

CPROGRAMING

by Smita Kadam @ Sunbeam

About Trainer

- Ms. Smita Kadam
 - Head SBU Technical at Sunbeam
 - MCM from Pune University
- Training and Management
 - PreCAT
- Contact
 - Email: smita@sunbeaminfo.com
 - Mobile: 9373084868

Computer System

What is Computer?

- Computer System is electronic device is integrated using Hardware and Software.
- Hardware is tangible which helps to process data where as software is set of instructions which are executed with the help of hardware.

What is Program?

Program is set of instructions collected together in specific logical flow to completer particular task.

A program can be constructed using various program constructs like

Sequence

Decision Control

Loop / Iteration

Classfication of Languages

A Program can be written using

Low Level Language

The low level language is a programming language where machine instructions can be given in 0 and 1 form.

High Level Language

- Make easy communication to computer system
- Independent to particular type of computer
- More close to human language than machine language.
- Compiler helps to convert instructions to machine understandable form.
- Takes additional time to translate the instructions to machine understandable instructions.

Classfication of Languages

Machine Level Language

The machine-level language is a language that consists of a set of instructions that are in the binary form 0 or 1. As we know that computers can understand only machine instructions, which are in binary digits, i.e., 0 and 1, so the instructions given to the computer can be only in binary codes.

- Performance is good as we are directly writing the program on machine
- Platform dependent
- Difficult to program
- Error prone

Assembly Language

- The assembly language contains some human-readable instructions (consists of numbers, symbols, abbreviations), The language was introduced in 1952.
- As we know that computers can only understand the machine-level instructions, so we require a translator that converts the assembly code into machine code. The translator used for translating the code is known as an assembler.
 - Easier to understand and use and to locate errors
 - Platform dependent
 - Knowledge of hardware will help to program Machine level coding
 - Execution is slower compared to machine level language.

History

- C language was developed by Dennis Ritchie in 1972 at AT & T Bell Labs on PDP-11 machine.
- It was developed while porting UNIX from PDP-7 to PDP-11.
- Many features of C are inspired from B (Ken Thompson) and BCPL (Martin Richards).
- Initial release of C is referred as K & R C.

Standardization

- C was standardized by ANSI in 1989. This is referred as C89.
- Standardization ensures C code to remain portable.
- C standard is revised multiple times to add new features in the language.
 - C89 First ANSI standard
 - C90 ANSI standard adopted by ISO
 - C99 Added few C++ features like bool, inline, etc.
 - C11 Added multi-threading feature.
 - C17 Few technical corrections.

Introduction

 High-leve

- Compiled
- Procedural
- Block-Structured (control structures).
- Free form
- Typed
- Library Functions

Features

Data types

Operators

Control structures

Functions

• Storage classes

Pointers

Arrays

• Strings

• Dynamic memory allocation

Structure

Union

• Enum

• File IO

• Preprocessor directives

Strengths

- Low level memory access (pointers, data structures)
- Effective memory access (bitwise operators, bit-fields, unions)
- Can access OS features (functions/commands)
- Extensive library functions (math, strings, file IO, ...)
- Compilers for different platforms & architectures
- Highly Readable (macros, enum, functions, ...)

Applications

- System programming
 - OS development
 - · Device drivers
 - System utilities
- Embedded programming
 - ARM, AVR, PIC, etc.
 - IoT development
- Language development
 - Compiler development
- Achievements (tiobe.com)
 - In top-2 languages in last 40 years.
 - Language of year: 2019, 2017, 2008.

Toolchain & IDE

- Toolchain is set of tools to convert high level language program to machine level code.
 - Preprocessor
 - Compiler
 - Assembler
 - Linker
 - Debugger
 - Utilities
- Popular compiler (toolchains)
 - GCC
 - Visual Studio
- IDE Integrated development environment
 - Visual Studio
 - Eclipse
 - VS Code (+ gcc)
 - Turbo C
 - Anjuta, KDevelop, Codeblocks, Dev C++, etc.

Compilation & Execution of C program

```
.c ---->PreProcessor ---->.I ----> Compiler ----> .obj / .o----> Assembler ----> .asm/ .s ----> .o / .obj ----> linker ----> user .o + lib fun .o → .exe / .out executable code loaded by loader in RAM
```


Software installation

- Installations
 - GCC (MinGW)
 - VS Code

Hello World

printf("Hello World\n");

```
    Commands
```

• cmd> gcc hello.c

return 0;

cmd>./a.exe

Hello World

```
• printf() – library function
```

• stdio.h - header file

```
main() – entry point function
```

```
• void main() { ... }
```

- int main() { ... }
- int main(void) { ... }
- int main(int argc, char *argv[]) { ... }
- int main(int argc, char *argv[], char *envp[]) { ... }
- return 0 exit status

Thank you!

Smita Kadam – smita@sunbeaminfo.com

