We will follow the following grading rubrics. • 10: correct answer, work is shown and clear • 8: correct answer but work might be difficult to read • 6: incorrect answer but good attempt	ables to labels x_t .
 6: Incorrect answer but good attempt 4: mediocre attempt or very difficult to read 2: problem is written down, no attempt to solve 0: problem is not written down Double click anywhere on this box to find out how your instructor typeset it. Press Shift+I The Tasks 1-5 are from Excercises 1.1-1.6 of Barber.	Enter to go back.
Task 1: (10 points). Prove and also	$p(x,y z) = p(x z)p(y x,z)$ $p(x y,z) = rac{p(y x,z)p(x z)}{p(y z)} \ .$
your answer to task 1 $p(x,y z) = \frac{p(x,y,z)}{p(z)} \qquad \qquad \text{Conditional Probability} \qquad (1)$ $= \frac{p(y,x,z)}{p(z)} \qquad \qquad \text{Commutativity of Probability} \qquad (2)$	
$=\frac{p(y x,z)p(x z)p(z)}{p(z)} \qquad \qquad \text{Chain Rule of Probability} \qquad (3)$ $=p(y x,z)p(x z) \qquad \qquad (4)$ $=p(x z)p(y x,z) \qquad \qquad \text{Commutativity of Multiplication} \qquad \Box$ $p(x y,z)=\frac{p(x,y,z)}{p(y,z)} \qquad \qquad \text{Conditional Probability} \qquad (1)$ $=\frac{p(x,y z)p(z)}{p(y,z)} \qquad \qquad \text{Chain Rule of Probability} \qquad (2)$ $=\frac{p(x,y z)p(z)}{p(y,z)} \qquad \qquad \text{Chain Rule of Probability} \qquad (2)$	
$= \frac{p(x, y z)p(z)}{p(y z)p(z)}$ Chain Rule of Probability (3) $= \frac{p(x, y z)}{p(y z)}$ (4) $= \frac{p(x z)p(y x, z)}{p(y z)}$ Proven in first proof of task 1 (5) $= \frac{p(y x, z)p(x z)}{p(y z)}$ Commutativity of Multiplication \square	
Task 2: (10 points). Prove the [Bonferroni inequality](https://en.wikipedia.org/wiki/Boole%27s_i	$p(a,b) \geq p(a) + p(b) - 1$.
$p(a \cup b) = p(a) + p(b) - p(a \cap b)$ Additout $1 \ge p(a \cup b)$ True by definition, any probability must be $1 \ge p(a) + p(b) - p(a \cap b)$ $p(a \cap b) \ge p(a) + p(b) - 1$ $p(a,b) \ge p(a) + p(b) - 1$ Task 3: (10 points). Consider three variable distributions which admit the factorization	ition Rule of Probability (1) be less than or equal to 1 (2) Combined (1) and (2) (3) (4) \Box $p(a,b,c) = p(a b)p(b c)p(c)$,
where all variables are binary. How many parameters are needed to specify distributions of this your answer to task 3 n order to represent the distribution of $p(a b)$, two parameters are needed. Say, $p(a=1 b=0)$ parameter is needed to represent the distribution of $p(c)$. So, five parameters in total are needed	of som? $p(a=1 b=1)$. Using complementation, all other variations of $p(a b)$ can be found. Similarly, two parameters are needed to represent the distribution of $p(b c)$. Lastly, only one
the posterior probability that the red ball came from box 1? (b) Two balls are placed in a box as follows: A fair coin is tossed and a white ball is placed in the are drawn from the box three times in succession (always with replacing the drawn ball back in your answer to task 4(a)	balls and box 2 contains two red and five white balls. A box is chosen at random $p(b\otimes = 1) = p(b\otimes = 2) = 0.5$ and a ball chosen at random from this box turns out to be red. When the box if a head occurs, otherwise a red ball is placed in the box. The coin is tossed again and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box. Be in the box). It is found that on all three occasions a red ball is drawn. What is the probability that both balls in the box are red?
Let r represent a ball being red and b represent a ball coming from box 1. $p(b r) = \frac{p(r b)p(b)}{p(r)} = \frac{\frac{3}{8}*\frac{1}{2}}{(\frac{3}{8}+\frac{2}{7})*\frac{1}{2}} = \frac{\frac{3}{16}}{\frac{37}{112}} = \frac{21}{37} \approx .568$ Your answer to task 4(b) Let any capitalized number in text represent that number of red balls drawn in a row (THREE = 3).	3 red balls drawn in a row), RR represent two red balls in the box, WW represent two white balls in the box, and RW represent one ball of each color in the box.
$p(RR \text{THREE}) = \frac{p(\text{THREE} RR)p(RR)}{p(\text{THREE})}$ $= \frac{(1)p(RR)}{p(\text{THREE})}$ $= \frac{(.5)(.5)}{p(\text{THREE} WW)p(WW) + p(\text{THREE} RW)p(RW) + p(\text{THREE})}$ 25	$\mathbb{E}[RR)p(RR)$
	whether a person is a terrorist. The scanner is fairly reliable; 95% of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified as such. An informated is a terrorist. The police haul off the plane the first person for which the scanner tests positive. What is the probability that this person is a terrorist?
your answer to task 5 Let T represent whether or not someone is a terrorist, t represent whether or not someone tester: "Correct" Version $p(T=1 H=1) = \sum_{i=1}^{100} p(T_i=1,t_i=1,t_{1i-1}=0 H=1)$	ed positive for terrorism, and H represent whether or not someone got hauled off the plane.
$= \Sigma_{i=1}^{100} rac{p(H=1 T_i=1,t_i=1,t_{1\ldots i-1}=0)p(T_i=1,t_i=1,t_{1\ldots i-1}=0)}{p(H=1)}$	
$p(H=1 T_i=1,t_i=1,t_{1\ldots i-1}=0)=1$, as it is guaranteed that someone is hauled off the $p(T=1 H=1)=\sum_{i=1}^{100}rac{p(T_i=1,t_i=1,t_{1\ldots i-1}=0)}{p(H=1)}$ $=\sum_{i=1}^{100}rac{p(t_i=1,t_{1\ldots i-1}=0 T_i=1)p(T_i=1)}{p(H=1)}$ $=\sum_{i=1}^{100}rac{p(t_i=1 T_i=1)p(T_i=1)\prod_{j=1}^{i-1}(t_j=0 T_j=0)}{p(H=1)}$ $=\sum_{i=1}^{100}rac{(.95)(.01)\prod_{j=1}^{i-1}(.95)}{p(H=1)}$ $=100 (.95)(.01)(.95)^{i-1}$	
$\begin{split} &= \Sigma_{i=1}^{100} \frac{(.95)(.01)(.95)^{i-1}}{p(H=1)} \\ &= \frac{(.95)(.01)}{p(H=1)} \Sigma_{i=1}^{100} (.95)^{i-1} \\ &= \frac{(.95)(.01)}{p(H=1)} \Sigma_{i=0}^{99} (.95)^{i} \\ &= \frac{(.95)(.01)}{p(H=1)} \cdot \frac{195^{100}}{195} \end{split}$	
$= \frac{(.95)(.01)(195^{100})}{(.05)p(H = 1)}$ $= \frac{(.19)(195^{100})}{p(H = 1)}$ $= \frac{(.19)(195^{100})}{1 - p(H = 0)}$	
$p(H=0)=.95^{99}(.05),$ as it is equal to the probability that all passes $=rac{(.19)(195^{100})}{1-(.95^{99}(.05))} pprox .189$	
	$p(T=1 t=1) = \frac{p(t=1 T=1)p(T=1)}{p(t=1)}$ $= \frac{.95*.01}{p(t=1 T=1)*p(T=1)+p(t=1 \sim T=1)*p(\sim T=1)}$ $= \frac{.95*.01}{.95*.01+.05*.99}$ $= .161$
Dataset . The [titanic dataset](http://www.cs.toronto.edu/~delve/data/titanic/desc.html) gives the crew member), age (adult or child), gender, and whether or not the person survived. The titanic	le, and constructing a naive Bayes classifier. Naive Bayes is described in 10.1 of Barber and understanding examples 10.1 and 10.2 of the text should help you do this assignment to values of four categorical attributes for each of the 2201 people on board the Titanic when it struck an iceberg and sank. The attributes are social class (first class, second class, third is a dataset is available [here](https://home.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels/homework/titanic.txt). This table should have 32 entries because $Gender \in \{male, female\}$, $Gender \in \{male, female\}$, $Gender \in \{male, female\}$, and $Gender \in \{male, female\}$, and $Gender \in \{male, female\}$, $Gender \in \{male, female\}$, and $Gender \in \{male, female\}$, $Gender \in \{male, female\}$, and $Gender \in \{male, female\}$, $Gender \in \{male, female\}$, and $Gender \in \{mal$
Task 6: Probability table (20 points). Build a probability table indicating $Pr(\mathrm{Death} \mid \mathrm{Gender},$	Age, Class) for each combination of gender, age, and class. Display this table in the following way: Male Female Child Adult Child Adult First Second S
The rows of each table represent the different classes and the columns the different ages and make a second table, a classification table, which lists death or survival for each feature combination.	Third Crew Crew genders. In each cell of the table, insert the conditional probability. After you've built the probability table, come up with a rule that uses the probabilities to predict death or survival. The ination. Explain the rule you chose to classify.
<pre># your answer to task 6 import numpy as np import pandas as pd titanic_df = pd.read_csv('titanic.txt', delim_whitespace=True, header=None, titanic_df.value_counts(['Class', 'Age', 'Gender','Outcome'])/titanic_df.value_cdf.value_counts(['Class', 'Age', 'Gender','Outcome'])/titanic_df.value_cdf.value_</pre>	
Class Age Gender Outcome 1st Adult female yes 0.972222 no 0.027778 male no 0.674286 yes 0.325714 child female yes 1.000000 male yes 1.000000 2nd adult female yes 0.860215 no 0.139785 male no 0.916667 yes 0.083333	
child female yes 1.000000 male yes 1.000000 3rd adult female no 0.539394 yes 0.460606 male no 0.837662 yes 0.162338 child female no 0.548387 yes 0.451613 male no 0.729167 yes 0.270833 crew adult female yes 0.869565	
no 0.130435 male no 0.777262	
dtype: float64 Probability table	Male Female
dtype: float64	Male Female
Probability table Classification table	Child Adult Child Adult First 0 .674 0 .028 Second 0 .917 0 .140 Third .729 .737 .548 .539
Probability table Classification table	Child Adult Child Adult First 0 674 0 028 Second 0 917 0 140 Third 729 737 548 539 Crew 0 778 0 130 Chance of death, while anyone with chances of death of less than a coin flip (less than .5) is given a 0% chance of death. Male Female Child Adult Child Adult First 0 1 0 0 Second 0 1 0 0 Third 1 1 1 1 1
Probability table Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the classifier, you must first construe $Pr(\text{Class} \mid \text{death})$ $Pr(\text{Gender} \mid \text{death})$ $Pr(\text{Gender} \mid \text{death})$	Child Adult Child Adult Child Adult
Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the classifier (20 points). To build the classifier, you must first construe $Pr(\text{Class} \mid \text{death})$ $Pr(\text{Geath} \mid \text{death})$ $Pr(\text{Gender} \mid \text{death})$ $Pr(\text{Gender} \mid \text{death})$ $Pr(\text{Age} \mid \text{survival})$ $Pr(\text{Age} \mid \text{survival})$ $Pr(\text{Gender} \mid \text{survival})$ $Pr(\text{Gender} \mid \text{survival})$ $Pr(\text{Gender} \mid \text{survival})$	Child Adult Child Adult Child Adult Child Adult
Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the classifier than a coin flip (greater than .5) is given a 100% of the classifier than a coin flip (greater than .5) is given a 100% of the classifier than .5	chance of death, while anyone with chances of death or less than a coin flip (less than .5) is given a 0% chance of death. First 0 1 0 1 0 0
Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the classifier (20 points). To build the classifier, you must first construe the probability of the classifier (20 points). To build the classifier, you must first construe the probability of the classifier (20 points). To build the classifier, you must first construe the probability of the classifier (20 points). To build the classifier, you must first construe the probability of the classifier (20 points). To build the classifier, you must first construent the probability of the classifier (20 points). To build the classifier, you must first construent the probability of the classifier (20 points). To build the classifier, you must first construent the probability of the classifier (20 points). To build the classifier, you must first construent the probability of the classifier (20 points). To build the classifier, you must first construent the probability of the classifier (20 points). To build the classifier, you must first construent the probability of the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier, you must first construent the classifier (20 points). To build the classifier (20 points) is given a 100% of the classifier (20 points). To build the classifier (20 points) is given the classifier (20 points). To build the classifier (20 points) is given the classifier (20 points). To build the classif	chance of death, while anyone with chances of death of less than a coin flip (less than .5) is given a Ow chance of death. Titled
Classification table Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the classifier (20 points). To build the classifier, you must first construting the construction of the classifier (20 points). To build the classifier, you must first construting the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier (20 points). To build the classifier, you must first construction of the classifier, you must	Child Adub Child Adub First 0 0 474 0 1200 Second 0 491 0 120 Second 0 491 0 120 Third 1722 7737 545 539 Crew 0 1778 0 130 Child Adub Child Adub Child Adub First 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Classification table Rule: Anyone with chances of death of greater than a conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given a 100% of the conflip (greater than .5) is given than .5) is given than .5) is given than .5) is given than .7) is given .7) is given than .7) is	Citicals of (class*) = classes([1])/van death s. (Classic of (class*) = classes([1]))/van death s. (Classic of (class*) = classes([1]))/van death s. (Classic of (class*) = spec([1]))/van death
Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than 5) is given a 100% of the classifier. Anyone with chances of death of greater than a coin flip (greater than 5) is given a 100% of the classifier. Anyone with chances of death of greater than a coin flip (greater than 5) is given a 100% of the classifier. Anyone with chances of death of greater than 5. In the classifier, you must finst curstrut. **Pr(Class death)** **Pr(Class death)** **Pr(Age death)** **Pr(Class survival)** **Pr(Class survival)** **Pr(Class survival)** **Pr(Class survival)** **Pr(Class survival)** **Pr(curvival)** **Pr(curvival)*	Contract of Contract
Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than 5) is given a 100%: - Pr(Class death) - Pr(Age death) - Pr(Age death) - Pr(Age death) - Pr(Class anxival) - Pr(Class anxival) - Pr(Class anxival) - Pr(Class anxival) - Pr(Canter death)	Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. At all as the discharge of death polygon with process and playing in the properties of the color and the process of death of the color and the c
Classification table Rule Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the Anyone with chances of death of greater than a coin flip (greater than .5) is given a 100% of the Pri(Class death) Prior death	Chicago and April (2018 April) Final 1
Classification table Rule: Anyone with chances of death of greater than a coin flip (greater than 5) is given a 100% of the classifier, you must find constitution of the classifier, you must find constitution of the classifier	Characteristic polygon who shows the fine that a cash fig given from S) is given on the characterist processor of seath or characterist polygon who shows the characteristic polygon who shows th
Classification table Rule: Anyone with chances of death of greater man a coin flip (greater man .5) is given a 100%. **Pr(Class death)** *********************************	Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. Characteristic polygon with process of death of less than a color tip gear from 50 k gloss a Discharge of death. At all as the discharge of death polygon with process and playing in the properties of the color and the process of death of the color and the c
Classification table Classification table Calculate Adjunct with classifier (20 points), to build the classifier, you must first content - PriClass cloubly - PriC	And the second s
Classification table Classification table Fale: Anyone with chances of death of greater than a con tip ogreater than 5) is given a 100%. ***Proceeding of the change of death of greater than a con tip ogreater than 5) is given a 100%. ***Proceding of the change of death of greater than a con tip ogreater than 5) is given a 100%. ***Proceding of the change of t	the control of the co
Classification table	The state of the s
Classification table	Section 1