[Solution of Homework 1]

Probability Space of Tossing Coins

Let us construct the probability space of tossing an infinite sequence of independent fair coins. Let $\Omega=\{0,1\}^*$. We can write each $\omega\in\Omega$ as an infinite sequence $\omega=(\omega_1,\omega_2,\ldots)$ where $\omega_i \in \{0,1\}$.

1. Let $n \in \mathbb{N}$. For every $s = (s_1, \ldots, s_n) \in \{0,1\}^n$, let

$$C_s = \left\{ \omega \in \Omega \mid \omega_1 = s_1, \ldots, \omega_n = s_n
ight\}.$$

Prove that for every $n\in\mathbb{N}$, the collection $\{C_s\}_{s\in\{0,1\}^n}$ forms a partition of Ω .

Proof.

For any $\omega\in\Omega$, there is exactly one $s=(\omega_1,\omega_2,\ldots,\omega_n)\in\{0,1\}^n$ such that $\omega\in C_s$. Therefore, $\cup_{s\in\{0,1\}^n}C_s=\Omega$ and $C_{s_1}\cap C_{s_2}=arnothing$ for any $s_1
eq s_2\in\{0,1\}^n$, which is to say $\{C_s\}_{s\in\{0,1\}^n}$ forms a partition of Ω .

2. Let \mathcal{F}_n be the σ -algebra generated by $\{C_s\}_{s\in\{0,1\}^n}$ (that is, the minimal σ -algebra containing sets in $\{C_s\}_{s\in\{0,1\}^n}$). Note that \mathcal{F}_n is called the σ -algebra of tossing n coins. Prove that there exists a bijection between \mathcal{F}_n and $2^{\{0,1\}^n}$.

Proof.

We construct a map $f:\mathcal{F}_n o 2^{\{0,1\}^n}$ for any $A\in\mathcal{F}_n$:

$$f(A) = \cup_{\omega \in A} \left\{ (\omega_1, \omega_2, \dots, \omega_n)
ight\}.$$

For any $S=\left\{s^1,\ldots,s^k
ight\}\in 2^{\left\{0,1
ight\}^n}$, $f(\cup_{i=1}^k C_{s^i})=S$. So f is surjective. Since both \mathcal{F}_n and $2^{\{0,1\}^{ ilde n}}$ are of size 2^{2^n} , we can infer that f is a bijection between \mathcal{F}_n and $2^{\{0,1\}^n}$.

3. Prove that $\mathcal{F}_1\subsetneq\mathcal{F}_2\subsetneq\ldots$ is increasing. The collection $\{\mathcal{F}_n\}_{n\geq 1}$ is called a *filtration*. Proof.

We will prove $\mathcal{F}_n\subsetneq \mathcal{F}_{n+1}$ for every n. Let $f:\mathcal{F}_n\to 2^{\{0,1\}^n}$ be the bijection defined in Problem 2. For any $A\in\mathcal{F}_n$, we write it as $\cup_{s \in f(A)} C_s$. For any $s = (s_1, s_2, \ldots, s_n) \in \left\{0, 1
ight\}^n$, we write

 $C_s = C_{(s_1, s_2, \ldots, s_n, 0)} \cup C_{(s_1, s_2, \ldots, s_n, 1)}.$ Therefore, for any $A \in \mathcal{F}_n$,

 $A=\cup_{s\in f(A)}(C_{(s_1,s_2,\ldots,s_n,0)}\cup C_{(s_1,s_2,\ldots,s_n,1)})\in \mathcal{F}_{n+1}$, which implies $\mathcal{F}_n\subset \mathcal{F}_{n+1}$. It is obvious that $\mathcal{F}_n
eq \mathcal{F}_{n+1}$ (For example, $C_{(s_1,s_2,\ldots,s_{n+1})}\in \mathcal{F}_{n+1}$ but not in \mathcal{F}_n), so $\mathcal{F}_n\subsetneq \mathcal{F}_{n+1}$.

4. Let $\mathcal{F}_\infty=\bigcup_{n\geq 1}\mathcal{F}_n$. Prove that \mathcal{F}_∞ is an algebra^[1] (not necessarily a σ -algebra) and $\mathcal{F}_\infty
eq 2^\Omega$.

Proof.

For any $A\in\mathcal{F}_{\infty}$, there exists i such that $A\in\mathcal{F}_i$, so $A^c\in\mathcal{F}_i\subset\mathcal{F}_{\infty}$. For any $A,B\in\mathcal{F}_{\infty}$, there exist i,j such that $A\in\mathcal{F}_i$ and $B\in\mathcal{F}_j$, so $A\cup B\in\mathcal{F}_{\max\{i,j\}}\subset\mathcal{F}_{\infty}$. Therefore, \mathcal{F}_{∞} is an algebra.

 2^Ω is not countable. \mathcal{F}_n is countable for any n, so \mathcal{F}_∞ is also countable. Therefore, $\mathcal{F}_\infty
eq 2^\Omega$. (In the following problem, we will show that any $\omega \in \Omega$, $\{\omega\} \in 2^\Omega \setminus \mathcal{F}_\infty$.)

5. Let $\mathcal{B}(\Omega) \triangleq \sigma(\mathcal{F}_{\infty})$ be the minimal σ -algebra containing \mathcal{F}_{∞} . Prove that for any $\omega \in \Omega$, it holds that $\{\omega\} \in \mathcal{B}(\Omega) \setminus \mathcal{F}_{\infty}$.

Proof.

For any $\omega=(\omega_1,\omega_2,\ldots)\in\Omega$, $\{\omega\}\in 2^\Omega$. However, there doesn't exist i such that $\{\omega\}\in\mathcal{F}_i$, hence $\{\omega\}\not\in\mathcal{F}_\infty$.

For any $\omega=(\omega_1,\omega_2,\ldots)\in\Omega$ and n, $\omega\in C_{(\omega_1,\omega_2,\ldots,\omega_n)}$. Therefore, $\{\omega\}=\cap_{n\geq 1}C_{(\omega_1,\omega_2,\ldots,\omega_n)}\in\mathcal{B}(\Omega)$.

(Notes that we use the union operation to define the σ -algebra, but for any $A_i\in\mathcal{F}, i\in\mathbb{N}$, we have $\overline{\cup_i \bar{A}_i}=\cap_i A_i\in\mathcal{F}$ because $\bar{A}_i\in\mathcal{F}$.)

6. Prove that for every $A\in\mathcal{F}_{\infty}$, there exist some $n\in\mathbb{N}$ and $s_1,\ldots,s_k\in\{0,1\}^n$ such that $A=C_{s_1}\cup\cdots\cup C_{s_k}$. Although the choice of n might not be unique, prove that the value $\frac{k}{2^n}$ only depends on A.

Proof.

There exists n such that $A\in\mathcal{F}_n$. Let $f_n:\mathcal{F}_n\to 2^{\{0,1\}^n}$ be the bijection defined in Problem 2. Let $f_n(A)=\left\{s^1,s^2,\ldots,s^{k_n}\right\}$. Then $A=C_{s^1}\cup\cdots\cup C_{s^{k_n}}$. Let n be the minimum index such that $A\in\mathcal{F}_n$. We can also find a set $S'=\{(s_1,s_2,\cdots,s_n,0),(s_1,s_2,\cdots,s_n,1)|s=(s_1,s_2,\ldots,s_n)\in f_n(A)\}\in 2^{\{0,1\}^{n+1}}$ such that $A=\cup_{s'\in S'}C_{s'}$ and $k_{n+1}:=|S'|=2k_n$. Therefore, $\frac{k_{n+1}}{2^{n+1}}=\frac{2k_n}{2^{n+1}}=\frac{k_n}{2^n}$. Applying this procedure inductively, we obtain that for any i>n, the value $\frac{k_i}{2^i}=\frac{k_n}{2^n}$, which is to say that $\frac{k}{2^n}$ only depends on A.

7. Prove that there exists a unique probability measure $P:\mathcal{B}(\Omega) o [0,1]$ satisfying for every $A\in\mathcal{F}_\infty$, $P(A)=rac{k}{2^n}$ where k and n are defined in the last question.

Proof.

We define a measure μ on F_{∞} that $\mu(A)=\frac{k}{2^n}$ where k and n are defined in the last question:

1.
$$\mu(C_s)=rac{1}{2^n}$$
 for $s\in\{0,1\}^n$.

2. $\mu(A)=\sum_{i=1}^k P(C_{s^k})=\frac{k}{2^n}$ for $A=\cup_{i=1}^k C_{s^k}\in \mathcal{F}_n$. For any disjoint sets $A_1,A_2,\dots\in \mathcal{F}_\infty$ such that $\cup_{n\geq 1}A_n\in \mathcal{F}_\infty$, assuming $A_i=\cup_{s\in S_i}C_s$, we obtain that $A=\cup_{s\in S_i,i\in\mathbb{N}^+}C_s$. Therefore,

$$\mu(\cup_{n\geq 1}A_n)=\sum_{n\geq 1}\mu(A_n),$$

and it is obvious that $\mu(\Omega) = \sum_{s \in 2^{\{0,1\}^n}} \!\! \mu(C_s) = 1.$

And then we extend the measure μ on \mathcal{F}_∞ to a measure on $\mathcal{B}(\Omega)$ by *Carathéodory Extension Theorem*. There exists a unique measure $P:\mathcal{B}(\Omega)\to [0,1]$ such that $P(A)=\mu(A)$ for any $A\in\mathcal{F}_\infty$. Since $P(\Omega)=\mu(\Omega)=1$, P is a probability measure.

Then $(\Omega, \mathcal{B}(\Omega), P)$ is our probability space for tossing coins, and it is isomorphic to the Lebesgue measure on [0,1].

8. Formalize $X \sim \mathtt{Geom}(1/2)$ in this probability space. Solution.

For any $\omega \in \Omega$, $X(\omega) := \min{\{i \in \mathbb{N} | \omega_i = 1\}}$.

Conditional Expectation

1. Let X be a random variable and $f:\mathbb{R}\to\mathbb{R}$ be a Borel function. We usually use f(X) to denote the random variable: $\omega\in\Omega\mapsto f(X(\omega))\in\mathbb{R}$. Prove that f(X) is $\sigma(X)$ -measurable.

Proof.

For any Borel set $B\subseteq \mathbb{R}$, $(f\circ X)^{-1}(B)=X^{-1}(f^{-1}(B))\in \sigma(X)$.

2. Let Y,Y' be two random variables such that $\sigma(Y)=\sigma(Y')$. Prove that $\mathbf{E}\left[X\mid Y\right]=\mathbf{E}\left[X\mid Y'\right]$.

Proof.

It suffices to show that $Y^{-1}(Y(\omega))=Y'^{-1}(Y'(\omega))$. Since $\sigma(Y)=\sigma(Y')$, if there exists $\omega\in\Omega$ such that $Y^{-1}(Y(\omega))\neq Y'^{-1}(Y'(\omega))$, $Y^{-1}(Y(\omega))\cap Y'^{-1}(Y'(\omega))\subseteq\sigma(Y)$, contradicting to the definition of $Y^{-1}(Y(\omega))$ and $Y'^{-1}(Y'(\omega))$. Therefore, $\mathbf{E}\left[X|Y^{-1}(Y(\omega))\right]=\mathbf{E}\left[X|Y'^{-1}(Y'(\omega))\right]$

3. The fact you just proved should convince you that the conditional expectation $\mathbf{E}\left[X\mid Y\right]$ only depends on the σ -algebra $\sigma(Y)$ (but not the value of Y). Let Ω be the set of outcomes and $X:\Omega\to\mathbb{R}$ be a random variable. Let $\mathcal F$ be a σ -algebra on Ω . Can you define the notation $\mathbf{E}\left[X\mid \mathcal F\right]$?

Solution.

Let $Y=\mathbf{E}\left[X\mid\mathcal{F}
ight]$ such that $\int_{A}YdP=\int_{A}XdP$ for any $A\in\mathcal{F}$ and Y is \mathcal{F} -

measurable.

If Ω is a countable set, we can explicitly give a definition of Y. First we need to prove the following lemma.

Lemma: any σ -algebra on a countable set has a unique partition.

- \circ (Existence). For any $A \in \mathcal{F}$, if there exist a subset $A' \subset A$ and $A' \in \mathcal{F}$, we split A into $A \cap A'$ and $A \setminus A'$. Moerover, we repeat this procedure for $A \cap A'$ and $A \setminus A'$ respectively; otherwise A is a partition itself. Note that Ω is countable, therefore, the first step will proceed for at most countable times. According to the defintion of σ -algebra, we know the intersection of the set chain lies in \mathcal{F} which claims the existence of the partition.
- \circ (Uniqueness). There can only be one partition. Suppose there are two partition M_i and M_i' , then there exists $M \in M_i$ and $M' \in M_i'$ such that $M \cap M \neq \emptyset$. It means that neither M_i nor M_i' is a partition.

Armed with above lemma, assume that the partition of $\mathcal F$ is formed by $\{M_i\}_{i>0}$. For any $\omega\in M_i$, $Y(\omega)=\mathbf E\left[X|\mathcal F\right](\omega)=\mathbf E\left[X|M_i\right]=rac{\sum_{a\in Ran(X_i^0)}P(X^{-1}(a)\cap M_i)}{P(M_i)}$.

4. (The coarser always wins) Let $\mathcal{F}_1,\mathcal{F}_2$ be two σ -algebra such that $\mathcal{F}_1\subseteq\mathcal{F}_2$ and $X:\Omega\to\mathbb{R}$ be a random variable. Prove that

$$\mathbf{E}\left[\mathbf{E}\left[X\mid\mathcal{F}_{1}\right]\mid\mathcal{F}_{2}\right]=\mathbf{E}\left[\mathbf{E}\left[X\mid\mathcal{F}_{2}\right]\mid\mathcal{F}_{1}\right]=\mathbf{E}\left[X\mid\mathcal{F}_{1}\right].$$

Proof.

For $A \in \mathcal{F}_1 \subset \mathcal{F}_2$,

$$\int_{A}\mathbf{E}\left[X|\mathcal{F}_{1}
ight]dP=\int_{A}XdP=\int_{A}\mathbf{E}\left[X|\mathcal{F}_{2}
ight]dP.$$

According to the definition of conditional expectation, we know if X is \mathcal{F} -measurable, then $\mathbf{E}\left[X|\mathcal{F}\right]=X$.

Therefore, $\mathbf{E}\left[\mathbf{E}\left[X\mid\mathcal{F}_{2}\right]\mid\mathcal{F}_{1}\right]=\mathbf{E}\left[\mathbf{E}\left[X\mid\mathcal{F}_{1}\right]\mid\mathcal{F}_{1}\right]=\mathbf{E}\left[X\mid\mathcal{F}_{1}\right].$ $\mathbf{E}\left[X\mid\mathcal{F}_{1}\right]$ is \mathcal{F}_{1} -measurable, therefore \mathcal{F}_{2} -measurble, so $\mathbf{E}\left[\mathbf{E}\left[X\mid\mathcal{F}_{1}\right]\mid\mathcal{F}_{2}\right]=\mathbf{E}\left[X\mid\mathcal{F}_{1}\right].$

1. A set ${\mathcal F}$ is an algebra if for every $A,B\in{\mathcal F}$, it holds $A^c\in{\mathcal F}$ and $A\cup B\in{\mathcal F}$. $lacksymbol{ extstyle extst$