

Data Collection and Preprocessing Phase

1	1 8
Date	10 July 2024
Team ID	739921
Project Title	
	Smartwatch Price Prediction
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning

Section	Desc	ription											
		ension:		_									
	statis		3 colum	ıns <u>Des</u>	<u>criptive</u>								
		Brand	Model	Operating System	Connectivity	Display Type	Display Size	Resolution	Water Resistance	Battery Life	Heart Rate Monitor	GPS	NFC
	count	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.000000	379.0	379.000000	379.00000
	mean	18.168865	68.606860	20.778364	1.203166	6.941953	1.368074	22.139842	52.804749	12.208443	0.0	0.920844	0.83905
	std	13.040757	38.933753	11.407946	0.532927	8.978918	0.219087	9.080415	26.939235	12.326042	0.0	0.270338	0.36797
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.900000	0.000000	1.500000	1.000000	0.0	0.000000	0.00000
	25%	7.000000	33.500000	9.000000	1.000000	0.000000	1.200000	17.500000	50.000000	3.000000	0.0	1.000000	1.00000
	50%	16.000000	71.000000	27.000000	1.000000	0.000000	1.400000	23.000000	50.000000	11.000000	0.0	1.000000	1.00000
Data	75%	31.000000		31.000000	1.000000	14.000000	1.400000	32.000000	50.000000	15.000000	0.0	1.000000	1.00000
Overview	max	41.000000	136.000000	34.000000	4.000000	26.000000	4.000000	35.000000	200.000000	72.000000	0.0	1.000000	1.00000

will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Data Preprocessing Code Screenshots [77] df =pd.read_csv("/content/Smart watch prices.csv") ▶ df ___ (inches) 396 x 484 Apple Retina \$399 450 x 450 \$249 Withings OS Bluetooth, Wi-Fi PMOLED 374 No Yes \$279 Withings 375 Zepp AMOLED 454 x 454 Yes Yes \$349 ColorOS Bluetooth, Wi-Fi Loading Data df.isna().sum() Brand Model Operating System Connectivity Display Type Display Size (inches) Resolution Water Resistance (meters) Battery Life (days) Heart Rate Monitor **GPS** NFC Price (USD) dtype: int64 [80] object_columns = df.select_dtypes(include=["object"]).columns for col in object_columns: mode_value = df[col].mode()[0] df[col] = df[col].fillna(mode_value) [81] float_columns = df.select_dtypes(include=["float64"]).columns for col in float_columns: Handling mean_value = df[col].mean() df[col] = df[col].fillna(mean_value) Missing Data


```
df = df.rename(columns={
                                   'Water Resistance (meters)':'Water Resistance',
                                   'Price (USD)': 'Price'
                             df ['Water Resistance'].unique()
                             array(['50', '30', '100', '1.5', 'Not specified', '200', '10'],
                                    dtype=object)
                             df ['Water Resistance'].describe()
                             count
                             unique
                             Name: Water Resistance, dtype: object
                             df['Water Resistance'] = df['Water Resistance'].replace({'Not specified': '50'})
                             df['Display Size'].unique()

    ,1.4
    ,1.3
    ,1.58
    ,1.28

    ,1.75
    ,1.39
    ,1.36316489, 1.65

    ,1.57
    ,1.
    ,1.78
    ,1.91

    ,1.06
    ,1.35
    ,1.34
    ,0.9

    ,1.64
    ,1.19
    ,4.01
    ,1.6

                             array([1.9
                                      1.38
                                                , 1.64 , 1.19 , 4.01 , 1.6
, 2.1 , 1.23 , 1.1 , 1.22
, 1.36 , 1.32 ])
                                        1.04
                                        1.42
                               df['Display Size'] = df['Display Size'].round(1)
                               df['Battery Life'].unique()
                              array(['18', '40', '11', '6', '24', '14', '2', '4', '12', '30', '3', '45', '5', '10', '48', '7', '16', '9', '25', '72', '60', '56', '70', '1', '48 hours', '15', 'Unlimited', '1.5', '20', '8'], dtype=object)
                               df['Battery Life'].describe()
                               count
                               unique
                                             30
                               top
                               freq
                               Name: Battery Life, dtype: object
                               df['Battery Life'] = df['Battery Life'].replace({'48 hours' : '14', 'Unlimited' : '14'})
                               df['Price'] = df['Price'].str[1:]
                               df['Water Resistance'] = df['Water Resistance'].astype(float)
                               df['Battery Life'] = df['Battery Life'].astype(float)
Data
Transformation
```


Feature Engineering	Attached the codes in final submission.
Save Processed Data	-