## 1.1. What is a graph?

1.1.2. **Definition**. A **graph** G is a triple  $(V(G), E(G), \psi_G)$  consisting of V(G) of **vertices**, a set E(G), disjoint from V(G), of **edges**, and an **incidence** function  $\psi_G$  that associates with each edge of G an unordered pair of (not necessarily distinct) vertices of G.

If e is an edge and u and v are vertices such that  $\psi_G(e) = \{u, v\}$  (or is simply denoted by uv), then e is said to **join** u and v; the vertices u and v are called **endpoints** of e.

**Example**.  $G = (V(G), E(G), \psi_G)$  where  $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$ ,  $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$  and  $\psi_G$  is defined by  $\psi_G(e_1) = v_1v_2$ ,  $\psi_G(e_2) = v_2v_3$ ,  $\psi_G(e_3) = v_3v_3$ ,  $\psi_G(e_4) = v_3v_4$ ,  $\psi_G(e_5) = v_2v_4$ ,  $\psi_G(e_6) = v_4v_5$ ,  $\psi_G(e_7) = v_2v_5$ ,  $\psi_G(e_8) = v_2v_5$ .  $H = (V(H), E(H), \psi_H)$  where  $V(H) = \{1, 2, 3, 4, 5\}$ ,  $E(H) = \{a, b, c, d, e, f, g, h, k\}$  and  $\psi_H$  is defined by  $\psi_H(a) = 12$ ,  $\psi_H(b) = 15$ ,  $\psi_H(c) = 13$ ,  $\psi_H(d) = 34$ ,  $\psi_H(e) = 24$ ,  $\psi_H(f) = 23$ ,  $\psi_H(g) = 14$ ,  $\psi_H(h) = 45$ ,  $\psi_H(k) = 35$ .

Graphs are so named because they can be represented graphically, and it is this graphical representation which helps us understand many of their properties. Each vertex is indicated by a point, and each edge by a line joining the points which represent its ends. In such a drawing it is understood that no line intersects itself or passes through a point representing a vertex which is not an end of the corresponding edge, that is clearly always possible. The diagram itself is then referred to as a graph. Diagram of G and H are shown as follows:



1.1.4. **Definition**. A **loop** is an edge whose endpoints are equal. **Multiple edges** are edges having the same pair of endpoints. In the above diagram, e<sub>3</sub> is a loop, e<sub>7</sub> and e<sub>8</sub> are multiple edges.

A **simple graph** is a graph having no loops or multiple edges, i.e. a simple graph G consists of a **vertex set** V(G), an **edge set** E(G) where E(G) is a set of unordered pairs of vertices or a set of 2-elements subsets of V(G). In the above diagram, H is a simple graph.

When u and v are endpoints of an edge, they are **adjacent** and are **neighbors**. In the above diagram,  $v_3$  and  $v_4$  are adjacent in G,  $v_1$  and  $v_3$  are not adjacent in G, 1 and 5 are neighbors in H.

A graph is **finite** if its vertex set and edge set are finite. We call a graph with just one vertex **trivial** and all other graphs **nontrivial**.

1.1.6. **Remark**. The **null graph** is the graph whose vertex set and edge set are empty.

We emphasize finite simple graphs with a nonempty set of vertices.

**Example**. Consider the set  $S = \{2, 3, 5, 8, 13, 21\}$ . There are some pairs of distinct integers belonging to S whose sum or difference(in absolute value) also belongs to S, namely,  $\{2, 3\}$ ,  $\{3, 5\}$ ,  $\{3, 8\}$ ,  $\{5, 8\}$ ,  $\{8, 13\}$ ,  $\{8, 21\}$ , and  $\{13, 21\}$ .

There is a more visual way of identifying these pairs, namely, by the graph G of the following figure. In this case,  $V(G) = \{2, 3, 5, 8, 13, 21\}$  and  $E(G) = \{\{2, 3\}, \{2, 5\}, \{3, 5\}, \{3, 8\}, \{5, 8\}, \{5, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8\}, \{6, 8$ 

#

#



1.1.8. **Definition**. The **complement**  $\overline{G}$  of a simple graph G is the simple graph with vertex set V(G) defined by  $uv \in E(\overline{G})$  if and only if  $uv \notin E(G)$ .

A **clique** in a graph is a set of pairwise adjacent vertices.

An **independent set** in a graph is a set of pairwise nonadjacent vertices.



 $\{a, b, c\}$  is a clique in G,  $\{a, i\}$  is an independent set in G.  $\{a, b, c\}$  is an independent set in  $\overline{G}$ ,  $\{i, d, b\}$  is a clique in  $\overline{G}$ .

1.1.10. **Definition**. A graph G is **bipartite** if V(G) is the union of two disjoint (possibly empty) independent sets called **partite sets** of G.

A graph G is k-partite if V(G) is the union of k (possibly empty) independent sets.

**Exercise** 1.1.13. Let G be the graph whose vertex set is the set of k-tuples with coordinates in  $\{0,1\}$ , with x adjacent to y when x and y differ in exactly one position. Determine whether G is bipartite.

**Solution**. For example, k = 3,  $V(G) = \{000, 001, 010, 011, 100, 101, 110, 111\}$ ,  $E(G) = \{\{000, 001\}, \{000, 010\}, \{000, 100\}, \{001, 011\}, \{001, 101\}, \{010, 011\}, \{010, 110\}, \{011, 111\}, \{100, 101\}, \{100, 110\}, \{101, 111\}, \{110, 111\}\}$ .

Let  $X = \{001, 010, 100, 111\}$ ,  $Y = \{000, 011, 101, 110\}$  be partite sets of G.



Then, adjacent vertices differ in exactly one position, no edges in X or Y, and G is a bipartite graph. In general, let X be the set of k-tuples with odd numbers of 1's and

Y be be the set of k-tuples with even numbers of 1's.

Then, adjacent vertices have opposite parity, no edges in X or Y and G is a bipartite graph.

1.1.12. **Definition**. The **chromatic number** of a graph G, written  $\chi(G)$ , is the minimum number of colors needed to label the vertices so that adjacent vertices receive different colors.



1.1.15. **Definition**. A **path** is a simple graph whose vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.

More formally, a path P<sub>n</sub> (a path of n vertices) is a simple graph G with

$$V(G) = \{v_1, v_2, ..., v_n\} \text{ and } E(G) = \{v_1v_2, v_2v_3, \, ..., \, v_{n-1}v_n\}. \\ v_1 \bullet \bullet \bullet \\ v_2 \quad v_3 \quad ... \quad \bullet \bullet \bullet \\ v_{n-1} \bullet \bullet v_n = 0$$

A **cycle** is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle. More formally, a **cycle**  $C_n$  (a cycle of n vertices) is a simple graph G with

 $V(G) = \{v_1, v_2,...,v_n\}$  and  $E(G) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1\}.$ 



1.1.16. **Definition**. A **subgraph** of a graph G is a graph H such that  $V(H) \subseteq V(G)$  and  $E(H) \subseteq E(G)$  and the assignment of endpoint to edges in H is the same as in G.

We write  $H \subseteq G$  and say that "G contains H".

A path in a graph G is a subgraph of G that is a path.

A graph G is **connected** if each pair of vertices in G belongs to a path; otherwise, G is **disconnected**.

## Example.



H:

G is connected, while H is disconnected.

**Exercise**1.1.10. Prove or disprove: The complement of a simple disconnected graph G must be connected.

**Proof.** Since G is disconnected, there exist 2 vertices x, y that do not belong to a path.





Thus,  $xy \in E(\overline{G})$ . Also x and y have no common neighbor in G, otherwise, that would yield a path connecting them. Every vertex not in  $\{x, y\}$  is adjacent in  $\overline{G}$  to at least one of  $\{x, y\}$ . Hence every vertex can reach every other vertex in  $\overline{G}$  using paths through  $\{x, y\}$ .

1.1.17. **Definition**. Let G be a loopless graph with vertex set  $V(G) = \{v_1, v_2,...,v_n\}$  and edge set  $E(G) = \{e_1, e_2,...,e_m\}$ .

The **adjacency matrix** of G, written A(G), is the n-by-n matrix in which entry  $a_{ij}$  is the number of edges in G with endpoints  $\{v_i, v_j\}$ .

The **incidence matrix** of G, written M(G), is the n-by-m matrix in which entry  $m_{ij}$  is 1 if  $v_i$  is an endpoint of  $e_i$  and otherwise is 0.

If vertex v is an endpoint of edge e, then v and e are incident.

The **degree** of vertex v(in a loopless graph), written d(v) is the number of incident edges

d(u) = 3, d(v) = 4, d(w) = 2, d(x), d(y) = 1.

#

#



**Exercise**1.1.5. Prove or disprove: If every vertex of a simple graph G has degree 2, then G is a cycle

**Disproof**: Such a graph G can be a disconnected graph with each component a cycle.

1.1.20. **Definition**. An **isomorphism** from a simple graph G to a simple graph H is a bijection  $f: V(G) \to V(H)$  such that  $uv \in E(G)$  if and only if  $f(u)f(v) \in E(H)$ .

We say "G is **isomorphic** to H", denoted by  $G \cong H$ , if there is an isomorphism from G to H.

**Remark.**  $G \cong H \leftrightarrow \overline{G} \cong \overline{H}$ .

**Proof.** ( $\rightarrow$ ) Assume that  $G \cong H$ . Let f be an isomorphism from V(G) to V(H). Then every two adjacent vertices of G are mapped to adjacent vertices of H, also every two nonadjacent vertices of G are mapped to nonadjacent vertices of H.

Since  $V(\overline{G}) = V(G)$  and  $V(\overline{H}) = V(H)$ , the same function  $f: V(\overline{G}) \to V(\overline{H})$  also maps adjacent vertices of  $\overline{G}$  to adjacent vertices of  $\overline{H}$  and nonadjacent vertices of  $\overline{G}$  to nonadjacent vertices of  $\overline{H}$ .

#

Let  $\mathcal{G}$  be any set of simple graphs.  $\cong = \{(G, H) \in \mathcal{G} \times \mathcal{G} : G \text{ is isomorphic to } H\}$  is a relation on  $\mathcal{G}$ .

1.1.24. **Proposition**. The isomorphism relation ( $\cong$ ) is an equivalence relation on  $\mathcal{G}$ .

**Proof**: *Reflexive property*. The identity permutation on V(G) is an isomorphism from G to itself. Thus  $G \cong G$ .

Symmetric property. If  $f: V(G) \to V(H)$  is an isomorphism from G to H, then  $f^1$  is an isomorphism from H to G, because "uv  $\in E(G)$  if and only if  $f(u)f(v) \in E(H)$ " yields  $xy \in E(H)$  if and only if  $f^1(x)f^1(y) \in E(G)$ . Thus  $G \cong H$  implies  $H \cong G$ .

*Transitive property.* Suppose that  $f: V(F) \to V(G)$  is an isomorphism from F to G and  $g: V(G) \to V(H)$  is an isomorphism from G to H.

We are given "uv  $\in$  E(F) if and only if  $f(u)f(v) \in$  E(G)" and "xy  $\in$  E(G) if and only if  $g(x)g(y) \in$  E(H)".

Since f is an isomorphism, for every  $xy \in E(G)$  we can find  $uv \in E(F)$  such that f(u) = x and f(v) = y. This yields  $uv \in E(F)$  if and only if  $g(f(u))g(f(v)) \in E(H)$ .

Thus the composition  $g \circ f$  is an isomorphism from F to H.

We have prove that  $F \cong G$  and  $G \cong H$  together imply  $F \cong H$ .

- 1.1.25. **Definition**. An **isomorphic class** of graphs is an equivalence class of graphs under the isomorphism relation.
- 1.1.27. **Definition**. A **complete graph** is a simple graph whose vertices are pairwise adjacent; the unlabeled complete graph with n vertices is denoted  $K_n$ .

A **complete bipartite graph**(**biclique**) is a simple bipartite graph such that two vertices are adjacent if and only if they are in different partite sets.

When the sets have sizes r and s, the unlabeled complete bipartite graph is denoted  $K_{r,s}$ . So the complete bipartite graph  $K_{m,n}$  is a complete graph if and only if m = n = 1, i.e.  $K_{1,1} \cong K_2$ . 1.1.29. **Remark**. When we name a graph without naming its vertices, we often mean its isomorphic class. H is a subgraph of G means that some subgraph of G is isomorphic to H and we say G contains a **copy** of H.



Each graph has 6 vertices and 9 edges and is connected, but these graphs are not pairwise isomorphic.

To prove that  $G_1 \cong G_2$ , let  $f: V(G_1) \to V(G_2)$  defined by f(u) = 1, f(v) = 3, f(w) = 5, f(x) = 2, f(y) = 4, f(z) = 6.

Both  $G_1$  and  $G_2$  are bipartite, they are drawings of  $K_{3,3}$  as is  $G_4$ .



The graph G<sub>3</sub> contains K<sub>3</sub>, so its vertices cannot be partitioned into 2 independent sets.

Thus  $G_3$  is not isomorphic to the others.

Sometimes we can test isomorphism quickly using the complements.

Simple graphs G and H are isomorphic if and only if their complements are isomorphic.

Hence  $\overline{G_1}$ ,  $\overline{G_2}$ ,  $\overline{G_4}$  all consist of 2 disjoint 3-cycles and are not connected,

but  $\overline{G_3}$  is a 6-cycle and is connected.

#

1.1.31. **Example**. When choosing 2 vertices from a set of size n, we can pick one and then the other but don't care about the order, the number of ways is  $\binom{n}{2}$ .

In a simple graph with n vertices, each vertex pair may form an edge or may not. Making the choice for each pair specifies the graph, so the number of n-vertex simple graphs is  $2^{\binom{n}{2}}$ .

For example, there are 64 simple graphs on a fixed set of 4 vertices. These graphs form only 11 isomorphism classes.



#

1.1.32. **Definition**. A graph is **self-complementary** if it is isomorphic to its complement. A **decomposition** of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Exercise 1.1.6. Determine whether the graph below decomposes into copies of P<sub>4</sub>.



**Solution**. This graph decomposes into 3 copies of  $P_4$  as shown on the right.

#

#

1.1.33. **Example**. We can decompose  $K_5$  into 5-cycles, and thus the 5-cycle is self-complementary.



Any n-vertex graph and its complement decompose K<sub>n</sub>.

Also  $K_{1,n-1}$  and  $K_{n-1}$  decompose  $K_n$ , even though one of these subgraphs omits a vertex. Below we show a decomposition of  $K_4$  using 3 copies of  $P_3$ .



1.1.34. **Example**. The question of which complete graphs decompose into copies of  $K_3$  is a fundamental question in the theory of combinatorial designs.

On the left below we suggest a decomposition of  $K_7$  into copies of  $K_3$ . Rotating the triangle through 7 positions uses each edge exactly once.



On the right we suggest a decomposition of  $K_6$  into copies of  $P_4$ .

Placing one vertex in the center groups the edges into 3 types: the outer 5-cycle, the inner(crossing) 5-cycle on those vertices, and the edges involving the central vertex.

Each 4-vertex path in the decomposition uses one edge of each type; we rotate the picture to get the next path.

**Exercise**1.1.7. Prove that a graph with more than 6 vertices of odd degree can not be decomposed into 3 paths.

**Proof**. Since every vertex of odd degree must be the endpoint of some path in a decomposition into paths and 3 paths need only 6 endpoints.

**Exercise**1.1.36. Prove that if  $K_n$  decomposes into triangles, then 6|(n-1) or 6|(n-3).

**Proof**. A decomposition of  $K_n$  into triangles requires the degree of each vertex is even and the number of edges is divisible by 3. To have even degree, n must be odd.

Also  $|E(K_n)| = \binom{n}{2} = \frac{n(n-1)}{2}$  is a multiple of 3, so 3|n or 3|(n-1).

If 3|n and n is odd, then 6|(n-3). If 3|(n-1) and n is odd, then 6|(n-1).

1.1.35. **Example**. The Graph Menagerie.



1.1.36. **Definition**. The **Petersen graph** is the simple graph whose vertices are the 2-element subsets of a 5-element set and whose edges are the pairs of disjoint 2-element subsets.



## 1.1.37. **Example**. Structure of the Petersen graph.

Using  $[5] = \{1, 2, 3, 4, 5\}$  as our 5-element set, we write the pair  $\{a, b\}$  as ab or ba.

Since 12 and 34 are disjoint, they are adjacent vertices when we form the graph, but 12 and 23 are not. For 2-set ab, there are 3 ways to pick a 2-set from the remaining 3 elements of [5], so every vertex has degree 3.

The Petersen graph consists of 2 disjoint 5-cycles plus edges that pair up vertices on the two 5-cycles.

The disjointness definition tells us that 12, 34, 25, 14, 35 in order are the vertices of a 5-cycle, and similarly this holds for the remaining vertices 13, 24, 15, 23, 45.

Also 24 is adjacent to 35, and 15 is adjacent to 34, and so on.

#

1.1.38. **Proposition**. If 2 vertices are nonadjacent in the Petersen graph, then they have exactly 1 common neighbor.

**Proof**: Nonadjacent vertices are 2-sets sharing 1 element; their union S has size 3. A vertex adjacent to both is a 2-set disjoint from both. Since the 2-sets are chosen from {1, 2, 3, 4, 5}, there is exactly one 2-set disjoint from S.

1.1.39. **Definition**. The **girth** of a graph with a cycle is the length of its shortest cycle. A graph with no cycle has infinite girth.

1.1.40. **Corollary**. The Petersen graph has girth 5.

**Proof**: The graph is simple, so it has no 1-cycle or 2-cycle.

A 3-cycle would require 3 pairwise-disjoint 2-sets, which can't occur among 5 elements.

A 4-cycle in the absence of 3-cycles would require nonadjacent vertices with 2 common neighbors, which Proposition 1.1.38 forbids.

The vertices 12, 34, 25, 14, 35 yields a 5-cycle, so the girth of the Petersen graph is 5.

**Exercise**1.1.26. Let G be a graph with girth 4 in which every vertex has degree k.

Prove that G has at least 2k vertices. Determine all such graphs with exactly 2k vertices.

**Proof**. Since G has girth 4, thus G is simple and there are at least 4 edges in G, choose  $xy \in E(G)$  then x, y has no common neighbors(why?). Thus, the neighborhoods N(x) and N(y) are disjoint sets of size k, G must have at least 2 k vertices.

 $K_{k,k}$  is a k-regular graph with girth 4 and has exactly 2k vertices (why?)

#

1.1.41. **Definition**. An **automorphism** of a graph G is an isomorphism from G to G. A graph G is **vertex transitive** if for every pair  $u, v \in V(G)$  there is an automorphism that maps u to v.

1.1.42. **Example**. Let G be the  $P_4$  with vertex set  $\{1, 2, 3, 4\}$  and edge set  $\{12, 23, 34\}$ .

This graph has 2 automorphisms  $\alpha_1$ ,  $\alpha_2$  as follows:

1 2 3 4

 $\alpha_1 : V(G) \to V(G)$  defined by  $\alpha_1(v) = v$  for every vertex v of G.

 $\alpha_2 : V(G) \to V(G)$  defined by  $\alpha_2(1) = 4$ ,  $\alpha_2(2) = 3$ ,  $\alpha_2(3) = 2$ ,  $\alpha_2(4) = 1$ .

The function  $\alpha_3$ : V(G) $\rightarrow$ V(G) defined by  $\alpha_3(1) = 2$ ,  $\alpha_2(2) = 1$ ,  $\alpha_2(3) = 3$ ,  $\alpha_2(4) = 4$ 

is not an automorphism of G, although G is isomorphic to the graph with vertex set  $\{1,2,3,4\}$  and edge set  $\{21,13,34\}$ .

#

#

**Example**. Consider the following graph G:



There are 4 automorphisms  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$  of G as follows:

 $\alpha_1 : V(G) \to V(G)$  defined by  $\alpha_1(v) = v$  for every vertex v of G.

$$\alpha_1: V(G) \rightarrow V(G) \text{ defined by } \alpha_1(v) = v \text{ for every vertex } v \text{ of } G.$$

$$\alpha_2: V(G) \rightarrow V(G) \text{ defined by } \alpha_2(v) = \begin{cases} v_2 & \text{if } v = v_1 \\ v_1 & \text{if } v = v_2 \\ v & \text{if } v \neq v_1, v_2 \end{cases}$$

$$\alpha_3: V(G) \rightarrow V(G) \text{ defined by } \alpha_3(v) = \begin{cases} v_6 & \text{if } v = v_5 \\ v_5 & \text{if } v = v_6 \\ v & \text{if } v \neq v_5, v_6 \end{cases}$$

$$\alpha_4: V(G) \rightarrow V(G) \text{ defined by } \alpha_4(v) = \begin{cases} v_2 & \text{if } v = v_1 \\ v_1 & \text{if } v = v_2 \\ v_6 & \text{if } v = v_5 \\ v & \text{if } v = v_5 \end{cases}.$$

$$\begin{cases} v_2 & \text{if } v = v_1 \\ v_1 & \text{if } v = v_2 \\ v_6 & \text{if } v = v_5 \\ v & \text{if } v = v_3, v_4 \end{cases}$$

$$\begin{cases} v_2 & \text{if } v = v_3 \\ v_1 & \text{if } v = v_3 \\ v_2 & \text{if } v = v_4 \end{cases}$$

$$\begin{cases} v_2 & \text{if } v = v_3 \\ v_1 & \text{if } v = v_3 \\ v_2 & \text{if } v = v_3, v_4 \end{cases}$$

$$\begin{cases} v_2 & \text{if } v = v_3 \\ v_3 & \text{if } v = v_3, v_4 \end{cases}$$

$$\begin{cases} v_3 & \text{if } v = v_3, v_4 \\ v_3 & \text{if } v = v_3, v_4 \end{cases}$$

$$\begin{cases} v_3 & \text{if } v = v_3, v_4 \\ v_3 & \text{if } v = v_3, v_4 \end{cases}$$

$$\begin{cases} v_3 & \text{if } v = v_3, v_4 \\ v_3 & \text{if } v = v_3, v_4 \end{cases}$$

**Remark**. Since composition of functions is associative, the identity function is an automorphism, the inverse of an automorphism is an automorphism, and the composition of 2 automorphisms is an automorphism, it follows that the set of all automorphisms of a graph G from a group under the operation of composition.

This group is denoted by Aut(G) and is called the automorphism group of G.

For the graph G above,  $Aut(G) = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}.$ 

**Exercise** 1.1.40. Count the automorphisms of  $P_n$ ,  $C_n$ , and  $K_n$ .

The number of automorphisms of  $P_n$  is 2 since  $P_n$  can be left alone or flipped.

The number of automorphisms of  $C_n$  is 2n since  $C_n$  can be rotated or flipped.

The number of automorphisms of  $K_n$  is n! since  $K_n$  can be permuted arbitrarily.

**Exercise** 1.1.41. Construct a simple graph with 6 vertices that has only one automorphism.



Verify!

Construct a simple graph that has only 3 automorphisms.



Verify!

Homework 1. 1.1.25, 1.1.34, 1.1.35, 1.1.38, 1.1.41 due on June 18.