Axiomas De Cuerpo	Axiomas de Espacio Vectorial
Proposiciones de \mathbb{F} -ev $(V,+,\cdot)$	Caracterización Sub-Espacios Vectoriales
Suma de Sub-Espacios Vectoriales	Combinacion Lineal
Bases Y Dimension	Independencia Lineal

Dado \mathbb{F} , $(V, +, \cdot)$ es \mathbb{F} -espacio Vectorial si se verifica:

- si $v, w \in V \Rightarrow v + w \in V$
- $\operatorname{si} v, w, u \in V \Rightarrow v + (w + u) = (v + w) + u$
- $\exists \bar{0} \in V/v + \bar{0} = \bar{0} + u = u$
- $\forall w \in V \exists v \in V/v + w = w + u = \bar{0}$
- si $v, w \in V \Rightarrow v + w = w + v$
- si $\alpha \in \mathbb{F}$ y $w \in V \Rightarrow \alpha \cdot w \in V$
- si $\alpha, \beta \in \mathbb{F}$ y $w \in V \Rightarrow \alpha \cdot (\beta \cdot w) = (\alpha \cdot \beta) \cdot w$
- si $\alpha, \beta \in \mathbb{F}$ y $w \in V \Rightarrow (\alpha + \beta) \cdot w = (\alpha \cdot w) + (\beta \cdot w)$
- si $\alpha \in \mathbb{F}$ y $w, v \in V \Rightarrow \alpha \cdot (w + v) = (\alpha \cdot w) + (\alpha \cdot v)$
- si $v \in V \Rightarrow 1 \cdot v = v$

- $\forall a, b, c \in \mathbb{F}, a + (b+c) = (a+b) + c$
- $\exists 0 \in \mathbb{F}/a + 0 = 0 + a = a$
- $\forall a \in \mathbb{F} \exists b \in \mathbb{F}/a + b = b + a = 0$
- $\forall a, b \in \mathbb{F}, a+b=b+a$
- $\forall a, b, c \in \mathbb{F}, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- $\exists 1 \in \mathbb{F}/a \cdot 1 = 1 \cdot a = a$
- $\forall a \in \mathbb{F} \{0\} \exists b \in \mathbb{F}/a \cdot b = b \cdot a = 1$
- $\forall a, b \in \mathbb{F}, a \cdot b = b \cdot a$
- $\forall a, b, c \in \mathbb{F}, a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

 $U \subset V$ subespacio vectorial \Leftrightarrow se cumple:

- $\forall u, v \in U, u + v \in U$
- $\forall \alpha \in \mathbb{F}, v \in U, \alpha \cdot v \in U$

- ∃!0
- $\forall v \in V, \exists !$ un unico opuesto, notado -v
- $\forall v \in V, v \cdot 0 = \bar{0}$
- $\forall \alpha \in \mathbb{F}, \alpha \cdot \bar{0} = \bar{0}$
- $\forall v \in V, v \cdot (-1) = -v$
- dados $v \in V, \alpha \in \mathbb{F}$ si $v \cdot \alpha = \bar{0}$ entonces $v = \bar{0}$ o $\alpha = 0$

V es \mathbb{F} -ev, $v_1, ..., v_n \in V$

- Una C.L. es un vector de forma: $\alpha_1 v_1 + ... + \alpha_n + v_n$ Las C.L. de un ev tienen finitos terminos
- $span(S) = \{ \sum \alpha_i v_i : v_i \in S, \alpha_i \in \mathbb{F} \}, \text{ todas las C.L.}$
- si $S \subset V \Rightarrow span(S) = \cap \{U \subset V : U \text{ sev y } S \subset U\}$
- Si $span(S) = V \Rightarrow$ S genera V.
- ullet Si S es finito, V es finitamente Generado.

 $S = U_1 + ... + U_n = \{u_1 + ... + u_n \in V : u_i \in U_i \forall i = 1, ..., n\}$

 $\forall u \; \exists ! u_i \in U_i \; / \; u = \sum u_i \Rightarrow S = U_1 \oplus ... \oplus U_n \text{ suma directa}$

 $U, W \subset V \text{ sev}, S = U + W, S = U \oplus W \Leftrightarrow U \cap W = \{\overline{0}\}\$

 $U_1,...,U_n \subset V$ sev y $S = U_1 + ... + U_n$, S suma directa $\Leftrightarrow \bar{0}$ es la suma de triviales de $U_1,...,U_n$.

Sea V \mathbb{F} -ev y $S \subset V$

- Si S finito, S L.I. si $\sum_{i=1}^{n} \alpha_i v_i = \bar{0} \Rightarrow \alpha_i = 0 \forall \alpha_i$
- Si $S = \emptyset \Rightarrow S$ es L.I.
- Si S es infinito, es L.I: si $\forall Z \subset S$ finito es L.I.
- Si S no L.I. S es linealmente dependiente.
- $\bar{0} \in S \Rightarrow S \text{ L.D.}$
- S L.D. entonces $T \supset S$ L.D.
- S L.I. entonces $T \subset S$ L.I.
- $v \in V, v \text{ L.D.} \Leftrightarrow v = \bar{0}$

- una base de V es un conjunto generador L.I.
- Si V generado por S, |S| = n, \Rightarrow T vectores L.I. de V finito y |T| = m, donde m < n.
- Si V F-ev finito dimensional $\Rightarrow \forall B$, base |B| = n
- la dimension de V sobre F es la cantidad de elementos de sus bases. dim_F(0) = 0
- Si $\dim_F(V) = n, \, S \subset U$ y $|S| > n \Rightarrow$ L.D. Si |S| < n, No genera
- B base de V $\Leftrightarrow \forall v \in V \exists ! \alpha_1, ..., \alpha_n \in \mathbb{F}/v = \sum_{i=1}^n \alpha_i v_i$
- Todo conjunto generador se reduce a base, todo li se extiende a base.