

AN OPEN-SOURCE MODEL ZOO FOR ANALYZING, VISUALIZING, AND COMPARING DEEP REINFORCEMENT LEARNING AGENTS

Joel Lehman, Senior Research Scientist, Uber

Make it easier to research the behavior of reinforcement learning agents produced by different algorithms

An Open-Source Model Zoo for Analyzing, Visualizing, and Comparing **Deep Reinforcement Learning Agents**

An Open-Source (Atari) Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents

An Open-Source Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents

An Open-Source Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents

VIDEO

Deep Reinforcement Learning

VIDEO

Deep Reinforcement Learning

- · Lots of potential
- But...
 - o Important in some tasks to understand what an agent is doing
- Just as explainable AI is important for supervised learning, it is also important for reinforcement learning

Make it easier to research the behavior of RL agents produced by different algorithms

With model zoo

```
In [15]: #load model
m = MakeAtariModel("a2c", "SeaquestNoFrameskip-v4", 1, "final")()
#grab frames and high-level neural representations
frames = m.get_frames()
rep = m.get_representation()
imshow(frames[10])
figure()
plot(rep[10])
```


Accompanying Software

• Code: http://t.uber.com/atarizoo

Build on / use two previous libraries

https://github.com/tensorflow/lucid

https://github.com/google/dopamine

Video grids for quick qualitative comparisons

Video grids for quick qualitative comparisons

ox

Robustness to Observation Noise

• Re-evaluate trained policy with noisy input, see how performance degrades

Policy Search more Robust to Observation Noise

VIDEO

Visualizing activation during evaluation

> In the style of DeepVis Toolbox (Yosinski et al. 2015)

Future Zoo Directions

- More models (more training algorithms + different environments)
- · More analysis tools / metrics
 - o Implement methods from supervised learning interpretability for deep RL
- What discoveries are waiting to be found?

An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents

Source @ http://t.uber.com/atarizoo

Felipe Petroski Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schubert, Marc Bellemare, Jeff Clune, Joel Lehman

Conclusion

- We've released models trained in many Atari games across a range of RL algorithms, and software to easily load and analyze them
- Excited to see how the community uses the zoo and what research it enables
- Questions?
 - Lehman.154@gmail.com / @joelbot3000 (or send me a message through the coference chat / message system)

Source (github): http://t.uber.com/atarizoo

Blog post: https://eng.uber.com/atari-zoo-deep-reinforcement-learning/ Web tool: https://uber-research.github.io/atari-model-zoo/video2.html

