

Computer Vision in an Automotive Context: High Dynamic Range Imaging with a Dual Camera System

Dominik Urbaniak

Technische Universität München

Munich School of Engineering

Guangzhou, 2017-12-20

Low Dynamic Range (LDR)

➡ No details in darkest / lightest parts of image!

Limitations of Low Dynamic Range (LDR)

- Eight Bit per color channel
- -> 16.7 million different colors

BUT:

only 256 values for each pixel of one channel

HDR LDR

HDR beneficial for Computer Vision?

Crash of Tesla Model S with Truck in May 2016

Embedded Real-Time Stereo Estimation

D. Hernandez-Juarez, A. Chac´on, A. Espinosa, D. V´azquez, J. C. Moure, and A. M. L´opez Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain

Camera facing sun and sun reflections

Camera facing the exit of a tunnel

Project Goal

Improve disparity maps under difficult light situations using HDR imaging

Equipment

Hardware

- Two Kowa lenses
- Two e2v image sensors
- Altera FPGA and Nios II processor

Software

- OpenCV with Visual Studio
- Matlab
- Quartus Prime (FPGA)
- Eclipse (Nios II)

Major Challenges

- High computational effort
 - -> Edit images offline
- Low exposure time vs. good image quality

ISO 100

ISO 50

ISO 200

ISO 400

ISO 800

- -> Parameters to influence exposure time:
 - Aperture
 - Analog gain
 - Digital gain

ISO 1600

ISO 3200

ISO 6400

ISO 12800

Procedure with Nios II

- 1. Automatic exposure time adjustment
- 2. Image output with alternating exposure times

Matlab - Stereo Camera Calibrator

Transfering Camera Parameters to OpenCV

Parameters

- Translation & rotation matrices T & R
- Both Camera matrices K1 & K2
- Distortion Coefficients of both Cameras D1 & D2
- Input parameters to OpenCV function and rectify images

First decent result

Good for +25 meters

Eliminating noise in the foreground

Interchanging left and right image shifted disparity map to foreground

How to mix both parts to one image?

- -> before disparity map is converted to 8 bit image, **all values** are contained **in one image**, negative values get lost
- -> compress all values to 8 bit before conversion

HDR Creation with OpenCV

Simply calling OpenCV functions

- Aligning images
- Merging images
- Tonmapping images
 - -> Reinhard algorithm

Challenge

Always darker image first

HDR Alternative with Merge Mertens

Simply calling OpenCV functions

- Aligning images
- Merging images
- No Tonemapping
 - -> faster

Overall Process

- 1. Input: One Image displaying frame from left and right camera
- 2. Turn one darker and one lighter image to a HDR image
- 3. Create **Disparity Map** from left and right frame
- 4. Apply Color Map for better visibility

14 meters inside a tunnel, **no HDR**

Exposure time of lighter image 16 times longer

Distance Measurement

Real Value vs. Disparity Map Value (in meter)

Deviation from Real Distance

Comparison at 14m: LDR, HDR, Lidar (VLP-16)

LDR Disparity Map

-> draws "wall"

Lidar

-> only three laser

Comparison at 20m: LDR, HDR, Lidar (VLP-16)

LDR Disparity Map

-> not recognizable

Lidar

-> only two laser

✓ Project Goal Achieved
Disparity maps under difficult light situations improve using
HDR imaging

BUT:

Master Limitations for use in Automotive Application

- Light
- Performance

Light Limitations

-> With HDR, more than 20m into the tunnel will decrease quality of disparity map, due to use of analog and digital gain

No Gain

$$AG = 2, DG = 0$$

- Image becomes brighter
- Black turns into gray
- -> Max AG = 4
- \rightarrow Max DG = 63

with Analog & Digital Gain

AG = 4, DG = 0

AG = 6, DG = 63

Influence of HDR on Frames per Second (fps)

Two images are combined to one -> fps will be divided by two!

Possible Measures against Light Limitations

- Lenses with lower Aperture (< f2.8)
 - -> more expensive

- 2. Bigger and more light sensitive image sensors
 - -> more expensive
- Limit use of HDR to smallest difference in exposure times as possible
 Distance from Exit of Tunnel

Possible Measures against Performance Limitations

Additional HDR computation takes about **threefold** the computation time of LDR disparity maps

- 1. Faster Hardware
 - -> more expensive
- 2. Analyse whether disparity map from merged images is sufficient

Future Work

In situations that decrease the quality of the disparity map due to difficult light:

- -> Automatic use of HDR to improve disparity map
- -> Finding optimum difference factor of exposure times

Might turn out fisible with improved/cheaper hardware

Questions?

