Linear System - matrix with real, distinct, nonzero eigenvalues.

Cliven a linear system

Y = AY, A: 2x2 met rix.

(Toal: To sketch the phase protrait using eigenvalues eigenvectors.

In this

First observation:

If α is an eigenvalue with eigenvector V, then $Y(t) = e^{xt}V$ is a solution to the linear system.

Direct checking: write Y(t) = ent V.

$$\Rightarrow Y(t) = (e^{\lambda t}V)' = (e^{\lambda t})'V = \lambda e^{\lambda t}V = \lambda Y(t)$$

 $AY(t) = A(e^{\lambda t}V) = e^{\lambda t}AV = e^{\lambda t}\lambda V = \lambda Y(t)$ $AV=\lambda V$

$$\Rightarrow Y'(t) = AY(t)$$

Thus if we have 2 real eigenvalues with linearly independent eigenvectors, then there are 4 (half) straight line solutions. Together with the equilibrium Y(t) = (°) for all t, we have already 5 solutions.

Remark: If 1, , 1, are distinct, then V, V2 are linearly independent.

Remark: If V_1 , V_2 are linearly independent, then the general solution is given by

 $Y(t) = k_1 e^{\lambda_1 t} V_1 + k_2 e^{\lambda_2 t} V_2. \qquad (*).$ for any k_1 , k_2 .

Now we use (*) to sketch the phase protrait. We divide into 3 cases.

- (D) 21 < 0 < 22.
- (2) 0 < 22 < 2,
- 3 2, < 22 < 0

(D) XIKOKAZ We have already 5 solutions to fill in the others, we use Y(t) = k, e 2, t V, + k2 e 12 V2. Note that as t >+ 0, e rit > 0 (since 2/40). Thus Ylt1 = Ree net V when t is large. Similarly, as t > -00, Be 22t. o (since 2,70). Thus Y(t) = ke xt V. When t -> - 00. (or, very negative). So we have =

"Saddle" all solutions come & from and infraty, get closed to the origin, but then go back to infinity. $(2) \quad 0 < \lambda_2 < \lambda_1$ Note that in this case, - When $t \to +\infty$, $e^{\lambda_1 t}$, $e^{\lambda_2 t} \to +\infty$ as $\lambda_1, \lambda_2 > 0$. - When $t \to -\infty$, $e^{\lambda_1 t}$, $e^{\lambda_2 t} \to 0$ as $\lambda_1, \lambda_2 > 0$. Thus all solution Y(t) = k, e 2t V, + k2 e 2t V2 - tends to infinity as t + +00, - tends to (°) as t - - co: As $t \to -\infty$, Y(t) converges to the origin "in the direction of V_2 ". Precisely, it means Y(t) is almost parallel to V2 when t is very Keason: If Y(t)= ke 2t V, + ke 2t V2. $\Rightarrow Y'(t) = k_1 \lambda_1 e^{\lambda_1 t} V_1 + k_2 \lambda_2 e^{\lambda_2 t} V_2$ $=e^{\lambda_2 t}\left(k_1 \lambda_1 e^{(\lambda_1-\lambda_2)t} V_1 + k_2 \lambda_2 V_2\right)$ Thus Y'(t) is parallel to $k_1\lambda_1e^{(\lambda_1-\lambda_2)t}V_1+\lambda_2k_2V_2$. As $t\to-\infty$, $e^{(\lambda_1-\lambda_2)t}\to 0$ since $\lambda_1-\lambda_2 \to 0$ (this is where we use the convention $0<\lambda_2<\lambda_1$) $\Rightarrow k_1 \lambda_1 e^{(\lambda_1 - \lambda_2)t} + \lambda_2 k_1 V_2 \approx \lambda_2 k_2 V_2$ if t is very negative. => Y(t) is almost parallel to V2 as t-)-00.

To sum up, when $0 < \lambda_2 < \lambda_1$, U Source". All solutions go to infinity as $t \to +\infty$, go to (°) as $t \to -\infty$ in the direction of V_2 (except those 2 solution given by V_1)

(3) 21<12<0. This is similar to @. We have

ALL solutions tends to (°) as t7+00, in the direction of V2 (except those

2 given by Vi). All solution go to

infinity as t > -00.

l.g.
$$Y' = \begin{pmatrix} -2 & -3 \\ -3 & -2 \end{pmatrix} Y$$

$$A = \begin{pmatrix} -2 & -3 \\ -3 & -2 \end{pmatrix} \text{ hes eigenvalues } -5, 1 \Rightarrow \lambda_1'' < 0 < \lambda_2'' \\ \text{ (saddle)}$$

One can Check $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ are the eigenvectors with respect to λ_1 , λ_2 respectively. So

eig.
$$Y'=\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} Y$$
.

(source) $A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$ has eigenvalues 1, $4 \Rightarrow CaU = 7_1 = 4$, $\lambda_2 = 1$.

(Note the convention: we choose 2, 2 so that 22 is

closer to 0)

Corresponding eigenvectors = $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

