Simple Linear Regression

Metric Predicted Variable With One Metric Predictor Variable

Tim Frasier

Goals & General Idea

Goals When would we use this type of analysis?

- Simple linear regression
 - Relationship between two variables (how does one change in relation to the other?)
 - Predict values of one parameter based on values of the other

- Trying to quantify the relationship between two different sets of data
 - One (we'll call y) is the response (or predicted) variable
 - The other (we'll call x) is the predictor variable
- Examples:
 - Height versus weight
 - GPA versus SAT scores
 - etc.

Equation

$$y = \beta_0 + \beta_1 x$$

- β_0 the y-intercept (the value of y when x = 0)
- β_1 the slope of the line, indicating how much \mathbf{y} increases when \mathbf{x} increases by 1 unit

Equation

$$y = \beta_0 + \beta_1 x$$

- β_0 the y-intercept (the value of y when x = 0)
- β_1 the slope of the line, indicating how much y increases when x increases by 1 unit
- Assumes homogeneity of variance (at every value of x, the variance of y is the same)
- Describes tendencies, not causation (that would require other data)

tylervigen.com

Letters in Winning Word of Scripps National Spelling Bee

correlates with

Number of people killed by venomous spiders

◆ Number of people killed by venomous spidersSpelling Bee winning word

tylervigen.com

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

tylervigen.com

$$y = \beta_0 + \beta_1 x$$

- Our data will be the x and y values
- Our goal is to estimate the β_0 and β_1 parameters

$$y = \beta_0 + \beta_1 x$$

- \bullet Our data will be the x and y values
- Our goal is to estimate the β_0 and β_1 parameters

We do not expect a perfect match for all points. Instead,
 we're really trying to predict the mean y value for a given x

value, and the noise around that mean

$$y = \beta_0 + \beta_1 x$$

- Our data will be the x and y values
- Our goal is to estimate the β_0 and β_1 parameters
- We do not expect a perfect match for all points. Instead, we're really trying to predict the mean y value for a given x value, and the noise around that mean
- We'll assume a normal distribution of variation around these predicted values for now.

Mathematically, this is

y ~ normal(mu, sigma)

mean

where

$$\mathbf{m}\mathbf{u} = \beta_0 + \beta_1 x$$

• Our goal is to determine what combinations of β_0 , β_1 and sigma are most credible given the data

Mathematically, this is

y ~ normal(mu, sigma)

mean

Stochastic

where

$$\mathbf{m}\mathbf{u} = \beta_0 + \beta_1 x$$

• Ou what combinations of β_0 , β_1 and sigma are mo Deterministic ata

- Height and weight data from Kruschke (2011)
- "HtWt.csv"

• Read data into R

htwt = read.table("HtWt.csv", header = TRUE, sep = ",")

htwt ×		
	height	weight
1	62.9	133.3
2	62.2	128.7
3	62.1	148.0
4	61.6	102.7
5	69.0	202.4
6	67.9	204.0
7	65.6	142.1
8	69.7	150.7
9	67.2	137.2
10	67.2	127.9
11	67.0	161.9
12	71.7	185.0
13	71.0	171.9

• Let's get a feel for the data

```
height weight
Min. :58.50 Min. : 86.1
1st Qu.:64.08 1st Qu.:129.6
Median :66.35 Median :150.3
Mean :66.65 Mean :159.2
3rd Qu.:69.05 3rd Qu.:184.8
Max. :78.10 Max. :272.5
```

```
sd(htwt$height)
[1] 3.8668
```

```
sd(htwt$weight)
[1] 39.65889
```

```
ggplot(htwt, aes(x = height, y = weight)) +
  theme_bw() +
  geom_point(alpha = 0.5) +
  ylab("weight (in pounds)") +
  xlab("height (in inches)")
```


Frequentist Approach

```
model = lm(htwt$weight ~ htwt$height)
summary(model)
Call:
lm(formula = htwt$weight ~ htwt$height)
Residuals:
    Min 1Q Median 3Q Max
-48.910 -22.624 -7.591 15.405 117.731
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -231.8232 56.7373 -4.086 8.99e-05 ***
htwt$height 5.8663 0.8499 6.903 5.10e-10 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.7 on 98 degrees of freedom
Multiple R-squared: 0.3271, Adjusted R-squared: 0.3203
F-statistic: 47.65 on 1 and 98 DF, p-value: 5.102e-10
```

```
model = lm(htwt$weigh
                        Estimate for \beta_0. A person will weigh -232 pounds when at a
summary(model)
                       height of 0 inches. Note that this value will often be biologically
                                            meaningless.
Call:
lm(formula = htwt$wei
Residuals:
    Min 10 Median
                                     Max
-48.910 -22.624 -7.591
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -231.8232 56.7373 -4.086 8.99e-05 ***
htwt$height 5.8663 0.8499 6.903 5.10e-10 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.7 on 98 degrees of freedom
Multiple R-squared: 0.3271, Adjusted R-squared: 0.3203
F-statistic: 47.65 on 1 and 98 DF, p-value: 5.102e-10
```

```
model = lm(htwt$weight ~ htwt$height)
summary(model)
Call:
lm(formula = htwt
                     Estimate for \beta_1. For each 1 inch increase in height, weight
                                   increases by ~6 pounds.
Residuals:
    Min
             10
-48.910 -22.624 -7.591 15.405 127.731
Coefficients:
             Estimate Sta. Error t value Pr(>|t|)
(Intercept) -231.8232 56.7373 -4.086 8.99e-05 ***
htwt$height 5.8663
                           0.8499 6.903 5.10e-10 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.7 on 98 degrees of freedom
Multiple R-squared: 0.3271, Adjusted R-squared: 0.3203
F-statistic: 47.65 on 1 and 98 DF, p-value: 5.102e-10
```

```
model = lm(htwt$weight ~ htwt$height)
summary(model)
Call
lm(f
             Slope is not zero (super duperly not zero!)
Resi
-48.910 -22.624 -7.591 15.405 117.731
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -231.8232 56.7373 -4.086 8 99e-05 ***
htwt$height 5.8663 0.8499 6.903 5.10e-10 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.7 on 98 degrees of freedom
Multiple R-squared: 0.3271, Adjusted R-squared: 0.3203
F-statistic: 47.65 on 1 and 98 DF, p-value: 5.102e-10
```

Can plot regression line based on this model

```
ggplot(htwt, aes(x = height, y = weight)) +
  theme_bw() +
  geom_point(alpha = 0.5) +
  geom_smooth(method = lm, colour = "dodgerblue4", alpha = 0.5) +
  ylab("weight (in pounds)") +
  xlab("height (in inches)")
```


Bayesian Approach

- Markov Chain will perform much better if we standardize the data first
 - We're just re-scaling it, not changing it!!!
- Also makes for clearer choice of priors
 - Just need to convert it back to original scale prior to interpreting results!

$$Z_{xi} = \frac{(x_i - \overline{x})}{\sigma_x}$$

Mean will be 0, and sd will be ~1

- Markov Chain will perform much better if we standardize the data first
 - We're just re-scaling it, not changing it!!!
- Also makes for clearer choice of priors
 - Just need to convert it back to original scale prior to interpreting results!

each original x value
$$\blacktriangleleft$$
 $Z_{xi} = \frac{(x_i - \overline{x})}{\sigma_x}$ sd of x

Mean will be 0, and sd will be ~1

Should always standardize metric data before analyses

```
y = htwt$weight
yM = mean(y)
ySD = sd(y)
zy = (y - yM) / ySD
```

```
x = htwt$height
xM = mean(x)
xSD = sd(x)
zx = (x - xM) / xSD
```

```
N = length(zy)
```

Convince yourself this hasn't changed the structure of the data

```
data = data.frame(zy, zx)
ggplot(data, aes(x = zx, y = zy)) +
   theme_bw() +
   geom_point(alpha = 0.5) +
   ylab("weight") +
   xlab("height")
```


Analyses With Stan (or any MCMC process)

- 1. Prepare data for Stan
- 2. Build/define model
- 3. Run model
- 4. Assess MCMC process
- 5. Tentatively evaluate results
- 6. Conduct posterior predictive checks
- 7. Accept results or go back to step 2 to refine model

1. Prepare data for Stan

1. Prepare Data for Stan

Remember

zy ~ normal(mu, sigma)

where

$$\mathbf{m}\mathbf{u} = \beta_0 + \beta_1 z x$$

1. Prepare Data for Stan

Remember

1. Prepare Data for Stan

Remember

_____ zy ~ normal(mu, sigma)

Data - the standardized weight data

where

$$\mathbf{m}\mathbf{u} = \beta_0 + \beta_1 \mathbf{z}\mathbf{x}$$

Parameter - the "intercept": ← mean weight when height = 0

Data - the standardized height data

Parameter - the sd around

our predicted values

Parameter - the "slope": the mean increase in weight when height increases by 1 unit

1. Prepare Data for Stan

```
dataList = list (
   y = zy,
   x = zx,
   N = N
)
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

• The **data** block

```
data {
   int N;
   vector[N] y;
   vector[N] x;
}
```

zy ~ normal(mu, sigma)

• The **data** block

These are no longer single values, but rather vectors of data (have to define their length, or any dimensions)

```
data {
   int N;
   vector[N] y;
   vector[N] x;
}
```

zy ~ normal(mu, sigma)

Need to define N first, if it is used in other definitions!!!

• The **data** block

```
data {
    int N;
    vector[N] y;
    vector[N] x;
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

• The **parameters** block

```
parameters {
    real b0;
    real b1;
    real<lower=0> sigma;
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

• The **parameters** block

Standard deviations cannot be negative. Has cool implications for later!

```
parameters {
    real b0;
    real b1;
    real<lower=0> sigma;
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ ????
    b1 ~ ????
    sigma ~ ????
}
```

$$zy \sim \text{normal(mu, sigma)}$$

 $mu = \beta_0 + \beta_1 zx$

The model block

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ ????
    b1 ~ ????
    sigma ~ ????
}
```

We are *calculating* **mu**, but before we do, we have to define it for Stan.

Note that it is **not** a **parameter** that we are estimating, so it does not belong in the parameters block.

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ ????
    b1 ~ ????
    sigma ~ ????
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ normal(0, 1);
    b1 ~ ????
    sigma ~ ????
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ normal(0, 1);
    b1 ~ ????
    sigma ~ ????
}
```



```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ normal(0, 1);
    b1 ~ cauchy(0, 1);
    sigma ~ ????
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ normal(0, 1);
    b1 ~ cauchy(0, 1);
    sigma ~ ????
}
```

```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

```
model {
    // Definitions
    vector[N] mu;

    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);

    // Priors
    b0 ~ normal(0, 1);
    b1 ~ cauchy(0, 1);
    sigma ~ cauchy(1, 1);
}
```



```
zy \sim \text{normal(mu, sigma)}

mu = \beta_0 + \beta_1 zx
```

The generated quantities block

```
generated quantities {
   vector[N] y_signal;
   vector[N] y_pred;

   for (n in 1:N) {
       y_signal[n] = b0 + (b1 * x[n]);
       y_pred[n] = normal_rng(b0 + (b1 * x[n]), sigma);
}
```

resulting signal

For each step in the chain, and for each x value, generate a y value based on deterministic part of model. Useful for plotting/evaluating uncertainty around deterministic component.

The generated quantities bloom

```
generated quantities {
  vector[N] y_signal;
  vector[N] y_pred;

for (n in 1:N) {
      y_signal[n] = b0 + (b1 * x[n]);
      y_pred[n] = normal_rng(b0 + (b1 * x[n]), sigma);
}
```

The state of the chain, and for each x value, generate a y value based on full model (deterministic + stochastic). Useful for plotting/evaluating how well model captures the data.

The generated quantities block

```
generated quantities {
  vector[N] y_signal;
  vector[N] y_pred;

for (n in 1:N) {
    y_signal[n] = b0 + (b1 * x(n]);
    y_pred[n] = normal_rng(b0 + (b1 * x[n]), sigma);
}
```

```
modelString = "
  data {
    int N;
    vector[N] y;
    vector[N] x;
  parameters {
    real b0;
    real b1;
    real<lower=0> sigma;
  model {
    // Definitions
    vector[N] mu;
    // Likelihood
    mu = b0 + (b1 * x);
    y ~ normal(mu, sigma);
    // Priors
    b0 \sim normal(0, 1);
    b1 ~ cauchy(0, 1);
    sigma ~ cauchy(1, 1);
  generated quantities {
    vector[N] y_signal;
    vector[N] y pred;
    for (n in 1:N) {
        y signal[n] = b0 + (b1 * x[n]);
        y_pred[n] = normal_rng(b0 + (b1 * x[n]), sigma);
writeLines(modelString, con="model.stan")
```

3. Run the Model

3. Run The Model

4. Assess Performance of MCMC Process

4. Assess MCMC Process

Check Rhat and effective sample size stats

```
print(stanFit)
Inference for Stan model: model.
3 chains, each with iter=7000; warmup=2000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=15000.
                                                             97.5% n eff Rhat
                              sd
                                  2.5%
                                           25%
                                                  50%
                                                        75%
               mean se mean
b0
                       0.00 0.08
                                  -0.16 -0.06
                                                             0.17 17259
               0.00
                                                0.00
                                                       0.06
b1
               0.57
                     0.00 0.08
                                 0.40 0.51 0.57 0.62
                                                            0.73 16430
                                                                            1
sigma
              0.84 0.00 0.06
                                 0.73 0.79 0.83 0.87 0.97 14591
y signal[1]
           -0.55 0.00 0.12
                                                             -0.32 17148
                                 -0.78 \quad -0.63 \quad -0.55 \quad -0.47
              -0.65 0.00 0.13
y signal[2]
                                 -0.90 \quad -0.74 \quad -0.65 \quad -0.57
                                                             -0.40 17091
              -0.67 0.00 0.13 -0.92 -0.75 -0.67 -0.58 -0.41 17083
y signal[3]
                                                                            1
```

4. Assess MCMC Process

Check trace plots

```
stan_trace(stanFit, pars = c("b0", "b1", "sigma"), inc_warmup = TRUE)
```


5. Tentatively Interpret Results

5. Tentatively Interpret Results View stats

```
print(stanFit)
Inference for Stan model: model.
3 chains, each with iter=7000; warmup=2000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=15000.
                                  2.5%
                                          25%
                                                 50%
                                                            97.5% n eff Rhat
               mean se mean
                              sd
                                                        75%
                                 -0.16 -0.06
                                                       0.06
                                                            0.17 17259
b0
               0.00
                       0.00 0.08
                                                0.00
                                                                           1
b1
               0.57
                       0.00 0.08
                                 0.40 0.51
                                                0.57
                                                            0.73 16430
                                                       0.62
                                                                           1
sigma
               0.84
                      0.00 0.06
                                 0.73 0.79
                                              0.83 0.87 0.97 14591
                                                                           1
y_signal[1]
                                 -0.78 -0.63
                                                            -0.32 17148
                                                                           1
              -0.55
                     0.00 0.12
                                               -0.55 -0.47
                                                                           1
y signal[2]
                     0.00 0.13
                                 -0.90 -0.74
                                                            -0.40 17091
              -0.65
                                               -0.65 -0.57
y signal[3]
                                 -0.92 -0.75
                                                                           1...
              -0.67
                     0.00 0.13
                                              -0.67
                                                      -0.58
                                                            -0.41 17083
```

5. Tentatively Interpret Results Plot with rstan functions

stan_plot(stanFit, par = c("b0", "b1", "sigma"))

5. Tentatively Interpret Results Plot with rstan functions

```
plot(stanFit, par = c("b0", "b1", "sigma"), show_density = TRUE,
    ci_level = 0.95, fill_color = "skyblue")
```


• Extract the data as a data frame and take a look at it's structure

```
mcmcChains = as.data.frame(stanFit)
head(mcmcChains)

b0 b1 sigma y_signal[1] y_signal[2] y_signal[3] y_signal[4] ...
1 -0.01503022 0.6156512 0.8442957 -0.6119446 -0.7233983 -0.7393203 -0.8189301 ...
2 0.09802777 0.3644079 0.9305011 -0.2552896 -0.3212598 -0.3306841 -0.3778056 ...
3 -0.05129244 0.4105070 0.8049662 -0.4493059 -0.5236216 -0.5342381 -0.5873208 ...
4 0.01711922 0.6390345 0.9414948 -0.6024668 -0.7181537 -0.7346804 -0.8173139 ...
```

Separate out the desired parameters

```
zb0 = mcmcChains$b0
zb1 = mcmcChains$b1
zsigma = mcmcChains$sigma

ysignal = mcmcChains[, 4:103]

ypred = mcmcChains[, 104:203]
```

Convert back to original scale*

```
sigma = zsigma * ySD
b1 = zb1 * ySD / xSD
b0 = ((zb0 * ySD) + yM - (zb1 * ySD * xM / xSD))
```

^{*} See Kruschke (2015) pp. 485-487 for explanation

Plot the posteriors

```
source("plotPost.R")
par(mfrow = c(1, 3))
histInfo = plotPost(b0, xlab = bquote(beta[0]))
histInfo = plotPost(b1, xlab = bquote(beta[1]))
histInfo = plotPost(sigma, xlab = bquote(sigma))
```


Plot the posteriors

Plot the posteriors


```
histInfo = plotPost(b0, xlab = bquote(beta[0]), credMass = 0.89, col =
   "gray", showMode = TRUE)
histInfo = plotPost(b1, xlab = bquote(beta[1]), credMass = 0.89, col =
   "gray", showMode = TRUE)
histInfo = plotPost(sigma, xlab = bquote(sigma), credMass = 0.89, col =
   "gray", showMode = TRUE)
```


45

Colours in R

- Can use colours by name
- Can also use RGB scale

```
rgb(red, green, blue, alpha)

Each on a scale of 0 to 1
```

Real RGB scale is 0 to 255, so have to scale appropriately

Colours in R

RGB color picker

RGB color codes chart

Green:

Blue:

128

255

Hover with cursor on color to get the hex and decimal color codes below:

Colours in R

```
par(mfrow = c(1, 1))
histInfo = plotPost(b1, xlab = bquote(beta[1]), col = rgb(1, 0.2, 0.2,
0.5))
```


6. Conduct Posterior Predictive Checks:

Evaluating the signal and the noise

the signal and and and the noise why so many predictions failbut some don't nate silver

• Our generated quantity, y_signal, has a predicted value for y (weight) for each x value (height) for every step of the chain (using the b0 and b1 values for each step)

	\rightarrow y_signal[x] where x = 1-100 \rightarrow						
†	y_sim[1] [‡]	y_sim[2]	y_sim[3]	y_sim[4] [‡]	y_sim[5] [‡]	y_sim[6] [‡]	y_sim[7] [‡]
y for	-0.3576661	-0.4473600	-0.4601734	-0.5242405	0.42395217	0.283004607	-0.011703928
	-0.5849479	-0.6854168	-0.6997695	-0.7715329	0.29056643	0.132686796	-0.197425168
	-0.4048725	-0.5245287	-0.5416225	-0.6270912	0.63784633	0.449815075	0.056658809
	-0.7121148	-0.7971175	-0.8092607	-0.8699769	0.02862265	-0.104952964	-0.384247421
	-0.7554739	-0.8548864	-0.8690882	-0.9400972	0.11083519	-0.045384480	-0.372025618
	-0.6715561	-0.7691671	-0.7831116	-0.8528337	0.17905425	0.025665497	-0.295056441
	-0.5293173	-0.6208777	-0.6339578	-0.6993581	0.26856631	0.124685658	-0.176155710
	-0.6874285	-0.8076957	-0.8248768	-0.9107820	0.36061480	0.171623392	-0.223540470
	-0.4986728	-0.6084201	-0.6240983	-0.7024892	0.45769665	0.285236593	-0.075361715
	-0.6309496	-0.7307121	-0.7449639	-0.8162228	0.23840953	0.081639855	-0.246151276
	-0.6100997	-0.7439155	-0.7630321	-0.8586148	0.55600981	0.345727774	-0.093952858
	-0.5936546	-0.7190449	-0.7369578	-0.8265223	0.49903220	0.301990317	-0.110006342
↓	-0.4414907	-0.5452086	-0.5600254	-0.6341096	0.46233657	0.299351323	-0.041436007

 Can plot these, and their 95% HDI (or whatever) against the data to see how it fits

ysignal is on the standardized scale!!!

```
signalMeans = apply(ysignal, 2, mean)
```

Calculate desired summary statistics

```
signalMeans = apply(ysignal, 2, mean)
```

An R function that will **apply** a function across all rows or columns of a data frame or matrix.

Calculate desired summary statistics

```
signalMeans = apply(ysignal, 2, mean)
```

Will calculate the **mean** value across all steps of the chains for each x value (height value)

```
signalHDIMin = apply(ysignal, 2, quantile, probs = 0.025)
signalHDIMax = apply(ysignal, 2, quantile, probs = 0.975)
signalSummary = data.frame(signalMeans, signalHDIMin, signalHDIMax, zx, zy)
```

Plot raw data with mean predicted values

```
ggplot(signalSummary) +
  theme_bw() +
  geom_point(aes(x = zx, y = zy), alpha = 0.5) +
  geom_point(aes(x = zx, y = signalMeans), colour = "dodgerblue4", alpha = 0.5) +
  ylab("weight") +
  xlab("height")
```


Add a ribbon for 95% HDI

```
ggplot(signalSummary) +
   theme_bw() +
   geom_point(aes(x = zx, y = zy), alpha = 0.5) +
   geom_point(aes(x = zx, y = signalMeans), colour = "dodgerblue4", alpha = 0.5) +
   geom_ribbon(aes(x = zx, ymin = signalHDIMin, ymax = signalHDIMax),
    fill = "dodgerblue4", alpha = 0.3) +
   ylab("weight") +
   xlab("height")
```


- Estimates of deterministic component pretty tight
- Clearly missing some important parameters from our model
 - A lot of unexplained variation in weight (shocking!)

6. Posterior Predictive Checks Full Model

- Can now check how well full model fits the data
- If we've done well, 95% HDI should capture 95% of all data points
- Considers both the signal and the noise

6. Posterior Predictive Checks Full Model

```
predMeans = apply(ypred, 2, mean)
predHDIMin = apply(ypred, 2, quantile, probs = 0.025)
predHDIMax = apply(ypred, 2, quantile, probs = 0.975)
predictions = data.frame(predMeans, predHDIMin, predHDIMax, zx, zy)
```

6. Posterior Predictive Checks Full Model

Plot predictions

```
ggplot(predictions) +
  theme_bw() +
  geom_point(aes(x = zx, y = zy), alpha = 0.5) +
  geom_point(aes(x = zx, y = predMeans), colour = "dodgerblue4", alpha = 0.5) +
  geom_ribbon(aes(x = zx, ymin = predHDIMin, ymax = predHDIMax),
    fill = "dodgerblue4", alpha = 0.3) +
  ylab("weight") +
  xlab("height")
```


6. Posterior Predictive Checks

- In many cases, once we have estimates for β_0 and β_1 for a system, we then want to use that information to make predictions based on new data (and our uncertainty about those predictions)
- Our original data contained heights ranging from 58.5 to 78.1 inches
- Let's predict the weights of 50 new individuals ranging in height from 70 to 90 inches (7.5 ft!)

Generate new x (height) values

```
xNew = runif(n = 50, min = 70, max = 90)
xNew

[1] 72.36499 70.03866 88.58214 85.86236 88.68099 75.34898 70.56079 78.43638
[9] 72.23287 75.99434 83.90202 86.71789 78.46509 85.60824 83.00595 80.80889
[17] 73.21614 86.29524 78.14187 85.92406 82.17720 89.37008 88.66640 78.02620
[25] 87.58855 85.41556 73.17865 70.03777 73.33176 85.63155 74.26131 75.38690
[33] 71.43466 72.37566 78.06732 74.53229 82.95678 76.72291 81.88241 85.24027
[41] 79.15880 77.20354 70.57621 86.33159 80.02201 82.85431 89.50417 77.48950
[49] 86.06753 75.68026
```

Order for easier visualization later

```
xNew = sort(xNew)
xNew

[1] 70.03777 70.03866 70.56079 70.57621 71.43466 72.23287 72.36499 72.37566
[9] 73.17865 73.21614 73.33176 74.26131 74.53229 75.34898 75.38690 75.68026
[17] 75.99434 76.72291 77.20354 77.48950 78.02620 78.06732 78.14187 78.43638
[25] 78.46509 79.15880 80.02201 80.80889 81.88241 82.17720 82.85431 82.95678
[33] 83.00595 83.90202 85.24027 85.41556 85.60824 85.63155 85.86236 85.92406
[41] 86.06753 86.29524 86.33159 86.71789 87.58855 88.58214 88.66640 88.68099
[49] 89.37008 89.50417
```

- \bullet Next, define a matrix that will hold all of the predicted y values
 - Number of rows is the number of x values for prediction
 - Number of columns is the number of y values generated from the MCMC process
 - We'll start with the matrix filled with zeros, but will fill it in later

```
postSampSize = length(b1)

yNew = matrix(0, nrow = length(xNew), ncol = postSampSize)
```

- Define a matrix for holding the HDI limits of the predicted y values
 - Same number of rows as above
 - Only two columns (one for each end of the HDI)

```
yHDIlim = matrix(0, nrow = length(xNew), ncol = 2)
```

• Now, populate the ynew matrix by generating one predicted y value for each step in the chain

```
for (i in 1:length(xNew)) {
   for (j in 1:postSampSize) {
     yNew[i, j] = rnorm(n = 1, mean = b0[j] + b1[j] * xNew[i], sd = sigma[j])
   }
}
```

• Now, populate the ynew matrix by generating one predicted y value for each step in the chain

```
for (i in 1:length(xNew)) {
   for (j in 1:pustSampSize) {
     yNew[i, j] = rhorm(n = 1, mean = b0[j] + b1[j] * xNew[i], sd = sigma[j])
   }
}
```

For each new x value ...

• Now, populate the yNew matrix by generating one predicted y value for each step in the chain

```
for (i in 1:length(xNew)) {
    for (j in 1:postSampSize) {
       yNew[i, j] = rnorm(n = 1, mean = b0[j] + b1[j] * xNew[i], sd = sigma[j])
    }
}
```

For every step in the chain...

• Now, populate the ynew matrix by generating one predicted y value for each step in the chain

```
for (i in 1:length(xNew)) {
    for (j in 1:postSampSize) {
        yNew[i, j] = rnorm(n = 1, mean = b0[j] + b1[j] * xNew[i], sd = sigma[j])
    }
}
```

Generate a new y value by randomly sampling one value from a normal distribution...

• Now, populate the ynew matrix by generating one predicted y value for each step in the chain

```
for (i in 1:length(xNew)) {
   for (j in 1:postSampSize) {
     yNew[i, j] = rnorm(n = 1, mean = b0[j] + b1[j] * xNew[i], sd = sigma[j])
   }
}
With a mean equal to b0 + b1*x (using the b0 and b1 values from that step in the chain)...
```

• Now, populate the yNew matrix by generating one predicted y value for each step in the chain

```
for (i in 1:length(xNew)) {
  for (j in 1:postSampSize) {
    yNew[i, j] = rnorm(n = 1, mean = b0[j] + b1[j] * xNew[i], sd = sigma[j])
  }
}
```

And a standard deviation based on that step in the chain

 Calculate means for each prediction, and the associated low and high 95% HDI estimates

```
means = rowMeans(yNew)
for (i in 1:length(xNew)) {
   yHDIlim[i, ] = quantile(yNew[i, ], probs = c(0.025, 0.975))
}
```

Combine the data

```
predTable = data.frame(xNew, means, yHDIlim)
```

xNew [‡]	means ‡	V3 [‡]	V4 [‡]
70.41042	181.1716	114.4159	245.3072
70.55985	181.7180	114.9396	245.7509
70.62610	182.0531	115.4858	247.3272
70.79192	183.3163	116.7804	249.1335
71.09461	184.8677	119.5066	250.8810
71.24652	185.7985	120.3223	253.1887
72.38824	192.1810	127.7456	261.4491
72.56511	194.3028	125.6432	259.4161
72.87910	195.8427	131.2240	262.1318
73.09264	196.7971	131.0395	262.6172
73.49713	198.8184	127.8091	260.2962
73.89766	201.0719	133.0695	266.3588
74.90008	206.9332	138.6882	272.3089

Plot the results

```
ggplot(predTable) +
  theme_bw() +
  geom_point(aes(x = xNew, y = means), alpha = 0.7) +
  geom_ribbon(aes(x = xNew, ymin = predTable[, 3], ymax = predTable[, 4]),
    fill = "dodgerblue4", alpha = 0.3) +
  ylab("weight") +
  xlab("height")
```


- Note how important accounting for "unexplained variance" is when making predictions
 - Can you even do this with a frequentist approach?

Re-Analysis of Some "Old" Data

Remember This?

Year	Pop1	Pop2
1	100	100
2	50	99
3	80	98
4	30	97
5	60	96
6	20	95

Pop1 p =
$$0.08$$

Pop2 p = $2.2x10^{-16}$
Huh?

Remember This?

Compare Trends of Both Populations

Compare Trends of Both Populations

Questions?