

Tensor Visualization

Visualizing the Diffusion Tensor

Scientific Visualization Professor Eric Shaffer

The Diffusion Tensor

- consider an anisotropic material (e.g. tissue in the human brain)
- water diffuses in this tissue
 - strongly along neural fibers
 - weakly across fibers

Actual image of a dissected human brain

Diffusion tensor

 $D(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$ diffusivity at a point x in a direction s

speed of water motion in tissue

The Diffusion Tensor

First visualization try

- compute hessian $H = \{h_{ij}\}$ in \mathbb{R}^3
- select some slice of interest
- visualize all components h_{ij} using e.g. color mapping

Simple, but not very useful

- we get a lot of images (9)...
- we see the tensor is symmetric...
- ...but we don't really care about diffusion along x, y, z axes!

- fix some point x_0 on the surface
- compute $C(x_0,s)$ for all possible tangent directions s at x_0
- denote α = angle of s with local coordinate axis x_0

So we have

$$\frac{\partial^2 f}{\partial s^2} = s^T H s = h_{11} \cos^2 \alpha + (h_{12} + h_{21}) \sin \alpha \cos \alpha + h_{22} \cos^2 \alpha$$

Now, let's look for the values of α for which this function is extremal!

Our curvature (as function of α) is extremal when $\frac{\partial C}{\partial \alpha} = 0$

This is equivalent to a system of equations

$$\begin{cases} h_{11}\cos\alpha + h_{12}\sin\alpha &= \lambda\cos\alpha \\ h_{21}\cos\alpha + h_{22}\sin\alpha &= \lambda\sin\alpha, \end{cases}$$
 which in matrix form is $H\mathbf{s} = \lambda\mathbf{s}$ or $(H - \lambda I)\mathbf{s} = 0$

Since we're looking for the non-trivial solution $s \neq 0$ this means

$$\det(H - \lambda I) = (h_{11} - \lambda)(h_{22} - \lambda) - h_{12}h_{21} = 0$$

Solving the above 2^{nd} order equation in λ yields

• two real values λ_1 , λ_2 eigenvalues (principal values) of tensor

Plugging λ_1 , λ_2 into $H_S = \lambda_S$ yields

• two direction vectors \mathbf{s}_1 , \mathbf{s}_2 eigenvectors (principal directions) of tensor

Summarizing

- Given a 2x2 tensor, we can compute its principal directions and values
- directions: those in which tensor has extremal (minimal, maximal) values
- can be shown that eigendirections are orthogonal to each other
- eigenvalues: the actual minimal and maximal values

How about a 3x3 tensor, like the diffusion tensor?

•3 eigenvalues, 3 eigenvectors (computed similarly, see Sec. 7.1) Say we order eigenvalues (and their vectors) as $\lambda_1 > \lambda_2 > \lambda_3$

λ_1, \mathbf{s}_1	major eigenvector i.e. direction of strongest diffusion
$\overline{\lambda_2, \mathbf{s_2}}$	medium eigenvector (no particular meaning)
$\lambda_3, \mathbf{s_3}$	minor eigenvector i.e. direction of weakest diffusion

What if two or more eigenvalues are equal (so we cannot fully order them all)?

a,b) all values ordered: unique eigendirections

How to use PCA for visualization?

Visualize mean diffusivity $\mu = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$

white: strong mean diffusivity black: weak mean diffusivity

Linear diffusivity
$$c_l = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}$$

Fractional anisotropy
$$FA = \sqrt{\frac{3}{2}} \frac{\sqrt{\sum_{i=1}^{3} (\lambda_i - \mu)^2}}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}$$
 where $\mu = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)$

where
$$\mu = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)$$

Relative anisotropy
$$RA = \sqrt{\frac{3}{2}} \frac{\sqrt{\sum_{i=1}^{3} (\lambda_i - \mu)^2}}{\lambda_1 + \lambda_2 + \lambda_3}$$

All above measures estimate how much 'fiber-like' is the current point

(a) c_l linear estimator

(b) fractional anisotropy

(c) relative anisotropy

white: strong fibers

Exploit the directional information in the eigenvectors

- major eigenvector e_1 : along the **strongest** diffusion direction
- for DTI tensors, it thus indicates fiber directions

Directional color coding

- like for vectors (see Module 4)
- use simple colormap

$$R = |\mathbf{e}_1 \cdot \mathbf{x}|,$$

 $G = |\mathbf{e}_1 \cdot \mathbf{y}|,$
 $B = |\mathbf{e}_1 \cdot \mathbf{z}|.$

- use vector glyphs / hedgehogs
- seed only points where
 c₁, FA or RA are large enough
 (other points don't cover fibers)
- OK, but takes training to grasp

Vector PCA

- Directional color coding
 - like before, but simply color points by direction
 - no glyphs drawn
 - no occlusion/clutter
 - direction coded only by color less intuitive images

Tensor Glyphs

So far, we only visualized the major eigenvector e_1

- so we reduced a tensor field to a vector field
- we **threw away** existing information (medium+minor eigenvectors e_2,e_3)

Ellipsoid glyph: Use all eigenvalues + eigenvectors

- orient glyph along eigensystem (e₁,e₂,e₃)
- scale it by eigenvalues (λ₁,λ₂,λ₃)

Tensor Glyphs

Tensor Glyphs

Zoom-in on brain DT-MRI dataset

- a) ellipsoids
- b) cuboids
- c) cylinders
- d) superquadrics

Superquadrics look arguably most 'natural'

