DEVOIR DE CONTRÔLE N°3 58 059 297 12 mai 2023

ÉPREUVE : Sciences physiques

CLASSES: 2ème SC3

DURÉE : 1 heures & SOUSSE COEFFICIENT : 4

Lycéesuilote Sousse

Prof : Anwar B.M'barek

(C flexible

demi

Toutes les solutions sont étudiées à 25°C, température à laquelle le produit ionique de l'eau est égal à 10 -14. On dispose au laboratoire des solutions aqueuses suivantes :

 (S_1) : solution aqueuse d'acide nitrique HNO₃ (acide fort) de concentration molaire $C_1 = 25.10^{-2}$ mol.L⁻¹,

(S₂) : solution aqueuse de potasse KOH de concentration molaire C₂ et de pH égal 12,4,

(S₃): solution d'acide nitreux HNO₂ de concentration molaire $C_3 = 10^{-2}$ mol.L⁻¹ et le prégal à 2,7.

I-1. On prélève 5 mL de la solution (S₁) qu'on introduit dans un tube à essai On ajoute au contenu du tube

Indiquer, en justifiant votre réponse, la couleur que prend le contenu du tube.

2. a) Ecrire l'équation d'ionisation de HNO₃ dans l'eau.

b) Déterminer la molarité de chacun des ions présents dans a solution (S1).

3. Déterminer le pH de la solution (S₁) (2,5 = $10^{0,4}$).

4. Prouver que l'acide nitreux est faible et écrire l'équation de sa réaction avec l'eau.

II-1. La potasse, est-elle un acide ou une base ? Justifier voire réponse.

2.a) Montrer que la molarité des ions hydroxyde dans une solution aqueuse, s'exprime en fonction de son pH comme suit : [OH-] = 10 PH - 14

b) Sachant que KOH est à caractère fort, déduire que $C_2 = C_1$.

3. À un volume V_0 = 10 mL de la solution (5), on ajoute un volume V_e d'eau distillée de façon que son

a) Préciser, en justifiant votre réponse si cette variation de pH est une diminution ou une augmentation.

b) Déterminer le volume Ve

III- À un volume $V_1 = 18$ mL de la solution (S_1), on ajoute un volume $V_2 = 30$ mL de la solution (S_2). 30 mL u. SSE-58 05 92 12 pts On obtient un mélange note M.

1. Écrire l'équation de la reaction qui a lieu lors du mélange. 2. Le mélange obtenu est-il acide, basique ou neutre dustifier.

3. Déterminer le pH du mélange (M).

PHYSIQUE

On prendra pour intensité de la pesanteur celle admise à Tunis, soit : $\|\vec{g}\| = 9,80 \text{ N.kg}^{-1}$

Exercice n°1 (6 points)

Dans un tube en U disposé verticalement et contenant de l'eau, on verse, dans l'une de ses branches, de l'huile d'olive.

Les niveaux des liquides dans les deux branches sont différents (les points A et E n'ont pas la même altitude).

On donne:

 $h_1 = 10 \text{ cm}$, $h_3 = 6 \text{ cm}$, $\rho_{eau} = 1 \text{ g.cm}^{-3}$ et $\rho_{huile} = 0.91 \text{ g.cm}^{-3}$. Pression atmosphérique : p_{atm} = 1,013 bar.

1. a) Quelle est la pression au point A de la surface libre de l'eau que contient l'une des branches du tube / www.facebook.com/CopiePilotee

b) Des 050 297 rs la pression qui existe au point B.

2. a) Quelle est la pression au point C ? Justifier votre réponse.

- b) Déterminer la hauteur h2 de la colonne d'huile (voir schéma).
- 3. Déterminer la pression au point D. 58 059 297

58 059 297

Exercice n°2 (6 points)

Un iceberg, de volume V = 500 m³, flotte en pleine mer.

On donne:

Masse volumique de la glace don est constitué (iceberg : ρ_{glace} = 920 kg.m⁻³ Masse volumique de l'équi de mer : p_{mer} = 1025 kg.m

- 1. a) Calculer la mase M de cet iceberg.
 - b) Déduire la valeur du poids de cet iceberg.
- 2. Déterminer la valeur de la poussée d'Archimède si l'iceberg était totalement immergé dans l'eau de mer.
- 3. En déduite le pourcentage de la partie immergée de l'iceberg.

COPIE PILOTE SOUSSE SOU SEPHOTE-SOUSSE-58 05 29