

TEMAS SELECTOS DE COMPUTACIÓN Métodos Numéricos para el Cómputo de Alto Rendimiento 2019-II

Horario: Lunes & Miércoles, 4:00 - 5:30pm

Salón: S-302

Instructor: Oscar A. Esquivel Flores

Cubículo: IIMAS-325

e-mail: oscar.esquivel@iimas.unam.mx

Objetivo general : Al finalizar el curso el alumno será capaz de utilizar las técnicas numéricas para resolver sistemas de ecuaciones lineales algebráicos (SELA) de gran dimensión utilizando un lenguaje de alto nivel.

Prerequisitos:

- Importante, tener conocimientos de cálculo, ecuaciones diferenciales y un poco de álgebra lineal.
- Se apreciará tener experiencia en algún lenguaje de programación moderno como MATLAB, PYTHON, R, OCTAVE.
- Es deseable tener conocimiento de la terminal y línea de comandos.
- Es importante, aunque no obligatorio, tener conocimiento de herramientas básicas para la programación repositorios, escritura de documentos en Latex, uso editores modernos, jupyter-notebooks, sistema operativo LINUX o UNIX-like.
- No necesario pero deseable, el conocimiento básico de algún lenguaje del siglo pasado como C, C++ o Fortran.

Índice temático:

- Introducción al curso
- Introducción a Julia
- Conceptos básicos

- Métodos numéricos tradicionales
- Métodos numéricos para SELA
- Método Monte Carlo Cadena de Markov para SELA

Planificación del curso:

Semana	Temas de clase
Ago 5 & 7	Introducción al curso
Ago 12 & 14	Introducción a Julia
Ago 19 & 21	Introducción a Julia
Ago 26 & 28	Conceptos básicos Métodos Numéricos
Sep 2 & 4	Métodos Numéricos básicos + T1
Sep 9 & 11	Método de Euler y Runge-Kutta + T2
Sep 16	Día inhábil / Clase a recuperar
Sep 18	Sistemas de EDO + T3
Sep 23 & 25	Método de Diferencias Finitas (MDF)
Sep 30 & Oct 2	Sistemas de Ecuaciones lineales I
Oct 7 & 9	Sistemas de Ecuaciones lineales II + T3
Oct 14 & 16	Método Monte Carlo
Oct 21 & 23	Cadenas Markov ()
Oct 28 & 30	Método de Monte Carlo Cadena Markov para SELA
Nov 4 & 6	Cómputo de alto rendimiento con Julia + T4
Nov 11 & 13	Cómputo paralelo con Julia
Nov 18	Día inhábil / Sesión a recuperar
Nov 20	Presentación de proyecto
Nov 25 & 27	Calificaciones finales

Evaluación:

Se omitirá el requisito de presentar algún tipo de examen, el enfoque del curso es constructivista y se enfocará en la elaboración de los siguientes productos:

- \blacksquare Documento grupal que contenga la teoría y práctica cubierta en el curso (30 %)
- Proyecto final 50 %)
- Tareas (T) Actividades (A) (20%)

Bibliografía Básica:

■ Chapra S., Canale R., "Métodos Numéricos para Ingenieros", McGraw-Hill, 5ª. ed., 2007.

- Golub G., Van Loan C., "Matrix Computations", The Johns Hopkins University Press, Third ed., 1996.
- Hoffmann K., Chiang S., "Computational fluid dynamics", Volume 1, Engineering Education System, Fourth ed., 2000
- Lui S., "Numerical Analysis of Partial Differential Equations", Willey, 2011.
- Mahews J., Fink, D., "Métodos Numéricos con Matlab", Pearson, 3ª. ed., 2000.
- Pacheco, P., "An Introduction to Paralell Programming, Morgan Kaufmann-Elsevier, U.S.A., 2011.
- Peters A., "Numerical Algorithms: Methods for Computer Vision", Machine Learning, and Graphics, CRC Press, 2015.

Bibliografía y referencias complementarias

- Grasselli M., Pelinovsky D., "Numerical Mathematics", Jones and Bartlett Publishers, 2008.
- Chung, T., "Computational Fluid Dynamics", Cambridge University Press, First ed., 2002.
- Press W., et al., "Numerical Recipes in C: The Art of Scientific Computing", Cambridge University Press, Second Edition, 1992.
- Lenguaje de programación Julia: https://julialang.org/.
- Lenguaje de programación Python: https://www.python.org/