Lifting di risoluzione e refutazione

- Nel proposizionale la regola di inferenza di risoluzione unita all'algoritmo di refutazione costituisce una procedura di inferenza completa
- Risoluzione e refutazione possono essere applicate anche a FOL:
 - La KB va tradotta in CNF (conjunctive normal form, cioè una congiunzione di clausole, ognuna delle quali è una disgiunzione di letterali)
 - Le variabili sono intese essere quantificate universalmente
 - Ogni KB FOL può essere tradotta in una KB CNF inferenzialmente equivalente. In particolare una formula CNF è insoddisfacibile solo quando l'originale FOL è insoddisfacibile, per questo è possibile applicare la procedura di refutazione

- La traduzione segue passi simili a quelli visti per il caso proposizionale (elimina biimplicazione, elimina implicazione, ecc.)
- La differenza è che bisogna gestire i quantificatori
- Vediamo un esempio. Supponiamo che la KB contenga la formula:

 $\forall x \ [\forall y \ Animale(y) \Rightarrow Ama(x, y)] \Rightarrow [\exists y \ Ama(y, x)]$ Tutti coloro che amano gli animali sono amati da qualcuno

FOL: $\forall x \ [\forall y \ Animale(y) \Rightarrow Ama(x, y)] \Rightarrow [\exists y \ Ama(y, x)]$

Tutti coloro che amano gli animali sono amati da qualcuno

1) Elimina l'implicazione:

```
\forall x \neg [\forall y \ Animale(y) \Rightarrow Ama(x, y)] \ v [\exists y \ Ama(y, x)] \ \forall x \neg [\forall y \neg Animale(y) \ v \ Ama(x, y)] \ v [\exists y \ Ama(y, x)]
```

- 2) Sposta la negazione all'interno ($\neg \forall \equiv \exists \neg$):
 - $\forall x \ [\exists y \ Animale(y) \land \neg Ama(x, y)] \ v \ [\exists y \ Ama(y, x)]$
- 3) Standardizzazione delle variabili in ($\exists y ...$) v ($\exists y ...$): $\forall x [\exists y Animale(y) \land \neg Ama(x, y)] v [<math>\exists z Ama(z, x)]$
- 4) Skolemizzazione (eliminazione degli esistenziali): ...

FOL: $\forall x \ [\forall y \ Animale(y) \Rightarrow Ama(x, y)] \Rightarrow [\exists y \ Ama(y, x)]$

Tutti coloro che amano gli animali sono amati da qualcuno

- 1) Elimina l'implicazione: ...
- 2) Sposta la negazione all'interno ($\neg \forall \equiv \exists \neg$): ...
- 3) Standardizzazione delle variabili in ($\exists y ...$) v ($\exists y ...$): ... $\forall x \ [\exists y \ Animale(y) \land \neg Ama(x, y)] \ v \ [\exists z \ Ama(z, x)]$
- 4) Skolemizzazione (eliminazione degli esistenziali): non possiamo applicare la regola El perché la formula non segue il pattern
 - **∃x F(x).** Otterremmo $\forall x$ [Animale(A) $\land \neg$ Ama(x, A)] v [Ama(B, x)] che si legge: tutti amano uno specifico animale A oppure sono amati da un qualche di specifico B. A e B sono costanti e hanno lo stesso valore per tutti gli x!!

4) Skolemizzazione

- Vogliamo poter dire che animale e persona dipendono da x
- Sostituiamo ogni variabile quantificata esistenzialmente con una funzione che ha per argomenti tutte le variabili quantificate universalmente nel cui scope ricade:

```
\forall x1, x2, ... [\exists y P(y, x1,...) ... \exists z Q(z, x1,...)] diventa 
<math>\forall x1, x2, ... [P(S1(x1, x2, ...), ...) ... Q(S2(x1, x2, ...), ...)]
```

- S1, S2 sono dette funzioni di Skolem
- Nel caso particolare in cui l'esistenziale non ricade nello scope di alcun universale tali funzioni diventano costanti di Skolem (EI)
- Nell'esempio otterremo quindi
 ∀x [Animale(F(x)) ∧ ¬ Ama(x, F(x))] v [Ama(G(x), x)]

5) Cancella i quantificatori universali

 $\forall x$ [Animale(F(x)) $\land \neg$ Ama(x, F(x))] v [Ama(G(x), x)]

6) Distribuisci v su A

[Animale(F(x)) \lor Ama(G(x), x)] \land [\neg Ama(x, F(x))] \lor [Ama(G(x), x)]

Il risultato non è più leggibile ma non è inteso essere usato da un essere umano. La traduzione è automatizzabile e le clausole servono al processo di inferenza

Binary resolution in FOL

- Per tutti i valori di i la sostituzione unifica l_i e ¬ m_i
- Esempio: consideriamo Re(John) e ¬Re(x). Sono opposte e la sostituzione θ
 = {x/John} rende la prima equivalente al negato della seconda: Re(John)/θ
 = ¬¬Re(x) /θ
- Le due clausole da risolvere non condividono variabili
- Occorre fare il lifting della fattorizzazione: due letterali sono ridotti ad uno non se sono uguali ma se sono <u>unificabili</u>. L'unificatore va applicato alle clausole intere
- <u>Binary resolution + fattorizzazione</u> costituisce una regola di inferenza completa

Dimostrazione per refutazione

- Grazie al lifting della resolution diventa possibile applicare l'inferenza per refutazione a FOL
- Vediamo un esempio:
 - A) Tutti coloro che amano gli animali sono amati da qualcuno
 - B) Tutti coloro che uccidono animali non sono amati da nessuno
 - C) Jack ama tutti gli animali
 - D)O Jack o Curiosity hanno ucciso il gatto, il cui nome è Tuna
 - E) Curiosity ha ucciso il gatto?

Esempio

- A) $\forall x [\forall y \ Animale(y) \Rightarrow Ama(x, y)] \Rightarrow [\exists y \ Ama(y, x)]$
- B) $\forall x [\exists z \ Animale(z) \ \land Uccide(x, z)] \Rightarrow [\forall y \neg Ama(y, x)]$
- C) $\forall x \text{ Animale}(x) \Rightarrow \text{Ama}(Jack, x)$
- D) Uccide(Jack, Tuna) v Uccide(Curiosity, Tuna)
- E) Gatto(Tuna)
- F) $\forall x \; Gatto(x) \Rightarrow Animale(x)$

Alle precedenti aggiungiamo il goal negato:

G) ¬ Uccide(Curiosity, Tuna)

Esempio: da FOL a CNF

- A1) Animale(F(x)) v Ama(G(x), x)
- A2) \neg Ama(x, F(x)) v Ama(G(x), x)
- B) \neg Ama(y, x) $\lor \neg$ Animale(z) $\lor \neg$ Uccide(x, z)
- C) \neg Animale(x) vAma(Jack, x)
- D) Uccide(Jack, Tuna) v Uccide(Curiosity, Tuna)
- E) Gatto(Tuna)
- F) \neg Gatto(x) v Animale(x)
- G) ¬ Uccide(Curiosity, Tuna)