Tags:: #on/Quantum-Computing , #on/Quantum-Computing/Linear-Algebra,

#on/Linear-Algebra

Links:: Introduction to Classical and Quantum Computing - Thomas

Wong

<u>Linear Algebra</u> is to <u>Quantum Computing</u> as <u>Boolean Algebra</u> is to <u>Classical Computing</u>. Although we have to learn a new tool, it makes calculations much easier.

Quantum States

Column Vectors

• We write $|0\rangle$ and $|1\rangle$ as <u>column vectors</u>:

$$|0
angle = inom{1}{0}, \qquad |1
angle = inom{0}{1}.$$

• It is easier to write superpositions this way. A generic qubit would be:

$$egin{aligned} |\psi
angle &= lpha |0
angle + eta |1
angle \ &= lpha egin{pmatrix} 1 \ 0 \end{pmatrix} + eta egin{pmatrix} 0 \ 1 \end{pmatrix} \ &= egin{pmatrix} lpha \ 0 \end{pmatrix} + egin{pmatrix} 0 \ eta \end{pmatrix} \ &= egin{pmatrix} lpha \ eta \end{pmatrix}. \end{aligned}$$

Row Vectors

The <u>transpose</u> of a <u>Column vector</u> is obtained by rewriting it as a <u>row</u> <u>vector</u>, and it is denoted by ^T.

$$egin{pmatrix} lpha \ eta \end{pmatrix}^T = (lpha \quad eta).$$

 In quantum computing, we typically use the <u>conjugate transpose</u>, which is obtained by taking the <u>complex conjugate</u> of each component of the transpose. It is denoted by †.

$$egin{pmatrix} lpha \ eta \end{pmatrix}^\dagger = (lpha^* \quad eta^*).$$

• A bra $\langle \psi |$ is the <u>conjugate transpose</u> of a ket, and conversely, a ket is the conjugate transpose of a bra.

$$\langle \psi | = | \psi
angle^\dagger, \qquad | \psi
angle = \langle \psi |^\dagger.$$

Inner Products

Inner Products Are Scalars

• The inner product of $|\psi\rangle=\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ and $|\phi\rangle=\begin{pmatrix} \gamma \\ \delta \end{pmatrix}$ is defined as $\langle\psi|\phi\rangle$, which is called a bra-ket or bracket:

$$egin{aligned} \langle \phi | \psi
angle &= (lpha^* \quad eta^*) egin{pmatrix} \gamma \ \delta \end{pmatrix} \ \langle \phi | \psi
angle &= lpha^* \gamma + eta^* \delta. \end{aligned}$$

which is a scalar value. That's why an inner product is also known as scalar product.

• The inner product of $|\psi\rangle$ and $|p\rangle hi$ is just the <u>complex conjugate</u> of the inner product of $|\psi\rangle$ and $|\phi\rangle$:

$$\langle \psi | \phi \rangle = \langle \phi | \psi \rangle^*$$
.

Orthonormality

- The inner product of $|\psi\rangle$ with itself, denoted $\langle\psi|\psi\rangle$, is just the total probability, i.e. $|\alpha|^2+|\beta|^2$, and if it is 1, then the state $|\psi\rangle$ is normalized.
- Any two states on opposite sides of the <u>Bloch sphere</u> have zero inner product, and the states with zero inner product are called *orthogonal* states.
- <u>Orthonormal</u> states are those states that are both *normalized* and orthogonal to each other. e.g. $\{|0\rangle, |1\rangle\}$ are orthonormal, so are

Projection, Measurement, and Change of Basis

ullet For an orthonormal basis $\{|a
angle,|b
angle\}$, the state of a $rac{ ext{qubit}}{ ext{can}}$ can be written as

$$|\psi
angle = lpha |a
angle + eta |b
angle,$$

where $\alpha=\langle a|\psi\rangle$ and $\beta=\langle b|\psi\rangle$. Here $\langle a|\psi\rangle$ is the amplitude of $|\psi\rangle$ in $|a\rangle$, i.e. the amount of $|\psi\rangle$ that is in $|a\rangle$, or the amount of overlap between $|\psi\rangle$ and $|a\rangle$, which in mathematical terms is called the <u>projection</u> of $|\psi\rangle$ onto $|a\rangle$.

Inner products can be used to find the amplitudes and <u>orthonormality</u>
of a state in a certain basis, which provides a convenient way to
change basis states, and perform calculations using different
computer algebra systems.

Quantum Gates

Gates as Matrices

Quantum gates are matrices that keep the total probability equal to 1.

Common One-Qubit Gates as Matrices

 The <u>previously introduced</u> common <u>One-Qubit Quantum Gates</u> can be represented as matrices:

Gate	Action on Computational Basis	Matrix Representation
Identity	$I 0\rangle = 0\rangle$ $I 1\rangle = 1\rangle$	$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Pauli X	$egin{array}{c} X 0 angle = 1 angle \ X 1 angle = 0 angle \end{array}$	$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Pauli Y	$ Y 0\rangle = i 1\rangle$ $ Y 1\rangle = -i 0\rangle$	$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
Pauli Z	$egin{array}{c} Z 0 angle = 0 angle \ Z 1 angle = - 1 angle \end{array}$	$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Phase S	$S 0\rangle = 0\rangle$ $S 1\rangle = i 1\rangle$	$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$
T	$T 0 angle = 0 angle \ T 1 angle = e^{i\pi/4} 1 angle$	$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$
Hadamard H	$H 0\rangle = \frac{1}{\sqrt{2}}(0\rangle + 1\rangle)$ $H 1\rangle = \frac{1}{\sqrt{2}}(0\rangle - 1\rangle)$	$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

9 Chapter 3 - Linear Algebra#Common One-Qubit Gates as Matrices

CHAPTER 3 - LINEAR ALGEBRA_COMMON_ONE_QUBIT_GATES_MATRICES.EXCALIDRAW.SVG

Sequential Quantum Gates

- Using linear algebra, we can compute the effect of a sequence of quantum gates.
- \bullet For example: $HSTH|0\rangle$ can be computed by simplifying/multiplying the matrices together:

$$HSTH|0
angle = rac{1}{\sqrt{2}}egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}egin{pmatrix} 1 & 0 \ 0 & i \end{pmatrix}egin{pmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{pmatrix}rac{1}{\sqrt{2}}egin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}egin{pmatrix} 1 \ 0 \end{pmatrix}.$$

Circuit Identities

• We can prove different circuit identities using <u>Linear Algebra</u>, e.g. HXH = Z can be proven by multiplying the matrices together, either manually or, in most cases, using a computer program.

Unitarity

Quantum gates are unitary matrices, and unitary matrices are quantum gates.

Reversibility

• A quantum gate is always reversible, and its inverse is U^{\dagger} .

Outer Products

Outer Products Are Matrices

• As opposed to inner products $\langle \psi | \phi \rangle$ which are scalar, an outer product $|\psi\rangle\langle\phi|$ is always a matrix:

$$|\psi
angle\langle\phi|=egin{pmatrix}lpha\eta\end{pmatrix}(\gamma^*\quad\delta^*).$$

- We can add <u>outer products</u> together to construct various <u>quantum</u> gates.
- The <u>outer product</u> of $|\phi\rangle$ and $|\psi\rangle$ is just the <u>conjugate transpose</u> of the outer product of $|\psi\rangle$ and $|\phi\rangle$:

$$|\phi
angle\langle\psi|=|\psi
angle\langle\phi|^{\dagger}.$$

Completeness Relation

• A complete <u>orthonormal</u> basis $\{|a\rangle,|b\rangle\}$ satisfies the completeness relation

$$|a
angle\langle a|+|b
angle\langle b|=I.$$

Summary

- The mathematical language of <u>quantum computing</u> is <u>linear algebra</u>.
- Quantum states are represented by <u>column vectors</u> called kets, and the <u>conjugate transpose</u> of a ket is a bra.

- Multiplying a bra and a ket is an <u>inner product</u> that yields the <u>projection</u> or amplitudes of the states onto each other.
- States with zero <u>inner product</u> are <u>orthogonal</u>, and a state whose inner product with itself is 1 is <u>normalized</u>.
- All quantum gates are unitary matrices.
- A quantum gate is always reversible.
- Multiplying a ket and a bra is an outer product, which is a matrix.
- A complete <u>orthonormal</u> basis satisfies the <u>completeness relation</u>, meaning the sum of the outer products of each basis vector with itself equals the <u>Identity matrix</u>.