UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA I RELATÓRIO V

Fabrício Yuri Costa da Silva - 21454545 Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844 Laise Alves Pimentel - 21202395 Mario Alves Pardo Junior - 21553964

Professor: José Pedro Cordeiro

Sumário

1	Introdução	3
2	Procedimento Experimental	4
3	Análise de Dados	5
	Dados do experimento	5
	Cálculo da velocidade instantânea	5
	Espaço x Tempo	6
	Velocidade x Tempo	6
	Estimativa do momento de inércia	7
	Energia potencial gravitacional	8
	Energia cinética de translação	8
	Energia cinética de rotação	9
4	Conclusão	11
\mathbf{R}_{i}	eferências	12

1. Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório $de\ F\'isica\ I$ do curso de Bacharelado em Matemática.

2. Procedimento Experimental

- 1. Usando o disco de Maxwell desenrolado, fixe o centro do mesmo com o ponto final.
- 2. Fixe o outro ponto em 200 mm, anote esta distância e obtenha o tempo que o disco percorre a mesma. Repita esta medida 3 vezes e tire uma média.
- 3. Em seguida para o cálculo da velocidade instantânea, obtenha o tempo de passagem do cilindro vermelho do disco no ponto final. Repita esta medida 3 vezes e tire uma média.
- 4. Repita este procedimento para as alturas de 300, 400 e 500 mm.

3. Análise de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Dados do experimento

Esta seção apresenta os dados coletados durante o experimento e os cálculos de médias para esses dados.

Tabela 3.1: Dados coletados do experimento. Deslocamento em metro e tempo em segundo.

Δs (m)	T1 (s)	T2 (s)	T3 (s)	TM (s)	Ti1 (s)	Ti2 (s)	Ti3 (s)	TiM (s)
0.0	0.000	0.000	0.000	0.00000	0.000	0.000	0.000	0.00000
0.2	4.158	4.156	4.144	4.15267	0.080	0.082	0.082	0.08133
0.3	4.969	4.883	4.983	4.94500	0.065	0.065	0.067	0.06567
0.4	5.794	5.822	5.828	5.81467	0.057	0.059	0.057	0.05767
0.5	6.403	6.436	6.441	6.42667	0.055	0.056	0.055	0.05533
0.6	6.949	6.926	7.011	6.96200	0.053	0.054	0.052	0.05300

A variável TM é a média das variáveis T1, T2 e T3. De forma análoga, a variável TiM é a média das variáveis Ti1, Ti2 e Ti3.

Cálculo da velocidade instantânea

Para o cálculo da velocidade instântanea, utilizamos a seguinte fórmula:

$$v \approx \frac{2r_v}{T_{iM}} \tag{3.1}$$

Onde:

v: é a velocidade instântanea que desejamos obter;

 $2*r_v$: espaço ΔS que fica na escuridão. r_v é o raio do cilindro que mede 10.35 mm.

 T_{iM} : tempo instântaneo médio que foi calculado e apresentado na seção anterior.

A tabela seguinte mostra o valor da velocidade instantânea:

Tabela 3.2: Velocidade instantanea

TM (s)	Δs (m)	Vi (m/s)
0.00000	0.0	0.00000
4.15267	0.2	0.25451
4.94500	0.3	0.31523
5.81467	0.4	0.35896
6.42667	0.5	0.37410
6.96200	0.6	0.39057

Espaço x Tempo

O próximo gráfico mostra o relacionamento do deslocamento (Δs) e o tempo instantâneo médio (TiM) mostrados na tabela anterior.

Utilizando regressão linear, obtemos a seguinte função para estimar o espaço em função do tempo:

$$s(TM) = 0.01215 * TM^2 (3.2)$$

A linha azul do gráfico acima foi gerada utilizando esta fórmula. Observe que ela aproximou muito bem os dados do experimento. Os outros coeficientes dos monômios de grau 0 e 1 foram removidos pois seus valores são praticamente 0.

Velocidade x Tempo

O próximo gráfico mostra o relacionamento da velocidade (V_i) e o tempo médio (TM) mostrados na tabela anterior.

Utilizando regressão linear, obtemos o seguinte função para estimar a velocidade em função do tempo:

$$v(TM) = 0.05945 * TM (3.3)$$

A linha azul do gráfico acima foi gerada utilizando esta fórmula. Observe que ela aproximou muito bem os dados do experimento. O coeficiente do monômio de grau 0 foi removido pois seu valor é praticamente zero.

Estimativa do momento de inércia

Esta seção explica o cálculo realizado para estimar o momento de inércia do disco ao redor de seu eixo de rotação.

A função horária de deslocamento teórica é:

$$s(t) = \frac{1}{2} \times \frac{mg}{m + \frac{I_z}{r^2}} t^2 \tag{3.4}$$

Podemos calcular o momento de inércia I_z igualando o coeficiente desta equação com o coeficiente da equação 3.2 estimado anteriormente, resultando na seguinte equação:

$$0.01215 = \frac{1}{2} \times \frac{mg}{m + \frac{I_z}{r^2}} \tag{3.5}$$

Onde:

m: é a massa do cilindro. Seu valor aproximado é 436 g;

g: é a aceleração da gravidade. Seu valor aproximado é 9.8 m/s^2 ;

 I_z : momento de inércia que deseja-se obter;

r: raio do eixo. Seu valor aproximado é $0.0025~\mathrm{m}$.

Resolvando esta equação para I_z , obtemos o seguinte resultado:

$$I_z = 1.0961829875 \quad g.m^2 \tag{3.6}$$

Energia potencial gravitacional

Esta seção apresenta o cálculo realizado para obter o valor da energia potencial gravitacional e seu gráfico com relação ao tempo.

Utilizamos a seguinte fórmula para calcular a energia potencial:

$$Ep(t) = m \times g \times s(t) \tag{3.7}$$

Onde:

Ep: é a energia potencial que deseja-se obter;

m: é massa da roda;

g: é a aceleracao da gravidade;

h: é a altura do cilindro;

A seguinte tabela apresenta os valores obtidos:

Tabela 3.3: Energia potencial gravitacional

	TM	Ep
2	4.152666667	-0.0003434401
3	4.945000000	-0.0002238741
4	5.814666667	-0.0001726488
5	6.426666667	-0.0001589599
6	6.962000000	-0.0001458363

O gráfico seguinte apresenta o comportamento da energia potencial ao longo do tempo:

Energia cinética de translação

Esta seção apresenta o cálculo realizado para obter o valor da energia cinética de translação e seu gráfico com relação ao tempo.

Utilizamos a seguinte fórmula para calcular a cinética de translação:

$$E_t(t) = \frac{m \times v(t)^2}{2} \tag{3.8}$$

Onde:

 E_t : é a energia cinética de translação que deseja-se obter;

m: é massa da roda;

v(t): velocidade no instante t;

A seguinte tabela apresenta os valores obtidos:

Tabela 3.4: Energia potencial gravitacional

	TM	Et
$\overline{2}$	4.152666667	5.0972e-06
3	4.945000000	3.3226e-06
4	5.814666667	2.5624 e - 06
5	6.426666667	2.3592e-06
6	6.962000000	2.1644e-06

O gráfico seguinte apresenta o comportamento da energia cinética de translação ao longo do tempo:

Energia cinética de rotação

Esta seção apresenta o cálculo realizado para obter o valor da energia cinética de rotação e seu gráfico com relação ao tempo.

Utilizamos a seguinte fórmula para calcular a cinética de rotação:

$$E_r(t) = \frac{I \times \omega(t)^2}{2} = \frac{I \times v(t)^2}{2 \times r^2}$$
(3.9)

Onde:

 E_r : é a energia cinética de rotação que deseja-se obter;

m: é massa da roda;

v(t): velocidade no instante t;

 $r\!\!:$ raio do eixo. Seu valor aproximado é $0.0025~\mathrm{m}.$

A seguinte tabela apresenta os valores obtidos:

Tabela 3.5: Energia potencial gravitacional

	TM	Er
2	4.152666667	0.0020504376
3	4.945000000	0.0013365936
4	5.814666667	0.0010307637
5	6.426666667	0.0009490369
6	6.962000000	0.0008706852

O gráfico seguinte apresenta o comportamento da energia cinética de rotação ao longo do tempo:

4. Conclusão

De acordo com os resultados apresentados nas seções "Energia potencial gravitacional", "Energia cinética translacional" e "Energia cinética rotacional", podemos concluir que há uma transferência de energia potencia para energia cinética translacional e rotacinal à medida que o tempo passa. Portanto, as energia são conservativas e o teorema de conservação de energia se manteve durante o experimento. Podemos ainda mostrar aproximar a energia mecânica, conforma a tabela abaixo:

Tabela 4.1: Energias

	TM	Ep	Et	Er	Е
$\overline{2}$	4.152666667	-0.0003434401	5.0972e-06	0.0020504376	0.002
3	4.945000000	-0.0002238741	3.3226 e - 06	0.0013365936	0.001
4	5.814666667	-0.0001726488	2.5624 e-06	0.0010307637	0.001
5	6.426666667	-0.0001589599	2.3592 e-06	0.0009490369	0.001
6	6.962000000	-0.0001458363	2.1644e-06	0.0008706852	0.001

Para uma precisão de 3 casas decimais, podemos considerar o valor da energia mecânica como 0.001 J. Há um ponto onde esse valor deu diferente de 0.001, consideremos que isso ocorreu devido a erros de medição. A tabela também mostra que a energia potencial se transforma mais em energia de rotação que em energia de translação.

Referências

Halliday, R.; Krane, D.; Resnick. 1996. Física. Vol. 1. Livros Técnicos e Científicos Editora. Nussenzveig, H.M. 1997. Curso de Física Básica. Vol. 1. Edgard Bucher Ltda. Tipler, G., P.A. e MOSCA. 2005. Física. Vol. 1. McGraw-Hill.