Week 7: Gradient Boosting for Regression

Kevin Lee

Department of Statistics Western Michigan University

1/16

What is Gradient Boosting?

Gradient Boosting = Gradient Descent + Boosting

- Fit an additive model (ensemble) in a forward stage-wise manner.
- In each stage, introduce a weak leaner to compensate the shortcomings of existing weak learners.
- In Gradient Boosting, shortcomings are identified by gradients.
- Gradients tell us how to improve our model.

Kevin Lee (WMU) Week 7 2/16

Let's play a game!

- You are given $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, and the task to fit a model F(x) to minimize square loss.
- Suppose your friend wants to help you and give you a model F.
- You check his model and find the model is good but not perfect.
- There are some mistakes: $F(x_1) = 0.8$ while $y_1 = 0.9$ and $F(x_2) = 1.4$ while $y_2 = 1.3$...
- How can you improve this model?

Kevin Lee (WMU)

Rule of the game:

- You are not allowed to remove anything from F or change any parameter in F.
- You can add an additional model h (regression tree) to F, so the new prediction will be F(x) + h(x).

Kevin Lee (WMU) Week 7 4/16

Simple solution:

• You wish to improve the model such that

$$F(x_1) + h(x_1) = y_1$$

 $F(x_2) + h(x_2) = y_2$
 \vdots
 $F(x_n) + h(x_n) = y_n$

Simple solution:

• Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
 \vdots
 $h(x_n) = y_n - F(x_n)$

• Fit a regression tree h to data $(x_1, y_1 - F(x_1)), (x_2, y_2 - F(x_2)), \dots, (x_n, y_n - F(x_n))$ Congratulations, You get a better model!

- $y_i F(x_i)$ are called residuals. These are the parts that existing model F cannot do well.
- The role of h is to compensate the shortcoming of existing model F.
- If the new model F + h is still not satisfactory, we can add another regression tree!
- How is this related to gradient descent?

7 / 16

Kevin Lee (WMU) Week 7

Gradient Descent

- Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function.
- To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient of the function at the current point.
- If, instead, one takes steps proportional to the positive of the gradient, one approaches a local maximum of that function; the procedure is then known as gradient ascent.

$$\mathsf{a}_{n+1} = \mathsf{a}_n - \gamma \nabla F(\mathsf{a}_n)$$

8 / 16

Kevin Lee (WMU) Week 7

Gradient Descent

How is this related to gradient descent?

- Let's assume we have loss function, $L(y, F(x)) = (y F(x))^2/2$
- We want to minimize $J = \sum_{i=1}^{n} L(y_i, F(x_i))$ by adjusting $F(x_1), F(x_2), \dots, F(x_n)$.
- We can treat $F(x_i)$ as parameters and take derivatives.

$$\frac{\partial J}{\partial F(x_i)} = \frac{\partial \sum_{i=1}^n L(y_i, F(x_i))}{\partial F(x_i)} = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} = F(x_i) - y_i$$

• So we can interpret residuals as negative gradients!

$$y_i - F(x_i) = -\frac{\partial J}{\partial F(x_i)}$$

- 4日 > 4個 > 4 差 > 4差 > - 差 - かくの

10 / 16

How is this related to gradient descent?

- For regression with square loss,
 residual <=> negative gradient
 fit h to residual <=> fit h to negative gradient
 update F based on residual <=> update F based on negative gradient
- So we actually updating our model using gradient descent!
- The concept of gradients is more general and useful than the concept of residuals.

Kevin Lee (WMU) Week 7 11/16

Loss Functions for Regression Problem

- Why do we need to consider other loss functions? Isn't square loss good enough?
- Square loss is:
 - Easy to deal with mathematically
 - Not robust to outliers. Pay too much attentions to outliers. Try hard to incorporate outliers into the model and degrade the overall performance.

Kevin Lee (WMU) Week 7 12/16

Loss Functions for Regression Problem

Absolute loss (more robust to outliers)

$$L(y, F(x) = |y - F(x)|$$

Huber loss (more robust to outliers)

$$L(y, F(x)) = \begin{cases} \frac{1}{2}(y - F(x))^2 & |y - F(x)| \le \delta \\ \delta(|y - F(x)| - \frac{1}{2}\delta) & |y - F(x)| > \delta \end{cases}$$

Kevin Lee (WMU) Week 7 13/16

Loss Functions for Regression Problem

Уi	0.5	1.2	2	5*
$F(x_i)$	0.6	1.4	1.5	1.7
Square loss	0.005	0.02	0.125	5.445
Absolute loss	0.1	0.2	0.5	3.3
Huber loss($\delta = 0.5$)	0.005	0.02	0.125	1.525

Kevin Lee (WMU) Week 7 14/16

Summary

- Fit an additive model (ensemble) in a forward stage-wise manner.
- In each stage, introduce a new regression tree h to compensate the shortcomings of existing model.
- The shortcomings are identified by negative gradients.
- For any loss function, we can derive a gradient boosting algorithm.
- Absolute loss and Huber loss are more robust to outliers than square loss.

Kevin Lee (WMU) Week 7 15 / 16

Reference

 "A Gentle Introduction to Gradient Boosting" by Cheng Li, Northeastern University