Solution & Marking scheme

Ryerson University

Department of Electrical and Computer Engineering

ELE404 (Electronic Circuits I)

Midterm Examination (P2013)

May 2013

Duration: 120 minutes

Examiner: Prof. A. Yazdani

Name:			[Daint First NI 1
	[Print Last Name]		[Print First Name]
Student No:	••••••	Section:	

NOTES

- 1. This is a closed-book examination. No aids other than basic calculators are permitted.
- 2. The examination paper is comprised of <u>FOUR QUESTIONS</u>, each question worth as indicated in the following Table. The entire examination is worth 100 marks.

Question #	Maximum Mark	Mark Earned
1	30	
2	30	
3	10	
4	30	
Total	100	

- 3. Answer all questions in the booklet, within the blank spaces provided under each question in this booklet. Use the reverse if needed.
- 4. <u>No Questions to be asked during the examination</u>. If in doubt about any question, clearly state your assumptions in answering the question.
- 5. Part marks for an answer will only be given if the *correct methodology* is clearly shown.
- 6. **<u>DO NOT DETACH</u>** any pages from this booklet.

Q1: In the diode circuit of **Fig. 1**, the diodes assume a constant voltage drop of 0.7 V if they conduct, and $R_1 = 1.2 k\Omega$, $R_2 = 2.7 k\Omega$, $R_3 = 1.8 k\Omega$, and $R_4 = 3.3 k\Omega$. Showing all the work, determine the conduction states ("on" or "off") of the diodes, and calculate the voltages V_1 through V_3 . Summarize your findings in **Table 1**.

Fig. 1: Diode circuit of Q1.

Table 1: Results of the diode circuit of Q1. [each five marks]

D_1	D_2	$V_1[V]$	$V_2[V]$	$V_3[V]$	$V_4[V]$
OFF	OFF	-3.47	0.316	0	0

systematically, we would solve the circuit for each of the following assumed states, and check the corresponding conditions, until we found the correct state:

State#	Separation of the second	D2
######################################	ON	ON
faces,	0N	C F F
) * *	ON
formal of the second of the se	OFF	Agrican Section

However, we show here that state #4 is the right state and consistent with the conditions:

V3=V4=0 due to zero current in R4

$$V_1 = \frac{-6}{1.2 + 1.8 + 2.7} \times (1.8 + 2.7) + \frac{6}{1.2 + 1.8 + 2.7} \times 1.2 = -3.47$$

$$V_2 = \frac{6}{1.2 + 1.8 + 2.7} \times (1.8 + 1.2) + \frac{-6}{1.2 + 1.8 + 2.7} \times 2.7 = 0.316$$

Checking

$$U_{D1} = V_1 - V_3 = -3.47 = 0 = -3.47 < 0.7 / diode "off"$$
 $U_{D2} = V_2 - V_3 = 0.316 - 0 = 0.316 < 0.7 / diode "off"$

Q2: Assuming ideal diodes, derive and mathematically express the transfer characteristic $(v_I - v_O)$ characteristic) of the diode circuit of **Fig. 2a**. Then, plot the transfer characteristic on **Fig. 2b**.

Fig. 2a: Diode circuit of Q2.

Fig. 2b: Transfer characteristic of the diode circuit of Fig. 2a.

$$V_{\text{N}}\langle 0 \stackrel{(5)}{\Rightarrow} -/2^{\nu}_{\text{I}} + 2.5 \langle 0 \Rightarrow ^{\nu}_{\text{I}} \rangle 5$$
 (which holds)
 $i_{\nu_{\text{I}}}\rangle 0 \stackrel{(5)}{\Rightarrow} \frac{\nu_{\text{I}} - 5}{2R} > 0 \Rightarrow v_{\text{I}} - 5 > 0 \Rightarrow v_{\text{I}} \rangle 5$ (which holds)
 $i_{\nu_{\text{I}}}\rangle 0 \stackrel{(6)}{\Rightarrow} \frac{\nu_{\text{I}} - 5}{2R} > 0 \Rightarrow v_{\text{I}} - 5 > 0 \Rightarrow v_{\text{I}} \rangle 5$ (which holds)

The characteristic, then, is
$$v_{o} = \begin{cases} \frac{1}{2}v_{I} & \text{if } v_{I} < 0 \\ v_{I} & \text{if } o < v_{I} < 5 \\ \frac{1}{2}v_{I} + 2.5 & \text{if } v_{I} > 5 \end{cases}$$

The plot consists of 3 lines; as depicted on Fig. Zb.

Mark breakdown

- Each region with the corresponding 3x5)
 expression for 10 worth (5) marks
- Each line on the plot of Fig. 26 worth (5) marks.

Q3: For the clamping circuit of **Fig. 3a**, assume that the diode exhibits a constant forward voltage drop of 0.7 V, the capacitor has no initial charge, and the input signal v_I is zero until the instant $t = t_0$. Thereafter, v_I is given the voltage waveform shown by the topmost graph of **Fig. 3b**. Plot the waveforms of the voltages v_O and v_C , on **Fig. 3b**.

Fig. 3a: Clamping circuit of Q3.

Fig. 3b: Voltage waveforms of the clamping circuit of Fig. 3a.

Explanation of the waveforms

Enitially, the input, the capacitor voltage, and the output are all zero. At t=to, the input jumps down by 5 (to -4), and, since the capacitor's voltage tends to remain at its initial value, the output also jumps down. Once this happens, the diode turns on and clamps the output voltage to -2 (-13-07). Inverfore, the capacitor voltage jumps to y-y=-z-(-4) or +2. Thereafter, the capacitor voltage remains constant at 2 (since it neither charges nor gets discharged, and the output voltage will always be 2 more than the input voltage. That is why from t=to onwards, y is shifted-up version of UI, by 2.

- Q4: In the bridge rectifier of **Fig. 4**, the source voltage v_I is a 60-Hz, 24-Vrms sinusoid. Determine the *reading of a DC voltmeter* of the output voltage v_O , under each of the following conditions:
 - (4a) Only the load R_L is connected (the smoothing capacitor C has been removed);
 - **(4b)** Only C is connected (R_L has been removed);
 - **(4c)** $R_L = 1.0 \ k\Omega \text{ and } C = 100 \ \mu F;$
 - (4d) $R_L = 1.0 \ k\Omega$ and $C = \infty$;
 - (4e) Same as (4a) but with D_3 and D_4 removed; and
 - (4f) Same as (4b) but with D_3 and D_4 removed.

Assume that the diodes are ideal and the meter does not draw any current. Support your answers by calculations and/or explanations. Summarize your results in **Table 4**.

Table 4: results of the circuit of O4.

Answer of (4a)	Answer of (4b)	Answer of (4c)	Answer of (4d)	Answer of (4e)	Answer of (4f)
21.6	33.9	32.5	33.9	10.8	33.9

Fig. 4: Bridge rectifier of Q4.

Each item worth (5) marks if supported by the analysies of the next page. 6x(5)=80 marks total

4a) C: out R: in

Blank Page

The circuit is a full-wave rectifier with pure resistive load:

Vm = 24 x \(\sigma = 33.9\) (peak value of U_r)

A DC voltmeter shows the average voltage:

$$\frac{1}{100} = \frac{2V_{\text{m}}}{11} = \frac{2x33.9}{11} = \frac{21.6V}{1}$$

Ab) C:in PL:out

The circuit turns into a peak detector; that is, the capacitor gets charged to the peak wo Hage Vm:

$$v_0 = V_m = 33.9^{V}$$

4c) C=100MF, R_=1.0KR

Use equation (4.33) to calculate Vr:

$$V_r = \frac{V_m}{2fcR} = \frac{33.9}{2x60 \times 100 \times 10^{\frac{5}{2}} \times 1000} = 2.83^{V}$$

$$V_0 = V_m - \frac{1}{2}V_r = 33.9 - \frac{1}{2} \times 2.83 = 32.5^{V}$$

4d) C=00, R1=1.0 KR

Based on Eq. (4.33), if c=00, then V_=0 (no ripple). Hence,

$$v_0 = v_m = 33.9^{V}$$

4e) Cout, Prin, D3&D4: out

This turns the rectifier to a half-bridge rectifier

$$\sqrt[3]{0} = \frac{Vm}{T} = \frac{33.9}{T} = 10.8^{V}$$

45) C:in, RL:out, D3 & D4:out

The circuit becomes a half-wave peak detector, still capturing the peak

$$N_0 = V_m = 33.9^{V}$$