Problem 1

Starting with the spin 1/2 relation $\langle \mathbf{a} \cdot \mathbf{S} \rangle_{\mathbf{n}} = (\hbar/2)(\mathbf{a} \cdot \mathbf{n})$, where \mathbf{a} is an arbitrary reference vector and $\langle \cdots \rangle_{\mathbf{n}}$ denotes the expectation value evaluated for the ensemble specified by the condition $\operatorname{Prob}_{\mathbf{n}}(S_{\mathbf{n}} = \hbar/2) = 1$ [see, e.g., Eq. (1.18a) and (1.20) in the Lecture Notes],

- (a) compute the uncertainty $\Delta_{\mathbf{n}}(\mathbf{a} \cdot \mathbf{S})$.
- (b) show that $\operatorname{Prob}_{\mathbf{n}}(S_{\mathbf{n}'} = \hbar/2) = \frac{1}{2}(1 + \mathbf{n} \cdot \mathbf{n}').$

Problem 2

Is it possible to prepare a pure ensemble of spin 1/2 particles for which

- (a) $\langle S_{\mathbf{x}} \rangle = \langle S_{\mathbf{y}} \rangle = \langle S_{\mathbf{z}} \rangle = 0$?
- **(b)** $\langle S_{\mathbf{x}} \rangle + \langle S_{\mathbf{y}} \rangle + \langle S_{\mathbf{z}} \rangle = 0$?

(If your answer is yes, provide an example of an ensemble with the claimed property. If your answer is no, explain why not.)

Problem 3

A filtered beam of spin 1/2 particles with $S_{\mathbf{n}_0} = \hbar/2$ is sent through N consecutive Stern-Gerlach filters oriented in the directions of the unit vectors $\mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_N = -\mathbf{n}_0$ such that the angle between \mathbf{n}_i and \mathbf{n}_{i+1} is π/N .

Let $\mathcal{P}(N)$ be the probability that particles in the initial beam successfully pass all N filters.

- (a) Evaluate $\mathcal{P}(N)$ for N=2 and N=3.
- (b) Find $\mathcal{P}(\infty) = \lim_{N \to \infty} \mathcal{P}(N)$ and evaluate the leading term in the expansion of $\mathcal{P}(\infty) \mathcal{P}(N)$ in $1/N \ll 1$. Suggestion: expand $\ln \mathcal{P}(N)$ to the lowest non-vanishing order in 1/N.

Problem 4

Measurements on spin 1/2 particles in a pure quantum state specified by the Bloch vector \mathbf{n} have found

$$\langle S_{\mathbf{n}_1} \rangle_{\mathbf{n}} = \langle S_{\mathbf{n}_2} \rangle_{\mathbf{n}} = \frac{\hbar \alpha}{2}, \quad |\alpha| \leq 1,$$

where the unit vectors $\mathbf{n}_{1,2}$ satisfy $\mathbf{n}_1 \cdot \mathbf{n}_2 = \alpha^2$. Express the Bloch vector \mathbf{n} via \mathbf{n}_1 , \mathbf{n}_2 , and α . Make sure that the expression you found has correct $\alpha \to 0$ and $\alpha \to 1$ limits.

Suggestion: write \mathbf{n} as a linear combination of the three mutually orthogonal vectors $\mathbf{n}_1 + \mathbf{n}_2$, $\mathbf{n}_1 - \mathbf{n}_2$, and $\mathbf{n}_1 \times \mathbf{n}_2$.