In [1]:	# Importing the necessary libraries import numpy as np import pandas as pd import mathematically nymbot as plt
In [2]:	<pre>import matplotlib.pyplot as plt # load dataset df = pd.read_csv('spam.tsv', sep='\t')</pre>
<pre>In [3]: Out[3]:</pre>	df.head() label message length punct
	 ham Go until jurong point, crazy Available only 111 9 ham Ok lar Joking wif u oni 29 6 spam Free entry in 2 a wkly comp to win FA Cup fina 155 6 ham U dun say so early hor U c already then say 49 6
In [5]:	4 ham Nahldon't think he goes to usf, he lives aro 61 2 # This is to count the total number of records df.count()
Out[5]:	label 5572 message 5572 length 5572 punct 5572 dtype: int64
In [6]:	# This shows that we have no missing data df.isna().sum()
Out[6]:	label 0 message 0 length 0 punct 0 dtype: int64
In [7]: Out[7]:	length punct
	mean 80.489950 4.177495 std 59.942907 4.623919 min 2.000000 0.000000 25% 36.000000 2.000000
	50% 62.000000 3.000000 75% 122.000000 6.000000 max 910.000000 133.000000
In [8]:	DATA PREPROCESSING AND ANALYSIS. # This shows the value count of ham and sham messages. The spam and ham data is imbalanced. df['label'].value counts()
Out[8]:	ham 4825 spam 747 Name: label, dtype: int64
In [10]:	<pre>ham = df[df['label'] == 'ham'] spam = df[df['label'] == 'spam'] ham.shape, spam.shape</pre>
Out[10]: In [11]:	((4825, 4), (747, 4)) ham = ham.sample(spam.shape[0])
In [12]: Out[12]:	<pre># This shows that the spam and ham messages are balanced. ham.shape, spam.shape ((747, 4), (747, 4))</pre>
In [13]:	<pre># I combine both ham and spam into 'data' data = ham.append(spam, ignore_index=True)</pre>
In [14]: Out[14]: In [23]:	data.shape (1494, 4)
	<pre># This shows a visualisation of the length of messages between ham and spam. plt.hist(data[data['label'] == 'ham']['length'], bins=100, alpha=0.7, label='Ham', color='green') plt.hist(data[data['label'] == 'spam']['length'], bins=100, alpha=0.7, label='Spam', color='orange') plt.legend(loc='upper right') plt.show()</pre>
	80 - Ham Spam
	40 -
In [27]:	# This shows a visualisation of the Punctuation marks in messages between ham and spam.
	<pre>plt.hist(data[data['label'] == 'ham']['punct'], bins=100, alpha=0.7, label='Ham', color='green') plt.hist(data[data['label'] == 'spam']['punct'], bins=100, alpha=0.7, label='Spam', color='orange') plt.legend(loc='upper right') plt.show()</pre>
	200 - Ham Spam
	100 - 75 - 50 - 25 -
In []:	0 20 40 60 80 100 120
In [29]:	SPLIT DATA INTO TESTING AND TRAINING SETS from sklearn.model_selection import train_test_split
In [30]:	<pre># We segregate our data into testing/training sets. 30 percent ('0.3') of data will be on the testing sets # and the rest in the training sets. X_train, X_test, y_train, y_test = train_test_split(data['message'], data['label'], test_size = 0.3, random_st</pre>
<pre>In [31]: Out[31]:</pre>	X_train.shape (1045,)
In [32]: Out[32]: In []:	X_test.shape (449,)
	BUILDING THE RANDOM FOREST MODEL.
In [34]: In [37]:	<pre>from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import Pipeline # Creating a pipeline object which we will pass 'tfidf vectorizer' and "random forest classifier"</pre>
In [38]:	<pre>classifier = Pipeline([("tfidf", TfidfVectorizer()) , ("classifier", RandomForestClassifier(n_estimators=100))] # train the model</pre>
Out[38]:	<pre>classifier.fit(X_train, y_train) Pipeline(steps=[('tfidf', TfidfVectorizer()),</pre>
In [47]:	<pre>EVALUATE THE MODEL (RANDOM FOREST) from sklearn.metrics import classification_report, accuracy_score, confusion_matrix import seaborn as sns</pre>
In [58]: In [59]:	<pre>y_pred1 = classifier.predict(X_test)</pre>
	print(classification_report(y_test, y_pred1)) precision recall f1-score support ham 0.90 1.00 0.95 227 spam 1.00 0.88 0.94 222
In [61]:	# Compute the Confusion matrix
	<pre>conf_mat1 = confusion_matrix(y_test, y_pred1) # Display the confusion matrix print("Confusion Matrix:") print(conf_mat1) Confusion Matrix:</pre>
In [62]:	<pre>[[227 0] [26 196]] # Plot the confusion matrix as a heatmap plt.figure(figsize=(6, 6)) sns.heatmap(conf_mat1, annot=True, fmt='d', cmap='Blues', cbar=False, xticklabels=['Ham', 'Spam'], yticklabels=</pre>
	<pre># Add labels and title plt.xlabel('Predicted Labels', fontsize=14) plt.ylabel('True Labels', fontsize=14) plt.title('Confusion Matrix', fontsize=16)</pre>
	# Display the plot plt.show() Confusion Matrix
	면 무 227 0
	True Labels
	E - 26 196 Ham Spam
In []:	Predicted Labels
In [52]:	BUILDING THE SVM MODEL. from sklearn.svm import SVC
In [53]: In [54]:	<pre># Creasting a pipeline object which we will pass 'tfidf vectorizer' and "random forest classifier" svm = Pipeline([("tfidf", TfidfVectorizer()) , ("classifier", SVC(C = 100, gamma='auto'))]) # train the model</pre>
	<pre># train the model svm.fit(X_train, y_train) Pipeline(steps=[('tfidf', TfidfVectorizer()),</pre>
	EVALUATE THE MODEL (SUPPORT VECTOR MACHINE)
In [68]:	<pre>y_pred2 = svm.predict(X_test) print(classification_report(y_test, y_pred2)) precision recall f1-score support</pre>
	ham 0.92 0.96 0.94 227 spam 0.96 0.91 0.94 222 accuracy macro avg 0.94 0.94 0.94 449 weighted avg 0.94 0.94 0.94 449
In [70]:	
	<pre>print("Confusion Matrix:") print(conf_mat2) Confusion Matrix: [[219 8] [20 202]]</pre>
In [71]:	<pre># Plot the confusion matrix as a heatmap plt.figure(figsize=(6, 6)) sns.heatmap(conf_mat2, annot=True, fmt='d', cmap='Blues', cbar=False, xticklabels=['Ham', 'Spam'], yticklabels= # Add labels and title</pre>
	<pre>plt.xlabel('Predicted Labels', fontsize=14) plt.ylabel('True Labels', fontsize=14) plt.title('Confusion Matrix', fontsize=16) # Display the plot plt.show()</pre>
	Confusion Matrix
	Ham Ham Plan 1219 8 1219 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Tage 20 202
	Ham Spam Predicted Labels
In []:	TESTING BOTH MODELS ON DATASET
In [75]:	# This are the test data which we will try to predict on each model. test1 = ['Hello, You are learning natural Language Processing'] test2 = ['Your free ringtone is waiting to be collected. Simply text the password "MIX" to 85069 to verify. Get test3 = ['Hope you are doing good and learning new things !']
In [76]:	<pre>test4 = ['Congratulations, You won a lottery ticket worth \$1 Million ! To claim call on 446677'] # This shows the prediction of messages for Random Forest print(classifier.predict(test1))</pre>
	<pre>print(classifier.predict(test2)) print(classifier.predict(test3)) print(classifier.predict(test4)) ['ham'] ['spam']</pre>
In [77]:	<pre>['ham'] ['spam'] # This also shows the prediction of messages for SVM print(svm.predict(test1))</pre>
	<pre>print(svm.predict(test2)) print(svm.predict(test3)) ['ham'] ['spam'] ['ham']</pre>
In []:	