January 3, 2017 2:58 PM

1. Structure:

-> functions that can be applied to objects

en. XN(10,1) ~ morm() or f, t, chisq, cauchy chrom()

fnom()

gnom ().

ex. in stata, reg y x function.

in R, everything is object, lm(y-x)
object.

ex. mom () is a function.

help (morm) gives information you need.	
$\gamma_{norm}(n, mean = 0, Sd = 1)$	
organient with default volue.	
chorm has more argument, by=FALSE. Saves time computing by-cler	1511 -
objective.	
ex. Curve (chorm (-4, 4))	
ex. Curve (chorm (-4, 4)) function function.	
ex. holf (flot) tolls you how to graph.	
ex table function Tab since of excument	
ex. type function, Tab gives all argument.	
ex. y as time series.	
y < arima. sim(n=50, model=list(ar=.9))	
To know type of object, use is(70), is (y).	
•	
ex. A < mom(so)	

is(x) => "numericid", "vector"

is (y) = "ts", "structure", "ollclass", "vector"

Both are collection of elements, but is (y) has more information.

ex. states, frequency.

Once you have objects, you have methods.

) Print.

rtype object itself ≈ print it.

rtype frint ques information.

generic function.

clepault value => print. clefault

when outling frint (x)

> print. default (%)

but, frint (y),

L>ybrint.ts(y).

function name of the class.

ex. $y = \beta_0 + \beta_1 z + u$.

res = lm(y=z).

Saving regression into object res.

is (res) => "lm", "oldclass"

has all information of vegression.

print(res)

→ print. bn (res).

right is also generic function.

ex plot(x) prints dots. > plot. default(x)

blut (y) blots time senes in lines. > blot. ts(y).

plot (res) -> plot. Im(res).

La four things.

use plot (res, 4) (or 1,2,3) fractuce single grouph.

n Swamary is also generic function.

ex. Summary $(x) \rightarrow summary.default(x)$.

Summary (res) -> summary, 4m(res).

~ Particular Object.

1) Vector

Lection of things.

ex. N= C(1,2,3). Creates column vector (1,2,3)

y = c("one", "two", "three").

character.

x ≤ seg(1,100, by=0.5)

frequency. or use length-cut = 200

 $\mathcal{X} \leftarrow 1:100$ is same as Seq(1:100).

Subsetting:

ex 2[5] gives 5th element of x.

x[c(1,2,5,7)] gives 1st, 2nd, 5th, 7th element of x.

OY,

which <- ((1,2,5,2)

XI-which]

But,

$$\chi$$
 [which $\leftarrow c(1,2,5,7)$]

not same as "=", it saves object to which at same time.

vlogical elements

ex. 7<0 check <0 for each element.

$$X[X<0]$$
 removes of false elements. Front only true ones. $X[X<0]$ & $X>-1]$ combines bysical elements.

Income for individuals other than 40.

2) Matrix

collection of elements

attributes "clim"

C(nrow, nast)

ex matrix (mom(20), 4,5). create 4x5 matrix.

print (matrix) -> print, matrix (matrix).

Computer closs not save mutrix.

attr(x, "dim") gives CC4,5).

or, use dim(x).

ncolin and nowice gre # of now/astumn.

now, you can use subsetting,

$\dim(\alpha) \subset i \supset 4$
dim (x) [=] ->5.
N[1,3] → 1st now, 3rd column.
$\chi[c(l,2),3] \rightarrow l^{st}/2^{nd}nm$
N[1,] att of 1st now
$\chi[:]$ and of I^{st} col.