Rectangular 2D Integrals

Pre-lecture for 6/25

Volume under a Curve

- In Calc 1, we have area under curve y = f(x)
- Concept is now volume under curve z = f(x, y)
- If region is R, let $\iint_{R} f(x, y) dA$ be this volume

Riemann Sums

- Suppose R is a rectangle $a \le x \le b$, $c \le y \le d$
- Can approximate $\iint_{\mathbb{R}} f(x, y) dx dy$ with Riemann sums

Fubini's Theorem

- $\iint_{R} f(x, y) dx dy = \iint_{R} f(x, y) dx dy = \iint_{R} f(x, y) dy = \iint_{R} f(x, y) dy dx$
 - If f is Riemann integrable

Practice Problems

Evaluate $\iint_{\mathbb{R}} f(x, y) dA$ for these functions and regions:

- $f(x, y) = x\cos^2(y), R = [0, 3] \times [0, \pi/2]$
- $f(x, y) = 2x 4y^3$, R = [4, 5] x [0, 3]
- f(x, y) = xy + cos(x) + sin(y), R = [0, 1] x [0, 1]

Scratchwork