FY1001/TFY4109/TFY4145. Institutt for fysikk, NTNU. Høsten 2015. Løsningsforslag til øving 3.

Oppgave 1.

a) $|W_f| = f \cdot s = \mu_k Ns = 0.2 \cdot 50 \text{kg} \cdot 10 \text{m/s}^2 \cdot 3 \text{m} = 300 \text{Nm}$. Riktig svar: D.

b) Pianoet står i ro, da må statisk friksjonskraft "stille seg inn" slik at den akkurat balanserer skyvkraften på 350 N. Riktig svar: B.

c) Null nettokraft både tangentielt med og normalt på taket:

$$N = mg\sin\theta,$$

$$f = mg\cos\theta.$$

Her er θ vinkelen mellom horisontalplanet og posisjonsvektoren din, relativt halvkulas sentrum, og f og N er friksjonskraft og normalkraft, som vanlig. Rett før du begynner å gli er $f = \mu_s N$, som med ligningene ovenfor gir

$$\mu_s = \frac{\cos \theta}{\sin \theta},$$

dvs

$$\theta = \arctan(1/\mu_s)$$
.

Du kan dermed gå avstanden (buelengden)

$$s = R(\pi/2 - \theta) = 18.5$$
m.

Riktig svar: C.

d) Så lenge du har kontakt med taket er akselerasjonen inn mot halvkulas sentrum lik v^2/R . Krefter i denne retningen er $mg\sin\theta$ inn mot sentrum og N bort fra sentrum. Dermed, med N2:

$$mg\sin\theta - N = mv^2/R.$$

Bevaring av mekanisk energi (jf forelesning) gir

$$v(\theta) = \sqrt{2gR(1 - \sin \theta)},$$

som innsatt over gir

$$N = 3mg\sin\theta - 2mg.$$

Null normalkraft betyr altså at

$$\sin \theta = 2/3$$
,

dvs avstanden fra toppen av taket er

$$s = R(\pi/2 - \theta) = 33.6 \,\mathrm{m}.$$

Riktig svar: D.

Oppgave 2.

ϕ	$S_{\rm max}/g$ (g)	μ
0	185	
$\pi/2$	240	0.166
π	300	0.154
$3\pi/2$	440	0.184
2π	600	0.187
$5\pi/2$	800	0.186
3π	1000	0.179
$7\pi/2$	1100	0.162
4π	1400	0.161

Tabell: Maksimal snorkraft $S_{\rm max}$ og statisk friksjonskoeffisient μ , med snor surret en vinkel ϕ rundt plastrøret.

Fra det oppgitte uttrykket for $S_{\text{max}}(\phi)$ har vi

$$\mu = \frac{1}{\phi} \ln \frac{S_{\text{max}}(\phi)}{S_{\text{max}}(0)}$$

når $S_{\max}(\phi)$ er største tillatte snorkraft for å holde loddet med masse $m=S_{\max}(0)/g$ i likevekt (dvs i ro). Middelverdien av μ blir

$$\overline{\mu} = \frac{1}{8} \sum_{i=1}^{8} \mu_i \simeq 0.1724,$$

standardavviket blir

$$\Delta \mu = \sqrt{\frac{1}{7} \sum_{i=1}^{8} (\mu_i - \overline{\mu})^2} \simeq 0.0132,$$

mens standardfeilen blir

$$\Delta \overline{\mu} = \frac{\Delta \mu}{\sqrt{8}} \simeq 0.0047.$$

Dermed:

$$\mu = 0.172 \pm 0.005.$$

Vi plotter målepunktene for $\ln[S_{\text{max}}/S_{\text{max}}(0)]$ sammen med de rette linjene $\mu\phi$, for $\mu=\overline{\mu}$ samt $\mu=\overline{\mu}\pm\Delta\mu$:

Programmene friksjon.
py og friksjon. m
 regner ut $\overline{\mu}$, $\Delta\mu$ og $\Delta\overline{\mu}$, og lager figuren oven
for. Vi ser at 3 av de 8 målepunktene (37%) ligger utenfor intervallet
[$\overline{\mu} - \Delta\mu, \overline{\mu} + \Delta\mu$], dvs 63% ligger innenfor. Dette er omtrent som forventet (ca 68%).

Oppgave 3.

Vi kaller snordraget i 1., 2. og 3. snorbit regnet fra et festepunkt for hhv S_1 , S_2 og S_3 (se figuren over). N1 for 1. og 2. masse, horisontalt og vertikalt, gir da i alt

$$S_1 \cos \alpha = S_2 \cos \beta$$

 $S_1 \sin \alpha = S_2 \sin \beta + mg$
 $S_2 \cos \beta = S_3$
 $S_2 \sin \beta = mg$

Ligning nr 5 uttrykker at horisontale forflytninger langs snora summerer seg til D:

$$\frac{L}{5}\left(1 + 2\cos\beta + 2\cos\alpha\right) = D.$$

Kombinasjon av 2. og 4. ligning gir $S_1 \sin \alpha = 2S_2 \sin \beta$, som kominert med 1. ligning gir

$$\tan \alpha = 2 \tan \beta$$
 dvs $\beta = \arctan(\frac{1}{2} \tan \alpha)$.

Bruker vi $\tan \alpha = \sin \alpha / \cos \alpha$, $\sin^2 \alpha + \cos^2 \alpha = 1$ og tilsvarende med β , finner vi

$$\cos \beta = \frac{2\cos \alpha}{\sqrt{1 + 3\cos^2 \alpha}}.$$

Dette setter vi inn i ligning nr 5 ovenfor og får

$$\frac{L}{5} \left(1 + \frac{4\cos\alpha}{\sqrt{1 + 3\cos^2\alpha}} + 2\cos\alpha \right) = D.$$

For å kunne bruke de utlagte programmene og bestemme α numerisk (for gitte verdier av L og D, selvsagt), må denne ligningen omformes til x=f(x), med $x=\cos\alpha$. I første omgang ser det meget naturlig ut å multiplisere med 5/L og trekke fra 1 på begge sider. Hvis vi så definerer $\gamma=(5D/L-1)/2$, har vi (minst) tre åpenbare muligheter:

$$\begin{array}{rcl} x & = & \frac{\gamma}{1 + 2/\sqrt{1 + 3x^2}}, \\ \\ x & = & \gamma - \frac{2x}{\sqrt{1 + 3x^2}}, \\ \\ x & = & \frac{1}{2}\sqrt{1 + 3x^2}\left(\gamma - x\right). \end{array}$$

Algoritmen (se f.eks. Fixed-point iteration på wikipedia) i klessnor.py og klessnor.m fungerer fint med alle disse tre. Til slutt kan vi gå tilbake til de opprinnelige ligningene og løse ut for S_1 , S_2 og S_3 mhp x. Vi

finner:

$$\frac{S_1}{mg} = \frac{2}{\sqrt{1 - x^2}},$$

$$\frac{S_2}{mg} = \sqrt{\frac{1 + 3x^2}{1 - x^2}},$$

$$\frac{S_3}{mg} = \frac{2x}{\sqrt{1 - x^2}}.$$

Er disse uttrykkene rimelige? Vel, vi ser for det første at når $x \to 1$, dvs $\alpha \to 0$, dvs horisontal snor, så blir alle snordrag uendelig store. Ikke urimelig. Videre ser vi at $S_1 > S_2 > S_3$ hvis x < 1. Ved litt ettertanke heller ikke urimelig.

I programmene klessnor.py og klessnor.m bestemmes begge vinkler og de tre snordragene, med D = 0.9L.

Til slutt kan det jo bemerkes at ei homogen snor, dvs med konstant massetetthet (masse pr
 lengdeenhet), vil henge med form som en hyperbolsk cosinus. Ei slik homogen snor skulle tilsvare at vi
 hengte N like store masser på snora, i innbyrdes avstand
 L/(N+1), og lot $N\to\infty$. Det overlates til den enkelte å studere dette nærmere, gjerne både analytisk og numerisk.