Machine and Deep learning for Graphs - an introduction

M. Vazirgiannis

Data Science and Mining Team (DASCIM), LIX
École Polytechnique http://www.lix.polytechnique.fr/dascim
Google Scholar: https://bit.ly/2rwmvQU
Twitter: @mvazira

November, 2024

Outline

Intro to graphs - ML for graphs tasks

2 Graph Kernels

Object to the second of the

Graphs Are Everywhere

Why graphs?

Let G = (V, E) be a simple unweighted, undirected graph where V is the set of vertices and E the set of edges

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1,2), (1,3)(1,4), (2,4), (3,5)\}$$

The neighbourhood $\mathcal{N}(v)$ of vertex v is the set of all vertices adjacent to v, $\mathcal{N}(v) = \{u : (v, u) \in E\}$ where (v, u) is an edge between v and u

$$\mathcal{N}(1) = \{2, 3, 4\}$$

$$\mathcal{N}(5) = \{3\}$$

A walk in a graph G is a sequence of vertices $v_1, v_2, \ldots, v_{k+1}$ where $v_i \in V$ and $(v_i, v_{i+1}) \in E$ for $1 \le i \le k$

Walk: $1 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 3$

A walk in which $v_i \neq v_j \Leftrightarrow i \neq j$ is called a path

Path: $4 \rightarrow 1 \rightarrow 3 \rightarrow 5$

A cycle is a path with $(v_{k+1}, v_1) \in E$

Cycle: 1 ightarrow 2 ightarrow 4

A subtree is an acyclic subgraph in which there is a path between any two vertices

A labeled graph is a graph with labels on vertices. Given a set of labels \mathcal{L} , $\ell:V\to\mathcal{L}$ is a function that assigns labels to the vertices of the graph

$$\mathcal{L} = \{\alpha, \beta, \gamma\}$$

$$\ell(1) = \alpha \quad \ell(4) = \gamma$$

An attributed graph is a graph with attributes on vertices. Each vertex $v \in V$ is annotated with a feature vector h_v

$$h_1,\ldots,h_5\in\mathbb{R}^3$$

$$h_1 = [0.2, 1.4, 0.8]^{\top}$$
 $h_3 = [-0.4, 0.3, -0.1]^{\top}$

Machine Learning on Graphs

Machine learning tasks on graphs:

- Node classification: given a graph with labels on some nodes, provide a high quality labeling for the rest of the nodes
- Graph clustering: given a graph, group its vertices into clusters taking into account its edge structure in such a way that there are many edges within each cluster and relatively few between the clusters
- Link Prediction: given a pair of vertices, predict if they should be linked with an edge
- Graph classification: given a set of graphs with known class labels for some of them, decide to which class the rest of the graphs belong

Graph Classification

- Input data $G \in \mathcal{X}$
- Output $y \in \{-1, 1\}$
- Training set $\mathcal{D} = \{(G_1, y_1), \dots, (G_n, y_n)\}$
- Goal: estimate a function $f: \mathcal{X} \to \mathbb{R}$ to predict y from f(x)

Graph Comparison

Definition (Graph Comparison Problem)

Given two graphs G_1 and G_2 from the space of graphs G, the problem of graph comparison is to find a mapping

$$s: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$$

such that $s(G_1, G_2)$ quantifies the similarity of G_1 and G_2 .

Graph comparison is a topic of high significance

- It is the central problem for all learning tasks on graphs such as clustering and classification
- Most machine learning algorithms make decisions based on the similarities or distances between pairs of instances (e.g. *k*-nn)

Not an Easy Problem

Although graph comparison seems a tractable problem, it is very complex

Many problems related to it are NP-complete

- subgraph isomorphism
- finding largest common subgraph

We are interested in algorithms capable of measuring the similarity between two graphs in **polynomial** time

Graphs to Vectors

- To analyze and extract knowledge from graphs, one needs to perform machine learning tasks
- Most machine learning algorithms require the input to be represented as a fixed-length feature vector
- There is no straightforward way to transform graphs to such a representation

What is a Kernel?

Definition (Kernel Function)

The function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if it is:

- symetric: k(x, y) = k(y, x)
- **2** positive semi-definite: $\forall x_1, x_2, \dots, x_n \in \mathcal{X}$, the Gram Matrix **K** defined by $\mathbf{K}_{ij} = k(x_i, x_j)$ is positive semi-definite
 - If a function satisfies the above two conditions on a set \mathcal{X} , it is known that there exists a map $\phi: \mathcal{X} \to \mathbb{H}$ into a Hilbert space \mathbb{H} , such that:

$$k(x, y) = \langle \phi(x), \phi(y) \rangle$$

for all $(x,y) \in \mathcal{X}^2$ where $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{H}

- Informally, k(x, y) is a measure of similarity between x and y

Outline

Intro to graphs - ML for graphs tasks

@ Graph Kernels

Oeep Learning for Graphs - Node Embeddings

Graph Classification

- Input data $x \in \mathcal{X}$
- Output $y \in \{-1, 1\}$
- Training set $S = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Goal: estimate a function $f: \mathcal{X} \to \mathbb{R}$ to predict y from f(x)

Graph Comparison

Graph classification very related to graph comparison

Example

$$\begin{array}{ccc}
f(\circlearrowleft, \circlearrowleft) \\
+ & = & \text{graph} \\
k-nn & \text{classification}
\end{array}$$

Although graph comparison seems a tractable problem, it is very **complex**

We are interested in algorithms capable of measuring the similarity between two graphs in **polynomial** time

Graph Kernels

Definition (Graph Kernel)

A graph kernel $k: \mathcal{G} \times \mathcal{G} \to \mathbb{R}$ is a kernel function over a set of graphs \mathcal{G}

- It is equivalent to an inner product of the embeddings $\phi: \mathcal{X} \to \mathbb{H}$ of a pair of graphs into a Hilbert space
- Makes the whole family of kernel methods applicable to graphs

Kernel Trick

- Many machine learning algorithms can be expressed only in terms of inner products between vectors
- Let $\phi(G_1)$, $\phi(G_2)$ be vector representations of graphs G_1 , G_2 in a very high (possibly infinite) dimensional feature space
- Computing the explicit mappings $\phi(G_1)$, $\phi(G_2)$ and their inner product $\langle \phi(x), \phi(y) \rangle$ for the pair of graphs can be computationally demanding
- The kernel trick avoids the explicit mapping by directly computing the inner product $\langle \phi(x), \phi(y) \rangle$ via the kernel function

Example

Let
$$\mathcal{X} = \mathbb{R}^2$$
 and $x = [x_1, x_2]^\top, y = [y_1, y_2]^\top \in \mathcal{X}$

For any $x = [x_1, x_2]^{\top}$ let ϕ be a map $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ defined as:

$$\phi(\mathbf{x}) = [\mathbf{x}_1^2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2, \mathbf{x}_2^2]^{\top}$$

Let also $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a kernel defined as $k(x,y) = \langle x,y \rangle^2$. Then

$$k(x,y) = \langle x, y \rangle^{2}$$

$$= (x_{1}y_{1} + x_{2}y_{2})^{2}$$

$$= x_{1}^{2}y_{1}^{2} + 2x_{1}y_{1}x_{2}y_{2} + x_{2}^{2}y_{2}^{2}$$

$$= \langle \phi(x), \phi(y) \rangle$$

Applications

- Bioinformatics [Borgwardt et al., Bioinformatics 21(suppl_1); Borgwardt et al., PSB'07; Sato et al., BMC bioinformatics 9(1)]
- Chemoinformatics [Swamidass et al., Bioinformatics 21(suppl_1); Ralaivola et al., Neural Networks 18(8); Mahé et al., JCIM 45(4); Ceroni et al., Bioinformatics 23(16); Mahé and Vert, Machine Learning 75(1)]
- Computer Vision [Harchaoui and Bach, CVPR'07; Bach, ICML'08; Wang and Sahbi. CVPR'13; Stumm et al., CVPR'16]
- Cybersecurity [Anderson et al., JCV 7(4); Gascon et al., AlSec'13; Narayanan et al., IJCNN'16]
- Natural Language Processing [Glavas and Snajder, ACL'13; Bleik et al., TCBB 10(5); Nikolentzos et al., EMNLP'17]
- Social Networks [Yanardag and Vishwanathan, KDD'15]

:

Protein Function Prediction

For each protein, create a graph that contains information about its

- structure
- sequence
- chemical properties

Perform **graph classification** to predict the function of proteins

Accuracy		
76.86		
80.17		
77.30		
72.33		
84.04		
75.07		

Chemical Compound Classification

Represent each chemical compound as a graph

$$\begin{array}{ccc}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Perform **graph classification** to predict if a chemical compound displays the desired behavior against the specific biomolecular target or not

Lin.Reg	DT	NN	Progol1	Progol2	Sebag	Kramer	graph kernels
89.3%	88.3%	89.4%	81.4%	87.8%	93.3%	95.7%	91.2%

[Mahé et al., JCIM 45(4)]

Malware Detection

Given a computer program, create its control flow graph

call	[ebp+0x8]
push	0x70
push	0x010012F8
call	0x01006170
push	0x010061C0
mov	eax, fs:[0x000000000]
push	eax
mov	fs:[], esp
mov	eax, $[esp+0x10]$
mov	[esp+0x10], ebp
lea	ebp, [esp+0x10]
sub	esp, eax

Perform **graph classification** to predict if there is malicious code inside the program or not

99.09
96.36
100.00
94.55
93.64
92.73
89.09
88.18

Graph-Of-Words

Each document is represented as a graph G = (V, E) consisting of a set V of vertices and a set E of edges between them

- vertices → unique terms
- edges → co-occurrences within a fixed-size sliding window
- no edge weight
- no edge direction

As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.

Graph representation more flexible than *n*-grams. Takes into account

- word inversion
- subset matching
- e.g., "article about news" vs. "news article"

Substructures-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks
- shortest paths
- cyclic patterns
- subtree patterns
- graphlets

:

These kernels are instance of the R-convolution framework

Graphlet Kernel

The graphlet kernel compares graphs by counting graphlets

A graphlet corresponds to a small subgraph

- typically of 3,4 or 5 vertices

Below is the set of graphlets of size 4:

Graphlet Kernel

Let $G = \{graphlet_1, graphlet_2, \dots, graphlet_r\}$ be the set of size-k graphlets

Let also $f_G \in \mathcal{N}^r$ be a vector such that its *i*-th entry is $f_{G,i} = \#(graphlet_i \sqsubseteq G)$

The graphlet kernel is defined as:

$$k(G_1,G_2)=\langle f_{G_1},f_{G_2}\rangle$$

Problems:

- There are $\binom{n}{k}$ size-k subgraphs in a graph
- Exaustive enumeration of graphlets is very expensive Requires $O(n^k)$ time
- For labeled graphs, the number of graphlets increases further

Example

The vector representations of the graphs above according to the set of graphlets of size 4 is:

$$f_{G_1} = [0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0]^{\top}$$

 $f_{G_2} = [0, 0, 0, 2, 1, 5, 0, 4, 0, 3, 0]^{\top}$

Hence, the value of the kernel is:

$$k(G_1, G_2) = \langle f_{G_1}, f_{G_2} \rangle = 11$$

Shortest Path Kernel

Compares the length of shortest-paths of two graphs

- and their endpoints in labeled graphs

Floyd-transformation

Transforms the original graphs into shortest-paths graphs

- Compute the shortest-paths between all pairs of vertices of the input graph *G* using some algorithm (i. e. Floyd-Warshall)
- \bullet Create a shortest-path graph S which contains the same set of nodes as the input graph G
- All nodes which are connected by a walk in G are linked with an edge in S
- Each edge in S is labeled by the shortest distance between its endpoints in G

Example

Floyd-transformation

Shortest Path Kernel

Given the Floyd-transformed graphs $S_1 = (V_1, E_1)$ and $S_2 = (V_2, E_2)$ of G_1 and G_2 , the shortest path kernel is defined as:

$$k(\textit{G}_{1},\textit{G}_{2}) = \sum_{\textit{e}_{1} \in \textit{E}_{1}} \sum_{\textit{e}_{2} \in \textit{E}_{2}} \textit{k}_{\textit{edge}}(\textit{e}_{1},\textit{e}_{2})$$

where k_{edge} is a kernel on edges

• For unlabeled graphs, it can be:

$$k_{edge}(e_1,e_2) = \delta(\ell(e_1),\ell(e_2)) = \left\{ egin{array}{ll} 1 & ext{if } \ell(e_1) = \ell(e_2), \\ 0 & ext{otherwise} \end{array}
ight.$$

where $\ell(e)$ gives the label of edge e

For labeled graphs, it can be:

$$k_{\textit{edge}}(\textit{e}_{1},\textit{e}_{2}) = \left\{ \begin{array}{ll} 1 & \text{if } \ell(\textit{e}_{1}) = \ell(\textit{e}_{2}) \wedge \ell(\textit{e}_{1}^{1}) = \ell(\textit{e}_{2}^{1}) \wedge \ell(\textit{e}_{1}^{2}) = \ell(\textit{e}_{2}^{2}), \\ 0 & \text{otherwise} \end{array} \right.$$

where e^1 , e^2 are the two endpoints of e^2

Example

Floyd-transformations

Example

In S_1 we have:

- 4 edges with label 1
- 4 edges with label 2
- 2 edges with label 3

In S_2 we have:

- 4 edges with label 1
- 2 edges with label 2

Hence, the value of the kernel is:

$$k(\textit{G}_{1},\textit{G}_{2}) = \sum_{\textit{e}_{1} \in \textit{E}_{1}} \sum_{\textit{e}_{2} \in \textit{E}_{2}} \textit{k}_{\textit{edge}}(\textit{e}_{1},\textit{e}_{2}) = 4 \cdot 4 + 4 \cdot 2 = 24$$

Shortest Path Kernel

Computing the shortest path kernel includes:

- Computing shortest paths for all pairs of vertices in the two graphs: $\mathcal{O}(n^3)$
- Comparing all pairs of shortest paths from the two graphs: $\mathcal{O}(n^4)$

Hence, runtime is $\mathcal{O}(n^4)$

Problems:

- Very high complexity for large graphs
- Shortest-path graphs may lead to memory problems on large graphs

They decompose graphs into sets of vertices, and compare them based on:

- their attributes
- their structural roles

Let R be a decomposition relation that specifies a decomposition of G into its parts \rightarrow therefore, $R^{-1}(G)$ is the multiset of all patterns in $G \hookrightarrow$ i.e., $R^{-1}(G)$ can be a set of k-hop neighborhood subgraphs for some k Then, the graph invariant kernel is computed as follows:

$$k(G, G') = \sum_{v \in V} \sum_{v' \in V'} w(v, v') k_{attr}(v, v')$$

where k_{attr} is a kernel between vertex attributes, and w(v, v') is a weight function defined as follows:

$$w(v, v') = \sum_{g \in R^{-1}(G)} \sum_{g' \in R^{-1}(G')} k_{inv}(v, v') \frac{\delta_m(g, g')}{|V_g||V_{g'}|} \mathbb{1}\{v \in V_g \land v' \in V_{g'}\}$$

where δ_m is a dirac function that determines whether two patterns match, $V_g, V_{g'}$ are the set of vertices of patterns g, g', and $\mathbb 1$ is an indicator function

[Orsini et al., IJCAl'15]

Example

Given the following two graphs:

$$\begin{array}{c|c} \begin{bmatrix} \frac{1}{2},0 \\ 0,\frac{1}{2} \end{bmatrix} & v_3 \\ \begin{bmatrix} 0,\frac{1}{2} \\ v_4 \end{bmatrix} & \begin{bmatrix} 0,0 \\ v_4 \end{bmatrix} & \begin{bmatrix} 1,1 \\ v_2 \end{bmatrix} & \begin{bmatrix} 0,0 \\ v_1 \end{bmatrix} \\ v_1 & v_2 \end{bmatrix} \\ G & G' \\ \end{array}$$

R is a relation that decomposes a graph into its 1-hop neighborhood subgraphs:

Example

The weight function $w(v_1, v_1')$ is computed as follows:

Example

The weight function $w(v_1, v'_1)$ is computed as follows:

then the contribution of the two nodes to the sum is:

$$w(v_1, v_1') k_{attr}(v_1, v_1') = \frac{13}{36} + \langle [1, 1]^\top, [\frac{1}{2}, 0]^\top \rangle = \frac{31}{36}$$

GraKel: A python library for graph kernels

- Python library for graph similarity computations
- Contains practically all known graph kernels
- Compatible with scikit learn
- Open source can be extended
- Project repository https://ysig.github.io/GraKeL/dev/

Large scale survey on kernels:

"Graph Kernels: a Survey", G. Nikolentzos, M. Vazirgiannis, https://arxiv.org/abs/1904.12218

Outline

Intro to graphs - ML for graphs tasks

@ Graph Kernels

Deep Learning for Graphs - Node Embeddings

Deep Learning for Graphs - Node Embeddings

Traditional Node Representation
Representation: row of adjacency matrix

Deep Learning for Graphs - Node Embeddings

Traditional Node Representation
Representation: row of adjacency matrix

Deep Learning for Graphs - Node Embeddings

Traditional Node Representation
Representation: row of adjacency matrix

However, such a representation suffers from:

- data sparsity
- high dimensionality

Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

- dimensionality $d \ll |V|$
- similar vertices are embedded close to each other in the low-dimensional space

Early Methods

- Focused mainly on matrix-factorization approaches (e.g., Laplacian eigenmaps)
- Laplacian eigenmaps projects two nodes i and j close to each other when the weight of the edge between the two nodes A_{ij} is high
- Embeddings are obtained by the following objective function:

$$y^* = \arg\min \sum_{i \neq j} (y_i - y_j)^2 A_{ij} = \arg\min y^T L y$$

where L is the graph Laplacian

 The solution is obtained by taking the eigenvectors corresponding to the d smallest eigenvalues of the normalized Laplacian matrix

[1] Belkin and Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In NIPS'02

Recent Methods

Most methods belong to the following groups:

- Random walk based methods: employ random walks to capture structural relationships between nodes
- Edge modeling methods: directly learn node embeddings using structural information from the graph
- Matrix factorization methods: generate a matrix that represents the relationships between vertices and use matrix factorization to obtain embeddings
- Deep learning methods: apply deep learning techniques to learn highly non-linear node representations

Proximities

First-order proximity: observed links in the network

Second-order proximity: shared neighborhood structures

- ullet Vertices 6 and 7 have a high first-order proximity since they are connected through a strong tie \to they should be placed closely in the embedding space
- Vertices 5 and 6 have a high second-order proximity since they share similar neighbors → they should also be placed closely

Proximities

k-order proximities for $k = 1, \dots, 4$

- Second-order and high-order proximities capture similarity between vertices with similar structural roles
- Higher-order proximities capture more global structure

DeepWalk

Inspired by recent advances in language modeling [1]

Simulates a series of short random walks

[1] Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. In NIPS'13

[2] Perozzi et al. DeepWalk: Online Learning of Social Representations. In KDD'14

DeepWalk

Inspired by recent advances in language modeling [1]

- (a) YouTube Social Graph
- (b) Wikipedia Article Text
- Simulates a series of short random walks
- Main Idea: Short random walks = Sentences
- [1] Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. In NIPS'13
- [2] Perozzi et al. DeepWalk: Online Learning of Social Representations. In KDD'14

Skipgram

Skipgram is a recently-proposed language model that:

- uses one word to predict the context
- context is composed of words appearing to both the right and left of the given word
- removes the ordering constraint on the problem (i. e. does not take into account the offset of context words from the given word)

In our setting:

- Slide a window of length 2w + 1 over the random walk
- Use the representation of central vertex to predict its neighbors

Skipgram

This yields the optimization problem:

$$argmin_f - \frac{1}{T} \sum_{i=1}^{T} \log P(\{v_{i-w}, \dots, v_{i+w}\} \setminus v_i | f(v_i))$$

 v_i : central vertex

 v_{i-w}, \ldots, v_{i+w} : neighbors of central vertex

f(v): embedding of vertex v

Skipgram approximates the above conditional probability using the following independence assumption:

$$minimize_f - rac{1}{T} \sum_{i=1}^T \sum_{\substack{j=i-w \ i
eq i}}^{i+w} \log P(v_j | f(v_i))$$

- We can learn such a posterior distribution using several choices of classifiers
- However, most of them (e.g., logistic regression) would produce a huge number of labels (i. e. |V| labels)
- Instead, we approximate the distribution using the Hierarchical Softmax

Hierarchical Softmax

Reduces complexity from $\mathcal{O}(|V|)$ to $\mathcal{O}(\log |V|)$ using a binary tree

- Assigns the vertices to the leaves of a binary tree
- New problem: Maximizing the probability of a specific path in the hierarchy

If the path to vertex v_j is identified by a sequence of tree nodes $(b_0, b_1, \dots, b_{\lceil * \rceil \log |V|})$ then

$$P(v_j|f(v_i)) = \prod_{l=1}^{\lceil * \rceil \log |V|} P(b_l|f(v_i))$$

where

$$P(b_l|f(v_i)) = 1/(1 + e^{-f(v_i)^{\top}f'(b_l)}) = \sigma(f(v_i)^{\top}f'(b_l))$$

and $f'(b_l) \in \mathbb{R}^d$ is the representation assigned to tree node b_l 's parent

node2vec

Like DeepWalk, node2vec is also a random walk based method

DeepWalk uses a rigid search strategy

Conversely, node2vec simulates a family of biased random walks which

- explore diverse neighborhoods of a given vertex
- allow it to learn representations that organize vertices based on
 - their network roles
 - the communities they belong to

[1] Grover and Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD'16

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme scenarios in terms of the search space

Goal: Given a source node u, sample its neighborhood $\mathcal{N}(u)$ where $|\mathcal{N}(u)| = k$

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme scenarios in terms of the search space

In most applications, we are interested in two kinds of similarities between vertices:

- **1** homophily: nodes that are highly interconnected and belong to similar communities should be embedded closely together (e. g., s_1 and u)
- $ext{@}$ structural equivalence: nodes that have similar structural roles should be embedded closely together (e.g., u and s_6)

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme scenarios in terms of the search space

BFS and DFS strategies play a key role in producing representations that reflect these two properties:

- The neighborhoods sampled by BFS lead to embeddings that correspond closely to structural equivalence
- The neighborhoods sampled by DFS reflect a macro-view of the neighborhood which is essential in inferring communities based on homophily

Given a source node, node2vec simulates a random walk of fixed length /

$$V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow \ldots \rightarrow V_l$$

The i^{th} node in the walk is generated as follows:

$$P(c_i = x | c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z}, & \text{if } (v, x) \in E \\ 0, & \text{otherwise} \end{cases}$$

where π_{vx} is the unnormalized transition probability between v and x, and Z is a normalizing factor

To capture both structural equivalence and homophily, node2vec uses a neighborhood sampling strategy which

- is based on a flexible biased random walk procedure
- allows it to smoothly interpolate between BFS and DFS

The random walk shown below just traversed edge (t, v) and now resides at node v

The unnormalized transition probability is $\pi_{vx} = w_{vx}\alpha_{pq}(t,x)$, where:

$$lpha_{pq}(t,x) = egin{cases} rac{1}{p} & ext{if } d_{tx} = 0 \\ 1 & ext{if } d_{tx} = 1 \\ rac{1}{q} & ext{if } d_{tx} = 2 \end{cases}$$

where d_{tx} denotes the shortest path distance between t and x

The random walk shown below just traversed edge (t, v) and now resides at node v

The *return parameter p* controls the likelihood of immediately revisiting a node in the walk

- if *p* is high, we are less likely to sample an already-visited node in the following two steps
- if *p* is low, it would keep the walk in the local neighborhood of the starting node

The random walk shown below just traversed edge (t, v) and now resides at node v

The *in-out parameter q* allows the search to differentiate between "inward" and "outward" nodes.

- if q is high, the random walk is biased towards nodes close to node t
- if q is low, the walk is more inclined to visit nodes which are further away from the node t

Optimization

After defining the neighborhood $\mathcal{N}(v) \subset V$ of each node v, node2vec uses the Skipgram architecture:

$$minimize_f - \sum_{v \in V} \log \prod_{u \in \mathcal{N}(v)} P(u|f(v))$$

where conditional likelihood is modelled as a softmax unit parametrized by a dot product of their features:

$$P(u|f(v)) = \frac{e^{f'(u)^{\top}f(v)}}{\sum_{k=1}^{|V|} e^{f'(v_k)^{\top}f(v)}}$$

and $f'(u) \in \mathbb{R}^d$ is the representation of node u when considered as context

The objective function thus becomes:

$$\textit{minimize}_{f,f'} \quad -\sum_{v \in V} \Big(-\log \sum_{u \in V} e^{f'(u)^\top f(v)} + \sum_{u \in \mathcal{N}(v)} f'(u)^\top f(v) \Big)$$

Since learning the above posterior distribution is very expensive, node2vec approximates it using negative sampling

THANK YOU!

Acknowledgements
Dr. I. Nikolentzos, Dr. A. Tixier, Dr. P. Meladianos

http://www.lix.polytechnique.fr/dascim/

Relevant Tutorial: Machine Learning on Graphs with Kernels@ CIKM 2019, http://www.cikm2019.net/tutorials.html