SQL

A gentle introduction

Structured Query Language is a standard database language used to create, manage and query data from relational databases.

Structured Query Language is a standard database language used to create, manage and query data from relational databases.

Structured Query Language is a standard database language used to create, manage and query data from relational databases.

(Don't worry. We'll get there.)

Why learning SQL?

 Manipulate large amounts of data efficiently.

 SQL is a highly demanded skill in the job market!

Database

- A database is an organized collection of data from which you can access and/or modify information.
- They are designed to ensure speed, efficiency, integrity, and consistency.
- There are two main types:
 - Relational
 - Non-relational

Database

(Tip: You can think of a **database** as a fancy electronic files cabinet)

Database Management Systems (DBMS)

To **interact with DB** we use specific pieces of software called **DBMS**. In this bootcamp you will learn two of the most popular ones:

- Relational Database Management System (RDBMS):
 - MySQLMuSQL
- Non-Relational Database Management System (NRDBMS)
 - MongoDB

Database Management Systems (DBMS)

Which database is right for yo	Which database is right for your business?		
	MySQL	MongoDB	
Use case	Legacy applications or applications that require multi-row transactions (i.e. accounting systems)	Real-time analytics, content management, internet of things, mobile apps	
Data structure	Structured data with clear schema	No schema definition required	
Risk	Risk of SQL injection attacks	Less risk of attack due to design	
Analysis	A great choice if you have structured data and need a traditional relational database.	A great choice if you have unstructured and/or structured data with the potential for rapid growth.	

Structured Query Language is a standard **database** language used to create, manage and **query** data from **relational** databases.

Relational vs Non-Relational Databases

- Relational databases:
 - Are based on <u>relational algebra</u>.
 - Store information in tabular form
 - Use SQL
- Non-Relational Databases
 - Store data in non-tabular form ("documents")
 - NoSQL

Key	Document
1001	{ "CustomerID": 99, "orderItems": {
1002	{ "CustomerID": 220, "OrderItems": [

Relational vs Non-Relational Databases

- According to the relational model, data is stored in "relations", which are perceived by the users as tables.
- Each "relation" is composed of tuples (or records or rows) and attributes (or fields or columns)

Relational vs Non-Relational Databases

This <u>link</u> seems incredible... but it is true!

Structured Query Language is a standard database language used to create, manage and query data from relational databases.

Query

- "query" ("consulta") is a piece of code to ask the computer for some data.
- Since SQL is a <u>declarative</u> programming language, you must only focus on <u>what</u> you want, rather than the details on <u>how</u> to do it.
 For example: How many products are there in my DB?:

SELECT COUNT (product_id) FROM products;

Query

This is a simple diagram to explain how "the magic" happens when you type a query:

Structured Query Language is a standard **database** language used to create, manage and **query** data from **relational** databases.

Time to get your hands dirty!

- Type mysql -u root -p (mac) or winpty mysql -u root -p (Windows) in the terminal to test your MySQL installation.
- Open Sequel Pro (or MySQL Workbench) and check that you are connected to your localhost MySQL server.
- Prework review: Code along!!
- The police needs you!

SQL

A gentle introduction (day 2)

SQL sub languages

The syntax of SQL is usually divided in **different categories** or sub languages depending on the **type of operations/statements** they perform. The main components of SQL's syntax are:

- Data Definition Language (DDL)
- Data Manipulation Language (DML)
- Data Control Language (DCL)
- Transaction Control Language (**TCL**)

Data Definition Language (DDL)

Data Definition Language is used to **define or modify the database objects** (schemas, tables, etc.) The most common operations are:

- CREATE: it is used to create entire databases and database objects such as tables
- DROP: it deletes objects from database (beware!)
- RENAME: it renames objects
- TRUNCATE: it deletes the data within a table (but not the table)

Data Manipulation Language (DML)

Its statements allow us to manipulate the data in the tables of a database.

- SELECT... FROM...: retrieve data from the database
- INSERT INTO... VALUES...: used to insert data into tables.
- UPDATE... SET... WHERE: renew existing data of your tables.
- DELETE... FROM... WHERE: like TRUNCATE, but we can specify what we want to remove (rather than all the records in a table).

Data Control Language (DML)

With only two statements it manages the rights users have in a database

- GRANT: give permissions.
- REVOKE: revoke permissions.

Transaction Control Language (TCL)

Not every change you make to a database is **saved** automatically. MySQL comes with an option autocommit enabled by default, so we don't have to worry much about this.

- COMMIT: saves the transaction in the database. Changes can not be undone
- ROLLBACK: Reverts to the last committed state.

SQL sub languages (summary)

Relational schemas

We use a relational schema to describe how our database looks like. They key components

to any relational schema are:

- Tables
- Primary Keys
- Foreign Keys
- Relationships

Note: here you have a super nice <u>series of posts in towardsdatascience</u> where they discuss these concepts. Our live coding session will follow them closely, so refer to them for reviewing or deep diving!

Relational schemas: primary keys (pk)

A column (or a set of columns) whose value exists (can not be null) and is unique for every record in a table.

Each table can have one and only one primary key.

They are they **unique identifiers of a table**.

	teacher		
PK	teacher_id	int	
	first_name	varchar(40)	
	last_name	varchar(40)	
	language_1	varchar(3)	
	language_2	varchar(3)	
	dob	date	

Relational schemas: foreign keys (fk)

A column (or a set of columns) that **identifies the relationship** between one table (child) and another (parent) --via the primary key of the latter.

Relational schemas: Relationships

Relationships tell you how much of the data from a foreign key can be seen in the primary key column(s) of the table the data is related to, and vice versa. There are three main types:

- one-to-one
- one-to-many
- many-to-many

Note: The process of defining these relationships is often referred to as *normalization*.

Relational schemas: Relationships

What is the type of relationship between...?

Further materials

Nice introductory, short video to relational schemas.

SQL is a database language used to query and manipulate the data in the database.

MySQL/Language/Definitions

- Data Definition Language(DDL)
- Data Manipulation Language(DML)
- Data Control Language(DCL)
- Data Query Language(DQL)
- Data Transfer Language(DTL)

SQL Cheat Sheet

Querying from a Table

- SELECT a, b FROM T: (Querying Data in Columns a, b from Table T)
- SELECT * FROM T: (Querying all rows and columns from a table)
- SELECT a, b FROM T WHERE Condition; (Query data and filter rows with a condition)
- SELECT DISTINCT a FROM T WHERE condition: (Query distinct rows from a table)
- SELECT a, b FROM T ORDER BY ASC/DESC; (Sort the result set in ascending or descending order)
- SELECT a, b FROM T ORDER BY a LIMIT n OFFSET Offset; (Skip Offset of rows and return the next n rows)
- SELECT a, aggregate(b) FROM T GROUP BY A; (Group rows using an aggregate function)
- SELECT a, aggregate(b) FROM T GROUP BY A HAVING condition: (Filter groups using HAVING Clause)