Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claims 1-418 (Canceled).

419. (New) A method of reducing the concentration of a metal in an animal in need thereof comprising administering to the animal an effective amount of a peptide having the formula:

$$P_1 - P_2$$

wherein:

 P_1 is:

Xaa₁ Xaa₂ His: or

Xaa₁ Xaa₂ His Xaa₃;

 P_2 is $(Xaa_4)_n$;

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₂ is glycine, alanine, β -alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α-hydroxymethylserine;

Xaa₃ is glycine, alanine, valine, lysine, arginine, ornithine, aspartic acid, glutamic acid, asparagine, glutamine or tryptophan;

Xaa₄ is any amino acid; and

n is 0-100;

or a physiologically-acceptable salt thereof.

420. (New) The method of Claim 419 wherein:

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine,

Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, glutamine, methionine, lysine, hydroxylysine, histidine, arginine, or α-hydroxymethylserine, and

Xaa₃, when present, is alanine, aspartic acid or lysine.

421. (New) The method of Claim 420 wherein:

Xaa₁ is aspartic acid, glutamic acid, arginine, threonine, or α -hydroxymethylserine,

 Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine, and

Xaa₃, when present, is aspartic acid or lysine.

- 422. (New) The method of Claim 421 wherein Xaa_1 is aspartic acid or glutamic acid and Xaa_2 is alanine, glycine, valine, threonine, serine, leucine, or α -hydroxymethylserine.
- 423. (New) The method of Claim 422 wherein Xaa₁ is aspartic acid or glutamic acid and Xaa₂ is alanine, glycine, valine, leucine or isoleucine.
- 424. (New) The method of Claim 423 wherein P₁ is Asp Ala His, Asp Ala His Asp or Asp Ala His Lys.
 - 425. (New) The method of Claim 424 wherein P_1 is Asp Ala His Lys.
- 426. (New) The method of Claim 420 wherein Xaa₁ is alanine, serine, threonine, aspartic acid, lysine or histidine and Xaa₂ is glycine, alanine, valine, leucine, isoleucine or histidine.
- 427. (New) The method of Claim 426 wherein P₁ is Ser Gly His, Thr Leu His or Ala Ala His.

 428. The method of Claim 426 wherein P₁ is Lys His His Lys, Asp His His Ala, His Ala His Ala, Ala His His Ala or Asp His His Asp.
 - 429. (New) The method of Claim 419 wherein n is 0-10.
 - 430. (New) The method of Claim 419 wherein P₂ comprises a metal-binding sequence.
 - 431. (New) The method of Claim 430 wherein P₂ comprises one of the following sequences:

(Xaa₄)_m Xaa₃ His Xaa₂ Xaa₅,

(Xaa₄)_m His Xaa₂ Xaa₅,

(Xaa₄)_m Xaa₅ Xaa₂ His Xaa₃, or

(Xaa₄)_m Xaa₅ Xaa₂ His,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂ and m is 0-5.

- 432. (New) The method of Claim 431 wherein Xaa₅ is Orn or Lys.
- 433. (New) The method of Claim 430 wherein P_2 comprises one of the following sequences:

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

[(Xaa₄)_mXaa₅Xaa₂His]_r,

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃(Xaa₄)_mXaa₅Xaa₂His]_r, or

[(Xaa₄)_mXaa₅Xaa₂His(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂, m is 0-5 and r is 2-100.

- 434. (New) The method of Claim 430 wherein P_2 comprises a sequence which binds Cu(I).
- 435. (New) The method of Claim 434 wherein P_2 comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys,

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly.

- 436. (New) The method of Claim 435 wherein P₂ is Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9].
- 437. (New) The method of Claim 419 wherein P₂ comprises a sequence which enhances the ability of the peptide to penetrate cell membranes, reach target tissues, or both.
 - 438. (New) The method of Claim 437 wherein P₂ is hydrophobic or an arginine oligomer.
- 439. (New) The method of Claim 419 wherein at least one of the amino acids of P_1 other than β -alanine, when present, is a D-amino acid.

- 440. (New) The method of Claim 439 wherein Xaa₁ is a D-amino acid, His is a D-amino acid, or both Xaa₁ and His are D-amino acids.
- 441. (New) The method of Claim 440 wherein all of the amino acids of P_1 other than β -alanine, when present, are D-amino acids.
- 442. (New) The method of Claim 439 wherein at least 50% of the amino acids of P_2 are Damino acids.
- 443. (New) The method of Claim 419 wherein at least one amino acid of P_1 , at least one amino acid of P_2 , or at least one amino acid of P_1 and at least one amino acid of P_2 is substituted with (a) a substituent that increases the lipophilicity of the peptide without altering the ability of P_1 to bind metal ions, (b) a substituent that protects the peptide from proteolytic enzymes without altering the ability of P_1 to bind metal ions, or (c) a substituent which is a non-peptide, metal-binding functional group that improves the ability of the peptide to bind metal ions.
- 444. (New) The method of Claim 443 wherein the terminal -COOH of P_1 or P_2 is substituted to produce -COR₂, wherein R_2 is -NH₂, -NHR₁, -N(R_1)₂, -OR₁, or -R₁, wherein R_1 is an alkyl, aryl or heteroaryl.
- 445. (New) The method of Claim 443 wherein n is 0 and P_1 has one of the following formulas:

$$\begin{array}{c} \text{CH}_2\text{CO}_2\text{H} \\ \text{H}_2\text{N-CH} \\ \text{CO} \\ \text{NH} \\ \text{R}_1\text{---CH} \\ \text{CO} \\ \text{N} \\ \text{H} \\ \text{CO} \\ \text{NH} \\ \text{H} \\ \text{CO} \\ \text{NH} \\ \text{CH-(CH}_2)_4\text{NH}_2 \\ \text{CO}_2\text{H} \\ \end{array}$$

wherein:

R₁ is an alkyl, aryl, or heteroaryl;

 R_2 is -NH₂, -NHR₁, N(R₁)₂, -OR₁, or R₁; and

 R_3 is H, a non-peptide, metal-binding functional group or the two R_3 groups together form a non-peptide, metal-binding functional group.

- 446. (New) The method of Claim 445 wherein R_2 is -NH₂.
- 447. (New) The method of Claim 419 wherein the method further comprises administering an effective amount of another metal-binding compound in combination with the peptide.
 - 448. (New) The method of Claim 447 wherein the metal-binding compound binds iron.
- 449. (New) The method of Claim 448 wherein the iron-binding compound is deferoxamine mesylate.
 - 450. (New) The method of Claim 447 wherein the metal-binding compound binds Cu(I).
 - 451. (New) The method of Claim 450 wherein the Cu(I)-binding compound is a peptide.
- 452. (New) The method of Claim 451 wherein the Cu(I)-binding peptide comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly,

wherein Xaa4 is any amino acid.

453. (New) A method of treating an angiogenic disease or condition in an animal comprising administering to the animal an effective amount of a peptide having the formula:

$$P_1 - P_2$$

wherein:

 P_1 is:

Xaa₁ Xaa₂ His: or

Xaa₁ Xaa₂ His Xaa₃;

 P_2 is $(Xaa_4)_n$;

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

 Xaa_2 is glycine, alanine, β -alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

Xaa₃ is glycine, alanine, valine, lysine, arginine, ornithine, aspartic acid, glutamic acid, asparagine, glutamine or tryptophan;

Xaa₄ is any amino acid; and

n is 0-100;

or a physiologically-acceptable salt thereof.

454. (New) The method of Claim 453 wherein:

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine,

 Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, glutamine, methionine, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine, and

Xaa₃, when present, is alanine, aspartic acid or lysine.

455. (New) The method of Claim 454 wherein:

 Xaa_1 is aspartic acid, glutamic acid, arginine, threonine, or α -hydroxymethylserine,

 Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine, and

Xaa₃, when present, is aspartic acid or lysine.

456. (New) The method of Claim 455 wherein Xaa₁ is aspartic acid or glutamic acid and Xaa₂ is alanine, glycine, valine, threonine, serine, leucine, or α-hydroxymethylserine.

- 457. (New) The method of Claim 456 wherein Xaa₁ is aspartic acid or glutamic acid and Xaa₂ is alanine, glycine, valine, leucine or isoleucine.
- 458. (New) The method of Claim 457 wherein P₁ is Asp Ala His, Asp Ala His Asp or Asp Ala His Lys.
 - 459. (New) The method of Claim 458 wherein P_1 is Asp Ala His Lys.
- 460. (New) The method of Claim 454 wherein Xaa₁ is alanine, serine, threonine, aspartic acid, lysine or histidine and Xaa₂ is glycine, alanine, valine, leucine, isoleucine or histidine.
- 461. (New) The method of Claim 460 wherein P₁ is Ser Gly His, Thr Leu His or Ala Ala His.
- 462. (New) The method of Claim 460 wherein P₁ is Lys His His Lys, Asp His His Ala, His Ala His Ala, Ala His His Ala or Asp His His Asp.
 - 463. (New) The method of Claim 453 wherein n is 0-10.
 - 464. (New) The method of Claim 453 wherein P₂ comprises a metal-binding sequence.
 - 465. (New) The method of Claim 464 wherein P₂ comprises one of the following sequences:

(Xaa₄)_m Xaa₅ Xaa₂ His Xaa₃, or

(Xaa₄)_m Xaa₅ Xaa₂ His,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂ and m is 0-5.

- 466. (New) The method of Claim 465 wherein Xaa, is Orn or Lys.
- 467. (New) The method of Claim 464 wherein P_2 comprises one of the following sequences:

[(Xaa₄)_mXaa₅Xaa₂HisXaa₃]_r,

[(Xaa₄)_mXaa₅Xaa₂His]_r,

 $[(Xaa_4)_mXaa_5Xaa_2HisXaa_3(Xaa_4)_mXaa_5Xaa_2His]_r, \ or \\$

 $[(Xaa_4)_mXaa_5Xaa_2His(Xaa_4)_mXaa_5Xaa_2HisXaa_3]_r,\\$

wherein Xaa₅ is an amino acid having a free side-chain -NH₂, m is 0-5 and r is 2-100.

468. (New) The method of Claim 464 wherein P₂ comprises a sequence which binds Cu(I).

469. (New) The method of Claim 468 wherein P₂ comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys,

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly.

- 470. (New) The method of Claim 469 wherein P₂ is Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9].
- 471. (New) The method of Claim 453 wherein P₂ comprises a sequence which enhances the ability of the peptide to penetrate cell membranes, reach target tissues, or both.
 - 472. (New) The method of Claim 471 wherein P_2 is hydrophobic or an arginine oligomer.
- 473. (New) The method of Claim 453 wherein at least one of the amino acids of P_1 other than β -alanine, when present, is a D-amino acid.
- 474. (New) The method of Claim 473 wherein Xaa₁ is a D-amino acid, His is a D-amino acid, or both Xaa₁ and His are D-amino acids.
- 475. (New) The method of Claim 474 wherein all of the amino acids of P_1 other than β -alanine, when present, are D-amino acids.
- 476. (New) The method of Claim 475 wherein at least 50% of the amino acids of P₂ are D-amino acids.
- 477. (New) The method of Claim 453 wherein at least one amino acid of P_1 , at least one amino acid of P_2 , or at least one amino acid of P_1 and at least one amino acid of P_2 is substituted with (a) a substituent that increases the lipophilicity of the peptide without altering the ability of P_1 to bind metal ions, (b) a substituent that protects the peptide from proteolytic enzymes without altering

the ability of P_1 to bind metal ions, or (c) a substituent which is a non-peptide, metal-binding functional group that improves the ability of the peptide to bind metal ions.

478. (New) The method of Claim 477 wherein the terminal -COOH of P_1 or P_2 is substituted to produce -COR₂, wherein R_2 is -NH₂, -NHR₁, -N(R_1)₂, -OR₁, or -R₁, wherein R_1 is an alkyl, aryl or heteroaryl.

479. (New) The method of Claim 477 wherein n is 0 and P_1 has one of the following formulas:

$$\begin{array}{c} CH_{2}CO_{2}H \\ \\ H_{2}N-CH \\ \\ CO \\ \\ NH \\ \\ R_{1}-CH \\ \\ CO \\ \\ NH \\ \\ H_{2}C-CH \\ \\ NH \\ \\ CO \\ \\ NH \\ \\ CH-(CH_{2})_{4}NH_{2} \\ \\ CO_{2}H \end{array}$$

wherein:

 R_1 is an alkyl, aryl, or heteroaryl;

 R_2 is -NH₂, -NHR₁, N(R₁)₂, -OR₁, or R₁; and

 R_3 is H, a non-peptide, metal-binding functional group or the two R_3 groups together form a non-peptide, metal-binding functional group.

- 480. (New) The method of Claim 479 wherein R₂ is -NH₂.
- 481. The method of Claim 453 wherein the method further comprises administering an effective amount of another metal-binding compound in combination with the peptide.
 - 482. (New) The method of Claim 481 wherein the metal-binding compound binds iron.
- 484. (New) The method of Claim 482 wherein the iron-binding compound is deferoxamine mesylate.
 - 485. (New) The method of Claim 481 wherein the metal-binding compound binds Cu(I).
 - 486. (New) The method of Claim 485 wherein the Cu(I)-binding compound is a peptide.

487. (New) The method of Claim 486 wherein the Cu(I)-binding peptide comprises one of the following sequences:

Met Xaa4 Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly,

wherein Xaa4 is any amino acid.

488. (New) The method of Claim 453 wherein the angiogenic disease or condition is a neoplastic disease, a connective tissue disorder, psoriasis, an ocular angiogenic disease, a cardiovascular disease, a cerebral vascular disease, hemophiliac joints, an immune disorder, a benign tumor, hypertrophy, endometriosis, polyposis, or obesity.

- 489. (New) The method of Claim 488 wherein the angiogenic disease or condition is a neoplastic disease is a tumor.
 - 490. (New) The method of Claim 489 wherein the neoplastic disease is a tumor.
- 491. (New) The method of Claim 490 wherein the tumor is located in the bladder, brain, breast, cervix, colon, rectum, kidney, lung, ovary, pancreas, prostate, stomach or uterus.
 - 492. (New) The method of Claim 489 wherein the neoplastic disease is tumor metastasis.
- 493. (New) A method of treating cancer or inhibiting carcinogenesis in an animal comprising administering to the animal an effective amount of a peptide having the formula:

$$P_1 - P_2$$

wherein:

 P_1 is:

Xaa₁ Xaa₂ His: or

Xaa, Xaa, His Xaa,;

 P_2 is $(Xaa_4)_n$;

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α -hydroxymethylserine;

 Xaa_2 is glycine, alanine, β-alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, asparagine, glutamic acid, glutamine, lysine, hydroxylysine, histidine, arginine, ornithine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, or α-hydroxymethylserine;

Xaa₃ is glycine, alanine, valine, lysine, arginine, ornithine, aspartic acid, glutamic acid, asparagine, glutamine or tryptophan;

Xaa₄ is any amino acid; and

n is 0-100;

or a physiologically-acceptable salt thereof.

494. (New) The method of Claim 493 wherein:

Xaa₁ is glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, lysine, hydroxylysine, histidine, arginine, or α -hydroxymethylserine,

Xaa₂ is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, glutamine, methionine, lysine, hydroxylysine, histidine, arginine, or α-hydroxymethylserine, and

Xaa₃, when present, is alanine, aspartic acid or lysine.

495. (New) The method of Claim 494 wherein:

Xaa, is aspartic acid, glutamic acid, arginine, threonine, or α -hydroxymethylserine,

 Xaa_2 is glycine, alanine, valine, leucine, isoleucine, threonine, serine, asparagine, methionine, histidine or α -hydroxymethylserine, and

Xaa₃, when present, is aspartic acid or lysine.

496. (New) The method of Claim 495 wherein Xaa_1 is aspartic acid or glutamic acid and Xaa_2 is alanine, glycine, valine, threonine, serine, leucine, or α -hydroxymethylserine.

- 497. (New) The method of Claim 496 wherein Xaa₁ is aspartic acid or glutamic acid and Xaa₂ is alanine, glycine, valine, leucine or isoleucine.
- 498. (New) The method of Claim 497 wherein P₁ is Asp Ala His, Asp Ala His Asp or Asp Ala His Lys.
 - 499. (New) The method of Claim 498 wherein P_1 is Asp Ala His Lys.
- 500. (New) The method of Claim 494 wherein Xaa₁ is alanine, serine, threonine, aspartic acid, lysine or histidine and Xaa₂ is glycine, alanine, valine, leucine, isoleucine or histidine.
- 501. (New) The method of Claim 500 wherein P₁ is Ser Gly His, Thr Leu His or Ala Ala His.
- 502. (New) The method of Claim 500 wherein P₁ is Lys His His Lys, Asp His His Ala, His Ala, His Ala, Ala His His Ala or Asp His His Asp.
 - 503. (New) The method of Claim 493 wherein n is 0-10.
 - 504. (New) The method of Claim 493 wherein P₂ comprises a metal-binding sequence.
 - 505. (New) The method of Claim 504 wherein P₂ comprises one of the following sequences:

$$(Xaa_4)_m$$
 Xaa_3 His Xaa_2 Xaa_5 ,
 $(Xaa_4)_m$ His Xaa_2 Xaa_5 ,
 $(Xaa_4)_m$ Xaa_5 Xaa_2 His Xaa_3 , or
 $(Xaa_4)_m$ Xaa_5 Xaa_2 His,

wherein Xaa₅ is an amino acid having a free side-chain -NH₂ and m is 0-5.

- 506. (New) The method of Claim 505 wherein Xaa₅ is Orn or Lys.
- 507. (New) The method of Claim 504 wherein P_2 comprises one of the following sequences:

$$\begin{split} &[(Xaa_4)_mXaa_5Xaa_2HisXaa_3]_r,\\ &[(Xaa_4)_mXaa_5Xaa_2His]_r,\\ &[(Xaa_4)_mXaa_5Xaa_2HisXaa_3(Xaa_4)_mXaa_5Xaa_2His]_r, \text{ or }\\ &[(Xaa_4)_mXaa_5Xaa_2His(Xaa_4)_mXaa_5Xaa_2HisXaa_3]_r, \end{split}$$

wherein Xaa₅ is an amino acid having a free side-chain -NH₂, m is 0-5 and r is 2-100.

508. (New) The method of Claim 504 wherein P₂ comprises a sequence which binds Cu(I).

509. (New) The method of Claim 508 wherein P₂ comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys,

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or

γ-Glu Cys Gly.

- 510. (New) The method of Claim 509 wherein P₂ is Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9].
- 511. (New) The method of Claim 493 wherein P₂ comprises a sequence which enhances the ability of the peptide to penetrate cell membranes, reach target tissues, or both.
 - 512. (New) The method of Claim 511 wherein P_2 is hydrophobic or an arginine oligomer.
- 513. (New) The method of Claim 493 wherein at least one of the amino acids of P_1 other than β -alanine, when present, is a D-amino acid.
- 514. (New) The method of Claim 513 wherein Xaa₁ is a D-amino acid, His is a D-amino acid, or both Xaa₁ and His are D-amino acids.
- 515. (New) The method of Claim 514 wherein all of the amino acids of P_1 other than β -alanine, when present, are D-amino acids.
- 516. (New) The method of Claim 513 wherein at least 50% of the amino acids of P₂ are D-amino acids.
- 517. (New) The method of Claim 493 wherein at least one amino acid of P_1 , at least one amino acid of P_2 , or at least one amino acid of P_1 and at least one amino acid of P_2 is substituted with (a) a substituent that increases the lipophilicity of the peptide without altering the ability of P_1 to bind metal ions, (b) a substituent that protects the peptide from proteolytic enzymes without altering

the ability of P_1 to bind metal ions, or (c) a substituent which is a non-peptide, metal-binding functional group that improves the ability of the peptide to bind metal ions.

518. (New) The method of Claim 517 wherein the terminal -COOH of P_1 or P_2 is substituted to produce -COR₂, wherein R_2 is -NH₂, -NHR₁, -N(R_1)₂, -OR₁, or -R₁, wherein R_1 is an alkyl, aryl or heteroaryl.

519. (New) The method of Claim 517 wherein n is 0 and P_1 has one of the following formulas:

$$\begin{array}{c} CH_{2}CO_{2}H \\ (R_{3})_{2}N-CH \\ CO \\ \\ NH \\ \\ H_{3}C-CH \\ \\ CO \\ \\ \\ NH \\ \\ \\ H_{2}C-CH \\ \\ \\ COOH \\ \end{array}$$

$$\begin{array}{c} CH_{2}CO_{2}H \\ H_{2}N-CH \\ CO \\ NH \\ R_{1}-CH \\ CO \\ NH \\ H_{2}C-CH \\ NH \\ CO \\ NH \\ CH-(CH_{2})_{4}NH_{2} \\ CO_{2}H \end{array}$$

wherein:

R₁ is an alkyl, aryl, or heteroaryl;

 R_2 is -NH₂, -NHR₁, N(R₁)₂, -OR₁, or R₁; and

R₃ is H, a non-peptide, metal-binding functional group or the two R₃ groups together form a non-peptide, metal-binding functional group.

- 520. (New) The method of Claim 519 wherein R₂ is -NH₂.
- 521. (New) The method of Claim 493 wherein the method further comprises administering an effective amount of another metal-binding compound in combination with the peptide.
 - 522. (New) The method of Claim 521 wherein the metal-binding compound binds iron.
- 523. (New) The method of Claim 522wherein the iron-binding compound is deferoxamine mesylate.
 - 524. (New) The method of Claim 521 wherein the metal-binding compound binds Cu(I).
 - 525. (New) The method of Claim 524 wherein the Cu(I)-binding compound is a peptide.

526. (New) The method of Claim 525 wherein the Cu(I)-binding peptide comprises one of the following sequences:

Met Xaa₄ Met,

Met Xaa₄ Xaa₄ Met,

Cys Cys

Cys Xaa₄ Cys,

Cys Xaa₄ Xaa₄ Cys,

Met Xaa₄ Cys Xaa₄ Xaa₄ Cys,

Gly Met Xaa₄ Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:7],

Gly Met Thr Cys Xaa₄ Xaa₄ Cys [SEQ ID NO:8],

Gly Met Thr Cys Ala Asn Cys [SEQ ID NO:9], or γ-Glu Cys Gly,

wherein Xaa₄ is any amino acid.

527. (New) The method of Claim 493 wherein the cancer is located in the kidney, liver, colon, breast, gastrointestinal tract or brain.

- 528. (New) The method of Claim 493 wherein the cancer is metastatic cancer.
- 529. (New) The method of Claim 493 wherein the cancer comprises a tumor.
- 530. (New) The method of Claim 529 wherein the tumor is located in the bladder, brain, breast, cervix, colon, rectum, kidney, lung, ovary, pancreas, prostate, stomach or uterus.