WLP-based Testing

Progress Report

Orestis Melkonian

October 25, 2017

Universiteit Utrecht

Overview

- Parsing
- Calculating paths
- Renaming
- Calculating WLP
- Replacing Conditionals
- Normalizing
- SMT-solving

Parsing

Transforms given GCL file to an internal AST.

Paths

Calculate all possible program paths up to some length. Branching statements are:

■ If-then-else

While

Renaming

Rename all locally-scoped variables in:

Var statements

Forall expressions

WLP

For each path, calculate its weakest precondition.

Issue

Handle array assignments.

Solution

Use repby and, when indexed, convert to conditional expressions.

Conditional replacement

Array assignments introduce conditional expressions to the final logical formula.

Example

wlp
$$(a[1] := 10) (a[5] = 1) \Longrightarrow (1 = 5 \to 10 \mid a[5]) = 1$$

Replace these with primitive logical formulas.

Example

$$(g
ightarrow \mathit{lhs} \, | \, \mathit{rhs}) = E \, \equiv \, (g \Rightarrow \mathit{lhs} = E) \wedge (\neg g \Rightarrow \mathit{rhs} = E)$$

Normalizing

Normalize the form of the result WLP formula to:

- A list of assumptions
- The final goal

Example

$$A_1 \Rightarrow A_2 \Rightarrow \dots \Rightarrow A_n \Rightarrow G$$

$$A_1 \wedge A_2 \wedge ... \wedge A_n \Rightarrow G$$

SMT-solving

SAT-solve the conjuction of the assumptions:

- Unsatisfiable o Infeasible path
- Satisfiable with model $[x \rightsquigarrow x'] \rightarrow$
 - Pass, if G[x'/x]
 - Fail, if $\neg G[x'/x]$

Issue

Still have to handle arrays, as they appear in the formula.

Solution

Treat them as uninterpreted symbols.