Introducción a la Lógica y la Computación

Mariana Badano Facundo Bustos Mauricio Tellechea Gonzalo Zigarán

FaMAF, 4 de septiembre de 2024

Contenidos estimados para hoy

- Reticulados
 - Reticulados acotados y complementados
 - Reticulados distributivos

- Álgebras de Boole
 - Leyes de De Morgan
 - Isomorfismos

Átomos e irreducibles

Reticulados acotados

Definición

Un *reticulado acotado* es una estructura $(L,\vee,\wedge,0,1)$ tal que (L,\vee,\wedge) es un reticulado, $0,1\in L$ y satisfacen que, para todo $x\in L$

$$x \wedge 0 = 0$$
 y $x \vee 1 = 1$.

Reticulados acotados

Definición

Un *reticulado acotado* es una estructura $(L, \vee, \wedge, 0, 1)$ tal que (L, \vee, \wedge) es un reticulado, $0, 1 \in L$ y satisfacen que, para todo $x \in L$

$$x \wedge 0 = 0$$
 y $x \vee 1 = 1$.

Notemos que $(P, \wedge, \vee, 0, 1)$ es un reticulado acotado sii si (P, \leq) es un reticulado con máximo 1 y mínimo 0, por lo que a veces nos referiremos indistintamente a uno u otra estructura.

Reticulados acotados

Definición

Un *reticulado acotado* es una estructura $(L, \vee, \wedge, 0, 1)$ tal que (L, \vee, \wedge) es un reticulado, $0, 1 \in L$ y satisfacen que, para todo $x \in L$

$$x \wedge 0 = 0$$
 y $x \vee 1 = 1$.

Notemos que $(P, \wedge, \vee, 0, 1)$ es un reticulado acotado sii si (P, \leq) es un reticulado con máximo 1 y mínimo 0, por lo que a veces nos referiremos indistintamente a uno u otra estructura.

Ejercicio

Probar que si $(L, \vee, \wedge, 0, 1)$ es un reticulado acotado entonces, para todo $x \in L$.

$$x \lor 0 = x \quad y \quad x \land 1 = x.$$

Reticulados complementados

Definición

Sea $\mathbf{L}=(L,\vee,\wedge,0,1)$ un reticulado acotado. Dados $a,b\in L$ diremos que b es *complemento* de a si

$$a \lor b = 1$$
 y $a \land b = 0$.

Nota: Un elemento puede no tener complemento o tener varios.

Reticulados complementados

Definición

Sea $\mathbf{L} = (L, \vee, \wedge, 0, 1)$ un reticulado acotado. Dados $a, b \in L$ diremos que b es *complemento* de a si

$$a \lor b = 1$$
 y $a \land b = 0$.

Nota: Un elemento puede no tener complemento o tener varios.

Definición

Un *reticulado complementado* es una estructura $(L,\vee,\wedge,\neg,0,1)$ tal que $(L,\vee,\wedge,0,1)$ es un reticulado acotado y \neg es una función unaria tal que, para todo $x\in L, \neg x$ es un complemento de x.

Reticulados complementados

Definición

Sea $\mathbf{L}=(L,\vee,\wedge,0,1)$ un reticulado acotado. Dados $a,b\in L$ diremos que b es *complemento* de a si

$$a \lor b = 1$$
 y $a \land b = 0$.

Nota: Un elemento puede no tener complemento o tener varios.

Definición

Un *reticulado complementado* es una estructura $(L,\vee,\wedge,\neg,0,1)$ tal que $(L,\vee,\wedge,0,1)$ es un reticulado acotado y \neg es una función unaria tal que, para todo $x\in L, \neg x$ es un complemento de x.

Nota: Esto no significa que un reticulado complementado todo elemento tiene un único complemento, sino que tiene al menos uno. La función \neg "elige" algún complemento para cada elemento de L.

Lema

Sea $L = (L, \vee, \wedge)$ un reticulado. Son equivalentes:

1 para todo $x, y, z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$;

Lema

Sea $\mathbf{L} = (L, \vee, \wedge)$ un reticulado. Son equivalentes:

- **1** para todo $x, y, z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$;
- **2** para todo $x, y, z \in L$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Lema

Sea $\mathbf{L} = (L, \vee, \wedge)$ un reticulado. Son equivalentes:

- **1** para todo $x, y, z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$;
- **2** para todo $x, y, z \in L$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Definición

Dado un reticulado $\mathbf{L}=(L,\vee,\wedge)$ decimos que es un *reticulado distributivo* si satisface cualquiera de las condiciones equivalentes del Lema anterior.

Lema

Sea $\mathbf{L} = (L, \vee, \wedge)$ un reticulado. Son equivalentes:

- **1** para todo $x, y, z \in L$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$;
- **2** para todo $x, y, z \in L$, $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$.

Definición

Dado un reticulado $\mathbf{L}=(L,\vee,\wedge)$ decimos que es un *reticulado distributivo* si satisface cualquiera de las condiciones equivalentes del Lema anterior.

Ejemplo

- Todos los $\mathbf{D_n}$ y todos los $(\mathcal{P}(A), \subseteq)$ son distributivos.
- M_3 y N_5 no son distributivos.

Preservación de la distributividad

Lema

Sea L un reticulado distributivo y L' un reticulado. Entonces

1 Si L' es isomorfo a L, L' es distributivo.

Preservación de la distributividad

Lema

Sea L un reticulado distributivo y L' un reticulado. Entonces

- \mathbf{I} Si \mathbf{L}' es isomorfo a \mathbf{L} , \mathbf{L}' es distributivo.
- \mathbf{Z} Si \mathbf{L}' es subreticulado de \mathbf{L} , \mathbf{L}' es distributivo.

Preservación de la distributividad

Lema

Sea L un reticulado distributivo y L' un reticulado. Entonces

- \mathbf{I} Si \mathbf{L}' es isomorfo a \mathbf{L} , \mathbf{L}' es distributivo.
- \mathbf{Z} Si \mathbf{L}' es subreticulado de \mathbf{L} , \mathbf{L}' es distributivo.
- $\mathbf{Si} \mathbf{L}'$ se incrusta \mathbf{L}, \mathbf{L}' es distributivo.

Propiedad cancelativa

Lema

Sea $\mathbf{L}=(L,\vee,\wedge)$ un reticulado distributivo. Se satisface que, para todo $a,b,c\in L$, $\begin{array}{ccc} a\vee c=&b\vee c\\ a\wedge c=&b\wedge c \end{array} \right\} \Rightarrow a=b$

Propiedad cancelativa

Lema

Sea $\mathbf{L}=(L,\vee,\wedge)$ un reticulado distributivo. Se satisface que, para todo $a,b,c\in L$, $\left. egin{array}{ccc} a\vee c &=& b\vee c \\ a\wedge c &=& b\wedge c \end{array} \right\} \Rightarrow a=b$

Corolario

Si $\mathbf{L} = (L, \vee, \wedge, 0, 1)$ es un reticulado acotado distributivo, todo elemento de L tiene **a lo sumo** un complemento.

Propiedad cancelativa

Lema

Sea $\mathbf{L}=(L,\vee,\wedge)$ un reticulado distributivo. Se satisface que, para todo $a,b,c\in L$, $\left. egin{array}{ccc} a\vee c &=& b\vee c \\ a\wedge c &=& b\wedge c \end{array} \right\} \Rightarrow a=b$

Corolario

Si $\mathbf{L} = (L, \vee, \wedge, 0, 1)$ es un reticulado acotado distributivo, todo elemento de L tiene **a lo sumo** un complemento.

Observación

La recíproca no vale, es decir, que un reticulado no tenga elementos con dos complementos no implica que sea distributivo.

VoF

- \blacksquare En un reticulado distributivo acotado, el único complemento del 0 es el 1.
- 2 En un reticulado acotado el único complemento del 0 es el 1.
- En un reticulado distributivo acotado todo elemento tiene un complemento.
- 4 En un reticulado acotado todo elemento tiene a lo sumo un complemento.
- **5** En un reticulado distributivo acotado todo elemento tiene a lo sumo un complemento.
- 6 En un reticulado acotado NO distributivo hay algún elemento con dos complementos.

Teorema

Un reticulado L es distributivo sii no se inscrustan en él ni M_3 ni N_5 .

Teorema

Un reticulado L es distributivo sii no se inscrustan en él ni M_3 ni N_5 .

Estrategia (hasta el momento)

Teorema

Un reticulado L es distributivo sii no se inscrustan en él ni M_3 ni N_5 .

Estrategia (hasta el momento)

ES distributivo	NO ES distributivo
Probar que se incrusta en algo que	Probar que en él se incrustan M_3 o
sabemos es distributivo, como un	N_5 .
$\mathbf{D_n}$ o un $(\mathcal{P}(A),\subseteq).$	

Álgebras de Boole

Definición

Un *álgebra de Boole* es un reticulado acotado complementado $(B,\vee,\wedge,\neg,0,1)$ distributivo.

Álgebras de Boole

Definición

Un álgebra de Boole es un reticulado acotado complementado $(B,\vee,\wedge,\neg,0,1)$ distributivo.

Ejemplo

- lacktriangle toda álgebra de conjuntos $(\mathcal{P}(A),\cup,\cap,\ ^c\ ,\emptyset,A)$ es un álgebra de Boole.
- $\mathbf{D_n}$ es un álgebra de Boole sii existen $p_1, \dots, p_k \in \mathbb{N}$, todos primos distintos dos a dos, tales que $n = p_1 \dots p_k$.

Álgebras de Boole

Definición

Un *álgebra de Boole* es un reticulado acotado complementado $(B,\vee,\wedge,\neg,0,1)$ distributivo.

Ejemplo

- \blacksquare toda álgebra de conjuntos $(\mathcal{P}(A),\cup,\cap,\ ^c\ ,\emptyset,A)$ es un álgebra de Boole.
- $\mathbf{D_n}$ es un álgebra de Boole sii existen $p_1, \dots, p_k \in \mathbb{N}$, todos primos distintos dos a dos, tales que $n = p_1 \dots p_k$.

Proposición (Leyes de De Morgan)

En toda álgebra de Boole $(B, \vee, \wedge, \neg, 0, 1)$, se dan

$$\neg(x \lor y) = \neg x \land \neg y \quad \mathbf{y} \quad \neg(x \land y) = \neg x \lor \neg y.$$

Isomorfismo de álgebras de Boole

Definición

Un isomorfismo de álgebras de Boole

 $f:(B,\vee,\wedge,\neg,0,1)\to (B',\vee',\wedge',\neg',0',1')$ es un isomorfismo de reticulados que además satisface que para todo $x\in B$,

$$f(\neg x) = \neg' f(x)$$
 y $f(0) = 0'$ y $f(1) = 1'$.

Teorema

 $f:(B,\vee,\wedge,\neg,0,1) \to (B',\vee',\wedge',\neg',0',1')$ es isomorfismo de álgebras de Boole sii $f:(B,\leq) \to (B',\leq')$ es isomorfismo de posets.

Átomos e irreducibles

Definición

Sea $\mathbf{P}=(P,\leq)$ un poset con elemento mínimo 0 y $a\in P$. Decimos que a es *átomo* en \mathbf{P} sii $a\neq 0$ y, para todo $b\in P$,

$$b \le a$$
 implica $b = a$ o $b = 0$,

es decir, *a* **cubre a** 0.

Átomos e irreducibles

Definición

Sea $\mathbf{P}=(P,\leq)$ un poset con elemento mínimo 0 y $a\in P$. Decimos que a es *átomo* en \mathbf{P} sii $a\neq 0$ y, para todo $b\in P$,

$$b \le a$$
 implica $b = a$ o $b = 0$,

es decir, a cubre a 0.

Definición

Sea $\mathbf{P}=(P,\leq)$ un poset reticulado a es *(supremo) irreducible* en \mathbf{P} sii $a\neq 0$ (si existiere elemento mínimo 0) y para todo $b,c\in P$,

$$a = b \lor c$$
 implica $a = b$ o $a = c$,

es decir, si a cubre exactamente a un elemento.

Irreducibles y átomos en D_n

- Los átomos se corresponden con los primos y los irreducibles con las potencias de primos.
- 2 Todo irreducible sólo puede cubrir a un elemeto que es irreducible o 1.
- 3 De todos los elementos que cubren a un irreducible, a lo sumo uno puede ser irreducible.

Irreducibles y átomos en D_n

- Los átomos se corresponden con los primos y los irreducibles con las potencias de primos.
- 2 Todo irreducible sólo puede cubrir a un elemeto que es irreducible o 1.
- 3 De todos los elementos que cubren a un irreducible, a lo sumo uno puede ser irreducible.

¿Cuáles de los siguientes reticulados son isomorfos a algún D_n ?

Irreducibles y átomos en D_n

- Los átomos se corresponden con los primos y los irreducibles con las potencias de primos.
- 2 Todo irreducible sólo puede cubrir a un elemeto que es irreducible o 1.
- De todos los elementos que cubren a un irreducible, a lo sumo uno puede ser irreducible.

¿Cuáles de los siguientes reticulados son isomorfos a algún D_n ?

