Heuristic Analysis by Ng Fang Kiang

<u>Udacity – Artificial Intelligence Nanodegree (Class of 2017)</u>

Air Cargo Problem 1

```
Init(At(C1, SF0) / At(C2, JFK)

// At(P1, SF0) / At(P2, JFK)

// Cargo(C1) / Cargo(C2)

// Plane(P1) / Plane(P2)

// Airport(JFK) / Airport(SF0))

Goal(At(C1, JFK) / At(C2, SF0))
```

Air Cargo Problem 1					
			New	Plan	
Search	Expansions	Goal_Tests	Nodes	Length	Time
breadth_first_search	43	56	180	6	0.084193586
breadth_first_tree_search	1456	1459	5960	6	2.817626083
depth_first_graph_search	12	13	48	12	0.022848891
depth_limited_search	101	271	414	50	0.207606009
uniform_cost_search	55	57	224	6	0.108275467
recursive_best_first_search h_1	4229	4230	17029	4230	8.009237971
greedy_best_first_graph_search h_1	7	9	28	6	0.013341891
astar_search h_1	55	57	224	6	0.1030313
astar_search h_ignore_preconditions	41	43	170	6	0.087809522
astar_search h_pg_levelsum	11	13	50	6	0.545721415

Best plan consist of 6 actions:

- 1. Load(C1, P1, SFO)
- 2. Load(C2, P2, JFK)
- 3. Fly(P1, SFO, JFK)
- 4. Fly(P2, JFK, SFO)
- 5. Unload(C1, P1, JFK)
- 6. Unload(C2, P2, SFO)

The best performance is greedy_best_first_graph_search h_1.

Air Cargo Problem 2

```
Init(At(C1, SF0) / At(C2, JFK) / At(C3, ATL)

// At(P1, SF0) / At(P2, JFK) / At(P3, ATL)

// Cargo(C1) / Cargo(C2) / Cargo(C3)

// Plane(P1) / Plane(P2) / Plane(P3)

// Airport(JFK) / Airport(SF0) / Airport(ATL))

Goal(At(C1, JFK) / At(C2, SF0) / At(C3, SF0))
```

Air Cargo Problem 2					
			New	Plan	
Search	Expansions	Goal_Tests	Nodes	Length	Time
breadth_first_search	3401	4672	31049	9	36.24551419
breadth_first_tree_search	inf	inf	inf	inf	inf
depth_first_graph_search	350	351	3142	346	3.543807292
depth_limited_search	254020	2344879	2345254	50	2604.373427
uniform_cost_search	4761	4762	43206	9	43.96447017
recursive_best_first_search h_1	inf	inf	inf	inf	inf
greedy_best_first_graph_search h_1	550	552	4950	9	4.998992351
astar_search h_1	4761	4763	43206	9	46.4472368
astar_search h_ignore_preconditions	1450	1452	13303	9	13.64528777
astar_search h_pg_levelsum	86	88	841	9	51.4787299

Best plan consist of 9 actions:

- 1. Load(C1, P1, SFO)
- 2. Load(C2, P2, JFK)
- 3. Load(C3, P3, ATL)
- 4. Fly(P1, SFO, JFK)
- 5. Fly(P2, JFK, SFO)
- 6. Fly(P3, ATL, SFO)
- 7. Unload(C3, P3, SFO)
- 8. Unload(C2, P2, SFO)
- 9. Unload(C1, P1, JFK)

The best performance is depth_first_graph_search in Air Cargo Problem 2, but the plan length with 346 is not optimal. The greedy_best_first_graph_search h_1 has best optimal plan together with the performance.

Air Cargo Problem 3

```
Init(At(C1, SF0) / At(C2, JFK) / At(C3, ATL) / At(C4, ORD)

// At(P1, SF0) / At(P2, JFK)

// Cargo(C1) / Cargo(C2) / Cargo(C3) / Cargo(C4)

// Plane(P1) / Plane(P2)

// Airport(JFK) / Airport(SF0) / Airport(ATL) / Airport(ORD))

Goal(At(C1, JFK) / At(C3, JFK) / At(C2, SF0) / At(C4, SF0))
```

Air Cargo Problem 3					
			New	Plan	
Search	Expansions	Goal_Tests	Nodes	Length	Time
breadth_first_search	14663	18098	129631	12	350.2327689
breadth_first_tree_search	inf	inf	inf	inf	inf
depth_first_graph_search	627	628	5176	596	11.2504045
depth_limited_search	inf	inf	inf	inf	inf
uniform_cost_search	18235	18237	159716	12	333.1951215
recursive_best_first_search h_1	inf	inf	inf	inf	inf
greedy_best_first_graph_search h_1	5614	5616	49429	22	98.42954981
astar_search h_1	18235	18237	159716	12	313.1379738
astar_search h_ignore_preconditions	5040	5042	44944	12	96.92856017
astar_search h_pg_levelsum	318	320	2934	12	398.0241286

Best plan consist of 12 actions:

- 1. Load(C2, P2, JFK)
- 2. Fly(P2, JFK, ORD)
- 3. Load(C4, P2, ORD)
- 4. Fly(P2, ORD, SFO)
- 5. Unload(C4, P2, SFO)
- 6. Load(C1, P1, SFO)
- 7. Fly(P1, SFO, ATL)
- 8. Load(C3, P1, ATL)
- 9. Fly(P1, ATL, JFK)
- 10. Unload(C3, P1, JFK)
- 11. Unload(C1, P1, JFK)
- 12. Unload(C2, P2, SFO)

The best performance is depth_first_graph_search in Air Cargo Problem 3, but the plan length with 596 is not optimal. The astar_search h_ignore_preconditions has best optimal plan together with the performance.