

Robot Motion Planning

Department of Electrical and Electronics Engineering Spring 2005 Dr. Afşar Saranlı

Outline

- Robotics Overview
- Spatial Reasoning
- Degrees of Freedom
- Robot Motion Planning
 - Configuration Space
 - Visibility Graph
 - Voronoi Diagrams
 - Cell Decomposition
 - Potential Methods
- Latombe Numerical Potential Field Method

Robotics

- Physically embodied agents
- Sensors
 (IR, range, touch, temp, cameras etc.)
- Effectors
 (Legs, wheels, joints, grippers, etc.)
- Robot Programs (AI)
 (localization, mapping, motion planning etc.)

Manipulators vs Mobile Robots

Robot Motion Planning

• Define the problem? Search space?

(Courtesy Howie Choset)

Robot Motion Planning

Less obvious examples

(Process Engineering / Design)

(Animation)

Think about Automated Reasoning

- We've already seen
 - State space search in discrete spaces
 - Reasoning with multiple agents
- Later (in this course) we'll see
 - Probabilistic Reasoning (e.g. with Markov Decision Processes)
- There is Reasoning with Constraints
- But NOW let's think about

SPATIAL REASONING

Spatial Reasoning

Can't we use our previous methods?

Discrete Search? – Not a discrete problem

Probabilistic? – Not really.

Robot Motion Planning vs Other Search

- Discrete or Continuous?
- Deterministic or Stochastic?
- What is the search space dimension?

Robots and Degrees of Freedom

For our purposes, a robot is:

A set of moving rigid objects called <u>LINKS</u> which are connected by <u>JOINTS</u>.

Typically, joints are REVOLUTE or PRISMATIC.

Such joints each give one DEGREE OF FREEDOM.

Given p DOFs, the configuration of the robot can be represented by p values $\mathbf{q} = (q_1 \ q_2 \cdots q_p)$ where q_i is the angle or length of the i'th joint

Free Flying Polygons

If part of the robot is fixed in the world, the joints are all the DOFs you're getting. But if the robot can be free-flying we get more DOFs.

Other Examples

How many DOFs?

Free flying
How many DOFs?

Midline ■■■ must always be horizontal.

How many DOFs?

The configuration q has one real valued entry per DOF.

Robot Motion Planning

An important, interesting, spatial reasoning problem.

- Let A be a robot with p degrees of freedom, living in a 2-D or 3-D world.
- Let B be a set of obstacles in this 2-D or 3-D world.
- Call a configuration LEGAL if it neither intersects any obstacles nor self-intersects.
- Given an initial configuration q_{start} and a goal config q_{goal} , generate a continuous path of legal configurations between them, or report failure if no such path exists.

Configuration Space

- Is the set of legal configurations of the robot. It also defines the topology of continuous motions
- For rigid-object robots (no joints) there exists a transformation to the robot and obstacles that turns the robot into a single point.
- The C-Space Transform

C-Space Transform Examples

C-Space Transform Examples

C-Space Transform Examples

Examples from J.C. Latombe "Robot Motion Planning" (Kluwer 1990)

- We've turned the problem from "Twist and turn this 2-D polygon past this other 2-D polygon" into "Find a path for this point in 3-D space past this weird 3-D obstacle".
- Why's this transform useful?
- Because we can plan paths for points instead of polyhedra/polygons

Structure of C-Space

- Beware of the structure of C-Space:
- Topology
- The C-Space is not simple Rⁿ
- SO(2): Space of rotations in 2-D (Circle in the plane, θ =0 is the same as θ =2 π .)
- SO(3): Space of rotations in 3-D (Sphere in space)
- Etc.

Other Cases of C-Spaces

- The obstacles in C-space can be very complex
- In all cases: The problem is reduced to finding the path of a point through C-space by "expanding the obstacles"

Motion Planning Problem

- A = robot with p degrees of freedom in 2-D or 3-D
- CB = Set of obstacles
- A configuration **q** is legal if it does not cause the robot to intersect the obstacles
- Given start and goal configurations (**q**start and **q**goal), find a continuous sequence of legal configurations from **q**start to **q**goal.
- Report failure if not path is found

Motion Planning Research

... Has produced four kinds of algorithms.

The first is the Visibility Graph.

Visibility Graphs

Suppose someone gives you a C-SPACE with polygonal obstacles

Visibility Graph Algorithm

- Find all non-blocked lines between polygon vertices, start and goal.
- Search the graph of these lines for the shortest path.
 (Guess best search algorithm?)

If there are n vertices, the easy algorithm is $O(n^3)$. Slightly tougher $O(n^2 \log n)$. $O(n^2)$ in theory.

Visibility Graph Method - Complaints

- Visibility graph method finds the shortest path.
- Bit it does so by skirting along and close to obstacles.
- Any error in control, or model of obstacle locations, and Bang! Collision with Obstacles!

Who cares about optimality?

Perhaps we want to get a non-stupid path that steers as far from the obstacles as it can.

Voronoi Diagrams

- Someone gives you some dots. Each with a different color.
- You color in the whole of 2-D space according to this rule:
 "The color of any given point equals the color of the nearest dot."
- The edges between your different regions are a Voronoi Diagram.

Note: For n point in 2-D space the exact Voronoi diagram can be computed in time $O(n \log n)$.

Voronoi Diagram for Polygons instead of Points

- Basic property: Points on the Voronoi Diagram are farthest (and hence safest) from the obstacles,
- Solution idea: Use the voronoi diagram edges instead of the visibility graph and search for a path!

Voronoi Diagram Methods for C-Space Motion Planning

- Compute the Voronoi Diagram of C-space.
- Compute shortest straightline path from start to any point on Voronoi Diagram.
- Compute shortest straightline path from goal to any point on Voronoi Diagram.
- Compute shortest path from start to goal along Voronoi Diagram.

Voronoi Diagram Weaknesses

- Does not scale well to higher dimensional spaces,
- Difficult for arbitrary obstacle shapes in C-space (usually the case if converted from "work-space")
- (However: Approximate algorithms exist)
- Can lead to paths that are too conservative,
- Can be unstable (small change in obstacle configuration may lead to large changes in voronoi diagram)

Cell Decomposition Methods

- Cell Decomp Method One: Exact Decomposition
- Break free space into convex exact polygons.

...But this is also impractical above 2-D or with non-polygons.

Approximate Cell Decomposition

- Lay down a grid
- Avoid any cell which intersects an obstacle
- Plan shortest path through other cells (e.g. with A*)

If no path exists, double the resolution and try again. Keep trying!!

Approximate Cell Decomposition

- Lay down a grid
- Avoid any cell which intersects an obstacle
- Plan shortest path through other cells (e.g. with A*)
- If no path exists, double the resolution and try again. Keep trying!!
- What are the problems?

Variable Resolution "Approximate and Decompose"

Variable Resolution "Approximate and Decompose"

Approximate Cell Decomposition The good and bad

Not so many complaints. This is actually used in practical systems.

But

- Not exact (no notion of "best" path)
- Not complete: doesn't know if problem actually unsolvable
- Still hopeless above a small number of dimensions?

Some Motion Examples

Examples from J.C. Latombe "Robot Motion Planning" (Kluwer 1990)

Potential Field Methods

- Define a "potential function"...
- Should decrease as we approach goal,
- Should sharply increase as we approach an obstacle,
- Advantage: Simple Motion Planner!

 "Just follow the negative gradient of the potential function (steepest descent)"

Potential Field Example

Potential Field Problems

- What is happening?
- How can we fix it?

Potential Field Problems

Solution I:

Use special local-minimum-free potential fields (Laplace equations can do this) – But very expensive to compute

Solution II:

When at a local minimum start doing some searching

- example soon

Comparison

	Potential Fields	Approx Cell Decomp	Voronoi	Visibility
Practical above 2 or 3 D?				
Practical above 8 D?				
Fast to Compute?				
Usable Online?				
Gives Optimal?				
Spots Impossibilities?				
Easy to Implement?				

Glimpse of State-of-the-Art

- Latombe's Numerical Potential Field Method,
- Combines Cell Decomposition and Potential Fields
- Key insight: Compute an "optimal" potential field in world coordinate space (not config space)
- Define a C-space potential field in terms of world-space potential field

Comparison

	Potential Fields	Approx Cell Decomp	Voronoi	Visibility
Practical above 2 or 3 D?				
Practical above 8 D?				
Fast to Compute?				In 2-d
Usable Online?		••?	••? ~~	
Gives Optimal?				In 2-d
Spots Impossibilities?				
Easy to Implement?			••?	