

6 Melrose Road, Muizenberg Cape Town 7945, South Africa Tel: +27 (0)21 787 9320 Fax: +27 (0)21 7879321 Email: info@aims.ac.za Web: www.aims.ac.za

Postgraduate Report Form

Name of student:	Alice Na	nyanzi	S	udent number	: 2	0350201	
Degree: Research masters in Mathematics			itics F	Full time / Part Time: Full time			
Supervisor:	Dr. Fran	ck Kalala	Mutombo/ D	r. Simukai Utete	9		
Co-supervisor:							
Co-supervisor: Title of research p	roject: <u>D</u>)ynamic p	rocesses on	complex netwo	rks a	nd applications	

Research aims and plan for the past six months:

- Complete the implementation and documentation of accounting for long range interactions in diffusion over networks.
- Implement long range interactions in the random walker algorithm for image segmentation and ascertain whether a better image segmentation can be obtained by this method.
- Identify a centrality measure that can be used to identify the most important financial institution (too interconnected to fail) in a financial network. Possible idea is to introduce a new centrality measure based on the generalized degree (which accounts for long range interactions) and then apply it to the ranking of financial institutions based on this centrality measure.
- Extending the concept of Laplacian centrality of a node to Laplacian centrality of an edge. Ascertain whether the edge Laplacian centrality can aid in the partitioning of networks.

Progress over the last six months:

- Completed the implementation and documentation of long-range interactions in diffusion over networks which involved a simulation of heat diffusion over a lattice. Results were compared for direct interactions only as well as the inclusion of long-range interactions. It was observed that the accounting for long range interactions accelerated the rate of diffusion over the network.
- Possible extension of the concept of k-path Laplacian matrices to weighted networks, computed the number of k-hopped connected components. Work in progress.
- Implemented the random walker algorithm for image segmentation that involved long-range interactions. However, the analysis of results is underway to ascertain the impact of this method over the existing random walker based image segmentation methods.

- Additional Activities:

- Attended the Berlin Mathematical School summer school "Probabilistic and Statistical methods for networks" from 21 August 03 September in Berlin, Germany. I gave a talk entitled "The Laplacian matrix of a network and Applications". I received constructive feedback for my current work. I was also able to interact with participants working in different fields of network theory, thus sharing knowledge, insights, and experiences in research.
- Participated in the Deep Learning Indaba, 10-15 September held at the University of the Witwatersrand. During the Indaba, I had the opportunity to understand the basics of machine learning, the applications, algorithms used as well as network with other participants, lecturers and sponsors.
- I was a trainer in the Africa code week held at the African Institute for Mathematical Sciences where we imparted coding skills to students from different schools from the western cape.

	4/3
Reasons for unsatisfactory progress:	

Research aims and plan for the next six months:

- Studying robustness of a network on both random and targeted edge removal. In targeted edge removal, we consider the removal of edges in order of their Laplacian centrality rankings.
- Complete the analysis of results of long-range interactions in the random walker algorithm for image segmentation.
- Develop an algorithm for approximating the generalized degree for larger networks.
- Accounting for the effect of noise on consensus in networks. First, accounting for only direct interactions among agents. Second, account for both direct and long-range interactions among agents in reaching consensus.
- Impact of long range interactions on communicability in networks.

To be completed by the supervisor							
Progress: Exceptional / Very g Comments by the supervisor:	ood Good Satisfactory / Unsatis	factory					
Will the degree be completed $\frac{1}{2}$	n the time frame as originally plan	ned? If i	not, furnish reason				
Signature of Student:	PAico	Date:	01/12/17				
Signature of Supervisor:	Stete	Date:	01/12/17				

3/