



#### **Thème**

Mise en place d'un Outil de Diagnostic et de pronostic basé sur la radiomique pour l'aide à la prise en charge clinique

#### APPLICATION A LA TUMEUR DE LA PROSTATE

Présenter par: Maître de stage: Directeur de mémoire

SAMA E. S. Souvenir Dr APEKE Séna Dr Amir HAJJAM EL

**HASSANI** 

### **PLAN**

Introduction



Validation des résultats



Etat de l'art



03 Résultats de la recherche



Conclusion

#### Introduction

De nos jours, les cancers constituent l'une des sources de mortalité les plus élevées dans le monde et ceux, malgré les progrès scientifiques et technologiques, les processus de diagnostic et de traitement restent de loin les plus unanimes et uniformes. Plusieurs moyens de diagnostic et de traitement existent, en passant par les plus invasives comme la chirurgie aux moins invasives comme la radiologie. Mais pour une meilleure prise en charge, un cancer doit être détecté le plus précocement possible. Et quoi de mieux que la radiologie pour cette prise en charge rapide et non invasive!

### Contexte du sujet

Les images radiologiques sont une source d'information très précieuses qui sont sousexploitées. En effet l'observation apportée par le radiologue étant limitée aux facteurs physiques comme la taille et le volume de la tumeur fait que nous avons toujours besoin de recourir à la biopsie pour en déterminer la texture pour une tumeur donnée. Pour en venir à ce problème un nouveau procédé appelé la radiomics, a été mis sur place consistant à extraire des caractéristiques quantitatives des images afin d'en déterminer leur texture.

C'est en ce sens que ce pose la question

### Problematique



Comment grâce à la radiomique, extraire les caractéristiques des images radiologiques afin de déterminer le taux de malignité d'une tumeur sans avoir recourt à la biopsie, une des moyen invasive à éviter de nos jours?

### Objectifs

Face au défi, on s'est fixé un certains nombre d'objectifs qui sont

- > Réaliser la segmentation des images radiologique IRM sur la base des réseaux U-Net
- Extraire des caractéristiques ou marqueurs radiomique sur la base des images et de leurs masques de segmentation.
- ➤ Appliquer cela aux images IRM de la prostate pour la prédiction du grade de Gleason de la tumeur de prostate pour un patient quelconque.
- ➤ Intégré le modèle de segmentation et de prédiction de grade à une plateforme d'analyse et de diagnostique des images IRM de la prostate pour la prédiction du grade de Gleason.

### La démarche scientifique

LA RADIOMICS UNE SCIENCE HYPOTHÉTICO-DÉDUCTIVE



### Processus radiomique

Constituer principalement de 04 étapes



#### Bibliothèques utilisés











### Source des données





y f V in M





#### Les données

Nos données sont constitués de deux types d'images à savoir:

☐ Données en pondération diffusion ADC



#### Les données

☐ Données en pondération de diffusion en temps de relaxation T2



#### Taille des données





Architecture des réseaux U-Net



#### Segmentation des données IRM

#### Courbe de validation



Segmentation des données IRM

Courbe de fonction de perte



#### Segmentation des données IRM

Images segmenté à partir du model 3D U-Net

Comme résultat, nous avons au premier et au second diapos, une image et son masque, au troisième diapos, son masque prédit à partir de l'image, et dernière position la localisation du masque dans

l'image. ACC: 0,87



#### Extraction des caractéristiques radiomique

L'extraction des caractéristique a été fait par le biais de la bibliothèque PyRadiomics et on comptait au total 104 caractéristiques organisé en catégorie tel que:

- ☐ Les caractéristiques de forme (2D et 3D)
- ☐ Les caractéristiques statistique de premier ordre
- ☐ Les caractéristiques de texture (GLCM, GLRLM, GLSZM, NGTDM, GLDM)

#### Extraction des caractéristiques radiomique

#### Échantillon des données extraites.

| original_shape_Elongation original_sh | nape_Flatness o | original_shape_LeastAxisLength | original_shape_MajorAxisLength | original_shape_Maxim |
|---------------------------------------|-----------------|--------------------------------|--------------------------------|----------------------|
|---------------------------------------|-----------------|--------------------------------|--------------------------------|----------------------|

| sub              |          |          |          |           |  |
|------------------|----------|----------|----------|-----------|--|
| PI_CAI_10665_Adc | 0.788635 | 0.163558 | 3.090075 | 18.892876 |  |
| PI_CAI_10806_Adc | 0.660957 | 0.347827 | 3.443349 | 9.899609  |  |
| PI_CAI_10135_Adc | 0.749744 | 0.426938 | 2.512995 | 5.886095  |  |
| PI_CAI_10772_Adc | 0.534712 | 0.426840 | 2.376157 | 5.566860  |  |
| PI_CAI_10393_Adc | 0.256485 | 0.138072 | 2.742235 | 19.860968 |  |

5 rows × 108 columns

#### Analyse statistique

D'après des méthodes d'analyse statistique et de prédiction, des caractéristique de texture et de premier ordre sont assez significatives dans le processus de classification des tumeurs malignes, des tumeurs bénignes. Parmi ses marqueurs de texture on retrouve le Gray Level Co-occurrence Matrice (GLCM).

#### Analyse statistique





#### Prédiction sur les données extraites

#### Modèle XgBoost

| Pondération ADC          |           |        |      |      |         |  |
|--------------------------|-----------|--------|------|------|---------|--|
|                          | precision | recall | f1-s | core | support |  |
|                          |           |        |      |      |         |  |
| 0                        | 0.59      | 0.69   | 0.6  | 54   | 90      |  |
| 1                        | 0.79      | 0.71   | 0.7  | 75   | 112     |  |
| 2                        | 0.77      | 0.67   | 0.7  | 71   | 108     |  |
| 3                        | 0.77      | 0.82   | 0.7  | 79   | 65      |  |
| 4                        | 0.98      | 0.94   | 0.9  | 96   | 53      |  |
| 5                        | 0.70      | 0.86   | 0.7  | 77   | 37      |  |
|                          |           |        |      |      |         |  |
| accura                   | acy       |        |      | 0.75 | 465     |  |
| macro a                  | avg 0.    | .77 (  | ).78 | 0.77 | 465     |  |
| weighted a               | ivg 0     | .76    | 0.75 | 0.7  | 5 465   |  |
|                          |           |        |      |      |         |  |
| accuracy Score is 74.84% |           |        |      |      |         |  |

| Pondération T2w |                                   |        |             |      |  |  |  |  |
|-----------------|-----------------------------------|--------|-------------|------|--|--|--|--|
|                 | precision recall f1-score support |        |             |      |  |  |  |  |
|                 |                                   |        |             |      |  |  |  |  |
| 0               | 0.70                              | 0.70   | 0.70        | 104  |  |  |  |  |
| 1               | 0.65                              | 0.72   | 0.68        | 86   |  |  |  |  |
| 2               | 0.78                              | 0.82   | 0.80        | 114  |  |  |  |  |
| 3               | 0.86                              | 0.84   | 0.85        | 121  |  |  |  |  |
| 4               | 0.98                              | 0.94   | 0.96        | 109  |  |  |  |  |
| 5               | 0.95                              | 0.87   | 0.91        | 114  |  |  |  |  |
|                 |                                   |        |             |      |  |  |  |  |
| accuracy        |                                   |        | 0.82        | 648  |  |  |  |  |
| macro avg       |                                   | 0.82   | 0.82        | 0.82 |  |  |  |  |
| weighted avg    | 0.83                              | 3 0.82 | 0.82        | 648  |  |  |  |  |
| 5 6             |                                   |        |             |      |  |  |  |  |
| accuracy        | accuracy Score is 82.25%          |        |             |      |  |  |  |  |
| accuracy        |                                   | 02.20  | <b>)</b> /U |      |  |  |  |  |

#### Prédiction sur les données extraites

#### Modèle Random Forest

| Pondération ADC          |         |        |        |         |         |  |  |  |
|--------------------------|---------|--------|--------|---------|---------|--|--|--|
|                          | precisi | on rec | call f | 1-score | support |  |  |  |
|                          |         |        |        |         |         |  |  |  |
| 0                        | 0.59    | 0.6    | 65     | 0.62    | 95      |  |  |  |
| 1                        | 0.72    | 0.6    | 67     | 0.70    | 107     |  |  |  |
| 2                        | 0.68    | 0.6    | 54     | 0.66    | 100     |  |  |  |
| 3                        | 0.71    | 0.0    | 32     | 0.76    | 60      |  |  |  |
| 4                        | 0.92    | 0.0    | 32     | 0.87    | 57      |  |  |  |
| 5                        | 0.85    | 0.0    | 35     | 0.85    | 46      |  |  |  |
|                          |         |        |        |         |         |  |  |  |
| accuracy                 |         |        |        | 0.72    | 465     |  |  |  |
| macro avg                |         | 0.75   | 0.74   | 0.74    | 465     |  |  |  |
| weighted avg             |         | 0.72   | 0.72   | 2 0.72  | 465     |  |  |  |
|                          |         |        |        |         |         |  |  |  |
| accuracy Score is 71.61% |         |        |        |         |         |  |  |  |

| Pondération T2w          |           |       |         |     |      |     |  |
|--------------------------|-----------|-------|---------|-----|------|-----|--|
|                          | precision | recal | l f1-sc | ore | supp | ort |  |
|                          |           |       |         |     |      |     |  |
| 0                        | 0.63      | 0.7   | 3 0.0   | 68  | 90   |     |  |
| 1                        | 0.77      | 0.7   | 8 0.    | 77  | 95   |     |  |
| 2                        | 0.77      | 0.7   | 5 0.    | 76  | 122  |     |  |
| 3                        | 0.89      | 0.8   | 8.0     | 88  | 120  |     |  |
| 4                        | 0.99      | 0.9   | 1 0.9   | 95  | 114  |     |  |
| 5                        | 0.96      | 0.9   | 3 0.9   | 95  | 107  |     |  |
|                          |           |       |         |     |      |     |  |
| accura                   | acy       |       |         | 0.8 | 83   | 648 |  |
| macro a                  | avg (     | 0.83  | 0.83    | 0.8 | 83   | 648 |  |
| weighted                 | avg       | 0.84  | 0.83    | 0.  | 84   | 648 |  |
|                          |           |       |         |     |      |     |  |
| accuracy Score is 83.49% |           |       |         |     |      |     |  |

#### Validation des résultats

La validation consiste à utiliser les données dont on ne connaît pas les labels dont on va faire la prédiction sur la base de nos modèles entraînés et de la méthodes de clusteringmap hiérarchique.

### Validation des résultats

### CLUSTERMAP HIÉRARCHIQUE



### Validation des résultats

#### RANDOM FORREST

#### **CLUSTERING**

| 17 | ProstateX_0007_Adc | 2 | 17 | ProstateX_0007_Adc |
|----|--------------------|---|----|--------------------|
| 18 | ProstateX_0025_Adc | 3 | 18 | ProstateX_0025_Adc |
| 19 | ProstateX_0066_Adc | 2 | 19 | ProstateX_0066_Adc |
| 20 | ProstateX_0151_Adc | 1 | 20 | ProstateX_0151_Adc |
| 21 | ProstateX_0130_Adc | 1 | 21 | ProstateX_0130_Adc |
| 22 | ProstateX_0087_Adc | 3 | 22 | ProstateX_0087_Adc |
| 23 | ProstateX_0010_Adc | 1 | 23 | ProstateX_0010_Adc |
| 24 | ProstateX_0062_Adc | 2 | 24 | ProstateX_0062_Adc |
| 25 | ProstateX_0149_Adc | 1 | 25 | ProstateX_0149_Adc |
| 26 | ProstateX_0020_Adc | 2 | 26 | ProstateX_0020_Adc |
| 27 | ProstateX_0057_Adc | 2 | 27 | ProstateX_0057_Adc |
| 28 | ProstateX_0023_Adc | 1 | 28 | ProstateX_0023_Adc |
| 29 | ProstateX_0100_Adc | 3 | 29 | ProstateX_0100_Adc |
| 30 | ProstateX_0036_Adc | 2 | 30 | ProstateX_0036_Adc |
| 31 | ProstateX_0091_Adc | 2 | 31 | ProstateX_0091_Adc |
| 32 | ProstateX_0003_Adc | 1 | 32 | ProstateX_0003_Adc |
| 33 | ProstateX_0171_Adc | 3 | 33 | ProstateX_0171_Adc |
| 34 | ProstateX_0147_Adc | 3 | 34 | ProstateX_0147_Adc |
| 35 | ProstateX_0140_Adc | 2 | 35 | ProstateX_0140_Adc |

### Validation des résultats (La vraisemblance)

```
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(rf_No_biopsie_Label, CT_No_biopsie_Label
percentage = accuracy * 100
print("Validation des données :", percentage)
```

Validation des données : 65.71428571428571

## **DEMO**

## Conclusion

# MERCI