So You Want to Write a Ray Tracer

Checkpoint 3 – Basic Shading

Ray Tracing Assignment

• Goal is to reproduce the following

Whitted, 1980

Ray Tracing Assignment

- Seven checkpoints
 - 1. Setting the Scene
 - 2. Camera Modeling
 - 3. Basic Shading
 - 4. Procedural Shading
 - 5. Recursive Ray Tracing Reflection
 - 6. Recursive Ray Tracing Transmission
 - 7. Tone Reproduction

Ray Tracing Assignment

- Seven checkpoints
 - 1. Setting the Scene
 - 2. Camera Modeling
 - 3. Basic Shading
 - 4. Procedural Shading
 - 5. Recursive Ray Tracing Reflection
 - 6. Recursive Ray Tracing Transmission
 - 7. Tone Reproduction

Basic Shading

- Add Phong Illumination to your ray tracer.
 - On intersection
 - Rather than return color of object hit
 - Calculate color at intersection point using Phong Illumination model

Illumination Models

• Geometry

Illumination Models

- Geometry
 - N normal vector
 - S direction of incoming light
 - R direction of perfect mirror reflection
 - H halfway between light direction and viewing direction.
 - V viewing direction.

Phong Model

- Phong Model
 - introduces *specular* (mirror-like) reflections
 - Viewer direction becomes more important
 - three components
 - ambient background light (ka)
 - diffuse Lambertian reflection (k_d)
 - specular mirror-like reflection(ks)

Illumination Models

• Recall from Linear Algebra

$$\mathbf{u} \bullet \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Just one reason to normalize!

Phong Model

$$L(V) = k_a L_a + k_d \sum_{i} L_i(S_i \bullet N) + k_s \sum_{i} L_i(R_i \bullet V)^{k_e}$$
ambient specular specular

Note: L_n are radiance terms, include both light and material info

Parameters to add

- To your world:
 - $\ Ambient \ light-background \ light \ (r,g,b)$
- To the light source
 - Color (r,g,b) gives intensity and chroma.

Parameters to add

- · To each object
 - Phong parameters
 - ambient background light (k_a)
 - diffuse Lambertian reflection (k_d)
 - specular mirror-like reflection(k_s)
 - exponent controls size of specular highlight (k_e)
 - Object "color"
 - ambient / diffuse color basic color of object
 - Specular color color of specular highlight (white usually)

Vectors you will need

- · Point of intersection
 - Get from intersection calculation
- · N normal vector
 - Get from intersection calculation
- S direction of incoming light
 - Light position point of intersection
 - Shadow ray: Need to know if we can see the light
- · R direction of perfect mirror reflection
 - On next slides
- V viewing direction.
- Camera position point of intersection
- NORMALIZE ALL VECTORS

Applying Phong

- · If there is an intersection
 - Calculate ambient component
 - Get the point of intersection (P)
 - $-\,$ Spawn a shadow ray from P to the light source
 - If the ray reaches the light before any other object
 - · Obtain N, V, S, and calculate R
 - · Calculate specular and diffuse components
 - · Add to ambient componet
 - Return resultant color.

Basic Shading

- Due date:
 - $-\,$ Must be posted to Web site by Midnight April 7^{th} .
 - Recall:
 - 10% penalty per day
 - Having trouble?
 - Let me know EARLY.
- · Questions?