

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Вынужденные колебания в электрическом контуре

Работа №3.2.5; дата: 02.09.22

Семестр: 3

1. Аннотация

Цель работы:

Исследование вынужденных колебаний и процессов их установления в колебательном контуре.

Схема установки:

Рис. 1: Схема установки

В работе используются:

Генератор звуковых частот, вольтметр, частотомер, конденсатор, катушка индуктивности, магазин сопротивлений, осциллограф, универсальный измеритель импеданса (LCR-метр).

2. Теоретические сведения

Для экспериментального исследования резонансной кривой тока в последовательном колебательном контуре можно снять зависимость амплитуды напряжения на резситоре R от частоты генератора (при постоянной амплитуде выходного напряжения генератора). Но импеданс этого контура включает в себя выходной импеданс генератора. Мы должны быть уверены, что выходной импеданс генератора много меньше импеданса контура и не влияет на процессы, происходящие в этом контуре.

Для устранения этого влияния можно использовать схему, представленную на Рис. 2: синусоидальный синал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость C_1 . Напряжение с ёмкости контура C поступает на вертикальный вход Θ .

Рис. 2: Схема установки

Зависимость амплитуды этого напряжения от частоты генератора будет практически совпадать с резонансной кривой для последовательного контура, если импедансы возбуждающей и измеряющей цепей (сопротивления переменному току) намного превосходят импеданс самого контура вблизи резонанса $Z_{\rm pes} \approx L/(RC) = Q/(\Omega C)$. Разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот её импеданс $Z_{C_1} = 1/(\Omega C_1)$ много меньше импеданса контура, поэтому в цепи генератора течёт ток практически с постоянной амплитудой, а колебательный контур выполняет роль нагрузочного сопротивления, которое, в свою очередь, зависит от частоты. Поскольку в резонансе сопротивление $Z_{\rm pes}$ параллельного контура максимально, то и напряжение на ёмкости C (неизменный ток, умноженный на максимальное сопротивление) тоже максимально. Входное сопротивление осциллографа (измеряющей цепи) достаточно велико: $R_{\rm PO} \approx 1 {\rm MOm}$.

Таким образом, при выполнении условий

$$Z_{C_1} = \frac{1}{\Omega C_1} \gg |Z| = \frac{Q}{\Omega C}, \quad R_{\Theta O} \gg \frac{Q}{\Omega C}$$

и при условии, что действительная часть импеданса катушки много меньше её мнимой части, резонансная кривая в нашем контуре бует выглядеть так же, как в последовательном: максимум амплитуды при резонансе. Ширина резонансной кривой определяет важную характеристику контура — добротность.

Добротность контура может быть определена и другими способами, например, по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний. Нарастание и затухание колебаний можно наблюдать на экране осциллографа, если на контур подаются цуги — отрезки синусоиды, разделённые интервалами, в течение которых сигнал отсутствует. Чем выше добротность, тем медленне нарастают и медленнее затухают колебания в контуре. Количественные оценки можно сделать, сли определить логарифмический декремент затухания по скорости нарастания или затухания колебаний. В условиях резонанса огибающая затухающих колебаний это перевёрнутая огибающая нарастающего участка, поэтому при расчёте логарифмического декремента по затуханию нет необходимости использовать амплитуду установившихся колебаний U_0 , которая в контуре с высокой добротностью иногда не успевает установиться за время продолжительности цуга.

3. Проведение эксперимента

Определение добротности методом резонансных кривых

Вначале теоретически рассчитаем резонансную частоту контура по соответствующей формуле для LC-контура:

$$u_{\text{reop}} = \frac{1}{2\pi LC} \approx 1592 \,\text{Hz}$$

Замеры на контуре будем производить при двух значениях нагрузочного сопротивления $R_1=0\,\mathrm{Ohm}$ и $R_2=100\,\mathrm{Ohm}$.

$\nu \pm 0.001, kHz$	1.360	1.408	1.443	1.468	1.493	1.516	1.538	1.551	1.575
U, V	1.42	1.78	2.21	2.63	2.98	3.40	3.81	4.00	4.15
$\nu \pm 0.001, kHz$	1.616	1.653	1.682	1.700	1.717	1.742	1.766	1.794	1.841
U, V	3.92	3.39	3.00	2.82	2.57	2.40	2.19	1.99	1.82

Табл. 1: Измерения при $R_1 = 0$ Ohm

$\nu \pm 0.001, \mathrm{kHz}$	1.522	1.530	1.537	1.540	1.548	1.555	1.561	1.567	1.575
U, V	7.2	8.4	9.4	10.2	12.1	13.9	16.0	18.1	18.6
$\nu \pm 0.001, \mathrm{kHz}$	1.581	1.587	1.593	1.600	1.608	1.613	1.618	1.627	1.634
U, V	17.9	16.1	14.0	12.2	9.8	9.6	8.8	7.6	6.8

Табл. 2: Измерения при $R_2 = 100 \, \mathrm{Ohm}$

Приведем и графики резонансных кривых:

Рис. 3: Резонансные кривые

Теперь рассчитаем добротность из данных графика по формуле:

$$Q_0 = \frac{\omega_0}{\delta\omega} = \frac{1}{\delta(\nu/\nu_0)} \approx 28 \pm 2 \qquad Q_{100} \approx 7.8 \pm 0.6$$

Определение добротности по нарастанию и затуханию

Перейдем к подаче цуг на контур, и запишем данные затухания и нарастания:

		Hapac	тание		Затухание			
U_k , units	12	12	14	20	30	29	29	28
U_{k+n} , units	14	20	26	30	27	24	26	23
n	1	4	7	8	3	4	3	4
Q	36.1	30.9	27.9	25.6	25.2	23.3	26.4	25.9
σQ	2.8	2.4	2.0	2.1	1.7	1.6	1.7	1.7

Табл. 3: Нарастание и затухание при $R_1 = 0 \, \mathrm{Ohm}$

	Нарастание				Затухание			
U_k , units	10	19	28	33	32	27	33	37
U_{k+n} , units	18	32	36	38	15	9	9	5
n	2	2	2	2	2	2	3	5
Q	7.6	7.6	7.4	7.7	6.3	8.7	7.3	7.8
σQ	1.1	1.0	0.9	0.9	0.7	1.1	1.0	1.1

Табл. 4: Нарастание и затухание при $R_2 = 100\,\mathrm{Ohm}$

Теперь усредним полученные данные, и запишем их в виде таблицы:

R, Ohm	$Q_{\text{воз}}$	$Q_{\text{зат}}$
0	30.1 ± 2.2	25.2 ± 1.8
100	7.5 ± 0.9	7.5 ± 0.9

Табл. 5: Итоговая добротность по возрастанию/затуханию

4. Выводы

Для демонстрации выводов составим таблицу по рекоммендации из задавальника:

	R, Ohm	$R_{\text{акт}}$, Ohm	$Q_{\text{граф}}$	$Q_{\text{воз}}$	$Q_{\text{зат}}$	Q_{Teop}
ſ	0	25.075	28 ± 2	30.1 ± 2.2	25.2 ± 1.8	25.7 ± 1
	100	25.075	7.8 ± 0.6	7.5 ± 0.9	7.5 ± 0.9	7.7 ± 0.5

Табл. 6: Результаты

Полученные экспериментально значение добротности с учетом погрешности совпадает с теоретическим. Данные графического метода могли бы быть уточнены при более точной аппроксимации частотных кривых соответствующими функциями.