Содержание каталога

1	Многослойные керамические конденсаторы	2
1.1	Характеристики диэлектриков керамических конденсаторов и их обозначение	2
1.2	Стандартные ряды (ряды Е по ГОСТ 28884-90)	
1.3	Типовые характеристики диэлектриков типа 1 и типа 2	4
1.4	Конденсаторы МЧ и МО	8
1.4.1	Группа ТКЕ СС	
1.4.2	Группы ТКЕ 2С1, 2D1	10
1.4.3	Группа ТКЕ 2F3	11
1.5	Конденсаторы К10-17, ОСК10-17	12
1.6	Конденсаторы К10-43, ОСК10-43	14
1.7	Конденсаторы К10-47М, ОСК10-47М	15
1.8	Конденсаторы К10-47М, ОСК10-47М с размерами МЭК	17
1.9	Конденсаторы К10-50, ОСК10-50	22
1.10	Конденсаторы КМ-5а, ОСКМ-5а	
1.11	Конденсаторы КМ-5б, ОСКМ-5б	
1.12	Конденсаторы высоковольтные МЧВ 3кВ	
1.13	Конденсаторы высоковольтные МОВ и МЧВ 1,6, 5,0 кВ	
1.14	Конденсаторы высоковольтные многосекционные МВМ	
1.15	Конденсаторы МЧЕ	
1.16	Конденсаторы проходные МЧП	
2	Пленочные полиэтилентерефталатные конденсаторы	
2.1	Конденсаторы МП-73	
2.2	Конденсаторы МП-73-1	
2.3	Конденсаторы МП-73-Л	
3	Варисторы	
3.1	Варистор - элемент защиты от импульсных воздействий напряжения	
3.2	Варисторы МЧВН	
3.3	Варисторы МОВН	
3.4	Варисторы МЧВС	
3.5	Варисторы МОВС	
3.6	Испытание варисторов одиночным импульсным воздействием тока	
3.7	Типовые вольт-амперные характеристики варисторов	
4	Индуктивности многослойные МОИ и МЧИ	
4.1	Катушки индуктивности многослойные МЧИ и МОИ	45
4.2	Катушки индуктивности многослойные МЧИ 1206	46
4.3	Катушки индуктивности многослойные МЧИ 0805	46
4.4	Катушки индуктивности многослойные МОИ	
5	Терморезисторы	
5.1	Терморезисторы РТС-П	
5.2	Блоки терморезисторные РТС-2Р	
5.3	Терморезисторы РТС-Л	
5.4	Терморезисторы РТС-3	
5.5	Терморезисторы РТС-Н	
5.6	Терморезисторы РТС-НТ	
5.7	Терморезисторы РТС-НВ	
5.8	Терморезисторы РТС-Д	
6	Пьезоизделия	
6.1	Излучатели пьезокерамические синтезаторов речи и громкоговорителей	
6.2	Звонки пьезоэлектрические	
6.3	Элементы пьезокерамические для зажигалок	
6.4	Элемент пьезокерамический для датчиков в теплосчетчиках и расходомерах воды	
6.5	Элементы пьезокерамические для акустических систем и звонков	
6.6 7	Пьезоэлектрические трансформаторы типа Розен	
7	Головки громкоговорителей	
7.1	Головка громкоговорителя B90×50Ш5-01	
7.2	Головка громкоговорителя В100×63Ш3-01	
8	Услуги, предоставляемые центральной заводской лабораторией	68

1 Многослойные керамические конденсаторы.

рис.1

Многослойные керамические конденсаторы, выпускаемые Республиканским унитарным предприятием "Витебский завод радиодеталей "Монолит", относятся к конденсаторам постоянной емкости. Предназначены для работы в цепях постоянного, переменного и импульсного токов.

В многослойных керамических конденсаторах (рис. 1) производства РУП "Витебский завод радиодеталей "Монолит" в качестве материала внутренних электродов используется сплав серебра с палладием. В качестве межэлектродного диэлектрика используются специальные виды диэлектрической керамики с очень низкой электрической проводимостью.

Многослойная структура позволяет получать высокую емкость в единице объема.

Конденсаторы с электродами из сплава серебро-палладий имеют значительные преимущества по электрическим параметрам перед конденсаторами с электродами из неблагородных металлов никель/медь (ВМЕ). Основными преимуществами являются: более низкие значения тангенса угла диэлектрических потерь, более высокие значения сопротивления изоляции (особенно при повышенных рабочих температурах и напряжениях), более высокая надежность.

Конденсаторы с электродами на основе сплава серебра с палладием допускают длительную эксплуатацию в специальных средах (водород, вакуум, азот и др.), воздействие специальных факторов (радиация, гамма излучения, поток нейтронов и прочие воздействия), что позволяет использовать их в технике специального применения.

1.1 Характеристики диэлектриков керамических конденсаторов и их обозначение.

Τι	ın 1		Тип 2
Группа по ТКЕ	TKE, (10 ⁻⁶ / °C)	Группа по ТКЕ	Изменение емкости в интер-
			вале рабочих температур, %
МПО (CG)	0±30	H30	±30
M47	-47±30	H50	±50
M1500	-1500±250	H90	±90
H20	±20		

Коды маркировки номинальных значений емкости

Значения емкости	0,1 пФ	1 пФ	10 пФ	100 пФ	1000 пФ	0,01 мкФ	0,1 мкФ	1 мкФ	10 мкФ
				(0,1 нФ)	(1 нФ)	(10 нФ)			
Код маркировки	p10	1p0	10p	n10	1n0	10n	μ10	1μ0	10μ

Коды маркировки допускаемых отклонений емкости:

Допуск	±0,1	±0,25	±0,5	±1 пФ,	±2 пФ,	±5 %	±10 %	±20 %	+5020 %	+8020 %
	пΦ	пΦ	пΦ	±1 %	±2 %					
Буквенный код	В	С	D	F	G	J	K	М	S	Z

Коды маркировки номинальных напряжений

	одо.	маркировки	110 Millia, IBIIL	nx mampinaem	····		
Номнальные напряжения	16	25	50	63	100	250	500
Буквенный код	E	G	J	K	N	W	V

Рекомендуемые размеры контактных площадок под конденсаторы для поверхностного монтажа

$$a > \frac{2}{3} H < H$$
$$b > \frac{2}{3} B < B$$

Обозначение размера корпуса конденсаторов-чипов по МЭК

M9K 60384-10	МЭК 60384-10	Разме	ры, мм
1989г.	1989г. Изм. №2 2000г.	L	В
0603*	1608M**	1,6	0,8
0805	2012M	2,0	1,25
1206	3216M	3,2	1,6
1210	3225M	3,2	2,5
1810	4532M	4,5	3,2
2220	5750M	5,7	5,0

^{*} Размеры в дюймах

^{**} Размеры в миллиметрах

1.2 Стандартные ряды (ряды Е по ГОСТ 28884-90)

E6	E12	E24	E192	E6	E12	E24	E192	E6	E12	E24	E192
100	100	100	100				215				464
			101				218	470	470	470	470
			102	220	220	220	221				475
			104 105				223 226				481 487
			106				229				493
			107				232				499
			109				234				505
		110	110				237			510	511
			111			240	240				517
			113				243				523
			114				246				530
			115				249				536
			117 118				252 255				542 549
	120	120	120				258				556
	0	0	121				261		560	560	562
			123				264				569
			124				267				576
			126		270	270	271				583
			127				274				590
		100	129				277				597
		130	130 132				280 284				604 612
			133				287				619
			135				291			620	626
			137				294			020	634
			138				298				642
			140			300	301				649
			142				305				657
			143				309				665
			145				312	000	000	000	673
			147 149				316 320	680	680	680	681 690
150	150	150	150				324				698
100	100	100	152				328				706
			154	330	330	330	332				715
			156				336				723
			158				340				732
		160	160				344				741
			162				348			750	750
			164 165				352 357				759 768
			167				361				777
			169			360	365				787
			172				370				796
			174				374				806
			176				379				816
			178				383		820	820	825
	180	180	180		390	390	388				835
			182				392				845
			184 187				397 402				856 866
			189				402				876
			191				412				887
			193				417				898
			196				422				909
			198				427		1	910	920
		200	200			430	432		1	1	931
			203				437		1	1	942
			205				442				953
			208 210				448 453		1	1	965 976
			213				459				988
		1			i	t	.50		1	1	- 550

1.3 Типовые характеристики диэлектриков типа 1 и типа 2

Температурная зависимость изменения емкости М47

Температурная зависимость изменения емкости М1500

Температурная зависимость изменения емкости 2C1(H20),

Температурная зависимость изменения емкости 2F3, H90

Температурная зависимость $tg \, \delta \, для \, CG(M\Pi O), \, M47, \, M1500$

Температурная зависимость tg δ 2C1(H20), 2D1(H30), H50

Температурная зависимость tg δ 2F3(H90)

Зависимость изменения емкости от напряжения Типичная зависимость CG(МПО),М47, М1500 (Uном = 50 B)

Типичная зависимость изменения емкости от напряжения 2C1(H20), 2D1(H30), H50 (Uhom = 50 B)

Типичная зависимость изменения емкости от напряжения 2F3(H90) (Uhom = 50 B)

1.4 Конденсаторы МЧ и МО

Конденсаторы выпускаются в соответствии с требованиями Международной Электротехнической Комиссии (МЭК) МЭК60384-8, МЭК60384-9, МЭК60384-10. Предназначены для эксплуатации в цепях постоянного, переменного тока и в импульсных режимах.

Конденсаторы изготавливают в соответствии с ТУ РБ 07612048.001-94, ТУ РБ 07612048.002-94, ТУ РБ 07612048.003-94.

МЧ (рис.1) незащищенные керамические конденсаторы.

Конденсаторы изготавливают со следующими контактными поверхностями:

серебро-палладий (код Р),

серебро-палладий/олово-свинец-серебро (код О),

серебро-никель барьер/ олово-свинец (код N).

Упаковываются — россыпью, для автомонтажа — в блистер-ленту.

МО (рис. 2) изолированные окукленные керамические конденсаторы.

Упаковываются - россыпью и в однорядную липкую ленту.

Габаритные размеры конденсаторов и характеристики приведены в таблицах

Раз	меј	оы и у	<i>(</i> СЛОВНЬ	ие обоз	начени	я габа	аритн	ых разі	иеров к	онденс	amopo	в МЧ		
Обозначение вида							Pá	азмеры, м	1M					
конденсатора и	l			L				В					L ₁	L ₂
размера корпуса				опускаем: тклонени:				опускаем отклонени			H max		min	min
Размер корпуса по МЭК	Таблицы	Номи- нал		цов кон- электро- ов	Для авто- мон-	Номи- нал	тактнь	дов кон- их элек- одов	Для авто- мон-	тактных	дов кон- электро- ов	Для авто- мон-		
-	Ta(N, P	0	тажа		N, P	0	тажа	N, P	0	тажа		
MЧ1608M	I	1,6	±0,2	+0,3 -0,2		0,8		.0.2		1,2	1,4	1,2		0,4
M42012M	II	2,0	±0,3	+0,4 -0,3	±0,2	1,25	±0,2	+0,3 -0,2	±0,2	1,4	1,6	1,4	0,2	0,4
M43216M	Ш			+0,5		1,6				1,6	1,8	1,6		
M43225M	IV	3,2	±0,4	-0,4		2,5	±0,3	+0,4 -0,3		2,0	2,2			0,8
MЧ4532M	V	4,5	- ±0,5 +0,7		3,2	±0,4	+0,5 -0,4		2,2	2,4		0,3	2,0	
M45750M	VI	5,7				5,0	±0,5	+0,7 -0,5		2,6	2,8		0,5	2,0

Разме	ры и условные обозначе	ния габаритны.	х размеров конс	Эенсаторов М	0
Обозначение вида	Условное обозначение		Размерь	I, MM	
конденсатора и размера корпуса	размера конденсатора в таблицах	L max	B max	H max	Α
MO10		4,5	6.0	3,5	2,5±0,8
MO11	'	4,5	0,0	3,5	5,0±0,8
MO20	ll ll	5,6	6.5	3,5	2,5±0,8
MO21	"	5,0	0,5	3,5	
MO31	III	5,6	7,5	4,0	5,0±0,8
MO41	IV	7,1	8,0	4,0	5,0±0,0
MO51	V	8,5	10,1	4,5	

Параметры и характеристики Номинальное напряжение, В 25, 50, 100, 250, 500;

-55/125/21; Климатическая категория

 C_x <5 пФ – не норм.; 5 пФ \leq Cx<50 пФ – 1,5 $\frac{(150}{Cx}$ +7)×10 4 ; C_x \geq 50 пФ – 15×10 4 ; Тангенс угла потерь, не более

 $C_x \le 10$ нФ, $R_{u3} \ge 10$ ГОМ; $C_x > 10$ нФ, $R_{u3} \times C_x \ge 100$ с; $(0\pm30)\times10^{-6}/^{\circ}C$; Сопротивление изоляции, не менее

Температурный коэффициент

гемператург	чый ко	эффи	циени	11) XIU														
					Ко	нден	ıcam	оры	МЧ	Гру	ппа	TKE	CG(МП0)							
Ряд емкостей						E24	ŀ					E1	2					Eθ	6		
Допускаемое о	тклоне	ние	при	C<5 r	ηФ: ±0	,1 пФ;	±0,25	пФ; ±0),5 пФ	при 5	пФ≤С	<10 п	Φ:	±1	пФ;	при 5 п	ıΦ≤C<	10 пФ:	±	2 пФ;	
емкости от ном	иналы	ной	при	5 пФ≤	≤C<10	пФ:	±0,	5 пФ;		при С	≥10 п	Ф:		±1	0 %	при С≥	10 пФ:		±	20 %	
			при	C≥10	пФ:		±2	%, ±5	%	-											
Uном , В			25;	50						00					250)			50	0	
Размер	I	II	III	IV	V	VI	I	II	III	IV	V	VI	II	III	IV	V	VI	III	IV	V	VI
Диапазон С _х																					
0.47																					
10								Ì													
220								ĺ						ĺ					ĺ		
270								Ì						Ì		Ĭ.			Ì		
300								Ì						Ì		Ĭ.			Ì		
360								ĺ						Ì		Ĭ.			Ì		
390								ĺ						Ì		Ĭ.			Ì		
680		1						ĺ						Ì		Ĭ.			ĺ		
820								ĺ						ĺ							
1000														ĺ							
1100						Ì		ĺ						ĺ							
1500						Ì															
2000						Ì															
2200																					
2400																					
3300																					
3900																					
4300																					
4700																					
6200																					
6800																					
11n																					
13n																					
16n																					
18n																					
30n																					
33n																					

			<u> </u>	Ко	нден	came	оры	мо г	руп	па Т	KE C	G(M	Π0)	<u> </u>	<u> </u>				
Ряд емкос	тей					24						E12					E6		
Допускаемое откло	нение	;	при С	<5 пФ	: ±0,1	пФ; ±0	,25 пФ);	при	5 пФ≤(С<10 г	ıΦ: ±0,	5 пФ; :	±1 пФ;	при 5	5 пФ≤(С<10 п	Φ: ±2	пФ;
емкости от номина	льной		при 5	пФ≤С	<10 п	Φ: ±0	,5 пФ;			С≥10 г			%; ±1			≥10 п	Ф:	±2	0 %
			при С	≥10 п	Ф:	±2	%,												
Uном , В			25; 50)				100					250				50	00	
Размер		Ш	III	IV	V	I	II	Ш	IV	٧		Ш	Ш	IV	V	Ш	Ш	IV	V
Диапазон Сх																			
0.47																			
10																1			
220																1			
360			ĺ													ĺ			
390			ĺ									1				ĺ			
470	ĺ		ĺ				ĺ					1							
680			ĺ			1	ĺ					1							
820			Î			1	Î					1							
1000	1					Ī						i							
1100	1	Ì										İ			İ				İ
1300	İ		İ		Ì		İ												
1500	İ		İ		Ì		ĺ												
1800		1	İ		İ		ĺ												ĺ
2000			Ĭ		ľ		İ												
2200			ì		Ì		ĺ								İ				1
2400		1	ì		ì		ĺ								Ì				1
3300			Ì		ľ		ĺ												ĺ
3900		1	İ		İ										ì				i
4300			1		İ										ì				
4700		1															1		
6200																			
6800																			
11n																			
13n																			
16n						\vdash													
18n		1			1	_									1	1	1		
30n			-			_													1
33n		1	-	1		\vdash									1	 	1		1
3311																			

Параметры и характеристики

Номинальное напряжение, В25, 50, 100, 250, 500;Климатическая категория-55/125/21;

Климатическая категория -55/125/21; Тангенс угла потерь, не более 0,035;

Сопротивление изоляции, не менее $C_x \le 25 \, \text{нФ}, \; R_{\text{u}3} \ge 4 \, \text{ГОм}; \; C_x > 25 \, \text{нФ}, \; R_{\text{u}3} \times Cx \ge 100 \, \text{c};$

Температурная характеристика емкости, %

• без подачи U_{ном.}

• при подаче U_{ном}*

* требование не предъявляется для конденсаторов на напряжение 250 и 500 В.

Конденсаторы МЧ Группы ТКЕ 2С1 (H20); 2D1(H30) Ряд емкостей Е12 для 2С1 (H20) Е6 для 2D1 (H30)																											
Ряд емкосте	Й								- <i>p</i>			E12	2 для	2C1	(H2	0)	-,,		T			Е6 д	ля 2	D1 (F	1 30)		
Доп. отклонен	ние е	мкос	ти от	номи	иналь	ной,%	,							±10									0; +5				
Uном, В			2	:5					5	0					1	00					250				5	00	
Размер	I	II	III		V	VI	I	II	III		V	VI	I	II	III		V	VI	II	Ш		V	VI	III	IV		VI
Диапазон C _X																											
100																											
680													İ														
1000													İ														
2200																											
3300																											
4700																											
5600																											
6800																											
8200																											
10n								1							1												
15n								1							1												
18n															1												
22n															1												
27n										ĺ																	
33n										ĺ																	
39n																											
68n																											
82n																											
100n																											
150n										ĺ																	
180n																											
220n																											
330n																											
470n																											
560n																											
680n																											
1μ																											

					Ко	ндег	нсап	nopi	ы Мо	О Гр	упп	ы ТК	E 20	C1 (F	120);	2D	1(H3	0)						
Ряд емкосте											E12	для 2	C1 (H	120)					E6	3 для	2D1 (H30)		
Доп. отклонен	ние ем	икості	и от н	омина	ально	й, %						±1	0							±20; +	-50	20		
Uном, В			25					50					100					250				5	00	
Размер	1	Ш	III	IV	V	1	Ш	III	IV	V		Ш	III	IV	V	Т	Ш	III	IV	V	Ш	III	ΙV	V
Диапазон C _X																								
100																								
680											1										ĺ			
1000			l					ĺ													1	İ		
2200																								
3300																								
4700																								
5600																								
6800																								
8200							ļ	ļ.																
10n								ļ.																
15n							ļ																	
18n							ļ		ļ						ļ									
22n							ļ	ļ.																
27n							ļ	ļ																
33n							ł																	
39n							ł				_													
68n								1																
82n 100n											_												$\overline{}$	
150n				•				1		1														
180n									1	1														
220n								 			-									 				
330n							-	 												1				
470n																							-	
560n																								
680n																								
1μ										<u> </u>														
Ιμ			<u> </u>	<u> </u>			<u> </u>		<u> </u>	1		l			<u> </u>			L						

Параметры и характеристики

Номинальное напряжение, В Климатическая категория Тангенс угла потерь, не более Сопротивление изоляции, не менее Температурная характеристика емкости, %

без подачи U_{ном} +30/-80;
 при подаче U_{ном} +30/-90

16, 25, 50, 100;
-40/085/21;
0,035;
$C_{x} \leq$ 25 нФ, $R_{us} \geq$ 4 ГОм; $C_{x} >$ 25 нФ, $R_{us} \times C_{x} \geq$ 100 c ;

						К	онде	нсап	порь	л МЧ	Гру	⁄ппа ٔ	TKE	2F3(H90))							
		Ряд	ц емкс	стей												Ε6							
Доп. откло	энені	ие ем	ІКОСТІ	и от н	номи	иналы	ной, ⁰	%							+80	20)						
Uном , В			1	6					2	25					5	0					100		
Размер	I	II	III	IV	V	VI	I	II	III	IV	V	VI	I	II	III	IV	V	VI	II	III	IV	V	VI
Диапазон C _X																							
1000																							
2200																			1				
6800]				
10n																							
22n																							
33n																							
47n																							
68n																							
100n																							
150n																	ļ						
220n																	ļ						
330n																	ļ						
470n																							
680n																							
1μ																							
1μ5																							
2μ2																							
3μ3																							

					F	(онде	энсап	поры	ı MO	Груп	па ТР	(E 2F	3(H9	0)						
Ряд емкостей	й													E6						
Доп. отклоне	ние е	мкости	1 ОТ НО	минал	ьной, 🤉	%							+8	3020)					
Uном , В			16					25					50					100		
Размер	-	Ш	Ш	IV	V	- 1	II	III	IV	V	ı	Ш	Ш	IV	V	- 1	Ш	Ш	IV	V
Диапазон С _х																				
1000																				
2200																				
6800								ļ								J				
10n																				
15n								ļ.												
22n										·										
33n																				
68n 100n		-					ł											4		
150n							1	ł	ł									-		•
220n		-					1	•	·			-								
330n			1					1	ľ				1							
470n																				
680n									1											i i
1μ																				
1μ5																				
2μ2																				
3μ3																				

Примеры условного обозначения CG 180 пФ ТУ РБ 07612048.001-94 100 B Конденсатор M41608M ±5 % Ν (а) (б) (B) (r) (д) (e) (3) (ж) (и) MO51 2C1 0,15 мкФ 100 B ТУ РБ 07612048.003-94 Конденсатор ±20 % (a) (б) (д) (e) (и) (r)

- а) обозначение вида конденсатора;
- б) обозначение размера корпуса;
- в) группа ТКЕ;
- г) номинальная емкость;
- д) допускаемое отклонение емкости от номинальной;
- е) номинальное постоянное напряжение;
- ж) код упаковки (буква «А» для конденсаторов в исполнении, предназначенном для автоматизированной сборки аппаратуры);
- з) код контактных электродов;
- и) обозначение документа на поставку.

1.5 Конденсаторы К10-17

(рис. 2)

К10-17в, ОСК10-17в К10-17-4в (рис. 3)

К10-17а, ОСК10-17а (рис. 1)

Конденсаторы К10-17 предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Конденсаторы изготавливают в соответствии с ОЖО.460.172 ТУ; ОЖО.460.107 ТУ; ОЖО.460.107 ТУ ОЖО.460.183 ТУ; ОЖО.460.107 ТУ ПО.070.052. Конденсаторы выпускаются в водородоустойчивом и неводородоустойчивом исполнениях.

К10-17а (рис. 1): правильной формы, изолированные керамические конденсаторы, исполнение — всеклиматическое.

К10-176 (рис. 2): изолированные окукленные керамические конденсаторы, исполнение — всеклиматическое.

К10-17в (рис. 3): незащищенные керамические конденсаторы. Типы контактных электродов: серебро-палладий (нелуженые); сереброникель барьер/олово-свинец (луженые).

К10-17-4в (рис. 3): незащищенные керамические конденсаторы. Конденсаторы изготовляют в соответствии с ОЖО.460.172 ТУ. Предназначены для поверхностного монтажа. Поставка производится россыпью или в блистер-ленте. Типы контактных электродов: серебропалладий, серебро-никель барьер/олово-свинец.

Характеристика	M47	M1500	H20	H50	H90
Допускаемое отклонение	С _х ≤2,2 пФ: ±0,25 пФ				
емкости от номинальной	С _х >2,2 пФ:	± 5 %, ±10 %, ±20 %	± 10 %, ±20 %	+5020 %	+8020 %
	± 5 % ¹ , ±10 %, ±20 %				
Номинальное напряжение, В	50	50	50	50	40
Климатическая категория	-60/125/21 ²	-60/125/21 ²	-60/125/21 ²	-60/125/21 ²	-60/085/21 ²
Тангенс угла потерь	С _х ≤10 пФ не норм.;	33 пФ <С _х ≤50 пФ	не более 0,035	не более 0,035	не более 0,035
	10 пФ <С _х ≤50 пФ	$1,5(150/C_x)\times10^{-4}$;			
	$1,5(150/C_x)\times10^{-4}$;	С _х >50 пФ не более			
	С _х >50 пФ не более	0,0015;			
	0,0015;				
Сопротивление изоляции	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ	С _х ≤0,025 мкФ
	не менее 10 ГОм;	не менее 10 ГОм;	не менее 4 ГОм;	не менее 4 ГОм;	не менее 4 ГОм;
	С _х >0,025 мкФ	С _х >0,025 мкФ	С _х >0,025 мкФ	С _х >0,025 мкФ	$C_x > 0.025$ мкФ
	R _{из.} •С _х не менее 250 с	R _{из.} С _х не менее 250 с	R _{из.} ·С _х не менее 100 с	R _{из.} ⋅С _х не менее 100 с	R _{из.} ∙С _х не менее 100 с

Примечание - 12,2 пФ<С≤6,8 пФ - ±20 %; 7,5 пФ<С≤15пФ - ±10 %; ±20 %;

² Для конденсаторов варианта "а" - 56 суток

Обозна-									Pas	мер	ы, мм							
чение	Вариа	нт "а'	" (рис. 1)	Ва	ариан	іт "б"	(рис. 2)		Ва	ариан	ιт "в" (рι	ис. 3)				Вариант "4	1 в" (рис. 3)	
видо-	1	Н		1	В	Н		нелу	жень	ΙЙ	лух	кеныі	Й	m				m
размера	max	max	Α	max		max	Α	L	B max	H max	L	B max	H max	min	L	В	Н	min
		4.0	0.5.0.5		4.0	0.0	2,5±0,8	. c+0.4		1,0			1,2					
1	6,8	4,6	2,5±0,5	5,6	4,0	3,0	5,0±0,8	1,5 ^{+0,4} _{-0,2}	1,3	1,2	1,5 ^{+0,5} _{-0,2}	1,4	1,4		1,6±0,2	0,8±0,2	0,8±0,2	
2	8,4	6,7	5,0±0,5	7,5	5,0	4,5	2,5±0,8	$2,0^{+0,4}_{-0,2}$	1,8	1,0	$2,0^{+0,5}_{-0,2}$	1,9	1,2	0,2	2,0±0,2	1,25±0,2	0,8±0,2	0,2
2	0,4	0,7	3,0±0,3	7,5	5,0	4,5	5,0±0,8	^{2,0} _{-0,2}	1,0	1,4	$2,0^{+0,7}_{-0,2}$	1,3	1,6		2,0±0,2	1,2310,2	0,0±0,2	0,2
3	12,0	8,6	7,5±0,5	9,0	7,1	5,0	5,0±0,8	$4,0^{+0,5}_{-0,3}$	2,9	1,0 1,8	4,0 ^{+0,7} _{-0,3}	3,2	1,2 2,0		3,2±0,2	1,6±0,2	1,0 ^{+0,2} _{-0,3}	
4				11,5	9,0	5.0	5,0±0,8	5,5 ^{+0,5} _{-0,4}	4,4	1,0 1,3*	5,5 ^{+0,7}	4,6	1,2 1,5*	0,5				
7				11,5	9,0	3,0	7,5±1,5	5,5 _{-0,4}	7,7	1,8 2,2*	5,5 _{-0,4}	4,0	2,0 2,4*					
5								$8,0^{+0,7}_{-0,5}$	6,6	1,8	8,0 ^{+0,9} _{-0,5}	6,8	2,0					

Примечание - * только для конденсаторов группы Н90

Примеры условного обозначения

TIPHINICPE YOURS	11010 00031184	SI IVIZI				
Конденсатор	К10-17в	H90	1,5 мкФ	ОЖО.46	60.107 °	ТУ нелуженый
(a)	(б) (д)	(e)	(ж)	(л)	(M)
Конденсатор	OCK10-17Ca	M47	270 пФ	±10 %	В	ОЖО.460.107 ТУ ОЖО.460.183 ТУ
(a)	(б) (г)(д	ı) (e)	(ж)	(3)	(ĸ)	(л)
Конденсатор	OCMK10-176	M47	430 пФ	±10 %	В	ОЖО.460.107 ТУ ПО.070.052
(a)	(б) (д)	(e)	(ж)	(3)	(ĸ)	(л)
Конденсатор	К10-17-4в	M47	150 пФ	±10 %	2	ОЖО.460.172 ТУ
(a)	(б) (в)(д)	(e)	(ж)	(3)	(и)	(л)

- а) слово «Конденсатор»;
- б) сокращенное условное обозначение;
- в) вид;
- г) буква «С» для конденсаторов водородоустойчивого исполнения;
- д) вариант;
- е) группа по ТКЕ;
- ж) номинальная емкость;
- з) допускаемое отклонение емкости от номинальной (кроме групп Н50, Н90);
- и) обозначение видоразмера;
- к) буква «В» для конденсаторов всеклиматического исполнения;
- л) обозначение документа на поставку;
- м) слово «нелуженый» для конденсаторов с нелужеными контактными электродами.

										Кон	ден	ıcar	nop	ы	пиг	ia K	(10-	17												
	K.	10-1	7a (p	ис.	1)		К10-	17б (рис. 2	2)	К	10-1	7в (р	ис. :	3)	K10)-17-	4в-1	(рис	:. 3)	К10	-17-	4в-2	(рис	c. 3)	K10)-17·	-4в-3	(ри	c. 3)
Ряд Е	Εź	24	E12	E	6	l E	24	E12	Е	E 6	E:	24	E12	Е	6	E	24	E12	E	6	Εź	24	E12	Е	6	E	24	E12		Ξ6
C _x	M47	M1500	H20	H50	H90	M47	M1500	H20	H50	H90	M47	M1500	H20	H50	H90	M47	M1500	H20	H50	H90	M47	M1500	H20	H50	H90	M47	M1500	H20	H50	H90
0,47																														
2,2																														
22																														
33																1														
39 75																														
75						ŀ					1																			
100																					2									
150																	1													
160						4																				0				
180 270						1					2	1						_								3				
430											_		-																	
470						ł																2								
560	1					-							ŀ					1				_								
620	'					-	1						ł					1									3			
680																											J			
820				-				1										1												
910												2																		
1000		1									3																			
1100									i				1	1				1	1											
1600				ĺ		2	Î	Ì	İ			Î																		
1800																														
2200																														
2700				Į				Į															2	2				3	3	
3000								1	1											1										
3300				Į								3																		
4700	2			ļ		3					4																			
5600																														
6800			1	1			2							-											3					
8200													2		4									-						
9100	2			ł		3		ŀ			4			2	1															3
10n 11n	2			ŀ		4		ł			5		1																	3
15n	3	2		ŀ		7	3	ŀ				4																		
18n		_					3																							
22n																														
27n										1																				
30n					1																									
33n		2					3					4	3	3																
39n		3					4					5																		
47n								2	2						2															
68n																														
100n						<u> </u>					<u> </u>							<u> </u>												
120n						<u> </u>												<u> </u>												
150n			2	2		<u> </u>		3	3		<u> </u>		4	4																
220n						⊢					<u> </u>				3		-	 												
270n			0	0		<u> </u>		0	0	0			1	1																
330n 470n			3	2		\vdash		3	3	2			4	4				1								-				
470n 560n			3	3				4	4		-		5	5																
680n						\vdash				3								1			-									
1μ5					2	\vdash				3	-				4			1												
1μ3 2μ2										3,4																				
ΖμΖ				l				<u> </u>		٥, ١			l					<u> </u>												

Конденсаторы К10-17в группы ТКЕ Н20 также изготавливают габаритных размеров и Сх согласно таблице:

							Ко	онденс	аторы	K10-17	7в Н20						
			Е	МКОСТЬ	по ря	ду Е12						Га	баритны	е разме	ры		m
		пΦ					MK	ф			Н	елужень	lЙ		Луженый	Ĭ	m min
100	220	1000	2200	8200	0,01	0,018	0,068	0,15	0,33	0,56	L	B max	H max	L	B max	H max	111111
		1									1,6±0,2	1,0	0,9	1,6+0,4	1,2	1,1	
			2								2,0±0,2	1,45	1,3	2,0+0,4	1,6	1,5	0.0
				3							3,2±0,2	1,8	1,3	$3,2^{+0,5}_{-0,2}$	2,0	1,5	0,2
					4						3,2±0,4	2,8	1,3	$3,2^{+0,7}_{-0,4}$	3,0	1,5	
							5				4,5±0,5	3,6	1,3	4,5 ^{+0,7} _{-0,5}	3,8	1,5	0,3
							6				5,7±0,5	5,5	1,3	$5,7^{+0,7}_{-0,5}$	5,7	1,5	0,3

Примеры условного обозначения

Конденсатор К10-17в-H20-0,15 мкФ ± 10 % -5 (5 — обозначение видоразмера); Конденсатор К10-17в-M1500-0,03 мкФ ± 10 % -5,5 (для размера Lmax × Bmax = 5,5×4,0 мм); Конденсатор К10-17а-М47-0,01 мкФ ± 10 % -8,4-В (для размера Lmax × Bmax = 8,4×6,7 мм).

1.6 Конденсаторы К10-43

К10-43а, ОСК10-43а (рис. 1)

Конденсаторы К10-43 - прецизионные керамические конденсаторы. Предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Конденсаторы изготавливают в соответствии с АДПК.673511.005 ТУ; ОЖО.460.165 ТУ; ОЖО.460.165 ТУ ПО.070.052. Конденсаторы варианта «а» и «в» выпускают в водородоустойчивом и неводородоустойчивом исполнениях. Конденсаторы варианта «б» выпускают в водородоустойчивом исполнениях.

К10-43а (рис. 1): правильной формы, изолированные керамические конденсаторы, исполнение — всеклиматическое.

К10-43б (рис. 2): изолированные окукленные керамические конденсаторы, исполнение — всеклиматическое.

К10-43в (рис. 3): незащищенные керамические конденсаторы. Типы контактных электродов: серебро-палладий (нелуженые); серебро-никель барьер/олово-свинец (луженые).

Параметры и характеристики:

Тип диэлектрика МП0;

Диапазон емкости 10 пФ...0,0442 мкФ;

Номинальное напряжение 50В;

Климатическая категория -60/125/21*;

Тангенс угла потерь 10 пФ< $C_{\text{ном}} \le 50$ пФ 1,5 $(\frac{150}{C_{\text{ном}}}) \times 10^{-4}$

 $C_{\text{ном}} > 50 \ п\Phi \$ не более 0,0015;

Сопротивление изоляции не менее 10000 МОм;

Температурный коэффициент емкости $(0\pm30) \times 10^{-6}$ / °C:

Примечание - *Для конденсаторов варианта "а" - 56 суток.

		емкост		0/					E 19					
Допускае	емое от	клонени	е емкос	ти, %					±1; ±2	2; ±5				
TKE	МП0							Размерь	I, MM					
Uном , В	50	Вариа	ант "а" (рис. 1)	[Зариант "(б" (рис. 2)				Вариант "	в" (рис. 3)		
C _X		L max	H max	Α	L max	B max	H max	Α		нелужены	Й		луженый	
Ox		Liliax	Παλ		Liliax	Dillax	TTITIAX		L	B max	H max	L	B max	H max
10				2,5±0,5	6,3	4,5	3,15	2,5±0,8	3,2±0,4	1,8	1,6	3,2 ^{+0,8} _{-0,4}	2,1	1,9
1840					0,0	4,5	0,10	2,5±0,0	J,Z±U,4	1,0	1,0	^{3,2} -0,4	۷, ۱	1,5
1870														
3160		8,2	4,8											
3200		0,2	4,0		7,5	6,3			$4.0^{+0.5}_{-0.3}$	2,9		4,0 ^{+0,9} _{-0,3}	3,2	
4640					7,5	0,0			4,0 -0,3	2,5		4,0 -0,3	0,2	
4700				5,0±0,5				5,0±0,8						
7500								3,0±0,0						
7590							5,0				2,4			2,7
15,4n		10,0	6,7		9,0	7,1	0,0		$5,5^{+0,5}_{-0,4}$	4,4	_, .	5,5 ^{+0,9} _{-0,4}	4,8	,,
15,6n		10,0	0,7		0,0	,,,,			^{3,3} -0,4	.,,		^{3,3} -0,4	1,0	
20,5n														
20,8n														
24,9n		12,0	8,8	7,5±0,5	11,5	9,0		7,5±1,5	8,0±0,5	6,8		8,0 ^{+0,9} _{-0,5}	7,2	
25,2n		,0	0,0	7,020,0	,0	0,0		7,0±1,0	0,0±0,0	0,0		-0,5	,,_	
44,2n														

Примеры условного обозначения

Конденсатор (a)	К10-43а (б) (в)	МП0 (г)	А (д)	154 пФ (e)	±5 % (ж)	(3)	ОЖО.460.165 ТУ (и)
Конденсатор (a)	ОСК10-43в (б) (в)	MΠ0 (r)	21,5 пФ (e)	±1 % (ж)	ОЖ	O.460.16	5 ТУ ОЖО.460.183 ТУ (и)
Конденсатор (a)	ОСМК10-43б (б) (в)	MΠ0 (r)	0,0154 N (e)		2 % ж)	ОЖО.46	0.165 ТУ ПО.070.052 (и)

- а) слово «Конденсатор»;
- б) сокращенное условное обозначение;
- в) вариант:
- г) группа по ТКЕ;
- д) класс по ТКЕ (только для конденсаторов класса А);
- е) номинальная емкость;
- ж) допускаемое отклонение емкости от номинальной;
- з) буква «С» для конденсаторов вариантов «а» и «в» водородоустойчивого исполнения;
- и) обозначение документа на поставку.

1.7 Конденсаторы К10-47М*

К10-47Ма, ОСК10-47Ма (рис. 1)

К10-47Мб, ОСМК10-47Мб (рис. 2)

Конденсаторы К10-47М предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Конденсаторы изготавливают в соответствии с ОЖО.460.174-М ТУ; ОЖО.460.174-М ТУ ОЖО.460.183 ТУ; ОЖО.460.174-М ТУ ПО.070.052. Конденсаторы выпускают в водородоустойчивом и неводородоустойчивом исполнениях.

К10-47Мб (рис. 2): изолированные окукленные керамические конденсаторы, исполнение — всеклиматическое.

К10-47Мв (рис. 3): незащищенные керамические конденсаторы. Типы контактных электродов: серебро-палладий (нелуженые); серебро палладий/олово-свинец-серебро (луженые); серебро-никель барьер/олово-свинец (никель барьер - код N).

Параметры и характеристики

Диапазон емкости МП0 10 пФ...0,1 мкФ;

H20 0,047 пФ ...2,2 мкФ; H30 1000 пФ...2,2 мкФ; H90 1,0 мкФ ...6,8 мкФ;

Номинальное напряжение Климатическая категория 50 B, 100 B, 250 B, 500 B; MΠ0, H20, H30 -60/125/56;

.

H90 -60/85/56;

Тангенс угла потерь

МП0 10 пФ< $C_{HOM} \le 50$ пФ 1,5 $(\frac{150}{C_{HOM}} + 7) \times 10^{-4}$ С_{HOM}>50 пФ не более 0,0015;

H20, H30,

Температурный коэффициент Температурная характеристика емкости, % H20, H30, H90 не более 0,035; M Π 0 (0 \pm 30) \times 10⁻⁶/ °C;

H20 +20/-20;

H30 +30/-30;

H90 +90/-90.

									Разм	еры, к	л м									
		В	ариан	т "а"		Ва	ариан	т "б"					Е	Зариа	ант "в"					
TKE		⊔on I	130 H	190, МП	n	Lac	Lan	, МП0			H30, F	190					M	Π0		
Обозна-		1120, 1	130, 1	iso, ivii i	0	1130	, 1190	, IVII IU	нел	тужен	ый	лух	кеный		нел	ужень	ЫЙ	лу	жены	Й
чение видо- размера	L max	H max	B max	Α	d	L max	B max	Α	L	B max	H max	L	B max	H max	L	B max	H max	L	B max	H max
1	7,5		5,0	5±1	0,6±0,1	7,5	8,0				1,6			1,8	$4.0^{+0.5}_{-0.3}$	2,9		4,0 ^{+0,7} -0,3	3,2	
II	9,0		7,1	<u>5±1</u>	0,0±0,1	9,0	10,1	5±0,8	4,0 ^{+0,5} _{-0,3}	2,9	2,3	4,0 ^{+0,7} _{-0,3}	3,2	2,5	5,5 ^{+0,5} _{-0,4}	4,4		5,5 ^{+0,7} _{-0,4}	4,6	
III	12	5,3	9,5	7,5±1	0,6±0,1	11,5	12,0	7,5±1			2,8			3,0	8,0 ^{+0,7} _{-0,5}	6,6	2,3	8,0 ^{+0,9} -0,5	6,8	2,5
IV	14		11,0	10±1					.05		1,6	.07		1,8	10 ^{+0,8} _{-0,6}	8,7		10 ^{+1,2} -0,6	8,9	
V	16		13,5	12,5±1	0,8±0,1				5,5 ^{+0,5} _{-0,4}	4,4	2,3	5,5 ^{+0,7} _{-0,4}	4,6	2,5	12 ⁺¹	10,8		12 ^{+1,5} -0,7	11	
VI	16		13,5	12,5±1							2,8			3,0						
VII		7,1							8,0 ^{+0,7} _{-0,5}	6.6	1,6 2,3	8,0 ^{+0,9} _{-0,5}	6,8	1,8 2,5						
IX									o,0 -0,5	0,0	2,8	o,0 -0,5	0,0	3,0						
X									10 ^{+0,8} -0,6	8,7	2,3	10 ^{+1,2}	8,9	2,5						
XI									-0,6	0,7	2,8	-0,6	0,0	3,0						
XII									12 ⁺¹ _{-0,7}	10,8	2,3 2,8	12 ^{+1,5}	11	2,5						
XIV									' -0,7	10,0	4,2	-0,7		3,0 4,5						

*Примечание - Витебский завод радиодеталей «МОНОЛИТ» произвел пересмотр технических условий ОЖО.460.174 ТУ на конденсаторы К10-47 (редакция 1985 года). Новые технические условия имеют обозначение ОЖО.460.174-М ТУ (редакция 2002 года) и утверждены в установленном порядке. В ОЖО.460.174-М ТУ сохранены в полном объеме технические характеристики конденсаторов К10-47 и дополнительно введены конденсаторы в соответствии с страницами 17-21 каталога. Буква «М», указанная в обозначении ТУ и в обозначении типа конденсатора, означает предприятие-изготовитель – РУП «Витебский завод радиодеталей «МОНОЛИТ».

								Ко	нден	ıcarı	порь	ı mu	па К	10-4	7M									
								/П0			-	H	120				H30					H90		
Допуска	емое отк			кости	, %		±5; ±	10; ±2	20			±10	; ±20			±20); +50.	–20			+80)20)	
	Ряд (емкост	ей							E12	<u>'</u>									E6				
		Вари	ант "а	а" (рис	c. 1)						Вар	иант "	б" (ри	c. 2)					Вар	иант "	в" (ри	c. 3)		
TKE	H20;H30	H90	Н	20; H3	30		МΠ0		H30			H30			МПО)	H30			H30			МПО	
Uном ,	50		100	250	500	100	250	500	50	0	100	250	500	100	250	500	5	50	100	250	500	100	250	500
В		1								_								1						
C _X																								
10 390									_							'	⊢							1
470								П								Ш	_							П
1000								"							1	"	_				III		- 1	"
1200																							·	
1500								Ш								Ш								Ш
1800						j i																		
2200					Ш		Ш						Ш		l II						VI		Ш	
2700																								
3300				ı		1		IV				ı		ı						III		ı		IV
3900 4700					111			VI					111								IX			V
5600					Ш	1	III	VI	_				III		l III						IX		Ш	V
6800					III		""						III		1111						IX		111	
8200					111		ĺ						111								1/1			
10n				Ш	IV	i	IV					- II								VI	ΧI		IV	
12n						Ш								Ш								Ш		
15n			- 1	Ш	IV	ĺ					-1	II							1	VI	XI			
18n							VI																V	
22n				III	VI																XIII			
33n					VII	III						III		III	_				Ш	IX	XIV	III		
39n			- 11	111	\/11	IV					- 11								11.7		VIV	1) /		
47n 68n	'	\vdash	II	III	VII	IV			1		II II						i II		IV V	XI	XIV	IV		
82n				IV		VI					- 11						- 11		V	ΛI		V		
100n			III	VI							III						n.		VII	XIII				
150n	Ш								Ш								IV		VIII	7				
220n			IV														V		Х					
330n																	VII		\					
470n	III		VI						III								VIII							
680n	III, IV																VIII,		XII					
						<u> </u>				L.,	<u> </u>					<u> </u>	Χ							
1μ	IV,VI	II,IV								II					<u> </u>		X,XII	V,X						
1μ5	\ / I	111.57				ļ			 	111					1				-					
2μ2	VI	III,VI								III							XII	VIII,X						
3μ3		IV																II X						
- 3μ3 4μ7		VI															-							
4μ7		VI				<u> </u>												XII						

Примеры условного обозначения

Конденсатор (а)	К10-47Мв (б) (в)	500 B (e)	10 пФ (ж)	±5 % (3)	МП0 (и)	ОЖО.460 (N		у
Конденсатор	ОСК10-47Мв	1608M	50 B	0,015 мкФ	H90	N	ОЖО	D.460.174-М ТУ ОЖО.460.183 ТУ
(а)	(б) (в)	(r)	(e)	(ж)	(и)	(л)		(м)
Конденсатор	ОСМК10-47Мб		00 B	0,01 мкФ	±10 %	H20	5,0	ОЖО.460.174-М ТУ ПО.070.052
(а)	(б) (в)		(e)	(ж)	(3)	(и)	(κ)	(м)

- а) слово «Конденсатор»;
- б) сокращенное условное обозначение;
- в) вариант;

6μ8 10μ 15μ

- г) обозначение видоразмера конденсаторов варианта «в» с размерами корпуса по МЭК;
- д) буква «С» для конденсаторов вариантов водородоустойчивого исполнения;
- е) номинальное напяжение;
- ж) номинальная емкость;
- з) допускаемое отклонение емкости от номинальной;
- и) группа по ТКЕ;
- к) цифры «2,5» для конденсаторов варианта «б» с размером A = 2,5 мм; цифры «5,0» для конденсаторов варианта «б» размером L×B×H 8,5×10,1×4,5 мм с размером A = 5,0 мм;
- л) буква «N» для конденсаторов вариата «в» с контактными поверхностями с никель барьером;
- м) обозначение документа на поставку.

1.8 Конденсаторы К10-47М с габаритными размерами в соответствии с требованиями МЭК

(рис.2)

Конденсаторы выпускаются в соответствии с ОЖО.460.174-М ТУ; ОЖО.460.174-М ТУ ОЖО.460.183 ТУ; ОЖО.460.174-М ТУ ПО.070.052 (см. Примечание на стр.15). Предназначены для эксплуатации в цепях постоянного, переменного токов и в импульсных режимах.

Вариант "в" изготавливают с контактными поверхностями серебро-никель барьер/олово-свинец (код N) с габаритными размерами в соответствии с требованиями Международной Электротехнической Комиссии (МЭК).

Габаритные размеры конденсаторов и характеристики приведены в таблицах

	Раз	меры ко	нденсат	ров К10-4	7Мв по МЗ	ЭК, мм		
Обозначение видоразмера конденсатора	Условное обозначение размера конденсатора в таблицах	Номи- нал	L Допуск	Е Номинал	3 Допуск	H max	L ₁ min	L ₂ min
1608M	I	1,6	±0,15	0,8	±0,15	1,2		0,4
2012M	II	2,0	±0,15	1,25	±0,15	1,4	0,2	0,4
3216M	III	3,2	±0,2	1,6	±0,2	1,6	0,2	0.0
3225M	IV	3,2	±0,3	2,5	±0,3	2,0		0,8
4532M	V	4,5	±0,3	3,2	±0,3	2,2	0,3	2,0
5750M	VI	5,7	±0,5	5,0	±0,5	2,4	0,3	۷,0

Размеры и услов	зные обозначени	я размеров конд	енсаторов К10	-47Mб
Условное обозначение		Размерь	I, MM	
размера конденсатора в таб- лицах	L max	B max	H max	А
ı	4.5	6.0	2.5	2,5±0,8
ı	4,5	6,0	3,5	5,0±0,8
II	5 C	6.5	2.5	2,5±0,8
"	5,6	6,5	3,5	5,0±0,8
III	7.1	0.0	4.0	2,5±0,8
III	7,1	8,0	4,0	5,0±0,8
IV	8,5	10,1	4,5	5,0±0,8
IV	0,5	10,1	4,0	7,5±1,0

Параметры и характеристики

Номинальное напряжение, В Климатическая категория

25, 50, 100, 250, 500;

-60/125/56;

Тангенс угла потерь, не более

 $C_x \le 10$ пф—не норм.; 10 пф<С $x \le 50$ пф - 1,5 $\frac{150}{(C_X}$ +7)·10⁻⁴; $C_x > 50$ пф - 15·10⁻⁴; $C_x \le 25$ нф, $R_{u3} \ge 10$ ГОм; $C_x > 25$ нф, $R_{u3} \cdot C_x \ge 250$ с; $(0\pm 30)\cdot 10^{-6}$ /°C;

Сопротивление изоляции, не менее

Температурный коэффициент

TCIMITO	рантур	пыа ко	эффи	дистип		Конд		оры К		б Груг	ına TKI	= МПО							
Ряд емкостей	í					Nono	meanne	оры к	10-4710	<u>0 г руп</u> Е2		_ 101110							
Допускаемое емкости от но	откло				при С	<5 пФ =	±0,25 п	Ф; при	5 пФ≤С			пФ; при	1 C≥10	пФ ±5 '	%; ±10	%; ±20) %		
Uном, В		2	5			5	0			1(00			2	50			500	
Диапазон C _X	ı	Ш	III	IV	ı	Ш	III	IV	- 1	II	III	IV	- 1	II	III	IV	Ш	III	IV
2,2																			
4.7					1														
6,8																			
10					1														
360					1														
390]										
430																			
1100																			
1200																			
1500																			
1600																			
1800																			
2000																			
2200																			
3300																			
3600																			
3900																			
4300																			
4700																			
5100																			
11n																			
12n																			
13n																			
15n																			
16n																			
18n																			
33n																			
39n																			

								Кон	нден	camo	ры	K10-4	17Мв	Гру	ппа	TKE	мпо										
Ряд емкосте	Й														E24												
Допускаемо		поне	ние				при	С<5 г	1Ф ±0),25 г	ιФ; п	ри 5 і	пФ≤С	Σ⊴9,1	пФ:	±0,5 I	пФ; г	іри С	≥10 r	ıФ ±	5 %;	±10	%; ±	20 %			
емкости от н	ЮМИН	алы																									
Шном , В			2						5							00					250					00	
Диапазон C_X	I	II	III	IV	V	VI	I	II	III	IV	V	VI	I	II	III	IV	V	VI	II	III	IV	V	VI	III	IV	V	VI
0.47															ļ												
2,2															ļ												
10															ļ												
220											ļ				ļ		ļ										
300 360																											
390																											
470											ŀ				ŀ		ŀ									-	
680											ŀ				ŀ		}									-	
820											ŀ				ŀ											-	
1000										l																	
1100		-								i																	
1500		-								i i	•						Ì										
1800										İ	Ì				ĺ												
2000										l i							Ì					Ì					
2200										İ	Ì				Ì		Î					ĺ					
2400]												
3300																											
3900																											
4300																											
4700											ļ																
6200											ļ						ļ										
6800																											
8200											}																
11n											ļ						-										
13n 15n							-									-					-						
16n							-				}						 	-									
30n										-					-						-						
33n																	 										
3311					l		I	l	1																		

Параметры и характеристики

Номинальное напряжение, В Климатическая категория

50, 250; -60/125/56;

Тангенс угла потерь, не более

 $C_x \le 10 \text{ пФ-не норм.}; 10 \text{ пф} < C_x \le 50 \text{ пФ} - 1,5 \frac{150}{Cx}) \cdot 10^4; C_x > 50 \text{ пФ не более } 0,0015$ $C_x \le 0,025 \text{ мкФ}, R_{us} \ge 10 \text{ ГОм}; C_x > 0,025 \text{ мкФ}, R_{us} \cdot C_x \ge 250 \text{ c};$

Сопротивление изоляции, не менее

Ко	нденс	аторь	ı K10-	47M6 I	Группа	TKE I	147	
Допускаемое			При	С<5 пФ	±0,25	пФ; 5	пФ≤С≤	9,1 пФ
емкости от н	омина.	пьной	±0,5	пФ; С≥	10 пФ =	±5 %; ±	10 %; =	±20 %
Ином , В		5	0				50	
Диапазон С _х		- II	III	IV	- 1	- II	III	IV
2,2								
16								
33								
150								
220								
240								
390								
430								
470								
750								
820								
1100								
1200								
1300								
2200								
2400								
2700			ĺ					
3000								
3300								
5100								
5600								
6200								
6800								
8200								
9100								
11n								
13n								
15n								
16n								
39n								
47n								

Ф, R _{из} ≥ 10 ГС								
1	Конден	саторі	ы К10-4	47M6 F	руппа Т	TKE M1	500	
Допускаемо	е откло	нение			±5	%; ±10	%; ±20	%
емкости от н						•	•	
Uном , В		5	0			2	50	
Диапазон С _х	I	II	III	IV	ı	Ш	Ш	IV
2,2								
16								
33								
150								
220								
240								
390								
430								
470								
750						ĺ		
820						ĺ		
1100						ĺ		
1200						ĺ		
1300								
2200								
2400								
2700								
3000								
3300								
5100								
5600								
6200								
6800								
8200								
9100								
11n								
13n								
15n								
16n								
39n								
47n								
		<u> </u>	<u> </u>			<u> </u>		

Конденс	саторы І	<i>К10-47М</i> в	Группа Т	TKE M47	
Допускаемое отклон	нение Пр	ои С<5 пФ	±0,25 пФ	; 5 пФ <i>≤</i> С≤9	9,1 пФ
емкости от номинал	ьной <u>+</u> 0	,5 пФ; С≥1	10 πΦ ±5 9	%; ±10 %;	±20 %
Оном , В			50		
Диапазон Сх	I	II	III	V	VI
0.47					
2,2					
16					
33		_			
150					
270					
390					
430					
470					
560					
750					
820					
1000					
1800					
2200					
2400					
2700					
3000					
3300					
5600					
6200					
8200					
9100					
10n					
15n					
16n					
39n					
47n					

Конден	нсаторы	К10-47Ме	з Груп	па ТКЕ М15	00
	Допускае	мое отклог	нение	±5 %; ±10 °	
	емкости с	т номинал	іьной		
Uном , В			50		
Диапазон C _X	I	II	III	V	VI
0.47					
2,2					
16					
33					
150					
270					
390					
430					
470					
560					
750					
820					
1000					
1800					
2200					
2400					
2700					
3000					
3300					
5600					
6200					
8200					
9100					
10n					
15n					
16n					
39n					
47n					

Параметры и характеристики Номинальное напряжение, В Климатическая категория Тангенс угла потерь, не более Сопротивление изоляции, не менее

25, 50, 100, 250, 500; -60/125/56; 0,035;

 $C_X \le 25 \text{ H}\Phi$, $R_{U3} \ge 4 \text{ FOM}$; $C_X > 25 \text{ H}\Phi$, $R_{U3} \cdot C_X \ge 100 \text{ c}$; ± 20 ;

Температурная характеристика емкости, %

700	перап	турпал	харакі	mepucn	nuka ci			оры К	±20; 10-47M	б Груг	па ТКЕ	E H20							
Ряд емкостей	1							•					E12						
Отклонение е	емкост	и от но	оминал	ьной, %	6								0; ±20						
Uном , В			25			5	0			10	00			2!	50			500	
Диапазон C _X		Ш	III	IV	ı	Ш	III	IV	ı	Ш	III	IV	ı	- II	III	IV	Ш	III	IV
470																			
680																			
1000																			
2200																			
2700																			
3300																			
3900																			
4700																			
5600																			
8200																			
10n																			
18n										ļ									
22n																			
27n																			
33n																			
39n																			
68n																			
82n																			
100n																			
120n																			
180n																			
220n																			
330n																			
390n																			
470n																			
560n																			
680n																			
1μ																			

_									Конс	денс	amo	ры К	10-47	7Ме І	руп	па Т	KE F	120									
Ряд емкостей							,											E1									
Отклонение	емко	СТИ			альн	юй, %	0											±10;	±20								
Uном, В				25						50						00					250					00	
	I	II	III	IV	V	VI	I	II	III	IV	V	VI	I	II	Ш	IV	V	VI	II	Ш	IV	V	VI	III	IV	V	VI
100							4																				<u> </u>
220							4		<u> </u>																		
330	-						4																				
470	-						4																				
680 1000	-						4																				
1500	ŀ						4		ŀ																		<u> </u>
1800							4		ŀ										-		ŀ						
2200							1		ŀ																		
3300							1		1					i i		-									l		
3900			İ				1		ì					l		i					ŀ						
4700							1		ľ					l i		i	i			1	i						
6800	Ì		ì				1		Ì							Ì	Ì				Ì						
8200	İ						1		Ì							Ì	ĺ										
10n	ĺ		ĺ						Ì							Ì	Ì				1						
15n	ĺ								ĺ																		
18n																											
22n																											
27n																	ļ										
33n			<u> </u>						<u> </u>								Į										
68n																											
82n																											<u> </u>
100n									<u> </u>																		<u> </u>
150n			ļ						<u> </u>																		<u> </u>
180n								 												ļ	 						<u> </u>
220n			ļ				_	-	<u> </u>					-			-			-	-						
330n			 				<u> </u>	<u> </u>	 											<u> </u>	<u> </u>						
470n			 				<u> </u>	<u> </u>	 											<u> </u>	<u> </u>						
560n			-				\vdash		-					-		-	-										-
680n			-				\vdash		-					-		-	-										-
1μ																											

Параметры и характеристики Номинальное напряжение, В Климатическая категория Тангенс угла потерь, не более Сопротивление изоляции, не менее

25, 50, 100; -60/085/56; 0,035; $C_X \le 25$ μΦ, $R_{U3} \ge 4$ ΓΟΜ; $C_X > 25$ μΦ, $R_{U3} \cdot C_X \ge 100$ c; ± 90 ;

Температурная характеристика емкости, %

		Кс	ондено	camop	ы К10-	47Mб I	Группа	TKE F	190				
Ряд емкостей									6				
Отклонение емк	ости от	номина	льной, 🤉	%		+8020							
Uном, В		2	5			50				1(00		
Диапазон Сх		=	III	IV		II	III	IV		II	III	IV	
1000													
2200													
6800													
10n													
22n													
33n													
47n													
68n													
100n													
150n													
220n													
330n		, and the second											
470n													
680n		, and the second											
1μ													
1μ5		, and the second											
2μ2		_											

				Кон	нденс	аторы	ы К10-	47Мв	Групг	іа ТКЕ	H90					
Ряд емкостей												6				
Доп. отклонен		ости от	номина	льной, %	6		+8020									
Uном , В				5				50					100			
Диапазон C _X	I	II	III	IV	V	VI	I	II	III	IV	V	VI	III	IV	V	VI
1000																
2200																
6800																
10n																
22n																
33n																
47n																
68n																
100n																
150n																
220n																
330n																
470n																
680n																
1μ																
1μ5																
2μ2																

1.9 Конденсаторы К10-50

Конденсаторы К10-50 предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Конденсаторы изготавливают в соответствии с ОЖО.460.192 ТУ; ОЖО 460.182 ТУ; ОЖО 460.182 ТУ ПО.070.052. Имеют повышенную удельную емкость. Конденсаторы выпускают в водородоустойчивом и неводородоустойчивом исполнениях.

К10-506 (рис. 1): изолированные окукленные керамические конденсаторы, исполнение — всеклиматическое.

К10-50в (рис. 2): незащищенные керамические конденсаторы. Конденсаторы изготавливают с контактными поверхностями: серебро-палладий (нелуженые),

серебро-никель барьер/ олово-свинец (луженые).

К10-50в для автоматизированного монтажа поставляются россыпью или в блистер-ленте.

Характеристика	МП0	H20	H50	H90
Допускаемое отклонение емкости от номинальной, %	± 5; ±10; ±20	± 10; ±20	+5020	+8020
Номинальное напряжение, В	25	16, 25	16	16
Климатическая категория	-60/125/21	-60/125/21	-60/125/21	-60/085/21
Тангенс угла потерь	10 пФ< C_{HOM} ≤50 пФ 1,5($\frac{150}{C_{\text{HOM}}}$ +7)10 ⁻⁴ C_X >50 пФ не более 0,0015	не более 0,035	не более 0,035	не более 0,035
Сопротивление изоляции	C_x <0,025 мкФ, R_{us} \geq 10 ГОм; C_x >0,025 мкФ, R_{us} · C_x \geq 250 с	C_x ≤0,025 мкФ не менее 4 ГОм; C_x >0,025 мкФ $R_{\text{из}}$ · C_x не менее 100 с	$C_x \le 0,025$ мкФ не менее 4 ГОм; $C_x > 0,025$ мкФ $R_{\text{из}} \cdot C_x$ не менее 100 с	$C_x \le 0,025$ мкФ не менее 4 ГОм; $C_x > 0,025$ мкФ $R_{\text{из}} \cdot C_x$ не менее 100 с

	Размеры, мм														
	Вари	ант "	б"				Вариа	нт "в"				Варі	иант "в" д.	ля автомо	нтажа
L max	B max	H max	тах А размера электродами				ереб- ктными	Для конд лужеными элек		тными	m min				
					L	B max	H max	L	B max	H max		L	В	Н	m min
				1	1,5 ^{+0,4} _{-0,2}	1,3		1,5 ^{+0,5} _{-0,2}	1,4		0,2				
				2	2,0 ^{+0,4} _{-0,2}	1,8	1,2	2,0 ^{+0,7} _{-0,2}	1,9	1,4	0,2				
				3	4,0 ^{+0,5} _{-0,3}	2,9	1,2	$4.0^{+0.7}_{-0.3}$	3,2	1,4					
7,5	5,0	15	5,0±0,8	4	5,5 ^{+0,5} _{-0,4}	2,9		5,5 ^{+0,7} _{-0,4}	3,2			3,2±0,2	1,6±0,2	1,2±0,2	0,2
7,5	3,0	4,5	5,0±0,6	5	^{5,5} -0,4	4,4			4,6			3,210,2	1,010,2	1,210,2	0,2
				6	4,0 ^{+0,5} _{-0,3}	2,9	1,6	$4.0^{+0.7}_{-0.3}$	3,2	1,8	0,5				
				7		2,9	1,6		3,2	1,0					
				8	5,5 ^{+0,5} _{-0,4}			$5.5^{+0.7}_{-0.4}$							
				9	-0,4	4,4	1,8	^{3,3} -0,4	4,6	2,0					
				10			2,0			2,3					

						Конден	саторы і	K10-50					
		Вариа	ант "б"				Вари	ант "в"				т "в" для автом	онтажа
Оном , В	25		16			25			16		25		
Ряд	E24	E12	E	6	Е	24	E12	E12	E	E 6	E24	E6	
TKE	МП0	H20	H50	H90	M	Π0	H20	H20	H50	H90	МП0	H20; H50	H90
C _X													
22					1								
560													
620													
910					2								
1100													
2700													
3000													
4700					3								
5100													
8200													
9100						6		1	1				
10n					4								
12n							1						
13n						7							
15n					5								
18n													
20n													
22n					8								
27n													
30n					9		2	2	2	1			
33n												+	
39n												+ +	
47n							3						
56n												-{	
68n 100n										2		-	
120n										2			
150n							4	6	6				
220n							4	О	6			 	
270n												_	
330n							5			3		_	
390n							3			3			
470n							-	7	7				
560n								,				+ +	
680n							6	9	9	4, 6		+ +	
820n								,		1, 0			
1μ								10	10	5, 7		† †	
1μ5										8			
2μ2												+ +	
2μ2 3μ3			 				 			9		+	
3μ3				l						9			

Примеры условного обозначения

В Конденсатор K10-50a МПО 1100 пФ ±5 % С ОЖО.460.182 ТУ (а) (б) (B) (r) (д) (ж) (и) (3) ОЖО.460.182 ТУ ОЖО.460.183 ТУ ОСК10-50в H20 0,68 мкФ ±10 % 9 Конденсатор (a) (б) (B) (r) (д) (e)

- a) сокращенное условное обозначение; б) вариант;
- в) группа по ТКЕ;
- г) номинальная емкость; д) допускаемое отклонение емкости от номинальной;
- е) видоразмер;
- ж) буква «В» всеклиматическое исполнение;
- з) буква «С» для конденсаторов водородоустойчивого исполнения;
- и) обозначение документа на поставку.

Конденсаторы К10-50в группы ТКЕ Н20 на напряжение 25 В изготавливают габаритных размеров и Сх согласно таблице:

	Конденсаторы К10-50в Н20 на напряжение 25 В																	
				Емко	ость п	о ряду	E12						Га	баритнь	е разме	ры		m
					М	кФ						Н	Нелуженый Луженый			İ	m min	
0,01	,01 0,015 0,018 0,033 0,039 0,1 0,12 0,22 0,27 0,47 0,56							1,0	L	B max	H max	L	B max	H max	111111			
												1,6±0,2	1,0	0,9	$1,6^{+0,4}_{-0,2}$	1,2	1,1	
												2,0±0,2	1,45	1,3	2,0+0,4	1,6	1,5	0,2
												3,2±0,2	1,8	1,3	$3,2^{+0,5}_{-0,2}$	2,0	1,5	0,2
												3,2±0,4	2,8	1,3	$3,2^{+0,7}_{-0,4}$	3,0	1,5	
												4,5±0,5	3,6	1,3	$4,5^{+0,7}_{-0,5}$	3,8	1,5	0,3
												5,7±0,5	5,5	1,3	$5,7^{+0,7}_{-0,5}$	5,7	1,5	0,3

1.10 Конденсаторы КМ-5а

Конденсаторы КМ-5а, ОСКМ-5а предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Конденсаторы изготавливают в соответствии с ОЖО.460.043 ТУ; ОЖО.460.043 ТУ ОЖО.460.183 ТУ. Конденсаторы выпускают в водородоустойчивом и неводородоустойчивом исполнениях.

КМ-5а: неизолированные керамические конденсаторы, исполнение — УХЛ.

Параметры и характеристики

Диапазон емкости

Номинальное напряжение

M47 16 πΦ...2700 πΦ;
M1500 150 πΦ...5600 πΦ;
H30 1500 πΦ...0,068 мκΦ;
H90 0,015 мκΦ...0,15 мκΦ;

50 B, 100 B, 160 B;

Климатическая категория M47, M1500 -60/155/21; H30 -60/125/21;

H90 -60/85/21;

Тангенс угла потерь M47 16 пФ< $C_x \le 50$ пФ 1,2 $(\frac{150}{C_x} + 7) \times 10^{-4}$

M47, M1500 $C_x>50$ пФ не более 0,0012;

Н30, Н90 не более 0,035;

Температурный коэффициент M47 $(-47\pm40) \times 10^{-6}$ / °С;

M1500 $(-1500\pm250) \times 10^{-6}$ / °C;

Температурная характеристика емкости, % H30 +30/-30 H90 +90/-90

Обозначение	Размеры, мм								
видоразмера	L max	B max	H max	d					
I	5,0	3,5	3,0	0,5±0,1					
II	6,0	4,5	3,0	U,5±0,1					

		Конденсаторы К	M-5a	
Ряд	E	24	E6	,
Допускаемое отклонение ем- кости, %	±2; ±5;	±10; ±20	±20; +5020	+8020
Напряжение, В	160	160	100	50
TKE C _X	M47	M1500	H30	H90
16				
150	1			
560				
620 1300	II	'		
1500	"			
2700			-	
3000				
3300		II	ı	
5600				
6800				
15n				
33n				
47n			_	
68n				
150n				

Пример условного обозначения

Конденсатор	КМ-5а	M47	1000 пФ	±20 %	ОЖО.460.043 ТУ
	(а) (б)	(B)	(r)	(д)	(e)
Конденсатор	OCKM-5a	H30	0,047 мкФ	±20 %	ОЖО.460.043 ТУ ОЖО.460.183 ТУ
	(a) (б)	(B)	(r)	(д)	(e)

- а) сокращенное обозначение вида;
- б) вариант;
- в) группа по ТКЕ;
- г) номинальная емкость;
- д) допускаемое отклонение емкости от номинальной;
- е) обозначение документа на поставку.

1.11 Конденсаторы КМ-5б

Конденсаторы КМ-56, ОСКМ-56 предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах. Изготавливаются в соответствии с ОЖО.460.161 ТУ; ОЖО.460.043 ТУ; ОЖО.460.043 ТУ ОЖО.460.183 ТУ. Конденсаторы выпускают в водородоустойчивом и неводородоустойчивом исполнениях.

КМ-56: изолированные окукленные керамические конденсаторы, исполнение — всеклиматическое.

Параметры и характеристики

Диапазон емкости M47 16 пФ...2700 пФ; M1500 150 пФ...5600 пФ; 1500 пФ...0,068 мкФ; H30

H90 0,015 мкФ...0,15 мкФ; 50 B. 100 B. 160 B:

Номинальное напряжение

Климатическая категория -60/125/21; M47, M1500, H30 H90 -60/85/21;

16 πΦ< C_x ≤50 πΦ 1,2($\frac{150}{C_x}$ +7)×10⁻⁴ Тангенс угла потерь M47

> $C_x > 50$ пФ не более 0,0012; M47, M1500

H30, H90 не более 0,035;

 $(-47\pm40)\times10^{-6}/$ °C; M47 Температурный коэффициент M1500 (-1500±250) ×10⁻⁶/ °C;

+30/-30 H30

Температурная характеристика емкости, % +90/-90 H90

Обозначение		Размеры, мм									
видоразмера	L max	B max	H max	Α	d						
I	4,5	6,5		2,5±0,8 5,0±0,8	0.510.1						
II	5,6	6,5	6-5	2,5±0,8 5,0±0,8	0,5±0,1						
III	7,1	8,0		5,0±0,8	0,6±0,1						
IV	8,5	10,1		5,0±0,6	0,0±0,1						

		Конденсаторы Кі	M-56	
Ряд	E	24	E6	6
Допускаемое отклонение ем- кости, %	±2; ±5;	±10; ±20	±20; +5020	+8020
Напряжение, В	160	160	100	50
TKE C _X	M47	M1500	H30	H90
16 150 180 200	1	ı		
330 360 750 820	II	II		
1200 1300 1500 2700	III	111		
3000 3300 4700 5600		IV	'	
6800 15n			II	
22n 33n			III	1
47n 68n			IV	II
150n				

Пример условного обозначения

Конденсатор ОСКМ-5б M1500 1200 пФ ±20 % ОЖО.460.043 ТУ ОЖО.460.183 ТУ В (а) (б) (B) (r) (д) (e) (ж)

- а) сокращенное обозначение вида;
- б) вариант;
- в) группа по ТКЕ;
- г) номинальная емкость;
- д) допускаемое отклонение емкости от номинальной:
- е) буква «В» всеклиматическое исполнение;
- ж) обозначение документа на поставку;

1.12 Конденсаторы высоковольтные МЧВ 3кВ

Керамические высоковольтные конденсаторы чип **МЧВ** постоянной емкости предназначены для работы в цепях постоянного, и пульсирующего токов.

Конденсаторы изготавливают в соответствии с ТУ РБ 07612048.006-95. Конденсаторы незащищенные.

Параметры и характеристики

Диапазон емкости 100 пФ...4700 пФ;

Номинальное напряжение 3000 В; Климатическая категория -55/125; Тангенс угла потерь не более 0,035;

Температурная характеристика емкости, % +20/-20;

Номинальные значения емкостей по ряду Е12 ГОСТ 28884-90;

Допускаемое отклонение емкости $\pm 20 \%, +50...-20 \%;$

Основные параметры и размеры

Конденсаторы изготовляют со следующими контактными поверхностями

серебро-палладий (код Р),

серебро-палладий/олово-свинец-серебро (код О),

никель барьер/ олово-свинец (код N).

Конденсаторы с контактными поверхностями кода N допускают пайку припоем ПОС 61 ГОСТ21930-76, кодов О, P - ПСрОС 3-58 ГОСТ 19738-74.

					Размерь	J, MM					
			L			В		Hn	nax		Macca,
Обозначение вида кон- денсатора Номи- нальная емкость, пФ		Допускаемое от- клонение для ко- дов контактных электродов		Номи- нал	Допускаемое от- клонение для ко- дов контактных электродов		ко- тактных элек-		L ₁ min	г, не более	
			P, N	0		P, N	0	P, N	0		
M4B1610	100-1500	4,0	+0,5 -0,3	+0,7 -0,3	2,5	±0,3	+0,5 -0,3	3,0	3,2	2,0	0,3
M4B1812	470-2200	4,5	±0,5	+0,7 -0,5	3,2	±0,4	+0,6 -0,4	3,3	3,5		0,5
M4B2220	470-4700	5,7			5,0	±0,5	+0,7 -0,5	3,8	4,0	3,0	1,2

Пример условного обозначения

Конденсатор МЧВ1610 1000 пФ ± 20 % Р ТУ РБ 07612048.006-95 (а) (б) (в) (г) (д)

- а) обозначение вида конденсатора;
- б) номинальная емкость;
- в) допускаемое отклонение емкости от номинальной;
- г) код контактных поверхностей;
- д) обозначение документа на поставку.

1.13 Конденсаторы высоковольтные МОВ и МЧВ 1,6, 5,0 кВ

корпус окукленный; диэлектрик и электроды - многослойные; вывода проволочные однонаправленные; конденсатор изолированный.

конденсатор - чип; диэлектрик и электроды - многослойные; конденсатор незащищенный; контактный электрод серебро-палладий.

Конденсаторы изготавливают в соответствии с ТУ РБ 300050407.005-2001

Параметры и характеристики

Тип диэлектрика Н20;

Диапазон емкости 6800пФ....0,1 мкФ; Допускаемое отклонение емкости от номинальной, % $\pm 20, +50...-20$

Номинальное напряжение 1,6; 5,0 кВ;

Климатическая категория-55/85/21;МОВ-55/85

Тангенс угла потерь, не более 0,035; Сопротивление изоляции, не менее 4000 МОм, 100 МОм⋅мкФ;

 Температурная характеристика емкости
 $\pm 20 \%$;

 Промежуточные значения емкостей
 по ряду Е6

		Габаритные размеры, мм									
Емкость,			N	ИОВ					МЧВ		
мкФ	U, кВ	L max	B max	H max	Α	d	L	В	H max	L1 min	L2 min
6800 пФ 0,01		9,2	8,5	7,0	5±0,8	0,6±0,1	5,7±0,5	5,0±0,5	3,8	0,3	3,0
0,015 0,022	1,6	14,0	8,5	7,5	10±1,0		10,0+0,8	5,0±0,5	4,6	0,5	5,0
0,033 0,1		20,0	15,0	7,5	15±1,0	0,8±0,1	14,0 ^{+1,0} _{-0,7}	10,0+0,8	4,6	0,5	7,0
470 1000 пФ		9,2	8,5	7,0	5±0,8	0,6±0,1	5,7±0,5	5,0±0,5	4,6	0,3	3,0
1500 2200 пФ	5,0	14,0	8,5	7,5	10±1,0		10,0+0,8	5,0±0,5	4,6	0,5	5,0
3300 пФ 0,01		20,0	15,0	7,5	15±1,0	0,8±0,1	14,0 ^{+1,0} _{-0,7}	10,0+0,8	4,6	0,5	7,0

Примеры условного обозначения

Конденсатор	МЧВ (a)	0,015 мкФ (б)	+50 (B		1,6 кВ (г)	ТУ РБ 300050407.005-2001 (д)
Конденсатор	MOB (a)	1000 пФ (б)	±20 % (в)	5 κB (r)	ТУ РБ	300050407.005-2001 (д)

- а) обозначение вида конденсатора;
- б) номинальная емкость;
- в) допускаемое отклонение емкости от номинальной;
- г) номинальное напряжение;
- д) обозначение документа на поставку.

1.14 Конденсаторы высоковольтные многосекционные МВМ

Керамические многослойные многосекционный конденсаторы **МВМ** предназначены для работы в цепях постоянного и пульсирующих токов умножителей напряжения. Конденсаторы допускают работу в среде, содержащей водород. Конденсаторы изготавливают в соответствии с ТУ РБ 07615377.066-97. Незащищенные чип-конденсаторы изготавливаются с нелужеными (серебро-палладий), лужеными (никель барьер/олово-свинец) контактными электродами.

рис.2

Габаритные размеры

3-х секционные 12х2,5х1,6 мм (Рисунок 1) 4-х секционные 16х2,5х1,6 мм (Рисунок 2) 5-ти секционные 20х2,5х1,6 мм (Рисунок 3)

Конденсаторы пятисекционные MBM-5 4±0,1 2 3 4 5 Контактные поверхности 2 3 4 5 1,2 min 1,6±0,4 Электрическая схема 5 6 6

рис.3

Параметры и характеристики

Тип диэлектрика H20; ±20, +50...-20 Допускаемое отклонение емкости, % Емкость секции 100 пФ...680 пФ: Номинальное напряжение 3.0 kB: -55/125 Климатическая категория 0.035; Тангенс угла потерь, не более Сопротивление изоляции, не менее 4000 МОм; Температурная характеристика емкости, % ±20; E12 Ряд емкостей:

Пример условного обозначения	MBM-5	470 пФ	±20 %	Ν	ТУ РБ 07615377.066-97
	(а) (б)	(B)	(r)	(д)	(e)

- а) тип конденсатора;
- б) количество секций в конденсаторе;
- в) полное обозначение номинальной емкости секции конденсатора по ГОСТ 28884;
- г) полное обозначение допускаемого отклонения емкости от номинальной по ГОСТ 28884;
- д) код контактных поверхностей (буква «Р»- для серебро-палладий; буква «N»- для никель барьер/олово -свинец);
- е) обозначение документа на поставку.

1.15 Конденсаторы МЧЕ

Многослойные керамические чип-конденсаторы высокой емкости и с высоким номинальным напряжением. Выпускаются с контактным электродом - серебро, серебро-палладий (нелуженый). Конденсатор незащищенный. Конденсаторы изготавливают в соответствии с ТУ РБ 07615377.075-2000

Параметры и характеристики

Тип диэлектрика H30; Допускаемое отклонение емкости, % ± 20 , ± 50 ...-20; Номинальное напряжение 250, 500 B; Климатическая категория -55/85; Тангенс угла потерь, не более 0,035;

Сопротивление изоляции не менее 4000 МОм; Постоянная времени 100 МОм⋅мкФ;

Температурная характеристика емкости,% ±30

Номинальная емкость, мкФ	Номинальное напряжение, В	L, MM	В,мм
2,2	250	25,0±0,5	20,0±0,5
2,7	250	25,0±0,5	20,0±0,5
0,68	500	25,0±0,5	10,0±0,5
1,0	500	25,0±0,5	10,0±0,5

Пример условного обозначения

Конденсатор	МЧЕ	2,7 мкФ	±20 %	250 B	ТУ РБ 07615377.075-2000
	(a)	(б)	(B)	(r)	(д)

- а) обозначение вида конденсатора;
- б) номинальная емкость;
- в) допускаемое отклонение емкости от номинальной;
- г) номинальное напряжение;
- д) обозначение документа на поставку.

1.16 Конденсаторы проходные МЧП

Конденсаторы керамические проходные незащищенные чип исполнения.

Конденсаторы изготавливают в соответствии с ТУ РБ 300050407.010-2003.

Низкий импеданс на частотах свыше 10 МГц позволяет эффективно использовать конденсаторы МЧП в компьютерах, цифровых подвижных радиосистемах, периферийной связи, цифровых телевизионных и других системах для подавления высокочастотных помех в цепях постоянного и переменного токов.

Изготавливаются с контактным электродом никель барьер/олово-свинец.

Параметры и характеристики

Группа ТКЕ МПО, H50 Номинальное напряжение, В 100; Номинальный ток, мА 300; Номинальная емкость

•ΜΠ0
 •H50
 22, 47, 100, 220, 470, 1000 πΦ;
 1000, 2200, 4700 πΦ, 0,01 мкФ, 0,022 мкФ;

Тангенс угла потерь, не более МПО 0,0015 Н50 0,035 Интервал рабочих температур -60...+ 125 °C

 $R_{\mbox{\tiny изол}}$. между выводами 1-3 или 2-3 МОм, не менее МПО 10 4 ; H50 4 x 10 3 .

Пример условного обозначения

Конденсатор МЧП 220 пФ +50...-20 % МПО ТУ РБ 300050407.010-2003 (а) (б) (в) (г) (д) (е)

- а) слово «Конденсатор»:
- б) сокращенное условное обозначение;
- в) номинальная емкость;
- г) допускаемое отклонение емкости от номинальной;
- д) группа по ТКЕ;
- е) обозначение документа на поставку.

2 Пленочные полиэтилентерефталатные конденсаторы

Многослойные пленочные полиэтилентерефталатные конденсаторы, выпускаемые РУП «Бегомльский завод «Ветразь» относятся к конденсаторам постоянной емкости. В качестве материала внутренних электродов используется алюминий, в качестве диэлектрика - полиэтилентерефталатная пленка.

Серийные

2.1 Конденсаторы МП-73

Конденсаторы МП-73 предназначены для работы в цепях постоянного, переменного, пульсирующего токов и импульсных режимах. Конденсаторы изготавливают в соответствии с ТУ РБ 07612048.007-96. Конденсаторы МП-73 — изолированные окукленные, климатическое исполнение — УХЛ и всеклиматическое.

Параметры и характеристики

Номинальные напряжения — 250, 400, 630, 1000 В

Сопротивление изоляции для Сном $\leq 0,33$ мкФ — не менее 30000

МОм

Постоянная времени τ_{c} для Сном > 0,33 мкФ — не менее 10000

МОм-мкФ

Тангенс угла потерь $tg\delta$ — не более 0,015

Климатическая категория -60/125/21

Емкость, мкФ	Номинальное			Размеры, мі	И		Масса, г,
LIMIKOCIB, IMIK	напряжение, В	L max	B max	H max	A±1,0	d±0,1	не более
0,001-0,047			11	6,3			
0,068		12	14	6	10	0,6	8
0,1			15	8			
0,15			13	6			12
0,22	250	18	14	7	15	0,8	
0,33			16	8,5			
0,47			18	7,5			
0,68		23	19	9	20	0,8	15
1,0			21	10,5			
0,001-0,022			10,5	6			
0,033		12	13	6	10	0,6	8
0,047			17	8			
0,068			13	7,5	15		
0,1		18	14	8			12
0,15	400		15	8			
0,22			18	7			
0,33		23	19	8,5			
0,47			21	10	20	0,8	15
0,68		24	24	11	10		
1,0		24	27	14			
0,0033-0,01			12	6			
0,015		12	13	6		0,6	10
0,022			15	7,5			
0,033			13	5			
0,047		18	14	6	15	0,8	12
0,068			15	8			
0,1	630		18	7			
0,15		23	19	8,5			
0,22			21	10,5			
0,33			24	11,2	20	0,8	15
0,47		24		14			
0,68			27	16,5			
1,0				17,5			
0,0047-0,022		12	20	11	10	0,6	10
0,033-0,068	1000	18	21	12	15	0,8	12
0,1-0,47		23	31	20	20	0,8	15

Пример условного обозначения

Конденсатор	MΠ-73	250 B	0,047 мкФ	±10 %	В	ТУ РБ 07612048.007-96
	(a)	(б)	(B)	(r)	(д)	(e)

- а) обозначение вида конденсатора;
- б) номинальное напряжение;
- в) номинальная емкость;
- г) допускаемое отклонение емкости от номинальной;
- д) буква «В» всеклиматическое исполнение;
- е) обозначение документа на поставку.

2.2 Конденсаторы МП-73-1

Конденсаторы МП-73-1 предназначены для работы в цепях постоянного, переменного и импульсного токов. Конденсаторы изготавливают с IV квартала 2004 г в соответствии с ТУ РБ 300198944.003-2004. Конденсаторы МП-73-1 правильной формы, изолированные, исполнение всеклиматическое.

Параметры и характеристики:

Номинальные напряжения — 250, 400, 630 В Сопротивление изоляции для Сном $\leq 0,33$ мкФ — не менее 30000 МОм Постоянная времени τ_c для Сном > 0,33 мкФ — не менее 10000 МОм·мкФ Тангенс угла потерь $tg\delta$ — не более 0,015 Климатическая категория -60/100/21

Емкость, мкФ	Номинальное	Размеры, мм						
	напряжение, В	Lмах	Вмах	Нмах	A±0,1	d±0,1		
0,15; 0,22		18,0	14,5	8,0	15			
0,33	250	10,0	16,0	0.5	15			
0,47; 0,68	250	26,5	19,0	9,5	20			
1,0		26,5	20,0	11,0	20			
0,0680,15		18,0	14,5	8,0	15	0.0		
0,220,47	400	26,5	19,0	9,5	20	0,8		
0,681,0		26,5	20,0	11,0	20			
0,0330,068		18,0	14,5	8,0	15			
0,10,22	630	26,5	19,0	9,5	20			
0.33		20,3	20,0	11,0	20			

Пример условного обозначения

Конденсатор МП-73-1 250 В 0,15 мкФ ± 10 % ТУ РБ 300198944.003-2004 (а) (б) (в) (г) (д)

- а) обозначение вида конденсатора;
- б) номинальное напряжение;
- в) номинальная емкость;
- г) допускаемое отклонение емкости от номинальной;
- д) обозначение документа на поставку.

2.3 Конденсаторы МП-73-Л

Конденсаторы МП-73-Л предназначены для работы в цепях постоянного и переменного токов. Конденсаторы изготавливают с IV квартала 2004 г в соответствии с ТУ РБ 300198944.002-2004. Конденсаторы МП-73-Л — цилиндрической формы, изолированные, климатическое исполнение — УХЛ.

Параметры и характеристики

Номинальные напряжения —450 В Постоянная времени τ_c — не менее 1000 МОм·мкФ Тангенс угла потерь $tg\delta$ — не более 0,015 Климатическая категория -40/70/10

Номинальная	Допускаемое	Номинальное	Разме	Масса, г,	
емкость, мкФ	отклонение емкости, %	напряжение, В	Нмах	Dмаx	не более
3,75	±4				
3		450	95	32	65
4	±5; ±10; ±20	450	90	32	65
5					

Пример условного обозначения

Конденсатор МП-73-Л 3 мкФ ± 10 % ТУ РБ 300198944.002-2004 (a) (б) (в) (г)

- а) обозначение вида конденсатора;
- б) номинальная емкость;
- в) допускаемое отклонение емкости от номинальной;
- г) обозначение документа на поставку.

3 Варисторы

3.1 Варистор - элемент защиты от импульсных воздействий напряжения.

Оксидноцинковые варисторы предназначены для защиты электронного оборудования от импульсных воздействий напряжения. Имеют уникально высокую поглощаемость энергии за счет перераспределения энергии в объеме варистора. Обладают высоким быстродействием и малыми размерами. Выпускаются в двух исполнениях: чип - для поверхностного монтажа и выводные - для навесного монтажа. Оба исполнения имеют идентичные электрические характеристики, кроме времени срабатывания. Для чип исполнения время срабатывания составляет менее 5 нс, для выводного - менее 25 нс.

В 2004-2005 гг. проводится ОКР по разработке и освоению в серийном производстве многослойных варисторов ВРМЧ, ВРМО специального применения всей номенклатуры согласно каталогу.

Терминология и обозначения

Параметр	Терминология	Описание параметра
Urms	Напряжение перемен-	Максимальное непрерывное напряжение переменного тока длительно
Ullis	ного тока	подаваемое на варистор при температуре 25 °C.
Udc	Напряжение постоян-	Максимальное непрерывное напряжение постоянного тока длительно
ouc	ного тока	подаваемое на варистор при температуре 25 °C.
ld	Ток утечки	Ток утечки при напряжении Udc и температуре 25 °C.
Un	Напряжение при токе	Значение напряжения на варисторе при токе 1 мА (начало нелинейной
OII	1 мА	вольт-амперной характеристики варистора).
Uc	Напряжение при клас-	Пиковое значение напряжения при прохождении через варистор импуль-
00	сификационном токе	са классификационного тока 8/20 мкс.
Ic	Классификационный	Импульсное значение тока, составляющее 0,1 Ітах для 100 импульсов
10	ток	с периодом следования 2 импульса в мин.
Wmax	Значение поглощае-	Энергия, поглощаемая при одиночном импульсе 10/1000 мкс максималь-
Willax	мой энергии	ного тока без повреждения варистора
lmax	Максимальный ток	Максимальный импульсный ток для импульса 8/20 мкс без повреждения варистора
	Рассеиваемая мощ-	Максимальное среднее значение рассеиваемой мощности без повреж-
Р	ность	дения варистора пр температуре 25 °C
С	Емкость варистора	Емкость варистора при частоте 1 кГц
α	Коэффициент нели- нейности	Мера нелинейности варистора
τ	Время срабатывания	Время переключения варистора
TKU	Температурный коэф- фициент	Изменение Urms при изменении температуры

Примеры условного обозначения

МЧВН	2220	4 В	±20 %	250 A	ТУ РБ 07615377.062-99
(a)	(б)	(в)	(г)	(д)	(e)
MOBH	562	2 B	±20 %	5 A	ТУ РБ 07615377.062-99
(a)	(б)	(B)	(г)	(д)	(e)
MЧBC	3224	40 В	±10 %	ТУ РБ	300050407.002-2003
(a)	(б)	(в)	(Γ)		(e)
MOBC	1153	75 В	±10 %	ТУ РБ	300050407.002-2003
(a)	(ნ)	(в)	(Γ)		(e)

- а) обозначение вида варисторов;
- б) обозначение размера;
- в) напряжение переменного тока Urms;
- г) допускаемое отклонение напряжения варистора при токе 1 мА;
- д) максимальный ток Imax;
- е) обозначение документа на поставку.

На варисторах МОВН и МОВС наносится маркировка:

Серия Напряжение Urms Максимальный импульсный ток

Варисторы изготавливают в соответствии с ТУ РБ 07615377.062-99

Размер	0805	1210	2220	3224	4032
L ₁ , мм	$2,0^{+0,3}_{-0,2}$	$3,2^{+0,5}_{-0,4}$	$5,7^{+0,7}_{-0,5}$	8,0+0,5	10,0 ^{+0,5} _{-1,1}
L _{2 min} , MM	0,2	0,25	0,25	0,25	0,25
L _{3 min} , MM	0,4	0,8	2,0	2,0	3,0
W, мм	1,25 ^{+0,3} _{-0,2}	2,5 ^{+0,4} _{-0,3}	5,0 ^{+0,7} _{-0,5}	6,0+0,7	8,0+0,5

Параметры и характеристики

Максимальное, непрерывное напряжение переменного тока 50-60 Гц	Urms, B	2-40		
Максимальное, непрерывное напряжение постоянного тока	Udc, B	3-56		
Максимальный ток одиночного импульса 8/20 мкс	Imax, A	до 2000		
Напряжение при токе 1 мА	Un, B	4-68		
Допускаемое отклонение напряжения при токе 1 мА	%	±10±20		
Максимальная энергия одиночного импульса 10/1000 мкс	Wmax, Дж	до 28		
Температурный коэффициент напряжения	TKU,%/°C	<0,05		
Климатическая категория МЧВН		-55/125/56		
Коэффициент нелинейности, не менее	α	15		
Изготавливаются с контактными поверхностями серебро-палладий/олово-свинец-серебро				

Тип	Urms, B	Udc, B	Un, B 1 MA	Uc, B	Ic, A	Wmax, Дж 10/1000 мкс	Pmax, Вт	Imax,A 8/20 мкс	С, пФ 1 кГц	Hmax, мм
M4BH 0805 2 B ±20 % 25 A	2	3	4	10	1,0	0,05	0,01	25	12000	1,0
MYBH 1210 2 B ±20 % 50 A	2	3	4	10	2,5	0,1	0,02	50	20000	1,0
MYBH 1210 4 B ±20 % 100 A	4	5,5	8	14	1,0	0,1	0,01	100	5000	1,2
M4BH 2220 4 B ±20 % 250 A	4	5,5	8	14	2,5	0,3	0,02	250	18000	1,2
MYBH 1210 6 B ±20 % 100 A	6	8	11	21	1,0	0,2	0,01	100	3000	1,2
MYBH 2220 6 B ±20 % 250 A	6	8	11	21	2,5	0,5	0,02	250	14000	1,2
MYBH 1210 8 B ±15 % 100 A	8	11	15	28	1,0	0,3	0,01	100	2500	1,2
M4BH 2220 8 B ±15 % 250 A	8	11	15	28	2,5	0,7	0,02	250	12000	1,2
MYBH 1210 11 B ±10 % 100 A	11	14	18	36	1,0	0,3	0,01	100	1800	1,2
MYBH 1210 11 B ±10 % 250 A	11	14	18	36	2,5	0,8	0,02	250	2500	1,2
MYBH 2220 11 B ±10 % 500 A	11	14	18	36	5,0	1,7	0,05	500	4000	1,2
MYBH 1210 14 B ±10 % 100 A	14	18	22	43	1,0	0,4	0,01	100	1600	1,2
MYBH 1210 14 B ±10 % 250 A	14	18	22	43	2,5	0,9	0,02	250	4000	1,2
MYBH 2220 14 B ±10 % 500 A	14	18	22	43	5,0	2,0	0,05	500	7000	1,2
MYBH 2220 14 B ±10 % 1000 A	14	18	22	43	10,0	4,0	0,1	1000	10000	1,2
MYBH 3224 14 B ±10 % 500 A	14	16	24	43	5,0	2,5	0,1	500	11000	1,5
MYBH 3224 14 B ±10 % 1000 A	14	16	24	43	10,0	4,2	0,2	1000	16000	1,5
MYBH 3224 14 B ±10 % 2000 A	14	16	24	43	20,0	12,8	0,3	2000	22000	1,5
MYBH 4032 14 B ±10 % 500 A	14	16	24	43	5,0	2,8	0,2	500	11400	1,5
MYBH 4032 14 B ±10 % 2000 A	14	16	24	43	10,0	13,0	0,3	2000	19500	1,5
MYBH 1210 17 B ±10 % 100 A	17	22	27	53	1,0	0,5	0,01	100	3000	1,2
MYBH 1210 17 B ±10 % 250 A	17	22	27	53	2,5	1,1	0,02	250	4500	1,2
МЧВН 2220 17 В ±10 % 500 А	17	22	27	53	5,0	2,5	0,05	500	9000	1,2
МЧВН 2220 17 В ±10 % 1000 А	17	22	27	53	10,0	5,0	0,1	1000	13000	1,2
MYBH 3224 17 B ±10 % 500 A	17	20	27	53	5,0	3,0	0,1	500	10000	1,5
MYBH 3224 17 B ±10 % 1000 A	17	20	27	53	10,0	5,5	0,2	1000	15000	1,5
MYBH 3224 17 B ±10 % 2000 A	17	20	27	53	20,0	14,0	0,3	2000	21000	1,5
MYBH 4032 17 B ±10 % 500 A	17	20	27	53	5,0	3,5	0,2	500	10500	1,5
МЧВН 4032 17 В ±10 % 2000 А	17	20	27	53	10,0	14,5	0,3	2000	18500	1,5

Тип	Urms, B	Udc, B	Un, B 1 мА	Uc, B	Ic, A	Wmax, Дж 10/1000 мкс	Pmax, Вт	Imax,A 8/20 мкс	С, пФ 1 кГц	Hmax, мм
MYBH 1210 20 B ±10 % 100 A	20	26	33	65	1,0	0,6	0,01	100	3000	1,4
МЧВН 1210 20 В ±10 % 250 А	20	26	33	65	2,5	1,3	0,02	250	5000	1,4
M4BH 2220 20 B ±10 % 500 A	20	26	33	65	5,0	3,1	0,05	500	9500	1,4
МЧВН 2220 20 В ±10 % 1000 А	20	26	33	65	10,0	6,0	0,1	1000	14000	1,4
MYBH 3224 20 B ±10 % 500 A	20	26	33	65	5,0	3,6	0,1	500	8000	1,5
MYBH 3224 20 B ±10 % 1000 A	20	26	33	65	10,0	6,5	0,2	1000	13000	1,5
MYBH 3224 20 B ±10 % 2000 A	20	26	33	65	20,0	18,0	0,2	2000	18000	1,5
M4BH 4032 20 B ±10 % 500 A	20	26	33	65	5,0	4,1	0,2	500	8500	1,5
MYBH 4032 20 B ±10 % 2000 A	20	26	33	65	10,0	18,5	0,3	2000	16000	1,5
MYBH 1210 25 B ±10 % 100 A	25	31	39	77	1,0	0,7	0,01	100	2400	1,4
МЧВН 1210 25 В ±10 % 250 А	25	31	39	77	2,5	1,6	0,02	250	3000	1,4
M4BH 2220 25 B ±10 % 500 A	25	31	39	77	5,0	3,7	0,05	500	4800	1,4
MYBH 2220 25 B ±10 % 1000 A	25	31	39	77	10,0	7,0	0,1	1000	7200	1,4
MYBH 3224 25 B ±10 % 500 A	25	28	39	77	5,0	4,3	0,1	500	4500	1,5
MYBH 3224 25 B ±10 % 1000 A	25	28	39	77	10,0	7,5	0,2	1000	7000	1,5
MYBH 3224 25 B ±10 % 2000 A	25	28	39	77	20,0	22,0	0,3	2000	9000	1,5
M4BH 4032 25 B ±10 % 500 A	25	28	39	77	5,0	4,8	0,2	500	5000	1,5
MYBH 4032 25 B ±10 % 2000 A	25	28	39	77	10,0	24,0	0,3	2000	8000	1,5
MYBH 1210 30 B ±10 % 100 A	30	38	47	93	1,0	0,9	0,01	100	2000	1,8
MYBH 1210 30 B ±10 % 250 A	30	38	47	93	2,5	2,0	0,02	250	3000	1,8
МЧВН 2220 30 В ±10 % 500 А	30	38	47	93	5,0	4,4	0,05	500	4000	1,8
MYBH 2220 30 B ±10 % 1000 A	30	38	47	93	10,0	9,0	0,1	1000	6000	1,8
МЧВН 3224 30 В ±10 % 500 А	30	34	47	93	5,0	4,9	0,1	500	3800	1,5
MYBH 3224 30 B ±10 % 1000 A	30	34	47	93	10,0	9,7	0,2	1000	3800	1,5
МЧВН 3224 30 В ±10 % 2000 А	30	34	47	93	20,0	26,0	0,3	2000	7200	1,8
MYBH 4032 30 B ±10 % 500 A	30	34	47	93	5,0	5,4	0,2	500	4000	1,5
МЧВН 4032 30 В ±10 % 2000 А	30	34	47	93	10,0	28,0	0,3	2000	5500	1,8
M4BH 1210 35 B ±10 % 100 A	35	45	56	110	1,0	1,0	0,01	100	13000	1,9
M4BH 1210 35 B ±10 % 250 A	35	45	56	110	2,5	2,2	0,02	250	16000	1,9
МЧВН 2220 35 В ±10 % 500 А	35	45	56	110	5,0	5,5	0,05	500	3600	1,9
M4BH 2220 35 B ±10 % 1000 A	35	45	56	110	10,0	9,0	0,1	1000	5600	1,9
MYBH 1210 40 B ±10 % 100 A	40	56	68	135	1,0	1,2	0,01	100	1100	1,9
MYBH 1210 40 B ±10 % 250 A	40	56	68	135	2,5	2,5	0,02	250	1400	1,9
M4BH 2220 40 B ±10 % 500 A	40	56	68	135	5,0	6,3	0,05	500	3400	1,9
MYBH 2220 40 B ±10 % 1000 A	40	56	68	135	10,0	12,0	0,1	1000	4500	1,9

3.3 Варисторы МОВН

Серийные

Варисторы изготавливают в соответствии с ТУ РБ 07615377.062-99

Размер	452	562	852	1153
L _{max} , мм	4,5	5,6	8,5	11,5
Н _{тах} , мм	6,0	7,2	10,1	11,5
F, мм	5,0±0,8	5,0±0,8	5,0±0,8	7,5±1,0

Параметры и характеристики

параметры и хирактеристики		
Максимальное, непрерывное напряжение переменного тока 50-60 Гц	Urms, B	2-40
Максимальное, непрерывное напряжение постоянного тока	Udc, B	3-56
Максимальный ток одиночного импульса 8/20 мкс	Imax, A	до 4000
Напряжение при токе 1 мА	Un, B	4-68
Допускаемое отклонение напряжения при токе 1 мА	%	±10±20
Максимальная энергия одиночного импульса 10/1000 мкс	Wmax, Дж	до 26
Температурный коэффициент напряжения	TKU,%/°C	<0,05
Климатическая категория МОВН		-55/85/56
Коэффициент нелинейности, не менее	α	15

Тип	Urms, B	Udc, B	Un, B 1 MA	Uc, B	Ic, A	W max, Дж 10/1000 мкс	Pmax, Вт	Imax,A 8/20 мкс	С , пФ 1 кГц	Tmax,
MOBH 452 2 B ±20 % 25 A	2	3	4	10	1,0	0,05	0,01	25	12000	2,6
MOBH 562 2 B ±20 % 50 A	2	3	4	10	2,5	0,1	0,02	50	20000	2,6
MOBH 562 4 B ±20 % 100 A	4	5,5	8	14	1,0	0,1	0,01	100	5000	3,1
MOBH 852 4 B ±20 % 250 A	4	5,5	8	14	2,5	0,3	0,02	250	18000	3,1
MOBH 562 6 B ±20 % 100 A	6	8	11	21	1,0	0,2	0,01	100	3000	3,1
MOBH 852 6 B ±20 % 250 A	6	8	11	21	2,5	0,5	0,02	250	14000	3,1
MOBH 562 8 B ±15 % 100 A	8	11	15	28	1,0	0,3	0,01	100	2500	3,3
MOBH 852 8 B ±15 % 250 A	8	11	15	28	2,5	0,7	0,02	250	12000	3,3
MOBH 562 11 B ±10 % 100 A	11	14	18	36	1,0	0,3	0,01	100	1800	3,4
MOBH 562 11 B ±10 % 250 A	11	14	18	36	2,5	0,8	0,02	250	2500	3,4
MOBH 852 11 B ±10 % 500 A	11	14	18	36	5,0	1,7	0,05	500	4000	3,4
MOBH 562 14 B ±10 % 100 A	14	18	22	43	1,0	0,4	0,01	100	1600	3,6
MOBH 562 14 B ±10 % 250 A	14	18	22	43	2,5	0,9	0,02	250	4000	3,6
MOBH 852 14 B ±10 % 500 A	14	18	22	43	5,0	2,0	0,05	500	7000	3,6
MOBH 852 14 B ±10 % 1000 A	14	18	22	43	10,0	4,0	0,1	1000	10000	3,6
MOBH 1153 14 B ±10 % 500 A	14	16	24	43	5,0	2,5	0,1	500	11000	4,4
MOBH 1153 14 B ±10 % 1000 A	14	16	24	43	10,0	4,2	0,2	1000	16500	4,4
MOBH 1153 14 B ±10 % 2000 A MOBH 1153 14 B ±10 % 4000 A	14 14	16 16	24 24	43 43	20,0 25,0	12,0 12,0	0,3	2000 4000	22000 33000	4,4 4,4
MOBH 1153 14 B ±10 % 4000 A MOBH 562 17 B ±10 % 100 A	17	22	27	53	1,0	0,5	0,3	100	3000	3,8
MOBH 562 17 B ±10 % 100 A MOBH 562 17 B ±10 % 250 A	17	22	27	53	2,5	1,1	0,01	250	4500	3,8
MOBH 852 17 B ±10 % 250 A MOBH 852 17 B ±10 % 500 A	17	22	27	53	5,0	2,5	0,02	500	9000	3,8
MOBH 852 17 B ±10 % 300 A	17	22	27	53	10,0	5,0	0,03	1000	13000	3,8
MOBH 1153 17 B ±10 % 500 A	17	20	27	53	5,0	3,1	0,1	500	10000	4,4
MOBH 1153 17 B ±10 % 1000 A	17	20	27	53	10,0	5,5	0,2	1000	15000	4,4
MOBH 1153 17 B ±10 % 2000 A	17	20	27	53	20,0	14,0	0,3	2000	21000	4,4
MOBH 1153 17 B ±10 % 4000 A	17	20	27	53	25,0	14,0	0,3	4000	31000	4,4
MOBH 562 20 B ±10 % 100 A	20	26	33	65	1,0	0.6	0,01	100	3000	3,8
MOBH 562 20 B ±10 % 250 A	20	26	33	65	2,5	1,3	0,02	250	5000	3,8
MOBH 852 20 B ±10 % 500 A	20	26	33	65	5,0	3,1	0,05	500	9500	3,8
MOBH 852 20 B ±10 % 1000 A	20	26	33	65	10,0	6,0	0,1	1000	14000	3,8
MOBH 1153 20 B ±10 % 500 A	20	26	33	65	5,0	3,6	0,1	500	8000	4,4
MOBH 1153 20 B ±10 % 1000 A	20	26	33	65	10,0	6,5	0,2	1000	13000	4,4
MOBH 1153 20 B ±10 % 2000 A	20	26	33	65	20,0	16,0	0,3	2000	18000	4,4
MOBH 1153 20 B ±10 % 4000 A	20	26	33	65	25,0	16,0	0,3	4000	27000	4,4
MOBH 562 25 B ±10 % 100 A	25	31	39	77	1,0	0,7	0,01	100	2400	3,8
MOBH 562 25 B ±10 % 250 A	25	31	39	77	2,5	1,6	0,02	250	3000	3,8
MOBH 852 25 B ±10 % 500 A	25	31	39	77	5,0	3,7	0,05	500	4800	3,8
MOBH 852 25 B ±10 % 1000 A	25	31	39	77	10,0	7,0	0,1	1000	7200	3,8
MOBH 1153 25 B ±10 % 500 A	25	28	39	77	5,0	4,3	0,1	500	4500	4,4
MOBH 1153 25 B ±10 % 1000 A	25	28	39	77	10,0	7,5	0,2	1000	7000	4,4
MOBH 1153 25 B ±10 % 2000 A	25	28	39	77	20,0	18,0	0,3	2000	9000	4,4
MOBH 1153 25 B ±10 % 4000 A	25	28	39	77	25,0	18,0	0,3	4000	13000	4,4
MOBH 562 30 B ±10 % 100 A	30	38	47	93	1,0	0,9	0,01	100	2000	4,0
MOBH 562 30 B ±10 % 250 A	30	38	47	93	2,5	2,0	0,02	250	3000	4,0
MOBH 852 30 B ±10 % 500 A	30	38	47	93	5,0	4,4	0,05	500	4000	4,0
MOBH 852 30 B ±10 % 1000 A	30	38	47	93	10,0	9,0	0,1	1000	6000	4,0
MOBH 1153 30 B ±10 % 500 A	30	34	47	93	5,0	4,9	0,1	500	3800	4,4
MOBH 1153 30 B ±10 % 1000 A	30	34	47	93	10,0	9,7	0,2	1000	3800	4,4
MOBH 1153 30 B ±10 % 2000 A	30	34	47	93	20,0	18,0	0,3	2000	7200	4,4
MOBH 1153 30 B ±10 % 4000 A	30	34 45	47 EC	93	25,0	18,0	0,3	4000	11000	4,4
MOBH 562 35 B ±10 % 100 A	35		56	110	1,0	1,0	0,01	100	13000	4,0
MOBH 562 35 B ±10 % 250 A	35	45 45	56	110	2,5	2,2	0,02	250	16000	4,0
MOBH 852 35 B ±10 % 500 A	35	45 45	56	110	5,0	5,5	0,05	500	3600	4,0
MOBH 852 35 B ±10 % 1000 A	35	45 56	56	110 135	10,0	9,0 1,2	0,1	1000	5600 1100	4,0
MOBH 562 40 B ±10 % 100 A	40		68		1,0		0,01	100		4,0
MOBH 562 40 B ±10 % 250 A	40 40	56 56	68 68	135 135	2,5 5.0	2,5	0,02	250 500	1400 3400	4,0
MOBH 852 40 B ±10 % 500 A MOBH 852 40 B ±10 % 1000 A	40	56	68	135	10,0	6,3 12,0	0,05 0,1	1000	4500	4,0 4,0
WODIT 002 40 D 110 /0 1000 A	40	50	UO	เงช	10,0	12,0	υ, ι	1000	4500	4,0

3.4 Варисторы МЧВС

Варисторы изготавливают в соответствии с ТУ РБ 300050407.002-2003

Размер	3224	4042
L ₁ , MM	8,0 ^{+0,5} _{-0,7}	10,0 ^{+0,5} _{-1,1}
L _{2 min} , MM	0,25	0,25
L _{3 min} , MM	2,0	3,0
W, мм	6,0 ^{+0,7} _{-0,5}	8,0 ^{+0,5} _{-0,7}

Параметры и характеристики

параметры и характериетики		
Максимальное, непрерывное напряжение переменного тока 50-60 Гц	Urms, B	11-300
Максимальное, непрерывное напряжение постоянного тока	Udc, B	14-385
Максимальный ток одиночного импульса 8/20 мкс	lmax, A	до 1200
Напряжение при токе 1 мА	Un, B	36-470
Допускаемое отклонение напряжения при токе 1 мА	%	±10
Максимальная энергия одиночного импульса 10/1000 мкс	Wmax, Дж	до 23
Температурный коэффициент напряжения	TKU,%/°C	<0,05
Климатическая категория МЧВС		-55/125/56
Коэффициент нелинейности, не менее	α	15
Изготавливаются с контактными поверхностями серебро-палладий/	олово-свине	ц-серебро

Тип	Urms, B	Udc, B	Un, В 1 мА	Uc, B	Ic, A	W max, Дж 10/1000 мкс	P max, Вт	I max,A 8/20 мкс	С, пФ 1 кГц	Н тах, мм
M4BC 3224 11 B ±10 %	11	14	18	36	2,5	1,0	0,05	250	14000	1,5
MYBC 4032 11 B ±10 %	11	14	18	36	5,0	1,9	0,1	500	28000	1,5
MYBC 3224 14 B ±10 %	14	18	22	43	2,5	1,1	0,05	250	11000	1,5
M4BC 4032 14 B ±10 %	14	18	22	43	5,0	2,2	0,1	500	11400	1,5
M4BC 3224 17 B ±10 %	17	22	27	53	2,5	1,3	0,05	250	10000	1,5
M4BC 4032 17 B ±10 %	17	22	27	53	5,0	2,7	0,1	500	10500	1,5
MYBC 3224 20 B ±10 %	20	26	33	65	2,5	1,5	0,05	250	8000	1,5
M4BC 4032 20 B ±10 %	20	26	33	65	5,0	3,3	0,1	500	8500	1,5
M4BC 3224 25 B ±10 %	25	31	39	77	2,5	1,8	0,05	250	4500	1,5
M4BC 4032 25 B ±10 %	25	31	39	77	5,0	3,9	0,1	500	5000	1,5
M4BC 3224 30 B ±10 %	30	38	47	93	2,5	2,2	0,05	250	3800	1,5
M4BC 4032 30 B ±10 %	30	38	47	93	5,0	4,6	0,1	500	4000	1,5
M4BC 3224 35 B ±10 %	35	45	56	110	2,5	2,7	0,05	250	6400	1,8
MYBC 4032 35 B ±10 %	35	45	56	110	5,0	5,7	0,1	500	7000	1,8
M4BC 3224 40 B ±10 %	40	56	68	135	2,5	3,3	0,05	250	4800	1,8
MYBC 4032 40 B ±10 %	40	56	68	135	5,0	6,8	0,1	500	12000	1,8
M4BC 3224 50 B ±10 %	50	65	82	135	5,0	1,8	0,1	400	1400	1,8
M4BC 4032 50 B ±10 %	50	65	82	135	10,0	4,2	0,2	1200	2300	1,8
M4BC 3224 60 B ±10 %	60	85	100	165	5,0	2,2	0,1	400	1200	1,8
MYBC 4032 60 B ±10 %	60	85	100	165	10,0	4,8	0,2	1200	2100	1,8
M4BC 3224 75 B ±10 %	75	100	120	200	5,0	2,5	0,1	400	1000	1,8
M4BC 4032 75 B ±10 %	75	100	120	200	10,0	5,9	0,2	1200	2000	1,8
M4BC 3224 95 B ±10 %	95	125	150	250	5,0	3,4	0,1	400	760	1,8
MYBC 4032 95 B ±10 %	95	125	150	250	10,0	7,6	0,2	1200	1200	1,8
M4BC 3224 115 B ±10 %	115	150	180	300	5,0	3,6	0,1	400	640	2,0
MYBC 4032 115 B ±10 %	115	150	180	300	10,0	8,4	0,2	1200	1100	2,0
M4BC 3224 130 B ±10 %	130	170	205	340	5,0	4,2	0,1	400	600	2,0
MYBC 4032 130 B ±10 %	130	170	205	340	10,0	9,5	0,2	1200	1000	2,0
MYBC 3224 140 B ±10 %	140	180	220	360	5,0	4,5	0,1	400	580	2,0
MYBC 4032 140 B ±10 %	140	180	220	360	10,0	10,0	0,2	1200	960	2,0
MYBC 3224 150 B ±10 %	150	200	240	395	5,0	4,9	0,1	400	560	2,0
MYBC 4032 150 B ±10 %	150	200	240	395	10,0	11,0	0,2	1200	880	2,0
M4BC 3224 175 B ±10 %	175	225	270	455	5,0	5,6	0,1	400	520	2,0
M4BC 4032 175 B ±10 %	175	225	270	455	10,0	13,0	0,2	1200	800	2,0
MYBC 3224 230 B ±10 %	230	300	360	595	5,0	7,2	0,1	400	440	3,0
MYBC 4032 230 B ±10 %	230	300	360	595	10,0	17,0	0,2	1200	680	3,0
MYBC 3224 250 B ±10 %	250	320	390	650	5,0	8,2	0,1	400	440	3,0
MYBC 4032 250 B ±10 %	250	320	390	650	10,0	19,0	0,2	1200	640	3,0
MYBC 3224 275 B ±10 %	275	350	430	710	5,0	8,6	0,1	400	400	3,0
MYBC 4032 275 B ±10 %	275	350	430	710	10,0	21,0	0,2	1200	600	3,0
MYBC 3224 300 B ±10 %	300	385	470	775	5,0	9,6	0,1	400	360	3,2
MYBC 4032 300 B ±10 %	300	385	470	775	10,0	23,0	0,2	1200	560	3,2

3.5 Варисторы МОВС

Варисторы изготавливают в соответствии с ТУ РБ 300050407.002-2003

Размер	1153	1354
L _{max} , мм	11,5	13,5
H _{max} , мм	11,5	13,5
T _{max} , мм	4,5	5,4
F, мм	7,5±1,0	10±1,0

Параметры и характеристики

параметры и характеристики		
Максимальное, непрерывное напряжение переменного тока 50-60 Гц	Urms, B	11-300
Максимальное, непрерывное напряжение постоянного тока	Udc, B	14-385
Максимальный ток одиночного импульса 8/20 мкс	lmax, A	до 1200
Напряжение при токе 1 мА	Un, B	36-470
Допускаемое отклонение напряжения при токе 1 мА	%	±10
Максимальная энергия одиночного импульса 10/1000 мкс	Wmax, Дж	до 23
Температурный коэффициент напряжения	TKU,%/°C	<0,05
Климатическая категория МОВС		-55/85/56
Коэффициент нелинейности, не менее	α	15

MOBC 1153 11 B ±10 %	Тип	Urms, B	Udc, B	Un, В 1 мА	Uc, B	Ic, A	Wmax, Дж 10/1000 мкс	Pmax, Вт	Imax,A 8/20 мкс	С, пФ 1 кГц
MOBC 1153 14 B ±10 %	MOBC 1153 11 B ±10 %	11	14	18	36	2,5	1,0	0,05	250	14000
MOBC 1153 17 B ±10 %	MOBC 1354 11 B ±10 %	11	14	18	36	5,0	1,9	0,1	500	28000
MOBC 1153 17 B ±10 %	MOBC 1153 14 B ±10 %	14	18	22	43	2,5	1,1	0,05	250	11000
MOBC 1153 20 B ±10 %	MOBC 1354 14 B ±10 %	14	18	22	43	5,0	2,2	0,1	500	11400
MOBC 1153 20 B ±10 %	MOBC 1153 17 B ±10 %	17	22	27	53	2,5	1,3	0,05	250	10000
MOBC 1354 20 B ±10 %	MOBC 1354 17 B ±10 %	17	22	27	53	5,0	2,7	0,1	500	10500
MOBC 1153 25 B ±10 %	MOBC 1153 20 B ±10 %	20	26	33	65	2,5	1,5	0,05	250	8000
MOBC 1354 25 B ±10 % 25 31 39 77 5,0 3,9 0,1 500 5000 MOBC 1153 30 B ±10 % 30 38 47 93 2,5 2,2 0,05 250 3800 MOBC 1354 30 B ±10 % 30 38 47 93 5,0 4,6 0,1 500 4000 MOBC 1153 35 B ±10 % 35 45 56 110 2,5 2,7 0,05 250 6400 MOBC 1153 40 B ±10 % 35 45 56 110 5,0 5,7 0,1 500 7000 MOBC 1354 30 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 7000 MOBC 1354 50 B ±10 % 50 65 82 135 5,0 6,8 0,1 500 1200 MOBC 1354 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1200 MOBC 1354 50 B ±10 % 60 85	MOBC 1354 20 B ±10 %	20	26	33	65	5,0	3,3	0,1	500	8500
MOBC 1153 30 B ±10 % 30 38 47 93 2,5 2,2 0,05 250 3800 MOBC 1354 30 B ±10 % 30 38 47 93 5,0 4,6 0,1 500 4000 MOBC 1133 35 B ±10 % 35 45 56 110 2,5 2,7 0,05 250 6400 MOBC 1354 35 B ±10 % 35 45 56 110 5,0 5,7 0,1 500 7000 MOBC 1354 08 ±10 % 40 56 68 135 2,5 3,3 0,05 250 4800 MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 12000 MOBC 1354 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 MOBC 1354 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 MOBC 1354 50 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2300 MOBC 1354 50 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 95 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 130 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1354 130 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 600 MOBC 1354 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 600 MOBC 1354 130 B ±10 % 130 170 205 340 5,0 4,5 0,1 400 580 MOBC 1354 130 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 130 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 130 B ±10 % 150 250 250 5,0 3,6 0,1 400 580 MOBC 1354 130 B ±10 % 150 250 340 5,0 4,5 0,1 400 580 MOBC 1354 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 580 MOBC 1354 130 B ±10 % 130 170 205 340 5,0 4,5 0,1 400 580 MOBC 1354 140 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 130 B ±10 % 150 200 240 395 5,0 4,5 0,1 400 560 MOBC 1	MOBC 1153 25 B ±10 %	25	31	39	77	2,5	1,8	0,05	250	4500
MOBC 1354 30 B ±10 % 30 38 47 93 5,0 4,6 0,1 500 4000 MOBC 1153 35 B ±10 % 35 45 56 110 2,5 2,7 0,05 250 6400 MOBC 1354 36 B ±10 % 35 45 56 110 5,0 5,7 0,1 500 7000 MOBC 1354 40 B ±10 % 40 56 68 135 2,5 3,3 0,05 250 4800 MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 1200 MOBC 1153 50 B ±10 % 50 65 82 1355 5,0 6,8 0,1 400 1400 MOBC 1354 50 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 120 MOBC 1354 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 120 MOBC 1354 50 B ±10 % 60 85	MOBC 1354 25 B ±10 %	25	31	39	77	5,0	3,9	0,1	500	5000
MOBC 1153 35 B ±10 % 35 45 56 110 2,5 2,7 0,05 250 6400 MOBC 1354 35 B ±10 % 35 45 56 110 5,0 5,7 0,1 500 7000 MOBC 1354 40 B ±10 % 40 56 68 135 2,5 3,3 0,05 250 4800 MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 12000 MOBC 1153 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 1400 MOBC 1153 50 B ±10 % 50 65 82 135 10,0 4,2 0,2 1200 2300 MOBC 1354 60 B ±10 % 60 85 100 165 5,0 4,8 0,2 1200 2300 MOBC 1354 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 100 MOBC 1354 95 B ±10 % 75<	MOBC 1153 30 B ±10 %	30	38	47	93	2,5	2,2	0,05	250	3800
MOBC 1354 35 B ±10 % 35 45 56 110 5,0 5,7 0,1 500 7000 MOBC 1153 40 B ±10 % 40 56 68 135 2,5 3,3 0,05 250 4800 MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 12000 MOBC 1535 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 MOBC 1354 50 B ±10 % 50 65 82 135 10,0 4,2 0,2 1200 2300 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2300 MOBC 1354 75 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 2100 200 2,0 1400 1200 200 10,0 4,8 0,2 1200 2100 2100 20,2 1200 2100 <th< td=""><td>MOBC 1354 30 B ±10 %</td><td>30</td><td>38</td><td>47</td><td>93</td><td>5,0</td><td>4,6</td><td>0,1</td><td>500</td><td>4000</td></th<>	MOBC 1354 30 B ±10 %	30	38	47	93	5,0	4,6	0,1	500	4000
MOBC 1153 40 B ±10 % 40 56 68 135 2,5 3,3 0,05 250 4800 MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 12000 MOBC 1354 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 MOBC 1354 50 B ±10 % 50 65 82 135 10,0 4,2 0,2 1200 2300 MOBC 1354 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2300 MOBC 1354 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 95 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 2000 MOBC 1354 95 B ±10 % 95 <td< td=""><td>MOBC 1153 35 B ±10 %</td><td>35</td><td>45</td><td>56</td><td>110</td><td>2,5</td><td>2,7</td><td>0,05</td><td>250</td><td>6400</td></td<>	MOBC 1153 35 B ±10 %	35	45	56	110	2,5	2,7	0,05	250	6400
MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 12000 MOBC 1153 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 MOBC 1354 50 B ±10 % 50 65 82 135 10,0 4,2 0,2 1200 2300 MOBC 1153 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 MOBC 1354 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 15B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 15B ±10 % 115 150	MOBC 1354 35 B ±10 %	35	45	56	110	5,0	5,7	0,1	500	7000
MOBC 1354 40 B ±10 % 40 56 68 135 5,0 6,8 0,1 500 12000 MOBC 1153 50 B ±10 % 50 65 82 135 5,0 1,8 0,1 400 1400 MOBC 1354 50 B ±10 % 50 65 82 135 10,0 4,2 0,2 1200 2300 MOBC 1153 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 MOBC 1354 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 75 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 200 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 15B ±10 % 115	MOBC 1153 40 B ±10 %	40	56	68	135	2,5	3,3	0.05	250	4800
MOBC 1354 50 B ±10 % 50 65 82 135 10,0 4,2 0,2 1200 2300 MOBC 1153 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 MOBC 1354 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 95 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 2000 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 115 B ±10 % 115	MOBC 1354 40 B ±10 %	40	56	68	135	5,0		0,1	500	12000
MOBC 1153 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 MOBC 1153 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 75 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 2000 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 195 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 198 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1354 196 B ±10 % 130 </td <td>MOBC 1153 50 B ±10 %</td> <td>50</td> <td>65</td> <td>82</td> <td>135</td> <td>5,0</td> <td>1,8</td> <td>0,1</td> <td>400</td> <td>1400</td>	MOBC 1153 50 B ±10 %	50	65	82	135	5,0	1,8	0,1	400	1400
MOBC 1153 60 B ±10 % 60 85 100 165 5,0 2,2 0,1 400 1200 MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 MOBC 1153 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 75 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 2000 MOBC 1354 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 130 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1354 130 B ±10 % 130		50	65	82	135				1200	2300
MOBC 1354 60 B ±10 % 60 85 100 165 10,0 4,8 0,2 1200 2100 MOBC 1153 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 75 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 200 MOBC 1354 75 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 135 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 600 MOBC 1354 130 B ±10 % 130						- , -				
MOBC 1153 75 B ±10 % 75 100 120 200 5,0 2,5 0,1 400 1000 MOBC 1354 75 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 2000 MOBC 1153 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1354 15 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 115 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1354 140 B ±10 % 130 170 205 340 10,0 9,5 0,2 1200 1000 MOBC 1354 140 B ±10 % 140									1200	
MOBC 1354 75 B ±10 % 75 100 120 200 10,0 5,9 0,2 1200 2000 MOBC 1153 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1153 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1153 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 600 MOBC 1354 130 B ±10 % 130 170 205 340 10,0 9,5 0,2 1200 1000 MOBC 1354 140 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 150 B ±10 % 150 </td <td></td> <td>75</td> <td></td> <td>120</td> <td></td> <td>5.0</td> <td></td> <td></td> <td>400</td> <td>1000</td>		75		120		5.0			400	1000
MOBC 1153 95 B ±10 % 95 125 150 250 5,0 3,4 0,1 400 760 MOBC 1354 95 B ±10 % 95 125 150 250 10,0 7,6 0,2 1200 1200 MOBC 1153 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 115 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1153 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 600 MOBC 1354 130 B ±10 % 130 170 205 340 10,0 9,5 0,2 1200 1000 MOBC 1153 140 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 140 B ±10 % 140 180 220 360 10,0 10,0 0,2 1200 960 MOBC 1354 150 B ±10 %	MOBC 1354 75 B ±10 %	75	100	120	200	10.0		0.2	1200	2000
MOBC 1153 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 115 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1153 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 600 MOBC 1354 130 B ±10 % 130 170 205 340 10,0 9,5 0,2 1200 1000 MOBC 1153 140 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 140 B ±10 % 140 180 220 360 10,0 10,0 0,2 1200 960 MOBC 1354 150 B ±10 % 150 200 240 395 5,0 4,9 0,1 400 560 MOBC 1354 150 B ±10 % 150 200 240 395 5,0 4,9 0,1 400 560 MOBC 1153 175 B ±10 % <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>760</td></td<>										760
MOBC 1153 115 B ±10 % 115 150 180 300 5,0 3,6 0,1 400 640 MOBC 1354 115 B ±10 % 115 150 180 300 10,0 8,4 0,2 1200 1100 MOBC 1153 130 B ±10 % 130 170 205 340 5,0 4,2 0,1 400 600 MOBC 1354 130 B ±10 % 130 170 205 340 10,0 9,5 0,2 1200 1000 MOBC 1153 140 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 140 B ±10 % 140 180 220 360 10,0 10,0 0,2 1200 960 MOBC 1354 150 B ±10 % 150 200 240 395 5,0 4,9 0,1 400 560 MOBC 1354 150 B ±10 % 150 200 240 395 10,0 11,0 0,2 1200 880 MOBC 1153 175 B ±10 %	MOBC 1354 95 B ±10 %	95	125	150	250	10.0	7.6	0.2	1200	1200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOBC 1153 115 B ±10 %	115	150	180	300		3,6	0,1	400	640
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOBC 1354 115 B ±10 %	115	150	180	300	10,0	8,4	0,2	1200	1100
MOBC 1354 130 B ±10 % 130 170 205 340 10,0 9,5 0,2 1200 1000 MOBC 1153 140 B ±10 % 140 180 220 360 5,0 4,5 0,1 400 580 MOBC 1354 140 B ±10 % 140 180 220 360 10,0 10,0 0,2 1200 960 MOBC 1153 150 B ±10 % 150 200 240 395 5,0 4,9 0,1 400 560 MOBC 1354 150 B ±10 % 150 200 240 395 10,0 11,0 0,2 1200 880 MOBC 1153 175 B ±10 % 175 225 270 455 5,0 5,6 0,1 400 520 MOBC 1354 175 B ±10 % 175 225 270 455 10,0 13,0 0,2 1200 800 MOBC 1153 230 B ±10 % 230 300 360 595 5,0 7,2 0,1 400 440 MOBC 1354 230 B ±10 %	MOBC 1153 130 B ±10 %	130		205	340	5.0			400	600
MOBC 1354 140 B ±10 % 140 180 220 360 10,0 10,0 0,2 1200 960 MOBC 1153 150 B ±10 % 150 200 240 395 5,0 4,9 0,1 400 560 MOBC 1354 150 B ±10 % 150 200 240 395 10,0 11,0 0,2 1200 880 MOBC 1153 175 B ±10 % 175 225 270 455 5,0 5,6 0,1 400 520 MOBC 1354 175 B ±10 % 175 225 270 455 10,0 13,0 0,2 1200 800 MOBC 1153 230 B ±10 % 230 300 360 595 5,0 7,2 0,1 400 440 MOBC 1354 230 B ±10 % 230 300 360 595 10,0 17,0 0,2 1200 680 MOBC 1153 250 B ±10 % 250 320 390 650 5,0 8,2 0,1 400 440 MOBC 1153 275 B ±10 %					340		9,5		1200	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		140	180	220	360	5.0	4.5		400	580
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOBC 1354 140 B ±10 %	140	180	220	360				1200	960
MOBC 1354 150 B ±10 % 150 200 240 395 10,0 11,0 0,2 1200 880 MOBC 1153 175 B ±10 % 175 225 270 455 5,0 5,6 0,1 400 520 MOBC 1354 175 B ±10 % 175 225 270 455 10,0 13,0 0,2 1200 800 MOBC 1153 230 B ±10 % 230 300 360 595 5,0 7,2 0,1 400 440 MOBC 1354 230 B ±10 % 230 300 360 595 10,0 17,0 0,2 1200 680 MOBC 1153 250 B ±10 % 250 320 390 650 5,0 8,2 0,1 400 440 MOBC 1354 250 B ±10 % 250 320 390 650 10,0 19,0 0,2 1200 640 MOBC 1153 275 B ±10 % 275 350 430 710 5,0 8,6 0,1 400 400 MOBC 1153 300 B ±10 %				240			· · · · · · · · · · · · · · · · · · ·	0.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		150	200	240	395				1200	880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MOBC 1153 175 B ±10 %	175	225	270	455	5.0	5.6	0.1	400	520
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						- , -	- , -	-,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
MOBC 1354 250 B ±10 % 250 320 390 650 10,0 19,0 0,2 1200 640 MOBC 1153 275 B ±10 % 275 350 430 710 5,0 8,6 0,1 400 400 MOBC 1354 275 B ±10 % 275 350 430 710 10,0 21,0 0,2 1200 600 MOBC 1153 300 B ±10 % 300 385 470 775 5,0 9,6 0,1 400 360						- , -				
MOBC 1153 275 B ±10 % 275 350 430 710 5,0 8,6 0,1 400 400 MOBC 1354 275 B ±10 % 275 350 430 710 10,0 21,0 0,2 1200 600 MOBC 1153 300 B ±10 % 300 385 470 775 5,0 9,6 0,1 400 360										
MOBC 1354 275 B ±10 % 275 350 430 710 10,0 21,0 0,2 1200 600 MOBC 1153 300 B ±10 % 300 385 470 775 5,0 9,6 0,1 400 360										
MOBC 1153 300 B ±10 % 300 385 470 775 5,0 9,6 0,1 400 360							-,-	- ,		
						- , -				
INVOBECT354-300 B ± 10 % 1 300 385 470 775 100 23.0 02 1200 560	MOBC 1354 300 B ±10 %	300	385	470	775	10.0	23,0	0.2	1200	560

3.6 Испытание варисторов одиночным импульсным воздействием тока

по МЭК 1051-1 и QC 42000.

При испытании варисторов применяется импульсный ток, который имеет форму близкую экспоненциальной или синусоидальной кривой с большим затуханием и возрастает от нуля до пикового значения за короткое время с последующим спадом до нуля. Тип импульса определяется действующей длительностью фронта импульса T_1 и действующей длительностью импульса T_2 на уровне 50 % от пикового значения импульса.

Этому типу соответствуют два импульсных тока. У одного длительность фронта T_1 равна 8 мкс, а длительность импульса T_2 - 20 мкс (импульс "8/20"). У другого длительность фронта T_1 равна 10 мкс, а длительность импульса T_2 - 1000 мкс (импульс "10/1000").

Допускаемые отклонения фактических значений параметров импульсного режима от значений, установленных стандартом, не должны превышать значений, установленных стандартом для импульсов "8/20" и "10/1000":

Параметр импульсного режима	Импульс "8/20"	Импульс "10/1000"
Допустимая амплитуда импульсного тока (пиковое значение)	±10 %	±10 %
Длительность фронта T ₁	±10 %	+100 % -10 %
Длительность импульса T ₂	±10 %	±20 %
Общая длительность импульса Ти	_	От 2,5 до 4 T ₂

Рекомендуемые размеры контактных площадок под варисторы для поверхностного монтажа

$$a > \frac{2}{3} H < H$$
$$b > \frac{2}{3} B < B$$

3.7 Типовые вольт-амперные характеристики варисторов

MYBH 1210 4-40 B \pm 10 %, \pm 15 %, \pm 20 % 100 A u MOBH 562 4-40 B \pm 10 %, \pm 15 %, \pm 20 % 100 A

МЧВН 1210, 2220 4-40 В \pm 10 %, \pm 15 %, \pm 20 % 250 A и МОВН 562, 852 $\,$ 4-40 В \pm 10 %, \pm 15 %, \pm 20 % 250 A

МЧВН 0805 2 В ±20 % 25 A и МОВН 452 2 В ±20 % 25 A

МЧВН 2220 11-40 В ±10 % 500 A и МОВН 852 11-40 В ±10 % 500 A

MYBH 2220 11-40 B ±10 % 1000 A u MOBH 852 11-40 B ±10 % 1000 A

МЧВН 3224, 4032 14-30 В \pm 10 % 500 A и МОВН 1153 14-30 В \pm 10 % 500 A

MYBH 3224 14-30 B ±10 % 1000 A u MOBH 1153 14-30 B ±10 % 1000 A

МЧВН 3224, 4032 14-30 В ±10 % 2000 A и МОВН 1153 14-30 В ±10 % 2000 A

MYBC 4032 11-300 B ±10 % 500 A, 1200 A u MOBC 1354 11-300 B ±10 % 500 A, 1200 A

MYBC 3224 11-300 B ±10 % 250 A, 400 A u MOBC 1153 11-300 B ±10 % 250 A, 400 A

MOBH 1153 14-30 B ±10 % 4000 A

4 Индуктивности многослойные МОИ и МЧИ

Многослойные индуктивности предназначены для сборки аппаратуры с применением поверхностного и навесного монтажа, взамен выводных моточных катушек индуктивности. Имеют специальную, монолитную конструкцию, обеспечивающую индуктивности замкнутую магнитную систему, которая исключает наружное рассеяние магнитного поля и воздействие на индуктивность внешних магнитных полей. Позволяет производить плотный монтаж при отсутствии взаимодействия магнитных потоков между отдельными индуктивностями и другими компонентами радиоэлектронной аппаратуры. Исключают возникновение магнитных шумов при их использовании взамен традиционных катушек индуктивности. Изготавливаются на основе ферритовых порошков с нанесением металлизационных витков катушки методом печати по слоям ферритовых пластин. Многослойные индуктивности МЧИ предназначены для поверхностного монтажа, МОИ – для навесного.

Основные преимущества многослойных индуктивностей перед моточными катушками:

- монолитная конструкция обеспечивает высокую надежность;
- отсутствие помех, закрытая магнитная цепь (магнитное экранирование слоями феррита);
- высокая надежность пайки;
- снижение габаритных размеров;
- оптимальные условия для высокоплотного, автоматизированного поверхностного монтажа (АПМ).

Особенности конструкции

- корпус окукленный;
- вывода проволочные однонаправленные;
- исполнение чип, для поверхностного монтажа;
- расстояние между выводами A= 5±0,8 мм или 7,5±0,8 мм
 электроды серебро/никель/олово-свинец.

Габариты индуктивностей МЧИ

Код размера	L, мм	В, мм	Нтах, мм	L₁min, мм	L ₂ min, мм
МЧИ 0805	2,0±0,3	1,25±0,2	1,45	0,6	0,2
МЧИ 1206	3,2±0,4	1,6±0,2	1,6	0,8	0,2

Рекомендуемые размеры контактных площадок для поверхностного монтажа индуктивностей

$$a > \frac{2}{3} H < H$$
$$b > \frac{2}{3} B < B$$

4.1 Катушки индуктивности многослойные МЧИ и МОИ

Серийные

Многослойные индуктивности МЧИ - изготавливают в соответствии с ТУ РБ 07547670.010-97, МОИ - в соответствии с ТУ РБ 07615377.073-99.

МОИ выпускаются в изолированном исполнении с однонаправленными выводами и предназначены для навесного монтажа.

Типовые характеристики индуктивностей МЧИ и МОИ.

Зависимость индуктивности от постоянного тока

10 мкГн ∆ L/L,% 1 мкГн 0,1 мкГн 25 45 75 0,1 мкГн 1 мкГн Температура, °С 10 мкГн

Зависимость импеданса от частоты

Зависимость индуктивности от температуры

Зависимость добротности от частоты

Параметры и характеристики

Климатическая категория

Промежуточные значения номинальных индуктивностей Допускаемое отклонение индуктивности

-25/85/21; по ряду Е12

– для индуктивностей менее 0,27 мкГн; ±0,05 мкГн

– для индуктивностей от 0,27 мкГн до 0,56 мкГн;

±10 %, ±20 % – для индуктивностей 0,56 мкГн и более.

4.2 Катушки индуктивности многослойные МЧИ 1206

Тип	Номинальная	Допускаемое	Доброт-	Частота	Собственная	Сопротив-	Номинальный	Толщина,
	индуктивность,	отклонение	ность, Q,	измерения	резонансная	ление	ток, мА, не	Н, мм
	L, мкГн	индуктивности	не менее	индуктивнос-	частота,	постоянному	более	
		-		ти и доброт-	МГц, не ме-	току, Ом, не		
					нее	более		
МЧИ 1206-1	0,1	± 0,05 мкГн	25	25	235	0,25	150	$0,8 \pm 0,2$
МЧИ 1206-1	0,12	± 0,05 мкГн	25	25	220	0,3	150	0.8 ± 0.2
МЧИ 1206-1	0,15	± 0,05 мкГн	25	25	200	0,3	150	0.8 ± 0.2
МЧИ 1206-1	0,18	± 0,05 мкГн	25	25	185	0,4	150	0.8 ± 0.2
МЧИ 1206-1	0,22	± 0,05 мкГн	25	25	170	0,4	150	0.8 ± 0.2
МЧИ 1206-1	0,27	± 20 %	25	25	150	0,5	150	0.8 ± 0.2
МЧИ 1206-1	0,33	± 20 %	25	25	145	0,6	150	0.8 ± 0.2
МЧИ 1206-1	0,39	± 20 %	25	25	135	0,5	150	1,1 ± 0,3
МЧИ 1206-1	0,47	± 20 %	25	25	125	0,6	150	1,1 ± 0,3
МЧИ 1206-1	0,56	± 20 %; ± 10 %	25	25	115	0,7	150	1,1 ± 0,3
МЧИ 1206-1	0,68	± 20 %; ± 10 %	25	25	105	0,8	150	1,1 ± 0,3
МЧИ 1206-1	0,82	± 20 %; ± 10 %	25	25	100	0,9	150	1,1 ± 0,3
МЧИ 1206-2	1,0	± 20 %; ± 10 %	35	10	75	0,4	50	1,1 ± 0,3
МЧИ 1206-2	1,2	± 20 %; ± 10 %	35	10	65	0,5	50	1,1 ± 0,3
МЧИ 1206-2	1,5	± 20 %; ± 10 %	35	10	60	0,7	50	1,1 ± 0,3
МЧИ 1206-2	1,8	± 20 %; ± 10 %	35	10	55	0,7	50	1,1 ± 0,3
МЧИ 1206-2	2,2	± 20 %; ± 10 %	35	10	50	0,6	50	1,1 ± 0,3
МЧИ 1206-2	2,7	± 20 %; ± 10 %	35	10	45	0,6	50	1,1 ± 0,3
МЧИ 1206-2	3,3	± 20 %; ± 10 %	35	10	41	0,7	50	1,1 ± 0,3
МЧИ 1206-2	3,9	± 20 %; ± 10 %	35	10	38	0,8	50	1,1 ± 0,3
МЧИ 1206-2	4,7	± 20 %; ± 10 %	35	10	35	0,9	50	1,1 ± 0,3
МЧИ 1206-3	5,6	± 20 %; ± 10 %	25	2	32	0,8	25	1,1 ± 0,3
МЧИ 1206-3	6,8	± 20 %; ± 10 %	25	2	29	0,9	25	$1,2 \pm 0,4$
МЧИ 1206-3	8,2	± 20 %; ± 10 %	25	2	26	0,9	25	1,2 ± 0,4
*МЧИ 1206-3	10	± 20 %; ± 10 %	25	2	24	1,0	25	$1,2 \pm 0,4$
*МЧИ 1206-3	12	± 20 %; ± 10 %	25	2	22	1,0	25	1,2 ± 0,4
Примощение	DOGUNUAL OTRACI	ENTRIE * NSLUTABI	THEOLOTOG GO	005500000000000000000000000000000000000	о потробитов	014	•	

Примечание - позиции, отмеченные *, изготавливаются по согласованию с потребителем.

4.3 Катушки индуктивности многослойные МЧИ 0805

Тип	Номинальная	Допускаемое	Доброт-	Частота	Собственная	Сопротив-	Номинальный	Толщина,
	индуктивность,	отклонение	ность, Q,	измерения	резонансная	ление	ток, мА, не	Н, мм
	L, мкГн	индуктивности	не менее	индуктивнос-	частота,	постоянному	более	
				ти и доброт-	МГц, не ме-	току, Ом, не		
				ности, МГц	нее	более		
МЧИ 0805-1	0,1	± 0,05 мкГн	25	25	235	0,3	150	$0,85 \pm 0,2$
МЧИ 0805-1	0,12	± 0,05 мкГн	25	25	220	0,3	150	0.85 ± 0.2
МЧИ 0805-1	0,15	± 0,05 мкГн	25	25	200	0,4	150	0.85 ± 0.2
МЧИ 0805-1	0,18	± 0,05 мкГн	25	25	185	0,4	150	0.85 ± 0.2
МЧИ 0805-1	0,22	± 0,05 мкГн	25	25	170	0,5	150	0.85 ± 0.2
МЧИ 0805-1	0,27	± 20 %	25	25	150	0,5	150	0.85 ± 0.2
МЧИ 0805-1	0,33	± 20 %	25	25	145	0,55	150	0.85 ± 0.2
МЧИ 0805-1	0,39	± 20 %	25	25	135	0,65	150	0.85 ± 0.2
МЧИ 0805-1	0,47	± 20 %	25	25	125	0,65	150	$1,25 \pm 0,2$
МЧИ 0805-1	0,56	± 20 %; ± 10 %	25	25	115	0,75	150	$1,25 \pm 0,2$
МЧИ 0805-1	0,68	± 20 %; ± 10 %	25	25	105	0,8	150	$1,25 \pm 0,2$
МЧИ 0805-1	0,82	± 20 %; ± 10 %	25	25	100	1,0	150	$1,25 \pm 0,2$
МЧИ 0805-2	1,0	± 20 %; ± 10 %	35	10	75	0,4	50	0.85 ± 0.2
МЧИ 0805-2	1,2	± 20 %; ± 10 %	35	10	65	0,5	50	0.85 ± 0.2
МЧИ 0805-2	1,5	± 20 %; ± 10 %	35	10	60	0,5	50	0.85 ± 0.2
МЧИ 0805-2	1,8	± 20 %; ± 10 %	35	10	55	0,6	50	0.85 ± 0.2
МЧИ 0805-2	2,2	± 20 %; ± 10 %	35	10	50	0,9	50	0.85 ± 0.2
МЧИ 0805-2	2,7	± 20 %; ± 10 %	35	10	45	1,0	50	1,25 ± 0,2
МЧИ 0805-2	3,3	± 20 %; ± 10 %	35	10	41	1,0	50	$1,25 \pm 0,2$
МЧИ 0805-2	3,9	± 20 %; ± 10 %	35	10	38	1,1	50	$1,25 \pm 0,2$
МЧИ 0805-2	4,7	± 20 %; ± 10 %	35	10	35	1,1	50	$1,25 \pm 0,2$

Пример условного обозначения при заказе МЧИ

МЧИ 1206 3 5,6 мкГн $\pm \dot{10}$ % А ТУ РБ 07547670.010-97 МЧИ 0805 1 0,56 мкГн ± 20 % А ТУ РБ 07547670.010-97 (а) (б) (в) (г) (д) (е) (ж)

- (a) (б) (в) (г) (д) (е) а) обозначение вида катушек индуктивности;
- б) условное обозначение габарита только для катушек индуктивности МЧИ; в) код материала (1 F-1, 2 F-2, 3 F-3);
- номинальная индуктивность; Γ)
- допускаемое отклонение индуктивности от номинальной; д)
- код упаковки (буква "А"- для автоматизированной сборки аппаратуры), поставка в блистер –ленте;
 - обозначение документа на поставку.

4.4 Катушки индуктивности многослойные МОИ

Тип	Номинальная	Допускаемое	Добротность,	Частота измере-	Собственная	Сопротивление	Номинальный
	индуктивность,	отклонение	Q, не менее	ния индуктив-	резонансная	постоянному току,	ток, мА, не
	L, мкГн	индуктивности		ности и доброт-	частота, МГц,	Ом, не более	более
				ности, МГц	не менее		
МОИ-1	0,56	± 20 %; ± 10 %	25	25	115	0,7	150
МОИ-1	0,68	± 20 %; ± 10 %	25	25	105	0,8	150
МОИ-1	0,82	± 20 %; ± 10 %	25	25	100	0,9	150
МОИ-2	1,0	± 20 %; ± 10 %	35	10	75	0,4	50
МОИ-2	1,2	± 20 %; ± 10 %	35	10	65	0,5	50
МОИ-2	1,5	± 20 %; ± 10 %	35	10	60	0,7	50
МОИ-2	1,8	± 20 %; ± 10 %	35	10	55	0,7	50
МОИ-2	2,2	± 20 %; ± 10 %	35	10	50	0,6	50
МОИ-2	2,7	± 20 %; ± 10 %	35	10	45	0,6	50
МОИ-2	3,3	± 20 %; ± 10 %	35	10	41	0,7	50
МОИ-2	3,9	± 20 %; ± 10 %	35	10	38	0,8	50
МОИ-2	4,7	± 20 %; ± 10 %	35	10	35	0,9	50
МОИ-3	5,6	± 20 %; ± 10 %	25	2	32	0,8	25
МОИ-3	6,8	± 20 %; ± 10 %	25	2	29	0,9	25
МОИ-3	8,2	± 20 %; ± 10 %	25	2	26	0,9	25
*MON-3	10	± 20 %; ± 10 %	25	2	24	1,0	25
*MON-3	12	± 20 %; ± 10 %	25	2	22	1,0	25

Примечание - позиции, отмеченные *, изготавливаются по согласованию с потребителем.

Пример условного обозначения при заказе МОИ

МОИ	3	5,6 мкГн	± 10 %	7,5	ТУ РБ 07615377.073-99
(a)	(б)	(B)	(r)	(д)	(e)

а) обозначение вида катушек индуктивности;

б) код материала (1 - F-1, 2 - F-2, 3 - F-3);

в) номинальная индуктивность;

г) допускаемое отклонение индуктивности от номинальной;

д) расстояние между выводами (только для катушек индуктивности МОИ с расстоянием между выводами 7,5 мм);

е) обозначение документа на поставку.

5 Терморезисторы

Серийные

5.1 Терморезисторы РТС-П

Терморезисторы прямого подогрева с положительным температурным коэффициентом сопротивления РТС-П предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для бесконтактных пусковых устройств двигателей. Терморезисторы изготавливают в соответствии с ТУ РБ 07612048.004-95.

Параметры и характеристики

параметры и характериетика									
Номинальное сопротивление при 25 ℃, R _{ном}	4,7; 6,8; 10 Ом	15; 22; 33; 47 Ом	25 Ом						
Допускаемое отклонение сопротивления от но-									
минального	±25 %, ±30 %, ±45 %,	±25 %, ±30 %, ±45 %	±20 %						
Сопротивление при 170 ℃, не менее	1 кОм	3 кОм	3 кОм						
Максимально допустимый ток	10 A	6 A	6 A						
Рабочее напряжение	115 B	220 B	220 B						
Ток при рабочем напряжении, не более	30 мА	20 мА	20 мА						
Максимальное напряжение терморезисторов с номинальным сопротивлением 4,7 Ом - 180 В; 6,8 Ом и 10 Ом -									
200 В; 15 Ом -250 В; 22 Ом и 25 Ом - 320 В; 33 Ом	- 355 В; 47 Ом - 400 В								

Максимальное допустимое напряжение терморезисторов с номинальным сопротивлением 4,7 Ом – 250 В; 6,8 Ом и 10 Ом – 280 В; 15 Ом –350 В; 22 Ом и 25 Ом – 450 В; 33 Ом – 500 В; 47 Ом – 560 В

Пробивное напряжение для терморезисторов с номинальным сопротивлением 4,7 Ом — не менее 360 В; 6,8 Ом и 10 Ом — не менее 400 В; 15 Ом — не менее 500 В; 22 Ом и 25 Ом — не менее 600 В; 33 Ом — не менее 700 В; 47 Ом — не менее 800 В

Температура переключения, °С	135±10 %
Время срабатывания	0,6-2 c
Время возврата в исходное состояние, не более	100 c
Гарантийная наработка	160 000 включений

Климатическая категория - 10/85/10

Особенности конструкции

Корпус - дисковый; электроды - серебряные; терморезистор безвыводной (крепление - прижимными контактами).

Пример условного обозначения

 $\frac{\text{PTC-}\Pi}{\text{(a)}}$ $\frac{33 \text{ Om}}{\text{(b)}}$ $\frac{\pm 30 \%}{\text{(B)}}$ $\frac{\text{TY P5 07612048.004-95}}{\text{(r)}}$

- а) обозначение вида терморезисторов;
- б) номинальное сопротивление;
- в) допускаемое отклонение сопротивления от номинального;
- г) обозначение документа на поставку.

Типовые характеристики терморезисторов РТС-П

Температурная характеристика сопротивления для терморезисторов с Rном =33 Ом

Вольт-амперная характеристика

1 – для терморезисторов с Rном = 15 Ом

2 – для терморезисторов с Rном = 22 Ом

3 – для терморезисторов с Rном = 33 Ом

4 – для терморезисторов с Rном = 47 Ом

Динамическая характеристика для терморезисторов с Rhom = 33 Ом при U = 220 В

U, B

5.2 Блоки терморезисторные РТС-2Р

Терморезисторные блоки РТС-2Р с положительным коэффициентом сопротивления предназначены для эксплуатации в качестве встроенных элементов в схемах размагничивания кинескопов телевизоров цветного изображения в цепях переменного тока частотой 50 Гц.

Терморезисторные блоки изготавливают в соответствии с ТУ РБ 07615377.069-99.

Параметры и характеристики

Значение	Допускаемое		Значение параметра							
номинального	отклонение	Рабочее	Максимальное	Ток включения	Ток через 180 с	сопротив-				
сопротивления	сопротивления	напряжение, В	допустимое	(пиковый раз-	после включения	ления на-				
при 25 °C,	от номиналь-		напряжение, В	мах), Ів, А,	(пиковый размах),	грузки, Ом				
Rном, Ом	ного, %			не менее	Іо, мА, не более					
18				20	5	10±5 %				
22	±30	220	265	16	4,5	17±5 %				
27				8	4	27±5 %				

Особенности конструкции

Блоки состоят из двух терморезисторов, соединенных по приведенной выше схеме:

RK1 – нагревательный терморезистор,

RK2 – терморезистор размагничивания;

корпус пластмассовый пожаробезопасный;

электроды – серебряные;

вывода – однонаправленные.

Климатическая категория -10/70/10

Пример условного обозначения

$$\frac{\text{PTC-2P}}{\text{(a)}} \quad \frac{27 \text{ Om}}{\text{(b)}} \quad \frac{\pm 30 \%}{\text{(B)}} \quad \frac{\text{TY PE 07615377.069-99}}{\text{(r)}}$$

- а) обозначение блоков;
- б) номинальное сопротивление;
- в) допускаемое отклонение сопротивления от номинального;
- г) обозначение документа на поставку.

Типовые характеристики для протекаюшего размагничивающего тока блоков РТС - 2P при температуре 25 ℃

5.3 Терморезисторы РТС-Л

Терморезистор прямого подогрева с положительным температурным коэффициентом сопротивления РТС-Л предназначен для использования в составе электронной пускорегулирующей аппаратуры, преобразующей токи промышленной частоты в токи высокой частоты и осуществляющей процесс поджига люминисцентной лампы импульсом напряжения. Терморезисторы подбираются таким образом, чтобы время разогрева катода лампы было оптимальным и составляло 0,4...1,2 секунды. После этого промежутка времени терморезистор срабатывает, ограничивая ток проходящий через него до уровня единиц миллиампер. Одновременно происходит поджиг лампы. Изготавливаются как опытные партии.

Параметры и характеристики

	2: 0: Mapaninopus								
Номиновино	Потического	Размеры, мм		Темпе-	Отно- шение	Отно- шение	Рабо- чее	Макси- мальное	Ток при рабочем напряжении в
Номинальное сопротивление при 25°С, Rном, Ом	Допускаемое от- клонение сопро- тивления от но- минального, %	Dmax	Hmax	ратура пере- ключе- ния, С	R ₁₅₀ °С к R ₂₅ °С, не ме- нее	R ₁₈₀ °С к R ₂₅ °С, не ме- нее	напря- жение, В _{эфф}	допусти- мое напря- жение, В _{эфф}	установившемся режиме, мА _{эфф} , не более
120; 820	±30	6,2	5,5	125±10	-	10 ³	220	400	7,0
150; 330	±30	4,2	4,2	65±10	10 ³	-	7 220	400	7,0

Климатическая категория

-25/70/10

Особенности конструкции

Корпус – дисковый; электроды – серебряные; вывода – проволочные однонаправленные.

Температурная характеристика сопротивления для терморезисторов с $R_{\text{ном}}$ =120 Ом

5.4 Терморезисторы РТС-3

Терморезисторы прямого подогрева с положительным температурным коэффициентом сопротивления РТС-3 предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для защиты аппаратуры от перегрузки по мощности. Терморезисторы изготавливают в соответствии с ТУ РБ 07615377.067-99.

рис. 1 рис. 2

Параметры и характеристики

Вариант	Номи-	Допускае-	Темпе-	Размер	Ы. MM	Отно-	Отно-	Рабо-	Макси-	Ток	Время
исполнения	наль-	мое от-	ратура			шение	шение	чее	маль-	несра-	срабаты-
	ное	клоне-	переклю-			R _{150℃}	R ₁₈₀ ℃	напря-	ное	баты-	вания при
	сопро-	ние со-	чения, °С			κR _{25℃} ,	κR _{25℃} ,	жение,	допу-	вания	25°C,
	тивле-	против-		D	Uman	не менее	не менее	В эфф	СТИ-	при 25 °C	не более, с
	ние при 25°C,	ления от номи-		Dmax	Hmax				мое напря-	25°С не	
	R _{HOM} ,	номи-							жение,	менее,	
	Ом	ного, %							В эфф	мА _{эфф}	
_	22		65±10			10 ³	-			50	-
Безвывод- ной (рис. 1)	22		80±10	7,0	2,5	-	10 ³			70	-
	27		65±10	7,0	2,5	10 ³				50	-
(1 /	21		80±10			-	10 ³			60	-
	22		65±10			10 ³	-			50	4
	22	±30	80±10	10,0		-	10 ³	220	265	60	6
	27		65±10	10,0		10 ³	-			50	3
Выводной	2.1		80±10		5,5	-	10 ³			60	5
(рис. 2)	39		65±10		3,3	10 ³	-			40	2,5
	39		80±10			-	10 ³			50	3,5
	62		65±10	6,2		10 ³	-			30	2
	02		80±10			-	10 ³			40	3

Примечание - Возможно изготовление терморезисторов с другим номинальным сопротивлением, температурой переключения в диапазоне (50÷135) °С и током несрабатывания 15...150 мА

Климатическая категория

Особенности конструкции

Корпус - дисковый; электроды - серебряные; вариант исполнения - выводной и безвыводной; вывода - проволочные однонаправленные.

-10/55/10

Пример условного обозначения

 $\frac{\text{РТС-3}}{\text{(a)}}$ $\frac{1}{\text{(б)}}$ $\frac{27 \text{ Ом}}{\text{(B)}}$ $\frac{80 \, ^{\circ}\text{C}}{\text{(г)}}$ $\frac{\text{ТУ РБ 07615377.067-99}}{\text{(д)}}$

- а) обозначение вида терморезисторов;
- б) обозначение варианта исполнения (цифра «1» только для терморезисторов, изготовленных по рис. 1 безвыводной вариант);
- в) номинальное сопротивление;
- г) температура переключения;
- д) обозначение документа на поставку.

5.5 Терморезисторы РТС-Н

Терморезисторы прямого подогрева с положительным температурным коэффициентом сопротивления РТС-Н предназначены для эксплуатации в качестве нагревательных элементов. Терморезисторы изготавливают в соответствии с ТУ РБ 07612048.011-97.

Параметры и характеристики

Номинальное сопротивление при 25 ℃, R _{ном.}	330 6800 Ом								
Промежуточные значения номинальных сопротивлений соответствуют ряду Е6									
Допускаемое отклонение сопротивления от номинального	±30 %								
Рабочее напряжение	250 B								
Ток при рабочем напряжении, не более	20 мА								
Максимальное допустимое напряжение	450 B								
Температура переключения, ℃	125±10 %								

Примечание – По согласованию с заказчиком возможно изготовление терморезисторов с температурой переключения в диапазоне от +45 до +240 °C

Климатическая категория -10/85/10

Особенности конструкции

Корпус - дисковый; электроды - алюминиевые; терморезистор безвыводной.

Пример условного обозначения

PTC-H	<u> 1000 Ом</u>	<u>± 30 %</u>	<u>450 B</u>	<u>ТУ РБ 07612048.011-97</u>
(a)	(б)	(B)	(r)	(д)

- а) обозначение вида терморезисторов;
- б) номинальное сопротивление;
- в) допускаемое отклонение сопротивления от номинального;
- г) максимальное допустимое напряжение;
- д) обозначение документа на поставку.

5.6 Терморезисторы РТС-НТ

Терморезисторы прямого подогрева с положительным температурным коэффициентом сопротивления РТС-НТ предназначены для эксплуатации в качестве нагревательных элементов.

Терморезисторы изготавливают в соответствии с ТУ РБ 300050407.003-2001.

Параметры и характеристики

Номи- нальное сопроти- вление при 25 °C, R _{ном} , кОм	Допус- каемое откло- нение сопро- тивле- ния от	Обо- значе- ние видо- разме- ра	L	Размеры, мм В	Н	Рабо- чее напря- жение, В _{эфф}	Макси- мально допусти- мое напря- жение, В _{эфф}	Проби- вное напря- жение не менее, В _{эфф}	Температура переключения, °С	Температура на поверхности в спокойном воз-	Мощ- ность рассеи- вания в спокой- ном воз- духе при
ком	номи- наль- ного, %						Ээфф	Бэфф		духе, °С	220 °С, Вт
0,56	±50	2	00.510.0	14.010.0	0.010.05	100	150	360			4,5
2,2	±45	2	20,5±0,2	14,6±0,2	2,2±0,05			500			
1,0 2,2 4,7	±45	1	27±0,3	13 ^{+0,1} _{-0,5}	1,4±0,05	220	265	360	225±15	250±10	9,9

Примечание – По согласованию с заказчиком возможно изготовление терморезисторов с температурой переключения в диапазоне от +45 до +240 °C

Климатическая категория -10/85/10

Особенности конструкции

корпус – прямоугольный; электроды – алюминиевые;

терморезистор безвыводной, крепление - прижимными контактами.

R, кОм

Температурная характеристика сопротивления для терморезисторов с $R_{\text{ном}}$ = 2,2 кОм

Вольт-амперная характеристика для терморезисторов с $R_{\text{ном}}$ = 2,2 кОм

1 – для видоразмера 1;

2 – для видоразмера 2.

Пример условного обозначения

PTC-HT (a)

<u>2,2 кОм</u> (б)

± 45 % (в)

<u>1</u> (г) <u>ТУ РБ 300050407.003-2001</u> (д)

- а) обозначение вида терморезисторов;
- б) номинальное сопротивление;
- в) допускаемое отклонение сопротивления от номинального;
- г) обозначение видоразмера (только для терморезисторов с номинальным сопротивлением 2,2 кОм);
- д) обозначение документа на поставку.

5.7 Терморезисторы РТС-НВ

Терморезисторы прямого подогрева с положительным температурным коэффициентом сопротивления РТС-НВ предназначены для эксплуатации в качестве нагревательных элементов внутри комплектных изделий для автостабилизации температуры в вулканизационных прессах.

Терморезисторы изготавливают с IV квартала 2004 г в соответствии с ТУ РБ 300050407.015-2004.

Параметры и характеристики

Вариант исполнения	Номинальное со- противление при 25°C, R _{ном} , кОм	Допускамое от- клонение сопро- тивления от но- минального, %	Температура пе- реключения,°С	Температура поверхности при рабочем напря-жении, °C	Рабочее напря- жение,В _{эфф}	Максимально до- пустимое напря- жение, Вэфф	Пробивное на- пряжение, не менее, В _{эфф}	Мощность рас- сеивания в спо- койном воз- духе при рабочем напряжении, Вт	Ток включения при рабочем напряжении, мА _{эфф}
Дисковый (рис. 1)	22; 27; 33; 47								от 60 до 140 (100±40)
Прямо- угольный (рис. 2)	27; 33	±50	155±15	165±10	380	600	800	7,6	от 70 до 165 (100 ⁺⁶⁵ ₋₃₀)

Особенности конструкции

Корпус – дисковый или прямоугольный; электроды – алюминиевые; терморезистор безвыводной, крепление - прижимными контактами.

Пример условного обозначения

PTC-HB	<u>1</u>	<u>100 мА</u>	<u>27 кОм</u>	ТУ РБ 300050407.015-2004
(a)	(6)	(B)	(r)	(д)

- а) обозначение вида терморезисторов;
- б) обозначение варианта исполнения («1» только для дисковых терморезисторов);
- в) ток включения;
- г) номинальное сопротивление;
- д) обозначение документа на поставку.

5.8 Терморезисторы РТС-Д

Терморезисторы прямого подогрева с положительным температурным коэффициентом сопротивления РТС-Д предназначены для эксплуатации в качестве нагревательных элементов, в том числе для подогрева дизельного топлива. Терморезисторы изготавливают в соответствии с ТУ РБ 300050407.004-2004.

Параметры и характеристики

Парамен	ры и харакіне	pacinaka									
ное сопротив-	Допускаемое отклонение сопротивления	Температура переключе- ния, °С	напря-	Макси- мальное допустимое		Температура на поверхности в спокойном воздухе, °С при напряжении			Мощность рассеивания в спокойном воздухе, Вт при напряжении		
R _{ном,} Ом	от номи- нального, %		В _{эфф}	напряже-	В _{эфф} , не менее	12 B _{эфф}	16 B _{эфф}	24 B _{эфф}	12 B _{эфф}	16 В _{эфф}	24 B _{эфф}
2,2 2,7 3,3 4,7 6,8	±20; ±30	135±10	24	30	100	135±10	140±10	145±10	3,6	3,68	3,84

Климатическая категория -10/85/10

Особенности конструкции

Корпус – дисковый; электроды – серебряные; терморезистор безвыводной.

Пример условного обозначения

 $\frac{\text{РТС-Д}}{\text{(a)}}$ $\frac{3,3 \text{ Ом}}{\text{(б)}}$ $\frac{\pm 30 \%}{\text{(в)}}$ $\frac{\text{ТУ РБ }300050407.004-2004}}{\text{(г)}}$

- а) обозначение вида терморезисторов;
- б) номинальное сопротивление;
- в) допускаемое отклонение сопротивления от номинального;
- г) обозначение документа на поставку.

Типовые характеристики терморезисторов РТС-Д

Температурная характеристика сопротивления

- 1 для терморезисторов с R_{ном}=2,2 Ом; 2 для терморезисторов с R_{ном}=6,8 Ом

Вольт-амперная характеристика для терморезисторов с R_{ном}=2,2 Ом

Вольт-амперная характеристика для терморезисторов с R_{ном}=6,8 Ом

6 Пьезоизделия Сфера применения пьезоизделий акустические системы (генераторы высокого напряжения) датчики источники питания

элементы для пьезозажигалок

Серийные

пьезотрансформаторы

6.1 Излучатели пьезокерамические синтезаторов речи и громкоговорителей, систем охранной сигнализации.

элементы для звонков

№ п/п	Тип излучателя	Уровень звукового давления, Р, дБ	Потребляемая мощность, Вт	Предельное входное напряжение, В	Интервал рабочих температур, ℃
1	ПИ-1-В		15·10 ⁻²	45	
2	ПИ-2	80 дБ / 5 В / 10 см	3·10 ⁻²	30	-30 +55
3	ПИ-3	7 00 дв / 3 в / 10 см	15·10 ⁻²	45	-30 +33
4	ПИ-3-В]	15·10 ⁻²	45	

Примечание - По согласованию с заказчиком возможно изготовление излучателей:

- безвыводного варианта исполнения;
- с габаритными размерами в интервалах:
- D 46÷26,8 мм,
- d 23÷15 мм,

звонки

излучатели

- t 0,1÷0,25 mm,
- T 0,35÷0,60 мм.

6.2 Звонки пьезоэлектрические

Назначение: пьезоэлектрические звонки, в зависимости от модификации, могут использоваться в электронных часах с музыкальным сигналом, сигнализации, игрушках и других изделиях на базе электронной техники.

№ п/п	Наименование, тип	Уровень звукового давления, Р, дБ	Резонансная частота, кГц	Предельное входное напряжение, В	Интервал рабочих темпе- ратур, °С	Потребляемая мощность, Вт
1	3П-ВТ-3 ТУ РБ 07615377.018-95	75 дБ / 3 В / 10 см	4,5±0,5	15	-30 +45	3.10-2
2	3П-ВТ-6 ТУ РБ 07615377.047-95	75 дБ / 3 В / 10 см	4,1±0,5	15	-30 +55	3.10-2

Примечание — По согласованию с заказчиком возможно изготовление звонков с уровнем звукового давления свыше 75 дБ / 3 В / 10 см.

3П-ВТ-3 (в пластмассовом корпусе «П») (в алюминиевом корпусе «А»)

Пример условного обозначения

Звонок	3П-ВТ-3	П	ТУ РБ 07615377.018-95
(a)	(б)	(B)	(r)

- а) слово «Звонок»;
- б) обозначение типа звонка;
- в) обозначение испонения корпуса звонка;
 - буква П пластмассовый корпус
 - буква А алюминиевый корпус
- г) обозначение документа на поставку.

Пример условного обозначения

Звонок пьезокерамический ЗП-ВТ-6 ТУ РБ 07615377.047-95 (a) (б) (г)

- а) слово «Звонок пьезокерамический»;
- б) обозначение типа звонка;
- в) обозначение документа на поставку.

6.3 Элементы пьезокерамические для зажигалок

№ п/п	Размеры, мм		Коэффициент электро- механической связи К	Пьезочувстви- тельность g ₃₃ ·10 ³ ,	Диэлектрическая проницаемость $E_{33}^{\it T}/E_a$	Пьезомодуль d ₃₃ ·10 ¹² ,Кл/H не менее
	диаметр, d	высота, h	33	В·м/Н, не менее		
1	6,4	15	0,65	25	600-1300	180
2	7,0	15	0,65	25	600-1300	

Примечания

- 1. При значении величины одноосного сжатия 1500 H (150 кг) на электродах пьезоэлементов генерируется напряжение от 8 до 20 кВ в зависимости от высоты пьезоэлемента.
- 2. Ресурс не менее 45 000 циклов.
- 3. Размеры d и h в пределах 2÷10, 5÷15 (по согласованию с заказчиком).

Пример условного обозначения

Пьезоэлемент \varnothing 6,4 ТУ РБ 07615377.026-94

(a) (b)

- а) слово «Пьезоэлемент»;
- б) диаметр пьезоэлемента;
- в) обозначение документа на поставку.

6.4 Элемент пьезокерамический для датчиков в теплосчетчиках и расходомерах воды

Элементы пьезокерамические для датчиков изготавливают с IV квартала 2004 г по ТУ РБ 300050407.008-2004.

	Размер	ры, мм			Пьезоэлектри-	Usanana		
№ п/п	Диаметр, D	Толщина,Т	Электрическая емкость, пФ	Условное обозначение по ТУ	ческий модуль d ₃₁ ·10 ⁻¹² , Кл/Н, не менее	Частота основного резонанса, fr КГц	Рабочая температура, ℃	Исполнение
1		2	1350±250	ЭПД-15	100	950-1050	-30 +150	рис. 1
2	15	1	2700±300	ЭПД-15-01		1700-2300	-30 +100	
3	15	1	2700±300	ЭПД-15-02		950-1050	-50 +100	рис. 2
4		2	1350±250	ЭПД-15-03		1700-2300	-30 +150	рис. 2
5	8	1	835±165	ЭПД-8		ı		
6	8	2	400±100	ЭПД-8-01		-	-30 +100	рис. 1
7	22,5	0,7	5500±1000	ЭПД-22,5	60	100-106		

Примечание - Толщина элементов пьезокерамических для датчиков может изменяться в интервале 0,7÷2 мм по условиям контракта.

Пример условного обозначения

Пьезоэлемент ЭПД-15 Ср ТУ РБ 300050407.008-2004 (а) (б) (в) (г)

- а) слово «Пьезоэлемент»;
- б) обозначение вида пьезоэлемента;
- в) буквы «Ср» для серебренных поверхностей;
- г) обозначение документа на поставку.

6.5 Элементы пьезокерамические для акустических систем и звонков

Nº,	Размеры, мм		Электрическая	Пьезоэлектри-	Рабочая
ТИП			емкость, пФ	ческая константа	температура
	диаметр, D	толщина, Т		d ₃₁ ·10 ⁻¹² , к/н	∞
1	12	0,2	7 000±30 %	140	-30 +60
2	15	0,15	18 000±30 %	140	-30 +60
3	18	0,2	30 000±30 %	140	-30 +60
4	20	0,2	32 000±30 %	210	-30 +60
5	23	0,25	35 000±30 %	210	-30 +60
6	23	0,11	80 000±30 %	250	-30 +60
7	23	0,20	50 000±30 %	250	-30 +60

Примечание - Толщина пьезоэлементов может изменяться в интервале 0,1÷0,25 мм по условиям контракта с соответствующим изменением электрической емкости.

Пример условного обозначения

Пьезоэлемент ЭП -15 мм ТУ РБ 07612048.059-96

(a)

- (б) (в) (г)
- а) слово «Пьезоэлемент»; б) обозначение вида пьезоэлемента;
- в) диаметр;
- г) обозначение документа на поставку.

6.6 Пьезоэлектрические трансформаторы типа Розен

рис. 1	рис. 2
--------	--------

	Однослойный пьезоэл		Многослойный пьезоэлектрический трансформатор (рис. 2)		
трансформатор (Рис. 1) Выходная мощность Рвых 0,1÷1,0 Вт			трансформатор (рис. Выходная мощность Рвых		
	<u> </u>	0,1÷1,0 BT		0,1÷1,0 Bt	
			Входная емкость Свх	5÷100 нф	
Выходная емкость Свых 5÷15 пф			Выходная емкость Свых	4÷14 пф	
Рез	онансная частота Fpe3	20÷80 кГц	Резонансная частота Fpe3	20÷90 кГц	
	ффициент трансформа- при Rн=100 МОм	350÷500	Коэффициент трансформации при Rн=100 MOм	400÷800	
Обо	значения и размеры:		Обозначения и размеры:		
	Тип трансформатора	Габаритные рамеры, мм LxBxH	Тип трансформатора	Габаритные размеры, мм LxBxH	
1	TΠ-P1 2204007	22x4x0,7	ТП-РМ 2004005	20x4x0,5	
2	TΠ-P1 381002	38x10x2	ТП-РМ 2004011	20x4x1,1	
3	TΠ-P1 800603	80x6x3	ТП-РМ 200402	20x4x2	
4	TΠ-P1 800803	80x8x3	ТП-РМ 200501	20x5x1	
5	TΠ-P1 801003	80x10x3	ТП-РМ 250602	25x6x2	
6	TΠ-P1 801203	80x12x3	ТП-РМ 2610022	26x10x2,2	
7	ТП-Р1 801403	80x14x3	ТП-РМ 2808022	28x8x2,2	
8	ТП-Р1 501204	50x12x4	ТП-РМ 702002	70x20x2	
9	-	-	ТП-РМ 701002	70x10x2	

7 Головки громкоговорителей

Серийные

7.1 Головка громкоговорителя B90×50Ш5-01

Изготавливается в соответствии с ТУ РБ 300050407.006-2001.

Параметры и характеристики

Предельная шумовая мощность, Вт	5
Предельная синусоидальная мощность, Вт	2
Предельная долговременная мощность, Вт	8
Предельная кратковременная мощность,Вт	10
Номинальное электрическое сопротивление, Ом	8
Минимальное значение модуля полного электрического сопротивления, не менее, Ом	6,4
Номинальное среднее звуковое давление, Па	0,25
Эффективный рабочий диапазон частот, Гц	160-12500
Частота основного резонанса, Гц	200±40
Уровень характеристической чувствительности в	
s pozoniz stapani oprioni ioonom i jizonizmonizmoni. z	
диапазоне частот от 250 до 8000 Гц, дБ	85±3
	85±3 14
диапазоне частот от 250 до 8000 Гц, дБ	
диапазоне частот от 250 до 8000 Гц, дБ Неравномерность частотной характеристики, дБ	
диапазоне частот от 250 до 8000 Гц, дБ Неравномерность частотной характеристики, дБ Полный коэффициент гармонических искажений на частотах, не более, % 400, 630, 1000 Гц	14 5
диапазоне частот от 250 до 8000 Гц, дБ Неравномерность частотной характеристики, дБ Полный коэффициент гармонических искажений на частотах, не более, %	14

Типовая частотная характеристика головки громкоговорителя В90×50Ш5-01

7.2 Головка громкоговорителя В100×63Ш3-01

Изготавливается в соответствии с ТУ РБ 29023476.001-99

Параметры и характеристики

Предельная шумовая мощность, Вт	3
Предельная синусоидальная мощность, Вт	1
Предельная долговременная мощность, Вт	5
Предельная кратковременная мощность, Вт	8
Номинальное электрическое сопротивление, Ом	8
Минимальное значение модуля полного электрического сопротивления, не менее, Ом	6,4
Номинальное среднее звуковое давление, Па	0,32
Эффективный рабочий диапазон частот, Гц	160-12500
Частота основного резонанса, Гц	200±40
Уровень характеристической чувствительности в диапазоне частот от 250 до 8000 Гц, дБ	87±3
Неравномерность частотной характеристики, дБ	14
Полный коэффициент гармонических искажений	
на частотах, не более, %	
400, 630, 1000 Гц	5
2000, 4000, 6300 Гц	3
Масса, не более, кг	0,2

Типовая частотная характеристика головки громкоговорителя В100×63Ш3-01

8 Услуги, предоставляемые центральной заводской лабораторией

Центральная заводская лаборатория РУП «Витебский завод радиодеталей «МОНОЛИТ», имеющая большой опыт работы в области лабораторного контроля, в том числе анализа драгоценных металлов, оснащенная современным аналитическим оборудованием, позволяющим проводить комплексные физико-химические исследования материалов и изделий, предлагает свои услуги в области аналитического контроля и научно-исследовательских работ и выполнит:

- определение гранулометрического состава любых порошковых твердых веществ (в том числе керамики, пыли, сажи, металла, цемента, кварца, глины, золы, графита, пигментов, пластмасс, фармакологии, средств защиты растений, органических и неорганических солей, кофе, какао, полимеров и т.д.) и эмульсий в диапазоне от 0,16 до 100 мкм (по паспорту диапазон от 0,16 до 1250 мкм) на лазерном анализаторе зернистости «Analysette-22» фирмы «Fritsch» (Германия). Прибор измеряет величину частиц в абсолютных значениях и не требует калибровки (использует гелий-неоновый лазер с длиной волны 632 нм);
- ИК-спектроскопический анализ на приборе «SPECORD-M80» (Германия): изучение веществ в ИК-диапазоне с помощью
 спектрометрического анализа для идентификации веществ, проверки чистоты, расшифровки структуры; установление
 промежуточной структуры при синтезе веществ, запись ИК-спектров в диапазоне 200 4000 см;
- комплексный термический анализ на дериваографе Q-1500D (Венгрия): изменения массы и температуры, связанные с прохождением в исследуемом материале различных процессов в динамическом режиме;
- количественное определение химических элементов методом атомной абсорбации на спектрофотометрах AAS-1N и AAS-3 (Германия), при необходимости вскрытием проб в автоклавах;
- качественный атомно-эмисионный спектральный анализ на спектрографе ИСП-30 (в комплекте с УГЭ-4, УШТ-4);
- рентгеноструктурный анализ на дифрактометре Дрон-2,0: фазовый состав и фазовые превращения, параметры элементарной решетки;
- ситовой анализ на установке модели 029: разделение на фракции порошковых материалов с размером частиц более 40 мкм;
- микроструктурный анализ на металлографическом микроскопе ММР-4, МИМ-9 и растровом электронном микроскопе 09ИОЭ-100-05.
 - При необходимости лаборатория может выполнить другие виды работ в области аналитического контроля и научно-исследовательских работ.