AI 이쪽보행 로봇 [Walker] 🎉

AI 이족보행 로봇 - 워커(Walker)

Step. 11 Python Al Coding

- 영상인식 기능학습
- 영상인식을 통해 로봇제어하기

Visual Studio Code에서 인공지능 기능 활용하기

해당 차시는..

Python 구문을 활용해서, 얼굴인식, ArUco 마커를 인식할 수 있는 간단한 체험형 실습을 진행하도록 구성되어 있습니다. (Python문법 등에 대한 보강자료 없음)

Python과 Visual Studio Code, 영상인식 라이브러리를 활용한 실습을 진행할 예정이며, 기본 명령어를 따라서 타이핑 해 보며 노트북의 웹캠 또는 PC에 연결된 웹캠을 이용해 인공지능 실습을 진행해 봅니다.

Python 및 Visual Studio Code의 업데이트 상황에 따라 표기되는 명칭 및 이미지가 다를 수 있습니다.

Visual Studio Code를 활용한 Python 인공지능 실습

코딩 준비하기

노트북 웹캠 또는 PC와 연결된 유선 웹캠이 필요해요.

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - 기본 세팅 (라이브러리 설치하기)

터미널에 사진과 같이 영상인식 라이브러리 설치 명령어를 입력합니다.

pip3 install RoboCam

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - 기본 세팅

```
Python test.py > ...

1 from RoboCam.robocam import *

2 rCam = RoboCam()

3 rCam.WebcamStreamInit()
4 rCam.WebcamStream()
5 input()

ProboCam 라이브러리중 robocam의 항목을 호출

RoboCam 라이브러리중 robocam의 항목을 호출

RoboCam 라이브러리중 robocam의 항목을 호출

Input() 명령어를 가진 객체 생성
```

WebcamStreamInit (width : Int = 640, height : int = 480)

- 웹캠의 스트리밍을 준비하는 함수에요. width * height의 해상도로 스트리밍 됩니다.
- * Width -> 가로 해상도 (기본값: 640)
- * height -> 세로 해상도 (기본값 : 480)

WebcamStream()

- 웹캠의 영상 스트리밍을 시작하는 함수에요.
 - * WebcamStreamInit 함수가 호출된 후 사용되어야 해요.

Visual Studio Code를 활용한 Python 인공지능 실습

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

스트리밍된 화면 속성을 제어하는 명령어 함수들에 대해 알아볼까요?

LeftRightFlipMode(flag:bool)

- 웹캠의 영상 스트리밍을 flag에 따라 좌우 반전시키는 함수입니다.
 - * flag -> True: 좌우반전 On , False : 좌우반전 Off

UpDownFlipMode(flag:bool)

- 웹캠의 영상 스트리밍을 flag에 따라 상하 반전시키는 함수입니다.
- * flag -> True: 상하반전 On , False : 상하반전 Off

MosaicMode(rate:int)

- 웹캠의 영상 스트리밍에 모자이크를 rate비율로 설정하는 함수입니다.
- * rate -> 영상 모자이크의 비율입니다. [단위: 퍼센트(%), 기본값:0]

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 실습

학습한 명령어를 이용해, 아래처럼 화면의 속성을 변경할 수 있어요.

```
from RoboCam.robocam import *
    rCam = RoboCam()
    rCam.WebcamStreamInit()
    rCam.WebcamStream()
    rCam.LeftRightFlipMode(True)
    rCam.MosaicMode(30)
    input()
화면반전과 모자이크 처리를 통해 우측의 그림처럼 스트리밍 되는 화면의
속성을 변경했어요.
모자이크 비율 / 반전방향 등을 변경해서 코드를 작성해 보세요.
```


Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

ArUco 마커의 상세 데이터를 확인하는 명령어 함수에 대해 알아볼까요?

ArucoDetectorInit()

- Aruco마커 탐색 모듈을 초기화하는 함수입니다. (Original ArUco 마커를 타겟합니다)

ArucoDetectorStart()

- Aruco마커 탐색 모듈을 실행 시키는 함수입니다.
- * 탐색 모듈을 중지하는 함수는 ArUcoDetectorStop() 입니다.

DrawArucoArea(flag:bool)

- 화면에 인식된 Aruco마커의 영역표시 여부를 정하는 함수입니다.
 - * 아래부터 나열될 상세데이터 함수는 '영역표시'가 활성화 될 때 사용할 수 있어요.

DrawArucold(flag:bool)

- 화면에 인식된 Aruco마커의 ID표시 여부를 정하는 함수입니다.

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

ArUco 마커의 상세 데이터를 확인하는 명령어 함수에 대해 알아볼까요?

DrawArucoPoint(flag:bool)

- 화면에 인식된 Aruco마커의 좌표표시 여부를 정하는 함수입니다.

DrawArucoSize(flag:bool)

- 화면에 인식된 Aruco마커의 크기표시 여부를 정하는 함수입니다.

DrawArucoDistance(flag:bool)

- 화면에 인식된 Aruco마커의 거리표시 여부를 정하는 함수입니다.

*거리 : 가로*세로 길이가 2.5cm인 ArUco마커를 기준으로 카메라와 마커간의 거리를 cm단위로 표시합니다.

웹캠을 통해 보이는 Aruco마커의 정보들을 확인할 수 있는 명령어 함수입니다. 다음과 같이 코딩 후 Aruco 마커의 정보를 직접 확인해 보세요.

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 실습

```
from RoboCam.robocam import *
rCam = RoboCam()
rCam.WebcamStreamInit()
rCam.WebcamStream()
rCam.ArucoDetectorInit()
rCam.ArucoDetectorStart()
input()
```

웹캠을 향해

Driginal ArUco마커를 비추면 사진과 같이

마커의 ID = 770

마커의 중심점 좌표 = 371,230

마커의 크기 = 183

마커와 화면과의 거리 = 6.10

정보가 순차적으로 노출됩니다.

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 실습

화면에 필요한 정보만을 노출시키기 위해서는 앞서 학습한 명령어들을 이용한 코딩을 진행해야 합니다.

```
Python test.py > ...
      from RoboCam.robocam import *
      rCam = RoboCam()
      rCam.WebcamStreamInit()
      rCam.WebcamStream()
      rCam.ArucoDetectorInit()
      rCam.ArucoDetectorStart()
      rCam.DrawArucoArea(False)
      rCam.DrawArucoId(False)
  8
      rCam.DrawArucoPoint(False)
  9
      rCam.DrawArucoDistance(False)
 10
 11
      rCam.DrawArucoSize(False)
 12
      input()
```


Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 실습

학습한 내용을 바탕으로, 다음 문제를 해결해 보세요.

1) 웹캠을 통해 보이는 ArUco 마커의 '윤곽선' '크기' 'ID번호' 만 표현되도록 코딩해 보세요!

```
Python test.py > ...

1   from RoboCam.robocam import *
2   rCam = RoboCam()
3   rCam.WebcamStreamInit()
4   rCam.WebcamStream()
5   rCam.ArucoDetectorInit()
6   rCam.ArucoDetectorStart()
7
8
9
10  input()
```


Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 실습

학습한 내용을 바탕으로, 다음 문제를 해결해 보세요.

2) 웹캠을 통해 보이는 ArLico 마커의 '윤곽선' '좌표값' '거리' 데이터만 표현되도록 코딩해 보세요!

```
Python test.py > ...

1   from RoboCam.robocam import *
2   rCam = RoboCam()
3   rCam.WebcamStreamInit()
4   rCam.WebcamStream()
5   rCam.ArucoDetectorInit()
6   rCam.ArucoDetectorStart()
7
8
9
10  input()
```


Pythonog [AH] Michail

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

스트리밍 된 화면에 보이는 ArUco마커의 정보를 데이터로 얻어, 프린트 하는 명령어를 알아볼까요?

GetArucold()->int

인식된 ArUco마커의 고유번호를 int형태로 반환하는 함수입니다.

GetArucoCount() -> int

인식된 ArUco마커의 개수를 반환하는 함수입니다.

GetArucoCenterPoint(id:int) -> list

인식된 ArUco마커의 중심좌표를 [x,v] 형태의 리스트로 반환하는 함수 입니다.

* id : 검출할 ArUco마커의 ID 입니다.

GetArucoX(id:int) -> int

인식된 ArUco마커의 개수를 반환하는 함수입니다. X좌표 데이터를 반환하는 함수입니다.

GetArucoY(id:int) -> int

인식된 ArUco마커의 개수를 반환하는 함수입니다. Y좌표 데이터를 반환하는 함수입니다.

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

학습한 코드를 사용해서, 터미널에 ArUco 마커의 정보를 프린트 해 보세요.

```
Python test.py > ...
 1 ∨ from time import sleep
                                              → 기본함수 'Sleep'을 사용하기 위해 명령어 호출
     from RoboCam.robocam import *
     rCam = RoboCam()
     rCam.WebcamStreamInit()
     rCam.WebcamStream()
     rCam.ArucoDetectorInit()
      rCam.ArucoDetectorStart()
                                                                       [317, 299]

√ while(True):
         print("=======")
         print(rCam.GetArucoId())
 10
          print(rCam.GetArucoCenterPoint(770))
 11
         print(rCam.GetArucoX(770))
 12
          print("=======")
13
                                                                       [351, 252]
         sleep(1)
14
```

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

얼굴을 감지하고, 해당 데이터를 활용할 수 있는 명령어 함수에 대해 알아볼까요?

FacedetectorInit()

- 웹캠의 얼굴인식 모듈을 준비하는 함수입니다. (얼굴감지, 얼굴구별, 이목구비 인식을 초기화 합니다.)

FacedetectorStart()

- 얼굴감지 모듈을 실행하는 함수입니다.
- 스트리밍 화면 안에 들어온 얼굴을 인식하여 외곽선에 사각형을 표시합니다.
- 이목구비 좌표에 작은 원을 표시합니다.
- 학습된 얼굴 데이터가 있다면, 학습된 데이터와 비교하여 인식된 이름을 표시합니다.
- 얼굴감지 모듈을 중지하는 함수는 FacedetectorStop() 입니다.

다음페이지에 안내되는 내용을 따라, 웹캠으로 얼굴에 대한 데이터를 확인할 수 있어요.

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍화면 확인하기

```
Python test.py > ...
     from time import sleep
     from RoboCam.robocam import *
     rCam = RoboCam()
     rCam.WebcamStreamInit()
     rCam.WebcamStream()
     rCam.FacedetectorInit()
     rCam.FacedetectorStart()
      input()
                      실행시 스트리밍 화면 생성
10
 터미널 창에 '엔터'키 입력시 스트리밍 종료
```

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 실습

웹캠을 향해

이목구비가 표현된 얼굴을 사진을 비추면,

사진과 같이

얼굴데이터의 중심좌표: 295,191

얼굴 데이터의 크기: 226

얼굴데이터의 이름: HumanD

정보가 순차적으로 노출됩니다.

Pythonog [위제] 제어하기

Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

스트리밍 된 얼굴의 상세 데이터를 확인하는 명령어 함수에 대해 알아볼까요?

DrawFaceArea(flag:bool)

- 화면에 인식된 얼굴의 영역 표시 여부를 정하는 함수입니다.
 - * 아래부터 나열될 상세데이터 함수는 '영역표시'가 활성화 될 때 사용할 수 있어요.

DrawFacePoint(flag:bool)

- 화면에 인식된 얼굴의 좌표 표시 여부를 정하는 함수입니다.

DrawFaceSize(flag:bool)

- 화면에 인식된 얼굴의 좌표 표시 여부를 정하는 함수입니다.
 - * 얼굴의 크기는 얼굴 윤곽선 사이의 거리(픽셀)를 말합니다.

GetFaceCount() -> int

- 화면에 인식된 얼굴의 개수를 반환하는 함수입니다.

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (1)

터미널 창에 '엔터'키 입력시 스트리밍 종료

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (화면에 비친 얼굴 수 반환)

```
Python test.py > ...
      from time import sleep
      from RoboCam.robocam import *
      rCam = RoboCam()
      rCam.WebcamStreamInit()
      rCam.WebcamStream()
      rCam.FacedetectorInit()
      rCam.FacedetectorStart()
      while(True):
           print(rCam.GetFaceCount())
           sleep(1)
                DEBUG CONSOLE
```


Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

얼굴 데이터 학습 명령어에 대해 알아볼까요?

FaceCapture(name:str, captureCount:int=5, path:str)

- 감지된 얼굴을 name 이름으로 captureCount횟수 만큼 캡쳐하여 path 위치에 저장합니다.
 - * name: 얼굴이 저장될 이름입니다. 같은 이름으로 여러 번 저장하면, 넘버링되어 저장됩니다.
 - * captureCount : 얼굴을 저장할 횟수 입니다. 0.1초 간격으로 지정된 횟수만큼 저장합니다.
 - * path : 얼굴 데이터가 저장될 경로입니다. 기본경로는 패키지 설치경로의 '/res/face/' 입니다.

TrainFaceData(path:str)

- facepath에 저장된 얼굴 데이터를 얼굴구별 모듈에 학습시키는 함수입니다. 학습된 데이터를 기반으로 웹캠에 확인된 얼굴의 이름이 표시됩니다.

DeleteFaceData(name:str, path:str)

- path에 저장된 name 이름을 가진 얼굴 데이터를 삭제하는 함수입니다. 해당 폴더에 접근하여 데이터를 삭제합니다. 데이터 삭제 이후 TrainFaceData 함수를 호출해야 얼굴구별 모듈에 적용됩니다.

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 예제)

```
from RoboCam.robocam import *
    rCam = RoboCam()
    rCam.WebcamStreamInit()
                                       영상인식 및 얼굴인식을 위한 기본설정
    rCam.WebcamStream()
   rCam.FacedetectorInit()
    rCam.FacedetectorStart()
    rCam.TrainFaceData()
                                      .지정 폴더 내 얼굴데이터 학습

√ while(True):
       print("=======")
       print("사용할 기능을 입력하세요")
                                       Input() 명령어를 통해 외부입력을 받기 전까지
11
       print("1) capture")
                                      좌측과 같이 G줄의 내용을 프린트
12
       print("2) train")
       print("3) delete")
                                       입력받은 값을 ins 값으로 지정
       print("=======")
       ins = input("명령어 입력: ")
       if ins == 'train':
           rCam.TrainFaceData()
                                                입력받은 값 'ins'가
       elif ins == 'capture':
                                                train 일 경우 TrainFaceData()함수 실행
           var = input("저장할 이름:")
           rCam.FaceCapture(var)
                                                capture일 경우 외부입력을 받아 FaceCapture(var)함수 실행
       elif ins == 'delete':
                                                delete일 경우 외부입력을 받아 DeleteFaceData(var)함수 실행
           var = input ("삭제할 이름:")
                                                입력 받은 값이 위 3항이 아닌 경우, "잘못된 명령어 입니다. 다시
           rCam.DeleteFaceData(var)
        else:
                                                입력하세요" 출력
           print("잘못된 명령어입니다. 다시입력하세요")
```

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 실습 1)

1) 프로그램 실행 시 웹캠 오픈 & 터미널을 통해 미리 코딩 된 문구 프린팅

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 실습 1)

2) 아래 설명을 따라 얼굴 데이터 저장하기

웹캠에 학습시킬 얼굴을 위치시킴

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 실습 1)

3) 촬영된 데이터 확인하기

학습된 데이터를 확인하고 싶다면, 아래 경로에서 확인이 가능합니다.

C:) User) AppData) Local) Programs) Python) Python310) Lib) site-packages) RoboCam) res) face or Python311

위와 같이 5장의 사진이 찍혀있는 걸 확인할 수 있어요.

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 실습 1)

4) 촬영된 데이터 학습하기

PROBLEMS OUTPUT DEBUG CONSOLE 2) train 3) delete 명령어 입력: capture 저장할 이름:kim kim is saved 사용할 기능을 입력하세요 1) capture 2) train delete 명령어 입력: train

train 명령어 입력 후 웹캠에 다시 사진을 비춰보면..

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 실습 1)

5) 촬영된 데이터 삭제하기

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (얼굴 데이터 학습하기 실습 1)

6) 학습하기를 통해 데이터 새로고침

2) train3) delete

train 명령어 입력 후 웹캠에 다시 사진을 비춰보면..

Python으로 [위해] 제어하기 Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

스트리밍 된 화면에 보이는 얼굴 정보를 데이터로 얻어, 프린트 하는 명령어를 알아볼까요?

GetFaceNames() -> list

인식된 얼굴 중 name의 이름을 가진 얼굴이 있는지 반환하는 함수입니다.

(인식된 얼굴이 없다면 빈 리스트를 반환)

GetFaceSize(name:str) -> int

인식된 얼굴 중 name의 이름을 가진 얼굴의 크기를 반환하는 함수 입니다.

GetFaceCenterPoint(name:str) -> list

인식된 얼굴 중 name의 이름을 가진 얼굴의 중심좌표를 반환하는 함수입니다.

GetFaceExist(name:str) -> bool

인식된 얼굴 중 name의 이름을 가진 얼굴이 있는지 여부를 반환하는 함수입니다.

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기 (kim에 대한 데이터 사전학습 진행)

```
Python test.py > ...
     from time import sleep
     from RoboCam.robocam import *
     rCam = RoboCam()
     rCam.WebcamStreamInit()
     rCam.WebcamStream()
     rCam.FacedetectorInit()
     rCam.FacedetectorStart()
     rCam.TrainFaceData()
     while(True):
         print("=======")
10
         print(rCam.GetFaceNames())
11
         print(rCam.GetFaceExist('kim'))
12
         print(rCam.GetFaceSize('kim'))
13
14
         print(rCam.GetFaceCenterPoint('kim'))
         print("=======")
15
16
         sleep(1)
```


Python으로 [위표] 제에하기 Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 – Python 명령어 알기

스트리밍 된 화면에 보이는 얼굴 데이터의 이목구비 정보 반환 함수 알아보기 (1)

GetLeftIrisPoint(name:str)->list

인식된 얼굴의 왼쪽 눈동자 좌표를 반환하는 함수 입니다.

GetLeftEyebrowPoint(name:str)->list

인식된 얼굴의 왼쪽 눈썹 좌표를 반환하는 함수 입니다.

GetRightIrisPoint(name:str)->list

인식된 얼굴의 오른쪽 눈동자 좌표를 반환하는 함수 입니다.

GetRightEyebrowPoint(name:str)->list

인식된 얼굴의 오른쪽 눈썹 좌표를 반환하는 함수 입니다.

Python으로 [위해] 제에하기 Visual Studio Code를 활용한 Python 인공지능 실습

코딩하기 - Python 명령어 알기

스트리밍 된 화면에 보이는 얼굴 데이터의 이목구비 정보 반환 함수 알아보기 (2)

GetNosePoint(name:str)->list

인식된 얼굴의 코 좌표를 반환하는 함수 입니다.

GetMousePoint(name:str)->list

인식된 얼굴의 입 좌표를 반환하는 함수 입니다.

GetJawPoint(name:str)->list

인식된 얼굴의 턱 좌표를 반환하는 함수 입니다.

DrawFaceLandmark(flag:bool)

인식된 얼굴의 이목구비 포인트 표시 여부를 지정하는 함수입니다.

Visual Studio Code를 활용한 Python 인공지능 실습

스트리밍 화면 확인하기

```
Python test.py > ...
      from time import sleep
     from RoboCam.robocam import *
     rCam = RoboCam()
     rCam.WebcamStreamInit()
     rCam.WebcamStream()
     rCam.FacedetectorInit()
      rCam.FacedetectorStart()
     rCam.TrainFaceData()
     while(True):
         print("=======")
 10
         print(rCam.GetLeftIrisPoint('kim'))
11
         print(rCam.GetLeftEyebrowPoint('kim'))
12
13
         print(rCam.GetNosePoint('kim'))
         print(rCam.GetMousePoint('kim'))
14
         print(rCam.GetJawPoint('kim'))
15
16
         print("=======")
17
         sleep(1)
```


from RoboCam.robocam import *

rs.servo write(4,-90)

sleep(0.5)
sleep(0.2)

Visual Studio Code를 활용한 Python 인공지능 실습

카메라 인식 데이터를 통해 [워커] 제어하기

```
from RobokitRS import *
from time import sleep
rCam = RoboCam()
rCam.WebcamStreamInit()
rCam.WebcamStream()
rCam.FacedetectorInit()
rCam.FacedetectorStart()
{name1 = input("Name1 : ")
rCam.FaceCapture(name1)
sleep(1)
!name2 = input("Name2 : ")
                              순차적으로 학습
rCam.FaceCapture(name2)
sleep(1)
rCam.TrainFaceData()
rs = RobokitRS.RobokitRS()
```

Name1 : kim kim is saved Name2 : lee lee is saved

lee 인식할 때 오른쪽다리 움직임

Visual Studio Code를 활용한 Python 인공지능 실습

영상인식을 활용해 Python으로 서보모터 제어하기

얼굴 정보를 등록하고, 각 얼굴을 인식했을 때 별도의 움직임을 가지도록 코딩해 보세요.

