SciPy Optimization Overview

Introduction

The scipy.optimize module offers a rich collection of algorithms for solving optimization and root-finding problems. It supports scalar and multivariable function minimization, curve fitting, solving systems of equations, and handling constraints and bounds.

scipy.optimize Functional Categories

1. General Minimization

- minimize() Multivariate function minimization.
- minimize_scalar() Minimization for scalar functions.
- basinhopping(), dual_annealing() Global optimization.
- shgo(), differential_evolution() Advanced global methods.

2. Root Finding

- root() Solve systems of equations.
- root_scalar() Solve single-variable nonlinear equations.
- Supported methods: bisect, brentq, newton, secant, etc.

3. Least Squares and Curve Fitting

- least_squares() Solve nonlinear least squares problems.
- curve_fit() Fit a function to data.
- leastsq() Legacy method (from MINPACK).

4. Constrained Optimization

- linprog() Linear programming.
- milp() Mixed-integer programming.
- minimize() With bounds and constraints (SLSQP, trust-constr).

5. Scalar Function Minimizers

• Methods for minimize_scalar(): brent, bounded, golden.

6. Support Utilities

- check_grad(), approx_fprime() Gradient checking.
- line_search() Perform line search.
- rosen(), rosen_der(), rosen_hess() Test functions.

7. Fixed-Point Solvers

• fixed_point() – Solve f(x) = x.

8. Bounds and Constraints

• Bounds(), LinearConstraint(), NonlinearConstraint().

9. Deprecated Functions (use with caution)

- Legacy: fmin(), fmin_bfgs(), fmin_cg(), etc.
- Now wrapped via minimize() with specific method=....

scipy.optimize.minimize() — Important Attributes

Example Usage

```
from scipy.optimize import minimize

def f(x):
    return (x - 2)**2

res = minimize(f, x0=0)
```

The result object res contains many useful attributes described below.

Main Result Attributesres.xThe solution: the point where the function is minimized.res.funValue of the function at the solution, i.e. f(x).res.successBoolean indicating if optimization succeeded (True) or failed (False).res.messageA message explaining the result or failure reason.res.statusStatus code (0 means success; 1-4 indicate various failures).

res.nit	Number of iterations performed.
	±
res.nfev	Number of function evaluations (how many times $f(x)$ was called).
res.jac	Gradient (Jacobian) at the solution (if available).
res.hess_inv	Inverse of the Hessian matrix (available for methods like BFGS).
res.hess	Hessian matrix at solution (for Newton-CG or trust-region methods).
res.optimality	First-order optimality measure (for some algorithms).

Input Echo (Sometimes Helpful)	
res.method res.options	Optimization method used (e.g., 'BFGS', 'CG', 'SLSQP'). Dictionary of options passed to the optimizer.

Example Output Print Statements

```
print("Minimumuat:", res.x)
print("Minimumuvalue:", res.fun)
print("Success?", res.success)
print("Message:", res.message)
print("Functionuevaluations:", res.nfev)
print("Iterations:", res.nit)
```

Constraints in scipy.optimize.minimize()

Constraint Syntax Overview

```
1. Constraint as Dictionary (Standard Way)

Equality Constraint: fun(x) == 0

constraints = ({
    'type': 'eq',
    'fun': lambda x: x[0] + x[1] - 1
},)
```

```
2. Constraint using LinearConstraint (Alternative)

Equality Constraint: x + y = 1

from scipy.optimize import LinearConstraint

linear_constraint = LinearConstraint([1, 1], lb=1, ub=1)
```

```
3. Inequality Constraint: fum(x) = 0
(e.g., x + y \le 1 \Rightarrow 1 - (x + y) \ge 0)

constraints = ({
  'type': 'ineq',
  'fun': lambda x: 1 - (x[0] + x[1])
},)
```

Notes

```
'eq' Equality constraint (=0)
'ineq' Inequality constraint (\ge 0)
```

Interpolation using scipy.interpolate.interp1d

What is Interpolation?

Interpolation is a technique used to estimate intermediate values between known data points.

Simple Explanation

If you have some known data points and want to find the value at a point in between, you use interpolation.

Motivation: Why Use Interpolation?

- Estimate unknown values between known data points.
- Smooth noisy sensor or scientific data.
- Applications in image processing, audio filtering, numerical analysis, etc.

Types of Interpolation

Linear Straight-line interpolation between points.
Polynomial Curve fitting using polynomial functions.
Spline Smooth curves using piecewise polynomials.
Lagrange Interpolation using a polynomial through all points.
Newton Uses finite differences to build the interpolant.

Python Example: Linear Interpolation

```
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt

x = [1, 2, 3]
y = [2, 4, 6]

f = interp1d(x, y)
print("Interpolated value at x=1.5:", f(1.5)) # Output: 3.0

xnew = np.linspace(1, 3, 100)
ynew = f(xnew)

plt.plot(x, y, 'o', label='Known Points')
plt.plot(xnew, ynew, '-', label='Interpolated Line')
plt.legend()
plt.grid()
plt.title("Linear Interpolation")
plt.show()
```

interpld Function Syntax

Parameter Descriptions

Parameter	Description
x	Known x-values (1D array).
у	Corresponding y-values.
kind	Type of interpolation: 'linear', 'nearest', 'zero', etc.
axis	Axis along which interpolation is computed.
сору	If True, the input data is copied.
bounds_error	If True, error on out-of-bounds; else use fill_value.
fill_value	Value to return for out-of-bounds x. Can be number or 'extrapolate'.
$assume_sorted$	If True, assumes x is sorted.

interp1d Object Attributes

Attribute	Description
f.x	Original x-values.
f.y	Original y-values.
f.kind	Interpolation type.
f.bounds_error	Whether to raise error outside domain.
$f.fill_value$	Out-of-range return value.
f.axis	Axis used for interpolation.

Interpolation Types Summary

kind	Description
'linear'	Straight-line interpolation.
'nearest'	Nearest data point value.
'zero'	Step function (right continuous).
'slinear'	Linear spline.
'quadratic'	Quadratic spline.
'cubic'	Cubic spline.
int	Use spline of given order.

Bonus: Extrapolation Example

```
f2 = interp1d(x, y, kind='linear', fill_value='extrapolate')
print(f2(4))  # Extrapolates beyond known range
```

Summary

- interp1d is a powerful tool for 1D interpolation.
- Supports linear, nearest, spline-based methods.
- Handles out-of-bounds with fill_value.
- Returns a callable function object.

Understanding scipy.optimize.curve_fit()

What is curve_fit()?

<code>curve_fit()</code> is a powerful function in SciPy for nonlinear least squares curve fitting. It estimates the parameters of a user-defined model function to best fit provided data.

Function Syntax

```
from scipy.optimize import curve_fit
popt, pcov = curve_fit(model, xdata, ydata)
```

Parameter Explanation

Parameter Descriptions

- f: Model function, e.g., f(x, *params)
- xdata, ydata: Independent and dependent data points
- **p0:** Initial guess of parameters (can be omitted)
- sigma: Standard deviation of ydata for weighting
- absolute_sigma: If True, treat sigma as absolute
- check_finite: Checks for NaN/Inf in inputs
- bounds: Tuple specifying lower and upper bounds
- method: Algorithm: 'lm', 'trf', 'dogbox'
- jac: Jacobian function or approximation method
- **kwargs: Extra arguments for solvers

Return Values

Returns

- popt: Array of optimized parameter values
- pcov: 2D covariance matrix (uncertainty estimate)

Example Usage

```
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

def model(x, a, b):
    return a * x + b

x = np.array([1, 2, 3, 4, 5])
y = np.array([2.1, 3.9, 6.2, 8.0, 10.1])

popt, pcov = curve_fit(model, x, y)
perr = np.sqrt(np.diag(pcov))

print("Fitted parameters:", popt)
print("Std deviation:", perr)
```

Plotting the Fitted Curve

```
x_fit = np.linspace(1, 5, 100)
y_fit = model(x_fit, *popt)

plt.plot(x, y, 'o', label='Data')
plt.plot(x_fit, y_fit, '-', label='Fitted Curve')
plt.legend()
plt.show()
```

Related Functions

Useful Alternatives

- np.polyfit(): Polynomial fitting
- least_squares(): Advanced fitting with Jacobian
- minimize(): General-purpose optimization

Summary Table

curve_fit() At a Glance Name Type Description popt Best-fit parameters array 2D array Covariance matrix pcov np.sqrt(np.diag(pcov)) Std deviation (error) array bounds tuple Parameter limits p0 Initial guess array sigma array Data weighting Optimization algorithm method str

When to Use Which?

• Fit any custom function: Use curve_fit()

- Fit a polynomial: Use np.polyfit()
- Need Jacobian/advanced options: Use least_squares()
- Optimize general function: Use minimize()

Numerical Integration using SciPy

1. What is Integration?

Integration is the process of computing the area under a curve. Mathematically:

$$\int_{a}^{b} f(x) \, dx$$

2. Integration Functions in scipy.integrate

2.1 quad(): Single Integral

```
Function Syntax

from scipy.integrate import quad

result, error = quad(func, a, b)
```

- func: The function to integrate
- a, b: Integration limits
- result: Computed integral
- error: Estimate of error

```
Example: Integrate sin(x) from 0 to π

from scipy.integrate import quad
import numpy as np

def f(x):
    return np.sin(x)

res, err = quad(f, 0, np.pi)
print(f"Integral of sin(x): {res:.6f} | Error: {err:.2e}")
```

2.2 dblquad() and tplquad(): Multiple Integrals

dblquad() computes a double integral, and tplquad() computes a triple integral.

```
from scipy.integrate import dblquad

def integrand(y, x):
    return x * y

result, error = dblquad(integrand, 0, 1, lambda x: 0, lambda x: 2)
print(result)
```

2.3 fixed_quad(): Fixed Gaussian Quadrature

```
from scipy.integrate import fixed_quad

res, _ = fixed_quad(f, 0, np.pi, n=5)
print(res)
```

2.4 romberg(): Romberg Integration

```
from scipy.integrate import romberg

res = romberg(f, 0, np.pi)
print(res)
```

2.5 Trapezoidal and Simpson's Rule

Used when you have discrete data points.

```
import numpy as np
from scipy.integrate import simps

x = np.linspace(0, np.pi, 100)
y = np.sin(x)

trapz_res = np.trapz(y, x)
simps_res = simps(y, x)

print(trapz_res, simps_res)
```

3. Integration Summary Table

	tableheader Function	Purpose	Notes
	quad	Single integral	Adaptive quadrature method
	dblquad	Double integral	Nested quadrature
e	tplquad	Triple integral	Nested quadrature
е	${ t fixed_quad}$	Gaussian quadrature	Fixed sample points
	romberg	Romberg method	High precision recursive
	np.trapz	Trapezoidal rule	Discrete data
	simps	Simpson's rule	Discrete data, more accurate

2gray!10white

4. Important Parameters

- epsabs, epsrel: Absolute and relative tolerance
- limit: Maximum number of subintervals
- args: Extra arguments to the integrand function

5. Example with Extra Parameters

```
from scipy.integrate import quad
import numpy as np

def integrand(x, a, b):
    return a * np.exp(-b * x)

result, error = quad(integrand, 0, np.inf, args=(2, 3))
print(f"Result: {result}, Error: {error}")
```

SciPy Linear Algebra Quick Reference

1. Introduction

scipy.linalg is a submodule for linear algebra operations like solving equations, decompositions, norms, eigenvalues, etc.

```
Importing

from scipy import linalg import numpy as np
```

2. Core Operations

2.1 Solve Linear System Ax = b

```
x = linalg.solve(A, b)
```

2.2 Matrix Inverse

```
A_inv = linalg.inv(A)
```

2.3 Determinant

```
det_A = linalg.det(A)
```

2.4 Eigenvalues and Eigenvectors

```
eigvals, eigvecs = linalg.eig(A)
```

2.5 Norm (Vector/Matrix)

```
linalg.norm(A, ord=2) # Spectral norm
```

2.6 Rank

```
np.linalg.matrix_rank(A)
```

2.7 Transpose and Conjugate Transpose

```
A.T # Transpose
A.conj().T # Conjugate transpose
```

3. Matrix Decompositions

LU Decomposition

```
P, L, U = linalg.lu(A)
```

QR Decomposition

```
Q, R = linalg.qr(A)
```

Cholesky Decomposition

```
L = linalg.cholesky(A)
```

Singular Value Decomposition (SVD)

```
U, s, Vh = linalg.svd(A)
```

Pseudo-Inverse

```
A_pinv = linalg.pinv(A)
```

Matrix Exponential

```
eA = linalg.expm(A)
```

Kronecker Product

```
K = np.kron(A, B)
```

Condition Number

```
cond = linalg.cond(A)
```

${\bf Lower/Upper\ Triangular\ Extraction}$

```
linalg.tril(A)
linalg.triu(A)
```

4. Matrix Property Checks

```
np.allclose(A, A.T)  # Symmetric?
np.allclose(A.T @ A, np.eye(n))  # Orthogonal?
```

5. Other Useful Functions

```
linalg.block_diag(A, B)  # Block diagonal
linalg.toeplitz(c)  # Toeplitz matrix
linalg.hessenberg(A)  # Hessenberg form
linalg.eigvals(A)  # Eigenvalues only
```

6. Summary Table

	tableheader Topic	Function
	Solve $Ax = b$	linalg.solve
	Inverse	linalg.inv
	Determinant	linalg.det
	Eigenvalues	linalg.eig
	LU Decomposition	linalg.lu
	QR Decomposition	linalg.qr
	Cholesky	linalg.cholesky
	SVD	linalg.svd
	Pseudo-inverse	linalg.pinv
	Norm	linalg.norm
l	Exponential	linalg.expm

2 gray! 10 white

7. Example: Solve Ax = b

```
import numpy as np
from scipy.linalg import solve

A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])

x = solve(A, b)
print("Solution:", x)
```

SciPy Linear Algebra: solve_triangular

Function Overview

solve_triangular() solves a linear system Ax = b where A is a triangular matrix (either upper or lower). It's optimized for speed and memory when the matrix is known to be triangular.

```
from scipy.linalg import solve_triangular
x = solve_triangular(A, b, lower=False, unit_diagonal=False, trans=0)
```

Parameters

tableheader Parameter Description Coefficient matrix (must be triangular) b Right-hand side vector or matrix If True, assumes A is lower triangular lower 2gray!10white unit_diagonal If True, assumes diagonal elements = 10 = normal, 1 = transpose, 2 = conjugate transposetrans check_finite Skip NaN/Inf checking if False overwrite_b May overwrite b for efficiency

Example 1: Upper Triangular

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Example 2: Lower Triangular

Comparison with solve()

	tableheader Feature	solve()	solve_triangular()
	Speed	General purpose (slower)	Faster for triangular matrices
-	Assumption	Any matrix	Matrix must be triangular
	Use Case	Any linear system	Forward/Backward substitution

Use Cases

- Solving after LU decomposition
- ullet Efficient forward/backward substitution
- Part of numerical methods requiring fast triangular solve

Summary Table

0 1101-:4-	
2gray!10white	
-0,	

tableheader Option	Meaning	
lower=True	Solve assuming lower triangular matrix	
unit_diagonal=True	Assume diagonal $= 1$ (saves time)	
trans=1	Solves $A^T x = b$	

Tip

If your matrix is triangular, avoid using solve() — use $solve_triangular()$ instead for faster performance and lower memory usage.