Introducción a la Lógica y la Computación — Estructuras de orden Práctico 6: Álgebras de Boole, Decrecientes e Irreducibles.

- 1. Sea B un álgebra de Boole y \leq el orden asociado a B. Demuestre los siguientes.
 - a) $x \le y$ si y sólo si $\neg y \le \neg x$;
 - b) $y \le z$ si y sólo si $y \land \neg z = 0$;
 - c) si $x \le y$ e $y \land z = 0$ entonces $z \le \neg x$ (vea lo que hizo antes).
- 2. Determine si se cumplen las siguientes relaciones de isomorfismo.
 - a) $D_{2310} \cong \mathcal{P}(\{a, b, c, d, e\}).$
 - b) $D_{90} \cong \mathcal{P}(\{a, b, c, d\}).$
- 3. Sean (P, \leq) y (Q', \leq') posets y sea $F: P \to Q'$ tal que $x \leq y \iff F(x) \leq' F(y)$. Entonces F es un isomorfismo entre (P, \leq) y el subposet $(F(P), \leq')$ de (Q', \leq') .
- 4. Probar que si D_1 y D_2 son decrecientes en (P, \leq) , entonces $D_1 \cup D_2$ también lo es.
- 5. Decidir si la intersección y/o la unión de ideales principales de un poset (P, \leq) es un ideal principal. ¿Y si (P, \leq) es un reticulado?
- 6. Considere los reticulados L_3 , L_6 y L_7 dibujados en el Práctico 5.
 - a) Halle en cada caso At(L).
 - b) Dibuje en cada caso el diagrama de Hasse de $\mathcal{P}(At(L))$.
 - c) Ahora usando esta información, determine cuáles de ellos eran álgebras de Boole.
- 7. a) Defina de manera explícita el mapa F del Teorema de Representación de Álgebras de Boole finitas para el Álgebra de Boole D_{30} .
 - b) Dé una caracterización de dicho mapa F para los D_n con n un producto de primos distintos.
- 8. Para los reticulados L_4 , L_6 y L_{10} dibujados en el Práctico 5:
 - a) Señale en el diagrama los elementos irreducibles.
 - b) En cada caso, dibujar el diagrama de Hasse de los irreducibles con el orden heredado.

Recomendamos comenzar con los siguientes ejercicios: 1a, 4, 6 y 8. Una vez terminados pueden seguir con los otros, y también extender 6 y 8 al resto de los diagramas del Práctico 5.