Théorie des Langages 1 Cours 7 : Propriétés de fermeture

L. Rieg (thanks M. Echenim)

Grenoble INP - Ensimag, 1re année

Année 2020-2021

Stabilité des langages réguliers

Théorème

La classe des langages réguliers est fermée par :

• union, concaténation et concaténation itérée (cf. cours 3)

Stabilité des langages réguliers

Théorème

La classe des langages réguliers est fermée par :

- union, concaténation et concaténation itérée (cf. cours 3)
- substitution régulière et homomorphisme

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s:V\to \mathcal{P}(W^*)$ qui à tout $a\in V$ associe un langage régulier $s(a)\subseteq W^*$.

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s: V \to \mathcal{P}(W^*)$ qui à tout $a \in V$ associe un langage régulier $s(a) \subseteq W^*$.

On étend s aux mots par induction : $s^*: V^* \to \mathcal{P}(W^*)$

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s:V\to \mathcal{P}(W^*)$ qui à tout $a\in V$ associe un langage régulier $s(a)\subseteq W^*$.

On étend s aux mots par induction : $s^*: V^* \to \mathcal{P}(W^*)$

• $s^*(\varepsilon) = \{\varepsilon\}$

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s: V \to \mathcal{P}(W^*)$ qui à tout $a \in V$ associe un langage régulier $s(a) \subseteq W^*$.

On étend s aux mots par induction : $s^*: V^* \to \mathcal{P}(W^*)$

- $\bullet \ s^*(\varepsilon) = \{\varepsilon\}$
- $s^*(aw) = s(a).s^*(w)$

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s: V \to \mathcal{P}(W^*)$ qui à tout $a \in V$ associe un langage régulier $s(a) \subseteq W^*$.

On étend s aux mots par induction : $s^*: V^* \to \mathcal{P}(W^*)$

- $s^*(\varepsilon) = \{\varepsilon\}$
- $s^*(aw) = s(a).s^*(w)$

On étend s^* aux langages : $\overline{s}: \mathcal{P}(V^*) \to \mathcal{P}(W^*)$.

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s: V \to \mathcal{P}(W^*)$ qui à tout $a \in V$ associe un langage régulier $s(a) \subseteq W^*$.

On étend s aux mots par induction : $s^*: V^* \to \mathcal{P}(W^*)$

- $s^*(\varepsilon) = \{\varepsilon\}$
- $s^*(aw) = s(a).s^*(w)$

On étend s^* aux langages : $\overline{s}: \mathcal{P}(V^*) \to \mathcal{P}(W^*)$.

$$\forall L \subseteq V^*, \ \overline{s}(L) = \bigcup_{w \in L} s^*(w)$$

Définition

Soit V et W deux vocabulaires.

Une substitution régulière est une fonction $s: V \to \mathcal{P}(W^*)$ qui à tout $a \in V$ associe un langage régulier $s(a) \subseteq W^*$.

On étend s aux mots par induction : $s^*: V^* \to \mathcal{P}(W^*)$

- $s^*(\varepsilon) = \{\varepsilon\}$
- $s^*(aw) = s(a).s^*(w)$

On étend s^* aux langages : $\overline{s}: \mathcal{P}(V^*) \to \mathcal{P}(W^*)$.

$$\forall L \subseteq V^*, \ \overline{s}(L) = \bigcup_{w \in L} s^*(w)$$

On pourra noter s au lieu de s^* ou \overline{s} .

Exemple

Soient
$$V=\{a,b\}$$
 et $W=\{c,d\}.$ On pose :

$$L = \{ab^i \mid i \ge 0\}$$

$$s(a) = \{c^i \mid i \ge 0\}$$

$$s(b) = \{cd\}$$

Alors s(L) =

Exemple

Soient
$$V=\{a,b\}$$
 et $W=\{c,d\}.$ On pose :

$$L = \{ab^i \mid i \ge 0\}$$

$$s(a) = \{c^i \mid i \ge 0\}$$

$$s(b) = \{cd\}$$

Alors $s(L) = \left\{ c^i (cd)^j \mid i, j \ge 0 \right\}$

Exemple

Soient
$$V=\{a,b\}$$
 et $W=\{c,d\}.$ On pose :

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{c^i \mid i \ge 0\}$$

$$s(b) = \{cd\}$$

Alors $s(L) = \left\{ c^i (cd)^j \mid i, j \ge 0 \right\}$

Exemple

Soient
$$V=\{a,b\}$$
 et $W=\{c,d\}.$ On pose :

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{c^i \mid i \ge 0\} = c^*$$

$$s(b) = \{cd\}$$

Alors
$$s(L) = \left\{ c^i (cd)^j \mid i, j \ge 0 \right\}$$

Exemple

Soient
$$V = \{a, b\}$$
 et $W = \{c, d\}$. On pose :

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{c^i \mid i \ge 0\} = c^*$$

$$s(b) = \{cd\} = cd$$

Alors
$$s(L) = \left\{ c^i (cd)^j \mid i, j \ge 0 \right\}$$

Exemple

Soient
$$V=\{a,b\}$$
 et $W=\{c,d\}.$ On pose :

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{c^i \mid i \ge 0\} = c^*$$

$$s(b) = \{cd\} = cd$$

Alors
$$s(L) = \left\{ c^i(cd)^j \mid i, j \ge 0 \right\} = c^*(cd)^*$$

Exemple

Soient $V=\{a,b\}$ et $W=\{c,d\}.$ On pose :

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{c^i \mid i \ge 0\} = c^*$$

$$s(b) = \{cd\} = cd$$

Alors $s(L) = \left\{c^i(cd)^j \mid i, j \ge 0\right\} = c^*(cd)^*$

Théorème

La classe des langages réguliers est fermée par substitution régulière.

Autrement dit, si L est un langage régulier et s est une substitution régulière, alors s(L) est un langage régulier.

Preuve du théorème

Étapes :

- 1. On étend les substitutions régulières aux expressions régulières :
 - \forall ER E sur V, $s(E) \stackrel{\mathsf{def}}{=} s(\mathcal{L}(E))$.
- 2. On prouve que si E est une expression régulière sur V, alors il existe une expression régulière E' sur W telle que $s(E)=\mathcal{L}(E')$.

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\mathsf{Base} \quad s^*(\varepsilon.v) \quad = \qquad \qquad s^*(v)$$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\begin{array}{lll} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \end{array}$$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\begin{array}{rcl} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \\ & = & s^*(\varepsilon).s^*(v) \end{array}$$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

Preuve : Soit $v \in V^*$. On prouve que pour tout $u \in V^*$ on a $s^*(u.v) = s^*(u).s^*(v)$ par induction structurelle sur u.

Base
$$s^*(\varepsilon.v) = s^*(v)$$

= $\{\varepsilon\}.s^*(v)$
= $s^*(\varepsilon).s^*(v)$

Induction $s^*(au'.v)$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

Preuve : Soit $v \in V^*$. On prouve que pour tout $u \in V^*$ on a $s^*(u.v) = s^*(u).s^*(v)$ par induction structurelle sur u.

$$\begin{array}{lll} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \\ & = & s^*(\varepsilon).s^*(v) \end{array}$$

Induction $s^*(au'.v) = s^*(a(u'.v))$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\begin{array}{rcl} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \\ & = & s^*(\varepsilon).s^*(v) \end{array}$$

$$\begin{array}{rcl} \text{Induction} & s^*(au'.v) & = & s^*(a(u'.v)) \\ & = & s(a).s^*(u'.v) \end{array}$$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\begin{array}{rcl} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \\ & = & s^*(\varepsilon).s^*(v) \end{array}$$

Induction
$$s^*(au'.v) = s^*(a(u'.v))$$

= $s(a).s^*(u'.v)$
= $s(a).(s^*(u').s^*(v))$ (HI)

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\begin{array}{rcl} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \\ & = & s^*(\varepsilon).s^*(v) \end{array}$$

Induction
$$s^*(au'.v) = s^*(a(u'.v))$$

 $= s(a).s^*(u'.v)$
 $= s(a).(s^*(u').s^*(v))$ (HI)
 $= (s(a).s^*(u')).s^*(v)$

Proposition

Soit s une substitution régulière. Pour tous $u,v\in V^*$, on a

$$s^*(u.v) = s^*(u).s^*(v)$$
.

$$\begin{array}{lll} \mathsf{Base} & s^*(\varepsilon.v) & = & s^*(v) \\ & = & \{\varepsilon\}.s^*(v) \\ & = & s^*(\varepsilon).s^*(v) \end{array}$$

Induction
$$s^*(au'.v) = s^*(a(u'.v))$$

 $= s(a).s^*(u'.v)$
 $= s(a).(s^*(u').s^*(v))$
 $= (s(a).s^*(u')).s^*(v)$
 $= s^*(au').s^*(v)$ (HI)

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

 $\bullet \ \ \mathsf{Prouvons} \ \mathsf{que} \ s(E.E') \subseteq s(E).s(E').$

Soit $w \in s(E.E')$. Il existe $v \in E.E'$ tel que $w \in s(v)$.

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

• Prouvons que $s(E.E') \subseteq s(E).s(E')$.

Soit $w \in s(E.E')$. Il existe $v \in E.E'$ tel que $w \in s(v)$. Comme $v \in E.E'$, il existe $u \in E$ et $u' \in E'$ tels que v = u.u'.

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

• Prouvons que $s(E.E') \subseteq s(E).s(E')$.

Soit $w \in s(E.E')$. Il existe $v \in E.E'$ tel que $w \in s(v)$. Comme $v \in E.E'$, il existe $u \in E$ et $u' \in E'$ tels que v = u.u'. Donc $w \in s(u.u') = s(u).s(u')$.

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

• Prouvons que $s(E.E') \subseteq s(E).s(E')$.

Soit $w \in s(E.E')$. Il existe $v \in E.E'$ tel que $w \in s(v)$.

Comme $v \in E.E'$, il existe $u \in E$ et $u' \in E'$ tels que v = u.u'.

Donc $w \in s(u.u') = s(u).s(u')$.

Comme $s(u) \subseteq s(E)$ et $s(u') \subseteq s(E')$, on a le résultat.

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

• Prouvons que $s(E.E') \subseteq s(E).s(E')$.

Soit $w \in s(E.E')$. Il existe $v \in E.E'$ tel que $w \in s(v)$.

Comme $v \in E.E'$, il existe $u \in E$ et $u' \in E'$ tels que v = u.u'.

Donc $w \in s(u.u') = s(u).s(u')$.

Comme $s(u) \subseteq s(E)$ et $s(u') \subseteq s(E')$, on a le résultat.

Exercice: Vérifier que $s(E).s(E') \subseteq s(E.E')$.

Lemme intermédiaire sur les ER

Lemme

Soit s une substitution régulière, et soient E et E' des expressions régulières sur V. Alors s(E.E') = s(E).s(E') $s(E+E') = s(E) \cup s(E')$ $s(E^*) = s(E)^*$

Preuve.

• Prouvons que $s(E.E') \subseteq s(E).s(E')$.

Soit $w \in s(E.E')$. Il existe $v \in E.E'$ tel que $w \in s(v)$.

Comme $v \in E.E'$, il existe $u \in E$ et $u' \in E'$ tels que v = u.u'.

Donc $w \in s(u.u') = s(u).s(u')$.

Comme $s(u) \subseteq s(E)$ et $s(u') \subseteq s(E')$, on a le résultat.

Exercice: Vérifier que $s(E).s(E') \subseteq s(E.E')$.

• Idem pour E + E' et E^* . (plus facile)

Étapes:

- 1. On étend les substitutions régulières aux expressions régulières :
 - \forall ER E sur V, $s(E) \stackrel{\mathsf{def}}{=} s(\mathcal{L}(E))$.
- 2. On prouve que si E est une expression régulière sur V, alors il existe une expression régulière E' sur W telle que $s(E)=\mathcal{L}(E')$.

Étapes:

1. On étend les substitutions régulières aux expressions régulières :

$$\forall$$
 ER E sur V , $s(E) \stackrel{\mathsf{def}}{=} s(\mathcal{L}(E))$.

2. On prouve que si E est une expression régulière sur V, alors il existe une expression régulière E' sur W telle que $s(E)=\mathcal{L}(E')$.

Preuve du théorème de l'étape 2.

Par induction structurelle:

Étapes :

1. On étend les substitutions régulières aux expressions régulières :

$$\forall$$
 ER E sur V , $s(E) \stackrel{\text{def}}{=} s(\mathcal{L}(E))$.

2. On prouve que si E est une expression régulière sur V, alors il existe une expression régulière E' sur W telle que $s(E)=\mathcal{L}(E')$.

Preuve du théorème de l'étape 2.

Par induction structurelle:

Base Pour
$$E \in \{\emptyset, \epsilon, a\}$$
, OK : \emptyset , $\{\varepsilon\}$ et $s(a)$ ($s(a)$ régulier donc représentable par ER)

Étapes :

- 1. On étend les substitutions régulières aux expressions régulières :
 - \forall ER E sur V, $s(E) \stackrel{\text{def}}{=} s(\mathcal{L}(E))$.
- 2. On prouve que si E est une expression régulière sur V, alors il existe une expression régulière E' sur W telle que $s(E)=\mathcal{L}(E')$.

Preuve du théorème de l'étape 2.

Par induction structurelle :

Base Pour
$$E \in \{\emptyset, \epsilon, a\}$$
, OK : \emptyset , $\{\varepsilon\}$ et $s(a)$ ($s(a)$ régulier donc représentable par ER)

Induction Pour $E \in \{E_1.E_2, E_1+E_2, E_1^*\}$, cf lemme précédent

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

$$\begin{array}{rcl} L &=& \left\{ab^i \mid i \geq 0\right\} \\ s(a) &=& \left\{cdc\right\} \\ s(b) &=& \left\{dc\right\} \\ \text{Alors } s(L) = \left\{cdc(dc)^i \mid i \geq 0\right\} \end{array}$$

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{cdc\}$$

$$s(b) = \{dc\}$$
Alors
$$s(L) = \{cdc(dc)^i \mid i \ge 0\}$$

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{cdc\} = cdc$$

$$s(b) = \{dc\}$$
Alors
$$s(L) = \{cdc(dc)^i \mid i \ge 0\}$$

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

$$L = \{ab^i \mid i \ge 0\} = ab^*$$

$$s(a) = \{cdc\} = cdc$$

$$s(b) = \{dc\} = dc$$

$$Alors s(L) = \{cdc(dc)^i \mid i \ge 0\}$$

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

$$\begin{array}{rcl} L & = & \left\{ab^i \mid i \geq 0\right\} = ab^* \\ s(a) & = & \left\{cdc\right\} = cdc \\ s(b) & = & \left\{dc\right\} = dc \\ \text{Alors } s(L) = & \left\{cdc(dc)^i \mid i \geq 0\right\} = cdc(dc)^* = c(dc)^+ \end{array}$$

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

Exemple

$$\begin{array}{rcl} L &=& \left\{ab^i \mid i \geq 0\right\} = ab^* \\ s(a) &=& \left\{cdc\right\} = cdc \\ s(b) &=& \left\{dc\right\} = dc \\ \text{Alors } s(L) &=& \left\{cdc(dc)^i \mid i \geq 0\right\} = cdc(dc)^* = c(dc)^+ \end{array}$$

Corollaire

La classe des langages réguliers est fermée par homomorphisme.

Définition

Une substitution régulière qui à tout $a \in V$ associe un singleton est un homomorphisme.

Exemple

$$\begin{array}{rcl} L &=& \left\{ab^i \mid i \geq 0\right\} = ab^* \\ s(a) &=& \left\{cdc\right\} = cdc \\ s(b) &=& \left\{dc\right\} = dc \\ \text{Alors } s(L) &=& \left\{cdc(dc)^i \mid i \geq 0\right\} = cdc(dc)^* = c(dc)^+ \end{array}$$

Corollaire

La classe des langages réguliers est fermée par homomorphisme. (et par homomorphisme inverse, voir poly §2.3)

Théorème

La classe des langages réguliers est fermée par :

- union, concaténation et concaténation itérée (cf. cours 3)
- substitution régulière et homomorphisme

Théorème

La classe des langages réguliers est fermée par :

- union, concaténation et concaténation itérée (cf. cours 3)
- substitution régulière et homomorphisme
- complémentation

 ${\bf Question}:$ si L est un langage régulier, peut-on construire un automate qui reconnaı̂t \overline{L} ?

 ${\bf Question}:$ si L est un langage régulier, peut-on construire un automate qui reconnaı̂t \overline{L} ?

 ${\bf Question}:$ si L est un langage régulier, peut-on construire un automate qui reconnaı̂t \overline{L} ?

Question : si L est un langage régulier, peut-on construire un automate qui reconnaît \overline{L} ?

Problème : on ne peut pas intervertir F et $Q\setminus F$ car il peut y avoir deux chemins de même trace dans unAFND, et si l'un mène en F mais pas l'autre on accepte...

Solution: On déterminise...

Problème : on ne peut pas intervertir F et $Q\setminus F$ car il peut y avoir deux chemins de même trace dans unAFND, et si l'un mène en F mais pas l'autre on accepte...

Problème : on ne peut pas intervertir F et $Q \setminus F$ car

il peut y avoir deux chemins de même trace dans unAFND,

et si l'un mène en ${\cal F}$ mais pas l'autre on accepte...

Solution: On déterminise...

$$L = (a+b)^*(ab+ba)$$

Problème : on ne peut pas intervertir F et $Q \setminus F$ car

il peut y avoir deux chemins de même trace dans unAFND,

et si l'un mène en ${\cal F}$ mais pas l'autre on accepte...

Solution: On déterminise...

$$L = (a+b)^*(ab+ba)$$

Problème : on ne peut pas intervertir F et $Q \setminus F$ car

il peut y avoir deux chemins de même trace dans unAFND,

et si l'un mène en ${\cal F}$ mais pas l'autre on accepte...

Solution: On déterminise...

Exemple

$$L = (a+b)^*(ab+ba)$$

Gagné!

Exercice: déterminer l'ER associée à cet automate

Complémentation (fin)

Proposition

La classe des langages réguliers est fermée par complémentation.

Complémentation (fin)

Proposition

La classe des langages réguliers est fermée par complémentation.

Preuve. Soit L un langage régulier et considérons $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un automate fini déterministe complet tel que $\mathcal{L}(A) = L$.

Complémentation (fin)

Proposition

La classe des langages réguliers est fermée par complémentation.

Preuve. Soit L un langage régulier et considérons $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un automate fini déterministe complet tel que $\mathcal{L}(A) = L$.

Posons $A' \stackrel{\text{def}}{=} \langle Q, V, \delta, \{q_0\}, Q \setminus F \rangle$.

A' étant déterministe complet, on a :

$$w \in \mathcal{L}(A') \Leftrightarrow \delta^*(q_0, w) \in Q \setminus F \Leftrightarrow \delta^*(q_0, w) \notin F \Leftrightarrow w \notin \mathcal{L}(A)$$

Théorème

La classe des langages réguliers est fermée par :

- union, concaténation et concaténation itérée (cf. cours 3)
- substitution régulière et homomorphisme
- complémentation

Théorème

La classe des langages réguliers est fermée par :

- union, concaténation et concaténation itérée (cf. cours 3)
- substitution régulière et homomorphisme
- complémentation
- intersection
- différence

Théorème

La classe des langages réguliers est fermée par :

- union, concaténation et concaténation itérée (cf. cours 3)
- substitution régulière et homomorphisme
- complémentation
- intersection
- différence

Preuve:

$$L \cap M = \overline{L} \cup \overline{M}$$

$$L \setminus M = L \cap \overline{M}$$

Question : comment prouver qu'un langage n'est pas régulier? Autrement dit : Étant donné un langage L, comment prouver que pour tout automate fini A, $\mathcal{L}(A) \neq L$?

Question: comment prouver qu'un langage n'est pas régulier?

Autrement dit : Étant donné un langage L, comment prouver que

pour tout automate fini A, $\mathcal{L}(A) \neq L$?

Idée : Utiliser des propriétés de fermeture

Supposons donné un langage M dont on connaît la non-régularité.

Pour prouver que L n'est pas régulier, on peut procéder par l'absurde :

Question: comment prouver qu'un langage n'est pas régulier?

Autrement dit : Étant donné un langage L, comment prouver que

pour tout automate fini A, $\mathcal{L}(A) \neq L$?

Idée : Utiliser des propriétés de fermeture

Supposons donné un langage M dont on connaît la non-régularité.

Pour prouver que L n'est pas régulier, on peut procéder par l'absurde :

1. On suppose que L est régulier.

Question : comment prouver qu'un langage n'est pas régulier? Autrement dit : Étant donné un langage L, comment prouver que

pour tout automate fini A, $\mathcal{L}(A) \neq L$?

Idée : Utiliser des propriétés de fermeture

Supposons donné un langage M dont on connaît la non-régularité.

Pour prouver que L n'est pas régulier, on peut procéder par l'absurde :

- 1. On suppose que L est régulier.
- 2. On exhibe une série de transformations qui préservent la régularité et qui permettent de passer de L à M.

Question : comment prouver qu'un langage n'est pas régulier? Autrement dit : Étant donné un langage L, comment prouver que

pour tout automate fini A, $\mathcal{L}(A) \neq L$?

Idée : Utiliser des propriétés de fermeture

Supposons donné un langage M dont on connaît la non-régularité.

Pour prouver que L n'est pas régulier, on peut procéder par l'absurde :

- 1. On suppose que L est régulier.
- 2. On exhibe une série de transformations qui préservent la régularité et qui permettent de passer de L à M.
- 3. Contradiction : l'hypothèse que L était régulier est fausse.

Question : comment prouver qu'un langage n'est pas régulier?

Autrement dit : Étant donné un langage L, comment prouver que pour tout automate fini A, $\mathcal{L}(A) \neq L$?

Idée : Utiliser des propriétés de fermeture

Supposons donné un langage M dont on connaît la non-régularité.

Pour prouver que L n'est pas régulier, on peut procéder par l'absurde :

- 1. On suppose que L est régulier.
- 2. On exhibe une série de transformations qui préservent la régularité et qui permettent de passer de L à M.
- 3. Contradiction : l'hypothèse que L était régulier est fausse.

Cette technique de preuve est appelée réduction : on réduit le problème de la régularité de L à celle de M. (cf. TL2)

On admet que $M = \{0^p1^p \mid p \ge 0\}$ n'est pas régulier.

Montrer que $L = \{wcw' \mid w, w' \in \{a, b\}^*, |w|_a = |w'|_b\}$ n'est pas régulier.

On admet que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $L = \{wcw' \mid w, w' \in \{a,b\}^*, \, |w|_a = |w'|_b\}$ n'est pas régulier.

1. Supposons que L est régulier.

On admet que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $L = \{wcw' \mid w, w' \in \{a, b\}^*, |w|_a = |w'|_b\}$ n'est pas régulier.

- 1. Supposons que L est régulier.
- 2. Alors $L' \stackrel{\text{def}}{=} L \cap a^*cb^* = L \cap \{a^pcb^q \mid p,q \geq 0\} = \{a^pcb^p \mid p \geq 0\}$ est nécessairement régulier.

On admet que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $L = \{wcw' \mid w, w' \in \{a,b\}^*, \, |w|_a = |w'|_b\}$ n'est pas régulier.

- 1. Supposons que L est régulier.
- 2. Alors $L' \stackrel{\text{def}}{=} L \cap a^*cb^* = L \cap \{a^pcb^q \mid p,q \geq 0\} = \{a^pcb^p \mid p \geq 0\}$ est nécessairement régulier.
- 2'. Soit l'homomorphisme h défini par :

$$h: \left\{ \begin{array}{ll} a & \to & 0 \\ b & \to & 1 \\ c & \to & \varepsilon \end{array} \right.$$

On admet que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $L = \{wcw' \mid w, w' \in \{a,b\}^*, \, |w|_a = |w'|_b\}$ n'est pas régulier.

- 1. Supposons que L est régulier.
- 2. Alors $L' \stackrel{\text{def}}{=} L \cap a^*cb^* = L \cap \{a^pcb^q \mid p,q \geq 0\} = \{a^pcb^p \mid p \geq 0\}$ est nécessairement régulier.
- 2'. Soit l'homomorphisme h défini par :

$$h: \left\{ \begin{array}{ll} a & \to & 0 \\ b & \to & 1 \\ c & \to & \varepsilon \end{array} \right.$$

Le langage h(L') est nécessairement régulier.

On admet que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $L = \{wcw' \mid w, w' \in \{a,b\}^*, \, |w|_a = |w'|_b\}$ n'est pas régulier.

- 1. Supposons que L est régulier.
- 2. Alors $L' \stackrel{\text{def}}{=} L \cap a^*cb^* = L \cap \{a^pcb^q \mid p,q \geq 0\} = \{a^pcb^p \mid p \geq 0\}$ est nécessairement régulier.
- 2'. Soit l'homomorphisme h défini par :

$$h: \left\{ \begin{array}{ll} a & \to & 0 \\ b & \to & 1 \\ c & \to & \varepsilon \end{array} \right.$$

Le langage h(L') est nécessairement régulier.

3. Mais h(L') = M, contradiction.

Pour utiliser les propriétés de fermeture, il faut connaître au moins un langage ${\cal M}$ non-régulier.

Pour utiliser les propriétés de fermeture, il faut connaı̂tre au moins un langage ${\cal M}$ non-régulier.

ullet Question : comment prouver que M n'est pas régulier?

Pour utiliser les propriétés de fermeture, il faut connaı̂tre au moins un langage ${\cal M}$ non-régulier.

- ullet Question : comment prouver que M n'est pas régulier?
- En se servant d'une condition nécessaire sur les langages réguliers qui permettra de refaire un raisonnement par l'absurde

Pour utiliser les propriétés de fermeture, il faut connaı̂tre au moins un langage ${\cal M}$ non-régulier.

- ullet Question : comment prouver que M n'est pas régulier?
- En se servant d'une condition nécessaire sur les langages réguliers qui permettra de refaire un raisonnement par l'absurde
- On va supposer qu'il existe un automate fini A tel que $\mathcal{L}(A)=M$ et tenter d'aboutir à une contradiction

Pour utiliser les propriétés de fermeture, il faut connaı̂tre au moins un langage ${\cal M}$ non-régulier.

- ullet Question : comment prouver que M n'est pas régulier?
- En se servant d'une condition nécessaire sur les langages réguliers qui permettra de refaire un raisonnement par l'absurde
- On va supposer qu'il existe un automate fini A tel que $\mathcal{L}(A)=M$ et tenter d'aboutir à une contradiction
- La condition nécessaire la plus standard est donnée par le lemme de l'étoile

Pour utiliser les propriétés de fermeture, il faut connaı̂tre au moins un langage ${\cal M}$ non-régulier.

- ullet Question : comment prouver que M n'est pas régulier?
- En se servant d'une condition nécessaire sur les langages réguliers qui permettra de refaire un raisonnement par l'absurde
- On va supposer qu'il existe un automate fini A tel que $\mathcal{L}(A)=M$ et tenter d'aboutir à une contradiction
- La condition nécessaire la plus standard est donnée par le lemme de l'étoile

(lemme de pompage, de la pompe, pumping lemma)

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

$$z_1 \cdots z_j z_{j+1} \cdots z_k z_{k+1} \cdots z_m \in \mathcal{L}(A)$$

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

$$z_1 \cdots z_i (z_{i+1} \cdots z_k)^2 z_{k+1} \cdots z_m \in \mathcal{L}(A)$$

Soit $A=\langle Q,V,\delta,I,F\rangle$ un automate sans ε -transition, avec $|Q|=n\geq 1$. Soit $z=z_1\cdots z_m$ un mot sur V de longueur $m\geq n$ reconnu par A. Il existe donc un chemin $(q_0,z_1,q_1)\cdots (q_{m-1},z_m,q_m)$ dans A, avec $q_0\in I$ et $q_m\in F$.

$$\forall i \geq 0, z_1 \cdots z_j (z_{j+1} \cdots z_k)^i z_{k+1} \cdots z_m \in \mathcal{L}(A)$$

Lemme

Soit L un langage régulier. Alors il existe $n \ge 1$ tel que pour tout mot z, si $z \in L$ et $|z| \ge n$, alors z est de la forme uvw avec :

- $|uv| \leq n$
- $|v| \ge 1$
- $\bullet \ \forall i \ge 0, uv^i w \in L$

Lemme

Soit L un langage régulier. Alors il existe $n \ge 1$ tel que pour tout mot z, si $z \in L$ et $|z| \ge n$, alors z est de la forme uvw avec :

- $|uv| \leq n$
- $|v| \ge 1$
- $\forall i \geq 0, uv^i w \in L \iff uv^* w \subseteq L$

Lemme

Soit L un langage régulier. Alors il existe $n \geq 1$ tel que pour tout mot z, si $z \in L$ et $|z| \geq n$, alors z est de la forme uvw avec :

- $|uv| \leq n$
- $|v| \ge 1$
- $\forall i \geq 0, uv^i w \in L \iff uv^* w \subseteq L$

Attention

Le lemme de l'étoile est une condition nécessaire mais non suffisante des langages réguliers : il existe des langages non-réguliers qui le satisfont.

Lemme

Soit L un langage régulier. Alors il existe $n \ge 1$ tel que pour tout mot z, si $z \in L$ et $|z| \ge n$, alors z est de la forme uvw avec :

- $|uv| \leq n$
- $|v| \ge 1$
- $\forall i \geq 0, uv^i w \in L \iff uv^* w \subseteq L$

Attention

Le lemme de l'étoile est une condition nécessaire mais non suffisante des langages réguliers : il existe des langages non-réguliers qui le satisfont.

Remarques

- Que se passe-t-il pour les langages finis?
- Des lemmes de l'étoile existent aussi pour d'autres classes de langages.

On procède par l'absurde : on suppose que L est régulier et satisfait donc le lemme de l'étoile.

• On considère l'entier n du lemme. (on ne sait rien de sa valeur)

- On considère l'entier n du lemme. (on ne sait rien de sa valeur)
- On choisit un mot $z \in L$ de longueur au moins n. (z dépendra de n)

- On considère l'entier n du lemme. (on ne sait rien de sa valeur)
- On choisit un mot $z \in L$ de longueur au moins n. (z dépendra de n)
- Le mot z est décomposé en uvw, où $|uv| \le n$ et $|v| \ge 1$. (on ne contrôle pas la façon dont z est décomposé, hormis la contrainte sur les longueurs)

- On considère l'entier n du lemme. (on ne sait rien de sa valeur)
- On choisit un mot $z \in L$ de longueur au moins n. (z dépendra de n)
- Le mot z est décomposé en uvw, où $|uv| \le n$ et $|v| \ge 1$. (on ne contrôle pas la façon dont z est décomposé, hormis la contrainte sur les longueurs)
- On choisit une valeur de i telle que $uv^iw \notin L$.

On procède par l'absurde : on suppose que L est régulier et satisfait donc le lemme de l'étoile.

- On considère l'entier n du lemme. (on ne sait rien de sa valeur)
- On choisit un mot $z \in L$ de longueur au moins n. (z dépendra de n)
- ullet Le mot z est décomposé en uvw, où $|uv| \leq n$ et $|v| \geq 1$. (on ne contrôle pas la façon dont z est décomposé, hormis la contrainte sur les longueurs)
- On choisit une valeur de i telle que $uv^iw \notin L$.

On obtient une contradiction : L ne peut pas être régulier.

On procède par l'absurde : on suppose que L est régulier et satisfait donc le lemme de l'étoile.

- On considère l'entier n du lemme. (on ne sait rien de sa valeur)
- On choisit un mot $z \in L$ de longueur au moins n. (z dépendra de n)
- Le mot z est décomposé en uvw, où $|uv| \le n$ et $|v| \ge 1$. (on ne contrôle pas la façon dont z est décomposé, hormis la contrainte sur les longueurs)
- On choisit une valeur de i telle que $uv^iw \notin L$.

On obtient une contradiction : L ne peut pas être régulier.

Remarque

On utilise en fait la contraposée du lemme de l'étoile :

$$L \text{ régulier } \Rightarrow \exists n \geq 1, \forall z \in L, \dots$$

On procède par l'absurde : on suppose que L est régulier et satisfait donc le lemme de l'étoile.

- On considère l'entier n du lemme. (on ne sait rien de sa valeur)
- On choisit un mot $z \in L$ de longueur au moins n. (z dépendra de n)
- Le mot z est décomposé en uvw, où $|uv| \leq n$ et $|v| \geq 1$. (on ne contrôle pas la façon dont z est décomposé, hormis la contrainte sur les longueurs)
- On choisit une valeur de i telle que $uv^iw \notin L$.

On obtient une contradiction : L ne peut pas être régulier.

Remarque

On utilise en fait la contraposée du lemme de l'étoile :

$$L \text{ régulier } \Rightarrow \exists n \geq 1, \forall z \in L, \dots$$

$$\forall n \geq 1, \exists z \in L, \ldots \Rightarrow L \text{ non régulier}$$

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

On suppose que M est régulier, et satisfait donc le lemme de l'étoile.

• Soit *n* l'entier du lemme.

(on ne contrôle pas sa valeur)

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

- Soit n l'entier du lemme. (on ne contrôle pas sa valeur)
- On choisit $z = 0^n 1^n \in M$. On a $|z| = 2n \ge n$.

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

- Soit n l'entier du lemme. (on ne contrôle pas sa valeur)
- On choisit $z=0^n1^n\in M$. On a $|z|=2n\geq n$.
- z est décomposé en uvw où $k \stackrel{\text{def}}{=} |uv| \le n$ et $|v| \ge 1$.

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

- Soit n l'entier du lemme. (on ne contrôle pas sa valeur)
- On choisit $z=0^n1^n\in M.$ On a $|z|=2n\geq n.$
- z est décomposé en uvw où $k \stackrel{\text{def}}{=} |uv| \le n$ et $|v| \ge 1$. Comme $k \le n$, on sait que $uv = 0^k$ sans pour autant connaître k!

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

- Soit n l'entier du lemme. (on ne contrôle pas sa valeur)
- On choisit $z=0^n1^n\in M.$ On a $|z|=2n\geq n.$
- z est décomposé en uvw où $k \stackrel{\text{def}}{=} |uv| \le n$ et $|v| \ge 1$. Comme $k \le n$, on sait que $uv = 0^k$ sans pour autant connaître k!
- On choisit i=0, on devrait avoir $uv^0w=uw\in M$.

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

- Soit n l'entier du lemme. (on ne contrôle pas sa valeur)
- On choisit $z=0^n1^n\in M.$ On a $|z|=2n\geq n.$
- z est décomposé en uvw où $k \stackrel{\text{def}}{=} |uv| \le n$ et $|v| \ge 1$. Comme $k \le n$, on sait que $uv = 0^k$ sans pour autant connaître k!
- On choisit i=0, on devrait avoir $uv^0w=uw\in M$. Mais $uw=0^{n-|v|}1^n\notin M$, contradiction.

Montrer que $M=\{0^p1^p\mid p\geq 0\}$ n'est pas régulier.

On suppose que M est régulier, et satisfait donc le lemme de l'étoile.

- Soit n l'entier du lemme. (on ne contrôle pas sa valeur)
- On choisit $z=0^n1^n\in M.$ On a $|z|=2n\geq n.$
- z est décomposé en uvw où $k \stackrel{\text{def}}{=} |uv| \le n$ et $|v| \ge 1$. Comme $k \le n$, on sait que $uv = 0^k$ sans pour autant connaître k!
- On choisit i=0, on devrait avoir $uv^0w=uw\in M$. Mais $uw=0^{n-|v|}1^n\notin M$, contradiction.

Conclusion : M n'est pas régulier.