Genética de Populações para mais de um gene

Diogo Meyer

Bio 0208 -- 2015 Ridley Capítulo 8.4, 8.5, 8.6, 8.7, 8.9, 8.10 (desequilíbrio de ligação)

Panorama geral do que vimos

- genética de populações para genes individuais
 - HW
 - Deriva
 - Seleção
 - Migração

Teoria evolutiva para mais de um lócus

gene 1	gene 2
Α	В
Α	В
Α	В
Α	В
Α	В
Α	В
Α	В
Α	b
а	b
а	b
	A A A A A A A A

Vamos calcular

- frequências haplotípicas pab, pab, pab, pab
- frequências alélicas pA, pa, pB, pb
- frequências esperadas sob independência

Teoria evolutiva para mais de um lócus

cromossomo	gene 1	gene 2
1	Α	В
2	Α	В
3	Α	В
4	Α	В
5	Α	В
6	Α	В
7	Α	В
8	Α	b
9	а	b
10	а	b

Exemplo: os dois haplótipos mais comuns recombinam

Teoria evolutiva para mais de um lócus

Recombinação embaralha alelos e reduz desequilíbrio de ligação:

Quantitativamente temos:

$$D' = D (1 - r)$$

Onde "r" é a taxa de recombinação entre os genes. Com recombinação baixa, a diminuição do desequilíbrio de ligação é lenta.

DL decai com recombinação

Quanto maior a taxa de recombinação, mais rápida é a queda.

Padrões empíricos de desequilíbrio de ligação (DL)

Como varia em função da distância entre marcadores?

Como varia ao longo do genoma?

Como varia entre populações?

DL diminui com distância entre marcadores

Padrão de DL no genoma humano

O que explica a variação nos padrões de desequilíbrio de ligação?

Seleção via carona genética pode produzir desequilíbrio de ligação

Região influenciado por carona genética

Carona genética produz desequilíbrio de ligação

Interações entre genes pode favorecer desequilíbrio de ligação

Distance between loci (kilobases)

Alelos "A1" e "B8" dos lócus HLA-A e HLA-B, com alto valor de desequilíbrio de ligação.

Eles ocorrem juntos muito mais frequentemente do que esperado.

Possível explicação: a interação entre eles é vantajosa. Isso é uma forma de **epistasia**.

Deriva genética pode produzir desequilíbrio de ligação

Haplótipos são "perdidos" devido a gargalos, e isso cria desequilíbrio de ligação.

Principais pontos da aula

- Podemos descrever frequências haplotípicas para populações
- Podemos quantificar o grau de desequilíbrio de ligação (o quanto alelos de dois genes são independentes)
- Diversos processos determinam o nível de DL:
 - recombinação (diminui DL)
 - deriva
 - seleção (via carona ou epistasia)