1 Problem 1

Because $Tr(AB) = Tr(U^{-1}ABU)$, $Tr(e^{-\beta\mathcal{H}(h)}S_q^z) = -Tr(e^{-\beta\mathcal{H}(-h)}S_q^z)$. Where I use the transform which transforms $S_i^z \to -S_i^z$, $S_i^x \to -S_i^x$. As a result, it can be shown $\lim_{h\to 0^+} m_q(h) = -\lim_{h\to 0^-} m_q(h)$.

2 Problem 2

According to Mashall's theorem, the ground state of Heisenberg model is not degenate. $[\mathcal{H}_0,P]=0$, where P is the translation operator and $PS_i^zP^{-1}=S_{i+1}^z$. When T=0K, $<0|S_i^z|0>=<0|S_{i+1}^z|0>$ and $<0|\sum_i S_i^z|0>=0$. So $m_q(h=0)==0$ by deducing.

3 Problem 3

$$<\vec{S}_{q} \cdot \vec{S}_{-q}> = \sum_{n} \rho_{n} < n |\vec{S}_{q}\vec{S}_{-q}| n >$$
 (1)

$$N^{2}|m_{q}|^{2} = |\sum_{n} \rho_{n} < n|\vec{S}_{q}|n > |^{2}$$
(2)

Because $0 \le \rho_n < 1$, the following equation could come out.

$$\sum_{n} \rho_n < n |\vec{S}_q| n > = \sum_{n} (\sqrt{\rho_n}) (\sqrt{\rho_n} < n |\vec{S}_q| n >)) = \sum_{n} a_n b_n, \tag{3}$$

 $(\sum_n a_n b_n)^2 <= \sum_n a_n^2 \sum_n b_n^2,$ as a result:

$$N^{2}|m_{q}|^{2} \le \left(\sum_{n} \rho_{n}\right)\left(\sum_{n} \rho_{n}| < n|\vec{S}_{q}|n > |^{2}\right) = \sum_{n} \rho_{n}| < n|\vec{S}_{q}|n > |^{2}$$
 (4)

At the same time,

$$<\vec{S}_q \cdot \vec{S}_{-q}> = \sum_{n} \rho_n |\langle n|\vec{S}_q|n\rangle|^2 + \sum_{n,m\neq n} \rho_n |\langle n|\vec{S}_q|m\rangle|^2 \ge \sum_{n} \rho_n |\langle n|\vec{S}_q|n\rangle|^2$$
(5)

Finally, we get $<\vec{S}_q\cdot\vec{S}_{-q}>\geq N^2|m_q|^2.$

4 Problem 4

It's a mathmatical problem which can be described as below. For a sequence $\{a_n\}$, if $\lim_{n\to\inf}a_n=0$ and $0\leq a_n< L$ where L is an positive const number. Then whether the sequence $\{\frac{1}{n}S_n\}$ converges where $S_n=\sum_n a_n$. The answer is yes. For $\forall \delta>0$, exists an N, when n>N, $a_n<\delta$. S_N is finite, here exists an M>N satisfying when m>M, $\frac{S_N}{m}<\delta$. So $\frac{S_m}{m}=\frac{S_N}{m}+\frac{\sum_{n=N+1}^m a_n< m\delta}{m}<2\delta$. So sequence $\{\frac{1}{n}S_n\}$ converges to 0.