Grafų izomorfizmas

Apibrėžimas

- Du grafai G=(V_G, U_G) ir H=(V_H, U_H) yra vadinami <u>izomorfiniais</u>, jeigu:
 - $-|V_G|=|V_H|$
 - $-|U_{G}| = |U_{H}|$
 - Galima apibrėžti bijekciją iš aibės V_G į aibę V_H (f: V_G -> V_H), jeigu:
 - v₁ ir v₂ yra grafo G gretimos viršūnės
 - Tai f(v₁) ir f(v₂) yra gretimos grafo H viršūnės

Pavyzdžiai

Ar šie grafai izomorfiniai?

Ne

Ar šie grafai izomorfiniai?

Ne

Abstraktus grafas

- Aišku, kad grafų izomofrizmas yra ekvivalentiškumas (lygiavertiškumas).
 - Izomorfizmas dalina visų grafų aibę į klases
 - Vienoje klasėje visi grafai yra izomorfiniai tarpusavyje
- Vienos klasės grafus galima pavaizduoti vienu ir tuo pačiu grafu, kuris žymi (apibendrina) visą klasę. Jis vadinamas <u>abstrakčiu grafu</u>.

Žymetieji grafai

- Dažnai yra poreikis atskirti izomorfinius grafus.
- Turime priskirti kiekvienai viršūnei po žymę, pvz.
 - raidė : {a, b, c, , z}
 - skaičius: {1, 2, ... n}
- Toks grafas vadinamas <u>žymetuoju grafu</u>.
 - Žymetieji grafai, turintys tą patį viršūnių skaičių:
 - Yra lygus, kai briaunų aibė sutampa
 - Yra skirtingos, jei briaunų aibės nelygios.

Pavyzdžiai

Žymėtųjų grafų skaičius

• Didžiausias m viršūmių grafo briaunų skaičius yra lygus

•
$$S = \frac{n(n-1)}{2} = G_n^2$$

• Grafų², turinčių k briaunų, skačius

Grafų, turinčių k briaunų, skačius

$$\mathbf{G}_{\mathbf{S}}^{k}$$

$$g_n = \sum_{k=0}^{S} C_S^k = 2^{\frac{N}{2}} = 2^{\frac{n(n-1)}{2}}$$

Izomorfinių grafų skaičius

• Pojos formulė: g_n asimptotiškai lygu $2^{C_n^2} n!$

$$2^{C_n^2} n!.$$

$$\lim_{n\to\infty} \frac{2^{C_n^2}/n!}{g_n} = 1$$

 Žymėtųjų n viršūnių grafų yra n! daugiau negu abstrakčių *n* viršūnių grafų. (iš pirmo žvilgsnio)

Izomorfinių grafų skaičius

- Bet teiginys yra klaidingas, nes:
 - Ne iš kiekvieno abstraktaus grafo gauname n! Žymėtųjų grafų
 - Žymetieji tuštieji grafai yra lygus
 - Paprasta 3 viršūnių grandinė duoda 3, o ne 6 žymetuosius grafus
- Daugumoje atvejų, iš abstraktaus n viršūnių grafo gauname n! žymėtųjų grafų.

Grafų izomorfizmo nustatymo uždavinys

- Ar du žymėtieji grafai yra izomorfiniai?
- du žymėtieji grafai yra izomorfiniai:
 - jei galima vieno grafo viršūnes pernumeruoti taip, kad abiejų grafų briaunų aibės sutaptų.
 - Šis pernumeravimas apibrėžia aukščiau minėtą bijekciją.
- Tai NP pilnas uždavinys, neturintis efektyvaus sprendimo algoritmo.

Būtinos izomofrizmo sąlygos

- izomorfinių grafų viršūnių laipsnių, išrikiuotų mažėjimo (didėjimo) tvarka, sekos sutampa;
- izomorfinių grafų gretimumo matricos yra panašios, t.y. jų tikrinės reikšmės yra lygios

Pavyzdys

- 123456
- 153426

Pavyzdys

