0.1 title: KD-232 Nomenclature

 ϵ_{peq} = total equivalent plastic strain

e = 2.7183, approximate value of the base of the natural logarithm

El = minimum specified elongation, %

 ϵ_{Lk} = maximum permitted local total equivalent plastic strain at any point at the kth load increment

 $\epsilon_{Lu} = \text{maximum of } m_2, m_3, \text{ and } m_4$

 m_2 = value calculated from Table KM-620

 m_3 = value calculated from Table KM-620

 m_4 = value calculated from Table KM-620

 m_5 = value listed in Table KM-620

R = Sy/Su

RA = minimum specified reduction of area, %

 σ_{1k} = principal stress in the "1" direction at the point of interest for the kth load increment

 σ_{2k} = principal stress in the "2" direction at the point of interest for the kth load increment

 σ_{3k} = principal stress in the "3" direction at the point of interest for the kth load increment

 σ_{ek} = equivalent stress at the point of interest

 S_y = yield strength at the analysis temperature (see Section II, Part D, Subpart 1, Table Y-1)

 S_u = tensile strength at the analysis temperature (see Section II, Part D, Subpart 1, Table U)

 $D_{\epsilon k} = \text{strain limit damage for the kth loading condition}$

 $\Delta \epsilon_{peqk} =$ equivalent plastic strain range for the kth loading condition or cycle

 $\Delta \epsilon_{p11k}$ = plastic strain range in the "11" direction for the kth loading condition or cycle

 $\Delta \epsilon_{p22k}$ = plastic strain range in the "22" direction for the kth loading condition or cycle

 $\Delta \epsilon_{p33k}$ = plastic strain range in the "33" direction for the kth loading condition or cycle

 $\Delta \epsilon_{p12k}$ = plastic strain range in the "12" direction for the kth loading condition or cycle

 $\Delta \epsilon_{p23k}$ = plastic strain range in the "23" direction for the kth loading condition or cycle

 $\Delta \epsilon_{p31k}$ = plastic strain range in the "31" direction for the kth loading condition or cycle

 $D_{\epsilon form} = \text{damage occurring during forming at the location in the component under consideration}$

 ϵ_{cf} = forming strain at the location in the component under consideration