

## SY B.Tech Semester-IV (AY 2022-23)

**Computer Science and Engineering (Cybersecurity and Forensics)** 

| Assign No. | List of Assignments                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------|
| 1.         | Write a program using JAVA or Python or C++ to implement any classical cryptographic technique.                    |
| 2.         | Write a program using JAVA or Python or C++ to implement Feistal Cipher structure                                  |
| 3.         | Write a program using JAVA or Python or C++ to implement S-AES symmetric key algorithm.                            |
| 4.         | Write a program using JAVA or Python or C++ to implement RSA asymmetric key algorithm.                             |
| 5.         | Write a program using JAVA or Python or C++ to implement integrity of message using MD5 or SHA                     |
| 6.         | Write a program using JAVA or Python or C++ to implement Diffie Hellman Key Exchange Algorithm                     |
| 7.         | Write a program using JAVA or Python or C++ to implement Digital signature using DSA.                              |
| 8.         | Demonstrate Email Security using - PGP or S/MIME for Confidentiality, Authenticity and Integrity.                  |
| 9.         | Demonstration of secured web applications system using SSL certificates and its deployment in Apache tomcat server |
| 10.        | Configuration and demonstration of Intrusion Detection System using Snort.                                         |
| 11.        | Configuration and demonstration of NESSUS tool for vulnerability assessment.                                       |



Write a program using JAVA or Python or C++ to implement RSA asymmetric key algorithm.



## **Objectives:**

\* Public key cryptography is used as a method of assuring the confidentiality, authenticity and non-repudiation of electronic communications and data storage.



# Classical Cryptography

#### **Basic Terminology**

- Plaintext- the original message
- Ciphertext the coded message
- Cipher algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- Decipher (decrypt) recovering ciphertext from plaintext
- Cryptography study of encryption principles/methods
- Cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
- Cryptology the field of both cryptography and cryptanalysis







## RSA Encryption and Decryption

- 1. Selecting two large primes at random: p, q
- 2. Compute,  $\mathbf{n} = (\mathbf{p} * \mathbf{q})$
- 3. Compute:  $\emptyset(n) = (p-1)(q-1)$
- 4. Select the public key (i.e. the encryption key)  $\mathbf{e}$  such that it is not a factor of (p-1) and (q-1). It means  $1 < \mathbf{e} < \emptyset(\mathbf{n})$ ,  $GCD[\mathbf{e}, \emptyset(\mathbf{n})] = 1$
- 5. Select the private key (i.e. the decryption key  $\mathbf{d}$ ):  $(\mathbf{d} * \mathbf{e}) [\mathbf{mod} (\mathbf{p-1})(\mathbf{q-1})] = \mathbf{1}$
- 6. Publish their public encryption key:  $PU = \{e, n\}$
- 7. Keep secret private decryption key:  $PR = \{d, n\}$



9. To encrypt a message M the sender:

Computes Ciphertext :  $C = M^e \mod n$ , where  $0 \le M \le n$ 

10. To decrypt the ciphertext C the owner:

Computes:  $M = C^d \mod n$ 

**Note that:** The message M must be smaller than the modulus n (block if needed)



#### **Input/Output:** For Encryption

- 1. Enter the prime no.: p, q (Check the given no is prime or not?)
- 2. Calculate : n,  $\phi(n)$ , e and d
- 3. Enter plaintext (message): M
- 4. For encryption, calculate: ciphertext (C)

#### **For Decryption:**

- 1. Enter the prime no.: p, q (Check the given no is prime or not?)
- 2. Calculate : n,  $\phi(n)$ , e and d
- 3. Enter ciphertext (message): C
- 4. For decryption, calculate: plaintext (M)



### **OUTPUT:**

Enter the plain text: 10

Enter p: 7

Enter q: 17

Value of e is 5

Value of d: 77

Cipher Text:40

Plain Text:10



