

planetmath.org

Math for the people, by the people.

n-divisible group

Canonical name NdivisibleGroup
Date of creation 2013-03-22 17:27:30
Last modified on 2013-03-22 17:27:30

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Definition
Classification msc 20K99
Synonym n-divisible group

Defines n-divisible Defines n-divisible

Let n be a positive integer and G an abelian group. An element $x \in G$ is said to be divisible by n if there is $y \in G$ such that x = ny.

By the unique factorization of \mathbb{Z} , write $n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$ where each p_i is a prime number (distinct from one another) and m_i a positive integer.

Proposition 1. If x is divisible by n, then x is divisible by p_1, p_2, \ldots, p_k .

Proof. If x is divisible by n, write x = ny, where $y \in G$. Since p_i divides n, write $n = p_i t_i$ where t_i is a positive integer. Then $x = p_i t_i(y) = p_i(t_i y)$. Since $t_i y \in G$, x is divisible by p_i .

Definition. An abelian group G such that every element is divisible by n is called an n-divisible group. Clearly, every group is 1-divisible.

For example, the subset $D \subseteq \mathbb{Q}$ of all decimal fractions is 10-divisible. D is also 2 and 5-divisible. In general, we have the following:

Proposition 2. If G is n-divisible, it is also n^s -divisible for every nonnegative integer s.

Proposition 3. Suppose p and q are coprime, then G is p-divisible and q-divisible iff it is pq-divisible.

Proof. This follows from proposition 1 and the fact that if p|n, q|n and gcd(p,q)=1, then pq|n.

Proposition 4. G is n-divisible iff G is p-divisible for every prime p dividing n.

Proof. Suppose G is n-divisible. By proposition 1, every element $x \in G$ is divisible by p, so that G is p-divisible. Conversely, suppose G is p-divisible for every p|n. Write $n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$. Then if G is $p_i^{m_i}$ -divisible for every $i = 1, \ldots, k$. Since $p_i^{m_i}$ and $p_j^{m_j}$ are coprime, G is n-divisible by induction and proposition 3.

Remark. G is a divisible group iff G is p-divisible for every prime p.