Mathematical Analysis

L1 - Exercises: Real numbers

- 1. Find $x \in \mathbb{R}$ such as:
 - a) 2x + 3 < 3x 8
 - b) $(x+2)(x-2) \ge -3$
 - $c) \ \frac{2x-1}{x+1} \ge 1$
 - d) $(2x+1)^4(x-2)(x+3) \le 0$
- 2. Find $x \in \mathbb{R}$ such as:
 - a) $|x 3| \le 8$
 - b) |x-1||x+2| < 3
 - c) $||x| + 4| \le 5$
 - d) $(x-2)^2 \ge 4$
 - e) $|2 |x|| \ge 1$
 - f) $|x-1| > \frac{2x+1}{x+1}$ (tip:|x-a| > b)
 - $g) \left| \frac{x-1}{x+1} \right| = \frac{x-1}{x+1}$
 - h) |x| |x+1| > 1 $(tip:|x+1| < |x| 1; sol:\emptyset)$
 - i) $|x^2 2| \le 1$
 - j) ||x-1|+2|<3
 - k) $|2 x^2| \le 1 + 2x^2$.

Mathematical Analysis

L1 -Additional exercises: Real numbers

- 1. Find $x \in \mathbb{R}$ such as $x^3 + 2x^2 5x > 6$.
- 2. Show that: $0 < a < b \Rightarrow a < \sqrt{ab} < \frac{a+b}{2} < b$.
- 3. If a, b and c are real numbers, show that:
 - a) $0 < a < b \Rightarrow \frac{1}{b} < \frac{1}{a}$
 - b) $0 < a < 1 \Rightarrow a^2 < a$. What about a > 1?
- 4. Find $x \in \mathbb{R}$ such as
 - a) $|x^2 + 6x + 5| \ge 2|x 3|$ (tip: div; $x \ne 3$)
 - b) 2 < |x| + |2x + 2| < 4. (tip: consider the regions; x < -1, -1 < x < 0, x > 0;

sol: $]-2, -\frac{4}{3}[\cup]0, \frac{2}{3}[)$

- a) Show that: if $x \in \mathbb{R} \{0\}$, then $\left| x + \frac{1}{x} \right| \ge 2$
 - b) Show that if $x,y \in \mathbb{R}$,

$$\max(x,y) = \frac{1}{2}(x+y+|x-y|)$$

$$\min(x,y) = \frac{1}{2}(x+y-|x-y|)$$

- a) Show that: If $x,y \in \mathbb{R}$, then $|xy| \le x^2 + y^2$
 - b) When |x + y| = |x| + |y|?
- 7. Find —you can help yourself with a graph the set $(x,y) \in \mathbb{R}^2$ such as:
 - a) |x| = |y|
 - b) $|x \cdot y| = 2$
 - c) $|x| \le |y|$
 - d) $|x| |y| \ge 2$
 - e) $|x| + |y| \le 1$
 - f) $\max(|x|, |y|) < 2$