PRACTICA 1 - Pol Raich i Víctor Pallás

1. BLINK

El objetivo de la práctica es producir el parpadeo periódico de un led. Se utilizará la salida serie para depurar el programa

Para ello utilizaremos el microcontrolador ESP32-WROOM-32

1.1 FUNCIONALIDAD DE LA PRACTICA

- 1. Iniciar pin de led como salida
- 2. Iniciar el terminal serie
- 3. bucle infinito
 - o encender led
 - sacar por puerto serie mensaje ON
 - o espera de 500 milisegundos
 - o apagar led
 - o sacar por puesto serie mensaje OFF
 - o espera de 500 milisegundos

1.2 CÓDIGO

```
#include <Arduino.h>
int PIN_RED_LED = 22;
int PIN_BLUE_LED = 19;
int PIN_YELLOW_LED = 17;
void setup() {
  Serial.begin(115200);
  pinMode(PIN_RED_LED, OUTPUT);
  pinMode(PIN_BLUE_LED, OUTPUT);
  pinMode(PIN_YELLOW_LED, OUTPUT);
}
void loop() {
  digitalWrite(PIN_RED_LED, HIGH);
  Serial.println("LED RED ON");
  delay(500);
  digitalWrite(PIN_BLUE_LED, HIGH);
  Serial.println("LED BLUE ON");
```

https://md2pdf.netlify.app 1/6

```
delay(500);

digitalWrite(PIN_YELLOW_LED, HTGH);
Serial.println("LED YELLOW ON");
delay(500);

digitalWrite(PIN_RED_LED, LOW);
Serial.println("LED RED OFF");
delay(500);

digitalWrite(PIN_BLUE_LED, LOW);
Serial.println("LED BLUE OFF");
delay(500);

digitalWrite(PIN_YELLOW_LED, LOW);
Serial.println("LED YELLOW OFF");
delay(500);
}
```

1.3 DIAGRAMA

https://md2pdf.netlify.app 2/6

1.4 PREGUNTA A RESPONDER

Responder a la siguiente pregunta en el programa que se ha realizado cual es el tiempo libre que tiene el procesador ?

Si entendemos el tiempo libre del procesador como el tiempo en el que no ejecuta ningunta instrucción, debido al uso del comando delay() cada loop tenemos al procesador bloqueado 3 segundos en total...

2. EJERCICIO VOLUNTARIO DE MEJORA DE NOTA

https://md2pdf.netlify.app 3/6

El sensor de temperatura interno de la ESP32 no funciona correctamente y los valores que podemos leer son siempre el mismo o varia muy poco y mal.

Hemos decidido a cambio utilizar un sensor de temperatura analógico modelo *KY-013*. El valor de temperatura medido lo mostraremos por la salida serie y además utilizaremos los conocimientos de la parte anterior de la práctica para encender unos leds de colores dependiendo de la temperatura que lea el sensor.

2.1 CÓDIGO

```
#include <Arduino.h>
#include <math.h>
//SENSOR DE TEMPERATURA ANALÓGICO KY-013
int sensorPin = 12; //PIN DEL SENSOR DE TEMP ANALÓGICO
int redLED = 27; //PIN LED ROJO
int yellLED = 26; //PIN LED AMARILLO
int blueLED = 25; //PIN LED AZUL
bool red = false, yell = false, blue = false;
 //Función que transforma la lectura analógica a temperatura
double Thermistor(int RawADC)
double Temp;
//Conversión de la lectura RawADC a un valor de Vout
Temp = log (((10240000/RawADC) - 10000));
//Ecuación de Steinhart-Hart que nos convierte el Vout a Temperatura en °K
//los coeficientes en el mismo orden son el A, B, C y se han precalculado para este sensor en
Temp = 1 / (0.001129148 + (0.000234125 + (0.0000000876741 * Temp * Temp)) * Temp);
//Conversión a Celsius
Temp = Temp - 273.15;
return Temp;
void setup()
 Serial.begin(115200);
 pinMode(sensorPin, INPUT);
 pinMode(redLED, OUTPUT);
 pinMode(yellLED, OUTPUT);
 pinMode(blueLED, OUTPUT);
 //necesario para qe el rango sea entre 0-1024 y sea coherente con la fórmula
 analogReadResolution(10);
void loop()
//Leemos la señal analógica en el PIN definido
 int readVal = analogRead(sensorPin);
 //Serial.println(readVal); //Chivato para ver la resolución del sensor
 //Llamada a la función para obtener la temperatura
 double temp = Thermistor(readVal);
```

https://md2pdf.netlify.app 4/6

```
//Output Temperatura en el Serial
Serial.print("Current temperature is:");
Serial.print(temp);
Serial.println("°C");
Serial.println("----");
//Condiciones en las que se encienden los LEDs
if(temp < 21.5 )
{
  if(yell)
   {
      digitalWrite(yellLED, LOW);
      Serial.println("YELLOW LED OFF");
      yell = false;
   }
   if(!blue)
      digitalWrite(blueLED, HIGH);
      Serial.println("BLUE LED ON");
      blue = true;
   }
}
else if (temp >= 21.5 && temp <= 28.0)
{
   if(blue)
   {
       digitalWrite(blueLED, LOW);
      Serial.println("BLUE LED OFF");
      blue = false;
   }
   if(red)
   {
       digitalWrite(redLED, LOW);
      Serial.println("RED LED OFF");
       red = false;
   }
   if(!yell)
   {
       digitalWrite(yellLED, HIGH);
      Serial.println("YELLOW LED ON");
      yell = true;
   }
}
else
{
   if(!red)
   {
       digitalWrite(redLED, HIGH);
      Serial.println("RED LED ON");
      red = true;
   }
   if(yell)
   {
       digitalWrite(yellLED, LOW);
```

https://md2pdf.netlify.app 5/6

```
Serial.println("YELLOW LED OFF");
    yell = false;
}
delay(500);
}
```

2.2 VÍDEO DEL FUNCIONAMIENTO

Link Vídeo

https://md2pdf.netlify.app 6/6