

Instituto Federal de Mato Grosso do Sul

Campus Três Lagoas

Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas $-\,1^{\rm o}$ Período

Disciplina: Introdução à Tecnologia de Computação

Prof. Vladimir Píccolo Barcelos

TRABALHO 01

- 1) Dadas duas proposições p e q, a proposição composta P = ($p \lor q$) é <u>falsa</u> quando:
 - a. p e q forem verdadeiras
 - b. p for verdadeira e q for falsa
 - c. p for falsa e q for verdadeira
 - d. p e q forem falsas
- 2) Dadas duas proposições p e q, a proposição composta Q = ($p \land q$) é <u>verdadeira</u> quando:
 - a. p for verdadeira e q for falsa
 - b. p e q forem verdadeiras
 - c. p for falsa e q for verdadeira
 - d. p e q forem falsas
- 3) Dadas duas proposições $p \in q$, a proposição composta $R = (p \rightarrow q)$ é falsa quando:
 - a. p for falsa e q for verdadeira
 - b. p e q forem verdadeiras
 - c. p for verdadeira e q for falsa
 - d. p e q forem falsas
- 4) Dadas duas proposições p e q, a proposição composta R = ($p \vee q$) é <u>verdadeira</u> quando:
 - a. p for falsa e q também for falsa
 - b. p for verdadeira e q também for verdadeira
 - c. p e q tiverem valores lógicos diferentes
 - d. p e q tiverem valores lógicos iguais

	c. p e q tiverem valores lógicos diferentes		
	d. p e q tiverem valores lógicos iguais		
6)	Relacione a primeira coluna com a segunda, significado:	ligar	ido o símbolo com o ponto referente ao seu
		•	Implicação Lógica
	⇒	•	Bicondicional
	V	•	Equivalência Lógica
	· →	•	Conjunção
	<u>V</u>	•	Disjunção
	¬	•	Condicional
	\leftrightarrow	•	Disjunção Exclusiva
	^	•	Negação
7)	Relacione a primeira coluna com a segunda, l significado:	igan	do o conectivo com o ponto referente ao seu
	se então	•	Disjunção
	e	•	Bicondicional
	se e somente se	•	Negação
	ou	•	Conjunção
	ou ou	•	Disjunção Exclusiva
	não	•	Condicional
8)	De acordo com os conceitos dados em aula, o	defina	a Tautologia, Contingência e Contradição.

5) Dadas duas proposições p e q, a proposição composta P = ($p \leftrightarrow q$) é <u>falsa</u> quando:

a. p for falsa e q também for falsa

b. p for verdadeira e q também for verdadeira

9) Considerando os valores iniciais de p e q, complete as colunas da tabela verdade abaixo com o resultado lógico de cada operação.

			,	-				
р	q	p <u>∨</u> q	$p \rightarrow q$	p ↔ q	~p	~q	~p ^ (p → q)	(p ↔ q) ∨ (p <u>∨</u> q)
F	V							
V	V							
F	F							
V	F							

10) Diga se as seguintes proposições são tautologias, contradições ou contingências. Ao realizar os exercícios, não se esqueça da ordem de precedência dos operadores.

a.
$$p \lor q \leftrightarrow q \lor p$$

р	q	pvq	q∨p	p v q ↔ q v p
V	V			
V	F			
F	V			
F	F			

b.
$$(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$$

р	q	r	p∨q	(p v q) v r	qvr	p v (q v r)	(p ∨ q) ∨ r ↔ p ∨ (q ∨ r)
V	V	V					
V	V	F					
V	F	V					
V	F	F					
F	V	V					
F	V	F					
F	F	V					
F	F	F					

c.
$$\sim$$
(p \wedge q) \leftrightarrow \sim p \wedge \sim q

р	q	p ^ q	~(p ∧ q)	~p	~q	~p ^ ~q	~(p ∧ q) ↔ ~p ∧ ~q
V	V						
V	F						
F	V						
F	F						

d.
$$(r \land s) \land s \leftrightarrow \sim ((s \land r) \land r)$$

r	S	r∧s	(r ∧ s) ∧ s	s∧r	(s ∧ r) ∧ r	~((s ∧ r) ∧ r)	$(r \land s) \land s \leftrightarrow \sim ((s \land r) \land r)$
V	V						
V	F						
F	V						
F	F						

e. $p \wedge (p \vee q) \rightarrow (p \vee q) \wedge q$

р	q	p∨q	p ^ (p ^ q)	(p ∨ q) ∧ q	$p \wedge (p \vee q) \rightarrow (p \vee q) \wedge q$
V	V				
V	F				
F	>				
F	F				

f. $p \rightarrow (\sim p \rightarrow q)$

<u> </u>	(~p → q)										
р	q	~p	~p → q	p → (~p → q)							
V	V										
V	F										
F	V										
F	F										

g.	g. $\sim p \vee q \rightarrow (p \rightarrow q)$										
р	q	~p	~p v q	p → q	~p v q → (p → q)						
V	V										
V	F										
F	V										
F	F										

h.	p →	(q →	(q →	p))		
		р	q	q → p	$q \rightarrow (q \rightarrow p)$	$p \rightarrow (q \rightarrow (q \rightarrow p))$
		V	V			
		V	F			
		F	V			
		F	F			

i.	$((p \rightarrow q) \leftrightarrow q) \rightarrow p$								
					(//a a) a) a			
		р	q	p → q	$(p \rightarrow q) \leftrightarrow q$	$((p \rightarrow q) \leftrightarrow q) \rightarrow p$			
		V	V						
		V	F						
		F	V						
		F	F						

j.	$p \vee \neg q \rightarrow (p \rightarrow \neg q)$										
	р	q	~q	p v ~q	p → ~q	$p \vee \sim q \rightarrow (p \rightarrow \sim q)$					
	V	V									
	V	F									
	F	V									
	F	F									

- 11) Qual o valor lógico da proposição p: "Se 5 + 4 = 9, então 2 + 4 = 6"
 - a. V
 - b. F
 - c. 8
 - d. Iguais
- 12) Dadas as proposições abaixo, verifique se as relações propostas entre elas são verdadeiras.
- **a.** $P = {\sim}(p \land q); Q = ({\sim}p \lor {\sim}q); P \Leftrightarrow Q$

			Р			Q	P ⇔ Q
р	q	p ^ q	~(p ^ q)	~p	~q	~p v ~q	~(p ^ q) ↔ (~p ∨ ~q)
V	V						
V	F						
F	<						
F	F						

b. $P = p \underline{v} q$; $T = \sim (p \leftrightarrow q)$; $P \Leftrightarrow T$

		Р		Т	P ⇔ T
р	q	p <u>∨</u> q	p ↔ q	~(p ↔ q)	(p <u>∨</u> q) ↔ (~(p ↔ q))
V	V				
V	F				
F	V				
F	F				

c. $R = p \vee p; S = p \wedge q; R \Rightarrow S$

		R	S	R ⇒ S
р	q	р∨р	p ^ q	(p ∨ p) → (p ^ q)
V	V			
V	F			
F	V			
F	F			

d. $S = r \rightarrow r \wedge w; I = r \rightarrow w; S \Leftrightarrow I$

	1	I			
			S	I	S ⇔ I
r	w	r^w	r → r^w	r → W	$(r \rightarrow r \wedge w) \leftrightarrow (r \rightarrow w)$
V	V				
V	F				
F	V				
F	F				

e. $P = (p \rightarrow q) \land p; Q = p \land p;$ **P** \Rightarrow **Q**

			Р	Q	$P\Rightarrow Q$
р	q	p → q	(p → q) ^ p	p ^ p	$((p \rightarrow q) \land p) \rightarrow (p \land p)$
V	V				
V	F				
F	V				
F	F				

f.
$$P = (p \rightarrow q) \land \neg q; P \Rightarrow \neg q$$

				Р	P ⇒ ~q
р	q	P → q	~q	(p → q) ^ ~q	((p → q) ^ ~q) → ~q
V	V				
V	F				
F	V				
F	F				

- 13) Considere a seguinte frase: "Não é verdade que Pedro é dentista e Jussara é médica". Assinale a alternativa que representa uma frase logicamente equivalente:
 - a. Não é verdade que Pedro é dentista ou Jussara é médica.
 - b. Pedro não é dentista e Jussara não é médica.
 - c. Pedro não é dentista ou Jussara não é médica.
 - d. Jussara é dentista e Pedro é médico.
- 14) Considere a seguinte frase: "Não é verdade que Juliana acorda cedo ou Joaquim vai ao supermercado". Assinale a alternativa que representa uma frase logicamente equivalente:
 - a. Juliana acorda tarde ou Joaquim vai à padaria.
 - b. Não é verdade que Juliana acorda cedo e Joaquim vai ao supermercado.
 - c. Juliana acorda cedo e Joaquim vai ao supermercado.
 - d. Juliana não acorda cedo e Joaquim não vai ao supermercado.
- 15) Dizer que não é verdade que Pedro é pobre e Alberto é alto, é logicamente equivalente a dizer que é verdade que:
 - a. Pedro não é pobre ou Alberto não é alto.
 - b. Pedro não é pobre e Alberto não é alto.
 - c. Pedro é pobre ou Alberto não é alto.
 - d. Se Pedro não é pobre, então Alberto é alto.
 - e. Se Pedro não é pobre, então Alberto não é alto.

- 16) Considere a seguinte frase: "Não é verdade que se João é médico então Maria é dona de casa". Assinale a alternativa que representa uma frase logicamente equivalente:
 - a. João é médico e Maria não é dona de casa.
 - b. Se João não é médico então Maria não é dona de casa.
 - c. Se Maria é dona de casa então João não é médico.
 - d. João não é médico ou Maria é dona de casa.
- 17) Proposições são frases declarativas. Levando em consideração este conceito, veja as frases:
 - a. Belo Horizonte é a capital do estado da Bahia.
 - b. Qual é o horário do filme?
 - c. O Brasil é pentacampeão de futebol.
 - d. Que belas flores!
 - e. Marlene não é atriz e Marina é pintora.

É possível dizer que das 5 frases acima, 4 delas são consideradas proposições? Justifique sua resposta.