LECTURE NOTES

§ 1 | A Gaussian Process on $L^2(\mathbb{R})$

We will construct a process on $L^2(\mathbb{R})$ by taking a limit of a simpler process on the space of sequences

$$\ell^{2}(\mathbb{R}) := \left\{ (a_{k})_{k \in \mathbb{Z}} : \sum_{k \in \mathbb{Z}} |a_{k}|^{2} < \infty, \ a_{k} \in \mathbb{R} \right\}.$$

Given a set of independent random variables $\{X_k\}_{k\in\mathbb{Z}}$ satisfying $X_k \sim N(0,1)$ (think of each X_k as "noise" at the integer k), define $Z(a) \coloneqq \sum_{k\in\mathbb{Z}} a_k X_k$ for $a = (a_k) \in \ell^2(\mathbb{R})$. The collection $\{Z(a)\}_{a\in\ell^2(\mathbb{R})}$ is a Gaussian process that is centered (ie, $\mathbb{E}[Z(a)] = 0$) and satisfies

$$\operatorname{var}[Z(a)] = \operatorname{cov}\left[\sum_{k \in \mathbb{Z}} a_k X_k, \sum_{l \in \mathbb{Z}} a_l X_l\right] = \sum_{k, l \in \mathbb{Z}} a_k a_l \operatorname{cov}[X_k, X_l] = \sum_{k \in \mathbb{Z}} a_k^2$$

for each $a \in \ell^2(\mathbb{R})$.

Now recall $L^2(\mathbb{R}) := \{f : \mathbb{R} \to \mathbb{R} : \int_{-\infty}^{\infty} |f(x)|^2 dx < \infty \}$. Given $f \in L^2(\mathbb{R})$, define a sequence of random variables $(Z^{(N)}(f))_{N \in \mathbb{N}}$ by

$$Z^{(N)}(f) := \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}} f\left(\frac{k}{N}\right) X_k.$$

It can be shown that $Z^{(N)}(f)$ converges in distribution to a random variable which we will call Z(f). It can be also shown that the collection $\{Z(f)\}_{f\in L^2(\mathbb{R})}$ is a centered Gaussian process satisfying $\operatorname{cov}[Z(f),Z(g)]=\int_{-\infty}^{\infty}f(x)g(x)\,dx$. It turns out that these properties (centered Gaussian and satisfying the above covariance formula) characterize $\{Z(f)\}_{f\in L^2(\mathbb{R})}$, so we might as well define it this way:

DEFINITION. The collection $\{Z(f)\}_{f\in L^2(\mathbb{R})}$ is the centered Gaussian process on $L^2(\mathbb{R})$ satisfying

$$\operatorname{cov}[Z(f), Z(g)] := \int_{-\infty}^{\infty} f(x)g(x) \, dx$$
.

Note that Z(af+bg)=aZ(f)+bZ(g) for all $a,b\in\mathbb{R}$ and all $f,g\in L^2(\mathbb{R})$, so $f\mapsto Z(f)$ defines a linear map from $L^2(\mathbb{R})$ to the space of random variables. The random variable Z(f) is called the stochastic integral of f, denoted

$$Z(f) =: \int_{-\infty}^{\infty} f(t) dW_t$$
,

Date: 28 September 2018.

and the integrator dW_t is interpreted as "white noise" that weights the value of f(t). Assuming it is known that $cov[dW_s, dW_t] = \delta_s(t) ds dt$, where δ_s is the Dirac δ -functional centered at s, we can recover the covariance formula using stochastic integral notation:

$$cov[Z(f), Z(g)] = cov \left[\int_{-\infty}^{\infty} f(s) dW_s, \int_{-\infty}^{\infty} g(t) dW_t \right]
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s)g(t) cov[dW_s, dW_t] = \int_{-\infty}^{\infty} f(t)g(t) dt.$$

The following examples show that some stochastic processes can be defined as stochastic integrals.

- **1.1 Example** (Brownian motion) If we define $B_t := Z(\mathbf{1}_{[0,t)}) = \int_0^t dW_s$, then the process $\{B_t\}_{t\in[0,\infty)}$ is a Brownian motion. Indeed,
 - (i) B_t is Gaussian,
 - (ii) $\operatorname{cov}[B_s, B_t] = \int_{-\infty}^{\infty} \mathbf{1}_{[0,s)}(u) \mathbf{1}_{[0,t)}(u) du = \int_{0}^{\min\{s,t\}} du = \min\{s,t\} \text{ (and hence } \operatorname{var}[B_t] = t),$ (iii) if $u < v \le s < t$ then

$$cov[B_t - B_s, B_v - B_u] = \int_{-\infty}^{\infty} \mathbf{1}_{[s,t)}(x) \mathbf{1}_{[u,v)}(x) dx = \int_{-\infty}^{\infty} \mathbf{1}_{[s,t)\cap[u,v)}(x) dx = 0.$$

1.2 Example (Energy) Define a process on $\{Y_t\}_{t\in\mathbb{R}}$ by

$$Y_t := Z\left(e^{-(t-s)}\mathbf{1}_{(-\infty,t]}(s)\right) = \int_{-\infty}^{\infty} e^{-(t-s)} dW_s.$$

Then

- (i) Y_t is Gaussian,
- (ii) for $s \leq t$ we have

$$\begin{aligned} & \operatorname{cov}[Y_s, Y_t] = \int_{-\infty}^{\infty} e^{-(s-u)} \mathbf{1}_{(-\infty, s]}(u)^2 e^{-(t-u)} \mathbf{1}_{(-\infty, t]}(u)^2 \, du = e^{-s-t} \int_{-\infty}^{s} e^{2u} \, du = \frac{e^{-(t-s)}}{2} \, , \\ & \text{and hence } \operatorname{var}[Y_t] = \frac{1}{2}. \end{aligned}$$