	Name: Reg No:	ASHFAQ AHMA 19PWCSE 1795
	Section: Paper:	< <u>S-Ⅲ</u> ——×× ——
Ans	X	
	R= 10 SZ L= 1mH C= 1+7+9+5×10 mi	
	C= 55 m F Vs = 10 20° w = 100 m/s	p jol mm joc T
	first we find Z	£ ZC.
	$Z_{l} = j\omega l \qquad PLA$ $Z_{l} = j(loob)(l \times 10^{3}).$	The I have the
	Z(=1j SZ NIW	Valve
	$= \frac{j(im)(ssxio^3)}{55}.$ $= -j \frac{1}{55} \mathcal{R}$ $= -j 0.01818 \mathcal{R}$	
	Now we find eq	pivelent impedence

	Ze = 10 + 1j + (-10.01818) Ze = 10 + 1j - j0.01818 Ze = 10 + j0.982 D Now covered is given by,	
	$I(\omega) = \frac{V_s(\omega)}{Z_e(\omega)}$ $PA Valuer$ $I(\omega) = \frac{10/0}{(10+j0.982)}$ $I(\omega) = \frac{10.00}{10.008256}$ $I(\omega) = 0.995 2-5.6$	
	(en) (I(+) = 0.995 (cos (100t - 5.6°) A) Phaser Plot,	
×	V(t) 1: c.995 (1000) X X X	

4,	1)	
0	Given	
-	1=7 V(= 50/120 Y xxx	
	Us= SO (120°Y rms Complex power = S = ??	
	Xc=(1+7+9+5) D	
	Xc = 5.5 D jaour	
-	15 2 622	
	(±) -js.sn p &201	
	-75.702	
	Sal	
	Consider Sunce voltage	
	V= 60 (120 Yrm)	
	Collectate maximum Amplitude of	
	Collectate maximum Amplitude of	
	Vm = 50 /2 // yms	
	Calculate equivalent Zeg	
	$Z_{eq} = (12+j20) + (20)(-j505)$	
	30 (100)	
	Zegy = (12+120)+ (10 2-90) Zegy = (12+120)+ (10 2-90)	
	Zec = (12 1:0) 32.3(\(- 21.21	
	(4-10)	
	$CC_1 = C_1$	
	Cricolare Ton Oce	
31		
1	1770	

clm = Vm pvt values
268
5000
10/120
5012 = 5012
$\frac{1}{5} \frac{1}{m} = \frac{50\sqrt{2}}{16+j12}$
After Solving we
m = 3.535 [83.13 A
m = 3.155
Now Calculate RMS Naws
Man Carrowat
3.535 <u>83.13</u>
Now Calculate 2.13 of the current 1
1m = 2.5 (83.13 A
is [2.5/83.13 A].
therefore 5 ms tracke of
is (2,5 283.13 F)
1 Mariano Malik of
current is (3.535 (83.13) A.
ciment is (3
Mow we find Complex power delivered by Source
power delivered by Source
Α-ς
S= VI
11 1 10 - 10-
$S = \sqrt{m} \sqrt{m} \sqrt{6n - 6}$
MON put norther of Vm, Im
we get

<u> </u>
S= (50/2)(3535) \((120-83:13)
2
= 125 (36.87 VA
= 125 Cos 36.87°+ j 1255m 36.87°
S = 100 + j75 VA
So S= 100-1j75VA Ares

page 6 Greni Ans VIO(+) = 3 W= (1+7+9+5) x10 rad/s 100 cos(wt)mA m= 330 lad/8 \mathcal{I}_{i} + 1/0(t) 512(0) (400t) V Sul frid XL X= jwL $\times = j(220)(0.375)$ 52 XL=182.5 D Now Apply Kyl to lower mesh -I, (82.5) - 1220: - V. (+) = 0 No(t) = - [1(82.5)-1270, -- () find I node (a) NION Kcl Apply 1= 1350, + 100 50.

page (7)

$$T_{1} = \frac{132^{\circ}}{82.57^{\circ}} + 1002^{\circ}$$

$$T_{1} = 0.1452^{\circ} - 90 + 1002^{\circ}$$

$$T_{1} = (0 - 90.014) + (100 + 0)$$

$$T_{1} = (100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}(+) = -(100 - 90.014) + (100 + 0)$$

$$V_{0}($$

Given
NEDDS V = ?
$z(x)$ $z_1 = ?$
X = 1+7+9+5= 2202
Xc= 5.5 02 Va
5
\$852 1xc3
$\frac{1}{T}$ -jxc j2xc}
Sed Sed
Vt = Vc1 + Vb - 1
$Va = \frac{-js}{8+jxt} \times jxt$
-15 122
$\sqrt{a} = \frac{8+j22}{8+j22}$
:2
Va = -3 110
8+127
Va = 150
700
Va = 110 CO.
Va= 4.702-70)
Vb = j44-j8.5
7 17 78.5

pa 3 9

:44
$V_{b} = \frac{-j5}{j39.5} \times j44$
22060
16 = 39.529c
Vb = 5.56 1-90
Now
Vi = Va + Vb
Y = 4.70 1-70 + 5.562.90
V = 4. to 22 to + 5 3 0 C
7 7
Nono Zt = ??
for Ze come become
q
R & 34
7 312
$RIIL_{1} = \frac{1}{R} + \frac{1}{X_{L_{1}}}$ $RX_{L_{1}}$
R XL
= RXLT
= 8 + 22j
8(23)
R11 (1 = 8+22)
176)

