Tópicos de Matemática Discreta

	$2.^{\circ}$ teste A — 16 de janeiro de 2015 —	duração: 2 horas —	
nome:			número

Em cada exercício deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), circundando V ou F conforme adequado. Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores. A cotação mínima no grupo I é 0 valores.

١.

1. Sejam $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{Q}$ e $g: \mathbb{Q} \longrightarrow \mathbb{Q}$ as funções definidas, respetivamente, por $f((p,q)) = \frac{p}{q}$, para todo $(p,q) \in \mathbb{N} \times \mathbb{N}$, e

$$g\left(x\right) = \left\{ \begin{array}{l} |x| \ \ \text{se} \ x \in \mathbb{Z} \\ 0 \ \ \text{caso contrário} \ . \end{array} \right.$$

(a) f não é uma função invertível.

 \mathbf{V} \mathbf{F}

(b) $g \circ f$ é uma função constante.

V F

2. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{4, 5, 6\}$. Considere as relações binárias $R = \{(1, 4), (2, 5), (2, 6), (4, 5)\}$ e $S = \{(4, 1), (5, 4)\}$ de A em B e de B em A, respetivamente.

(a) $S \circ R$ é uma relação simétrica e antissimétrica.

V F

(b) Não existe $x \in A$ tal que $x \in \text{Dom}(R)$ e $x \in \text{Dom}(R^{-1})$.

V F

3. Seja G um grafo com 5 vértices e 8 arestas.

- (a) Se exatamente 2 dos vértices de G têm grau 4, então G tem 2 vértices de grau ímpar. \mathbf{V}
- (b) G é uma árvore.

 \mathbf{V} \mathbf{F}

11.

Em cada exercício deste grupo, apresente a sua resposta sem justificar.

1. [2,5 valores] Sejam $A = \{a,b,c,d,e\}$ e (A,\leq) o c.p.o. dado pelo seguinte diagrama de Hasse:

Indique:

- (a) o conjunto dos majorantes de $\{a,b\}$:
- (b) um subconjunto de A com elemento maximal, mas sem elemento máximo:
- (c) um subconjunto X de A que tenha supremo, mas $sup(X) \notin X$:
- (d) um subconjunto de A que não tenha supremo:

- **2.** [1 valor] Seja $A = \{a, b, c, d\}$. Considere as seguintes relações binárias em A: $R = \{(b, a), (c, b), (d, c)\}$ e $S = \{(b, c), (b, a), (c, d)\}$. Determine $S \circ R^{-1}$:
- **3.** [1,5 valores] Sejam $A = \{-2, -1, 0, 1, 2\}, f : A \longrightarrow \mathbb{N}_0$ a função tal que $f(z) = z^2$, para todo $z \in A$, e R a relação de equivalência em A definida por: x R y se e só se f(x) = f(y), para todo $x, y \in A$.
 - (a) $[1]_R =$ _____
 - (b) A/R =_____
- 4. [1 valor] Seja g a função definida no exercício 1 do grupo I.
- (a) $g(\{-3, -\frac{2}{3}, 0, 1, \frac{5}{2}\}) = \underline{\hspace{1cm}}$
- (b) $g^{\leftarrow}(\{0,1\}) = \underline{\hspace{1cm}}$
- **5.** [1 valor] Indique a inversa da função bijetiva $f: \mathbb{R}_0^+ \longrightarrow \mathbb{R}_0^-$ dada por f(x) = -x, para todo $x \in \mathbb{R}_0^+$.

III.

Responda às questões deste grupo, justificando convenientemente as suas respostas.

- 1. [1,75 valores] Prove, por indução nos naturais, que $3+3^2+3^3+\cdots+3^n=\frac{3}{2}(3^n-1)$, para todo $n\in\mathbb{N}$.
- 2. [1,75 valores] Considere a seguinte relação binária em $\mathbb{N} \times \mathbb{N}$:

$$(m,n)R(p,q)$$
 se e só se $\{m,n\}=\{p,q\}$, para todo $m,n,p,q\in\mathbb{N}$.

Mostre que R é uma relação de equivalência.

- **3.** [1,75 valores] Seja (A, \leq) um c.p.o.. Diga, justificando, se a seguinte afirmação é necessariamente verdadeira: para todo $X \subseteq A$, se m é elemento máximo de X, sup(X) = m.
- 4. [1,75 valores] Diga, justificando, se o seguinte grafo é bipartido.

