## Grothendieck's Galois Theory

Gabriele Rastello

October 5, 2020

## 1 Section 1

**Definition 1.1.** In a category  $\mathscr{C}$  an arrow  $f \colon X \to Y$  is a **strict epimorphism** if it is the joint coequalizer of all the arrows it coequalizes. This means that any arrow  $g \colon X \to Z$  such that  $g \circ x = g \circ y$  for any  $x, y \colon C \to X$  such that  $f \circ x = f \circ y$  there exists a unique arrow  $h \colon Y \to Z$  such that  $h \circ f = g$ . Refer to Figure 1.1.



Figure 1.1

**Remark 1.2.** Strict epimorphisms are coequalizers, thus epimorphisms (as the name implies).

**Remark 1.3.** If an arrow is both a stric epimorphism and a monomorphism then it is an epimorphism.

**Definition 1.4.** Let H be a group, A an object of  $\mathscr C$  and  $G = \operatorname{Aut}(A)$  the group of automorphisms of A in  $\mathscr C$  i.e. the group whose underlying set is the set of isomorphisms of type  $A \to A$  of  $\mathscr C$  and whose operation is composition in  $\mathscr C$ . An **action** of H on A is a group homomorphism  $H \to G$ .

**Notation 1.5.** Given an action of a group H on an object A of  $\mathscr{C}$  we denote, with a slight abuse of notation, the automorphism of A associated to  $h \in H$  by the same symbol h.

**Definition 1.6.** If H acts on A as defined in 1.4 we define the quotient of A by H in  $\mathscr C$  to be an element A/H of  $\mathscr C$  equipped with an arrow  $g \colon A \to A/H$  such that:

- (1) for all  $h \in H$   $q \circ h = q$  holds,
- (2) for any  $x: A \to X$  such that  $x \circ h = x$  for all  $h \in H$  there exists a unique arrow  $\varphi: A/H \to X$  such that  $x = \varphi \circ q$ .

See also Figure 1.2.

**Remark 1.7.** Quotients are defined by a universal property, thus are unique up to unique isomorphism and we can speak of "the" quotient of *A* by *H* instead of "a" quotient of *A* by *H*.

**Notation 1.8.** Sometimes we use the sentence "the quotient of A by H" to refer to the object A/H, some others to the arrow  $q: A \to A/H$ ; the context should be enough to differentiate between the two cases.



Figure 1.2

**Remark 1.9.** Consider a quotient  $q: A \to A/H$ ; by condition (1) above  $q \circ h = q = q \circ 1_A$  so q coequalizes all the pairs  $(h, 1_A)$ , for  $h \in H$ . If another arrow  $x: A \to X$  coequalizes all the pairs that q does then this arrow is such that  $x \circ h = x \circ 1_A = x$  for all  $h \in H$  and thus, by condition (2), we have a unique factorization  $x = \varphi \circ q$ . This proves that all quotients are strict epimorphisms.