#### **PSALTer results panel**

 $S = \iiint \left(\frac{1}{6} \left(6t_{1} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\beta_{i}} + 6 \mathcal{A}^{\alpha\beta\chi} \mathcal{A}^{\beta_{i}} + 6 \mathcal{A}^{\alpha\beta\chi} \mathcal{A}^{\beta_{i}} + 6 \mathcal{A}^{\alpha\beta\chi} \mathcal{A}^{\beta_{i}} + 12t_{1} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} + 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_{i}} \partial_{\beta} \mathcal{A}^{\beta_{i}} - 12t_{1} \partial_{\beta} \mathcal{A}^{\beta_$ 

#### **Wave operator**

|                                                     | ${}^{0}$ ${}^{\mathcal{H}}$ | $0.7f^{\parallel}$ | $^{\circ}f^{\perp}$ | ${}^{0}\mathcal{H}^{\parallel}$                        |                                                    |                                            |                                         |                                        |                                                     |                               |                                                     |                                                   |                                          |                                               |
|-----------------------------------------------------|-----------------------------|--------------------|---------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------------------|-------------------------------|-----------------------------------------------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------|
| ${}^{0^+}_{\cdot}\mathcal{F}^{\parallel}_{}\dagger$ | -t.<br>1                    | $i \sqrt{2} kt_1$  | 0                   | 0                                                      |                                                    |                                            |                                         |                                        |                                                     |                               |                                                     |                                                   |                                          |                                               |
| <sup>0,+</sup> f <sup>∥</sup> †                     | $-i \sqrt{2} kt$            | $-2 k^2 t$ .       | 0                   | 0                                                      |                                                    |                                            |                                         |                                        |                                                     |                               |                                                     |                                                   |                                          |                                               |
| 0.+ f +                                             | 0                           | 0                  | 0                   | 0                                                      |                                                    |                                            |                                         |                                        |                                                     |                               |                                                     |                                                   |                                          |                                               |
| <sup>0.</sup> Æ <sup>∥</sup> †                      | 0                           | 0                  | 0                   | $k^2 r_{\cdot \cdot} + t_{\cdot \cdot}$                | $^{1.^{+}}\mathcal{F}^{\parallel}{}_{\alpha\beta}$ | $^{1.^{+}}\mathcal{A}^{\perp}{}_{lphaeta}$ | $1.^+f^{\parallel}_{\alpha\beta}$       | $^{1}\mathcal{A}^{\parallel}{}_{lpha}$ | $^1{\mathscr H}^{\scriptscriptstyle\perp}{}_{lpha}$ | $1^{-}f^{\parallel}_{\alpha}$ | $^{1}f_{a}^{\perp}$                                 |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{^{lphaeta}}$ | $\frac{1}{6}(t_1+4t_1)$                            | $-\frac{t_1-2t_2}{3\sqrt{2}}$              | $-\frac{i k (t_1 - 2 t_1)}{3 \sqrt{2}}$ | 0                                      | 0                                                   | 0                             | 0                                                   |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $^{1^{+}}\mathcal{H}^{\perp}\dagger^{lphaeta}$         | $-\frac{t2t.}{3\sqrt{2}}$                          | $\frac{t.+t.}{\frac{1}{3}}$                | $\frac{1}{3}ik(t_1+t_2)$                | 0                                      | 0                                                   | 0                             | 0                                                   |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $f^{\dagger} f^{\dagger} \uparrow^{\alpha\beta}$       | $\frac{i k (t2 t.)}{3 \sqrt{2}}$                   | $-\frac{1}{3} i k (t_1 + t_2)$             | $\frac{1}{3}k^2(t_1+t_2)$               | 0                                      | 0                                                   | 0                             | 0                                                   |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $^{1}\mathcal{H}^{\parallel}$ † $^{lpha}$              | 0                                                  | 0                                          | 0                                       | $-k^2 r_1 - \frac{t_1}{2}$             | $\frac{t_1}{\sqrt{2}}$                              | 0                             | ikt.<br>1                                           |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $\frac{1}{2}\mathcal{F}^{\perp} \uparrow^{\alpha}$     | 0                                                  | 0                                          | 0                                       | $\frac{t_1}{\sqrt{2}}$                 | 0                                                   | 0                             | 0                                                   |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $^{1}f^{\parallel}\uparrow^{\alpha}$                   | 0                                                  | 0                                          | 0                                       | 0                                      | 0                                                   | 0                             | 0                                                   |                                                   |                                          |                                               |
|                                                     |                             |                    |                     | $\frac{1}{2}f^{\perp}\uparrow^{\alpha}$                | 0                                                  | 0                                          | 0                                       | -Īkt.<br>1                             | 0                                                   | 0                             | 0                                                   | $^{2^{+}}\mathcal{A}^{\parallel}{}_{\alpha\beta}$ | $2^+_{\cdot}f^{\parallel}_{\alpha\beta}$ | $^{2}\mathcal{H}^{\parallel}{}_{lphaeta\chi}$ |
|                                                     |                             |                    |                     |                                                        |                                                    |                                            |                                         |                                        |                                                     |                               | $^{2.}\mathcal{A}^{\parallel}\dagger^{lphaeta}$     | $\frac{t}{2}$                                     | $-\frac{i k t}{\sqrt{2}}$                | 0                                             |
|                                                     |                             |                    |                     |                                                        |                                                    |                                            |                                         |                                        |                                                     |                               | $2.^{+}f^{\parallel}$ †                             | $\frac{i k t}{\sqrt{2}}$                          | $k^2 t$ .                                | 0                                             |
|                                                     |                             |                    |                     |                                                        |                                                    |                                            |                                         |                                        |                                                     |                               | $2^{-}\mathcal{H}^{\parallel} + ^{\alpha\beta\chi}$ | 0                                                 | 0                                        | $k^2 r_1 + \frac{t_1}{2}$                     |

#### **Saturated propagator**



### **Source constraints**

| A                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| Spin-parity form                                                                                            | Covariant form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Multiplicities |  |  |  |
| $0^{+}_{\cdot} \tau^{\perp} == 0$                                                                           | $\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              |  |  |  |
| $-2 \overline{i}  k \stackrel{0^+}{\cdot} \sigma^{\parallel} + \stackrel{0^+}{\cdot} \tau^{\parallel} == 0$ | $\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              |  |  |  |
| $2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$                                                | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3              |  |  |  |
| 1. T   a == 0                                                                                               | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3              |  |  |  |
| $i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$        | $\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3              |  |  |  |
| $-2 i k 2^{+}_{.} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{.} \tau^{\parallel^{\alpha\beta}} == 0$         | $-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}{}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\chi}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau\left$ | 5              |  |  |  |
|                                                                                                             | $4  i  k^{\chi}  \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} - 6  i  k^{\chi}  \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6  i  k^{\chi}  \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6  i  k^{\chi}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6  i  k^{\chi}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2  \eta^{\alpha \beta}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau  (\Delta + \mathcal{K})^{\chi \delta} - 2  \eta^{\alpha \beta}  \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau  (\Delta + \mathcal{K})^{\chi}_{\chi} - 4  i  \eta^{\alpha \beta}  k^{\chi}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |  |  |
| Total expected gauge generators:                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |  |  |

# Massive spectrum



#### Massless spectrum

(No particles)

## **Unitarity conditions**

r. < 0 &&t. > 0 &&r. < 0 &&t. > 0