Chap.1 : Compléments d'algèbre linéaire

La plupart des notions de ce chapitre sont des notions vues en première année. Aucun des résultats de TSI 1 ne sera démontré dans ce chapitre, libre à vous de retrouver les démonstrations manquantes dans votre cours de première année.

Dans tout ce chapitre, \mathbb{K} désigne le corps des scalaires et il sera égal à \mathbb{R} ou \mathbb{C} .

n et p désigneront deux entiers naturels non nuls.

1 Rappels et compléments sur les matrices

Notations:

- $\mathcal{M}_{n,p}(\mathbb{K})$ désigne l'ensemble des matrices possédants n lignes et p colonnes et dont les coefficients appartiennent à \mathbb{K} .
- $\mathcal{M}_n(\mathbb{K})$ désigne l'ensemble des matrices carrées possédants n lignes et n colonnes et dont les coefficients appartiennent à \mathbb{K} .

Définition 1.1.

Soient $A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B = (b_{k\ell}) \in \mathcal{M}_{p,q}(\mathbb{K})$. Le produit de la matrice A par la matrice B est la matrice $AB = (c_{i\ell}) \in \mathcal{M}_{n,q}(\mathbb{K})$ avec :

$$c_{i\ell} = \sum_{k=1}^{p} a_{ik} b_{k\ell}$$

Attention en général : $AB \neq BA$.

Application 1.2. Soit
$$A = \begin{pmatrix} 1 & 2 & -1 & -2 \\ 3 & -1 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$.

Calculer $A \times B$.

Définition 1.3. Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **inversible** s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$AB = BA = I_n$$

Méthode 1.4. A ce stade de l'année nous disposons de deux méthodes pour montrer qu'une matrice est inversible et calculer son inverse :

- Grâce à une indication de l'énoncé de l'exercice trouver une matrice B telle que $A \times B = B \times A = I_n$.
- Utiliser la matrice augmentée $A \mid I_n$ et à l'aide d'opérations sur les lignes se ramener à $I_n \mid A^{-1}$.

Application 1.5. La matrice $A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 5 & 0 \\ 4 & 2 & 6 \end{pmatrix}$ est-elle inversible? Si c'est

le cas, déterminer son inverse.

Proposition 1.6. Si A et B sont deux matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ alors $A \times B$ est une matrice inversible et on a :

$$(A \times B)^{-1} = B^{-1} \times A^{-1}$$

Théorème 1.7. Formule du binôme

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ telles que AB = BA (on dit que A et B commutent). Alors, pour tout $k \in \mathbb{N}$:

$$(A+B)^k = \sum_{i=0}^k \binom{k}{i} A^i B^{k-i}.$$

Définition 1.8. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

• On appelle **noyau** de la matrice A, et on note Ker(A), l'ensemble :

$$Ker(A) = \{ X \in \mathcal{M}_{p,1}(\mathbb{K}) / AX = 0_{p,1} \}$$

• On appelle **image** de la matrice A, et on note Im(A), l'ensemble :

$$Im(A) = \{AX/X \in \mathscr{M}_{p,1}(\mathbb{K})\}\$$

Application 1.9. Soit $A = \begin{pmatrix} 1 & 2 & -1 & -2 \\ 3 & -1 & 2 & 1 \end{pmatrix}$. Déterminer $\ker(A)$ et Im(A).

Définition 1.10. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$.

On dit que A et B sont **semblables** si, et seulement s'il existe une matrice $P \in \mathcal{M}_n(\mathbb{K})$ inversible et telle que $A = PBP^{-1}$.

Définition 1.11. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée.

On appelle **trace** de A, et on note tr(A), le scalaire égal à la somme des éléments diagonaux de A:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Exemple 1.12. • Soit
$$A = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
. Alors, on a

$$tr(A) = 2 + 1 + 0 = 3.$$

• Soit $n \in \mathbb{N}^*$, $\operatorname{tr}(I_n) = n$

Proposition 1.13. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors

$$tr(\lambda A + B) = \lambda tr(A) + tr(B)$$
 et $tr(AB) = tr(BA)$

Remarque 1.14. La deuxième égalité vient du fait que, même si $AB \neq BA$ en général, AB et BA ont les mêmes éléments diagonaux.

Proposition 1.15. Deux matrices semblables ont la même trace.

Preuve:

Définition 1.16. Soit $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle transposée de Aet on note A^T la matrice de $\mathscr{M}_{p,n}(\mathbb{K})$ défini par :

$$A^T = (a_{j,i})_{1 \leqslant j \leqslant p, 1 \leqslant i \leqslant n}$$

Application 1.17. Écrire les transposées des matrices suivantes :

• Soit
$$A = \begin{pmatrix} 1 & 2 & -1 & -2 \\ 3 & -1 & 2 & 1 \end{pmatrix}$$
, on $a : A^T =$.

• Soit
$$B = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$
, on $\mathbf{a} : B^T = \mathbf{.}$
• Soit $C = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & 3 \end{pmatrix}$, on $a : C^T = \mathbf{.}$

• Soit
$$C = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 1 & -2 \\ -1 & -2 & 3 \end{pmatrix}$$
, on $a: C^T =$

Définition 1.18. *Soit* $A \in \mathcal{M}_n(\mathbb{K})$:

- Lorsque $A^T = A$ on dit que A est une matrice symétrique.
- Lorsque $A^T = -A$ on dit que A est une matrice antisymétrique.

Exemple 1.19. La matrice C de l'exemple précédent est une matrice symétrique.

Proposition 1.20. • $\forall (A,B) \in \mathcal{M}_{n,p}(\mathbb{K})^2 \ et \ \forall (\lambda,\mu) \in \mathbb{K}^2 :$

$$(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$$

- $\forall A \in \mathcal{M}_{n,p}(\mathbb{K}) \ et \ \forall B \in \mathcal{M}_{p,k}(\mathbb{K}), (AB)^T = B^T \times A^T$
- Si $A \in \mathcal{M}_n(\mathbb{K})$ est inversible alors A^T est inversible et :

$$\left(A^T\right)^{-1} = \left(A^{-1}\right)^T.$$

• $\forall A \in \mathscr{M}_n(\mathbb{K}), \operatorname{tr}\left(A^T\right) = \operatorname{tr}(A)$

Preuve:

2 Généralités sur les espaces vectoriels

2.1 Définition

Définition 2.1. Soit E un ensemble muni d'une opération d'addition notée + et d'une opération de multiplication par un réel notée . On dit que $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel lorsque :

- (E, +) est un groupe commutatif, c'est-à-dire :
 - $\forall (\vec{u}, \vec{v}) \in E^2, \vec{u} + \vec{v} \in E$. (Loi interne)
 - $\forall (\vec{u}, \vec{v}, \vec{w}) \in E^3, (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}).$ (Associativité)
 - $\exists \overrightarrow{0_E} \in E \ tel \ que \ \forall \overrightarrow{u} \in E, \overrightarrow{u} + \overrightarrow{0_E} = \overrightarrow{0_E} + \overrightarrow{u} = \overrightarrow{u}.$ (Élément nul)
 - $\forall \vec{u} \in E, \exists \vec{v} \in E, \text{ tel que } \vec{u} + \vec{v} = \vec{v} + \vec{u} = \overrightarrow{0_E} \cdot (\text{on notera } \vec{v} = -\vec{u})$ (Opposé)
 - $\forall (\vec{u}, \vec{v}) \in E^2, \vec{u} + \vec{v} = \vec{v} + \vec{u}.$ (Commutativité)
- l'opération · vérifie :
 - $\forall \lambda \in \mathbb{K}, \ et \ \forall \vec{u} \in E, \lambda \cdot \vec{u} \in E.$

- $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall \vec{u} \in E, \lambda \cdot (\mu \cdot \vec{u}) = (\lambda \mu) \cdot \vec{u}.$
- $\forall \vec{u} \in E, 1 \cdot \vec{u} = \vec{u}$.
- $\forall (\lambda, \mu) \in \mathbb{K}^2, \forall \vec{u} \in E, (\lambda + \mu) \cdot \vec{u} = \lambda \cdot \vec{u} + \mu \cdot \vec{u}$
- $\forall \lambda \in \mathbb{K}, \forall (\vec{u}, \vec{v}) \in E^2, \lambda \cdot (\vec{u} + \vec{v}) = \lambda \cdot \vec{u} + \lambda \cdot \vec{v}$

Remarque 2.2. En pratique on utilise presque jamais cette définition pour montrer qu'un ensemble est un espace vectoriel. Nous verrons comment répondre à ce genre de question dans la partie suivante.

Cette définition sert surtout à comprendre quelles sont les opérations autorisées sur les éléments d'un espace vectoriel.

Dans tout le chapitre E désigne un \mathbb{K} -espace vectoriel et on dira tout simplement E est un espace vectoriel.

Exemple 2.3.

Notation	Description
$\mathbb{K}^n (n \in \mathbb{N}^*)$	ensemble des n -uplets de scalaires (notation : (x_1, x_2, \dots, x_n))
$\mathscr{M}_{n,p}(\mathbb{K})$	ensemble des matrices à n lignes et p colonnes
$\mathbb{K}[X]$	ensemble des polynômes à coefficients dans le corps $\mathbb K$
$\mathbb{K}_n[X] (n \in \mathbb{N}^*)$	ensemble des polynômes de degré inférieur ou égal à n
$\mathbb{K}_{\mathbb{N}}$	ensemble des suites d'éléments de \mathbb{K}
\mathbb{K}_{Ω}	ensemble des fonctions définies sur Ω non vide et à valeurs dans $\mathbb K$
$\mathscr{F}(X,F)$	$ensemble\ des\ applications\ d'un\ ensemble\ X\ dans\ un\ espace\ vectoriel\ F$

2.2 Familles de vecteurs

2.2.1 Combinaisons linéaires, sous-espace engendré

Définition 2.4. Soit $(\vec{u}_i)_{i \in I}$ une famille (finie ou non) de vecteurs de E et \vec{v} un vecteur de E. On dit que \vec{v} est une **combinaison linéaire** de la famille $(\vec{u}_i)_{i \in I}$, s'il existe une partie finie J de I et une famille $(\lambda_j)_{j \in J}$ d'éléments de \mathbb{K} tels que :

$$\vec{v} = \sum_{j \in J} \lambda_j \vec{u}_j$$

Exemple 2.5. $\vec{u}_1 + \vec{u}_{10} + \vec{u}_{20}$ est une combinaison linéaire de la famille $(\vec{u}_n)_{n \in \mathbb{N}}$ et, pour tout $N \in \mathbb{N}$, $\sum\limits_{k=0}^{N} k(-1)^k \vec{u}_k$ est une autre combinaison linéaire de la famille $(\vec{u}_n)_{n \in \mathbb{N}}$.

Application 2.6. Soit
$$M = \begin{pmatrix} 3 & 4 \\ -7 & 3 \end{pmatrix}$$
, $A = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 2 \\ 5 & 1 \end{pmatrix}$. La matrice M est-elle une combinaison linéaire de (A,B) ?

Définition 2.7. Soit $(\vec{u}_i)_{i\in I}$ une famille (finie ou non) de vecteurs de E. L'ensemble de toutes les combinaisons linéaires possibles de cette famille est un sous-ensemble de E appelé **sous-espace engendré par la famille** $(\vec{u}_i)_{i\in I}$ et noté $\mathrm{Vect}\,(\vec{u}_i)_{i\in I}$.

Exemple 2.8.
$$\mathbb{K}[X] = Vect(1, X, ..., X^k, ...) = Vect(X^n)_{n \in \mathbb{N}}$$

Application 2.9. Considérons l'ensemble
$$E = \left\{ \begin{pmatrix} x & 2x - y \\ y & x + 2y \end{pmatrix} / (x, y) \in \mathbb{R}^2 \right\}.$$

Écrire E comme l'ensemble des combinaisons linéaire d'une famille de matrices.

2.2.2 Familles génératrices

Définition 2.10. Soit $(\vec{u_i})_{i \in I}$ une famille (finie ou non) de vecteurs de E. On dit que la famille $(\vec{u_i})_{i \in I}$ est **génératrice** de E, ou encore engendre E, si, et seulement si, on a $E = \text{Vect}(\vec{u_i})_{i \in I}$.

Exemple 2.11. • On remarque que

$$\mathbb{K}_n[X] = \{ a_0 + a_1 X + \ldots + a_n X^n / (a_0, \ldots, a_n) \in \mathbb{K}^{n+1} \}$$

= Vect $(1, X, \ldots, X^n)$

Donc la famille $(1, X, ..., X^n)$ est une famille génératrice de $\mathbb{K}_n[X]$.

• De même, la famille infinie $(X^i)_{i\in\mathbb{N}}$ est une famille génératrice de $\mathbb{K}[X]$.

Méthode 2.12. Je dois savoir trouver une famille génératrice d'un espace vectoriel E: il suffit pour cela d'écrire E sous la formeVect(...) donc c'est exactement la même méthode que le point précédent.

Application 2.13. Considérons l'ensemble $E = \left\{ \begin{pmatrix} x & 2x - y \\ y & x + 2y \end{pmatrix}; (x, y) \in \mathbb{R}^2 \right\}$. Trouver une famille génératrice de E.

Proposition 2.14. $Si \mathcal{F}$ est une famille génératrice de E alors :

- pour tout $\vec{u} \in E, (\mathscr{F}, \vec{u})$ est aussi une famille génératrice de E
- si on change l'ordre des vecteurs de la famille $\mathscr F$ alors la famille reste une famille génératrice de E
- si on multiplie un ou plusieurs vecteurs de $\mathscr F$ par un scalaire non nul alors la nouvelle famille est aussi génératrice de E.

Exemple 2.15. Vect((1,1),(1,2),(3,1),(3,3))

- $= \operatorname{Vect}((1,1),(1,2),(3,1),(1,1))$ on multiplie le dernier vecteur par $\frac{1}{3}$
- = Vect((1,1),(1,2),(3,1)) inutile de garder deux fois le même vecteur
- = Vect((1,1),(3,1),(1,2)) modification de l'ordre
- $= \operatorname{Vect}((1,1),(3,1),(1,2),(4,2))$ on peut ajouter dans la famille n'importe quel vecteur combinaison linéaire des autres.

2.2.3 Familles libres

Définition 2.16. • Une famille finie $(\overrightarrow{u_1}, \dots, \overrightarrow{u_p})$ de vecteurs de E est dite **libre** si, et seulement si, pour tout p -uplet $(\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p$ on a:

$$\sum_{k=1}^{p} \lambda_i \overrightarrow{u_i} = 0 \Longrightarrow \lambda_1 = \ldots = \lambda_p = 0$$

Une famille infinie (\vec{ui})_{i∈I} de vecteurs de E est dite **libre** si, et seulement si, toute sous-famille finie est libre.
Une famille qui n'est pas libre est dite **liée**.

Application 2.17. La famille $(1 + X + X^2, 3 + X + 5X^2, 2 + X + 3X^2)$ est-elle une famille libre ou liée de $\mathbb{R}[X]$?

Application 2.18. On considère la famille (f, g, h) composée de trois fonctions de \mathbb{R} dans \mathbb{R} définies par :

$$f: x \mapsto \sin(x)$$
 $g: x \mapsto \cos(x)$ $h: x \mapsto \sin(2x)$

Montrer que cette famille est libre.

Application 2.19. On considère E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . Pour tout $a \in \mathbb{R}$, on note f_a la fonction définie sur \mathbb{R} par

$$f_a(x) = |x - a|.$$

9

Montrer que la famille infinie $(f_a)_{a\in\mathbb{R}}$ est libre.

Proposition 2.20. Soit E un espace vectoriel.

- Si on change l'ordre des vecteurs d'une famille libre (resp. liée), on obtient encore une famille libre (resp. liée).
- Une famille contenant un seul vecteur est libre si, et seulement si, le vecteur est non nul.
- La famille (\vec{u}_1, \vec{u}_2) est liée si, et seulement s'il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{u_1} = \lambda \overrightarrow{u_2}$ ou $\overrightarrow{u_2} = \lambda \overrightarrow{u_1}$. On dit alors que les vecteurs \vec{u}_1 et $\overrightarrow{u_2}$ sont colinéaires.
- Une famille contenant 3 vecteurs est libre si, et seulement si, les vecteurs ne sont pas coplanaires.
- Toute sous-famille d'une famille libre est encore libre.
- Toute famille contenant plusieurs fois le même vecteur est liée.
- Soit \mathscr{F} une famille libre de E et \vec{u} un vecteur de E. La famille (\mathscr{F}, \vec{u}) est liée si, et seulement si, \vec{u} est combinaison linéaire de la famille \mathscr{F} .

Il est aussi important de connaître cette propriété sur les familles de polynômes :

Proposition 2.21. Soit $(P_k)_{k\in\mathbb{N}}$, une famille de polynômes non nuls tels que :

$$\forall k \in \mathbb{N}, \deg(P_k) < \deg(P_{k+1})$$
 (échelonnée en degrés).

Alors cette famille est libre.

Exemple 2.22. On peut affirmer, sans démonstration, que la famille

$$\left\{1, X^5 + 2X^3, X^2 + 1, X^4\right\}$$

est libre car, en la réordonnant, on peut obtenir une famille de polynômes échelonnée en degrés.

3 Généralités sur les sous-espaces vectoriels

Définition 3.1. Soit E un \mathbb{K} -espace vectoriel et F un ensemble. On dit que F est un sous-espace vectoriel de E si et seulement si :

- ullet F est un sous-ensemble de E
- F est non vide
- pour tout couple (\vec{u}, \vec{v}) de vecteurs de F et tout scalaire $\lambda \in \mathbb{K}, \lambda \vec{u} + \vec{v}$ est un vecteur de F

Proposition 3.2. Si F est un sous espace vectoriel de E alors F est un \mathbb{K} -espace vectoriel.

Proposition 3.3. Soit $(\vec{u_i})_{i \in I}$ une famille (finie ou non) de vecteurs de E. Alors le sous-espace engendré $\text{Vect}(\vec{u_i})_{i \in I}$ est un sous-espace vectoriel de E.

Méthode 3.4. Il faut savoir montrer qu'un ensemble F est un sous-espace vectoriel d'un espace vectoriel donné ou classique. Il existe deux principales méthodes :

- utiliser la définition
- écrire l'ensemble sous la forme $Vect(\cdots)$ et conclure grâce à la propriété précédente.

Application 3.5. Montrer, en utilisant les deux méthodes, que l'ensemble $E = \{aX^2 + 2aX + 3b, (a,b) \in \mathbb{R}^2\}$ est un sous-espace vectoriel de $\mathbb{R}[X]$.

Méthode 3.6. Pour montrer qu'un ensemble E est un espace vectoriel, on peut montrer que c'est un sous-espace vectoriel d'un espace vectoriel classique.

Application 3.7. On note $\mathscr{S}_n(\mathbb{K})$ l'ensemble des matrices symétriques de $\mathscr{M}_n(\mathbb{K})$. Montrer que $\mathscr{S}_n(\mathbb{K})$ est un espace vectoriel.

Proposition 3.8. Soient F et G deux sous-espaces vectoriels de E. Alors $F \cap G$ est un sous-espace vectoriel de E.

Attention : ce n'est en général pas vrai pour la réunion de deux sous-espaces.

4 Dimension d'un espace vectoriel

4.1 Définition

4.1.1 Base

Définition 4.1. On appelle base de E toute famille à la fois libre et génératrice de E.

Par conséquent, la famille $(\overrightarrow{u_i})_{i\in I}$ est une base de E si, et seulement si, tout vecteur de E peut s'écrire, de manière unique, comme une combinaison linéaire de la famille $(\overrightarrow{u_i})_{i\in I}$.

Les coefficients de cette combinaison linéaire s'appellent les coordonnées du vecteur dans la base $(\overrightarrow{u_i})_{i \in I}$.

Définition 4.2. Soit E un espace vectoriel et soit $\mathscr{B} = (\overrightarrow{u_1}, \dots, \overrightarrow{u_n})$ une base de E. Soit $\vec{u} \in E$, on considère $\lambda_1, \dots, \lambda_n$ les coordonnées de \vec{u} dans la base

$$\mathscr{B}$$
. $\operatorname{Mat}_{\mathscr{B}}(\vec{u}) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ est appelée la **matrice colonne des coordonnées**

Méthode 4.3. Trouver les coordonnées d'un vecteur dans une base donnée.

Pour trouver les coordonnées du vecteur \vec{u} dans la base $\mathscr{B}=(\overrightarrow{e_i})_{i\in I}$ il faut trouver les réels $(a_i)_{i\in I}$ tels que :

$$\vec{u} = \sum_{i \in I} a_i \overrightarrow{e_i}$$

c'est donc exactement la même méthode que pour savoir si \vec{u} est une combinaison linéaire de la famille $(\overrightarrow{e_i})_{i\in I}$.

La matrice colonne des coordonnées de \vec{u} dans la base \mathscr{B} se note $\mathrm{Mat}_{\mathscr{B}}(\vec{u})$

et elle est égale à
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
.

Application 4.4. On se place dans l'espace vectoriel $\mathbb{R}_2[X]$ muni de la base $\mathscr{B} = (R_0, R_1, R_2)$ où $R_0 = 1, R_1 = X + 2$ et $R_2 = X^2 - 2$ On considère le polynôme $P = 4X^2 - 3X - 12$. Quelle est la matrice colonne des coordonnées de P dans la base \mathscr{B} ?

Définition 4.5. Soient $\mathscr{B} = (\overrightarrow{e_1}, \dots, \overrightarrow{e_n})$ et $\mathscr{B}' = (\overrightarrow{f_1}, \dots, \overrightarrow{f_n})$ deux bases de E. On appelle **matrice de passage** de la base \mathscr{B} à la base \mathscr{B}' , et on note $P_{\mathscr{B},\mathscr{B}'}$, la matrice dont la $j^{\grave{e}me}$ colonne contient les coordonnées de $\overrightarrow{f_j}$ dans la base \mathscr{B} .

Méthode 4.6. Construire une matrice de passage.

 $Si \mathscr{B} = (e_1, \dots, e_n)$ et $\mathscr{B}' = (f_1, \dots, f_n)$ sont deux bases alors pour construire la matrice de passage de \mathscr{B} à \mathscr{B}' je mets dans la $j^{\grave{e}me}$ colonne les coordonnées du vecteur f_j dans la bases \mathscr{B} .

Application 4.7. Soient $\mathscr{B}_1 = (P_0, P_1, P_2, P_3)$ la base canonique de $\mathbb{R}_3[X]$, et $\mathscr{B}_2 = (R_0, R_1, R_2, R_3)$, avec :

$$R_0(X) = 1$$
 $R_1(X) = X - 1$, $R_2(X) = (X - 1)^2$, $R_3(X) = (X - 1)^3$

une autre base de cet espace. Déterminer la matrice de passage de \mathscr{B}_1 à \mathscr{B}_2 .

Proposition 4.8. Soit \mathscr{B} et \mathscr{B}' deux bases de E. Alors $P_{\mathscr{B},\mathscr{B}'}$ est une matrice inversible et :

$$P_{\mathscr{B},\mathscr{B}'}^{-1} = P_{\mathscr{B}',\mathscr{B}}$$

Proposition 4.9. On considère \mathscr{B} et \mathscr{B}' deux bases de l'espace vectoriel E et $P_{\mathscr{B},\mathscr{B}'}$ la matrice de passage de \mathscr{B} à \mathscr{B}' . Pour tout $\vec{u} \in E$, on a :

$$\operatorname{Mat}_{\mathscr{B}}(\vec{u}) = P_{\mathscr{B},\mathscr{B}'} \times \operatorname{Mat}_{\mathscr{B}'}(\vec{u})$$

Dans certains des espaces vectoriels classiques certaines bases sont à connaître par coeurs. Ce sont des bases dites **canoniques**.

Théorème 4.10. Bases canoniques Soit $n \in \mathbb{N}^*$.

- Pour tout $i \in \{1, ..., n\}$, on pose $e_i = (0, ..., 0 \ 0, ..., 0)$ ième place La famille $(e_1, ..., e_n)$ est la base canonique de \mathbb{K}^n .
- Soient $(n,p) \in (\mathbb{N}^*)^2$. Pour tout $i \in \{1,\ldots,n\}$ et $j \in \{1,\ldots,p\}$, on note E_{ij} la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont tous les coefficients sont nuls sauf le coefficient situé à la i-ème ligne et à la j-ème colonne qui vaut 1. La famille $(E_{11}, E_{12}, \ldots, E_{1p}, E_{21}, \ldots, E_{2p}, \ldots, E_{n1}, \ldots, E_{np})$ est la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.
- Soit $n \in \mathbb{N}^*$. Pour tout $i \in \{0, ..., n\}$, on pose $P_i(X) = X^i$ La famille $(P_0, P_1, ..., P_n)$ est la base canonique de $\mathbb{K}_n[X]$.
- La famille infinie $(P_k)_{k\in\mathbb{N}}$ est la base canonique de $\mathbb{K}[X]$.

Sur l'ensemble des polynômes on possède aussi cette propriété qui permet d'éviter quelques calculs :

Proposition 4.11. Soit $(P_k)_{k\in\mathbb{N}}$ une famille de polynômes non nuls tels que $\forall k \in \mathbb{N}$, deg $(P_k) = k$ Alors $(P_k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.

Exemple 4.12. La famille $((X-2)^k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$

4.1.2 Dimension

Définition 4.13. On dit que E est un espace vectoriel de **dimension finie** s'il existe une famille génératrice finie.

Théorème 4.14. Tout espace vectoriel non réduit à $\{0\}$ de dimension finie admet une base.

Théorème 4.15. Soit E un espace de dimension finie non réduit à $\{0\}$. Alors toutes les bases de E ont le même nombre d'éléments. Ce nombre est appelé **dimension de l'espace vectoriel** E et est noté $\dim(E)$. Par convention on dira que l'espace $\{0\}$ est de dimension 0.

Théorème 4.16. Dimensions des espaces vectoriels de référence

- $\dim (\mathbb{K}^n) = n$
- dim $(\mathcal{M}_{n,p}(\mathbb{K})) = n \times p$
- dim $(\mathbb{K}_n[X]) = n + 1$
- $\mathbb{K}[X]$ est de dimension infinie.

Proposition 4.17. Soit E un espace de dimension finie n:

- Toute famille libre (resp. génératrice) de n vecteurs est une base de E
- Toute famille libre possède au plus n vecteurs.
- Toute famille génératrice possède au moins n vecteurs.

Conséquence : Dans un espace de dimension n, toute famille de strictement plus de n vecteurs est donc forcément liée et toute famille de strictement moins de n vecteurs n'est jamais génératrice.

Théorème 4.18. Théorème de la base incomplète.

Soit E un espace de dimension finie n et (e_1, \ldots, e_k) une famille libre de E. Alors il existe des vecteurs e_{k+1}, \ldots, e_n tels que (e_1, \ldots, e_n) est une base de E

Théorème 4.19. Soit E un espace vectoriel de dimension finie et F un sous-espace de E. Alors F est un espace vectoriel de dimension finie et $\dim F \leqslant \dim E$. De plus :

$$\dim F = \dim E \Leftrightarrow F = E$$

Application 4.20. Soient $E = \mathbb{R}_2[X]$ et $F = Vect(3, X - 1, (X - 4)^2)$. Démontrer que E = F.

Définition 4.21. Soit $(\overrightarrow{u_1}, \ldots, \overrightarrow{u_n})$ une famille de vecteurs d'un espace vectoriel E. On appelle **rang** de cette famille, et on note $\operatorname{rg}(\overrightarrow{u_1}, \ldots, \overrightarrow{u_n})$, la dimension de l'espace vectoriel $F = \operatorname{Vect}(\overrightarrow{u_1}, \ldots, \overrightarrow{u_n})$.

15

Méthode 4.22. Montrer qu'une famille donnée est une base d'un espace vectoriel.

On dispose de deux méthodes :

- Méthode 1 : s'applique lorsqu'on ne connaît pas la dimension de E On montre que la famille B est libre et génératrice de E.
- Méthode 2 : elle s'applique lorsqu'on connait la dimension de E. On montre que B est une famille libre (ou génératrice) de E puis on dit : " la famille B est une famille libre (resp. génératrice) telle que $card(\mathcal{B}) = \dim(E) = n$ donc B est une base de E.

Application 4.23. Montrer que la famille

$$\mathscr{B} = \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right)$$

est une base de $\mathcal{M}_2(\mathbb{R})$.

on conclut.

Méthode 4.24. Trouver une base d'un espace vectoriel donné. On commence par trouver une famille génératrice de E (voir méthode sur les familles génératrices), puis on montre que cette famille est libre. Enfin

Application 4.25. Déterminer une base de l'espace-vectoriel

$$E = \left\{ \left(\begin{array}{cc} x & 2x - y \\ y & x + 2y \end{array} \right) / (x, y) \in \mathbb{R}^2 \right\}.$$

Méthode 4.26. Calculer la dimension d'un espace vectoriel donné.

- S'il s'agit d'un espace vectoriel classique, on utilise les résultats du cours
- S'il s'agit d'un nouvel espace vectoriel défini dans l'énoncé de votre exercice alors LA SEULE MÉTHODE possible consiste à trouver une base puis compter le nombre de vecteurs dans la base. Ce nombre est la dimension cherchée.

Application 4.27. Déterminer la dimension de l'espace vectoriel

$$E = \{(x, y, z) \in \mathbb{R}^3 / 2x = 0 \ et \ 3y - z = 0\}.$$

Méthode 4.28. Calculer le rang d'une famille de vecteurs

Il faut poser $F = \text{Vect}(\overrightarrow{u_1}, \dots, \overrightarrow{u_n})$ et calculer la dimension de F.

Application 4.29. On pose P = 2X + 1, $Q = X^2 + 1$ et $R = 2X^2 + 2X + 3$ Quel est le rang de la famille (P, Q, R) de $\mathbb{R}[X]$?

5 Somme de sous-espaces vectoriels

5.1 Deux sous-espaces vectoriels

5.1.1 En dimension quelconque

Définition 5.1. Soient F et G deux sous-espaces vectoriels de E. L'ensemble $\{\vec{f} + \vec{g}, (\vec{f}, \vec{g}) \in F \times G\}$ est un sous-espace vectoriel de E appelé somme de F et G et noté F + G

Définition 5.2. On dit que deux sous-espaces vectoriels F et G sont en somme directe si tout vecteur de F + G se décompose de manière unique comme somme d'un vecteur de F et d'un vecteur de G. On notera alors $F \oplus G$ au lieu de F + G.

Proposition 5.3. Soient F et G deux sous-espaces vectoriels de E. F et G sont en somme directe si, et seulement si, $F \cap G = \{0_E\}$.

Définition 5.4. Soient F et G deux sous-espaces vectoriels de E. On dit que F et G sont **supplémentaires** dans E si, et seulement si, tout vecteur \vec{u} de E s'écrit de manière unique sous la forme $\vec{u} = \vec{f} + \vec{g}$ avec $(\vec{f}, \vec{g}) \in F \times G$. On dit alors que E est somme directe de F et G, et on note:

$$E = F \oplus G$$
.

Proposition 5.5. Soient F et G deux sous-espaces vectoriels de E. Les affirmations suivantes sont équivalentes :

- 1. F et G sont supplémentaires dans E;
- 2. $F \cap G = \{0_E\}$ et E = F + G.

Application 5.6. Soit $n \in \mathbb{N}^*$. On considère $\mathscr{S}_n(\mathbb{R})$ le sous-espace vectoriel des matrices symétriques de $\mathscr{M}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ le sous-espace vectoriel des matrices antisymétriques de $\mathscr{M}_n(\mathbb{R})$.

Montrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont en somme directe.

Application 5.7. On considère \mathscr{F} l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} , et I le sous-espace vectoriel des fonctions impaires et P le sous-espace vectoriel des fonctions paires.

Montrer que P et I sont supplémentaires dans \mathscr{F} .

5.1.2 En dimension finie

On se place dans un espace E de dimension finie.

Théorème 5.8. Formule de Grassman

Soient F et G deux sous-espaces vectoriels de E, alors on a :

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

Grâce à cette formule on dispose, en dimension finie, de méthodes supplémentaires pour montrer que deux sous-espaces vectoriels sont supplémentaires :

Proposition 5.9. Soient F et G deux sous-espaces vectoriels de E. Les affirmations suivantes sont équivalentes :

- 1. F et G sont supplémentaires;
- 2. $F \cap G = \{0_E\}$ et E = F + G;
- 3. $F \cap G = \{0_E\}$ et $\dim(E) = \dim(F) + \dim(G)$;
- 4. E = F + G et $\dim(E) = \dim(F) + \dim(G)$.
- **Proposition 5.10.** $Si(e_1, ..., e_k)$ est une base de F et $(f_1, ..., f_p)$ est une base de G et que F et G sont deux sous-espaces supplémentaires de E alors la famille $(e_1, ..., e_k, f_1, ..., f_p)$ est une base de E. On dit que c'est une base adaptée à la somme directe $F \oplus G$.
 - $Si(u_1, ..., u_n)$ est une base de E alors

$$F = \operatorname{Vect}(u_1, \dots, u_k)$$
 et $G = \operatorname{Vect}(u_{k+1}, \dots, u_n)$

sont supplémentaires.

Application 5.11. On se place dans l'espace vectoriel \mathbb{R}^3 et on considère les deux sous-espaces vectoriels suivant :

$$F = \{(x, y, z) \in \mathbb{R}^3 / x - y + 3z = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3 / y - z = 0 \text{ et } 2x + z = 0\}$$

Montrer que F et G sont supplémentaires.

5.2 Plusieurs sous-espaces vectoriels

Définition 5.12. Soient F_1, \ldots, F_p des sous-espaces vectoriels de E. On appelle **somme** des sous-espaces (F_1, \ldots, F_p) le sous-espace vectoriel :

$$F = \sum_{i=1}^{p} F_i = F_1 + \dots + F_p = \left\{ \vec{f}_1 + \dots + \vec{f}_p / \forall i \in [1; p], \vec{f}_i \in F_i \right\}$$

Définition 5.13. On dit que la somme $F = F_1 + \ldots + F_p$ est **directe** si tout vecteur de F se décompose de manière unique comme somme de vecteurs de $(F_i)_{i=1,\ldots,n}$. On notera alors $F = \bigoplus_{i=1}^p F_i = F_1 \oplus \ldots \oplus F_p$.

Proposition 5.14. La somme $F = \sum_{i=1}^{p} F_i$ est directe si, et seulement si,

pour $\vec{f_1} \in F_1, \vec{f_2} \in F_2, \dots, \vec{f_p} \in F_p \text{ on } a :$

$$\vec{f_1} + \ldots + \vec{f_p} = \overrightarrow{0} \iff \vec{f_1} = \vec{f_2} = \ldots = \vec{f_p} = \overrightarrow{0}$$

Application 5.15. On se place dans l'espace vectoriel $\mathbb{R}[X]$ et on fixe $p \in \mathbb{N}^*$. Pour tout entier $k \in [1; p]$, on pose $F_k = \text{Vect}(X^k(X-1))$. Montrer que les sous-espaces vectoriels F_1, F_2, \ldots, F_p sont en somme directe.

Proposition 5.16. Soit E un \mathbb{K} -espace vectoriel de dimension n et F_1, \ldots, F_p des sous-espaces vectoriels de E tels que :

$$E = \bigoplus_{i=1}^{p} F_i = F_1 \oplus \ldots \oplus F_p$$

On dit que la famille $(F_i)_{i \in [\![1:p]\!]}$ est une **décomposition en somme directe** de E.

De plus si, pour tout $i \in [1; p]$, on considère \mathcal{B}_i une base de F_i , alors la réunion des bases \mathcal{B}_i est une base de E. On dit que c'est une base adaptée à la décomposition en somme directe.

6 Hyperplans

Dans toute cette partie E est un \mathbb{K} -espace vectoriel de dimension $n\geqslant 2$ finie.

Définition 6.1. On dit qu'un sous-espace vectoriel de E est un **hyperplan** de E si, et seulement s'il est de dimension n-1.

Proposition 6.2. Soit F un sous-espace vectoriel de E.

F est un hyperplan de E si, et seulement s'il admet une droite vectorielle comme supplémentaire autrement dit, s'il existe $\vec{u} \in E, \vec{u} \neq \overrightarrow{0}$ tel que :

$$E = F \oplus \operatorname{Vect}(\vec{u}).$$

Théorème 6.3. Équation d'un hyperplan.

Soit F un hyperplan de E et \mathscr{B} une base de E. Alors il existe des scalaires a_1, \ldots, a_n non tous nuls tels que :

$$\vec{x} \in F \iff a_1 x_1 + \ldots + a_n x_n = 0$$

où (x_1, \ldots, x_n) sont les coordonnées de \vec{x} dans la base \mathscr{B} . La relation

$$a_1x_1 + \ldots + a_nx_n = 0$$

s'appelle l'équation de l'hyperplan F dans la base \mathscr{B} .

Remarque 6.4. Lorsque la base \mathcal{B} est fixé, les scalaires a_1, \ldots, a_n ne sont pas uniques mais ils sont définis à une constante multiplicative près.

Application 6.5. Montrer que $F = \{P \in \mathbb{R}_2[X], P(1) + P'(0) = 0\}$ est un hyperplan de $\mathbb{R}_2[X]$ et en donner une équation.

