

Aula Prática 4

Comunicações Série em PLC

Jorge Almeida, José Paulo Santos

Comunicação RS232 PLC - PC usando o sotware Termite

1. Descrição do trabalho

Usando o programa WinProladder, deve criar um programa PLC para enviar e receber mensagens de e para o PC. A ideia é fazer um código para o envio e receção de mensagens com o protocolo definido no documento de apoio para o problema de controlo de um reservatório. O presente trabalho prático tem por objectivo consolidar os conhecimentos sobre comunicações série RS232, e relembrar os conceitos gerais de programação Ladder, pretende-se criar um programa autómato em linguagem *Ladder* (em anexo), para configurar a carta RS232 dos autómatos, enviar e receber dados. O PLC utilizado será o Fatek FBs-20MC (figura em baixo).

2. Instalação dos drivers dos conversores USB-RS232

As portas série RS232 já raramente equipam os computadores atuais. Estas foram substituidas por portas USB. Assim, é necessário transformar uma porta USB do computador numa porta série. Para isso utilizam-se os chamados conversores USB-RS232. Cada conversor tem um driver específico. Assim, o mais adequado será instalar os seguintes drivers windows para os três diferentes conversores:

ATEN USB-RS232 Serial Converter http://www.aten.com/global/en/products/releasenote//?action=release_note&type=driver&eid=487 Prolific PL2303 http://www.prolific.com.tw/UserFiles/files/PL2303_DriverInstal ler_1181_20170504.zip CH340 https://sparks.gogo.co.nz/assets/_site_/downloads/CH34x_Install_Windows_v3_4.zip

Para verificar se os drivers estão a funcionar corretamente devem-se verificar as portas que estão a ser utilizadas usando o "device manager". Se, depois de ligar um equipamento, na secção das portas COM aparecer um símbolo amarelo quer dizer que não existe um driver para o equipamento que está ligado.

3. Software de programação de autómatos WinProLadder

O WinProladded é um programa que permite escrever programas em PLCs Fatek. Se não tiver o WinProladder instalado no computador, poderá obtê-lo em:

http://www.fatek.com/en/download.php?f=data/ftp/PLC/WinProladder/software/WProlad325-19327-ENU.zip

O manual de utilização do WinProladder, está disponível em:

http://www.fatek.com/en/download.php?f=data/ftp/PLC/WinProladder/manual/Winproladder_en.zip

Um exemplo do software é mostrado na imagem em baixo:

O PLC tem duas portas série. Uma é utilizada pelo WinProLadder para comunicar, fazer debug ,etc. Esta é a PORT4 (2 na figura em baixo). A outra porta, a PORT3 (3 na figura em baixo), pode ser utilizada pelo programa criado pelos alunos para establecer a comunicação entre PLC e PC (o termite ou o programa em Visual Basic em trabalhos futuros).

Depois deve-se dizer ao WinProLadder quais são estas portas, quando se escolhe a opção para estar "online" com o PLC.

4. Software de comunicação série Termite

O Termite https://www.compuphase.com/software_termite.htm é um software que permite a comunicação do computador com outros equipamentos por porta série. Para instalar, fazer download aqui https://www.compuphase.com/software/termite-3.3.exe. Na imagem em baixo por ver-se o software. Para utilizar o programa é preciso configurá-lo primeiro, indicando os parâmetros de comunicação adequados. Para fazer isso clicar em settings e depois escolher os parâmetros corretos.

5. Configuração de comunicações RS232 no PLC

Para fazer a configuração do PLC é necessário consultar vários manuais da Fatek. As imagens aqui mostradas são extraídas desses manuais por isso recomenda-se a sua leitura.

- Ethernet Module User's Manual, informações gerais sobre a carta de expansão.
 http://www.fatek.com/en/data%2Fftp%2FPLC%2FEthernetModule%2Ffbs-ether-enu.pdf
- Advanced Function Chapter 12: The Communication Function of FBs-PLC, para configurar os parâmetros de comunicação RS232:
 http://www.fatek.com/en/data%2Fftp%2FPLC%2FFBs Manual%2FManual 2%2FChapter 12.pdf
- Advanced Function Chapter 13: The Applications of FBs-PLC Communication Link, para ver que registos é necessário configurar: http://www.fatek.com/en/data%2Fftp%2FPLC%2FFBs Manual%2FManual 2%2FChapter 13.pdf

O programa irá utilizar a PORT3. Vendo a seguinte tabela vê-se que é necessário configurar o registo **R4043**.

	Port 1	Port 2	Port 3	Port 4
Port Busy Indicator	M1960	M1962	M1936	M1938
Port Finished Indicator	M1961	M1963	M1937	M1939
Port Communication Parameters	R4146	R4158	R4043	R4044
TX Delay & RX Time-out Span	R4147	R4159	R4045	R4048

O registo R4043 deve ser configurado como indicado nas tabelas em baixo. Assim, para configurar os parâmetros: 9600 bps, 8, 1 Stop Bit, Parity None, o **valor decimal a inserir no registo R4043 é 22081**.

Setup of port0~port4 communication parameters

6. Memória do PLC e mensagems enviadas

O programa PLC usado neste trabalho, usa as memória internas do PLC, D100 (D100 será o start register SR na figura) a D118 para criar a mensagem que será enviada para o computador. O primeiro valor a ser enviado para o computador é o conteúdo de D103. Compete à função CLINK enviar o conteúdo das memórias D103 até D118, para o computador, através da PORT3 do PLC. Assim, o programa PLC actualiza as memórias D108 a D114 com o valor de Y0,Y1,Y2,X0,X1,X2,X3.

SR: Starting register of data transmission table Low byte is valid. Transmit only or SR+0 0: transmit only, no response from the slave Transmit then Receive 1: transmit then receive the responding message. Starting & Ending code · High byte : Start of text for receiving SR+1 Low byte: End of text for receiving for receiving SR+2 Length of Transmission . The maximum length of data to be transmitted is 511 SR+3 Data 1 . Low byte is valid SR+4 Data 2 · Low byte is valid SR+5 Data 3 · Low byte is valid SR+6 Data 4 · Low byte is valid Data N · Low byte is valid

7. Memória do PLC e mensagems recebidas

As mensagens enviadas pelo computador para o PLC são guardadas nas memórias D209 a D220 do PLC (D200 será o primeiro registo que é dado à função CLINK, WR na figura). O primeiro valor enviado pelo computador é guardado na memória D209. Compete à função CLINK guardar nas memórias D209 a D220 a mensagem que o computador enviar para a PORT3 do PLC. O programa PLC está permanentemente a ler as memórias D215 a D217 e a actualizar as saídas digitais Y0,Y1,Y2 do PLC em conformidade. Em baixo o exemplo do estado destas variáveis na memória do PLC. Em baixo a tabela

Informática Industrial

7

8. Programa PLC

Printed Item: Ladder Diagram - MessagesOut

Printed Item: Ladder Diagram - MessageIn

Printed Item: Ladder Diagram - AnalogInput

Printed Item: Status Page - [CommunicationsIn&Out]

No.	Status	Data	
D103	String	' s'	
D104	String	1.1	
D105	String	_ ' T'	
D106	String	' o'	
D107	String	' P'	
D108	String	' C'	
D109	String	' 0'	
D110	String	' 0'	
D111	String	' 0'	
D111	String	' 0'	
D112	String	' 0'	
D113	_	' 0'	
D114 D209	String	's'	
	String	S	
D210	String	_	
D211	String	' T'	
D212	String	' o'	
D213	String	' P'	
D214	String	, F.	
D215	String	' C'	
D216	String	' 1'	
D217	String	' 0'	
D218	String	' 0'	
D219	String	'_'	
D220	String	' e'	

Trabalho prático 4

Comunicações Série em PLC

O código do PLC dado no exemplo da aula assume que as mensagens do PLC para o PC têm o formato:

s_ToPC[Y0][Y1][Y2][X0][X1][X2][X3][Nível]_e

e que as mensagens do PC para o PLC têm o formato:

s_ToPLC[Y0][Y1][Y2]_e

no entanto, este formato não é o utilizado este ano.

Assim, pretende-se alterar o programa PLC desenvolvido na aula para que este respeite o protocolo definido no documento de descrição do controlo do reservatório. Ver descrição do problema no elearning.

O formato das mensagens tem algumas alterações em relação ao formato assumido no código disponibilizado, pelo que e código deve ser analisado para ver se está de acordo com o especificado, e deve ser alterado onde for necessário.