GAUGE AND HIGGS BOSONS

γ (photon)

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18}$ eV

Charge $q < 1 \times 10^{-46} e$ (mixed charge)

Charge $q < 1 \times 10^{-35} e$ (single charge)

Mean life $\tau = \mathsf{Stable}$

g (gluon)

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

$$J=2$$

Mass $m < 1.76 \times 10^{-23}$ eV

W

$$J = 1$$

Charge
$$= \pm 1~e$$
 Mass $m = 80.3692 \pm 0.0133~{\rm GeV}$ [b] W/Z mass ratio $= 0.88136 \pm 0.00015$ $m_Z - m_W = 10.818 \pm 0.013~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.029 \pm 0.028~{\rm GeV}$ Full width $\Gamma = 2.085 \pm 0.042~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.39 \pm 0.08$

 W^- modes are charge conjugates of the modes below.

W+ DECAY MODES	F	Fraction (Γ_i/Γ)	Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[c]	(10.86± 0.09)) %		_
$e^+ \nu$		(10.71 ± 0.16)) %		40185
$\mu^+ \nu$		(10.63 ± 0.15)) %		40185
$\tau^+ u$		(11.38 ± 0.21)) %		40165
hadrons		(67.41 ± 0.27)) %		_
$\pi^+ \gamma$		< 7	× 10 ⁻	-6 95%	40184

https://pdg.lbl.gov

Page 1

$D_s^+ \gamma$	< 6	$\times10^{-4}$	95%	40160
cX	(33.3 ± 2.6)	5)%		_
c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		_
invisible	[d] (1.4 \pm 2.9	9)%		_
$\pi^{+}\pi^{+}\pi^{-}$	< 1.01	\times 10 ⁻⁶	95%	40184

Z

$$J = 1$$

Charge = 0 Mass
$$m = 91.1880 \pm 0.0020$$
 GeV [e] Full width $\Gamma = 2.4955 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV [c] $\Gamma(\text{invisible}) = 499.2 \pm 1.5$ MeV [f] $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0001 \pm 0.0024$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0020 \pm 0.0032$ [g]

Average charged multiplicity

$$\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$$

Couplings to quarks and leptons

$$g_V^{\ell} = -0.03783 \pm 0.00041$$
 $g_V^{u} = 0.266 \pm 0.034$
 $g_V^{d} = -0.38^{+0.04}_{-0.05}$
 $g_A^{\ell} = -0.50123 \pm 0.00026$
 $g_A^{u} = 0.519^{+0.028}_{-0.033}$
 $g_A^{d} = -0.527^{+0.040}_{-0.028}$
 $g^{\nu_{\ell}} = 0.5008 \pm 0.0008$
 $g^{\nu_{e}} = 0.53 \pm 0.09$
 $g^{\nu_{\mu}} = 0.502 \pm 0.017$

Asymmetry parameters [h]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.670 \pm 0.027$
 $A_b = 0.923 \pm 0.020$

Charge asymmetry (%) at Z pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$

 $A_{FB}^{(0u)} = 4 \pm 7$

$$A_{FB}^{(0s)} = 9.8 \pm 1.1$$

 $A_{FB}^{(0c)} = 7.07 \pm 0.35$
 $A_{FB}^{(0b)} = 9.92 \pm 0.16$

https://pdg.lbl.gov

7 DECAY MODES	Scale factor/				<i>p</i>		
Z DECAY MODES	Fraction (Γ_i/Γ) Confidence level				(MeV/ <i>c</i>)		
e ⁺ e ⁻	(3.3632±0.0042) %					45594	
$\mu^{+}_{+}\mu^{-}_{-}$		`	2 ± 0.0066	,			45594
$ au^+ au^ \ell^+\ell^-$		•	5 ± 0.0083	•			45559
$\ell^+\ell^-\ell^+\ell^-$		•	3 ± 0.0023	•	_		45504
invisible		•	±0.17	•			45594
hadrons		•	±0.055	•			_
$(u\overline{u}+c\overline{c})/2$		•	±0.056	,			_
$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(11.6 (15.6	± 0.6 ± 0.4) %			
(dd+33+bb)/3 CC		12.03	± 0.4 ± 0.21) %			_
<u> </u>		15.12) %			_
<i>b</i> b <i>b</i> b		3.6	± 1.3	,	10-4		_
ggg	<	`	1.0	, ^ %		CL=95%	_
$\pi^0\gamma$	<					CL=95%	45594
$\eta \gamma$	<					CL=95%	45592
$\rho^{0}\gamma$	<					CL=95%	45591
$\omega\gamma$	<	3.9		×	10^{-6}	CL=95%	45591
$\eta'(958)\gamma$	<	4.2		×	10^{-5}	CL=95%	45589
$\phi\gamma$	<	7		×	10^{-7}	CL=95%	45588
$\gamma\gamma$	<	1.46		×	10^{-5}	CL=95%	45594
$\pi^{0}\pi^{0}$	<	1.52		×	10^{-5}	CL=95%	45594
$\gamma \gamma \gamma$	<	2.2				CL=95%	45594
$\pi^{\pm}W^{\mp}$	[j] <	7				CL=95%	10176
$ ho^\pm W^\mp$	[j] <	8.3		×	10^{-5}	CL=95%	10151
$J/\psi(1S)$ X	(3.51	$^{+0.23}_{-0.25}$) ×	10 ⁻³	S=1.1	_
$J/\psi(1S)\gamma$	<	1.2				CL=95%	45541
ψ (2 S)X	(1.60	± 0.29	$) \times$	10^{-3}		_
$\psi(2S)\gamma$	<	2.4				CL=95%	45519
$J/\psi(1S)J/\psi(1S)$		2.2				CL=95%	45489
$\chi_{c1}(1P)X$			±0.7				_
$\chi_{c2}(1P)X$		3.2				CL=90%	_
$\varUpsilon(1S) \; X + \varUpsilon(2S) \; X \ + \varUpsilon(3S) \; X$	(1.0	± 0.5) ×	10^{-4}		_
$\Upsilon(1S)X$	<	4.4		×	10-5	CL=95%	_
$\gamma(1S)\gamma$		1.1				CL=95%	45103
r(2S)X		1.39				CL=95%	-
$r(2S)\gamma$		1.3				CL=95%	45043
	•					•	

Page 3

$\Upsilon(3S)X$			< 9.4		$\times 10^{-5}$	CL=95%	_
$\Upsilon(3S)\gamma$			< 2.4			CL=95%	45006
$\Upsilon(1,2,3S)$ $\Upsilon(1,2,3S)$			< 1.5			CL=95%	_
$D^0\gamma$			< 2.2			CL=95%	45575
(D^0/\overline{D}^0) X			(20.7	±2.0) %	32 3370	_
$D^{\pm}X$			(12.2	± 1.7) %		_
$D^*(2010)^{\pm}X$		[<i>j</i>]	(11.4) %		_
$D_{s1}(2536)^{\pm}X$		D 3	(3.6) × 10 ⁻³		_
$D_{sJ}(2573)^{\pm}X$			(5.8	± 2.2	$) \times 10^{-3}$		_
$D^{*'}(2629)^{\pm}X$		9	searched f	or	,		_
B^+X		[<i>k</i>]	(6.08	± 0.13) %		_
$B_s^0 X$		[<i>k</i>]		± 0.13) %		_
$B_c^+ X$ $A_c^+ X$ $\Xi_c^0 X$		S	searched f	or			_
Λ ⁺ _c X			(1.54	± 0.33) %		_
$=$ $\overset{\circ}{\circ}$ X			seen				_
$\equiv_b^c X$			seen				_
<i>b</i> -baryon X		[<i>k</i>]	(1.38	± 0.22) %		_
anomalous $\gamma+$ hadrons		[/]	< 3.2		$\times 10^{-3}$	CL=95%	_
$e^+e^-\gamma$		[/]	< 5.2			CL=95%	45594
$\mu^+\mu^-\gamma$		[/]	< 5.6		$\times 10^{-4}$	CL=95%	45594
$\tau^+\tau^-\gamma$		[/]	< 7.3			CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[<i>n</i>]	< 6.8			CL=95%	_
$q \overline{q} \gamma \gamma$		[<i>n</i>]	< 5.5			CL=95%	_
$\nu \overline{\nu} \gamma \gamma$		[<i>n</i>]	< 3.1			CL=95%	45594
$e^{\pm}\mu^{\mp}$	LF	[<i>j</i>]	< 2.62			CL=95%	45594
$e^{\pm}\tau^{\mp}$	LF		< 5.0			CL=95%	45577
$\mu^{\pm} \tau^{\mp}$	LF	[<i>j</i>]	< 6.5			CL=95%	45577
pe	L,B		< 1.8			CL=95%	45589
$p\mu$	L,B		< 1.8		× 10 ⁻⁶	CL=95%	45589

Н

J = 0

was H^0

Mass
$$m=125.20\pm0.11~{\rm GeV}~{\rm (S=1.4)}$$
 Full width $\Gamma=3.7^{+1.9}_{-1.4}~{\rm MeV}~{\rm (assumes~equal~on-shell~and~off-shell~effective~couplings)}$

H Signal Strengths in Different Channels

Combined Final States
$$=1.03\pm0.04$$
 $W\,W^*=1.00\pm0.08$ $Z\,Z^*=1.02\pm0.08$ $\gamma\,\gamma=1.10\pm0.06$ $c\,\overline{c}$ Final State $<~14$, CL $=~95\%$

 $\begin{array}{l} b\overline{b}=0.99\pm0.12\\ \mu^+\mu^-=1.21\pm0.35\\ \tau^+\tau^-=0.91\pm0.09\\ Z\gamma=2.2\pm0.7\\ \gamma^*\gamma \text{ Final State}=1.5\pm0.5\\ \text{Fermion coupling }(\kappa_F)=0.94\pm0.05\\ \text{Gauge boson coupling }(\kappa_V)=1.023\pm0.026\\ t\overline{t}H \text{ Production}=1.10\pm0.18\\ HH \text{ Production Cross Section in }pp \text{ Collisions}<2.4, \text{ CL}=95\%\\ tH \text{ production}=6\pm4\\ H \text{ Production Cross Section in }pp \text{ Collisions at }\sqrt{s}=13\text{ TeV}=56.8\pm3.4\text{ pb} \end{array}$

H DECAY MODES		Fraction (Γ_i/Γ)	Confidence	level	<i>p</i> (MeV/ <i>c</i>)
WW*		(25.7 ± 2.5)	%		_
<i>Z Z</i> *		(2.80 ± 0.30)	_		_
$\gamma \underline{\gamma}$		(2.50 ± 0.20)	\times 10 ⁻³		62600
$b\overline{b}$		(53 ± 8)			_
e^+e^-		< 3.0	× 10 ⁻⁴	95%	62600
$\mu^+\mu^-$		(2.6 ± 1.3)	\times 10 ⁻⁴		62600
$\tau^+\tau^-$		$(6.0 \begin{array}{c} +0.8 \\ -0.7 \end{array})$	%		62575
$Z\gamma$		(3.4 ± 1.1)	$\times 10^{-3}$		29392
$Z\rho(770)$		< 1.21	%	95%	29384
$Z\phi$ (1020)		< 3.6	$\times 10^{-3}$	95%	29378
ZJ/ψ		< 1.9	\times 10 ⁻³	95%	29267
$Z\psi(2S)$		< 6.6	\times 10 ⁻³	95%	29214
$J/\psi\gamma$		< 2.0	\times 10 ⁻⁴	95%	62561
$J/\psiJ/\psi$		< 3.8	\times 10 ⁻⁴	95%	62523
$\psi(2S)\gamma$		< 1.05	\times 10 ⁻³	95%	62546
$\psi(2S)J/\psi$		< 2.1	\times 10 ⁻³	95%	62507
$\psi(2S)\psi(2S)$		< 3.0	\times 10 ⁻³	95%	62491
$\Upsilon(1S)\gamma$		< 2.5	\times 10 ⁻⁴	95%	62242
$\Upsilon(1S) \ \Upsilon(1S)$		< 1.7	\times 10 ⁻³	95%	61881
$\Upsilon(2S)\gamma$		< 4.2	\times 10 ⁻⁴	95%	62199
$\Upsilon(3S)\gamma$		< 3.4	\times 10 ⁻⁴	95%	62172
$\Upsilon(nS)\ \Upsilon(mS)$		< 3.5	× 10 ⁻⁴	95%	_
$ ho$ (770) γ		< 1.04	\times 10 ⁻³	95%	62597
$\omega(782)\gamma$		< 5.5	× 10 ⁻⁴	95%	62597
$K^*(892)\gamma$		< 2.2	× 10 ⁻⁴	95%	62597
ϕ (1020) γ		< 5	× 10 ⁻⁴	95%	62596
$e\mu$	LF	< 4.4	\times 10 ⁻⁵	95%	62600

e au	LF	< 2.0	$\times 10^{-3}$	95%	62587
μau	LF	< 1.5	$\times 10^{-3}$	95%	62587
invisible		< 10.7	%	95%	_
γ invisible		< 2.9	%	95%	_

Neutral Higgs Bosons, Searches for

Mass limits for heavy neutral Higgs bosons (H_2^0, A^0) in the MSSM

Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$), Searches for

Mass limits for $m_{H^+} < m(top)$ in the MSSM

$$m > 155 \text{ GeV}, CL = 95\%$$

Mass limits for $m_{H^+} > m(top)$ in the MSSM

```
m>181 GeV, CL = 95% (tan\beta=10) m>249 GeV, CL = 95% (tan\beta=20) m>390 GeV, CL = 95% (tan\beta=30) m>894 GeV, CL = 95% (tan\beta=40) m>1017 GeV, CL = 95% (tan\beta=50) m>1103 GeV, CL = 95% (tan\beta=60)
```

New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

Additional W Bosons

```
W' with standard couplings Mass m>6000 GeV, {\rm CL}=95\% (p\,p direct search) W_R (Right-handed W Boson) Mass m>715 GeV, {\rm CL}=90\% (electroweak fit)
```

Additional Z Bosons

```
Z'_{\text{SM}} with standard couplings Mass m>5150 GeV, \text{CL}=95\% (pp direct search) Z_{LR} of \text{SU}(2)_L\times \text{SU}(2)_R\times \text{U}(1) (with g_L=g_R) Mass m>630 GeV, \text{CL}=95\% (p\overline{p} direct search) Mass m>1162 GeV, \text{CL}=95\% (electroweak fit) Z_\chi of \text{SO}(10)\to \text{SU}(5)\times \text{U}(1)_\chi (with g_\chi=e/\cos\theta_W) Mass m>4800 GeV, \text{CL}=95\% (pp direct search) Z_\psi of E_6\to \text{SO}(10)\times \text{U}(1)_\psi (with g_\psi=e/\cos\theta_W) Mass m>4560 GeV, \text{CL}=95\% (pp direct search) Z_\eta of E_6\to \text{SU}(3)\times \text{SU}(2)\times \text{U}(1)\times \text{U}(1)_\eta (with g_\eta=e/\cos\theta_W) Mass m>3.900\times 10^3 GeV, \text{CL}=95\% (pp direct search)
```

Scalar Leptoquarks

```
m>1800 GeV, CL = 95% (1st gen., pair prod., B(eq)=1) m>1755 GeV, CL = 95% (1st gen., single prod., B(eq)=1) m>1700 GeV, CL = 95% (2nd gen., pair prod., B(\mu q)=1) m>660 GeV, CL = 95% (2nd gen., single prod., B(\mu q)=1) m>1460 GeV, CL = 95% (3rd gen., pair prod., B(\tau b)=1) m>1280 GeV, CL = 95% (3rd gen., single prod., B(\tau b)=1) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Diquarks

Mass
$$m > 7200$$
 GeV, $CL = 95\%$ (E_6 diquark)

Axigluon

Mass
$$m > 6600 \text{ GeV}$$
, $CL = 95\%$

Axions (A^0) and Other Very Light Bosons, Searches for

See the review on "Axions and other similar particles."

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] This value does not include the AALTONEN 22 measurement by CDF. See the W mass section in the listings for details.
- [c] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [d] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [e] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [f] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [g] This ratio has not been corrected for the τ mass.
- [h] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [i] Here ℓ indicates e or μ .
- [j] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [k] This value is updated using the product of (i) the $Z \to b \, \overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [/] See the Z Particle Listings for the γ energy range used in this measurement.
- [n] For $m_{\gamma\gamma}=$ (60 \pm 5) GeV.