Bruhat–Tits trees as a cryptanalitic tool for isogeny-based cryptography

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$

ANNAMARIA IEZZI

Université de la Polynésie Française

Cryptography and Coding Theory - First Annual Conference September 22, 2021

Goal of this talk

Explicit connections between supersingular isogeny graphs and Bruhat-Tits trees

Laia Amorós, Annamaria lezzi, Kristin Lauter, Chloe Martindale, Jana Sotáková. (2021) https://eprint.iacr.org/2021/372

Bruhat-Tits trees in the context of supersingular isogeny graphs also appear in:

- Exploring isogeny graphs Luca De Feo's HDR thesis (2018).
- Ramanujan Graphs in Cryptography Costache, Feigon, Lauter, Massierer, Puskás (2019).
- Computing endomorphism rings of supersingular elliptic curves and connections to pathfinding in isogeny graphs
 -Eisenträger, Hallgren, Leonardi, Morrison, Park (2020).

A little bit of context

Supersingular isogeny graphs were:

- First considered by Mestre and Oesterlé in the 1986: La méthode des graphes. Exemples et applications.
- Brought into cryptography by Charles, Goren and Lauter in 2006: Cryptographic Hash functions from expander graphs.
- Proposed for a Diffie-Hellman key exchange by Jao and De Feo in 2011: Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies.

SIKE: NIST 3rd round alternate candidate (July 2020) for the public key encryption and key encapsulation mechanism.

Supersingular ℓ-isogeny graphs

Let p > 3 and ℓ be primes such that $p \neq \ell$ (p large, ℓ small).

We denote $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ the supersingular ℓ -isogeny graph over $\overline{\mathbb{F}}_p$ with:

• Vertices:

$$\left\{\begin{array}{c}\overline{\mathbb{F}}_p\text{-isomorphism classes of supersingular elliptic curves}\\\text{defined over }\overline{\mathbb{F}}_p\end{array}\right\}$$

Edges: isogenies of degree ℓ (up to a certain equivalence).

$\mathcal{G}_2(\overline{\mathbb{F}}_{227})$

$$\mathcal{G}_2(\overline{\mathbb{F}}_{227})$$

 $E_{132}: y^2 = x^3 + 120x + 214$

 $E_{201}: y^2 = x^3 + 69x + 128$

$$\varphi: E_{201} \rightarrow E_{132}$$

$$(x,y) \mapsto \left(\frac{x^2 + 84x - 101}{x + 84}, y \frac{x^2 - 59x - 107}{x^2 - 59x + 19}\right)$$

Random walks

Random walks

Non-backtracking walks

$$\{ \text{non-backtracking walks from } E/\mathbb{F}_{p^2} \text{ of length } n \text{ in } \mathcal{G}_\ell(\overline{\mathbb{F}}_p) \}$$

$$\updownarrow$$

$$\{ \text{cyclic (separable) isogenies } \varphi : E \to E' \text{ of degree } \ell^n \}$$

$$\updownarrow$$

$$\{ \text{cyclic subgroups of order } \ell^n \text{ in } E[\ell^n] \}$$

Let $E[\ell^n] = \langle P_n, Q_n \rangle \cong \frac{\mathbb{Z}}{\ell^n \mathbb{Z}} \times \frac{\mathbb{Z}}{\ell^n \mathbb{Z}}$ and let $G \leq E[\ell^n]$ be a cyclic subgroup of order ℓ^n . Then:

- $G = \langle P_n + aQ_n \rangle$, $0 \le a < \ell^n$ or
- $G = \langle Q_n + bP_n \rangle$, $0 \le b < \ell^n$, $b \equiv 0 \pmod{\ell}$.

So there are

$$\ell^n + \ell^{n-1} = (\ell+1)\ell^{n-1}$$

cyclic subgroups of order ℓ^n in $E[\ell^n]$.

Let's have a look to one of these walks

•
$$E[\ell^n] = < P_n, Q_n >$$

• For
$$i = 1, ..., n-1$$
: $P_i = \ell^{n-i} P_n, Q_i = \ell^{n-i} Q_n \Rightarrow E[\ell^i] = \langle P_i, Q_i \rangle$

•
$$G = \langle P_n + aQ_n \rangle, 0 \le a < \ell^n$$

Consider the walk associated to the cyclic isogeny $\varphi: E \to \frac{E}{\langle P_a + aQ_a \rangle}$.

The ℓ -adic representation of a can be used to reconstruct each step of the walk:

$$a=\sum_{i=0}^{n-1}a_i\ell^i, 0\leq a_i<\ell.$$

An infinite tree (for $\ell=3$)

 $\begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 3 & 9 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 6 & 9 \end{pmatrix}$

Fix a basis of the ℓ -adic Tate module

$$T_{\ell}(E) = < P, Q > \cong \mathbb{Z}_{\ell} imes \mathbb{Z}_{\ell},$$

where $P = (P_1, P_2, P_3, \ldots), Q = (Q_1, Q_2, Q_3, \ldots)$ and

$$E[\ell^i] = \langle P_i, Q_i \rangle$$
.

$$\begin{pmatrix} 1 & 0 \\ 2 & 9 \end{pmatrix}$$

An infinite $\chi(e)$ (for $\ell=3$)

$$\begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 6 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 6 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \stackrel{\infty}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \stackrel{1}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \stackrel{1}{\longrightarrow} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Bruhat-Tits trees

We use here the notation \mathbb{Q}_{ℓ} for matching the notation coming from supersingular isogeny graphs.

For each prime ℓ , we can define the Bruhat–Tits tree associated to $\operatorname{PGL}_2(\mathbb{Q}_\ell)$. We can look at its vertices from different perspectives:

- classes of homothetic \mathbb{Z}_{ℓ} -lattices in \mathbb{Q}^2_{ℓ} ;
- classes of matrices in $\operatorname{PGL}_2(\mathbb{Q}_\ell)/\operatorname{PGL}_2(\mathbb{Z}_\ell)$;
- maximal orders in the quaternion algebra $M_2(\mathbb{Q}_\ell)$.

Homothetic lattices of \mathbb{Q}^2_ℓ

• A lattice L of \mathbb{Q}^2_ℓ is a free \mathbb{Z}_ℓ -module of rank 2 of \mathbb{Q}^2_ℓ :

$$L = \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{Z}_{\ell}} = \mathbb{Z}_{\ell} \mathbf{u} + \mathbb{Z}_{\ell} \mathbf{v} = \{ x \mathbf{u} + y \mathbf{v} : x, y \in \mathbb{Z}_{\ell} \}$$

- We say that two lattices L_1 and L_2 are homothetic if there exists $\lambda \in \mathbb{Q}_{\ell}^{\times}$ such that $L_1 = \lambda L_2$. We denote [L] the homothety class of a lattice L.
- Two homothety classes $[L_1]$ and $[L_2]$ are said to be adjacent if their representatives L_1 and L_2 can be chosen so that

$$\ell L_1 \subsetneq L_2 \subsetneq L_1$$
.

EXAMPLE:

Given $L = \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{Z}_{\ell}}$ there are $\ell + 1$ -lattices L_i such that $\ell L \subsetneq L_i \subsetneq L$:

$$egin{pmatrix} \left(\mathbf{u} & \mathbf{v}
ight) \begin{pmatrix} 1 & 0 \\ i & \ell \end{pmatrix}, i = 0, \dots, \ell - 1 \quad ext{and} \quad \left(\mathbf{u} & \mathbf{v}
ight) \begin{pmatrix} \ell & 0 \\ 0 & 1 \end{pmatrix}$$

The Bruhat-Tits tree for $PGL_2(\mathbb{Q}_\ell)$

The Bruhat–Tits tree associated to $\operatorname{PGL}_2(\mathbb{Q}_\ell)$ is the graph \mathcal{T}_ℓ with

- Ver(\mathcal{T}_{ℓ}): homothety classes of lattices of \mathbb{Q}^2_{ℓ} .
- Ed(\mathcal{T}_{ℓ}): set of pairs of adjacent homothety classes.

```
The (undirected) graph \mathcal{T}_\ell is a (\ell+1)\text{-regular} infinite tree.
```

• From lattices to matrices:

• From lattices to maximal orders in $M_2(\mathbb{Q}_\ell)$:

Connections

