Solve the following questions. There are 11 questions, for a total of 25 marks.

- 1. (6 marks) According to the MOSFET scaling proposed by Dennard, choose the correct options with regards to the scaling of the MOSFET parameters.
 - (a) (1 mark) For a scaling factor α , the vertical (V) and lateral (L) dimensions are scaled as -
 - A. $V\uparrow$ to αV and $L\uparrow$ to αL
 - B. $V\downarrow$ to αV and $L\uparrow$ to αL
 - **C.** $V \downarrow$ to αV and $L \downarrow$ to αL
 - D. $V \uparrow$ to αV and $L \downarrow$ to αL
 - E. V remains constant and $L\downarrow$ to αL
 - F. $V \uparrow$ to αV and L remains constant
 - (b) (1 mark) For a scaling factor α , the supply voltage (V_{DD}) and doping concentrations (N) scale as -
 - A. $V_{DD} \uparrow$ to αV_{DD} and $N \downarrow$ to αN
 - B. $V_{DD} \uparrow$ to αV_{DD} and $N \uparrow$ to αN
 - C. $V_{DD} \downarrow$ to αV_{DD} and $N \downarrow$ to αN
 - **D.** $V_{DD} \downarrow$ to αV_{DD} and $N \uparrow$ to αN
 - E. $V_{DD} \downarrow$ to αV_{DD} and N remains constant
 - F. V_{DD} remains constant and $N \uparrow$ to αN
 - (c) (2 marks) For a scaling factor α , the total gate capacitance C_G scales as -
 - **A.** $C_G \downarrow$ to αC_G
 - B. $C_G \uparrow$ to αC_G
 - C. $C_G \downarrow$ to $\alpha^2 C_G$
 - D. $C_G \uparrow$ to $\alpha^3 C_G$
 - E. $C_G \uparrow$ to $\alpha^2 C_G$
 - F. C_G does not change
 - (d) (2 marks) For a scaling factor α , the delay in the circuit t_d scales as -
 - A. $t_d \uparrow \text{ to } \alpha t_d$
 - B. $t_d \downarrow$ to $\alpha^2 t_d$
 - C. $t_d \uparrow \text{ to } \alpha^2 t_d$
 - D. $t_d \downarrow$ to $\alpha^{0.5}t_d$

- E. $t_d \uparrow$ to $\alpha^{0.5}t_d$
- **F.** $t_d \downarrow$ to αt_d
- 2. (1 mark) The law which qualitatively captures the doubling of transistors every two years on a chip is -
 - A. Murphy's Law
 - B. Murray's law
 - C. Moore's law
 - D. Marconi's law
 - E. Mobius's Law
 - F. Mephisto's law
- 3. (1 mark) Given below are two statements regarding the characteristics of a short channel MOSFET.
 - S1: Typically, the channel lengths for a short channel MOSFET are much larger than the depletion widths of the source and drain junctions.
 - S2: The current in a short channel MOSFET shows significant deviations from the square law theory.
 - A. Statement S1 is true and S2 is false
 - B. Statement S1 is false and S2 is true
 - C. Both Statement S1 and S2 are false
 - D. Both Statement S1 and S2 are true
- 4. (1 mark) Given below are two statements regarding the current in a short channel MOSFET.
 - S1: Typically, I_D in a short channel MOSFET scales linearly with gate voltage V_{GS} .
 - S2: The magnitude of current in a short channel MOSFET is comparable or larger than that of long channel MOSFETs.
 - A. Statement S1 is true and S2 is false
 - B. Statement S1 is false and S2 is true
 - C. Both Statement S1 and S2 are false
 - D. Both Statement S1 and S2 are true
- 5. (1 mark) Given below are two statements regarding the current in a short channel MOSFET.
 - S1: The current for a short channel MOSFET saturates at a larger V_{DS} as compared to long channel MOSFET
 - S2: The short channel reaches the critical field at smaller applied biases leading to velocity saturation.

- A. Statement S1 is true and S2 is false
- B. Statement S1 is false and S2 is true
- C. Statement S1 and S2 is true and S2 is the correct explanation for S1
- D. Statement S1 and S2 is true and S2 is not the correct explanation for S1
- 6. (5 marks) In figure 1, V_{DS} vs I_D for two MOSFETS having different lengths is plotted for a gate voltage $V_{GS}=1.8~V$. The W/L ratio for both MOSFETS is kept constant. Answer the following questions based on the given data.

Figure 1: MOSFET V_{DS} vs I_D

- (a) (1 mark) Identify the type of MOSFET corresponding to the curves given in the figure
 - A. MOSFET $1 \rightarrow \mathsf{Short}$ Channel; MOSFET $2 \rightarrow \mathsf{Short}$ Channel
 - B. MOSFET $1 \rightarrow$ Long Channel; MOSFET $2 \rightarrow$ Short Channel
 - C. MOSFET $1 \rightarrow \mathsf{Long}$ Channel; MOSFET $2 \rightarrow \mathsf{Long}$ Channel
 - D. MOSFET $1 \rightarrow$ Short Channel; MOSFET $2 \rightarrow$ Long Channel
- (b) (2 marks) Choose the correct option(s) with regards to critical electric field \mathscr{E}_c at which velocity saturation occurs in a short channel MOSFET -
 - A. Electric field across the channel of MOSFET $1<\mathscr{E}_c$
 - B. Electric field across the channel of MOSFET 2 $< \mathscr{E}_c$
 - C. Electric field across the channel of MOSFET $1>\mathscr{E}_c$

- D. Electric field across the channel of MOSFET 1= Electric field across the channel of MOSFET $2<\mathscr{E}_c$
- E. Electric field across the channel of MOSFET 2 $> \mathscr{E}_c$
- F. Electric field across the channel of MOSFET 1= Electric field across the channel of MOSFET $2>\mathscr{E}_c$
- (c) (2 marks) The approximate V_{DSat} for the MOSFETS is -
 - A. MOSFET $1 o V_{DSat} = 0.4~V$ and MOSFET $2 o V_{DSat} = 0.2~V$
 - B. MOSFET 1 \rightarrow $V_{DSat} = 1$ V and MOSFET 2 \rightarrow $V_{DSat} = 0.4$ V
 - C. MOSFET $1 \rightarrow V_{DSat} = 0.2~V$ and MOSFET $2 \rightarrow V_{DSat} = 1~V$
 - D. MOSFET $1 \rightarrow V_{DSat} = 1 \ V$ and MOSFET $2 \rightarrow V_{DSat} = 1 \ V$
 - E. MOSFET $1 \rightarrow V_{DSat} = 0.6 \ V$ and MOSFET $2 \rightarrow V_{DSat} = 0.6 \ V$
 - F. MOSFET $1 \rightarrow V_{DSat} = 1~V$ and MOSFET $2 \rightarrow V_{DSat} = 1.8~V$
- 7. (2 marks) In a short channel MOSFET, as V_{DS} is increased -
 - A. Effective channel length $L_{eff} \downarrow$ and total drain current $I_D \downarrow$
 - B. Effective channel length L_{eff} \downarrow and total drain current I_D \uparrow
 - C. Effective channel length L_{eff} \uparrow and total drain current I_D \uparrow
 - D. Effective channel length $L_{eff} \uparrow$ and total drain current $I_D \downarrow$
 - E. Effective channel length $L_{eff} \downarrow$ and total drain current I_D remains constant
 - F. Effective channel length L_{eff} remains constant and total drain current I_D \downarrow
- 8. (2 marks) In a short channel MOSFET, as V_{DS} is increased -
 - A. The barrier across the gate is lowered, leading to an increased off-current, I_{off}
 - B. The barrier across the gate is increased, leading to an increased off-current, I_{off}
 - C. The barrier across the gate is lowered, leading to an reduced off-current, I_{off}
 - D. The barrier across the gate is increased, leading to a reduced off-current, I_{off}
 - E. The barrier across the gate is unimpacted.
- 9. (1 mark) In the year 2007, high-k dielectric and metal gate were introduced in the $45\ nm$ technology node primarily -
 - A. to increase mobility of electrons resulting from strain due to high-k dielectric

- B. due to inefficient contact between polysilicon and SiO_2 layer
- C. to reduce the drive current for an applied gate voltage
- D. to reduce the leakage current due to tunneling across SiO_2 layer
- E. to reduce the DIBL resulting from scaling the devices
- 10. (2 marks) The reason(s) for introduction of the trigate transistor, or FinFET, in 2011 was -
 - A. to reduce tunneling across the oxide layer
 - B. to achieve more gate control over the inversion layer formation
 - C. to increase the critical electric field over which velocity saturation occurs
 - D. to further reduce the dimensions of the transistor as scaling using planar technology was not feasible
 - E. to improve the tunneling across the junction for better channel control
- 11. (3 marks) Given below are a few statements regarding the FinFET technology. Choose the correct statements.
 - A: FinFET technology allows packaging more transistors in a given area than the planar technology
 - B: FinFET offers better electrostatic control over the gate than planar MOSFETS
 - C: FinFET has lower I_{ON} to I_{OFF} ratio than planar MOSFETS
 - D: FinFET has lower leakage current than planar MOSFETS
 - E: For a similar operating voltage, planar MOSFETS offers much lower delays than FinFET.
 - A. B, C, E
 - B. A, B, E
 - **C.** A, B, D
 - D. C. D. E
 - E. A, B, C, D