BOT BRAINS ROUND - 2

ROUND 2 - LOGIC LEAP

The following contents are in the next pages (Calculations, Ideation, Theory, Diagrams and References)

DIAGRAM:

Theory:

1) Self Balancing Mechanism:

The self balancing mechanism rulies on the Inlated Measurement Unit (IMU) which includes gyroscopes and accelerometers to detect the hohot's tilt. A PID controller is used to process the tilt angle data and generate appropriate motor commands to maintain balance.

2) Autonomous Navigation:

The GPS provides the nobol's current location, while the LiDAR sensor dotects obstocles in the environment. The nowigation algorithm processes this data to plak a path to the destination, adjusting the course to avoid obstacles.

5) Paval Handling System:

A substic own equipped with a Gripper is used for picking up and dupping off pascels. This own is controlled by the microcontroller based on the navigation and task schedule.

4) Dynamic Weight Dutribution:

To ensure stability, the robot adjusts its center of gravity using internal useighte that can be moved dynamically. This adjustment is based on the detected weight and position of the posel.

alcutations:

1) Maximum Angle of Inclination:

Given:

- . h: Height of CoG from the ground = 0.5 m
- · 1: Distance between the wheels = 0.3m
- . r: Radius of the wheels = 0.1 m
- . m: Man of the robot = 10 kg
- · 9: Acceleration due to gravity = 9.81 m/s2
- · Track: Maximum motor torque = 20 Nm.

Solving for 8 max:

$$Sin(\Theta_{max}) \leq \frac{T_{max}}{mgh}$$

$$\Theta_{max} = Sin^{-1} \left(\frac{20}{10 \times 9.81 \times 0.5}\right)$$

$$\Theta_{max} = Sin^{-1} \left(\frac{20}{49.05}\right)$$

$$\Theta_{max} = Sin^{-1} \left(0.488\right)$$

$$\Theta_{max} \approx 24^{\circ}$$

References:

- 1) Research articles and testbooks on control system and robotics.
- 2) Online tutorials and documentation for Rasberry Pi and sensor integration.
- 3) Manufactures guides for servou and actuators.
- 4) Community forum like Stackoverflow.