University of Lethbridge

Department of Mathematics and Computer Science

MATH 2565 - Tutorial #12

Thursday, April 5

Name:			

Note: You may do this assignment as a group, if you wish, by listing additional names under the space above, up to a maximum of 3 students per group.

Extra practice:

- 1. Plot the polar function:
 - (a) $r = 2 + \cos \theta, \ \theta \in [0, 2\pi]$

(b)
$$r^2 = \cos(2\theta), \ \theta \in [-\pi/4, \pi/4] \cup [3\pi/4, 5\pi/4]$$

- 2. Find the points of intersection of the polar curves. (Note that the point (0,0) requires special care: you might have r=0 for different values of θ for the two curves.)
 - (a) $r = \cos(2\theta)$ and $r = \cos \theta$, on $[0, 2\pi]$
 - (b) $r = \sin \theta$ and $r = \sqrt{3} + 3\sin \theta$, on $[0, 2\pi]$
- 3. Compute the area:
 - (a) One loop of the three-leaf rose $r = \sin(3\theta)$.
 - (b) The outer loop of the limaçon $r = 1 + 2\cos\theta$.

1. Plot the given polar function:

(a)
$$r = \cos(2\theta), \ \theta \in [0, 2\pi].$$

(b) $r = 2\cos(\theta), \ \theta \in [-\pi/2, \pi/2]$

- 2. Find the given area:
 - (a) Inside the circle $r = 2\cos\theta$, but outside the circle $r = 2\sin\theta$.

(b) The area common to the inside of the curves $r = \cos \theta$ and $r = \sin(2\theta)$, in the first quadrant.

3. Show that the indicated limit does not exist:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{3x+4y}{x-2y}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^8}$$

- 4. What geometric object is obtained as the graph of f(x,y) = 2x 3y?
- 5. Challenge: Describe the level surfaces of f(x, y, z) = k $f(x, y, z) = x^2 + y^2 z^2$, for k = -2, -1, 0, 1, 2.