Chapitre 8 - VAR : variable aléatoire réelle

définition simple d'1 VA - définition d'1 espace probabilisé et d'1 var (dur mais précis)

1 VAR

1.1 rappel : espace probabilisé

définition précise

un espace probabilisé est 1 triplet (Ω, A, p) où :

- Ω est l'univers (l'ensemble des possibles)
- A l'ensemble des parties de Ω (cela doit-être 1 σ -algèbre)
- p 1 fonction telle que :
 - 1. $p: A \mapsto [0,1]$
 - 2. $p(\Omega) = 1$ et $p(\emptyset) = 0$
 - 3. $\sigma\text{-additive}: \forall I$ dénombrable, $\forall A_i$ disjoints 2 à 2, $p(\bigcup_{i \in I} A_i) = \sum_{i \in I} p(A_i)$

vulgarisation

un espace probabilisé est 1 triplet (Ω, A, p) où :

- Ω est l'univers (ce qui peut arriver)
- A les parties de Ω qui auront une probabilité (A doit être stable par passage au complémentaire, réunion et intersection)
- ullet p la fonction de probabilité proprement dite :
 - 1. elle associe à élément de A sa probabilité d'arriver
 - 2. p prend donc des valeurs entre 0 et 1
 - 3. de plus, $p(\Omega) = 1$ et $p(\emptyset) = 0$

remarque: simplification

- en vue de simplifier les choses, $A = \mathcal{P}(\Omega)$ qui est 1 σ -algèbre
- concrètement ce la veut dire que l'on peut associer 1 probabilité à n'importe quelle partie de Ω (ce qui à priori n'est pas obligatoire ou même possible)

1.2 VAR

définition d'1 VAR

- (Ω, A, p) 1 espace probabilisé
- 1 VAR X sur Ω est 1 fonction $X:\Omega\mapsto\mathbb{R}$
- c'est donc 1 fonction qui a 1 élément de Ω associe un réel

loi de probabilité associé à 1 VAR

- (Ω, A, p) 1 espace probabilisé
- X 1 VAR sur Ω
- la loi de probabilité associée à X est la loi qui va découlée du fait que l'espace Ω est lui déjà probabilisé
- voyons 2 exemples pour comprendre ce qui se passe

ex1: résultat pair ou impair d'1d6

ex1 : somme de 2 dés

remarque: bilan

une fois la VAR X créée, cette fonction fait la jonction entre 2 espaces probabilisés :

- $(\Omega, \mathcal{F}, \mathbb{P})$, 1 espace inconnu (inconnu nous ne voyons que les images de X)
- (E, \mathcal{E}, η_X) , l'espace des états (1 état est 1 valeur possible de X)
- source : wikipédia

pour aller plus loin : la statistique expliquée à mon chat

- 1. VA
- 2. opération sur les VA
- 3. type de VA
- 4. TCL

1.3 espérance - variance - écart-type

 $(\Omega, \mathcal{F}, \mathbb{P})$, 1 espace probabilisé sur lequel opère 1 VAR X \mathcal{E} l'espace des états de X, p_X sa loi de probabilité

définition

- espérance : $\mathbb{E}(X) = \sum_{i=1}^n p_i \times x_i$ où $n = |\mathcal{E}|$ qui traduit la valeur "moyenne" des états de X
- variance : $\mathbb{V}(X) = \sum_{i=1}^{n} p_i \times (x_i \mathbb{E}(X))^2$ où $n = |\mathcal{E}|$
- écart type : $\sigma(X) = \sqrt{\mathbb{V}(X)}$ qui traduit comment cela "bouge" autour de la moyenne

propriété

- $\mathbb{E}(a \times X + b) = a \times \mathbb{E}(X) + b$
- $\mathbb{V}(a \times X + b) = a^2 \times \mathbb{V}(X)$
- $\sigma(a \times X + b) = |a| \times \sigma(X)$

loi des grands nombres

- LGN : lorsqu'on crée 1 échantillon de taille suffisamment grand de valeurs prises par une VA, la moyenne de ses valeurs tend vers l'espérance de cette VA
- application : estimation de la probabilité associé à 1 VA suivant 1 loi de bernoulli

1.4 un peu de python

quelques exercices (corrigés) pour progresser en python

estimer 1 probabilité rapidement par grâce à 1 programme python