

### Cálculo 1 - HONORS - CM311

Limites e Propriedades

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br





#### Propriedade 1.1.

Sejam f e g duas funções definidas em intervalos abertos que contenham um ponto  $a \in \mathbb{R}$ . Suponha que

$$\lim_{x \to a} f(x) = L \quad e \quad \lim_{x \to a} g(x) = M.$$

Sendo  $c \in \mathbb{R}$ , temos:

a) 
$$\lim_{x\to a} c = c$$
.

b) 
$$\lim_{x \to a} x = a$$
.

c) 
$$\lim_{x\to a}(f(x)+g(x))=L+M.$$

d) 
$$\lim_{x \to a} (f(x) - g(x)) = L - M.$$

e) 
$$\lim_{x \to a} (f(x).g(x)) = L.M.$$

f) 
$$\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}$$
, se  $M \neq 0$ .

g) 
$$\lim_{x\to a} (f(x))^n = L^n$$
, onde  $n\in\mathbb{N}$ .

• Assim, é fácil mostrar que 
$$\lim_{x \to a} x^3 - 3x^2 + 2x - 5 = a^3 - 3a^2 - 2a - 5$$
.



#### Propriedade 1.1.

Sejam f e g duas funções definidas em intervalos abertos que contenham um ponto  $a \in \mathbb{R}$ . Suponha que

$$\lim_{x \to a} f(x) = L \quad e \quad \lim_{x \to a} g(x) = M.$$

Sendo  $c \in \mathbb{R}$ , temos:

- a)  $\lim_{x\to a}c=c$ .
- b)  $\lim_{x\to a} x = a$ .
- c)  $\lim_{x \to a} (f(x) + g(x)) = L + M$ .
- d)  $\lim_{x \to a} (f(x) g(x)) = L M$ .

- e)  $\lim_{x \to a} (f(x).g(x)) = L.M.$
- f)  $\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}$ , se  $M \neq 0$ .
- g)  $\lim_{x\to a} (f(x))^n = L^n$ , onde  $n \in \mathbb{N}$ .
- Assim, é fácil mostrar que  $\lim_{x \to a} x^3 3x^2 + 2x 5 = a^3 3a^2 2a 5$ .



- A demonstração segue dos exercícios finais da lista 0.
- Por exemplo, para demonstrar a propriedade do produto, use o exercício 7: sendo  $\varepsilon > 0$ , mostre que se

$$|x-x_0|<\min\left(\frac{\varepsilon}{2(|y_0|+1)},1\right)\quad \text{e}\quad |y-y_0|<\frac{\varepsilon}{2(|x_0|+1)}$$
 então

$$|x.y-x_0.y_0|<\varepsilon.$$

• Para mostrar a propriedade do quociente use que  $\frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}$  e o exercício 8.



- A demonstração segue dos exercícios finais da lista 0.
- Por exemplo, para demonstrar a propriedade do produto, use o exercício 7: sendo  $\varepsilon > 0$ , mostre que se

$$|x-x_0|<\min\left(\frac{\varepsilon}{2(|y_0|+1)},1\right)\quad \text{e}\quad |y-y_0|<\frac{\varepsilon}{2(|x_0|+1)},$$
 então

$$|x.y-x_0.y_0|<\varepsilon.$$

• Para mostrar a propriedade do quociente use que  $\frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}$  e o exercício 8.



- A demonstração segue dos exercícios finais da lista 0.
- Por exemplo, para demonstrar a propriedade do produto, use o exercício 7: sendo  $\varepsilon > 0$ , mostre que se

$$|x-x_0|<\min\left(\frac{\varepsilon}{2(|y_0|+1)},1\right)\quad \text{e}\quad |y-y_0|<\frac{\varepsilon}{2(|x_0|+1)},$$
 então

$$|x.y-x_0.y_0|<\varepsilon.$$

• Para mostrar a propriedade do quociente use que  $\frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)}$  e o exercício 8.

# Funções Contínuas



#### Definição 1.2.

Seja  $a \in \mathbb{R}$  um ponto no domínio de uma função f. Dizemos que f é contínua em a se

$$\lim_{x\to a} f(x) = f(a).$$

#### Definição 1.3.

Uma função f é dita contínua se for contínua em todo ponto do seu domínio

#### Exercício

Mostre que as funções que estão nas famílias abaixo são contínuas em seus domínios

Polinomiais.

Racionais.

# Funções Contínuas



#### Definição 1.2.

Seja  $a \in \mathbb{R}$  um ponto no domínio de uma função f. Dizemos que f é contínua em a se

$$\lim_{x\to a}f(x)=f(a).$$

### Definição 1.3.

Uma função f é dita contínua se for contínua em todo ponto do seu domínio

#### Exercício

Mostre que as funções que estão nas famílias abaixo são contínuas em seus domínios

Polinomiais.

Racionais.

# Funções Contínuas



#### Definição 1.2.

Seja  $a \in \mathbb{R}$  um ponto no domínio de uma função f. Dizemos que f é contínua em a se

$$\lim_{x\to a}f(x)=f(a).$$

### Definição 1.3.

Uma função f é dita contínua se for contínua em todo ponto do seu domínio

#### Exercício.

Mostre que as funções que estão nas famílias abaixo são contínuas em seus domínios

Polinomiais.

Racionais.



- Pelas propriedades, muitos limites ficam triviais de serem calculados.
- Um caso não trivial envolvendo quociente de funções, seria o seguinte: se  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ , como calcular o limite

$$\lim_{x \to a} \frac{f(x)}{g(x)}?$$

- Não dá pra usar a regra do quociente.
- Em alguns casos simplificamos o quociente para determinar.
- Antes de ver exemplos, é importante a observação abaixo:

## Observação 1.4

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$



- Pelas propriedades, muitos limites ficam triviais de serem calculados.
- Um caso não trivial envolvendo quociente de funções, seria o seguinte: se  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ , como calcular o limite

$$\lim_{x\to a}\frac{f(x)}{g(x)}?$$

- Não dá pra usar a regra do quociente.
- Em alguns casos simplificamos o quociente para determinar.
- Antes de ver exemplos, é importante a observação abaixo:

### Observação 1.4

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$



- Pelas propriedades, muitos limites ficam triviais de serem calculados.
- Um caso não trivial envolvendo quociente de funções, seria o seguinte: se  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ , como calcular o limite

$$\lim_{x\to a}\frac{f(x)}{g(x)}?$$

- Não dá pra usar a regra do quociente.
- Em alguns casos simplificamos o quociente para determinar.
- Antes de ver exemplos, é importante a observação abaixo:

## Observação 1.4

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$



- Pelas propriedades, muitos limites ficam triviais de serem calculados.
- Um caso não trivial envolvendo quociente de funções, seria o seguinte: se  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ , como calcular o limite

$$\lim_{x\to a}\frac{f(x)}{g(x)}?$$

- Não dá pra usar a regra do quociente.
- Em alguns casos simplificamos o quociente para determinar.
- Antes de ver exemplos, é importante a observação abaixo:

### Observação 1.4

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$



- Pelas propriedades, muitos limites ficam triviais de serem calculados.
- Um caso não trivial envolvendo quociente de funções, seria o seguinte: se  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ , como calcular o limite

$$\lim_{x\to a}\frac{f(x)}{g(x)}?$$

- Não dá pra usar a regra do quociente.
- Em alguns casos simplificamos o quociente para determinar.
- Antes de ver exemplos, é importante a observação abaixo:

### Observação 1.4

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$



- Pelas propriedades, muitos limites ficam triviais de serem calculados.
- Um caso não trivial envolvendo quociente de funções, seria o seguinte: se  $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ , como calcular o limite

$$\lim_{x\to a}\frac{f(x)}{g(x)}?$$

- Não dá pra usar a regra do quociente.
- Em alguns casos simplificamos o quociente para determinar.
- Antes de ver exemplos, é importante a observação abaixo:

#### Observação 1.4.

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x).$$



#### Exemplo 1.5.

Determine os limites abaixo

a) 
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2}$$
.  
 $-3x^2 + 3x + 6$ 

b) 
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2}$$
.

c) 
$$\lim_{t\to 4} 10 \frac{\sqrt{t}-2}{t-4}.$$

d) 
$$\lim_{x \to 2} \frac{x^2 + x - 6}{|x - 2|}$$
.

- O último limite não existe, mas a função se aproxima de números à esquerda e à direita de 2.
- A definição formal é mesma, apenas tem que especificar se estamos nos aproximando à esquerda ou à direita do ponto.



#### Exemplo 1.5.

Determine os limites abaixo

a) 
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2}$$

b) 
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2}$$
.

c) 
$$\lim_{t \to 4} 10 \frac{\sqrt{t} - 2}{t - 4}$$
.

d) 
$$\lim_{x\to 2} \frac{x^2+x-6}{|x-2|}$$
.

- O último limite não existe, mas a função se aproxima de números à esquerda e à direita de 2.
- A definição formal é mesma, apenas tem que especificar se estamos nos aproximando à esquerda ou à direita do ponto.



#### Exemplo 1.5.

Determine os limites abaixo

a) 
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2}$$
.

b) 
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2}$$
.

c) 
$$\lim_{t \to 4} 10 \frac{\sqrt{t} - 2}{t - 4}$$
.

d) 
$$\lim_{x\to 2} \frac{x^2+x-6}{|x-2|}$$
.

- O último limite não existe, mas a função se aproxima de números à esquerda e à direita de 2.
- A definição formal é mesma, apenas tem que especificar se estamos nos aproximando à esquerda ou à direita do ponto.