Домашнее задание 4 (на 13.11).

СОМВ 1. Найдите комбинаторное доказательство формулы: $t_n = \frac{1}{2(n-1)} \sum_{k=1}^{n-1} \frac{n!}{(k-1)!(n-k-1)!} t_k t_{n-k}$, где t_n — число деревьев на n врешинах.

СОМВ 2. Рассмотрим неориентированный граф S_n на вершинах $1, \ldots, 2n$ с ребрами $E = \{(i, i+1), (i, i+n), (i+n, i+n+1) | i \in [1, n] \}$. Посчитайте число его остовных деревьев при помощи формулы: t(G) = t(G - e) + t(G e).

COMB 3. Без испольования матричной теоремы о деревьях и рекуррентной формулы из прошлого задания посчитайте число остовных деревьев графа $K_{2,n}$.

COMB 4. Используя матричную теорему о деревьях посчитать число помеченых деревьев.

СОМВ 5. При помощи предыдущей фомрулы найдите $t(K_n - e)$.