

Università degli Studi di Padova

Synthetic CT Generation from MRI

A Unet Deep Learning Approach

Farshad Jafarpour October 16, 2024

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6. Results

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6 Results

Introduction

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6 Results

Preprocessing

Datasets and Normalization

- Baseline Dataset: Glioma patients (3T MAGNETOM Trio, Siemens).
- Target Dataset:
 Neurodegenerative patients
 (SIEMENS Biograph mMR,
 PET/MRI hybrid).
- Z-score normalization was applied to MR images of both datasets.

Preprocessing Workflow

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6 Results

Why Data Augmentation?

Why Augment?

- Limited data in medical imaging leads to overfitting and biased models.
- Augmentation increases dataset diversity, crucial for model generalization.
- Our datasets: Baseline (15 patients) and Target (16 patients).

Data Augmentation

Augmentation Methods

- Translation: Shifts image in different directions.
- Flip: Mirrors images horizontally or vertically.
- Horizontal and Vertical Flip: Rotates images 180 degrees for full orientation coverage.
- Rotation: Rotates images to add orientation diversity.
- Scaling: Resizes images to simulate different distances.

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6 Results

2D U-Net Model Architecture

Block	Layers
Down 1	Conv2D + ReLU + BN + MaxPool
Down 2	Conv2D + ReLU + BN + MaxPool
Down 3	Conv2D + ReLU + BN + MaxPool
Down 4	Conv2D + ReLU + BN + MaxPool
Bottleneck	Conv2D + ReLU + BN + Conv2D + ReLU + BN
Up 1	Conv2D + ReLU + BN + ConvTransp
Up 2	Conv2D + ReLU + BN + ConvTransp
Up 3	${\sf Conv2D} + {\sf ReLU} + {\sf BN} + {\sf ConvTransp}$
Output	Conv2D + ReLU + BN + Conv2D

Table: 2D U-Net Model Layers

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6 Results

Testing Process

- Comparison: Predictions of synthetic CT images are compared with actual CT images in a defined region of interest (ROI) using a mask.
- Metrics:
 - MAE (Mean Absolute Error): Measures the average absolute difference between predicted and actual Hounsfield Unit (HU) values, indicating overall precision.
 - BIAS (Mean Error): Shows whether predictions overestimate or underestimate actual CT values.
 - **DSC** (**Dice Similarity Coefficient**): Evaluates the overlap between predicted and actual segmentations for specific tissue classes (e.g., bones, fat, muscle).

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
- 4. 2D U-Net Model
- 5. Testing Process
- 6. Results

Preprocessing Results: Artifacts vs Normal

Pretraining Results

Axial View

Sagittal View

$$(MAE) = 60.437, ME = 19.909$$

Coronal View

Quantitative Evaluation: The Target Dataset

Bone Threshold Assessment

- Evaluated accuracy of sCT images using bone threshold assessment.
- Dice Similarity Coefficient (DSC) measures overlap between sCT and CT bone structures.
- DSC ranges from 0 (no overlap) to 1 (perfect overlap).
- DSC decreases as Hounsfield Unit (HU) thresholds increase.
- Higher DSC at lower HU indicates better bone structure capture in sCT.
- Decline in DSC at higher HU reflects challenges in modeling dense bone tissues.

Bone Threshold Assessment: Sample Case

Sample Case: This figure illustrates the comparison between real CT and sCT for a specific case (P3), showing the impact of HU threshold variation on bone structure accuracy.

Thanks!

