

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 111000 N
                                                                        M_{\star}
                                                                                    = 4910000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 62100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 212000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 122000 N
                                                               M_{\star}
                                                                          = 5460000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 66500 N
                                                                          = 200000 \text{ N/mm}^2
          = 156000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 134000 N
                                                                 M_{\star}
                                                                            = 5780000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 49600 N
                                                                            = 200000 \text{ N/mm}^2
          = 174000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 98000 N
                                                                M_{\star}
                                                                          = 6240000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 54000 N
                                                                          = 200000 \text{ N/mm}^2
          = 191000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 96100 N
                                                                M_{\star}
                                                                          = 2950000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 51700 N
                                                                          = 200000 \text{ N/mm}^2
          = 177000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 103000 N	M _t	= 128000 Nmm	σ_{a}	= 240 N/mm ²	G	= 76000 N/mm ²
T_y	= 54000 N	M_x	= 3040000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	M _t	= 145000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 41500 N	$\dot{M_x}$	= 3590000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 83800 N
                                                                M_{\star}
                                                                          = 3610000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 44100 N
                                                                          = 200000 \text{ N/mm}^2
          = 157000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                        M_{\star}
                                                                                    = -6100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 80400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 219000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 124000 N	M _t	= 154000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 80700 N	M_x	= -5880000 Nmm		= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 149000 N
                                                                 M_{\star}
                                                                            = -7650000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 62600 N
                                                                            = 200000 \text{ N/mm}^2
          = 185000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 102000 N
                                                                        M_{\star}
                                                                                    = -7040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 64900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 192000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 132000 N
                                                                M_{\star}
                                                                          = 6010000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 61100 N
                                                                          = 200000 \text{ N/mm}^2
          = 243000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 145000 N
                                                                M_{\star}
                                                                          = 6770000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 66200 N
                                                                          = 200000 \text{ N/mm}^2
          = 179000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 159000 N
                                                                      M_{\star}
                                                                                 = 7130000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 240 \text{ N/mm}^2
           = 48900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 200000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                      M_{\star}
                                                                                 = 7830000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 240 \text{ N/mm}^2
           = 53900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 220000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 111000 N
                                                                        M_{\star}
                                                                                    = 4910000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 62100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 212000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 122000 N
                                                                      M_{\star}
                                                                                  = 5460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 66500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 134000 N
                                                                 M_{\star}
                                                                            = 5780000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 49600 N
                                                                            = 200000 \text{ N/mm}^2
          = 174000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 98000 N
                                                                        M_{\star}
                                                                                     = 6240000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 54000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 191000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 96100 N
                                                                  M_{\star}
                                                                             = 2950000 Nmm
T_y M_t
                                                                             = 240 \text{ N/mm}^2
          = 51700 N
                                                                            = 200000 \text{ N/mm}^2
          = 177000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 103000 N	M _t	= 128000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_v	= 54000 N	M_x	= 3040000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$; =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	M _t	= 145000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 41500 N	M_x	= 3590000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 83800 N
                                                                  M_{\star}
                                                                            = 3610000 Nmm
T_y M_t
                                                                             = 240 \text{ N/mm}^2
          = 44100 N
                                                                            = 200000 \text{ N/mm}^2
          = 157000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                        M_{\star}
                                                                                    = -6100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 80400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 219000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 124000 N	M _t	= 154000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 80700 N	M_x	= -5880000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 149000 N
                                                                 M_{\star}
                                                                            = -7650000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 62600 N
                                                                            = 200000 \text{ N/mm}^2
          = 185000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 102000 N
                                                                 M_{\star}
                                                                            = -7040000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 64900 N
                                                                            = 200000 \text{ N/mm}^2
          = 192000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 132000 N
                                                                        M_{\star}
                                                                                   = 6010000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 240 \text{ N/mm}^2
           = 61100 N
                                                                                   = 200000 \text{ N/mm}^2
           = 243000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 145000 N
                                                                M_{\star}
                                                                           = 6770000 Nmm
                                                                           = 240 \text{ N/mm}^2
          = 66200 N
M,₊
                                                                           = 200000 \text{ N/mm}^2
          = 179000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 159000 N
                                                                        M_{\star}
                                                                                   = 7130000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                   = 240 \text{ N/mm}^2
           = 48900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 200000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                        M_{\star}
                                                                                    = 7830000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 53900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 220000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 111000 N
                                                                 M_{\star}
                                                                            = 4910000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 62100 N
                                                                            = 200000 \text{ N/mm}^2
          = 212000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 122000 N
                                                                        M_{\star}
                                                                                    = 5460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 66500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                        M_{\star}
                                                                                    = 5780000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 49600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 174000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 98000 N
                                                                  M_{\star}
                                                                             = 6240000 Nmm
T_y M_t
                                                                             = 240 \text{ N/mm}^2
          = 54000 N
                                                                            = 200000 \text{ N/mm}^2
          = 191000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 96100 N
                                                                  M_{\star}
                                                                             = 2950000 Nmm
T_y M_t
                                                                             = 240 \text{ N/mm}^2
          = 51700 N
                                                                            = 200000 \text{ N/mm}^2
          = 177000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 103000 N	M,	= 128000 Nmm		$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 54000 N	M_x	= 3040000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	* (* yc)	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	
		-					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	M _t	= 145000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 41500 N	$\dot{M_x}$	= 3590000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 83800 N
                                                                  M_{\star}
                                                                            = 3610000 Nmm
T_y M_t
                                                                             = 240 \text{ N/mm}^2
          = 44100 N
                                                                            = 200000 \text{ N/mm}^2
          = 157000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 119000 N
                                                                        M_{\star}
                                                                                    = -6100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 80400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 219000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 124000 N	M _t	= 154000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 80700 N	M_x	= -5880000 Nmm		= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 149000 N
                                                                 M_{\star}
                                                                            = -7650000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 62600 N
                                                                            = 200000 \text{ N/mm}^2
          = 185000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 102000 N
                                                                        M_{\star}
                                                                                    = -7040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 64900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 192000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 132000 N
                                                                M_{\star}
                                                                          = 6010000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 61100 N
                                                                          = 200000 \text{ N/mm}^2
          = 243000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 145000 N
                                                                M_{\star}
                                                                          = 6770000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 66200 N
                                                                          = 200000 \text{ N/mm}^2
          = 179000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 159000 N
                                                                M_{\star}
                                                                          = 7130000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 48900 N
                                                                          = 200000 \text{ N/mm}^2
          = 200000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 117000 N
                                                                M_{\star}
                                                                          = 7830000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 53900 N
                                                                          = 200000 \text{ N/mm}^2
          = 220000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 111000 N
                                                                        M_{\star}
                                                                                    = 4910000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 62100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 212000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 122000 N
                                                                      M_{\star}
                                                                                  = 5460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 66500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 134000 N
                                                               M_{\star}
                                                                          = 5780000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 49600 N
                                                                          = 200000 \text{ N/mm}^2
          = 174000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 98000 N
                                                                        M_{\star}
                                                                                     = 6240000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 54000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 191000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 96100 N
                                                                M_{\star}
                                                                          = 2950000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 51700 N
                                                                          = 200000 \text{ N/mm}^2
          = 177000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 103000 N	M _t	= 128000 Nmm	σ_{a}	= 240 N/mm ²	G	= 76000 N/mm ²
T_y	= 54000 N	M_x	= 3040000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 116000 N	M _t	= 145000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 41500 N	$\dot{M_x}$	= 3590000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 83800 N
                                                                M_{\star}
                                                                          = 3610000 Nmm
T_y M_t
                                                                          = 240 \text{ N/mm}^2
          = 44100 N
                                                                          = 200000 \text{ N/mm}^2
          = 157000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.11.05.11

25.05.11

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 119000 N
                                                                 M_{\star}
                                                                            = -6100000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 80400 N
                                                                            = 200000 \text{ N/mm}^2
          = 219000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 124000 N	M₊	= 154000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 76000 \text{ N/mm}^2$
T_y	= 80700 N	M_x	= -5880000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 149000 N
                                                                 M_{\star}
                                                                            = -7650000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 62600 N
                                                                            = 200000 \text{ N/mm}^2
          = 185000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 102000 N
                                                                 M_{\star}
                                                                            = -7040000 Nmm
T_y M_t
                                                                            = 240 \text{ N/mm}^2
          = 64900 N
                                                                            = 200000 \text{ N/mm}^2
          = 192000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 132000 N
                                                                M_{\star}
                                                                          = 6010000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 61100 N
                                                                          = 200000 \text{ N/mm}^2
          = 243000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
          = 145000 N
                                                                M_{\star}
                                                                          = 6770000 Nmm
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 66200 N
                                                                          = 200000 \text{ N/mm}^2
          = 179000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 159000 N
                                                                      M_{\star}
                                                                                 = 7130000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 240 \text{ N/mm}^2
           = 48900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 200000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 117000 N
                                                                      M_{\star}
                                                                                  = 7830000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 53900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 220000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 111000 N
                                                                        M_{\star}
                                                                                    = 4910000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 62100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 212000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 122000 N
                                                                        M_{\star}
                                                                                    = 5460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 66500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 134000 N
                                                                        M_{\star}
                                                                                    = 5780000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 240 \text{ N/mm}^2
           = 49600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 174000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 98000 N
                                                                        M_{\star}
                                                                                     = 6240000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 240 \text{ N/mm}^2
            = 54000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 191000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 96100 N
                                                                      M_{\star}
                                                                                  = 2950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 240 \text{ N/mm}^2
           = 51700 N
                                                                                  = 200000 \text{ N/mm}^2
           = 177000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 103000 N	M _t	= 128000 Nmm	σ_{a}	= 240 N/mm ²	G	= 76000 N/mm ²
T_y	= 54000 N	M_x	= 3040000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	