2025/10/14

序列极限一章的作业:

习题3.1, 3.2, 3.4 每一节后面的 n 道题, 可自选不少于 n-3 道题,

习题3.3 自选不少于 20道

3.1

3.1.1

Prove by definition

$$\lim_{n\to\infty}\frac{3n^3+4n^2-100}{2n^3-9n-11}=\frac{3}{2}.$$

Proof: Note that

$$\frac{3n^3 + 4n^2 - 100}{2n^3 - 9n - 11} - \frac{3}{2} = \frac{8n^2 + 27n - 167}{2(2n^3 - 9n - 11)}.$$

Hence for n > 100,

$$\left| rac{3n^3 + 4n^2 - 100}{2n^3 - 9n - 11} - rac{3}{2}
ight| \leqslant rac{9n^2}{n^3} = rac{9}{n}$$

so the limit equals $\frac{3}{2}$.

3.1.2

Prove by definition

$$\lim_{n o\infty}\log\left(1+rac{1}{n}
ight)=0.$$

Proof: Note that $e = \lim_{n \to \infty} (1+1/n)^n$ so $1 \leqslant (1+1/n)^n < e$, then $0 < \log(1+1/n) < 1/n$. Therefore $\lim_{n\to\infty}\log\left(1+\frac{1}{n}\right)=0.$

3.1.4

Calculate

$$\lim_{n o\infty}rac{2\sqrt[n]{n}+\sqrt[n]{100}}{3\sqrt[n]{n}-1}.$$

Solution: Trivial. The answer is $\frac{2}{3}$.

3.1.5

Calculate

$$\lim_{n\to\infty}\bigg(\frac{3\log^3 n+2\log n+1}{2\log^2 n+\log n}-\frac{6\log^3 n+5\log^2 n+3\log n+1}{4\log^2 n-\log n+2}\bigg).$$

Solution: The answer is $-\frac{19}{8}$.

3.1.6

Calculate

$$\lim_{n\to\infty}\left(\left(1+\frac{1}{n}\right)^n+\left(2+\frac{3}{n}\right)^n+\left(3+\frac{5}{n}\right)^n\right)^{1/n}.$$

Solution: The answer is 3.

3.1.7

Let $0 \leqslant k \leqslant p-1$, calculate

$$\lim_{n\to\infty}\frac{\binom{kn}{p}+\binom{kn}{p+k}+\cdots+\binom{kn}{p+(n-1)k}}{2^{kn}}.$$

Solution: Let $w=e^{2\pi i/kn}$, then

$$\sum_{i=0}^{n-1} inom{kn}{p+ik} = rac{1}{k} \sum_{i=0}^{k-1} (1+w^j)^{kn} w^{-jp}.$$

Note that $|1+w^j|\leqslant 2$ and equality holds iff j=0, hence the answer is $\frac{1}{k}$.

3.2

3.2.1

Calculate

$$\lim_{n \to \infty} \frac{n^{-1} - (n+1)^{-1}}{n^{-2}}.$$

Solution:

$$\lim_{n \to \infty} \frac{n^{-1} - (n+1)^{-1}}{n^{-2}} = \lim_{n \to \infty} n - \frac{n^2}{n+1} = \lim_{n \to \infty} \frac{n}{n+1} = 1.$$

3.2.2

Prove that $\lim_{n o \infty} \sin n$ does not exists.

Proof: We know that $\left\{\frac{n}{2\pi}\right\}$ is equidistributed in [0,1], hence 1,-1 are both limit points of $\{\sin n:n\geqslant 1\}$.

3.2.4 & 3.2.5

For lpha>0 and $lpha\in(-1,0)$ calculate

$$\lim_{n o\infty}rac{\sum_{k=1}^n k^lpha}{n^{lpha+1}}.$$

Solution: For $\alpha > 0$.

$$\frac{n^{\alpha+1}}{\alpha+1} = \int_0^n x^\alpha \,\mathrm{d}x \leqslant \sum_{k=1}^n k^\alpha \leqslant \int_1^{n+1} x^\alpha \,\mathrm{d}x = \frac{(n+1)^{\alpha+1}-1}{\alpha+1}.$$

Hence the answer is $1/(\alpha+1)$. It the same with $\alpha\in(-1,0)$, by simply reversing the inequalities.

3.2.6

For $\alpha < -1$ determine the value of

$$\lim_{n\to\infty}\frac{\sum_{k=n+1}^{2n}k^\alpha}{n^{\alpha+1}}.$$

Solution: Likewise

$$\lim_{n o \infty} rac{\sum_{k=n+1}^{2n} k^{lpha}}{n^{lpha+1}} = \lim_{n o \infty} rac{(2n)^{lpha+1} - n^{lpha+1}}{(lpha+1)n^{lpha+1}} = rac{2^{lpha+1}-1}{lpha+1}.$$

3.2.8

Let $x_1=a, x_2=b, x_{n+2}=\frac{1}{2}(x_n+x_{n+1})$, prove that $\lim_{n\to\infty}x_n$ exists and determine its value. Solution: $x_n=\alpha+\left(-\frac{1}{2}\right)^{n-1}\beta$ where $a=\alpha+\beta$ and $b=\alpha-\frac{\beta}{2}$. Hence $\lim_{n\to\infty}x_n=\alpha=\frac{a+2b}{3}$.

3.2.9

Suppose $\{x_n\}$ satisfy $\lim_{n \to \infty} x_n \sum_{k=1}^n x_k^2 = 1$, prove that $\lim_{n \to \infty} \sqrt[3]{3n} x_n = 1$. Proof: Let $S_n = \sum_{k=1}^n x_n^2$, then $\lim_{n \to \infty} S_n \sqrt{S_n - S_{n-1}} = 1$. Clearly $x_n \to 0$ so $S_n/S_{n-1} \to 1$. Note that

$$egin{aligned} \lim_{n o\infty}nx_n^3 &= \lim_{n o\infty}rac{n}{S_n^3} = \lim_{n o\infty}rac{1}{S_n^3-S_{n-1}^3} = \lim_{n o\infty}rac{1}{(S_n-S_{n-1})(S_n^2+S_nS_{n-1}+S_{n-1}^2)} \ &= \lim_{n o\infty}rac{1}{x_n^2(S_n^2+S_nS_{n-1}+S_{n-1}^2)} = \lim_{n o\infty}rac{S_n^2}{S_n^2+S_nS_{n-1}+S_{n-1}^2} = rac{1}{3}. \end{aligned}$$

3.2.10

Given positive numbers a,d, let A_n,G_n denote respectively the arithmetic and geometric means of the sequence $a,a+d,\cdots,a+(n-1)d$. Calculate

$$\lim_{n o\infty}rac{G_n}{A_n}.$$

Solution: $A_n = a + \frac{n-1}{2}d \sim \frac{d}{2}n$.

 $\log G_n = \frac{1}{n} \sum_{k=0}^{n-1} \log(a+kd) = \log d + \frac{\log(n-1)!}{n} + \frac{1}{n} \sum_{k=0}^{n-1} \log\left(1 + \frac{a}{kd}\right).$ Clearly $\lim_{n \to \infty} \log\left(1 + \frac{a}{nd}\right) = 0$ so $\lim_{n \to \infty} \frac{1}{d(n!)^{1/n}} = 1$. We know that $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$ so

$$\lim_{n o\infty}rac{G_n}{A_n}=rac{2}{e}.$$

3.2.11

Let $a_{n,k}=rac{k}{n-k+1}$, prove that

(1) for any given k, $a_{n,k} = o(1)$.

(2) $A_n = \prod_{k=1}^n a_{n,k}$ is not o(1).

Proof: (1) is trivial. (2) Note that

$$A_n = \prod_{k=1}^n \frac{k}{n-k+1} = 1$$

is constant.

3.2.12

Suppose $E \subset \mathbb{R}$ is nonempty. Prove that there exists $\{x_k\} \subset E$ such that $\lim_{n \to \infty} x_n = \sup E$ (sup E can be ∞).

Proof: If $\sup E$ is finite, for any $n\geqslant 1$, there exists $x_n\in E$ such that $x_n>\sup E-1/n$. Hence $\lim_{n\to\infty}x_n=\sup E$. The case $\sup E=\infty$ is trivial.

3.2.13

Suppose $\{t_{n,m}\}_{n\geqslant m}$ satisfy:

- (i) $\lim_{n \to \infty} t_{n,m} = 0$ for every m;
- (ii) $\sum_{k=1}^n |t_{n,k}| < K$.

Let $y = \sum_{k=1}^n x_k t_{n,k}$, prove that

- (1) If $\lim_{n \to \infty} x_n = 0$ then $\lim_{n \to \infty} y_n = 0$.
- (2) Let $T_n=\sum_{k=1}^n t_{n,k}$. If $\lim_{n\to\infty}T_n=1$, and $\lim_{n\to\infty}x_n=a$ is finite, then $\lim_{n\to\infty}y_n=a$. Proof: (1) Clearly

$$|y_n|\leqslant \sum_{k=1}^N |t_{n,k}|\cdot |x_k| + \sum_{k=N+1}^n |t_{n,k}|\cdot |x_k|\leqslant MNarepsilon(n,N) + K\cdot \delta(N).$$

where $M=\sup_{n\geqslant 0}|x_n|$, $\varepsilon(n,N)=\sup_{k\geqslant n,j\leqslant N}|t_{k,j}|$ and $\delta(N)=\sup_{k\geqslant N}|x_k|$. Let $n\to\infty$ then $\varepsilon(n,N)\to 0$, then let $N\to\infty$ then we obtain $\lim_{n\to\infty}y_n=0$.

(2) Let $x_n'=x_n-a$ and $y_n'=\sum_{k=1}^n x_k't_{n,k}$, then from (1) $\lim_{n\to\infty}y_n'=0$. Note that $y_n-y_n'=aT_n$, hence $\lim_{n\to\infty}y_n=a$.

3.3

3.3.2

If E is closed, prove that $\sup E, \inf E \in E$.

If $\sup E \in E^C$, then there exists $\varepsilon > 0$ such that $B(\sup E, \varepsilon) \subset E^C$, leading to contradiction. Likewise $\sup E$, $\inf E \in E$.

3.3.3

Prove that $\overline{\mathbb{Q}^C}=\mathbb{R}.$ Proof: $\overline{\mathbb{Q}^C}\supset \overline{\sqrt{2}\mathbb{Q}}=\mathbb{R}.$

3.3.4

Let $x_0\in(0,2)$, $x_{n+1}=x_n(2-x_n)$, prove that $\lim_{n\to\infty}x_n=1$. (And likewise for $y_0\in(0,c^{-1})$, $y_{n+1}=y_n(2-cy_n)$, $\lim_{n\to\infty}y_n=c^{-1}$.) Proof: Note that $|x_{n+1}-1|=|x_n-1|^2$ so $|x_n-1|=|1-x_0|^{2^n}\to 0$.

3.3.5

Let $a_0,b_0>0$, $a_{n+1}=\frac{a_n+b_n}{2}$, $b_{n+1}=\frac{2a_nb_n}{a_n+b_n}$. Prove that $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$ both exists. Proof: Note that $a_{n+1}b_{n+1}=a_nb_n$, and $a_n\geqslant b_n$ so $a_{n+1}\leqslant a_n$ and $b_{n+1}\geqslant b_n$. Also, $\min\{a_0,b_0\}\leqslant a_n,b_n\leqslant \max\{a_0,b_0\}$, hence $\lim_{n\to\infty}a_n$ and $\lim_{n\to\infty}b_n$ both exist. Since $2a_{n+1}-a_n=b_n$, they are equal, and both are \sqrt{ab} .

3.3.6

Suppose $c\geqslant -3$, and $x_1=c/2$, $x_{n+1}=\frac{c}{2}+\frac{x_n^2}{2}$. When does x_n converge and calculate that limit. Solution: Let $y_n=x_n/2$, then $y_{n+1}=y_n^2+y_0$. If y_n converges, then the limit should be $a=\frac{1+\sqrt{1-4y_0}}{2}$ or $b=\frac{1-\sqrt{1-4y_0}}{2}$, hence $y_0\leqslant 1/4$. When $y_0\in [-3/4,1/4]$, $|y_{n+1}-b|=|y_n-b|\cdot|y_n+b|$. If $y_0\in [0,1/4]$, then we can show that $x_n\leqslant x_{n+1}\leqslant b$, hence $\lim_{n\to\infty}y_n=b$. If $y_0\in [-3/4,0)$, then we can prove that $-1< x_n< a$, so $|y_n+b|\leqslant |b-1|<1$. Therefore $\lim_{n\to\infty}y_n=b$.

3.3.8

Suppose $E\subset\mathbb{R}$. Prove that there exists a countable set $F\subset E$ such that F is dense in E. Proof: Actually, subsets of a separable metric space is still separable. If $\mathcal{T}=(X,d)$ is a separable metric space with a countable dense set D, then \mathcal{T} is second-countable (having a countable base $\mathcal{B}=\{B(x,r):r\in\mathbb{Q},x\in D\}$). Consider the relative topology $\mathcal{T}_A=\{G\cap A:G\in\mathcal{T}\}$, then clearly \mathcal{T}_A is second-countable (with base $\mathcal{B}_A=\{B\cap A:B\in\mathcal{B}\}$), so \mathcal{T}_A is separable.

3.3.9

Prove that [a,b] is connected (cannot be represented as the disjoint union of two closed sets). Proof: If $[a,b]=U\cup V$ where U,V are disjoint closed sets, then suppose $a\in U$, let $c=\sup\{c\in [a,b]: [a,c]\subset U\}$ (c exists since $[a,a]\subset U$). Clearly there exists $c_n\to c$ such that $[a,c_n]\subset U$ so $c\in U$. For any n>0, there exists $d_n\in (c,c+1/n)$ such that $d_n\in V$ hence $c=\lim_{n\to\infty}d_n\in V$, leading to contradiction.

3.3.10

Prove that \mathbb{R} is connected.

Proof: If $\mathbb{R}=U\cup V$ where U,V are closed and non-empty, then take [a,b] intersecting U,V, $[a,b]=(U\cap [a,b])\cup (V\cap [a,b])$ which are two disjoint closed sets, contradicting with 3.3.9.

3.3.11

Suppose $\{a_{k_n}\}$ and $\{a_{m_n}\}$ are two subsequences of $\{a_n\}$ with the same limit, and $\{k_n\}\cup\{m_n\}=\mathbb{N}_+$. Prove that $\{a_n\}$ converges.

Proof: Let $a=\lim_{n\to\infty}a_{k_n}=\lim_{n\to\infty}a_{m_n}$. For any $\varepsilon>0$, there exists N_1,N_2 such that for any $n>N_1$, $|a-a_{k_n}|<\varepsilon$ and for any $n>N_2$, $|a-a_{m_n}|<\varepsilon$. Then let $N=\max\{k_{N_1},m_{N_2}\}$, for any n>N, $|a-a_n|<\varepsilon$ hence $\lim_{n\to\infty}a_n=a$.

3.3.12

Suppose E is closed in \mathbb{R} . Prove that there exists a set F such that F'=E.

Proof: Let $A=E\backslash E'$ be all isolated points of E. For every $x\in A$, let r_x be such that $B(x,r_x)\cap A=\{x\}$, and $F=A\cup \left\{x+\frac{r_x}{n}:x\in A,n>10\right\}$, we show that F'=E. Clearly $E\subset F'$. Consider every $y=\lim_{n\to\infty}y_n\in F'$ where $y_n\in F$. If there are infinitely $y_n\in E$, then $y\in E'\subset E$. Otherwise suppose $y_m=x_m+\frac{r_m}{n_m}$. If $\liminf_{m\to\infty}r_m=0$ then $y\in E'$. Otherwise, let $s=\liminf_{m\to\infty}r_m$ then for m large enough, $|x_m-y|<\frac{r_m}{10}+\frac{s}{10}$ so $|x_n-x_m|<\max\{r_n,r_m\}$. By the definition of r_n , we obtain $x_n=x_m$ for all n,m large enough, hence $y=x_m\in E$.

3.3.14

Try to construct a sequence of non-empty sets such that $E_{k+1}=E_k'\subsetneq E_k$. Solution: Consider the Cantor set \mathcal{C} .

Let $A_0=\mathcal{C}$, from exercise 3.3.12 we know that there exists A_{n+1} such that $A'_{n+1}=A_n$ (we can let A_{n+1} be closed, otherwise use \bar{A}_{n+1}), then $A_n=A'_{n+1}\subsetneq A_{n+1}$.

Let
$$E_0=\bigcup_{n\geqslant 1}(2n+A_n)$$
, then $E_m=\bigcup_{n\geqslant 1}(2n+A_n^{(m)})$, so $E_m\subsetneq E_{m-1}$ since $2n+A_n^{(n)}=2n+\mathcal{C}\subsetneq 2n+A_1=2n+A_{n+1}^{(n)}.$

3.3.20

Prove that

$$\lim_{n o\infty}\sqrt{1+2\sqrt{1+3\sqrt{1+\cdots n\sqrt{1+(n+1)}}}}=3.$$

Proof: Note that $\sqrt{1+n(n+2)}=n+1$, hence

$$3 = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + \dots + (n-1)\sqrt{1 + n \cdot (n+2)}}}}$$

is greater than the left side of the identity. Also

$$\sqrt{1+2\sqrt{1+\cdots+n\sqrt{n+2}}}\geqslant rac{1}{(n+2)^{2^{-n}}}\cdot \sqrt{1+2\sqrt{1+\cdots+n(n+2)}}=rac{3}{(n+2)^{2^{-n}}}.$$

Hence the identity holds.

3.3.22

Let $x_0>0$, $x_{n+1}=\sqrt{2+x_n}$. Determine the value of $\lim_{n\to\infty}4^n(2-x_n)$. Solution: If $x_0<2$, then let $x_n=2\cos\theta_n$ where $\theta_n\in(0,\pi/2)$, we have $4\cos^2\theta_{n+1}=2(1+\cos\theta_n)$ so $\theta_{n+1}=\theta_n/2$.

$$\lim_{n o\infty}4^n(2-x_n)=\lim_{n o\infty}4^n\left(2-2\cosrac{ heta_0}{2^n}
ight)= heta_0^2.$$

Likewise if $x_0>2$, let $x_n=2\cosh\theta_n$ where $\theta_n>0$, then $\cosh\theta_n=2\cosh^2\theta_{n+1}-1$ so $\theta_n=\theta_02^{-n}$.

$$\lim_{n o\infty}4^n(2-x_n)=-\lim_{n o\infty}4^n\cdot(e^{ heta_02^{-(n+1)}}-e^{- heta_02^{-(n+1)}})^2=- heta_0^2.$$

$$\lim_{n\to\infty} 4^n (2-x_n) = \arccos^2 \frac{x_0}{2}.$$

(since $\cosh z = \cos iz$).

3.3.24

For $r \in (0,4)$, take an arbitrary $x_0 \in (0,1)$ and let $x_{n+1} = rx_n(1-x_n)$. For what values r, the sequence $\{x_n\}$ converges independent of the choice of x_0 . Try writing a computer program to compute how x_n converges with different values of r. Solution: If $\{x_n\}$ has a limit a, then a = ra(1-a) so $a = 1 - r^{-1}$ or a = 0.

Case 1: $r \in (0,1]$, then $x_{n+1} \leqslant x_n(1-x_n)$ so $\lim_{n\to\infty} x_n = 0$ converges.

Case 2: $r \in (1,3]$, then for $a=1-r^{-1}$, $x_{n+1}-a=(x_n-a)(1-rx_n)$. Note that either $x_1<\frac{2}{r}$ or $x_2<\frac{2}{r}$, and if $x_n>\frac{2}{r}$ then $x_{n+1}<\frac{2}{r}$. Hence x_n converges to a .

Case 3: $r \in (3,4)$, then $\{x_n\}$ converges for some x_0 (e.g., $x_0=1-r^{-1}$) but not for others (e.g., $x_0 = rac{r+1-\sqrt{(r-3)(r+1)}}{2r}$).

Code: (Wolfram Language)

```
func[r_{-}] :=
 r*#*(1 - #) &; rs = {0.5, 1.0, 2.5, 3.0, 3.5}; x0 = 0.3; dep = 15;
ListLinePlot[
MapThread[
 Tooltip[#1, "r = " <> ToString[#2]] &, {Table[
    Module[\{x = x0, trajectory = \{\{0, x0\}\}\}\,
    Do[x = func[r][x]; AppendTo[trajectory, {n, x}];, {n, 1, dep}];
     trajectory], {r, rs}], rs}],
 PlotLegends -> (StringForm["r = ``", #] & /@ rs),
 PlotStyle -> Table[ColorData[97, i], {i, Length[rs]}],
 PlotLabel -> StringForm["Trajectories for x0 = ``", x0],
 ImageSize -> Medium, LabelStyle -> Directive[Black, 14],
 GridLines -> Automatic, PlotRange -> {{0, dep}, {0, 1}},
 PlotTheme -> "Detailed", BaseStyle -> {FontSize -> 10}]
```

Trajectories for x0 = 0.3

3.3.28

For $E\subset\mathbb{R}$, what conditions must E satisfy, such that every closed covering of E contains a finite covering of E

Solution: Since sets of a single element are closed, E must be finite, and this is clearly sufficient.

3.3.29

Prove that any open set $U\subset\mathbb{R}$ can be written as the disjoint countable union of open intervals. Proof: Every connected set of \mathbb{R} is an interval, hence every connected part of U is an open interval, and there are only countably many parts.

3.3.30

A closed interval [a,b] cannot be written as the disjoint countable union of closed intervals. Proof: Suppose $[a,b]=\bigcup_{\alpha\in I}[l_\alpha,r_\alpha]$, let $J=\{l_\alpha,r_\alpha\}\setminus\{a,b\}$. Clearly J is a perfect set, hence I is uncountable.

3.3.31

 $\mathbb R$ is not the countable union of nowhere dense sets.

Proof: $\mathbb R$ is a complete metric space, so by Baire Category theorem $\mathbb R$ is of second category, hence not the countable union of nowhere dense sets.

3.3.32

 $\{V_k\}_{k\geqslant 1}$ are open dense sets in $\mathbb R$, prove that $igcap_{k\geqslant 1}V_k$ is dense in $\mathbb R.$

Baire Category theorem: If X is a complete metric space, $G_n\subset X$ are all open, dense sets, then $\bigcap_{n\geqslant 1}G_n$ is dense.

(Or if F_n are closed and has no interior, then $\bigcup_{n\geqslant 1}F_n$ has no interior)

Proof: For any $x\in X$ and $\varepsilon>0$, we show that $\bigcap_{n\geqslant 1}G_n\cap B(x,\varepsilon)\neq\emptyset$. Let $x_0=x,\varepsilon_0=\varepsilon$. Take $x_1\in G_1\cap B(x_0,\varepsilon_0/2)$, then since G_1 is open we can take $\varepsilon_1<\varepsilon_0/2$ such that $B(x_1,\varepsilon_1)\subset G_1\cap B(x_0,\varepsilon_0/2)$. Likewise take $x_n\in G_n\cap B(x_{n-1},\varepsilon_{n-1}/2)$, and $\varepsilon_n<\varepsilon_{n-1}/2$ such that $B(x_n,\varepsilon_n)\subset G_n\cap B(x_{n-1},\varepsilon_{n-1}/2)$. Note that $d(x_n,x_{n-1})<\varepsilon_{n-1}/2$, and $\varepsilon_n\leqslant\varepsilon_02^{-n}$, so $d(x_n,x_{n+m})<\varepsilon_02^{-n}$ and $\{x_n\}$ is Cauchy. Let $x^*=\lim_{n\to\infty}x_n$, then for any n, $d(x_n,x^*)\leqslant d(x_n,x_{n+m})+d(x_{n+m},x^*)<\varepsilon_n/2+d(x_{n+m},x^*)$. Hence $d(x_n,x)\leqslant\varepsilon_n/2$ so $x^*\in G_n$, and likewise $d(x_0,x^*)<\varepsilon_0$. Therefore $x^*\in\bigcap_{n\geqslant 1}G_n\cap B(x,\varepsilon)$.

3.3.33

Prove that ho is a metric iff $ho(x,y)=0\iff x=y$ and $\forall x,y,z\in X$, $ho(x,z)\leqslant
ho(y,x)+
ho(y,z).$ Proof: \Longrightarrow is trivial. \Longleftrightarrow : let y=z, then $ho(x,y)\leqslant
ho(y,x)$ for any $x,y\in X$. Interchange x,y then $ho(x,y)\geqslant
ho(y,x)$ so ho(x,y)=
ho(y,x). Hence $ho(x,z)\leqslant
ho(x,y)+
ho(y,z).$

3.4

3.4.1

If $x_n>0$ and $\overline{\lim}_{n\to\infty} x_n\cdot\overline{\lim}_{n\to\infty} x_n^{-1}=1$, prove that $\{x_n\}$ converges. Proof: Clearly $\limsup_{n\to\infty} x_n^{-1}=(\liminf_{n\to\infty} x_n)^{-1}$, hence $\limsup_{n\to\infty} x_n=\liminf_{n\to\infty} x_n$ so $\{x_n\}$ converges.

3.4.2 & 3.4.3

Suppose $\{x_n\}$ satisfy $0 \leqslant x_{m+n} \leqslant x_m \cdot x_n$, prove that $\{\sqrt[n]{x_n}\}$ converges, and give an example where $\{\sqrt[n]{x_n}\}$ is not monotonic.

Proof: Let $L=\inf \sqrt[n]{x_n}$, we show that $L=\lim_{n o \infty} \sqrt[n]{x_n}$. Denote $y_n=\sqrt[n]{x_n}$.

If L=0, then there is a subsequence $\lim_{n\to\infty}y_{k_n}=0$. For any $m\geqslant 1$, and any $q=k_n$, suppose m=tq+r where $r\in\{0,1,\cdots,q-1\}$, then $y_m^m\leqslant y_q^{tq}\cdot y_r^r$ so $\lim_{m\to\infty}y_m\leqslant y_q$. Let $q\to\infty$ then $\lim_{m\to\infty}y_m=0$.

The case L>0 is similar.

Example: $x_n = \begin{cases} 1, & x \text{ even} \\ 2, & x \text{ odd} \end{cases}$, then $x_{m+n} = 2$ implies one of m,n is odd so $x_{m+n} \leqslant x_m \cdot x_n$.

3.4.4

Suppose $\{a_n\}$ satisfy $a_m+a_n-1\leqslant a_{m+n}\leqslant a_m+a_n+1.$ Prove that

- (1) $\lim_{n \to \infty} a_n/n$ exists.
- (2) Suppose $\lim_{n \to \infty} a_n/n = q$, then $nq 1 \leqslant a_n \leqslant nq + 1$.

Proof: Let $b_n=a_n/n$, take $L=\inf b_n$, and $\lim_{n\to\infty}b_{k_n}=L$. For any $m\geqslant 1$ and $q=k_n$, let m=tq+r where $0\leqslant r< q$, then

$$ta_q + a_r - t \leqslant a_m \leqslant ta_q + a_r + t$$

so $\frac{tq}{m}b_q+\frac{r}{m}b_r-\frac{t}{m}\leqslant b_m\leqslant \frac{tq}{m}b_q+\frac{r}{m}b_r+\frac{t}{m}$. Let $m\to\infty$, then $\lim_{m\to\infty}b_m=b_q+1/q$ so $\lim_{m\to\infty}b_m=L$.

(2) Note that $ma_n-(m-1)\leqslant a_{mn}\leqslant ma_n+(m-1)$, hence let $m\to\infty$ we obtain $a_n\in [nq-1,nq+1].$

3.4.5

Suppose $r \in (0,1)$, $x_0 = 0$, $x_{n+1} = r(1-x_n^2)$. Determine whether $\{x_n\}$ converges.

Solution: Let $f(x)=r(1-x^2)$, g(x)=f(f(x)), then note that g(x) is monotonically increasing. Since $x_0=0$ and $x_1=r$, we know that x_{2n} is increasing while x_{2n+1} is decreasing. Let $a=\lim_{n o\infty}x_{2n}$ and $b=\lim_{n o\infty}x_{2n+1}$, then $\{x_n\}$ converges iff a=b.

If $r \in (0, \sqrt{3}/2]$, then g(x) has only one fixed point in (0,1), hence $\{x_n\}$ converges to $\frac{\sqrt{1+4r^2}-1}{2r}$. If $r \in (\sqrt{3}/2,1)$, then $a=rac{1-\sqrt{4r^2-3}}{2r}$ and $b=rac{1+\sqrt{4r^2-3}}{2r}$ so x_n does not converge.

3.4.6 & 3.4.7

Suppose 0 < q < 1, $\{a_n\}, \{b_n\}$ satisfy $a_n = b_n - qa_{n+1}$, and a_n, b_n are bounded. Prove that $\lim_{n \to \infty} b_n$ exists iff $\lim_{n\to\infty} a_n$ exists. What if $q \notin (0,1)$?

Proof: If $\lim_{n \to \infty} b_n$ exists, let $\lim_{n \to \infty} a_n + q a_{n+1} = \lim_{n \to \infty} b_n = a$. Let $c_n = a_n - a/(1+q)$, $d_n = c_n + q c_{n+1}$ then $\lim_{n o \infty} d_n = 0$ and c_n is bounded.

Note that

$$c_n + (-q)^m c_{n+m} = \sum_{j=0}^{m-1} d_{n+j} (-q)^j$$

hence if $M=\sup_{n\geqslant 1}|c_n|$ and $arepsilon(n)=\sup_{k\geqslant n}|d_k|$, then

$$|c_n|\leqslant q^mM+rac{arepsilon(n)}{1-q}.$$

Let $m \to \infty$, we obtain $|c_n| \leqslant \varepsilon(n)/(1-q)$ hence $c_n \to 0$.

The reverse is trivial.

The proof works for $q \in (-1,0)$ too, since we can let $a'_n = (-1)^n a_n$. q = 0 is trivial.

If q=1, let $a_n=(-1)^n$ and $b_n=0$, then $\lim_{n\to\infty}b_n=0$ but $\lim_{n\to\infty}a_n$ doesn't exist.

If q=-1, then $a_n=a_1-\sum_{j=1}^nb_j$. Let $a_0=0$, $b_{2^n+k}=rac{1}{2}-rac{k}{2^n}$ for any $1\leqslant k\leqslant 2^n-1$, and $b_{2^n}=0$,

then $\lim_{n \to \infty} b_n = 0$ but $a_{2^n} = 0$ and $a_{2^{n}+2^{n-1}} = 1$ hence $\lim_{n \to \infty} a_n$ doesn't exist.

If |q|>1, likewise define c_n and d_n , then

$$|c_{n+m}| = \left| -c_n (-q)^{-m} + \sum_{j=0}^{m-1} d_{n+j} (-q)^{m-j}
ight| \leqslant rac{|c_n|}{|q|^m} + rac{arepsilon(n)}{1 - |q|^{-1}}.$$

So likewise $c_n \to 0$.

3.4.8

Suppose $a_n \geqslant 0$ and $a_{n+1} \leqslant a_n + \frac{1}{n^2}$. Prove that $\{a_n\}$ converges.

Proof: Let L be a limit point of $\{a_n\}$. Suppose $L=\lim_{n \to \infty} a_{k_n}$. For any $m\geqslant 1$, assume $k_n\leqslant m < k_{n+1}$, then $a_m\leqslant a_{k_n}+\sum_{j=k_n}^{m-1}j^{-2}\leqslant a_{k_n}+1/k_n\leqslant L+\varepsilon(n)+1/k_n$, and $a_m\geqslant a_{k_{n+1}}-\sum_{j=m}^{k_{n+1}-1}j^{-2}\geqslant a_{k_{n+1}}-1/m\geqslant L-\varepsilon(n)-1/m$, where $\varepsilon(n)\to 0$ since $a_{k_n}\to L$. Hence

3.4.12

Suppose $x_n > 0$, prove that

$$\limsup_{n o\infty} n\left(rac{1+x_{n+1}}{x_n}-1
ight)\geqslant 1.$$

Proof: If $\sup_{k\geqslant n} k\left(\frac{1+x_{k+1}}{x_k}-1\right)=\lambda<1$ for some n, then $k(x_{k+1}-x_k+1)\leqslant \lambda x_k$ so $x_{k+1}\leqslant (1+\lambda/k)x_k-1$. Let $y_k=x_k/k$, then $y_{k+1}\leqslant \frac{k+\lambda}{k+1}y_k-\frac{1}{k+1}< y_k-\frac{1}{k+1}$. Since $\sum_{n=1}^\infty n^{-1}=\infty$, this contradicts with $y_k>0$.

3.4.13

(Improved Banach fixed point theorem) Suppose $f:\mathbb{R}\to\mathbb{R}$ has period 1, and $\forall x,y\in\mathbb{R}$, $x\neq y$ implies |f(x)-f(y)|<|x-y|. For any $x_0\in\mathbb{R}$, let $x_{n+1}=f(x_n)$. Prove that $\{x_n\}$ converges and the limit is independent of x_0 .

Proof: Take any limit point L of $\{x_n\}$, and suppose $x_{k_n} \to L$, then $f(L) = \lim_{n \to \infty} f(x_{k_n}) = \lim_{n \to \infty} x_{k_n+1}$ is another limit point.

Note that $|x_{k_n}-x_{k_n+1}|\geqslant |x_{k_n+1}-x_{k_n+2}|\geqslant \cdots \geqslant |x_{k_{n+1}}-x_{k_{n+1}+1}|$. Let $n\to\infty$ we obtain $|L-f(L)|\geqslant |f(L)-f^2(L)|\geqslant |L-f(L)|$ so $|L-f(L)|=|f(L)-f^2(L)|$, which implies f(L)=L. Hence the only limit point is the unique fixed point a, which does not depend on x_0 .