

Process simulation in Biodiesel production

Diego Paulino de Araújo

Federal University of São Paulo

Background & Description

Currently, the demand for renewable energy sources such as alcohols, vegetable oils and their derivatives has been significant, as they are environmentally acceptable. In 1895, Dr. Rudolf Diesel created the first engine used with vegetable oil, but with the low price of oil products, vegetable oil was replaced. Nowadays, due to environmental concerns, research has been carried out to use vegetable oils and their derivatives (for example, biodiesel) as fuels.

Biodiesel (Greek, bio, life + diesel by Rudolf Diesel) is the name given to alkyl esters of fatty acids derived from biological sources, such as plants and animals. This ester can be produced from the transesterification of acid catalysis, basic catalysis, enzymatic catalysis, conversion of oil into fatty acids and then into biodiesel and transesterification without catalyst. This fuel can be used in diesel engines directly or mixed. For example, B20 and B100 fuels that contain 20% and 100% biodiesel, respectively.

Chemical reaction kinetic

3CH3CH2OH + OOO ←→ HOCH2CH(OH)CH2OH + 3EtO

Process

The process is based on the recycling of ethanol that exchanges heat with a thermal cooler, afterwards we have three inlet streams to contribute to the chemical kinetic feed. In the CSTR reactor, the transesterification reaction occurs. The output stream from the reactor passes through a column where the products will be separated, passing through another thermal chiller that recycles with a heater at the entrance of the distillation tower and further on, two tanks perform the separation until reaching the biodiesel product stream. The thermodynamic model used was NRTL and the evaluation of the flash algorithm used was Nested Loops (VLE).

Flowsheet:

Results:

Biodiesel stream		Units	ShortcutColumn Results		Units	
Temperature	71,6842	°C	Reflux Ratio	1,5	-	
Pressure	1,033	kgf/cm2	Minimun Reflux Ratio	8,80114) -)	
Mass Flow	1044,02	kg/h	Condenser Duty	106,638	kW	
Mixture Density	829,905	kg/m3	Reboiler Duty	193,419	kW	
Mixture Molar Weight	310,721	kg/kmol				
COTTO D			6			
CSTR Results		Units	Cooler Results			
TriOlein (OOO): Conversion	99,8953	%	Heat Removed	COOL-028	COOL-001	
Sodium Hydroxide: Conversion	4,56E-05	%	rieat Kemoved	92,1267	37,2495	
Water: Conversion	4,56E-05	%			1121	
Ethanol: Conversion	51,9741	%	Heater Results			
Outlet Temperature	45	С	TT A 11 - 1	HEAT-026	HEAT-013	
Heat load	-16,098	kW	Heat Added	92,1267	5,71419	
Volume	10	m3			20	
Residence time	23859,1	S	Sep	Separator Results		
			Energy Balance	CS-038	CS-034	
			Energy Dalance	-1.22163	-20.061	

Conclusions

We can conclude that depending on the raw material used for the production of biodiesel, contaminants can be found in the fuel, such as phosphorus, sulfur, calcium and magnesium. According to the process, different amounts of free glycerin, unreacted glycerides, soaps, residual alcohol, catalyst residues and water that affect the quality of biodiesel.