Uitwerkingen derde huiswerkopdracht Voortgezette Logica

Martijn Vermaat mvermaat@cs.vu.nl

8 december 2004

Opgave 1 (3.3 6)

Te bewijzen:

$$\forall x (Px \lor Qx) \vDash_P \forall x (Px \leftrightarrow \neg Qx)$$
.

Daartoe laten we zien dat ieder P-minimaal model voor $\forall x(Px \lor Qx)$ (afgekort φ), ook $\forall x(Px \leftrightarrow \neg Qx)$ (afgekort ψ) waar maakt.

Bewijs We bekijken een willekeurig P-minimaal model \mathcal{M} voor φ . Nu geldt voor ieder element e in het domein van \mathcal{M} dat òfwel $e \in P^{\mathcal{M}}$, òfwel $e \in Q^{\mathcal{M}}$ (maar nooit beide).

Want stel dat er een element e is waarvoor dat niet geldt. Dat in ieder geval Pe òf Qe moet gelden is snel duidelijk, anders maakt \mathcal{M} φ niet waar. Dat betekent dus dat Pe èn Qe. Maar dan is \mathcal{M} geen P-minimaal model voor φ . (Neem bijvoorbeeld \mathcal{M}' gelijk aan \mathcal{M} maar zonder Pe. Dan is $\mathcal{M}' <_P \mathcal{M}$ en \mathcal{M}' maakt nog steeds φ waar.) Dit is in tegenspraak met ons gegeven, dus kan dit element e niet bestaan.

Anders gezegd geldt dus voor ieder element e:

$$Pe \rightarrow \neg Qe$$

en

$$\neg Qe \rightarrow Pe.$$

Dit is precies wat gezegd wordt met ψ , dus maakt ons model \mathcal{M} ook ψ waar. En dat is wat we nodig hadden om te bewijzen dat

$$\forall x (Px \lor Qx) \vDash_P \forall x (Px \leftrightarrow \neg Qx).$$

Opgave 2 (3.7)

1.

 $\begin{array}{cccc} \mathcal{M}_1 & \vDash & \Sigma \,, \\ \mathcal{M}_2 & \nvDash & \Sigma \,, \\ \mathcal{M}_3 & \vDash & \Sigma \,. \end{array}$

2.

 $\mathcal{M}_1 \models_P \Sigma,$ $\mathcal{M}_2 \not\vDash_P \Sigma,$ $\mathcal{M}_3 \models_P \Sigma.$

3.

 $\mathcal{M}_1 \vDash_{P;B} \Sigma,$ $\mathcal{M}_2 \nvDash_{P;B} \Sigma,$ $\mathcal{M}_3 \nvDash_{P:B} \Sigma.$

4. Te bewijzen:

$$\Sigma \vDash_{P:B} Pt$$
.

Hiertoe laten we zien dat in ieder <
 $^{P;B}$ -minimaal model voor Σ ook
 Pt waar is.

Bewijs Laat \mathcal{M} een willekeurig $<^{P;B}$ -minimaal model voor Σ zijn. Dan moet $\mathcal{M} \models \Sigma$. Volgens Σ is At waar en volgens $\forall x((Ax \lor Bx) \to Px)$ dan ook Pt.

Omdat \mathcal{M} willekeurig gekozen was, maakt ieder $<^{P;B}$ -minimaal model voor Σ ook Pt waar en dus geldt (volgens definitie)

$$\Sigma \vDash_{P;B} Pt$$
.

5. Te bewijzen:

$$\Sigma \nvDash_{P;B} Pu$$
.

We geven een tegenvoorbeeld voor het geval dit niet zo was.

Bewijs Bekijk het gegeven model \mathcal{M}_1 . Dit model is een $<^{P;B}$ -minimaal model voor Σ , maar maakt niet Pu waar. Dus Pu is niet waar in alle $<^{P;B}$ -minimale modellen voor Σ en dus

$$\Sigma \nvDash_{P:B} Pu$$
.

6. We laten zien dat

$$\Sigma \vDash_{P:B} Ps$$

geldt.

Bewijs We nemen \mathcal{M} als een willekeurig $<^{P;B}$ -minimaal model voor Σ aan. Dan moet $\mathcal{M} \models \Sigma$. Volgens Σ is Bs waar en volgens $\forall x((Ax \lor Bx) \to Px)$ dan ook Ps.

Hieruit volgt dat ieder <
 $^{P;B}$ -minimaal model voor Σ ook
 Ps waar maakt en dus geldt

$$\Sigma \vDash_{P:B} Ps$$
.

N.B. Ook in dit geval kunnen we $P^{\mathcal{M}}$ niet minimaliseren door s eruit te laten, omdat we dan volgens de eerste formule in Σ ook s uit $B^{\mathcal{M}}$ moeten laten (en dat heeft direct als gevolg dat de derde formule uit Σ , Bs, niet meer waar is).

Opgave 3 (4.2 1)

Te bewijzen:

$$\varphi \vDash_{\sqsubset} \psi \to \chi$$

gegeven

$$\varphi \wedge \psi \vDash_{\sqsubset} \chi. \tag{1}$$

Bewijs Wat we moeten laten zien is dat, gegeven 1, voor ieder \sqsubseteq -preferent model \mathcal{M} voor φ geldt:

$$\mathcal{M} \vDash \psi \to \chi$$
.

Hiertoe bekijken we een willekeurig \sqsubseteq -preferent model \mathcal{M} voor φ . Nu onderscheiden we voor \mathcal{M} de volgende twee gevallen:

1.
$$\mathcal{M} \vDash \psi$$

2.
$$\mathcal{M} \vDash \neg \psi$$

In geval 2 is het duidelijk dat geldt:

$$\mathcal{M} \vDash \psi \rightarrow \chi$$
.

In het eerste geval moeten we hiertoe laten zien dat χ waar is. Nu is in dit geval \mathcal{M} ook een \sqsubseteq -preferent model voor $\varphi \wedge \psi$. Dan volgt uit ons gegeven 1 dat \mathcal{M} ook χ waar maakt.

Concluderend hebben we laten zien dat, gegeven 1, voor ieder \sqsubseteq -preferent model \mathcal{M} voor φ geldt:

$$\mathcal{M} \vDash \psi \rightarrow \chi$$
.

En dus geldt, gegeven 1, ook

$$\varphi \vDash_{\sqsubset} \psi \to \chi$$
.

Geldt de omgekeerde implicatie ook?

De omgekeerde implicatie

$$\varphi \vDash_{\sqsubset} \psi \to \chi \implies \varphi \land \psi \vDash_{\sqsubset} \chi$$

geldt niet. We laten dit zien door een tegenvoorbeeld te geven.

Bewijs We kiezen voor φ , ψ en χ formules uit de eerste-orde predikatenlogica:

$$\begin{array}{rcl} \varphi & = & Bt \,, \\ \psi & = & \forall x ((Bx \land \neg Px) \to Fx) \,, \\ \chi & = & Ft \,. \end{array}$$

Voor \sqsubseteq kiezen we de strikte partiële ordening $<^P$ zoals deze is gedefiniëerd voor predikaatcircumscriptie in definitie 3.1 van de reader.

We laten nu zien dat

$$\varphi \vDash_{< P} \psi \to \chi$$

maar niet

$$\varphi \wedge \psi \vDash_{< P} \chi$$
.

Laat \mathcal{M} een $<^P$ -preferent model zijn voor φ . Dat betekent dat $t^{\mathcal{M}} \notin P^{\mathcal{M}}$. Want stel dat $t^{\mathcal{M}} \in P^{\mathcal{M}}$. Dan is er een model \mathcal{M}' voor φ gelijk aan \mathcal{M} maar zonder $t^{\mathcal{M}'}$ in $P^{\mathcal{M}'}$ met $\mathcal{M}' <^P \mathcal{M}$. Dat is in tegenspraak met de gegeven eigenschap van \mathcal{M} en dus geldt $t^{\mathcal{M}} \notin P^{\mathcal{M}}$.

Uit de waarheid van φ en $\neg Pt$ in \mathcal{M} volgt dat gegeven de waarheid van ψ ook χ waar is. En dus geldt $\mathcal{M} \models \psi \to \chi$. Omdat \mathcal{M} een willekeurig gekozen $<^P$ -preferent model voor φ is, volgt hier uit dat

$$\varphi \vDash_{< P} \psi \to \chi$$
.

We bekijken het model \mathcal{M} met domein $\{Tweety\}$, interpretatie $t^{\mathcal{M}}=Tweety$ en

$$B^{\mathcal{M}} = P^{\mathcal{M}} = \{Tweety\} \text{ en } F^{\mathcal{M}} = \{\}.$$

Dit is een $<^P$ -preferent model voor φ en ψ , omdat:

- 1. $\mathcal{M} \models \varphi$
- 2. $\mathcal{M} \models \psi$
- 3. Er is geen model \mathcal{M}' voor φ en ψ met $\mathcal{M}' <^P \mathcal{M}$.

Want stel dat er wel zo'n model \mathcal{M}' zou zijn. De enige manier om $\mathcal{M}' <^P$ \mathcal{M} waar te maken is door \mathcal{M}' gelijk te nemen aan \mathcal{M} , echter met $P^{\mathcal{M}'} = \{\}$. Maar dan is \mathcal{M}' geen model meer voor ψ . Dit is in tegenspraak met de definitie van \mathcal{M}' en dus bestaat dit model niet.

In \mathcal{M} is echter χ niet waar en dus hebben we

$$\varphi \wedge \psi \nvDash_{< P} \chi$$
.

Uit deze twee resultaten concluderen we dat de implicatie

$$\varphi \vDash_{\vdash} \psi \to \chi \implies \varphi \land \psi \vDash_{\vdash} \chi$$

niet geldt.

5