FACULTAD DE CIENCIAS - UNAM

2 Tarea-Examen

Oscar Andrés Rosas Hernandez

Abril 2018

ÍNDICE

$\mathbf{\acute{I}ndice}$

1.	1 Problema	2
	1.1. Teoremas que Ocupar	3
	1.2. Problema en si	4
2.	2 Problema	6

1. 1 Problema

1.1. Teoremas que Ocupar

• Sea B una base de V entonces $R[\mathcal{T}] = \langle \mathcal{T}[B] \rangle$

Demostración:

A fin de cuentas es la igualdad entre 2 conjuntos, así que vamos por doble contención para hacerlo. Sea $B = \{ \vec{v}_1, \dots, \vec{v}_n \}$, entonces:

• Por un lado, sea $\vec{u} \in R[\mathcal{T}]$ entonces tenemos que existe un $\vec{x} \in \mathbb{V}$ que al $\mathcal{T}(\vec{x}) = \vec{u}$ donde tenemos que $\vec{x} = \sum_{i=1}^{n} a_i \vec{v}_i$, entonces:

$$\mathcal{T}(\vec{x}) = \mathcal{T}\left(\sum_{i=1}^{n} a_i \vec{v}_i\right) = \sum_{i=1}^{n} \mathcal{T}(a_i \vec{v}_i) = \sum_{i=1}^{n} a_i \mathcal{T}(\vec{v}_i)$$

Y nota que $\sum_{i=1}^{n} a_i \mathcal{T}(\vec{v}_i) \in \langle \mathcal{T}[B] \rangle$

• La otra contención es es basicamente lo mismo

■ Teorema de la Dimensión

Sea \mathbb{V} y \mathbb{W} espacios vectoriales sobre el mismo campo, sea $\mathcal{T}: \mathbb{V} \to \mathbb{W}$ una transformación lineal y las dimensiónes de ambos espacios finitos, entonces tenemos que: $dim(\mathbb{V}) = dim(K[\mathcal{T}]) + dim(R[\mathcal{T}])$

Demostración:

Fijemos la dimensión de \mathbb{V} a ser n, un natural. Ahora, por el mero hecho de que $K[\mathcal{T}]$ es un subespacio de \mathbb{V} tenemos que $dim(K[\mathcal{T}]) \leq dim(\mathbb{V})$.

Ahora, sea $\{\vec{v}_1, \dots, \vec{v}_k\}$ una base de $K[\mathcal{T}]$, ahora, como es un conjunto linealmente independiente de \mathbb{V} podemos extenderlo hasta que sea base del mismo \mathbb{V} .

Es decir, sea
$$B = \{ \vec{v}_1, ..., \vec{v}_k, \vec{v}_{k+1}, ..., \vec{v}_n \}.$$

Ahora veamos que pasa al aplicarle la transformación lineal a ese conjunto, es decir \mathcal{T} . Ahora, ya habiamos demostrado el generado de la transformación lineal de una base es $R[\mathcal{T}]$. Ahora, yo te digo, que $S = \{ \mathcal{T}(\vec{v}_{k+1}), \dots, \mathcal{T}(\vec{v}_n) \}$ es base de $R[\mathcal{T}]$.

Y te lo voy a demostrar:

• Por un lado S genera a $R[\mathcal{T}]$ porque sabemos que $\langle \mathcal{T}[B] \rangle$. Pero, $\langle \mathcal{T}[B] \rangle = \langle \vec{0}, \mathcal{T}(\vec{v}_{k+1}), \dots, \mathcal{T}(\vec{v}_n) \rangle$

Pero espera, todos los primeros k elementos de B por definición son mapeados al cero, pero $R[\mathcal{T}]$ es ya un espacio por lo cual ya tienen al cero, y no aporta nada.

• S es linealmente independiente:

Demostración:

$$\sum_{k+1}^{n} b_i \, \mathcal{T}(\vec{v}_i) = \vec{0} \, \mathcal{T}\left(\sum_{k+1}^{n} b_i \vec{v}_i\right) = \vec{0}$$

Pero B es un base, por lo tanto es linealmente independiente, por lo tanto tenemos que $\sum_{k=1}^{n} b_i \vec{v_i} = \vec{0}$ implica que todas las $b_i = 0$.

Además recuerda que $\{\vec{v}_1, \dots, \vec{v}_k\}$ es base del Kernel es decir a todos los elementos que $\mathcal{T}(\vec{x}) = \vec{0}$, por lo tanto (y ya que B es base, es decir tiene que ser linealmente independiente) por obliga a que todas las b_i sean ceros, es decir, si que era linealmente independiente

Ahora, ya vimos que $dim(\mathbb{V}) = n$, $dim(K[\mathcal{T}]) = k$ y $dim(R[\mathcal{T}]) = n - k$

1 1 PROBLEMA 1.2 PROBLEMA EN SI

1.2. Problema en si

■ Encontrar una base para el rango y el kernel de: $T: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ dada por T(f(x)) := xf(x) + f'(x)

Demostración:

Primero, antes que nada vamos a demostrar que T es una transformación lineal para eso tomemos arbitrariamente $f(x), g(x) \in \mathbb{P}_2(\mathbb{R})$ y $c \in \mathbb{R}$, entonces tenemos que:

$$T(cf(x) + g(x)) = x(cf(x) + g(x)) + (cf(x) + g(x))'$$

$$= xcf(x) + xg(x) + (cf(x))' + g'(x)$$

$$= xcf(x) + xg(x) + cf'(x) + g'(x)$$

$$= xcf(x) + xg(x) + cf'(x) + g'(x)$$

$$= xcf(x) + cf'(x) + xg(x) + g'(x)$$

$$= c(xf(x) + f'(x)) + xg(x) + g'(x)$$

$$= c(T(f(x))) + T(g(x))$$

Ok, ahora veamos que la pasa a una base al transformarla:

$$T[(1,x,x^2)] = \{ T(1), T(x), T(x^2) \}$$

= \{ (x), (x^2 + 1), (x^3 + 2x) \}

Creo que es más que obvio que son independientes linealmente (sobretodo por el grado del polinomio) y más aún hemos demostrado que el generado del conjunto de las transformados de una base de $\mathbb V$ nos da el Rango de la transformación, por lo tanto cumple todas las características de una base.

Ahora, por el otro lado, y por el teorema de la dimensión tenemos que el Kernel solo contiene al polinomio cero por lo tanto tenemos que:

- Una base para R[T] es $\{x, x^2+1, x^3+2x\}$ otra por ejemplo puede ser $\{x, x^2+1, x^3\}$
- Una base para K[T] es \emptyset es decir el Kernel es $\{0\}$
- Encontrar una base para el rango y el kernel de: $T: M_{n\times n}(\mathbb{R}) \to \mathbb{R}$ dada por T(A) := tr(A)

Demostración:

Primero, antes que nada vamos a demostrar que T es una transformación lineal para eso tomemos arbitrariamente A, B y $c \in \mathbb{R}$, entonces tenemos que:

$$\begin{split} T(cA+B) &= tr(cA+B) \\ &= \sum_{i=0}^{n} (c[A]_{i,i} + Bi, i) \\ &= \sum_{i=0}^{n} (c[A]_{i,i}) + \sum_{i=0}^{n} ([B]_{i,i}) \\ &= c \sum_{i=0}^{n} ([A]_{i,i}) + \sum_{i=0}^{n} ([B]_{i,i}) \\ &= ctr(A) + tr(B) \end{split}$$

Algebra Lineal 1 4 Ve al Índice

1 1 PROBLEMA 1.2 PROBLEMA EN SI

Ok entonces, ya sabemos que es una transformación lineal ahora, claro que podemos llegar a cualquier elemento del campo, es decir $T(E_{1,1}) = 1$, por lo tanto $T(kE_{1,1}) = k$ entonces la base del Rango es claramente 1.

Ahora, el Kernel, el Kernel es otra historia, para empezar podemos pensar en todas las matrices que tienen cero a lo largo de la diagonal es decir $\{E_{i,j} \mid i \neq j\}$.

Ahora hay que pensar en las que suman cero, su base claramente son: { $E_{i,i}+E_{n,n} \mid i \in [1,2,\ldots,n-1]$ }

Por lo tanto tenemos que:

- Una base para R[T] es $\{1\}$
- Una base para K[T] es $\{ E_{i,j} \mid i \neq j \} \cup \{ E_{i,i} + E_{n,n} \mid i \in [1,2,\ldots,n-1] \}$

Oscar Andrés Rosas 5 Ve al Índice

2. 2 Problema

Sea \mathbb{V} , \mathbb{W} espacios vectoriales con subespacios \mathbb{V}_1 , \mathbb{W}_1 , respectivamente.

Si $T: \mathbb{V} \to \mathbb{W}$ es lineal, entonces:

$$T[\mathbb{V}_1] \leq_{\mathbb{F}} \mathbb{W}$$
 y $\{ x \in \mathbb{V} \mid T(x) \in \mathbb{W}_1 \} \leq_{\mathbb{F}} \mathbb{V}$

Demostración:

Primero vamos a ver que $T[\mathbb{V}_1] \leq_{\mathbb{F}} \mathbb{W}$ esto se hace en 2 pasos:

- Nota que \mathbb{V}_1 es un subespacio entonces ya tiene al cero vector simplemente por ser un subespacio, ahora como T es una transformación lineal, ya sabemos que $T(\vec{0}) = \vec{0}$, por lo tanto este también esta en $T[\mathbb{V}_1]$, por lo tanto $\vec{0} \in T[\mathbb{V}_1]$
- Vamos tomemos $c \in \mathbb{F}$ y $\vec{y}_1, \vec{y}_2 \in T[\mathbb{V}_1]$ entonces tenemos $\vec{x}_1, \vec{x}_2 \in \mathbb{V}_1$ tal que $T(\vec{x}_1) = \vec{y}_1$ y $T(\vec{x}_2) = \vec{y}_2$.

Entonces tenemos que $T(x_1 + x_2) = y_1 + y_2$ y $T(cx_1) = cy_1$, por lo tanto $y_1 + y_2$, $cy_1 \in T[\mathbb{V}_1]$

Ahora vamos a probar que $\{x \in \mathbb{V} \mid T(x) \in \mathbb{W}_1 \} \leq_{\mathbb{F}} \mathbb{V}$.

- Nota que \mathbb{W}_1 es un subespacio entonces ya tiene al cero vector simplemente por ser un subespacio, ahora como T es una transformación lineal, ya sabemos que $T(\vec{0}) = \vec{0}$, por lo tanto este también esta en $\{x \in \mathbb{V} \mid T(x) \in \mathbb{W}_1\}$, por lo tanto $\vec{0} \in \{x \in \mathbb{V} \mid T(x) \in \mathbb{W}_1\}$
- Vamos tomemos $c \in \mathbb{F}$ y $\vec{y_1}, \vec{y_2} \in \{x \in \mathbb{V} \mid T(x) \in \mathbb{W}_1\}$ entonces tenemos $\vec{x_1}, \vec{x_2} \in \mathbb{W}_1$ tal que $T(\vec{y_1}) = \vec{x_1}$ y $T(\vec{y_2}) = \vec{x_2}$.

Entonces tenemos que $T(y_1+y_2)=x_1+x_2$ y $T(cy_1)=cx_1$, por lo tanto $y_1+y_2, cy_1\in\{x\in\mathbb{V}\mid T(x)\in\mathbb{W}_1\}$

Algebra Lineal 1 6 Ve al Índice