MATEMATIK 2

Konya Teknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Temel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2021

HACİM HESAPLARI

z = f(x, y) fonksiyonunun uzayda bir yüzey tanımladığını bilmekteyiz. Buna göre f(x, y), xoy düzleminde bir B bölgesi üzerinde sürekli ve pozitif bir fonksiyon iken f nin B bölgesi üzerindeki iki katlı integrali; xoy düzlemi üzerinde alt taraftan z=0 düzlemiyle, üst taraftan f(x,y) yüzeyi ile, yanal yüzeyi de silindirik bir yüzeyle çevrilmiş bir silindirin hacmi olarak yorumlanabilir (Bkz. Şekil 1). Bu durumda hacim;

$$Hacim = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k = \iint_{B} f(x, y) dA$$

$$V == \iint_{B} f(x, y) dA$$

dir. Yukarıdaki eşitlik hacmin, taban alanı ΔA_k , yüksekliği $f(x_k, y_k)$ olan dik silindirlerin hacimleri toplamı olduğunu söyler. Bu integralin var olabilmesi için; f(x,y) fonksiyonunun B bölgesinde sürekli ve pozitif tanımlı olması gerektiği aşikardır.

Şekil 1.

Örnek 1. Köşeleri O(0,0,0), A(1,0,0), B(1,1,0), C(0,0,1) olan piramidin hacmini veren iki katlı integrali ifade ediniz. (Bkz. Şekil)

Çözüm:

Hacmi aranan cismin xoy düzlemindeki iz düşümü şekilde de görüldüğü gibi; y = 0, x = 1, y = x doğruları ile sınırlanan bölgedir. Bu bölgeyi üst taraftan örten yüzey denklemi ise x = 1 ve z = 1

noktalarından geçen doğruyu kapsayan düzlem yani; z+x=1 düzlemidir. Buna göre istenen piramitin hacmi;

$$V = \int_{0}^{1} \int_{y}^{1} (1-x)dxdy = \int_{0}^{1} \int_{0}^{x} (1-x)dydx = \int_{0}^{x} \left[y - xy \right]_{0}^{x}$$

biçiminde verilebilir.

$$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) dx = \frac{1}{2}$$

Örnek 2. Hacmi; $V = \int_{0}^{2} \int_{0}^{2-x} (2-x-y) dy dx$ iki katlı integrali ile hesaplanabilen cismi çiziniz.

Çözüm: İntegrasyon sınırlarından; x=0, x=2 doğruları arasında kalan ve y=0' ın üstünde, y=2-x doğrusunun altındaki B bölgesinin; hacmi aranan cimin xoy düzlemindeki izdüşümü olan bölge olduğunu görülmektedir. İntegrasyon içindeki fonksiyon ise; yukarıda bahsedilen B bölgesinin üst taraftan

z=2-x-y düzlemi ile sınırlandığını anlatmaktadır. Bu düzlem denklemi; eksenleri $x=2,\ y=2,\ z=2$ noktalarında kesen düzlemdir. Buna göre;

2

olup, bu yukarıdaki integral ile verilen cisimdir.

Örnek 6. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ elipsoidinin hacmini hesaplayınız.

Çözüm: Hacmi aranan elipsoid aşağıda verilmiştir.

Bu tür cisimlerin hacimleri bulunurken önceki bölümlerde olduğu gibi simetri özelliğinin kullanılması tercih edilmelidir. Yani; cismin $x \ge 0, y \ge 0, z \ge 0$ daki hacminin bulunması yeterlidir. Cismin $x \ge 0, y \ge 0, z \ge 0$ daki kısmının xoy deki izdüşümü olan integrasyon bölgesi $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ elipsinin birinci dördüldeki kısmıdır. Bu bölgeyi de üstten örten yüzey denklemi ;

$$z = f(x, y) = c\sqrt{1 - (\frac{x^2}{a^2} + \frac{y^2}{b^2})}$$

dir. Buna göre istenen hacim;

$$V = 8 \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} c\sqrt{1-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} \, dy dx$$

dır.Burada, $\begin{cases} x = ar \cos \theta \\ y = br \sin \theta \end{cases}$ homotetik dönüşümü uygulanırsa, parametrelerin değişim aralıkları ve

dönüşümün Jakobiyeni j = abr, $0 \le r \le 1$, $0 \le \theta \le \frac{\pi}{2}$ olur

$$V = 8 \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} c \sqrt{1 - \frac{a^{2}r^{2}\cos^{2}\theta}{a^{2}} - \frac{b^{2}r^{2}\sin^{2}\theta}{b^{2}}} abrdrd\theta = 8 \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} abcr \sqrt{1 - r^{2}} drd\theta$$

$$V = -\frac{8}{3}abc \int_{0}^{\frac{7}{2}} \left((1 - r^{2})^{\frac{3}{2}} \right)_{0}^{1} d\theta = \frac{4}{3}\pi abc \ br^{3} \quad \text{elde edilir.}$$

Örnek 7. $1 \le x^2 + y^2 + z^2 \le 9$ eşitsizlikleri ile tanımlanan bölgenin hacmini hesaplayınız.

Çözüm:

Şekilde de görüldüğü gibi $1 \le x^2 + y^2 + z^2 \le 9$ eşitsizliği ile verilen cisim; yarıçapı 3 olan kürenin içinde yarıçapı 1 olan kürenin dışında kalan bölgedir. Başka bir değişle istenen hacim; yarıçapı 3 olan kürenin hacminden, yarıçapı 1 birim olan kürenin hacminin çıkarılması ile bulunur.

$$V = \int_{-3}^{+3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} 2\sqrt{9-x^2-y^2} \, dy dx - \int_{-1}^{+1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2\sqrt{1-x^2-y^2} \, dy dx$$

$$V = \int_{-3}^{+3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} 2\sqrt{9-x^2-y^2} \, dy dx - \int_{-1-\sqrt{1-x^2}}^{+1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2\sqrt{1-x^2-y^2} \, dy dx$$

$$V = 2 \int_{0}^{2\pi} \int_{0}^{3} \sqrt{9-r^2} \, r dr d\theta - 2 \int_{0}^{2\pi} \int_{0}^{1} \sqrt{1-r^2} \, r dr d\theta$$

$$V = 2 \int_{0}^{2\pi} \left[-\frac{1}{3} (9-r^2)^{\frac{3}{2}} \right]_{0}^{3} d\theta - 2 \int_{0}^{2\pi} \left[-\frac{1}{3} (1-r^2)^{\frac{3}{2}} \right]_{0}^{1} d\theta$$

$$V = 18 \int_{0}^{2\pi} d\theta - \frac{2}{3} \int_{0}^{2\pi} d\theta = \frac{104\pi}{3} br^{3}$$

Örnek 10. $z = x^2 + y^2$ paraboloidinden z = 2y yüzeyinin ayırdığı cismin hacmini hesaplayınız.

Çözüm: Verilen yüzeylerin sınırladıkları bölge,

yüzeylerin ortak çözümünden, $2y = x^2 + y^2 \Rightarrow x^2 + (y-1)^2 = 1$ çemberinin sınırladığı B bölgesinin cismin xoy deki iz düşüm bölgesi olduğu bulunur. O halde aranan hacim,

$$V = \iint_B [2y - (x^2 + y^2)] dx dy$$

dir. B bölgesi dairesel bir bölge olduğundan kutupsal koordinatlara geçildiğinde;

$$V = \int_{0}^{\pi} \int_{0}^{2\sin\theta} (2r\sin\theta - r^{2})rdrd\theta = \int_{0}^{\pi} \left(\frac{2}{3}r^{3}\sin\theta - \frac{r^{4}}{4}\right)\Big|_{0}^{2\sin\theta} d\theta = \int_{0}^{\pi} \frac{4}{3}\sin^{4}\theta d\theta = \frac{\pi}{8}br^{3}$$

elde edilir.

Örnek 11. $x^2 + y^2 = 4$ silindiri ve z = 0, y + z = 4 düzlemleri ile sınırlanan cismin hacmini hesaplayınız. (Bkz. Şekil)

Çözüm: Verilen yüzeyler ile sınırlanan cisim,

yukarıdaki şekildeki gibidir. Bu cismin xoy düzlemine izdüşümü $x^2 + y^2 = 4$ dairesidir. Kutupsal koordinatlara geçilirse,

$$x = r \cos \theta y = r \sin \theta$$
 için $|J| = r$, $0 \le r \le 2$, $0 \le \theta \le 2\pi$

olup,

$$V = \iint_{B} (4 - y) dx dy = \int_{0}^{2\pi} \int_{0}^{2} (4 - r\sin\theta) r dr d\theta = \int_{0}^{2\pi} \left[2r^{2} - \frac{r^{3}}{3}\sin\theta \right]_{0}^{2} d\theta$$

$$V = \int_{0}^{2\pi} \left(8 - \frac{8}{3}\sin\theta \right) d\theta = 16\pi br^{3}$$

elde edilir.

Örnek 13. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{4c^2} = 1$ ($z \ge 0$) yarım elipsoidi ile üstten, $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ yarım elipsoidi ile alttan sınırlanan cismin hacmini hesaplayınız.

Çözüm: Verilen elipsoidlerin sınırladığı cismin hacmi,

$$V = \iint_{B} (2c\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} - c\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}}) dxdy$$

dir. Elipsoid yüzeylerinin xoy düzlemindeki izdüşümü $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ elipsi olup homatetik koordinatlara geçilirse, $x = ar\cos\theta$ $v = br\sin\theta$ i cin |J| = abr, $0 \le r \le 1$, $0 \le \theta \le 2\pi$

olur. Buradan;

$$V = \int_{0}^{2\pi} \int_{0}^{1} (2c\sqrt{1-r^2} - c\sqrt{1-r^2}) abrdrd\theta = abc \int_{0}^{2\pi} \int_{0}^{1} \sqrt{1-r^2} r d\rho d\theta$$

$$= abc \int_{0}^{2\pi} \left[-\frac{1}{3} (1-\rho^2)^{\frac{3}{2}} \right]_{0}^{1} d\theta = \frac{2}{3} \pi abc \ br^3$$
olur.

Örnek 14. $z = x^2 + 9y^2$ ve $z = 18 - x^2 - 9y^2$ paraboloidleri ile sınırlanan cismin hacmini hesaplayınız.

Çözüm:

Paraboloidlerin kesişim eğrisinin, $\frac{x^2}{9} + y^2 = 1$ elipsi olduğu yüzeylerin ortak çözümlerinden kolaylıkla bulunabilir. Buna göre;

$$V = 4 \int_{0}^{1} \int_{0}^{\sqrt{9-9y^2}} \left[(18 - x^2 - 9y^2) - (x^2 + 9y^2) \right] dx dy = 4 \int_{0}^{1} \int_{0}^{\sqrt{9-9y^2}} (18 - 2x^2 - 18y^2) dx dy$$

$$V = 4 \int_{0}^{1} \left[18x - \frac{2}{3}x^3 - 18xy^2 \Big|_{0}^{\sqrt{9-9y^2}} dy \right]$$

$$V = 4 \int_{0}^{1} \left[18\sqrt{9 - 9y^2} - \frac{2}{3}(9 - 9y^2)\sqrt{9 - 9y^2} - 18y^2\sqrt{9 - 9y^2} \right] dy$$

$$V = 144 \int_{0}^{1} \left(1 - y^2 \right)^{\frac{3}{2}} dy = 144 \int_{0}^{\frac{\pi}{2}} \cos^4 \theta d\theta = 144 \int_{0}^{\frac{\pi}{2}} \left[\frac{1}{4}(1 + \cos 2\theta)^2 \right] d\theta = 36 \int_{0}^{\frac{\pi}{2}} (1 + 2\cos 2\theta + \cos^2 2\theta) d\theta = 27\pi \ br^3$$

Örnek 15. $x^2 + y^2 + z^2 = a^2$ ($z \le 0$) yarım küre yüzeyi ile alttan, $z = a - \sqrt{x^2 + y^2}$ konisi ile üstten sınırlanan cismin hacmini hesaplayınız.

Çözüm: Hacmi aranan cismin xoy düzlemindeki izdüşümü $x^2 + y^2 = a^2$ dairesidir. Bölge dairesel olduğundan kutupsal koordinatlara geçilirse;

$$V = \iint_{B} \left(a - \sqrt{x^{2} + y^{2}} + \sqrt{a^{2} - x^{2} - y^{2}} \right) dx dy$$

$$V = \int_{0}^{2\pi} \int_{0}^{a} (a - r + \sqrt{a^{2} - r^{2}}) r dr d\theta$$

$$V = \int_{0}^{2\pi} \left[\frac{a}{2} r^{2} - \frac{1}{3} r^{3} - \frac{1}{3} (a^{2} - r^{2})^{\frac{3}{2}} \right]_{0}^{a} d\theta = \frac{a^{3}}{2} \int_{0}^{2\pi} d\theta = a^{3} \pi b r^{3}$$

tür.

Örnek 16. Denklemi $z = \sqrt{x^2 + y^2}$ olan koni yüzeyi ile üstten, $x^2 + y^2 - 2x = 0$ olan dik silindirleri ile yanlardan ve z = 0 düzlemi ile de alt taraftan sınırlanan cismin hacmini hesaplayınız.

Çözüm:

 $x^2 + y^2 - 2x = 0$ eğrisinin xoy de sınırladığı bölgenin kutupsal koordinatlardaki karşılığı,

$$x = r \cos \theta$$

$$y = r \sin \theta$$
 için $j = r$, $0 \le r \le 2 \cos \theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

olup,

$$V = \iint_{B} \sqrt{x^{2} + y^{2}} dx dy = 2 \int_{0}^{\frac{\pi}{2} 2\cos\theta} r r dr d\theta = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} r^{3} \Big|_{0}^{2\cos\theta} d\theta$$

$$V = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} 8\cos^{3}\theta d\theta = \frac{16}{3} \int_{0}^{\frac{\pi}{2}} \cos\theta (1 - \sin^{2}\theta) d\theta$$

$$V = \frac{16}{3} \left(\sin\theta - \frac{\sin^{3}\theta}{3} \right)_{0}^{\frac{\pi}{2}} d\theta = \frac{32}{9} br^{3}$$

elde edilir.

Örnek 17. $x^2 + y^2 = 1$ silindirinin içinde, $z = \sqrt{x^2 + y^2}$ nin üstünde z = 4 düzleminin altında kalan cismin hacmini bulunuz. (Bkz.Şekil)

Çözüm:

$$V = \iint_{B} \left(4 - \sqrt{x^2 + y^2}\right) dxdy$$
 olup, B bölgesi dairesel bölge olduğundan;

$$V = \int_{0}^{2\pi} \int_{0}^{1} (4-r)r dr d\theta = \int_{0}^{2\pi} \left(2r^{2} - \frac{r^{3}}{3} \right) \left| \frac{1}{0} d\theta \right| = \frac{10}{3} \pi b r^{3} \quad \text{olur.}$$

Kaynaklar:

- 1. A. H. Berksoy, O. Özkan, Mühendisler İçin Çözümlü Kalkülüs, S.Ü. Basımevi, 2010
- 2. G. B. Thomas ve Ark., **Thomas Calculus II**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2010.
- 3. J. Stewart, Kalkülüs Kavram ve Kapsam (Diferansiyel ve İntegral Hesap), TÜBA, 2010.