POMPP Value Iteration 15) ~ 10-20 SARSOP (5) ~ 10,000

POMDP Formulation Approximations

• Infinite horizon POMDPs are undecidable

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space

- Infinite horizon POMDPs are *undecidable*
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity (we think)

Numerical Approximations

(approximately solve original problem)

Numerical Approximations

(approximately solve original problem)

$$\vec{V} - \underline{V} = \underline{\varepsilon}$$

Numerical Approximations

(approximately solve original problem)

Offline

Lastweek

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Today!

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$\pi^* = rgmax_{\underline{\pi:B o A}} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$\underbrace{b' = \tau(b,a,o)}_{}$$

POMDP Objective

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

5

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$b'= au(b,a,o)$$

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

$$\pi_{ ext{CE}}(b) = rac{1}{\pi_s}(\mathop{\mathrm{E}}[s])$$

$$b'= au(b,a,o)$$

MDP LOR

Optimal for LQG

$$LQG POMDP$$

$$T(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) = \mathcal{N}(\mathbf{s}' \mid \mathbf{T}_s \mathbf{s} + \mathbf{T}_a \mathbf{a}, \boldsymbol{\Sigma}_s) \qquad \text{Linear}$$

$$O(\mathbf{o} \mid \mathbf{s}') = \mathcal{N}(\mathbf{o} \mid \mathbf{O}_s \mathbf{s}', \boldsymbol{\Sigma}_o) \qquad \text{Gaussian Process}$$

$$Noise$$

$$Noise$$

$$b(\mathbf{s}) = \frac{\mathcal{N}(\mathbf{s} \mid \mathbf{\mu}_{b}, \mathbf{\Sigma}_{b})}{\mu_{p} \leftarrow \mathbf{T}_{s} \mathbf{\mu}_{b} + \mathbf{T}_{a} \mathbf{a}}$$

$$\mathbf{\Sigma}_{p} \leftarrow \mathbf{T}_{s} \mathbf{\Sigma}_{b} \mathbf{T}_{s}^{\top} + \mathbf{\Sigma}_{s}$$

$$\mathbf{K} \leftarrow \mathbf{\Sigma}_{p} \mathbf{O}_{s}^{\top} \left(\mathbf{O}_{s} \mathbf{\Sigma}_{p} \mathbf{O}_{s}^{\top} + \mathbf{\Sigma}_{o} \right)^{-1}$$

$$\mathbf{\mu}_{b} \leftarrow \mathbf{\mu}_{p} + \mathbf{K} \left(\mathbf{o} - \mathbf{O}_{s} \mathbf{\mu}_{p} \right)$$

$$\mathbf{\Sigma}_{b} \leftarrow (\mathbf{I} - \mathbf{K} \mathbf{O}_{s}) \mathbf{\Sigma}_{p}$$

$$\mathbf{\Lambda}^{\star}(\mathbf{b}) = -\mathbf{K}_{\mathsf{LQR}} \mathbf{\Lambda}^{\mathsf{LQR}}$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$b'= au(b,a,o)$$

QMDP

$$\pi^* \ = rgmax_{\pi:B o A} \ \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$\pi_{ ext{QMDP}}(b) = rgmax_{a \in A} \mathop{\mathrm{E}}_{s \sim b} \left[Q_{ ext{MDP}}(s, a)
ight]$$

$$b' = au(b,a,o)$$

Example: Tiger POMDP with Waiting

o.w. it's pretty good

8

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$egin{aligned} \mathcal{S} &= \mathbb{Z} & \mathcal{O} &= \mathbb{R} \ s' &= s + a & o \sim \mathcal{N}(s, s - 10) \ \mathcal{A} &= \{-10, -1, 0, 1, 10\} \ R(s, a) &= egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \end{cases}$ otherwise

POMDP Solution

QMDP

Same as **full observability** on the next step

Information Gathering

QMDP

Full POMDP

Information Gathering

QMDP

Full POMDP

Information Gathering

QMDP

Full POMDP

QMDP

INDUSTRIAL GRADE

QMDP

ACAS X [Kochenderfer, 2011]

Hindsight Optimization

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

pre-sample
$$W_{+}^{k}$$

$$Q_{Hs}(s,a) = \frac{1}{K} \sum_{k=1}^{K} \max_{a_{1:T}} \sum_{t=0}^{K} R(s_{t}, a_{t})$$

$$s.t. \quad s_{t+1} = G(s_{t}, a_{t}, w_{t}^{k})$$

$$a_{0} = a$$

$$T_{Hs} = \underset{a \neq 0}{\operatorname{angmax}} E\left[Q_{Hs}(s_{t}a)\right]$$

FIB

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

FIB

loop
$$\mathbf{X}_{a}[s] \leftarrow R(s,a) + \mathbf{y} \leq \max_{a'} \sum_{s'} T(s'|s,a) \mathbf{Z}(o|a,s') \mathbf{x}_{a'}[s']$$

k-Markov

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

$$S = [0_{+}, 0_{+-1}, ..., 0_{+}, (c-)]$$

Open Loop

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$