LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

ightharpoonup Recall: In the following the field $\mathbb F$ would be either $\mathbb R$ or $\mathbb C$.

- ightharpoonup Recall: In the following the field $\mathbb F$ would be either $\mathbb R$ or $\mathbb C$.
- ▶ Let *V* be a vector space.

- ightharpoonup Recall: In the following the field $\mathbb F$ would be either $\mathbb R$ or $\mathbb C$.
- ▶ Let *V* be a vector space.
- A collection of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if

$$c_1v_1+c_2v_2+\cdots+c_nv_n=0$$

implies $c_1 = c_2 = \cdots = c_n = 0$.

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ Let *V* be a vector space.
- A collection of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if

$$c_1v_1+c_2v_2+\cdots+c_nv_n=0$$

implies
$$c_1 = c_2 = \cdots = c_n = 0$$
.

A linearly independent collection of vectors $\{v_1, v_2, \dots, v_n\}$ is a basis for V if

$$V = \operatorname{span}\{v_1, v_2, \dots, v_n\},\$$

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ► Let *V* be a vector space.
- A collection of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if

$$c_1v_1+c_2v_2+\cdots+c_nv_n=0$$

implies $c_1 = c_2 = \cdots = c_n = 0$.

A linearly independent collection of vectors $\{v_1, v_2, \dots, v_n\}$ is a basis for V if

$$V = span\{v_1, v_2, \dots, v_n\},\$$

▶ that is, given any vector $x \in V$, there exist, c_1, c_2, \ldots, c_n in \mathbb{F} such that $x = c_1v_1 + c_2v_2 + \cdots + c_nv_n$. Note that given x, these coefficients are uniquely determined due to linear independence of v_i 's.

▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.

- ▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.
- More generally, two subsets S, T of V are said to be mutually orthogonal if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

- ▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be mutually orthogonal if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

► Theorem 9.2 (The Pythagorean theorem for inner product spaces:) Suppose *v*, *w* are mutually orthogonal vectors in an inner product space *V*. Then

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

- ▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be mutually orthogonal if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

► Theorem 9.2 (The Pythagorean theorem for inner product spaces:) Suppose *v*, *w* are mutually orthogonal vectors in an inner product space *V*. Then

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

Proof. We have

$$||v + w||^2 = \langle v + w, v + w \rangle$$
$$= \langle v, v \rangle + \langle w, w \rangle$$
$$= ||v||^2 + ||w||^2,$$

- ▶ Definition 9.1: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be mutually orthogonal if $\langle u, v \rangle = 0$.
- More generally, two subsets S, T of V are said to be mutually orthogonal if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

► Theorem 9.2 (The Pythagorean theorem for inner product spaces:) Suppose *v*, *w* are mutually orthogonal vectors in an inner product space *V*. Then

$$||v + w||^2 = ||v||^2 + ||w||^2.$$

Proof. We have

$$||v + w||^2 = \langle v + w, v + w \rangle$$
$$= \langle v, v \rangle + \langle w, w \rangle$$
$$= ||v||^2 + ||w||^2.$$

▶ as cross-terms are equal to zero due to orthogonality. ♦ ३०००

Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.

- Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- ▶ Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.

- ▶ Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■

- ▶ Proposition 9.3: Suppose $\{v_1, v_2, \ldots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \ldots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■
- ▶ Corollary 9.4: Suppose $\{v_1, \ldots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V, then

$$m \leq \dim V$$
.

- **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- Proof. Suppose $c_1v_1 + \cdots + c_mv_m = 0$.
- For any j, $1 \le j \le m$, taking inner product with v_i , as $\langle v_i, v_i \rangle = \delta_{ii} \langle v_i, v_i \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \cdots + c_n v_n \rangle = c_j \langle v_j, v_j \rangle.$$

- ► Therefore $c_i = 0$, $\forall j$, as $\langle v_i, v_i \rangle \neq 0$.
- ► Corollary 9.4: Suppose $\{v_1, \ldots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V, then

$$m \leq \dim V$$
.

▶ Proof. This is clear, as the dimension of V is same as the maximum possible size of linearly independent sets. ■

A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||v||}$ is a unit vector.

- A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||v||}$ is a unit vector.
- ▶ If $\{v_1, \ldots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.

- ▶ A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||y||}$ is a unit vector.
- ▶ If $\{v_1, \ldots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \left\{ \begin{array}{ll} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{array} \right.$$

- ▶ A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{||y||}$ is a unit vector.
- ▶ If $\{v_1, \ldots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \ldots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

- ▶ A vector v in V is said to be a unit vector if ||v|| = 1. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|v\|}$ is a unit vector.
- If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ Definition 9.5: Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an orthonormal basis if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- **Example** 9.6: For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \dots, e_n\}$, where e_i is the vector whose j-th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ Theorem 9.7: Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w=\sum_{j=1}^n\langle v_j,w\rangle v_j.$$

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ Theorem 9.7: Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w=\sum_{j=1}^n\langle v_j,w\rangle v_j.$$

▶ Proof. As $\{v_1, v_2, \dots, v_n\}$ is a basis for V, $w = \sum_{i=1}^n c_i v_i$ for some c_1, c_2, \dots, c_n in \mathbb{F} .

Now for any *j*, using linearity of the inner product in second variable,

$$\langle v_j, w \rangle = \langle v_j, \sum_{i=1}^n c_i v_i \rangle$$

$$= \sum_{i=1}^n c_i \langle v_j, v_i \rangle$$

$$= \sum_{i=1}^n c_i \delta_{ji}$$

$$= c_j.$$

Now for any j, using linearity of the inner product in second variable,

$$\langle v_j, w \rangle = \langle v_j, \sum_{i=1}^n c_i v_i \rangle$$

$$= \sum_{i=1}^n c_i \langle v_j, v_i \rangle$$

$$= \sum_{i=1}^n c_i \delta_{ji}$$

$$= c_i.$$

▶ As this is true for every j, $w = \sum_{i=1}^{n} \langle v_j, w \rangle v_j$. ■

► Gram-Schmidt Orthogonalization : This is an iterative scheme to obtain an orthonormal basis out of a given basis.

- ► Gram-Schmidt Orthogonalization : This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.

- Gram-Schmidt Orthogonalization: This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.
- ▶ Since $\{u_1, \ldots u_n\}$ are linearly independent each of them is non-zero.

- Gram-Schmidt Orthogonalization: This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.
- Since $\{u_1, \dots u_n\}$ are linearly independent each of them is non-zero.
- ▶ In particular, $||u_1|| \neq 0$.

- Gram-Schmidt Orthogonalization: This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.
- Since $\{u_1, \dots u_n\}$ are linearly independent each of them is non-zero.
- ▶ In particular, $||u_1|| \neq 0$.
- ▶ Take $y_1 = u_1$ and $v_1 = \frac{u_1}{\|u_1\|}$.

 $\blacktriangleright \text{ Take } y_2 = u_2 - \langle v_1, u_2 \rangle v_1.$

- ► Take $y_2 = u_2 \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .

- ► Take $y_2 = u_2 \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- In fact,

$$\langle v_1, y_2 \rangle = \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle$$

$$= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle$$

$$= 0$$

as
$$\langle v_1, v_1 \rangle = 1$$
.

- ► Take $y_2 = u_2 \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\langle v_1, y_2 \rangle = \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle$$
$$= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle$$
$$= 0$$

as
$$\langle v_1, v_1 \rangle = 1$$
.

▶ Also as u_1, u_2 are linearly independent, $y_2 \neq 0$.

- ► Take $y_2 = u_2 \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\langle v_1, y_2 \rangle = \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle$$

$$= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle$$

$$= 0$$

as
$$\langle v_1, v_1 \rangle = 1$$
.

- ▶ Also as u_1, u_2 are linearly independent, $y_2 \neq 0$.
- ► Now take, $v_2 = \frac{y_2}{\|y_2\|}$.

- ► Take $y_2 = u_2 \langle v_1, u_2 \rangle v_1$.
- We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\langle v_1, y_2 \rangle = \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle$$

= $\langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle$
= 0

as
$$\langle v_1, v_1 \rangle = 1$$
.

- Also as u_1, u_2 are linearly independent, $y_2 \neq 0$.
- ▶ Now take, $v_2 = \frac{y_2}{\|y_2\|}$.
- ▶ This way, $\{v_1, v_2\}$ are orthonormal (that is, they have norm one and are mutually orthogonal.)

▶ Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span } \{v_1, v_2, \dots, v_k\} = \text{ span } \{u_1, u_2, \dots, u_k\},$$

Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

span
$$\{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},\$$

we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j.$$

Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

span
$$\{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},\$$

we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j.$$

Now, for any $1 \le i \le k$,

$$\langle v_i, y_{k+1} \rangle = \langle v_i, u_{k+1} \rangle - \langle v_i, u_{k+1} \rangle = 0.$$

 $y_{k+1} \neq 0$ follows as $u_{k+1} \notin \text{span} \{v_1, \dots, v_k\} = \text{span}\{u_1, \dots, u_k\}.$

Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span }\{v_1,v_2,\ldots,v_k\}=\text{ span }\{u_1,u_2,\ldots,u_k\},$$

we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j.$$

Now, for any $1 \le i \le k$,

$$\langle v_i, y_{k+1} \rangle = \langle v_i, u_{k+1} \rangle - \langle v_i, u_{k+1} \rangle = 0.$$

- $y_{k+1} \neq 0$ follows as $u_{k+1} \notin \text{span } \{v_1, \dots, v_k\} = \text{span}\{u_1, \dots, u_k\}.$
- ▶ Then take $v_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|}$.

Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

span
$$\{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},\$$

we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j.$$

Now, for any $1 \le i \le k$,

$$\langle v_i, y_{k+1} \rangle = \langle v_i, u_{k+1} \rangle - \langle v_i, u_{k+1} \rangle = 0.$$

- $y_{k+1} \neq 0$ follows as $u_{k+1} \notin \text{span } \{v_1, \dots, v_k\} = \text{span}\{u_1, \dots, u_k\}.$
- ► Then take $v_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|}$.
- We see that $\{v_1, \ldots, v_{k+1}\}$ are orthonormal and span $\{v_1, \ldots, v_{k+1}\} = \{u_1, \ldots, u_{k+1}\}$ so that the induction can be continued.

▶ Continuing this way, up to k = n, we have an ortho-normal collection $\{v_1, v_2, \ldots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■

- ▶ Continuing this way, up to k = n, we have an ortho-normal collection $\{v_1, v_2, \dots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■
- ▶ Remark: The formula of Gram-Schmidt orthogonalization:

$$v_{k+1} = \frac{u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j}{\|u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j\|}$$

is worth remembering.

- ▶ Continuing this way, up to k = n, we have an ortho-normal collection $\{v_1, v_2, \dots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■
- ▶ Remark: The formula of Gram-Schmidt orthogonalization:

$$v_{k+1} = \frac{u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j}{\|u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j\|}$$

is worth remembering.

Exercise: Obtain an orthonormal basis for \mathbb{R}^3 by Gram-Schmidt orthogonalization applied to the basis:

$$\left(\begin{array}{c}1\\1\\0\end{array}\right),\quad \left(\begin{array}{c}0\\1\\1\end{array}\right),\quad \left(\begin{array}{c}1\\0\\1\end{array}\right)$$

- ▶ Continuing this way, up to k = n, we have an ortho-normal collection $\{v_1, v_2, \ldots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■
- ▶ Remark: The formula of Gram-Schmidt orthogonalization:

$$v_{k+1} = \frac{u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j}{\|u_{k+1} - \sum_{j=1}^{k} \langle v_j, u_{k+1} \rangle v_j\|}$$

is worth remembering.

Exercise: Obtain an orthonormal basis for \mathbb{R}^3 by Gram-Schmidt orthogonalization applied to the basis:

$$\left(\begin{array}{c}1\\1\\0\end{array}\right),\quad \left(\begin{array}{c}0\\1\\1\end{array}\right),\quad \left(\begin{array}{c}1\\0\\1\end{array}\right)$$

END OF LECTURE 9.

