Key ID: 011

Name:

1. Problem

An experiment has $n_1 = 8$ plants in the treatment group and $n_2 = 7$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7	value8
sample 1:	9.1	11.4	9.7	8.9	11.1	8.1	9.2	13.3
sample 2:	12.4	12.4	18.6	14.5	13.9	12.1	10.6	

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 95% confidence interval.
- (c) Determine SE.

(i) yes

- (d) Determine a lower bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 95% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.05? (yes or no)

1.	(a)			6	•	0	0	0	
	(b)			2		4	5	0	
	(c)			1		1	4	5	
	(d)			0	.[5	9	5	
	(e)			6	.[2	0	5	
	(f)			2	.[9	6	8	
	(g)			0	.[0	2	0	
	(h)			0	-[0	4	0	

Key ID: 011

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.1$$

$$\overline{X_2} = 13.5$$

$$s_1 = 1.7$$

$$s_2 = 2.58$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(8, 7) - 1 = 6$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.95$

$$t^* = 2.45$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(1.7)^2}{8} + \frac{(2.58)^2}{7}} = 1.145$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (0.595, 6.205)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(13.5 - 10.1) - 0}{1.145} = 2.97$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 2.97$$

We use the table to determine bounds on *p*-value. Remember, df = 6 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.02 < p$$
-value < 0.04

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 6
- (b) 2.45
- (c) 1.145
- (d) 0.595
- (e) 6.205
- (f) 2.968
- (g) 0.02
- (h) 0.04
- (i) yes