Calculus 2. Practice 1

1) Find and sketch the domains of the given functions

1a)
$$f(x,y) = \ln(xy - 1)$$

1b)
$$f(x,y) = xy\sqrt{x^2 + y}$$

2) Evaluate the following limits (with or without the use of polar coordinates)

2a)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz+xz}{x^2+y^2+z^2}$$

2b)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2y^2z^2}{x^2+y^2+z^2}$$

2c)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

2d)
$$\lim_{(x,y,z)\to(0,0,0)} (x^2+y^2)^{x^2y^2}$$

4) 4a) Given the function $f(x,y)e^{xy^2}$. Find f_x , $f_y(1,1)$. Verify that $f_{xy}=f_{yx}$. Evaluate f_{xxy} .

4b) Given the function
$$f(x, y, z) = x^5 + yz^2 + \sin(xy) + \cos(zx)$$
. Evaluate f_x , f_{yx} , f_{zz} .

7) Find the linearization l(x, y, z) of $f(x, y, z) = e^{xy^2} + x^4yz$ at (1, 1, 1).

8) Use the chain rule to find the indicated (partial) derivatives.

8a)
$$\frac{dw}{dt}$$
 where $w = \frac{x}{y} + \frac{y}{z}$, $x = \sqrt{t}$, $y = \cos(2t)$, $z = e^{-3t}$

8b)
$$\frac{\partial z}{\partial s}$$
, $\frac{\partial z}{\partial t}$, where $z = xe^y + ye^{-x}$, $x = s^2t$, $y = st^2$

9) Verify the assumption of the Implicit Function Theorem to prove that the equation xe^y + $\sin(x,y) + y - \ln 2 = 0$ defines y as a differentiable function of x around $(0, \ln 2)$. Use implicit differentiation to find $\frac{dy}{dx}$ at the given point.

10) Find the gradient of f, evaluate the gradient at the given point P and find the rate of change of f at P in the direction of the given vector \mathbf{u} .

10a)
$$f(x,y) = e^x \sin y$$
, $P(1,\frac{\pi}{4})$, $\mathbf{u} = (-1,2)$

10b)
$$f(x, y, z) = xy + yz^2 + xz^3$$
, $P(2, 0, 3)$, $\mathbf{u} = (-2, -1, 2)$.

11) Find the directional derivative of the given function at the given point in the direction of the given vector.

11a)
$$f(x,y) = e^x \cos y$$
, $P(1, \frac{\pi}{6})$, $\mathbf{u} = \mathbf{i} - \mathbf{j}$

11b)
$$f(x, y, z) = z^3 - x^2 y$$
, $P(1, 6, 2)$, $\mathbf{u} = (3, 4, 12)$.

12) Find the directions in which the functions increase and decrease most rapidly at P. Find the derivatives of the functions in these directions.

12a)
$$f(x,y) = x^2y + e^{xy}\sin y$$
, $P(1,0)$

12b)
$$f(x, y, z) = xe^y + z^2$$
, $P(1, \ln 2, \frac{1}{2})$.

13) Find all local maxima, local minima, and saddle points of the following functions:

1a)
$$f(x,y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$$
 1b) $f(x,y) = x^3 - y^3 - 2xy + 6$

1b)
$$f(x,y) = x^3 - y^3 - 2xy + 6$$