Cyber-Physical Systems (CSC.T431)

Timed Model (2)

Instructor: Takuo Watanabe (Department of Computer Science)

1

Agenda

• Timed Model (2)

Course Support & Material

- Slides: OCW-i
- Course Web: https://titech-cps.github.io
- Course Slack: titech-cps.slack.com

Timed Automata

- Consider a property φ over the state variables of a timed process TP.
- To check whether φ is an invariant of TP, we would like to perform a reachability analysis as in synchronous/asynchronous models.
- Problem: real-valued clock variables
 - Uncountably many variations of timed actions seem to make the on-the-fly DFS algorithm for invariant verification impossible.

Restrictions on the Use of Clock Variables

- To make algorithmic analysis possible, we restrict the use of clock variables.
- Assignment
 - For any clock variable x, the only possible assignment is the form of x := 0.
- Guards and Clock Invariants
 - For any clock variable x, atomic expressions involving x should be the form of $x \le k$ or $x \ge k$ where k is an integer constant.
 - Note: x = k can be expressed as $x \le k \land x \ge k$, and x < k can be expressed as $\neg (x \ge k)$.

Timed Automata

- A timed process TP is said to be a *timed automaton* if for every clock variable x,
 - 1. the only assignment to x occurring the update description of any of the tasks of TP is of the form x := 0, and
 - 2. each atomic expression involving x occurring either in the clock invariant of TP, or in the guards or update descriptions of any of the tasks of TP, is of the form $x \le k$ or $x \ge k$, where k is an integer constant.
- For the convenience of the analysis, we use a pair (s, v) to denote a state of a timed automaton, where s and v are valuations of non-clock (discrete) variables and clock variables respectively.

Timed Automata

- Timed automata are closed under parallel composition.
 - If TP_1 and TP_2 are timed automata, then $TP_1 \mid TP_2$ is also a timed automaton.
- Finite Timed Automata:
 - A timed automation where all variables / channels other than clock variables have finite types (such as Boolean, enumerate types)

- b: input channels, a, c: output channel
- The process issues a periodically with a period in [1, 2).
- Whenever the process receives b, it issues c with a delay in (0,1].

- The state space is (uncountably) infinite.
- Idea: Region Equivalence
 - Partitions the clock valuations into finitely many equivalence classes so that equivalent states behave similarly.

- A clock valuation in the example can be expressed as a point in the first quadrant of the twodimensional x/y-plane.
- A clock valuation evolves along the diagonal direction.

- In mode A, B
 - If x < 1, a cannot happen.
 - If $1 \le x < 2$, a may happen.
- In mode B
 - If y = 0, c cannot happen
 - If $0 < y \le 1$, c may happen
 - If x 1 < y, then y reaches 1 before x reaches 2
- ... similar arguments may be applied to partition the quadrant.

- We can divide the quadrant into 28 partitions:
 - 6 grid points
 - 14 open line segments
 - 9 bounded line segments
 - 5 unbounded line segments
 - 8 open regions
 - 4 triangular regions
 - 4 unbounded regions

- We can divide the quadrant into 28 partitions:
 - 6 grid points
 - 14 open line segments
 - 9 bounded line segments
 - 5 unbounded line segments
 - 8 open regions
 - 4 triangular regions
 - 4 unbounded regions

- Two clock valuations *region-equivalent* if they belong to the same partition.
 - Ex. v and v' are region-equivalent.
 - A mode-switch from B to A maps v and v' to v_2 and v_2' which are in the same partition.
 - Timed-action eventually maps v and v' to v_3 and v_3' which are also in the same partition.

- Two region-equiv. states behave the same.
 - For example, if a mode-switch is enabled in (A, v), then it is also enabled in (A, v').
 - The resulting clock valuations after the mode-switch belong to the same partition.

A possible execution:

$$(A, 0, 0) \xrightarrow{0.6} (A, 0.6, 0.6) \xrightarrow{b?} (B, 0.6, 0) \xrightarrow{0.5} (B, 1.1, 0.5) \xrightarrow{c!} (A, 1.1, 0.5) \xrightarrow{0.2} (A, 1.3, 0.7) \xrightarrow{a!} (A, 0, 0.7) \xrightarrow{1.25} (A, 1.25, 1.95) \xrightarrow{0.61} (A, 1.86, 2.56)$$

• Another possible similar execution:

$$(A, 0, 0) \xrightarrow{0.1} (A, 0.1, 0.1) \xrightarrow{b?} (B, 0.1, 0) \xrightarrow{0.91} (B, 1.01, 0.91) \xrightarrow{c!} (A, 1.01, 0.91) \xrightarrow{0.05} (A, 1.06, 0.96) \xrightarrow{a!} (A, 0, 0.96) \xrightarrow{1.25} (A, 1.25, 2.21) \xrightarrow{0.61} (A, 1.86, 2.82)$$

• From a pair of region-equivalent states, at every step of execution, the state pair can remain region-equivalent.

Notation: k_x

- Let x be a clock variable of a timed automaton TP. We use k_x to denote the largest integer constant that x is compared with in the atomic constraints that appear in a guard, update description, or a clock-invariant in TP.
- Ex. In the previous example, $k_x = 2$ and $k_y = 1$.

Definition

- Let TP be a timed automaton. Two clock valuations v and v' of TP are region-equivalent if:
- for every clock variable x and for every integer $0 \le d \le k_x$, v(x) = d if and only if v'(x) = d and v(x) < d if and only if v'(x) < d, and
- for every pair of clock variable x and y such that $v(x) \le k_x$ and $v(y) \le k_y$, $frac(v(x)) \le frac(v(y))$ if and only if $frac(v'(x)) \le frac(v'(y))$.
 - For a real number r, frac(r) denotes the fractional part of r, i.e., frac $(r) = r \lfloor r \rfloor$.
- Two states (t, v) and (t', v') of TP are region-equivalent if t = t' and v and v' are region equivalent.

Theorem

- Let TP be a timed automaton. Consider two states s and t of TP that are region-equivalent. We have the following.
 - (1) If $s \stackrel{\alpha}{\to} s'$ is an input, or output, or internal action of TP, then there exists a state t' such that $t \stackrel{\alpha}{\to} t'$ holds and s' and t' are region-equivalent.
 - (2) For every real-valued time duration $\delta > 0$ such that $s \stackrel{\delta}{\to} s + \delta$ is a timed action of TP, there exists a duration $\delta' > 0$ such that $t \stackrel{\delta'}{\to} t + \delta'$ is a timed action of TP and $s + \delta$ and $t + \delta'$ are region-equivalent.

Search using Clock Regions

- The infinite clock valuations are partitioned into finitly many regions.
- Now we can adopt the onthe-fly DFS algorithm for reachability.
- Let us start from the initial region, written as [A, x = y = 0].

Search using Clock Regions

Executions on Regions

An execution

$$(A, 0, 0) \xrightarrow{0.6} (A, 0.6, 0.6) \xrightarrow{b?} (B, 0.6, 0) \xrightarrow{0.5} (B, 1.1, 0.5) \xrightarrow{c!} (A, 1.1, 0.5)$$

$$\xrightarrow{0.2} (A, 1.3, 0.7) \xrightarrow{a!} (A, 0, 0.7) \xrightarrow{1.25} (A, 1.25, 1.95) \xrightarrow{0.61} (A, 1.86, 2.56)$$

and other similar executions can be expressed as:

$$[A, x = y = 0] \xrightarrow{\tau} [A, 0 < x = y < 1] \xrightarrow{b?} [B, 0 < x < 1, y = 0]$$

$$\xrightarrow{\tau} [B, 0 < x - 1 < y < 1] \xrightarrow{c!} [A, 0 < x - 1 < y < 1]$$

$$\xrightarrow{\tau} [A, 0 < x - 1 < y < 1] \xrightarrow{a!} [A, x = 0, 0 < y < 1]$$

$$\xrightarrow{\tau} [A, 1 < x < 2, y > 1] \xrightarrow{\tau} [A, 1 < x < 2, y > 1]$$

The initial clock zone R_0 : $x_1 = 0$, $x_2 = 0$ and $x_1 - x_2 = 0$.

$$x_1 = 0 \qquad 0 \leq x_1 \leq 0 \qquad 0 \leq x_1 \leq \infty \qquad 0 \leq x_1 \leq 5$$

$$x_2 = 0 \qquad 0 \leq x_2 \leq 0 \qquad 0 \leq x_2 \leq \infty \qquad 0 \leq x_2 \leq \infty$$

$$x_1 - x_2 = 0 \qquad 0 \leq x_1 - x_2 \leq 0 \qquad 0 \leq x_1 - x_2 \leq 0$$

$$\text{Clock-zone } R_0 \qquad \text{Clock-zone } R'_0 \qquad \text{Clock-zone } R''_0 \qquad \text$$

$$x_1 = 0 \qquad 3 \leq x_1 \leq 5 \qquad 3 \leq x_1 \leq 5 \qquad 3 \leq x_1 \leq 5 \qquad 0 \leq x_2 \leq 0 \qquad (x_2 \geq 6)?$$
 D
$$x_1 - x_2 = 0 \qquad 0 \leq x_1 - x_2 \leq 0 \qquad 0 \leq x_1 - x_2 \leq 0 \qquad 3 \leq x_1 - x_2 \leq 5 \qquad (x_2 \geq 6)?$$
 Clock-zone R_0 Clock-zone R_1'' Clock-zone R_2'' Clock-zone R_2 Clock $x_1, x_2 = 0$
$$x_1 \leq 5 \qquad (x_1 \leq 3) \rightarrow x_2 := 0 \qquad (x_2 \geq 2)? \qquad (x_1 \leq 4)? \qquad (x_1$$

$$\begin{array}{c} x_1 = 0 \\ x_2 = 0 \\ x_1 - x_2 = 0 \\ \end{array} \qquad \begin{array}{c} 3 \leq x_1 \leq 5 \\ x_2 = 0 \\ \end{array} \qquad \begin{array}{c} 2 \leq x_2 \leq 4 \\ \end{array} \qquad \begin{array}{c} (x_2 \geq 6)? \end{array} \qquad \begin{array}{c} \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \end{array} \qquad \begin{array}{c} x_1 - x_2 = 0 \\ \text{Clock-zone } R_0 \\ \end{array} \qquad \begin{array}{c} 3 \leq x_1 - x_2 \leq 5 \\ \text{Clock-zone } R_2 \\ \end{array} \qquad \begin{array}{c} (x_1 \leq 3) \rightarrow x_2 := 0 \\ \end{array} \qquad \begin{array}{c} \text{B} \\ (x_1 \leq 7) \\ \end{array} \qquad \begin{array}{c} (x_2 \geq 2)? \\ \end{array} \qquad \begin{array}{c} (x_1 \leq 4)? \\ \end{array} \qquad \begin{array}{c} \text{E} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_4 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_4 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_4 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_4 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_4 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_4 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_5 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{Clock-zone } R_5 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{Clock-zone } R_5 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{Clock-zone } R_5 \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \end{array} \qquad \begin{array}{c} \text{$$

Clock Zones

Difference Bounds Matrix

- Clock variables: x_1, x_2, \dots, x_m , with dummy $x_0 = 0$
- Difference Bounds Matrix (DBM)
 - A (m+1)-square matrix R with the (i,j)-th entry gives the upper bound on x_i-x_j .
 - _ R represents a clock zone with constraint $\bigwedge_{0 \le i,j \le m} (x_i x_j) \le R_{ij}$
 - Note: R_{ij} may be ∞
 - Since $x_0 = 0$, the column 0 (entries R_{i0}) gives the upper bounds on x_i and row 0 (entries R_{0j}) gives the upper bounds on $-x_j$ (thus the lower bounds of x_j).

Examples

$$R_1 = \begin{pmatrix} 0 & 0 & 0 \\ 5 & 0 & 0 \\ 5 & 0 & 0 \end{pmatrix}$$

$$R_5 = \begin{pmatrix} 0 & -5 & 2 \\ 8 & 0 & 5 \\ 5 & -3 & 0 \end{pmatrix}$$

Canonicalization

- A DBM R is said to be canonical if and only if

for all
$$0 \le i, j, l \le m, R_{ij} \le R_{il} + R_{lj}$$
.

- Algorithm to canonicalize a DBM R:
 - Ex. $(1 \le x_1 \le 3) \land (x_2 \ge 0) \land (0 \le x_3 \le 3)$ $\land (x_2 - x_3 = 1) \land (x_2 - x_1 \ge 2)$

$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ 3 & 0 & -2 & \infty \\ \infty & \infty & 0 & 1 \\ 3 & \infty & -1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & -1 & -3 & -2 \\ 2 & 0 & -2 & -1 \\ 4 & 3 & 0 & 1 \\ 3 & 2 & -1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} R[i,j] := \min(R[i,j], R[i,l] \\ R[i,j] := \min(R[i,j], R[i,l]) \\ R[i,j] := \min(R[i,j], R[i,j]) \\ R[i,j] :$$

Operations on DBMs

- Atomic constraints: an atomic constraint $x_i \le k$ can be represented by R with $R_{ii} = 0$ for all $0 \le i \le m$, $R_{i0} = k$, $R_{0j} = 0$ for all $0 \le j \le m$, and ∞ for all other entries.
- Intersections: The intersection of the clock zones represented by R and R' can be represented by a DBM whose (i,j)-th entry is $\min(R_{i,j},R'_{i,j})$.
- Time elapse: To compute the set of clock valuations that can be reached from the clock zone represented by R using timed actions, simply set ∞ to R_{i0} for all $1 \le i \le m$.
- Subset test: The clock zones represented by a DBM R is a subset of the clock zone represented by R' if and only if $R_{i,j} \leq R'_{i,j}$ for every $0 \leq i,j \leq m$.

Model Checking Timed Automata

- Properties to be verified are written as formulae of TCTL (Timed Computational Tree Logic)
 - $A \square P : P$ always holds in all possible paths
 - $A \diamondsuit P$: P eventually holds in all possible paths
 - $E \square P$: P always holds at least in a path
 - $E \Diamond P$: P eventually holds at least in a path

UPPAAL

- An integrated tool environment for modeling, validation and verification of realtime systems modeled as networks of timed automata.
- http://uppaal.org
- Developed at Uppsala University & Aalborg University

UPPAAL: Template Editor

Global & Local Declarations

System Declarations

Simulator

Verifier

Ex. Light & Users

TCTL formula	Lamp II User1	Lamp II User2	Lamp II User3
A<> L.bright	×	×	×
U.press1> L.bright		×	0
A[] (U.press2 imply L.bright)		0	0
A[] not deadlock	0	×	0

Summary

- Timed Model (2)
 - Timed Automata
 - Region, Region Equivalence
 - Clock Zone
 - Difference Bounds Matrix (DBM)
 - Model Checking using UPPAAL