

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Core Mathematics C12 (WMA01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WMA01_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use the <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks
1	$y = \frac{2x^{\frac{2}{3}} + 3}{6}$		
		6	
(a)	2 _1	For reducing the power of $x^{\frac{2}{3}}$ by 1 which may be	3.61
	$x^{\frac{2}{3}} \to x^{-\frac{1}{3}}$	implied by e.g. $x^{\frac{2}{3}} \rightarrow x^{\frac{2}{3}-1}$ and no other powers of	M1
	Note that some candidates think	$\frac{2x^{\frac{2}{3}} + 3}{6} = 2x^{\frac{2}{3}} + 3 + 6 \text{ but the M mark can still}$	
	sc	$\text{for for } x^{\frac{2}{3}} \to x^{-\frac{1}{3}}$	
		Correct expression. Allow equivalent exact,	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) \frac{2}{9} x^{-\frac{1}{3}}$	simplified forms e.g. $\frac{2x^{-\frac{1}{3}}}{9}, \frac{2}{9x^{\frac{1}{3}}}, \frac{2}{9\sqrt[3]{x}}$. Allow	A1
	(div))	0.222 or 0.2 with a dot over the 2 for $\frac{2}{9}$.	
	Ignore what they use to indicat	te differentiation and ignore subsequent working	
	following	ng a fully correct answer.	
			(2)
(b)	Must be integrating the give	n function in (b), not their answer to part (a)	
		Increases the power by 1 for one term from $x^{\frac{2}{3}} \rightarrow x^{\frac{5}{3}}$ or $k \rightarrow kx$. May be implied by e.g.	
	$x^{\frac{2}{3}} \rightarrow x^{\frac{5}{3}}$ or $k \rightarrow kx$	$x^{\frac{2}{3}} \rightarrow x^{\frac{2}{3}+1}$. This must come from correct work, so integrating numerator and denominator e.g.	M1
		$\frac{2x^{\frac{2}{3}} + 3}{6} \to \frac{x^{\frac{5}{3}} +x}{6x} \text{ is M0}$	
	Note that some candidates think	$\frac{2x^{\frac{2}{3}} + 3}{6} = 2x^{\frac{2}{3}} + 3 + 6 \text{ but the M mark can still}$	
	score fo	or $x^{\frac{2}{3}} \rightarrow x^{\frac{5}{3}}$ or $k \rightarrow kx$	
	2531010	One correct term which may be un-simplified,	
	$\frac{3}{5} \times \frac{2}{6} x^{\frac{5}{3}}$ or $\frac{3}{6} x$	including the power. So, $\frac{2}{6} \times \frac{x^{1+\frac{2}{3}}}{1+\frac{2}{3}}$ would be	A1
		acceptable for this mark.	
		All correct and simplified including $+ c$ all appearing on one line. ($c/6$ is acceptable for c)	
	$\frac{1}{5}x^{\frac{5}{3}} + \frac{1}{2}x + c$	Allow $\sqrt[3]{x^5}$ for $x^{\frac{5}{3}}$ but not x^1 for x .	A1
	5 2	Allow 0.2 for $\frac{1}{5}$ and 0.5 for $\frac{1}{2}$	
		and/or dx's and ignore subsequent working following	
	a fully correct answer.		(2)
			(3) Total 5
			1 otal 3

Question Number	Scheme	Notes	Marks
2	Mark (a) and (b) t	ogether	
(a)	$u_2 = -1, u_3 = 5$	As (a) and (b) are marked together, these can score as part of their calculation in (b) if – 1 and 5 are clearly the second and third terms.	B1, B1
			(2)
(b)	$u_4 = 2 - 3 \times "5" (= -13)$	Correct attempt at the 4 th term (can score anywhere) and may be implied by their calculation below)	M1
	$\sum_{r=1}^{4} (r - u_r) = \pm \{ (1-1) + (2 - "-1") + (3 - "5") + (4 - "-13") \}$		
	or $\sum_{r=1}^{4} (r - u_r) = \sum_{r=1}^{4} r - \sum_{r=1}^{4} u_r = \pm \{(1 + 2 + 3 + 4)\}$	-4)-(1+"-1"+"5"+"-13")}	dM1
	A correct method for the sum or (– sum). Allo values but the intention must be clear. Depe	w minor slips or mis-reads of their	
	=18	cso	A1
			(3)
			Total 5

Question Number	Scheme	Notes	Marks
3(a)	$\left(3x^{\frac{1}{2}}\right)^4 = 81x^2$	B1: Obtains ax^{n} , $(a, n \neq 0)$ where $a = 81$ or $n = 2$ B1: $81x^{2}$	B1B1
	Do not isw so for example $\left(3x^{\frac{1}{2}}\right)$	$\left(\frac{1}{2}\right)^4 = 81x^2 = 9x \text{ scores B0B0}$	
			(2)
(b)	$\frac{2y^7 \times (4y)^{-2}}{3y} = \frac{y^4}{24}$	B1: Obtains ay^{n} , $(a, n \ne 0)$ where $a = \frac{1}{24}$ or $n = 4$ (Allow 0.41666 or 0.416 with a dot over the 6 for $\frac{1}{24}$) B1: $\frac{y^{4}}{24}$ (Allow $\frac{1y^{4}}{24}$)	B1B1
	Do not isw – mark t	their final answer	
			(2)
			Total 4

Question Number	Scheme	Notes	Marks
4(a)	$b^2 - 4ac = 8^2 - 4(p-2)(p+4)$	Attempts to use $b^2 - 4ac$ with at least two of a , b or c correct. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $b^2 = 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no x 's.	M1
	$8^2 - 4(p-2)(p+4) < 0$	For a correct un-simplified inequality in any form that is not the final printed answer or a positive constant multiple of the final printed answer with no incorrect previous statements.	A1
	$64 < 4p^2 + 8p - 32$		
	$p^2 + 2p - 24 > 0*$	Correct solution with intermediate working and no errors with the inequality sign appearing correctly before the final printed answer.	A1*
			(3)
(b)	$p^{2} + 2p - 24 = 0 \Rightarrow p = \dots$ $(p+1)^{2} - 1 - 24 = 0 \Rightarrow p = \dots$ $(p =)\frac{-2 \pm \sqrt{2^{2} - 4 \times 1 \times (-24)}}{2 \times 1}$	For an attempt to solve $p^2 + 2p - 24 = 0$ (not their quadratic) leading to two critical values. See general guidance for solving a 3TQ when awarding this method mark. May be implied by their critical values.	M1
	p = 4, -6	Correct critical values	A1
	p < "-6", p > "4"	Chooses the outside region for their two critical values. Look for $p <$ their -6 , $p >$ their 4. This could be scored from $4 or -6 > p > 4. Evidence is to be taken from their answers not from a diagram. Allow e.g. p \le "-6", p \ge "4"$	M1
	p < -6 or $p > 4$		
	p < -6 $p > 4$ $p < -6$, $p > 4$	Correct inequalities e.g. answers as shown. Note that $p < -6$ and $p > 4$ would score	
	p < -6; p > 4 p < -6	M1A0 as would $4 or -6 > p > 4 or p < -6 \cap p > 4. Apply isw where possible.$	A1
	Allow letter other than p to be used in	n (b) but the final A mark requires answers	
		ms of p only.	
	Correct answer onl	ly scores full marks in (b)	(4)
			Total 7

Question Number	Scheme	Notes	Marks
5(i)	$5\sin 3\theta - 7\cos 3\theta = 0 \Rightarrow \tan 3\theta = \frac{7}{5}$	M1: Reaches $\tan = k$ where $k \neq 0$ A1: $\tan = \frac{7}{5}$	M1A1
	$3\theta = 0.950$		dM1
	$3\theta = \tan^{-1}\left(\operatorname{their}\frac{7}{5}\right)$ leading to a value of		
	implied if they divide their values by 3 (you	may need to check). Dependent on the	
	first method		
	$\theta = 0.317 \text{or} \theta = 1.36$	Awrt 0.317 (Allow awrt 0.101 π) or Awrt 1.36 (Allow awrt 0.434 π)	A1
	$\theta = 0.317$ and $\theta = 1.36$ only	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	Alternative 1	for (i):	
	$5\sin 3\theta - 7\cos 3\theta = \sqrt{74}\sin(3\theta - 0.9505)$	M1: Correct method using addition formula	M1A1
		A1: $\sqrt{74}\sin(3\theta - 0.9505)$	
	$3\theta - 0.9505 = 0, \pi$	3θ – their $\alpha = \sin^{-1}(0)$. Dependent on	dM1
	,	the first method mark.	92.22
	$\theta = 0.317 \text{or} \theta = 1.36$	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	$\theta = 0.317$ and $\theta = 1.36$ only	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	Special case: If both answers are given in degrees allow A1A0 but needs to be awrt		
	18.2 and awrt 78.2)		
	Alternative 2 for (i):		
	$5\sin 3\theta = 7\cos 3\theta \Rightarrow 25\sin^2 \dots = 49\cos^2 \dots$		
	or $5\sin 3\theta - 7\cos 3\theta = 0 \Rightarrow 25\sin^2 49\cos^2 = 0$ M1: Obtains $p\sin^2 = q\cos^2$ or $p\sin^2 q\cos^2 = 0$ $p,q > 0$		M1
	$\sin \dots = (\pm) \frac{7}{\sqrt{74}} \text{or} \cos \dots = (\pm) \frac{5}{\sqrt{74}}$ $\pm (awrt 0.8) \qquad \qquad \pm (awrt 0.6)$	Correct value for sinor cos	A1
	$3\theta = 0.950$	054	dM1
	$3\theta = \sin^{-1}\left(\text{their } \frac{7}{\sqrt{74}}\right) \text{ or } 3\theta = \cos^{-1}\left(\text{their } \frac{5}{\sqrt{74}}\right) \text{ leading to a value of } 3\theta.$		
	Dependent on t	he first M	
	$\theta = 0.317 \text{or} \theta = 1.36$	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	$\theta = 0.317$ and $\theta = 1.36$ only	Awrt 0.317 (Allow awrt 0.101π) or Awrt 1.36 (Allow awrt 0.434π)	A1
	Special case: If both answers are given in de 18.2 and awrt 78.2). If they give answers in case take precedence. For an otherwise fully cowithheld for extra answers in range. Ignoranswers only score	degrees and radians, the radians answers orrect solution, the final mark can be ore extra answers outside the range.	(5)

5(ii)	$9\cos^2 x + 5\cos x$	$x = 3\sin^2 x$	
	$9\cos^2 x + 5\cos x = 3(1-\cos^2 x)$	Uses $\sin^2 x = \pm 1 \pm \cos^2 x$	M1
	$12\cos^2 x + 5\cos x - 3 = 0$	Correct 3 term quadratic equation. Allow equivalent equations with terms collected e.g. $12\cos^2 x + 5\cos x = 3$	A1
	$(3\cos x - 1)(4\cos x + 3) = 0$ $\Rightarrow (\cos x) = \dots$	Solves their 3TQ in cos x to obtain at least one value. See general guidance for solving a 3TQ when awarding this method mark. Dependent on the first method mark.	dM1
	$\cos x = \frac{1}{3}, -\frac{3}{4}$	Correct values for $\cos x$	A1
	x = 70.5, 289.5, 138.6, 221.4	A1: Any 2 correct solutions (awrt) A1: All 4 answers (awrt)	A1A1
	Special case: If all answers are given in radians allow A1A0 but needs to be awrt 1.2,		
	5.1, 2.4, 3.9 For an otherwise fully correct solution, the final mark can be withheld for extra		
	answers in range. Ignore extra answers outside the range.		
	Answers <u>only</u> scores no marks.		(0)
			(6)
			Total 11

Question Number	Scheme	Notes	Marks
6(a)	$f(\pm 1) =$ or $f(\pm 2) =$	Attempts $f(\pm 1)$ or $f(\pm 2)$	M1
	$a(-1)^3 - 8(-1)^2 + b(-1) + 6 = 0$	Allow un-simplified but do not condone missing brackets unless later work implies a correct expression.	A1
	$a(2)^3 - 8(2)^2 + b(2) + 6 = -12$	Allow un-simplified	A1
	$a+b=-2, 4a+b=7$ $\Rightarrow a=3, b=-5$	M1: Solves two linear equations in <i>a</i> and <i>b</i> simultaneously to obtain values for <i>a</i> and <i>b</i> . A1: Correct values	M1A1
	Alternative by lo	ong division:	
-	$(ax^3 - 8x^2 + bx + 6) \div (x+1)$		
	or	, , , , , , , , , , , , , , , , , , ,	
	$\left(ax^3 - 8x^2 + bx + 6\right) \div \left(x - 2\right)$	$(2) \rightarrow \text{remainder } g(a,b)$	M1
	Attempts long division by either expression		
	-a-b-2=0	Allow un-simplified but do not condone missing brackets unless later work implies a correct expression.	A1
	8a + 2b - 26 = -12	Allow un-simplified	A1
	a+b=-2, 4a+b=7	M1: Solves simultaneously	M1A1
	$\Rightarrow a=3, b=-5$	A1: Correct values	WHAT
			(5)
(b)	$(x+1)(ax^2+kx+)$	Uses $(x + 1)$ as a factor and obtains at least the first 2 terms of a quadratic with an ax^2 term and an x term. This might be by inspection or by long division.	M1
	$(x+1)(3x^2-11x+6)$	Correct quadratic factor	A1
	$3x^2 - 11x + 6 = (3x - 2)(x - 3)$	Attempt to factorise their 3 term quadratic according to the general guidance, even if there was a remainder and $(x + 1)$ must have been used as a factor.	M1
	Note that $3x^2 - 11x + 6 = (x - 1)x + 6 = (x - 1)$	$-\frac{2}{3}$) $(x-3)$ scores M0 here	
	but $3x^2 - 11x + 6 = 3(x - \frac{2}{3})$	(x-3) is fine for M1	
	$(f(x) =)(x+1)(3x-2)(x-3)$ or $(f(x) =)3(x+1)(x-\frac{2}{3})(x-3)$	Fully correct factorisation. The factors need to appear together all on one line and no commas in between.	A1
	Answers with no v		
	$f(x) = 3x^3 - 8x^2 - 5x + 6 = (x+1)(3)$	(3x-2)(x-3) scores full marks	
	$f(x) = 3x^3 - 8x^2 - 5x + 6 = (x+1)(x-\frac{2}{3})(x+1)(x+1)(x+1)$:-3) scores a special case M1A1M0A0	
	<u>Just</u> writing down roots of th		
	Ignore any "= 0" and also ignore any subsequent attempts to solve $f(x) = 0$ once the factorised form is seen.		
	factorised for	11 15 50011.	(4)
			Total 9

Question Number	Scheme	Notes	Marks
7(a)	(V =) x(25-2x)(15-2x)	Correct method for the volume. It must be a correct statement for the volume.	M1
	$(V) = x(375 - 80x + 4x^{2})$ Allow the terms of $4x^{3} - 80x$	$(x) = 4x^3 - 80x^2 + 375x *$	A1*
•	Completes correctly to printed answer w	ith no errors including bracketing errors	
	E.g. $V = 25x - 2x^2(15 - 2x) = 4$		
-	"V=" or e.g. "Volume = " $V = V_{\text{or}} =$		
	$V = x(25-2x)(15-2x) = 4x^3 - 80x^2 + 4x^2 - 80x^2 + 4x^2 - 80x^2 + 4x^2 - 80x^2 + 8x^2 - 80x^2 + 8x^2 - $		
<u>-</u>	$V = x(25-2x)(15-2x) = (25x-2x^2)(15-2x)$	$(5-2x) = 4x^3 - 80x^2 + 3/5x$ scores M1A1	(2)
	Mark (b), (c) and (d) together so that co	antinuod work with $r = 3.03$ in (a) and	(2)
	(d) can be taken as evidence that the c		
	Allow e.g. $\frac{dy}{dx}$ for $\frac{dV}{dx}$. 2	
(b)		M1: $x^n \to x^{n-1}$ seen at least once	M1A1
_	$\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right) = 12x^2 - 160x + 375$	A1: Correct derivative	MIAI
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 0 \Rightarrow x = \frac{160 \pm \sqrt{7600}}{24}$	Puts $\frac{dV}{dx} = 0$ (may be implied) and attempts to solve a 3 term quadratic to find x. May be implied by correct	M1
<u> </u>	values.		
	x = 3.03, 10.3 but $0 < x < 7.5$ so $x = 3.03$	Identifies awrt 3.03 only as the required value.	A1
_	out 0 × x × 7.3 30 x 3.03	required variae.	(4)
(c)	$\left(\frac{d^2V}{dx^2}\right) = 24x - 160 = 24(3.03) - 160$	Attempts the second derivative $(x^n \to x^{n-1})$ and substitutes at least one	M1
	$\left(dx^{2}\right)$	positive value of x from their $\frac{dV}{dx} = 0$	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = 24(3.03) - 160 \implies \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} < 0 \therefore \text{ maximum}$		
	Fully correct proof for the maximum using a correct second derivative and using $x = \text{awrt } 3$ only. There must be a substitution and there must be a reference to the sign of the second derivative. A value for the second derivative is not needed and if the evaluation is incorrect, provided all the other conditions are met, this mark can be		A1
=	awarded. Accept statements such as "negative so x is the maximum" Allow alternatives e.g. considers values of V at, and either side of "3.03" or		
	values of dV/dx either side of "3.03"		
(D)		Substitutes (22) C (1)	(2)
(d)	$V = 4(3.03)^3 - 80(3.03)^2 + 375(3.03)$	Substitutes a (positive) x from their $\frac{dV}{dx} = 0 \qquad \text{into the given } V \text{ or a}$ "version" of V .	M1
	V = 513	Awrt 513	A1
	Note that $V = $ awrt 5	13 only scores M1A1	
			(2)
			Total 10

Question Number	Scheme	Notes	Marks	
8(a)	(-4, 7)	5		
	Reflection in the <i>y</i> -axis. Needs to be a positive minimum in the second quadrant. The curlet should be a curve and not a	rve must at least reach both axes.	B1	
	Passes through $(-6, 0)$ and $(0, 5)$. Allow -6 and allow $(0, -6)$ and $(5, 0)$ as long as they are sketch but this mark can be awarded if the correction the script provided they correspond with the If there is any ambiguity, the sketch take coordinates are seen in the script, allow sig the sketch	nd 5 to be marked in the correct places in the correct places. There must be a ect coordinates are given in the body of sketch. Ignore any other intercepts. The correct is precedence but if the correct in errors when transferring them to	B1	
	Maximum at $(-4, 7)$ and minimum at $(-1, 3)$ in the second quadrant. Must be seen as correct coordinate pairs or as numbers marked on the axes that clearly indicate the position of the maximum or minimum. There must be a sketch but this mark can be awarded if the correct coordinates are given in the body of the script provided they correspond with the sketch. Ignore any other turning points. If there is any ambiguity, the sketch takes precedence but if the correct coordinates are seen in the script, allow sign errors when transferring them to			
	the sketch.			
(b)	5 (0.5,	3)		
	A stretch in the x direction. Need to see $(x, y) \rightarrow (k)$ must be no evidence of a chang The curve must at least reach both axes. It should	e in ant y coordinates.	B1	
	Passes through (3, 0) and (0, 5). Allow 3 and 5 to (0, 3) and (5, 0) as long as they are in the correct pl can be awarded if the correct coordinates are give correspond with the sketch. Ignote the correct is any ambiguity, the sketch is any ambiguity, the sketch is any ambiguity.	aces. There must be a sketch but this mark in the body of the script provided they are any other intercepts.	B1	
	Minimum at $\left(\frac{1}{2}, 3\right)$ and maximum at $(2, 7)$. in to coordinate pairs or as numbers marked on the axe maximum or minimum. There must be a sketch by coordinates are given in the body of the script program Ignore any other turn. If there is any ambiguity, the sketch is any ambiguity, the sketch is any ambiguity.	at this mark can be awarded if the correct ovided they correspond with the sketch. ning points.	B1	
			(3)	
			Total 6	

Question Number	Scheme	Notes	Mark	ζS
9(a)	$t_5 = ar^{n-1} = 20 \times 0.9^{5-1} = 13.122$	M1: Use of a correct formula with $a = 20$, $r = 0.9$ and $n = 5$. Can be implied by a correct answer. A1: 13.122 or $\frac{6561}{500}$. Apply isw but just 13.1 is A0.	M1A1	
	MR: Some are misreading fifth as $t_{15} = ar^{n-1} = 20 \times 0.9^{15-1} = 4.57$ or t_{15}	fifteenth or fiftieth and find		
	Allow M1A0 in the Listing: Need to see a fully correct e.g. 20, 18, 16.2, 14.58, 13.122 Must reach and not bee se	attempt to find the fifth term wrt 13 and intermediate decimals may		
•	Just 13.122 with no workin	g scores both marks		
<u>-</u>				(2)
(b)	$S_8 = \frac{a(1-r^n)}{1-r} = \frac{20(1-0.9^8)}{1-0.9} = 113.9$	M1: Use of a correct formula with $a = 20$, $r = 0.9$ and $n = 8$ A1: 113.9 only	M1A1	
-	Listing: Need to see a fully correct method			
-	e.g. 20 + 18 + 16.2 + 14.58 ++ 9.565938 =	= 113.9 (May be implied by awrt 114)		
_				(2)
(c)	20	Correct S which can be simplified		(2)
(0)	$S_{\infty} = \frac{20}{1-0.9} (=200)$	Correct S_{∞} which can be simplified or un-simplified.	B1	
	$200 - \frac{20(1 - 0.9^{N})}{1 - 0.9} < 0.04$	M1: Attempts $S_{\infty} - S_N < 0.04$ (allow n for N) using $a = 20$ and $r = 0.9$ A1: Correct inequality in any form in terms of N or n only.	M1A1	
	Note that $\frac{20}{1-0.9} - \frac{20(1-0.9^N)}{1-0.9} < 0.04 \text{ scores B1M1A1}$			
	$0.9^{N} < 0.0002*$	Reaches the printed answer with intermediate working and with no errors or incorrect statements	A1*	
			((4)
(d)	$(N >) \frac{\log 0.0002}{\log 0.9} \Rightarrow N = 81$	M1: Correct attempt to find N ignoring what they use for ">" i.e. they could be using < or =. Look for $(N =) \frac{\log 0.0002}{\log 0.9}$ or $(N =) \log_{0.9} 0.0002$ May be implied by awrt 81	M1A1	
		A1: 81 only. Accept 81 only or $N/N = 81$ but not $N/N = 81$		
-	81 <u>only</u> with no working	N/n = 81 but not $N/n > 81$.		
-	or only with no working	SCOLES DOM MAIRS		(2)
			Total 1	

Question Number	Scheme	Notes	Marks
10(i)	Examples:		
	$3\log_8 2 = \log_8 2^3$, $3\log_8 2 = \log_8 8$	Demonstrates a law or property of logs on	B1
	$3\log_8 2 = 1$, $\log_8 2 = \frac{1}{3}$, $2 = \log_8 64$	either of the constant terms.	
	Examples:		
	$\log_{8}(7-x) - \log_{8} x = \log_{8} \frac{(7-x)}{x}$ $\log_{8} 64 + \log_{8} x = \log_{8} 64x$	Demonstrates the addition or subtraction law of logs on two terms, at least one of which is in terms of <i>x</i> .	B1
	$\log_8 8 + \log_8 (7 - x) = \log_8 8(7 - x)$	which is in terms of x.	
		as described and award the marks where	
		nd some incorrect work, do not look to	
		incorrect statements.	
	$\log_8 8(7-x) = \log_8 64x$, $\log_8 \frac{(7-x)}{x}$	$\frac{1}{x} = 1$, $\log_8 \frac{(7-x)}{8x} = 0$, $\log_8 \frac{8(7-x)}{x} = 2$	M1
	Correct processing leading to one of these equations or the equivalent. NB needs to be a correct equation.		1411
	$8(7-x) = 64x$, $\frac{(7-x)}{x} = 8$, $\frac{7-x}{8x} = 1$, $\frac{8(7-x)}{x} = 64$		A1
	Correct equation with logs removed Accept equivalents but must be exact e.g.		
	$x = \frac{7}{9}$	$\frac{56}{72} \text{ or } 0.777 \text{ or } 0.7 \text{ with a dot over the } 7$	A1
		12	(5)
(ii)	$3^{2y} +$	$3^{y+1} = 10$, , , , , , , , , , , , , , , , , , ,
	$3^{y} \times 3^{y} + 3 \times 3^{y} = 10 \text{ or } 3^{y} (3^{y} + 3) = 10 \text{ or } (3^{y})^{2} + 3 \times 3^{y} = 10 \text{ or } x = 3^{y} \Rightarrow x^{2} + 3x = 10$		B1
	A correct qua	ndratic in x (or 3^y)	
	$x^2 + 3x - 10 = 0 \Longrightarrow x = \dots$	Correct attempt to solve a quadratic equation of the form $ax^2 + bx \pm 10 = 0$ (may be a letter other than x or may be 3^y etc.)	M1
	x=2 or x=2 and -5	Correct values.	A1
	$3^{y} = 2 \Rightarrow y = \log_3 2 \text{ or } \frac{\log 2}{\log 3}$	Correct use of logs. Need to see $3^y = k \Rightarrow y = \log_3 k$ or $\frac{\log k}{\log 3}$, $k > 0$ which may be implied by awrt 0.63. Allow lg and ln for log.	dM1
	$y = \log_3 2 \text{ or } y = \frac{\log 2}{\log 3}$	Cao (And no incorrect work using "-5"). Give BOD but penalise very sloppy notation e.g. log3(2) for log ₃ 2 if necessary.	A1
			(5)
			Total 10

(ii)	$3^{2y} + 3^{y}$	y+1 = 10	
Way 2	$3^{2y} + 3^{y+1} = (3^2)^y + 3(9)^{0.5y}$ $\Rightarrow 9^y + 3(9)^{0.5y} = 10$	Correct quadratic in 9 ^{0.5y}	B1
	2 2 10 0 2(5)	M1: Correct attempt to solve a quadratic equation of the form	
	$x^2 + 3x - 10 = 0 \Rightarrow x = 2(\text{or } -5)$	$ax^2 + bx - 10 = 0$ (may be a letter other than x or may be $9^{0.5y}$ etc.) A1: Correct solution(s)	M1A1
		Correct use of logs. Need to see	
	$9^{0.5y} = 2 \Rightarrow 0.5y = \log_9 2 \text{ or } \frac{\log 2}{\log 9}$	$9^{0.5y} = k \Rightarrow 0.5y = \log_9 k \text{ or } \frac{\log k}{\log 9}, k > 0$	dM1
	$y = 2\log_9 2 \text{ or } y = \frac{2\log 2}{\log 9}$	Cao (And no incorrect work using "-5")	A1
			(5)

Question Number	Scheme	Notes	Marks		
	Mark (a)(i) and (ii) together				
11(a)(i)					
•	Attempts to complete the square on x and y o	r sight of $(x\pm 4)^2$ and $(y\pm 5)^2$. May be			
	implied by a centre of $(\pm 4, \pm 5)$. Or if consider				
	$(\pm g, \pm f)$.				
	Centre is (4, 5)	Correct centre	A1		
	Correct answer scor	es both marks			
(ii)	$r^2 = (\pm "4")^2 + (\pm "5")^2$	-16 (Must be -16)	M1		
	Must rea	ch:			
	r^2 = their $(\pm 4)^2$ + their $(\pm 5)^2$ -16 or r	$= \sqrt{\text{their } (\pm 4)^2 + \text{their } (\pm 5)^2 - 16}$			
	or if using $x^2 + y^2 + 2gx + 2fx + c = 0$, r^2	$g^2 = g^2 + f^2 - c$ or $r = \sqrt{g^2 + f^2 - c}$			
	Must clearly be identifying	the radius or radius ²			
	May be implied by a	correct radius.			
	r=5		A1		
	Correct answer scor	es both marks	(4)		
(b)	$MT^2 = (20 - "4")^2 + (12 - "5")^2 (= 305)$	Fully correct method using Pythagoras for <i>MT</i> or <i>MT</i> ²	M1		
	Other methods may be seen for finding MT.				
	E.g. $\tan \theta = \frac{7}{16} \Rightarrow \theta = 23.6, MT = \frac{7}{\sin \theta} = 17.46$				
	Needs a fully correct method for MT				
	$MT = \sqrt{305}$	Must be exact	A1		
	Beware incorrect work leading to a correct answer e.g.				
	$MT^2 = \sqrt{(20-4)^2 + \sqrt{(12-5)^2}} = \sqrt{2}$	$256 + \sqrt{49} = \sqrt{305} \text{ scores M0}$			
			(2)		
(c)	$\left(MP^2\right) = MT^2 - "5"^2$	Correct method for MP or MP ² where MT > "5"	M1		
	Area $MTP = \frac{1}{2} \times "5" \times "\sqrt{280}"$ $5\sqrt{70}$	Correct triangle area method	M1		
	$5\sqrt{70}$	cao	A1		
			(3)		
	Alternative 1				
	$\cos PTM = \frac{"5"}{\sqrt{"305"}} \sin PMT = \frac{"5"}{\sqrt{"305"}}$	Correct method for angle PTM or PMT (NB $PTM = 73.36, PMT = 16.63)$	M1		
	Area $MTP = \frac{1}{2} \times "5" \times "\sqrt{305}" \times \sqrt{\frac{56}{61}}$	Correct triangle area method. May not work with exact values but needs to be a fully correct method using their values.	M1		
	5√70	Cao. Note that $5\sqrt{70} = 41.83$. which might imply a correct method.	A1		
			Total 9		

Question Number	Scheme	Notes	Marks
12(a)	p = 4 or q = 5	One correct value. May be implied by e.g. when $x = -1$, $y = 4$ or when $y = 2$, $x = 5$	B1
	p = 4 and $q = 5$	Both correct values. May be implied by e.g. when $x = -1$, $y = 4$ and when $y = 2$, $x = 5$	B1
			(2)
(b)	$AB^{2} = ("4"-2)^{2} + (-1 - "5")^{2}$ or $AB = \sqrt{("4"-2)^{2} + (-1 - "5")^{2}}$	Correct Pythagoras method using $(-1, "4")$ and $("5", 2)$ to find AB or AB^2	M1
	$(AB) = 2\sqrt{10}$	$2\sqrt{10}$ only	A1
	, ,		(2)
(c)	$M = \left(\frac{-1 + 5}{2}, \frac{4}{2}\right) = (2, 3)$	Correct midpoint method. May be implied by at least one correct coordinate if no working is shown.	M1
	Gradient of $l_1 = -\frac{1}{3}$	Correct gradient of l_1 . Allow equivalent exact expressions. May be implied by a correct perpendicular gradient.	B1
	Perpendicular gradient = 3	Correct perpendicular gradient rule. This can be awarded for a correct value or a correct method e.g. $m = \frac{-1}{-\frac{1}{3}} \text{ or } \frac{-1}{3} \times m = -1 \Rightarrow m = \dots$	M1
	y-"3" = "3"(x-"2") or $y = mx + x \Rightarrow "3" = "3" \times "2" + c \Rightarrow c =$	Correct straight line method using their midpoint and a "changed" gradient. If using $y = mx + c$, they must reach as far as a value for c .	M1
	y = 3x - 3	cao	A1
	*		(5)
	Alternative for last		
	3x - y + c = 0	B1: " $3x - y$ " M1: $3x - y + c = 0$	B1M1
	$3(2)-3+c=0 \Rightarrow c=-3$	Correct method to find <i>c</i> using their values	M1
	y = 3x - 3	cao	A1
			Total 9

Question Number	Scheme	Notes	Marks
13(a)	$(APN =) 360^{\circ} - 314^{\circ} = 46^{\circ}$ $(APB =) 46^{\circ} + 52^{\circ} = 98^{\circ}$ or $(Reflex APB) = 314^{\circ} - 52^{\circ} = 262^{\circ}$ $(APB =) 360^{\circ} - 262^{\circ} = 98^{\circ}$ or Shows on a sketch the 314 and 46 And states $46^{\circ} + 52^{\circ} = 98^{\circ}$	Correct explanation that explains why APN is 46° (e.g. $360^{\circ} - 314^{\circ}$) and adds that to 52° or shows/states that reflex $APB = 262^{\circ}$ and so $APB = 360^{\circ} - 262^{\circ} = 98^{\circ}$. Do not be overly concerned how they use the letters to reference angles as long as the correct calculations are seen. Do not allow the use of $AB = 9.8$ from (b).	B1
<i>a</i>)			(1)
(b)	$(AB^2 =)8.7^2 + 3.5^2 - 2 \times 8.7 \times 3.5 \cos 98^\circ$	Correct use of cosine rule. You can ignore the lhs for this mark so just look for $8.7^2 + 3.5^2 - 2 \times 8.7 \times 3.5 \cos 98^\circ$	M1
	AB = 9.8 (km)	Awrt 9.8 km (you can ignore their intermediate value for AB^2 provided awrt 9.8 is obtained for AB)	A1
		,	(2)
(c) Way 1	$\frac{"9.8"}{\sin 98^{\circ}} = \frac{3.5}{\sin PAB}$ or $3.5^{2} = 8.7^{2} + "9.8"^{2} - 2 \times 8.7 \times "9.8" \cos PAB$ $\Rightarrow PAB =$	Correct sine or cosine rule method to obtain angle <i>PAB</i> . May be implied by awrt 21°	M1
	<i>PAB</i> = 20.66°	Allow awrt 21°. May be implied by a correct bearing.	A1
	Bearing is 180° – "20.66° " – 46°	Fully correct method	M1
	= 113° or 114°	Awrt 113° or awrt 114°	A1
(c) Way 2	$\frac{"9.8"}{\sin 98^{\circ}} = \frac{8.7}{\sin PBA}$ or $8.7^{2} = 3.5^{2} + "9.8"^{2} - 2 \times 3.5 \times "9.8" \cos PBA$ $\Rightarrow PBA =$	Correct sine or cosine rule method to obtain angle <i>PBA</i> . May be implied by awrt 61° or 62°	M1
	<i>PBA</i> = 61.33°	Allow awrt 61° or awrt 62°. May be implied by a correct bearing.	A1
	Bearing is 52° + "61.33°"	Fully correct method	M1
	= 113° or 114°	Awrt 113° or awrt 114°	A1
			(4)
(c) Way 3	Let $\alpha = \text{Bearing} - 90^{\circ}$		
	$\tan \alpha = \frac{BC}{AC} = \frac{8.7\cos 46^{\circ} - 3.5\cos 52^{\circ}}{8.7\sin 46^{\circ} + 3.5\sin 52^{\circ}}$	Correct method for a	M1
	α = 23.33°	Allow awrt 23°. May be implied by a correct bearing.	A1
	Bearing is 90° + "23.33°"	Fully correct method	M1
	= 113° or 114°	Awrt 113° or awrt 114°	A1
			(4)
			Total 7

Diagram for Q13

Question Number	Scheme	Notes	Marks	
14	$y = 8 - x, \ y = 3$	$14 + 3x - 2x^2$		
(a)	$8-x = 14+3x-2x^{2}$ or $y = 14+3(8-y)-2(8-y)^{2}$	Uses the given line and curve to obtain an equation in one variable.	M1	
	$2x^{2}-4x-6=0 \Rightarrow x = \dots$ or $2y^{2}-28y+90=0 \Rightarrow y = \dots$	Solves their 3TQ as far as $x =$ or $y =$ Dependent on the first method mark.	dM1	
	x = -1, $x = 3$ or $y = 5$, $y = 9$	Correct x values or correct y values	A1	
	(-1, 9) (3, 5)	ddM1: Solves for y or x using at least one value of x or y. Dependent on both previous method marks.	ddM1A1	
		A1: Correct coordinates which do not need to be paired so just look for correct values.		
	Special case: Fully correct answers only v	vith no working scores M0M0A0M1A1		
			(5)	

(b)	A	H B G	
WAY 1	Adds areas F		
	$x = 0 \Rightarrow y = 8 \text{ or } \int (8-x) dx = 8x - \frac{x^2}{2}$	Correct y intercept which may be seen on the diagram or correct integration of $8-x$	B1
	$14+3x-2x^2=0 \Rightarrow x=3.5$ Correct value - may be seen on the diagram.		
	$\int (14+3x-2x^2) dx = 14x + \frac{3x^2}{2} - \frac{2x^3}{3} (+c)$	M1: $y^n > y^{n+1}$ on at least two	M1A1
	$\left[\dots \right]_{"3"}^{"3.5"} = \left(49 + \frac{147}{8} - \frac{343}{12} \right) - \left(42 + \frac{27}{2} - 18 \right)$ $\left(= \frac{31}{24} \right)$	Correct use of their limits "3" and "3.5" either way round on their integrated curve <i>C</i> . Must be a "changed" function.	M1
	Trapezium: $\frac{1}{2} \times "3" ("8" + "5") \left(= \frac{39}{2} \right)$ or $\left[8x - \frac{x^2}{2} \right]_0^{"3"} = 8(3) - \frac{(3)^2}{2} (-0)$	Correct method for the area of the trapezium between $x = 0$ and $x = 3$ using their values. If using the integration, the integration must be correct and used correctly.	M1
	Area $R = \frac{39}{2} + \frac{31}{24} = \frac{499}{24}$ in	M1: Adds their trapezium area and tegrated area (dependent on <u>all</u> evious method marks) 1: Allow exact equivalents e.g. $20\frac{19}{24}$	d M1A1

WAY 2	Adds areas E, F and H and subtracts area H				
	$\pm (\text{curve-line}) = \pm \left(14 + 3x - 2x^2 - (8 - x)\right)$ $14 + 3x - 2x^2 = 0 \Rightarrow x = 3.5$ Correct value - may be seen on the diagram. $\int \left(14 + 3x - 2x^2\right) dx = 14x + \frac{3x^2}{2} - \frac{2x^3}{3}(+c)$ Or $\frac{M1: x^n \to x^{n+1} \text{ on at least two terms for the curve } C \text{ or their } \pm (\text{curve-line})$				
	$\int \pm (\text{curve-line}) dx = \pm \left(\text{"}6x + 2x^2 - \frac{2x^3}{3} \text{"} \right) (+c)$ A1: Correct integration but allow correct ft integration for slips on their $\pm (\text{curve-line}) (\text{ignore} + c)$				
	$\left[\dots \right]_{0}^{"3.5"} = \left(49 + \frac{147}{8} - \frac{343}{12} \right) - (0) \left(= \frac{931}{24} \right)$	Correct use of their upper limit "3.5" and 0 (which may be implied) either way round on their integrated curve <i>C</i> . Must be a "changed" function.	M1		
	$\left[6x + 2x^2 - \frac{2x^3}{3}\right]_0^{3} = 6(3) + 2(3)^2 - \frac{2(3)^3}{3}(-0)$				
	Correct use of their "3" and 0 (which may be implied) either way round on their integrated ±(curve – line). Must be a "changed" function.				
	Area $R = \frac{931}{24} - 18 = \frac{499}{24}$ me	11: Subtracts (curve – line) area from eve area (dependent on <u>all</u> previous thod marks) : Allow exact equivalents e.g. $20\frac{19}{24}$	dM1A1		

WAY 3	Adds areas E, F and G and subtracts area G			
	$x = 0 \Rightarrow y = 8$ or $\pm (\text{line - curve}) = \pm \left(8 - x - \left(14 + 3x - x\right)\right)$ or $\cot \int (8 - x) dx = 8x - \frac{x^2}{2}$	$(2x^2)$	Correct y intercept - may be seen on the diagram. Or correct \pm (curve-line) or correct integration of $8-x$	B1
	$14 + 3x - 2x^2 = 0 \Longrightarrow x = 3.5$	Correct diagram	value - may be seen on the	B1
	$\int \pm (\text{line} - \text{curve}) dx = \pm \left(\frac{2x^3}{3} - 6x - 2x^2\right) (+c)$	their ±(A1: Cor ft integr	$\rightarrow x^{n+1}$ on at least two terms for (curve-line) rect integration but allow correct ration for slips on their $(e-line)$ (ignore + c)	M1A1
	$\left[\left[\frac{2x^3}{3} - 6x - 2x^2 \right]_{3}^{3} = \frac{2("3.5")^3}{3} - 6("3.5") - 2("3.5")^2 - \left(\frac{2("3")^3}{3} - 6("3") - 2("3")^2 \right) \right]_{3}^{3}$		M1	
	Correct use of their "3" and "3.5" either way round on their integrated ±(curve – line). Must be a "changed" function.			
	Trapezium: $\frac{1}{2} \times "3.5" ("8" + "4.5") \left(= \frac{175}{8} \right)$ or $\left[8x - \frac{x^2}{2} \right]_0^{"3.5"} = 8(3.5) - \frac{(3.5)^2}{2} (-0)$	trapeziu using th integrat	method for the area of the arm between $x = 0$ and $x = "3.5"$ neir values. If using the and used correctly.	M1
	Area $R = \frac{175}{8} - \frac{13}{12} = \frac{499}{24}$	trapeziu previou	ubtracts (line – curve) area from area (dependent on <u>all</u> as method marks) ow exact equivalents e.g. $20\frac{19}{24}$	d M1A1
				(8) Total 13

Q14(b) COMBINED SCHEME

B1 $x = 0 \rightarrow y = 8$ (May be seen on the diagram)

OR: Correct integration of 8 - x, giving $8x - \frac{x^2}{2}$

OR: $\pm (curve - line) = \pm (14 + 3x - 2x^2 - (8 - x))$

B1 $14 + 3x - 2x^2 = 0 \rightarrow x = 3.5$ (May be seen on the diagram).

M1 Integration of the curve quadratic or their $\pm (curve - line)$ quadratic expression with $x^n \rightarrow x^{n+1}$ for at least two terms.

A1 Completely correct integration of the quadratic expression, even if mistakes have been made in 'simplifying' their quadratic expression. Ignore "+ c". (So the M1A1 is essentially given for correct integration).

N.B. "integrated curve" = " $\left(14x + \frac{3x^2}{2} - \frac{2x^3}{3}\right)$ "

"integrated (curve – line)" = " $\left(6x + 2x^2 - \frac{2x^3}{3}\right)$ "

Next two M marks for any one of the following three variations, with correct use of their limits on their integrated function (must be a "changed" function) or correct method for the appropriate trapezium using their values:

M1 1(i) ["integrated curve"]
$${3.5}$$
" = ... $\left(\frac{31}{24}\right)$

M1 1(ii)
$$\left[8x - \frac{x^2}{2}\right]^{"3"} = \cdots \text{ or } \frac{1}{2} \times "3" \times ("8 + "5")$$
 $\left(\frac{39}{2}\right)$

M1 2(i) ["integrated curve"]
$$\frac{"3.5"}{0} = \cdots$$
 $\left(\frac{931}{24}\right)$

M1 2(ii) ["integrated
$$\pm$$
 (curve – line)"] ${}^{"3"}_{0} = \cdots$ (18)

M1 3(i) ["integrated
$$\pm$$
 (line – curve)"]"3.5" = \cdots $\left(\frac{13}{12}\right)$

M1 3(ii)
$$\left[8x - \frac{x^2}{2}\right]^{"3.5"} = \cdots$$
 or $\frac{1}{2} \times "3.5" \times ("8 + "4.5")$ $\left(\frac{175}{8}\right)$

dM1 (Dependent on all previous method marks). Attempts the correct combination, which must be either 1(i) + 1(ii), or 2(i) - 2(ii), or 3(ii) - 3(i).

A1 $\frac{499}{24}$ or exact equivalent, e.g. $20\frac{19}{24}$

(b) $nk = 36$ Correct equation (oe). Can score anywhere. 36($n-1$) = 252 Uses a valid method with their $nk = 36$ and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. 36 $n-36=252\Rightarrow n=8$ dM1: Solves, using a correct method, to obtain a value for n or k $n=8\Rightarrow k=4.5$ or $k=4.5\Rightarrow n=8$ Correct values for n and k Special Case: Some candidates have a second term of nx which gives $n=36$ and then solve $kn(n-1)=252$ to give $k=0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ Correct coefficient. May be implied by $56k^3$ or ${}^{7x}C_3$ " k " with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer n , $n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 8(8-1)(8-2) 3!$ Allow $5103x^3$ Allow	Question Number	Scheme	Notes	Marks		
Compares x^2 terms using one of these forms, with or without the x^2 . $kn(n-1) = 252 *$ Obtains the printed equation from $\frac{n(n-1)}{2}k^2 = 126k$ or $\frac{n(n-1)}{2}k^2x^2 = 126kx^2$ Note that these are acceptable proofs: $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 252k \Rightarrow nk(n-1) = 252$ (b) $nk = 36$ Correct equation (oc). Can score anywhere. Uses a valid method with their $nk = 36$ and the given equation to obtain an equation in $n \text{ or k only}$. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. $36n - 36 = 252 \Rightarrow n = 8$ or $\frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow \frac{36n - 36 = 252 \Rightarrow n = 8}{2} \Rightarrow 36n - 36 \Rightarrow n = 36$	15	$(1+kx)^{n} = 1 + nkx + \frac{n(n-1)}{2}k^{2}x^{2}$				
Obtains the printed equation from $\frac{n(n-1)}{2}k^2 = 126k$ or $\frac{n(n-1)}{2}k^2x^2 = 126kx^2$ Note that these are acceptable proofs: $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 252k \Rightarrow nk(n-1) = 252$ (b) $nk = 36$ $Correct equation (oe).$ $Can score anywhere.$ $Uses a valid method with their nk = 36 and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. 36n - 36 = 252 \Rightarrow n = 8 or \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} or \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} or \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} or \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Orect value for n or k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Orect value for n or k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n and k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Orect values for n or k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n and k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n or k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Orect values for n or k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n and k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n or k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n and k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct values for n and k \frac{36n - 36 = 252 \Rightarrow n = 8}{36n - 36 = 252 \Rightarrow n = 8} Correct coefficient. May be implied by 56k^3 or 5^n or 5^n$	(a)					
Obtains the printed equation from $\frac{n(n-1)}{2}k^2 = 126k$ or $\frac{n(n-1)}{2}k^2x^2 = 126kx^2$ Note that these are acceptable proofs: $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)k^2}{2} = 252k \Rightarrow nk(n-1) = 252$ (b) $nk = 36$ Correct equation (oe). Can score anywhere. Uses a valid method with their $nk = 36$ and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. $36n - 36 = 252 \Rightarrow n = 8$ or $4n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n or k A1: Correct value for n or k A2: Correct values for n and k Special Case: Some candidates have a second term of nx which gives $n = 36$ and then solve $kn(n-1) = 252$ to give $k = 0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ Correct coefficient. May be implied by $56k^3$ or 8^n C, 8^n with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer n , $n > 3$, to obtain a value for the coefficient of x^2 . Must be a correct acquation for the x^3 coefficient for their values. $= 8(8-1)(8-2) \cdot 4.5^2 = \dots$ 3! Answer only of 5103 scores BIMIA1						
Obtains the printed equation from $\frac{N(N-3)}{2}k^3 = 126k$ or $\frac{N(N-3)}{2}k^2x^2 = 126kx^2$ Note that these are acceptable proofs: $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } n(n-1)k^2 = 252k \Rightarrow nk(n-1) = 252$ (b) $nk = 36$ $Correct equation (oe).$ $Can score anywhere.$ Uses a valid method with their $nk = 36$ and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. $36n - 36 = 252 \Rightarrow n = 8$ or $48 \Rightarrow k = 4.5 \text{ or } k = 4.5$ $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n or k $N1 \Rightarrow k = 36$ $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n or k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n and k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n and k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n and k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n and k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n and k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct values for n and k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8$ Correct coefficient. May be implied by $56k^3$ or 7^{8} C ₃ " k^n with or without k^n in k^n and k^n for working is shown, you may need to check their values. Substitutes their values correctly including integer n , $n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $n = \frac{8(8-1)(8-2)}{3!} \cdot 4.5^3 = \dots$ Allow $5103x^n$ Allow $103x^n$				4 1 16		
$\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } n(n-1)k^2 = 252k \Rightarrow nk(n-1) = 252$ $\frac{n(n-1)}{2}k^2x^2 \text{ followed by } n(n-1)k^2 = 252k \Rightarrow nk(n-1) = 252$ $\frac{nk = 36}{36(n-1) = 252} \qquad \text{Correct equation (oe).} \qquad \text{B1}$ $\frac{36(n-1) = 252}{36(n-1) = 252} \qquad \text{Duses a valid method with their } nk = 36 \text{ and the given equation to obtain an equation in } n \text{ or } k \text{ only. It must be a correct algebraic method, allowing for sign and/or arithmetic slips only.} \qquad dM1: Solves, using a correct method, to obtain a value for n or k allow 510s n = 8 because n = 8 correct values for n = 8 and then solve n = 8 correct values for n = 8 and then solve n = 8 correct values for n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient. May be implied by n = 8 correct coefficient for the n = 8 coef$		Obtains the printed equation from $\frac{n(n-1)}{2}$	$k^2 = 126k$ or $\frac{n(n-1)}{2}k^2x^2 = 126kx^2$	AI*		
(b) $nk = 36$						
(b) $nk = 36$ $Correct equation (oe).$ $Can score anywhere.$ $Uses a valid method with their nk = 36 and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. 36n - 36 = 252 \Rightarrow n = 8 or 36n - 36 = 252 \Rightarrow n = 8 or \frac{36}{k} - 1 = 7 \Rightarrow k = 4.5 n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8 3ectal Case: Some candidates have a second term of nx which gives n = 36 and then solve kn(n-1) = 252 to give k = 0.2. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k. (c) \frac{n(n-1)(n-2)}{3!}k^3(x^3) \frac{n(n-1)(n-2)}{3!}k^3(x^3) \frac{n(n-1)(n-2)}{3!}(x^3) n(n$		$\frac{n(n-1)}{2}k^2x^2 \text{ followed by } \frac{n(n-1)}{2}k = 126 \Rightarrow nk(n-1) = 252$				
(b) $nk = 36$ Correct equation (oe). Can score anywhere. Uses a valid method with their $nk = 36$ and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. $36n-36=252\Rightarrow n=8$ or $\frac{36}{k}-1=7\Rightarrow k=4.5$ $\frac{36}{k}-1=7\Rightarrow k=4.5$ $\frac{36}{k}-1=7\Rightarrow k=4.5$ $\frac{36}{k}-1=7\Rightarrow k=4.5$ Correct value for n or k $\frac{36}{k}-1=7\Rightarrow k=4.5$ $\frac{36}{k}-1=7\Rightarrow k=4.5$ Correct values for n and k A1 Special Case: Some candidates have a second term of nx which gives $n=36$ and then solve $kn(n-1)=252$ to give $k=0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ Correct coefficient. May be implied by $56k^3$ or 78 C ₃ " $k^{1/3}$ with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer n , $n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= \frac{8(8-1)(8-2)}{3!}4.5^3 = \dots$ $= \frac{8103}{3!}$ Allow $\frac{5103}{3!}$ Allow $\frac{5103}{3$		$\frac{n(n-1)}{2}k^2x^2 $ followed by $n(n-1)k$	$k^2 = 252k \Rightarrow nk(n-1) = 252$			
The second state of the s				(2)		
Uses a valid method with their $nk = 36$ and the given equation to obtain an equation in n or k only. It must be a correct algebraic method allowing for sign and/or arithmetic slips only. $36n-36=252\Rightarrow n=8$ or $4M1: \text{ Solves, using a correct method, to obtain a value for n or k n=8\Rightarrow k=4.5 \text{ or } k=4.5\Rightarrow n=8 Correct value for n or k n=8\Rightarrow k=4.5 \text{ or } k=4.5\Rightarrow n=8 Correct values for n and k Special Case: Some candidates have a second term of nx which gives n=36 and then solve kn(n-1)=252 to give k=0.2. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k. (c) \frac{n(n-1)(n-2)}{3!}k^3(x^3) Correct coefficient. May be implied by 56k^3 or {}^{8}^{2}C_3{}^{2}k^{3} with or without x^3. If no working is shown, you may need to check their values correctly including integer n, n > 3, to obtain a value for the coefficient of x^3. Must be a correct calculation for the x^3 coefficient for their values. = \frac{8(8-1)(8-2)}{3!}4.5^3 = \dots Allow 5103x^3 Allow 5103x^3 Allow 5103x^3 Allow 5103x^3 Allow 5103x^3 Allow 5103x^3$	(b)	nk = 36		B1		
must be a correct algebraic method allowing for sign and/or arithmetic slips only. $36n-36=252\Rightarrow n=8$ or $36n-36=252\Rightarrow n=8$ or $\frac{36}{k}-1=7\Rightarrow k=4.5$ $n=8\Rightarrow k=4.5 \text{ or } k=4.5\Rightarrow n=8$ Correct value for n or k A1: Correct value for n or k A1: Correct value for n or k A1: Correct values for n and k Special Case: Some candidates have a second term of nx which gives $n=36$ and then solve $kn(n-1)=252$ to give $k=0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ Correct coefficient. May be implied by $56k^3$ or $\sqrt[3p]{5}C_3$ " k^3 " with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer $n, n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 808-1)(8-2) + 3 =$ $= 808-$		36(n-1) = 252	Uses a valid method with their $nk = 36$ and the given equation to			
$36\left(\frac{36}{k}-1\right) = 252$ $36n-36 = 252 \Rightarrow n = 8$ or $36n-36 = 252 \Rightarrow n = 8$ or $36\frac{36}{k}-1 = 7 \Rightarrow k = 4.5$ $n=8 \Rightarrow k=4.5 \text{ or } k=4.5 \Rightarrow n=8$ Correct value for n or k $36n-36 = 252 \Rightarrow n = 8$ or $36\frac{36}{k}-1 = 7 \Rightarrow k = 4.5$ $36n-36 = 252 \Rightarrow n = 8$ or $40n-36 = 252 \Rightarrow n = 8$ Al: Correct value for n or k A1 Special Case: Some candidates have a second term of nx which gives $n = 36$ and then solve $kn(n-1) = 252$ to give $k = 0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . $31 \Rightarrow 31 \Rightarrow$		or	=	M1		
or $\frac{36}{k}-1=7\Rightarrow k=4.5$ $n=8\Rightarrow k=4.5 \text{ or } k=4.5\Rightarrow n=8$ Correct values for n or k A1: Correct value for n or k $n=8\Rightarrow k=4.5 \text{ or } k=4.5\Rightarrow n=8$ Correct values for n and k A1 Special Case: Some candidates have a second term of nx which gives $n=36$ and then solve $kn(n-1)=252$ to give $k=0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ Correct coefficient. May be implied by $56k^3$ or "8" C_3 " k " with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer n , $n>3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= \frac{8(8-1)(8-2)}{3!}4.5^3 = \dots$ Answer only of 5103 scores B1M1A1		$36\left(\frac{36}{k}-1\right)=252$	allowing for sign and/or arithmetic			
Al: Correct value for n or k $n = 8 \Rightarrow k = 4.5 \text{ or } k = 4.5 \Rightarrow n = 8 \text{ Correct values for } n \text{ and } k$ Special Case: Some candidates have a second term of nx which gives $n = 36$ and then solve $kn(n-1) = 252$ to give $k = 0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $n(n-1)(n-2) \atop 3! k^3(x^2)$ $n(n-1)(n-2) \atop 3! k^3(n-2)$ $n(n-1)(n-2) \atop 3!$		$36n - 36 = 252 \Rightarrow n = 8$, ,			
$n=8 \Rightarrow k=4.5 \text{ or } k=4.5 \Rightarrow n=8 $ Correct values for n and k Special Case: Some candidates have a second term of nx which gives $n=36$ and then solve $kn(n-1)=252$ to give $k=0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . $n(n-1)(n-2) \atop 3! \qquad k^3(x^3)$ $n(n-1)(n-2) \atop 3! \qquad k^3(n-1) $		or	to obtain a value for <i>n</i> or <i>k</i>	dM1A1		
Special Case: Some candidates have a second term of nx which gives $n = 36$ and then solve $kn(n-1) = 252$ to give $k = 0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ Correct coefficient. May be implied by $56k^3$ or "8" C_3 " k "3 with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer n , $n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 5103$ Allow $5103x^3$		$\frac{36}{k} - 1 = 7 \Longrightarrow k = 4.5$	A1: Correct value for n or k			
then solve $kn(n-1) = 252$ to give $k = 0.2$. This scores a special case of B1. Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $ \frac{n(n-1)(n-2)}{3!}k^3(x^3) \qquad $		$n = 8 \Rightarrow k = 4.5$ or $k = 4.5 \Rightarrow n = 8$	Correct values for <i>n</i> and <i>k</i>	A1		
Generally, to score the method marks, candidates must be solving 2 equations in n and k . (c) $ \frac{n(n-1)(n-2)}{3!}k^3(x^3) \qquad \text{Correct coefficient. May be implied} \\ \text{by } 56k^3 \text{ or "8"} C_3 "k"^3 \text{ with or without} \\ x^3 \text{. If no working is shown, you may} \\ \text{need to check their values.} \\ \text{Substitutes their values correctly} \\ \text{including integer } n, n > 3, \text{ to obtain a} \\ \text{value for the coefficient of } x^3 \text{. Must} \\ \text{be a correct calculation for the } x^3 \\ \text{coefficient for their values.} \\ \text{Answer only of 5103 scores B1M1A1} $		Special Case: Some candidates have a secon	nd term of nx which gives $n = 36$ and			
(c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ $= \frac{8(8-1)(8-2)}{3!}4.5^3 =$ $= 5103$ Correct coefficient. May be implied by $56k^3$ or "8" C_3 " k " with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer $n, n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 5103$ Allow $5103x^3$		then solve $kn(n-1) = 252$ to give $k = 0.2$	2. This scores a special case of B1.			
(c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ $= \frac{8(8-1)(8-2)}{3!}4.5^3 =$ Correct coefficient. May be implied by $56k^3$ or "8" C_3 " k " with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer $n, n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 5103$ Allow $5103x^3$						
(c) $\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ $= \frac{8(8-1)(8-2)}{3!}4.5^3 =$ Correct coefficient. May be implied by $56k^3$ or "8" C_3 " k "3 with or without x^3 . If no working is shown, you may need to check their values. Substitutes their values correctly including integer $n, n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 5103$ Allow $5103x^3$		in <i>n</i> and	k.	(5)		
$\frac{n(n-1)(n-2)}{3!}k^3(x^3)$ by $56k^3$ or "8" C_3 " k "3 with or without x^3 . If no working is shown, you may need to check their values. $=\frac{8(8-1)(8-2)}{3!}4.5^3 =$ Substitutes their values correctly including integer $n, n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 5103$ Allow $5103x^3$ Al Answer only of 5103 scores B1M1A1	(c)		Correct coefficient. May be implied	(5)		
$\frac{3!}{3!} \times (x^3)$ $x^3. \text{ If no working is shown, you may need to check their values.}$ $= \frac{8(8-1)(8-2)}{3!} 4.5^3 = \dots$ $= 8($		$n(n-1)(n-2)_{1,3,(-3)}$		D16		
Substitutes their values correctly including integer $n, n > 3$, to obtain a value for the coefficient of x^3 . Must be a correct calculation for the x^3 coefficient for their values. $= 5103 \qquad \text{Allow } 5103x^3 \qquad \text{Al}$ Answer only of 5103 scores B1M1A1		$\frac{1}{3!}$ $\kappa(x)$	x^3 . If no working is shown, you may	BIII		
$= \frac{8(8-1)(8-2)}{3!} 4.5^{3} = \dots$ including integer $n, n > 3$, to obtain a value for the coefficient of x^{3} . Must be a correct calculation for the x^{3} coefficient for their values. $= 5103$ Allow $5103x^{3}$						
$= \frac{8(8-1)(8-2)}{3!} 4.5^{3} = \dots$ value for the coefficient of x^{3} . Must be a correct calculation for the x^{3} coefficient for their values. $= 5103$ Allow $5103x^{3}$			3			
coefficient for their values. $= 5103 \qquad \text{Allow } 5103x^3 \qquad \text{Al}$ Answer only of 5103 scores B1M1A1		$=\frac{8(8-1)(8-2)}{4.5^3}=$		M1		
$= 5103 \qquad \text{Allow } 5103x^3 \qquad \text{Al}$		3!	be a correct calculation for the x^3			
Answer only of 5103 scores B1M1A1 (3		5102		A 1		
			1	Al		
		Answer only of 5103 s	SCOTES BINITAL	(3)		
Total 10				Total 10		

T

