Control systems

Xin Wang

I. CONTROL SYSTEM

Notation:

- S_{Θ} : System to be controlled
- C: Controller
- Θ: System parameters
- y: Controlled variable i.e. output
- u: Control variable (accessible)
- d: Disturbance factors
- w: Reference variable i.e. point

A. Control system objective

• Act on u to maintain $y \approx w$ in the presence of uncertainty

$$d = \bar{d} + \Delta d$$
$$\Theta = \bar{\Theta} + \Delta \Theta$$

- \bar{d} and $\bar{\Theta}$ are known nominal values i.e. expected
- Δd and $\Delta \Theta$ are uncertainties
- Uncertainty Δd may have a known upper bound

$$|\Delta d| < \bar{D}$$

II. CONTROLLER

- Two kinds of controllers:
 - Analog: Receives analog inputs and outputs analog
 - Digital: Processes digital sampled variables in computing devices
- Conversion between two types requires: ADC and DAC
- Converters are synchronised via clock signal period T_s
- Discrete-time variables can be expressed with time index

$$t_k = kT_s \Rightarrow k$$

A. Digital control systems

• Hybrid systems - analog and digital variables

III. CONVERSIONS

- Types of variables:
 - Continuous-time

Piece-wise constants: Constant value between two sampling times

- Discrete-time

- Analog: Values change with continuity
- Digital: Values are quantised

A. A/D conversion

- Conversion uses the sampling mechanism
 - Sampling frequency: $f_s = \frac{1}{T_s}$
- Implications:
 - Loss of information
 - Quantisation of noise and distortion

B. D/A conversion

• Zero-order hold: Stair-wise delayed approximation continuous-time function

IV. DIGITAL DISCRETE-TIME CONTROLLER AND CONTROL SYSTEMS

• Controller is computational algorithm

$$e[k] \qquad \qquad C \qquad \qquad U[k]$$

- Temporisation i.e. delay
- Controller computation time should satisfy: $\Delta < T_s$

$$\begin{array}{c|c}
e[k] & u[k] \\
& \Delta & \downarrow \\
kT_s & (k+1)T_s
\end{array}$$

A. Control System

- Error variable: e(t) = w(t) y(t)
- General requirements:
 - Static precision: $y(t) \approx w(t)$ or e(t) = 0
 - Dynamic precision:
 - * Quick enough response time
 - * Dampens possible oscillations
 - * Able to track varying variables w(t)
 - Insensitive to disturbances i.e. reject d(t)
 - Robust: Above condition hold for unknown system parameters