Causal Inference with Functional Data

Hyemin Yeon

Department of Statistics Iowa State University

June 2, 2023

1/43

Hyemin Yeon (ISU) Functional Treatment June 2, 2023

Causal Inference + Functional Data Analysis: example

- Electroencephalography (EEG) dataset (analyzed in [THZY22])
- Treatment $\{X(t): t \in \mathcal{T}\}$: intensity of neuronal activities (represented by the frontal asymmetry) on the frequency domain \mathcal{T}
- Outcome Y: a measure of severity of major depressive disorder
- Covariate $\mathbf{W} = (W_1, W_2, W_3)^{\top}$
 - W₁: age
 - W₂: sex
 - W₃: Edinburgh Handedness Inventory score

Causal Inference + Functional Data Analysis: literature

- [MXZ20] MIAO, XUE, AND ZHANG (2020) ATE ESTIMATION IN OBSERVATIONAL STUDIES WITH FUNCTIONAL COVARIATES, ARXIV
- [ZXW21] ZHANG, XUE, AND WANG (2021) COVARIATE BALANCING FUNCTIONAL PROPENSITY SCORE FOR FUNCTIONAL TREATMENTS, CSDA
- [THZY22] TAN, HUANG, ZHANG, AND YIN (2022) CAUSAL EFFECT OF FUNCTIONAL TREATMENT, ARXIV
- [LKW22] Lin, Kong, and Wang (2022) Causal Inference on Distribution Functions
- [GWHS23] GAO, WANG, HU, AND SUN (2023) FUNCTIONAL CAUSAL INFERENCE WITH TIME-TO-EVENT DATA

3/43

Causal Inference + Functional Data Analysis: literature

paper	Y	X	W	theory	
[MXZ20]	\mathbb{R}	{0,1}	\mathbb{H}	×	relatively easy
[ZXW21]	\mathbb{R}	\mathbb{H}	\mathbb{R}^p	×	following [FHI18]
[THZY22]	\mathbb{R}	\mathbb{H}	\mathbb{R}^p	✓	following [HZ23]
[LKW22]	$\mathbb S$	$\{0, 1\}$	\mathbb{R}^p	✓	random object
[GWHS23]	\mathbb{R}	\mathbb{H}	$\mathbb{R}^{oldsymbol{p}}$	×	survival, following [ZXW21]

- $\mathbb{H} = L^2([0,1])$
- $S = W^2([0,1])$

Causal Inference with Functional Treatment

- Causal effect of (∞-dim'l) functional treatment on scalar outcome
- [ZXW21] applies
 - the methods by **[FHI18]** to the first J FPC scores to estimate the *stablized weights* $\pi_0^J(\mathbf{A}_i, \mathbf{W}_i)$ and
 - ullet the **basis expansion** approach to estimate the causal effect $eta \in \mathbb{H}$
- [THZY22] applies
 - the methods by **[HZ23]** to estimate the *stablized weights* $\pi_0(X_i, \mathbf{W}_i)$ and
 - the **FPCR** method to estimate the *causal effect* $\beta \in \mathbb{H}$.

Contents

- Introduction to FLRMs
- Causal Inference with Functional Treatment
 - Identification assumptions
 - Estimation of the stablized weights
 - Estimation of the causal effect $\beta \in \mathbb{H}$
- Remaining parts

Functional data analysis (FDA)

- Function-valued random variables: curves, surfaces, ...
- Function space \mathbb{H} with dim $\mathbb{H} = \infty$.
- e.g., $\mathbb{H}=L^2([0,1])$ with $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$.

Functional linear regression models (FLRMs)

$$Y = \langle \beta, X \rangle + \varepsilon.$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Functional linear regression models (FLRMs)

$$Y = \langle \beta, X \rangle + \varepsilon.$$

9/43

Hyemin Yeon (ISU) Functional Treatment June 2, 2023

Estimation approaches in FLRMs

Naive approach using basis expansion

 Functional Principal component regression (FPCR) estimation: an infinite-dimensional space version of PCR

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 10 / 43

Estimation: Basis Expansion

• $\{\psi_j\}_{j=1}^{\infty}$: a fixed known orthonormal basis of \mathbb{H} $\implies \beta = \sum_{j=1}^{\infty} \beta_j \psi_j \approx \sum_{j=1}^{J} \beta_j \psi_j$ where $\beta_j = \langle \beta, \psi_j \rangle$ $\implies \langle \beta, X_i \rangle = \sum_{j=1}^{\infty} \beta_j \langle X_i, \psi_j \rangle \approx \sum_{j=1}^{J} \beta_j \langle X_i, \psi_j \rangle$

 $oldsymbol{\hat{eta}}_J \equiv \sum_{j=1}^J \hat{eta}_j \psi_j$, where

$$(\hat{eta}_1,\ldots,\hat{eta}_J)^{ op} \equiv \operatorname*{argmin}_{(eta_1,\ldots,eta_J)^{ op} \in \mathbb{R}^J} \sum_{i=1}^n \left(Y_i - \sum_{j=1}^J eta_j \langle X_i, \psi_j \rangle \right)^2$$

11 / 43

FPCR estimation: normal equations

- Model: $Y = \langle \beta, X \rangle + \varepsilon$
- Normal equation:

$$\underbrace{\mathsf{E}[XY]}_{\equiv \Delta} = \underbrace{\mathsf{E}[X \otimes X]}_{\equiv \Gamma} \beta$$

- Sample: $Y_i = \langle \beta, X_i \rangle + \varepsilon_i, i = 1, \dots, n$
- Normal equation:

$$\underbrace{n^{-1}\sum_{i=1}^{n}X_{i}Y_{i}}_{\equiv \hat{\Delta}_{n}} = \underbrace{\left(n^{-1}\sum_{i=1}^{n}X_{i}\otimes X_{i}\right)}_{\equiv \hat{\Gamma}_{n}}\beta + \underbrace{n^{-1}\sum_{i=1}^{n}X_{i}\varepsilon_{i}}_{\equiv U_{n}}$$

12 / 43

FPCR estimation: ill-posed inverse problem

• The inversion of Γ is an ill-conditioned inverse problem.

• $\operatorname{rank}(\hat{\Gamma}_n) < \infty \implies \hat{\Gamma}_n^{-1}$ does not exist.

Regularization/Truncation!

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 13 / 43

FPCR estimation: regularization

• Regularization of $\hat{\Gamma}_n^{-1}$:

$$\hat{\Gamma}_h^{-1} = \sum_{j=1}^h \hat{\gamma}_j^{-1} (\hat{\phi}_j \otimes \hat{\phi}_j),$$

where $(\hat{\gamma}_j, \hat{\phi}_j)$ is the *j*-th eigenpair of $\hat{\Gamma}_n$.

• The estimator $\hat{\beta}_{h_n}$ of β :

$$\hat{\beta}_{h_n} = \hat{\Gamma}_{h_n}^{-1} \hat{\Delta}_n = \sum_{i=1}^{h_n} \hat{\gamma}_j^{-1} \left\langle n^{-1} \sum_{i=1}^n X_i Y_i, \hat{\phi}_j \right\rangle \hat{\phi}_j$$

4□ > 4□ > 4 = > 4 = > = 90

Contents

- Introduction to FLRMs
- Causal Inference with Functional Treatment
 - Identification assumptions
 - Estimation of the stablized weights
 - Estimation of the causal effect $\beta \in \mathbb{H}$
- Remaining parts

Hyemin Yeon (ISU)

Notation

- Y: outcome valued in \mathbb{R}
- X: treatment valued in $\mathbb{H} = L^2([0,1])$
- Y(x): potential outcome for $x \in \mathbb{H}$
- W: covariate valued in \mathbb{R}^p
- Causal estimand of interest: E[Y(x)]

Hyemin Yeon (ISU)

Contents

- Introduction to FLRMs
- Causal Inference with Functional Treatment
 - Identification assumptions
 - Estimation of the stablized weights
 - Estimation of the causal effect $\beta \in \mathbb{H}$
- Remaining parts

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

17 / 43

Hyemin Yeon (ISU) Functional Treatment June 2, 2023

Identification assumptions

• (Consistency) $Y_i = Y_i(x)$ if X = x

• (Ignorability) $\forall x \in \mathbb{H}, \ Y(x) \perp X | \mathbf{W}$

• (Positivity) $f_{X|W}(x|w) > 0...?$

◆ロト ◆個ト ◆差ト ◆差ト を めなる

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 18 / 43

Issues

- No density for functional data (Delaigle and Hall, 2010)
- Need a new approach of defining propensity score (or stablized weight)

 [ZXW21] truncate X and use density for truncated X (use the densities of FPC scores)

[THZY22] use conditional density of W given X instead of the one of X given W

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 19 / 43

Positivity condition and stablized weight in [ZXW21]

Karhunen–Loéve expansion:

$$X \stackrel{d}{=} \sum_{j=1}^{\infty} \gamma_j^{1/2} A_j \phi_j,$$

where $A_j = \gamma_j^{-1/2} \langle X, \phi_j \rangle \sim (0, 1)$ are uncorrelated. Set $\mathbf{A} = (A_1, \dots, A_J)^{\top}$ for a **fixed** $J \in \mathbb{N}$.

- Standardized covariate: $E[\boldsymbol{W}] = 0$, $var[\boldsymbol{W}] = I_p$ $\implies W_k \sim (0,1)$ are uncorrelated.
- (Positivity) $f_{m{A}|m{W}}(m{a}|m{w}) > 0$ for all $m{a} \in \mathbb{R}^J$ and $m{w} \in \mathbb{R}^p$
- Stablized weight:

$$\pi_0^J(\boldsymbol{a}, \boldsymbol{w}) = f_{\boldsymbol{A}}(\boldsymbol{a})/f_{\boldsymbol{A}|\boldsymbol{W}}(\boldsymbol{a}|\boldsymbol{w})$$

4 D > 4 B > 4 E > E = 4)Q(4)

20 / 43

Positivity condition in [ZXW21]

- (Positivity) $f_{m{A}|m{W}}(m{a}|m{w}) > 0$ for all $m{a} \in \mathbb{R}^J$ and $m{w} \in \mathbb{R}^p$
- Identification:

$$E[Y(x)|\mathbf{W}] = E[Y(x)|X = x, \mathbf{W}] = E[Y|X = x, \mathbf{W}]?$$

$$E[Y(x)|\mathbf{W}] = E[Y(x)|\mathbf{A} = \mathbf{a}, \mathbf{W}] \neq E[Y|\mathbf{A} = \mathbf{a}, \mathbf{W}]!$$

• We need a stronger consistency assumption: $Y_i = Y_i(x)$ if $\mathbf{A} = \mathbf{a}$. This implies

$$E[Y(x)] = E[E[Y|\boldsymbol{A} = \boldsymbol{a}, \boldsymbol{W}]]$$

21/43

Hyemin Yeon (ISU) Functional Treatment June 2, 2023

Positivity condition and stablized weight in [THZY22]

- The conditional density $f_{\boldsymbol{W}|X}(\boldsymbol{w}|x)$ of covariate \boldsymbol{W} given (functional) treatment X is well-defined.
- (Positivity) $f_{\mathbf{W}|X}(\mathbf{w}|x) > 0$ for all $\mathbf{w} \in \mathbb{R}^p$ and $x \in \mathbb{H}$
- Stablized weight:

$$\pi_0(x, \mathbf{w}) = f_{\mathbf{W}}(\mathbf{w}) / f_{\mathbf{W}|X}(\mathbf{w}|x)$$

• If $\mathbb{H} = \mathbb{R}^q$, this will be the classical stablized weight:

$$\pi_0(x, \mathbf{w}) = f_{\mathbf{W}}(\mathbf{w})/f_{\mathbf{W}|X}(\mathbf{w}|x) = f_{\mathbf{W}}(\mathbf{w})/\{f_{\mathbf{W},X}(\mathbf{w},x)/f_X(x)\}$$
$$= f_X(x)/f_{X|\mathbf{W}}(x|\mathbf{w}).$$

• Identification:

$$E[Y(x)|\boldsymbol{W}] = E[Y(x)|X = x, \boldsymbol{W}] = E[Y|X = x, \boldsymbol{W}]$$

$$\implies E[Y(x)] = E[E[Y|X = x, \boldsymbol{W}]]$$

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 22 / 43

Contents

- Introduction to FLRMs
- Causal Inference with Functional Treatment
 - Identification assumptions
 - Estimation of the stablized weights
 - Estimation of the causal effect $\beta \in \mathbb{H}$
- Remaining parts

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 23 / 43

Estimate the stablized weights in [ZXW21]

- Following the methods by [FHI18] (Fong, Hazlett, and Imai, 2018)
- [FHI18] focuses on continuous treatment X (valued in \mathbb{R})
 - \implies [ZXW21] extends the methods by [FHI18] to the case when the treatment variable lies in \mathbb{R}^J
 - Parametric: \boldsymbol{A} and \boldsymbol{W} are jointly normal and use moment equations
 - Nonparametric: use an empirical likelihood approach based on moment equations
- Almost same as [FHI18]
- No theory

ロト 4回 ト 4 重 ト 4 重 ト 9 9 9 9

24 / 43

Estimate the stablized weights in [THZY22]

• For each $x \in \mathbb{H}$, $\pi(x, \mathbf{W}) = \pi_0(x, \mathbf{W})$ almost surely if and only if

$$\mathsf{E}[\pi(x, \mathbf{W})u(\mathbf{W})|X = x] = \mathsf{E}[u(\mathbf{W})], \quad \forall u \in L^{1}(\mathcal{W}), \tag{1}$$

where $W \equiv \operatorname{supp}(W)$.

• Use the Nadaraya-Watson estimator of RHS in (1) to estimate $\{\pi_0(x, \mathbf{W}_{i'})\}_{i'\neq i}$ at each $x=X_i$:

$$\frac{\sum_{i'\neq i} \pi(x, \mathbf{W}_{i'}) u(\mathbf{W}_{i'}) K(d(X_{i'}, x)/h)}{\sum_{i'\neq i} K(d(X_{i'}, x)/h)} = (n-1)^{-1} \sum_{i'\neq i} u(\mathbf{W}_{i'}).$$

- Sieve approximation to $L^1(\mathcal{W})$ by $\{u_k\}_{k=1}^K$
- An empirical likelihood method
- Almost same as [HZ23]

4 □ ▶ 4 億 ▶ 4 億 ▶ 4 億 ▶ 4 億 ▶ 6 億 ★ 1 億

June 2, 2023

25/43

Proof of Proposition 3.1 in [THZY22] (Equation (1))

For each $x \in \mathbb{H}$, $\pi(x, \boldsymbol{W}) = \pi_0(x, \boldsymbol{W})$ almost surely if and only if

$$\mathsf{E}[\pi(x, \mathbf{W})u(\mathbf{W})|X = x] = \mathsf{E}[u(\mathbf{W})], \quad \forall u \in L^1(\mathcal{W}),$$

where $W \equiv \operatorname{supp}(W)$.

Proof of (\Rightarrow) .

$$E[\pi_0(x, \mathbf{W})u(\mathbf{W})|X = x]$$

$$= \int \pi_0(x, \mathbf{w})u(\mathbf{w})f_{\mathbf{W}|X}(\mathbf{w}|x)d\mathbf{w}$$

$$= \int u(\mathbf{w})f_{\mathbf{W}}(\mathbf{w})d\mathbf{w} = E[u(\mathbf{W})]$$

10 × 4 = × 4 = × = × 9 0

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 26 / 43

Proof of Proposition 3.1 in [THZY22] (Equation (1))

For each $x \in \mathbb{H}$, $\pi(x, \boldsymbol{W}) = \pi_0(x, \boldsymbol{W})$ almost surely if and only if

$$\mathsf{E}[\pi(x, \mathbf{W})u(\mathbf{W})|X = x] = \mathsf{E}[u(\mathbf{W})], \quad \forall u \in L^1(\mathcal{W}),$$

where $W \equiv \operatorname{supp}(W)$.

Proof of (\Leftarrow) .

For each $x \in \mathbb{H}$, by putting $u(\mathbf{W}) = \pi(x, \mathbf{W}) - \pi_0(x, \mathbf{W})$, we have

$$0 = E[\{\pi(x, \mathbf{W}) - \pi_0(x, \mathbf{W})\}u(\mathbf{W})|X = x]$$

= $E[\{\pi(x, \mathbf{W}) - \pi_0(x, \mathbf{W})\}^2|X = x],$

which implies that $\pi(x, \mathbf{W}) - \pi_0(x, \mathbf{W}) = 0$ almost surely. For each $x \in \mathbb{H}$, is $\pi(x, \cdot) - \pi_0(x, \cdot)$ really contained in $L^1(\mathcal{W})$?

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 27 / 43

Contents

- Introduction to FLRMs
- Causal Inference with Functional Treatment
 - Identification assumptions
 - Estimation of the stablized weights
 - Estimation of the causal effect $\beta \in \mathbb{H}$
- Remaining parts

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 28 / 43

Estimate the causal effect β in [ZXW21]

- Linear model: $E[Y|X] = \alpha + \langle \beta, X \rangle$
- ullet measures the causal effect of the functional treatment
- Use the basis expansion approach with weighted regression
- $\{\psi_j\}_{j=1}^{\infty}$: an orthonormal basis of \mathbb{H} $\implies \beta = \sum_{j=1}^{\infty} \beta_j \psi_j \approx \sum_{j=1}^{J} \beta_j \psi_j$ where $\beta_j = \langle \beta, \psi_j \rangle$ $\implies \langle \beta, X_i \rangle = \sum_{j=1}^{\infty} \beta_j \langle X_i, \psi_j \rangle \approx \sum_{j=1}^{J} \beta_j \langle X_i, \psi_j \rangle$
- $\hat{\beta}_J \equiv \sum_{j=1}^J \hat{\beta}_j \psi_j$, where

$$(\hat{eta}_1,\ldots,\hat{eta}_J)^{ op} \equiv \operatorname*{argmin}_{(eta_1,\ldots,eta_J)^{ op} \in \mathbb{R}^J} \sum_{i=1}^n \hat{\pi}^J(m{A}_i,m{W}_i) \left(Y_i - \sum_{j=1}^J eta_j \langle X_i,\psi_j
angle
ight)^2$$

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 29 / 43

Estimate the causal effect β in [ZXW21]

- Issue: the linear model $E[Y|X] = \alpha + \langle \beta, X \rangle$ is reasonable?
- E[Y(x)] is identifiable only with **A** not X, so..
 - (1) The model should be truncated at $J: E[Y|X] = \alpha + \sum_{j=1}^{J} \beta_j \langle X, \psi_j \rangle$.
 - (2) The estimation method should use $\psi_i = \phi_i$, which is unknown.

 simulation: comparison with the unweighted LSE (the method without considering the stablized weights)

◆ロト ◆園 ト ◆ 園 ト ◆ 園 ・ 夕 Q (*)

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 30 / 43

$$E[Y(x)] = E[\pi_0(X, \boldsymbol{W})Y|X = x]$$
 (2)

Proof.

$$E[Y(x)] = E[E[Y|X = x, \boldsymbol{W}]]$$

$$= \int E[Y|X = x, \boldsymbol{W} = \boldsymbol{w}] f_{\boldsymbol{W}}(\boldsymbol{w}) d\boldsymbol{w}$$

$$= \int E[\pi_0(x, \boldsymbol{w})Y|X = x, \boldsymbol{W} = \boldsymbol{w}] f_{\boldsymbol{W}|X}(\boldsymbol{w}|x) d\boldsymbol{w}$$

$$= E[E[\pi_0(X, \boldsymbol{W})Y|X = x, \boldsymbol{W}]|X = x]$$

$$= E[\pi_0(X, \boldsymbol{W})Y|X = x]$$

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 31/43

- Linear model: $E[Y(x)] = \alpha + \langle \beta, x \rangle$
- Based on Equation (2): $E[Y(x)] = E[\pi_0(X, \mathbf{W})Y|X = x]$
- This suggests estimating E[Y(x)] by using the FPCR estimator from the regression of $\{Z_i \equiv \hat{\pi}(X_i, \mathbf{W}_i)Y_i\}_{i=1}^n$ on $\{X_i\}_{i=1}^n$:

$$\hat{\beta}_{h_n}^{\text{FSW}} = \sum_{j=1}^{h_n} \hat{\gamma}_j^{-1} \left\langle n^{-1} \sum_{i=1}^n X_i Z_i, \hat{\phi}_j \right\rangle \hat{\phi}_j$$

$$\hat{\alpha}^{\text{FSW}} = \bar{Z} - \langle \hat{\beta}_{h_n}, \bar{X} \rangle$$

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

32 / 43

Hyemin Yeon (ISU) Functional Treatment June 2, 2023

Partially linear model:

$$Y = \alpha + \langle \beta, X \rangle + \boldsymbol{\theta}^{\top} \boldsymbol{W} + \varepsilon$$
 (3)

- Based on $E[Y(x)] = E[E[Y|X = x, \mathbf{W}]]$
- ullet The backfitting algorithm: setting $\hat{oldsymbol{ heta}}^{(0)}=0$, do the following:
 - (1) $(\hat{\alpha}^{(k)}, \hat{\beta}_{h_n}^{(k)})$: the FPCR estimators from the regression of $\{Y_i (\hat{\theta}^{(k-1)})^\top \mathbf{W}_i\}_{i=1}^n$ on $\{X_i\}_{i=1}^n$
 - (2) $\hat{\boldsymbol{\theta}}^{(k)}$: the LS estimator from the regression of $\{Y_i (\hat{\alpha}^{(k)} + \langle \hat{\beta}_{h_n}^{(k)}, X_i \rangle)\}_{i=1}^n$ on $\{\boldsymbol{W}_i\}_{i=1}^n$

until some convergence criteria hold.

• Outcome regression estimators: $\hat{\alpha}^{OR}$, $\hat{\beta}_{h_n}^{OR}$, $\hat{\boldsymbol{\theta}}^{OR}$

Functional Treatment

33 / 43

It holds that

$$E[Y(x)] = E\left[\pi(X, \mathbf{W})\{Y - m(X, \mathbf{W})\} + \int m(X, \mathbf{W})dP_{\mathbf{W}}|X = x\right]$$

if either $\pi = \pi_0$ or $m(x, \mathbf{W}) = E[Y|X = x, \mathbf{W}]$ almost surely.

Proof.

If
$$m(x, \mathbf{W}) = \mathbb{E}[Y|X = x, \mathbf{W}]$$
 almost surely, then
$$\mathbb{E}[\pi(X, \mathbf{W})\{Y - m(X, \mathbf{W})\}|X = x]$$

$$= \mathbb{E}[\mathbb{E}[\pi(X, \mathbf{W})\{Y - m(X, \mathbf{W})\}|X = x, \mathbf{W}]]$$

$$= \mathbb{E}[\pi(x, \mathbf{W})\{\mathbb{E}[Y|X = x, \mathbf{W}] - m(x, \mathbf{W})\}]$$

=0.

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 34 / 43

It holds that

$$\mathsf{E}[Y(x)] = \mathsf{E}\left[\pi(X, \boldsymbol{W})\{Y - m(X, \boldsymbol{W})\} + \int m(X, \boldsymbol{W})dP_{\boldsymbol{W}} \middle| X = x\right]$$
 if either $\pi = \pi_0$ or $m(x, \boldsymbol{W}) = \mathsf{E}[Y|X = x, \boldsymbol{W}]$ almost surely.

Proof.

If $\pi = \pi_0$, then

$$E[\pi_0(X, \mathbf{W})m(X, \mathbf{W})|X = x] = \int \pi_0(x, \mathbf{w})m(x, \mathbf{w})f_{\mathbf{W}|X}(\mathbf{w}|x)d\mathbf{w}$$
$$= \int m(x, \mathbf{w})f_{\mathbf{W}}(\mathbf{w})d\mathbf{w}$$
$$= E\left[\int m(X, \mathbf{W})dP_{\mathbf{W}}|X = x\right]$$

which implies that $E[Y(x)] = E[\pi_0(X, \mathbf{W})Y|X = x].$

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 35 / 43

$$E[Y(x)] = E\left[\pi_0(X, \mathbf{W})\{Y - E[Y|X = x, \mathbf{W}]\} + \int E[Y|X, \mathbf{W}]dP_{\mathbf{W}} | X = x\right]$$
(4)

- Based on Equation (4)
- Regress an estimator of V on X, where

$$V \equiv \pi_0(X, \boldsymbol{W})\{Y - \mathsf{E}[Y|X, \boldsymbol{W}]\} + \int \mathsf{E}[Y|X, \boldsymbol{W}]dP_{\boldsymbol{W}}$$

• Regress $\{V_i\}_{i=1}^n$ on $\{X_i\}_{i=1}^n$, where

$$V_i \equiv \hat{\pi}(X_i, \mathbf{W}_i) \{ Y_i - \hat{m}(X_i, \mathbf{W}_i) \} + n^{-1} \sum_{i'=1}^n \hat{m}(X_i, \mathbf{W}_{i'})$$

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 36 / 43

- $\hat{\pi}$ is from FSW part
- \hat{m} is from OR part:

$$\hat{m}(X, \boldsymbol{W}) = \hat{\alpha}^{\mathrm{OR}} + \langle \hat{\beta}^{\mathrm{OR}}, X \rangle + (\hat{\boldsymbol{\theta}}^{\mathrm{OR}})^{\top} \boldsymbol{W}$$

Doubly robust estimators:

$$\begin{split} \hat{\beta}_{h_n}^{DR} &= \sum_{j=1}^{h_n} \hat{\gamma}_j^{-1} \left\langle n^{-1} \sum_{i=1}^n X_i V_i, \hat{\phi}_j \right\rangle \hat{\phi}_j \\ \hat{\alpha}^{DR} &= \bar{V} - \left\langle \hat{\beta}_{h_n}^{DR}, \bar{X} \right\rangle \end{split}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

37 / 43

Hyemin Yeon (ISU) Functional Treatment June 2, 2023

(4.1)
$$\sup_{x, \mathbf{w}} |\hat{\pi}(x, \mathbf{w}) - \pi_0(x, \mathbf{w})| = O(a_n + b_n)$$
 almost surely

(4.2)
$$\|\hat{\beta}_{h_n}^{\text{FSW}} - \beta\|^2 = O_P\left((a_n^2 + b_n^2)n^{\frac{\gamma+1}{\gamma+2\beta}}\right)$$
, when $h_n \asymp n^{\frac{1}{\gamma+2\beta}}$

(4.3)
$$\|\hat{\beta}_{h_n}^{OR} - \beta\|^2 = O_P\left(n^{\frac{-2\beta+1}{\gamma+2\beta}}\right)$$
, when $h_n \approx n^{\frac{1}{\gamma+2\beta}}$

- $n^{\frac{-2\beta+1}{\gamma+2\beta}} = n^{-1}n^{\frac{\gamma+1}{\gamma+2\beta}}$ and $n^{-1} < a_n^2 + b_n^2$ $\implies \hat{\beta}_{h_n}^{\mathrm{OR}}$ is faster than $\hat{\beta}_{h_n}^{\mathrm{FSW}}$
- Theorem 4.3 is the same result as the classical ones in FLRMs such as Hall and Horowitz (2007) and Shin (2009).

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 38 / 43

Contents

- Introduction to FLRMs
- Causal Inference with Functional Treatment
 - Identification assumptions
 - Estimation of the stablized weights
 - Estimation of the causal effect $\beta \in \mathbb{H}$
- Remaining parts

Hyemin Yeon (ISU)

Selection of tuning parameters

• [ZXW21] Use the fraction of variance explained (FVE):

$$FVE(J) \equiv \frac{\sum_{j=1}^{J} \hat{\gamma}_j}{\sum_{j\geq 1} \hat{\gamma}_j}.$$

For example, use *J* such that $FVE(J) \approx 0.95$.

• [THZY22] Use the cross-validation based on the prediction error

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 40 / 43

Simulation

• Criterion: $MSE(\beta) = E[||\hat{\beta} - \beta||^2]$

- [ZXW21] Compare the PCW with the unweighted LSE based on the basis expansion
 - PCW is better

- [THZY22] Compare the FSW, OR, DR with PCW and (naive) FPCR
 - All of FSW. OR. DR better than both PCW and FPCR.
 - Mostly, FSW is the best or competitive compared to OR and DR.

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Future directions

• Statistical inference (e.g., confidence region, hypothesis testing) for β in the framework of causal inference with functional treatment

• Causal inference when the treatments are sparse functional data

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 42 / 43

The End

THANK YOU

Hyemin Yeon (ISU) Functional Treatment June 2, 2023 43 / 43