

Special Topics REGRESSION

PHYS 453

Dr Daugherity

Regression

Instead of classifying into categories, our job is now to predict a real-valued number based on training data

Basically all of the techniques we've learned can be modified to work for regression

(PS – Remember that LogisticRegression is actually a classifier...)

Regression

Examples:

- predict the price of a house in Boston
- predict how much money a movie will make
- guess the value of a stock
- Diabetes dataset: predict measure of disease based on patient data

Can a data set be unethical? For a wild ride look at some controversy regarding the Boston housing set:

- https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8
- https://fairlearn.org/main/user_guide/datasets/boston_housing_data.html

Coding Regression

- Essentially the same as classification in sklearn
- Still good to use test/train split
- Still use X and y, but y is now "target" values

```
NUM SAMP = 20
X = np.random.rand(NUM SAMP, NUM FEAT)
coef = np.array([2.4, -1.3])
offset = 0.5
y = np.dot(X, coef) + offset
reg = linear model.LinearRegression()
reg.fit(X, y)
y_pred = reg.predict(X)
PredictionErrorDisplay.from_predictions(y,
y pred, kind="actual vs predicted")
print(reg.coef)
print(reg.intercept )
```

NUM FEAT = 2


```
1 from sklearn import datasets
1 X,y = datasets.load_diabetes(return_X_y=True)
2 print(X.shape)
(442, 10)
 1 reg = linear_model.LinearRegression()
 2 reg.fit(X, y)
 3 y_pred = reg.predict(X)
 4 PredictionErrorDisplay.from_predictions(y, y_pred, kind="actual_vs_predicted")
                                      346.0
                                      265.8 -
                                      185.5
                                      105.2
                                       25.0
                                                                   185.5
                                                                            265.8
                                                  25.0
                                                          105.2
                                                                                    346.0
                                                               Predicted values
```

Regression Scores

See the User's Guide on Regression Metrics:

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

For classifiers when we call the score function we get % accuracy. Remember there are fancy measures like precision, recall, f1-score, etc.

For regressors the default is called the **coefficient of determination aka R² score**.

- Perfect score is 1.0
- Always predicting the mean y (regardless of features) is 0
- Score can be negative since prediction can be arbitrarily bad

$$R^2(y,\hat{y}) = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

Regression Scores

Other choices available:

https://scikit-learn.org/stable/modules/classes.html#regression-metrics

	<pre>metrics.explained_variance_score(y_true,)</pre>	Explained variance regression score function.
	<pre>metrics.max_error(y_true, y_pred)</pre>	The max_error metric calculates the maximum residual error.
	<pre>metrics.mean_absolute_error(y_true, y_pred, *)</pre>	Mean absolute error regression loss.
	<pre>metrics.mean_squared_error(y_true, y_pred, *)</pre>	Mean squared error regression loss.
	<pre>metrics.mean_squared_log_error(y_true, y_pred, *)</pre>	Mean squared logarithmic error regression loss.
	<pre>metrics.median_absolute_error(y_true, y_pred, *)</pre>	Median absolute error regression loss.
	metrics.mean_absolute_percentage_error()	Mean absolute percentage error (MAPE) regression loss.
	<pre>metrics.r2_score(y_true, y_pred, *[,])</pre>	R^2 (coefficient of determination) regression score function.
	<pre>metrics.root_mean_squared_log_error(y_true,)</pre>	Root mean squared logarithmic error regression loss.
	<pre>metrics.root_mean_squared_error(y_true,)</pre>	Root mean squared error regression loss.
	<pre>metrics.mean_poisson_deviance(y_true, y_pred, *)</pre>	Mean Poisson deviance regression loss.
	<pre>metrics.mean_gamma_deviance(y_true, y_pred, *)</pre>	Mean Gamma deviance regression loss.
	<pre>metrics.mean_tweedie_deviance(y_true, y_pred, *)</pre>	Mean Tweedie deviance regression loss.
	<pre>metrics.d2_tweedie_score(y_true, y_pred, *)</pre>	D^2 regression score function, fraction of Tweedie deviance explained.
	<pre>metrics.mean_pinball_loss(y_true, y_pred, *)</pre>	Pinball loss for quantile regression.
	<pre>metrics.d2_pinball_score(y_true, y_pred, *)</pre>	D^2 regression score function, fraction of pinball loss explained.
	metrics.d2 absolute error score(v true)	D^2 regression score function, fraction of absolute error explained

Linear Regression

- Literally just a fit to the data
- Usually implemented as finding the parameters (slopes and intercepts) that minimize a least-squares error
- Variations on this are the ridge and lasso regressions, idea is just to add another penalty to error function
- Coefficients relate to feature importance! (But be careful, we really mean than features are important to this model, not necessarily the dataset itself)

https://github.com/amueller/introduction_to_ml_with_pyt hon/blob/master/02-supervised-learning.ipynb

Support Vector Regression

- In classification the SVC ignores most data points and maximizes the margin between the "support vectors" (points closest to boundary)
- In regression the SVR ignores points within ϵ of the line, so it chases outliers
- Can also do non-linear kernels!

KNN Regression

Simple idea: predict average of k neighbors!

https://github.com/amueller/introduction to ml with python/blob/master/02-supervised-learning.ipynb

How sensitive should we be to noise and outliers?

Decision Tree Regressor

- Similar to KNN, bad at extrapolation!
- Tends to stair-step or overfit

http://scikitlearn.org/stable/auto examples/tree/plot tree regr ession.html

Face completion with multi-output estimators

Given the top half of a face as features, predict each pixel in the bottom face as targets

Neural Network Regressor

- No activation function on output layer
- Adjust weights to minimize MSE
- Hidden layers affect complexity of curve

Fit a NN to the 10 blue data points. Titles show hidden layers.

SKLEARN Regression

Name	Parameters	Notes
LinearRegression	None	Ordinary least squares, linear algebra solution
Ridge, RidgeCV	L2 (alpha)	Least Squares + L2,
Lasso, LassoCV	L1	Least Squares + L1, better for eliminating features
Elastic	L1, L2	Ridge + Lasso
SGDRegressor	L1 and/or L2	General Purpose
RANSAC		Robust to outliers
SVR	Kernal (non-linear!), L2	Non-linear kernals available
MLPRegressor	L2, hiddens	Most complex model
GradientBoostingRegressor	n_estimators	Very powerful and fast!

L1 gives sparse solutions to eliminate features

L2 keeps them all, adds stability, can be solved analytically or with linalg.

PITFALLS

The diagram shown here is often called a *validation curve*, and we see the following essential features:

- •The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.
- •For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.
- •For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.
- •For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.

Pitfalls!

Two common traps to avoid:

- Bias/Variance:
 - Underfitting your problem isn't linear.
 - Overfitting common, big problem
- Correlated Features

For more see:

https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html#sphx-glr-auto-examples-inspection-plot-linear-model-coefficient-interpretation-py

sklearn.datasets.make_regression

sklearn.datasets.make_regression(n_samples=100, n_features=100, *, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)

[source]

Generate a random regression problem.

The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See make_low_rank_matrix for more details.

The output is generated by applying a (potentially biased) random linear regression model with n_informative nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale.

Read more in the User Guide.

Experiment 0:

100 samples

10 features: 5 informative and 5 random Simple Least Squares

10

-10

200

-100

-200

-400

-200

y_true

```
2 print(coef)
[85.28 0. 14.25 0. 9.67 0.
                                     0. 53.9 0. 98.5 ]
1 reg = LassoCV()
2 reg.fit(X,y)
3 y_pred = reg.predict(X)
5 #plt.figure(figsize=(8,4))
6 fig, axs = plt.subplots(ncols=2, figsize=(8, 4))
7 plt.subplot(1,2,1)
8 PredictionErrorDisplay.from_predictions(y, y_pred, kind="actual_vs_predicted", ax=axs[0])
9 plt.grid()
                                                                                                                      Coefficients
10
11 plt.subplot(1,2,2)
                                                                                                       100
                                                                                                                      LassoCV
12 plt.plot(reg.coef , '--bs', label='LassoCV')
                                                           422.9
                                                                                                                       Actual
13 plt.plot(coef, '-ro', label='Actual')
                                                                                                       80
14 plt.legend()
15 plt.title('Coefficients')
                                                           215.1
16 plt.grid()
                                                                                                       60
                                                       Actual values
17
18 plt.show()
                                                             7.3
                                                                                                        40
                                                         -200.5
                                                                                                       20
                                                                                                         0
                                                          -408.3
                                                                                 7.3
                                                                                        215.1
                                                               -408.3 -200.5
                                                                                                422.9
                                                                           Predicted values
```

1 X,y,coef = make_regression(n_samples=100, n_features=10, n_informative=5, coef=True, noise=100)