L.J INSTITUTE OF ENGINEERING AND TECHNOLOGY, Ahmedabad THEORY OF COMPUTATION(TOC) SEM-IV CE/IT DEPARTMENT

subj ect_ code	unit _nu mbe _r	chapt er_n umbe r	gro up_ id	Keywo rds	question_text	Туре	ans wer _tex t	m ar ks	difficult y_level	pr ev io us _y ea	opti on1	opti on2	optio n3	opti on4
0.1.70				- ·		F (7.1			-	r				
0170 1349 2	1	1	1	Basics of Automa ta	Give True or False: If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$	True/False	True	1	Easy					
0170 1349 2	1	1	2	Basics of Automa ta	Give True or False: If $x \in A$ and $A \subseteq B$ then $x \in B$	True/False	True	1	Easy					
0170 1349 2	1	1	3	Basics of Automa ta	If $n(A) = 110$, $n(B) = 300$, $n(A - B) = 50$ then find $n(A \cup B)$	MCQ	350	1	Easy		300	360	110	350
0170 1349 2	1	1	4	Basics of Automa ta	RR* can be expressed in which of the forms:	MCQ	a) R+	1	Easy		a) R+	b) R-	c) R+U R-	d) R
0170 1349 2	1	1	5	Basics of Automa ta	If $\Sigma = \{0,1\}$, then Φ^* will result to:	MCQ	a) ε	1	Easy		a) ε	b) Ф	c) <u>S</u>	d) Non e of the ment ion
0170 1349 2	1	1	6	Basics of Automa ta	Which among the following is not an associative operation?	MCQ	d) Non e of the ment ione d	1	Easy		a) Uni on	b) Con cate nati on	c) Dot	d) Non e of the ment ione d
0170 1349 2	1	1	7	Regular Express ion	Which of the following statements about Regular Expression Is/are	MCQ	c) The itera	1	Medium		a) The unio	b) The conc	c) The iterat	d) All

					incorrect?		tion of a regu lar expr essio n is also a regu lar expr essio n			n of two regu lar expr essi ons is also a regu lar expr essi on	aten atio n of two regu lar expr essi ons is also a regu lar expr essi on	ion of a regul ar expre ssion is also a regul ar expre ssion	
0170 1349 2	1	1	8	Basics of Automa ta	Dot operator in regular expression resembles which of the following?	MCQ	a) Expr essio ns are juxta pose d	1	Medium	a) Expr essi ons are juxt apos ed	b) Expr essi ons are mult iplie d	c) Cros s opera tion	d) Non e of the ment ione d
0170 1349 2	1	1	9	Basics of Automa ta	Which of the following regular expressions represents the set of strings which do not contain a substring 'rt' if $\Sigma = \{r, t\}$	MCQ	d) (t*r*)	1	Hard	a) (rt)*	b) (tr)*	c) (r*t*)	d) (t*r*)
0170 1349 2	1	1	10	Basics of Automa ta	If $\Sigma = \{0,1\}$, then Φ^* will result to:	MCQ	а) є	1	Medium	a) ε	b) Ф	c) <u>\(\(\)</u>	d) Non e of the ment ione d

0170 1349 2	1	1	11	Basics of Automa ta	Finite automata requires minimum number of stacks.	Short Que.	0	1	Easy				
0170 1349 2	1	1	12	Basics of Automa ta	FSM with output capability can be used to add two given integer in binary representation.	True /False	True	1	Easy				
0170 1349 2	1	1	13	Basics of Automa ta	Differentiate between (a.b) and (a+b)?	Short Que.		1	Easy				
0170 1349 2	1	1	14	Basics of Automa ta	Define: Transition Diagram	Short Que.		1	Easy				
0170 1349 2	1	1	15	Basics of Automa ta	What are the applications of automata theory?	Short Que.		1	Medium				
0170 1349 2	1	1	16	Basics of Automa ta	What is a Regular language?	Short Que.		1	Medium				
0170 1349 2	1	1	17	Basics of Automa ta	Differentiate L* and L+	Short Que.		1	Medium				
0170 1349 2	1	1	18	Basics of Automa ta	What is the closure property of regular sets?	Short Que.		1	Medium				
0170 1349 2	1	1	19	Basics of Automa ta	The appropriate precedence order of operations over a Regular Language is	MCQ	Klee ne, Dot, Unio n	1	Easy	Klee ne, Uni on, Con cate nate	Klee ne, Star, Uni on	Klee ne, Dot, Unio n	star, Unio n, Dot

0170 1349 2	2	2	20	Regular Express ion	RR* can be expressed in which of the forms:	MCQ	a) R+	1	Medium	a) R+	b) R-	c) R+U R-	d) R
0170 1349 2	2	2	21	Basics of Automa ta	What Automata Theory ?	Short Ques		1	Easy				
0170 1349 2	2	2	22	Basics of Automa ta	What is the difference between the strings and the words of a language?	Short Que.		1	Easy				
0170 1349 2	2	2	23	Regular Express ion	Define Regular Expression?	Short Que.		1	Easy				
0170 1349 2	2	2	24	Basics of Automa ta	Define FA	Short Que.		1	Medium				
0170 1349 2	2	2	25	Regular Express ion	Regular expression for all strings starts with ab and ends with bba is?	Short Que.		2	Medium				
0170 1349 2	2	2	26	Basics of Automa ta	The basic limitation of finite automata is that.	MCQ	It can't reme mbe r arbit rary large amo unt of infor mati on.	1	Medium	It can' t rem emb er arbit rary larg e amo unt of infor mati on.	It som etim es reco gniz e gra mm ar that are not regu lar) It some times fails to recog nize regul ar gram mar	All of the ment ione d
0170 1349 2	2	2	27	Regular Express ion	Which of the following is not a regular expression?	MCQ	[(0+ 1)- (0b+ a1)*	1	Medium	[(a+ b)*- (aa+ bb)	[(0+ 1)- (0b+ a1)*	(01+ 11+1 0)*	(1+2 +0)* (1+2)*

							(a+b)]*					(a+b)]*		
0170 1349 2	2	2	28	Regular Express ion	The language described by the regular expression $(0+1)*0(0+1)*0(0+1)*$ over the alphabet $\{0\ 1\}$ is the set of	MCQ	All strin gs cont ainin g at least two 0's	1	Hard	s g c a n l	All strin gs cont sini ng at east wo	All strin gs that begin and end with either 0's or 1's	All strin gs conta ining at least two 0's	All strin gs cont ainin g the subst ring 00
0170 1349 2	2	2	29	Regular Express ion	What is a Regular language?	Short Que.		1	Medium					
0170 1349 2	2	2	30	Regular Express ion	Construct a r.e for the language which accepts all strings with at least two c's over the set $\Sigma = \{c,b\}$	Short Que.		1	Medium					
0170 1349 2	2	2	31	Regular Express ion	Give a regular expression for the following regular language: The set of all strings containing 00.	Short Que.		1	Medium					
0170 1349 2	2	2	32	Regular Express ion	for which of the following applications regular expressions can be used?	MCQ	All of thes e	1	Easy	g g c	om oiler	Dev elop ing text edit ors	Simu latin g sequ entia 1 circu its	All of these
0170 1349 2	2	2	33	Regular Express ion	Regular Expression R and the language it describes can be represented as:	MCQ	c) R, L(R)	1	Easy		R(L)	b) L(R) , R(L)	c) R, L(R)	d) All of the ment ione d

0170 1349 2	2	2	34	Regular Express ion	If R is a regular expression, then which of the followings is FALSE?	MCQ	d) (R*) * = R+	1	Easy	a) R*= R*+ ε	b) R*R *= R*	c) εR= R	d) (R*) * = R+
0170 1349 2	2	2	35	Regular Express ion	Define Dead-End State with Example	Short Que.		1	Medium				
0170 1349 2	2	2	36	Regular Express ion	Write Regular Expressions for the following languages of all strings in $\{0,1\}^*$ (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones)	Short Que.		2	Medium				
0170 1349 2	2	2	37	Regular Express ion	Define regular language and regular expressions	Short Que.		1	Medium				
0170 1349 2	2	2	38	Regular Express ion	Find regular expression for the following: • Describe the language corresponding to following: (1+01)*(0+01)*	Short Que.		2	Medium				
0170 1349 2	2	2	39	Regular Express ion	Write Regular Expressions for the following languages of all strings in $\{0,1\}^*$ (i) Strings that start with 1 and do not end with 10. (ii) Strings with length 6 or less	Short Que.		2	Medium				
0170 1349 2	2	2	40	Regular Express ion	Find a regular expression corresponding to each of the following subsets of $\{0, 1\}^*$. i. The language of all strings that do not contain the substring 110. ii. The language of all strings containing both 101 and 010 as substrings. iii. The language of all strings in which both the number of 0's and the number of 1's are odd	Short Que.		2	Hard				
0170 1349 2	2	2	41	Regular Express ion	Write a regular expression for language L over {0,1} such that every string in L i) Begins with 00 and ends with 11. ii) Contains alternate 0 and 1	Short Que.		2	Hard				

0170 1349 2	2	2	42	Regular Express ion	Prove the formula $(00*1)*1 = 1+0(0+10)*11$	Short Que.	2	Hard			
0170 1349 2	2	2	43	Regular Express ion	Write regular expression for the following languages i) L1 = $\{x \in (0,1)^* \mid x \text{ do not ends with } 11\}$ ii) L2 = $\{x \in (0,1)^* \mid x \text{ contains both } 101 \text{ and } 110\}$	Short Que.	2	Hard			
0170 1349 2	2	2	44	Regular Express ion	Find regular expression for following i. Language of all strings containing exactly two 0's. ii. Language of all strings that begins or ends with 00 or 11. iii. Language of all strings in which every 0 is followed immediately by 11	Short Que.	2	Hard			
0170 1349 2	2	2	45	Regular Express ion	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) The language of all strings containing both 101 and 010 as substrings	Short Que.	2	Hard			
0170 1349 2	2	2	46	Regular Express ion	Write RE for the languages of all Strings that do not end with 01.	Short Que.	1	Hard			
0170 1349 2	2	2	47	Regular Express ion	Show that for any language L, $L^*=(L^*)^*=(L^*)^+=(L^+)^*$	Short Que.	1	Hard			
0170 1349 2	2	2	48	Regular Express ion	Write Regular Expression corresponding to each of the following subsets of {0, 1}* a. The language of all strings containing both 101 and 010 as substrings. b. The language of all strings in which both the number of 0's and the number of 1's are even	Short Que.	2	Hard			
0170 1349 2	2	2	49	Regular Express ion	L1 and L2 are two languages: L1 = $\{x \mid 11 \text{ is not a substring of } x\}$ L2 = $\{x \mid x \text{ starts with } 0 \text{ and ends}$ with 0} Draw FA for both L1 and L2 and construct FA for L3 = L2 - L1	Short Que.	2	Hard			

0170 1349 2	2	2	50	Regular Express ion	Find a regular expression corresponding to each of the following subsets of $\{0, 1\}^*$ 1. The language of all strings that begin or end with 00 or 11. 2. The language of all strings containing both 11 and 010 as substrings	Short Que.	2	Hard			
0170 1349 2	2	2	51	Closure properti es	What are the closure properties of regular languages?	Short Que.	1	Easy			
0170 1349 2	2	2	52	Regular Express ion	Find a regular expression corresponding to each of the following subsets of {0, 1}* (i) The language of all strings that begin or end with 00 or 11. (ii) The language of all strings beginning with 1 and ending with 0	Short Que.	2	Medium			
0170 1349 2	2	2	53	Regular Express ion	What are the applications of regular expressions and finite automata?	Short Que.	2	Medium			
0170 1349 2	2	2	54	Regular Express ion	Write Regular Expression over the alphabets {a, b} consisting strings: Second last character as 'a' Starting with 'a' and ending with 'b'	Short Que.	2	Medium			
0170 1349 2	2	2	55	Regular Express ion	Define Regular Expression. Find Regular Expression corresponding to each of the following subsets of {0,1}* 1) The Language of all strings containing exactly two 0's 2) The Language of all strings that end with 01 3) The Language of all strings that begin or end with 00 or 11	Short Que.	2	Medium			
0170 1349 2	2	2	56	Regular Express ion	Write regular expressions for the following languages defined over $\Sigma = \{0, 1\}$: (i) The language of all the strings that do not end with 01. (ii) The language of all the strings containing even number of 0's and even number of 1's	Short Que.	2	Medium			

0170 1349 2	2	2	57	Regular Express ion	Find a regular expression of following subsets of $\{0, 1\}^*$ 1. The language of all strings that begin or end with 00 or 11. 2. The language of all strings ending with 1 and not containing 00.	Short Que.		2	Medium				
0170 1349 2	2	2	58	Regular Express ion	Find a regular expression of following subsets of {0, 1}*1. The language of all strings that contain odd number of 1's 2. The language of all strings with next to last symbol 0	Short Que.		2	Medium				
0170 1349 2	2	2	59	Regular Express ion	Find a regular expression corresponding to each of the following subsets of $\{0,1\}^*$ (i). the language of all strings that do not end with 01 (ii). the language of all strings that begin with or end with 00 or 11	Short Que.		2	Medium				
1701 3492	3	3	60	FA-1	Finite automata requires minimum number of stacks.	Rememberi ng- Multiple_Ch oice	0	1	Easy	0	1	2	3
1701 3492	3	3	61	FA-1	FSM with output capability can be used to add given integer in binary representation.	Understandi ng- Multiple_Ch oice	2	1	Easy	3	1	0	5
1701 3492	3	3	62	FA-1	We can represent one language in more one FSMs, true or false?	Understandi ng- Multiple_Ch oice	TRU E	1	Easy	May be true	TR UE	Cann ot be said	FAL SE
1701 3492	3	3	63	FA-1	"The basic limitations of Finite Automata is	Understandi ng- Multiple_Ch oice	It can't reme mbe r arbit rary	1	Easy	It som etim e reco gniz ed	It can' t rem emb er arbit	It some time fails to recog nize	All of the ment ione d

							large amo unt of infor mati on.			gra mm ar that are not regu lar	rary larg e amo unt of infor mati on.	the Regu lar gram mar.	
1701 3492	3	3	64	FA-1	A language is regular if and only if	Rememberi ng- Multiple_Ch oice	Acce pted by DFA	1	Easy	Acc epte d by PD A	Acc epte d by LB A	Acce pted by Turi ng Mac hine	Acce pted by DFA
1701 3492	4	4	65	FA-2	"The DFA shown below accepts the set of all strings over {0,1} that	Evaluating- Multiple_Ch oice	End with 00	1	Hard	End with 0	End with 00	Begi n eithe r with 0 or	Cont ain the subst ring 00
1701 3492	4	4	66	FA-2	Which one of the following is true for the automata	Evaluating- Multiple_Ch oice	b*a(a+b) *	1	Hard	b*ab *ab* ab*	b*ab *ab*	b*a(a +b)*	(a+b)*
1701 3492	3	3	67	FA-1	There are tuples in finite state machine.	Rememberi ng- Multiple_Ch oice	5	1	Easy	4	3	5	0
1701 3492	3	3	68	FA-1	Number of states require to accept string ends with 10.	Evaluating- Multiple_Ch oice	3	1	Easy	4	3	5	0

1701 3492	3	3	69	FA-1	Statement: q0 q0 q1 q1 q2 The DFA shown represents all strings which has 1 at second last position.	Evaluating- Multiple_Ch oice	Wro ng prop ositi on	1	Hard	May be corr ect	Corr	Wro ng prop ositi on	Inco rrect, Inco mple te DFA
1701 3492	3	3	70	FA-1	Language of finite automata is.	Rememberi ng- Multiple_Ch oice	Typ e 3	1	Easy	Typ e 0	Typ e 1	Type 3	Type 4
1701 3492	3	3	71	FA-1	Number of final state require to accept Φ in minimal finite automata.	Understandi ng- Multiple_Ch oice	No Fina 1 State Req uire d	1	Easy	1	2	No Final State Requ ired	4
1701 3492	4	4	72	FA-2	Regular expression for all strings starts with ab and ends with bba is.	Applying- Multiple_Ch oice	ab(a +b)* bba	1	Easy	aba* b*b ba	ab(a b)*b ba	ab(a +b)* bba	All of the ment ione d
1701 3492	4	4	73	FA-2	NFA, in its name has 'non-deterministic' because of:	Rememberi ng- Multiple_Ch oice	The choi ce of path is non-deter mini stic	1	Easy	The resul t is unde term ined	The state to be trans ited next is non-dete rmin istic	None of the ment ione d	The choi ce of path is non-deter mini stic
1701 3492	3	3	74	FA-1	Which of the following option is correct?	Understandi ng- Multiple_Ch oice	NFA is slow er to proc ess	1	Easy	NF A is slow er to proc ess	DF A is faste r to proc ess	NFA is slow er to proce ss	DFA is slow er to proc ess

							and its repre sent ation uses less mem ory than DFA			and its repr esen tatio n uses mor e me mor y than DF A	and its repr esen tatio n uses less me mor y than NF A	and its repre senta tion uses less mem ory than DFA	and its repre senta tion uses less mem ory than NFA
1701 3492	3	3	75	FA-1	What is wrong in the given definition? Def: ({q0, q1, q2}, {0,1}, δ, q3, {q3})	Evaluating- Multiple_Ch oice	Initi al and Fina l state s do not belo ng to the Grap h	1	Hard	Initi al and final state s can' t be sam e	The definition n does not satisfy 5 Tupled definition n of NFA	Initia l and Final state s do not belo ng to the Grap h	Ther e are no trans ition defin ition
1701 3492	3	3	76	FA-1	What is the relation between DFA and NFA on the basis of computational power?	Rememberi ng- Multiple_Ch oice	Equ al	1	Easy	DF A > NF A	NF A > DF A	Equa 1	Can' t be said

1701 3492	3	3	77	FA-1	ε- closure of q1 in the given transition graph:	Evaluating- Multiple_Ch oice	{q0, q1}	1	Easy	{q1}	{q1, q2}	{q0, q1, q2}	{q0, q1}
1701 3492	3	3	78	FA-1	According to the given transitions, which among the following are the epsilon closures of q1 for the given NFA? $\Delta (q1, \varepsilon) = \{q2, q3, q4\}$ $\Delta (q4, 1) = q1$ $\Delta (q1, \varepsilon) = q1$	Evaluating- Multiple_Ch oice	{q1, q2, q3, q4}	1	Easy	{q4}	{q1, q2, q3, q4}	{q1, q3}	{q1, q3,q 4}
1701 3492	3	3	79	FA-1	Given: $\Sigma = \{a, b\}$ $L = \{x \in \Sigma^* x \text{ is a string combination}\}$ Σ^4 represents which among the following?	Evaluating- Multiple_Ch oice	{aaa a, abab , ɛ, abaa , aabb }	1	Easy	{aa, ab, ba, bb}	{aaa a, abab , ɛ, abaa , aabb }	{aaa , aab, aba, bbb}	All of the ment ione d
1701 3492	3	3	80	FA-1	Which of the following pairs of regular expression are not equivalent?	Evaluating- Multiple_Ch oice	none of the abov e	1	Medium	(a+b)* and (a*+ b)*	(a*+ b)* and (a+b)*	(ab)* a and a(ba) *	none of the abov e
1701 3492	3	3	81	FA-1	We have two statements S1 and S2 whose definition are as follows: $S1 - \{02n \text{ In } \ge I\}$ is a regular language. $S2 - \{0m \text{ 1n } 0 \text{ 1m+n Im=1} \text{ and n} \ge 1I \text{ is a regular language.}$	Evaluating- Multiple_Ch oice	Only S1 is corre ct	1	Medium	Both S1 and S2 are corr ect	Onl y S1 is corr ect	Neit her S1 nor S2 is corre ct	Only S2 is corre ct

					Which one of the following statements is correct?								
1701 3492	3	3	82	FA-1	The minimum number of states in any DFA accepting the regular language L = (111+11111)* is	Evaluating- Multiple_Ch oice	9	1	Hard	7	5	9	11
1701 3492	3	3	83	FA-1	How many states are present in the smallest finite automaton which accepts the language {x I length of x is divisible by 3}?	Evaluating- Multiple_Ch oice	4	1	Medium	4	5	3	2
1701 3492	3	3	84	FA-1	Which of the following regular expression identities are true?	Rememberi ng- Multiple_Ch oice	(r + s)* = (r*s *)*	1	Medium	(r + s)* = r* s*	(r + s)* = (r*s *)*	(r+ s)* = r* + s*	r* s* = r* + s*
1701 3492	4	4	85	FA-2	Draw FA for Regular Expression: (111 + 100)*0	Applying- Short_Answ er_2_5_Min		2	Hard				
1701 3492	4	4	86	FA-2	Draw FA for Regular Expression: (11 + 100)*1	Applying- Short_Answ er_2_5_Min		2	Hard				
1701 3492	4	4	87	FA-2	Draw FA for Regular Expression: 0(10 + 01)* + 1(00 + 01)*	Applying- Short_Answ er_2_5_Min		2	Medium				
1701 3492	4	4	88	FA-2	Draw FA for the string 1) The string with next to last symbol as 0. 2) The string with number of 0's odd and numbers of 1's odd.	Evaluating- Long_Answ er_5_10_Mi n		4	Medium				
1701 3492	4	4	89	FA-2	Draw FA for 1) (11 + 110)*0 2) {11}*{00}*	Evaluating- Long_Answ er_5_10_Mi n		4	Hard				
1701 3492	4	4	90	FA-2	Draw FA for the string 1) The string in {0,1}* ending in 10 or 11.	Evaluating- Long_Answ		4	Hard				

					2) The string end with 1 and does not contain substring 00	er_5_10_Mi n					
1701 3492	4	4	91	FA-2	Draw FA for the strings: 1) The string in {a,b}* ending in aba. 2) The string corresponding to regular expression (111 + 100)*0.	Evaluating- Long_Answ er_5_10_Mi n	4	Hard			
1701 3492	4	4	92	FA-2	Draw FA for the strings: 1) The string in {0,1}* ending in 00 or 01. 2) The string corresponding to regular expression (10 + 110)*1.	Evaluating- Long_Answ er_5_10_Mi n	4	Hard			
1701 3492	4	4	93	FA-2	Draw FA for the corresponding language 1) 1(01 + 10)* + 0(11 + 10)* 2) (010 + 00)* (10)*	Evaluating- Long_Answ er_5_10_Mi n	4	Hard			
1701 3492	4	4	94	FA-2	Draw FA for the corresponding language 1) (1+110)*0 2) (1+10+110)*0	Evaluating- Long_Answ er_5_10_Mi n	4	Hard			
1701 3492	4	4	95	FA-2	Draw FA for the corresponding language 1) 1(1+10)*+10(0+01)* 2) 0+(10)*+01*0	Evaluating- Long_Answ er_5_10_Mi n	4	Hard			
1701 3492	4	4	96	FA-2	Draw FA for the string 1) The string with number of 0's odd and numbers of 1's even. 2) (0+1)(01)*(011)*	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
1701 3492	4	4	97	FA-2	Draw FA for accepting: 1) The string in {0,1}* ending in 1 and not containing substring 00. 2) The string with even numbers of 0's and even numbers of 1's.	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
1701 3492	4	4	99	FA-2	Draw DFA for the following languages	Evaluating- Long_Answ	4	Medium			

					 1) L1={x ∈ (0,1)* x contains 110111} 2) L2={x ∈ (0,1)* x contains odd numbers of 1's and even numbers of 0's} 	er_5_10_Mi n				
1701 3492	4	4	100	FA-2	Draw DFA for the following languages 1) L1={x ∈ (0,1)* x do not contains 110} 2) L2={x ∈ (0,1)* x do not contain 00 as a substring}	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	101	FA-2	Draw FA for each of the following RE: 1) (0+1)*(1+00) (0+1)* 2) (0+1)*(01+110)	Evaluating- Long_Answ er_5_10_Mi n	4	Hard		
1701 3492	4	4	102	FA-2	Draw DFA for the following languages 1) L1= $\{x \in (0,1)* x \text{ end with } 01\}$ 2) $(0+1)*(10+11)$	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	103	FA-2	Draw FA for the following languages 1) L1= $\{x \in (0,1)* \text{ends with } 11\}$ 2) L2= $\{x \in (0,1)* \text{x contains both } 101 \text{ and } 110\}$	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	104	FA-2	An NFA with states 1-5 and input alphabets $\{a,b\}$ has following transition table Q-1 Draw its transition diagram Q-2 Calculate $\delta^*(1,a)$ Q-3 Calculate $\delta^*(1,a)$ ababababababababababababababababababab	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		

1701 3492	4	4	105	FA-2	Draw FA for each of the following RE 1) (a+b)*baaa 2) (bbb + baa)*a	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	106	FA-2	For following NFA, find minimum FA accepting same language	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	107	FA-2	For the following RE, draw an NFA 1) (a+b)*(abba* + (ab)*ba) 2) (aa+aab)*b	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	108	FA-2	For the following RE, draw an NFA 1) ((0+1)*10 + (00)*(11)*)* 2) (0+1)*1(0+1)	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	109	FA-2	For the following RE, draw an NFA 1) (0+1)*(011+01010)(0+1)* 2) (0+1)(01)*(011)*	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	110	FA-2	For the following RE, draw an NFA 1) (0+1)*(10+110)*1 2) 0*(01)*1+1*0	Evaluating- Long_Answ	4	Medium		

						er_5_10_Mi n					
1701 3492	4	4	111	FA-2	Minimize the following DFA if possible:	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
1701 3492	4	4	112	FA-2	Minimize the following DFA if possible:	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
1701 3492	4	4	113	FA-2	Calculate $\delta^*(1,abbaa)$ & $\delta^*(1,abaabba)$ form following transition table. q $\delta(q,a)$ $\delta(q,b)$ 1 $\{1,2\}$ $\{1\}$ 2 $\{3\}$ $\{3\}$ 3 $\{4\}$ $\{4\}$ 4 $\{5\}$ \emptyset 5 \emptyset $\{5\}$	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			

1701 3492	4	4	114	FA-2	Minimize the following DFA if possible: $ \begin{array}{ c c c c c c c } \hline Q & \delta(q,a) & \delta(q,b) \\ \hline -+1 & \{3\} & \{2\} \\ \hline 2 & \{4\} & \{1\} \\ \hline 3 & \{5\} & \{4\} \\ \hline 4 & \{4\} & \{4\} \\ \hline 5 & \{3\} & \{2\} \\ \hline \end{array} $	Evaluating- Long_Answ er_5_10_Mi n	4	Easy		
1701 3492	4	4	115	FA-2	Minimize the following DFA if possible:	Evaluating- Long_Answ er_5_10_Mi n	4	Easy		
1701 3492	4	4	116	FA-2	Minimize the following DFA if possible:	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		

1701 3492	4	4	117	FA-2	Find $^{-}$ -closure of the each of the states in following NFA- $^{-}$ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Evaluating- Short_Answ er_2_5_Min	2	Medium		
1701 3492	4	4	118	FA-2	Consider the NFA- $^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		
1701 3492	4	4	119	FA-2	Consider the NFA-^ depicted in following table 1) Compute the ^-closure of each states. 2) Find δ*(q0,abab) 3) Find δ*(q0,aaabbb)	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		

0170 1349 4	05	05	120	Finite Automa ta with Epsilon Transiti on	Which of the following belongs to the epsilon closure set of a?	Evaluating Multiple- Choice	{a, f1, f2, f3}	1	Medium	{a, f1, f2, f3}	{a, f1, f2}	{f1, f2, f3}	{a, f2, f3}
0170 1349 4	05	05	121	Finite Automa ta with Epsilon Transiti on	Which of the following belongs to the epsilon closure set of S?	Evaluating Multiple- Choice	{S, T, A, E}	1	Medium	{S, T}	{S, T, A, E}	{S}	{S, P, T}
0170 1349 4	05	05	122	Convers ion from finite automat a with Epsilon Transiti on to Determi nstic finite automat a	While converting NFA with null to DFA, what will be $\delta'(A, 0)$ for the following NFA?	Evaluating Multiple- Choice	{q3}	1	Hard	{q0, q1, q2}	{q1, q2}	{q3}	{q0, q1}

0170 1349 4	05	05	123	Convers ion from Non - Determi nistic finite automat a to	Which new state is generated while converting NFA to DFA and finding δ'([q1], 0)?	Evaluating- Multiple- Choice	[q1, q2]	1	Hard	[q0, q1, q2]	[q1, q2]	[q2]	[q1]
0170	05	05	124	Determi nstic finite automat a Convers	Conversion of a DFA to an NFA?	Understandi	Req	1	Facy	Is	Req	Is	Is
1349				ion from Determi nistic finite automat a to Non- Determi nstic finite automat		ng-Multiple- Choice	uires the subs et cons truct ion	1	Easy	imp ossi ble	uires the subs et cons truct ion	chan cy	nond eter mini stic
0170 1349 4	05	05	125	Non- Determi nstic finite automat a	If we consider an arbitrary NFA (non-deterministic finite automaton) with N states in total, the maximum number of states that are there in an equivalent DFA (minimized) is at least:	Understandi ng-Multiple- Choice	2^N	1	Easy	N!	2N	2^N	N^2
0170 1349 4	05	05	126	Determi nstic finite automat a ,Non- Determi nstic finite	The total time needed to run any input string in DFA is than time required in NFA.	Understandi ng-Multiple- Choice	less	1	Easy	mor e	less	equal	Non e of these

				automat a									
0170 1349 4	05	05	127	Determi nstic finite automat a ,Non- Determi nstic finite automat a	Which of the following cannot use Empty String transition?	Unders ng-Mul Cho	tiple-	1	Easy	FA	NF A	DFA	All of these
0170 1349 4	05	05	128	Non- Determi nstic finite automat a	Which of the following can use Empty String transition?	Unders ng-Mul Cho	tiple-	1	Easy	FA	NF A	DFA	All of these
0170 1349 4	05	05	129	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi nstic finite automat a and Non- Determi nstic finite automat a and von- Determi nstic finite automat a and a non- Determi nstic finite	Convert NFA-^ to NFA and DI Initial State: A, Final State: D Q \(\delta(\omega,^{\emptyset}) \) \(\de	A. Evalua Long_v er_5_1	Answ 0_Mi	5	Hard				

0170 1349 4	05	05	130	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi nstic finite automat a with	Convert the following NFA- Λ into FA.	Evaluating- Long_Answ er_5_10_Mi n	5	Hard			
0170 1349 4	05	05	131	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to automat	Convert the following NFA into FA.	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
0170 1349 4	05	05	132	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite	Convert the following NFA to DFA	Evaluating-Short_Answ er_2_5_Min	4	Medium			

				automat a						
0170 1349 4	05	05	133	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to	Convert the NFA given in Table below to its corresponding DFA and draw the DFA. Current State Input symbol	Evaluating- Short_Answ er_2_5_Min	4	Hard		
0170 1349 4	05	05	134	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi nstic finite automat a and Non- Determi nstic finite automat a and a and Non- Determi nstic finite automat a utomat a utomat a utomat a utomat	Convert NFA-^ to NFA and DFA. Initial State: A , Final State: E Q \(\delta(q, ^) \) \(\delta(q, 0) \) \(\delta(q, 1) \) \(A \) \(\delta(B, D) \) \(\delta(A) \) \(\delta(B, D) \) \(\delta(B) \)	Evaluating- Long_Answ er_5_10_Mi n	5	Hard		
0170 1349 4	05	05	135	Convers ion from Non -	Consider the NFA-Λ depicted in following table:	Evaluating- Long_Answ	4	Hard		

				Deterministic finite automat a with epsilon to Deterministic finite automat a	Λ a b c →p Φ {p} {q} {r} q {p} {q} {r} Φ *r {q} {r} Φ {p} i) Compute the Λ-closure of each state. ii) Convert the NFA-Λ to a DFA	er_5_10_Mi n					
0170 1349 4	05	05	136	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to	Convert this NFA to FA 0,1 q1 0,1 q2 0,1 q2	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
0170 1349 4	05	05	137	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi nstic finite automat a with	Figure shows NFA-^. Draw an FA accepting the same language.	Evaluating- Long_Answ er_5_10_Mi n	5	Medium			

0170 1349 4	05	05	138	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to automat a to	Convert the following NDFA to DFA.	Evaluating- Long_Answ er_5_10_Mi n	4	Hard			
0170 1349 4	05	05	139	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi nstic finite automat a	Convert the following NFA - Λ into its equivalent DFA that accepts the same language:	Evaluating- Long_Answ er_5_10_Mi n	5	Hard			
0170 1349 4	05	05	140	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi	Convert NFA- Λ to FA for following figure.	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			

					nstic finite automat a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
13	170 349 4	05	05	141	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to	Convert the following NFA into its equivalent DFA	Evaluating- Long_Answ er_5_10_Mi n	5	Hard		
1.	170 349 4	05	05	142	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to automat	Convert the Given NFAwith null into its equivalent NFA	Evaluating- Short_Answ er_2_5_Min	4	Easy		
1.	170 349 4	05	05	143	Convers ion from Non - Determi	Convert the given NFA to FA.	Evaluating- Long_Answ er_5_10_Mi n	4	Easy		

				nistic finite automat a to Determi nstic finite automat a	q1 1 1 1 0 0 q2 1 q3						
0170 1349 4	05	05	144	Convers ion from Non - Determi nistic finite automat a with epsilon to Determi nstic finite automat a with	Find Λ-Closure for each of the states in following NFA-Λ. And convert it into NFA and FA. Q δ(q,a) δ(q,b) δ(q,Λ) 1 Ø Ø {2} 2 {3} Ø {5} 3 Ø {4} Ø 4 {4} Ø {1} 5 Ø Ø Ø 7 Ø Ø ¶ 1}	Evaluating- Long_Answ er_5_10_Mi n	5	Hard			
0170 1349 4	05	05	145	Convers ion from Non - Determi nistic finite automat a with epsilon to Non- Determi nstic finite	Convert the following ε -NFA into NFA.	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			

				automat a						
0170 1349 4	05	05	146	Convers ion from Non - Determi nistic finite automat a with null to Non - Determi nistic finite automat a with	Convert NFA- Λ to NFA for following figure q1 q2 1 q3	Evaluating- Long_Answ er_5_10_Mi n	4	Hard		
0170 1349 4	05	05	147	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to automat	Determine the equivalent DFA for the above given NFA.	Understandi ng- Short_Answ er_2_5_Min	3	Easy		
0170 1349 4	05	05	148	Convers ion from Non - Determi nistic finite automat a with epsilon	Convert the NFA with ε into its equivalent DFA.	Evaluating- Long_Answ er_5_10_Mi n	4	Medium		

				to Determi nstic finite automat a	$ \underbrace{\frac{\mathcal{E}}{\mathbf{q}_1} \mathbf{q}_1}_{\mathbf{q}_3} \underbrace{\mathbf{q}_3}_{\mathbf{q}_4} $						
0170 1349 4	05	05	149	Convers ion from Non - Determi nistic finite automat a to Determi nstic finite automat a to automat	Convert the given NFA into its equivalent DFA.	Evaluating- Long_Answ er_5_10_Mi n	4	Medium			
0170 1349 2	06	06	150	kleene's Theore m	Using kleene's Theorem Draw NFA- Λ for $((01)*10 + (00)*)*$	Understandi ng- Short_Answ er_2_5_Min	03	Medium			
0170 1349 2	06	06	151	kleene's Theore m	Using kleene's Theorem Draw NFA-Λ for ((0+1)*10 + (00)*)*	Understandi ng- Short_Answ er_2_5_Min	03	Medium			
0170 1349 2	06	06	152	kleene's Theore m	Draw NFA recognizing the language ($\{0,1\}$ * $\{10\}$ U $\{00\}$ * $\{11\}$ *) * using kleene's theorem part 1, where $\Sigma = \{0,1\}$	Understandi ng- Short_Answ er_2_5_Min	03	Medium			
0170 1349 2	06	06	153	kleene's Theore m	Using kleene's Theorem Draw NFA-Λ for ((0+1) (01)*)	Understandi ng-	03	Medium			

						Short_Answ er_2_5_Min				
0170 1349 2	06	06	154	Union, Intersec tion, Differe nce of FA	Let M1, M2 and M3 be the FAs pictured in Figure, recognizing languages L1, L2 and L3, respectively. M1 =	Evaluating- Long_Answ er_5_10_Mi n	0:	5 Hard		
0170 1349 2	06	06	155	Union, Intersec tion, Differe nce of FA	L1 is a language over {0, 1}* that accepts strings ending in 11. L2 is a language over {0, 1}* that accepts strings containing 101 as sub-string. Write the regular expressions, draw FA for L1 and L2 and derive FA for L1 U L2	Understandi ng- Short_Answ er_2_5_Min	0:	5 Hard		
0170 1349 2	06	06	156	Union, Intersec tion, Differe nce of FA	Draw FA for follow. □ L1 = {w 00 is not substring of w} □ L2 = {w w ends in 01} languages: Find FA accepting languages (i)L1 U L2 and (ii)L1 ∩ L2	Understandi ng- Short_Answ er_2_5_Min	0:	Medium		

0170 1349 2	06	157	Union, Intersec tion, Differe nce of FA	Let M1 and M2 be the FAs pictured in Figure, recognizing languages L1 and L2 respectively. M1 =	Evaluating- Long_Answ er_5_10_Mi n	04	Medium			
0170 1349 2	06	158	Union, Intersec tion, Differe nce of FA	b. L2 - L1 Suppose that Languages L1 and L2 are the subsets given below. Where $\Sigma = \{0, 1\}$ L1 = $\{x \mid 00 \text{ is not a substring of } x\}$ L2 = $\{x \mid x \text{ ends with } 01\}$ Draw FAs recognizing the following languages (1) L1 - L2 (2) L1 \cap L2	Understandi ng- Short_Answ er_2_5_Min	05	Medium			
0170 1349 2	06	159	Union, Intersec tion, Differe nce of FA	Suppose that L1 and L2 are the subsets:	Understandi ng- Short_Answ er_2_5_Min	05	Medium			

				$L_1 = A O B O C$ $L_2 = A O B O C$						
				Draw the Fas recognizing the following languages. $L1 \cap L2$ and $L1 - L2$						
017 134 2	06	160	Union, Intersec tion, Differe nce of	Let M1 and M2 be the FA in fig below for the language L1 and L2, find L1 U L2 and L1 ∩ L2 and L2 – L1.	Evaluating- Long_Answ er_5_10_Mi n	04	Medium			
			FA	$M_1 \longrightarrow A \xrightarrow{0} B \xrightarrow{0} C \qquad M_2 \longrightarrow X \xrightarrow{0} V \xrightarrow{1} Z$ $(a) \qquad (b)$						
017 134 2	06	161	Union, Intersec tion, Differe nce of FA	Let M1, M2 and M3 be the FAs pictured in Figure below, recognizing languages L1, L2, and L3 respectively.	Understandi ng- Short_Answ er_2_5_Min	05	Medium			

					Draw FAs recognizing the following languages: i. L1 U L2 ii. L1 \cap L2 iv. L1 \cap L3 v. L3 - L2					
0170 1349 2	06	06	162	Union, Intersec tion, Differe nce of FA	There are 2 languages over $\Sigma = \{a, b\}$ L1 = all strings with a double "a" L2 = all strings with an even number of "a" Find a regular expression and an FA that define L1 \cap L2.	Understandi ng- Short_Answ er_2_5_Min	05	Medium		
0170 1349 2	06	06	163	Union, Intersec tion, Differe nce of FA	Let M1 and M2 be the two FAs as given below. M1 B 0.1	Evaluating- Long_Answ er_5_10_Mi n	05	Medium		

					Draw FA recognizing (L1 vL2)						
					and (L1-L2) where L1 and L2 correspond to M1 and M2 respectively.						
0170 1349 2	06	06	164	Union, Intersec tion, Differe nce of	Fig. shows two DFAs M1 and M2, to accept languages L1 and L2, respectively. Determine DFAs to recognize L1 U L2.	Understandi ng- Short_Answ er_2_5_Min	04	Medium			
				FA	$M_1 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow M_2 \longrightarrow X \longrightarrow Y \longrightarrow Z$						
0170 1349 2	06	06	165	Union, Intersec tion, Differe nce of	Let M1 and M2 be the FAs pictured below, recognizing languages L1 and L2 respectively	Evaluating- Long_Answ er_5_10_Mi n	04	Medium			
				FA	$M_1 = \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ \end{array}}_{0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{1,0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{1,0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{1,0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{1,0} \underbrace{\begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array}}_{1$						

					Draw the FAs recognizing the following languages: L1 ∩ L2, L2 – L1						
0170 1349 2	06	06	166	Union, Intersec tion, Differe nce of FA	L1 and L2 are two languages: L1 = {x 11 is not a substring of x} L2 = {x x starts with 0 and ends with 0} Draw FA for both L1 and L2 and construct FA for L3 = L2 - L1	Evaluating- Long_Answ er_5_10_Mi n	04	Medium			
0170 1349 2	06	06	167	Union, Intersec tion, Differe nce of FA	Let M ₁ and M ₂ be the FAs pictured in Fig. (i) and Fig. (ii) accept the languages L ₁ and L ₂ , respectively Fig. (i) M ₂ Draw FAs accepting the following languages: (i) L ₁ U L ₂ (ii) L ₂	Understandi ng- Short_Answ er_2_5_Min	04	Medium			
0170 1349 2	06	06	168	Union, Intersec tion, Differe nce of FA	Let FA ₁ and FA ₂ be the FAs as shown in the figure recognizing the languages L1 and L2 respectively. Draw an FA recognizing the language, L1 U L2. FA ₁ :	Understandi ng- Short_Answ er_2_5_Min	04	Medium			

					FA ₂ :					
0170 1349 2	06	06	169	Pumpin g Lemma	Define Pumping Lemma for Regular Languages. Use Pumping Lemma to show that the following languages are not regular. $L = \{ 0^n 1^{2n} \mid n > 0 \}$ $L = \{ ww^R \mid w \in \{0,1\}^* \}$	Understandi ng- Short_Answ er_2_5_Min	04	Hard		
0170 1349 2	06	06	170	Pumpin g Lemma	Define Pumping Lemma for Regular Languages. Show that following language is not a Regular Language using Pumping Lemma $L = \{0^i1^i \mid i >= 0 \}, \text{ where } \Sigma = \{0,1\}$	Understandi ng- Short_Answ er_2_5_Min	04	Medium		
0170 1349 2	06	06	171	Pumpin g Lemma	Prove that the language L= {a ⁿ b ⁿ ab ⁿ⁺¹ n=1,2,3,} is nonregular using pumping lemma.	Understandi ng- Short_Answ er_2_5_Min	04	Hard		
0170 1349 2	06	06	172	Pumpin g Lemma	Define pumping lemma and its application.	Understandi ng- Short_Answ er_2_5_Min	04	Medium		
0170 1349 2	06	06	173	Pumpin g Lemma	Show that the language L= {a^nb^nc^n / n>=1} is non-regular using pumping lemma theory.	Understandi ng- Short_Answ er_2_5_Min	04	Hard		
0170 1349 2	06	06	174	Pumpin g Lemma	Show that the language $L= \{ww / w \in \{a,b\}^*\}$ is not context free language using pumping lemma theory.	Understandi ng- Short_Answ er_2_5_Min	04	Medium		

0170 1349 2	06	06	175	Pumpin g Lemma	Is the following set regular $\{0^{2n} \mid n >= 1\}$ If yes, write down the corresponding regular expression. Else, prove that the language is not regular. Answer: Yes. (00)+	Understandi ng- Short_Answ er_2_5_Min	Yes. (00) +	01	Medium			
0170 1349 2	06	06	176	Pumpin g Lemma	Use the pumping lemma to show that following language is not regular. $L = \{xy \mid x, y \in \{0, 1\}^* \text{ and } y \text{ is either } x \text{ or } x^r \}.$	Understandi ng- Short_Answ er_2_5_Min		03	Medium			
0170 1349 2	06	06	177	Pumpin g Lemma	Use the pumping lemma to show that following language is not regular: $L = \{ww w \in \{0,1\}^*\}.$	Understandi ng- Short_Answ er_2_5_Min		04	Medium			
0170 1349 2	06	06	178	Pumpin g Lemma	What do you mean by Regular Language? Explain the application of the Pumping Lemma to show a Language is Regular or Not.	Understandi ng- Short_Answ er_2_5_Min		03	Medium			
0170 1349 2	06	06	179	Pumpin g Lemma	Define Pumping Lemma for Regular Languages. Prove that the language L = {a ⁿ : n is a prime number} is not regular.	Understandi ng- Short_Answ er_2_5_Min		04	Medium			
0170 1349 2	06	06	180	Pumpin g Lemma	Define Pumping Lemma. Use the Pumping Lemma to show that the following languages are not regular: $ \bullet L = \{ \ 0^n \ 1 \ 0^{2n} \ / \ n \ge 0 \ \} $ $ \bullet L = \{ \ 0^i \ 1^j \ 0^k \ / \ k > i+j \ \} $	Understandi ng- Short_Answ er_2_5_Min		04	Hard			

0170 1349 2	06	06	181	Pumpin g Lemma	Use Pumping Lemma to show that $L = \{x \in \{0,1\}^* \mid x \text{ is a palindrome}\}$ is not a regular language.	Understandi ng- Short_Answ er_2_5_Min		04	Medium				
0170 1349 2	06	06	182	Pumpin g Lemma	While applying Pumping lemma over a language, we consider a string w that belong to L and fragment it into parts.	Understandi ng- Multiple_Ch oice	3	01	Easy	3	5	2	Non e of these
0170 1349 2	06	06	183	Pumpin g Lemma	If we select a string w such that w∈L, and w=xyz. Which of the following portions cannot be an empty string?	Understandi ng- Multiple_Ch oice	У	01	Easy	х	У	Z	Non e of these
0170 1349 2	06	06	184	Pumpin g Lemma	Let w= xyz and y refers to the middle portion and y >0. What do we call the process of repeating y 0 or more times before checking that they still belong to the language L or not?	Understandi ng- Multiple_Ch oice	Pum ping	01	Easy	Gen erati ng	Pum ping	Prod ucin g	Non e of these
0170 1349 2	06	06	185	Pumpin g Lemma	here exists a language L. We define a string w such that w∈L and w=xyz and w >=n for some constant integer n. What can be the maximum length of the substring xy i.e. xy <=?	Understandi ng- Multiple_Ch oice	n	01	Easy	n	y	x	Non e of these
0170 1349 2	06	06	186	Pumpin g Lemma	Fill in the blank in terms of p, where p is the maximum string length in L. Statement: Finite languages trivially satisfy the pumping lemma by having n =	Understandi ng- Multiple_Ch oice	p+1	01	Easy	p*1	p+1	p-1	Non e of these
0170 1349 2	06	06	187	Pumpin g Lemma	Answer in accordance to the third and last statement in pumping lemma: For all $xy^iz \in L$	Understandi ng- Multiple_Ch oice	i>= 0	01	Easy	i>0	i<0	i<=0	Non e of these
0170 1349 2	06	06	188	Pumpin g Lemma	Which of the following one can relate to the given statement: Statement: If n items are put into	Understandi ng-	Pige on Hole	01	Easy	Pum ping	Pige on Hole	Coun t	Non e of these

					m containers, with n>m, then atleast one container must contain more than one item.	Multiple_Ch oice	prin ciple			lem ma	prin ciple	princ iple	
0170 1349 2	06	06	189	Pumpin g Lemma	f d is a final state, which of the following is correct according to the given diagram?	Understandi ng- Multiple_Ch oice	x=p, y=qr , z=s	01	Easy	x=p, y=qr , z=s	x=p, z=qr s	x=pr , y=r, z=s	Non e of these
0170 1349 2	06	06	190	Pumpin g Lemma	Relate the following statement: Statement: All sufficiently long words in a regular language can have a middle section of words repeated a number of times to produce a new word which also lies within the same language.	Understandi ng- Multiple_Ch oice	Pum ping Lem ma	01	Easy	Turi ng Mac hine	Pum ping Lem ma	Arde n's theor em	Non e of these
0170 1349 2	06	06	191	Union, Intersec tion, Differe nce of FA	Regular sets are closed under union, concatenation and kleene closure.	Understandi ng- Multiple_Ch oice	True	01	Easy	True	Fals e	Depe nds on regul ar set	Non e of these
0170 1349 2	06	06	192	Union, Intersec tion, Differe nce of FA	Explanation: Regular sets are closed under these three operation.	Understandi ng- Multiple_Ch oice	maki ng final state s non- final and non- final to final	01	Easy	mak ing start ing state as final state	no triva 1 met hod	maki ng final state s non- final and non- final to final	Non e of these