LICENCIATURA EM CIÊNCIAS DA COMPUTAÇÃO

COMPUTABILIDADE E COMPLEXIDADE

2. Problemas de decisão

José Carlos Costa

Dep. Matemática Universidade do Minho Braga, Portugal

 1° semestre 2021/2022

Um *problema de decisão* é uma coleção de questões, cada uma das quais admite como resposta sim ou não.

EXEMPLO

Seja, para cada $n \in \mathbb{N}$, P(n) a questão "n é um quadrado perfeito?".

O problema *P* consiste portanto das perguntas:

```
P(1): 1 é um quadrado perfeito?
```

P(2): 2 é um quadrado perfeito?

P(3): 3 é um quadrado perfeito?

:

Este problema pode ser visto como um *predicado* P(n), que envolve um único *parâmetro* (ou *variável*) n e cujo domínio é \mathbb{N} . Cada P(n) diz-se uma *instância* do problema.

Problemas decidíveis

DEFINIÇÃO

- Uma solução para um problema de decisão P é um algoritmo que fornece a resposta para cada instância do problema.
- Um problema que admite uma solução diz-se solúvel ou decidível. Caso contrário diz-se insolúvel ou indecidível.

Outros exemplos de problemas de decisão:

- Dado um número inteiro n, n é um número primo?
- ② Dados um autómato finito determinista \mathcal{A} e uma palavra w, tem-se $w \in L(\mathcal{A})$?
- **1** Dadas uma máquina de Turing \mathcal{T} e uma palavra w, tem-se $w \in L(\mathcal{T})$?
- **①** Dadas uma linguagem regular L e uma palavra w, tem-se $w \in L$?
- **o** Seja L uma linguagem recursiva. Dada uma palavra w, tem-se $w \in L$?
- **1** Dada uma palavra $w \in \{x, y\}^*$, tem-se $w \in AutoAceite$?
- **②** Dada uma máquina de Turing T, será que T aceita o seu código c(T)?
- **Problema da paragem:** Dadas uma máquina de Turing \mathfrak{T} e uma palavra w, será que \mathfrak{T} pára com w?
- **9** Problema da aceitação: Dadas uma máquina de Turing \mathfrak{T} e uma palavra w, será que \mathfrak{T} aceita w?

- Dos problemas anteriores, são decidíveis o 1, o 2, o 4 e o 5.
- Note-se que o problema 6 é indecidível devido à linguagem
 AutoAceite ser não recursiva. Não existe um algoritmo que decida
 AutoAceite. No entanto esta linguagem é recursivamente enumerável.

Diz-se então que o problema 6 é semi-decidível (isto significa que existe uma máquina de Turing que permite responder nos casos afirmativos, ou seja, nos casos em que *w* é uma palavra de *AutoAceite*).

Codificação de Problemas

Definição

Seja P um predicado de domínio D, um conjunto enumerável. Para cada $d \in D$, P(d) é uma afirmação verdadeira ou falsa. Suponhamos que existe uma aplicação injetiva $e: D \longrightarrow A^*$, onde A é um alfabeto. Seja

$$L_P = \{e(d) \in A^* : P(d) \text{ \'e verdadeira}\}.$$

A linguagem L_P é dita a codificação do problema P.

Diz-se que P é um problema:

- decidível se LP é uma linguagem recursiva.
- indecidível se não é decidível.
- semi-decidível se LP é uma linguagem recursivamente enumerável.

EXEMPLO

Seja $A = \{a, b\}$ e seja P(w) a afirmação

"o número de ocorrências da letra a em w é ímpar"

- a respeito de uma palavra $w \in A^*$.
 - O problema P é decidível.

De facto, dado que w é já uma sequência (sobre o alfabeto A), pode-se considerar que w é o código de si própria, donde P pode ser codificado pela linguagem

$$L_P = \{ w \in A^* : |w|_a \text{ \'e impar} \}.$$

Ora, L_P é uma linguagem recursiva, pois é decidida pela máquina de Turing apresentada na página 41 dos slides do capítulo 1. Logo, dada uma palavra $w \in A^*$, a propriedade P(w) é decidível, ou seja, é possível determinar se w tem (ou não) um número ímpar de ocorrências da letra a.

Problema da aceitação

uma máquina de Turing \mathcal{T} e uma palavra w. Dados:

Afirmação: \mathfrak{T} aceita w.

TEOREMA

O problema da aceitação é indecidível mas semi-decidível.

Demonstração: O problema da aceitação pode ser codificado pela linguagem

$$L_A = \{c(\mathfrak{T})c(w) \in \{x,y\}^* : \mathfrak{T} \text{ aceita } w\}.$$

Portanto, o problema da aceitação é indecidível se L_A não é recursiva. Suponhamos, por contradição, que L_A é recursiva e mostremos que, então, a linguagem AA é recursiva.

Seja T_A uma máquina de Turing que decide L_A e seja

$$T_{AA} = T_1 T_A$$

onde \mathcal{T}_1 é uma máquina de Turing, de alfabeto de entrada $\{x,y\}$, que transforma a fita da forma $\underline{\Delta}w$ em $\underline{\Delta}wc(w)$.

Verifiquemos que \mathcal{T}_{AA} decide AA:

- Por um lado, se w ∈ AA, então w = c(T) para alguma máquina de Turing T que aceita w. Logo, T_{AA} aceita w dando como resultado <u>∆</u>1 pois wc(w) = c(T)c(w) ∈ L_A e T_A decide L_A.
- Por outro lado, se T_{AA} dá como resultado <u>∆</u>1 para a entrada w, então wc(w) ∈ L_A. Isto significa que wc(w) = c(T')c(w') para alguma máquina de Turing T' e alguma palavra w' tais que T' aceita w'. Da definição da função de codificação resulta que c(w) = c(w') e portanto que w = w' = c(T') o que mostra que w ∈ AA.

Conclui-se assim que \mathcal{T}_{AA} decide AA, o que é uma contradição pois já sabemos que AA não é recursiva. Portanto L_A não é recursiva e o problema da aceitação é indecidível.

Para mostrar que o problema da aceitação é semi-decidível basta notar que L_A é reconhecida pelas máquinas de Turing universais:

• De facto, se \mathfrak{T}_U é uma máquina de Turing universal, tem-se que

$$\mathcal{T}$$
 aceita w se e só se \mathcal{T}_U aceita $c(\mathcal{T})c(w)$.

Ou seja, $c(\mathfrak{T})c(w) \in L_A$ se e só se \mathfrak{T}_U aceita $c(\mathfrak{T})c(w)$. Portanto, \mathfrak{T}_U aceita L_A .

Isto mostra que L_A é uma linguagem recursivamente enumerável e que o problema da aceitação é semi-decidível.

DEFINIÇÃO

Sejam P e P' dois problemas de decisão, de domínios D e D' respetivamente.

Diz-se que P é redutível a P' (ou que P se reduz a P'), e escreve-se $P \leq P'$, se existe uma máquina de Turing \Re que

• transforma cada instância P(d) do problema P numa instância P'(d') do problema P'

de tal forma que

• P(d) é verdadeira se e só se P'(d') é verdadeira.

Observações

- Note-se que a máquina de Turing $\mathcal R$ da definição anterior aplica cada elemento $d \in D$ num elemento $d' \in D'$. Podemos portanto dizer que $P \leq P'$ se existe uma função computável $r: D \longrightarrow D'$ tal que P(d) é válida se e só se P'(r(d)) é válida.
- Uma formulação alternativa da definição anterior é a seguinte.
 - Sejam P e P' dois problemas de decisão e sejam $L_P \subseteq A^*$ e $L_{P'} \subseteq B^*$ codificações de P e P', respetivamente.
 - Então $P \leq P'$ se existe uma função computável $r: A^* \longrightarrow B^*$ tal que $w \in L_P$ se e só se $r(w) \in L_{P'}$.

Proposição

Sejam P e P' dois problemas de decisão tais que $P \leq P'$.

- \bullet Se P' é decidível, então P é decidível.
- \bigcirc Se P é indecidível, então P' é indecidível.
- \bigcirc Se P' é semi-decidível, então P é semi-decidível.
 - O caso da alínea a) pode ser esquematizado da seguinte forma

- Como consequência da alínea b) e do facto de já sabermos que o problema da aceitação é indecidível, pode-se provar que o problema da paragem é também indecidível (ver o Exercício 2.4).
- Podemos agora apresentar mais alguns exemplos de problemas indecidíveis.

TEOREMA

Os seguintes problemas são indecidíveis.

- **1** Aceita $_{\epsilon}(\mathfrak{T})$: " \mathfrak{T} aceita ϵ ".
- 2 Pára $_{\epsilon}(\mathfrak{T})$: " \mathfrak{T} pára com ϵ ".
- **3** AceitaNada(\mathcal{T}): " $L(\mathcal{T}) = \emptyset$ ".
- **①** AceitaTudo(\mathcal{T}): " $L(\mathcal{T}) = A^*$, onde A é o alfabeto de \mathcal{T} ".

Demonstração:

1 Para mostrar que Aceita $_{\epsilon}$ é indecidível basta provar que o problema da aceitação se reduz a Aceita $_{\epsilon}$. Dadas uma máquina de Turing \mathcal{T} e uma palavra w, seja $\mathcal{T}_{w} = \mathsf{Escreve}_{w} \, \mathcal{T}$

onde Escreve_w é a MT que, começando com a palavra vazia termina com

onde Escreve_w e a M I que, começando com a palavra vazia termina com Δw . Então

 \mathcal{T} aceita $\mathbf{w} \Leftrightarrow \mathcal{T}_{\mathbf{w}}$ aceita ϵ .

Como a função $(\mathfrak{T}, w) \mapsto \mathfrak{T}_w$ é computável, deduz-se que Aceitação \leq Aceita $_{\epsilon}$ e conclui-se que Aceita $_{\epsilon}$ é indecidível.

Dado que já sabemos que o problema da paragem é indecidível, basta provar que esse problema se reduz a Pára_{ϵ}. Ora, dadas uma MT \Im e uma palavra w, tem-se que

 \mathcal{T} pára com $\mathbf{w} \Leftrightarrow \mathcal{T}_{\mathbf{w}}$ pára com ϵ .

Logo Paragem < Pára_e, donde se conclui que Pára_e é indecidível.

Mostremos que Aceita, se reduz a ¬AceitaNada. Dada uma MT T, seja

$$\mathbb{T}_{\emptyset} = \mathsf{ApagaFita} \ \mathfrak{T}$$

onde ApagaFita é a MT que transforma Δx em Δ . Então

 \mathcal{T} aceita $\epsilon \Leftrightarrow \mathcal{T}_{\emptyset}$ aceita alguma palavra.

Como a função $T \mapsto T_{\emptyset}$ é computável, deduz-se que Aceita $\leq \neg$ AceitaNada. Como Aceita, é indecidível, ¬AceitaNada também o é. Logo AceitaNada também é indecidível.

Note-se que

$$\mathcal{T}$$
 aceita $\epsilon \Leftrightarrow \mathcal{T}_{\emptyset}$ aceita A^* .

Logo Aceita < Aceita Tudo, donde Aceita Tudo é indecidível.

Corolário

Os problemas

- **●** ¬AceitaNada(\mathcal{T}): " $L(\mathcal{T}) \neq \emptyset$ ";
- \bigcirc ¬AceitaTudo(\bigcirc): " $L(\bigcirc$) $\neq A^*$, onde A é o alfabeto de \bigcirc ";

são indecidíveis.

DEFINIÇÃO

Um problema P, de domínio D, diz-se *trivial* se:

• P(d) é uma afirmação verdadeira para todo o $d \in D$,

ou

• P(d) é uma afirmação falsa para todo o $d \in D$.

Em particular, se P é um problema sobre linguagens recursivamente enumeráveis, ou seja, se

 $D = \{L : L \text{ \'e uma linguagem recursivamente enumer\'avel}\},$

então P é *trivial* se todas as linguagens de D satisfazem P ou nenhuma o satisfaz

TEOREMA [RICE, 1953]

Se P é uma propriedade não trivial sobre linguagens recursivamente enumeráveis, então P é indecidível.

EXEMPLOS

Os problemas seguintes, sobre uma linguagem recursivamente enumerável $L \subset A^*$, são indecidíveis.

- $\bullet \in L$.
- $2 L = \emptyset.$
- **3** $L = A^*$.

Note-se que o Teorema de Rice estabelece que qualquer problema envolvendo a linguagem aceite por uma máquina de Turing, ou é trivial, ou é indecidível.

No entanto, nem todos os problemas sobre máquinas de Turing são indecidíveis, como o mostra o próximo resultado.

TEOREMA

O seguinte problema é decidível.

Escreve Não Branco: Dada uma máquina de Turing \mathfrak{T} , será que \mathfrak{T} escreve algum símbolo não branco quando é iniciada com a fita vazia?

Demonstração: Suponhamos que \mathfrak{T} tem n estados.

Em n passos, ou $\mathfrak T$ atinge uma configuração de paragem ou $\mathfrak T$ passa duas vezes no mesmo estado q. Se até essa altura nenhum símbolo branco foi escrito, então nunca o será.

- Isto é evidente no 1° caso, ou seja, no caso de \Im parar em menos de n passos.
- No 2° caso, \mathfrak{T} repete sempre os mesmos passos entre duas passagens por q, entrando assim em ciclo.

Portanto, um algoritmo de decisão para este problema é executar \Im durante n passos, se não parar antes: \Im escreve um símbolo não branco se e só se o faz durante esse período.