Нормы интерполяционных проекторв и экстремальные симплексы

А. В. Лютенков

ЯрГУ им. П.Г. Демидова Научный руководитель доцент кафедры математического анализа ЯрГУ им. П. Г. Демидова, кандидат физико-математических наук А.Ю. Ухалов.

16 июня 2018

Объект исследования ицель работы

Объектом исследования является задача о построении минимального проектора (проектора, имеющего минимальную норму) при интерполяции непрерывной на кубе функции с помощью полиномов п переменных степени не выше единицы.

Цель работы — разработать компьютерную программу для численной минимизации функции многих переменных и применить ее для решения задачи о минимальном проекторе.

Задача линейной интерполяции на п-мерном кубе

Основные понятия

Положим $Q_n := [0..1]^n$, где $n \in \mathbb{R}^n$, Q_n — n-мерный куб, множество вершин куба будем обозначать как $ver(Q_n)$.

 $\Pi_1(\mathbb{R}^n)$ — совокупность многочленов п переменных степени ≤ 1 .

Симплекс(размерности n) — это выпуклая оболочка n+1 точки аффинного пространства, которые предполагаются аффинно независимыми (то есть не лежат в подпространстве размерности n-1). Эти точки называются вершинами симплекса.

Пусть вершины невырожденного симплекса $S \subset \mathbb{R}^n$

$$x^{(j)} = (x_1^{(j)}, \dots, x_n^{(j)}), \quad 1 \le j \le n+1.$$

Матрица для сипмлекса S имеет вид:

$$\mathbf{A} := \begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} & 1 \\ x_1^{(2)} & \dots & x_n^{(2)} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{(n+1)} & \dots & x_n^{(n+1)} & 1 \end{pmatrix}. \tag{1}$$

Скажем, что набор точек $x^{(j)}$ — допустим для интерполяции многочленами из $\Pi_1(\mathbb{R}^n)$. Это условие эквивалентно тому, что матрица А является невырожденной.

 $\Delta := det(A)$, определитель, который получается из Δ заменой ј-й строки на строку $(x_1, \dots, x_n, 1)$

Многочленый $\lambda_j(x):=\Delta_j(x)/\Delta$ из $\Pi_1(\mathbb{R}^n)$ называются базисными многочленами Лагранжа симплекса S и обладают свойством $\lambda_j(x^k)=\delta_j^k$, где δ_j^k — символ Кронакера.

 $\lambda_j = l_{1j} x_1 + \dots + l_{nj} x_n + l_{n+1j}$, коэффициентны l_{ij} составляют столбцы матрицы

$$A^{-1} = \begin{pmatrix} \dots & l_{1,j} & \dots \\ \vdots & \vdots & \vdots \\ \dots & l_{n,j} & \dots \\ \dots & l_{n+1,j} & \dots \end{pmatrix}. \tag{2}$$

Так как $\lambda_i(x^k) = \delta_i^k$ любой многочлен $p \in \Pi_1(\mathbb{R}^n)$ удовлетворяет равенству

$$p(x) = \sum_{j=1}^{n+1} p(x^{(j)}) \lambda_j(x).$$
 (3)

Так как $det(A) \neq 0$, то для любой $f \in C(Q_n)$, где $C(Q_n)$ совокупность $f:Q_n \to \mathbb{R}$ найдется единственный многочлен $p \in \Pi_1(\mathbb{R}^n)$ удовлетворяющий условиям:

$$p(x^{(j)}) = f(x^{(j)}).$$
 (4)

Интерполяционный проектор

Интерполяционный проектор по системе узлов $x^{(j)}$

 $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$

Интерполяционный проектор по системе узлов $x^{(j)}$ определяется с помощью равенств:

$$Pf(x^{(j)}) = f_j := f(x^{(j)}), j = 1, \dots, n+1.$$
 (5)

Из (5) следует, что данный оператор является линейным и справедлив следующий аналог интерполяционной формулы Лагранжа:

$$Pf(x^{(j)}) = p(x) = \sum_{i=1}^{n+1} f_j \lambda_j(x).$$
 (6)

Норма интерполяционного проектора

Обозначим ||P|| норму оператора Р. Эта величина зависит от от узлов $_{X}(j)$

Для любого интерполяционного проектора $P: C(Q_n) \to \Pi_1(\mathbb{R}^n)$ и симплекса S с вершинами в его узлах имеет место равенство

$$||P|| = \max_{x \in ver(Q_n)} \sum_{j=1}^{n+1} |\lambda_j(x)|$$
 (7)

Минимальная норма проектора

Обозначим через θ_n минимальну норму проектора, при условии, что все узлы принадлежат кубу Q_n :

$$\theta_n := \min_{x^{(j)} \in Q_n} ||P|| \tag{8}$$

Интерполяционный проектор P^* с нормой $||P^*|| = \theta_n$ назовем минимальным.

Оценки минимальной нормы проектора

$$\frac{1}{4}\sqrt{n} < \theta_n < 3\sqrt{n},$$
$$3 - \frac{4}{n+1} \leqslant \theta_n.$$

Примеры оценок θ_n

b			
n	θ_n		
1	$\theta_n = 1$		
2	$\theta_n = 1.89\dots$		
3	$\theta_n = 2$		
4	$2.2\ldots\leqslant\theta_n\leqslant2.33\ldots$		
5	$2.33\ldots\leqslant\theta_n\leqslant2.6\ldots$		
6	$2.42\ldots\leqslant\theta_n\leqslant3$		
7	$\theta_n = 2.5$		

Компьютерная программа для расчета θ_n

Задача об отыскании минимальной нормы проектора сводится к задаче отыскания минимума функции многих переменных. Норма проектора вычисляется по формуле(7), зная это, зададим целевую функцию для минимизации:

$$F(A) = \max_{x \in ver(Q_n)} \sum_{j=1}^{n+1} |\lambda_j(x)|$$
 (9)

Где A — марица, которая имеет вид (1).

Программа реализована на языке программировани С++ с использованием библиотек Dlib, Boost, Eigen, которые предоставляют необходимый функционал для оптимального решения поставленной задачи.

Так как для вычисления нормы проектора необходим перебор по вершинам куба, то асимптотика алгоритма отыскания θ_n будет порядка $O(2^n)$. Для оптимальной работы с матрицами и операций над ними (напимер вычисление обратной матрицы) используется библиотека Eigen. Для оптимизации целевой функции (9) используются решения, поставляемые библиотекой Dlib. Dlib предоставляет метод минимизации нелинейной функции многих переменных внутри куба Q_n , с возможностью использования различных стратегий поиска минимума функции. Для решения текущей задачи стратегиями поиска были выбраны алгоритмы: BFGS и L-BFGS.

Результаты

С помощью реализованной программы были получены численные верхние оценки минимальных норм проекторов для n = 1, ..., 20. Наиболее точные на момент выполнения работы оценки содержатся в книге Невского М. В. Геометрические оценки в полиномиальной интерполяции.

Оценки для n = 4 и n = 6 были улучшены в работе Кудрявцев, И. С., Озерова Е. А., Ухалов А.Ю. Новые оценки для норм минимальных проекторов, 2017. Нам удалось найти более точные по сравнению с известными оценки при n = 5, 6, 10, 14, 18, 20.

Полученные верхние оценки минимальной нормы интерполяционного проектора

n	Известные оценки $ heta_n$	Уточненные оценки $ heta_n$	
1	$ heta_1=1$	$ heta_1=1$	
2	$ heta_2=1.89\dots$	$ heta_2=1.89\dots$	
3	$\theta_3 = 2$	$\theta_3 = 2$	
4	$2.2\ldots\leqslant\theta_n\leqslant2.3203\ldots$	$2.2\ldots\leqslant\theta_n\leqslant2.3204\ldots$	
5	$2.33\ldots\leqslant\theta_n\leqslant2.6\ldots$	$2.33\ldots\leqslant\theta_n\leqslant2.44880\ldots$	*
6	$2.42\ldots\leqslant\theta_n\leqslant3$	$2.42\ldots\leqslant\theta_n\leqslant2.60004\ldots$	*
7	$\theta_7 = 2.5$	$\theta_7 = 2.5$	
8	$2.5555\ldots\leqslant\theta_8\leqslant3.1428\ldots$	$2.5555\ldots\leqslant\theta_8\leqslant3.1428\ldots$	
9	$2.6 \leqslant \theta_9 \leqslant 3.0000\ldots$	$2.6 \leqslant \theta_9 \leqslant 3.0000\dots$	
10	$2.6363\ldots \leqslant \theta_{10} \leqslant 3.8000\ldots$	$2.6363\ldots \leqslant \theta_{10} \leqslant 3.5186\ldots$	*
11	$2.6666 \leqslant \theta_{11} \leqslant 3.0000$	$2.6666 \leqslant \theta_{11} \leqslant 3.0000$	
12	$2.6923 \leqslant \theta_{12} \leqslant 3.4000$	$2.6923 \leqslant \theta_{12} \leqslant 3.4000$	

n	Известные оценки $ heta_n$	Уточненные оценки $ heta_n$	
13	$2.7142 \leqslant \theta_{13} \leqslant 3.7692$	$2.7142 \leqslant \theta_{13} \leqslant 3.7692$	
14	$2.7333 \leqslant \theta_{14} \leqslant 4.1999$	$2.7333 \leqslant \theta_{14} \leqslant 4.0156$	*
15	$2.75\ldots\leqslant\theta_{15}\leqslant3.5\ldots$	$2.75\ldots\leqslant\theta_{15}\leqslant3.5\ldots$	
16	$2.7647 \leqslant \theta_{16} \leqslant 4.2000$	$2.7647 \leqslant \theta_{16} \leqslant 4.2000$	
17	$2.7777 \leqslant \theta_{17} \leqslant 4.0882$	$2.7777 \leqslant \theta_{17} \leqslant 4.0882$	
18	$2.7894 \leqslant \theta_{18} \leqslant 5.5882$	$2.7894 \leqslant \theta_{18} \leqslant 5.1401$	*
19	$2.8 \leqslant \theta_{19} \leqslant 4.0000\dots$	$2.8 \leqslant \theta_{19} \leqslant 4.0000\dots$	
20	$2.8095 \leqslant \theta_{20} \leqslant 4.7241$	$2.8095\ldots \leqslant \theta_{20} \leqslant 4.6888\ldots$	*

Нормы интерполяционных проекторв и экстремальные симплексы

А. В. Лютенков

ЯрГУ им. П.Г. Демидова Научный руководитель доцент кафедры математического анализа ЯрГУ им. П. Г. Демидова, кандидат физико-математических наук А.Ю. Ухалов.

16 июня 2018