

Cursul 3

3 Protocolul IP

18-19 Octombrie 2016

Obiective

- Nivelul rețea
- Protocolul IPv4
- ARP

Cursul 3

Nivelul rețea

- Necesitatea unei adresări globale
- Funcții
- Protocoale

Necesitatea unei adresări globale

- Problemă: Adresele MAC sunt ineficiente pentru rețele mari:
 - Folosesc o schemă de adresare plată ce nu scalează
- Consecință: adresele MAC sunt folosite doar cu vizibilitate locală (în domeniul local de broadcast)
- Soluție: Este necesară folosirea unui alt set de adrese pentru adresare globală
 - Aceste adrese trebuie să fie organizate ierarhic pentru a putea fi gestionate de echipamentele de rețea

Exemplu de adresare ierarhică

Codul poștal:

Funcțiile nivelului rețea

Adresare globală

- Introduce un protocol cu adresare ierarhică numit IP (Internet Protocol)
- Fiecare dispozitiv este identificat în mod unic la nivel global prin adresa sa IP

Comunicație end-to-end fără conexiune

- Protocoalele nivelului rețea sunt de tip best-effort și nu stabilesc conexiuni
- Stabilirea conexiunilor este responsabilitatea protocoalelor de nivel superior

Rutare

 Dispozitive intermediare numite rutere iau decizii de dirijare a traficului în funcție de destinație

Cursul 3

IPv4

- Funcţii
- Format antet
- Adresa IPv4
- Adrese publice şi private
- Clase de adrese
- Procesul de subnetare
- VLSM
- Dezavantaje

Funcțiile IPv4

- IPv4: Internet Protocol, versiunea 4
- Definit în RFC791, în anul 1981
- IPv4 oferă fiecărui dispozitiv din Internet o adresă unică: adresa
 IP
- IPv4 adaugă informația de adresare prinîncapsulare
- PDU-ul (Protocol Data Unit) rezultat ca urmare a încapsulării IP poartă numele de pachet
- Pe baza informației de adresare conținută în antetul IP se realizează dirijarea traficului în Internet

Unicast

Broadcast

Multicast

Sursă: xkcd.com

Formatul antetului

Version	Header length	Type of Service	Total length		
Identification			र्ध <u>ह</u> <u>म</u> Fragment Offset		
Time ⁻	to Live	Protocol	Header checksum		
Source IP Address					
Destination IP Address					
Options					
Data					

Adresa IPv4

- Adresa IPv4 este formată din 4 octeți
- Formatul cel mai folosit este zecimal cu punct:

141 . **85** . **241** . **139**

Utilă pentru calcule mai este reprezentarea adresei în format binar:

10001101 . 01010101 . 11110001 . 10001011

Transformări binar ↔ zecimal

10000000	128
01000000	64
00100000	32
00010000	16
00001000	8
00000100	4
00000010	2
0000001	1

- Adresa IPv4 este compusă din două părți:
 - Partea de rețea
 - Partea de host
- Dispozitivele ce au partea de rețea comună sunt situate în aceeași rețea și pot comunica fără să aibă nevoie de un ruter
- Părțile de rețea și de host se determină folosind masca de rețea (Subnet mask)
- Masca de rețea este o adresă IP specială ce este formată dintrun șir continuu de 1 urmat de un șir continuu de 0:

Masca de rețea

 Deoarece notația zecimală a unei măști de rețea estedificil de utilizat s-a introdus o notație specială:

- /24 poartă numele de prefixul rețelei și reprezintă numărul de 1 din masca rețelei
- O reprezentare completă a unui IP de stație împreună cu rețeaua din care face parte devine:

141.85.241.139/24

 Prin aplicarea operației de AND pe biți între mască și adresa IP se obține adresa de rețea:

Partea de rețea				F —	Partea de host		
141	•	85	•	241	!	139	١
10001101	•	01010101	•	11110001	•	10001011	VVID
11111111	•	11111111	•	1111111	•	0000000	AND
10001101	•	01010101	•	11110001	•	00000000	
141	•	85	•	241	•	0	

- Adresele de rețea au toți biții din partea de host setați pe 0
- Adresa de rețea este folosită de stații pentru a determina dacă să trimită direct destinației sau gateway-ului pachetul

Adresa de broadcast

Prin aplicarea operației de OR pe biți între inversa măștii și adresa
 IP se obține adresa de broadcast a rețelei:

Partea de rețea				 	Partea de host	
141	•	85	•	241		139
10001101	•	01010101	•	11110001	•	10001011
0000000	•	0000000	•	0000000	•	OR 11111111
10001101	•	01010101	•	11110001	•	111111111
141	•	85	•	241	•	255

- Adresele de broadcast au toți biții din partea de host setați pe 1
- Adresa de broadcast este folosită ca adresă destinație în pachete ce vrem să ajungă la toate dispozitivele din respectiva rețea

Adresa de loopback

- O interfață specială a dispozitivelor de rețea esteinterfața de loopback
- Interfața de loopback este virtuală și nu are asociată vreo interfață fizică
- Interfața de loopback este caracterizată prin adresa IP de loopback:

127.0.0.1

 Prin folosirea acestei interfețe se poate testa integritatea stivei de protocoale de pe un sistem

- Stațiile sunt configurate cu IP-urile și măștile din figură. Există vreo problemă cu această configurație?
 - R: Da; A are configurată o adresă de rețea și C are configurată o adresă de broadcast; în plus, C are o mască de rețea diferită de A și B

- Adresele IP greșite au fost corectate. A dă un broadcast. Ce adrese IP sursă și destinație vor fi incluse în antetul IP?
 - R: Sursă: **192.168.17.1**; destinație: **192.168.17.63**
- Care este adresa de rețea a lui A?
 - R: **192.168.17.0**

- Adresele IP au fost istoric clasificate în 5 clase de adrese (A, B, C,
 D și E), fiecare cu o mască specifică
- Inițial dispozitivele luau în considerare aceste clase pentru a determina masca rețelei
- IANA atribuia unei organizații un întreg blocclassful de adrese, însă cele de clasa A erau deseori prea mari și cele de clasa C prea mici
- În rețelele moderne clasele de adrese nu mai sunt relevante

Clase de adrese

Clasele sunt identificate după primii biţi ai primului octet

Clasă	Primul octet	Gama de adrese	Mască	Scop
Α	0	0.0.0.0 - 127.255.255.255	/8	
В	10	128.0.0.0 – 191.255.255.255	/16	
С	110	192.0.0.0 – 223.255.255.255	/24	
D	1110	224.0.0.0 – 239.255.255.255		Multicast
E	1111	240.0.0.0 – 255.255.255.255		Experimental

- Pentru a economisi adrese, RFC1918 a alocat trei spații de adrese pentru rețele private:
 - **-** 10.0.0.0/8 **-** 10.255.255.255/8
 - **-** 172.16.0.0/12 **-** 172.31.255.255/12
 - **-** 192.168.0.0/16 **-** 192.168.255.255/16
- Adresele private nu pot fi atribuite unei organizații și nu pot fi folosite în Internet
- Pentru a conecta o stație cu adresă privată la Internet aceasta trebuie translatată la o adresă publică, proces numit NAT (Network Address Translation)

 Istoric, un subnet reprezenta o rețea obținută prin deplasarea la dreapta a unei măști de rețea classful:

Rețelele actuale au abandonat ideea de rețele classful și folosesc
 VLSM (Variable Length Subnet Mask); în acestea un subnet nu este cu nimic diferit de o rețea

- O definiție actuală pentru subnet ar putea fi orice rețea ce face parte din spațiul de adresă a unei rețele mai mari
- Procesul de subnetare (subnetting) constă în a împărți o rețea mai mare în mai multe rețele ce respectă un set de cerințe

- Înțelegerea procesului de subnetare ne ajută să răspundem la întrebările:
 - Este blocul de adrese cumpărat suficient pentru cerințele organizației?
 - Putem organiza rețelele astfel încât să fim pregătiți pentru extinderea numărului de stații?
 - Este necesară o atribuire optimă a spațiilor de adresă sau este suficientă împărțirea egală între departamente?
 - Putem optimiza tabelele de rutare dacă avem o rețea mare?
- Există două tipuri de subnetare:
 - În subnet-uri egale
 - Optimă (cu pierdere minimă de adrese)

Subnetare

- Exemplu: Să se subneteze spațiul de adrese 192.168.10.0/24
 pentru a acomoda trei rețele având 60, 30 respectiv 15 stații.
 Subrețelele obținute să fie egale ca dimensiune.
 - Avem nevoie de 3 subrețele deci trebuie împrumutați2 biți pentru partea de subrețea a adresei IP

Rețeaua de subnetat: 192 . 168 . 10 . 0 /24

Primul subnet: 11000000.10101000.00001010.00000000/26

Al doilea subnet: 11000000.10101000.00001010.01000000/26

Al treilea subnet: 11000000.10101000.00001010.10000000/26

Rețeaua de subnetat: 192 . 168 . 10 . 0 /24

Primul subnet: 11000000.10101000.00001010.00000000/26

Al doilea subnet: 11000000.10101000.00001010.01000000/26

Al treilea subnet: 11000000.10101000.00001010.10000000/26

- Cerințele de subrețele erau de 60, 30 și 15 stații. Sunt suficient de mari subrețelele obținute?
 - R: Da. Necesarul este de 6, 5, respectiv 5 biţi de staţie. De ce sunt 5 biţi necesari pentru ultima subreţea?
- Cât de multe adrese IP de stații au fost risipite?
 - R: 62 60 = 2; 62 30 = 32; 62 15 = 47; Total: 81

- Putem reduce pierderea de adrese folosindsubnetare bazată pe VLSM
- VLSM permite creare de subnet-uri ce nu mai au măști de aceeași lungime

- Reluăm exemplul anterior: Să se subneteze spațiul de adrese
 192.168.10.0/24 pentru a acomoda trei rețele având 60, 30 respectiv 15 stații. Subnetarea să risipească un număr minim de adrese.
 - Se observă că pentru cele trei rețele avem nevoie de 6, 5 respectiv 5 biți de host
 - Putem reprezenta arborescent divizarea ierarhică a ultimului octet:

• Cât de multe adrese IP de stații au fost risipite?

- R:
$$62 - 60 = 2$$
; $30 - 30 = 0$; $30 - 15 = 15$; Total: 17

- Să se subneteze optim spațiul de adrese **172.18.240.0/23** astfel încât să fie acomodate cerințele:
 - O rețea cu 200 de host-uri
 - O rețea cu 90 de host-uri
 - Două rețele cu 20 de host-uri
 - O rețea cu 6 host-uri
 - Trei rețele cu 4 host-uri

Exercițiu

Exercițiu

- R:
 - **172.18.240.0/24**
 - **172.18.241.0/25**
 - **172.18.241.128/27**
 - **172.18.241.160/27**
 - **172.18.241.192/29**
 - **172.18.241.200/29**
 - **172.18.241.208/29**
 - **172.18.241.216/29**

Adrese insuficiente pentru a face față creșterii numărului de dispozitive cu acces la Internet

Antet complicat

Nu suportă pachete de dimensiuni foarte mari

Suport redus pentru Multicast și IPsec

NAT introduce multe probleme

Cursul 3

ARP

- Descriere
- Format antet
- Exemplu
- Proxy ARP

- Când o stație vrea să trimită un pachet într-o rețea Ethernet, aceasta dispune de adresa IP dar nu și de adresa MAC
- Pentru a putea transmite cadrul și a fi acceptat la destinație este necesară determinarea acestei adrese
- Protocolul care determină adresa MAC pornind de la adresa IP poartă numele de ARP (Address Resolution Protocol)

Hardware Type						
Protocol Type						
Hardware Address Length	Protocol Address Length					
Operation (1 = request; 2 = reply)						
Sender Hardware Address (48 bits)						
Sender Protocol Address (32 bits)						
Target Hardware Address (48 bits)						
Target Protocol Address (32 bits)						

Exemplu ARP

 Inițial emițătorul dă un mesaj la adresa MACFFFFFFFFFFFFFFF și adresa IP a destinației în care cere adresa MAC

Doar stația cu IP-ul respectiv va răspunde, restul vor ignora

Proxy ARP

- Tehnică de ARP
- Ruterul răspunde cu propria sa adresă MAC pentru o adresă IP aflată în afara rețelei emițătorului

- Staţia sursă verifică dacă destinaţia se află în aceeaşi reţea
- Dacă da, cererea ARP va conţine adresa IP destinaţie
- Dacă nu, cererea ARP va conţine adresa IP a default gatewayului
- Ce se întâmplă în cazul în care sursa nu ştie adresa default gateway-ului?
 - R: Va trimite un cadrul ARP de broadcast la care îi va răspunde ruterul de la ieşirea din rețea doar dacă are serviciul de proxy ARP activat.

- Un ruter va avea câte o tabelă ARP pe fiecare interfaţă multiacces activă.
- Câte tabele ARP are un switch? De ce?
 - R: 0.

ARP - Exemplu

