Notas curso Topología I. Separabilidad, Filtros

Cristo Daniel Alvarado

3 de mayo de 2024

Índice general

2.	Separabilidad	2
	2.1. Axiomas de separación	2
	2.2. Espacios T_1	3
	2.3. Espacios T_2	5
	2.4. Espacios T_3	6
	2.5. Espacios T_4	8
3.	Filtros	13
	3.1. Conceptos Fundamentales	
	5.1. Conceptos rundamentales	19
4.	Espacios Compactos	23
	4.1. Conceptos Fundamentales	23
	4.2. Compacidad Local	33

Capítulo 2

Separabilidad

2.1. Axiomas de separación

Definición 2.1.1

Sea (X, τ) un espacio topológico.

- 1. (X, τ) se dice un **espacio** T_0 si dados $a, b \in X$ con $a \neq b$ existe un abierto que contiene a alguno de los dos puntos, pero no contiene al otro.
- 2. (X, τ) se dice un **espacio** T_1 si dados $a, b \in X$ con $a \neq b$ existen $U, V \subseteq X$ abiertos tales que $a \in U$, $b \in V$ y, $a \notin V$, $b \notin U$.
- 3. (X, τ) se dice un **espacio** T_2 si dados $a, b \in X$ con $a \neq b$ existen $U, V \subseteq X$ abiertos tales que $a \in U$, $b \in V$ y, $U \cap V = \emptyset$. Esto es equivalente a que el espacio sea de Hausdorff.
- 4. (X, τ) se dice un **espacio** T_3 si dados $p \in X$ y $A \subseteq X$ cerrado tal que $p \notin A$, existen $U, V \in \tau$ tales que $p \in U$, $A \subseteq V$ y $U \cap V = \emptyset$.
- 5. (X, τ) se dice un **espacio** T_4 si dados $A, B \subseteq X$ cerrados y disjuntos, existen $U, V \in \tau$ tales que $A \subseteq U, B \subseteq V$ y, $U \cap V = \emptyset$.
- 6. (X, τ) se dice un **espacio regular** si es un espacio T_3 y T_1 .
- 7. (X, τ) se dice un **espacio normal** si es un espacio T_4 y T_1 .

Observación 2.1.1

Notemos que:

$$T_2 \Rightarrow T_1 \Rightarrow T_0$$

Ejemplo 2.1.1

Considere al conjunto $X = \{1, 2\}$ y $\tau = \{X, \emptyset, \{1\}\}$. Afirmamos que (X, τ) es T_0 , pero no es T_1 y, por ende tampoco puede ser T_2 .

Ejemplo 2.1.2

Sea (\mathbb{R}, τ_{cf}) . Afirmamos que (\mathbb{R}, τ_{cf}) es T_1 . En efecto, sean $r, s \in \mathbb{R}$ tales que $r \neq s$. Los conjuntos $U = \mathbb{R} - \{s\}$, $V = \mathbb{R} - \{r\} \in \tau_{cf}$ pues sus complementos son finitos, además:

$$r \in U$$
 y $s \in V$

donde, $r \notin V$ y $s \notin U$. Por tanto, el espacio de T_1 . Pero no es T_2 .

En efecto, suponga que existen $U, V \in \tau_{cf}$ abiertos tales que $\varphi = \frac{1+\sqrt{5}}{2} \in U, \frac{1}{\pi} \in V$ y $U \cap V = \emptyset$. En particular, se tiene que $\mathbb{R} - U$ y $\mathbb{R} - V$ son finitos. Por tanto:

$$(\mathbb{R} - U) \cup (\mathbb{R} - V) = \mathbb{R} - (U \cap V)$$
$$= \mathbb{R}$$

es finito, por tanto, \mathbb{R} es finito $\#_c$. Así, este espacio no puede ser T_2 .

Ejemplo 2.1.3

Considere al espacio (\mathbb{R} , $\tau_I = \{X, \emptyset\}$). Afirmamos que (\mathbb{R} , τ_I) es T_4 y T_3 , pero NO es T_0 , pues si $\varphi = \frac{1+\sqrt{5}}{2}, \frac{1}{\pi} \in \mathbb{R}$, solo hay un abierto que contiene a alguno de los dos puntos, el cual es \mathbb{R} , que siempre tiene a los dos puntos. Por ende, el espacio no es T_0 (luego no es T_1 ni T_2).

Proposición 2.1.1

 $T_4 \ y \ T_1 \Rightarrow T_3 \ y \ T_1 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0.$

Demostración:

La prueba se hará más adelante.

2.2. Espacios T_1

Proposición 2.2.1

Sea (X, τ) un espacio topológico. Entonces (X, τ) es un espacio T_1 si y sólo si todo subconjunto unitario de X es cerrado.

Demostración:

Se probará la doble implicación.

 \Rightarrow): Suponga que (X, τ) es T_1 . Sea $x \in X$. Hay que probar que $X - \{x\} \in \tau$. En efecto, sea $y \in X - \{x\}$, entonces $x \neq y$. Como el espacio es T_1 existen un par de abiertos $U, V \in \tau$ tales que $x \in U, y \in V$ y $x \notin V$ y $y \notin U$.

Como $y \in V$ y $x \notin V$, entonces $y \in V \subseteq X - \{x\}$. Luego $X - \{x\}$ es unión arbitraria de abiertos, se sigue que también es abierto. Por ende, $\{x\}$ es cerrado.

 \Leftarrow): Suponga que todo subconjunto unitario de X es cerrado. Sean $x, y \in X$ tales que $x \neq y$. Como $\{x\}, \{y\}$ son cerrados, entonces $U = X = \{y\}$ y $V = X - \{x\}$ son abiertos y cumplen que:

$$x \in U, y \in V \quad x \notin V, y \notin U$$

por tanto, como fueron arbitrarios los dos elementos $x, y \in X$ distintos, se sigue que (X, τ) es T_1 .

Corolario 2.2.1

Sea (X,τ) un espacio topológico. (X,τ) es T_1 si y sólo si todo subconjunto finito de X es cerrado.

Demostración:

Es inmediata de la proposición anterior.

Corolario 2.2.2

Sea X un conjunto finito y τ una topología definida sobre X. (X,τ) es T_1 si y sólo $\tau=\tau_D$.

Demostración:

Es inmediata de la proposición anterior.

Proposición 2.2.2

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es T_1 si y sólo si $\tau_{cf} \subseteq \tau$.

Demostración:

Se probarán las dos implicaciones.

- \Rightarrow): Sea $A \in \tau_{cf}$ con $A \neq \emptyset$, luego X A es un conjunto finito. Como (X, τ) es T_1 , entonces X A es cerrado (por ser finito), luego A es abierto, es decir $A \in \tau$.
- \Leftarrow): Supongamos que $\tau_{cf} \subseteq \tau$. Sean $x \in X$. El conjunto $X \{x\}$ es finito, luego $X \{x\} \in \tau$, por ende el conjunto $\{x\}$ es cerrado. Como el x fue arbitrario, se sigue que todo conjunto unipuntual es cerrado luego, por una proposición anterior (ya que al ser el unipuntual cerrado, todo subconjunto finito de X es cerrado), se sigue que (X, τ) es T_1 .

Corolario 2.2.3

La topología τ_{cf} es la topología más gruesa (o menos fina) que podemos definir sobre un conjunto para que el espacio topológico (X, τ_{cf}) sea T_1 .

Demostración:

Es inmediata de la proposición anterior.

Proposición 2.2.3

La propiedad de ser un espacio topológico T_1 es hereditaria.

Demostración:

Sea (X, τ) un espacio topológico T_1 y, tomemos $Y \subseteq X$. Formemos así al espacio (Y, τ_Y) , queremos ver que este espacio es T_1 . En efecto, sea $y \in Y$, entonces:

$$\{y\} = \{y\} \cap Y$$

luego, $\{y\} \subseteq Y$ es un conjunto cerrado en (Y, τ_Y) , ya que $\{y\} \subseteq X$ es un conjunto cerrado en (X, τ) . Por ende, todo conjunto unipuntual es cerrado en (Y, τ_Y) , luego este subespacio es T_1 .

Proposición 2.2.4

La propiedad de ser un espacio topológico T_1 es topológica.

Demostración:

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos homeomorfos y, suponga que (X_1, τ_1) es un espacio T_1 . Sea $h: (X_1, \tau_1) \to (X_2, \tau_2)$ el homeomorfismo entre estos dos espacios. Como esta función es homeomorfismo, es una biyección cerrada y continua. Sea $x_2 \in X_2$. Entonces, existe $x_1 \in X_1$ tal que:

$$h(x_1) = x_2$$

luego, por ser bivección:

$$h(\{x_1\}) = \{x_2\}$$

donde $\{x_1\}$ es cerado en (X_1, τ_1) . Como h es cerrada entonces, $\{x_2\}$ es cerrado en (X_2, τ_2) . Por tanto, todo conjunto unipuntual es cerrado en (X_2, τ_2) , así (X_2, τ_2) es T_1 .

Proposición 2.2.5

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia de espacios topológicos y

$$X = \prod_{\alpha \in I} X_{\alpha}$$

entonces, (X, τ_p) es T_1 si y sólo si (X_α, τ_α) es T_1 , para todo $\alpha \in I$.

Demostración:

Se probarán las dos implicaciones.

 \Rightarrow): Suponga que (X, τ_p) es T_1 . Como la propiedad de ser un espacio T_1 es hereditaria y topológica, entonces al tenerse que (X_α, τ_α) es homeomorfo a un subespacio de (X, τ_p) , tal subespacio es T_1 y la propiedad se conserva bajo homeomorfismos luego, se tiene que (X_α, τ_α) es T_1 , para todo $\alpha \in I$.

 \Leftarrow): Suponga que $(X_{\alpha}, \tau_{\alpha})$ es T_1 , para todo $\alpha \in I$. Sean $x = (x_{\alpha})_{\alpha \in I}$, $y = (y_{\alpha})_{\alpha \in I} \in X$ con $x \neq y$. Por ser diferentes, existe $\alpha_0 \in I$ tal que

$$x_{\alpha_0} \neq y_{\alpha_0}$$

Como $(X_{\alpha_0}, \tau_{\alpha_0})$ es T_1 , existen $U, V \in \tau_{\alpha_0}$ tales que:

$$x_{\alpha_0} \in U, y_{\alpha_0} \in V \quad x_{\alpha_0} \notin V, y_{\alpha_0} \notin U$$

tomemos $M = \prod_{\alpha \in I} M_{\alpha}$ y $N = \prod_{\alpha \in I} N_{\alpha}$, donde:

$$M_{\alpha} = \begin{cases} X_{\alpha} & \text{si} \quad \alpha \neq \alpha_{0} \\ U & \text{si} \quad \alpha = \alpha_{0} \end{cases}$$

У

$$N_{\alpha} = \left\{ \begin{array}{ll} X_{\alpha} & \mathrm{si} & \alpha \neq \alpha_{0} \\ V & \mathrm{si} & \alpha = \alpha_{0} \end{array} \right.$$

para todo $\alpha \in I$. Entonces, $x \in M$, $y \in N$ con $N, M \in \tau_p$, pero $x \notin N$, $y \notin M$.

Por tanto, (X, τ_p) es T_1 .

2.3. Espacios T_2

Proposición 2.3.1

Sea (X,τ) un espacio topológico, y sea

$$\Delta = \left\{ (x, x) \in X \times X \middle| x \in X \right\}$$

entonces, (X, τ) es T_2 si y sólo si Δ es un subconjunto cerrado de $(X \times X, \tau_p)$ (da igual si es la topología producto o de caja ya que ambas coinciden).

Demostración:

Se probarán las dos implicaciones.

 \Rightarrow): Suponga que (X, τ) es T_2 . Veamos que Δ es cerrado en $(X \times X, \tau_p)$. Tomemos $(a, b) \in X \times X$ tal que $(a, b) \notin \Delta$, luego $a \neq b$. Como (X, τ) es T_2 , existen dos abiertos $U, V \in \tau$ tales que:

$$a \in U, b \in V \quad U \cap V = \emptyset$$

Sea $L = U \times V$. Se tiene que $(a,b) \in L$ y $L \in \tau_p$. Además, $\Delta \cap L = \emptyset$. En efecto, suponga que existe un elemento $(x,x) \in L$, entonces $x \in U$ y $x \in V$, luego $U \cap V \neq \emptyset \#_c$. Por tanto, $\Delta \cap L = \emptyset$. Así, el conjunto $X \times X - \Delta$ es abierto por ser unión arbitraria de abiertos, luego Δ es cerrado en $(X \times X, \tau_p)$.

 \Leftarrow) : Suponga que Δ es cerrado en $(X \times X, \tau_p)$. Sean $x, y \in X$ con $x \neq y$. Entonces, $(x, y) \notin \Delta$, luego $(x, y) \in X \times X - \Delta$ el cual es abierto, luego existe un básico $B = U \times V$ tal que $(x, y) \in U \times V \subseteq X \times X - \Delta$, siendo $U, V \in \tau$.

Por la parte anterior, se tiene que $U \cap V = \emptyset$. Por tanto:

$$x \in U, y \in V \quad U \cap V = \emptyset$$

por ende, al ser los elementos diferentes $x, y \in X$ arbitrarios, se sigue que (X, τ) es T_2 .

2.4. Espacios T_3

Proposición 2.4.1

Sea (X, τ) un espacio topológico. Entonces, el espacio es T_3 si y sólo si dado $x \in X$ y $U \in \tau$ tal que $x \in U$ existe $V \in \tau$ tal que $x \in V$ y $\overline{V} \subseteq U$.

Demostración:

 \Rightarrow) : Suponga que (X, τ) es T_3 . Sea $x \in X$ y $U \in \tau$ tal que $x \in U$, luego $x \notin X - U$, el cual es cerrado, luego por ser el espacio T_3 existen $W, V \in \tau$ abiertos disjuntos tales que:

$$x \in V$$
 y $X - U \subseteq W$

es claro que $V \subseteq U$ (pues, $W \subseteq X - U$ y $W \cap V = \emptyset$). Veamos que $\overline{V} \subseteq U$. En efecto, supongamos que $y \in \overline{V}$ y $y \notin U$, entonces $y \in W$, luego el conjunto $W \cap V \neq \emptyset \#_c$. Por ende, $\overline{V} \subseteq U$.

 \Leftarrow) : Sea $x \in X$ y $F \subseteq X$ cerrado tal que $x \notin F$, entonces $x \in X - F$ el cual es abierto. Luego por hipótesis existe un cerrado \overline{V} tal que $x \in V \subseteq \overline{V} \subseteq X - F$.

Así, $F \subseteq X - \overline{V}$. Tomemos $W = X - \overline{V}$. Entonces, V y W son abiertos tales que $x \in V$, $F \subseteq W$ con $W \cap V = \emptyset$. Por tanto, (X, τ) es T_3 .

Ejemplo 2.4.1

Considere el espacio topológico $(X = \{1, 2\}, \tau_I)$. Este espacio es T_3 pero no es T_0 .

Ejemplo 2.4.2

Sea $K = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$, tomemos \mathcal{B} la colección de subconjuntos de \mathbb{R} formada por los siguientes conjuntos:

- 1. Todos los intervalos abiertos (a, b).
- 2. Todos los conjuntos de la forma (a, b) K.

Tenemos que \mathcal{B} es una base para una topología sobre \mathbb{R} .

Sea τ_K la topología generada por la colección \mathcal{B} . Tenemos que $\tau_u \subseteq \tau_K$. Por ende, como (\mathbb{R}, τ_u) es T_2 , se sigue que (\mathbb{R}, τ_K) también lo es.

Sean $l \notin \mathbb{R} - K$ y L = (l - 1, l + 1) - K. Tenemos que $l \in L$. El conjunto L es un básico y, además, $L \subseteq \mathbb{R} - \mathbb{K}$. Por tanto, $\mathbb{R} - K \in \tau_K$, luego K es un conjunto cerrado en (\mathbb{R}, τ_K) .

Tenemos que $0 \notin K$. Suponga que $U, V \in \tau$ son abiertos tales que $0 \in U$, $K \subseteq V$ y $U \cap V = \emptyset$. Como $0 \in U$. Sea $B \in \mathcal{B}$ un básico tal que $x \in B \subseteq V$. Tenemos que, dado un intervalo abierto que contenga al 0, este siempre contiene puntos de K, luego B debe ser de la forma B = (a, b) - K.

Sea $m \in \mathbb{N}$ tal que $\frac{1}{m} \in (a, b)$. Se tiene que $\frac{1}{m} \in K \subseteq V$, luego existe un básico (c, d) (debe ser de esta forma) tal que $\frac{1}{m} \in (c, d) \subseteq V$. Ahora, podemos suponer que a < 0 < c < d < b. Sea $\zeta \mathbb{R}$ tal que $\zeta < \frac{1}{m}$ y máx $\left\{c, \frac{1}{m+1}\right\} < \zeta$, luego:

$$c < \zeta < \frac{1}{m}$$

entonces, en particular, $\zeta \in (c,d)$, $\zeta \notin K$ ya que $\frac{1}{m+1} < \zeta < \frac{1}{m}$ y $\zeta \in (a,b)$. Por tanto, $\zeta \in U \cap V \#_c$. Así, (\mathbb{R}, τ_K) no es T_3 .

Proposición 2.4.2

La propiedad de ser T_3 cumple:

- 1. Se hereda.
- 2. Es topológica.

Demostración:

De (1): Sea (X, τ) un espacio topológico T_3 y sea $Y \subseteq X$. Probaremos que (Y, τ_Y) es T_3 . Tomemos $A \subseteq Y$ cerrado con la topología τ_Y y $p \in Y - A$.

Como A es cerrado en el subespacio, existe $C \subseteq X$ cerrado en (X, τ) tal que:

$$A = Y \cap C$$

En particular, $A \subseteq C$, es decir que $Y - C \subseteq Y - A$, luego $p \notin C$. Como (X, τ) es T_3 , existen $U, V \in \tau$ disjuntos tales que:

$$p \in V$$
 y $C \subseteq U$

luego, los conjuntos $Y \cap U, Y \cap V \in \tau_Y$ son tales que:

$$p \in Y \cap V$$
 y $A = Y \cap C \subseteq Y \cap U$

siendo estos disjuntos (pues U y V lo son). Por tanto, (Y, τ_Y) es T_3 .

De (2): Sean (X, τ) y (Y, σ) espacios topológicos homeomorfos, y $f: (X, \tau) \to (Y, \sigma)$ el homeomorfismo entre ambos.

Suponga que (X, τ) es T_3 . Probaremos que (Y, σ) también es T_3 . En efecto, sean $p \in Y$ y $F \subseteq Y$ cerrado tales que $p \notin F$, es decir que $p \in Y - F$. Sea

$$F' = f^{-1}(F)$$

y $p' = f^{-1}(p)$. Por ser homeomorfismo, se tiene que F' es cerrado en (X, τ) y, por ser inyectiva se tiene que $p' \notin F'$. Luego, como (X, τ) es T_3 existen $U', V' \in \tau$ disjuntos tales que:

$$p' \in V'$$
 y $F' \subseteq U'$

Sean U = f(U') y V = f(V'), los cuales son abiertos en (Y, σ) tales que:

$$p = f(p') \in V$$
 y $F = f(F') \subseteq U$

siendo U, V disjuntos por serlo U', V'. Luego, (Y, σ) es T_3 .

Proposición 2.4.3

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia de espacios topológicos, sea

$$X = \prod_{\alpha \in I} X_{\alpha}$$

entonces, (X, τ_p) es T_3 si y sólo si (X_α, τ_α) es T_3 , para todo $\alpha \in I$.

Demostración:

- \Rightarrow) : Es inmediata del hecho de que la propiedad de que un espacio sea T_3 es hereditaria y topológica.
- \Leftarrow): Suponga que para todo $\alpha \in I$, $(X_{\alpha}, \tau_{\alpha})$ es T_3 . Veamos que (X, τ_p) es T_3 . Sea $x \in X$ y $U \in \tau_p$ un abierto tal que $x \in U$.

Como $U \in \tau_p$, podemos encontrar un básico B, que podemos expresar como $B = \prod_{\alpha \in I} B_{\alpha}$, donde $B_{\alpha} = X_{\alpha}$ para casi todo salvo una cantidad finita de $\alpha \in I$, y B_{α} es abierto en $(X_{\alpha}, \tau_{\alpha})$ para todo $\alpha \in I$.

Como cada $(X_{\alpha}, \tau_{\alpha})$ es T_3 , entonces para cada B_{α} existe $V_{\alpha} \in \tau_{\alpha}$ tal que $x_{\alpha} \in V_{\alpha}$ y $\overline{V_{\alpha}} \subseteq B_{\alpha}$, para todo $\alpha \in I$.

Si $B_{\alpha} = X_{\alpha}$, tomemos $V_{\alpha} = X_{\alpha}$, en caso contrario lo dejamos igual. Entonces, el conjunto $V = \prod_{\alpha \in I} V_{\alpha}$ es un básico, en particular, abierto, tal que $x \in V$, y

$$\overline{V} = \overline{\prod_{\alpha \in I} V_{\alpha}} = \prod_{\alpha \in I} \overline{V_{\alpha}} \subseteq \prod_{\alpha \in I} B_{\alpha} = B \subseteq U$$

por tanto, (X, τ_p) es T_3 .

Corolario 2.4.1

Sea (X, τ) un espacio topológico.

- 1. Si (X,τ) es regular, entonces y $Y\subseteq X$, entonces (Y,τ_Y) es regular.
- 2. Si (X,τ) y (X',τ') son espacios homeomorfos y, (X,τ) es regular, entonces (X',τ') es regular.
- 3. Si $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ es una familia de espacios topológicos. Si $X = \prod_{\alpha \in I}$, entonces (X, τ_p) es regular si y sólo si $(X_{\alpha}, \tau_{\alpha})$ es regular, para todo $\alpha \in I$.

Demostración:

Son inmediatas del hecho que la propiedad de ser T_1 y T_3 se hereda y es topológicsa y, de que esta propiedad se preserva bajo productos y elementos del producto.

2.5. Espacios T_4

Proposición 2.5.1

Sea (X,τ) un espacio topológico. Entonces, (X,τ) es T_4 si y sólo si dados $A\subseteq X$ cerrado y $U\in\tau$ tales que $A\subseteq U$, existe un abierto V tal que $A\subseteq V$ y $\overline{V}\subseteq U$.

Demostración:

 \Rightarrow): Supongamos que (X, τ) es T_4 . Sean $A \subseteq X$ cerrado y $U \in \tau$ tal que $A \subseteq U$. El conjunto B = X - U es un cerrado tal que $A \cap B = \emptyset$. Como el espacio (X, τ) es T_4 , existen dos abiertos $V, W \in \tau$ tales que:

$$A \subseteq V$$
 y $B \subseteq W$

y, $V \cap W = \emptyset$. Como $V \cap W = \emptyset$, entonces $V \subseteq X - W \subseteq X - B = U$. Afirmamos que $\overline{V} \subseteq U$. En efecto, notemos que X - W es un cerrado que contiene a V, por ende $\overline{V} \subseteq X - W \subseteq U$, luego $\overline{V} \subseteq U$. Con lo cual se sigue el resultado.

 \Leftarrow): Sean $A, B \subseteq X$ cerrados tales que $A \cap B = \emptyset$. Se tiene entonces que:

$$A \subseteq X - B$$

donde $X - B \in \tau$, luego por hipótesis existe $U \in \tau$ abierto tal que:

$$A \subseteq U \subseteq \overline{U} \subseteq X - B$$

el conjunto $V = X - \overline{U}$ es un abierto para el cual, se tiene que $B \subseteq V$. Luego, $U, V \in \tau$ son tales que $A \subseteq U$, $B \subseteq V$ y $U \cap V = \emptyset$. Luego el espacio es T_4 .

Proposición 2.5.2

Sea (X,τ) un espacio T_4 y sea $A\subseteq X$ un conjunto cerrado. Entonces, (A,τ_A) es T_4 .

Demostración:

Sean $M, N \subseteq (A, \tau_A)$ cerrados tales que $M \cap N = \emptyset$. Como A es cerrado en (X, τ) , entonces M, N son cerrados en (X, τ) . Luego, como (X, τ) es T_4 , existen dos abiertos $U', V' \in \tau$ tales que

$$M \subseteq U', \quad N \subseteq V', \quad U' \cap V' = \emptyset$$

Luego, los conjuntos $U = A \cap U', V = A \cap V' \in \tau_A$ son disjuntos tales que $M \subseteq U$ y $N \subseteq V$, ya que $M, N \subseteq A$. Así, (A, τ_A) es T_4 .

Lema 2.5.1

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos homeomorfos. Entonces, si $f: (X_1, \tau_1) \to (X_2, \tau_2)$ es el homeomorfismo entre ambos espacios, se tiene que $f(\overline{A}) = f(\overline{A})$, para todo $A \subseteq X_1$.

Demostración:

Como f es homeomorfismo, en particular es continua

Proposición 2.5.3

La propiedad de ser T_4 es topológica.

Demostración:

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos homeomorfos tales que (X_1, τ_1) es T_4 . Sea $f: (X_1, \tau_1) \to (X_2, \tau_2)$ el homeomorfismo entre ellos.

Veamos que (X_2, τ_2) es T_4 . En efecto, sea $A \subseteq X_2$ cerrado y $U \in \tau_2$ abierto tal que $A \subseteq U$. Como f es homeomorfismo, entonces $f^{-1}(A) \subseteq X_1$ es cerrado y, $f^{-1}(U) \in \tau_1$ son tales que:

$$f^{-1}(A) \subseteq f^{-1}(U)$$

Luego, como (X_1, τ_1) es T_4 , existe $W \in \tau_1$ tal que:

$$f^{-1}(A) \subseteq W \subseteq \overline{W} \subseteq f^{-1}(U)$$

Sea V = f(W). Como f es homeomorfismo, es una función abierta, luego $V \in \tau_2$, para la cual se cumple que:

$$A\subseteq V\subseteq U$$

pero, $f(\overline{V}) = \overline{f(V)}$ (por ser f homeomorfismo), se tiene que:

$$A\subseteq V\subseteq \overline{V}\subseteq U$$

por tanto, (X_2, τ_2) es T_4 .

Lema 2.5.2 (Lema de Urysohn)

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es T_4 si y sólo si para todos $A, B \subseteq X$ cerrados disjuntos, existe una función continua $f: (X, \tau) \to ([0, 1], \tau_u)$ tal que $f(A) = \{1\}$ y $f(B) = \{0\}$.

Demostración:

⇒): Para probar el resultado, debemos hacer varias cosas antes:

1. Sea

$$P = \mathbb{Q} \cap [0, 1]$$

Nuestro objetivo es que para cada $p \in P$ le asignemos un conjunto abierto $U_p \subseteq X$ tal que si $p, q \in P$ son tales que

$$p < q \Rightarrow \overline{U}_p \subseteq U_q$$

de esta forma, la familia $\{U_p | p \in P\}$ estará simplemente ordenada de la misma forma en la que sus subíndices lo están en P. Como el conjunto P es numerable, podemos usar inducción para definir cada uno de los U_p . Ordenemos los elementos de P en una sucesión de tal forma que los números 0 y 1 son los primeros de la sucesión (denotada de ahora en adelante por $\{p_n\}_{n=1}^{\infty}$).

Definiremos ahora los conjuntos U_p como sigue: defina

$$U_1 = X - B$$

Como A es un cerrado contenido en U_1 , por ser (X,τ) T_4 , se tiene que existe un conjunto abierto $U_0 \subseteq X$ tal que

$$A \subseteq U_0$$
 y $\overline{U}_0 \subseteq U_1$

En general, sea P_n el conjunto de los primeros n números racionales en la sucesión de los elementos de P. Suponga que U_p está definido para cada $p \in P_n$ y, satisface la condición:

$$p, q \in P_n$$
 tal que $p < q \Rightarrow \overline{U}_p \subseteq U_q$

Sea r el siguiente número racional en la sucesión $\{p_n\}_{n=1}^{\infty}$, esto es $r=p_{n+1}$. Definiremos U_r . Considere el conjunto

$$P_{n+1} = P_n \cup \{r\}$$

Este es un subconjunto finito del intervalo [0,1] y, tiene un orden simple derivado del orden simple < de [0,1].

En un conjunto finito simplemente ordenado, todo elemento tiene un predecesor inmediato y un sucesor inmediato. El número 0 es el elemento más pequeño y, 1 es el elemento más grande

de P_{n+1} y, r no es 0 o 1. Por tanto, r tiene un sucesor y un predecesor inmediato, denotados respectivamente por q y p. Los conjuntos U_p y U_q están definidos y son tales que

$$\overline{U}_p \subseteq U_q$$

por hipótesis de inducción. Como (X, τ) es T_4 , entonces existe un conjunto abierto $U_r \subseteq X$ tal que

$$\overline{U}_p \subseteq U_r \quad \text{y} \quad \overline{U}_r \subseteq U_q$$

Es claro (pues los conjuntos U_p con $p \in P_n$ están ordenados por la contención), que

$$p, q \in P_{n+1}$$
 tal que $p < q \Rightarrow \overline{U}_p \subseteq U_q$

Usando inducción, tenemos definidos los conjuntos U_p , para todo $p \in P$.

2. Ahora que se tiene definido U_p para todo número en $\mathbb{Q} \cap [0,1]$, extenderemos esta definición a todo \mathbb{Q} , haciendo

$$U_p = \emptyset, \quad p < 0$$

$$U_p = X, \quad 1 < p$$

para todo $p \in \mathbb{Q}$. Se sigue cumpliendo que para todo $p, q \in \mathbb{Q}$

$$p < q \Rightarrow \overline{U}_p \subseteq U_q$$

3. Dado un punto $p \in X$, definamos el conjunto $\mathbb{Q}(x)$ como el conjunto de todos los números racionales $p \in \mathbb{Q}$ tales que los correspondientes U_p contengan a x, es decir:

$$\mathbb{Q}(x) = \left\{ p \in \mathbb{Q} \middle| x \in U_p \right\}$$

Este conjunto no contiene a ningún número menor que 0 ya que $x \notin U_p$ para todo $p \in \mathbb{Q}^-$, además, contiene a todo número mayor que 1, pues $x \in U_p$ para todo $p \in \mathbb{Q}$, p > 1. Por tanto, $\mathbb{Q}(x)$ es acotado inferiormente y no vacío, luego tiene ínfimo en el intervalo [0,1]. Defina

$$f(x) = \inf \mathbb{Q}(x) = \inf \left\{ p \in \mathbb{Q} \middle| x \in U_p \right\}$$

4. Afirmamos que f es la función deseada. Si $x \in A$, entonces $x \in U_p$ para todo $p \in \mathbb{Q}_{\geq 0}$, luego

$$f(x) = \inf \mathbb{Q}(x) = 0$$

Similarmente, si $x \in B$, entonces $x \notin U_p$ para todo $p \in \mathbb{Q}$ con $p \leq 1$. Luego, $\mathbb{Q}(x)$ consiste de todos los números racionales mayores a 1 y, por ende, f(x) = 1.

Probaremos que f es continua. Para ello, probaremos que se cumplen dos cosas:

- I) $x \in \overline{U}_r$ implies que $f(x) \le r$.
- II) $x \notin U_r$ implies que $f(x) \ge r$.

Para probar (1), notemos que si $x \in \overline{U}_r$, entonces $x \in U_s$, para todo s > r. Entonces, $\mathbb{Q}(x)$ contiene a todos los números racionales mayores que r, así que, por definición tenemos que

$$f(x) = \inf \mathbb{Q}(x) \le r$$

Para probar (2), notemos que si $x \notin U_r$, entonces x no está en U_s para todo s < r. Por tanto, $\mathbb{Q}(x)$ no contiene números racionales menores que r, por lo cual

$$f(x) = \inf \mathbb{Q}(x) \ge r$$

Ahora probaremos la continuidad de f. Sea $x_0 \in X$ y un intervalo abierto (c,d) en \mathbb{R} tal que

$$c < f(x_0) < d$$

podemos encontrar números racionales $p, q \in \mathbb{Q}$ tales que

$$c$$

Afirmamos que el conjunto

$$U = U_q - \overline{U}_p$$

es un abierto que cumple que $f(U) \subseteq (c,d)$ y es tal que $x_0 \in U$. En efecto, notemos que $x_0 \in U_q$ pues $f(x_0) < q$ implica por (2) que $f(x_0) \in U_q$ y, como $p < f(x_0)$, implica por (1) que $f(x_0) \notin \overline{U}_p$. Por tanto, $f(x_0) \in U$.

Sea $x \in U$, entonces $x \in U_q \subseteq \overline{U}_q$, por lo cual de (1), $f(x) \leq q$ y, $x \notin \overline{U}_p$ implica que $x \notin \overline{U}_p$ por lo cual de (2) se sigue que $p \leq f(x)$. Por tanto, $f(x) \in [p,q] \subseteq (c,d)$.

Luego, $f(U) \subseteq (c, d)$. Así, f es continua en $x_0 \in X$. Como el punto fue arbitrario, se sigue que f es continua en X.

Por los 4 incisos anteriores, se sigue el resultado.

 \Leftarrow): Sean $A, B \subseteq X$ cerrados disjuntos. Por hipótesis existe una función continua $f:(X,\tau) \to ([0,1],\tau_u)$ tal que f(A)=1 y f(B)=0. Los conjuntos $U=f^{-1}((r,1])$ $V=f^{-1}([0,r))$, donde $r \in (0,1)$, son dos abiertos (ya que f es continua y $[0,r),(r,1],\in\tau_u$) tales que:

$$A \subseteq U \quad B \subseteq V$$

y, $U \cap V = \emptyset$.

Capítulo 3

Filtros

3.1. Conceptos Fundamentales

Definición 3.1.1

Sean X un conjunto no vacío y \mathcal{F} una familia no vacía de subconjuntos no vacíos de X. \mathcal{F} se dice que es un filtro si cumple lo siguiente:

- 1. $\emptyset \notin \mathcal{F}$.
- 2. Si $F_1, F_2 \in \mathcal{F}$, entonces $F_1 \cap F_2 \in \mathcal{F}$.
- 3. Si $K\subseteq X$ y $F\subseteq K$ para algún $F\in\mathcal{F},$ entonces $K\subseteq F.$ (Propiedad de absorción).

Ejemplo 3.1.1

Sea X un conjunto no vacío. Entonces, $\{X\}$ es un filtro sobre X.

Observación 3.1.1

Si \mathcal{F} es un filtro sobre un conjunto no vacío X entonces, se cumple lo siguiente:

- 1. $\forall A, B \in \mathcal{F}, A \cap B \neq \emptyset$.
- 2. Si $A_1, ..., A_n \in \mathcal{F}$, entonces $\bigcap_{i=1}^n A_i \in \mathcal{F}$ y es no vacía.

Ejemplo 3.1.2

Sea X un conjunto no vacío y $A\subseteq X$ no vacío. Entonces,

$$\mathcal{F}_A = \left\{ M \subseteq X \middle| A \subseteq M \right\}$$

es un filtro sobre X.

Observación 3.1.2

Si $A = \{x\}$, escribiremos \mathcal{F}_x en vez de $\mathcal{F}_{\{x\}}$.

Ejemplo 3.1.3

Sea (X, τ) un espacio topológico con X. Sea

$$\xi_x = \left\{ V \subseteq X \middle| V \in \mathcal{V}(x) \right\}$$

con $x \in X$ (recordando que $\mathcal{V}(x)$ es el conjunto de todas las vecindades de x). Entonces, ξ_x es un filtro sobre X. Este filtro es llamado el **filtro de vecindades sobre el punto** x.

Demostración:

Tenemos que verificar 4 condiciones:

- 1. $X \in \xi_x$.
- 2. $\emptyset \notin \xi_x$.
- 3. $M, N \in \mathcal{V}(x)$ implica que $M \cap N \in \mathcal{V}(x)$.
- 4. Seea $L \subseteq X$ tal que $V \in \mathcal{V}(x)$ cumple que $V \subseteq L$, entonces $L \in \mathcal{V}(x)$.

Luego, ξ_x es un filtro sobre X.

Observación 3.1.3

Si \mathcal{F} es un filtro sobre X, entonces $X \in \mathcal{F}$.

Proposición 3.1.1

Sean X un conjunto no vacío y $\{\mathcal{F}_{\alpha}\}_{{\alpha}\in I}$ una familia de filtros sobre X. Entonces, $\bigcap_{{\alpha}\in I}\mathcal{F}_{\alpha}$ es un filtro en X.

Demostración:

Sea

$$\mathcal{K} = \bigcap_{lpha \in I} \mathcal{F}_{lpha}$$

- 1. $\mathcal{K} \neq \emptyset$, pues $X \in \mathcal{F}_{\alpha}$, para todo $\alpha \in I$.
- 2. $\emptyset \notin \mathcal{K}$, pues $\emptyset \notin \mathcal{F}_{\alpha}$ para todo $\alpha \in I$.
- 3. Sean $A, B \in \mathcal{K}$, entonces $A, B \in \mathcal{F}_{\alpha}$ para todo $\alpha \in I$. Por ser filtros se sigue que $A \cap B \in \mathcal{F}_{\alpha}$ para todo $\alpha \in I$, luego $A \cap B \in \mathcal{K}$.
- 4. Sea $M \subseteq X$ y sea $L \in \mathcal{K}$ tal que $L \subseteq M$, entonces $L \in \mathcal{F}_{\alpha}$ para todo $\alpha \in I$. Como cada \mathcal{F}_{α} cumple la propiedad de absorción, se tiene que $M \in \mathcal{F}_{\alpha}$ para todo $\alpha \in I$, luego $M \in \mathcal{K}$.

Por los 4 incisos anteriores, se sigue que \mathcal{K} es un filtro sobre X.

Ejemplo 3.1.4

Sea $X = \{a, b\}$ con $a \neq b$. Tomemos $\mathcal{F}_1 = \{X, \{a\}\}\$ y $\mathcal{F}_2 = \{X, \{b\}\}\$. Entonces $\mathcal{F}_1 \cup \mathcal{F}_2$ no es un filtro, ya que en caso contario se tendría que $\{a\} \cap \{b\} = \emptyset \in \mathcal{F}_1 \cap \mathcal{F}_2$, lo cual no puede ser.

Así, la unión de filros no necesariamente es un filtro.

Proposición 3.1.2

Si $\{\mathcal{F}_{\alpha}\}_{{\alpha}\in I}$ es una familia de filtros sobre X tal que dados $\alpha,\beta\in I$ se tiene que

$$\mathcal{F}_{\alpha} \subseteq \mathcal{F}_{\beta} \ o \ \mathcal{F}_{\beta} \subseteq \mathcal{F}_{\alpha}$$

entonces $\mathcal{F} = \bigcup_{\alpha \in I} \mathcal{F}_{\alpha}$ es un filtro.

Demostración:

En efecto, veamos que \mathcal{F} es un filtro.

- 1. $\mathcal{F} \neq \emptyset$ ya que $X \in \mathcal{F}_{\alpha}$ para algún $\alpha \in I$.
- 2. $\emptyset \notin \mathcal{F}$, pues $\emptyset \notin \mathcal{F}_{\alpha}$ para todo $\alpha \in I$.
- 3. Sean $A, B \in \mathcal{F}$. Entonces, existen $\alpha, \beta \in I$ tales que $A \in \mathcal{F}_{\alpha}$ y $B \in \mathcal{F}_{\beta}$, entonces se tiene una de las dos contenciones:

$$\mathcal{F}_{\alpha} \subseteq \mathcal{F}_{\beta} \circ \mathcal{F}_{\beta} \subseteq \mathcal{F}_{\alpha}$$

supongamos que $\mathcal{F}_{\alpha} \subseteq \mathcal{F}_{\beta}$, entonces $A, B \in \mathcal{F}_{\beta}$. Por tanto, $A \cap B \in \mathcal{F}_{\beta}$. Así, $A \cap B \in \mathcal{F}$.

4. Sea $M \subseteq X$ y $L \in \mathcal{F}$ tal que $L \subseteq M$. Como $L \in \mathcal{F}$ existe $\alpha \in I$ tal que $L \in \mathcal{F}_{\alpha}$, luego por la propiedad de absorción $M \in \mathcal{F}_{\alpha}$. Por tanto, $M \in \mathcal{F}$.

Por los cuatro incisos anteriores, se sigue que \mathcal{F} es un filtro sobre X.

Definición 3.1.2

Sea \mathcal{F} un filtro sobre X. Una familia no vacía \mathcal{B} de subconjuntos de X de X es **una base para el filtro** \mathcal{F} si se cumple lo siguiente:

- 1. $\mathcal{B} \subseteq \mathcal{F}$.
- 2. $\forall F \in \mathcal{F}$ existe $B \in \mathcal{B}$ tal que $B \subseteq F$.

Observación 3.1.4

Observamos que

- 1. Si \mathcal{F} es un filtro sobre un conjunto X, entonces \mathcal{F} es una base para sí mismo.
- 2. Si \mathcal{B} es una base para el filtro \mathcal{F} sobre X y, $B_1, B_2 \in \mathcal{B}$, entonces existe $B_3 \in \mathcal{B}$ tal que $B_3 \subseteq B_1 \cap B_2$.

Definición 3.1.3

Sea X un conjunto no vacío y \mathcal{B} una familia no vacía de subconjuntos no vacíos de X. Se dice que \mathcal{B} es **una base de filtro en** X, si se cumple lo siguiente: Dados $B_1, B_2 \in \mathcal{B}$ existe $B_3 \in \mathcal{B}$ tal que $B_3 \subseteq B_1 \cap B_2$.

Proposición 3.1.3

Sea X un conjunto no vacío y \mathcal{B} una base de filtro en X. Entonces:

$$\mathcal{B}^+ = \left\{ A \subseteq X \middle| \exists B \in \mathcal{B} \text{ tal que } B \subseteq A \right\}$$

es un filtro en X y este se dice **el filtro generado por la base** \mathcal{B} . Además, \mathcal{B} es una base para \mathcal{B}^+ .

Demostración:

Se tienen que probar dos cosas:

- 1. Es claro que $\mathcal{B} \subseteq \mathcal{B}^+$. Por tanto, $\mathcal{B}^+ \neq \emptyset$.
- 2. $\emptyset \notin \mathcal{B}^+$ es cierto pues $\emptyset \notin \mathcal{B}$, ya que \mathcal{B} es una subcolección no vacía de conjuntos no vacíos.
- 3. Tomemos $K, M \in \mathcal{B}^+$ luego, existen $B_1, B_2 \in \mathcal{B}$ tal que $B_1 \subseteq K$ y $B_2 \subseteq M$. Por tanto, $B_1 \cap B_2 \subseteq K \cap M$. Por ser \mathcal{B} base para un filtro sobre X, existe $B_3 \in \mathcal{B}$ tal que $B_3 \subseteq B_1 \cap B_2 \subseteq K \cap M$. Luego, $K \cap M \in \mathcal{B}^+$.
- 4. Sea $W \subseteq X$ y $L \in \mathcal{B}^+$ tal que $L \subseteq W$. Existe $B \in \mathcal{B}$ tal que $B \subseteq L \subseteq W$, luego $B \subseteq W$. Por tanto, $W \in \mathcal{B}^+$.

Por los cuatro incisos anteriores, se sigue que \mathcal{B}^+ es un filtro sobre X.

Proposición 3.1.4

Sea \mathcal{F} un filtro sobre X y $A \subseteq X$ tal que $\forall F \in \mathcal{F}, A \cap F \neq \emptyset$. Entonces

$$\mathcal{B} = \left\{ A \cap F \middle| F \in \mathcal{F} \right\}$$

es una base de filtro y, el filtro generado por ella \mathcal{B}^+ cumple lo siguiente:

- 1. $\mathcal{F} \subset \mathcal{B}^+$.
- $2. A \in \mathcal{B}^+.$

Demostración:

Se deben cumplir varios incisos:

- 1. $\mathcal{B} \neq \emptyset$, pues el conjunto $A \cap X = A \in \mathcal{B}$ ya que $X \in \mathcal{F}$.
- 2. $\emptyset \notin \mathcal{B}$ ya que se contradeciría la hipótesis de que $A \cap F = \emptyset$ para todo $F \in \mathcal{F}$.
- 3. $B_1, B_2 \in \mathcal{B}$ implica que existen $F_1, F_2 \in \mathcal{F}$ tales que $B_1 = A \cap F_1$ y $B_2 = A \cap F_2$. Por tanto

$$B_1 \cap B_2 = A \cap (F_1 \cap F_2)$$

donde, $A \cap (F_1 \cap F_2) \in \mathcal{B}$ pues, \mathcal{F} es un filtro sobre X. Luego, tomando $B_3 = B_1 \cap B_2 \in \mathcal{B}$, se sigue que $B_3 \subseteq B_1 \cap B_2$.

por los tres incisos anteriores, se sigue que \mathcal{B} es base para un filtro sobre X. Ya se tiene que $A \in \mathcal{B}^+$, pues $\mathcal{B} \subseteq \mathcal{B}^+$.

Sea ahora $F \in \mathcal{F}$. Entonces, $F \cap A \in \mathcal{B}^+$. Por propiedad de absorción se debe tener que como $F \cap A \subseteq F$, entonces $F \in \mathcal{B}^+$.

Proposición 3.1.5

Sean X y Y dos conjuntos no vacíos. Sea \mathcal{F} un filtro en X y $f: X \to Y$ una función. Entonces,

$$\mathcal{B} = \left\{ f(A) \middle| A \in \mathcal{F} \right\}$$

es una base de filtro en Y. En este caso, se denotará por $f(\mathcal{F})$ a \mathcal{B}^+ , esto es $f(\mathcal{F}) = \mathcal{B}^+$.

Demostración:

Se deben verificar tres condiciones

- 1. $\mathcal{B} \neq \emptyset$, pues $f(X) \in \mathcal{B}$.
- 2. Todos los elementos de \mathcal{B} son no vacíos, pues como \mathcal{F} es un filtro sobre X, todos sus elementos son no vacíos, así $f(F) \neq \emptyset$ para todo $F \in \mathcal{F}$.
- 3. Si $B_1, B_2 \in \mathcal{B}$, entonces existen $F_1, F_2 \in \mathcal{F}$ tales que $B_1 = f(F_1)$ y $B_2 = f(F_2)$. Por tanto, el conjunto

$$B_3 = f(F_1 \cap F_2) \subset f(F_1) \cap f(F_2) = B_1 \cap B_2$$

es tal que $B_3 \in \mathcal{B}$, ya que $F_1 \cap F_2 \in \mathcal{F}$.

por los incisos anteriores, se sigue que \mathcal{B} es base de un filtro en Y.

Ejemplo 3.1.5

Considere $X = \{a, b\}, a \neq b$. Sea $f: X \to X$ dada como sigue:

$$f(a) = a = f(b)$$

el conjunto $\mathcal{F} = \{X, \{a\}\}$ es un filtro sobre X. la colección

$$f(\mathcal{F}) = \{\{a\}\}\$$

no es un filtro en X ya que $X \notin f(\mathcal{F})$.

Proposición 3.1.6

Sean X y Y dos conjuntos no vacíos, \mathcal{F} un filtro en X y $f: X \to Y$ una función. Entonces, f es una función suprayectiva si y sólo si $\{f(F) | F \in \mathcal{F}\}$ es un filtro en Y.

Demostración:

Necesidad: Suponga que f es suprayectiva. Ya se sabe que

$$\mathcal{K} = \left\{ f(F) \middle| F \in \mathcal{F} \right\}$$

es una base de filtro. Se tiene que por ser f suprayectiva que

$$f(f^{-1}(A)) = A, \quad \forall A \subseteq Y$$

Se cumplen tres condiciones:

- 1. $\mathcal{K} \neq \emptyset$ pues, $f(X) \in \mathcal{K}$.
- 2. Como \mathcal{F} no contiene al vacío, entonces \mathcal{K} tampoco lo contiene.
- 3. Sea $L \subseteq Y$ tal que existe $F \in \mathcal{F}$ con $f(F) \subseteq L$. Entonces:

$$F\subseteq f^{-1}(f(F))\subseteq f^{-1}(L)$$

por ser \mathcal{F} un filtro, luego: $f^{-1}(L) \in \mathcal{F}$. Así, $L = f(f^{-1}(L)) \in \mathcal{K}$.

4. Sean $F_1, F_2 \in \mathcal{F}$. Se tiene que $f(F_1), f(F_2) \in \mathcal{K}$. Luego:

$$F_1 \cap F_2 \in \mathcal{F}$$

además, $f(F_1 \cap F_2) \subseteq f(F_1) \cap f(F_2)$. Luego, por la propiedad anterior se sigue que $f(F_1) \cap f(F_2) \in \mathcal{K}$ ya que $f(F_1 \cap F_2) \in \mathcal{K}$.

Por los 4 incisos anteriores se sigue que \mathcal{K} es un filtro.

Suficiencia: Es inmediata del hecho de que Y está en la familia $f(\mathcal{F})$, luego f(X) = Y.

Definición 3.1.4

Sea X un conjunto no vacío. Un ultrafiltro \mathcal{F} en X es un filtro maximal respecto a la inclusión.

Proposición 3.1.7

Sea X un conjunto no vacío y sea ξ un filtro en X. Entonces existe un ultrafiltro \mathcal{U} en X tal que $\xi \subseteq \mathcal{U}$.

Demostración:

Considere la familia

$$\mathcal{L} = \left\{ \xi_{\alpha} \middle| \alpha \in I \right\}$$

de todos los filtros ξ_{α} en X que contienen a ξ . Esta familia es no vacía ya que $\xi \in \mathcal{L}$. Además, esta familia está parcialmente ordenada bajo la relación \subseteq . Sea \mathcal{C} una cadena de (\mathcal{L}, \subseteq) . Tomemos

$$\rho = \bigcup_{\xi \in \mathcal{L}} \xi$$

por tanto, ρ es un filtro en X (ver observación anterior para garantizar que la unión de filtros sea un filtro); además, $\xi \subseteq \rho$. Tenemos que $\rho \in \mathcal{L}$ y, por construcción para todo $\mathcal{F} \in \mathcal{C}$, $\mathcal{F} \subseteq \rho$.

Por el lema de Zorn existe un elemento maximal \mathcal{U} de (\mathcal{L}, \subseteq) el cual es el ultrafiltro buscado que contiene a ξ .

Ejemplo 3.1.6

Sea $X = \{a, b\}$ con $a \neq b$. Tomemos al filtro

$$\mathcal{F} = \{X\}, \quad \mathcal{U}_1 = \{X, \{a\}\} \quad \mathcal{U}_2 = \{X, \{b\}\}$$

se tiene que \mathcal{F} es un filtro y, $\mathcal{U}_1, \mathcal{U}_2$ son ultrafiltros en X. Además $\mathcal{F} \subseteq \mathcal{U}_1$ y $\mathcal{F} \subseteq \mathcal{U}_2$.

Es decir, la existencia del ultrafiltro no es única.

Proposición 3.1.8

Sea ξ un ultrafiltro en el conjunto no vacío X. Entonces se cumple lo siguiente:

- 1. Si $A, B \subseteq X$ y $A \cup B \in \xi$, entonces alguno de los dos A, B es elemento del filtro.
- 2. Si $A_1, ..., A_k \subseteq X$ tales que $\bigcup_{i=1}^k A_i \in \xi$, entoncex existe $l \in [1, k]$ tal que $A_l \in \xi$.

Demostración:

De (1): Sean $A, B \subseteq X$ tales que $A \cup B \in \xi$. Se tienen varios casos:

1. Suoponga que para todo $C \in \xi$ se tiene que $C \cap A \neq \emptyset$. Entonces, el conjunto

$$\mathcal{B} = \left\{ C \cap A \middle| A \in \xi \right\}$$

es una base de filtro y, \mathcal{B} cumple que $\xi \subseteq \mathcal{B}$. Por tanto, $\xi = \mathcal{B}$. Pero, $A \in \mathcal{B}$, luego $A \in \mathcal{B}$.

2. Suponga que existe $C_0 \in \xi$ tal que $C_0 \cap A = \emptyset$. Entonces:

$$C \cap B = (C \cap A) \cup (C \cap B)$$
$$= C \cap (A \cup B)$$

donde $C \in \xi$ y $A \cup B \in \xi$. Por tanto, $C \cap B \in \xi$. Pero, $C \cap B \subseteq B$, luego por absorción se sigue que $B \in \xi$.

De (2): Se hace usando inducción sobre k.

Proposición 3.1.9

Sea ξ un filtro en X. Entonces, ξ es un ultrafiltro si y sólo si para todo subconjunto $A\subseteq X$, $A\in \xi$ ó $X-A\in \xi$.

Demostración:

Necesidad: Sea $A \subseteq X$. Escribimos $X = A \cup (X - A)$. Como ξ es un filtro, entonces $X \in \xi$. Por la proposición anterior se tiene que $A \in \xi$ ó $X - A \in \xi$.

Suficiencia: Sea η un filtro en X tal que $\xi \subseteq \eta$. Tomemos $A \subseteq X$ tal que $A \in \eta$. Entonces, $X - A \notin \eta$, luego $X - A \notin \xi$. Por hipótesis, debe suceder que $A \in \xi$. De esta forma, $\xi = \eta$.

Luego, ξ es un ultrafiltro.

Ejercicio 3.1.1

Sean X y Y conjuntos, ξ un ultrafiltro de X y sea $f: X \to Y$ una función suprayectiva. Entonces, $f(\xi)$ es un ultrafiltro en Y.

Demostración:

Ya se tiene que $f(\xi)$ es un filtro en Y.

Ejemplo 3.1.7

Sea X un conjunto no vacío y sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de puntos en X, entonces

$$\rho = \left\{ A \subseteq X \middle| \exists N \in \mathbb{N} \text{ tal que } \forall k \ge N, x_k \in A \right\}$$

es un filtro en X y, se dice el filtro asociado a la sucesión.

Demostración:

Hay que verificar 4 condiciones:

- 1. $\emptyset \notin \rho$.
- 2. $X \in \rho$ ya que la sucesión está en X.

3. Sean $A, B \in \rho$. Entonces, existen $N, M \in \mathbb{N}$ tales que $k \geq N \Rightarrow x_k \in A$ y, $k \geq M \Rightarrow x_k \in B$. Sea

$$N_0 = \max\{N, M\} \in \mathbb{N}$$

entonces, si $k \geq N_0$ se tiene que $x_k \in A$ y $x_k \in B$, luego $x_k \in A \cap B$. Por ende, $A \cap B \in \rho$.

4. Sea $L \subseteq X$ y $A \in \rho$ tal que $A \subseteq L$. Como $A \in \rho$ entonces existe $N \in \mathbb{N}$ tal que si $k \geq N \Rightarrow x_k \in A \subseteq L$. Por ende, $L \in \rho$.

por los incisos anteriores, se sigue que ρ es un filtro en X.

Definición 3.1.5

Sea (X, τ) un espacio topológico. Una sucesión de puntos de X, $\{x_n\}_{n\in\mathbb{N}}$ se dice que **converge** a un punto $l \in X$ si para todo $U \in \tau$ tal que $l \in U$ existe $N \in \mathbb{N}$ tal que para todo $k \geq N$, $x_k \in U$.

Proposición 3.1.10

Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión de puntos de X y sea ρ el filtro asociado a la sucesión. Sea $l\in X$, entonces $\{x_n\}_{n\in\mathbb{N}}$ converge al punto l si y sólo si $\xi_l\subseteq\rho$.

Demostración:

Necesidad: Suponga que la sucesión converge a $l \in X$. Sea $V \in \xi_l$, entonces existe un abierto $U \subseteq X$ tal que $l \in U \subseteq V$. Como la sucesión converge a l y U es abierto, existe $N \in \mathbb{N}$ tal que para todo $k \geq N$ se tiene que $x_k \in U \subseteq V$. Por tanto, $V \in \rho$.

Luego, $\xi_l \subseteq \rho$.

Suficiencia: Suponga que $\xi_l \subseteq \rho$. Si $U \subseteq X$ es abierto tal que $l \in U$, entonces $U \in \xi_l \subseteq \rho$, luego existe $N \in \mathbb{N}$ tal que $k \geq N$ implica que $x_k \in U$.

Así, la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a l.

Ejemplo 3.1.8

Sea $X=\{1,2,3\}$ y considere la topología $\tau=\{X,\emptyset,\{1,2\},\{3\}\}$. Para cada $n\in\mathbb{N}$ se define $X_n=1$.

Se tiene que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a 1 y 2.

Observación 3.1.5

El punto al que converge una sucesión en un espacio topológico no necesariamente es único.

Definición 3.1.6

Sea (X, τ) un espacio topológico, \mathcal{F} un filtro en X y $l \in X$.

- 1. Se dice que el filtro \mathcal{F} converge al punto l y se escribe $\mathcal{F} \to l$ si $\xi_l \subseteq \mathcal{F}$.
- 2. Se dice que l es un **punto de acumulación** del filtro \mathcal{F} si para todo $A \in \mathcal{F}$, $l \in \overline{A}$.

Ejemplo 3.1.9

Considere $X = \{a, b\}$ con $a \neq b$ y $\tau = \{X, \emptyset, \{a\}\}$. El filtro de vecindades de b es:

$$\xi_b = \{X\}$$

y el de a:

$$\xi_a = \{X, \{a\}\}\$$

se tiene que $\xi_a \to a$ y $\xi \to b$.

Proposición 3.1.11

Sea (X, τ) un espacio topológico, ξ un filtro en X y $x \in X$. Entonces x es un punto de acumulación de ξ si y sólo si existe un filtro \mathcal{F} de X tal que $\xi \subseteq \mathcal{F}$ y $\mathcal{F} \to x$.

Demostración:

 \Rightarrow): Supongamos que $x \in X$ es un punto de acumulación de ξ , entonces para todo $A \in \xi$, $x \in \overline{A}$, esto es que para todo $A \in \xi$ y $V \in \xi_x$ se tiene que $A \cap V \neq \emptyset$. Sea

$$\eta = \left\{ A \cap V \middle| A \in \xi, V \in \xi_x \right\}$$

esta colección es no vacía y no contiene al vacío por la observación anterior. Por una proposición anterior se tiene que es una base para filtro y el filtro generado por ella η^+ cumple que

- 1. $\xi \subseteq \eta^+$.
- 2. $\xi_x \subseteq \eta^+$.

(esto por una proposición anterior) por tanto, por la segunda observación se tiene que $\eta^+ \to x$.

 \Leftarrow): Sea \mathcal{F} un filtro tal que $\xi \subseteq \mathcal{F}$ y $\mathcal{F} \to x$. Sea $U \in \tau$ tal que $x \in U$ y $A \in \xi$. Debemos probar que $U \cap A \neq \emptyset$. Como $\mathcal{F} \to x$, debe tenerse que $U \in \mathcal{F}$.

Pero, como $A \in \xi \subseteq \mathcal{F}$ entonces $U, A \in \mathcal{F}$, luego $U \cap A \in \mathcal{F}$, así $U \cap A \neq \emptyset$.

Ejercicio 3.1.2

Sean (X, τ) un espacio topológico, $A \subseteq X$ y $x \in X$ Entonces $x \in \overline{A}$ si y sólo si existe un filtro ξ de X tal que $\xi \to x$ y $A \in \xi$.

Demostración:

Ejercicio 3.1.3

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es Hausdorff (o T_2) si y sólo si dado \mathcal{F} un filtro de X que converge existe un único $l \in X$ tal que $\mathcal{F} \to l$.

Demostración:

Proposición 3.1.12

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función. Entonces, f es continua en $x_0 \in X_1$ si y sólo si para todo ξ filtro de X_1 tal que $\xi \to x_0$, tenemos que $f(\xi) \to f(x_0)$.

Demostración:

 \Rightarrow) : Suponga que f es continua en $x_0 \in X_1$. Sea ξ un filtro de X_1 tal que $\xi \to x_0$. Hay que demostrar que $\xi_{f(x_0)} \subseteq f(\xi)$.

Sea $W \in \tau_2$ tal que $f(x_0) \in W$. Como f es continua en x_0 , existe un abierto $V \in \tau_1$ tal que $x_0 \in V$ y $f(V) \subseteq W$. Por hipótesis, $\xi \to x_0$, luego $\xi_{x_0} \subseteq \xi$, así $V \in \xi$, luego $f(V) \in f(\xi)$, por absorción se sigue que $W \in f(\xi)$. Por absorción se sigue que

$$\xi_{f(x_0)} \subseteq f(\xi)$$

por tanto, $f(\xi) \to f(x_0)$.

 \Leftarrow): Tenemos que $\xi_{x_0} \to x_0$, por hipótesis se sigue que $f(\xi_{x_0}) \to f(x_0)$. Sea $W \in \tau_2$ tal que $f(x_0) \in W$, luego $W \in f(\xi_{x_0})$, existe entonces $M \in \xi_{x_0}$ tal que

$$f(M) \subseteq W$$

Como M es vecindad de x_0 existe entonces $V \in \tau_1$ tal que $x_0 \in V \subseteq M$, luego

$$f(U) \subseteq W$$

con $x_0 \in V$. Por tanto, f es continua en x_0 .

Proposición 3.1.13

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia de espacios topológicos, considere

$$X = \prod_{\alpha \in I} X_{\alpha}$$

junto con la topología producto τ_p . Sea ξ un filtro en X y $x_0 \in X$. Entonces $\xi \to x_0$ si y sólo si para todo $\alpha \in I$ el filtro $p_{\alpha}(\xi) \to p_{\alpha}(x_0)$.

Demostración:

- ⇒): Es inmedita de la proposición anterior y del hecho de que cada función proyección es continua.
- \Leftarrow): Suponga que para todo $\alpha \in I$, $p_{\alpha}(\xi) \to p_{\alpha}(x_0)$. Hay que probar que

$$\xi_{x_0} \subseteq \xi$$

(en particular, basta con probar la contención para elementos básicos de (X, τ_p)). Sea $U = \prod_{\alpha \in I} U_{\alpha}$ un elemento básico de τ_p tal que $x_0 \in U$. Sean $\alpha_1, ..., \alpha_n \in I$ tales que

$$U = p_{\alpha_1}^{-1}(U_{\alpha_1}) \cap \dots \cap p_{\alpha_n}^{-1}(U_{\alpha_n})$$

con $U_{\alpha_i} \in \tau_{\alpha_i}$ para todo $i \in [1, n]$. Tenemos que para todo $i \in [1, n]$, $x_{0\alpha_i} \in U_{\alpha_i}$.

Como para todo $\alpha \in I$, $p_{\alpha}(\xi) \to p_{\alpha}(x_0)$, es decir que para todo $i \in [1, n]$, $U_{\alpha_i} \in p_{\alpha_i}(\xi)$. Por tanto, para todo $i \in [1, n]$ existe $F_i \in \xi$ tal que

$$p_{\alpha_i}(F_i) \subseteq U_{\alpha_i}$$

$$\Rightarrow p_{\alpha_i}^{-1}(p_{\alpha_i}(F_i)) \subseteq p_{\alpha_i}^{-1}(U_{\alpha_i})$$

$$\Rightarrow F_i \subseteq p_{\alpha_i}^{-1}(U_{\alpha_i})$$

por absorción se sigue que $p_{\alpha_i}^{-1}(U_{\alpha_i}) \in \xi$ para todo $i \in [1, n]$, luego por ser ξ filtro se sigue que $U \in \xi$. Luego, se tiene que $\xi \to x_0$.

Capítulo 4

Espacios Compactos

4.1. Conceptos Fundamentales

Definición 4.1.1

Sea (X, τ) un espacio topológico.

1. Una familia $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ formada por subconjuntos de X es una **cubierta de** X, si

$$X = \bigcup_{\alpha \in I} U_{\alpha}$$

- 2. Si $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ es una cubierta de X y para todo ${\alpha} \in I$, U_{α} es un abierto, diremos que \mathcal{U} es una **cubierta abierta de** X.
- 3. El espacio (X, τ) es un **espacio compacto** si toda cubierta abierta $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ de X existe una subfamilia finita $\{U_{\alpha_1}, ..., U_{\alpha_n}\}$ de \mathcal{U} tal que

$$X = \bigcup_{i=1}^{n} U_{\alpha_i}$$

4. Un subconjunto $C \subseteq X$ es un subconjunto compacto de X si (C, τ_C) es un espacio compacto.

Proposición 4.1.1

Sea (X, τ) un espacio topológico y \mathcal{B} una base para la topología τ . Entonces, (X, τ) es compacto si y sólo si para cada cubierta de X, $\{B_{\alpha}\}_{{\alpha}\in I}$ formada por básicos de τ existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$X = \bigcup_{i=1}^{n} B_{\alpha_i}$$

Demostración:

 \Rightarrow): Es inmediata del hecho de que (X, τ) es compacto.

$$\Leftarrow$$
) : Sea $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in I} \subseteq \tau$ tal que

$$X = \bigcup_{\alpha \in I} U_{\alpha}$$

Dado $\alpha \in I$, existe $\left\{ B^{\alpha}_{\beta} \right\}_{\beta \in J_{\alpha}}$ tal que

$$U_{\alpha} = \bigcup_{\beta \in J_{\alpha}} B_{\beta}^{\alpha}$$

así,

$$X = \bigcup_{\alpha \in I} \bigcup_{\beta \in J_\alpha} B_\beta^\alpha$$

luego, la colección formada por todos estos básicos es una cubierta de X. Por hipótesis, existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$X = \bigcup_{i=1}^{n} \bigcup_{\beta \in J_{\alpha_i}} B_{\beta}^{\alpha_i} = \bigcup_{i=1}^{n} U_{\alpha_i}$$

luego, X es compacto.

Proposición 4.1.2

Sea (X, \prec) un conjunto ordenado tal que cada conjunto no vacío de X acotado superiormente tiene una mínima cota superior. Entonces al considerar (X, τ_{\prec}) se tiene que cada intervalo cerrado de X es compacto.

Demostración:

Sean $a, b \in X$ con $a \prec b$ y sea \mathcal{U} una cubierta de intervalo cerrado [a, b] formada por conjuntos abiertos en [a, b] con la topología usual del subespacio. Se hará en varios pasos:

- 1. Veamos que dado $x \in [a, b]$ con $x \neq b$ podemos encontrar un punto $y \in [a, b]$ tal que $x \prec y$ y tal que el invervalo cerrado [x, y] está contenido en la unión de uno o dos elementos de \mathcal{U} .
 - I) Suponga que x no tiene sucesor inmediato. Sea $V \in \mathcal{U}$ tal que $x \in V$ (en particular se tiene que $V \in \tau_{\prec [a,b]}$), entonces existe $c \in (a,b)$ tal que $[x,c) \subseteq V$ y $(x,c) \neq \emptyset$. Sea $y \in (x,c)$, de lo anterior se sigue que $[x,y] \subseteq V$.
 - II) Suponga que x tiene sucesor inmediato. Sea $z \in X$ el sucesor inmediato de x, entonces $[x, z] = \{x, z\}$. Además,

$$x \prec z \prec b$$

sean $U_1, U_2 \in \mathcal{U}$ tales que $x \in U_1$ y $z \in U_2$. Entonces:

$$[x,z] \subseteq U_1 \cup U_2$$

2. Sea

$$\mathcal{L} = \left\{ x \in [a, b] \middle| a \prec x \text{ y } [a, x] \text{ está contenido en una unión finita de elementos de } \mathcal{U} \right\}$$

por (1) la familia $\mathcal{L} \neq \emptyset$. Como para todo $l \in \mathcal{L}$, $a \prec l \preceq b$, entonces \mathcal{L} es un conjunto acotado superiormente y no vacío. Por hipótesis tiene mínima cota superior. Sea $c \in X$ la mínima cota superior de \mathcal{L} . Entonces

$$a \prec c \prec b$$

3. Veamos que $c \in \mathcal{L}$. Sea $A \in \mathcal{U}$ tal que $c \in A \in \tau_{\prec_{[a,b]}}$, luego existe $d \in [a,b]$ tal que $c \in (d,c] \subseteq A$. Si $\mathcal{L} \cap (d,c) = \emptyset$, entonces d sería cota superior de \mathcal{L} tal que $d \prec c \#_c$. Por tanto, $\mathcal{L} \cap (d,c) \neq \emptyset$. Sea $z \in \mathcal{L} \cap (d,c)$, entonces existen $U_1, ..., U_n \in \mathcal{U}$ tales que

$$[a,z] \subseteq U_1 \cup \cdots \cup U_n$$

por ende,

$$[a,c] \subseteq [a,z] \cup (d,c] \subseteq U_1 \cup \cdots \cup U_n \cup A$$

así $c \in \mathcal{L}$.

4. Veamos que c = b. Suponga que $c \prec b$. Por (1) existe $y \in [a, b]$ tal que $c \prec y$ y [c, y] y está contenido en una unión finita de elementos de \mathcal{U} . Como $c \in \mathcal{L}$ tenemos que

$$[a,y] = [a,c] \cup [c,y]$$

donde [a, y] está contenido en una unión finita de elementos de \mathcal{U} y por lo tanto, $y \in \mathcal{L}$, pero $c \prec y \#_c$. Por tanto, c = b.

por los incisos anteriores se sigue que [a, b] es compacto.

Corolario 4.1.1

Todo invervalo cerrado de (\mathbb{R}, τ_u) es compacto.

Demostración:

Es inmediato del teorema anterior.

Ejemplo 4.1.1

Sea ([0, 1], $\tau_{u_{[0,1]}}$). Considere

$$\mathcal{U} = \left\{ \left(\frac{1}{n}, 1\right] \middle| n \in \mathbb{N} \right\} \subseteq \tau_{u_{[0,1]}}$$

además, $(0,1] \subseteq \bigcup_{U \in \mathcal{U}} U$. Si $m \in \mathbb{N}$ existe un número real $k \in \mathbb{R}$ tal que $0 < k < \frac{1}{m}$. Por ende, \mathcal{U} no tiene una subcubierta abierta finita para (0,1]. Luego el intervalo semi-abierto (0,1] no es compacto.

Este ejemplo demuestra que la propiedad de ser compacto no se hereda.

Proposición 4.1.3

Sea (X, τ) un espacio topológico y sea $A \subseteq X$. Entonces (A, τ_A) es compacto si y sólo si para cada colección $\{U_\alpha\}_{\alpha \in I}$ de abiertos en X tales que

$$A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$$

existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$A \subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

Demostración:

 \Rightarrow): Sea $\{U_{\alpha}\}_{{\alpha}\in I}$ tales que

$$A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$$

entonces, $\{U_{\alpha} \cap A\}_{\alpha \in I}$ es una cubierta abierta de (A, τ_A) . Como (A, τ_A) es compacto, existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$A = \bigcup_{i=1}^{n} U_{\alpha_i} \cap A$$

es decir, se tiene que

$$A \subseteq \bigcup_{i=1}^{n} U_{\alpha_i}$$

 \Leftarrow) : Sea $\{V_{\alpha}\}_{{\alpha}\in J}$ una cubierta abierta de (A,τ_A) . Entonces, dado $\alpha\in J$ existe $U_{\alpha}\in \tau$ tal que

$$V_{\alpha} = U_{\alpha} \cap A$$

luego,

$$A\subseteq\bigcup_{\alpha\in I}U_\alpha$$

por hipótesis existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$A \subseteq \bigcup_{i=1}^{n} U_{\alpha_i}$$

por ende,

$$A = \bigcup_{i=1}^{n} (U_{\alpha_i} \cap A) = \bigcup_{i=1}^{n} V_{\alpha_i}$$

Así, el espacio (A, τ_A) es compacto.

Proposición 4.1.4

Sea (X, τ) un espacio compacto y $A \subseteq X$ cerrado. Entonces, A es compacto.

Demostración:

Sea $\{U_{\alpha}\}_{{\alpha}\in I}$ una colección de abiertos de τ tales que

$$A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$$

Luego

$$X = \left(\bigcup_{\alpha \in I} U_{\alpha}\right) \cup (X - A)$$

por ser (X, τ) compacto, existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$X = \left(\bigcup_{i=1}^{n} U_{\alpha_i}\right) \cup (X - A)$$

En particular, se tiene que

$$A \subseteq \bigcup_{i=1}^{n} U_{\alpha_i}$$

por la proposición anterior se sigue que A es un subconjunto compacto de X.

Proposición 4.1.5

Sea (X, τ) un espacio Hausdorff y sea $A \subseteq X$ compacto, entonces A es un cerrado de X.

Demostración:

Sea $x \in X - A$, entonces para cada $y \in A$ existen $U_y, V_u \in \tau$ tales que

$$x \in U_y \quad y \in V_y \quad U_y \cap V_y = \emptyset$$

(por ser (X, τ) Hausdorff). Luego,

$$A \subseteq \bigcup_{y \in A} V_y$$

Como A es compacto existen $y_1, ..., y_n \in A$ tales que

$$A \subseteq \bigcup_{i=1}^{n} V_{y_i} = V$$

es claro que V es un abierto que contiene a A. Definamos

$$U = \bigcap_{i=1}^{n} U_{y_i}$$

el cual es abierto por ser intersección finita de abiertos, además cumple que $x \in U$. Por construcción se sigue que

$$U\cap V=\emptyset\Rightarrow U\cap A=\emptyset$$

por lo cual

$$x \in U \subseteq X - A$$

así para cada $x \in X - A$ existe un abierto U tal que $x \in U \subseteq X - A$. Por tanto, A - X es abierto, es decir que A es cerrado.

Ejemplo 4.1.2

Considere $X = \{1, 2, 3\}$ y considere a $\tau_I = \{X, \emptyset\}$. Se tiene que (X, τ_I) no es de Hausdorff pero $\{1, 2\}$ es compacto y no es cerrado.

Proposición 4.1.6

Sean (X, τ) y (Y, σ) espacios topológicos y $f: (X, \tau) \to (Y, \sigma)$ una función continua. Si (X, τ) es un espacio compacto, entonces f(X) es un subconjunto compacto de (Y, σ) .

Demostración:

Sea $\{V_{\alpha}\}_{{\alpha}\in I}\subseteq \sigma$ tal que

$$f(X) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$$

luego

$$X \subseteq f^{-1}(f(X))$$

$$\Rightarrow X = \bigcup_{\alpha \in I} f^{-1}(V_{\alpha})$$

como (X, τ) es compacto, existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$X \subseteq \bigcup_{i=1}^{n} f^{-1}(V_{\alpha_i})$$

Corolario 4.1.2

La propiedad de ser compacto es topológica.

Demostración:

Definición 4.1.2

Decimos que una colección $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I}$ de conjuntos tiene la propiedad de la intersección finita, si para cada subcolección finita $\{A_{\alpha_1}, ..., A_{\alpha_n}\}$ de \mathcal{A} se tiene que

$$\bigcap_{i=1}^{n} A_{\alpha_i} \neq \emptyset$$

Proposición 4.1.7

Sea (X, τ) un espacio topológico. Entonces (X, τ) es compacto si y sólo si para cada colección $\{F_{\alpha}\}_{{\alpha}\in I}$ de conjuntos cerrados de X que tiene la propiedad de intersección finita cumple que

$$\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$$

Demostración:

 \Rightarrow) : Sea $\{F_{\alpha}\}_{{\alpha}\in I}$ una colección de cerrados tales que tienen la propiedad de intersección finita. Queremos que

$$\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$$

Suponga que no se cumple esto, es decir que

$$\bigcap_{\alpha \in I} F_{\alpha} = \emptyset$$

Entonces,

$$X = \bigcup_{\alpha \in I} X - F_{\alpha}$$

pero cada F_{α} es cerrado, es decir que $\{X - F_{\alpha}\}_{{\alpha} \in I}$ es una cubierta abierta de (X, τ) . Por ser (X, τ) compacto, existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$X = \bigcup_{i=1}^{n} X - F_{\alpha_i}$$

Luego,

$$\bigcap_{i=1}^{n} F_{\alpha_i} = \emptyset$$

es decir que $\{F_{\alpha}\}_{{\alpha}\in I}$ no tiene la propiedad de intersección finita $\#_c$. Por tanto,

$$\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$$

 $\Leftarrow)$: Sea $\{U_{\alpha}\}_{\alpha\in I}$ una cubierta abierta de X, es decir que

$$X = \bigcup_{\alpha \in I} U_{\alpha}$$

luego,

$$\bigcap_{\alpha \in I} X - U_{\alpha} = \emptyset$$

donde $X - U_{\alpha}$ es cerrado para todo $\alpha \in I$. Así, la familia $\{X - U_{\alpha}\}_{\alpha \in I}$ es una familia de cerrados que no puede tener la propiedad de la intersección finita. Por ende, existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$\bigcap_{i=1}^{n} X - U_{\alpha_i} = \emptyset$$

es decir, que

$$X = \bigcup_{i=1}^{n} U_{\alpha_i}$$

por tanto, el espacio (X, τ) es compacto.

Corolario 4.1.3

Sea $C_1 \supseteq C_2 \supseteq ... \supseteq C_n \supseteq C_{n+1} \supseteq ...$ una sucesión de conjuntos cerrados no vacíos de un espacio topológico (X, τ) compacto. Entonces,

$$\bigcap_{n=1}^{\infty} C_n \neq \emptyset$$

Corolario 4.1.4

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es compacto si y sólo si toda colección \mathcal{A} de subconjuntos de X que tiene la propiedad de intersección finita cumple que

$$\bigcap_{A \in \mathcal{A}} \overline{A} \neq \emptyset$$

Proposición 4.1.8

Sea (X,τ) un espacio topológico, entonces los siguientes enunciados son equivalentes:

- 1. (X,τ) es compacto.
- 2. Cada filtro de X tiene un punto de acumulación.
- 3. Todo ultrafiltro de X es convergente.

Demostración:

 $(1) \Rightarrow (2)$: Queremos ver que todo filtro tiene un punto de acumulación. Sea ξ un filtro en X. Tenemos que ξ satisface la propiedad de la intersección finita, luego por el corolario anterior

$$\bigcap_{A\in\mathcal{E}}\overline{A}\neq\emptyset$$

Luego, existe $x \in X$ tal que $x \in \overline{A}$ para todo $A \in \xi$.

- $(2) \Rightarrow (3)$: Sea \mathcal{F} un ultrafiltro. Por hipótesis existe $p \in X$ tal que p es punto de acumulación de \mathcal{F} . Existe ρ filtro de x tal que $\mathcal{F} \subseteq \rho$ y además, $\rho \to p$. Como \mathcal{F} es ultrafiltro, se sigue que $\mathcal{F} = \rho$. Por ende, $\mathcal{F} \to p$.
- $(3) \to (1)$: Sea $\{U_{\alpha}\}_{{\alpha} \in I}$ una cubierta abierta de X. Suponga que dado $F \subseteq I$ finito, existe $x \in X$ tal que

$$x \notin \bigcup_{\alpha \in F} U_{\alpha}$$

La familia

$$\mathcal{L} = \left\{ X - \bigcup_{\alpha \in F} U_{\alpha} \middle| F \subseteq I \text{ finito} \right\}$$

es no vacía y no contiene al vacío. En particular se tiene que es una base de filtro. Sea \mathcal{L}^+ el filtro generado por dicha base. Sea \mathcal{U} un ultrafiltro de X tal que $\mathcal{L}^+ \subseteq \mathcal{U}$. Sea $p \in X$ tal que

$$\mathcal{U} \to p$$

Sea $\alpha \in I$ tal que $p \in U_{\alpha} \in \mathcal{U}$ (ya que $\xi_p \subseteq \mathcal{U}$). Tenemos que $X - U_{\alpha} \in \mathcal{L} \subseteq \mathcal{L}^+ \subseteq \mathcal{U}$. Por tanto, $U_{\alpha}, X - U_{\alpha} \in \mathcal{U} \#_c$. Por tanto existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$\bigcup_{i=1}^{n} U_{\alpha_i} = X$$

luego, (X, τ) es compacto.

Teorema 4.1.1 (Teorema de Tychonov)

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia de espacios topológicos arbitaria y tomemos

$$X = \prod_{\alpha \in I} X_{\alpha}$$

consideramos el espacio topológico (X, τ_p) . Entonces, (X, τ_p) es compacto si y sólo si (X_α, τ_α) es compacto, para todo $\alpha \in I$.

Demostración:

 \Rightarrow) : Sea $\alpha \in I$, consideremos $p_{\alpha}:(X,\tau_{p})\to (X_{\alpha},\tau_{\alpha})$ la α -ésima proyección. Esta función es suprayectiva y continua. Por tanto,

$$p_{\alpha}(X) = X_{\alpha}$$

es un compacto en $(X_{\alpha}, \tau_{\alpha})$, es decir que $(X_{\alpha}, \tau_{\alpha})$ es compacto.

 \Leftarrow) : Sea ξ un ultrafiltro de X. Sea $\alpha \in I$, consideremos $p_{\alpha}(\xi)$ siendo $p_{\alpha}:(X,\tau_p)\to (X_{\alpha},\tau_{\alpha})$ la función α -ésima proyección. Por un ejercicio se tiene que $p_{\alpha}(\xi)$ es un filtro de X_{α} , más aún, es un ultrafiltro de $(X_{\alpha},\tau_{\alpha})$.

Como $(X_{\alpha}, \tau_{\alpha})$ es compacto, entonces el filtro $p_{\alpha}(\xi)$ es convergente, luego existe $x_{\alpha} \in X_{\alpha}$ tal que $p_{\alpha}(\xi) \to x_{\alpha}$. Por la proposición 3.1.13 se sigue que $\xi \to x$, donde

$$x = (x_{\alpha})_{\alpha \in I}$$

Por tanto, (X, τ_p) es compacto.

Ejemplo 4.1.3

Sea $X = \{0,1\}$ y $\tau = \{X,\emptyset,\{0\},\{1\}\}$. Para todo $n \in \mathbb{N}$ definimos $X_n = X$ y $\tau_n = \tau$. Tomemos

$$Y = \prod_{n=1}^{\infty} X_n$$

y consideremos (Y, τ_c) . Se tiene que

$$\tau_c = \tau_D$$

como Y es no finito, entonces (Y, τ_c) no es compacto.

Teorema 4.1.2

Si (X,τ) es compacto y Hausdorff, entonces es normal.

Demostración:

Como es Hausdorff, ya es T_1 , por lo que basta con probar que (X, τ) es T_4 . Se harán dos cosas:

1. (X, τ) es T_3 . Sea $A \subseteq X$ cerrado y $x \in X$ tal que $x \notin A$. Como $x \notin A$ se sigue que $x \neq a$ para todo $a \in A$. Por ser (X, τ) T_2 , existen $U_a, V_a \in \tau$ tales que

$$a \in U_a \quad x \in V_a \quad U_a \cap V_a = \emptyset$$

Se tiene que $\{U_a\}_{a\in I}$ es una cubierta abierta de A. Como (X,τ) es compacto y A es cerrado, A es compacto, luego existen $a_1, ..., a_n \in A$ tales que

$$A \subseteq \bigcup_{i=1}^{n} U_{a_i}$$

tomemos $U = \bigcup_{i=1}^n U_{a_i}$ y $V = \bigcap_{i=1}^n V_{a_i}$. Es claro que $U, V \in \tau$ y son tales que

$$A \subseteq U$$
, $x \in V$, $U \cap V = \emptyset$

por tanto, (X, τ) es T_3 .

2. Sean $A, B \subseteq X$ cerrados tales que $A \cap B = \emptyset$ (siendo ambos no vacíos). Como (X, τ) es T_3 entonces para cada $b \in B$ existen dos abiertos $U_b, B_b \in \tau$ tales que

$$A \subseteq U_b, \quad b \in V_b, \quad U_b \cap V_b = \emptyset$$

Entonces, $\{V_b\}_{b\in B}$ es una cubierta abierta del cerrado B. Como (X,τ) es compacto se sigue que B es un subconjunto compacto de X, luego existen $b_1,...,b_n\in B$ tales que

$$B \subseteq \bigcup_{i=1}^{n} V_{b_i}$$

Tomemos $U = \bigcap_{i=1}^n U_{b_i}$ y $V = \bigcup_{i=1}^n V_{b_i}$, se tiene entonces por la elección de los U_b y V_b que:

$$A \subseteq U$$
, $B \subseteq V$, $U \cap V = \emptyset$

luego, el espacio (X, τ) es T_4 .

Proposición 4.1.9

Sea (X, τ) un espacio T_2 y sea ∞ un elemento que no está en X. Definimos $\hat{X} = X \cup \{\infty\}$. Entonces, podemos dotar a \hat{X} de una topología $\hat{\tau}$ al considerar todos los conjuntos:

- 1. $U \operatorname{con} U \in \tau$.
- 2. $\hat{X} C$ con C un subconjunto compacto de (X, τ) .

Demostración:

Veamos que $\hat{\tau}$ es una topología sobre \hat{X} . En efecto:

- 1. $\emptyset \in \hat{\tau}$ ya que $\emptyset \in \tau$. Y, $\hat{X} \in \hat{\tau}$ pues el vacío \emptyset es compacto.
- 2. Sean $A, B \in \hat{\tau}$.
 - I) Si A y B son del tipo 1), como τ es una topología se sigue que $A \cap B \in \tau \subseteq \hat{\tau}$.
 - II) Si A y B son del tipo 2), existen $C, D \subseteq X$ compactos tales que

$$A = \hat{X} - C$$
 y $B = \hat{X} - D$

entonces,

$$A \cap B = (\hat{X} - C) \cap (\hat{X} - D)$$
$$= \hat{X} - C \cup D$$

donde $C \cup D$ es compacto en (X, τ) . Se sigue entonces que $A \cap B \in \hat{\tau}$.

III) Suponga que A es de tipo 1) y B es de tipo 2), entonces existe $C \subseteq X$ compacto tal que

$$B = \hat{X} - C$$

Como (X, τ) es T_2 , entonces C es cerrado, luego

$$A \cap B = A \cap (\hat{X} - C)$$
$$= A \cap (X - C)$$

el cual está en τ pues $\infty \notin A$.

- 3. Sea $\{U_{\alpha}\}_{{\alpha}\in I}\subseteq \hat{\tau}$.
 - I) Suponga que $\forall \alpha \in I, U_{\alpha} \in \tau$. Entonces, $\bigcup_{\alpha \in I} U_{\alpha} \in \tau \subseteq \hat{\tau}$.
 - II) Suponga que para todo $\alpha \in I$ existe $C_{\alpha} \subseteq (X, \tau)$ compacto tal que

$$U_{\alpha} = \hat{X} - C_{\alpha}$$

Entonces,

$$\bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} (\hat{X} - C_{\alpha})$$
$$= \hat{X} - \bigcap_{\alpha \in I} C_{\alpha}$$

luego la intersección $\bigcap_{\alpha \in I} C_{\alpha}$ es compacto en (X, τ) (pues al ser cada uno de los C_{α} compacto en este espacio T_2 , se sigue que cada uno es cerrado, luego la intersección es cerrada pues es subconjunto cerrado de un compacto, digamos C_{α_0} para algún $\alpha_0 \in I$). Así, la unión está en $\hat{\tau}$.

III) Sean $I_1, I_2 \subseteq I$ tales que para todo $\alpha \in I_1, U_\alpha \in \tau$ y para todo $\alpha \in I_2$ existe C_α subconjunto compacto de (X, τ) tal que $U_\alpha = \hat{X} - C_\alpha$. Tenemos que

$$\bigcup_{\alpha \in I} U_{\alpha} = \left(\bigcup_{\beta \in I_1} U_{\beta}\right) \cup \left(\bigcup_{\gamma \in I_2} U_{\gamma}\right) = U \cup (\hat{X} - C)$$

con $U \in \tau$ y C un subconjunto de (X,τ) compacto (esto por los incisos anteriores). Notemos que

$$x \in U \cup (\hat{X} - C) \iff x \in U \text{ o } x \in \hat{X} - C$$

 $\iff x \in \hat{X} - (C - U)$

pues, $C - U = C \cap (X - U)$. Pero, C - U es un subconjunto cerrado del compacto C (el cual es cerrado y es T_2 con la topología del subespacio), luego la unión de todos los U_{α} es del tipo 2), esto es

$$\bigcup_{\alpha \in I} U_{\alpha} \in \hat{\tau}$$

por los tres incisos, se sigue que $\hat{\tau}$ es una topología sobre $\hat{\tau}$.

Observación 4.1.1

Tenemos que $\hat{X} = X \cup \{\infty\}$. Además, $\tau \subseteq \hat{\tau}$. Por lo tanto, $\tau \subseteq \hat{\tau}_X$.

Sea $U \in \hat{\tau}_X$. Entonces existe $U' \in \tau$ tal que $U = U' \cap X$. Se tienen dos casos:

- 1. U' es del tipo 1). Entonces $U = U' \cap X = U' \in \tau$.
- 2. U' es del tipo 2), es decir que existe $C \subseteq X$ compacto en (X, τ) tal que $U' = \hat{X} C$. Luego,

$$U = U' \cap X = (\hat{X} - C) \cap X = X - C$$

donde C es cerrado pues (X, τ) es Hausdorff. Luego, $X - C \in \tau$.

Por los dos incisos, se sigue que $\tau = \hat{\tau}_X$.

4.2. Compacidad Local

Definición 4.2.1

Un espacio topológico (X, τ) se dice **localmente compacto en el punto** $x \in X$ si existe $C \subseteq X$ compacto tal que C es una vecindad de x.

Si (X, τ) es localmente compacto en cada uno de sus puntos, se dice que (X, τ) es **localmente** compacto.

Observación 4.2.1

Todo espacio compacto es localmente compacto.

Ejemplo 4.2.1

 (\mathbb{R}, τ_u) es localmente compacto. En efecto, para todo $r \in \mathbb{R}$, la vecindad $[r - \pi, r + \pi]$ es compacta (por ser un invervalo cerrado). Pero, este espacio no es compacto.

Ejemplo 4.2.2

Considere $(\mathbb{Q}, \tau_{u_{\mathbb{Q}}})$. Afirmamos que este espacio no es localmente compacto. Sea $x \in \mathbb{Q}$ y suponga que C es una vecindad compacta de x en $(\mathbb{Q}, \tau_{u_{\mathbb{Q}}})$. Luego, existe un intervalo $]a, b[\subseteq \mathbb{R}$ que contiene a x tal que

$$x\in]a,b[\cap \mathbb{Q}\subseteq C$$

Sea $i_0 \in]a, b[$ irracional, para cada $q \in C$ definimos

$$U_q = \left\{ \begin{array}{ll} \left\{ r \in \mathbb{R} \middle| q < r \right\} & \text{si} \quad i_0 < q. \\ \left\{ r \in \mathbb{R} \middle| r < q \right\} & \text{si} \quad q < i_0. \end{array} \right.$$

es claro que $\{V_q = U_q \cap C\}_{q \in C}$ es una cubierta abierta de C (considerándola en el subespacio (C, τ_{u_C})). Como C es compacto existen $q_1, ..., q_n \in C$ tales que

$$C = \bigcup_{i=1}^{n} V_{q_i}$$

podemos suponer que

$$q_1 < \cdots < q_l < i_0 < q_{l+1} < \cdots < q_n$$

En particular, se sabe que $(q_l, q_{l+1}) \cap C \neq \emptyset$ (por la densidad de los racionales). Sea $t \in (q_l, q_{l+1}) \cap C$, se tiene que

$$t \notin V_{q_i}, \quad \forall i \in [1, n]$$

luego $C \nsubseteq \bigcup_{i=1}^n V_{q_i} \#_c$. Por tanto, la propiedad de ser localmente compacto no es hereditaria.

Proposición 4.2.1

Sea $\{(X_1, \tau_1), ..., (X_n, \tau_n)\}$ una familia finita de espacios localmente compactos. Tomemos

$$X = \prod_{i=1}^{n} X_i$$

entonces, $(X, \tau_p = \tau_c)$ es localmente compacto.

Demostración:

Sea $x \in X$, digamos $x = (x_1, ..., x_n)$ donde $x_i \in X_i$ para todo $i \in [1, n]$. Como cada (X_i, τ_i) es localmente compacto, existe $V_i \in \tau_i$ vecindad de x_i tal que $\overline{V_i}$ es compacto.

Tomemos $V = V_1 \times \cdots \times V_n$, por lo anterior se tiene que $x \in V$, es decir

$$x \in \prod_{i=1}^{n} V_i \in \tau_p$$

si definimos $C = \prod_{i=1}^n \overline{V_i}$, dotándolo de la topología producto (C, τ_p) es un espacio compacto (por el teorema de Tychonov), tal que

$$x \in V \subseteq C$$

donde $C \subseteq X$ es compacto en (X, τ_p) . Luego, el espacio es localmente compacto.

Ejemplo 4.2.3

Para $n \in \mathbb{N}$ definimos $X_n = \mathbb{R}$ y $\tau_n = \tau_u$. Tomemos $X = \prod_{i=1}^{\infty} X_n$ y considere así al espacio topológico (X, τ_p) . Tenemos que para todo $n \in \mathbb{N}$, (X_n, τ_n) es localmente compacto. Mostraremos que (X, τ_p) no es localmente compacto.

Demostración:

En efecto, sea $x=(x_i)_{i\in\mathbb{N}}\in X$ y suponga que existe $U\in\tau_p$ abierto y $C\subseteq X$ compacto tales que

$$x \in U \subseteq C$$

podemos suponer que U es un básico de τ_p , de esta forma

$$U = \prod_{n \in \mathbb{N}} U_n$$

donde $U_n \in \tau_n$ para todo $n \in \mathbb{N}$ siendo $U_n \neq \mathbb{R}$ para casi todo $n \in \mathbb{N}$ salvo una cantidad finita, es decir que existe $M \subseteq \mathbb{N}$ finito tal que para todo $n \in \mathbb{N} - M$, $U_n = \mathbb{R}$. Tenemos además, que para todo $n \in \mathbb{N}$, (X_n, τ_n) es de Hausdorff, por lo tanto, (X, τ_p) es de Hausdorff. Como $C \subseteq X$ es compacto, por lo anterior debe suceder que C es cerrado. Luego, el conjunto

$$\overline{U} = \overline{\prod_{n \in \mathbb{N}} U}_n = \prod_{n \in \mathbb{N}} \overline{U}_n$$

es compacto. Pero para $s \in \mathbb{N} - M$ se tiene que $U_s = \mathbb{R}$, es decir que $(U_s, \tau_s) = (\mathbb{R}, \tau_u)$ es compacto $\#_c$. Luego la propiedad de compacidad local no necesariamente se preserva bajo productos arbitrarios.

Proposición 4.2.2

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos. Si $f: (X_1, \tau_1) \to (X_2, \tau_2)$ es una función suprayectiva, continua y abierta siendo (X_1, τ_1) localmente compacto, entonces (X_2, τ_2) es loclamente compacto.

Demostración:

Sea $x_2 \in X_2$. Como f es suprayectiva, existe $x_1 \in X_1$ tal que $f(x_1) = x_2$. Al ser (X_1, τ_1) localmente compacto, existe $U \in \tau$ y $C \subseteq X$ vecindad compacta de x_1 tal que

$$x \in U \subseteq C$$

luego, $x_2 = f(x_1) \in f(U) \subseteq f(C)$. Donde $f(U) \in \tau_2$ y, al ser f continua se sigue que f(C) es compacto en (X_2, τ_2) .

Observación 4.2.2

Nótese que en la proposición anterior se debilitó la hipótesis de que f sea homomorfismo, pues no se pide que f sea inyectiva para obtener el resultado.

Corolario 4.2.1

La propiedad de compacidad local es topológica.

Demostración:

Inmediato del teorema anterior.

Proposición 4.2.3

Sea (X, τ) un espacio topológico de Hausdorff localmente compacto el cual **no** es compacto. Entonces,

- 1. $\overline{X} = \hat{X}$ en $(\hat{X}, \hat{\tau})$.
- 2. $(\hat{X}, \hat{\tau})$ es un espacio compacto y Hausdorff.

Demostración:

De (1): Sea $U \in \hat{\tau}$ tal que $\infty \in U$, por tanto, $U = \hat{X} - C$ donde $C \subseteq X$ es un compacto de (X, τ) . Como (X, τ) no es compacto, entonces $C \neq X$. Luego

$$U \cap X = (\hat{X} - C) \cap X = X - C \neq \emptyset$$

así, $\infty \in \overline{X}$. Por ende, $\overline{X} = \hat{X}$.

De (2): Veamos que $(\hat{X}, \hat{\tau})$ es de Hausdorff. En efecto, sean $x, y \in \hat{X}$ con $x \neq y$.

1. Si $x, y \in X$ al ser (X, τ) de Hausdorff existen dos abiertos $U, V \in \tau$ tales que

$$x \in U$$
 $y \in V$ y $U \cap V = \emptyset$

en particular, $U, V \in \hat{\tau}$.

2. Suponga que $x = \infty$. Como (X, τ) es localmente compacto, existe $C \subseteq X$ compacto $V \in \tau$ abierto en (X, τ) tales que

$$y \in V \subseteq C$$

Tomemos U = X - C. Se tiene que $U \in \hat{\tau}$, entonces

$$x \in U$$
, $y \in V$ $U \cap V = \emptyset$

donde $V \in \tau \subseteq \hat{\tau}$.

Por los dos incisos anterioes, se sigue que $(\hat{X}, \hat{\tau})$ es Hausdorff.

Veamos que es compacto. Sea $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ una cubierta abierta de $(\hat{X}, \hat{\tau})$. Como $\infty \notin X$ existe $\alpha_0 \in I$ tal que

$$\infty \in U_{\alpha_0} = \hat{X} - C_{\alpha_0}$$

donde $C_{\alpha_0} \subseteq X$ es compacto en (X, τ) . Sea

$$\mathcal{U}' = \{U_{\alpha} \cap X\}_{\alpha \in I}$$

este conjunto es una cubierta abierta de X (pues, recordemos que $\hat{\tau}_X = \tau$, es decir que la topología del subespacio coincide con la de (X, τ)). Como C_{α_0} es compacto, por un teorema existen $\alpha_1, ..., \alpha_n \in I$ tales que

$$C_{\alpha_0} \subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

Luego,

$$\hat{X} = (\hat{X} - C_{\alpha_0}) \cup C_{\alpha_0} = \bigcup_{i=0}^n U_{\alpha_i}$$

por tanto, $(\hat{X}, \hat{\tau})$ es compacto.