β -perfect graphs that do not necessarily have simplicial extremes

Jake Horsfield University of Leeds

Joint work with Kristina Vušković

ACiD Seminar, Durham University

Graph colouring

 A k-colouring of a graph is an assignment of k colours to the vertices of the graph such that no two adjacent vertices receive the same colour.

Graph colouring

- A k-colouring of a graph is an assignment of k colours to the vertices of the graph such that no two adjacent vertices receive the same colour.
- For a graph G, $\chi(G)$ denotes the minimum number k for which there exists a k-colouring of G. This is called the *chromatic number* of G.

Figure: P_5 is not contained in C_5

 A graph H is an induced subgraph of G if H can be obtained from G by deleting vertices (and incident edges).

Figure: P_5 is not contained in C_5

- A graph H is an induced subgraph of G if H can be obtained from G by deleting vertices (and incident edges).
- A graph G contains a graph H if some induced subgraph of G is isomorphic to H.

Figure: P_5 is not contained in C_5

- A graph H is an induced subgraph of G if H can be obtained from G by deleting vertices (and incident edges).
- A graph G contains a graph H if some induced subgraph of G is isomorphic to H.
- *G* is *H-free* if *G* does not contain *H*.

Figure: P_5 is not contained in C_5

- A graph H is an induced subgraph of G if H can be obtained from G by deleting vertices (and incident edges).
- A graph G contains a graph H if some induced subgraph of G is isomorphic to H.
- *G* is *H-free* if *G* does not contain *H*.
- G is (H_1, \ldots, H_k) -free if G is H_i -free for all $i \in \{1, \ldots, k\}$.

• A *hole* is a chordless cycle of length at least 4.

• A hole is a chordless cycle of length at least 4.

- A hole is a chordless cycle of length at least 4.
- The *length* of a hole is the number of its vertices.

- A hole is a chordless cycle of length at least 4.
- The *length* of a hole is the number of its vertices.
- A hole is even or odd depending on the parity of its length.

- A hole is a chordless cycle of length at least 4.
- The *length* of a hole is the number of its vertices.
- A hole is even or odd depending on the parity of its length.
- Example: even-hole-free = $(C_4, C_6, ...)$ -free.

• $\beta(G) = \max\{\delta(G') + 1 \mid G' \text{ is an induced subgraph of } G\}.$

- $\beta(G) = \max\{\delta(G') + 1 \mid G' \text{ is an induced subgraph of } G\}.$
- $\chi(G) \leq \beta(G)$.

- $\beta(G) = \max\{\delta(G') + 1 \mid G' \text{ is an induced subgraph of } G\}.$
- $\chi(G) \leq \beta(G)$.
- A graph G is β -perfect if $\chi(G') = \beta(G')$ for all induced subgraphs G' of G.

- $\beta(G) = \max\{\delta(G') + 1 \mid G' \text{ is an induced subgraph of } G\}.$
- $\chi(G) \leq \beta(G)$.
- A graph G is β -perfect if $\chi(G') = \beta(G')$ for all induced subgraphs G' of G.

Observation

 β -perfect graphs are even-hole-free.

Colouring β -perfect graphs

Observation

The greedy colouring algorithm can optimally colour β -perfect graphs in polynomial time.

What is not known?

Problem

Characterise β -perfect graphs by forbidden induced subgraphs.

i.e. G is β -perfect iff it is $(H_1, H_2, ...)$ -free.

Problem

Can we decide whether a given graph is β -perfect in polynomial time?

• Markossian, Gasparian, Reed; 1996 (even hole, diamond, cap)-free

- Markossian, Gasparian, Reed; 1996 (even hole, diamond, cap)-free
- de Figueiredo, Vušković; 2000 (even hole, diamond, cap-on-6-vertices)-free

- Markossian, Gasparian, Reed; 1996 (even hole, diamond, cap)-free
- de Figueiredo, Vušković; 2000 (even hole, diamond, cap-on-6-vertices)-free
- Kloks, Müller, Vušković; 2009 (even hole, diamond)-free

- Markossian, Gasparian, Reed; 1996 (even hole, diamond, cap)-free
- de Figueiredo, Vušković; 2000 (even hole, diamond, cap-on-6-vertices)-free
- Kloks, Müller, Vušković; 2009 (even hole, diamond)-free
- Fraser, Hamel, Hoàng; 2018 (even hole, kite)-free

Minimal β -imperfect graphs

• A graph is *minimally* β -imperfect if it is not β -perfect but all its proper induced subgraphs are β -perfect.

Minimal β -imperfect graphs

- A graph is *minimally* β -imperfect if it is not β -perfect but all its proper induced subgraphs are β -perfect.
- A vertex is a simplicial extreme if its neighbourhood is a clique or of size 2.

Minimal β -imperfect graphs

- A graph is *minimally* β -imperfect if it is not β -perfect but all its proper induced subgraphs are β -perfect.
- A vertex is a simplicial extreme if its neighbourhood is a clique or of size 2.

Lemma (Markossian, Gasparian, Reed; 1996)

If G is a minimally β -imperfect graph that is not an even hole, then G has no simplicial extreme.

 β -perfection via simplicial extremes

Theorem (Dirac; 1961)

Every chordal graph contains a vertex whose neighbourhood is a clique.

β -perfection via simplicial extremes

Theorem (Dirac; 1961)

Every chordal graph contains a vertex whose neigbourhood is a clique.

- So chordal graphs are β -perfect.
- In fact, all mentioned results were proved by showing the existence of simplicial extremes.

Graphs without simplicial extremes

Let $\mathcal C$ be the class of (even hole, twin wheel, cap)-free graphs.

Graphs without simplicial extremes

Let C be the class of (even hole, twin wheel, cap)-free graphs.

• Goal: prove that every graph in $\mathcal C$ is β -perfect.

Graphs without simplicial extremes

A graph in $\ensuremath{\mathcal{C}}$ with no simplicial extreme.

Let C be the class of (even hole, twin wheel, cap)-free graphs.

- ullet Goal: prove that every graph in $\mathcal C$ is eta-perfect.
- ullet Issue: there are graphs in ${\cal C}$ that have no simplicial extreme.

A decomposition theorem

Theorem (Dirac; 1961)

If G is a chordal graph, then G either:

- is a complete graph, or
- has a clique cutset.

A decomposition theorem

Theorem (Dirac; 1961)

If G is a chordal graph, then G either:

- is a complete graph, or
- has a clique cutset.

Theorem (Cameron, da Silva, Huang, Vušković; 2018)

If G is (even hole, cap)-free, has a hole, and has no clique cutset, then G is obtained from an (even hole, \triangle)-free graph with no clique cutset by:

- blowing up vertices into cliques, and
- adding a universal clique.

A decomposition theorem

Theorem

If G is an (even hole, twin wheel, cap)-free graph, then:

- G is a complete graph, or
- G has a clique cutset, or
- G consists of an (even hole, \triangle)-free graph that has a hole but no clique cutset, together with a universal clique.

β -perfection of complete graphs

Theorem

If G is an (even hole, twin wheel, cap)-free graph, then:

- G is a complete graph, or
- G has a clique cutset, or
- G consists of a triangle-free graph that has a hole but no clique cutset, together with a universal clique.
- Complete graphs are chordal and hence β -perfect.

β -perfection of certain \triangle -free graphs

Theorem

If G is an (even hole, twin wheel, cap)-free graph, then:

- G is a complete graph, or
- G has a clique cutset, or
- G consists of a triangle-free graph that has a hole but no clique cutset, together with a universal clique.
- Partition (A, B) of V(G) so that G[A] is an (even hole, triangle)-free graph, and G[B] is a complete graph.
- G[A] is (even hole, diamond, cap)-free, and hence is β -perfect.
- Adding a universal clique preserves β -perfection.

A useful lemma

Lemma (Markossian, Gasparian, Reed; 1996)

Let G be an (even hole, triangle)-free graph.

For every vertex $x \in V(G)$, either:

- x is universal, or
- there is a vertex y nonadjacent to x with $d(y) \le 2$.

$$\beta(G) = \delta(G) + 1 \le d(x) + 1 = \chi(G_1) \le \chi(G)$$

Summary of the first part

- (even hole, twin wheel, cap)-free graphs are β -perfect
- These graphs do not necessarily contain simplicial extremes.
- We find simplicial extremes in the basic graphs. After decomposing, we look at what happens to these simplicial extremes as we 'go back upwards' to the original graph.

- A *k-hyperhole* is any graph obtained from a hole of length *k* by clique substitutions.
- We write $H = (X_1, \ldots, X_k)$.

- A *k-hyperhole* is any graph obtained from a hole of length *k* by clique substitutions.
- We write $H = (X_1, \ldots, X_k)$.
- X_1, \ldots, X_k are the *bags* of H.

Facts about hyperholes

•
$$H = (X_1, \dots, X_k)$$
 a k -hyperhole.

•
$$\chi(H) = \max \left\{ \omega(H), \left\lceil \frac{|V(H)|}{\alpha(H)} \right\rceil \right\}$$

we assume k is odd

Facts about hyperholes

•
$$H = (X_1, \dots, X_k)$$
 a k -hyperhole.

•
$$\chi(H) = \max \left\{ \omega(H), \left\lceil \frac{2|V(H)|}{k-1} \right\rceil \right\}$$

we assume
$$k$$
 is odd

since
$$\alpha(H) = \frac{k-1}{2}$$
 for odd k

Facts about hyperholes

•
$$H = (X_1, \dots, X_k)$$
 a k -hyperhole.

we assume k is odd

•
$$\chi(H) = \max \left\{ \omega(H), \left\lceil \frac{2|V(H)|}{k-1} \right\rceil \right\}$$
 since $\alpha(H) = \frac{k-1}{2}$ for odd k

•
$$\omega(H) = \max\{|X_i \cup X_{i+1}| : 1 \le i \le k-1\}$$

The 5-hyperholes and 7-hyperholes

Here are the only minimally $\beta\text{-imperfect}$ 5-hyperholes and 7-hyperholes.

Theorem

Let
$$H = (X_1, ..., X_k)$$
 be a hyperhole with $k \in \{5, 7\}$.

Let
$$H = (\lambda_1, ..., \lambda_k)$$
 be a hypernole with $k \in \{5, 7\}$.
Then H is β -perfect if and only if for some $i \in \{1, ..., k\}$:

•
$$(k = 5) |X_i| = 1;$$

 \cdots 1 1 \cdots or \cdots 1 \cdots 1 \cdots

•
$$(k = 7)$$
 $|X_i| = |X_{i+1}| = 1$ or $|X_i| = |X_{i+2}| = 1$.

•
$$(k = 7)$$
 $|X_i| = |X_{i+1}| = 1$ or $|X_i| = |X_{i+2}| = 1$

Odd hyperholes of length at least 9

"Trivial" hyperholes:

• Three consecutive bags of size one

... 1 1 1 ...

Odd hyperholes of length at least 9

"Trivial" hyperholes:

• Three consecutive bags of size one

$$\cdots$$
 1 1 1 \cdots

A super-sector containing only 2-sectors

```
\cdots 1 1 \geq 2 \geq 2 1 \geq 2 1 1 \cdots
```

Odd hyperholes of length at least 9

"Trivial" hyperholes:

• Three consecutive bags of size one

A super-sector containing only 2-sectors

$$\cdots \quad \boxed{1} \quad \boxed{1} \quad \boxed{\geq 2} \quad \boxed{\geq 2} \quad \boxed{1} \quad \boxed{\geq 2} \quad \boxed{\geq 2} \quad \boxed{1} \quad \boxed{1} \quad \cdots$$

One 0-sector, all other sectors are of length 2

β -perfection of trivial hyperholes

Lemma

If a hyperhole $H = (X_1, ..., X_k)$ contains:

then H is not minimally β -imperfect.

β -perfection of trivial hyperholes

Lemma

If a hyperhole $H = (X_1, ..., X_k)$ contains:

then H is not minimally β -imperfect.

Corollary

Trivial hyperholes are β -perfect.

A hyperhole is a base hyperhole if

- no three consecutive bags are of size 1;
- every bag has size at most 2;
- no two consecutive bags are of size 2.

Why base hyperholes?

Lemma

Every nontrivial hyperhole contains a base hyperhole.

Proof sketch.

Apply certain reduction rules to 'sectors' and 'super-sectors' of the hyperhole. The result is a base hyperhole.

So let's characterise β -perfect base hyperholes.

•
$$\beta(H) = 4$$
 and $\omega(H) = 3$;

- $\beta(H) = 4$ and $\omega(H) = 3$;
- every proper induced subgraph is either chordal, or has three consecutive bags of size $1 \Longrightarrow \beta$ -perfect;

- $\beta(H) = 4$ and $\omega(H) = 3$;
- every proper induced subgraph is either chordal, or has three consecutive bags of size $1 \Longrightarrow \beta$ -perfect;
- H is β -perfect $\iff \chi(H) = 4$;

- $\beta(H) = 4$ and $\omega(H) = 3$;
- every proper induced subgraph is either chordal, or has three consecutive bags of size $1 \Longrightarrow \beta$ -perfect;
- H is β -perfect $\iff \chi(H) = 4$;
- H is minimally β -imperfect $\iff \chi(H) = 3$.

Base hyperholes with $\chi=3$

•
$$\chi(H) = \max\{\omega(H), \left\lceil \frac{2|V(H)|}{k-1} \right\rceil\}$$

Base hyperholes with $\chi=3$

•
$$\chi(H) = \max\left\{3, \left\lceil \frac{2|V(H)|}{k-1} \right\rceil \right\}$$

Base hyperholes with $\chi = 3$

•
$$\chi(H) = \max\left\{3, \left\lceil \frac{2|V(H)|}{k-1} \right\rceil\right\}$$

$$|V(H)| \leq \frac{3(k-1)}{2}$$

Base hyperholes with $\chi=3$

•
$$\chi(H) = \max\left\{3, \left\lceil \frac{2|V(H)|}{k-1} \right\rceil\right\}$$

$$|V(H)| \leq \frac{3(k-1)}{2}$$

• At least two pairs of consecutive bags of size 1.

Base hyperholes with $\chi = 3$

- $\chi(H) = \max\left\{3, \left\lceil \frac{2|V(H)|}{k-1} \right\rceil\right\}$
- $|V(H)| \leq \frac{3(k-1)}{2}$

- At least two pairs of consecutive bags of size 1.
- We say that such a base hyperhole is bad.

Base hyperholes with $\chi=4$

•
$$|V(H)| = \frac{3(k-1)}{2} + 1$$

Base hyperholes with $\chi = 4$

•
$$|V(H)| = \frac{3(k-1)}{2} + 1$$

• Exactly one pair of consecutive bags of size 1.

Base hyperholes with $\chi = 4$

•
$$|V(H)| = \frac{3(k-1)}{2} + 1$$

- Exactly one pair of consecutive bags of size 1.
- We say that such a base hyperhole is *good*.

Characterisation of β -perfect base hyperholes

Lemma

A base hyperhole is β -perfect (length odd and at least 9) if and only if

it is good.

Extending this to nontrivial hyperholes

- Start with a good base hyperhole.
- We may only add vertices to *specific bags* in order to preserve β -perfection.
- ullet Anything else creates a bad base hyperhole \Longrightarrow not eta-perfect

Lemma

If H is a β -perfect hyperhole of length at least 9, then it is:

- a trivial hyperhole, or
- an "extension" of a good base hyperhole.

The characterisation

 H_2

Theorem

A hyperhole is β -perfect if and only if it contains no

- even hole
 - bad base hyperhole
 - H₁
 - H₂

as an induced subgraph.

What next?

• In a hyperhole, we insist that consecutive bags are pairwise complete. What if we relax this condition?

• Can we generalise the result that (even hole, twin wheel, cap)-free graphs are β -perfect?

What next?

• In a hyperhole, we insist that consecutive bags are pairwise complete. What if we relax this condition?

• Can we generalise the result that (even hole, twin wheel, cap)-free graphs are β -perfect?

thank you for listening!