Name _____

REAL ANALYSIS QUALIFYING EXAM Fall 2000 (Saeki & Moore)

Answer all eight questions. Throughout, (X, \mathcal{M}, μ) denotes a measure space, μ denotes a positive measure unless otherwise specified, and all functions are assumed to be measurable.

- 1. Let \mathcal{F} be a collection of subsets of a set Ω with the following properties:
 - (i) $\Omega \in \mathcal{F}$
 - (ii) $A, B \in \mathcal{F}$ implies $A B \in \mathcal{F}$
 - (iii) $A_1, A_2, \ldots \in \mathcal{F}$ and $A_1 \subseteq A_2 \subseteq A_3 \ldots$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. Prove that \mathcal{F} is a σ -algebra.
- **2.** If $f \in L^1(\mu)$, prove that $\{x : f(x) \neq 0\}$ has σ -finite measure.
- **3.** Suppose f is a complex measurable function on x, and set $\varphi(p) = ||f||_p^P$ for p > 0. Set $E = \{p > 0 : \varphi(p) < \infty\}$. Assume $||f||_{\infty} > 0$.
 - (a) If $r , <math>r \in E$, s + E, prove that $p \in E$.
 - (b) By (a) e is connected, hence an interval. Is E open?
- **4.** Prove that if $f \in L^1([-\pi, \pi])$ then $\lim_{n \to \infty} \int_{-\pi}^{\pi} f(t) \cos nt \, dt = 0$.
- **5.** Let $f_n(x) = e^{inx}$. Prove
 - (a) $\{f_n\}_{n\in\mathbb{Z}}$ is orthonormal in $L^2[-\pi,\pi]$ with respect to the measure $\frac{dx}{2\pi}$.
 - (b) no subsequence of $\{f_n\}_{n=1}^{\infty}$ converges pointwise a.e. on $[-\pi,\pi]$.
- **6.** Suppose $f \in L^1(\mu)$. Prove $|\int f d\mu| \leq \int |f| d\mu$. [You may use the linearity of integration on the complex space $L^1(\mu)$.]
- 7. Suppose $\mu(x)=1$ and $f:x\to\mathbb{C}$ is measurable. Prove that $\|f\|_p\leq \|g\|_q$ whenever $0< p< q\leq \infty$
- **8.** Let $f: x \to [0, \infty]$ be a measurable function such that $\int_E f \, d\mu < \infty$ for each measurable set E with $\mu(E) < \infty$. Prove that $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\int_E f \, d\mu < \varepsilon$ for every measurable set E with $\mu(E) < \delta$.