Homework 2

Due Date: Monday, October 14, 2024

In this homework, you will explore Ordinary Least Squares (OLS) and Weighted Least Squares (WLS) regression methods. You are required to derive the estimators using two approaches: differentiation and maximum likelihood estimation (MLE). Show all your work and provide clear explanations for each step.

1 Problem 1: Ordinary Least Squares Regression

Consider a dataset with n observations $\{(x_i, y_i)\}_{i=1}^n$, where $x_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$. Assume the relationship between x and y is linear, modeled as:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where ϵ_i are independent and identically distributed (i.i.d.) error terms with mean zero and constant variance σ^2 .

(a) Derivation Using Differentiation

Derive the Ordinary Least Squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ by minimizing the sum of squared errors:

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

- 1. Set up the optimization problem.
- 2. Compute the partial derivatives of S with respect to β_0 and β_1 .
- 3. Set the partial derivatives to zero to find the normal equations.
- 4. Solve the normal equations to find $\hat{\beta}_0$ and $\hat{\beta}_1$.

(b) Derivation Using Maximum Likelihood Estimation

Assuming the error terms ϵ_i are normally distributed $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$:

- 1. Write down the likelihood function $L(\beta_0, \beta_1, \sigma^2)$ based on the normal distribution.
- 2. Derive the log-likelihood function $\ell(\beta_0, \beta_1, \sigma^2)$.
- 3. Compute the partial derivatives of ℓ with respect to β_0 and β_1 .
- 4. Set the partial derivatives to zero to find the MLEs of β_0 and β_1 .
- 5. Show that the MLEs are equivalent to the OLS estimators derived in part (a).

2 Problem 2: Weighted Least Squares Regression

Now, consider a scenario where the error terms have non-constant variances, i.e., heteroscedasticity. Specifically, assume $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$, where σ_i^2 may vary with i.

(a) Derivation Using Differentiation

Derive the Weighted Least Squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ by minimizing the weighted sum of squared errors:

$$S_w(\beta_0, \beta_1) = \sum_{i=1}^n w_i (y_i - \beta_0 - \beta_1 x_i)^2,$$

where $w_i = \frac{1}{\sigma_i^2}$.

- 1. Set up the weighted optimization problem.
- 2. Compute the partial derivatives of S_w with respect to β_0 and β_1 .
- 3. Set the partial derivatives to zero to find the weighted normal equations.
- 4. Solve the weighted normal equations to find $\hat{\beta}_0$ and $\hat{\beta}_1$.

(b) Derivation Using Maximum Likelihood Estimation

Assuming $\epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$:

- 1. Write down the likelihood function $L(\beta_0, \beta_1, \sigma_1^2, \dots, \sigma_n^2)$.
- 2. Derive the log-likelihood function $\ell(\beta_0, \beta_1)$ (you may treat σ_i^2 as known constants for this derivation).
- 3. Compute the partial derivatives of ℓ with respect to β_0 and β_1 .
- 4. Set the partial derivatives to zero to find the MLEs of β_0 and β_1 .
- 5. Show that these MLEs correspond to the WLS estimators derived in part (a).

Guidelines

- Provide detailed derivations and justifications for each step. Partial credit will be awarded based on the completeness and correctness of your work.
- Clearly state any assumptions you make during your derivations.
- Comparison and Discussion:
 - 1. Compare the estimators obtained using differentiation and MLE in both problems.
 - 2. Discuss under what conditions OLS and WLS are appropriate.
 - 3. Reflect on the implications of assuming normality of the error terms in the context of MLE.

Submission Guide

- File Format : HW2_2024-12345_firstname_LASTNAME.pdf
- Handwriting, Microsoft Word, or LaTeX formats are all acceptable for the report.
- A 10% deduction per day will be applied for late submissions.