

最优化方法及其 Matlab 程序设计

第十章 可行方向法

本章介绍的可行方向法是一类直接处理约束优化问题的方法,其 基本思想是要求每一步迭代产生的搜索方向不仅对目标函数是下降 方向,而且对约束函数来说是可行方向,即迭代点总是满足所有的约 束条件. 各种不同的可行方向法的主要区别在于选取可行方向 d_k 的 策略不同, 我们主要介绍 Zoutendijk 可行方向法、投影梯度法和简约 梯度法三类可行方向法.

§10.1 Zoutendijk 可行方向法

Zoutendijk 可行方向法是用一个线性规划来确定搜索方向一下 降可行方向的方法, 它最早是由 Zoutendijk 于 1960 年提出来的. 我们 分线性约束和非线性约束两种情形来讨论其算法原理.

§10.1.1 线性约束下的可行方向法

1. 基本原理

考虑下面的非线性优化问题

$$\begin{cases} \min f(x), \\ \text{s.t. } Ax \ge b, \\ Ex = e, \end{cases}$$
 (10.1)

其中 f(x) 连续可微, $A \in m \times n$ 矩阵, $E \in l \times n$ 矩阵, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $e \in \mathbb{R}^l$. 即 (10.1) 中有 m 个线性不等式约束和 l 个线性等式约束.

下面的引理指出了问题 (10.1) 的下降可行方向 d 应满足的条件.

引理 10.1 设 \bar{x} 是问题 (10.1) 的一个可行点, 且在 \bar{x} 处有 $A_1\bar{x}=$

3/78

Back

 $b_1, A_2 \bar{x} > b_2,$ 其中

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

则 $d \in \mathbb{R}^n$ 是点 \bar{x} 处的下降可行方向的充要条件是

$$A_1 d \ge 0$$
, $E d = 0$, $\nabla f(\bar{x})^T d < 0$.

证 不难发现 d 是 f(x) 在 \bar{x} 处的下降方向的充要条件是 $\nabla f(\bar{x})^T d < 0$. 另外, 注意到条件 $A_1\bar{x}=b_1$ 表明约束条件 $A_1x\geq b_1$ 是点 \bar{x} 出的有效约束, 而条件 $A_2\bar{x}>b_2$ 表明约束条件 $A_2x\geq b_2$ 是点 \bar{x} 处的非有效约束. 因此, 在可行点 \bar{x} 处将约束矩阵 A 分裂为相应的 A_1 和 A_2 两部分.

1/78

Sack .

lose

故对任意的 $\alpha > 0$, 都有 $A_1(\bar{x} + \alpha d) = A_1\bar{x} + \alpha(A_1d) > A_1\bar{x} = b_1$

充分性. 设 $A_1d > 0$, Ed = 0. 因 \bar{x} 是可行点, 且 $A_1\bar{x} = b_1$, $E\bar{x} = e$.

 $E(\bar{x} + \alpha d) = E\bar{x} + \alpha(Ed) = E\bar{x} = e.$ 又由 $A_2\bar{x} > b_2$, 故必存在一个 $\bar{\alpha} > 0$, 使得对于任意的 $\alpha \in (0, \bar{\alpha}]$, 都有

 $A_{2}(\bar{x} + \alpha d) = A_{2}\bar{x} + \alpha A_{2}d > b_{2}.$

以上三式表明, 存在 $\bar{\alpha}$, 使得对于任意的 $\alpha \in (0, \bar{\alpha}]$, 有 $A(\bar{x} + \alpha d) > b$, $E(\bar{x} + \alpha d) = e$, 即 $\bar{x} + \alpha d$ 是可行点, 从而 d 是 \bar{x} 处的可行方向.

必要性. 设 \bar{x} 是可行点. d 是 \bar{x} 处的一个可行方向. 由可行方向的 定义, 存在 $\bar{\alpha}$, 使得对于任意的 $\alpha \in (0, \bar{\alpha}]$, 有 $A(\bar{x} + \alpha d) > b$, $E(\bar{x} + \alpha d) = e$, 或 $A_1(\bar{x} + \alpha d) \ge b_1, \quad A_2(\bar{x} + \alpha d) \ge b_2, \quad E(\bar{x} + \alpha d) = e.$ 于是由 $A_1(\bar{x} + \alpha d) = A_1\bar{x} + \alpha(A_1d) > b_1, \quad A_1\bar{x} = b_1, \quad \alpha > 0$ 可推出 $A_1d > 0$. 又由 $E(\bar{x} + \alpha d) = E\bar{x} + \alpha(Ed) = e, \quad E\bar{x} = e, \quad \alpha > 0$ 可推出 Ed=0. 证毕.

上面的引理启发我们, 要寻找问题 (10.1) 的可行点 \bar{x} 处的一个下降可行方向 d, 可以通过求解下述线性规划问题得到:

其中 $d = (d_1, \dots, d_n)^T$. 增加约束条件 $-1 \le d_i \le 1, i = 1, \dots, n$ 是为了防止 $||d|| \to \infty$.

注意到, d=0 显然是子问题 (10.2) 的一个可行解, 故目标函数 $\nabla f(\bar{x})^T d$ 的最优值必然小于或等于 0. 若目标函数的最优值 $\bar{z}=\nabla f(\bar{x})^T \bar{d}<0$,则由引理 10.1 可知, \bar{d} 即为 \bar{x} 处的下降可行方向. 否则, 若标函数的最优值 $\bar{z}=\nabla f(\bar{x})^T \bar{d}=0$,则可以证明 \bar{x} 是问题 (10.1) 的 KT 点.

定理 **10.1** 设 \bar{x} 是问题 (10.1) 的一个可行点, 且在 \bar{x} 处有 $A_1\bar{x} =$ $b_1, A_2\bar{x} > b_2,$ 其中

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

则 \bar{x} 是问题 (10.1) 的 KT 点的充要条件是子问题 (10.2) 的最优值为 0.

由于上述定理的证明需要用到 Farkas 引理 (引理 8.1), 为了使用 方便, 我们给出 Farkas 引理的一个等价描述方式.

引理 10.2 (Farkas 引理) 设 $A \rightarrow m \times n$ 矩阵, $c \rightarrow n$ 维向量. 则 $A^T y = c$, $y \ge 0$ 有解的充分必要条件是 $Ax \le 0$, $c^T x > 0$ 无解, 其 中x, y分别是为n, m维向量.

和 μ , 使得

无解,即

 $\nabla f(\bar{x}) - A_1^T \lambda - E^T \mu = 0.$ 令 $\mu = \nu_1 - \nu_2 (\nu_1, \nu_2 \ge 0)$, 把 (10.3) 写成

注意到, $ar{x}$ 是 KT 点充要条件是, 存在 $\lambda > 0$

 $\left(-A_1^T, -E^T, E^T\right) \begin{pmatrix} \lambda \\ \nu_1 \\ \nu_2 \end{pmatrix} = -\nabla f(\bar{x}), \quad \begin{pmatrix} \lambda \\ \nu_1 \\ \nu_2 \end{pmatrix} \ge 0. \tag{10.4}$

定理 10.1 的证明:

根据 Farkas 引理, (10.4) 有解的充要条件是

 $\begin{pmatrix} -A_1 \\ -E \\ F \end{pmatrix} d \le 0, \quad -\nabla f(\bar{x})^T d > 0$

 $A_1 d \geq 0$, E d = 0, $\nabla f(\bar{x})^T d < 0$

(10.5)

(10.3)

无解. 故 \bar{x} 是问题 (10.1) 的 KT 点的充要条件是子问题 (10.2) 的最优 值为 0.

由上述定理可知, 求解子问题 (10.2) 的结果, 或者得到下降可行 方向,或者得到原问题的一个 KT 点.

2. 计算步骤

下面讨论可行方向法的具体计算步骤. 首先分析如何确定搜索步 长 α_k . 设问题的可行域为 \mathcal{F} . 第 k 次迭代的出发点 $x_k \in \mathcal{F}$ 是可行点, d_k 是其下降可行方向, 则后继点 x_{k+1} 为

(10.6) $x_{k+1} = x_k + \alpha_k d_k$.

为了使得 $x_{k+1} \in \mathcal{F}$, 且使 $f(x_{k+1})$ 的值尽可能小, 可以通过求解下面的一维搜索问题来解决:

$$\min_{0 \le \alpha \le \bar{\alpha}} f(x_k + \alpha d_k),
\bar{\alpha} = \max\{\alpha | x_k + \alpha d_k \in \mathcal{F}\}.$$
(10.7)

在求解 (10.7) 式时, 考虑到线性约束情形时的 (10.1) 式, 先求解

$$\begin{cases} \min f(x_k + \alpha d_k), \\ \text{s.t.} \quad A(x_k + \alpha d_k) \ge b, \\ E(x_k + \alpha d_k) = e. \end{cases}$$
 (10.8)

而 (10.8) 可作进一步的简化: 因为 d_k 是可行方向, 有 $Ed_k = 0$; 而 x_k 是可行点, 有 $Ex_k = e$. 因此 (10.8) 中的等式约束条件自然成立, 可不必再考虑它. 此外, 在 x_k 处, 将不等式约束分为有效约束和非有效约

束,设

其中

$$A_1 x_k = b_1, \quad A_2 x_k > b_2,$$

 $A = \begin{vmatrix} A_1 \\ A_2 \end{vmatrix}, \quad b = \begin{vmatrix} b_1 \\ b_2 \end{vmatrix}.$

(10.9)

则 (10.8) 中的不等式约束条件可分裂成:

(10.10)(10.11)

 $A_2x_k + \alpha A_2d_k > b_2$. 又因 d_k 是可行方向, 由引理 10.1 知 $A_1d_k > 0$. 注意到 $A_1x_k = b_1$ 及 $\alpha \ge 0$, 因此条件 (10.10) 也自然成立. 于是 (10.8) 中的约束条件只剩

 $A_1x_k + \alpha A_1d_k > b_1$

下 (10.11), 故 (10.8) 可简化为: $\begin{cases} \min & f(x_k + \alpha d_k), \\ \text{s.t.} & A_2(x_k + \alpha d_k) > b_2, \\ & \alpha \ge 0. \end{cases}$ (10.12)以下讨论 (10.12) 中求 α 上限的公式. 将 (10.12) 中的第一个约束条件 改写成: $\alpha A_2 d_k > b_2 - A_2 x_k$. 若记 $\bar{b} = b_2 - A_2 x_k, \quad \bar{d} = A_2 d_k,$ (10.13)则有 $\alpha \bar{d} \geq \bar{b}, \quad \alpha > 0.$ Back 注意到 (10.9) 式, 我们有 b < 0. 由此可得 α 的上界计算公式:

$$\bar{\alpha} = \begin{cases} \min\left\{\frac{b_i}{\bar{d}_i} = \frac{(b_2 - A_2 x_k)_i}{(A_2 d_k)_i} \middle| \bar{d}_i < 0\right\}, & \bar{d} \geq 0, \\ +\infty, & \bar{d} \geq 0, \end{cases}$$
(10.14)

其中 \bar{b}_i , \bar{d}_i 分别是向量 \bar{b} , \bar{d} 的第 i 个分量. 因此, 求解 (10.12) 等价于 求解

$$\begin{cases} \min \ f(x_k + \alpha d_k), \\ \text{s.t.} \ 0 \le \alpha \le \bar{\alpha}, \end{cases}$$
 (10.15)

其中 $\bar{\alpha}$ 由 (10.14) 式计算.

至此,我们可以写出求解问题(10.1)的可行方向法的详细计算步

骤:

算法 10.1 (线性约束的可行方向法)

步 0 给定初始可行点 x_0 ,终止误差 $0 < \varepsilon_1 \ll 1$, $0 < \varepsilon_2 \ll 1$. 令

k := 0.

步 1 在 x_k 处,将不等式约束分为有效约束和非有效约束:

$$A_1 x_k = b_1, \quad A_2 x_k > b_2,$$

其中

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

步 2 若 x_k 是可行域的一个内点 (此时问题 (10.1) 中没有等式约束,即 E=0 且 $A_1=0$),且 $\|\nabla f(x^k)\|<\varepsilon_1$,停算,得到近似极小点 x_k ; 否则,若 x_k 是可行域的一个内点但 $\|\nabla f(x^k)\|\geq\varepsilon_1$,则取搜索方向 $d_k=-\nabla f(x_k)$,转步 5 (即用目标函数的负梯度方向作为搜索方向再 求步长,此时类似于无约束优化问题).若 x_k 不是可行域的一个内点,则转步 3.

15/78

44

4

•

Back

步3 求解线性规划问题

$$\begin{cases} \min \ z = \nabla f(x_k)^T d, \\ \text{s.t.} \ A_1 d \ge 0, \\ E d = 0, \\ -1 \le d_i \le 1, \ i = 1, \dots, n, \end{cases}$$
 (10.16)

其中 $d = (d_1, \dots, d_n)^T$. 设求得最优解和最优值分别为 d_k 和 z_k .

步 4 若 $|z_k| < \varepsilon_2$, 停算, 输出 x_k 作为近似极小点. 否则, 以 d_k 作为搜索方向, 转步 5.

步 5 首先由 (10.13) 和 (10.14) 计算 $\bar{\alpha}$, 然后作一维线搜索:

$$\begin{cases} \min & f(x_k + \alpha d_k), \\ \text{s.t.} & 0 \le \alpha \le \bar{\alpha}, \end{cases}$$

求得最优解 α_k .

16/78

Back

步 6 置 $x_{k+1} := x_k + \alpha_k d_k, k := k+1, 转步 1.$

1. 基本原理

§10.1.2 非线性约束下的可行方向法

考虑下面带有非线性不等式约束的优化问题:

 $\begin{cases} \min f(x), \\ \text{s.t.} g_i(x) \ge 0, i = 1, \dots, m, \end{cases}$ (10.17)

其中 $x \in \mathbb{R}^n$, f(x), $g_i(x)$ $(i = 1, \dots, m)$ 都是连续可微的函数.

下面的引理指出了问题 (10.17) 的一个下降可行方向 d 所应满

足的条件. 引理 10.3 设 \bar{x} 是问题 (10.17) 的一个可行点, 指标集 $I(\bar{x})$ =

 $\{i \mid g_i(\bar{x}) = 0\}, f(x), g_i(x) (i \in I(\bar{x}))$ 在 \bar{x} 处可微, $g_i(x) (i \notin I(\bar{x}))$ 在

 \bar{x} 处连续. 若

$$\nabla f(\bar{x})^T d < 0, \quad \nabla g_i(\bar{x})^T d > 0 \ (i \in I(\bar{x})),$$

那么 d 是问题 (10.17) 在 \bar{x} 处的下降可行方向.

证 由引理 8.3 中的下降可行方向的代数条件 (8.10) 可知, d 必是 问题 (10.17) 在 \bar{x} 处的一个下降可行方向. 证毕.

由上述引理可知, 问题 (10.17) 在可行点 \bar{x} 处的下降可行方向 d应满足:

(10.18)

 $\begin{cases} \nabla f(\bar{x})^T d < 0, \\ \nabla g_i(\bar{x})^T d > 0, \ i \in I(\bar{x}). \end{cases}$

而在 (10.18) 中引进辅助变量 z 后, 等价于下面的线性不等式组求 d 和 z:

$$\begin{cases}
\nabla f(\bar{x})^T d \leq z, \\
-\nabla g_i(\bar{x})^T d \leq z, & i \in I(\bar{x}), \\
z \leq 0.
\end{cases} (10.19)$$

注意到,满足 (10.19) 的下降可行方向 d 及数 z 一般有很多个,我们自然希望求出能使目标函数下降最多的方向 d. 故而可将 (10.19) 转化为以 z 为目标函数的线性规划问题

$$\begin{cases} \min z, \\ \text{s.t. } \nabla f(\bar{x})^T d \leq z, \\ -\nabla g_i(\bar{x})^T d \leq z, i \in I(\bar{x}), \\ -1 \leq d_i \leq 1, i = 1, \dots, n, \end{cases}$$
 (10.20)

其中 $d=(d_1,\cdots,d_n)^T$.

=

9/78

44

1

Back

设 (10.20) 的最优解为 d, 最优值为 \bar{z} . 那么, 若 $\bar{z} < 0$, 则 d 是问题 (10.17) 在 \bar{x} 处的下降可行方向; 否则, 若 $\bar{z}=0$, 则下面的定理将证明: 相应的 \bar{x} 必为问题 (10.17) 的 Fritz John 点.

定理 10.2 设 \bar{x} 是问题 (10.17) 的可行点, $I(\bar{x}) = \{i \mid g_i(\bar{x}) = 0\}.$ 则 \bar{x} 是问题 (10.17) 的 Fritz John 点的充要条件是子问题 (10.20) 的

$$\begin{cases} \nabla f(\bar{x})^T d < 0, \\ \nabla g_i(\bar{x})^T d > 0, \ i \in I(\bar{x}), \end{cases}$$

即

最优值为 0. 证 对于子问题 (10.20), 其最优值为 0 的充要条件是不等式组

 $\begin{cases} \nabla f(\bar{x})^T d < 0, \\ -\nabla g_i(\bar{x})^T d < 0, \ i \in I(\bar{x}), \end{cases}$

(10.21)

无解. 根据 Gordan 引理(引理 8.2), 不等式组 (10.21) 无解的充要条件 是存在不全为 0 的数 $\lambda_0 \geq 0$ 和 λ_i $(i \in I(\bar{x}),$ 使得

$$\lambda_0 \nabla f(\bar{x}) - \sum_{i \in I(\bar{x})} \lambda_i \nabla g_i(\bar{x}) = 0,$$

即 \bar{x} 是问题 (10.17) 的 Fritz John 点. 证毕.

2. 计算步骤

与线性约束情形一样,为了确定搜索步长 α_k ,仍然需要求解一个

一维搜索问题: $\min f(x_k + \alpha d_k),$ (10.22)

s.t. $0 < \alpha < \bar{\alpha}$,

其中

 $\bar{\alpha} = \sup\{\alpha \mid g_i(x_k + \alpha d_k) \geq 0, \ i = 1, \cdots, m\}.$

(10.23)

现在,我们写出求解问题 (10.17) 的可行方向法的详细计算步骤:

算法 10.2 (非线性约束的可行方向法)

步 0 给定初始可行点 x_0 , 终止误差 $0 < \varepsilon_1 \ll 1$, $0 < \varepsilon_2 \ll 1$. 令 k := 0.

$$I(x_k) = \{i \mid g_i(x_k) = 0\}.$$

若 $I(x_k) = \emptyset$ 且 $\|\nabla f(x_k)\| < \varepsilon_1$, 停算, 得到近似极小点 x_k ; 否则若 $I(x_k) = \emptyset$ 但 $\|\nabla f(x_k)\| \ge \varepsilon_1$, 则取搜索方向 $d_k = -\nabla f(x_k)$, 转步 4. 反之, 若 $I(x_k) \ne \emptyset$, 转步 2.

步 2 求解线性规划问题 (10.20), 得最优解 d_k , 最优值 z_k .

步 3 若 $|z_k| < \varepsilon_2$, 停算, 输出 x_k 作为近似极小点. 否则, 以 d_k 作为搜索方向, 转步 4.

Back

步 4 首先由 (10.23) 计算 $\bar{\alpha}$, 然后作一维线搜索:

$$\begin{cases} \min & f(x_k + \alpha d_k), \\ \text{s.t.} & 0 \le \alpha \le \bar{\alpha}, \end{cases}$$

步 5 置 $x_{k+1} := x_k + \alpha_k d_k, k := k+1, 转步 1.$

注(1)步 1 中的 $I(x_k) = \emptyset$,表明 x_k 是可行域 \mathcal{F} 的内点,因此任意方向都是可行方向. 此时,若不满足终止条件,类似于无约束优化问题,可用最速下降法寻求下一个迭代点. 但毕竟不是真正的无约束问题,步长要受到可行域边界的限制.

- (2) 步 3 中若 $z_k \approx 0$, 说明在 x_k 处找不到下降可行方向, 可以认为 x_k 是原问题的一个 Fritz-John 点.
- (3) 算法 10.2 若推广到包含非线性等式约束的优化问题, 迭代过程会出现一些困难. 因为对于等式约束和当前可行迭代点 x_k , 一般难

23/78

44

1

•

Back

于找到一个可行方向,这与罚函数类算法刚好相反,罚函数类算法容 易处理等式约束

例 10.1 用 Zoutendijk 可行方向法求解下列问题:

min
$$x_1^2 + x_2^2 - 2x_1 - 4x_2 + 3$$
,
s.t. $-2x_1 + x_2 \ge -1$,
 $-x_1 - x_2 \ge -2$,
 $x_1 \ge 0$, $x_2 \ge 0$.

解 取初始可行点 $x_0 = (0,0)^T$.

第 1 次迭代. $\nabla f(x_0) = (-2, -4)^T$. 有效约束和非有效约束的系 数矩阵和右端向量分别为:

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}.$$

先求在 x_0 处的下降可行方向 d_0 . 解线性规划问题

min
$$\nabla f(x_0)^T d$$
,
s.t. $A_1 d > 0$,

$$|d_i| < 1$$

$$|d_i| < 1, i = 1, 2,$$

即

$$\min -2d_1 - 4d_2,$$

s.t.
$$d_1 \ge 0$$
, $d_2 \ge 0$,
 $-1 < d_1 < 1$,

$$-1 < d_2 < 1$$
.

由单纯形方法求得最优解为
$$d_0=(1,1)^T$$
.

再求步长因子 α_0 . 分别计算 \bar{b} , \bar{d} 和 $\bar{\alpha}$:

$$\bar{d} = A_2 d_0 = \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix},$$

$$\bar{b} = b_2 - A_2 x_0 = \begin{bmatrix} -1 \\ -2 \end{bmatrix} - \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix},$$

$$\bar{\alpha} = \min\left\{\frac{-1}{-1}, \frac{-2}{-2}\right\} = 1.$$

于是解下面的一维搜索问题求 $lpha_0$:

$$\min f(x_0 + \alpha d_0) = 2\alpha^2 - 6\alpha + 3,$$

s.t. $0 < \alpha < 1$.

求得
$$\alpha_0 = 1$$
. 令 $x_1 = x_0 + \alpha_0 d_0 = (1, 1)^T$. 至此第 1 次迭代完成.

第 2 次迭代. $\nabla f(x_1) = (0, -2)^T$. 有效约束和非有效约束的系数 矩阵和右端向量分别为:

$$A_1 = \begin{bmatrix} -2 & 1 \\ -1 & -1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad b_1 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

解线性规划问题

min
$$-2d_2$$
,
s.t. $2d_1 + d_2 \ge 0$,
 $-d_1 - d_2 \ge 0$,
 $-1 \le d_1 \le 1$,
 $-1 \le d_2 \le 1$.

_1 1)T

44

4

•

Back

Close

由单纯形方法求得最优解为 $d_1 = (-1,1)^T$.

再求步长因子 α_1 . 分别计算 b, d 和 $\bar{\alpha}$:

$$\bar{d} = A_2 d_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

$$\bar{b} = b_2 - A_2 x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix},$$

得 $\bar{\alpha}=1$. 于是解下面的一维搜索问题求 α_1 :

$$\min f(x_1 + \alpha d_1) = 2\alpha^2 - 2\alpha - 1,$$

s.t. $0 \le \alpha \le 1$.

求得 $\alpha_1 = 0.5$. 令 $x_2 = x_1 + \alpha_1 d_1 = (1,1)^T + 0.5(-1,1)^T = (0.5,1.5)^T$. 至此第2次迭代完成.

第 3 次迭代. $\nabla f(x_2) = (-1, -1)^T$. 有效约束和非有效约束的系 数矩阵和右端向量分别为:

解线性规划问题

min
$$-d_1 - d_2$$
,
s.t. $-d_1 - d_2 \ge 0$,
 $-1 \le d_1 \le 1$,
 $-1 \le d_2 \le 1$.

由单纯性方法求得最优解为 $d_1 = (0,0)^T$. 由定理 10.1 知, $x_2 =$ $(0.5,1.5)^T$ 是 KT 点. 由于此例是凸规划, 因此, x_2 也是最优解, 相 应地, 目标函数的最优值为 $f_{\min} = f(x_2) = 1.5$.

§10.2 梯度投影法

梯度投影法是 Rosen 于 1961 年针对线性约束的优化问题首先提出来的一种优化算法, 次年 Rosen 又将他的这一算法推广到处理非线性约束的情形. 后来这一方法又得到了进一步的发展, 成为求解非线性规划问题的一类重要的方法.

§10.2.1 梯度投影法的理论基础

我们考虑线性约束的优化问题

$$\begin{cases} \min f(x), \\ \text{s.t. } Ax \ge b, \\ Ex = e, \end{cases}$$
 (10.24)

其中 f 是连续可微的 n 元实函数, $A \in \mathbb{R}^{m \times n}$, $E \in \mathbb{R}^{l \times n}$, $b \in \mathbb{R}^m$, $e \in \mathbb{R}^l$, $x \in \mathbb{R}^n$. 其可行域为 $\mathcal{D} = \{x \in \mathbb{R}^n \mid Ax \geq b, \ Ex = e\}$.

梯度投影法的基本思想是: 当迭代点 x_k 是可行域 \mathcal{D} 的内点时, 取 $d = -\nabla f(x_k)$ 作为搜索方向; 否则, 当 x_k 是可行域 \mathcal{D} 的边界点时, 取 $-\nabla f(x_k)$ 在这些边界面交集上的投影作为搜索方向. 这也是 "梯度投影法"名称的由来.

在具体介绍梯度投影法之前,我们先引入投影矩阵的概念及其有关性质.

定义 10.1 称矩阵 $P \in \mathbb{R}^{n \times n}$ 为投影矩阵, 是指 P 满足

$$P = P^T$$
, $P^2 = P$.

由上述定义可知,一个对称幂等矩阵就是投影矩阵. 投影矩阵具有如下一些基本性质,其证明可参看文献 [11].

引理 10.4 设矩阵 $P \in \mathbb{R}^{n \times n}$.

(1) 若 P 为投影矩阵, 则 P 是半正定的. (2) P 是投影矩阵当

1/78

且仅当 I-P 也是投影矩阵, 其中 I 是 n 阶单位阵. (3) 设 P 是投 影矩阵, Q = I - P. 则

是互相正交的线性子空间, 并且对于任意的 $x \in \mathbb{R}^n$ 可唯一地表示为

 $L = \{ y = Px | x \in \mathbb{R}^n \}, \quad L^{\perp} = \{ z = Qx | x \in \mathbb{R}^n \}$

 $x = y + z, \ y \in L, \ z \in L^{\perp}.$

 $A_{2}\bar{x} > b_{2}$, 其中

定理 **10.3** 设 \bar{x} 是问题 (10.24) 的一个可行点, 且满足 $A_1\bar{x}=b_1$,

 $M = \left| \begin{array}{c} A_1 \\ E \end{array} \right|$

又设

是满秩矩阵, $P = I - M^{T}(MM^{T})^{-1}M$, $P\nabla f(\bar{x}) \neq 0$. 若取 d = $-P\nabla f(\bar{x})$,则 d 是问题 (10.24) 的一个下降可行方向.

证 不难验证, $P = I - M^T (MM^T)^{-1} M$ 是投影矩阵, 故由 $P \nabla f(\bar{x}) \neq I$

0 可得

$$\nabla f(\bar{x})^T d = -\nabla f(\bar{x})^T P \nabla f(\bar{x}) = -\|P \nabla f(\bar{x})\|^2 < 0,$$

即 d 为下降方向. 又因

$$Md =$$

$$Md =$$

$$Md = -MP\nabla f(\bar{x})$$
$$= -M(I - M^{T}(MM^{T})^{-1}M)\nabla f(\bar{x})$$

$$= -M(I - M^T)$$

$$= (-M + M)\nabla f(\bar{x}) = 0,$$

即
$$Md = \left[\begin{array}{c} A_1 \\ d \end{array}\right]_{d=1}^{d} \left[\begin{array}{c} A_1 \\ d \end{array}\right]$$

$$Md = \begin{bmatrix} A_1 \\ E \end{bmatrix} d = \begin{bmatrix} A_1d \\ Ed \end{bmatrix} = 0,$$

从而 $A_1d = 0$, Ed = 0. 根据引理 10.1, d 是在 \bar{x} 的可行方向. 证毕. \Box 上述定理在 $P\nabla f(\bar{x}) \neq 0$ 的假设下, 给出了用投影来求下降可行

方向的一种方法. 但是, 当 $P\nabla f(\bar{x}) = 0$ 时, 情况又该如何呢? 下面的 定理指出, 此时有两种可能: 要么 \bar{x} 是已是 KT 点, 要么构造新的投影 矩阵,以便求得下降可行方向.

定理 10.4 设 \bar{x} 是问题 (10.24) 的一个可行点, 且满足 $A_1\bar{x} = b_1$, $A_2\bar{x} > b_2$, 其中

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

又设

$$M = \left[\begin{array}{c} A_1 \\ E \end{array} \right]$$

是行满秩矩阵,令

$$P = I - M^T (MM^T)^{-1} M,$$

$$\omega = (MM^T)^{-1}M\nabla f(\bar{x}) = \begin{bmatrix} \lambda \\ \mu \end{bmatrix},$$

其中 λ 和 μ 分别对应于 A_1 和E. 若 $P\nabla f(\bar{x})=0$,则

- (1) 如果 $\lambda \geq 0$, 那么 \bar{x} 是 KT 点.
- (2) 如果 $\lambda \not\geq 0$, 不妨设 $\lambda_j < 0$, 那么先从 A_1 中去掉 λ_j 所对应的行, 得到新矩阵 \tilde{A}_1 , 然后令

$$\tilde{M} = \begin{bmatrix} \tilde{A}_1 \\ E \end{bmatrix}, \quad \tilde{P} = I - \tilde{M}^T (\tilde{M} \tilde{M}^T)^{-1} \tilde{M}, \quad d = -\tilde{P} \nabla f(\bar{x}),$$

那么, d 是下降可行方向.

5/78

Back

证 (1) 设 $\lambda \ge 0$. 注意到 $P\nabla f(\bar{x}) = 0$, 我们有

$$0 = P\nabla f(\bar{x}) = [I - M^T (MM^T)^{-1} M] \nabla f(\bar{x})$$

$$= \nabla f(\bar{x}) - M^T (MM^T)^{-1} M \nabla f(\bar{x})$$

$$= \nabla f(\bar{x}) - M^T \omega = \nabla f(\bar{x}) - [A_1^T, E^T] \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$$

$$= \nabla f(\bar{x}) - A_1^T \lambda - E^T \mu. \tag{10.25}$$

(10.25) **恰为** KT 条件, 因此 \bar{x} 是 KT 点.

(2) 设 $\lambda_j < 0$. 先证明 $\tilde{P}\nabla f(\bar{x}) \neq 0$. 用反证法. 若 $\tilde{P}\nabla f(\bar{x}) = 0$, 则由 \tilde{P} 定义可得

则由
$$\tilde{P}$$
定义可得
$$0 = \tilde{P}\nabla f(\bar{x}) = [I - \tilde{M}^T(\tilde{M}\tilde{M}^T)^{-1}\tilde{M}]\nabla f(\bar{x}) = \nabla f(\bar{x}) - \tilde{M}^T\tilde{\omega}10.26)$$

Back

其中 $\tilde{\omega} = (\tilde{M}\tilde{M}^T)^{-1}\tilde{M}\nabla f(\bar{x})$. 设 A_1 中对应于 λ_i 的行是 r_i (第 j 行). 由于

$$A_1^T \lambda + E^T \mu = \tilde{A}_1^T \tilde{\lambda} + \lambda_j r_j^T + E^T \mu = \tilde{M}^T \bar{\omega} + \lambda_j r_j^T.$$
 (10.27)

 $0 = \nabla f(\bar{x}) - \tilde{M}^T \bar{\omega} - \lambda_i r_i^T.$

必有 $\tilde{P}\nabla f(\bar{x}) \neq 0$.

Back

(10.28)

由于 \tilde{P} 亦为投影矩阵, 且 $\tilde{P}\nabla f(\bar{x}) \neq 0$, 故 $\nabla f(\bar{x})^T d = -\nabla f(\bar{x})^T \tilde{P} \nabla f(\bar{x}) = -\|\tilde{P} \nabla f(\bar{x})\|^2 < 0,$

即 d 是下降方向. 以下只需证明 d 是可行方向即可. 事实上, 因 $\tilde{M}d = -\tilde{M}\tilde{P}\nabla f(\bar{x})$

即

 $= -\tilde{M}[I - \tilde{M}^T(\tilde{M}\tilde{M}^T)^{-1}\tilde{M}]\nabla f(\bar{x})$

(10.30)

 $A_1 d = 0$, E d = 0. 将 (10.28) 两边左乘 $r_i P$ 得 $r_i \tilde{P} \nabla f(\bar{x}) - r_i \tilde{P} \tilde{M}^T \bar{\omega} - \lambda_i r_i \tilde{P} r_i^T = 0.$

 $= -(\tilde{M} - \tilde{M})\nabla f(\bar{x}) = 0,$

注意到 $\tilde{P}\tilde{M}^T=0$ 及 $d=-\tilde{P}\nabla f(\bar{x})$, 上式即 $r_i d + \lambda_i r_i \tilde{P} r_i^T = 0.$ (10.31)因 \tilde{P} 半正定 $(r_j\tilde{P}r_i^T\geq 0)$ 及 $\lambda_j<0$, 故有 $r_i d = -\lambda_i r_i \tilde{P} r_i^T \ge 0.$ (10.32)由(10.30)和(10.32)即得 $A_1d > 0$, Ed = 0. 最后, 根据引理 10.1, d 是在 \bar{x} 的可行方向. 证毕. §10.2.2 梯度投影法的计算步骤 基于上述分析与讨论、我们给出 Rosen 梯度投影法的详细计算步 骤如下:

算法 10.3 (Rosen 梯度投影法)

步 0 给定初始可行点 x_0 , 令 k := 0.

步 1 在 x_k 处确定有效约束 $A_1x_k = b_1$ 和非有效约束 $A_2x_k > b_2$,

其中

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

步 2 今

$$M = \left[\begin{array}{c} A_1 \\ E \end{array} \right].$$

若 M 是空的,则令 P = I (单位矩阵). 否则,令 $P = I - M^T (MM^T)^{-1} M$.

步 3 计算 $d_k = -P\nabla f(x_k)$. 若 $||d_k|| \neq 0$, 转步 5; 否则, 转步 4.

步4 计算

$$\omega = (MM^T)^{-1}M\nabla f(x_k) = \begin{bmatrix} \lambda \\ \mu \end{bmatrix}.$$

若 $\lambda \geq 0$, 停算, 输出 x_k 为 KT 点. 否则, 选取 λ 的某个负分量, 比如 $\lambda_i < 0$, 修正矩阵 A_1 , 即去掉 A_1 中对应于 λ_i 的行, 转步 2.

步 5 求解一维搜索问题, 确定步长 α_k :

min
$$f(x_k + \alpha d_k)$$
,
s.t. $0 \le \alpha \le \bar{\alpha}$,

其中 $\bar{\alpha}$ 由下式确定

$$\bar{\alpha} = \begin{cases} \min \left\{ \frac{(b_2 - A_2 x_k)_i}{(A_2 d_k)_i} \middle| (A_2 d_k)_i < 0 \right\}, & A_2 d_k \not\geq 0, \\ +\infty, & A_2 d_k \geq 0. \end{cases}$$

步 6 令 $x_{k+1} := x_k + \alpha_k d_k$, k := k+1, 转步 1.

例 10.2 用 Rosen 梯度投影法求解下面的优化问题

$$\begin{cases} \min f(x) = x_1^2 + x_2^2 + 6x_1 + 9, \\ \text{s.t. } 2x_1 + x_2 \ge 4, \\ x_1, x_2 \ge 0. \end{cases}$$

取初始可行点为 $x_0 = (2,0)^T$.

解 首先目标函数的梯度

$$\nabla f(x) = \begin{vmatrix} 2x_1 + 6 \\ 2x_2 \end{vmatrix}.$$

第 1 次迭代. 在 x_0 处的梯度为

$$\nabla f(x_0) = \begin{bmatrix} 10 \\ 0 \end{bmatrix}.$$

在 x_0 处有效约束的指标集为 $I = \{1,3\}$, 即 $2x_1 + x_2 \ge 4$ 和 $x_2 \ge 0$ 是 在 $x_0 = (2,0)^T$ 处的有效约束. 将约束系数矩阵 A 和右端向量 b 分解 为

$$A_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 0 \end{bmatrix}.$$

因 $E = \emptyset$, 故 $M = A_1$. 计算投影矩阵

$$P = I - A_1^T (A_1 A_1^T)^{-1} A_1$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} \frac{1}{4} \begin{bmatrix} 1 & -1 \\ -1 & 5 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

$$d_0 = -P\nabla f(x_0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

A

计算

$$\lambda = (A_1 A_1^T)^{-1} A_1 \nabla f(x_0)$$

$$= \left(\frac{1}{4} \begin{bmatrix} 1 & -1 \\ -1 & 5 \end{bmatrix}\right) \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}.$$

修正 A_1 . 去掉 A_1 中对应 $\lambda_2 = -5$ 的行, 得到

$$\tilde{A}_1 = \begin{bmatrix} 2, 1 \end{bmatrix}.$$

44

Back

再求投影矩阵

$$\tilde{P} = I - \tilde{A}_1^T (\tilde{A}_1 \tilde{A}_1^T)^{-1} \tilde{A}_1$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} \left(\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 & 1 \end{bmatrix}$$

$$= \frac{1}{5} \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}.$$

今

$$\tilde{d}_0 = -\tilde{P}\nabla f(x_0) = -\frac{1}{5} \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}.$$

求步长 α_0 :

 $\min f(x_0 + \alpha d_0),$

s.t. $0 < \alpha \leq \bar{\alpha}$.

(10.33)

由于

$$\hat{b} = b_2 - A_2 x_0 = 0 - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = -2.$$

$$\hat{d} = A_2 \tilde{d}_0 = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \end{bmatrix} = -2.$$

故

$$\bar{\alpha} = \frac{-2}{-2} = 1.$$

这样,问题(10.33)即为

$$\min 20\alpha^2 - 20\alpha + 25,$$
s.t. $0 \le \alpha \le 1$.

解之得 $\alpha_0 = \frac{1}{2} = 0.5$. 从而

$$x_1 = x_0 + \alpha_0 d_0 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

第 2 次迭代.

$$\nabla f(x_1) = \begin{bmatrix} 2 \times 1 + 6 \\ 2 \times 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}.$$

$$A_1 = \begin{bmatrix} 2 & 1 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 4 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

因 $E = \emptyset$, 故 $M = A_1$. 计算投影矩阵

令

$$P = I - A_1^T (A_1 A_1^T)^{-1} A_1 = \frac{1}{5} \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}.$$

$$d_2 = -P\nabla f(x_1) = -\frac{1}{5} \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

计算

十算
$$\lambda = (A_1 A_1^T)^{-1} A_1 \nabla f(x_1) = \frac{1}{5} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \end{bmatrix} = 4 > 0,$$

 $\lambda = (A_1 A_1^T)^{-1} A_1 \nabla f(x_1) = \frac{1}{5} \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{vmatrix} 8 \\ 4 \end{vmatrix} = 4 > 0,$

故 $x_1 = (1,2)^T$ 是 KT 点.

$$(A_1^T)^{-1}A_1\nabla f(x_1) = \frac{1}{5}\begin{bmatrix} 2 & 1 \end{bmatrix}\begin{bmatrix} 8 \\ 4 \end{bmatrix} = 4 > 0$$

§10.3 简约梯度法

§10.3.1 Wolfe 简约梯度法

Wolfe 于 1963 年针对线性等式约束的非线性优化问题提出一种 新的可行方向法, 称之为简约梯度法. 我们来介绍这种方法.

考虑具有约性约束的非线性优化问题

$$\begin{cases} \min f(x), \\ \text{s.t. } Ax = b, \\ x \ge 0, \end{cases}$$
 (10.34)

其中 $A \in \mathbb{R}^{m \times n}$, 秩为 $m, b \in \mathbb{R}^m$, $f : \mathbb{R}^n \to \mathbb{R}$ 连续可微. 设矩阵 A 的任意 m 个列都线性无关,并且约束条件的每个基本可行点都有 m 个正分量. 那么在此假设下,每个可行解至少有 m 个正分量,至多有 n-m 个零分量. 简约梯度法的基本思想把求解线性规划的单纯形法

推广到解线性约束的非线性优化问题 (10.34). 先利用等式约束条件 消去一些变量,然后利用降维所形成的简约梯度来构造下降方向,接 着作线性搜索求步长, 重复此过程逐步逼近极小点. 下面依次介绍如 何确立简约梯度、如何构造下降方向和计算线搜索的步长上界等。

先介绍简约梯度的确立. 将 A 和 x 进行分解. 不失一般性, 可令

$$A = [B, N], \quad x = \begin{bmatrix} x_B \\ x_N \end{bmatrix},$$

其中 $B \in m \times m$ 可逆矩阵, x_B, x_N 分别是由基变量和非基变量构成 的向量. 那么线性约束 Ax = b 就可以表示为

$$Bx_B + Nx_N = b,$$

而 x > 0 则变成

$$x_B = B^{-1}b - B^{-1}Nx_N \ge 0, \quad x_N \ge 0.$$

现假设 x 是非退化的可行解, 即 $x_B > 0$. 由于 x_B 可以用 x_N 来表示, 因此 f(x) 可以化成关于 x_N 的函数, 即

$$f(x) = f(x_B, x_N) = f(B^{-1}b - B^{-1}Nx_N, x_N) := F(x_N).$$

 $r(x_N)$, 即 $r(x_N) = \nabla_{x_N} F(x_N) = \nabla_{x_N} f(B^{-1}b - B^{-1}Nx_N, x_N)$

$$= \nabla_N f(x_B, x_N) - (B^{-1}N)^T \nabla_B f(x_B, x_N),$$

上式中 $\nabla_N = \nabla_{x_N}, \nabla_B = \nabla_{x_B}$.

再确定搜索方向, 即怎样确定在点 x_k 处的下降可行方向 d_k , 使得

称 n-m 维向量 x_N 的函数 $F(x_N)$ 的梯度为 f(x) 的简约梯度, 记为

后继点
$$x_{k+1} = x_k + \alpha_k d_k$$
 是可行点且目标函数值下降. 令
$$\begin{bmatrix} d^B \end{bmatrix}$$

继点
$$x_{k+1}=x_k+lpha_k d_k$$
 是可行点且目标函数值下降. 令 $d_k=\begin{bmatrix}d_k^B\\d_k^N\end{bmatrix}$.

(10.35)

欲使 d_k 为下降可行方向, 需其满足 $\begin{cases} \nabla f(x_k)^T d_k < 0, \\ Ad_k = 0, \\ (d_k)_j \ge 0, \quad \not\exists \ (x_k)_j = 0. \end{cases}$ 由等式 $Ad_k=0$ 得 $Bd_k^B + Nd_k^N = 0,$ 即 $d_{k}^{B} = -B^{-1}Nd_{k}^{N}$ (10.36)这表明 d_k^B 是由 d_k^N 确定的. 再由下降性条件 $\nabla f(x_k)^T d_k < 0$ 可得 $\nabla f(x_k)^T d_k = \nabla_B f(x_k)^T d_k^B + \nabla_N f(x_k)^T d_k^N$ $= -\nabla_B f(x_k)^T B^{-1} N d_k^N + \nabla_N f(x_k)^T d_k^N$ Back $= r(x_k^N)^T d_k^N < 0.$ (10.37)

由非负性条件可知

当
$$(x_k^N)_j=0$$
 时, $(d_k^N)_j\geq 0$. (10.38)
不难发现,满足 $(10.36)\sim(10.38)$ 的 d_k 有许多种选取方法,其中一

种简单的取法为

$$(d_k^N)_j = \begin{cases} -(x_k^N)_j \, r_j(x_k^N), & \text{min } r_j(x_k^N) \ge 0 \\ -r_j(x_k^N), & \text{figure}. \end{cases}$$
(10.39)

$$d_k = \begin{bmatrix} -B^{-1}Nd_k^N \\ d_k^N \end{bmatrix} = \begin{bmatrix} -B^{-1}N \\ I_{n-m} \end{bmatrix} d_k^N$$
 (10.40)

余下的问题就是确定步长 α_k . 为保持

 $x_{k+1} > 0$,

即

$$(x_{k+1})_j = (x_k)_j + \alpha(d_k)_j \ge 0, \quad j = 1 \cdots, n,$$
 (10.41)

需确定 α 的取值范围.

注意到, 当 $(d_k)_j \ge 0$ 时, 对任意的 $\alpha \ge 0$, (10.41) 恒成立. 而当 $(d_k)_j < 0$ 时, 应取

$$\alpha \le \frac{(x_k)_j}{-(d_k)_j}.$$

因此,令

$$\bar{\alpha} = \begin{cases} +\infty, & d_k \ge 0\\ \min\left\{-\frac{(x_k)_j}{(d_k)_j} \middle| (d_k)_j < 0\right\},$$
 否则. (10.42)

可以证明, 按照上述方式构造的方向 d_k , 若 $d_k \neq 0$, 则它必为下降可行方向, 否则, 相应的 x_k 必为 KT 点.

Back

定理 10.5 设 A=(B,N) 是 $m\times n$ 矩阵, B 是 m 阶非奇异

矩阵,
$$x_k = \begin{bmatrix} x_k^B \\ x_k^N \end{bmatrix}$$
 是问题 (10.34) 的可行点, 其中 $x_k^B > 0$ 是相应于

B 的 m 维向量. 又假定函数 f 在 x_k 处连续可微, d_k 是由 (10.39) 和 (10.40) 定义的方向向量. 那么, 若 $d_k \neq 0$, 则 d_k 是下降可行方向, 且 $d_k = 0$ 的充要条件是 x_k 是 KT 点.

证 由 d_k 的定义, 有

 $Ad_k = Bd_k^B + Nd_k^N = B(-B^{-1}Nd_k^N) + Nd_k^N = 0.$

又由 (10.38), 当 $(x_N^k)_i = 0$ 时, $(d_k^k)_i \ge 0$. 注意到 $x_k^B > 0$, 因此根据引 理 10.1, d_k 是可行方向. 此外, 我们有

 $\nabla f(x_k)^T d_k = \nabla_B f(x_k)^T d_k^B + \nabla_N f(x_k)^T d_k^N$

$$= \nabla_B f(x_k)^T (-B^{-1}Nd_k^N) + \nabla_N f(x_k)^T d_k^N$$
 $= r(x_k^N)^T d_k^N.$
注意到, 当 $d_k^N \neq 0$ 时, 根据 (10.39) 知 $r(x_k^N)^T d_k^N < 0$, 因此 d_k 是下降可行方向, 现在证明 $d_k = 0$ 当日仅当 x_k 是 KT 点, 事实上, 我们知道, x_k

行方向. 现在证明 $d_k = 0$ 当且仅当 x_k 是 KT 点. 事实上, 我们知道, x_k 是问题 (10.34) 的 KT 点的充要条件是, 存在乘子 $\lambda = (\lambda_R^T, \lambda_N^T)^T \geq 0$ 及 μ , 使得

是问题
$$(10.34)$$
 的 KT 点的充要条件是, 存在乘子 $\lambda=(\lambda_B^T,\lambda_N^T)^T\geq 0$ 及 μ , 使得
$$\nabla f(x_k)-A^T\mu-\lambda=0,$$

$$\lambda\geq 0,\ x_k\geq 0,\ \lambda^Tx=0,$$

即 $\begin{vmatrix} \nabla_B f(x_k) \\ \nabla_N f(x_k) \end{vmatrix} - \begin{vmatrix} B^T \\ N^T \end{vmatrix} \mu - \begin{vmatrix} \lambda_B \\ \lambda_N \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix},$ (10.43) $\lambda_R^T x_k^B = 0, \quad \lambda_N^T x_k^N = 0.$ (10.44)我们先设 x_k 是 KT 点,则上述条件成立. 由于 $x_k^B > 0$ 且 $\lambda_B \geq 0$, 则由 (10.44) 的第一式推出 $\lambda_B = 0$. 从而由 (10.43) 的第一个方程可得 $\mu = (B^T)^{-1} \nabla_B f(x_k).$ (10.45)将上式代入(10.43)的第二个方程可求得 $\lambda_N = \nabla_N f(x_k) - (B^{-1}N)^T \nabla_B f(x_k) = r(x_k^N) > 0.$ (10.46)由 (10.46) 及 (10.44) 的第二式可得 $r(x_{k}^{N})^{T}x_{k}^{N}=0.$ (10.47)

注意到 $x_k^N \geq 0$,故由上式可推出 $r_j(x_k^N)(x_k^N)_j = 0, \quad j = 1, \cdots, n. \tag{10.48}$ 因此,根据 (10.46),(10.48) 和 (10.36),(10.39) 可推得 $d_k = 0$. 反之,设 $d_k = 0$,则 $r(x_k^N)$ 均非负. 令

 $\lambda_N = r(x_k^N) = \nabla_N f(x_k) - (B^{-1}N)^T \nabla_B f(x_k) \ge 0.$

 $\lambda_{R} = 0, \quad \mu = (B^{T})^{-1} \nabla_{R} f(x_{k}),$

则有 $\lambda_B^T x_k^B = 0$ 及 (10.43) 式成立. 故 x_k 是 KT 点. 证毕.

下面,我们写出简约梯度法的详细计算步骤如下:

故由 (10.39) 可知必有 $\lambda_N^T x_k^N = 0$ 成立. 再令

算法 10.4 (Wolfe 简约梯度法)

58/78

步 0 初始化. 选取初始可行点 $x_0 \in \mathbb{R}^n$. 令 k := 0.

步 1 计算搜索方向. 将 x_k 分解成

$$x_k = \begin{bmatrix} x_k^B \\ x_k^N \end{bmatrix},$$

其中, x_k^B 为基变量, 由 x_k 的 m 个最大分量组成, 这些分量的下标集 记作 J_k . 相应地, 将 A 分解成 A = (B, N). 按下式计算 d_k :

$$r(x_k^N) = \nabla_N f(x_k^B, x_k^N) - (B^{-1}N)^T \nabla_B f(x_k^B, x_k^N),$$

$$(d_k^N)_j = \begin{cases} -(x_k^N)_j r_j(x_k^N), & \text{如果 } r_j(x_k^N) \ge 0, \\ -r_j(x_k^N), & \text{否则}, \end{cases}$$

$$d_k = \begin{bmatrix} d_k^B \\ d_k^N \end{bmatrix} = \begin{bmatrix} -B^{-1}N \\ I_{n-m} \end{bmatrix} d_k^N.$$

步 2 检验终止准则. 若 $d_k=0$, 则 x_k 为 KT 点, 停算. 否则, 转 步 3.

步 3 计算步长上界 $\bar{\alpha}$:

$$\bar{\alpha} = \begin{cases} +\infty, & d_k \ge 0 \\ \min\left\{ -\frac{(x_k)_j}{(d_k)_j} \middle| (d_k)_j < 0 \right\}, &$$
 否则.

 $\int \min f(x_k + \alpha d_k),$

$$\begin{cases} \min f(x_k + \alpha d_k), \\ \text{s.t. } 0 \le \alpha \le \bar{\alpha}. \end{cases}$$

步 4 进行一维搜索. 求解下面的一维极小化问题得步长 α_k :

 $\diamondsuit x_{k+1} := x_k + \alpha_k d_k.$

步 5 修正基变量. 若 $x_{k+1}^B > 0$, 则基变量不变. 否则, 若有 j 使得 $(x_{k+1}^B)_j = 0$, 则将 $(x_{k+1}^B)_j$ 换出基, 而以 $(x_{k+1}^N)_j$ 中最大分量换入基,构成新的基向量 x_{k+1}^B 和 x_{k+1}^N .

)/78

44

>>

1

)

Back

 $b 6 \diamond k := k+1.$ 转 b 1.

例 10.3 用 Wolfe 简约梯度法重新求解例 10.1. 即

min
$$x_1^2 + x_2^2 - 2x_1 - 4x_2 + 3$$
,
s.t. $-2x_1 + x_2 \ge -1$,

 $-x_1 - x_2 \ge -2,$

 $x_1 > 0, \ x_2 > 0.$

解 首先, 引入松弛变量 $x_3, x_4 \geq 0$, 将原问题转化为等价的"标 准形式":

 $\min \ x_1^2 + x_2^2 - 2x_1 - 4x_2 + 3,$ s.t. $\begin{cases} 2x_1 - x_2 + x_3 = 1, \\ x_1 + x_2 + x_4 = 2, \\ x_1 \ge 0, \ x_2 \ge 0, \\ x_3 \ge 0, \ x_4 \ge 0. \end{cases}$

首先写出约束矩阵和梯度

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, \quad \nabla f(x) = \begin{bmatrix} 2x_1 - 2 \\ 2x_2 - 4 \\ 0 \\ 0 \end{bmatrix}.$$

取初始可行点 $x_0 = (0, 0, 1, 2)^T$.

第 1 次迭代. k = 0. $J_0 = \{3,4\}$. $\nabla f(x_0) = (-2, -4, 0, 0)^T$. 确立

B, N 等得

$$x_0^B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad x_0^N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad N = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}.$$

计算

$$B^{-1}N = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}, \quad \nabla_N f(x_0) = \begin{bmatrix} -2 \\ -4 \end{bmatrix}, \quad \nabla_B f(x_0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$
 计算简约梯度 $r(x_0^N)$ 得

$$r(x_0^N) = \nabla_N f(x_0) - (B^{-1}N)^T \nabla_B f(x_0)$$
$$= \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}^T \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}^T$$

$$=\begin{bmatrix} -2 \\ -4 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^T \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}.$$
 当 $r_i(x_0^N) < 0$ 时,取 $(d_0^N)_i = -r_i(x_0^N)$,故

当
$$r_j(x_0^N) \leq 0$$
 时,取 $(d_0^N)_j = -r_j(x_0^N)$,故

当
$$r_j(x_0^N) \le 0$$
 时,取 $(d_0^N)_j = -r_j(x_0^N)$,故
$$d_0^N = \begin{bmatrix} 2 \\ d_0^N = -B^{-1}Nd_0^N = -\begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ = \begin{bmatrix} 0 \end{bmatrix}$$

$$d_0^N = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad d_0^B = -B^{-1}Nd_0^N = -\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ -6 \end{bmatrix}.$$

$$d_0^N = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad d_0^B = -B^{-1}Nd_0^N = -\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ -6 \end{bmatrix}.$$

从而 $d_0 = (2, 4, 0, -6)^T$.

求步长上界

$$\bar{\alpha} = -\frac{2}{-6} = \frac{1}{3}.$$

从 x_0 出发, 沿 d_0 搜索:

$$x_0 + \alpha d_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} + \alpha \begin{bmatrix} 2 \\ 4 \\ 0 \\ -6 \end{bmatrix} = \begin{bmatrix} 2\alpha \\ 4\alpha \\ 1 \\ 2 - 6\alpha \end{bmatrix},$$

$$f(x_0 + \alpha d_0) = 20\alpha^2 - 20\alpha + 3.$$

求解一维极小问题

小问题
$$\min 20\alpha^2 - 20\alpha + 3,$$

s.t. $0 \le \alpha \le \frac{1}{3}$,

等。
$$0 \le \alpha \le \frac{\pi}{3}$$
,
得 $\alpha_0 = \frac{1}{3}$,从而 $x_1 = x_0 + \alpha_0 d_0 = \left(\frac{2}{3}, \frac{4}{3}, 1, 0\right)^T$.

第 2 次迭代. $J_1 = \{2,3\}$. $\nabla f(x_1) = \left(-\frac{2}{2}, -\frac{4}{2}, 0, 0\right)^T$.

$$x_1^B = \begin{bmatrix} \frac{4}{3} \\ 1 \end{bmatrix}, \quad x_1^N = \begin{bmatrix} \frac{2}{3} \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}, \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}.$$

计算

$$B^{-1}N = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}, \quad \nabla_N f(x_1) = \begin{bmatrix} -\frac{2}{3} \\ 0 \end{bmatrix}, \quad \nabla_B f(x_1) = \begin{bmatrix} -\frac{4}{3} \\ 0 \end{bmatrix}.$$

计算简约梯度 $r(x_1^N)$ 得

$$r(x_1^N) = \nabla_N f(x_1) - (B^{-1}N)^T \nabla_B f(x_1)$$
$$= \begin{bmatrix} -\frac{2}{3} \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}^T \begin{bmatrix} -\frac{4}{3} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{3} \end{bmatrix}.$$

当 $r_i(x_1^N) > 0$ 时, 取 $(d_1^N)_i = -(x_1^N)_i r_i(x_1^N)$, 故

$$d_1^N = \begin{bmatrix} -\frac{4}{9} \\ 0 \end{bmatrix}, \quad d_1^B = -(B^{-1}N)d_1^N = -\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -\frac{4}{9} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{9} \\ \frac{4}{3} \end{bmatrix}.$$

$$d_1 = \left(-\frac{4}{9}, \frac{4}{9}, \frac{4}{3}, 0\right)^T.$$

求步长上界
$$\bar{\alpha}=-$$

$$\bar{\alpha} = -\frac{2/3}{-4/9} = \frac{3}{2}.$$

从 x_1 出发, 沿 d_1 搜索:

$$x_1 + \alpha d_1 = \begin{bmatrix} 2/3 \\ 4/3 \\ 1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -4/9 \\ 4/9 \\ 4/3 \\ 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 6 - 4\alpha \\ 12 + 4\alpha \\ 9 + 8\alpha \\ 0 \end{bmatrix},$$

$$f(x_1 + \alpha d_1) = \frac{32}{81}\alpha^2 - \frac{24}{81}\alpha - \frac{117}{81}.$$

求解一维极小问题

$$\min \frac{32}{81}\alpha^2 - \frac{24}{81}\alpha - \frac{117}{81},$$

s.t. $0 \le \alpha \le \frac{3}{2}$,

得
$$\alpha_1 = \frac{3}{8}$$
,从而 $x_2 = x_1 + \alpha_1 d_1 = \left(\frac{1}{2}, \frac{3}{2}, \frac{4}{3}, 0\right)^T$.

第 3 次迭代. $J_2 = \{2,3\}$. $\nabla f(x_2) = (-1,-1,0,0)^T$.

$$x_2^B = \begin{bmatrix} \frac{5}{2} \\ \frac{4}{3} \end{bmatrix}, \quad x_2^N = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}, \quad N = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}.$$

计算

$$B^{-1}N = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}, \quad \nabla_N f(x_1) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \quad \nabla_B f(x_1) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

计算简约梯度 $r(x_1^N)$ 得

$$r(x_1^N) = \nabla_N f(x_1) - (B^{-1}N)^T \nabla_B f(x_1)$$
$$= \begin{bmatrix} -1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}^T \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

当 $r_j(x_1^N)>0$ 时,取 $(d_1^N)_j=-(x_1^N)_jr_j(x_1^N)$,而 $r_j(x_1^N)=0$ 时,取 $(d_1^N)_j=-r_j(x_1^N)$.故

$$d_2^N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad d_2^B = -(B^{-1}N)d_2^N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

[0] $\begin{bmatrix} 0 \end{bmatrix}$ 从而 $d_2=(0,0,0,0)^T$. 根据定理 $10.5,\,x_2$ 即为 KT 点, 故 $x^*=\left(\frac{1}{2},\frac{3}{2}\right)^T$

是原问题的全局极小点.

§10.3.2 广义简约梯度法

Abadie 和 Carpentier 于 1969 年将 Wolfe 简约梯度法推广到一般非线性约束的情形, 提出了所谓的广义简约梯度法. 设一般非线性约

69/78

((

束优化问题为

$$\begin{cases} \min f(x), \\ \text{s.t. } h_i(x) = 0, \ i \in E = \{1, \dots, l\}, \\ g_i(x) \ge 0, \ i \in I = \{1, \dots, m\}, \end{cases}$$

其中 $f, h_i (i \in E), g_i (i \in I)$ 是连续可微的函数.

假设 x_k 是第 k 次可行迭代点, 记 $I_k = E \cup \{i \mid g_i(x_k) = 0\}$,并设

$$c(x_k) = (h_1(x_k), \cdots, h_l(x_k); g_i(x_k) (i \in I_k \setminus E))^T.$$

则在第k 步可考虑子问题:

现在我们讨论如何确立简约梯度 $r(x_k^N)$. 不失一般性, 设 $I_k=\{1,2,\cdots,s\},\,s\geq l,$ 且约束函数的 Jacobi 矩阵

$$\left[\nabla h_1(x_k), \cdots, \nabla h_l(x_k), \ \nabla g_i(x_k) \ (i \in I_k \backslash E)\right]^T$$

行满秩 (不妨设其前 s 列构成的方阵非奇异). 那么可以解出前 s 个变量, 即可以用其余的 n-s 个变量来表示这 s 个变量. 通常称这 s 个变量组成的子向量为基向量, 记为 x_k^B , 其余 n-s 个变量组成的子向量为非基向量, 记为 x_k^N . 为方便计, 去掉下标 k, 并记 $s \times s$ 矩阵

$$\nabla_B c(x) = \left[\nabla_B h_1(x), \cdots, \nabla_B h_l(x), \nabla_B g_1(x), \cdots, \nabla_B g_{s-l}(x) \right]^T,$$

其中

$$c(x) = (h_1(x), \dots, h_l(x), g_1(x), \dots, g_{s-l}(x))^T := (c_1(x), \dots, c_s(x))^T$$

及

$$\nabla_B c_i(x) = \begin{bmatrix} \frac{\partial c_i(x)}{\partial x_1} \\ \vdots \\ \frac{\partial c_i(x)}{\partial x_s} \end{bmatrix}, i = 1, 2, \cdots, s.$$

由假设可知 $\nabla_B c(x)$ 非奇异. 再记矩阵

$$\nabla_N c(x) = \left[\nabla_N c_1(x), \ \nabla_N c_2(x), \ \cdots, \ \nabla_N c_s(x) \right]^T \in \mathbb{R}^{s \times (n-s)},$$

其中

$$\nabla_N c_i(x) = \begin{bmatrix} \frac{\partial c_i(x)}{\partial x_{s+1}} \\ \vdots \\ \frac{\partial c_i(x)}{\partial x} \end{bmatrix}, i = 1, 2, \dots, s.$$

在 x 的某邻域内, 由非线性方程组 $c(x) = c(x_B, x_N) = 0$ 可以确定 x_B 为 x_N 的函数, 即 $x_B = \varphi(x_N)$.

对等式 $c(x) = c(x_B, x_N) = 0$ 两边关于 x_N 求梯度得 $J_{BN}(x_N)\nabla_B c(x)$ - $\nabla_N c(x) = 0$, 其中

$$J_{BN}(x_N) = \left[\frac{\partial(x_1, \cdots, x_s)}{\partial(x_{s+1}, \cdots, x_n)}\right]^T = \begin{bmatrix} \frac{\partial x_1}{\partial x_{s+1}} & \frac{\partial x_2}{\partial x_{s+1}} & \cdots & \frac{\partial x_s}{\partial x_{s+1}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial x_1}{\partial x_n} & \frac{\partial x_2}{\partial x_n} & \cdots & \frac{\partial x_s}{\partial x_n} \end{bmatrix}.$$

从而,我们有

$$J_{BN}(x_N) = -\nabla_N c(x) \left[\nabla_B c(x) \right]^{-1}. \tag{10.50}$$

注意到 $f(x) \equiv f(\varphi(x_N), x_N)$, 对其求关于 x_N 的梯度 (即简约梯

$$r(x_N) = \nabla_N f(x) + J_{BN}(x_N) \nabla_B f(x).$$

将 (10.50) 代入上式即得

$$r(x_N) = \nabla_N f(x) - \nabla_N c(x) \left[\nabla_B c(x) \right]^{-1} \nabla_B f(x).$$

现在设下降可行方向为 $d = (d_B^T, d_N^T)^T$, 则由下降可行条件知 d 应 满足 $\nabla f(x)^T d < 0, \qquad \nabla c(x)^T d = 0.$ 由 $\nabla c(x)^T d = 0$ 可得 $\nabla_B c(x)^T d_B + \nabla_N c(x)^T d_N = 0.$ 于是有 $d_{B} = -[\nabla_{B}c(x)^{T}]^{-1}\nabla_{N}c(x)^{T}d_{N} = J_{BN}(x_{N})^{T}d_{N}.$ (10.52)又由 $\nabla f(x)^T d < 0$, 得 $\nabla_B f(x)^T d_B + \nabla_N f(x)^T d_N < 0.$ 将 d_B 的表达式代入上式得 Back $\nabla_N f(x)^T d_N - \nabla_B f(x)^T [\nabla_B c(x)^T]^{-1} \nabla_N c(x)^T d_N < 0,$

即

$r(x_N)^T d_N < 0.$

因此, d_N 的一种简单的选取方法是 $d_N=-r(x_N)$. 至此, 我们在上述的推导过程中以 $x=x_k$ 代入得 x_k 处的简约梯度为 $r(x_k^N)$, 下降可行方向为

$$d_k = \begin{bmatrix} d_k^B \\ d_k^N \end{bmatrix} = \begin{bmatrix} -J_{BN}(x_k^N)^T r(x_k^N) \\ -r(x_k^N) \end{bmatrix} = \begin{bmatrix} -J_{BN}(x_k^N)^T \\ -I_{n-s} \end{bmatrix} r(x_k^N)$$
(10.53)

最后确定步长 α_k . 可以通过求解下述一维极小问题

$$\begin{cases} \min f(x_k + \alpha d_k), \\ \text{s.t. } c_i(x_k + \alpha d_k) = 0, \ i \in E, \\ c_i(x_k + \alpha d_k) \ge 0, \ i \in I \end{cases}$$
 (10.54)

Back

 x_{k+1} . 最后讨论拉格朗日乘子的估计. 由定理?? 知, 在极小点 x^* 处成 Ň $\nabla f(x^*) = \sum \mu_i^* \nabla h_i(x^*) + \sum \lambda_i^* \nabla g_i(x^*),$ (10.55)其中 $\lambda_i^* \geq 0$, $i \in I^* = \{i \mid g_i(x^*) = 0\}$. 记

获得搜索步长 α_k , 然后令 $x_{k+1} := x_k + \alpha_k d_k$ 即得到后继可行迭代点

 $\nabla c(x^*) = \left[\nabla h_1(x^*), \cdots, \nabla h_l(x^*), \ \nabla g_i(x^*), \ (i \in I^*) \right],$ $\nu^* = ((\mu^*)^T, (\lambda^*)^T)^T = (\mu_1, \dots, \mu_l, \lambda_i (i \in I^*))^T.$ 那么 (10.55) 可以写成 $\nabla f(x^*) = \nabla c(x^*) \nu^*$. 由广义逆知识可得其极小

最小二乘解 $\nu^* = [\nabla c(x^*)]^+ \nabla f(x^*)$. 因此, 计算相应的乘子估计 $\nu_k = (\mu_k^T, \lambda_k^T)^T = [\nabla c(x_k)]^+ \nabla f(x_k).$ 下面给出广义简约梯度法的详细计算步骤.

(10.56)

Back

(广义简约梯度法)

步 0 选取初始值. 给定初始可行点 $x_0 \in \mathbb{R}^N$, $0 \le \varepsilon \ll 1$. 令 k := 0.

步 1 检验终止条件. 确定基变量 x_k^B 和非基变量 x_k^N . 由 (10.51) 计算简约梯度 $r(x_k^N)$. 若 $||r(x_k^N)|| \le \varepsilon$, 则 x_k 为近似极小点, 停算.

步 2 确定搜索方向. 由 (10.53) 计算下降可行方向 d_k .

步 3 进行线搜索. 解子问题 (10.54) 得步长因子 α_k . 令 $x_{k+1} := x_k + \alpha_k d_k$.

步 4 修正有效集. 先求 x_{k+1} 处的有效集, 设为 I_{k+1} . 由 (10.56) 计算 λ_k . 若 $\lambda_{k+1} \geq 0$, 则 $I_{k+1} = \bar{I}_{k+1}$. 否则, I_{k+1} 是 \bar{I}_{k+1} 中删去 λ_{k+1} 最小分量所对应的约束指标集.

步 5 令 k := k + 1, 转步 1.

Back

注(1)在算法 10.5 的步 2 中,当 $||r(x_k^N)|| \le \varepsilon$ 时,实际还需要判别对应于不等式约束的拉格朗日乘子的非负性,若不满足还需进行改进.(2)广义简约梯度法通过消去某些变量在降维空间中运算,能够较快确定最优解,可用来求解大型问题,因而它是目前求解非线性优化问题的最有效的方法之一.

Back