Use midpoint rule to estimate

the area under the curve
$$y = \frac{1}{x}$$

for $\frac{n=2}{4}$ and $\frac{n=4}{4}$ rectangles

$$\frac{G(G) N = 2}{2}; \qquad \Delta x = \frac{5-1}{2} = \frac{2}{2}$$

$$G_1 = \frac{1}{2}$$

$$G_2 = \frac{1}{2}$$

$$G_3 = \frac{1}{2}$$

$$G_4 = \frac{1}{2}$$

$$G_4 = \frac{1}{2}$$

$$G_4 = \frac{1}{2}$$

$$A \approx f(c_1) \cdot 2 + f(c_2) \cdot 2 = 2 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 3/2$$

b)
$$n = 4$$
: $Dx = \frac{5-1}{4} = \frac{1}{4}$: $\frac{[1, 2]}{[2, 3], [3, 4], [4, 5]}$

$$C_1 = \frac{1+2}{2} = \frac{3/2}{2} : C_2 = \frac{2+3}{2} = \frac{5}{2}, \quad C_3 = \frac{3+4}{2} = \frac{1}{2}, \quad C_4 = \frac{4+5}{2} = \frac{5}{2}$$

$$A \approx \frac{4}{5} \frac{f(C_1) \Delta x}{[2]} = (\frac{f(3/2) + f(5/2) + f(7/2) + f(3/2) \cdot 1}{2} = \frac{2}{3} + \frac{2}{5} + \frac{2}{7} + \frac{2}{9}$$

2. Determine the values of the following limits

$$\frac{\lim_{n \to \infty} \frac{1}{n} \sum_{i \neq i}^{n} \frac{\sin(\frac{i}{n})}{\sin(\frac{i}{n})}}{\lim_{n \to \infty} \frac{1}{\sin(\frac{i}{n})}} = \sum_{i \neq i}^{n} \frac{1-0}{n} \sin(0+i \cdot \frac{1-0}{n})$$

$$= \sum_{i \neq i}^{n} \Delta x f(x_i)$$

where
$$\Delta x = \frac{1-0}{n}$$
, $\frac{x_i = 0 + i \Delta x}{n}$, $\frac{f(x) = Sih x}{n}$

$$\lim_{N\to\infty} \frac{1}{n} \sum_{i=1}^{N} Sih(\frac{i}{n}) = \lim_{N\to\infty} \frac{1}{n} \int_{i=1}^{N} f(x_i) dx$$
Rieman Sum

$$= \int f(x)dx = \int shx dx = -cosx = 1 - cos 1$$

3. Express the limits as definite integrals

Sol. This is define of Riemann Sum
$$\int_{W}^{\infty} \int_{W}^{\infty} \int_{W}^{\infty}$$

4 Show that STX+8 dx lies between 252 × 2.8 and 3. By Max-Min Inequality (1-0). minf = Sf(x) dx < max f. (1-0) where $f(x) = \sqrt{x+8}$ Note that $\max f = \sqrt{1+8}$ and $\min f = \sqrt{5+8}$ on [-1]. (f is increasily) => $minf = \sqrt{8} = 2\sqrt{2}$ and $max f = \sqrt{9} = 3$

Evaluate the integral

$$T = \int_{2.5ec}^{2.5ec} \frac{1}{x} dx$$

$$Sol : T = \int_{0.5ec}^{2.5ec} \frac{1}{x} dx$$

$$Sol : T = \int_{0.5ec$$

Find the total area between the region and the x-axis $y = -x^{2} - 2x$, $-3 \le x \le 2$ $-x^{\frac{1}{2}} - x = 0 = 0 - x (x+2) = 0$ =) x - 0; x - -2 $A = |A_1| + |A_2| + |A_3|$ $= \int (0 - (-x^2 - 2x)) dx + \int (-x^2 - 2x - 0) dx$ + $\int_{-\infty}^{2} \left[0 - \left(-x^{2} - 2x \right) \right] dx$ $= \left(\frac{x^{3} + x^{2}}{3} + \left(\frac{x^{3} + x^{2}}{3}\right) + \left(\frac{x^{3} + x^{2}}{3}\right) = \frac{28/3}{3}$

8. Using Substitution formula evaluate the

hlegral

$$(\alpha) \qquad 1 = \int_{0}^{\infty} r \sqrt{1-r^{2}} dr.$$

Sul:
$$\gamma = \int r \sqrt{1-r^2} dr$$
. $\int tet u = 1-r^2$
=) $\int du = -\frac{1}{2} du$

(b)
$$\overline{L} = \int_{0}^{\pi/\eta} \frac{\tan x}{\tan x} \sec^{2}x \, dx$$

Sol: Let
$$u = tax = du = sec^2x dx$$

$$\frac{X=0=)}{X=\pi/n} \frac{u=tono=0}{u=ton(\pi/u)=1}$$

$$T = \int \frac{u \, du}{2} = \frac{1}{2} \int \frac{1}{2} = \frac{1}{2}$$

area ef the shaded region the. Find $x^{2} = 2 - x = x = 1$ 0 to 1, upper curve is $y = x^2$ and y = 0 (x - a xis) ouve is 1 to 2 upper conve is y = 2-xFrom lover curve is y = 0. $\int_{-\infty}^{\infty} x^2 dx + \int_{-\infty}^{\infty} (2-x) dx.$

Sol. Note that f(x)= x Ju-x2 is an metho

 $So, A = \int_{-2}^{2} x \int_{-2}^{4-x^{2}} dx = 2 \int_{-2}^{2} \frac{x}{\sqrt{4-x^{2}}} dx$

can be calcubated by Subst. Me.

$$A = \int_{3}^{1} (y^{2} - y^{3}) dy = (\frac{y^{3} - \frac{y^{3}}{4}}{3}) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

$$\Delta = \int (\sqrt[3]{x} - \sqrt{x}) dx$$