國立虎尾科技大學

機械設計工程系

電腦輔助設計實習 ag4 V-rep 基本操作

V-rep 基本操作

V-rep basic operation

學生:

設計二甲 40623130 陳鉅忠

指導教授: 嚴家銘

摘要

導入物件

拆解物件集合

外觀設定

加入 Joint 物件

編排樹狀圖

加入 Dummy 運動物件

運動方程設定

物件集合設定

破撞設定

目錄

摘要	
目錄	i
表目錄.	ii
圖目錄.	iv
第一章	前言 1
第二章	導入物件 2
第三章	拆解物件集合
第四章	外觀設定 5
第五章	加入 Joint 物件
第六章	編排樹狀圖
第七章	加入 Dummy 運動物件
第八章	運動方程設定 9
第九章	物件集合設定 10
第十章	破撞設定 11
第十一章	結論13
第十二章	参考文獻

表目錄

圖目錄

圖 x.1	transform-to-stl	2
圖 x.2	import	2
圖 x.3	Divide	3
圖 x.4	reference_to_XYZ	4
圖 x.5	color	5
圖 x.6	joint	6
圖 x.7	joint2	6
圖 x.8	joint3	6
圖 x.9	tree	7
圖 x.10	invisible	7
圖 x.11	target&tip	8
圖 x.12	2 target&tip-2	8
圖 x.13	IK-Group	9
圖 x.14	joint-IK	9
圖 x.15	collection	10
圖 x.16	collection2	10
圖 x.17	sphere	11
圖 x.18	B collect-impact	11
圖 x.19	collect-impact-2	12
圖 x.20	result	13
	ex	

第一章 前言

V-rep 對於一個機械程式設計者而言是不錯的選擇,可編譯可模擬,檔案又不會太大,可以依照個人需求更改各式各樣的設定,而這份 PDF 主要就是要介紹 V-rep 的基本操作。

基本操作包含了

- (1)導入物件
- (2)外觀設定
- (3)拆解物件集合
- (4)加入Joint物件
- (5)編排樹狀圖
- (6)加入Dummy運動物件
- (7)運動方程設定
- (8)物件集合設定
- (9)破撞設定

第二章 導入物件

transform-to-stl

如下圖顯示先將要的圖檔轉.stl 檔案格式,圖中是利用 Onshape 繪製所以拿來當範例,先組合好後對下方組合圖的標籤按右鍵並點選 Export,選好格式改好檔名後按下 OK 就轉好了。

import

進入 V-rep 程式內並點選左上的 File→Import→Mesh...後選擇要編譯的 stl 檔就能好了。

第三章 拆解物件集合

V-REP PRO EDU - New file - rendering: 1 ms (7.9 fps) - SIMULATION STOPPED

Divide

先點選要拆解的物件,點選左上的 Edit→Grouping/Merging→Divide...這樣就能把物件拆成個別的物件了。

選取剛剛拆解的全部物件,點選左上的Edit→Reorient bounding box→with reference of world 這樣物件就會全部對齊了。

V-REP PRO EDU - New file - rendering: 1 ms (7.9 fps) - SIMULATION STOPPED

reference to XYZ

第四章 外觀設定

color

選取要染色的物件,再點選左排由上往下數第二個的那個放大鏡,會 color 選單 會有個 adjust color 按下去的第一格就可以編輯顏色了。

不過你會發現只有改變最後選擇的物件,所以要按下 apply to section,這樣就能改變所有選取的物件顏色了。

![Opacity 此選項可使物件成半透明狀,除了顏色還能改變光澤、金屬感等等...

第五章 加入 Joint 物件

joint

點選左上的 Add→joint→Revolute 這樣就能叫出一個圓柱狀的軸,並生成在座標 0.0.0. 上。

joint2

增加 joint 到七個並排列至各個轉軸上,利用物件的移動選項與物件的旋轉選項。

joint3

可於放大鏡的 Visual...調整大小。

第六章 編排樹狀圖

tree

調正適當大小後,將左邊的各物件排列成有意義的樹狀圖,由底座排到爪子,過程中可將部分物件結合成一個,點選 Edit→Grouping/Merging→Group...就可以結合了,而 Ungroup 則相反。

選取兩項物件將先選取的排列至後選取的物件內,可用滑鼠直接拉或是點選上方的 Assemble/Disassemble 都能排列。

invisible

選擇全部的 Joint 並隱藏它們。於放大鏡的 Common→visibility 中將第一排打勾改成第二排打勾,這樣就能隱藏了。

第七章 加入 Dummy 運動物件

target&tip

點選 Add→Dummy 這樣就能生成虛擬的運動物件,生成兩個並分別改名為 target 及 tip 並移置於夾爪,target 於樹狀圖中移至最外層而 tip 則移至最內層。

點選 tip 並用放大鏡編輯 Linked dummy 選擇 target 及 Link type 選擇 IK,tip-target, 這樣就能於樹狀圖中看到紅色連線,表示有關連。

target&tip-2

點選左上的 Edit→Make last selected object parent 這樣就能設定後選的物件為前選者的父級。

第八章 運動方程設定

IK-Group

點選左排的 F(x) 圖示,選擇要用的運動方程,我們在這邊選擇 Inverse kinemations 再 Add new IK group 生成一個,記得更改計算方程式 (Calo. method) 成 DCL,並 點選最下方的 Edit IK elements 後選擇 tip 並按下 Add new IK element with tip,然 後在下方確認 target 是否連接以及 Alpha-bete 與 Gamma 選項是否勾選。

joint-IK

選取全部的 joint 利用放大境將它們轉成 Inverse kinemations mode 模式,這樣系統選擇運動的方程式就不會衝突了。

第九章 物件集合設定

collection

collection2

選擇底座,並於放大鏡中的 common 勾選 Model definition 中的 Object is model base。

選擇除底座、Dummy、Joint 外的物件並於放大鏡中的 common 勾選 Select base of model instead 並再按下 apply to selection 套用於全部的物件。

這樣再選取物件時都會變成選取全部,而基礎就是底座。

第十章 破撞設定

sphere

設定碰撞前先來新增一個位於夾爪的球體,點選左上的Add→Primitive shape→sphere,到這邊就跟圖上差不多了,調整尺寸也是在這邊,而下方第一行的選項是指是否生成可反應與成動態的形體,我們這邊先取消勾選並設成半透明的 (Opacity)。

collect-impact

接下來是重點! 點選左排的 Collections 也就是圓球、三角錐與方體被圈起來的圖形, 點選 add new collection 並按住 shift 選取機械手臂全部的物件點選下方 add 查看下方空白處是否有新增物件,若有則再按下中間的按鈕 Visualize selected

collection,樹狀圖的物件就會變成紫色的哩。

collect-impact-2

設定碰撞方程,點選 F(x) 的圖示並點選 Collection detec \rightarrow Add new collection object \rightarrow 於 Check 選單中選擇剛剛設定的紫色物件們的別稱 \rightarrow 而 against 選單中則選擇 all other... \rightarrow 按下 OK 就設定好囉。

第十一章 結論

result

設定完後,按下上方的撥放鍵並試試拉動球體去撞另一台複製的物件,看有沒有反應,若變成紅色表示設定成功,若沒有請看看哪邊沒有設定好。

ex

而這是我們的期末專題。

操作影片

參考文章

原圖檔

完成圖檔

註: Pandoc 轉檔中不能有"" backslash

第十二章 參考文獻