Machine Learning Lab Assignment 2

Name - Pranav Jha
Roll - 001811001037
Semester - 7
Year - 4
Department - Information Technology

1. WINE DATASET

1.1 SVM Classifier(With Tuning)

```
df.columns = col_name
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model selection import train test split
X train, X test, y train, y test =
train test split(X,y,train size=0.7,test size=0.3,random state=10)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X_test = sc.transform(X_test)
# Classification
from sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel': ['rbf',
'poly', 'sigmoid']}
```

```
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters
# First create the base model to tune
classifier = SVC()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf random.fit(X train, y train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix, accuracy score
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("----")
print("Performance Evaluation")
print(classification_report(y_test, y_pred))
print("-----")
print("-----")
print("Accuracy:")
print(accuracy_score(y_test, y_pred))
import matplotlib.pyplot as plt
from sklearn.metrics import plot confusion matrix
plot_confusion_matrix(rf_random, X_test, y_test)
```

plt.show()

COMPARISON:

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.4 MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

1.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

2. IRIS PLANT DATASET

2.1 SVM Classifier(With Tuning)

```
# IRIS PLANT DATASET
# SVM(With Tuning)[70-30 split]
import pandas as pd
import numpy as np
# Dataset Preparation
df = pd.read csv("iris.data",header=None)
col name = ['Sepal Length','Sepal Width','Petal Length','Petal Width','Class']
df.columns = col name
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train test split(X,y,train size=0.7,test size=0.3,random state=10)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X test = sc.transform(X test)
# Classification
from sklearn.svm import SVC
classifier = SVC()
```

```
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param_grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001], 'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters
# First create the base model to tune
classifier = SVC()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy_score
print("Confusion Matrix:")
print(confusion matrix(y test, y pred))
print("-----")
print("-----")
```


Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 40:60.

2.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 40:60.

2.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 40:60.

2.4 MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 40:60.

2.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

2.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

3. IONOSPHERE DATASET

3.1 SVM Classifier(With Tuning)

```
# IONOSPHERE DATASET
# SVM(With Tuning)[70-30 split]

import pandas as pd
import numpy as np

# Dataset Preparation
df = pd.read_csv("ionosphere.data",header=None)

col_name =
['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19'
','19'

,'20','21','22','23','24','25','26','27','28','29','30','31','32','33','34','Class']
```

```
df.columns = col name
X = df.drop(['Class'], axis=1)
y = df['Class']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =
train test split(X,y,train size=0.7,test size=0.3,random state=10)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
# Classification
from sklearn.svm import SVC
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
```

```
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters
# First create the base model to tune
classifier = SVC()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf random.fit(X train, y train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy score
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("----")
print("-----")
print("Performance Evaluation")
print(classification report(y test, y pred))
print("----")
print("-----")
print("Accuracy:")
print(accuracy_score(y_test, y_pred))
import matplotlib.pyplot as plt
from sklearn.metrics import plot confusion matrix
plot_confusion_matrix(rf_random, X_test, y_test)
```

plt.show()

COMPARISON:

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

3.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.4 MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

3.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4. BREAST CANCER DATASET

4.1 SVM Classifier(With Tuning)

```
# BREAST CANCER DATASET
# SVM(With Tuning)[60-40 split]
import pandas as pd
import numpy as np
# Dataset Preparation
df = pd.read csv("wdbc.data",header=None)
col name =
['1','Class','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17'
,'18','19'
           ,'20','21','22','23','24','25','26','27','28','29','30','31','32']
df.columns = col name
X = df.drop(['1', 'Class'], axis=1)
y = df['Class']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test =
train test split(X,y,train size=0.6,test size=0.4,random state=10)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X_test = sc.transform(X_test)
# Classification
from sklearn.svm import SVC
```

```
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters
# First create the base model to tune
classifier = SVC()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf random.predict(X test)
from sklearn.metrics import classification report, confusion matrix,
accuracy_score
print("Confusion Matrix:")
print(confusion matrix(y test, y pred))
```


Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

4.2 SVM Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4.3 MLP Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4.4 MLP Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 60:40.

4.5 Random Forest Classifier(With Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

4.6 Random Forest Classifier(Without Tuning)

Here, we can see that the highest accuracy has been achieved when the Train-Test split is in the ratio of 70:30.

OVERALL RESULT:

In most of the cases, the highest accuracy is gained when the Train-Test split ratio is in the ratio of 70:30.

5. Using Principal Component Analysis:

5.1 Iris Plant Dataset

```
# IRIS PLANT DATASET
# SVM(With Tuning)[70-30 split]

import pandas as pd
import numpy as np

# Dataset Preparation
df = pd.read_csv("iris.data",header=None)

col_name = ['Sepal Length','Sepal Width','Petal Length','Petal Width','Class']

df.columns = col_name

X = df.drop(['Class'], axis=1)
y = df['Class']

from sklearn.model_selection import train_test_split
```

```
X train, X test, y train, y test =
train test split(X,y,train size=0.7,test size=0.3,random state=10)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X test = sc.transform(X test)
# Finding the important parameters that contribute to most of the variance
in the data.
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
pca test = PCA(n components=4)
pca_test.fit(X_train)
sns.set(style='whitegrid')
plt.plot(np.cumsum(pca_test.explained_variance_ratio_))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance')
plt.axvline(linewidth=4, color='r', linestyle = '--', x=10, ymin=0,
ymax=1)
display(plt.show())
# So we can see that we have 10 important parameters
pca = PCA(n components=2)
pca.fit(X train)
X_train = pca.transform(X_train)
X test = pca.transform(X test)
# Classification
from sklearn.svm import SVC
```

```
classifier = SVC()
# Showing all the parameters
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(classifier.get params())
# Creating a set of important sample features
param grid = {'C': [0.1,1, 10, 100], 'gamma': [1,0.1,0.01,0.001],'kernel':
['rbf', 'poly', 'sigmoid']}
pprint(param grid)
##
from sklearn.model selection import GridSearchCV
# Use the random grid to search for best hyperparameters
# First create the base model to tune
classifier = SVC()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf random = GridSearchCV(SVC(), param grid, refit=True, verbose=2)
rf_random.fit(X_train, y_train)
y pred = rf_random.predict(X_test)
from sklearn.metrics import classification report, confusion matrix,
accuracy score
```

5.1.1 SVM Classifier(With Tuning)

5.1.2 SVM Classifier(Without Tuning)

5.1.3 MLP Classifier(With Tuning)

5.1.4 MLP Classifier(Without Tuning)

5.1.5 Random Forest Classifier(With Tuning)

5.1.6 Random Forest Classifier(Without Tuning)

5.2 Wine Dataset

5.2.1 SVM Classifier(With Tuning)

5.2.2 SVM Classifier(Without Tuning)

5.2.3 MLP Classifier(With Tuning)

5.2.4 MLP Classifier(Without Tuning)

5.2.5 Random Forest Classifier(With Tuning)

5.2.6 Random Forest Classifier(Without Tuning)

5.3 Ionosphere Dataset

5.3.1 SVM Classifier(With Tuning)

5.3.2 SVM Classifier(Without Tuning)

5.3.3 MLP Classifier(With Tuning)

5.3.4 MLP Classifier(Without Tuning)

5.3.5 Random Forest Classifier(With Tuning)

5.3.6 Random Forest Classifier(Without Tuning)

5.4 Iris Plant Dataset

5.4.1 SVM Classifier(With Tuning)

5.4.2 SVM Classifier(Without Tuning)

5.4.3 MLP Classifier(With Tuning)

5.4.4 MLP Classifier(Without Tuning)

5.4.5 Random Forest Classifier(With Tuning)

5.4.6 Random Forest Classifier(Without Tuning)

CONCLUSION:

We can see that the overall accuracy in all the cases increases when we use Principal Component Analysis (PCA) in our dataset before applying the algorithms.