SCT 解密

本文档将全方位的解剖 LPC MCU 系列中一个很有特点的时钟模块—SCT 模块,希望帮助小伙伴能够快速上手 SCT。

1. SCT 概述

SCT 中文名称叫做状态可配置计数器,可以看成普通 Timer+硬件有限状态机引擎,既有普通 Timer 功能实现:向上/向下计数、计数值重载、计数匹配、中断产生、DMA 触发,又有硬件有限状态机引擎特点,即可以灵活定义计数器,输出信号,中断,DMA 行为。SCT 功能框图如图 1 所示,状态机组成如图 2 所示。

图 1 SCT 功能框图

图 2 状态机组成

状态机元素	SCT 实现
状态	状态寄存器跟踪当前状态
	根据事件控制寄存器设置更新状态
输入	事件控制寄存器配置
输出	由事件驱动,在输出置位寄存器和输出清零寄存器配置
	可作为状态切换的评估条件,在事件控制寄存器设置
状态切换	称为"事件"
	事件控制寄存器定义
	事件使能寄存器配置使能

- ▶ 事件:可以触发输出信号的转换,切换状态,改变计数器行为;
 - 计数器匹配
 - 输入/输出信号:高低电平或者上升/下降沿
 - 计数匹配 [与|或] 输入/输出信号
- ▶ 状态:定义了事件产生的背景条件;
- ▶ 输入信号:可以作为事件产生的一个条件,比如输入/输出引脚信号或者计数器匹配;

输出信号:由事件触发产生,也可以作为事件产生的一个条件,可以连接到内部其他模块或者连接到片外引脚;

2. LPC82x SCT 特性:

下面以 LPC82x 为例,具体介绍 SCT 模块的特性。

i. SCT 内部资源

Part	Inputs	Outputs	Match/ Capture	Event	State
LPC82x	4	6	8	8	8

ii. Counter/Timer 特性

- ▶ 可以配置为 2 个 16-bit 或者 1 个 32-bit 计数器
- ➤ Counter 可以由系统时钟或者外部输入驱动 Cool
- ▶ 可以设置为单一向上计数或者 up-down ▼ ★ 4 4
- ➤ Match 和 Capture 寄存器共享,灵活选择使用 Match 或者 Capture 模式
- ➤ Match 事件或者 Input / Output toggle 事件触发计数器捕获, 并将计数值加载到 Capture Register

iii. 时钟模式设置

Configuration 寄存器位	符号
2:1	CLKMODE

位值	时钟模式	描述
0x0	系统时钟模式	系统时钟驱动整个 SCT 模块,包括 Counter和 Counter 分频器
0x1	采样系统时钟模 式	系统时钟驱动 SCT 模块, Counter 和Counter 分频器由 CKSEL 位设定的 Input 信号边沿来驱动
0x2	SCT 输入时钟 模式	由系统时钟来同步,CKSEL 位设定的 Input 信号边沿驱动 SCT 模块,包括 Counter 和 Counter 分频器
0x3	异步模式	CKSEL 位设定的 Input 信号边沿驱动整个SCT 模块, SCT 输出信号也由 Input 时钟来同步,而不是系统时钟

iv. 外部输入时钟选择

semiconductor

		由于必有专项水组	
Con	figuration 寄存器的	位 符号	
6:3		CKSEL	
位值	SCT 时钟选择	描述	
0x0	Input0 上升沿	设定的 Input 信号及边沿作为 SCT 驱动时钟 首先要参考 CLKMODE 位的设定值	
0x1	Input0 下降沿		
0x2	Input1 上升沿		

0x3	Input1 下降沿
0x4	Input2 上升沿
0x5	Input2 下降沿
0x6	Input3 上升沿
0x7	Input3 下降沿

v. 输入/输出信号框图

- ➤ SCT 输入/输出为模块内部信号,可以连接片内其他模块信号,如 SCT 输入信号连接模拟比较器输出或者 ADC 阈值比较输出, SCT 输出信号可以作为 ADC Trigger 的输入信号,同时 SCT 输入/输出信号也可通过 Switch Matrix 连接芯片的外部引脚。
- ➤ SCT 输入/输出信号连接图, SCT 模块共有四个 Input, 六个 Output

vi. SCT 输入信号片内连接设置

首先,设置 Input Mux 外设寄存器,分别选择四个输入信号连接 片内其他模块信号或者片外引脚。

//设置 SCT_INPUT0 信号连接到 SCT_PIN0 功能

Chip_INMUX_SetSCTInMux(LPC_INMUX, SCT_I 引脚 NMUX_0, SCT_INP_IN0);

SCT0_INMUX[0:3]寄存器位	符号
3:0	INP_N

位值	连接信号	描述
0x0	SCT_PIN0	连接到 SCT_PINx 外部信号,需要通
0x1	SCT_PIN1	过 Switch Matrix 连接到外部 Pin 脚
0x2	SCT_PIN2	
0x3	SCT_PIN3	
0x4	ADC_THCMP_IRQ	连接到 ADC 模块阈值比较中断输出信号
0x5	ACMP_O	连接到模拟比较器(Analog
		Comparator)模块输出信号
0x6	ARM_TXEV	ARM 核 TXEV 事件信号
0x7	DEBUG_HALTED	DEBUG_HALTED 信号

vii. SCT 输出信号片外连接设置

需配置 Switch Matrix 引脚分配寄存器 PINASSIGN[7:9],连接到 片外引脚

//设置 SCT_OUT0 到 P0_1 脚

Chip_SWM_MovablePinAssign(SWM_SCT_OUT0_O, 1);

PINASSI	 GN[7]寄存器位	符号	
31:24		SCT_OUT0_O	
PINASSI	 GN[8]寄存器位	符号	
7:0		SCT_OUT1_O	
15:8		SCT_OUT2_O	
23:16		SCT_OUT3_O	
31:24		SCT_OUT4_O	
PINASSIGN	[9]寄存器位	符号	
7:0		SCT_OUT5_O	
位值	描述		
0x0- 0x1C	分配SCT_OUT[0:5]功能 脚号,PIO0_0 (= 0) 到 P	信号到引脚,设定位值即为分配的引 (IO0_28 (= 0x1C)	

viii. SCT 片外信号功能复用

通过 Switch Matrix 连接到外部引脚的 SCT 输入/输出信号,还需注意该引脚是否有复用功能,并且确保复用的功能信号处于禁能状态设置引脚使能寄存器 PINENABLEO,来禁能复用功能。

Chip_SWM_DisableFixedPin(SWM_FIXED_ACMP_I1);

位	符号	位值	描述
0	ACMP_I1	0	在 PIOO_0 引脚使能 ACMP_I1 功能

		1	禁能 ACMP_I1 功能
1	ACMP_I2	0	在 PIOO_1 引脚使能 ACMP_I2 功能
		1	禁能 ACMP_I2 功能
2	ACMP_I3	0	在 PIO0_14 引脚使能 ACMP_I3 功能
		1	禁能 ACMP_I3 功能
3	ACMP_I4	0	在 PIO0_23 引脚使能 ACMP_I4 功能
		1	禁能 ACMP_I4 功能
4	SWCLK	0	在 PIOO_3 引脚使能 SWCLK 功能
		1	禁能 SWCLK 功能
5:31	其他复用功能,请参考芯片用户手册		

ix. SCT 输出信号片内连接设置

SCT_OUT3 还可以连接到 ADC 的 ADC_trigger 信号,触发 ADC 采样序列。

通过设置 ADC 转换序列寄存器 SEQ[A:B]_CTRL,来选择触发源。

Chip_ADC_SetSequencerBits(LPC_ADC, ADC_SEQA_IDX, (3 << 12));

SEQ[A 位	\:B]_CTRL寄存器	符号
14:12		TRIGGER
位值	硬件触发源	描述
0	Logic High	逻辑高
1	ADC_PINTRIG0	ADC外部引脚0
2	ADC_PINTRIG1	ADC外部引脚1
3	SCT_OUT3	SCT输出信号3
4	ACMP_O	模拟比较器输出信号
5	ARM_TXEV	ARM核TX事件

x. SCT 事件触发

事件触发定义主要通过事件控制寄存器 EV[0:7]_CTRL 和事件使能寄存器 EV[0:7]_STATE 设置。

八个事件分别对应八个控制寄存器和八个使能寄存器。

SCT 事件触发	触发条件定义		对应寄存器
	Match Logic	计数器及计数 匹配	事件控制寄存 器定义
	Synced Input	同步后的 SCT 输入信号	
	Outputs	SCT 输出信号	
	State Logic	SCT 状态	事件使能寄存 器定义

1. 计数器及计数匹配条件

SCT event co	ontrol 寄存器位		符号
3:0			MATCHSEL
位值	事件触发定义	描述	
0到7	匹配寄存器[0:7]选择	选择事件对应的匹配寄存器,当计数器的计数值达到该匹配寄存器的数值时,触发该事件	
22:21	2:21		DIRECTION
位值	事件触发定义 /计数方向选择	描述	
0	计数方向无关	事件触发与计数方向无关	
1	向上计数	该事件只有在计数器向上计数时才会触发	
2	向下计数	该事件只有在计数器向下计数时才会触发	

2. 输入\输出信号条件: I/O 选择, 触发沿/电平

SCT event control 寄存器位			符号
5			OUTSEL
位值	输入/输出信号选择	描述	
0	选择输入信号	选择输入信号作为该事件触发的条件	
1	选择输出信号	选择输出信号作为该事件触发的条件	
9:6	9:6		IOSEL
位值	输入/输出信号值选择	描述	
0到3,或者 0到5	信号值	根据OUTSEL位值,当为0时,从0到3具体选择某个输入信号作为事件的触发条件;当为1时,从0到5具体选择某个输出信号作为事件的触发条件	

SCT event co	ontrol 寄存器位		符号
11:10			IOCOND
位值	I/O触发电平或边沿	描述	
0x0	低电平触发	根据OUT 信号的触	SEL和IOSEL位选择的I/O信号,IOCOND定义该
0x1	上升沿触发	1日 プロリ州出	火 刀
0x2	下降沿触发		
0x3	高电平触发		

3. I/O 和计数匹配组合条件

SCT event control 寄存器位		符号
13:12		COMBMODE
位值	匹配和NO条件的组合方式	描述
0x0	或	匹配和I/O条件相或后触发事件
0x1	只有匹配	只用匹配条件触发事件
0x2	只有NO信号条件	只用I/O条件触发事件
0x3	与	匹配和I/O条件相与后触发事件

xi. SCT 状态条件

状态条件由事件使能寄存器 EV[0:7]_STATE 定义

SCT event E	nable寄存器位	符号
7:0		STATEMSKn
位值	描述	
一位对应一 个状态		立0对应状态0,位1对应状态1。当置1时,该事件事件将在对应的状态禁能。如果所有位全部设置将被永久禁能。

semiconductor

xii. SCT 事件驱动

SCT 所有的动作都由事件来驱动,是事件的输出结果 SCT 事件驱动列表及对应的设置寄存器如下:

SCT事件驱动	驱动控制		对应寄存器
	Outputs	SCT输出信号	SCT output set register[0:5]
			SCT output clear register[0:5]
	State Logic	SCT状态值更新	SCT event control register[0:7] SCT state register
	Interrupts	SCT中断	SCT event interrupt enable register
	Match/Capture	SCT匹配/捕获动作	SCT capture control registers[0:7]
	Counter Control Logic	计数器控制	SCT limit event select register
			SCT halt event select register
			SCT stop event select register
			SCT start event select register

xiii. SCT 输出信号置位/清零

SCT 模块共有 6 个输出信号 SCT_Out[0:5],每个输出信号对应一组输出控制寄存器 OUT[0:5]_SET 和 OUT[0:5]_CLR,分别设置输出信号的置位和清零。

SCT output s	set register寄存器位	符号
7:0		SET
位值	描述	
一位对应一 个事件	八位分别对应SCT的八个事件,化件触发时,该输出信号输出高电 ³	立0对应事件0,位1对应事件1。当置1时,对应事 平;置0无操作
SCT output s	set register寄存器位	符号
7:0		CLR
位值	描述	
一位对应一 个事件	八位分别对应SCT的八个事件,化件触发时,该输出信号输出低电 ³	立0对应事件0,位1对应事件1。当置1时,对应事 平;置0无操作

xiv. SCT 状态值更新

事件触发时可以产生对当前 SCT 状态的更新,进行状态变换。

SCT 状态寄存器 STATE 记录当前的 SCT 状态值。

SCT 事件控制寄存器 EV[0:7]_CTRL 设置事件触发时对状态值的 更新方式。

SCT event c	ontrol 寄存器位	符号	
14		STATELD	
位值	状态值更新方式	描述	
0x0	当前状态值与位STATEV值相加 得到新的状态值	注: 当多个事件同时触发时,只有编号最高的事件才能有效更改当前状态值	
0x1	直接将位STATEV值加载到状态 寄存器作为新的状态值		
19:15		STATEV	
位值	描述		
0到31	根据STATELD值,将该值相加或者直接加载到状态寄存器,结果作为新的状态值		

xv. SCT 中断产生

设置 SCT 事件中断使能寄存器 EVEN,可以产生事件触发中断。

SCT event in	terrupt enable 寄存器位	符号
7:0		IEN
位值	描述	
一位对应一 个事件	八位分别对应SCT的八个事件,但 事件触发时将产生SCT中断,置0	立○0对应事件O,位1对应事件1。当置1时,对应的时,事件触发时不会产生中断。

xvi. 计数器捕获

事件触发时可以产生对 SCT 计数器的捕获功能。 设置 SCT 捕获控制寄存器 CAPCTRL[0:7]。

SCT capture	control 寄存器位	符号
7:0		CAPCON
位值	描述	
一位对应一 个事件		立0对应事件0,位1对应事件1。当置1时,对应的 置0时,事件触发时不产生捕获动作。
/ IICC3Caic		

xvii. 计数器控制

事件触发时可以控制计数器的计数方向、计数清零、启动、停止或者禁能

semiconductor

事件触发	计数器控制	对应寄存器
	计数器清零或者反向计数	限制寄存器
	启动计数器	启动寄存器
	停止计数器	停止寄存器
	禁能计数器	禁能寄存器

xviii. 计数限制

事件触发后,计数器将被清零或者开始反向计数。 设置 SCT 限制寄存器 LIMIT。

SCT limit eve	ent select 寄存器位	符号
7:0		LIMMSK
位值	描述	
一位对应一 个事件		立0对应事件0,位1对应事件1。当置1时,对应的 十数器被设置为双向计数时,将改变计数方向。 制动作。

xix. 启动计数器

设置 SCT 启动寄存器 START。

SCT limit eve	ent select 寄存器位	符号
7:0		STARTMSK
位值	描述	
一位对应一 个事件		20对应事件0,位1对应事件1。当置1时,对应的 ,事件触发时不产生计数控制动作。

xx. 停止计数器

设置 SCT 停止寄存器 STOP。

SCT limit event select 寄存器位		符号
7:0		STOPMSK
位值	描述	
一位对应一 个事件		立0对应事件0,位1对应事件1。当置1时,对应的 器保持原值,事件触发仍然处于使能状态;置0时,

xxi. 禁能计数器

设置 SCT 禁能寄存器 HALT。

SCT limit eve	ent select 寄存器位	符号
7:0		HALTMSK
位值	描述	
一位对应一 个事件		立0对应事件0,位1对应事件1。当置1时,对应的 蚀发处于禁能状态;置0时,事件触发时不产生计

3. 实例解析

功能简介:

在初始 0 状态,SCT 计数器开始计数,当计数值满足 EV0_CTRL 寄存器设置的条件时(Event 0),会将 Output pin 变成高电平,而当计数值满足 EV1_CTRL 寄存器设置的条件时(Event 1),则将 Output pin 变成低电平。而在 SCT 计数器工作的同时,若 Input 0 电平变成低电平,即作为 Event 2,用于复位 SCT 计数器,初始 0 状态也会过渡到状态 1,并使能 Event 3 和 Event 4,它们分别对应着当计数值满足 EV3_CTRL 和 EV4_CTRL 寄存器设置的条件,分别用于将 Output pin 变成高电平和低电平。而当 Input 0 电平变成高电平时(Event 5),则又会让 SCT 重新变为初始 0 状态。功能示意图如图 3 所示。

图 3 实例功能示意图

• SCT 寄存器配置

Configuration	Registers	Setting
	SCT 配置寄存器	UNIFY=1
Counter	SCT 配置寄存器	AUTOLIMIT=1
	SCT 控制寄存器	BIDIR_L=0
Clock base	SCT 配置寄存器	取默认值
REGMODE	SCT 匹配 / 捕获寄存器模式 寄存器	REGMODE_L[4:0]=0x0
Define match value	SCT 匹配寄存器 0 至 4	分别设置 SCT 匹配寄存器 0 至 4
Define match reload value	SCT 匹配重新载入寄存器 0 至 4	分别设置 SCT 匹配重新载入寄存器 0 至 4
Define when event 0 occurs	SCT 事件控制寄存器 0	COMBMODE=0x1 MATCHSEL=1 (SCT 匹配寄存器 1 与 Event0 关 联)
Define when event 1 occurs	SCT 事件控制寄存器 1	COMBMODE=0x1 MATCHSEL=1 (SCT 匹配寄存器 2 与 Event 1 关 联)
Define when event 2 occurs	SCT 事件控制寄存器 2	COMBMODE=0x3 IOSEL=0 IOCOND=0; MATCHSEL=0
Define how event 2 changes the state	SCT 事件控制寄存器 2	STATEV=1 STATED=1 (当 Event 2 发生时, State 从 0 变为 1)
Define when event 3 occurs	SCT 事件控制寄存器 3	COMBMODE=0x1 MATCHSEL=3 (SCT 匹配寄存器 3 与 Event 3 关 联)
Define when event 4 occurs	SCT 事件控制寄存器 4	COMBMODE=0x1 MATCHSEL=4 (SCT 匹配寄存器 4 与 Event 4 关 联)
Define when event 5	SCT 事件控制寄存器 5	COMBMODE=0x3

occurs		IOSEL=0 IOCOND=3;
Define how event 5 changes the state	SCT 事件控制寄存器 5	MATCHSEL=0 STATEV=0 STATED=1 (当 Event 5 发生时, State 从 1 变为 0)
Define by which events output 0 is se	SCT 输出设置寄存器 0	SET0=1 SET3=1
Define by which events output 0 is cleared	SCT 输出清零寄存器 0	CLR0=1 CLR3=1
Configure states in which event 0 is enabled	SCT 事件状态掩码寄存器 0	STATEMSK0=1
Configure states in which event 1 is enabled	SCT 事件状态掩码寄存器 1	STATEMSK1=1
Configure states in which event 2 is enabled	SCT 事件状态掩码寄存器 2	STATEMSK2=1
Configure states in which event 3 is enabled	SCT 事件状态掩码寄存器 3	STATEMSK3=1
Configure states in which event 4 is enabled	SCT 事件状态掩码寄存器 4	STATEMSK4=1
Configure states in which event 5 is enabled	SCT 事件状态掩码寄存器 5	STATEMSK5=1