Common statistical tests are linear models

Last updated: 02 April 201

See worked examples and more details at the accompanying notebook: https://lindeloev.github.io/tests-as-linear

	Common name	Built-in function in R	Equivalent linear model in R	Exact?	The linear model in words	Icon
(x +	y is independent of x P: One-sample t-test N: Wilcoxon signed-rank	t.test(y) wilcox.test(y)	Im(y ~ 1) Im(signed_rank(y) ~ 1)	√ for N >14	One number (intercept, i.e., the mean) predicts y (Same, but it predicts the <i>signed rank</i> of y .)	.~ «:
Simple regression: Im(y ~ 1	P: Paired-sample t-test N: Wilcoxon matched pairs	t.test(y ₁ , y ₂ , paired=TRUE) wilcox.test(y ₁ , y ₂ , paired=TRUE)	$Im(y_2 - y_1 \sim 1)$ $Im(signed_rank(y_2 - y_1) \sim 1)$	√ f <u>or N >14</u>	One intercept predicts the pairwise y ₂ -y ₁ differences (Same, but it predicts the <i>signed rank</i> of y ₂ -y ₁ .)	→
	y ~ continuous x P: Pearson correlation N: Spearman correlation	cor.test(x, y, method='Pearson') cor.test(x, y, method='Spearman')	$Im(y \sim 1 + x)$ $Im(rank(y) \sim 1 + rank(x))$	√ for N >10	One intercept plus x multiplied by a number (slope) predicts y . - (Same, but with <i>ranked</i> x and y)	نبعللمبعس
	y ~ discrete x P: Two-sample t-test P: Welch's t-test N: Mann-Whitney U	t.test(y ₁ , y ₂ , var.equal=TRUE) t.test(y ₁ , y ₂ , var.equal=FALSE) wilcox.test(y ₁ , y ₂)	$Im(y \sim 1 + G_2)^A$ $gls(y \sim 1 + G_2, weights=^B)^A$ $Im(signed_rank(y) \sim 1 + G_2)^A$	✓ ✓ for N >11	An intercept for group 1 (plus a difference if group 2) predicts y . - (Same, but with one variance <i>per group</i> instead of one common.) - (Same, but it predicts the <i>signed rank</i> of y .)	+
Multiple regression: $Im(y \sim 1 + x_1 + x_2 +)$	P: One-way ANOVA N: Kruskal-Wallis	aov(y ~ group) kruskal.test(y ~ group)	$\begin{aligned} &\text{Im}(y \sim 1 + G_2 + G_3 + + G_N)^A \\ &\text{Im}(\text{rank}(y) \sim 1 + G_2 + G_3 + + G_N)^A \end{aligned}$	√ for N >11	An intercept for group 1 (plus a difference if group ≠ 1) predicts y . - (Same, but it predicts the <i>rank</i> of y .)	i, † †
	P: One-way ANCOVA	aov(y ~ group + x)	Im(y ~ 1 + G_2 + G_3 ++ G_N + x) ^A	√	- (Same, but plus a slope on x.) Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x.	
	P: Two-way ANOVA	aov(y ~ group * sex)	$Im(y \sim 1 + G_2 + G_3 + + G_N + S_2 + S_3 + + S_K + G_2*S_2+G_3*S_3++G_N*S_K)$	√	Interaction term: changing sex changes the $\mathbf{y} \sim \mathbf{group}$ parameters. Note: \mathbf{G}_{2toN} is an <u>indicator (0 or 1)</u> for each non-intercept levels of the <u>group</u> variable. Similarly for \mathbf{S}_{2toK} for sex. The first line (with G_i) is main effect of group, the second (with G_i) for sex and the third is the <u>group × sex</u> interaction. For two levels (e.g. male/female), line 2 would just be " G_i " and line 3 would be G_i multiplied with each G_i .	[Coming]
	Counts ~ discrete x N: Chi-square test	chisq.test(groupXsex_table)	Equivalent log-linear model $glm(y \sim 1 + G_2 + G_3 + + G_N + S_2 + S_3 + + S_K + G_2*S_2+G_3*S_3++G_N*S_K, family=)^A$	√	Interaction term: (Same as Two-way ANOVA.) Note: Run glm using the following arguments: $glm (model, family=poisson())$ As linear-model, the Chi-square test is $log(y_i) = log(N) + log(\alpha_i) + log(\beta_i) + log(\alpha_i\beta_i)$ where α_i and β_i are proportions. See more info in the accompanying notebook.	Same as Two-way ANOVA
M	N: Goodness of fit	chisq.test(y)	glm(y ~ 1 + G_2 + G_3 ++ G_N , family=) ^A	✓	(Same as One-way ANOVA and see Chi-Square note.)	1W-ANOVA

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation $y \sim 1 + x$ is R shorthand for $y = 1 \cdot b + a \cdot x$ which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they *all* are across colors! For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed rank function is $signed_rank = function(x) sign(x) * rank(abs(x))$. The variables G_i and S_i are "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G_2 or g_1) indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloev.github.io/tests-as-linear.

^A See the note to the two-way ANOVA for explanation of the notation.

 $^{^{}B}$ Same model, but with one variance per group: gls(value $\sim 1 + G_{2}$, weights = varIdent(form = $\sim 1 | \text{group}$), method="ML").