PostGIS: A Standards Based Geographic Extension for PostgreSQL

Frank Warmerdam President, OSGeo

Overview

- Brief background
- PostGIS Details
- PostGIS Examples
- Survey of Simple Features 1.1 Geometries
- Simple Features 1.2 Geometry
- A survey of simple features based software
- Commentary

What is a Spatial Database?

- Support for a "Geometry" Type
- Indexing for the Geometry Type
- Functions for the Geometry Type
- Database that can answer GIS questions: quickly on large volumes of data

Why a Spatial Database? (instead of just using files)

- Transactional Integrity
 Multiple Users, Multiple Edits
- Unified Storage, Management, Access SQL Everywhere

 Because Databases are Better than Files NOT!

Unified

Storage

PostGIS

- Geographic Extension for PostgreSQL
- Based on OGC Simple Features for SQL
- By Refractions Research (Victoria, BC)
- First release in 2001
- GPL licensed (likely why not in main src tree)
- R- Tree- over- GiST used for spatial index
- Introduces:
 new geometry types
 many new functions
 new support tables

http://www.postgis.org

Some Geometry Functions

- Area(POLYGON)
- Distance(GEOMETRY, GEOMETRY)
- Contains(GEOMETRY, GEOMETRY)
- Intersection(GEOMETRY, GEOMETRY)
- Intersects(GEOMETRY, GEOMETRY)
- Union(GEOMETRY, GEOMETRY)
- Buffer(GEOMETRY, double)
- Convex Hull(GEOMETRY)
- Perimeter(GEOMETRY)
- Crosses(GEOMETRY, GEOMETRY)
- Transform (GEOMETRY, integer SRID)

Some Accessor Functions

- Dimension(GEOMETRY)
- AsText(GEOMETRY)
- ST_X(POINT)
- ST_Y(POINT)
- NumPoints(GEOMETRY)
- PointN(GEOMETRY,integer)
- Num Geometries (GEOMETRY)
- GeometryN(GEOMETRY,integer)
- GeometryType(GEOMETRY)

GIS Questions

"How many people live within 5 miles of the toxic gas leak?"

GIS Questions

"What is the area of municipal parks inside the Westside neighbourhood?"

```
SELECT sum(area(park_geom))
FROM parks, nhoods
WHERE
contains(nd_geom,park_geom)
AND nhood_name = 'Westside'
```

GIS Questions

"What is the maximum distance a student has to travel to school?"

Create a Table Simply

CREATE TABLE ROADS
(ID int4,
NAME varchar(255),
GEOM geometry)

Create a Table Properly

CREATE TABLE ROADS
(ID int4,
NAME varchar(255))

SELECT AddGeometryColumn ('roads','geom',423,'LINESTRING',2)

'roads': Table name

'geom': Geometry column name

423: SRID (coordinate system)

'LINESTRING': geometry type constraint

2: Dimension

Insert Data

```
INSERT INTO roads
(road_id, road_geom, road_name)
VALUES
(1,
GeomFromText(
'LINESTRING(19123 24311,19110 23242)',
242),
'Jeff Rd.')
```

Spatial Index

CREATE INDEX roads_geom_index ON roads USING GIST(geom)

geometry_columns

part of OGC specification important to spatial applications from AddGeometryColumn()

spatial_ref_sys

Defines Coordinate System
Part of OGC specification
Important to spatial applications
List is prepopulated

PostGIS Application Support

Web Mapping:

Map Server, Map Guide, Geo Server

Desktop GIS:

• Udig, QGIS, JJMP, GRASS

Proprietary GIS:

Cadcorp SIS, ArcGIS 9.3(?)

ETL:

FME, GDAL/ OGR

PostGIS Installation

- Included in standard PostgreSQL Win Installer (buried back in the extra packages)
- PostgreSQL+ PostGIS MacOS X binaries available
- Elsewhere installing from source pretty easy Optionally depends on GEOS and PROJ.4 Two SQL scripts need to be run to setup postgis types, and setup support tables

OGC and Simple Features

OGC is the "Open Geospatial Consortium"

- Collaborative development of specifications for geospatial services
- Industry driven
- About Open Standards, not Open Source

Simple Features

- Abstract geometry model
- Base of "Simple Features for SQL"
- First concrete OGC spec (mid 90's)

Simple Features Geometries (1.0)

Point

2D (x,y) point location

WKT (Well Known Text) Representation:

POINT(-117.25 35.0)

Line String

- Chain of point location
- No restrictions on self-intersection
- Duplicate points ok

LINESTRING(0 10, 20 15, 30 15)

Line String

Figure 2.2—(1) a simple LineString, (2) a non-simple LineString, (3) a simple, closed LineString (a LinearRing), (4) a non-simple closed LineString

Polygon

- Polygon with one outer ring, and zero or more inner rings (holes)
- Polygons are closed (last point of ring equals first point)
- Rings may not cross
- Rings may touch
- Polygon interior is a connected point set
- Winding direction of rings not significant

Polygon

Figure 2.4—Examples of Polygons with 1, 2 and 3 rings respectively.

Polygon

Figure 2.5—Examples of objects not representable as a single instance of Polygon. (1) and (4) can be

Multi-Polygon

- A collection of polygons
- May be nested (and island in a lake)
- May not be overlapping
- May touch at a point
- May not touch along an edge

```
MULTIPOLYGON(((0 0,10 10,10 0,0 0),
(3 1,4 1,4 2, 3 1)),
((20 20, 30 30, 30 20, 20 20)))
```

Multi-Polygon

Figure 2.6—Examples of MultiPolygons

Multi-Polygon

Figure 2.7—Geometric objects not representable as a single instance of a MultiPolygon.

Multi Line String

A collection of linestrings

MULTILINESTRING((0 0,10 10,10 0), (3 1,4 1,4 2,5 1))

Multi Point

A collection of points

 $MULTIPOINT((0\ 0),(10\ 10),(10\ 0))$

Geometry Collection

A collection of geometries

```
GEOMETRYCOLLECTION(
POINT(0 5),
LINESTRING(3 5, 2 9, 1 3),
POLYGON((0 0, 10 10, 10 0, 0 0)))
```

Simple Features Geometries (1.0)

Simple Features 1.2

- Extends vertices to 3D/4D (Z/Measure)
- Geometric operations done in 2D
- Adds Polyhedral Surface
- Adds TIN
- Alters defacto 3D/4D WKT/ WKB formats
- Adds Annotation Text to feature model

Polyhedral Surface

- A surface consisting of adjacent polygons
- Stored as collection of polygons
- TIN is special case, all triangles

POLYHEDRALSURFACE(((0 10,0 0,10 0,10 10,0 10)), ((0 10,5 15, 10 10,0 10)))

Open Source Geospatial Foundation

SQL-MM

- ISO SQL Geometry Specification
- SF 1.2 aligned with SQL- MM
- PostGIS supports these SQL- MM types: CircularString (arcs of a circle) CompoundCurve (arcs+linestrings) CompoundSurface (curved polygons) MultiCurve MultiSurface
- SQL- MM also addresses topology, networks, directions, angles, ...

SQL-MM: CircularString

- A string of partial circle arcs connected end to end (a LineString of arcs)
- Each arc defined by three points arc start a point on the arc arc end
- Whole circles have same first/last and the middle point is opposite side of circle

CIRCULARSTRING(0 0, 1 1, 1 0)

SQL-MM: CircularString

Software Survey

OGC Simple Features 1.0 for SQL

- Postgres/ PostGIS: Full implementation including all geometry functions
- MySQL: Supports geometry, and spatial indexing, very limited additional functions
- Oracle: Apparently compliant, many extensions
- MSSQL: Supports geometry, spatial indexing, very limited additional functions
- SpatialLite: Partial SFSQL.
- Ingres: Being implemented! 1.2?

Software Survey

Simple Features based/inspired:

- OGR: Geometry is Simple Features 1.0
- FDO: Geometry is extension of SF
- QGIS: Geometry is Simple Features 1.0
- SDE: Close to SF + extensions
- GEOS: SF 1.0 geometry model

Not Simple Features:

- Map Server, Open EV, GRASS
- MapInfo, Microstation

Format Survey

- GML: Geometry is SF (+ extensions in 3?)
- Shapefile: Not simple features
- Mapinfo: Not simple features

Most major GIS products do not exactly map to Simple Features, though they may be similar.

SF: What is missing?

- Nonlinear curves (ellipse/spline/etc)
- 3D solids
- Topology
- Non-planar surfaces
- Representation

Universal Geometry Model for GIS?

No, because:

- lack of real curves, hampers CAD links
- lack of topology

Yes, because:

- Understandable
- Lingua franca for interchange/ discussion
- Wide adoption

Takeaway Lessons

- PostgreSQL+ PostGIS is the leading spatial database combination
- PostGIS is standards based
- OGC Simple Features is useful, widely adopted way of expressing geometry

Opportunities

- Dracones talk here at 1:30!
- OSBootCamp 6 (Geobootcamp)
 June2nd, Ottawa (Carleton)
 Free!
 www.osbootcamp.org
- OSGeo Ottawa
 Monthly meetings at a pub
 wiki.osgeo.org/ wiki/ Ottawa_Chapter

Questions?

PostGIS: www.postgis.org

OGC (standards): opengeospatial.org

