2014年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS 2014

学科試験 問題
EXAMINATION QUESTIONS

(学部留学生) UNDERGRADUATE STUDENTS

数 学(B)
MATHEMATICS(B)

注意 ☆試験時間は60分。 PLEASE NOTE: THE TEST PERIOD IS **60 MINUTES**.

MATHEMATICS (B)

(2014)

No.	
full name, underlining family name)	Marks
	2

Answer the following questions and fill in your responses in the corresponding boxes on the answer sheet.

- 1. Fill in the blanks with the correct numbers.
 - (1) If the equation $\sqrt{2}x^2 \sqrt{3}x + k = 0$ with k a constant has two solutions $\sin \theta$ and $\cos \theta$ $\left(0 \le \theta \le \frac{\pi}{2}\right)$, then k = 2.
 - (2) Let a be a constant. If the constant term of $\left(x^3 + \frac{a}{x^2}\right)^5$ is equal to -270, then $a = \boxed{}$.
- (3) If the functions $f(x) = \frac{3x+1}{2x+1}$, $g(x) = \frac{px+1}{2x-3}$ satisfy the relation $f(g(x)) = x \cdot \left(x \neq -\frac{1}{2}, \frac{3}{2}\right)$, then the constant $p = \boxed{}$.
- (4) The solution to the inequality $\log_2 x + \log_2(x-2) < 4\log_{16} 8$, in the set of real numbers, is \bigcirc $< x < \bigcirc$
- (5) The total number of positive divisors of 600 is $^{\textcircled{1}}$, and the whole sum of those divisors is $^{\textcircled{2}}$.

2.	There are two circles, C of radius 1 and C_r of radius r , which
	intersect on a plain. At each of the two intersecting points on the
	circumferences of C and C_r , the tangent to C and that to C_r form
	an angle of 120° outside of C and C_{τ} . Fill in the blanks with the
	answers to the following questions.

- Express the distance d between the centers of C and C_r in terms of r.
- (2) Calculate the value of r at which d in (1) attains the minimum.
- (3) In case (2), express the area of the intersection of C and C_τ in terms of the constant π.

(1)		(2)		(3)	
-----	--	-----	--	-----	--

- 3. Consider the function $y = 8^x 9 \cdot 4^x + 15 \cdot 2^x$ of $x \ (-\infty < x < \infty)$. Fill in the blanks with the answers to the following questions.
 - Let X denote 2^x. Express y in terms of X.
 - (2) Calculate the local maximum and minimum of y, and the values of X in (1) at which y attains them.
- (3) Calculate the global maximum and minimum of y in the interval $0 \le x \le \log_2 7$, and the values of x at which y attains them.

- (2) The local maximum is \bigcirc at $X = \bigcirc$; the local minimum is \bigcirc at $X = \bigcirc$.