

Comparaison de modèles

JM Galharret

Introduction

Comparaison o

 R^2 et R_a^2

Test pour les modèles

Partitionnement de la variance

Multicolinéarité

Compléments sur le modèle de régression multiple

JM Galharret ¹

¹UFR de Psychologie Université de Nantes

March 22, 2020

Comparaison de modèles

JM Galharret

Introduction

Comparaison modèle

 \boldsymbol{R}^2 et \boldsymbol{R}_s^2

Test pour les modèles

Partitionneme de la variance

Multicolinéarité

Introduction

2 Comparaison de modèle R^2 et R_a^2 Test pour les modèles emboités

- 3 Partitionnement de la variance
- 4 Multicolinéarité

Comparaison de modèles

JM Galharret

Introduction

Comparaison modèle

 R^2 et R_a^2

Test pour les modèle

Partitionneme de la variance

Multicolinéarité

Introduction

Comparaison de modèle R² et R_a²

Test pour les modèles emboité

- 3 Partitionnement de la variance
- 4 Multicolinéarité

Introduction

Comparaison de modèles

JM Galharret

Introduction

Comparaison o

Test pour les modèles

Partitionneme

de la variance

Multicolinéarit

On s'intéresse à :

- La comparaison d'équations de régression : quelle est celle qui prédit le mieux la variable réponse Y ?
- Le partionnement de la variance étant donnés plusieurs régresseurs comment décomposer R².
- La multicolinéarité : certains prédicteurs X₁,..., X_p dans l'équation de régression sont linéairement liés les uns aux autres ou très fortement corrélés.

Comparaison de modèles JM Galharret

Comparaison de modèle

 R^2 et R_a^2 Test pour les modèl

emboités

de la variance

Multicolinéarité

- Introduction
- 2 Comparaison de modèle R^2 et R_a^2 Test pour les modèles emboités
- B Partitionnement de la variance
- 4 Multicolinéarité

Exemples:

Comparaison de modèles JM Galharret

Introduction

Comparaison de modèle

P² ot P

Test pour les modèles

Partitionneme de la variance

Multicolinéarit

Modèle	Equation
\mathcal{M}_1	$\mathit{govact} \sim \mathit{posemot} + \mathit{negemot}$
\mathcal{M}_2	$\mathit{govact} \sim \mathit{age} + \mathit{negemot}$
\mathcal{M}_3	$\mathit{govact} \sim \mathit{negemot} + \mathit{posemot} + \mathit{ideology}$
\mathcal{M}_4	$govact \sim negmot + posemot + ideology + age$

On va comparer :

- **1** Modèles non emboités : \mathcal{M}_1 et \mathcal{M}_2 , \mathcal{M}_2 et \mathcal{M}_3
- **2 Modèles emboités** tous les modèles $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$ sont des sous-modèles de \mathcal{M}_4 . \mathcal{M}_1 est emboité dans \mathcal{M}_3 .

Le problème du R²

Comparaison de modèles

JM Galharret

Introduction

Comparaison

R² et R²

l'est pour les modè

Partitionneme de la variance

Multicolinéarit

Considérons une équation de régression \mathcal{M} : $Y = b_0 + b_1 X_1 + \ldots + b_p X_p$. On définit le % de la variance expliqué par \mathcal{M} :

$$R^2 = \frac{SCE_{\mathcal{M}}}{SCE_{Y}} = 1 - \frac{SCE_{Res}}{SCE_{Y}}$$

Propriétés:

- $0 < R^2 < 1$
- R^2 augmente avec le nombre de prédicteurs dans le modèle (jusqu'à valoir 1 si on met n-1 variables dans le modèle)
- On ne peut donc utiliser R^2 pour comparer deux modèles que si ils ont le même nombre de variables.

Le R^2 ajusté

Comparaison de modèles JM Galharret

Introduction

Comparaison

 R^2 et R_a^2

Test pour les mod

Partitionnem

Multicolinéarit

On définit un autre coefficient appelé R_a^2 (R^2 ajusté) qui tient compte du nombre de variables du modèle en ajustant les SCE par les ddl:

$$R_a^2 = 1 - \frac{s_{Res}^2}{s_Y^2}$$

Remarque: On a toujours $R_a^2 \leq R^2$

Critère de comparaison

Soient M_1 et M_2 deux équations de régressions de Y ayant respectivement p_1 et p_2 prédicteurs. On calcule les R^2 ajustés de chacun des modèles $R^2_{a,1}$ et $R^2_{a,2}$. Le modèle \mathcal{M}_1 sera meilleur que le modèle \mathcal{M}_2 si :

$$R_{a,1}^2 > R_{a,2}^2$$

Exemples:

Comparaison de modèles JM Galharret

Introductio

Comparaison

modèle R² et R²

Test pour les modèles

Doublelous

de la variance

Multicolinéarit

Modèle	Equation	R^2	R_a^2
$\overline{\mathcal{M}_1}$	$\mathit{govact} \sim \mathit{posemot} + \mathit{negemot}$	0.335	0.333
\mathcal{M}_2	$\mathit{govact} \sim \mathit{age} + \mathit{negemot}$	0.338	0.336
\mathcal{M}_3	$\mathit{govact} \sim \mathit{negemot} + \mathit{posemot} + \mathit{ideology}$	0.388	0.386
\mathcal{M}_4	$govact \sim negmot + posemot + ideology + age$	0.388	0.385

- \mathcal{M}_2 est meilleur que \mathcal{M}_1
- \mathcal{M}_3 est meilleur que \mathcal{M}_2
- \mathcal{M}_4 est meilleur que \mathcal{M}_1 . \rightsquigarrow significativement ?

Test pour modèles emboités

Comparaison de modèles

JM Galharret

. . . .

merodacero

Comparaison modèle

 R^2 et R

Test pour les modèles emboités

Partitionnem de la variance

Multicolinéarit

On considère deux équations de régression emboitées

$$M_0: Y = b_0 + b_1 X_1 + \dots + b_p X_p \tag{1}$$

$$M_1: Y = b_0 + b_1 X_1 + ... + b_p X_p + b_{p+1} X_{p+1} + ... b_{p+j} X_{p+j}$$
 (2)

Test de FISHER

Pour tester $H_0: b_{p+1} = \ldots = b_{p+j} = 0$, on utilise la statistique de test

$$F = \frac{n - p - j - 1}{j} \times \frac{SCE_{\mathcal{M}_1} - SCE_{\mathcal{M}_0}}{SCE_{Res_1}}$$

. Lorsque H_0 est vraie on a $F \sim \mathcal{F}(j, n-p-j-1)$

Test de Fisher entre les modèles \mathcal{M}_1 et \mathcal{M}_4

Comparaison de modèles JM Galharret

omparaison d iodèle

Test pour les modèles emboités

Partitionneme de la variance

Multicolinéarité

Tab	le:	ANOVA

Model		Sum of Squares	df	Mean Square	F	р
$\overline{\mathcal{M}_1}$	Regression	504.3	2	252.15	204.306	< .001
	Residual	1002.2	812	1.234		
	Total	1506.5	814			
\mathcal{M}_4	Regression	585	4	146.250	128.548	< .001
	Residual	921.54	810	1.138		
	Total	1506.54	814			

$$F = \frac{810}{4-2} \times \frac{585-504.3}{921.5} = 33.35$$

L'équation 1 prédit significativement mieux govact que l'équation 0, F(2,810) = 33.35, p < .001

Comparaison de modèles

JM Galharret

Introductio

Comparaison o modèle

 R^2 et R_a^2 Test pour les modèles

emboités

Partitionnement de la variance

Multicolinéarité

Introduction

2 Comparaison de modèle R^2 et R_a^2 Test pour les modèles emboités

- 3 Partitionnement de la variance
- 4 Multicolinéarité

Le partitionnement de la variance avec des facteurs (ANOVA)

Comparaison de modèles

JM Galharret

Test pour les modèles

Partitionnement. de la variance

Dans le cas de l'ANOVA, c'est-àdire avec des prédicteurs qualitatifs les facteurs n'ont pas de part de variance commune.

On a:

$$SCE_{A+B}=[a]+[b]$$

Remarque : ici dans le modèle on a exclu l'effet d'interaction.

$$\begin{split} \eta^2 = & \frac{[a] + [b]}{[a] + [b] + [d]} \\ \eta_A^2 = & \frac{[a]}{[a] + [b] + [d]} \\ \eta_{p,A}^2 = & \frac{[a]}{[a] + [d]} \end{split}$$

Le partitionnement de la variance avec des facteurs (RLM)

Comparaison de modèles

JM Galharret

Introduction

Comparaison

R² et F

Test pour les modèles

Partitionnement de la variance

Multicolinéarit

[c] : une partie commune à X₁ et X₂.

[d] : résidu du modèle de régression de Y en fonction de X₁ et X₂

Exemple

Comparaison de modèles JM Galharret

Test pour les modèles

Partitionnement. de la variance

Soit le modèle \mathcal{M} : $govact \sim negmot + ideology$. Compléter le tableau suivant :

Equation	valeurs	SCE	R^2
govact \sim negmot	[a+c]	502.87	33.4%
govact \sim ideology	[b+c]	263.63	17.5 %
$\mathit{govact} \sim \mathit{negmot} + \mathit{ideology}$	[a+b+c]	583.50	38.7%
$\mathit{govact} \sim \mathit{negmot} + \mathit{ideology}$	[d]	923.05	_
$\boxed{[a+b+c]-[b+c]}$	[a]	319.87	21.2 %
[a+b+c]-[a+c]	[<i>b</i>]	80.63	5.4%
[a+c]-[a]	[c]	183.00	12.1%

On peut vérifier que 319.87 + 80.63 + 183 = 583.5. Pour le calcul du R^2 . on a $SCE_T = [a + b + c] + [d] = 583.5 + 923.05 = 1506.55.$

Corrélation semi-partielle

Comparaison de modèles JM Galharret

Introductio

Comparaison

 R^2 et R

Test pour les modèles

Partitionnement de la variance

Multicolinéarité

On appelle corrélation semi-partielle de Y avec X_1 conditionnellement à $X_2, ..., X_p$ le nombre défini par :

$$r_{(Y,X_1)|X_2,\dots,X_p}^2 = \frac{SCE_{\mathcal{M}_1} - SCE_{\mathcal{M}_0}}{SCE_T}$$

où
$$\mathcal{M}_1: Y = b_0 + b_1 X_1 + ... + b_p X_p$$
 et $\mathcal{M}_0: Y = b_0 + b_2 X_2 + ... + b_p X_p$.

Dans l'exemple précédent on a $r_{(Y,X_1)|X_2}^2 = 21.2\%$ et $r_{(Y,X_2)|X_1}^2 = 5.4\%$

Comparaison de modèles

JM Galharret

Introductio

Comparaison o modèle

 R^2 et R_a^2 Test pour les modèles

emboités

Partitionneme de la variance

Multicolinéarité

Introduction

Comparaison de modèle R^2 et R_a^2 Test pour les modèles emboités

- 3 Partitionnement de la variance
- 4 Multicolinéarité

Le problème de la multicolinéarité

Comparaison de modèles

JM Galharret

Introduction

Comparaison

R² et F

Test pour les modèles

Partitionnemen

Multicolinéarité

VIF (Variance Inflation Factor)

Comparaison de modèles

modèles

JM Galharret

to an alternative

Introduction

Comparaison o modèle

Test new les mod

emboités

de la variance

Multicolinéarité

Soit une équation de régression $Y = b_0 + b_1X_1 + ... + b_pX_p$. Pour quantifier le lien entre X_1 et les autres prédicteurs $X_2, ... X_p$ on écrit l'équation de régression de X_1 en fonction de $X_2, ... X_p$ et on calcule le pourcentage de variance de X_1 prédit par $X_2, ... X_p$ noté R_1^2 et on définit $VIF(X_1)$ par

$$VIF(X_1) = \frac{1}{1 - R_1^2}$$

Règle

On considère que X_1 est linéairement liée à $X_2,...,X_p$ si $VIF(X_1) > 5$. (ce qui revient à $R_1^2 > .80$)

Multicolinéarité

Comparaison de modèles

JM Galharret

Introductio

Comparaison o

 R^2 et R_a^2

Test pour les modèles

Partitionnemer de la variance

Multicolinéarité

On calcule les VIF de tous les prédicteurs du modèle et ensuite si une ou plusieurs prédicteurs ont un VIF > 5 alors :

- 1 On choisit le prédicteur ayant le plus grand VIF (disons qu'il s'agit de X_1).
- 2 On estime l'équation de Y en fonction $X_2,...,X_p$ et on recalcule tous les VIF.

Retour sur l'exemple : \mathcal{M}_1 : $govact \sim negmot + ideology$ On avait d'après la matrice de corrélation r = -.349, p < .001 entre negemot et ideology. $R_1^2 = r^2 = .1218$ et donc $VIF(X_1) = \frac{1}{1-.1218} = 1.14$ donc pas de problème de colinéarité entre negemot et ideology.