MATH 381 Section 6.5 Generalized Permutations and Combinations

Prof. Olivia Dumitrescu

1 April 2024

Section 6.5 Permutations with Repetitions

Theorem 0.1 The number of r-permutations of a set of n-objects with reptition allowed is n^r .

Combinations with Repetitions

Theorem 0.2 There are $\binom{n+r-1}{r} = \binom{n+r-1}{n-1}$ number of r-combinations from a set with n elements when repetition of elements is allowed.

Remark Recall that Gauss' formula for the sum of a series up to n gives the number of lattice points in triangle.

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}=\binom{n+1}{2}$$

Theorem 0.3 Say we have a hyperplane in \mathbb{R}^n

$$x_1 + x_2 + x_3 + \dots + x_n = d$$

Then the number of integer lattice points is

$$\binom{d+n}{n} \quad \dim_k k[x_1, \dots, x_n]$$
$$\binom{d+2}{2} = \frac{(d+2)(d+1)}{2} = 1 + 2 + \dots + (d+1)$$

the space of polynomials in n variables x_1, \ldots, x_n of degree $\leq d$ is a vector space of dimension

 $\binom{n+d}{n} = \binom{n+d}{d}$

Corollary 0.4 The number of lattice points with non-negative integer coefficients inside the hyperplane is

$$\binom{n+d-1}{n-1} = \binom{n+d}{n} - \binom{n+d-1}{n}$$

Corollary 0.5 i.e. homogeneous polynomial in n+1 variables x_0, x_1, \ldots, x_n of total degree d forms a vector space $\binom{n+d}{n}$.

$$a + bx + cy + dxy + ex^2 + fy^2$$
 $\dim_k k[x, y]_{\leq d=2} = \binom{2+2}{2} = 6$

Example How many solutions with non-negative integers are there to $x_1 + x_2 + x_3 = 11$?

1.

$$\binom{11+3}{3} - \binom{10+3}{3} = \binom{13}{2}$$

- 2. Number of ways to select 11 items from a set with 3 elements so that
 - x_1 of first element
 - x_2 second element
 - x_3 third element

Permutations with Indistinguishable Objects

Example How many different words do we have by rearranging the word SUCCESS?

$$\binom{7}{3} \binom{4}{2} \binom{2}{1} \binom{1}{1} = \frac{7!}{3!2!}$$

Theorem 0.6 The number of different permutations of n objects

 $n_1 = Indistinguishable objects of type 1$

 $n_2 = Indistinguishable objects of type 2$

:

 $n_k = Indistinguishable objects of type k$

$$\frac{n!}{n_1!n_2!n_3!\dots n_k!}$$

Example What is the number of ways to distribute hands of 5 cards to 4 players from a standard deck of 52 cards?

$$\binom{52}{5}\binom{47}{5}\binom{42}{5}\binom{37}{5}$$

Theorem 0.7 The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_i objects are in box i

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

Definition The Striling Numbers

S(n, j) = number of ways to distribute n distinguishable objects into j indistinguishable boxes. A closed formula is not known.

Theorem 0.8

$$S(n,j) = \frac{1}{j!} \cdot \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n$$

so the number of ways to distribute n distinguishable objects into k Indistinguishable boxes equals

$$\sum_{j=1}^{k} S(n,j) = \sum_{j=1}^{k} \frac{1}{j!} \cdot \sum_{i=0}^{j-1} (-1)^{i} {j \choose i} (j-i)^{n}$$