Motivation

Trenn-/Montierbarkeit von polyedrischen Objekten

VL Computational Geometry Prof. M. Fischer, HS München

Linear Programming? Was ist das? Spezielles Optimierungsverfahren

Und warum hier?

Simplex-Verfahren: Geometrische Interpretation

Historie

- Notwendigkeit, militärische Logistik zu optimieren
 - Kantorovich, Leonid, 1939: Lineare Programme
 - Dantzig, George, 1947: Simplex-Methode
- Standard-Methode im Bereich Operations Research (z.B. Produktionsplanung)

Linear Programming?

- Optimierungsproblem
- Lineare Zielfunktion
- Randbedingungen: Lineare Ungleichungen

Mathematische Formulierung...

Lineares Programm, mathematisch formuliert Optimierungsproblem,

geg.
$$A \in \mathbb{R}^{m,n}$$
 $b \in \mathbb{R}^m$ $c \in \mathbb{R}^n$ $x \in \mathbb{R}^n$ x_i positiv
Randbedingungen (lineare Ungleichungen) (manchmal auch b_i) $a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1$ $a_{21}x_1 + \ldots + a_{2n}x_n \leq b_2$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m$$

• Zu maximierende, lineare Zielfunktion

$$c^T x = c_1 x_1 + \ldots + c_n x_n$$

Kurzform: $\max\{c^T x \mid Ax \leq b, x \geq 0\}$

schnell ein Beispiel...

Beispiel: Produktionsplanung, Engpassrechnung

Zwei Produktvarianten: Typ1 (X1), Typ2 (X2)

Drei Bestandteile

- Vorräte begrenzt
- Bedarf unterschiedlich nach Variante (s. Tabelle)

Ertrag (Stückdeckungsbeitrag, DB) unterschiedlich (s. Tabelle)

Ziel: Ertrag maximieren!

	Тур 1	Тур 2	Vorrat
Verbrauch 1:	2 Kg	1 Kg	200 Kg
Verbrauch 2:	1 Kg	1 Kg	120 Kg
Verbrauch 3:	1 Kg	3 Kg	240 Kg
Stückdeckungsbeitrag:	2 €	3 €	→ Max!

x, Beispiel: Produktionsplanung, Engpassrechnung

Beispiel: Abbildung auf LP-Solver

Mathematisch:

$$\max\{c^T x \mid Ax \le b, x \ge 0\}$$

MATLAB:

x = linprog(f, A, b) solves $\underline{\min} f'^*x$ such that $A^*x \le b$.

Variablen: X₁, X₂

Zielfunktion:

Max:
$$2 X_1 + 3 X_2$$
 $c^T = (2 3)$ (MATLAB wg. min: $c^T = (-2 -3)$

Randbedingungen:

VL Computational Geometry Prof. M. Fischer, HS München

Trenn-/Montierbarkeit von polyedrischen Objekten

VL Computational Geometry Prof. M. Fischer, HS München

Andere Beispiele Travelling Salesman Separierbarkeit von Punkten Kleinster Umkreis von Punkten Größter Inkreis eines konvexen Polygons Operations Research: Kostenoptimierung

Separierbarkeit von Punkten

$$g: ax + by = c$$

finde
$$a, b, c$$
 mit

$$ax_i + by_i \leq c, i = 1 \dots n,$$

$$ax_i + by_i \le c, i = 1 \dots n,$$

 $aw_i + bz_i \ge c, i = 1 \dots m,$

Geometrische Interpretation

Randbedingungen definieren Halbräume

Schnittmenge ist entweder

- leer (keine Lösung)
- unbegrenzt (unendlich viele Lösungen, aber Maximum existiert nicht)
- konvexes Polytop (Maximum existiert, eine oder unendlich viele Lösungen)

Simplex-Verfahren

Abbildung der Ungleichungen auf Gleichungen: Pro Ungleichung wird eine zusätzliche Variable (Schlupf-Variable, *Slack-Variable*) eingeführt, die die positive Distanz zur Halbebene modelliert

$$2x_1 + 4x_2 \le 4$$

wird zu
 $2x_1 + 4x_2 + z_1 = 4$

Somit: Einbettung des Ungleichungssystems in ein Gleichungssystem in eine (um die Anzahl der Ungleichungen) höhere Dimension

Simplex-Verfahren

Zwei Phasen

I) Finden einer gültigen Startecke

II) Suche nach einer Nachbarecke mit besserer Zielfunktion

Komplexität:

Im schlimmsten Fall:

exponentiell in der Anzahl der

Variablen!!!

Fast immer: linear in der Anzahl

der Ungleichungen!!!

Inner-Point-Verfahren
Strahl entlang des Gradienten,
Schnittpunkt mit Simplex,
dann jeweils entlang
des Gradienten je eine
Dimension tiefer (z.B.
Schnitt mit Ebene, dann
Kante, dann Ecke)

Fertig...

Minkowski-Summe

Definition

Minkowski-Summe ist eine Mengensumme

$$A \oplus B = \{ a + b \mid a \in A, b \in B \}$$

Minkowski-Summe konvexer Mengen ist konvex

Minkowski-Summe der konvexen Hüllen zweier (endlicher) Punktmengen ist die konvexe Hülle der Minkowski-Summen der Eckpunkte der beiden Hüllen

Effizient berechenbar!!!

Minkowski-Summe

Ein Beispiel

Minkowski-Summe

Anwendungsbeispiele

Bildverarbeitung: Morphologische Operationen Dilatation und Erosion (Minkowski-Differenz)

Robotik: Bahnplanung für Fahrzeuge

Sowohl Fahrzeug als auch Hindernisse haben Ausdehnung, einfacher:

Fahrzeug → Punkt, Hindernisse: Hindernisse ⊕ Fahrzeug