Channel Length Modulation (CLM)

X_d → length of the pinched-off region

- For $V_{DS} = V_{DS,sat}$, pinch-off point P at D end
- For $V_{DS} > V_{DS,sat}$, *P moves towards source*
- *Effective channel length reduces* from L to $L_{eff} = L X_d$
 - X_d = pinch-off region/drain region/saturation region length
- Excess voltage $(V_{DS} V_{DS,sat})$ drops across X_d

- Reduction of effective channel length causes an increase in current
 - > Channel length modulation
- With $V_{DS}\uparrow$, $X_d\uparrow$, $L_{eff}\downarrow$, and $I_D\uparrow$
 - > No real current saturation
- Thus, saturated drain current:

$$I_{D,sat} = (k'_{N}/2)(W/L_{eff})V_{GT}^{2}$$
$$= (k_{N}/2)V_{GT}^{2}(1+\lambda V_{DS})$$

• λ = Channel length modulation parameter

$$= \frac{1}{L} \frac{dX_d}{dV_{DS}}$$

- Function of L and N_A
- Higher L and $N_A => Lower \lambda$
- Typical values of λ may range from close to 0 to as high as 0.1-0.3 V^{-1}
- Very similar to V_A for BJTs

• This gives *LEVEL 1 model* (also known as *Shichman-Hodges model*) for MOSFETs:

$$\begin{split} I_{D} &= k_{N} \Big[V_{GT} V_{DS} - V_{DS}^{2} / 2 \Big] \big(1 + \lambda V_{DS} \big) \\ &\qquad \qquad (\textit{linear region} - V_{GT} > 3 V_{T}, V_{DS} < V_{GT} \big) \\ &= \big(k_{N} / 2 \big) V_{GT}^{2} \, \big(1 + \lambda V_{DS} \big) \\ &\qquad \qquad (\textit{saturation region} - V_{GT} > 3 V_{T}, V_{DS} \ge V_{GT} \big) \\ &= 0 \\ &\qquad \qquad (\textit{cutoff region} - V_{GT} \le 3 V_{T}, \text{ any } V_{DS} \big) \end{split}$$

I_D-V_{DS} Characteristics in presence of CLM