In class, we proved the following.

Theorem A. If $(\vec{u}_1, ..., \vec{u}_p)$ is a linearly independent list of p vectors in a subspace \mathbf{V} of \mathbf{R}^n and $(\vec{w}_1, ..., \vec{w}_q)$ is a spanning list of q vectors in \mathbf{V} , then $p \le q$. [Linearly independent lists are never longer than spanning lists.]

We used this theorem to prove that any two bases for a subspace V must have the same number of vectors. We define this number as the dimension of V, written $\dim(V)$.

Now prove the following.

<u>Theorem B.</u> If V is a subspace of \mathbb{R}^n , $(\vec{v}_1, ..., \vec{v}_m)$ is a linearly independent list of m vectors in V and $m = \dim(V)$, then $(\vec{v}_1, ..., \vec{v}_m)$ is a basis for V.

Your objective here is to show that $(\vec{v}_1, ..., \vec{v}_m)$ spans V. Toward this end, suppose to the contrary that $(\vec{v}_1, ..., \vec{v}_m)$ does <u>not</u> span V. From this, obtain a contradiction. Use basic definitions and Theorem A.

If $(\vec{v}_1, ..., \vec{v}_m)$ does not span V, there must be a vector \vec{w} in V that is not a linear combination of the vectors in $(\vec{v}_1, ..., \vec{v}_m)$. Therefore, $(\vec{v}_1, ..., \vec{v}_m, \vec{w})$ is a linearly independent list in V since \vec{w} is not a linear combination of the vectors in this list that precede it. But, this new list has one more vector than in a basis for V which is a spanning list of m vectors. This contradicts Theorem A since we have produced a linearly independent list in V that is longer than a spanning list in V. We conclude that $(\vec{v}_1, ..., \vec{v}_m)$ spans V.

There is a companion to Theorem B. Prove it.

<u>Theorem C</u>. If V is a subspace of \mathbb{R}^n , $(\vec{w}_1, ..., \vec{w}_m)$ is a spanning list of m vectors in V and $m = \dim(V)$, then $(\vec{w}_1, ..., \vec{w}_m)$ is a basis for V.

Your objective here is to show that $(\vec{w}_1, ..., \vec{w}_m)$ is linearly independent in V. Toward this end, suppose to the contrary that $(\vec{w}_1, ..., \vec{w}_m)$ is <u>not</u> linearly independent in V. From this, obtain a contradiction. Use basic definitions and Theorem A.

If $(\vec{w}_1, ..., \vec{w}_m)$ is not linearly independent in V, there must be a vector \vec{w}_k in this list that is a linear combination of the others. Its removal from the list leaves a list one vector shorter but a list that still spans V. This is a list that is shorter than a basis which linearly independent. This is in contradiction to Theorem A. We conclude that $(\vec{v}_1, ..., \vec{v}_m)$ is linearly independent in V.