

Prof. Keun Ryu Turbomachinery Laboratory Hanyang University, Korea



# Typical Propulsion Requirements

| Function                    | ΔV Requirements |
|-----------------------------|-----------------|
| Launch to LEO               | 8500 - 9000 m/s |
| LEO orbit raising           | up to 1600 m/s  |
| LEO drag makeup             | up to 600 m/s   |
| LEO deorbit                 | 100 - 160 m/s   |
| Interplanetary trajectories | > 3200 m/s      |

### Nomenclature

- Words: engine, motor, rocket, thruster
  - → all used in the same meaning
- engine usually liquid rocket
- motor usually solid rocket
- thruster usually a small rocket

## Classification of Rockets – Energy Source

#### Cold-gas thrusters (attitude control)

Chemical propulsion: liquid and solid

Liquid

➤ monopropellant: self reacts exothermically, i.e. with heat release hydrazine N<sub>2</sub>H<sub>4</sub>; hydrogen peroxide H<sub>2</sub>O<sub>2</sub>

> bipropellant: two reactants: fuel and oxidizer

**fuel**: kerosene (RP-1),  $H_2$ , methane (CH<sub>4</sub>), hydrazine ( $N_2H_4$ )

unsymmetrical dimethylhydrazine (UDMH) – (CH<sub>3</sub>)<sub>2</sub>NNH<sub>2</sub>

monomethylhydrazine (MMH) - CH<sub>3</sub>NHNH<sub>2</sub>

**oxidizer**:  $O_2$ , nitric acid (HNO<sub>3</sub>), nitrogen tetroxide ( $N_2O_4$ ) (NTO)

Solid: fuel and oxidizer are combined into a solid mixture called the grain

Hybrid liquid and solid, for example solid fuel and liquid oxidizer

#### Solar

· generate electricity (for electric propulsion) or direct heating of the propellant

Nuclear (fission, fusion, radioactive isotope decay)

generate electricity (for electric propulsion) or direct heating of the propellant



### Nozzle Expansion

- exhaust/exit velocity, U<sub>a</sub>
- propellant flow rate  $\dot{m}$
- subscripts: e = exhaust/exit; a = ambient
- pressures P<sub>a</sub> and P<sub>a</sub>

Transition from a subsonic flow to a supersonic flow can occur only at a throat (converging-diverging, or De Laval, nozzle)

$$F_{\text{TH}} = \dot{m}U_{\text{e}} + A_{\text{e}}(P_{\text{e}} - P_{\text{a}}) = \dot{m}U_{\text{eq}}$$

 $P_e = P_a \Leftrightarrow correct or optimum expansion$ 

$$U_{\rm eq} = U_{\rm e} + \frac{A_{\rm e} \left(P_{\rm e} - P_{\rm a}\right)}{\dot{m}}$$

 $g_e$  is a coefficient relating mass and weight  $g_e = 9.80665 \text{ m/s}^2$  or  $g_e = 32.174 \text{ ft/s}^2$  even if a rocket is fired at Mars, Jupiter, ...



#### **Specific Impulse**

$$I_{\rm SP} = \frac{U_{\rm eq}}{g_{\rm E}}$$

$$\frac{F_{\text{TH}} = \dot{m}U_{\text{eq}} = \dot{m} g_{\text{E}}I_{\text{SP}}}{I_{\text{SP}} = F_{\text{TH}} / (\dot{m}g_{\text{E}})}$$

- [I<sub>SP</sub>] = second
- straightforward characteristic of chemical rockets: the larger the better

# Specific Impulse

#### **Specific Impulse**

$$U_{\rm eq} = g_{\rm E} I_{\rm SP}$$

$$U_{\rm eq} = U_{\rm e} + \frac{A_{\rm e} \left(P_{\rm e} - P_{\rm a}\right)}{\dot{m}}$$

|                       | $I_{SP}$ , sec         | thrust-to-weight ratio                     |
|-----------------------|------------------------|--------------------------------------------|
| cold gas (compressed) | 60–100                 |                                            |
| solid                 | 220-300                | up to > 1                                  |
| monopropellant        | 150-230                | 10 <sup>-1</sup> <b>-</b> 10 <sup>-2</sup> |
| liquid hydrocarbon    | 250-350                | up to > 1 (100)                            |
| $H_2 + O_2$           | 450                    | up to > 1 (100)                            |
| hybrid                | 350-380                | up to > 1                                  |
| electric              | up to 5000<br>and more | up to 10 <sup>-2</sup>                     |

### Only chemical rockets are suitable for launch



### **Rocket Equation**



### Rocket Heat Transfer and Basic Cooling Methods

- combustion temperatures of rocket propellants > melting points of common metals
- strength of most materials rapidly declines with temperature increase





#### Regenerative cooling

- long duration operation under thermal equilibrium
- used on all large liquid-propellant launch vehicle engines
- fuel or oxidizer used as a coolant (flowing in tubes on the chamber walls)
- increase in the exhaust velocity 0.1–1.5%



# Propellant Feed Systems: Gas-Pressure Systems

Gas-pressure systems



Turbopump systems (Gas-generator cycle)





