Exercícios de Física Computacional

Escola de Ciências da Universidade do Minho Física e Engenharia Física ano letivo 2021/2022, 1º semestre

Folha 9

 Use o método de Gauss-Seidel com sobre-relaxação para resolver a equação de Laplace para o problema bi-dimensional representado na figura seguinte:

Considere que o quadrado tem um lado 1 m e que V=1 V. Use uma grelha com espaçamento de 1 cm, continuando a iteração até que o valor do potencial elétrico não varie mais do que 10^{-6} V em qualquer ponto da grelha e represente os resultados obtidos num gráfico de densidade. Experimente diversos valores de ω , avaliando o efeito na velocidade de execução do programa.

2. Discuta como generalizar a resolução da equação de Laplace a 3 dimensões usando o método das diferenças finitas.

3. Considere o sistema a duas dimensões, representado na figura seguinte:

Cada lado do quadrado, de comprimento 1 m, está ligado à terra estando, portanto, a 0 V. Duas cargas quadradas são colocadas como representado na figura, tendo cada uma delas uma densidade de carga correspondente a $\rho = \pm 1$ Cm². Resolva a equação de Poisson para este sistema:

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}.$$

Resolva numericamente a equação de Poisson para este sistema num sistema de unidades em que $\varepsilon_0=1$. Como critério de convergência use uma variação do potencial elétrico por iteração inferior a 10^{-6} V.

4. Considere a variação de temperatura da crosta terrestre ao longo das estações do ano, supondo que a temperatura média num determinado ponto da superfície varia de acordo com:

$$T_0(t) = A + B\sin\frac{2\pi t}{\tau},$$

em que $\tau=365\,\mathrm{dias},\,A=10^{\circ}\mathrm{C}$ e $B=12^{\circ}\mathrm{C}.\,$ A uma profundidade de 20 m abaixo da superfície praticamente não há variações de temperatura, que é aproximadamente constante e igual a $11^{\circ}.\,$ Note que esta temperatura é superior à média da temperatura à superfície, $10^{\circ}\mathrm{C},\,$ uma vez que a temperatura aumenta com a profundidade. A difusão térmica da crosta terrestre varia de ponto para ponto mas, por simplicidade, assuma que é constante e com valor $D=0.1\,\mathrm{m}^2\,\mathrm{dia}^{-1}.\,$

Calcule numericamente o perfil de temperatura em função da profundidade. Considere uma profundidade máxima de $20\,\mathrm{m}$ e um intervalo temporal de 10 anos. Comece com uma temperatura igual a $10^\circ\mathrm{C}$ em todos os pontos, exceto à superfície e no ponto de profundidade máxima. Execute o programa para os primeiros 9 anos, de forma a permitir estabilizar um padrão de temperaturas, e, a partir daí, represente num gráfico a temperatura em função da profundidade em 4 pontos espaçados por 3 meses (i.e. para $t=9.25,\ 9.50,\ 9.75,\ 10.0$ anos).