K-Nearest Neighbors (KNN):

1. Model Overview

K-Nearest Neighbors (KNN) is a **non-parametric, instance-based (lazy learning)** algorithm used for both **classification** and **regression** tasks. It predicts outcomes based on the majority class (for classification) or average of nearest neighbors (for regression).

2. Key Aspects to Analyze for KNN

A. Assumptions

- 1. Similar data points exist close to each other in the feature space (locality assumption).
- 2. The dataset is **representative and balanced**, with all relevant features captured.
- 3. Distance metrics used (e.g., Euclidean, Manhattan) meaningfully represent similarity.
- 4. Features are **scaled properly** (normalization or standardization is required).
- 5. The data is **low-dimensional** KNN suffers from the "curse of dimensionality."

B. Limitations

- 1. **Computationally expensive** for large datasets requires storing all data points.
- 2. **Slow prediction time** since distances are calculated for each query instance.
- 3. Sensitive to noisy or irrelevant features.
- 4. **Performance degrades** with high-dimensional data (many features).
- 5. Choice of 'K' and distance metric significantly impacts accuracy.
- 6. **Imbalanced classes** can bias the prediction toward the majority class.

C. Attributes / Input Features

- 1. Works best with continuous and numerical features.
- 2. Categorical features can be handled using **appropriate encoding** and **distance functions** (e.g., Hamming distance).
- 3. Feature scaling (e.g., Min-Max or Standard Scaler) is mandatory.
- 4. Outliers should be minimized since KNN uses distance-based measures.

D. Internal Model Variations / Subtypes

- 1. **Weighted KNN** assigns higher weights to closer neighbors.
- 2. Distance Metrics Variants:
 - o Euclidean Distance
 - Manhattan Distance
 - Minkowski Distance
 - Cosine Similarity
- 3. **Approximate Nearest Neighbor (ANN)** uses indexing structures for faster searches.
- 4. **KNN Regression** predicts continuous values using the mean (or weighted mean) of neighbors.

E. Hyperparameters

- 1. K (Number of Neighbors):
 - Low K → High variance (overfitting)
 - High K → High bias (underfitting)
 - Optimal K often found using cross-validation or Elbow method

- 2. **Distance Metric:** Defines how closeness is measured.
- 3. Weight Function: Uniform vs distance-based weighting.
- 4. Algorithm: 'auto', 'ball tree', 'kd tree', or 'brute' (in scikit-learn).

F. Performance Evaluation Metrics

For Classification:

• Accuracy, Precision, Recall, F1-score, ROC-AUC

For Regression:

Mean Squared Error (MSE), Mean Absolute Error (MAE), R² Score

G. Use Cases

- Recommendation systems
- Pattern recognition (e.g., handwriting, facial recognition)
- Medical diagnosis (disease classification)
- Credit risk and fraud detection

H. Optimization Tips

- 1. **Feature scaling** before model training.
- 2. Dimensionality reduction (PCA) for high-dimensional data.
- 3. Remove outliers and irrelevant features.
- 4. **Tune K** using validation curves or grid search.
- 5. Use **KDTree** or **BallTree** for large datasets to improve performance.

I. Model Interpretation

- Transparent and explainable predictions are based on visible neighbors.
- No internal coefficients or weights like linear models relies purely on distance logic.

J. Summary Table

Aspect	Description
Туре	Non-parametric, instance-based
Learning Type	Lazy (no training phase)
Key Parameter	K (number of neighbors)
Requires Scaling	Yes
Handles Outliers Well	No
Sensitive to Dimensionality	Yes
Ideal Dataset Size	Small to medium
Output Type	Classification or Regression