1. Let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x) = 3\theta x^2 e^{-\theta x^3}$$
 $x > 0$ $\theta > 0$.

- a) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.
- b) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .
- c) Find the probability distribution of Y from part (b).
- d) Suppose n = 5, and

$$x_1 = 0.2$$
, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$.

Use part (c) to construct a 95% confidence interval for θ .

- e) If n = 5, find a uniformly most powerful rejection region of size $\alpha = 0.10$ for testing $H_0: \theta = 3$ vs. $H_1: \theta < 3$.
- f) Consider the rejection region "Reject H_0 if $\sum_{i=1}^5 x_i^3 \ge 3$ ". Find the significance level of this test.
- g) Consider the rejection region "Reject H_0 if $\sum_{i=1}^5 x_i^3 \ge 3$ ". Find the power of this test at $\theta = 2$ and $\theta = 1$.
- h) Suppose n = 5, and

$$x_1 = 0.2$$
, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$.

Find the p-value of the test.

- 2. Let $X_1, X_2, ..., X_n$ be a random sample of size n = 19 from the normal distribution $N(\mu, \sigma^2)$.
- a) Find a rejection region of size $\alpha = 0.05$ for testing

$$H_0: \sigma^2 = 30 \text{ vs. } H_1: \sigma^2 > 30.$$

For which values of the sample variance s^2 should the null hypothesis be rejected?

- b) What is the probability of Type II Error for the rejection region in part (a) if $\sigma^2 = 80$?
- 3. Let X_1, X_2, \dots, X_n be a random sample from $N(0, \sigma^2)$.
- a) Show that $\{(x_1, x_2, \dots, x_n): \sum_{i=1}^n x_i^2 \ge c\}$ is the best rejection region for testing $H_0: \sigma^2 = 4$ vs. $H_1: \sigma^2 = 16$.
- b) If n = 15, find the value of c so that $\alpha = 0.05$.
- c) If n = 15 and c is the value found in part (b), find the probability of Type II Error.
- **4.** Let $X_1, X_2, ..., X_n$ be a random sample from an exponential distribution with mean θ .
- a) Find a uniformly most powerful rejection region for testing

$$H_0: \theta = 3 \text{ vs. } H_1: \theta > 3$$

that is based on the statistic $\sum_{i=1}^{n} X_i$.

That is, find a rejection region that is most powerful for testing

$$H_0$$
: $\theta = 3$ vs. H_1 : $\theta = \theta_1$ for all $\theta_1 > 3$.

- b) If n = 12, use the fact that $\frac{2}{\theta} \cdot \sum_{i=1}^{12} X_i$ is $\chi^2(24)$ to find a uniformly most powerful rejection region for testing $H_0: \theta = 3$ vs. $H_1: \theta > 3$ of size $\alpha = 0.10$.
- c) If $\theta = 7$, what is the power of the rejection region from part (b)?

5. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be independent random variables, each with the probability density function

$$f(x) = \begin{cases} \frac{\lambda}{x^{\lambda+1}} & x \ge 1 \\ 0 & x < 1 \end{cases}$$

We wish to test H_0 : $\lambda = 1$ vs. H_1 : $\lambda > 1$.

- a) Find a sufficient statistic for λ .
- b) Find a uniformly most powerful rejection region.

That is, find a rejection region that is most powerful for testing

$$H_0: \lambda = 1$$
 vs. $H_1: \lambda = \lambda_1$ for all $\lambda_1 > 1$.

Hint: It should look like "Reject H_0 if $Y \le c$ " or "Reject H_0 if $Y \ge c$ ", where $Y = u(X_1, X_2, ..., X_n)$ is a sufficient statistic for λ .

6. 5. (continued)

Let X_1, X_2 be a random sample of size n = 2 from a probability distribution with p.d.f. f(x).

c) Sketch a typical rejection region obtained in part **7**(b).

Hint: Recall that $x_1 \ge 1, \ x_2 \ge 1,$ so c > 1 (if you are using $\prod_{i=1}^n x_i$).

d) Find the power function (as a function of c and λ) of the test in part (b). (n = 2)

Answers:

1. Let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x) = 3\theta x^2 e^{-\theta x^3}$$
 $x > 0$ $\theta > 0$.

a) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.

$$L(\theta) = \prod_{i=1}^{n} \left(3\theta x_i^2 e^{-\theta x_i^3} \right)$$

$$\ln L(\theta) = n \cdot \ln \theta + \sum_{i=1}^{n} \ln(3x_i^2) - \theta \cdot \sum_{i=1}^{n} x_i^3$$

$$\left(\ln L(\theta)\right)' = \frac{n}{\theta} - \sum_{i=1}^{n} x_i^3 = 0$$

$$\Rightarrow \qquad \hat{\theta} = \frac{n}{\sum_{i=1}^{n} X_{i}^{3}}$$

b) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .

$$f(x_1, x_2, \dots x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$

$$\left[\frac{1}{2} n \cdot 0 \cdot n \right] \left[\frac{1}{2} \left(\frac{n}{n} \right) \right] \left(\frac{n}{n} \right)$$

$$= \left[3^n \theta^n e^{-\theta \sum_{i=1}^n x_i^3}\right] \left(\prod_{i=1}^n x_i^2\right).$$

By Factorization Theorem, $Y = \sum_{i=1}^{n} X_i^3$ is a sufficient statistic for θ .

OR

$$f(x; \lambda) = \exp\{-\theta \cdot x^3 + \ln\theta + \ln 3 + 2\ln x\}. \qquad \Rightarrow \qquad K(x) = x^3.$$

$$\Rightarrow$$
 Y = $\sum_{i=1}^{n}$ X $_{i}^{3}$ is a sufficient statistic for λ.

c) Find the probability distribution of Y from part (b).

$$F_X(x) = 1 - e^{-\theta x^3}, \qquad x > 0.$$
 Let $V = X^3$.
 $F_V(v) = P(V \le v) = P(X \le v^{1/3}) = 1 - e^{-\theta v}, \qquad v > 0.$

V has an Exponential distribution with mean "usual θ " = $\frac{1}{\theta}$.

$$\Rightarrow Y = \sum_{i=1}^{n} V_{i} = \sum_{i=1}^{n} X_{i}^{3} \text{ has a Gamma distribution with } \alpha = n$$
and "usual θ " = $\frac{1}{\theta}$ ("usual λ " = θ).

d) Suppose n = 5, and

$$x_1 = 0.2$$
, $x_2 = 1.2$, $x_3 = 0.2$, $x_4 = 0.9$, $x_5 = 0.3$.

Use part (c) to construct a 95% confidence interval for θ .

If T has a Gamma $(\alpha, \beta = 1/\lambda)$ distribution, where α is an integer, then ${}^{2}T/\beta = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$\Rightarrow \frac{2 \text{ Y}}{\beta} = 2 \theta \sum_{i=1}^{n} X_{i}^{3} \text{ has a chi-square distribution with } r = 2 \alpha = 2 n \text{ d.f.}$$

$$\Rightarrow P(\chi_{1-\alpha/2}^{2}(2n) < 2\theta \sum_{i=1}^{n} X_{i}^{3} < \chi_{\alpha/2}^{2}(2n)) = 1 - \alpha.$$

$$\Rightarrow P\left(\frac{\chi_{1-\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}X_{i}^{3}} < \theta < \frac{\chi_{\alpha/2}^{2}(2n)}{2\sum_{i=1}^{n}X_{i}^{3}}\right) = 1 - \alpha.$$

A
$$(1-\alpha)$$
 100 % confidence interval for θ :
$$\begin{vmatrix}
\chi_{1-\alpha/2}^2(2n), & \chi_{\alpha/2}^2(2n) \\
2\sum_{i=1}^n X_i^3, & 2\sum_{i=1}^n X_i^3
\end{vmatrix}.$$

$$\chi_{0.975}^2(10) = 3.247,$$
 $\chi_{0.025}^2(10) = 20.48.$ $\sum_{i=1}^n x_i^3 = 2.5.$ $\left(\frac{3.247}{2 \cdot 2.5}, \frac{20.48}{2 \cdot 2.5}\right)$ (0.6494, 4.096)

e) If n = 5, find a uniformly most powerful rejection region of size $\alpha = 0.10$ for testing $H_0: \theta = 3$ vs. $H_1: \theta < 3$.

Let $\theta < 3$.

$$\lambda(x_{1}, x_{2}, ..., x_{n}) = \frac{L(H_{0}; x_{1}, x_{2}, ..., x_{n})}{L(H_{1}; x_{1}, x_{2}, ..., x_{n})} = \frac{\prod_{i=1}^{n} \left(9x_{i}^{2} e^{-3x_{i}^{3}}\right)}{\prod_{i=1}^{n} \left(3\theta x_{i}^{2} e^{-\theta x_{i}^{3}}\right)}$$
$$= \left(\frac{3}{\theta}\right)^{n} \exp\left\{(\theta - 3)\sum_{i=1}^{n} x_{i}^{3}\right\}.$$

$$\lambda(x_1, x_2, ..., x_n) \le k \qquad \Leftrightarrow \qquad (\theta - 3) \sum_{i=1}^n x_i^3 \le k_1$$

$$\Leftrightarrow \qquad \sum_{i=1}^n x_i^3 \ge c \qquad \text{(since } \theta < 3\text{)}.$$

Reject H_0 if $\sum_{i=1}^n x_i^3 \ge c$.

$$\sum_{i=1}^{n} X_{i}^{3}$$
 has a Gamma distribution with $\alpha = n = 5$ and "usual θ " = $\frac{1}{\theta}$.

If T has a Gamma(α , $\beta = 1/\lambda$) distribution, where α is an integer, then ${}^2T/\beta = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution (a chi-square distribution with 2α degrees of freedom).

$$\Rightarrow \frac{2}{\beta} \sum_{i=1}^{n} X_{i}^{3} = 2\theta \sum_{i=1}^{n} X_{i}^{3} \text{ has a } \chi^{2}(2\alpha = 10 \text{ degrees of freedom}) \text{ distribution.}$$

$$0.10 = \alpha = P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^n X_i^3 \ge c \mid \theta = 3)$$
$$= P(6\sum_{i=1}^5 X_i^3 \ge 6c \mid \theta = 3) = P(\chi^2(10) \ge 6c).$$

$$\Rightarrow$$
 6 $c = \chi_{0.10}^2(10) = 15.99.$ \Rightarrow $c = 2.665.$

Reject H₀ if
$$\sum_{i=1}^{5} x_i^3 \ge 2.665$$
.

f) Consider the rejection region "Reject H_0 if $\sum_{i=1}^{5} x_i^3 \ge 3$ ". Find the significance level of this test.

If T has a Gamma $(\alpha, \frac{1}{\lambda})$ distribution, where α is an integer, then $P(T > t) = P(Y \le \alpha - 1)$, where Y has a $Poisson(\lambda t)$ distribution.

$$\alpha = P(\text{Reject H}_0 \mid \text{H}_0 \text{ is true}) = P(\sum_{i=1}^{5} X_i^3 \ge 3 \mid \theta = 3)$$

$$= P(\text{Poisson}(3 \times 3) \le 5 - 1) = P(\text{Poisson}(9) \le 4) = \mathbf{0.055}.$$

g) Consider the rejection region "Reject H_0 if $\sum_{i=1}^{5} x_i^3 \ge 3$ ". Find the power of this test at $\theta = 2$ and $\theta = 1$.

Power
$$(\theta = 2)$$
 = P(Reject H₀ | $\theta = 2$) = P($\sum_{i=1}^{5} X_i^3 \ge 3 | \theta = 2$)
= P(Poisson $(3 \times 2) \le 5 - 1$) = P(Poisson $(6) \le 4$) = **0.285**.

Power(
$$\theta = 1$$
) = P(Reject H₀ | $\theta = 1$) = P($\sum_{i=1}^{5} X_i^3 \ge 3 | \theta = 1$)
= P(Poisson(3×1) $\le 5 - 1$) = P(Poisson(3) ≤ 4) = **0.815**.

h) Suppose n = 5, and

$$x_1 = 0.2,$$
 $x_2 = 1.2,$ $x_3 = 0.2,$ $x_4 = 0.9,$ $x_5 = 0.3.$

Find the p-value of the test.

$$\sum_{i=1}^{5} x_i^3 = 2.5.$$

$$\sum_{i=1}^{n} X_i^3 \text{ has a Gamma distribution with } \alpha = n$$
 and $\beta = \text{``usual } \theta\text{''} = \frac{1}{\theta}$

If T has a Gamma $(\alpha, \beta = 1/\lambda)$ distribution, where α is an integer, then $P(T > t) = P(Y \le \alpha - 1)$, where Y has a Poisson (λt) distribution.

p-value =
$$P(\sum_{i=1}^{5} X_i^3 \ge 2.5 \mid \theta = 3) = P(Poisson(2.5 \times 3) \le 5 - 1) = 0.132$$
.

- 2. Let $X_1, X_2, ..., X_n$ be a random sample of size n = 19 from the normal distribution $N(\mu, \sigma^2)$.
- a) Find a rejection region of size $\alpha = 0.05$ for testing

$$H_0: \sigma^2 = 30 \text{ vs. } H_1: \sigma^2 > 30.$$

For which values of the sample variance s^2 should the null hypothesis be rejected?

$$H_0: \sigma^2 = 30$$
 vs. $H_1: \sigma^2 > 30$. Right – tailed.

Recall: If X_1, X_2, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$, then $\frac{(n-1) \cdot S^2}{\sigma^2}$ is $\chi^2(n-1)$.

Test Statistic:
$$\chi^2 = \frac{(n-1) \cdot s^2}{\sigma_0^2} = \frac{18 \cdot s^2}{30}$$
.

Reject H₀ if
$$\chi^2 > \chi_{\alpha}^2 (n-1) = \chi_{0.05}^2 (18) = 28.87$$
.

$$\frac{18 \cdot \text{s}^2}{30} > 28.87 \qquad \Leftrightarrow \qquad \text{s}^2 > 48.116667.$$

b) What is the probability of Type II Error for the rejection region in part (a) if $\sigma^2 = 80$?

$$P(\text{Type II Error}) = P(\text{Accept H}_0 | \text{H}_0 \text{ is not true})$$

=
$$P(S^2 < 48.116667 | \sigma^2 = 80)$$

=
$$P(\frac{(n-1)\cdot S^2}{\sigma^2} < \frac{18\cdot 48.116667}{80} | \sigma^2 = 80)$$

$$= P(\chi^2(18) < 10.82625)$$

$$\approx$$
 0.10, since $\chi^2_{0.90}(18) = 10.86$.

EXCEL: =1-CHIDIST(CHIINV(0.05,18)*30/80,18) \Rightarrow **0.0984**.

- 3. Let X_1, X_2, \dots, X_n be a random sample from $N(0, \sigma^2)$.
- a) Show that $\{(x_1, x_2, \dots, x_n): \sum_{i=1}^n x_i^2 \ge c \}$ is the best rejection region for testing $H_0: \sigma^2 = 4$ vs. $H_1: \sigma^2 = 16$.

$$\lambda(x_1, x_2, ..., x_n) = \frac{L(\sigma^2 = 4; x_1, x_2, ..., x_n)}{L(\sigma^2 = 16; x_1, x_2, ..., x_n)} = \frac{\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \ 2} \exp\left\{-\frac{x_i^2}{8}\right\}}{\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \ 4} \exp\left\{-\frac{x_i^2}{32}\right\}}$$

$$= 2^{n} \exp \left\{ \left(\frac{1}{32} - \frac{1}{8} \right) \sum_{i=1}^{n} x_{i}^{2} \right\} = 2^{n} \exp \left\{ -\frac{3}{32} \sum_{i=1}^{n} x_{i}^{2} \right\}.$$

$$\lambda(x_1, x_2, ..., x_n) \le k \qquad \Leftrightarrow \qquad n \cdot \ln 2 - \frac{3}{32} \sum_{i=1}^n x_i^2 \le \ln k$$

$$\Leftrightarrow \qquad \sum_{i=1}^n x_i^2 \ge c.$$

b) If n = 15, find the value of c so that $\alpha = 0.05$.

$$n = 15$$
 $\alpha = 0.05$.

$$\frac{\sum (x_i - \mu)^2}{\sigma^2} \text{ is } \chi^2(n); \text{ here } \mu = 0.$$

$$\Rightarrow P\left(\sum_{i=1}^{n} X_{i}^{2} \geq c\right) = P\left(\chi^{2}(n) \geq \frac{c}{\sigma^{2}}\right).$$

$$0.05 = \alpha = P(\text{Reject H}_0 | \text{H}_0 \text{ is true}) = P(\sum_{i=1}^n X_i^2 \ge c | \sigma^2 = 4)$$

$$= P(\frac{1}{4} \cdot \sum_{i=1}^{15} X_i^2 \ge \frac{c}{4} | \sigma^2 = 4) = P(\chi^2(15) \ge \frac{c}{4}).$$

$$\chi^{2}_{0.05}(15) = 25.00.$$
 \Rightarrow $c = 4 \chi^{2}_{0.05}(15) = 4 \times 25.00 = 100.00.$

c) If n = 15 and c is the value found in part (b), find the probability of Type II Error.

$$\beta = P(\text{Type II Error}) = P(\text{Accept } H_0 | H_0 \text{ is not true})$$

=
$$P(\sum_{i=1}^{n} X_i^2 < c \mid \sigma^2 = 16) = P(\sum_{i=1}^{15} X_i^2 < 100.00 \mid \sigma^2 = 16)$$

=
$$P(\frac{1}{16} \cdot \sum_{i=1}^{15} X_i^2 < \frac{100.00}{16} | \sigma^2 = 16)$$

=
$$P(\chi^2(15) < 6.25)$$
.

$$P(\chi^2(15) < 6.262) = 0.025.$$

$$\Rightarrow$$
 $\beta = P(\text{Type II Error}) \approx 0.025.$

4. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential distribution with mean θ .

$$f_{\mathbf{X}}(x) = \frac{1}{\theta} e^{-x/\theta}, \quad 0 < x < \infty.$$

a) Find a uniformly most powerful rejection region for testing

$$H_0: \theta = 3 \text{ vs. } H_1: \theta > 3$$

that is based on the statistic $\sum_{i=1}^{n} X_i$.

That is, find a rejection region that is most powerful for testing

$$H_0$$
: $\theta = 3$ vs. H_1 : $\theta = \theta_1$ for all $\theta_1 > 3$.

Let $\theta_1 > 3$.

$$\lambda(x_1, x_2, ..., x_n) = \frac{L(\theta = 3; x_1, x_2, ..., x_n)}{L(\theta = \theta_1; x_1, x_2, ..., x_n)} = \frac{\prod_{i=1}^{n} \frac{1}{3} e^{-x_i/3}}{\prod_{i=1}^{n} \frac{1}{\theta_1} e^{-x_i/\theta_1}}.$$

$$= \left(\frac{\theta_1}{3}\right)^n \exp\left\{\left(-\frac{1}{3} + \frac{1}{\theta_1}\right) \sum_{i=1}^n x_i\right\} = \left(\frac{\theta_1}{3}\right)^n \exp\left\{-\frac{\theta_1 - 3}{3\theta_1} \sum_{i=1}^n x_i\right\}.$$

If
$$\theta_1 > 3$$
, $\lambda(x_1, x_2, ..., x_n) < k \iff \sum_{i=1}^n x_i > c$.

- \Rightarrow Same rejection region for all $\theta_1 > 3$.
- \Rightarrow Uniformly most powerful rejection region for $H_0: \theta = 3$ vs. $H_1: \theta > 3$.
- b) If n = 12, use the fact that $\frac{2}{\theta} \cdot \sum_{i=1}^{12} X_i$ is $\chi^2(24)$ to find a uniformly most powerful rejection region for testing $H_0: \theta = 3$ vs. $H_1: \theta > 3$ of size $\alpha = 0.10$.

0.10 =
$$\alpha$$
 = P(Reject H₀ | H₀ is true) = P($\sum_{i=1}^{12} x_i > c | \theta = 3$)

$$= P(\frac{2}{3}\sum_{i=1}^{n}x_{i} > \frac{2}{3}c \mid \theta = 3) = P(\chi^{2}(24) > \frac{2}{3}c).$$

$$\Rightarrow \frac{2}{3} c = \chi_{0.10}^2(24) = 33.20.$$
 $\Rightarrow c = 49.8.$

Reject
$$H_0$$
 if $\sum_{i=1}^{n} x_i > 49.8$. $(\Leftrightarrow \overline{x} > 4.15)$

c) If $\theta = 7$, what is the power of the rejection region from part (b)?

Power
$$(\theta = 7) = P(\text{Reject H}_0 | \theta = 7) = P(\sum_{i=1}^{12} x_i > 49.8 | \theta = 7)$$

= $P(\frac{2}{7} \sum_{i=1}^{n} x_i > \frac{2}{7} | 49.8 | \theta = 3) = P(\chi^2(24) > 14.23)$

is **between 0.90 and 0.95**.

EXCEL: =CHIDIST(
$$49.8*2/7,24$$
) \Rightarrow **0.94132**.

5. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be independent random variables, each with the probability density function

$$f(x) = \begin{cases} \frac{\lambda}{x^{\lambda+1}} & x \ge 1 \\ 0 & x < 1 \end{cases}$$

We wish to test H_0 : $\lambda = 1$ vs. H_1 : $\lambda > 1$.

a) Find a sufficient statistic for λ .

$$f(x_1; \lambda) f(x_2; \lambda) \dots f(x_n; \lambda) = \frac{\lambda^n}{\left(\prod_{i=1}^n x_i\right)^{\lambda+1}} \dots \Rightarrow \prod_{i=1}^n X_i \text{ is sufficient for } \lambda.$$

OR

$$f(x;\lambda) = \exp\{-\lambda \ln x + \ln \lambda - \ln x\}. \Rightarrow K(x) = \ln x.$$

$$\Rightarrow \sum_{i=1}^{n} \ln X_i$$
 is a sufficient statistic for λ.

b) Find a uniformly most powerful rejection region.

That is, find a rejection region that is most powerful for testing

$$H_0: \lambda = 1$$
 vs. $H_1: \lambda = \lambda_1$ for all $\lambda_1 > 1$.

Hint: It should look like "Reject H_0 if $Y \le c$ " or "Reject H_0 if $Y \ge c$ ", where $Y = u(X_1, X_2, ..., X_n)$ is a sufficient statistic for λ .

$$\lambda(x_1, x_2, ..., x_n) = \frac{L(1; x_1, x_2, ..., x_n)}{L(\lambda; x_1, x_2, ..., x_n)} = \frac{x_1^{-2} x_2^{-2} ... x_n^{-2}}{\lambda^n x_1^{-\lambda - 1} x_2^{-\lambda - 1} ... x_n^{-\lambda - 1}}$$
$$= \frac{x_1^{\lambda - 1} x_2^{\lambda - 1} ... x_n^{\lambda - 1}}{\lambda^n} = \frac{1}{\lambda^n} \left(\prod_{i=1}^n x_i \right)^{\lambda - 1}.$$

Since
$$\lambda > 1$$
,

$$\lambda(x_1, x_2, ..., x_n) \le k \qquad \Leftrightarrow \qquad \prod_{i=1}^n x_i \le c.$$

Uniformly most powerful rejection region is given by

$$C = \{ (x_1, x_2, \dots, x_n) : \prod_{i=1}^n x_i \le c \}.$$

6. 5. (continued)

Let X_1, X_2 be a random sample of size n = 2 from a probability distribution with p.d.f. f(x).

c) Sketch a typical rejection region obtained in part **7**(b).

Hint: Recall that $x_1 \ge 1, \ x_2 \ge 1,$ so c > 1 (if you are using $\prod_{i=1}^n x_i$).

$$x_1 x_2 \le c$$

$$\Rightarrow x_2 \le \frac{c}{x_1}$$

d) Find the power function (as a function of c and λ) of the test in part (b). (n = 2)

$$\gamma(\lambda) = P(X_1 X_2 \le c \mid \lambda) = \int_1^c \left(\int_1^{c/x_1} \lambda^2 x_1^{-\lambda - 1} x_2^{-\lambda - 1} dx_2 \right) dx_1$$

$$= \int_1^c \lambda x_1^{-\lambda - 1} \left(1 - \frac{x_1^{\lambda}}{c^{\lambda}} \right) dx_1 = \int_1^c \left(\lambda x_1^{-\lambda - 1} - \frac{\lambda x_1^{-1}}{c^{\lambda}} \right) dx_1$$

$$= 1 - c^{-\lambda} - \lambda c^{-\lambda} \ln c.$$