# EE236: Experiment No. 2 Diodes Transients C-V Characteristics of Schottky Diode

Narne Avinash Chowdary, 200070047 August 27, 2022

## 1 Overview of the experiment

## 1.1 Aim of the experiment

The aim of the experiment is:

To measure and analyze reverse recovery time for (1N4007) and Schottky diode(1N5822)

To measure C-V characteristics of a Schottky diode and extract its built-in potential and doping density

#### 1.2 Methods

#### 1.2.1 Reverse Recovery Time

First, we setup the circuit on a breadboard and then using the oscilloscope we measured the time for various frequency.

#### 1.2.2 C-V Characteristics of Schottky Diode

After setting up the circuit given on breadboard, we changed  $V_{dc}$  and measured  $V_{dut}$  and  $V_{out}$ .

Using these value we calculated  $C_{dut}$  and plot  $\frac{1}{C_{dut}^2}$  vs  $V_{dc}$ 

# 2 Design

# 2.1 Reverse Recovery Time



Figure 1: Circuit of Reverse Recovery Time Calculation

## 2.2 C-V characteristic of Schottky Diode

For this we calculated  $C_{DUT}$  using  $V_{DUT}$  and  $V_{OUT}$ . After that we plotted  $\frac{1}{C_{dut}^2}$  vs  $V_{dc}$ . The slope and  $Y_{intercept}$  gives the value of  $V_{bi}$  and  $N_d$ 

$$\frac{1}{C^2} = \frac{2(V_{bi} - V_i)}{q\epsilon_s \epsilon_o S^2 N_d}$$

$$\frac{V_{OUT}}{V_{DUT}} = \frac{C_{DUT}}{C_{fb}} \frac{1}{\sqrt{1 + \frac{1}{(\omega R_{fb} C_{fb})^2}}}$$



Figure 2: Circuit to determine C-V characteristics

$$Slope = \frac{-2}{q\epsilon_s \epsilon_o S^2 N_d}$$

Using the slope in the above equation we can get  $N_d$ , and to calculate S for the above equation we can use relation of  $I_{rev}$ 

$$I_{Rev} = SA^*T^2 e^{\frac{-V_{bi}}{V_T}}$$

 $A^*$  is the Richardson's constant, which is equal to  $110A/K^2cm^2$ The built-in potential (Vbi) will be equal to the magnitude of x-intercept  $I_{rev}$  (reverse current) for the Schottky diode is 4  $\mu$ A

## 3 Simulation results

## 3.1 Code snippet

#### 3.1.1 PreLab

#### 1N4007 Diode

.include 1N4007.txt vp 1 0 PULSE(-1 1 2NS 2NS 2NS .0005MS .001MS) d1 1 2 1N4007 r1 3 0 100 v2 2 3 0 .tran .001u .005m .control run plot v(1, 2) 5+100\*i(v2) .endc

#### Schottky Diode

.include BAT85.txt vp 1 0 PULSE(-1 1 2NS 2NS 2NS .0005MS .001MS) x1 1 2 BAT85 r1 3 0 100 v2 2 3 .tran .001u .005m

```
.control run plot v(1, 2) 2.5+100*i(v2) .endc
```

#### 3.1.2 PostLab

#### 1N4007 Diode

.include 1N4007.txt

v1 1 0 SINE(0 5 50)

d1 1 3 1N4007

 $d2\ 2\ 1\ 1N4007$ 

 ${\rm d} 3\ 2\ 0\ 1N4007$ 

 $d4\ 0\ 3\ 1N4007$ 

 $r1\ 2\ 3\ 100$ 

.tran 1<br/>u  $100\mathrm{m}$ 

.control

run

plot  $v(3,2) \ v(1)$ 

plot v(3,2) vs v(1)

.endc

#### Schottky Diode

.include BAT85.txt

v1 1 0 SINE(0 5 50)

x1 1 3 BAT85

x2 2 1 BAT85

x3 2 0 BAT85

x4 0 3 BAT85

r1 2 3 1k

.tran .1u  $60 \mathrm{m}$ 

.control

run

plot  $v(3,2) \ v(1)$ 

plot v(3,2) vs v(1)

.endc

## 3.2 Simulation results

### 3.2.1 PreLab



Figure 3: 1N4007 Diode Plots

| Frequency | 1N4009 | BAT 85            |
|-----------|--------|-------------------|
| 1kHz      | 1.12us | 4ns               |
| 10Khz     | .85us  | $3.4\mathrm{ns}$  |
| 100khz    | .64 us | $3.3 \mathrm{ns}$ |
| 1MHz      | .139us | 3.1ns             |

Table 1: Reverse Recovery Time



Figure 4: Schottky Diode Plots

#### 3.2.2 PostLab



Figure 5: 1N4007 Diode



Figure 6: Schottky Diode

# 4 Experimental results

## 4.1 Reverse Recovery Time

| Freq               | 1N4007            | BAT 85 |
|--------------------|-------------------|--------|
| 10Khz              | 2.4us             | .28us  |
| $100 \mathrm{khz}$ | 1.6us             | .23us  |
| 1M                 | $220 \mathrm{ns}$ | 38ns   |

Table 2: RRT readings

# 4.2 C-V characteristic of Schottky Diode

| $V_{dc}(V)$ | $V_{DUT}(V)$ | $V_{OUT}(V)$ | C(F)     | $1/C^{2}$  |
|-------------|--------------|--------------|----------|------------|
| 0.9         | 0.76         | 0.74         | 4.06e-10 | 6.06e+18   |
| 1.5         | 0.96         | 0.576        | 2.50e-10 | 1.60e+19   |
| 2.3         | 1.04         | 0.472        | 1.89e-10 | 2.79e+19   |
| 3           | 1.04         | 0.424        | 1.70e-10 | 3.45e+19   |
| 4.2         | 1.06         | 0.368        | 1.45e-10 | 4.76e+19   |
| 5           | 0.96         | 0.336        | 1.46e-10 | 4.69e+19   |
| 6.8         | 0.96         | 0.28         | 1.22e-10 | 6.75e+19   |
| 7.7         | 1.04         | 0.272        | 1.09e-10 | 8.40e+19   |
| 8.7         | 1.04         | 0.248        | 9.95e-11 | 1.01e+20   |
| 10          | 1.04         | 0.24         | 9.63e-11 | 1.08e + 20 |

Table 3: C-V Readings



Figure 7: C vs V plot with trendline



Figure 8:  $\frac{1}{C^2}vsV_{dc}$  plot with trendline

$$\mathrm{Slope} = 1.9 \times 10^{19}$$

X-intercept =  $V_{bi} = .108$ 

Using 
$$I_{Rev} = SA^*T^2e^{\frac{-V_{bi}}{V_T}}$$
  
 $S = 2.69 \times 10^{-11} cm^2$ 

$$Slope = \frac{-2}{q\epsilon_s\epsilon_o S^2 N_d}$$

Using the slope in the above equation we can get  $N_d$ , and to calculate S for the above equation we can use relation of  $I_{rev}$ 

$$I_{Rev} = SA^*T^2 e^{\frac{-V_{bi}}{V_T}}$$

$$N_d = 1.22 \times 10^{14} cm^{-3}$$

# 5 Experiment completion status

Experiment completed in the lab slot.

# 6 Questions for reflection

Which of the 2 diodes is a better rectifier and why?

Ans: Schottky diode is better for full bridge rectifier as it has low cuttin voltage which prevent clipping of voltage also Schottky diodes has a faster recovery as compared to 1N4007 which help in faster switching