Problem Set 1

Jaan Tollander de Balsch

February 21, 2020

Papadimitriou (1994), chapters: 1, 2.1-2.5

H1.1

i)

We say that g(n) dominates f(n) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\to 0.$$

Let prove $(\log_2 n)^s = O(n^r)$ for s, r > 1, that is n^r dominates $(\log_2 n)^s$.

$$\lim_{n \to \infty} \frac{(\log_2 n)^s}{n^r} = \left(\lim_{n \to \infty} \frac{\log_2 n}{n^{r/s}}\right)^s$$

Using L'hopital's rule

$$\left(\lim_{n\to\infty}\frac{1}{(r/s)n^{r/s}\log(2)}\right)^s\to 0$$

From the above limit, we see that $n^r \neq O((\log_2 n)^s)$, since n^r dominates $(\log_2 n)^s$.

ii)

Upper bound

$$\begin{split} \log_2 n! &= \sum_{i=1}^n \log_2 i \\ &\leq \sum_{i=1}^n \log_2 n \\ &= n \log_2 n. \end{split}$$

All the terms $\log_2 i$ are smaller or equal to $\log_2 n.$

Lower bound (assuming even n)

$$\begin{split} \log_2 n! &= \sum_{i=1}^n \log_2 i \\ &= \sum_{i=1}^{n/2} \log_2 i + \sum_{i=n/2}^n \log_2 i \\ &\geq (n/2) \log_2 (n/2) \\ &= (n/2) (\log_2 n - 1). \end{split}$$

Half of the terms $\log_2 i$ are larger of equal to $\log_2 (n/2).$

Therefore, the tight bound is

$$\log_2 n! = \sum_{i=1}^n \log_2 i = \Theta(n \log_2 n).$$

H1.2

We define our Turing machine as $M=(K,\Sigma,\delta,s)$ where the set of states is $K=\{s,q_1,q_2,q_3,q_4\}$, the set of symbols is $\Sigma=\{1,\sqcup,\rhd\}$ and the following transition function δ :

$p \in K$	$\sigma \in \Sigma$	$\delta(p,\sigma)$	Explanation
\overline{s}	1	$(q_1, 1, \rightarrow)$	Move head to next 1
s	\sqcup	$(h, 1, \rightarrow)$	Add 1 and halt
s	\triangleright	(s,\rhd,\rightarrow)	
q_1	1	$(q_2,1,\rightarrow)$	Move head to next one
q_1	\sqcup	$(h,1, \rightarrow)$	Add 1 and halt
q_2	1	$(q_2,1,\rightarrow)$	Move cursor to the end of the string of 1's
q_2	\sqcup	(q_3,\sqcup,\leftarrow)	Reached end of the string
q_3	1	$(q_2, \sqcup, \leftarrow)$	Remove first 1
q_4	1	(h,\sqcup,\leftarrow)	Remove second 1 and halt

Unreachable states are left out for simplicity.

The execution of the Turing machine for $f(\epsilon)$

$$s, \rhd \sqcup \to h, \rhd 1 \sqcup$$

The execution of the Turing machine for f(11)

$$\begin{split} s,\rhd \, \underline{1}1 \sqcup \to \\ q_1,\rhd \, 1\underline{1} \sqcup \to \\ q_2,\rhd \, 11 \underline{\sqcup} \to \\ q_3,\rhd \, 1\underline{1} \sqcup \to \\ q_4,\rhd \, \underline{1} \sqcup \sqcup \to \\ h,\trianglerighteq \sqcup \sqcup \sqcup \end{split}$$

H1.3

We define a binary alphabet $\Sigma = \{0, 1\}$.

i)

If language $L \subseteq \Sigma^*$ is decidable by a Turing machine M then

- If $x \in L$, M(x) = yes and
- If $x \notin L$, M(x) = no

Then, the complement $\bar{L} = \Sigma^* \setminus L = \{x \in \Sigma^* \mid x \notin L\}$ is decidable by a Turing machine M'

- If $x \in \overline{L}$, M'(x) = yes and
- If $x \notin \bar{L}$, M'(x) = no

By definition we have

- $x \in \overline{L}$ implies $x \notin L$ and M(x) = no
- $x \notin \overline{L}$ implies $x \in L$ and M(x) = yes

Turing machine M' decides yes when M decides no and vice versa.

If Turing machine M accepts L if for every string $x \in \Sigma - \{\sqcup\}^*$

- If $x \in L$ then M(x) = yes
- But, if $x \notin L$, $M(x) = \nearrow$.

The complement language \bar{L} is not accepted by a Turing machine M', because if $x \notin L$ which implies $x \in \bar{L}$ and $M(x) = \nearrow$. Therefore, Turing machine M may not halt on this input, which implies that Turing machine M' may also not halt.

ii)

If L is semidecidable it implies $x \in L$, then $M_1(x) = yes$.

If \bar{L} is semidecidable it implies $x \in \bar{L}$, then $M_2(x) = yes$.

Since $x \in \overline{L}$ implies $x \notin L$, all inputs $x \in L$ and $x \notin L$ are decided by some Turing machine, therefore, L is decidable.

References

Papadimitriou, C.H., 1994. Computational complexity. Addison-Wesley.pp.I–XV, 1–523.