Problem 7:

Let $u \in C^0(\Omega)$.

Let u be subharmonic in Ω . Then u satisfies the mean value properties for any ball compactly contained in Ω ; it is clear that this implies that u satisfies the mean value properties locally.

Now, let u satisfy the mean value properties locally. Fix $y \in \Omega$. Without loss of generality, we can set u(y) = 0. Then there is a $\delta > 0$ such that $u(y) \leq \frac{1}{n\omega_n R^{n-1}} \int\limits_{\partial B_R(y)} u ds$ for all $R \leq \delta$.

So, on $B_R(y)$, we have:

$$u(y) \le \frac{1}{n\omega_n R^{n-1}} \int_{\partial B_R(y)} uds$$
$$0 \le \frac{1}{n\omega_n R^{n-1}} \int_{\partial B_R(y)} uds$$
$$0 \le \int_{\partial B_R(y)} uds$$

As the above holds for all $R < \delta$, we get that $\int_{B_R(y)} u dx \ge 0$ for all $R < \delta$.

Moreover, we get that $\int_{B_R(y)} u dx \ge 0$ is increasing as a function of R.

That is,

$$\frac{d}{dR} \int_{B_R(y)} u dx \ge 0$$

$$\int_{\partial B_R(y)} \frac{\partial u}{\partial \nu} dx \ge 0$$

$$\int_{B_R(y)} \Delta u dx \ge 0$$

So because the above holds for all $R < \delta$, we have that $\Delta u(y) \ge 0$. That is, u is subharmonic at y.

Problem 9:

Let $u \in C^2(\Omega)$.

First, $\Delta u \geq 0$ in Ω , if and only if u is subharmonic in Ω , by definition.

Next: let u be subharmonic in Ω . Then $\Delta u \geq 0$ in Ω . Let $\phi \geq 0$ be a function in $C_c^2(\Omega)$. So

$$\int_{\Omega} u\Delta\phi dx = \int_{\Omega} \phi\Delta u dx + \int_{\partial\Omega} u\partial_{\nu}\phi - \phi\partial_{\nu}u dS$$

$$= \int_{\Omega} \phi\Delta u dx \text{ (Note: } \phi \text{ vanishes on } \partial\Omega, \text{ as } \phi \text{ has compact support.)}$$

$$> 0$$

That is, u is weakly subharmonic if u is subharmonic.

Now, let u be weakly subharmonic. Then for any $\phi \geq 0$ with $\phi \in C_c^2(\Omega)$, we have

$$\int_{\Omega} u\Delta\phi dx = \int_{\Omega} \phi\Delta u dx + \int_{\partial\Omega} u\partial_{\nu}\phi - \phi\partial_{\nu}u dS$$

$$= \int_{\Omega} \phi\Delta u dx$$

$$> 0$$

Thus, $\Delta u \geq 0$ (Else, there's a point y with $\Delta u(y) < 0$, so there's a neighborhood around y with $\Delta u(y) < 0$, so picking $\phi > 0$ on that neighborhood and $\phi = 0$ outside that neighborhood will yield a contradiction.). So, u is subharmonic.

That is, u is subharmonic if u is weakly subharmonic.

That is, u is subharmonic if and only if u is weakly subharmonic.

Thus, the three conditions given are equivalent.