COMP307 Week 7 (Tutorial)

- Announcements
 - Assignment 2 Due: 23:59 Monday 8 May 2017
 - Assignment 3 Due: 23:59 Monday 29 May
- Basic Rules

Bayes Rules

- Naïve Bayes
 - Assumption
 - Why not directly calculate P(clas|data)?
 - Zero counting

Conditionally independent VS fully independent

Rules

• Product Rule:

$$P(X,Y)=P(X)*P(Y|X)$$

• Sum Rule:

$$P(X) = \sum_{y} P(X, Y)$$

• Normalisation:

$$\sum_{x} P(X)=1$$

$$\sum_{x} P(X/Y) = 1$$

• Independence

$$- \leftrightarrow P(X|Y) = P(X)$$

$$- \leftrightarrow P(X, Y) = P(X) * P(Y)$$

The Product Rule

X	Α	В	С	
Т	4	2	3	9
¬Т	3	3	3	9
l	7	5	6	<u>18</u>

- P(A) = 7/18
- P(X=T) = 9/18
- P(X=T, Y=A) = 4/18
- P(X=T|Y=A) = 4/7
- P(Y=A|X=T) = 4/9

•
$$P(X=T, Y=A) = P(X=T)*P(Y=A|X=T)$$

• The Product Rule: P(X,Y)=P(X)*P(Y|X)

The Sum Rule

X	Α	В	С	
Т	4	2	3	9
¬Т	3	3	3	9
	7	5	6	<u>18</u>

•
$$P(X=T, Y=A) = 4/18$$

•
$$P(X=T, Y=B) = 2/18$$

•
$$P(X=T, Y=C) = 3/18$$

•
$$P(X=T) = 9/18$$

•
$$P(X=T) = P(X=T, Y=A) + P(X=T, Y=B) + P(X=T, Y=C)$$

• The Sum Rule:

$$P(X) = \sum_{y} P(X, Y)$$

The Normalisation Rule

_					
	X	A	В	С	
	T	4	2	3	9
	¬Т	3	3	3	9
'		7	5	6	<u>18</u>

•
$$P(X=T) = 9/18$$

•
$$P(X=\neg T) = 9/18$$

•
$$P(Y=A|X=T) = 4/9$$

•
$$P(Y=B|X=T) = 2/9$$

•
$$P(Y=C|X=T) = 3/9$$

•
$$P(X=T) + P(X=\neg T) = 1$$

•
$$P(Y=A|X=T) + P(Y=B|X=T) + P(Y=C|X=T) = 1$$

The Normalisation Rule:

$$\sum_{x} P(X)=1$$

$$\sum_{x} P(X/Y) = 1$$

Example

- Windy or Calm
- **D**ay 1 ——>**D**ay 2
- P(D1=W) = 0.5
- P(D2=W|D1=W) = 0.6
- P(D2=W|D1=C) = 0.3

- P(D1=C) = 0.5
- P(D2=C|D1=W) = 0.4
- P(D2=C|D1=C) = 0.7

- Question: P(D2=W) ?
- Question: P(D3=W)?
- Question: P(D3=C) ?

$$P(D_2 = w) = P(D_2 = w, D_1 = w) + P(D_2 = w, D_1 = c)$$

$$= 0.3 + 0.15$$

$$= 0.45$$

Bayes Rules

- P(A,B) = P(A|B) P(B)
- We can also get:P(A,B)= P(B|A) P(A)
- Bayes Rules:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

More variables

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$

Thomas Bayes (<u>/'beɪz/</u>; c. 1701 – 7 April 1761)

Bayes Rules for Classification

 Solution: First use Bayes' Law/Rules, calculate the probability of given instance belong to a class:

$$P(clas|data) = \frac{P(data|class) * P(class)}{P(data)}$$

• For example:

$$P(Reject \mid job = true \& dep = high \& fam = children)$$

$$= \frac{P(job = true \& dep = high \& fam = children | Reject) * P(Reject)}{P(job = true \& dep = high \& fam = children)}$$

```
P(Reject|job=true & dep = high & fam=children)
P(Accept|job=true & dep = high & fam=children)
```

Choose the highest probability

Naïve Bayes: Summary

1. Bayes Rules:
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$
 $P(Y|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y) P(Y)}{P(X_1, ..., X_n)}$

2. Classification: If Y is class label, $X1 \dots Xn$ features, the probability of an instance belong to a class is

$$P(Y|X_1,\ldots,X_n) = \underbrace{\frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}}$$
 Too Hard

2. Assume features are conditionally independent: given Y, X1 ... Xn are independent to each other:

$$P(X_1, ..., X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

$$P(clas|data) = \frac{P(data|class) * P(class)}{P(data)}$$
 Naive Bayes

Chose the highest probability/Score

Bayes Rules for Classification

$$P(clas|data) = \frac{P(data|class) * P(class)}{P(data)}$$

• Why not directly calculate P(clas|data)?

```
P(Reject|job=true & dep = high & fam=children)
```

P(Accept|job=true & dep = high & fam=children)

Computing Probabilities: Counting Occurrences

	Approve	Reject
Class	5	5
Job=true	4	2
Job=false	1	3
dep=low	2	4
dep=high	3	1
fam=single	3	1
fam=couple	2	2
fam=children	0	2

	Approve	Reject
P(Class)	5/10	5/10
P(job=true class)	4/5	2/5
P(job=false class)	1/5	3/5
P(dep=low class)	2/5	4/5
P(dep=high class)	3/5	1/5
P(fam=single class)	3/5	1/5
P(fam=couple class)	2/5	2/5
P(fam=children class)	0/5	2/5

```
P(Reject|job=true & dep = high & fam=children)
 P(job=true \& dep = high \& fam=children|Reject) \times P(Reject)
       P(job=true & dep = high & fam=children)
P (job=true|Reject) \times P (dep=high|Reject) \times P (fam=children|Reject) \times P (Reject)
      P(job=true & dep = high & fam=children)
  2/5\times1/5\times2/5\times1/2
         ????
P(Accept|job=true & dep = high & fam=children)
 P(job=true \& dep = high \& fam=children|Accept) \times P(Accept)
      P(job=true & dep = high & fam=children)
P (job=true|Accept) \times P (dep=high|Accept) \times P (fam=children|Accept) \times P(Accept)
     P(job=true & dep = high & fam=children)
        ????
```

Dealing with Zero Counts

- Initialise table to contain small constant, e.g. 1
- This is not quite sound, but reasonable in practice

	Approve	Reject
Class	6	6
Job=true	5	3
Job=false	2	4
dep=low	3	5
dep=high	4	2
fam=single	4	2
fam=couple	3	3
fam=children	1	3

	Approve	Reject
P(Class)	6/12	6/12
P(job=true class)	5/7	3/7
P(job=false class)	2/7	4/7
P(dep=low class)	3/7	5/7
P(dep=high class)	4/7	2/7
P(fam=single class)	4/8	2/8
P(fam=couple class)	3/8	3/8
P(fam=children class)	1/8	3/8

Compared with previous table, tricks here: job and dep: 5+2=7; fam has 5+3=8;

```
P(Reject|job=true & dep = high & fam=children)
  P(job=true \& dep = high \& fam=children|Reject) \times P(Reject)
       P(job=true & dep = high & fam=children)
P (job=true|Reject) \times P (dep=high|Reject) \times P (fam=children|Reject) \times P (Reject)
      P(job=true & dep = high & fam=children)
 3/7 \times 2/7 \times 3/8 \times 1/2
                                  18/784
         ????
                                    ????
P(Accept|job=true & dep = high & fam=children)
 P(job=true \& dep = high \& fam=children|Accept) \times P(Accept)
     P(job=true & dep = high & fam=children)
P (job=true|Accept) \times P (dep=high|Accept) \times P (fam=children|Accept) \times P (Accept)
     P(job=true & dep = high & fam=children)
                                 20/784
 5/7×4/7×1/8×1/2 _
        ????
                                   ????
```

```
Classify a new case: (job=true & dep = high & fam=children)
              P(Reject|job=true \& dep = high \& fam=children)
     P(\text{job=true \& dep = high \& fam=children}|Reject) \times P(Reject)
                     P(\text{job=true \& dep = high \& fam=children})
P[\text{job=true}|Reject] \times P(\text{dep=high}|reject) \times P(\text{fam=children}|Reject) \times P(Reject)
                      P(\text{job=true}) \times P(\text{dep=high}) \times P(\text{fam=children})
                         = \frac{0.4 \times 0.2 \times 0.4 \times 0.5}{0.6 \times 0.3 \times 0.2} = \frac{0.016}{0.036}
              P(Accept|job=true \& dep = high \& fam=children)
  = \frac{P(\mathsf{job} = \mathsf{true} \; \& \; \mathsf{dep} = \mathsf{high} \; \& \; \mathsf{fam} = \mathsf{children} | Accept) \times P(Accept)}{}
                     P(\text{job=true \& dep = high \& fam=children})
                              0.8 \times 0.4 \times 0 \times 0.5
                               0.6 \times 0.3 \times 0.2 = 0.036
```

Classify a new case: (job=true & dep = high & fam=children) $P(Reject|job=true \& dep = high \& fam=children) = \frac{P(job=true \& dep = high \& fam=children|Reject) \times P(Reject)}{P(job=true \& dep = high \& fam=children)}$

A and B independent does not imply and is not implied by A and B are conditionally independent given C

P(Accept|job=true & dep = high & fam=children)

$$= \frac{P(\text{job=true \& dep = high \& fam=children}|Accept) \times P(Accept)}{P(\text{job=true \& dep = high \& fam=children})}$$

$$= \frac{0.8 \times 0.4 \times 0 \times 0.5}{0.6 \times 0.3 \times 0.2} = \frac{0}{0.036}$$

Conditional independence

- Two random variables X and Y are conditionally independent given a third random variable Z if and only if they are independent in their conditional probability distribution given Z.
- That is: X and Y are conditionally independent given Z if and only if, given any value of Z, the probability distribution of X is the same for all values of Y, and the probability distribution of Y is the same for all values of X.
- X \perp Y neither implies nor is implied by X \perp Y | Z.
 - P(X, Y|Z) = P(X|Z) * P(Y|Z)
 - P(X|Z) = P(X|Y,Z)

Independence VS Conditional Independence

- ullet R ot B, and R ot B | Y.
 - P(B)=P(R)=12/36=1/3,
 P(B,R)=4/36, equal P(B)*P(R)=1/9
 - P(B,R|Y)=1/9 equal P(B|Y)*P(R|Y)=3/9*3/9

- not R \perp B, not R \perp B| Y.
 - P(B)=P(R)=13/36, P(B,R)=4/36 not equal P(B)*P(R)
 - P(B,R|Y)=1/11, not equal P(B|Y)*P(R|Y)=3/11*3/11

- ullet R ot B, not R ot B | Y.
 - P(B)=P(R)=12/36=1/3, P(B,R)=4/36,
 equal P(B)*P(R)=1/9
 - P(B,R|Y)=1/11, not equal P(B|Y)*P(R|Y)=3/11*3/11

- not R \perp B, R \perp B|Y.
 - P(B)=P(R)=13/36, P(B,R)=4/36 not equal P(B)*P(R)
 - P(B,R|Y)=1/9 equal
 P(B|Y)*P(R|Y)=3/9*3/9

