حمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Durée :4H Niveau: 7C Proposé le 24 mai 2017 de 8h à 12h

Exercice 1 (5 points)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$.

- 1) On pose: $P(z) = z^3 (6+5i)z^2 + (1+20i)z + 14-5i$ où z est un nombre complexe.
- a) Montrer que l'équation P(z) = 0 admet une solution imaginaire pure.
- b) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z)=0. 2) On considère les points A,B et C d'affixes respectives $z_A=i$, $z_B=4+i$ et $z_c=2+3i$. Pour tout point M du plan on pose $\phi(M) = 3MA^2 - 2MB^2 + MC^2$ et Γ_k l'ensemble des points M tels que $\phi(M) = k$, où k est un réel.
- a) Calculer l'affixe du point G barycentre du système $\{(A;3),(B;-2),(C;1)\}$
- b) Vérifier que $\phi(G)$ =-44 puis discuter suivant les valeurs de k, la nature de Γ_k .
- c) Déterminer et construire Γ_{56} .
- 3) Soit f l'application qui à tout point M(x,y) d'affixe z associe le point M'(x',y') d'affixe z' tel que : $z' = \frac{3z - \overline{z}}{4}$; (\overline{z} est le conjugué de z) et soit Γ le cercle d'équation $(x+3)^2 + (y-2)^2 = 50$.
- a) Ecrire x' et y' en fonction de x et y.
- b) Donner une équation cartésienne de l'ensemble Γ 'image du cercle par l'application f .
- c) Montrer que T'est une ellipse dont on déterminera le centre, les sommets et l'excentricité.
- d) Représenter Γ et Γ ' sur la figure précédente.

Exercice 2 (5 points)

On se propose dans cet exercice de calculer la limite de la suite numérique de terme général $U_n = \frac{\sqrt[n]{n!}}{n!}, n \ge 2$.

On considère la fonction f définie sur $[0,+\infty[$ par $f(x) = x^2 - 2\ln x$.

- 1) Dresser le table au de variation de f et vérifier que fest strictement décroissante sur [0,1].
- 2) Soit $\lambda \in \mathbb{R}^*$; On pose $I(\lambda) = \int_{\lambda}^{1} f(x) dx$.
 - a) En utilisant une intégration par parties, calcule $r \int_{\lambda}^{1} \ln x dx$.
 - b) En déduire le calcul de $I(\lambda)$ puis $\lim_{\lambda \to 0} I(\lambda)$.
- 3. Soit $n \in \mathbb{N}$, $n \ge 2$; $k \in \mathbb{N}$ tel que $1 \le k \le n$ on pose : $S_n = \frac{1}{n} \sum_{i=1}^{n} f(\frac{\kappa}{n})$.
 - a) Montrer que : $\frac{1}{n}f(\frac{k+1}{n}) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}}f(t)dt \le \frac{1}{n}f(\frac{k}{n})$; pour $1 \le k \le n-1$.
 - b) En déduire que : $S_n \frac{1}{n}f(\frac{1}{n}) \le I(\frac{1}{n}) \le S_n$ puis que : $I(\frac{1}{n}) \le S_n \le I(\frac{1}{n}) + \frac{1}{n}f(\frac{1}{n})$.
- c) En utilisant 2.b) et 3.b) montrer que $\lim_{n\to+\infty} S_n = \frac{1}{3}$.
- 4.a) Montrer que : $\sum_{n=0}^{\infty} \ln \left(\frac{k}{n} \right) = \ln \left(\frac{n!}{n^n} \right)$.

- b) Montrer par récurrence que pour tout entier $n \in \mathbb{N}^*$, $\sum_{n=0}^{\infty} k^2 = \frac{n(n+1)(2n+1)}{6}$.
- c) En déduire que : $S_n = \frac{2n^2 + 3n + 1}{6n^2} 2\ln U_n$. Déduire de ce qui précède $\lim_{n \to +\infty} U_n$.

Exercice 3(5 points)

- 1.a) Trouver la solution générale de l'équation différentielle y''-2y'+y=0.
- b) Donner la solution particulière dont la courbe dans un repère orthonormé (O;i,j) admet la droite d'équation y = x comme tangente à l'origine O.
- 2) Soit la fonction paramétrique f_n définie sur \mathbb{R} par $f_n(x) = x^n e^x$. n est un entier naturel $n \ge 1$.

Soit (C_n) la courbe représentative de f_n dans un repère orthonormé_ $(O; \vec{i}, \vec{j})$.

- a) Démontrer que toutes les courbes (C_n) passent par deux points fixes que l'on déterminera.
- b) Etudier les positions relatives de (C_n) et (C_{n+1}) .
- 3.a) Etudier la fonction $f(x) = f_1(x) = xe^x$ et dresser son tableau de variation. Tracer la courbe (C_1) .
- b) Calculer l'aire du domaine plan limité par la courbe (C₁), l'axe des abscisses et les droites d'équations x=0 et x=1.
- 4) On considère la suite numérique (I_n) définie pour tout entier nature $I_n \ge 1$ par $I_n = (-1)^n \int_0^1 x^n e^x dx$.
- a) Montrer que $I_1 = -1$ b) Montrer que pour tout entier naturel $n \ge 1$, $\frac{1}{n+1} \le |I_n| \le \frac{e}{n+1}$. En déduire $\lim_{n \to +\infty} I_n$.
- c) Montrer, à l'aide d'une intégration par parties, que pour tout entier naturel $n \ge 1$:

$$I_{n+1} = (-1)^{n+1}e + (n+1)I_n$$

 $I_{n+1}=(-1)^{n+1}e+(n+1)I_n\ .$ d) En déduire le calcul de l'intégrale $J=\int_0^1\frac{(2x^3+5x^2-x-4)e^x}{x+1}dx\ .$ Donner la valeur de J sous la forme ae+b où a et b sont des entiers relatifs.

Exercice 4 (5 points)

Dans le plan orienté on considère un triangle équilatéral direct ABC de centre O et de coté a,(a>0). Soient I, Jet K les milieux respectifs des segments [BC], [CA] et [AB].

www.amimath.i

- 1.a) Faire une figure illustrant les données précédentes (on prendra (AB) horizontale).
- b) Montrer qu'il existe une unique rotation r₁ qui transforme B en C et J en K. Caractériser r₁.
- c) Soit la rotation r₂ qui transforme B en C et K en J. Préciser le centre et un angle de r₂.
- 2.a) Soit $f = r_1 \circ r_2$ et $g = r_2 \circ r_1$. Caractériser fet g.
- b) Montrer que $g \circ f = t_{\overrightarrow{BC}}$ où $t_{\overrightarrow{BC}}$ est la translation de vecteur \overrightarrow{BC} .
- c) Pour tout point M du plan on note $f(M) = M_1$ et $g(M) = M_2$. Montrer que les quadrilatères MBM_1A et MCM2A sont des parallélogrammes.
- 3.a) Montrer qu'il existe une unique similitude directe s qui transforme B en I et C en J. Déterminer l'angle et le rapport de s.
- b) Déterminer s(A) et s(O).
- c) Caractériser la composée $h = r_1 \circ s$.
- 4) Soit Γ l'ellipse de foyers I et J passant par C.
- a) Montrer que $K \in \Gamma$.
- b) Construire les sommets de Γ . Justifier la construction.
- 5) On muni le plan d'un repère orthonormé direct $(\Omega; \vec{u}, \vec{v})$ tel que Ω est le milieu de [IJ] et $\overline{\Omega I} = \frac{1}{4} \vec{au}$ où a est la longueur du coté du triangle ABC.
- a) Donner une équation cartésienne de Γ dans le repère $(\Omega; \vec{u}, \vec{v})$.
- b) Montrer que l'excentricité de Γ est $e = \frac{1}{2}$.