南开大学

2016 年攻读硕士学位入学考试试题

考试科目: <u>C语言程序设计与数据结构</u> 试题编号 816

(数据结构部分 75 分) 一. 单项选择题 (10 分,每小题 2 分) 1. 数据对象是指 ()。 A. 描述客观事物且由计算机处理的数值、字符等符号的总称 B. 数据的基本单位 C. 性质相同的数据元素的集合 D. 相互之间存在一种或多种特定关系的数据元素的集合 2. 下列表述中,错误的说法是 ()。					
 1. 数据对象是指()。 A. 描述客观事物且由计算机处理的数值、字符等符号的总称 B. 数据的基本单位 C. 性质相同的数据元素的集合 D. 相互之间存在一种或多种特定关系的数据元素的集合 					
A. 描述客观事物且由计算机处理的数值、字符等符号的总称 B. 数据的基本单位 C. 性质相同的数据元素的集合 D. 相互之间存在一种或多种特定关系的数据元素的集合					
B. 数据的基本单位 C. 性质相同的数据元素的集合 D. 相互之间存在一种或多种特定关系的数据元素的集合					
C. 性质相同的数据元素的集合 D. 相互之间存在一种或多种特定关系的数据元素的集合					
2. 下列表述中,错误的说法是()。					
A. n 个结点的树的各结点度数之和为 n-1					
B. n 个结点的无向图最多有 n*(n-1)条边					
C. 用邻接矩阵存储图时所需存储空间大小与图的顶点数有关,而与边数无关					
D. 哈希表中冲突的可能性大小与装填因子有关					
CD -					
3. 请指出在顺序有序表 (2、5、7、10、14、15、18、23、35、41、52)中,用"折					
半查找法"查找关键字 14 需做的比较次数为 ()。					
A. 2 B. 3					
C. 4 D. 5					
4. 下列排序方法中,比较次数与记录的初始排列状态无关的方法是()。					
A. 直接插入排序 B. 直接选择排序 C. 快速排序 D. 起泡排序					
5. 对于二叉树而言,能满足从任意结点出发,到根结点路径上所经过的结点序列呈有序状态的是()。					
A. 堆 B. 哈夫曼树 C. AVL 树 D. 二叉排序树					

-	おか 略	/4E /\	← J. BE ← ハゝ	
 •	呉오赵	(ID分),	毎小题3分)	ì

1.	. 下面程序段的时间复杂度为	
١.	• 广闽住厅权时时间复乐度为	

2. 若按层次顺序将一棵有 n 个结点的完全二叉树的所有结点从 1 到 n 编号,	那么结点i没有
右兄弟的条件为	

3. 用一个大小为 1000 的数组来实现循环队列,	当前 rear 和 front 的值分别为 0 和 994,	若
要达到队满的条件,还需要继续入队的元素个数	是	

4.	使用	"求子串"	subString(S,	pos,	len)和	"联接"	concat(S1	, S2)的串操作,	可从串
s =	"cond	luction"中的	的字符得到串t	= "co	nt",贝	小求 t 的身	表达式为		

5.	将一棵结点编号	(从上到下,	由左至右)	为1到7	'的满二叉树转变成森林,	则中序遍历
该	森林得到的序列为					

三. 解答题(32分,每小题8分)

1. 一个 3 阶的 B_树如下图所示,分别画出插入关键字 35 和 100 之后的 B_树形态。

- 2. 假设通讯电文使用的字符集为{a,b,c,d,e,f},各字符在电文中出现的频度分别为:34,5,12,23,8和18。试为这6个字符设计哈夫曼编码。
 - (1) 按参考书的算法画出所构造的哈夫曼树(规定左孩子结点的权值小于右孩子结点的权值: 且向左分支的编码为 "0",向右分支的编码为 "1")。
 - (2) 若电文的编码为 101010111101, 请写出原来的电文。
- 3. 由 14 个关键字(87, 25, 310, 08, 27, 132, 68, 96, 187, 133, 70, 63, 47, 135) 构造链地址法处理冲突的哈希表,哈希函数为 H(key) = key MOD 13,完成下列工作。
 - (1) 画出该哈希表, 并求其查找成功的平均查找长度 ASL;
 - (2) 在该哈希表中,若要删除值为 70 的关键字,统计需要进行的比较操作次数。
- 4. 用一个栈可将递归形式的"快速排序算法"转变成非递归的迭代形式。转变的策略是: 每趟确定"枢轴"元素之后,把当前右部数据区间的上界和下界存入栈中(上界、下界相等时则无须进栈),并继续处理当前的左部数据区。

如果一个待排序的关键字序列(21,08,12,25,49,27,18,38,06,33)存放于 R[1..10]之中,请画出整个排序过程中的栈动态变化情况。

四. 算法设计题(18分)

对于图中任意一条路径,瓶颈值(bottleneck cost)是该路径上最小的边值。如图路径 EDB 的瓶颈值是 23,EDCAB 的瓶颈值是 10。最大瓶颈问题则是要找出给定两点间包含最大瓶颈值的那条路径,例如 EB 之间的最大瓶颈是 EDB。同理,亦可定义类似的最小瓶颈问题。

我们可以通过算法求解给定两点间的最小瓶颈问题。为此,试按步完成以下小题:

- (1) 针对所给的数据模型画出求解使用的图的数据结构存储表示;
- (2) 叙述求解该问题的策略和算法思路,以及所用到的数据结构:
- (3) 设计求解"给定两点间最小瓶颈路径问题"的核心伪码算法;
- (4) 对你的算法进行算法分析,并评论该算法的时间复杂度:
- (5) 设计最终实现该问题的程序模块调用关系图:
- (6) 请举出一个以本问题为背景的现实应用实例。

C语言程序设计部分(75分)

- 一. 程序设计题(50分,每小题25分)
- 1、编写一个 C/C++语言的程序,完成以下功能:
 - a) 从键盘读入一行字符;
 - b) 统计这些字符中数字字符的出现次数;
 - c) 选出出现次数最多的数字字符;以"字符的 ASCII 值(出现次数)"的格式进行输出该字符及其出现次数;
 - d) 以"字符的 ASCII 值: 出现次数"的格式输出其余数字字符及其出现次数。
- 2、编写一个 C++语言的程序, 完成以下功能:
 - a) 设计一个有理数类 R, 用于表示一个分数: //
 - b) 为 R 类设计一个成员函数 void gcd(void), 负责完成该有理数的约分;
 - c) 设计一个全局函数 R *mul(R *a, R *b); 负责计算有理数 a 和 b 的积;
 - d) 设计一个全局函数,通过重载运算符<<,以"分子/分母"的格式向输出流输出指定的有理数。

二.程序阅读题(25分)

阅读下列 C++语言的程序,回答以下问题:

- a) 程序运行时,构造了几个 B 类实例,几个 D 类实例:
- b) 写出程序运行的输出结果。

```
#include <iostream.h>
class B {
    int val;
public:
    B( int v );
    virtual void s( void );
    virtual B *m( int v );
}
```

```
class D : public B {
     B *1, *r;
public:
     D(int v, B *a, B *b);
     void s( void );
         *m( int v );
     В
}
main() {
     static int x[] = \{ 23, 81, 19 \};
     B n(74), *p = &n;
    for( int i = 0; i < 4; i++)
         p = p - m(x[i]);
    p->s();
}
 B::B( int v )
                            val = v:
void B::s(void)
                          cout << val;
B *B::m(int v)
         B *p;
         if(v \le val)
              p = (B *)new D( val, this, NULL );
         else
             p = (B *)new D( val, NULL, this );
         val = v;
                    return p;
}
D::D(int v, B *a, B *b) : B(v) {
        1 = a;
                    r = b:
}
void D::s( void )
        cout << "<";
        if(! = NULL)
             1->s();
        cout << ":"<< val << ":";
        if(r!=NULL)
            r->s();
```

```
cout << ">":
}
В
     *D::m( int v )
         if(v \le val)
              if( l==NULL )
                                l = \text{new B}(v);
              else
                                  l = l \rightarrow m(v);
         else
              if(r=NULL)
                                r = new B(v);
              else
                                  r = r - m(v);
         return (B *)this;
}
```

