Микропроцессорный комплект К1811

Техническое описание

Версия 1.0b (May 21, 2023)

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

1. Введение

Данный документ описывает микросхемы микропроцессорного комплекта серии 1811.

Микросхема	Оригинал DEC	Описание
KH1811BM1	DC302E 21-15541-AB	центральный процессорный элемент
КН1811ВУ1	DC303E 23-001C7-AA	управляющий элемент, MicROM + PLA, CS=0
КН1811ВУ2	DC303E 23-203C7-AA	управляющий элемент, MicROM + PLA, CS=2
КН1811ВУ3	DC303E 23-002C7-AA	управляющий элемент, MicROM + PLA, CS=1
KH1811BT1	DC304E 21-15542-01	диспетчер памяти

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

2. Шина микроинструкций МІВ

При низком тактовом сигнале по шине передается код микроинструкции от управляющего элемента в процессорный. При высоком уровне тактового сигнала по шине микроинструкций передается управляющее слово. Сигналы на шине микроинструкций **HE** инвертированы.

Разряд	Имя	Описан	ние		
M[15]	nMME	должен	MMU разрешен, низкий активный уровень сообщает логике процессорной платы что должен быть выполнен микроцикл трансляции адреса. Линия активируется микросхемой MMU или логикой адресации ODT.		
	INIT			ных устройств. Активный высокий, вызывает генерацию активного а внешней шине	
M[13]	IAKO			подтверждает прерывание, на линии nBIAKO внешней шины ый низкий уровень	
M[12,9,8]	AIO	Addres	s Input-Outp	out кодирование	
		000	AWO	Выдача адреса, далее следует запись данных	
		001	ARW	Выдача адреса, далее следует чтение-модификация-запись данных	
		010	-	Не используется	
		011	ARO	Выдача адреса, далее следует чтение данных	
		100	DOUTB	Выдача данных, байтовая запись	
		101	DOUT	Выдача данных, словная запись	
		110	DIN	Прием данных	
		111	NOP	Нет операции шины	
M[11]	nBR	Процессорный элемент сообщает следует ли выполнить ветвление микропрограммы в зависимости от закодированного микроинструкцией условия и флагов PSW/ALU.			
M[10]	nTEST	Тестирование Control Chip, выбранная микросхема DC302/1811BУх в следующем микроцикле выдает на шину микроинструкций NAF (Next Address Field) вместо кода микроинструкции. На плате процессора в рабочем режиме никогда не активируется, используется только для стендового тестирования			
M[7]	nSYNC	Низкий уровень означает наличие активного цикла обмена по шине QBus			
M[6,5,4]	CTRL	Управление операцией Control Chip			
		000	000 load PLM register address from return register (affects MC/NA/AXT)		
		001	load PLM	register or MMU/FPP control register	
		010	set stack or	verflow in Control Chip	
		address conversion User mode in MMU			
		100	100 transfer priority and T-bit to Control Chip		
		101	101 transfer priority to Control Chip		
		110	transfer T-bit to Control Chip		

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

		111	Нет операции	
M[3,2,1,0]	GPO	Линии управления общего назначения		
		1xxx	1ххх Нет активных сигналов	
		0001 SRUN – выборка и дешифрация инструкции PDP-11		
		0101	0101 Очистка запроса прерывания от таймера (EVNT)	
		0110	0110 Очистка запроса прерывания по сбою питания (АСLO)	
		0111	Загрузка регистра расширения адреса ООТ	

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

3. Внутренняя шина данных AD

При высоком уровне тактового сигнала по шине передаются данные адреса, чтения-записи внешней шины, а также данные из регистра быстрого чтения. При низком тактовом сигнале по шине служебное слово, содержащее информацию о состоянии процессора и запросах на прерывание. Сигналы на внутренней шине данных **HE** инвертированы

Разряд	Имя	Описание	Приоритет
AD[15]	WAIT	Данный сигнал формируется внутри управляющего элемента ВУх и не виден на внешних линиях.	16
AD[14]	ТВІТ	Данный сигнал формируется внутри управляющего элемента ВУх и не виден на внешних линиях. Содержит копию разряда 4 слова состояния процессора, записанную микропрограммой из процессорного элемента.	7
AD[13]	YSTK	Признак переполнения стека (SP $< 400_8$). Данный сигнал формируется внутри управляющего элемента ВУх и не виден на внешних линиях. Записывается процессорным элементом при выполнении операций со стеком.	8
AD[12]	EVNT	Запрос прерывания от таймера (вектор 1008), высокий уровень	11
AD[11]	IRQ4	Векторное прерывание от внешних устройств, линия IRQ4L, активный уровень высокий	14
AD[10]	IRQ5	Векторное прерывание от внешних устройств, линия IRQ5L активный уровень высокий	13
AD[9]	IRQ6	Векторное прерывание от внешних устройств, линия IRQ6L активный уровень высокий	12
AD[8]	IRQ7	Векторное прерывание от внешних устройств, линия IRQ7L активный уровень высокий	10
AD[7]	ACLO	Пропадание питания, активный уровень высокий (при нормальной работе на этом разряде присутствует низкий уровень)	9
AD[6]	-	Всегда читается высокий уровень, нормальная работа	-
AD[5]	HALT	Запрос на останов, активный уровень высокий	15
AD[4]	ECTL	Ошибка управляющего элемента ВУх (отсутствует активный CS)	2
AD[3]	nABRT	Прерывание операции со стороны MMU (активный уровень низкий)	3
AD[2]	PERR	Ошибка четности шины	5
AD[1]	BUSTO	Тайм-аут шины	4
AD[0]	nDCLO	Пропадание постоянного питания (активный уровень низкий)	1

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

4. Регистр быстрого ввода

Регистр быстрого ввода читается микропрограммой по упрощенной процедуре без генерации полноценного цикла внешней шины.

Разряд	Имя	Описание	
FDIN[15-9]	START	Старшие биты 16-разрядного стартового адреса после начального сброса (младшие разряды адреса назначаются нулевыми).	
FDIN[8]	A173	0 – стартовать по адресу заданному FDIN[15-9] 1- стартовать по фиксированному адресу 1730008	
FDIN[7]	DPOK	Признак начального старта после сброса	
FDIN[2]	HODT	0 – инструкция HALT вызывает ODT 1 - инструкция HALT вызывает исключение 10 ₈	
FDIN[1]	воот	Выбор способа начального старта	
FDIN[0]		00 - старт по содержимому вектора 24 ₈ 01 — переход в ООТ 10 — переход по 17300 ₈ или FDIN[15-9] 11 — старт из расширенного MicROM	

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

5. Система микрокоманд К1811

5.1 Поля аргументов микрокоманд

cccc	chip5	Control chip Select – 031, for jmp instruction only
dddddd	addr6	Entry address – 063, for jmp instruction only
mmmm	mode	Extra control bits
S	S suffix	0 – saves ALU flags into PSW. ALU flags valid till next microinstruction, PSW flags are permanent
iiii iiii	data8	Unsigned 8-bit value {m[7:4], m[3:0]), for AL is sign extended
aaaa	Ra	Destination register index, 12 – PDP source, 13 – PDP destination, 8 – PSW, R6 is mode dependent
bbbb	R _b	Source register index, 12 – PDP source, 13 – PDP destination, 8 - PSW, R6 mode dependent

5.2 Таблица микрокоманд

				ТОМАПД		
			dddd	JMP	chip5, addr6	select control by chip5 field, LC = addr6;
		dddd			jumps within 256 mic	
		dddd		JNA	addr8	if $(ALU_N) LC[7:0] = addr8;$
		dddd		JZA	addr8	if $(ALU_ZL \& ALU_ZH) LC[7:0] = addr8;$
		dddd		JCA	addr8	if $(ALU_C) LC[7:0] = addr8;$
		dddd		JVA	addr8	if $(ALU_V) LC[7:0] = addr8;$
		dddd		JN	addr8	if $(PSW[3]) LC[7:0] = addr8;$
0000	1101	dddd	dddd	JZ	addr8	if $(PSW[2]) LC[7:0] = addr8;$
		dddd		JC	addr8	if $(PSW[0]) LC[7:0] = addr8;$
0000	1111	dddd	dddd	JM	addr8	if (PSW[15:14] != 00) LC[7:0] = addr8;
		XXXX		Single opera	nd commands	
		mmmm		OQ	mmmm, areg	data output, ends qbus cycle, 101 nanocmd for PSW address
0001	0001	mmmm	aaaa	OIR	mmmm, areg	IR STB, mi[7:4] -> control word [3:0], 001 nanocmd
		mmmm		OPS	mmmm, areg	Set PRI + T, 100 nanocmd, M[7] – do external INIT
0001	0011	mmmm	aaaa	OPLM	mmmm, areg	Set PLM register, 000 nanocmd
		mmmm		RWI	mmmm, areg	address R_a , read word, $R_a = R_a + 2$
		mmmm		RBI	mmmm, areg	address R_a , read byte, $R_a = R_a + 1$
0001	0110	mmmm	aaaa	RW	mmmm, areg	address Ra, read word
0001	0111	mmmm	aaaa	RB	mmmm, areg	address R _a , read byte
0001	1000	mmmm	aaaa	WWI	mmmm, areg	address R_a , write word, $R_a = R_a + 2$
		mmmm		WBI	mmmm, areg	address R_a , write byte, $R_a = R_a + 1$
0001	1010	mmmm	aaaa	WW	mmmm, areg	address R _a , write word
0001	1011	mmmm	aaaa	WB	mmmm, areg	address R _a , write byte
0001	1100	mmmm	aaaa	RWWI	mmmm, areg	address R_a , read-modify-write word, $R_a = R_a + 2$
0001	1101	mmmm	aaaa	RWBI	mmmm, areg	address R_a , read-modify-write byte, $R_a = R_a + 1$
0001	1110	mmmm	aaaa	RWW	mmmm, areg	address R _a , read-modify-write word
0001	1111	mmmm	aaaa	RWB	mmmm, areg	address Ra, read-modify-write byte
		iiii		Literal comr	mands (immediate 8 bi	t signed/unsigned value)
		iiii		LL	udata8, areg	$R_a = udata8$
		iiii		CL	udata8, areg	udata8 - R _a
		iiii		AL	data8, areg	$R_a = R_a + sext(data8)$
0101	iiii	iiii	aaaa	OL	udata8, areg	$R_a = R_a \mid udata8$
		iiii		NL	udata8, areg	$R_a = R_a$ & udata8
		iiii		TL	udata8, areg	R _a & udata8
		bbbb		Two operano	d commands	
		bbbb		SRWs	breg, areg	$R_a = R_b >> 1 \mid R_b[15] << 15$
		bbbb		SRBs	breg, areg	$R_a[7:0] = R_b[7:0] >> 1 \mid R_b[7] << 7$
		bbbb		SRWCs	breg, areg	$R_a = R_b >> 1 \mid C << 15$
		bbbb		SRBCs	breg, areg	$R_a[7:0] = R_b[7:0] >> 1 \mid C << 7$
		bbbb		SLWs	breg, areg	$R_a = R_b << 1$
		bbbb		SLBs	breg, areg	$R_a[7:0] = R_b[7:0] << 1$
		bbbb		SLWCs	breg, areg	$R_a = R_b \ll 1 \mid C$
		bbbb		SLBCs	breg, areg	$R_a[7:0] = R_b[7:0] << 1 \mid C$
		bbbb		TCWs	breg, areg	$\mathbf{R}_{\mathbf{a}} = \sim \mathbf{R}_{\mathbf{b}} + 1$
		bbbb		TCBs	breg, areg	$R_a[7:0] = \sim R_b[7:0] + 1$
		bbbb		TCWCs	breg, areg	$R_a = \sim R_b + \sim C$
		bbbb		TCBCs	breg, areg	$R_a[7:0] = \sim R_b[7:0] + \sim C$
1001		bbbb		CWs	breg, areg	R_b - R_a , compare words
1001	10s1	bbbb	aaaa	CBs	breg, areg	$R_b[7:0]$ - $R_a[7:0]$, compare byte

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

1001 11s0 bbbb aaaa	OCWs	breg, areg	$R_a = \sim R_b$
1001 11s1 bbbb aaaa	OCBs	breg, areg	$R_a[7:0] = \sim R_b[7:0]$
1010 00s0 bbbb aaaa	AWs	breq, areq	$R_a = R_a + R_b$
1010 00s1 bbbb aaaa	ABs	breg, areg	$R_a[7:0] = R_a[7:0] + R_b[7:0]$
1010 01s0 bbbb aaaa	AWCs	breg, areg	$R_a = R_a + R_b + C$
1010 01s1 bbbb aaaa	ABCs	breg, areg	$R_a = R_a + R_b + C$ $R_a[7:0] = R_a[7:0] + R_b[7:0] + C$
1010 0131 bbbb aaaa	ICWs		
		breg, areg	$R_a = R_b + 1$
1010 10s1 bbbb aaaa	ICBs	breg, areg	$R_a[7:0] = R_b[7:0] + 1$
1010 11s0 bbbb aaaa	ACWs	breg, areg	$R_a = R_b + C$
1010 11s1 bbbb aaaa	ACBs	breg, areg	$R_a[7:0] = R_b[7:0] + C$
1011 00s0 bbbb aaaa	SWs	breg, areg	$R_a = R_a - R_b$
1011 00s1 bbbb aaaa	SBs	breg, areg	$R_a[7:0] = R_a[7:0] - R_b[7:0]$
1011 01s0 bbbb aaaa	SWCs	breg, areg	$R_a = R_a - R_{b-} C$
1011 01s1 bbbb aaaa	SBCs	breg, areg	$R_a[7:0] = R_a[7:0] - R_b[7:0] - C$
1011 10s0 bbbb aaaa	DCWs	breg, areg	$R_a = R_b - 1$
1011 10s1 bbbb aaaa	DCBs	breg, areg	$R_a[7:0] = R_b[7:0] - 1$
1011 11s0 bbbb aaaa	SCWs	breg, areg	$R_a = R_b - C$
1011 11s0 bbbb aaaa	SCBs	breg, areg	
1100 00s0 bbbb aaaa	MWs		$R_a[7:0] = R_b[7:0] - C$
		breg, areg	$R_a = R_b$
1100 00s1 bbbb aaaa	MBs	breg, areg	$R_a[7:0] = R_b[7:0]$
1100 01s0 bbbb aaaa	SXWs	breg, areg	$R_a = N ? 0xFFFF : 0$
1100 01s1 bbbb aaaa	SXBs	breg, areg	$R_a[7:0] = N? 0xFF:0$
1100 10s0 bbbb aaaa	ZWs	Areg	$R_a = 0$
1100 10s1 bbbb aaaa	ZBs	Areg	$R_a[7:0]=0$
1100 11s0 bbbb aaaa	BDWs	breg, areg	Binary-decimal correction after subtraction
1100 11s1 bbbb aaaa	BDBs	breg, areg	Binary-decimal correction after subtraction
1101 0000 mmmm aaaa	INW	mmmm. areg	data input
1101 0001 mmmm aaaa	INB	mmmm. areg	data input, swap on odd addr
1101 0010 mmmm aaaa	INWQ	mmmm. areg	data input, end bus cycle
1101 0011 mmmm aaaa	INBQ	mmmm. areg	data input, odd swap, end bus cycle
1101 0100 mmmm aaaa	IRW	mmmm. areg	IR input, mi[7:4] -> control[3:0]
1101 0101 mmmm aaaa	IRB	mmmm. areq	IR input, odd swap, mi[7:4] -> control[3:0]
1101 0110 mmmm aaaa	IRWQ	mmmm. areg	IR input, mi[7:4] -> control[3:0], end bus cycle
1101 0111 mmmm aaaa	IRBQ	mmmm. areg	IR input, odd swap, mi[7:4] -> control[3:0], end bus cycle
1101 1000 mmmm aaaa	ISW	mmmm. areq	PSW input
1101 1001 mmmm aaaa	ISB	mmmm. areg	PSW input, odd swap
1101 1010 mmmm aaaa	ISWQ	mmmm. areg	PSW input, end bus cycle
1101 1011 mmmm aaaa	ISBQ	mmmm. areq	PSW input, end bus cycle
1101 1100 mmmm aaaa	IVW	mmmm. areg	IAKO
1101 1100 mmmm aaaa	IVB		
	TAD		IAVO add avven
11101 1110 mmmm a	T 7.7M/O		IAKO, odd swap
1101 1110 mmmm aaaa	IVWQ	mmmm. areg	IAKO, end bus cycle
1101 1111 mmmm aaaa	IVBQ	mmmm. areg	IAKO, end bus cycle IAKO, odd swap, end bus cycle
1101 1111 mmmm aaaa 1110 00s0 bbbb aaaa	IVBQ NCWs	mmmm. areg mmmm. areg breg, areg	IAKO, end bus cycle IAKO, odd swap, end bus cycle $R_a = R_a \& \sim R_b$
1101 1111 mmmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa	IVBQ NCWs NCBs	mmmm. areg mmmm. areg breg, areg breg, areg	IAKO, end bus cycle IAKO, odd swap, end bus cycle $R_a = R_a \& \sim R_b$ $R_a[7:0] = R_a[7:0] \& \sim R_b[7:0]$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa	IVBQ NCWs NCBs ORWs	mmmm. areg mmmm. areg breg, areg breg, areg breg, areg	IAKO, end bus cycle IAKO, odd swap, end bus cycle $R_a = R_a \& \sim R_b$ $R_a[7:0] = R_a[7:0] \& \sim R_b[7:0]$ $R_a = R_a \mid R_b$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs	mmmm. areg mmmm. areg breg, areg breg, areg breg, areg breg, areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs	mmmm. areg mmmm. areg breg, areg breg, areg breg, areg breg, areg breg, areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 10s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs XOBs XCHWS	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \end{cases} \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s0 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 10s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs XOBs XCHWS	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s0 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs XOBs XCHWs XCHBs	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s1 bbbb aaaa 1111 01s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWs XOBs XCHWs XCHBs TZWs	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWS XOBS XCHWS XCHWS TZWS TZBS	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \\ R_a[7:0], & \text{set NZ, VC=0} \\ \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s1 bbbb aaaa 1111 01s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \\ R_a[7:0], & \text{set NZ, VC=0} \\ \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa 1111 00s1 bbbb aaaa 1111 00s1 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBS XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS CABS	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \\ R_a[7:0], & \text{set NZ, VC=0} \\ \text{if } (C) \{R_a &= R_a + R_b\} \\ \text{if } (C) \{R_a[7:0] &= R_a[7:0] + R_b[7:0]\} \\ \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa 1111 00s1 bbbb aaaa 1111 0100 bbbb aaaa 1111 0101 bbbb aaaa	IVBQ NCWs NCBs ORWs ORBs XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS LXW	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \land R_b \\ R_a[7:0] &= R_a[7:0] \land R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \\ R_a[7:0], & \text{set NZ, VC=0} \\ \text{if } & \text{(C) } \{R_a = R_a + R_b\} \\ \text{if } & \text{(C) } \{R_a[7:0] = R_a[7:0] + R_b[7:0]\} \\ R_a &= \text{sext}(R_b[7:0]) << 1 \\ R_a[7:0] &= \text{sext}(R_b[7:0]) << 1 \\ R_a[7:0] &= \text{sext}(R_b[7:0]) << 1 \\ \end{split}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1110 11s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa 1111 0100 bbbb aaaa 1111 0101 bbbb aaaa 1111 0111 bbbb aaaa	IVBQ NCWS NCBS ORWS ORBS XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS CABS LXW LXB	mmmm. areg mmmm. areg breg, areg	$\begin{split} IAKO, & \text{end bus cycle} \\ IAKO, & \text{odd swap, end bus cycle} \\ R_a &= R_a \& \sim R_b \\ R_a[7:0] &= R_a[7:0] \& \sim R_b[7:0] \\ R_a &= R_a \mid R_b \\ R_a[7:0] &= R_a[7:0] \mid R_b[7:0] \\ R_a &= R_a \wedge R_b \\ R_a[7:0] &= R_a[7:0] \wedge R_b[7:0] \\ R_a &= \{R_b[7:0], R_b[15:0]\} \text{ (swap)} \\ R_a[7:0] &= \text{sign } (R_b[7:0]) \\ R_a, & \text{set NZ, VC=0} \\ R_a[7:0], & \text{set NZ, VC=0} \\ if (C) &\{R_a &= R_a + R_b\} \\ if (C) &\{R_a[7:0] &= R_a[7:0] + R_b[7:0]\} \\ R_a &= \text{sext}(R_b[7:0]) << 1 \\ R_a[7:0] &= \text{sext}(R_b[7:0]) << 1 \\ R_a &\in R_b \end{aligned}$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1111 01s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 0100 bbbb aaaa 1111 0101 bbbb aaaa 1111 0111 bbbb aaaa 1111 0111 bbbb aaaa 1111 0111 bbbb aaaa 1111 0111 bbbb aaaa	IVBQ NCWS NCBS ORWS ORBS XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS CABS LXW LXB TWS	mmmm. areg mmmm. areg breg, areg	$ \begin{array}{l} IAKO, end \ bus \ cycle \\ IAKO, odd \ swap, end \ bus \ cycle \\ R_a = R_a \ \& \ \sim R_b \\ R_a[7:0] = R_a[7:0] \ \& \ \sim R_b[7:0] \\ R_a = R_a \ \ R_b \\ R_a[7:0] = R_a[7:0] \ \ R_b[7:0] \\ R_a = R_a \ \wedge R_b \\ R_a[7:0] = R_a[7:0] \ \wedge \ R_b[7:0] \\ R_a = \{R_b[7:0], R_b[15:0]\} \ (swap) \\ R_a[7:0] = sign \ (R_b[7:0]) \\ R_a, \text{ set } NZ, \ VC=0 \\ R_a[7:0], \text{ set } NZ, \ VC=0 \\ if \ (C) \ \{R_a = R_a + R_b\} \\ if \ (C) \ \{R_a[7:0] = R_a[7:0] + R_b[7:0]\} \\ R_a = sext(R_b[7:0]) << 1 \\ R_a[7:0] = sext(R_b[7:0]) << 1 \\ R_a \ \& \ R_b \\ R_a[7:0] \ \& \ R_b[7:0] \end{array} $
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s1 bbbb aaaa 1110 11s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa 1111 0100 bbbb aaaa 1111 0110 bbbb aaaa 1111 0111 bbbb aaaa 1111 0111 bbbb aaaa 1111 10s0 bbbb aaaa 1111 10s0 bbbb aaaa	IVBQ NCWS NCBS ORWS ORBS XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS CABS LXW LXB TWS	mmmm. areg mmmm. areg breg, areg	$ \begin{array}{l} IAKO, end \ bus \ cycle \\ IAKO, odd \ swap, end \ bus \ cycle \\ R_a = R_a \ \& \ \sim R_b \\ R_a[7:0] = R_a[7:0] \ \& \ \sim R_b[7:0] \\ R_a = R_a \ \ R_b \\ R_a[7:0] = R_a[7:0] \ \ R_b[7:0] \\ R_a = R_a \ \wedge R_b \\ R_a[7:0] = R_a[7:0] \ \wedge \ R_b[7:0] \\ R_a = \{R_b[7:0], R_b[15:0]\} \ (swap) \\ R_a[7:0] = sign \ (R_b[7:0]) \\ R_a, \text{ set } NZ, \ VC=0 \\ R_a[7:0], \text{ set } NZ, \ VC=0 \\ if \ (C) \ \{R_a = R_a + R_b\} \\ if \ (C) \ \{R_a[7:0] = R_a[7:0] + R_b[7:0]\} \\ R_a = sext(R_b[7:0]) << 1 \\ R_a[7:0] = sext(R_b[7:0]) << 1 \\ R_a \ \& R_b \\ R_a[7:0] \ \& \ R_b[7:0] \\ Previous \ mode \ (PSW[13:12) \ register \ SP \ access \\ \end{array} $
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s0 bbbb aaaa 1111 01s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa 1111 0100 bbbb aaaa 1111 0110 bbbb aaaa 1111 0111 bbbb aaaa 1111 0111 bbbb aaaa 1111 10s0 bbbb aaaa 1111 10s0 bbbb aaaa 1111 10s0 bbbb aaaa	IVBQ NCWS NCBS ORWS ORBS XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS CABS LXW LXB TWS TBS	mmmm. areg mmmm. areg breg, areg	$ \begin{array}{l} IAKO, end \ bus \ cycle \\ IAKO, odd \ swap, end \ bus \ cycle \\ R_a = R_a \ \& \ \sim R_b \\ R_a[7:0] = R_a[7:0] \ \& \ \sim R_b[7:0] \\ R_a = R_a \ \ R_b \\ R_a[7:0] = R_a[7:0] \ \ R_b[7:0] \\ R_a = R_a \ \wedge R_b \\ R_a[7:0] = R_a[7:0] \ \wedge R_b[7:0] \\ R_a = \{R_b[7:0], R_b[15:0]\} \ (swap) \\ R_a[7:0] = sign \ (R_b[7:0]) \\ R_a, \text{ set } NZ, \ VC=0 \\ R_a[7:0], \text{ set } NZ, \ VC=0 \\ if \ (C) \ \{R_a = R_a + R_b\} \\ if \ (C) \ \{R_a[7:0] = R_a[7:0] + R_b[7:0]\} \\ R_a = sext(R_b[7:0]) <<1 \\ R_a[7:0] = sext(R_b[7:0]) <<1 \\ R_a \ \& R_b \\ R_a[7:0] \ \& R_b[7:0] \\ Previous \ mode \ (PSW[13:12) \ register \ SP \ access \\ Provious \ mode \ (PSW[13:12) \ register \ SP \ access \\ Provious \ mode \ (PSW[13:12) \ register \ SP \ access \\ Provious \ mode \ (PSW[13:12) \ register \ SP \ access \\ Provious \ mode \ (PSW[13:12) \ register \ SP \ access \\ Provious \ mode \ (PSW[13:12]) \ Provious \ mode \ (PSW[13:12]) \ Pro$
1101 1111 mmm aaaa 1110 00s0 bbbb aaaa 1110 00s1 bbbb aaaa 1110 01s0 bbbb aaaa 1110 01s1 bbbb aaaa 1110 10s0 bbbb aaaa 1110 10s1 bbbb aaaa 1110 11s1 bbbb aaaa 1110 11s1 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s0 bbbb aaaa 1111 00s1 bbbb aaaa 1111 0100 bbbb aaaa 1111 0110 bbbb aaaa 1111 0111 bbbb aaaa 1111 0111 bbbb aaaa 1111 10s0 bbbb aaaa 1111 10s0 bbbb aaaa	IVBQ NCWS NCBS ORWS ORBS XOWS XOBS XCHWS XCHBS TZWS TZBS CAWS CABS LXW LXB TWS	mmmm. areg mmmm. areg breg, areg	$ \begin{array}{l} IAKO, end \ bus \ cycle \\ IAKO, odd \ swap, end \ bus \ cycle \\ R_a = R_a \ \& \ \sim R_b \\ R_a[7:0] = R_a[7:0] \ \& \ \sim R_b[7:0] \\ R_a = R_a \ \ R_b \\ R_a[7:0] = R_a[7:0] \ \ R_b[7:0] \\ R_a = R_a \ \wedge R_b \\ R_a[7:0] = R_a[7:0] \ \wedge \ R_b[7:0] \\ R_a = \{R_b[7:0], R_b[15:0]\} \ (swap) \\ R_a[7:0] = sign \ (R_b[7:0]) \\ R_a, \text{ set } NZ, \ VC=0 \\ R_a[7:0], \text{ set } NZ, \ VC=0 \\ if \ (C) \ \{R_a = R_a + R_b\} \\ if \ (C) \ \{R_a[7:0] = R_a[7:0] + R_b[7:0]\} \\ R_a = sext(R_b[7:0]) << 1 \\ R_a[7:0] = sext(R_b[7:0]) << 1 \\ R_a \ \& R_b \\ R_a[7:0] \ \& \ R_b[7:0] \\ Previous \ mode \ (PSW[13:12) \ register \ SP \ access \\ \end{array} $

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

5.3 Микрокоманды ввода-вывода

Hex		cmd/io	Description					
	Address							
14ma	RWI	111/011	address R_a , read word, $R_a = R_a + 2$					
15ma	RBI	111/011	address R_a , read byte, $R_a = R_a + 1$					
16ma	RW	111/011	address R _a , read word					
17ma	RB	111/011	address R _a , read byte					
18ma	WWI	111/000	address R_a , write word, $R_a = R_a + 2$					
19ma	WBI	111/000	address R_a , write byte, $R_a = R_a + 1$					
1Ama	WW	111/000	address R _a , write word					
1Bma	WB	111/000	address R _a , write byte					
1Cma	RWWI	111/001	address R_a , read-modify-write word, $R_a = R_a + 2$					
1Dma	RWBI	111/001	address R_a , read-modify-write byte, $R_a = R_a + 1$					
1Ema	RWW	111/001	address Ra, read-modify-write word					
1Fma	RWB	111/001	address R _a , read-modify-write byte					
			M[4] – force kernel CPU mode address translation					
			M[5] – 1 – PDP-11 instruction fetch					
			M[6] – 1-current/ 0 - previous CPU mode address translation / disable ODT if M[7] is 1					
			M[7]- disable address translation in MMU					
	Data ou	tput						
10ma	OQ	1x1/10w	data output, ends Q-bus cycle, 101 nanocmd for PSW address only					
			M[4] – FPP register bank select, 0 – B, 1- A					
			M[5] – FPP register selector FA[1]					
			M[6] – toggle lower/upper half of 32-bit FPP register					
			M[7] – FPP register selector ~FA[3]					
			M[7:5] = x00 - no access					
			M[7:5] = x01 -extra FPP register access (FS[16], FS[17])					
			M[7:5] = 010 - AC6					
			M[7:5] = 011 - AC7					
			M[7:5] = 110 – fsrc/fdst field from PDP instruction					
	1	1	M[7:5] = 111 –ac field from PDP instruction					
11ma	OIR	001/10w	IR STB, mi[7:4] -> control word [3:0]					
12ma	OPS	100/10w	Set PRI + T					
	1	T	M[7] – do external INIT, MMU also tracks this bit					
13ma	OPLM	000/10w	Set PLM register					
	Data in							
D0ma	INW		input word					
D1ma	INB	111/110	input byte					
D2ma	INWQ	111/110	input word, end bus					
D3ma	INBQ	111/110	input byte, end bus					
			M[4] – FPP register bank select, 0 – B, 1- A					
			M[5] – FPP register selector FA[1]					
			M[6] – toggle lower/upper half of 32-bit FPP register					
	1	T	M[7] – FPP register selector ~FA[3]					
D4ma	IRW	001/110	IR input, mi[7:4] -> control[3:0]					
D5ma	IRB		IR input, mi[7:4] -> control[3:0]					
D6ma	IRWQ	001/110	IR input, mi[7:4] -> control[3:0], end bus cycle					
D7ma	IRBQ	001/110	IR input, mi[7:4] -> control[3:0], end bus cycle					
D8ma	ISW	1x0/110	PSW input word					
D9ma	ISB	1x0/110	PSW input byte					
DAma	ISWQ	1x0/110	PSW input, end bus cycle					
DBma	ISBQ	1x0/110	PSW input, end bus cycle					
DCma	IVW	111/110	IAKO					
DDma	IVB	111/110	IAKO					
DEma	IVWQ	111/110	IAKO, end bus cycle					
DFma	IVBQ	111/110	IAKO, end bus cycle					

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

6. MMU

6.1 Регистры MMU

	. po:								
Address	Name	Description							
177723008	KPDR0	Kernel mode page descriptor register 0							
177723028	KPDR1	Kernel mode page descriptor register 1							
177723048	KPDR2	Kernel mode page descriptor register 2							
177723068	KPDR3	Kernel mode page descriptor register 3							
177723108	KPDR4	Kernel mode page descriptor register 4							
177723128	KPDR5	Kernel mode page descriptor register 5							
177723148	KPDR6	Kernel mode page descriptor register 6							
177723168	KPDR7	Kernel mode page descriptor register 7							
177723408	KPAR0	Kernel mode page address register 0							
177723428	KPAR1	Kernel mode page address register 1							
177723448	KPAR2	Kernel mode page address register 2							
177723468	KPAR3	Kernel mode page address register 3							
177723508	KPAR4	Kernel mode page address register 4							
177723528	KPAR5	Kernel mode page address register 5							
177723548	KPAR6	Kernel mode page address register 6							
177723568	KPAR7	Kernel mode page address register 7							
177725168	SR3	Status Register 3							
177775728	SR0	Status Register 0							
177775748	SR1	Status Register 1							
177775768	SR2	Status Register 2							
177776008	UPDR0	User mode page descriptor register 0							
177776028	UPDR1	User mode page descriptor register 1							
177776048	UPDR2	User mode page descriptor register 2							
177776068	UPDR3	User mode page descriptor register 3							
177776108	UPDR4	User mode page descriptor register 4							
177776128	UPDR5	User mode page descriptor register 5							
177776148	UPDR6	User mode page descriptor register 6							
177776168	UPDR7	User mode page descriptor register 7							
177776408	UPAR0	User mode page address register 0							
177776428	UPAR1	User mode page address register 1							
177776448	UPAR2	User mode page address register 2							
177776468	UPAR3	User mode page address register 3							
177776508	UPAR4	User mode page address register 4							
177776528	UPAR5	User mode page address register 5							
177776548	UPAR6	User mode page address register 6							
177776568	UPAR7	User mode page address register 7							
177777768	PSW	Located in DC302, contains previous and current modes, flags							

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

6.2 PSW - слово состояния процессора

Name: PSW															
Offset: 17777776 ₈							Reset Value: N/A								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C	M	P	M	0	0	0	SI		PRI		Т	N	Z	V	С

Описание флагов слова состояния процессора **PSW** приведено в таблице:

Бит	Имя	Описание
0	С	Флаг переноса, устанавливается, если был перенос из старшего разряда (15-го при словных операциях и 7-го при байтовых). Операция вычитания реализуется как сложение с инвертированным вторым операндом плюс единица, поэтому при вычитании флаг переноса устанавливается если не было займа в старший разряд (не аппаратной инверсии флага переноса при вычитании). При выполнении сдвигов действуют правила, описанные в соответствующих операциях
1	V	Флаг арифметического переполнения, при сложении вычисляется как исключающее ИЛИ переносов из старшего и предстаршего разрядов. Обычно сигнализирует о потере знака результата, используется в знаковой арифметике
2	Z	Флаг равенства результата нулю, устанавливается, если все биты результата ([15:0] при словных операциях и [7:0] при байтовых) нулевые
3	N	Флаг знака результата, равен старшему разряду (15-му для словных операций и 7-му для байтовых)
4	T	Флаг ловушки пошаговой отладки, установка вызывает прерывание.
7:5	PRI	Биты приоритета разрешенных внешних прерываний. 7 — все запрещены 6 — разрешены прерывания с приоритетом 7 5 — разрешены прерывания с приоритетом 7, 6 4 — разрешены прерывания с приоритетом 7, 6, 5 3 — разрешены прерывания с приоритетом 7, 6, 5, 4 2 — разрешены прерывания с приоритетом 7, 6, 5, 4 1 — разрешены прерывания с приоритетом 7, 6, 5, 4 0 — разрешены прерывания с приоритетом 7, 6, 5, 4
8	SI	Приостановленная инструкция, может быть прочитан-записан, зарезервирован для использования совместно с инструкциями CIS
13:12	PM	Предыдущий режим защиты памяти, может быть прочитан-записан, при прерывании или исключении в данные биты переписывается значение поля СМ
15:14	CM	Текущий режим защиты памяти, может быть прочитан-записан программой обращением к слову по адресу PSW

Mode	Name	PAR/PDR	SP	Описание
00	Kernel	Kernel	KSP	Режим ядра, привилегированный
01	Supervisor	Kernel	SSP	Режим супервизора, зарезервировано
10	-	Kernel	-	Зарезервировано, не используется
11	User	User	USP	Режим пользователя, непривилегированный

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

6.3 Регистр дескриптора страницы

Name	Name: PDR[7:0] – UPDR[7:0]/KPDR[7:0]														
Offset: 17777600s/17772300s Reset Value: N/A															
15	14	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
	Read & Write								Rc				R & W	7	
0		PLF							W	0	0	ED	A	CF	0

Описание битов регистра дескриптора страницы приведено в таблице:

Бит	Имя	Описание
2:1	ACF	Access Control Field, режим доступа к странице
		00 - non-resident — отсутствует в памяти, любое обращение вызывает исключение 01 — read only — обращение на запись вызывает исключение 10 — unused, не используется, любое обращение вызывает исключение 11 — resident read-write, допускается чтение и запись
3	ED	Expansion Direction , если этот бит сброшен то валидной считается память 8КВ страницы с адресами ниже предела указанного в поле PLF, иначе валидны адреса превышающие предел и до полного размера страницы в 8КВ
6	W	Written — бит устанавливается только аппаратно, если в страницу была выполнена запись, бит сбрасывается при любой записи в регистр PAR или PDR для данной страницы.
14:7	PLF	Page Length Field, определяет размер страницы в 64 ₁₀ -байтных блоках

6.4 Регистр статуса SR0

Name	Name: SR0														
Offset: 17777572 ₈ Reset Value: N/A															
15	14	13	12	2 11 10 9 8 7 6 5 4 3 2 1 0											
RW								RO				Readonly			RW
NR	LE	RO	0	0	0	0	0	0	MODE		0	PAGE		EN	

6.5 Регистр статуса SR1

Name	Name: SR1														
Offset: 17777574 ₈ Reset Value: N/A															
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															
	Readonly														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

6.6 Регистр статуса SR2

Name	Name: SR2													
Offset	Offset: 17777576 ₈ Reset Value: N/A													
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													
	Readonly													
	Virtual address of the last instruction fetch													

6.7 Регистр статуса SR3

Name	Name: SR3														
Offset: 17777516 ₈ Reset Value: N/A															
15	14	13	12	11	10	9	8	7 6 5 4 3 2 1 0							
										R&	χW				
0	0	0	0	0	0	0	0	0	0	UM	AS	0	0	0	0

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

7. FPP

7.1 Регистры FPP

FA[4:	1]	M[4] = 1,	BANK A	M[4] = 0,	BANK B	M[7:5]
		FA[0] = 1	FA[0] = 0	FA[0]=1	FA[0] = 0	
FA[4]=0	AC0	double word 3	double word 2	float word 1	float word 0	11x
FA[3:1]	AC1	double word 3	double word 2	float word 1	float word 0	11x
	AC2	double word 3	double word 2	float word 1	float word 0	11x
	AC3	double word 3	double word 2	float word 1	float word 0	11x
	AC4	double word 3	double word 2	float word 1	float word 0	11x
	AC5	double word 3	double word 2	float word 1	float word 0	11x
	AC6	double word 3	double word 2	float word 1	float word 0	010
	AC7	double word 3	double word 2	Instruction address	Instruction opcode	011
FA[4]=1	1001			FI	PS	101
	1101				`	001

7.2 FPP инструкции

Код	Мнемоника	FNZVC	Описание
1700008	CFCC		Копировать флаги операций плавающей точки в PSW
1700018	SETF		Установить режим single precision, FD = 0
1700028	SETI		Установить режим короткого целого, FL = 0
1700118	SETD		Установить режим double precision, FD = 1
1700128	SETL		Установить режим длинного целого, FL = 1
1701ss ₈	LDFPS src		Загрузить FPS (FPP Status Register)
1702dd8	STFPS dst		Сохранить FPS (FPP Status Register)
1703dd ₈	STST dst		Сохранить FPP Exception Status (FEC and FEA)
1704fd ₈	CLRF/D fdst	0100	Присвоить нулевое значение, exact 0
1705fd ₈	TSTF/D fdst	**00	Тестировать float/double
1706fd ₈	ABSF/D fdst	0*00	Абсолютное значение float/double
1707fd ₈	NEGF/D fdst	**00	Изменить знак float/double
1710acfs ₈	MULF/D fsrc, ac	***0	Умножить float/double
1714acfs8	MODF/D fsrc, ac	***0	Умножить и разделить на целую и дробную части
1720acfd8	STF/D ac, fdst		Сохранить float/double
1724acfs ₈	LDF/D fsrc, ac	**00	Загрузить float/double
1730acfs8	SUBF/D fsrc, ac	***0	Вычитание float/double
1734acfs8	CMPF/D fsrc, ac	**00	Сравнить float/double
1740acfs ₈	ADDF/D fsrc, ac	***0	Сложить AC c fsrc, AC += fsrc
1744acfs8	DIVF/D fsrc, ac	***0	Разделить float/double. AC /= fsrc
1750acdd8	STEXP ac, dst	**00	Сохранить экспоненту
1754acdd8	STCFI/FL/DI/DL ac, dst	**0*	Сохранить и конвертировать float/double в int/long
1760acfd8	STCDF/FD ac, fdst	***0	Сохранить и конвертировать float/double
1764acfs8	LDEXP src, ac	***0	Загрузить экспоненту
1770acfs ₈	LDCIF/ID/LF/LD src, ac	***0	Загрузить и конвертировать int/long -> float/double
1774acfs8	LDCDF/FD fsrc, ac	***0	Загрузить и конвертировать float -> double или double -> float

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

7.3 Регистр статуса **FPP**

Name	Name: FPS														
Offset	Offset: FPP built-in Reset Value: N/A														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FER	FID	0	0	FIUV	FIU	FIV	FIC	FD	FL	FT	0	FN	FZ	FV	FC

Описание битов регистра статуса FPP приведено в таблице:

Бит	Имя	Описание
0	FC	Floating Carry, перенос из старшего разряда, происходит только при конверсии в целые
1	FV	Floating Overflow, переполнение экспоненты результата
2	FZ	Floating Zero, нулевой результат
3	FN	Floating Negative, отрицательный результат
5	FT	Interrupt Disable, запрет прерываний от FPP
6	FL	Floating Long Integer mode, режим длинных целых, 32-битные значения
7	FD	Floating Double Precision mode, режим двойной точности, 64-битные double
8	FIC	Interrupt on Conversion Error, прерывания по ошибке целочисленного конвертирования
9	FIV	Interrupt on Overflow, разрешение прерываний по overflow
10	FIU	Interrupt on Underflow, разрешение прерываний по underflow
11	FIUV	Interrupt on Undefined Value, разрешение прерываний по неопределенному значению
14	FID	Interrupt Disable, запрет прерываний от FPP
15	FER	Floating Error, ошибка плавающей точки, сброс бита программный, LDFPS

Микропроцессорный комплект К1811	Version: 1.0b
Техническое описание © 1801BM1@gmail.com	Date: 21-May-2023

8. Разное

8.1 Ветвление микроадреса

Для управления ветвлением микропрограммы адресное поле микрокоманды может быть изменено следующими четырьмя способами:

- разряды [0:3] определенных адресов изменяются логикой MA под управлением данных из РД (пока обнаружено использование только MiCROM CS0 для декодирования основных команд PDP-11);
- разряды [0:7] любого адреса заменяют данными из разрядов [0:7] PM под управлением логики BM (условное ветвление);
- разряды [0:8] любого адреса генерируются формирователем адреса МК в соответствии с данными в РД;
- разряды [0:8] адреса формируются в процессе выборки микрокоманды из программируемой логической матрицы с помощью логического сложения.

8.2 Доступ к PSW и регистрам MMU

PSW физически расположено в процессорном элементе DC302, при чтении-записи PSW по физическом адресу 177777768 (также учитывается трансляция адреса MMU) стробы **nDIN/nDOUT** на внешней шине не генерируются, несмотря на активный сигнал **nSYNC**, так как процессор . Чтение-запись производится процессорным элементом напрямую с внутренней шины A/D процессорной платы KDF11.

Регистры MMU физически расположены в микросхеме менеджера памяти DC304, при чтениизаписи по адресам данных регистров происходит выставление сигнала **nREPLY** от DC304 и стробы **nDIN/nDOUT** на внешней шине не успевают генерироваться, несмотря на активный сигнал **nSYNC**.

Доступ к регистрам FPP происходит с предварительным циклом адреса, но с неактивным признаком **nSYNC** в разряде M[7]. Также реализован автоинкремент младшего разряда адреса для последовательного доступа к паре 16-битных регистров FPP.