

	Attribute Type	Description	Examples	Operations
Numeric Categorical Quantitative Qualitative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, $\chi 2$ test
	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation

Asymmetric Attributes

• Only presence (a non-zero attribute value) is regarded as important

• Words present in documents

• Items present in customer transactions

• If we met a friend in the grocery store would we ever say the following?

"I see our purchases are very similar since we didn't buy most of the same things."

• Symmetric binary: both outcomes are equally important

- E.g., gender

• Asymmetric binary: outcomes are not equally important

- E.g., medical test (positive vs. negative)

Things to remember • The types of operations an analysis you choose should be "meaningful" for the type of data you have – Distinctness, order, meaningful intervals, and meaningful ratios are only four properties of data – The data type you see – often numbers or strings – may not capture all the properties or may suggest properties that are not there – Analysis may depend on these other properties of the data • Many statistical analyses depend only on the distribution – Many times what is meaningful is measured by statistical significance – But in the end, what is meaningful is measured by the domain

Data Quality • Poor data quality negatively affects many data processing efforts "The most important point is that poor data quality is an unfolding disaster." - Poor data quality costs the typical company at least ten percent (10%) of revenue; twenty percent (20%) is probably a better estimate." Thomas C. Redman, DM Review, August 2004 • Data mining example: a classification model for detecting people who are loan risks is built using poor data - Some credit-worthy candidates are denied loans - More loans are given to individuals that default

