

Deep Learning

9 Evolution of CNN Architectures

Dr. Konda Reddy Mopuri Dept. of Al, IIT Hyderabad Jan-May 2023

 We will ground the evolution on ImageNet Large-Scale Visual Recognition Object Challenge (ILSVRC)

- We will ground the evolution on ImageNet Large-Scale Visual Recognition Object Challenge (ILSVRC)
- Training set of 1.2M (7321300 training samples per class) labelled images from 1000 categories

- We will ground the evolution on ImageNet Large-Scale Visual Recognition Object Challenge (ILSVRC)
- Training set of 1.2M (7321300 training samples per class) labelled images from 1000 categories
- 50K validation set and 100K test set

- We will ground the evolution on ImageNet Large-Scale Visual Recognition Object Challenge (ILSVRC)
- Training set of 1.2M (7321300 training samples per class) labelled images from 1000 categories
- 50K validation set and 100K test set
- Evaluation metric: Top-5 error rate

We will ground the evolution on ILSVRC

- 8-layer CNN: 5 Conv layers, 3 FC layers
- 227×227 input
- Max pooling, ReLU nonlinearity, LRN (not used anymore now)

Figure credits:neurohive.io

1 Implemented on GTX 580 GPUs (2 of them; 3GB of Memory each)

Figure from AlexNet paper by Kryzhevsky et al.

Implemented on GTX 580 GPUs (2 of them; 3GB of Memory each)

2

Figure from AlexNet paper by Kryzhevsky et al.

Visualizing the 11x11 filters learned by AlexNet

A more worked-out AlexNet

- A more worked-out AlexNet
- More trials on the AlexNet architecture that resulted in less error
 - $(11 \times 11 \text{ stride 4}) \rightarrow (7 \times 7 \text{ stride 2})$
 - \bullet Conv 3, 4, and 5 (384, 384, 256) \rightarrow (512, 1024, and 512)

Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax function, C being the number of classes. All filters and feature maps are sourse in shape.

Figure from Zeiler and Fergus, ECCV 2014

First architecture to have a principled design

- First architecture to have a principled design
- ② All conv: 3×3 , stride:1, pad:1
 - All max pool: 2×2 , stride:2
 - After pooling, double the channels

① 5 Conv stages

		Softmax
		FC 1000
	Softmax	FC 4096
fc8	FC 1000	FC 4096
fc7	FC 4096	Pool
fc6	FC 4096	$3 \times 3 conv, 512$
	Pool	$3 \times 3 conv, 512$
conv5-3	$3 \times 3 conv, 512$	$3 \times 3 conv, 512$
conv5-2	$3 \times 3 conv, 512$	$3 \times 3 conv, 512$
conv5-1	$3 \times 3 conv, 512$	Pool
	Pool	$3 \times 3 conv, 512$
conv4-3	$3 \times 3 conv, 512$	$3 \times 3 conv, 512$
conv4-2	$3 \times 3 conv, 512$	$3 \times 3 \ conv, 512$
conv4-1	$3 \times 3 conv, 512$	$3 \times 3 conv, 512$
	Pool	Pool
conv3-2	3 × 3 conv, 256	$3 \times 3 \ conv, 256$
conv3-1	3 × 3 conv, 256	3×3 conv, 256
	Pool	Pool
conv2-2	3 × 3 conv, 128	$3 \times 3 conv, 128$
conv2-1	$3 \times 3 \ conv, 128$	3×3 conv, 128
	Pool	Pool
conv1-2	3 × 3 conv, 64	$3 \times 3 conv, 64$
conv1-1	3 × 3 conv, 64	$3 \times 3 conv, 64$
	Input	Input

VGG16

VGG19

భారతీయ సొంకేతిక విజ్ఞావ సంస్థ హైదరాజాద్ भारतीय प्रोद्योगिकी संस्थान हैवराबाद Indian Institute of Technology Hyderabad

- 5 Conv stages
- (initially) Conv-Conv-Pool

VGG16

VGG19

భారతీయ పొంకేతిక విజ్ఞావ సంస్థ హైదరాజాద్ भारतीय प्रोद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

- 5 Conv stages
- (initially) Conv-Conv-Pool
- (later) Conv-Conv-Conv-Pool (VGG19 has one more Conv)

	Softmax		
fc8	FC 1000		
fc7	FC 4096		
fc6	FC 4096		
	Pool		
conv5-3	$3 \times 3 conv, 512$		
conv5-2	3 × 3 conv, 512		
conv5-1	3 × 3 conv, 512		
	Pool		
conv4-3	3 × 3 conv, 512		
conv4-2	3 × 3 conv, 512		
conv4-1	3 × 3 conv, 512		
	Pool		
conv3-2	3 × 3 conv, 256		
conv3-1	$3 \times 3 \ conv, 256$		
	Pool		
conv2-2	3 × 3 conv, 128		
conv2-1	3 × 3 conv, 128		
	Pool		
conv1-2	3 × 3 conv, 64		
conv1-1	3 × 3 conv, 64		
	Input		

Softmax	
FC 1000	
FC 4096	
FC 4096 FC 4096 Pool	
Pool	
$3 \times 3 conv$,	512
$3 \times 3 conv$,	512
$3 \times 3 \ conv$,	512
$3 \times 3 conv$,	512
Pool	
$3 \times 3 conv$,	512
$3 \times 3 conv$,	512
$3 \times 3 \ conv$,	512
$3 \times 3 \ conv$,	512
Pool	
$3 \times 3 conv$,	256
3×3 conv,	256
Pool	
3×3 conv,	128
$3 \times 3 conv$,	128
Pool	
$3 \times 3 conv$,	64
3×3 conv,	64
Input	

VGG16

VGG19

- ① Why Only 3×3 Convs?
- ② Case-1: Conv $(5 \times 5, C \rightarrow C)$

- ① Why Only 3×3 Convs?
- ② Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:

$$C\times C\times 5\times 5=25C^2$$

- ① Why Only 3×3 Convs?
- ② Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:

$$C \times C \times 5 \times 5 = 25C^2$$

Flops:

$$\begin{array}{l} C\times H\times W\times C\times 5\times 5=\\ 25C^2HW \end{array}$$

- ① Why Only 3×3 Convs?
- ② Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:

$$C \times C \times 5 \times 5 = 25C^2$$

Flops:

$$\begin{array}{l} C \times H \times W \times C \times 5 \times 5 = \\ 25C^2HW \end{array}$$

① Case-2: Conv $(3 \times 3, C \rightarrow C)$ and Conv $(3 \times 3, C \rightarrow C)$

- ① Why Only 3×3 Convs?
- ② Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:

$$C \times C \times 5 \times 5 = 25C^2$$

Flops:

$$\begin{array}{l} C \times H \times W \times C \times 5 \times 5 = \\ 25C^2HW \end{array}$$

- ① Case-2: Conv $(3 \times 3, C \rightarrow C)$ and Conv $(3 \times 3, C \rightarrow C)$
 - Parameters:

$$2 \times C \times C \times 3 \times 3 = 18C^2$$

- ① Why Only 3×3 Convs?
- ② Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:

$$C \times C \times 5 \times 5 = 25C^2$$

Flops:

$$\overset{\cdot}{C \times H \times W \times C \times 5 \times 5} = 25C^2HW$$

- ① Case-2: Conv $(3 \times 3, C \rightarrow C)$ and Conv $(3 \times 3, C \rightarrow C)$
 - Parameters:

$$2 \times C \times C \times 3 \times 3 = 18C^2$$

Flops:

$$2 \times C \times H \times W \times C \times 3 \times 3 = 18C^2HW$$

1 Halving the spatial dimensions (max pooling) and doubling the channels \rightarrow computational cost is unchanged

- f a Halving the spatial dimensions (max pooling) and doubling the channels o computational cost is unchanged
- ② Case-1: $C \times 2H \times 2W$, Conv $(3 \times 3, C \rightarrow C)$

- Halving the spatial dimensions (max pooling) and doubling the channels → computational cost is unchanged
- ② Case-1: $C \times 2H \times 2W$, Conv $(3 \times 3, C \rightarrow C)$
 - Memory: 4CHW, parameters: $9C^2$, Flops: $36HWC^2$

- Halving the spatial dimensions (max pooling) and doubling the channels → computational cost is unchanged
- ② Case-1: $C \times 2H \times 2W$, Conv $(3 \times 3, C \rightarrow C)$
 - Memory: 4CHW, parameters: $9C^2$, Flops: $36HWC^2$
- 3 Case-2: $2C \times H \times W$, Conv $(3 \times 3, 2C \rightarrow 2C)$

- Halving the spatial dimensions (max pooling) and doubling the channels → computational cost is unchanged
- ② Case-1: $C \times 2H \times 2W$, Conv $(3 \times 3, C \rightarrow C)$
 - Memory: 4CHW, parameters: $9C^2$, Flops: $36HWC^2$
- 3 Case-2: $2C \times H \times W$, Conv $(3 \times 3, 2C \rightarrow 2C)$
 - Memory: 2CHW, parameters: $36C^2$, Flops: $36HWC^2$

• Huge network (VGG-16) compared to AlexNet

- Huge network (VGG-16) compared to AlexNet
- ② Memory: $1.9 \to 48.6 \text{MB}$ (25X)

- ② Memory: $1.9 \to 48.6 \text{MB}$ (25X)
- 3 Parameters: $61 \rightarrow 138M$ (2.3X)

VGG (2014)

- ② Memory: $1.9 \to 48.6 \text{MB}$ (25X)
- 3 Parameters: $61 \rightarrow 138M$ (2.3X)
- **④** Flops: $0.7 \rightarrow 13.6$ G Flop (19.4X)

VGG (2014)

① Efficiency was the focus of design

Figure credits: Medium.com and Anas Brital

- Efficiency was the focus of design
- Reduce the parameters, memory and the compute requirements (towards deployment)

- Efficiency was the focus of design
- Reduce the parameters, memory and the compute requirements (towards deployment)

3

Figure credits: Medium.com and Anas Brital

f 1 Stem architecture at the early stage ightarrow aggressive down-sampling

Figure credits: Medium.com and Anas Brital

 ${\color{red} \textbf{0}}$ Stem architecture at the early stage \rightarrow aggressive down-sampling

2

Figure credits: Medium.com and Anas Brital

19

 $\textbf{ 1 Stem architecture at the early stage} \rightarrow \textbf{aggressive down-sampling}$

- 2
- - GoogLeNet: Compute 7.5MB, parameters 124K, and MFlops 418
 - VGG-16: Compute 42.9MB (5.7X), parameters 1.1M (8.9X), and MFlops - 7485 (17.8X)

Figure credits: Medium.com and Anas Brital

Inception module: unit with parallel branches

Figure credits: Original Paper

- Inception module: unit with parallel branches
- Repeated through the architecture

Figure credits: Original Paper

Global Average Pooling (GAP) layer

Alexis Cook

- Global Average Pooling (GAP) layer
- $\hbox{${\bf @}$ Flattening results in huge weight matrices} \to \hbox{${\bf GoogLeNet}$ introduces} \\ \hbox{${\bf GAP}$ layer}$

Alexis Cook

- Global Average Pooling (GAP) layer
- 2 Flattening results in huge weight matrices \rightarrow GoogLeNet introduces GAP layer
- 3 Collapses the spatial dimensions by computing the average (kernel size = spatial dimensions of the last conv layer)

Alexis Cook

No more fully connected layers

- No more fully connected layers
- ② One linear layer to predict the classification scores (feather light!)

Auxiliary classifiers

- Auxiliary classifiers
- Training using the gradients at the end of the network didn't work well (too deep, gradient propagation was not robust)

- Auxiliary classifiers
- Training using the gradients at the end of the network didn't work well (too deep, gradient propagation was not robust)
- 4 Hack: add auxiliary classifiers at intermediate locations to receive loss/gradients

భారతీయ పొంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

- Wery important time for the DNNs
 - Batch Normalization happened
 - \bullet Depth increased by an order (10 \rightarrow 150+)
 - $\,$ ILSVRC error almost halved from that of $2014\,$

- Very important time for the DNNs
 - Batch Normalization happened
 - \bullet Depth increased by an order $(10 \rightarrow 150+)$
 - $\,$ ILSVRC error almost halved from that of $2014\,$

Training Deeper CNNs

When training the "deeper" CNNs, people observed that they were worse than shallow ones

Figure Credits: He et al. 2015

Training Deeper CNNs

When training the "deeper" CNNs, people observed that they were worse than shallow ones

2 Initial suspicion was the 'over-fitting'!

Figure Credits: He et al. 2015

Training Deeper CNNs

- Initial suspicion was the 'over-fitting'!
- ② However, it was due to the under-fitting

Figure Credits: He et al. 2015

Deeper CNNs should easily emulate the shallow ones (extra layers could learn identity function)

- Deeper CNNs should easily emulate the shallow ones (extra layers could learn identity function)
- 2 This is not the case \rightarrow some issue in the optimization!

- Deeper CNNs should easily emulate the shallow ones (extra layers could learn identity function)
- f 2 This is not the case o some issue in the optimization!
- Work on the architecture so that learning identity function gets easier with additional layers

Work on the architecture so that learning identity function gets easier with additional layers

Yuanrui Dong

- Work on the architecture so that learning identity function gets easier with additional layers
- ② ResBlock (residual block)

ResBlocks help the gradient backpropagation

Figure Credits: Dr. Justin Johnson, U Michigan

① ResNet is a stack of Resblocks

Figure credits: Dr. Justin Johnson, U Michigan

- ResNet is a stack of Resblocks
- Inspire from VGG and GoogLeNet

- ① ResNet is a stack of Resblocks
- ② Inspire from VGG and GoogLeNet

Figure credits: Dr. Justin Johnson, U Michigan

• Network has stages: first block of each stage halves the resolution and doubles the channels

- Network has stages: first block of each stage halves the resolution and doubles the channels
- 2 Aggressive stem in the beginning (downsamples by 4X before the start of the resblocks)

- Network has stages: first block of each stage halves the resolution and doubles the channels
- Aggressive stem in the beginning (downsamples by 4X before the start of the resblocks)
- 3 Eliminates the FC layers via GAP

Figure credits: K. he et al., ResNets 2015)

- ResNet-18
 - Stem: 1 Conv
 - Stage-1 (C=64): 2 resblocks (4 Conv)
 - Stage-2 (C=128): 2 resblocks (4 Conv)
 - Stage-3 (C=256): 2 resblocks (4 Conv)
 - Stage-4 (C=512): 2 resblocks (4 Conv)
 - Linear
 - Top-5 error: 10.92 and GFlop: 1.8

- ResNet-34
 - Stem: 1 Conv
 - Stage-1 (C=64): 3 resblocks (6 Conv)
 - Stage-2 (C=128): 4 resblocks (8 Conv)
 - Stage-3 (C=256): 6 resblocks (12 Conv)
 - Stage-4 (C=512): 3 resblocks (6 Conv)
 - Linear
 - Top-5 error: 8.58 and GFlop: 3.6 (VGG: 9.6 and 13.6 respectively)

Bottlneck Residual block

Resnet-34 becomes ResNet-50 if we replace the plain resblocks with bottleneck ones

- Resnet-34 becomes ResNet-50 if we replace the plain resblocks with bottleneck ones
- 2 More blocks at each stage result in ResNet-101 and Resnet-152 architectures

1 Resblocks have Batch Normalization layers

Yashovardhan Shinde and Analyticsvidhya

Post 2015

2016 Winners (Trimps Soushen): Multi-scale Ensemble models of Inception, ResNets, WRN, etc.

Post 2015

- 2016 Winners (Trimps Soushen): Multi-scale Ensemble models of Inception, ResNets, WRN, etc.
- Improving ResNets: multiple parallel pathways of bottlenecks (ResNeXt), Squeeze and Excitation Nets (SENet)
- 3 Densenets, Tiny Networks (MobileNets, ShuffleNets), etc.

f 1 Initial families of architectures (AlexNet, ZFNet, VGG) ightarrow Bigger the better!

- $\ \, \textbf{1} \ \, \textbf{Initial families of architectures (AlexNet, ZFNet, VGG)} \rightarrow Bigger \ the better!$
- ② GoogLeNet emphasized on efficiency

- $\textbf{ 1} \textbf{ Initial families of architectures (AlexNet, ZFNet, VGG)} \rightarrow \textbf{Bigger the better!}$
- ② GoogLeNet emphasized on efficiency
- ResNet enabled extreme depth

Focus back on efficiency: improving accuracy w/o growing the complexity

- Focus back on efficiency: improving accuracy w/o growing the complexity
- ② Deploy-able models: MobileNet, ShuffleNet, etc.

- Focus back on efficiency: improving accuracy w/o growing the complexity
- ② Deploy-able models: MobileNet, ShuffleNet, etc.
- Neural Architecture Search (NAS)

