

Yee Rin Lew #2024-02-27-ds-pt-sg 4th May 2024 BACKGROUND

OBJECTIVE

EDA

SUMMARY

Western Pacific Region diabetes data (i)

Roughly 163 million adults aged 20–79 years have diabetes in the IDF Western Pacific Region. This is the highest number of all IDF Regions and represents 35% of the world's total number of adults with diabetes in this age group.

Diabetes-related health expenditure	2000	2011	2021	2030	2045
Total diabetes-related health expenditure, USD million	-	72,200.0	241,313.1	248,980.6	257,300.0
Diabetes-related health expenditure per person, USD	-	1,169.9	1,203.8	30,913.4	31,896.8

The highest number of deaths due to diabetes in 2019 occurred in the Western Pacific Region – well over 1 million.

Stakeholders:

- 1. Ministry of Health (MOH)
- 2. Healthcare Professional and Provider
- 3. Medical technological device manufacturers
- 4. Insurance companies

Problem Statements:

- 1. What are the risk factors that contribute to Diabetes Mellitus?
- 2. What are the relationships between these risk factor?

Solution:

Conducting a thorough analysis of the provided dataset to investigate whether there are statistically significant differences in various health parameters between diabetic and non-diabetic patients, identify key insights that can inform diagnostic criteria, treatment strategies, and preventive measures for diabetes management.

Process, Workflow, & Tools

Data Source	National Institute of Diabetes and Digestive and Kidney Diseases Data Shape: (768, 9)
Data Cleaning	pandas
EDA	matpletlib pandas seaborn
Reporting	Jupyter

Data Cleaning

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

dtypes: float64(2), int64(7) memory usage: 54.1 KB

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

10		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFuncti	on Age	Outcome
С	ount	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.0000	00 768.000000	768.000000
n	nean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.4718	76 33.240885	0.348958
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.3313	29 11.760232	0.476951
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0780	00 21.000000	0.000000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.2437	50 24.000000	0.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.3725	00 29.000000	0.000000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.6262	50 41.000000	1.000000
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.4200	00 81.000000	1.000000

1 # real null values counts 2 df.isnull().sum()

pregnancies	0
glucose	5
bloodpressure	35
skinthickness	227
insulin	374
bmi	11
diabetespedigreefunction	0
age	0
outcome	0
dtype: int64	

Null Value in [bloodpressure]

age_c	lass outcome		
20-39	0	69.39	7403
	1	72.482	2993
40-59	0	76.70	2703
	1	79.14	5833
60+	0	77.18	1818
	1	80.88	8889
Name:	bloodpressure,	dtype:	float64

Null Value in ['bmi', 'insulin', 'glucose']

df['X'] = df['X'].fillna(df.groupby('outcome')['X'].transform('median'))

Null Value in ['skinthickness']

National Center for Biotechnology Information. (n.d.). StatPearls [Internet]. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK541070/

- Underweight BMI under 18.5 kg/m^2
- Normal weight BMI greater than or equal to 18.5 to 24.9 kg/m^2
- Overweight BMI greater than or equal to 25 to 29.9 kg/m²
- Obesity BMI greater than or equal to 30 kg/m²

outcon	ne bmi_class	
0	underweight	17.000000
	healthy	17.689655
	overweight	22.830000
	obese	32.283582
1	underweight	NaN
	healthy	15.000000
	overweight	24.666667
	obese	34.728477
Name:	skinthickness	dtyne: floate

Outliers


```
1 # Replace 'insulin' upper outliers with median
   Q1 = df.insulin.quantile(0.25)
   03 = df.insulin.quantile(0.75)
 5 IQR = Q3-Q1
   upper = Q3+1.5*IQR
   lower = 01-1.5*IQR
   median_value = df['insulin'].median()
insulin_outlier = df[df['insulin']>upper]
11 df.loc[insulin_outlier.index, 'insulin'] = median_value
```

```
1 sns.boxplot(y = df['insulin'], color = 'green')
```

<Axes: ylabel='insulin'>

*Outliers for 'bmi' only 8 of them, decided to just drop

Question 1: Is there significant difference in mean glucose levels between diabetic & non diabetic patients?

Null Hypothesis (H0): There is no difference in the mean glucose level between diabetic and non-diabetic patient.

Alternative Hypothesis (HA): There is a difference in the mean glucose level between diabetic and non-diabetic patient.


```
t-test
   #statistic
   N = 200
   a = nondm['glucose']
   b = dm['glucose']
   #set Alpha
   alpha = 0.05
 1 t, p = stats.ttest_ind(a,b)
 2 print("t = " + str(t))
 3 print("p = " + str(p))
t = -12.264208140098336
```

p = 1.494339909886565e-29

Question 1: Is there significant difference in mean glucose levels between diabetic & non diabetic patients?

Null Hypothesis (H0): There is no difference in the mean glucose level between diabetic and non-diabetic patient.

Alternative Hypothesis (HA): There is a difference in the mean glucose level between diabetic and non-diabetic patient.


```
t-test

1 #statistic
2 N = 200
3 a = nondm['glucose']
4 b = dm['glucose']
5
6 #set Alpha
7 alpha = 0.05
```

```
1 t, p = stats.ttest_ind(a,b)
2 print("t = " + str(t))
3 print("p = " + str(p))

t = -12.264208140098336
p = 1.494339909886565e-29
```


Question 2: Is there association between BMI classes and diabetes status?

Null Hypothesis (H0): There is no association between BMI class and diabetes status.

Alternative Hypothesis (HA): There is association between BMI class and diabetes status.

```
Chi-square statistic: 74.9084804674606
P-value: 3.790718167139003e-16
Degrees of freedom: 3
Expected frequencies:
[[ 2.60416667   1.39583333]
  [ 66.40625   35.59375  ]
  [116.53645833  62.46354167]
  [314.453125  168.546875 ]]
```


Question 2: Is there association between BMI classes and diabetes status?

Null Hypothesis (H0): There is no association between BMI class and diabetes status.

Alternative Hypothesis (HA): There is association between BMI class and diabetes status.

```
Chi-square statistic: 74.9084804674606
```

P-value: 3.790718167139003e-16

Degrees of freedom: 3

Expected frequencies:

[[2.60416667 1.39583333]

[66.40625 35.59375]

[116.53645833 62.46354167]

[314.453125 168.546875]]

alpha = 0.05

Question 3: Is there a significant difference in terms of insulin levels between diabetic and non-diabetic patients?

Null Hypothesis (H0): There is no significant difference in terms of insulin levels between diabetic and non-diabetic patients

Alternative Hypothesis (HA): There is a significant difference in terms of insulin level between diabetic and non-diabetic patients

```
1 #statistic
2 N = 200
3 a1= nondm['insulin']
4 b1 = dm['insulin']
5
6 #set Alpha
7 alpha = 0.05

1 #t-testing
2 t2, p2 = stats.ttest_ind(a1,b1)
3 print("t = " + str(t2))
4 print("p = " + str(p2))
```

t = -13.39852499060977p = 4.7632087173222495e-34

Question 3: Is there a significant difference in terms of insulin levels between diabetic and non-diabetic patients?

Null Hypothesis (H0): There is no significant difference in terms of insulin levels between diabetic and non-diabetic patients

Alternative Hypothesis (HA): There is a significant difference in terms of insulin level between diabetic and non-diabetic patients

```
1 #statistic
2 N = 200
3 a1= nondm['insulin']
4 b1 = dm['insulin']
5
6 #set Alpha
7 alpha = 0.05
```

1 #t-testing
2 t2, p2 = stats.ttest_ind(a1,b1)
3 print("t = " + str(t2))
4 print("p = " + str(p2))

```
t = -13.39852499060977

p = 4.7632087173222495e-34
```


Based on the observed differences in glucose levels, BMI, and insulin levels between diabetic and non-diabetic patients, it is reasonable to consider these factors as risk factors which can inform diagnostic criteria, treatment strategies, and preventive measures for diabetes management, while allocate medical resource accordingly and appropriately.

Limitation

Diabetes is a complex and multifactorial disease influenced by a combination of genetic, lifestyle, and environmental factors, so a comprehensive approach to risk assessment and prevention is warranted.

National Center for Biotechnology Information. (n.d.). StatPearls [Internet].. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK541070/

World Diabetes Foundation. (n.d.). Western Pacific. In Diabetes Atlas. Retrieved from https://diabetesatlas.org/data/en/region/8/wp.html

