Earthquake prediction model in Python

Al_Phases 4

Team Members:

Type your text

Yokesh. J

IIIYearCSE

au210221104040

Get our environment set up

- The first thing we'll need to do is load in the libraries and dataset we'll be using. We'll be working with a dataset containing information on earthquakes that occurred between 1965 and 2016.
- ❖ We have gathered this dataset from the publicly available domain Kaggle. We have used the ? Significant Earthquakes, 1965-2016? dataset from Kaggle in the CSV format. It includes a record of the date, time, location, depth, magnitude, and source of every earthquake with a reported magnitude 5.5 or higher since 1965.
- #modules we'll use

```
import pandas as pd
import numpy as np
import seaborn as sns
import datetime
```

#read in our data

earthquakes = pd.read_csv("../input/earthquake-database/database.csv")

#set seed for reproducibility

np.random.seed(0)

1) Check the data type of our date column

- We are working with the "Date" column from the earthquakes dataframe. We investigate this column now and see if it looks like it contains dates and what the dtype of the column is.
- #TODO: Your code here! earthquakes['Date'].head()
- 0 01/02/1965
 - 1 01/04/1965
 - 2 01/05/1965
 - 3 01/08/1965
 - 4 01/09/1965

Name: Date, dtype: object

2) Convert our date columns to datetime

Most of the entries in the "Date" column follow the same format: "month/day/four-digit year". However, the entry at index 3378 follows a completely different pattern. We run the code cell below to see this.earthquakes [3378:3383]

3378 3379 3380 3381 3382	1975-02-23T	02/2 02/2 02/2	Date 1.000Z 23/1975 23/1975 25/1975 26/1975	1975-0	2-23T02:	Time 58:41.000Z 03:53:36 07:34:11 05:20:05 04:48:55	Latitude 8.017 -21.727 -10.879 -7.388 85.04	7 124.075 7 -71.356 9 166.667 3 149.798
	Type	Depth	Depth E	Error De	epth Seisr	nic Stations	Magnitu	ıde \
3378	Earthquake	623.0	_ _	NaN	- 		NaN	5.6
3379	Earthquake	33.0		NaN			NaN	5.6
3380	Earthquake	33.0		NaN			NaN	5.5
3381	Earthquake	33.0		NaN			NaN	5.5
3382	Earthquake	33.0		NaN			NaN	5.6
3378 3379 3380 3381 3382		MB MS MB MS				NaN NaN NaN NaN	N	NaN NaN NaN NaN
2270	Horizontal Dis			ital Error		ean Square	NI-NI	ID \
3378 3379			aN aN		NaN NaN		NaN NaN	USP0000A09 USP0000A0A
3380			aN		NaN		NaN	USP0000A0A
3381			aN		NaN		NaN	USP0000A12
3382			aN		NaN		NaN	USP0000A1H
3378 3379 3380 3381 3382	Source Location US US US US US US	on Sourc	•	ude Sou		tatus Reviewed Reviewed Reviewed Reviewed Reviewed Reviewed		

[5 rows x 21 columns]

This does appear to be an issue with data entry: ideally, all entries in the column have the same format. We can get an idea of how widespread this issue is by checking the length of each entry in the "Date" column.

```
date_lengths = earthquakes.Date.str.len()
date_lengths.value_counts()
```

10 2340924 3

Name: Date, dtype: int64

Looks like there are two more rows that has a date in a different format. We Run the code cell below to obtain the indices corresponding to those rows and print the data.

```
indices = np.where([date_lengths == 24])[1]
print('Indices with corrupted data:', indices)
earthquakes.loc[indices]
```

Indices with corrupted data: [3378 7512 20650]

malece with conapted data. [co/c /c122cocc]									
		Da	te		Time	Latitud	e \		
3378	1975-02-23T	02:58:41.00)Z 197	75-02-23T02:5	58:41.000Z	8.0	17		
7512	1985-04-28T	02:53:41.53	DZ 198	85-04-28T02:5	53:41.530Z	-32.99	8		
20650	2011-03-137	T02:23:34.52	OZ 201	1-03-13T02:2	23:34.520Z	36.3	44		
	Longitude	Type	Depth	Depth Error	Depth Seisr	nic Stati	ons \		
3378	124.075	Earthquake	623.0	Na	ιN		NaN		
7512	-71.766 l	Earthquake	33.0	Nal	٧		NaN		
20650	142.344	Earthquake	10.1	13.9	9		289.0		
		-							
Magnitude Magnitude Type Magnitude Seismic Stations \									
3378	5.6		MB			NaN			
7512	5.6		MW			NaN			
20650	5.8	N	1WC			NaN			
	AzimuthalGa	p Horizonta	al Distan	ce Horizont	al Error Ro	ot Mean	Square \		
3378	N	laN		NaN		NaN		NaN	
7512	N	laN		NaN		NaN		1.30	
20650	32	2.3		NaN	N	l aN		1.06	
IDSource Location Source Magnitude Source Status									
3378	USP0000A09	9 US		US		US Rev	riewed		
7512	USP0002E81	1 US		US	Н	RV Rev	viewed		
20650	USP000HW0	QP US		US	G	CMT F	Reviewed		

[3 rows x 21 columns]

Given all of this information, we create a new column "date_parsed" in the earthquakes dataset that has correctly parsed dates in it.

We have now converted all the date columns into date time.

```
#TODO: Your code here
earthquakes.loc[3378,"Date"] = "02/23/1975"
earthquakes.loc[7512,"Date"] = "04/28/1985"
earthquakes.loc[20650,"Date"] = "03/13/2011"
earthquakes['date_parsed'] = pd.to_datetime(earthquakes['Date'],format="%m/%d/%Y")
```

3) Select the day of the month

Create a Pandas Series day_of_month_earthquakes containing the day of the month from the "date_parsed" column.

```
#trytoget the day of the month from the date column
day_of_month_earthquakes = earthquakes['date_parsed'].dt.day
```

4) Plot the day of the month to check the date parsing

Plot the days of the month from your earthquake dataset.

```
#TODO: Your code here!
#remove na's
day_of_month_earthquakes = day_of_month_earthquakes.dropna()
#plot the day of the month
sns.distplot(day_of_month_earthquakes,kde=False,bins=31)
```

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for

histograms).
warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='date_parsed'>

Now we have visualized a graph that shows the days of the month. This data parsing is just for visualizing the data. When training, we import and use the dataset as it is.

Import Libraries and Dataset

Here we import the other neccessary libraries for further data visualization and import the dataset as well

Import the necessary libraries required for building the model and data analysis of the earthquakes.

import matplotlib.pyplot as plt

import os

print(os.listdir("../input"))

['database.csv']

Read the data from csv and also columns which are necessary for the model and the column which needs to be predicted.

```
data = pd.read_csv("../input/database.csv")
data.head()
```

	Date	Time	•••	Magnitude Source	Status
0	01/02/1965	13:44:18	•••	ISCGEM	Automatic
1	01/04/1965	11:29:49	•••	ISCGEM	Automatic
2	01/05/1965	18:05:58	•••	ISCGEM	Automatic
3	01/08/1965	18:49:43	•••	ISCGEM	Automatic
4	01/09/1965	13:32:50	•••	ISCGEM	Automatic

[5 rows x 21 columns]

data.columns

```
Index(['Date', 'Time', 'Latitude', 'Longitude', 'Type', 'Depth', 'Depth Error', 'Depth Seismic Stations', 'Magnitude', 'Magnitude Type', 'Magnitude Error', 'Magnitude Seismic Stations', 'Azimuthal Gap', 'Horizontal Distance', 'Horizontal Error', 'Root Mean Square', 'ID', 'Source', 'Location Source', 'Magnitude Source', 'Status'], dtype='object')
```

Figure out the main features from earthquake data and create a object of that features, namely, Date, Time, Latitude, Longitude, Depth, Magnitude.

```
data = data[['Date', 'Time', 'Latitude', 'Longitude', 'Depth', 'Magnitude']]
data.head()
```

	Date	Time	Latitude	Longitude	Depth	Magnitude
0	01/02/1965	13:44:18	19.246	145.616	131.6	6.0
1	01/04/1965	11:29:49	1.863	127.352	80.0	5.8
2	01/05/1965	18:05:58	-20.579	-173.972	20.0	6.2
3	01/08/1965	18:49:43	-59.076	-23.557	15.0	5.8
4	01/09/1965	13:32:50	11.938	126.427	15.0	5.8

Here, the data is random we need to scale according to inputs to the model. In this, we convert given Date and Time to Unix time which is in seconds and a numeral. This can be easily used as input for the network we built.

```
timestamp.append(time.mktime(ts.timetuple()))
    except ValueError:
        #print('ValueError')
        timestamp.append('ValueError')
timeStamp = pd.Series(timestamp)
data['Timestamp'] = timeStamp.values
final_data = data.drop(['Date', 'Time'], axis=1)
final_data = final_data[final_data.Timestamp!='ValueError']
final_data.head()
   Latitude Longitude Depth Magnitude
                                           Timestamp
     19.246
0
               145.616 131.6
                                     6.0-1.57631e+08
      1.863 127.352 80.0
                                     5.8-1.57466e+08
  -20.579
             -173.972 20.0 6.2-1.57356e+08
3
  -59.076 -23.557 15.0
                                    5.8-1.57094e+08
    11.938
             126.427 15.0
                                     5.8-1.57026e+08
```

Visualization

► Here, all the earthquakes from the database in visualized on to the world map which shows clear representation of the locations where frequency of the earthquake will be more.

frommpl_toolkits.basemap import Basemap

```
m=Basemap(projection='mill',llcrnrlat=-80,urcrnrlat=80,
llcrnrlon=-180,urcrnrlon=180,lat_ts=20,resolution='c')
longitudes=data["Longitude"].tolist()
latitudes=data["Latitude"].tolist()
#m=Basemap(width=12000000,height=9000000,projection='lcc',
#resolution=None,lat_1=80.,lat_2=55,lat_0=80,lon_0=-107.)
x,y=m(longitudes,latitudes)
fig=plt.figure(figsize=(12,10))
plt.title("All affected areas")
m.plot(x,y,"o", markersize=2, color='blue')
```

```
m.drawcoastlines()
m.fillcontinents(color='coral',lake_color='aqua')
m.drawmapboundary()
m.drawcountries()
plt.show()
```

/opt/conda/lib/python3.6/site-packages/mpl_toolkits/basemap/__init__.py:1704: MatplotlibDeprecationWarning: The axesPatch function was deprecated in version 2.1. Use Axes.patch instead.

limb = ax.axesPatch

/opt/conda/lib/python3.6/site-packages/mpl_toolkits/basemap/__init__.py:1707: MatplotlibDeprecationWarning: The axesPatch function was deprecated in version 2.1. Use Axes.patch instead.

if limb is not ax.axesPatch:

Splitting the Data

Firstly, split the data into Xs and ys which are input to the model and output of the model respectively. Here, inputs are Tlmestamp, Latitude and Longitude and outputs are Magnitude and Depth. Split the Xs and ys into train and test with validation. Training dataset contains 80% and Test dataset contains 20%.

```
X = final_data[['Timestamp', 'Latitude', 'Longitude']]
y = final_data[['Magnitude', 'Depth']]
```

from sklearn.cross_validation import train_test_split

```
X_{train}, X_{test}, y_{train}, y_{test} = train_{test}. split(X, y, test_size=0.2, random_state=42) \\ print(X_{train}. shape, X_{test}. shape, y_{train}. shape, X_{test}. shape)
```

```
(18727,3)(4682,3)(18727,2)(4682,3)
```

/opt/conda/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

Training using Random Forest

Here, we used the RandomForestRegressor model to predict the outputs, we see the strange prediction from this with score above 80% which can be assumed to be best fit but not due to its predicted values.

from sklearn.ensemble import Random Forest Regressor

```
reg = RandomForestRegressor(random_state=42)
reg.fit(X_train, y_train)
reg.predict(X_test)
```

/opt/conda/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release.

fromnumpy.core.umath_testsimportinner1d

fromsklearn.model_selection import GridSearchCV

Building the Neural Network model

In the above case it was more kind of linear regressor where the predicted values are not as expected. So, Now, we build the neural network to fit the data for training set. Neural Network consists of three Dense layer with each 16, 16, 2 nodes and relu, relu and softmax as activation function.

```
from keras.models import Sequential
from keras.layers import Dense

def create_model(neurons, activation, optimizer, loss):
    model = Sequential()
    model.add(Dense(neurons, activation=activation, input_shape=(3,)))
    model.add(Dense(neurons, activation=activation))
    model.add(Dense(2, activation='softmax'))

model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
return model
```

Using TensorFlow backend.

In this, we define the hyperparameters with two or more options to find the best fit.

```
model = KerasClassifier(build_fn=create_model, verbose=0)
#neurons = [16, 64, 128, 256]
neurons = [16]
#batch_size = [10, 20, 50, 100]
batch_size = [10]
epochs = [10]
#activation = ['relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear', 'exponential']
activation = ['sigmoid', 'relu']
#optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
optimizer = ['SGD', 'Adadelta']
loss=['squared_hinge']
param_grid = dict(neurons=neurons, batch_size=batch_size, epochs=epochs, activation=activation,
optimizer=optimizer, loss=loss)
Here, we find the best fit of the above model and get the mean test score and standard
deviation of the best fit model.
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1)
grid_result = grid.fit(X_train, y_train)
print("Best: %fusing %s" % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip (means, stds, params):
     print("%f(%f) with: %r" % (mean, stdev, param))
Best: 1.000000 using {'activation': 'relu', 'batch_size': 10, 'epochs': 10, 'loss': 'squared_hinge', 'neurons':
16, 'optimizer': 'Adadelta'}
0.936562 (0.000858) with: {'activation': 'sigmoid', 'batch_size': 10, 'epochs': 10, 'loss': 'squared_hinge',
'neurons': 16, 'optimizer': 'SGD'}
0.000000 (0.000000) with: {'activation': 'sigmoid', 'batch_size': 10, 'epochs': 10, 'loss': 'squared_hinge',
'neurons': 16, 'optimizer': 'Adadelta'}
0.646286 (0.411324) with: {'activation': 'relu', 'batch_size': 10, 'epochs': 10, 'loss': 'squared_hinge',
'neurons': 16, 'optimizer': 'SGD'}
1.000000 (0.000000) with: {'activation': 'relu', 'batch_size': 10, 'epochs': 10, 'loss': 'squared_hinge',
'neurons': 16, 'optimizer': 'Adadelta'}
```

fromkeras.wrappers.scikit_learn import KerasClassifier

The best fit parameters are used for same model to compute the score with training data and testing data.

```
model = Sequential()
model.add(Dense(16, activation='relu', input_shape=(3,)))
model.add(Dense(16, activation='relu'))
model.add(Dense(2,activation='softmax'))
model.compile(optimizer='SGD', loss='squared_hinge', metrics=['accuracy'])
model.fit(X_train,y_train,batch_size=10,epochs=20,verbose=1,validation_data=(X_test,y_test))
Train on 18727 samples, validate on 4682 samples
Epoch 1/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 2/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 3/20
18727/18727[=============================]-2s118us/step-loss: 0.5000-acc: 0.0189-
val_loss: 0.5000-val_acc: 0.0186
Epoch 4/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 5/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 6/20
18727/18727[=============================]-3s135us/step-loss: 0.5000-acc: 0.0189-
val_loss: 0.5000-val_acc: 0.0186
Epoch 7/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 8/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 9/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 10/20
val_loss: 0.5000-val_acc: 0.0186
```

```
Epoch 11/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 12/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 13/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 14/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 15/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 16/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 17/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 18/20
18727/18727[=============================]-2s120us/step-loss: 0.5000-acc: 0.0189-
val_loss: 0.5000-val_acc: 0.0186
Epoch 19/20
val_loss: 0.5000-val_acc: 0.0186
Epoch 20/20
val_loss: 0.5000-val_acc: 0.0186
<keras.callbacks.History at 0x7838b345a358>
[test_loss,test_acc] = model.evaluate(X_test,y_test)
print("Evaluation result on Test Data: Loss = {}, accuracy = {}".format(test_loss, test_acc))
4682/4682[==============]-0s 22us/step
Evaluation result on Test Data: Loss = 0.5, accuracy = 0.018581802648440837
```

We see that the above model performs better but it also has lot of noise (loss) which can be neglected for prediction and use it for furthur prediction.

The above model is saved for furthur prediction that could be done with a user interface.

model.save('earthquake.h5')