

EE 306001 Probability

Lecture 1: sample space 李祈均

Why probability

A systematic (mathematical) way of describing our 'belief' or the 'likelihood' of event occurrences that helps us make decisions

- Especially important in real life:
 - Randomness, noise, unknown rule
- Engineering applications
 - Detection (e.g., radar)
 - Communication (e.g., noise effect)
 - Prediction/recognition (e.g., statistical model)
- Other fields: almost everything in life
 - Gambling
 - Store management
 - Economics
 - Risk management
 - etc

Lecture Outline

- Reading: Section 1.1, 1.2
- Probabilistic mathematical model for:
 - Reasoning about uncertainty
 - Developing approaches to inference problems
- Probabilistic models
 - Sample space
 - Probability law
- Axioms of probability
- Simple examples

What is a sample space?

We do an (random) experiment ->

A list (set) of all possible things (outcomes) that may happen during this experiment

e.g., flipping a coin (H & T)

Sample Space Ω

- "List" (set) of possible outcomes
- Requirements:
 - Mutually exclusive
 - Collectively exhaustive
- Art: to be at the "right" granularity
 - Pick (decide) appropriate sample space for your problem
 - Let's think about 'coin-flipping' exp. again
 - Real world, real life

Sample space: discrete example

- Two rolls of a tetrahedral die (4-sided)
 - Two rolls as 1 single experiment
- Sample space of this experiment?

Sample space: 16 elements – a finite set

Tree-diagram of sample space

Sequential description

Relation to previous diagram?

Each <u>outcome</u> corresponds to each path (leaves) on the tree diagram

Subtly of wordings ('result' not 'outcome')

Outcome = (2, 1)

Experiment consists of 'stages'

Sample space: infinite example

$$\Omega = \{0 \le x, y \le 1\}$$

Darts-playing

Experiment:

Randomly fall inside the unit square only

Outcomes:

All possible point in unit square are possible outcomes

A typical question raised:

Which outcome is more likely to occur compared to others?

Assign probabilities to individual outcome?

- Not really
- Any single point (real value) with infinite precision
- Zero probability

Instead, assign probabilities to subsets of sample space

Assign a numerical number to represent our belief on how likely this subset would occur

- Subset of sample space : EVENTS
- Outcome is a 'point', and 'random',
 - If occurred inside the event A, then event A occurred
- Assign probability to events
- How?

Axioms of probability

Event: a subset of sample space (collection of elements)

Rule of Probability: Probability is assigned to events

Axioms:

- Non-negativity: P(A) ≥ 0
- Normalization: $P(\Omega) = 1$
- Additivity

Collectively exhaustive

The intersection of A and B

 $A \cap B$

An outcome falls in this regions:

Event A AND Event B has occurred

The union of A and B

 $A \cup B$

An outcome falls in this regions:

Event A OR Event B has occurred

Axiom 3

- Additivity
- If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
- Imagining probability behaves like mass

Interesting point

No axiom on $P(A) \le 1$?

Let's try something:

Axiom 2:
$$P(\Omega) = 1$$

 Ω Consists of A and A^c (A complement)

Axiom 3:
$$P(\Omega) = P(A) + P(A^c) = 1$$

Axiom 1:
$$P(A) \ge 0$$

Now we get,

$$P(A) \leq 1$$

Trivial example

 Ω

$$P(A \cup B \cup C)$$
?

Simply, iteratively use axiom 2

$$A' = \{A \cup B\}$$
$$P(A \cup B \cup C) = P(A' \cup C)$$

$$= P(A) + P(B) + P(C)$$

Generalize this to *n* disjoint sets

Special case of this axiom for finite set sample space

- Form 1-element set
 - (note! probability assigned to set)
 - 1-element set(event) is a single outcome

Single element set

$$P(\{s_1, s_2, s_3, \dots, s_k\}) = P(\{s_1\}) + \dots + P(\{s_k\})$$

= $P(s_1) + \dots + P(s_k)$

Individual outcome

Weird sets exist in a given sample space?

Yes, e.g., the square sample space

Non-visualizable, impossible to assign probability to it – very subtle mathematical point

Probability law: assign probability to each outcome examples with finite sample space

	1	2	3	4
1				
2				
3				
4				

Assign a probability law (arbitrarily): 1/16 for each outcome

- P((X,Y)is (1,1) or (1,2))
 - 1/16 + 1/16
- $P({X = 1})$ (reads as: the set of all outcomes such that x is equal to 1)
 - 4/16
- P(X + Y is odd)
 - Eight of them (8/16)
- $P(\min(X,Y)=2)$
 - Let's go to the diagram (5/16)

Now you have learned it all: Steps to make probabilistic reasoning

- Setup sample space
- Statement about probability law
- Identify events, and calculate probability for those outcomes of interest

The previous example?
Discrete uniform probability law

- Discrete uniform law
 - Boils down to counting
 - Counting can be extremely complicated really fast

- Discrete uniform law
 - Let all outcomes be equally likely
 - Fair coin, fair dice, well-shuffled cards
 - Then

$$P(A) = \frac{\text{number of elements of A}}{\text{total number of sample points}}$$

Continuous uniform law

Assign a probability law:

- Probability law = area of interest
 - This means:

two subsets of sample space with equal area, it is equally likely that the outcome with fall into one area vs. the other area

•
$$P\left(X+Y\leq\frac{1}{2}\right)=1/8$$

•
$$P((X,Y) = (0.5,0.3)) = 0$$

Moral of the story:

- Once probability law in hand, it's easy
- The hard part really comes from calculus and algebra (not from probability)

Third axiom needs to be strengthened

Think of a new experiment:

 You keep flipping a coin and you wait until you obtain heads for the first time

Sample space:

- Outcomes of this experiment is integer (with no upper bounds)
- Set of all possible integers

Let's do this as example

Sample space: {1,2,...}

- Probability law is given:
- $-P(n) = 2^{-n}, n = 1,2,3...$
- Find P(outcome is even)

Probability of subset that includes just even numbers

- e.g., 2, 4, 6, 8, ..., so on
- Add up infinite geometric sequences: 1/3

Can we do it directly from axiom 3?

Axiom 3 applies only for countable finite set of sample space Here, infinite collections

 $P(A \cup B \cup C)$?

Simply, iteratively use axiom 2

$$A' = \{A \cup B\}$$
$$P(A \cup B \cup C) = P(A' \cup C)$$

$$= P(A) + P(B) + P(C)$$

Generalize this to *n* disjoint sets

Need one more,

Countable additivity axiom

If A1, A2, ... are disjoint then:

$$P(A_1 \cup A_2 \cup A_3 \cup, ...) = P(A_1) + P(A_2) + ...$$

Sequence of sets (events), occurred in order, and countable, probability on sequence of sets getting smaller smaller (disjoint) -> you can just add