HEAT TRANSFER

[CH21204]

March 23, 2023

NATURAL CONVECTION

FREE CONVECTION

natural convection heat transfer

$$F_{
m buoyancy} =
ho_{
m fluid} \, g V_{
m body}$$

$$F_{
m net} = W - F_{
m buoyancy}$$

$$=
ho_{
m body} \, g V_{
m body} -
ho_{
m fluid} \, g V_{
m body}$$

$$= (
ho_{
m body} -
ho_{
m fluid}) \, g V_{
m body}$$

- Net force is proportional to the difference in the densities of the fluid and the body immersed in it.
- In heat transfer, the primary variable is temperature, and it is desirable to express the net buoyancy force.
- Expressing the density difference in terms of a temperature difference,
 which requires a knowledge of a property that represents the variation of
 the density of a fluid with temperature at constant pressure.

Volume expansion coefficient

$$\beta = \frac{1}{\nu} \left(\frac{\partial \nu}{\partial T} \right)_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P \qquad (1/K)$$

$$\beta \approx -\frac{1}{\rho} \frac{\Delta \rho}{\Delta T} = -\frac{1}{\rho} \frac{\rho_{\infty} - \rho}{T_{\infty} - T} \qquad (\text{at constant } P)$$

$$\rho_{\infty} - \rho = \rho \beta (T - T_{\infty}) \qquad (\text{at constant } P)$$

$$\beta_{\text{ideal gas}} = \frac{1}{T}$$
 (1/K)

- The buoyancy force is proportional to the density difference, which is proportional to the temperature difference at constant pressure.
- Therefore, the larger the temperature difference between the fluid adjacent to a hot (or cold) surface and the fluid away from it, the larger the buoyancy force and the stronger the natural convection currents, and thus the higher the heat transfer rate.
- Heat sinks with closely spaced fins are not suitable for natural convection cooling. Why?

Steady, laminar, and two-dimensional, and the fluid to be Newtonian with constant properties, including density.

Boussinesq approximation

$$ho-
ho_{\scriptscriptstyle
m x}$$

density difference between the inside and the outside of the boundary layer

$$\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \mu \frac{\partial^2 u}{\partial y^2} - \frac{\partial P}{\partial x} - \rho g$$

$$\frac{\partial P_{\infty}}{\partial x} = -\rho_{\infty} g$$

relation for the variation of hydrostatic pressure in a quiescent fluid with height

in the boundary layer

$$v \ll u$$

$$\partial v/\partial x \approx \partial v/\partial y \approx 0$$

$$\partial P/\partial y = 0$$

variation of pressure in the direction normal to the surface is negligible

$$P = P(x) = P_{\infty}(x)$$

$$\partial P/\partial x = \partial P_{\infty}/\partial x = -\rho_{\infty}g$$

$$\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \mu \frac{\partial^2 u}{\partial y^2} + (\rho_{\infty} - \rho)g$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^2 u}{\partial y^2} + g\beta(T - T_{\infty})$$

$$x^* = \frac{x}{L_c}$$
 $y^* = \frac{y}{L_c}$ $u^* = \frac{u}{v}$ $v^* = \frac{v}{v}$ and $T^* = \frac{T - T_{\infty}}{T_s - T_{\infty}}$

$$u^* \frac{\partial u^*}{\partial x^*} + v^* \frac{\partial u^*}{\partial y^*} = \left[\frac{g\beta(T_s - T_\infty)L_c^3}{v^2} \right] \frac{T^*}{Re_L^2} + \frac{1}{Re_L} \frac{\partial^2 u^*}{\partial y^{*2}}$$

Grashof number Gr₁,

$$Gr_L = \frac{g\beta(T_s - T_\infty)L_c^3}{v^2}$$

 $g = gravitational acceleration, m/s^2$

 β = coefficient of volume expansion, 1/K (β = 1/T for ideal gases)

 T_s = temperature of the surface, °C

 T_{∞} = temperature of the fluid sufficiently far from the surface, °C

 L_c = characteristic length of the geometry, m

 ν = kinematic viscosity of the fluid, m²/s