# Deep Learning meets Structured Prediction

Alexander G. Schwing

in collaboration with T. Hazan, M. Pollefeys and R. Urtasun in collaboration with L.-C. Chen, A. L. Yuille and R. Urtasun

University of Toronto

# Big Data and Statistical Machine Learning

Large scale problems according to the program:

- input dimensionality
- number of training samples
- number of categories



x = image

 $\textbf{\textit{s}} \in \mathcal{S}$  : room layout



x = image

 $s \in \mathcal{S}$ : room layout  $s \in \mathcal{S}$ : student skills

## **Tutoring systems**



x = responses



x = image

# Tutoring systems



x =responses

 $s \in \mathcal{S}$ : room layout  $s \in \mathcal{S}$ : student skills  $s \in \mathcal{S}$ : tags

### Tag prediction



x = image



x = image



$$x = \text{responses}$$

 $s \in \mathcal{S}$ : room layout

Tutoring systems





$$x = image$$

 $s \in \mathcal{S}$  : student skills

 $s \in \mathcal{S}$  : tags

## Large scale problems

- input dimensionality
- number of training samples
- number of categories

x is large

 $|\mathcal{D}| = |\{(x, s)\}|$  is large

 $|\mathcal{S}|$  is large

## Why is large scale a challenge

### Inference:

$$s^* = \underset{s \in \mathcal{S}}{\operatorname{arg}} \underset{s \in \mathcal{S}}{\operatorname{max}} F(s, x, w)$$

## Why is large scale a challenge

Inference:

$$s^* = \underset{s \in \mathcal{S}}{\text{arg}} \underset{s \in \mathcal{S}}{\text{max}} F(s, x, w)$$

- Search over output space S
- Computation of F(s, x, w) from data x

Why is large scale a challenge

Inference:

$$s^* = \arg\max_{s \in \mathcal{S}} F(s, x, w)$$

- Search over output space S
- Computation of F(s, x, w) from data x

### Learning:

$$w^* = \arg\max_{w} \sum_{(x,s) \in \mathcal{D}} \left( F(s,x,w) - \ln\sum_{\hat{s} \in \mathcal{S}} \exp F(s,x,w) \right)$$

- Summation over output space S
- Summation over dataset D
- Computation of F(s, x, w) from data x

How we deal with the challenges?

Inference:

How to find the maximizer of F(s, x, w) given x, w?

Learning:

How to find the parameters w of F(s, x, w) given  $\mathcal{D}$ ?

## Inference

$$s^* = \arg\max_{s \in \mathcal{S}} F(s, x, w)$$

The domain size |S| is potentially large

- ImageNet challenge: |S| = 1000
- Layout prediction:  $|S| = 50^4$
- Tutoring systems:  $|S| = 2^{Number of modeled skills}$
- Tag prediction:  $|S| = 2^{\text{Number of tags}}$

Computation of F(s, x, w) for all possible  $s \in S$  in general often intractable.

But: Interest in jointly predicting multiple variables  $s = (s_1, \dots, s_n)$ 

Assumption: function/model decomposes additively

$$F(s,x,w)=F(s_1,\ldots,s_n,x,w)=\sum_r f_r(s_r,x,w)$$

- Restriction r:  $s_r = (s_i)_{i \in r}$
- Discrete domain:

$$f_{\{1,2\}}(s_{\{1,2\}}) = f_{\{1,2\}}(s_1,s_2) = [f_{\{1,2\}}(1,1),f_{\{1,2\}}(1,2),\ldots]$$

Visualization



$$s^* = \arg \max_{s} \sum_{r} f_r(s_r)$$

$$s_{1,2}$$

max<sub>$$b_1,b_2,b_{12}$$</sub>  $\begin{bmatrix} b_1(0) \\ b_1(1) \\ b_2(0) \\ b_2(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(1,1) \end{bmatrix}^{\top} \begin{bmatrix} f_1(0) \\ f_1(1) \\ f_2(0) \\ f_2(1) \\ f_{12}(0,0) \\ f_{12}(1,0) \\ f_{12}(1,1) \end{bmatrix}$ 

$$s^* = \arg\max_{s} \sum_{r} f_r(s_r)$$

$$s_{1,2}$$

Integer Linear Program (LP) equivalence: variables 
$$b_r(s_r)$$

$$\max_{b_1,b_2,b_{12}} \begin{bmatrix} b_1(0) \\ b_1(1) \\ b_2(0) \\ b_2(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(1,1) \end{bmatrix}^{\top} \begin{bmatrix} f_1(0) \\ f_1(1) \\ f_2(0) \\ f_2(1) \\ f_{12}(0,0) \\ f_{12}(1,0) \\ f_{12}(1,0) \\ f_{12}(1,1) \end{bmatrix} \text{ s.t. } b_r(s_r) \in \{0,1\}$$

$$s^* = \arg \max_{s} \sum_{r} f_r(s_r)$$

$$s_{1,2}$$

max<sub>$$b_1,b_2,b_{12}$$</sub>  $\begin{bmatrix} b_1(0) \\ b_1(1) \\ b_2(0) \\ b_2(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(0,1) \end{bmatrix}^{\top} \begin{bmatrix} f_1(0) \\ f_1(1) \\ f_2(0) \\ f_2(1) \\ f_{12}(0,0) \\ f_{12}(1,0) \\ f_{12}(1,0) \\ f_{12}(0,1) \\ f_{12}(1,1) \end{bmatrix}$  s.t.  $b_r(s_r) \in \{0,1\}$ 

$$s^* = \arg \max_{s} \sum_{r} f_r(s_r)$$

$$\max_{b_1,b_2,b_{12}} \begin{bmatrix} b_1(0) \\ b_1(1) \\ b_2(0) \\ b_2(1) \\ b_{12}(0,0) \\ b_{12}(1,0) \\ b_{12}(0,1) \\ b_{12}(0,1) \\ b_{12}(1,1) \end{bmatrix}^{\top} \begin{bmatrix} f_1(0) \\ f_1(1) \\ f_2(0) \\ f_2(1) \\ f_{12}(0,0) \\ f_{12}(1,0) \\ f_{12}(1,1) \end{bmatrix} \text{ s.t. } \begin{aligned} b_r(s_r) \in \{0,1\} \\ \sum_{s_r} b_r(s_r) = 1 \\ \sum_{s_r} b_p(s_r) = b_r(s_r) \end{aligned}$$

$$\hat{s} = \arg\max_{s} \sum_{r} f_{r}(s_{r})$$

$$\max_{b_1,b_2,b_{12}} \begin{bmatrix} b_1(1) \\ b_1(2) \\ b_2(1) \\ b_2(2) \\ b_{12}(1,1) \\ b_{12}(2,1) \\ b_{12}(1,2) \\ b_{12}(2,2) \end{bmatrix}^{\top} \begin{bmatrix} f_1(1) \\ f_1(2) \\ f_2(1) \\ f_2(2) \\ f_{12}(1,1) \\ f_{12}(2,1) \\ f_{12}(1,2) \\ f_{12}(2,2) \end{bmatrix} \quad \text{s.t.} \quad \sum_{s_r} b_r(s_r) \in \{0,1\} \\ b_r(s_r) \geq 0 \\ \text{s.t.} \quad \sum_{s_r} b_r(s_r) = 1 \\ \sum_{s_p \setminus s_r} b_p(s_p) = b_r(s_r) \\ \sum_{s_p \setminus s_r} b_p(s_p) = b_r(s_r)$$

$$\hat{s} = \arg\max_{s} \sum_{r} f_{r}(s_{r})$$

$$\hat{s} = \arg\max_{s} \sum_{r} f_{r}(s_{r})$$

$$b_r(s_r) \in \{0,1\}$$
  $b_r(s_r) \geq 0$   $\sum_{r,s_r} b_r(s_r) f_r(s_r)$  s.t.  $\sum_{s_r} b_r(s_r) = 1$  Marginalization

$$\hat{s} = \arg\max_{s} \sum_{r} f_{r}(s_{r})$$

$$b_r(s_r) \in \{0,1\}$$

$$\max_{b_r} \sum_{r,s_r} b_r(s_r) f_r(s_r)$$

s.t. Local probability  $b_r$ 

Marginalization

$$\hat{s} = \arg\max_{s} \sum_{r} f_{r}(s_{r})$$

#### LP relaxation:

$$b_r(s_r) \in \{0,1\}$$

$$\max_{b_r} \sum_{r,s_r} b_r(s_r) f_r(s_r)$$

s.t. Local probability  $b_r$ 

Marginalization

$$\hat{s} = \arg\max_{s} \sum_{r} f_{r}(s_{r})$$

#### LP relaxation:

$$b_r(s_r) \in \{0,1\}$$

$$\max_{b_r} \sum_{r,s_r} b_r(s_r) f_r(s_r)$$

s.t. Local probability  $b_r$ 

Marginalization

Standard LP solvers are **slow** because of many variables and constraints. Specifically tailored algorithms...

[Weiss et al. '07, Globerson&Jaakkola'07, Johnson'08, Jojic et al. '10, Hazan&Shashua'10, Savchynskyy et al. '12, Ravikumar et al. '10, Martins et al. '11, Meshi&Globerson'11, Komodakis et al. '10'12, Schwing et al. '11'12'14|

### Graph structure defined via marginalization constraints



Message passing solvers

Advantage: Efficient due to analytically computable sub-problems

Problem: Special care required to find global optimum

Subgradient methods

Advantage: Guaranteed globally convergent

Problem: Special care required to find fast algorithms

## Block-coordinate ascent/message passing solvers

[Weiss et al.'07, Globerson&Jaakkola'07, Johnson'08, Jojic et al.'10, Hazan&Shashua'10, Savchynskyy et al.'12, Ravikumar et al.'10, Martins et al.'11, Meshi&Globerson'11]

## Optimize w.r.t. subset of variables

Advantage: Efficient due to analytically computable sub-problems

Problem: Getting stuck in corners



Smoothing, proximal updates, augmented Lagrangian methods

### Subgradient Methods

## Update Lagrange multipliers via any subgradient direction

Advantage: Globally convergent

Problem: Slow and non-monotone convergence



### Subgradient Methods

Update Lagrange multipliers via any subgradient direction

Advantage: Globally convergent

**Problem:** Slow and non-monotone convergence



What we like: steepest subgradient ascent direction

# Distributed Inference for Graphical Models

#### Goal:

- Optimize the LP relaxation objective
- Leverage the problem structure
- Distribute memory and computation requirements
- Maintain convergence and optimality guarantees

Dual decomposition extension of LP relaxation solvers via partitioning of variables.









• Unique set of variables:

$$b_r^{\kappa}(s_r)$$

- Marginalization constraints and local beliefs  $\forall \kappa$
- Consistency constraints:

$$b_r^{\kappa}(s_r) = b_r(s_r)$$



#### Distributed LP Relaxation

$$\max_{b} \sum_{\kappa} \left( \sum_{r \in \kappa, s_r} b_r^{\kappa}(s_r) \hat{f}_r(s_r) \right)$$

 $\forall \kappa$  Local probabilities  $b_r^{\kappa}$ 

s.t.  $\forall \kappa$  Marginalization constraints

 $\forall \kappa$  Consistency

### Algorithm:

• Some message passing iterations in parallel  $\forall \kappa$ 



ullet Exchange of information between different  $\kappa$ 



#### State-of-the-art

- libDAI 0.2.7 [Mooij 2010]
- graphLAB [Low et al. 2010]

| Method              | Runtime [s] | Efficiency [nodes/µs] | primal |
|---------------------|-------------|-----------------------|--------|
| BP (libDAI)         | 2617/4      | 0.04                  | 1.0241 |
| BP (graphLAB RR)    | 1800        | 0.06                  | 1.0113 |
| SplashBP (graphLAB) | 689         | 0.06                  | 1.0121 |
| Ours (General)      | 371         | 0.29                  | 1.0450 |
| Ours (Ded.)         | 113         | 0.94                  | 1.0450 |
| Ours dist. (Ded.)   | 18          | 5.8                   | 1.0449 |

#### Inter-machine communication





## Large-scale setting

- x is large (> 12 MPixel image)
- |S| is large (280<sup>12,000,000</sup>)
- $s_r$  is large (> 12 million regions with 280 states)
- $s_r$  is large (> 24 million regions with 80k states)





Sources publicly available on http://alexander-schwing.de

## How we deal with the challenges?

Inference:

How to find the maximizer of F(s, x, w) given x, w?

• Learning:

How to find the parameters w of F(s, x, w) given  $\mathcal{D}$ ?

## Learning

good parameters from annotated examples

$$\mathcal{D} = \{(x, s)\}$$

Log-linear models (CRFs, structured SVMs):

$$F(s, x, w) = w^{\top} \tilde{F}(s, x)$$

• Non-linear models, e.g., CNNs (this talk):

Inference:

$$s^* = \arg\max_{s \in \mathcal{S}} F(s, x, w)$$

Probability of a configuration s:

$$p(s \mid x, w) = \frac{1}{Z(x, w)} \exp F(s, x, w)$$
$$Z(x, w) = \sum_{\hat{s} \in \mathcal{S}} \exp F(\hat{s}, x, w)$$

Inference alternatively:

$$s^* = \arg\max_{s \in \mathcal{S}} p(s \mid x, w)$$

Probability of a configuration s:

$$p(s \mid x, w) = \frac{1}{Z(x, w)} \exp F(s, x, w)$$
$$Z(x, w) = \sum_{\hat{s} \in \mathcal{S}} \exp F(\hat{s}, x, w)$$

Maximize the likelihood of training data via

$$w^* = \arg \max_{w} \prod_{(x,s) \in \mathcal{D}} p(s|x,w)$$
$$= \arg \max_{w} \sum_{(x,s) \in \mathcal{D}} \left( F(s,x,w) - \ln \sum_{\hat{s} \in \mathcal{S}} \exp F(s,x,w) \right)$$

#### Maximum likelihood is equivalent to maximizing cross-entropy:

- Target distribution:  $p_{(x,s),tq}(\hat{s}) = \delta(\hat{s} = s)$
- Cross-Entropy:

$$\max_{w} \sum_{(x,s)\in\mathcal{D},\hat{s}} p_{(x,s),tg}(\hat{s}) \ln p(\hat{s} \mid x; w)$$

$$= \max_{w} \sum_{(x,s)\in\mathcal{D}} \ln p(s \mid x; w)$$

$$= \max_{w} \ln \prod_{(x,s)\in\mathcal{D}} p(s \mid x; w)$$

#### Program of interest:

$$\max_{w} \sum_{(x,s) \in \mathcal{D}, \hat{s}} p_{(x,s), \operatorname{tg}}(\hat{s}) \ln p(\hat{s} \mid x; w)$$

Optimize via gradient ascent

$$\frac{\partial}{\partial w} = \sum_{(x,s)\in\mathcal{D},\hat{s}} p_{(x,s),tg}(\hat{s}) \ln p(\hat{s} \mid x; w)$$

$$= \sum_{(x,s)\in\mathcal{D},\hat{s}} (p_{(x,s),tg}(\hat{s}) - p(\hat{s} \mid x; w)) \frac{\partial}{\partial w} F(\hat{s}, x, w)$$

- Compute predicted distribution  $p(\hat{s} \mid x; w)$
- Use chain rule to pass back difference between prediction and observation

#### Algorithm: Deep Learning

## Repeat until stopping criteria

- Forward pass to compute F(s, x, w)
- Ompute  $p(s \mid x, w)$
- Backward pass via chain rule to obtain gradient
- Update parameters w

Why is large scale data a challenge?

#### Algorithm: Deep Learning

## Repeat until stopping criteria

- Forward pass to compute F(s, x, w)
- ② Compute  $p(s \mid x, w)$
- Backward pass via chain rule to obtain gradient
- Update parameters w

Why is large scale data a challenge?

- How do we even represent F(s, x, w) if S is large?
- How do we compute  $p(s \mid x, w)$ ?

## Domain size of typical applications:

- ImageNet challenge: |S| = 1000
- Layout prediction:  $|S| = 50^4$
- Tutoring systems:  $|S| = 2^{\text{Number of modeled skills}}$
- Tag prediction:  $|S| = 2^{\text{Number of tags}}$

#### Solution:

- Interest in jointly predicting multiple variables  $s = (s_1, \dots, s_n)$
- Assumption: function/model decomposes additively

$$F(s,x,w) = F(s_1,\ldots,s_n,x,w) = \sum_r f_r(s_r,x,w)$$

Every  $f_r(s_r, x, w)$  is an arbitrary function, e.g., a CNN

How to compute gradient:

$$\frac{\partial}{\partial w} \qquad \sum_{(x,s)\in\mathcal{D},\hat{s}} p_{(x,s),tg}(\hat{s}) \ln p(\hat{s} \mid x; w) 
= \sum_{(x,s)\in\mathcal{D},\hat{s}} \left( p_{(x,s),tg}(\hat{s}) - p(\hat{s} \mid x; w) \right) \frac{\partial}{\partial w} F(\hat{s}, x, w) 
= \sum_{(x,s)\in\mathcal{D},r,\hat{s}_r} \left( p_{(x,s),r,tg}(\hat{s}_r) - p_r(\hat{s}_r \mid x; w) \right) \frac{\partial}{\partial w} f_r(\hat{s}_r, x, w)$$

How to obtain marginals  $p_r(\hat{s}_r|x, w)$ ?

Approximation of marginals via:

- Sampling methods
- Inference methods

#### Inference approximations:

$$\underbrace{\max_{b \in \mathcal{L}} \sum_{r,s_r} b_r(s_r \mid x, w) f_r(s_r, x, w)}_{Inference} + \underbrace{\sum_{r} c_r H(b_r)}_{Inference}$$

 $S_1$ 

#### Typically employed variational algorithms:

- Convex Belief Propagation (distributed)
- Tree-reweighted message passing
- (Generalized) Loopy Belief Propagation
- (Generalized) double loop Loopy Belief Propagation

# Approximated Deep Structured Learning

## Repeat until stopping criteria

- **1** CNN Forward pass to compute  $f_r(\hat{s}_r, x, w) \forall r$
- ② Compute approximate beliefs  $b_r(\hat{s}_r \mid x, w)$
- Backward pass via chain rule to obtain gradient g
- Update parameters w

$$g = \sum_{(x,s) \in \mathcal{D},r,\hat{\mathbf{s}}_r} \left( p_{(x,s),r,\mathsf{tg}}(\hat{\mathbf{s}}_r) - b_r(\hat{\mathbf{s}}_r \mid x,w) 
ight) rac{\partial}{\partial w} f_r(\hat{\mathbf{s}}_r,x,w)$$

## Dealing with large number $|\mathcal{D}|$ of training examples:

- Parallelized across samples (any number of machines and GPUs)
- Usage of mini batches

## Dealing with large input dimension x:

- Usage of standard CNNs
- GPU and CPU implementation

## Dealing with large output spaces S:

- Variational approximations
- Blending of learning and inference

#### ImageNet dataset

- |S| = 1000
- 1.2 million training examples
- 50,000 validation examples

| Model     | Validation set error [%] |
|-----------|--------------------------|
| AlexNet   | 19.95                    |
| DeepNet16 | 10.29                    |
| DeepNet19 | 10.37                    |

Different from reported results because of missing averaging, different image crops, etc.

#### Layout dataset

# Given a single image x, predict a 3D parametric box that best describes the observed room layout







- $|S| = 50^4$
- Linear model
- 205 training examples
- 104 test examples

## Pixel-wise prediction errors [%] on layout dataset:

|           | OM    | GC    | OM + GC | Others |
|-----------|-------|-------|---------|--------|
| [Hoiem07] | -     | 28.9  | -       | -      |
| [Hedau09] | -     | 21.2  | -       | -      |
| [Wang10]  | 22.2  | -     | -       | -      |
| [Lee10]   | 24.7  | 22.7  | 18.6    | -      |
| [Pero12]  | -     | -     | -       | 16.3   |
| Ours      | 18.63 | 15.35 | 13.59   | -      |

#### Flickr dataset

- $|S| = 2^{38}$
- 10000 training examples
- 10000 test examples

| Training method           | Prediction error [%] |  |
|---------------------------|----------------------|--|
| Unary only                | 9.36                 |  |
| Piecewise                 | 7.70                 |  |
| Joint (with pre-training) | 7.25                 |  |

#### Visual results



female/indoor/portrait female/indoor/portrait



sky/plant life/tree sky/plant life/tree



water/animals/sea water/animals/sky



animals/dog/indoor animals/dog



indoor/flower/plant life

#### Learnt class correlations:



#### **Distributed Inference**

- Maintaining convergence guarantees
- Parallelized across computers

## **Deep Nonlinear Structured Prediction**

- Nonlinearity, e.g., via CNNs in every factor
- Unifying structured prediction

#### Future directions

- Applications
- Effects of approximations
- Latent variable models
- Can we include the optimization of the model hyper-parameters
- Time series data