Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. For the the following code:

1/1 point

1/1 point

model = Sequential([

Dense(units=25, activation="sigmoid"),

Dense(units=15, activation="sigmoid"),

Dense(units=10, activation="sigmoid"),

Dense(units=1, activation="sigmoid")])

This code will define a neural network with how many layers?

- O 3
- O 5
- O 25
- 4

Yes! Each call to the "Dense" function defines a layer of the neural network.

2.

x = np.array([[200.0, 17.0]])
layer_1 = Dense(units=3, activation='sigmoid')
a1 = layer_1(x)

How do you define the second layer of a neural network that has 4 neurons and a sigmoid activation?

- O Dense(units=4)
- O Dense(units=[4], activation=['sigmoid'])
- O Dense(layer=2, units=4, activation = 'sigmoid')
- Dense(units=4, activation='sigmoid')
- ✓ Correct

Yes! This will have 4 neurons and a sigmoid activation.

1/1----

J.

1/1 point

L \(\text{2} \)	tiira	$\sim V/\Omega$	CTORC
ıca	Lui	- / -	ctors

temperature (Celsius)	duration (minutes)	Good coffee? (1/0)	x = np.array([[200.0, 17.0]]) [[200.0, 17.0]]
200.0	17.0	1	
425.0	18.5	0	

If the input features are temperature (in Celsius) and duration (in minutes), how do you write the code for the first feature vector x shown above?

- x = np.array([[200.0 + 17.0]])
- x = np.array([[200.0],[17.0]])
- x = np.array([[200.0, 17.0]])
- x = np.array([['200.0', '17.0']])

Yes! A row contains all the features of a training example. Each column is a feature.