```
In [1]: from sklearn.datasets import load_boston # Import dataset module
boston_dataset = load_boston()
```

```
In [2]: import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

Mean Squared Error

MSE = 1/n*Sum(y_pred-y_test)^2

- In [3]: from sklearn.datasets import load_boston # Import dataset module
 boston_dataset = load_boston()
- In [4]: import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
- In [5]: import pandas as pd
 boston = pd.DataFrame(boston_dataset.data, columns = boston_dataset.feature
 boston.head()
- Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [6]: boston['MEDV'] = boston_dataset.target

```
In [7]: boston.describe()
```

Out[7]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.79
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.10
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126

```
In [8]: x,y = boston.drop('MEDV', axis=1),boston['MEDV']
In [12]: from sklearn.neighbors import KNeighborsRegressor
    model = KNeighborsRegressor()

In [13]: model.fit(x,y)
Out[13]: KNeighborsRegressor()
In [14]: y_pred = model.predict(x)
In [15]: from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error
In [16]: mean_squared_error(y_pred,y)
Out[16]: 23.966862450592888
```

Mean Absolute Error

MSE = 1/n*Sum(|y_pred-y_test|)

```
In [17]: mean_absolute_error(y_pred,y)
Out[17]: 3.3752173913043477
```

Root Mean Squared Error

 $MSE = 1/n*(Sum(y_pred-y_test)^2)^1/2$

```
In [18]: mean_squared_error(y_pred,y,squared = False)
```

Out[18]: 4.8955962303475244

R2 Score

```
In [19]: r2_score(y_pred,y)
Out[19]: 0.5884292317985158
In [ ]:
```