线性回归,岭回归以及 Lasso 回归

邵李翔 赵张弛 祖劭康

日期: April 12, 2021

1 数据集描述

本次实验采用的数据集为 Boston (波士顿房价) 数据集,它记录了波士顿周围 506 个街区的 medv (房价中位数)。我们将设法用 13 个预测变量如 rm (每栋住宅的平均房间数),age (平均房龄),lstat (社会经济地位低的家庭所占比例)等来预测 medv (房价中位数)。

表 1:数据集中部分数据展示

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	medv
1	0.01	18.00	2.31	0.00	0.54	6.58	65.20	4.09	1.00	296.00	15.30	396.90	4.98	24.00
2	0.03	0.00	7.07	0.00	0.47	6.42	78.90	4.97	2.00	242.00	17.80	396.90	9.14	21.60
3	0.03	0.00	7.07	0.00	0.47	7.18	61.10	4.97	2.00	242.00	17.80	392.83	4.03	34.70

2 线性回归

使用 lm() 函数对所有预测变量进行多元回归, 得到的结果如下

表 2: 多元线性回归拟合结果

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	36.4595	5.1035	7.14	0.0000
crim	-0.1080	0.0329	-3.29	0.0011
zn	0.0464	0.0137	3.38	0.0008
indus	0.0206	0.0615	0.33	0.7383
chas	2.6867	0.8616	3.12	0.0019
nox	-17.7666	3.8197	-4.65	0.0000
rm	3.8099	0.4179	9.12	0.0000
age	0.0007	0.0132	0.05	0.9582
dis	-1.4756	0.1995	-7.40	0.0000
rad	0.3060	0.0663	4.61	0.0000
tax	-0.0123	0.0038	-3.28	0.0011
ptratio	-0.9527	0.1308	-7.28	0.0000
black	0.0093	0.0027	3.47	0.0006
lstat	-0.5248	0.0507	-10.35	0.0000

3 岭回归

3.1 自己实现的岭回归与自带包实现的岭回归

选取超参数 λ 为 0.01, 使用两种不同的代码实现岭回归, 得到模型中的参数如下表所示

	截距项	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat
手写代码	35.96	-0.11	0.05	0.02	2.69	-17.48	3.83	0.00	-1.47	0.30	-0.01	-0.95	0.01	-0.52
自带包	36.46	-0.11	0.05	0.02	2.69	-17.76	3.81	0.00	-1.48	0.31	-0.01	-0.95	0.01	-0.52

3.2 基于交叉验证选择最佳参数

自动选择参数 λ 值的范围进行岭回归, 选择在 $\lambda=1$ 到 $\lambda=10^{-3}$ 的范围内进行岭回归, 如图所示可得每个变量的系数随着参数 λ 变化所得到的曲线.

图 1: 系数变化曲线

将数据分为 10 折, 使用交叉验证法选择调节参数 λ , 得到系数变化曲线如下图所示分别选取 λ 的 LSE 值以及最小的 λ 值下的变量系数, 如下图所示

图 2: 交叉验证法的系数变化曲线

图 3: 两个 λ 值下的系数

72	1	- 2
(Intercept)	28.002622542	20.639034849
crim	-0.087575337	-0.066141464
zn	0.032682858	0.019688710
indus	-0.037995597	-0.070139429
chas	2.899744506	2.691457142
nox	-11.914110425	-4.964448286
rm	4.011259959	3.483521810
age	-0.003730882	-0.008045836
dis	-1.118912658	-0.454261144
rad	0.153749809	0.023165777
tax	-0.005751983	-0.002826955
ptratio	-0.854993947	-0.643103460
black	0.009073718	0.007326400
lstat	-0.472427733	-0.329619357