Module 3.
Variable Creation and Reduction

Methodology Training EXL Decision Analytics

EXL Decision Analytics Methodology Snapshot

We apply a set of highly effective tools, techniques and best practices for the end-to-end model development cycle

Stage 1	Preliminary Data Exploration
Stage 2	Data Preparation
Stage 3	Variable Creation
Stage 4	Variable Reduction
Stage 5	Modeling
Stage 6	Validation and Stabilization

Univariate Analysis (EDD*)
Modeling and Validation Split
Bivariate Analysis
Outlier Treatment
Missing Imputation
Roll Ups and Data Merge
Dummy Variable Creation
Dummy Variable Creation
Binning and Banding
Transformations
Interactions and Groupings
Variable Clustering
Inter-Correlation Analysis
Variance Inflation Factor Test
Modeling Technique Selection
Model Improvements
Ensemble
In-Sample Validation
Out-of-Time Validation
Bootstrapping
Coefficient Blasting

These stages
demand lot of manual
effort in analyzing
and understanding
each and every
variable

These stages require business sense and out-of-box thinking for brainstorming on creating hypothesisbased variables and dropping redundant features

These stages require good knowledge of statistical techniques for providing highend quality solutions

^{*} Extended Data Dictionary

Objectives and Scope

Course Goals

- To provide a structured overview of variable creation and variable reduction techniques used during application of EXL DA methodology
- To introduce trainees to SAS syntax for implementation of such techniques and to explain interpretation of key SAS output
- To make trainees understand how to leverage the relevant MicroAnalytix[™] macros
- To provide illustrations for better understanding

Beyond the Scope of this Training

- Comprehensive coaching on all possible techniques there is great scope for innovation
- Derivation of statistical formulas or terms (unless required as part of methodology explanation)
- Variable reduction techniques that involve variable transformation (For example: Principal Component and Factor Analysis) – Such techniques are covered separately in Advanced Methodology Training

Self Study Goals

- Practice variable creation and variable reduction techniques covered during the training course
- Research on advanced parameters for implementation in SAS
- Discussion on advanced concepts can be taken up offline

Table of Contents

1. Variable Creation

- 1.1. Need for Variable Creation
- 1.2. Variable Creation Techniques
 - 1.2.1. Dummy Coding
 - 1.2.2. Bivariate Profiling
 - 1.2.3. Interaction
 - 1.2.4. Groupings
 - 1.2.5. Mathematical Transformations
 - 1.2.6. Variable Tenurization
 - 1.2.7. Trend Variables
 - 1.2.8. Weight of Evidence Approach
 - 1.2.9. CART Nodes
 - 1.2.10. MARS Basis Functions
 - 1.2.11. Hypothesis Based

2. Variable Reduction

- 2.1. Need for Variable Reduction
- 2.2. Variable Reduction Techniques
 - 2.2.1. Constant Value Variables
 - 2.2.2. Correlation with Target
 - 2.2.3. Variable Clustering
 - 2.2.4. Inter-Correlation Analysis

- 2.2.5. Variance Inflation Factor Test
- 2.2.6. Variable Importance List from Decision Trees
- 2.2.7. MAX STEP = 1 Technique
- 2.2.8. Dry Run
- 2.2.9. Random Feature Selection

References

Chapter 1: Variable Creation

1.1 Need for Variable Creation

Two Key Reasons for Importance of Derived Variables

Better Model Performance

- Derived variables add to the predictive power of raw variables
- Model performance gets boosted

Insight Generation

- Derived variables provide the missing links in explaining the observed patterns
- Key driver analysis becomes more meaningful

1.2 Variable Creation Techniques

1.2.1. Dummy Coding

Meaning

Creation of a binary indicator (flags) for each individual category

Usage

- Dummy coding converts a character variable structure into multiple numeric variables
- Numeric variables are easier to use for data analysis and modeling

Example

data	ı.sas7bdat				
	PHYSICIAN_ID	SPECIALTY	IND_SPC_HEART	IND_SPC_EYE	IND_SPC_NEURO
1	XX87601	HEART	1	0	0
2	XX87602	EYE	0	1	0
3	XX87603	NEURO	0	0	1
4	XX87604	NEURO	0	0	1
5	XX87605	EYE	0	1	0

Note: For model development purpose, in case of N categories, use only N-1 dummies

1.2.2. Bivariate Profiling

Meaning

Simultaneous analysis of two variables (a dependent and an independent variable)

Usage

Useful indicator variables can be created based on trend in mean dependent variable value across the bins or categories of an independent variable

Example 1

Target : Default Flag (IND_DEFAULT); Suppose overall default rate is 5%

Independent Variable : Account tenure, taking 5 values (Very Low, Low, Medium, High, Very High)

- Create a flag that takes value 1 if account tenure is 'Very Low' or 'Low' (IND_TENURE_VL_L). This will have fairly good negative correlation with IND_DEFAULT
- Create a flag that takes value 1 if account tenure is 'High' or 'Very High' (IND_TENURE_H_VH). This will have fairly good positive correlation with IND_DEFAULT
- Sizing of buckets (5 categories) also matters. In best case scenario, they should be evenly distributed

Example 2

Target : Default Flag (IND_DEFAULT); Suppose overall default rate is 5%

Independent Variable : Customer Age (continuous variable)

Create 'Customer Age' deciles (that is, 10% population per bin) and plot 'Default Rate'

- Create flags for Young (<=30 years), Middle Aged (31-45 years) and Old (>45 years)
- 'Young' and 'Old' indicators would have moderate positive correlation with IND DEFAULT
- 'Middle Aged' flag would have high negative correlation and is going to be a strong predictor

Young or Otherwise					
Age	Sizing	Default Rate			
Age <u><</u> 30	20%	9.0%			
Age > 30	80%	4.0%			
Overall	100%	5.0%			
Middle Aged or Otherwise					
Age	Sizing	Default Rate			
30 < Age ≤ 45	40%	1.5%			
Age ≤ 30 or Age > 45	60%	7.3%			
Overall	100%	5.0%			
Old or C)therwise				
Age	Sizing	Default Rate			
Age <u><</u> 45	60%	4.0%			
Age > 45	40%	6.5%			
Overall	100%	5.0%			

1.2.3. Interaction

An interaction variable is a multiplication of individual predictors

Interactions may add incremental value

Super Interactions Macro Syntax

```
SUPER INTERACTIONS
          VERSION
                               = <Version number>,
                               = <Library and name of modeling dataset>,
          MOD DATA
                               = <Library and name of validation dataset> [1],
          VAL DATA
          SCR DATA
                               = <Library and name of scoring dataset> [2],
          OUTLIB
                               = <Library of output dataset>,
          CSV PATH
                               = <Location of CSV file>,
          DEP VAR
                              = <Name of dependent variable>,
                               = \langle Y \text{ or } N [3] \rangle
          IF 2WAY
                               = \langle Y \text{ or } N^{[4]} \rangle
          IF 3WAY
                               = \langle \mathbf{Y} \text{ or } \mathbf{N} | [5] \rangle
          IF 4WAY
                               = \langle \mathbf{Y} \text{ or } \mathbf{N} | [6] \rangle
          IF 5WAY
                               = <List of predictors (separated by space)>
          PREDICTORS
          );
[1] Optional. If there is no validation dataset, user should leave it blank.
[2] Optional. If there is no scoring dataset, user should leave it blank.
[3] IF 2WAY = Y if 2-way interactions are required
[4] IF 3WAY = \mathbf{Y} if 3-way interactions are required
[5] IF 4WAY = \mathbf{Y} if 4-way interactions are required
[6] IF 5WAY = \mathbf{Y} if 5-way interactions are required
```


Super Interactions Macro Algorithm

- 1. If user sets 'IF_2WAY' = Y, create all possible two-way (a x b) interactions on the modeling dataset for the given list of independent variables
- 2. If user sets 'IF_3WAY' = Y, create all possible three-way (a x b x c) interactions on the modeling dataset for the given list of independent variables
- 3. If user sets 'IF_4WAY' = Y, create all possible four-way (a x b x c x d) interactions on the modeling dataset for the given list of independent variables
- 4. If user sets ' IF_5WAY ' = Y, create all possible five-way (a x b x c x d x e) interactions on the modeling dataset for the given list of independent variables
- 5. Compute means of all interaction variables for the modeling dataset
- 6. Compute correlation of all interaction variables with the target variable for the modeling dataset
- 7. If user specifies a validation dataset (containing target and predictors), do steps 1-6 for validation data
- 8. If user specifies a scoring dataset (containing predictors), do steps 1-5 for the scoring dataset
- 9. At variable level, create an indicator (I_STRAIGHTAWAY_DROP) if
 - A variable takes single unique value or
 - The sign of correlation with target doesn't match across modeling and validation or
 - The sign of mean value doesn't match across modeling, validation and scoring
- 10. At variable level, as a measure of stability, compute absolute percentage change in
 - Absolute correlations across Modeling and Validation (Metric 1)
 - Absolute means across Modeling and Validation (Metric 2)
 - Absolute means across Validation and Scoring (Metric 3)
 - Absolute means across Modeling and Scoring (Metric 4)

1.2.4. Groupings

A grouped variable is a union of conditions (binary predictors)

Unlike binary variable interactions (intersection of conditions), the grouped variables tend to have better sizing and they often add good value

Super Groups Macro Syntax

```
%SUPER GROUPS
          VERSION
                              = <Version number>,
                              = <Library and name of modeling dataset>,
          MOD DATA
                              = <Library and name of validation dataset> [1],
          VAL DATA
          SCR DATA
                              = <Library and name of scoring dataset> [2],
          OUTLIB
                              = <Library of output dataset>,
          CSV PATH
                              = <Location of CSV file>,
          DEP VAR
                              = <Name of dependent variable>,
                              = \langle Y \text{ or } N [3] \rangle
          IF 2WAY
                              = \langle Y \text{ or } N^{[4]} \rangle
          IF 3WAY
                              = \langle \mathbf{Y} \text{ or } \mathbf{N} | [5] \rangle
          IF 4WAY
                              = \langle \mathbf{Y} \text{ or } \mathbf{N} | [6] \rangle
          IF 5WAY
                              = <List of predictors (separated by space)>
          PREDICTORS
          );
[1] Optional. If there is no validation dataset, user should leave it blank.
[2] Optional. If there is no scoring dataset, user should leave it blank.
[3] IF 2WAY = Y if 2-way groupings are required
[4] IF_3WAY = Y if 3-way groupings are required
[5] IF 4WAY = \mathbf{Y} if 4-way groupings are required
[6] IF_5WAY = Y if 5-way groupings are required
```


Super Groups Macro Algorithm

- 1. If user sets 'IF_2WAY' = Y, create all possible two-way (a=1 or b=1) groups on the modeling dataset for the given list of independent variables
- 2. If user sets 'IF_3WAY' = Y, create all possible three-way (a=1 or b=1 or c=1) groups on the modeling dataset for the given list of independent variables
- 3. If user sets 'IF_4WAY' = Y, create all possible four-way (a=1 or b=1 or c=1 or d=1) groups on the modeling dataset for the given list of independent variables
- 4. If user sets 'IF_5WAY' = Y, create all possible five-way (a=1 or b=1 or c=1 or d=1 or e=1) groups on the modeling dataset for the given list of independent variables
- 5. Compute means of all group variables for the modeling dataset
- 6. Compute correlation of all group variables with the target variable for the modeling dataset
- 7. If user specifies a validation dataset (containing target and predictors), do steps 1-6 for validation data
- 8. If user specifies a scoring dataset (containing predictors), do steps 1-5 for the scoring dataset
- 9. At variable level, create an indicator (I_STRAIGHTAWAY_DROP) if
 - A variable takes single unique value or
 - The sign of correlation with target doesn't match across modeling and validation or
 - The sign of mean value doesn't match across modeling, validation and scoring
- 10. At variable level, as a measure of stability, compute absolute percentage change in
 - Absolute correlations across Modeling and Validation (Metric 1)
 - Absolute means across Modeling and Validation (Metric 2)
 - Absolute means across Validation and Scoring (Metric 3)
 - Absolute means across Modeling and Scoring (Metric 4)

1.2.5. Mathematical Transformations

Usage

- Correlation between a dependent and an independent variable is a measure of the degree of linear association only
- Mathematical transformations of the independent variable capture the non-linear trend
- Six mathematical transforms, generally, used at EXL Decision Analytics comprise
 - Square
 - Square Root
 - Cube
 - Cube Root
 - Log
 - Inverse

Macro in MicroAnalytix™

Variable transformation macro computes six types of transformations for a given set of variables and retains the transformation for each variable that has maximum correlation with the dependent variable


```
Variable Transformation Macro Syntax
%TRANSFORM VARS
 INLIB
                       = <Library of input dataset>,
                       = <Name of input dataset>,
 INDATA
 OUTLIB
                       = <Library of output dataset>,
                       = <Name of output dataset>,
 OUTDATA
                       = <List of variables>,
 VAR LIST
 DEP VAR
                       = <Name of dependent Variable>,
 RETAIN_ALL_TRANSFORMS = < Y or N, depending upon all transformations need to be retained or not>,
                       = <Y or N, depending upon base variables need to be retained or not>
 RETAIN_BASE_VAR
 );
```

Note: **TRANSFORM_VARS** macro will not work for variables with name length greater than **27** bytes, as it adds suffix to raw variable names. It is advised to rename the variables accordingly before using this macro.

1.2.6. Variable Tenurization

Meaning and Usage

- Variable tenurization involves usage of time-series data to create a separate variable for each time period and to create summarized variables (e.g. min, max, range, mean, standard deviation)
- Without any loss of information, variable tenurization uses granular level information (e.g. transactional level information) and facilitates model development at a higher level (e.g. customer level)

Example

Consider daily transaction amount information (for a week) for 2 customers C1 and C2

DAY	AMT
MON	40
TUE	45
WED	55
THU	50
FRI	42
SAT	51
SUN	46
MON	47
TUE	46
WED	48
THU	45
FRI	49
SAT	44
SUN	50
	MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT

CUST_ID	AMT_1	AMT_2	AMT_3	AMT_4	AMT_5	AMT_6	AMT_7
C1	40	45	55	50	42	51	46
C2	47	46	48	45	49	44	50

CUST_ID	AMT_MIN	AMT_MAX	AMT_RANGE	AMT_AVG	AMT_STDEV
C1	40	55	15	47	5.29
C2	44	50	6	47	2.16

1.2.7. Trend Variables

Delta Variables

- Difference variables to capture
 - Positive, negative or no change trend; and
 - Magnitude of change in case of positive or negative trend
- Example

DELTA AVG AMT $3M \cdot 6M = AVG \cdot AMT \cdot 3M - AVG \cdot AMT \cdot 6M$

Ratio Variables

- Ratio variables to capture percentage change
- Example

RATIO_AVG_AMT_3M_6M = AVG_AMT_3M / AVG_AMT_6M

1.2.8. Weight of Evidence Approach

Usage

- Weight of Evidence (WOE) analyzes the predictive power of a variable in relation to the event
- For each continuous variable, create decile bins and for each categorical variable, use actual categories
- For every bin or category of a predictor, calculate number of events, number of non-events and hence the weight of evidence using following formula

$$WOE = \left[LN \left(\frac{E_i / E}{NE_i / NE} \right) \right] \times 100\%$$

where

 $E_i = \text{Count of events in bin or category } i$

 $NE_i =$ Count of non events in bin or category i

E = Total count of events in the sample

NE =Total count of non events in the sample

Instead of raw variable, use its WOE values as the derived variable

A Related Concept: Information Value

Used for variable selection

$$IV = \sum_{i=i}^{n} \left[\left(\frac{E_i}{E} - \frac{NE_i}{NE} \right) \times LN \left(\frac{E_i/E}{NE_i/NE} \right) \right]$$

1.2.9. CART Nodes

CART is a non-linear, non-parametric technique that finds a cut-point in the predictor variable to classify the records into different levels of the response variable

Illustrative Example

1.2.10. MARS Basis Functions

MARS (Multivariate Adaptive Regression Splines) is a multivariate non-parametric regression procedure which builds flexible regression models by fitting separate Splines (or basis functions) to distinct intervals of the predictors

Example of a Basis Function:

 $BF1 = \max(0, AMT - 5)$

Where

AMT is an independent variable

5 is a constant value (also called knot), auto-generated by MARS algorithm

Drawbacks

- Not intuitive; they generally don't have any business meaning
- Tend to be unstable as they tend to overfit to the train data

Advantages

Automated process based on optimization; fairly easy way to boost model performance (given that there is no major stability issue)

1.2.11. Hypothesis Based

Hypothesis based variables are very useful from the perspective of explanation and understanding

Hypotheses are generally driven by

- Internal factors
 - Intuition / common sense
 - Business sense
 - Domain knowledge
 - Experience
- External factors
 - Existing model equation
 - Study of research papers
 - Discussion with experts

Chapter 2: Variable Reduction

2.1 Need for Variable Reduction

A Typical Scenario

- A target variable Y
- N relevant predictors X₁, X₂ ...X_N

Two Common Cases

Omission of Relevant Effects

 $Y = f(X_1, X_2, X_4...X_{N-1}, X_N)$

 X_3 , despite being relevant, is missing from the model equation

Inclusion of Irrelevant Effects

 $Y = f(X_1, X_2, Z, X_3, X_4...X_{N-1}, X_N)$

Z, despite being irrelevant, forms a part of the model equation

Need for Appropriate Application of Variable Selection / Variable Reduction Methodology

2.2 Variable Reduction Techniques

2.2.1. Constant Value Variables

Case of Straightaway Drop

A variable taking single unique value in the modeling dataset adds no value

Example

Data for 2012 batch of 10 students of XI standard

Variables 'STANDARD' and 'YEAR' take same value across all observations and hence add no value. They should be dropped straightaway

tra	ain_sample.sas	7bdat					
	ROLL_NO	STANDARD	YEAR	MARKS	ATTENDANCE	HEIGHT	WEIGHT
1	100501	XI	2012	80	0.70	173	55
2	100502	XI	2012	96	0.82	165	59
3	100503	XI	2012	78	0.69	162	64
4	100504	XI	2012	88	0.78	175	68
5	100505	XI	2012	82	0.93	170	70
6	100506	XI	2012	36	0.45	168	66
7	100507	XI	2012	41	0.58	166	56
8	100508	XI	2012	29	0.66	171	69
9	100509	XI	2012	97	0.75	173	73
10	100510	XI	2012	65	0.72	170	70

2.2.2. Correlation with Target

Features with 'close to zero' correlation with the target variable can be safely dropped

Illustration

Target variable: EXPENSE

Predictors:

- Individual's household income (HH_INCOME)
- Residence at outskirts (OUTSKIRTS)
- Number of kids in the household (NUM_KIDS)
- Individual's favorite color is red (FAV_COLOR_RED)

PROC CORR DATA = INPUT_DATA OUTP = OUTPUT_DATA; VAR EXPENSE; WITH HH_INCOME OUTSKIRTS NUM_KIDS

Output Interpretation

RUN;

	Α	В	С
1	Variable	Correlation	Absolute Correlation
2	HH_INCOME	38.5%	38.5%
3	OUTSKIRTS	-15.7%	15.7%
4	NUM_KIDS	11.2%	11.2%
5	FAV_COLOR_RED	0.1%	0.1%

 As expected, an individual's spending is much less likely to be related to his favorite color than his household income

FAV_COLOR_RED;

 Variable 'FAV_COLOR_RED' does not pass the 0.5% cut off and it is safe to exclude it from the model development process

2.2.3. Variable Clustering

VARCLUS procedure classifies numeric variables into disjoint or hierarchical clusters based on a similarity measure

Illustration and SAS Code Six Predictors: A, B, C, D, E and F MAXEIGEN = 0.7 MAXCLUSTERS = 6 SHORT HI; VAR A B C D E F; ODS OUTPUT RSQUARE = OUTPUT_DATA; RUN;

Variable Selection Criterion

A variable selected from each cluster should have a high correlation with its own cluster and a low correlation with the other clusters

R Square Ratio = I - R Square Own Cluster

I - R Square Next Closest

A cluster's best representative is the variable with minimum R Square Ratio

Output Interpretation

Cluster	Variable	Own Cluster	Next Closest	R-Square Ratio
1	Α	0.9124	0.1236	0.1000
	В	0.9156	0.1167	0.0956
	С	0.5461	0.1791	0.5529
2	D	0.8242	0.0694	0.1889
	E	0.8338	0.0862	0.1819
	F	0.6362	0.0347	0.3768

 Variables B and E are the best representatives of Clusters 1 and 2 respectively and hence they are selected for further consideration in the model


```
Variable Clustering Macro Syntax
%VARCLUSMACRO
                      VERSION
                                             = <Version number>.
                                             = <Library and name of input dataset>,
                      IN DATA
                      OUTLIB
                                             = <Library of output dataset>,
                                             = <Name of dependent variable>,
                      DEP VAR
                                             = <Independent variables (separated by space)>,
                      INDEPVARLIST 1
                      INDEPVARLIST 2
                                             = <Independent variables (separated by space)>,
                                             = <Independent variables (separated by space)>,
                      INDEPVARLIST 3
                      INDEPVARLIST 4
                                             = <Independent variables (separated by space)>,
                                             = <Independent variables (separated by space)>,
                      INDEPVARLIST 5
                      NUM MAXCLUSTERS
                                             = <Maximum number of clusters desired>,
                      MAXEIGEN VALUE
                                             = <Maximum Eigen value>,
                      MODULEWISE
                                             = \langle Y \text{ or } N^{[1]} \rangle
                      );
[1] MODULEWISE = Y if of all modules in a cluster, at least 1 variable from each module is to be kept.
Variables of same module should have same prefix (e.g. names of all demographics variables may start
with 'demo_', those of geography variables may start with 'geo_', and so forth)]
```

This macro is used to automate variable selection from variable clustering output.

- Version number is to avoid overwriting of datasets. E.g. if 'version' is specified as 01, output SAS dataset would be 'varclus_output_v01'
- If independent variables aren't too many, they can be specified in 'indepvarlist_1' and remaining lists can be left blank. However, if there are thousands of independent variables, they can be split into 5 different lists
- Default value of 'NUM_MAXCLUSTERS' is 10000. User may leave it blank, if there is no need to keep maximum limit on the # clusters
- Default value of 'MAXEIGEN_VALUE' is 0.7. User may leave it blank.
- Output dataset and excel file would contain all independent variables along with four keep-list indicators
 - a. VARSELECT_BY_CORR (based on maximum absolute correlation with the dependent variable within a cluster)
 - **b. VARSELECT BY RSQRATIO** (based on minimum 1-RSquare Ratio within a cluster)
 - c. VARSELECT_BY_CORR_OR_RSQRATIO (Conservative Approach: Union of a and b above)
 - d. VARSELECT_BY_CORR_AND_RSQRATIO (Aggressive Approach: Intersection of a and b above)
- It is recommended to go with conservative approach in general

Variable Clustering macro of MicroAnalytix[™] Toolkit clusters variables and selects best representatives from each cluster

ILLUSTRATIVE

Illustrative Variable Clustering Output

Sequence	# Clusters	Cluster	Variable	1-R-Square Ratio	Absolute Correlation	Select by R- Square Ratio	Select by Correlation
1	6	Cluster 1	AVG_NUM_PRM_CALLS_3M	0.0430	13.6%	1	1
2	6	Cluster 1	AVG_NUM_PRM_CALLS_6M	0.0543	12.6%	0	0
3	6	Cluster 2	IND_CHANGE_IN_ADDRESS	0.0001	5.8%	1	1
4	6	Cluster 2	IND_CHANGE_IN_CITY	0.0088	4.7%	0	0
5	6	Cluster 3	REBATE_AMT_6M	0.0012	1.8%	1	0
6	6	Cluster 3	REBATE_AMT_3M	0.0015	2.3%	0	1
7	6	Cluster 4	IND_DO_NOT_CALL	0.0085	7.5%	1	1
8	6	Cluster 4	IND_DO_NOT_MAIL	0.0199	7.0%	0	0
9	6	Cluster 5	NUM_COMPLAINTS	0.0436	19.7%	1	1
10	6	Cluster 5	IND_POOR_FEEDBACK	0.0746	11.9%	0	0
11	6	Cluster 6	NUM_ACTIVE_SERVICES	0.0146	4.8%	1	0
12	6	Cluster 6	DAYS_TO_CONTRACT_EXPIRY	0.0443	7.3%	0	1
13	6	Cluster 6	IND_HOMEOWNER	0.0301	2.1%	0	0

This may be used for

- Grouping variables into different clusters
- Selection of Cluster's Best Representative based on minimum 1-R square Ratio within cluster
- Selection of Strong Predictor based on maximum absolute correlation with the target variable

2.2.4. Inter-Correlation Analysis

Inter-correlation among predictors is analyzed to eliminate highly correlated variables

Algorithm

- 1. For a given list of independent variables, compute pair-wise absolute correlation (Pearson's absolute correlation of each variable with all other variables)
- 2. Identify the pair with maximum absolute inter-correlation
- 3. If this maximum value of absolute inter-correlation is greater than the specified correlation cut-off, check absolute correlation of the two variables with the target variable
- 4. Drop the variable with lesser absolute correlation with the target
- 5. Repeat Steps 2-4, as long as the maximum value of absolute inter-correlation between any two variables is greater than the specified correlation cut-off


```
Inter-Correlation Analysis Macro Syntax
%INTERCORR_ANALYSIS
          VERSION
                                 = <Version number>,
                                 = <Library and name of modeling dataset>,
           IN DATA
           OUTLIB
                                 = <Library of output dataset>,
                                 = <Name of dependent variable>,
          DEP VAR
                                 = <Correlation Cut-Off (should be a fraction) [1] >,
           CORR CUTOFF
          PREDICTORS
                                 = <List of predictors (separated by space)>
           );
[1] Default value is 0.7
```

Features

Very fast in processing (takes only few minutes to run even with 1000 variables)

Choice of any inter-correlation cut-off

Generates two sets of variables as output

- List of Shortlisted Variables
- List of Eliminated Variables

2.2.5. Variance Inflation Factor Test

Multicollinearity issue arises when predictors are highly correlated with each other. VIF test may be used to identify and resolve the problem

Illustration and SAS Code

Target variable: EXPENSE

Predictors:

- Individual's household income (HH INCOME)
- Flag for medical profession (MEDICAL_PROFESSION)
- Number of kids in the household (NUM_KIDS)
- Individual's age (AGE)

Variance Inflation Factor (VIF)

$$VIF = \frac{1}{1 - R_i^2}$$

For each predictor i, R-square is defined as the coefficient of determination in a regression model where predictor i is considered as target variable and all other predictors are explanatory variables. Higher R-square results in higher VIF and indicates high correlation between the target (i.e. predictor i) and all other predictors.

Output Interpretation

Variable	VIF
HH_INCOME	9.2342
MEDICAL_PROFESSION	8.5621
NUM_KIDS	1.1596
AGE	1.1258

 Household Income and Medical Profession Indicator have high VIF values. One of these two variables should be dropped out of the model equation

Variance Inflation Factor (VIF) Macro Syntax

```
%VIF
                      = <Library and name of input dataset>,
MOD DAT
OUT DAT
                      = <Library and name of output dataset containing stats of short-listed variables>,
                      = <Library and name of output dataset containing summary of eliminated variables>,
ELIM SUM
VAR LIST
                      = <List of variables>,
WEIGHT VAR
                      = <Weight variable>,
                      = <Name of dependent variable>,
DP VAR
                      = <Maximum value of VIF permitted>,
MAX VIF LIMIT
                      = \langle Y \text{ or } N^{[1]} \rangle
IF CORR
);
[1] IF_CORR = N, if VIF only is sufficient
   IF_CORR = Y, if correlation technique should be applied for variable reduction
```

This macro is used to reduce the correlated variables in a model using Variance Inflation Factor

The macro works in two ways:

CASE I (IF_CORR = N) ---> Macro will

- i. delete the variable having maximum VIF value
- ii. run iteratively till all the variables have VIF value < MAX_VIF_LIMIT

CASE II (IF_CORR = Y) ---> Macro will

- i. identify the variable with highest VIF in each iteration,
- ii. using the COLLIN table, find the corresponding variable in the given variable list responsible for the high VIF of the first variable.
- iii. check the correlation of both the variables with the dependent variable
- iv. retain the variable having higher correlation with the dependent variable, and drop the other one from the variable list
- v. run iteratively till all the variables have VIF value < MAX_VIF_LIMIT

2.2.6. Variable Importance List from Decision Trees

STEP 1 Set Up a CART Model

STEP 2 Grow / Prune CART Tree (Navigator)

STEP 4 Shortlist Variables

- ✓ Keep aside the variables with high or positive scores
- √ Re-run CART on remaining variables
- ✓ Repeat the process to shortlist more variables

2.2.7. MAX STEP = 1 Technique

Usage

Univariate predictive power of each continuous variable is analyzed

How to Implement?

Run PROC LOGISTIC with SELECTION = STEPWISE MAXSTEP = 1 and DETAILS

```
SAS Code

PROC LOGISTIC

DATA = INPUT_DATA DESCENDING;

MODEL Y = X1 X2 X3 X4 X5 X6

/ SELECTION = STEPWISE

MAXSTEP = 1

DETAILS;

RUN;
```

Rule of Thumb

■ Eliminate all variables with probability of chi-square > 0.5

Relevance

- Relevant for continuous variables only
- Particularly useful in case of 1000+ modeling variables

2.2.8. Dry Run

Usage

- A few dry logistic regressions (after variable clustering) to get a list of variables turning up in first cut models
- This is one stage ahead of MAX STEP = 1 as here a smaller list of variables is used and also no restriction is put on the number of steps in modeling process
- It has manual selection biases and so is one step behind the automated random forest method

2.2.9. Random Feature Selection

Variable (A)	#Times Variable was Randomly Picked (B)	#Models where Variable was present (C)	% Occurrence (C) / (B)
V1	65	63	97%
V2	75	71	95%
V3	66	61	92%
V4	76	70	92%
V5	66	60	91%
V6	64	58	91%
V7	78	69	88%
V9	69	58	84%
V8	73	61	84%
V10	76	62	82%
V11	62	44	71%
V12	67	47	70%
V13	76	50	66%
V14	73	48	66%
V15	64	40	63%
V16	70	39	56%
V17	77	38	49%
V18	72	35	49%
V19	70	30	43%
V20	62	26	42%
V21	68	27	40%
V22	67	24	36%
V23	77	20	26%
V24	67	17	25%
V25	71	18	25%
V26	75	13	17%
V27	74	11	15%
V28	72	10	14%
V29	65	5	8%
V30	75	0	0%

ILLUSTRATIVE

- 30 Input Variables
- Picked up 100 random samples
- Example:
 - V1 was picked up for building 65 models
 - Out of 65 models, V1 turned up in 63 models; hence its percentage occurrence is 97%
- 10 Variables out of 30 get selected if we apply the criterion of percentage occurrence > 80%

References

- Feature Selection and Dimension Reduction Techniques in SAS by Varun Aggarwal and Sassoon Kosian Presented at NESUG Conference (Sep 2011), Portland, ME (US)
- 2. PAKDD 2007 Data Mining Competition: Cross-Selling Problem by Alok Rustagi, Ankur Jain, Krishna Mehta, Mansi Shingla and Mayank Rustagi
- Proc Logistic Plus: The Power of Creative Variable Interactions and Transformations by Krishna K. Mehta, Nitin Kumar Jain and Varun Aggarwal Presented at NESUG Conference (Sep 2008), Pittsburg, PA (US)
- Wikipedia (http://www.wikipedia.org)

Thanks

For queries, contact Varun Aggarwal at Varun.Aggarwal@exlservice.com