Geoffrey Parker - grp352 HW 1: 1.1 - 1.3, 1.6 - 1.14 M328K January 19th, 2012

1.1 Theorem. Let a, b, and c be integers. If a|b and a|c, then a|(b+c).

Proof. Let a, b, and c be integers where a|b and a|c. We will show that, given this, a|(b+c). Since a|b and a|c, then by the definition of divides b=aj and c=ak for some integers j and k. Therefore b+c=aj+ak and b+c=a(j+k). Because j and k are both integers, j+k is also an integer. So by the definition of divides, a|(b+c).

1.2 Theorem. Let a, b, and c be integers. If a|b and a|c, then a|(b-c).

Proof. Let a, b, and c be integers where a|b and a|c. We will show that, given this, a|(b-c). Since a|b and a|c, then by the definition of divides b=aj and c=ak for some integers j and k. Therefore b-c=aj-ak and b-c=a(j-k). Because j and k are both integers, j-k is also an integer. So by the definition of divides, a|(b-c).

1.3 Theorem. Let a, b, and c be integers. If a|b and a|c, then a|bc.

Proof. Let a, b, and c be integers where a|b and a|c. We will show that, given this, a|bc. Since a|b and a|c, then by the definition of divides b=aj and c=ak for some integers j and k. Therefore bc=ajak and b+c=a(ajk). Because a, j, and k are all integers, ajk is also an integer. So by the definition of divides, a|bc.

1.6 Theorem. Let a, b, and c be integers. If a|b, then a|bc.

Proof. Let a, b, and c be integers where a|b. We will show that a|bc. Since a|b, then by the definition of divides b=ak for some integer k. Therefore bc=akc. Because k and c are both integers, kc is also an integer. So by the definition of divides, a|bc. \square

1.7 I	Exercise. Answer each of the following questions, and prove that your answer rect.
(1)	Is $45 \equiv 9 \pmod{4}$? Yes.
	<i>Proof.</i> $45 - 9 = 36$. $36 = 4 \times 9$. Therefore 4 36. So by the definition of congruence, $45 \equiv 9 \pmod{4}$.
(2)	Is $37 \equiv 2 \pmod{5}$? Yes.
	<i>Proof.</i> $37 - 2 = 35$. $35 = 5 \times 7$. Therefore 5 35. So by the definition of congruence, $37 \equiv 2 \pmod{5}$.
(3)	Is $37 \equiv 3 \pmod{5}$? No.
	<i>Proof.</i> $37-3=34$. $5\times 6=30$ and $5\times 7=35$. Since $30<34<35$, there is no integer x such that $5\times x=34$. Therefore by the definition of divides, $5\nmid 34$. So by the definition of congruence, $37\not\equiv 3\pmod 5$.
(4)	Is $31 \equiv -3 \pmod{5}$? No.
	<i>Proof.</i> $31 - (-3) = 34$. $5 \times 6 = 30$ and $5 \times 7 = 35$. Since $30 < 34 < 35$, there is no integer x such that $5 \times x = 34$. Therefore by the definition of divides, $5 \nmid 34$. So by the definition of congruence, $31 \not\equiv -3 \pmod{5}$.
	Exercise. For each of the following congruences, characterize all the integers m satisfy that congruence.
(1)	$m \equiv 0 \pmod{3}$.

Solution. This is satisfied when m=3n for any integer n.

(2)	$m \equiv 1 \pmod{3}$.	
	Solution. This is satisfied when $m = 3n + 1$ for any integer n .	
(3)	$m \equiv 2 \pmod{3}$.	
	Solution. This is satisfied when $m = 3n + 2$ for any integer n .	
(4)	$m \equiv 3 \pmod{3}$.	
	Solution. This is satisfied when $m = 3n$ for any integer n .	
(5)	$m \equiv 4 \pmod{3}$.	
	Solution. This is satisfied when $m = 3n + 1$ for any integer n .	
1.9 🛚	Theorem. Let a and n be integers with $n > 0$. Then $a \equiv a \pmod{n}$.	
start	f. Let a and n be integers with $n > 0$. We will show that $a \equiv a \pmod{n}$. With, $a - a = 0$. Since all integers divide 0 , $n \mid (a - a)$. Therefore, by definiting negruence, $a \equiv a \pmod{n}$.	
	Theorem. Let a, b, and n be integers with $n > 0$. If $a \equiv b \pmod{n}$, the \pmod{n} .	er
$b \equiv a$ This here,	f. Let $a, b,$ and n be integers with $n > 0$ and $a \equiv b \pmod{n}$. We will show that $a \pmod{n}$. Since $a \equiv b \pmod{n}$, then by definition of congruence, $n \mid (a - b)$ in turn means, by definition of divides, that $a - b = nk$ for some integer k . Frow we can say that $b - a = -(a - b) = -(nk) = n(-k)$. Since k is an integer, of an integer. Therefore $n \mid (b - a)$, which means that $b \equiv a \pmod{n}$.	b). om
	Theorem. Let $a, b, c, and n$ be integers with $n > 0$. If $a \equiv b \pmod{n}$ at $(\text{mod } n)$, then $a \equiv c \pmod{n}$.	nc
We wn $n (b-1)$	f. Let a, b, c , and n be integers with $n > 0$, $a \equiv b \pmod{n}$, and $b \equiv c \pmod{n}$ will show $a \equiv c \pmod{n}$. By definition of congruence, we have $n (a-b)$ as $a-c$. By definition of divides, this gives us $a-b=nj$ and $b-c=nk$ for some error a and a . So $a-c=(a-b)+(b-c)=nj+nk=n(j+k)$. Since a integers, a integers, a is also an integer. Therefore a in a which means that $a \equiv a$ in a .	nd ne nd

1.12 Theorem. Let a, b, c, d, and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$.

Proof. Let a, b, c, d, and n be integers with n > 0, $a \equiv b \pmod{n}$, and $c \equiv d \pmod{n}$. We will show that $a+c \equiv b+d \pmod{n}$. By definition of congruence, we have n|(a-b) and n|(c-d). By definition of divides, this gives us a-b=nj and c-d=nk for some integers j and k. So (a+c)-(b+d)=(a-b)+(c-d)=nj+nk=n(j+k). Since j and k are integers, j+k is also an integer. Therefore n|(a+c)-(b+d), which means that $a+c\equiv b+d \pmod{n}$.

1.13 Theorem. Let a, b, c, d, and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a - c \equiv b - d \pmod{n}$.

Proof. Let a, b, c, d, and n be integers with n > 0, $a \equiv b \pmod{n}$, and $c \equiv d \pmod{n}$. We will show that $a-c \equiv b-d \pmod{n}$. By definition of congruence, we have n|(a-b) and n|(c-d). By definition of divides, this gives us a-b=nj and c-d=nk for some integers j and k. So (a-c)-(b-d)=-(a-b)-(c-d)=-nj-nk=n(-j-k). Since j and k are integers, -j-k is also an integer. Therefore n|(a-c)-(b-d), which means that $a-c \equiv b-d \pmod{n}$.

1.14 Theorem. Let a, b, c, d, and n be integers with n > 0. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Proof. Let a, b, c, d, and n be integers with n > 0, $a \equiv b \pmod{n}$, and $c \equiv d \pmod{n}$. We will show that $ac \equiv bd \pmod{n}$. By definition of congruence, we have n|(a-b) and n|(c-d). By definition of divides, this gives us a-b=nj and c-d=nk for some integers j and k. So, ac-bd=n(dj+bk+jkn) Since b, d, j, k, and n are all integers, dj+bk+jkn is also an integer. Therefore n|ac-bd, which means that $ac \equiv bd \pmod{n}$.