Review of complex numbers

Definition:

A complex number is a number of the form

$$z = a + ib$$

where *a* and *b* are real numbers (called the real part and imaginary part of *z*, respectively) and $i = \sqrt{-1}$. We sometimes use the notation:

$$a = \text{Re}(z)$$
 and $b = \text{Im}(z)$

The **complex conjugate** of z = a + ib is $\bar{z} = a - ib$.

The **absolute value** or **modulus** of z = a + ib is defined as $|z| = \sqrt{a^2 + b^2}$ and has the property that

$$z\cdot\bar{z}=a^2+b^2=|z|^2$$

October 15, 2012

Powers of *i*:

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, $i^6 = -1$, etc.
 $i^{-1} = -i$, $i^{-2} = -1$, $i^{-3} = i$, $i^{-4} = 1$, etc.

Operations with complex numbers:

Addition:
$$z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$$

Multiplication: $z_1 z_2 = (a_1 + ib_1) \cdot (a_2 + ib_2) = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1)$
Inversion: $z^{-1} = \frac{1}{a + ib} = \frac{a - ib}{(a + ib)(a - ib)} = \frac{a - ib}{a^2 + b^2} = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$

October 15, 2012

Exercise: Find the inverse z^{-1} and complex conjugate \bar{z} of each of the following complex numbers:

(i)
$$z = 1 + 2i$$
; (ii) $\frac{1}{2} - i\frac{1}{3}$; (iii) $-i$.

Exercise: Let $Z_1 = 4 - 3i$ and $Z_2 = 2 + i$. Evaluate the real and imaginary part of the complex expression

$$\frac{1}{Z_1 - Z_2} + \frac{1}{Z_1 Z_2}.$$

Polar form of complex numbers

The complex number z = a + ib is represented as the point in the x, y plane which has rectangular coordinates (a, b), or polar coordinates (r, θ) , where

$$r^2 = a^2 + b^2$$
, $x = r \cos \theta$, $y = r \sin \theta$

The polar representation of a complex number is

$$z = a + ib = r [\cos(\theta) + i\sin(\theta)]$$

The number r is called the **absolute value** or **modulus** and θ is called the **argument** of the complex number z, denoted by

$$r = |z|$$
 and $\theta = \arg(z)$.

The polar representation of a complex number has an exponential as well as a trigonometric form. Since

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

then

$$z = r \left[\cos(\theta) + i \sin(\theta) \right] = r e^{i\theta}$$

Example: Express in polar form and sketch the following complex numbers

(i)
$$2+i$$
; (ii) $3-2i$; (iii) $-1-3i$; (iv) $(2+i)^2$; (v) $i(4-i)$.

De Moivre's Formula

Let $z = r(\cos \theta + i \sin \theta)$ be a complex number expressed in polar form. Then we have

$$z^n = r^n (\cos(n\theta) + i\sin(n\theta))$$

Example: Calculate the following powers:

(i)
$$(\sqrt{3}+i)^{20}$$
; (ii) $(4+4i)^7$.

Quadratic and higher order equations:

Polynomial equations often have complex roots. For example, the equation $x^2 - 4x + 8 = 0$ has roots $2 \pm 2i$.

Note: If the roots of a quadratic equation with real coefficients are complex then they are of the form $a \pm ib$. In other words, if z = a + ib is a root then so is the conjugate $\bar{z} = a - ib$.

If the polynomial coefficients are not real then the complex roots do not necessarily follow the pattern above.

Example: Solve the quadratic equation

$$z^2-4iz+5=0.$$