

Useful Literature

- Comparison and Summary: http://geomorphology.org.uk/sites/default/files/chapters/5%206%2012_LEM.pdf
- http://onlinelibrary.wiley.com/doi/10.1002/esp.4162/full
- Landlab website: http://landlab.github.io/#/
- SIGNUM: http://www.sciencedirect.com/science/article/pii/S009830041100
 392X?via%3Dihub

(simple, Matlab-based LEM)

Table 1. Partial list of numerical landscape models published between 1991 and 2005.

Model	Example reference	Notes
SIBERIA	Willgoose et al. (1991)	Transport-limited;
		Channel activator function
DRAINAL	Beaumont et al. (1992)	"Undercapacity" concept
GILBERT	Chase (1992)	Precipiton
DELIM/MARSSIM	Howard (1994)	Detachment-limited;
		Nonlinear diffusion
GOLEM	Tucker and Slingerland (1994)	Regolith generation;
		Threshold landsliding
CASCADE	Braun and Sambridge (1997)	Irregular discretization
CAESAR	Coulthard et al. (1996)	Cellular automaton algorithm
		for 2D flow field
ZSCAPE	Densmore et al. (1998)	Stochastic bedrock
		landsliding algorithm
CHILD	Tucker and Bras (2000)	Stochastic rainfall
EROS	Crave and Davy (2001)	Modified precipiton
TISC	Garcia-Castellanos (2002)	Thrust stacking
LAPSUS	Schoorl et al. (2002)	Multiple flow directions
APERO/CIDRE	Carretier and Lucazeau (2005)	Single or multiple
		flow directions

CASCADE (Braun & Sambridge, 1997, van der Beek and Braun, 1999)

Margin formed during rifting 130 Ma ago. Height of topographic scarp ~1.5 km

Components to Landscape Evolution Model

Formulations for:

- 1) Continuity of mass
- 2) Runoff generation and Routing of water
- 3) Erosion-Transport laws for hillslope sediment
- 4) Erosion-Transport laws for river sediment

'D8 Algorithm' for Drainage

7	8	9
4	COI	6
1	2	3

We assume that water and mass flows into the direction of the steepest slope:

$$S = \arctan(\Delta z/d)$$

$$\begin{split} S &= slope & [-] \\ \Delta z &= z_coi - z_neighbor & [L] \\ d &= distance & [L] \end{split}$$

What are the lengths, d, for the two potential drainage directions?

Random Walk

- Go out to a large open space and mark a spot on the ground. Take with you a coin.
- Stand on the spot and flip the coin. If the coin comes up heads, turn to the right and take a large step. If the coin comes up tails, turn to the left and take a large step.
- Keep doing this many times and see where you end up.

Smooth and rough landscapes

- Roughening: growth of rills and gullies
 - Less vegetation, more runoff, more erodible soils
- Smoothing: soil creep
 - Rapid soil mixing by plants and animals, ice growth in soil, and other processes


```
Stochastic-threshold incision model
(Tucker & Bras, 2000)

• K<sub>νc</sub>=K<sub>νc</sub> (R<sub>c</sub>/P∝τ<sub>c</sub>/P, A, S; varies from 0 to 1)
```

```
Bedrock Channel Incision Models

Basic Postulate
E = k_s (\tau - \tau_w)^m \quad \text{or} \quad E = k_s (\tau^o - \tau_w^o)
E = K_w A^o S^o
K_{sF} = K_s K_s \beta_{v_w} : n = \frac{2}{3} a : m = \frac{2}{3} a c (1 - b)
Stream Power Model
K_s = k_s k_s^{-n/o} k_s^o
K_s = k_s k_s^{-n/o} \exp(-I/\langle P \rangle F_{v_w}) \Gamma(\gamma_s + 1)
\beta_{v_w} = 1
\beta_{v_w} = \left[ \Gamma(\gamma_s + 1, R_s/P) - (R_s/P)^o \exp(-R_s/P) \right]
Exponents (Stochastic Model)
c = 1
v_w = k_s Q_w^o
v_w = k_s Q_w^o
(w/w_w) = (Q/Q_w)^o
Exponents (Stochastic Model)
c = 1
v_w = 2a(1 - s)/3
v_w = 2a(b - s)/3
```