SOCIAL MEDIA SENTIMENT ANALYSIS & ENTITY EXTRACTION

MATT DEMARCO

DATA 670 - DATA ANALYTICS CAPSTONE

PRESENTATION 3 - FINAL REPORT PROFESSOR DR. JON MCKEEBY 11.20.2018

PROJECT BACKGROUND & IMPORTANCE

- Social media can and has been weaponized to influence businesses, governments and political figures (Zeitzoff, 2018).
- Positive user reviews on social media have been shown to increase sales by 5 to 9 percent (Luca, 2011).
- This project will benefit various entities to allow them leverage machine learning natural language processing for sentiment analysis and entity extraction.

PROJECT SCOPE

- The scope of this project is to collect and analyze the sentiment of a social media posting to understand the negative, neutral or positive tone of the post.
- Data delivery will be done via dashboarding tools.

TWITTER DATA SET

Data Entity	Data Description	
created_at	Datetime stamp of tweet creation	
id_str	Randomly generated identification number	
text	Body of the tweet (subject of analysis)	
user	Twitter username	
place	Geotagged location of tweet	
entities	An array of hashtags, user mentions, etc	
extended_entities	Media tags, if needed	

TWITTER SCHEMA

YELP DATA SET

Data Entity	Data Description		
business.csv	Contains business data including location data, attributes, and categories.		
review.csv	Contains full review text data including the user_id that wrote the review and the business_id the review is written for. (Subject of analysis)		
user.csv	User data including the user's friend mapping and all the metadata associated with the user.		
checkin.csv	Checkins on a business		
tip.csv	Tips written by a user on a business		

YELP SCHEMA

DATA TECHNIQUES

- Python for data ingestion, augmentation and/or cleansing
- VADER Analyzer for sentiment analysis
 - Tuned for microblog content
- spaCy for entity extraction
 - High performance NLP engine

TWITTER DATA VISUALIZATIONS

TWEET VOLUME BY SUBJECT

TWEET SENTIMENT SCORE BY SUBJECT

TWEET SENTIMENT SCORE BY ENTITY

YELP BUSINESSES BY STATE

YELP SENTIMENT BY BUSINESS CATEGORY

YELP SENTIMENT BY STATE

YELP SENTIMENT BY STATE - ZOOMED

- Sentiment Analysis
 - Rule-based sentiment analysis lexicon VADER (Valence Aware Dictionary for sEntiment Reasoning)
 - VADER is specifically developed for micro-blog content from social media (Gilbert, June 2014)
 - 'Gold Standard' lexicons (LIWC, ANEW, & GI) are NOT developed for the deeper lexical properties from in most micro-blog content

Sentiment Analysis

VADER outperforms traditional machine learning

classifiers

	3-Class Classification Accuracy (F1 scores)			
	Test Sets Tweets Movie Amazon NYT			
VADER	0.96	0.61	0.63	0.55
NB (tweets)	0.84	0.53	0.53	0.42
ME (tweets)	0.83	0.56	0.58	0.45
SVM-C (tweets)	0.83	0.56	0.55	0.46
SVM-R (tweets)	0.65	0.49	0.51	0.46
NB (movie)	0.56	0.75	0.49	0.44
ME (movie)	0.56	0.75	0.51	0.45
NB (amazon)	0.69	0.55	0.61	0.48
ME (amazon)	0.67	0.55	0.60	0.43
SVM-C (amazon)	0.64	0.55	0.58	0.42
SVM-R (amazon)	0.54	0.49	0.48	0.44
NB (nyt)	0.59	0.56	0.51	0.49
ME (nyt)	0.58	0.55	0.51	0.50

- Sentiment Analysis
 - VADER outperforms human classifiers

		3-class (no	sitive negati	ve. neutral)	
	Correlation to ground truth	3-class (positive, negative, neutral) Classification Accuracy Metrics			
	(mean of 20 numan raters)	Overall Precision	Overall Recall	Overall F1 score	
Social Media	Text (4,200 T	weets)			
Ind. Humans	0.888	0.95	0.76	0.84	
VADER	0.881	0.99	0.94	0.96	
Hu-Liu04	0.756	0.94	0.66	0.77	
SCN	0.568	0.81	0.75	0.75	
GI	0.580	0.84	0.58	0.69	
SWN	0.488	0.75	0.62	0.67	
LIWC	0.622	0.94	0.48	0.63	
ANEW	0.492	0.83	0.48	0.60	
WSD	0.438	0.70	0.49	0.56	

- Entity Extraction
 - Entity extraction library spaCy
 - spaCy is designed to be extremely fast and has models trained using convolutional neural networks
 - Python library written Cython

- Entity Extraction
 - Entity extraction library spaCy for high accuracy and speed

spaCy v1.x 2015 Python / Cython 91.8 13,9 ClearNLP 2015 Java 91.7 10,2 CoreNLP 2015 Java 89.6 8,6	SYSTEM	YEAR	LANGUAGE	ACCURACY	SPEED (WPS)
ClearNLP 2015 Java 91.7 10,2 CoreNLP 2015 Java 89.6 8,6	spaCy v2.x	2017	Python / Cython	92.6	n/a ③
CoreNLP 2015 Java 89.6 8,6	spaCy v1.x	2015	Python / Cython	91.8	13,963
	ClearNLP	2015	Java	91.7	10,271
MATE 2015 Java 92.5	CoreNLP	2015	Java	89.6	8,602
	MATE	2015	Java	92.5	550
Turbo 2015 C++ 92.4	Turbo	2015	C++	92.4	349

- Entity Extraction
 - Entity categories

ТҮРЕ	DESCRIPTION
PERSON	People, including fictional.
NORP	Nationalities or religious or political groups.
FAC	Buildings, airports, highways, bridges, etc.
ORG	Companies, agencies, institutions, etc.
GPE	Countries, cities, states.
LOC	Non-GPE locations, mountain ranges, bodies of water.
PRODUCT	Objects, vehicles, foods, etc. (Not services.)
EVENT	Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART	Titles of books, songs, etc.
LAW	Named documents made into laws.
LANGUAGE	Any named language.
DATE	Absolute or relative dates or periods.
TIME	Times smaller than a day.
PERCENT	Percentage, including "%".
MONEY	Monetary values, including unit.
QUANTITY	Measurements, as of weight or distance.
ORDINAL	"first", "second", etc.
CARDINAL	Numerals that do not fall under another type.

ANALYTICAL TECHNIQUE

- Use of descriptive statistics
 - Min, median or mode
- Calculate the median score of sentiment from microblog content

CONCLUSIONS

- Real time sentiment analysis scoring and entity extraction is possible
- Compound sentiment score is the most balanced metric for determining sentiment
- Robust visualizations technologies are needed to handle both the speed and scale of a streaming dataset

FUTURE WORK

- Refine the entity extraction handling
 - Many false positives
- Enable geocoding of userlocation to map data
- Develop a content gist creation tool

QUESTIONS?