Universidade Federal do Ceará - Campus Quixadá QXD0152 - Teoria dos Grafos Cursos de Ciência da Computação e Engenharia de Computação Prof. Atílio Gomes Luiz

Grafos Hamiltonianos

- 1. Para quais valores de r o grafo $K_{r,r}$ é Hamiltoniano?
- 2. O grafo de Grötzsch, exibido na Figura 1, é Hamiltoniano?

Figura 1: Grafo de Grötzsch

- 3. Para n > 1, prove que $K_{n,n}$ possui (n-1)n!/2 ciclos Hamiltonianos.
- 4. Prove que G tem um caminho Hamiltoniano somente se para todo $S \subseteq V(G)$, o número de componentes de G S é no máximo |S| + 1.
- 5. Seja G um grafo 6-regular de ordem 10 e sejam $u,v\in V(G)$. Prove que G,G-v e G-u-v são todos Hamiltonianos.
- 6. Prove que \overline{C}_n é Hamiltoniano para $n \geq 5$.
- 7. Seja G um grafo 3-regular de ordem 12 e H um grafo 4-regular de ordem 11.
 - (a) G + H é Euleriano?
 - (b) G + H é Hamiltoniano?
- 8. Dê um exemplo de um grafo G que é
 - (a) Euleriano mas não Hamiltoniano (Explique por que G não é Hamiltoniano)
 - (b) Hamiltoniano mas não Euleriano (Explique por que G não é Euleriano)
 - (c) nem Euleriano nem Hamiltoniano, mas tem uma trilha Euleriana
- 9. Dê um exemplo de um grafo com as seguintes propriedades ou explique porquê não existe tal exemplo:
 - (a) um grafo Euleriano 2-conexo que não é Hamiltoniano.
 - (b) um grafo G Hamiltoniano que não é Euleriano mas cujo complemento \overline{G} é Euleriano.

- 10. O **grafo subdivisão** de um grafo G é o grafo obtido a partir de G removendo cada aresta uv de G e substituindo-a por um vértice w de grau 2 que tornando-o adjacente a u e a v. É verdade que se o grafo subdivisão de um grafo G é Hamiltoniano, então G é Euleriano?
- 11. Seja G um grafo conexo r-regular de ordem par n tal que \overline{G} também é conexo. Mostre que:
 - (a) ou G ou \overline{G} é Euleriano.
 - (b) ou G ou \overline{G} é Hamiltoniano.
- 12. Sejam G_1 e G_2 dois grafos de ordem $n \geq 3$, cada um satisfazendo a hipótese do Teorema de Dirac sobre grafos Hamiltonianos. Construímos um novo grafo G a partir de $G_1 \cup G_2$ adicionando arestas entre G_1 e G_2 tal que todo vértice de G_1 é ligado a pelo menos metade dos vértices de G_2 de modo que todo vértice de G_2 é ligado a pelo menos metade dos vértices de G_1 . Prove que G é Hamiltoniano.