2019年11月 信息系统项目管理师 辅导班课程

马军老师

管理科学2

某车间需要用一台车床和一台铣床加工 A、B、C、D 四个零件。每个零件都需要先用车床 加工,再用铣床加工。车床与铣床加工每个零件所需的工时(包括加工前的准备时间以及加工 后的处理时间)如示表: →

工时 (小时) ₽	A₽	B₽	C₽	D₽	47
车床₽	8₽	6₽	2↩	4₽	+
铣床₽	3₽	1₽	3₽	12₽	+

若以 A、B、C、D 零件顺序安排加工,则共需 32 小时。适当调整零件加工顺序,可使所需 总工时最短。在这种最短总工时方案中,零件 A 在车床上的加工顺序安排在第 (69) 位,四 个零件加工共需 (70)小时。↓

- (69) A.1
- B. 2
 - C. 3
- D. 4₽
- (70) A. 21 B. 22 C. 23
- D. 24₽

管理科学2

载重量限 24 吨的某架货运飞机执行将一批金属原料运往某地的任务。<u>待运输的各箱原料</u>的重量、运输利润如下表所示。₽

箱号₽	1₽	2₽	3₽	4₽	5₽	6₽	ته
重量(吨)₽	8₽	13₽	6₽	9₽	5₽	7₽	٦
利润(千元)↩	3₽	5₽	2₽	4₽	2₽	3₽	٦

经优化安排,该飞机本次运输可以获得的最大利润为_(60)_千元。₽

A. 11

B. 10

C. 9

D. 8↩

管理科学2

一家公司需要确定使用期为 5 年的一种设备的更换策略。已知各年购买设备的价格和各年龄设备的维修价格如表 5 和表 6 所示:最优的设备更换策略中,总费用是(70)。 ₽

表 5 各年购买设备的价格表

年号	1	2	3	4	5
价格	11	11	12	12	13

表 6 各年龄设备的维修价格表

年龄	0-1	1-2	2-3	3-4	4-5
费用	5	6	8	- 11	18

A . 50 B . 53 C . 59 D . 71 +

【答案】B₽

11

管理科学2

某公司现有 400 万元用于投资甲乙丙三个项目,投资额以百万元为单位,已知甲乙丙三项 投资的可能方案及相应获得的收益如下表所示: 🗸

收益 投资额↓				f
项目。	1 ₽	24□	3₽	4₽
甲↩	4₽	6₽	9₽	10₽
Z₽	3₽	9₽	10₽	11₽ +
丙↩	5₽	8₽	11₽	15₽ €

则该公司能够获得的最大收益是(67)百万元~

A \ 17 B \ 18 C \ 20 D \ 21₽

【答案】B↵

某项目有 1、 ||、 ||、 || ∨四项不同任务,恰有甲、乙、丙、丁四个人去完成各项不同的任务。由于任务性质及每人的技术水平不同,他们完成各项任务所需时间也不同,具体如下表所示

时*间* (*天*) 务* 人* 员*	I +3	∏ ₽	III +3	ΙV
甲↩	2₽	15∻	13₽	4∻
Z₽	10₽	4.₽	14₽	15₽
丙₽	9₽	14₽	16₽	13₽
Ţφ	7₽	842	11₽	9₽

项目要求每个人只能完成一项任务,为了使项目花费的总时间最短,应该指派丁完成(67)任务。

A. |

B. II

C. III

D. IV

首先找出每行的最小值, 然后该行每个数值都减去这个数, 如下

- 0 13 11 2
- 6 0 10 11
- 0 5 7 4
- 0 1 4 2

根据上图找出每列的最小值,然后该列每个数值都减去这个数

- 0 13 7 0
- 6 0 6 9
- 0 5 3 2
- 0 1 0 0

可见甲可在14位置, 乙只能在2位置, 丙只能在1位置, 丁可在1,3,4位置。

确定乙丙位置也就是乙做2号任务, 丙做1号任务, 空3,4任务 甲可做4丁可做3

由此得出甲4 乙2 丙1 丁3

某航空公司为满足客运量日益增长的需求,拟购置一批新的远程、中程及短程的喷气式客机。每架远程客机价格670万美元,中程客机500万美元,短程客机350万美元。该公司现有资金12000万美元用于购买飞机。据估计每架远程客机的年净利润为82万美元,中程客机的年净利润为60万美元,短程客机的年净利润为40万美元。假设该公司现有的熟练驾驶员可支持30架新购飞机的飞行任务,维修能力足以满足新增加40架短程客机的维修要求,而每架中程客机维修量相当于4/3架短程客机,每架远程客机维修量相当于5/3架短程客机,为获取最大利润,该公司应购买各类客机分别为(68)架

- A. 远程17, 中程1, 短程0
- B. 远程15, 中程1, 短程2
- C. 远程12, 中程3, 短程3
- D. 远程10, 中程3, 短程5

管理科学2

分别计算出 4 个选项所给出的采购方案的购买价格、所需驾驶员的人数、维修费和所能获取的利润情况,并与题干所给出的各种约束条件进行相应的比较,见下表。↓

序	购买方案₽		约束条件₽		获利情况₽
号↔		购买总价₽	驾驶员₽	维修费↓	
A⇔	远程 17, 中程	17X670+1X500+0X	17+1+0=1	17X5/3+4/3+0=3	17X82+1X60+0X40=145
	1, 短程 0₽	350=11890 <	8<30₽	0<40₽	4₽
		120004			
B₽	远程 15, 中程	15X670+1X500+2X	15+1+2=1	15X5/3+1X4/3+2	15X82+1X60+2X40=137
	1, 短程 2₽	350<12000₽	8<30₽	=29<404	043
C⇔	远程 12, 中程	12X670+3X500+3X	12+3+3=1	12X5/3+3X4/3+3	12X82+3X60+3X40=128
	3, 短程 3₽	350=10590 <	8<30₽	=27<404	4₽
		120004			
D⇔	远程 10, 中程	10X670+500X5X35	10+3+5=1	10X5/3+3X4/3+5	10X82+3X60+5X40=120
	3, 短程5₽	0=9950<120004	8<30₽	=26<404	043

某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售 点 (销地) 出售, 各工厂的生产量 (单位: 吨)、各销售点的销售 量(单位:吨)以及各工厂到各销售点的单位运价(百元/吨)示 于表4中。

meters.	11
of the	

销地。 产地。	B1₽	B2÷	B3 <i>₽</i>	84₽	产量(吨)。
A1₽	40	12₽	4.0	11₽	320
A2.0	2₽	10₽	3₽	943	20₽
A30	8₽	5₽	110	64	44₽
销量 (吨)。	16₽	284	280	240	96\96+3

适当安排调运方案,最小总运费为(69)百元。

A 450

B、455 C、460

D₂ 465

伏格尔法:

- 1、算出各行各列中最小元素和次小元素的差额
- 2、对行差和列差进行对比,找出最大差额。以与最大差额值同行 (或同列)的最小运价为准,倾其所在行的产量,最大限度地满足 所在列的需求;一旦需求(或库存)被彻底满足(或库存调光),则随即划去该列(或行)的所有运价信息。(注意产量和销量的变化
- 3、对未划去的行列重复以上步骤,直到得到一个初始解。

管理科学2

销地。 产地。	B1 <i>₽</i>	B2₽	B3+ ³	B4₽	产量(吨)。
A1.	4₽	12₽	4.0	11↔	32₽
A2₽	2+	10↔	3₽	9.0	20₽
A3₽	80	5₽	11₽	6+3	44₽
销量(吨)↓	16₽	28₽	28₽	240	96\96₽

