Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.12.03

Key words: Linear Algebra method, Frankl-Wilson Thm

Recall:

- (1) intersecting family $\mathcal{F} \subset 2^{[n]}$: $\forall A, B \in \mathcal{F}, |A \cap B| \neq 0$
- (2) Fisher inequality: let A_1, \dots, A_m be subsets of [n], $|A_i \cap A_j| = k$, for some fixed $k \in [n]$, then $m \leq n$

<u>Def:</u> $\mathcal{F} \subset 2^{[n]}$, $L \subset \{0, 1, \cdots\}$ be a finite set of integers, say \mathcal{F} is L-intersecting if $|A \cap B| \in L$ for $\forall A \neq B \in \mathcal{F}$

Theorem 1 (Frankl-Wilson). If \mathcal{F} is an L-intersecting family over [n], then $|\mathcal{F}| \leq \sum_{i=0}^{|L|} \binom{n}{i}$.

Note: The bound is best possible: Let $L=\{0,1,\cdots,k\}$ $\mathcal{F}=\{\emptyset\}\cup\binom{[n]}{1}\cup\cdots\binom{[n]}{k+1}$

Note:

- (1) Let F is a field $(\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{F}_q)$, Ω is a set. $F^{\Omega} = \{\text{function:}\Omega \to F\}$ is a linear space over F. A set of functions f_1, \dots, f_m is linearly independent if \forall combination $\lambda_1 f_1 + \dots + \lambda_m f_m = 0, \lambda_i \in F$, then $\lambda_i = 0, i \in [m]$
- (2) Consider $\{f(x_1, \dots, x_n) \text{ polynomials with degree} \leq d\}$, then each of f is combination of $x_1^{t_1} \cdots x_n^{t_n}$, with $t_1 + \dots + t_n \leq d, t_i \geq 0$. The dimension is $\sum_{i=0}^{d} {i+n-1 \choose i} = {n+d \choose d}$

<u>Lemma</u> 1 (Independence criterion). If $i \in [m]$, let $f_i : \Omega \to F$ (where F is a field) be functions and $v_i \in \Omega$ such that

(1) $f_{i}(v_{i}) \neq 0, \forall i \in [m]$. (2) $f_{i}(v_{j}) = 0, \forall 1 \leq j < i \leq m$. Then f_{1}, \dots, f_{m} are linearly independent in the function space F^{Ω} . The proof:

$$\lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_m f_m = 0$$

Suppose j is the smallest index such that $\lambda_i \neq 0$, then

$$0 = \lambda_{j+1} f_{j+1}(v_j) + \lambda_{j+2} f_{j+2}(v_j) + \dots + \lambda_n f_n(v_j) = -\lambda_i f_j(v_j) \neq 0$$

proof of Thm1:.

Suppose $\mathcal{F} = \{A_1, \cdots, A_m\}$, with $|A_1| \leq \cdots \leq |A_m|$, and L = $\{l_1, \dots l_s\}$. Let v_i be the indicator vector of A_i , $i \in [m]$, then $\langle v_i, v_j \rangle = |A_i \cap A_j| = l_k \text{ for some } k \in [s]. \text{ For } i = 1, \dots, m,$ define f_i with n variables $\vec{x} = (x_1, \dots, x_n)$ by

$$f_i: \mathbb{R}^n \to \mathbb{R}$$
.

$$f_i(\vec{x}) = \prod_{k:l_k < |A_i|} (< v_i, \vec{x} > -l_k).$$

 $f_i(v_i) \neq 0, \forall i \in [m]$

If $1 \le j < i \le m$, $< v_i, v_j > = |A_i \cap A_j| < |A_i| \implies f_i(v_j) = 0$ By **Lemma1**, f_1, \dots, f_m are linearly independent over \mathbb{R} .

 f_i are polynomials of degree at most $s, : m \leq \sum_{i=0}^{s} {i+n-1 \choose i}$, but we can do it better!

Define new polynomials f_i form f_i by replacing all term $x_i^{r_i}$ $(r_i \ge 1)$ by x_i . Since v_i are 0-1 vectors, we have $\bar{f}_i(v_i) = f_i(v_i), \forall i, j$, so $\bar{f}_i, \dots, \bar{f}_m$ are linearly independent, who lie in a space with basis $x_1^{r_1} \cdots x_n^{r_n}$ with $r_1 + \cdots + r_n \le s$ and $r_i \in \{0, 1\} \Longrightarrow m \le \sum_{i=0}^{s} {n \choose i}$.

Theorem 2. Let p be a prime and $L \subset \mathbb{Z}_p = \{0, 1, \dots, p-1\}$. Assume $\mathcal{F} = \{A_1, \dots, A_m\} \subset 2^{[n]}$ such that

- (a) $|A_i| \notin L \pmod{p}, \forall i \in [m].$
- (b) $|A_i \cap A_i| \in L \pmod{p}, \forall i \neq j$.

Then
$$|\mathcal{F}| \leq \sum_{i=0}^{|L|} \binom{n}{i}$$

Hint: $f_i : \mathbb{R}^n \to \mathbb{F}_p$, $f_i(x) = \prod_{l \in L} (\langle v_i, x \rangle - l) \pmod{p}, i \in [m]$.

Note: Consider $p = 2, L = \{0\}$, then $|A_i|$ is odd and $|A_i \cap A_j|$ is even $(\forall i \neq j), |\mathcal{F}| \leq n + 1$ (Actually $|\mathcal{F}| \leq n$, which will be proved in **Odd/Even Town**)

Ramsey number R(s,t) = least integer N s.t. any graph on N vertices has either a K_s or an I_t

- (1) $2^{\frac{t}{2}} < R(t,t) < {2t-2 \choose t-1} < 2^{2t}$
- (2) $R(t,t) > (t-1)^2$. (Homework 11.8)
- (3) $R(s,t) > \Omega(t^3)$ 1972, Zsigmond Nagy
- (4) $R(t,t) > t^{\Omega(\ln t / \ln \ln t)}$. 1977, Frankl, 1981 F&W lison.

Theorem 3. For any prime p, there is a graph G on $n = \binom{p^3}{p^2-1}$ vertices s.t. the size of maximum clique or maximum independent set is $\leq \sum_{i=0}^{p-1} \binom{p^3}{i}$.

proof:

 $\overline{\text{Let } G} = (V, E)$ be as follows

- $V = \binom{[p^3]}{p^2-1}$
- for $A, B \in V, A \sim B$ iff $|A \cap B| \neq p 1 \pmod{p}$.
- (i) consider the cliques $A_1, \dots, A_m \in V, |A_i| = p^2 1 = p 1 \pmod{p},$ $|A \cap B| \neq p - 1 \pmod{p}$ means $|A \cap B| \in L \pmod{p}$, where

 $|A \cap B| \neq p-1 \pmod{p}$ means $|A \cap B| \in L \pmod{p}$ $L = \{0, 1, \dots, p-2\} \subset \mathbb{Z}_p$.

By **Thm2**, we have $m \leq \sum_{i=0}^{p-1} {p^3 \choose i}$.

(ii) consider the independent sets
$$B_1, \dots, B_s$$
, $|B_i \cap B_j| = p - 1 \pmod{p}$, so $|B_i \cap B_j| \in \{p - 1, 2p - 1, \dots, p(p - 1) - 1\} = L^* \subset \mathbb{Z}_{\geq 0}$. and $|L^*| = p - 1$, By **Thm1**, we have $s \leq \sum_{i=0}^{p-1} {p^3 \choose i}$.

Corollary 1. $R(t+1,t+1) \ge t^{\Omega(\ln t/\ln \ln t)}$

proof(sketch) :.

Let
$$t = \sum_{i=0}^{p-1} {p^3 \choose i}$$
, $n = {p^3 \choose p^2-1} \Longrightarrow R(t+1,t+1) > n$
Recall $(\frac{n}{k})^k \le {n \choose k} \le (\frac{en}{k})^k \Longrightarrow$
 $t \sim {p^3 \choose p} \sim (\frac{p^3}{p})^p = p^{2p}$
 $n \sim {p^3 \choose p^2} \sim p^{p^2}$
 $\ln t \sim p \ln p$, $\ln \ln t \sim \ln(p \ln p) = \ln p + \ln \ln p \sim \ln p$
 $p \sim \frac{\ln t}{\ln \ln t}$, $n \sim (p^{2p})^{\frac{p}{2}} = t^{\Omega(\ln t/\ln \ln t)}$