Definition 0.1. A **universal covering** is a simply connected covering. They are unique up to homeomorphism.

Proposition 0.1. The number of sheets of a covering space $p:(\widetilde{X},x_0)\to (X,x_0)$ with X and \widetilde{X} path-connected equals the index of $p_*(\pi_1(\widetilde{X},x_0))$ in $\pi_1(X,x_0)$.

Proposition 0.2. Let $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ be a path-connected covering space of the path-connected, locally path-connected space X, and let $H=p_*\left(\pi_1(\widetilde{X},\widetilde{x}_0)\right)\subset\pi_1(X,x_0)$. Then:

- 1. The covering space $p: \widetilde{X} \to X$ is normal (regular) if and only if H is a normal subgroup of $\pi_1(X, x_0)$.
- 2. The group of deck transformations $\operatorname{Deck}(\widetilde{X}/X)$ is isomorphic to the quotient N(H)/H, where N(H) is the normalizer of H in $\pi_1(X, x_0)$.

In particular, if $\widetilde{X} \to X$ is a normal covering, then

$$\operatorname{Deck}(\widetilde{X}/X) \cong \pi_1(X, x_0)/H.$$

Hence, for the universal cover $\widetilde{X} \to X$, we have

$$\operatorname{Deck}(\widetilde{X}/X) \cong \pi_1(X, x_0).$$

Example 1. Suppose that X is a finite connected CW complex such that $\pi_1(X)$ is finite and nontrivial. Prove that the universal covering \tilde{X} of X cannot be contractible.

Proof.