Použití TI-89 v úlohách předmětu BPC-MA3

Šťur

1. ledna 2025

Obsah

1	Pre	rekvizity	3
2	Zák	ladní práce s kalkulačkou	3
	2.1	Změna aktuálně používané složky a její vytvoření	3
	2.2	Uložení funkce jedné proměnné	4
	2.3	Uložení funkce dvou proměnných	5
		Vytvoření matice/vektoru	
		Derivování	
	2.6	Integrování	9
	2.7	Základy práce s tabulkovým procesorem CellSheet	9
		Řešení soustav lineárních rovnic	
3	Nui	merické metody	13
	3.1	Metoda nejmenších čtverců	13
	3.2	Řešení jedné nelineární rovnice Newtonovou metodou	17
	3.3	Řešení soustavy nelineárních rovnic Newtonovou metodou	20

1 Prerekvizity

Vyžadován je tabulkový editor CellSheet, který si můžete stáhnout zde:

https://education.ti.com/en/software/details/en/C348D29C99284143B9E3FE93CF6742A6/89cellsheet

Taktéž je vyžadován Simultaneous Equation Solver App for the TI-89 Titanium, ke stažení zde:

 $\verb|https://education.ti.com/en/software/details/en/BD358C4836B84DBCBA254D6554FBBEAC/89simultaneous equation in the contraction of the contraction$

2 Základní práce s kalkulačkou

2.1 Změna aktuálně používané složky a její vytvoření

Je praktické si vytvářet pro různé předměty složky a práci soustředit do nich.

Vytvoření probíhá následovně:

Klávesovou kombinací [2nd]+[-] vyvoláme VAR-LINK menu.

Klávesou [F1] následně vyvoláme Manage menu, Create folder je pátá položka.

Pomocí [ESC] obrazovku opustíme.

Chceme-li se do složky přepnout, vyvoláme klávesou [MODE] nastavení kalkulačky a změníme druhou položku.

TYPE OR USE +>++ (ENTER) OR (ESC)

Položku volíme šipkou doprava, potvrzujeme klávesou [ENTER] a s uložením nastavení opouštíme taktéž klávesou [ENTER].

Poznámka: pro účely počítání MA3 může být praktické vynucení zobrazování výsledků jako desetinných čísel. V MODE menu se klávesou [F2] přepněte na stranu 2 a Exact/Approx položku změňte na APPROXIMATE a uložte.

2.2 Uložení funkce jedné proměnné

V MODE menu se ujistěte, že položka Graph je nastavena na FUNCTION.

Klávesovou kombinací $[\diamond]+[F1]$ vyvoláme Y= menu. Zde můžeme do jednotlivých proměnných ukládat kýžené funkce.

F1+ F2+ F3 F4 F5+ F6+
$$\frac{12}{10015}$$
 Zoom Edit $\frac{1}{411}$ Style $\frac{12}{10015}$ $\frac{1}{411}$ Style $\frac{12}{10015}$ $\frac{1}{411}$ $\frac{1}{411}$ Style $\frac{12}{10015}$ $\frac{1}{411}$ $\frac{1}{411}$ Style $\frac{1}{410}$ $\frac{1}{411}$ $\frac{1}{411}$ Style $\frac{1}{410}$ $\frac{1}{411}$ $\frac{$

Uložit funkci do funkční proměnné lze taktéž z výchozí obrazovky následovně. Šipka je vyvolána klávesou [STO ▷].

Obecně v TI-89 ukládáme výsledky již při zadávání příkladu pomocí [STO ▷] a kýženého názvu proměnné, který u běžných číselných/maticových/řetězcových výsledků může být jakýkoliv (např. mnouk).

Ve výpočtech pak tyto funkce můžeme využívat následovně:

F1+ F2+ Tools Algebra	F3+ F4+ Ca1c Other	F5 rPr9mi0	F6+ C1ean U	
■ 91(x)		€.	× + × ²	- 6
■ y1(2)	!	5.389	05609	9893
■ y2(x)			e×+	2·×
■ y2(y)			e¥+	2·y
<u>■ 92(1.e</u> -	5)	1.000	03000	0005
y2(1e-5)				
MA3	RAD AUTO	FUR	4C	5/30

Pakliže výsledek není ve tvaru, který by nám vyhovoval (například je zlomkem), jako desetinné číslo ho můžeme zobrazit, pakliže místo klávesy [ENTER] použijeme kombinaci $[\diamond]+[ENTER]$ (\approx).

2.3 Uložení funkce dvou proměnných

V MODE menu je nutno položku Graph přepnout do 3D:

Práce pak probíhá stejně, jako s funkcí jedné proměnné:

Musíme však mít na paměti, že do závorek za názvem proměnné je třeba dosadit 2 hodnoty, jelikož jde o funkci dvou proměnných:

2.4 Vytvoření matice/vektoru

Velmi jednoduché matice můžeme zadat přímo z výchozí obrazovky, je to však praktické nanejvýš u vektorů. Vektor [5;3] zadáme jako:

[[5][3]]

Pro větší matice je žádoucí používat vestavěnou aplikaci Data/Matrix Editor, kterou nalezneme v APPS nabídce. Zvolíme New, což nás dostane na následující obrazovku:

USE + AND + TO OPEN CHOICES

Type je nutno přepnout na Matrix, do kolonky Variable zadáme název proměnné, do Row dimension a Col dimension pak počet řádků, respektive sloupců. Na následujícím obrázku je příklad vytvoření 2x2 matice s názvem "mnau":

Po potvrzení můžeme zadávat:

Kromě čísel je možno do matice vkládat i funkce:

F1+ T001s	Dati Škitos ()	3 : 5 : 1 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5 : 5	Fritaria F7 Carriera Sta	it
MAT 2x2				,
	c1	c2	c3	
1	e^x+x	0		
2	0	0		
2 3 4				
4				
	=y1(x)			
MA3	RAD	AUTO	FUNC	

Aplikaci opustíme QUIT kombinací, ([2ND]+[ESC]), uložení je automatické.

Na výchozí obrazovce pak matici vyvoláme prostým zadáním názvu proměnné, můžeme s ní i provádět libovolné dovolené matematické operace:

V matici máme dosazenou funkci. Pakliže chceme za proměnné ve funkci (nejen u matic) dynamicky dosazovat, použijeme za příkladem (a před případným STO) $|\mathbf{x}=(\check{\mathbf{c}}(\mathbf{s}|\mathbf{b}))|$. Svislou čáru vyvoláme klávesou $[\ |\]$.

U funkcí více proměnných používáme $|\mathbf{x}=(\texttt{c}(\texttt{islo}))|$ and $\mathbf{y}=(\texttt{c}(\texttt{islo}))$. Je nutno to napsat i s mezerami, pro usnadnění si jde "and "i s mezerami najít v nabídce CATALOG vyvolané tlačítkem [CATALOG]. V CATALOGu je možno se rychle pohybovat pomocí počátečního písmena, která můžeme vidět u jednotlivých kláves bíle. Pro přeskok do sekce funkcí začínajících písmenem 'a' stiskneme klávesu [=]:

Výsledek pro funkci dvou proměnných je takovýhle:

2.5 Derivování

Derivovat můžeme přímo z výchozí obrazovky, potřebnou funkci vyvoláme kombinací [2ND]+[8]. První parametr je vstupní funkce, druhý proměnná, podle které derivujeme (díky tomu je možno provádět i parciální derivace). Vstupem může být jak ručně napsaná funkce, tak funkce uložená do speciální proměnné:

2.6 Integrování

Integrovat můžeme přímo z výchozí obrazovky, potřebnou funkci vyvoláme kombinací [2ND]+[7]. Funkce má 4 parametry, 2 jsou volitelné. První parametr je vstupní funkce, druhý proměnná, podle které integrujeme. Vstupem může být jak ručně napsaná funkce, tak funkce uložená do speciální proměnné:

Pakliže chceme použít určitý integrál, využijeme i třetí a čtvrtý parametr, kterým je dolní a horní mez:

2.7 Základy práce s tabulkovým procesorem CellSheet

Aplikaci CellSheet, pakliže ji máme nainstalovanou, vyvoláme z nabídky APPS -; FlashApps... -; CellSheet, kde z nabídky zvolíme New. V dialogu zvolíme složku a název proměnné. Otevře se nám okno nápadně připomínající Excel:

F1+ F1 File P1	2+ F3+ 114 ot Edit (0.44	F5 F6+ 3 Func	F7+ F8 Stat ReCal	
s01	A	В	С	D
1				
2				
3				
4				
5				
A1:				
MA3	RAD	AUTO	FUNC	

Práce probíhá téměř na chlup stejně jako se známým tabulkovým procesorem. Vzorce začínáme rovnítkem, buňky označujeme kombinací sloupec+řádek (např. A1, možno psát i a1), konstantní řádky/sloupce/buňky ve vzorci označujeme dolarem pomocí klávesy [F5].

Pakliže zvolená funkce (např. sum) pracuje s rozsahem buněk, oddělíme ve vzorci buňky dvojtečkou, např. =sum(a1:a3):

F1+ ::: File 2:	? / () () F4 ^; () 6.7 Undo	F5 F6+ & Funcs	F7+ F8 Stat ReCa1c	
s01	A	В	С	D
1	1			
2	2			
3	3			
4				
5				
<u>A4:</u>	=sum(a	a1:a3)		
MA3	RAD	AUTO	FUNC	

Po vzoru konvenčních tabulkových procesorů je taktéž možno vybranou buňku s nějakým vzorcem zkopírovat (pomocí kombinace $[\diamond]+[\uparrow]$, vybrat rozsah buněk, kam chceme vzorec vložit (za stálého stisku klávesy $[\uparrow]$ mačkáme šipku odpovídající kýženému směru, dokud není zvolen žádaný rozsah)...

F1+ F; File P1	2+ F3+ F4 ot Edit Undo	16 (16 v 8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8 (8	F7+ F8 Stat ReCalc	
s01	Ħ	В	С	D
1	1	1		
2	2			
3	3			
4	6			
5				
B2:B	4			
MA3	RAD	AUTO	FUNC	

…načež pomocí [⋄]+[ESC] provedeme vložení:

F1+ File	F;	2+ ot	F3+ Edit	F4 Undo	F5 \$	F6+ Funcs		tat	F8 ReCa1c	_
<u>=</u> 0	1	A			В			C		
1				1		-	Ĺ			
2				2		2	1			
5				W		9	3			
4				Ð		36				
ம										
B4:			=A4	^2						
MA3				RAD	AUT			FUH	IC .	

Chceme-li hodnotu nějaké buňky exportovat do standardní proměnné, vybereme v Edit ([F3]) nabídce funkci Export...

V dialogu zvolíme Type: Expr, do Variable vložíme název proměnné, do Cell zadáme buňku (bývá předvyplněno, pakliže jsme export vyvolali na námi kýžené buňce) a odentrujeme.

2.8 Řešení soustav lineárních rovnic

Stejně jako u Casio kalkulaček lze toto řešit pomocí matic, což však může být zdlouhavé. Lze si nicméně nainstalovat aplikaci Simultaneous Eqn Solver.

Tu spustíme pomocí APPS -¿ FlashApps... -¿ Simultaneous Eqn Solver. Z nabídky vybereme New...

Dialog se nás zeptá na počet rovnic a neznámých, který zadáme, například 2 a 2. Otevře se toto okno:

Zápis provádíme maticově, sloupce a1 až an označují matici neznámých, sloupec b1 je vektor pravé strany. Předpokládejme, že chceme vložit následující rovnici:

$$x + y = 5$$
$$2x - 3y = 2$$

Zápis bude vypadat takto:

Výsledky vyvoláme stisknutím klávesy [F5]:

USE + + TO GO TO NEXT SOLUTION

3 Numerické metody

3.1 Metoda nejmenších čtverců

Metodou nejmenších čtverců proložte následující body parabolou.

Tato úloha je ideální pro využití aplikací CellSheet a Simultaneous Equation Solver, s jejichž správným využitím lze minimalizovat možnost lidské chyby.

Soustava rovnic pro kvadratickou aproximaci metodou nejmenších čtverců je následující:

$$C_0(n+1) + C_1 \sum_{i=0}^{n} x_i + C_2 \sum_{i=0}^{n} x_i^2 = \sum_{i=0}^{n} y_i$$

$$C_0 \sum_{i=0}^{n} x_i + C_1 \sum_{i=0}^{n} x_i^2 + C_2 \sum_{i=0}^{n} x_i^3 = \sum_{i=0}^{n} x_i y_i$$

$$C_0 \sum_{i=0}^{n} x_i^2 + C_1 \sum_{i=0}^{n} x_i^3 + C_2 \sum_{i=0}^{n} x_i^4 = \sum_{i=0}^{n} x_i^2 y_i$$

Ze soustavy je patrné, že potřebujeme vypočítat druhou, třetí a čtvrtou mocninu pro všechna x v tabulce, součin x a druhé mocniny x s y a provést součet všech sloupců vzniklé tabulky.

Vhodný layout je násldující:

i	x_i	y_i	x_i^2	x_i^3	x_i^4	x_iy_i	$x_i^2 y_i$
\sum							

Nyní si spustíme program Cell Sheet a vytvoříme novou tabulku. Do prvních dvou sloupců zadáme hodnoty
x a y ze zadání:

F1+ F; File P1	2+ F3+ F4 ot Edit Und	F5 o 3 5	F6+ Funcs 3	F7+ Stat R	FB eCa1c	
ctv	A	В		C		D
1	2.8	}	. 4			
2	3.2	2	.3			
3	3.5	5	.8			
4	3.9)	1.1			
5						
A5:						
MA3	RA	D APP	ROX	FUNC		

Do buňky A5 nyní vložíme sumaci sloupce A, tedy hodnot x_i : =sum(a1:a4)

F1+ F; File P1	2+ F3+ F4 ot Edit Und)F5 F6 9	- Cs 2	F7+ tat	FB ReCalc	
ctv	A	В				D
1	2.8		. 4			
2	3.2		. 3			
3	3.5		.8			
4	3.9	1.	. 1			
5	13.4					
A5:	=sum(a1:a4)			
MA3	RAI) APPROX		FUH	<u> </u>	

Abychom provedli i sumaci hodnot y, zkopírujeme buňku A5 do buňky B5. Klávesová kombinace pro kopírování je $[\diamond]+[\uparrow]$, pro vložení $[\diamond]+[ESC]$. Pokud je buňka správně označena ke zkopírování, objeví se kolem ní tlustý rámeček.

Nápověda: povšimněte si žlutozelených nápisů COPY a PASTE nad dlačítky $\uparrow]$ a [ESC]. To značí, že pro jejich použití musíte stisknout žlutozelenou klávesu $[\diamond]$

Po zkopírování je výsledek následovný:

File P	2+ F3+ F4 lot Edit Undo	F5 F6+ 3 Funcs :	F7+ F8 Stat ReCa1c	
ctv	A	В	C	D
1	2.8	.4		
2	3.2	.3		
3	3.5	.8		
4	3.9	1.1		
5	13.4	2.6		
B5:	=sum(B	31:B4)		
MH3	RAD	APPROX	FUNC	

Do sloupce C můžeme vložit $x_i^2.$ To provedeme vložením následujícího vzorce do buňky C1: $=\!\! {\rm a} 1 \! \wedge \! 2$

Po jeho vložení buňku C1 zkopírujeme a kurzorem přejdeme do buňky níže. Stiskneme klávesu $[\uparrow]$ a za jejího stálého držení přejdeme do buňky C4. Povšimněte si, že jsou všchny tyto buňky vybrány:

File Pi	2+ F3+ F4 ot Edit Undo)	F7+ F8 Stat ReCalc	
ctv	A	В	C	
1	2.8	. 4	7.84	
2	3.2	.3		
3	3.5	.8		
4	3.9	1.1		
5	13.4	2.6		
C2: C	4			
MA3	RAD	APPROX	FUNC	

Nyní stiskneme PASTE kombinaci ([\diamond]+[ESC]):

F1+ F2 File P1	2+ F3+ F4 ot Edit Undo		F7+ F8 tat ReCa1c	
ctv	A	В	C	
1	2.8	.4	7.84	
2	3.2	.3	10.24	
3	3.5	.8	12.25	
4	3.9	1.1	15.21	
15	13.4	2.6		
C2: C	4			
MA3	RAD	APPROX	FUNC	

Ještě provedeme sumaci sloupce tím, že do buňky C5 zkopírujeme buňku B5:

File	F2 P10		F3+ Edit	F4 Und	F5 9 \$	F6 Fun	- C5 2	F7+ Stat	F Rei	B Calc	
ct	Ţ	A			В			С			D
1			, 2	2.8		ı	. 4		7.	.84	
2			7	3.2		ı	. 3	1	0.	. 24	
3			-	3.5		ı	. 8	1	2.	. 25	
4			7	3.9		1.	. 1	1	5.	.21	
5			13	3.4		2.	. 6	4	5.	54	
<u>C5:</u>		=	- SU	ım (C1:	C4)				
MA3				RA) APF	ROX		FUN	IC		

Pomocí těchto kroků vytvoříme i zbylé potřebné sloupce, jak je naznačeno na tabulce s layoutem:

F1+ F	2+ lot	F3+ Edit	F4 Undo	F5 \$	F6+ Funcs	S	tat	FB ReCalc	
ctv	E			F			G		Н
1	6	1.4	166		1.12	2	3	. 136	
2	1	04.	.86		. 96	5	3	.072	
3	1	50.	.06		2.8	3		9.8	
4	2	31.	.34		4.29	7	16	. 731	
5	15	47.	.73		9.17	7	32	.739	
G5:	;	=51,			G4)				
MA3			RAD	APP	ROX		FUN	C	

Pakliže se chceme vyhnout lidské opisovací chybě, můžeme poněkud zdlouhavě vyexportovat potřebné hodnoty do proměnných. Ukážeme si to na buňce A5, tedy $\sum x_i$.

Kurzorem buňku vybereme, otevřeme nabídku Edit (klávesa [F3]) a otevřeme zde nabídku Export...

Jako Type zvolíme Expr (expression), zvolíme název (např. xi), ověříme, že je v kolonce Cell správná buňka a odenterujeme.

Tímto způsobem exportujeme všechny buňky se sumou.

Opustíme program CellSheet pomocí QUIT kombinace a spustíme program Simultaneous Eqn Solver. Počet rovnic je 3, počet proměnných taktéž.

Do buňky a(1, 1) vložíme počet zadaných bodů, tedy 4. Do zbylých buňek vkládejte názvy proměnných odpovídající jednotlivým sumám. Všimnětě si, že se název proměnné po vložení změní na číslo.

Takto zadáme celou soustavu rovnic:

F1+ Tools	F2+ Load S	F3+ tore		F5 Solve	F6+ Uti13	F7+ Select	ь	
3x4 M	latrix A	ilb	a _{3,1}	× ₁ +.	+a _:	,,3 ^X 3 ²	=b:	I 3
	a:		a	2	a	3		<u> </u>
1	4.		13.	4	45.	54	2.	<u>6</u>
2	13.4		45.			9	ø.	<u>17</u>
3	45.5	54	156	. 9	547	7	32	<u>. 7</u>
<u>a(3</u>	<u>, 1)=</u>	<u>45.</u>						
MA3		RAI	O APP	ROX	FUN	C		

Klávesou [F5] spustíme SOLVE a ukážou se nám výsledky:

USE - - TO GO TO MEXT SOLUTION

 x_1 je C_0 , x_2 je C_1 a x_3 je C_2 , výsledná parabola je tedy:

$$y = 6.1792 - 4.0780x + 0.7143x^2$$

3.2 Řešení jedné nelineární rovnice Newtonovou metodou

Je dána rovnice $e^x - 6 + x^2 = 0$.

Najděte interval délky 1 s celočíselnými mezemi, v němž leží záporný kořen této rovnice. Kořen hledejte Newtonovou metodou.

Z krajních bodů intervalu vyberte ten, ze kterého je zaručena konvergence Newtonovy metody. Zapište další dvě aproximace a na závěr pak výslednou přibližnou hodnotu kořene s přesností $\varepsilon=10^{-3}$.

Prvně je potřeba nalézt interval žádané délky, v němž leží řešení. Toto je možno graficky, případně nalezením řešení pomocí solveru a určením intervalu z něj.

Solver je možno vyvolat pomocí funkce solve(), jejíž první argument je hledaná rovnice a druhý argument proměnná, která se v rovnici vyskytuje. Abychom nemuseli solve funkci psát manuálně, je možno ji vyvolat z Algebra menu skrývajícím se pod klávesou [F2]. Počítejte s možností, že kalkulačka může hledat řešení i půl minuty.

■ solve(
$$e^{\times}$$
 - 6 + \times^2 = 0, \times)
× = -2.43147965972 or \times = \bullet
solve(e^{\times} - 6 + \times^2 = 0, \times)
MAS RAD APPROX FUNC 1/30

Záporný kořen je x = -2.43, interval tedy může být < -3; -2 >.

Pakliže jsme tak doteď neučinili, je záhodno si funkci uložit do Y= menu, viz kapitola 2.2:

Nyní je potřebné funkci dvakrát zderivovat, pro návod vizte kapitolu 2.5.

Pozn.: Pro snadné uložení zderivované f-ce se kurzorem posuneme do výsledku, enterem ho přesuneme do vstupního řádku a nasměrujeme do proměnné y2(x), případně y3(x), viz kapitola 2.2.

Nyní si vybereme jeden z krajních bodů nalezeného intervalu (zvolíme si -3) a ověříme konvergenci metody pomocí podmínky $f(x_0) \cdot f''(x_0) > 0$:

6,25 > 0, hodnotu -3 lze tedy použít jako počáteční aproximaci.

Nyní si spustíme CellSheet a vytvoříme si novou tabulku. Do buňky A1 vložíme naši počáteční aproximaci.

File Pil	2+ F3+ ot Edit	F4 Undo	F5 \$	F6+ Funcs	F7+ Stat	FB ReCalc	
new	A		В		С		
1		-3					
2							
3							
4							
5							
A2:							
MA3		RAD	AUT		FUN	IC	

Další aproximaci lze zjistit z tohoto vzorce:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Funkci f(x) máme uloženou v y1(x), funkci f'(x) v y2(x), do buňky A2 pak tento vzorec vložíme následujícím způsobem:

= a1-y1(a1)/y2(a1)

Do buňky B2 vložíme přesnost výpočtu, kterou zjistíme ze vzorce:

$$\xi = |X_{k+1} - x_k|$$

Což je možno vložit jako:

=abs(a2-a1)

Tímto jsme provedli 1 krok:

F1+ F1 F11e P1	2+ F3+ F4 ot Edit Undo	F5 F6+ 3 Funcs S	F7+ F8 tat ReCa1c	
new	A	В	С	D
1	-3			
2	-2.487	.51255		
3				
4				
5				
B2:	=abs(a	a2-a1)		
MA3	RAD	APPROX	FUNC	

Nyní budeme postupně kopírovat hodnoty ze sloupce A a ze sloupce B níže, dokud nedosáhneme požadované přesnosti (například 10^{-3}), kteréžto jsme dosáhli v buňce A4:

File Pi	2+ F3+ F4 ot Edit Undo	F5 F6+ \$ Funcs 5	F7+ F8 Stat ReCalc	
new	A	В	С	D
1	-3			
2	-2.487	.51255		
3	-2.432	.0553		
4	-2.431	.00067	.001	
5				
<u> 84:</u>		l(A3)/()
MA3	RAD	APPROX	FUNC	

Pozn.: Šířka sloupce může být příliš malá na zobrazení hodnoty na dostatečný počet des. míst. Chceme-li sloupce rozšířit, tak při vybrané buňce z požadovaného sloupce zvolíme Edit -¿ Column Format, kde zvětšíme hodnotu Col Width (např. na 10) a Display Digit (např. na FLOAT 12).

3.3 Řešení soustavy nelineárních rovnic Newtonovou metodou

Je dána soustava rovnic

$$x^2y - xy^2 + 2 = 0$$
$$x^3 + y - 3 = 0$$

Řešte tuto soustavu Newtonovou metodou. Proveďte dva kroky metody. Vyjděte z bodu $\{x_0; y_0\} = \{1; 1\}$. Nejprve je nutno kalkulačku přepnout do režimu práce s funkcemi dvou proměnných dle kapitoly 2.3. Funkce $f_1(x,y)$ a $f_2(x,y)$ uložíme do funkcí z1 a z2:

Následně v souladu s kapitolou 2.5 vypočteme parciální derivace obou funkcí (tj. vypočteme derivaci obou funkcí podle x a podle y) a v souladu s kapitolou 2.3 (podrobněji v kapitle 2.2) je uložíme do proměnných:

Fir F2+ F3+ F4+ F5 F6+ T001s A19ebra Ca1c Other Pr9mIO Clean Up

a
$$\frac{a}{d\times}(z_2(x,y))$$
 3. \times^2

5. $\times^2 + z_5(x,y)$ Done

a $\frac{d}{dy}(z_2(x,y))$ 1.

1. $+ z_6(x,y)$ Done

1. $+ z_6(x,y)$ Done

1. $+ z_6(x,y)$ Done

1. $+ z_6(x,y)$ Done

Počítejme s následujícím uložením: $\frac{\partial f_1}{\partial x}=z3, \ \frac{\partial f_1}{\partial y}=z4, \ \frac{\partial f_2}{\partial x}=z5, \ \frac{\partial f_2}{\partial y}=z6$

Následná aproximace pro soustavy nelineárních rovnic se počítá dle následujících vzorců:

$$\mathbf{F}'(\mathbf{x}^{(k)}) \cdot \boldsymbol{\delta}^{(k)} = -\mathbf{F}(\mathbf{x}^{(k)})$$

 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \boldsymbol{\delta}^{(k)}$

 \mathbf{F}' je matice derivací a má následující tvar:

$$\mathbf{F}' = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$$

 ${\bf F}$ je vektor vstupních funkcí a má následující tvar:

$$\mathbf{F} = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \end{bmatrix}$$

V souladu s kapitolou 2.4 vytvoříme obě matice. Matici derivací předpokládejme v proměnné fd, vektor vstupních funkcí v proměnné f:

F1+ Tools	F2 Plot Setup C	3 e11(0, 6985)	FO F64 F7 Con Util Sta	\bigcap		
MAT 2x2						
ZXZ	c1	c2	c3			
1	2*x*y	x^2-2				
2	3*x^2	1				
2 3 4						
4						
r1c1=2*x*y-y^2						
MAR	RAD	APPROX	30			

F1+ T001s	F2 Plot Setup C	13 15 15 15 15 15 15 15	F1 F6+ F7 Cata Util Sta	it		
MAT 2x1						
	c1	c2	c3			
1	x^2*y					
2	x^3+y					
2 3 4						
4						
r1c1=x^2*y-x*y^2+2						
MA3	RAD	APPROX	3D			

Nyní spočítáme 1. aproximaci:

Do obou matic dosadíme počáteční aproximaci. Vektor f potřebujeme záporný:

Nyní jsme schopni spočítat $\delta^{(1)}$. Běžný způsob řešení soustavy lineárních rovnic by zde byl příliš zdlouhavý, proto využijeme podobný postup, jako při řešení MUN/MSP v předmětu EL1 a využijeme následujícího faktu:

$$\boldsymbol{\delta}^{(k)} = \mathbf{F}'(\mathbf{x}^{(k)})^{-1} \cdot \left(-\mathbf{F}(\mathbf{x}^{(k)}) \right)$$

Dosazené matice můžeme do vstupního řádku zkopírovat stejným způsobem, jakým kopírujeme buňky v Cell-Sheet. Spočtení $\delta^{(1)}$ je pak triviální:

Velmi zjednodušeně řečeno: zkopírujte dosazenou matici (tj. s čísly) do vstupního (dolního) řádku, dopište \land -1 * Následně zkopírujte dosazenou f matici, vložte do vstupního řádku a stistkněte Enter.

Abyste získali první aproximaci, musíte přičíst k výsledku $\delta^{(0)}$, tedy počáteční aproximaci. Nejrychlejši bude vložit ji ručně jako matici přímo do vstupního řádku jako [[1][1]]. Tím získáte výslednou 1. aproximaci:

Podobným způsobem provedeme 2. aproximaci:

Do matice fd a -f dosadíme 1. aproximaci:

Stejným způsobem jako v předchozím kroku spočítáme $\pmb{\delta}^{(2)} \colon$

Abychom získali výslednou 2. aproximaci, přičteme výsledek předchozího kroku:

Tím jsme získali požadovaný výsledek.