Welcome!

Introduction to Computer Architecture

(Computer Organization and Design: ARM Edition)

Instructor:

Abu Asaduzzaman (Zaman) +1-316-978-5261 Abu.Asaduzzaman@wichita.edu

Lecture 7 Presented by Md "Raihan" Uddin

Reading: See Reading Assignments on Blackboard

Tests: Quiz-1 (Week 4), Exam-1 (Week 5), HW-3 (Week 7), HW-4 (Week 8), ...

- Practice; Quiz-1; Handout 2a: Multilevel Computers;
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - > 1.3: The Computer Zoo
 - > 1.4: Example Computer Families

Introduction to Computers

CPU execution time for a program = CPU clock cycles for a program × Clock cycle time

1.6 Performance

Cłock cycle time = 1 / Clock rate

- The classic CPU performance equation
 - > CPU time = Instruction count × CPI× Clock cycle time

ightharpoonup CPU time = $\frac{Instruction\ count \times CPI}{Clock\ rate}$

Instruction count: The number of instructions executed by the program.

- Let's solve a problem.
 - > Three types of instructions ...
 - > Which program
 - (a) is faster?
 - (b) executes the most instructions?
 - (c) has higher overall CPI?

	Туре А	Туре В	Type C
CPI	1	2	3
Program 1	2	1	2
Program 2	4	1	1

$$ext{CPU clock cycles} = \sum_{i=1}^n (ext{CPI}_i imes ext{C}_i)$$

CPU clock cycles₁ =
$$(2 \times 1) + (1 \times 2) + (2 \times 3) = 2 + 2 + 6 = 10$$
 cycles

$$\text{CPU clock cycles}_2 = (4 \times 1) + (1 \times 2) + (1 \times 3) = 4 + 2 + 3 = 9 \text{ cycles}$$

$$CPI_1 = \frac{CPU \ clock \ cycles_1}{Instruction \ count_1} = \frac{10}{5} = 2.0$$

$$CPI_2 = \frac{CPU \ clock \ cycles_2}{Instruction \ count_2} = \frac{9}{6} = 1.5$$

Practice

Which of the two computers in the table below is better? Explain you answer using the average clock cycles per instruction (CPI). Show all steps.

White Paper

Instruction Class	struction Class	Instruction Count		
Instruction Class CPI	CPI IOI Class	Program 1	Program 2	
А	3	14	11	
В	2	12	12	
С	1	16	10	

_
er
\simeq
Q
$\boldsymbol{\omega}$
Д
<u>F</u>
<u> </u>
\Box
<
_
\subseteq
$\underline{}$
7
_

Instruction Class	Class CPI for Class	Instruction Count	
instruction class		Program 1	Program 2
А	2	11	14
В	3	12	15
С	1	10	16

Practice

Which of the two computers in the table below is better? Explain you answer using the average clock cycles per instruction (CPI). Show all steps.

	۷	_
	D	D
	$\boldsymbol{\varsigma}$	2
		J
	1	_
	a	ט
	1	נו
•	1	ב
:	<u>d</u>	ב
·	5	
· · · · ·	5	
·	5	מ מ

	Instruction Class	CPI for Class	Instruction Count	
-	Instruction Class CPI for (CPI JOI CIUSS	Program 1	Program 2
	А	3	14	11
	В	2	12	12
	С	1	16	10

```
Program-1: # clock cycles = 3x14 + 2x12 + 1x16 = 82; # instructions = 42;

Avg. CPI_1 = 82/42 = 1.95

Program-2: # clock cycles = 3x11 + 2x12 + 1x10 = 67; # instructions = 33;

Avg. CPI_2 = 67/33 = 2.03
```

Program-1 is better, because Avg. CPI₁ < Avg. CPI₂.

Practice

Which of the two computers in the table below is better? Explain you answer using the average clock cycles per instruction (CPI). Show all steps.

oer	Instruction Class	CPI for Class	Instruction Count	
Papel			Program 1	Program 2
-White	А	2	11	14
<u>×</u>	В	3	12	15
-Ton-	С	1	10	16

```
Program-1: # clock cycles = 2x11 + 3x12 + 1x10 = 68; # instructions = 33; Avg. CPI_1 = 68/33 = 2.06
Program-2: # clock cycles = 2x14 + 3x15 + 1x16 = 89; # instructions = 45; Avg. CPI_2 = 89/45 = 1.98
Program-2 is better, because Avg. CPI_2 < Avg. CPI_1.
```

Introduction to Computers

Clock cycle time = 1 / Clock rate

Clock rate = 1 / Clock cycle time

1.6 Performance

- **■** CPU performance and its factors
 - > CPU execution time for a program = CPU clock cycles for a program × Clock cycle time
 - ightharpoonup CPU execution time for a program = $\frac{\text{CPU clock cycles for a program}}{\text{Clock rate}}$
- Let's solve a problem.

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program. What clock rate should we tell the designer to target?

> To run the program in 6 seconds, B must have twice the clock rate of A. ['A' 2 GHz, 'B' 4 GHz]

Regarding Quiz-1

- 30 points, 30 minutes; class after quiz
- Includes Lectures 2-7
 - Important Topics from lectures
 - ✓ Major steps to execute an instruction
 - ➤ Important Topics from Introduction to Computers (Ch. 1 from zyBooks)
 - ✓ Ch. 1 >> 1.1-1.9
- Questions: Short questions (HW), Math-related, True/False, ...
- Any not-allowed activities → Zero, etc. (applies to all tests)

If you do not return your papers right after the STOP time, I will not accept/grade your papers.

11:26 AM

Dr. Zaman; WSU-5261

Multilevel Machines (+)

Problem: We want (1) the machine language to be very simple so as to reduce the complexity/cost ... and (2) convenient for people ...

POSSIBLE SOLUTION

Form a language (L2) of instructions that are more convenient to use by people than the built-in machine language (L1).

How can a program written in L2 be executed by the computer?

Multilevel Machines (+)

How can a program written in L2 be executed by the computer?

TRANSLATION

Replace each instruction in the L2 program by an equivalent sequence of instructions in L1. The new L1 program is then executed by the computer.

Multilevel Machines (+)

How can a program written in L2 be executed by the computer?

INTERPRETATION

An L1 program examines the L2 program instructions by instruction and executes the equivalent sequence of L1 instructions directly.

A Six-Level Machine GUI-Tools

Multilevel Machines

- In 1940s, two-level computer
 - > ISA level (software)
 - Digital logic level (hardware)
- In 1950s, three-level computer
 - > ISA level (software)
 - > Microarchitecture level
 - Simplified hardware, complicated logic, design rectification, bug fix, cheap, flexible
 - Digital logic level (hardware)

Multilevel Machines

- In 1960s, four-level computer
 - > Operating system machine level, 1960s, OS
 - Automate the operator's job (scheduling & load balancing)
 - More instructions/functionalities
 - Input / Output (I/O) operations
 - Multitasking (time-sharing)
 - ➤ ISA level (software), 1940s, machine's instruction set
 - ➤ Microarchitecture level, 1950s, registers, ALU, data path
 - Simplified hardware, complicated logic, design rectification, bug fix, cheap, flexible
 - > Digital logic level (hardware), 1940s, gates

Example → **Practice**

Consider a computer with identical interpreters at levels 1, 2, and 3. It takes an interpreter n instructions to fetch, decode, and execute one instruction. A <u>level 1</u> <u>instruction</u> takes k nanoseconds to execute. How long does it take for an instruction at levels 2 and 3?

11:26 AM

Dr. Zaman; WSU-5261

Lecture 7 Presented by Md "Raihan" Uddin

Reading: See Reading Assignments on Blackboard

Tests: Quiz-1 (Week 4), Exam-1 (Week 5), HW-3 (Week 7), HW-4 (Week 8), ...

- Practice; Quiz-1; Handout 2a: Multilevel Computers;
- Intro to Structured Computer Organization (Handout 2b)
 - > 1.2: Milestones in Computer Architecture
 - > 1.3: The Computer Zoo
 - > 1.4: Example Computer Families

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 – 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- More Generations? (we'll see)

Computer Generations (+)

■ Before Zeroth Generation: (100 B.C. – 1642 A.D.)

> 150-100 B.C. - Mechanical Abacus

→ 1613 A.D. – Word "Computer"

- **Zeroth Generation: Mechanical Computers (1642 1945)**
 - > First calculating machine by Pascal (1623-1662) in 1642
 - > Babbage (1792-1871), "different engine", speedometer
 - ➤ "Analytical engine" storage (memory) 1000 words of 50 decimal digits, mill (computation unit add, subtract, multiply, divide), input section (punched card reader), and output section (punched and printed output)

- **■** First Generation: Vacuum Tubes (1945 1955)
 - Enigma (Thomas Jefferson, former U.S. president)
 - ➤ Vacuum tubes ENIAC (electronic numerical integrator and computer), 18,000 VTs and 1,500 relays, 30 tons, 140 KW power
 - > The original von Neumann machine CPU, memory (unified), I/O
 - ➤ The Harvard machine CPU, memory (split into Instruction and Data), I/O

- Second Generation: Transistors (1955 1965)
 - > Transistor tiny electronic switch
 - > Size, power, cost
 - Programmed Data Processor (PDP)
 - **>** MIT, TX-0
 - > IBM 7094
 - > PDP-1, MIT
 - Concept of supercomputers (Cray)

- **■** Third Generation: Integrated Circuits (1965 1980)
 - > Integrated circuit (IC) dozens of transistors in a chip
 - > IBM System/360, multiprogramming

- **■** Fourth Generation: Very Large-Scale Integration (1980 ?)
 - > VLSI millions of transistors in a chip
 - > IBM Personal Computer (PC), Intel CPU
 - Graphical User Interface (GUI)
 - > FPGA (field programmable gate array)

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 – 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- More Generations?

Moore's law and processor design

- Gordon Earle Moore: Co-founder and Chairman Emeritus of Intel Corp.
- Moore's Law predicts a 60-percent annual increase in the number of transistors that can be put on a chip. (transistors doubles every two years)

Moore's law and processor design (+)

- What's the importance/significance of Moore's law?
- More transistors larger memory, powerful processor
- In the past 50 years or so, semiconductor industry is moving ahead faster than any other
- In the past 50 years or so, computer/processor industry is moving ahead faster
- Design more powerful computers at the same or lower price

Moore's law and processor design (+)

- Let's understand the Moore's law?
- Moore's Law computer/transistors density (not performance)
 - > Reinterpreted clock speed does not increase
 - > Reinterpreted cores/chip doubles every two years
 - > Reinterpreted deal with millions of concurrent threads
 - Reinterpreted deal with inter-chip and intra-chip parallelism
 - Reinterpreted Moore's Law is not forever...
- Moore's 2nd (Rock's) Law --> costs double every 4 years

Moore's law and processor design (+)

Moore's Law predicts a 60-percent annual increase in the number of transistors that can be put on a chip. Different chips/processors.

Computer Generations (cont'd, +)

- Zeroth Generation Mechanical Computers (1642 – 1945)
- First Generation Vacuum Tubes (1945 1955)
- Second Generation Transistors (1955 1965)
- Third Generation Integrated Circuits (1965 1980)
- Fourth Generation Very Large-Scale Integration (1980 – ?)
- Fifth Generation
 - (a) Low-Power and Invisible Computers (1980 ?)
 - (b) Multicore Computers (2000 ?)

- Fifth Generation: Low-Power and Invisible Computers (1980 ?)
 - > Embedded systems
 - ➤ Internet of Things (IoT), Artificial Intelligence,
 - GridPad (first Tablet from Grid Systems, 1989)
 - > PDA (personal digital assistant), Smartphone (Simon)
 - <u>Ubiquitous/pervasive/everyware</u> computing is a post-desktop model of human-computer interaction in which information processing has been thoroughly integrated into everyday objects and activities. Example: refrigerators "aware" of their suitably tagged contents, able to both plan a variety of menus from the food actually on hand, and warn users of stale or spoiled food.

- **Fifth Generation: Multicore Computers (2000 ?)**
 - > VLSI millions of transistors in a chip
 - > 2001, POWER4, first dual-core chip microprocessor, IBM
 - ➤ Advanced VLSI billions of transistors in a chip (2008+)
 - > System-on-a-chip (SoC)
 - Network-on-a-chip (NoC)
 - Multicore/many-core systems

11:26 AM

Dr. Zaman; WSU-5261

The Computer Zoo The Types/Classes of Computers

■ Current spectrum (i.e., categorization) of computers

Туре	Price (\$)	Example application
Disposable computer	0.5	Greeting cards
Microcontroller	5	Watches, cars, appliances
Game computer	50	Home video games
Personal computer	500	Desktop or notebook computer
Server	5K	Network server
Collection of Workstations	50-500K	Departmental minisupercomputer
Mainframe	5M	Batch data processing in a bank

How about Supercomputers?

Disposable Computers

RFID (Radio Frequency Identification)

- Very small, very cheap
- Radio transponder, a built-in unique #
- External antenna sends pulse; RFID is powered up to transmit its unique #
- Customer can be identified by Bank Card / Credit Card, etc.
- Customer can pay bill monthly
- > RFID in antitheft systems

Disposable Computers

Example → **Practice**

■ Suppose that, in an average, 300,000 people in Wichita consumes two packages of goods a day bearing RFID tags. How many RFID tags have to produce annually to meet the demand? At a penny a tag, what is the total cost of the tags?

?

Microcontrollers

- Controls devices such as alarm clock, micro oven, etc.
- Hardware/Software Systems
- Embedded Systems
- Unlike RFID, microcontrollers are complete computer
- Cost-sensitive
- Real-time response

Game Computers and Personal Computers

Game Computer

- Special graphics and sound cards
- Need powerful processors

■ Personal Computer

- > PC, Laptop, Tablet, CISC
- > Workstation, Server, RISC
- Personal Data Assistant (PDA)

A Printed Circuit Board (PCB) of a Desktop PC

- FDD Floppy Disk Drive ?
- IDE Integrated Drive Electronics
- ATA Advanced TechnologyAttachment
- USB What is USB?
 - Universal Serial Bus

Servers and Cluster of Workstations (COW)

Servers

- Faster, more disk space, faster network connection
- Multi-user multi-tasking

Collection of Workstations

- > Cluster
- > Scalable
- > Internet web server

Cow collection of Workstations

Cluster

Chater

Chate

Mainframes and Supercomputers

Mainframes

- ➤ More I/O capacity
- Vast disk space
- Not faster that Server

Supercomputers

- Very fast CPU
- Many GBs of memory
- > Fast disks and network
- Many GPU cards

Supercomputers

* Vary Fast CPUs

* Mary 6B; of MM

* Fast disks and networks

Handheld Mobile Devices

- PDA (personal digital assistant or personal data assistant) aka palmtop
- Mobile phones
- Smartphone, iPhone, 3G, 4G, 5G, 6G?
- Tablet PC
- Many more
- Some issues: Limited resources, bandwidth, and power supply

ECE 394

Introduction to Computer Architecture

Tentative Schedule

rentai	entative Schedule			
Week Tue	Note	Important topics/readings, assignments, due dates, and reminders are listed here so that you can organize your time and academic work.		
1 08/20		ECE 394: Intro to Computer Architecture, Syllabus; K-probe; zyBook 1.1 (Intro to Computers); Homework, Quiz, and Exam;		
2 08/27	HW-1	HW-1 Discussion; zyBook 1.2-1.5 (eight ideas, processors); HW-1 (due on Blackboard); zyBook 1.6 (performance);		
3 09/03	HW-2	9/02 (Labor Day) No Class/Lab; HW-2 (Bb); zyBook 1.7-1.9 (uni- and multiprocessors, Core i7);		
4 09/10	Quiz-1	Quiz-1 Discussion; Handout: Multilevel Computers; Quiz-1 (class test, 30-min / 30-pts, closed book);		
5 09/17	Exam-1	Exam-1 Discussion; Handout: Computer Generations; Exam-1 (class test, 65-min / 65-pts, closed book);		
6 09/24	Update	zyBook: 3.1 (The Processor: Introduction); zyBook: 3.2-3.3 (The Processor: Datapath, Pipelining);		
7 10/01	HW-3	zyBook 3.4-3.5 (Data hazards: Forwarding versus stalling); HW-3 (Bb); zyBook 3.6 (Data hazards and Control hazards);		
8 10/08	Mid-Pt HW-4	zyBook 3.7 (Parallelism via instructions); HW-4 (Bb); zyBook 3.8 (Going faster: ILP and matrix multiply);		
9	Fal-Brk	10/12 (Sat) to 10/15 (Tue) (Fall Break) No Class;		
10/15	Quiz-2	Quiz-2 (class test, 30-min / 30-pts, closed book);		
10 10/22	Exam-2	Exam-2 Discussion; zyBook 4.1 (Memory Hierarchy: Introduction); Exam-2 (class test, 65-min / 65-pts, closed book);		
11 10/29	Update	zyBook 4.2-4.3 (Memory Hierarchy: Caches); zyBook 4.4-4.5 (Memory Hierarchy: Virtual memory);		
12 11/05	HW-5	zyBook 5.1 (Parallel Processors: Introduction); HW-5 (Bb); zyBook 5.2 (Difficulty of Parallel Processing);		
13 11/12	HW-6	zyBook 5.3 (SISD, MIMD, SIMD, SPMD, and vector); HW-6 (Bb); zyBook 5.4 (Hardware multithreading);		
14 11/19	Quiz-3	zyBook 5.5-5.6 (Multicore processors, graphics processing units); Quiz-3 (class test, 30-min / 30-pts, closed book);		
15 11/26	Thx-Brk	Future of Computers (selected materials); 11/27 (Wed) to 12/01 (Sun) (Thanksgiving Break) No Class;		
16 12/03	Exam-3	Exam-3 Discussion; Exam-3 (class test, 65-min / 65-pts, closed book);		
Finals		None!		
Note: A	date in Co	olumn 1 indicates the Tuesday of that week. Here, 12/03 is Tueday of Week 16.		