

A-Z Machine Learning using Azure Machine Learning (AzureML)

Hands on AzureML: From Azure Machine Learning Introduction to Advance Machine Learning Algorithms. No Coding Required.

★★★★ 4.3 (215 ratings) 1,597 students enrolled

Created by Jitesh Khurkhuriya Last updated 3/2018 Denglish English

Time Conlige

Classification

© litesh khu

Course

What is a Decision Tree?

@ litesh Kho

What is Decision Tree?

Supervised learning method

 Decision support tool that uses a tree-like graph or model of decisions and their possible consequences

 Various variations such as Boosted Decision Tree, Decision Forest, Decision Jungle

• Can be used for categorical as well as continuous variables

Loan ID	Income Level	Credit Score	Employment	Approved?
L1	Medium	Low	Self-Employed	No
L2	High	Low	Self-Employed	Yes
L3	High	High	Salaried	Yes
L4	Medium	Low	Salaried	Yes
L5	Low	High	Salaried	No
L6	Low	Low	Self-Employed	No
L7	High	Low	Salaried	Yes
L8	Medium	Low	Self-Employed	No
L9	High	High	Self-Employed	Yes
L10	Medium	High	Self-Employed	Yes
L11	High	Low	Salaried	Yes
L12	Medium	High	Salaried	Yes
L13	Medium	High	Self-Employed	Yes
L14	Low	Low	Self-Employed	No
L15	Low	High	Self-Employed	No

LID	IL	CS	ET	Status		LID	IL	C
L2	High	Low	SE	Yes		L5	Low	H
L3	High	High	Salaried	Yes		L6	Low	L
L7	High	Low	Salaried	Yes		L14	Low	L
L9	High	High	SE	Yes		L15	Low	F
				103			Mille.	
L11	High	Low	Salaried	Yes		Rill		
L11 High Low Salaried Yes Pure Subset								
Pure Subset						F		

LID	IL	CS	ET	Status
L5	Low	High	Salaried	No
L6	Low	Low	SE	No
L14	Low	Low	SE	No
L15	Low	High	SE	No
	18/20			

LID	IL	CS	ET	Status
L1	Medium	Low	SE	No
L4	Medium	Low	Salaried	Yes
L8	Medium	Low	SE	No
L10	Medium	High	SE	Yes
L12	Medium	High	Salaried	Yes
L13	Medium	High	SE	Yes

Pure Subset

Split Further

Split Further

Pure Subset

© Jitesh Khurkhuriya – Azure ML Online Course

Decision Tree Terms

Definitions

- **Root Node:** It represents entire population or sample and this further gets divided into two or more homogeneous sets.
- Splitting: It is a process of dividing a node into two or more sub-nodes.
- Decision Node: When a sub-node splits into further sub-nodes, then it is called decision node.
- Leaf/ Terminal Node: Nodes do not split is called Leaf or Terminal node.
- Branch / Sub-Tree: A sub section of entire tree is called branch or sub-tree.

Conlise

Ensemble Learning

© litesh Khu

Everyday Ensemble Learning

Decision?

Is this price fair?

Appreciation of price?

Construction Quality?

Location appropriate?

Neighbourhood?

Decision?

Broker or real estate portal to check fair price, price appreciation

Friend or colleague who stays nearby or stayed in the neighbourhood

Inspection by an architect for quality checks and structural defects.

Decision?

Location appropriate?

Neighbourhood?

Ensemble Learning

- All algorithms have errors
- Collective wisdom is higher than the individual intelligence
- Generate a group of base learners and combined result gives higher accuracy
- Different base learners can use different,
 - Parameters
 - Sequence
 - Training sets etc
- Two major Ensemble Learning Methods
 - Bagging
 - Boosting

Bagging

Various models are built in parallel

Boosting

Train the Decision Tree in a sequence

Learn from the previous tree by focussing on incorrect observations

• Build new model with higher weight for incorrect observations from previous sequence

Boosted Model

Conlige

Two Class Boosted Decision Tree

@ litesh Khun

Bank Telemarketing

Goal is to predict if the client will subscribe to a product or not

• Number of instances – 45, 211

1. Age

2. Job Type

3. Marital Status

4. Education Level

5. Credit Default?

6. Housing Loan?

7. Personal Loan

8. Contacted Type

9. Contacted Month

10. Last Contacted day

11. Contact Duration

12. Campaign Type

13. P-Days

14. Previous

15. P-Outcome

16. Emp-Var-Rate

17. Consumer Price Index

18. Consumer Confidence Index

19. Euribor 3 Month Rate

20. Number of employees

21. Subscribed?

https://archive.ics.uci.edu/ml/datasets/bank+marketing

Source: [Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

Boosting

Train the Decision Tree in a sequence

Learn from the previous tree by focussing on incorrect observations

• Build new model with higher weight for incorrect observations from previous sequence

Two-Class Boosted Decision Tree?

Machine learning model based on the boosted decision trees algorithm

Based on ensemble learning method

Among the easiest methods to get top performance

• One of the more memory-intensive learners.

Course

Decision Forest

© litesh Khur.

Bagging

Various models are built in parallel

Bagging

Conlige

Two Class Decision Forest

© litesh Khu.

Adult Census Data

Problem statement: Predict whether income exceeds \$50K/yr based on census data.

- 1. Age
- 2. Workclass
- 3. Fnlwgt
- 4. Education
- 5. Education-Num
- 6. Marital Status
- 7. Occupation
- 8. Relationship
- 9. Race
- 10. Sex
- 11. Capital Gains
- 12. Capital Losses
- 13. Hours per week
- 14. Native Country
- 15. Income

Course

Decision Forest

© litesh Khur.

Bagging

Various models are built in parallel

Bagging

Conlige

Two Class Decision Forest

© litesh Khu

Adult Census Data

Problem statement: Predict whether income exceeds \$50K/yr based on census data.

- 1. Age
- 2. Workclass
- 3. Fnlwgt
- 4. Education
- 5. Education-Num
- 6. Marital Status
- 7. Occupation
- 8. Relationship
- 9. Race
- 10. Sex
- 11. Capital Gains
- 12. Capital Losses
- 13. Hours per week
- 14. Native Country
- 15. Income

-1115E

Thank You...!

© litesh Kno