bus0gt4m5

April 29, 2024

```
[]: import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     import seaborn as sns
     import os
     import scipy as sp
     import warnings
     warnings.filterwarnings("ignore")
     %matplotlib inline
     data = pd.read_csv("/content/diabetes.csv")
     data.head()
[]:
        Pregnancies
                      Glucose
                               BloodPressure
                                               SkinThickness
                                                                Insulin
                                                                          BMI
     0
                   6
                          148
                                           72
                                                           35
                                                                         33.6
     1
                   1
                           85
                                           66
                                                           29
                                                                         26.6
     2
                   8
                          183
                                           64
                                                            0
                                                                      0
                                                                         23.3
     3
                                           66
                                                           23
                                                                         28.1
                   1
                           89
                                                                     94
                   0
                          137
                                           40
                                                           35
                                                                    168
                                                                         43.1
        DiabetesPedigreeFunction
                                         Outcome
                                    Age
     0
                            0.627
                                     50
     1
                            0.351
                                     31
                                               0
     2
                            0.672
                                     32
                                               1
     3
                            0.167
                                     21
                                               0
     4
                            2.288
                                     33
                                               1
[]: data.describe()
[]:
            Pregnancies
                             Glucose
                                       BloodPressure
                                                       SkinThickness
                                                                          Insulin \
             768.000000
                          768.000000
     count
                                          768.000000
                                                          768.000000
                                                                       768.000000
     mean
                3.845052
                          120.894531
                                           69.105469
                                                           20.536458
                                                                        79.799479
     std
                3.369578
                           31.972618
                                                           15.952218
                                                                       115.244002
                                           19.355807
     min
                0.000000
                            0.000000
                                            0.000000
                                                            0.000000
                                                                         0.000000
     25%
                1.000000
                           99.000000
                                           62.000000
                                                            0.000000
                                                                         0.000000
     50%
                3.000000
                          117.000000
                                           72.000000
                                                           23.000000
                                                                        30.500000
     75%
                6.000000
                          140.250000
                                           80.000000
                                                           32.000000
                                                                       127.250000
     max
              17.000000
                          199.000000
                                          122.000000
                                                           99.000000
                                                                       846.000000
```

	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

[]: data.shape

data.value_counts()

[]:	Preg	nancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	
	Diab	etesPedi	greeFunct	ion Age Outco	me			
	0		57	60	0	0	21.7	0.735
	67	0	1					
			67	76	0	0	45.3	0.194
	46	0	1					
	5		103	108	37	0	39.2	0.305
	65	0	1					
			104	74	0	0	28.8	0.153
	48	0	1					
			105	72	29	325	36.9	0.159
	28	0	1					
	2		84	50	23	76	30.4	0.968
	21	0	1					
			85	65	0	0	39.6	0.930
	27	0	1					
		•	87	0	23	0	28.9	0.773
	25	0	1		20		20.0	0.110
	20	· ·	-	58	16	52	32.7	0.166
	25	0	1		10	02	02.1	0.100
	17	V	163	72	41	114	40.9	0.817
	47	1	1	. 4	11	111	10.5	0.011
				760 dtung, int	C 1			

Name: count, Length: 768, dtype: int64

[]: data.corr()

[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	\
Pregnanc	ies	1.000000	0.129459	0.141282	-0.081672	
Glucose		0.129459	1.000000	0.152590	0.057328	
BloodPre	ssure	0.141282	0.152590	1.000000	0.207371	
SkinThic	kness	-0.081672	0.057328	0.207371	1.000000	
Insulin		-0.073535	0.331357	0.088933	0.436783	

BMI	0.0176	83 0.2210	71 0.281805	0.392573
DiabetesPedigreeFunction	-0.0335	23 0.1373	37 0.041265	0.183928
Age	0.5443	41 0.2635	14 0.239528	-0.113970
Outcome	0.2218	98 0.4665	81 0.065068	0.074752
	Insulin	BMI	DiabetesPedigreeFund	ction \
Pregnancies	-0.073535	0.017683	-0.03	33523
Glucose	0.331357	0.221071	0.13	37337
BloodPressure	0.088933	0.281805	0.04	11265
SkinThickness	0.436783	0.392573	0.18	33928
Insulin	1.000000	0.197859	0.18	35071
BMI	0.197859	1.000000	0.14	10647
DiabetesPedigreeFunction	0.185071	0.140647	1.00	00000
Age	-0.042163	0.036242	0.03	33561
Outcome	0.130548	0.292695	0.17	73844
	Age	Outcome		
Pregnancies	0.544341	0.221898		
Glucose	0.263514	0.466581		
BloodPressure	0.239528	0.065068		
SkinThickness	-0.113970	0.074752		
Insulin	-0.042163	0.130548		
BMI	0.036242	0.292695		
${\tt DiabetesPedigreeFunction}$	0.033561	0.173844		
Age	1.000000	0.238356		
Outcome	0.238356	1.000000		

[]: sns.heatmap(data.corr(), annot=True)

[]: <Axes: >

#Gaussian Naive Bayes

```
[]: from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(x_train,y_train)
```

[]: GaussianNB()

```
from sklearn.metrics import r2_score
     from sklearn.metrics import mean_squared_error
     print("Classification Report is:\n",classification_report(y_test,y_pred))
     print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
     print("Training Score:\n",gnb.score(x_train,y_train)*100)
     print("Mean Squared Error:\n",mean_squared_error(y_test,y_pred))
     print("R2 score is:\n",r2_score(y_test,y_pred))
    Classification Report is:
                   precision
                                recall f1-score
                                                    support
               0
                       0.84
                                 0.87
                                            0.85
                                                       107
               1
                       0.67
                                  0.62
                                            0.64
                                                        47
                                            0.79
                                                       154
        accuracy
       macro avg
                       0.76
                                 0.74
                                            0.75
                                                       154
    weighted avg
                       0.79
                                  0.79
                                            0.79
                                                       154
    Confusion Matrix:
     [[93 14]
     [18 29]]
    Training Score:
     75.7328990228013
    Mean Squared Error:
     0.2077922077922078
    R2 score is:
     0.020083515609465197
[]: class names=[0,1]
     cnf_matrix=confusion_matrix(y_test,y_pred)
     fig, ax = plt.subplots()
     tick_marks = np.arange(len(class_names))
     plt.xticks(tick_marks, class_names)
     plt.yticks(tick_marks, class_names)
     sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
     ax.xaxis.set_label_position("top")
     plt.tight_layout()
     plt.title('Confusion matrix', y=1.1)
```

```
[]: Text(0.5, 427.9555555555555, 'Predicted label')
```

plt.ylabel('Actual label')
plt.xlabel('Predicted label')

Confusion matrix


```
from sklearn.metrics import
      →accuracy_score,classification_report,confusion_matrix
     from sklearn.metrics import r2_score
     from sklearn.metrics import mean squared error
     print("Classification Report is:\n",classification_report(y_test,y_pred))
     print("Confusion Matrix:\n",confusion matrix(y test,y pred))
     print("Training Score:\n",dtree.score(x_train,y_train)*100)
     print("Mean Squared Error:\n",mean_squared_error(y_test,y_pred))
     print("R2 score is:\n",r2_score(y_test,y_pred))
    Classification Report is:
                   precision
                                recall f1-score
                                                    support
               0
                       0.84
                                 0.87
                                           0.85
                                                       107
               1
                       0.67
                                 0.62
                                           0.64
                                                       47
                                           0.79
                                                       154
        accuracy
                                 0.74
                                           0.75
                                                       154
       macro avg
                       0.76
                       0.79
                                 0.79
                                           0.79
    weighted avg
                                                       154
    Confusion Matrix:
     [[93 14]
     [18 29]]
    Training Score:
     82.08469055374593
    Mean Squared Error:
     0.2077922077922078
    R2 score is:
     0.020083515609465197
[]: class_names=[0,1]
     cnf_matrix=confusion_matrix(y_test,y_pred)
     fig, ax = plt.subplots()
     tick_marks = np.arange(len(class_names))
     plt.xticks(tick_marks, class_names)
     plt.yticks(tick marks, class names)
     sns.heatmap(pd.DataFrame(cnf matrix), annot=True, cmap="YlGnBu",fmt='g')
     ax.xaxis.set_label_position("top")
     plt.tight_layout()
     plt.title('Confusion matrix', y=1.1)
     plt.ylabel('Actual label')
     plt.xlabel('Predicted label')
```

[]: Text(0.5, 427.9555555555555, 'Predicted label')

Confusion matrix


```
[]:
[]: print(accuracy_score(y_test,y2_pred)*100)
    73.37662337662337
    #Regression Tree on Walmart Sales
[]: from sklearn import metrics
[]: walmart = pd.read_csv('Walmart_sales.csv')
     walmart.head()
[]:
                     Date Weekly_Sales Holiday_Flag Temperature Fuel_Price \
        Store
                             1643690.90
     0
              05-02-2010
                                                             42.31
                                                                         2.572
                                                    1
              12-02-2010
                             1641957.44
                                                             38.51
                                                                         2.548
```

```
2
         19-02-2010
                         1611968.17
                                                0
                                                          39.93
                                                                      2.514
3
          26-02-2010
                         1409727.59
                                                          46.63
                                                                      2.561
                                                          46.50
          05-03-2010
                         1554806.68
                                                0
                                                                      2.625
          CPI
               Unemployment
                      8.106
   211.096358
   211.242170
                      8.106
1
2 211.289143
                      8.106
3 211.319643
                      8.106
4 211.350143
                      8.106
```

```
[]: from matplotlib import pyplot as plt
walmart['Weekly_Sales'].plot(kind='hist', bins=20, title='Weekly_Sales')
plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[]: walmart.shape
```

[]: (6435, 8)

RMSE: 203115.80854825137