1

EE23BTECH11047 - Deepakreddy P

44 The switch S_1 was closed and S_2 was open for a long time. At t=0,switch S_1 is opened and S_2 is closed,simultaneously. The value of $i_c(0^+)$, in amperes, is

(GATE EC 44)

Fig. 1. Circuit 1

$\begin{array}{c|c} \hline & \frac{1}{sC} \\ \downarrow i_c(0^+) \\ \hline & \frac{V_c(0^-)}{s} \\ \hline & \frac{V_c(0^-)}{25s} \end{array}$

Fig. 3. S_1 is open and S_2 is closed

By Superposition Theorem Case (i):

Solution:

1) Switch S_1 was closed and S_2 was open

Fig. 2. S_1 is closed and S_2 is open

Fig. 4. Circuit 4

$$R_{eff} = \frac{25(100)}{(25+100)}\Omega\tag{1}$$

$$R_{eff} = 20\Omega \tag{2}$$

$$V_c\left(0^-\right) = 1\left(R_{eff}\right) \tag{3}$$

$$V_c\left(0^-\right) = 20V\tag{4}$$

2) Switch
$$S_1$$
 is open and S_2 was closed

At $t=0^+$ The capacitor is charged. Thus, it acts as a voltage source. The inductor acts as the current source.

$$\left(\frac{25(Ls)}{25+Ls} + \frac{1}{sC}\right)i_c^1(s) + \frac{V_c(0^-)}{s} = 0 \quad (5)$$

$$i_c^1(s) = -\frac{V_c(0^-)}{s} \left(\frac{25sC + LCs^2}{25LCs^2 + Ls + 25} \right)$$
 (6)

$$i_c^1(s) = -\left(\frac{5 + 0.2s}{0.25s^2 + s + 25}\right)$$
 (7)

Case (ii):

Fig. 5. Circuit 4

$$Li_L(0^-) + \left(\frac{25}{25sC+1} + Ls\right)i_c^2(s) = 0$$
 (8)

$$0.2 = -\left(\frac{25LCs^2 + Ls + 25}{25sC + 1}\right)i_c^2(s) \quad (9)$$

$$i_c^2(s) = -\left(\frac{0.05s + 0.2}{0.25s^2 + s + 25}\right) \tag{10}$$

From eq (7) and eq (10)

$$i_c(s) = i_c^1(s) + i_c^2(s)$$
 (11)

$$i_c(s) = -\left(\frac{0.25s + 5.2}{0.25s^2 + s + 25}\right) \tag{12}$$

Using Inverse Laplace Transform From eq (12)

$$i_c(t) = -e^{-2t} \left(\cos\left(4\sqrt{6}t\right) + \frac{18.8}{4\sqrt{6}} \sin\left(4\sqrt{6}t\right) \right)$$
(13)

$$i_c\left(0^+\right) = -1A\tag{14}$$

Parameter	Description	Remarks
$V_c(0^-)$	Voltage across capacitor when t<0	20V
$i_L(0^-)$	current across inductor when t<0	0.2
$i_L(0^+)$	current across inductor when t>0	0.2
C	Capacitance	0.01F
L	Inductance	1H

TABLE I PARAMETERS

Fig. 6. Plot of $i_c(t)$ vs time

Fig. 7. Plot of $V_c(0^-)$ vs time