6. feladatsor: Gauss-számsík, egységgyökök

1. feladat

A sík mely geometriai transzformációjának felelnek meg a következő leképzések?

- (a) $z \mapsto 3z + 2$
- (b) $z \mapsto (1+i)z$
- (c) $z \mapsto 1/\overline{z}$

2. feladat

A Gauss-számsíkon egy négyzet középpontja a K = 1 + 2i illetve egyik csúcsa az A = 5 + 4ikomplex számnak megfelelő pontban van. Határozza meg a négyzet többi csúcsának megfelelő komplex számokat.

3. feladat

Legyen z, w két különböző komplex szám! Írja fel az őket összekötő szakasz felezőpontját, valamint annak a két szabályos háromszögnek a harmadik csúcsát, illetve súlypontját, melyeknek z, wcsúcsai!

4. feladat

Forgassa el síkban a $\begin{bmatrix} 2 \\ -2\sqrt{3} \end{bmatrix} \in \mathbb{R}^2$ vektort (a) 34 (b) -176

5. feladat

Tekintsük a következő halmazokat:

$$A = \{ z \in \mathbb{C} \mid \operatorname{Re} z > 1 \}$$

$$B = \{ z \in \mathbb{C} \mid \operatorname{Im} z < 2 \}$$

$$C = \{z \in \mathbb{C} \mid |z-2| = 3\}$$

$$D = \{ z \in \mathbb{C} \mid z^2 - (3+2i)z + (5+5i) = 0 \}$$

Ábrázolja a következő halmazokat a Gauss-számsíkon.

- (a) A
- (b) B
- (c) C
- (d) D
- (e) $A \cap B$
- (f) $A \cup B$

- (g) $A \cap C$ (h) $B \cup C$ (i) $A \setminus B$ (j) $A \triangle B$ (k) $A \cap D$ (l) $C \setminus \overline{B}$

6. feladat

Ábrázolja a következő halmazokat a Gauss-számsíkon.

- (a) $\{z \in \mathbb{C} \mid |z i + 2| = 10\}$
- (b) $\{z \in \mathbb{C} \mid \operatorname{Re} z = \operatorname{Im} z\}$
- (c) $\{z \in \mathbb{C} \mid \operatorname{Re} z \ge \operatorname{Im} z\}$
- (d) $\{z \in \mathbb{C} \mid |z-2| \le |z+3|\}$
- (e) $\{z \in \mathbb{C} \mid 2 < |z+i-2| \le 4\}$

7. feladat

Az alábbi számok közül melyek egységgyökök, mennyi ezek rendje, milyen n-re lesznek ezek n-edik egységgyökök, illetve primitív n-edik egységgyökök?

(b)
$$-1$$

$$(c)$$
 i

(d)
$$1 + i$$

(e)
$$\frac{1+e^{-\frac{1}{2}}}{\sqrt{2}}$$

(e)
$$\frac{1+i}{\sqrt{2}}$$
 (f) $\frac{1+\sqrt{3}i}{2}$

$$(g) \quad \frac{-1+\sqrt{3}i}{2}$$

(h)
$$\frac{-1+\sqrt{3}i}{2}$$

(h)
$$\frac{-1+\sqrt{3}i}{2}$$
 (i) $\cos\left(\sqrt{2}\pi\right)+i\sin\left(\sqrt{2}\pi\right)$

$$(j) \quad \cos\left(\frac{\pi}{361}\right) + i\sin\left(\frac{\pi}{361}\right)$$

8. feladat

Mutassuk meg, hogy ha $\varepsilon^4 = i$, akkor $4 \mid o(\varepsilon)!$

9. feladat

Ha $o(\varepsilon) = 128$, akkor mennyi lehet $o(i \cdot \varepsilon)$?

10. feladat

- (a) A $z=-1-\sqrt{3}i$ egyik negyedik gyöke $w_0=\frac{\sqrt[4]{2}}{2}(\sqrt{3}-i)$. Alkalmas primitív negyedik egységgyök segítségével állítsa elő a többi negyedik egységgyököt majd ezek felhasználásával számítsa ki z többi negyedik gyökét.
- (b) A z=-i egyik hatodik gyöke $w_0=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$. Alkalmas primitív hatodik egységgyök segítségével állítsa elő a többi hatodik egységgyököt majd ezek felhasználásával számítsa ki ztöbbi hatodik gyökét.

(A komplex gyökvonás képlete nem használható.)