

Herramientas Computacionales Taller 10 - Ajustes 2018-I

La solución debe subirse a SicuaPlus en un único archivo de IPython Notebook con el nombre NombreApellido_hw10.ipynb, el cual debe contener toda la solución del taller.

En el sistema Solar, las órbitas de los planetas se pueden considerar aproximadamente circulares. Para dichas órbitas, la magnitud de la velocidad circular V_c depende del radio R de la órbita, de la constante gravitacional G y de la masa del objeto central (en este caso la del Sol M_{\odot}), así:

$$V_c = \sqrt{\frac{GM_{\odot}}{R}} \tag{1}$$

La idea de este taller es que usted use las velocidades circulares de los planetas del sistema Solar para estimar la masa del Sol.

- 1. (0.5 puntos) Comente su código.
- 2. (2.0 puntos) Use los datos de radio y velocidades circulares de los planetas (Velocidades.txt) para estimar el producto de la constante gravitacional G y la masa del Sol M_{\odot} a partir de un ajuste.
 - Grafique los datos y su ajuste en una misma gráfica. No olvide rotular los ejes, indicar las unides y ponerle una leyenda a su gráfica.
 - Imprima el valor de GM_{\odot} encontrado y comente por qué no puede estimar esos dos parámetros por separado.
- 3. (2.5 puntos) Suponga ahora que conoce la constante gravitacional $G = 0.000118 AU^3 yr^{-2} M_e^{-1}$ donde M_e es la masa de la tierra ($M_e = 5.9722 \times 10^{24} kg$), yr es años y AU son unidades astronómicas ($1AU = 1.496 \times 10^8 km$). Conociendo este parámetro, vuelva a usar un ajuste para estimar la masa del Sol M_{\odot} .
 - Primero debe convertir las unidades de los radios a AU y las unidades de las velocidades a AU/yr e imprimirlas.
 - Grafique los datos y su ajuste en una misma gráfica. No olvide rotular los ejes, indicar las unides y ponerle una leyenda a su gráfica.
 - Imprima el valor M_{\odot} encontrado, escriba en qué unidades está M_{\odot} y comente si cree que tiene sentido o no.