

Master in Computer Vision Barcelona

Project
Module 4
Coordination

Video Surveillance for Road Traffic Monitoring J. Ruiz-Hidalgo / X. Giró

j.ruiz@upc.edu / xavier.giro@upc.edu

Project Goal

Main goal

 To learn the basic concepts and techniques related to video sequences mainly for surveillance applications

Scope

- Use of statistical models to estimate the background information of the video sequence
- Use of connected component analysis to segment the foreground
- Use optical flow estimations and compensations
- Analyze system performance evaluation

Applicability

 Any problem where video sequence analysis can be applied to obtain accurate automatic results

Methodology

- Students divided into groups of 4 people
- Semester is divided into 5 weeks
- Every week (Wednesday) students submit (GitHub) their homework
 - slides (google docs)
 - Include links to relevant files in the team's GitHub repository
 - code (github)
 - Intra group evaluation
- 1 hour class
 - ~30min devoted to discussions
 - Students present their results in class / Answer questions
 - ~30min to present next week's work

Timetable

http://pagines.uab.cat/mcv/content/m4-video-analysis

Project Schedule

Learning Goals

Skills	Week
Statistical models Gaussian, S&G	2
Connected Component Analysis Area filter, hole filling	3
Optical flow Lucas—Kanade	4
Object tracking Kalman filter	5
Classification performance evaluation	1-5

Programming Language

- Matlab (http://mathworks.es)
 - Required toolboxes
 - Image processing
 - Additional toolboxes
 - Computer vision
- OpenCV (http://mathworks.es)
 - Python, C++ interfaces

Virtual machine

- X2go, download client from x2go page: http://wiki.x2go.org/doku.php/start
- Configure as:
 - host: 147.83.91.181
 - login: ihcv\$X (\$X is the group number as 01, 02, ...)
 - password: ihcv
 - SSH port: 2241
 - Session type: GNOME

Datasets

- ChangeDetection Video Database
 - http://www.changedetection.net
 - 11 video categories: 4-6 videos in each
 - Baseline, dynamic background, jitter, shadow, etc.
 - Ground truth images
 - Static, shadow, outside ROI, motion, unknown

Datasets

- KITTI Vision Benchmark Suite
 - http://www.cvlibs.net/datasets/kitti
 - Optical flow ground truth

- TRAINING DATASET
 - 194 image pairs + optical flow ground truth
- TEST DATASET (subset)
 - 195 image pairs + optical flow ground truth

Project Evaluation

- The Project Development: PD
 - Weeks 1-4 (PD_i)
 - Delivered code + short presentation.
 - Completion of tasks and optionals
 - Feedback and questions to professors in class
 - Week 5 (PD₅)
 - Full code + short report
- Intra-Group Evaluation:
 - Every week students quantize the % of workload done by each member of the team
- Final project presentation: PP

$$PP = 0.5 \cdot PP^{professor} + 0.5 \cdot PP^{students}$$

The final mark is

$$V = \sum_{i=1}^{4} 0.15 \cdot PD_i + 0.3 \cdot PD_5 + 0.1 \cdot PP$$

- Introduction to video sequence analysis and evaluation
 - Understand and familiarize with the programing framework used in the project
 - Learn about the databases to be used
 - Practice the evaluation metrics
 - Read / write video sequences

- Background estimation
 - Model the background pixels of a video sequence using a simple statistical model to classify the background / foreground
 - Single Gaussian per pixel
 - Adaptive / Non-adaptive

The statistical model will be used to preliminary classify foreground

Comparison with more complex models (Stauffer and Grimson)

- Foreground segmentation
 - Implement a robust foreground segmentation algorithm.
 - The statistical model implemented in the previous week will be used to classify foreground pixels in the video.
 - Refine the result with component analysis filtering
 - Shadow removal system

- Video stabilization
 - Removed un-wanted camera jitering
 - Motion Estimation by computing optical flow
 - Optical flow must be used to compensate the camera jitering and create a new stabilized video

- Region tracking
 - Implement a tracking system to uniquely identify the objects in the scene.
 - A Kalman filter will be used to predict object positions and to help assign unique labels to all objects.
 - Detect and track the cars from a provided video sequence, labeling each of them with a bounding box and a unique numerical identifier.
 - Estimate the speed of the cars appearing in the video sequence, adding this information to the ID.

Material

PROJECT DOCUMENTATION

- Describes all the information needed to perform and evaluate the project
- Location: Virtual Campus UAB

