Class 07

Abzael Verduzco (A15942210)

Clustering

We will start today's lab with clustering methods, in particular so-called k-means. The main function for this in R is kmeans().

Let's try it on made up data where we know what the answer should be.

```
x <- rnorm(10000, mean =3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30,-3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 2.661970 -2.503526
[2,] 1.677326 -1.324502
[3,] 4.470952 -4.145279
[4,] 3.384942 -2.246615
[5,] 3.118998 -1.439104
[6,] 2.675364 -1.899715
```

We can pass this to the base R plot() function for a quick.

```
plot(x)
```



```
k <- kmeans(x, centers = 2, nstart = 20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 3.144419 -2.793313

2 -2.793313 3.144419

Clustering vector:

Within cluster sum of squares by cluster:

[1] 61.61956 61.61956

(between_SS / total_SS = 89.6 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q1. How many points are in each cluster?

k\$size

[1] 30 30

Q2. Cluster membership?

k\$cluster

Q3. Cluster centers?

k\$centers

x y 1 3.144419 -2.793313

2 -2.793313 3.144419

Q4. Plot my clustering results

Q.5 Cluster the data again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x, centers = 4, nstart = 20)
plot(x,col=k4$cluster, pch=16)</pre>
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tall it how many groups (k, or centers) you want.

Hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc<-hclust( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height we like. Fot this we use the cutree() function.

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30</pre>
```

Q6. PLor our hclust results.

```
plot(x, col=grps, pch=16)
```


Principal Component Analysis

 $\#\#\mathrm{PCA}$ of UK food data

Let's

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187

11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	Soft_drinks	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

View(x)

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

There are 17 rows and 4 columns, we could use the following functions:

```
nrow(x)
```

[1] 17

ncol(x)

[1] 5

#or
dim(x)

[1] 17 5

#Checking your data

Previw the first 6 rows
head(x)

	Х	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

or

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer the second approach as it will reach the same answer, as the first one will reset the date and if I were to run it again it would delete the following column that is England.

#Spotting major differenes and trends

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

Changing the besides to False results in the following plot. As when it FALSE, the columns of height are portrayed as stacked bars.

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

The following code results in a plot comparing the comsumption between two of the country, one that is on the same row and the other in the same column as the plot. Then, when a point lies in the diagonal, this means that a certain product is comsumpted in a similar amount between both countries.

```
pairs(x, col=rainbow(10), pch=16)
```


Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

The biggest difference between the UK and N.Ireland, is the consumption of fresh_potatoes as Ireland has an overwhelmingly larger amount of consumption.

Principal Component Analysis (PCA)

PCA can help us make sens of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to fist take the transpose of our input x so the columns are the food types and the countries are the rows.

	Cheese	Carcass_r	\mathtt{neat}	Other	_meat	Fish	Fats_and_	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
${\tt N.Ireland}$	66		267		586	93		209	139
	Fresh_p	potatoes	Fresh	n_Veg	Other	_Veg	Processed	_potat	toes
England		720		253		488			198

Wales	874	265	570)	203
Scotland	566	171	418	3	220
N.Ireland	1033	143	358	5	187
	Processed_Veg F	resh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drinks	S Confection	nery		
England	37	' 5	54		
Wales	47	' 5	64		
Scotland	45	58	62		
N.Ireland	13	35	41		

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -4.894696e-14
Wales -240.52915 -224.646925 -56.475555 5.700024e-13
Scotland -91.86934 286.081786 -44.415495 -7.460785e-13
N.Ireland 477.39164 -58.901862 -4.877895 2.321303e-13
```

Q.7 Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
plot(pca$x[,1], pca$x[,2], col=c('orange', 'red', 'blue', 'darkgreen'), pch = 16)
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

head(pca\$rotation)

```
PC1
                                    PC2
                                                 PC3
                                                              PC4
                            0.01601285 0.02394295 -0.694538519
Cheese
               -0.056955380
                0.047927628
                             0.01391582
                                         0.06367111
Carcass_meat
                                                      0.489884628
Other_meat
               -0.258916658 -0.01533114 -0.55384854
Fish
               -0.084414983 -0.05075495 0.03906481 -0.008483145
              -0.005193623 -0.09538866 -0.12522257
Fats_and_oils
                                                      0.076097502
Sugars
               -0.037620983 -0.04302170 -0.03605745 0.034101334
  v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )</pre>
[1] 67 29 4 0
  z <- summary(pca)
  z$importance
```

```
PC1 PC2 PC3 PC4
Standard deviation 324.15019 212.74780 73.87622 3.175833e-14
Proportion of Variance 0.67444 0.29052 0.03503 0.000000e+00
Cumulative Proportion 0.67444 0.96497 1.00000 1.000000e+00
```

```
barplot(v, xlab="Principal Component", ylab="Percent Variation")
```


Principal Component

```
##Lets focus on PC1 as it accounts for > 90% variance. par(mar=c(10, 3, 0.35, 0)) barplot( pca$rotation[,1], las=2 )
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


PC2 tells us about the difference in consumption between Wales and Scotland, with Wales consuming way more fresh_potatoes than Scotland and Scotland consuming way more soft drinks.