mas550 homework

20208209 오재민

2020년 10월 21일

Problem (2.5.2).

If $E|X_1|^p = \infty$, then for each positive integer k, $E|X_1|^p \leq \sum_n P(|X_1|^p > nk) = \infty$. But $P(|X_1|^p > nk) = P(|X_n| > (nk)^{1/p})$. Then by Borel Cantelli lemma $P(|X_n| > (nk)^{1/p}i.o.) = 1$. That is, $\limsup_n |X_n|/n^{1/p} \geq k^{1/p}$ for infinitely many k. Therefore $\limsup_n |X_n|/n^{1/p} = \infty$.

But $|X_n| \leq |S_n| + |S_{n-1}|$. That leads $\limsup_n |S_n|/n^{1/p} = \infty$. By taking contrapositive, we get the conclusion.

Problem (2.5.5).

The first one leads the second one directly because Kolmogorov's three series lemma with A=1 tells it.

The second one implies the third one because $\frac{X_n}{1+X_n} \leq 1_{X_n>1} + X_n 1_{X_n \leq 1}$ and monotone convergence theorem.

The third one implies $\sum_{n} \frac{X_n}{1+X_n} < \infty$ a.s. And convergence of $\sum_{n} \frac{a_n}{1+a_n}$ for $a_n \geq 0$ gives the convergence of $\sum_{n} a_n$. It is because $\lim a_n = 0$ and $|a_N| + \cdots + a_{N+n}| \leq (1+\varepsilon) \left| \frac{a_N}{1+a_N} + \cdots + \frac{a_{N+n}}{1+a_{N+n}} \right|$ for large N. Therefore $\sum_{k=1}^{n} a_k$ is cauchy hence converges. Therefore $\sum_{n} X_n$ converges a.s.

Problem (3.2.4).

Since $X_n \to X_\infty$ in distribution, there are $Y_n =_d X_n$ and $Y_\infty =_d X_\infty$ such that $Y_n \to Y_\infty$ a.s.

Then $g(Y_n) \geq 0$ and $g(Y_n) \rightarrow g(Y_\infty)$ a.s. Therefore by Fatou's lemma, $\liminf Eg(Y_n) \geq Eg(Y_\infty)$ which is equivalent to $\liminf Eg(X_n) \geq Eg(X_\infty)$ since $X_n =_d Y_n$ for all $n \in \mathbb{N} \cup \infty$.

Problem (3.2.5).

There are $Y_n \to Y_\infty$ a.s. and distribution function of Y_n is equal to F_n . $F_\infty = F$.

Then by theorem 1.6.8, $Eh(Y_n) \to Eh(Y_\infty)$ which is equivalent to $\int h(x)dF_n(x) \to \int h(x)dF(x)$ because distribution function of Y_n is F_n .