Weighted Model Counting/Integration from the Perspective of Boolean Algebras

Paulius Dilkas

20th March 2020

1 Introduction

Previous/related work:

- Hailperin's approach to probability logic [10]
- Nilsson's (somewhat successful) probabilistic logic [17]
- Semiring programming [3]
- WMC with functions [1]
- WMI [2]
- Measures on Boolean algebras: overview articles (from most cited to least cited)
 - Horn and Tarski [11]
 - Concerning measures on Boolean algebras [7]
 - Jech Measures on Boolean algebras (arXiv) [13]
- Measures on Boolean algebras: more specific articles
 - On possibility and probability measures in finite Boolean algebras [4]
 - Representation of conditional probability measures [15]

2 Preliminaries

Definition 1. A Boolean algebra (BA) is a tuple $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$ consisting of a set **B** with binary operations meet \wedge and join \vee , unary operation \neg and elements $0, 1 \in \mathbf{B}$ such that the following axioms hold for all $a, b, \in \mathbf{B}$:

- both \wedge and \vee are associative and commutative;
- $a \lor (a \land b) = a$, and $a \land (a \lor b) = a$;
- 0 is the identity of \vee , and 1 is the identity of \wedge ;
- ∨ distributes over ∧ and vice versa;
- $a \vee \neg a = 1$, and $a \wedge \neg a = 0$.

For clarity and succinctness, we will occasionally use three other operations that can be defined using the original three¹:

$$a \to b = \neg a \lor b,$$

$$a \leftrightarrow b = (a \to b) \land (b \to a),$$

$$a + b = (a \land \neg b) \lor (\neg a \land b).$$

We can also define a partial order \leq on **B** as $a \leq b$ if $a = b \wedge a$ (or, equivalently, $a \vee b = b$) for $a, b \in \mathbf{B}$. Furthermore, let a < b denote $a \leq b$ and $a \neq b$. For the rest of this paper, let **B** refer to the BA $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$. For any $S \subseteq \mathbf{B}$, we write $\bigvee S$ for $\bigvee_{x \in S} x$ and call it the *supremum* of S. Similarly, $\bigwedge S = \bigwedge_{x \in S} x$ is the *infimum*. By convention, $\bigwedge \emptyset = 1$ and $\bigvee \emptyset = 0$.

Definition 2 ([12, 16]). An element $a \neq 0$ of **B** is an atom if, for all $x \in \mathbf{B}$, either $x \wedge a = a$ or $x \wedge a = 0$. Equivalently, $a \neq 0$ is an atom if there is no $x \in \mathbf{B}$ such that 0 < x < a. A BA **B** is atomic if for every $a \in \mathbf{B} \setminus \{0\}$, there is an atom x such that $x \leq a$.

Lemma 1 ([8]). For any two distinct atoms $a, b \in \mathbf{B}$, $a \wedge b = 0$.

Lemma 2 ([9]). The following are equivalent:

- B is atomic.
- For any $x \in \mathbf{B}$,

$$x = \bigvee_{atoms \ a \le x} a.$$

• 1 is the supremum of all atoms.

Lemma 3 ([9]). All finite BAs are atomic.

Definition 3 ([7, 12]). A measure on **B** is a function $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$ such that:

- m(0) = 0;
- $m(x \lor y) = m(x) + m(y)$ for all $x, y \in \mathbf{B}$ whenever $x \land y = 0$.

If m(1) = 1, we call m a probability measure. Also, if m(x) > 0 for all $x \neq 0$, then m is strictly positive.

3 WMC as a Measure

Definition 4. Let \mathcal{L} be a propositional (or first-order) logic, and let Δ be a theory in \mathcal{L} . We can define an equivalence relation on formulas in \mathcal{L} as

$$\alpha \sim \beta$$
 if and only if $\Delta \vdash \alpha \leftrightarrow \beta$

for all $\alpha, \beta \in \mathcal{L}$. Let $[\alpha]$ denote the equivalence class of $\alpha \in \mathcal{L}$ with respect to \sim . We can then let $B(\Delta) = \{ [\alpha] \mid \alpha \in \mathcal{L} \}$ and define the structure of a BA on $B(\Delta)$ as

$$\begin{split} [\alpha] \vee [\beta] &= [\alpha \vee \beta], \\ [\alpha] \wedge [\beta] &= [\alpha \wedge \beta], \\ \neg [\alpha] &= [\neg \alpha], \\ 1 &= [\alpha \to \alpha], \\ 0 &= [\alpha \wedge \neg \alpha] \end{split}$$

for all $\alpha, \beta \in \mathcal{L}$. Then $B(\Delta)$ is the Lindenbaum-Tarski algebra of Δ [14, 19].

Figure 1: Two BAs from Example 1: $B(\mathcal{L})$ at the top and $B(\Delta)$ at the bottom. An edge between elements a and b (with a positioned lower than b) means that a < b. Each element of $B(\Delta)$ is an equivalence class of elements of $B(\mathcal{L})$, and the colours show which elements of $B(\mathcal{L})$ belong to which class. In both algebras, atoms have borders around them.

Example 1. Let \mathcal{L} be a propositional logic with p and q as its only atoms. Then $L = \{p, q, \neg p, \neg q\}$ is its set of literals. Let $w : L \to \mathbb{R}_{>0}$ be the weight function defined by

$$w(p) = 0.3,$$

 $w(\neg p) = 0.7,$
 $w(q) = 0.2,$
 $w(\neg q) = 0.8.$

Let Δ be a theory in \mathcal{L} with a sole axiom p. Then Δ has two models, i.e., $\{p,q\}$ and $\{p,\neg q\}$. The weighted model count (WMC) [5] of Δ is then

$$\sum_{\omega \models \Delta} \prod_{\omega \models l} w(l) = w(p)w(q) + w(p)w(\neg q) = 0.3.$$

The corresponding BA $B(\Delta)$ can then be constructed using Definition 4. Alternatively, one can first construct the free BA generated by the set $\{p,q\}$ —this corresponds to $B(\mathcal{L})$ in Fig. 1—and then take a quotient with respect to either the filter generated by p or the ideal² generated by $\neg p$. In any case, the resulting BA is pictured at the bottom of Fig. 1.

Each element of $B(\mathcal{L})$ can also be seen as a subset of the set of all models of \mathcal{L} , with 0 representing \emptyset , 1 representing the set of all (four) models, each atom representing a single model, and each edge going upward representing a subset relation. Thus, the Boolean-algebraic way of calculating the WMC of Δ consists of:

- 1. Identifying an element $a \in B(\mathcal{L})$ that corresponds to Δ .
- 2. Finding all atoms of $B(\mathcal{L})$ that are 'dominated' by a according to the partial order.
- 3. Using w to calculate the weight of each such atom.
- 4. Adding the weights of these atoms.

This motivates the following definition of WMC generalised to BAs.

Definition 5. Let **B** be an atomic BA, and let $M \subset \mathbf{B}$ be its set of atoms. Let $L \subset \mathbf{B}$ be such that every atom $m \in M$ can be uniquely expressed as $m = \bigwedge L'$ for some $L' \subseteq L$, and let $w : L \to \mathbb{R}_{\geq 0}$ be arbitrary. The weighted model count $\mathrm{WMC}_w \colon \mathbf{B} \to \mathbb{R}_{\geq 0}$ is defined as

$$WMC_w(x) = \begin{cases} 0 & \text{if } x = 0\\ \prod_{l \in L'} w(l) & \text{if } M \ni x = \bigwedge L'\\ \sum_{\text{atoms } a \le x} WMC_w(a) & \text{otherwise} \end{cases}$$

for any $x \in \mathbf{B}$. Furthermore, we define the normalised weighted model count $\mathrm{NWMC}_w \colon \mathbf{B} \to [0,1]$ as $\mathrm{NWMC}_w(x) = \frac{\mathrm{WMC}_w(x)}{\mathrm{WMC}_w(1)}$ for all $x \in \mathbf{B}$. For both WMC_w and NWMC_w , we will drop the subscript when doing so results in no potential confusion.

Proposition 1. WMC is a measure and NWMC is a probability measure.

Proof. First, note that WMC is non-negative and WMC(0) = 0 by definition. Next, let $x, y \in \mathbf{B}$ be such that $x \wedge y = 0$. We want to show that

$$WMC(x \lor y) = WMC(x) + WMC(y). \tag{1}$$

If, say, x = 0, then Eq. (1) becomes

$$WMC(y) = WMC(0) + WMC(y) = WMC(y)$$

¹We use + to denote symmetric difference because it is the additive operation of a Boolean ring.

²More details on these concepts can be found in many books on BAs [9, 14].

(and likewise for y=0). Thus we can assume that $x \neq 0 \neq y$ and use Lemma 2 to write

$$x = \bigvee_{i \in I} x_i$$
 and $y = \bigvee_{j \in J} y_j$

for some sequences of atoms $(x_i)_{i\in I}$ and $(y_j)_{j\in J}$. If $x_{i'}=y_{j'}$ for some $i'\in I$ and $j'\in J$, then

$$x \wedge y = \bigvee_{i \in I} \bigvee_{j \in J} x_i \wedge y_j = x_{i'} \wedge y_{j'} \neq 0,$$

contradicting the assumption. This is enough to show that

$$WMC(x \vee y) = WMC\left(\left(\bigvee_{i \in I} x_i\right) \vee \left(\bigvee_{j \in J} y_j\right)\right) = \sum_{i \in I} WMC(x_i) + \sum_{j \in J} WMC(y_j)$$
$$= WMC(x) + WMC(y),$$

finishing the proof that WMC is a measure. This immediately shows that NWMC is a probability measure since, by definition, NWMC(1) = 1.

4 What Measures Are WMC-Computable?

4.1 WMC Requires Independent Literals

Proposition 2. Let **B** be a finite measure algebra with measure $m: \mathbf{B} \to \mathbb{R}_{>0}$. Let $L \subset \mathbf{B}$ be defined as

$$L = \{l_i \mid i \in [n]\} \cup \{\neg l_i \mid i \in [n]\}$$

for some $n \in \mathbb{N}$. Finally, assume that **B** has 2^n atoms, where each atom $a \in \mathbf{B}$ is an infimum

$$a = \bigwedge_{i=1}^{n} a_i$$

such that $a_i \in \{l_i, \neg l_i\}$ for $i \in [n]$. Then there exists a weight function $w: L \to \mathbb{R}_{\geq 0}$ that makes m a WMC measure if and only if

$$m(l \wedge l') = m(l)m(l') \tag{2}$$

for all distinct $l, l' \in L$ such that $l \neq \neg l'$.

Remark. Note that if n = 1, then Eq. (2) is vacuously satisfied and so any valid measure can be expressed as WMC.

Proof. Let us begin with the 'if' part of the statement. Let $w: L \to \mathbb{R}_{\geq 0}$ be defined by

$$w(l) = m(l) \tag{3}$$

for all $l \in L$. We are going to show that NWMC = m. First, note that NWMC(0) = 0 = m(0) by the definitions of both NWMC and m. Second, let

$$a = \bigwedge_{i=1}^{n} a_i \tag{4}$$

be an atom in **B** such that $a_i \in \{l_i, \neg l_i\}$ for all $i \in [n]$. Then

$$NWMC(a) = \frac{WMC(a)}{WMC(1)} = \frac{1}{WMC(1)} \prod_{i=1}^{n} w(a_i) = \frac{1}{WMC(1)} \prod_{i=1}^{n} m(a_i) = \frac{1}{WMC(1)} m \left(\bigwedge_{i=1}^{n} a_i \right) = \frac{m(a)}{WMC(1)}$$

by Definition 5 and Eqs. (2) to (4). Now we just need to show that WMC(1) = 1. Indeed,

$$WMC(1) = \sum_{\text{atoms } a \in \mathbf{B}} WMC(a) = \sum_{\text{atoms } a \in \mathbf{B}} \prod_{i=1}^{n} w(a_i) = \sum_{\text{atoms } a \in \mathbf{B}} \prod_{i=1}^{n} m(a_i)$$
$$= \sum_{\text{atoms } a \in \mathbf{B}} m\left(\bigwedge_{i=1}^{n} a_i\right) = \sum_{\text{atoms } a \in \mathbf{B}} m(a) = m\left(\bigvee_{\text{atoms } a \in \mathbf{B}}\right) = m(1) = 1.$$

Finally, note that if NWMC and m agree on all atoms, then they must also agree on all other non-zero elements of the Boolean algebra.

For the other direction, we are given a weight function $w: L \to \mathbb{R}_{\geq 0}$ that induces a measure $m = \text{NWMC}: \mathbf{B} \to \mathbb{R}_{\geq 0}$, and we want to show that Eq. (2) is satisfied. Let $k_i, k_j \in L$ be such that $k_i \in \{l_i, \neg l_i\}$, $k_j \in \{l_j, \neg l_j\}$, and $i \neq j$. We will first prove an auxiliary result that

$$m(k_i \wedge k_j) = m(k_i)m(k_j) \tag{5}$$

is equivalent to

$$m(k_i \wedge k_j) \cdot m(\neg k_i \wedge \neg k_j) = m(k_i \wedge \neg k_j) \cdot m(\neg k_i \wedge k_j). \tag{6}$$

First, note that k_i can be expressed as

$$k_i = (k_i \wedge k_j) \vee (k_i \wedge \neg k_j)$$

with the condition that

$$(k_i \wedge k_j) \wedge (k_i \wedge \neg k_j) = 0,$$

so, by properties of a measure,

$$m(k_i) = m(k_i \wedge k_j) + m(k_i \wedge \neg k_j). \tag{7}$$

Applying Eq. (7) and the equivalent expression for $m(k_j)$ allows us to rewrite Eq. (5) as

$$m(k_i \wedge k_j) = [m(k_i \wedge k_j) + m(k_i \wedge \neg k_j)] \cdot [m(k_i \wedge k_j) + m(\neg k_i \wedge k_j)]$$

= $m(k_i \wedge k_j)^2 + m(k_i \wedge k_j)[m(k_i \wedge \neg k_j) + m(\neg k_i \wedge k_j)] + m(k_i \wedge \neg k_j)m(\neg k_i \wedge k_j)$

Dividing both sides by $m(k_i \wedge k_j)$ gives

$$1 = m(k_i \wedge k_j) + m(k_i \wedge \neg k_j) + m(\neg k_i \wedge k_j) + \frac{m(k_i \wedge \neg k_j)m(\neg k_i \wedge k_j)}{m(k_i \wedge k_i)}.$$
 (8)

Since $k_i \wedge k_j \wedge k_i \wedge \neg k_j = 0$, and

$$(k_i \wedge k_j) \vee (k_i \wedge \neg k_j) = k_i \wedge (k_j \vee \neg k_j) = k_i \wedge 1 = k_i,$$

we have that

$$m(k_i \wedge k_i) + m(k_i \wedge \neg k_i) = m(k_i).$$

Similarly, $k_i \wedge \neg k_i \wedge k_j = 0$, and

$$k_i \vee (\neg k_i \wedge k_j) = (k_i \vee \neg k_i) \wedge (k_i \vee k_j) = k_i \vee k_j,$$

so

$$m(k_i) + m(\neg k_i \wedge k_i) = m(k_i \vee k_i).$$

Finally, note that

$$(k_i \lor k_i) \land \neg (k_i \lor k_i) = 0,$$

and

$$(k_i \lor k_i) \lor \neg (k_i \lor k_i) = 1,$$

$$m(k_i \vee k_j) + m(\neg(k_i \vee k_j)) = m(1) = 1.$$

This allows us to rewrite Eq. (8) as

$$\frac{m(k_i \wedge \neg k_j)m(\neg k_i \wedge k_j)}{m(k_i \wedge k_j)} = 1 - m(k_i \vee k_j) = m(\neg(k_i \vee k_j)) = m(\neg k_i \wedge \neg k_j)$$

which immediately gives us Eq. (6).

Now recall that m = NWMC and note that Eq. (6) can be multiplied by $\text{WMC}(1)^2$ to turn the equation into one for WMC instead of NWMC. Then

$$\begin{aligned} \operatorname{WMC}(k_i \wedge k_j) &= \sum_{\text{atoms } a \leq k_i \wedge k_j} \operatorname{WMC}(a) = \sum_{\text{atoms } a \leq k_i \wedge k_j} \prod_{m \in [n]} w(a_m) \\ &= \sum_{\text{atoms } a \leq k_i \wedge k_j} w(a_i) w(a_j) \prod_{m \in [n] \setminus \{i,j\}} w(a_m) = \sum_{\text{atoms } a \leq k_i \wedge k_j} w(k_i) w(k_j) \prod_{m \in [n] \setminus \{i,j\}} w(a_m) \\ &= w(k_i) w(k_j) \sum_{\text{atoms } a \leq k_i \wedge k_j} \prod_{m \in [n] \setminus \{i,j\}} w(a_m) = w(k_i) w(k_j) C, \end{aligned}$$

where C denotes the part of WMC $(k_i \wedge k_j)$ that will be the same for WMC $(\neg k_i \wedge k_j)$, WMC $(k_i \wedge \neg k_j)$, and WMC $(\neg k_i \wedge \neg k_j)$ as well. But then Eq. (6) becomes

$$w(k_i)w(k_j)w(\neg k_i)w(\neg k_j)C^2 = w(k_i)w(\neg k_j)w(\neg k_i)w(k_j)C^2$$

which is trivially true. By showing that WMC satisfies Eq. (6), we also showed that it satisfies Eq. (5), finishing the second part of the proof.

4.2 Extending the Algebra

A well-known way to overcome this limitation of independence is by adding more literals [5], i.e., extending the set L covered by the WMC weight function $w: L \to \mathbb{R}_{\geq 0}$. Let us translate this idea to the language of Boolean algebras.

Theorem 1. Let **B** be a finite Boolean algebra freely generated by some set of 'literals' L, and let $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$ be an arbitrary measure. We know that **B** has $n = 2^{|L|}$ atoms. Let $(a_i)_{i=1}^n$ denote those atoms in some arbitrary order. Let $L' = L \cup \{\phi_i \mid i \in [n]\} \cup \{\neg \phi_i \mid i \in [n]\}$ be the set L extended with 2n new literals. Let **B**' be the unique Boolean algebra with

$$\{\phi_i \land a_i \mid i \in [n]\} \cup \{\neg \phi_i \land a_i \mid i \in [n]\}$$

as its set of atoms. Let $\iota \colon \mathbf{B} \to \mathbf{B}'$ be the inclusion homomorphism (i.e., $\iota(a) = a$ for all $a \in \mathbf{B}$). Let $w \colon L' \to \mathbb{R}_{\geq 0}$ be defined by

$$w(l) = \begin{cases} \frac{m(a_i)}{2} & \text{if } l = \phi_i \text{ or } l = \neg \phi_i \text{ for some } i \in [n] \\ 1 & \text{otherwise} \end{cases}$$

for all $l \in L'$, and note that this defines a WMC measure $m' : \mathbf{B}' \to \mathbb{R}_{>0}$. Then

$$m(a) = (m' \circ \iota)(a)$$

for all $a \in \mathbf{B}$.

In simpler terms, any measure can be computed using WMC by extending the Boolean algebra with more literals. More precisely, we are given the red part in

$$\begin{array}{ccc}
\mathbb{R}_{\geq 0} & & \\
 & \stackrel{\longleftarrow}{m} & \stackrel{\longleftarrow}{m'} & \\
 & \mathbf{B} & \stackrel{\iota}{\longrightarrow} & \mathbf{B}' & \\
 & \cup & & \cup & \\
 & L & \subset & L' & \stackrel{w}{\longrightarrow} & \mathbb{R}_{\geq 0}
\end{array}$$

and construct the black part in such a way that the triangle commutes.

Proof. Since **B** is freely generated by L, each atom $a_i \in \mathbf{B}$ is an infimum of elements in L, i.e.,

$$a_i = \bigwedge_{j \in J} a_{i,j}$$

for some $\{a_{i,j}\}_{j\in J}\subset L$. Moreover, each atom $b\in \mathbf{B}'$ can be represented as either

$$b = \phi_i \wedge a_i$$
 or $b = \neg \phi_i \wedge a_i$

for some atom $a_i \in \mathbf{B}$, also making it an infimum over a subset of L'. Then, for any $b \in \mathbf{B}$,

$$(m' \circ \iota)(b) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}: \\ \phi_i \wedge a_i \le \iota(b)}} (w(\phi_i) + w(\neg \phi_i)) \prod_{j \in J} w(a_{i,j}),$$

recognising that, for any $\iota(b)$, any atom $a_i \in \mathbf{B}$ satisfies

$$\phi_i \wedge a_i < \iota(b)$$

if and only if it satisfies

$$\neg \phi_i \wedge a_i < \iota(b)$$
.

Then, according to the definition of w,

$$(m' \circ \iota)(b) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}: \\ \phi_i \wedge a_i \le \iota(b)}} (w(\phi_i) + w(\neg \phi_i)) = \sum_{\substack{\text{atoms } a_i \in \mathbf{B}: \\ \phi_i \wedge a_i \le \iota(b)}} m(a_i) = m(b),$$

provided that

$$\phi_i \wedge a_i \leq \iota(b)$$
 if and only if $a_i \leq b$,

but this is equivalent to

$$\phi_i \wedge a_i = \phi_i \wedge a_i \wedge b$$
 if and only if $a_i = a_i \wedge b$

which is true because $\phi_i \notin L$.

Now we can show that the construction in Theorem 1 is smallest possible.

Conjecture 1. Let \mathbf{B} and \mathbf{B}' be Boolean algebras, and $\iota \colon \mathbf{B} \to \mathbf{B}'$ be the inclusion map such that \mathbf{B} is freely generated by L, all atoms of \mathbf{B}' can be expressed as meets of elements of L', and the following subset relations are satisfied:

$$\begin{array}{ccc} \mathbf{B} & \xrightarrow{\iota} & \mathbf{B}' \\ \cup & & \cup \\ L & \subset & L' \end{array}$$

If, for any measure $m: \mathbf{B} \to \mathbb{R}_{\geq 0}$, one can construct a weight function $w: L' \to \mathbb{R}_{\geq 0}$ such that the WMC measure WMC: $\mathbf{B}' \to \mathbb{R}_{> 0}$ with respect to w satisfies

$$m = \text{WMC} \circ \iota$$

then $|L' \setminus L| \geq 2^{|L|+1}$.

Let us note how our lower bound on the number of added literals compares to two methods of translating a discrete probability distribution into a WMC problem over a propositional knowledge base proposed by Darwiche [6] and Sang et al. [18]. Suppose we have a discrete probability distribution with n variables, and the i-th variable has v_i values, for each $i \in [n]$. Interpreted as a logical system, it has $\prod_{i=1}^{n} v_i$ models. My expansion would then use

$$\sum_{i=1}^{n} v_i + 2 \prod_{i=1}^{n} v_i$$

variables, i.e., a variable for each possible variable-value assignment, and two additional variables for each model. Without making any independence assumptions, the encoding by Darwiche [6] would use

$$\sum_{i=1}^{n} v_i + \sum_{i=1}^{n} \prod_{j=1}^{i} v_j$$

variables, while for the encoding by Sang et al. [18],

$$\sum_{i=1}^{n} v_i + \sum_{i=1}^{n} (v_i - 1) \prod_{i=1}^{i-1} v_i$$

variables would suffice.

References

- [1] Vaishak Belle. Weighted model counting with function symbols. In Gal Elidan, Kristian Kersting, and Alexander T. Ihler, editors, *Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017.* AUAI Press, 2017.
- [2] Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Probabilistic inference in hybrid domains by weighted model integration. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 2770–2776. AAAI Press, 2015.
- [3] Vaishak Belle and Luc De Raedt. Semiring programming: A framework for search, inference and learning. CoRR, abs/1609.06954, 2016.
- [4] Elena Castiñeira, Susana Cubillo, and Enric Trillas. On possibility and probability measures in finite Boolean algebras. *Soft Comput.*, 7(2):89–96, 2002.
- [5] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. *Artif. Intell.*, 172(6-7):772–799, 2008.
- [6] Adnan Darwiche. A logical approach to factoring belief networks. In Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, Proceedings of the Eights International Conference on Principles and Knowledge Representation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, pages 409-420. Morgan Kaufmann, 2002.

- [7] Haim Gaifman. Concerning measures on Boolean algebras. *Pacific Journal of Mathematics*, 14(1):61–73, 1964.
- [8] M. Ganesh. Introduction to fuzzy sets and fuzzy logic. PHI Learning Pvt. Ltd., 2006.
- [9] Steven Givant and Paul R. Halmos. *Introduction to Boolean algebras*. Springer Science & Business Media, 2008.
- [10] Theodore Hailperin. Probability logic. Notre Dame Journal of Formal Logic, 25(3):198–212, 1984.
- [11] Alfred Horn and Alfred Tarski. Measures in Boolean algebras. Transactions of the American Mathematical Society, 64(3):467–497, 1948.
- [12] Thomas Jech. Set theory, Second Edition. Perspectives in Mathematical Logic. Springer, 1997.
- [13] Thomas Jech. Measures on Boolean algebras. arXiv preprint arXiv:1705.01006, 2017.
- [14] Sabine Koppelberg, Robert Bonnet, and James Donald Monk. *Handbook of Boolean algebras*, volume 384. North-Holland Amsterdam, 1989.
- [15] Peter H. Krauss. Representation of conditional probability measures on Boolean algebras. *Acta Mathematica Hungarica*, 19(3-4):229–241, 1968.
- [16] Ken Levasseur and Al Doerr. Applied Discrete Structures. Lulu.com, 2012.
- [17] Nils J. Nilsson. Probabilistic logic. Artif. Intell., 28(1):71–87, 1986.
- [18] Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian networks by weighted model counting. In *Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05)*, volume 1, pages 475–482. AAAI Press, 2005.
- [19] Alfred Tarski. Logic, semantics, metamathematics: papers from 1923 to 1938. Hackett Publishing, 1983.