CMOS Static NAND Gate

ⁿ Second switching condition: $V_A = V_{DD}$ and V_B switches from 0 to V_{DD}

At $V_B = V_M$, the current through M_1 and M_2 is higher than when $V_A = V_B$ since the gate voltage on M_1 is now V_{DD} and its V_{DS1} must be smaller --> V_{GS2} is larger. Effective k_n is increased.

At $V_B = V_M$, only M_4 is conducting current --> only half the current as for previous switching condition. Effective k_p is that of device M_4

n Result: V_M is 0.3-0.5 V lower than for $V_A = V_B$ switching condition, for typical dimensions

NAND Gate Transfer Functions

ⁿ SPICE is useful to solve for the transfer functions under the various switching conditions (see Ex. 5.7). Note that the backgate effect means that the curves when V_A switches and when V_B switches are not identical.

n Results: setting $k_n = 2 k_p$ results in V_M approximately $V_{DD}/2$.

CMOS NAND Gate Transient Analysis

Norst-case situation for low-to-high transition: only one of the p-channel transistors is switching (say M_4):

$$-I_{Dp} = -I_{D4} = \frac{k_p}{2} (V_{DD} + V_{Tp})^2$$

For high-to-low transition, consider M_1 and M_2 in series with effective length at $2L_n$ (worst-case since current is lowest with $V_A = V_B$)

$$I_{Dn} = I_{D_1} = I_{D2} = \mu_n C_{ox} [W_n / 2(2L_n)] (V_{DD} - V_{Tn})^2 = \frac{k_n}{4} (V_{DD} - V_{Tn})^2$$

n For equal propagation delays, we require $I_{Dn} = -I_{Dp}$

$$\frac{k_n}{4} = \frac{k_p}{2} --> k_n = 2k_p$$

The factor of 2 mobility difference between the p and n channels indicates that

$$(W/L)_n = (W/L)_p$$
 (2 input NAND gate)

n For an *M*-input NAND gate, we find that

$$(W/L)_n = (M/2) (W/L)_p$$

Note: NOR gates suffer from a factor of 2*M* between the n- and p-channel ratios which makes them unattractive for large fan-in gates

Transistor Sizing (Example)

Logic function Y = D + [A*(B+C)]

CMOS Dynamic Logic

n Static NOR gate

Idea: n-channel and p-channel devices separately perform the same logic function.

replace p-channels with a resistor -->

$$Q = \overline{A + B}$$

replace n-channels with a resistor -->

$$Q = \overline{A}\overline{B}$$

- ... two functions are identical by DeMorgan's Theorem
- n Let n-channels perform the logic and get rid of the pull-up devices (or vice versa)

n-Channel CMOS Dynamic Logic

- n clock signal $\phi(t)$ charges up load capacitance through M_P (P = precharge) when it transitions from high to low; M_E (E = evaluate) is cutoff and prevents any discharge path of C_L through logic function transistors.
- n clock signal goes high --> M_P is cutoff, M_E conducts --> C_L discharges if one of the logic transistors has a high input.

- n Payoffs:
 - 1. large fan-in NOR gates without huge p-channel load devices (also, avoids backgate effect on loads)
 - 2. tends to be fast due to smaller load capacitances
- n Drawback:
 - 1. clock is essential to refresh logic level stored on C_L , which complicates the design

n-Channel Dynamic Logic Propagation Delays

n Consider " t_{PLH} " to be the time required to pre-charge the output node

n Charging current

$$-I_{Dp} = \frac{k_p}{2} (V_{DD} + V_{Tp})^2$$

n-Channel Dynamic Logic Propagation Delays

n Consider " t_{PHL} " to be the *worst-case* time to evaluate the logical function after clock goes high.

Discharging current: assume $(W/L)_E = (W/L)_A = ... (W/L)_M$ and note that the transistors are in series -->effective value is $k_n / 2$

$$I_{D_n} = \mu_n C_{ox} \left(\frac{k_n}{4}\right) (V_{DD} - V_{Tn})^2$$

Boolean Functions in Dynamic Logic

n Examples:

n (a) n-channel dynamic logic

$$Q = \overline{(A+B)C}$$

n (b) p-channel dynamic logic

The output is "pre-discharged" to zero by M_P and is only charged if there is a path through the logic transistors when the clock goes low and M_E conducts.

$$Q = \overline{A}\overline{B} + \overline{C} + \overline{D}$$

CMOS Transmission Gates

n Need: "gate" signals by having a series switch that can be shorted or open-circuited.

why n-channel and p-channel in parallel? Only one device (say, n-channel): can't pass an input voltage $> V_{DD}$ - V_{Tn} , since device will enter the cutoff region

.

Pass Transistor Logic

- n Advantages: reduced transistor count and higher speed compared with static CMOS
- n Disadvantage: reduced noise margins

