Shortest-Path Problem

EECS 233

Depth-first Traversal

Visit a vertex, then make recursive calls on all of its yet-to-be-visited neighbors:

```
depthFirstTrav(v)
    myDepthFirstTrav(v, NULL)
```

myDepthFirstTrav(node, parent)
visit node and mark it as visited
node.parent = parent
for each vertex w in node's neighbors
if (w has not been visited)
myDepthFirstTrav(w, node)


```
public class Graph {
      class Vertex {
            private String id;
            private linkedList <Edge> edges;
              // adjacency list
            private boolean encountered:
            private boolean done;
            private Vertex parent;
            private double cost;
     class Edge {
            private int endNode;
            private double cost;
      private Vertex[] vertices;
      private int numVertices;
      private int maxNum;
```

Breadth-First Traversal

Order: Cincinnati, Columbus, Toledo, Indianapolis, Pittsburgh, Cleveland, Detroit, Chicago, Buffalo

Starting from Cincinnati, what would be the order of visits?

breadth-first:

- visit a vertex
- visit all of its neighbors
- visit all unvisited vertices 2 edges away
- □ visit all unvisited vertices 3 edges away, etc.

The Shortest-Path Problem

- ☐ What is the "shortest" path from one vertex to another i.e., the one with the minimal total cost
 - Travel: lowest mileage or fastest trip
 - Internet: forwarding traffic along the "best" router paths.
- ☐ Given a source, find the shortest path to a destination
- ☐ Given a source, find the shortest path to many (all) destinations

First, A Special Case

☐ A solution for an *unweighted* graph:

First, A Special Case

☐ A solution for an *unweighted* graph:

First, A Special Case

- ☐ A solution for an *unweighted* graph:
 - Start a breadth-first traversal from the origin, x
 - Stop the traversal when you reach the target, y
 - The path from x to y in the resulting (possibly partial) spanning tree is a shortest path
- ☐ A breadth-first traversal works for an unweighted graph because
 - the shortest path is simply one with the fewest edges
 - a breadth-first traversal visits nodes in order according to the number of edges they are from the origin.

Method for the Special Case (Pseudo-code)

```
shortestPath_bfTrav(source, desti)
    mark source as encountered
    source.parent = null
    source.cost = 0;
    create a new queue q
    q.insert(source);
    while (!q.isEmpty())
         v = q.remove()
         if (v==desti) break;
         for each vertex w in v's neighbors
              if w is not encountered
                mark w as encountered
                w.parent = v;
                w.cost = v.cost + 1;
                q.insert(w);
```

Shortest paths for Weighted Graphs: Dijkstra's Algorithm

- ☐ Finds the shortest paths from vertex v to all other vertices that can be reached from v.
 - The single-source-all-destinations problem
- Assumptions:
 - Graph is connected.
 - Edge cost is non-negative
 - ☐ More hops = higher cost
- Basic idea:
 - maintain estimates of the shortest paths from v to every vertex (along with their associated costs)
 - gradually refine these estimates as we traverse the graph

Dijkstra's Algorithm

- ☐ We say that a vertex w is finalized if we are certain we have found the shortest path from v to w.
- ☐ We repeatedly do the following:
 - find the not-yet-finalized vertex w with the lowest cost estimate
 - mark w as finalized (shown as a filled circle below)
 - examine each not-yet-finalized neighbor x of w to see if there is a shorter path to x that passes through w; if there is, update the shortest-path estimate for x

Intuition Behind Dijkstra's

 For an unweighted graph, the breadth-first traversal method expands the search circle by one hop every round

For a weighted graph, Dijkstra's method expands the search circle by one lowest-cost node every round

Example: Shortest Path from Buffalo To Toledo

- ☐ Distance to Buffalo is 0, so it is finalized
- ☐ Initially set distance estimates:
 - To all neighbors edge weights
 - To other cities unknown, using infinity
- □ Which will be finalized?

Dijsktra's Algorithm

Initialization: $N = \{u\}$ for all nodes v

if v adjacent to u then 5

D(v) = c(u,v)

6 p(v) = u

else $D(v) = \infty$

Notation:

```
c(x,y): link cost from node x to y;
        ∞ if not direct neighbors
```

D(v): current path cost estimate from source to dest. v

p(v): predecessor node along path from source to v

N: set of nodes whose least cost path definitively known

starting node

```
Loop
```

- find w not in N with smallest D(w)
- 10 add w to N
- 11 update D(v) for all v adjacent to w and not in N':
- 12 $D(v) = \min(D(v), D(w) + c(w,v))$ Update p(v)
- /* new cost to v is either old cost to v or known 13
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes are in N

Dijkstra's algorithm: example

Implementation Issues

Data structure: adjacency lists

How to find the not-yet-finalized vertex with the minimal cost?
What data structure can be used to make it more efficient?

Dijsktra's Algorithm: Complexity

```
Initialization:
  N = \{u\}
                            // V iterations
   for all nodes v
     if v adjacent to u // Check of the total of up to E edges
        then D(v) = c(u,v)
     else D(v) = \infty
6
                               // O(V) to build the heap
               // V iterations
   Loop
                                                          // logV to reorg
    find w not in N with smallest D(w)
                                                           the heap
10 add w to N
    update D(v) for all v adjacent to w and not in N:
12 D(v) = min(D(v), D(w) + c(w,v)) // A step per every link (r. total) per step to reorganize the heap
                                                 // A step per every link (E total); logV
13 /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
15 until all nodes in N
```

All-Pairs Shortest-Path Problem

- Dijkstra's algorithm solves the problem of single-source alldestination shortest paths
- It can be used to solve the all-source all-destination shortest path problem too
 - > Run Dijkstra's V times, once for each vertex
 - Running time: O(VE logV)

Shortest Paths

A Weighted Directed Graph

Its Adjacency Matrix

Dijkstra's Shortest-Path Algorithm – Trace

		weight				
<u>V</u>	vertexSet	[0]	[1]	[2]	[3]	[4]
_	0	0	8	∞	9	4
4	0, 4	0	8	5	9	4
2	0, 4, 2	0	7	5	8	4
1	0, 4, 2, 1	0	7	5	8	4
3	0, 4, 2, 1, 3	0	7	5	8	4
	- 4 2 1	- 0 4 0, 4 2 0, 4, 2 1 0, 4, 2, 1	- 0 0 4 0, 4 0 2 0, 4, 2 0 1 0, 4, 2, 1 0	- 0 0 8 4 0, 4 0 8 2 0, 4, 2 0 7 1 0, 4, 2, 1 0 7	v vertexSet [0] [1] [2] - 0 8 ∞ 4 0, 4 0 8 5 2 0, 4, 2 0 7 5 1 0, 4, 2, 1 0 7 5	v vertexSet [0] [1] [2] [3] - 0 8 ∞ 9 4 0, 4 0 8 5 9 2 0, 4, 2 0 7 5 8 1 0, 4, 2, 1 0 7 5 8

