CMPSCI 687 Pop Quiz 1

Instructions: You have 10 minutes to complete this quiz. This quiz is **closed** notes—do not use your notes or a laptop. Do not discuss problems with your neighbors until after everyone has handed in their quiz.

Recall the gridworld described in class:

Start $s = 1$	s = 2	s = 3	s = 4	s = 5
s = 6	s = 7	s = 8	s = 9	s = 10
s = 11	s = 12		s = 13	s = 14
s = 15	s = 16		s = 17	s = 18
s = 19	s = 20	R = -10 $s = 21$	s = 22	R = +10 $S = 23$
				Goal

Actions:

attempt_up attempt_down attempt_left attempt_right

When the agent attempts to move in a direction:

The agent succeeds, p=0.8The agent veers 90° right, p=0.05The agent veers 90° left, p=0.05The agent stays in place, p=0.1

If the agent would ever hit a wall, it stays in its current position.

All unspecified rewards are zero.
All specified rewards are for entering the state

Note: If the agent is in a state, s, takes an action, a, and transitions back to state s, we considering that "entering" the state s.

- 1. What is $P(12, attempt_up, 9)$?
- 2. What is $R(21, attempt_right, 21)$?
- 3. What is $R(21, attempt_right, 22)$?
- 4. If we change the reward function so that hitting a wall results in a reward of -1, then what would $R(17, attempt_left, 17)$ be?
- 5. If $\gamma < 1$ and the gridworld is modified so that the agent's actions always succeed, what is $J(\pi^*)$ in terms of γ ?
- 6. What reward does the agent receive when it enters the absorbing state?