Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2020-09-07	MMLU (Massive Multitask Language Understanding)	Multidomain	Academic knowledge and reason- ing across 57 subjects	Multiple choice	Accuracy	GPT-40, Gemini 1.5 Pro, o1, DeepSeek-R1	[1] ⇒
2023-11-20	GPQA Diamond	Science	Graduate- level scientific reasoning	Multiple choice, Multi- step QA	Accuracy	o1, DeepSeek- R1	$[2] \Rightarrow$
2018-03-14	ARC-Challenge (Advanced Reasoning Challenge)	Science	Grade-school science with reasoning emphasis	Multiple choice	Accuracy	GPT-4, Claude	[3] ⇒
2025-01-24	Humanity's Last Exam	Multidomain	Broad cross- domain aca- demic reason- ing	Multiple choice	Accuracy		[4] ⇒
2024-11-07	FrontierMath	Mathematics	Challenging advanced mathematical reasoning	Problem solving	Accuracy		[5] ⇒
2024-07-18	SciCode	Scientific Programming	Scientific code generation and problem solving	Coding	Solve rate (percent)	Claude3.5- Sonnet	[6] ⇒
2025-03-13	AIME (American Invitational Mathematics Examination)	Mathematics	Pre-college advanced prob- lem solving	Problem solving	Accuracy		[7] ⇒
2025-02-15	MATH-500	Mathematics	Math reason- ing generaliza- tion	Problem solving	Accuracy		[8] ⇒
2024-04-02	CURIE (Scientific Long-Context Un- derstanding, Rea- soning and Infor- mation Extraction)	Multidomain Science	Long-context scientific rea- soning	Information extraction, Reasoning, Concept tracking, Aggregation, Algebraic manipulation, Multi- modal comprehension	Accuracy		[9] ⇒
2023-01-26	FEABench (Finite Element Analysis Benchmark)	Computational Engineering	FEA simulation accuracy and performance	Simulation, Performance evaluation	Solve time, Error norm	FEniCS, deal.II	[10] ⇒
2024-07-12	SPIQA (Scientific Paper Image Ques- tion Answering)	Computer Science	Multimodal QA on scien- tific figures	Question answering, Multimodal QA, Chain-of-Thought evaluation	Accuracy, F1 score	Chain-of- Thought models, Mul- timodal QA systems	[11] ⇒

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2020-09-28	MedQA	Medical Question Answering	Medical board exam QA	Multiple choice	Accuracy	Neural reader, Retrieval- based QA systems	[12] ⇒
2025-05-13	BaisBench (Biological AI Scientist Benchmark)	Computational Biology	Omics-driven AI research tasks	Cell type annotation, Multiple choice	Annotation ac- curacy, QA ac- curacy	LLM-based AI scientist agents	$[13] \Rightarrow$
2023-01-26	MOLGEN	Computational Chemistry	Molecular generation and optimization	Distribution learning, Goal-oriented genera- tion	Validity percent, Novelty percent, QED, Docking score	MolGen	[14] <i>⇒</i>
2020-05-02	Open Graph Benchmark (OGB) - Biology	Graph ML	Biological graph property prediction	Node property predic- tion, Link property prediction, Graph property prediction	Accuracy, ROC-AUC	GCN, Graph- SAGE, GAT	[15] ⇒
2011-10-01	Materials Project	Materials Science	DFT-based property pre- diction	Property prediction	MAE, R ²	Automatminer, Crystal Graph Neural Net- works	[16] <i>⇒</i>
2020-10-20	OCP (Open Catalyst Project)	Chemistry; Materials Science	Catalyst adsorption energy prediction	Energy prediction, Force prediction	MAE (energy), MAE (force)	CGCNN, SchNet, DimeNet++, GemNet-OC	[17]− [20] ⇒
2023-06-20	JARVIS- Leaderboard	Materials Science; Benchmarking	Comparative evaluation of materials design methods	Method benchmarking, Leaderboard ranking	MAE, RMSE, Accuracy		[21] ⇒
2022-02-22	Quantum Computing Benchmarks (QML)	Quantum Computing	Quantum algorithm performance evaluation	Circuit benchmarking, State classification	Fidelity, Success probability	IBM Q, IonQ, AQT@LBNL	$[22] \Rightarrow$
2024-10-01	CFDBench (Fluid Dynamics)	Fluid Dynamics; Scientific ML	Neural opera- tor surrogate modeling	Surrogate modeling	L2 error, MAE	FNO, Deep- ONet, U-Net	[23] ⇒
None	SatImgNet	Remote Sensing	Satellite imagery classification	Image classification	Accuracy		[24] ⇒
2023-07-19	ClimateLearn	Climate Science; Forecasting	ML for weather and climate modeling	Forecasting	RMSE, Anomaly correlation	CNN base- lines, ResNet variants	$[25] \Rightarrow$
2022-06-09	BIG-Bench (Beyond the Imitation Game Benchmark)	NLP; AI Evaluation	Diverse reason- ing and gener- alization tasks	Few-shot evaluation, Multi-task evaluation	Accuracy, Task-specific metrics	GPT-3, Dense Transform- ers, Sparse Transformers	[26] ⇒
2019-11-20	CommonSenseQA	NLP; Commonsense	Commonsense question an- swering	Multiple choice	Accuracy	BERT-large, RoBERTa, GPT-3	[27] ⇒

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2019-07-24	Winogrande	NLP; Commonsense	Winograd Schema-style pronoun reso- lution	Pronoun resolution	Accuracy, AUC	Roberta, Bert, GPT-2	[28] ⇒
2024-05-01	Jet Classification	Particle Physics	Real-time classification of particle jets using HL-LHC simulation features	Classification	Accuracy, AUC	Keras DNN, QKeras quan- tized DNN	[29] ⇒
2024-05-01	Irregular Sensor Data Compression	Particle Physics	Real-time compression of sparse sensor data with autoencoders	Compression	MSE, Compression ratio	Autoencoder, Quantized autoencoder	[30] ⇒
2024-05-01	Beam Control	Accelerators and Magnets	Reinforcement learning con- trol of accel- erator beam position	Control	Stability, Control loss	DDPG, PPO (planned)	$[31],$ $[32] \Rightarrow$
2024-07-08	Ultrafast jet classification at the HL-LHC	Particle Physics	FPGA- optimized real-time jet origin classifi- cation at the HL-LHC	Classification	Accuracy, Latency, Resource utilization	MLP, Deep Sets, Interac- tion Network	\Rightarrow
2024-10-15	Quench detection	Accelerators and Magnets	Real-time detection of superconduct- ing magnet quenches using ML	Anomaly detection, Quench localization	ROC-AUC, Detection latency	Autoencoder, RL agents (in development)	⇒
2024-10-15	DUNE	Particle Physics	Real-time ML for DUNE DAQ time- series data	Trigger selection, Time-series anomaly detection	Detection effi- ciency, Latency	CNN, LSTM (planned)	⇒
2025-01-08	Intelligent experiments through real-time AI	Instrumentation & Detectors; Nuclear Physics; Particle Physics	Real-time FPGA-based triggering and detector control for sPHENIX and future EIC	Trigger classification, Detector control, Real-time inference	Accuracy (charm & beauty detection), Latency (µs), Resource utilization (LUT/FF/BRA)	Bipartite Graph Network with Set Transformers (BGN-ST), GarNet (edge-	[33] ⇒

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2025-01-09	Neural Architecture Codesign for Fast Physics Applications	Physics; Materials Science; Particle Physics	Automated neural archi- tecture search and hardware- efficient model codesign for fast physics applications	Classification, Peak finding	Accuracy, Latency, Resource utilization	NAC-based BraggNN, NAC- optimized Deep Sets (jet)	[34] <i>⇒</i>
2024-06-24	Smart Pixels for LHC	Particle Physics; Instrumentation & Detectors	On-sensor, in- pixel ML fil- tering for high- rate LHC pixel detectors	Image Classification, Data filtering	Data rejection rate, Power per pixel	2-layer pixel NN	[35] ⇒
2023-10-03	HEDM (BraggNN)	Material Science	Fast Bragg peak analysis using deep learning in diffraction microscopy	Peak detection	Localization accuracy, Inference time	BraggNN	[36] ⇒
2023-12-03	4D-STEM	Material Science	Real-time ML for scanning transmission electron mi- croscopy	Image Classification, Streamed data inference	Classification accuracy, Throughput	CNN models (prototype)	[37] ⇒
2023-12-05	In-Situ High-Speed Computer Vision	Fusion/Plasma	Real-time image clas- sification for in-situ plasma diagnostics	Image Classification	Accuracy, FPS	CNN	[38] ⇒
2020-01-01	BenchCouncil AIBench	General	End-to-end AI benchmarking across micro, component, and applica- tion levels	Training, Inference, End-to-end AI work- loads	Throughput, Latency, Accuracy	ResNet, BERT, GANs, Recommenda- tion systems	[39] ⇒
2020-01-01	BenchCouncil Big- DataBench	General	Big data and AI bench- marking across struc- tured, semi- structured, and unstructured data workloads	Data preprocessing, Inference, End-to-end data pipelines	Data throughput, Latency, Accuracy	CNN, LSTM, SVM, XG- Boost	[40] ⇒
2021-10-20	MLPerf HPC	Cosmology, Climate, Pro- tein Structure, Catalysis	Scientific ML training and inference on HPC systems	Training, Inference	Training time, Accuracy, GPU utiliza- tion	CosmoFlow, DeepCAM, OpenCatalyst	[41] ⇒

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2023-06-01	MLCommons Science LHC New Physics	Earthquake, Satellite Image, Drug Discovery, Electron Microscope, CFD Particle	AI benchmarks for scientific applications including time- series, imaging, and simulation Real-time LHC	Time-series analysis, Image classification, Simulation surrogate modeling Anomaly detection,	MAE, Accuracy, Speedup vs simulation	CNN, GNN, Transformer Autoencoder,	$[42] \Rightarrow$ $[43] \Rightarrow$
	Dataset	Physics; Real- time Triggering	event filtering for anomaly detection using proton collision data	Event classification	Detection efficiency	Variational autoencoder, Isolation forest	
2023-07-17	MLCommons Medical AI	Healthcare; Medical AI	Federated benchmarking and evaluation of medical AI models across diverse real- world clinical data	Federated evaluation, Model validation	ROC AUC, Accuracy, Fair- ness metrics	MedPerf- validated CNNs, GaN- DLF workflows	[44] ⇒
2024-10-28	CaloChallenge 2022	LHC Calorimeter; Particle Physics	Fast generative- model-based calorimeter shower simula- tion evaluation	Surrogate modeling	Histogram similarity, Classifier AUC, Generation latency	VAE variants, GAN variants, Normalizing flows, Diffusion models	[45] ⇒
ongoing	Papers With Code (SOTA Platform)	General ML; All domains	Open plat- form tracking state-of-the-art results, bench- marks, and implementa- tions across ML tasks and papers	Multiple (Classification, Detection, NLP, etc.)	Task-specific (Accuracy, F1, BLEU, etc.)	All published models with code	[46] <i>⇒</i>
2022-01-01	Codabench	General ML; Multiple	Open-source platform for organizing reproducible AI bench- marks and competitions	Multiple	Submission count, Leader- board ranking, Task-specific metrics	Arbitrary code submissions	[47]

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2021-09-27	Sabath (SBI-FAIR)	Systems; Meta- data	FAIR metadata framework for ML-driven surrogate workflows in HPC systems	Systems benchmarking	Metadata complete- ness, FAIR compliance	N/A	[48]
2022-10-13	PDEBench	CFD; Weather Modeling	Benchmark suite for ML-based surrogates solving time- dependent PDEs	Supervised Learning	RMSE, bound- ary RMSE, Fourier RMSE	FNO, U-Net, PINN, Gradient-Based inverse meth- ods	[49] ⇒
2024-12-03	The Well	biological systems, fluid dynamics, acoustic scattering, astrophysical MHD	Foundation model + sur- rogate dataset spanning 16 physical simu- lation domains	Supervised Learning	Dataset size, Domain breadth	FNO base- lines, U-Net baselines	[50]
2024-10-31	LLM-Inference- Bench	LLM; HPC/inference	Hardware performance benchmarking of LLMs on AI accelerators	Inference Benchmarking	Token throughput (tok/s), Latency, Frameworkhardware mix performance	LLaMA-2-7B, LLaMA-2-70B, Mistral-7B, Qwen-7B	[51]
2023-12-12	SGLang Framework	LLM Vision	Fast serving framework for LLMs and vision- language models	Model serving framework	Tokens/sec, Time-to- first-token, Throughput gain vs baseline	LLaVA, DeepSeek, Llama	[52] ⇒
2023-09-12	vLLM Inference & Serving Engine	LLM; HPC/inference	High- throughput, memory- efficient in- ference and serving engine for LLMs	Inference Benchmark- ing	Tokens/sec, Time to First Token (TTFT), Memory footprint	LLaMA, Mixtral, FlashAttention- based models	[53]
2022-06-22	vLLM Performance Dashboard	LLM; HPC/inference	Interactive dashboard showing inference performance of vLLM	Performance visualization	Tokens/sec, TTFT, Mem- ory usage	LLaMA-2, Mistral, Qwen	[54] <i>⇒</i>

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2022-04-01	Nixtla NeuralForecast	Time-series forecasting; General ML	High- performance neural forecast- ing library with ¿30 models	Time-series forecasting	RMSE, MAPE, CRPS	NBEATS, NHITS, TFT, DeepAR	[55] ⇒
2023-06-01	Nixtla Neural Forecast NHITS	Time-series; General ML	Official NHITS implemen- tation for long-horizon time series forecasting	Time-series forecasting	RMSE, MAPE	NHITS	[56]
2023-10-03	Nixtla Neural Forecast TimeLLM	Time-series; General ML	Reprogramming LLMs for time series forecast- ing	Time-series forecasting	RMSE, MAPE	Time-LLM	[57]
2023-10-05	Nixtla Neural Forecast TimeGPT	Time-series; General ML	Time-series founda- tion model "TimeGPT" for forecasting and anomaly detection	Time-series fore- casting, Anomaly detection	RMSE, Anomaly detection metrics	TimeGPT	[58] ⇒
2025-03-03	HDR ML Anomaly Challenge (Gravi- tational Waves)	Astrophysics; Time-series	Detecting anomalous gravitational- wave sig- nals from LIGO/Virgo datasets	Anomaly detection	ROC-AUC, Precision/Recall	Deep latent CNNs, Au- toencoders	[59] <i>⇒</i>
2025-03-03	HDR ML Anomaly Challenge (Butter- fly)	Genomics; Image/CV	Detecting hybrid but- terflies via image anomaly detection in genomic- informed dataset	Anomaly detection	Classification accuracy, F1 score	CNN-based detectors	[60] <i>⇒</i>
2025-03-03	HDR ML Anomaly Challenge (Sea Level Rise)	Climate Science; Timeseries, Image/CV	Detecting anomalous sea- level rise and flooding events via time-series and satellite imagery	Anomaly detection	ROC-AUC, Precision/Recall	CNNs, RNNs, Transformers	[61] <i>⇒</i>

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2025-01-24	Single Qubit Read- out on QICK Sys- tem	Quantum Computing	Real-time single-qubit state clas- sification using FPGA firmware	Classification	Accuracy, Latency	hls4ml quan- tized NN	[62] <i>⇒</i>
2023-11-20	GPQA: A Graduate-Level Google-Proof Q&A Benchmark	Science (Biology, Physics, Chemistry)	Graduate- level, expert- validated multiple-choice questions hard even with web access	Multiple choice	Accuracy	GPT-4 baseline	[63] <i>⇒</i>
2024-12-13	SeafloorAI	Marine Sci- ence; Vision- Language	Large-scale vision- language dataset for seafloor map- ping and geological classification	Image segmentation, Vision-language QA	Segmentation pixel accuracy, QA accuracy	SegFormer, ViLT-style multimodal models	[64] <i>⇒</i>
2024-12-13	SuperCon3D	Materials Science; Super- conductivity	Dataset and models for predicting and generating high-Tc superconductors using 3D crystal structures	Regression (Tc prediction), Generative modeling	MAE (Tc), Validity of generated structures	SODNet, DiffCSP-SC	[65]
2024-12-13	GeSS	Scientific ML; Geometric Deep Learning	Benchmark suite evaluat- ing geometric deep learning models under real-world distribution shifts	Classification, Regression	Accuracy, RMSE, OOD robustness delta	GCN, EGNN, DimeNet++	[66]
2024-12-13	Vocal Call Locator (VCL)	Neuroscience; Bioacoustics	Benchmarking sound-source localization of rodent vocal- izations from multi-channel audio	Sound source localization	Localization error (cm), Re- call/Precision	CNN-based SSL models	[67] ⇒

Date	Name	Domain	Focus	Task Types	Metrics	Models	Citation
2024-12-13	MassSpecGym	Cheminformatics Molecular Dis- covery	suite for dis- covery and identification of molecules via MS/MS	De novo generation, Retrieval, Simulation	Structure accuracy, Retrieval precision, Simulation MSE	Graph-based generative models, Re- trieval base- lines	[68] ⇒
2024-12-13	Urban Data Layer (UDL)	Urban Computing; Data Engineering	Unified data pipeline for multi-modal urban science research	Prediction, Classification	Task-specific accuracy or RMSE	Baseline regres- sion/classification pipelines	
2024-12-13	Delta Squared-DFT	Computational Chemistry; Materials Science	Benchmarking machine-learning corrections to DFT using Delta Squared-trained models for reaction energies	Regression	Mean Absolute Error (eV), Energy ranking accuracy	Delta Squared-ML correction net- works, Kernel ridge regression	[70] ⇒
2024-12-13	LLMs for Crop Science	Agricultural Science; NLP	Evaluating LLMs on crop trait QA and textual in- ference tasks with domain- specific prompts	Question Answering, Inference	Accuracy, F1 score	GPT-4, LLaMA-2-13B, T5-XXL	[71] <i>⇒</i>
2024-12-13	SPIQA (LLM)	Multimodal Scientific QA; Computer Vision	Evaluating LLMs on image-based scientific paper figure QA tasks (LLM Adapter performance)	Multimodal QA	Accuracy, F1 score	LLaVA, MiniGPT-4, Owl-LLM adapter vari- ants	[72] <i>⇒</i>

References

- [1] D. Hendrycks, C. Burns, S. Kadavath, et al., "Measuring massive multitask language understanding," arXiv preprint arXiv:2009.03300, 2021. [Online]. Available: https://arxiv.org/abs/2009.03300.
- [2] D. Rein, B. L. Hou, A. C. Stickland, et al., Gpqa: A graduate-level google-proof q and a benchmark, 2023. [Online]. Available: https://arxiv.org/abs/2311.12022.
- [3] P. Clark, I. Cowhey, O. Etzioni, et al., "Think you have solved question answering? try arc, the ai2 reasoning challenge," in EMNLP 2018, 2018, pp. 237-248. [Online]. Available: https://allenai.org/data/arc.
- [4] L. Phan, A. Gatti, Z. Han, et al., Humanity's last exam, 2025. [Online]. Available: https://arxiv.org/abs/2501.14249.
- [5] E. Glazer, E. Erdil, T. Besiroglu, et al., Frontiermath: A benchmark for evaluating advanced mathematical reasoning in ai, 2024. [Online]. Available: https://arxiv.org/abs/2411.04872.
- [6] M. Tian, L. Gao, S. Zhang, et al., Scicode: A research coding benchmark curated by scientists, 2024. [Online]. Available: https://arxiv.org/abs/2407.13168.
- [7] TBD, Aime, [Online accessed 2025-06-24], Mar. 2025. [Online]. Available: https://www.vals.ai/benchmarks/aime-2025-03-13.
- [8] HuggingFaceH4, Math-500, 2025. [Online]. Available: https://huggingface.co/datasets/HuggingFaceH4/MATH-500.
- [9] T. A. authors, Scientific reasoning benchmarks from the curie dataset, 2024. [Online]. Available: https://arxiv.org/abs/2404.02029.
- [10] A. Institute, Feabench: A finite element analysis benchmark, 2023. [Online]. Available: https://github.com/alleninstitute/feabench.
- [11] X. Zhong, Y. Gao, and S. Gururangan, "Spiqa: Scientific paper image question answering," 2024. [Online]. Available: https://arxiv.org/abs/2407.09413.
- [12] D. Jin, Y. Li, Y. Zhang, et al., "What disease does this patient have? a large-scale open-domain question answering dataset from medical exams," 2020. [Online]. Available: https://arxiv.org/abs/ 2009.13081.
- [13] E. Luo, J. Jia, Y. Xiong, et al., Benchmarking ai scientists in omics data-driven biological research, 2025. [Online]. Available: https://arxiv.org/abs/2505.08341.
- [14] Y. Fang, N. Zhang, Z. Chen, et al., "Domain-agnostic molecular generation with chemical feedback," 2023. [Online]. Available: https://arxiv.org/abs/2301.11259.
- [15] W. Hu, M. Fey, M. Zitnik, et al., Open graph benchmark: Datasets for machine learning on graphs, 2020. [Online]. Available: https://arxiv.org/abs/2005.00687.
- [16] A. Jain, S. P. Ong, G. Hautier, et al., "The materials project: A materials genome approach," APL Materials, vol. 1, no. 1, 2013. DOI: 10.1063/1.4812323. [Online]. Available: https://materialsproject.org/.
- [17] L. Chanussot, A. Das, S. Goyal, et al., "The open catalyst 2020 (oc20) dataset and community challenges," ACS Catalysis, vol. 11, no. 10, pp. 6059-6072, 2021. DOI: 10.1021/acscatal.0c04525. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscatal.0c04525.
- [18] R. Tran, J. Lan, M. Shuaibi, et al., "The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts," ACS Catalysis, vol. 13, no. 5, pp. 3066–3084, 2023. DOI: 10.1021/acscatal.2c05426. [Online]. Available: https://pubs.acs.org/doi/10.1021/acscatal.2c05426.
- [19] L. Chanussot, A. Das, S. Goyal, et al., "Open catalyst 2020 (oc20) dataset and community challenges," ACS Catalysis, vol. 11, no. 10, pp. 6059-6072, 2021. DOI: 10.1021/acscatal.0c04525. eprint: https://doi.org/10.1021/acscatal.0c04525. [Online]. Available: https://doi.org/10.1021/acscatal.0c04525.

- [20] R. Tran, J. Lan, M. Shuaibi, et al., "The open catalyst 2022 (oc22) dataset and challenges for oxide electrocatalysts," ACS Catalysis, vol. 13, no. 5, pp. 3066–3084, Feb. 2023, ISSN: 2155-5435. DOI: 10.1021/acscatal.2c05426. [Online]. Available: http://dx.doi.org/10.1021/acscatal.2c05426.
- [21] K. Choudhary, D. Wines, K. Li, et al., "JARVIS-Leaderboard: A large scale benchmark of materials design methods," npj Computational Materials, vol. 10, no. 1, p. 93, 2024. DOI: 10.1038/s41524-024-01259-w. [Online]. Available: https://doi.org/10.1038/s41524-024-01259-w.
- [22] F. J. Kiwit, M. Marso, P. Ross, C. A. Riofrío, J. Klepsch, and A. Luckow, "Application-oriented benchmarking of quantum generative learning using quark," in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, Sep. 2023, pp. 475–484. DOI: 10.1109/qce57702.2023.00061. [Online]. Available: http://dx.doi.org/10.1109/QCE57702.2023.00061.
- [23] Y. Luo, Y. Chen, and Z. Zhang, Cfdbench: A large-scale benchmark for machine learning methods in fluid dynamics, 2024. [Online]. Available: https://arxiv.org/abs/2310.05963.
- [24] J. Roberts, K. Han, and S. Albanie, Satin: A multi-task metadataset for classifying satellite imagery using vision-language models, 2023. arXiv: 2304.11619 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2304.11619.
- [25] T. Nguyen, J. Jewik, H. Bansal, P. Sharma, and A. Grover, *Climatelearn: Benchmarking machine learning for weather and climate modeling*, 2023. arXiv: 2307.01909 [cs.LG]. [Online]. Available: https://arxiv.org/abs/2307.01909.
- [26] A. Srivastava, A. Rastogi, A. Rao, et al., Beyond the imitation game: Quantifying and extrapolating the capabilities of language models, 2023. arXiv: 2206.04615 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2206.04615.
- [27] A. Talmor, J. Herzig, N. Lourie, and J. Berant, Commonsenseqa: A question answering challenge targeting commonsense knowledge, 2019. arXiv: 1811.00937 [cs.CL]. [Online]. Available: https://arxiv.org/abs/1811.00937.
- [28] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, Winogrande: An adversarial winograd schema challenge at scale, 2019. arXiv: 1907.10641 [cs.CL]. [Online]. Available: https://arxiv.org/abs/ 1907.10641.
- [29] B. Hawks, N. Tran, et al., "Fast machine learning for science: Benchmarks and dataset," 2022. [Online]. Available: https://arxiv.org/abs/2207.07958.
- [30] B. Hawks, N. Tran, et al., "Fast machine learning for science: Benchmarks and dataset," 2022. [Online]. Available: https://arxiv.org/abs/2207.07958.
- [31] B. Hawks, N. Tran, et al., "Fast machine learning for science: Benchmarks and dataset," 2022. [Online]. Available: https://arxiv.org/abs/2207.07958.
- [32] Q. Wang *et al.*, "Boostr: A dataset for accelerator control systems," 2021. [Online]. Available: https://arxiv.org/abs/2101.08359.
- [33] J. Kvapil, G. Borca-Tasciuc, N. ... Tran, et al., "Intelligent experiments through real-time ai: Fast data processing and autonomous detector control for sphenix and future eic detectors," 2025. [Online]. Available: https://arxiv.org/abs/2501.04845.
- [34] J. Weitz, D. Demler, L. McDermott, N. Tran, and J. Duarte, "Neural architecture codesign for fast physics applications," 2025. [Online]. Available: https://arxiv.org/abs/2501.05515.
- [35] B. Parpillon, ..., and N. Tran, "Smart pixels: In-pixel ai for on-sensor data filtering," 2024. [Online]. Available: https://arxiv.org/abs/2406.14860.
- [36] Y. Xiao and ..., "Braggnn: Fast x-ray bragg peak analysis using deep learning," 2020. [Online]. Available: https://arxiv.org/abs/2008.08198.
- [37] Anonymous, "4d-stem: Real-time ml for electron microscopy," 2023. [Online]. Available: https://openreview.net/pdf?id=7yt3N0o0W9.
- [38] J. Smith and J. Doe, "In-situ high-speed computer vision for plasma diagnostics," 2023. [Online]. Available: https://arxiv.org/abs/2312.00128.

- [39] W. Gao, J. Zhan, et al., "Aibench: An industry standard internet service ai benchmark suite," 2020. [Online]. Available: https://arxiv.org/abs/1908.08998.
- [40] W. Gao, J. Zhan, et al., "Bigdatabench: A scalable and unified big data and ai benchmark suite," 2018. [Online]. Available: https://arxiv.org/abs/1802.08254.
- [41] S. Farrell, M. Emani, et al., "Mlperf hpc: A holistic benchmark suite for scientific machine learning on hpc systems," 2021. [Online]. Available: https://arxiv.org/abs/2110.11466.
- [42] M. S. W. Group, *Mlcommons science working group benchmarks*, 2023. [Online]. Available: https://github.com/mlcommons/science.
- [43] E. Govorkova, E. Puljak, M. Pierini, et al., "Lhc physics dataset for unsupervised new physics detection at 40 mhz," Scientific Data, 2022. DOI: 10.6084/m9.figshare.5046389. [Online]. Available: https://doi.org/10.5281/zenodo.5046389.
- [44] M. J. Karargyris Alex and Sheller *et al.*, "Federated benchmarking of medical artificial intelligence with medperf," *Nature Machine Intelligence*, 2023. [Online]. Available: https://www.nature.com/articles/s42256-023-00652-2.
- [45] C. Krause, B. Nachman, et al., "Calochallenge 2022: A community challenge for fast calorimeter simulation," 2024. [Online]. Available: https://arxiv.org/abs/2410.21611.
- [46] P. W. Code, Papers with code: Open machine learning benchmarks and leaderboards, 2025. [Online]. Available: https://paperswithcode.com.
- [47] Z. Xu, S. Escalera, et al., "Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform," Patterns, vol. 3, no. 7, p. 100543, 2022. DOI: 10.1016/j.patter.2022.100543.
- [48] P. Luszczek *et al.*, "Sabath: Fair metadata technology for surrogate benchmarks," University of Tennessee, Tech. Rep., 2021.
- [49] M. Takamoto, T. Praditia, et al., "Pdebench: An extensive benchmark for scientific machine learning," in NeurIPS Datasets Benchmarks Track, 2022. [Online]. Available: https://arxiv.org/abs/2210.07182.
- [50] R. Ohana, M. McCabe, L. Meyer, et al., "The well: A large-scale collection of diverse physics simulations for machine learning," NeurIPS, vol. 37, pp. 44989–45037, 2024.
- [51] K. T. Chitty-Venkata, S. Raskar, et al., "Llm-inference-bench: Inference benchmarking of large language models on ai accelerators," arXiv preprint arXiv:2411.00136, 2024.
- [52] L. Zheng, L. Yin, et al., "Sglang: Efficient execution of structured language model programs," 2023. [Online]. Available: https://arxiv.org/abs/2312.07104.
- [53] W. Kwon *et al.*, "Efficient memory management for large language model serving with pagedattention," in *SOSP 2023*, 2023.
- [54] S. Mo, Vllm performance dashboard, 2024. [Online]. Available: https://simon-mo-workspace.observablehq.cloud/vllm-dashboard-v0/.
- [55] K. G. Olivares, C. Challú, et al., Neuralforecast: User friendly state-of-the-art neural forecasting models, PyCon US, 2022. [Online]. Available: https://github.com/Nixtla/neuralforecast.
- [56] C. Challu, K. G. Olivares, et al., "Nhits: Neural hierarchical interpolation for time series forecasting," in AAAI 2023, 2023.
- [57] M. Jin, S. Wang, et al., "Time-llm: Time series forecasting by reprogramming large language models," arXiv preprint arXiv:2310.01728, 2023.
- [58] A. Garza, C. Challu, et al., "Timegpt-1: A foundation model for time series," 2023. [Online]. Available: https://arxiv.org/abs/2310.03589.
- [59] E. G. Campolongo *et al.*, "Building machine learning challenges for anomaly detection in science," 2025. [Online]. Available: https://arxiv.org/abs/2503.02112.
- [60] E. G. Campolongo *et al.*, "Building machine learning challenges for anomaly detection in science," 2025. [Online]. Available: https://arxiv.org/abs/2503.02112.

- [61] E. G. Campolongo *et al.*, "Building machine learning challenges for anomaly detection in science," 2025. [Online]. Available: https://arxiv.org/abs/2503.02112.
- [62] G. Di Guglielmo, J. Campos, et al., "End-to-end workflow for machine learning-based qubit readout with qick and hls4ml," 2025. [Online]. Available: https://arxiv.org/abs/2501.14663.
- [63] D. Rein, B. L. Hou, A. C. Stickland, et al., "Gpqa: A graduate-level google-proof q&a benchmark," 2023. [Online]. Available: https://arxiv.org/abs/2311.12022.
- [64] K. X. Nguyen, F. Qiao, et al., "Seafloorai: A large-scale vision-language dataset for seafloor geological survey," 2024. [Online]. Available: https://arxiv.org/abs/2411.00172.
- [65] Z. Zuo et al., "Supercon3d: Learning superconductivity from ordered and disordered material structures," 2024, NeurIPS Poster.
- [66] D. Zou, S. Liu, et al., "Gess: Benchmarking geometric deep learning under scientific applications with distribution shifts," 2024, NeurIPS Poster.
- [67] R. Peterson, A. Tanelus, et al., "Vocal call locator benchmark for localizing rodent vocalizations," 2024, NeurIPS Poster. [Online]. Available: https://neurips.cc/virtual/2024/poster/97470.
- [68] R. Bushuiev, A. Bushuiev, et al., "Massspecgym: A benchmark for the discovery and identification of molecules," 2024, NeurIPS Spotlight Poster. [Online]. Available: https://neurips.cc/virtual/2024/poster/97823.
- [69] Y. Wang, T. Wang, et al., "Urbandatalayer: A unified data pipeline for urban science," 2024, NeurIPS Poster. [Online]. Available: https://neurips.cc/virtual/2024/poster/97837.
- [70] W. Liu, R. Chen, et al., "Delta squared-dft: Machine-learning corrected density functional theory for reaction energetics," 2024, NeurIPS Poster. [Online]. Available: https://neurips.cc/virtual/2024/ poster/97788.
- [71] D. Patel, L. Zhao, et al., "Large language models for crop science: Benchmarking domain reasoning and qa," 2024, NeurIPS Poster. [Online]. Available: https://neurips.cc/virtual/2024/poster/97570.
- [72] X. Zhong, Y. Gao, et al., "Spiqa-llm: Evaluating llm adapters on scientific figure qa," 2024, NeurIPS Poster. [Online]. Available: https://neurips.cc/virtual/2024/poster/97575.