Введение в искусственный интеллект. Машинное обучение Лекция 4. Вероятностный подход

МаТИС

15 марта 2019г.

Определения в одномерном случае

- Пусть дана некоторая вероятностная мера Р
- X случайная величина
- ullet $F(x) = F_X(x) := P(X < x)$ функция распределения
- $p(x) = p_X(x) := \frac{d}{dx} F_X(x)$ плотность распределения

Дискретный случай

$$P(x_i) = p_i$$

плотности не существует

Непрерывный случай

 $P(x_i) = 0$, но если рассмотреть окрестность, то вероятность уже не нулевая

$$p(x_i) \geq 0$$

Определения в многомерном случае

- ullet Пусть дана некоторая вероятностная мера P
- ullet $X = (X_1, ..., X_n)$ многомерная случайная величина
- $F(x_1,...,x_n) = F_X(x) := P(X_i < x_i \text{ для всех i}) функция распределения$
- $p(x) = p_X(x) := \frac{\partial^n}{\partial x_1 \dots \partial x_n} F_X(x)$ плотность распределения

Вероятностная постановка задач машинного обучения

Предположения

Пусть известно совместное распределение p(x,y) на $X \times Y$ Пусть задана функция потерь L(a(x),y)

Определение

Средняя величина потерь для алгоритма a(x)

$$R(a) = \iint L(a(x), y) dP(x, y) = \iint L(a(x), y) p(x, y) dxdy$$

Задача

Найти такой $a^*(x)$, что $a^*(x) = \arg\min_{a} R(a)$.

Будем называть модель a^* оптимальной и R^* — значение среднего риска.

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

$$E((y - a(x))^2|x) = E((y - E(y|x) + E(y|x) - a(x))^2|x) =$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

$$E((y - a(x))^{2}|x) = E((y - E(y|x) + E(y|x) - a(x))^{2}|x) =$$

$$= E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x) - 2E(y - E(y|x)|x) E(a(x) - E(y|x)|x)$$

Теорема

Если $L(a(x),y)=(a(x)-y)^2$, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Лемма

$$E((y - a(x))^{2}|x) = E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x)$$

Доказательство

$$E((y - a(x))^{2}|x) = E((y - E(y|x) + E(y|x) - a(x))^{2}|x) =$$

$$= E((y - E(y|x))^{2}|x) + E((a(x) - E(y|x))^{2}|x) - 2E(y - E(y|x)|x) E(a(x) - E(y|x)|x)$$

Последнее слагаемое равно нулю, так как

$$E(y - E(y|x)|x) = E(y|x) - E(E(y|x)|x) = E(y|x) - E(y|x) = 0.$$

Теорема

Если
$$L(a(x),y)=(a(x)-y)^2$$
, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

Теорема

Если
$$L(a(x),y)=(a(x)-y)^2$$
, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

$$R(a) = \iint L(a(x), y)p(x, y)dydx = \iint (a(x) - y)^2 p(x, y)dydx = \iint L(a(x), y)p(x, y)dydx$$

Теорема

Если
$$L(a(x),y)=(a(x)-y)^2$$
, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

$$R(a) = \iint L(a(x), y)p(x, y)dydx = \iint (a(x) - y)^2 p(x, y)dydx = (a(x) - y)^2 p(y|x)dyp(x)dx = \iint E((y - a(x))^2|x)p(x)dx$$

Теорема

Если
$$L(a(x),y)=(a(x)-y)^2$$
, то величина средних потерь минимальна при

$$a^* = E(y|x)$$

$$R(a) = \iint L(a(x),y)p(x,y)dydx = \iint (a(x)-y)^2p(x,y)dydx =$$

= $(a(x)-y)^2p(y|x)dyp(x)dx = \int E((y-a(x))^2|x)p(x)dx$ Применяя лемму, получаем: $R(a) = \int E((y-a(x))^2|x)p(x)dx = \int E\left((y-E(y|x))^2|x\right)p(x)dx +$
 $\int E\left((a(x)-E(y|x))^2|x\right)p(x)dx \geq \int E\left((y-E(y|x))^2|x\right)p(x)dx$, что и требовалось доказать.

Принцип максимума апостериорной вероятности

Вопрос

Как разделить объекты из этих двух плотностей при известном совместном распределении p(x,y)?

Оптимальный байесовский классификатор

Функция потерь

Если $L(a(x),y)=\lambda_y\geq 0$, если $a(x)\neq y$

Теорема

Минимум средних потерь при функции потерь L(a(x),y) достигается байесовским классификатором

$$a(x) = \underset{y}{\operatorname{arg \, max}} \lambda_y p(y|x) = \underset{y}{\operatorname{arg \, max}} \lambda_y p(y) p(x|y)$$

Оптимальный байесовский классификатор

Функция потерь

Если $L(a(x),y)=\lambda_y\geq 0$, если $a(x)\neq y$

Теорема

Минимум средних потерь при функции потерь L(a(x), y) достигается байесовским классификатором

$$a(x) = \underset{y}{\operatorname{arg\,max}} \lambda_y p(y|x) = \underset{y}{\operatorname{arg\,max}} \lambda_y p(y) p(x|y)$$

Следствие

Оптимальное правило классификации при одинаковых штрафах за ошибку максимизирует апостериорную вероятность класса

• Распределения в реальной жизни никогда не известны

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

• Восстановить плотность распределения по входным данным

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

- Восстановить плотность распределения по входным данным
- Сделать предположение о параметрическом семействе функции распределения и по данным настроить параметры

- Распределения в реальной жизни никогда не известны
- В реальной жизни у нас есть лишь обучающая выборка, то есть сэмплы распределений

Основные подходы

- Восстановить плотность распределения по входным данным
- Сделать предположение о параметрическом семействе функции распределения и по данным настроить параметры
- Уменьшать эмпирический риск в надежде, что средний риск тоже будет уменьшен

Метод ближайшего соседа

Теорема (Cover-Hart inequality)

1. Для задачи двуклассовой классификации с функцией потерь L(a(x), y) = [a(x)! = y] и непрерывной функцией $\eta(x) = P(y = 1|x)$ выполнено неравенство:

$$R^* \le R^{1-NN}(\infty) \le 2R^*(1-R^*),$$

где $R^{1-NN}(n) = E \ R^n(x)$ — математическое ожидание эмпирического риска метода одного ближайшего соседа для выборки размера n, а $R^{1-NN}(\infty) = \lim_{n \to \infty} R^{1-NN}(n)$.

Метод ближайшего соседа

Teopeмa (Cover-Hart inequality)

1. Для задачи двуклассовой классификации с функцией потерь L(a(x), y) = [a(x)! = y] и непрерывной функцией $\eta(x) = P(y = 1|x)$ выполнено неравенство:

$$R^* \le R^{1-NN}(\infty) \le 2R^*(1-R^*),$$

где $R^{1-NN}(n)=E$ $R^n(x)$ — математическое ожидание эмпирического риска метода одного ближайшего соседа для выборки размера n, а $R^{1-NN}(\infty)=\lim_{n\to\infty}R^{1-NN}(n)$.

2. В аналогичных условия для многоклассовой (М классов) классификации выполнено

$$R^* \le R^{1-NN}(\infty) \le R^*(2 - \frac{M}{M-1}R^*).$$

Метод ближайшего соседа

Теорема (Cover-Hart inequality)

1. Для задачи двуклассовой классификации с функцией потерь L(a(x), y) = [a(x)! = y] и непрерывной функцией $\eta(x) = P(y = 1|x)$ выполнено неравенство:

$$R^* \le R^{1-NN}(\infty) \le 2R^*(1-R^*),$$

где $R^{1-NN}(n)=E$ $R^n(x)$ — математическое ожидание эмпирического риска метода одного ближайшего соседа для выборки размера n, а $R^{1-NN}(\infty)=\lim_{n\to\infty}R^{1-NN}(n)$.

2. В аналогичных условия для многоклассовой (М классов) классификации выполнено

$$R^* \le R^{1-NN}(\infty) \le R^*(2 - \frac{M}{M-1}R^*).$$

Следствие

Если $R^* = 0$ или $R^1 = \frac{1}{2}$, то $R^{1-NN}(\infty) = R^*$.

Классификация двух многомерных нормальных распределений

Распределения

Пусть $Y=\{0,1\}$, $X=\mathbb{R}^n$ и

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_y)}} exp\left(-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right),$$

где μ_y — вектор математического ожидания в классе y, а Σ_y — ковариационная матрица распределения x в классе y

Разделяющая поверхность

$$0 = ln \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)} = ln \frac{p_1}{p_0} + ln \frac{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_1)}} exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma_1^{-1}(x-\mu_1)\right)}{\frac{1}{\sqrt{(2\pi)^n det(\Sigma_0)}} exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma_0^{-1}(x-\mu_0)\right)} = ln \frac{p_1}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)} = ln \frac{p_2}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)} = ln \frac{p_2}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)} = ln \frac{p_2}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)} = ln \frac{p_2}{p(x|y=0)p(y=0)} = ln \frac{p_2}{p(x|y=0)}$$

Классификация двух многомерных нормальных распределений

Распределения

Пусть $Y=\{0,1\}$, $X=\mathbb{R}^n$ и

$$p(x|y) = \frac{1}{\sqrt{(2\pi)^n det(\Sigma_y)}} exp\left(-\frac{1}{2}(x-\mu_y)^T \Sigma_y^{-1}(x-\mu_y)\right),$$

где μ_y — вектор математического ожидания в классе y, а Σ_y — ковариационная матрица распределения x в классе y

Разделяющая поверхность

$$0 = \ln \frac{p_1}{p_0} + \frac{1}{2} \ln \frac{\det K_0}{\det K_1} + \frac{1}{2} (x - \mu_0)^T \Sigma_0^{-1} (x - \mu_0) - \frac{1}{2} (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1)$$

Квадратичный дискриминант и линейный дискриминант

Разделяющая поверхность в общем случае

$$a(x) = \frac{1}{2}x^{T}Ax + (w, x) - b = 0,$$

где
$$A = \Sigma_0^{-1} - \Sigma_1^{-1},$$
 $w = \mu_1^T \Sigma_1^{-1} - \mu_0^T \Sigma_0^{-1},$ $b = \ln \frac{\rho_1}{\rho_0} + \frac{1}{2} \ln \frac{\det \Sigma_0}{\det \Sigma_1} - \mu_1^T \Sigma_1^{-1} \mu_1 + \mu_0^T \Sigma_0^{-1} \mu_0.$

Разделяющая поверхность при $\Sigma_0 = \Sigma_1$

$$a(x)=(w,x)-b=0,$$

где
$$w = (\mu_1 - \mu_0)^T \Sigma^{-1},$$

 $b = \ln \frac{\rho_1}{\rho_0} - \frac{1}{2} (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_0 + \mu_1).$

Квадратичный дискриминант и линейный дискриминант 1

¹https://scikit-learn.org/stable/auto examples/classification/plot lda gda.html

Наивный байесовский классификатор

Предположение

Все признаки являются независимыми случайными величинами $p(x|y) = \prod\limits_{i} p_i(x_i|y)$

Восстановление одномерной плотности гораздо более простая задача, чем восстановление многомерной.

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

$$L(\theta, X_{train}) = \prod_{i} p(x_i|\theta) \to \max_{\theta}$$

Принцип максимума правдоподобия

Задача

Пусть $p(x) = p(x|\theta)$ — параметрическая модель распределения

Принцип максимума правдоподобия

$$L(\theta, X_{train}) = \prod_{i} p(x_i|\theta) \to \max_{\theta}$$

Необходимое условие максимума

$$\frac{\partial}{\partial \theta} L(\theta, X_{train}) = 0$$

• В некоторых случаях при известном распределении оптимальный классификатор может быть вычислен аналитически

- В некоторых случаях при известном распределении оптимальный классификатор может быть вычислен аналитически
- Для разделения двух гауссиан достаточно квадратичной модели, а иногда и линейной

- В некоторых случаях при известном распределении оптимальный классификатор может быть вычислен аналитически
- Для разделения двух гауссиан достаточно квадратичной модели, а иногда и линейной
- Наивный байесовский классификатор довольно простая модель, которая работает

- В некоторых случаях при известном распределении оптимальный классификатор может быть вычислен аналитически
- Для разделения двух гауссиан достаточно квадратичной модели, а иногда и линейной
- Наивный байесовский классификатор довольно простая модель, которая работает
- Принцип максимума правдоподобия рабочий инструмент для подбора параметров, если плотность задана некоторым параметрическим семейством

Источники

Ha основе материалов сайта http://www.machinelearning.ru.