

Dr. M. AHSAN LATIF,
Assistant Prof.,
Department of Computer Science,
University of Agriculture, Faisalabad.

mahsanlatif@uaf.edu.pk

Contents

Image Basics

- What is an Image?
- Image Formation
- Pixel
- Resolution & its Types
- Image Types
- Color Models
- Image as Matrix

Image Processing

- Spatial Domain
- Frequency Domain
- Filtering
- Geometric Transformations
- Computer Vision / Machine Vision
- Applications

What is a Digital Image?

A digital image is a discrete representation of data possessing both spatial (layout) and intensity (colour) information.

The two-dimensional (2-D) discrete, digital image I(m, n) represents the response of some sensor at a series of fixed positions (m = 1, 2,, M; n = 1, 2,, N) in 2-D Cartesian coordinates and is derived from the 2-D continuous spatial signal I(x,y) through a sampling process frequently referred to as discretization.

Pixel

- The word pixel is an abbreviation of 'picture element'.
- Indexed as an (x, y) location from the origin of the image.
- It represents the smallest, constituent element in a digital image
- Contains a numerical value which is the basic unit of information.
- Each pixel is a sample of an original image for a particular point.
- 1 bpp, 2¹ = 2 colors (monochrome)
- 2 bpp, 2² = 4 colors
 - 3 bpp, $2^3 = 8$ colors
 - ..
 - 8 bpp, $2^8 = 256$ colors
 - 16 bpp, 2¹⁶ = 65,536 colors ("<u>Highcolor</u>")
 - 24 bpp, 2²⁴ = 16,777,216 colors ("<u>Truecolor</u>")

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Mathematically Speaking an Image is a Matrix

	_ 1	2		n _
1	a_{11}	a_{12}		a_{1n}
2	a_{21}	a_{22}		$a_{\mathbf{2n}}$
3	a_{31}	a_{32}		a_{3n}
	•	•	•	
m	a_{m1}	a_{m2}		a_{mn}

Sampling & Quantization

- Sampling corresponds to a discretization of the space.
- Quantization corresponds to a discretization of the intensity values.

- ❖ A sensor that detects information to constitute an image
- It converts the light-waves into signals

Color Filter Array

- * CFA is a mosaic of tiny color filters placed over an image sensor to capture color information.
- ❖ Bayer Filter Sensor, Foven X3 Sensor, 3CCD, etc.

Width	Height	Aspect Ratio	Total Pixels	Mega Pixels
100	100	1:1	10,000	0.01
640	480	4:3	307,200	0.3
4900	2580	16:9	12,642,000	12.6

Image Resolution

The representational power of an image is defined by its resolution.

- Spatial Resolution
- Temporal Resolution
- Bit Resolution

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

INDEXED IMAGE

Multispectral Image

A multispectral image is one that captures image data within specific wavelength ranges across the electromagnetic spectrum.

Hyperspectral vs Multispectral Imaging

Hyperspectral imaging (HSI) uses continuous and contiguous ranges of wavelengths (e.g. 400 - 1100 nm in steps of 1 nm) whilst multispectral imaging (MSI) uses a subset of targeted wavelengths at chosen locations (e.g. 400 - 1100 nm in steps of 20 nm).

Color Models

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Digital Image Processing

Processing of Digital Images through an Algorithm

- Image quality enhancement
- Image segmentation
- Object detection
- Tracking
- Automatic inspection
- Assisting humans in identification tasks.
- Controlling processes, e.g., an industrial robot
- <u>Detecting events</u>, e.g., for <u>visual surveillance</u>
- Human computer Interactions
- Modeling objects or environments
- Navigation, e.g., by an <u>autonomous vehicle</u> or <u>mobile robot</u>
- ----
- ____

Security

Engineering

Medical

Agriculture

Industry

Spatial Domain Processing

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Frequency Domain Processing

Geometric Transformations

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Camera Calibration

Camera calibration estimates the parameters of a lens and image sensor of an image or video camera.

- Correct lens distortion
- Measure the size of an object in world units
- Determine the location of the camera in the scene.

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Output of Image Processing

- Image to Image
- Image to Derived Info
- Image to Decision Making

Image Features

- Features refer to a distinct structure found in an image, such as a point, edge, or small image patch.
- Usually differs from its surroundings by texture, color, or intensity.
- What the feature represents does not matter, just that it is distinct from its surroundings is important

Detectors	Descriptors
FAST	SURF
Harris	KAZE
ORB	FREAK
Shi & Tomasi	BRISK
SURF	ORB
KAZE	HOG
MSER	

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Image Registration

Align two images using intensity correlation, feature matching, or control point mapping

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

Satellites vs UAVs

Global but Low Resolution	Spatial Resolution	Local but High Resolution		
DailyWeeks	Temporal Resolution	User Dependent (No Time Constraint)		
Mixed Signals, Noise, Needs Cloud-Free	Data Quality	High Precision, No-cloud interference		

UAV – An Ideal Platform For Site-Specific Farming

Produce high yield by employing limited resources adaptively

Observation / Measurement / Response

- Spatial variations
- Temporal variations
- Inter-field / Intra-field

Better Yield @ Optimal resources

- Water
- Fertilizers
- Pesticides

Dr. M. Ahsan Latif, Department of Computer Science, UAF.

	Major Project Goals		Year-Wise Target			
Sr. No.		Quantifiable Indicators	Year	Year	Year	Total
			1	2	3	
	Establishment of Lab for High-Throughput Crop Phenotyping based on Aerial Intelligence	Procurement of Equipment				
		Calibration of Sensors	3			_
1		Selection of Experimental Sites				3
2	Crop Phenotyping by Estimating Geometric Traits	Development of Digital Maps to estimate Crop Height, Vegetation Cover Fraction, Fraction of Intercepted Radiation, Leaf Area Index, 3D Structure, Leaf Angle Distribution, Tiller Densities, Emergence.		10		10
3	Crop Phenotyping by Estimating Crop Physiological Traits	Development of Digital Maps based on Vegetation Indices to estimate Chlorophyll Content, Nitrogen Content, Protein Content, LAI, Water Content, Yield, Biomass			7	7
4	Early Season Weed Detection	Digital Maps to Detect Weeds in Wheat, Maize, Rice & Cotton.		4		4
5	Digital Aerial Counting of Crop Features	Cotton, Sunflower, Mustard		1	2	3
6	Crop Biotic / Abiotic Stress	Monitoring of Wheat / Cotton Growth under Biotic & Abiotic Stress		2	2	4
7	Technology Dissemination	Seminar(s), Business Plan, Publications			3	3

Wine Grapes - India

The quality of grapes is mapped to determine when to harvest.

Cotton - Australia

Measured vegetation health in *Wimmera Mallee*

Oil Palm Mapping & Infrastructure Analysis, Malaysia

Available Sensors

Applications in Agriculture

Plant Height

Provides 3D data to quickly assess **crop height and density** from any angle. Evaluate your crops for uniformity and yield potential.

Weed Detection

Another benefit of 3D data is the ability to see anomalies in the field commonly associated with weeds.

Plant Counting

High-resolution plant count maps are developed using a machine learning technology that gives users early information on plant size by individual plant, row, plot or field. Identify planter skips and assess yield potential in early growth stages.

Crop Cover

Quickly assess crop coverage reported as a coverage percentage.

Field statistics

- 9.6 ha Field Area
- 2.658 ha Crop Area
- 27.7% Crop Coverage

Thanks