

Оценка рыночного риска портфеля

Васильев Николай Кондратьева Валерия Мамедов Ильгар Еременко Анастасия

Github

- Парсинг данных МОЕХ
- Jupyter-ноутбуки с исследованием

Содержание

Данные и их обработка

CIR модель

GBMM модель

Basktesting

Деривативы

Сбор и хранение данных

- Использовали HTTP/REST запросы к Informational & Statistical Server (ISS) Московской Биржи
- Всего обработано около **80 млн запросов** по акциям

Выбранные активы

Тикер
LKOH
AFLT
GMKN
NVTK
SBER
AFKS
CHMF
ROSN
VTBR
RASP

Тикер ОФ3	Купон	Дата погашения
ОФ3-ПД 26233	6,10%	18.07.2035
ОФ3-ПД 26207	8,15%	03.02.2027
ОФ3-ПД 26229	7,15%	12.11.2025
ОФ3-ПД 26225	7,25%	10.05.2034
ОФ3-ПД 26235	5,90%	12.03.2031

Помимо требуемых активов было также добавлена **Ruonia**

Облигации с постоянными купонами

Все активы были спарсены с официального АРІ Мосбиржи

Моделирование портфеля

Учитываем взаимосвязь

факторов

Риск фактор Симулируем поведение рискфакторов Обучаем модель на истинных риск факторах и ценах активах Используем стохастические модели Предсказываем для каждой симуляции цены активов Считаем меры риска

Обработка данных

Акции

LKOH, AFLT, GMKN, NVTK, SBER, AFKS, CHMF, ROSN, VTBR, RASP

Валюта

euro_cb, usd_cb

Облигации

SU26207RMFS9, SU26225RMFS1, SU26229RMFS3 SU26233RMFS5, SU26235RMFS0 Базовые активы oil_price

Индексы IMOEX,RTSI

Ставки

ruonia, period_0.25, period_0.5, period_0.75, period_1.0, period_2.0, period_3.0, period_5.0, period_7.0, period_10.0, period_15.0, period_20.0, period_30.0

Логически объединили переменённые и понизили размерность до одной главной компоненты

Обработка данных

Получившиеся компоненты **были не стационарны** (тренд), воспользовалась **первыми разностями** и **ADF** тест был пройдет

Моделирование корреляции

На ретро данных посчитали матрицу корреляций риск факторов, с помощью разложения Холкецого[1], восстановили зависимость для приращений в симуляционных моделях

Моделирование

Cox-Ingersoll-Ross (CIR) model

$$dX_t = \kappa(\theta - X_t) dt + \sigma \sqrt{X_t} dW_t$$

$$\kappa \ge 0, \sigma \ge 0, \theta \ge 0, 2\kappa\theta \ge \sigma^2$$

K — скорость возвращение я к среднему θ - среднее σ -стандартное отклонение

Предпосылки

- **1.Стремление к среднему:** Значения со временем возвращаются к долгосрочному равновесному уровню (θ) .
- 2. Волатильность процентных ставок: Значения подвержены случайным колебаниям вокруг среднего (σ).
- 3. Не отрицательность ставок: Модель гарантирует, что значения не могут стать отрицательными.
- **4.** Временная однородность (Time Homogeneity): Динамика значений не зависит от конкретного момента времени.
- 5. Непрерывность процесса: Значения изменяются плавно (без скачков).
- **6. Стационарность (Stationarity):** После достижения равновесия статистические свойства ставок не меняются со временем.

Моделирование

Оценка параметров

Обучающая выборка: **2024 год 11** месяцев

Для каждого процесса обучались **свои параметры**

Финальные симуляции проводились на **скоррелированных** приращениях **dW**

Распишем схему Эйлера-Мураямы:

$$r_{t+\delta t}-r_t=k(\theta-r_t)(t+\delta t-t)+\sigma\sqrt{r_t}(W_{t+\delta t}-W_t),$$
где $W_{t+\delta t}-W_t\sim N(0,\delta t)$

Перепишем в следующем ввиде:

$$\frac{r_{t+\delta t}-r_t}{\sqrt{r_t}} = \frac{k\theta}{\sqrt{r_t}} - k\sqrt{r_t} + \sigma\varepsilon, \varepsilon \sim N(0, \delta t).$$

Можем предстваить данное уравненеи, как уравнение линейной регрессии:

$$y_i = \beta_1 z_{1,i} + \beta_2 z_{2,i} + \epsilon_i,$$

 $y_i = \frac{r_{t+\delta t} - r_t}{\sqrt{r_t}}$
 $\beta_1 = k\theta \ \beta_2 = -k$
 $z_{1,i} = \frac{1}{\sqrt{r_t}} \ z_{2,i} = \sqrt{r_t}$
 $\epsilon_i = \sigma \epsilon$

Тогда искомые параметры будут находиться по формуле:

$$\hat{k} = -\hat{\beta}_2$$

$$\hat{\theta} = \frac{\hat{\beta}_1}{\hat{k}}$$

$$\hat{\sigma}^2 = V \hat{ar}(\epsilon)$$

Моделирование

Симуляции

Кол-во симуляций: 10 000

Период симуляций: 20 дней

Оценивание стоимости актива

<u>Справедливая стоимость</u> актива оценивалась, как:

- OLS регрессия стоимости актива на риск факторы
- Обучающая выборка 11 месяцев 2024 года
- Тестовая выборка 1 месяц 2024 года (декабрь)

Результаты на тестовом периоде

Тикер	MAE	MAPE
LKOH	351,09	0,05
AFLT	3,58	0,06
GMKN	32,16	0,31
NVTK	313,01	0,37
SBER	44,22	0,18
AFKS	7,36	0,58
CHMF	441,50	0,39
ROSN	48,04	0,09
VTBR	34,82	0,50
RASP	105,51	0,43
euro	9,16	0,08
usd	11,66	0,11
SU26207RMFS9	4,88	0,06
SU26225RMFS1	7,37	0,12
SU26229RMFS3	1,42	0,01
SU26233RMFS5	3,74	0,07
SU26235RMFS0	6,11	0,10

Результаты

Значения получились, крайне высокими. Так как смотрим отдельно риск на каждый актив, увидели что основная просадка – валюты.

Результаты

Симуляция начинается в период, когда оба курса находятся на пике.

Так как модель CIR ожидает возврат к среднему ожидается что факторы приведут курс к более низкому значению

Падение действительной было

Подход №2 Обработка данных

Логически объеденные блоки

PCA

Риск-фактор на основе весов в **PCA**

Моделирование

1. Geometric Brownian Motion (GBM)

$$dX_t = \left(\mu - rac{\sigma^2}{2}
ight) dt + \sigma dW_t \, ,$$

В теории сказано следующее: Используется в основном для моделирования цен акций

Параметры на основе исторических данных

2. Vasicek Model

$$dr_t = a(b - r_t) dt + \sigma dW_t$$

Используется для моделирования краткосрочных процентных ставок

Параметры подбираются на основе метода максимального правдоподобия **(MLE)**

Основы риск-менеджмента

Результаты на тестовом периоде

Тикер	MAE	MAPE
LKOH	79,057	0,012
AFLT	5,224	0,103
GMKN	19,285	0,185
NVTK	62,936	0,075
SBER	9,16	0,037
AFKS	4,52	0,356
CHMF	151,42	0,136
ROSN	40,939	0,07
VTBR	10,019	0,14
RASP	18,93	0,07
euro	2,278	0,02
usd	2,284	0,02
SU26207RMFS9	0,64	0,08
SU26225RMFS1	1,43	0,03
SU26229RMFS3	0,72	0,007
SU26233RMFS5	1,21	0,02
SU26235RMFS0	0,601	0,01

19

Подход №2

Результаты

Basktesting

Название теста	Год	Что измеряет?	Ключевая идея
Kupiec (LR UC)	1995	Безусловное покрытие (Unconditional Coverage)	Совпадает ли фактическое число исключений (exceptions) с ожидаемым уровнем VaR.
Christoffersen	1998	Coverage) + Hesabucumoctb	Проверяет кластеризацию исключений: корректна ли модель при изменчивости рынка.
Engle-Manganelli (DQ)	2004		Корректно ли модель использует текущую информацию (включая прошлые исключения).
Christoffersen & Pelletier	2004	продолжительности между	Проверяет, следуют ли интервалы между пробоями геометрическому распределению (т.е. отсутствие кластеров)

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Не отвергается	0.654062
Christoffersen (Ind)	currency	Не отвергается	0.074036
Christoffersen (Ind)	overall	Не отвергается	0.074036
Christoffersen (Ind)	stocks	Не отвергается	0.589996
Christoffersen- Pelletier	bonds	Не отвергается	0.153301
Christoffersen- Pelletier	currency	Не отвергается	0.182459
Christoffersen- Pelletier	overall	Не отвергается	0.188919
Christoffersen- Pelletier	stocks	Не отвергается	0.861811
Engle-Manganelli (DQ)	bonds	Не отвергается	0.152903
Engle-Manganelli (DQ)	currency	Отвергается	0.012065
Engle-Manganelli (DQ)	overall	Отвергается	0.011894
Engle-Manganelli (DQ)	stocks	Не отвергается	0.306177
Kupiec (UC)	bonds	Не отвергается	0.172937
Kupiec (UC)	currency	Не отвергается	0.172937
Kupiec (UC)	overall	Не отвергается	0.172937
Kupiec (UC)	stocks	Не отвергается	0.064592

Basktesting: GBM 10d

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Не отвергается	9.278614e-01
Christoffersen (Ind)	currency	Отвергается	6.303308e-03
Christoffersen (Ind)	overall	Отвергается	6.303308e-03
Christoffersen (Ind)	stocks	Отвергается	3.796192e-10
Christoffersen- Pelletier	bonds	Неприменим	NaN
Christoffersen- Pelletier	currency	Отвергается	1.688605e-05
Christoffersen- Pelletier	overall	Отвергается	1.688605e-05
Christoffersen- Pelletier	stocks	Не отвергается	2.958725e-01
Engle-Manganelli (DQ)	bonds	Не отвергается	7.920573e-01
Engle-Manganelli (DQ)	currency	Отвергается	2.127187e-13
Engle-Manganelli (DQ)	overall	Отвергается	2.261524e-13
Engle-Manganelli (DQ)	stocks	Отвергается	0.000000e+00
Kupiec (UC)	bonds	Не отвергается	2.881142e-01
Kupiec (UC)	currency	Не отвергается	7.606327e-01
Kupiec (UC)	overall	Не отвергается	7.606327e-01
Kupiec (UC)	stocks	Отвергается	2.792985e-04

Basktesting: T-GBM 1d

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Не отвергается	0.858585
Christoffersen (Ind)	currency	Отвергается	0.041749
Christoffersen (Ind)	overall	Отвергается	0.041749
Christoffersen (Ind)	stocks	Не отвергается	0.589996
Christoffersen- Pelletier	bonds	Неприменим	NaN
Christoffersen- Pelletier	currency	Не отвергается	0.131242
Christoffersen- Pelletier	overall	Не отвергается	0.131242
Christoffersen- Pelletier	stocks	Не отвергается	0.861811
Engle-Manganelli (DQ)	bonds	Не отвергается	0.664978
Engle-Manganelli (DQ)	currency	Отвергается	0.001274
Engle-Manganelli (DQ)	overall	Отвергается	0.001178
Engle-Manganelli (DQ)	stocks	Не отвергается	0.248996
Kupiec (UC)	bonds	Не отвергается	0.719042
Kupiec (UC)	currency	Не отвергается	0.399460
Kupiec (UC)	overall	Не отвергается	0.399460
Kupiec (UC)	stocks	Не отвергается	0.064592

Basktesting: T-GBM 10d

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Не отвергается	9.278614e-01
Christoffersen (Ind)	currency	Отвергается	2.021401e-02
Christoffersen (Ind)	overall	Отвергается	6.303308e-03
Christoffersen (Ind)	stocks	Отвергается	3.527416e-09
Christoffersen- Pelletier	bonds	Неприменим	NaN
Christoffersen- Pelletier	currency	Не отвергается	5.275272e-01
Christoffersen- Pelletier	overall	Отвергается	1.688605e-05
Christoffersen- Pelletier	stocks	Не отвергается	5.951781e-02
Engle-Manganelli (DQ)	bonds	Не отвергается	5.257393e-01
Engle-Manganelli (DQ)	currency	Отвергается	1.074906e-06
Engle-Manganelli (DQ)	overall	Отвергается	1.911804e-13
Engle-Manganelli (DQ)	stocks	Отвергается	0.000000e+00
Kupiec (UC)	bonds	Не отвергается	2.881142e-01
Kupiec (UC)	currency	Не отвергается	7.379869e-01
Kupiec (UC)	overall	Не отвергается	7.606327e-01
Kupiec (UC)	stocks	Отвергается	5.780699e-05

Basktesting: T-GBM with correction 1d

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Не отвергается	0.858585
Christoffersen (Ind)	currency	Отвергается	0.041749
Christoffersen (Ind)	overall	Отвергается	0.041749
Christoffersen (Ind)	stocks	Не отвергается	0.720509
Christoffersen- Pelletier	bonds	Неприменим	NaN
Christoffersen- Pelletier	currency	Не отвергается	0.131242
Christoffersen- Pelletier	overall	Не отвергается	0.131242
Christoffersen- Pelletier	stocks	Не отвергается	0.358808
Engle-Manganelli (DQ)	bonds	Не отвергается	0.664978
Engle-Manganelli (DQ)	currency	Отвергается	0.001274
Engle-Manganelli (DQ)	overall	Отвергается	0.001207
Engle-Manganelli (DQ)	stocks	Не отвергается	0.214398
Kupiec (UC)	bonds	Не отвергается	0.719042
Kupiec (UC)	currency	Не отвергается	0.399460
Kupiec (UC)	overall	Не отвергается	0.399460
Kupiec (UC)	stocks	Не отвергается	0.399460

Basktesting: T-GBM with correction 10d

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Отвергается	1.461848e-07
Christoffersen (Ind)	currency	Отвергается	2.040200e-02
Christoffersen (Ind)	overall	Отвергается	2.040200e-02
Christoffersen (Ind)	stocks	Не отвергается	8.554289e-01
Christoffersen- Pelletier	bonds	Отвергается	1.654582e-02
Christoffersen- Pelletier	currency	Не отвергается	5.275272e-01
Christoffersen- Pelletier	overall	Не отвергается	5.275272e-01
Christoffersen- Pelletier	stocks	Отвергается	6.331619e-05
Engle-Manganelli (DQ)	bonds	Отвергается	0.000000e+00
Engle-Manganelli (DQ)	currency	Отвергается	6.983641e-07
Engle-Manganelli (DQ)	overall	Отвергается	9.602819e-07
Engle-Manganelli (DQ)	stocks	Не отвергается	5.551471e-01
Kupiec (UC)	bonds	Отвергается	4.656949e-03
Kupiec (UC)	currency	Не отвергается	7.279689e-01
Kupiec (UC)	overall	Не отвергается	7.279689e-01
Kupiec (UC)	stocks	Не отвергается	7.701119e-01

Basktesting: w/o GBM 10d

test	portfolio	conclusion	p_value
Christoffersen (Ind)	bonds	Не отвергается	0.788856
Christoffersen (Ind)	currency	Не отвергается	0.788856
Christoffersen (Ind)	overall	Не отвергается	0.788856
Christoffersen (Ind)	stocks	Не отвергается	0.720509
Christoffersen- Pelletier	bonds	Не отвергается	0.222223
Christoffersen- Pelletier	currency	Не отвергается	0.711599
Christoffersen- Pelletier	overall	Не отвергается	0.711599
Christoffersen- Pelletier	stocks	Не отвергается	0.358808
Engle-Manganelli (DQ)	bonds	Не отвергается	0.984496
Engle-Manganelli (DQ)	currency	Не отвергается	0.950596
Engle-Manganelli (DQ)	overall	Не отвергается	0.963975
Engle-Manganelli (DQ)	stocks	Не отвергается	0.497496
Kupiec (UC)	bonds	Не отвергается	0.782910
Kupiec (UC)	currency	Не отвергается	0.782910
Kupiec (UC)	overall	Не отвергается	0.782910
Kupiec (UC)	stocks	Не отвергается	0.399460

Деривативы

Black-Scholes-Merton

$$C = SN(d_1) - Ke^{-rt}N(d_2)$$

$$d_1 = \frac{\ln \frac{S}{K} + \left(r + \frac{\sigma^2}{2}\right)t}{\sigma\sqrt{t}}$$

$$d_2 = d_1 - \sigma \sqrt{t}$$

где:

С = Цена опциона колл

S = Текущая цена базового актива

К = Цена исполнения (страйк)

r = Безрисковая процентная ставка

t = Время до исполнения (в годах)

 $\sigma =$ Волатильность базового актива

N = Функция стандартного нормального распределения

Оценка параметров:

- Implied $\sigma_{call}=0.104$
- Implied $\sigma_{put}=0.153$
- Implied σ_bar=0.129

Прогноз на 10-09-24:

Call: model=192.0 vs market=68.0

Put: model=19.3 vs market=64.0

Проблема в отсутствие активных торговых дней для большинства бумаг

Литература

[1] Note Sur Une Méthode de Résolution des équations Normales Provenant de L'Application de la MéThode des Moindres Carrés a un Système D'équations Linéaires en Nombre Inférieur a Celui des Inconnues. — Application de la Méthode a la Résolution D'un Système Defini D'éQuations LinéAires. (1924). Bulletin Géodésique, 2(1), 67–77. https://doi.org/10.1007/bf03031308

[2] Cox, J. C., Ingersoll, J. E., join(''., & Ross, S. A. (1985). A Theory of the Term Structure of Interest Rates. Econometrica, 53(2), 385. https://doi.org/10.2307/1911242

