Bascules et Registres

Cours Systèmes Logiques

1ère Année

SupNum de Nouakchott

Dr. MOHAMED SASS MOHAMDY

Année universitaire 2023/2024

Plan du Cours

I - Circuits séquentiels

II - Bascule RS

III - Bascule JK

IV - Bascule D

V - Registres

I – Circuits séquentiels

- Les circuits de logique séquentielle : Ces des circuits dans lesquels le temps intervient dans la définition des sorties.
- Un système séquentiel "garde la mémoire" du passé pour déterminer son état présent.
- Les circuits séquentiels de base, sont les bascules.
- Les fonctions de sortie d'une bascule, dépendent non seulement de l'état des variables d'entrée mais également de l'état antérieur de certaines variables de sortie (propriétés de mémorisation).

- Dans la Table de vérité d'une bascule, on trouve en plus des entrées, la valeur de sortie à l'état précédent.
- Une bascule (flip-flop) a pour rôle de mémoriser une information élémentaire (mémoire à 1 bit).
- Par convention, une bascule doit avoir deux sorties complémentaires Q et Q.
- La mémorisation fait appel à un système de blocage (latch), dont le principe est représenté de la façon suivante.

Représentation traditionnelle du bistable

- Deux états stables = Conservation de l'état de leur sortie pendant une durée quelconque, même si la combinaison des signaux d'entrée l'ayant provoquée disparaît.
- 2 états seulement : "0" et "1" : bistable.

"0" (Q=0,
$$\overline{Q}$$
=1) et "1" (Q=1, \overline{Q} =0)

On peut vérifier que les états sont cohérents.

$$(Q=1)\Rightarrow (B=1)\Rightarrow (\overline{Q}=0)\Rightarrow (A=0)\Rightarrow (Q=1)$$

 $(Q=0)\Rightarrow (B=0)\Rightarrow (\overline{Q}=1)\Rightarrow (A=1)\Rightarrow (Q=0)$

Utilisation des bascules :

Les bascules sont utilisées pour créer des circuits:

- Registres : Mémorisation d'un mot mémoire, décalage vers la droite/gauche du mot ...
- > Mémoires (SRAM) et Compteurs: Mohamed Sass

II - Bascules RS

- ➤ La bascule RS ajoute à la capacité de mémorisation du bistable, la possibilité de le fixer dans un état donné, par l'opération d'écriture.
- Les Bascules RS peuvent être réalisées avec des portes NOR ou NAND.
- Bascule RS réalisée à base de portes NOR :

R	S	Ø	IO
0	0	Q	Ø
0	1	1	0
1	0	0	1
1	1	0	0

sorties inchangées

Set : remise à 1

Reset: remise à 0

à proscrire

> Bascule RS réalisée à base de portes NAND :

R	S	R	S	Q	Q	
0	0	1	1	Q	Q	sorties inchangées
0	1	1	0	1	0	Set : remise à 1
1	0	0	1	0	1	Reset : remise à 0
1	1	0	0	1	1	à proscrire

Représentation générique d'une bascule RS:

R	O	Ø	IØ
0	0	Ø	IØ
0	1	1	0
1	0	0	1
1	1	0	0

sorties inchangées

Set: remise à 1

Reset: remise à 0

à proscrire

Si nous considérons :

Q_n: valeur de la sortie Q pendant un nième intervalle.

 Q_{n+1} : valeur de la sortie dans l'intervalle suivant la nième intervalle.

Nous obtenons:

S _n	R _n	Q_{n+1}
0	0	Qn
1	0	1
0	1	0
1	1	?

- \triangleright Si, R = S = 0, la sortie ne change pas (Mémorisation).
- ➤ Si, S = 1 et R = 0, alors Q est forcée a 1.
- ➤ Si, S = 0 et R = 1, alors Q est forcée a 0.
- ➤ Si, S = 1 et R = 1, alors situation indéterminée.

Exemple de chronogramme d'une bascules RS asynchrone :

Bascules RS synchrone:

➢ Il s'agit d'une bascule RS dans laquelle les entrées R et S ne sont prises en comptes que si elles sont en coïncidence avec un signal de commande.

Fig. Logigramme d'une Bascule RS synchrone à base de NAND

- ➤ La Bascule bloquée (la sortie reste sans changement) quand le signal de commande est a 0.
- Si le signal de commande est fourni par une horloge : Bascule synchrone.

Signal d'Horloge:

Le signal de commande donné par une horloge de période T fournissant des impulsions.

> Symbole d'une Bascule RSH:

Bascule réagissant au front montant

Bascule réagissant au front descendent

> Table de vérité d'une Bascules RSH réagissant au front descendant :

Exemple de chronogramme d'une bascules RS synchrone, réagissant avec un front descendent :

➤ Remarquez bien : Lorsque H = 1, il y a mémorisation de l'état précédent.

Exemple de chronogramme d'une bascules RS synchrone, réagissant avec un front montant de l'Horloge :

Remarquez bien : Lorsque H = 0, il y a mémorisation de l'état précédent.

III - Bascules JK

Pour enlever l'ambiguité des bascules RSH, considérons la bascule Suivante, avec deux entrée J et K :

J _n	K _n	Qn	$\overline{Q_n}$	S	R	Q _{n+1}
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	1	0	1	0	0	0
0	1	1	0	0	1	0
1	0	0	1	1	0	1
1	0	1	0	0	0	1
1	1	0	1	1	0	1
1	1	1	0	0	1	0

Nous obtenons, finalement la table de vérité d'une bascule JK, comme suit :

J _n	K _n	Q _{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{Q_{n}}$

> Et, son logigramme est le suivant :

La table de vérité d'une bascule JK synchrone, en fonction d'un front montant :

entrée	Entrée	entrée	sortie	sortie	
J	K	C	Qn	Qn	Fonctionnement
a	ь	clk			
X	X	\	Qn -1	Qn - 1	Mémoire
0	0	1	Qn -1	Qn - 1	Mémoire
1	0	↑	1	0	Set
0	1	↑	0	1	Reset
1	1	↑	Qn - 1	Qn -1	Toggle

Exemple de chronogramme d'une bascules JK Synchrone, réagissant avec un front montant de l'Horloge :

Remarque: Pour J = K = 1, on dit que l'on est dans le mode basculement. Cette bascule passe à l'état opposé à chaque front montant du signal d'horloge.

Remarquez aussi bien: Lorsque H = 0, il y a mémorisation de l'état précédent.

IV - Bascule D

- ➤ Une bascule D est réalisée à partir d'une bascule RS ou JK dont les entrées sont reliées par un inverseur.
- Donc, en envoyant une donnée D sur l'entrée J et son inverse sur l'entrée K, nous obtenons une bascule D.
- ➤ La bascule D permet de générer un "retard" (Delay) ou de stocker de l'information (Latch).

■ À partir de la table de vérité de la bascule JK :

J _n	K _n	Q _{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	Q _n

- On a:
- Si, $D_n = 1 \Rightarrow (J_n = 1, K_n = 0) \Rightarrow Q_{n+1} = 1.$
- Si, $D_n = 0 \Rightarrow (J_n = 0, K_n = 1) \Rightarrow Q_{n+1} = 0.$
- \triangleright Soit : $Q_{n+1} = D_n$.

La table de vérité de la bascule D, réagissant avec un front montant :

> La sortie prend l'état de l'entrée D après l'impulsion d'horloge.

V - Registres

Notion de registre :

- Un registre est un ensemble de cellules mémoires constituées par des bascules.
- Le contenu d'un registre peut donc être considéré comme un nombre binaire ou un "mot" de n bits.

Exemple : 0 1 1 0, chacun des bits sera stocké par une bascule.

Les applications des registres sont nombreuses :

- Multiplication ou division par une puissance de 2.
- Ligne à retard numérique.
- Conversion série –parallèle.

V -1 - Registres de mémorisation

- Un registre permet la mémorisation de n bits. Il est donc constitué de n bascules, mémorisant chacun un bit.
- L'information est emmagasinée sur un signal de commande et est ensuite conservée et disponible en lecture.
- La figure suivante donne un exemple de registre 4 bits réalisé avec 4 bascules D.

Registre de mémorisation, réalisé par association de n bascules D pour mémoriser n bits :

- En synchronisation avec le signal d'écriture W (lié au clk), le registre mémorise les états des entrées E0, E1, E2 et E3. Ils sont conservés jusqu'au prochain signal de commande clk(qui est lié au signal W).
- \triangleright Dans cet exemple, les états mémorisés peuvent être lues sur les sorties Q_0 , Q_1 , Q_2 , Q_3 en coïncidence avec le signal de validation R.

- ➤ La sortie du registre mémorise le mot d'entrée tant que clk= 0 ou 1.
- ➤ Lorsque l'horloge présente un front montant (le cas où les bascules réagissant dès que clk =1) par exemple, les données en sortie sont actualisées.
- ➤ Le registre peut être initialisé grâce aux entrées de forçage asynchrone qui peuvent forcer les sorties des bascules à 0 ou à 1.

V -2 - Registres de décalage

- Ces circuits sont le plus souvent formés de bascules synchrones reliées l'une à la suite de l'autre et commandées par le même signal d'horloge.
- L'état de la première bascule se décale aux bascules suivantes d'où le nom de «circuits de décalage».
- Une application importante des registres de décalage est la transmission série de données logiques.
- Ces systèmes peuvent être utilisés pour effectuer des multiplications ou divisions par une puissance de 2, ou encore pour effectuer une conversion série –parallèle.

V -2-1 Registre de décalage, à entrée série et sorties parallèles

Nous appliquons à l'entrée $\mathbf{D_1}$ du circuit un signal rectangulaire de fréquence moins élevée que le signal d'horloge appliqué à l'entrée **CLOCK**.

Fig. Registre à décalage avec plusieurs sorties.

Aux sorties Q₁, Q₂, Q₃ et Q₄ du registre apparaissent quatre signaux identiques entre eux mais retardés, l'un par rapport à l'autre d'un temps égal à la période du signal d'horloge.

Fig. Un signal rectangulaire à l'entrée du registre à décalage produit quatre signaux retardés entre eux

V -2-2- Registre de décalage circulaire

Décalage circulaire à droite :

Décalage circulaire à gauche :

Exemple d'un registre à décalage circulaire 4 bits à bascule D :

Н	Q0	Q1	Q2	Q3
0	1	0	0	0
1er décalage	0	1	0	0
2ème décalage	0	0	1	0
3ème décalage	0	0	0	1
4ème décalage	1	0	0	0
5ème décalage	0	1	0	0
6ème décalage	0	0	1	0

Fig. Décalage circulaire 4 bits à bascule D.

Merci pour votre attention