Stat 215A - Week 6

Some slides thanks to Rebecca Barter

Lab 2 check in

Any questions?

To do today

Lowess

Independent component analysis

Multidimensional scaling

Lo(w)ess - locally weighted scatterplot smoothing

Local linear fit in this example, but can fit higher order polynomials

Identify neighborhood to fit the polynomial.

Here span = 5

Fit a weighted least squares line within the neighborhood

Fit a weighted least squares line within the neighborhood

Higher weight given to points near the focal point (red)

The first point of the regression lines is the fitted focal point (blue diamond)

Move onto the new focal point and fit a different weighted regression line

Fit a new local regression line

So on and so forth...

Loess - locally weighted scatterplot smoothing

Parameters to choose

- ☐ The **span/bandwidth**: size of the neighborhood.
- \Box The **degree** of the local polynomial (previous slide degree = 1).
- ☐ The **weights** for the weight least squares.

Classic goal: separate the underlying speech signals each corresponding to an individual at a cocktail party

Independent component analysis: example

Independent component analysis: example

Independent component analysis: example

Goal of PCA

Compress the data so that each dimension contains as much information as possible

Goal of ICA

Identify the independent parts that make up the data

Goal of PCA

- Compress the data so that each dimension contains as much information as possible
- Maximize variability (second moment)

- ☐ Identify the independent parts that make up the data
- Maximize kurtosis (fourth moment)

Goal of PCA

- Compress the data so that each dimension contains as much information as possible
- Maximize variability (second moment)
- Each component is orthogonal

- Identify the independent parts that make up the data
- Maximize kurtosis (fourth moment)
- Each component is **statistically independent**, but not necessarily orthogonal

Goal of PCA

- Compress the data so that each dimension contains as much information as possible
- Maximize variability (second moment)
- Each component is orthogonal
- □ PCA removes correlations, but not higher order dependence

- ☐ Identify the independent parts that make up the data
- Maximize kurtosis (fourth moment)
- Each component is statistically independent, but not necessarily orthogonal
- □ ICA removes correlations and higher order dependence

Goal of PCA

- Compress the data so that each dimension contains as much information as possible
- Maximize variability (second moment)
- Each component is orthogonal
- PCA removes correlations, but not higher order dependence
- ☐ The **first few components** are most important

- ☐ Identify the independent parts that make up the data
- Maximize kurtosis (fourth moment)
- Each component is statistically independent, but not necessarily orthogonal
- ☐ ICA removes correlations and higher order dependence
- **All components** are equally important

Multidimensional scaling (MDS)

Suppose you knew the **distances** between all major US cities

Could you figure out the coordinate locations of each city?

Given a distance matrix, MDS tries to recover low-dimensional coordinates such that the distances are preserved

X	Boston	NYC	DC	Miami	Chicago	Seattle	San.Francisco	Los.Angles	Denver
Boston	0	206	429	1504	963	2976	3095	2979	1949
NYC	206	0	223	1308	802	2815	2934	2786	1771
DC	429	223	0	1075	671	2684	2799	2631	1616
Miami	1504	1308	1075	0	1329	2373	3053	2687	2037
Chicago	963	802	671	1329	0	2013	2142	2054	996
Seattle	2976	2815	2684	2373	2013	0	808	1131	1307
San Francisco	3095	2934	2799	3053	2142	808	0	379	1235
Los Angles	2979	2786	2631	2687	2054	1131	379	0	1059
Denver	1949	1771	1616	2037	996	1307	1235	1059	0

MDS moves objects around in the space defined (e.g. R^2) and checks how well the distances between the objects can be reproduced by the new configuration.

It wants to minimize goodness-of-fit measure call stress

$$stress = \sqrt{\frac{\sum (d_{ij} - \hat{d}_{ij})^2}{\sum d_{ij}^2}}$$

Multidimensional scaling: algorithm

Steps of a Classical MDS algorithm:

Classical MDS uses the fact that the coordinate matrix can be derived by eigenvalue decomposition from B=XX'. And the matrix B can be computed from proximity matrix D by using double centering. [2]

- 1. Set up the squared proximity matrix $D^{(2)} = \left[d_{ij}^2
 ight]$
- 2. Apply double centering: $B=-\frac{1}{2}JD^{(2)}J$ using the centering matrix $J=I-\frac{1}{n}11'$, where n is the number of objects.
- 3. Determine the m largest eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ and corresponding eigenvectors e_1, e_2, \ldots, e_m of B (where m is the number of dimensions desired for the output).
- 4. Now, $X=E_m\Lambda_m^{1/2}$, where E_m is the matrix of m eigenvectors and Λ_m is the diagonal matrix of m eigenvalues of B.

Classical MDS assumes Euclidean distances. So this is not applicable for direct dissimilarity ratings.

Double centering means subtracting the mean from each row and column

Exercise: implement MDS (mds.Rmd)