Homework #9 of「類比積體電路導論」

作業繳交截止日期:Dec. 17, 2024 12:00 (上傳E3數位平台繳交)

本次作業共兩大題,9.1~9.2

請將作業轉成一個 PDF 檔案(file size 小於 10MB),檔名請使用「AIC_HW9_自己的學號」(例如: AIC_HW9_109700018),於作業繳交截止日期/時間前,上傳到指定的E3 數位平台繳交。

Unless otherwise stated, in the following problems, use the device data shown in Table 1 and assume that VDD=3V. The Dielectric constant of gate oxide is 3.9 and $\varepsilon o=8.854\times 10^{-12} F/m$.

Table 1. Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
NSUB = 9e+14	LD = 0.08e - 6	UO = 350	LAMBDA = 0.1
TOX = 9e-9	PB = 0.9	CJ = 0.56e - 3	CJSW = 0.35e-11
MJ = 0.45	MJSW = 0.2	CGDO = 0.4e - 9	JS = 1.0e - 8
PMOS Model			
LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
NSUB = 5e+14	LD = 0.09e - 6	UO = 100	LAMBDA = 0.2
TOX = 9e-9	PB = 0.9	CJ = 0.94e - 3	CJSW = 0.32e-11
MJ = 0.5	MJSW = 0.3	CGDO = 0.3e - 9	JS = 0.5e - 8

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body-effect coefficient (unit: V1/2)

PHI: 2Φ_F (unit: V)

TOX: gate-oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

9.1 The circuit of Fig.1 is designed with $2*\left(\frac{W}{L}\right)_3=4*K*\left(\frac{W}{L}\right)_4=K*\left(\frac{W}{L}\right)_5$, $R_1=1.5k\Omega$, and $R_2=2k\Omega$. Assume that $\lambda=\gamma=0$. $\mathbf{Q_1}$, $\mathbf{Q_2}$, and $\mathbf{Q_3}$ are identical. Determine K such the Vout has a zero TC. Use the parameters listed below.

$$\frac{\partial V_{BE}}{\partial T} = -1.5 mV / K$$
 and $\frac{\partial V_T}{\partial T} \approx +0.087 mV / K$

- 9.2 Consider the bandgap reference shown below. The opamp is ideal. For $\,Q_1\,$ and $\,Q_2,\,$ $\,\beta_F\,=\infty,\,\,V_A\,=\infty,\,\,I_{S2}\,=6$ pA = 6I_{S1}. At T = T_0, let $\,V_T\,=kT_0/q=26$ mV, $\,dV_T/dT=+0.087$ mV/ $^\circ$ C, and $\,d|V_{BE}|/dT=-1.74$ mV/ $^\circ$ C. (a)Let $\,V_{os}=0$ mV, $\,R_1\,=\,R_2\,=R$. Find R to make $\,dV_o/dT=0$ at $\,T=T_o.$ (b)Let $\,V_{os}=20$ mV. Calculate $\,V_o\,$ in terms of $\,V_{BE2}.$ Use the R found in (a).

Fig.2