Chapitre 2

Les nombres complexes

□ Équations de second degré,	
☐ Trigonométrie,	
□ Valeur absolue.	
A	
Ø Objectifs	
☐ Savoir manipuler l'écriture algébrique, l'écriture trigonométrique et l'écriture exponenti d'un nombre complexe,	elle
\square Savoir effectuer les opérations sur les complexes,	
$\hfill \square$ Savoir calculer le module et l'argument d'un nombre complexe,	
□ Connaître les formules d'Euler et de Moivre,	
☐ Savoir calculer les racines carrées d'un nombre complexe,	
\square Savoir résoudre une équation de second degré dans $\mathbb{C}.$	
Sommaire	
Séquence 1 : Calculs avec les nombres complexes 3	
Généralités sur les nombres complexes - Calculs avec les nombres complexes - Module, conjugué et leurs propriétés.	
Séquence 2 : Écriture géométrique d'un nombre complexe 11	
Représentation géométrique - Formulation exponentielle.	
Séquence 3 : Résolution d'équations du second degré à coefficients com-	
plexes 17	
Racines carrées d'un nombre complexe - Résolution dans \mathbb{C} de l'équation $az^2 + bz + c = 0$.	

Calculs avec les nombres complexes

Généralités sur les nombres complexes 1

Notation

On admet l'existence d'un nombre, noté i, tel que

$$i^2 = -1$$
.

🔁 Définition

On appelle **nombre complexe** tout élément z pouvant s'écrire sous la forme

$$z = a + i b$$
,

où a et b sont deux réels.

- \triangleright L'écriture a+ib est appelée l'écriture algébrique du nombre complexe z.
- \triangleright Le réel a est appelé la partie réelle de z et se note $\mathcal{R}e(z)$.
- \triangleright Le réel b est appelé la partie imaginaire de z et se note $\mathcal{I}m(z)$.

L'ensemble des nombres complexes se note \mathbb{C} . De plus, un nombre complexe z est dit **imaginaire** pur si sa partie réelle est nulle.

伐 Remarque

Tous les réels sont des nombres complexes (avec une partie imaginaire nulle), ainsi $\mathbb{R}\subset\mathbb{C}$.

Exemples

- \triangleright La partie réelle du nombre complexe $z_1 = 1 + i$ vaut 1 et sa partie imaginaire vaut 1 : $\Re(z_1) = 1 \text{ et } \Im(z_1) = 1.$
- \triangleright Soit $z_2 = -\sqrt{2}$. Alors, $z = -\sqrt{2} + 0i$. Donc, $\Re(z_2) = -\sqrt{2}$ et $\Im(z_2) = 0$.
- \triangleright Soit $z_3=2i$. Alors, z_3 est un imaginaire pur car $\mathcal{R}e(z_3)=0$. Et sa partie imaginaire est $\mathcal{I}m(z_3) = 2$ (et non $\mathcal{I}m(z_3) = 2i!$).

🔼 Attention

- ▷ Les parties réelle et imaginaire d'un nombre complexe sont des réels.
- \triangleright La forme z=a+ib est l'écriture algébrique de z si et seulement a et b sont réels.

2 Calculs avec les nombres complexes

🔁 Propriétés

Soient $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ avec $a_1, a_2, b_1, b_2 \in \mathbb{R}$. Alors,

$$z_1 = z_2$$
 si et seulement si $a_1 = a_2$ et $b_1 = b_2$.

🔁 Définition

Soient $z_1 = a_1 + i b_1$ et $z_2 = a_2 + i b_2$ deux nombres complexes avec a_1, a_2, b_1, b_2 des réels.

1. La **somme** de z_1 et de z_2 est :

$$z_1 + z_2 = (a_1 + i b_1) + (a_2 + i b_2) = a_1 + a_2 + i(b_1 + b_2).$$

2. Le **produit** de z_1 par z_2 est :

$$z_1 z_2 = a_1 a_2 - b_1 b_2 + i(a_1 b_2 + b_1 a_2).$$

► Méthode – Méthode de calcul

Pour tout calcul algébrique, il faut :

- 1. développer les produits (comme dans les réels),
- 2. simplifier, en remplaçant tout i^2 par -1,
- 3. regrouper toutes les parties réelles et imaginaires.

Exemples

$$\triangleright$$
 Soient $z_1 = \sqrt{2} + 2i$, $z_2 = 1 - i\sqrt{3}$ et $\lambda = \sqrt{2}$. Alors

$$\lambda z_1 = \sqrt{2}(\sqrt{2} + 2i) = (\sqrt{2})^2 + 2\sqrt{2}i = 2 + 2\sqrt{2}i,$$

et

$$z_1 + z_2 = \sqrt{2} + 2i + 1 - i\sqrt{3} = (1 + \sqrt{2}) + (2 - \sqrt{3})i.$$

 \triangleright Soient $z_1 = 2 - i$ et $z_2 = -1 + 2i$. Alors,

$$z_1 z_2 = (2 - i)(-1 + 2i)$$

$$= -2 + 4i + i - 2i^2$$

$$= -2 + 4i + i + (-2)(-1)$$

$$= -2 + 4i + i + 2$$

$$= 0 + 5i = 5i.$$

) après développement du produit) après remplacement de i^2 par -1

après regroupement des parties ✓ réelles et imaginaires

S Exercice 14.

- 1) Calculer (1+i)(2-i).
- 2) Déterminer la partie réelle et la partie imaginaire du nombre complexe z = -1 + (1+i)i.
- 3) Développer $(a+ib)^2$, où a et b sont deux nombres réels.

3 Module, conjugué et leurs propriétés

Définition

Soit z = a + ib, où a et b sont réels. Le **module** de z, noté |z|, est le réel défini par

$$|z| = \sqrt{a^2 + b^2}.$$

Remarque

Le module d'un nombre complexe z est la valeur absolue si z est réel.

Exemples

$$ightharpoonup Pour z = 1 + i$$
, on a $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$.

▷ Pour
$$z = -2 = -2 + 0i$$
, on a $|z| = \sqrt{(-2)^2 + 0^2} = 2$.
▷ Pour $z = -i = 0 - i$, on a $|z| = \sqrt{0^2 + (-1)^2} = 1$.

$$\triangleright$$
 Pour $z = -i = 0 - i$, on a $|z| = \sqrt{0^2 + (-1)^2} = 1$.

🔁 Propriétés

Soient $z, z_1, z_2 \in \mathbb{C}$ et $\lambda \in \mathbb{R}$. Alors

1.
$$|z| \ge 0$$
, $|z| \ge |\Re(z)|$ et $|z| \ge |\Im(z)|$,

2.
$$|z| = 0 \iff z = 0$$
,

$$3. |\lambda z| = |\lambda||z|,$$

4.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 (inégalité triangulaire).

5.
$$|z_1z_2| = |z_1||z_2|$$
,

6. si
$$z_2 \neq 0$$
, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$.

Exemple

Soient $z_1 = 2 - i$ et $z_2 = -1 + 2i$. Alors, $z_1 z_2 = 5i$ et donc

$$|z_1 z_2| = |5i| = |5||i| = 5.$$

D'autre part, on a :

$$|z_1| = \sqrt{2^2 + (-1)^2} = \sqrt{4+1} = \sqrt{5}$$

$$|z_2| = \sqrt{(-1)^2 + 2^2} = \sqrt{1+4} = \sqrt{5}.$$

D'où, $|z_1||z_2| = 5$. Donc, on a bien $|z_1z_2| = |z_1||z_2|$.

Exercice 15.

Soient $z_1 = 3 + 4i$ et $z_2 = \sqrt{2} - \sqrt{2}i$. Calculer $|z_1 z_2|^2$, $|z_1|^2$ et $|z_2|^2$.

🄁 Définition

Soit z = a + ib, où a et b sont réels. Le **conjugué** de z, noté \overline{z} , est le nombre complexe défini par:

$$\overline{z} = a - ib$$
.

Exemples

- Down z = 1 + i, on a $\overline{z} = 1 i$.

 Down z = -2 = -2 + 0i, on a $\overline{z} = -2 0i = -2$.

 Down z = -i = 0 i, on a $\overline{z} = -(-i) = i$.

🔁 Propriétés

Soient z,z_1 et z_2 des nombres complexes. On a les propriétés suivantes :

- 2. z est réel si et seulement s'il est égal à son conjugué $z \in \mathbb{R} \iff z = \overline{z}$.

3.
$$\mathcal{R}e(z) = \frac{z + \overline{z}}{2}$$
, $\mathcal{I}m(z) = \frac{z - \overline{z}}{2i}$, $z\overline{z} = |z|^2$.

4.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \quad \overline{z_1 z_2} = \overline{z_1} \, \overline{z_2},$$

4.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$,
5. Si $z_2 \neq 0$, $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ et $\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{|z_2|^2}$.

Exemple

Soient $z_1 = 2 - i$ et $z_2 = -1 + 2i$. Alors, $\overline{z_1} = 2 + i$ et $\overline{z_2} = -1 - 2i$, et ainsi,

$$\overline{z_1} \, \overline{z_2} = (2+i)(-1-2i) = -2 - 4i - i + -2i^2 = -2 - 5i + 2 = -5i.$$

Or, d'après un exemple précédent, $z_1z_2=5i$. D'où, $\overline{z_1z_2}=\overline{5i}=-5i$. On a bien $\overline{z_1z_2}=\overline{z_1}$ $\overline{z_2}$.

Méthode — Simplification d'une fraction complexe

Pour simplifier une fraction de la forme $\frac{N}{D}$, où le dénominateur D est une expression complexe, il est possible de multiplier la fraction, en haut et en bas, par le conjugué de D:

$$\frac{N}{D} = \frac{N\overline{D}}{D\overline{D}} = \frac{N\overline{D}}{|D|^2}.$$

Exemple

Soit
$$z = \frac{1}{1+i}$$
. D'où,
$$z = \frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{|1+i|^2} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i.$$
 car $|1+i|^2 = (\sqrt{1^2+1^2})^2 = (\sqrt{2})^2 = 2$.

S Exercice 16.

- 1) Mettre $z = \frac{3-2i}{5+i}$ sous sa forme algébrique.
- 2) Calculer |z| de deux façons différentes.

S Exercice 17.

Résoudre dans \mathbb{C} l'équation suivante (2+i)z-1+2i=0.

Feuille d'exercices séquence 1

S Exercice 1.

Soient $z_1 = 2 + 3i$ et $z_2 = 5 - 6i$. Calculer $z_1 + z_2$, $z_1 - z_2$ et $z_1 z_2$.

S Exercice 2.

Soient $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ les formes algébriques des nombres complexes z_1 et z_2 , et soit λ un réel. Déterminer les formes algébriques de λz_1 , $z_1 + z_2$ et $z_1 z_2$.

Exercice 3.

Déterminer le conjugué des nombres complexes suivants :

a)
$$z_1 = 1 + 2i$$
,

c)
$$z_3 = 5i - 2$$
,

b)
$$z_2 = -i$$
,

d)
$$z_4 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

Exercice 4.

Calculer le conjugué et le module des nombres complexes suivants :

a)
$$z_1 = i + 6 + -2i + 5$$
,

d)
$$z_4 = \left(\frac{1}{2} + \frac{2i}{3}\right) \left(\frac{2}{3} - \frac{6i}{5}\right),$$

b)
$$z_2 = \frac{1}{2} + \frac{i}{3} + \frac{2}{3} + \frac{i}{2} - \frac{1}{3}$$

e)
$$z_5 = (\sqrt{2} + i\sqrt{3})(\sqrt{2} - i\sqrt{3}),$$

c)
$$z_3 = (1+2i)(3-3i)$$
,

f)
$$z_6 = (3\sqrt{5} + 2i\sqrt{2})^2$$
.

Exercice 5.

Soit z = 2 - 5i. Calculer $z + \overline{z}$, $z - \overline{z}$ et $z\overline{z}$.

Exercice 6.

Soit z un nombre complexe de forme algébrique z=a+ib. Calculer $z+\overline{z}, z-\overline{z}$ et $z\overline{z}$.

Exercice 7.

- 1) Calculer les modules des nombres complexes $z_1 = 2 + 3i$ et $z_2 = 1 2i$.
- **2)** Montrer que $|z_1z_2| = |z_1||z_2|$.
- 3) Montrer que $|z_1 + z_2| < |z_1| + |z_2|$.

Exercice 8.

Soient $z_1 = a_1 + ib_1$ et $z_2 = a_2 + ib_2$ deux nombres complexes donnés sous forme algébrique. Calculer $|z_1 z_2|^2$, $|z_1|^2$ et $|z_2|^2$.

S Exercice 9.

Soit $a \in \mathbb{C}$ et soit z = ia. Déterminer le conjugué de z.

Exercice 10.

Par convention, posons $i^0 = 1$.

- 1) Calculer i^3 , i^4 , i^{-1} , i^{-2} , i^{-3} , i^{-4} .
- **2)** Calculer i^{4m} , i^{4m+1} , i^{4m+2} , i^{4m+3} pour $m \in \mathbb{Z}$.
- **3)** Calculer i^{2017} .

Exercice 11.

Mettre sous forme algébrique (c'est-à-dire simplifier) les nombres complexes suivants :

a)
$$z_1 = \frac{-1-i}{2-2i}$$
,

c)
$$z_3 = \frac{-1+4i}{-2-i}$$
,

e)
$$z_5 = \frac{2+i}{1+3i} \cdot \frac{1-i}{1+i}$$

b)
$$z_2 = \frac{5 - 5i}{-3 + 4i}$$
,

d)
$$z_4 = \frac{7+6i}{4-i} \cdot \frac{3+i}{i}$$

d)
$$z_4 = \frac{7+6i}{4-i} \cdot \frac{3+i}{i}$$
, f) $z_6 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}$.

Exercice 12.

Pour chacun des nombres complexes z ci-dessous, donner la forme algébrique du conjugué \bar{z} :

a)
$$z_1 = \frac{1}{i}$$
,

c)
$$z_3 = (5+2i)^2$$
,

b)
$$z_2 = \frac{2i-1}{1-2i}$$
,

d)
$$z_4 = \frac{i}{i+1}$$
.

S Exercice 13.

Déterminer sous forme algébrique les solutions des équations suivantes :

1)
$$2z + 6 - 4i = 0$$
,

3)
$$-3z + 2 = 4iz - 2i$$
,

2)
$$(-1-2i)z-2=0$$
,

4)
$$(2+i)^2z - (1-i)^3 = 0$$
.

Exercice 14.

- 1) Montrer que $z^2 2z + 5 = (z 1 2i)(z 1 + 2i)$.
- 2) En déduire les solutions dans \mathbb{C} de l'équation $z^2 2z + 5 = 0$.

Exercice 15.

- 1) Montrer que $z^2 3 4i = (z 2 i)(z + 2 + i)$.
- 2) En déduire les solutions dans \mathbb{C} de l'équation $z^2 = 3 + 4i$.

Exercice 16.

- 1) Montrer que $z^2 + (4+i)z + (5+5i) = (z+1+2i)(z+3-i)$.
- 2) En déduire les solutions dans \mathbb{C} de l'équation $z^2 + 4z + 5 = -iz 5i$.

Une application en électronique

On peut rencontrer les nombres complexes lorsque on travaille avec les circuits électriques.

Tout d'abord une précision. En mathématiques, on a vu que le nombre i est utilisé pour définir les nombres complexes. Par contre, en électronique, ce nombre i signifie déjà courant, donc on utilise j pour les nombres complexes (parce que la lettre suivante après i est j).

L'impédance électrique mesure la résistance d'un circuit électrique au passage d'un **courant alternatif sinusoïdal**. Il correspond à un nombre complexe, noté Z. L'admittance, notée Y, est l'inverse de l'impédance : $Y = \frac{1}{Z}$.

Si ω définit la pulsation (en radians par seconde) du courant sinusoïdal, alors

- \triangleright l'impédance d'une résistance est $Z_R = R$, où R est la valeur (en ohms Ω) de la résistance,
- \triangleright l'impédance d'un condensateur est $Z_C = \frac{1}{jC\omega}$, où C est la capacité (en farad F) du condensateur,
- \triangleright l'impédance d'une bobine est $Z_L = jL\omega$, où L est l'inductance (en henry H) de la bobine.

L'impédance complexe d'un circuit se calcule en suivant les règles suivantes :

▷ l'impédance d'éléments en série est la somme des impédances,

$$I \longrightarrow Z_1 \qquad Z_2 \qquad \qquad Z_{tot} \qquad \qquad Z_{tot} \qquad \qquad Z_{tot} = Z_1 + Z_2$$
 est équivalent à

⊳ si on a des éléments en parallèle, l'inverse de l'impédance du circuit est la somme des inverses des impédances. Donc dans ce cas ce sont les admittances qui s'additionnent.

$$Z_1$$

$$Z_{tot}$$

Exemple

Pour le circuit suivant :

avec
$$Z_{tot} = Z_R + \frac{1}{\frac{1}{Z_L} + \frac{1}{Z_C}} = R + \frac{1}{\frac{1}{jL\omega} + \frac{1}{\frac{1}{jC\omega}}} = R + \frac{jL\omega}{1 + (jC\omega)(jL\omega)} = R + \frac{jL\omega}{1 - CL\omega^2}$$

Exercice 17.

Calculer l'impédance complexe du circuit suivant :

Écriture géométrique d'un nombre complexe

Représentation géométrique 4

Soit le plan muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

🔁 Définition

À tout nombre complexe z = a + ib (avec $a, b \in \mathbb{R}$), on associe le point M_z de coordonnées cartésiennes (a,b). Le point M_z est appelé image du nombre complexe z dans le plan.

\bigcirc Remarques

 \triangleright Si $z \neq 0$, son image M_z est distincte de $O: M_z \neq O$.

 $\,\rhd\,$ La longueur de OM_z est égale à $\sqrt{a^2+b^2}=|z|.$

Définition

Soient $z \in \mathbb{C}$ tel que $z \neq 0$ et M_z son image dans le plan. Toute mesure θ en radians de l'angle $(\overrightarrow{u}, OM_z)$ est appelée $\operatorname{argument}$ de z, noté $\operatorname{arg} z$:

$$arg(z) = \theta + 2k\pi, \ k \in \mathbb{Z}.$$

• Exemples

Soient les nombres complexes suivants :

$$z_1 = 1$$
, $z_2 = 1 + i$, $z_3 = i$, $z_4 = -1$.

À partir de leur image dans le plan, il est possible de déduire leurs arguments :

 $z_2 = 1 + i$

$$|z_1| = 0 + 2k\pi$$
 $\arg(z_2) = \frac{\pi}{4} + 2k\pi$

$$\arg(z_4) = \pi + 2k\pi$$

0 Remarques

- \triangleright Le nombre complexe z = 0 n'a pas d'argument.
- \triangleright Un nombre complexe non nul possède une infinité d'arguments : si θ est un argument de z, alors $\theta + 2k\pi$ avec $k \in \mathbb{Z}$ est aussi un argument de z.
- > De la représentation graphique, on en déduit

$$\mathcal{R}e(z) = |z|\cos\theta$$
 et $\mathcal{I}m(z) = |z|\sin\theta$.

$igoplus \mathbf{Propriét\acute{e}s}-cute{E}$ criture trigonométrique d'un nombre complexe

Soit z un nombre complexe non nul, et soit θ un argument de z. Alors

$$z = |z|(\cos\theta + i\sin\theta).$$

C'est la forme trigonométrique du nombre complexe z.

😈 Remarque

La position du point M_z dans le plan peut-être obtenue à l'aide simplement du module |z|et d'un argument θ . Le couple $(|z|, \theta)$ est appelé coordonnées polaires de z.

Méthode – Calculer un argument d'un nombre complexe z

- 1. Vérifier que $z \neq 0$.
- 2. Trouver sa forme algébrique z = a + ib.
- 3. Calculer son module |z|.
- 4. Trouver un angle θ tel que $\cos \theta = \frac{a}{|z|}$ et $\sin \theta = \frac{b}{|z|}$.

Exemples

$$ightharpoonup Pour z_1 = 1$$
, on a $|z_1| = 1$. D'où,

$$\begin{cases} \cos \theta_1 &= 1\\ \sin \theta_1 &= 0 \end{cases} \quad \text{donc} \quad \theta_1 = 0 + 2k\pi, \ k \in \mathbb{Z}.$$

$$ightharpoonup ext{Pour } z_2 = 1 + i, ext{ on a } |z_2| = \sqrt{1^2 + 1^2} = \sqrt{2}. ext{ Ainsi, } z_2 = \sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right).$$

$$\begin{cases} \cos \theta_2 &= \frac{\sqrt{2}}{2} \\ \sin \theta_2 &= \frac{\sqrt{2}}{2} \end{cases} \quad \text{donc} \quad \theta_1 = \frac{\pi}{4} + 2k\pi, \ k \in \mathbb{Z}.$$

$$\triangleright$$
 Pour $z_3 = i$, on a $|z_3| = 1$. D'où, $\cos \theta_3 = 0$ et $\sin \theta_3 = 1$. Donc, $\theta_3 = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$.

$$ho$$
 Pour $z_4 = -1$, on a $|z_4| = 1$. D'où, $\cos \theta_4 = -1$ et $\sin \theta_4 = 0$. Donc, $\theta_4 = \pi + 2k\pi$, $k \in \mathbb{Z}$.

5 Formulation exponentielle

 $igoplus_{igoplus}$ ${f D\acute{e}finition}$ - ${\it \'Ecriture}$ ${\it exponentielle}$ ${\it d'un}$ ${\it nombre}$ ${\it complexe}$

Soit $\theta \in \mathbb{R}$. Posons

$$\exp(i\theta) = e^{i\theta} = \cos\theta + i\sin\theta.$$

Si z est un nombre complexe non nul et θ un de ses arguments, alors

$$z = |z| \exp(i\theta) = |z| e^{i\theta}$$
.

C'est la forme exponentielle du nombre complexe z.

Exemple

Reprenons les nombres complexes $z_1 = 1$, $z_2 = 1 + i$, $z_3 = i$, $z_4 = -1$. Pour chacun de ces nombres, le module et un argument ont déjà été calculés dans l'exemple précédent. Ainsi,

$$> z_1 = |z_1| \exp(i\theta_1) = e^{i\theta},$$

$$> z_3 = |z_3| \exp(i\theta_3) = e^{i\frac{\pi}{2}},$$

$$> z_1 = |z_1| \exp(i\theta_1) = e^{i0},$$

$$> z_2 = |z_2| \exp(i\theta_2) = \sqrt{2} e^{i\frac{\pi}{4}},$$

$$> z_4 = |z_4| \exp(i\theta_4) = e^{i\pi}.$$

S Exercice 1.

Déterminer la forme exponentielle des nombres complexes suivants :

1)
$$z_1 = 1 - i$$
,

2)
$$z_2 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$
,

3)
$$z_3 = -3 + \sqrt{3}i$$
.

🔁 Propriétés

Soient $z_1 = r_1 e^{i\theta_1}$ et $z_2 = r_2 e^{i\theta_2}$ avec $r_1, r_2 \in \mathbb{R}_+^*$ et $\theta_1, \theta_2 \in \mathbb{R}$. Alors

 $z_1 = z_2$ si et seulement si $r_1 = r_2$ et $\theta_1 = \theta_2 + 2k\pi$, avec $k \in \mathbb{Z}$.

🔁 Propriétés

Soit $\theta \in \mathbb{R}$. Alors

$$|e^{i\theta}| = 1,$$
 et $\overline{e^{i\theta}} = e^{-i\theta} = \frac{1}{e^{i\theta}}.$

$oldsymbol{oldsymbol{ec{oldsymbol{ol{oldsymbol{ol{oldsymbol{ol{oldsymbol{ol{ol}oldsymbol{ol{ol}}}}}}}}}}}$

Soient $n \in \mathbb{Z}$ et $\theta \in \mathbb{R}$. Alors

$$\left(e^{i\theta}\right)^n = e^{in\theta}.$$

C'est-à-dire

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$$

Preuve. Montrons le résultat pour n=2. On a

$$(\cos\theta + i\sin\theta)^2 = (\cos\theta)^2 + 2(\cos\theta)(i\sin\theta) + (i\sin\theta)^2 = (\cos^2\theta - \sin^2\theta) + i(2\cos\theta\sin\theta).$$

Or, d'après les formules d'addition trigonométrique,

$$cos(2\theta) = cos^2 \theta - sin^2 \theta$$
 et $sin(2\theta) = 2 cos \theta sin \theta$.

Donc, on a
$$(\cos \theta + i \sin \theta)^2 = \cos(2\theta) + i \sin(2\theta)$$
.

S Exercice 2.

En développant $(\cos\theta+i\sin\theta)^3$ et en utilisant la formule de Moivre, déterminer $\cos3\theta$ en fonction de $\cos \theta$.

 $f{Propriétés}$ - Formules d'Euler

Soit $\theta \in \mathbb{R}$. Alors

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

 \P **Exemple** – Linéarisation d'un cosinus

Linéarisons $\cos^2 \theta$, c'est-à-dire exprimons $\cos^2 \theta$ à l'aide de $\cos(2\theta)$. On a

$$\cos^{2} \theta = (\cos \theta)^{2} = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{2} = \frac{1}{4} \left((e^{i\theta})^{2} + e^{i\theta} e^{-i\theta} + (e^{-i\theta})^{2} \right)$$

Or, d'après les formules de Moivre $(e^{i\theta})^2 = e^{i2\theta}$ et $(e^{-i\theta})^2 = e^{-2i\theta}$. De plus, $e^{i\theta} e^{-i\theta} = 1$. Donc, $\cos^2\theta = \frac{1}{4}\left(2\cos(2\theta) + 2\right) = \frac{\cos(2\theta) + 1}{2}$.

Reprendre la démarche de l'exemple pour linéariser $\sin^3\theta$ (c'est-à-dire l'écrire en fonction de $\sin \theta$ et de $\sin 3\theta$). De même pour $\cos^3 \theta$.

Soient z, z_1 et z_2 deux nombres complexes non nuls d'arguments respectifs θ , θ_1 et θ_2 . Alors

- 1. $z_1 z_2 = |z_1||z_2| e^{i(\theta_1 + \theta_2)}$,
- 2. $\frac{1}{z} = \frac{1}{|z|} e^{-i\theta}$,
- 3. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 \theta_2)},$
- 4. Pour tout $n \in \mathbb{Z}$, $z^n = |z|^n e^{(in\theta)}$.

Exemple

Soient
$$z_1 = 1 - i$$
 et $z_2 = 1 + \sqrt{3}i$. Alors, $z_1 = \sqrt{2} e^{-i\frac{\pi}{4}}$ et $z_2 = 2 e^{i\frac{\pi}{3}}$. Donc,
$$z = z_1 z_2 = 2\sqrt{2} e^{i\frac{\pi}{12}}.$$

$$z^{2} = (2\sqrt{2}e^{i\frac{\pi}{12}})^{2} = (2\sqrt{2})^{2}e^{i2\frac{\pi}{12}} = 8e^{i\frac{\pi}{6}} = 8\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = 4\sqrt{3} + 4i.$$

S Exercice 4.

Soit $z = \frac{32}{(\sqrt{3} + i)^9}$

- 1) Calculer une forme exponentielle de $\sqrt{3} + i$.
- 2) En déduire une forme exponentielle de z puis donner sa forme algébrique.

Feuille d'exercices séquence 2

S Exercice 1.

Soit z=2+i. Placer dans un plan le point M_z puis les points $M_{\overline{z}},\,M_{-z}$ et $M_{-\overline{z}}.$ Même question pour z = -1 + 2i et z = 3 - i.

Exercice 2.

Déterminer la relation vérifiée par tous les nombres complexes z = a + ib (avec $a, b \in \mathbb{R}$) solutions de l'équation |z|=1. Géométriquement, que représentent les solutions de cette équation dans le plan?

Exercice 3.

Déterminer la forme exponentielle des nombres complexes suivants :

a)
$$z_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
,

d)
$$z_4 = -2 + \sqrt{3}i$$
,

b)
$$z_2 = 1 + \sqrt{3}i$$
,

e)
$$z_5 = -\frac{1}{4} - \frac{1}{4}i$$
,

c)
$$z_2 = 1 + \sqrt{3}i$$

f)
$$z_6 = 3 + 3\sqrt{3}i - 3i + 3\sqrt{3}$$
.

Exercice 4.

Soient $\theta, \theta' \in \mathbb{R}$. Montrer que

a)
$$e^{i\theta} + e^{-i\theta} = 2\cos\theta$$
,

$$\mathbf{d}) \ \overline{\mathbf{e}^{i\theta}} = \mathbf{e}^{-i\theta},$$

$$\mathbf{g}) \; \frac{\mathrm{e}^{i\theta}}{\mathrm{e}^{i\theta'}} = \mathrm{e}^{i(\theta - \theta')},$$

b)
$$e^{i\theta} - e^{-i\theta} = 2i \sin \theta$$
, **c)** $e^{-i\theta} = \frac{1}{e^{i\theta}}$,

$$\mathbf{e)} \ \mathbf{e}^{-i\theta} = \frac{1}{\mathbf{e}^{i\theta}},$$

c)
$$|e^{i\theta}| = 1$$
,

$$\mathbf{f)} \ \mathbf{e}^{i\theta} \, \mathbf{e}^{i\theta'} = \mathbf{e}^{i(\theta+\theta')},$$

$$\mathbf{h)} \ (\mathbf{e}^{i\theta})^2 = \mathbf{e}^{i2\theta}.$$

Exercice 5.

Soient $z_1 = r_1 e^{i\theta_1}$ et $z_2 = r_2 e^{i\theta_2}$ avec $r_1, r_2 \in \mathbb{R}_+^*$ et $\theta_1, \theta_2 \in \mathbb{R}$.

- 1) Montrer que si $r_1 = r_2$ et $\theta_1 = \theta_2 + 2k\pi$ avec $k \in \mathbb{Z}$, alors $z_1 = z_2$.
- 2) Montrer que si $z_1 = z_2$, alors $r_1 = r_2$ et il existe $k \in \mathbb{Z}$ tel que $\theta_1 = \theta_2 + 2k\pi$.

S Exercice 6.

Soit $z = \frac{2+2i}{1-i}$. Déterminer

a) sa partie réelle,

c) son module,

b) sa partie imaginaire,

d) sa forme exponentielle.

En déduire une simplification de z^5 .

Exercice 7.

Calculer le module et les arguments des nombres complexes $u = \frac{\sqrt{6-i\sqrt{2}}}{2}$ et v = -1+i. En déduire le module et les arguments de w = uv.

Exercice 8.

Simplifier
$$z = \left(\frac{-\sqrt{2} + 3\sqrt{2}i}{-2 + i}\right)^3$$
.

Exercice 9.

Soient $z = 2\sqrt{3} + 2i$, $z_1 = (1 + \sqrt{3}) + (1 - \sqrt{3})i$ et $z_2 = \frac{z}{z_1}$.

- 1) Donner la forme algébrique de z_2 , puis sa forme exponentielle.
- 2) Donner la forme exponentielle de z.
- 3) En déduire la forme exponentielle de z_1 , ainsi que les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 10.

Écrire les nombres complexes suivants sous forme exponentielle, puis sous algébrique :

1)
$$z = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^6$$
,

2)
$$z = (1+i)^9 (1-i)^7$$
,

3)
$$z = \left(\frac{-3+3i}{\sqrt{6}-\sqrt{18}i}\right)^6$$
.

S Exercice 11.

Soit $\delta = i$.

- 1) Déterminer la forme exponentielle de δ .
- 2) Soit $\Delta = r e^{i\theta}$ avec $r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$. Quels sont les valeurs de r et de θ tels que $\Delta^2 = \delta$?

Exercice 12.

Soit $\delta = -3 + \sqrt{3}i$.

- 1) Déterminer la forme exponentielle de δ .
- 2) Soit $\Delta = r e^{i\theta}$ avec $r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$. Quels sont les valeurs de r et de θ tels que $\Delta^2 = \delta$?

Résolution d'équations du second degré à coefficients complexes

Racines carrées d'un nombre complexe 6

🔁 Définition

Soit Δ un nombre complexe donné. Le nombre $\delta \in \mathbb{C}$ est appelé **racine carrée** de Δ si $\delta^2 = \Delta$.

🔼 Attention

Si Δ n'est pas un réel positif, il est **interdit** d'écrire « $\sqrt{\Delta}$ ».

L'objectif est de résoudre dans \mathbb{C} l'équation d'inconnu δ

$$\delta^2 = \Delta$$
,

Si $\Delta = 0$, il est clair que la seule solution est $\delta = 0$.

Supposons maintenant que $\Delta \neq 0$. Pour résoudre cette équation, il faut utiliser l'une des méthodes suivantes:

- > la méthode trigonométrique,
- ▷ la méthode algébrique.

🔁 Propriétés

Soit θ un argument du nombre complexe $\Delta \neq 0$. Alors, l'équation $\delta^2 = \Delta$ admet deux solutions :

$$\delta_1 = \sqrt{|\Delta|} e^{\left(i\frac{\theta}{2}\right)}$$
 et $\delta_2 = -\sqrt{|\Delta|} e^{\left(i\frac{\theta}{2}\right)}$.

Méthode – méthode trigonométrique pour le calcul d'une racine d'un complexe

- 1. Calculer une forme exponentielle de Δ , c'est-à-dire $\Delta = |\Delta| e^{i\theta}$.
- 2. Les solutions de l'équation $\Delta = \delta^2$ sont $\pm \sqrt{|\Delta|} e^{\left(i\frac{\theta}{2}\right)}$.

Exemple

Résolvons l'équation $\delta^2 = 2i$ par la méthode trigonométrique. Posons $\Delta = 2i$.

1. Calculons une forme exponentielle de Δ . On a $|\Delta|=2$, d'où $\Delta=2(0+i)$. Donc

$$\begin{cases} \cos(\theta) &= 0, \\ \sin(\theta) &= 1. \end{cases}$$

Ainsi, $\theta = \frac{\pi}{2}$ est un argument qui convient. Donc, $\Delta = 2 \exp(i\frac{\pi}{2})$.

2. Les solutions de l'équation $\delta^2 = 2i$ sont donc

$$\delta = \pm \sqrt{2} \exp\left(i\frac{\pi}{4}\right) = \pm \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \pm \sqrt{2} \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \pm (1+i).$$

17

Remarque

La méthode trigonométrique peut être difficile à utiliser si on ne connait pas un argument de Δ . Dans ce cas, il sera nécessaire d'utiliser la **méthode algébrique**.

Propriétés

Supposons que $\Delta = a + ib$, où a et b sont deux réels. Alors, l'équation $\delta^2 = \Delta$ admet deux solutions de la forme $\delta = x + iy$, où x et y sont solutions du système :

$$\begin{cases} |\delta|^2 = x^2 + y^2 = \sqrt{a^2 + b^2} = |\Delta|, \\ \mathcal{R}e(\delta^2) = x^2 - y^2 = a, \\ \mathcal{I}m(\delta^2) = 2xy = b. \end{cases}$$

${f M\acute{e}thode-m\acute{e}thode\ alg\'ebrique}\ pour\ le\ calcul\ d'une\ racine\ carr\'ee\ d'un\ complexe$

- 1. Calculer une forme algébrique de Δ , c'est-à-dire déterminer les réels a et b tels que $\Delta=a+ib$.
- 2. Écrire et résoudre le système

$$\begin{cases} x^2 + y^2 &= \sqrt{a^2 + b^2}, \\ x^2 - y^2 &= a, \\ 2xy &= b. \end{cases}$$

où x et y sont les inconnues.

3. Pour chaque couple (x, y) trouvé, $\delta = x + iy$ est une solution de l'équation $\Delta = \delta^2$.

Exemple

Résolvons l'équation $\delta^2 = -3 + 4i$ par la methode algébrique. Posons $\Delta = -3 + 4i$.

- 1. Le nombre Δ est déjà sous forme algébrique avec a=-3 et b=4.
- 2. Cherchons $\delta = x + iy$ tel que $\delta^2 = \Delta$. On a $|\Delta| = 5$, d'où on obtient le système :

$$\delta^{2} = -3 + 4i \quad \Rightarrow \quad \begin{cases} x^{2} + y^{2} = 5, \\ x^{2} - y^{2} = -3, \\ 2xy = 4. \end{cases}$$

En additionnant les 2 premières équations, on obtient

$$2x^2 = 2 \quad \text{donc} \quad x = \pm 1.$$

En soustrayant ces 2 mêmes équations, on obtient

$$2y^2 = 8 \quad \text{donc} \quad y = \pm 2.$$

D'après la troisième équation, on a 2xy = 4 > 0. D'où, les nombres x et y sont de même signe. Ainsi, les solutions possibles du système sont :

$$(x = 1 \text{ et } y = 2)$$
 ou $(x = -1 \text{ et } y = -2).$

3. Donc, les solutions de $\delta^2 = -3 + 4i$ sont $\delta_1 = 1 + 2i$ ou $\delta_2 = -1 - 2i$.

SExercice 1.

Résoudre dans $\mathbb C$ les équations suivantes :

1)
$$\delta^2 = \sqrt{2} - i\sqrt{2}$$
.

2)
$$\delta^2 = -3 - 4i$$
.

7 Résolution dans \mathbb{C} de l'équation $az^2 + bz + c = 0$

Soit l'équation du second degré à coefficients réels

$$az^2 + bz + c = 0.$$

où a, b, c sont réels avec $a \neq 0$.

Soit le réel $\Delta = b^2 - 4ac$, le **discriminant** de l'équation. Alors,

 \triangleright Si $\Delta > 0$, l'équation admet deux solutions réelles **distinctes** :

$$z_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$.

 \triangleright Si $\Delta = 0$, l'équation admet une **unique** solution réelle :

$$z = -\frac{b}{2a}.$$

 \triangleright Si $\Delta<0$, l'équation admet aucune solution réelle mais elle admet deux solutions complexes conjuguées :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$.

Remarque

Dans ce cas, le discriminant Δ est une quantité réelle.

Propriétés

Soit l'équation du second dégrée à coefficients complexes :

$$az^2 + bz + c = 0,$$

où a,b,c sont des complexes avec $a\neq 0$. Alors, les solutions de l'équation sont :

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$,

où δ est une racine carrée du discriminant $\Delta=b^2-4ac,$ c'est-à-dire $\delta^2=\Delta.$

Méthode – Résolution d'une équation du second degré à coefficients complexes

- 1. Identifier les coefficients complexes a, b et c; et vérifier que $a \neq 0$.
- 2. Calculer le discriminant complexe $\Delta.$
- 3. Trouver une racine carrée δ de Δ , c'est-à-dire résoudre l'équation $\delta^2 = \Delta$ à l'aide la méthode trigonométrique ou géométrique. Puis choisir une des solutions trouvées.
- 4. Calculer les solutions de l'équation :

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

Exemple

Résolvons l'équation du second degré $z^2 - (2+3i)z - 5 + i = 0$.

- 1. Identifions les coefficients : $a = 1 \neq 0$, b = -2 3i et c = -5 + i.
- 2. Calculons le discriminant de l'équation :

$$\Delta = (2+3i)^2 - 4(-5+i) = 4 - 9 + 12i + 20 - 4i = 15 + 8i.$$

3. Déterminons une racine carrée δ de $\Delta=15+8i$. Résolvons l'équation :

$$\delta^2 = 15 + 8i.$$

D'où, $|\Delta| = \sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17$. Il n'est possible d'utiliser la méthode trigonométrique. Donc, utilisons la méthode algébrique en résolvant le système :

$$\begin{cases} x^2 + y^2 = 17, & (1) \\ x^2 - y^2 = 15, & (2) \\ 2xy = 8. & (3) \end{cases}$$

$$\begin{cases} x^2 - y^2 = 15, \end{cases} \tag{2}$$

$$2xy = 8. (3)$$

Or,

$$(1) + (2):$$
 $2x^2 = 32 \Leftrightarrow x = \pm 4.$

$$(1) - (2):$$
 $2y^2 = 2 \Leftrightarrow y = \pm 1.$

Et, d'après la troisième équation, on a xy = 4 > 0. Donc, les réels x et y sont de même signe, d'où

$$(x = 4 \text{ et } y = 1)$$
 ou $(x = -4 \text{ et } y = -1).$

Ainsi, les solutions de $\delta^2 = 15 + 8i$ sont $\pm (4 + i)$.

4. Il nous faut qu'une seule racine carrée. Choississons par exemple $\delta = 4 + i$. Alors, les deux solutions de l'équation du second degré sont :

$$z_1 = \frac{(2+3i)+(4+i)}{2} = 3+2i$$
 et $z_2 = \frac{(2+3i)-(4+i)}{2} = -1+i$.

S Exercice 2.

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$3z^2 - 3z + 1 = 0$$
,

b)
$$z^2 + 16 = 0$$
,

c)
$$z^2 - 2iz - 1 + 2i = 0$$
.

Feuille d'exercices séquence 3

S Exercice 1.

Résoudre dans $\mathbb C$ les équations suivantes :

1)
$$\delta^2 = 1 - i$$
,

3)
$$\delta^2 = -8 - 6i$$
,

5)
$$\delta^2 = 4 - i$$
,

2)
$$\delta^2 = 2 + 2\sqrt{3}i$$
,

4)
$$\delta^2 = 1 + i\sqrt{3}$$
,

6)
$$\delta^2 = 5 - 12i$$
.

S Exercice 2.

Déterminer les racines carrées de $Z = \frac{1+i}{\sqrt{2}}$ sous forme algébrique puis sous forme exponentielle. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

S Exercice 3.

Résoudre l'équation $z^2 = \sqrt{3} + i$. En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 4.

Résoudre dans \mathbb{C} les équations suivantes :

1)
$$z^2 + 3z + 4 = 0$$
,

4)
$$iz^2 - 4iz - 2 + 4i = 0$$
,

2)
$$z^2 - \sqrt{3}z - i = 0$$
.

5)
$$z^4 = 1$$
,

3)
$$z^2 - 2iz + 2(1+2i) = 0$$
,

6)
$$z^4 - \sqrt{2}z^2 + 1 = 0.$$

★ Exercice 5. — Généralisation de la méthode trigonométrique

Soit $\Delta = r e^{i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

- 1) Preuve de la méthode : Considérons $\delta = r' e^{i\theta'}$, avec $r' \in \mathbb{R}_+^*$ et $\theta' \in \mathbb{R}$, tel que $\delta^2 = \Delta$. Montrer que $r' = \sqrt{r}$ et $\theta' = \frac{\theta}{2} + k\pi$ avec $k \in \mathbb{Z}$. En déduire que les solutions de $\delta^2 = \Delta$ sont $\pm \sqrt{r} e^{i\frac{\theta}{2}}$.
- 2) Généralisation de la méthode : Soit $n \in \mathbb{N}^*$.

Le nombre $\delta \in \mathbb{C}$ est dit racine n-ième de Δ si $\delta^n = \Delta$.

Considérons $\delta = r' e^{i\theta'}$, avec $r' \in \mathbb{R}$ et $\theta' \in \mathbb{R}$, tel que $\delta^n = \Delta$. Quelle relation existe-t-il entre r' et r? Même question entre θ' et θ ? En déduire une expression des racines n-ièmes de Δ .

3) Application : Résoudre dans $\mathbb C$ l'équation

$$\delta^6 = i$$
.

★ Exercice 6. – Démonstration de la méthode algébrique

Soit $\Delta = a + ib \neq 0$ avec a et b deux réels. Considérons $\delta = x + iy$, avec x et y deux réels, tel que $\delta^2 = \Delta$.

- 1) Simplifier δ^2 . En déduire que $x^2 y^2 = a$ et 2xy = b.
- 2) Montrer que $|\delta^2| = |\delta|^2$. En déduire que $x^2 + y^2 = \sqrt{a^2 + b^2}$.