Imię i Nazwisko:	Data ćwiczenia:			
Malwina Cieśla	12.03.2021r			
Narzędzia modelowania w inżynierii				
Kierunek studiów: Inżynieria Obliczeniowa	Ocena:			

Cel ćwiczenia:

Modelowanie wymiany ciepła podczas chłodzenia kręgów walcowanych na gorąco.

Zadanie 1:

W zadaniu pierwszym należało przeprowadzić analizę wpływu przyrostu czasu i gęstości siatki na uzyskane wyniki rozkładu temperatury oraz porównać maksymalne i minimalne wartości temperatury kręgu uzyskane po zadanym czasie chłodzenia, który wynosił 10000s. Symulacje wykonać należało na podstawie utworzonego modelu 3D oraz danych podanych w poniższej tabeli:

Przyrost czasu	Globalny rozmiar siatki				
100	100	150	200		
300	100	150	200		
500	100	150	200		

Ilustracja 1: Dane potrzebne do zadania 1

Na początku wykonałam analizę dla przyrostu czasu 100 zmieniając rozmiar siatki na odpowiednio 100, 150 oraz 200. W tym przypadku program podczas analizy musiał wykonać 100 kroków:

Ilustracja 2: Analiza dla przyrostu czasu 100 i siatki 100

Ilustracja 3: Analiz dla przyrostu czasu 100 i siatki 150

Ilustracja 4: Analiza dla przyrostu czasu 100 i siatki 200

Następna analiza dotyczyła przyrostu czasu o 300, gdzie do wykonania analizy było potrzebne wykonanie 34 kroków. Wykonane analizy przedstawiam poniżej:

Ilustracja 5: Analiza dla przyrostu czasu 300 i siatki 100

Ilustracja 6: Analiza dla przyrostu czasu 300 i siatki 150

Ilustracja 7: Analiza dla przyrostu czasu 300 i siatki 200

Kolejna analizę należało wykonać dla przyrostu czasu 500, w którym program wykonał 20 kroków. Analizy z tej kategorii były najszybciej liczącymi się analizami, związane było to z mniejsza liczbą kroków:

Ilustracja 8: Analiza dla przyrostu czasu 500 i siatki 100

Ilustracja 9: Analiza dla przyrostu czasu 500 i siatki 150

Ilustracja 10: Analiza dla przyrostu czasu 500 i siatki 200

Dzięki uzyskanym wynikom w wyżej przedstawionych analizach mogłam stworzyć tabelę wartości maksymalnych i minimalnych dla poszczególnych przypadków. Wyniki te przedstawiłam w jednej tabeli, w której dla każdej wartości przyrostu czasu znajdują się dwa wiersze: dla wartości maksymalnych oraz dla wartości minimalnych uzyskanych po zadanym czasie chłodzenia (wyniki te zostały uzyskane w ostatnim kroku czasowym):

przyrost	siatka ->	100	150	200
	min	221,1	221,1	221,3
100	max	301,1	301,0	301,4
	min	221,5	221,4	221,6
300	max	304,0	301,0	301,4
	min	221,7	221,7	221,9
500	max	301,1	300,9	301,3

Ilustracja 11: Tabela uzyskanych wartości minimalnych i maksymalnych temperatur w °C

Zadanie 2

W tym zadaniu należało przeprowadzić analizę wpływu sposobu chłodzenia kręgu na czas jego chłodzenia. Czas chłodzenia kręgu należało wyznaczyć w oparciu o maksymalną temperaturę kręgu wynoszącą 80°C. Przeprowadzić należało trzy warianty symulacji:

- 1) Chłodzenie na powietrzu (konwekcja swobodna): 10 W/m²K
- 2) Chłodzenie na powietrzu (konwekcja wymuszona): 42 W/m²K
- 3) Chłodzenie na powietrzu z natryskiem wodnym: 2250 W/m²K

W celu uzyskania temperatury 80 stopni dla konwekcji swobodnej należało przeprowadzić 168 kroków czasowych, dla konwekcji wymuszonej należało wykonać 74 kroki, a dla chłodzenia z natryskiem wodnym 22 kroki.

Poniżej przedstawiam kroki czasowe poszczególnych wariantów, w których maksymalna temperatura jest zbliżona do 80°C:

Ilustracja 12: Wyniki dla konwekcji swobodnej

Ilustracja 13: Wyniki uzyskane dla konwekcji wymuszonej

Ilustracja 14: Wyniki uzyskane w analizie chłodzenia z natryskiem wodnym

Dla poszczególnych wartości konwekcji przestawiam uzyskane czasy chłodzenia:

- 1) Dla chłodzenia na powietrzu (konwekcja swobodna 10 W/m²K) czas wynosił 84 000 sekund i otrzymana została temperatura 79,59°C.
- 2) Dla chłodzenia na powietrzu (konwekcja wymuszona 42 W/m²K) czas wynosił 37 000 sekund i otrzymana została temperatura 80,37°C.
- 3) Dla chłodzenia na powietrzu z natryskiem wodnym 2250 W/m²K czas wynosił 11 000 sekund i otrzymana została temperatura 79,68°C.

Wnioski:

Analizując wyniki uzyskane podczas symulacji z zadania 1 można zauważyć, że zmiana kroku czasowego i siatki jedynie w nieznacznym stopniu zmienia końcowe wartości maksymalne i minimalne temperatur, zmiana ta mieści się w granicach jednego stopnia. Wyjątkiem jest symulacja dla kroku czasowego 300 i siatki 100, gdzie temperatura maksymalna zmieniła swoją wartość o około 3 stopnie Celcjusza.

W zadaniu drugim można zauważyć, że zmiana wartości konwekcji zmienia znacząco czas chłodzenia. Widać również, że im wyższa wartość konwekcji tym mniejszy czas potrzebny do uzyskania temperatury 80°C. Dodatkowo analizując uzyskane figury po symulacji można zauważyć, że rozłożenie temperatur na bryle również się zmienia, przy największej wartości konwekcji temperatura na powierzchni nie przekracza 25°C. Temperatura na powierzchni w konwekcji wymuszonej jest powyżej 50°C, a w konwekcji swobodnej temperatura jest powyżej 65°C. Jest to również związane z zakresem temperatury, który przedstawia wartość otrzymaną na powierzchni do temperatury 80°C.