# **B. SC. (HONOURS) PHYSICS**

# DISCIPLINE SPECIFIC CORE COURSE – DSC - 10: MODERN PHYSICS

| Course Title & Code     | Credits | Credit distribution of the course |          |           | Eligibility                   | Pre-requisite of                                                            |
|-------------------------|---------|-----------------------------------|----------|-----------|-------------------------------|-----------------------------------------------------------------------------|
|                         |         |                                   | Tutorial | Practical | Criteria                      | the course                                                                  |
| Modern Physics DSC – 10 | 4       | 3                                 | 0        | 1         | Class XII<br>Pass with<br>PCM | Studied 'DSC-<br>Light and Matter'<br>& Mathematical<br>Physics-I, II & III |

#### LEARNING OBJECTIVES

This course introduces modern development in Physics. Starting from Planck's law, it develops the idea of probability interpretation and then discusses the formulation of Schrodinger equation and its applications to step potential and rectangular potential problems. This paper aims to provide knowledge about atomic physics, hydrogen atoms and X-rays. This paper covers the in-depth knowledge of lasers, its principle and working. It also introduces concepts of nuclear physics and accelerators.

#### **LEARNING OUTCOMES**

After getting exposure to this course, the following topics would be learnt.

- Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics. Heisenberg's Uncertainty principle and its applications, photoelectric effect and Compton scattering.
- The Schrodinger equation in 1-dimension, wave function, probability and probability current densities, normalization, conditions for physical acceptability of wave functions, position and momentum operators and their expectation values, Commutator of position and momentum operators.
- Time independent Schrodinger equation, derivation by separation of variables, wave packets, particle in a box problem, energy levels. Reflection and transmission across a step and rectangular potential barrier.
- Modification in Bohr's quantum model: Sommerfeld theory of elliptical orbits
- Hydrogen atom energy levels and spectra emission and absorption spectra.
- X-rays: their production and spectra: continuous and characteristic X-rays, Moseley Law.
- Lasers and their working principle, spontaneous and stimulated emissions and absorption, Einstein's A and B coefficients, Metastable states, components of a laser and lasing action in He-Ne lasers and free electron laser.
- Basic properties of nuclei, nuclear binding energy, semi-empirical mass formula, nuclear force and meson theory. Radioactivity.
- Types of Accelerators, Van-de Graaff generator linear accelerator, cyclotron.

# **SYLLABUS OF DSC – 10**

## THEORY COMPONENT

Unit – I (9 Hours)

**Origin of Quantum Theory:** Black body radiation and failure of classical theory, Planck's quantum hypothesis, Planck's radiation law, quantitative treatment of photo-electric effect and Compton scattering, Heisenberg's uncertainty principle, Gamma ray microscope thought experiment, position - momentum uncertainty, consequences of uncertainty principle.

Unit – II (9 Hours)

The Schrodinger Equation: The Schrodinger equation in one dimension, statistical interpretation of wave function, probability and probability current densities. Normalization, conditions for physical acceptability of wave functions with examples, position and momentum operators and their expectation values. Commutator of position and momentum operators

Unit – III (9 Hours)

**Time Independent Schrodinger Equation:** Demonstration of separation of variable method for time independent Schrodinger equation: Free particle wave function, wave packets, application to energy eigen values and stationary states for particle in a box problem. Reflection and transmission across a step and rectangular potential barrier

Unit - IV (9 Hours)

**Atomic Physics:** Beyond the Bohr's Quantum Model: Sommerfeld theory of elliptical orbits; Hydrogen atom energy levels and spectra, emission and absorption spectra; Correspondence principle; X-rays: Method of production, Continuous and Characteristic X-rays, Moseley's law.

Lasers: Lifetime of excited states, natural and Doppler width of spectral lines, emission (spontaneous and stimulated) and absorption processes, Einstein's A and B coefficients, principle of detailed balancing, metastable states, components of a laser and lasing action, working principle of a 4 level laser, e.g. He-Ne lasers; qualitative idea of X-ray free electron lasers.

Unit - V (9 Hours)

**Basic Properties of Nuclei:** Introduction (notation, a basic idea about nuclear size, mass, angular momentum, spin, parity, isospin), N-Z graph, nuclear binding energy, semi-empirical mass formula, and basic idea about the nuclear force and meson theory.

Radioactivity: Law of radioactivity and secular equilibrium.

Accelerators: Accelerator facility available in India: Van-de Graaff generator (Tandem accelerator), linear accelerator, cyclotron (principle, construction, working, advantages and disadvantages), discovery of new elements of the periodic table

### **References:**

### **Essential Readings:**

- 1) Concepts of Modern Physics, A. Beiser, 2002, McGraw-Hill.
- 2) Modern Physics, R. A. Serway, C. J. Moses and C. A. Moyer, 2012, Thomson Brooks Cole, Cengage.
- 3) Schaum's Outline of Modern Physics, R. Gautreau and W. Savin, 2020, McGraw Hill LLC

- 4) Modern Physics for Scientists and Engineers, S. T. Thornton Rex, 4<sup>th</sup> edition, 2013, Cengage Learning.
- 5) Introduction to Modern Physics, F. K. Richtmyer, E. H. Kennard and J. N. Cooper, 2002, Tata McGraw Hill.
- 6) Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010.
- 7) Learning Modern Physics, G. Kaur and G.R. Pickrell, 2014, McGraw Hill.
- 8) Modern Physics, R. Murugeshan, S Chand & Co. Ltd.
- 9) Schaum's Outline of Beginning Physics II | Waves, electromagnetism, Optics and Modern Physics, Alvin Halpern, Erich Erlbach, McGraw Hill.
- 10) Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2<sup>nd</sup> edition, Tata McGraw-Hill Publishing Co. Ltd.
- 11) Quantum Physics, Berkeley Physics, Vol.4. E. H. Wichman, 1971, Tata McGraw-Hill
- 12) Quantum Mechanics: Theory and Applications, A. Ghatak and S. Lokanathan, 2004, Macmillan Publishers India Limited.
- 13) Introduction to Quantum Mechanics, D. J. Griffith, 2005, Pearson Education.
- 14) Concepts of nuclear physics, B. Cohen, 2003, McGraw-Hill Education.
- 15) Atomic Physics, Ghoshal, 2019, S. Chand Publishing House.
- 16) Atomic Physics, J. B. Rajam & foreword by Louis De Broglie, 2010, (S. Chand & Co.
- 17) Nuclear Physics, S. N. Ghoshal, S. Chand Publishers.
- 18) Physics of Atoms and Molecules, B. H. Bransden and C. J. Jochain, 2<sup>nd</sup> edition, Pearson
- 19) Atomic and Molecular Physics, Rajkumar, RBSA Publishers.
- 20) Atoms, Molecules and Photons, W. Demtroder, 2<sup>nd</sup> edition, 2010, Springer.
- 21) Introducing Nuclear Physics, K. S. Krane, 2008, Wiley India.

# **Additional Readings:**

- 1) Basic Atomic & Molecular Spectroscopy, J. M. Hollas (Royal Society of Chemistry)
- 2) Molecular Spectra and Molecular Structure, G. Herzberg.
- 3) Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach (Series in Fundamental and Applied Nuclear Physics), K. Heyde (Institute of Physics Publishing Third Edition.
- 4) Nuclear Physics: Principles and applications, J. Lilley, 2006, Wiley.
- 5) Schaum's Outline of Modern Physics, 1999, McGraw-Hill Education.
- 6) Atomic and molecular Physics, R. Kumar, 2013, Campus Book Int.
- 7) The Fundamentals of Atomic and Molecular Physics (Undergraduate Lecture Notes in Physics), 2013, Springer.
- 8) Six Ideas that Shaped Physics: Particles Behave like Waves, T. A. Moore, 2003, McGraw Hill.
- 9) Thirty years that shook physics: The story of quantum theory, G. Gamow, Garden City, NY: Doubleday, 1966.

#### PRACTICAL COMPONENT

### (15 Weeks with 2 hours of laboratory session per week)

#### Mandatory activity:

- Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors.
- Application to the specific experiments done in the lab
- Familiarization with Schuster's focusing; determination of angle of prism.

## At least five experiments to be performed from the following list

- 1) Measurement of Planck's constant using black body radiation and photo-detector
- 2) Photo-electric effect: photo current versus intensity and wavelength of light, maximum energy of photo-electrons versus frequency of light
- 3) To determine the work function of material of filament of directly heated vacuum diode.
- 4) To determine the Planck's constant using LEDs of at least 4 different colours.
- 5) To determine the wavelength of the H-alpha emission line of Hydrogen atoms.
- 6) To determine the ionization potential of mercury.
- 7) To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 8) To show the tunneling effect in tunnel diodes using I-V characteristics.
- 9) One innovative experiment designed by the teacher relevant to the syllabus.

### References for laboratory work:

- 1) Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House.
- 2) A Text Book of Practical Physics, I. Prakash and Ramakrishna, 11<sup>th</sup> edition, 2011, Kitab Mahal.
- 3) Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4<sup>th</sup> edition, reprinted, 1985, Heinemann Educational Publishers.
- 4) A Laboratory Manual of Physics for Undergraduate Classes, D. P. Khandelwal, 1985, Vani Publisher.
- 5) B.Sc. Practical Physics, H. Singh, S. Chand & Co Ltd.
- 6) B.Sc. Practical Physics, G. Sanon, R. Chand and Co.