

## Modeling and Controlling Autonomous Transportation Systems in Smart Cities

Master Thesis

**Brodo Luca** 

March 3, 2024

#### Fachhochschule Dortmund University of Applied Sciences and Arts

- ► Why Autonomous Transportation Systems?
- ► Addressing Key Challenges of ATS
- ▶ Modeling and Managing ATSs The CATSM Problem
- ▶ Modeling and Controlling ATSs The MPC for ATS and the RCS

## Where are we Today?

Cars and small trucks have dominated transportation in the last century

- Inefficient use of the infrastructure
- Responsible for 60% of  $CO_2$  emissions in the EU ([1])
- No more sustainable

## **Traffic Management is Necessary**

As vehicle ownsership increases, so do traffic inefficiencies.

- Increased congestions ightarrow toll on the economy (1% GDP of US ([2]) )
- Increase consumption and pollution
- Elevated risk of accidents

### **ATSs Solve These Problems**

Extend the concept of personalized and shared mobility to goods delivery. Three main pillars

- Ensured optimal quality of service (QoS)
- Optimized traffic control and road usage
- Minimized environment impact and operational costs

#### Fachhochschule Dortmund University of Applied Sciences and Arts

- ► Why Autonomous Transportation Systems?
- ► Addressing Key Challenges of ATS
- ▶ Modeling and Managing ATSs The CATSM Problem
- ▶ Modeling and Controlling ATSs The MPC for ATS and the RCS

- AV Dispatching
- AV Routing
- AV Rebalancing
- Ride-Sharing and Delivery Pooling



- AV Dispatching
- AV Routing
- AV Rebalancing
- Ride-Sharing and Delivery Pooling



- AV Dispatching
- AV Routing
- AV Rebalancing
- Ride-Sharing and Delivery Pooling





- AV Dispatching
- AV Routing
- AV Rebalancing
- Ride-Sharing and Delivery Pooling



## Fachhochschule Dortmund

- ► Why Autonomous Transportation Systems?
- ► Addressing Key Challenges of ATS
- ▶ Modeling and Managing ATSs The CATSM Problem
- ▶ Modeling and Controlling ATSs The MPC for ATS and the RCS

#### How can ATSs be Modeled?

Three main elements to model

- Road Network
- Vehicles
- Requests
- $\rightarrow$  Forming a vehicle-centric model of the ATS

## Modeling the Road Network

Using a irect graph  $\mathcal{G}=\langle \mathcal{V},\mathcal{E} \rangle$ , where  $\mathcal{V}$  is the set of vertices (Locations) and  $\mathcal{E}\subseteq \mathcal{V}\times \mathcal{V}$  the edges (Roads)

- Each edge associated with multiple metrics (e.g. distance  $d:\mathcal{E} o\mathbb{R}_{\geq 0}$ )
- Nodes can be of two types, charging  $(\mathcal{V}_c)$  and normal  $(\mathcal{V}_n)$  nodes
- Charging nodes with different charging profiles

Forming a vehicle-centric model of the ATS

# **Charging Profiles**

AV batteries modeled using the CC-CV (Constant current - Constant Voltage ) scheme. Modeled as tuple  $\mathcal{T}_a = \langle Q_a, I_a^b, R_a^-, R_a^+, \theta_a \rangle$ .





## **Modeling AVs**

Each vehicle  $a \in \mathcal{A}$  as a tuple  $\langle \underline{s_a}, \overline{t_a}, B_a(t), \mathcal{R}_a, \mathcal{T}_a, P_a, G_a, C_a, F_a \rangle$ .

- Starting and terminating depot  $\underline{s_a}$  and  $\bar{t_a}$
- State of Charge  $B_a \in \mathbb{R}_{>0}$  at time t
- Goods and people capacity  $G_a \in \mathbb{R}_{\geq 0}$  and  $P_a \in \mathbb{R}_{\geq 0}$
- Operational cost  $C_a \in \mathbb{R}_{>0}$
- Pollution factor  $F_a \in \mathbb{R}_{>0}$
- A battery  $\mathcal{T}_a$
- Set of assigned requests  $\mathcal{R}_a$

## **Modeling Requests**

Requests are modeled as tuples  $\langle \underline{s'}, \overline{t'}, G', P', \lambda, a', b' \rangle$ 

- $\bullet$  Pick-up and drop-off point  $\underline{s'} \in \mathcal{V}_n, \bar{t'} \in \mathcal{V}_n$
- Transportation demands for goods and people  $G' \in \mathbb{R}_{\geq 0}$   $P' \in \mathbb{R}_{\geq 0}$
- lacksquare Request arrival rate  $\lambda \in \mathbb{R}_{>0}$
- Time window [a', b']

## Leveraging the Request Model

#### Requests are key to solve the rebalancing problem

- Exploiting λ
- Division in regions around depots, i.e.  $\mathcal{G}_v = \langle \mathcal{V}_v', \mathcal{E}_v' \rangle$
- Rebalancing becomes fundamentally an assignment problem



$$\mathcal{R}'_v = \{ r \in \mathcal{R} : \underline{s_r}' \in \mathcal{V'}_v \}$$

# The Complete ATS Management Problem

In a nutshell, maximize number of served requests and minimize vehicle's travel time, while

- Respecting deadlines
- Observing vehicle's characteristics (e.g. charge and capacity)
- Eliminating congestions o artificial limit c on vehicles per road.



## Simulating the CATSM in Real-World

#### Using real-world data from NYC

- Simplified, yet large road network ( $|\mathcal{V}| = 500$ ,  $|\mathcal{E}| = 1700$ )
- Fictitious depots' locations
- Deterministic requests rates





## System's Performance in a Nutshell

|                      | w/o Rouing |        | w/ Routing |        |
|----------------------|------------|--------|------------|--------|
|                      | Sim. 1     | Sim. 2 | Sim. 1     | Sim. 2 |
| Total Distance (m)   | 731993     | 749006 | 806280     | 874937 |
| Average Distance (m) | 30500      | 312089 | 33595      | 36456  |
| Total Time (s)       | 14640      | 14980  | 16126      | 17499  |
| Average Time (s)     | 610        | 624    | 672        | 729    |
| Unique Road Used     | 1171       | 1137   | 1193       | 1206   |
| Request Served (%)   | 64         | 63     | 81         | 78     |

### **Evaluation**

Promising results, but interrogatives are left open.

- + Solves all the ATSs challenges
- + Finds numerically optimal solutions
- + Is flexible and modular

- Congestions' model is highly simplified
- Suffers large networks
- Is not suitable for real-time
- Doesnt have possible insights on the future

#### Fachhochschule Dortmund University of Applied Sciences and Arts

- ► Why Autonomous Transportation Systems?
- ► Addressing Key Challenges of ATS
- ▶ Modeling and Managing ATSs The CATSM Problem
- ▶ Modeling and Controlling ATSs The MPC for ATS and the RCS

# How can the CATSM shortcomings be solved?

#### Three combined approaches

- Novel linear discrete-time model
- Definition of an ad-hoc model predictive control (MPC)
- Adaptive road network optimization using graph transformation systems (GTS)

## **Novel Model for ATSs**

Key idea  $\rightarrow$  Define AVs speed in function of the number of AVs currently on the street

$$s_{ij}(V_{ij}) = \begin{cases} l_{ij} & \text{if } V_{ij} \in [0, V_{ij}^{th}) \\ l_{ij} - b \cdot (V_{ij}^{th} - V_{ij}) & \text{if } V_{ij} \in [V_{ij}^{th}, V_{ij}^{max}) \\ 0 & \text{if } V_{ij} \ge V_{ij}^{max} & \underbrace{\tilde{\xi}}_{ij} & 40 \end{cases}$$
 with  $b = \frac{l_{ij} - \epsilon}{V_{ij}^{th} - V_{ij}^{max}}$  and  $\epsilon \in (0, 1)$ 

ightarrow Implicitely, a better congestion model



$$l_{ij}=60km/h, V_{ij}^{th}=100, V_{ij}^{max}=150$$
 and  $\epsilon=0.5$ 

### **Novel Model for ATSs**

As a result, new model linear time-discrete model can be defined, which tracks

- AVs' position using the speed
- Stationed AVs
- Served and Unrequests using travelling vehicles
- $\rightarrow$  It's also easily controllable

## MPC for ATSs

Let  $V_{ij}(t) \in \{x \in \mathbb{N}_0 : x \leq |\mathcal{A}|\}$  being the total number of vehicles currently circulating on the street  $\langle i,j \rangle$ , this can be easily computed by adding the number of carries to the rebalancing AVs, i.e.

$$V_{ij}(t) = \sum_{a \in \mathcal{A}} v_{ij}^a(t) + w_{ij}^a(t)$$

 $\rightarrow$  Control  $v^a_{ij}(t)$  and  $w^a_{ij}(t)$ 

### MPC for ATSs

Let  $\mathcal X$  and  $\mathcal U$  being the set of feasible states and inputs, respectively, solve

$$\min_{u(t),\dots,u(t+N)} J_f(x(N)) + \sum_{t=0}^{N-1} I(x(t))$$
s.t.  $x(t+1) = Ax(t) + Bu(t)$ 

$$x(t) \in \mathcal{X}, \ u(t) \in \mathcal{U}$$

$$x(N) \in \mathcal{X}_f$$

$$(1)$$

where  $\mathcal{X}_f$  is the set of terminal states,  $J_f(x(N))$  is the terminal cost function and I(x(t)) is the stage cost

### MPC for ATSs

#### The main objectives are to:

- Reduce number of outstanding requests
- Minimize unnecessary rebalancing vehicles
- Avoid transportation after requests are served
- Avoid rebalancing after requests are served

ightarrow Stability can be proven



## **Reduced Connectivity Schema**

As a result, a more sophisticated congestion model and insights on the impact of the decisions on the future have been acquired. What about real-time and scalability?

Solution: Reduced Connectivity Schema (RCS) In a nutshell  $\to$  Create a simplified version of G using a sequence of transformation rules  $\mathcal{T}$ .

## **Constructing an RCS**

Rules are highly application-dependent, therefore let's assume the NYC road network used prior.

Examples of applied rules starting from only the important nodes

- 1. Restoration of important nodes' immidiate connections
- 2. Restoration of simpe nodes' immidiate connections (iteratively)
- 3. Straight Line Node elimination
- 4. Dead-End Removal
- $\rightarrow$  Depending on rule 2, the RCS may comprise as little as 18% of the original road network's size.



## **Evaluating the MPC performance**

|                  | No RCS |   | RCS |
|------------------|--------|---|-----|
|                  | 1      | 2 | 3   |
| AVs #            | 30     | - | -   |
| Horizon (h)      | 3      | _ | -   |
| Threshold (km/h) | 60     | - | -   |
| Requests         | 240    | _ | -   |
| Road (km)        | 30     | R | -   |

|                 | No RCS |    | RCS |
|-----------------|--------|----|-----|
|                 | 1      | 2  | 3   |
| ATT (%)         | 33     | 36 | 3   |
| ART (%)         | 17     | 14 | 3   |
| Required AVs    | 19     | 12 | 10  |
| Carrying AVs    | 13     | 11 | 4   |
| Rebalancing AVs | 11     | 12 | 9   |

## **Evaluating the MPC performance**



# **Summary and Outlook**

On the one hand, promising fundations have been layed down

- Holistic model for an ATS leading to a complete solution of its challenges
- Modular, adaptable and efficient linear model for real-time application
- Definition of a stable MPC for optimal control
- Novel complexity-reduction technique proposed for the road-network representation

On the other, multiple research directions have been opened:

- GTS must be further explored for more applications
- Using the MPC to control real-world vehicles
- What about safety insurance?



# **Bibliography**



European Environment Agency, "Greenhouse gases eu."

https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer.

Accessed: 27.11.2023.



D. Schrank, B. Eisele, and T. Lomax, "Texas transportation institute 2012 urban mobility report," tech. rep., Texas Transportation Institute, Texas A&M University, College Station, TX, 2012.