

Basic Electrical Technology

LECTURE 1 – 20 OCTOBER 2021

- INTRODUCTION TO THE COURSE
- CIRCUIT FLEMENTS

Course Outline

Basic Electrical Technology

DC Circuit Analysis

- Circuit elements
 - → Sources
 - → Resistor
 - → Inductor
 - → Capacitor
- Mesh current analysis
- Node voltage analysis
- Superposition Theorem
- Thevenin's Theorem
- Max. Power Transfer Theorem

Magnetic Circuits Analysis

- Magnetism
- Laws of magnetism
- Series and parallel magnetic circuits
- Electromagnetic induction
- Magnetic coupling
- Induced EMF
- Mesh analysis

Single Phase AC Circuit Analysis

- Generation
- Representation
- AC through R, L and C
- Series and parallel circuits
- Power & power factor
- Resonance

Three Phase AC Circuit Analysis

- Generation
- Representation
- Types of load connection
 - → Star
 - → Delta
- Analysis of balanced and unbalanced loads
- Measurement of Power

Power System Components

- Generation Transmission -Distribution
- Utilization of Electric power
- Electrical machines
 - → Overview
 - → Types
 - → Working principle
 - → Application
- Energy meters

[LTPC] = [2103]

Course Outcome

CO1	Analyze DC Circuit
CO2	Analyze Magnetic Circuit
CO3	Analyze Single Phase AC Circuit
CO4	Analyze Three Phase AC Circuit
CO5	Describe Electrical Power System Components

BET Online Class Structure

Chemistry Cycle

Group 1

(Class on Wednesday & Saturday)

Group 2

(Class on Tuesday & Friday)

Team 6

Team 7

Team 8

Team 9

Team 10

Group 1 Faculty Team:

Dr. Prateek Jain prateek.jain@manipal.edu

Dr. Saikrishna Goud goud.saikrishna@manipal.edu

Mr. Vipin Valsan vipin.valsan@manipal.edu

Mr. Vikas Kumar Jhunjhunwala vikas.kumar@manipal.edu

Student Query Resolution

- Know the background of the question
- If possible, mention your approach

Assessment

Quiz

- 10 %
- 5th calendar week
- 30 minutes

Continuous Assessment

- 20 %
- 2 marks each quiz
- Immediately after every class, 5th calendar week onwards
- 10 to 15 minutes

In-Semester

- 20 %
- 90 minutes
- 4 questions 10 marks each

End-Semester

- 50 %
- 180 minutes
- 5 questions 10 marks each

Note:

The course plan will be shared in due course.

Scientific Calculator

- Should be non programmable
- Should be non graphical
- Suggestions:
 - Casio fx-991ES plus (2nd edition)
 - Casio fx-991MS (2nd edition)
 - Casio fx-991ES plus
 - Casio fx-991MS
- Android/Apple OS based apps available
- Windows app (trial for 3 months) available from Casio

Casio fx-991ES plus (2nd edition)

Quiz Time (Ungraded)

Quiz 1 of 5

The domestic electrical installations are connected in _____

- A) 3-Phase Star
- B) 3-Phase Delta
- C) Parallel (Single-Phase)
- D) Series (Single-Phase)

Quiz 2 of 5

A network of resistors is connected to a 16 V battery with internal resistance of 1 Ω , as shown below. The voltage drop V_{CD} is ____

- a) 4 V
- b) 2 V
- c) 8 V
- d) 16 V

Quiz 3 of 5

In the circuit shown, the equivalent resistance of the network is _____

- A) $R/5 \Omega$
- B) $5R \Omega$
- C) $6R/5 \Omega$
- D) $2R \Omega$

Quiz 4 of 5

The equivalent resistance of the network shown is _____

- Α) 15 Ω
- B) $10/3 \Omega$
- C) $16/3 \Omega$
- D) $15/3 \Omega$

Quiz 5 of 5

Two electric bulbs have filaments of same thickness. When connected to the same source, one of them consumes 60 W and other one consumes 100 W. Then

- a) 60 W lamp filament has shorter length
- b) 100 W lamp filament has longer length
- c) 60 W lamp filament has longer length
- d) Both have equal length

Basic Electrical Technology

DC CIRCUIT ANALYSIS

What is an Electric Circuit?

Definition:

"An interconnection of simple electrical devices with at least one closed path in which current may flow"

- Consists of a source of electrical energy; elements that either transform, dissipate, or store this energy; connecting wires.
- To prevent power overload, circuits often include fuse or circuit breaker.

Circuit Elements

Active & Passive

• Active Elements: Voltage & Current Sources

• Passive Elements: Resistor, Inductor, Capacitor

Linear & Non-linear Elements

• Linear: Resistor, Inductor, Capacitor

• Nonlinear: Diode, LDR (Light Dependent Resistor), Thermistor, transistor

Unilateral & Bilateral Elements

• Unilateral (Current Flow in one direction): *Diode, Transistor*

• Bilateral: Resistor, Inductor, Capacitor*

Lumped & Distributed

• Lumped elements are simplified version of distributed elements

Our study is limited to **lumped linear bilateral** circuit elements

