## Playing with the time limit and heuristics

All the raw program output can be found in the Result-Q5.txt file.

In the experiments, for comparing the performance of different lower bound heuristics function, we used different time limit on Both **RockSample\_4\_4** environment and **TagVoid** environment. The time limits and the number of runs to get the average rewards we used are as the following and the precision is 0.1:

| • | 5 ms   | 500 runs |
|---|--------|----------|
| • | 10 ms  | 500 runs |
| • | 20 ms  | 500 runs |
| • | 50 ms  | 500 runs |
| • | 100 ms | 500 runs |
| • | 200 ms | 200 runs |
| • | 500 ms | 100 runs |

## RockSample 4 4

The performance we get with **RockSample\_4\_4** environment is showing as following:

| Time Limit | Average Reward with MinMDP | Average Reward with PBVI |
|------------|----------------------------|--------------------------|
| 5 ms       | 11.878012663851935         | 12.283170287115995       |
| 10 ms      | 5.872868159021878          | 9.765582201551045        |
| 20 ms      | 2.110595001754537          | 5.345782413655991        |
| 50 ms      | 6.222406227262964          | 0.8178194938489292       |
| 100 ms     | 10.473328494859768         | 5.506114454052732        |
| 200 ms     | 9.215206573303329          | 9.963284282849001        |
| 500 ms     | 10.07580586386141          | 12.087644319844621       |

And the plots of the results are:



## **TagAvoid**

The performance we get with **TagVoid** environment is showing as following:

| Time Limit | Average Reward with MinMDP | Average Reward with PBVI |
|------------|----------------------------|--------------------------|
| 5 ms       | -13.948524759075422        | -14.029021829787943      |
| 10 ms      | -13.5208698315361          | -13.868015110265116      |
| 20 ms      | -14.281603722569985        | -14.132935130896012      |
| 50 ms      | -16.728418354939574        | -14.323408076377861      |
| 100 ms     | -17.528815208911357        | -18.34807112465858       |
| 200 ms     | -16.394293564823176        | -17.80084036399528       |
| 500 ms     | -13.404411914000168        | -14.046217864384616      |

And the plots of the results are:



## Analyze

From the results of experiments on both environments, we can find that:

- When the time is very small (<= 20ms), models that use <u>PBVI</u> as the lower bound will performance better, I think the reason is:
  - During the small mount of time, the POMDP solver cannot expand enough nodes in the And-Or Tree, and in this case, since <u>PBVI</u> already have some policy been pre-made, the differentiate of the upper bound and lower bound might smaller than <u>MinMDP</u> model. And this cause the <u>PBVI</u> model performance better.
- When the time is small but not too small (20ms ~ 50ms in RockSample\_4\_4 environment, and 20ms ~ 100ms in TagAvoid environment), both models' performance going down and sometime MinMDP is better and other time PBVI will better. I think the reason is:
  - At this time, the POMDP solver can expand some nodes in the And-Or Tree, but still enough, and this cause the solver didn't know what it should to do.
- When the time is a little bit larger (50ms ~ 100ms in RockSample\_4\_4 environment, and 100ms ~ 500ms in TagAvoid environment), both models's performance going up and become better and

better. And during this time the model with <u>PBVI</u> as lower bound will have better performance. The Reason I think should be:

- With the more time give the POMDP solver, the nodes in the And-Or Tree can be expanded more and more, that can cause the solver finds some path to the better outcome statements.
- When the models have even more time (>= 100ms in **RockSample\_4\_4** environment). The performance of the model continues going up, and the solver model with <u>MinMDP</u> as lower bound will out performance than model with <u>PBVI</u> as lower bound. I think the reason is:
  - Since the POMDP solver have lot of time to expanded the And-Or Tree, and this can let it
    find the goal states during the first few round of consideration, and not only that, it can
    even find some new policies which better than the pre-selected and stored in <u>PBVI</u>. That
    why the MinMDP is better than PBVI at this time.
  - In TagAvoid environment, we didn't have the data for it, but I think it should be similar as
    the RockSample\_4\_4 environment and the MinMDP will be better than <u>PBVI</u> if we give
    more time to the POMDP solver.