Topology

Ashan Jayamal

2024-02-16

Contents

4 CONTENTS

Chapter 1

Topology

A topology is a geometric structure defined on a set. Basically it is given by declaring which subsets are "open" sets. Thus the axioms are the abstraction of the properties that open sets have.

1.1 Topological Spaces

Definition 1.1. A topology on a set X is a collection \mathcal{T} of subsets of X such that

- (T1) ϕ and X are in \mathcal{T} ;
- (T2) Any union of subsets in \mathcal{T} is in \mathcal{T} ;
- (T3) The finite intersection of subsets in \mathcal{T} is in \mathcal{T} .

A set X with a topology $\mathcal T$ is called a topological space. Denoted by $(X,\mathcal T)$. An element of $\mathcal T$ is called an open set.

Example 1.1. Let X be a three-element set, $X = \{a, b, c\}$ and $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{b\}, \{b, c\}\}$. We can check T1,T2 and T3 conditions.

Example 1.2. Let X be a three-element set, $X = \{a, b, c\}$ as pervoius. There are many possible topologies on X, some of which are indicated schematically in figure \ref{figure} . Furthur, we can see that even a three-element set has many different topologies.

Remark. Not every collection of subsets of X is a topology on X. Observe that Neither of the collections indicated in figure $\ref{eq:collection}$ is a topology.

First let's consider the left hand coner of figure ??. $\{a\}$ and $\{b\}$ in the collection, but $\{a\} \cup \{b\}$ is not in the collection.

Figure 1.1:

Now consider the right hand coner figure. $\{a,b\}$ and $\{b,c\}$ in collection, but $\{a,b\}\cap\{b,c\}=\{b\}$ is not in the collection.

Figure 1.2:

Example 1.3. If X is any set, the collection of all subsets of X (Power set) is a topology on X. This trivial statistic T1 T2 and T3 conditions. Furthur, This is called the *discrete topology*.

Example 1.4. The collection consisting of X and \emptyset only is also a topologyon X, we shall call it the *indiscrete topology*, or the trivial topology.

Example 1.5. Let X be a set and let \mathcal{T}_f be the collection of all subsets U of X such that X U either is finite or is all of X. In oter words,

$$\mathcal{T}_f := \{U \subseteq X : \text{Either is finite or is all of } X\}$$

Let's check is \mathcal{T}_f a topology. First obseve that both X and \emptyset are in \mathcal{T}_f , because $X~X=\emptyset$ is finite and X \$ is all of X.So \mathcal{T}_f statified the T1 condition. Now

let's check the T2 condition. Let $\{U_{\alpha}: \alpha \in I, I \text{ is index set}\}$. Now we need to show that $\cup \alpha \in IU_{\alpha} \in \mathcal{T}_f$. So consider,

$$X \quad \bigcup_{\alpha \in I} U_\alpha = \bigcap_{\alpha \in I} (X \quad U_\alpha).$$

Now obsevere that $\cap_{\alpha \in I}(X \ U_{\alpha})$ is finite, because each set $(X \ U_{\alpha})$ is finite and arbitary intersection of finite sets is finite. So, \mathcal{T}_f stattified the T2 condition also. Finally check the last condition, T3 condition. Let $U_1,...,U_n$ are nonempty elements of \mathcal{T}_f , to show that $\bigcup_i U_i \in \mathcal{T}_f$, we compute

$$X \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X \ U_i).$$

Note that the set $\bigcup_{i=1}^n (X\ U_i)$ is a finite union of finite sets and, therefore, finite. So it statisfiy the T3 condition also. The fore \mathcal{T}_f is a topology. Furthur \mathcal{T}_f is called the finite complement topology.

Example 1.6. Let X be a set. Define \mathcal{T} to be the collection of all subsets U of X such that X U either is finite or is all of X. Then \mathcal{T} defines a topology on X, called finite complement topology of X.

1.2 Basis of a Topology

Once we define a structure on a set, often we try to understand what the minimum data you need to specify the structure. In many cases, this minimum data is called a basis and we say that the basis generate the structure. The notion of a basis of the structure will help us to describe examples more systematically.

Definition 1.2. Let X be a set. A basis of a topology on X is a collection \mathcal{B} of subsets in X such that

- (B1) For every $x \in X$, there exist an element B in \mathcal{B} such that $x \in B$.
- (B2) If $x \in B_1 \cap B_2$ where B_1, B_2 are in \mathcal{B} , then there is B_3 in \mathcal{B} such that $x \in B_3 \subseteq B_1 \cap B_2$.

Lemma 1.1 (Generating of a topology). Let \mathcal{B} be a basis of a topology on X. Define $\mathcal{T}_{\mathcal{B}}$ to be the collection of subsets $U \subset X$ satisfying

(G1) For every $x \in U$, there is $B \in \mathcal{B}$ such that $x \in B \subset U$.

Then $\mathcal{T}_{\mathcal{B}}$ defines a topology on X. Here we assume that \emptyset trivially satisfies the condition, so that $\emptyset \in \mathcal{T}_{\mathcal{B}}$.

Proof. We need to check the three axioms:

Figure 1.3:

- (T1) $\emptyset \in \mathcal{T}_{\mathcal{B}}$ as we assumed. $X \in \mathcal{T}_{\mathcal{B}}$ by (B1).
- (T2) Consider a collection of subsets $U_{\alpha} \in \mathcal{T}_{\mathcal{B}}, \alpha \in J$. We need to show

$$U:=\bigcup_{\alpha\in J}U_{\alpha}\quad\in\mathcal{T}_{\mathcal{B}}$$

By the definition of the union, for each $x \in U$, there is U_{α} such that $x \in U_{\alpha}$. Since $U_{\alpha} \in \mathcal{T}_{\mathcal{B}}$, there is $B \in \mathcal{B}$ such that $x \in B \subset U_{\alpha}$. Since $U_{\alpha} \subset U$, we found $B \in \mathcal{B}$ such that $x \in B \subset U$. Thus $U \in \mathcal{T}_{\mathcal{B}}$.

• (T3) Now consider a finite number of subsets $U_1,...,U_n\in\mathcal{T}_{\mathcal{B}}.$ We need to show that

$$U' := \bigcap_{i=1}^n U_i \quad \in \mathcal{T}_{\mathcal{B}}$$

- Let's just check for two subsets U_1, U_2 first. For each $x \in U_1 \cap U_2$, there are $B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \subset U_1$ and $x \in B_2 \subset U_2$. This is because $U_1, U_2 \in \mathcal{T}_{\mathcal{B}}$ and $x \in U_1, x \in U_2$. By (B2), there is $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$. Now we found $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset U$.
- We can generalize the above proof to *n* subsets, but let's use induction to prove it. This is going to be the induction on the number of subsets.
 - When n = 1, the claim is trivial.
 - Suppose that the claim is true when we have n-1 subsets, i.e. $U_1\cap\cdots\cap U_{n-1}\in\mathcal{T}_{\mathcal{B}}.$ Since

$$U=U_1\cap \dots \cap U_n=(U_1\cap \dots \cap U_{n-1})\cap U_n$$

and regarding $U':=U_1\cap\cdots\cap U_{n-1}$, we have two subsets case $U=U'\cap U_n$. By the first arguments, $U\in\mathcal{T}_{\mathcal{B}}$.

Definition 1.3. $\mathcal{T}_{\mathcal{B}}$ is called the **topology generated by a basis** \mathcal{B} . On the other hand, if (X,\mathcal{T}) is a topological space and \mathcal{B} is a basis of a topology such that $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$, then we say \mathcal{B} is a basis of \mathcal{T} . Note that \mathcal{T} itself is a basis of the topology \mathcal{T} . So there is always a basis for a given topology.

Example 1.7.

• (Standard Topology of $\mathbb R$) Let $\mathbb R$ be the set of all real numbers. Let $\mathcal B$ be the collection of all open intervals:

$$(a, b) := \{ x \in \mathbb{R} \mid a < x < b \}$$

Then \mathcal{B} is a basis of a topology and the topology generated by \mathcal{B} is called the standard topology of \mathbb{R} .

- Let \mathbb{R}^2 be the set of all ordered pairs of real numbers, i.e. $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$ (cartesian product). Let \mathcal{B} be the collection of cartesian product of open intervals, $(a,b) \times (c,d)$. Then \mathcal{B} is a basis of a topology and the topology generated by \mathcal{B} is called the standard topology of \mathbb{R}^2 .
- (Lower limit topology of $\mathbb R$) Consider the collection $\mathcal B$ of subsets in $\mathbb R$:

$$\mathcal{B} := \{ [a, b) := \{ x \in \mathbb{R} \mid a \le x < b \} \mid a, b \in \mathbb{R} \}$$

This is a basis for a topology on \mathbb{R} . This topology is called the lower limit topology.

The following two lemma are useful to determine whehter a collection \mathcal{B} of open sets in \mathcal{T} is a basis for \mathcal{T} or not.

Remark. Let \mathcal{T} be a topology on X. If $\mathcal{B} \subset \mathcal{T}$ and \mathcal{B} satisfies (B1) and (B2), it is easy to see that $\mathcal{T}_{\mathcal{B}} \subset \mathcal{T}$. This is just because of (G1). If $U \in \mathcal{T}_{\mathcal{B}}$, (G1) is satisfied for U so that $\forall x \in U, \exists B_x \in \mathcal{B}$ such that $x \in B_x \subset U$. Therefore $U = \bigcup_{x \in U} B_x$. By (T2), $U \in \mathcal{T}$.

Lemma 1.2. Let (X,\mathcal{T}) be a topological space. Let $\mathcal{B} \subset \mathcal{T}$. Then \mathcal{B} is a basis and $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$ if and only if \mathcal{T} is the set of all unions of elements in \mathcal{B} .

Proof.

- (\$\Rightarrow\$) Let \$\mathcal{T}'\$ be the set of all unions of open sets in \$\mathcal{B}\$. If \$U \in \mathcal{T}\$, then \$U\$ satisfies (G1), i.e. \$\forall x \in U\$, \$\emptyred B_x \in \mathcal{B}\$ s.t. \$x \in B_x \subseteq U\$. Thus \$U = \cup_{x \in U} B_x\$. Therefore \$U \in \mathcal{T}'\$. We proved \$\mathcal{T} \subseteq \mathcal{T}'\$. It follows from (T2) that \$\mathcal{T}' \supseteq \mathcal{T}\$.
- (\Leftarrow) Since $X \in \mathcal{T}, X = \cup_{\alpha} B_{\alpha}$ some union of sets in \mathcal{B} . Thus $\forall x \in X, \exists B_{\alpha}$ s.t. $x \in B_{\alpha}$. This proves (B1) for \mathcal{B} . If $B_1, B_2 \in \mathcal{B}$, then $B_1 \cap B_2 \in \mathcal{T}$ by (T2). Thus $B_1 \cap B_2 = \cup_{\alpha} B_{\alpha}, B_{\alpha} \in \mathcal{B}$. So $\forall x \in B_1 \cap B_2, \exists B_{\alpha} \in \mathcal{B}$ s.t. $x \in B_{\alpha}$. This B_{α} plays the role of B_3 in (B2). Thus \mathcal{B} is a basis. Now it makes sense to consider $\mathcal{T}_{\mathcal{B}}$ and we need to show $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$. By the remark, we already know that $\mathcal{T}_{\mathcal{B}} \subset \mathcal{T}$. On the other hand, if $U \in \mathcal{T}$, then $U = \cup_{\alpha} B_{\alpha}, B_{\alpha} \in \mathcal{B}$. Hence, $\forall x \in U, \exists B_{\alpha}$ such that $x \in B_{\alpha} \subset U$. Thus (G1) is satisfied for U. Thus $U \in \mathcal{T}_{\mathcal{B}}$. This proves $\mathcal{T}_{\mathcal{B}} \supset \mathcal{T}$.

Lemma 1.3. Let (X,\mathcal{T}) be a topological space. Let $\mathcal{B} \subset \mathcal{T}$. Then \mathcal{B} is a basis and $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$ if and if any $U \in \mathcal{T}$ satisfies (Gl), i.e. $\forall x \in U, \exists B_x \in \mathcal{B}$ s.t. $x \in B_x \subset U$.

Proof.

• (\Rightarrow) Trivial by the definition of $\mathcal{T}_{\mathcal{B}}$.

• ($\Leftarrow X$) satisfies (G1) so \mathcal{B} satisfies (B1). Let $B_1, B_2 \in \mathcal{B} \subset \mathcal{T}$. By (T3), $B_1 \cap B_2 \in \mathcal{T}$. Thus $B_1 \cap B_2$ satisfies (G1). This means (B2) holds for \mathcal{B} . Thus \mathcal{B} is a basis. Now the assumption can be rephrased as $\mathcal{T} \subset \mathcal{T}_{\mathcal{B}}$. By the remark above, we already know $\mathcal{T} \supset \mathcal{T}_{\mathcal{B}}$.

1.3 Comparing Topologies

Definition 1.4. Let $\mathcal{T}, \mathcal{T}'$ be two topologies for a set X. We say \mathcal{T}' is finer than \mathcal{T} or \mathcal{T} is coarser than \mathcal{T}' if $\mathcal{T} \subset \mathcal{T}'$. The intuition for this notion is " (X, \mathcal{T}') has more open subsets to separate two points in X than (X, \mathcal{T}) ".

Lemma 1.4. Let $\mathcal{B}, \mathcal{B}'$ be bases of topologies $\mathcal{T}, \mathcal{T}'$ on X respectively. Then \mathcal{T}' is finer than $\mathcal{T} \Leftrightarrow \forall B \in \mathcal{B}$ and $\forall x \in B, \exists B' \in \mathcal{B}'$ s.t. $x \in B' \subseteq B$.

Proof.

- \Rightarrow Since $\mathcal{B} \subset \mathcal{T} \subset \mathcal{T}'$, all subsets in \mathcal{B} satisfies (G1) for \mathcal{T}' , which is exactly the statement we wanted to prove.
- \Leftarrow The LHS says $\mathcal{B} \subset \mathcal{T}'$. We need to show that it implies that any $U \in \mathcal{T}$ satisfies (G1) for \mathcal{T}' too.

$$\forall U \in \mathcal{T}, \forall x \in U, \exists B \in \mathcal{B} \text{ s.t. } x \in B \subset U$$

But

$$\forall B \in \mathcal{B}, \forall x \in B, \exists B' \in \mathcal{B}' \text{ s.t. } x \in B' \subset B.$$

Combining those two,

$$\forall U \in \mathcal{T}, \forall x \in U, \exists B' \in \mathcal{B}' \text{ s.t. } x \in B' \subset B \subset U.$$

Definition 1.5 (subbasis). Let X be a set. A subbasis \mathcal{S} for a topology on X is a collection of subsets of X whose union equals X.

(i.e.
$$\forall x \in X \ \exists S \in \mathcal{S} \text{ such that } x \in S$$
)

Definition 1.6. The topology generated by the subbasis \mathcal{S} is defined to be the collection \mathcal{T} of all unions of finite intersections of elements of \mathcal{S} .

Figure 1.4:

1.4 Order Topology

Definition 1.7 (Linear Order/ Complete Order). Consider order relation "<".

- 1. If $x \neq y$, then either x < y or y < x.
- 2. If x < y, then $x \neq y$.
- 3. If x < y and y < z, then x < z.

Example 1.8. \mathbb{R} is ordered set with less than relation.

First, let's see intervals in an Ordered Set.

Suppose that X is a set having a simple order relation <. Given elements a and b of X such that a < b, there are four subsets of X that are called the intervals determined by a and b. They are the following :

- $(a,b) = \{x \in X | a < x < b\}$ (Type: open interval in X),
- $(a, b] = \{x \in X | a < x \le b\}$ (Type: half-open interval in X),
- $[a,b) = \{x \in X | a \le x < b\}$ (Type: half-open interval in X),
- $[a,b] = \{x \in X | a \le x \le b\}$ (Type: closed interval in X),

The notation used here is familiar to you already in the case where X is the real line, but these are intervals in an arbitrary ordered set.

The use of the term "open" in this connection suggests that open intervals in X should turn out to be open sets when we put a topology on X. And so they will.