Постановка задачи

Цель работы — изучение применимости метода переноса обучения к выбранной (целевой) задаче, где целевая задача — распознавание 101-ог класса на данных **101_ObjectCategories.**

В качестве исходной задачи рассмативалась задача распознавания 1000-и класссов с помощью VGG16.

Описание программной реализации

Разработан скрипт реализующий:

- Загрузку данных с помощью модуля Pillow. Входные изображения хранятся в формате .jpeg и имеют 3 цветовых канала R,G,B. Преобразование входных данных: нормализация ([0..255] → [0..1]), приведение размера к 128х128, разбиение на тренировочную и тестовую выборки в соотношении 70% к 30%.
- 2. Загрузку основных модулей Keras и TensorFlow для дальнейшей работы, установка начальных параметров. Описание тестируемых моделей глубоких сверточных сетей.
- 3. Загрузку стандартной реализации VGG16 (keras. applications.VGG16) с заранее обученными весами.

Тестовые конфигурации сетей

В качестве исходной задачи использовалась сеть — VGG16 (http://www.cs.toronto.edu/~frossard/post/vgg16/) с обученными весами для сверточных слоев (https://github.com/fchollet/deep-learning-models/releases/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5).

рис. 1. Архитектура VGG16

Для решения целевой задачи исходный классификатор VGG16 заменили на классификаор распознающий 101 класс.

Описание экспериментов:

- 1. Замена классификатора исходной задачи для распознавания 101-ого класса, обучение нового классификатора на 101_ObjectCategories (веса в сверточных слоях заморожены), тестирование на 101_ObjectCategories
- 2. Замена классификатора исходной задачи для распознавания 101-ого класса, обучение всей сети на 101_ObjectCategories (веса в сверточных слоях проинициализированы обученными весами из исходной VGG16), тестирование на 101_ObjectCategories
- 3. Замена классификатора исходной задачи для распознавания 101-ого класса, обучение всей сети на 101_ObjectCategories, при этом веса сверточных слоев инициализируются произвольными значениями, используется только структура исходной VGG16. Тестирование на 101_ObjectCategories

Эксперименты

Тип	Параметры	Общее время выполнения (c)	Качество решения целевой задачи (точность на тестовом наборе %)
Использование модели, построенной для решения исходной задачи, в качестве фиксированного метода извлечения признаков при построении модели, решающей целевую задачу	Learning Rate = 0.01 Batch Size = 32	570	0.771
	Learning Rate = 0.005 Batch Size = 16	636	0.770
	Learning Rate = 0.005 Batch Size = 64	535	0.727
Тонкая настройка параметров модели, построенной для решения исходной задачи, с целью решения целевой	Learning Rate = 0.01 Batch Size = 32	1380	0.8
	Learning Rate = 0.005 Batch Size = 16	1588	0.8
	Learning Rate = 0.005 Batch Size = 64	1285	0.9
Использование структуры глубокой модели, построенной для решения исходной задачи, с целью обучения аналогичной модели для решения целевой задачи	Learning Rate = 0.01 Batch Size = 32	1374	0.559
	Learning Rate = 0.005 Batch Size = 16	1588	0.486
	Learning Rate = 0.005 Batch Size = 64	1277	0.515

Вводы:

Сеть иходной задачи с обученными весами (эксперименты 1, 2) показала лучшие результаты чем та же сеть, обученная на 101_ObjectCategories или более простая сеть обученная на 101_ObjectCategories (см. Лабораторная 3). Это объясняется тем, что загруженные веса обучались на выборке большого размера (значительно бельше, чем 101_ObjectCategories).

Наибольшая точность достигается при тонкой настройке параметров.