

Mikroişlemcili Sistemler ve Laboratuvarı

Zamanlayıcılar ve Sayıcılar

Amaçlar

- Zamanlayıcı/sayıcı tanımını kavramak
- 8051'de zamanlayıcı/sayıcı saklayıcılarını öğrenmek
- Zamanlayıcı/sayıcı modlarının kullanımları hakkında bilgi sahibi olmak
- Uygulamalarda zamanlayıcı/sayıcı birimini kullanabilmek
- Bu sunumdaki şekiller ve örnekler "C ile 8051 Mikrodenetleyici Uygulamaları, A.T.Özcerit, M.Çakıroğlu, C.Bayılmış, Papatya Yayınları" kitabından alınmıştır.

Giriş

- Mikrodenetleyicilerde Zamanlayıcı/Sayıcı (Z/S) biriminin işlevi :
 - Dahili veya harici kaynaklı olarak zamanı ölçmek
 - Dahili veya harici kaynaklı olarak olayları saymak
- Standart 8051'de 4 farklı modda kullanılabilen 2 adet 16-bitlik Z/S vardır. (T0 ve T1)
- 16 adet negatif kenar tetiklemeli D tipi FF'un (Flip Flop) asenkron ve ardışık olarak bağlanmasından meydana gelmektedir

Zamanlayıcı/Sayıcı Saklayıcıları

İsim	Fonksiyonu	Adres	Bit-Adreslenebilir	
TCON	Kontrol	88h √		
TMOD	MOD seçimi	89h	-	
TL0	Zamanlayıcı-0 düşük-bayt	8Ah	_	
TL1	Zamanlayıcı-1 düşük-bayt	8Bh	_	
TH0	Zamanlayıcı-0 yüksek-bayt	8Ch	-	
TH1	Zamanlayıcı-1 yüksek-bayt	8Dh	-	
T2CON*	Zamanlayıcı-2 kontrol	C8h	V	
T2MOD*	Zamanlayıcı-2 MOD seçimi	C9h	-	
RCAP2L*	Zamanlayıcı-2 yakalama düşük-bayt	CAh	-	
RCAP2H*	Zamanlayıcı-2 yakalama yüksek-bayt	CBh	_	
TL2*	Zamanlayıcı-2 düşük-bayt	CCh	-	
TH2*	Zamanlayıcı-2 yüksek-bayt	CDh	_	

^{* 8051, 8751, 8031&#}x27; de yoktur

TMOD Saklayıcısı

- T0 ve T1'in çalışma modlarını (Mod 0, 1, 2, 3)
- T0 ve T1'in zamanlayıcı ya da sayıcı olarak çalışma durumunu belirler.

TCON Saklayıcısı

- Bit adreslenebilirdir
- Yüksek değerlikli dört biti, T0 ve T1'i başlatma, kontrol ve durdurma işlevlerini yerine getirir
- Düşük değerlikli dört biti ise kesme işlemleri için kullanılır

T0 ve T1 Zamanlayıcı/Sayıcıları

T0'ın İç Yapısı

Sayıcı

Pin	Port Pin	Function	on D	escription	n:			
14	P3.4	TO	Ti	imer/Cour	iter 0 ext	ernal inp	out	
15	P3.5	T1	T1 Timer/Counter 1 external input					
()	MSB)						(LSB)	
Γ	GATE C/	Г М1	M0	GATE	C/T	MI	M0	
		Timer I			Tim	er 0		

Z/S Çalışma Modları

Z/S'ler 4 farklı çalışma moduna sahiptir.

Z/S'nin çalışma modu TMOD saklayıcısındaki M0 ve M1 bitleri ile belirlenir.

M1	M0	MOD	Açıklama	
0	0	0	13-bit zamanlayıcı/sayıcı modu (8048 Modu)	
0	1	1	16-bit zamanlayıcı/sayıcı modu	
1	0	2	8-bit zamanlayıcı/sayıcı otomatik yükleme modu	
1	1	3	Ayrık zamanlayıcı modu T0: TL0: T0 mod bit'leri tarafından kontrol edilen 8-bit Z/S TH0: T1 mod bit'leri tarafından kontrol edilen 8-bit Z/S T1: Durdurulur.	

T2 Zamanlayıcı/Sayıcısı

- İlk olarak 8052'de kullanılmıştır
- T0 ve T1'den farklı olarak 4 saklayıcıdan oluşmaktadır
- T2'nin kontrolü, T2CON ve T2MOD saklayıcıları ile yapılır

T2CON ve T2MOD Saklayıcıları

T2CON Zamanlayıcı/Sayıcı 2 Kontrol Saklayıcısı

T2MOD Zamanlayıcı/Sayıcı 2 MOD Saklayıcısı

Zamanlayıcı/Sayıcı Biriminin Kullanımı

- Z/S birimi, sayıcı olarak mı yoksa zamanlayıcı olarak mı kullanılacak?
- Sayılacak en büyük sayı değerine göre hangi sayma mod'u kullanılacak?
- Zamanlayıcı/sayıcı kaç kere saydıktan sonra taşacak (TLO, THO ve TL1, TH1 değerleri)?
- Taşma bayrağı sürekli yoklanacak mı yoksa kesme mi kullanılacak?

Zamanlayıcı

 Zamanlayıcı için frekans her zaman 8051'e bağlı kristalin frekansının 1 / 12'sidir.

- (a) $1/12 \times 12 \text{ MHz} = 1 \text{ MHz}$ and $T = 1/1 \text{ MHz} = 1 \text{ } \mu\text{s}$
- (b) $1/12 \times 16 \text{ MHz} = 1.333 \text{ MHz}$ and T = $1/1.333 \text{ MHz} = .75 \mu s$
- (c) $1/12 \times 11.0592$ MHz = 921.6 kHz; T = 1/921.6 kHz = 1.085 μ s

Gecikmenin Hesaplanması

```
Cycles
HERE:
          MOV
                 TLO, #0F2H
          MOV
                 THO, #OFFH
          CPL
                 P1.5
          ACALL DELAY
          SJMP
                 HERE
           --delay using Timer 0
DELAY:
          SETB
                 TRO
                                           14
AGAIN:
          JNB
                 TF0, AGAIN
          CLR
                 TR0
          CLR
                 TF0
          RET
                                Total
                                           28
```

$$T = 2 \times 28 \times 1.085 \mu s = 60.76 \mu s$$
 and $F = 16458.2 Hz$.

MOD 0'ın blok diagramı

MOD0' da, 13 bit sayaç olarak çalışan counter, taştığında bir kesme üretir. Yani bu moddabir sonraki kesmeyi üretmek için 2¹³ (8192) giriş darbesi gerekir.

Örnek-1

- Mod 0'ı kullanarak 1000 kez sayan ve taşan bir zamanlayıcı tasarlayınız.
- Mod 0 13 bitlik bir yapıya sahip olduğundan maksimum 8192 adet sayma işlemi yapabilir.
- İstenen 1000'e kadar sayılması
- Kurulması gereken değerler (TH0 ve TL0) 8192-1000=7192'dir.
- 7192'nin ikilik karşılığı 11100000-00011000 dır.
- Burada TH0 ve TL0 değerleri 16'lık sistemdeki karşılıkları bulunurken dikkat edilmelidir. 7192 değeri direk 16'lık karşılığına çevrilirse yanlış olur.
- 11100000=E0h
- 11000=18h (başında 3 bit 0 varmış gibi düşünülecek)
- Yani başlangıç değerlerimiz TH0=E0h ve TL0=18h bulunur.
- Bu değerlere göre programı yazarsak:
- MOV TMOD, #00h ; T0 Mod 0'da çalıştırılacak
- MOV TH0, #0E0h ; başlangıç değerleri yükleniyor (yüksek kısmı)
- MOV TL0, #18h ; başlangıç değerleri yükleniyor (düşük kısmı)
- SETB TRO ; zamanlayıcı saymaya başlatılır.

MOD 1'ın blok diagramı

MOD1, MOD0' a benzer. Counter, 16 bit sayaç olarak çalışır.MOD1' de bir sonraki kesmeyi üretmek için 2¹⁶ veya 65536 giriş darbesi gerekir

Örnek-2

- Mod 1'i kullanarak 50000 kez sayan ve taşan bir zamanlayıcı tasarımı,
- Mod 1'de maksimum 65536 adet sayma yapılabilir
- İstenilen sayma adedi 50000 olduğuna göre,
- Yükleme değeri 65536-50000=15536 olarak bulunur.
 Hexadecimal karşılığı 3CB0 olarak bulunur.

•

- MOV TMOD, #01h ; T0'ın Mod 1'e kurulması
- MOV TH0, #03Ch ; yüksek baytın setlenmesi
- MOV TL0, #0B0h ;düşük baytın setlenmesi
- SETB TRO ;saymaya başlama

MOD 2'nin blok diagramı:

MOD2, 8 bit tekrar yüklemeli tarzda çalışır. TLi 8 bit Timer/Counter olarak çalışır. Counter taştığı zaman, THi 'de saklı olan değer, TLi 'ye kopyalanır ve sayma devam eder. Counter her taştığında ve tekrar yükleme olduğunda bir kesme üretilir. (i=0 veya i=1)

Zamanlayıcı/Sayıcı Örneği

TO'ı kullanarak P1.0 ucunda 50 KHz'lik kare dalga sinyal üreten assembly programı.

- Z/S birimi zamanlayıcı olarak kullanılacak C/T=0
- Mod 2 otomatik yükleme modu kullanılacak
- Z/S her 10 saymadan sonra taşacak (12 MHz)
- Z/S kontrolü, taşma bayrağının sürekli yoklanması ile gerçekleştirilecek

50 KHz'lik kare dalga sinyalin periyodu

$$T = \frac{1}{f} = \frac{1}{50.10^3} = 20\mu sn$$

Zamanlayıcı/Sayıcı Örneği

50 KHz'lik kare dalga sinyalin periyodu

	Komut	Açıklama			
	ORG 0H	;Kod belleğin başlangıç adresi			
	SJMP ANA	;ANA etiketli programa dallan			
	ORG 30H	;ANA etiketli programın kod bellekteki başlangıç ;adresi			
ANA :	MOV TMOD,#02H	;Zamanlayıcı-0 MOD-2			
	MOV TH0,#-10	;yeniden yükleme değeri −10 (246)			
	MOV TL0,#-10	;başlama değeri -10 (246)			
	SETB TRO	;Zamanlayıcı-0'ı çalıştır			
BEKLE:	JNB TF0,BEKLE	;taşma olana kadar bekle			
	CLR TF0	;taşma bayrağını temizle			
	CPL P1.0	;çıkışı (P1_0 ucunu) tersle			
	SJMP BEKLE	;Bekle etiketine dallan			
	END	;programı sonlandır			

Örnek

- XTAL = 11.0592 MHz farz edersek,
- P2.3'de 50 Hz frekansında bir kare dalga üretmek için.

- Kare dalganın periyodu = 1/50 Hz = 20 ms.
- Kare dalganın yüksek veya düşük kısmı = 10 ms.
- 10 ms / 1.085 μs = 9216.
- 65536 9216 = ondalık basamağın içinde 56320
- 56320 Hex karşılığı DC00H. TL1 = 00H ve TH1 = DCH.

MOV TMOD,#10H; timer 1, mode 1

AGAIN: MOV TL1,#34H;

MOV TH1,#76H

SETB TR; start

BACK: JNB TF1,BACK

CLR TR; stop

CPL P1.5 ;next half clock

CLR TF1 ;clear timer flag 1

SJMP AGAIN ;reload timer1

XTAL = 11.0592 MHz farz edersek, frekans?

Çözüm

- FFFFH 7634H + 1 = 89CCH = clock sayısı = 35276
- Yarım period = $35276 \times 1,085s = 38.274 \text{ ms}$
- Tam period = 2×38.274 ms = 76.548 ms
- Frequency = 1/76.548 ms = 13.064 Hz.

MOD 3'ün blok diagramı:

Ayrık zamanlayıcı kipi. Zamanlayıcı 0; TLO 8 bit zamanlayıcı çalışması zamanlayıcı 0 mod seçme bitleri tarafından denetlenir. THO aynı şekilde çalışır fakat zamanlayıcı 1 mod seçme bitleri tarafından denetlenir. Zamanlayıcı 1; çalışmaz.

Sorular:

