Report of Computer Vision

Name: Wenjie Yi

Camera calibration:

- 1. Phone Information:
 - Apple iPhone 12 mini
 - Wide Angle Camera (ISO80, 26mm, 0ev, f1.6, 1/60s)
 - Photo (12MP, 4032*3024)

(1) Miniatures of the Calibration Photos:

Photo_1018_14a

Photo_1018_11a

Photo_1018_15a

Photo_1018_13a

Photo_1018_16a

(2) Screenshot of the Calibrator App:

(3) Camera Calibration Parameters:

2. Distance Measurement Section

(1) Distance Measure Model:

We know:

$$x_p = \frac{f \cdot X_c}{Z_c}, \quad y_p = \frac{f \cdot Y_c}{Z_c}$$

$$Z_c = \frac{f.X_c}{x_p}$$

So, we can get the distance Z_c , use the parameters of focal length, target length and pixel length.

(2) Target:

(3) Table with Results:

Focal Length = 3142.9

Pattern Size	Measured Distance	Calculated Distance	Absolute Error
(in pixels)	(in centimeters)	(in centimeter)	(in centimeter)
858.65	50	$Z_{50} = \frac{f.X_c}{x_p} = 57.466$	7.466
472.11	100	$Z_{100} = \frac{f.X_c}{x_p} = 104.517$	4.517
326.93	150	$Z_{150} = \frac{f.X_c}{x_p} = 150.929$	0.929

(4) Measurement Error:

if we measure one pixel more,

for 50cm distance:
$$Z_e = Z_{50} - \frac{3142.9 \times 15.7}{(858.65 + 1)} = 0.066$$

for 100cm distance:
$$Z_e = Z_{100} - \frac{3142.9*15.7}{(472.11+1)} = 0.221$$

for 150cm distance:
$$Z_e = Z_{150} - \frac{3142.9*15.7}{(326.93+1)} = 0.459$$

For the conclusion, The farther camera is from the target, the greater errors can get.