# Full Visible Spectrum, Multicolor Imaging of Single Molecules



Emma Stavropoulos<sup>1</sup>, Jan-Hendrik Spille<sup>1</sup>, Andrey Revyakin<sup>2</sup>, Gleb Shtengl<sup>3</sup>, Ibrahim Cissé<sup>1</sup> *Massachusetts Institute of Technology, <sup>2</sup>University of Leicester, <sup>3</sup>Janelia Research Campus* 

#### Introduction

In conventional fluorescence imaging systems, determining color involves a myriad of optical elements. Differentiating each additional color may require light to be split through mirrors and filtered further. This process is limiting because intensity is crucial for single molecule imaging, and the loss accumulates as the path is split and filtered. Furthermore, the colors are limited to just 2-4 filtered ranges across the visible spectrum.

Zhang et. al. utilized a dispersive element<sup>1</sup>, a prism, in order to simultaneously image and differentiate multiple far red dyes and further extract hyperspectral information. Our optical system involves a prism that yields linear dispersion, and with further characterization, hyperspectral information can be obtained without the use of filters.

## Standard multicolor system Dichroic mirrors and filters coupled



## Hyperspectral system Prism yields linear dispersion across visible spectrum



### Implementing hyperspectral imaging

Imaging uniform nanogrid with bandpass filters across visible spectrum to quantify dispersion







Spectral Camera



Bandpass Filters (peak/width)

## Linear dispersion achieved and mapped over image as slopes of wavelength vs. pixel displacement



# Fingerprinting dyes to separate overlapping spectral patterns

Building a library of spectral fingerprints by analyzing intensity profiles of single bead with three dyes



Using single dye library to separate spectral information of two dyes emitting from same location



## Acknowledgments

MIT UROP Office and John Reed Fund New Innovator Grant MIT Physics Startup Fund

#### **Citations**

1. Zhang, Z., Kenny, S. J., Hauser, M., Li, W., & Xu, K. (2015). Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Supplement. *Nature Methods*, *12*(10), 935–938.