A Motion Planning Method Based on Genertic Algorithms and Curve Fitting Techniques

Brock Kopp Mechatronics Engineering University of Waterloo Waterloo, ON, Canada brock.kopp@uwaterloo.ca

Karl Price Mechatronics Engineering University of Waterloo Waterloo, ON, Canada karldprice@gmail.com

Angelica Ruszkowski Mechatronics Engineering University of Waterloo Waterloo, ON, Canada aruszkow@uwaterloo.ca

Abstract

Navigation and path planning are critical components of developing robotic technology. Optimized path planning can improve efficiency and throughput of an industrial robotic manipulator. The path must be planned in a way that will avoid collisions with all obstacles and minimize trajectory path distance while satisfying jerk and other dynamic constraints. The environment is discretized into a grid to allow for easy definition of obstacles and waypoints. Curve fitting techniques are used to define a path around known obstacles in a static environment. A genetic algorithm is then used to optimize the path. The fitness is determined based on trajectory distance as well as proximity to an obstacle. Results are verified against results from a wavefront algorithm. This algorithm may be expanded to 3D problems with considerations on computational efficiency.

Keywords: Generatic Algorithms, Curve FITTING, PATH PLANNING, GRID METHOD, ROBOTICS

Introduction

Path planning is a critical component of navigation technology, a fundamental area in robotic research. The purpose of path planning is to define a trajectory between specified start and end points. The path must achieve the problem objectives while satisfying specified criteria, the most common of which are distance and time. Other important criteria include smoothness and path safety, and these are considered by relatively few common path planning algorithms [1]. Optimizing smoothness of a path ensures that the physical and dynamic limitations of the robotic system (e.g. maximum motor torques) are taken into consideration. Verifying path safety is critical for both the safety of the robot as well as its surrounding environment, which can contain people or valuable infrastructure.

Path planning techniques can be applied to industrial robotic manipulators to ensure efficient operation while maneuvering safely in the environment. Articulated manipulators are bounded to their configuration workspace, which is a two-dimensional representation of their allowable motion range [2]. Frequently used algorithms for motion planning include probabilistic roadmaps, potential field methods, and neural network approaches [3, 4, 5, 6]. Since every robot has a unique and complex task and environment, a robust solution is necessary. Genetic algorithms are especially suited for such complex optimization problems [7].

As a stochastic optimization technique, a genetic algorithm will find the global optimum for a problem in a reasonable amount of time and computational cost. Due to the evolutionary nature of genetic algorithms, computational time may be greater than other applicable algorithms. However, the robustness of a genetic algorithm, combined with its elegant mechanisms of incorporating all factors of the optimization problem, make it an appealing solution.

The robot's environment and obstacles will be represented in a discretized grid, and curve fitting techniques will be used to define the optimum path from the start to the end location through the specified environment. The curve fitting method helps simplify and expedite the generation of a desired path, compared to commonly used techniques such as rapidly

exploring random trees [8]. The genetic approach to curve fitting will select the functional coefficients which result in a curve with the greatest fitness. Fitness will be determined by the constraints of the problem (namely distance and safety).

Initial experimentation will be done using lower order splines as suggested paths, but higher-dimensional splines will be studied as well. Extendibility of the suggested approach to 3D environments will be considered. To verify the effectiveness of the algorithm in 2D, the results will be compared to the solution from the wavefront method. The nature of the wavefront algorithm guarantees that it yields the shortest path, but it does not take dynamic constraints into consideration.

II. BACKGROUND REVIEW

Path planning is an active area of research due to the complexity of the problem and the need for a robust solution applicable to various environments. Many algorithms exist, but none of the proposed algorithms are capable of encompassing all the problem constraints for various environments [9].

Existing path planning solutions include reactive motion planning algorithms, graph and probabilistic based motion planning, and optimization based planning [10]. Each of these has advantages and disadvantages with regards to planning a route through a robot's configuration space. Reactive planning algorithms such as potential field and wavefront methods are simple in concept however these are local approach methods and do not consider dynamic constraints. Some are inherently susceptible to local minima, making them unacceptable for obstacle avoidance [11]. The wavefront method is designed to find the shortest path, and as such will be used as the benchmark against which results from the suggested algorithm will be measured. It is expected that while the suggested algorithm will generate a longer path, the dynamic constraints will be satisfied unlike in the wavefront solution.

Graph based planning offers a global approach.

Graphs may be generated both deterministically (visibility graphs, cell decomposition, Voronoi diagrams), or randomly (probabilistic roadmaps). [10] Established algorithms (such as Dijkstra's shortest path search) are used to extract the shortest path from the graph [12]. However dynamics of the robot are ignored in the generation of the graph, and this is detrimental to the criterion of path smoothness. Challenges also arise when there are restrictive obstacles such as narrow passages, however research in areas such as probabilistic roadmaps (PRMs) offers promising solutions [13]. Optimization based planning offers more confidence in finding a global optimum, however it is hindered by a lack of robustness: a poorly formulated problem may not converge [14]. It is also difficult to define obstacles.

In an effort to provide a simple method of avoiding obstacles and defining a path, the manipulator's configuration space will be discretized using a grid-based approach, and curve fitting techniques will be employed to find the ideal path. Defining the environment with a grid-graph may not be the most effective (cell decomposition offers greater efficiency [15]), however it provides a simple way to defined obstacles as well as flexibility in representation. The grid will represent the configuration space for an articulated industrial robot. The grid cell size will define the computational resources required. A tradeoff between resolution in the grid and computational efficiency must be made.

To define the fitted curve, research has been done using BÃl'zier curves [16]. BÃl'zier curves provide smooth paths that guarantee obstacle avoidance. While very effective for lower-dimensional problems, quartic or quintic functions begin to get very computationally expensive. That is why this paper aims to use curve fitting in combination with genetic algorithms to optimize the curve. The curve will be optimized by minimizing distance, maximizing smoothness (minimizing jerk), and ensuring a safe passage around all obstacles. Genetic algorithms are ideal for such complex optimization problems and offer good robustness as well

[17].

The father of genetic algorithms, John Holland, modeled this machine intelligence technique after the evolution research by Darwin and the genetic "survival of the fittest" discovered in the natural, biological sphere. There are two natural learning epitomes available: the brain and evolution. Holland was inspired by the fact that the processes of natural evolution and natural genetics have become elucidated over decades of study in biology and molecular biology [18]. The subtleties of the fundamental mechanisms of the brain, in contrast, are still shrouded in mystery. As such it seems clear to use the better understood model of genetic evolution as a platform for an optimization technique.

Research has already been done regarding the application of the parallel heuristic search method of genetic algorithms to curve fitting [19, 20, 21]. The goal is to find the coefficients that will define a path that with optimized path criteria. Thus each chromosome will contain a bitwise representation of each of the coefficient parameters.

Fitness will be determined based on distance as well as proximity to an obstacle. For safety, the robot should not approach too closely to an obstacle, thus the path must be planned to incorporate the robot dynamics such that obstacle avoidance will leave a sufficient safety margin. As such, smoothness is an implicit criterion.

The result will be a global path planning algorithm functional in a static environment. Dynamic environments are possible with the proposed algorithm, however computational efficiency must be optimized in order to minimize the time required to find the solution. This new applications offers a simple way to determine a path while taking into consideration all the path criteria.

III. METHOD

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa. Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

IV. Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa. Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis

tempus nibh sit amet nisl. Vivamus quis tortor

vitae risus porta vehicula.

cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

V. Discussion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem.

Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa. Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

REFERENCES

- [1] A. Elshamli, H. A. Abdullah, and S. Areibi, "Genetic algorithm for dynamic path planning," *Canadian Conference on Electrical and Computer Engineering, IEEE*, vol. 2, pp. 667–680, 2004.
- [2] L. Kavraki and J. C. O. M. Svestka, P.AND Latombe, "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," *IEEE Transactions* on Robotics and Automation, vol. 12, no. 4, pp. 556–580, 1996.

- [3] M. Sharir, "Algorithmic motion planning in robotics," *Computer*, vol. 22, no. 3, pp. 9–19, 1989.
- [4] R. Khosla and P. Volpe, "Superquadric artificial potentials for obstacle avoidance and approach," IEEE International Conference on Robotics and Automation, Proceedings, pp. 1778–1784, 1988.
- [5] E. Rimon and D. Doditschek, "Exact robot navigation using artificial potential fields," *IEEE Transactions on Robotics and Automation*, vol. 8, no. 5, pp. 501–518, 1992.
- [6] S. Yang and M. Meng, "An efficient neural network approach to dynamic robot motion planning," *Neural Networks*, vol. 13, no. 2, pp. 143–148, 2000.
- [7] G. Renner and A. Ekart, "Genetic algorithms in computer-aided design," *Computer-Aided Design*, vol. 35, no. 8, pp. 709–726, 2003.
- [8] S. Rodriguez, T. Xinyu, L. Jyh-Ming, and N. Amato, "An obstacle-based rapidlyexploring random tree," *IEEE International Conference on Robotics and Automation, Pro*ceedings, pp. 15–19, 2006.
- [9] N. Sariff and N. Buniyamin, "An overview of autonomous mobile robot path planning algorithms," *IEEE 4th Student Conference on Research and Development, SCORed*, pp. 183–188, 2006.
- [10] S. Waslander, ME597: Autonomous Mobile Robotics Section 8: Planning I (Course notes). University of Waterloo, 2012.
- [11] Y. Koren and J. Borenstein, "Potential field methods and their inherent limitations for mobile robot navigation," *IEEE International Conference on Robotics and Automation, Proceedings*, pp. 1398–1404, 1991.
- [12] E. W. Dijkstra, "A note on two problems in connection with graphs," *Numerische Mathematik*, vol. 20, no. 4, pp. 269–271, 1959.

- [13] D. Hsu, T. Jiang, J. Reif, and Z. Sun, "The bridge test for sampling narrow passages with probabilistic roadmap planner," *IEEE International Conference on Robotics and Au*tomation, Proceedings, vol. 3, pp. 4420–4426, 2003.
- [14] S. Waslander, ME597: Autonomous Mobile Robotics - Section 8: Planning III (Course notes). University of Waterloo, 2012.
- [15] F. Lingelbach, "Path planning using probabilistic cell decomposition," IEEE International Conference on Robotics and Automation, Proceedings, vol. 1, pp. 467–472, 2004.
- [16] J. Choi, R. E. Curry, and G.H., "Real-time obstacle-avoiding path planning for mobile robots," *Proceedings of the AIAA Guidance, Navigation and control Conference*, 2010.
- [17] X. Zou, B. Ge, and P. Sun, "Improved genetic algorithm for dynamic path planning," *International Journal of Information and Computer Science*, vol. 1, no. 2, 2012.
- [18] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine learning," *Machine Learning*, vol. 3, no. 2, pp. 95–99, 1988.
- [19] M. Gulsen, A. E. Smith, and D. M. Tate, "A genetic algorithm approach to curve fitting," *International Journal of Production Research*, vol. 33, no. 7, pp. 1911–1923, 1995.
- [20] C. L. Karr, D. A. Stanley, and B. J. Scheiner, Genetic Algorithm Applied to Least Squares Curve Fitting. US Department of the Interior, Bureau of Mines, 1991.
- [21] A. T. Ismail, A. Sheta, and M. Al-Weshah, "A mobile robot path planning using genetic algorithm in static environment," *Journal of Computer Science*, vol. 4, no. 4, pp. 341–344, 2008.