$12n_{0295} (K12n_{0295})$

 $I_1^v = \langle a, b + v, v^2 - v + 1 \rangle$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.06469 \times 10^{32} u^{66} - 1.40021 \times 10^{32} u^{65} + \dots + 2.98795 \times 10^{31} b - 4.19610 \times 10^{32},$$

$$-1.94960 \times 10^{31} u^{66} - 3.90032 \times 10^{31} u^{65} + \dots + 2.98795 \times 10^{31} a - 2.08028 \times 10^{32}, \ u^{67} - u^{66} + \dots - 4u + 12u^2 = \langle u^3 a - u^2 a + au - u^2 + b - 2a + u - 1, \ u^3 a + 2a^2 + 2au - u^2 - 2, \ u^4 + 2u^2 + 2 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 77 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 1.06 \times 10^{32} u^{66} - 1.40 \times 10^{32} u^{65} + \dots + 2.99 \times 10^{31} b - 4.20 \times 10^{32}, \ -1.95 \times 10^{31} u^{66} - 3.90 \times 10^{31} u^{65} + \dots + 2.99 \times 10^{31} a - 2.08 \times 10^{32}, \ u^{67} - u^{66} + \dots - 4u + 4 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.652488u^{66} + 1.30535u^{65} + \dots + 3.13714u + 6.96225 \\ -3.56329u^{66} + 4.68621u^{65} + \dots - 16.7518u + 14.0434 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.652488u^{66} + 1.30535u^{65} + \dots + 3.13714u + 6.96225 \\ -2.60763u^{66} + 2.64905u^{65} + \dots - 11.5304u + 6.21206 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.25872u^{66} + 3.19768u^{65} + \dots - 14.7929u + 8.57622 \\ 2.29504u^{66} - 0.672961u^{65} + \dots + 9.68506u - 2.51477 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0915661u^{66} - 1.99663u^{65} + \dots + 2.63606u - 7.72366 \\ -4.93115u^{66} + 4.21632u^{65} + \dots - 21.8384u + 11.2155 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7} - 2u^{5} - 2u^{3} \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$\begin{pmatrix} 0.709744u^{66} - 1.32832u^{65} + \dots + 4.54050u - 3.81522 \\ -5.57978u^{66} + 5.85739u^{65} + \dots - 26.2200u + 17.2657 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3.44470u^{66} 8.34775u^{65} + \cdots + 29.7826u 28.7599$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{67} + 38u^{66} + \dots - 4u - 1$
c_2, c_6	$u^{67} - 2u^{66} + \dots + 6u - 1$
<i>c</i> ₃	$u^{67} + 2u^{66} + \dots + 734u - 173$
c_4, c_8	$u^{67} - u^{66} + \dots - 52u - 548$
c_5, c_9	$u^{67} + u^{66} + \dots - 4u - 4$
c_7, c_{12}	$u^{67} - 3u^{66} + \dots - 15u - 13$
c_{10}	$u^{67} - 31u^{66} + \dots - 80u + 16$
c_{11}	$u^{67} - 23u^{66} + \dots + 3501u - 169$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{67} - 10y^{66} + \dots + 84y - 1$
c_2, c_6	$y^{67} + 38y^{66} + \dots - 4y - 1$
<i>c</i> ₃	$y^{67} - 58y^{66} + \dots - 506856y - 29929$
c_4, c_8	$y^{67} - y^{66} + \dots - 3289680y - 300304$
c_5, c_9	$y^{67} + 31y^{66} + \dots - 80y - 16$
c_7, c_{12}	$y^{67} - 23y^{66} + \dots + 3501y - 169$
c_{10}	$y^{67} + 15y^{66} + \dots - 3328y - 256$
c_{11}	$y^{67} + 57y^{66} + \dots + 203921y - 28561$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.293686 + 0.958960I		
a = -0.848658 - 0.410982I	3.60658 - 1.32410I	10.41239 + 2.57758I
b = -1.26966 - 0.89610I		
u = -0.293686 - 0.958960I		
a = -0.848658 + 0.410982I	3.60658 + 1.32410I	10.41239 - 2.57758I
b = -1.26966 + 0.89610I		
u = -0.797556 + 0.595964I		
a = 0.370623 - 1.314420I	-8.62301 + 6.67427I	0 5.42994I
b = -0.92158 - 2.06820I		
u = -0.797556 - 0.595964I		
a = 0.370623 + 1.314420I	-8.62301 - 6.67427I	0. + 5.42994I
b = -0.92158 + 2.06820I		
u = 0.390812 + 0.942541I		
a = -0.614053 - 0.918919I	2.87894 - 3.62568I	4.00000 + 3.66828I
b = -0.27889 - 2.74791I		
u = 0.390812 - 0.942541I		
a = -0.614053 + 0.918919I	2.87894 + 3.62568I	4.00000 - 3.66828I
b = -0.27889 + 2.74791I		
u = 0.369468 + 0.905859I		
a = -1.161530 + 0.100804I	2.70033 + 0.62241I	6.92862 + 0.I
b = 1.70277 + 0.10484I		
u = 0.369468 - 0.905859I		
a = -1.161530 - 0.100804I	2.70033 - 0.62241I	6.92862 + 0.I
b = 1.70277 - 0.10484I		
u = -0.625687 + 0.815726I		
a = -0.866747 + 0.736378I	-4.18859 + 2.44849I	0
b = 0.96397 + 1.91289I		
u = -0.625687 - 0.815726I		
a = -0.866747 - 0.736378I	-4.18859 - 2.44849I	0
b = 0.96397 - 1.91289I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.827360 + 0.500431I		
a = -0.371421 - 1.339800I	-8.90984 + 0.43271I	-1.022530 + 0.496680I
b = 0.97307 - 1.82972I		
u = 0.827360 - 0.500431I		
a = -0.371421 + 1.339800I	-8.90984 - 0.43271I	-1.022530 - 0.496680I
b = 0.97307 + 1.82972I		
u = -0.828153 + 0.492617I		
a = -1.081770 + 0.896752I	-8.86607 - 3.17955I	-0.988573 + 0.950602I
b = 1.05437 + 1.68616I		
u = -0.828153 - 0.492617I		
a = -1.081770 - 0.896752I	-8.86607 + 3.17955I	-0.988573 - 0.950602I
b = 1.05437 - 1.68616I		
u = 0.773593 + 0.535367I		
a = 0.820590 - 0.525886I	-4.83958 - 1.65195I	2.33033 + 2.39714I
b = 0.506080 + 0.187810I		
u = 0.773593 - 0.535367I		
a = 0.820590 + 0.525886I	-4.83958 + 1.65195I	2.33033 - 2.39714I
b = 0.506080 - 0.187810I		
u = 0.846926 + 0.407345I		
a = 1.10299 + 0.93182I	-7.51011 + 10.16540I	0.84901 - 5.51887I
b = -1.17325 + 1.47521I		
u = 0.846926 - 0.407345I		
a = 1.10299 - 0.93182I	-7.51011 - 10.16540I	0.84901 + 5.51887I
b = -1.17325 - 1.47521I		
u = -0.808297 + 0.434822I		
a = -0.798749 - 0.636743I	-4.26028 - 4.81071I	3.21364 + 2.49973I
b = -0.374659 + 0.223488I		
u = -0.808297 - 0.434822I		
a = -0.798749 + 0.636743I	-4.26028 + 4.81071I	3.21364 - 2.49973I
b = -0.374659 - 0.223488I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.393391 + 1.042260I		
a = -0.204574 + 0.462109I	4.35771 + 3.46092I	0
b = -0.204935 - 0.456540I		
u = -0.393391 - 1.042260I		
a = -0.204574 - 0.462109I	4.35771 - 3.46092I	0
b = -0.204935 + 0.456540I		
u = -0.102031 + 1.124100I		
a = -0.074288 + 0.720806I	1.05983 - 2.64924I	0
b = -0.252101 + 1.022590I		
u = -0.102031 - 1.124100I		
a = -0.074288 - 0.720806I	1.05983 + 2.64924I	0
b = -0.252101 - 1.022590I		
u = 0.499688 + 1.012210I		
a = 0.890259 - 0.218223I	1.97793 - 2.12988I	0
b = 0.757089 - 0.307916I		
u = 0.499688 - 1.012210I		
a = 0.890259 + 0.218223I	1.97793 + 2.12988I	0
b = 0.757089 + 0.307916I		
u = 0.548320 + 0.997805I		
a = 0.696251 + 0.717636I	1.30273 - 5.96282I	0
b = -2.01408 + 2.32374I		
u = 0.548320 - 0.997805I		
a = 0.696251 - 0.717636I	1.30273 + 5.96282I	0
b = -2.01408 - 2.32374I		
u = -0.003645 + 1.165290I		
a = 1.040750 + 0.337542I	-2.94562 - 1.34587I	0
b = -0.279122 + 0.832538I		
u = -0.003645 - 1.165290I		
a = 1.040750 - 0.337542I	-2.94562 + 1.34587I	0
b = -0.279122 - 0.832538I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.298119 + 0.774004I		
a = 0.239287 + 0.602551I	0.401806 - 1.265690I	4.47035 + 5.10756I
b = -0.040611 + 0.560440I		
u = 0.298119 - 0.774004I		
a = 0.239287 - 0.602551I	0.401806 + 1.265690I	4.47035 - 5.10756I
b = -0.040611 - 0.560440I		
u = -0.545451 + 1.036140I		
a = 0.346086 - 0.872759I	1.87665 + 7.41999I	0
b = -0.02443 - 2.31994I		
u = -0.545451 - 1.036140I		
a = 0.346086 + 0.872759I	1.87665 - 7.41999I	0
b = -0.02443 + 2.31994I		
u = -0.414664 + 1.113320I		
a = -0.322911 - 0.117417I	4.31530 + 3.66992I	0
b = -0.009462 - 1.064340I		
u = -0.414664 - 1.113320I		
a = -0.322911 + 0.117417I	4.31530 - 3.66992I	0
b = -0.009462 + 1.064340I		
u = 0.563544 + 0.577917I		
a = 1.109400 + 0.643464I	0.05661 + 1.47287I	-0.156482 - 0.461455I
b = -0.66998 + 2.28277I		
u = 0.563544 - 0.577917I		
a = 1.109400 - 0.643464I	0.05661 - 1.47287I	-0.156482 + 0.461455I
b = -0.66998 - 2.28277I		
u = 0.123549 + 1.190490I		
a = -1.043430 + 0.330545I	-2.02431 + 7.56304I	0
b = 0.286253 + 1.175820I		
u = 0.123549 - 1.190490I		
a = -1.043430 - 0.330545I	-2.02431 - 7.56304I	0
b = 0.286253 - 1.175820I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.670786 + 1.018810I		
a = 1.078320 - 0.268018I	-7.35703 - 1.17039I	0
b = -0.60969 - 1.60312I		
u = -0.670786 - 1.018810I		
a = 1.078320 + 0.268018I	-7.35703 + 1.17039I	0
b = -0.60969 + 1.60312I		
u = 0.431796 + 1.142180I		
a = 0.842437 - 0.007900I	2.39569 - 1.20414I	0
b = 0.311709 - 0.277350I		
u = 0.431796 - 1.142180I		
a = 0.842437 + 0.007900I	2.39569 + 1.20414I	0
b = 0.311709 + 0.277350I		
u = 0.632532 + 1.049100I		
a = -0.410549 + 0.627513I	-3.30409 - 3.65847I	0
b = -1.004620 + 0.513716I		
u = 0.632532 - 1.049100I		
a = -0.410549 - 0.627513I	-3.30409 + 3.65847I	0
b = -1.004620 - 0.513716I		
u = -0.491913 + 1.123810I		
a = 0.487065 - 0.297919I	3.73381 + 3.87247I	0
b = 0.64193 - 2.20537I		
u = -0.491913 - 1.123810I		
a = 0.487065 + 0.297919I	3.73381 - 3.87247I	0
b = 0.64193 + 2.20537I		
u = 0.442549 + 1.167140I		
a = -0.668713 - 0.591003I	2.29737 - 6.96304I	0
b = -0.37959 - 2.23277I		
u = 0.442549 - 1.167140I		
a = -0.668713 + 0.591003I	2.29737 + 6.96304I	0
b = -0.37959 + 2.23277I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.649361 + 1.084610I		
a = -1.014350 - 0.308144I	-7.15571 - 5.94368I	0
b = 0.43011 - 1.87121I		
u = 0.649361 - 1.084610I		
a = -1.014350 + 0.308144I	-7.15571 + 5.94368I	0
b = 0.43011 + 1.87121I		
u = -0.646127 + 1.088570I		
a = -0.663411 + 0.842579I	-7.07599 + 8.68070I	0
b = 0.88041 + 3.02440I		
u = -0.646127 - 1.088570I		
a = -0.663411 - 0.842579I	-7.07599 - 8.68070I	0
b = 0.88041 - 3.02440I		
u = -0.570732 + 0.461256I		
a = 1.41705 - 0.34329I	0.23654 - 2.91363I	0.64103 + 4.67783I
b = -0.533167 - 0.314158I		
u = -0.570732 - 0.461256I		
a = 1.41705 + 0.34329I	0.23654 + 2.91363I	0.64103 - 4.67783I
b = -0.533167 + 0.314158I		
u = -0.617183 + 1.107590I		
a = 0.503682 + 0.559159I	-2.25041 + 10.15140I	0
b = 1.252870 + 0.595770I		
u = -0.617183 - 1.107590I		
a = 0.503682 - 0.559159I	-2.25041 - 10.15140I	0
b = 1.252870 - 0.595770I		
u = 0.713940 + 0.055087I		
a = -0.56556 - 1.40057I	-0.93797 + 2.72253I	-0.22585 - 4.76234I
b = 0.473278 - 0.746286I		
u = 0.713940 - 0.055087I		
a = -0.56556 + 1.40057I	-0.93797 - 2.72253I	-0.22585 + 4.76234I
b = 0.473278 + 0.746286I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621904 + 1.131010I		
a = 0.619371 + 0.849174I	-5.3362 - 15.6199I	0
b = -0.63824 + 3.33873I		
u = 0.621904 - 1.131010I		
a = 0.619371 - 0.849174I	-5.3362 + 15.6199I	0
b = -0.63824 - 3.33873I		
u = -0.622131 + 0.231767I		
a = 0.260574 - 1.086710I	1.188580 + 0.490539I	2.76633 + 0.06990I
b = -1.188230 - 0.194967I		
u = -0.622131 - 0.231767I		
a = 0.260574 + 1.086710I	1.188580 - 0.490539I	2.76633 - 0.06990I
b = -1.188230 + 0.194967I		
u = 0.484230 + 0.413310I		
a = 0.14617 + 1.58952I	0.34718 - 1.92926I	-0.50268 + 2.96380I
b = -0.135120 + 0.584183I		
u = 0.484230 - 0.413310I		
a = 0.14617 - 1.58952I	0.34718 + 1.92926I	-0.50268 - 2.96380I
b = -0.135120 - 0.584183I		
u = -0.572521		
a = 0.479617	1.36152	7.18480
b = -0.464996		

$$II. \\ I_2^u = \langle u^3a - u^2a + au - u^2 + b - 2a + u - 1, \ u^3a + 2a^2 + 2au - u^2 - 2, \ u^4 + 2u^2 + 2 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3}a + u^{2}a - au + u^{2} + 2a - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3}a + 2u^{2}a - au + u^{2} + 2a - u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{3} + a + u \\ u^{2}a + u^{3} + u^{2} + 2a + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u^{2}a + u^{3} + u^{2} + 2a + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + a + u + 1 \\ u^{2}a + u^{3} + 2u^{2} + 2a + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4au + 4u^2 + 16$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{2}	$(u^2 - u + 1)^4$
c_3, c_6	$(u^2 + u + 1)^4$
c_4, c_8	$(u^4 - 2u^2 + 2)^2$
c_5, c_9	$(u^4 + 2u^2 + 2)^2$
	$(u-1)^{8}$
c_{10}	$(u^2 - 2u + 2)^4$
c_{11}, c_{12}	$(u+1)^8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6	$(y^2+y+1)^4$
c_4, c_8	$(y^2 - 2y + 2)^4$
c_5,c_9	$(y^2 + 2y + 2)^4$
c_7, c_{11}, c_{12}	$(y-1)^8$
c_{10}	$(y^2+4)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455090 + 1.098680I		
a = 0.833702 - 0.109759I	4.11234 - 5.69375I	10.00000 + 7.46410I
b = 1.354400 + 0.125259I		
u = 0.455090 + 1.098680I		
a = -0.511905 - 0.667128I	4.11234 - 1.63398I	10.00000 + 0.53590I
b = -1.16589 - 1.77772I		
u = 0.455090 - 1.098680I		
a = 0.833702 + 0.109759I	4.11234 + 5.69375I	10.00000 - 7.46410I
b = 1.354400 - 0.125259I		
u = 0.455090 - 1.098680I		
a = -0.511905 + 0.667128I	4.11234 + 1.63398I	10.00000 - 0.53590I
b = -1.16589 + 1.77772I		
u = -0.455090 + 1.098680I		
a = -0.833702 - 0.109759I	4.11234 + 5.69375I	10.00000 - 7.46410I
b = 0.377654 - 0.874741I		
u = -0.455090 + 1.098680I		
a = 0.511905 - 0.667128I	4.11234 + 1.63398I	10.00000 - 0.53590I
b = -0.56616 - 2.77772I		
u = -0.455090 - 1.098680I		
a = -0.833702 + 0.109759I	4.11234 - 5.69375I	10.00000 + 7.46410I
b = 0.377654 + 0.874741I		
u = -0.455090 - 1.098680I		
a = 0.511905 + 0.667128I	4.11234 - 1.63398I	10.00000 + 0.53590I
b = -0.56616 + 2.77772I		

III.
$$I_1^v = \langle a, \ b+v, \ v^2-v+1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -v \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4v + 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6	$u^2 - u + 1$
c_2	$u^2 + u + 1$
c_4, c_5, c_8 c_9, c_{10}	u^2
c_7,c_{11}	$(u+1)^2$
c_{12}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6	$y^2 + y + 1$
c_4, c_5, c_8 c_9, c_{10}	y^2
c_7, c_{11}, c_{12}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.500000 + 0.866025I		
a = 0	1.64493 - 2.02988I	6.00000 + 3.46410I
b = -0.500000 - 0.866025I		
v = 0.500000 - 0.866025I		
a = 0	1.64493 + 2.02988I	6.00000 - 3.46410I
b = -0.500000 + 0.866025I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^5)(u^{67} + 38u^{66} + \dots - 4u - 1)$
c_2	$((u^2 - u + 1)^4)(u^2 + u + 1)(u^{67} - 2u^{66} + \dots + 6u - 1)$
<i>c</i> ₃	$(u^2 - u + 1)(u^2 + u + 1)^4(u^{67} + 2u^{66} + \dots + 734u - 173)$
c_4, c_8	$u^{2}(u^{4} - 2u^{2} + 2)^{2}(u^{67} - u^{66} + \dots - 52u - 548)$
c_5,c_9	$u^{2}(u^{4} + 2u^{2} + 2)^{2}(u^{67} + u^{66} + \dots - 4u - 4)$
c_6	$ (u^2 - u + 1)(u^2 + u + 1)^4(u^{67} - 2u^{66} + \dots + 6u - 1) $
<i>C</i> ₇	$((u-1)^8)(u+1)^2(u^{67}-3u^{66}+\cdots-15u-13)$
c_{10}	$u^{2}(u^{2} - 2u + 2)^{4}(u^{67} - 31u^{66} + \dots - 80u + 16)$
c_{11}	$((u+1)^{10})(u^{67}-23u^{66}+\cdots+3501u-169)$
c_{12}	$((u-1)^2)(u+1)^8(u^{67}-3u^{66}+\cdots-15u-13)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^5)(y^{67} - 10y^{66} + \dots + 84y - 1)$
c_2, c_6	$((y^2 + y + 1)^5)(y^{67} + 38y^{66} + \dots - 4y - 1)$
c_3	$((y^2 + y + 1)^5)(y^{67} - 58y^{66} + \dots - 506856y - 29929)$
c_4, c_8	$y^{2}(y^{2}-2y+2)^{4}(y^{67}-y^{66}+\cdots-3289680y-300304)$
c_5, c_9	$y^{2}(y^{2} + 2y + 2)^{4}(y^{67} + 31y^{66} + \dots - 80y - 16)$
c_7, c_{12}	$((y-1)^{10})(y^{67}-23y^{66}+\cdots+3501y-169)$
c_{10}	$y^2(y^2+4)^4(y^{67}+15y^{66}+\cdots-3328y-256)$
c_{11}	$((y-1)^{10})(y^{67} + 57y^{66} + \dots + 203921y - 28561)$