2.1 Physical quantities and units

This section provides knowledge and understanding of physical quantities and units.

24	1 Dhariad according						
2.1.	2.1.1 Physical quantities						
	Learning outcomes	Additional guidance					
	Learners should be able to demonstrate and apply their knowledge and understanding of:						
(a)	physical quantities have a numerical value and a unit	M0.1					
(b)	making estimates of physical quantities listed in this specification.	M0.4					
2.1.	2.1.2 S.I. units						
	Learning outcomes	Additional guidance					
	Learners should be able to demonstrate and apply their knowledge and understanding of:						
(a)	Système Internationale (S.I.) base quantities and their units – mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol)	HSW8					
(b)	derived units of S.I. base units Examples: momentum \longrightarrow kg m s ⁻¹ and density \longrightarrow kg m ⁻³						
(c)	units listed in this specification						
(d)	checking the homogeneity of physical equations using S.I. base units						
(e)	prefixes and their symbols to indicate decimal submultiples or multiples of units – pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T)	As set out in the ASE publication Signs, Symbols and Systematics (The ASE Companion to 16–19 Science, 2000).					
(f)	the conventions used for labelling graph axes and table columns.	As set out in above, e.g. speed / m s ⁻¹ . HSW8					

- (6) M Recall the SI quantities and their units
 (7) S Show an understanding of orders of magnitude, prefixes and convert units
 (8) C Be able to estimates of a range of quantities, with a justification.

Course and assessment overview

Paper		Marks	Duration	Weighting
Paper 1	Modelling physics Content – Modules 1, 2, 3, 5	100	2 hr 15 mins	37%
	Section A – Multiple choice	15		
Pa	Section B – Structured questions, covering theory and practical skills	85		
. 2	Exploring physics Content – Modules 1, 2, 4, 6	100	2 hr 15 mins	37%
Paper 2	Section A – Multiple choice	15		
-	Section B – Structured questions, covering theory and practical skills	85		
er 3	Unified physics Content – all modules	70	1 hr 30 mins	26%
Paper	Structured questions and extended response questions covering theory and practical skills	70		
Non-exam assessment	Practical endorsement for physics	Pass/Fail	Non-exam assessment	Reported separately
	See pages 29-31. Teacher-assessed component	Reported		
	common to Physics A and Physics B (Advancing Physics). Candidates complete a minimum of	separately		
	12 practical activities to demonstrate practical competence. Performance reported separately to			
Z	the A Level grade. Moderation details still to be confirmed by Ofqual at the time of going to press			
	committee by orquarat the time of going to pleas			

Module 1: Development of practical skills in physics (taught through Year 12 and Year 13)
Skills of planning, implementing, analysis and evaluation.
Module 2: Foundations of Physics (taught through Year 12 and Year 13)
Physical quantities and units, scalars and vectors, measurements.
Module 3: Forces and motion (Year 12)
Motion; Forces in action; Work, energy and power; Materials; Newton's laws of motion and momen
Module 4: Electrons, waves and photons (Year 12)
Charge and current; Energy, power and resistance; Electrical circuits; Waves; Quantum physics.
Module 5: Newtonian world and astrophysics (Year 13)
Thermal physics; Circular motion; Oscillations; Gravitational Fields; Astrophysics.
Module 6: Particles and medical physics (Year 13)
Capacitors; Electric fields; Electromagnetism; Nuclear and particle physics; Medical imaging.

	Learning expectations
	Folders / books
•	Assessment sheets at front (completed after each assessment)
•	Topic checklist/spec
•	Sheets and assessment - bound into folder in sections
•	Write full and proper notes
•	Show <u>full</u> working
•	Diagrams drawn with a pencil and ruler
•	Revision notes for each topic
•	Ensure you are up to date for termly folder checks.
	Lessons
•	Bags and coats in the bag rack
•	Complete all work to the best of your ability
•	Seek advice and question everything
•	Use resources on student portal and kerboodle (exam papers,
re	vision

- (6) M Recall the SI quantities and their units
- (7) S Show an understanding of orders of magnitude, prefixes and convert units
- (8) C Be able to estimates of a range of quantities, with a justification.

Which ones are **base quantities** and are **fundamental** and cannot be derived from other quantities?

What are their base units?

mars climate orbiter 2

- (6) M Recall the SI quantities and their units
- (7) S Show an understanding of orders of magnitude, prefixes and convert units
- (8) C Be able to estimates of a range of quantities, with a justification.

SI Base quantities.

Quantity	Base unit	Unit symbol
length	metre	m
mass	kilogram	kg
time	second	S
electric current	ampère	А
temperature	kelvin	K
amount of substance	mole	mol

How did scientist come up with these particular units?

derivation of units for SI quantities

the roundest object

- (7) S Show an understanding of orders of magnitude, prefixes and convert units
- (8) C Be able to estimates of a range of quantities, with a justification.

