

Prologue:
A Simple Machine

Prologue: A Simple Machine

- Brief introduction
- Secure communication with a one-time pad
- Linear feedback shift registers
- Implications

What is this course about?

A broad introduction to computer science.

Goals

- Demystify computer systems.
- Empower you to exploit available technology.
- Build awareness of substantial intellectual underpinnings.

Topics

- Programming in Java.
- Design and architecture of computers.
- Theory of computation.
- Applications in science and engineering.

"Science is everything we understand well enough to explain to a computer."

and art, music, finance, and many other fields.

"Computers are incredibly fast, accurate, and stupid; humans are incredibly slow, inaccurate, and brilliant; together they are powerful beyond imagination."

Albert Einstein

COMPUTER SCIENCE SEDGEWICK/WAYNE

PART I: PROGRAMMING IN JAVA

Image sources

http://pixabay.com/en/network-media-binary-computer-65923/

http://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

http://commons.wikimedia.org/wiki/File:Einstein-formal_portrait-35.jpg

Prologue: A Simple Machine

- Brief introduction
- Secure communication with a one-time pad
- Linear feedback shift registers
- Implications

Sending a secret message with a cryptographic key

Alice wants to send a secret message to Bob.

- Sometime in the past, they exchange a cryptographic key.
- Alice uses the key to encrypt the message.
- Bob uses the *same* key to decrypt the message.

Bob

gX76W3v7K ???

encrypted message gX76W3v7K is "in the clear" (anyone can read it)

Critical point: Without the key, Eve cannot understand the message.

Q. How does the system work?

Encrypt/decrypt methods

Goal. Design a method to encrypt and decrypt data.

S	E	N	D	М	0	N	E	Y
				e	ncrypt			
g	X	7	6	W	3	V	7	K
				d	ecrypt			
S	E	N	D	М	0	N	Е	Y

Example 1. Enigma encryption machine [German code, WWII]

- Broken by Turing bombe (one of the first uses of a computer).
- Broken code helped win Battle of Atlantic by providing U-boat locations.

Example 2. One-time pad [details to follow]

Example 3. Linear feedback shift register [later this lecture]

A digital world

A bit is a basic unit of information.

- Two possible values (0 or 1).
- Easy to represent in the physical world (on or off).

In modern computing and communications systems, we represent *everything* as a sequence of bits.

- Text [details to follow in this lecture]
- Numbers
- Sound [details to follow in this course]
- Pictures [details to follow in this course]
- ...
- Programs [profound implications, stay tuned].

Bottom line. If we can send and receive bits, we can send and receive anything.

Encoding text as a sequence of bits

Base64 encoding of character strings

- A simple method for representing text.
- 64 different symbols allowed: A-Z, a-z, 0-9, +, /.
- 6 bits to represent each symbol.
- ASCII and Unicode methods used on your computer are similar.

	bits	symbols
Base64	6	64
ASCII	8	256
Unicode	16	65,536+

001000 I	010000 Q	011000 Y	100000 g	101000 o	110000 w	111000 4
001001 J	010001 R	011001 Z	100001 h	101001 p	110001 x	111001 5
001010 K	010010 S	011010 a	100010 i	101010 q	110010 y	111010 6
001011 L	010011 T	011011 b	100011 j	101011 r	110011 z	111011 7
001100 M	010100 U	011100 c	100100 k	101100 s	110100 0	111100 8
001101 N	010101 V	011101 d	100101 1	101101 t	110101 1	111101 9
001110 0	010110 W	011110 e	100110 m	101110 u	110110 2	111110 +
001111 P	010111 X	011111 f	100111 n	101111 v	110111 3	111111 /
	001001 J 001010 K 001011 L 001100 M 001101 N 001110 O	001001 J 010001 R 001010 K 010010 S 001011 L 010011 T 001100 M 010100 U 001101 N 010101 V 001110 O 010110 W	001001 J 010001 R 011001 Z 001010 K 010010 S 011010 a 001011 L 010011 T 011011 b 001100 M 010100 U 011100 c 001101 N 010101 V 011101 d 001110 O 010110 W 011110 e	001001 J 010001 R 011001 Z 100001 h 001010 K 010010 S 011010 a 100010 i 001011 L 010011 T 011011 b 100011 j 001100 M 010100 U 011100 c 100100 k 001101 N 010101 V 011101 d 100101 l 001110 O 010110 W 011110 e 100110 m	001001 J 010001 R 011001 Z 100001 h 101001 p 001010 K 010010 S 011010 a 100010 i 101010 q 001011 L 010011 T 011011 b 100011 j 101011 r 001100 M 010100 U 011100 c 100100 k 101100 s 001101 N 010101 V 011101 d 100101 T 101101 t 001110 O 010110 W 011110 e 100110 m 101110 u	001001 J 010001 R 011001 Z 100001 h 101001 p 110001 x 001010 K 010010 S 011010 a 100010 i 101010 q 110010 y 001011 L 010011 T 011011 b 100011 j 101011 r 110011 z 001100 M 010100 U 011100 c 100100 k 101100 s 110100 0 001101 N 010101 V 011101 d 100101 l 101101 t 110101 l 001110 O 010110 W 011110 e 100110 m 101110 u 110110 2

Example:

One-Time Pads

What is a one-time pad?

- A cryptographic key known only to the sender and receiver.
- Good choice: A *random* sequence of bits (stay tuned).
- Security depends on each sequence being used only once.

Note: Any sequence of bits can be decoded into a sequence of characters.

for initial exchange

Encryption with a one-time pad

Preparation

- Create a "random" sequence of bits (a one-time pad).
- Send one-time pad to intended recipient through a secure channel.

Encryption

- Encode text as a sequence of *N* bits.
- Use the first N bits of the pad. ——— important point: need to have as many bits in the pad as there are in the message.
- Compute a new sequence of N bits from the message and the pad.
- Decode result to get a sequence of characters.

Result: A ciphertext (encrypted message).

simple

A (very) simple machine for encryption

To compute a ciphertext from a message and a one-time pad

- Encode message and pad in binary.
- Each ciphertext bit is the bitwise exclusive or of corresponding bits in message and pad.

Def. The bitwise exclusive or of two bits is 1 if they differ, 0 if they are the same.

Pop quiz on bitwise XOR encryption

Q. Encrypt the message E A S Y with the pad 0 1 2 3.

Pop quiz on bitwise XOR encryption

Q. Encrypt the message E A S Y with the pad 0 1 2 3.

000000 A	001000 I	010000 Q	011000 Y	100000 g	101000 o	110000 w	111000 4
000001 B	001001 J	010001 R	011001 Z	100001 h	101001 p	110001 x	111001 5
000010 C	001010 K	010010 S	011010 a	100010 i	101010 q	110010 y	111010 6
000011 D	001011 L	010011 T	011011 b	100011 j	101011 r	110011 z	111011 7
000100 E	001100 M	010100 U	011100 c	100100 k	101100 s	110100 0	111100 8
000101 F	001101 N	010101 V	011101 d	100101 1	101101 t	110101 1	111101 9
000110 G	001110 0	010110 W	011110 e	100110 m	101110 u	110110 2	111110 +
000111 H	001111 P	010111 X	011111 f	100111 n	101111 v	110111 3	111111 /

get coding table

E A S Y
000100 000000 010010 011000

0 1 2 3
110100 110101 110110 110111

xOR to encrypt

w 1 k y decode

Decryption with a one-time pad

- A. Alice's device uses a "bitwise exclusive or" machine to encrypt the message.
- Q. What kind of machine does Bob's device use to decrypt the message?
- A. The same one (!!)

A (very) simple machine for encryption and decryption

To compute a *message* from a *ciphertext* and a one-time pad

- Use binary encoding of ciphertext and pad.
- Each message bit is the bitwise exclusive or of corresponding bits in ciphertext and pad.

Why does it work?

Crucial property: Decrypted message is the same as the original message. Let m be a bit of the message and k be the corresponding bit of the one-time pad.

To prove:
$$(m \land k) \land k = m \leftarrow$$
 Notation: $m \land k$ is equivalent to XOR (m, k)

Approach 1: Truth tables

m	k	$m \wedge k$	$(m \wedge k) \wedge k$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Approach 2: Boolean algebra

$$(k \wedge k) = 0$$

$$m \wedge 0 = m$$

$$(m \wedge k) \wedge k = m \wedge (k \wedge k)$$

$$= m \wedge 0$$

$$= m$$

Decryption with the wrong pad

Eve *cannot* read a message without knowing the pad.

One-time pad is provably secure [Shannon, 1940s]

- IF each pad is used only once,
- AND the pad bits are random,
- THEN Eve cannot distinguish ciphertext from random bits.

My informant tells me that

Eve's problem with one-time pads

Eve has a computer. Why not try all possibilities?

Fve

Problem

- 54 bits, so there are 2⁵⁴ possible pad values.
- Suppose Eve could check a million values per second.
- It would still take 570+ years to check all possibilities.

Much worse problem

- There are also 254 possible messages.
- If Eve were to check all the pads, she'd see all the messages.
- No way to distinguish the real one from any other.

One-time pad is provably secure.

pad value	message?
AAAAAAAA	gX76W3v7K
AAAAAAAB	gX76W3v7L
AAAAAAAAC	gX76W3v7I
qwDgbDuav	Kn4aN0Bh1
tTtpWk+1E	NEWTATT00
yT25a5i/S	SENDMONEY
//////+	fo7FpIQE0
////////	fo7FpIQE1

Goods and bads of one-time pads

Goods.

- Very simple encryption method.
- Decrypt with the same method.
- Provably unbreakable if bits are truly random.
- Widely used in practice.

ZDXWWW EJKAWO FECIFE WSNZIP PXPKIY URMZHI JZTLBC YLGDYJ HTSVTV RRYYEG EXNCGA GGQVRF FHZCIB EWLGGR BZXQDQ DGGIAK YHJYEQ TDLCQT HZBSIZ IRZDYS RBYJFZ AIRCWI UCVXTW YKPQNK CKHYEX VXYYCS WOGAAZ OUVVON GCNEVR LMBLYB SBDCDC PCGVJX QXAUIP PXZQIJ JIUWYH COWMNO UZOJHL DWHPER UBSRUJ HGAAPR CRWYHI FRNTQW AJVWRT ACAKRD OZKIIB VIQGBK IJCWHF GTTSSE EXFIPJ KICASQ IOUQTP ZSCXGH YTYCTI BAZSTN JKHFXI RERYWE

a one-time pad

cold war hotline

Bads.

- Easily breakable if seed is re-used.
- Truly random bits are very hard to come by.
- Need separate secure channel to distribute key.
- Pad must be as long as the message.

"Where are you going to get 8 billion bits for the key?"

"No room on my phone for both the video and the key."

Bob

Random bits are not so easy to find

Next: Creating a (long) sequence of "pseudo-random" bits from a (short) key.

COMPUTER SCIENCE SEDGEWICK/WAYNE

PART I: PROGRAMMING IN JAVA

Image sources

https://openclipart.org/detail/25617/astrid-graeber-adult-by-anonymous-25617

https://openclipart.org/detail/169320/girl-head-by-jza

https://openclipart.org/detail/191873/manga-girl---true-svg--by-j4p4n-191873

http://commons.wikimedia.org/wiki/File:Enigma-Machine.jpg

http://pixabay.com/en/binary-one-null-ball-administrator-63530/

http://commons.wikimedia.org/wiki/File:Jimmy_Carter_Library_and_Museum_99.JPG

Prologue: A Simple Machine

- Brief introduction
- Secure communication with a one-time pad
- Linear feedback shift registers
- Implications

A pseudo-random number generator

is a deterministic machine that produces a long sequence of pseudo random bits.

Examples

Enigma.

Linear feedback shift register (next).

Blum-Blum-Shub generator.

• • •

[an early application of computing] [research still ongoing]

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

– John von Neumann

A pseudo-random number generator

is a *deterministic* machine that produces a long sequence of *pseudo random* bits.

Deterministic: Given the current state of the machine, we know the next bit.

An absolute requirement: Alice and Bob need the same sequence.

Random: We never know the next bit.

Pseudo-random: The sequence of bits appears to be random.

Appears to be random??

- A profound and elusive concept.
- For this lecture: "Has enough properties of a random sequence that Eve can't tell the difference".

Ex. 1: No long repeats

Ex. 2: About the same number of 0s and 1s

Ex. 3: About the same number of 00s, 01s, 10s, and 11s.

...

Which of these sequences appear to be random?

Note: Any one of them could be random!

Linear feedback shift register

Terminology

• Bit: 0 or 1.

• Cell: storage element that holds one bit.

• Register: sequence of cells.

• Seed: initial sequence of bits.

• Feedback: Compute XOR of two bits and put result at right.

More terminology

- Tap: Bit positions used for XOR (one must be leftmost). ← Numbered from right, starting at 1.
- [N, k] LFSR: N-bit register with taps at N and k. \leftarrow Not all values of k give desired effect (stay tuned).

Linear feedback shift register simulation

A random bit sequence?

Q. Is this a random sequence?

Looks random to me.

No long repeats. 997 0s, 1003 1s. 256 00s, 254 01s, 256 10s, 257 11s.

one-time pad in our example

A. No. It is the output of an [11, 9] LFSR with seed 01101000010!

It is pseudo-random (at least to some observers).

Pop quiz on LFSRs

Q. Give first 10 steps of [5, 4] LFSR with initial fill 00001.

Pop quiz on LFSRs

Q. Give first 10 steps of [5, 4] LFSR with initial fill 00001.

Encryption/decryption with an LFSR

Preparation

- Alice creates a book of "random" (short) seeds.
- Alice sends the book to Bob through a secure channel.

"Use the next seed in the book to decode this secret video (1 GB)"

Bob

Alice

" OK (consults book) 01101000010"

Encryption/decryption

- Alice sends Bob a description of which seed to use.
- They use the specified seed to initialize an LFSR and produce N bits. [and proceed in the same way as for one-time pads]

Eve's opportunity with LFSR encryption

Without the seed, Eve cannot read the message.

Eve has computers. Why not try all possible seeds?

- Seeds are short, messages are long.
- All seeds give a tiny fraction of all messages.
- Extremely likely that all but real seed will produce gibberish.

Good news (for Eve): This approach can work.

- Ex: 11-bit register implies 2047 possibilities.
- Extremely likely that only one of those is not gibberish.
- After this course, *you* could write a program to check whether any of the 2047 messages have words in the dictionary.

Bad news (for Eve): It is easy for Alice and Bob to use a much longer LFSR.

Property 1.

- Don't use all 0s as a seed!
- Fill of all 0s will not otherwise occur.

Property 1.

- Don't use all 0s as a seed!
- Fill of all 0s will not otherwise occur.

Property 2. Bitstream must eventually cycle.

- $2^N 1$ nonzero fills in an *N*-bit register.
- Future output completely determined by current fill.

Property 1.

- Don't use all 0s as a seed!
- Fill of all 0s will not otherwise occur.

Property 2. Bitstream must eventually cycle.

- $2^N 1$ nonzero fills in an *N*-bit register.
- Future output completely determined by current fill.

Property 3. Cycle length in an *N*-bit register is *at most* $2^N - 1$.

- Could be smaller; cycle length depends on tap positions.
- Need theory of finite groups to know good tap positions.

Ex. [4,2] LFSR

Property 1.

- Don't use all 0s as a seed!
- Fill of all 0s will not otherwise occur.

Property 2. Bitstream must eventually cycle.

- $2^N 1$ nonzero fills in an N-bit register.
- Future output completely determined by current fill.

Property 3. Cycle length in an N-bit register is at most $2^{N}-1$.

- Could be smaller; cycle length depends on tap positions.
- Need theory of finite groups to know good tap positions.

Bottom line.

- [11, 9] register generates 2047 bits before repeating.
- [63, 62] register generates 2⁶³ -1 bits before repeating. —— Definitely preferable: small cost, huge payoff.

Linear Feedback Shift Register Taps

This table lists the appropriate taps for maximum-length LFSR counters of up to 168 bits. The basic description and the table for the first 40 bits was originally published in XCELL and reprinted on page 9-24 of the 1993 and 1994 Vision Data Basic.

Responding to repeated requests, the list is here extended to 168 bits. This information is based on unpublished research done by Wayne Stahnke while he was at Fairchild Samironductor in 1970.

Table 3: Taps for Maximum-Length LFSR Counters

n	XNOR from	n	XNOR from	n	XNOR from	n	XNOR from
3	3,2	45	45,44,42,41	87	87,74	129	129,124
4	4,3	46	46,45,26,25	88	88,87,17,16	130	130,127
5	5,3	47	47,42	89	89,51	131	131,130,84,83
6	6,5	48	48,47,21,20	90	90,89,72,71	132	132,103
7	7,6	49	49,40	91	91,90,8,7	133	133,132,82,81
8	8,6,5,4	50	50,49,24,23	92	92,91,80,79	134	134,77
9	9,5	51	51,50,36,35	93	93,91	135	135,124
10	107	52	52,49	94	94,73	136	136,135,11,10
11	(11, 9)	53	53,52,38,37	95	95,84	137	137,116
12		54	54,53,18,17	96	96,94,49,47	138	138,137,131,130
13	13,4,3,1	55	55,31	97	97,91	139	139,136,134,131
14	14,5,3,1	56	56,55,35,34	98	98,87	140	140,111
15	15,14	57	57,50	99	99,97,54,52	141	141,140,110,109
16	16,15,13,4	58	58,39	100	100,63	142	142,121
17	17,14	59	59,58,38,37	101	101,100,95,94	143	143,142,123,122
18	18,11	60	60,59	102	102,101,36,35	144	144,143,75,74
19	19,6,2,1	61	61,60,46,45	103	103,94	145	145,93
20	20,17	62		104	104,103,94,93	146	146,145,87,86
21	21,19	63	[63, 62]	105	105,89	147	147,146,110,109
22	22,21	64	03, 02	106	106,91	148	148,121
23	23,18	65	65,47	107	107,105,44,42	149	149,148,40,39
24	24,23,22,17	66	66,65,57,56	108	108,77	150	150,97
25	25,22	67	67,66,58,57	109	109,108,103,102	151	151,148
26	26,6,2,1	68	68,59	110	110,109,98,97	152	152,151,87,86
27	27,5,2,1	69	69,67,42,40	111	111,101	153	153,152
28	28,25	70	70,69,55,54	112	112,110,69,67	154	154,152,27,25
29	29,27	71	71,65	113	113,104	155	155,154,124,123
30	30,6,4,1	72	72,66,25,19	114	114,113,33,32	156	156,155,41,40
31	31,28	73	73,48	115	115,114,101,100	157	157,156,131,130
32	32,22,2,1	74	74,73,59,58	116	116,115,46,45	158	158,157,132,131
33	33,20	75	75,74,65,64	117	117,115,99,97	159	159,128
34	34,27,2,1	76	76,75,41,40	118	118,85	160	160,159,142,141
35	35,33	77	77,76,47,46	119	119,111	161	161,143
36	36,25	78	78,77,59,58	120	120,113,9,2	162	162,161,75,74
37	37,5,4,3,2,1	79	79,70	121	121,103	163	163,162,104,103
38	38,6,5,1	80	80,79,43,42	122	122,121,63,62	164	164,163,151,150
39	39,35	81	81,77	123	123,121	165	165,164,135,134
40	40,38,21,19	82	82,79,47,44	124	124,87	166	166,165,128,127
41	41,38	83	83,82,38,37	125	125,124,18,17	167	167,161
42	42,41,20,19	84	84,71	126	126,125,90,89	168	168,166,153,151
43	43,42,38,37	85	85,84,58,57	127	127,126		
44	44,43,18,17	86	86,85,74,73	128	128,126,101,99		

XILINX manual, 1990s

Eve's problem with LFSR encryption

Without the seed, Eve cannot read the message.

gX76W3v7K ???

Exponential growth dwarfs technological improvements

 $(30, 2^{30})$

Eve has computers. Why not try all possible seeds?

- Seeds are short, messages are long.
- All seeds give a tiny fraction of all messages.
- Extremely likely that all but real seed will produce gibberish.

Bad news (for Eve): There are still way too many possibilities.

- Ex: 63-bit register implies $2^{63} 1$ possibilities.
- If Eve could check 1 million seeds per second, it would take her 2923 centuries to try them all!

Bad news (for Alice and Bob): LFSR output is *not* random.

[stay tuned]

 $(20, 2^{20})$

experts have cracked LFSRs

Goods and bads of LFSRs

Goods.

- Very simple encryption method.
- Decrypt with the same method.
- Scalable: 20 cells for 1 million bits; 30 cells for 1 billion bits.
- Widely used in practice. [Example: military cryptosystems.]

a commercially available LFSR

Bads.

- Easily breakable if seed is re-used.
- Still need secure key distribution.
- Experts can crack LFSR encryption.

Example.

- CSS encryption widely used for DVDs.
- Widely available DeCSS breaks it!

```
Author: Charles M. Hannum <root@ihack.net>
                  cat title-key scrambled.vob | efdtt >clear.vob
#define m(i)(x[i]^s[i+84]) <<
                   unsigned char x[5]
                                            y,s[2048];main(
                   n) {for ( read (0,x,5)
                                          );read(0,s,n=2048
                             ); write(1
                                         ,s,n)
                                                        )if(s
                             [13] %8+20] /16%4 ==1
                                                         ){int
                             1)17 ^256 +m(0) 8,k
                                                         =m(2)
                  i=m(
                                   17^ m(3)
                                                        2-k%8
                   0, i=
                                              9^k*
                  ^8,a
                                                       -=16;
                           =0,c
                                    =26;for
                                              (s[y]
                  --c;j *=2)a=
                                    a*2^i&
                                              1,i=i /2^j&1
                 <<24; for (j=
                                     127;
                                              ++j<n;c=c>
                           +=y=i^i/8^i>>4^i>>12,
                  i=i>>8^y<<17,a^=a>>14,y=a^a*8^a<<6,a=a
                >>8^y<<9,k=s[j],k
                                          ="7Wo~'G \216"[k
                 \&7]+2^{cr}3sfw6v;*k+>/n."[k>>4]*2^k*257/
                        8,s[i]=k^{(k&k*2&34)*6^c+~v}
                                   ; } }
DeCSS DVD decryption code
```

COMPUTER SCIENCE SEDGEWICK/WAYNE

PART I: PROGRAMMING IN JAVA

Image sources

http://pixabay.com/en/ball-http-www-crash-administrator-216837/

http://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

http://commons.wikimedia.org/wiki/File:Einstein-formal_portrait-35.jpg

Prologue: A Simple Machine

- Brief introduction
- Secure communication with a one-time pad
- Linear feedback shift registers
- Implications

LFSRs and general-purpose computers

computer

Important similarities.

- Both are built from simple components.
- Both scale to handle huge problems.
- Both require careful study to use effectively.

component	LFSR	computer		
control	start, stop, load	same		
clock		same		
memory	12 bits	billions of bits		
input	12 bits	bit sequence		
computation	shift, XOR	+ - * /		
output	pseudo-random bit sequence	any computable bit sequence		

Critical differences: Operations, input. ← but the simplest computers differ only slightly from LFSRs!

- General purpose computer can simulate any abstract machine.
- All general purpose computers have equivalent power (!) [stay tuned].

A Profound Idea

YOU will be writing

code like this within -

Programming. We can write a Java program to simulate the operation of any abstract machine.

- Basis for theoretical understanding of computation.
- Basis for bootstrapping real machines into existence.

Stay tuned (we cover these sorts of issues in this course).

Profound questions

Q. What is a random number?

LFSRs do not produce random numbers.

- They are *deterministic*. <--- von Neumann's "state of sin": we *know* that "deterministic" is incompatible with "random"
- It is not obvious how to distinguish the bits LFSRs produce from random,
- BUT experts have figured out how to do so.
- Q. Are random processes found in nature?
 - Motion of cosmic rays or subatomic particles?
 - Mutations in DNA?

Q. Is the natural world a (not-so-simple) deterministic machine??

"God does not play dice."

COMPUTER SCIENCE SEDGEWICK/WAYNE

PART I: PROGRAMMING IN JAVA

Image sources

http://pixabay.com/en/ball-http-www-crash-administrator-216837/

http://commons.wikimedia.org/wiki/File:KnuthAtOpenContentAlliance.jpg

http://pixabay.com/en/galaxy-space-universe-all-11098/

http://commons.wikimedia.org/wiki/File:Einstein-formal_portrait-35.jpg

Prologue:
A Simple Machine