1. Preliminaries

Notation for Scalars, Vectors, and Matrices

Lowercase letters \Longrightarrow scalars: x, c, σ .

Boldface, lowercase letters \implies vectors: x, y, β .

Boldface, uppercase letters \Longrightarrow matrices: A, X, Σ .

Notation for Dimensions and Elements of a Matrix

Suppose A is a matrix with m rows and n columns.

Then we say that A has dimensions $m \times n$.

Let $a_{ii} \in \mathbb{R}$ be the *element* or *entry* in the *i*th row and *j*th column of A.

We convey all this information with the notation

$$\mathbf{A}_{m \times n} = [a_{ij}].$$

The Product of a Scalar and a Matrix

Suppose
$$A_{m \times n} = [a_{ij}].$$

For any $c \in \mathbb{R}$,

$$c\mathbf{A} = \mathbf{A}c = [ca_{ij}];$$

i.e., the product of the scalar c and the matrix $A = [a_{ij}]$ is the matrix whose entry in the ith row and jth column is c times a_{ij} for each $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

The Sum of Two Matrices

Suppose

$$\mathbf{A}_{m \times n} = [a_{ij}] \text{ and } \mathbf{B}_{m \times n} = [b_{ij}].$$

Then

$$\mathbf{A}_{m \times n} + \mathbf{B}_{m \times n} = \mathbf{C}_{m \times n} = [c_{ij} = a_{ij} + b_{ij}];$$

i.e., the sum of $m \times n$ matrices A and B is an $m \times n$ matrix whose entry in the ith row and jth column is the sum of the entry in the ith row and jth column of A and the entry in the ith row and jth column of B $(i = 1, \ldots, m \text{ and } j = 1, \ldots, n)$.

Vector and Vector Transpose

In STAT 510, a vector is a matrix with one column:

$$\boldsymbol{x} = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right].$$

In STAT 510, we use x' to denote the *transpose* of the vector x:

$$\mathbf{x}' = [x_1, \ldots, x_n];$$

i.e., x is a matrix with one column and x' is the matrix with the same entries as x but written as a row rather than a column.

Transpose of a Matrix

Suppose A is an $m \times n$ matrix. Then we may write A as $[a_1, \ldots, a_n]$, where a_i is the ith column of A for each $i = 1, \ldots, n$.

The transpose of the matrix A is

$$m{A}' = [m{a}_1, \dots, m{a}_n]' = \left[egin{array}{c} m{a}_1' \ dots \ m{a}_n' \end{array}
ight].$$

Matrix Multiplication

Suppose
$$\mathbf{A}_{\substack{m imes n}} = [a_{ij}]$$
 and $\mathbf{B}_{\substack{n imes k}} = [b_{ij}].$

Then
$$\mathbf{A}_{m \times n} \mathbf{B}_{n \times k} = \mathbf{C}_{m \times k} = \left[c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj} \right].$$

Matrix Multiplication Special Cases

If
$$\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$, then $\mathbf{a}'\mathbf{b} = \sum_{i=1}^n a_i b_i$.

Also,
$$a'a = \sum_{i=1}^{n} a_i^2 \equiv ||a||^2$$
.

$$||a|| \equiv \sqrt{a'a} = \sqrt{\sum_{i=1}^n a_i^2}$$
 is known as the *Euclidean norm* of a .

Another Look at Matrix Multiplication

Suppose
$$\mathbf{A}_{m \times n} = [a_{ij}] = [\mathbf{a}_1, \dots, \mathbf{a}_n] = \begin{bmatrix} \mathbf{a}'_{(1)} \\ \vdots \\ \mathbf{a}'_{(m)} \end{bmatrix}$$
 and $\mathbf{B}_{m \times k} = [b_{ij}] = [\mathbf{b}_1, \dots, \mathbf{b}_k] = \begin{bmatrix} \mathbf{b}'_{(1)} \\ \vdots \\ \mathbf{b}'_{(n)} \end{bmatrix}$.

Then
$$\mathbf{A}_{m \times n} \mathbf{B}_{n \times k} = \mathbf{C}_{m \times k} = \begin{bmatrix} c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj} \end{bmatrix} = [c_{ij} = \mathbf{a}'_{(i)} \mathbf{b}_{j}]$$

$$= [\mathbf{A} \mathbf{b}_{1}, \dots, \mathbf{A} \mathbf{b}_{k}] = \begin{bmatrix} \mathbf{a}'_{(1)} \mathbf{B} \\ \vdots \\ \mathbf{a}'_{(m)} \mathbf{B} \end{bmatrix} = \sum_{l=1}^{n} a_{l} \mathbf{b}'_{(l)}.$$

Transpose of a Matrix Product

The transpose of a matrix product is a product of the transposes in reverse order; i.e.,

$$(AB)' = B'A'.$$

Zero and One Vectors and the Identity Matrix

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \quad \boldsymbol{I} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

0 is also used to denote a matrix whose entries are all zero.

Linear Combination

If $c_1, \ldots, c_n \in \mathbb{R}$ and $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n \in \mathbb{R}^m$, then

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = c_1 \boldsymbol{a}_1 + \dots + c_n \boldsymbol{a}_n$$

is a *linear combination* (LC) of a_1, \ldots, a_n .

The *coefficients* of the LC are c_1, \ldots, c_n .

Column Spaces

• Ac is a *linear combination* of the columns of an $m \times n$ matrix A:

$$Ac = [a_1, \dots, a_n] \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = c_1a_1 + \dots + c_na_n.$$

 The set of all possible linear combinations of the columns of A is called the column space of A and is written as

$$C(\mathbf{A}) = {\mathbf{A}\mathbf{c} : \mathbf{c} \in \mathbb{R}^n}.$$

• Note that $C(A) \subseteq \mathbb{R}^m$.

Linear Independence and Linear Dependence

• A set of vectors a_1, \ldots, a_n is linearly independent (LI) iff

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = \boldsymbol{0} \Longrightarrow c_1 = \cdots = c_n = 0.$$

• A set of vectors a_1, \ldots, a_n is *linearly dependent* (LD) iff

there exist c_1, \ldots, c_n not all 0 such that $\sum_{i=1}^n c_i \boldsymbol{a}_i = \boldsymbol{0}$.

Rank and Trace

The rank of a matrix A is written as rank(A) and is the maximum number of linearly independent rows (or columns) of A

The *trace* of an $n \times n$ matrix A is written as trace(A) and is the sum of the diagonal elements of A; i.e.,

$$\operatorname{trace}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

Idempotent Matrices

A matrix A is said to be *idempotent* iff AA = A.

The rank of an idempotent matrix is equal to its trace; i.e.,

$$rank(A) = trace(A)$$
.

Square Matrices

• An $m \times n$ matrix A is said to be *square* iff m = n.

• If A is an $m \times n$ matrix, then A'A is an $n \times n$ matrix.

• Thus, A'A is a square matrix for any matrix A.

Inverse of a Matrix

- A square matrix A is nonsingular or invertible iff there exists a square matrix B such that AB = I.
- If A is nonsingular and AB = I, then B is the unique *inverse* of A and is written as A^{-1} .
- For a nonsingular matrix A, we have $AA^{-1} = I$. (It is also true that $A^{-1}A = I$.)
- A square matrix without an inverse is called singular.
- An $n \times n$ matrix A is singular iff rank(A) < n.

Generalized Inverses

- G is a generalized inverse of an $m \times n$ matrix A iff AGA = A.
- We usually denote a generalized inverse of A by A^- .
- If A is nonsingular, i.e., if A^{-1} exists, then A^{-1} is the one and only generalized inverse of A.

$$AA^{-1}A = IA = AI = A$$

• If A is singular, i.e., if A^{-1} does not exist, then there are infinitely many generalized inverses of A.

Finding a Generalized Inverse of a Matrix A

- Find any $r \times r$ nonsingular submatrix of A where r = rank(A). Call this matrix W.
- ② Invert and transpose W, i.e., compute $(W^{-1})'$.
- **3** Replace each element of W in A with the corresponding element of $(W^{-1})'$.
- Replace all other elements in A with zeros.
- Transpose the resulting matrix to obtain G, a generalized inverse for A.

Positive and Non-Negative Definite Matrices

x'Ax is known as a *quadratic form*.

We say that an $n \times n$ matrix A is positive definite (PD) iff

- A is symmetric (i.e., A = A'), and
- x'Ax > 0 for all $x \in \mathbb{R}^n \setminus \{0\}$.

We say that an $n \times n$ matrix A is non-negative definite (NND) iff

- A is symmetric (i.e., A = A'), and
- x'Ax > 0 for all $x \in \mathbb{R}^n$.

Positive and Non-Negative Definite Matrices

A matrix that is positive definite is nonsingular; i.e.,

A positive definite $\Longrightarrow A^{-1}$ exists.

A matrix that is non-negative definite but not positive definite is singular.

Random Vectors

A *random vector* is a vector whose components are random variables.

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Expected Value of a Random Vector

The *expected value*, or *mean*, of a random vector y is the vector of expected values of the components of y.

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \Longrightarrow E(\mathbf{y}) = \begin{bmatrix} E(y_1) \\ E(y_2) \\ \vdots \\ E(y_n) \end{bmatrix}$$

Likewise, if $A = [a_{ij}]$ is a matrix of random variables, then $E(A) = [E(a_{ij})]$; i.e., the expected value of A is the matrix of expected values of the elements of A.

Variance of a Random Vector

The *variance* of a random vector $\mathbf{y} = [y_1, y_2, \dots, y_n]'$ is the matrix whose i, jth element is $Cov(y_i, y_j)$ $(i, j \in \{1, \dots, n\})$.

$$Var(\mathbf{y}) = \begin{bmatrix} Cov(y_1, y_1) & Cov(y_1, y_2) & \cdots & Cov(y_1, y_n) \\ Cov(y_2, y_1) & Cov(y_2, y_2) & \cdots & Cov(y_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(y_n, y_1) & Cov(y_n, y_2) & \cdots & Cov(y_n, y_n) \end{bmatrix}$$

Variance of a Random Vector

The covariance of a random variable with itself is the variance of that random variable. Thus,

$$Var(\mathbf{y}) = \begin{bmatrix} Var(y_1) & Cov(y_1, y_2) & \cdots & Cov(y_1, y_n) \\ Cov(y_2, y_1) & Var(y_2) & \cdots & Cov(y_2, y_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(y_n, y_1) & Cov(y_n, y_2) & \cdots & Var(y_n) \end{bmatrix}.$$

Covariance Between Two Random Vectors

The *covariance* between random vectors $\mathbf{u} = [u_1, \dots, u_m]'$ and $\mathbf{v} = [v_1, \dots, v_n]'$ is the matrix whose i, jth element is $Cov(u_i, v_j)$ $(i \in \{1, \dots, m\}, j \in \{1, \dots, n\}).$

$$Cov(\boldsymbol{u}, \boldsymbol{v}) = \begin{bmatrix} Cov(u_1, v_1) & Cov(u_1, v_2) & \cdots & Cov(u_1, v_n) \\ Cov(u_2, v_1) & Cov(u_2, v_2) & \cdots & Cov(u_2, v_n) \\ \vdots & & \vdots & & \vdots \\ Cov(u_m, v_1) & Cov(u_m, v_2) & \cdots & Cov(u_m, v_n) \end{bmatrix}$$

$$= E(\boldsymbol{u}\boldsymbol{v}') - E(\boldsymbol{u})E(\boldsymbol{v}').$$

Linear Transformation of a Random Vector

If y is an $n \times 1$ random vector, A is an $m \times n$ matrix of constants, and b is an $m \times 1$ vector of constants, then

$$Ay + b$$

is a *linear transformation* of the random vector y.

Mean, Variance, and Covariance of Linear Transformations of a Random Vector *y*

$$E(Ay + b) = AE(y) + b$$

$$Var(Ay + b) = AVar(y)A'$$

$$Cov(Ay + b, Cy + d) = AVar(y)C'$$

Standard Multivariate Normal Distributions

If $z_1, \ldots, z_n \stackrel{iid}{\sim} N(0, 1)$, then

$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix}$$

has a standard multivariate normal distribution: $z \sim N(\mathbf{0}, \mathbf{I})$.

Multivariate Normal Distributions

Suppose z is an $n \times 1$ standard multivariate normal random vector, i.e., $z \sim N(\mathbf{0}, \mathbf{I}_{n \times n})$.

Suppose A is an $m \times n$ matrix of constants and μ is an $m \times 1$ vector of constants.

Then $Az + \mu$ has a *multivariate normal distribution* with mean μ and variance AA':

$$z \sim N(\mathbf{0}, \mathbf{I}) \Longrightarrow Az + \mu \sim N(\mu, AA').$$

Multivariate Normal Distributions

If μ is an $m \times 1$ vector of constants and Σ is a $m \times m$ symmetric, non-negative definite (NND) matrix of rank n, then $N(\mu, \Sigma)$ signifies the multivariate normal distribution with mean μ and variance Σ .

If $y \sim N(\mu, \Sigma)$, then $y \stackrel{d}{=} Az + \mu$, where $z \sim N(\mathbf{0}, I_{n \times n})$ and A is an $m \times n$ matrix of rank n such that $AA' = \Sigma$.

Linear Transformations of Multivariate Normal Distributions are Multivariate Normal

$$\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \implies \mathbf{y} \stackrel{d}{=} A\mathbf{z} + \boldsymbol{\mu}, \ \mathbf{z} \sim N(\mathbf{0}, \mathbf{I}), \ AA' = \boldsymbol{\Sigma}$$

$$\implies C\mathbf{y} + d \stackrel{d}{=} C(A\mathbf{z} + \boldsymbol{\mu}) + \mathbf{d}$$

$$\implies C\mathbf{y} + d \stackrel{d}{=} CA\mathbf{z} + C\boldsymbol{\mu} + \mathbf{d}$$

$$\implies C\mathbf{y} + d \stackrel{d}{=} M\mathbf{z} + \mathbf{u}, \ \mathbf{M} \equiv CA, \ \mathbf{u} \equiv C\boldsymbol{\mu} + \mathbf{d}$$

$$\implies C\mathbf{y} + d \sim N(\mathbf{u}, \mathbf{M}\mathbf{M}').$$

Non-Central Chi-Square Distributions

If $y \sim N(\mu, I_{n \times n})$, then

$$w \equiv \mathbf{y}'\mathbf{y} = \sum_{i=1}^n y_i^2$$

has a non-central chi-square distribution with n degrees of freedom and non-centrality parameter $\mu'\mu/2$:

$$w \sim \chi_n^2(\boldsymbol{\mu}'\boldsymbol{\mu}/2).$$

(Some define the non-centrality parameter as $\mu'\mu$ rather than $\mu'\mu/2$.)

Central Chi-Square Distributions

If $z \sim N(\mathbf{0}, I_{n \times n})$, then

$$w \equiv z'z = \sum_{i=1}^n z_i^2$$

has a central chi-square distribution with n degrees of freedom:

$$w \sim \chi_n^2$$
.

A central chi-square distribution is a non-central chi-square distribution with non-centrality parameter 0: $w \sim \chi_n^2(0)$.

Important Distributional Result about Quadratic Forms

Suppose Σ is an $n \times n$ positive definite matrix.

Suppose A is an $n \times n$ symmetric matrix of rank m such that $A\Sigma$ is idempotent (i.e., $A\Sigma A\Sigma = A\Sigma$).

Then $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Longrightarrow \mathbf{y}' A \mathbf{y} \sim \chi_m^2(\boldsymbol{\mu}' A \boldsymbol{\mu}/2)$.

Mean and Variance of Chi-Square Distributions

If
$$w \sim \chi_m^2(\theta)$$
, then

$$E(w) = m + 2\theta$$
 and $Var(w) = 2m + 8\theta$.

Non-Central t Distributions

Suppose $y \sim N(\delta, 1)$.

Suppose $w \sim \chi_m^2$.

Suppose *y* and *w* are independent.

Then $y/\sqrt{w/m}$ has a non-central t distribution with m degrees of freedom and non-centrality parameter δ :

$$\frac{y}{\sqrt{w/m}} \sim t_m(\delta).$$

Central t Distributions

Suppose $z \sim N(0, 1)$.

Suppose $w \sim \chi_m^2$.

Suppose z and w are independent.

Then $z/\sqrt{w/m}$ has a central t distribution with m degrees of freedom:

$$\frac{z}{\sqrt{w/m}} \sim t_m.$$

The distribution t_m is the same as $t_m(0)$.

Non-Central *F* Distributions

Suppose $w_1 \sim \chi^2_{m_1}(\theta)$.

Suppose $w_2 \sim \chi_{m_2}^2$.

Suppose w_1 and w_2 are independent.

Then $(w_1/m_1)/(w_2/m_2)$ has a non-central F distribution with m_1 numerator degrees of freedom, m_2 denominator degrees of freedom, and non-centrality parameter θ :

$$\frac{w_1/m_1}{w_2/m_2} \sim F_{m_1,m_2}(\theta).$$

Central F Distributions

Suppose $w_1 \sim \chi_{m_1}^2$.

Suppose $w_2 \sim \chi^2_{m_2}$.

Suppose w_1 and w_2 are independent.

Then $(w_1/m_1)/(w_2/m_2)$ has a central F distribution with m_1 numerator degrees of freedom and m_2 denominator degrees of freedom:

 $rac{w_1/m_1}{w_2/m_2} \sim F_{m_1,m_2}$ (which is the same as the $F_{m_1,m_2}(0)$ distribution).

Relationship between t and F Distributions

If
$$u \sim t_m(\delta)$$
, then $u^2 \sim F_{1,m}(\delta^2/2)$.

Some Independence (⊥) Results

Suppose $y \sim N(\mu, \Sigma)$, where Σ is an $n \times n$ PD matrix.

- If A_1 is an $n_1 \times n$ matrix of constants and A_2 is an $n_2 \times n$ matrix of constants, then $A_1\Sigma A_2' = 0 \implies A_1y \perp A_2y$.
- If A_1 is an $n_1 \times n$ matrix of constants and A_2 is an $n \times n$ symmetric matrix of constants, then $A_1 \Sigma A_2 = 0 \implies A_1 y \perp y' A_2 y$.
- If A_1 and A_2 are $n \times n$ symmetric matrices of constants, then $A_1 \Sigma A_2 = 0 \implies y' A_1 y \perp y' A_2 y$.