David Herrero Pérez

February 2012

Level Set Method

- 1 Introduction
- 2 The Level Set Method Applied to Topology Optimization
- 3 Possible works
- 4 References

Introduction

The Level Set Method (LSM)

The LSM is a numerical technique for tracking interfaces and shapes.

Advantages of LSM

- Numerical computations involving curves and surfaces on a fixed Cartesian grid can be performed without having to parameterize these objects, which is called the Eulerian approach [1].
- The LSM makes it very easy to follow shapes that change topology, for example:
 - Shape splits in two.
 - Develops holes.
 - The reverse of previous operations.
- The algorithms for processing level sets have vast parallelization potential.

The Level Set Method.

Introduction

Curve representation (2D)

The closed curve Γ is represented using an auxiliary variable φ called the level set function. Γ is represented as the zero level set of φ by

$$\Gamma = \{(x, y) | \varphi(x, y) = 0\},\tag{1}$$

and the level set method manipulates Γ "implicitly", through the function φ . φ is assumed to take positive values inside the region delimited by the curve Γ and negative values outside [2, 3].

The Level Set Method.

The Level Set Equation

When the curve Γ moves in the normal direction with a speed v, then the level set function φ satisfies the "level set equation"

$$\frac{\partial \varphi}{\partial t} = \nu |\nabla \varphi|,\tag{2}$$

where $|\cdot|$ is the Euclidean norm (denoted customarily by single bars in PDEs), and t is time. This is a partial differential equation, in particular a Hamilton-Jacobi equation, and can be solved numerically, for example by using finite differences on a Cartesian grid [2, 3].

The Level Set Method.

The Level Set Equation

The numerical solution of the level set equation, however, requires sophisticated techniques because:

- Simple finite difference methods fail quickly.
- Upwinding methods, such as the Godunov's scheme, fare better.

Possible troubles

- The LSM does not guarantee the conservation of the volume and the shape of the level set in an advection field that does conserve the shape and size.
- Instead, the shape of the level set may get severely distorted and the level set may vanish over several time steps.

The Level Set Method.

Applications

The LSM has become popular in many disciplines, such as:

- Image processing.
- Computer graphics.
- Computational geometry.
- Optimization.
- Computational fluid dynamics.

The Level Set Method.

Level Set Method

- 1 Introduction
- 2 The Level Set Method Applied to Topology Optimization
- 3 Possible works
- 4 References

Topology optimization problem

The topology optimization problem consists of minimizing the compliance of a solid structure subject to a constraint on the volume of the material used:

- $x = (x_1, \dots, x_N)$ is the vector of element *densities*, with entries of $x_e = 0$ for a void element and $x_e = 1$ for a solid element, where e is the element index.
- c(x) is the compliance objective function.
- F and U are the global force and displacement vectors, respectively.
- K is the global stiffness matrix.
- ue and ke are the element displacement vector and the element stiffness matrix for element e.
- k_l is the element stiffness matrix corresponding to a solid element.
- N is the total number of elements in the design domain.
- V(x) is the number of solid elements.
- V_{rea} is the required number of solid elements.

Objective

The LSM is used to to find a local minimum for the optimization problem.

Boundary representation of domain Ω

The level set function is used for describing the structure that occupies some domain Ω as follows:

$$\varphi(x,y) \begin{cases} < 0 & if(x,y) \in \Omega \\ = 0 & if(x,y) \in \partial\Omega \\ > 0 & if(x,y) \notin \partial\Omega \end{cases}$$
(4)

where (x, y) is any point in the design domain, and $\partial(x, y)$ is the boundary of Ω .

Evolution equation

The following evolution equation is used to update the level-set function and hence the structure:

$$\frac{\partial \varphi}{\partial t} = v|\nabla \varphi| - wg \tag{5}$$

- t represents time.
- v(x, y) and g(x, y) are scalar fields over the design domain Ω .
- ullet w is a positive parameter which determines the influence of the term involving g.

Scalar fields

- The field *v* determines geometric motion of the boundary of the structure. It is chosen based on the shape derivative of the optimization objective.
- The term involving g is a forcing term which determines the nucleation of new holes within the structure. It is chosen based on the topological derivative of the optimization objective.

Evolution equation

The following evolution equation is used to update the level-set function and hence the structure:

$$\frac{\partial \varphi}{\partial t} = v|\nabla \varphi| - wg \tag{5}$$

- t represents time.
- v(x, y) and g(x, y) are scalar fields over the design domain Ω .
- ullet w is a positive parameter which determines the influence of the term involving g.

Nucleation problem

- When w = 0, the equation (5) is the standard Hamilton-Jacobi evolution equation for a level-set function φ under a normal velocity of the boundary v(x, y), taking the boundary normal in the outward direction from Ω .
- The simpler equation without the term involving g is typically used in level-set methods for shape and topology (indicating the holes) optimization

Evolution equation

The following evolution equation is used to update the level-set function and hence the structure:

$$\frac{\partial \varphi}{\partial t} = v|\nabla \varphi| - wg \tag{5}$$

- t represents time.
- v(x, y) and g(x, y) are scalar fields over the design domain Ω .
- ullet w is a positive parameter which determines the influence of the term involving g.

Nucleation problem

- However the standard evolution equation has the major drawback that new void regions cannot be nucleated within the structure.
- Hence, the additional forcing term involving g is usually added to ensure that new holes can nucleate within the structure during the optimization process.

Level Set Function

- The level-set function can be discretized with grid-points centered on the elements of the mesh.
- If c_e represents the position of the center of the element e, then the discretized level-set function φ satisfies:

$$\varphi(c_e) \begin{cases} < 0 & \text{if } x_e = 1\\ = 0 & \text{if } x_e = 0 \end{cases}$$
 (6)

 The discrete level-set function can then be updated to find a new structure by solving (5) numerically.

LSF Initialization

- The level-set function φ should be initialized.
- When the forcing term involving g is added, such an initialization is not critical, and a signed distance function is enough to address the topology optimization problem.

Level Set Function

- The level-set function can be discretized with grid-points centered on the elements of the mesh
- If c_e represents the position of the center of the element e, then the discretized level-set function φ satisfies:

$$\varphi(c_e) \begin{cases} < 0 & \text{if } x_e = 1 \\ = 0 & \text{if } x_e = 0 \end{cases}$$
 (6)

 The discrete level-set function can then be updated to find a new structure by solving (5) numerically.

Solving LSM numerically

- An upwind finite difference scheme is used so that the evolution equation can be accurately solved.
- The time step for the finite difference scheme is chosen to satisfy the Courant-Friedrichs-Lewy (CFL) stability condition: $\Delta t \leq \frac{h}{\max|v|}$, where h is the minimum distance between adjacent grid-points in the spacial discretization.

zación OE)

Scalar fields (v and g)

The scalar fields are typically chosen based on the shape and topological sensitivities of the optimization objective, respectively.

Volume constraint

To satisfy the volume constraint, they are chosen using the shape and topological sensitivities of the Lagrangian:

$$L = c(x) + \lambda^{k}(V(x) - V_{req}) + \frac{1}{2\Lambda^{k}}[V(x) - V_{req}]^{2}$$
 (7)

where λ^k and Λ^k are parameters which change with each iteration k of the optimization algorithm. They are updated using the scheme:

$$\lambda^{k+1} = \lambda^k + \frac{1}{\Lambda^k} (V(x) - V_{req}), \quad \Lambda^{k+1} = \alpha \Lambda^k$$
 (8)

where $\alpha \in (0,1)$ is a fixed parameter.

Scalar fields (v and g)

The scalar fields are typically chosen based on the shape and topological sensitivities of the optimization objective, respectively.

Normal velocity v

- This velocity is chosen as a descent direction for the Lagrangian *L* using its shape derivative.
- In the case of traction-free boundary conditions on the moving boundary, the shape sensitivity of the compliance objective c(x) is the negative of the strain energy density:

$$\frac{\partial c}{\partial \Omega}|_{e} = -u_{e}^{T} k_{e} u_{e} \tag{9}$$

and the shape sensitivity of the volume V(x) is

$$\frac{\partial V}{\partial \Omega}|_e = 1 \tag{10}$$

Scalar fields (v and g)

The scalar fields are typically chosen based on the shape and topological sensitivities of the optimization objective, respectively.

Normal velocity v

 Using these shape sensitivities, the normal velocity v within element e at iteration k of the algorithm is:

$$v|_{e} = -\frac{\partial L}{\partial \Omega}|_{e} = u_{e}^{T} k_{e} u_{e} - \lambda^{k} - \frac{1}{\Lambda^{k}} (V(x) - V_{req})$$
 (11)

Scalar fields (v and g)

The scalar fields are typically chosen based on the shape and topological sensitivities of the optimization objective, respectively.

Forcing term g

- The the forcing term g can be taken as $g = -sign(\varphi)\delta_T L$, where $\delta_T L$ is the topological sensitivity of the Lagrangian L.
- For compliance minimization, nucleating solid areas within the void regions of the design is pointless because such solid regions will not take any load.
- Therefore holes should only be nucleated within the solid structure and

$$g \begin{cases} \delta_T L & \text{if } \varphi < 0 \\ 0 & \text{if } \varphi > 0 \end{cases}$$
 (12)

Scalar fields (v and g)

The scalar fields are typically chosen based on the shape and topological sensitivities of the optimization objective, respectively.

Topological sensitivity

The topological sensitivity of the compliance objective function in two dimensions with traction-free boundary conditions on the nucleated hole and the unit ball as the model hole can be expressed as:

$$\delta_{\mathcal{T}}c|_{e} = -\frac{\pi(\lambda + 2\mu)}{2\mu(\lambda + \mu)} (4\mu u_{e}^{\mathsf{T}} k_{e} u_{e} + (\lambda - \mu) u_{e}^{\mathsf{T}} (k_{\mathsf{Tr}})_{e} u_{e})$$

$$\tag{13}$$

- $u_e^T(k_{Tr})_e u_e$ is the finite element approximation to the product $tr(\sigma)$ $tr(\varepsilon)$, where σ is the stress tensor and ε is the strain tensor.
- ullet λ and μ are the Lamé constants for the solid material.

- 1 Introduction
- 2 The Level Set Method Applied to Topology Optimization
- 3 Possible works
- 4 References

Possibilities of future works using LSM

- Parallel computing for accelerating the optimization based on such a method using:
 - Distributed CPU approach (communications based on sockets, MPI, event-based blackboards, ...).
 - GPU computing.
- Apply the LSM to problems that require the tracking of a wave front.

Level Set Method

- 1 Introduction
- 2 The Level Set Method Applied to Topology Optimization
- 3 Possible works
- 4 References

References

Osher, S., Sethian, J.A.

Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations

J. Comput. Phys. 79: 12-49, 1988.

Osher, Stanley J., Fedkiw, Ronald P. Level Set Methods and Dynamic Implicit Surfaces Springer-Verlag, 2002.

Sethian, James A.

Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science

Cambridge University Press, 1999.

Enright, D.; Fedkiw, R. P.; Ferziger, J. H.; Mitchell, I. A hybrid particle level set method for improved interface capturing

J. Comput. Phys. 183: 83-116., 2002.

