Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A phosphine compound of formula (1):

wherein R¹, R², R³, R⁴, R⁶, R⁷ and R⁸ are the same or different, and independently represent,

- a hydrogen atom,
- a halogen atom,
- a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
- a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
- a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
- a silyl group substituted with a substituted or unsubstituted hydrocarbon having 1 to 20 carbon atom(s),
 - a substituted or unsubstituted alkoxy group having 1 to 10 carbon atom(s),
 - a substituted or unsubstituted aralkyloxy group having 7 to 20 carbon atoms,
 - a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, or
 - an amino group disubstituted with hydrocarbons having 1 to 20 carbon atom(s);
 - R⁵ represents,
 - a hydrogen atom,
 - a fluorine atom,
 - a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

- a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
- a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or
- a silyl group substituted with a substituted or unsubstituted hydrocarbon having 1 to 20 carbon atoms,

G¹ represents a hydrogen atom or a protective group of hydroxyl group;

G² represents any one of G²¹ to G²⁶ below,

$$G^{21}$$
: $A_{R^9}^{21}$ G^{22} : $A_{R^{13}R^{12}}^{11}$ G^{23} : $A_{R^{14}}^{22}$

$$G^{24}$$
: A_{2}^{15} R^{16} G^{25} : R^{17} R^{18} R^{18} R^{26} : R^{19} R^{20}

wherein A¹ represents an element of Group 15 of the periodic table, and A² represents an element of Group 16 of the periodic table, and A¹ in G²¹ represents a nitrogen atom;

R⁹ and R¹⁴ each represents

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

a group of formula: R⁹⁰-N-R⁹¹

wherein R⁹⁰ and R⁹¹ are the same or different, and represent

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

a cyclic structure by being linked together,

R¹², R¹³, R¹⁹ and R²⁰ each independently represents,

a substituted or unsubstituted alkyl group 1 to 10,

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; or R^{12} and R^{13} , and R^{19} and R^{20} , each independently, are linked together and represent cyclic structure,

 R^{10} , R^{11} , R^{15} , R^{16} , R^{21} and R^{22} each independently represents a hydrogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms;

R¹⁷ and R¹⁸ are the same or different, and represent,

a hydrogen atom,

a halogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; and

m represents an integer of 0 or 1.

- 2. (Original) The phosphine compound according to Claim 1, wherein A^1 represents a nitrogen atom and A^2 represents an oxygen group.
- 3. (Currently Amended) The phosphine compound according to Claim 1-or 2, wherein G^1 represents a hydrogen atom.
- 4. (Currently Amended) The phosphine compound according to Claim 1, $\frac{2 \text{ or } 3}{3}$, wherein G^2 is G^{21} .
- 5. (Currently Amended) The phosphine compound according to Claim 1, 2 or 3, wherein G^2 is G^{22} .
- 6. (Currently Amended) The phosphine compound according to Claim 1, $\frac{2 \text{ or } 3}{3}$, wherein G^2 is G^{23} .

- 7. (Currently Amended) The phosphine compound according to Claim 1, $\frac{2 \text{ or } 3}{3}$, wherein G^2 is G^{24} .
- 8. (Currently Amended) The phosphine compound according to Claim 1, $\frac{2 \text{ or } 3}{3}$, wherein G^2 is G^{25} .
- 9. (Currently Amended) The phosphine compound according to Claim 1, $\frac{2 \text{ or } 3}{3}$, wherein G^2 is G^{26} .
- 10. (Currently Amended) The phosphine compound according to Claim 1 or 2, wherein G^1 is a protective group of the hydroxyl group.
- 11. (Original) The phosphine compound according to Claim 10, wherein G¹ is a protective group of the hydroxyl group selected from an alkyl group having a secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group.
- 12. (Original) The phosphine compound according to Claim 10, wherein G¹ is a methoxymethyl group, an ethoxyethyl group, a methoxymethyl group, a trimethylsilylethoxymethyl group or a 1-ethoxyethyl group.
- 13. (Original) The phosphine compound according to Claim 10, wherein G^2 is G^{21} .
- 14. (Original) The phosphine compound according to Claim 10 or a Bronsted acid salt thereof, wherein G^2 is G^{22} .
- 15. (Original) The phosphine compound according to Claim 10 or a Bronsted acid salt thereof, wherein G^2 is G^{23} .

- 16. (Original) The phosphine compound according to Claim 10, wherein G^2 is G^{24} .
- 17. (Original) The phosphine compound according to Claim 10, wherein G^2 is G^{25} .
- 18. (Original) The phosphine compound according to Claim 10 or a Bronsted acid salt thereof, wherein G^2 is G^{26} .
- 19. (Currently Amended) The compound according to Claim 1 or 2, wherein R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹ and R²⁰ are substituted or unsubstituted alkyl groups having 1 to 10 carbon atom(s).
 - 20. (Original) A production method of a phosphine compound of formula 21B:

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R²¹, G¹⁰ and A¹ are the same as described below,

which comprise reacting

a phosphine carbonyl compound of formula (21C):

wherein G¹⁰ represents a hydrogen atom or a protective group of the hydroxyl group selected from alkyl groups having a secondary or tertiary carbon atom linked to an oxygen atom of phenol or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group,

R¹, R², R³, R⁴, R⁶ and R¹ are the same or different and each independently represents a hydrogen atom,

a halogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,

a silyl group substituted with a substituted or unsubstituted hydrocarbon having 1 to 20 carbon atom(s),

a substituted or unsubstituted alkoxy group having 1 to 10 carbon atom(s), a substituted or unsubstituted aralkyloxy group having 7 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, or an amino group disubstituted with hydrocarbons having 1 to 20 carbon atom(s); R⁵ represents,

a hydrogen atom,

a fluorine atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

a silyl group substituted with a substituted or unsubstituted hydrocarbon having 1 to 20 carbon atom(s);

R²¹ represents, a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s), a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, with an organic compound of formula (21F): R⁹NH₂ (21F)wherein R⁹ represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s), a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a group of formula: R⁹⁰-N-R⁹¹: wherein R⁹⁰ and R⁹¹ are the same or different and represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s), a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

21. (Original) The production method according to Claim 20, wherein G¹⁰ is a protective group of the hydroxyl group selected from alkyl groups having a secondary or tertiary alkyl groups linked to an oxygen atom of phenol, and a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group.

a cyclic structure being linked together.

22. (Currently Amended) A production method of a phosphine compound of formula (21A):

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R²¹ are as defined in Claim 20, <u>also</u> which comprises reacting the phosphine compound (21B) as defined in Claim 20 with an acid:

- 23. (Original) The production method according to Claim 22, wherein the acid is hydrochloric acid.
 - 24. (Original) A production method of a phosphine compound of formula (22A):

$$R^{12}$$
 R^{13}
 R^{11}
 R^{10}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{6}

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^{10} , R^{11} , R^{12} , R^{13} , and A^1 are the same as described below,

which comprises reacting

a phosphine compound of formula (22B):

$$R^{12}$$
 R^{13}
 R^{11}
 R^{10}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{6}

wherein A^1 , R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^{10} , R^{11} , R^{12} and R^{13} are as defined in Claim 1, and

G¹¹ represents a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary alkyl groups linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group, with an acid.

- 25. (Original) The production method according to Claim 24, wherein the acid is hydrochloric acid.
- 26. (Original) A production method of the phosphine compound of formula (22B) as defined in Claim 24,

which comprises reacting

a phosphine dihalide of formula (22C):

$$X^{2}$$
 A^{1}
 A^{1}
 A^{10}
 A^{1

wherein R⁵, R⁶, R⁷, R⁸, R¹⁰, R¹¹, R¹², R¹³ and A¹ are as defined in Claim 24, with a metal aryl compound of formula (22D):

$$R^1$$
 R^2
 R^3
 R^4
 R^4

wherein R¹, R², R³, R⁴ and G¹¹ are as defined in Claim 24, and

D represents an alkali metal or J-X³:

wherein J represents an alkaline earth metal, and

X³ represents a halogen atom.

27. (Original) A production method of the compound of formula (22B) as defined in Claim 24, which comprises reacting

a phosphine halide compound of formula (25C):

$$R^1$$
 R^2
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4

wherein R^1 , R^2 , R^3 , R^4 and G^{11} are as defined in Claim 24 and X^2 represents a halogen atom,

with a compound of formula (22E):

$$R^{12}$$
 R^{13}
 R^{11}
 R^{10}
 R^{8}
 R^{6}
 R^{7}
 R^{6}

wherein R^5 , R^6 , R^7 , R^8 , R^{10} , R^{11} , R^{12} , R^{13} , A^1 and D are as defined in Claim 24.

- 28. (Original) The compound of formula 22B according to Claim 24, wherein \mathbb{R}^5 is a hydrogen atom.
 - 29. (Original) A production method of a phosphine compound of formula (23B):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{6}
 R^{7}

wherein R¹, R², R², R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁴, R²¹, A¹ and G¹¹ are as defined below, which comprise reacting a phosphine compound of formula (23C):

$$R^{1}$$
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{6}
 R^{7}

wherein A¹, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁴ and R²¹ are as defined in Claim 1, and G¹¹ represents a protective group of the hydroxyl group selected from an alkyl group having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group, with a metal hydride compound.

30. (Original) A production method of a phosphine compound of formula (23A):

$$R^{14}$$
 R^{14}
 R^{21}
 R^{14}
 R^{21}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁴, A¹ and R²¹ are as defined below, which comprises reacting the phosphine compound of formula (23B) as defined in Claim 29, with an acid:

31. (Original) A production method of a phosphine compound of formula (24A):

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁵, R¹⁶, and A² are as defined in Claim 1, which comprises reacting

the phosphine compound of formula (24B):

$$R^{1}$$
 R^{1}
 R^{2}
 R^{16}
 R^{1

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁵, R¹⁶ and A² are the same as described above, and G¹¹ represents a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl groups substituted with a substituted or unsubstituted alkoxy group, with an acid.

32. (Original) A production method of a phosphine compound of formula (24B):

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁵, R¹⁶ and A² are as defined below, which comprises reacting

a phosphine compound of formula (24C):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{6}
 R^{7}

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and R¹⁵ are as defined in Claim 1, G¹¹ represents a protective group of the hydroxyl group selected from an alkyl group having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl

group substituted with a substituted or unsubstituted alkoxy group, and A² represents an element of Group 16 of the periodic table,

with a metal hydride compound or a metal aryl compound of formula (24D):

$$R^{16}$$
-Y (24D)

wherein R¹⁶ is as defined in Claim 1, and

Y represents an alkali metal or J-X³:

wherein J represents an alkaline earth metal, and X^3 represents a halogen atom.

- 33. (Original) The production method according to Claim 32, wherein G¹¹ represents a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl groups substituted with a substituted or unsubstituted alkoxy group, and A² represents an oxygen atom.
 - 34. (Original) A production method of a phosphine compound of formula (25A):

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁷, R¹⁸ and m are as defined in Claim 1, which comprises reacting

the phosphine compound of formula (25B):

$$\begin{array}{c|c}
G^{11} & F & R^{17} \\
\hline
R^1 & F & R^{18} \\
\hline
R^2 & R^4 & R^5 & R^7
\end{array}$$

$$\begin{array}{c|c}
R^1 & R^8 \\
\hline
R^2 & R^4 & R^5 & R^7
\end{array}$$

$$\begin{array}{c|c}
R^2 & R^4 & R^5 & R^7 \\
\hline
R^3 & 2 & R^6
\end{array}$$
(25B)

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁷, R¹⁸ and m are as defined above, and G¹¹ represents a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group, with an acid.

35. (Original) A production method of a phosphine compound of formula (25B) as defined in Claim 34,

which comprises reacting

a phosphine halide compound of formula (25C):

wherein R^1 , R^2 , R^3 , R^4 and G^{11} are as defined in Claim 34, and X^2 represents a halogen atom,

with a metal aryl compound of formula (25D):

wherein R^5 , R^6 , R^7 , R^8 , R^{17} , R^{18} and m are as defined in Claim 34, and D represents an alkali metal or $J-X^3$,

wherein J represents an alkaline earth metal, and X³ represents a halogen atom.

36. (Currently Amended) A production method of the phosphine compound of formula (25B) as defined Claim 1,

which comprises reacting

a halophosphine compound of formula (25E)

$$X^{2} \xrightarrow{P} \begin{array}{c} F & R^{17} \\ C \xrightarrow{R^{18}} \end{array} m$$

$$R^{8}$$

$$R^{5} \xrightarrow{R^{6}} R^{7}$$

$$R^{6}$$

$$(25E)$$

wherein R^5 , R^6 , R^7 , R^8 , R^{17} , R^{18} and m are the same as those according to Claim 1, and X^2 represents a halogen atom,

with a metal aryl compound of formula (25F):

R¹, R², R³ and R⁴ are as defined in Claim 1, and G¹¹ represents a protective group of the hydroxyl group selected from an alkyl group having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group.

37. (Original) A production method of a phosphine compound of formula (26A):

wherein A¹, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁹ and R²⁰ are as defined below, which comprises reacting

a phosphine compound of formula (26B):

$$R^{1}$$
 R^{19}
 R^{20}
 R^{8}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{7}

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁹, R²⁰ and A¹ are as defined in Claim 1, and G¹¹ represents a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group, with an acid:

38. (Original) A production method of the phosphine compound of formula (26B) as defined in Claim 37,

which comprises reacting

a halophosphine compound of formula (26C):

$$X^{2}$$
 R^{19}
 R^{20}
 R^{8}
 R^{5}
 R^{6}
 R^{7}

wherein R^5 , R^6 , R^7 , R^8 , R^{19} , R^{20} and A^1 are as defined in Claim 37, and X^2 represents a halogen atom,

with a metal aryl compound of formula (26D):

$$R^1$$
 R^2
 R^3
 R^4
 R^4

wherein R^1 , R^2 , R^3 , R^4 and G^{11} are the same as those described in Claim 37, and D represents an alkali metal or J- X^3 ,

wherein J represents an alkaline earth metal, and X³ represents a halogen atom.

39. (Original) A production method of a phosphine compound of formula (26B) as defined in Claim 38,

which comprises reacting

an aryl-halogenated phosphorous compound of formula(26E):

$$G^{11}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$Q(26E)$$

wherein R^1 , R^2 , R^3 , R^4 and G^{11} are as defined in Claim 38, and X^2 represents a halogen atom,

with a metal aryl compound of formula (26F):

$$R^{19}$$
 R^{20}
 R^{8}
 R^{5}
 R^{6}
 R^{7}

wherein A¹, R⁵, R⁶, R⁷, R⁸, R¹⁹, R²⁰ and D are as defined in Claim 38.

40. (Original) A production method of a transition metal complex of formula (3):

wherein M represents an element of Group 14 $\underline{4}$ of the periodic table, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , X^1 and L are as defined below, q represents an integer of 0 or 1, G^{20} represents any one of G^{21} to G^{26} ,

$$G^{21}$$
: $A_{R^9}^{1}$ G^{22} : $A_{R^{13}R^{12}}^{1}$ $G^{23'}$: $A_{R^{14}}^{1}$

$$G^{24}$$
: A^{2} G^{25} : A^{2} G^{25} : A^{17} A^{18} A^{20} A^{26} : A^{1} A^{20}

wherein A¹ represents an element of Group 15 of the periodic table,

provided that A^1 in G^{23} represents an anion of an element of Group 15 of the periodic table and A^1 in G^{21} represents a nitrogen atom,

A² represents an element of Group 16 of the periodic table,

R⁹ and R¹⁴ each represents,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or R^{90} -N- R^{91} :

wherein R⁹⁰ and R⁹¹ are the same or different and represent

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, or

a ring structure by being linked together;

R¹², R¹³, R¹⁹ and R²⁰ each independently represents

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

R¹² and R¹³, and R¹⁹ and R²⁰ each independently represents a ring structure by being linked together;

 R^{10} , R^{11} , R^{15} and R^{16} , R^{21} and R^{22} each independently represent

a hydrogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms;

 $R^{17} \ \text{and} \ R^{18}$ are different one another, and represent

a hydrogen atom,

a halogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,

m represents an integer of 0 or 1, and

the line linking M and G^{20} represents that M is linked or coordinated to an element of Group 15 or 16 of the periodic table or to a fluorine atom constituting G^{20} ,

which comprises reacting

a phosphine compound of formula (2):

wherein R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and G² are as defined in Claim 1, and G¹⁰ represents a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl groups substituted with a substituted or unsubstituted alkoxy group, with a transition metal compound of formula (4):

$$MX^{1}_{3}LL^{1}p$$
 (4)

wherein M represents an element of Group 4 of the periodic table, X^1 represents,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,

a substituted or unsubstituted alkoxy group having 1 to 10 carbon atom(s),

a substituted or unsubstituted araloxy group having 7 to 10 carbon atoms,

a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, or

an amino group disubstituted with hydrocarbons having 2 1 to 20 carbon atoms; and

L represents a balancing counter ion or neutral ligand, being an atom or group similar to X^{1} , and is bonding or coordinating to metal M,

L¹ represents a neutral ligand, and p represents an integer of 0 to 2.

- 41. (Original) The method according to Claim 40, a base is used.
- 42. (Original) The method according to Claim 41, wherein G¹⁰ is a hydrogen atom.
- 43. (Original) A production method of the transition metal compound of formula (3) according to Claim 40, wherein G^{10} is a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group.
- 44. (Original) The production method according to Claim 43, wherein G¹⁰ is a methoxymethyl group, an ethoxyethyl group, a methoxymethyl group, trimethylsilylethoxymethyl group or 1-ethoxyethyl group.
- 45. (Currently Amended) The production method according to Claim 40, 41, 42, 43 or 44, wherein M is a titanium atom or a zirconium atom.
- 46. (Original) The production method of the transition metal complex according to Claim 45, wherein A¹ represents a nitrogen atom and A² represented an oxygen atom.
- 47. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{21} .
- 48. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{22} .
- 49. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{23} .
- 50. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{24} .

- 51. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{25} .
- 52. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{26} .
 - 53. (Original) The transition metal complex of formula (3):

wherein M, L, X¹, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, q and G²⁰ are as defined in Claim 40.

- 54. (Original) The transition metal complex according to Claim 53, wherein A¹ represent a nitrogen atom and A² represents an oxygen atom.
- 55. (Original) The transition metal complex according to Claim 54, wherein M is a titanium atom or a zirconium atom.
- 56. (Currently Amended) The transition metal complex according to Claim 54 or 55, wherein G^2 is G^{21} .
- 57. (Currently Amended) The transition metal complex according to Claim 54 or 55, wherein G^2 is G^{22} .

- 58. (Currently Amended) The transition metal complex according to Claim 54 or 55, wherein G^2 is G^{23} .
- 59. (Currently Amended) The transition metal complex according to Claim 54 or 55, wherein G^2 is G^{24} .
- 60. (Currently Amended) The transition metal complex according to Claim 54 or 55, wherein G^2 is G^{25} .
- 61. (Currently Amended) The transition metal complex according to Claim 54 or 55, wherein G^2 is G^{26} .
- 62. (Currently Amended) An olefin polymerization catalyst comprising a combination of transition metal complex according to Claim 53, 54 or 55, compound A below, and optionally compound B:

compound A: any one of compounds A1 to A3, or a mixture of at least two of them,

compound A1: an organic aluminum compound of formula $(E1)_a Al(Z)_{3-a}$,

compound A2: a cyclic aluminoxane having a structure of formula [-Al(E2)-O-]_b, and compound A3: a linear aluminoxane of formula E3[-AlE3-O-]_cAlE3₂,

wherein E1 to E3 are the same or different and each represents a hydrocarbon group having 1 to 8 carbon atom(s),

Z is the same or different, and represents a hydrogen atom or a halogen atom,

c represents 1, 2 or 3,

b represents an integer of 2 or more, and

c represents an integer of 1 or more;

compound B: any one of compounds B1 to B3, or a mixture of at least two of them,

compound B1: a boron compound of formula BQ1Q2Q3,

compound B2: a boron compound of formula $Z^+(BQ^1Q^2Q^3Q^4)^2$, and

compound B3: a boron compound of formula (L-H)⁺(BQ¹Q²Q³Q⁴)⁻,

wherein B is a boron atom of a trivalent state, and

Q¹ to Q⁴ are the same or different and represent a halogen atom, a hydrocarbon group having 1 to 20 carbon atom(s), a halogenated hydrocarbon group having 1 to 20 carbon atom(s), a silyl group substituted with the hydrocarbon groups having 1 to 20 carbon atom(s), or an amino group disubstituted with the hydrocarbon groups having 1 to 20 carbon atom(s) "Z⁺ represents an inorganic or organic cation, and (L-H) represents Brønsted acid".

63. (Original) A production method of an olefin polymer, which comprises polymerizing an olefin in the presence of the olefin polymerization catalyst according to Claim 62.