ISI Mock 1 PSB

April 5, 2024

Group A

- 1. Let A and B be $n \times n$ real matrices. Let I_n denote the identity matrix of order n. Show that the matrix $\begin{bmatrix} A & I_n \\ I_n & B \end{bmatrix}$ has rank n if and only if A is nonsingular and $B = A^{-1}$.
- 2. Let $f:(-1,1)\to R$ be a continuous function with the property that $f(x)=f(x^4)$ for all x and $f(\frac{1}{2})=a$. Show that the only function f satisfying this property is the constant function f(x)=a
- 3. Find the total number of isosceles triangles such that the length of each side is a positive integer less than or equal to 40. (Here equilateral triangles are also counted as isosceles triangles.)

Group B

1. Suppose that $X_1, X_2, ...$ are independent and identically distributed N(0,1) random variables. Let

$$Y_i = \begin{cases} X_i - 1 & X_i \le 0 \\ X_i & X_i > 0 \end{cases}; i = 1, 2, \dots$$

- (a) Find the mean and variance of Y_1 . (b) Find constants α_n and β_n , depending on n, such that $\alpha_n \sum_{i=1}^n Y_i \beta_n$ converges in distribution to Z as $n \to \infty$, where Z has a standard normal distribution.
- 2. A fair coin is tossed repeatedly and let T be the number of tosses till two consecutive tails are observed for the first time. (a) Show that $E(T \mid tail \text{ is observed in the first toss}) = 2 + \frac{1}{2} E(T)$. (b) Find a similar formula for $E(T \mid head \text{ is observed in the first toss})$. (c) Compute E(T).
- 3. Let U and V be two dependent discrete random variables, each being uniformly distributed on 1, 2, ..., k. Let W be another random variable having the same uniform distribution but independent of U and V. Define a random variable X = (V + W) mod(k). Show that (a) X is uniformly distributed on 0, 1, 2, ..., k 1, (b) U and X are independent.
- 4. Let X be a random variable having a density $\frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 0, $\theta > 0$. Consider $H_0: \theta = 1$ vs. $H_1: \theta = 2$. Let ω_1 and ω_2 be two critical regions given by ω_1 : $\sum_{i=1}^n X_i \ge C_1$ and ω_2 : (number of X_i 's ≥ 2) $\ge C_2$. (a) Determine approximately the values of C_1 and C_2 for large n so that both tests are of size α . (b) Show that the powers of both tests tend to 1 as $n \to \infty$.
- 5. Let $Y_{(1)} < Y_{(2)} < \cdots < Y_{(n)}$ be the ordered random variables of a sample of size n from the rectangular $(0,\theta)$ distribution with θ unknown, $0 < \theta < \infty$. By a careless mistake the observations $Y_{(k+1)}, \cdots, Y_{(n)}$ were recorded incorrectly and so they were discarded subsequently (Here $1 \le k < n$). (a) Show that the conditional distribution of $Y_{(1)}, \cdots, Y_{(k-1)}$ given $Y_{(k)}$ is independent of θ . (b) Hence, or otherwise, obtain the maximum likelihood estimator of θ and show that it is a function of $Y_{(k)}$.
- 6. A population contains 10 units, labelled $U_1, U_2, ..., U_{10}$. The value, of a character Y under study, for U_i is Y_i ($1 \le i \le 10$). In order to estimate the population mean, \overline{Y} , a sample of size 4 is drawn in the following manner: (i) a simple random sample of size 2 is drawn without replacement from the units $U_2, U_3, ..., U_9$; (ii) the sample drawn in step (i) is augmented by the units U_1 and U_{10} . Based on the above sample in (ii), suggest an unbiased estimator of \overline{Y} and obtain its variance.