Algorithmic Game Theory

() SS 2015

Administrative Issues

- Lectures: Felix Brandt
 - Tuesdays, 12.15 13.45, MI HS 2
 - No lectures on May 5th and 26th
 - AGT course website
 - Lecture slides, tablet notes, and hopefully video recordings will be published in Moodle after each lecture.
- Tutorials: Johannes Hofbauer & Paul Stursberg
 - Group 1: Mondays, 10.15 11.45, Room 01.10.011
 - Group 2: Mondays, 18.00 19.30, Room 01.10.011
 - Group 3: Tuesdays, 10.15 11.45, Room 01.10.011
 - No tutorials on May 4th, 5th, 25th, and 26th
 - Please sign up for one tutorial using <u>TUMonline</u> after 20.00 today.
 - Exercise sheets will be published in <u>Moodle</u> each Tuesday.
 - Use the <u>Moodle</u> AGT discussion board to discuss exercises.

Exercises

- Exercises are not mandatory, but highly recommended.
- Each exercise sheet usually contains
 - one **G** (game) exercise
 - interactive, you play with/against each other
 - answer has to be submitted using Moodle by midnight each Saturday
 - two H (homework) exercises
 - you are strongly encouraged to prepare those before the tutorial
 - will be discussed in the tutorial
 - solution hints will be published online after the tutorial
 - one T (tutorial) exercise
 - will be presented by the tutor in the tutorial
 - students are not expected to prepare them beforehand
 - solution hints will be published online after the tutorial
- The real meat of this course is taking place in the tutorials!
- There will be 2-3 midterm quizzes via Moodle (Q-exercises).

Exam & Bonus

Exam

- Probably between July 14th and July 17th 2015
- Grading scale on course website
- Winter term exam in early October (if necessary)
- You can get a grade bonus by doing well in G-exercises and Q-exercises.
 - The overall grade you get for G- and Q-exercises (so-called G-grade) can be used to *improve* the grade of a *passed* exam.
 - If you pass the exam and your G-grade is better than your exam grade, then your final grade will the weighted average of your exam grade (80%) and your G-grade (20%).
 - The bonus only applies to the exam of the summer term 2015, the grades of later exams are not affected.
 - More details on course website

Motivation

- What is game theory?
 - The mathematical study of strategic behavior in interactive environments, in which the well-being of each agent not only depends on his own decisions but also on those of other agents.
 - "Interactive decision theory"
 - One characteristic of game theory is the lack of an indisputable notion of optimality.
 - Applications: auctions, voting, college admission, cost-sharing, routing, file sharing, reputation systems, airport security, understanding interaction (e.g., in economics, biology, politics)
- This course focusses on foundations rather than applications.

Expected Background

- It is expected that your are familiar with
 - standard proof techniques (e.g., proof by induction, proof by contradiction),
 - basic mathematical concepts (e.g., directed graphs, probabilities, convexity, continuity, convergence), and
 - basic concepts from theoretical computer science (e.g., polynomial-time algorithms, NP-completeness, linear programming).
- Some of the mathematical background required is nicely covered in this document by Itzhak Gilboa.
 - You can find more references on the course website.

Key Questions

- How do we formalize rational decision-making?
- Which actions should/will a decision-maker take in interactive situations?
 - How can these situations be compactly represented?
 - The naive representation is of exponential size.
 - Is it possible to efficiently compute these actions?
- Which coalitions will form in cooperative settings? How should individual contributions be valued?
 - How can these settings be compactly represented?
 - Again, the naive representation is of exponential size.
 - Is it possible to efficiently compute these values and coalitions?
- How can we design mechanisms for self-interested agents in order to obtain a desirable outcome?

Decision Sciences and Systems

Prof. Martin Bichler and Prof. Felix Brandt dss.in.tum.de

algorithmic game theory

Modeling interaction and computing optimal strategies: utility theory, normal-form games, Nash equilibrium, etc.

multiagent systems (sem.)

Related Courses

- Course & Tutorial "Operations Research (WI IV)" (Bichler)
 - decision theory, linear programming, discrete optimization
- Course & Tutorial "Computational Social Choice" (Brandt)
 - preference aggregation, voting rules, complexity considerations
- Course & Tutorial "Auction Theory & Market Design" (Bichler)
 - combinatorial auctions, spectrum license auctions, procurement
- Course & Tutorial "Games on Graphs" (Luttenberger)
 - software verification, parity games, stochastic games
- Course & Tutorial "Social Computing/Social Gaming" (Groh)
 - social network analysis, graph visualization, social games
- Seminars "Economics and Computation" (Brandt), "Multiagent Systems" (Brandt), "Auction Theory and Market Design" (Bichler)

The Origin of Game Theory

- considered a landmark publication of the 20th century (first published in 1944)
 - American Scientist's 100 books that shaped a century of science
 - Boston Public Library's 100 most influential books of the century
 - available <u>online</u> for free
- Von Neumann was a Hungarian mathematician with groundbreaking contributions to quantum physics, calculus, set theory, topology, economics, computer science, hydrodynamics, statistics, etc.
 - E.g., von Neumann computer architecture, mergesort, cellular automata, linear programming, game theory, atomic bomb

Nobel Prize Laureates

- Harsanyi, Nash, and Selten (1994)
 - equilibria
- Vickrey (1996)
 - incentives
- Aumann and Schelling (2005)
 - game theory
- Hurwicz, Maskin, and Myerson (2007)
 - mechanism design
- Roth and Shapley (2012)
 - stable allocations

Synopsis

- Introduction
- Utility theory (preference relations, expected utility)
- Normal-form games (prisoner's dilemma, Pareto-dominance)
- Nash equilibrium (pure and mixed equilibria, axiomatization)
- Computing equilibria (algorithms, computational complexity)
- Alternative solution concepts (refinements, iterated dominance)
- Cooperative games (Shapley value, coalition formation)
- Zero-sum games (minimax theorem, Shapley's saddles)
- Concise representations (graphical games, symmetric games)
- Extensive-form games (Stackelberg games, subgame-perfect equilibria, parlor games)
- Mechanism design (GS impossibility, VCG mechanism)
- Stable matchings (Gale-Shapley algorithm, roommate problem)

Recommended Readings

- None of these books is required to pass the course!
- Available online and in print:
 - Osborne & Rubinstein: *A Course in Game Theory* (MIT Press, 1994)
 - Aumann: <u>Game Theory</u>, in J. Eatwell, M. Milgate, and P. Newman: The New Palgrave, A Dictionary of Economics, Vol. 2 (MacMillan, 1987)
 - Shoham & Leyton-Brown: <u>Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations</u> (Cambridge UP, 2009)
 - Nisan, Roughgarden, Tardos, & Vazirani: <u>Algorithmic Game Theory</u>
 (Cambridge UP, 2007)
- Available in print:
 - Peters: Game Theory A Multi-leveled Approach (Springer, 2008)
 - Maschler, Solan, & Zamir: Game Theory (Cambridge UP, 2013)
 - Myerson: Game Theory Analysis of Conflict (Harvard UP, 1991)
 - Fudenberg & Tirole: Game Theory (MIT Press, 1991)
 - Mas-Colell, Whinston, & Green: Microeconomic Theory (Oxford UP, 1995)

Rational Agents

- What is an agent?
 - An agent is an autonomous entity which has the ability to interact with its environment.
 - e.g., human beings, robots, or software agents
 - It is usually assumed that agents are (unboundedly) rational.
- A prerequisite for making rational decisions are preferences over the set of alternatives A.
 - These are typically modeled as binary preference relations.
 - ▶ x is at least as good as y: $x \ge y$
 - A preference relation can be factorized in its asymmetric part (the strict preference relation) and its symmetric part (the indifference relation).
 - $X > y \Leftrightarrow (X \geq y) \land \neg (y \geq x)$ and $X \sim y \Leftrightarrow (X \geq y) \land (y \geq x)$

Preference Relations

- A preference relation is called rational if it is
 - ▶ complete (i.e., $\forall x,y \in A$: $(x \ge y) \lor (y \ge x)$) and
 - ▶ transitive (i.e., $\forall x, y, z \in A$: $(x \ge y) \land (y \ge z) \Rightarrow (x \ge z)$).
 - Preference relations do not capture the "intensity" of preferences.
- An agent is called rational if he chooses the most desirable among all feasible alternatives.
 - Preferences are observable through choice behavior
- Arguments for transitivity
 - Transitivity is sufficient to ensure that every finite non-empty set of alternatives admits a most desirable (or maximal) alternative, i.e., an alternative *x* such that there is no *y* with y > x.
 - Money pump

Transitivity

Humans sometimes exhibit intransitive preferences.

- Two examples
 - Aggregation of multiple criteria
 - Indistinguishability

Aggregation of Multiple Criteria

- Assume an agent has rational preferences when considering each criterion in isolation and consider the following aggregated preference relation:
 - ▶ $x \ge y \Leftrightarrow x$ beats y for at least as many criteria as y beats x
- The resulting preference relation can be intransitive!
- Example
 - ▶ $A \subseteq \mathbb{R}^3$ (top speed, power, fuel consumption)
 - sports car: (300,250,-20)
 - ► SUV: (200,300,-15)
 - sedan: (250,200,-10)
 - "schizophrenic" preferences

Transitivity of the indifference relation implies the following:

Utility Functions

- ▶ A utility function $u : A \rightarrow \mathbb{R}$ represents the preference relation \geq if for all $x,y \in A$, $x \geq y \Leftrightarrow u(x) \geq u(y)$.
 - For every strictly increasing function f, $f(u(\cdot))$ is a new utility function which represents the same preference relation.
 - In general, utility functions are purely ordinal.
- Why utility?
 - naturalness
 - increasing/decreasing utility
 - utility maximization
 - analytical convenience
 - differential calculus
 - constrained optimization (linear programming, integer programming, etc.)

Preferences and Utility

- Proposition: For a countable number of alternatives, a preference relation can be represented by a utility function iff it is rational.
 - Direction from left to right: ≥-relation (on the reals) is transitive and complete.
 - Direction from right to left: Tutorial.
- When the number of alternatives is uncountable, some form of continuity is required for the above result to hold.
 - Lexicographic preferences: consider criteria in some fixed order until one criterion can distinguish the alternatives
 - E.g., safety first, altruism/spitefulness
 - Example: $A \subseteq \mathbb{R}^+ \times \mathbb{R}^+$ $X \gtrsim y \Leftrightarrow (X_1 > y_1) \lor ((X_1 = y_1) \land (X_2 \ge y_2))$
 - This preference relation cannot be represented by a utility function!

