```
In [53]: from sklearn.cluster import KMeans
         import pandas as pd
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.preprocessing import StandardScaler
         from matplotlib import pyplot as plt
         %matplotlib inline
In [69]: | df=pd.read excel(r'DataFinal17-20.xlsx', sheet name='2017')
         df1=df.drop(['Total'], axis=1)
         df1=df1.iloc[:,2:15].values
         #scaler = MinMaxScaler()
         scaler= StandardScaler()
         # transform data
         df1 = scaler.fit_transform(df1)
In [70]: from sklearn.cluster import KMeans
         #create a list for the wcss parameter
         WCSS = []
         #test with 14 clusters
         for i in range(1, 15):
              kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state =0)
              kmeans.fit(df1)
              wcss.append(kmeans.inertia )
In [71]:
         WCSS
Out[71]: [455.0,
          152.7664789538139,
          97.21044553141512,
          53.40858546286942,
          38.40727304203008,
          31.056381108989736,
          23.84985694654172,
          18.34802812829626,
          15.95205386197719,
          14.043031124213531,
          11.969671693923948,
          10.33141102924851,
          9.348423492063928,
          7.8131790896540645]
In [72]: plt.plot(range(1, 15), wcss)
         plt.title('The Elbow Method')
         plt.xlabel('Number of clusters')
         plt.ylabel('WCSS')
         plt.show()
```



```
In [73]: km=KMeans(n_clusters = 4, init = 'k-means++', random_state = 0)
    y_kmeans=km.fit_predict(df1)
```

In [74]: y_kmeans

In [75]: df['cluster']=y_kmeans
 df*head()

Out[75]:

٠	SrNo	State/UT/District	Homicide/Murder	Causing death by negligence	Hurt	Assault on woman	Kidnapping and abduction	Human trafficking	Ra
0	1	Ahmednagar	215	715	886	410	303	0	
1	2	Akola	101	143	1161	144	96	0	
2	3	Amravati	168	273	1553	345	215	2	
3	4	Aurangbad	220	515	1613	474	264	0	
4	5	Beed	164	292	925	196	134	1	

5 rows × 23 columns

```
In [76]: #plt.scatter(df['SrNo'],df['cluster'])
```

Clusters of Districts


```
In [77]: from scipy.cluster.hierarchy import linkage
   import scipy.cluster.hierarchy as sch # for creating dendrogram

In [78]: z = linkage(df1, method="complete",metric="euclidean")

In [79]: plt.figure(figsize=(15, 10))
   plt.title('Hierarchical Clustering Dendrogram')
   plt.xlabel('Features')
   plt.ylabel('Crime')
   sch.dendrogram(z,
        leaf_rotation=0., # rotates the x axis labels
        leaf_font_size=8., # font size for the x axis labels
   )
   plt.show()
```

