Electronica digital 2 caso de estudio SoC RISC-V

Ferney Alberto Beltrán Molina

Agosto 2020

Contacto

Nombre: Email:

Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

oficina:

fabeltranm@unal.edu.co

Contenido

Excepciones e Interrupciones

Introducción

Introducción

- lenguaje de programación de alto Nivel (C, C++, Java, etc.)
 - Sentencias
 - Variables
 - Operaciones
 - Funciones, procedimientos
- lenguaje Ensamblador
 - Instrucciones
 - Registro
 - Memorias
 - Funciones, procedimientos

Compilación Cruzada

▶ correr en un procesador pero ejecutar en otro

Compilación Cruzada

Procesos GCC

Proceso GCC

- gcc -o: Escriba la salida de compilación en un archivo de salida
- gcc -c: Compila archivos fuente sin vinculación.
- ▶ gcc -S: Crear código de ensamblador (*.S).
- gcc -wall: Habilita todos los mensajes de advertencia del compilador
- objdump: Muestra información de los archivos de objetos -d
 *.o

Proceso de optimización gcc -O

	' '				
opción	nivel de optimización	Tiempo de ejecución	tamaño del código	uso de memoria	tiempo de compilación
- O0	optimización para el tiempo de compilación (predeterminado)	+	+	-	-
-O1 u -O	optimización para el tamaño del código y el tiempo de ejecución	-	-	+	+
-02	optimización más para el tamaño del código y el tiempo de ejecución	-		+	++
-O3	optimización más para el tamaño del código y el tiempo de ejecución			+	+++
-Os	optimización para el tamaño del código		-		++
-Ofast	O3 con cálculos matemáticos rápidos y no precisos			+	+++

⁺ aumentar ++ aumentar más +++ aumentar aún más -reducir --reducir más --- reducir aún más

Rendimiento

CPU Time = Número de ciclos de reloj de la CPU * Tc

Rendimiento

$$CPU \, Time = \frac{Instructions}{Program} \times \frac{Clock \, cycles}{Instruction} \times \frac{Seconds}{Clock \, cycle}$$

Proceso GCC

Process image in main memory

Object modules

Procesos GCC

Índice

Excepciones e Interrupciones

Concepto

Eventos que cambian el flujo normal de la instrucciones. (no son call, jump o branch)

Excepciones Evento no programado que interrumpe la ejecución del programa; algunos procesadores lo usan Se utiliza para detectar instrucciones indefinidas.

Interrupción

En principio es una excepción que proviene del exterior del procesador. (Algunas arquitecturas usan el término interrupción para todas las excepciones).

Las interrupciones se diseñan, principalmente, como una forma de mejorar la eficiencia del procesamiento

Múltiples interrupciones

- 1. Opción 1: deshabilitar interrupciones
- 2. Opción 2: interrupciones por prioridad

Múltiples interrupciones

- 1. Prioridad 1: Comunicaciones
- 2. Prioridad 2: Disco
- 3. Prioridad 3: Impresora

Atención de interrupciones

1. Vector de interrupciones: al tener interrupción se determina la dirección de programa a la que se transfiere el control. HW

 Interrupción no vectorizada: El software conoce el motivo de la interrupción por la dirección en la que se inicia. Cuando la interrupción no está vectorizada, se puede usar un único punto de entrada para todas las interrupción

Manejo interrupciones

Manejo interrupciones

Interrupciones

Rutina de atención a la interrupción

		addi sw	sp, sp, -128 (sp+4), r1		
sw calli rcsr calli mvhi ori wcsr bi	(sp+0), ra _save_all r1, IP irq_handler r1, 0xffff r1, r1, 0xffff IP, r1 _restore_all_and_ere	sw #endif sw sw lw sw etmv addi sw	(sp+108), r27 (sp+120), ea (sp+124), ba r1, (sp+128) (sp+116), r1 r1, sp r1, r1, 128 (sp+112), r1	lw lw lw lw lw lw eret	r1, (sp+4) r27, (sp+108) ra, (sp+116) ea, (sp+120) ba, (sp+124) sp, (sp+112)
		ret			

PREGUNTAS