Ispit iz Diskretne matematike 1 7. 9. 2021.

- 1. (8 bodova) Na koliko načina možemo rasporediti 15 jednakih jabuka u 3 različite zdjele tako da u prvoj bude najviše 10, u drugoj najviše 7, a u trećoj najviše 12 jabuka? Neke zdjele pritom mogu ostati prazne.
- 2. (8 bodova) Riješite rekurzivnu relaciju

$$a_n = 6a_{n-1} - 9a_{n-2} + n \cdot 3^n, \ n \geqslant 2,$$

uz početne uvjete $a_0 = 2$ i $a_1 = 3$.

- 3. (8 bodova) Koliko ima označenih stabala s oznakama vrhova $1, 2, 3, \ldots, n$ takvih da je:
 - (a) stupanj svakog vrha najviše 2,
 - (b) vrh s oznakom 1 list?

4. (8 bodova)

- (a) Ako je povezan graf eulerovski, dokažite da je njegov bridni graf hamiltonovski.
- (b) Na poslovnoj večeri našlo se 12 Sicilijanaca iz jedne obitelji. Rodbinske su veze tamo bile i jače nego inače: svaki je čovjek imao barem 6 prvih rođaka među preostalih 11 ljudi na večeri. Dokažite da je raspored ljudi oko stola mogao biti takav da je svaki čovjek sjedio između svoja dva prva rođaka.

5. (8 bodova)

- (a) Neka je G jednostavan povezan planaran graf s 35 vrhova. Može li G imati točno 100 bridova? Detaljno obrazložite svoj odgovor.
- (b) Zadan je povezan planaran graf G čije su strane dva četverokuta, jedan peterokut i jedan sedmerokut. Koliko vrhova ima graf G?

6. (8 bodova)

- (a) Odredite kromatski broj i kromatski indeks oktaedra. Detaljno obrazložite sve svoje odgovore.
- (b) Iskažite i dokažite Königov teorem o kromatskom indeksu bipartitnog grafa.

1. Pripadna funkcija izvodnica problema glasi

$$f(x) = (1+x+\ldots+x^{10})(1+x+\ldots+x^7)(1+x+\ldots+x^{12}) = \frac{(1-x^{11})(1-x^8)(1-x^{13})}{(1-x)^3}$$
$$= (1-x^8-x^{11}-x^{13}+x^{19}+x^{21}+x^{24}-x^{32})\sum_{k=0}^{\infty} {k+2 \choose k} x^k.$$

Tražimo

$$\langle x^{15} \rangle f(x) = {15+2 \choose 15} - {7+2 \choose 7} - {4+2 \choose 4} - {2+2 \choose 2} = 79.$$

2.
$$a_n = \left(\frac{1}{6}n^3 + \frac{1}{2}n^2\right) \cdot 3^n + 2 \cdot 3^n - \frac{5}{3}n \cdot 3^n = \frac{1}{2}(n^3 + 3n^2 - 10n + 12) \cdot 3^{n-1}.$$

- 3. (a) Uočimo da, do na izomorfizam, postoji točno jedno stablo kojemu su svi vrhovi stupnja najviše 2. To je lanac P_n i njegovim vrhovima možemo pridružiti oznake $1, 2, \ldots, n$ tako da ih poredamo u nekom redoslijedu to možemo napraviti na n! načina. Budući da tako svako označavanje brojimo dvaput (za dva "smjera" lanca), traženih označenih grafova ukupno ima $\frac{n!}{2}$ (tj. postoji samo jedno takvo stablo u slučaju n=1).
 - (b) Promotrimo jedno takvo označeno stablo uočimo da uklanjanjem vrha s oznakom 1 ponovno dobivamo stablo (jer je uklonjeni vrh bio list), i to s oznakama vrhova 2,...,n. Obratno, iz svakog označenog stabla s oznakama vrhova 2,...,n možemo dobiti jedno traženo stablo dodavanjem vrha s oznakom 1 i spajanjem tog vrha s točnom jednim od već postojećih.

Prema Cayleyjevom teoremu, označenih stabala s n-1 vrhova ima točno $(n-1)^{n-3}$, a budući da imamo n-1 mogućnosti za odabir vrha s kojim ćemo spojiti vrh s oznakom 1, traženih stabala ima ukupno $(n-1)\cdot (n-1)^{n-3}=(n-1)^{n-2}$ (tj. ne postoje tražena stabla u slučaju n=1).

- 4. (a) Neka je G eulerovski graf te neka je $\varphi \colon E(G) \to V(L(G))$ bijekcija koja bridovima grafa G pridružuje odgovarajuće vrhove njegovog bridnog grafa L(G). Ako je $v_1, v_2, \ldots, v_n, v_1$ jedna eulerovska staza u grafu G, onda je $\varphi(v_1v_2), \varphi(v_2v_3), \ldots, \varphi(v_{n-1}v_n), \varphi(v_nv_1), \varphi(v_1v_2)$ jedan hamiltonovski ciklus u grafu L(G): on prolazi svakim vrhom tog grafa točno jedanput (jer analogna tvrdnja vrijedi za eulerovski ciklus i bridove grafa G). Dakle, bridni graf L(G) je po definiciji hamiltonovski.
 - (b) Rodbinske veze možemo modelirati grafom u kojem vrhovi predstavljaju osobe, a dva su vrha spojena bridom ako i samo ako su odgovarajuće osobe prvi rođaci. Sada iz uvjeta zadatka vidimo da je riječ grafu s 12 vrhova, pri čemu je stupanj svakog vrha jednak barem 6, tj. $\frac{12}{2}$. Zato prema Diracovom teoremu slijedi da je taj graf hamiltonovski pa njegov hamiltonovski ciklus daje traženi raspored sjedenja za stolom.
- 5. (a) Prema korolaru 7.8 iz skripte, za svaki jednostavan povezan planaran graf s $n \ge 3$ vrhova i m bridova vrijedi $m \le 3n-6$. Budući da je $100 > 99 = 3 \cdot 35 6$, traženi graf ne može postojati.

(b) Iz uvjeta zadatka za taj graf slijedi $F=4,\,F_4=2,\,F_5=1,\,F_7=1$ pa za njegov broj bridova slijedi

$$2M = 4F_4 + 5F_5 + 7F_7 \Rightarrow M = 10.$$

Konačno, iz Eulerove formule dobivamo da je broj vrhova od G jednak

$$N = M - F + 2 = 8.$$

6. (a) Budući da oktaedar sadrži C_3 kao podgraf, njegov kromatski broj je barem 3. Budući da je jedno 3-bojanje vrhova oktaedra dano na lijevoj slici, zaključujemo da je njegov kromatski broj jednak 3.

Nadalje, budući da je oktaedar 4-regularan graf, prema Vizingovom je teoremu njegov kromatski indeks jednak 4 ili 5. Budući da je jedno 4-bojanje bridova oktaedra dano na desnoj slici, zaključujemo da je njegov kromatski indeks jednak 4.

(b) Skripta, str. 165, teorem 8.13.