Abstract interpretation with bounded numeric intervals

Second assignment of the Software Verification course, A.Y. 2022/2023

Christian Micheletti January 7, 2024

Outline

- 1 The Language
 - Arithmetic Expressions
 - Boolean Expressions
- 2 Implementation
 - The Bounded Intervals Domain
 - Abstract States
 - Abstract Semantics
- 3 Performing Analysis

The Language

The language is a variation of the While language seen in class. It differs on:

- it admits some syntactic sugar (it's not minimal);
- its semantic functions model divergence and state changes in both arithmetic and boolean expressions.

Arithmetic Expressions - Syntax

$$AExp ::= n \mid x \mid -e \mid (e) \mid [e_1, e_2]$$

 $\mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 * e_2 \mid e_1/e_2$
 $\mid x++ \mid ++x \mid x-- \mid --x$

The syntax allows arithmetic expression that change the state, such as x++ and x--.

The operator $(\cdot/\cdot): \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ returns the quotient of the two arguments. It's undefined when the second argument is 0.

Arithmetic Expressions - Semantics (1)

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\mathcal{A}\llbracket n \rrbracket \varphi = (n_{\mathbb{Z}}, \varphi)$$

$$\mathcal{A}\llbracket x \rrbracket \varphi = (\varphi(x), \varphi)$$

$$\mathcal{A}\llbracket (e) \rrbracket \varphi = \mathcal{A}\llbracket e \rrbracket \varphi$$

$$\mathcal{A}\llbracket -e \rrbracket \varphi = \begin{cases} (-a, \varphi') & \mathcal{A}\llbracket e \rrbracket \varphi = (a, \varphi') \\ \uparrow & (\mathcal{A}\llbracket e \rrbracket \varphi) \uparrow \end{cases}$$

$$\mathcal{A}\llbracket [e_1, e_2] \rrbracket \varphi = (a, \varphi'')$$

$$\text{where } (a_1, \varphi') = \mathcal{A}\llbracket e_1 \rrbracket \varphi$$

$$(a_2, \varphi'') = \mathcal{A}\llbracket e_2 \rrbracket \varphi'$$

$$a \text{ is a random number between } a_1 \text{ and } a_2$$

Arithmetic Expressions - Semantics (2)

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\mathcal{A}[\![e_1/e_2]\!]\varphi = \begin{cases} (a_1 \div a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ & \wedge a_2 \neq 0 \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{A}[\![e_1 \text{ op } e_2]\!]\varphi = \begin{cases} (a_1 \text{ op } a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Arithmetic Expressions - Semantics (3)

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\mathcal{A}[\![x++]\!]\varphi = (\varphi(x), \varphi[x \mapsto x+1])$$

$$\mathcal{A}[\![++x]\!]\varphi = let \ \varphi' = \varphi[x \mapsto x+1]$$

$$in \ (\varphi'(x), \varphi')$$

$$\mathcal{A}[\![x--]\!]\varphi = (\varphi(x), \varphi[x \mapsto x-1])$$

$$\mathcal{A}[\![--x]\!]\varphi = let \ \varphi' = \varphi[x \mapsto x-1]$$

$$in \ (\varphi'(x), \varphi')$$

Boolean Expressions - Syntax

BExp ::=true | false | (b) |
$$b_1$$
 and b_2 | b_1 or b_2
| $e_1 = e_2$ | e_1 != e_2 | e_1 < e_2 | e_1 >= e_2
| e_1 > e_2 | e_1 <= e_2

The operator $(\neg \cdot) : \mathbb{T} \to \mathbb{T}$ is not in the minimal definition: it is defined as syntactic sugar later on.

Boolean Expressions - Semantics (1)

Operators between booleans short-circuit evaluation:

$$\mathcal{B}[\![\mathsf{true}]\!]\varphi = (\mathsf{tt}, \varphi)$$

$$\mathcal{B}[\![\mathsf{false}]\!]\varphi = (\mathsf{ff}, \varphi)$$

$$\mathcal{B}[\![(b)]\!]\varphi = \mathcal{B}[\![b]\!]\varphi$$

$$\mathcal{B}[\![b_1]\!]\varphi = \begin{cases} (\mathsf{ff}, \varphi') & \mathcal{B}[\![b_1]\!]\varphi = (\mathsf{ff}, \varphi') \\ \\ \mathcal{B}[\![b_2]\!]\varphi' & \mathcal{B}[\![b_1]\!]\varphi = (\mathsf{tt}, \varphi') \\ \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}[\![b_1]\!]\varphi = (\mathsf{tt}, \varphi')$$

$$\mathcal{B}[\![b_1]\!]\varphi = (\mathsf{ff}, \varphi')$$

$$\mathcal{B}[\![b_2]\!]\varphi' & \mathcal{B}[\![b_1]\!]\varphi = (\mathsf{ff}, \varphi')$$

$$\uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions - Semantics (2)

Comparison operators propagate the state transition(s):

$\mathcal{B}: \mathsf{BExp} o \mathsf{State} \hookrightarrow \mathbb{T} imes \mathsf{State}$

$$\mathcal{B}\llbracket e_1 = e_2 \rrbracket \varphi = \begin{cases} (a_1 = a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}\llbracket e_1 != e_2 \rrbracket \varphi = \begin{cases} (a_1 \neq a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions - Semantics (3)

$$\mathcal{B}\llbracket e_1 < e_2 \rrbracket \varphi = \begin{cases} (a_1 < a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}\llbracket e_1 >= e_2 \rrbracket \varphi = \begin{cases} (a_1 \geq a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions - Semantics (4)

$$\mathcal{B}[\![e_1 > e_2]\!]\varphi = \begin{cases} (a_1 > a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}[\![e_1 \iff e_2]\!]\varphi = \begin{cases} (a_1 \le a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions - Syntactic Sugar

Rule

Since boolean expressions induce state transitions, the evaluation order and quantity must be preserved in the desugared code.

This is the reason why we couldn't model the operators $(\cdot > \cdot), (\cdot \leq \cdot) : \mathbb{N} \to \mathbb{N} \to \mathbb{T}$ as syntactic sugar. There is no way to encode those operators only with $(\cdot < \cdot), (\cdot >= \cdot), (\cdot = \cdot)$ and $(\cdot != \cdot)$ respecting this rule.

Boolean Expressions - Negation

not true
$$\stackrel{\mathsf{def}}{=}$$
 false

not false $\stackrel{\mathsf{def}}{=}$ true

not $(b_1 \text{ and } b_2) \stackrel{\mathsf{def}}{=}$ not b_1 or not b_2

not $(b_1 \text{ or } b_2) \stackrel{\mathsf{def}}{=}$ not b_1 and not b_2

not $e_1 = e_2 \stackrel{\mathsf{def}}{=} e_1 != e_2$

not $e_1 != e_2 \stackrel{\mathsf{def}}{=} e_1 = e_2$

not $e_1 < e_2 \stackrel{\mathsf{def}}{=} e_1 >= e_2$

not $e_1 < e_2 \stackrel{\mathsf{def}}{=} e_1 < e_2$

not $e_1 > e_2 \stackrel{\mathsf{def}}{=} e_1 < e_2$

not $e_1 > e_2 \stackrel{\mathsf{def}}{=} e_1 < e_2$

Statements - Syntax


```
While ::= x := e \mid \text{skip} \mid \{S\} \mid S_1 ; S_2 | if b then S_1 else S_2 \mid \text{while } b do S
```

$\overline{\mathsf{Statements}}$ - $\overline{\mathsf{Semantics}}$ (1)

$\mathcal{S}_{ds}: While \rightarrow State \hookrightarrow State$

$$\mathcal{S}_{ds}[\![x := e]\!]\varphi = \begin{cases} \varphi'[x \mapsto a] & \mathcal{A}[\![e]\!]\varphi = (a, \varphi') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{S}_{ds}[\![skip]\!]\varphi = \varphi$$

$$\mathcal{S}_{ds}[\![S]\!]\varphi = \mathcal{S}_{ds}[\![S]\!]\varphi$$

Statements - Semantics (2)

$\mathcal{S}_{ds}: While \rightarrow State \hookrightarrow State$

$$\begin{split} \mathcal{S}_{ds} \llbracket S_1 \; ; \; S_2 \rrbracket \varphi = & (\mathcal{S}_{ds} \llbracket S_2 \rrbracket \circ \mathcal{S}_{ds} \llbracket S_1 \rrbracket) \varphi \\ \mathcal{S}_{ds} \llbracket \text{if } b \text{ then } S_1 \text{ else } S_2 \rrbracket \varphi = & \text{cond} (\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{ds} \llbracket S_1 \rrbracket, \mathcal{S}_{ds} \llbracket S_2 \rrbracket) \\ \mathcal{S}_{ds} \llbracket \text{while } b \text{ do } S \rrbracket \varphi = & \text{FIX} (\lambda g. cond (\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{ds} \llbracket S \rrbracket, id)) \end{split}$$

Where

$$cond(pred, g_1, g_2) = egin{cases} g_1(arphi') & pred(arphi) = (\mathbf{tt}, arphi') \ g_2(arphi') & pred(arphi) = (\mathbf{ff}, arphi') \ \uparrow & \text{otherwise} \end{cases}$$

Bounded Intervals - Definition

$$I_{m,n}\subset\wp(\mathbb{Z})$$
 with $m,n\in\mathbb{Z}\cup-\infty,\infty$

$$I_{m,n} = \{\mathbb{Z}, \emptyset\} \cup \{\{z\} \mid z \in \mathbb{Z}\}$$

$$\cup \{\{x \mid w \le x \le z\} \mid x, w, z \in \mathbb{Z} \text{ s.t. } m \le w \le z \le n\}$$

$$\cup \{\{x \mid x \le z\} \mid x, z \in \mathbb{Z} \text{ s.t. } m \le z \le n\}$$

$$\cup \{\{x \mid x \ge z\} \mid x, z \in \mathbb{Z} \text{ s.t. } m \le z \le n\}$$

Bounded Intervals - Properties (1)

$I_{m,n}$ is partially ordered

$$i_1 \leq i_2 \Longleftrightarrow i_1 \subseteq i_2$$

$I_{m,n}$ is a complete lattice

Bounded Intervals - Properties (2)

- $I_{m,n}$ has no infinite ascending chains when $m \neq -\infty \land n \neq \infty$:
 - when $m, n \in \mathbb{N}$ the fixed-point iteration sequence induced by $\mathcal{D}^{\#}[S_1]s \ \forall s \in S_A, \ S_1 \in \mathbf{While}$ converges in finite time;
 - otherwise, we must make use of the widening operator $\nabla : \mathbb{S}_A \to \mathbb{S}_A \to \mathbb{S}_A$ in order to enforce convergence.
- \blacksquare $I_{m,n}$ has no infinite descending chains:
 - any descending greatest fixed-point search converges in finite time:
 - there is no need for a narrowing operator $\Delta : \mathbb{S}_A \to \mathbb{S}_A \to \mathbb{S}_A$.

Abstract States (1)

We define for any abstract domain A, which is a complete lattice as well, the abstract state type $\mathbb{S}_A = Map(Var, A)$.

Assumption

When a variable is used before its definition, then its value is assumed to be "unknown" (\top_A) . This is due to the fact that we assume that all referenced variables in the program are initialized.

Abstract States (2)

Moreover, $\perp_{\mathbb{S}_A}$ represents an abnormal termination (no update operation can be performed over this state):

$$s(x) = \begin{cases} a & (x, a) \in s \\ \top_A & \text{otherwise} \end{cases}$$

$$s[x \mapsto a] = \begin{cases} \bot_{\mathbb{S}_A} & s = \bot_{\mathbb{S}_A} \\ \{(k, v) \mid (k, v) \in s, \ k \neq x\} & a \neq \top_A, \ s \neq \bot_{\mathbb{S}_A} \\ \{(k, v) \mid (k, v) \in s, \ k \neq x\} & \text{otherwise} \end{cases}$$

Abstract States (3)

\mathbb{S}_A is partially ordered

$$s_1 \leq_{\mathbb{S}_A} s_2 \Longleftrightarrow s_1(x) \leq_A s_2(x) \ \forall x \in Var$$

\mathbb{S}_A is a complete lattice

$$\bot_{\mathbb{S}_{A}} = \{(x, \bot_{A}) \mid x \in Var\}
\top_{\mathbb{S}_{A}} = \emptyset
s_{1} \lor_{\mathbb{S}_{A}} s_{2} = \{(var, a_{1} \lor_{A} a_{2}) \mid (var, a_{1}) \in s_{1}, (var, a_{2}) \in s_{2}\}
s_{1} \land_{\mathbb{S}_{A}} s_{2} = \{(var, a_{1} \land_{A} a_{2}) \mid (var, a_{1}) \in s_{1}, (var, a_{2}) \in s_{2}\}
\cup \{e \mid e \in s_{1}, e \notin s_{2}\} \cup \{e \mid e \notin s_{1}, e \in s_{2}\}$$

Abstract Semantics

The abstract semantic functions are:

- $\blacksquare \ \mathcal{A}^{\sharp} : AExp \to \mathbb{S}_A \to A \times \mathbb{S}_A:$
 - the first element of the tuple approximates the possible results of the arithmetic expression;
 - the second element approximates the possible states after the transition induced by the expression;
- $\blacksquare \mathcal{B}^{\sharp}: BExp \to \mathbb{S}_A \to \mathbb{S}_A \times \mathbb{S}_A;$
 - the first element of the tuple approximates the states where the boolean expression can evaluate to tt;
 - the second element approximates the states where the boolean expression can evaluate **ff**.

This function returns two states, instead of one, in order to preserve the short circuit behavior of boolean operators along with a compositional definition.

lacksquare $\mathcal{D}^{\sharp}: While o \mathbb{S}_{\mathcal{A}} o \mathbb{S}_{\mathcal{A}}.$

Abstract Semantics - AExpr (1)

$\mathcal{A}^{\sharp}: AExpr ightarrow \mathbb{S}_{\mathcal{A}} ightarrow I_{m,n} imes \mathbb{S}_{\mathcal{A}}$

$$\mathcal{A}^{\sharp} \llbracket n \rrbracket s^{\sharp} = (\{n_{\mathbb{Z}}\}, s^{\sharp})$$

$$\mathcal{A}^{\sharp} \llbracket x \rrbracket s^{\sharp} = (s^{\sharp}(x), s^{\sharp})$$

$$\mathcal{A}^{\sharp} \llbracket (e) \rrbracket s^{\sharp} = \mathcal{A}^{\sharp} \llbracket e \rrbracket s^{\sharp}$$

$$\mathcal{A}^{\sharp} \llbracket -e \rrbracket s^{\sharp} = (-a^{\sharp}, s_{1}^{\sharp})$$
where $(a^{\sharp}, s_{1}^{\sharp}) = \mathcal{A}^{\sharp} \llbracket e \rrbracket s^{\sharp}$

$$\mathcal{A}^{\sharp} \llbracket [e_{1}, e_{2}] \rrbracket s^{\sharp} = (\{a_{1}^{\sharp}, \dots, a_{2}^{\sharp}\}, s_{2}^{\sharp})$$
where $(a_{1}^{\sharp}, s_{1}^{\sharp}) = \mathcal{A}^{\sharp} \llbracket e_{1} \rrbracket s^{\sharp}$

$$(a_{2}^{\sharp}, s_{2}^{\sharp}) = \mathcal{A}^{\sharp} \llbracket e_{2} \rrbracket s_{1}^{\sharp}$$

Abstract Semantics - AExpr (2)

$$\mathcal{A}^{\sharp}: \mathsf{AExpr} o \mathbb{S}_{\mathsf{A}} o \mathit{I}_{m,n} imes \mathbb{S}_{\mathsf{A}}$$

$$\mathcal{A}^{\sharp}\llbracket\mathbf{e}_{1} \ \mathbf{op} \ \mathbf{e}_{2}\rrbracket s^{\sharp} = (a_{1}^{\sharp} \ op_{I_{m,n}} \ a_{2}^{\sharp}, s_{2}^{\sharp})$$

$$\text{where } (a_{1}^{\sharp}, s_{1}^{\sharp}) = \mathcal{A}^{\sharp}\llbracket\mathbf{e}_{1}\rrbracket s^{\sharp}$$

$$(a_{2}^{\sharp}, s_{2}^{\sharp}) = \mathcal{A}^{\sharp}\llbracket\mathbf{e}_{2}\rrbracket s_{1}^{\sharp}$$

Abstract Semantics - AExpr (3)

$\mathcal{A}^{\sharp}: \mathsf{AExpr} ightarrow \mathbb{S}_{\mathsf{A}} ightarrow \mathit{I}_{m,n} imes \mathbb{S}_{\mathsf{A}}$

$$\begin{split} \mathcal{A}^{\sharp} \llbracket x + + \rrbracket s^{\sharp} &= (s^{\sharp}(x), s^{\sharp} [x \mapsto x +_{I_{m,n}} 1]) \\ \mathcal{A}^{\sharp} \llbracket + + x \rrbracket s^{\sharp} &= (s^{\sharp}_{1}(x), s^{\sharp}_{1}) \\ & \text{where } s^{\sharp} [x \mapsto x +_{I_{m,n}} 1] = s^{\sharp}_{1} \\ \mathcal{A}^{\sharp} \llbracket x - - \rrbracket s^{\sharp} &= (s^{\sharp}(x), s^{\sharp} [x \mapsto x -_{I_{m,n}} 1]) \\ \mathcal{A}^{\sharp} \llbracket - - x \rrbracket s^{\sharp} &= (s^{\sharp}_{1}(x), s^{\sharp}_{1}) \\ & \text{where } s^{\sharp} [x \mapsto x -_{I_{m,n}} 1] = s^{\sharp}_{1} \end{split}$$

Abstract Semantics - BExpr (1)

$\mathcal{B}^{\sharp}: BExp \to \mathbb{S}_A \to \mathbb{S}_A imes \mathbb{S}_A$

$$\mathcal{B}^{\sharp} \llbracket \mathtt{true}
rbracket^{\sharp} = (s^{\sharp}, \perp_{\mathcal{S}_{A}})$$
 $\mathcal{B}^{\sharp} \llbracket \mathtt{false}
rbracket^{\sharp} = (\perp_{\mathcal{S}_{A}}, s^{\sharp})$
 $\mathcal{B}^{\sharp} \llbracket (b)
rbracket^{\sharp} = \mathcal{B}^{\sharp} \llbracket b
rbracket^{\sharp} = \mathcal{B}^{\sharp}$

Abstract Semantics - BExpr (2)

Comparison operators propagate the state transition(s):

$$\mathcal{B}[\![e_1 = e_2]\!]\varphi = \begin{cases} (a_1 = a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}[\![e_1 ! = e_2]\!]\varphi = \begin{cases} (a_1 \neq a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Abstract Semantics - BExpr (3)

$$\mathcal{B}\llbracket e_1 < e_2 \rrbracket \varphi = \begin{cases} (a_1 < a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}\llbracket e_1 >= e_2 \rrbracket \varphi = \begin{cases} (a_1 \geq a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Abstract Semantics - BExpr (4)

$$\mathcal{B}\llbracket e_1 > e_2 \rrbracket \varphi = \begin{cases} (a_1 > a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}[\![e_1 <= e_2]\!] \varphi = \begin{cases} (a_1 \leq a_2, \varphi'') & \mathcal{A}[\![e_1]\!] \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!] \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Abstract Semantics - Statements (1)

$\mathcal{D}^{\sharp}:\mathsf{While} o\mathbb{S}_{\mathsf{A}} o\mathbb{S}_{\mathsf{A}}$

$$\mathcal{D}^{\sharp} \llbracket x \ := \ e \rrbracket s^{\sharp} \stackrel{\text{def}}{=} \begin{cases} s'^{\sharp} \llbracket x \mapsto a \rrbracket & (a, s'^{\sharp}) = \mathcal{A}^{\sharp} \llbracket e \rrbracket s^{\sharp} \\ & \land a \neq \bot_{A} \\ \bot_{\mathbb{S}_{A}} & \textit{otherwise} \end{cases}$$

$$\mathcal{D}^{\sharp} \llbracket \text{skip} \rrbracket s^{\sharp} \stackrel{\text{def}}{=} s^{\sharp}$$

$$\mathcal{D}^{\sharp} \llbracket S_{1} \ ; \ S_{2} \rrbracket s^{\sharp} \stackrel{\text{def}}{=} (\mathcal{D}^{\sharp} \llbracket S_{1} \rrbracket \circ \mathcal{D}^{\sharp} \llbracket S_{2} \rrbracket) s^{\sharp}$$

Abstract Semantics - Statements (2)

$\mathcal{D}^{\sharp}: \mathsf{While} o \mathbb{S}_{\mathsf{A}} o \mathbb{S}_{\mathsf{A}}$

$$\mathcal{D}^{\sharp} \llbracket \text{if } b \text{ then } S_{1} \text{ else } S_{2} \rrbracket s^{\sharp} \stackrel{\text{def}}{=} (\mathcal{B}^{\sharp} \llbracket S_{1} \rrbracket s^{\sharp}_{\mathbf{tt}}) \vee_{\mathbb{S}_{A}} (\mathcal{B}^{\sharp} \llbracket S_{2} \rrbracket s^{\sharp}_{\mathbf{ff}})$$

$$\qquad where \qquad (s^{\sharp}_{\mathbf{tt}}, s^{\sharp}_{\mathbf{ff}}) = \mathcal{B}^{\sharp} \llbracket b \rrbracket s^{\sharp}$$

$$\mathcal{D}^{\sharp} \llbracket \text{while } b \text{ do } S \rrbracket s^{\sharp} \stackrel{\text{def}}{=} \pi_{2} (\mathcal{B}^{\sharp} \llbracket b \rrbracket (\mathsf{GFP}_{\mathsf{FIX}} F(\lambda s.s \wedge_{\mathbb{S}_{A}} F s)))$$

$$\qquad where \qquad F : \mathbb{S}_{A} \to \mathbb{S}_{A}$$

$$\qquad F s = s^{\sharp} \vee_{\mathbb{S}_{A}} (\mathcal{D}^{\sharp} \llbracket S \rrbracket \circ \pi_{1} \circ \mathcal{B}^{\sharp} \llbracket b \rrbracket s)$$

Where FIX F refers to the fixed point of the function F and GFP_s f is the greatest fixed point of f found starting from s.

Abstract Semantics - Statements (3)

Widened invariant refinition

Since $I_{m,n}$ has infinitely ascending chains, FIX F might diverge.

Therefore, in the implementation, we make use of a widened iteration sequence.

The **widened invariant** resulting from (possibly) widened FIX F is later refined with the GFP of $\lambda s.s \wedge_{\mathbb{S}_A} Fs$.

This is sound:

- the widened invariant $s^{*\sharp}$ is a sound over-approximation of the smallest loop invariant s^* ;
- $s^* = F \ s^*$, so $s^* = s^* \wedge_{\mathbb{S}_A} F \ s^*$: therefore $\lambda s.s \wedge_{\mathbb{S}_A} F \ s$ (descending monotone) is a sound filtering of those states not in s^* .

Therefore, GFP F starting from $s^{*\sharp}$ is the most precise refinement of the widened invariant.

Usage

The program runs with the command

\$ cabal run ai -- path/to/file.whl

This command will read the file given as input and as output:

- it will output the invariant after the last program point;
- it will rewrite the input into a file called as the input plus .inv, with the invariants as comments at any program point.

Program Points

The program points are located along with the statements:

- the terminals *x*:=*e* and skip are followed by one program point;
- the then and else sub-statements in the branch statement are preceded by one program point each;
- while statements are preceded by a program point, whose invariant is the loop invariant of that loop;
- the do sub-statement in the loop statement is preceded by one program point;
- while statements are followed by one program point, which is the invariant after the loop exit.

Examples (1)

Input

```
x := 0;
while x < 10 do {
    x := x + 2
}</pre>
```

Output

```
x := 0; // {"x": [0, 0]}
skip; // {"x": [0, 11]}
while x < 10 do {
skip; // {"x": [0, 9]}
x := (x + 2); // {"x": [2, 11]}
};
skip; // {"x": [10, 11]}</pre>
```

Examples (2)

Input

```
x := 10;
while x > 0 do x := x + 1;
y := 0
```

Output

```
x := 10; // {"x": [10, 10]}
skip; // {"x": [10, Inf]}
while x > 0 do {
skip; // {"x": [10, Inf]}
x := (x + 1); // {"x": [11, Inf]}
};
skip; // BOTTOM STATE
y := 0; // BOTTOM STATE
```

Examples (3)

Input

```
x := [-10, 10];
if x / 2 = x then y := x else y := 0
```

Output

```
x := [(-10), 10]; // {"x": [-10, 10]}
if (x / 2) = x then {
skip; // {"x": [-1, 0]}
y := x; // {"y": [-1, 0], "x": [-1, 0]}
} else {
skip; // {"x": [-10, 10]}
y := 0; // {"y": [0, 0], "x": [-10, 10]}
};
skip; // {"y": [-1, 0], "x": [-10, 10]}
```