(19)日本国特許庁 (JP)

(12) 公開実用新案公報 (U)

(11)実用新案出願公開番号 実開平6-72256

(43)公開日 平成 6年(1994)10月7日

家本請求 右 請求項の数1 FD (全2 頁)

(21)出願番号	実顧平5-17474	(71)出順人 000001292 株式会社京三製作所
(22)出願日	平成5年(1993)3月17日	株式会社が二級刊が 神奈川県横浜市鶴見区平安町2丁目29番場 の1
		(72)考案者 横井 与次郎 神奈川県横浜市鶴見区平安町 2 丁目29番出 の 1 株式会社京三製作所内
		(74)代理人 弁理士 山川 政樹

(54)【考案の名称】 発光ダイオード点灯回路

(57) 【要約】

【目的】 不良となった発光ダイオードをバイバスして、直列接続したある発光ダイオードの一つが故障しても、他の発光ダイオードの点灯状況に影響を与えないようにする。

【構成】 発光ダイオードD1がオープン状態になると その端子電圧は発光ダイオードD1の順電圧よりも高く なるのでその発光ダイオードと並列に接続されているス イッチング素子1がオンとなり、直列回路の電流が連断 されない、そのスイッチング素子1の順電圧は発光ダイ オードD1の順電圧と同程度なので、他の発光ダイオー ドの点灯状況に影響を与えない。

【実用新案登録請求の範囲】

【請求項1】 複数の発光ダイオードを直列に接続した 発光ダイオード点灯回路において、

前記発光ダイオードの各々に対して各個に並列接続され たスイッチング素子を備え、

前記スイッチング素子は、発光ダイオードの端子電圧が 順電圧より高い値の電圧となったときにオンとなり、オ ン時の順電圧が発光ダイオードの順電圧と同程度である ことを特徴とする発光ダイオード点灯回路。

【図面の簡単な説明】

【図1】本考案の一実施例の構成を示す回路図である。 【図2】図1における電圧電流特性を示すグラフであ

【図3】本考案の第2の実施例を示す回路図である。

【図4】 発光ダイオードを直列にした状態を示す回路図 である。

【図5】従来の回路の一例を示す回路図である。

【図6】図5の回路の特性を示す図である。

【図7】従来の他の例を示す回路図である。 【符号の説明】

D1, D2 発光ダイオード

D11, D12, D13 ダイオード D1a ツェナーダイオード

D1b サイリスタ R 抵抗

1 スイッチング回路

【考案の詳細な説明】

[0001]

【産業上の利用分野】

本考案は、フェイルセイフな発光ダイオード点灯回路に関するものである。

[0002]

【従来の技術】

近年、その長寿命性から電球による標識灯を発光ダイオードに置き換えることが多い。この場合、電球をそのまま発光ダイオードに置き換えるには、電球の電源が一般に6/12/24/48Vのいずれかを使用しているのに対して、発光ダイオード1個の順方向電圧は約1.6Vであり、電源電圧に比べてはるかに低い。また、発光ダイオード1個の光量は電球よりも少ない。

[0003]

このため光量不足を補う意味と、電源電圧に適合させる意味とから、図4に示すように抵抗Rと記号D1~Dnの発光ダイオードを直列接続して使用する。この場合、抵抗Rでの電圧降下は発光ダイオードの順方向電圧Vfの数倍程度に設定している。

[0004]

このような回路は1個の発光ダイオードが故障してオープンになると全ての発光ダイオードが表示できなくなるので、図5に示す複数個直列にしたダイオード D11~D13を発光ダイオードD1と並列に接続している。この図では発光ダイオードD1にだけ3個のダイオードを並列に接続しているが、全ての発光ダイオードについてこのように複数のダイオードを並列に接続する。

[0005]

【考案が解決しようとする課題】

しかしながらこのような回路においてダイオード1個分の順電圧は図6の記号 a で示す特性であるが3個分の順電圧は記号cに示すように、記号bで示す発光ダイオードの順電圧よりも高くなるので発光ダイオードが正常なときは並列に接続したダイオードには電流が流れない。しかし、この回路は発光ダイオードがオフになったときはダイオード3個分の電圧降下を生じるので、そこでの電圧降下

が大きくなり、回路電流が少なくなってしまい、他の発光ダイオードの表示が暗 くなってしまうという課題を有していた。

[0006]

また図7に示すようにバイパスにツェナーダイオードD2を使用すると1本で よいが、ツェナー電圧のバラツキのためさらに電圧降下が大きくなり、同様に他 の発光ダイオードが暗くなってしまう。

[0007]

本考案はこのような状況に鑑みてなされたもので、不良となった発光ダイオードをバイパスして、直列接続したある発光ダイオードの一つが故障しても、他の 発光ダイオードの点灯状況に影響を与えないようにする。

[0008]

【課題を解決するための手段】

このような課題を解決するために本考案は、発光ダイオードの順電圧より高い 値の電圧が供給されたときにオンとなり、オン時の順電圧が発光ダイオードの順 電圧と同程度のスイッチング素子をそれぞれの発光ダイオードと並列に接続した ものである。

[0009]

【作用】

発光ダイオードがオーブン状態になるとその端子電圧は発光ダイオードの順電 圧よりも高くなるのでその発光ダイオードと並列に接続されているスイッチング 素子がオンとなり、直列回路の電流が遮断されない。そのスイッチング素子の順 電圧は発光ダイオードの順電圧と同程度なので、他の発光ダイオードの点灯状況 に影響を与えない。

[0010]

【実施例】

図1は本考案の一実施例を示す回路図であり、一例として発光ダイオードD1 にスイッチング回路1が接続されているが、このスイッチング回路1がそれぞれ の発光ダイオードに並列に接続されている。

[0011]

この回路は発光ダイオードD1と逆極性のツェナーダイオードダイオードD23と抵抗R11の直列体と、ダイオードD22とサイリスタD21が直列体のそれぞれが発光ダイオードD1と並列に接続されている。このときダイオードD22とサイリスタD21の極性は発光ダイオードD1の極性と一致している。

[0012]

このように構成された回路において、正常時における発光ダイオードD1の端 子電圧は約1.6の順電圧となっている。このときツェナーダイードD23のツェナー電圧は発光ダイオードD1の順電圧よりも高く設定しておけば、抵抗R11には電流が流れず、サイリスタD21はターンオンしない。

[0013]

ここで発光ダイオードD1がオープンになる故障が発生するとそこに電流が流れなくなり、他の発光ダイオードは発光しなくなるとともに、端子A-B間に点灯時の電圧より点灯時の抵抗Rの降下電圧分だけ高い電圧がかかるようになる。ツェナーダイオードD23のツェナー電圧をこの電圧よりも低く設定しておけば抵抗R11に電流が流れ、そこに電圧が発生する。そして、この時に発生する電圧がサイリスタD21がターンオンするため必要なゲード電圧よりも高くなるようにしておけば、サイリスタD21はターンオンする。

[0014]

サイリスタD21はダイオードD22と直列接続されたうえ、発光ダイオードD1と並列に接続されているので、サイリスタD21のターンオンによって他の発光ダイオードに電流が流れるようになり、他の発光ダイオードは発光することができるようになる。そして、サイリスタD21とダイオードD22の直列回路での順電圧は約1.4Vであるから、そこでの電圧降下は発光ダイオード1個分程度であることから、このスイッチング回路が動作しても他の発光ダイオードの光量が暗くなることはない。

[0015]

図2はこの動作を示す特性図であり、サイリスタD21のゲートにスレシホールド電圧Vth以上の電圧が供給された時点でそのサイリスタがターンオンし、ターンオンしたときのダイオードD22とサイリスタD21の直列体の蝶子電圧

は発光ダイオードD1の順電圧よりも若干低くなっている。

[0016]

図1の回路はダイオード、ツェナーダイオード、サイリスタを用いており、このスイッチング回路は各発光ダイオードに並列と接続する必要があることから、このままでは部品の種類が多く、コストアップの要因になる。そこで図3に示すようにトランジスタQ1からQ4を組合せることによって、同じ機能を実現することができる。

[0017]

このようにトランジスタアレーを使用すれば、IC化することも容易になり、 経済性の良い回路を構成することができる。

[0018]

【考案の効果】

以上説明したように本考案は、発光ダイオードの順電圧よりも高い電圧でオン するスイッチング回路を各発光ダイオードに並列に接続したので、一つの発光ダ イオードがオープンになる故障が発生しても、直列に接続された他の発光ダイオ ードが発光しなくなる現象を防止でき、フェイルセイフ性を実現できるという効 果を有する。