

Lista 4

Introdução à Álgebra Linear - Turma DD (2/2019) Professor: Matheus Bernardini

- 1. Exercícios deixados em sala.
- 2. Decida se o conjunto de vetores $S = \{(1, 2, -3, 1), (3, 7, 1, -2), (1, 3, 7, -4)\}$ é linearmente dependente ou linearmente independente.
- 3. Para que valores de k o conjunto $B = \{(1, k), (k, 4)\}$ é base de \mathbb{R}^2 ?
- 4. Determine uma base e a dimensão para cada um dos seguintes espaços vetoriais:

a)
$$\{(x, y, z) \in \mathbb{R}^3 : y = 5x \in z = 0\}$$

b)
$$\{(x,y) \in \mathbb{R}^2 : x+y=0\}$$

c)
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_{2x2}(\mathbb{R}) : b = a + c \in d = c \right\}$$

- 5. Seja $\mathcal{V} = \mathbb{R}^3$ e o conjunto $B = \{(0,1,1), (1,1,0), (1,2,1)\}.$
 - a) Mostre que B não é base de \mathbb{R}^3 .
 - b) Determine uma base de \mathbb{R}^3 que possua dois elementos de B.
- 6. Encontre uma base e a dimensão do espaço solução do sistema homogêneo

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 3x_4 & = 0 \\ 2x_1 - x_2 + x_3 & - 4x_5 = 0 \\ & 3x_3 - x_4 & = 0 \\ 3x_1 + x_2 - 2x_3 + 3x_4 - 4x_5 = 0 \end{cases}$$

- 7. Considere as bases $B = \{(1,1), (0,1)\}$ e $B' = \{(-1,1), (2,0)\}$. Determine a matriz da mudança da base B para B' e de B' para B.
- 8. Considere o espaço $\mathcal{V} = \mathcal{P}_3(\mathbb{R})$.
 - a) Mostre que os seguintes conjuntos são bases de \mathcal{V} : $B_1 = \{1, 2x, x^2, -x^3\}$ e $\{2, 2x, -5x^2, 4x^3\}$.
 - b) Encontre as matrizes de mudança de base.