ADENOSINE-5-CARBOXYLIC ACID AMIDES

Publication number: GB1386656 (A)

Publication date: 1975-03-12 Inventor(s):

Applicant(s):

ABBOTT LAB

Classification:

- international:

C07H19/06; C07H19/00; (IPC1-7): C07D473/34; A61K31/52;

C07D233/00; C07D239/00; C07D473/34

- European: C07H19/06E

Application number: GB19720008446 19720223 Priority number(s): US19710125893 19710318

Also published as: 图 FR2130364 (A5) AU466714 (B2) Ō AU3934672 (A) PH9469 (A) DE2213180 (A1) E ZA7201222 (A) SE405363 (B) TA CH551446 (A)

<< less

Abstract of GB 1386656 (A)

1386656 Adenosine-5<SP>1</SP>-carboxylic acid amides ABBOT LABORATORIES 23 Feb 1972 [18 March 1971] 8446/72 Heading C2C Novel compounds of general Formula I in which R is NHR 1 or NR 1 R 2 and R 1 and R 2 are selected from C 1-6 haloalkyl, C 3-6 hydroxyalkyl (C 3-7 cycloalkyl) C 1-6 alkyl, C 2-6 haloalkenyl, C 2-6 alkynyl, C 2-6 haloalkynyl or alkoxyalkyl with up to 6 C atoms are prepared by converting adenosine-5<SP>1</SP> carboxylic acid (prepared from 2<SP>1</SP>,3<SP>1</SP>-isopropylidene adenosine) to the corresponding acid chloride by using thionyl chloride and reacting the acid chloride with ammonia or an appropriately substituted alkylamine. Compounds referred to are those in which the amide group is N-cyclopropylmethyl amido, N-propargylamido, N-ethoxyethylamido, N,Ndicyclopropylmethylamide and N,N-dichloromethylamido. Compounds of Formula I are anti-hypertensive and anti-anginal agents and form with a carrier a pharmaceutical composition which may be administered orally or parenterally. Reference has been directed by the Comptroller to Specification 1,295,228.

Data supplied from the esp@cenet database - Worldwide

(51)

Int. Cl.:

C 07 d, 51/54

BUNDESREPUBLIK DEUTSCHLAND

PATENTAMT

€2

@ 2 Deutsche Kl.:

12 p, 7/10

0 Offenlegungsschrift 2213180 1

Aktenzeichen:

P 22 13 180.2-44

Anmeldetag:

17. März 1972

(3)

Offenlegungstag: 28. September 1972

Ausstellungspriorität:

Unionspriorität

32

Datum:

18. März 1971

3

Land:

V. St. v. Amerika

(31) Aktenzeichen: 125893

Bezeichnung:

Adenosin-5'-carbonsäure-amide

6

Zusatz zu:

62) 1 Ausscheidung aus:

Anmelder:

Abbott Laboratories, North Chicago, Ill. (V. St. A.)

Vertreter gem. § 16 PatG:

Abitz, W., Dr.-Ing.; Morf, D. F., Dr.; Brauns, H.-A., Dipl.-Chem. Dr. rer. nat.;

Patentanwälte, 8000 München

(72) Als Erfinder benannt: Stein, Herman Hal, Skokie, Ill. (V. St. A.);

Prasad, Raj Nandan, Quebec (Kanada)

Prüfungsantrag gemäß § 28b PatG ist gestellt

17. März 1972 2783

Patentanvälte
Dr. Ing. Wolfer Abitz
Dr. Diater F. Morf
Dr. Hand-A. Brauns
8 München 86, Pienzensuerstr. 28

ABBOTT LABORATORIES North Chicago, Ill. 60064, V.St.A.

Adenosin-5'-carbonsäure-amide

Offenbart wird eine neuartige Reihe von Adenosin-Derivaten, die durch die Formel

- 1 -

dargestellt werden, in der bedeuten: R NH₂, NHR¹ oder NR¹R² und R¹ und R² Niedrigalkyl, Niedrighalogenalkyl, Niedrighydroxyalkyl, C₃-C₇-Cycloalkyl, C₃-C₇-Cycloalkyl-niedrigalkyl, Niedrigalkenyl, Niedrighalogenalkenyl, Niedrigalkinyl, Niedrighalogenalkinyl oder Alkoxyniedrigalkyl. Die Verbindungen sind bei der Behandlung von Kreislaufstörungen und insbesondere als blutdrucksenkende Mittel und Anti-Anginamittel nützlich.

Die vorliegende Erfindung betrifft Adenosin-Derivate und insbesondere Adenosin-5'-carbonsäure-amide.

Die erfindungsgemässen Verbindungen werden durch die Formel

dargestellt, in der bedeuten: R NH₂, NHR¹ oder NR¹R² und R¹ und R² Niedrigalkyl, Niedrighalogenalkyl, Niedrighydroxy-alkyl, C₃-C₇-Cycloalkyl, C₅-C₇-Cycloalkylniedrigalkyl, Niedrigalkenyl, Niedrigalkenyl, Niedrigalkenyl, Niedrigalkinyl, Niedrighalogenalkinyl oder Alkoxyniedrigalkyl. Die Verbin-

dungen sind bei der Behandlung von Kreislaufstörungen und insbesondere als blutdrucksenkende Mittel und Anti-Anginamittel nützlich.

Der Ausdruck "Niedrigalkyl" bezieht sich im hier verwendeten Sinne auf gerad- und verzweigtkettige C₁-C₆-Alkylgruppen, einschliesslich Methyl, Äthyl, n-Propyl, iso-Propyl, n-Butyl, sek.-Butyl, tert.-Butyl, iso-Butyl, n-Pentyl, iso-Pentyl, neo-Pentyl, n-Hexyl, iso-Hexyl und dgl.

Der Ausdruck "Niedrigalkenyl" bezieht sich auf Alkenylgruppen mit 2 bis 6 Kohlenstoffatomen, wie Vinyl, Allyl, Methallyl, 1-Pentenyl und dgl.

Der Ausdruck "Niedrigalkinyl" bezieht sich auf C2-C6-Alkinyl-gruppen, einschliesslich Äthinyl, Propargyl, 2-Butinyl, 1-Pentinyl und 2-Hexinyl.

Der Ausdruck "Halogen" umfasst Chlor, Fluor, Brom und Jod.

"C3-C7-Cycloalkyl" umfasst Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl.

Der Ausdruck "C3-C7-Cycloalkylniedrigalkyl" bezieht sich auf solche Gruppen, wie Cyclopropylmethyl und dgl.

Der Ausdruck "Alkoxyniedrigalkyl" bezieht sich auf Alkoxyalkylgruppen mit nicht mehr als 6 Kohlenstoffatomen, wie Methoxymethyl, Methoxyäthyl, Äthoxyäthyl, Propoxypropyl, Propoxyäthyl und dgl.

Die erfindungsgemäss bevorzugten Verbindungen sind diejenigen, bei denen R für NH₂ oder NHR¹ steht, wobei R¹ Methyl oder Äthyl bedeutet.

Zu repräsentativen Verbindungen der vorliegenden Erfindung gehören: Adenosin-5'-carboxamid; Adenosin-5'-(N-methyl)-carboxamid; Adenosin-5'-(N-iso-propyl)-carboxamid; Adenosin-5'-(N-äthyl)-carboxamid; Adenosin-5'-(N-n-propyl)-carbox-amid; Adenosin-5'-(N-iso-butyl)-carboxamid; Adenosin-5'-(N-n-butyl)-carboxamid; Adenosin-5'-(N-n-pentyl)-carbox-amid; Adenosin-5'-(N-iso-pentyl)-carboxamid; Adenosin-5'-(N,N-diäthyl)-carbox-amid, Adenosin-5'-(N,N-diisopropyl)-carboxamid; Adenosin-5'-(N-methyl-N-äthyl)-carboxamid; Adenosin-5'-(N-cyclo-butyl)-carboxamid; Adenosin-5'-(N-cyclopropylmethyl)-carboxamid; Adenosin-5'-(N-propargyl)-carboxamid; Adenosin-5'-(N-allyl)-carboxamid; Adenosin-5'-(N-iso-pentyl)-carboxamid; Adenosin-5'-(N-iso-pentyl)-carboxamid; Adenosin-5'-(N-cyclopropylmethyl)-carboxamid; Adenosin-5'-(N-n-cyclopropylmethyl)-carboxamid; Adenosin-5'-(N-iso-pentyl)-carboxamid; Adenosin-5'-(N-iso-pentyl)-carboxamid; Adenosin-5'-(N-iso-pentyl)-carboxamid; Adenosin-5'-(N-iso-pentyl)-carboxamid.

Die erfindungsgemässen Verbindungen sind als blutdrucksenkende Mittel nützlich, wenn sie hypertonischen Patienten
in Dosierungen von täglich 0,05 bis 25 mg/kg Körpergewicht
verabreicht werden. Die Verbindungen sind auch bei der Überwachung und Behandlung von Angina pectoris nützlich, wenn
sie Patienten, die an solchen Anfällen leiden oder dazu
neigen, in Dosierungen von täglich 0,05 bis 25 mg/kg
Körpergewicht verabreicht werden. In beiden Fällen ist es
bevorzugt, die Verbindungen oral zu verabreichen, jedoch
können die Verbindungen auch auf intravenösem Wege verabreicht werden. Die Verbindungen können in einzelnen Dosen
gegeben werden; vorzugsweise jedoch werden sie in unterteilten Dosen, z. B. fünfmal täglich, verabreicht.

Die erfindungsgemässen Verbindungen können dadurch hergestellt werden, dass Adenosin-5'-carbonsäure (hergestellt aus 2',3'-Isopropyliden-adenosin gemäss der von Harmon et al, in Chem. Ind. 1969, S. 1141 beschriebenen Methode) durch Umsetzung mit Thionylchlorid in das entsprechende

Säurechlorid umgewandelt wird und dann das Säurechlorid mit Ammoniak oder einem in geeigneter Weise substituierten Alkylamin, wie Methylamin, Dimethylamin und dgl., umgesetzt wird. Für den Fachmann liegt es auf der Hand, dass andere bekannte Arbeitsweisen ebenfalls zur Herstellung der erfindungsgemässen Verbindungen herangezogen werden können.

Die 2',3'-Hydroxylgruppen der Ausgangssäure können vorübergehend durch die Schutzgruppen, welche in der Zucker-Chemie üblich sind, blockiert werden. Die schützenden Gruppen können Acylgruppen, vorzugsweise Acetyl- oder Benzyolgruppen, oder Ketale, wie die 2',3'-Isopropyliden-Verbindungen, sein, die nach zum bekannten Stand der Technik gehörenden Verfahren, vorzugsweise nach der Umwandlung des Säurechlorids in das Amid, in die 2',3'-Dihydroxy-Verbindungen zurückverwandelt werden können. Das 2',3'-Isopropyliden-adenosin-Ausgangsmaterial ist von der Firma Fansteel Corporation, North Chicago, Illinois, im Handel erhältlich, und seine Herstellung ist bekannt.

Die folgenden Beispiele veranschaulichen die vorliegende Erfindung weiter.

Beispiel 1

2',3'-Isopropyliden-adenosin-5'-carbonsäure-chlorid

12,8 g 2',3'-Isopropyliden-adenosin-5'-carbonsäure /herge-stellt gemäss dem von R. E. Harmon, et al in Chem. Ind. London, No. 33, (1969) S. 1141 beschriebenen Verfahren/wurden zu einem Überschuss von Thionylchlorid (70 ml) bei 0° C gegeben. Das Gemisch wurde 1 Stunde lang bei 0° C gerührt und dann liess man die Temperatur für eine weitere Stunde auf Raumtemperatur ansteigen. Die klare Lösung wurde in einem dünnen Strom auf ein grosses Volumen von gut gerührtem, trockenem Äther gegossen. Der gelbe Niederschlag

von 2',3'-Isopropyliden-adenosin-5'-carbonsäure-chlorid (Fp 190 bis 195° C unter Zersetzung) wurde filtriert und mit einem Überschuss von trockenem Äther gewaschen. Dieses Material wurde ohne weitere Reinigung direkt für die Herstellung der Amide verwendet.

Beispiel 2

Adenosin-5'-carboxamid

Ein Gemisch von 6,8 g 2',3'-Isopropylidenadenosin-5'carbonsäure-chlorid und 50 ml flüssigem, wässrigem Ammoniak wurde 2 Stunden lang bei -60° bis -50° C gerührt. Am Ende dieses Zeitraums liess man das Ammoniak bei Raumtemperatur abdampfen. Der Rückstand wurde mit kalter, wässriger Natriumbicarbonatlösung (1n) verrieben. Der sich ergebende, unlösliche Feststoff wurde filtriert, mit kaltem Wasser gewaschen und aus Äthanol umkristallisiert. Man erhielt 3,5 g (55 %) rohes 2',3'-Isopropyliden-adenosin-5'-carboxamid (Fp 220 bis 2220 C). Das Amid wurde dann mit 100 ml 1n-Chlorwasserstoffsäure vermischt und 45 Minuten lang bei einer Temperatur zwischen 60° bis 70° C gehalten. Die saure Lösung wurde dann abgekühlt und mit Natriumbicarbonat neutralisiert und das Gemisch unter vermindertem Druck zur Trockne eingedampft. Der Rückstand wurde dreimal aus absolutem Athanol umkristallisiert und lieferte 1 g reines Adenosin-5'-carboxamid (Fp 245 bis 247° ; $\sqrt{a}7_{D}^{270}$ -29° $^{\circ}$ 0,9°; c 1,08 in 1n HCl). Eine Elementaranalyse und Kernmagnetresonanz-Werte bestätigten die Identität der Verbindung.

Beispiel 3

Adenosin-5'-(N-methyl)-carboxamid

2',3'-Isopropyliden-adenosin-5'-/N-methylcarboxamid/ (Fp 264 bis 265°) wurde gemäss dem Verfahren des Beispiels 2 aus 2',3'-Isopropyliden-adenosin-5'-carbonsäure-chlorid und einem Überschuss von trockenem, flüssigem Methylamin bei -20° bis -10° C hergestellt. Die 2',3'-Isopropyliden-gruppe wurde durch 45minutige Anwendung von 1n-HCl bei 60° C abgespalten. Es ergab sich Adenosin-5'-(N-methyl)-carbox-amid in 44%iger Ausbeute (Fp 240 bis 241°; \(\int_D^{270} \) -23° \div 0,6°; c 3,2 in 1n-HCl). Eine Elementaranalyse und Kernmagnet-resonanz-Werte bestätigten die Identität der Verbindung.

Beispiel 4

Adenosin-5'-(N,N-dimethyl)-carboxamid

13,5 g 2',3'-Isopropyliden-adenosin-5'-carbonsäure-chlorid wurden mit überschüssigem, trockenem Dimethylamin bei -10° bis 0° C gerührt. Man liess die klare Lösung sich auf Raumtemperatur erwärmen. In etwa 3 Stunden war das nichtumgesetzte Dimethylamin abgedampft. Der Rückstand wurde mit Äther gewaschen und in der Mindestmenge kalter, wässriger NaHCO3-Lösung (1n) gelöst. Die so erhaltene, basische, wässrige Lösung wurde fünfmal mit 50 ml Chloroform extrahiert. Der Chloroform-Auszug wurde getrocknet und unter vermindertem Druck zu einem amorphen Feststoff eingedampft. Dieser Feststoff wurde in verdünnter Essigsäure gelöst, zur Entfernung einer kleinen Menge unlöslichen Materials filtriert, und das Filtrat wurde viermal mit 50 ml Chloroform extrahiert. Der Chloroform-Extrakt wurde getrocknet und unter vermindertem Druck zur Trockne eingedampft. Man erhielt 6,0 g (43 %) 2',3'-Isopropyliden-adenosin-5'-(N,N-dimethyl)-carboxamid. Das rohe Amid (Fp 106 bis 110°C) wurde in 100 ml 1n-HCl gelöst und 45 Minuten lang bei 60 bis 70° C gehalten. Die Lösung wurde dann abgekühlt, mit NaHCO3 basisch gemacht und unter vermindertem Druck zur Trockne eingedampft.

Der Rückstand ergab nach dreimaligem Umkristallisieren aus

absolutem Äthanol 3,0 g (23 %) Adenosin-5'-(N,N-dimethyl)-carboxamid als ein Monohydrat (Fp 190 bis 191° ; $\underline{f}\underline{\alpha}7_{D}^{27^{\circ}}$ - 17° ± 0,3°; c 3 in 1n-HCl). Eine Elementaranalyse und Kernmagnetresonanz-Werte bestätigten die Identität der Verbindung.

Andere erfindungsgemässe Verbindungen können gemäss den oben beschriebenen Methoden hergestellt werden, indem anstelle des Ausgangsmaterials das in geeigneter Weise substituierte Amin verwendet wird. So kann beispielsweise Adenosin-5'-(N-cyclopropylmethyl)-carboxamid hergestellt werden, indem das Methylamin des Beispiels 3 durch Cyclopropylmethylamin ersetzt wird.

Beispiel 5

Adenosin-5'-\(\inf(N-\text{athyl})\)-carboxami\(\frac{d}{2}\)

Frisch hergestelltes 2',3'-Isopropyliden-adenosin-5'carbonsäure-chlorid (hergestellt aus 6,4 g 2',3'-Isopropyliden-5'-carbonsäure) wurde mit überschüssigem, trockenem, flüssigem Äthylamin bei -50° bis -35° C gerührt. Die klare, orangerote Lösung liess man sich auf Raumtemperatur erwärmen und hielt sie 15 Stunden lang bei dieser Temperatur. Zu Ende dieses Zeitraums war der Äthylamin-Überschuss abgedampft. Der Rückstand wurde mit kalter, wässriger NaHCO3-Lösung verrieben. Der weisse Niederschlag wurd abfiltriert und mit einer kleinen Menge kalten Wassers gewaschen. Man erhielt 3,1 g (44,5 %) rohes 2',3'-Isopropyliden-5'-[N-äthyl)-carboxamid7 (Fp 225 bis 227°; R_f: 0,72 (Silicagel) System:n-BuOH:H2O:NH4OH (86:14:5)). Das oben genannte Amid wurde mit 80 ml 1n-HCl gemischt und 45 Minuten lang bei 65° C gehalten. Die saure Lösung wurde dann abgekühlt und mit NaHCO2 basisch gemacht. Das Gemisch wurde dann unter vermindertem Druck zur Trockne eingedampst und der Rückstand zweimal aus absolutem Äthanol und schliesslich aus Wasser

umkristallisiert. Das weisse, kristalline Produkt wurde im Vakuum 2 Tage lang über P₂O₅ bei 70 bis 78° C getrocknet. Man erhielt 0,9 g (32 %) Adenosin-5'-/(N-äthyl)-carboxamid/7, das bei 136 bis 172° C langsam schmolz und bei 148 bis 150°C wieder erstarrte und schliesslich bei 246 bis 247° C (scharfer Schmelzpunkt) schmolz (/a/2⁶⁰ -163; c 0,92 in 1 HCl; R_f: 0,51 (Silicagel); System: n-BuOH:H₂O: NH₄OH (86:14:05); Kernmagnetresonanz (deuteriertes DMSO)-Maxima (in Teilen je Million) bei 5,6 (2'-OH, 3'-OH), 7,4 (6C-NH₂); 8,8 (CONH); 3,2 (CH₂CH₃). Eine Elementaranalyse und Kernmagnetresonanz-Werte bestätigten die Identität der Verbindung.

Die erfindungsgemässen Verbindungen können in verschiedenen, pharmazeutisch-annehmbaren Dosierungsformen, wie Tabletten, Kapseln, Pillen und dgl., für eine unmittelbare oder verzögerte Freisetzung angesetzt werden, indem die aktive Verbindung mit geeigneten pharmazeutisch-annehmbaren Trägern oder Verdünnungsmitteln gemäss zum bekannten Stand der Technik gehörenden Verfahren vereinigt wird. Derartige Dosierungsformen können üblicherweise Träger, Bindemittel, Füllstoffe, Geschmacksstoffe und Süsstoffe und andere therapeutisch inerte Bestandteile, die für die Herstellung des gewünschten Präparates notwendig sind, enthalten.

Zu Präparaten für die parenterale Verabreichung gehören sterile, wässrige oder nicht-wässrige Lösungen, Suspensionen oder Emulsionen, die in der Technik bekannt sind.

Patentansprüche

1) Verbindungen der Formel

in der bedeuten: R NH₂, NHR¹ oder NR¹R² und R¹ und R² Niedrigalkyl, Niedrighalogenalkyl, Niedrighydroxyalkyl, C₃-C₇-Cycloalkylniedrigalkyl, Niedrigalkenyl, Niedrighalogenalkenyl, Niedrigalkinyl, Niedrighalogenalkinyl oder Alkoxyniedrigalkyl.

- 2. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, dass R¹ und R² Niedrigalkyl bedeuten.
- 3. Adenosin-5'-carboxamid gemäss Anspruch 1.
- 4. Adenosin-5'-∠(N-methyl)-carboxamid gemäss Anspruch 1.
- 5. Adenosin-5'-\(\int(N,N-\)dimethyl)-carboxamid gemäss Anspruch 1.

- 6. Adenosin-5'-(N-äthyl)-carboxamid gemäss Anspruch 1.
- 7. Arzneimittel zur Behandlung von Kreislaufstörungen, insbesondere blutdrucksenkendes und Anti-Anginamittel, gekennzeichnet durch einen Gehalt an einer Verbindung gemäss Anspruch 1.