NP-Completeness

<u>Definition</u> SAT = { $\langle \phi \rangle \mid \phi$ is a satisfiable Boolean formula }

Example ($(x \land \neg y) \lor \neg x$) is satisfiable by the assignment x = 1 and y = 0.

Theorem SAT is NP-complete [proof next week]

<u>Definition</u> 3SAT = { $\langle \phi \rangle \mid \phi \text{ is a satisfiable 3CNF formula }}$

A 3CNF formula has the form $(s_{11} \lor s_{12} \lor s_{13}) \land (s_{21} \lor s_{22} \lor s_{23}) \land ...$ where literals s_{ij} are Boolean variables or negated Boolean variables.

Theorem 3CNF is NP-complete [proof next week]

Theorem $L \in NPC$

Proof

- I. Show that $L \in NP$
 - A. Certificate: [Describe certificate]
 - B. Algorithm: [Construct verification algorithm V]
 - C. Runtime: [Argue that V runs in polynomial time]
- II. Show that $S \leq_P L$ [Find a reduction from S to L, where $S \in NPC$]
 - A. Algorithm: [Construct reduction algorithm M]
 - 1. Input: [Give form of input]
 - 2. Output: [Give form of output]
 - B. Reduction: [Show that M is a reduction]
 - 1. (\Rightarrow) : $[x \in S \Rightarrow M(x) \in L]$
 - 2. (\Leftarrow) : $[x \notin S \Rightarrow M(x) \notin L]$
 - C. Runtime: [Argue that M runs in polynomial time]

Clique

```
A clique is a complete subgraph of undirected graph G.
```

CLIQUE = $\{ \langle G, k \rangle : G \text{ is a graph with a clique of size } k \}$

Theorem CLIQUE ∈ NPC

Proof

(1) CLIQUE ∈ NP

Certificate: A subset $V' \subseteq V[G]$ of vertices that forms a clique

Verification algorithm V:

 $V = \text{``On input } \langle G, V' \rangle$:

for each pair of vertices $u, v \in V'$

check if $u, v \in V[G]$

check if $(u, v) \in E$

if both checks succeed then accept else reject

Runtime: V runs in O(E[G]) time

(2) CLIQUE is NP-hard (Show 3-CNF-SAT ≤_P CLIQUE)

Let
$$\phi = C_1 \wedge C_2 \wedge ... \wedge C_k$$
 be a 3-CNF formula where $C_r = (s_1^r \vee s_2^r \vee s_3^r)$.

Reduction algorithm M: $\langle \phi \rangle \rightarrow \langle G, k \rangle$

Construct G as follows:

for each clause
$$C_r = (s_1^r \vee s_2^r \vee s_3^r)$$
 in ϕ

add v_1^r , v_2^r , v_3^r to V[G]

for each pair of vertices v_i^r and v_j^s in G

place an edge between them if both:

- (1) v_i^r and v_i^s are in different triples ($r \neq s$), and
- (2) their corresponding literals are consistent ($s_i^r \neq \neg s_i^s$)

Halt with G on tape.

Example

$$\phi = (x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_3)$$

[change the middle clause to $(\neg x_1 \lor \neg x_1 \lor \neg x_3)$ and you won't have a clique of size 3]

Runtime: M runs in $O(k) + O(k^2) = O(k^2)$ time.

Correctness of M: $\langle \phi \rangle \in 3$ -CNF-SAT $\Leftrightarrow \langle G, k \rangle \in CLIQUE$

 (\Rightarrow)

φ has a satisfying assignment.

Each clause C_r contains at least one "true" literal.

Let S be a set containing one "true" literal from each clause.

Claim: the set of vertices V' in G that corresponds to S is a clique.

Let u and v be arbitrary vertices in V'

We know that:

- (1) their corresponding literals come from different clauses, and
- (2) their corresponding literals are consistent since they both map to "true"

Therefore, there must be an edge between the vertices

Since u and v are arbitrary,

for all u, v in V', (u, v) is in G

V' is a clique of size k for G

 (\Leftarrow)

G has a clique V' of size k

Let S be the set of literals corresponding to V'

We know that:

- S contains exactly one literal from each clause in φ (there are k clauses and k vertices, and there cannot be more than one vertex from the same triple)
- (2) All the literals in S are consistent.

Therefore, we can safely assign "true" to all the literals in S

The assignment makes all clauses true,

which in turn makes φ true.

φ has a satisfying assignment.

Vertex cover

Let G = (V, E) be an undirected graph. A **vertex cover** is a subset $V' \subseteq V$ of vertices such that if $(u, v) \in E$ then $u \in V'$ or $v \in V'$ (or both)

Example

VERTEX-COVER = $\{ \langle G, k \rangle : \text{graph } G \text{ has a vertex cover of size } k \}$

Theorem VERTEX-COVER ∈ NPC

Proof

(1) $VERTEX-COVER \in NP$

certificate: subset of $V' \subseteq V$ of vertices

algorithm:

check of |V'| = k

for each edge (u, v) in E

check if $u \in V$ or $v \in V$

poly-time: size check takes O(V); edge check takes O(E)

(2) VERTEX-COVER is NP-hard

(we show CLIQUE \leq_P VERTEX-COVER)

(A) Algorithm F: $\langle G, k \rangle \rightarrow \langle G', k' \rangle$

construct G' as G* = (V, E*), E* is the compliment of E [set of all edges not in E] k' = |V| - k

(B) F runs in poly time

 $O(V^2)$ time to change $0 \leftrightarrow 1$ in adjacency matrix.

- (C) F computes a reduction
- $\langle G, k \rangle \in CLIQUE \Leftrightarrow \langle G^*, |V| k \rangle \in VERTEX-COVER$

```
(\Rightarrow)
G has clique V' of size k
Let (u, v) be an arbitrary edge in G*
Since (u, v) is not an edge in G,
  at least one of u, v must be outside clique V'
Therefore, at least one of u, v must be in V - V'
V - V' covers (u, v)
Since (u, v) is arbitrary, V - V' covers all (u, v) in G^*
V - V' is a vertex cover for G^* – it has size |V| - k
(\Leftarrow)
G^* has vertex cover V' with size |V| - k
Let both u and v be arbitrary vertices in V - V'
Suppose (u, v) is in G*
Then at least one of u, v must be in vertex cover V'(\Rightarrow \Leftarrow)
So (u, v) is in G
Since u and v are arbitrary,
  for all u, v in V - V', (u, v) is in G
Therefore, V - V' is a clique of size k for G
[ return to the picture – the complement graph has a clique of size four ]
Hamiltonian paths and cycles
HAMPATH = \{ \langle G, s, t \rangle : G \text{ has a Hamiltonian path from s to t } \}
Theorem HAMPATH ∈ NPC
[ see the text for a reduction VERTEX-COVER \leq_P HAMPATH ]
HAMCYCLE = \{\langle G \rangle : G \text{ has a Hamiltonian cycle } \}
Theorem HAMCYCLE ∈ NPC
HAMCYCLE ∈ NP
[ certificate is a Hamiltonian cycle, similar to proof for HAMPATH \in NP]
HAMCYCLE is NP-hard (Show HAMPATH \leq_P HAMCYCLE)
[ try adding an edge from t to s \Rightarrow doesn't work: You can have \langle G, s, t \rangle \notin HAMPATH
```

and $\langle G' \rangle \in HAMCYCLE$

[try adding an edge and eliminating edges that are not part of the Hamiltonian path; doesn't work: you need to know which edges are in the path which may take exponential time]

[Add a vertex k, add edge (t, k), and add edge (k, s). this works!]

Traveling salesman problem (TSP)

```
G = (V, E) is a complete graph. [ all vertices have edges between them ] All edges have an integer cost.
Problem: Find a min-cost tour (ham-cycle)
```

```
TSP = { \langle G, c, k \rangle : G = (V, E) is a complete graph,
 c is a cost function V \times V \to \mathbf{Z}
 k \in \mathbf{Z}, and
 G has a tour with cost \leq k }
```

Theorem TSP ∈ NPC

Proof

```
(1) TSP \in NP
```

certificate: sequence of |V| vertices

algorithm:

check that vertices don't occur more than once sum up edge cost and check that it is less than k poly time:

- O(V) to check dup vertices
- O(V) to get edge costs
- (2) TSP is NP-hard

(we show HAM-CYCLE \leq_P TSP)

- (A) algorithm F: $\langle G \rangle \rightarrow \langle G', c, k \rangle$
- 1. construct G' = (V, E') where G' is a complete graph.
- 2. c(i, j) = 0 if $(i, j) \in E$; c(i, j) = 1 if $(i, j) \notin E$
- 3. k = 0
- (B) F runs in poly time constructing G' takes $O(V^2)$ time constructing c takes $O(V^2)$ time
- (C) F computes a reduction
- $\langle G \rangle \in HAM\text{-CYCLE} \Leftrightarrow \langle G', c, 0 \rangle \in TSP$

 (\Rightarrow)

```
G has hamiltonian cycle h
All edges in the cycle are also in G
These edges will all have cost 0 in G'
Therefore G' has a tour with cost \leq 0
```

 (\Leftarrow)

G' has a tour with $cost \le 0$. All edges in G' have cost 0 or 1 Therefore, all edges in the tour must have cost 0So all edges in the tour must also be edges in G G has a hamiltonian cycle

Example Show that 3-COLOR \leq P 3-COLOR-PLUS.

```
3-COLOR = { \langle G \rangle : G is 3-colorable (vertices can be colored with 3 colors; no two adjacent vertices have the same color) }
```

3-COLOR-PLUS = { $\langle G \rangle$: G is 3-colorable and every vertex is adjacent to at least one vertex colored with each of the other two colors }

```
Reduction algorithm M: \langle G \rangle \rightarrow \langle G' \rangle

M = "On input \langle G \rangle:

G' = G

for each v in V[G]

add two new vertices u and w to V[G']

add three new edges (v, u), (v, w), and (u, w) to E[G']

output G'

Runtime

M takes time O(V)

Reduction: (\langle G \rangle \in 3\text{-COLOR} \Leftrightarrow M(G) \in 3\text{-COLOR-PLUS})
```

```
(⇒) Assume G ∈ 3-COLOR
```

- \Rightarrow any vertex v in G must be colored with one of three colors.
- \Rightarrow the corresponding vertex v' in G' can be colored with the same color as v
- ⇒ the two neighbors of v added in algorithm F can be colored with the two other colors.
- \Rightarrow G' is 3-colorable and each vertex is adjacent to a vertex of each of the other 2 colors.
- \Rightarrow G' \in 3-COLOR-PLUS

(\Leftarrow) Assume G' ∈ 3-COLOR-PLUS

G is a subgraph of G', so if G' is 3-colorable, G must also be 3-colorable

Example Show that the subgraph isomorphism problem in NP-complete.

```
SUB-ISO = \{\langle G1, G2 \rangle \mid G1 \text{ is isomorphic to a subgraph of } G2 \}
```

```
Step 1. Show SUB-ISO ∈ NP
```

certificate: An isomorphic mapping *m* from the vertices of G1 to a subset of the vertices of G2.

```
Verification algorithm V
V = "On input ⟨⟨G1, G2⟩, y⟩:
for each vertex v in G1
    for each vertex u in G1
    if (u, v) is in G1 and (f(u), f(v)) is not in G2 then return false
    if (u, v) is not in G1 and (f(u), f(v)) is in G2 then return true
return true
Runtime: V takes O(V2) time

Step II. Show CLIQUE ≤<sub>P</sub> SUB-ISO

Reduction algorithm M: ⟨G, k⟩ → ⟨G1, G2⟩
M = "On input ⟨G, k⟩:
Construct G2 = G
Construct G1 = complete graph with k vertices
```

Runtime of M: Polynomial in E + V

```
Correctness of M: \langle G, k \rangle \in CLIQUE \Leftrightarrow \langle G1, G2 \rangle \in SUB-ISO
Assume \langle G, k \rangle \in CLIQUE
\Leftrightarrow G has a clique of size k
\Leftrightarrow G has a subgraph of size k
\Leftrightarrow G2 has a subgraph of size k isomorphic to G1
\Leftrightarrow \langle G1, G2 \rangle \in SUB-ISO
```

<u>Definition</u> VERTEX-COVER = $\{ \langle G, k \rangle \mid G \text{ is an undirected graph with a vertex cover (a set of nodes that touches every edge of G) of k nodes <math>\}$

 $\underline{\textbf{Definition}} \ HAMPATH = \{ \ \langle G, \, s, \, t \rangle \ | \ G \ \text{has a path from } s \ \text{to } t \ \text{that goes through each node} \\ \text{exactly once } \}$

 $\underline{\textbf{Definition}} \ HAMCYCLE = \{\ \langle G\ \rangle\ |\ G\ contains\ a\ cycle\ that\ goes\ through\ each\ node\ exactly\ once\ \}$

Assume 3SAT is NP-Complete