

SLIDER I

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

DISRUPTIVE ARCHITECTURES: IOT, IOB & IA

Aula 02 - Conceitos Básicos de Eletrônica

Prof. Airton Y. C. Toyofuku

profairton.toyofuku@fiap.com.br

Agenda

- Tensão, Corrente e Potência;
- O Resistor;
- Lei de Ohm;
- Divisão de tensão com resistores;
- Potenciômetro;
- O Led;
- Push Button;
- Protoboard;
- Laboratório;
- Exercícios;

Tensão, Corrente e Potência

Corrente Elétrica

- Corrente elétrica é o fluxo de cargas elétricas (elétrons) passando por um meio condutor;
- A medida da corrente elétrica é feita considerando a quantidade de cargas que passam por uma área de um condutor elétrico.
- A unidade de medida é o Ampere (A)

Fonte: https://www.newtoncbraga.com.br/index.php/artigos/49-curiosidades/4334-art598.html

Tensão

- É uma grandeza elétrica que faz mover as cargas elétricas, gerando a corrente;
- Chamamos de tensão o potencial elétrico que existe em um determinado ponto.
- A diferença de potencial entre dois pontos força o movimento das cargas elétricas, do maior potencia, para o menor;
- A unidade de medida é o Volt (V)

Potência

- Potência é a energia gerada pela movimentação das cargas elétricas;
- A potência depende da quantidade de cargas e da "força" com que elas passam pelo meio condutor;
- A quantidade de carga é dada pela corrente, e a força é dada pela tensão.

Tensão, Corrente e Potência

O Resistor

Componente eletrônico usado para limitar a passagem de correte elétrica;

Causam uma queda de tensão controlada no circuito eletrônico;

Sua medida é em **Ohms** (Ω) e são regidos pela Lei de Ohm;

Possuem muitos valores e são identificados por um Código de Cores;

Também são usados para esquentar alguma coisa (chuveiro);

O Resistor

Os "resistores" são componentes com a finalidade de oferecer resistência à passagem da corrente elétrica.

3º Algarismo

Cores	Valores			Multiplicadores	Tolerância
	Faixa 1	Faixa 2	Faixa 3	X	%
Prata	•	-	-	0,01	10%
Ouro	•	-	-	0,1	5%
Preto	-	0	0	1	-
Marrom	1	1	1	10	1%
Vermelho	2	2	2	100	2%
Laranja	3	3	3	1000	-
Amarelo	4	4	4	10000	-
Verde	5	5	5	100000	5%
Azul	6	6	6	1000000	0,25%
Violeta	7	7	7	10000000	0,10%
Cinza	8	8	8	-	-
Branco	9	9	9	-	-
Sem cor	-	-	-	-	20%

Fonte: https://aprendendoeletrica.com/codigo-de-cores-para-resistores/

Quanto vale esse resistor?

1ª Faixa – Laranja –	-> 3	,
----------------------	------	---

Resistor = $339 \times 1, 1\%$

Resistor = 339 Ohms +/- 1%

Lei de Ohm

LEI de OHM
$$\rightarrow R = \frac{V}{I}$$

- R = Resistência Elétrica em Ohms(Ω);
- V = Queda de tensão no resistor em Volts (V);
- I = Corrente elétrica que passa pelo resistor em Amperes (A);

Exemplo: Qual resistor eu devo usar para ligar um LED que consome 20mA a 3,3 Volts?

LEI de OHM
$$\rightarrow R = \frac{V}{I} \rightarrow R = \frac{3,3}{0,020} \rightarrow R = 165 \ Ohms$$

Divisão de tensão com Resistores

A divisão de tensão com resistores é um princípio fundamental na eletrônica que permite obter tensões proporcionais em diferentes pontos de um circuito. Esse princípio é baseado na Lei de Ohm, que estabelece a relação entre a corrente elétrica, a resistência e a tensão em um circuito.

Lei de Ohm:
$$I = \frac{V}{R}$$

Aplicando esse conceito à divisão de tensão com resistores, consideramos um circuito em série, onde dois ou mais resistores estão conectados em série com uma fonte de tensão. A tensão total da fonte é dividida entre os resistores de acordo com a proporção das suas resistências.

Divisão de tensão com Resistores

Por exemplo, suponha que temos dois resistores em série, R1 e R2, conectados a uma fonte de tensão V. A tensão total V será dividida entre os resistores de acordo com as seguintes fórmulas:

$$V_1 = \frac{R_1}{R_1 + R_2} \times V_{entrada} \qquad V_2 = \frac{R_2}{R_1 + R_2} \times V_{entrada}$$

Onde V1 e V2 são as tensões nos resistores R1 e R2, respectivamente.

Exemplo: Vamos dizer que nossa Tensão de Entrada é 5 Volts, R1 é 10K Ω e R2 é 20K Ω . Quanto vale V1 e V2?

$$V_1 = \frac{10K}{10K + 20K} \times 5 = 1,67 \text{ Volts}$$
 $V_2 = \frac{20K}{10K + 20K} \times 5 = 3,33 \text{ Volts}$

Divisão de tensão com Resistores

A divisão de tensão com resistores tem diversas aplicações e é amplamente utilizada na eletrônica. Algumas aplicações comuns incluem:

Controle de Volume

Utilizado em amplificadores de áudio, onde um potenciômetro é usado para ajustar a tensão que chega ao alto-falante, controlando assim o volume do som.

Sensoriamento de Níveis

Utilizado para converter grandezas físicas, como temperatura ou luz, em sinais elétricos proporcionais. Os sensores são projetados para variar sua resistência com a mudança da grandeza física, e a divisão de tensão é usada para obter uma tensão proporcional a essa variação.

Fontes de Alimentação Ajustáveis

A divisão de tensão é usada para criar uma saída de tensão ajustável a partir de uma fonte de tensão fixa, permitindo fornecer diferentes níveis de tensão conforme necessário.

Potenciômetro

Componente eletrônico que possui uma resistência variável. Ele é composto por um elemento resistivo e um cursor móvel que pode ser ajustado manualmente. O cursor se move ao longo da resistência, permitindo a seleção de diferentes valores.

Quando um potenciômetro é conectado a um circuito, ele atua como um divisor de tensão. Ao girar o cursor, a resistência efetiva entre os terminais do potenciômetro varia, o que altera a tensão ou a corrente que flui nesse trecho do circuito.

Os potenciômetros são aplicados em circuitos eletrônicos para controlar o valor da resistência em um determinado ponto. Eles são amplamente utilizados para ajustar níveis de voltagem, regular correntes, controlar volume de áudio, brilho de telas, entre outras aplicações.

O LED

O "LED" é um dispositivo emissor de luz

- As informações mais importantes são: Polaridade, Tensão Limite e a Corrente Máxima;
- O Led tem a posição correta de ser ligado, onde tem um chanfro ou terminal menor é o cátodo (Negativo) e o terminal maior é o ânodo (Positivo)
- Existe em diversos tamanhos e formatos redondo, quadrado, retangular, pequenos, grandes...

Push Button

Um push button, também conhecido como botão de pressão ou botão momentâneo, é um tipo de interruptor utilizado em circuitos eletrônicos. Ele é projetado para ser pressionado momentaneamente, retornando à sua posição original quando liberado.

É composto por um mecanismo interno que fecha ou abre um circuito elétrico quando pressionado. Quando o botão é acionado, suas conexões elétricas são estabelecidas, permitindo a passagem da corrente elétrica pelo circuito. Quando o botão é liberado, as conexões são interrompidas, interrompendo o fluxo de corrente.

current blocked

current flows

Protoboard

Protoboard

A linha **Vermelha** é toda interligada e serve para ligar o **Positivo** da fonte de alimentação: VCC, VDD, 3.3V, 5V, 12V, +

A linha **Preta** é toda interligada e serve para ligar o **Negativo** da fonte de alimentação: GND, VSS, OV, Terra, -

As linhas A, B, C, D e E estão ligadas na VERTICAL, em forma de colunas, e uma coluna não fala com a outra.

As linhas F,G,H,I e J seguem o mesmo padrão, com a diferença que **não** falam com a coluna de cima.

Laborátorio

O Objetivo deste laboratório é entender a relação entre os componentes eletrônicos apresentados na aula, e a verificação da influência destes componentes nas grandezas de tensão e corrente.

Laborátorio

O Objetivo deste laboratório é entender a relação entre a lei de Ohm e os divisores de tensão usando resistores

Exercícios de Resistores

- 1. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: amarelo, violeta, vermelho e ouro?
- Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: marrom, preto, amarelo e prata?
- 3. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: laranja, branco, verde e ouro?
- 4. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: vermelho, vermelho, marrom e ouro?
- 5. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: marrom, verde, marrom e prata?
- 6. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: laranja, preto, verde e ouro?
- 7. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: amarelo, violeta, amarelo e prata?
- 8. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: verde, azul, marrom e prata?
- 9. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: marrom, preto, verde e ouro?
- 10. Qual é o valor de resistência de um resistor que tem as seguintes cores em sua faixa de resistência: cinza, vermelho, marrom e ouro?

Exercícios de Lei de Ohm

- Um resistor de 220 Ω é alimentado por uma fonte de 12V.
 Qual é a corrente elétrica que passa pelo resistor?
- 2. Um resistor de 100 Ω é alimentado por uma corrente elétrica de 1,5 A. Qual é a tensão elétrica aplicada no resistor?
- 3. Um resistor de 470 Ω é alimentado por uma tensão elétrica de 5V. Qual é a corrente elétrica que passa pelo resistor?
- 4. Um resistor de 33 Ω é alimentado por uma tensão elétrica de 9V. Qual é a corrente elétrica que passa pelo resistor?
- 5. Um resistor de 220 Ω é alimentado por uma corrente elétrica de 20 mA. Qual é a tensão elétrica aplicada no resistor?

Copyright © 2023 Prof. Airton Y. C. Toyofuku

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).

This presentation has been designed using images from Flaticon.com Images from Monty Python's Flying Circle: BBC, 1969. Netflix, 2019 Imagens from Dragon Ball, Saint Seiya: Toei Animation