

Membagikan Permen

Bibi Khong sedang menyiapkan n buah kotak berisi permen untuk dibagikan ke murid dari sekolah terdekat. Kotak-kotak tersebut dinomori dari 0 sampai n-1 dan awalnya kosong. Kotak i ($0 \le i \le n-1$) memiliki kapasitas sebesar c[i] permen.

Bibi Khong menghabiskan q hari untuk menyiapkan kotak-kotak tersebut. Pada hari ke-j ($0 \le j \le q-1$), dia melakukan sebuah aksi yang dinyatakan dengan tiga buah bilangan bulat l[j], r[j] dan v[j] dimana $0 \le l[j] \le r[j] \le n-1$ dan $v[j] \ne 0$. Untuk setiap kotak k yang memenuhi $l[j] \le k \le r[j]$:

- Apabila v[j]>0, Bibi Khong menambahkan beberapa permen ke kotak k, satu per satu, sampai dia telah menambahkan tepat v[j] permen atau sampai kotak tersebut penuh. Dengan kata lain, apabila kotak tersebut memiliki p permen sebelumnya, kotak itu akan memiliki $\min(c[k], p+v[j])$ permen setelahnya.
- Apabila v[j] < 0, Bibi Khong membuang beberapa permen dari kotak k, satu per satu, sampai dia telah membuang tepat -v[j] permen atau sampai kotak tersebut kosong. Dengan kata lain, apabila kotak tersebut memiliki p permen sebelumnya, kotak itu akan memiliki $\max(0, p + v[j])$ permen setelahnya.

Anda bertugas untuk menentukan banyaknya permen ditiap kotak setelah q hari.

Detail Implementasi

Anda harus mengimplementasikan fungsi berikut:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: sebuah array berukuran n. Untuk $0 \le i \le n-1$, c[i] menyatakan kapasitas dari kotak i.
- l, r dan v: Tiga buah array berukuran q. Pada hari ke-j, untuk $0 \le j \le q-1$, Bibi Khong melakukan sebuah aksi yang dinyatakan dengan tiga buah bilangan bulat l[j], r[j] dan v[j], seperti yang telah dideskripsikan diatas.
- Fungsi ini harus mengembalikan sebuah array berukuran n. Sebut array tersebut dengan s. Untuk $0 \le i \le n-1$, s[i] harus merupakan banyaknya permen di kotak i setelah q hari.

Contoh

Contoh 1

Perhatikan pemanggilan berikut:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Hal ini berarti kotak $\,0\,$ memiliki kapasitas $\,10\,$ permen, kotak $\,1\,$ memiliki kapasitas $\,15\,$, dan kotak $\,2\,$ memiliki kapasitas $\,13\,$ permen.

Diakhir dari hari 0, kotak 0 memiliki $\min(c[0], 0 + v[0]) = 10$ permen, kotak 1 memiliki $\min(c[1], 0 + v[0]) = 15$ permen dan kotak 2 memiliki $\min(c[2], 0 + v[0]) = 13$ permen.

Pada akhir hari 1, kotak 0 memiliki $\max(0,10+v[1])=0$ permen, kotak 1 memiliki $\max(0,15+v[1])=4$ permen. Karena 2>r[1], tidak ada perubahan dalam banyaknya permen pada kotak 2. Banyaknya permen pada tiap harinya dapat diringkas sebagai berikut:

Hari	Kotak 0	Kotak 1	Kotak 2
0	10	15	13
1	0	4	13

Oleh karena itu, fungsi ini harus mengembalikan $\,[0,4,13].\,$

Batasan

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \leq c[i] \leq 10^9$ (untuk semua $0 \leq i \leq n-1$)
- $0 \leq l[j] \leq r[j] \leq n-1$ (untuk semua $0 \leq j \leq q-1$)
- $-10^9 \le v[j] \le 10^9, v[j] \ne 0$ (untuk semua $0 \le j \le q-1$)

Subsoal

- 1. (3 poin) $n, q \leq 2000$
- 2. (8 poin) v[j]>0 (untuk semua $0\leq j\leq q-1$)
- 3. (27 poin) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 poin) l[j]=0 dan r[j]=n-1 (untuk semua $0\leq j\leq q-1$)
- 5. (33 poin) Tidak ada batasan tambahan.

Contoh Grader

Contoh *grader* membaca input dengan format sebagai berikut:

- baris 1: n
- baris 2: $c[0] c[1] \dots c[n-1]$
- baris 3: q
- baris 4+j ($0 \leq j \leq q-1$): $l[j] \; r[j] \; v[j]$

Contoh grader mencetak jawaban Anda dengan format sebagai berikut:

- baris 1: s[0] s[1] ... s[n-1]