Пример 7.1. Вычислить интеграл

 $I = \int_0^1 \frac{dx}{1+x^2}$ Разбиваем интервал интегрирования на 10 равных частей: n=10. Шаг интегрирования h = (1-0)/10=0.1. Результаты вычислений подынтегральной функции приведены в табл. 7.1.

Таблица 7.1

		f(x)	$=\frac{1}{1+x^2}$		
x_i	x_i^2	$1+x_i^2$	$f(x_i) i=1,3,$	$f(x_i) i=2,4,$	$f(x_0),f(x_{10})$
0.0	0.00	1.00			1.00000
0.1	0.01	1.01	099010		
0.2	0.04	1.04	1-2	0.96154	
0.3	0.09	1.09	0.91743		
0.4	0.16	1.16		0.76207	
0.5	0.25	1.25	0.70000		
0.6	0.36	1.36	1-2	0.073529	
0.7	0.49	1.49	0.67114		
0.7	0.64	1.64		0.60976	
0.9	0.71	1.71	0.55249		
1.0	1.00	2.00			0.50000
		Σ	3.93116	3.16766	1.50000

Вычислим интеграл по формуле трапеций (7.12):

$$I = \int_{0}^{1} \frac{dx}{1+x^{2}} = 0.1(\frac{1+0.5}{2} + 3.93116 + 3.16866) = 0.78498,$$