МФТИ, ФПМИ

Алгоритмы и структуры данных, осень 2020 Семинар №3. Сортировки (1)

- 1. С помощью сортировки слиянием определите количество инверсий в перестановке. Перестановкой длины n называется массив из n попарно различных целых чисел от 1 до n. Пара чисел a_i и a_j образуют инверсию, если i < j, но $a_i > a_j$.
- **2.** Пусть в алгоритме быстрой сортировки в качестве пивота всегда детерминированно выбирается центральный элемент массива. Для произвольного n за O(n) постройте перестановку, на котором такая сортировка занимает $\Omega(n^2)$ времени.
- 3. Пусть некоторая перестановка задана в виде массива.
 - а) За одну операцию можно поменять местами два соседних элемента. Докажите, что минимальное количество операций, необходимое для сортировки массива, равно числу инверсий.
 - б) За одну операцию можно поменять местами два любых элемента. Докажите, что чётность числа инверсий изменяется после каждой операции.
- **4.** На прямой заданы n отрезков координатами своих концов $[a_i, b_i]$. Найдите
 - а) длину их объединения (асимптотика: $O(n \log n)$);
 - б) длину их пересечения (асимптотика: O(n));
 - в) максимальное количество отрезков, которое можно выбрать так, чтобы выбранные отрезки попарно не пересекались (асимптотика: $O(n \log n)$).
- **5.** Напомним, что процедура Partition(A, x) переупорядочивает элементы массива A так, что сначала идут все элементы, не превосходящие x, в некотором порядке, а затем все элементы, большие x. Покажите, как реализовать Partition(A, x) с привлечением O(1) дополнительной памяти.
- **6.** Пусть A массив длины n, а B его отсортированная версия. Найдите за $O(n \log n)$ перестановку σ , такую что $b_i = a_{\sigma(i)}$ для всех i. В массиве A могут быть повторяющиеся элементы.