/**53** P1

Exploitation du diagramme E - pH du chlore (D'après Centrale TSI 2018)

I/A Diagramme du chlore

La figure 1 donne le diagramme potentiel—pH de l'élément chlore. Les espèces considérées, qui sont toutes en solution, sont $\text{Cl}_2(\text{aq})$, $\text{Cl}_{(\text{aq})}^-$, $\text{HClO}_{(\text{aq})}$ et $\text{ClO}_{(\text{aq})}^-$. La concentration de tracé est $c=1,0\times 10^{-1}\,\text{mol}\cdot\text{L}^{-1}$. Les frontières entre deux espèces ont été calculées en traduisant l'égalité des concentrations molaires en élément chlore de chaque espèce sur la frontière, la somme de ces concentrations étant égale à c.

FIGURE 1 - Diagramme E-pH du chlore

/7 $\boxed{1}$ Justifier que les espèces A, B, C et D sont respectivement $\operatorname{Cl}_{(aq)}^-, \operatorname{Cl}_{2(aq)}, \operatorname{HClO}_{(aq)}$ et $\operatorname{ClO}_{(aq)}^-$.

Réponse $ \stackrel{\mathrm{n.o.}}{\blacklozenge}$								
Tableau 1 – Calcul du nombre d'oxydation					+I	$\mathrm{HClO}_{\mathrm{(aq)}}$	$ClO_{(aq)}^-$	
Espèce	HClO _(aq)	ClO _(aq)	$\text{Cl}_{2(aq)}$	$\mathrm{Cl}^{\mathrm{(aq)}}$	0	$\mathrm{Cl}_{2(\mathrm{aq})}$		
$\begin{array}{c} \text{n.o.(Cl)} \\ \text{Domaine} \end{array}$	+I (1) C	+I D	0 (1) B	-I (1) A	-I	$\mathrm{Cl}^{\mathrm{(aq)}}$		
•								

FIGURE 2 – Diagramme de situation (1)+(1)

On prouve le caractère acide de HClO par une équation :

$$HClO_{(aq)} + H_2O_{(l)} \stackrel{\text{(1)}}{=} ClO_{(aq)}^- + H_3O_{(aq)}^+$$
 K_A

/3 $\boxed{2}$ Déterminer le p K_A du couple HClO / ClO $^-$.

— Réponse ·

Pour des espèces acido-basiques dissoutes, par la relation de HENDERSON on a

$$\mathrm{pH} = \mathrm{p}K_A + \log \frac{[\mathrm{HClO}]}{[\mathrm{ClO}^-]} \Rightarrow \boxed{\mathrm{pH}_{\mathrm{front}} = \mathrm{p}K_A} \Rightarrow \underline{\mathrm{p}K_A = 7{,}25}$$

7 3 Déterminer le potentiel standard du couple B/A.

– Réponse -

La demi équation rédox du couple B/A est $Cl_{2(aq)} + 2e^{-} \stackrel{\text{\scriptsize (1)}}{=} 2Cl_{(aq)}^{-}$, ainsi l'équation de la frontière est donnée par

$$E = E^{\circ} + \frac{0.06}{2} \log \frac{[\text{Cl}_2]c^{\circ}}{[\text{Cl}^{-}]^2}$$

On nous signale qu'il y a égalité des concentrations en éléments sur la frontière, donc $2[Cl_2] = [Cl^-]$, et comme $2[Cl_2] + [Cl^-] = c$, nous avons que $[Cl_2] = c/4$ et $[Cl^-] = c/2$. Finalement

$$E = E^{\circ} - 0.03 \log c$$

Pour déterminer E on peut utiliser les informations sur la frontière entre B et C:

$$2 \text{ HClO}_{(aq)} + 2 \text{ H}_{(aq)}^{+} + 2 \text{ e}^{-} \stackrel{\text{(1)}}{=} \text{Cl}_{2(aq)} + 2 \text{ H}_{2}\text{O}_{(1)}$$

ainsi la pente est de $0.06\,\mathrm{V/pH}$, et ainsi

$$E = 1,56 \text{ V} - 0,06 \text{ V/pH} \cdot 2,17 \text{ pH} = 1,43 \text{ V}$$

En conclusion,

$$\boxed{E^{\circ} = E + 0.03 \log c} \Rightarrow \underline{E^{\circ} = 1.40 \,\mathrm{V}}$$

/2 $\boxed{4}$ Écrire la demi-équation redox entre les espèces A et C.

$$\begin{array}{c} \textbf{R\'eponse} \\ \textbf{HClO}_{(aq)} + \textbf{H}_{(aq)}^{+} + 2\,\textbf{e}^{-} \overset{\textcircled{1}}{=} \textbf{Cl}_{(aq)}^{-} + \textbf{H}_{2}\textbf{O}_{(l)} \end{array}$$

/3 $\boxed{5}$ Déterminer la pente de la frontière C/A et en effectuer la vérification graphique.

– Réponse -

La formule de NERNST pour ce couple donne

$$E \stackrel{\text{\scriptsize (1)}}{=} E^{\circ} + 0.03 \log \frac{[\text{HClO}][\text{H}^{+}]}{[\text{Cl}^{-}]} \Leftrightarrow E_{\text{front}} \stackrel{\text{\scriptsize (1)}}{=} E^{\circ} - 0.03 \, \text{pH}$$

Avec l'égalité des concentrations à la frontière. Ainsi, la pente est de $-0.03\,\mathrm{V/pH}$ ①. En prolongeant la frontière, on remarque qu'elle passe par les points (2,17;1,43) et (10.5;1,2), ce qui confirme une pente de $-0.03\,\mathrm{V/pH}$ ①.

/2 6 Déterminer le potentiel standard du couple C/A.

En pH = 2,17,
$$E = 1,43 \text{ V}$$
, ainsi $E^{\circ} = 1,43 \text{ V} + 0,03 \text{ V/pH} \cdot 2,17 \text{ pH} = 1,50 \text{ V}$

I/B Diagramme de l'eau

On considère les espèces H_2O , $O_{2(g)}$ et $H_{2(g)}$. La pression de tracé est fixée à 1 bar et la concentration de tracé à $1,0 \, \text{mol} \cdot \text{L}^{-1}$.

/8 7 Déterminer les équations des frontières.

——— Réponse —

On écrit les demi-équations associées puis les potentiels :

$$\Leftrightarrow \text{H}_2\text{O}_{(1)}/\text{H}_2(g): \widehat{1}$$

$$\text{H}_2(g) \stackrel{?}{=} 2 \text{H}_{(\text{aq})}^+ + 2 \text{e}^-$$

$$\Rightarrow E_2 \stackrel{?}{=} E_2^\circ + \frac{0.06}{2} \log \left(\frac{[\text{H}^+]^2 p^\circ}{c^{\circ 2} p_{\text{H}_2}} \right)$$

$$\Leftrightarrow E_2 = E_2^\circ - 0.06 \text{pH} + 0.06 \log \left(\frac{p^\circ}{p_{\text{H}_2}} \right)$$

$$\Rightarrow E_{2,\text{front}} \stackrel{?}{=} E_2^\circ - 0.06 \text{pH}$$

/4 8 Tracer succinctement sur votre copie l'allure du diagramme potentiel—pH de l'eau superposé à celui du chlore aqueux. Quels commentaires pouvez-vous formuler?

- Réponse -

les lignes de séparation des domaines de l'eau partent à pH=0 à 0 et 1,23 V respectivement, avec une pente de $-0.06 \,\mathrm{V/pH}$ ①, elles sont **intégralement en dessous** ① de tous les autres segments du diagramme E-pH. En superposant ces deux diagrammes, nous remarquons que seul Cl⁻ peut coexister ① dans l'eau car toutes les autres espèces ont des domaines disjoints ① avec celui de l'eau.

I/C Étude de la cellule d'électrolyse

FIGURE 3 – L'électrolyseur

L'électrolyseur est constitué de deux électrodes en titane. Il force la réaction inverse de la réaction spontanée. Le schéma de principe est donné figure 3. La tension U et le courant i sont donc des grandeurs positives, mais la nature chimique de l'anode et de la cathode sont inchangées. Lors de la mise sous tension de l'électrolyseur, on observe une production de $H_{2(g)}$ et de $Cl_{2(aq)}$. L'électrolyseur est placé en amont du système de filtrage de l'eau.

/4 9 Écrire les demi-réactions électroniques des réactions se déroulant à l'anode et à la cathode.

- Réponse –

À l'anode il se produit une **oxydation** ①, ainsi il se produit du Cl_2 selon la réaction $2 Cl_{(aq)}^- \stackrel{\textcircled{1}}{=} Cl_{2(aq)} + 2 e^-$.

À la cathode, il se produit une **réduction** ①, donc la formation de H_2 selon la réaction $2H_{(aq)}^+ + 2e^{-\frac{1}{2}}H_{(aq)}^2$

L'eau d'une piscine est maintenue à un pH compris entre 7.0 et 7.4.

/4 10 Écrire l'équation modélisant la réaction chimique qui, à partir de $Cl_{2(aq)}$ en solution aqueuse, forme $Cl_{(aq)}^-$ et $ClO_{(aq)}^-$. Comment s'appelle ce type de réaction?

- Réponse -

$$\begin{aligned} \text{Cl2}_{(aq)} + 2 \, \text{e}^{-} & \stackrel{\textcircled{1}}{=} 2 \, \text{Cl}_{(aq)}^{-} \\ \text{Cl2}_{(aq)} + 2 \, \text{H}_2 O_{(l)} & \stackrel{\textcircled{1}}{=} 2 \, \text{ClO}_{(aq)}^{-} + 4 \, \text{H}_{(aq)}^{+} + 2 \, \text{e}^{-} \\ \Rightarrow \text{Cl2}_{(aq)} + \text{H}_2 O_{(l)} & \stackrel{\textcircled{1}}{=} \text{Cl}_{(aq)}^{-} + \text{ClO}_{(aq)}^{-} + 2 \, \text{H}_{(aq)}^{+} \end{aligned}$$

C'est une dismutation. (1)

On envisage dans la suite une piscine d'um particuliær de contenance $V_0=150\,\mathrm{m}^3.$

Avant la mise en fonctionnement de l'électrolyseur, l'eau de la piscine doit être salée avec une teneur en sel d'environ $c_s = 5 \,\mathrm{g \cdot L^{-1}}$ (on prendra cette valeur pour les applications numériques). Quelle masse de sel læ particuliær doit-iel acheter lors de la première mise en route du dispositif?

Réponse
$$m = c_s \cdot V_0 = 5 \,\mathrm{g \cdot L^{-1}} \cdot 150 \,\mathrm{m}^3 = 750 \,\mathrm{kg}$$

Un fabricant d'électrolyseurs de piscines annonce, pour un modèle adapté à un volume maximal de bassin de 150 m³, une production horaire maximale $\frac{\mathrm{d}m_{\mathrm{max}}}{\mathrm{d}t}=26\,\mathrm{g\cdot h^{-1}}$ de Cl₂. Pour ce modèle, $U=7.5\,\mathrm{V}$.

 $\sqrt{412}$ Calculer la valeur de i correspondant au fonctionnement maximal. On supposera le fonctionnement idéal.

- Réponse -

Cherchons la quantité de dichlore formée par seconde :

$$n_{\rm Cl_2} \stackrel{\textcircled{1}}{=} \frac{m_{\rm max}}{2M_{\rm Cl} \times 3600\,{\rm s\cdot h^{-1}}}$$

Or la formation à l'anode d'une mole de Cl₂ s'accompagne de la libération de 2 moles d'électrons, ainsi $n_e = 2n_{\text{Cl}_2}$. Finalement,

$$i \stackrel{\text{(1)}}{=} e \mathcal{N}_a \frac{n_e}{\Delta t} = \mathcal{F} \frac{m_{\text{max}}}{M_{\text{Cl}} \times 3600 \,\text{s} \cdot \text{h}^{-1}} \stackrel{\text{(1)}}{=} 20 \,\text{A}$$

/3 13 Calculer la puissance correspondant à une production horaire maximale. Commenter le résultat.

– Réponse

 $P = UI = 150 \, \mathrm{W},$ ce qui n'est pas excessif, sauf s'il faut la faire tourner en continu... ①