Московский Физико-Технический Институт

Лабораторная работа по радиотехническим сигналам и цепям

Применение операционных усилителей.

Автор:

Глеб Уваркин 615 группа

24 октября 2017 г.

Задание №1.Измерение коэффициента усиления ОУ.

Рис. 1: Схема измерения коэффициента усиления.

Соберём схему, показанную на рис. 1. Сопротивления резисторов возьмём: $R_1=R_2=R_3=200$ кОм, $R_4=2$ кОм, $R_3/R_4=100$.

Подадим на вход колебание с амплитудой $U_{in}=2.5~\mathrm{B}$ и частотой $f=15~\mathrm{\Gamma}$ ц. Измерим величину напряжений U_a и U_{out} : $U_a=4.4~\mathrm{mB},~U_{out}=2.46~\mathrm{B}.$

Рассчитаем коэффициент усиления операционного усилителя по формуле $A_0=(1+R_3/R_4)\cdot (U_{out}/U_a)$:

$$A_0 = (1+100)\frac{2.46}{4.4 \cdot 10^{-3}} = 56468 \simeq 6 \cdot 10^4$$

Задание №2. Амплитудно-частотная характеристика ОУ.

Для схемы на рис. 1 снимем зависимость коэффициента усиления от частоты (АЧХ), используя формулу:

$$A(f) = \frac{U_{out}}{U_d} = \frac{U_{out}}{U_a} \cdot \frac{U_a}{U_d} = \left(1 + \frac{R_3}{R_4}\right) \cdot \frac{U_{out}}{U_a}.$$

Занесём полученные данные в таблицу 1.

Таблица 1: Зависимость коэффициента усиления от частоты.

<u></u>	50	100	200	500	1000	2000	5000	10000	20000	50000
U_{out}, B	2.48	2.48	2.48	2.48	2.47	2.43	2.21	1.73	1.06	0.76
U_a , мВ	5.55	8.67	16	39	77	152	343	543	131	119
A	45000	29000	16000	6000	3000	1600	651	324	82	65
-l gf	1.7	2	2.3	2.7	3	3.3	3.7	4	4.3	4.7
20lgA, дБ	93	89	84	76	69	64	56	50	38	36

Построим снятую зависимость в двойном логарифмическом масштабе, откладывая частоту в герцах, а коэффициент усиления в децибелах.

Рис. 2: АЧХ ОУ.

Из рис. 2 получаем следующие величины:

$$f_T \simeq 3\,$$
 МГц, $f_{p_0} \simeq 45\,$ кГц

. На частотах $f>f_{p_0}$ усиление падает обратно пропорционально частоте - с крутизной спада -20 дб/декада.

Задание №3. Неинвертирующий усилитель.

Рис. 3: Схема неинвертирующего усилителя.

Соберём схему, возьмём $R_1=2$ кОм, $R_2=200$ кОм, $R_2/R_1=100$.

Измерим постоянное напряжение на выходе $U_{out(dc)} \simeq 68$ мВ. Определим входное напряжение сдвига ОУ: $U_{OS} = U_{out(dc)}/(1+R_2/R_1)$. Получим $U_{OS} \simeq 68/(1+100) \simeq 673$ мкВ.

Снимем зависимость от частоты коэффициента усиления K(f) при $U_{\rm BX}=10$ мВ. Полученные данные занесём в таблицу 2.

Таблица 2: Зависимость коэффициента усиления K(f).

f, Гц	50		200	1						1	l .	I	l		1 <i>M</i>
$U_{\text{вых}}, \; \mathbf{B}$	1.04	1.04	1.04	1.04	1.04	1.03	1.02	0.97	0.9	0.55	0.31	0.21	0.11	0.07	0.03
K	104	104	104	104	104	103	102	97	90	55	31	21	11	7	3

Рис. 4: Зависимость коэффициента усиления K(f).

Из рис. 4 определим граничную частоту F_p по уровню 0.7 относительно коэффициента усиления на низких частотах. Получим $F_p\simeq 31.6~{\rm k}\Gamma{\rm d}$.

Проверим, что коэффициент усиления на низких частотах ($f < F_p$) и граничная частота усилителя удовлетворяет соотношениям: $K_0 = 1/\beta = 1 + R_2/R_1$; $F_p = \beta f_T$, $\beta = R_1/(R_1 + R_2)$ - коэффициент отрицательной обратной связи.

$$\beta = 2/(2 + 200) \simeq 0.01$$

$$K_0 = 1/0.01 = 100 \simeq 101 = 1 + 200/2$$

$$31.6 \cdot 10^3 \simeq 0.01 \cdot 3 \cdot 10^6$$

Все соотношения выполняются.

Определим максимальную амплитуду неискажённого выходного напряжения на низкой частоте f=1.5 к Γ ц. Получим $U_{\scriptscriptstyle \mathrm{BMX}}\simeq 3.2$ В.

Включим ОУ по схеме повторителя ($R_1 = \infty, R_2 = 0$). Измерим коэффициент передачи и граничную частоту усилителя. Определим на частоте $f = 0.8 \ \text{M}$ Гц максимальную амплитуду неискажённого сигнала и характер искажений, возникающих при дальнейшем увеличении амплитуды входного сигнала. Получим $U_{m_out} \simeq 3.0 \; \mathrm{B}$. ("скошенная синусоида").

Таблица 3: Зависимость коэффициента передачи повторителя.

f, Гц	50	100	200	500	1k	2k	5k	10k	20k	1 <i>M</i>	2M	2.5M	2.6M	3.4M	5M	10M
$U_{\text{вых}}, \mathbf{B}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.05	1.00	1.00	0.99	0.60	0.31
K	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.05	1.00	1.00	0.99	0.60	0.31

Рис. 5: Зависимость коэффициента усиления K(f) повторителя.

Из рис. (5) получаем, что граничная частота равна $f \simeq 3 \ \text{M}\Gamma\text{ц}$.

Сравним результат измерения максимальной амплитуды неискажённого сигнала с расчётом по формуле $U_{m_out} = V_{max}/2\pi f$.

$$U_{m_out} = \frac{13 \cdot 10^6}{2\pi \cdot 0.8 \cdot 10^6} \simeq 2.6 \text{ B} \approx 3.0 \text{ B}$$

Задание №4. Инвертирующий усилитель.

Рис. 6: Схема инвертирующего усилителя.

Соберём схему, используя те же резисторы, что в задании №3; определим коэффициент усиления K_0 и граничную частоту F_p . Получим $K_0 = -\frac{97.2 \cdot 10^{-2}}{10^{-2}} = -97.2, \; F_p \simeq 31.8$ к Γ ц

Также получим, что коэффициент усиления $K_0=-\frac{R_2}{R_1}=-\frac{200\cdot 10^3}{2\cdot 10^3}=-100$ и частота F_p имеют те же значения, что и для неинвертирующего усилителя.

Задание №10.1. Фильтр нижних частот.

Рис. 7: Схема фильтра нижних частот.

По заданным значениям частоты среза $f_c=0.8$ к Γ ц и коэффициента затухания lpha=1.5рассчитаем и соберём схему: C=(0.43-0.51) мк $\Phi,\ R=510$ Ом, $R_b=100$ Ом, $R_a=100$ Ом, $R_b=100$ $= 200 \, \, \text{Om}.$

Снимем амплитудно-частотную характеристику фильтра.

Таблица 4: АЧХ фильтра нижних частот ($\alpha = 1.5$).

f, Гц	50	100	200	500	700	800	1k	1.1k	1.5k	2k	5k	10k
K	1.51	1.51	1.47	1.17	0.90	0.75	0.53	0.47	0.27	0.15	0.03	0.01

f, Гц	20k	25k	50k	100k	200k	500k	1 <i>M</i>	2 M	4M	10M	20M
K	0.01	0.01	0.01	0.02	0.04	0.08	0.13	0.17	0.19	0.19	0.18

Рис. 8: AЧX фильтра нижних частот ($\alpha = 1.5$).

Из рис.8 получаем, что $f_c \simeq 600~\Gamma$ ц, а крутизна спада на частотах $f > f_c$ составляет примерно 33.8 дБ/дек.

Изменим коэффициент затухания фильтра: $\alpha=1 \to R_b=R_a=100$ Ом. Повторим измерения.

Таблица 5: AЧX фильтра нижних частот ($\alpha = 1$).

f, Гц	50	100	200	500	700	800	1k	1.1k	1.5k	2k	5k	10k
K	2.01	2.03	2.09	2.23	1.73	1.39	0.92	0.76	0.39	0.22	0.03	0.01

f, Гц	20k	25k	50k	100k	200k	500k	1 <i>M</i>	2 M	4M	10M	20M
K	0.01	0.01	0.01	0.02	0.05	0.09	0.13	0.14	0.15	0.16	0.14

Рис. 9: АЧХ фильтра нижних частот ($\alpha = 1$).

Из рис.9 получаем, что $f_c \simeq 630~\Gamma$ ц, а крутизна спада на частотах $f>f_c$ составляет примерно 37.5 дБ/дек.

Задание №10.2. Фильтр верхних частот.

Рис. 10: Схема фильтра верхних частот.

По заданным значениям частоты среза $f_c=0.8$ к Γ ц и коэффициента затухания $\alpha=1.5$ рассчитаем и соберём схему: C=(0.43-0.51) мк Φ , R=510 Ом, $R_b=100$ Ом, $R_a=200$ Ом.

Снимем амплитудно-частотную характеристику фильтра.

Таблица 6: АЧХ фильтра верхних частот ($\alpha = 1.5$).

<i>f</i> , Гц	50	100	200	500	1k	2k	5k	10k	20k	50k	100k	200k	500k	1 <i>M</i>	2M
K	0.01	0.03	0.13	0.69	1.23	1.38	1.42	1.42	1.41	1.41	1,41	1.39	1.27	1.05	0.62

Рис. 11: АЧХ фильтра верхних частот ($\alpha = 1.5$).

Из рис.11 получаем, что $f_c \simeq 800~\Gamma$ ц, а крутизна нарастания на частотах $f < f_c$ составляет примерно 33.5 дБ/дек.

Изменим коэффициент затухания фильтра: $\alpha=1\to R_b=R_a=100$ Ом. Повторим измерения.

Таблица 7: AЧX фильтра верхних частот ($\alpha = 1$).

<i>f</i> , Гц	50	100	200	500	1k	2k	5k	10k	20k	50k	100k	200k	500k	1 <i>M</i>	2M
K	0.01	0.05	0.19	1.26	1.23	2.14	1.99	1.98	1.97	1.94	1.93	1.85	1.48	1.10	0.44

Рис. 12: АЧХ фильтра верхних частот ($\alpha = 1$).

Из рис. 12 получаем, что $f_c \simeq 630~\Gamma$ ц, а крутизна нарастания на частотах $f < f_c$ составляет примерно 32.5 дБ/дек.

Задание №10.3. Полосовой фильтр.

Рис. 13: Схема полосового фильтра.

По заданным значениям центральной частоты $f_0=800$ Гц и полосы пропускания $\Delta f_{0.7}=1.2$ кГц рассчитаем и соберём схему: C=(0.43-0.51) мк $\Phi,\ R_1=R_3=R=510$ Ом, $R_2=2R\simeq 1$ кОм, $R_b=100$ Ом, $R_a=200$ Ом.

Снимем амплитудно-частотную характеристику фильтра. Построим график АЧХ. Определим полосу пропускания, а также крутизну нарастания и спада.

Таблица 8: АЧХ полосового фильтра.

f, Гц	5	10	50	100	200	400	500	600	700	800	900	1k
K	0.01	0.03	0.14	0.28	0.58	1.29	1.64	1.84	1.85	1.7	1.56	1.38

<i>f</i> , Гц	1.1k	1.5k	2k	2.5k	3k	4k	5k	6k	7k	8k	12k
K	1.26	0.88	0.65	0.51	0.42	0.31	0.25	0.22	0.18	0.16	0.11

Рис. 14: АЧХ полосового фильтра.

Из рис. 14 следует, что $\Delta f_{0.7} \simeq 600$ Гц. Крутизна нарастания равна 22.5 дБ/дек, а крутизна спада - 16 дБ/дек.

Задание №11. Схемы с двойным Т-образным мостом.

11.1. Избирательный усилитель.

Рис. 15: Схема избирательного усилителя с двойным Т-образным мостом.

Исследование проводится с помощью программы *Micro-Cap*.

Центральная частота $f_0 \approx 994$ Гц.

$K = R_2/R_1$	50	100	150	200
Q = (K+1)/4	12.75	25.25	37.75	50.25
$\Delta f_{0.7} = f_0/Q$	78	39	26	20
$\Delta f_{0.7$ _{эксп}	77	40	20	16

11.2. Режекторный фильтр.

Рис. 16: Схема режекторного фильтра с двойным Т-образным мостом.

Исследование проводится с помощью программы *Micro-Cap*.

Центральная частота $f_0 \approx 1$ к Γ ц.

$K = R_2/(R_1 + R_2)$ $\Delta f_{0.7} = 4(1 - K) \cdot f_0$	0.96	0.97	0.98
$\Delta f_{0.7} = 4(1 - K) \cdot f_0$	160	120	80
$\Delta f_{0.7_{ ext{ iny BKCII}}}$	141	72	50