Class 21: Infinite Infinites, Exam 2

Schedule

Problem Set 9 is now due on Wednesday, 23 November.

See PDF Version for Notes.

Infinite Sets Recap

Definition. A set *C* is *countable* if and only if there exists a surjective function from \mathbb{N} to *C*. (That is, ≤ 1 arrow out from \mathbb{N} , *ge*1 arrow in to *C*.)

Definition. A set *C* is *countably infinite* if and only if there exists a bijection between *C* and \mathbb{N} .

Cantor's Theorem

For **all** sets, S, |pow(S)| > |S|.

What does this mean for $|\mathbb{N}|$?

What is a *real number*?

Show there is a bijection between [0, 1) and $pow(\mathbb{N})$.