



### Introducing the challenge



#### Introducing the challenge

- Learn from the expert who won DrivenData's challenge
  - Natural language processing
  - Feature engineering
  - Efficiency boosting hashing tricks
- Use data to have a social impact





#### Introducing the challenge

- Budgets for schools are huge, complex, and not standardized
  - Hundreds of hours each year are spent manually labelling
- Goal: Build a machine learning algorithm that can automate the process
- Budget data
  - Line-item: "Algebra books for 8th grade students"
  - Labels: "Textbooks", "Math", "Middle School"
- This is a supervised learning problem





#### Over 100 target variables!

- This is a classification problem
  - Pre\_K:
    - NO\_LABEL
    - Non PreK
    - PreK
  - Reporting:
    - NO\_LABEL
    - Non-School
    - School

- Sharing:
  - Leadership & Management
  - NO\_LABEL
  - School Reported
- Student\_Type:
  - Alternative
  - At Risk
  - •





#### How we can help

• Predictions will be probabilities for each label

|        | FunctionAides Compensation | FunctionCareer<br>& Academic<br>Counseling | FunctionCommunications | <br>Use0&M | UsePupil<br>Services &<br>Enrichment | UseUntracked<br>Budget Set-<br>Aside |
|--------|----------------------------|--------------------------------------------|------------------------|------------|--------------------------------------|--------------------------------------|
| 180042 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 28872  | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 186915 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 412396 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 427740 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |





#### Let's practice!





#### Exploring the data





#### A column for each possible value

|       | Eyes  | Hair     |
|-------|-------|----------|
| Jamal | Brown | Curly    |
| Luisa | Brown | Straight |
| Jenny | Blue  | Wavy     |
| Max   | Blue  | Straight |

|       | Eyes_Blue | Eyes_Brown | Hair_Curly | Hair_Straight | Hair_Wavy |
|-------|-----------|------------|------------|---------------|-----------|
| Jamal | 0         | 1          | 1          | 0             | 0         |
| Luisa | 0         | 1          | 0          | 1             | 0         |
| Jenny | 1         | 0          | 0          | 0             | 1         |
| Max   | 1         | 0          | 0          | 1             | 0         |





#### Load and preview the data

```
In [1]: import pandas as pd
In [2]: sample_df = pd.read_csv('sample_data.csv')
In [3]: sample_df.head()
Out[3]:
        numeric
  label
                          with_missing
                  text
     a -4.167578
                  bar
                             -4.084883
     a -0.562668
                              2.043464
     a -21.361961
                            -33.315334
3
     b 16.402708
                  foo bar
                          30.884604
4
                  foo
    a -17.934356
                            -27.488405
```





#### Summarize the data





#### Summarize the data

```
In [5]: sample_df.describe()
Out[5]:
                    with_missing
          numeric
       100.000000
                       95.000000
count
        -1.037411
                        1.275189
mean
        10.422602
                       17.386723
std
min
       -26.594495
                      -42.210641
25%
        -6.952244
                       -8.312870
                        1.733997
50%
        -0.653688
         5.398819
75%
                       11.777888
        22.922080
                       41.967536
max
```





#### Let's practice!





## Looking at the datatypes





#### Objects instead of categories

```
In [1]: sample_df['label'].head()
Out[1]:
0    a
1    a
2    a
3    b
4    a
Name: label, dtype: object
```





#### Encode labels as categories

- ML algorithms work on numbers, not strings
  - Need a numeric representation of these strings
- Strings can be slow compared to numbers
- In pandas, 'category' dtype encodes categorical data numerically
  - Can speed up code





#### Encode labels as categories (sample data)

```
In [1]: sample_df.label.head(2)
Out[1]:
Name: label, dtype: object
In [2]: sample_df.label = sample_df.label.astype('category')
In [3]: sample_df.label.head(2)
Out[3]:
Name: label, dtype: category
Categories (2, object): [a, b]
```



#### Dummy variable encoding

```
In [4]: dummies = pd.get_dummies(sample_df[['label']], prefix_sep='_')
In [5]: dummies.head(2)
Out[5]:
    label_a label_b
0     1     0
1     0     1
```

Also called a 'binary indicator' representation





#### Lambda functions

- Alternative to 'def' syntax
- Easy way to make simple, one-line functions

```
In [6]: square = lambda x: x*x
In [6]: square(2)
Out[6]: 4
```



#### Encode labels as categories

- In the sample dataframe, we only have one relevant column
- In the budget data, there are multiple columns that need to be made categorical





#### Encode labels as categories

```
In [7]: categorize_label = lambda x: x.astype('category')
In [8]: sample_df.label = sample_df[['label']].apply(categorize_label,
                        axis=0)
   • • • •
In [9]: sample_df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 100 entries, 0 to 99
Data columns (total 4 columns):
label
     100 non-null category
numeric 100 non-null float64
     100 non-null object
text
with_missing 95 non-null float64
dtypes: category(1), float64(2), object(1)
memory usage: 3.2+ KB
```





#### Let's practice!





# How do we measure success?





#### How do we measure success?

- Accuracy can be misleading when classes are imbalanced
  - Legitimate email: 99%, Spam: 1%
  - Model that never predicts spam will be 99% accurate!
- Metric used in this problem: log loss
  - It is a loss function
  - Measure of error
  - Want to minimize the error (unlike accuracy)





#### Log loss binary classification

- Log loss for binary classification
  - Actual value:  $y = \{1=yes, o=no\}$
  - Prediction (probability that the value is 1): p

$$log loss = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$



#### Log loss binary classification: example

$$log los s_{(N=1)} = y \log(p) + (1 - y) \log(1 - p)$$

- True label = o
- Model confidently predicts 1 (with p = 0.90)
- Log loss =  $(1 y) \log(1 p)$ =  $\log(1 - 0.9)$ =  $\log(0.1)$





#### Log loss binary classification: example

$$log los s_{(N=1)} = y \log(p) + (1 - y) \log(1 - p)$$

- True label = 1
- Model predicts o (with p = 0.50)
- Log loss = 0.69
- Better to be less confident than confident and wrong





#### Computing log loss with NumPy

logloss.py

```
import numpy as np
def compute_log_loss(predicted, actual, eps=1e-14):
    """ Computes the logarithmic loss between predicted and
        actual when these are 1D arrays.
        :param predicted: The predicted probabilities as floats between 0-1
        :param actual: The actual binary labels. Either 0 or 1.
        :param eps (optional): log(0) is inf, so we need to offset our
                               predicted values slightly by eps from 0 or 1.
    11 11 11
    predicted = np.clip(predicted, eps, 1 - eps)
    loss = -1 * np.mean(actual * np.log(predicted)
              + (1 - actual)
              * np.log(1 - predicted))
    return loss
```





#### Computing log loss with NumPy

```
In [1]: compute_log_loss(predicted=0.9, actual=0)
Out[1]: 2.3025850929940459
In [2]: compute_log_loss(predicted=0.5, actual=1)
Out[2]: 0.69314718055994529
```





#### Let's practice!





## lt's time to build a model



#### It's time to build a model

- Always a good approach to start with a very simple model
- Gives a sense of how challenging the problem is
- Many more things can go wrong in complex models
- How much signal can we pull out using basic methods?





#### It's time to build a model

- Train basic model on numeric data only
  - Want to go from raw data to predictions quickly
- Multi-class logistic regression
  - Train classifier on each label separately and use those to predict
- Format predictions and save to csv
- Compute log loss score





#### Splitting the multi-class dataset

- Recall: Train-test split
  - Will not work here
  - May end up with labels in test set that never appear in training set
- Solution: StratifiedShuffleSplit
  - Only works with a single target variable
  - We have many target variables
  - multilabel\_train\_test\_split()





#### Splitting the data





#### Training the model

```
In [4]: from sklearn.linear_model import LogisticRegression
In [5]: from sklearn.multiclass import OneVsRestClassifier
In [6]: clf = OneVsRestClassifier(LogisticRegression())
In [7]: clf.fit(X_train, y_train)
```

- OneVsRestClassifier:
  - Treats each column of y independently
  - Fits a separate classifier for each of the columns





#### Let's practice!





### Making predictions





#### Predicting on holdout data

```
In [1]: holdout = pd.read_csv('HoldoutData.csv', index_col=0)
In [2]: holdout = holdout[NUMERIC_COLUMNS].fillna(-1000)
In [3]: predictions = clf.predict_proba(holdout)
```

- If .predict() was used instead:
  - Output would be o or 1
  - Log loss penalizes being confident and wrong
  - Worse performance compared to .predict\_proba()





#### Submitting your predictions as a csv

|        | FunctionAides Compensation | FunctionCareer<br>& Academic<br>Counseling | FunctionCommunications | <br>UseO&M | UsePupil<br>Services &<br>Enrichment | UseUntracked<br>Budget Set-<br>Aside |
|--------|----------------------------|--------------------------------------------|------------------------|------------|--------------------------------------|--------------------------------------|
| 180042 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 28872  | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 186915 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 412396 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |
| 427740 | 0.027027                   | 0.027027                                   | 0.027027               | <br>0.125  | 0.125                                | 0.125                                |

All formatting can be done with the pandas to\_csv function





#### Format and submit predictions





#### Driven Data leaderboard

|    | User or team       | Public 🛈 🕏 | Private 🔺 | Timestamp <b>1</b>           | Trend \$                               | # Entries 💠 |
|----|--------------------|------------|-----------|------------------------------|----------------------------------------|-------------|
|    | quocnle            | 0.3665     | 0.3650    | Jan. 6, 2015, 12:27 a.m.     | him.                                   | 96          |
|    | Abhishek           | 0.4409     | 0.4388    | Jan. 6, 2015, 4:09 p.m.      |                                        | 71          |
|    | giba               | 0.4551     | 0.4534    | Jan. 5, 2015, 4:52 p.m.      | <b></b>                                | 34          |
|    | trev               | 0.5054     | 0.5001    | Jan. 3, 2015, 2 a.m.         | ٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠ | 23          |
|    | Карра              | 0.5228     | 0.5195    | Jan. 6, 2015, 11:46 p.m.     | ~~~                                    | 17          |
|    | bamine             | 0.5344     | 0.5298    | Dec. 12, 2014, 12:52<br>a.m. |                                        | 39          |
|    | futuristic reality | 0.5512     | 0.5477    | Nov. 24, 2014, 8:54<br>a.m.  | ^                                      | 22          |
|    | JesseBuesking      | 0.5584     | 0.5556    | Jan. 6, 2015, 4:51 p.m.      |                                        | 15          |
| 99 | mkrump             | 0.5817     | 0.5769    | Jan. 3, 2015, 5:12 p.m.      | mhmh                                   | 57          |
| 1  | joel314            | 0.5806     | 0.5772    | Dec. 10, 2014, 4:41<br>p.m.  | ~~~                                    | 63          |





#### Let's practice!





# A very brief introduction to NLP





#### A very brief introduction to NLP

- Data for NLP:
  - Text, documents, speech, ...
- Tokenization
  - Splitting a string into segments
  - Store segments as list
- Example: 'Natural Language Processing'
  - —> ['Natural', 'Language', 'Processing']





#### Tokens and token patterns

Tokenize on whitespace

PETRO-VEND FUEL AND FLUIDS

PETRO-VEND I FUEL I AND I FLUIDS

• Tokenize on whitespace and punctuation

PETRO-VEND FUEL AND FLUIDS

PETRO I VEND I FUEL I AND I FLUIDS





#### Bag of words representation

- Count the number of times a particular token appears
- "Bag of words"
  - Count the number of times a word was pulled out of the bag
- This approach discards information about word order
  - "Red, not blue" is the same as "blue, not red"





#### 1-gram, 2-gram, ..., n-gram







#### Let's practice!





## Representing text numerically



#### Representing text numerically

- Bag-of-words
  - Simple way to represent text in machine learning
  - Discards information about grammar and word order
  - Computes frequency of occurrence





#### Scikit-learn tools for bag-of-words

- CountVectorizer()
  - Tokenizes all the strings
  - Builds a 'vocabulary'
  - Counts the occurrences of each token in the vocabulary





#### Using CountVectorizer() on column of main dataset

```
In [1]: from sklearn.feature_extraction.text import CountVectorizer
In [2]: TOKENS_BASIC = '\\S+(?=\\s+)'
In [3]: df.Program_Description.fillna('', inplace=True)
In [4]: vec_basic = CountVectorizer(token_pattern=TOKENS_BASIC)
```



#### Using CountVectorizer() on column of main dataset

```
In [5]: vec_basic.fit(df.Program_Description)
Out[5]:
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
        dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
        lowercase=True, max_df=1.0, max_features=None, min_df=1,
        ngram_range=(1, 1), preprocessor=None, stop_words=None,
        strip_accents=None, token_pattern='\\S+(?=\\s+)',
        tokenizer=None, vocabulary=None)
In [6]: msg = 'There are {} tokens in Program_Description if tokens are
any non-whitespace'
In [7]: print(msg.format(len(vec_basic.get_feature_names())))
There are 157 tokens in Program_Description if tokens are any non-
whitespace
```





#### Let's practice!





#### Pipelines, feature & text preprocessing



#### The pipeline workflow

- Repeatable way to go from raw data to trained model
- Pipeline object takes sequential list of steps
  - Output of one step is input to next step
- Each step is a tuple with two elements
  - Name: string
  - Transform: obj implementing .fit() and .transform()
- Flexible: a step can itself be another pipeline!





#### Instantiate simple pipeline with one step





#### Train and test with sample numeric data

```
In [5]: sample_df.head()
Out[5]:
                              with_missing
  label
           numeric
                       text
         -4.167578
                        bar
                                 -4.084883
         -0.562668
                                  2.043464
                                -33.315334
        -21.361961
                    foo bar
         16.402708
                                 30.884604
      a -17.934356
                         foo
4
                                -27.488405
```





#### Train and test with sample numeric data

```
In [6]: from sklearn.model_selection import train_test_split
In [7]: X_train, X_test, y_train, y_test = train_test_split(
                                            sample_df[['numeric']],
   • • • •
                                            pd.get_dummies(sample_df['label']),
                                            random_state=2)
   • • • •
In [8]: pl.fit(X_train, y_train)
Out[8]:
Pipeline(steps=[('clf', OneVsRestClassifier(estimator=LogisticRegression(C=1.0,
class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False),
          n_jobs=1))])
```



#### Train and test with sample numeric data

```
In [9]: accuracy = pl.score(X_test, y_test)
In [10]: print('accuracy on numeric data, no nans: ', accuracy)
accuracy on numeric data, no nans: 0.44
```



#### Adding more steps to the pipeline





#### Preprocessing numeric features with missing data



#### Preprocessing numeric features with missing data

```
In [16]: pipeline.fit(X_train, y_train)
In [17]: accuracy = pl.score(X_test, y_test)
In [18]: print('accuracy on all numeric, incl nans: ', accuracy)
accuracy on all numeric, incl nans: 0.48
```

No errors!





#### Let's practice!





### Text features and and feature unions





#### Preprocessing text features





#### Preprocessing text features

```
In [4]: pl.fit(X_train, y_train)
Out[4]:
Pipeline(steps=[('vec', CountVectorizer(analyzer='word', binary=False,
decode_error='strict', dtype=<class 'numpy.int64'>, encoding='utf-8',
input='content', lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None, strip_...=None,
solver='liblinear', tol=0.0001, verbose=0, warm_start=False), n_jobs=1))])
In [5]: accuracy = pl.score(X_test, y_test)
In [6]: print('accuracy on sample data: ', accuracy)
accuracy on sample data: 0.64
```



#### Preprocessing multiple dtypes

- Want to use <u>all</u> available features in one pipeline
- Problem
  - Pipeline steps for numeric and text preprocessing can't follow each other
  - e.g., output of CountVectorizer can't be input to Imputer
- Solution
  - FunctionTransformer() & FeatureUnion()



#### FunctionTransformer

- Turns a Python function into an object that a scikit-learn pipeline can understand
- Need to write two functions for pipeline preprocessing
  - Take entire DataFrame, return numeric columns
  - Take entire DataFrame, return text columns
- Can then preprocess numeric and text data in separate pipelines



#### Putting it all together



#### Putting it all together





#### FeatureUnion Text and Numeric Features

#### **Text Features**

#### **Numeric Features**









# Putting it all together

```
In [14]: numeric_pipeline = Pipeline([
                              ('selector', get_numeric_data),
   • • • •
                              ('imputer', Imputer())
   • • • •
   • • • •
In [15]: text_pipeline = Pipeline([
                               ('selector', get_text_data),
    • • • •
                               ('vectorizer', CountVectorizer())
    • • • •
    • • •
In [16]: pl = Pipeline([
    ...: ('union', FeatureUnion([
                  ('numeric', numeric_pipeline),
                  ('text', text_pipeline)
              ('clf', OneVsRestClassifier(LogisticRegression()))
```





# Let's practice!





MACHINE LEARNING WITH THE EXPERTS

# Choosing a classification model





#### Main dataset: lots of text





#### Using pipeline with the main dataset





#### Using pipeline with the main dataset

```
In [10]: get_text_data = FunctionTransformer(combine_text_columns,
                                                validate=False)
    • • • •
In [11]: get_numeric_data = FunctionTransformer(lambda x:
                             x[NUMERIC_COLUMNS], validate=False)
    • • • •
In [12]: pl = Pipeline([
                  ('union', FeatureUnion([
                          ('numeric_features', Pipeline([
    • • •
                               ('selector', get_numeric_data),
    • • •
                               ('imputer', Imputer())
    . . . .
                          ])),
                          ('text_features', Pipeline([
    • • •
                               ('selector', get_text_data),
                               ('vectorizer', CountVectorizer())
                          ]))
                  ('clf', OneVsRestClassifier(LogisticRegression()))
    . . . .
             ])
    • • • •
```





# Performance using main dataset

```
In [13]: pl.fit(X_train, y_train)
Out[13]:
Pipeline(steps=[('union', FeatureUnion(n_jobs=1,
    transformer_list=[('numeric_features', Pipeline(steps=[('selector',
    FunctionTransformer(accept_sparse=False, func=<function <lambda> at
    0x11415ec80>, pass_y=False, validate=False)), ('imputer', Imputer(axis=0,
    copy=True, missing_valu...=None, solver='liblinear', tol=0.0001, verbose=0,
    warm_start=False),n_jobs=1))])
```





# Flexibility of model step

- Is current model the best?
- Can quickly try different models with pipelines
  - Pipeline preprocessing steps unchanged
  - Edit the model step in your pipeline
  - Random Forest, Naïve Bayes, k-NN





### Easily try new models using pipeline

```
In [14]: from sklearn.ensemble import RandomForestClassifier
  [15]: pl = Pipeline([
                 ('union', FeatureUnion(
                     transformer_list = [
                         ('numeric_features', Pipeline([
                              ('selector', get_numeric_data),
    . . . .
                             ('imputer', Imputer())
                         ])),
                         ('text_features', Pipeline([
                              ('selector', get_text_data),
                              ('vectorizer', CountVectorizer())
                         ]))
                         OneVsRest(RandomForestClassifier()))
```





# Let's practice!





# Learning from the expert: processing





# Learning from the expert

- Text processing
- Statistical methods
- Computational efficiency







#### Learning from the expert: text preprocessing

- NLP tricks for text data
  - Tokenize on punctuation to avoid hyphens, underscores, etc.
  - Include unigrams and bi-grams in the model to capture important information involving multiple tokens - e.g., 'middle school'





# N-grams and tokenization

- Simple changes to CountVectorizer
  - alphanumeric tokenization
  - ngram\_range=(1, 2)





## Range of n-grams in scikit-learn





## Range of n-grams in scikit-learn





# Let's practice!





# Learning from the expert: a stats trick



#### Learning from the expert: interaction terms

- Statistical tool that the winner used: interaction terms
- Example
  - English teacher for 2nd grade
  - 2nd grade budget for English teacher
- Interaction terms mathematically describe when tokens appear together





#### Interaction terms: the math

$$\beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1 \times x_2)$$

| X1 | X2 |
|----|----|
| 0  | 1  |
| 1  | 1  |

$$X3$$
 $X1*X2 = 0*1 = 0$ 
 $X1*X2 = 1*1 = 1$ 





#### Adding interaction features with scikit-learn

```
In [1]: from sklearn.preprocessing import PolynomialFeatures
In [2]: x
Out[2]:
In [3]: interaction = PolynomialFeatures(degree=2,
                                         interaction_only=True,
                                         include_bias=False)
In [4]: interaction.fit_transform(x)
Out[4]:
array([[ 0., 1., 0.],
```





#### A note about bias terms



 Bias term allows model to have non-zero y value when x value is zero





## Sparse interaction features

- The number of interaction terms grows exponentially
- Our vectorizer saves memory by using a sparse matrix
- PolynomialFeatures does not support sparse matrices
- We have provided SparseInteractions to work for this problem





# Let's practice!





# Learning from the expert: a computational trick and the winning model



### Learning from the expert: hashing trick

- Adding new features may cause enormous increase in array size
- Hashing is a way of increasing memory efficiency



Hash function limits possible outputs, fixing array size





# When to use the hashing trick

- Want to make array of features as small as possible
  - Dimensionality reduction
- Particularly useful on large datasets
  - e.g., lots of text data!





#### Implementing the hashing trick in scikit-learn





#### The model that won it all

- You now know all the expert moves to make on this dataset
  - NLP: Range of n-grams, punctuation tokenization
  - Stats: Interaction terms
  - Computation: Hashing trick
- What class of model was used?







#### The model that won it all

- And the winning model was...
- Logistic regression!
  - Carefully create features
  - Easily implemented tricks
- Favor simplicity over complexity and see how far it takes you!





# Let's practice!





# Next steps and the social impact of your work



## Can you do better?

- You've seen the flexibility of the pipeline steps
- Quickly test ways of improving your submission
  - NLP: Stemming, stop-word removal
  - Model: RandomForest, k-NN, Naïve Bayes
  - Numeric Preprocessing: Imputation strategies
  - Optimization: Grid search over pipeline objects
  - Experiment with new scikit-learn techniques
- Work with the full dataset at DrivenData!





#### Hundreds of hours saved

- Make schools more efficient by improving their budgeting decisions
- Saves hundreds of hours each year that humans spent labeling line items
- Can spend more time on the decisions that really matter



#### DrivenData: Data Science to save the world

- Other ways to use data science to have a social impact at www.drivendata.org
  - Improve your data science skills while helping meaningful organizations thrive
  - Win some cash prizes while you're at it!





# Go out and change the world!