

1. DESCRIPTION

XL4067 and XL4067-SS,XL4067TS are digitally controlled analog switching multiplexer/resolver with low on- resistance, very low cut-off leakage current, and internal address decoding features. The on- resistance remains relatively stable throughout the input signal range, and the circuit can be used for digital or analog applications.

XL4067 and XL4067-SS,XL4067TS are 16-channel multiplexer/resolver with a suppressor and four binary input control terminals A~D. Any switch in the 16 channels can be selected through the corresponding switch selection.

2. FEATURES

- Low turn-off leakage current
- Channel resistance matching
- Low static power consumption Low-current Standby mode
- Crosstalk between low channels
- Wide operating voltage range: 2~10V
- Low noise
- Package option: XL4067 (SOP24), XL4067-SS (SSOP24), XL4067TS (TSSOP24)

3. PIN CONFIGURATIONS

4. LIMIT PARAMETERS

Symbol	Parameter	Тур	Unit
V_{DD}	DC voltage range	-0.5 ~ +11V	V
V_{IN} , V_{OUT}	Input or output voltage range (DC or transient)	-0.5 ~ V++0.5	V
I _{IN}	Input current (DC or transient)	±20	mA
I _{SW}	Switching current	±25	mA
P_{D}	Power dissipation	500	mW
T _A	Ambient temperature range	-25to +85	${\mathbb C}$
T _{STG}	Storage temperature range	-65 to +150	$^{\circ}$

5. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Тур	Unit
V_{DD}	DC voltage range	2 ~ +10V	V
V _{IN}	Input voltage	$Gnd{\sim}Vdd$	V
V_{SW}	Switching voltage	$Gnd{\sim}Vdd$	V
T _A	Operating ambient temperature range	-25to +85	$^{\circ}$

Truth table						
Control					Select	
S0	S1	S2	S3	Е	passage	
Х	Х	Х	Х	Н	-	
L	L	L	L	L	Y0	
Н	L	L	L	L	Y1	
L	Н	L	L	L	Y2	
Н	Н	L	L	L	Y3	
L	L	Н	L	L	Y4	
Н	L	Н	L	L	Y5	
L	Н	Н	L	L	Y6	
Н	Н	Н	L	L	Y7	
L	L	L	Н	L	Y8	
Н	L	L	Н	L	Y9	
L	Н	L	Н	L	Y10	
Н	Н	L	Н	L	Y11	
L	L	Н	Н	L	Y12	
Н	L	Н	Н	L	Y13	
L	Н	Н	Н	L	Y14	
Н	Н	Н	Н	L	Y15	

Internal logic circuit

Schematic diagram (single path)

Functional block diagram:

Electrical characteristics: static parameter

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Vis=Vcc to Gnd	-	-	-	-
R _{on (Peak)}	Resistance in the on state	Vcc=4.5V;Isw=1000uA	-	110	180	Ω
	(Peak)	Vcc=6.0V;Isw=1000uA	-	95	160	Ω
		Vcc=9.0V;Isw=1000uA	-	75	130	Ω
		Vis=Gnd to Vcc	-	-	-	-
	Resistance in the on state (Rail)	Vcc=4.5V;Isw=1000uA	-	90	160	Ω
R _{on} (Rall)		Vcc=6.0V;Isw=1000uA	-	80	140	Ω
		Vcc=9.0V;lsw=1000uA _		70	120	Ω
		Vcc=2.0V	1.5	1.2	-	V
V _{IH}	High level input voltage	Vcc=4.5V	3.15	2.4	-	V
VIH		Vcc=6.0V	4.2	3.2	-	V
		Vcc=9.0V	6.3	4.7	-	V
		Vcc=2.0V	-	0.8	0.5	V
V _{IL}	Low-level input voltage	Vcc=4.5V	-	2.1	1.35	V
V IL		Vcc=6.0V		3.2	1.80	V
		Vcc=9.0V	-	4.3	2.70	V
	Input leakage current	Vi=Vcc or GND	-	-	-	-
I _I		Vcc=6.0V	-	-	±0.1	μΑ
		Vcc=10.0V	-	-	±0.2	μΑ
	Off leakage current	Vcc=10.0V;Vi=Vih or Vil	_	_	_	-
		Vsw =Vcc-GND				
I _{S(OFF)}		Per channel	-	-	±0.1	μΑ
		All channels	-	-	±0.8	μΑ
I _{S(ON)}	Open leakage current		_	_	±0.8	μΑ
	Supply current	Vi=Vcc or Gnd;Vis=GND or Vcc	-	_	-	-
Icc		Vos=Vcc or Gnd	-	-	-	-
icc		Vcc=6.0V		-	8.0	μΑ
		Vcc=10.0V			16.0	μΑ

Ron test circuit

Off leakage current test circuit

Delay from input Vis to output Vos

(1)
$$V_{CC} = 4.5 \text{ V}$$

(2)
$$V_{CC} = 6.0 \text{ V}$$

(3)
$$V_{CC} = 9.0 \text{ V}$$

Relationship between Ron and Vis

$$V_{is} = V_{CC}$$
 and $V_{os} = open$
 $V_{is} = GND$ and $V_{os} = open$

Open leakage current test circuit

On or off time

6. ORDERING INFORMATION

Ordering Information

Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity
XL4067	XL4067	SOP24	15.29 *7.50	- 25to 85	MSL3	T&R	2000
XL4067-SS	XL4067-SS	SSOP24	8.20 * 5.30	- 25to 85	MSL3	Tube 50	2500
XL4067TS	XL4067TS	TSSOP24	7.80 * 4.40	- 25to 85	MSL3	Tube 50	2500

7. DIMENSIONAL DRAWINGS

