Examen HMIN211 Analyse et traitement d'images 17 Mai 2015 – Session 1

Partie W. Puech

Durée: 1h00. Tous documents autorisés

1) Calcul de distances

- 1. Pourquoi n'est-il pas préférable d'utiliser une distance Euclidienne en traitement des images ?
- 2. Quelles sont les distances utilisées ?
- 3. Quels sont les liens entres les distances et les voisinages ?
- 4. Donner un exemple.
- 5. Calculer le type et le nombre de voisins en dimension 3.
- 6. Calculer le type et le nombre de voisins en dimension 4.

2) Méthode d'impainting – Split and Merge

- 1. Impainting wished square sour timesto more 2 shows law at manality as
- a. Quel est le principe d'une méthode d'impainting?
- b. Comment et pourquoi utiliser une méthode d'impainting pour falsifier une image?
 - 2. Split and Merge
 - a. Dans quel contexte utiliser un split and merge?
- b. Dans l'étape de « merge » vaut-il mieux utiliser la moyenne de pixels ou la variance ? Expliquer.

3) Espace couleur

- 1. De manière générale, quelle est la dimension des espaces couleur ?
- 2. Présenter 3 familles d'espace couleur.
- 3. Dans le cas d'un espace couleur basé uniquement sur les chrominances, quelle est la contrainte forte sur le choix des couleurs formant la base de cet espace ?

4) Seuillage d'image – Analyse de la valeur du seuil

Soit l'image originale I0 qui est censée contenir l'objet représenté sur l'image I_objet. Le but de cet exercice est d'extraire cet objet en essayant d'avoir le moins d'erreur possible. Les pixels de l'image I0 sont codés sur 3 bits par pixel et peuvent donc avoir des valeurs comprises entre 0 et 7.

6	7	5	6	7	5
3	4	3	2	6	4
5	6	3	6	5	7.
6	2	5	6	5	7
1	3	4	3	3	7
6	6'	6	4	6	7

Image Originale I0

X	X	X	X	X
	X	X		
12.5	X	X	20.	4
X	X	X	X	X

I objet : Objet que l'on recherche dans I0

- 1. Tracer l'histogramme de l'image originale I0. Déterminer les 2 modes contenus dans l'histogramme. En déduire la fonction de densité de probabilité (ddp), la tracer.
- 2. Déterminer une valeur minimum S entre les 2 modes. Appliquer un seuillage en utilisant la valeur de S pour obtenir une image binaire I1 (tous les pixels de I0 ayant une valeur strictement inférieure à S seront mis à 0-noir, les autres à 1-blanc). Pour chacun des deux groupes de pixels, calculer la moyenne ainsi que l'écart type. Modéliser alors la fonction de densité de probabilité par 2 gaussiennes ?
- 3. A partir de l'image binaire II et en utilisant la réalité représentée sur l'image I_objet compter : le nombre de vrais positifs VP (pixels appartenant à l'objet et réellement détectés), le nombre de faux positifs FP (pixels n'appartenant pas à l'objet mais détectés comme appartenant à l'objet), le nombre de vrais négatifs VN (pixels appartenant au fond et réellement détectés) et enfin le nombre de faux négatifs FN (pixel appartenant à l'objet mais détectés comme pixels de fond).
- 4. En déduire la spécificité (VN/(VN+FP)) ainsi que la sensibilité (VP/(VP+FN)). Calculer alors les 2 valeurs de seuils S_spé et S_sen pour avoir respectivement une spécificité égale à 1 puis une sensibilité égale à 1.

Examen HMIN211 Partie O. Strauss

Durée: 30'

Tous documents autorisés

1) Dérivation des images

- 1. Rappelez ce qu'on appelle « dériver une image ».
- 2. Quel autre nom donne-t-on à cette dérivée?
- 3. Donnez un ou deux exemples d'utilisation de la dérivation des images.
- 4. Comment fait-on pour calculer cette dérivée (expliquez succinctement).

2) Filtrage des images

0	0,1	0		
0,2	0,4	0,2		
0	0,1	0		

noyau de convolution

- 1. Qu'est ce qu'un noyau de convolution?
- 2. Que réaliser, à votre avis, le noyau de convolution ci-dessus ?
- 3. Si on considère l'image ci-dessous, donnez le résultat de la convolution du pixel de la troisième ligne et de la quatrième colonne avec le noyau de convolution ci-dessus.

4. Peut on calculer la convolution pour les pixels des bords? si oui, comment, si non pourquoi?

						A STATE OF THE STA	
10	4	6	8	12	14	18	24
8	4	6	4	0	4	6	4
12	6	24	28	12	0	0	2
12	14	16	14	10	12	14	12
6	8	16	12	10	8	8	6
0	4	12	8	8	6	2	0

Image originale

3) Segmentation des images

1. Qu'est ce que segmenter une image?