Projekt nr 09

Zadanie 09.3

Dana jest funkcja o stabelaryzowanych wartościach:

i	0	1	2	3	4	5
Xi	-π/6	0,00	π/6	π/4	π/3	π/2
fi	0,50	0,55	0,60	0,30	0,20	-0,10

- a) Wyznacz współczynniki a i b funkcji aproksymującej postaci $F(x) = a * \cos(x) + b$
- **b)** Napisz program, który wykona tablicowanie wyznaczonej funkcji F(x) w przedziale wartości $x = [-\pi/6, \pi/2]$ z zadanym krokiem $\Delta x = \pi/30$
- c) Wykonaj obliczenia i załącz wyniki
- d) Wykorzystując pakiet Excel sporządź wykres otrzymanej funkcji oraz nanieś w postaci punktów wartości danych tj. (x_i, f_i)

Zadanie 09.2

Dana jest funkcja f(x) o stabelaryzowanych wartościach jak w zadaniu 09.1

- a) Napisz program, który wykona tablicowanie wielomianu $W_5(x)$ (metoda Lagrange'a) w przedziale wartości $x = [-\pi/6, \pi/2]$ z zadanym krokiem $\Delta x = \pi/30$ oraz funkcji $F(x) = a * \cos(x) + b$ (gdzie a oraz b to współczynniki wyznaczone w zadaniu poprzednim)
- b) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu
- c) Wykorzystując pakiet Excel sporządź wykres otrzymanego wielomianu oraz nanieś w postaci punktów wartości danych tj. (x_i, f_i)

Zadanie 09.3

a) Narysuj schemat blokowy i napisz program, który oblicza wartość całki oznaczonej postaci:

$$S = \int_{1}^{5} \left(3x^2 - \frac{1}{2x}\right) dx$$

za pomocą wzoru prostokątów i trapezów tak, aby błąd był \leq eps= 10^{-5} i porównywał ją z wartością dokładną wyznaczoną analitycznie, tj. W=F(5)-F(1); wymaga to wstępnie wyznaczenia funkcji pierwotnej F(x) dla funkcji podcałkowej f(x)

b) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu

Zadanie 09.4

- a) Narysuj schemat blokowy i napisz program do rozwiązania równania $2 * \sin(\sqrt{x}) x = 0$, którego pierwiastek leży w przedziale <0, 5>
- b) Znajdź pierwiastek tego równania za pomocą metody Newtona dla zadanej dokładności eps=0,0001. Warunek końca obliczeń f(x_n) ≤ eps
- c) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu, program powinien drukować kolejne przybliżenia szukanego pierwiastka równania