1 Understanding Delays in Data Transfer

Two computers, Host A and Host B, are connected by a link with speed R bits per second. They are m meters apart, and signals travel at s meters per second. Host A sends a packet of L bits to Host B. We need to answer questions about delays and packet locations.

1.1 Part (a): Time to Travel the Distance

The propagation delay, d_{prop} , is how long it takes a bit to travel from A to B:

$$d_{\text{prop}} = \frac{m}{s}$$

1.2 Part (b): Time to Send the Packet

The transmission delay, d_{trans} , is the time to send all L bits onto the link:

$$d_{\rm trans} = \frac{L}{R}$$

1.3 Part (c): Total Time for Delivery

The end-to-end delay is the time from when A starts sending until B gets the whole packet. Its the sum of transmission and propagation delays:

Total delay =
$$\frac{L}{R} + \frac{m}{s}$$

1.4 Part (d): Where is the Last Bit at $t = d_{trans}$?

At t = 0, Host A starts sending. At $t = d_{\text{trans}} = \frac{L}{R}$, the last bit is just sent. Its still at Host A, just entering the link.

1.5 Part (e): First Bit When $d_{prop} > d_{trans}$

If $d_{\text{prop}} > d_{\text{trans}}$, the first bit, sent at t = 0, travels for time d_{trans} . It covers a distance:

$$Distance = s \cdot \frac{L}{R}$$

Since $\frac{m}{s} > \frac{L}{R}$, the first bit has nt reached Host B yet. Its on the link, $s \cdot \frac{L}{R}$ meters from Host A.

1.6 Part (f): First Bit When $d_{prop} < d_{trans}$

If $d_{\text{prop}} < d_{\text{trans}}$, the first bit reaches Host B at $t = d_{\text{prop}} = \frac{m}{s}$, before $t = d_{\text{trans}}$. So, at $t = d_{\text{trans}}$, the first bit is already at Host B.

1.7 Part (g): Distance Where Delays Are Equal

Given $s = 2.5 \times 10^8 \,\mathrm{m\,s^{-1}}, \ L = 1500 \,\mathrm{B} = 12000 \,\mathrm{bit}, \ \mathrm{and} \ R = 10 \,\mathrm{Mbit\,s^{-1}}, \ \mathrm{we} \ \mathrm{find} \ m$ where $d_{\mathrm{prop}} = d_{\mathrm{trans}}$:

$$\frac{m}{s} = \frac{L}{R}$$

$$m = s \cdot \frac{L}{R} = 2.5 \times 10^8 \cdot \frac{12000}{10 \times 10^6} = 300000 \, \mathrm{m} = 300 \, \mathrm{km}$$

1.8 Final Answer

- 1. Propagation delay: $\frac{m}{s}$
- 2. Transmission delay: $\frac{L}{R}$
- 3. Total delay: $\frac{L}{R} + \frac{m}{s}$
- 4. Last bit at $t = d_{\text{trans}}$: At Host A.
- 5. If $d_{\text{prop}} > d_{\text{trans}}$, first bit at $t = d_{\text{trans}}$: On the link, $s \cdot \frac{L}{R}$ meters from Host A.
- 6. If $d_{\text{prop}} < d_{\text{trans}}$, first bit at $t = d_{\text{trans}}$: At Host B.
- 7. Distance: 300 km