A Review of Number Systems

TEXT2 (Assembly language for x86 processors) : Chapter one

• The use of the microprocessor requires a working knowledge of binary, decimal and hexadecimal numbering systems.

Examples (conversion to decimal):

- What is decimal value of the following?
- 125.7₈
- 11011.0111**b**
- .101**b**
- .001101**b**
- 6A.CH

Examples: Conversion from decimal

- What is 20 in base 2?
- What is it in base 8?
- What is 106 in base 16?
- Convert the number 0.125 to:
 - Binary
 - Octal
 - Hexadecimal

Binary-coded Hexadecimal (BCH)

- BCH is used to represent hexadecimal data in binary code.
- It allows for easy conversion between binary and hexadecimal.
- Generally, a BCH number is a hexadecimal number written so that each digit is represented by a 4-bit binary number.

Examples

- Convert 29FC to binary.
- Convert 1000 0011 1101 . 1110 to hexadecimal.

Signed Integers

- A signed integer can have either a positive or a negative value.
- In the x86 processor architecture, the MSB indicates the sign: 0 is positive and 1 is negative.
- Humans simply put a sign in front of a number to show it is negative. What about the computer.
- Two's-complement representation is used (1's complement was used in the past)
- This representation is based on the mathematical principle that the two's complement of an integer is its additive inverse.

- The two's complement of a binary integer is formed by inverting (complementing) its bits and adding 1.
- What is the two's complement representation of 00000001?
- How will -1 be represented in an x86 processor using 8 bits?
- The same principles can be applied to all number systems.
 - What is the two's (or sixteen's) complement of the following hexadecimal numbers?
 - 95C3, 5CC?

Converting Signed binary to decimal

- The following algorithm can be used to calculate the decimal equivalent of a signed binary integer:
 - If the highest bit is a 1, the number is stored in two's-complement notation.
 - Create its two's complement a second time to get its positive equivalent.
 - Then convert this new number to decimal as if it were an unsigned binary integer.
 - If the highest bit is a 0, you can convert it to decimal as if it were an unsigned binary integer.
- Example: What is the value of the signed binary 11110000 in decimal?

- How would you convert a signed Decimal to Binary?
- How would you convert a signed Hexadecimal value to Decimal?
- How would you convert a signed Decimal to Hexadecimal?

NOTE

You can tell whether a hexadecimal integer is positive or negative by inspecting its most significant (highest) digit.

If the digit is ≥ 8 , the number is negative; if the digit is ≤ 7 , the number is positive. For example, hexadecimal 8A20 is negative and 7FD9 is positive.

- If computers only store binary data, how do they represent characters?
- They use a character set, which is a mapping of characters to integers.
- The two standards in use today are ASCII and Unicode Data.
- In ASCII, a unique 7-bit integer is assigned to each character.

Examples

- 'F' is represented as 41h while '1' is represented as 31h
- ASCII strings are stored in memory as a succession of bytes containing ASCII codes.

A PART OF THE ASCII TABLE

decimal	\Rightarrow	1	16	32	46	64	80	96	112
Û	hexa- decimal	0	1	2	3	4	5	6	7
0	0	null	•	space	0	@	Р	`	р
1	1	0	▼	!	1	A	Q	a	q
2	2	•	\$	"	2	В	R	b	r
3	3	*	!!	#	3	C	S	С	S
4	4	•	Π	\$	4	D	Т	d	t
5	5	•	8	&	5	E	U	е	u
6	6	•		&	6	F	V	f	v
7	7	•	\$	1	7	G	W	g	W
8	8	•	^	(8	Н	Х	h	Х
9	9	0	\downarrow)	9	I	Y	i	У
10	A	0	\rightarrow	*	:	J	Z	j	Z
11	В	Õ	←	+	;	K]	k	{
12	C	Q	L	,	V	L	\	1	
13	D	7	\leftrightarrow	-	=	М]	m	}
14	E	4	•		>	N	^	n	~
15	F	*	•	/	?	0	_	0	Δ

- There has been a need for some time to represent a wide variety of international languages in computer software.
- As a result, the *Unicode* standard was created as a universal way of defining characters and symbols.
- It defines codes for characters, symbols, and punctuation used in all major languages.
- Three encoding forms are available in Unicode: UTF-8, UTF-16 and UTF-32