18.100B Problem Set 4

Due in class Monday, March 11. You may discuss the problems with other students, but you should write solutions entirely on your own.

1. Suppose $\{p_n\}$ and $\{q_n\}$ are two sequences in a metric space X, that $\{p_n\}$ converges to p, and that $\{q_n\}$ converges to q. Prove that

$$\lim_{n \to \infty} d(p_n, q_n) = d(p, q).$$

2. Suppose that $\{x_n\}$ is a sequence of non-negative real numbers converging to a non-negative real number x. Prove that

$$\lim_{n \to \infty} \sqrt{x_n} = \sqrt{x}.$$

(Hint: it may help to consider separately the cases x = 0 and $x \neq 0$.)

- 3. Find a sequence of real numbers for which every positive integer is a subsequential limit.
 - 4. This problem concerns the 2-adic metric on \mathbb{Z} , defined by

$$d_2(m,n) = \left\{ egin{array}{ll} 0, & ext{if } m=n \ 2^{-a}, & ext{if } m
eq n ext{ and } 2^a ext{ is the largest power of 2 dividing } m-n. \end{array}
ight.$$

Let X be the metric space \mathbb{Z} with the 2-adic distance. Show that the sequence $\{1,3,7,15,31,\dots\}$ in X converges. (This can be phrased in terms of infinite series as saying that the series

$$1+2+4+8+\dots = \sum_{j=0}^{\infty} 2^j$$

converges in X. You may know a formula for summing such a series that will help you guess the limit of the sequence.)