G. KARCH & M. KRUPSKI & SZ. CYGAN

Zadanie 1. Rozważmy równanie różniczkowe zwyczajne z warunkami brzegowymi:

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y + y = 0, \quad y(0) = 0, \quad y(l) = 0.$$

Zbadaj liczbę rozwiązań zagadnienia w zależności od l. i

Zadanie 2. Dla jakich wartości λ zagadnienie

$$y'' + \lambda y = 0$$
, $y(0) = y(2\pi)$, $y'(0) = y'(2\pi)$

ma nietrywialne rozwiązanie?

Zadanie 3. Skonstruuj rozwiązanie następujących zagadnień metodą rozdzielania zmiennych:

a)
$$u_x = u_y \text{ dla } x, y \in \mathbb{R}, u(0, y) = e^y + e^{-2y};$$

b)
$$u_t = u_{xx} + u \text{ dla } x \in (0,1), t > 0 \text{ oraz } u(x,0) = \sin \pi x, u(0,t) = u(1,t) = 0.$$

Zadanie 4. Znajdź szereg Fouriera funkcji

a)
$$f(x) = x \text{ na } (-\pi, \pi)$$
, b) $f(x) = |x| \text{ na } (-1, 1)$, c) $f(x) = e^x \text{ na } (0, 2\pi)$.

b)
$$f(x) = |x| \text{ na } (-1,1)$$

c)
$$f(x) = e^x \text{ na } (0, 2\pi)$$

Zadanie 5. Udowodnij następującą zasadę porównawczą dla równania ciepła:

Jeżeli u i v są dwoma rozwiązaniami takimi, że $u \le v$ dla t = 0 oraz dla x = 0 i dla $x = \ell$, to wówczas $u \le v$ dla wszystkich $0 \le t < \infty$, $0 \le x \le \ell$.

Zadanie 6. Rozwiąż zagadnienie początkowo-brzegowe dla równania ciepła $u_t = u_{xx}$ w prostokącie $(0,1)\times(0,T)$ z warunkiem początkowym u(x,0)=f(x) oraz warunkami brzegowymi u(0,t) = u(1,t) = 0. Podaj postać rozwiązania dla f(x) = 4x(1-x).

Wykaż, że rozwiązanie jest dwukrotnie różniczkowalne dla t>0, wykorzystując zbieżność jednostajną odpowiednich szeregów pochodnych.

Zadanie 7. Rozważamy równanie ciepła w odcinku (0,1) z warunkami brzegowymi u(0,t) =u(1,t) = 0 i warunkiem początkowym u(x,0) = 4x(1-x).

- a) Udowodnij, że $0 \le u(x,t) \le 1$ dla wszystkich t > 0 i 0 < x < 1.
- b) Udowodnij, że u(x,t)=u(1-x,t) dla wszystkich $t\geq 0$ i $0\leq x\leq 1$.
- c) Udowodnij, że $\int_0^1 u^2(x,t) dx$ jest ściśle malejącą funkcją t.

Porównaj powyższe fakty z ogólnymi własnościami równania ciepła

Zadanie 8. Rozważamy równanie ciepła na odcinku $(0, \ell)$ z warunkami brzegowymi typu Robina, tzn.

$$\begin{cases} u_x(0,t) - a_0 u(0,t) = 0, \\ u_x(\ell,t) + a_\ell u(\ell,t) = 0. \end{cases}$$

Udowodnij używając metody energetycznej, że jeżli $a_0>0$ i $a_\ell>0$, to $\int_0^\ell u^2(x,t)\ dx$ maleje jako funkcja t.

Zadanie 9. Rozwiąż zagadnienie początkowo-brzegowe $tu_t = u_{xx} + 2u$ z warunkiem początkowym u(x,0)=f(x) oraz warunkami brzegowymi $u(0,t)=u(\pi,t)=0$. Udowodnij, że równanie to ma nieskończenie wiele rozwiązań spełniających warunek początkowy u(x,0)=0. WNIOSEK: brak jednoznaczności rozwiązań.