Object Detection

2024 Summer URP

• 이후 컴퓨터 비전의 대표적인 task 중 하나인 object detection을 활용한 보행자 검출(pedestrian detection)을 진행할 예정

컴퓨터 비전의 다양한 task

- Object Detection : 이미지 내에서 객체(object)의 종류(class)와 위치(location)을 찾는 것
 - 위치(location)은 bounding box의 좌표값(x,y,w,h)을 통해 예측

Classification vs Object Detection

• 사물 탐지는 물체의 클래스 분류 뿐만이 아닌 물체의 위치와 크기를 예측하기에 분류+회귀를 함께 사용하는 task

이미지 분류	사물 탐지	
이미지에 있는 (하나뿐인) 대상의 클래스를 예 측 하는 것이 목표	이미지에 있는 (하나 이상의) 대상의 위치를 나타내는 박스와 해당 물체의 클래스를 예측하는 것이 목표	
■ 입력: 하나의 대상이 있는 이미지 ■ 출력: 클래스 레이블 (고양이, 개, 등) ■ 출력 예: 각 클래스에 속할 확률 (고양이 84%)	■ 입력: 하나 이상의 대상이 있는 이미지 ■ 출력: 각 대상의 위치를 특정하는 경계박스(좌표)와 해당 물체의 클래스 레이블 ■ 출력 예: - box1의 좌표(x,y,w,h)와 클래스에 속할 확률 - box2의 좌표와 클래스에 속할 확률	
	좌표(x,y,w,h)에서 x와 y는 경계 박스의 중심점 좌표고, w와 h는 경계 박스의 너비와 높이다.	

Object Detection Framework

- Object Detection 알고리즘의 일반적인 프레임워크
- 1. 영역 제안(region proposal): 이미지에서 처리할 영역인 RoI를 제안하는 알고리즘
- 2. 특징 추출 및 예측: 각 box 영역의 시각적 특징 추출
- 3. 비최대 억제(NMS): 같은 물체에 대한 중복된 박스를 처리하여 박스하나만 남김

Object Detection Framework: region proposal

- **영역 제안(region proposal) :** 이미지에서 시스템이 처리할 영역인 RoI (Region of Interest. 관심 영역)을 제안하는 알고리즘
 - RoI: 이미지 내 물체가 존재할 것이라 예상되는 영역
 - 영역 제안을 통해 물체의 존재 확신도(objectness score)가 매겨진 많은 수의 box 정보 출력
 - Objectness socre가 낮은 영역은 추가 분석 없이 영역 정보 폐기

물체 존재 확신도가 낮음 (배경)

물체 존재 확신도가 높음 (전경)

Object Detection Framework: region proposal

- 딥러닝 모델은 objectness score에 따라 사전 설정된 임계값(threshold)을 초과하는 영역을 전경(foreground)으로 간주하고, 나머지는 배경(background)으로 설정
 - 임계값은 데이터셋에 따라 적절하게 조절됨
- 임계값이 너무 낮으면 -> 약간이라도 물체인 것 같은 모든 영역을 제안. 물체를 놓칠 가능성이 줄어들지만, 물체가 아닌 배경에 대해서도 오검출을 할 수 있고 계산 원을 지나치게 소모
- 임계값이 너무 높으면 -> object score가 높은 확실한 물체만 탐지하므로 물체를 놓칠 수 있음

Object Detection Framework : 특징 추출 및 예측

• 특징 추출 및 예측: 각 box 영역의 시각적 특징이 추출됨. 이러한 특징을 평가해서 물체 존재 여부와 물체의 클래스 판단

Object Detection Framework : 비최대 억제(NMS)

- 비최대 억제(Non-maximm suppression. NMS) : 사물 탐지 모델의 예측 결과, 동일한물체에 대해 복수의 박스를 탐지했을 가능성이 높으므로 동일 물체에 대한 중복된 예측 박스를 통합하여 물체 하나 당 하나의 박스만 남도록 처리
 - 예측 확률이 가장 높은 경계 박스만 남기고 나머지는 배제

Predictions before NMS

After applying non-maximum suppression

Object Detection Framework : 비최대 억제(NMS)

NMS 작동 과정

- 1. 예측 확률(predicted probability)이 미리 설정된 신뢰 임계값(confidence threshold)에 미치지 못하는 경계 박스 폐기
- 2. 남아 있는 경계 박스를 하나씩 살펴본 뒤 예측 확률이 가장 높은 것 선택
- 3. 선택된 박스와 예측 클래스가 같은 박스의 중복 영역 계산(중첩률. IoU)
- 4. 중첩률이 0인 박스는 남겨두고 중첩률이 미리 설정한 임계값(NMS임계값)보다 큰 박스는 폐기 -> 중첩률이 높은 것은 동일한 물체에 대한 예측이므로

Predictions before NMS

After applying non-maximum suppression

사물 탐지 성능 평가 지표

- 초당 프레임 수(frames per second. FPS) : 탐지 성능 평가 지표
- mAP(mean average precision) : 신경망 예측 정밀도 측정

PR(precision-recall)곡선

재현율(Recall) =
$$\frac{TP}{TP+FN}$$
 정밀도(Precision) = $\frac{TP}{TP+FP}$

PR(precision-recall)곡선

- 각 클래스마다 PR곡선을 그려 사물 탐지 성능 평가 가능
- 물체가 아닌 것을 오검출하거나, 물체인 것을 놓치지 않아야 검출 성능이 좋다고 할 수 있음
- PR곡선 아래 면적인 AUC(Area Under the Curve를) 계산하여 Average Precision(AP)를 계산할 수 있고, 각 클래스의 AP 평균인 mAP를 계산하여 최종적으로 사물 탐지 모델 성능 평가

재현율(Recall) =
$$\frac{TP}{TP+FN}$$
 정밀도(Precision) = $\frac{TP}{TP+FP}$

mAP 정리

- 1. 각 bounding box의 물체 존재 확신도 계산
- 2. 정밀도화 재현율(precision, recall) 계산
- 3. 각 분류 클래스마다 확률의 임계값을 변화시키며 PR 곡선을 그림
- 4. PR곡선의 AUC를 계산하여 각 분류 클래스마다 평균 정밀도(AP)
- 5. 각 클래스의 AP 평균인 mAP(mean Average Precision) 계산

Detector 기초

Object Detector

- Object Detector는 크게 1. 후보 영역을 생성하는 단계와 2. 후보 영역의 클래스를 분류 하는 단계로 구성
- Object Detector는 RoI 추출과 탐지를 한 번에 수행하는 1-stage detector와, 따로 수행하는 2-stage detector로 구분할 수 있음

- 2-Stage detector: RCNN(2014), SPP-net(2015), fast RCNN(2015), Faster RCNN(2015), FPN(2017), mask RCNN(2017), G-RCNN(2021)..
- **1-Stage detector**: Multibox(2014), AttentionNet(2015), YOLO(2016), SSD(2016), YOLOv2(2017), RetinaNet(2017), YOLOv3(2018), YOLOv4(2020), ...

• R-CNN 계열은 CNN을 이용한 초기의 object detector로, 2-stage detector임

- R-CNN은 먼저 Rol를 제안한 다음 각 영역에서 특징을 추출하고 이 특징을 바탕으로 영역을 분류
 - Rol 추출기, 특징 추출 모듈, 분류 모듈, 경계 박스 회귀 모듈 4개의 요소로 구성

- R-CNN은 그 구조가 단순해서 이해하기 쉽고, 특징 추출에 CNN을 활용해서 제안 당시 최고 성능을 달성
- 하지만 하나의 신경망으로 구성된 시스템이 아니라 독립된 여러 알고리즘이 조합되어 동작
 - 이로 인해 **사물 탐지 속도가 느리고**, **학습과정이 다단계로 구성**되며, **연산 복잡도가 높다**는 단점이 있음

- Fast R-CNN은 R-CNN을 수정하여 개선한 모델
 - CNN feature extractor를 맨 앞에 배치해 전체 입력 이미지로부터 영역 제안
 - RCNN은 2000개 이상의 중첩된 영역을 2000개 이상의 CNN으로 처리하였지만, Fast RCNN은 전체 이미지를 하나의 CNN으로 처리할 수 있게 되었음
 - CNN에 SVM 분류기 대신 소프트맥스 계층을 추가하여 분류를 함께 수행
 - 1.Rol의 각 클래스에 속할 확률을 출력하는 softmax층, 2.최초 제안된 Rol와의 차이를 출력하는 경계 박스 회귀층 2개의 출력층을 가짐

- Faster R-CNN은 영역 제안을 위해 기존의 선택적 탐색(selective search) 대신 영역 제안 신경망 (region proposal network. RPN)을 사용
 - RPN은 물체 존재 확신도와 경계 박스 위치를 출력
- Faster R-CNN은 object detection pipeline 전체를 신경망에 내장시키는데 성공(end-to-end)
 - 특징 추출기, 영역 제안, RoI pooling, 분류기, 경계 박스 회귀 모듈을 파이프라인 내부로 통합

	R-CNN	Fast R-CNN	Faster R-CNN
	Bbox reg SVMs Bbox reg SVMs Bbox reg SVMs ConvNet ConvNet ConvNet 1. Selective search algorithm is used to extract Rols from the input image.	Fixed-size Rols after the Rol pooling layer Proposed Rols have different sizes. Rol pooling layer Rol extractor (selective search Input Image	Proposals Region proposal network Feature maps Conv layers
정확도*	66.0%	66.9%	66.9%
특징	 선택적 탐색 알고리즘을 사용해서 Rol (2000개 이상)를 추출함. 별도의 합성곱 신경망을 사용해서 각 Rol에서 특징을 추출함. 경계 박스 예측과 클래스 분류를 함께 수행함 	각 이미지는 CNN에 한 번만 전달되어 특징 맵이 추출된다. 1. CNN을 사용해서 입력 이미지에서 특징 맵을 추출함. 2. 특징 맵에 선택적 탐색 알고리즘을 적용함. 이런 방식으로 2000곳 이상의 Rol를 모두 합성곱 신경망으로 처리하는 대신 전체 이미지를 한번만 처리하면 된다.	선택적 탐색 알고리 즘을 RPN으로 대체해서 속도를 개선했다. 전체 처리 과정을 처음부터 끝까지 딥러닝으로 구현했다.
단점	Rol를 하나씩 별도로 처리하므로 처리 시간이 오래 걸린다. 또한 독립된 3개의 모델을 모두 사용해야 최종 예측을 할 수 있다.	선택적 탐색 알고리즘의 느린 속도 탓에 여전히 처리 시간이 오래 걸린다.	영역 제안에서 시간 소모가 크다. 또한 여러 시스템이 순차적으로 동작하기 때문에 전체 처리 속도가 각 시스템의 처리 속도에 영향을 많이 받는다.
이미지당 처리 시간	50초	2초	0.2초
R-CNN 대비 처리 속도	1배	25배	250배

- SSD는 CNN 기반 object detector로, 여러 크기의 고정 크기 박스(anchor box)를 생성하고 각 box에 objectness score를 부여한 다음 NMS를 통해 최적의 탐지 결과를 제외한나머지를 배제한다. 크게 다음 세 가지 요소로 구성된다
- VGG backbone : 사전 학습된 VGG backbone에서 classification layer를 제거하여 feature extractor로 사용. VGG가 아닌 ResNet 등 다른 backbone network 사용 가능
- **다중 스케일 특징층** : base convolution 뒤에 배치된 일련의 CNN filter. 필터 크기가 점진 적으로 감소하며 다양한 배율로 탐지 가능
- NMS : 중첩되는 bounding box를 배제하고 물체별로 박스를 하나만 남김

- SSD는 4_3, 7, 8_2, 9_2, 10 2, 11 2 번째 계층이 직접 예측 결과를 NMS로 전달
- 이들 계층의 필터 크기는 점진적으로 감소하는 형태를 취함
 - (38->19->10->5->3->1)

- 신경망은 각 feature에 대해 다음 값을 예측
 - Bounding Box를 경정하는 값 4개 (x,y,w,h)
 - 물체 존재 확신도 1개
 - 각 클래스의 확률을 나타내는 값 C개
- 예측 결과는 C+5개 값으로 구성
- 더 자세한 모델 구조는 논문을 직접 읽으며 이해해봅시다!

- 논문 링크 : https://arxiv.org/abs/1512.02325
- 다음 README에 자세한 설명이 나와 있으므로 논문 이해 완료 후 참고자료로 사용
 - https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection
- 이번 Task가 필요한 이유는?
 - 논문 형식에 대한 이해
 - 논문을 읽기 위한 용어 파악
 - 논문 기반 구현 능력(원복)의 중요성
- 최대한 논문 기반으로 내용을 이해하려고 노력하면서, 논문 읽는 능력을 길러봅시다!

