Frühjahr 14 Themennummer 1 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Zeigen Sie die asymptotische Stabilität der Ruhelage (0,0) der in \mathbb{R}^2 gegebenen Differentialgleichung

$$\dot{x} = -x^3 + y^5, \dot{y} = -xy^4 - y^3.$$

Führt Linearisierung zum Ziel?

Lösungsvorschlag:

Linearisierung führt nicht zum Ziel. Die Jacobimatrix der Strukturfunktion lautet $J(x,y) = \begin{pmatrix} -3x^2 & 5y^4 \\ -y^4 & -4xy^3 - 3y^2 \end{pmatrix}$, was für (x,y) = (0,0) die Nullmatrix ergibt.

Deren einziger Eigenwert ist 0; weil die Differentialgleichung nichtlinear ist, ist keine Aussage über Stabilität möglich.

Um Stabilität nachzuweisen verwenden wir die direkte Methode von Lyapunov mit der Lyapunovfunktion $L: \mathbb{R}^2 \to \mathbb{R}, L(x,y) = x^2 + y^2$. Diese ist als Polynom stetig differenzierbar mit $\nabla L(x,y) = (2x,2y)$. Es ist $2x(-x^3+y^5) + 2y(-xy^4-y^3) = -2x^4 + 2xy^5 - 2xy^5 - 2y^4 = -2(x^4+y^4) \le 0$ mit Gleichheit genau für (x,y) = (0,0). Weiter ist $L(x,y) \ge 0$ mit Gleichheit genau für (x,y) = (0,0). Also handelt es sich bei der Ruhelage um ein striktes Maximum und um die einzige Nullstelle von $\nabla L(x,y) \cdot (-x^3+y^5,-xy^4-y^3)$. Außerdem ist (0,0) ein striktes Minimum von L. Nach der Direkten Methode von Lyapunov folgern wir asymptotische Stabilität des Ursprungs.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$