

Prof. Regis Rossi Faria

Objetivos do módulo

- Apresentar os fundamentos da física e psicofísica do som, da audição e fenômenos auditivos
- Consolidar os princípios básicos da física acústica e da psicoacústica com exemplos

- As seguintes grandezas sonoras são fundamentais na música e portanto no estudo da acústica musical:
 - Intensidade do som
 - Altura do som
 - Duração do som
 - Espacialidade
 - Timbre
- Cada uma destas grandezas é caracterizada numa dimensão física e noutra, psicofísica

- Física versus Psicofísica
 - A física do som se ocupa da qualificação e quantificação objetiva dos parâmetros e grandezas físicas associadas aos fenômenos sonoros em si
 - A psicofísica do som ou psicoacústica se ocupa da qualificação e quantificação dos parâmetros e grandezas associadas à percepção do som
 - → trata portanto da percepção subjetiva das grandezas físicas

 Usualmente, para cada grandeza física Φ (de natureza objetiva) temos associada uma grandeza Ψ psicofísica (de natureza subjetiva), tratada no domínio da percepção da grandeza física pelo receptor (ouvinte)

- As grandezas físicas são mensuráveis utilizando-se unidades métricas e escalas físicas
- As grandezas psicofísicas são também passíveis de serem avaliadas usando-se valores e escalas psicoacústicas
- As métricas mais usadas para quantificar as mais importantes grandezas físicas do som e grandezas psicofísicas associadas a elas estão agrupadas no quadro abaixo

Grandeza Física	Grandeza Psicofísica
Intensidade I (W/m ^{2,} SPL dB) e Pressão p (Pa)	Volume (loudness) L (phon, sone)
Frequência f (Hz)	Altura ou Pitch p (mel, tom, bark)
Duração real d (s)	Duração aparente d' (s)

- Com relação às grandezas musicais do timbre e espacialidade, veremos que
 - O timbre é uma grandeza psicofísica caracterizada utilizandose um conjunto de regras que descrevem como parâmetros físicos do som se relacionam e variam no tempo
 - A espacialidade é uma grandeza que tem dimensões físicas representadas por parâmetros espaciais (como coordenadas, distâncias e tamanhos) e uma dimensão psicofísica que caracteriza a percepção do espaço sonoro ao nosso redor

 Nos próximos dois módulos vamos abordar cada uma destas grandezas sonoras no domínio da física e da psicofísica, identificando parâmetros e métricas associadas a elas em cada domínio, de forma a caracterizar as suas relações e desvendar os mecanismos de sua percepção

Física do som

As grandezas físicas de intensidade, pressão e respectivos níveis
Os logaritmos e decibéis
A adição de níveis sonoros

Intensidade sonora

Definição

- Intensidade sonora (I) é o fluxo de energia por unidade de área, que é equivalente à potência recebida por unidade de área.
- Em um meio fluido, I também será igual ao produto da pressão pela velocidade das partículas

$$I = \frac{potência}{\acute{a}rea} = pressão \times veloc_{part}$$

Nível de intensidade sonora

 O Nível de Intensidade Sonora (NS ou NIS) é expresso em decibéis da seguinte forma:

$$NS ou NIS = 10 log_{10} (I/I_o) (dB)$$

- O NIS é uma medida relativa à intensidade mínima audível (umbral auditivo) dada por $I_o = 10^{-12}$ (W/m²) ou 10^{-16} (W/cm²)
- As medidas de intensidade sonora são comumente feitas em decibéis, uma escala logarítmica. Por que empregar logaritmos em medições sonoras?

Decibéis e logaritmos

- Logaritmos são ferramentas muito usadas pelos profissionais do áudio, utilizados na medição dos níveis sonoros, particularmente na unidade decibel
- Um nível sonoro em decibel é um logaritmo de uma relação entre dois valores (ex: $I e I_o$), como em $N = 10 \log_{10} (I/I_o) (dB)$
- Há diversas razões para se empregar logaritmos.
 Vamos apresentar estas razões e rever as propriedades básicas das operações com logaritmos

 Os logaritmos nos oferecem formas compactas de expressar números de ordem de grandeza diferentes

100,000	$10\times10\times10\times10\times10$	10^5	
10,000	$10\times10\times10\times10$	10^4	
1,000	$10\times10\times10$	10 ³	$\log_{10} 100.000 = 5$
100	10×10	10^{2}	$\log_{10} 100 = 2$
10	10×1	10^{1}	3 10
1	10/10	10°	$\log_{10} 10 = 1$
0.1	1/10	10^{-1}	$\log_{10} 1 = 0$
0.01	$1/(10 \times 10)$	10^{-2}	$\log_{10} 0.1 = -1$
100,000	(100)(1,000)	$10^2 \times 10^3 = 10^{2+3} = 10^5$	log 0.01 - 2
100	10,000/100	$10^4/10^2 = 10^{4-2} = 10^2$	$\log_{10} 0.01 = -2$
10	100,000/10,000	$10^{5}/10^{4} = 10^{5-4} = 10^{-1} = 10$	
10	$\sqrt{100} = \sqrt[2]{100}$	$100^{1/2} = 100^{0.5}$	
4.641	$6 \sqrt[3]{100}$	$100^{1/2} = 100^{0.333}$	
31.622	$8 \sqrt[4]{100^3}$	$100^{3/4} = 100^{0.75}$	

- Números que variam numa faixa linear de valores muito grande (como a intensidade e pressão sonora) são melhor representados numa escala logarítmica, que tem uma faixa de valores bem menor e mais conveniente para se trabalhar
 - Por exemplo: O aumento linear de 1000 vezes no valor de intensidade equivale a um aumento de 30 dB, já que 10 log $(1000x/x) = 10 \log(1000) = 10 \times 3 = 30$

• Os logaritmos facilitam operações numéricas. Por exemplo, permitem reduzir *multiplicações a adições*

$$-\log_{10}(a.b) = \log_{10}(a) + \log_{10}(b)$$

$$-\log_{10}(a/b) = \log_{10}(a) - \log_{10}(b)$$

 Operações de multiplicações (como o ganho de estágios de amplificação) podem ser calculadas desta forma como somas, isso porque

$$log (a \times b \times c) = log (a) + log (b) + log (c)$$

 Além disso, a percepção humana da intensidade não é linear, mas sim logarítmica

Ao invés de responder linearmente ao aumento ou diminuição da intensidade, na verdade a percepção da intensidade é proporcional ao seu logaritmo, isto é, a relação entre sensação e estímulo é uma relação logarítmica

Logaritmos

Resumo de propriedades básicas

$$-\log_{10} a = x \leftarrow \rightarrow 10^x = a$$

$$-\log_{10}(a.b) = \log_{10}(a) + \log_{10}(b)$$

$$-\log_{10}(a/b) = \log_{10}(a) - \log_{10}(b)$$

Logaritmos

Exercício: Calcule os logaritmos abaixo

Dados:
$$\log_{10} 2 = 0.30 \text{ e } \log_{10} 3 = 0.47$$

- Qual é o número x cujo log₁₀ vale 5?
 - $\log_{10} x = 5 \iff 10^5 = x = 100.000$
- $-\log_{10} 6 = ?$
 - $\log_{10}(2x3) = \log_{10} 2 + \log_{10} 3 = 0.77$
- $-\log_{10} 20 = ?$
 - $\log_{10} (2x10) = \log_{10} 2 + \log_{10} 10 = 0.3 + 1 = 1.3$

Medidas em Decibéis

- Decibel (dB): medida de potência, intensidade ou pressão sonora relativa
- Escalas de níveis típicas (unidades logarítmicas)

Unidade dB	Definição
dB SPL	Nível de pressão sonora para o som no ar, relativo a 20 micropascals (20 μPa = 2 \times 10 ⁻⁵ Pa)
dB HL	Nível de audição, usada em audiogramas como medida de perda auditiva
dBmV	Nível de tensão relativo a 1 m V_{RMS} sobre 75 Ω
dBm	dB(1 mW) Nível de potência relativo a 1 milliwatt
dBV	dB(1 V _{RMS}) Nível de tensão relativo a 1 volt, independente da impedância
dBu	dB(0.775 V _{RMS}) Nível de tensão relativo a 0,775 volts
dBFS	dB(full scale) Nível de amplitude relativo ao máximo possível (fundo de escala). O dBFS é o valor máximo.

Níveis sonoros típicos (em dB)

dB _{SPL}	Exemplos
30	Biblioteca silenciosa, sussurro leve
40	Sala de estar, geladeira, quarto longe do trânsito
50	Trânsito leve, conversação normal, escritório silencioso
60	Ar condicionado com 6 m de distância, máquina de costura
70	Aspirador de pó, secador de cabelo, restaurante barulhento
80	Tráfego médio de cidade, coletor de lixo, despertador com 60 cm de distância
90	Metrô, motocicleta, tráfego de caminhão, máquina de cortar grama
100	Caminhão de lixo, serra elétrica, furadeira pneumática
120	Concerto de Rock em frente as caixas de som, trovão
140	Espingarda de caça, avião a jato
180	Lançamento de foguete

Pressão sonora

 A pressão p é a medida da força (unidade N, Newton) aplicada pela onda sonora numa superfície de área A (unidade m²). A unidade de medida é o Pascal (Pa = N/m²)

$$p = \frac{Força(N)}{\acute{A}rea(m^2)}$$

- Na prática, medir pressão sonora é muito mais fácil que medir intensidade
- Verifica-se em experimentos que, para um som progredindo em uma direção, a potência sonora e portanto a intensidade I é proporcional ao quadrado da pressão

$$I = \frac{Pressão^2}{const}$$

Relações entre grandezas acústicas

Relações entre Intensidade (I), Potência acústica (W), Área (4πr²), Pressão (P) e constantes acústicas (densidade ρ e velocidade de propagação do som c) e velocidade da partícula (v_{part})

$$I = \frac{Pressão^{2}}{const} = \frac{P^{2}(N/m^{2})}{\rho(kg/m^{3}) \times c(m/s)} \frac{P^{2}}{\rho c} = \frac{S}{4\pi r^{2}}$$

$$I = \frac{Potência(W)}{\acute{A}rea(m^{2})} = \frac{S}{4\pi r^{2}}$$

$$I = \frac{Potência(W)}{\acute{A}rea(m^2)} = \frac{Energia(J)}{\acute{A}rea(m^2) \times Tempo(s)} = \frac{Força(N) \times Distância(m)}{\acute{A}rea(m^2) \times Tempo(s)} = Pressão \times Velocid_{part}$$

$$I = P \times V_{part}$$

- Considerando-se que $I = p^2/const$, podemos expressar a pressão como $p = const \times VI$ e substituir na expressão que calcula o nível de intensidade sonora (NIS) para obter uma expressão para o nível de pressão sonora (NPS)
- O Nível de Pressão Sonora (NPS = SPL = Sound Pressure Level)
 em um ponto no espaço será assim expresso em dB

$$N = 10 \log_{10} (I/I_o) = 10 \log_{10} (p^2/p^2_o) = 20 \log_{10} (p/p_o)$$
 (dB SPL)

• É uma medida *relativa ao nível mínimo de pressão audível* (umbral auditivo) que é a referência para 0 dB SPL, dada por $p_o = 20 \mu Pa = 20 \times 10^{-6} \implies 0,0002 = 2 \times 10^{-4} \text{ (dina/cm}^2 = \mu bar)$

• NIS e NPS em função da distância

NIS =
$$10\log(\frac{I}{I_0}) = 10\log(\frac{S/4\pi r^2}{S/4\pi r_0^2}) = 10\log(\frac{r_0^2}{r^2}) = 20\log(\frac{r_0}{r})$$

NPS =
$$20\log(\frac{P}{P_0}) = 20\log(\frac{S\rho c/4\pi r^2}{S\rho c/4\pi r_0^2})^{1/2} = 10\log(\frac{r_0^2}{r^2}) = 20\log(\frac{r_0}{r})$$

 Vemos que tanto o NIS quanto o NPS cairão a mesma quantidade em dB pela mesma variação de distância

Tanto o NIS quanto o NPS cairão 6 dB quando r' = 2r

(NIS e NPS em função da distância)

• Para $r = \alpha r_0$, temos que a pressão cai proporcional a $(1/\alpha)$, e a intensidade cai com = $(1/\alpha)^2$

$$P = (1/\alpha)P_0$$
 e $I = (1/\alpha)^2I_0$

• Para calcular qual o diferença em NPS e NIS desta mudança de r para αr_0 aplicamos as fórmulas:

$$\Delta_{N/S} = 10\log(\frac{I}{I_0}) = 10\log(\frac{r_0^2}{r^2}) = 10\log(\frac{r_0^2}{(\alpha r_0)^2}) = 10\log(\frac{1}{\alpha})^2 = 20\log(1/\alpha) = \Delta_{NPS}$$

 Vemos que (em dB) o NPS é da mesma ordem de grandeza que o NIS (ou NS). Para um um único som movendo-se numa direção, essencialmente temos que NIS = NPS

Questões

- Quando nos afastamos da fonte sonora, a pressão p e a intensidade I irão cair com a mesma proporção?
- Quando nos afastamos da fonte sonora, o nível de pressão sonora NPS cairá mais ou menos que o nível de intensidade sonora NIS?
- Medi a diferença entre o NPS em um ponto a 1 m da fonte e outro a 6 m da fonte e deu 15dB de diferença. Quanto terá sido a diferença em NIS?

NPS a uma certa distância

 Quando o nível de pressão sonora N1 a uma distância d1 da fonte é conhecida, o nível de pressão N2 a uma distância d2 pode ser calculada por

$$N2 = N1 - 20\log(d2/d1)(dB)$$

• E portanto a diferença de NPS (Δ_{NPS} em dB) entre d2 e d1 é dada por 20log(d2/d1)

Exemplos

 1) Uma fonte sonora f1 produz um nível de pressão sonora N1=115 dB SPL a 1 metro.
 Qual será o nível de pressão N2 (em dB SPL) a 6 metros?

Exemplos

 2) O nível de pressão sonora SPL em uma sala é de 78 dB. Qual é a pressão sonora em Pa?

Exemplos

 Dobrando-se a intensidade, aumenta-se NIS em 3dB

$$N_{antes} = 10 \log_{10} (I/I_o)$$
 $N_{depois} = 10 \log_{10} (2I/I_o) = 10 \log_{10} (2) + 10 \log_{10} (I/I_o) =$
 $N_{depois} = 10 \times 0.3 + N_{antes} = 3 dB + N_{antes}$

Resumo da ópera: 2 x I → +3dB SPL

- Quando temos mais de uma fonte sonora irradiando qual será a pressão (ou intensidade) sonora resultante?
- Qual será o aumento no nível da pressão sonora (NPS) resultante devido ao aumento do número de fontes sonoras irradiantes?
- Se tivermos duas fontes sonoras ambas tocando com 90 dB de NPS, teremos um NPS resultante de 180 dB?
- Vejamos um exercício que permita responder isso...

Exercício em classe

- Temos duas fontes sonoras S e S', lado a lado, e equidistantes de um ponto de escuta X à distância d.
- Qual serão os valores para
 - Intensidade sonora (I=?)
 - Pressão sonora (p=?)
 - Nível de intensidade sonora (NIS=?)
 - Nível de pressão sonora (NPS = SPL =?)

Exercício em classe

Situação inicial (1 fonte)
 Situação final (2 fontes)

$$I_a = p_a^2/Z \rightarrow p_a^2 = Z$$
. $I_a \rightarrow p_a = \sqrt{Z} \cdot \sqrt{I_a}$
 $NPS_a = 20log(p_a/p_0)$
 $NIS_a = 10log(I_a/I_0)$

$$\begin{aligned} & p_{d} = \sqrt{Z}.\sqrt{I_{d}} = \sqrt{Z}.\sqrt{2}.\sqrt{I_{a}} = \sqrt{2}.p_{a} \\ & \text{NPS}_{d} = 20log(p_{d}/p_{0}) = 20log(\sqrt{2}.p_{a}/p_{0}) = \\ & 20log(\sqrt{2}) + 20log(p_{a}/p_{0}) = 3dB + NPS_{a} \\ & \text{NIS}_{d} = 10log(I_{d}/I_{0}) = 10log(2I_{a}/I_{0}) = \\ & 10log(2) + 10log(I_{a}/I_{0}) = 3dB + NIS_{a} \end{aligned}$$

Conclusões do Exercício em classe

- "Duplicar" a fonte sonora dobra a potência irradiante e portanto:
 - A intensidade sonora dobra
 - A pressão sonora aumenta √2 vezes
 - Tanto o Nível de Intensidade Sonora (NIS) quanto o Nível de Pressão
 Sonora (NPS ou SPL) aumentam igualmente de +3dB (e não dobram!)
- Note que dobrar a intensidade sonora não é portanto a mesma coisa que dobrar a pressão sonora
- E nos casos em que *triplicamos* a fonte sonora, ou quando temos várias fontes com diferentes intensidades cada uma: como fazer para obter o NPS resultante?...

- No caso de várias fontes soando ao mesmo tempo verificamos é que a *intensidade* resultante será a soma das intensidades individuais, isto é, $I = I_1 + I_2 \dots + I_N$, onde N é o número de fontes sonoras irradiantes
- Desta forma, o NPS ou NIS resultante pode ser calculado com

NPS
$$\approx NIS = 10.\log\left(\frac{I}{I_0}\right) = 10.\log\left(\frac{I_1 + I_2 + ... + I_N}{I_0}\right)$$

 Um forma generalizada para estimar o nível sonoro resultante nos casos em que temos a contribuição de várias fontes sonoras com níveis sonoros distintos é vista no livro texto do Bistafa, Item 3.5, e usa a seguinte fórmula:

$$NPS \approx NIS = 1000 \left(\sum_{i=1}^{M} 10^{\frac{N_i}{10}} \right) = 1000 \left(10^{\frac{N_1}{10}} + 10^{\frac{N_2}{10}} + ... + 10^{\frac{N_M}{10}} \right)$$

onde N_i é o nível individual de cada fonte sonora irradiante.

Exemplo:

- Temos 3 fontes sonoras, uma flauta, um violoncelo e um violino, irradiando respectivamente $NPS_1 = 60dB$, $NPS_2 = 50 dB$ e $NPS_1 = 55 dB$ (medidos em um certo ponto de escuta), pergunta-se: qual será o NPS resultante?
- Quando dobramos a pressão sonora, o NIS ou NPS vai aumentar quanto?
 - (a) + 6dB
 - (b) +2dB
 - (c) + 3dB

Solução do exemplo:

- Temos 3 fontes sonoras, uma flauta, um violoncelo e um violino, irradiando respectivamente $NPS_1 = 60dB$, $NPS_2 = 50 dB$ e $NPS_1 = 55 dB$ (medidos em um certo ponto de escuta), pergunta-se: qual será o NPS resultante?

NPS
$$\approx$$
 NIS = $10.\log \left(\sum_{i=1}^{3} 10^{\frac{NPS_i}{10}} \right) = 10\log \left(10^{\frac{60}{10}} + 10^{\frac{50}{10}} + \dots + 10^{\frac{55}{10}} \right) =$
= $10\log \left(10^6 + 10^5 + \dots + 10^{5,5} \right) = 10\log (1416227,76) = 61,51dB$

— Quando dobramos a pressão sonora, o NIS ou NPS vai aumentar quanto?

- (a) +6dB
$$\leftarrow$$
- (b) +2dB
- (c) +3dB
$$NPS_{depois} = 20\log(\frac{2p}{p_0}) = 20\left[\log 2 + \log(\frac{p}{p_0})\right] \approx 6 + NPS_{anterior}$$

Revisão

- Grandezas sonoras
 - Intensidade, altura, timbre, duração, espaço
- Física x Psicofísica
 - Na acústica musical, para cada grandeza física objetiva temos uma grandeza percebida subjetiva associada

Física → Som físico Φ	Psicofísica → Som percebido Ψ
Intensidade I (W/m ^{2,} SPL dB) Frequência f (Hz) Duração d (s)	Volume (<i>loudness</i>) L (phon, sone) Pitch p (mel, tom, bark) Duração aparente d' (s)

Revisão

- Intensidade e pressão
- Decibéis e logaritmos
- Nível de pressão sonora (NPS) e de intensidade sonora (NIS)
- Relações entre grandezas físicas
- Adição de níveis sonoros
- A relação entre variações de intensidade e pressão não é linear
 - Dobrou a intensidade sonora → + 3dB de ganho em nível de intensidade sonora (NIS) → igualmente + 3dB em NPS (=SPL)
 - Dobrou a pressão → + 6dB de ganho em nível de pressão sonora (NPS)

Tópico extra

Definições de decibel

Equivalências entre grandezas acústicas e elétricas Relações em dB das variações de várias grandezas físicas

Definições de decibel

- O decibel (dB) é definido como sendo N = -20log(Amplitude)
 - Terão dimensão de amplitude: pressão acústica (p), tensão elétrica (v)
- Considerando a relação entre Amplitude e outras grandezas físicas associadas, como potência e intensidade, podemos definir o decibel usando-se estas outras grandezas
 - Terão dimensão de potência: W=v²/R (elétrica), I=p²/Z (acústica)

Amplitude da onda (A), pressão (p), tensão (v), ganho de tensão (Av)	Potência (W), Intensidade (I=W/m²), ganho de potência (Ap)
$N_{(dB)} = 20 \log_{10} (A/A_0)$	$N_{(dB)} = 10 log_{10} (I/I_0)$
$N_{(dB)} = 20 \log_{10} (p/p_o)$	$N_{(dB)} = 10 log_{10} (W/W_o)$
$N_{(dB)} = 20 \log_{10} (v/v_0)$	$N_{(dB)} = 10 log_{10} (A_p)$
$N_{(dB)} = 20 \log_{10} (A_v)$	

Equivalências entre acústica e eletricidade

- Equivalências entre as grandezas elétricas e acústicas
 - Pressão (p) <-> Tensão (v) : A diferença de potencial na acústica é expressa pela pressão, e na eletricidade, pela tensão (voltagem)
 - Velocidade da partícula (v_p) <-> Corrente (i): O fluxo de partículas na acústica tem uma velocidade, assim como o de elétrons na eletricidade determina a corrente
 - Z: A impedância acústica e elétrica seguem destas definições
 - Potência elétrica (W) guarda relação com a Intensidade acústica (I)

Eletricidade	Acústica
v = Z x i (tensão = impedância x corrente)	$p = Z \times v_p$ (pressão = impedância x veloc. partic.)
W = v x i (potência = tensão x corrente)	$I = p \times v_p$ (intensidade = pressão x vel. partic.)
$V = Z \times W/V \rightarrow V^2 = Z \times W$	$p^2 = Z \times I$ (pressão2 = impedância x intensidade)
$W = Z \times i^2 = v^2/Z$ (potência elétrica)	$I = Z \times v_p^2 = p^2/Z$ (potência acústica)
Z = v/i (impedância elétrica)	$Z = p/v_p$ (impedância acústica)

Variações nas grandezas em dB

 Aumentos e reduções em grandezas como amplitude [0..1], intensidade (I=W/m²), potência (W) pressão (p), tensão (v) e seus respectivos valores em dB

Aumentando amplitude por um fator F = A'/A teremos em dB:	Aumentando intensidade por um fator F = I'/I teremos em dB:
F=2 (dobrou) \rightarrow	F=2 (dobrou) \rightarrow
N = 20 log ₁₀ (2) = 20 x 0,3 = +6dB	N = 10 log ₁₀ (2) = 10 x 0,3 = +3dB
F=0,707 (reduziu) \rightarrow	F=0,707 (reduziu) \rightarrow
N = 20 log ₁₀ (0,707) = 20 x -0,15 = -3dB	N = 10 log ₁₀ (0,707) = 10 x -0,15 = -1,5dB

Resumo da ópera:

- Dobrou amplitude (equivalente à pressão) do sinal → +6dB
- Dobrou a potência (equivalente à intensidade) do sinal → +3dB
- Reduziu amplitude do sinal por $\sqrt{2}$ =0.707 → -3dB
- Reduziu a potência do sinal por √2=0.707 → -1.5dB