SOFTWARE SPECIFICATION

Elevator System

Team 1

Author: Chenyang Zhang

Table of Contents

System Architecture	2
Software Specification	. 3
S1: System Controller Implementation	. 3
S1.1: Scheduler	3
S2: Elevator Implementation	3
S2.1: Move	3
S2.2: Update Queue	4
S2.3: Add Schedule	5
S3: FloorUI Implementation	6
S3.1: Update Display	6
S3.2: Door Status Show	6
S3.3: Floor Call	6
S4: CarUI Implementation	6
S4.1: Update Display	7
S4.2: Door Control	8
S4.3: Floor Assign	8
S5: Monitor	9
S5.1: Show Speed	LO
S5.2: Signal light display1	10

System Architecture

The elevator system is controlled by a *SystemController*, receiving button information from each *FloorUI* and *Elevator*, and sending information and commands to the *Monitor* and *Elevator*. Each Elevator has a CarUI, with which users can observe the elevator status and select floors to go. The architecture of the elevator system is shown below.

Software Specification

S1: System Controller Implementation

S1.1: Scheduler

S1.1.1: Build hierarchy

- 1. If the elevator is still and idle, hierarchy = 0
- 2. If the elevator is moving up or door opened:
 - a) If calling floor > elevator's height:
 - i. If the calling direction is up, hierarchy=1
 - ii. If the calling direction is down, hierarchy=2
 - b) If calling floor <= elevator's height:
 - If the calling direction is up, hierarchy=4
 - ii. If the calling direction is down, hierarchy=3
- 3. If the elevator is moving down or door opened:
 - a) If calling floor > elevator's height:
 - i. If the calling direction is up, hierarchy=3
 - ii. If the calling direction is down, hierarchy=4
 - b) If calling floor <= elevator's height:
 - i. If the calling direction is up, hierarchy=2
 - ii. If the calling direction is down, hierarchy=1
- 4. If the call is related to BF, only elevator2 should be called:
 - a) If F1 is calling down, elevator2's hierarchy=0
 - b) If FB is calling up, elevator2's hierarchy=0

S1.1.2: Compare hierarchy

- 1. If Hie_elevator1 < Hie_elevator2, elevator1 is dispatched
- 2. If Hie elevator1 > Hie elevator2, elevator2 is dispatched
- 3. If Hie_elevator1 == Hie_elevator2, compare distance to the calling floor:
 - a) If Dis_elevator1 <= Dis_elevator2, elevator1 is dispatched
 - b) If Dis_elevator1 > Dis_elevator2, elevator2 is dispatched

S2: Elevator Implementation

S2.1: Move

S2.1.1: Check speed

- 1. If the elevator distance less than the braking distance to the target floor, the elevator should slow down, i.e. speed += 0.1.
- 2. Elseif the elevator's speed is less than the cruising speed, the elevator should slow down, i.e. speed -= 0.1

S2.1.2: Update height

- 1. If moving direction == 1:
 - a) If height + speed > height_limit_max, height = height
 - b) Else, height += speed
- 2. If moving direction == -1:
 - a) If height speed < height limit min, height = height

- b) Else, height -= speed
- 3. If moving_direction == 0, height = height

S2.1.3: Check direction

- 1. If moving_direction == 1, there are 4 cases that the elevator should stop moving, i.e. moving_direction = 0:
 - a) Both moving_up_queue and moving_down_queue are empty.
 - b) Moving_up_queue is empty, and the height of the elevator > max(moving_down_queue).
 - c) Moving down queue is empty, and the height of the elevator > max(moving up queue).
 - d) The height of the elevator > max(moving_down_queue) and > max(moving_up_queue).
- 2. If moving_direction == -1, there are 4 cases that the elevator should stop moving, i.e. moving_direction = 0:
 - a) Both moving_up_queue and moving_down_queue are empty.
 - b) Moving_up_queue is empty, and the height of the elevator < min(moving_down_queue).
 - c) Moving_down_queue is empty, and the height of the elevator < min(moving_up_queue).
 - d) The height of the elevator < min(moving_down_queue) and < min(moving_up_queue).
- If moving_direction == 0, the elevator should be redirecting
 - a) If moving_up_queue is not empty, moving to the first floor in the moving_up_queue.
 - b) Elseif moving_down_queue is not empty, moving to the first floor in the moving_down_queue.
 - c) Else, the elevator keeps idel.

S2.2: Update Queue

S2.2.1: Stop during moving up

- 1. If moving_direction = 1 and moving_up_queue is not empty:
 - a) If the elevator's height is equal to the first element in the moving up queue:
 - i. Remove the first element in the moving_up_queue
 - ii. Store the moving direction
 - iii. CarUI & FloorUI open the door
 - iv. CarUI / FloorUI Light off

S2.2.2: Stop during moving down

- 1. If moving_direction = -1 and moving_down_queue is not empty:
 - a) If the elevator's height is equal to the first element in the moving down queue:
 - i. Remove the first element in the moving_down_queue
 - ii. Store the moving_direction
 - iii. CarUI & FloorUI open the door
 - iv. CarUI / FloorUI Light off

S2.2.3: Stop just at that floor

- 1. If moving_direction = 0 and moving_up_queue is not empty:
 - a) If the elevator's height is equal to the first element in the moving up queue:
 - i. Remove the first element in the moving_up_queue
 - ii. CarUI & FloorUI open the door
 - iii. CarUI / FloorUI Light off
- 2. Elseif moving_direction = 0 and moving_down_queue is not empty:
 - a) If the elevator's height is equal to the first element in the moving down queue:
 - i. Remove the first element in the moving_down_queue
 - ii. CarUI & FloorUI open the door
 - iii. CarUI / FloorUI Light off

S2.2.4: Load stored queue

- 1. If moving direction = 0 and moving up queue is empty:
 - a) moving_up_queue = moving_up_queue_store.
 - b) Clear moving_up_queue_store.
- 2. If moving direction = 0 and moving_down_queue is empty:
 - a) moving down queue = moving down queue store.
 - b) Clear moving_down_queue_store.

S2.3: Add Schedule

- 1. If the calling direction is 'up':
 - a) If the elevator's height > the height of the calling floor:
 - i. Add the calling floor to the moving up queue store
 - Sort the moving_up_queue_store in ascend order
 - b) Else, if the elevator's height <= the height of the calling floor:
 - Add the calling floor to the moving up queue
 - ii. Sort the moving up queue in ascend order
- 2. If the calling direction is 'down':
 - a) If the elevator's height < the height of the calling floor:

- i. Add the calling floor to the moving_down_queue_store
- ii. Sort the moving down queue store in descend order
- b) Else, if the elevator's height >= the height of the calling floor:
 - i. Add the calling floor to the moving_down_queue in descend order
 - ii. Sort the moving_down_queue

S3: FloorUI Implementation

S3.1: Update Display

S3.1.1: Floor display

- 1. If the elevator is at FB, the display should be 'B';
- 2. If the elevator is at F1, the display should be '1';
- 3. If the elevator is at F2, the display should be '2';
- 4. If the elevator is at F3, the display should be '3'.

S3.1.2: Direction display

- 1. If the elevator is moving up, the display should be '▲' + floor display;
- 2. If the elevator is moving down, the display should be ' ∇ ' + floor display;
- 3. If the elevator is still, the display should be *floor display*.

S3.1.3: Maintenance

1. If the Maintenance mode is ON, the display should be 'M'.

S3.2: Door Status Show

The door has 4 states: close, opening, open, and closing. In FloorUI, the door status cannot be controller independently.

S3.3: Floor Call

- 1. If the 'Up' button is pressed:
 - a) The color should turn into green
 - b) An (F, up) call should been made
- 2. If the 'Down' button is pressed:
 - a) The color should turn into green
 - b) An (F, down) call should been made

S4: CarUI Implementation

S4.1: Update Display

S4.1.1: Floor display

- 1. If the elevator is at FB, the display should be 'B';
- 2. If the elevator is at F1, the display should be '1';
- 3. If the elevator is at F2, the display should be '2';
- 4. If the elevator is at F3, the display should be '3'.

S4.1.2: Direction display

- 1. If the elevator is moving up, the display should be ' \triangle ' + floor display;
- 2. If the elevator is moving down, the display should be ' ∇ ' + floor display;
- 3. If the elevator is still, the display should be *floor display*.

S4.1.3: Button display

- 1. If a floor button is pressed, it should be lightened until this floor is arrived.
- 2. If the 'door close' button is pressed:
 - a) If door_status == 'open' or door_status == 'opening', the door should be set to closing status;
 - b) If door_status == 'close' or door_status == 'closing', the door should keep its status;
 - c) If the elevator is moving, this button should be invalid.
- 3. If the 'door open' button is pressed:
 - a) If door_status == 'close' or door_status == 'closing', the door should be set to opening status;

- b) If door status == 'open' or door status == 'opening', the door should keep its status;
- c) If the elevator is moving, this button should be invalid.
- 4. If the 'EMERGENCY' button is pressed:
 - a) the elevator should decelerate and stop immediately;
 - b) the color of button should be set to red.

S4.1.4: Signal light display

- 1. 'Overweight' should be lightened when the elevator is overweight;
- 2. 'Emergency' should be lightened when EMERGENCY button is pressed;
- 3. 'Door Open' should be lightened red when the door is opening;
- 4. 'Door Open' should be lightened green when the door is open;
- 5. 'Door Close' should be lightened red when the door is closing;
- 6. 'Door Close' should be lightened green when the door is closed;

S4.1.5: Door display

The door has 4 states: close, opening, open, and closing.

S4.2: Door Control

- 1. If timer door \geq 8:
 - a) The door should be closed, i.e. door_open == 0;
 - b) Timer_door should be set to 0;
 - c) Load stored direction direction store to the moving direction;
 - d) Set direction_store to 0;
 - e) Redirecting
- 2. If foor open == 1:
 - a) Store moving_direction to direction_store;
 - b) If timer_door < 1: set door_status to 'opening';
 - c) If 1 <= timer door < 6: set door status to 'open';
 - d) If 6 <= timer door < 7: set door status to 'closing';
 - e) If timer_door >= 7: set door_status to 'close'
 - f) Timer door += 1;

S4.3: Floor Assign

- 1. If the target_floor user selected <= the height of the elevator:
 - a) Add the calling floor to the moving_down_queue
 - b) Sort the moving_down_queue in descend order
- 2. If the target_floor user selected > the height of the elevator:
 - a) Add the calling floor to the moving_up_queue
 - b) Sort the moving_up_queue in descend order

S5: Monitor

S5.1: Show Speed

- If moving_direction==1: speed = velocity;
- 2. If moving direction==-1: speed = -velocity;
- 3. If moving_direction==0: speed = 0;

S5.2: Signal light display

- 1. 'Overweight' should be lightened when overweight==1;
- 2. 'Emergency' should be lightened when emergency==1;
- 3. 'Door Open' should be lightened red when the door_status is 'opening';
- 4. 'Door Open' should be lightened green when the door_status is 'open';
- 5. 'Door Close' should be lightened red when the door_status is 'closing';
- 6. 'Door Close' should be lightened green when the door_status is 'closed';