OBM Documentation

AIMLab

Contents:

I	ORM	OBM package					
	1.1	OBM.ComplexityMeasures class	1				
	1.2	OBM.DesaturationsMeasures class					
	1.3	OBM.HypoxicBurdenMeasures class					
	1.4	OBM.ODIMeasure class	3				
	1.5	OBM.OverallGeneralMeasures class	3				
	1.6	OBM.PeriodicityMeasures class	4				
	1.7	OBM.Preprocessing class	5				
2 Indices and tables							
Рy	Python Module Index						
In	ndex						

CHAPTER 1

OBM package

1.1 OBM.ComplexityMeasures class

class OBM.ComplexityMeasures.ComplexityMeasures ($CTM_Threshold=0.25$, $DFA_Window=20$, $M_Sampen=3$, $R_Sampen=0.2$)

Bases: object

Class that calculates Complexity Features from spo2 time series. Suppose that the data has been preprocessed.

:param signal: 1-d array, of shape (N,) where N is the length of the signal CTM_Threshold: Radius of Central Tendency Measure. DFA_Window: Length of window to calculate DFA biomarker. M_Sampen: Embedding dimension to compute SampEn. R_Sampen: Tolerance to compute SampEn.

 $compute(signal) \rightarrow OBM._ResultsClasses.ComplexityMeasuresResults$

Parameters signal – 1-d array, of shape (N,) where N is the length of the signal

Returns

ComplexityMeasuresResults class containing the following features:

- ApEn: Approximate Entropy.
- LZ: Lempel-Ziv complexity.
- CTM: Central Tendency Measure.
- SampEn: Sample Entropy.
- DFA: Detrended Fluctuation Analysis.

1.2 OBM.DesaturationsMeasures class

class OBM.DesaturationsMeasures.DesaturationsMeasures(begin, end)
 Bases: object

Class that calculates the Desaturation Features from spo2 time series. Suppose that the data has been preprocessed.

Parameters

- begin List of indices of beginning of each desaturation event.
- end List of indices of end of each desaturation event.

compute (signal) \rightarrow OBM. ResultsClasses.DesaturationsMeasuresResults

Parameters signal – 1-d array, of shape (N,) where N is the length of the signal

Returns

DesaturationsMeasuresResults class containing the following features:

- DL_u: Mean of desaturation length
- DL_sd: Standard deviation of desaturation length
- DA100_u: Mean of desaturation area using 100% as baseline.
- DA100_sd: Standard deviation of desaturation area using 100% as baseline
- DAmax_u: Mean of desaturation area using max value as baseline.
- DAmax_sd: Standard deviation of desaturation area using max value as baseline
- DD100_u: Mean of depth desaturation from 100%.
- DD100_sd: Standard deviation of depth desaturation from 100%.
- DDmax_u: Mean of depth desaturation from max value.
- DDmax_sd: Standard deviation of depth desaturation from max value.
- DS_u: Mean of the desaturation slope.
- DS_sd: Standard deviation of the desaturation slope.
- TD_u: Mean of time between two consecutive desaturation events.
- TD_sd: Standard deviation of time between 2 consecutive desaturation events.

desat_embedding()

Help function for the class

Returns helper arrays containing the information about desaturation lengths and areas.

1.3 OBM.HypoxicBurdenMeasures class

class OBM. HypoxicBurdenMeasures. HypoxicBurdenMeasures (begin,

end,

 $CT_Threshold=90$,

CA Baseline=None)

Bases: object

Class that calculates Hypoxic Burden Features from spo2 time series. Suppose that the data has been preprocessed.

Parameters

- **begin** List of indices of beginning of each desaturation event.
- end List of indices of end of each desaturation event.

- CT_Threshold Percentage of the time spent below the "CT_Threshold" % oxygen saturation level.
- CA_Baseline Baseline to compute the CA feature. Default value is mean of the signal.

compute (signal)

Parameters signal – 1-d array, of shape (N₁) where N is the length of the signal

Returns

HypoxicBurdenMeasuresResults class containing the following features:

- CA: Integral SpO2 below the xx SpO2 level normalized by the total recording time
- CT: Percentage of the time spent below the xx% oxygen saturation level
- POD: Percentage of oxygen desaturation events
- AODmax: The area under the oxygen desaturation event curve, using the maximum SpO2 value as baseline and normalized by the total recording time
- AOD100: Cumulative area of desaturations under the 100% SpO2 level as baseline and normalized by the total recording time

1.4 OBM.ODIMeasure class

```
class OBM.ODIMeasure.ODIMeasure(ODI_Threshold=3)
```

Bases: object

Class that calculates the ODI from spo2 time series. Suppose that the data has been preprocessed.

Parameters ODI_Threshold - Threshold to compute Oxygen Desaturation Index.

 $compute(signal) \rightarrow OBM._ResultsClasses.ODIMeasureResult$

Parameters signal – The SpO2 signal, of shape (N,)

Returns

ODIMeasureResult class containing the following features:

- ODI: the average number of desaturation events per hour.
- begin: List of indices of beginning of each desaturation event.
- end: List of indices of end of each desaturation event.

1.5 OBM.OverallGeneralMeasures class

```
class OBM.OverallGeneralMeasures.OverallGeneralMeasures (ZC\_Baseline=None, percentile=1, M\_Threshold=2, DI\ Window=12)
```

Bases: object

Class that calculates Overall General Features from spo2 time series. Suppose that the data has been preprocessed.

Parameters

• **ZC_Baseline** – Baseline for calculating number of zero-crossing points.

- percentile Percentile to perform. For example, for percentile 1, the argument should be 1
- M_Threshold Percentage of the signal M_Threshold % below median oxygen saturation. Typically use 1,2 or 5

 $compute(signal) \rightarrow OBM._ResultsClasses.OverallGeneralMeasuresResult$

Parameters signal – 1-d array, of shape (N₁) where N is the length of the signal

Returns

OveralGeneralMeasuresResult class containing the following features:

- AV: Average of the signal.
- MED: Median of the signal.
- Min: Minimum value of the signal.
- SD: Std of the signal.
- RG: SpO2 range (difference between the max and min value).
- P: percentile.
- M: Percentage of the signal x% below median oxygen saturation.
- ZC: Number of zero-crossing points.
- DI: Delta Index.

1.6 OBM.PeriodicityMeasures class

class OBM.PeriodicityMeasures.PRSAMeasures (PRSA_Window=10, K_AC=2)
 Bases: object

Function that calculates PRSA Features from spo2 time series. Suppose that the data has been preprocessed.

:param PRSA_Window: Fragment duration of PRSA. K_AC: Number of values to shift when computing autocorrelation

 $compute(signal) \rightarrow OBM._ResultsClasses.PRSAResults$

Parameters signal – 1-d array, of shape (N₁) where N is the length of the signal

Returns

PRSAResults class containing the following features:

- PRSAc: PRSA capacity.
- PRSAad: PRSA amplitude difference.
- PRSAos: PRSA overall slope.
- PRSAsb: PRSA slope before the anchor point.
- PRSAsa: PRSA slope after the anchor point.
- AC: Autocorrelation.

class OBM.PeriodicityMeasures.PSDMeasures

Bases: object

Function that calculates PSD Features from spo2 time series. Suppose that the data has been preprocessed.

 $\texttt{compute}\ (signal) \ o \ \text{OBM._ResultsClasses.PSDResults}$

:param signal: The SpO2 signal, of shape (N,)

Returns

PSDResults class containing the following features:

- PSD_total: The amplitude of the spectral signal.
- PSD_band: The amplitude of the signal multiplied by a band-pass filter between 0.014 and 0.033 Hz.
- PSD_ratio: The ratio between PSD_total and PSD_band.
- PDS_peak: The max value of the FFT into the band 0.014-0.033 Hz.

1.7 OBM.Preprocessing class

OBM. Preprocessing. **block_data** (*signal*, *treshold=50*) Apply a block data filter to the SpO2 signal.

Parameters

- **signal** 1-d array, of shape (N,) where N is the length of the signal
- (Optional) (treshold) treshold parameter for block data filter.

Returns preprocessed signal, 1-d numpy array.

OBM. Preprocessing.dlta_filter (signal, Diff=4)
Apply Delta Filter to the signal.

Parameters

- signal 1-d array, of shape (N,) where N is the length of the signal
- **Diff** parameter of the delta filter.

Returns preprocessed signal, 1-d numpy array.

OBM.Preprocessing.median_spo2 (signal_spo2, FilterLength=9)

Apply a median filter to the SpO2 signal. Median filter used to smooth the spo2 time series and avoid sporadic increase/decrease of spo2 which could affect the detection of the desaturations. Assumption: any missing/abnormal values are represented as 'np.nan'

Parameters

- **signal** 1-d array, of shape (N₁) where N is the length of the signal
- (Optional) (FilterLength) The length of the filter.

Returns preprocessed signal, 1-d numpy array.

OBM. Preprocessing. resamp_spo2 (signal, OriginalFreq)

Resample the SpO2 signal to 1Hz. Assumption: any missing/abnormal values are represented as 'np.nan'

Parameters

- signal 1-d array, of shape (N,) where N is the length of the signal
- OriginalFreq the original frequency.

Returns resampled signal, 1-d numpy array, the resampled spo2 time series at 1Hz

OBM. Preprocessing.set_range (signal, Range_min=50, Range_max=100)
Range function. Remove values lower than 50 or greater than 100, considered as non-physiological

Parameters signal - 1-d array, of shape (N,) where N is the length of the signal

Returns preprocessed signal, 1-d numpy array.

CHAPTER 2

Indices and tables

- genindex
- modindex
- search

Python Module Index

0

```
OBM, 1
OBM.ComplexityMeasures, 1
OBM.DesaturationsMeasures, 1
OBM.HypoxicBurdenMeasures, 2
OBM.ODIMeasure, 3
OBM.OverallGeneralMeasures, 3
OBM.PeriodicityMeasures, 4
OBM.Preprocessing, 5
```

10 Python Module Index

Index

```
В
                                                        OBM. Desaturations Measures (module), 1
                                                        OBM. HypoxicBurdenMeasures (module), 2
block_data() (in module OBM.Preprocessing), 5
                                                        OBM. ODIMeasure (module), 3
C
                                                        OBM. OverallGeneralMeasures (module), 3
                                                        OBM. Periodicity Measures (module), 4
ComplexityMeasures
                                    (class
                                                        OBM. Preprocessing (module), 5
         OBM.ComplexityMeasures), 1
compute() (OBM.ComplexityMeasures.ComplexityMeasures OverallGeneralMeasures (class in OBM.ODIMeasure), 3

wethod) 1 (class
                                                                                                            in
         method), 1
\verb|compute()| (OBM. Desaturations Measures. Desaturations Measures| OBM. Overall General Measures), 3 \\
\begin{tabular}{ll} \it methoa), \it 2 \\ \it compute() \it (OBM. Hypoxic Burden Measures. Hypoxic Burden Measures \it Approximation of the method). \end{tabular}
         method), 2
                                                        PRSAMeasures (class in OBM.PeriodicityMeasures), 4
         method), 3
                                                        PSDMeasures (class in OBM.PeriodicityMeasures), 4
compute () (OBM.ODIMeasure.ODIMeasure method),
compute () (OBM. Overall General Measures. Overall General Measures
                                                        resamp_spo2() (in module OBM.Preprocessing), 5
         method), 4
compute () (OBM.PeriodicityMeasures.PRSAMeasures
                                                        S
         method), 4
compute() (OBM.PeriodicityMeasures.PSDMeasures
                                                        set_range() (in module OBM.Preprocessing), 5
         method), 4
D
desat embedding()
         (OBM.DesaturationsMeasures.DesaturationsMeasures
         method), 2
DesaturationsMeasures
                                      (class
                                                    in
         OBM.DesaturationsMeasures), 1
dlta_filter() (in module OBM.Preprocessing), 5
Н
HypoxicBurdenMeasures
                                      (class
                                                    in
         OBM.HypoxicBurdenMeasures), 2
median_spo2() (in module OBM.Preprocessing), 5
\mathbf{O}
OBM (module), 1
OBM.ComplexityMeasures (module), 1
```