

Winning Space Race with Data Science

Kailash Pushpa Rajamanickam Feb 03, 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Methodologies

- Data collection using API Calls & Web scraping
- Data wrangling to understand the data better
- Exploratory data analysis (EDA) using visualization and SQL
- Interactive visual analytics using Folium and Plotly Dash
- Predictive analysis using Logistic Regression, Support vector method, Decision Tree and K nearest neighbour models
- Evaluation of models using accuracy score and confusion matrix

Results

- The success or failure of landing the first stage is influenced by the Payload Mass, Orbit and Launch Site.
- Interactive analytics demo in screenshots
- Predictive analysis using Decision Tree model is the best choice for this project

Introduction

Background

The cost of launching a SpaceX Falcon 9 rocket is \$62M. This is much lesser than other providers, who charge \$165M or more.

The huge price difference is because only SpaceX has the technology to reuse the first stage of their rockets.

Problem

Reuse is possible only if the first stage comes back to earth and lands successfully without any damage. SpaceX has still not managed to achieve 100% success in safely landing the first stage.

This project aims to predict the success of landing the first stage of SpaceX Falcon 9 rocket. This will help the competitor SpaceY in predicting the cost of launch before bidding against SpaceX.

Methodology

The following processes and tools/techniques were used in this project:

- Data collected from
 - SpaceX REST API
 - Wikipedia (web scraping using BeautifulSoup library)
- Data wrangling, which includes
 - Removal of unwanted data from data set
 - Replacing invalid data (empty, null, NaN, etc) with appropriate values
- Exploratory data analysis (EDA) using
 - Visualization (matplotlib)
 - SQL

Methodology (contd.)

- Interactive visual analytics using
 - Folium (geographic analysis of launch sites)
 - Plotly Dash (interactive dashboard to analyze correlation between parameters)
- Predictive analysis using classification models
 - Logistic Regression
 - Square Vector Method
 - Decision Tree
 - K Nearest Neighbor
- Model evaluation using Accuracy Score and Confusion Matrix

Data Collection

This project requires information about:

- SpaceX rockets
- Orbits
- Launch sites
- Historical data about the success/failure of launches
- and so on ...

The data is collected from two sources:

- SpaceX API
 https://api.spacexdata.com/v4/
- Wiki page: List of Falcon and Falcon 9 Heavy Launches

https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

Data Collection - SpaceX API

The data collected from SpaceX API is cleaned, filtered, parsed, and converted into Pandas data frame for easy analysis.

The flowchart on the right explains the steps followed.

Get data of all SpaceX launches Filter and get 'Falcon 9' launches only Remove unwanted parameters from data set Identify records with missing data Handle missing info using appropriate technique

Data Collection - Scraping

The data collected from the wiki page is cleaned, filtered, parsed, and converted into Pandas data frame for easy analysis.

The flowchart on the right explains the steps followed.

Data Wrangling

Metrics calculated:

- Number of launches on each site
- Number of launches for each orbit
- Number of successes for each orbit type
- Overall success rate 0.66666666666

EDA with Data Visualization

- Success is more frequent when Flight number > 60.
- Launches from KSC LC 39A have succeeded more.
- The heavier the payload, the more the probability of success.
- Launches to orbits ES-L1, GEO, HEO, and SSO have seen more success.
- The frequency of success has increased considerably in the last few years.
- No correlation seen between Flight Number and Orbit Type
- No correlation seen between Payload and Orbit Type

EDA with SQL

Data analyzed using SQL

- List of launch sites
- Total payload weight sent by NASA alone
- Average payload mass of SpaceX Falcon
 9 rockets
- Date of first successful landing on ground pad
- Number of failed & successful missions
- List of boosters that carried the max payload mass

- Boosters with 4000 to 6000 kgs of weight that have successfully landed on drone ship
- Failed landing outcomes in drone ship, their booster versions, and launch site names in year 2015
- Rank landing outcomes between 2010-06-04 and 2017-03-20

Build an Interactive Map with Folium

- All launch sites of SpaceX are grouped in just two geographic clusters
- Some launch sites have seen more success than the others
- No correlation is seen between the landing outcome & the geographic cluster to which the Launch Site belongs

Build a Dashboard with Plotly Dash

Interactive Dashboard helped in identify how different parameters of the launch correlate to the successful landing of the first stage:

Parameter	Preferred Option	Reason
Launch Site	KSC-LC-39A	Most number of successful launches (7 launches) Highest success rate (76.9%)
Payload Weight	2-3 tonnes	Most number of successes (against the range 6-8 tonnes which has the failures)
Booster Version	FT	Highest success rate among all versions (15 successes in 23 attempts)

Predictive Analysis (Classification)

The sample data set was split into training and test sets, and were evaluated on 4 different machine learning models:

Model	Accuracy Score	Confusion Matrix Result	Conclusion
Logistic Regression	0.83333	No	Rejected
Support Vector Machine	0.8333	No	Rejected
Decision Tree	0.7777	Yes	Selected
K Nearest Neighbor	0.8333	No	Rejected

Results

- The success or failure of landing the first stage is influenced by the Payload Mass, Orbit and Launch Site.
- Interactive analytics demo in screenshots
- Predictive analysis using Decision Tree model is the best choice for this project

Flight Number vs. Launch Site

Success is more frequent when

- Flight number > 60
- Launched from site KSC LC 39A

Payload vs. Launch Site

Launches from KSC LC 39A are more likely to succeed.

Also, the heavier the payload, the more the probability of success.

Success Rate vs. Orbit Type

Launches to orbits ES-L1, GEO, HEO, and SSO have seen more success

Flight Number vs. Orbit Type

No correlation is seen between Flight Number and Orbit Type

Payload vs. Orbit Type

No correlation is seen between Payload and Orbit Type

Launch Success Yearly Trend

The frequency of success has increased considerably in the last few years.

All Launch Site Names

There are 4 launch sites:

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

Details of a few launches where the name of the launch site begins with "CCA":

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Total Payload Mass carried by boosters from NASA:

SUM(PAYLOAD_MASS_KG_)
45596

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1

AVG(PAYLOAD_MASS_KG_)

2534.666666666665

First Successful Ground Landing Date

The first successful landing on ground pad was achieved on

MIN(DATE)

01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

Boosters that have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000:

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
06-05- 2016 05	:21:00	F9 FT B1022	CCAFS LC- 40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
14-08- 2016 05	:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
30-03- 2017	:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
11-10- 2017	::53:00	F9 FT B1031.2	KSC LC-39A	SES-11 / EchoStar 105	5200	GTO	SES EchoStar	Success	Success (drone ship)

Total Number of Successful and Failure Mission Outcomes

Total number of successful and failure mission outcomes:

Boosters Carried Maximum Payload

Boosters that have carried the maximum payload mass

F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

2015 Launch Records

Failed landing outcomes in drone ship, their booster versions, and launch site names in the year 2015

YEAR	MONTH	COUNT(*)
2015	01	1
2015	04	1

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Ranking of the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order:

YEAR	SUCCESS_COUNT
2016	5
2017	3
2015	1

Launch Sites - Clusters

Launch Sites vs Mission Outcome (Success / Failure)

Some launch sites have seen more success than the others

Proximity between Launch Sites

No correlation is seen between

the landing outcome

&

the geographic cluster
to which the Launch Site
belongs

Success Count by Launch Site

41.7% of all successful missions were launched from **KSC LC-39A**

Launch Site with Highest Success Rate

Launch with the highest success rate is KSC LC-39A

- 76.9% of the missions launched from this site have succeeded.
- Only 23.1% have failed.

Payload vs Success Rate

- Launch site KSC-LC-39A has the most number of successes
- Payloads in the range of 2-3 tonnes had the most number of sucesses (against the 6-8 tonnes range that has failed most).
- Booster version FT has the highest success rate among all versions (15 successes & 8 failures)

Classification Accuracy

Of the 4 models used for evaluation, the accuracy was highest (0.833) for 3 models - Logistic regression, Support vector machine, and K nearest neighbor methods

The Decision Tree model had slightly lower (0.777) accuracy.

Confusion Matrix

The Decision Tree model performed the best when evaluated using confusion matrix.

Conclusions

It is concluded that the **Decision Tree** model is the best model to predict whether the first stage of the SpaceZ Falcon 9 rocket will land successfully.

The success or failure is influenced by the following parameters:

- Payload Mass
- Orbit
- Launch Site

Appendix

Python Notebooks used in this project are archived at:

https://github.com/kailashpr/capstone

