$$\gamma = \int \frac{\Pi^2}{M} - 1$$

1 06/11/23

* There types of Transistor configuration

1. CEC -> Amplitier

 $a. CBC \longrightarrow Impedance$

3. ccc -> RF circuit

* operating mode of a transistor

& characteristics of transistor Basically, en a transistor illuce types or characteristics have to studied namely, 1. Input characteristics 2. Output characteristics 3. Transfer characteristics/Mutual characteristics * chanacteristics transistor in com chanacteristics
in common emitter consignation [CEC] 1. Input characteristics -> VBE NS IB NCE = const. 2. output, -> VCE VS Ic/ VBE = const. 5. Transfer -> IE Vs Ic/VCE

Transitor is current control device FET (or) voltage device

Stransitor is current control device control device

Circuit diagram:

C. MA TE = IB + IC

Assignment

Assignment

CBC, CEC and CCC

in detail.

m occ		THE PROPERTY OF STREET AND ADDRESS OF STREET AND ADDRESS OF STREET AND ADDRESS OF STREET AND ADDRESS OF STREET	A. A.
characteristics	CBC	CEC	CCC
for input and	Base Lesininal	Emittel	collector terminal
output. Input voltage applied between	Emittle and Base terminal	Base and Emitter Acruinal	Base and collector terminal
output voltage taken across	collector and Base terminal	collector and emittee terminal	collector termina
distput Impedance	very brigh (11010 mega ohm)	Medium (5010 500Kilo ohm)	very low (up to 50 ohm)
	very low (only 50 to 500 bhm)	Meclium (500 to 5000 ohm)	very high (200 to 750 kilo ohm)
Emput current	Emitter current	Base cussent or IB	Base current or IB
Output current	collector eurient	collector current or IC	Emittle current or JE
output signal phase	same phase with input	180° out of phase	Same phase with input
Current	Always less than unity $X = IC$ $I \in I$	Between 35 to 500 B = I c IB Ing	very high $ \sqrt{=\frac{I\epsilon}{IB}} $

voltage Gain	About 150	Aboul- 500	ress Atran
leakage	very	very large	very large
power yain	Medium	rtigh	Medium
Application	High frequency	RF Signal processing	switching circuit

Le plus de plu

3. Transfer characteristics

: \ AIC The state of the s

1) Explain the transistor characteristics in CBC

a) what is gain of transistor? Reduce the relation among x, B and r.

{ < 1 } « CBC

 $\frac{\Delta \text{ IC}}{\Delta \text{ IB}}$ CEC

(Y = 1) A IE ccc

3) How transistor act as a amplifier, explain with proper circuit and example ? Amplifier: - the process of increasing with weak signal anto strong signal a's known as amplification, and the device used a's called amplifier.

* Junction Field elkect transistor. (JFET)

Que:- what are ittle limitation of Bipolar junction transistor (BJT).