Where in a Genome Does DNA Replication Begin?

Algorithmic Warm-Up

Phillip Compeau and Pavel Pevzner

Bioinformatics Algorithms: an Active Learning Approach

©2013 by Compeau and Pevzner. All rights reserved

Before a Cell Divides, it Must Replicate its Genome

Replication begins in a region called the replication origin (oriC)

Where in a genome does it all begin?

Outline

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

Finding Origin of Replication

Finding oriC Problem: Finding oriC in a genome.

- Input. A genome.
- Output. The location of oriC in the genome.

OK – let's cut out this DNA fragment. Can the genome replicate without it?

This is not a computational problem!

How Does the Cell Know to Begin Replication in Short *oriC*?

Replication origin of *Vibrio cholerae* (≈500 nucleotides):

There must be a **hidden message** telling the cell to start replication here.

The Hidden Message Problem

Hidden Message Problem. Finding a hidden message in a string.

- Input. A string Text (representing replication origin).
- Output. A hidden message in Text.

This is not a computational problem either!

The Hidden Message Problem Revisited

Hidden Message Problem. Finding a hidden message in a string.

- Input. A string Text (representing oriC).
- Output. A hidden message in Text.

This is not a computational problem either!

The notion of "hidden message" is not precisely defined.

Hint: For various biological signals, certain words appear surprisingly frequently in small regions of the genome.

AATTT is a surprisingly frequent 5-mer in:

The Frequent Words Problem

Frequent Words Problem. Finding most frequent *k*-mers in a string.

- Input. A string Text and an integer k.
- Output. All most frequent k-mers in Text.

This is better, but where is the definition of "a most frequent *k*-mer?"

The Frequent Words Problem

Frequent Words Problem. Finding most frequent *k*-mers in a string.

- Input. A string Text and an integer k.
- Output. All most frequent k-mers in Text.

Son Pham, Ph.D., kindly gave us permission to use his photographs and greatly helped with preparing this presentation. Thank you Son!

A *k*-mer *Pattern* is a most frequent *k*-mer in a text if no other *k*-mer is more frequent than *Pattern*.

AATTT is a most frequent 5-mer in:

ACA**AATTT**GCAT**AATTT**CGGGA**AATTT**CCT

Does the Frequent Words Problem Make Sense to Biologists?

Frequent Words Problem. Finding most frequent *k*-mers in a string.

- **Input.** A string *Text* and an integer *k*.
- Output. All most frequent k-mers in Text.

Replication is performed by **DNA polymerase** and the initiation of replication is mediated by a protein called **DnaA**.

DnaA binds to short (typically 9 nucleotides long) segments within the replication origin known as a *DnaA* box.

A *DnaA* box is a hidden message telling *DnaA*: "bind here!" And *DnaA* wants to see multiple *DnaA* boxes.

Outline

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

oriC of Vibrio cholerae

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctctctgtactctcatgaccacggaaagatgatcaag agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctcttgatcatcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatca tgtttccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcg

Too Many Frequent Words – Which One is a Hidden Message?

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA
TqtttccttaaccctctattttttacqgaaqaATGATCAAGctqctqctCTTGATCATcqtttc

Most frequent 9-mers in this *oriC* (all appear 3 times): **ATGATCAAG**, **CTTGATCAT**, **TCTTGGATCA**, **CTCTTGATC**

Is it **STATISTICALLY** surprising to find a 9-mer appearing **3** or more times within ≈ 500 nucleotides?

Hidden Message Found!

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

ATGATCAAG

| | | | | | | | | | are reverse complements and likely *DnaA*boxes

TACTAGTTC (*DnaA* does not care what strand to bind to)

It is **VERY SURPRISING** to find a 9-mer appearing **6 or more** times (counting reverse complements) within a short ≈ 500

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaaccaaacctaccaccaaac tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac cacttacctaccacccgggtggtaagttgcagacattattaaaaaacctcatcagaagcttgttcaa aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactactaataatagcagta taattgatctgaaaagggtggtaaaaaa

No single occurrence of **ATGATCAAG** or **CTTGATCAT** from *Vibrio Cholerae*!!!

Applying the Frequent Words Problem to this replication origin:

AACCTACCA, ACCTACCAC, GGTAGGTTT, TGGTAGGTT,

AAACCTACC, CCTACCACC

Different genomes → different hidden messages (DnaA

hovocl

Hidden Messages in *Thermotoga* petrophila

 $a act ctatacct ccttttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa aatggtaggttt {\tt GGTGGTAGG} {\tt tttgtgtacattttgtagtatctgatttttaattacataccgta tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaa{\tt CCTACCACC} {\tt caaac tctgtattgaccattttaggacaacttcag{\tt GGTGGTAGG} {\tt tttctgaagctctcatcaatagactat tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac cactta{\tt CCTACCACC} {\tt cgggtggtaagttgcagacattattaaaaaacctcatcagaagcttgttcaa aaatttcaatactcgaaa{\tt CCTACCACC} {\tt tgcgtcccctattatttactactactactaataatagcagta taattgatctgaaaagaggtggtaaaaaaa} \\$

Ori-Finder software confirms that

CCTACCACC

| | | | | | | | | | are candidate hidden messages.

GGATGGTGG

We learned how to find hidden messages **IF** *oriC* **is given.** But we have no clue **WHERE** *oriC* is located in a (long) genome.

Outline

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

Finding Replication Origin

Our strategy **BEFORE**: given a previously **known** *oriC* (a 500-nucleotide window), find **frequent words** (clumps) in *oriC* as candidate *DnaA* boxes.

replication origin → frequent words

Finding Replication Origin

Our strategy **BEFORE**: given previously **known** *oriC* (a 500-nucleotide window), find **frequent words** (clumps) in *oriC* as candidate *DnaA* boxes.

replication origin → frequent words

But what if the position of the replication origin within a genome is **unknown**!

Finding Replication Origin

Our strategy **BEFORE**: given previously **known** *oriC* (a 500-nucleotide window), find **frequent words** (clumps) in *oriC* as candidate *DnaA* boxes.

replication origin → frequent words

NEW strategy: find frequent words in **ALL** windows within a genome. Windows with **clumps** of frequent words are candidate replication origins.

frequent words → replication origin

What is a Clump?

Formal: A *k*-mer forms an (*L*, *t*)-clump inside *Genome* if there is a **short** (length *L*) interval of *Genome* in which it appears **many** (at least *t*) times.

- **Clump Finding Problem.** Find patterns forming clumps in a string.
- Input. A string Genome and integers k (length of a pattern), L (window length), and t (number of patterns in a clump).
- Output. All k-mers forming (L, t)-clumps in Genome.

There exist **1904** *different* 9-mers forming (500,3)-clumps in *E. coli* genome. **It is absolutely unclear which of them point to the replication origin...**

Where in a Genome Does DNA Replication Begin?

Algorithmic Warm-Up

Phillip Compeau and Pavel Pevzner

Bioinformatics Algorithms: an Active Learning Approach

©2013 by Compeau and Pevzner. All rights reserved

Outline

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

DNA Strands Have Directions!

DNA Strands Have Directions

Four DNA Polymerases Do the Job

Continue as Replication Fork Enlarges

If you Were a **UNIDIRECTIONAL** DNA Polymerase, how Would you Replicate a Genome?

Big problem replicating forward half-strands (thin

(ithing)

If you Were a **UNIDIRECTIONAL** DNA Polymerase, How Would you Replicate a Genome???

Wait until the Fork Opens and...

Wait until the Fork Opens and Replicate

Replicate Wait until the Fork Opens Even More and...

Replicate
Wait until the Fork Opens Even More

Instead of copying the entire half-strand, many Okazaki fragments are

raplicator

Okazaki Fragments Need to be Ligated to Fill in the Gaps

The genome has been replicated!

Different Lifestyles of Reverse and Forward Half-Strands

The **reverse half-strand** lives a **double-stranded** life most of the time.

The forward half-strand spends a large portion of its life single-stranded, waiting to be replicated.

But why would a computer scientist care?

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

Asymmetry of Replication Affects Nucleotide Frequencies

Single-stranded DNA has a much higher mutation rate than double-stranded DNA.

Thus, if one nucleotide has a greater mutation rate, then we should observe its **shortage** on the forward half-strand that lives single-stranded life!

Which nucleotide (A/C/G/T) has the highest mutation rate? Why?

The Peculiar Statistics of #G - #C

Cytosine (C) rapidly mutates into thymine (T) through deamination; deamination rates rise 100-fold when DNA is single stranded!

```
Forward half-strand (single-stranded life): shortage of C, normal G
```

Reverse half-strand (double-stranded life): shortage of G,

```
mormal C #G
#G - #C
Reverse half-strand 219518 201634 -
17884
Forward half-strand 207901 211607
+3706
Difference +11617 -9973
```

Take a Walk Along the Genome

C high/G low → #G - #C is
DECREASING as we walk along the
REVERSE half-strand

C low/G high → #G - #C is INCREASING as we walk along the FORWARD half-strand

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

Skew Diagram

Skew(k): #G - #C for the first k nucleotides of *Genome*.

Skew diagram: Plot *Skew(k)* against *k*

Skew Diagram of *E. Coli*: Where is the Origin of Replication?

You walk along the genome and see that #G - #C have been decreasing and then suddenly starts increasing: WHERE ARE YOU IN THE

GFNOMF?

We Found the Replication Origin in *E. Coli* **BUT...**

The minimum of the Skew Diagram points to this region in *E. coli*:

aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggta
tgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaagacc
tgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgatctc
ttattaggatcgcactgccctgtggataacaaggatccggcttttaagatcaacaacctgg
aaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcagaatga
ggggttatacacaactcaaaaactgaacaacagttgttctttggataactaccggttgatc
caagcttcctgacagagttatccacagtagatcgcacgatctgtatacttatttgagtaaa
ttaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatcaagaatgt
tgatcttcagtg

But there are **no** frequent 9-mers (that appear three or more times) in this region!

SHOULD WE GIVE UP?

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems

Searching for Even More Elusive Hidden Messages

oriC in Vibrio cholerae has 6 DnaA boxes – can you find more?

Previously Invisible *DnaA* Boxes

oriC in Vibrio cholerae contains ATGATCAAC and CATGATCAT, which differ from canonical DnaA boxes ATGATCAAG/CTTGATCAT in a single

mutation:

Frequent Words with Mismatches Problem. Find the most frequent *k*-mers with mismatches in a string.

- Input. A string Text, and integers k and d.
- Output. All most frequent k-mers with up to d mismatches in Text.

Finally, *DnaA* Boxes in *E. Coli!*

Frequent 9-mers (with 1 Mismatch and Reverse Complements) in putative *oriC* of *E.*

coli

Complications

- Some bacteria have fewer DnaA boxes.
- Terminus of replication is often not located directly opposite to oriC.
- The skew diagram is often more complex than in the case of *E. coli*.

The skew diagram of *Thermotoga*

- Search for Hidden Messages in Replication Origin
 - What is a Hidden Message in Replication Origin?
 - Some Hidden Messages are More Surprising than Others
 - Clumps of Hidden Messages
- From a Biological Insight toward an Algorithm for Finding Replication Origin
 - Asymmetry of Replication
 - Why would a computer scientist care about assymetry of replication?
 - Skew Diagrams
 - Finding Frequent Words with Mismatches
 - Open Problems: From Massive Open Online Courses
 (MOOC) to Massive Open Online Research (MOOR)

Finding Multiple Origins of Replication in a Bacterial Genome

- Biologists long believed that each bacterial chromosome has a single replication origin.
- Xia (2012) argued that some bacteria may have multiple replication origins.

Skew diagram of Wigglesworthia glossinidia

Open Problem: Can you confirm or refute the Xia conjecture that this bacterial genome indeed has multiple replications?

Project
Director
Mikhail
Gelfand

Finding oriC in Archaea

Open Problem: Archaea do have multiple origins of replication (3 in *Sulfolocus salfataricus*) but there is no algorithm and software tool yet to predict them reliably –

can you develon it?

Finding oriC in Yeast

If you feel that finding bacterial replication origins is difficult, wait until you analyze replication origins in yeast or humans.

Open Problem: Yeast genomes have hundreds of origins of replication, but there is no software tool to predict them reliably – can you develop such a tool?

Project
Director
Uri Keich

Happy Rosalind!