CE394M: FEM errors

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

Errors in FEA

A priori estimates

Functional norms

Before considering the error, we need to decide how it should be measured. The question is how to measure a function? The answer to this is to use function norms. A common norm is known as the L^2 norm. For a function on a domain Ω , the L^2 norm is defined as:

This norm provides a measure of 'how big' a function is. A measure of the difference between two functions u and v is provided by:

Functional norms

The L^2 norm measures the 'magnitude' of a function, but does not reflect any details of the derivatives. Other norms are the H^1 norm:

$$\|u\|_0 = \left(\int_{\Omega} u^2 + \nabla u \cdot \nabla u d\Omega\right)^{1/2}$$

We will use function norms to measure the difference between the exact solution and the finite element solution. For example, we can define a particular measure of the error e as:

How good is the FE solution?

Inevitably, the finite element solution is not exact. But how do we know that it bears any relation to the exact solution? If the mesh is refined, will the error reduce? We may say intuitively yes, but this is not very satisfactory. This is where a priori analysis helps. A priory error estimate:

Error in the pore pressure/displacement field

For a steady flow conduction or elasticity problem, for the error in the pore pressure/displacement field:

Therefore, for $k \ge 1$,

Error in the strain/flux field

For a steady flow conduction or elasticity problem, for the error in the strain/flux field we have:

Therefore, for $k \ge 1$,

Posterior error estimation and adaptivity

A *posterior error* estimation involves quantification of the error after a simulation has been preformed.

If we have an a posterior error estimator for a particular problem, a simulation can been performed, the error estimated in various part of the domain and the mesh and finite element type can be adjusted in order to reduce the error to a prescribed value. This is known as *adaptivity*.

The two obvious strategies are known as:

- *h-adaptivity*: this involves modify the mesh.
- p-adaptivity: this involves changing the finite element type.

Errors, compute-time, and memory

An elasticity problem is solved on a square domain using a uniform structured mesh of linear triangular elements with n_1 vertices in each direction (n_1 is very large).

Errors, compute-time, and memory

- Based on a priori estimates, what reduction in the error could you expect? If the total number of elements is doubled and the element order is raised to quadratic,
- Provide an estimate of the increase in the required computational time if using LU decomposition.
- How much more computer memory is required to store the stiffness matrix? (Give the factor increase.)

Decrease in error

Computational time

Memory increase