Introduction to CMOS VLSI Design

Chapter 3: CMOS Processing Technology

This work is protected by Canadian copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the Internet) will destroy the integrity of the work and is not permitted. The copyright holder grants permission to instructors who have adopted the textbook accompanying this work to post this material online only if the use of the website is restricted by access codes to students in the instructor's class that is using the textbook and provided the reproduced material bears this copyright notice.

slides from David Harris

adapted by Duncan Elliott

Textbook: CMOS VLSI Design - A Circuits and Design Perspective, 4th Edition, N. H. E. Weste & D. Harris

https://www.youtube.com/watch?v=1Lad28K3Xi0
https://www.youtube.com/watch?v=AcDn4bvW5IU
https://www.youtube.com/watch?v=M-wNC3Z3ZX4
https://www.youtube.com/watch?v=fwNkg1fsqBY

CMOS Fabrication Process (Animation)

SK hynix Wafer Fabrication

Making Memory Chips – Process Steps

VLSI Fabrication Process

Photomasking with a negative resist (lens system between mask and wafer omitted to improve clarity and avoid diffracting the reader ©)
Photomasking với điện trở âm (bỏ qua hệ thống thấu kính giữa mặt nạ và tấm wafer để cải thiện độ rõ nét và tránh làm nhiễu xạ người đọc

Ch 3 IC Process

CMOS VLSI Design

Slide 3

Optical Proximity Correction (OPC) Masks

Slide 4 trang 103

Well structure in triple-well process

Shallow trench isolation

Gate oxide formation

Gate and shallow source/drain definition

Hot Carriers

Điện trường qua kênh truyền năng lượng cao cho một số hạt tải

- Electric fields across channel impart high energies to some carriers
 - These "hot" carriers may be blasted into the gate oxide where they become trapped bị mắc kẹt
 - Accumulation of charge in oxide causes shift in V_t over time
 - Eventually V_t shifts too far for devices to operate correctly
- Choose V_{DD} to achieve reasonable product lifetime
 - Worst problems for inverters and NORs with slow input risetime and long propagation delays
 - Use lightly doped drains (LLD) to reduce hot carrier injection (HCI)

Lightly Doped Drain (LDD) structure

Aluminum metallization

kim loại hóa nhôm

Ch 3 IC Process

CMOS VLSI Design

Local Interconnect

Local interconnect between n and p diffusion

n-diffusion

Typical metallization cross-section

11 layers of metal [IBM]

Ch 3 IC Process

CMOS VLSI Design

FIGURE 3.22 Micrograph showing air gap insulation between copper wires (Courtesy of International Business Machines Corporation. Unauthorized use not permitted.)

Copper dual damascene interconnect processing steps

FIGURE 3.37 Slots in wide metal power bus

A typical metal fuse

Ch 3 IC Process

CMOS VLSI Design

Flash memory construction and operation

Cross-section

Representative Layout

Typical pnp circuit structure as used in voltage reference

Parasitic pnp bipolar transistor

SiGe bipolar transistor structure

SOI types

Silicon on Insulator

Top View

fin: vây

Finfet structure

(c)

FIGURE 3.34 Trigate transistor (Reprinted with permission of Intel Corporation.)

IBM strained silicon transistor.
Courtesy of International Business
Machines Corporation.
Unauthorized use not permitted.

FIGURE 3.19 Strained silicon transistor micrographs: (a) nMOS, (b) pMOS (© IEEE 2005.)

Source Drain
// Gațe //
Substrate (glass/plastic)
Semiconductor (Pentacene) Gold Terminals Insulator (Polymer Si/Nx)
Plastic transistors

Carbon nanotube transistor

MIM and fringe capacitors

Ch 3 IC Process

CMOS VLSI Design

Typical spiral inductor and equivalent circuit [Rotella02]

Ch 3 IC Process

CMOS VLSI Design

Microstrip and coplanar waveguide

FIG 4.67 Gate and wire delay scaling. Reprinted from [SIA97] with permission of the Semiconductor Industry Association.

FIG 4.70 Dynamic and static power trends. © IEEE 2003.

Ch7 Robustness & Reliability

Reliability

- □ Hard Errors
- Soft Errors

Electromigration

- "Electron wind" causes movement of metal atoms along wires
- Excessive electromigration leads to open circuits
- Most significant for unidirectional (DC) current
 - Depends on current density J_{dc} (current / area)
 - Exponential dependence on temperature
 - Mean Time to Failure (MTTF)
 - Typical limits: J_{dc} < 1 2 mA / μ m²

Self-Heating

- ☐ Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive, slower
- ☐ Self-heating limits AC current densities for reliability
 - Typical limits: J_{rms} < 15 mA / μ m²

Latchup

- □ Latchup: positive feedback leading to V_{DD} GND short
 - Major problem for 1970's CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps

Guard Rings

- □ Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased
- ☐ Surround sensitive region with guard ring to collect injected charge

Overvoltage

- ☐ High voltages can damage transistors
 - Electrostatic discharge
 - Oxide arcing
 - Punchthrough
 - Time-dependent dielectric breakdown (TDDB)
 - Accumulated wear from tunneling currents
- ☐ Requires low V_{DD} for thin oxides and short channels
- □ Use ESD protection structures where chip meets real world

Soft Errors

- ☐ In 1970's, DRAMs were observed to occasionally flip bits for no apparent reason
 - Ultimately linked to alpha particles and cosmic rays
- Collisions with particles create electron-hole pairs in substrate
 - These carriers are collected on dynamic nodes, disturbing the voltage
- Minimize soft errors by having plenty of charge on dynamic nodes
- ☐ Tolerate errors through ECC, redundancy

Pitfalls Summary

- ☐ Static CMOS gates are very robust
 - Will settle to correct value if you wait long enough
- Other circuits suffer from a variety of pitfalls
 - Tradeoff between performance & robustness
- ☐ Very important to check circuits for pitfalls
 - For large chips, you need an automatic checker.
 - Design rules aren't worth the paper they are printed on unless you back them up with a tool.