Examine's Com

AN 1994:206463 HCAPLUS

DN 120:206463

ΤI Electric conductive materials

Kimura, Taro; Toe, Tamio IN

PA

Nippon Mining Co Ltd, Japan Jpn. Kokai Tokkyo Koho, 8 pp. CODEN: JKXXAF

DTPatent

LΑ Japanese

FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE -----____

ΡI JP 05311291 A2 19931122 JP 1991-270932 19911018

The materials contain alloys contg. Cr 0.05-1.0, Zn 0.1-4.0, optionally Sn, Mg, Mn, Al, B, P, As, Sb, Ag, and/or Pb 0.001-5.0, optionally Ni, Co, and/or Fe 0.1-5.0%, and balance Cu and ppts. (particle size <2.mu.m manufd. by aging).

goss The

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-311291

(43)公開日 平成5年(1993)11月22日

(51)Int.Cl.5

識別配号

FΙ

技術表示箇所

C 2 2 C 9/04

H 0 1 B 1/02

A 7244-5G

庁内整理番号

審査請求 未請求 請求項の数6(全 8 頁)

(21)出顧番号

特願平3-270932

(71)出願人 592258063

日鉱金属株式会社

(22)出願日 平成3年(1991)10月18日

東京都港区虎ノ門2丁目10番1号

(72)発明者 木村 太郎

埼玉県戸田市新曽南三丁目17番35号 日本

鉱業株式会社新材料研究所内

(72)発明者 東江 民夫

神奈川県高座郡寒川町倉見三番地 日本鉱

業株式会社倉見工場内

(74)代理人 弁理士 小松 秀岳 (外2名)

(54)【発明の名称】 通電材料

(57)【要約】

【目的】 リードフレーム、端子、コネクター、バスバー間でのマイグレーションの発生を抑えた電気部品材料用の通電材料を提供する。

【構成】 $Cr0.05\sim1.0wt\%$ 、 $Zn0.1\sim4.0wt\%$ を含有し、あるいはさらにNi、Fe、Cooうちの1種又は2種以上を $0.1\sim5.0wt\%$ 又はさらに副成分としてAg、Pb、Sn、Mg、Mn、Ai, B、P, As 、Sbからなる群から1種又は2種以上を総量で $0.001\sim5.0wt\%$ のいずれか又は双方を含み、残部Cuで、Oが20Ppm以下、析出物の大きさが 2μ m以下、結晶粒度が 30μ m以下である通電材料である。

【効果】 高い導電率を有し、かつ耐マイグレーション 性の優れた材料で、リードフレームや、自動車の端子・ コネクター・バスバー等に適用される。

【特許請求の範囲】

【請求項1】 Cr0.05~1.0wt%、Zn0. 1~4.0wt%を含有し、残部Cuおよび不可避的不 純物からなる合金で、時効処理による析出物が存在し、 その析出物の大きさが2μm以下であることを特徴とす る通電材料。

【請求項2】 Cr0.05~1.0wt%、Zn0. 1~4. Owt%と、Ni、Fe、Coのうちの1種又 は2種以上を総量で0.1~5.0wt%含み、残部C uおよび不可避的不純物からなる合金で、時効処理によ 10 強く望まれていた。 る析出物が存在し、その析出物の大きさが2μm以下で あることを特徴とする通電材料。

【請求項3】 Cr0.05~1.0wt%、Zn0. 1~4.0wt%を含有し、さらに副成分としてSn、 Mg、Mn、Al、B、P、As、Sb、Ag、Pbか らなる群から1種又は2種以上を総量で0.001~ 5.0wt%含み、残部Cu及び不可避的不純物からな る合金で、時効処理による析出物が存在し、その析出物 の大きさが2μm以下であることを特徴とする通電材

【請求項4】 Cr0.05~1.0wt%、Zn0. 1~4. Owt%と、Ni、Fe、Coのうちの1種又 は2種以上を総量で0.1~5.0wt%含み、さらに 副成分としてSn、Mg、Mn、Al、B、P、As、 Sb、Ag、Pbからなる群から1種又は2種以上を総 量で0.001~5.0wt%含み、残部Cu及び不可 避的不純物からなる合金で、時効処理による析出物が存 在し、その析出物の大きさが2μm以下であることを特 徴とする通電材料。

【請求項5】 〇含有量が20ppm以下である請求項 30 果を有する元素である。 1ないし4のいずれかに記載の通電材料。

【請求項6】 結晶粒度が30μm以下である請求項1 ないし5のいずれかに記載の通電材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、リードフレーム、端 子、コネクター、バスバー (ブスバーともいう)間での マイグレーションの発生を抑えた電気部品材料用の通電 材料に関する。

[0002]

【従来の技術】近年、電子、電気機器等の小型軽量化が 進み、使用されるコネクター等の部品も小型化するとと もに、部品間の距離も著しく短くなる傾向にある。又、 回路はますます集積化される傾向にある。すなわち、従 来、個々の電子部品はリード線により接続されて回路が 形成されていたが、部品数が増すに従い回路が複雑とな るので、これらを集積化することにより回路の小型化が 進められている。

[0003]

された回路において、異なる回路又は配線が小型化のた めにわずかな間隔をおいて隔てられているが、この間隔 内に水などの電解質が介在すると電気化学的反応が生 じ、高電位側の通電部の材料となっている銅合金から溶 解した銅イオンが低電位側で析出し、更にその量が増す と短絡する現象が生じる。この現象をマイグレーション、 といい、このようなマイグレーションが起ると、回路が 正常に機能しなくなる。したがって、近年では高い導電 率を有し、かつ、マイグレーションの発生しない材料が

[0004]

【課題を解決するための手段】本発明者らは上記の問題 点に鑑み、マイグレーションの研究を進め、陽極側に接 続された端子、コネクター、バスバー等の通電材料とし TCr0. 05~1. 0wt%, Zn0. 1~4. 0w t%を含み、あるいは、さらにNi、Fe、Coからな る1種又は2種以上を総量で0.1~5.0wt%又は さらに副成分としてAg、Pb、Sn、Mg、Mn、A 1、B、P、As、Sbからなる群から1種又は2種以 20 上を総量で0.001~5.0wt%のいずれか又は双 方を含み、残部Cu及び不可避的不純物からなる合金 で、時効処理による析出物が存在し、その析出物の大き さが2μm以下であること、さらに、上記合金のO含有 量が20ppm以下であることあるいは結晶粒度が30 μm以下であることを特徴とするものである。 【0005】本発明にしたがってCuに添加される元素

のそれぞれの添加量は次のことを考慮して定められる。 すなわち、まずCrは銅及び銅合金に含有されることに より、銅及び銅合金のマイグレーション性を抑制する効

【0006】マイグレーション現象を抑制する機構は明 確ではないが、Crの存在によりCuイオンの溶出量が 減少し、Crの化合物の生成により、析出したCu粒子 を介する通電が妨害されることによって、電極間のマイ グレーション現象が抑制されると推察される。

【0007】Cr含有量を0.05~1.0wt%とす る理由はCr含有量がO.05wt%未満では、マイグ レーション現象を抑制する効果がなく、1.0wt%を 超えるとマイグレーション現象の抑制効果はあるが、導 40 電率が低下し、通電時の発熱量が大きくなり、熱放散性 も低くなるためである。

【0008】また、Znも銅及び銅合金に含有されるこ とにより銅及び銅合金のマイグレーション性を抑制する 効果を有する元素であり、特にCrと共に含まれること により、Cr又はZnが単独で含まれる場合よりもマイ グレーション性を抑制する効果が大きくなる。

【0009】Zn含有量を0.1~4.0wt%とする 理由は2n含有量が0.1wt%未満では、マイグレー ション現象を抑制する効果がなく、4.0wt%を超え 【発明が解決しようとする課題】従来の小型化、集積化 50 るとマイグレーション現象の抑制効果はあるが、導電率 3

が低下し、通電時の発熱量が大きくなり、熱放散性も低 くなるためである。

【0010】Ni、Fe、Coの1種又は2種以上の含 有量を0.1~5.0wt%とする理由は、これら元素 はマイグレーション現象の抑制効果を持つとともに、強 度向上にも寄与するものであるが、0.1wt%未満で はその効果は低く、5.0wt%を超えると導電率の低 下が著しくなるためである。さらに副成分として、A g、Pb、Sn、Mg、Mn、Al、B、P、As、S bからなる群から1種又は2種以上を総量で0.001 10 【0014】まず表1に示す組成の本発明合金及び比較 ~5.0wt%含む理由は、強度を向上させるためであ るが、0.001wt%未満ではその効果はなく、逆に 5. 0 w t %を超えると導電率が著しく低下するためで

【0011】析出物の大きさを2μm以下に限定した理 由は析出物が2μmを超えるような粗大なものになる と、急激にマイグレーション現象が発生し易くなるため である。酸素含有量を20ppm以下とした理由は、C

rが酸化物として合金中にとらえられているとマイグレ ーション性の抑制効果が低減する事が判明したためであ る。

【0012】結晶粒度を30µm以下とした理由は、結 晶粒度が30µmを超えて粗大化してくると、加工性が 低下するとともに、耐マイグレーション性も低下する傾 向が見られるためである。

[0013]

【実施例】以下に本発明の具体例を示す。

合金を不活性雰囲気中で溶解鋳造し、面削後熱間圧延 し、その後、冷間圧延と焼鈍酸洗をくり返し、400~ 600℃で所定時間の最終焼鈍により結晶粒度を調整 し、酸洗後加工度20%の厚さ0.8mmの冷間圧延板 を得た。そして、#1200エメリー紙で表面研摩し た。

[0015]

【表1】

表1

		化 学 成 分 (wt%)							折出
	No	Cu	Сr	Zn	Ni . Pe . Co	Sn.Mg.Mn.Al.B.	使業含有量	粒度	物径
		-	• .		W1110100	P.As.Sb.Ag.Pb	(ppm)	(μm)	(µm)
	1	残	0.08	2.02	-		18	10	0.8
	2	"	0.30	0.84	_	_	10	20	0.6
	3	"	0.30	0.84	-		85	20	0.8
İ	4	"	0.71	0.15	-	-	14	15	1.4
	5	"	0.71	0.15	-	_	14	80	1.0
	6	"	0.28	0.72	0.18Ni		10	10	0.8
	7	"	0.28	0.82	0.25Fe	-	14	10	1.2
本	8	"	0.28	0.72	0.11Co	_	4	20	1.0
	9	"	0.28	0.72	0.11Co		91	15	1.6
	10	"	0.15	1.52	0.10Ni.U.28Fe	_	9	20	1.0
	11	"	0.23	0.84	0.19Ni.0.16Co	_	13	10	8.0
発	12	"	0.30	1.01	0.42Fe.0.22Co	-	11	15	1.2
	13	"	0.30	1.01	0.42Fe.0.22Co	_	11	100	0.8
	14	"	0.11	2.51	0.15Ni.0.09Co. 0.28Fe	-	8	20	1.0
明	15	"	0.12	0.40	_	0.05As	8	25	0.4
	16	"	0.27	0.18	_	0.15Sn	Ш	10	0.8
	17	"	0.27	1.20	-	0.125Mg	18	20	1.0
	18	"	0.35	0.11	_	0.03A1	L4	20	0.6
合	19	"	0.31	0.37	_	0.01B	8	25	1.0
	20	"	0.23	0.43	1.14Fe	0.04P	7	15	0.6
	21	"	0.23	0.22	_	0.08Sb	10	10	1.0
金	22	"	0.17	1.09	0.41Fe.0.12Ni. 0.08Co	0.05Ag	8	10	0.8
	23	"	0.20	0.76		0.02Pb	6	15	0.6
	24	"	0.20	8.16	_	0.11Ag.0.02Sb. 0.03Al.0.01B	12	10	0.8
	25	"	0.33	1.35	_	0.19Sn.0.08Mn. 0.02Pb	7	20	0.4
	26	"	0.33	1.35	-	0.19Sn.0.08Mn. 0.02Pb	100	15	0.8

[0016]

* *【表2】

8

7

表1のつづき

				化	学 成 5	(w t %)		結晶	析出
	No	Cu	Сг	2 n	Ni.Fe.Co	Sn.Mg.Mn.Al.B.	酸素含有量	粒度	物径
						P.As.Sb.Ag.Pb	(ppm)	(µm)	(µn)
-	27	残	0.64	0.18		0.52Mg.0.05p	10	15	1.2
	28	"	0.17	1.50	0.32Nī	0.08Ag.0.05Pb.	15	10	0.6
本						0.14Sn			
発	29	"	0.24	0.73	0.16NI.0.10Co	U.02As	12	25	0.9
明	30	"	0.29	2.01	0.31Co.0.14Fe	0.15Mn	7	20	0.8
合	31	"	0.29	2.01	0.31Co.0.14Fe	0.15Mn	7	80	0.8
金	32	"	0.38	1.10	0.24Co	0.10A1.0.13Mg.	8	15	1.0
1						0.02B			
	33	"	0.59	0.21	1.85Fe.0.52Ni	0.10P.0.03Sb	11	20	1.4
	34	"	0.22	0.85		0.03As.0.08Mn	15	25	0.6
	35	"	0.01	0.84	1	_	15	10	0.6
比	36	11	0.30	0.03	1	_	18	15	0.8
較	37	"	2.85	0.21	_	_	12	25	1.3
合	38	"	0.71	0.15	-	-	10	20	3.2
金	39	"	0.23	0.43	1.14Fe	0.04P	7	15	2.8
	40	"	0.20	0.76	1	0.02Pb	6	20	2.6
	41	"	_	30	-	_	45	10	-
	42	"	_	1	-	_	7	15	-

【0017】これらの得られた供試材について引張強 さ、伸び、導電率、耐マイグレーション性を評価した。 結果を表 2に示す。耐マイグレーション性は供試材を1 0mm×80mmに切断し、2枚1組として、図1に示 30 3中矢印) を表2に示す。 すようにセットした供試材を図2に示すようにして水道 水中(300cc)に試験片上面が液面下20mmにな るように浸漬した。次にこの2枚の供試材に14Vの直*

* 流電圧を加え、経過時間に対する電流値の変化を記録計 にて測定した。この結果の代表例を図3に示す。又、各 供試材における電流値が2.0Aになるまでの時間(図

[0018]

【表3】

10

			т		
	引張強さ		伸び	導電率	耐マイグレーション性
	No.	(N/mm²)	(%)	(%IACS)	(2.0Aになる
	ļ.,		ļ		時間.min.)
	1	458	12.6	71	480
	2	479	16.2	80	540
	3	480	15.7	80	470
	4	482	15.1	77	590
	5	470	18.7	77	540
	6	489	16.4	68	540
本	7	486	16.8	70	540
	8	490	15.1	76	540
	9	492	14.6	76	470
	10	468	16.0	65	510
発	11	480	16.4	68	530
	12	492	15.7	65	550
	13	478	17.6	65	510
	14	471	16.4	69	510
明	15	453	16.2	85	470
	16	476	15.0	82	520
	17	484	16.1	82	540
	18	470	15.9	91	550
合	19	472	14.3	90	540
	20	523	13.8	65	580
	21	467	14.1	90	500
	22	508	15.8	62	520
金	23	470	16.0	87	500
	24	512	12.0	63	540
	25	499	16.8	70	550
	28	507	14.5	70	480
	27	529	15.2	72	580
	28	523	11.9	65	510

[0019]

40【表4】

表2のつづき

	No.	引張強さ (N/mm²)	伸び (%)	導電率 (%) ACS)	耐マイグレーション性 (2.0Aになる 時間.min.)
本	29	515	16.5	71	520
発	30	521	15.3	58	560
明	31	496	21.5	58	520
合	32	519	15.0	65	560
金	33	541	17.1	63	590
	34	470	16.5	84	510
	35	423	13.2	92	200
	36	462	15.3	90	410
比	37	529	16.9	48	650
較	38	457	14.7	. 78	280
습	39	492	18.8	65	240
金	40	453	19.5	87	210
	41	485	14.4	28	480
	42	305	13.1	102	105

【0020】なお、析出物の大きさは供試材断面を10 00倍で2mm²検鏡し、最大の析出物の大きさにより 求めた。

【0021】表2より、本発明合金No.1~34は、い ずれも導電率が58% IAC S以上で、かつ強度と耐マ イグレーション性に優れ、リードフレームや自動車の端 求められる通電材料として最適な合金であることがわか る。また、本発明合金No. 2とNo. 3、No. 8とNo. 9 およびNo. 25とNo. 26より0含有量が少ない方が、 マイグレーション性の抑制効果が大きいことがわかる。 さらに本発明合金No. 4と5、No. 12と13、および No.30と31から結晶粒度が小さい方が、マイグレー ション性の抑制効果が大きいことがわかる。そのため、 耐マイグレーション性の点からは0含有量が20ppm 以下、結晶粒度が30µm以下が望ましい。また、比較 合金No. 35は本発明合金No. 2に比べてr含有量が 40 少ないため、耐マイグレーション性が悪く、強度も低 い。比較合金No.36は本発明合金No.2に比べZn含*

*有量が少ないため、耐マイグレーション性が悪い。比較 合金No. 37は、Cr含有量が多すぎるため導電率が 低い。比較合金No.38とNo.39およびNo.40は、 本発明合金No. 2とNo. 20およびNo. 23に比べ析出 物径が大きすぎるため、耐マイグレーション性が悪い。 比較合金No. 41は従来自動車のバスバー等に用いられ 子、コネクター、バスバー等の耐マイグレーション性の 30 ている黄銅1種で耐マイグレーション性は高いが、導電 率が低い。比較合金No. 4 2は無酸素銅で導電率は高い が耐マイグレーション性は悪い。

[0022]

【発明の効果】本発明の通電材料は高い導電率を有し、 かつ耐マイグレーション性の優れた材料である。

【図面の簡単な説明】

【図1】耐マイグレーション性のテストのための供試材 の斜視図である。

【図2】同テストの説明図である。

【図3】耐マイグレーションテスト結果を示すグラフで ある。

【図1】

