CH-2: Combinational Logic Design

Contemporary Logic Design

YONSEI UNIVERSITY

Fall 2016

Combinational Logic

- Basic logic
 - Boolean algebra, proofs by re-writing, proofs by perfect induction
 - logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Logic realization
 - two-level logic and canonical forms
 - incompletely specified functions
- Simplification
 - uniting theorem
 - grouping of terms in Boolean functions
- Alternate representations of Boolean functions
 - cubes
 - Karnaugh maps

Possible Logic Functions of 2-Vars

- There are <u>16 possible functions</u> for 2 input variables:
 - in general, there are 2**(2**n) functions of n inputs

Cost of Different Logic Functions

- Different functions are easier or harder to implement
 - each has <u>a cost associated with the number of switches needed</u>
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - X' (F12) and Y' (F10): require <u>2 switches</u> for "inverter" or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require <u>4 switches</u>
 - X or Y (F7) and X and Y (F1): require 6 switches
 - X = Y (F9) and X ⊕ Y (F6): require <u>16 switches</u>
 - thus, because NOT, NOR, and NAND are <u>the cheapest</u> they are the functions we <u>implement the most in practice</u>

Minimal Set of Functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

X	Υ	X nor Y	X	Υ	X nand Y
0	0	1	0	0	1
1	1	0	1	1	0

and NAND and NOR are "duals",
 that is, its easy to implement one using the other

$$X \underline{nand} Y \equiv \underline{not} ((\underline{not} X) \underline{nor} (\underline{not} Y))$$

 $X \underline{nor} Y \equiv \underline{not} ((\underline{not} X) \underline{nand} (\underline{not} Y))$

- But learn this conversion later
 - Let's look at the mathematical foundation of logic

An Algebraic Structure

- An algebraic structure consists of
 - a set of elements B
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:
 - 1. the set B contains at least two elements: a, b
 - 2. closure: a + b is in B a b is in B
 - 3. commutativity: a + b = b + a $a \cdot b = b \cdot a$
 - 4. associativity: a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - 5. identity: a + 0 = a $a \cdot 1 = a$
 - 6. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 - 7. complementarity: a + a' = 1 $a \cdot a' = 0$

Boolean Algebra

- Boolean algebra
 - $B = \{0, 1\}$
 - variables
 - + is logical OR, is logical AND
 - ' is logical NOT
- All algebraic axioms hold

Logic Functions and Boolean Algebra

 Any logic function that can be expressed <u>as a truth table</u> can be <u>written as an expression in Boolean algebra</u> using the operators: <u>', +, and •</u>

X	Y	X • Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	X ′	X′ • Y
0	0	1	0
0	1	1	1
1	Ō	0	Ō
1	1	0	0

X	Y	X'	Y'	X • Y	X′ • Y′	(X • Y	$)+(X'\bullet Y')$
0	0	1	1	0	1	1	
0	0 1 0	1	0	0	0	0	(VaV) (VaV)
1	0	0	1	0	0	0	$(X \bullet Y) + (X' \bullet Y')$
1	1	0	0	1	0	1	

Boolean expression is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

= X = Y

1.
$$X + 0 = X$$

1D.
$$X \cdot 1 = X$$

null

2.
$$X + 1 = 1$$

2D.
$$X \cdot 0 = 0$$

idempotency:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

involution:

4.
$$(X')' = X$$

complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

commutativity:

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

associativity:

7.
$$(X + Y) + Z = X + (Y + Z)$$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

distributivity:

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Y)$

uniting:

Z)

9.
$$X \cdot Y + X \cdot Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

absorption:

10.
$$X + X \cdot Y = X$$

11. $(X + Y') \cdot Y = X \cdot Y$

10D.
$$X \cdot (X + Y) = X$$

11D. $(X \cdot Y') + Y = X + Y$

factoring:

12.
$$(X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y$$

12D.
$$X \cdot Y + X' \cdot Z =$$

$$(X + Z) \cdot (X' + Y)$$

concensus:

13.
$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$$

de Morgan's theorme:

14.
$$(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 14D. $(X \cdot Y \cdot ...)' = X' + Y' + ...$

generalized de Morgan's:

15.
$$f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1', X_2', ..., X_n', 1, 0, \bullet, +)$$

- For any given Boolean EQ, its inverted EQ
 - AND is changed into OR
 - OR is changed into AND
 - Each variable is changed into its inverted form

- Duality
 - a dual of a Boolean expression is derived <u>by replacing</u>
 by +, + by •, 0 by 1, and 1 by 0, and <u>leaving variables</u> <u>unchanged</u>
 - any theorem that can be proven is thus also true for its dual!
 - a meta-theorem (a theorem about theorems)
- Duality:

16.
$$X + Y + ... \Leftrightarrow X \cdot Y \cdot ...$$

Generalized duality:

17. f
$$(X_1, X_2, ..., X_n, 0, 1, +, \bullet) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

- Different from deMorgan's Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Proving Theorems (rewriting)

- Using the axioms of Boolean algebra:
 - e.g., prove the theorem: $X \cdot Y + X \cdot Y' = X$

$$X \cdot Y + X \cdot Y' = X$$

distributivity (8)
$$X \bullet Y + X \bullet Y' = X \bullet (Y + Y')$$
 complementarity (5) $X \bullet (Y + Y') = X \bullet (1)$ identity (1D) $X \bullet (1) = X \checkmark$

• e.g., prove the theorem: $X + X \cdot Y = X$

$$X + X \cdot Y = X$$

identity (1D)
$$X + X \bullet Y = X \bullet 1 + X \bullet Y$$
distributivity (8)
$$X \bullet 1 + X \bullet Y = X \bullet (1 + Y)$$
identity (2)
$$X \bullet (1 + Y) = X \bullet (1)$$
identity (1D)
$$X \bullet (1) = X \checkmark$$

Activity

Prove the following using the laws of Boolean algebra:

$$\bullet (X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$$

$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z)$$
identity
$$(X \bullet Y) + (1) \bullet (Y \bullet Z) + (X' \bullet Z)$$
complementarity
$$(X \bullet Y) + (X' + X) \bullet (Y \bullet Z) + (X' \bullet Z)$$
distributivity
$$(X \bullet Y) + (X' \bullet Y \bullet Z) + (X \bullet Y \bullet Z) + (X' \bullet Z)$$
commutativity
$$(X \bullet Y) + (X \bullet Y \bullet Z) + (X' \bullet Y \bullet Z) + (X' \bullet Z)$$
factoring
$$(X \bullet Y) \bullet (1 + Z) + (X' \bullet Z) \bullet (1 + Y)$$
null
$$(X \bullet Y) \bullet (1) + (X' \bullet Z) \bullet (1)$$
identity
$$(X \bullet Y) + (X' \bullet Z) \checkmark$$

Proving Theorems (perfect induction)

- Using perfect induction (complete truth table):
 - e.g., de Morgan's:

$$(X + Y)' = X' \bullet Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \bullet Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

X	Υ	X'	Y'	(X + Y)'	X′ • Y′
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

X	Υ	X'	Y'	(X • Y)′	X' + Y'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

A Simple Example: 1-bit Binary Adder

Inputs: A, B, Carry-in

Outputs: Sum, Carry-out

_A	В	Cin	Cout	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

$$S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin$$

 $Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin$

Apply Theorems to Simplify Expressions

- The theorems of Boolean algebra <u>can simplify</u> Boolean expressions
 - e.g., full adder's carry-out function (same rules apply to any function)

```
= A' B Cin + A B' Cin + A B Cin' + A B Cin
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin'
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin'
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                adding extra terms
        = B Cin + A Cin + A B
                                               creates new factoring
                                                   opportunities
```

Activity

 Fill in the truth-table for a circuit that checks that a 4-bit number is divisible by 2, 3, or 5

X8	X4	X2	X1	By2	ВуЗ	By5
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

Write down Boolean expressions for By2, By3, and By5

CH2- Combinational Logic

Activity

X8	X4	X2	X1	By2	ВуЗ	By5
0	0	0	0	1	<u> </u>	1
0	0	0	1	0	0	0
0	0	1	Ō	1	0	0
0	Ō		1	0	1	0
Ō	1	Ō		1	0	Ō
0	1	0	1	0	0	1
0	1	1	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	1	0	0
1	0	0	1	0	1	0
1	0	1	0	1	0	1
1	0	1	1	0	0	0
1	1	0	0	1	1	0
1	1	0	1	0	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	1

CH2- Combinational Logic

By5 = X8'X4'X2'X1' + X8'X4X2'X1

+ X8X4'X2X1' + X8X4X2X1

Boolean Expressions to Logic Gates

■ NOT X' <u>X</u> ~X

X Y 0 1 1 0

■ AND X • Y XY X ∧ Y

X Y Z 0 0 0 0 1 0 1 0 0 1 1 1

OR X + Y

$$X \vee Y$$

$$X \longrightarrow Z$$

Boolean Expressions to Logic Gates

NAND

X	Υ	Z
0	0	1
0	1	1
1	0	1
1	1	0

NOR

XOR

$$X \oplus Y$$

$$X \underline{xor} Y = X Y' + X' Y$$

 $X \text{ or } Y \text{ but not both}$
("inequality", "difference")

XNOR
 X = Y

Boolean Expressions to Logic Gates

More than one way to map expressions to gates

Literal: each appearance of a variable or its complement in an expression

CH2- Combinational Logic CH2-22

Waveform View of Logic Functions

- Just another way for truth table
 - but note how edges don't line up exactly
 - it takes time for a gate to switch its output!

CH2- Combinational Logic

Different Realizations of a Function

Α	В	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
	0	0	1 0
1 1	0	1	1
1	1	0	1
1	1	1	0

CH2- Combinational Logic

Different Realizations of a Function

```
Z = A'B'C + A'BC + AB'C + ABC'
Z1 = A' C (B'+B) + AB'C + ABC' (5, B'+B = 1, Complementarity)
   = A'C + AB'C + ABC'
   = C (A' + AB') + ABC' (8D, Distributive law)
   = C ((A' + A) (A' + B')) + ABC' (5, A' + A = 1, Complementarity)
   = C (A' + B') + ABC'
   = ABC' + A'C + B'C
Z2 = ABC' + A'C + B'C
   = ABC' + C (A' + B')
   = ABC' + C (AB)'
                              (12, A' + B' = (AB), DeMorgan's Law)
Z3 = ABC' + C (AB)'
                               (X=AB, Y=C, )
   = AB \oplus C
```

Which Realization is Best?

- Reduce <u>number of inputs</u>
 - literal: <u>input variable</u> (complemented or not)
 - can approximate the cost of logic gate as 2 transistors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

Which is the Best Realization?

- Reduce number of levels of gates
 - <u>fewer level of gates</u> implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduce while trading off against delay

Are all Realizations Equivalent?

- Under the same input stimuli, three alternative implementations have <u>almost the same waveform behavior</u>
 - delays are different
 - glitches (hazards) may arise these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are <u>functionally equivalent</u>

CH2- Combinational Logic

Implementing Boolean Functions

- Technology independent
 - canonical forms
 - two-level forms
 - multi-level forms
- Technology choices
 - packages of a few gates
 - regular logic
 - two-level programmable logic
 - multi-level programmable logic

Canonical Forms

- Truth table is the <u>unique signature</u> of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
 - standard forms for a Boolean expression
 - provides <u>a unique algebraic signature</u>

Sum-of-products Canonical Forms

- Also known as disjunctive normal form
- Also known as <u>minterm expansion</u>

CH2- Combinational Logic

Sum-of-products Canonical Form

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - each variable appears exactly once, true or inverted (but not both)

Α	В	С	minter	ms
0	0	0	A'B'C'	m0
0	0	1	A'B'C	m1
0	1	0	A'BC'	m2
0	1	1	A'BC	m3
1	0	0	AB'C'	m4
1	0	1	AB'C	m5
1	1	0	ABC'	m6
1	1	1	ABC	m7
				4

short-hand notation for, minterms of 3 variables

F in canonical form:

$$F(A, B, C) = \Sigma m(1,3,5,6,7)$$

= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + ABC' + ABC'

canonical form
$$\neq$$
 minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

$$= (A'B' + A'B + AB' + AB)C + ABC'$$

$$= ((A' + A)(B' + B))C + ABC'$$

$$= C + ABC'$$

$$= ABC' + C$$

= AB + C

Product-of-sums Canonical Form

- Also known as conjunctive normal form
- Also known as <u>maxterm expansion</u>

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

CH2- Combinational Logic

Product-of-sums Canonical Form

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

Α	В	C	maxterms	
0	0	0	A+B+C	M0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	М3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	M7

short-hand notation for maxterms of 3 variables

F in canonical form:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

canonical form
$$\neq$$
 minimal form
 $F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$
 $= (A + B + C) (A + B' + C)$
 $= (A + B + C) (A' + B + C)$
 $= (A + C) (B + C)$

S-o-P, P-o-S, and de Morgan's Theorem

- Sum-of-products
 - $F' = A'B'C' + A'BC' + AB'C' \rightarrow F'$ in SOP
- Apply de Morgan's
 - (F')' = (A'B'C' + A'BC' + AB'C')' = (A'B'C')' (A'BC')' (AB'C')'
 - F = (A + B + C) (A + B' + C) (A' + B + C)
 → F in POS
- Product-of-sums → F' in POS
 - ◆ F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')
- Apply de Morgan's
 - (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'= (A + B + C')' + (A + B' + C')' + (A' + B + C')' + (A' + B' + C)' + (A' + B' + C')'
 - F = A'B'C + A'BC + ABC' + ABC'
 → F in SOP

Four 2-level implementations: F = AB + C

CH2- Combinational Logic CH2-36

Waveforms for the Four Alternatives

- Waveforms are <u>essentially identical</u>
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping between Canonical Forms

- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices <u>do not appear</u> in maxterm expansion
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - use maxterms whose indices do not appear
 - e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Incompleteley Specified Functions

- Example: binary coded decimal increment by 1
 - BCD digits encode the decimal digits 0 9 in the bit patterns 0000 – 1001

Notation for Incompletely Specified Fts

- Don't cares and canonical forms
 - so far, only represented on-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
 - \star Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 - $Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
 - ◆ Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
 - $Z = \Pi [M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Simplification of 2-level Combi-Logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)

The Uniting Theorem

- Key tool to simplification: A (B' + B) = A
- Essence of simplification of two-level logic
 - find two element subsets of the ON-set where only one variable changes its value this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

Boolean Cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

Mapping Truth Tables to Boolean Cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

ON-set = solid nodes

OFF-set = empty nodes

DC-set = \times 'd nodes

Three Variable Example

Binary full-adder carry-out logic

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin+AB+ACin

Higher Dimensional Cubes

Sub-cubes of higher dimension than 2

$$F(A,B,C) = \Sigma m(4,5,6,7)$$

on-set forms a square i.e., a cube of dimension 2

represents an expression in one variable i.e., 3 dimensions — 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

m-dimensional Cubes

- In a 3-cube (three variables):
 - a 0-cube, i.e., a single node, yields a term in 3 literals
 - a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
 - an m-subcube within an n-cube (m < n) yields a term with n m literals

Karnaugh Maps

- Flat map of Boolean cube
 - wrap—around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

BA	0	1
0	0 1	2 1
1	1 0	3 0

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh Maps

- Numbering scheme based on <u>Gray-code</u>
 - e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells

13 = 1101 = ABC'D

Adjacencies in Karnaugh Maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh Map Examples

More Karnaugh Map Examples

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

F' simply replace 1's with 0's and vice versa $F'(A,B,C) = \sum m(1,2,3,6) = BC' + A'C$

Karnaugh map: 4-variable Example

• $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh Maps: don't cares

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - without don't cares

Karnaugh Maps: don't cares

- $f(A,B,C,D) = \sum m(1,3,5,7,9) + d(6,12,13)$
 - f = A'D + B'C'D
 - ◆ f =
 A'D + C'D

without don't cares

with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as

1s or 0s
depending on which is more
advantageous

Activity

• Minimize the function $F = \Sigma m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)$

Combinational Logic Summary

- Logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
- Later
 - automation of simplification
 - multi-level logic
 - time behavior
 - hardware description languages
 - design case studies