Today

Max Flow

Maximum flow

Flow network G = (V, E), source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: fe

- **1** $0 \le f_e \le c_e$. "Capacity constraints." $3 = f_{s,c} \le c_{s,c} = 4$.
- ② If u is not s or t $\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}. \ 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.$

Maximize: $size(f) = \sum_{(s,u) \in E} f_{su}. f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal? $c_{ad} + c_{cd} + c_{et} = 1 + 1 + 2 = 4$.

Any cut gives an upper bound.

Algorithms.

FindFlow: fe

- $0 \le f_e \le c_e$. "Capacity constraints."
- \odot maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e , linear constraints, linear optimization function.

Cool!

S-T cut.

An s-t cut is a partition of V into S and T where $s \in S$ and $t \in T$. Its capacity is the total capacity of edges from S to T.

Do you know the definition?

Find Flow: fe

- $0 \le f_e \le c_e$. "Capacity constraints."
- 2 If u is not s or t $\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}.$

Valid or Invalid?

$$2+1 \neq 2$$

Algorithms.

FindFlow: fe

- $0 \le f_e \le c_e$. "Capacity constraints."
- \odot maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e , linear constraints, linear optimization function.

Cool!

Note...

Integer? (Given integer capacities.)

Yes. There is an integer vertex solution!

Constraint matrix has every subdeterminant being 1, 0, -1.

Vertex solution to linear program (for this problem) must be integral!

Ford-Fulkerson.

"Simplex" method.

Find *s* to *t* path with remaining capacity.

Add to flow variables along path.

Update remaining capacity.

Repeat.

Uh oh...

Residual Capacity.

Find *s* to *t* path with remaining capacity.

Add to flow along path. Or reduce flow on reverse edge.

Update remaining capacity.

Reduce $r_e = c_e - f_e$ and add reverse $r_{uv} = f_{vu}$

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.) Add reverse arcs to indicate "reverse" capacity.

Bigger Example.

Find *s* to *t* path with remaining capacity.

Add to flow along path.

Update residual capacities: : $r_e = c_e - f_e$; $r_{uv} = f_{vu}$.

Repeat.

Check Result...

Find Flow: fe

- $0 \le f_e \le c_e$. "Capacity constraints." $3 = f_{s,c} \le c_{s,c} = 4$.
- ② If u is not s or t $\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}. \ 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.$

Maximize: size(f) = $\sum_{(s,u)\in E} f_{su}$. $f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal? $c_{ad} + c_{cd} + c_{et} = 1 + 1 + 2 = 4$.

Any s-t cut gives an upper bound.

Correctness.

- 1. Capacity Constraints: $0 \le f_e \le c_e$.
- Only increase flow to c_e .
- Or use reverse arcs decrease to 0.
- Flow values to be between 0 and c_e .
- 2. Conservation Constraints:
- "flow into v" = "flow out of v" (if not s or t.)
- Algorithm adds flow, say f, to path from s to t.
- Each internal node has *f* in, and *f* out.

Optimality: upper bound.

s-*t* Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s-t cut is an upper bound on the flow.

C(S,T) - sum of capacities of all arcs from S to T

$$C(S,T) = \sum_{e=(u,v): u \in S, V \in T} c_e$$

For valid flow:

Flow out of (S) = Flow out of s.

Flow into (T) = Flow into t.

For any valid flow, $f: E \rightarrow Z+$, the flow out of S (into T)

$$\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \le \sum_{e \in S \times T} c_e - \sum_{e \in T \times S} 0 = C(S, T).$$

 \rightarrow The value of any valid flow is at most C(S, T)!

Optimality: max flow = min cut.

At termination of augmenting path algorithm.

No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.

No arc with positive residual capacity leaving ${\cal S}$

 \implies All arcs leaving S are full.

 \implies No arcs into S have flow.

Total flow leaving S is C(S, T).

Valid flow \implies all that flow from source.

Value of flow equals value of C(S, T). and Optimal is $\leq C(S, T)$.

→ Flow is maximum!!

Cut is minimum s-t cut too!

"any flow" \leq "any cut" and this flow = this cut.

 \rightarrow Maximum flow and minimum s-t cut!

Theorem: In any flow network, the maximum *s-t* flow is equal to the minimum cut.

Back to business: Algorithm Terminates?

It will!!

Flow keeps increasing.

How long?

One more unit every step!

O(mF) time where F is size of flow.

Efficiency.

Edmonds-Karp

Augment along shortest path.

Breadth first search!

O(|V||E|) augmentations.

Analysis idea.

d(v) is distance to sink.

Only route flow on (u, v) if $d(u) \ge d(v)$.

Only reverse flow on (u, v) if $d(v) \le d(u)$.

Maximum d(v) is |V|.

Distances only go up. (To prove!)

Every augment removes edge "at" a distance.

O(|V||E|) removals.

 $O(|V||E|^2)$ time.