Příklad 3. Posloupnosti (z 3. cvičení).

- a) Na vstupu je dána posloupnost čísel, zjistěte, jestli jsou všechna navzájem různá.
- b) Na vstupu je dána posloupnost čísel, najděte dvojici s co nejmenším rozdílem.
- c) Na vstupu je dána posloupnost čísel, vypište všechna opakující se čísla (ale každé jen jednou).
- d) Určete efektivitu vašich algoritmů pomocí O notace.
- e) Umíte předchozí úkoly vyřešit efektivněji, pokud víte, ze všechna zadaná čísla leží od 1 do 100?
- f) Umíte předchozí úkoly vyřešit efektivněji, pokud víte, ze všechna zadaná čísla jsou na vstupu seřazena od nejmenšího po největsí?

Příklad 4. Volby (z 3. cvičení). V galaxii se pořádají prezidentské volby s velikým množstvím kandidátů. Dostanete obrovskou řadu obrovských čísel, každé číslo znamená jeden hlas pro jednoho (očíslovaného) kandidáta. Hlasů a kandidátů je bohužel tolik, že čísel postačujících pro identifikaci kandidáta nebo počtu hlasů se vám do paměti vejde jen konstantní (malý) počet; navíc každý hlas můžete zpracovat jen jednou. Naštěstí ale víte, že jeden kandidát má určitě ostrou nadpoloviční většinu hlasů. Úkol je zjistit číslo tohoto kandidáta.

Příklad 5. Dory. Dory se ztratila v řece, ví že rodiče má ve vzdálenosti L metrů po proudu nebo proti proudu, avšak vzdálenost i směr zapomněla. Navrhněte strategii, jak má Dory hledat rodiče, aby je co nejrychleji našla, a spočítejte, kolik metrů musí Dory v nejhorším případě uplavat (jako funkci L). Uvažujme pouze, že Dory jedním směrem vždy plave celý počet metrů a L je taktéž celé číslo.

- a) Nejdříve proveďte spodní odhad na počet metrů, které Dory uplave v nejhorším případě.
- b) Určete jednoduchou strategii, při které Dory vždy najde rodiče a uplave maximálně $c \cdot L^2$ metrů (c je konstanta).
- c) Určitě strategii, při které Dory vždy najde rodiče a uplave maximálně $c \cdot L$ metrů.