

AUTONOMOUS SYSTEMS

PROJECTS 2024/25

Instituto Superior Técnico

Departamento de Engenharia Electrotécnica e de Computadores

April 2025

LIST OF AVAILABLE REAL ROBOTS AND DEVICES

Pioneer 3DX (7 units)

Microsoft Kinect

AlphaBot2 with camera (8 units + 23 kits)

Turtlebot3 with RPLIDAR (4 units)

Hokuyo URG-04LX-UG01 (5 units)

PROJECT TOPICS

Project topics and code scheme:

- [L__] Localization: estimate in real-time the pose (position+orientation) of a mobile robot; evaluate estimation accuracy, as well as absolute localization, and robustness to "kidnapping".
- [M__] Mapping: estimate the map of the environment using Occupancy Grid Mapping; evaluate quality of the map with respect to the ground truth.
- [S__] Simultaneous Localization And Mapping (SLAM): estimate simultaneously the trajectory (position+orientation) of a mobile robot and the landmark positions (map); evaluate estimation accuracy of both trajectory and landmarks.
- [DMA] Decision Making: solve a maze using MDPs/RL and markers to identify the goal and help odometry in localizing the robot

SENSOR CHOICE RECOMMENDATIONS

Localization: fuses relative and absolute sensing:

- for relative sensing, use wheel odometry
- for absolute sensing, prefer Laser or camera (natural landmarks), while sonar is challenging

Mapping: registers distance measurements given known localization

- may use <u>AMCL</u> (from ROS) or well-calibrated odometry
- for distance sensor, may use Laser, depth camera (Kinect) or sonars (challenging)

Simultaneous Localization And Mapping (SLAM): fuses landmark measurements with relative sensing:

- for relative sensing, use wheel odometry
- use fiducials markers, e.g., camera with ARuCO or AprilTag markers

Decision Making (DM): moves in a maze using the optimal policy for a given MDP (in a later stage it can learn it model free using reinforcement learning) and uses fiducial markers (Alphabot camera)

- to help wheel odometry in roughly localizing the robot (e.g., map cell)
- to localize the maze exit/goal

LIST OF TOPICS (REAL ROBOTS)

		7x Pioneer 3DX	4x Turtlebot3	10x AlphaBot2
<u>L</u> ocalization	Extended <u>K</u> alman Filter (EKF)	LKP	LKT	LKA
	Monte Carlo Localization (MCL)	LMP	LMT	LMA
<u>M</u> apping	Occupancy Grid Mapping	MP	MT	-
<u>S</u> LAM	E <u>K</u> F-SLAM	SKP	SKT	-
	<u>F</u> astSLAM	SFP	SFT	-
<u>D</u> ecision- Making	MDP/RL	-	-	DMA

PROJECT

13 PROJECT TYPOLOGIES:

- Groups of 4 students
- Using real robots and sensors
- Validated and evaluated using collected data
- Students suggested to spread over all project typologies (all with same level of difficulty)

PROJECT TIPS

- Solid theoretical background
 - formalize the problem, but do not write a tutorial
 - explain the algorithm, not the code
- Develop and validate your algorithm on a micro-simulator
- Test as soon as possible: it is better to test partial implementations early,
 than postponing to when everything is implemented
- Avoid running your algorithm in real time: instead, datasets should be used (e.g., rosbags), for work productivity and repeatability
- Thorough experimental results
 - try a variety of experimental conditions
 - for each one, run multiple times and analyze statistically
- Objective analysis of the results is more important than "just working"

PROJECT ASSESSMENT AND SCHEDULE (1)

- Continuous assessment: each group does an oral progress presentation (1 group member per presentation) every week in its designated slot (4 groups per slot) – total of 5 intermediate presentations per group, max 20 minutes including presentation (10-15 mins) and Q&A (slides not mandatory but highly recommended)
- <u>Project progress presentations during laboratory sessions</u> start on 5 May (second week of classes)
- Projects presented by faculty on 28 April in the theoretical classes

Project report and code deadline: 13/Jun/2025

(6 page IEEE paper template)

Project discussions: 17-18/Jun/2025

PROJECT ASSESSMENT AND SCHEDULE (2)

Autonomous Systems Schedule of Lab classes :: 2024/2025

	Seg	Ter	Qua	Qui	Sex
8:00	T1	T2			
8:30			L 7.2		L 7.1
9:00	IA	IA	LSDC1		LSDC1
9:30	PL	PL	AV		AV
10:00					L 6.1
10:30	L 2.2	L 5.2			LSDC1
11:00	LSDC1	LSDC1			AV
11:30	RV	PL			L 3.1
12:00		L 6.2			LSDC1
	LSDC1	LSDC1			RV
13:00		PL			L 4.1
13:30					LSDC1
	LSDC1				RV
14:30	RV				
15:00		L 5.1			
15:30		LSDC1			
16:00		RV			
16:30		L 2.1			
17:00		LSDC1			
17:30		RV			

PROJECT ASSESSMENT AND SCHEDULE (3)

Autonomous Systems									
Dates of Lab classes :: 2024/2025									
		Session							
Shift	Slot	1	2	3	4	5			
2	1	6-May	13-May	20-May	27-May	3-June			
	2	5-May	12-May	19-May	26-May	2-June			
3	1	6-May	13-May	20-May	27-May	3-June			
3	2	5-May	12-May	19-May	26-May	2-June			
4	1	9-May	16-May	22-May	29-May	5-June			
	2	5-May	12-May	19-May	26-May	2-June			
5	1	6-May	13-May	20-May	27-May	3-June			
	2	6-May	13-May	20-May	27-May	3-June			
6	1	9-May	16-May	22-May	29-May	5-June			
	2	5-May	12-May	19-May	26-May	2-June			
7	1	9-May	16-May	22-May	29-May	5-June			
	2	7-May	14-May	21-May	28-May	4-June			
8	1	9-May	16-May	22-May	29-May	5-June			
O	2	7-May	14-May	21-May	28-May	4-June			

PROJECT ASSESSMENT AND SCHEDULE (3)

Project Grading:

- FAIL: nothing works, not much relevant work done in design + implementation,
 no reasonable explanation for failure to show results
- 10-14: at least some experimental results can be shown, significant design +
 implementation work made of at least fair quality
- 15-17: good experimental results, significant design + implementation work
 made of at least good quality and supported by theory
- 18-19: very good experimental results and design + implementation work made and supported by theory
- 20: excellent and flawless experimental results and design + implementation work made and supported by theory; in exceptional cases could correspond to the factors listed for 18-19, extended with some original unsolicited extra work

WHAT'S NEXT

Hands-on sessions with ROS on first week

- Each shift uses 2 assigned lab slots (all shift students go to both slots)
- Prepare for these sessions by reading the "Laboratory guide" slides
- First slot in LSDC1 and second slot in LSDC4

- 1. [from 28 April 17:00 to 30 April 17:00] Choose the project for your group using a web link that will be made available at the course webpage
- 2. Group start preparing the first presentation, where we expect:
 - i) problem statement
 - ii) literature readings
 - iii) work planning (see next slide)

Workplan suggestion

Session 1: Project presentation - problem statement, readings, workplan

Session 2: Explain by own words the algorithm. Get, visualize and represent robot sensor data

Session 3: Develop and validate in micro-simulator (generate synthetic data from models)

Session 4: Validate in real-data

Session 5: Systematic and comparative (w.r.t. baseline) experimentation with quantitative analysis