Text Clustering: Generative Probabilistic Models

Part 3

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Text Clustering: Generative Probabilistic Models (Part 3)

How Can We Compute the ML Estimate?

- Data: a collection of documents C={d₁, ..., d_N}
- Model: mixture of k unigram LMs: $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
 - To generate a document, first **choose a** θ_i according to $p(\theta_i)$ and then generate **all** words in the document using $p(w|\theta_i)$
- Likelihood:

$$p(d \mid \Lambda) = \sum_{i=1}^{k} [p(\theta_i) \prod_{w \in V} p(w \mid \theta_i)^{c(w,d)}]$$
$$p(C \mid \Lambda) = \prod_{i=1}^{N} p(d_i \mid \Lambda)$$

Maximum Likelihood estimate

$$\Lambda^* = \arg\max_{\Lambda} p(C \mid \Lambda)$$

EM Algorithm for Document Clustering

- Initialization: Randomly set $\Lambda = (\{\theta_i\}; \{p(\theta_i)\}), i \in [1,k]$
- Repeat until likelihood p(C $|\Lambda$) converges
 - E-Step: Infer which distribution has been used to generate document d: hidden variable $Z_d \in [1, k]$

$$p^{(n)}(Z_d = i \,|\, d) \propto p^{(n)}(\theta_i) {\prod}_{w \in V} p^{(n)}(w \,|\! \theta_i)^{c(w,d)} \qquad \sum\nolimits_{i=1}^k p^{(n)}(Z_d = i \,|\, d) = 1$$

- M-Step: Re-estimation of all parameters

$$\begin{split} p^{(n+1)}(\theta_i) &\propto \sum\nolimits_{j=1}^N p^{(n)}(Z_{d_j} = i \,|\, d_j) \\ p^{(n+1)}(w \,|\, \theta_i) &\propto \sum\nolimits_{j=1}^N c(w,d_j) p^{(n)}(Z_{d_j} = 1 \,|\, d_j) \\ &\sum\nolimits_{w \in V} p^{(n+1)}(w \,|\, \theta_i) = 1, \quad \forall i \in [1,k] \end{split}$$

An Example of 2 Clusters

Random Initialization

$$p(\theta_1)=p(\theta_2)=0.5$$

	$p(w \theta_1)$	$p(w \theta_2)$
text	0.5	0.1
mining	0.2	0.1
medical	0.2	0.75
health	0.1	0.05

E-step Document d

Hidden variables:

$$Z_d \in \{1, 2\}$$

	c(w,d)
text	2
mining	2
medical	0
health	0

$$\begin{split} p(Z_d = 1 \,|\, d) &= \frac{p(\theta_1)p(\text{"text"}|\, \theta_1)^2p(\text{"mining"}|\, \theta_1)^2}{p(\theta_1)p(\text{"text"}|\, \theta_1)^2p(\text{"mining"}|\, \theta_1)^2 + p(\theta_2)p(\text{"text"}|\, \theta_2)^2p(\text{"mining"}|\, \theta_2)^2} \\ &= \frac{0.5*0.5^2*0.2^2}{0.5*0.5^2*0.2^2 + 0.5*0.1^2*0.1^2} = \frac{100}{101} \end{split}$$

$$p(Z_d = 2 | d) = ?$$

Normalization to Avoid Underflow

An Example of 2 Clusters (cont.)

From E-Step

	P(Z _d =1 d)		c("text")	c("mining")
d1	0.9	d1	2	3
d2	0.1	d2	1	2
d3	0.8	d3	4	3

M-Step

$$p(\theta_1)=? p(\theta_2)=?$$

$$p(\theta_1) = \frac{p(Z_{d_1} = 1 \mid d_1) + p(Z_{d_2} = 1 \mid d_2) + p(Z_{d_3} = 1 \mid d_3)}{3}$$
$$= \frac{0.9 + 0.1 + 0.8}{3} = 0.6$$

	$p(w \theta_1)$			$p(w \theta_2)$		
text		?			?	
mining		?			?	
medical		?			?	
health		?			?	

$$\begin{split} p(\text{"text"}|\,\theta_1) &\propto c(\text{"text"},d_1) * p(Z_{d_1} = 1\,|\,d_1) + ... + c(\text{"text"},d_3) * p(Z_{d_3} = 1\,|\,d_3) \\ &= 2*0.9 + 1*0.1 + 4*0.8 \\ p(\text{"mining"}|\,\theta_1) &\propto 3*0.9 + 2*0.1 + 3*0.8 \end{split}$$

$$p("text" | \theta_1) + p("mining" | \theta_1) + p("medical" | \theta_1) + p("health" | \theta_1) = 1$$

Summary of Generative Model for Clustering

- A slight variation of topic model can be used for clustering documents
 - Each cluster is represented by a unigram LM $p(w|\theta_i)$ Term cluster
 - A document is generated by first choosing a unigram LM and then generating ALL words in the document using this single LM
 - Estimated model parameters give both a topic characterization of each cluster and a probabilistic assignment of a document into each cluster
 - "Hard" clusters can be obtained by forcing a document into the cluster corresponding to the unigram LM most likely used to generate the document
- EM algorithm can be used to compute the ML estimate
 - Normalization is often needed to avoid underflow