Contadores assíncronos

- Disciplina: Técnicas Digitais
- Aula FlipFlops
- Bibliografia Básica:
 - Sistemas Digitais: Princípios e Aplicações, Ronald
 J. Tocci e Neal S. Widmer

Transferencia entre Registradores

- FF: armazena 1 BIT
- Registrador: conjunto de FFs

FIGURA 5-40 Operação de transferência síncrona de dados realizada por diversos tipos de FFs com clock.

FIGURA 5-41 Operação de transferência assíncrona de dados

Sisti Prin Aplicações Ronald J. Tocci e Neal S. Widmer

FIGURA 5-42 **TRANSFERÊNCIA PARALELA** do conteúdo do registrador *X* para o registrador *Y*.

Capítulo 5

FIGURA 5-44 Transferência serial de dados de um registrador X para um registrador Y.

Divisão de Frequência e Contagem

FIGURA 5-45 Flipflops *J-K* conectados para formar um contador binário de três bits (módulo 8).

Cada FF divide a Frequência de entrada por 2

Divisão de Frequência e Contagem – contador ASSINCRONO

 O circuito anterior pode funcionar como contador binario -.

2 ¹	20	
Q_1	Q_0	
0	0	Antes de aplicar os pulsos de clock
0	1	Após o pulso #1
1	0	Após o pulso #2
1	1	Após o pulso #3
0	0	Após o pulso #4
0	1	Após o pulso #5
1	0	Após o pulso #6
1	1	Após o pulso #7
0	0	Após o pulso #8 retorna para 000
0	1	Após o pulso #9
1	0	Após o pulso #10
1	1	Após o pulso #11
	Q ₁ 0 0 1 1	Q ₁ Q ₀ 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0

Diagrama de transição de estados

Divisão de Frequência e Contagem

Utilizando N FFs, temos a frequência de saída No ultimo FF:

Fout=Fin/2^N ou Fout=Fin/modulo da contagem

- Módulo do contador:
 - Indica o numero de estados da sequência binária
 - N FFs -> máximo de 2^N contagens

Contadores Assíncronos

Recicla para 0000

Contadores Assíncronos

Divisor de frequência por 2 em cada FF

Para qualquer contador, a saída do ultimo FF divide a frequencia do clock pelo módulo de contagem.

Contadores Assíncronos: Modulo de contagem < 2^N

Diagrama de transição de estados

Exemplo

Construa um contador de módulo 10 que contará de 0000 até 1001 (9 em decimal).

Solução:

- Número de FF necessários: 4
- Digrama de estados
- Implementação do circuito: Ir para 0000 quando a contagem chegar em 1010

Exemplo

Digrama de estados

 Ir para 0000 quando a contagem chegar em 1010 conectando FF D e B na entrada da porta nand.

Exercício

- Fazer um contador assíncrono que conte de 0 a 6.
 - Faça o diagrama de estados
 - Desenho o Circuito
- Fazer um contador assíncrono que conte de 1 a 6.
 - Faça o diagrama de estados
 - Desenho o Circuito

Contadores Assíncronos Decrescentes

 O circuito utilizado é o mesmo do crescente, porém tomamos as saídas barradas.

CI's de contadores

- Existem vários CI's TTL e CMOS de contadores assíncronos.
- Exemplo de um TTL 74LS293.

CI's de contadores

Internamente:

74LS293

conectadas internamente no nível ALTO.

Ilustração 2 Diagrama lógico para o CI contador assíncrono 74LS293

Fazer os EXERCICIOS

(a)

Atraso de Propagação em contadores assíncronos

Efeitos dos atrasos de propagação dos FFs para diferentes frequências de pulsos de entrada.

$$T_{clock} \ge N.t_{pd}$$