Approximation of vectors using adaptive randomized information

Robert J. Kunsch^{*}, Marcin Wnuk[†] March 27, 2024

Abstract

Working in the framework of Information-Based Complexity we study approximation of the embedding $\ell_p^m \hookrightarrow \ell_q^m$, $1 \le p < q \le \infty$, based on randomized adaptive algorithms that use arbitrary linear functionals as information on a problem instance. In the case $p \le 2$ and $q = \infty$ we show upper bounds for which the complexity n exhibits only a $(\log \log m)$ -dependence. In particular we improve upon known results for p = 1 and $q = \infty$ and by this give an example for a gap of order $n/(\log n)^2$ for the error for adaptive vs. non-adaptive Monte Carlo methods which is the biggest possible gap for linear problems up to logarithmic factors.

^{*}RWTH Aachen University, Chair of Mathematics of Information Processing, Pontdriesch 10, 52062 Aachen, Email: kunsch@mathc.rwth-aachen.de

[†]Institut für Mathematik, Osnabrück University, Albrechtstraße 28a, 49076 Osnabrück, Email: marcin.wnuk@uni-osnabrueck.de