Joins

Definition

Let G be a group and $H, K \leq G$:

$$HK = \{hk \mid h \in H \text{ and } k \in K\}$$

The *join* of H and K, denoted $H \vee K$, is the smallest subgroup of G containing HK.

Theorem

Let G be an abelian group:

$$H, K < G \implies HK = H \lor K$$

Proof

Assume $H, K \leq G$ Assume $a, b \in HK$ $\exists h_1 \in H$ and $k_1 \in K, a = h_1k_1$ $\exists h_2 \in H$ and $k_2 \in K, b = h_2k_2$ H and K are groups, so $h_2^{-1} \in H$ and $k_2^{-1} \in K$ $H, K \subseteq G$, so $h_2, k_2 \in G$, and by closure, $b = h_2k_2 \in G$ G is a group, so $b^{-1} = (h_2k_2)^{-1} \in G$ $ab^{-1} = (h_1k_1)(h_2k_2)^{-1} = (h_1k_1)(k_2^{-1}h_2^{-1}) = (h_1h_2^{-1})(k_1k_2^{-1})$ But, by closure, $h_1h_2^{-1} \in H$ and $k_1k_2^{-1} \in K$ $ab^{-1} \in HK$ So, by the subgroup test, $HK \leq G$ HK is the smallest subgroup containing HK $\therefore HK = H \vee K$

Theorem

Let G be a group and $H, K \leq G$:

$$H, K \subseteq HK$$

Proof

 $\begin{array}{ll} \mathsf{Assume}\; h \in H & \mathsf{Assume}\; k \in K \\ e \in K & e \in H \\ he = h \in HK & ek = k \in HK \\ \therefore H \subseteq HK & \therefore K \subseteq HK \end{array}$

Corollary

Let G be a group and $H, K \leq G$:

$$H, K \le H \lor K$$

Proof

$$\begin{split} H, K &\subseteq HK \\ HK &\subseteq H \vee K \\ H, K &\subseteq H \vee K \\ \text{But } H \text{ and } K \text{ are also groups} \\ \therefore H, K &\leq H \vee K \end{split}$$

Theorem

Let G be a group and $H, K \leq G$:

 $H \vee K$ is the smallest subgroup of G containing H and K.

Proof

Assume $S \leq G$ such that $H, K \leq S$ Assume $hk \in H \vee K$ $h \in H$ and $k \in K$ $h \in S$ and $k \in S$ So, by closure, $hk \in S$ $H \vee K \subseteq S$ and $H \vee K$ is a group $\therefore H \vee K$ is the smallest subgroup of G containing H and K.