Docket No.: 4590-413

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended): A gyroscope comprising at least one mass capable of vibrating along an x axis at a resonant excitation frequency F_x and capable of vibrating along [[a y]] axis perpendicular to the x axis, at a resonant detection frequency F_y , under the effect of the Coriolis force generated by a rotation about a z axis perpendicular to the x and y axes, comprising connected to the mass, a signal generator for generating a signal that disturbs the vibration of the mass along the y -axis, and a feedback control loop for controlling the resonant frequency F_y so that F_y is equal or practically equal to F_x throughout the duration of use of the gyroscope, the feedback control loop comprising:

means for modifying the resonant detection frequency Fy;

means for detecting the variation induced by the disturbing signal on the vibration of the mass along the y-axis, an error signal e representative of the difference between F_x and F_y being deduced from [[this]] the variation induced by the disturbing signal; and

control means for controlling the F_y -modifying means, the control being established on the basis of the error signal e.

- 2. (previously presented): The gyroscope as claimed in claim 1, wherein the disturbing-signal generator is connected to the mass via the F_y -modifying means.
- 3. (previously presented): The gyroscope as claimed in claim 1, wherein the disturbing-signal generator is connected to the F_y -modifying means via the feedback control loop.
- 4. (previously presented): The gyroscope as claimed in claim 2 wherein the disturbingsignal generator is an oscillator of predetermined reference frequency F_0 .

Docket No.: 4590-413

- 5. (previously presented): The gyroscope as claimed in claim 2, wherein, since the gyroscope has a predetermined bandwidth, the disturbing signal is a periodic signal of frequency F_0 , where F_0 is above the bandwidth of the gyroscope but below F_x .
- 6. (currently amended): The gyroscope as claimed in claim 1, comprising: excitation means for exciting the mass along the y-axis, with the aim of counterbalancing the vibration along the y-axis generated by the Coriolis force, wherein the disturbing-signal generator is connected to the mass via [[these]] the excitation means.
- 7. (currently amended): The gyroscope as claimed in claim [[1]] 6, comprising: [[a]] the y-axis excitation loop and wherein the disturbing-signal generator is connected to the excitation means via the y-axis excitation loop.
- 8. (previously presented): The gyroscope as claimed in claim 6, wherein the disturbingsignal generator is a voltage-controlled oscillator.
- 9. (currently amended): The gyroscope as claimed in claim 6, wherein, since the gyroscope has a predetermined bandwidth, the disturbing signal is a periodic signal, ΔF being equal to about 10% of F_x , the frequency of which varies between F_x ΔF and F_x + ΔF according to a frequency F_0 , where F_0 is above the bandwidth of the gyroscope but below F_x , ΔF being equal to about 10% of F_x .
- 10. (previously presented): The gyroscope as claimed in claim 6, wherein the excitation means comprise electrodes.
- 11. (currently amended): The gyroscope as claimed in claim [[1]] 4, wherein the feedback control loop further comprises:

connected in series, means for shaping the signal output by the detection means, an amplitude detection device, an F_0 -centered band-pass filter, a synchronous demodulator for synchronizing with the reference frequency F_0 , and an integrator/corrector that is connected to the means for modifying the frequency F_v .

Docket No.: 4590-413

- 12. (previously presented): The gyroscope as claimed in claim 1, wherein, since the mass is connected to a rigid frame by means of springs along x and y, of respective stiffness K_x and K_y , the means for modifying the resonant frequency F_y comprise electrodes for controlling the stiffness K_y .
- 13. (currently amended): The gyroscope as claimed in claim 1, wherein the means for detecting the variation induced in the vibration of the mass along the y-axes comprise electrodes.
- 14. (previously presented): The gyroscope as claimed in claim 1, wherein, when the disturbing signal is a periodic signal of predetermined frequency F_0 , the disturbing signal is a sinusoidal or triangular signal.
- 15. (previously presented): The gyroscope as claimed in claim 1, wherein the gyroscope is a micromachined gyroscope having a plane structure and in that the x and y axes lie in the plane of the plane structure.
- 16. (previously presented): The gyroscope as claimed in claim 1, wherein the gyroscope is a micromachined gyroscope having a plane structure and in that the x axis lies in the plane of the plane structure and the y axis does not lie in the plane of the plane structure.
- 17. (previously presented): The gyroscope as claimed in claim 1, wherein the gyroscope has a three-dimensional structure.