Exploring the Oracle Database Architecture

Objectives

After completing this lesson, you should be able to:

- List the major architectural components of Oracle Database
- Explain memory structures
- Describe background processes
- Correlate logical and physical storage structures
- Describe pluggable databases
- Describe ASM storage components

Connecting to the Database Instance

- Connection: Communication between a user process and an instance
- Session: Specific connection of a user to an instance through a user process

Database Buffer Cache

- Is part of the SGA
- · Holds copies of data blocks that are read from data files
- Is shared by all concurrent users

System Global Area (SGA)

Redo Log Buffer

- Is a circular buffer in the SGA
- Holds information about changes made to the database
- Contains redo entries that have the information to redo changes made by operations such as DML and DDL

1 - 9

Large Pool

Provides large memory allocations for:

- Session memory for the shared server and the Oracle XA interface
- I/O server processes
- Oracle Database backup and restore operations

System Global Area (SGA)

Java Pool

Java pool memory is used to store all session-specific Java code and data in the JVM.

1 - 11

Streams Pool

Streams pool memory is used exclusively by Oracle Streams to:

- Store buffered queue messages
- Provide memory for Oracle Streams processes

Process Architecture

- User process
 - Is the application or tool that connects to the Oracle database
- Database processes
 - Server process: Connects to the Oracle instance and is started when a user establishes a session
 - Background processes: Are started when an Oracle instance is started
- Daemon / Application processes
 - Networking listeners
 - Grid Infrastructure daemons

Database Writer Process (DBWn)

Writes modified (dirty) buffers in the database buffer cache to disk:

- Asynchronously while performing other processing
- To advance the checkpoint

Log Writer Process (LGWR)

- Writes the redo log buffer to a redo log file on disk
 - When a user process commits a transaction
 - When an online redo log switch occurs
 - When the redo log buffer is one-third full or contains 1 MB of buffered data
 - Before a DBWn process writes modified buffers to disk
 - When three seconds have passed since the last write
- Serves as coordinator of LGnn processes and ensures correct order for operations that must be ordered

1 - 17

Checkpoint Process (CKPT)

- · Records checkpoint information in
 - Control file
 - Each data file header
- Signals DBWn to write blocks to disk

System Monitor Process (SMON)

- Performs recovery at instance startup
- · Cleans up unused temporary segments

1 - 19

Process Monitor Process (PMON)

- Performs process recovery when a user process fails
 - Cleans up the database buffer cache
 - Frees resources that are used by the user process
- Monitors sessions for idle session timeout

Listener Registration Process (LREG)

Registers information about the database instance and dispatcher processes with the Oracle Net Listener

1 - 21

Archiver Processes (ARCn)

- Copy redo log files to a designated storage device after a log switch has occurred
- Can collect transaction redo data and transmit that data to standby destinations

Segments, Extents, and Blocks Segments exist in a tablespace. Segments are collections of extents. Extents are collections of data blocks. Data blocks are mapped to disk blocks. Extents Data blocks Disk blocks (File System Storage)

SYSTEM and SYSAUX Tablespaces

- The SYSTEM and SYSAUX tablespaces are mandatory tablespaces that are created at the time of database creation. They must be online.
- The SYSTEM tablespace is used for core functionality (for example, data dictionary tables).
- The auxiliary SYSAUX tablespace is used for additional database components.
- The SYSTEM and SYSAUX tablespaces should not be used for application data.

1 - 27

Oracle Container Database: Introduction

- Pluggable database: Is a set of database schemas that appears logically to users and applications as a separate database
- Multitenant container database: Has a database instance and database files at the physical level
- All pluggable databases share:
 - Background processes
 - Shared/process memory
 - Oracle metadata

Summary

In this lesson, you should have learned how to:

- List the major architectural components of Oracle Database
- Explain memory structures
- Describe background processes
- Correlate logical and physical storage structures
- Describe pluggable databases
- Describe ASM storage components