Course Code - EEE-401
Course Title – Energy Conversion and
Special Machine
Lecture- Switch Reluctance Motor

Switch Reluctance Motor

Switch Reluctance Motor Construction

- Unlike a conventional synchronous motor, both the rotor and stator of a SR motor have salient poles as shown in Fig.
- This doubly-salient arrangement is very effective for electromagnetic energy conversion.
- The stator carries coils on each pole, the coils on opposite poles being connected in series.
- The eight stator coils shown in Figure are grouped to form four phases which are independently energized from a four-phase converter.
- The laminated rotor has no windings or magnets and is, therefore cheap to manufacture and extremely robust.
- The motor shown in Fig. has eight stator poles and six rotor poles which is a widely-used arrangement although other pole combinations (like 6/4 poles) are used to suit different applications.

Switch Reluctance Motor

Switch Reluctance Motor Working

- Usual arrangement is to energize stator coils sequentially with a single pulse of current at high speed.
- However, at starting and low speed, a current-chopper type control is used to limit the coil current.
- The motor rotates in the anticlockwise direction when the stator phases are energized in the sequence 1, 2, 3, 4 and in clockwise direction when energized in the sequence 1, 4, 3, 2.
- When the stator coils are energized,
 the nearest pair of rotor poles is pulled
 into alignment with the appropriate stator poles by reluctance torque.
- Closed-loop control is essential to optimize the switching angles of the applied coil voltages. The stator phases are switched by signals derived from a shaft-mounted rotor position detectors such as Hall-effect devices or optical sensors Fig.
- This causes the behavior of the SR motor to resemble that of a dc motor.

Advantages and Disadvantages of Switch Reluctance Motor

Advantages

- Higher efficiency
- More power per unit weight and volume
- Very robust because rotor has no windings or slip rings
- Can run at very high speed (up to 30,000 rpm) in hazardous atmospheres
- Has versatile and flexible drive features and
- Four-quadrant operation is possible with appropriate drive circuitry.

Disadvantages

- Noisy and
- Not well-suited for smooth torque production.

Application

- General purpose industrial drives
- Traction
- Domestic appliances like food processors, vacuum cleaners and washing machines etc., and
- Office and business equipment.

Comparison between VR Stepper Motor and SR Motor

Comparison between VR Stepper Motor and SR Motor

VR Stepper	SR Motor
 It rotates in steps. It is designed first and foremost for open-loop operation. Its rotor poles are made of ferromagnetic material. It is capable of half-step operation and microstepping. Has low power rating. Has lower efficiency 	 It is meant for continuous rotation. Closed-loop control is essential for its optimal working. Its rotor poles are also made of ferromagnetic material. It is not designed for this purpose. Has power ratings up to 75 kW (100 hp). Has higher overall efficiency.