$$T(n) = 2T(\frac{1}{2}) + \frac{n}{\log n}$$

Guess: $O(n \cdot \lg(\lg n))$
Assume: $T(k) \leq C \cdot n \cdot (\lg(\lg n))$
For $k < n$, $C > 0$
 $T(n) = 2T(\frac{n}{2}) + \frac{n}{\log n}$
 $\leq 2(\frac{n}{2} \cdot \lg(\lg(\frac{n}{2})))$
 $= 2(\frac{n}{2} \cdot 2\lg(\lg n - \lg 2))$
 $= n \cdot 2\lg(\lg n - \lg 2)$
 $\leq n \cdot \lg(\lg n)$

Thus,
$$T(n) \leftarrow O(n \cdot lg(lgn))$$

$$T(h) = 7T(n/2) + n^{2}$$

$$q=7 \quad b=2$$

$$1f \quad f(n) = O(n^{10} 9 6^{q-\epsilon}), \text{ for some } \epsilon > 0$$

$$Y(e) = \epsilon = 3$$

$$T(n) = \epsilon (n^{2})$$

$$Thus, T(n) \leftarrow \Theta(n^{2})$$

$$T(n) = T(\frac{\pi}{2}) + T(\frac{\pi}{4}) + T(\frac{\pi}{8}) + N$$

#nodes cost

 $3^{9} = 1$
 $3^{1} = 3$
 $3^{2} = 9$
 $3^{1} = 3$
 $3^{2} = 9$
 $3^{1} = 3$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 $3^{2} = 9$
 3^{2

Infinite Geometric Series

$$\sum_{i=0}^{\log_3 n} a_i n = \frac{\alpha_i}{1-r} n = \dots$$

$$\sum_{i=0}^{\log_3 n} 1 \left(\frac{z}{8}\right)^i n = \frac{1}{1-\frac{z}{8}} \cdot n = 8n$$

$$i=0$$

Thus,
$$T(n) \leftarrow \Theta(n)$$

$$T(n) = 2T(\frac{n}{4}) + \sqrt{n}$$
 $a = 2$
 $b = 4$

15 $f(n) = O(n^{\log_{6} q - \epsilon})$, for some $\epsilon > 0$
 $No!$

If $f(n) = O(n^{\log_{6} a})$
 $Yes!$

$$+(M) = \Theta(V_{p3}) + (p3) = \Phi(U_{p3})$$

Assignment 1

Question 2:

n!	n!	
2^n	N^71+5^n +17n	
	4^n	
	2^n	
	n71+5^n +17n	
n^2	3/4n^4	
	N^3	
	√n^3	
	N^3-log n	
	N^2	
n	18n	
log(n)	log10 n	
	3 log₂ n	
C^log(n)	2^log ₂ n	

Question 3:

Upper bound is O(nlogn)