Article Title

Jane Doe*
The Department
An Organization
A second affilication

John Doe Another Affiliation

August 10, 2025

Abstract

The text of your abstract. The cmc-article format is designed for scholarly articles, especially preprints. Its goal is to be lightweight yet customizable, with thoughtful typography and layout.

Keywords • can go here

1 Introduction

Body of paper. Citations are easy to use (Metropolis et al., 1953). See Section 2 for a math demonstration.

2 Additional section headings here

cmc-article includes helpful math packages: mathtools, amssymb, amsthm, and physics by default. It also includes a default header.tex file with useful macros for math and statistics. Some of these are demonstrated in Eq. 1.

$$\begin{split} \mathbf{X} \sim \mathrm{N} \Big(\mu, \Sigma^2 \Big); \quad p(\mathbf{x}) &= \frac{1}{\sqrt{(2\pi)^k \det(\Sigma)}} \exp \Big(-\frac{1}{2} (\mathbf{x} - \mu)^\top \Sigma^{-1} (\mathbf{x} - \mu) \Big) \\ \mathbb{E}(Y) &= \sum_{y \in \mathcal{Y}} y \, \mathbb{P}(Y = y) = \sum_{y \in \mathcal{Y}} y \, \mathbb{E} (\mathbb{1} \{Y = y\}) \end{split} \tag{1}$$

The package also includes an assump environment for typesetting assumptions which can be referenced by easy-to-remember abbreviations.

Assumption IID. The observations X_1, X_2, \dots, X_n are independent and identically distributed.

Assumption FE (Finite expectation). For each $1 \le i \le n$, we have $E[X_i] = \mu < \infty$.

Theorem 2.1 (Weak Law of Large Numbers). Let $\bar{X}_n := n^{-1} \sum_{i=1}^n X_i$. Then under IID and FE, we have $\bar{X}_n \stackrel{p}{\longrightarrow} \mu$ as $n \to \infty$.

^{*}To whom correspondence should be addressed. Email: jdoe1@example.org. Website: https://example.org/. Address: 1 Union St, Seattle, WA 98101. Acknowledgements here.

Article Title August 10, 2025

2.1 An example subsection heading

See Figure 1 for an example figure.

Figure 1: Histogram of samples from a gamma distribution.

2.1.1 Level 3 heading

Text here.

2.1.1.1 Level 4 (numbered paragraph) heading Text here.

Level 5 (paragraph) heading Text here.

3 Conclusion

The final section of the main text.

References

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. *The Journal of Chemical Physics*, 21(6):1087–1092.

A Appendix section

This section will be numbered like an appendix