

Deterministické a stochastické metody

Deterministické metody

- Každý stav vychází přímo z předcházející situace
- Ideální stav
- V případě predikce nám stačí znát vstupy a parametry a
 jsme schopni přesného modelování

Stochastické metody

- Vstupuje zde prvek náhodnosti
- Predikce a modelování pouze s určitou pravděpodobností
- Téměř všechny procesy jsou do jisté míry stochastické

4e+05 6e+05 8e+05 1e+06

Globální a lokální odhady

Globální metody

- Jeden model, který je společný pro celé studované území
- Např. regresní modely polynomické funkce
- Výsledkem jsou hladké povrchy

Lokální metody

- Odhady probíhají lokálně v rámci definovaného sousedství
- Pro každou skupinu tedy mohou být parametry predikčního algoritmu různé

4e+05

6e+05

8e+05

Historie krigingu

Danie G. Krige

- Magisterská práce těžba zlata ve Whitwatersandu v JAR
- A statistical approach to some basic mine valuation problems on the Witwatersrand (1951)

Georges Matheron

- Otec geostatistiky a matematické morfologie
- Traité de géostatistique appliquée (Treaty of applied geostatistics) 1962-63
- Les variables régionalisées et leur estimation : une application de la théorie des functions aléatoires aux sciences de la nature (The regionalized variables and their estimation : an application of the theory of random functions to natural sciences) 1965

Regionalizovaná proměnná

- Reprezentace prostorových jevů distribuovaných v prostoru
- Spojitá v prostoru
- Může oscilovat od čistě náhodného (stochastického) po téměř deterministický jev
- Hodnota proměnné je funkcí polohy
 - Systematická složka funkce polohy (X,Y,Z)
 - Náhodná složka náhodné vlivy, šum, ...

$Z(u) = m(u) + \varepsilon'(u) + \varepsilon''$

Z(u) hodnota proměnné v místě u

m(u) deterministická složka (trend)

ε (u) náhodná <mark>složka měnicí se lokálně a je pr</mark>ostorově

závislá na m(u)

7800000

vliv náhodného š<mark>umu, který má normáln</mark>í rozdělení a průměr = 0

 Na základě funkční závislosti hodnoty sledované veličiny na poloze lze očekávat, že existuje i vzájemná závislost mezi jednotlivými hodnotami sledované veličiny

Kriging

 Skupina interpolační metoda známá také jako **BLUE** nebo **BLUP**

- Best nejlepší
- Linear linearní
- Unbiased nestranný
- Estimation (Prediction) odhad

4e+05

6e+05 8e+05

Kriging II.

- Stochastická, lokální predikce regionalizované proměnné
- Náhodná proměnná
 - Může nabývat množství hodnot v závislosti na distribuci pravděpodobnosti
- Kriging je téměř samostatná věda

4e+05

6e+05

8e+05

Základní předpoklady krigingu

Vstupní podmínky

- Lineární kombinace vstupních hodnot
- Průměrná chyba je rovna 0
- Minimalizace rozptylu odhadu

Předpoklady

Předpokládá se normalita dat

4e+05

- Průměrná hodnota proměnné je v poli konstantní
- Prostorová autokorelace je v poli konstantní

8e+05

1e+06

Koncept

 Ze vstupních podmínek jsou s pomocí strukturálních funkcí generovány krigingové váhy pro bodová měření

$$\begin{bmatrix} K_{11} & K_{12} & \dots & K_{1n} & 1 \\ K_{21} & K_{22} & \dots & K_{2n} & 1 \\ \vdots & & & & \\ K_{n1} & K_{n2} & \dots & K_{nn} & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} * \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \\ \mu \end{bmatrix} = \begin{bmatrix} K_{10} \\ K_{20} \\ K_{n0} \\ 1 \end{bmatrix}$$

$$4e+05 \qquad 6e+05 \qquad 8e+05 \qquad 1e+06$$

Koncept II.

$$Z(s) = \mu + \varepsilon'(s)$$

- Z(s) ... realizace náhodné proměnné
 - μ ... konstantně stacionární funkce (globální průměr)
 - ε'(s) ... prostorově korelovaná stochastická část rozptylu

4e+05

6e+05 8e+05 1e+06

Strukturální funkce

- Modelování prostorového vztahu mezi měřenými body – vzdálenost a směr
- Izotropie, anizotropie
- Kovariogram C(h)
- Korelogram
- (semi)Variogram γ(h)
- Madogram
- Rodogram

$$\gamma(h) = C(0) - C(h)$$

Variogram

vyjadřuje, jak se mění proměnná mezi místem
 u a místem (u+h), mezi nimiž je vzdálenost h

$$\hat{\gamma}(h) = \frac{1}{2n} \sum_{i=1}^{n} \{z(u_i) - z(u_i + h)\}^2$$

• n ... počet p<mark>árů při kroku h</mark>

4e+05

8e+05

1e+06

Typy krigingu

- Simple (jednoduchý) kriging
- Ordinary kriging
- Universal kriging Kriging s modelem trendu
- Cokriging
- Probability kriging
- Indicator kriging
- Soft kriging
- Hybridní modely

6e+05

80+05

19-06

Simple kriging

- Nejjednodušší varianta
- Pro úspěšné použité je třeba přesně znát střední hodnotu μ, která je pro celý region konstantní
- Tzn. hodnoty na území neovlivňuje žádný trend

$$_{4e}$$
- $Z(s) = μ_e + ε (s) $_{8e+05}$$

Ordinary kriging

• Neznámá střední hodnota trendu μ na území, ale lze ji odhadnout za předpokladu, že je konstantní

$$2(s) = \mu + \varepsilon(s)$$
 $4e+05$ $6e+05$ $8e+05$ $1e+06$

Universal Kriging

- Není-li splněna podmínka stacionarity průměrné hodnoty (trend v datech)
- Prostorová proměnná považována za součet trendu (driftu), který určuje průměrnou hodnotu v místě a reziduí

$$Z(s) = \mu(s) + \varepsilon'(s)$$

• μ (s) ... deterministická funkce

1e+06

Cokriging

- Při vzájemné závislosti dvou a více zkoumaných veličin
- Odhad proměnné na základě hodnot korelovaných veličin a jejich vztahů popsaných pomocí vzájemného semivariogramu
- Využívají se tzv. krosvariogramy

4e+05

Např. dvoje měření – řídké drahé doplněno levnějším

X Coord

6e+05 8e+05

Indicator kriging

- Nezjišťují se přímo hodnoty
- Odhad pravděpodobnosti, s jakou je překročena limitní hodnota (testovaná podmínka)
- Možnost krigovat i kvalitativní údaje
- Indikátor nabývá pouze 2 hodnot ano/ne resp. 1/0
- Transformované pole hodnot slouží jako vstup pro krigování

6e+05

X Coord

- Potíže se strukturálními funkcemi
 - využití kvartilů

Probability kriging

- Využítí indikátorové funkce i původních hodnot
- Původní hodnoty často nahrazeny pořadím původního údaje ve variační řadě

Soft kriging

- Použití "měkkých" faktorů (znalostí)
- Odhadované hodnoty
- Využití intervalů hodnot v rámci jednoho

Validace

- Validace srovnání s původními měřeními, vzorkování
- Bumerangový test
 - Pro bod se známou hodnotou se provede výpočet lokálního odhadu z ostatních hodnot
- Výsledkem není pouze mapa predikovaných hodnot, ale také mapa nejistoty predikce (směrodatná odchylka chyba ≈ krigingu)

Omezení krigování

- Co když je vztah jiný než lineární?
- Proč minimalizovat pouze rozptyl?
- Pravděpodobné narušení předpokladů.
- Občas náročné fitování správného teoretického modelu strukturální funkce.

Řešení: hybridní Regression kriging

4e+05

6e+05

8e+05

Postup

- 1. Ověření zda jsou splněny všechny předpoklady
- 2. (Úprava a transformace dat)
- 3. Tvorba (semi)variogramu nebo jiné strukturální funkce
- 4. Výběr vhod<mark>ného teoretického modelu a je</mark>ho fitování
- 5. Kriging (predikce + chyba)
- 6. Validace výsledků RMSE, krosvalidace,
- 7. V případě n<mark>euspokojivých výsledků ladění</mark> a iterace bodů 4-6 4₉₊₀₅ 6₉₊₀₅ 8₉₊₀₅ 1₉₊₀₆

