Foundations of Mathematics Section 1.5 Problems

Benji Altman

February 15, 2017

 \mathbb{R}

3(c) We are trying to prove $4 \not| x^2 \implies x \in \{\text{Odds}\}$, where $x \in \mathbb{Z}$. By contrapositive, $4 \not| x^2 \implies x \in \{\text{Odds}\}$ is equivalent to trying to prove $4 | x^2 \iff x \in 2\mathbb{Z}$.

Let x be an even number. Thus it can be written as 2k, where $k \in \mathbb{Z}$. Now

$$x^2 = 4k^2$$

and $4k^2$ is divisible by 4 by definition of divisibility. Thus $4 / x^2 \implies x \in \{\text{Odds}\}.$

- 5 Let \mathfrak{C} be a circle with center at (2,4) and radius length of r, this will be referred to throughout problem 5.
- (a) The point (-1,5) is distance d_1 from the center of \mathfrak{C} , and the point (5,1) is distance d_2 from the center of \mathfrak{C} .

$$d_1 = \sqrt{(2 - (-1))^2 + (4 - 5)^2}$$

$$= \sqrt{3^2 + (-1)^2}$$

$$= \sqrt{9 + 1}$$

$$= \sqrt{10}$$

$$d_2 = \sqrt{(5-2)^2 + (1-4)^2}$$

$$= \sqrt{3^2 + (-3)^2}$$

$$= \sqrt{9+9}$$

$$= \sqrt{18}$$

$$= 3\sqrt{2}$$

$$\sqrt{10} = d_1 \neq d_2 = 3\sqrt{2}$$

By the definition of circle, two points of different distance from the centerpoint may not both lie upon it's edge.

(b) The distance from the line y = x - 6, which will herein be referred to as \mathfrak{L} , to the center point of \mathfrak{C} at x is given by the function:

$$\mathfrak{D}(x) = \sqrt{(2-x)^2 + (4-(x-6))^2}$$
$$= \sqrt{(2-x)^2 + (10-x)^2}$$
$$= ((2-x)^2 + (10-x)^2)^{\frac{1}{2}}$$

We can find $\mathfrak{D}(x)$'s minima by using calculus.

$$\mathfrak{D}'(x) = \frac{1}{2} \cdot \left((2-x)^2 + (10-x)^2 \right)^{-\frac{1}{2}} \cdot \left(2 \cdot (2-x) \cdot (-1) + 2 \cdot (10-x) \cdot (-1) \right)$$
$$= \frac{2(x-6)}{\sqrt{(2-x)^2 + (10-x)^2}}$$

$$\mathfrak{D}'(x) = 0$$
 when $(2(x-6) = 0) \land (\sqrt{(2-x)^2 + (10-x)^2} \neq 0)$

$$2(x-6) = 0$$
$$x-6 = 0$$

$$x = 6$$

$$\sqrt{(2-6)^2 + (10-6)^2} = \sqrt{(-4)^2 + 4^2}$$
$$= 4\sqrt{2}$$
$$\neq 0$$

Thus \mathfrak{D} 's only critical point is when x=6. We can tell x=6 is a minima for $\mathfrak{D}(x)$ if $\mathfrak{D}''(6)>0$.

$$\mathfrak{D}'(x) = 2(x-6) \left((2-x)^2 + (10-x)^2 \right)^{-1/2}$$

$$\mathfrak{D}''(x) = 2 \left((2-x)^2 + (10-x)^2 \right)^{-1/2} - (x-6) \left((2-x)^2 + (10-x)^2 \right)^{-3/2} \cdot 2 (x-12)$$

$$\mathfrak{D}''(6) = 2 \left((2-6)^2 + (10-6)^2 \right)^{-1/2} - (6-6) \left((2-6)^2 + (10-6)^2 \right)^{-3/2} \cdot 2 (6-12)$$

$$= 2 \left((-4)^2 + (4)^2 \right)^{-1/2} - (0) \left((-4)^2 + 4^2 \right)^{-3/2} \cdot 2 (-6)$$

$$= \frac{\sqrt{2}}{4} > 0$$

Thus the distance between \mathfrak{C} 's center point and \mathfrak{L} is $\mathfrak{D}(6)$, which is equal to

$$\mathfrak{D}(6) = \sqrt{(2-6)^2 + (4-(6-6))^2}$$

$$= \sqrt{(-4)^2 + 4^2}$$

$$= \sqrt{16 \cdot 2}$$

$$= 4\sqrt{2}$$

If $4\sqrt{2} > r$ then $\mathfrak L$ does not cross over $\mathfrak C$ because $\mathfrak L$ will never have a point as close or closer then r to $\mathfrak C$'s center point.

We can say that $\sqrt{2} > \frac{4}{3}$ because $\sqrt{2}^2 = 2 > \frac{4}{3}^2 = \frac{16}{9}$, thus $4\sqrt{2} > 4 \cdot \frac{4}{3} = \frac{16}{3} > \frac{15}{3} = 5$. Thus $4\sqrt{2} > 5$ so if r = 5, $\mathfrak L$ will not intersect $\mathfrak L$.

(c) Claim: (0,3) is not inside $\mathfrak{C} \Longrightarrow (3,1)$ is not inside \mathfrak{C} . We proove this by contrapostive, so we are going to show that if (3,1) is inside $\mathfrak{C} \Longrightarrow (0,3)$ is inside \mathfrak{C} .

Proof: The point (0,3) is of distance $\sqrt{(2-0)^2+(4-3)^2}$ from the center of \mathfrak{C} .

$$\sqrt{(2-0)^2 + (4-3)^2} = \sqrt{2^2 + 1^2}$$
$$= \sqrt{4+1}$$
$$= \sqrt{5}$$

The point (3,1) is of distance $\sqrt{(3-2)^2+(1-4)^2}$ from the center of \mathfrak{C} .

$$\sqrt{(3-2)^2 + (1-4)^2} = \sqrt{1^2 + (-3)^2}$$
$$= \sqrt{1+9}$$
$$= \sqrt{10}$$

For the point (3,1) to be in \mathfrak{C} , $r > \sqrt{10}$, thus (0,3) will always be contained within that circle as it is only $\sqrt{5}$ from the center of \mathfrak{C} .

Prove that $\sqrt{5} \notin \mathbb{Q}$. This will be shown by contradiction so we start by assuming $\sqrt{5} \in \mathbb{Q}$, which by definition of \mathbb{Q} means that it can be written as $\frac{a}{b}$, where $a \in \mathbb{Z}$ and $b \in \mathbb{Z}_+$ and there are no common factors between a and b. We also know, by definition of square root, that $\sqrt{5}^2 = 5$, thus $\frac{a}{b}^2 = 5$ and $a^2 = 5b^2$.

between a and b. 1 We also know, by definition of square root, that $\sqrt{5}^2 = 5$, thus $\frac{a}{b}^2 = 5$ and $a^2 = 5b^2$. We also will show that for any integer x, if it is not divisible by some prime number d, then x^2 is also not divisible by d. We show this by saying that any value x can be written as $(-1)^b p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_v^{e_v}$, where $b \in \{0,1\}, \forall_{p_k,k \in \mathbb{N}} (p_k \in \mathbb{P})$

 $^{^{1}\}mathbb{Z}_{+}$ is the set of positive integers, ie: $\{1, 2, 3, \ldots\}$.