### CS188 Announcements –

#### Homeworks

- HW 2 + 3 (CSPs + Games) due Sunday, 11:59pm
- o HW 4 (MDPs) due Tuesday, 11:59pm
- Project 1 Search
  - Due yesterday, but can still use slip days (up to 2 per project, 5 total)
- Project 2 Multi-Agent Search
  - Will be released today, due Thursday next week (7/5)

# CS 188: Artificial Intelligence

### Markov Decision Processes



Instructor: Daniel Fried, Anwar Baroudi

University of California, Berkeley

[These slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, and Sergey Levine]

# Non-Deterministic Search



## **Example: Grid World**

- A maze-like problem
  - The agent lives in a grid
  - Walls block the agent's path
- Noisy movement: actions do not always go as planned
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10% East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
  - Big rewards come at the end (good or bad)
  - Small "living" reward each step (can be negative)
- Goal: maximize sum of rewards



### **Grid World Actions**

#### Deterministic Grid World





### Markov Decision Processes

- An MDP is defined by:
  - $\circ$  A set of states  $s \in S$
  - $\circ$  A set of actions a  $\in$  A
  - A transition function T(s, a, s')
    - o Probability that a from s leads to s', i.e., P(s'| s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state
  - Maybe a terminal state



- MDPs are non-deterministic search problems
  - One way to solve them is with expectimax search
  - We'll have a new tool soon

## Video of Demo Gridworld Manual Intro



### What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$



Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

### **Policies**

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π\*: S → A
  - $\circ$  A policy  $\pi$  gives an action for each state
  - An optimal policy is one that maximizes expected utility if followed
  - An explicit policy defines a reflex agent



Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

# **Optimal Policies**







$$R(s) = -0.4$$



$$R(s) = -0.03$$



$$R(s) = -2.0$$

# Example: Racing



## Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast





### MDP Search Trees

Each MDP state projects an expectimax-like search tree



# Utilities of Sequences



# Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]



# Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially
  - Discount factor, γ between 0 and 1



# Discounting

#### o How to discount?

Each time we descend a level,
 we multiply in the discount once

#### Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5
  - $\circ$  U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
  - $\circ$  U([1,2,3]) < U([3,2,1])



# Quiz: Discounting

o Given:



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Rewards: on Exit in state a and in state e
- $\circ$  Quiz 1: For  $\gamma = 1$ , what is the optimal policy?



o Quiz 2: For  $\gamma = 0.1$ , what is the optimal policy?

• Quiz 3: For which  $\gamma$  are West and East equally good when in state d?  $1\gamma=10~\gamma^3$ 

## Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
  - Finite horizon: (similar to depth-limited search)
    - Terminate episodes after a fixed T steps (e.g. life)
    - Gives nonstationary policies ( $\pi$  depends on time left)
  - Discounting: use  $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



# Recap: Defining MDPs

- Markov decision processes:
  - Set of states S
  - Start state s<sub>0</sub>
  - Set of actions A
  - Transitions P(s'|s,a) (or T(s,a,s'))
  - $\circ$  Rewards R(s,a,s') (and discount  $\gamma$ )



- MDP quantities so far:
  - Policy = Choice of action for each state
  - Utility = sum of (discounted) rewards

# Solving MDPs



# **Optimal Quantities**

The value (utility) of a state s:

V\*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q\*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally



The optimal policy:

 $\pi^*(s)$  = optimal action from state s

# Snapshot of Demo – Gridworld V Values



## Snapshot of Demo – Gridworld Q Values



### Values of States

Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$





- We're doing way too much work with expectimax!
- Problem: States are repeated
  - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
  - Idea: Do a depth-limited computation, but with increasing depths until change is small
  - o Note: deep parts of the tree eventually don't matter if  $\gamma < 1$



### Time-Limited Values

- Key idea: time-limited values
- Define V<sub>k</sub>(s) to be the optimal value of s if the game ends in k more time steps
  - o Equivalently, it's what a depth-k expectimax would give from s

























## k = 10







## k = 100



# Computing Time-Limited Values



## Value Iteration



#### Value Iteration

- Start with  $V_0(s) = 0$ : no time steps left means an expected reward sum of zero
- $\circ$  Given vector of  $V_k(s)$  values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S<sup>2</sup>A)
- Theorem: will converge to unique optimal values, V\*(s) for all s
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do











$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$









$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$



$$V_0$$
  $\left( \begin{array}{cccc} \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right)$ 

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$







 $V_2$ 

S: 1+2=3

F: .5\*(2+2)+.5\*(2+1)=3.5

 $V_1$ 

2

1

0



$$V_0$$
 0 0 0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$









$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

# Convergence\*

- How do we know the V<sub>k</sub> vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state V<sub>k</sub> and V<sub>k+1</sub> can be viewed as depth k+1 expectimax results in nearly identical search trees
  - o The difference is that on the bottom layer,  $V_{k+1}$  has actual rewards while  $V_k$  has zeros
  - That last layer is at best all R<sub>MAX</sub>
  - It is at worst R<sub>MIN</sub>
  - o But everything is discounted by  $\gamma^k$  that far out
  - o So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k$  max|R| different
  - So as k increases, the values converge



# Next Time: Policy-Based Methods