Statistics for Business and Economics 6th Edition

Chapter 5

Discrete Random Variables and Probability Distributions

Chapter Goals

After completing this chapter, you should be able to:

- Interpret the mean and standard deviation for a discrete random variable
- Use the binomial probability distribution to find probabilities
- Describe when to apply the binomial distribution
- Use the hypergeometric and Poisson discrete probability distributions to find probabilities
- Explain covariance and correlation for jointly distributed discrete random variables

Introduction to Probability Distributions

Random Variable

 Represents a possible numerical value from a random experiment

Discrete Random Variables

Can only take on a countable number of values

Examples:

Roll a die twice

Let X be the number of times 4 comes up

Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)

(then X could be 0, 1, or 2 times)

Discrete Probability Distribution

Experiment: Toss 2 Coins. Let X = # heads.

Show P(x), i.e., P(X = x), for all values of x:

Probability Distribution Required Properties

- $P(x) \ge 0$ for any value of x
- The individual probabilities sum to 1;

$$\sum_{x} P(x) = 1$$

(The notation indicates summation over all possible x values)

Cumulative Probability Function

 The cumulative probability function, denoted F(x₀), shows the probability that X is less than or equal to x₀

$$F(x_0) = P(X \le x_0)$$

In other words,

$$\mathsf{F}(\mathsf{x}_0) = \sum_{\mathsf{x} \leq \mathsf{x}_0} \mathsf{P}(\mathsf{x})$$

Expected Value

 Expected Value (or mean) of a discrete distribution (Weighted Average)

$$\mu = E(x) = \sum_{x} xP(x)$$

Example: Toss 2 coins, x = # of heads, compute expected value of x:

$$E(x) = (0 \times .25) + (1 \times .50) + (2 \times .25)$$

= 1.0

x	P(x)
0	.25
1	.50
2	.25

Variance and Standard Deviation

Variance of a discrete random variable X

$$\sigma^2 = E(X - \mu)^2 = \sum_{x} (x - \mu)^2 P(x)$$

Standard Deviation of a discrete random variable X

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

Standard Deviation Example

Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(x) = 1)

$$\sigma = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

$$\sigma = \sqrt{(0-1)^2(.25) + (1-1)^2(.50) + (2-1)^2(.25)} = \sqrt{.50} = .707$$

Possible number of heads = 0, 1, or 2

Functions of Random Variables

 If P(x) is the probability function of a discrete random variable X, and g(X) is some function of X, then the expected value of function g is

$$\mathsf{E}[\mathsf{g}(\mathsf{X})] = \sum_{\mathsf{x}} \mathsf{g}(\mathsf{x}) \mathsf{P}(\mathsf{x})$$

Linear Functions of Random Variables

- Let a and b be any constants.
- a) E(a) = a and Var(a) = 0

i.e., if a random variable always takes the value a, it will have mean a and variance 0

• b)
$$E(bX) = b\mu_X$$
 and $Var(bX) = b^2\sigma_X^2$

i.e., the expected value of $b \cdot X$ is $b \cdot E(x)$

Linear Functions of Random Variables

(continued)

- Let random variable X have mean μ_x and variance σ_x^2
- Let a and b be any constants.
- Let Y = a + bX
- Then the mean and variance of Y are

$$\mu_Y = E(a+bX) = a+b\mu_X$$

$$\sigma^2 = Var(a+bX) = b^2 \sigma^2 x$$

so that the standard deviation of Y is

$$\sigma_{Y} = |b|\sigma_{X}$$

Probability Distributions

The Binomial Distribution

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure"
- Let P denote the probability of success
- Let 1 P be the probability of failure
- Define random variable X:

$$x = 1$$
 if success, $x = 0$ if failure

Then the Bernoulli probability function is

$$P(0) = (1-P)$$
 and $P(1) = P$

Bernoulli Distribution Mean and Variance

The mean is μ = P

$$\mu = E(X) = \sum_{X} xP(x) = (0)(1-P) + (1)P = P$$

• The variance is $\sigma^2 = P(1 - P)$

$$\sigma^{2} = E[(X-\mu)^{2}] = \sum_{x} (x-\mu)^{2}P(x)$$
$$= (0-P)^{2}(1-P) + (1-P)^{2}P = P(1-P)$$

Sequences of x Successes in n Trials

The number of sequences with x successes in n independent trials is:

$$C_x^n = \frac{n!}{x!(n-x)!}$$

Where
$$n! = n \cdot (n - 1) \cdot (n - 2) \cdot ... \cdot 1$$
 and $0! = 1$

 These sequences are mutually exclusive, since no two can occur at the same time

Binomial Probability Distribution

- A fixed number of observations, n
 - e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
 - e.g., head or tail in each toss of a coin; defective or not defective light bulb
 - Generally called "success" and "failure"
 - Probability of success is P, probability of failure is 1 P
- Constant probability for each observation
 - e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
 - The outcome of one observation does not affect the outcome of the other

Possible Binomial Distribution Settings

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it

Binomial Distribution Formula

$$P(x) = \frac{n!}{x!(n-x)!}P^{x}(1-P)^{n-x}$$

- P(x) = probability of **x** successes in **n** trials, with probability of success **P** on each trial
 - x = number of 'successes' in sample,<math>(x = 0, 1, 2, ..., n)
 - n = sample size (number of trials or observations)
 - P = probability of "success"

Example: Flip a coin four times, let x = # heads:

$$n = 4$$

$$P = 0.5$$

$$1 - P = (1 - 0.5) = 0.5$$

$$x = 0, 1, 2, 3, 4$$

Example: Calculating a Binomial Probability

What is the probability of one success in five observations if the probability of success is 0.1?

$$x = 1$$
, $n = 5$, and $P = 0.1$

$$P(x=1) = \frac{n!}{x!(n-x)!} P^{x} (1-P)^{n-x}$$

$$= \frac{5!}{1!(5-1)!} (0.1)^{1} (1-0.1)^{5-1}$$

$$= (5)(0.1)(0.9)^{4}$$

$$= .32805$$

Binomial Distribution

The shape of the binomial distribution depends on the

values of P and n

Here, n = 5 and P = 0.1

• Here, n = 5 and P = 0.5

Binomial Distribution Mean and Variance

Mean

$$\mu = E(x) = nP$$

Variance and Standard Deviation

$$\sigma^2 = nP(1-P)$$

$$\sigma = \sqrt{nP(1-P)}$$

Where n = sample size P = probability of success(1 - P) = probability of failure

Binomial Characteristics

Examples

$$\mu = nP = (5)(0.1) = 0.5$$

$$\sigma = \sqrt{nP(1-P)} = \sqrt{(5)(0.1)(1-0.1)}$$
$$= 0.6708$$

$$\mu = nP = (5)(0.5) = 2.5$$

$$\sigma = \sqrt{nP(1-P)} = \sqrt{(5)(0.5)(1-0.5)}$$
$$= 1.118$$

Using Binomial Tables

N	x	•••	p=.20	p=.25	p=.30	p=.35	p=.40	p=.45	p=.50
10	10 0 0.1074		0.0563	0.0282	0.0135	0.0060	0.0025	0.0010	
	1		0.2684	0.1877	0.1211	0.0725	0.0403	0.0207	0.0098
	2		0.3020	0.2816	0.2335	0.1757	0.1209	0.0763	0.0439
	3		0.2013	0.2503	0.2668	0.2522	0.2150	0.1665	0.1172
	4	•••	0.0881	0.1460	0.2001	0.2377	0.2508	0.2384	0.2051
	5		0.0264	0.0584	0.1029	0.1536	0.2007	0.2340	0.2461
	6		0.0055	0.0162	0.0368	0.0689	0.1115	0.1596	0.2051
	7		0.0008	0.0031	0.0090	0.0212	0.0425	0.0746	0.1172
	8		0.0001	0.0004	0.0014	0.0043	0.0106	0.0229	0.0439
	9		0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0098
	10		0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0010

Examples:

$$n = 10, x = 3, P = 0.35$$
: $P(x = 3|n = 10, p = 0.35) = .2522$

$$n = 10, x = 8, P = 0.45$$
: $P(x = 8|n = 10, p = 0.45) = .0229$

Using PHStat

Select PHStat / Probability & Prob. Distributions / Binomial...

Using PHStat

(continued)

Enter desired values in dialog box

PHStat Output

	А	В	С	D	Е	F	G	Н	
1	Binomial Probabilities								
2									
3	Data								
4	Sample size	10							
5	Probability of success	0.35							
6	_								
7	Statistics								
8	Mean	3.5							
9	Variance	2.275	D/s	/ _ 2	n — 1	10, P :	- 35)	_ ?	522
10	Standard deviation	1.50831	1 (/	\	11 —	, i -	33 <i>)</i>	<u> </u>	.522
11									
12	Binomial Probabilities	Table							
13		X	P(X)	P(≮=X)	P(< X)	P(>X)	P(>=X)		
14		0	0.013463	0,013463	0	0.986537	1		
15		1	0.072492	ø.085954	0.013463	0.914046	0.986537		
16		2	0.175653	0.261607	0.085954	0.738393	0.914046		
17		3	0.25222	0.513827	0.261607	0.486173	0.738393		
18		4	0.237668	0.751496	0.513827	0.248504	0.486173		
19		5	0.15357	0.905066	0.751496	0.094934	0.248504		
20		6	0.06891	0.973976	0.905066	0.026024	0.094934		
21		7	0.021203	0.995179	0.973976	0.004821	0.026024		
22		8	0.004281	0.99946	0.995179	0.00054	0.004821		
23		9	0.000512	0.999972	0.99946	2.76E-05	0.00054		
24		10	2.76E-05	1	0.999972	0	2.76E-05		
25									
26									
27				P(x >	$5 \ln$	= 10	P = 1	35) =	= .0949
28				· (// /	0 11	_ 10,	. – .	<i>-</i>	- 100 10
20									

The Hypergeometric

Distribution

Probability Distributions

Discrete

Probability

Distributions

Binomial

Hypergeometric

Poisson

The Hypergeometric Distribution

- "n" trials in a sample taken from a finite population of size N
- Sample taken without replacement
- Outcomes of trials are dependent
- Concerned with finding the probability of "X" successes in the sample where there are "S" successes in the population

Hypergeometric Distribution Formula

$$P(x) = \frac{C_x^S C_{n-x}^{N-S}}{C_n^N} = \frac{\frac{S!}{x!(S-x)!} \times \frac{(N-S)!}{(n-x)!(N-S-n+x)!}}{\frac{N!}{n!(N-n)!}}$$

Where

N = population size

S = number of successes in the population

N - S = number of failures in the population

n = sample size

x = number of successes in the sample

n - x = number of failures in the sample

Using the Hypergeometric Distribution

Example: 3 different computers are checked from 10 in the department. 4 of the 10 computers have illegal software loaded. What is the probability that 2 of the 3 selected computers have illegal software loaded?

$$N = 10$$
 $n = 3$
 $S = 4$ $x = 2$

$$P(x=2) = \frac{C_x^{S}C_{n-x}^{N-S}}{C_n^{N}} = \frac{C_2^{4}C_1^{6}}{C_3^{10}} = \frac{(6)(6)}{120} = 0.3$$

The probability that 2 of the 3 selected computers have illegal software loaded is 0.30, or 30%.

Hypergeometric Distribution in PHStat

Select:

PHStat / Probability & Prob. Distributions / Hypergeometric ...

Hypergeometric Distribution in PHStat

(continued)

Complete dialog box entries and get output ...

P(X = 2) = 0.3

The Poisson Distribution

The Poisson Distribution

- Apply the Poisson Distribution when:
 - You wish to count the number of times an event occurs in a given continuous interval
 - The probability that an event occurs in one subinterval is very small and is the same for all subintervals
 - The number of events that occur in one subinterval is independent of the number of events that occur in the other subintervals
 - There can be no more than one occurrence in each subinterval
 - The average number of events per unit is λ (lambda)

Poisson Distribution Formula

$$P(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

where:

x = number of successes per unit

 λ = expected number of successes per unit

e = base of the natural logarithm system (2.71828...)

Poisson Distribution Characteristics

Mean

$$\mu = E(x) = \lambda$$

Variance and Standard Deviation

$$\sigma^2 = E[(X - \mu)^2] = \lambda$$

$$\sigma = \sqrt{\lambda}$$

where λ = expected number of successes per unit

Using Poisson Tables

	λ								
X	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
1	0.0905	0.1637	0.2222	0.2681	0.3033	0.3293	0.3476	0.3595	0.3659
2	0.0045	0.0164	0.0333	0.0536	0.0758	0.0988	0.1217	0.1438	0.1647
3	0.0002	0.0011	0.0033	0.0072	0.0126	0.0198	0.0284	0.0383	0.0494
4	0.0000	0.0001	0.0003	0.0007	0.0016	0.0030	0.0050	0.0077	0.0111
5	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007	0.0012	0.0020
6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003
7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Example: Find P(X = 2) if $\lambda = .50$

$$P(X=2) = \frac{e^{-\lambda}\lambda^{X}}{X!} = \frac{e^{-0.50}(0.50)^{2}}{2!} = .0758$$

Graph of Poisson Probabilities

Poisson Distribution Shape

• The shape of the Poisson Distribution depends on the parameter λ :

Poisson Distribution in PHStat

Select:

PHStat / Probability & Prob. Distributions / Poisson...

Poisson Distribution in PHStat

(continued)

Complete dialog box entries and get output ...

Joint Probability Functions

 A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y

$$P(x,y) = P(X = x \cap Y = y)$$

The marginal probabilities are

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

Conditional Probability Functions

 The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X.

$$P(y \mid x) = \frac{P(x,y)}{P(x)}$$

Similarly, the conditional probability function of X, given Y = y is:

$$P(x | y) = \frac{P(x,y)}{P(y)}$$

Independence

The jointly distributed random variables X and Y are said to be independent if and only if their joint probability function is the product of their marginal probability functions:

$$P(x,y) = P(x)P(y)$$

for all possible pairs of values x and y

A set of k random variables are independent if and only if

$$P(x_1, x_2, \dots, x_k) = P(x_1)P(x_2) \dots P(x_k)$$

Covariance

- Let X and Y be discrete random variables with means
 μ_X and μ_Y
- The expected value of (X μ_X)(Y μ_Y) is called the covariance between X and Y
- For discrete random variables

Cov(X,Y) = E[(X-
$$\mu_X$$
)(Y- μ_Y)] = $\sum_{x}\sum_{y}(x-\mu_x)(y-\mu_y)P(x,y)$

An equivalent expression is

Cov(X,Y) = E(XY) -
$$\mu_x \mu_y = \sum_x \sum_y xyP(x,y) - \mu_x \mu_y$$

Covariance and Independence

- The covariance measures the strength of the linear relationship between two variables
- If two random variables are statistically independent, the covariance between them is 0
 - The converse is not necessarily true

Correlation

The correlation between X and Y is:

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- $\rho = 0 \Rightarrow$ no linear relationship between X and Y
- $\rho > 0 \Rightarrow$ positive linear relationship between X and Y
 - when X is high (low) then Y is likely to be high (low)
 - $\rho = +1 \Rightarrow$ perfect positive linear dependency
- $\rho < 0 \Rightarrow$ negative linear relationship between X and Y
 - when X is high (low) then Y is likely to be low (high)
 - $\rho = -1 \Rightarrow$ perfect negative linear dependency

Portfolio Analysis

- Let random variable X be the price for stock A
- Let random variable Y be the price for stock B
- The market value, W, for the portfolio is given by the linear function

$$W = aX + bY$$

(a is the number of shares of stock A,b is the number of shares of stock B)

Portfolio Analysis

(continued)

The mean value for W is

$$\mu_W = E[W] = E[aX + bY]$$
$$= a\mu_X + b\mu_Y$$

The variance for W is

$$\sigma_W^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2abCov(X, Y)$$

or using the correlation formula

$$\sigma_W^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2abCorr(X, Y)\sigma_X \sigma_Y$$

Example: Investment Returns

Return per \$1,000 for two types of investments

		Investment			
$P(x_iy_i)$	Economic condition	Passive Fund X	Aggressive Fund Y		
.2	Recession	- \$ 25	- \$200		
.5	Stable Economy	+ 50	+ 60		
.3	Expanding Economy	+ 100	+ 350		

$$E(x) = \mu_x = (-25)(.2) + (50)(.5) + (100)(.3) = 50$$

$$E(y) = \mu_v = (-200)(.2) + (60)(.5) + (350)(.3) = 95$$

Computing the Standard Deviation for Investment Returns

		Investment		
$P(x_iy_i)$	Economic condition	Passive Fund X	Aggressive Fund Y	
0.2	Recession	- \$ 25	- \$200	
0.5	Stable Economy	+ 50	+ 60	
0.3	Expanding Economy	+ 100	+ 350	

$$\sigma_{X} = \sqrt{(-25-50)^{2}(0.2) + (50-50)^{2}(0.5) + (100-50)^{2}(0.3)}$$

$$= 43.30$$

$$\sigma_y = \sqrt{(-200 - 95)^2(0.2) + (60 - 95)^2(0.5) + (350 - 95)^2(0.3)}$$
= 193.71

Covariance for Investment Returns

		Investment			
P(x _i y _i)	Economic condition	Passive Fund X	Aggressive Fund Y		
.2	Recession	- \$ 25	- \$200		
.5	Stable Economy	+ 50	+ 60		
.3	Expanding Economy	+ 100	+ 350		

$$Cov(X, Y) = (-25-50)(-200-95)(.2) + (50-50)(60-95)(.5)$$

+ $(100-50)(350-95)(.3)$
= 8250

Portfolio Example

Investment X:
$$\mu_x = 50$$
 $\sigma_x = 43.30$

Investment Y:
$$\mu_v = 95$$
 $\sigma_v = 193.21$

$$\sigma_{xy} = 8250$$

Suppose 40% of the portfolio (P) is in Investment X and 60% is in Investment Y:

$$E(P) = .4(50) + (.6)(95) = 77$$

$$\sigma_{P} = \sqrt{(.4)^{2}(43.30)^{2} + (.6)^{2}(193.21)^{2} + 2(.4)(.6)(8250)}$$

$$= 133.04$$

The portfolio return and portfolio variability are between the values for investments X and Y considered individually

Interpreting the Results for Investment Returns

 The aggressive fund has a higher expected return, but much more risk

$$\mu_y = 95 > \mu_x = 50$$
but

 $\sigma_y = 193.21 > \sigma_x = 43.30$

 The Covariance of 8250 indicates that the two investments are positively related and will vary in the same direction

Chapter Summary

- Defined discrete random variables and probability distributions
- Discussed the Binomial distribution
- Discussed the Hypergeometric distribution
- Reviewed the Poisson distribution
- Defined covariance and the correlation between two random variables
- Examined application to portfolio investment