Supplementary Figures and Tables

Runtimes for iPCE for different N compared to N=0

Figure 1.: Relative runtimes R_N for $N=0,\ldots,9$, where $R_0:=1$. Each plot shows six curves for six different equations investigated in Section 4.1: Equation (27) with linear, quadratic or cubic F, with D=0 or D=1. Each data point is an average over the runtimes of ten identical iPCE simulations with T=0.1 and M=10 time steps. It is observed that the effort grows most slowly for linear F and most quickly (exoponentially) for cubic F.

\overline{N}	0	1	2	3	4	5	6	7	8
$ ilde{N}$	1	8	39	124	335	762	1589	3016	5418

Table 1.: Number \tilde{N} of summands in equation (20) for low N. Of these, $\tilde{N}/(N+1)$ are nonzero.

Equation with quadratic term, D = 0, mean

Figure 2.: Plots showing the relative time-dependent error for iPCE schemes (Algorithms 3.5, 3.6, 3.8; left-hand side) and niPCE schemes (right-hand side) for equation (26) with quadratic term ($\kappa=2$) with diffusion constant D=0.

Equation with quadratic term, D = 1, mean

Figure 3.: Plots showing the relative time-dependent error for iPCE schemes (Algorithms 3.5, 3.6, 3.8;, left-hand side) and niPCE schemes (right-hand side) for equation (26) with quadratic term ($\kappa=2$) with diffusion constant D=1.

Equation with cubic term, D = 0, mean

Figure 4.: Plots showing the relative time-dependent error for iPCE schemes (Algorithms 3.5, 3.6, 3.8;, left-hand side) and niPCE schemes (right-hand side) for equation (26) with cubic term ($\kappa = 3$) with diffusion constant D = 0.

Equation with cubic term, D = 1, mean

Figure 5.: Plots showing the relative time-dependent error for iPCE schemes (Algorithms 3.5, 3.6, 3.8; left-hand side) and niPCE schemes (right-hand side) for equation (26) with cubic term ($\kappa = 3$) with diffusion constant D = 1.

Figure 6.: Time-dependent L^2 errors for equation (30), using the iPCE algorithms 3.5, 3.7, 3.8;. We used the same parameters and numbers of time steps as in the 1D case from Figure 2 in the paper (for the exact parameters, we also refer to Table 3). The exact expected value is given by equation (31). The spatial resolution in the ETD-RDP case was picked in this simulation as p = 512. For lower p, the error caused by the finite difference discretization dominates and the curves for different N are identical.

Errors for a random Gray-Scott system

Figure 7.: Time-dependent error plot for a random 1D Gray-Scott system. None of the iPCE schemes work in this case: Initially, the solution is relatively accurate, but as pattern formation starts to occur, iPCE breaks down. For a visual example in two dimensions, see Figure 8.

Figure 8.: Simulations for $\mathbb{E}[u(x,T,\cdot)]$ of the random Gray-Scott system (32) with F=0.04 and $k(\omega) \sim \mathcal{U}[0.058,0.062]$. A niPCE simulation with ETDRK4 (left-hand side) and GQ gives an impression of superimposed patterns for different k. Over time, the four off-center bumps of the initial condition (33) expand and connect, forming intricate patterns as observed on the left-hand side. The EE iPCE simulation fails to correctly propagate the patterns, and the four rings from the initial condition stop expanding. For the ETDRK4 iPCE simulation, the edges of the rings propagate too fast, and no pattern formation is observed.

Figure 9.: Deterministic simulations of Gray-Scott patterns for different schemes and resolutions for the same initial condition at T=5000 (using Algorithms 3.1, 3.3, 3.4). It becomes apparent that after a long-term integration, Gray-Scott patterns are extremely sensitive to the spatial resolution (and number of time steps), and for the correct solution, a high spatial resolution is needed, along with a scheme such as ETDRK4 which performs a spectral approximation in space. The numbers of time steps used are M=100000 for EE and M=10000 for ETD-RDP-IF and ETDRK4.

	D=0, line	ar	D=1, linear				
	Intrusive	Non-Intrusive		Intrusive	Non-Intrusive		
EE	0.3225	0.6717	EE	0.4386	6.4825		
ETD-RDP	0.4112	0.2256	ETD-RDP	0.2741	0.3698		
ETDRK4	0.4322	0.4244	ETDRK4	0.7304	0.4809		
\overline{D}	$\theta = 0$, quadr	atic	D=1, quadratic				
	Intrusive	Non-Intrusive		Intrusive	Non-Intrusive		
EE	0.5090	0.7563	EE	3.5583	5.8424		
ETD-RDP	0.3143	0.2550	ETD-RDP	0.4906	0.3265		
ETDRK4	0.7242	0.6093	ETDRK4	1.1047	0.4916		
	D=0, cub	ic	D=1, cubic				
	Intrusive	Non-Intrusive		Intrusive	Non-Intrusive		
EE	12.6065	0.4934	EE	247.6447	0.3319		
ETD-RDP	5.2208	0.4339	ETD-RDP	9.8553	0.5722		
ETDRK4	6.1375	0.5221	ETDRK4	12.4297	0.5626		

Table 2.: Runtimes for the created plots, all times in seconds, for iPCE with N=5 and for niPCE with 50 realizations

D =	0, linear	•		D =	1, linea	r			
	iPCE niPCE			iPCE	niPCE				
	M	M	q		M	M	q		
EE	1000	2000	50	EE	20000	20000	50		
ETD-RDP	200	200	50	ETD-RDP	400	200	50		
${f ETDRK4}$	100	100	50	${f ETDRK4}$	200	100	50		
$\mathbf{ETDRK4}$ ref.		-	-	$\mathbf{ETDRK4}$ ref.		1000	200		
D=0	quadra	tic		D = 1, quadratic					
	iPCE	niPCE			iPCE		niPCE		
	M	M	q		M	M	q		
EE	1000	2000	50	EE	10000	20000	50		
ETD-RDP	200	200	50	ETD-RDP	400	200	50		
ETDRK4	100	100	50	ETDRK4	200	100	50		
${\bf ETDRK4} \ {\rm ref.}$		1000	200	${\bf ETDRK4} \ {\rm ref}.$		1000	200		
D =	0, cubic	;		D=1, cubic					
	iPCE	niPCE			iPCE	niPCE			
	M	M	q		M	M	q		
EE	1000	500	50	EE	20000	20000	50		
ETD-RDP	200	200	50	ETD-RDP	400	200	50		
ETDRK4	100	100	50	ETDRK4	200	100	50		
${\bf ETDRK4} \ {\rm ref.}$		1000	200	${f ETDRK4}$ ref.		1000	200		

Table 3.: Numbers of step sizes M and of samples (for niPCE) for each simulation shown in the paper. 'ETDRK4 ref.' refers to the reference solution used for that simulation. For the linear equation with D=0, the exact solution is known.