

Networking

Virtual Private Cloud

VPC - Private networking on the cloud.

Subnets make up the VPC and are loosely related with Availability zones Ip address are defined with (CIDR blocks) Classless Inter Domain Routing VPC peering is used to interact with different VPCs.

Default VPC is made available by AWS in every region.

Default VPC should not be deleted (create a support ticket to AWS if needed to recover the default VPC) Route table - Internet gateway - NAT Gateway -

CIDR - 0.0.0.0/prefix

Ex.1: $x.x.x.x/24 => 32-24=8 => 2^8 = 256$

Total 256 IPs are possible in this range.

So the IPs become - 192.168.1.(0-255)

Ex.2: $x.x.x.x/20 \Rightarrow 32-20=8 \Rightarrow 2^8 = 256$

Total 256 IPs are possible in this range.

So the IPs become - 192.168.1.(0-255)

So it can be divided into 4 times 64 IP addresses.

192.168.1.0-63

192.168.1.64-128

192.168.1.129-192

192.168.1.193-255

Always 5 IP addresses are taken by AWS for internal use and not given for the user to utilize.

.0 to .4 is reserved for AWS.

5 CIDR blocks per subnet.

Address format	Difference	Mask	Addresses		Relative	Restrictions	
	to last address		Decimal	2"	to class A, B, C	on a, b, c and d (0255 unless noted)	Typical use
a.b.c.d/32	+0.0.0.0	255.255.255.255	1	20	1/256 C		Host route
a.b.c.d/31	+0.0.0.1	255.255.255.254	2	21	1/128 C	d = 0 (2n) 254	Point to point links (RFC 3021@
a.b.c.d / 30	+0.0.0.3	255.255.255.252	4	22	1/64 C	d = 0 (4n) 252	Point to point links (glue network
a.b.c.d / 29	+0.0.0.7	255.255.255.248	8	23	1/32 C	d = 0 (8n) 248	Smallest multi-host network
a.b.c.d / 28	+0.0.0.15	255.255.255.240	16	24	1/16 C	d = 0 (16n) 240	Small LAN
a.b.c.d / 27	+0.0.0.31	255.255.255.224	32	25	36 C	d = 0 (32n) 224	
a.b.c.d / 26	+0.0.0.63	255.255.255.192	64	26	14 C	d=0,64,128,192	
a.b.c.d / 25	+0.0.0.127	255.255.255.128	128	27	1/2 C	d=0, 128	Large LAN
a.b.c.0 / 24	+0.0.0.255	255.255.255.0	256	28	1 C		
a.b.c.0 / 23	+0.0.1.255	255.255.254.0	512	29	2 C	c = 0 (2n) 254	
a.b.c.0 / 22	+0.0.3.255	255.255.252.0	1,024	210	4 C	c = 0 (4n) 252	
a.b.c.0 / 21	+0.0.7.255	255.255.248.0	2,048	211	8 C	c = 0 (8n) 248	Small ISP / large business
a.b.c.0 / 20	+0.0.15.255	255.255.240.0	4,096	212	16 C	c = 0 (16n) 240	
a.b.c.0 / 19	+0.0.31.255	255.255.224.0	8,192	213	32 C	c = 0 (32n) 224	ISP / large business
a.b.c.0 / 18	+0.0.63.255	255.255.192.0	16,384	214	64 C	c = 0, 64, 128, 192	
a.b.c.0 / 17	+0.0.127.255	255.255.128.0	32,768	215	128 C	c = 0, 128	
a.b.0.0 / 16	+0.0.255.255	255.255.0.0	65,536	216	256 C = B		
a.b.0.0 / 15	+0.1.255.255	255.254.0.0	131,072	217	2 B	b = 0 (2n) 254	
a.b.0.0 / 14	+0.3.255.255	255.252.0.0	262,144	218	4 B	b = 0 (4n) 252	
a.b.0.0 / 13	+0.7.255.255	255.248.0.0	524,288	219	8 B	b = 0 (8n) 248	
a.b.0.0 / 12	+0.15.255.255	255.240.0.0	1,048,576	220	16 B	b = 0 (16n) 240	
a.b.0.0 / 11	+0.31.255.255	255.224.0.0	2,097,152	221	32 B	b = 0 (32n) 224	
a.b.0.0 / 10	+0.63.255.255	255.192.0.0	4,194,304	222	64 B	b = 0, 64, 128, 192	
a.b.0.0/9	+0.127.255.255	255.128.0.0	8,388,608	223	128 B	b = 0, 128	
a.0.0.0/8	+0.255.255.255	255.0.0.0	16,777,216	224	256 B = A		Largest IANA block allocation
a.0.0.0/7	+1.255.255.255	254.0.0.0	33,554,432	225	2 A	a = 0 (2n) 254	
a.0.0.0/6	+3.255.255.255	252.0.0.0	67,108,864	226	4 A	a = 0 (4n) 252	
a.0.0.0/5	+7.255.255.255	248.0.0.0	134,217,728	227	8 A	a = 0 (8n) 248	
a.0.0.0/4	+15.255.255.255	240.0.0.0	268,435,456	228	16 A	a = 0 (16n) 240	
a.0.0.0/3	+31.255.255.255	224.0.0.0	536,870,912	229	32 A	a = 0 (32n) 224	
a.0.0.0/2	+63.255.255.255	192.0.0.0	1,073,741,824	230	64 A	a = 0, 64, 128, 192	
a.0.0.0 / 1	+127.255.255.255	128.0.0.0	2,147,483,648	231	128 A	a = 0, 128	
0.0.0.0 / 0	+255.255.255.255	0.0.0.0	4,294,967,296	232	256 A		

PG Program in Cloud Computing

Connecting local subnets and the cloud VPC subnets is called Hybrid cloud.

This is done thru VPN connection or thru Amazon Direct connect.(Dedicated cables - so that connection does not go thru the internet)

If more data from your local needs to be transferred to AWS cloud then Snowball, snowmobile can be used.

Incremental data can be transferred thru the direct connect or VPN connection.

Security groups are stateful - once a port is opened for inbound connections the outbound is opened by default for the same port.

Incase of ACL, it is stateless and needs to be specified explicitly to allow the port inbound and outbound connections. Else it is blocked by default.

Amazon VPC limits
Custom limits of VPC per region is 5. (can increase with request to AWS support.)
Subnets 200 per VPC.
IPv4 ->CIDR 1+4 per VPC
IPv6 ->CIDR 1 per VPC

5 elastic IP per region (costs for unused address)
NACL 200
Rules per ACL 20
VPC FLow logs captures all the access and entry in and out of the

PG Program in Cloud Computing

Each EC2 instance performs **source/destination** checks by default. This means that the instance must be the **source** or **destination** of any traffic it sends or receives. However, a NAT instance must be able to send and receive traffic when the **source** or **destination** is not itself.

Public Internet \Rightarrow Internet gateway \Rightarrow Default Route Table(or custom route table) \Rightarrow Route entry to public subnet \Rightarrow EC2 instance inside the public subnet \Rightarrow Private subnet(entry thru security group).

VPC peering request and acceptance has to happen for proper communication between the VPCs. Also the Route table entry for the VPC peering connection needs to be added on both the route tables of each VPCs to establish the connection.

VPC endpoints are available to handle the connection to AWS managed services such as DynamoDB, S3 etc to be securely connected to the VPC without letting the data flow thru internet.

Route 53

Direct and manage all traffic to your domain. Share the resources from different regions and load balance between the resources. Can register a domain with AWS or use 3rd party domains managed thru route 53.

Having the resources nearer to the users(using Sydney region for Australian users) is more appropriate than to have the server in Europe and letting the Australian user experience unnecessary latency delays.

Web Application Firewall

Configuration can be made to protect against bad users(hackers):

- 1. cross site scripting attack
- 2. SQL injection
- 3. Bad bots
- 4. Scanners
- 5. http flooding
- 6. IP address restriction
- 7. Attack protection

Select the region first
Web ACL name
CloudWatch metric name
Resource type.(ELB / CloudFront /API gateway)

Rule - Procedure/pattern match - Condition(set of conditions)
Rule groups - pre-prepared set of rules.
Priority of the rules used.

Rate-limiting to your resource. Ex. More than 100 requests within 5mins.