Package 'iNEXT.seq'

December 15, 2023		
Type Package		
Title Interpolation and Extrapolation for phylogenetic beta diversity and dissimilarity measure for genetic sequence data		
Version 0.1.0		
Author YaYun Teng		
Maintainer YaYun Teng <jewel860911@gmail.com></jewel860911@gmail.com>		
Description iNEXT.seq provides the function to calculate beta diversity and dissimilarity measure for multiple assemblages.		
Depends R (>= 4.0)		
Imports tidyverse, magrittr, tidyr, ggplot2, abind, ape, ade4, phytools, phyclust, tidytree, colorRamps, future.apply, iNEXT.3D, iNEXT.beta3D		
Remotes AnneChao/iNEXT.beta3D		
Encoding UTF-8		
LazyData true		
RoxygenNote 7.2.3		
R topics documented:		
gghierPD 2 ggiNEXTseq 2 hierPD 3 iNEXTseq 4 tongue_cheek 5 tongue cheek tree 6		

2 ggiNEXTseq

Index 7

gghierPD ggplot2 extension for an hierPD object

Description

gghierPD: the ggplot extension for hierPD object to plot order q against to hierarchical phylogenetic diversity decomposition and dissimilarity measure.

Usage

```
gghierPD(output, method = "A")
```

Arguments

output the output from hierPD.

method (method = "A") diversity(alpha, gamma); (method = "B") beta diversity; (method

= "D") dissimilarity measure based on multiplicative decomposition.

Value

a figure for hierarchical phylogenetic diversity decomposition or dissimilarity measure.

Examples

```
data("antechinus")
data("antechinus_mat")
data("antechinus_tree")
hier_output <- hierPD(antechinus, mat = antechinus_mat, tree = antechinus_tree, q = seq(0, 2, 0.2))
gghierPD(hier_output, method = "A")</pre>
```

ggiNEXTseq

ggplot2 extension for an iNEXT.seq object

Description

ggiNEXTseq: the ggplot extension for iNEXTseq object to plot coverage- or sample-sized-based rarefaction/extrapolation curves for phylogenetic diversity decomposition and dissimilarity measure.

Usage

```
ggiNEXTseq(output, type = "B")
```

Arguments

output the output from iNEXTseq

type (required only when base = "coverage"), selection of plot type :

type = 'B' for plotting the gamma, alpha, and beta diversity;

type = 'D' for plotting 4 turnover dissimilarities.

hierPD 3

Value

a figure for phylogenetic diversity decomposition or dissimilarity measure.

Examples

```
data("tongue_cheek")
data("tongue_cheek_tree")
output <- iNEXTseq(tongue_cheek, q=c(0,1,2), nboot = 0, PDtree = tongue_cheek_tree)
ggiNEXTseq(output, type = "B")</pre>
```

hierPD

function to calculate hierarchical phylogenetic gamma, alpha, beta diversity and dissimilarity measure

Description

hierPD: function to calculate empirical estimates for hierarchical phylogenetic gamma, alpha, beta diversity and dissimilarity measure

Usage

```
hierPD(
  data,
  mat,
  PDtree,
  q = seq(0, 2, 0.2),
  weight = "size",
  nboot = 20,
  conf = 0.95,
  type = "mle",
  decomposition = "relative"
)
```

Arguments

data	data should be input as a matrix/data.frame (species by assemblages).
mat	hierarchical structure of data should be input as a matrix.
q	a numerical vector specifying the diversity orders. Default is $seq(0, 2, 0.2)$.
weight	weight for relative decomposition. Default is "size".
nboot	a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures. Default is 20.
conf	a positive number < 1 specifying the level of confidence interval. Default is 0.95 .
type	estimate type: estimate (type = "est"), empirical estimate (type = "mle"). Default is "mle".

4 iNEXTseq

decomposition relative decomposition: (decomposition = "relative"), Absolute decompo-

sition: (decomposition = "absolute").

tree a phylogenetic tree in Newick format for all observed species in the pooled

assemblage.

Value

a data frames with hierarchical phylogenetic diversity (gamma, alpha, and beta) and four types dissimilarity measure.

Examples

```
data("antechinus")
data("antechinus_mat")
data("antechinus_tree")
hier_output <- hierPD(antechinus, mat = antechinus_mat, tree = antechinus_tree, q = seq(0, 2, 0.2))</pre>
```

iNEXTseq

function to calculate phylogenetic gamma, alpha, beta diversity and dissimilarity measure

Description

iNEXTseq: function to calculate interpolation and extrapolation for phylogenetic gamma, alpha, beta diversity and dissimilarity measure

Usage

```
iNEXTseq(
  data,
  q = c(0, 1, 2),
  base = "coverage",
  level = NULL,
  nboot = 10,
  conf = 0.95,
  PDtree = NULL,
  PDreftime = NULL)
```

Arguments

data OTU data can be input as a matrix/data. frame (species by assemblages), or a

list of matrices/data.frames, each matrix represents species-by-assemblages

abundance matrix.

q a numerical vector specifying the diversity orders. Default is c(0, 1, 2).

base sample-sized-based rarefaction and extrapolation for gamma and alpha diversity

(base = "size") or coverage-based rarefaction and extrapolation for gamma, alpha and beta diversity (base = "coverage"). Default is base = "coverage".

tongue_cheek 5

level A numerical vector specifying the particular value of sample coverage (between

0 and 1 when base = "coverage") or sample size (base = "size"). level = 1 (base = "coverage") means complete coverage (the corresponding diversity

represents asymptotic diversity).

If base = "size" and level = NULL, then this function computes the gamma and

alpha diversity estimates up to double the reference sample size.

If base = "coverage" and level = NULL, then this function computes the gamma and alpha diversity estimates up to one (for q = 1, 2) or up to the coverage of double the reference sample size (for q = 0); the corresponding beta diversity is

computed up to the same maximum coverage as the alpha diversity.

nboot a positive integer specifying the number of bootstrap replications when assessing

sampling uncertainty and constructing confidence intervals. Bootstrap replications are generally time consuming. Enter 0 to skip the bootstrap procedures.

Default is 10.

conf a positive number < 1 specifying the level of confidence interval. Default is

0.95.

PDtree a phylogenetic tree in Newick format for all observed species in the pooled

assemblage.

PDreftime a numerical value specifying reference time for PD. Default is NULL (i.e., the age

of the root of PDtree).

Value

If base = "coverage", return a list of seven data frames with three coverage-based diversity (gamma, alpha, and beta) and four types dissimilarity measure. If base = "size", return a list of two data frames with two diversity (gamma and alpha).

Examples

tongue_cheek

tongue and cheek OTU count data

Usage

```
data("tongue_cheek")
```

Format

A data frame with 2549 observations on the following 2 variables.

Cheek a numeric vector

Tongue a numeric vector

Examples

```
data(tongue_cheek)
```

6 tongue_cheek_tree

tongue_cheek_tree

phylogenetic for tongue and cheek data

Usage

```
data("tongue_cheek_tree")
```

Format

The format is: List of 4 \$ edge : int [1:25400, 1:2] 12702 12703 12704 12704 12705 12706 12706 12707 12707 12705 ... \$ edge.length: num [1:25400] 2.20e-03 9.91e-01 6.61e-03 7.87e-05 6.38e-03 ... \$ Nnode : int 12700 \$ tip.label : chr [1:12701] "OTU_97.15099" "OTU_97.13686" "OTU_97.30326" "OTU_97.26112" ... - attr(*, "class")= chr "phylo" - attr(*, "order")= chr "cladewise"

Examples

data(tongue_cheek_tree)

Index

```
* datasets
    tongue_cheek, 5
    tongue_cheek_tree, 6

gghierPD, 2
ggiNEXTseq, 2
ggplot, 2

hierPD, 2, 3

iNEXTseq, 2, 4

tongue_cheek, 5
tongue_cheek_tree, 6
```