UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE INFORMÁTICA CURSO DE ENGENHARIA DE COMPUTAÇÃO

WILLIAN AMERICANO LOPES

PROJETO E IMPLEMENTAÇÃO DE ROBÔ AUTÔNOMO SEGUIDOR DE LINHA

TRABALHO DE CONCLUSÃO DE CURSO

PATO BRANCO 2016

WILLIAN AMERICANO LOPES

PROJETO E IMPLEMENTAÇÃO DE ROBÔ AUTÔNOMO SEGUIDOR DE LINHA

Proposta de Trabalho de Conclusão de Curso de graduação, apresentada à disciplina de Trabalho de Conclusão de Curso 1, do Curso Superior de Engenharia de Computação do Departamento Acadêmico de Informática - DAINF - da Universidade Tecnológica Federal do Paraná - UTFPR, como requisito parcial para obtenção do título de "Engenheiro de Computação".

Orientador: Prof. Dr. Fábio Favarim Co-orientador: Prof. Dr. Eng. César Rafael Claure Torrico

PATO BRANCO 2016

SUMÁRIO

1 INTRODUÇÃO	4
1.1 CONSIDERAÇÕES INICIAIS	4
1.2 JUSTIFICATIVA	5
1.3 LIMITAÇÕES DO TRABALHO	6
1.4 OBJETIVOS	6
1.4.1 Objetivo geral	6
1.4.2 Objetivos específicos	7
2 REFERENCIAL TEÓRICO	8
2.1 ROBÓTICA	8
2.1.1 Robótica móvel	9
2.2 SISTEMAS DE CONTROLE PARA ROBÔS MÓVEIS	10
2.2.1 Ações de controle	
2.2.1.1Controlador <i>on-off</i>	
2.2.1.2Controlador Proporcional	
2.2.1.3Controlador Integral	
2.2.1.4Controlador Proporcional-Integral (PI)	
2.2.1.5Controlador Proporcional-Derivativo (PD)	
2.2.1.6Controlador Proporcional-Integral-Derivativo (PID)	
2.3 SISTEMAS A EVENTOS DISCRETOS	
2.3.1 Linguagens e Autômatos	15
2.3.1.1Autômato de Moore	
2.3.1.2Autômato de Mealy	
2.4 ESTRUTURA DE UM ROBÔ MÓVEL	
2.4.0.1Sensores não-visuais	
2.5 REGRAS DA ROBOCORE PARA ROBÔS SEGUIDORES DE LINHA	20
2.5.1 Especificação dos robôs	
2.5.2 Especificações do Percurso	
3 MATERIAIS	
3.1 MICROCONTROLADOR	
3.2 MOTORES CC	
3.3 PONTE H	
3.4 ENCODER MAGNÉTICO	
3.5 SENSORES DE REFLETÂNCIA	
3.6 PLACA DE CIRCUITO IMPRESSO	
3.7 MÓDULO BLUETOOTH	24

REFERÊNCIAS	27
4 CRONOGRAMA PRELIMINAR	
3.11ESFERA DESLIZANTE	25
3.10CONVERSOR STEP-UP	25
3.9 BATERIA LIPO	25
3.8 RODAS	25

1 INTRODUÇÃO

Este capítulo está dividido da seguinte forma: A Seção 1.1 apresenta uma visão geral do tema abordado, a Seção 1.2 trata da justificativa desta pesquisa, a Seção 1.3 trata as limitações do projeto e a Seção 1.4 apresenta os objetivos a serem alcançados neste trabalho.

1.1 CONSIDERAÇÕES INICIAIS

A robótica é uma das áreas mais promissoras da engenharia, tendo aplicabilidade em várias áreas: de médicas a aeroespaciais, buscando oferecer produtividade e flexibilidade à sua aplicação. Atualmente é difícil encontrar atividades industriais que não possuam um sistema robótico ou automatizado, seja total ou parcial.

Devido à ampla aplicabilidade e utilidade que os robôs apresentam foram criadas competições, que visam estimular e contribuir com a pesquisa na robótica, tais como:

- A Robogames (2016) que também é conhecida como "Olimpíada dos robôs", em que são disputadas mais de cinquenta categorias;
- A VEX Worlds (2016), a maior competição de robótica do mundo, que contou com 1075 times e mais de 15.000 participantes em sua última edição (RECORDS, 2016);
- A RoboCup (2016), que em 2016 foi sediada em Leipzig, Alemanha;
- A Robocore (2016a), com eventos realizados no Brasil.

O WinterChallenge, realizado anualmente pela Robocore, em São Paulo, é um dos maiores eventos de robótica da América Latina, contando com a participação de vários países e teve mais de mil competidores e cerca de quinhentos robôs na edição de 2016 (MAUÁ, 2016).

Uma das categorias disputadas é a dos seguidores de linha, na qual os robôs devem seguir, de maneira autônoma, um trajeto que é determinado por uma linha. Nessa categoria, se destacam os competidores do Japão, na competição Robogames, e do México, na Robocore, estes obtendo os três primeiros lugares

na competição WinterChallenge na categoria Seguidor de Linha - Pro (ROBOCORE, 2016b). Competindo nesta mesma categoria, a equipe Patobots, da Universidade Tecnológica Federal do Paraná (UTFPR) - Câmpus Pato Branco, conquistou o 5º e 6º lugar, com os robôs *Alpha project* e *Robbie 3.0*, respectivamente.

Com base nesse contexto, este trabalho propõe a construção de um protótipo de um robô seguidor de linha e o seu respectivo controle, visando participar de competições de robótica, como a Robocore.

O desenvolvimento deste trabalho contribuirá com a pesquisa que é feita na Universidade Tecnológica Federal do Paraná - Câmpus Pato Branco, na área de robótica móvel, em que já foram produzidos os trabalhos de Guadagnin (2014) e Petry (2016), os quais servem de base para este trabalho.

1.2 JUSTIFICATIVA

O trabalho de Guadagnin (2014), utilizou-se de controle híbrido, o qual integrou dinâmicas de controle discreto, como detecção de marcas laterais e a faixa central na pista, e contínuo, como o controlador Proporcional Integral Derivativo (PID). Segundo o autor, o robô funcionou de acordo com o esperado para um percurso dentro das normas da Robocore, tendo alguns problemas relacionados à detecção das marcas laterais quando a pista estava com uma inclinação maior que 5º (graus).

O trabalho de Petry (2016) desenvolveu um robô híbrido, realizando um estudo sobre os resultados obtidos por controladores PID e *Fuzzy* (lógica difusa), sendo que o controlador PID apresentou melhor desempenho. Segundo o autor, não foi obtido sucesso considerável com a técnica *Fuzzy*, que necessitava de um processador com poder computacional maior do qual foi utilizado, com memória suficiente para implementar as variáveis de controle. Devido às dificuldades encontradas, a comparação dos métodos foi realizada no robô 3pi, da Pololu, em que o autor conseguiu uma velocidade de 1 m/s em retas.

Comparando os sistemas de controle desenvolvidos verificou-se que o Fuzzy necessita de um processador bem mais eficiente comparado ao PID, com memória suficiente para implementar as variáveis de controle, além de maior poder computacional para processamento matemático, possibilitando o sistema de controle compensar o erro em tempo hábil.

Com base nos trabalhos de Guadagnin (2014) e Petry (2016), é proposta a

modelagem de um novo *hardware*, utilizando-se de técnicas de controle híbrido, o qual combina dinâmicas discretas (orientadas a eventos) e contínuas (orientadas a tempo) (CASSANDRAS; LAFORTUNE, 2008). Também propõe-se a utilização de um microcontrolador com Unidade de Ponto-Flutuante (FPU), que pode facilitar a implementação de técnicas mais complexas e que exigem maior poder computacional e memória.

1.3 LIMITAÇÕES DO TRABALHO

Este trabalho apresenta as seguintes limitações:

- Devido à complexidade que é o projeto e a implementação de um robô, este trabalho não se preocupará com o desenvolvimento mecânico do dispositivo, sendo que a estrutura mecânica da mesma será confeccionada sobre uma placa de circuito impresso;
- 2. Devido à dificuldade em encontrar e adquirir peças de alto desempenho, poderão ser utilizadas peças de menor custo, as quais podem reduzir as capacidades do robô:
- 3. O projeto do robô seguidor de linha se aterá ao funcionamento em pistas que seguem as normas da Robocore, podendo apresentar restrições de comportamento e até mesmo não funcionar, caso a pista não esteja no padrão estabelecido.

1.4 OBJETIVOS

1.4.1 OBJETIVO GERAL

Projetar e implementar um protótipo de um robô seguidor de linha, com velocidade máxima próxima a 2 m/s, que seja autônomo, através da utilização de controle híbrido, aperfeiçoando as técnicas desenvolvidas por Petry (2016).

1.4.2 OBJETIVOS ESPECÍFICOS

- Projetar e confeccionar a estrutura do protótipo, visando atender as dimensões especificadas pela Robocore;
- Projetar o condicionamento de sinais para os dispositivos a serem utilizados, permitindo uma boa precisão na leitura dos sensores;
- Implementar o controlador PID, de modo a obter um controlador robusto e estável;
- Realizar testes com o protótipo em pistas que sigam as normas da Robocore;
- Implementar um sistema de telemetria, visando obter informações em tempo real do robô;
- Comparar os resultados obtidos com o de Petry (2016).

2 REFERENCIAL TEÓRICO

Neste capítulo são apresentados os principais conceitos teóricos relacionados ao desenvolvimento deste trabalho.

2.1 ROBÓTICA

A palavra "Robô" foi criada pelo escritor tcheco Karel Capek, sendo utilizada em sua peça *Rossum's Universal Robots* (RUR), a qual foi encenada em 1921, em Praga. Na linguagem eslava, *robota* significa atividade forçada ou escrava. Na peça de Capek, os robôs eram pessoas fabricadas artificialmente, ausentes de emoção (POLONSKII, 1996).

A Robotic Industries Association (RIA), entidade norte-americana responsável pela indústria de robótica, define um robô industrial como um manipulador multipropósito reprogramável, controlado automaticamente, programado em três ou mais eixos, os quais podem ser fixos em um lugar ou móveis para aplicações em automação industrial (ANSI/RIA.R15.06-1999, 2010). Diferentemente do que foi imaginado por Capek, são máquinas que realizam o trabalho.

Secchi (2012) classifica os robôs em três tipos:

- Industriais: São formados por estruturas mecâncias articuladas, as quais se movem pelas ordens de um sistema de controle, normalmente um microcontrolador;
- Médicos: Também conhecidos como de cooperação ou reabilitação, são os utilizados em cirurgias de alta complexidade e precisão, assim como as próteses inteligentes, que visam manter a aparência e funcionalidade do membro de pessoas com deficiência.;
- Móveis: São plataformas mecânicas, que se locomovem através de um certo ambiente e apresentam certa autonomia. São empregados principalmente em tarefas em que se tem risco à vida humana, como na manutenção de reatores nucleares ou exploração de minérios, mas também podem ser aplicados na agricultura e no transporte de cargas.

2.1.1 ROBÓTICA MÓVEL

Mesmo que os robôs industriais apresentem alta precisão e velocidade, estes possuem uma grande desvantagem, que é a falta de mobilidade. Algumas atividades não seriam realizadas sem a utilização destes dispositivos, como a *Mars Pathfinder*, missão exploratória da NASA para o reconhecimento da atmosfera de Marte. O veículo Sojourner (Figura 1) que foi utilizado nesta missão, explorou o território marciano por oitenta e três dias, tirando fotografias e realizando medições do ambiente (NASA, 1997b).

Figura 1 – Veículo exploratório Sojourner Fonte: (NASA, 1997a)

A robótica móvel lida com o controle de veículos autônomos e semi-autônomos, tendo ênfase em problemas relacionados com o espaço em larga escala, que são regiões com espaços consideravelmente maiores que as observáveis pelo ponto de visão do robô. O espaço em larga escala é de extrema importância para um robô móvel, visto que afeta o seu movimento, compreensão e raciocínio nesta área, sendo estes três subproblemas essenciais para este campo de pesquisa (DUDEK; JENKIN, 2010).

Siegwart et al. (2011) classifica os robôs móveis em duas categorias relacionadas à locomoção:

- Robôs terrestres (*legged robots*): Tem como vantagem a manipulação de objetos e a locomoção em terrenos acidentados, mas tem alta complexidade mecânica e energética. A Figura 2 mostra o *Legged Squad Support Systems* (LS3) da Boston Dynamics, projetado para atuar nos mesmos terrenos acidentados utilizados por *marines* e soldados norte-americanos, ajudando a carregar equipamentos (DYNAMICS, 2016).
- Robôs com rodas (wheeled robots): É o tipo de locomoção mais utilizado em robôs móveis e veículos. Normalmente o equilíbrio não é levado em consideração, visto que na maior parte dos projetos as rodas são consideradas

Figura 2 – Robô terrestre L3S Fonte: (DYNAMICS, 2016)

em contato com o solo o tempo todo. O robô Sojourner da Figura 1 é um exemplo de robô com rodas.

2.2 SISTEMAS DE CONTROLE PARA ROBÔS MÓVEIS

Para que o robô seja autônomo, é necessário que este apresente uma resposta desejada para as mais diversas situações. Para tanto se utiliza de um sistema de controle, que consiste em subsistemas e processos, conhecidos como plantas, dos quais se obtém uma saída com desempenho desejado para uma dada entrada (NISE, 2012). Na Figura 3 é mostrado o diagrama de blocos¹ de um sistema de controle em uma forma simplificada, em que aplicando-se uma entrada a este, obtêm-se uma resposta.

Figura 3 – Descrição de um sistema de controle Fonte: Adaptado de (NISE, 2012, p.2).

Para Nise (2012) os sistemas de controle podem ser classificados em duas configurações principais:

 Controle por malha aberta (Open loop control): É a configuração mais simples, onde o sinal de saída não exerce nenhuma ação de controle no sistema (OGATA, 2010). Desta forma, um sistema de controle de malha aberta não é medido e

¹Diagrama de blocos é uma representação gráfica do sistema que mostra o fluxo de sinais que ocorre entre os componentes deste.

nem comparado com a entrada, como pode ser visto na Figura 4a, não sendo capaz de compensar distúrbios que possam ser adicionados ao sistema (NISE, 2012).

• Controle por Malha fechada (Closed loop control): Nesta configuração, a saída ou a resposta influencia a entrada do sistema (ARAÚJO, 2007). Logo após a Resposta Desejada, na Figura 4b, tem-se um ponto de soma, em que será feita a soma algébrica dos sinais associados. Segundo Ogata (2010), o sinal de erro atuante, que é a diferença entre o sinal de entrada e o sinal de realimentação (o qual é calculado logo após o ponto de soma, como pode ser visto na Figura 5), realimenta o controlador que tende a minimizar o erro e deixar a saída com o valor desejado.

Figura 4 – Configurações de sistemas de controle: (a) Malha aberta; (b) Malha fechada (ARAÚJO, 2007)

2.2.1 AÇÕES DE CONTROLE

Conforme Ogata (2010), um controlador automático compara o valor de saída da planta com a entrada do sistema, determinando o desvio e produzindo um sinal de controle que reduzirá este desvio a um valor pequeno. É chamada de ação de controle a maneira pela qual o controlador produz o sinal de controle. Na Figura 5 é mostrado o diagrama de blocos de um sistema de controle, composto por um controlador automático, um atuador, uma planta e um sensor, o qual é o elemento de medição. Os atuadores são dispositivos capazes de alterar o estado do sistema controlado com base em sinais de controle, como os motores elétricos. O sensor é

um elemento que converte a variável de saída em uma outra variável pertinente, que possa ser mensurável pelo sistema.

Figura 5 – Diagrama de blocos de um controlador automático Fonte: Adaptado de (OGATA, 2010, p.18).

Ogata (2010) classifica os controladores industriais de acordo com as suas ações de controle:

- Controlador de duas posições ou on-off;
- Controlador Proporcional;
- Controlador Integral;
- Controlador Proporcional-Integral (PI);
- Controlador Proporcional-Derivativo (PD);
- Controlador Proporcional-Integral-Derivativo (PID)

2.2.1.1 CONTROLADOR ON-OFF

Em controladores de duas posições ou *on-off*, o elemento atuante tem somente duas posições, as quais são fixas, geralmente sendo *on* (ligado) e *off* (desligado) (OGATA, 2010). Tem grande aplicabilidade em sistemas de controle industriais e domésticos, devido ao baixo custo e simplicidade de implementação.

Considerando-se o sinal de saída do controlador u(t) e o sinal de erro atuante e(t), o sinal u(t) apresenta um valor máximo ou mínimo, caso o erro atuante seja negativo ou positivo, respectivamente. Assim, tem-se que:

$$u(t) = U_1, \quad para \ e(t) > 0, \tag{1}$$

$$u(t) = U_2, \quad para \ e(t) < 0, \tag{2}$$

em que U_1 e U_2 são constantes. Em problemas de controle mais complexos, se faz necessária a utilização de outros controladores, devido ao *on-off* apresentar muitas oscilações e *offset*².

s defined as the voltage that must be applied between the two input terminals of the op amp to obtain zero volts at the output. Ideally the output of the op amp should be at zero volts when the inputs are grounded.

2.2.1.2 CONTROLADOR PROPORCIONAL

Na ação de controle proporcional, a relação entre a saída do controlador u(t) e o sinal de erro e(t) é apenas um ganho:

$$u(t) = K_p e(t), \tag{3}$$

em que K_p é o ganho do controlador proporcional. Para Araújo (2007) quanto maior o ganho, menor será o erro e(t), no entanto o sistema pode perder estabilidade devido ao aumento do tempo de acomodação³.

2.2.1.3 CONTROLADOR INTEGRAL

Segundo Ogata (2010), na ação de controle integral, o valor da saída u(t) é alterado a uma taxa de variação proporcional ao sinal de erro atuante e(t):

$$u(t) = K_i \int_0^t e(t)dt, \tag{4}$$

em que K_i é a constante de ganho integral.

2.2.1.4 CONTROLADOR PROPORCIONAL-INTEGRAL (PI)

Para Nise (2012), um controlador Proporcional-Integral pode ser chamado de compensador integral ideal, visto que as ações de controle Proporcional e Integral alimentam o erro e a integral do erro para a planta, respectivamente, desta forma tendendo a eliminar o erro em regime permanente⁴. A sua ação de controle é definida por:

²Offset é um erro entre o valor desejado e o valor obtido.

³Tempo de acomodação (*settling time*) é o tempo para que a curva de resposta alcance valores em uma faixa (2% a 5%) em relação ao valor final, permanecendo nesta faixa interminavelmente.

⁴A resposta temporal de um sistema consiste em duas partes: da resposta transitória e da resposta estacionária ou em regime permanente

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t)dt, \tag{5}$$

em que T_i é chamado de tempo integrativo.

2.2.1.5 CONTROLADOR PROPORCIONAL-DERIVATIVO (PD)

Segundo Araújo (2007), as ações proporcional e derivativa deste controlador contribuem com o regime transitório, tendendo a aumentar a estabilidade do sistema e reduzir o tempo de acomodação. A ação de controle deste controlador é definida por:

$$u(t) = K_p e(t) + K_p T_d \frac{de(t)}{dt}$$
(6)

em que T_d é chamado de tempo derivativo (OGATA, 2010).

2.2.1.6 CONTROLADOR PROPORCIONAL-INTEGRAL-DERIVATIVO (PID)

O controlador Proporcional-Integral-Derivativo reúne a ação das três ações de controle, atuando na melhoria do regime permanente e da resposta transitória. A equação do controlador é dada por:

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t)dt + K_p T_d \frac{de(t)}{dt}$$

$$\tag{7}$$

em que K_p é o ganho proporcional, T_i é o tempo integrativo e T_d é o tempo derivativo (OGATA, 2010).

2.3 SISTEMAS A EVENTOS DISCRETOS

Para Cassandras e Lafortune (2008), os sistemas podem ser classificados em duas categorias quanto à natureza do espaço de estados selecionado:

- Estado contínuo: O espaço de estados *X* é uma continuidade, compreendendo todos os vetores *n*-dimensionais de números reais ou complexos, eventualmente;
- Estado discreto: O espaço de estados é um conjunto discreto. As variáveis de estado deslocam-se em pontos discretos no tempo, de um valor estado discreto para outro.

Teixeira (2013) diz que a modelagem computacional de um sistema pode ser estruturada em dois fundamentos:

- Estado, que determina o status do sistema em determinada situação;
- Transição de estados, o qual caracteriza o crescimento do sistema.

Alguns sistemas são mapeados continuamente e suas estruturas de transição são regidas pelo tempo, enquanto que em outros sistemas seus estados podem não ser contínuos e as transições não dependem do tempo, mas de eventos instantâneos e assíncronos, como o processamento de um dado em um equipamento computacional, em que o conjunto de estados é discreto e as transições não são feitas por tempo, mas por eventos como *clock* e interrupções (TEIXEIRA, 2013).

Torrico (2003) define um Sistema a Eventos Discretos (SED) como um sistema dinâmico a estado discreto que evolui à proporção assíncrona de eventos. Deste modo, os SEDs tem como características o espaço de estados ser discreto e o mecanismo de transição de estados ser dirigido por eventos.

Alguns exemplos dos Sistemas a Eventos Discretos, conforme Cassandras e Lafortune (2008), são os Sistemas de Filas, os Sistemas de Computador, Sistemas de Comunicação e Sistemas de Manufatura.

2.3.1 LINGUAGENS E AUTÔMATOS

Uma das maneiras formais de se estudar o comportamento lógico de um SED é baseado nas teorias de linguagens e autômatos, que se dá pelo fato de qualquer Sistema a Eventos Discretos ter um conjunto implícito E associado a ele. Cassandras e Lafortune (2008) chama esse conjunto E e a sequência de eventos como "alfabeto"e "palavras"de linguagem, respectivamente. Para demonstrar estes conceitos, o autor fala do exemplo de uma máquina que é ligada uma ou duas vezes ao dia, como um carro ou um computador pessoal, e deseja-se projetar um sistema que realize uma simples tarefa: Quando a máquina estiver ligada, esta primeiramente deve indicar que está ligada e depois reportar este fato (como "checar óleo", caso seja um carro). Neste caso, cada um destes sinais define um evento, enquanto que todos os sinais possíveis que a máquina possa emitir são definidos como uma sequência de eventos, ou alfabeto.

Cassandras e Lafortune (2008) define um autômato como um dispositivo apropriado para representar a linguagem de acordo com regras bem definidas. Caso

o conjunto de estados do autômato seja finito e caso este seja determinístico, ou seja, que este não possua duas ou mais transições com o mesmo nome saindo de um estado, o autômato é chamado de Autômato Finito Determinístico (AFD). Torrico (2003) diz que um autômato pode ser representado por uma tabela ou por um diagrama de transição de estados, sendo que neste os estados e as transições da máquina podem ser representados por vértices do diagrama e por arcos que conectam estes vértices, respectivamente. Duas variantes dos autômatos são os Autômatos de Mealy e de Moore, as quais serão clarificadas a seguir.

2.3.1.1 AUTÔMATO DE MOORE

O modelo de Moore são autômatos com saídas de estados, em que há uma função de saída a qual especifica uma saída para cada estado (CASSANDRAS; LAFORTUNE, 2008). As ações são produzidas nos estados e a saída depende somente do estado atual. Um exemplo do Autômato de Moore pode ser visto na Figura 6, em que a saída associada a cada estado é mostrada em negrito (cada saída é acionada pelo autômato quando este entra no estado).

Figura 6 – Autômato de Moore Fonte: (CASSANDRAS; LAFORTUNE, 2008, p.73)

2.3.1.2 AUTÔMATO DE MEALY

Diferentemente de Moore, o autômato de Mealy depende da entrada e da saída do estado, representando sequencialmente o crescimento dos estados. Conforme mostra a Figura 7, as funções de saída estão nas transições. Este modelo funciona da seguinte maneira para uma transição e_i/e_o do estado x para o estado y: Quando o

sistema estiver no estado x, o autômato receberá o evento de entrada e_i e expedirá o evento de saída e_o durante a transição para y (CASSANDRAS; LAFORTUNE, 2008).

Figura 7 - Autômato de Mealy

Fonte: (CASSANDRAS; LAFORTUNE, 2008,

p.73)

2.4 ESTRUTURA DE UM ROBÔ MÓVEL

Dudek e Jenkin (2010) classifica os componentes físicos (*hardware*) dos robôs móveis em quatro partes:

- Locomoção: É como o robô se move pelo ambiente;
- Percepção: É como o robô percebe propriedades do ambiente e dele mesmo;
- Raciocínio: É como o robô transforma a suas medidas em ações;
- Comunicação: É como que o robô se comunica com um agente externo.

Com suporte nessa divisão e no restante da literatura, tem-se os seguintes elementos necessários para o projeto de um robô móvel:

Bateria: É um componente essencial do sistema, visto que o robô móvel precisa se locomover pelo espaço e não pode ser dependente de uma fonte externa de energia elétrica. Dudek e Jenkin (2010) diz que baterias com bom desempenho e baixo custo são as baseadas em células de gel (*gell cell*), mas por serem

pesadas não são utilizadas com veículos leves. Para estes, são utilizadas tecnologias baseadas em Íons de Lítio (*lithium-ion*), Níquel-Cádmio (NiCad) e as de Hidreto Metálico de Níquel (NiMH), as quais são originalmente projetadas para serem utilizadas em dispositivos sem-fio, como *laptops* e *smartphones*.

Motores: São os responsáveis por fazer com que o veículo "ande". Muitos robôs utilizam a bateria para acionar os motores de passo ou servomotores, os quais convertem energia elétrica em mecânica (Dudek e Jenkin (2010)). No entanto existem outros dispositivos, capazes de gerar energia mecânica em movimento, como os piezoelétricos e os pneumáticos.

- O motor de passo (stepper motor) é um motor elétrico em que o eixo move uma quantidade contralada a cada pulso, assim, controlando estes pulsos obtém-se a saída desejada (DUDEK; JENKIN, 2010).
- O servomotor (servo motor) combina um motor elétrico de corrente contínua (CC) ou corrente alternada (CA) com um sensor de orientação de eixo (DUDEK; JENKIN, 2010). O autor diz ainda que controle dos servomotores é mais complexo que os motores de passo, sendo necessário utilizar um controlador de motor mais complexo, os quais variam em complexidade e que geralmente trabalham com parâmetros como posição, velocidade ou movimento de saída.

Controle de um servomotor: Podem ser utilizadas as abordagens de malha aberta e malha fechada. No controle de malha aberta, o valor desejado do eixo é utilizado para projetar um controlador oportuno, no entanto fica suscetível a distúrbios, pois não apresenta realimentação. No controle por malha fechada, a realimentação do sistema é utilizada para ajustar o movimento do disposito, sendo que um controlador amplamente utilizado é o PID (DUDEK; JENKIN, 2010).

Dispositivo de comunicação: Devido à necessidade em interagir com um operador humano, como no caso de reportar que uma tarefa foi concluída, Dudek e Jenkin (2010) relata que os robôs utilizam de um meio físico para a comunicação, como por cabo, ou por comunicação sem-fio (*wireless*), como o *bluetooth* (padrão sem-fio de curto alcance), 802.11 (padrão da IEEE IEEE para redes locais sem-fio) ou infravermelho.

Processamento: O processamento é um componente principal dos robôs

móveis, tanto que Dudek e Jenkin (2010) discute em que lugar o processamento do veículo deve estar. O autor chega na conclusão que a melhor forma do processamento ser feito é a de separar as tarefas em *on-board* (dentro do veículo) e *off-board* (fora do veículo), responsáveis, respectivamente, pelas tarefas de tempo crítico e as que não são de tempo crítico. Este modelo tem como vantagens a redução no consumo de energia do dispositivo.

Sensores: Os sensores serão abordados na próxima seção.

2.4.0.1 SENSORES NÃO-VISUAIS

Secchi (2012) diz que os robôs devem ser capazes de realizar três tarefas essenciais: estimar a sua posição e orientação (pose), manter o mapa do ambiente atualizado e identificar os possíveis obstáculos deste. Desta forma, para que o robô conheça o seu ambiente de trabalho e possa se adaptar a este, é necessário coletar informações e adequá-las ao sistema de controle. Assim, O controle de malha fechada, o qual foi abordado anteriormente, necessariamente precisa do sinal de sensores para realizar o *feedback* (realimentação) do sistema.

Dudek e Jenkin (2010) classifica os sensores em duas variantes: visuais e não-visuais. A seguir serão mostrados os principais sensores não-visuais dos robôs móveis. Para informações sobre os sensores visuais, consultar (DUDEK; JENKIN, 2010), (SIEGWART et al., 2011) e (SECCHI, 2012).

Sensores inerciais: São sensores externos que fazem referência com o mundo externo, ou seja, medem variáveis de posição do robô.

- Encoder óptico: Estes dispositivos medem a velocidade e a posição angular em um driver de motor ou no eixo de uma roda. Este sensor, segundo Siegwart et al. (2011), é um interruptor de luz, que produz uma quantidade de pulsos para cada revolução do eixo. Os pulsos gerados pela diferença de fase entre os canais A e B é utilizada determinar a direção de rotação, como pode ser visto na Figura ??.
- Giroscópios: São sensores que preservam a orientação em relação a um referencial fixo, provendo a medida absoluta. Podem ser mecânicos ou ópticos. Na Figura ?? pode ser visto um giroscópio de dois eixos.
- Acelerômetros: Siegwart et al. (2011) diz que estes sensores são capazes de medir todas as forças externas que estejam agindo sobre ele, inclusive

a gravidade. São baseados em sistemas pendulares, em que a primeira integração das acelerações proporciona a velocidade e a segunda, a posição (SECCHI, 2012). A precisão deste dispositivo é de grande importância, visto que pequenos erros podem influenciar na posição estimada, devido à dupla integração das acelerações. O diagrama deste dispositivo pode ser visto na Figura ??.

Sensores de infravermelho: São sensores de proximidade rápidos e baratos, que basicamente consistem na emissão de um pulso infravermelho e detecção do sinal refletido, com a distância aproximada calculada através da força do sinal (DUDEK; JENKIN, 2010).

2.5 REGRAS DA ROBOCORE PARA ROBÔS SEGUIDORES DE LINHA

Na Seção 2.5.1 e Seção 2.5.2 são apresentadas as regras relacionadas à especificação dos robôs e do percurso, respectivamente, para a categoria robô seguidor de linha Pro, em eventos realizados pela Robocore (2016c).

2.5.1 ESPECIFICAÇÃO DOS ROBÔS

Para competir na categoria seguidor de linha, os robôs devem ser totalmente autônomos, não podendo ser controlados externamente por fio ou por rádio, com exceção para quando este for iniciado. Todos os componentes devem ser embarcados. A dimensão máxima permitida é de 250mm de comprimento, 250mm de largura e 200mm de altura. Não é permitido alterar as dimensões do robô durante a partida, assim como alterar o *hardware* ou *software* durante a tomada de tempo. Também não é permitida a utilização de mecanismo de sucção, que vise aumentar a força normal do robô em relação ao solo.

2.5.2 ESPECIFICAÇÕES DO PERCURSO

A pista é feita de uma ou mais placas de MDF revestidas com uma manta de borracha preta, assim, eventualmente serão necessárias emendas para compor a área do percurso. Os robôs, no entanto, devem ser capazes de superar os desníveis decorrentes das emendas, que são de aproximadamente 1mm. Uma linha branca, de 19 ± 1 mm, indica o percurso. Esta linha pode cruzar sobre ela mesma, tendo, neste caso, um ângulo de intersecção de $90\pm5^{\circ}$ (graus), com os 250mm antes e depois do cruzamento sendo retas (conforme pode ser visto na Figura 8). O circuito é totalmente plano, porém podem ocorrer inclinações de até 5° .

Figura 8 – Intersecções no percurso Fonte: Disponível em (ROBOCORE, 2016c, p.4).

A área que se estende entre o ponto de partida e o ponto de chegada, considerando 200mm a direita da linha e 200mm a esquerda da linha é denominada "área de partida-chegada", conforme pode ser visto na Figura 9.

Figura 9 – Área de partida-chegada Fonte: Disponível em (ROBOCORE, 2016c, p.4).

Quando houver um arco (intersecção entre a faixa branca), o raio deste é de pelo menos 100mm. Quando houver uma alteração na curvatura do percurso, deve haver uma marcação no lado esquerdo da linha, como pode ser visto na Figura 10.

Figura 10 – Marcações de sinalização de curvatura Fonte: Disponível em (ROBOCORE, 2016c, p.4).

3 MATERIAIS

Neste capítulo serão apresentados os materiais a serem utilizados neste projeto.

3.1 MICROCONTROLADOR

Será utilizado 0 Kit de desenvolvimento NUCLEO-F303K8, da Microelectronics, que possui as seguintes especificações básicas (STMICROELECTRONICS, 2016):

- Microprocessador de arquitetura Advanced RISC Machine (ARM) Cortex-M4 de 32 bits com FPU;
- 72 MHz de frequência máxima de operação;
- Instruções de Digital Signal Processor (DSP);
- 90 DMIPS de desempenho;
- 64KB de memória *Flash*;
- 16KB de SRAM;
- 2 módulos Analog to Digital Converter (ADC) com até 21 canais;
- 11 módulos de temporizadores (*timers*).

3.2 MOTORES CC

Será utilizado o motor de corrente contínua (CC) *High-Power Carbon Brush* (HPCB) modelo 3041 da Pololu, (POLOLU, 2016b). Este motor possui alimentação de 12V, caixa de redução 10:1, 3000 RPM e eixo estendido, o qual permite o acoplamento do encoder magnético.

3.3 PONTE H

Será utilizada uma Ponte H para o controle de velocidade dos motores. O modelo que será utilizado é o TB6612FNG, da Toshiba, que é capaz de controlar até dois motores CC com corrente constante de 1,2A (TOSHIBA, 2016). A velocidade do motor é controlada por *Pulse Width Modulation* (PWM).

3.4 ENCODER MAGNÉTICO

Um *encoder* magnético é um transdutor de movimento, que converte movimentos em informações elétricas, sendo possível obter dados como posição e velocidade. Neste trabalho será utilizado o modelo 3081 da Pololu, o qual realiza 12 contagens por revolução do eixo e é compatível com o motor 3041 (POLOLU, 2016a).

3.5 SENSORES DE REFLETÂNCIA

O sensor de refletância é um dispositivo eletrônico que consiste de um Light Emitter Diode LED e um fototransistor, medindo assim a refletância de uma superfície. Este circuito será utilizado para detectar a linha do percurso. O modelo que será utilizado nesse trabalho é o QRE1113P, da Fairchild Semiconductor(SEMICONDUCTOR, 2016).

3.6 PLACA DE CIRCUITO IMPRESSO

O *chassi* do robô, ou seja, a estrutura deste, será confeccionada em uma placa de circuito impresso (PCB) de fenolite.

3.7 MÓDULO BLUETOOTH

Será utilizado o módulo *bluetooth* HC-05 para a telemetria. Este módulo possuiu a configuração mestre-escravo e comunicação *Universal Asynchronous Receiver Transmitter* (UART).

3.8 RODAS

Serão utilizadas rodas de poliuretano ou silicone.

3.9 BATERIA LIPO

Será utilizada uma bateria do tipo Lítio-Polímero (Li-Po) de duas céluas, 7,4V, 1300mAh e 32,5A de corrente máxima de descarga, pois possui alta capacidade de corrente e densidade de carga.

3.10 CONVERSOR STEP-UP

O conversor *Step-up* que será utilizado é o XL6009, que é um módulo elevador de tensão. Este circuito possui eficiência de 94%, corrente e tensão de saída máxima de 3A e 35V, respectivamente (XLSEMI, 2016).

3.11 ESFERA DESLIZANTE

Será utilizada uma esfera deslizante para sustentar a parte frontal do robô e manter os sensores de refletância em sua correta posição de funcionamento.

4 CRONOGRAMA PRELIMINAR

O Quadro 1 apresenta um cronograma preliminar do desenvolvimento do Trabalho de Conclusão de Curso (TCC). Na sua elaboração foi considerada a continuação do desenvolvimento no semestre seguinte, junto à disciplina de TCC 2.

Atividades	Meses											
	08/16	09/16	10/16	11/16	12/16	01/17	02/17	03/17	04/17	05/17	06/17	07/17
Elaboração e entrega												
da proposta												
Revisão bibliográfica												
Condicionamento de												
sinais dos sensores												
Projeto do protótipo												
Projeto do												
controlador												
Desenvolvimento do												
sistema de telemetria												
Elaboração e												
apresentação do												
TCC 1												
Confecção do												
protótipo												
Implementação do												
controlador												
Integração do												
sistema												
Testes finais de												
desempenho												
Elaboração e												
apresentação do												
TCC 2												

Quadro 1 – Cronograma das atividades previstas

REFERÊNCIAS

- ANSI/RIA.R15.06-1999. **Robot Terms and Definitions**. 2010. Disponível em: http://www.robotics.org/product-catalog-detail.cfm/productid/2953. Acesso em: 15 ago. 2016.
- ARAÚJO, F. M. U. de. Sistemas de Controle. Natal: DCA-UFRN, 2007. Apostila.
- CASSANDRAS, C. G.; LAFORTUNE, S. Introduction to Discrete Event Systems. 2. ed. New York: Springer US, 2008.
- DUDEK, G.; JENKIN, M. Computational principles of mobile robotics. 2. ed. [S.I.]: Cambridge University Press, 2010.
- DYNAMICS, B. **LS3 Legged Squad Support System**. 2016. Disponível em: http://www.bostondynamics.com/robot_ls3.html. Acesso em: 25 set. 2016.
- GUADAGNIN, A. J. Controle Híbrido de um Robô Seguidor de Linha. 2014. Trabalho de Conclusão de Curso. Universidade Tecnológica Federal do Paraná.
- MAUÁ, I. Instituto Mauá de Tecnologia sedia o evento de Robótica Winter Challenge 2016. 2016. Disponível em: http://maua.br/imprensa/press-releases/instituto-maua-tecnologia-sedia-evento-robotica-winter-challenge-2016. Acesso em: 23 ago. 2016.
- NASA. 1997. Disponível em: https://mars.jpl.nasa.gov/MPF/rover/sim2.jpg. Acesso em: 24 set. 2016.
- NASA. **Mars Pathfinder**/ **Sojourner Rover**. 1997. Disponível em: http://www.jpl.nasa.gov/missions/mars-pathfinder-sojourner-rover. Acesso em: 24 set. 2016.
- NISE, N. S. Engenharia de Sistemas de Controle. 6. ed. Rio de Janeiro: LTC, 2012.
- OGATA, K. **Engenharia de Controle Moderno**. 5. ed. São Paulo: Pearson Prentice Hall, 2010.
- PETRY, M. L. Controle Híbrido de um robô autônomo seguidor de linha. 2016. Trabalho de Conclusão de Curso. Universidade Tecnológica Federal do Paraná.
- POLOLU. **Pololu magnetic encoder datasheet**. 2016. Disponível em: https://www.pololu.com/product/3081. Acesso em: 01 set. 2016.
- POLOLU. **Pololu micromotor datasheet**. 2016. Disponível em: https://www.pololu.com/product/3048. Acesso em: 01 set. 2016.
- POLONSKII, M. Introdução à robótica e mecatrônica. 2. ed. Caxias do Sul: EDUCS, 1996.

RECORDS, G. W. Robotics tournament VEX Worlds is named largest in the world after 1,075 teams take part. 2016. Disponível em: http://www.guinnessworldrecords.com/news/2016/4/robotics-tournament-vex-worlds-is-named-largest-in-the-world-after-1-075-teams-ta-426576. Acesso em: 29 ago. 2016.

ROBOCORE. 2016. Disponível em: https://www.robocore.net/eventos. Acesso em: 22 ago. 2016.

ROBOCORE. **Classificação WinterChallenge**. 2016. Disponível em: https://www.robocore.net/modules.php?name=GR_Eventos&evento=24&tab=2. Acesso em: 23 ago. 2016.

ROBOCORE. **Regras Seguidor de Linha**. 2016. Disponível em: https://www.robocore.net/upload/attachments/robocore_regras_seguidor_de_linha_108.pdf>. Acesso em: 28 ago. 2016.

ROBOCUP. 2016. Disponível em: http://www.robocup.org/about-robocup/objective. Acesso em: 22 ago. 2016.

ROBOGAMES. 2016. Disponível em: http://robogames.net/index.php. Acesso em: 29 ago. 2016.

SECCHI, H. A. **Uma introdução aos robôs móveis**. Serra: NERA-IFES, 2012. Traduzido do original *Una Introducción a los Robots Móviles*.

SEMICONDUCTOR, F. **Minature Reflective Object Sensor**. 2016. Disponível em: http://cdn.sparkfun.com/datasheets/Sensors/Proximity/QRE1113.pdf. Acesso em: 01 set. 2016.

SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D. Introduction to autonomous mobile robots. Cambridge: The MIT Press, 2011.

STMICROELECTRONICS. **STM32F303x6/x8 datasheet**. 2016. Disponível em: http://www.mouser.com/ds/2/389/DM00092070-524505.pdf. Acesso em: 01 set. 2016.

TEIXEIRA, M. Explorando o uso de Distinguidores e de Autômatos Finitos Estendidos na teoria do Controle Supervisório de Sistemas a Eventos Discretos. Tese (Doutorado) — Universidade Federal de Santa Catarina, Florianópolis, 2013.

TORRICO, C. R. C. Controle Supervisório Hierárquico de Sistemas a Eventos Discretos: Uma Abordagem Baseada na Agregação de Estados. Tese (Doutorado) — Universidade Federal de Santa Catarina, Florianópolis, 2003.

TOSHIBA. **Driver IC for Dual DC motor**. 2016. Disponível em: https://www.pololu.com/file/0J86/TB6612FNG.pdf. Acesso em: 01 set. 2016.

WORLDS, V. 2016. Disponível em: http://www.roboticseducation.org/competition-teams/vex-robotics-competition/. Acesso em: 29 ago. 2016.

XLSEMI. 400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter. 2016. Disponível em: https://www.pollin.de/shop/downloads/D351434D.PDF. Acesso em: 01 set. 2016.