Математический анализ, листок 2

При сдаче этих задач можно без объяснений пользоваться значениями пределов $\lim_{x\to 0}\frac{\sin x}{x}, \lim_{x\to 0}\frac{\exp(x)-1}{x}$ и $\lim_{x\to 0}\frac{\ln(1+x)}{x}$.

1. Найдите предел

$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \operatorname{tg} x.$$

- **2.** При каких $z \in \mathbb{C}$ сходится и при каких абсолютно сходится ряд: а) $\sum_{n=1}^{\infty} nz^n$; б) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$?
- **3.** Пусть $A \subset \overline{\mathbb{R}}, f \colon A \to \mathbb{C}$ функция, $a \in \overline{\mathbb{R}}$. Докажите эквивалентность следующих двух утверждений:
 - 1) $\lim_{x\to a} f(x) = M$.
- 2) Для всякой последовательности $\{x_n\}$, где $\lim_{n\to\infty} x_n=a$ и $x_n\in A\setminus\{a\}$, имеем $\lim_{n\to\infty} x_n=M$.
- **4.** Пусть $(a;b) \subset \mathbb{R}$ открытый интервал и $f:(a;b) \to \mathbb{R}$ монотонно возрастающая непрерывная функция.
- а) Докажите, что в каждой точке $c \in (a;b)$ существуют односторонние пределы $\lim_{x\to c-0} f(x)$ и $\lim_{x\to c+0} f(x)$.
- б) Докажите, что множество точек, в которых функция f не является непрерывной, не более чем счетно.
- **5.** Пусть $f: \mathbb{R} \to \mathbb{R}$ непрерываная функция, и пусть для всякого $x \in \mathbb{R}$ выполнено равенство $\lim_{n \to \infty} f(x+n) = 0$ (имеется в виду предел последовательности). Следует ли из этого, что $\lim_{x \to +\infty} f(x) = 0$?
- 6. Найдите предел

$$\lim_{n\to\infty}\cos\frac{x}{2}\cos\frac{x}{4}\dots\cos\frac{x}{2^n}.$$

- 7. Докажите, что $\lim_{x\to +\infty} \left(1+\frac{a}{x}\right)^x = \exp(a)$.
- 8. Найдите предел $\lim_{n\to\infty}\cos^n(x/\sqrt{n})$.
- **9.** Пусть $x_n n$ -й по порядку возрастания положительный корень уравнения $\operatorname{ctg} x = x$.
 - а) Найдите $\lim_{n\to\infty} \frac{x_n}{n}$.
 - б) Найдите $\lim_{n\to\infty} n(x_n \pi n)$.