Part I Problems and Solutions

Problem 1: Use the Euler method and the step size .1 on the IVP $y' = x + y^2$, y(0) = 1, to calculate an approximate value for the solution y(x) when x = .1, .2, .3. (Make a table.) Is your answer for y(.3) too high or low?

Solution: Euler method formula: $y_{n+1} = y_n + hf(x_n, y_n)$.

x_n	y_n	$f(x_n,y_n)$	$hf(x_n,y_n)$	
0	1	1	.1	h = .1
.1	1.1	1.31	.131	$\int f(x,y) =$
.2	1.23	1.72	.172	$x+y^2$
.3	1.403			

Isoclines $x + y^2 = C$ (parabolas).

Solution curve through (0,1) is convex (concave up), so Euler method gives too *low* a result.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.