WHAT IS CLAIMED IS:

1. A compound represented by formula I:

$$(R^2)_2$$
 R^8
 R^9
 $C(O)N^{-R^5}$
 $(CH_2)_n(CR^6R^7)_mZ$

or a pharmaceutically acceptable salt or solvate thereof, wherein:

R¹ represents H or is independently selected from the group consisting of:

- a) OH, halo, CO₂R^a, C(O)NR^bR^c, NR^bR^c, CN or S(O)_pR^d;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, OC_{1-10} alkyl, OC_{3-10} alkenyl and OC_{3-10} alkynyl, said groups being optionally substituted with:
 - 1-5 halo groups up to a perhaloalkyl group;
- 10 (2) 1 oxo group;

5

15

20-

25

- (3) 1-2 OH groups;
- (4) 1-2 C_{1-10} alkoxy groups, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO_2R^a group;
- (5) $1 \text{ CO}_2 \text{R}^a \text{ or S(O)}_p \text{R}^d$;
- (6) 1-2 Aryl, Hetcy or HAR groups, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1 OH, CO₂R^a, CN, S(O)_pR^d, NO₂ or C(O)NR^bR^c,
 - (c) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with:

1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups; and

(d) 1-2 phenyl rings, each of which is optionally substituted as follow: 1-5 balo groups up to perhalo, 1-3 C₁₋₁₀alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO₂R^a groups;

c) Aryl, HAR, Hetcy, -O-Aryl, -O-HAR and -O-Hetcy, each optionally substituted as set forth below:

(1) 1-3 C₁₋₁₀alkyl, C₂₋₁₀alkenyl or C₂₋₁₀alkynyl groups optionally substituted with 1-5 halo groups; 1-2 OH groups; phenyl optionally substituted with 1-3 halo, C₁₋₆ alkyl or C₁₋₆ alkoxy groups, the alkyl and alkoxy groups being further optionally substituted with 1-3 halo groups; CO₂R^a; CN or S(O)_pR^d groups; and

20

25

30

- (2) 1-3 C_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH; phenyl optionally substituted with 1-3 halo, C_{1-6} alkyl or C_{1-6} alkoxy groups, the alkyl and alkoxy groups being further optionally substituted with 1-3 halo groups; CO_2R^a ; CN or $S(O)_0R^d$ groups;
- said Aryl, HAR, Hetcy -O-Aryl, -O-HAR and -O-Hetcy group c) being further optionally substituted on carbon by a group selected from the group consisting of;
 - (3) 1-5 halo groups;
 - (4) 1-2 OH groups;
 - (5) $1 S(O)_{p}R^{d}$, NO_{2} or CN group;
 - (6) $1-2 \text{ CO}_2\text{R}^a$;
 - (7) $-C(O)NR^bR^c$;

each R² represents H or is independently selected from the group consisting of:

- a) OH, halo, CO₂R^a, C(O)NR^bR^c, NR^bR^c, CN or S(O)_pR^d;
- 15 c) C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, OC_{1-10} alkyl, OC_{3-10} alkenyl and OC_{3-10} alkynyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 oxo group;
 - (3) 1 OH group;
 - (4) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO₂R^a group;
 - (5) $1 \text{ CO}_2\text{R}^a \text{ or S(O)}_p\text{R}^d$;
 - (6) 1 Aryl, Hetcy or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1 OH, CO_2R^a , CN, $S(O)_pR^d$, NO_2 or $C(O)NR^bR^c$,
 - (c) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with:

1-5 halo, up to perhaloalkyl, and 1-2-OH or CO₂R^a groups; and

follows: 1-5 halo groups up to perhalo; 1-3 C₁₋₁₀alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo; and 1-2 hydroxy or CO₂R^a groups;

- c) Aryl, HAR, Hetcy, -O-Aryl, -O-HAR and -O-Hetcy, each optionally substituted as set forth below:
 - (1) 1-3 C_{1-10} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO_2R^a , CN or $S(O)_pR^d$ groups;

(2) 1-3 C	r_{1-10} alkoxy groups, the alkyl portion of which is optionally substituted with
1-5 halo groups, 1-2 (OH, phenyl, CO ₂ R ^a , CN or S(O) _p R ^d groups;
said Aryl, HAR or Hetcy grou	up c) being further optionally substituted on carbon by a group selected
from the group consisting of;	

- (3) 1-5 halo groups up to perhalo;
- (4) 1 OH group;
- (5) 1 S(O)_pR^d, NO₂ or CN group;
- (6) $1 \text{ CO}_2 R^a$;
- R^3 is selected from the group consisting of:
 - a) C₁₋₁₀alkyl or C₂₋₁₀alkenyl, each optionally substituted with
 - 1-5 halo groups up to perhalo;
 - 1-2 OH, C₁₋₃alkoxy or haloC₁₋₃alkoxy groups;
 - 1-2 NR^cR^d groups; and
 - 1-2 Aryl, HAR or Hetcy groups, each optionally substituted with 1-3 halo groups and 1-2 groups selected from CN, NO₂, C₁₋₃alkyl, haloC₁₋₃alkyl, C₁₋₃alkoxy and haloC₁₋₃ alkoxy groups,
 - b) Aryl, HAR or Hetcy, each optionally substituted with 1-3 halo groups and 1-2 groups selected from CN, NO₂, C₁₋₃alkyl, haloC₁₋₃alkyl, C₁₋₃alkoxy and haloC₁₋₃ alkoxy groups;
- 20 R⁴ is independently selected from the group consisting of: Aryl, HAR or Hetcy, each optionally substituted as set forth below:
 - (1) 1-3 C_{1-14} alkyl, C_{2-10} alkenyl or C_{2-10} alkynyl groups optionally substituted with 1-5 halo groups, 1-2 OH, CO_2R^a , CN or $S(O)_pR^d$ groups or phenyl optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;
 - (2) 1-3 C_{1-10} alkoxy or C_{3-10} alkenyloxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups, 1-2 OH, CO_2R^a , CN, $S(O)_pR^d$, and phenyl optionally substituted as follows: 1-5 halo groups up to perhalo; 1-3 C_{1-10} alkyl or alkoxy groups, each being further optionally substituted with 1-5 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;
 - (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows:
 - (i) 1-3 halo groups;
 - (ii) 1-2 C₁₋₁₀alkyl, C₂₋₁₀alkenyl or C₂₋₁₀alkynyl groups each optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO₂R^a, CN or S(O)_pR^d groups;

25

5

· 15

15

25

30

- (iii) 1-2 C₁₋₁₀alkoxy groups the alkyl portion of which being optionally substituted with 1-5 halo groups, 1-2 OH, phenyl, CO₂R^a, CN or S(O)_pR^d groups; and
- (iv) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups;
- said Aryl, HAR or Hetcy group R⁴ being further optionally substituted on carbon by a group selected from the group consisting of;
 - (4) 1-5 halo groups;
 - (5) 1-2 OH groups;
 - (6) $1 \text{ S(O)}_{p}R^{d}$, NO₂ or CN group;
 - (7) $1-2 \text{ CO}_2\text{R}^a$;

R⁵ represents H or C₁₋₆ alkyl;

R⁶ is selected from the group consisting of H, OH, F or C₁₋₃alkyl;

R⁷ is H or F, or R⁶ and R⁷ are taken in combination and represent oxo;

 R^8 represents H or C_{1-6} alkyl, optionally substituted with OH and 1-5 halo groups up to perhalo;

 $m R^9$ represents H, halo, OH, C $_{1\text{-}6}$ alkyl, optionally substituted with 1-5 halo groups up to perhalo, or $\rm C_{1\text{-}6}$ alkoxy, optionally substituted with 1-3 halo groups up to perhalo,

or when R⁹ is ortho to the benzylic group, R⁸ and R⁹ can be taken together and represent a - (CH₂)₂₋₄- or a -O-(CH₂)₁₋₃- group;

 R^a is H or C_{1-10} alkyl, optionally substituted with phenyl, OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₆alkyl and 1-3 halo groups;

R^b is H or C₁₋₁₀alkyl;

R° is H or is independently selected from:

- (a) C₁₋₁₀alkyl, optionally substituted with OH, OC₁₋₆alkyl, CO₂H, CO₂C₁₋₆alkyl, and 1-3 halo groups;
 - (b) Aryl or Ar- C_{1-6} alkyl, each optionally substituted with 1-5 halos and 1-3 members selected from the group consisting of: CN, OH, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

- (c) Hetcy or Hetcy- C_{1-6} alkyl, optionally substituted with 1-5 halo groups and 1-3 groups selected from: oxo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo; and
- (d) HAR or HAR-C₁₋₆alkyl, optionally substituted with 1-5 halo groups and 1 3 groups selected from: C₁₋₁₀alkyl and OC₁₋₁₀ alkyl, said alkyl and alkoxy being further optionally substituted with 1-5 halo groups up to perhalo;

 R^d is C_{1-10} alkyl, Aryl or Ar- C_{1-10} alkyl; m is an integer selected from 0, 1 and 2; n is an integer selected from 0 to 6; p is an integer selected from 0, 1 and 2, and p when at least one of p and p is other than 0, p is selected from 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl), and when both p and p are 0, p is selected from 5-tetrazolyl and 5-(2-oxo-1,3,4-oxadiazolyl).

15

10

- 2. A compound in accordance with claim 1 wherein \mathbb{R}^1 is selected from the group consisting of: H, halo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and O-alkyl groups being optionally substituted with 1-5 halo groups up to a perhaloalkyl or perhaloalkoxy.
- 3. A compound in accordance with claim 2 wherein R¹ is selected from the group consisting of: H, halo, C1-4 alkyl, C1-4 alkoxy, said alkyl and alkoxy being optionally substituted with 1-3 halo groups.
- 4. A compound in accordance with claim 1 wherein each R² represents H or is independently selected from the group consisting of:
 - a) halo or $S(O)_pR^d$; wherein p is 2 and R^d represents C_{1-10} alkyl;
 - b) C_{1-10} alkyl, C_{2-10} alkenyl, OC_{1-10} alkyl and OC_{3-10} alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;

30 (2) $1 C_1$

- (2) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or perhaloalkoxy, 1 OH or CO₂R^a group;
- (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with:
- 35 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO₂R^a groups;

20

25

30

- c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C₁₋₁₀alkyl groups optionally substituted with 1-5 halo groups;
 - (2) $1-2 C_{1-10}$ alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups;
- 5 said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo.
 - 5. A compound in accordance with claim 4 wherein one R² group represents H and the other represents H or is selected from the group consisting of:
 - a) halo or S(O)_pR^d; wherein p is 2 and R^d represents C_{I-10}alkyl;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, OC_{1-10} alkyl or OC_{3-10} alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or a perhaloalkoxy, 1 OH or CO₂R^a group;
 - (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1-2 C_{1-10} alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO_2R^a groups;
 - c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C₁₋₁₀alkyl groups optionally substituted with 1-5 halo groups;
 - (2) 1-2 C₁₋₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups;

said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo. Within this subset, all other variables are as originally defined with respect to formula I.

- 6. A compound in accordance with claim 5 wherein:

 one R² group represents H and the other represents H or a member selected from the group consisting of:
 - a) halo or $S(O)_pR^d$; wherein p is 2 and R^d represents $C_{1-2}alkyl$;
- b) C_{1-4} alkyl, C_{2-4} alkenyl, OC_{1-4} alkyl or OC_{3-4} alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to a perhaloalkyl group;
 - (2) 1 C₁₋₄alkoxy group, optionally substituted with: up to 3 halo or a perhaloalkoxy group;
 - (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-3 halo groups,

10

15

20

25

30

1. 10.00

- (b) 1 C₁₋₄alkyl or alkoxy group, each optionally substituted with: 1-3 halo, up to perhaloalkyl, groups;
 - c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C₁₋₄alkyl groups optionally substituted with 1-3 halo groups;
- (2) 1-2 C₁₋₄alkoxy groups, the alkyl portion of which is optionally substituted with 1-3 halo groups;

said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo.

- 7. A compound in accordance with claim 1 wherein R³ is selected from the group consisting of:
 - a) C₁₋₆alkyl optionally substituted with:
 - 1-3 halo groups up to perhalo;
 - 1 OH, C₁₋₃alkoxy or haloC₁₋₃alkoxy group;
 - 1 NR^cR^d group; and
- 1 Aryl or HAR group, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C₁₋₃alkyl, haloC₁₋₃alkyl, C₁₋₃alkoxy and haloC₁₋₃ alkoxy groups,
- b) Aryl or HAR, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy groups.
- 8. A compound in accordance with claim 7 wherein R³ is selected from the group consisting of:
 - a) C₁₋₆alkyl optionally substituted with:
 - 1-3 halo groups up to perhalo;
 - 1 C₁₋₃alkoxy or haloC₁₋₃alkoxy group;
- 1 NR°R^d group; wherein R° and R^d are independently selected from H, C₁₋₃alkyl and phenyl; and
- 1 Aryl or HAR group, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy groups,
- b) Aryl or HAR, each optionally substituted with 1-3 halo groups and 1 group selected from: C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy.
 - 9. A compound in accordance with claim 1 wherein:

R⁴ represents an Aryl or HAR group, each optionally substituted as set forth below:

(1) 1-2 C₁₋₁₀alkyl or C₂₋₁₀alkenyl groups, which are optionally substituted with 1-3 halo groups, or phenyl optionally substituted with 1-2 halo, C₁₋₄alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo groups;

10

15

25

(2)	1-2 C ₁₋₁₀ alkoxy or C ₃₋₁₀ alkenyloxy groups, which are optionally substituted with
1-3 halo group	s, 1-2 OH or S(O) _p R ^d , and phenyl optionally substituted as follows: 1-3 halo
groups up to p	erhalo; 1-2 C ₁₋₆ alkyl or alkoxy groups, each being further optionally substituted
with 1-3 halo u	up to perhalo, or 1-2 hydroxy or CO ₂ R ^a groups;

- (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows:
 - (i) 1-3 halo groups;
 - (ii) 1-2 C₁₋₃alkyl or C₂₋₄alkenyl groups each optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO₂R^a, CN and S(O)_pR^d;
 - (iii) 1-2 C_{1-3} alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO_2R^a , CN or $S(O)_pR^d$; and
- (iv) 1-2 CO₂R^a, S(O)_pR^d, CN, NR^bR^c, NO₂ or OH groups; said Aryl, HAR or Hetcy group R⁴ being further optionally substituted on carbon by a group selected from the group consisting of;
 - (4) 1-5 halo groups;
 - (5) 1-2 OH groups;
 - (6) $1 S(O)_p R^d$, NO_2 or CN group.
- 20 10. A compound in accordance with claim 1 wherein R⁵ represents H or CH₃.
 - 11. A compound in accordance with claim 1 wherein R^8 is selected from the group consisting of H and C_{1-3} alkyl.
 - 12. A compound in accordance with claim 1 wherein R⁶ and R⁷ represent H.
 - 13. A compound in accordance with claim 9 wherein R⁹ represents H.
- 14. A compound in accordance with claim 1 wherein m is 0 and n is an integer 30 selected from 0 to 2.
 - 15. A compound in accordance with claim 1 wherein when n is 1 or 2, Z is selected from CO_2R^a and 5-tetrazolyl, when both m and n are 0, Z is 5-tetrazolyl.
 - 16. A compound in accordance with claim 1 wherein:

 R^1 is selected from the group consisting of: H, halo, C_{1-10} alkyl and OC_{1-10} alkyl, said alkyl and O-alkyl groups being optionally substituted with 1-5 halo groups up to a perhaloalkyl or perhaloalkoxy;

each R² represents H or is independently selected from the group consisting of:

- a) halo or S(O)_pR^d; wherein p is 2 and R^d represents C₁₋₁₀alkyl;
- b) C_{1-10} alkyl, C_{2-10} alkenyl, OC_{1-10} alkyl and OC_{3-10} alkenyl, said groups being optionally substituted with:
 - (1) 1-5 halo groups up to perhaloalkyl;
 - (2) 1 C₁₋₁₀alkoxy group, each optionally substituted with: up to five halo or perhaloalkoxy, 1 OH or CO₂R^a group;
 - (3) 1 Aryl or HAR group, each optionally substituted as follows:
 - (a) 1-5 halo groups,
 - (b) 1-2 C₁₋₁₀alkyl or alkoxy groups, each optionally substituted with: 1-5 halo, up to perhaloalkyl, and 1-2 OH or CO₂R^a

15 groups;

5

10

- c) Aryl or HAR, each optionally substituted with:
 - (1) 1-2 C₁₋₁₀alkyl groups optionally substituted with 1-5 halo groups;
- (2) 1-2 C₁₋₁₀alkoxy groups, the alkyl portion of which is optionally substituted with 1-5 halo groups;
- said Aryl or HAR being further optionally substituted on carbon by 1-3 halo groups; up to perhalo;

R³ is selected from the group consisting of:

a) C₁₋₆alkyl optionally substituted with:

1-3 halo groups up to perhalo;

1 OH, C₁₋₃alkoxy or haloC₁₋₃alkoxy group;

1 NR^cR^d group; and

1 Aryl or HAR group, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy;

b) Aryl or HAR, each optionally substituted with 1-3 halo groups and 1-2 groups selected from C_{1-3} alkyl, halo C_{1-3} alkyl, C_{1-3} alkoxy and halo C_{1-3} alkoxy;

R⁴ represents an Aryl or HAR group, each optionally substituted as set forth below:

- (1) 1-2 C_{1-10} alkyl or C_{2-10} alkenyl groups, which are optionally substituted with 1-3 halo groups, or phenyl optionally substituted with 1-2 halo, C_{1-4} alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo groups;
- (2) 1-2 C_{1-10} alkoxy or C_{3-10} alkenyloxy groups, which are optionally substituted with 1-3 halo groups, 1-2 OH or $S(O)_pR^d$, and phenyl optionally substituted as follows: 1-3 halo

30

groups up to perhalo; 1-2 C_{1-6} alkyl or alkoxy groups, each being further optionally substituted with 1-3 halo up to perhalo, or 1-2 hydroxy or CO_2R^a groups;

- (3) 1-2 Aryl, HAR or Hetcy, OAryl, OHAR or OHetcy groups, each optionally substituted as follows:
 - (i) 1-3 halo groups;
 - (ii) 1-2 C₁₋₃alkyl or C₂₋₄alkenyl groups each optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO₂R^a, CN and S(O)_pR^d;
 - (iii) 1-2 C_{1-3} alkoxy groups the alkyl portion of which being optionally substituted with 1-3 halo groups, and 1 of OH, phenyl, CO_2R^a , CN and $S(O)_pR^d$; and
- (iv) $1-2 \text{ CO}_2\text{R}^a$, $S(O)_p\text{R}^d$, CN, $N\text{R}^b\text{R}^c$, NO_2 or OH groups; said Aryl, HAR or Hetcy group R^4 being further optionally substituted on carbon by a group selected from the group consisting of;
 - (4) 1-5 halo groups;
 - (5) 1-2 OH groups;
 - (6) 1 S(O)_pR^d, NO₂ or CN group;

R⁵ represents H or CH₃:

R⁸ is selected from the group consisting of H and C₁₋₃alkyl;

R⁶, R⁷ and R⁹ represents H;

and m is 0 and n is an integer selected from 0 to 2, such that when n is 1 or 2, Z is selected from CO_2R^a and 5-tetrazolyl, and when both m and n are 0, Z is 5-tetrazolyl.

- 17. A compound in accordance with claim 16 wherein R¹ is selected from the group consisting of: H, halo, C1-4 alkyl, C1-4 alkoxy, said alkyl and alkoxy being optionally substituted with 1-3 halo groups.
 - 18. A compound in accordance with claim 1 selected from Table 1a or 1b below:

30

5

10

, 					
22	Cl	Cl	H	-Me	CI
23	Cl	C1	H	-Me	OCH ₂ CH=CH ₂
24	Cl	Cl	H	-Me	
26	-CF ₃	Н	H	-Me	— (_)-cı
27	-OnPr	Н	H	-Me	—⟨>OCF ₃
28	Cl	Cl	Н	-Me	—()-он
31	Cl	Cl	Н	-Et	→CDOCF ₃
32	Cl	Cl	Н	-Me	→ ○- ◇
33	Cl	Cl	Н	-Me	
34	Cl	Cl	н	-Me	-(_)-OiPr
35	Cl	Cl ·	Н	-Me	
36	Cl	Cl	Н	-Ме	
37	Cl	Cl	Н	-Me	-_t-Bu
38	Cl	Cl	н	-Me	—<>−OCH ₃
39	-ОМе	н	Н	-Ме	Me Me Me
40	Cl	Cl	н	-Me	— (_)−CF ₃
41	Cl	Cl	Н		—(_)-OCF₃
42	-OMe	Н	Н	-Me	
43	Cl	Н	-OnBu	-Me	()-OCF ₃
44 ·	Н	-OnPr	Н	-Me	⟨>OCH ₂ CF ₃
45	Cl	Cl	Н	-Me	OCF ₃
46	Cl	Cl	Н	-Me	-CI
47	Cl	Cl	Н	-CH ₂ CH ₂ F	-()-OCF ₃
48	Cl	Cl	Н	iPr	—()-OCF ₃

49	Cl	Cl	Н	-(CH ₂) ₂ OMe	-C)-OCF ₃
50	Cl	Cl ·	Н	-(CH ₂) ₂ NMe ₂	→C_>OCF ₃
51	CF ₃	Н	H	Me	
52	CF ₃	Н	CF ₃	Me	→CD-OCF3
53	Cl	Cl	Н	-(CH ₂) ₃ OMe	→CD→OCF ₃
54	CF₃	Н	н	Ме	Me Me Me
55	CF ₃	Н	Br	Me	——————————————————————————————————————
56	Cl	Cl	Н	-(CH ₂) ₃ NMe ₂	→CD-OCF3
57	ОМе	Н	Н	Ме	
58	Cl	H	ОМе	Me	—⟨>−OCF ₃
59	CF ₃	Н	Et	Me	—⟨>OCF ₃
60	Cl	Н	ОМе	Me	
61	Н	-OnPr	Н	Me	-CH ₂ CHF ₂
62	CF ₃	Н	-CH=CH ₂	Me	— ⟨ >−OCF ₃
63	CF ₃	Н	SO ₂ Me	; Me	—<≻ocf₃
64	CF ₃	H	H	Me	————nBu
65	CF₃	· H	Et	Me	
66	CF ₃	Н	Me	Me	— (_)−0CF ₃
67	CF ₃	Н	Et	Me	— F
68	CF ₃	Н	Et	Me	———tBu
69	Cl	Н	OiPr	Me	— (_) −0CF ₃
70	Cl	Н	OnPr	Me	————OCF₃
71	CF ₃	н		Me	— (_)−0CF ₃
72	Cl	Н	OEt	Me	—()-OCF ₃
73	CF₃	Н	Н	. Me	Me Me
74	Cl	Н	ОМе	Me	———tBu
75	CF ₃	Н	Et	Me	————Me

76	OMe	Н	Н	. Me	Me Me
77	CF ₃	H	OnBu	Me	———OCF ₃
78	CF ₃	н	Et	Me	———iPr
79	L	Н	ОМе	Me	OCF ₃
80	F	Н	Н	Me	
81	CF ₃	Н	OMe	Me	→CD-OCF ₃
82	Cl	Н	ОН	Me	→CD-OCF ₃
83	ОМе	Н	H	Me	———iPr Me
84	CF ₃	Н	OnPr	Me	-C)-OCF ₃
85	CF ₃	Н	OMe	Me	———tBu
86	CF₃	Н	OMe	Me	tBu
87	н	Н	OnPr	Me	→CD-OCF ₃
88	CF ₃	Н	OnPr	Me	———tBu
90	CF₃	H	OEt	Me	-√_>-OCF ₃
91	CF₃	H	Et	Et	———tBu
92	CF₃	Н	Et	Et	— ⟨ _>-ocf ₃
95	CF ₃	Н	Cl	Me	————OCF₃
96	CF ₃	H	Н	Me	———tBu
97	H	OnPr	H	Me	

Cpd	R ¹	R ^{2a}	R ^{2b}	R ³	R ⁴
15	Н	Cl	Н	Me	— (_)−0CF ₃
17	Cl	Cl	Н	Me	— (_) −OCF ₃
21	ОМе	Н	Н	Ме	-CI
25	Cl	Cl	Н	Me	
29	CF ₃	Н	Н	Me	— (_)−cı
30	CF₃	Н	Н	Me	-⟨ CF ₃
89	Cl	H	OnPr	Et	—⟨_>-OCF ₃
93	Н	Н	OnPr	Me	—⟨>-OCF ₃
94	CF ₃	Н	Н	Me	—()-CF ₃

or a pharmaceutically acceptable salt or solvate thereof.

- 19. A pharmaceutical composition comprising a compound in accordance with claim 1 in combination with a pharmaceutically acceptable carrier.
 - 20. A method of treating type 2 diabetes mellitus in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with claim 1 in an amount that is effective to treat said type 2 diabetes mellitus.
 - 21. A method of delaying the onset of type 2 diabetes mellitus in a mammalian patient in need thereof, comprising administering to the patient a compound in accordance with claim 1 in an amount that is effective to delay the onset of said type 2 diabetes mellitus.
- 15 22. A method of treating hyperglycemia, diabetes or insulin resistance in a mammalian patient in need of such treatment which comprises administering to said patient an effective amount of a compound in accordance with claim 1.
- 23. A method of treating non-insulin dependent diabetes mellitus in a mammalian patient in need of such treatment comprising administering to the patient an anti-diabetic effective amount of a compound in accordance with claim 1.

WO 2005/065680 PCT/US2004/042068

24. A method of treating obesity in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with claim 1 in an amount that is effective to treat obesity.

25. A method of treating Syndrome X in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with claim 1 in an amount that is effective to treat Syndrome X.

- 26. A method of treating a lipid disorder selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with claim 1 in an amount that is effective to treat said lipid disorder.
- 27. A method of treating atherosclerosis in a mammalian patient in need of such treatment, comprising administering to said patient a compound in accordance with claim 1 in an amount effective to treat atherosclerosis.
- 28. A method of treating a condition selected from the group consisting of: (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalina patient in need of such treatment, comprising administering to the patient a compound in accordance with Claim 1 in an amount that is effective to treat said condition.
- 29. A method of delaying the onset of a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component in a mammalina patient in need of such treatment, comprising administering to the patient a

WO 2005/065680 PCT/US2004/042068

compound in accordance with Claim 1 in an amount that is effective to delay the onset of said condition.

- 30. A method of reducing the risk of developing a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20)

 Syndrome X, and other conditions and disorders where insulin resistance is a component in a mammalian patient in need of such treatment, comprising administering to the patient a compound in accordance with Claim 1 in an amount that is effective to reduce the risk of developing said condition.
- 15 31. A method of treating a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) Syndrome X, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment, comprising administering to the patient an effective amount of a compound as defined in Claim 1, and a compound selected from the group consisting of:

(a) DP-IV inhibitors;

- (b) insulin sensitizers selected from the group consisting of (i) PPAR agonists and (ii) biguanides;
 - (c) insulin and insulin mimetics;
 - (d) sulfonylureas and other insulin secretagogues;
 - (e) α-glucosidase inhibitors;
 - (f) glucagon receptor antagonists;
 - (g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists;
 - (h) GIP, GIP mimetics, and GIP receptor agonists;
 - (i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists;
 - (i) cholesterol lowering agents selected from the group consisting of

- 106 -

30

35

10

15

25

30

- (i) HMG-CoA reductase inhibitors, (ii) sequestrants, (iii) nicotinyl alcohol, nicotinic acid and salts thereof, (iv) PPARα agonists, (v) PPARα/γ dual agonists, (vi) inhibitors of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitors, (viii) anti-oxidants and (ix) LXR modulators;
 - (k) PPARδ agonists;
 - (1) antiobesity compounds;
 - (m) an ileal bile acid transporter inhibitor
 - (n) anti-inflammatory agents excluding glucocorticoids; and
 - (o) protein tyrosine phosphatase-1B (PTP-1B) inhibitors,
- said compounds being administered to the patient in an amount that is effective to treat said condition.
- 32. A method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, in a mammalina patient in need of such treatment, comprising administering to the patient a therapeutically effective amount of a compound as defined in Claim 1 and an HMG-CoA reductase inhibitor.
- 33. A method in accordance with Claim 33 wherein the HMG-CoA reductase inhibitor is a statin.
 - 34. A method in accordance with Claim 34 wherein the statin is selected from the group consisting of lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, ZD-4522 and rivastatin.
 - 35. A method of reducing the risk of developing a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia, and the sequelae of such conditions comprising administering to a mammalian patient in need of such treatment a therapeutically effective amount of a compound as defined in Claim 1 and an HMG-CoA reductase inhibitor.
 - 36. A method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient an effective amount of a compound as defined in Claim 1, and an HMG-CoA reductase inhibitor.

20

25

Constant Constant

- 37. A method in accordance with Claim 37, wherein the HMG-CoA reductase inhibitor is a statin.
- 5 38. A method in accordance with claim 38 wherein the statin is selected from the group consisting of: lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, itavastatin, ZD-4522 and rivastatin.
 - 39. A method in accordance with claim 39 wherein the statin is simvastatin.
 - 40. A method in accordance with claim 40 further comprising administering a cholesterol absorption inhibitor.
- 41. A method in accordance with claim 41 wherein the cholesterol absorption inhibitor is ezetimibe.
 - 42. A method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment comprising administering to said patient an effective amount of a compound as defined in Claim 1, and a cholesterol absorption inhibitor.
 - 43. A method in accordance with claim 43 wherein the cholesterol absorption inhibitor is ezetimibe.
 - 44. A pharmaceutical composition comprising
 - (1) a compound according to Claim 1,
 - (2) a compound selected from the group consisting of:
 - (a) DP-IV inhibitors;
- (b) insulin sensitizers selected from the group consisting of (i) PPAR agonists and (ii) biguanides;
 - (c) insulin and insulin mimetics;
 - (d) sulfonylureas and other insulin secretagogues;
 - (e) α-glucosidase inhibitors;
 - (f) glucagon receptor antagonists;
- 35 (g) GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists;

- (h) GIP, GIP mimetics, and GIP receptor agonists;
- (i) PACAP, PACAP mimetics, and PACAP receptor 3 agonists;
- (j) cholesterol lowering agents selected from the group consisting of (i) HMG-CoA reductase inhibitors, (ii) sequestrants, (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonists, (v) PPARα/γ dual agonists, (vi) inhibitors of cholesterol absorption, (vii) acyl CoA:cholesterol acyltransferase inhibitors, (viii) anti-oxidants and (ix) LXR modulators;
 - (k) PPARδ agonists;
 - (l) antiobesity compounds;
 - (m) an ileal bile acid transporter inhibitor;
 - (n) anti-inflammatory agents other than glucocorticoids; and
 - (o) protein tyrosine phosphatase-1B (PTP-1B) inhibitors; and
 - (3) a pharmaceutically acceptable carrier.