1 Fig. 3.1 shows an oil tank that has a rectangular base of dimensions 2.4 m by 1.5 m.

Fig. 3.1

The tank is filled with oil of density $850 \, kg/m^3$ to a depth of $1.5 \, m$.

- (a) Calculate
 - (i) the pressure exerted by the oil on the base of the tank,

(ii) the force exerted by the oil on the base of the tank.

(b)	The fo	orce calculated in (a)(ii) is the weight of the oil.
	Calcu	late the mass of oil in the tank.
		mass =[1]
(c)		he is checking the level of oil in the tank, a man drops a brass key into the oil and it to the bottom of the oil.
	(i)	State what this shows about the density of brass.
		[1]
	(ii)	Explain how attaching the key to a piece of wood could prevent the key from sinking.
		[1]
		[Total: 7]

the	use (of a small brass object of mass 200 g.
(a)	Cal	culate the volume of the brass object. The density of brass is 8.4 g/cm ³ .
		volume =[2]
(b)	wate	find the volume of the piece of wood, the student has a measuring cylinder, a supply of er and the brass object in (a) . The piece of wood and the brass object are small enough to blaced in the measuring cylinder.
	(i)	The piece of wood does not sink in water.
		Suggest why.
		[1]
	(ii)	Describe what the student does to find the volume of the piece of wood, stating the measurements that she makes and any calculations required.
		[4]
		[Total: 7]
		•

A student wishes to find the volume of a piece of wood of irregular shape. Her experiment requires

2

	tudei 30 kg	nt has 500 identical, rectangular sheets of paper. The mass of 1.0 m ² of the paper is .
(a)		ng a metre rule, she measures the length of one sheet of paper and its width. The length is 0.0 m and the width is 0.210 m.
	(i)	Calculate the mass of one sheet of paper.
		mass =[1]
	(ii)	The student makes a single pile of the 500 sheets of paper.
		With a metre rule, she measures the height of the pile. The height of the pile is 0.048 m.
		Calculate the density of the paper.
		density =[3]
(b)	A se	econd student has only 5 sheets of the same type of paper.
	_	gest how this student determines the density of the paper to a similar accuracy. Additional aratus may be used.
		[2]
		[Total: 6]

(a)	State the formula needed to calculate the density.
(-)	
	[1]
(b)	Describe how the measurements of the required quantities are carried out.
(c)	State one precaution taken when carrying out the measurements in (b) to ensure that the
	result is as accurate as possible.
	[1]
	[1]

A s	tuder	t wishes to determine the density of a small, irregularly shaped stone.
(a)	Wit stor	h the aid of a labelled diagram, describe an experiment to determine the volume of the ne.
		[4]
(b)	(i)	State the other quantity, apart from the volume, that must be measured in order to determine the density.
		[1]
	(ii)	State the formula that is used to calculate the density.
		[1]

5

(c)	The student now wishes to determine the volume of a small, irregularly shaped piece of wood that floats in water. He notices that a small lead weight tied to the wood makes it sink in water.
	Describe how the student can adapt the experiment in (a) to determine the volume of the wood. You may draw a diagram.
	[2]
	[Total: 8]

(a)	Define density.	
		[1]
(b)	The density of aluminium is 2.70 g/cm ³ . The thickness of a rectangular shaluminium foil varies, but is much less than 1 mm.	eet of
	A student wishes to find the average thickness. She obtains the following measure	ments.
	mass of sheet = 60.7 g length of sheet = 50.0 cm width of sheet = 30.0 cm	
	Calculate the student's values for	
	(i) the volume of the sheet,	
	volume = (ii) the average thickness of the sheet.	
	thickness =	[2]
(c)	Another student, provided with a means of cutting the sheet, decides to find its a thickness using a single measuring instrument. Assume the surfaces of the she perfectly smooth.	
	(i) Name a measuring instrument she could use.	
		[1]

6

I)	Describe the procedure she should follow to obtain an accurate value of the average thickness of the sheet.
	Details of how to read the instrument are not required.
	[0]
	[3]
	[Total: 9]

7 Fig. 1.1 shows a side view of a large tank in a marine visitor attraction.

Fig. 1.1 (not to scale)

The tank is $51\,\text{m}$ long and $20\,\text{m}$ wide. The sea-water in the tank is $11\,\text{m}$ deep and has a density of $1030\,\text{kg/m}^3$.

(a) Calculate the mass of water in the tank.

(b) The pressure at point M, halfway down the large viewing panel, is 60 kPa more than atmospheric pressure.

Calculate the depth of M below the surface of the water.

Calculate the outward force of the water on the panel. Assume that the pressure at M is the average pressure on the whole panel.
force =[2]
[Total: 7]

(c) The viewing panel is 32.8 m wide and 8.3 m high.