Convolutional Neural Networks - Part 2 Fundamentals and Applications

ECE 449

Outline

- Fundamentals
 - Receptive field
 - Convolution
 - Dilated conv
 - 1×1 conv
 - Depthwise conv
 - Group conv
- CV related Applications
 - Image Classification
 - Detection and Tracking
 - Pose Estimation
 - Segmentation
 - 3D and Localization
 - Image Reconstruction
 - ...

Receptive Field

• The receptive field in CNN is the region of the input space that affects a particular unit of the network.

Dilated Conv

- Enlarge the receptive field
- Example, dilation=2

1×1 Conv

• Example, inception block

(a) Inception module, initial form

(b) Inception module with dimension reductions

1×1 Conv

- Cross channel information aggregation
- Used for feature projection or dimension reduction

Operations: (5×5×192)×(24×24)×32=88.5M

Parameters: 5×5×192×32=153.6K

1×1 Conv

- Cross channel information aggregation
- Used for feature projection or dimension reduction

Operations: $(1\times1\times192)\times(28\times28)\times16+(5\times5\times16)\times(24\times24)\times32=2.4M+7.4M=9.8M$

Parameters: 1×1×192×16+5×5×16×32=3K+12.8K=15.8K

- Each channel has its own kernel
 - Number of parameters reduced
 - Number of operations reduced
- What could be the limitation?
 - No information exchange across different channels

 Combine depthwise conv with 1×1 conv

Example

Operations: $(5\times5)\times(24\times24)\times192+(1\times1\times192)\times(24\times24)\times32=2.8M+3.5M=6.3M$

Parameters: 5×5×192+1×1×192×32=4.8K+6.1K=10.9K

MobileNet on ImageNet

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Group Conv

- Split channels into groups
 - Reduce the number of parameters
 - Usually still need 1×1 conv afterwards

Group Conv

Example

Each group has 12 input channels and 2 output channels

Operations: (5×5×12)×(24×24)×32=5.5M

Parameters: 5×5×12×2×16=9.6K

Group Conv

ResNeXt

CV Related Topics

- Image Classification
- Detection and Tracking
- Pose Estimation
- Segmentation
- 3D and Localization
- Image Reconstruction
- •

Image Classification

- Fine-grained image classification
- Face recognition
- Face verification

Fine-Grained Image Classification

Classify sub-categories

Face Recognition

• Identify different faces

Face Verification

Verify whether two faces from the same person

Are they from the same person?

Detection and Tracking

- Video object detection
- 3D object detection
- Visual tracking
- Multi-object tracking

Video Object Detection

Detect objects in sequential frames

3D Object Detection

• Localize the 3D shape or position of the targets

Visual Tracking

 Given the annotation of the first frame, detect the same object in following frames

Multi-Object Tracking

Associate detected objects in the input video

Pose Estimation

- Hand pose estimation
- Human pose estimation
- Car keypoint detection

Hand Pose Estimation

• Estimate 2D/3D hand pose from RGB image or depth image

Human Pose Estimation

• Estimate 2D/3D human pose

Car Keypoint Estimation

• Estimate 2D/3D car keypoint

Segmentation

- Semantic segmentation
- Instance segmentation
- Video object segmentation

Semantic Segmentation

• Segment objects with class labels

Instance Segmentation

• Segment objects with instance labels

Video Object Segmentation

• Segment objects in the video sequence

3D and Localization

- Depth map estimation
- Optical / scene flow estimation
- Camera pose estimation

Depth Map Estimation

• Estimate depth map from RGB images

Optical / Scene Flow Estimation

• Estimate the 2D/3D offsets between two images

(a) Color image 1

(b) Color image 2

(c) Ground truth flow map

(d) Flow map (Ours-S-600k)

Camera Pose Estimation

Estimate camera location and orientation based on sequential frames

(a) Training: unlabeled video clips.

(b) Testing: single-view depth and multi-view pose estimation.

Image Reconstruction

- Image denoising
- Super-resolution
- Image inpainting

Image Denoising

Reconstruct images with noise

Super-Resolution

Reconstruct high resolution images from low resolution images

Image Inpainting

Recover missing regions in the image

