交换机虚拟化技术是什么?堆叠、M-LAG 是什么,有什么区别?

文档版本 01

发布日期 2020-12-04

版权所有 © 华为技术有限公司 2020。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

HUAWE和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: https://www.huawei.com

客户服务邮箱: support@huawei.com

客户服务电话: 4008302118

目 录

1 交换机虚拟化技术是什么?堆叠、M-LAG 是什么,有什么区别?	1
1.1 简介	1
1.2 堆叠、M-LAG 是什么	
1.2.1 堆叠是什么,有什么作用	
1.2.2 M-LAG 是什么,有什么作用	3
1.3 堆叠与 M-LAG 的区别	5
1.4 堆叠、M-LAG 的优劣势对比	6
1.5 M-LAG、堆叠相关信息	6

2 交换机虚拟化技术是什么? 堆叠、M-LAG 是什么, 有什么区别?

短描述:本文介绍了什么是堆叠、什么是M-LAG,说明了堆叠与M-LAG在网络中的作用,对比了堆叠与M-LAG的优缺点。

- 1.1 简介
- 1.2 堆叠、M-LAG是什么
- 1.3 堆叠与M-LAG的区别
- 1.4 堆叠、M-LAG的优劣势对比
- 1.5 M-LAG、堆叠相关信息

1.1 简介

通过交换机虚拟化技术,既可以在逻辑上集成多台物理连接的交换机,实现拓宽虚拟 交换机带宽、提升转发效率的目的,也可以在逻辑上将一台物理交换机虚拟为多台虚 拟交换机,实现业务隔离、提升可靠性的目的。

堆叠、M-LAG是目前广泛应用的两种横向虚拟化技术,通过将多台交换设备虚拟为一台设备,共同承担数据转发任务,提升了网络的可靠性。堆叠与M-LAG经常被用于提升接入设备的可靠性,二者有哪些不同点,各自具有哪些优势,应该如何选择?

1.2 堆叠、M-LAG 是什么

堆叠、M-LAG均为交换机横向虚拟化技术,具有提升可靠性、扩展带宽、实现负载分担的作用。

1.2.1 堆叠是什么,有什么作用

什么是堆叠

如<mark>图1-1</mark>所示,堆叠(iStack)将多台交换机通过堆叠线缆连接在一起,使多台设备在逻辑上变成一台交换设备,作为一个整体参与数据转发。

图 1-1 堆叠示意图

堆叠的作用

● 扩展端口数量

如<mark>图1-2</mark>所示,当接入的用户数增加到原交换机端口密度不能满足接入需求时,可以通过增加新的交换机并组成堆叠而得到满足。

图 1-2 堆叠扩展端口数量示意图

● 扩展带宽

如<mark>图1-3</mark>所示,当交换机上行带宽增加时,可以增加新交换机与原交换机组成堆叠系统,将成员交换机的多条物理链路配置成一个聚合组,提高交换机的上行带宽。

图 1-3 堆叠扩展带宽示意图

● 提高可靠性

如<mark>图1-4</mark>所示,堆叠与Eth-Trunk一同使用,当堆叠系统中一台设备的上行链路故障,通过该设备的流量可经过堆叠链路进行转发。

图 1-4 堆叠上行链路故障

1.2.2 M-LAG 是什么,有什么作用

什么是 M-LAG

M-LAG(Multichassis Link Aggregation Group)即跨设备链路聚合组,是一种实现跨设备链路聚合的机制。如<mark>图1-5</mark>所示,将两台交换机通过peer-link链路连接并以同一个状态和主机进行链路聚合协商,从而把链路可靠性从单板级提高到了设备级。

图 1-5 M-LAG 示意图

M-LAG 的作用

• 负载分担

如<mark>图1-6</mark>所示,M-LAG双活系统在接入设备双归接入场景下,接入设备通过Eth-Trunk的方式接入到M-LAG设备组,M-LAG的成员设备接收到接入设备通过链路捆绑负载分担发送的流量后,共同进行流量转发。

图 1-6 M-LAG 负载分担示意图

● 提高可靠性

如<mark>图1-7</mark>所示,M-LAG接入普通以太网场景,由于M-LAG主设备的上行链路故障,通过M-LAG主设备的流量均经过peer-link链路进行转发。

图 1-7 M-LAG 上行链路故障示意图

1.3 堆叠与 M-LAG 的区别

虽然堆叠、M-LAG均通过将多台设备虚拟为一台设备的方式提升了可靠性,但二者在配置上存在很大差异。二者的双主检测形式、状态协商方式、虚拟系统IP与MAC地址等均存在较大差异。详细对比信息见<mark>表1</mark>。

表 1-1 M-LAG 与堆叠的区别

	堆叠	M-LAG
虚拟系统的IP	堆叠设备组有统一的IP地址。 堆叠生效后各成员自己的IP地址 失效。	M-LAG设备组成员有各自的IP地址。 址。 M-LAG设备组没有统一的IP地址。
虚拟系统的 MAC	堆叠设备组有统一的MAC地址。 址。 堆叠生效后各成员自己的MAC 地址失效。	M-LAG设备组成员有各自的MAC 地址。 M-LAG设备组没有统一的MAC地 址。
设备登录	所有设备相当于一台设备,登录 设备组中任意一台设备均相当登 录主设备。	所有设备独立,各设备仍有独立 的管理网口。
双主检测链路	业务口直连Eth-Trunk口代理管理网口检测	三层可达的链路
状态协商	通过iStack链路传递报文。	通过peer-link链路传递Hello报 文、设备信息报文。

	堆叠	M-LAG
可检测的故障	● 直连链路故障	● 直连链路故障
	● 堆叠系统成员设备故障	● M-LAG成员设备故障
	● iStack链路故障	● Peer-link链路故障
	● 堆叠端口故障	● 接口故障

1.4 堆叠、M-LAG 的优劣势对比

堆叠与M-LAG的配置存在较大差异。那么这两种方式各有什么优点呢?详细的对比情况见表1。

表 1-2 堆叠、M-LAG 优劣势对比

	堆叠	M-LAG
可靠性	一般:控制面集中,故障可能在成员设备上扩散。主设备的故障可能影响成员设备,可靠性一般。	较高:控制面独立,故障域隔 离。
成本	一般:需部署堆叠线缆。	一般: 需部署Peer-link线缆。
配置复杂度	简单:逻辑上为一台设备,多台 设备同时配置。	正常:多台设备独立配置。
扩展能力	一般:控制面的能力局限于主设 备的能力。	较强:扩展能力不受单台设备限 制。
对业务的影响	升级:业务20秒~1分钟的中断。 扩容:三台设备以上扩容时需改 变原有网络架构或重启设备,影 响现有业务。	升级:流量秒级中断。 扩容:不改变原有网络架构,不 影响现有业务。
升级复杂度	高:通过堆叠快速升级可以降低 业务中断时间,但升级操作时间 变长,升级风险变高。	低:通过reboot升级,操作简 单,风险低。
网络设计	相对简单:逻辑上单节点设计。	相对复杂:逻辑上双节点设计。

总的来说,堆叠具有配置、设计相对简单的优点,但灵活度、可靠性、升级复杂程度均不如M-LAG;M-LAG相比于堆叠虽然配置复杂度较高,但其控制面解耦、组网灵活度高的特点使其可靠性更强。

1.5 M-LAG、堆叠相关信息

M-LAG、堆叠的详细配置步骤见**华为技术支持网站各产品配置手册**。 M-LAG相关材料可参考**什么是M-LAG、M-LAG最佳实践**。 堆叠更换为M-LAG的操作方法可参考如何从堆叠切换为M-LAG。