The mole concept

1. (a) $16g O_2$ has no. of moles $=\frac{16}{32} = \frac{1}{2}$

$$14g N_2$$
 has no. of moles $=\frac{14}{28} = \frac{1}{2}$

No. of moles are same, so no. of molecules are same.

2. (b) Na_2SO_4 . $10H_2O = 2 \times 23 + 32 + 4 \times 16 + 10 \times 18$

$$=46+32+64+180=322gm$$

 $322gm Na_2SO_4$. $10H_2O$ contains = 224 gm oxygen

 $32.2gm Na_2SO_4.10H_2O$ contains

$$=\frac{32.2\times224}{322}=22.4gm$$

3. (b) Molarity = $\frac{W(gm) \times 1000}{\text{molecular wt.} \times V(ml.)}$

$$=\frac{2.65\times1000}{106\times250}=0.1M$$

10ml of this solution is diluted to $1000ml N_1V_1 = N_2V_2$

$$10 \times 0.1 = 1000 \times x$$

$$x = \frac{0.1 \times 10}{1000} = 0.001M.$$

4. (c) According to definition of molar solution → A molar solution is one that contains one mole of a solute in one litre of the solution.

ESTD: 2005

5. (a) 44g of CO_2 has $2 \times 6 \times 10^{23}$ atoms of oxygen

4.4g of CO₂ has =
$$\frac{12 \times 10^{23}}{44} \times 4.4$$

$$= 1.2 \times 10^{23}$$
 atoms.

6. (b)
$$44g CO_2$$
 occupies $22.4L$ at STP $4.4g CO_2$ occupies $=\frac{22.4}{44} \times 4.4 = 2.24L$.

7. (a) Density=
$$\frac{\text{Mass}}{\text{Volume}}$$
; $1 = \frac{g}{ml}$ or $g = ml$
0.0018 $ml = 0.0018gm$

No. of moles =
$$\frac{\text{weight}}{\text{Molecular weight}} = \frac{0.0018}{18} = 1 \times 10^{-4}$$

$$\therefore$$
 No. of water molecules =6.023 \times 10^{23} \times 1 \times 10^{-4} = 6.023×10^{19} .

8. (c)
$$Ca_3P_2 + 6H_2O \rightarrow 2PH_3 + 3Ca(OH)_2$$

9. (d) Amount of gold=
$$19.7kg = 19.7 \times 1000gm$$
=19700 gm

No. of moles =
$$\frac{19700}{197}$$
 = 100

∴ No. of atoms =
$$100 \times 6.023 \times 10^{23}$$

= 6.023×10^{25} atoms.

10. (c) :
$$100gm CaCO_3 = 6.023 \times 10^{23} \text{molecules}$$

$$\therefore 10gm \ CaCO_3 = \frac{6.023 \times 10^{23}}{100} \times 10$$

$$=6.023\times10^{22}$$
 molecule

1 molecule of $CaCO_3$ = 50 protons

$$6.023 \times 10^{22}$$
 molecule of $CaCO_3 = 50 \times 6.023 \times 10^{22}$

$$= 3.0115 \times 10^{24}$$

IIT-JEE CHEMISTRY

CHEMICAL ARITHMETIC (MOLE CONCEPT)

- **11.** (b) 16gm of CH_4 = 1mole = 6.023×10^{23} molecules.
- **12.** (c) According to avogadro's hypothesis equal volumes of all gases under similar conditions of temperature and pressure contains equal no. of molecules.

13. Answer: (c) g mol⁻¹

Explanation:

For H_2O_2 , adding atomic masses gives $2\times1 + 2\times16 = 34$.

- If we say molecular weight (more precisely, relative molecular mass,), it's a
 pure number (no unit).
- But when the value 34 is used with units, it refers to the molar mass, which is 34 g mol⁻¹.

Since the options are units, the correct choice is g mol⁻¹

14. (d)
$$d = \frac{M}{V}$$
 ($d = \text{density}$, $M = \text{mass}$, $V = \text{volume}$)

Since
$$d = 1$$

So,
$$M = V$$

$$18gm = 18ml$$

$$18ml = N_A$$
 molecules (N_A = avogadro's no.)

$$1000ml = \frac{N_A}{18} \times 1000 = 55.555 N_A.$$

- **15.** (a) This is fact.
- **16.** (a) : 3 moles of oxygen is that in 1 mole of $BaCO_3$
 - \therefore 1.5 moles of oxygen is that in mole of $BaCO_3 = \frac{1}{3} \times 1.5 = \frac{1}{2} = 0.5$.

17. (b) The no. of molecules present in $1\,ml$ of gas at STP is known as Laschmidt number.

22400ml of gas has total no. of molecules

$$= 6.023 \times 10^{23}$$

1*ml* of gas has total no. of molecules =
$$\frac{6.023 \times 10^{23}}{22400}$$

$$= 2.69 \times 10^{19}$$
.

- **18.** (b) : 2gm of hydrogen = 6.02×10^{23} molecules
 - ∴ 1*gm* of hydrogen

$$=\frac{6.02\times10^{23}}{2}=3.01\times10^{23}$$
 molecule.

19. (a) Molecular weight of SO_2Cl_2

$$= 32 + 32 + 2 \times 35.5 = 135gm$$

- \therefore 135 gm of $SO_2Cl_2 = 1$ gm molecule
- ∴ 13.5gm of $SO_2Cl_2 = \frac{1}{135} \times 13.5 = 0.1$.
- **20.** (a) (a) 34*gm* of water

:
$$18gm H_2 O = 6.023 \times 10^{23}$$
 molecule

$$\therefore 34gm H_2 O = \frac{6.023 \times 10^{23}}{18} \times 34$$

$$= 11.37 \times 10^{23}$$
 mole

(b) 28gm of CO_2

$$:44gm\ CO_2 = 6 \times 10^{23}\ molecules$$

$$\therefore 28gm CO_2 = \frac{6 \times 10^{23}}{44} \times 28 = 3.8 \times 10^{23}$$

(c) 46gm of CH_3OH

$$\because 32gm\ CH_3OH\ = 6\times 10^{23}\ \mathrm{molecules}$$

$$\therefore 46gm \, CH_3OH = \frac{6 \times 10^{23}}{32} \times 46 = 8.625 \times 10^{23}$$

(d) ::108
$$gm$$
 of $N_2O_5 = 6 \times 10^{23}$ molecules

∴ 54gm of
$$N_2O_5 = \frac{6 \times 10^{23}}{108} \times 54 = 3 \times 10^{23}$$
 molecules.

21. (b) Sodium oxide
$$\rightarrow Na_2O$$

Molecular weight = 46 +16 = 62
 $62gm$ of Na_2O = 1 mole
 $620gm$ of Na_2O = 10 mole.

22. (b)
$$2gm$$
 of oxygen contains atom= $\frac{2}{16} = \frac{1}{8}$ mole also $4g$ of sulphur = $\frac{4}{32} = \frac{1}{8}$ mole.

: 1000cc contains
$$1170gm \frac{1170gm}{\text{Mol.wt.}} = \frac{1170}{36.5}$$

24. (a) 1 mole of sucrose contains
$$6.023 \times 10^{23}$$
 molecules

$$\therefore$$
 6.023 \times 10²³ molecule of sucrose has 45 \times 6.023 \times 10²³ atoms/mole

25. (a) wt of
$$CO_2 = 44$$
 mol wt of $CO_2 = 44$

No. of molecule =
$$\frac{\text{wt. of } co_2}{molwtof co_2} \times 6.02 \times 10^{23}$$

= $\frac{44}{44} \times 6.02 \times 10^{23} = 6.02 \times 10^{23}$

26. (c) No. of atoms in one molecule

- = no. of moles $\times 6.022 \times 10^{23}$
- $= 1.4 \times 6.022 \times 10^{23} = 8.432 \times 10^{23}$
- **27.** (d) As we know that four sodium atom are present in sodium ferrocyanide $[Na_4Fe(CN)_6]$

Hence, number of Na atoms = No. of moles ×number of atom ×Avogadro's number

$$2 \times 4 \times 6.023 \times 10^{23} = 48 \times 10^{23}$$

