воробьев А. М., КАМБУЛОВ В. Ф., ПРУДНИЧЕНКО А. С.

РЕЛАКСАЦИОННЫЕ КОЛЕБАНИЯ В RC-АВТОГЕНЕРАТОРАХ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Цель настоящей работы — теоретическое и экспериментальное исследование релаксационных автоколебаний в *RC*-распределенных системах с нелинейным элементом, имеющим *S*-образную характеристику.

Рассмотрим RC-автогенератор с неоднородным распределением параметров: $R(x) = R_0 \exp{(\gamma x)}$, $C(x) = C_0 \exp{(-\gamma x)}$; R_0 , C_0 — погонные сопротивление и емкость, а γ — показатель неоднородности линии. Схема данного генератора представлена на рис. 1, N-образная характеристика U(iR) его нелинейного элемента имеет первое нулевое значение производной для $U = U_0$. Математической моделью изучаемого автогенератора служит краевая задача

$$\begin{aligned} u_t &= u_{xx} - \gamma \ u_x; \ u \mid_{x=0} = 1, \ u_x \mid_{x=1} + \varphi \ (\sigma) = 0; \end{aligned} \qquad (1)$$

$$\varphi \ (\sigma) &= \begin{cases} 0 \text{ при } \sigma < 0, \\ 0 \text{ или } a \text{ при } 0 \leq \sigma \leq d, \\ a \text{ при } \sigma > d, \end{cases}$$

где $u=U/E, a=i_0\,R\,(1)\,/\,E, d=U_0\,/\,E, \sigma=u\mid_{\,x=1}, \text{ a }t\,/\,(R_0\,C_0)\to t$ — безразмерное время.

Отметим, что из результатов работы [1] следует, что краевая задача (1) имеет единственное (с точностью сдвига по времени) периодическое

ISSN 0021—3470. Радиоэлектроника. 1997. № 12.

по t решение. Это решение экспоненциально устойчиво и имеет два переключения на любом промежутке времени длины периода.

Выберем начало отсчета времени так, чтобы начальное условие периодического решения $u_{\tau}(t,x)$ краевой задачи (1) периода τ удовлетворяло равенству $u_{\tau}(0,1)=0$. Через τ_1 обозначим его первый момент переключения и положим $\tau_2=\tau-\tau_1$. Опираясь на результаты работы [1], можно показать, что

$$u_{\tau}(0, x) = 1 - a \exp\left[\frac{1}{2}\gamma(x - 1)\right] \times \left[\sum_{k=1}^{\infty} \frac{\mu_{k} \sin\left(\frac{1}{2}\sqrt{\mu_{k}}x\right) \left[1 - \exp\left(-\lambda_{k}\tau_{2}\right)\right]}{\lambda_{k}(2\lambda_{k} + \gamma) \sin\left(\frac{1}{2}\sqrt{\mu_{k}}\right) \left[1 - \exp\left(-\lambda_{k}\tau\right)\right]},$$
(2)

где $\mu_k = 4 \lambda_k - \gamma^2$, а λ_k — собственные числа оператора $L u = u_{xx} - \gamma u_x$, $u \mid_{x=0} = u_x \mid_{x=1} = 0$, которые определяются из уравнения

$$\operatorname{tg}\left(\frac{1}{2}\sqrt{\mu_k}\right) = -\sqrt{\mu_k}/\gamma. \tag{3}$$

Из [1] также следует, что числа τ_1 и τ_2 являются решениями уравне-

ний периодов
$$\sum_{k=1}^{\infty} \frac{\mu_k \left[1 - \exp\left(-\lambda_k \tau_2\right)\right]}{\lambda_k \left(2\lambda_k + \gamma\right) \left[1 - \exp\left(-\lambda_k \tau\right)\right]} = \frac{1}{a},$$

$$\sum_{k=1}^{\infty} \frac{\mu_k \left[1 - \exp\left(-\lambda_k \tau_2\right)\right]}{\lambda_k \left(2\lambda_k + \gamma\right) \left[1 - \exp\left(-\lambda_k \tau\right)\right]} = \frac{1}{\gamma} \left[1 - \frac{\gamma}{a} \left(1 - d\right) - \exp\left(-\gamma\right)\right].$$

Рассмотрим случай однородной RC-структуры, т. е. когда $\gamma=0$. Тогда из (2) с учетом (3) получаем

$$u_{\tau}(0, x) = 1 - \frac{8}{\varepsilon \pi^2} \sum_{k=0}^{\infty} \frac{(-1)^k \left[1 - \exp\left(-\alpha_k^2 \tau_2\right)\right] \sin\left(\alpha_k x\right)}{\left(2k+1\right)^2 \left[1 - \exp\left(-\alpha_k^2 \tau\right)\right]},$$

где $\alpha_k = \frac{\pi}{2} \, (2 \, k + 1), \, \varepsilon = 1 \, / \, a.$ Здесь числа $\tau_1, \, \tau_2$ являются решениями уравнений периодов вида:

$$\sum_{k=0}^{\infty} \frac{1 - \exp(-\alpha_k^2 \tau_2)}{(2k+1)^2 \left[1 - \exp(-\alpha_k^2 \tau)\right]} = \varepsilon \,\pi^2 / 8,\tag{4}$$

63

$$\sum_{k=0}^{\infty} \frac{[1 - \exp(-\alpha_k^2 \tau_2)] \exp(-\alpha_k^2 \tau_1)}{(2k+1)^2 [1 - \exp(-\alpha_k^2 \tau)]} = b \varepsilon^2 \pi^2 / 8,$$
 (5)

ISSN 0021—3470. Радиоэлектроника. 1997. № 12.

а $b=a\,(1-d)$. Анализируя (4), (5), приходим к выводу, что они однозначно разрешимы относительно $\tau_1,\,\tau_2,\,$ причем

$$\tau_2 = \frac{\pi}{4} \varepsilon^2 (1 + \Delta \tau_2); \ \tau_1 = \tau_1^0 + \Delta \tau_1,$$
(6)

где $\Delta\,\tau_1,\,\Delta\,\tau_2=0$ (1) при $\varepsilon\to 0.$ Отметим, что τ_1^0 — единственный корень уравнения

$$\sum_{k=0}^{\infty} \frac{1}{\exp(\alpha_k^2 t) - 1} = \frac{2b}{\pi},\tag{7}$$

а степенная асимптотика функций $\Delta\,\tau_1,\,\Delta\,\tau_2$ параметра ε здесь не приводится.

Ясно, что при включении источника питания E происходит накапливание заряда в RC-структуре, при этом, учитывая выражение (6), управляющее напряжение σ плавно возрастает от 0 до d при возрастании t от 0 до τ_1 , а затем за время τ_2 , имеющее порядок ε^2 , убывает до 0.

Для оценки полученных результатов был использован релаксационный автогенератор, схема которого представлена на рис. 1, где R=14 кОм, $C=105\cdot 10^{-9}$ Ф. В качестве нелинейного элемента был использован транзисторный каскад T_1 , T_2 на n-p-n, p-n-p транзисторах, позволивший синтезировать S-образную характеристику. Автоколебания с точки x=1 снимались через эмиттерный повторитель. Частота генерируемых пилообразных колебаний равнялась 7710 Гц. После нормировки параметры имели значения a=341,732; b=8,072; d=0,976; $\varepsilon=0,003$. Далее с использованием равенств (6), (7) определялись времена переключения $\tau_1=84,7\cdot 10^{-3}$, $\tau_2=7,07\cdot 10^{-6}$, которые с точностью до 4% совпали с экспериментальными данными.

В заключение отметим, что использование структур с различным законом распределения параметров R и C позволяет в широких пределах изменять времена переключений τ_1, τ_2 , а также форму управляющего напряжения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Колесов Ю. С. Периодические решения релейных систем с распределенными параметрами // Математический сборник. Ярославль. — 1970. — Т. 83. — № 3. — С. 349—371.

Ярославский госуниверситет.

Поступила в редакцию 09.10.96.

СОДЕРЖАНИЕ т. 40 ЖУРНАЛА «ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. РАДИОЭЛЕКТРОНИКА» ЗА 1997 г.

No 1

Трохименко Я. К. Вычисление суммарных алгебраических допол	
нений теоретико-множественными методами	.3
Денисенко В. В. Полунатурная модель МОП-транзистора для аппа-	
ратного моделирования СБИС	12
Жигалов И. Е. Автоматизированное функционально-схемотехни-	5G
ческое моделирование нелинейных устройств	23
Слюсар В. И. Цифровые методы оценивания временного положе-	141
ния колоколообразных радиоимпульсов	33
Демьяненко П. А., Зиньковский Ю. Ф., Прокофьев М. И. Прецизи-	
онный цифровой акселерометр с волоконно-оптическим датчи-	
KOM	39
Голуб В. С. Частотная демодуляция с фазово-частотным преобразо-	
ванием при многопериодной задержке сигнала	17
Гепко И. А. Негапериодические комплементарные последователь-	
ности	54
Тараненко П. Г., Иваненко А. Ю. Особенности последовательно- стей с локально-оптимальными корреляционными свойствами 5	59
Евграфов Д. В. Дисперсия производной от огибающей суммы гармо-	19
нического сигнала и стационарного гауссовского процесса при	
расстройке линейной части приемника	55
Краткие научные сообщения	
краткие научные сообщения	
Ильин В. А., Куделя А. М., Ларкин С. Ю., Лебединский А. М.	
Криогенный радиометрический датчик	10
Селетков В. Л. Модифицированное преобразование Хартли 7	15
Василевич Л. Ф., Ежов С. А., Смирнов М. Н., Кучмий А. А. Стати-	
стические характеристики инверсно-ограниченного шума 7	8