Deep learning for medical imaging

Olivier Colliot, PhD
Research Director at CNRS

Co-Head of the ARAMIS Lab -

www.aramislab.fr

PRAIRIE – Paris Artificial Intelligence Research Institute Maria Vakalopoulou, PhD
Assistant Professor at
CentraleSupelec

Mathematics and Informatics (MICS)
Office: Bouygues Building Sb.132

Master 2 - MVA

Course website: http://www.aramislab.fr/teaching/DLMI-2019-2020/

Piazza (for registered students):

https://piazza.com/centralesupelec/spring2020/mvadlmi/

Acknowledgements

- The lecture is partially base on material by:
 - Daniel Rueckert
 - Ben Glocker

Thank you!!

- Proposal Deadline is today! Submit your proposals soon!;)
- Include questions that you may have in the mail!

Previous Lecture Semantic Segmenation

Introduction

- Semantic Segmentation
 - Idea #2: Image Segmentation using Fully Convolutional Layers
 - Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Use Downsampling and upsampling inside the network!

Additional Losses

Dice Loss [Milletari et al., 2016]

$$D = \frac{2\sum_{i}^{N} p_{i}g_{i}}{\sum_{i}^{N} p_{i}^{2} + \sum_{i}^{N} g_{i}^{2}} \qquad \frac{\partial D}{\partial p_{j}} = 2\left[\frac{g_{j}\left(\sum_{i}^{N} p_{i}^{2} + \sum_{i}^{N} g_{i}^{2}\right) - 2p_{j}\left(\sum_{i}^{N} p_{i}g_{i}\right)}{\left(\sum_{i}^{N} p_{i}^{2} + \sum_{i}^{N} g_{i}^{2}\right)^{2}}\right]$$

gn the value of segmentation at n and pn the predicted probabilistic map

Generalized Dice Loss [Sudre et al.. 2017]

$$GDL = 1 - 2 \frac{\sum_{l=1}^{2} w_{l} \sum_{n} r_{ln} p_{ln}}{\sum_{l=1}^{2} w_{l} \sum_{n} r_{ln} + p_{ln}}, \quad \frac{\partial GDL}{\partial p_{i}} = -2 \frac{(w_{1}^{2} - w_{2}^{2}) \left[\sum_{n=1}^{N} p_{n} r_{n} - r_{i} \sum_{n=1}^{N} (p_{n} + r_{n})\right] + Nw_{2}(w_{1} + w_{2})(1 - 2r_{i})}{\left[(w_{1} - w_{2}) \sum_{n=1}^{N} (p_{n} + r_{n}) + 2Nw_{2}\right]^{2}}$$

 r_n the value of segmentation at n, p_n the predicted probabilistic map, $w_l = 1/\Sigma (r_{ln})^2$ Used to deal with the correlation that exists between the size of the segment and the result of the dice!

Other Measures

Tana & Hanbury: "Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool"

volume similarity

$$VS = 1 - \frac{||A| - |B||}{|A| + |B|} = 1 - \frac{|FN - FP|}{2TP + FP + FN}$$

surface distance measures

Hausdorff distance

$$HD = \max(h(A, B), h(B, A))$$
$$h(A, B) = \max_{a \in A} \min_{b \in B} ||a - b||$$

(symmetric) average surface distance

$$ASD = \frac{d(A,B) + d(B,A)}{2}$$
$$d(A,B) = \frac{1}{N} \sum_{a \in A} \min_{b \in B} ||a - b||$$

Part 5 – Denoising & Reconstruction

- Reconstruction
 - Problem statement
 - Traditional Methods
 - Recent Methods based on Deep Learning
- Denoising
- Recent Papers

MR image acquisition: Challenges

- Magnetic Resonance Imaging (MRI)
 - MRI acquisition is inherently a slow process
 - Slow acquisition is:
 - Ok for static objects (e.g. brain, bones etc)
 - Problematic for moving objects (e.g. heart, liver, fetus)
 - Options for MRI acquistion:
 - Real-time MRI: fast, but 2D and relatively poor image quality
 - Gated MRI: fine for period motion, e.g. respiration or cardiac motion but requires gating (ECG or navigators) leading to long acquisition times (30-90 min)

MR full acquisition

- MRI acquisition is performed in k-space by sequentially traversing sampling trajectories
 - One line by the time sequentially [physics limitations]
 - A simple linear operations using Fourier Transform to acquire the image

K-space undersampling

 Acquiring a fraction of k-space accelerates the process but introduces aliasing/smoothing in signal space

Introduction

- Image reconstruction from undersampled k-space an illposed inverse problem with undersample data
 - One can recover full k-space through compressed sensing techniques [Based on generic priors e.g. sparsity or low rank]:
 - Lusting et al., MRM 2007
 - Jung et al., MRM 2009
 - Otazo et al., MRM 2010

Introduction

- Image reconstruction from undersampled k-space an illposed inverse problem with undersample data
 - One can recover full k-space through compressed sensing techniques [Based on generic priors e.g. sparsity or low rank]:
 - Lusting et al., MRM 2007
 - Jung et al., MRM 2009
 - Otazo et al., MRM 2010
 - More recently other techniques have shown to be powerful for this task as well [Based on learnt priors]:
 - Caballero et al., IEEE TMI 2014: Dictionary learning
 - Bhatia et al., MICCAI2016: Manifold learning
 - Schlemper et al., IEEE TMI 2017: Deep Learning for cardiac MRI
 - K. Hammernik et al., MRM 2017: Deep learning for knee MRI

Sparsity

Most natural signals are compressible under some domain

 Aliasing makes the assumption break down, so it can be imposed on the reconstruction of a signal

Compressed sensing

- Assume \hat{x}_u is the undersampled observation in k-space and \mathcal{F}_u is the undersampled Fourier operator.
- We look for a solution x such that:
 - It is consistent with k-space observation

$$\|\mathcal{F}_u\{\mathbf{x}\} - \hat{\mathbf{x}}_u\|_2^2 < \epsilon$$

Compressed sensing

- Assume $\hat{\mathbf{x}}_u$ is the undersampled observation in k-space and \mathcal{F}_u is the undersampled Fourier operator.
- We look for a solution x such that:
 - It is consistent with k-space observation
 - It has the sparsest representation under $S\{x\}$

$$\|\mathcal{F}_u\{\mathbf{x}\} - \hat{\mathbf{x}}_u\|_2^2 < \epsilon$$

Compressed sensing

- Assume \hat{x}_u is the undersampled observation in k-space and \mathcal{F}_u is the undersampled Fourier operator.
- We look for a solution x such that:
 - It is consistent with k-spase observation
 - It has the sparsest representation under $S\{x\}$

Optimization problem:

 Objective: Out of all solutions consistent with the acquired k-space, we look for the one that is sparsest under the learned dictionary

 Step 1: learn a dictionary that will sparsely represent 3D patches randomly extracted from the corrupted sequence

- The dictionary is adapted to features in the data and by construction provides a sparse representation of it.
- Example for cardiac MRI

 Step 2: Sparse coding the entire sequence is sparsely coded using D.

 The sparse coding \(\Gamma\) provides an approximation of the sequence \(\Delta\) excluding part of the aliasing

Γ: Sparse representation under D

 $\mathbf{D}\mathbf{\Gamma}$: Sparse approximation of \mathbf{y}

- Step 3: Data consistency
- Processing in signal space will make the k-space of solution x different from the initial observations
- Data consistency in k-space must be enforced.

Problem formulation

• Reconstruct image $\mathbf{x} \in \mathbb{C}^n$ given undersampled k-space measurements $\mathbf{y} \in \mathbb{C}^M(M \ll N)$

• In the case of Cartesian sampling we have $\mathbf{F}_u = \mathbf{MF}$ where $\mathbf{F} \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ applies the 2D Fourrier transform and $\mathbf{M} \in \mathbb{C}^{M \times N}$ is the undersampling mask in k-space

Problem formulation

 We are trying to solve the following unconstrained optimisation problem:

CNN-based solution

- Idea #1: Try to address the problem of denoising/ reconstruction as a semantic segmentation problem
 - Make use of the FCN architectures

Use Downsampling and upsampling inside the network!

Evaluation metrics

- For the quantitavie evaluation of the results some of the metrics used are:
 - Mean Square Error (MSE)

$$extit{MSE} = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

Evaluation metrics

- For the quantitavie evaluation of the results some of the metrics used are:
 - Mean Square Error (MSE)

$$extit{MSE} = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

Peak Signal to Noise Ration (PSNR)

$$PSNR = 10 \cdot \log_{10}\left(\frac{MAX_I^2}{MSE}\right)$$
 MAX_I: Maximum possible pixel value of $= 20 \cdot \log_{10}\left(\frac{MAX_I}{\sqrt{MSE}}\right)$ the image. $= 20 \cdot \log_{10}(MAX_I) - 10 \cdot \log_{10}(MSE)$

Structural Similarity Index (SSI)

$$SSIM(x,y) = l(x,y). \ c(x,y). \ s(x,y) = rac{(2\mu_x\mu_y + c_1)(2\sigma_x\sigma_y + c_2)(cov_{xy} + c_3)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)(\sigma_x\sigma_y + c_3)}$$

Conv_{xy}: covariance of x and y; L the dynamic range of values; $k_1 = 0.01$, $k_2 = 0.03$

$$c_1=(k_1L)^2$$
 , $c_2=(k_2L)^2$ et $c_3=rac{c_2}{2}$

Evaluation metrics

- For the quantitavie evaluation of the results some of the metrics used are:
 - Mean Square Error (MSE)

$$extit{MSE} = rac{1}{m\,n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [I(i,j) - K(i,j)]^2$$

Peak Signal to Noise Ration (PSNR)

$$PSNR = 10 \cdot \log_{10}\left(\frac{MAX_I^2}{MSE}\right)$$
 MAX_I: Maximum possible pixel value of $= 20 \cdot \log_{10}\left(\frac{MAX_I}{\sqrt{MSE}}\right)$ the image. $= 20 \cdot \log_{10}(MAX_I) - 10 \cdot \log_{10}(MSE)$

- Structural Similarity Index (SSI)
- Signal to Noise Ration (SNR)
- Edge Preservation Index (EPI)
- Coefficient of Correlation (CoC)

Some Losses for Image Denoising

- [Zhao et al. 2017]
 - The I₁ error

$$\mathcal{L}^{\ell_1}(P) = \frac{1}{N} \sum_{p \in P} |x(p) - y(p)|, \qquad \qquad \partial \mathcal{L}^{\ell_1}(P) / \partial x(p) = \mathrm{sign}\left(x(p) - y(p)\right).$$

• The l₂ error

Some Losses for Image Denoising

- [Zhao et al. 2017]
 - The l₁ error

$$\mathcal{L}^{\ell_1}(P) = \frac{1}{N} \sum_{p \in P} |x(p) - y(p)|, \qquad \qquad \partial \mathcal{L}^{\ell_1}(P) / \partial x(p) = \mathrm{sign}\left(x(p) - y(p)\right).$$

- The l₂ error
- The SSIM

$$\begin{split} \text{SSIM}(p) &= \frac{2\mu_{x}\mu_{y} + C_{1}}{\mu_{x}^{2} + \mu_{y}^{2} + C_{1}} \cdot \frac{2\sigma_{xy} + C_{2}}{\sigma_{x}^{2} + \sigma_{y}^{2} + C_{2}} & \mathcal{L}^{\text{SSIM}}(P) = \frac{1}{N} \sum_{p \in P} 1 - \text{SSIM}(p). \\ &= l(p) \cdot cs(p) \end{split}$$

$$\begin{split} & \frac{\partial \mathcal{L}^{\text{MS-SSIM}}(P)}{\partial x(q)} \\ &= \left(\frac{\partial l_M(\tilde{p})}{\partial x(q)} + l_M(\tilde{p}) \cdot \sum_{i=0}^M \frac{1}{cs_i(\tilde{p})} \frac{\partial cs_i(\tilde{p})}{\partial x(q)} \right) \cdot \prod_{j=1}^M cs_j(\tilde{p}), \end{split}$$

Adverarial Losses

TESTING

(E) High-Resolution Super-Resolution

DeepResolve

 [Chaudhari et al. 2017]: CNNs for super resolution for generating thin-slice MR images from thicker input slices.

Thickness Downsampling Factor

DeepResolve

[Chaudhari et al. 2017]: CNNs for super resolution for generating thin-slice MR images from thicker input slices.
(A) Out of the control of the co

CNN-based solution

- Idea #2: Integrate the physics
- For CNN based reconstruction we formulate the problem as

$$\min_{x} ||\mathbf{x} - f_{cnn}(\mathbf{x}_u|\theta)||_2^2 + \lambda ||\mathbf{F}_u\mathbf{x} - \mathbf{y}||_2^2$$

- Propose CNN modules that are more specific to the problem
- To ensure data fidelity, we add a data consistency layer. For fixed network parameters we can write:

$$\mathbf{s}_{rec} = \begin{cases} \mathbf{s}_{cnn}(j) & \text{if } j \notin \Omega \\ \frac{\mathbf{s}_{cnn}(j) + \lambda \mathbf{s}_0(j)}{1 + \lambda} & \text{if } j \in \Omega \end{cases}$$

Data consistency layer

 To ensure data fidelity, we add a data consistency layer. For fixed network parameters we can write:

$$\mathbf{s}_{rec} = \begin{pmatrix} \mathbf{s}_{cnn}(j) & \text{if } j \notin \Omega & \text{Missing part of k-space} \\ \mathbf{s}_{cnn}(j) & \lambda \mathbf{s}_0(j) & \text{if } j \in \Omega & \text{Acquired part of k-space} \end{pmatrix}$$

Fourier-encoding of reconstructed image

$$\mathbf{s}_{cnn} = \mathbf{F}\mathbf{x}_{cnn} = \mathbf{F}f_{cnn}(\mathbf{x}_u|\theta)$$

Zero-filled k-space

Data consistency layer

- End-to-end training requires specification of forward and backward passes
- Forward pass:

$$f_L(\mathbf{x}, \mathbf{y}; \lambda) = \mathbf{F}^H \mathbf{\Lambda} \mathbf{F} \mathbf{x} + \frac{\lambda}{1 + \lambda} \mathbf{F}_u^H \mathbf{y}$$

Data consistency layer

- End-to-end training requires specification of forward and backward passes
- Forward pass:

$$f_L(\mathbf{x}, \mathbf{y}; \lambda) = \mathbf{F}^H \mathbf{\Lambda} \mathbf{F} \mathbf{x} + \frac{\lambda}{1 + \lambda} \mathbf{F}_u^H \mathbf{y}$$

Backward pass:

$$\frac{\partial f_L}{\partial \mathbf{x}^T} = \mathbf{F}^H \mathbf{\Lambda} \mathbf{F}$$

Jacobian of the DC layer with respect to the layer input x

$$\mathbf{\Lambda}_{kk} = \begin{cases} 1 & \text{if } j \notin \Omega \\ \frac{1}{1+\lambda} & \text{if } j \in \Omega \end{cases}$$

$$\left[\frac{\partial f_{dc}(\mathbf{s}, \mathbf{s_0}; \lambda)}{\partial \lambda}\right] = \begin{cases} 0 & \text{if } j \notin \Omega\\ \frac{\mathbf{s_0}(j) - \mathbf{s_{cnn}}(j)}{(1+\lambda)^2} & \text{if } j \in \Omega \end{cases}$$

Derivatives with respect to the parameters λ

Deep Cascade CNNs

 [Schlemper et al. 2017]: A convolutional architecture which takes into account the Fourier encoding

$$\mathbf{s}_{rec} = \begin{cases} \mathbf{s}_{cnn}(j) & \text{if } j \notin \Omega \\ \frac{\mathbf{s}_{cnn}(j) + \lambda \mathbf{s}_0(j)}{1 + \lambda} & \text{if } j \in \Omega \end{cases}$$

Deep Cascade CNNs

• [Schlemper et al. 2017]: Results

Deep Cascade CNNs

- [Schlemper et al. 2017]: Results
- Test error across 10 subjects:

Model	R=4 (dB)	R=8 (dB)
DLTG	27.5 (1.31)	22.6 (0.95)
CNN	31.0 (1.08)	25.2 (1.00)

Model	Time
DLTG	~6 hr (CPU)
CNN (2D)	0.69 s (GPU)
CNN (2D+t)	10 s (GPU)

- [Oktay et al. 2017]: Insert anatomical constrains into the enhancement problem.
 - Acquisition of cardiac MRI typically consists of 2D multiscale data due to
 - Constraints on SNR
 - Breath-hold time
 - Total acquisition time
 - This leads to thick slice data (thickness 8-10 mm per slice)
 - Motion between slices can lead to artefacts

[Oktay et al. 2017]

$$L_{h_e} = \|f(\phi(\boldsymbol{x}); \boldsymbol{\theta}_f) - f(\boldsymbol{y}; \boldsymbol{\theta}_f)\|_2^2 \quad L_{\boldsymbol{x}} = -\sum_{c=1}^C \sum_{i \in \mathcal{S}} \log \left(\frac{e^{f_{(c,i)}}}{\sum_i e^{f_{(j,i)}}}\right)$$

$$\min_{\boldsymbol{\theta}_s} \left(L_x\left(\phi(\boldsymbol{x}; \boldsymbol{\theta}_s), \boldsymbol{y}\right) + \lambda_1 \cdot L_{h_e} + \frac{\lambda_2}{2}||\boldsymbol{w}||_2^2\right)$$

[Oktay et al. 2017]

• [Oktay et al. 2017]: Insert anatomical constrains into the enhancement problem.

 1.60×10^{6}

 1.91×10^{6}

 1.60×10^{6}

 $.785 \pm .041$

 $.791 \pm .036$

 $.811 \pm .027$

Couple Enhancement and Segmentation

 [Oktay et al. 2017]: Insert anatomical constrains into the enhancement problem.

3D-Seg-MAug

AE-Seg-M

ACNN-Seg

p-values

 1.59 ± 0.74

 1.59 ± 0.48

 1.37 ± 0.42

 8.52 ± 8.13

 7.52 ± 3.78

 7.89 ± 3.83

 1.37 ± 0.41

 1.32 ± 0.26

 1.14 ± 0.22

 9.41 ± 9.17

 7.12 ± 2.79

 7.31 ± 3.59

 $.928 \pm .019$

 $.927 \pm .017$

 $.939 \pm .017$

More Papers

Denoising on XRays

 [Sori et al. 2017] Design of a deep feed forward CNN model which directly approximate the noise from a noisy image.
 Residual learning is approximated, and batch normalization is also incorporated to boost model performance.

Fig. 1 Residual learning phase of the model for medical image denoising

Denoising on XRays

• [Sori et al. 2017]

Denoising on XRays

• [Sori et al. 2017]

Noise level	Methods			
	Metrics	BM3D	DnCNN	Proposed
Model trained	d on i.s 180	×180, i.s.s 5	547 and b.s 1	28
15	PSNR	40.018	41.116	41.217
	SSIM	_	0.963	0.963
25	PSNR	37.265	38.871	38.882
	SSIM	_	0.949	0.959

Noise level	Methods	Methods						
	Metrics	Metrics CNN DAE		Proposed				
Model trained	on i.s 64×6	4, i.s.s 235 and b	o.s 10					
15	PSNR	_	39.246	39.250				
	SSIM	0.89	0.950	0.950				
25	PSNR	_	36.696	36.70				
	SSIM	0.89	0.932	0.932				

Low Dose CT Image Denoising

[Yang et al. 2018] Computed tomography (CT) is one of the most important modalities. Potential radiation rist to the patient since x-

Low Dose CT Image Denoising

[Yang et al. 2018]

	Fig	. 5	Fig. 7			
	PSNR	SSIM	PSNR	SSIM		
LDCT	19.7904	0.7496	18.4519	0.6471		
CNN-MSE	24.4894	0.7966	23.2649	0.7022		
WGAN-MSE	24.0637	0.8090	22.7255	0.7122		
CNN-VGG	23.2322	0.7926	22.0950	0.6972		
WGAN-VGG	23.3942	0.7923	22.1620	0.6949		
WGAN	22.0168	0.7745	20.9051	0.6759		
'1 GAN	21.8676	0.7581	21.0042	0.6632		
DictRecon	24.2516	0.8148	24.0992	0.7631		

	Fig. 5			Fig. 7		
	Mean SD			Mean	SD	
NDCT	9	36		118	38	
LDCT	11	74		118	66	
CNN-MSE	12	18		120	15	
WGAN-MSE	9	28		115	25	
CNN-VGG	4	30		104	28	
WGAN-VGG	9	31		111	29	
WGAN	23	37		135	33	
GAN	8	35		110	32	
DictRecon	4	11		111	13	

(h) WGAN-MSE

(i) WGAN-VGG

(g) WGAN

Low Dose CT Image Denoising

LeakyReLU +

DISCRIMINATO

Learning Brain MRI Manifolds

 [Bernudez et al. 2018] Unsupervised synthesis of T1weighted brain MRI using a Generative Adversarial Network

GENERATOR

Synthesized Image

(GAN)

Learning Brain MRI Manifolds

 [Bernudez et al. 2018] Unsupervised synthesis of T1weighted brain MRI using a Generative Adversarial Network

(GAN)

A CNN to filter artifacts

- [Gurbani et al. 2017] A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled CNN that analyzed frequency-domain spectra to detect artifacts.
- The Cho/NAA ratio is widely used for depiction of tumor volumes and infiltration as a result of increased contrast caused by the opposite changes of these metabolites in the tumor.

FIGURE 1 Artifacts in MRSI arise for several reasons and can lead to false interpretation of pathology. A, Healthy tissue shows a relatively low Cho/NAA ratio. B, Tumor shows an elevated ratio, appearing as hyperintense on a Cho/NAA map. Artifacts can arise in tissue boundaries and in areas with poor lipid or water suppression, and can result in either hyperintense lesions (C) or dropout of signal (D)

A CNN to filter artifacts

• [Gurbani et al. 2017] A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled CNN that analyzed frequency-domain spectra to detect artifacts.

FIGURE 3 A, High-level overview of the convolutional neural network (CNN) for spectral quality analysis. Input spectra are split into 6 tiles and passed through a series of convolution (*) and max-pooling (MP) layers, then concatenated and passed through fully connected layers to generate a scalar output of spectral quality. B, Bayesian optimization is used to iteratively optimize architecture hyperparameters. AUC, area under the curve

A CNN to filter artifacts

 [Gurbani et al. 2017] A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled CNN that analyzed frequency-domain spectra to detect artifacts.

Unsupervised denoising

- [Zhussip et al. 2019] Propose a novel method based on two theories: denoiser-approximate message passing (D-AMP) and Stein's unbiased risk estimator (SURE).
- D-AMP Algorithm

$$\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2$$
 subject to $\boldsymbol{x} \in C$

Where C is the set of natural images.

The solution relys on approximate message passing (AMP) theory The D-AMP algorithm traditionally uses conventional state-of-the-art denoisers. Recently it is applied also with CNNs. These denoisers can be defined as: $D_{w(\hat{\sigma_t})}(\cdot)$

Unsupervised denoising

- [Zhussip et al. 2019] Propose a novel method based on two theories: denoiser-approximate message passing (D-AMP) and Stein's unbiased risk estimator (SURE).
- Stein's unbiased risk estimator (SURE)

$$\frac{1}{K} \sum_{j=1}^{K} \| \boldsymbol{D}_{\boldsymbol{w}(\sigma)}(\boldsymbol{z}^{(j)}) - \boldsymbol{x}^{(j)} \|^{2}$$

Between the output of the denoiser and the ground truth image. Recently [Soltanayev et al., 2018] has been proposed an approximation of this formulation following Monte-Calro Stein's unbiased rish estimator (MC-SURE)

$$\frac{1}{K} \sum_{j=1}^{K} \|\boldsymbol{z}^{(j)} - \boldsymbol{D}_{\boldsymbol{w}(\sigma)}(\boldsymbol{z}^{(j)})\|^{2} - N\sigma^{2} + \frac{2\sigma^{2}\tilde{\boldsymbol{n}}'}{\epsilon} \left(\boldsymbol{D}_{\boldsymbol{w}(\sigma)}(\boldsymbol{z}^{(j)} + \epsilon\tilde{\boldsymbol{n}}) - \boldsymbol{D}_{\boldsymbol{w}(\sigma)}(\boldsymbol{z}^{(j)}) \right).$$

Unsupervised denoising

• [Zhussip et al. 2019] Results:

Method	Training Time	$\frac{M}{N} = 5\%$		$\frac{M}{N} = 15\%$		$\frac{M}{N}=25\%$	
	11g 1e	PSNR	Time	PSNR	Time	PSNR	Time
TVAL3	N/A	20.46	9.71	24.14	22.96	26.77	34.87
NLR-CS	N/A	21.88	128.73	27.58	312.92	31.20	452.23
BM3D-AMP	N/A	21.40	25.98	26.74	24.21	30.10	23.08
LDAMP BM3D	10.90 hrs	21.41	8.98	27.54	3.94	31.20	2.89
LDAMP BM3D-T	14.30 hrs	21.42	8.98	27.61	3.94	31.32	2.89
LDAMP SURE	15.05 hrs	21.44	8.98	27.65	3.94	31.46	2.89
LDAMP SURE-T	17.97 hrs	21.68	8.98	27.84	3.94	31.66	2.89
LDAMP MSE	10.17 hrs	22.07	8.98	27.78	3.94	31.65	2.89

Conclusions

- Image reconstruction and denoising is very important for medical imaging.
- Variety of metrics can be used for the evaluation of the denoised image.
- Very important to find formulations that can be verified from the physics or well established theories.
- Unsupervised methods and adversarial networks will play a significant role in the future. Really active research area.
- Challenges
 - Learning the right features
 - Detecting when it goes wrong
 - Going beyond human-level performance

Lab Session!

- Denoising of Mammograms
 - Dilated filters

Deep learning for medical imaging

Olivier Colliot, PhD
Research Director at CNRS

Co-Head of the ARAMIS Lab -

www.aramislab.fr

PRAIRIE – Paris Artificial Intelligence Research Institute Maria Vakalopoulou, PhD
Assistant Professor at
CentraleSupelec

Mathematics and Informatics (MICS)
Office: Bouygues Building Sb.132

Master 2 - MVA

Course website: http://www.aramislab.fr/teaching/DLMI-2019-2020/

Piazza (for registered students):

https://piazza.com/centralesupelec/spring2020/mvadlmi/