Aufgabe 1 (30 Punkte)

Gegeben seien zwei endliche Automaten A_1 und A_2 :

a) Geben Sie für $A = \overline{A_1 \cup A_2}$ die Zustandsübergangstabelle an und benennen Sie die Start- und Endzustände. Gehen Sie systematisch vor und erläutern Sie Ihren Lösungsweg!

(Fortsetzung Aufgabe 1)

- b) Wie viele Zustände benötigt man mindestens, um einen deterministischen endlichen Automat *B* zu konstruieren, welcher äquivalent zu *A* ist?
 - Geben Sie einen solchen Automat *B* in Form eines Zustandsübergangsgraphen an. Gehen Sie systematisch vor und erläutern Sie Ihren Lösungsweg!

1	Fortsetzung	Au	fgahe	1	١
	1 OI ISCIZIII S	1 I VI	ISUUC		,

c) Welche Sprache akzeptiert A_1 ? Sie dürfen hier z.B. einen regulären Ausdruck R mit $L(R) = L(A_1)$ angeben.

d) Gibt es ein Wort $w \in L(A_1)$, welches man nicht pumpen kann? Wenn ja, geben Sie ein solches Wort w an. Wenn nein, begründen Sie Ihre Aussage.

Aufgabe 2 (30 Punkte)

Gegeben sei die folgende Grammatik G mit Startsymbol B, Nichtterminalen B, C, E und F und Terminalen a, b und c sowie folgenden Produktionen:

$$B \rightarrow C, B \rightarrow CB, C \rightarrow a, C \rightarrow EF, E \rightarrow b, F \rightarrow c$$

a) Welchen restriktivsten Typ hat G (restriktivst: Typ n mit größtmöglichem n)? Begründung!

b) Welchen restriktivsten Typ hat L(G)? Begründung!

c) Ist G in Normalform? Begründung! Falls G nicht in Normalform ist, bilden Sie diese Normalform.

Aufgabe 3 (30 Punkte)

Gegeben sei das Alphabet $\Sigma = \{a,b\}$ und die Sprache L der Wörter über Σ mit einer geraden Anzahl von Zeichen b. Gesucht ist ein deterministischer Turing-Automat M, der für ein gegebenes Wort w testet, ob es zu L gehört. Wenn $w \in L$, schreibt der Turing-Automat M das Zeichen 1 auf das Band und stoppt in der Konfiguration $(s_f, \varepsilon, 1)$. Sonst schreibt M das Zeichen 0 und stoppt in der Konfiguration $(s_f, \varepsilon, 0)$.

- a) Geben Sie ein geeignetes Bandalphabet an.
- b) Beschreiben Sie mit kurzen Sätzen, wie der obige Turing-Automat M arbeitet.

c) Geben Sie den Zustandsgraphen des Turing-Automaten M an.