2^a Tarefa de Métodos Numéricos I – Raízes de Equações

Nome: Matrícula:

Questão 1:

Em um determinado problema físico, o movimento angular de um pêndulo é regido por função dada por $f(a) = -(e^a / 2) + 2\cos(a)$, onde a é um ângulo medido em radianos. Considerando-se $\varepsilon = 10^{-4}$ e usando-se 4 casas decimais, pede-se:

- a) Ache um intervalo para uma solução de f(a) = 0 através de um isolamento analítico.
- b) Faça o refinamento para achar ângulo a através do método da Bisseção.
- c) Faça o refinamento para achar ângulo a através do método da Posição Falsa.
- d) Implemente os dois métodos e verifique se os seus resultados estão corretos.

Questão 2:

Com relação ao problema anterior e usando um número máximo de iterações igual ao número máximo de iterações dado pelo método da Bisseção e 4 casas decimais, pede-se:

- a) Ache o ângulo a pelo método de Newton-Raphson com a₀ apropriado.
- b) Ache o ângulo a pelo método da Secante com $a_0 = 0.5$ e $a_1 = 1.0$.
- c) Implemente os dois métodos e verifique se os seus resultados estão corretos.
- d) O valor máximo que o pêndulo agüenta é $\Pi/4$. Ele rompe por algum método?

Questão 3:

Ainda sobre o problema anterior, sabendo-se que o movimento pendular pode ser aproximado pelo polinômio dado por $f(a) = a^3 - 9a + 3$, usando 4 casas decimais pede-se:

- a) Ache uma aproximação para a pelo método para Polinômios.
- b) Ache uma aproximação para a pelo método do Ponto Fixo.
- c) Implemente os dois métodos e verifique se os seus resultados estão corretos.

Questão 4:

Seja a equação $f(x) = x - x \ln(x) = 0$. Considerando-se $\varepsilon = 10^{-5}$ e 6 casas decimais, pede-se:

- a) Ache uma raiz de f(x) através do Método de Newton-Raphson.
- b) Ache uma raiz de f(x) através do Método do Ponto-Fixo.
- c) Implemente os dois métodos e verifique se os seus resultados estão corretos.