Содержание

1 Компоненты	3
1.1 cmp_add_input_stream	
1.2 cmp_add_output_stream	
1.3 cmp_auth	
1.3.1 Платформы	
1.3.2 Конфигурация	
1.3.2.1 Config	
1.4 cmp derive	
1.5 cmp esp adc	
1.6 cmp_esp_gpio	10
1.6.1 Конфигурация	
1.6.1.1 Config	10
1.7 cmp_esp_mqtt_client	11
1.7.1 Платформы	
1.8 cmp_esp_nvs	12
1.9 cmp_esp_wifi	13
1.10 cmp_external_fn_process	14
1.11 cmp_http_client	15
1.12 cmp_http_client_wasm	16
1.13 cmp_http_server	17
1.14 cmp_http_server_esp	18
1.15 cmp_influxdb	
1.16 cmp_inject_periodic	20
1.17 cmp_leptos	21
1.17.1 Платформы	21
1.17.2 Конфигурация	21
1.17.2.1 Config	21
2 Внешние сервисы	22
2.1 EMQX	23
2.1.1 docker	23
2.2 Go2rtc	24
2.2.1 docker	24
$2.2.2$./config_services/go2rtc/go2rtc.yaml	24
2.3 Grafana	25
2.3.1 docker	25
2.3.2 Файлы конфигурации	25
$2.3.2.1$./config_services/grafana/datasources/	25
$2.3.2.2$./config_services/grafana/dashboards/	26
2.4 InfluxDB (v2)	27
2.4.1 docker	27
2.5 InfluxDB (v3)	28
2.6 Loki	29
2.6.1 docker	29
2.7 Portainer	30
2.7.1 docker	30
2.8 Redis	31

2.8.1 docker	31
2.8.2 Файлы конфигурации	31
2.8.2.1 redis.conf	31
2.9 Rust	32
2.9.1 docker (бекенд)	32
2.9.2 docker (cmp_leptos)	32
2.10 Sentryshot	33
2.10.1 docker	33
2.10.2 Файлы конфигурации	33
2.10.2.1 ./sentryshot/configs/sentryshot.toml	33
2.10.2.2 ./sentryshot/configs/monitors/	34
2.11 SurrealDB	35
2.11.1 docker	35
2.12 SystemD	36
2.12.1 project.service	36
2.13 TimescaleDB	37
2.13.1 docker	37
2.13.2 postgresql.conf	37
2.13.3 pg_hba.conf	37
2.13.4 init.sql	37

1 Компоненты

Клиентское подключение:

- [cmp_http_client_wasm](./cmp_http_client_wasm.md)
- [cmp_http_client](./cmp_http_client.md)
- [cmp_modbus_client](./cmp_modbus_client.md)
- [cmp_websocket_client_wasm](./cmp_websocket_client_wasm.md)
- [cmp websocket client](./cmp websocket client.md)

Сервера:

- [cmp http server esp](./cmp http server esp.md)
- [cmp http server](./cmp http server.md)
- [cmp_websocket_server](./cmp_websocket_server.md)

Брокеры сообщений:

- [cmp_esp_mqtt_client](./cmp_esp_mqtt_client.md)
- [cmp_mqtt_client](./cmp_mqtt_client.md)
- [cmp_redis_client](./cmp_redis_client.md)

Интерфейс пользователя:

- [cmp_leptos](./cmp_leptos.md)
- [cmp_slint](./cmp_slint.md)

Авторизация:

• [cmp_auth](./cmp_auth.md)

Сохранение данных:

- [cmp esp nvs](./cmp esp nvs.md)
- [cmp_influxdb](./cmp_influxdb.md)
- [cmp surrealdb](./cmp surrealdb.md)
- [cmp_timescaledb](./cmp_timescaledb.md)
- [cmp_webstorage](./cmp_webstorage.md)

Взаимодействие с аппаратной частью

- [cmp esp adc](./cmp esp adc.md)
- [cmp esp gpio](./cmp esp gpio.md)
- [cmp esp wifi](./cmp esp wifi.md)
- [cmp_raspberrypi_gpio](./cmp_raspberrypi_gpio.md)

Логика исполнения

• [cmp_plc](./cmp_plc.md)

Систеная информация

• [cmp system info](./cmp system info.md)

Служебные компоненты:

- [cmp_add_input_stream](./cmp_add_input_stream.md)
- [cmp_add_output_stream](./cmp_add_output_stream.md)
- [cmp_derive](./cmp_derive.md)

- [cmp_external_fn_process](./cmp_external_fn_process.md)[cmp_inject_periodic](./cmp_inject_periodic.md)
- [cmp_logger](./cmp_logger.md)

1.1 cmp_add_input_stream

1.2 cmp_add_output_stream

1.3 cmp_auth

Компонент авторизации пользователей

1.3.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	+
riscv32imc-esp-espidf	-
x86_64-linux-android	-
x86_64-unknown-linux-gnu	+
wasm32-unknown-unknown	-

1.3.2 Конфигурация

$\boldsymbol{1.3.2.1}\;\mathsf{Config}$

secret_key	String	Секретный ключ для валидации токенов
store		Хранилище данных доступа
Локальное	сохране	ние:
login:	"admin" d: "adm:	<pre>onfigStore::Local(vec![cmp_auth::ConfigStoreLocalItem { .into(), in".into(), issions::Admin,</pre>

1.4 cmp_derive

1.5 cmp_esp_adc

1.6 cmp_esp_gpio

Компонент для работы с входами и выходами GPIO микроконтроллера ESP

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	+
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	-

1.6.1 Конфигурация

1.6.1.1 Config

1.7 cmp_esp_mqtt_client
Клиент MQTT микроконтроллера ESP32

1.7.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	+
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	-

1.8 cmp_esp_nvs

1.9 cmp_esp_wifi

1.10 cmp_external_fn_process

1.11 cmp_http_client

1.12 cmp_http_client_wasm

1.13 cmp_http_server

1.14 cmp_http_server_esp

1.15 cmp_influxdb

1.16 cmp_inject_periodic

1.17 cmp_leptos

Компонент для интеграции веб-приложения на основе фреймворка [Leptos](<u>https://leptos.dev</u>).

1.17.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	-
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	+

1.17.2 Конфигурация

1.17.2.1 Config

body_component		Корневой компонент для монтирования
<pre>body_component: view! { <app></app> }</pre>		
hostname		Имя хоста, на котором развернуто веб-приложение

2 Внешние сервисы Конфигурация различных внешних сервисов.

2.1 EMQX

MQTT-брокер

2.1.1 docker

```
services:
  emqx:
    container_name: emqx
    healthcheck:
     test: ["CMD", "/opt/emqx/bin/emqx", "ctl", "status"]
      interval: 5s
     timeout: 25s
      retries: 5
    hostname: emqx
    image: emqx:5.6.0 # https://hub.docker.com/_/emqx
    networks:
      - network_internal
    ports:
     - 1883:1883
     - 8083:8083
      - 8084:8084
     - 8883:8883
      - 18083:18083
    profiles:
     - dev
     - target
    volumes:
      - emqx_volume:/opt/emqx/data
networks:
  network_internal:
volumes:
  emqx_volume:
    name: emqx_volume
```

2.2 **Go2rtc**

Сервис конвертирования видеопотока с видеокамеры.

2.2.1 docker

```
services:
  go2rtc:
    container_name: go2rtc
    hostname: go2rtc
    image: alexxit/go2rtc
    network_mode: host
    privileged: true
    restart: unless-stopped
    profiles:
     - target
      - dev
    volumes:
      - "./config_services/go2rtc:/config"
2.2.2 ./config_services/go2rtc/go2rtc.yaml
streams:
  tapo: rtsp://administrator:Admin123!@10.0.6.3:554/stream1
api:
  origin: "*"
  listen: ":8003"
```

2.3 Grafana

2.3.1 docker

```
services:
  grafana:
    container name: grafana
    hostname: grafana
    image: grafana/grafana:10.2.3 # https://hub.docker.com/r/grafana/grafana/tags
    environment:
      - GF_PATHS_PROVISIONING=/etc/grafana/provisioning
      - GF_AUTH_ANONYMOUS_ENABLED=true
      - GF AUTH ANONYMOUS ORG ROLE=Admin
      - GF SECURITY ALLOW EMBEDDING=true
        # настройки источника - TimescaleDB
      - TIMESCALEDB_HOST=timescaledb
      - TIMESCALEDB_PORT=5432
      - TIMESCALEDB_DB_DATA=db_data
       # настройки источника - логгер loki
      - LOKI_HOST=loki
      - LOKI PORT=3100
       # настройки источника - InfluxDB
      - INFLUXDB HOST=influxdb
      - INFLUXDB PORT=8086
      - INFLUXDB_ORG=org
      - INFLUXDB BUCKET=bucket
      - INFLUXDB_TOKEN=token
    ports:
      - "3000:3000"
    profiles:
      - dev
      - target
    volumes:
      - ./config_services/grafana/datasources:/etc/grafana/provisioning/datasources
      - ./config services/grafana/dashboards:/etc/grafana/provisioning/dashboards
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
    networks:
      - network_internal
networks:
  network internal:
2.3.2 Файлы конфигурации
2.3.2.1 ./config services/grafana/datasources/
В папке хранятся файлы для настройки источников данных.
influxdb.yaml:
```

```
apiVersion: 1
datasources:
  - name: InfluxDB
    type: influxdb
    access: proxy
    url: http://${INFLUXDB_HOST}:${INFLUXDB_PORT}
    jsonData:
```

```
version: Flux
      organization: ${INFLUXDB ORG}
      defaultBucket: ${INFLUXDB_BUCKET}
      tlsSkipVerify: true
    secureJsonData:
      token: ${INFLUXDB_TOKEN}
loki.yaml:
apiVersion: 1
datasources:
  - name: loki
   type: loki
    access: proxy
    orgId: 1
    url: http://${LOKI_HOST}:${LOKI_PORT}
    basicAuth: false
    isDefault: true
    version: 1
    editable: false
timescaledb.yaml:
apiVersion: 1
datasources:
  - name: timescaledb
    type: postgres
    url: ${TIMESCALEDB_HOST}:${TIMESCALEDB_PORT}
    user: postgres
    secureJsonData:
      password: "postgres"
    jsonData:
      database: ${TIMESCALEDB DB DATA}
      sslmode: "disable" # disable/require/verify-ca/verify-full
      maxOpenConns: 100 # Grafana v5.4+
      maxIdleConns: 100 # Grafana v5.4+
      maxIdleConnsAuto: true # Grafana v9.5.1+
      connMaxLifetime: 14400 # Grafana v5.4+
      postgresVersion: 1500 # 903=9.3, 904=9.4, 905=9.5, 906=9.6, 1000=10
      timescaledb: true
    editable: false
```

2.3.2.2 ./config_services/grafana/dashboards/

В папке хранятся все дашбоарды. Структура папок переносится в структуру дашбоардов. В корне папки нужно разместить файл config.yaml:

```
apiVersion: 1

providers:
    - name: dashboards
    type: file
    updateIntervalSeconds: 5
    options:
        path: /etc/grafana/provisioning/dashboards
        foldersFromFilesStructure: true
```

2.4 InfluxDB (v2)

2.4.1 docker

```
services:
  influxdb:
    container_name: influxdb
    environment:
      - DOCKER INFLUXDB INIT MODE=setup
      - DOCKER_INFLUXDB_INIT_USERNAME=admin
      - DOCKER_INFLUXDB_INIT_PASSWORD=Admin123!
      - DOCKER_INFLUXDB_INIT_ORG=org
      - DOCKER_INFLUXDB_INIT_BUCKET=bucket
      - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=token
    hostname: influxdb
    image: influxdb:2.7.6 # https://hub.docker.com/_/influxdb
    networks:
      network_internal
    ports:
      - "8086:8086"
    volumes:
      - influxdb_data:/var/lib/influxdb2
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
volumes:
  influxdb_data:
   name: influxdb data
# TODO - healhcheck
```

2.5 InfluxDB (v3)

2.6 Loki

Для проверки запуска можно открыть в браузере:

- http://localhost:3100/metrics
- http://localhost:3100/ready

2.6.1 docker

```
services:
  loki:
    command: -config.file=/etc/loki/local-config.yaml
    container name: loki
    healthcheck:
      test: wget --spider http://localhost:3100/ready
      interval: 10s
     timeout: 20s
     retries: 15
    hostname: loki
    image: grafana/loki:2.9.2 # https://hub.docker.com/r/grafana/loki/tags?page=1&
name=2.
    networks:
     network_internal
    ports:
      - "${LOKI_PORT}:3100"
    profiles:
     - dev
      - target
    volumes:
      - loki_data:/loki
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
volumes:
  loki_data:
    name: loki_data
networks:
  network_internal:
```

2.7 Portainer

2.7.1 docker

```
services:
  portainer:
    container_name: portainer
    hostname: portainer
    image: portainer/portainer-ce:latest
    ports:
     - "${PORTAINER_PORT}:9000"
    profiles:
      - target
    restart: always
    volumes:
      - portainer_data_volume:/data
      - /var/run/docker.sock:/var/run/docker.sock
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
volumes:
  portainer_data_volume:
    name: portainer_data_volume
```

2.8 Redis

2.8.1 docker

```
services:
  redis:
    container_name: redis
    healthcheck:
     test: redis-cli --raw incr ping
     interval: 5s
     timeout: 5s
      retries: 5
    hostname: redis
    image: redis/redis-stack:latest
    networks:
      network_internal
    ports:
      - "${REDIS_PORT}:6379" # порт Redis
      - "${REDIS_PORT_UI}:8001" # порт UI
    volumes:
      - redis_data:/data # для сохранения данных
      - ./services/redis/redis.conf:/redis-stack.conf # путь к файлу конфигурации
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
volumes:
  redis_data:
    name: redis_data
```

2.8.2 Файлы конфигурации

2.8.2.1 redis.conf

Для сохранения сообщений при перезапуске:

```
appendonly yes
```

2.9 Rust

Запуск программ на rust в контейнерах docker

2.9.1 docker (бекенд)

```
services:
  backend:
    command: ./backend
    container_name: backend
    depends on:
      redis:
        condition: service_healthy
        restart: true
      loki:
        condition: service_healthy
        restart: true
    hostname: backend
    image: ubuntu:noble
    networks:
      network_internal
    environment:
      - RUST_LOG=info
    profiles:
      - target
    volumes:
      - ./backend:/backend
      - ./.env:/.env
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
2.9.2 docker (cmp_leptos)
services:
  frontend:
    container_name: frontend
    hostname: frontend
    image: nginx
    networks:
      - network internal
    ports:
     - "8000:80"
    profiles:
      - target
    volumes:
      - ./frontend/dist:/usr/share/nginx/html
      - ./frontend/nginx.conf:/etc/nginx/conf.d/default.conf
networks:
  network_internal:
volumes:
  surrealdb data:
   name: surrealdb data
# TODO - healtcheck
```

2.10 Sentryshot

Сохранение потока с видеокамеры. Ссылка на репозиторий.

2.10.1 docker

```
services:
    sentryshot:
    shm_size: 500m
    image: codeberg.org/sentryshot/sentryshot:v0.2.17
    ports:
        - 2020:2020
    environment:
        - TZ=Europe/Minsk
    profiles:
        - target
    volumes:
        - ./config_services/sentryshot/configs:/app/configs
        - ./config_services/sentryshot/storage:/app/storage
```

Проверить версию - https://codeberg.org/SentryShot/sentryshot/releases.

2.10.2 Файлы конфигурации

2.10.2.1 ./sentryshot/configs/sentryshot.toml

```
\Piроверить max_disk_usage.
```

```
# Port app will be served on.
port = 2020
# Directory where recordings will be stored.
storage_dir = "/app/storage"
# Directory where configs will be stored.
config_dir = "/app/configs"
# Directory where the plugins are located.
plugin_dir = "/app/plugins"
# Maximum allowed storage space in GigaBytes.
# Recordings are delete automatically before this limit is exceeded.
max disk usage = 100
# PLUGINS
# Authentication. One must be enabled.
# Basic Auth.
[[plugin]]
name = "auth_basic"
enable = false
# No authentication.
[[plugin]]
name = "auth_none"
```

```
enable = true
```

```
# Motion detection.
# Documentation ./plugins/motion/README.md
[[plugin]]
name = "motion"
enable = false

# TFlite object detection.
# Enabling will generate a `tflite.toml` file.
[[plugin]]
name = "tflite"
enable = false

# Thumbnail downscaling.
# Downscale video thumbnails to improve page load times and data usage.
[[plugin]]
name = "thumb_scale"
enable = false
```

2.10.2.2 ./sentryshot/configs/monitors/

В папке хранятся файлы конфигурации для каждой камеры. Пример файла для камеры RTSP:

```
{
  "alwaysRecord": true,
  "enable": true,
  "id": "tapo",
  "name": "tapo",
  "source": "rtsp",
  "sourcertsp": {
    "mainStream": "rtsp://administrator:Admin123!@192.168.31.3:554/stream1",
    "protocol": "tcp"
  },
  "videoLength": 15
}
```

2.11 SurrealDB

2.11.1 docker

```
services:
  surrealdb:
    command: start --user root --pass root file:/data/database.db
    container_name: surrealdb
    hostname: surrealdb
    image: surrealdb/surrealdb:latest
    networks:
     - network_internal
    ports:
     - "${SURREALDB_PORT}:8000"
    user: root
    volumes:
      - surrealdb_data:/data
networks:
 network_internal:
volumes:
 surrealdb_data:
  name: surrealdb_data
# TODO - healtcheck
```

2.12 SystemD

Пример создания файла для автозапуска сервисов с помощью SystemD

2.12.1 project.service

[Unit]
Description=PROJECT_DESC
Requires=docker.service
After=docker.service

[Service]
Type=oneshot
RemainAfterExit=yes
WorkingDirectory=/home/user/PROJECT_FOLDER
ExecStart=/home/user/.cargo/bin/nu scripts/target-start.nu
ExecStop=/home/user/.cargo/bin/nu scripts/target-stop.nu
TimeoutStartSec=0

[Install]
WantedBy=multi-user.target

2.13 TimescaleDB

2.13.1 docker

```
services:
  timescaledb:
    command: postgres
      -c config_file=/etc/postgresql/postgresql.conf
      -c hba file=/etc/postgresql/pg hba.conf
    container_name: timescaledb
    healthcheck:
      test: pg_isready -d db_prod
      interval: 30s
      timeout: 60s
      retries: 5
      start_period: 80s
    hostname: timescaledb
    image: timescale/timescaledb:2.12.2-pg15
    networks:
      - network internal
    environment:
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
      - "5432:5432"
    profiles:
      - dev
      - target
    volumes:
      - ./timescaledb/postgresql.conf:/etc/postgresql/postgresql.conf
      - ./timescaledb/pg hba.conf:/etc/postgresql/pg hba.conf
      - ./timescaledb/init.sql:/docker-entrypoint-initdb.d/init.sql
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network internal:
2.13.2 postgresql.conf
listen addresses = '*'
max_locks_per_transaction = 10000
2.13.3 pg hba.conf
local all all trust
host all all 0.0.0.0/0 trust
2.13.4 init.sql
CREATE DATABASE db conf;
CREATE DATABASE db data;
\c db data
CREATE EXTENSION IF NOT EXISTS timescaledb;
-- enum agg_type
CREATE TYPE agg_type AS ENUM (
    'curr',
    'first',
```

```
'inc',
     'sum',
     'mean',
     'min',
     'max'
);
-- table raw
CREATE TABLE raw (
    ts TIMESTAMPTZ NOT NULL,
entity TEXT NOT NULL,
attr TEXT NOT NULL,
value DOUBLE PRECISION NULL,
agg AGG_TYPE NOT NULL,
aggts TIMESTAMPTZ NULL,
aggnext AGG_TYPE[] NULL,
    UNIQUE (ts, entity, attr, agg)
);
SELECT create_hypertable(
     'raw', 'ts',
     chunk_time_interval => INTERVAL '24 hours'
);
ALTER TABLE raw SET (
     timescaledb.compress,
     timescaledb.compress_segmentby='entity, attr, agg'
SELECT add_compression_policy('raw', INTERVAL '100000 hours');
-- agg_30min
CREATE TABLE agg_30min (LIKE raw);
-- create databases for test
CREATE DATABASE db_data_test WITH TEMPLATE db_data;
CREATE DATABASE db_conf_test WITH TEMPLATE db_conf;
```