FUNDAMENTALS OF MACHINE LEARNING

AA 2023-2024

Prova Finale (FACSIMILE)

18 Dicembre, 2023

Istruzioni: Niente libri, niente appunti, niente dispositivi elettronici, e niente carta per appunti. Usare matita o penna di qualsiasi colore. Usare lo spazio fornito per le risposte. Instructions: No books, no notes, no electronic devices, and no scratch paper. Use pen or pencil. Use the space provided for your answers.

This exam has 5 questions, for a total of 100 points and 10 bonus points.

1.

Nome:
Matricola:
Multiple Choice: Select the correct answer from the list of choices.
(a) [5 points] True or False: A K-nearest neighbor classifier is only able to learn linear discriminant functions. \bigcirc True \bigcirc False
(b) [5 points] True or False: Projecting a dataset onto its first principal component maximizes the variance of the projected data. \bigcirc True \bigcirc False
(c) [5 points] True or False: The K-means algorithm is guaranteed to find the best cluster centers for any dataset. \bigcirc True \bigcirc False
(d) [5 points] True or False: A Parzen kernel density estimator uses only the nearest sample in the dataset to estimate the probability of an input sample x . \bigcirc True \bigcirc False
 (e) [5 points] How many parameters will a Multilayer Perceptron (MLP) for binary classification with a single hidden layer of width 10 and an input dimensionality of 8 have? ○ 80 ○ 99 ○ 88 ○ None of the above
(f) [5 points] What will the entries of the Gram matrix be for a linear kernel?
$\bigcirc K[i,j] = (\mathbf{x}_i^T\mathbf{x}_j)^{\gamma}$
$\bigcirc K[i,j] = \exp(-\gamma \mathbf{x}_i - \mathbf{x}_j _2^2)$
$\bigcirc \ K[i,j] = \mathbf{x}_i^T \mathbf{x}_j$
○ None of the above
(g) [5 points] Which of the following loss functions is called the negative log likelihood?
$\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (\ln y_c - \ln \hat{y}_c)^2$
$\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (y_c - \ln \hat{y}_c)^2$
$\bigcirc \ \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} y_c \ln \hat{y}_c$
$\bigcirc \ \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} \ln \hat{y}_c$
(h) [5 points] How many iterations of gradient descent must we perform for an epoch of minibatch Stochastic Gradient Descent with a dataset of 1024 samples and a batch size of 16?
\bigcirc 1024 \bigcirc 1 \bigcirc 32 \bigcirc 64 Total Question 1: 40

. Multiple Answer: Select ALL correct choices: there may be more than one correct choice, but the always at least one correct choice.	re is
(a) [5 points] What are the advantages of projecting data onto $K < D$ principal components?	
○ We eliminate noise in the original representation.	
Classes are guaranteed to be linearly separable.	
○ It is a nonlinear embedding that makes learning easy with simpler models.	
○ Models trained on the reduced data are simpler.	
(b) [5 points] Which of the following are advantages of Ensemble Models (e.g. Committees)?	
○ They reduce the variance of the resulting model.	
They are much more efficient than the base model.	
They can reduce the expected error of the final model.	
○ The resulting model is nonlinear even if the base model is linear.	
(c) [5 points] Which of the following are causes of the vanishing gradients when training neural network	ks?
 Saturated inputs to activation functions with near-zero derivatives when saturated. 	
○ Badly scaled input values.	
○ Very deep models.	
○ Bad random initialization of the network parameters.	
(d) [5 points] If we want to penalize classification errors less when training an SVM we should	
\bigcirc Increase the hyperparameter C .	
Use a radial basis kernel.	
\bigcirc Decrease the hyperparameter C .	
○ None of the above.	
(e) [5 points] Which of the following are requirements for applying backpropagation to compute gradi in a deep network?	ents
The network must not be too deep.	
○ The network must be a directed acyclic graph.	
○ All activation functions must be differentiable.	
○ All activation functions must be continuous.	
(f) [5 points] Which of the following are true of the Nadaraya-Watson estimator?	
O It only requires some of the training data at test time.	
○ It is a nonparametric method.	
○ It estimates a nonlinear function of the input.	
○ It estimates a linear function of the input.	
(g) [5 points] Which of the following models are nonparametric?	
○ The Multilayer Perceptron (MLP).	
○ Logistic regression.	
○ The K-Nearest Neighbor Classifier	
O Decision Trees.	

Total Question 2: 35

3.	[10 points] Show that linear regression (i.e.	t a Committee Enst	semble model sed as $\mathbf{w}^T \mathbf{x} +$	using N bootst b for some \mathbf{w} an	rapped linear d b).	regression	models	is a

4.	[15 points] Show that a Multilayer Perceptron with two hidden layers with activation function $\sigma(x) = x$ is only capable of learning linear functions.

5.	[10 points (bonus)] Design a Deep Convolutional Neural Network (with at least three convolutional layers and one or more pooling layers) to classify MNIST images (input size 28×28). Draw the network (or write pseudocode for its definition) and indicate how many parameters each layer has and the sizes of the intermediate feature maps.