

DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY TO TUNE MACHINE LEARNING HYPERPARAMETERS, WITH A RANDOM FOREST CASE-STUDY

Article presentation in MA8701 by Javier, Håkon and Yngvild

Introduction - Objective & previous approaches

We want to apply a machine learning algorithm to perform regression/classification

Introduction - Objective & previous approaches

We want to apply a machine learning algorithm to perform regression/classification

Objective: find hyperparameter configuration that optimizes our performance metric

Introduction - Objective & previous approaches

We want to apply a machine learning algorithm to perform regression/classification

Objective: find hyperparameter configuration that optimizes our performance metric

Common approaches:

- Stochastic gradient descent
- Gaussian process-based Bayesian optimization
- Random search

Introduction - Idea in this paper

1. Find most important hyperparameters (factors) in the random forest algorithm using design of experiments (DOE)

Introduction - Idea in this paper

- **1.** Find most important hyperparameters (factors) in the random forest algorithm using design of experiments (DOE)
- 2. Apply response surface methodology (RSM) on the parameters chosen in step 1

Experiment: series of systematic tests which attempt to find the factors which have the largest effect on a response variable.

Main Objective: Optimize the response variable.

This involves:

- Careful selection of variables
- Ranges of variables
- Number of experiments and their order

Traditionally DOE has been performed by changing a factor a time.

Inefficient! Misses information about interactions. Usually overlooked in hyperparameter tuning efforts.

A response variable may be impacted by controllable and uncontrollable factors.

- ► **Controllable factor:** The experimenter can freely alter its levels.
- Uncontrollable factor: Variables that are not controlled by the experimenter, but can be monitored and even included in the model.

Principles of DOE:

1. Randomization: experiments should be run in a random order to prevent external factor from affecting results.

Principles of DOE:

- **1. Randomization:** experiments should be run in a random order to prevent external factor from affecting results.
- 2. Replication: allows calculation of internal s.e

Principles of DOE:

- **1. Randomization:** experiments should be run in a random order to prevent external factor from affecting results.
- **2. Replication:** allows calculation of internal s.e
- 3. Blocking: can reduce variability

Principles of DOE:

- **1. Randomization:** experiments should be run in a random order to prevent external factor from affecting results.
- **2. Replication:** allows calculation of internal s.e
- 3. Blocking: can reduce variability

Two level factorial design (2^k) :

- Most basic type of experiment.
- ▶ *k* factors at two levels: low and high.
- Regression model:

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon$$

where $\beta_i, i=1,...k$ are main effects and $\beta_{ij}, j=2,...,k$ are interaction terms. As k increases, the number of runs increases exponentially.

Idea: use a fractional DOE

Fractional Factorial DOE (2^{k-p}) :

- **1.** Fewer runs are needed 2^{k-p} .
- **2.** Trade-off: loss of accuracy due to fewer df to evaluate each factor and every possible interaction.
- **3.** Powerful screening methods. Usually done at the beginning of experiment to see which factors are important.

3 unique characteristics that make them highly efficient:

1. **Sparsity of effects principle:** only a small number of effects are significant and the final model is composed of low order terms.

3 unique characteristics that make them highly efficient:

- 1. **Sparsity of effects principle:** only a small number of effects are significant and the final model is composed of low order terms.
- **2. Projection property:** a design can be projected into a lower dimension using a subset of factors.

3 unique characteristics that make them highly efficient:

- 1. **Sparsity of effects principle:** only a small number of effects are significant and the final model is composed of low order terms.
- **2. Projection property:** a design can be projected into a lower dimension using a subset of factors.
- **3. Fold over:** FFDOE can be combined to form designs of higher resolution Helps in isolating main effects.

3 unique characteristics that make them highly efficient:

- 1. **Sparsity of effects principle:** only a small number of effects are significant and the final model is composed of low order terms.
- **2. Projection property:** a design can be projected into a lower dimension using a subset of factors.
- **3. Fold over:** FFDOE can be combined to form designs of higher resolution Helps in isolating main effects.

Serious disadvantage of FFDOE: unable to detect quadratic effects.

Solution: add a third level of **center points** to one or more factors in addition to the two levels in a 2^k DOE.

- Center points are coded as 0.
- ▶ Does not impact the effect estimates $\hat{\beta}_j, j \geq 1$ and $\hat{\beta}_0$ becomes the average.
- Adding center points helps us test lack of fit, since it is expected that

$$\bar{y}_f - \bar{y}_c \approx 0$$
,

where \bar{y}_f is the mean of the factorial design and \bar{y}_c is the mean of center points.

Additionally we can estimate the pure error at the center point and partition

$$SSE = SS_{PE} + SS_{LOF}$$
.

RSM: Procedure used to model a surface using statistical techniques for the purpose of optimizing a response.

Objective: Find value of x that maximizes response y, with

$$y = f(x) + \varepsilon,$$

where ε is the error and the response surface is $\eta = f(x)$.

Challenge: a priori *f* is an unknown function.

Methodology: find a model which fits the relationship between the predictors and the response using a polynomial function.

Popular choices:

First-order model:

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \varepsilon$$

Second-order model:

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ij} x_j^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon$$

Main effects

Interaction

Quadratic

► RSM is **sequential procedure** where at each step, we move in a direction of improvement for our objective.

- ▶ RSM is **sequential procedure** where at each step, we move in a direction of improvement for our objective.
- Steepest ascent or ridge analysis is used to move to optimal region or the response surface.

- ► RSM is **sequential procedure** where at each step, we move in a direction of improvement for our objective.
- Steepest ascent or ridge analysis is used to move to optimal region or the response surface.
- ► The procedure is repeated until no more improvements are found in a local neighborhood.

- ► RSM is **sequential procedure** where at each step, we move in a direction of improvement for our objective.
- Steepest ascent or ridge analysis is used to move to optimal region or the response surface.
- The procedure is repeated until no more improvements are found in a local neighborhood.

Most popular RSM designs: Central Composite designs (CCD) , Box-Behnken (BBD)

Background - Performance metrics

Balanced accuracy (BACC):

$$BACC = (TPR + TNR)/2, (1)$$

where TPR = TP/(TP + FN) and TNR = TN/(TN + FP). Good metric for highly unbalanced data

Background - Random forest

Bagging: create B bootstrap samples and fit a decision tree to each sample

Background - Random forest

Bagging: create B bootstrap samples and fit a decision tree to each sample Random forest: in each split, we are only allowed to consider m of the p predictors

Background - Random forest

Bagging: create B bootstrap samples and fit a decision tree to each sample Random forest: in each split, we are only allowed to consider m of the p predictors

Use fully-grown trees rather than pruned ones

⇒ Less correlated

Background - The RandomForest package in R

Hyperparameters in RandomForest:

1. ntree: number of trees to grow

Background - The RandomForest package in R

Hyperparameters in RandomForest:

- 1. ntree: number of trees to grow
- **2.** mtry: number of predictors m allowed to be considered at each split

Background - The RandomForest package in R

Hyperparameters in RandomForest:

- 1. ntree: number of trees to grow
- **2.** mtry: number of predictors m allowed to be considered at each split
- **3.** replace: should sampling be done with our without replacement?

- 1. ntree: number of trees to grow
- **2.** mtry: number of predictors m allowed to be considered at each split
- **3.** replace: should sampling be done with our without replacement?
- 4. nodesize: minimum size of leaf nodes

- 1. ntree: number of trees to grow
- **2.** mtry: number of predictors m allowed to be considered at each split
- **3.** replace: should sampling be done with our without replacement?
- 4. nodesize: minimum size of leaf nodes
- **5.** classwt: prior probability for each of the classes

- 1. ntree: number of trees to grow
- **2.** mtry: number of predictors m allowed to be considered at each split
- **3.** replace: should sampling be done with our without replacement?
- 4. nodesize: minimum size of leaf nodes
- **5.** classwt: prior probability for each of the classes
- **6.** cutoff: threshold for binary classification

- 1. ntree: number of trees to grow
- **2.** mtry: number of predictors m allowed to be considered at each split
- 3. replace: should sampling be done with our without replacement?
- 4. nodesize: minimum size of leaf nodes
- **5.** classwt: prior probability for each of the classes
- **6.** cutoff: threshold for binary classification
- 7. maxnodes: maximum number of leaf nodes a tree can have

Experiments - The dataset

Aim: classifying whether a person makes over 50 000 USD per year 32561 observations, 14 covariates

Some of the covariates:

- **1.** age
- 2. marital status
- 3. race
- **4.** sex
- 5. education

Procedure

1. Choose a machine learning algorithm and decide on the response variable to tune (accuracy, TPR, F1-score, etc.)

- **1.** Choose a machine learning algorithm and decide on the response variable to tune (accuracy, TPR, F1-score, etc.)
- 2. Select the hyperparameters to tune as well as their ranges

- 1. Choose a machine learning algorithm and decide on the response variable to tune (accuracy, TPR, F1-score, etc.)
- 2. Select the hyperparameters to tune as well as their ranges
- **3.** Perform a screening design and identify the important hyperparameters

- 1. Choose a machine learning algorithm and decide on the response variable to tune (accuracy, TPR, F1-score, etc.)
- 2. Select the hyperparameters to tune as well as their ranges
- **3.** Perform a screening design and identify the important hyperparameters
- **4.** Reduce the model and, depending on the number of experiments that are feasible to run, perform either a full or fractional 2k factorial design

- 1. Choose a machine learning algorithm and decide on the response variable to tune (accuracy, TPR, F1-score, etc.)
- 2. Select the hyperparameters to tune as well as their ranges
- 3. Perform a screening design and identify the important hyperparameters
- **4.** Reduce the model and, depending on the number of experiments that are feasible to run, perform either a full or fractional 2k factorial design
- **5.** Fit a second-order model using RSM (CCD, BBD), selecting the hyperparameter configuration with the best performance from the previous step as the center of the design

- 1. Choose a machine learning algorithm and decide on the response variable to tune (accuracy, TPR, F1-score, etc.)
- 2. Select the hyperparameters to tune as well as their ranges
- 3. Perform a screening design and identify the important hyperparameters
- **4.** Reduce the model and, depending on the number of experiments that are feasible to run, perform either a full or fractional 2k factorial design
- **5.** Fit a second-order model using RSM (CCD, BBD), selecting the hyperparameter configuration with the best performance from the previous step as the center of the design
- **6.** Recursively optimize the second-order model until the change in the response is $\leq \epsilon$.

Experiments - Comments to the procedure

- ► Throughout each of these steps, the response variable should be estimated using n-fold cross-validation.
- ▶ The result of the procedure will be compared to the default settings
- ► The data set is small enough to accommodate a full factorial as the first run, but they choose to pretend that initial screening is needed
- ► The initial screening is performed using a 2⁷⁻² design, so some two-factor interactions are confounded

Experiments - Initial levels for screening

Table: Factors and levels in the initial screening

Factor	Low factor level (-)	High factor level (+)		
ntree	100	500		
mtry	2	4		
replace	FALSE	TRUE		
nodesize	1	3256		
classwt	1	10		
cutoff	0.2	0.8		
maxnodes	5	NULL		

Experiments - Analysis of first screening

Coefficients	Estimate	Std. Error	t-value	P(> t)
(Intercept)	0.3458	0.0043	80.503	2.47E-10 ***
ntree	0.0029	0.0043	0.684	0.5193
mtry	-0.0069	0.0043	-1.614	0.1578
replace	-0.0253	0.0043	-5.879	0.0011 **
nodesize	0.0435	0.0043	10.132	5.37E-05 ***
classwt	-0.1364	0.0043	-31.766	6.47E-08 ***
cutoff	0.0475	0.0043	11.07	3.24E-05 ***
maxnodes	-0.0593	0.0043	-13.816	8.95E-06 ***
ntree:mtry	-0.0371	0.0043	-8.636	0.0001 ***
ntree:replace	0.0003	0.0043	0.085	0.9357

► Confounded effects significant, need follow-up. Use fold over design.

Experiments - Analysis of second screening

Coefficients	Estimate	Std. Error	t-value	P(> t)
(Intercept)	5.92E-01	7.82E-03	75.777	2E-16
ntree	-9.07E-04	7.82E-03	-0.116	0.9082
mtry	5.36E-03	7.82E-03	0.686	0.4975
replace	1.61E-03	7.82E-03	0.206	0.8377
nodesize	-6.41E-03	7.82E-03	-0.821	0.4174
classwt	-1.42E-02	7.82E-03	-1.818	0.0777 +
cutoff	-3.06E-03	7.82E-03	-0.391	0.6978
maxnodes	1.39E-02	7.82E-03	1.782	0.0834 +
ntree:mtry	4.29E-04	7.82E-03	0.055	0.9566
ntree:replace	-3.16E-03	7.82E-03	-0.405	0.6882

 \blacktriangleright Significant two-factor interactions: The hierarchy and heredity dilemma $\boxed{\hspace{-0.5cm}\text{D}\hspace{-0.5cm}}$ NTNU | Norwegian University of Science and Technology

Main results - Initial screening

- ntree not significant saving computations by setting it low
- Note: A hyperparameter not being significant in this particular case can matter in other settings
- Having identified the active factors, a full factorial experiment was conducted
- Results analyzed, maxnodes removed, new full factorial with factors nodesize, classwt and cutoff

Main results - RSM for optimization

- Having completed the screening phase, it was time to optimize
- Used Box Behnken design, suited for fitting second-order models (several levels for each factor)
- Fitted model, found the significant terms, fitted reduced model
- Steepest ascent, but not outside the experimental region
- New experiment, new model and new steepest ascent
- Satisfying results 0.81 in BACC compared to the default 0.64

Discussion and conclusion - part 1

- Saving computations by using low levels of hyperparameters that are not significant
- Some parameter can compensate for each other
- Method allows us to understand which hyperparameters matter and how they impact the result - but the spesifics do not necessarily generalize
- Convexity unrealistic probably found local maximum

Discussion and conclusion - part 2: Our comments

- Advantages of the method: Can save computation and gain information about which hyperparameters matter
- Disadvantage: Not possible to use this if very many hyperparameters must be tuned. Requires a lot of domain knowledge. Should probably be automated to achieve popularity
- Would have been interesting: Comparison with grid search and Bayesian optimization
- More information about computational demands
- Confidence intervals for BACC

Thank you for your attention

