Commonly Used Cardiovascular Formulae

GENERAL HEMODYNAMICS

Mean arterial pressure (mm Hg) = Diastolic blood pressure (BP) + 1/3 (Systolic BP – Diastolic BP)

Stroke volume (mL) = End-diastolic volume – End-systolic volume

Cardiac output (L/min) = Heart rate \times Stroke volume

Ohms law V = IR

V= Pressure difference across the system

I = Cardiac output or flow

R =Resistance across the system

 $\frac{\text{Pulmonary vascular resistance (Wood unit)}}{\text{Cardiac output}} = \frac{\text{Mean PA pressure - Mean PCWP}}{\text{Cardiac output}}$

PA, pulmonary artery; PCWP, pulmonary capillary wedge pressure

1 Wood unit = 80 dynes/s/cm⁵

Pulmonary vascular resistance (echo) (Wood unit) = \begin{pmatrix} \text{Tricuspid regurgitation velocity} \\ \text{RVOT VTI} \\ \times 10 + 0.16 \end{pmatrix}

RVOT, right ventricular outflow tract; VTI, Velocity Time Integral

Transpulmonary gradient (mm Hg) = Mean PAP – PCWP

PAP, pulmonary artery pressure; PCWP, pulmonary capillary wedge pressure

Fick equation

$$Cardiac\ output\ (L/min) = \frac{Vo_{_2}\ (mL/min)}{1.36\ (mL\ O_{_2}/g\ Hgb)\times Hgb\ (g/dL)\times 10\ (dL/L)\ [Sao_{_2}-Svo_{_2}]}$$

Vo, (oxygen consumption)

Cardiac index (L/min/m²) = $\frac{\text{Cardiac output (L/min)}}{\text{Body surface area (m²)}}$

Body surface area $(m^2) = [Height (cm) + Weight (kg) - 60]/100$

Dubois formula for body surface area (m²) = $\sqrt{\frac{\text{Height (cm)} \times \text{Weight (kg)}}{3,600}}$

Stroke work (g-m/beat) = Stroke volume \times Mean arterial pressure \times 0.0144

Stroke work index
$$(g-m/m^2/beat) = \frac{Stroke work}{Body surface area}$$

VALVULAR DISEASE AND LEFT VENTRICULAR (LV) FUNCTION

Gorlin equation

Cardiac output (mL/min)

44.3 × Systolic ejection period (s/beat) × Heart rate (beats/min) × √Mean gradient

Mitral valve area (cm²) =

Cardiac output (mL/min)

38 × Diastolic filling period (s/beat) × Heart rate (beats/min) × √Mean gradient

Hakki equation

Aortic valve area (cm²) =
$$\frac{\text{Cardiac output}}{\sqrt{\text{Peak to peak gradient}}} \text{ or } \frac{\text{Cardiac output}}{\sqrt{\text{Mean gradient}}}$$

Simplified Bernoulli equation

Pressure difference = $4 v^2$

If proximal velocity > 1 m/s, then pressure difference = 4 [(distal jet velocity)² – (proximal velocity)²]

Continuity aortic valve area (cm²) = Diameter_{LVOT}² × 0.785 ×
$$\frac{VTI_{LVOT}}{VTI_{Aortic valve}}$$

LVOT, left ventricular outflow tract; VTI, velocity time integral

Dimensionless index =
$$\frac{VTI_{IVOT}}{VTI_{Aortic value}}$$

VTI, velocity time integral; LVOT, left ventricular outflow tract

Stroke volume (mL) = Diameter_{LVOT}
$$^2 \times 0.785 \times VTI_{LVOT}$$

VTI, velocity time integral; LVOT, left ventricular outflow tract

Aortic regurgitant fraction (%) =
$$\frac{\text{Aortic regurgitant volume}}{\text{LVOT stroke volume}} \times 100$$

LVOT, left ventricular outflow tract

Mitral valve area (mitral stenosis) (cm²) =
$$\frac{220}{\text{Pressure half time}}$$

Tricuspid valve area (tricuspid stenosis) (cm²) =
$$\frac{190}{\text{Pressure half time}}$$

Pressure half time (ms) = $0.29 \times \text{Deceleration time}$

Sopyright © 2012. Wolters Kluwer. All rights reserved.

Proximal isovelocity surface area (PISA) method in mitral regurgitation

Regurgitant orifice area (cm²) = $\frac{6.28 \text{ r}^2 \times \text{Aliasing velocity}}{\text{Mitral regurgitation velocity}}$

r, radius of PISA

Simplified PISA when aliasing velocity ~40 cm/s and peak continuous wave mitral regurgitation velocity ~5 m/s

Regurgitant orifice area (cm²) = $\frac{r^2}{2}$

r, radius of PISA

Mitral regurgitant volume (mL) = $1.9r^2 \times \text{Aliasing velocity}$

r, radius of PISA

Mitral regurgitant fraction (%) =
$$\frac{\text{Mitral regurgitant volume}}{\text{Mitral valve flow}} \times 100$$

Fractional shortening (%) =
$$\frac{\text{LVED dimension} - \text{LVES dimension}}{\text{LVED dimension}} \times 100$$

LVED, left ventricular end diastole; LVES, left ventricular end systole

Ejection fraction (%) =
$$\frac{\text{End diastolic volume} - \text{End systolic volume}}{\text{End diastolic volume}} \times 100$$

Estimated pulmonary artery systolic pressure (mm Hg) =

RA pressure $+ 4 \times (Peak tricuspid regurgitation velocity)^2$

RA, right atrium

Estimated pulmonary artery end-diastolic pressure (mm Hg) =

RA pressure $+ 4 \times (Pulmonary regurgitation end-diastolic velocity)^2$

RA, right atrium

Assessment of right atrial (RA) pressure (by echo)

IVC diameter (cm)	IVC collapse	Estimated RA pressure (mm Hg)
≤ 2.1	> 50%	3 (range 0–5)
≤ 2.1	< 50%	8 (range 5–10)
> 2.1	> 50%	8 (range 5–10)
> 2.1	< 50%	15 (range 10–20)

IVC, inferior vena cava

Left atrial (LA) pressure (mm Hg) =

Systolic blood pressure – 4 × (Mitral regurgitation velocity)²

LV mass (area length) = $1.05\{[5/6 \text{ A1}(a+d+t)] - [5/6 \text{ A2}(a+d)]\}$

A1 = area of LV short axis using epicardial perimeter

A2 = area of LV short axis using endocardial perimeter

t = myocardial thickness

a = long axis length from widest minor axis radius to apex

b =short axis radius

d = truncated long axis from widest short axis diameter to mitral annulus plane

$$\mathbf{D} \mathbf{p} / \mathbf{d} t = \frac{32,000 \text{ mm Hg}}{\mathbf{d} t \text{ (in seconds)}}$$

Dt, time it takes velocity to go from 1 to 3 m/s

Tei index (myocardial performance index) =

Isovolumic contraction time + Isovolumic relaxation time

Ejection time

SHUNTS

Shunt fraction
$$(Q_p/Q_s) = \frac{(SaO_2 - SvO_2)}{(PvO_2 - PaO_2)}$$

Sao,, systemic arterial oxygen saturation

Svo₂, systemic venous oxygen saturation

Pvo, pulmonary venous oxygen saturation

Pao,, pulmonary arterial oxygen saturation

$$Mvo_2$$
 (%) = $\frac{3 \times (SVCsat) + (IVCsat)}{4}$

Mvo, mixed venous saturation

SVC, superior vena cava

IVC, inferior vena cava

$$Q_p/Q_s$$
 (echo) = $\frac{\text{RVOT Cross-sectional area} \times \text{RVOT TVI}}{\text{LVOT Cross-sectional area} \times \text{LVOT VTI}}$

RVOT, right ventricular outflow tract

VTI, velocity time integral

LVOT, left ventricular outflow tract

ELECTROPHYSIOLOGY/ECG

$$QT_c$$
 (ms) = $\frac{QT}{\sqrt{RR \text{ interval (seconds)}}}$

Heart rate (beats/min) =
$$\frac{60,000}{\text{Cycle length (ms)}}$$

Left ventricular hypertrophy

Limb lead criteria

- (1) R wave in lead I + S wave in lead III > 2.5 mV
- (2) R wave in aVL > 1.1 mV
- (3) R wave in aVF > 2.0 mV
- (4) S wave in aVR > 1.4 mV

Precordial lead criteria

- (1) R wave in V_5 or $V_6 > 2.6$ mV
- (2) R wave in $V_6 + S$ wave in $V_1 > 3.5$ mV
- (3) Largest R wave + largest S wave in precordial leads > 4.5 mV

Cornell criteria

R wave in aVL + S wave in $V_3 > 2.0$ mV for females and 2.8 mV for males

Duke treadmill score (DTS)

DTS = Exercise time (minutes) - (5 × Maximal ST deviation) - (4 × Angina score)

0 = no angina

1 = nonlimiting angina

2 = angina limiting further testing

 $DTS \le -11 = high risk$

DTS - 10 to 4 = moderate risk

DTS $\geq 5 = low risk$

Age-predicted maximal heart rate (beats/min) = 220 - Age

PHARMACODYNAMICS

Volume of distribution (L) =
$$\frac{\text{Amount of drug in body}}{\text{Plasma drug concentration}}$$

Half-life (h) =
$$\frac{0.693 \times \text{Volume of distribution}}{\text{Clearance (L/h)}}$$

MISCELLANEOUS

Cockcroft-Gault

Glomerular filtration rate (mL/min) =
$$\frac{[(140 - Age) \times Weight (kg)]}{72 \times Creatinine}$$

If female, multiply by 0.85

Law of Laplace

Wall tension =
$$\frac{Pressure \times Radius}{Wall thickness}$$

Central perfusion pressure = Mean arterial pressure - Intracranial pressure

Assessment of appropriateness of ascending aorta size to height

$$\frac{\text{Aortic index}}{\text{Height (m)}} = \frac{\text{Maximal cross-sectional area of ascending aorta (cm}^2)}{\text{Height (m)}}$$

If ratio > 10, consider repair of aorta

Cholesterol mg/dL to mmol/L

1 mg/dL = 0.02586 mmol/L; 1 mmol/L = 38.7 mg/dL

Thus, 130 mg/dL = 3.45 mmol/L

Total cholesterol = LDL cholesterol + HDL cholesterol + 0.20 (Triglyceride level)

HDL, high-density lipoprotein; LDL, low-density lipoprotein

STATISTICS

	Disease present	Disease absent
Test result positive	a (True positive)	b (False positive)
Tests result negative	c (False negative)	d (True negative)

Sensitivity =
$$\frac{a}{a+c}$$

Specificity = $\frac{d}{b+d}$

Positive predictive value =
$$\frac{a}{a+b}$$

Negative predictive value =
$$\frac{d}{c+d}$$

Likelihood ratio for a positive test =
$$\frac{\text{Sensitivity}}{1 - \text{Specificity}} = \frac{a/a + c}{b/b + d}$$

Likelihood ratio for a negative test =
$$\frac{1 - Sensitivity}{Specificity} = \frac{c/a + c}{d/b + d}$$

	Outcome positive	Outcome negative
Treated group	а	b
Control group	C	d

Relative risk =
$$\frac{\text{Risk of outcome in treated group}}{\text{Risk of outcome in control group}} = \frac{a/a + b}{c/c + d}$$

Relative risk reduction = $(1 - \text{Relative risk}) \times 100\%$

Absolute risk reduction = Difference in risk of outcome between control group and treated group

Absolute risk reduction = c/c + d - a/a + b

Number needed to treat =
$$\frac{1}{\text{Absolute risk reduction}}$$

Odds ratio =
$$\frac{\text{Number of outcome events/Number of subjects}}{1 - (\text{Number of outcome events/Number of subjects})}$$