INVITED REVIEWS AND SYNTHESES

WILEY MOLECULAR ECOLOGY

Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia

Graham P. Wallis 🕩 | Fátima Jorge 🕩

Department of Zoology, University of Otago, Dunedin, New Zealand

Correspondence

Graham P. Wallis, Department of Zoology, University of Otago, Dunedin, New Zealand. Email: g.wallis@otago.ac.nz

Funding information

Miss Hellaby Grassland Trust; Marsden Fund; University of Otago

Abstract

Twenty-five years ago, it was suggested that current-day New Zealand, part of the largely sunken continent of Zealandia, could have been completely inundated during the Oligocene marine transgression (OMT) some 25-23 million years ago. Such an event would, of necessity, imply that all terrestrial, freshwater, and maybe coastal marine species must have dispersed there since. This idea has generated heated debate, on which geological, palaeontological and molecular data are being brought to bear. Here, we review the phylogeographic literature in the form of molecular estimates of divergence times between New Zealand lineages and their closest overseas sister groups. Using an event-based approach, we show that these divergence times follow approximately a smooth exponential over the last 50 Ma or more. Approximately 74 of these 248 lineages appear to have survived the OMT in situ; some of these major lineages comprise multiple additional lineages as a result of autochthonous speciation prior to the OMT. Non-volant terrestrial animals, freshwater animals and trees are particularly well represented in surviving lineages, whereas marine animals, herbs and shrubs tend to show more recent arrival times. There is no evidence for a deficit of pre-Oligocene lineages, nor an excess of ones arriving just afterwards. The pattern is one of geometric increase in new lineages with more recent time, reflecting a balance between immigration and extinction. Consequently, this large body of molecular data provides no evidence for complete inundation of New Zealand during the Oligocene. In conjunction with new geological and palaeontological findings, these data suggest that it is time to put the idea to rest.

KEYWORDS

biogeography, extinction, New Zealand, phylogeography, review

1 | INTRODUCTION

The colonization of islands through long-distance dispersal (LDD) has long been inferred from observation of the rapid establishment of biota on new volcanic islands (Gillespie et al., 2012), such as Krakatoa, where over 400 species established in the first decade after emergence (Emerson, 2002). Molecular analysis has been used to determine the origins of lineages on older, larger and more isolated volcanic archipelagos, notably the Galápagos (Torres-Carvajal,

Barnes, Pozo-Andrade, Tapia, & Nicholls, 2014), Hawaiian (Wagner & Funk, 1995) and Canary archipelagos (Juan, Emerson, Oromi, & Hewitt, 2000). By inference, one might expect the biota of a larger landmass such as New Zealand to have also been strongly influenced by LDD, especially given its relative proximity to Australia compared with smaller, more remote Pacific islands (MacArthur & Wilson, 1967). Although its biogeographers have long recognized many different sources and time depths for the origins of the biota (Fleming, 1979), New Zealand tends to have been characterized as a lost world

4368 © 2018 John Wiley & Sons Ltd

4369

of archaic vicariant lineages, implicit in folk metaphors such as "Moa's ark," "life-raft" and "living fossil," which have become a cultural icon for many (McGlone, 2005). This vision is further strengthened by evidence showing Zealandia to be a continental landmass, now largely submerged (Campbell & Mortimer, 2014), whose separation from Australia began some 82 Ma.

Over the last 25 years, however, molecular phylogenetic research has shown that many New Zealand radiations of plants (Perrie & Brownsey, 2007; Winkworth, Hennion, Prinzing, & Wagstaff, 2015; Winkworth, Wagstaff, Glenny, & Lockhart, 2002) and animals derive from more recent arrivals (De Queiroz, 2005; Wallis & Trewick, 2009), lending credence to the earlier provocative suggestion that New Zealand's entire flora might derive from LDD (Pole, 1994). Key in this debate is the fact that during the Oligocene marine transgression (OMT) ca. 23 Ma, New Zealand was at least reduced to an archipelago of low-lying islands (Cooper, 1989). Some geologists have supported the more extreme position of complete inundation through further documentation of limestone deposits, and showing that what has been called a peneplain in lower South Island is in fact a wave-cut surface (Landis et al., 2008). The assumption of a continuous landmass has in some cases been based on the assumption of archaic elements in the flora and fauna, an argument that has been characterized as circular (Waters & Craw, 2006). If, indeed, no land remained, the entire terrestrial and freshwater flora and fauna, and maybe the coastal marine fauna, must have arrived since (Trewick, Paterson, & Campbell, 2007). More recently, other geologists have reported palaeogeographic evidence in support of continuous presence of land (Kamp, Tripathi, & Nelson, 2014; Mortimer & Strong, 2014; Strogen, Bland, Nicol, & King, 2014), and evidence for shorelines coinciding with the OMT maximum (Lee et al., 2014; Scott, Lee, Fordyce, & Palin, 2014), but the debate is far from resolved.

Fuel has been added to the fire as the vicariant origin of one classic archaic lineage after another has been seriously challenged (Biffin, Hill, & Lowe, 2010; Cook & Crisp, 2005; Knapp et al., 2005; Mitchell, Llamas, et al., 2014; Phillips, Gibb, Crimp, & Penny, 2010), leading to a rash of papers concerning "Goodbye Gondwana" (McGlone, 2005). An extensive review of New Zealand phylogeography suggested that the molecular data were inconsistent with archaic origins for most lineages, with the exception of tuatara, leiopelmatid frogs and wrens (Wallis & Trewick, 2009), paralleling findings for other regions of biogeographic significance (Stelbrink, Albrecht, Hall, & von Rintelen, 2012). However, it is easier to refute vicariance than it is to is to refute pre-Oligocene origins of today's biota, because of the shallower time depth.

Uncertainty about rates of evolution and rate constancy in calibrating molecular clocks (Lanfear, Welch, & Bromham, 2010), choice of genes and models of molecular evolution (Hillis, Moritz, & Mable, 1996) and stochasticity in nucleotide substitution all impact on the ability to demonstrate dispersal versus vicariance (Crisp, Trewick, & Cook, 2011). Further complicating factors are lineage extinction and incomplete sampling. Whereas genetic divergence implying much less than 23 Ma between New Zealand (NZ) and, for example, an Australian lineage demonstrates post-OMT dispersal (though one

might argue about direction), a distance value of much more than 23 Ma is only consistent with surviving the OMT. The main reason for this imbalance is the possibility of extinction of a more closely related overseas lineage since the OMT. Wallis and Trewick (2009) stressed that although many lineages show post-OMT arrival, several are consistent with pre-OMT arrival. In the intervening decade. many more studies have been published on more species groups, with better data, reconstructions and dating; it is now appropriate to assess these data en masse.

The premise of our approach is that any one study is prone to error from the different sources mentioned above, but by considering a large number of studies together, one might be able to infer a general process from a general pattern. A classic early analysis of this sort (Sanmartín & Ronquist, 2004) did not consider dating, and there have been many studies since this, and other syntheses (Wallis & Trewick, 2009). There have been other compilations of splits between NZ and overseas lineages, but they have not resolved direction of dispersal, and concern plants alone (Perrie & Brownsey, 2007; Winkworth et al., 2015).

If most lineages arrived in NZ post-OMT, most genetic distances between NZ lineages and their overseas sister should indicate a time of <23 Ma. Given the supposed high dispersal rates to NZ, and the benefits that first arrivals accrue (Lack, 1947), across a large number of distance values, one would predict a pronounced spike in the distribution representing times of just under 23 Ma. Radiations should tend to date back to this point, but not precede it (Cooper & Cooper, 1995), except when there has been extinction of closer sister groups at source. In this paper, we test for this pattern by gathering 248 published dates for molecular divergences between NZ and overseas lineages, where there is good reason to believe that NZ was the recipient landmass. Additionally, we identify the continental origins of these lineages (Sanmartín & Ronquist, 2004) and quantify their provenance against time.

MATERIALS AND METHODS

2.1 | Data collection

We compiled data on the estimated divergence dates of NZ taxa with their respective sister groups on another landmass, to produce a large data set of divergence times, representing either vicariance (>65 Ma), pre-Oligocene dispersal (65-23 Ma) or post-Oligocene arrival. This compilation was based upon (but not limited to) a search on the ISI Web of Science[™] using the string: "phyloge* and (dispers* or vicarian*) and Zealand." This search yielded 561 papers on the molecular phylogenetics of plant and animal groups since 2009, up to 4 June 2018. Retrieved studies were excluded in the following cases: (a) the work focused on invasive species, corals or algae, (b) humans were the likely agents of introductions, (c) the study did not include molecular data, and (d) NZ was likely to be the source rather than the recipient. We examined all publications individually and recorded from all selected studies: (a) taxon information (NZ and overseas sister group), (b) markers used, (c) calibration details, (d) estimated divergence date of NZ

TABLE 1 Data set of published molecular clock estimates of divergence times between NZ lineages and their closest overseas relatives

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Μin	Мах	References
Sphenodon	Squamata	Order	Tuatara	RAG1	12 secondary	Archaic	٦	271.5	268	275	Hugall et al. (2007)
Craterostigmus crabilli	C. tasmanianus	Species	Centipede	Review	Several	Archaic	د	270	180	318	Giribet and Boyer (2010)
Leiopelmatidae	Ascaphidae	Family	Frog	95 nucl prot genes (+RAG1, CXCR4)	Fossils (20)	Archaic	>	193.8	178.6	207	Feng et al. (2017)
Neopurcellia, Aoraki, Rakaia	Chileogovia, Purcellia	Genus	Mite harvestman	cox1, 165, 185, 285, H3	Fossils (2)	Archaic	>	142			Giribet et al. (2012)
Paralamyctes sp.	Paralamyctes sp.	Species	Centipede	Review	Several	Archaic	С	137			Giribet and Boyer (2010)
Paranephrops	Spinastacoides, Ombrastacoides	Genus	Crayfish	16S, cox1, 18S, 28S	Fossils (6)	Archaic	د	136	109	160	Toon et al. (2010)
Uropetala carovei	Phenes, Petalura spp.	Genus	Petalurid dragonfly	cox1, cox2, cytb, 12S, 16S, 18S, 28S, H3	Fossils (4)	Archaic	>	127.4	80	175	Ware et al. (2014)
Lepidothamnus Iaxifolius	L. fonckii	Species	Mountain rimu	rbcL	Fixed rate	Archaic	С	109.3	70.1	148.5	Wardle et al. (2001)
Griselinia littoralis, G. lucida	Apiaceae, Myodocarpaceae, Araliaceae, Pittosporaceae	Family	Broadleaf	rp116 intron, trnD-trnY-trnE-trnT	Fossils (6)	Archaic	>	103.06	90.2	115.84	Nicolas and Plunkett (2014)
Nesamblyops	16 genera	Genus	Carabid beetle	cox1, cox2, rrnL+trnL+nad1, SSU, LSU	Fossil + island emer- gence + fixed clock <i>Carabus</i>	Archaic	c	100.4	70.4	134.5	Andújar et al. (2016)
Schistochila (Sciophilae) glaucescens	4 subgenera	Subgenus	Liverworts	rbcL, Rps4, trnL-F	Fossils (7) + plastid rate 0.05%	Archaic	>	98.92			Sun et al. (2014)
Beaupreaidites spp. (†) to 1 Ma	Beauprea	Genus	Proteaceae	matK, rbcL, trnL intron, trnL-trnF, atpB, atpB-rbcL, rp116 intron, ITS	Fossil pollen	Archaic	د	83	82.5	83.5	He, Lamont, and Fogliani (2016)
Calloria, Gyrothyris, Neothyris, 'Terebratella' sp.	Magellanic genera (4)	Genus	Long-looped brachiopod	cox1, SSU, LSU	Fossils (8)	Archaic	C	82	48	120	Cohen et al. (2011)
Hemiandrus spp. (6)	Exogryllacris, Hypocophoides, Penalva, genus B, H. sp.	Genus	Ground weta	cox1, 285	82 Ma plus relaxed cox1 insect rate 0.7%–1.2%	Archaic	د	80			Pratt et al. (2008)
											(Continues)

Murienne et al. Foighil (2000), Marshall et al. Murienne et al. Kaulfuss, and Schönberger, Cranston et al. and Hertwig üter (2014) Ericson et al. Seehausen, Grealy et al. References Mitchell, Li, Carter et al. Grealy et al. **Krosch and** Graf and Ó Crisp et al. Schweizer, Cranston and Wen Brown, (2013)(2014)(2012)(2017)(2014)(2014)(2014)(2011)(2017) Cohen, (2017)(2011)(2010)78.2 100.7 61.7 59.4 Max 103 85 86 72 71 67 55.4 53.4 59.02 44.9 47.5 45.5 36.1 Ξ 63 26 36 72.84 Mean 58.6 55.2 54.2 51.9 7.7.7 75.1 Age 80 2 2 58 54 53 AAR ⊆ ⊏ □ ⊏ > ⊆ > ⊏ □ ⊆ ⊏ unknown Archaic? Archaic? Archaic? Archaic Archaic Archaic Archaic Archaic Archaic Origin Mad? SAm? Aus? Fossils (2) non-parrots; Fixed rates for ITS and Relative time: base set Fossils (2) + secondary Cyanoramphus NZ vs. Secondary calibration for stem age 382 Ma Secondary calibration for stem age 382 Ma Geological vicariance Eunymphicus NC < Calibration per Ma events + 3 fossils to $1.0 = 600 \,\text{Ma}$ calibration Fossils (3) Fossils (9) Fossils (4) Fossils (7) Fossils (7) cpDNA 5 Ma None cox1, 18S, 28S, CAD cox1, 12S, 16S, 18S, 28S cox1, 12S, 16S, 18S, c-mos, RAG-1, Zenk SSU, LSU, ITS2, 16S psbA-trnH, rps16, trnL-F, rpl16, ITS atpB-rbcL, ndhF, mtgenome; NGS mtgenome; NGS rnG, trnL-F, ITS cox1, 28S, CAD 7 nuclear genes matK, rbcL cox1, 285 nuclear nuclear Genes 285 Hyriid freshwater Common name/ Cupressaceae Velvet worm Velvet worm brachiopod Craniiform Araliaceae Liverwort mussel group Midge Midge Wren Superfamily Parrot Kiw. Moa Subgenus Suborder Species? Rank of Species Species Species Genus Species Genus Genus Order Order split Diplodon, Hyridella, Lortiella, Velesunio Aepyornithiformes Callitris + 4 other Sister group split Motherwellia sp. Parolochus 6 spp. Caphalaralia sp. Tyranni, Passeri Novocrania spp. S. sofour group Austrocedrus, Ooperipatellus Actinostrobus, Tinamiformes **Tasmanipatus** Cucumerunio, Cacatuinae Psittacinae, R. spp. (3), genera Frullania Schefflera digitatta Parochlus aotearoae, Libocedrus plumosa, Raukaua anomalus, Novocrania huttoni Echyridella spp. (3) Stictocladius pictus Dinornithiformes Apterygiformes Nestor notabilis **Ooperipatellus** P. araucanus, Microfrullania P. spinosous Peripatoides Acanthisitti L. bidwillii NZ taxon

TABLE 1 (Continued)

		Rank of	Common name/				4	Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR N	Mean	Min	Мах	References
Hymenophyllum	Abrodyctium, Cephalomanes	Genus	Fern	rbcL, RbcL-AccD- AccD, rps4-trnS	2 secondary: root and Hymenophyllum origin	Archaic?	>	49.8	40.7	59.5	Del Rio et al. (2017)
Gripopterygidae (12 genera)	Aus & SAm grypopterygids	Genus	Grypopterygid stonefly	cox1, H3, 185	Fossil + biogeographic calibrations	Aus/SAm	c	48.2			McCulloch et al. (2016)
Pirara matakiri	Echinocladius martini	Genus	Midge	cox1, 28S, CAD1, CAD3	Fossils (2)	Aus?	С	47.42	26.77	73.23	Krosch et al. (2011)
Stictocladius Iacuniferus	S. multiserialis group	Species	Midge	cox1, 285, CAD	Fossils (2) + secondary calibration	Aus?	⊑	47	31	64	Krosch and Cranston (2013)
Mystacina tuberculata	5 families	Family	Short-tailed bat	Nuclear genes (17)	Fossils (6)	SAm?	>	46	41	. 21	Teeling et al. (2005)
Pseudowintera	Bubbia, Zygogynum, Belliolum, Exospermum	Genus	Winteraceae	trnL-F, ITS1-2	Fossils (3)	Mad/NC	⊑	45.18	34	. 22	Thomas, Bruhl, Ford, and Weston (2014)
Pseudoscione	Anzomyia pegasus	Genus	Horse fly	cox1, cox2, 28S, AATS, Cad(1,3,4)	Fossil	Aus	E	43.2	25	99	Lessard, Cameron, Bayless, Wiegmann, and Yeates (2013)
Hoplodactylus, Naultinus	Oedura, Strophurus, Diplodactylus, Rhynchoedura	Genus	Gecko	ND2, 16S, RAG-1, PDC	Fossils (4) + emergence of NC + root constraint	Aus	c	42.2	28.9	53.5	Nielsen, Bauer, Jackman, Hitchmough, and Daugherty (2011)
Naonella, Tonnoirocladius, Paulfreemania	Echinocladius' sp. nov.	Genus	Midge	cox1, 285, CAD1, CAD3	Fossils (2)	SAm?	c	41.84	22.7	65.93	Krosch et al. (2011)
Prumnopitys taxifolia	P. andina	Species	Matai	rbcL	Fossils (47); 14 secondary	SAm	С	41.8	22.1	58	Winkworth et al. (2015)
Limnophyes sp.n.	L. sp., L. brachyarthra	Species	Midge	cox1, 28S, CAD1, CAD3	Fossils (2)	SAm?	С	41.3	22.34	64.48	Krosch et al. (2011)
Micrelenchus, Cantharidus	Prothalotia, Roseaplagis, Oxystele	Genus	Trochid gastropod	16S, cox1, 12S, 28S; (only 16S used for dating)	Fossils (2)	Aus	⊑	40.2	38.3	42.1	Donald and Spencer (2016)
Anzacladius kiwi	Ferringtonia patagonica	Genus	Midge	cox1, 28S, CAD1, CAD3	Fossils (2)	SAm?	c	39.81	21.03	62.05	Krosch et al. (2011)
											(Continues)

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Ξ	Max	References
Dicksonia spp. (7)	D. spp. (21)	Species	Tree fern	trnL-trnF, trnG-trnR, rpl16, matK	Fossils (3)	Aus/Asia/ SAm	>	39.8			Noben et al. (2017)
Coprosma, Nertera	Durringtonia, Leptostigma, Normandia, Opercularia	Tribe	Rubiaceae	Rps16 Intron, trnQ-rps16, ITS, ETS, 5.8S	Fossil, root constraint, secondary calibration for ITS	Aus?	<u>_</u>	39	30	47	Cantley et al. (2016)
Eukiefferiella brundini, E. insolida	E. insolida	Species	Midge	cox1, 285, CAD1, CAD3	Fossils (2)	Aus?	C	38.58	19.44	61.52	Krosch et al. (2011)
Manoao colensoi	Lagarostrobos franklinii Genus	Genus	Silver pine	rbcL	Fossils (47); 14 secondary	Tas	ב	38.2	20.1	55.9	Winkworth et al. (2015)
Cristaperla, Omanuperla, Spaniocercoides	Kimminsoperla, Neonemoura, Udamocercia	Genus	Notonemourid stonefly	cox1, H3, 185	Fossil + biogeographic calibrations	Aus/SAm	۵	38	18	48	McCulloch et al. (2016)
Austroperla cyrene	Klapopteryx, Austropentura, Tasmanoperla	Genus	Austroperlid stonefly	cox1, H3, 18S	Fossil + biogeographic calibrations	Aus/SAm	c	37	17	20	McCulloch et al. (2016)
Tateidae (9 genera)	8 tateid genera	Genus	Freshwater gastropod	16S, cox1, 18S, 28S, H3	6 or single island emergence dates; cox1 rate	Aus	>	36.89	29	46	Zielske et al. (2017)
Philesturnus carunculatus	5 genera	Genus	Saddleback (wattlebird)	22 nuclear genes	2 secondary calibrations (assumes wrens at 80 Ma)	U Z	>	38	56	94	Aggerbeck, Fjeldså, Christidis, Fabre, and Jønsson (2014)
Zelandochlus latipalpis	Parochlus araucanus (not monophyletic)	Species	Midge	cox1, 185, 285, CAD	Fossils (4)	SAm	۵	35	24	20	Cranston et al. (2010)
Zelandobius spp.	5 genera	Genus	Antarctoperlin stonefly	cox1, H3, 18S	Fossil + biogeographic calibrations	SAm	С	35	20	44	McCulloch et al. (2016)
Pseudopanax ferox, P. crassifolius, P. arboreus	Schefflera, Plerandra, Meryta	Genus?	Araliaceae	atpB-rbcL, ndhF, psbA-trnH, rps16, trnL-F, rp116, ITS	Fossils (3)	Asia	>	34	23.5	45	Mitchell et al. (2012)
Acanthoxyla, Argosarchus, Asteliaphasma + 5 other genera	Crispus, Labidiophasma, Gen. nov. 3	Genus	Stick insect	cox1, cox2, H3, 28S	Arthropod rate 1.15%	NC	>	33.72	23.9	45.62	Buckley et al. (2010)
											(Continue)

TABLE 1 (Continued)

								0× V			
		Rank of	Common name/								
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Μin	Мах	References
Mohoua	All other corvoids	Family	Yellowhead	22 nuclear genes	2 secondary calibrations (assumes wrens at 80 Ma)	NG	>	32.6	23.8	41.6	Aggerbeck et al. (2014)
Spaniocerca zelandica, S. Iongicauda	Austrocerca, Austrocercoides, Austrocercella	Genus	Notonemourid stonefly	cox1, H3, 18S	Fossil + biogeographic calibrations	Aus	۵	32	22	40	McCulloch et al. (2016)
Astelia (Tricella), A. (Collospermum), A. (Asteliopsis)	A. (Astelia) spp. (5)	Subgenus	Asteliaceae	trnL, psbA-trnH, rps16, petL-psbE, NIA-i3	Secondary + fossils	Aus	>	31.6	24.1	44.9	Birch and Keeley (2013)
Notonemoura latipennis, N. hendersoni	N. maculata	Species	Notonemourid stonefly	cox1, H3, 18S	Fossil + biogeographic calibrations	Aus	С	31	19	38	McCulloch et al. (2016)
Fuchsia procumbens, F. excorticata, F. x colensoi	Fucshia spp. (15)	species	Onagraceae	trnL-trnF, rpl16, ITS		S/CAm	۵	30			Wallis and Trewick (2009)
Spinotectarchus acornutus	Gen. nov. 2	Genus	Stick insect	cox1, cox2, H3, 285	Arthropod rate 1.15%	NO	>	29.9	19.79	41.16	Buckley et al. (2010)
Hylaeus (Prosopisteron) matamoko, H. NZ sp. 1	37 + species (4 subgenera)	Species	Colletid bee	cox1, 28S, EF-1a	Secondary calibration of the crown age of Hylaeinae	Aus	۵	29.5			Kayaalp et al. (2013)
Laurelia novae-zelandiae	L. sempervirens	Species	Pukatea	rbcL	Fossils (47); 14 secondary	Aus/Ant/ SAm	c	29.3	6.3	55.1	Winkworth et al. (2015)
Agathis australis	A. spp. (9)	Species	Auraucariaceae conifer	11 cpDNA regions, ITS2	Fossils (5)	Aus/Asia/NC	С	29	12	55	Kranitz et al. (2014)
Placostylus ambagiosus	Placocharis strangei, Eumecostylus uliginosus	Genus	Flax snail	cox1, H3, ITS2/28S	Fossils (3)	Melanesia	>	28.9	18	42	Breure and Romer (2012)
Turnagra (†)	Vireo	Family	Piopio	7 nuclear genes	Geological vicariance events + 3 fossils	unknown	С	28.67	20.43	36.85	Ericson et al. (2014)
Halticoperla tara, H. viridans	Neofulla spp.	Genus	Notonemourid stonefly	cox1, H3, 18S	Fossil + biogeographic calibrations	SAm	c	27	11	47	McCulloch et al. (2016)
Cominella spp. (11)	Josepha	Subgenus	Buccinid whelk	16S, cox1, 18S	Fossils (2)	unknown	>	27	>27.6	>78	Donald et al. (2015)
Alseuosmia macrophylla	Wittsteinia	Genus	Alseuosmiaceae	rbcL	Fossils (47); 14 secondary	Aus	⊆	26.6	4.5	53.3	Winkworth et al. (2015)
Liothyrella neozelanica	L. uva	Species	Long-looped brachiopod	cox1, SSU, LSU	Fossils (8)	Antarctica	C	26	6	47	Cohen et al. (2011)

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR 1	Mean	Ξ	Max	References
Roseaplagis	Prothalotia	Genus	Trochid gastropod	16S, cox1, 12S, 28S; (only 16S used for dating)	Fossils (2)	Aus	c	25.8	16.2	34.9	Donald and Spencer (2016)
Trichomanes colensoi	T. hymenophylloides	Species	Fern	rbcL	Fossils (47); 14 secondary	SAm	<u>_</u>	24.2	11.8	35	Winkworth et al. (2015)
Neochanna spp. (5)	N. cleaveri, Galaxias zebratus	Species	Mudfish	cytb, 16S, RAG-1, S7 + morphology	Biogeographic constraints (9)	Aus?	>	24	18	31	Burridge et al. (2012)
25 Galaxias + Nesogalaxias spp.	G. truttaceus, G. auratus, G. tanycephalus	Species	Galaxiid fish	cytb, 16S, RAG-1, S7 + morphology	Biogeographic constraints (9)	Aus	>	24	13	31	Burridge et al. (2012)
Hemiphaga novaezelandiae	Gymnophaps, Lopholaimus	Genus	Pigeon	12S, cox3, ND2, cytb, cox1, Rag-1, IRBP, FIB7		Aus	>	24	19.2	29.6	Wallis and Trewick (2009)
Lophomyrtus, Neomyrtus Myrteola nummalaria	Myrteola nummalaria	Genus	Myrtaceae	MatK, ndhF, ITS	Fossils (12)	SAm	>	23.62	23	25.5	Thornhill, Ho, Külheim, and Crisp (2015)
Aphis spp. (3), Paradoxaphis spp. (2)	A. spp. (4), Toxoptera citricida	Species	Aphid	cox2, tRNALeu; EF1a	Fossil	Aus/Asia	c	23.5	16	29	Wallis and Trewick (2009)
Lyallia kerguelensis, Hectorella caespitosa	Claytonia?	Genus	Portulaceae	rbcL, trnK-matK	Fixed rates for rbcL & matK	Subantarctic	⊏	22.1	11.4	29.9	Wallis and Trewick (2009)
Rhabdothamnus solandri	Coronanthera spp. (7)	Genus	Gesneriaceae shrub	ITS (ITS1, ITS2, 5.8S), trnL-TrnF, psbA-TrnK	1 geological + minimum root age	S Z	>	22	18	29.5	Woo, Funke, Smith, Lockhart, and Garnock-Jones (2011)
Hymenosoma depressum Hymenosoma spp.?	Hymenosoma spp.?	Species?	Crab	cox1, 12S, 16S, ANT, 18S	Fossils (2) and secondary ary calibration	Aus	⊑	21.6			Teske et al. (2009)
Podocarpus totara	P. nubigenus	Species	Totara	rbcL	Fossils (47); 14 secondary	SAm	ے	21.3	4.4	39.2	Winkworth et al. (2015)
Elaeocarpus hookerianus	E. arnhemicus, E. bancroftii	Species	Pokaka	trnL/trnF, ITS	Fossil + secondary	Aus	-	21			Wallis and Trewick (2009)
Deinacrida spp. (2), Hemideina spp. (2)	genus A, Gryllotaurus, Anostostoma,	Genus	Tree/giant weta	cox1, 285	82 Ma plus relaxed cox1 insect rate 0.7%-1.2%	Aus	⊏	20.5	ო	38	Pratt et al. (2008)
Aristotelia serrata	A. australasica	Species	Mako/wineberry	rbcL	Fossils (47); 14 secondary	Aus	_	19.62	2.16	44.15	Winkworth et al. (2015)
Cantuaria dendyi, C. johnsi, C. stewarti	Misgolas, Blakistonia	Genus	Trapdoor spider	NGS + cox1, cytb, 5.8S, 18S, 28S, ITS1-2, H3	Fossils and rate calibrated	Aus	>	19.5	15	24	Rix et al. (2017)
											: ()

Wüest, and Ohlemüller

trnC-trnD, ITS, 26S

rbcL, ndhF, matK,

atpB-rbcL, trnT-trnL,

trnL-trnF, rpl16,

Poaceae grass

Genus

(2014)

Antonelli,

Rabosky,

_inder,

15.9

>

Afr

Givnish et al.

16.7

Aus

Fossils (17)

timing: matK, rbcL

cox1, H3, 18S

Eustheniid

Genus

Neuroperlopsis,

novae-zelandiae Stenoperla helsoni Neuroperla

13 genera

Chionochloa

stonefly

75 plastid genes;

Liliales

Species

W. biglandulosa

Wurmbea

(2016)

et al. (2016)

McCulloch

20

11

16

⊏

SAm

Fossil + biogeographic

calibrations

Trewick (2009) and Robertson Strasberg, and Waas (2010) Wagstaff and Renner, Strijk, Chapple et al. et al. (2015) Kron (2013) Setaro, and Matschiner, Tate (2011) References **Nicolas and** Winkworth Sutherland, Hogg, and Thébaud Wallis and Plunkett Schuster, (2003) (2014)(2013)(2010)Barth, 42.17 27.5 22.6 23.4 Max 23 2.85 12.7 Ξ 16 12 ω 18.85 18.34 17.82 17.24 18.5 17.5 Mean 19.2 17.6 17.4 Age AAR ⊏ □ ⊏ ⊆ ⊆ □ LordHowe Origin Aus? Aus? Aus Aus NC/ Aus Aus Aus $\frac{1}{2}$ geological calibration Secondary calibration Charadriidae except Fish 16S rate 0.23% Calibration per Ma Fossil, 1 secondary Fixed rate for cox1 fossils (7) + root Fossils (47); 14 calibration, 1 MRCA of all 1.4%-2.6% secondary constraint Fossils (6) Fossils (2) Pluvialis trnD-trnY-trnE-trnT trnL-trnF, rbcl, 5.8S, cytb, CR, 12S, bFI7 cytb, ND2, ND4, 12S, 16S, Rag-1 5'trnK/matK, ITS trnL-trnF, ITS rpl16 intron, matK, ndhF, ITS1-2 Genes cox1 rbcL 165 Common name/ Malvaceae tree Polygonaceae Monimiaceae pigeonwood buckwheat Freshwater amphipod Toru/toro Dotterel mallow group skink Smelt Rank of Species Species R. tasmanica, R. semoni Species Species Species Genus Genus Genus Genus split Kibaropsis caledonica Eusirus perdentatus Lawrencia spp. (4) Sister group split Pittosporum spp. O. lichenigera T. rubricollis M. spp. (6) Persoonia TABLE 1 (Continued) Thinornis novaeseelan-Muehlenbeckia astonii Retropinna retropinna, Paracalliope fluviatilis **Stokellia anisodon** Hedycarya arborea diae, Elseyornis Hoheria (7 spp.) Pittosporum Toronia toru Oligosoma melanops NZ taxon

TABLE 1 (Continued)

													VVILL	_ 1
	References	Thornhill et al. (2015)	Winkworth et al. (2015)	Winkworth et al. (2015)	Donald et al. (2005)	Sundue et al. (2014)	Schuster et al. (2013)	Thornhill et al. (2015)	Naughton, O'Hara, Appleton, and Cisternas (2014)	Chen et al. (2014)	Wallis and Trewick (2009)	Winkworth et al. (2015)	Barth et al. (2013)	(Continues)
	Max	26.8	30.81	30.22	23.7	21	24.1	20.3	22		15.8	28.2	16.9	
	Ξ	6.7	2.86	3.75	9.9	8.6	7.1	9.2	ω		12.2	2.06	9.6	
Age	Mean	15.9	15.72	15.66	15.15	14.7	14.6	14.4	14.36	14.2	14	13.54	13.3	
	AAR	>	_	۵	٥	>	۵	>	ے	>	د	С	ے	
	Origin	Aus	SAm	Aus	Aus	NC	Aus?	Aus	NAm	Aus	SAm/Ant	Aus/SAm	Aus?	
	Calibration per Ma	Fossils (12)	Fossils (47); 14 secondary	Fossils (47); 14 secondary	Two marine gastropod rates 0.7% and 2.4%	4 secondary	Fossils (7) + root constraint	Fossils (12)	Fixed rate: cox1, 2.48%; 28S, 0.031%; ITS, 1.5% per lineage	Fossils (2)	secondary split with Nacella; redated from González-Wevar, Nakano, Cañete, and Poulin (2010)	Fossils (47); 14 secondary	Secondary calibration MRCA of all Charadriidae except Pluvialis	
	Genes	MatK, ndhF, ITS	rbcL	rbcL	16S, cox1, actin	atpß, rbcL, trnL-trnF, rps4-trnS, trnG-trnR	matK, ndhF, trnL-trnF, ITS	MatK, ndhF, ITS	cox1, ITS2, 28S, microsatellite (6)	ITS, matK, trnK'5 and trnK 3'introns	125, 165	rbcL	cytb, CR, 12S, bFI7	
Common name/	group	Myrtaceae	Sundew	Silver beech	Trochid gastropod	Polypodiaceae fern	Polygonaceae buckwheat	Myrtaceae	Brittle star	watermilfoil	Nacellid limpet	Cushion plant	Dotterel, wrybill, plover	
Rank of	split	Species	Species	Species	Genus	Genus	Species	Species	Species	species	Species	Species	Species	
	Sister group split	L. trinervium	D. uniflora	N. cunninghamii	Austrocochlea spp. (5)	Grammitis	M. adpressa	S. claviflorum, S.canicortex, S. apodophyllum	Ophiopteris papillosa	M. decussatum	Cellana spp. (15)	P. uliginosa	12 Charadrius spp.	
	NZ taxon	Leptospermum scoparium	Drosera stenopetala	Nothofagus menziesii	Diloma	Notogrammitis spp. (5)	Muehlenbeckia complexa, M. axillaris, M. ephedroides	Syzygium maire	Ophiopteris antipodum	Myriophyllum robustum, M. triphyllum	Cellana ornata	Phyllachne rubra	Charadrius obscurus, C. bicinctus, Anarhynchus frontalis	

		ī	
	2		2
•	9		
(
•			1
ŀ			
i			1
•		1	
1	•	۹	۰
ı			
ŀ			
	. (/	7 7 10	F 1 (Continue

								Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Min	Max	References
Carmichaelia, Cilianthus	Swainsona spp. (12), Montigena novae-zelandiae	Genus	Broom, kakabeak	ITS	ITS rate 0.215%	Aus	۵	13.2			Wallis and Trewick (2009)
Perna canaliculus	P. perna	Species	Green shell mussel	cox1, ITS2	Two marine gastropod rates 0.7% and 2.4%	Atlantic	>	12.85	5.8	19.9	Wallis and Trewick (2009)
Pachyrhamma, Pallidoplectrum, Taltropsis, Pleioplectron	Novotettrix, Macropathinae, Micropathus	Genus	Cave weta	125, 165, 285	insect rates by gene	Aus/Afr	ح	12.2	8.6	16.5	Beasley-Hall, Tierney, Weinstein, and Austin (2018)
Nothofagus fusca	N. gunnii	Species	Red beech	rbcL	Fossils (47); 14 secondary	Aus	_	11.89	1.61	25.51	Winkworth et al. (2015)
Leptinella	L. wilhelminensis, L. altilittoralis, L. filicula, Cotula alpina	Species	Compositae	psbA-trnH, trnC-petN, ITS	Secondary calibration, outgroup fossil, emergence of Chathams	Aus/NG	د	11.53			Himmelreich, Breitwieser, and Oberprieler (2012)
Neocicindela spp.	Abroscelis and Macfarlandia	Species	Tiger beetle	cox1, cytb, 16S-tRNALeu-nad1	Aus clade (Rivacindela, Abroscelis, Macfarlandia, Neocicindela) = 12.4 Ma	Aus	د	10.82	8.38	13.31	Pons et al. (2011)
Petroica traversi, P. macrocephala, P. australis	P. multicolor	Species	Robin, tomtit	cytb, CR	Avian cytb rate 0.7%-1.7%	Aus/Pac	⊑	10.7	6.2	15.1	Wallis and Trewick (2009)
Austrolittorina antipodum, A. cincta	A. unifasciata	Species	Winkle	cox1	Panama rates	Aus	۵	10.65	6.88	23.57	Wallis and Trewick (2009)
Diadema palmeri	D. spp. (5)	Species	Sea urchin	cox1, tRNALys-A6, A8	Panama urchin rate 1.6%-2.6%	Indo/Pac	_	10.25	6.5	14	Wallis and Trewick (2009)
Azorella (=Schizeilema) nitens	A. fuegiana	Species	Apiaceae	rbcL	Fossils (47); 14 secondary	SAm	۵	10.09	1.32	21.83	Winkworth et al. (2015)
Amphipsalta, Notopsalta	Cicadetta celis, C. puer	Genus	Cicada	cox1, cox2, 12S, 16S, EF1a		Aus	۵	10			Wallis and Trewick (2009)
Kikihia, Maoricicada, Rhodopsalta	Pauropsalta johanae, Myersalna depicta	Genus	Cicada	cox1, cox2, 12S, 16S, EF1a		N N	۵	10			Wallis and Trewick (2009)
Isotoma rivalis (syn L. ionantha)	I. fluviatilis	Species	Campanulaceae (Lobelia)	rbcL	Fossils (47); 14 secondary	Aus	۵	9.84	0.52	24.98	Winkworth et al. (2015) (Continues)

		1					4	Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR N	Mean	Min	Max	References
Montigena novae-zelandiae	Swainsona galegifolia	Genus	Scree pea	ITS	ITS rate 0.215%	Aus	_	9.8			Wallis and Trewick (2009)
Diaphorapteryx hawkinsi Habroptila wallacii (†)	Habroptila wallacii	Genus	Rail	cytb, cox1, 16S, FGB-7, RAG-1	Fossil	SEAsia	c	9.5			Garcia-R, Gibb, and Trewick (2014)
Kunzea ericoides	K. capita	Species	Myrtaceae	MatK, ndhF, ITS	Fossils (12)	Aus	>	9.2	2.5	18.7	Thornhill et al. (2015)
Lilaeopsis ruthiana, novae-zelandiae 1,2	Lilaeopsis spp. (9)	Species	Apiaceae	ITS	Fossils (2)	SAm	>	9.1			Spalik et al. (2010)
Sophora microphylla, S. tetraptera	S. howinsula	Species	Kowhai	atpB-rbcL	Fossil	Lord Howe?	c	6			Hurr, Lockhart, Heenan, and Penny (1999)
Paracorophium excavatum, P. Iucasi	P. brisbanensis	Species	Estuarine amphipod	cox1	Fixed rate for cox1 1.4%-2.3%	Aus	۵	8.73	6.61	10.85	Knox, Hogg, and Pilditch (2011)
Ranunculus Iyallii, R. verticillatus, R. insignis, R. pinguis, R. viridis	R. spp. (15)	Species	Buttercup	psbJ-petA, matK-trnK, nrITS	Fossil, molecular and ecological information, NZ crown group	unknown	۵	8.7	6.4	12.5	Lehnebach, Winkworth, Becker, Lockhart, and Hennion (2017)
Gunnera dentata	G. cordifolia	Species	Gunneraceae	rbcL	Fossils (47); 14 secondary	Aus	_	8.55	0.37	23.65	Winkworth et al. (2015)
Cellana flava, C. radians	Cellana spp. (7)	Species	Nacellid limpet	cox1, cytb	Fossils (3)	Asia/Pac/Aus	۵	8.5			González- Wevar et al. (2010)
Cyanoramphus auriceps, C. novaezelandiae	Eunymphicus cornutus	Genus	Parrot	ND2, cytb, c-mos, RAG-1, Zenk	Secondary calibration using well-accepted fossils outside parrots	NC	>	7.97	4.62	11.42	Schweizer, Güntert, and Hertwig (2012)
Myosotis spp. (5)	M. spp. (10)	Species	Forget-me-not	matK, ndhF, trnK-psbA, ITS	Fossils and secondary	Eur	۵	7.95	1.2	14.7	Wallis and Trewick (2009)
Pachycladon spp. (9), Menkea	10 genera	Genus	Microlepid crucifer	CHS, A-PHYA, nadhF (nadhF only for dating)	2 secondary	Aus	ے	7.52	5.04	10.17	Mandáková et al. (2017)

_
$\overline{\Box}$
\sim
$\underline{}$
\Box
-=
Ħ
_
0
(T
٧,
_
⊣
,
•
Е 1
•
Щ
•
BLE
Щ
BLE

		Rank of	Common name/				٩١	Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR N	Mean	Ξ	Мах	References
Hectorella caespitosa	Lyellia	Family	Cushion plant	rbcL	Fossils (47); 14 secondary	Subantarctic	C	7.36	0.47	19.35	Winkworth et al. (2015)
Plagianthus regius, P. divaricatus	Asterotrichion discolor, Gynatrix pulchella	Genus	Malvaceae tree mallow	5'trnK/matK, ITS	Fossil, 1 secondary calibration, 1 geological calibration	Aus	>	7.3	4	14	Wagstaff and Tate (2011)
Gallirallus australis	13 species	Species	Weka	cytb, cox1, 16S, FGB-7, RAG-1	Fossil	Aus/Pac	С	7.3			Garcia-R et al. (2014)
Asplenium flabellifolium	A. flabellifolium	Subspecies	Necklace fern	rbcL	Fossils (47); 14 secondary	Aus	С	7.14	0.47	16.85	Winkworth et al. (2015)
Austroderia	Notochloe, Plinthanthesis	Genus	Poaceae grass	trnL-trnF, rpl16, rbcL, ndhF, matK, atpB-rbcL, trnT-trnL, trnC-trnD, ITS, 26S	Review	Aus	>	6.9			Linder et al. (2014)
Scutus breviculus	S. antipodes	Species	Sea slug	cox1	Panama rates	Aus	С	6.9	4.46	15.29	Wallis and Trewick (2009)
Polystichum vestitum	P. proliferum	Species	Prickly shield fern	rbcL	Fossils (47); 14 secondary	Aus	C	8.9	0.2	17.9	Winkworth et al. (2015)
Myriophyllum votschi	M. lophatum	Species	Watermilfoil	ITS, matK, trnK'5 and trnK 3'introns	Fossils (2)	Aus	>	6.8	3.9	6.7	Chen et al. (2014)
Gonocarpus acanthocarpus	G. leptothecus	Species	Watermilfoil	ITS, matK, trnK'5 and trnK 3'introns	Fossils (2)	Aus	>	6.8			Chen et al. (2014)
Dracophyllum (19 spp.)	D. spp. (9), Richea spp. (4)	Species	Ericaceae	rbcL, matK	Fossils (4) + emergence of Lord Howe	Aus	С	6.8	2.6	11.2	Wagstaff et al. (2010)
Pennantia corymbosa	P. cunninghamii	Species	Kaikōmako	rpl16 intron, trnD-trnY-trnE-trnT	Fossils (6)	Aus	>	9.9			Nicolas and Plunkett (2014)
Nothoceros giganteus	N. endiviifolius	Species	Hornwort	rbcL, trnL-F, rps4-trnS, matK, nad5-nad4, 5.8S, ITS2	Relaxed clock rate used	SAm	د	6.3	1.2	13.4	Villarreal and Renner (2014)
Lasaea	Lasaea	Species	Clam	cox3		SAf	С	9			Wallis and Trewick (2009)
Galaxias brevipinnis	11 Galaxias + Nesogalaxias spp.	Species	Koaro	cytb, 16S, RAG-1, S7 + morphology	Biogeographic constraints (9)	Aus	>	9	4	∞	Burridge et al. (2012)
Rytidosperma	Notodanthonia	Genus	Poaceae grass	rbcL	Fossils (47); 14 secondary	Aus	<u>_</u>	5.95	0.99	12.49	Winkworth et al. (2015) (Continues)

	Rank of	Common name/					Age			
Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Μii	Max	References
Hollandaea	Genus	Rewarewa	rbcL	Fossils (47); 14 secondary	Aus	۵	5.8	0	16.2	Winkworth et al. (2015)
A. difforme	Species	Aspleniaceae fern	rbcL		Norfolkl	۵	5.6	3.4	7.8	Perrie and Brownsey (2007)
Stylidium	Genus	Cushion plant	rbcL	Fossils (47); 14 secondary	Aus	⊑	5.48	0.25	13.92	Winkworth et al. (2015)
D. sp.	Species	Thomisid spider	cox1, ND1, 285, H3	Arthropod rate of 2.3%	Aus	ح				Sirvid, Moore, Chambers, and Prendergast (2013)
S. longipes	Species	Thomisid spider	cox1, ND1, 285, H3	Arthropod rate of 2.3%	Aus	ے	5.2			Sirvid et al. (2013)
T. patagonica	Species	Tetrachondraceae	rbcL	Fossils (47); 14 secondary	SAm	⊆	5.16	0.15	13.64	Winkworth et al. (2015)
O. spp. (11)	Species	Plantaginaceae	matK, rps16, ITS, ETS		SAm	⊏	2			Wallis and Trewick (2009)
Artoria	Genus	Wolf spider	cox1, ND1	Alpine uplift	Aus	<u>_</u>	2			Wallis and Trewick (2009)
G. maculatus, G. rostratus	Subspecies? Inan	Inanga	cytb, 16S, RAG-1, S7 + morphology	Biogeographic constraints (9)	Aus	>	2	ო	7	Burridge et al. (2012)
C. dissimilis	Species	Karaka tree	ITS, WAXY	ITS in 18 woody plants 0.215%	N N	<u>_</u>	4.9	1.6	8.9	Atherton et al. (2015)
P. appendiculata	Species	Marsh marigold	rbcL	Fossils (47); 14 secondary	SAm	>	4.47	0.13	11.73	Winkworth et al. (2015)
S. pungens, S. minusculus, S. fasciculatus, S. singuliflorus	Species	Caryophyllaceae	ITS	Fossil	Aus	c	4.45	1.2	7.7	Wallis and Trewick (2009)
Chaerophyllum spp. (4)	Species	Apiaceae	atpB-rbcL, trnS-trnG, ITS	Fossils (2)	NG	>	4.4			Spalik et al. (2010)
Wahlenbergia spp. (14)	Species	Harebell	ITS, trnL-F	Fossils (2) + secondary calibration for root	Aus	>	6.3			Prebble et al. (2011)
A. forsteroides, A.	Species	Asteraceae	trnK/matK, ITS	Fossil	SAm/Aus	⊑	4.2			Wallis and Trewick (2009)
P. aspleniifolius	Species	Mountain toatoa/ celery pine	rbcL	Fossils (47); 14 secondary	Tas	⊏	4.1	0.04	12.43	Winkworth et al. (2015)
										1

Corynocarpus laevigatus

Galaxias maculatus

Psychrophila (=Caltha)

novae-zelandiae

Scleranthus biflorus, S. brockiei, S. uniflorus

Chaerophyllum spp. (4)

Abrotanella spp. (10)

rhizomatous spp.) Wahlenbergia (10

Phyllocladus alpinus

TABLE 1 (Continued)

(=Stylidium) subulatum

Diaea ambara

Oreostylidium

Asplenium flaccidum

Knightia excelsa

NZ taxon

Tetrachondra hamiltonii

Ourisia spp. (12)

Anoteropsis

Sidymella angularis

	_
٦	o i
í	\sim
1	$\underline{}$
	$\overline{}$
1	
•	=
٦	=
1	_
-	0
1	٦,
•	_
•	
•	-
` '	_
\ L	רב ז
\ L	j
	פר

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Min	Мах	References
Jovellana sinclairii, J. repens	J. violacea, J. punctata	Species	Calceolariaceae	matK, rbcl, atpB-rbcL, rps16, tmL-F, AP3, Gcyc, UFO, ITS	Fossils (11)	SAm	ے	4.1		0.4-7.1	Nylinder, Swenson, Persson, Janssens, and Oxelman (2012)
Ascarina lucida	A. swamyana, A. polystachya	Species	Chloranthaceae	rbcL, rpl20-rps12, trnL, trnL-F	Fossils; 2 alternatives	Pacific	<u>_</u>	3.96	2.64	5.27	Wallis and Trewick (2009)
Hebe spp. (4), Parahebe, Heliohebe raoulii, Chionohebe densifolia	Derwentia nivea, Veronica spp. (4), H. formosa	Species	Scrophulariaceae	rbcL, ITS	Fossil	Aus	۵	3.9			Wallis and Trewick (2009)
Cheilanthes distans	C. distans	Subspecies	Bristly cloak fern	rbcL	Fossils (47); 14 secondary	Aus	_	3.53	0.02	10.57	Winkworth et al. (2015)
Wiseana, Dumbletonius, Dioxycanus, Heloxycanus, Cladoxycanus	Oxycanus spp. (3), Jeana robiginosa	Genus	Hepialid moth	cox1, cox2	Arthropod rate of 2%-2.3%	Aus	⊏	3.5	ო	4	Wallis and Trewick (2009)
Amaurobioides pleta, A. pallida, A. maritima	A. isolata	Species	Spider	cox1, 165, H3-a, 285	Fossils (2) anyphaenids	Aus	>	3.47			Ceccarelli et al. (2016)
Apium prostratum filiforme	A. panul, A. australe, A. chilense	Species	Apiaceae	ПЗ	Fossils (2)	SAm	>	3.4			Spalik et al. (2010)
Empodisma minus	E. minus	Subspecies	Wire rush	rbcL	Fossils (47); 14 secondary	Aus	С	3.29	0.03	9.38	Winkworth et al. (2015)
Rytidosperma thomsonii	R. pumilum	Species	Poaceae grass	rbcL	Fossils (47); 14 secondary	Aus	С	3.15	0	11.28	Winkworth et al. (2015)
Luzuriaga parviflora	L. marginata	Species	Alstroemeriaceae Iily	ndhF, matK, rbcL, matR, ITS	Fossils (3) + 1 secondary for root	SAm	>	2.9	4.0	6.1	Chacón, Camargo de Assis, Meerow, and Renner (2012)
Geranium solanderi, G. homeanum	G. carolinianum, G. sessiliflorum	Species	Cranesbill	rbcL, TrnL-trnF, ITS	2 secondary	Americas	>	2.9			Marcussen and Meseguer (2017)

(2017) (Continues)

TABLE 1 (Continued)

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Min	Мах	References
Anas spp (4)	A. bernieri	Species	Teal	Complete mtDNA (excl CR)	Fossil A. soporata: middle-Miocene (outgroup to extant Anas)	Madagascar?	<u>_</u>	2.85	1.78	3.95	Mitchell, Wood, Scofield, Llamas, and Cooper (2014)
Sporadanthus ferrugineus	S. gracilis	Species	Bamboo rush	rbcL	Fossils (47); 14 secondary	Aus	_	2.68	0	9.72	Winkworth et al. (2015)
Astelia linearis, A. subulata	A. alpina	Species	Asteliaceae	trnL, psbA-trnH, rps16, petL-psbE, NIA-i3	Secondary + fossils	Aus	>	2.6			Birch and Keeley (2013)
Pseudognaphalium Iuteoalbum	Anaphalis javanica, A. triplinervis	Genus	Asteraceae	ITS		Asia	>	2.5			Wallis and Trewick (2009)
Ewartia, Raoulia, Helichrysum, Leucogenes, Rachelia, Anaphaliodes	A. mariae, Ew. spp. (4), Pterygopappus + 3 other genera	Species	Asteraceae	ПS		Aus	>	2.5			Wallis and Trewick (2009)
Euchiton spp. (6)	Craspaedia, Pycnosorus globosus, Eu. spp. (2), Ewartia	Species	Asteraceae	ITS		Aus	>	2.5			Wallis and Trewick (2009)
Ozothamnus leptophyllus	Craspaedia spp. (3), Pycnosorus globosus	Genus	Asteraceae	ITS		Aus	>	2.5			Wallis and Trewick (2009)
Lycopodiella sp.	Lycopodiella sp.	Subspecies	Little wolf's foot fern	rbcL		Aus	С	2.4	8.0	4	Perrie and Brownsey (2007)
Amaurobioides maritima	A. n. sp.	Species	Spray zone spider	ITS1, ND1	Spider rate for ND1 2.3%	Aus (Tas)	c	2.37			Opell, Helweg, and Kiser (2016)
Porphyrio hochstetteri	Widespread purple swamphen	Species	Takahe, South Island	CR, cytb, 12S, 16S, BFG-7, RAG1	Calibration on basal split	Aus/Asia/Af?	⊆	2.35	1	7.5	Garcia-R and Trewick (2015)
Ranunculus amphitri- chus, R. glabrifolius	R. acaulis, R. papulentus	Species	Buttercup	psbJ-petA, matK-trnK, nrITS	Fossil, molecular and ecological information, NZ crown group	Aus/SubAnt	c	2.3			Lehnebach et al. (2017)
Craspaedia spp. (13)	C. spp. (6)	Species	Asteraceae	psbA-trnH, ITS, ETS		Aus	>	2.25	1.5	ო	Wallis and Trewick (2009)

	ā	٠.
	=	-
	_	
		=
	-	-
	^	`
	•	•
1		١.
١	_	,
	,	٠
`		•
ì		1
L		4
		1
	·	, ייי
		ׅ֓֡֜֝֝֡֜֜֜֝֜֜֝֓֜֜֜֝֓֜֜֜֜֝֓֡֓֜֜֜֡֓֜֜֜֝֓֡֓֜֜֝֡֡֡֡֝֡֡֝֡֡֡֝֡
		1111
		, ווו
		1100

		D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					⋖	Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR N	Mean	Min	Max	References
Rytidosperma exiguum	R. vickeryae	Species	Poaceae grass	trnl-trnf, rpl16, rbcl, ndhF, matK, atpB-rbcl, trnT-trnL, trnC-trnD, ITS, 26S		Aus	>	2.2			(2014)
Leptecophylla robusta, L. juniperina juniperina	L. divaricata	Species	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Tas	<u>_</u>	2.11	0.87	3.81	Puente-Lelièvre et al. (2013)
Cyathea cunninghamii	C. cunninghamii	Subspecies	Tree fern	rbcL	Fossils (47); 14 secondary	Aus	_	2.09	0	7.34	Winkworth et al. (2015)
Gentianella astonii, G. bellidifolia, G. saxosa, G. patula	G. spp. (11)	Species	Gentian	matK, ITS	NAm split and fossil	SAm	۵	2.05	0.8	3.8	Wallis and Trewick (2009)
Gleichenia dicarpa	G. alpina	Species	Alpine coral fern	rbcL	Fossils (47); 14 secondary	Aus	c	2	0	8.9	Winkworth et al. (2015)
Haloragis erecta	H. serra, H. aspersa	species	watermilfoil	ITS, matK, trnK'5 and trnK 3'introns	fossils (2)	Aus	>	2			Chen et al. (2014)
Plantago lanigera, P. obconica, P. aucklandica	Plantago spp. (13)	Species	Plantaginaceae plantain	coxl, ndhF-rpl32, ITS	2 secondary calibrations	Aus	>	8	0.94	2.29	Tay, Meudt, Garnock- Jones, and Ritchie (2010)
Latrodectus katipo, L. atritus	L. hasseltii	Species	Katipo	cox1, ND1	Insect rate for mtDNA	Aus	۵	2			Wallis and Trewick (2009)
Cephalorhynchus hectori	C. commerssoni, C. eutropa	Species	Hector's dolphin	CR		SAf	c	2			Wallis and Trewick (2009)
Cyathea dealbata	C. australis	Species	Tree fern	rbcL	Fossils (47); 14 secondary	Aus	۵	1.97	0	6.94	Winkworth et al. (2015)
Zostera novazelandica	Z. muelleri	Species	Sea grass	rbcL	Fossils (47); 14 secondary	Aus	۵	1.97	0	6.81	Winkworth et al. (2015)
Olearia chathamica	Pleurophyllum criniferum	Genus	Asteraceae	rbcL	Fossils (47); 14 secondary	Subantarctic	>	1.95	0	96.9	Winkworth et al. (2015)
Apium prostratum 4, 5	A. insulare	Species	Apiaceae	ITS	Fossils (2)	SAm/Aus	>	1.9			Spalik et al. (2010)
Acrothamnus colensoi	A. suaveolens	Species	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Aus/NG	۵	1.78	0.31	3.84	Puente-Lelièvre et al. (2013)

(Continues)

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR Mean		Μi	Мах	References
Dicksonia fibrosa	D. antarctica, D. timorensis	Species	Tree fern	trnL-trnF, trnG-trnR, rpl16, matK	Fossils (3)	Aus/Asia/ SAm	>	1.7			Noben et al. (2017)
Ranunculus multiscapus, R. subscaposus	R. muelleri	Species	Buttercup	psbJ-petA, matK-trnK, nrITS	Fossil, molecular and ecological information, NZ crown group	Aus/SubAnt	۵	1.7	0.5	м	Lehnebach et al. (2017)
Porphyrio mantelli	widespread purple swamphen	Species	Takahe, North Island	CR, cytb, 125, 165, BFG-7, RAG1	Calibration on basal split Aus/Asia?	Aus/Asia?	_	1.5	0.5	3.3-	Garcia-R and Trewick (2015)
Leucopogon fasciculatus	L. lanceolatus	Species	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Aus	۵	1.33	0.25	3.09	Puente-Lelièvre et al. (2013)
Hieraaetus moorei	H. morphnoides, H. pennatus	species	Haast eagle	cytb, ND2	Avian cytb rate 0.7%-1.7%	Aus	ے	1.25	0.7	1.8	Wallis and Trewick (2009)
Notodanthonia gracilis	N. gracilis	Subspecies	Poaceae grass	rbcL	Fossils (47); 14 secondary	Aus	۵	1.2	0	3.9	Winkworth et al. (2015)
Wahlenbergia (5 radicate spp.)	W. gracilis	Species	Harebell	ITS, trnL-F	Fossils (2) + secondary calibration for root	Aus	>	1.2			Prebble et al. (2011)
Plantago spathulata, P. sp. "Sylvester", P. raoullii, P. triantha	P. cladarophylla	Species	Plantain	coxl, ndhF-rp132, ITS	2 secondary calibrations	Aus	>	1.01	0.5	1.52	Tay et al. (2010)
Ripogonum scandens	R. album?	Species	Liliales	75 plastid genes; timing: matK, rbcL	Fossils (17)	Aus	>	1			Givnish et al. (2016)
Weinmannia racemosa, W. silvicola	W. raiatensis, W. samoensis	Species	Cunoniaceae	trnL-F, ITS1-2		NC/Pac	ے	1			Wallis and Trewick (2009)
Plantago triandra, P. unibracteata	P. muelleri	Species	Plantain	coxl, ndhF-rpl32, ITS	2 secondary calibrations	Aus	>	4	0.94	2.29	Tay et al. (2010)
Himantopus novaezelandiae	H. leucocephalus	Subspecies	Kaki	CR, cytb		Aus	ے	1			Wallis and Trewick (2009)
Coscinasterias muricata	C. muricata	Subspecies	Seastar	cox1, CR, ITS2	Panama echinoid rate	Aus	ے	0.95	9.0	1.3	Wallis and Trewick (2009)
Lewinia muelleri	Lewinia pectoralis	Species	Rail	cytb, cox1, 16S, FGB-7, RAG-1	Fossil	Aus/SEAsia	ے	0.9			Garcia-R et al. (2014)
Utricularia novae-zelandiae	U. dichotoma, U. monanthos	Species	Lentibulariaceae	rps16, trnL-trnF, trnD-trnT	2 secondary	Aus	>	0.74			Jobson, Baleeiro, and Reut (2017)
Clarkoma bollonsi	Clarkoma bollonsi	Subspecies	Brittle star	cox1, ITS2, 28S, microsatellite (6)	Fixed rate: cox1, 2.48%; 285, 0.031%; ITS, 1.5% per lineage	WAus	c	0.71			Naughton et al. (2014)

ਰੇ
ne
ij
S
ے
7
щ
<u>_</u>
۷.

		97.1						Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR	Mean	Min	Max	References
Lepidium sisymbrioides, L. naufragorum	L. spp. (7)	Species	Pepperweed	ITS, trnT-L, trnL intron, trnL-F	Fossil	Aus	۵	0.7	0.7	1.3	Wallis and Trewick (2009)
Sicyos mawhai	S. australis, S. undara	Species	Cucurbitaceae	trnL, trnL-trnF, rpl20-rps12, trnS-trnG, psbA-trnH, rbcL, ITS	Fossil + secondary calibration for root	Aus	>	0.7	0.1	1.6	Sebastian, Schaefer, Lira, Telford, and Renner (2012)
Montitega dealbata	M. dealbata	Subspecies	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Tas	С	0.68	0.01	2.31	Puente-Lelièvre et al. (2013)
Deparia tenuifolia	D. petersenii	Species	Athyriaceae fern	rps16-matK, trnL-L-F, matK, rbcL	Secondary calibrations	Asia/Pac/Aus	> s	0.61	0.02	1.65	Kuo et al. (2016)
Leucopogon xerampelinus	L. parviflorus	Species	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Aus	С	9.0	0.07	1.54	Puente-Lelièvre et al. (2013)
Stigmatopora nigra	S. nigra	Subspecies	Pipefish	16S, CR, CK int6, a-Tropomyosin int5	Fixed rate for CR 1.9%	Aus	>	0.56	0.2	1.5	Dawson (2012)
Lepidium banksii, L. oleraceum, L. flexicaule	L. spp. (4)	Species	Pepperweed	ITS, trnT-L, trnL intron, trnL-F	Fossil	Aus	۵	0.55	0.3	0.55	Wallis and Trewick (2009)
Trithuria inconspicua	T. filamentosa	Species	Hydatellaceae aquatic	13 plastid genes; 4 plastid + ITS for dating	Fossils (8) secondary calibration	Aus	>	0.51	0	1.12	lles et al. (2014)
Aplodactylus arctidens	A. arctidens	Subspecies	Marblefish	cox1, cytb	Fixed rate	Aus	۵	0.5			Burridge (2000)
Nemadactylus douglasii	N. douglasii	Subspecies	Porae	cox1, cytb	Fixed rate	Aus	ב	0.5			Burridge (2000)
Stigmatopora macropterygia	S. argus	Species	Pipefish	16S, CR, CK int6, a-Tropomyosin int5	Fixed rate for CR 1.9%	Aus	>	0.47	0.12	1.18	Dawson (2012)
Amaurobioides pleta	A. isolata	Species	Spray zone spider	ITS1, ND1	Spider rate for ND1 2.3%	Aus (SA)	L	0.38			Opell et al. (2016)
Leucopogon fraseri	L. fraseri	Subspecies	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Tas	c	0.27	0	1.1	Puente-Lelièvre et al. (2013)
Himantopus Ieucocephalus	H. leucocephalus	Subspecies	Poaka	CR, cytb		Aus	С	0.2			Wallis and Trewick (2009)
Zosterops lateralis	Z. lateralis	Subspecies	White eye	ND2-3, TGFB2		Aus	۵	0.2			Wallis and Trewick (2009)
Pentachondra pumila	P. pumila	Subspecies	Ericaeae	rbcL, matK, atpb-rbcL	Fossils (2) vs. secondary	Aus	ב	0.11	0	0.42	Puente-Lelièvre et al. (2013)
Pyrrhobryum mnioides		Species	Moss	atpB-rbcL, trnL, rps4		Aus	۵	0			Wallis and Trewick (2009) (Continues)

TABLE 1 (Continued)

		Rank of	Common name/					Age			
NZ taxon	Sister group split	split	group	Genes	Calibration per Ma	Origin	AAR Mean	Mean	Ξ	Мах	References
Gonocarpus montanus	G. montanus	Species	Watermilfoil	ITS, matK, trnK'5 and trnK 3'introns	Fossils (2)	Aus	>	0			Chen et al. (2014)
Gonocarpus micranthus	G. micranthus	Species	Watermilfoil	ITS, matK, trnK'5 and trnK 3'introns	Fossils (2)	Aus	>	0			Chen et al. (2014)
Myriophyllum pedunculatum	M. pedunculatum	Species	Watermilfoil	ITS, matK, trnK'5 and trnK 3'introns	Fossils (2)	Aus	>	0			Chen et al. (2014)
Nerita atramentosa	N. atramentosa	Suspecies	Neritid gastropod	cox1		Aus	_	0			Wallis and Trewick (2009)
Jasus edwardsii	J. edwardsii	Subspecies	Southern rock Iobster	mtDNA		Aus	_	0			Ward and Elliot (2001)
Galeorhinus galeus	G. galeus	Subspecies	Tope shark	ND2		Aus	⊆	0			Bester-van der Merwe et al. (2017)
Nemadactylus macropterus	N. macropterus	Subspecies	Tarakihi	mtDNA		Aus	c	0			Ward and Elliot (2001)
Rexea solandri	R. solandri	Subspecies	Gemfish	mtDNA		Aus	⊆	0			Ward and Elliot (2001)
Macruronus novaezelandiae	M. novaezelandiae	Subspecies	Blue grenadier	mtDNA		Aus	ב	0			Ward and Elliot (2001)
Hoplostethus atlanticus	H. atlanticus	Subspecies	Orange roughy	mtDNA		Aus	⊆	0			Ward and Elliot (2001)
Neocyttus rhomboidalis	N. rhomboidalis	Subspecies	Spikey oreo	mtDNA		Aus	۵	0			Ward and Elliot (2001)
Pseudocyttus maculatus	P. maculatus	Subspecies	Smooth oreo	mtDNA		Aus	۵	0			Ward and Elliot (2001)
Allocyttus niger	A. niger	Subspecies	Black oreo	mtDNA		Aus	c	0			Ward and Elliot (2001)
Megadyptes antipodes	M. antipodes	Species	Yellow-eyed penguin	CR		Subantarctic	⊆	0			Boessenkool et al. (2009)
Eudyptula novaehollandiae	E. novaehollandiae	Species	Little (blue) penguin	CR		Aus	С	0			Grosser et al. (2015)
Tursiops truncatus	T. truncatus	Subspecies	Bottlenose dolphin	CR		Worldwide	⊆	0			Wallis and Trewick (2009)

Note. Shown are NZ taxon name(s), sister group, rank of split, common name, markers used, calibration used, area of origin of NZ clade, whether ancestral area reconstruction (AAR) was used, molecular dating of split (or mean), reference. †=extinct.

taxon from its non-NZ sister taxon (and confidence intervals where given), (e) likely ancestral area, and (f) whether any sort of ancestral area reconstruction (AAR) was carried out. If there were no AAR, direction was inferred from a combination of factors including author preferences, fossil evidence, geological reconstructions, distribution of progressively deeper lineages in the group, physical means of dispersal (wind, currents) and life history information. If, after consideration of all of these aspects, there was no clear preference for direction of dispersal, that particular split was not included.

We used the earlier stem sister split rather the later crown group radiation time presented by some authors (Prebble, Cupido, Meudt, & Garnock-Jones, 2011), though in practice, this almost never made a difference to inference of pre- versus post-OMT status. We exclude dispersive lineages that are likely to be humanmediated (e.g., Kayaalp, Schwarz, & Stevens, 2013). Where multiple analyses were presented, we used the one that was better supported or given primacy by the authors; in occasional cases where necessary, our preferences were as follows: Bayesian > maximum likelihood > maximum parsimony. Where multiple calibrations were used, we used the one favoured by authors, or a mean estimate where necessary. Whenever there was more than one paper on a particular species or species group, we preferred the one with the most extensive data or more reliable ancestral area determination, usually the most recent. Data were supplemented by Table 1 of Wallis and Trewick (2009), and estimates of molecular disjunctions times from a recent synthesis and re-analysis of published data (Winkworth et al., 2015), unless superseded by newer studies.

To assess the two hypotheses of complete submergence versus continuous emergent land, we fitted an exponential distribution to divergence times, as well as to a subset of data centred around the OMT (43–3 Ma). Complete submergence would result in an excess of times after the OMT (and a deficit before), resulting in a poor fit around this period. In contrast, a continuous landmass through the OMT would predict a continuous, smooth, geometric accumulation of new lineages through time, through the OMT into more recent time. Analyses were performed in R (R Core Team 2017), using the "fitdist" function of the R package "fitdistrplus" (Delignette-Muller, Pouillot, Denis, & Dutang, 2014) for fitting univariate distributions to non-censored data and goodness-of-fit statistics.

3 | RESULTS AND DISCUSSION

Building upon the database of Wallis and Trewick (2009), we found ~95 new papers giving dates for a total of 248 splits involving NZ lineages of plants and animals (Table 1). We ranked these from most archaic to most recent and plotted the divergence times as a univariate to show the relationship between ages of lineages and how commonly they occurred (Figure 1).

3.1 | Archaic lineages

Strikingly, this compilation reveals ~25 different lineages whose taxonomic distinctiveness and/or fossil record is matched by high

FIGURE 1 Univariate plot of ranked divergence times between NZ lineages and their closest overseas relatives (from Table 1). EC: Early Cretaceous; EJ: Early Jurassic; Eo: Eocene; LC: Lower Cretaceous; LJ: Lower Jurassic; LT: Lower Triassic; Mi: Miocene; MJ: Middle Jurassic; MT: Middle Triassic; Ol: Oligocene; Pa: Palaeocene

differentiation at the molecular level consistent with archaic Gondwanan origins, including tuatara (Hugall, Foster, & Lee, 2007), frogs (Feng et al., 2017), wrens (Ericson, Klopfstein, Irestedt, Nguyen, & Nylander, 2014), crayfish (Toon et al., 2010), centipedes (Giribet & Boyer, 2010), ground weta (Pratt, Morgan-Richards, & Trewick, 2008), dragonflies (Ware et al., 2014), beetles (Andújar et al., 2016), peripatus (Murienne, Daniels, Buckley, Mayer, & Giribet, 2014), freshwater mussels (Graf & Ó Foighil, 2000; Marshall, Fenwick, & Ritchie, 2014), brachiopods (Cohen et al., 2011), cypress (Crisp et al., 2011), *Griselinia* (Nicolas & Plunkett, 2014), mountain rimu (Wardle, Ezcurra, Ramírez, & Wagstaff, 2001) and liverworts (Sun, He, & Glenny, 2014). In mite harvestmen alone (Giribet et al., 2012), some ten lineages across three extant NZ genera are sufficiently divergent to be vicariant at >65 Ma. The picture is complicated by

FIGURE 2 Fits of divergence times to an exponential distribution. (a,b) for the complete data set (N = 248); (c,d) for 43–3 Ma (OMT ±20 Ma; N = 137). (a,c) empirical and theoretical densities; (b,d) empirical and theoretical cumulative distribution functions

TABLE 2 Details of divergence times binned into some major taxonomic and ecological groups

	Linea	ges		Ages; Ma		
Group	N	Post-OMT	%	Range	Median	Mean
Reptiles and amphibians	4	1	25	18-272	118	131
Birds	22	14	64	0.2-73	10.1	19.8
Freshwater invertebrates	5	1	20	18-80	36.9	59.9
Terrestrial invertebrates	44	15	34	0.4-270	34.4	44.2
Marine invertebrates	21	15	71	0-40	12.9	18.4
Freshwater fishes	5	3	60	5-24	17.8	15.4
Marine vertebrates	16	16	100	0-2	0	0.3
Trees	35	21	60	1-109	19.2	28.5
Ferns	14	11	79	0.6-50	4.6	11.6
Herbs, vines, shrubs	77	75	97	0-31.6	3.2	6

Note. Shown for each group are number of comparisons (N), number of post-OMT splits; % of that group represented in post-OMT divergences, range of ages, median age and mean age of divergences.

uncertainty over when links with Australia were finally severed. Recent reconstructions (Schellart, Lister, & Toy, 2006) suggest an end to seafloor spreading, and hence complete separation, at 55–52 Ma (Ho et al., 2015). The size of the gap, however, crucially depends on the progressive subsidence and submergence of Zealandia through thinning of the continental crust (Neall & Trewick, 2008). There could also have been island chain links. Notwithstanding these examples and uncertainty over timing, the large majority (~90%) of extant lineages appear to have dispersed to NZ post-Gondwanan break-up (Figure 1).

3.2 | The shape of arrival times in NZ

Looking specifically at the univariate distribution of estimated divergence times with respect to our original question, the overwhelming picture is one of a smooth decay curve with time (Figure 1); that

is, the number of extant lineages falls off ever more slowly with increasing geological age of origin (or increases exponentially in more recent time). This pattern is continuous through the Oligocene; that is, there is no evidence for a spike of arrivals after the OMT, or deficit before it, as would be expected if the land forming current-day New Zealand was completely inundated. We tested the entire set of 248 divergence times for goodness of fit to an exponential distribution (Figure 2a–b). The cumulative distribution function (CDF) plot (Figure 2b) of empirical versus theoretical distribution is very close, with the actual data falling off slightly more steeply over 0–30 Ma before joining the theoretical line. The Q–Q plot (Figure S1a), representing empirical quantiles against theoretical quantiles (emphasizing any lack of fit at tails), gives a very close fit until just past 50 Ma, when there starts to be an excess of older divergences. This feature is evident from a slight inflection at this point in the univariate

FIGURE 3 Histogram of divergence times grouped by epoch

plot (Figure 1). The P-P plot (Figure S1b), representing the empirical distribution function evaluated at each data point against the fitted distribution function (emphasizing any lack of fit at the centre of the distribution), like the CDF plot, shows an almost immediate departure from the theoretical in the form of a smooth curve, later joining the theoretical. We repeated these analyses for 137 values 20 Ma either side of the OMT (3-43 Ma) for several reasons. First, the number of zero (or near zero) values is essentially unbounded and hard to quantify. Any taxon shared between Australia and New Zealand could be included; for example, we included several marine species from one paper based on RFLPs (Ward & Elliot, 2001). In some cases, comparative data were not presented in a form that we could use (Burnard, Shepherd, Perrie, & Munkacsi, 2016). These zeroes are not meaningful to our question and could be skewing the distribution. Second, there is probably a bias (over-representation) of potentially archaic lineage splits in the literature, since these make attractive topics for research being the obvious ones to assess first. Finally, and most importantly, we are specifically interested in the region either side of the OMT and simply require enough points in this region to generate a meaningful distribution. Fits of divergence times to an exponential distribution for the region around the OMT show an even better fit (Figure 2c-d). As before, the Q-Q plot (Figure S1c) starts to deviate only at the higher end. The P-P plot (Figure S1d), which specifically tests lack of fit in the very region in which we are interested, is now very close, departing only slightly at each end of the distribution. Key in all of these analyses is the obvious smoothness of the transition from pre-OMT to post-OMT.

Taken together, these analyses show mathematically that there is no evidence for any spike of arrivals after the OMT or indeed any sort of irregularity for a period of 40 Ma encompassing the OMT. We can go further and say that the approximate fit to an exponential distribution suggests a deterministic process of an equilibrium model of continuous loss of lineages by extinction through time, balanced by continual immigration (MacArthur & Wilson, 1967). This is perhaps a surprising result, as one might have expected a detectable loss of lineages by reduced land area *alone* over the duration of the OMT. The result, therefore, provides circumstantial biological evidence for a rather considerable landmass through the OMT, in keeping with recent geophysical reconstructions (Kamp et al., 2014; Strogen et al.,

2014). The fit to an equilibrium model could also be seen as surprising for an old, remote and large landmass; that is, most lineages in NZ are well into the late colonization phase, having undergone considerable adaptation and adaptive radiation, yet the landmass is still recruiting new lineages.

3.3 | Lineages surviving through the Oligocene marine transgression

Approximately 74 major lineages show divergence times before 23 Ma. suggesting that they survived the OMT in situ. Some lineages are particularly informative with respect to the central thesis of this paper. In mite harvestmen once again, at least 26 lineages (enlarged in number by in situ speciation) are claimed to have survived through the OMT: Rakaia [16], Aoraki [9] and Neopurcellia [1] (Giribet et al., 2012). For Hymenophyllum ferns (Del Rio et al., 2017) and Schistochila liverworts (Sun et al., 2014), slowly evolving cpDNA suggests that at least 13 and 9-10 lineages, respectively, survived the NZ OMT. Two lineages of ground weta, tusked weta and possibly tree/giant weta, appear to have survived in situ (Pratt et al., 2008; Trewick & Morgan-Richards, 2005). Stoneflies and midges, too, provide extensive evidence for many surviving pre-OMT NZ lineages (Cranston, Hardy, Morse, Puslednik, & McCluen, 2010; Krosch, Baker, Mather, & Cranston, 2011; McCulloch, Wallis, & Waters, 2016), although are probably not archaic. In these two flighted insect groups, there may be some ambiguity with respect to direction of dispersal involving NZ and South America, but the timing of NZ lineages is always pre-OMT, implying widespread continuous existence in NZ through this period.

3.4 | Lineages arriving post-Oligocene marine transgression

Groups that show no evidence of pre-OMT existence in NZ, followed by extensive NZ radiations soon after, are more indicative of post-OMT arrival, for example, *Oligosoma* skinks (Chapple, Ritchie, & Daugherty, 2009) and some lineages of galaxiid fishes (Burridge, McDowall, Craw, Wilson, & Waters, 2012). However, it is dangerous to make inferences from species numbers and crown ages alone in this way; extinction of lineages originating prior to the OMT can cause the root to shift and make it appear that there is a sharp upturn in speciation subsequently (Sharma & Wheeler, 2013). So just as the extinction of overseas sister lineages can push back stem divergence times, the winnowing of crown lineages can push the root of the crown group forward, leading to inference of more recent radiation.

Summarizing across the broad taxonomic and ecological distribution of lineages of species with post-OMT divergences (Table 2), a signal of either over- or under-representation is discernible for many groups. Post-OMT arriving lineages include all marine vertebrates, 97% of all herbs and shrubs (excludes liverworts, hornworts, mosses, ferns), 79% of ferns, 71% of marine invertebrates and 64% of birds (excludes penguins). In contrast, 34% of terrestrial invertebrate, 25% of reptile and amphibian and 20% of freshwater invertebrate

lineages are found in this group. In contrast to other plants, only 60% of tree lineages arrive post-OMT.

3.5 | Source-sink scenarios and estimation of NZ lineage age

Even with AAR, it is often difficult to assign ancestral area with confidence, unless there is a large number of taxa and little evidence for overseas dispersal, such as in phasmids (Buckley, Attanayake, Nylander, & Bradler, 2010). The styphelioid Ericaceae have over 300 representatives in Australia and only 10 in NZ, 3-4 of which are also in Australia. Through frugivory and west-wind drift, it is preferable to assume that each NZ lineage results from a separate independent dispersal event (Puente-Lelièvre, Harrington, Brown, Kuzmina, & Crayn, 2013), rather than having existed in NZ throughout the OMT, before undergoing several countercurrent dispersal events back to Australia, in the absence of fossil confirmation. The fern genus Dicksonia, however, could be archaic in NZ, though a two-dispersal scenario is preferred (Noben et al., 2017). The plant genus Coprosma splits from its sister genus (Nertera) at about 25 Ma and radiates extensively subsequent to evolving woodiness and dioecy after 15 Ma (Cantley, Markey, Swenson, & Keeley, 2016). We have included the Coprosma-Nertera lineage as having pre-OMT NZ roots, but as 30 later dispersal events around the Pacific are inferred for Coprosma, we cannot have much confidence that the lineage was specifically located in NZ through the OMT. As with Coprosma, the choice of stem over crown age implies that NZ tateid gastropods survived the OMT in situ (Zielske, Ponder, & Haase, 2017). Griselinia could well have dispersed to NZ from Australia in the Miocene, but in the absence of more taxa to break the long edge, or more fossil information, it is a moot point (Nicolas & Plunkett, 2014).

In general, we have sought to err on the side of inclusivity, though improved sampling and analyses may change dates or ancestral areas in some cases, but that has always been the case in biogeography. Although we have followed authors preferred scenarios, occasional authors mention the NZ OMT as at least part of the reason to prefer a more recent Australian origin in the face of a deeper split (Nicolas & Plunkett, 2014). AAR is still in its infancy and future methods should seek to incorporate biological (e.g., dispersal capabilities, habitat requirements) and physical phenomena (e.g., paleogeology, paleoclimate, winds, currents) as recommended recently (Sukumaran & Knowles, 2018).

Any single analysis is open to substantial error when the direction of dispersal is ambiguous. When a paper either tacitly assumes dispersal from Australia to NZ in an easterly direction via west-wind drift, or AAR marginally supports it, a dating for arrival from Australia is invalidated if in fact dispersal was in the opposite direction. There is some support for countercurrent drift, or at least dispersal from NZ to Australia by some route (Donald, Kennedy, & Spencer, 2005; Donald, Winter, Ashcroft, & Spencer, 2015; Sanmartín & Ronquist, 2004; Swenson & Bremer, 1997), and if this turns out to be widely applicable, many published estimates of arrival times could be

underestimates. Importantly, this would push back the ages of lineages further, increasing the number apparently surviving the OMT. Some papers infer countercurrent drift, leaving no estimate of origin of the group in NZ. In the case of *Cominella* and related genera of whelks, for example, AAR narrowly preferred countercurrent dispersal, suggesting that the assemblage had been in NZ for >27.6–78 Ma (Donald et al., 2015). If dispersal had been assumed to be in the more usual easterly direction, two dispersal events (14.5–40.9 and 18.5–54.6 Ma) would be indicated. Given the (inferred) missing outgroup, ambiguity and wide error on dating, it is difficult to know how to proceed with such studies. In this case, NZ fossil *Cominella* are known from 27 Ma, so this date is included so as not to bias omission of surviving pre-OMT lineages (even if two more recent dispersal events from Australia were inferred, they are close to or pre-OMT anyway).

On balance, though, data strongly suggest that easterly drift is much more common. For example, only 8% of pollen or spore-forming plants have a fossil record in NZ earlier than that of south-eastern Australia (Macphail, 1997). In some groups (e.g., *Lagenophora* asters), AAR was so ambivalent about ancestral areas that we did not use them. In others, AAR gives a preference, but it may not have much foundation: NZ *Libocedrus* could have South American or New Caledonian origins, but species distribution implies continuous existence in NZ (Crisp et al., 2011). In general terms, we believe that our approach in synthesizing a large number of analyses largely overcomes the ambiguities of any single study.

3.6 | The changing face of Zealandia

To highlight the relevant importance of geological epochs, we binned divergence times and plotted them against geological time (Figure 3). As our distribution (Figure 1) and analysis show an everincreasing likelihood of finding recently arrived lineages, differences in frequency of arrivals among epochs reflect recency and duration of epoch. Hence, the relatively long and recent Miocene is a major period for arrival of currently extant lineages in NZ. This epoch was warm and stable, with steadily increasing land area, but without much topography (Wallis, Waters, Upton, & Craw, 2016), housing a recognizably modern flora and fauna.

To show any general qualitative taxonomic patterns, we tabulate median divergence times across some major groups (Table 2). The (four) reptiles and amphibians have the deepest divergences (median; 118 Ma), with freshwater (36.9 Ma) and terrestrial invertebrates (34.4 Ma) next, both deeper than marine invertebrates (12.9 Ma), reflecting perhaps the high larval dispersal capabilities of many marine invertebrates. Marine vertebrates, however, have much more recent origins (0 Ma), suggesting high adult motility in these larger species. As with the invertebrates, freshwater fishes have much deeper overseas affiliations (17.8 Ma) than marine vertebrates, in keeping with the fact that freshwater habitats on different continents are more obviously disjunct than marine habitats. Ferns (4.6 Ma) show similar depths to other herbs (3.2 Ma), despite their renowned colonization ability, with birds (excluding penguins) much deeper (10.1 Ma), and trees (19.2) deeper again. Note that these patterns are completely

counter to what would be predicted under extensive submergence, where marine species might be more likely to survive in shallow sea, yet elements of the terrestrial fauna would go extinct, necessitating subsequent re-colonization from elsewhere.

Australia dominates the likely source of lineages across the entire set of data (Table 1), but less so for older divergences. For example, from 0 to 3 Ma, Australia makes up 83% of inferred source lineages, with no other single region reaching 5%. For the period 3-23 Ma, Australia's contribution is 61%, South America 15% and New Caledonia (part of Zealandia) 7%. From 23 to 60 Ma, Australia's contribution is only 48%. South America 30% and New Caledonia 7%. Australia would seem to dominate as a recent source of lineages because of its proximity. As we go back in time, links to South America are much stronger, probably because of higher connectivity through a warmer Antarctica and Subantarctic region, making it a major source before the southern circulation established (Winkworth et al., 2015). The dearth of South African links is informative, while not surprising. Africa was not connected through stepping-stone dispersal along the edge of a warmer Antarctica because of its greater distance north, and it has a warmer-adapted flora and fauna.

The extensive group of lineages whose divergence times are consistent with surviving the OMT in situ, permits some speculation about the likely landscape and ecology of New Zealand prior to the OMT. The many trees, ferns and liverworts are consistent with lowland forest, supported by recent description of late Oligocene fossils derived from coastal forest at Cosy Dell (Conran et al., 2014). Such habitat could support birds, reptiles, frogs, peripatus, as well as the many insect lineages identified. To these could be added extinct Miocene lineages, including perhaps crocodilians and terrestrial mammals (Worthy et al., 2006), the picture is one of a diverse ecosystem. Components of an expected coastal habitat are there with marine molluscs and brachiopods, in keeping with the diverse rocky shore and shallow water fossil assemblage of the period (Buckeridge, Lee, & Robinson, 2014; Conran et al., 2014; Lee et al., 2014; Scott et al., 2014). As expected, montane and alpine groups, now well represented in NZ, are conspicuous by their absence, consistent with late Miocene or Pliocene origins of the current Southern Alps (Heenan & McGlone, 2013). All herbs, vines and shrubs (excluding liverworts, Astelia and Alseuosmia) are later arrivals on the scene too, consistent with either domination of the lowlands by forest and little open habitat, or more lineage turnover in these groups.

Definitive evidence of continuous existence prior to, during and after the OMT could best be derived from the fossil record and dating techniques. The fossil record, however, is never "complete," with respect to either taxonomy or time. Earliest records may have long been lost with older sediments, and fragmentary records could imply repeated colonization rather than an incomplete record (Pole, 2001). Material such as pollen grains can get recycled between sediments (Mildenhall, Mortimer, Bassett, & Kennedy, 2014). Even with a good fossil record, it may not be easy to attribute fossils to lineages at >23 Ma, as evidenced by argument about affinities of much more recent and extensive hominid fossils. Palaeontologists are making good headway in finding material offering transects across the OMT

(Conran et al., 2014; Lee et al., 2014; Worthy, De Pietri, & Scofield, 2017), though it might still be difficult to distinguish continuity from repetitive colonization (e.g., windborne or marine), and light material such as pollen grains may be carried from some distance away. Taken together with more recent geological and palaeontological data consistent with continuous landmass, it is our view that complete inundation should remain an unsubstantiated concept inferior to the long-held view that at least some of our flora and fauna survived the OMT and in some cases appear to be archaic (Jolivet & Verma, 2010). Our data go further to suggest that the OMT may have had a relatively mild extinction impact on the flora and fauna of New Zealand, leaving no discernible signature in an apparent equilibrium pattern of colonization of lineages to New Zealand across the OMT boundary.

ACKNOWLEDGEMENTS

Research in GPW's laboratory has received funding from the Marsden Fund, Miss Hellaby Grassland Trust and University of Otago over the last three decades. GPW acknowledges the kind hospitality of Brent Emerson (INRA CSIC Tenerife) while on study leave. Brent Emerson and three anonymous reviewers also made extensive suggestions that greatly improved the manuscript.

AUTHOR CONTRIBUTUON

FJ sourced new publications for Table 1, performed analyses in R and produced the Figures. GPW conceived the paper, assembled Tables, directed analyses and wrote the paper, to which FJ made edits.

ORCID

Graham P. Wallis http://orcid.org/0000-0002-6408-7868

Fátima Jorge http://orcid.org/0000-0002-3138-1729

REFERENCES

Aggerbeck, M., Fjeldså, J. K., Christidis, L., Fabre, P.-H., & Jønsson, K. A. (2014). Resolving deep lineage divergences in core corvoid passerine birds supports a proto-Papuan island origin. *Molecular Phylogenetics and Evolution*, 70, 272–285.

Andújar, C., Faille, A., Pérez-González, S., Zaballos, J. P., Vogler, A. P., & Ribera, I. (2016). Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles. *Molecular Phylogenetics and Evolution*, 99, 235–246.

Atherton, R. A., Lockhart, P. J., McLenachan, P. A., de Lange, P. J., Wagstaff, S. J., & Shepherd, L. D. (2015). A molecular investigation into the origin and relationships of karaka/kōpi (Corynocarpus laevigatus) in New Zealand. Journal of the Royal Society of New Zealand, 45, 212–220.

Barth, J. M. I., Matschiner, M., & Robertson, B. C. (2013). Phylogenetic position and subspecies divergence of the endangered New Zealand dotterel (*Charadrius obscurus*). *PLoS One*, 8, e78068.

Beasley-Hall, P. G., Tierney, S. M., Weinstein, P., & Austin, A. D. (2018). A revised phylogeny of macropathine cave crickets (Orthoptera: Rhaphidophoridae) uncovers a paraphyletic Australian fauna. *Molecular Phylogenetics and Evolution*, 126, 153–161.

- Bester-van der Merwe, A. E., Bitalo, D., Cuevas, J. M., Ovenden, J., Hernández, S., da Silva, C., ... Roodt-Wilding, R. (2017). Population genetics of Southern Hemisphere tope shark (*Galeorhinus galeus*): Intercontinental divergence and constrained gene flow at different geographical scales. *PLoS One*, *12*, e0184481.
- Biffin, E., Hill, R. S., & Lowe, A. J. (2010). Did kauri (Agathis: Araucariaceae) really survive the Oligocene drowning of New Zealand? Systematic Biology, 59, 594–602.
- Birch, J. L., & Keeley, S. C. (2013). Dispersal pathways across the Pacific: The historical biogeography of Astelia s.l. (Asteliaceae, Asparagales). Journal of Biogeography, 40, 1914–1927.
- Boessenkool, S., Austin, J. J., Worthy, T. H., Scofield, P., Cooper, A., Seddon, P. J., & Waters, J. M. (2009). Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand. Proceedings of the Royal Society of London B Biological Sciences, 276, 815–821.
- Breure, A. S. H., & Romer, P. E. (2012). Support and surprises: Molecular phylogeny of the land snail superfamily Orthalicoidea using a three-locus gene analysis with a divergence time analysis and ancestral area reconstruction (Gastropoda: Stylommatophora). Archiv für Molluskenkunde, 141, 1–20.
- Buckeridge, J. S., Lee, D. E., & Robinson, J. H. (2014). A diverse shallow-water barnacle assemblage (Cirripedia: Sessilia) from the Oligocene of Southland, New Zealand. New Zealand Journal of Geology and Geophysics, 57, 253–263.
- Buckley, T. R., Attanayake, D., Nylander, J. A. A., & Bradler, S. (2010). The phylogenetic placement and biogeographical origins of the New Zealand stick insects (Phasmatodea). Systematic Entomology, 35, 207-225.
- Burnard, D., Shepherd, L., Perrie, L., & Munkacsi, A. (2016). Phylogenetic relationships of New Zealand Lycopodiaceae. *Plant Systematics and Evolution*, 302, 661–667.
- Burridge, C. P. (2000). Biogeographic history of geminate cirrhitoids (Perciformes: Cirrhitoidea) with east-west allopatric distributions across southern Australia, based on molecular data. Global Ecology and Biogeography, 9, 517–525.
- Burridge, C. P., McDowall, R. M., Craw, D., Wilson, M. V. H., & Waters, J. M. (2012). Marine dispersal as a pre-requisite for Gondwanan vicariance among elements of the galaxiid fish fauna. *Journal of Biogeography*, 39, 306–321.
- Campbell, H., & Mortimer, N. (2014). Zealandia: Our continent revealed. Auckland, New Zealand: Penguin.
- Cantley, J. T., Markey, A. S., Swenson, N. G., & Keeley, S. C. (2016). Biogeography and evolutionary diversification in one of the most widely distributed and species rich genera of the Pacific. *AoB Plants*, 8, plw043.
- Carter, B. E., Larraín, J., Manukjanová, A., Shaw, B., Shaw, A. J., Heinrichs, J., ... von Konrat, M. (2017). Species delimitation and biogeography of a southern hemisphere liverwort clade, Frullania subgenus Microfrullania (Frullaniaceae, Marchantiophyta). Molecular Phylogenetics and Evolution, 107, 16–26.
- Ceccarelli, F. S., Opell, B. D., Haddad, C. R., Raven, R. J., Soto, E. M., & Ramírez, M. J. (2016). Around the world in eight million years: Historical biogeography and evolution of the spray zone spider Amaurobioides (Araneae: Anyphaenidae). PLoS One, 11, e0163740.
- Chacón, J., Camargo de Assis, M., Meerow, A. W., & Renner, S. S. (2012). From East Gondwana to Central America: Historical biogeography of the Alstroemeriaceae. *Journal of Biogeography*, 39, 1806–1818.
- Chapple, D. G., Ritchie, P. A., & Daugherty, C. H. (2009). Origin, diversification, and systematics of the New Zealand skink fauna. Molecular Phylogenetics and Evolution, 52, 470–487.
- Chen, L. Y., Zhao, S. Y., Mao, K. S., Les, D. H., Wang, Q. F., & Moody, M. L. (2014). Historical biogeography of Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental dispersals. *Molecular Phylogenetics and Evolution*, 78, 87–95.

- Cohen, B. L., Bitner, M. A., Harper, E. M., Lee, D. E., Mutschke, E., & Sellanes, J. (2011). Vicariance and convergence in Magellanic and New Zealand long-looped brachiopod clades (Pan-Brachiopoda: Terebratelloidea). Zoological Journal of the Linnean Society, 162, 631–645
- Cohen, B. L., Kaulfuss, A., & Lüter, C. (2014). Craniid brachiopods: Aspects of clade structure and distribution reflect continental drift (Brachiopoda: Craniiformea). Zoological Journal of the Linnean Society, 171, 133–150.
- Conran, J. G., Mildenhall, D. C., Lee, D. E., Lindqvist, J. K., Shepherd, C., Beu, A. G., ... Stein, J. K. (2014). Subtropical rainforest vegetation from Cosy Dell, Southland: Plant fossil evidence for Late Oligocene terrestrial ecosystems. New Zealand Journal of Geology and Geophysics, 57, 236–252.
- Cook, L. G., & Crisp, M. D. (2005). Not so ancient: The extant crown group of Nothofagus represents a post-Gondwanan radiation. Proceedings of the Royal Society of London B Biological Sciences, 272, 2535–2544.
- Cooper, R. A. (1989). New Zealand tectonostratigraphic terranes and panbiogeography. New Zealand Journal of Zoology, 16, 699-712.
- Cooper, A., & Cooper, R. A. (1995). The Oligocene bottleneck and New Zealand biota: Genetic record of a past environmental crisis. Proceedings of the Royal Society of London B Biological Sciences, 261, 293–302.
- Cranston, P. S., Hardy, N. B., Morse, G. E., Puslednik, L., & McCluen, S. R. (2010). When molecules and morphology concur: The 'Gondwanan' midges (Diptera: Chironomidae). Systematic Entomology, 35, 636–648.
- Crisp, M. D., Trewick, S. A., & Cook, L. G. (2011). Hypothesis testing in biogeography. *Trends in Ecology and Evolution*, 26, 66–72.
- Dawson, M. N. (2012). Parallel phylogeographic structure in ecologically similar sympatric sister taxa. *Molecular Ecology*, *2*1, 987–1004.
- de Queiroz, A. (2005). The resurrection of oceanic dispersal in historical biogeography. *Trends in Ecology and Evolution*, 20, 68–73.
- Del Rio, C., Hennequin, S., Rouhan, G., Ebihara, A., Lowry, P. P. II, Dubuisson, J.-Y., & Gaudeul, M. (2017). Origins of the fern genus Hymenophyllum (Hymenophyllaceae) in New Caledonia: Multiple independent colonizations from surrounding territories and limited in situ diversification. Taxon, 66, 1041–1064.
- Delignette-Muller, M., Pouillot, R., Denis, J., & Dutang, C. (2014). Fitdistrplus: help to fit of a parametric distribution to non-censored or censored data. R package.
- Donald, K. M., Kennedy, M., & Spencer, H. G. (2005). Cladogenesis as the result of long-distance rafting events in South Pacific topshells (Gastropoda, Trochidae). *Evolution*, *59*, 1701–1711.
- Donald, K. M., & Spencer, H. G. (2016). Phylogeographic patterns in New Zealand and temperate Australian cantharidines (Mollusca: Gastropoda: Trochidae: Cantharidinae): Trans-Tasman divergences are ancient. Molecular Phylogenetics and Evolution, 100, 333–344.
- Donald, K. M., Winter, D. J., Ashcroft, A. L., & Spencer, H. G. (2015).
 Phylogeography of the whelk genus Cominella (Gastropoda: Buccinidae) suggests long-distance counter-current dispersal of a direct developer. Biological Journal of the Linnean Society, 115, 315–332.
- Emerson, B. C. (2002). Evolution on oceanic islands: Molecular phylogenetic approaches to understanding pattern and process. *Molecular Ecology*, 11, 951–966.
- Ericson, P. G. P., Klopfstein, S., Irestedt, M., Nguyen, J. M. T., & Nylander, J. A. A. (2014). Dating the diversification of the major lineages of Passeriformes (Aves). BMC Evolutionary Biology, 14, 8.
- Feng, Y.-J., Blackburn, D. C., Liang, D., Hillis, D. M., Wake, D. B., Cannatella, D. C., & Zhang, P. (2017). Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 114, E5864-E5870.
- Fleming, C. A. (1979). The geological history of New Zealand and its life. Auckland, New Zealand: Auckland University Press.

- Garcia-R, J. C., Gibb, G. C., & Trewick, S. A. (2014). Deep global evolutionary radiation in birds: Diversification and trait evolution in the cosmopolitan bird family Rallidae. *Molecular Phylogenetics and Evolution*, 81, 96–108.
- Garcia-R, J. C., & Trewick, S. A. (2015). Dispersal and speciation in purple swamphens (Rallidae: Porphyrio). *Auk*, 132, 140–155.
- Gillespie, R. G., Baldwin, B. G., Waters, J. M., Fraser, C. I., Nikula, R., & Roderick, G. K. (2012). Long-distance dispersal: A framework for hypothesis testing. *Trends in Ecology and Evolution*, 27, 47–56.
- Giribet, G., & Boyer, S. L. (2010). 'Moa's Ark' or 'Goodbye Gondwana': Is the origin of New Zealand's terrestrial invertebrate fauna ancient, recent, or both? *Invertebrate Systematics*, 24, 1–8.
- Giribet, G., Sharma, P. P., Benavides, L. R., Boyer, S. L., Clouse, R. M., De Bivort, B. L., ... Schwendinger, P. J. (2012). Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society, 105, 92–130.
- Givnish, T. J., Zuluaga, A., Marques, I., Lam, V. K. Y., Gomez, M. S., Iles, W. J. D., ... Graham, S. W. (2016). Phylogenomics and historical biogeography of the monocot order Liliales: Out of Australia and through Antarctica. *Cladistics*, 32, 581–605.
- González-Wevar, C. A., Nakano, T., Cañete, J. I., & Poulin, E. (2010). Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Molecular Phylogenetics and Evolution, 56, 115–124.
- Graf, D. L., & Ó Foighil, D. (2000). Molecular phylogenetic analysis of 28S rDNA supports a Gondwanan origin for Australasian Hyriidae (Mollusca: Bivalvia: Unionoida). Vie et Milieu, 50, 245–254.
- Grealy, A., Phillips, M., Miller, G., Gilbert, M. T. P., Rouillard, J. M., Lambert, D., ... Haile, J. (2017). Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Molecular Phylogenetics and Evolution, 109, 151-163.
- Grosser, S., Rawlence, N. J., Anderson, C. N., Smith, I. W., Scofield, R. P., & Waters, J. M. (2015). Invader or resident? Ancient-DNA reveals rapid species turnover in New Zealand little penguins. *Proceedings of the Royal Society B*, 283, 20152879.
- He, T., Lamont, B. B., & Fogliani, B. (2016). Pre-Gondwanan-breakup origin of *Beauprea* (Proteaceae) explains its historical presence in New Caledonia and New Zealand. *Scientific Advances*, 2, e1501648.
- Heenan, P. B., & McGlone, M. S. (2013). Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic. *New Zealand Journal of Ecology*, *37*, 105–113.
- Hillis, D. M., Moritz, C., & Mable, B. K. (1996). *Molecular systematics* (p. 655). Sunderland, MA: Sinauer Associates, Inc.
- Himmelreich, S., Breitwieser, I., & Oberprieler, C. (2012). Phylogeny, biogeography, and evolution of sex expression in the southern hemisphere genus Leptinella (Compositae, Anthemideae). Molecular Phylogenetics and Evolution, 65, 464–481.
- Ho, S. Y., Tong, K. J., Foster, C. S., Ritchie, A. M., Lo, N., & Crisp, M. D. (2015). Biogeographic calibrations for the molecular clock. *Biology Letters*, 11, 20150194.
- Hugall, A. F., Foster, R., & Lee, M. S. Y. (2007). Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Systematic Biology, 56, 543–563.
- Hurr, K. A., Lockhart, P. J., Heenan, P. B., & Penny, D. (1999). Evidence for the recent dispersal of *Sophora* (Leguminosae) around the Southern Oceans: Molecular data. *Journal of Biogeography*, 26, 565–577.
- Iles, W. J., Lee, C., Sokoloff, D. D., Remizowa, M. V., Yadav, S. R., Barrett, M. D., ... Graham, S. W. (2014). Reconstructing the age and historical biogeography of the ancient flowering-plant family Hydatellaceae (Nymphaeales). BMC Evolutionary Biology, 14, 102.
- Jobson, R. W., Baleeiro, P. C., & Reut, M. S. (2017). Molecular phylogeny of subgenus *Polypompholyx* (*Utricularia*; Lentibulariaceae) based on three plastid markers: Diversification and proposal for a new section. *Australian Systematic Botany*, 30, 259–278.

- Jolivet, P., & Verma, K. K. (2010). Good morning Gondwana. *International Journal of Entomology*, 46, 53–61.
- Juan, C., Emerson, B. C., Oromi, P., & Hewitt, G. M. (2000). Colonization and diversification: Towards a phylogeographic synthesis for the Canary Islands. *Trends in Ecology and Evolution*, 15, 104–109.
- Kamp, P. J. J., Tripathi, A. R. P., & Nelson, C. S. (2014). Paleogeography of the Late Eocene to earliest Miocene Te Kuiti Group, central-western North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 57, 128–148.
- Kayaalp, P., Schwarz, M. P., & Stevens, M. I. (2013). Rapid diversification in Australia and two dispersals out of Australia in the globally distributed bee genus, Hylaeus (Colletidae: Hylaeinae). Molecular Phylogenetics and Evolution, 66, 668–678.
- Knapp, M., Stöckler, K., Havell, D., Delsuc, F., Sebastiani, F., & Lockhart, P. J. (2005). Relaxed molecular clock provides evidence for longdistance dispersal of *Nothofagus* (southern beech). *PLoS Biology*, 3, 38–43.
- Knox, M. A., Hogg, I. D., & Pilditch, C. A. (2011). The role of vicariance and dispersal on New Zealand's estuarine biodiversity: The case of *Paracorophium* (Crustacea: Amphipoda). *Biological Journal of the Linnean Society*, 103, 863–874.
- Kranitz, M. L., Biffin, E., Clark, A., Hollingsworth, M. L., Ruhsam, M., Gardner, M. F., ... Hollingsworth, P. M. (2014). Evolutionary diversification of New Caledonian Araucaria. PLoS One, 9, e110308.
- Krosch, M. N., Baker, A. M., Mather, P. B., & Cranston, P. S. (2011). Systematics and biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae). *Molecular Phylogenetics and Evolution*, 59, 458–468.
- Krosch, M., & Cranston, P. S. (2013). Not drowning, (hand)waving? Molecular phylogenetics, biogeography and evolutionary tempo of the 'Gondwanan' midge Stictocladius Edwards (Diptera: Chironomidae). Molecular Phylogenetics and Evolution, 68, 595–603.
- Kuo, L. Y., Ebihara, A., Shinohara, W., Rouhan, G., Wood, K. R., Wang, C. N., & Chiou, W. L. (2016). Historical biogeography of the fern genus Deparia (Athyriaceae) and its relation with polyploidy. Molecular Phylogenetics and Evolution, 104, 123–134.
- Lack, D. L. (1947). Darwin's finches. Cambridge, MA: Cambridge University Press.
- Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., & Trewick, S. A. (2008). The Waipounamu erosion surface: Questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. *Geological Magazine*, 145, 173–197.
- Lanfear, R., Welch, J. J., & Bromham, L. (2010). Watching the clock: Studying variation in rates of molecular evolution between species. *Trends in Ecology and Evolution*, 25, 495–503.
- Lee, D. E., Lindqvist, J. K., Beu, A. G., Robinson, J. H., Ayress, M. A., Morgans, H. E. G., & Stein, J. K. (2014). Geological setting and diverse fauna of a Late Oligocene rocky shore ecosystem, Cosy Dell, Southland. New Zealand Journal of Geology and Geophysics, 57, 195–208.
- Lehnebach, C. A., Winkworth, R. C., Becker, M., Lockhart, P. J., & Hennion, F. (2017). Around the pole: Evolution of sub-Antarctic Ranunculus. Journal of Biogeography, 44, 875–886.
- Lessard, B. D., Cameron, S. L., Bayless, K. M., Wiegmann, B. M., & Yeates, D. K. (2013). The evolution and biogeography of the austral horse fly tribe Scionini (Diptera: Tabanidae: Pangoniinae) inferred from multiple mitochondrial and nuclear genes. *Molecular Phylogenetics and Evolution*, 68, 516–540.
- Linder, H. P., Rabosky, D. L., Antonelli, A., Wüest, R. A., & Ohlemüller, R. (2014). Disentangling the influence of climatic and geological changes on species radiations. *Journal of Biogeography*, 41, 1313–1325.
- MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton, NJ: Princeton University Press.
- Macphail, M. K. (1997). Comment on M. Pole (1994): 'The New Zealand flora- entirely long-distance dispersal?'. *Journal of Biogeography*, 24, 113–117.

- Mandáková, T., Pouch, M., Harmanová, K., Zhan, S. H., Mayrose, I., & Lysak, M. A. (2017). Multispeed genome diploidization and diversification after an ancient allopolyploidization. *Molecular Ecology*, 26, 6445–6462.
- Marcussen, T., & Meseguer, A. S. (2017). Species-level phylogeny, fruit evolution and diversification history of *Geranium* (Geraniaceae). *Molecular Phylogenetics and Evolution*, 110, 134–149.
- Marshall, B. A., Fenwick, M. C., & Ritchie, P. A. (2014). New Zealand recent Hyriidae (Mollusca: Bivalvia: Unionida). Molluscan Research, 34, 181–200.
- McCulloch, G. A., Wallis, G. P., & Waters, J. M. (2016). A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. *Molecular Phylogenetics and Evolution*, *96*, 150–160.
- McGlone, M. S. (2005). Goodbye Gondwana. *Journal of Biogeography*, 32, 739–740.
- Mildenhall, D. C., Mortimer, N., Bassett, K. N., & Kennedy, E. M. (2014).
 Oligocene paleogeography of New Zealand: Maximum marine transgression. New Zealand Journal of Geology and Geophysics, 57, 107–109.
- Mitchell, A., Li, R., Brown, J. W., Schönberger, I., & Wen, J. (2012). Ancient divergence and biogeography of *Raukaua* (Araliaceae) and close relatives in the southern hemisphere. *Australian Systematic Botany*, 25, 432–446.
- Mitchell, K. J., Llamas, B., Soubrier, J., Rawlence, N. J., Worthy, T. H., Wood, J., ... Cooper, A. (2014). Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. *Science*, 344, 898–900.
- Mitchell, K. J., Wood, J. R., Scofield, R. P., Llamas, B., & Cooper, A. (2014). Ancient mitochondrial genome reveals unsuspected taxonomic affinity of the extinct Chatham duck (*Pachyanas chathamica*) and resolves divergence times for New Zealand and sub-Antarctic brown teals. *Molecular Phylogenetics and Evolution*, 70, 420–428.
- Mortimer, N., & Strong, D. T. (2014). New Zealand limestone purity. New Zealand Journal of Geology and Geophysics, 57, 209–218.
- Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., & Giribet, G. (2014).
 A living fossil tale of Pangaean biogeography. Proceedings of the Royal Society B, 281, 20132648.
- Naughton, K. M., O'Hara, T. D., Appleton, B., & Cisternas, P. A. (2014). Antitropical distributions and species delimitation in a group of ophiocomid brittle stars (Echinodermata: Ophiuroidea: Ophiocomidae). Molecular Phylogenetics and Evolution, 78, 232–244.
- Neall, V. E., & Trewick, S. A. (2008). The age and origin of the Pacific islands: A geological overview. Philosophical Transactions of the Royal Society of London B Biological Sciences, 363, 3293–3308.
- Nicolas, A. N., & Plunkett, G. M. (2014). Diversification times and biogeographic patterns in Apiales. *The Botanical Review*, 80, 30–58.
- Nielsen, S. V., Bauer, A. M., Jackman, T. R., Hitchmough, R. A., & Daugherty, C. H. (2011). New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Molecular Phylogenetics and Evolution, 59, 1-22.
- Noben, S., Kessler, M., Quandt, D., Weigand, A., Wicke, S., Krug, M., & Lehnert, M. (2017). Biogeography of the Gondwanan tree fern family Dicksoniaceae—a tale of vicariance, dispersal and extinction. *Journal* of Biogeography, 44, 2648–2659.
- Nylinder, S., Swenson, U., Persson, C., Janssens, S. B., & Oxelman, B. (2012). A dated species-tree approach to the trans-Pacific disjunction of the genus *Jovellana* (Calceolariaceae, Lamiales). *Taxon*, 61, 381–391.
- Opell, B. D., Helweg, S. G., & Kiser, K. M. (2016). Phylogeography of Australian and New Zealand spray zone spiders (Anyphaenidae: Amaurobioides): Moa's Ark loses a few more passengers. Biological Journal of the Linnean Society, 118, 959-969.
- Perrie, L., & Brownsey, P. (2007). Molecular evidence for long-distance dispersal in the New Zealand pteridophyte flora. *Journal of Biogeography*, 34, 2028–2038.
- Phillips, M. J., Gibb, G. C., Crimp, E. A., & Penny, D. (2010). Tinamous and moa flock together: Mitochondrial genome sequence analysis

- reveals independent losses of flight among ratites. *Systematic Biology*, 59, 90–107.
- Pole, M. (1994). The New Zealand flora entirely long-distance dispersal? Journal of Biogeography, 21, 625–635.
- Pole, M. S. (2001). Can long-distance dispersal be inferred from the New Zealand plant fossil record? *Australian Journal of Botany*, 49, 32–35.
- Pons, J., Fujisawa, T., Claridge, E. M., Savill, R. A., Barraclough, T. G., & Vogler, A. P. (2011). Deep mtDNA subdivision within Linnean species in an endemic radiation of tiger beetles from New Zealand (genus Neocicindela). Molecular Phylogenetics and Evolution, 59, 251–262.
- Pratt, R. C., Morgan-Richards, M., & Trewick, S. A. (2008). Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. *Philosophical Transactions of the Royal Society of London B Biological Sciences*, 363, 3427–3437.
- Prebble, J. M., Cupido, C. N., Meudt, H. M., & Garnock-Jones, P. J. (2011). First phylogenetic and biogeographical study of the southern bluebells (*Wahlenbergia*, Campanulaceae). *Molecular Phylogenetics and Evolution*, 59, 636–648.
- Puente-Lelièvre, C., Harrington, M. G., Brown, E. A., Kuzmina, M., & Crayn, D. M. (2013). Cenozoic extinction and recolonization in the New Zealand flora: The case of the fleshy-fruited epacrids (Styphelieae, Styphelioideae, Ericaceae). Molecular Phylogenetics and Evolution, 66, 203–214.
- R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Renner, S. S., Strijk, J. S., Strasberg, D., & Thébaud, C. (2010). Biogeography of the Monimiaceae (Laurales): A role for East Gondwana and long-distance dispersal, but not West Gondwana. *Journal of Biogeography*, 37, 1227–1238.
- Rix, M. G., Cooper, S. J. B., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., & Austin, A. D. (2017). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution, 109, 302–320.
- Sanmartín, I., & Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Systematic Biology, 53, 216–243.
- Schellart, W. P., Lister, G. S., & Toy, V. G. (2006). A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. *Earth-Science Reviews*, 76, 191–233.
- Schuster, T. M., Setaro, S. D., & Kron, K. A. (2013). Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi-Pacific *Muehlenbeckia*. *PLoS One*. 8. e61261.
- Schweizer, M., Güntert, M., & Hertwig, S. T. (2012). Out of the Bassian province: Historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes). *Zoologica Scripta*, 42, 13–27.
- Schweizer, M., Seehausen, O., & Hertwig, S. T. (2011). Macroevolutionary patterns in the diversification of parrots: Effects of climate change, geological events and key innovations. *Journal of Biogeography*, 38, 2176–2194.
- Scott, J. M., Lee, D. E., Fordyce, R. E., & Palin, J. M. (2014). A possible Late Oligocene/Early Miocene rocky shoreline on Otago Schist. New Zealand Journal of Geology and Geophysics, 57, 185–194.
- Sebastian, P., Schaefer, H., Lira, R., Telford, I. R. H., & Renner, S. S. (2012). Radiation following long-distance dispersal: The contributions of time, opportunity and diaspore morphology in Sicyos (Cucurbitaceae). Journal of Biogeography, 39, 1427–1438.
- Sharma, P. P., & Wheeler, W. (2013). Revenant clades in historical biogeography: The geology of New Zealand predisposes endemic clades to root age shifts. *Journal of Biogeography*, 40, 1609–1618.
- Sirvid, P. J., Moore, N. E., Chambers, G. K., & Prendergast, K. (2013). A preliminary molecular analysis of phylogenetic and biogeographic relationships of New Zealand Thomisidae (Araneae) using a multi-locus approach. *Invertebrate Systematics*, 27, 655–672.

- Spalik, K., Piwczyński, M., Danderson, C. A., Kurzyna-Młynik, R., Bone, T. S., & Downie, S. R. (2010). Amphitropic amphiantarctic disjunctions in Apiaceae subfamily Apioideae. *Journal of Biogeography*, 37, 1977–1994
- Stelbrink, B., Albrecht, C., Hall, R., & von Rintelen, T. (2012). The biogeography of Sulawesi revisited: Is there evidence for a vicariant origin of taxa on Wallace's "anomalous island"? *Evolution*, 66, 2252–2271.
- Strogen, D. P., Bland, K. J., Nicol, A., & King, P. R. (2014). Paleogeography of the Taranaki Basin region during the latest Eocene-Early Miocene and implications for the 'total drowning' of Zealandia. *New Zealand Journal of Geology and Geophysics*, 57, 110–127.
- Sukumaran, J., & Knowles, L. L. (2018). Trait-dependent biogeography: (re)Integrating biology into probabilistic historical biogeographical models. *Trends in Ecology and Evolution*, 33, 390–398.
- Sun, Y., He, X., & Glenny, D. (2014). Transantarctic disjunctions in Schistochilaceae (Marchantiophyta) explained by early extinction events, post-Gondwanan radiations and palaeoclimatic changes. Molecular Phylogenetics and Evolution, 76, 189–201.
- Sundue, M. A., Parris, B. S., Ranker, T. A., Smith, A. R., Fujimoto, E. L., Zamora-Crosby, D., ... Prado, J. (2014). Global phylogeny and biogeography of grammitid ferns (Polypodiaceae). *Molecular Phylogenetics* and Evolution, 81, 195–206.
- Sutherland, D. L., Hogg, I. D., & Waas, J. R. (2010). Phylogeography and species discrimination in the *Paracalliope fluviatilis* species complex (Crustacea: Amphipoda): Can morphologically similar heterospecifics identify compatible mates? *Biological Journal of the Linnean Society*, 99, 196–205.
- Swenson, U., & Bremer, K. (1997). Pacific biogeography of the Asteraceae genus Abrotanella (Senecioneae, Blennospermatinae). Systematic Botany, 22, 493–508.
- Tay, M. L., Meudt, H. M., Garnock-Jones, P. J., & Ritchie, P. A. (2010). DNA sequences from three genomes reveal multiple long-distance dispersals and non-monophyly of sections in Australasian *Plantago* (Plantaginaceae). Australian Systematic Botany, 23, 47–68.
- Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'Brien, S. J., Murphy, W. J., (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. *Science*, 307, 580–584.
- Teske, P. R., McLay, C. L., Sandoval-Castillo, J., Papadopoulos, I., Newman, B. K., Griffiths, C. L., ... Beheregaray, L. B. (2009). Tri-locus sequence data reject a "Gondwanan origin hypothesis" for the African/South Pacific crab genus Hymenosoma. *Molecular Phylogenetics and Evolution*, 53, 23–33.
- Thomas, N., Bruhl, J. J., Ford, A., & Weston, P. H. (2014). Molecular dating of Winteraceae reveals a complex biogeographical history involving both ancient Gondwanan vicariance and long-distance dispersal. *Journal of Biogeography*, 41, 894–904.
- Thornhill, A. H., Ho, S. Y. W., Külheim, C., & Crisp, M. D. (2015). Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. *Molecular Phylogenetics and Evolution*, 93, 29–43.
- Toon, A., Pérez-Losada, M., Schweitzer, C. E., Feldmann, R. M., Carlson, M., & Crandall, K. A. (2010). Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): Evidence from fossils and molecules. *Journal of Biogeography*, 37, 2275–2290.
- Torres-Carvajal, O., Barnes, C. W., Pozo-Andrade, M. J., Tapia, W., & Nicholls, G. (2014). Older than the islands: Origin and diversification of Galápagos leaf-toed geckos (Phyllodactylidae: Phyllodactylus) by multiple colonizations. *Journal of Biogeography*, 41, 1883–1894.
- Trewick, S. A., & Morgan-Richards, M. (2005). After the deluge: Mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). *Journal of Biogeography*, 32, 295–309.
- Trewick, S. A., Paterson, A. M., & Campbell, H. J. (2007). Hello New Zealand. *Journal of Biogeography*, 34, 1-6.
- Villarreal, J. C., & Renner, S. S. (2014). A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros. Molecular Phylogenetics and Evolution, 78, 25–35.

- Wagner, W. L., & Funk, V. A. (1995). Hawaiian biogeography: Evolution on a hot spot archipelago. In V. A. Funk & P. F. Cannell (Eds.), Smithsonian series in comparative evolutionary biology (467 pp.). Washington, DC: Smithsonian Institution Press.
- Wagstaff, S. J., Dawson, M. I., Venter, S., Munzinger, J., Crayn, D. M., Steane, D. A., & Lemson, K. L. (2010). Origin, diversification, and classification of the Australasian genus *Dracophyllum* (Richeeae, Ericaceae). *Annals of the Missouri Botanical Garden*, 97, 235–258.
- Wagstaff, S. J., & Tate, J. A. (2011). Phylogeny and character evolution in the New Zealand endemic genus *Plagianthus* (Malveae, Malvaceae). *Systematic Botany*, *36*, 405–418.
- Wallis, G. P., & Trewick, S. A. (2009). New Zealand phylogeography: Evolution on a small continent. *Molecular Ecology*, 18, 3548–3580.
- Wallis, G. P., Waters, J. M., Upton, P., & Craw, D. (2016). Transverse alpine speciation driven by glaciation. *Trends in Ecology and Evolution*, *31*, 916–926.
- Ward, R. D., & Elliot, N. G. (2001). Genetic population structure of species in the South East Fishery of Australia. Marine and Freshwater Research, 52, 563–573.
- Wardle, P., Ezcurra, C., Ramírez, C., & Wagstaff, S. (2001). Comparison of the flora and vegetation of the southern Andes and New Zealand. New Zealand Journal of Botany, 39, 69–108.
- Ware, J. L., Beatty, C. D., Herrera, M. S., Valley, S., Johnson, J., Kerst, C., ... Theischinger, G. (2014). The petaltail dragonflies (Odonata: Petaluridae): Mesozoic habitat specialists that survive to the modern day. *Journal of Biogeography*, 41, 1291–1300.
- Waters, J. M., & Craw, D. (2006). Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. *Systematic Biology*, *55*, 351–356.
- Winkworth, R. C., Hennion, F., Prinzing, A., & Wagstaff, S. J. (2015). Explaining the disjunct distributions of austral plants: The roles of Antarctic and direct dispersal routes. *Journal of Biogeography*, 42, 1197–1209.
- Winkworth, R. C., Wagstaff, S. J., Glenny, D., & Lockhart, P. J. (2002). Plant dispersal N.E.W.S. from New Zealand. *Trends in Ecology and Evolution*, 17, 514–520.
- Woo, V. L., Funke, M. M., Smith, J. F., Lockhart, P. J., & Garnock-Jones, P. J. (2011). New World origins of southwest Pacific Gesneriaceae: Multiple movements across and within the south Pacific. *International Journal of Plant Science*, 172, 434–457.
- Worthy, T. H., De Pietri, V. L., & Scofield, R. P. (2017). Recent advances in avian palaeobiology in New Zealand with implications for understanding New Zealand's geological, climatic and evolutionary histories. *New Zealand Journal of Zoology*, 44, 177–211.
- Worthy, T. H., Tennyson, A. J., Archer, M., Musser, A. M., Hand, S. J., Jones, C., ... Beck, R. M. (2006). Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proceedings of the National Academy of Sciences of the United States of America, 103, 19419–19423.
- Zielske, S., Ponder, W. F., & Haase, M. (2017). The enigmatic pattern of long-distance dispersal of minute freshwater gastropods (Caenogastropoda, Truncatelloidea, Tateidae) across the South Pacific. *Journal of Biogeography*, 44, 195–206.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Wallis GP, Jorge F. Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia. *Mol Ecol*. 2018;27:4368–4396. https://doi.org/10.1111/mec.14875