

Visual Analysis of Fitness Landscapes in Architectural Design Optimization

Moataz Abdelaal, Marcel Galuschka, Max Zorn, Fabian Kannenberg, Achim Menges, Thomas Wortmann, Daniel Weiskopf, Kuno Kurzhals

Architecture

NHAPS - Nation, Percentage Time Spent

Total n = 9,196

Architecture, Engineering, and Construction (AEC)

Demand, Productivity and Climate Change

Urban and rural population of the world, 1950–2050

United Nations, Department of Economic and Social Affairs, Population Division (2015). World Urbanization Prospects: The 2014 Revision.

Economic mitigation potentials by sector in 2030 estimated from bottom-up studies

IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

Productivity in manufacturing has nearly doubled, whereas in construction it has remained flat.

Overview of productivity improvement over time

Productivity (value added per worker), real, \$ 2005

Manufacturing Construction

Source: Expert interviews; IHS Global Insight (Belgium, France, Germany, Italy, Spain, United Kingdom, United States); World Input-Output Database

McKinsey&Company

S. Changali, A. Mohammad, and M. Van Nieuwland, "The construction productivity imperative," McKinsey & Company, New York, NY, USA, Tech. Rep., 2015

Design Optimization

Computational optimization methods have *great* potential

Design Optimization

Computational optimization methods have *great*potential but have had

limited impact on architectural design so far

Design

often described as a wicked problem with ill-defined tasks and incomplete data

Optimization

requires a well-defined problem with clear constraints and objective functions

Design

Optimization

Human-in-the-loop

Fitness Landscape

Visualizes the design space parameters in relation to one or more objective functions

Wortmann, Thomas. "Surveying design spaces with performance maps: A multivariate visualization method for parametric design and architectural design optimization." International Journal of Architectural Computing 15.1 (2017): 38-53.

Requirements

R1: A diverse landscape with a wide array of solutions

R2: A 2D spatial embedding of the design space

 R3: A visual representation revealing relationships between the design parameters and performance

Research Questions

 Q1: How to design and build a visual analytics tool to fulfill these requirements?

 Q2: How to assess the usability and usefulness of such tool?

Research Questions

 Q1: How to design and build a visual analytics tool to fulfill these requirements?

 Q2: How to assess the usability and usefulness of such tool?

A Holistic Framework

R1: How to obtain diverse fitness landscapes with a wide array of solutions?

RBF fitness landscapes with 1000 samples using three sampling strategies

R2: How to obtain a spatial 2D embedding of the design space?

Star Coordinates (SC)

UMAP

R3: How to visually uncover relationships between the design parameters and

performance?

Star Glyph

GC:point-ibarsect Hitmess Landscape (GFL)

Research Questions

 Q1: How to design and build a visual analytics tool to fulfill these requirements?

 Q2: How to assess the usability and usefulness of such tool?

Variables

Measures

- Task Difficulty
- Subjective Preferences
- Mouse Trajectories

User Study

Procedure

Tasks

T1: Projection Mental Map

Approximate where a solution is located on the map, given parameter values

T2: Design Alternatives
Find two design alternatives that achieve relatively high performance but differ in their parameter configurations

T3: Significant Parameters
Identify parameters that have a significant impact on the performance and identify the impact type (positive or negative)?

T4: Parameters Correlations

Identify correlations between parameter pairs and the performance

T1: Projection Mental Map

Approximate where a solution is located on the map, given parameter values

T2: Design Alternatives

Find two design alternatives that achieve relatively high performance but differ in their parameter configurations

T3: Significant Parameters
Identify parameters that have a significant impact on the performance and identify the impact type (positive or negative)?

T4: Parameters Correlations

Identify correlations between parameter pairs and the performance

Results

Task Difficulty

Preferred Projection per Task

Participants Comments

SC

straight-forward

easy to understand

easy to locate solutions

quick to learn

UMAP

hard to navigate

where to start

more solutions

go hunting

Mouse Trajectories

(a) Axes Following

(b) Random Search

Preferred Visualization per Task

Participants Comments

Conclusion

 A holistic framework for exploring fitness landscapes that span across data, projection, and visualization layers

 The three layers pose a challenge not only to design and build visualization tools but also to use them

Abstract data visualizations offer high-level design space insights,
 but architects seek to "see" and "inspect" the 3D structure

Thank you for your attention!

Moataz Abdelaal

Marcel Galuschka

Max Zorn

Fabian Kannenberg

Achim Menges

Thomas Wortmann

Daniel Weiskopf

Kuno Kurzhals

