

NEO-F10N

Standard precision GNSS module Professional grade

Data sheet

Abstract

This data sheet describes the NEO-F10N module, a multi-band GNSS receiver for high-performance asset tracking applications.

Document information

Title	NEO-F10N		
Subtitle	Standard precision GNSS module	Standard precision GNSS module	
Document type	Data sheet	Data sheet	
Document number	UBX-23002117	UBX-23002117	
Revision and date	R01	27-Jun-2023	
Disclosure restriction	C2-Restricted		

Product status	Corresponding content status	
Functional Sample	Draft	For functional testing. Revised and supplementary data will be published later.
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	FW version	IN/PCN reference	Product status
NEO-F10N	NEO-F10N-00B-00	EXT SPG 6.00	N/A	Prototype

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, or modification of this document or any part thereof is only permitted with the express written permission of u-blox. Disclosure to third parties is permitted for clearly public documents only.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © 2023, u-blox AG.

Contents

1 Functional description	4
1.1 Overview	
1.2 Performance	
1.3 Supported GNSS constellations	
1.4 Supported protocols	
1.5 Firmware features	6
2 System description	7
2.1 Block diagram	7
3 Pin definition	8
3.1 Pin assignment	
3.2 Pin state	
4 Electrical specifications	10
4.1 Absolute maximum ratings	
4.2 Operating conditions	
4.3 Indicative power requirements	11
5 Communication interfaces	13
5.1 UART	13
5.2 Default interface settings	13
6 Mechanical specifications	14
7 Product handling	15
7.1 Moisture sensitivity level	
8 Labeling and ordering information	16
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	16
Related documents	18
Revision history	19

1 Functional description

1.1 Overview

The NEO-F10N module features the u-blox F10 GNSS multi-band platform and provides exceptional sensitivity and acquisition time with unparalleled low power consumption for L1 and L5 GNSS signals.

1.2 Performance

Parameter	Specification	Value
Receiver type		u-blox F10 dual-band receiver
Accuracy of time pulse signal	RMS	30 ns
	99%	60 ns
Frequency of time pulse signal		Default 1PPS (0.25 Hz to 10 MHz configurable)
Operational limits ¹	Dynamics	≤ 4 g
	Altitude	80,000 m
	Velocity	500 m/s
Velocity accuracy ²		0.05 m/s
Dynamic heading accuracy ²		0.3 deg

Table 1: NEO-F10N specifications

Table 2 shows typical performance values in multi GNSS configurations. SBAS is enabled in all measurements.

Parameter		GPS+GAL +BDS (Default)	GPS+BDS	GPS+GAL	GPS+NavIC	Unit
Max navigation u	pdate rate ³	10	10	10	10	Hz
Position accuracy	/ (CEP) ⁴	1	1	1	1	m
Time To First Fix	Cold start	27	28	28	29	s
A	Hot start	1	1	1	1	s
	AssistNow Online 6	1	1	1	1	s
	AssistNow Offline ⁷	2	2	2	2	s
	AssistNow Autonomous 8	4	4	4	4	s
Sensitivity ⁹	Tracking and nav.	-167	-167	-167	-167	dBm
-	Reacquisition	-160	-160	-160	-160	dBm
	Cold Start	-148	-148	-148	-148	dBm

¹ Assuming Airborne 4 g platform.

² 50% at 30 m/s for dynamic operation.

³ Minimum 98% fix rate under typical conditions.

⁴ CEP, 50%, 24 hours static, -130 dBm, > 6 SVs for each GNSS system.

 $^{^{\, 5}\,}$ Commanded starts. All satellites signals at -130 dBm. Measured at room temperature.

 $^{{\}tt 6}\,{\tt \,}$ Depends on the speed and latency of the aiding data connection, commanded starts.

 $^{^{7}\,}$ Using seven days old Assist Now Offline data. External memory may be required.

⁸ Using two days old orbital predicted data. External memory may be required.

 $^{^{\}rm 9}~$ Demonstrated with a good external LNA. Measured at room temperature.

Parameter		GPS+GAL +BDS (Default)	GPS+BDS	GPS+GAL	GPS+NavIC	Unit
	Hot start	-159	-159	-159	-159	dBm

Table 2: NEO-F10N typical performance in multi GNSS configurations

Table 3 shows typical performance values in single GNSS configurations. SBAS is enabled in all measurements.

Parameter	-	GPS	BDS	Unit
Max navigation u	pdate rate ³	25	25	Hz
Position accuracy	/ (CEP) ⁴	1.5	1.5	m
Time To First Fix	Cold start	29	56	S
(TTFF) ⁵	Hot start	1	1	S
	AssistNow Online ⁶	1	N/A	s
	AssistNow Offline ⁷	2	N/A	s
AssistNow Autonomous ⁸	AssistNow Autonomous ⁸	3	N/A	s
Sensitivity 9	Tracking and nav.	-167	-163	dBm
•	Reacquisition	-160	-156	dBm
	Cold Start	-148	-136	dBm
	Hot start	-159	-157	dBm

Table 3: NEO-F10N typical performance in single GNSS configurations

1.3 Supported GNSS constellations

NEO-F10N is a concurrent GNSS receiver that can receive and track multiple GNSS systems. The dual-band RF front-end architecture enables concurrent reception of multiple dual frequency GNSS constellations. The receiver can be configured for a subset of GNSS constellations to achieve lower power consumption.

The default configuration on NEO-F10N is concurrent reception of GPS, Galileo and BeiDou with SBAS enabled.

The following GNSS and their signals are supported:

System	Signals
GPS/QZSS	L1C/A (1575.42 MHz), L5 (1176.450 MHz)
Galileo	E1-B/C (1575.42 MHz), E5a (1176.450 MHz)
BeiDou	B1C (1575.42 MHz), B2a (1176.450 MHz)
NavIC	SPS-L5 (1176.450 MHz)

Table 4: Supported GNSS and signals on NEO-F10N

The following GNSS assistance services are supported:

Service	Support
AssistNow™ Online	GPS L1C/A, QZSS L1C/A, Galileo E1
AssistNow™ Offline	GPS L1C/A, Galileo E1, Beidou B1
AssistNow™ Autonomous	GPS L1C/A, QZSS L1C/A, Galileo E1

Table 5: Supported Assisted GNSS (A-GNSS) services

The following augmentation systems are supported:

System	Support
SBAS ¹⁰	EGNOS, GAGAN, MSAS and WAAS
QZSS	L1S (SLAS), L1Sb (SBAS)

Table 6: Supported augmentation systems

The augmentation system QZSS can be enabled only if GPS operation is also enabled.

1.4 Supported protocols

NEO-F10N supports the following interface protocols:

Protocol	Туре
UBX	Input/output, binary, u-blox proprietary
NMEA versions 2.1, 2.3, 4.0, 4.10 and 4.11 (default).	Input/output, ASCII

Table 7: Supported protocols

1.5 Firmware features

Feature	Description
Assisted GNSS	AssistNow Online, AssistNow Offline and AssistNow Autonomous
Backup modes	Hardware backup mode and software standby mode
Super-S	Improved dynamic position accuracy with small antennas
Protection level	Real-time position accuracy estimate with 95% confidence level 11
Galileo return link messages	Galileo search and rescue (SAR) return link messages (RLM) via Galileo satellite signal
Odometer	Measure traveled distance with support for different user profiles

Table 8: Firmware features

Feature	Description	
Anti-jamming	RF interference and jamming detection and reporting	
Anti-spoofing	Spoofing detection and reporting	
Configuration lockdown	Receiver configuration can be locked by command	
Message integrity	All messages can be cryptographically signed	
Secure boot	Only signed firmware images executed	

Table 9: Security features

 $^{^{\}rm 10}$ $\,$ lonospheric correction service is the only SBAS service supported by NEO-F10N $\,$

¹¹ Verified for automotive environment only.

2 System description

2.1 Block diagram

Figure 1: NEO-F10N block diagram

3 Pin definition

3.1 Pin assignment

Figure 2: NEO-F10N pin assignment

Pin no.	Name	1/0	Description
1	SAFEBOOT_N	I	Safeboot mode (leave open)
2	Reserved	-	Reserved
3	TIMEPULSE	0	Time pulse signal (shared with SAFEBOOT_N pin)
4	EXTINT	I	External interrupt
5	Reserved	-	Reserved
6	Reserved	-	Reserved
7	Reserved	-	Reserved
8	RESET_N	I	RESET (active low)
9	VCC_RF	0	Output voltage RF section
10	GND	-	Ground
11	RF_IN	I	GNSS signal input
12	GND	-	Ground
13	GND	-	Ground
14	LNA_EN	0	On/Off external LNA or active antenna

 $^{^{12}}$ The receiver enters safeboot mode if this pin is low at start up. The SAFEBOOT_N pin is internally connected to TIMEPULSE pin through a 1 k Ω series resistor.

Pin no.	Name	I/O	Description
15	Reserved	-	Reserved
16	Reserved	-	Reserved
17	Reserved	-	Reserved
18	Reserved	-	Reserved
19	Reserved	-	Reserved
20	TXD	0	UART TX
21	RXD	I	UART RX
22	V_BCKP	I	Backup voltage supply
23	VCC	I	Supply voltage
24	GND	-	Ground

Table 10: NEO-F10N pin assignment

3.2 Pin state

Table 11 defines the state of the interface pins in different modes.

Pin no.	Function	Continuous mode	Software standby mode	Safe boot mode
21	RXD	Input pull-up	Input pull-up	Input pull-up
20	TXD	Output	Input pull-up	Output
1	SAFEBOOT_N 13	Output	Input pull-down	High Z
3	TIMEPULSE	Output	Input pull-down	High Z
8	RESET_N	Input pull-up	Input pull-up	Input pull-up
4	EXTINT	Input pull-up	Input pull-up	Input pull-up

Table 11: Pins state

In reset mode (RESET_N = low), all interface pins are configured as input pull-up.

In hardware backup mode (VCC = 0 V), pins must not be driven.

UBX-23002117 - R01 C2-Restricted

¹³ SAFEBOOT_N shares the same internal IC pin via a 1k series resistor with TIMEPULSE

4 Electrical specifications

CAUTION Operating the device above one or more of the limiting values may cause permanent damage to the device. The values provided in this chapter are stress ratings. Extended exposure to the values outside the limits may effect the device reliability.

Where application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
VCC	Main supply voltage	-0.3	3.6	V
	Voltage ramp on VCC ¹⁴	25	35000	μs/V
V_BCKP	Backup supply voltage	-0.3	3.6	V
V_PIO	Input voltage on RESET_N and digital pins.	-0.3	VCC + 0.3	V
I_PIO	Max source / sink current, digital pins 15	-10	10	mA
ICC_RF	Max source current, VCC_RF		250	mA
P_{rfin}	RF input power on RF_IN ¹⁶		0	dBm
T _{amb}	Ambient temperature	-40	+85	°C
T _s	Storage temperature	-40	+85	°C

Table 12: Absolute maximum ratings

The product is not protected against overvoltage or reversed voltages. Voltage spikes exceeding the power supply voltage specification, given in the table above, must be limited to values within the specified boundaries by using appropriate protection diodes.

4.2 Operating conditions

Table 13 shows the general operating conditions. Table 14 shows the electrical parameters for digital I/O.

Symbol	Parameter	Min	Typical	Max	Unit
VCC	Main supply voltage	2.7	3.0	3.6	V
V_BCKP	Supply voltage, backup domain	1.65		3.6	V
VCC _{SWITCH}	VCC voltage threshold to switch an internal supply for the backup domain from VCC to V_BCKP		1.45		V
VCC_RF	VCC_RF output voltage		VCC - 0.1		V
ICC_RF	VCC_RF output current			50	mA
NF _{tot}	Receiver chain noise figure (L1/L5)		3/3		dB
Ext_gain ¹⁷	External gain at RF_IN, normal gain mode (default)			25	dB
T _{opr}	Operating temperature	-40		+85	°C

Table 13: General operating conditions

¹⁴ Exceeding the voltage ramp speed may permanently damage the device.

¹⁵ The SAFEBOOT_N pin has an internal 1 $k\Omega$ series resistor.

¹⁶ Test conditions: source impedance = 50Ω , continuous wave.

¹⁷ The internal LNA gain is configurable.

Symbol	Parameter	Min	Typical	Max	Unit
I _{leak}	Leakage current input pins 18		25		nA
V _{in}	Input pin voltage range	0		VCC	V
V _{il}	Low-level input voltage			0.63	V
V _{ih}	High-level input voltage	0.68 x V	/CC		V
V _{ol}	Low-level output voltage, lout = -2 mA ¹⁹			0.4	V
V _{oh}	High-level output voltage, lout = 2 mA ¹⁹	VCC - 0	.4		V
R _{pu, IO}	Pull-up resistance, Digital IO	8	18	40	kΩ
R _{pd, IO}	Pull-down resistance, Digital IO	21	80	180	kΩ
R _{pu, SAFEBOOT_N}	Pull-up resistance, SAFEBOOT_N ²⁰	6	17	72	kΩ
R _{pu, RESET_N}	Pull-up resistance, RESET_N	N 7 10 13		kΩ	

Table 14: Digital IO

Operation beyond the specified operating conditions can affect device reliability.

4.3 Indicative power requirements

Table 15 shows indicative current consumption for VCC with a 3.0 V supply.

Symbol (Parameter)	Conditions	GPS+GAL +BDS (Default)	GPS+BDS	GPS+GAL	GPS +NavIC	GPS	BDS	Unit
	Acquisition ²²	26	26	23	23	20	25	mA
(VCC current)	Tracking (Continuous mode)	21	21	20	20	18	20	mA

Table 15: Typical currents for 3.0 V supply at VCC

These values are provided for customer information only, as an example of typical current requirements. They are characterized on samples using a cold start command. Actual power requirements can vary depending on firmware version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, internal LNA gain mode, and test conditions.

The in-rush current at startup can go up to 100 mA. Ensure that the external power supply is able to deliver up to 100 mA.

Table 16 shows current consumption for backup modes.

Symbol	Parameter	Conditions	Тур.	Unit
I _{V_BCKP} 23	Total current in hardware backup mode	V_BCKP = 3.0 V; VCC = 0 V	28	μΑ
I _{Vcc}	Total current in software standby mode	VCC = 3.0 V	46	μΑ

Table 16: Backup currents

 $V_{in} = VCC$, at room temperature.

¹⁹ TIMEPULSE has 4 mA current drive/sink capability.

 $^{^{20}}$ The SAFEBOOT_N pin has an additional 1 $k\Omega$ series resistor.

²¹ 1 Hz navigation update rate. Simulated signals using power levels of -130 dBm.

²² Average current from start-up until the first fix.

 $^{^{23}}$ $\,$ I_{V_BCKP} current in normal operation (V_BCKP =3.0 V) is ~3 $\mu A.$

All values in Table 15 and Table 16 are measured at 25 °C ambient temperature and with the internal LNA set to normal gain. SBAS is activated in all measurements.

5 Communication interfaces

The receiver supports communication over UART only.

All the inputs have an internal pull-up resistor in normal operation and can be left open if not used. The voltage level at the PIO pins is related to the VCC supply voltage.

5.1 UART

The UART interface supports configurable baud rates. Hardware flow control is not supported. UART specifications are described in Table 17.

Symbol	Parameter	Min	Max	Unit
R _u	Baud rate	4800	921600	bit/s
Δ_{Tx}	Tx baud rate accuracy	-1%	+1%	-
Δ_{Rx}	Rx baud rate tolerance	-2.5%	+2.5%	-

Table 17: UART specifications

5.2 Default interface settings

Interface	Settings
UART	 38400 baud²⁴, 8 bits, no parity bit, 1 stop bit. Input messages: NMEA and UBX.
	 Output messages: NMEA GGA, GLL, GSA, GSV, RMC, VTG and TXT.

Table 18: Default interface settings

²⁴ 9600 baud in safe boot mode.

6 Mechanical specifications

Figure 3: NEO-F10N mechanical drawing

Symbol	Min (mm)	Typical (mm)	Max (mm)	
А	15.9	16.0	16.1	
В	12.1	12.2	12.3	
С	2.2	2.4	2.6	
D	0.9	1.0	1.1	
Е	1.0	1.1	1.2	
F	2.9	3.0	3.1	
G	0.9	1.0	1.1	
Н	-	0.82	-	
K	0.7	0.8	0.9	
M	0.8	0.9	1.0	
N	0.4	0.5	0.6	
P*	0.0	-	0.5	The de-paneling residual tabs may be on either side (not both).
Weight		1.6 g		

Table 19: NEO-F10N mechanical dimensions

Component keep-out area must consider that the de-paneling residual tabs can be on either side (not both).

7 Product handling

7.1 Moisture sensitivity level

The moisture sensitivity level (MSL) relates to the packaging and handling precautions required. NEO-F10N LCC (professional grade) package is rated at MSL level 4. For MSL standard, see IPC/JEDEC J-STD-020 [5].

8 Labeling and ordering information

This section provides information about product labeling and ordering.

8.1 Product labeling

The labeling of NEO-F10N package provides product information and revision information. For more information contact u-blox sales.

Figure 4: NEO-F10N label

The parts of the product code are explained in Table 20

Code	Meaning	Example
PPP	Product family	NEO
TGG	Platform	F10 = u-blox F10
V	Variant	N = Standard precision, TCXO, SAW filter, and LNA
NN	Option	00, 01, 02,
Q	Quality grade	A = Automotive, B = Professional
XX	Product detail	Describes hardware and firmware versions

Table 20: Part identification code

8.2 Explanation of product codes

Three product code formats are used. The product name is used in documentation such as this data sheet and identifies all u-blox products, independent of packaging and quality grade. The ordering code includes options and quality, while the type number includes the hardware and firmware versions.

Table 21 details these three different formats for NEO-F10N module.

Format	Structure	Product code	
Product name	PPP-TGGV	NEO-F10N	
Ordering code	PPP-TGGV-NNQ	NEO-F10N-00B	
Type number	PPP-TGGV-NNQ-XX	NEO-F10N-00B-00	

Table 21: Product code formats

8.3 Ordering codes

Ordering code	Product	Remark
NEO-F10N-00B	u-blox F10 multi-band GNSS receiver module, 24 pin LCC, professional grade	

Table 22: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/product-resources.

Related documents

- [1] NEO-F10N Integration manual, TBD
- [2] u-blox F10 SPG 6.00 Interface description, TBD
- [3] u-blox F10 SPG 6.00 Release note, TBD
- [4] u-blox Package Information Guide, UBX-14001652
- [5] MSL standard IPC/JEDEC J-STD-020, www.jedec.org

For regular updates to u-blox documentation and to receive product change notifications please register on our homepage https://www.u-blox.com.

Revision history

Revision	Date	Name	Status / comments
01	27-Jun-2023	imar, msul, mban	Initial release

Contact

u-blox AG

Address: Zürcherstrasse 68

8800 Thalwil Switzerland

For further support and contact information, visit us at www.u-blox.com/support.