Boolean Monadic Recursive Schemes for Phonological Analysis: A tutorial

Jane Chandlee (Haverford College), Adam Jardine, Adam McCollum, and Tatevik Yolyan (Rutgers University)

AMP 2022 | UCLA

21 October 2022

Overview

- A theory of phonology...
 - allows us to directly state linguistically significant generalizations;
 - captures abstract universals about the phonological cognitive module;
 - (and is also learnable)

Overview

Boolean monadic recursive schemes (BMRS) is a logical formalism for implementing such a theory

Overview

An example:

$$\dot{\sigma}_{\rm o}(x) = \inf {\sf final}_{\rm i}(x) \quad {\sf then} \perp {\sf else} \\
 \quad \inf \dot{\sigma}_{\rm o}(p(x)) \quad {\sf then} \perp {\sf else} \\
 \quad \dot{\sigma}_{\rm i}(x)$$

in:	σ	σ	σ	σ	σ	σ
$ \dot{\sigma}_{\rm i}(x) \dot{\sigma}_{\rm o}(x) $	<u></u>	T	\perp	\perp	\perp	<u></u>
out:	σ	•		•	σ	σ

4

Boolean Monadic Recursive Schemes (BMRS)

- A logical characterization of a phonological process includes:
 - Models (representations)
 - 2 a **logical language** for describing properties
 - 3 an **interpretation** for describing the *output* structure

BMRS: String Models

- indices (elements in the structure)
- \blacksquare order functions p and s
- properties of the indices

BMRS: String Models

■ Featural properties:

7

The core of BMRS syntax are expressions of the form

if A then B else C

that return boolean values (\top or \bot)

Ex.,

if $[son]_i(x)$ then \perp else $[voi]_i(x)$

Ex.,

$$\mathtt{if} \; [\mathtt{SON}]_{\mathrm{i}}(\mathit{X}) \; \mathtt{then} \perp \mathtt{else} \; [\mathtt{VOi}]_{\mathrm{i}}(\mathit{X})$$

A, B, or C can be another expression

```
if [SOn]_i(X) then \bot else if [VOi]_i(X) then \top else \bot
```

Usually this is C, to chain together expressions

Expressions define new properties

$$\begin{bmatrix} -\text{son} \\ +\text{voi} \end{bmatrix}_{i} (x) := \text{if } [\text{son}]_{i}(x) \text{ then } \bot \text{ else } [\text{voi}]_{i}(x)$$

Expressions define new properties

$$\begin{bmatrix} -\mathsf{son} \\ +\mathsf{voi} \end{bmatrix}_{\mathbf{i}}(x) := \mathsf{if} \ [\mathsf{son}]_{\mathbf{i}}(x) \ \mathsf{then} \perp \mathsf{else} \ [\mathsf{voi}]_{\mathbf{i}}(x)$$

$$\mathrm{final}_{\mathbf{i}}(x) := \mathsf{if} \ \ltimes (s(x)) \ \mathsf{then} \ \top \ \mathsf{else} \ \bot$$

Expressions define new properties

$$\begin{bmatrix} -\mathsf{son} \\ +\mathsf{voi} \end{bmatrix}_{i}(x) := \mathsf{if} \ [\mathsf{son}]_{i}(x) \ \mathsf{then} \ \bot \ \mathsf{else} \ [\mathsf{voi}]_{i}(x)$$

$$\mathrm{final}_{i}(x) := \mathsf{if} \ \ltimes (s(x)) \ \mathsf{then} \ \top \ \mathsf{else} \ \bot$$

$$\mathsf{D\#}_{i}(x) := \mathsf{if} \ \begin{bmatrix} -\mathsf{son} \\ +\mathsf{voi} \end{bmatrix}_{i}(x) \ \mathsf{then} \ \mathsf{final}(x) \ \mathsf{else} \ \bot$$

11

 interpretations specify maps by defining output structures in terms of the input structures (Engelfriet & Hoogeboom 2001)

Scheme - series of definitions of (output) properties

$$[\operatorname{son}]_{\mathrm{o}}(x) = \dots \\ [\operatorname{voi}]_{\mathrm{o}}(x) = \dots \\ [\operatorname{cor}]_{\mathrm{o}}(x) = \dots$$

Properties in a **BMRS** are

- boolean
- monadic (unary)
- recursive

Output properties assert the conditions under which a segment is + for a given feature in the output structure.

```
 [\operatorname{son}]_{\mathrm{o}}(x) = \dots \\ [\operatorname{voi}]_{\mathrm{o}}(x) = \dots \\ [\operatorname{cor}]_{\mathrm{o}}(x) = \dots
```

```
 [\operatorname{son}]_{o}(x) = \dots \\ [\operatorname{voi}]_{o}(x) = \dots \\ [\operatorname{cor}]_{o}(x) = \dots
```

```
[son]_o(x) = [son]_i(x)

[voi]_o(x) = ...

[cor]_o(x) = ...
```

	×	b	ε	d	×	_
$[son]_i(x)$	\perp	\perp	Т	\perp	\perp	
$[voi]_i(x)$	\perp	Т	\top	Т	\perp	
$[cor]_i(x)$	\perp	\perp	\perp	Τ	\perp	
$[son]_{o}(x)$ $[voi]_{o}(x)$	1		Т	1	Т	_
$[cor]_o(x)$						
	×	b	3	t	×	_

```
[son]_o(x) = [son]_i(x)

[voi]_o(x) = ...

[cor]_o(x) = [cor]_i(x)
```

	×	b	3	d	\bowtie	
$[son]_i(x)$	\perp	\perp	Т	\perp	\perp	
$[voi]_i(x)$	\perp	Т	Т	Т	\perp	
$[cor]_i(x)$	\perp	\perp	\perp	Т	\perp	
$[son]_{o}(x)$	1	1	Т	1	1	_
$[voi]_o(x)$ $[cor]_o(x)$	\perp	\perp	\perp	Т	Τ	
	×	b	3	t	×	_

```
\begin{array}{lcl} [\mathsf{son}]_\mathrm{o}(x) &=& [\mathsf{son}]_\mathrm{i}(x) \\ [\mathsf{voi}]_\mathrm{o}(x) &=& \mathsf{if} \ \mathsf{D}\#_\mathrm{i}(x) \ \mathsf{then} \perp \mathsf{else} \ [\mathsf{voi}]_\mathrm{i}(x) \\ [\mathsf{cor}]_\mathrm{o}(x) &=& [\mathsf{cor}]_\mathrm{i}(x) \end{array}
```

	×	b	3	d	×
$[son]_i(x)$	\perp	\perp	Т	\perp	\perp
$[voi]_i(x)$	\perp	Т	Т	Т	\perp
$[cor]_i(x)$	\perp	\perp	\perp	Т	\perp
$[son]_{o}(x)$	1	1	Т	1	
$[voi]_o(x)$	\perp	\top	Т	\perp	\perp
$[cor]_{o}(x)$	\perp	\perp	\perp	Т	\perp
	×	b	3	t	×

H-tone spread to penult

```
\begin{array}{cccc} \acute{\sigma}\sigma\sigma & \mapsto & \acute{\sigma}\acute{\sigma} \\ \sigma\acute{\sigma}\sigma\sigma\sigma\sigma & \mapsto & \sigma\acute{\sigma}\acute{\sigma}\acute{\sigma}\sigma \\ \sigma\sigma\acute{\sigma}\sigma\sigma\sigma\sigma & \mapsto & \sigma\acute{\sigma}\acute{\sigma}\acute{\sigma}\acute{\sigma}\sigma \\ \sigma\acute{\sigma}\sigma\sigma\sigma\sigma\sigma & \mapsto & \sigma\acute{\sigma}\acute{\sigma}\acute{\sigma}\acute{\sigma}\acute{\sigma}\sigma \\ \text{etc.} \end{array}
```

H-tone spread to penult

$$\begin{array}{cccc} \acute{\sigma}\sigma\sigma & \mapsto & \acute{\sigma}\acute{\sigma}\sigma \\ \sigma \acute{\sigma}\sigma\sigma\sigma\sigma & \mapsto & \sigma \acute{\sigma}\acute{\sigma}\acute{\sigma}\sigma \\ \sigma\sigma \acute{\sigma}\sigma\sigma\sigma\sigma & \mapsto & \sigma\sigma \acute{\sigma}\acute{\sigma}\acute{\sigma}\acute{\sigma}\sigma \\ etc. \end{array}$$

$$\dot{\sigma}_{\rm o}(x) = ?$$

17

H-tone spread to penult

$$\sigma \acute{\sigma} \sigma \sigma \sigma \sigma \mapsto \sigma \acute{\sigma} \acute{\sigma} \acute{\sigma} \sigma$$

$$\acute{\sigma}_{\rm o}(x) =$$

H-tone spread to penult

$$\dot{\sigma}_{o}(x) =$$

$$\dot{\sigma}_{i}(x)$$

H-tone spread to penult

$$\sigma \acute{\sigma} \sigma \sigma \sigma \sigma \mapsto \sigma \acute{\sigma} \acute{\sigma} \acute{\sigma} \sigma$$

18

H-tone spread to penult

$$\sigma \acute{\sigma} \sigma \sigma \sigma \sigma \mapsto \sigma \acute{\sigma} \acute{\sigma} \acute{\sigma} \sigma$$

$$egin{aligned} \dot{\sigma}_{
m o}({\it x}) = & ext{if } {
m final}({\it x}) ext{ then } ot = ext{else} \\ & ext{if } \dot{\sigma}_{
m o}({\it p}({\it x})) ext{ then } ot = ext{else} \\ & ext{} \dot{\sigma}_{
m i}({\it x}) \end{aligned}$$

BMRS: Review

BMRSs are

- logical descriptions of maps
- series of definitions of the form

```
 [F]_o(x) = \begin{array}{ll} \text{if (condition 1)(x) then } \top/\bot \text{ else} \\ & \text{if (condition 2)(x) then } \top/\bot \text{ else} \\ & \vdots \\ & [F]_i(x) \end{array}
```

■ computationally restrictive (Bhaskar et al., 2020)

A Homework Assignment: Iny

Iny (Ribeiro 2002, 2012) ATR harmony requires both reference to input and output

Iny in BMRSs

- Some hints:
 - 1 Define the relevant sets of natural classes,
 - 2 then write a formula to define the conditions under which vowels surface as $[\pm ATR]$ (and the other features).

Iny in BMRSs

- 1 Natural class properties
 - \blacksquare [+ATR, +hi]_i(x) =
 - $= [+ATR, -hi, -lo, -nas]_o(x) =$
- 2 Output features
 - \blacksquare [high]_o(x) =
 - \blacksquare [low] $_{o}(x) =$
 - \blacksquare [nasal]_o(x) =
 - $[ATR]_{o}(x) =$

Iny in BMRSs

Answers on adamjardine.net/bmrstutorial

Ideas for AMP 2023 Submissions on BMRS

- What restrictions should we put on BMRS for defining natural classes?
- What does a tertiary feature system look like in BMRS? See Turkish voicing alternations as described in e.g., Inkelas (1995).
- BMRS captures elsewhere condition-type effects well. What about non-derived environment blocking?
- What is the status of intermediate representations? See, e.g., Gleim (2019) for a feeding Duke of York analysis of tone-epenthesis interactions in Arapaho.
- How does BMRS capture the typology of stress patterns? (E.g., in Gordon 2002)