Задание на курсовую работу по дисциплине «Теория принятия решений» Вариант 96 (313)

Задача 1

На предприятии два цеха выпускают однотипную продукцию. Однако характеристики их оборудования различны, вследствие чего они имеют различные зависимости производительности от вложения средств:

- для 1-го цеха $y = 20 \frac{15}{1.2*x^2+5}$;
- для 2-го цеха $y = 25 \frac{30}{2*x^2+7}$;

где y — производительность за неделю; x — количество средств, вложенных за неделю. Функции остатка средств за неделю равны:

- для 1-го цеха 0.83x;
- для 2-го цеха 0.66х.

Количество средств, выделенных на оба цеха в течение месяца, составляет 140 единиц. Средства перераспределяются еженедельно и не резервируются. Требуется оптимально распределить средства на планируемый месяц.

Задача 2

Эту же продукцию выпускают два других предприятия, на которых объем выпуска продукции в месяц составляет в среднем 130 и 92 ед. Общее количество продукции трех предприятий, выпускаемой за месяц, необходимо перевезти в шесть городов в пропорции 2:7:2:1:3:3. Транспортные расходы на перевозку единицы готовой продукции (в млн. руб.) представлены в таблице.

Таблица 1: Транспортные расходы

	B1	B2	В3	B4	B5	В6
A1	0.5 -	2.5	7.5	6.5 +		9.5
A2	6.5	12.0 +	2.5	6.0	4.0 +	1.5
A3	8.5	0.5 +	10.5 -	8.5	3.5 -	8.5

Однако следует иметь в виду, что цены доставки являются приближенными, причем тенденции изменения некоторых удельных стоимостей перевозок обозначены в таблице 1 («-» — уменьшение, «+» — увеличение).

Требуется: найти план перевозок, оптимальный по критерию стоимости; исследовать решение на чувствительность к изменению целевой функции в зависимости от возможного изменения цен.

Задача 3

На предприятии-потребителе в городе В6 продукция, представляющая собой полуфабрикат определенного типоразмера постоянного сечения и длиной 400 см, разрезается на заготовки длиной 310 см, 160 см, 100 см в комплектности, определяемой соотношением 2:7:4.

Требуется решить задачу оптимального раскроя в двух постановках и провести ее исследование:

- 1. спланировать раскрой полуфабриката, при котором число комплектов заготовок будет наибольшим;
- 2. спланировать раскрой полуфабриката при условии минимизации остатков и сравнить полученные результаты;
- 3. средствами параметрического исследования правых частей выяснить необходимое приращение количества поступивших полуфабрикатов для увеличения числа комплектов заготовок на 1 (или на 10), причем провести указанное исследование для разных значений исходного количества полуфабрикатов (проверка линейности).