On the t-wise Independence of Block Ciphers

Tianren Liu

Peking University

Angelos Pelecanos

UC Berkeley

Lucas Gretta

UC Berkeley

Stefano Tessaro

University of Washington

William He

Vinod Vaikuntanathan

t-wise independence of block ciphers

- ▶ Block ciphers: (for this talk) practical encryption schemes.
 - e.g. Advanced Encryption Standard (AES).
- Symmetric-key encryption scheme
 - ightharpoonup Users share a secret key sk.
 - \blacktriangleright Encrypt message using Enc, and decrypt with Dec.

t-wise independence of block ciphers

- ▶ Block ciphers: (for this talk) practical encryption schemes.
 - e.g. Advanced Encryption Standard (AES).
- Information about AES (taken from Wikipedia)
 - Specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
 - ▶ Selected by NIST after a five-year standardization process in which fifteen competing designs were presented and evaluated.
 - ► AES became effective as a U.S. federal government standard on May 26, 2002.
 - AES is the first (and only) publicly accessible cipher approved by the NSA for top secret information.

t-wise independence of block ciphers

- Summary. AES is very important,
 - used everywhere, all the time.
- ► We trust AES so much,
- ▶ We must have proved it is secure, right?

What does it mean to be secure?

- Cryptographers like to prove security via reductions.
- **Goal.** Encryption scheme S is secure.
 - ightharpoonup Need. Mathematical problem $\mathcal P$ we believe is hard.
- Proof by contradiction:

Encryption

scheme S

- \blacktriangleright Assume there exists adversary $\mathcal A$ that breaks the security of $\mathcal S$.
- ▶ Use \mathcal{A} to also solve problem \mathcal{P} , contradiction!

break

Mathematical problem \mathcal{P}

- LWE: Solve a noisy linear system modulo a number.
- DDH: Given g^a, g^b , the element g^{ab} looks like a random element of \mathbb{Z}_q .

What does it mean to be secure?

- **Crucial.** If \mathcal{A} breaks the security of \mathcal{S} , then it can solve \mathcal{P} .
 - \blacktriangleright Means that S and P share some structure.

- ▶ To prove AES is secure via a reduction, we need
 - ► Hard mathematical problem
 - ► That is similar to AES.

- LWE: Solve a noisy linear system modulo a number.
- DDH: Given g^a , g^b , the element g^{ab} looks like a random element of \mathbb{Z}_q .

Mathematical problem \mathcal{P}

Let's take a look at AES

No known math problems come to mind...

Let's try to get a theory-friendly description first.

moserware.com

Let's take a look at AES

- \blacktriangleright AES describes the $Enc(\cdot)$ procedure.
 - Takes the secret key and the message as inputs.
- The encryption happens in rounds.
 - ▶ The secret key will have as many parts as rounds: $sk = (key_0, key_1, ..., key_r)$.
 - ▶ In each round, the message is modified a little bit.
- ▶ Philosophy. Many simple modifications "scramble" the message to a ciphertext that is indistinguishable from random

Warm-up: Key-Alternating Cipher (KAC)

SPN Parameters				
n = kb	Input length			
b	S-box input length			
k	Number of blocks			
Number of rounds				
S-box (public perm. over $\{0,1\}^b$)				
Linear mixing $(k \times k \text{ matrix})$				

AES as an SPN

SPN Parameters		AES
n = kb	Input length	128
b	S-box input length	8
k	Number of blocks	16
Number of rounds		10 or 12 or 14
S-box		INV over \mathbb{F}_{2^8} $x \to x^{-1}$
		$x \rightarrow x^{-1}$
Linear mixing		ShiftRows & MixColumns

What about a reduction?

- Still no known math problems come to mind...
- What if we cannot prove security by a reduction?
- There is another way...

Security against specific attacks

- Reduction: encryption scheme is secure against all adversaries.
- What if we show security against specific attacks?
- Cryptanalysts have been very busy developing attacks against block ciphers
 - Differential attacks,
 - Linear attacks,
 - Square attacks,
 - Impossible differential,
 - Yoyo,
 - Multiple-of-8.

<u>t-wise independence</u> of block ciphers

AES is *t*-wise independent if...

Why *t*-wise independence?

Definition. (ε -close to t-wise independence). For all t inputs $x_1, ..., x_t$ statistical-distance $((y_1, ..., y_t), \text{uniform}) \le \varepsilon$

- Protects against a wide range of attacks, including
 - t = 2: Differential attacks [BS91], linear attacks [MY92].
 - $t = 2^d$: (truncated) degree-d differential attacks [Lai94, Knu94].
- ▶ t-wise independence is not the goal, a lens through which to study security:
 - \triangleright Study natural constructions that are **provably** t-wise, and **plausibly** pseudorandom.

Why *t*-wise independence?

Definition. (ε -close to t-wise independence). For all t inputs $x_1, ..., x_t$ statistical-distance $((y_1, ..., y_t), \text{uniform}) \le \varepsilon$

- Allows to compare block ciphers in a quantitative way
 - Say block cipher A is t-wise independent in fewer rounds than block cipher B \Rightarrow block cipher A is more "secure"?
- Conjectured ([HMMR05]) that a block cipher that is 4-wise independent is also pseudorandom.

Why *t*-wise independence?

Definition. (ε -close to t-wise independence). For all t inputs $x_1, ..., x_t$ statistical-distance $((y_1, ..., y_t), \text{uniform}) \le \varepsilon$

- ▶ **Feasible** (potentially unconditionally) when $|key| \ge t \cdot n$.
 - e.g., assume independent round keys.
 - ▶ i.e. We can prove things about it!

Part I. SPN results

SPN results [LTV21]

- ▶ Theorem [LTV21]. 2-round SPN is $\approx \sqrt{\frac{2^k}{2^b}}$ -close to 2-wise independent.
- ▶ **Theorem [LTV21].** 3-round SPN is $\approx \sqrt{\frac{k}{2^b}}$ -close to 2-wise independent.
- Holds if linear mixing of the SPN achieves maximal branching number.
 - ► This is not true for AES.

Recall. k = 16, b = 8 for AES

AES result

Theorem [LTV21]. 6-round AES is 0.472-close to pairwise independent.

Amplification Lemma [MPR07]

 \mathcal{F} is ϵ -close to t-wise independent $\Rightarrow \mathcal{F} \circ \mathcal{F}$ is $2\epsilon^2$ -close to t-wise independent.

- ▶ Corollary. 6r-round AES is $(0.472^r \cdot 2^{r-1})$ -close to pairwise.
 - ▶ To achieve 2^{-128} security, we set $r \approx 1500$.
 - ▶ 9000-round AES is 2-wise independent!

Part II. SPN* Results

Idealized model: SPN* [BV06]

SPN Pai	rameters	AES	SPN*
n = kb	Input length	128	n
b	S-box input length	8	b
k	Number of blocks	16	k
Number	of rounds	10 or 12 or 14	r
S-	box	INV over \mathbb{F}_{2^8} $x \to x^{-1}$	random permutation over \mathbb{F}_{2^8}
Linear	mixing	ShiftRows & MixColumns	Linear over \mathbb{F}_{2^8}

Random S-box Substitution-Permutation Network (SPN*)

Random S-box Substitution-Permutation Network (SPN*)

The random S-boxes are now the key!

Random S-box Substitution-Permutation Network (SPN*)

The random S-boxes are now the key!

Usefulness of random S-box model

- 1. Block ciphers with random S-boxes already exist (GOST, Kufu).
- 2. Random S-box results can be translated to non-random S-box results.
 - ► Called censored SPN.

Lemma [LPTV23].

 $\underbrace{ARK \circ INV \circ \cdots \circ INV \circ ARK}_{O\left(b^2 \cdot 2^b \cdot \log_{\varepsilon}^{\frac{1}{2}}\right)} \approx_{\varepsilon} \text{ random permutation over } \mathbb{F}_{2^b}$

Usefulness of random S-box model

Usefulness of random S-box model

- 3. Ideal S-boxes allow us to identify desirable mixing properties.
 - Our proofs rely on the maximal branching number of the mixing matrix.
 - Our tight bounds explain how parameters affect convergence:
 - \blacktriangleright Number of blocks k increases, the SPN* converges faster.

SPN* Results

Theorem [LPTV23]. r rounds of SPN* suffice to reach ε -close to t-wise independence

Rounds r	arepsilon-Closeness	t
2	$2^{-\Omega(kb)}$	0(1)
2	2^{-b}	$2^{\left(0.499 - \frac{1}{4k}\right)b}$
O(k)	$2^{-\Omega(kb)}$	$2^{\left(0.499 - \frac{1}{4k}\right)b}$
$O(\log t)$	$2^{-\Omega(kb)}$	2 ^{0.499} b
	t go	Limitation les up to $\approx \sqrt{2^b} \ll 2^{kb}$

Constant *t*: 2 rounds suffice

Large t: min $\{O(k), O(\log t)\}$ suffice

AES*

- Consider the random S-box version of AES.
- ▶ The keys will be the S-boxes with random permutations over \mathbb{F}_{2^8} .

Theorem [LPTV23]. 7-round AES* is 2^{-128} -close to pairwise independent.

- ▶ A lot of progress was done before by [BV06].
- Above result is tight: numerically verified.
- Can simulate AES* using censored AES:

Theorem [LPTV23]. 192-round censored AES is 2^{-128} -close to pairwise independent.

Censored SPN

Lemma.

 $ARK \circ INV \circ \cdots \circ INV \circ ARK \approx_{\varepsilon} \text{ random permutation over } \mathbb{F}_{2^b}$

Censored AES

Theorem. 192-round censored AES is 2^{-128} -close to pairwise independent.

- Reasonable to expect that removing many mixing layers hurts security.
- \blacktriangleright Evidence that the true AES is pairwise independent in < 200 rounds.
- ► Contrast this with > 9000 rounds of AES in [LTV21]!

Part IIa. SPN* Technical Details

Layouts (2-wise)

- The random S-box destroys any correlation, except equality.
 - ▶ Let $\Delta X := X_1 \oplus X_2$, $\Delta Y := Y_1 \oplus Y_2$.
- ▶ Define layout(ΔX) := { $i \mid \Delta X[i] = 0$ }.
 - Also known as "activity pattern".
 - ▶ Random S-boxes preserve layout(ΔX) = layout(ΔY).
- \triangleright ΔY is a uniformly random difference from the layout.

 $\begin{aligned}
X_1[i] &= X_2[i] \\
\Delta X[i] &= 0
\end{aligned}$

Layouts: example

 $\frac{\text{Layout}}{\text{layout}(\Delta X) = \{0, 3\}}$

<u>Define</u> weight of layout $|layout(\Delta X)| = 2$

Lower weight ⇒ more distinct blocks

Layout Graph

Each pair of inputs is a node

One round of SPN* will change $(X_1, X_2) \rightarrow$ another pair

Layout Graph

<u>SPN* round</u> random S-boxes + linear mixing

- 1. Random S-boxes choose uniform node in the layout
- 2. Linear mixing maps each node to another node (possibly outside the layout)

<u>Crucial</u>

Random S-boxes randomize within a layout

Layout Graph

Layout Walk

Simplified Problem Only consider the levelte

Only consider the layouts

<u>Define</u>

Random walk on layout graph $L^{(1)} \rightarrow L^{(2)} \rightarrow L^{(3)} \rightarrow \cdots$

Suffices

Bound the mixing time of the layout graph.

First step

Understand how mixing affects the layout.

Recall

 $\Delta Y^{(i)}$ is sampled uniformly from $L^{(i)}$.

First step

Understand how mixing affects the layout.

<u>Define</u>

 $\mathbb{P}[\text{layout } I \to \text{layout } J] \coloneqq \mathbb{P}_{\Delta Y \text{ in } I}[M \cdot \Delta Y \text{ in } J]$

$\mathbb{P}[\Delta X \text{ in } J]$ after mixing?

- Depends on mixing matrix
- Assume maximal branch number

Define

$$\mathbb{P}[\text{layout } I \to \text{layout } J] \coloneqq \mathbb{P}_{\Delta Y \text{ in } J}[M \cdot \Delta Y \text{ in } J]$$

$$\mathbb{P}[I \to J] = \frac{\#[\Delta Y \text{ in } I \mid M \cdot \Delta Y \text{ in } J]}{\#[\Delta Y \text{ in } I]}$$
$$= \frac{\sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } J} \mathbb{I}[M \cdot \Delta Y = \Delta X]}{(2^b - 1)^{k - |I|}}$$

It holds that

- $\#[\Delta Y \text{ in } I] = (2^b 1)^{k |I|}$
- $\#[\Delta Y \text{ in } I \mid M \cdot \Delta Y \text{ in } J] = \sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } J} \mathbb{I}[M \cdot \Delta Y = \Delta X]$

 $\frac{\text{Goal}}{\text{Bound } \sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } J} \mathbb{I}[M \cdot \Delta Y = \Delta X]}$

Goal

Bound $\sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } I} \mathbb{I}[M \cdot \Delta Y = \Delta X]$

solutions to system of linear equations

Define

" ΔX sat I" if $\forall i \in I, \Delta X[i] = 0$

Contrast with

" $\Delta X \text{ in } I$ " if $\begin{cases} \forall i \in I, \Delta X[i] = 0 \\ \forall i \notin I, \Delta X[i] \neq 0 \end{cases}$

Easier to work with

$$\sum_{\substack{\Delta Y \text{ sat } I \\ \Delta X \text{ sat } J}} \mathbb{I}[M \cdot \Delta Y = \Delta X] = \begin{cases} (2^b)^{k - |I| - |J|}, |I| + |J| \le k \\ 1, & \text{otherwise} \end{cases}$$

$$\sum_{\substack{\Delta Y \text{ sat } I \\ \Delta X \text{ sat } J}} \frac{1}{2^{bk}} = \left(2^b\right)^{k-|I|-|J|}$$

$$\sum_{\substack{\Delta Y \text{ sat } I \\ \Delta X \text{ sat } J}} \mathbb{I}[M \cdot \Delta Y = \Delta X] = \sum_{\substack{\Delta Y \text{ sat } I \\ \Delta X \text{ sat } J}} \frac{1}{2^{bk}} \pm \text{ (up to 1)}$$

$$\sum_{\substack{\Delta Y \text{ sat } I \\ \Delta X \text{ sat } J}} \mathbb{I}[M \cdot \Delta Y = \Delta X] = \sum_{\substack{\Delta Y \text{ sat } I \\ \Delta X \text{ sat } J}} \frac{1}{2^{bk}} \pm \text{ (up to 1)}$$

Inclusion-exclusion principle relates (
$$\Delta Y$$
 in I) with (ΔY sat I)
$$\sum_{\substack{\Delta Y \text{ in } I \\ \Delta X \text{ in } J}} \mathbb{I}[M \cdot \Delta Y = \Delta X] = \sum_{\substack{\Delta Y \text{ in } I \\ \Delta X \text{ in } J}} \frac{1}{2^{bk}} \pm \text{ (up to } 2^k)$$

$$\mathbb{P}[I \to J] = \frac{\sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } J} \mathbb{I}[M \cdot \Delta Y = \Delta X]}{\sum_{\Delta Y \text{ in } I} 1}$$

$$= \frac{\sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } J} \frac{1}{2^{bk}} \pm (\text{up to } 2^k)}{\sum_{\Delta Y \text{ in } I} 1}$$

$$= \frac{\sum_{\Delta Y \text{ in } I} \sum_{\Delta X \text{ in } J} \frac{1}{2^{bk}}}{\sum_{\Delta Y \text{ in } I} 1} \pm \frac{(\text{up to } 2^k)}{\sum_{\Delta Y \text{ in } I} 1}$$

$$= \sum_{\Delta X \text{ in } J} \frac{1}{2^{bk}} \pm \frac{(\text{up to } 2^k)}{2^{b(k-|I|)}}$$

$$= \sum_{\Delta X \text{ in } J} \frac{1}{2^{bk}} \pm \frac{(\text{up to } 2^k)}{2^{b(k-|I|)}}$$

$$= \sum_{\Delta X \text{ in } J} \frac{1}{2^{bk}} \pm \frac{(\text{up to } 2^k)}{2^{b(k-|I|)}}$$

Lemma. If $|I| \le \frac{k}{2}$, distribution of layout after mixing is $\frac{1}{2^{\Theta(bk)}}$ -close to stationary.

Proof Overview (2-wise)

Lemma. If $|I| \le \frac{k}{2}$, distribution of layout after mixing is $\frac{1}{2^{\Theta(bk)}}$ -close to stationary.

- $|L^{(1)}| \le \frac{k}{2} \Rightarrow L^{(2)}(\text{actually } \Delta Y^{(2)}) \text{ is } \frac{1}{2^{\Theta(bk)}}\text{-close to stationary}$
- $|L^{(1)}| \ge \frac{k}{2} \Rightarrow |L^{(2)}| \le \frac{k}{2}$ $\Rightarrow L^{(3)} \left(\text{actually } \Delta Y^{(3)} \right) \text{ is } \frac{1}{2^{\Theta(bk)}} \text{close to stationary}$

Proof Overview (t-wise)

- $X_a[i] = X_b[i] \Leftrightarrow Y_a[i] = Y_b[i].$
- \blacktriangleright Generalize to t-wise layouts.
 - ▶ Remember whether $X_a[i] = X_b[i]$.

Part IIb. Censored AES Technical Details

Pairwise Independence of AES*

- We saw before a way to approximate the transition probability $\mathbb{P}[I \to J]$ up to some small error.
- ▶ Turns out that we can compute $\mathbb{P}[I \to J]$ exactly:

Lemma [BV06]. If M has maximal branch number, the layout transition probability equals

$$\mathbb{P}[I \to J] = \mathbb{P}_{\Delta Y \text{ in } I}[M \cdot \Delta Y \text{ in } J] = \sum_{i=0}^{|I|+|J|-k-1} (-1)^{i} \frac{\binom{k-1+i}{k-1}}{(2^{b}-1)^{k-|J|+i}}.$$

Pairwise Independence of AES*

Lemma [BV06]. If *M* has maximal branch number, the layout transition probability equals

$$\mathbb{P}[I \to J] = \mathbb{P}_{\Delta Y \text{ in } I}[M \cdot \Delta Y \text{ in } J] = \sum_{i=0}^{|I|+|J|-k-1} (-1)^{i} \frac{\binom{k-1+i}{k-1}}{(2^{b}-1)^{k-|J|+i}}.$$

- ▶ Issue. The AES* mixing does not have maximal branch number.
- \triangleright Still possible to compute the exact adjacency matrix T of the layout graph.
 - ► Size $(2^{16} 1) \times (2^{16} 1) \approx 65K \times 65K$.
 - ► TOO LARGE!
 - ▶ Turns out T has rank $5^4 = 625$, and thus we can compute powers of T

Pairwise Independence of AES*

Can numerically compute the exact convergence to pairwise independence.

Theorem. The 7-round AES* is 2^{-128} -close to pairwise independent.

► For censored AES, we will also need the following result:

Theorem. The 3-round AES* is $2^{-23.42}$ -close to pairwise independent.

Theorem. The 3-round AES* is $2^{-23.42}$ -close to pairwise independent.

Question. How to go from random S-box to INV S-box?

Lemma.

 $\underbrace{ARK \circ INV \circ \cdots \circ ARK \circ INV}_{\text{8 times}} \approx_{2^{-29.39}} \text{ random permutation over } \mathbb{F}_{2^8}$

Start with a 3-round AES*

16 S-boxes

3-round AES* $\approx_{2^{-23.42}}$ pairwise independent

Replace each random S-box with 8 rounds of *INV* S-boxes

A total of $4 \cdot 8 = 32$ rounds of INV S-boxes

8 repetitions

Apply the lemma $4 \times 16 = 2^6$ times

Lemma.

 $ARK \circ INV \circ \cdots \circ ARK \circ INV$

8 times

 $pprox_{2^{-29.39}}$ random permutation over \mathbb{F}_{2^8}

32-round censored AES $\approx_{2^{-23.39}}$ 3-round AES*

32-round censored AES $\approx_{2^{-23.39}}$ 3-round AES* $\approx_{2^{-23.42}}$ pairwise independent

32-round censored AES $\approx_{2^{-23.39}}$ 3-round AES* $\approx_{2^{-23.42}}$ pairwise independent \Rightarrow 32-round censored AES $\approx_{2^{-22.39}}$ pairwise independent

Amplification Lemma [MPR07]

 \mathcal{F} is ϵ -close to t-wise independent $\Rightarrow \mathcal{F} \circ \mathcal{F}$ is $2\epsilon^2$ -close to t-wise independent.

6 repetitions of the 32-round censored AES is $2^5 \cdot (2^{-22.39})^6 < 2^{-128}$ \Rightarrow 192-round censored AES is pairwise independent!

Part III. Reversible circuits

An emerging block cipher: Reversible circuits

Another way to a create a keyed-permutation on $\{0,1\}^n$.

- ► Each "round" is now a random 3-bit gate.
- The secret key includes the gates.
 - \triangleright key_0 is a random permutation of $\{0,1\}^3$ and the wires it acts on.

Reversible circuits

We can now ask the same security question as for SPNs:

How many rounds (gates) do we need to obtain a twise independent permutation?

Background on reversible circuits

- ▶ Introduced by Gowers [Gow96] who wanted to study P vs NP.
 - ▶ Subsequent work by [HMMR05, BH08] shows that $\tilde{O}\left(n^2t^2 \cdot \log \frac{1}{\varepsilon}\right)$ gates suffice.
- Quantum physicists [BHH16, HHJ21] study random quantum circuits.
 - Connections to quantum pseudorandomness, black holes, many-body systems...
- More than just encryption [CCMR24].
 - ▶ Reversible circuits are pseudorandom \Rightarrow candidate obfuscation schemes.
 - Inspired by the thermalizing processes of statistical mechanics.

Background on reversible circuits

▶ He and O'Donnell [HO24] also study circuits with nearest-neighbor gates.

▶ A more practical construction.

t-wise independence of reversible circuits

Theorem [GHP24]. For $t \le 2^{n/50}$, a random reversible circuit with $\tilde{O}\left(nt \cdot \log \frac{1}{\varepsilon}\right)$ gates is ε -close to t-wise independent.

- Our analysis uses log-Sobolev inequalities, instead of spectral gaps.
 - Avoids the extra factors from prior work.
- **Optimal** up to polylogs for constant ε .

t-wise independence of reversible circuits

Theorem [GHP24]. For $t \le 2^{n/50}$, a random reversible circuit with $\tilde{O}\left(nt \cdot \log \frac{1}{\varepsilon}\right)$ gates is ε -close to t-wise independent.

Nice result for free:

Corollary. A random circuit with $L \le 2^{n/50}$ gates cannot be compressed to less than $\frac{L}{n^3 \log n}$ gates whp.

- ▶ Pointed to us by [CHH+24].
- Our bounds imply incompressibility of random circuits.

Part IV. Open questions

Many *t*-wise independence questions remain...

- ightharpoonup t-wise independence of any (non-idealized) block cipher for t > 2?
- Improved AES analysis?
 - Prove that real AES is at least as secure as censored AES?

- ▶ *t*-wise independence of SPN* beyond $t = \sqrt{2^b}$.
 - ► Can we push t up to $2^{\Theta(kb)}$ (or even 2^b)?

... and many block cipher questions remain!

- ► Are reversible circuits pseudorandom?
- Study other classes of attacks.
 - e.g., algebraic attacks via the Polynomial Calculus proof system [AL15].
- ► The role of key scheduling.
 - ► Given a secure block cipher with independent keys, what key scheduler preserves its security?

Research Program Goals

• Continue a research program put forward by [LTV21].

Goal is

t-w

Man

Goal

Security of practical encryption schemes from a theoretical viewpoint

- Solving these problems is an important quest.
 - Likely requires new techniques from mathematics and TCS.

Thank you!

Questions?