Chapitre : Lignes Trignométriques

Maxence Defraiteur (Supervisé par Brigitte Severin)

Lycée Yves Kernanec

19 mars 2023

Introduction historique

La trigonométrie vue chez les Babyloniens, Hipparchus, Aryabhata, Muhammad ibn Musa al-Khuwarizmi, al-Kashi, Viète corde

Prérequis pour le chapitre

► Activité Plicker

- Théorème de Pythagore
- Circonférence d'un cercle
- Théorème de Thalès

Autour du cercle trigonométrique

Soit (O, \vec{i}, \vec{j}) un repère orthonormé du plan euclidien.

Définition (Cercle trigonométrique, sens positif et négatif)

Le cercle trigonométrique est le cercle dont le **rayon est égal à 1** et qui est centré sur l'origine du repère, dans le plan (orienté) usuel muni d'un repère orthonormé. Sur ce cercle trigonométrique, on distingue deux sens de parcours :

- sens direct (positif; inverse des aiguilles d'une montre)
- sens indirect (négatif, sens aiguilles d'une montre)

Figure – Cercle trigonométrique

Définition (Arc d'un cercle)

Un arc d'un cercle est une section de la circonférence du cercle entre deux rayons.

Définition (Le nombre π)

C représente la circonférence d'un cercle de rayon r. On peut définir π comme étant le rapport de la circonférence du cercle sur le diamètre : $\pi:=\frac{C}{2r}$

Définition (Radian)

Le radian est défini comme l'angle mesuré par un arc de longueur 1 dans un cercle unité. (cercle de rayon R=1)

Définition (Longueur d'arc)

La longueur d'un arc intercepté par un angle θ mesuré en radians dans un cercle de rayon r est donnée par longueur de l'arc $= r\theta$.

 θ est l'angle au centre.

Comment trouver la longueur d'un arc?

$2\pi R$?	Longueurs
2π	θ	Angles

Longueur d'arc
$$=\frac{\theta \times 2\pi R}{2\pi}=\theta R$$
 rad

Comment convertir des angles degré en radian?

$$\frac{\alpha}{2\pi} = \frac{\beta}{360}, \quad \alpha(\text{rad}), \beta(\text{degr\'e})$$

Enroulement de la droite réelle sur le cercle trigonométrique

Définition (Enroulement de la droite réelle)

On considère le cercle trigonométrique et une droite (AC) tangente au cercle en A et orientée telle que (A, \vec{j}) soit un repère de la droite.

Si l'on « enroule » la droite autour du cercle, on associe à tout point N d'abscisse x de la droite orientée un unique point M du cercle. La longueur de l'arc AM est ainsi égale à la longueur AN.

Figure – Enroulement de la droite réelle

Angles orientés

Définition (Angle orienté)

Un angle orienté est un angle qui a sens. Il peut être défini par l'intersection de deux demi-droites, l'intersection s'appelle le sommet de l'angle et les demi-droites : les côtés de l'angle. Si un angle est mesure dans le sens direct, il est considéré positif (par convention), sinon dans le sens indirect, il est négatif.

Propriété (Angle orienté)

Un angle orienté a une infinité de mesures, mais une seule d'entre elles, nommée α (mesure principale) est dans l'intervalle $]-\pi,\pi]$ et les autres mesures sont de la forme $\alpha+k\times 2\pi, k\in \mathbb{Z}.$

On note $(\vec{u}, \vec{v}) = \alpha + k \times 2\pi (k \in \mathbb{Z})$ ou encore $(\vec{u}, \vec{v}) = \alpha \mod 2\pi$ ou $(\vec{u}, \vec{v}) = \alpha [2\pi]$.

Définition (Mesure principale)

Parmi les mesures $t+2k\pi, k\in\mathbb{Z}$ de l'angle orienté (\vec{u},\vec{v}) de deux vecteurs non nuls, il en existe une et une seule dans l'intervalle $I=]-\pi,\pi]$. Cette mesure est la mesure principale de (\vec{u},\vec{v}) .

Image d'un nombre réel

Définition (point image)

A chaque nombre réel x de la droite numérique, on associe un unique point M du cercle trigonométrique que l'on appelle **point image**.

Propriété (Point image)

Deux nombres réels x et x' de la droite numérique ont le même point image sur C si et seulement si $x=x'+k\times 2\pi, k\in\mathbb{Z}$

Définition (Fonctions cosinus, sinus d'un nombre réel définis dans le cercle trigonométrique)

Soit M un point du cercle trigonométrique de coordonnées (x,y), la droite (OM). On note le vecteur $\vec{u} = \vec{OM}$. Si un réel t est une mesure de l'angle (\vec{i},\vec{OM}) alors $M(x,y) = M(\cos t,\sin t)$. A tout réel t, dont M est l'image, on peut lui associer t' de la forme $t' = t + 2k\pi, k \in \mathbb{Z}$

Figure – Définitions de cos et sin

Lien du cosinus et du sinus vu dans un cercle trigonométrique et dans un triangle rectangle

On se place dans le cadran supérieur droit du cercle trigonométrique, c'est-à-dire dans l'intervalle angulaire $[0, \frac{\pi}{2}]$ (cela permet de rester avec longueurs positives) Soit le point M appartenant à $\mathcal{C}(O,1)$. Projetons le point M sur les axes Ox et Oypour obtenir $\cos(\alpha)$ et $\sin(\alpha)$. Soit un point $M' \in (OM)$ On obtient le triangle OMS_2 rectangle en S_2 . Comme le cercle \mathcal{C} est de rayon r=1, la longueur OM = 1. On peut effectuer une homothétie du triangle OMS2 de centre O et de rapport $k = \frac{OM'}{OM}$. Cela permet de construire tous les triangles rectangles nommés OM'S'. Comme $M \in [OM'], S_2 \in [OS'_2]$ et les droites $(MS_2), (M'S'_2)$ étant parallèles, on peut appliquer le théorème de Thalès dans les triangles OMS_2 et $OM'S_2'$. On obtient les rapports suivant :

$$\frac{OS_2}{OS_2'} = \frac{OM}{OM'} = \frac{MS_2}{M'S_2'} \iff \frac{\cos \alpha}{OS_2'} = \frac{1}{OM'} = \frac{\sin \alpha}{M'S_2'}.$$
Ainsi $\cos \alpha = \frac{OS_2'}{OM'}$ et $\sin \alpha = \frac{M'S_2'}{OM'}$

Figure – SohCahToa dans le cercle trigonométrique

Proposition(Relation fondamentale)

$$\forall t \in \mathbb{R}, \cos^2(t) + \sin^2(t) = 1$$

Proposition(Encadrements)

$$\forall t \in \mathbb{R}, -1 \le \cos t \le 1, -1 \le \sin t \le 1$$

Notation:

Lorsqu'il n'y a pas de confusion possible, on pourra écrire directement $\cos x$ et $\sin x$. Notation : $\cos^2(x) = (\cos(x))^2$

Proposition(Relation fondamentale)

$$\forall t \in \mathbb{R}, \cos^2(t) + \sin^2(t) = 1$$

Démonstration.

Proposition(cosinus et sinus : fonctions périodiques)

$$\forall t \in \mathbb{R}, \cos(t) = \cos(t + 2k\pi), k \in \mathbb{Z}$$

$$\forall t \in \mathbb{R}, \sin(t) = \sin(t + 2k\pi), k \in \mathbb{Z}$$

Proposition(Parité des fonctions)

$$\forall t \in \mathbb{R}, \cos(t) = \cos(-t)$$
 (Fonction paire)

$$orall t \in \mathbb{R}, \sin(t) = -\sin(-t)$$
 (Fonction impaire)

Proposition(cosinus et sinus : fonctions périodiques)

$$\forall t \in \mathbb{R}, \cos(t) = \cos(t + 2k\pi), k \in \mathbb{Z}$$

$$\forall t \in \mathbb{R}, \sin(t) = \sin(t + 2k\pi), k \in \mathbb{Z}$$

Proposition(Parité des fonctions)

$$\forall t \in \mathbb{R}, \cos(-t) = \cos(t)$$
 (Fonction paire)

$$\forall t \in \mathbb{R}, \sin(-t) = -\sin(-t)$$
 (Fonction impaire)

Démonstration.

Démonstration de valeurs remarquables de cos et sin

Calcul de
$$\cos(\frac{\pi}{3})$$
.

Proposition (Valeurs remarquables de cos et sin)

A l'aide du cercle trigonométrique, on peut en déduire les valeurs remarquables de sinus et cosinus pour les angles entre 0 et 2π .

Mesures d'angles (deg)	0	30	45	60	90
Mesures d'angles (rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	1
$\tan(\theta)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

(Valeurs remarquables de cos et sin)

Relier les courbes des fonctions cosinus et sinus avec le cercle trigonométrique

Figure – Représentations graphiques de $\cos x$ et $\sin x$

Formules (de Déphasage et Symétrie des angles)

 $\forall x \in \mathbb{R},$

$\cos(-x) = \cos(x)$	$\sin(-x) = -\sin(x)$
$\cos(\pi - x) = -\cos(x)$	$\sin(\pi - x) = \sin(x)$
$\cos(\pi + x) = -\cos(x)$	$\sin(\pi + x) = -\sin(x)$
$\cos(\frac{\pi}{2} - x) = \sin(x)$	$\sin(\frac{\pi}{2} - x) = \cos(x)$
$\cos(\frac{\pi}{2} + x) = -\sin(x)$	$\sin(\frac{\pi}{2} + x) = \cos(x)$

Formules (de Déphasage et Symétrie des angles)

$$\forall x \in \mathbb{R} \backslash \{\frac{\pi}{2} + k\pi \mathbb{Z}\},\$$

$$\tan(-x) = -\tan(x) \mid \tan(\pi - x) = -\tan(x)$$

◆□ > ◆□ > ◆■ > ◆■ > ◆●

Propriétés et formules trigonométriques

Proposition (admise) : Fonctions dérivées des fonctions cosinus, sinus, tangentes

Fonction	Dérivabilité	Dérivée
$\cos(x)$	\mathbb{R}	$-\sin(x)$
$\sin(x)$	\mathbb{R}	$\cos(x)$
$\tan(x)$	$]-\frac{\pi}{2}+k\pi,\frac{\pi}{2}+k\pi[,k\in\mathbb{Z}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$

Formules (Résolutions d'équations trigonométriques)

- Deux cosinus sont égaux si leurs angles sont égaux ou opposés. $\cos x = \cos \alpha \Leftrightarrow S = \{x : x = \alpha + 2k\pi \text{ ou } x = -\alpha + 2k\pi, k \in \mathbb{Z}\}$
- Deux sinus sont égaux si leurs angles sont égaux ou supplémentaires. $\sin x = \sin \alpha \Leftrightarrow S = \{x : x = \alpha + 2k\pi \text{ ou } x = \pi \alpha + 2k\pi, k \in \mathbb{Z}\}$

Fiches de révisions

▶ Le Livre scolaire

Questions Flashs

Applications

Lois des sinus et du cosinus

Théorème (Loi des sinus)

$$\forall a, b, c \in \mathbb{R}, 2R = \frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$

Théorème (Loi des cosinus)

 $\forall a, b, c \in \mathbb{R}, c^2 = a^2 + b^2 - 2ab\cos(\gamma) R$ est le rayon du cercle circonscrit du triangle ABC.

Approximation de π par la méthode d'Archimède

livre

Problème ouvert

Un rayon lumineux se réfléchit sur un miroir symétriquement à la normale au point d'incidence. Le rayon incident se réfléchit sur un miroir à deux pans (*OA*) et (*OB*).

Quelle est la mesure de l'angle formé par le rayon incident et le rayon réfléchi?

Figure – Problème ouvert en optique

Exercices

Exercices du livre scolaire : n.16 p193, n.17, n.18, n.19, n.21, n.24, n.25, n.31, n.32, n.43 p195, n.44, n.47, n.49, n.61, n.62, n.71, n.72, n.74