,...

of Logistic Regression

Support Vector
Machine

Large Margin

The Mathematic behind Large Margin

Kernels

CSE574 Introduction to Machine Learning Support Vector Machine

Jue Guo

University at Buffalo

February 9, 2024

Outline

CSE574 ntroduction to Machine Learning

Jue Gi

Alternative Vie of Logistic Regression

Support Vector Machine

Large Margin Intuition

behind Large Margin Classification

Kernel:

1 Alternative View of Logistic Regression

- 2 Support Vector Machine
 - Large Margin Intuition
 - The Mathematics behind Large Margin Classification

Alternative View of Logistic Regression

Alternative View of Logistic Regression

A quick review: $h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$

- if y = 1, we want $h_{\theta}(x) \approx 1$, $\theta^T x \gg 0$
- if y = 0, we want $h_{\theta}(x) \approx 0$,
 - $\theta^T x \ll 0$

The cost of a single example:

$$- (y \log h_{\theta}(x) + (1 - y) \log (1 - h_{\theta}(x)))$$

$$= -y \log \frac{1}{1 + e^{-\theta^{T}x}} - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^{T}x}}\right)$$

Jue Gu

Alternative View of Logistic Regression

Support Vector

Intuition

behind Large Margin Classification

$$-y \log \frac{1}{1 + e^{-\theta^T x}} - (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta^T x}}\right)$$

if
$$y = 1$$
 (want $\theta^T x \gg 0$)

if
$$y = 0$$
 (want $\theta^T x \ll 0$)

Support Vector Machine

CSE574 ntroduction to Machine Learning

Jue Gu

Alternative View of Logistic Regression

Support Vector Machine

Large Margir

behind Large Margin

Kernel

Cost Function of Logistic Regression

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta} \left(x^{(i)} \right) \right) + \left(1 - y^{(i)} \right) \left(-\log \left(1 - h_{\theta} \left(x^{(i)} \right) \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Cost Function of Support Vector Machine

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} \left(\theta^{T} x^{(i)} \right) + \left(1 - y^{(i)} \right) \operatorname{cost}_{0} \left(\theta^{T} x^{(i)} \right) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2}$$

Large Margin Intuition

CSE574 ntroduction to Machine Learning

Alternative View of Logistic Regression

Support Vecto Machine

Large Margin

The Mathematics behind Large Margin

Vornole

Support Vector Machine

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \operatorname{cost}_{1} \left(\theta^{T} x^{(i)} \right) + \left(1 - y^{(i)} \right) \operatorname{cost}_{0} \left(\theta^{T} x^{(i)} \right) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2}$$

If
$$y = 0$$
, we want $\theta^T x \le -1$ (not just < 0)

Kernel

Support Vector Machine

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} \cot_{1} \left(\theta^{T} x^{(i)} \right) + \left(1 - y^{(i)} \right) \cot_{0} \left(\theta^{T} x^{(i)} \right) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_{i}^{2}$$

Given that C is a very large value, we want that the first term to be 0. Let's try to understand the optimization problem in the context of what would it take to make this first term in the objective equal to 0.

Whenever
$$y^{(i)} = 1, \theta^{\top} x^{(i)} \geqslant 1;$$
 Whenever $y^{(i)} = 0, \theta^{\top} x^{(i)} \leqslant -1$

Now, the optimization problem can be written as:

$$\min C \cdot 0 + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$
s.t. $\theta^\top x^{(i)} \geqslant 1$ if $y^{(i)} = 1$

$$\theta^T x^{(i)} \leqslant -1$$
 if $y^{(i)} = 0$

Jue Guo

Alternative View of Logistic Regression

Support Vecto Machine

Large Margin

The Mathematics behind Large Margin

Kernels

SVM Decision Boundary: Linearly separable case

Figure: Linearly Separable Case

CSE574 ntroduction to Machine Learning Jue Guo

Alternative View of Logistic Regression

Support Vecto Machine

Large Marg

The Mathematics behind Large Margin

Kernels

Large margin classifier in presence of outliers

The Mathematics behind Large Margin Classification

CSE574
Introduction to
Machine
Learning

ternative Viev Logistic

Support Vecto

Machine

The Mathematics

behind Large Margin Classification

Kernels

Vector Inner Product

$$u = \left[\begin{array}{c} u_1 \\ u_2 \end{array} \right] \quad v = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]$$

SVM Decision Boundary

CSE574 ntroduction to Machine Learning

Alternative Vi of Logistic Regression

Support Vecto

Large Margin

The Mathematics behind Large Margin Classification

$$\min_{\theta} \quad \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$
s.t.
$$\theta^{T} x^{(i)} \ge 1 \quad \text{if } y^{(i)} = 1$$

$$\theta^{T} x^{(i)} \le -1 \quad \text{if } y^{(i)} = 0$$

Support Vecto Machine

Large Marg Intuition

The Mathematics behind Large Margin Classification

Kernels

$$\begin{aligned} & \min_{\theta} & & \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\theta\|^{2} \\ & \text{s.t.} & & p^{(i)} \cdot \|\theta\| \geq 1 & \text{if } y^{(i)} = 1 \\ & & & p^{(i)} \cdot \|\theta\| < -1 & \text{if } v^{(i)} = 0 \end{aligned}$$

where $p^{(i)}$ is the projection of $x^{(i)}$ onto the vector θ . Simplification: $\theta_0 = 0$; this simplification merely makes the decision boundary to pass through (0,0);

Bad Decision Boundary

Good Decision Boundary

Reading Assignments

CSE574 ntroduction to Machine Learning

Alternative Vic of Logistic Regression

Support Vecto

The Mathematics behind Large Margin Classification

- Why the parameter vector orthogonal to the decision boundary?
 - Orthogonality in Neural Network
 - SVM

Non-linear Decision Boundary

CSE574 ntroduction to Machine Learning

Jue Gu

Alternative View of Logistic Regression

Support Vecto Machine

Large Margin

The Mathematic behind Large Margin

Kernels

Predict y = 1 if

$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \dots \ge 0$$

$$h_0(x) = \begin{cases} 1 & \text{if } \theta_0 + \theta_1 x_1 + \cdots \geqslant 0 \\ 0 & \text{otherise.} \end{cases}$$

$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 + \cdots$$

 $f_1 = x_1, \quad f_2 = x_2, \quad f_3 = x_1 x_2,$
 $f_4 = x_1^2, \quad f_5 = x_2^2, \dots$

Is there a different/ better choice of the features f_1, f_2, f_3, \ldots ?

Kernel

CSE574 introduction to Machine Learning

Jue Gui

Alternative View of Logistic Regression

Support Vector Machine

Large Margir

behind Large
Margin

Kernels

Given x, compute new feature depending on proximity to landmarks $l^{(1)}$, $l^{(2)}$, $l^{(3)}$;

Given x:

•
$$f_1 = \text{similarity}(x, l^{(1)}) = \exp(-\frac{\|x - l^{(1)}\|^2}{2\sigma^2})$$

•
$$f_2 = \text{similarity}(x, l^{(2)}) = \exp(-\frac{\|x - l^{(2)}\|^2}{2\sigma^2})$$

$$f_3 = similarity(x, l^{(3)}) = exp(...)$$

Kernel and Similarity

CSE574 ntroduction to Machine Learning

Alternative Vie of Logistic Regression

Support Vecto

Large Margir

The Mathematic behind Large Margin

$$f_1 = \text{similarity}\left(x, l^{(1)}\right) = \exp\left(-\frac{\left\|x - l^{(1)}\right\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{j=1}^n \left(x_j - l^{(1)}_j\right)^2}{2\sigma^2}\right)$$

- if $x \approx l^{(1)}$: $f_1 \approx \exp\left(-\frac{0^2}{2\sigma^2}\right) \approx 1$
- If x if far from $l^{(1)}$: $f_1 = \exp\left(-\frac{(\text{large number})^2}{2\sigma^2}\right) \approx 0$

Example and Affects of σ

CSE574 Introduction to Machine Learning

Jue Gu

Alternative View of Logistic Regression

Support Vector

Large Margin

The Mathematics behind Large Margin

Kernels

$$l^{(1)} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, \quad f_1 = \exp\left(-\frac{\left\|x - l^{(1)}\right\|^2}{2\sigma^2}\right)$$

$$\sigma^2 = 1$$

$$\sigma^2 = 0.5$$

When
$$x = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
, you will get $f_1 = 1$;
It basically measures how close are you

to the landmark.

The width of the bump become narrower, and width of contour; The feature f_1 falls to zero more rapidly;

Alternative Vie of Logistic Regression

Support Vector
Machine

Intuition

behind Large
Margin
Classification

Kernels

Given a training example x; Hypothesis: Predict " 1 " when $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$ Assume that we already have our model:

$$\theta_0 = -0.5, \theta_1 = 1, \theta_2 = 1, \theta_3 = 0$$

Alternative View

Support Vector

Large Margir

The Mathematic behind Large Margin Classification

Kernels

Given a training example x; Hypothesis: Predict " 1 " when $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$ Assume that we already have our model:

$$\theta_0 = -0.5, \theta_1 = 1, \theta_2 = 1, \theta_3 = 0$$

$$f_1 \approx 1, f_2 \approx 0$$
 and $f_3 \approx 0$; $\theta_0 + \theta_1 \times 1 + \theta_2 \times 0 + \theta_3 \times 0 = -0.5 + 1 = 0.5 \ge 0$; therefore, we classify this *x* as 1.

Alternative View of Logistic Regression

Support Vector Machine

Intuition

behind Large Margin Classification

Kernels

 $f_1, f_2, f_3 \approx 0$; $\theta_0 + \theta_1 f_1 + \ldots \approx -0.5$ With the definition of *landmarks* and *kernel function*, we can learn pretty complex non-linear decision boundaries.

- How to decide these landmarks?
- Other similarity functions?

Choosing the Landmarks

CSE574 ntroduction to Machine Learning

Alternative View of Logistic Regression

Support Vector
Machine

Large Margin

The Mathematic behind Large Margin

Kernels

Given x:

$$f_i = \text{similarity}\left(x, l^{(i)}\right)$$

$$= \exp\left(-\frac{\left\|x - l^{(i)}\right\|^2}{2\sigma^2}\right)$$

Predict y = 1 if $\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 \ge 0$; Where to get $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Jue Guo

Alternative Viev of Logistic Regression

Support Vecto Machine

Large Mar Intuition

behind Large Margin

SVM with Kernels

CSE574 ntroduction to Machine Learning

Alternative View of Logistic Regression

Support Vector

Large Ma

behind Large Margin

Kernels

Given
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$
, choose $l^{(1)} = x^{(1)}, l^{(2)} = x^{(2)}, \dots, l^{(m)} = x^{(m)}$

Given example *x* :

$$f_1 = \text{similarity} \left(x, l^{(1)} \right)$$
 $f_2 = \text{similarity} \left(x, l^{(2)} \right) \rightarrow f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$

Intuition

behind Large Margin Classification

Kernels

For training example $(x^{(i)}, y^{(i)})$:

$$f_1^{(i)} = \operatorname{sim}\left(x^{(i)}, l^{(1)}\right)$$

$$x^{(i)} \rightarrow f_2^{(i)} = \operatorname{sim}\left(x^{(i)}, l^{(2)}\right)$$

$$\vdots$$

$$f_i^{(i)} = \operatorname{sim}\left(x^{(i)}, l^{(i)}\right) = \exp\left(-\frac{0}{2\sigma^2}\right) = 1$$

$$\vdots$$

$$f_m^{(i)} = \operatorname{sim}\left(x^{(i)}, l^{(m)}\right)$$

Support Vector Machine

Large Margin Intuition

behind Large Margin Classification

Kernels

Hypothesis: Given x, compute features $f \in \mathbb{R}^{m+1}$

Predict "
$$\mathbf{y} = \mathbf{1}$$
 " if $\boldsymbol{\theta}^{\mathsf{T}} f \geq \mathbf{0}$

Training:

$$\min_{\theta} C \sum_{i=1}^{m} y^{(i)} \operatorname{cost}_{1} \left(\theta^{T} f^{(i)} \right) + \left(1 - y^{(i)} \right) \operatorname{cost}_{0} \left(\theta^{T} f^{(i)} \right) + \frac{1}{2} \sum_{j=1}^{m} \theta_{j}^{2}$$

SVM Parameters

CSE574
ntroduction to
Machine
Learning

Alternative View of Logistic Regression

Support Vecto Machine

Large Margin

The Mathematics behind Large Margin Classification

Kernels

$$C\left(=\frac{1}{\lambda}\right)$$
. Large C: Lower bias, high variance.

Small C: Higher bias, low variance.

 σ^{i}

Large σ^2 : Features f_i vary more

smoothly. Higher bias, lower variance.

Small σ^2 : Features f_i vary less

smoothly. Lower bias, higher variance.

Must Watch Video

CSE574 introduction to Machine Learning

Alternative View of Logistic Regression

Support Vecto Machine

Large Margir Intuition

The Mathematic behind Large Margin Classification

Kernels

We have talked about support vector machines extensively, but when you go home **pleaseeeee** watch this 15 minutes video on support vector machines; It is simply amazing!!

Support Vector Machines: All you need to know!

Jue Guo

Alternative View of Logistic Regression

Support Vecto

Large Margin Intuition

behind Large Margin

Kernels

Questions?