Partial Orders

A relation R on a set S is a partial order if it is reflexive, anti-symmetric and transitive.

eg. ? is a partial order on Z

 $a \geqslant a$ for all $a \in \mathbb{Z}$, so reflexive $a \geqslant b$ $\land b \geqslant a \rightarrow a = b$, so anti-symmetric. $a \geqslant b$ $\land b \geqslant c \rightarrow a \geqslant c$, so transitive.

eg. "divides' (denoted by 1) is a partial order on Z⁺

a | a for all $a \in \mathbb{Z}^+$, so reflexive a | b \land b | a \rightarrow a = b , so anti-symmetric a | b \land b | c \rightarrow a | c , so transitive.

eg. E is a partial order on P(IN)

 $A \subseteq A$ for all $A \in P(N)$, so reflexive $A \subseteq B \land B \subseteq A \rightarrow A = B$, so anti-symmetric $A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$, so transitive. Def A total order $R \subseteq A \times A$ is a partial order where for every $a, b \in A$, either $(a, b) \in R$ or $(b, a) \in R$.

Def a and b are incomparable if $(a,b) \notin R$ and $(b,a) \notin R$.

eg. \leq is a total order since $\forall a, b \in \mathbb{Z}$, $a \leq b$ or $b \leq a$.

eg. 'divides' is not a total order

Note: 2 and 3 are incomparable since 2/3 and 3/2.

eg. Let R be a relation over $\mathbb{Z} \times \mathbb{Z}$ where $(a,b) R (c,d) iff <math>a \leq c \wedge b \leq d$.

R is not total since (1,2) and (2,1) are incomparable.

eg. Let R' be a relation over $\mathbb{Z} \times \mathbb{Z}$ where (a,b)R(c,d) iff $a \le c \vee (a=c \wedge b \le d)$

R'is a total order (lexicographic order) (1,2) R(2,1).

Def A strict partial order is anti-reflexive and transitive.

Theorem A strict partial order is anti-symmetric.

Proof: Suppose aRb and bRa. By
transitivity, aRa. This contradicts
the fact that R is anti-reflexive.
So - (aRb A bRa). Therefore, R is
anti-symmetric.

QED,

< and & are strict partial orders.

A strict partial order can be represented by a DAG (directed acyclic graph).

eg. a pre-requisite dependancy flowchart

We can solve scheduling problems by relying on a partial order.

Topological Sorting

come up with a total order of the items that is consistent with the partial order.

- O underwear, shirt, pants, left sock, right sock, belt, tie, left shoe, right shoe, jacket.
- 2 left sock, shirt, tie, underwear, night sock, pants, left shoe, belt, jacket, right shoe.