DESENVOLVIMENTO DE MANCAL MAGNÉTICO PARA RODAS DE RE-

Qualificação Mestrado

6 de outubro de 2015

Rafael Corsi Ferrão

rafael.corsi@maua.br
http://www.maua.br

CONTEÚDO

- 1. Introdução
- 1.1 Rodas de Reação
- 1.2 Revisão
- 2. O mancal magnético
- 3. Estator externo
- 4. Estator Interno
- 5. Modelagem dinâmica
- 6. Controlador
- 7. Considerações Finais

RODAS DE REAÇÃO

- atuador eletromecânico
- conservação de momento angular

é constituída de :

- Motor de corrente contínua sem escovas (BLDC)
- Inércia
- Mancal
- Eletrônica

MANCAL MECÂNICO

Solução mais usual porém apesar de sua aparente simplicidade apresenta sérios desafios:

- Lubrificantes (Ciclos térmicos, radiação, pressão atmosférica)
 - ▶ Fluida
 - Seca
- Eventual necessidade de um selamento hermético
- Difícil modelagem

SOLUÇÃO PROPOSTA

Mancal magnético:

- solução sem contato mecânico entre o estator e rotor
- confiabilidade depende basicamente da eletrônica
- validação em ambiente terrestre
- eliminação da zona morta
- aumento na complexidade da malha de controle

METODOLOGIA

REVISÃO BIBLIOGRAFICA

- tipos de mancais magnéticos
- ▶ teoria de funcionamento
- mancais com aplicação em rodas de reação

BERNUS - FRANÇA

SCHARF - ALEMANHÃ

MANCAL MAGNÉTICO

- dois graus de liberdade ativo (radial)
- graus de liberdade passivo estabilizados por ímãs permanentes
- geometria plana
- mancal localizado externo ao motor
- ímãs no estator
- escalonável

TOPOLOGIA

CORTE

Corte longitudinal do mancal magnético

Objetivo:

- Estabilizar passivamente o eixo radial
- Estabilizar passivamente em tilt

Objetivo:

- Estabilizar passivamente o eixo radial
- Estabilizar passivamente em tilt

Objetivo:

- Estabilizar passivamente o eixo radial
- Estabilizar passivamente em tilt

Dado a definição da geometria, como escolher as dimensões ?

Dado a definição da geometria, como escolher as dimensões ?

Duas possibilidades:

- Elementos finitos
 - ▶ alto custo computacional
 - resultado mais preciso
- Modelagem analítica
 - ▶ baixo custo computacional
 - resultado menos preciso

- ▶ Modelo não linear : $B(H) = \mu(H)H$
- ► Curva de magnetização do ímã : $B_m = B_r + \frac{B_r}{H_c} H_m$
- Solução por Newton-Raphson

Para combinações distintas de parâmetros:

Método escolhido:

► Nelder-Mead Simplex com restrição de fronteira

Parâmetros otimizados:

- Largura e altura : ferro externo, ferro interno, ímã
- tamanho do entreferro e raio externo total

Funcional visa alcançar uma :

- Maior
 - ► Força radial; entreferro
- Menor
 - ▶ Força axial; variação do campo magnético; raio; volume

Wgi	Ν	h_n	Wn	W _{fei}
0.7	300	10.8	14.9	6

[mm]

- ► Rigidez axial : 140*N*/*mm*
- ► Rigidez radial: 625*N*/*mm*
- ▶ Rigidez Tilt : 3.3*N/grau*

VISÃO GERAL

ESTATOR INTERNO

FLUXO

Como definir as dimensões dessa parte do mancal ? Da mesma maneira que na anterior, por otimização utilizando modelagem analítica.

Analítico

FEM

Parâmetros otimizados:

número de voltas do embobinamento; altura do núcleo; comprimento; entreferro; raio externo.

Funcional visa alcançar uma:

- Maior
 - ► Força de atração; entreferro;
- Menor
 - Indutância; Volume;

	h_{fee}	Δw_{fee}	W_m	h_m	g _{ne}	Δw_{rf}	W_{rr}	r_{eei}	_
Ln	4.2	10	10	12	1.4	7	6	70	-

Força de atração (N) x Corrente (A)

dx = 0.3mm; I=1A.

dx = 0.3mm; I=1A.

dx = 0.3mm; I=2A.

dx = 0.3mm; I=3A.

dx = 0.3mm; I = 4A.

$$T = \frac{1}{2}I_z \dot{\theta}^2 + \frac{1}{2} m \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right)$$
$$V = m g z + \frac{1}{2} K_z z^2$$

Modelo:

$$I\ddot{\theta} = 0$$

 $m\ddot{x} = K_p x - F_{bx}(x, i)$
 $m\ddot{y} = K_p y - F_{by}(y, i)$
 $m\ddot{z} = K_z z + mg$

Problema:

- Dinâmica atrelada a bobina
- valor da indutância varia com a posição e corrente

Solução:

- ► Equação linearizada para ponto de operação (dx = 0)
- dados levantados via modelo FEM

$$L(x) = -1.206 \, 10^{-5} x + 2.807 \, 10^{-5}$$
$$M(x) = -6.756 \, 10^{-6} x + 1.867 \, 10^{-6}$$

Premissas:

- Estabilizar o rotor no ponto de operação
- saturação de corrente
- controle SISO
- ► PID

Dado a não linearidade do atuador, optou-se por trabalhar com o controle de força e não corrente

CONSIDERAÇÕES FINAIS

- Uma topologia nova
- Processo de otimização permite o projeto de mancais com novas especificações
- Escolha de novos materiais
- Construção de um protótipo
- Utilização de clusters para melhoria na computação do FEM