Mathematical Methods for Computer Science 1 Fall 2017

Series 1

Sylvain Julmy

1

a)

The number of permutation f of the set $s = \{1, 2, 3, 4, 5\}$ where $f(1) \neq 1$ is computed by using the formula on the number of permutation of a set : NbPerm(s) = |s|! where $f(1) \neq 1$, so we modify the formula : NbPerm'(s) = (|s| - 1) * ((|s| - 1)!). Finally we can compute NbPerm'(s) = 4 * (4!) = 96.

b)

The number of 10-digit numbers that have at least two equal digit can be computated by substracting the number of digit which have no duplicated digit, noted $N_{noDuplicate}$, to the total number of 10-digit numbers, noted N_{tot} .

Normally, the total number of a n-digit number could be compute by using the function $N_{tot}(n) = 10^n$, but a number can't start with 0 sowe have to slightly modify to formula : $N_{tot}(n) = 9 * 10^{n-1}$ where $n \ge 0$.

Now we can compute $N_{tot}(10) = 9 * 10^9$.

Then, the number of 10-digit number that have no duplicate's digit is the same has the number of permutation f of the set $s = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ where $f(0) \neq 0$. So we take the formula NbPerm'(s) = (|s|-1)*((|s|-1)!) and we compute $N_{noDuplicate} = NbPerm'(10) = 9*(9!)$. Finally, we can compute the total number of 10-digit number that have at least two equal digits : $N_{withDuplicate} = N_{tot} - N_{noDuplicate} = 9*10^9 - 9*(9!) = 8'996'734'080$.

2

a

From any square on the chessboard, a rook is threatening 7*2=14 another square. The total number of square on a chessboard is 8*8=64 so there is 64-14=50 free square for the other rook. So we have two choice to made: put the first rook on any square (64 possibility) and put the second rook on a non-threatened square (64 - 14 = 50 possibility). Finally the number of position that satisfy the constraint are 64*50=3200.

b

Putting two rooks of the same color on a chessboards is the same as computing $\binom{64}{2} = \frac{64!}{2!*62!} = \frac{64*63}{2} = 2016$.

The other way is to make a first choice from 64 squares and a second choice of 63 squares. But because the two rooks are undistinguishable, we need to divide the total by $2: \frac{64*63}{2} = 2016$

 \mathbf{c}

First, we place a rook on one of the 64 squares of the chessboards and then we choose a square to put the second, that gives two differents situation:

- 1. The second rook is places on a square already threatened by the other rook
- 2. The second rook is places on a square that it is not threatened by the other rook

In the first situation, the total number of square controlled $N_{ControlledSquare}$ by the two rooks is 14 + 14 - 7 - 1 = 20. In the second situation, the total number of square controlled by the two rooks is 14 + 14 - 2 = 26, because two square are threatened twice.

If we consider the first situation only, we have 64*63*(62-20)*(61-20) = 6943104 situations that satisfies the constraints and in the second situation we have 64*63*(62-26)*(61-26) = 5080320 situations that satisfies the constraints.

The sum of the two gives the total number of position that satisfies the constraints : 5'080'320 + 6'943'104 = 12'023'424

3

 \mathbf{a}

The number of natural divisors of 60 is 12 (10 is 1 and 60 are not counted). This number is equal to the number of possible sub-set of the (multi-)set $\{2, 2, 3, 5\}$, but we have to remove some sub-set due to the fact that there is two 2 in the (multi-)set : $2^4 - 4 = 16 - 4 = 12$. We remove 4 because 2 and 2' are the same so any time 2 could be replace by 2' we remove one from 2^4 .

b

For any natural number n such that $/\exists k$ where $k^2=n$, the number of natural divisor of n is even because each operand o_1 of the multiplication that gives n needs a second operand o_2 where $o_1 \neq o_2$. For example, we take n=12:

$$1*12 = 12$$
 $2*6 = 123*4 = 12$

For any natural number n such that $\exists k$ where $k^2 = n$, the number of natural divisor is increased by exactly one because k * k = n.

4

 \mathbf{a}

The total number of different words in the language is $4^3 = 4 * 4 * 4 = 64$.

b

The total number of different words that start with a vowels is 4*5*3*4*2=480. The total number of different words that start with a consonants is 5*4*4*3*3=720. The total number of different words is 480+720=1200.

5

 \mathbf{a}

The number of different ways to separate 2n persons into two teams is the same as taking n from 2n and dividing the whole by 2 because a groups of n have a symetric groups : $\binom{2n}{n} * 2^{-1}$.

b

First, we count the number of permutation of n stone and then we divive the whole by n because the bracelets is circular, so circular permutation don't count : $\frac{n!}{n}$.