北京邮电大学 2017 —— 2018 学年 第二学期

《数字电路与逻辑设计》期中考试试题

Г	学院					₹	班级			班内序号 		<u>1</u> J	
	晒口								<u> </u>				24 //
	题号			三	1	2	3	4	5	6	7	8	总分
	满分	12	10	14	8	10	8	8	8	8	8	6	100
	得分												
	阅卷 教师												
	所有答案 不计成绩 单项	责;			,	,,				. — .			卷的背面, ()
	E为逻辑												
	A) E^2												
		一个逻	辑函数	女,	任意内	内个最	小项目	的与为	<u> </u>	,	所 有	最大	项的与为
<u>A</u>	-° A) 0		D) 1		\mathbf{C}	函粉自	自自	D)	不能的	4字			
											Пи(2.	3. 4. 7	,则
	, B, C, D										_[V] (-)	-, -, · ,	, , ,,
-	A)相 ⁴	-	-		-								
	对于功									确的。			
	A) 只有	有一个	变量发	生变化	 上时,	会发生	功能冒	冒险。	_				
	B) 可具	以通过	增加冗	乙余项 的	的方法	,消除	功能冒	冒险。					
	C) 输	λ变量	发生变	を化,な	发生了	功能旨	险,逐	医化前,	后的输	i出逻辑	単値不	司。	
	D) 可以	以通过	增加进	通脉》	中消除	功能冒	险的影	 影响。					
5.	函数 F	(A, B, C)	$G(x) = \overline{A}(x)$	B + Bc	$C + A\overline{B}$	C 的标	准与或	表达5	式为	C	_°		

第1页 (共7页)

- A) $\Sigma m(2,3,4)$
- B) $\Sigma m(1,5,6)$ C) $\Sigma m(2,3,4,7)$
- D) 以上都不对

- 6. TTL 逻辑门电路的输入端悬空, A ; CMOS 电路的输入端悬空, C 。

- A) 相当于接高电平
- B) 相当于接低电平
- C) 既不能相当于高电平,也不能相当于低电平
- 7. D 系数反映了逻辑门的带负载能力,是指一个逻辑门能够驱动同类型门的个 数。
 - A) 输入
- B) 输出
- C) 扇入
- D) 扇出
- 8. 某门电路的实测波形如下图所示,其中C为输出,AB为输入,则该门电路是 C
 - A) 与门
- B) 或门
- C) 或非门
- D) 与非门

- 9. 运用逻辑代数的反演规则,函数F = A[B + (CD + EG)]的反函数F = A[B + (CD + EG)]
 - A) $\overline{A} + B(C + \overline{D})(E + \overline{G})$ B) $A + \overline{B}C + \overline{D}E + \overline{G}$ C) $A + \overline{B}(\overline{C} + D)(\overline{E} + G)$
- 10. 下图是用双 1 线至 4 线数据分配器 74LS155 实现函数,则 F = C。
 - A) $\Sigma m(1,3,4)$
 - B) $\Sigma m(1,3,4,6)$
 - C) $\Sigma m(0,2,5,7)$
 - D) 以上都不对

题号	1	1	2	3	4	5	(5	7	8	9	10
答案	D	A	A	В	D	C	A	C	D	C	A	C

二、判断题(每题1分,共10分)

- [√] 1. 连续 20180421 个 1 的异或运算,结果是 1。
- [√] 2. 已知 01101 为带有校验位的 8421BCD 码,由此可推出,该 BCD 码采用奇校验。
- [√] 3. 和 CMOS 电路相比, ECL 电路具有工作速度快的优势。
- [√] 4. 四位超前进位加法器的工作速度比由 4 个全加器组成的串行进位加法器快。
- [×] 5. 若 3-8 译码器 74LS138 的使能端无效,则全部输出呈高阻。
- [×] 6. 数据分配器是将多路输入信号分配到一路输出中,具体分配哪一路由地址码来决定。

- [√] 7. 在二进制数的补码表示中,零的编码唯一;而在反码表示中,零的编码不唯一。
- [√] 8. ECL 门的输出端可以直接相连,实现"线或"逻辑。
- [√] 9. CMOS 反相器的静态功耗比 TTL 反相器低。
- [/] 10. 优先编码器各个输入信号的优先权是不同的,若几个输入同时有信号到来,输 出端给出优先权最高的那个输入所对应的编码。

三、填空题(每空1分,共14分)

- 1. 二进制数(11101.1101)₂表示成八进制数为__(<u>35.64</u>)₈_____,表示成十六进制为__ (<u>1D.D</u>)₁₆____。
- 2. 十进制数(456)₁₀用 8421BCD 码表示,为__(**010001010110**)_{8421BCD}__。
- 4. 已知 ABCD 是逻辑变量, $F = \overline{AB + CD}$, 则 F 的对偶式 $F' = \underline{(A + B)(C + D)}$ 。
- 5. 已知逻辑函数 F(A, B, C),其最小项 $m_3 = \underline{\overline{ABC}}_{_}$, 最大项 $M_3 = \underline{\overline{A}} + \underline{\overline{B}} \pm \underline{\overline{C}}_{__}$ 。
- 6. 表达式 $F(A, B, C, D) = \overline{AD} + \overline{ABC} + ABC + ACD$,当变量<u>A</u>发生变化时,存在偏<u>1</u>型逻辑冒险,可以通过增加冗余项<u>BCD</u>消除此冒险。
- 7. 根据逻辑电路的负载连接情况,负载电流是流入还是流出输出端,可分为<u>灌电流</u>负载和<u>拉电流</u>负载。
- 8. 由 TTL 与非门构成的两级逻辑门电路,其前级与非门的输出低电平最大值 $V_{OLMax} = 0.4$ V,后级与非门的关门电平 $V_{off} = 1$ V,则低电平噪声容限为_____0.6______V; 其前级输出高电平的最小值 $V_{OHmin} = 2.7$ V,后级与非门的开门电平 $V_{on} = 1.8$ V,则 其高电平噪声容限为____0.9____V。

四、计算和分析题

- 1. 某器件的内部电路如下图所示, $A \times B$ 为输入,F 为输出。(8分)
 - (1) 写出F与输入A、B的逻辑关系表达式。
 - (2) 画出该器件的逻辑符号。

答: 1) $F = \overline{A + B}$ (4分)

2)

或者是

(4分)

- 2. TTL 逻辑电路如下图所示,已知 OC 门输出低电平时允许灌入的最大负载电流 I_{OL} =12mA,输出高电平时的漏电流 I_{OH} =200μA;与非门的高电平输入电流 I_{IH} =50μA,输入短路电流 I_{IS} =1.4mA; V_{CC} =5V, R_{L} =1kΩ。请回答以下问题:(10 分)
 - (1) OC 门的输出高电平为多少?
 - (2) 为保证 OC 门输出低电平不大于 0.35V, F 点最多可以再接几个 TTL 反相器?
 - (3) 为保证 OC 门的输出高电平不低于 3V, F点最多可以再接几个 TTL 反相器?
 - (4) 正常使用时,写出第一级输出 F 和输入变量 A、B、C、D 之间的逻辑关系表达式。

- 答: 1) 高电平时电阻上的电压降为 $(2\times0.2+9\times0.05)\times1=0.85V$,此时输出高电平为5-0.85=4.15V。(2%)
- 2) (5-0.35)/1+1.4×n=12×1, 解得 n= 5.25, 取 5 个 (2 分)。可以再接零个 TTL 反相器 (1 分)。
- 3) ((5-3) /1-2×0.2) /0.05=32 个 (2分)。可以再接 23 个 TTL 反相器 (1分)。
- 4) $F = \overline{AB} \cdot \overline{CD}$ (2 %)

如果 G_5 减少一个输入端子

- 答: 1) 高电平时电阻上的电压降为 $(2\times0.2+8\times0.05)\times1=0.8V$,此时输出高电平为5-0.8=4.2V。(2 分)
- 2) (5-0.35)/1+1.4×n=12×1, 解得 n= 5.25, 取 5 个 (2 分)。可以再接零个 TTL 反相器 (1 分)。
- 3) ((5-3) /1-2×0.2) /0.05=32 个 (2分)。可以再接 24 个 TTL 反相器 (1分)。
- 4) $F = \overline{AB} \cdot \overline{CD}$ (2 %)
- 3. 按要求化简逻辑函数 (8分)
- (1) 化简函数 $F = AB + A\overline{C} + \overline{B}C + \overline{B}D + B\overline{C} + ADEF + ADEG$ 为最简**与或式**。

答:
$$F = A\overline{BC} + \overline{BC} + \overline{BD} + B\overline{C} + ADEF + ADEG$$
 (2分)
= $A + \overline{BC} + \overline{BD} + B\overline{C} + ADEF + ADEG = A + \overline{BC} + \overline{BD} + B\overline{C}$ (2分)

(2) 化简函数 $F(A, B, C, D) = \Sigma_m(0, 2, 3, 5, 7, 8, 10, 11, 13, 15)$ 为最简**或与式**。

CD AB	00	01	11	10
00				
01				
11				
10				

Č	AB	00	01	11	10
0	00	1	0	0	1
0	01	0	1	1	0
	11	1	1	1	1
	10	1	0	0	1

(2分)

$$F(A, B, C, D) = (\overline{B} + D)(B + C + \overline{D})$$
 (2 $\%$)

4. 逻辑电路如下图所示,其输入变量为 A_0 、 B_0 ,输出函数为 S、E、G。 写出 S、E 、G 的逻辑表达式并简化为最简**与或式**,并说明该电路的逻辑功能。(8 分)

答: $S = \overline{A_0}B_0$ (1 分), $E = \overline{A_0}B_0 + A_0\overline{B_0} = \overline{A_0} \overline{B_0} + A_0B_0$ (2 分), $G = A_0\overline{B_0}$ (1 分)逻辑功能: 为一位二进制数比较器 (1 分), S、E、G 分别输出小于、等于、大于的结果 (3 分)。

5. 只用一个与或非门设计一个 8421BCD 码的四舍五入电路(输出用 1 表示舍去)。(8 分) (1) 将真值表补充完整

ABCD	F	ABCD	F
0 0 0 0		1000	
0 0 0 1		1 0 0 1	
0 0 1 0		1010	
0 0 1 1		1011	

第6页 (共7页)

0 1 0 0	1100	
0 1 0 1	1101	
0 1 1 0	1110	
0 1 1 1	1111	

(2) 填写卡诺图并求出最简与或非式

(3) 画出该电路

答:(1)将真值表补充完整

ABCD	F	ABCD	F
0 0 0 0	1	1000	0
0 0 0 1	1	1 0 0 1	0
0 0 1 0	1	1010	X
0 0 1 1	1	1011	X
0 1 0 0	1	1100	X
0 1 0 1	0	1101	X
0 1 1 0	0	1110	X
0 1 1 1	0	1111	X

(2分)

(2) 填写卡诺图并求出最简与或非式

(2分)

$$F = \overline{A + BD + BC} \quad (2 \%)$$

(3)

6. 试用一片 3-8 译码器 74LS138 和一个与非门设计一个奇偶校验电路,输入数据为三位二进制数 $A_2A_1A_0$,当输入数据为奇数个 1 时,输出为 1,否则输出为 0,要求电路最简。请做出真值表,并直接在下面的电路上实现。(8分)

表 7-1 译码器 74LS138 的功能表

$S_{\scriptscriptstyle A}$	$\overline{S_B} + \overline{S_C}$	A_2	$A_{\rm l}$	A_0	$\overline{Y_0}$	$\overline{Y_1}$	$\overline{Y_2}$	$\overline{Y_3}$	$\overline{Y_4}$	$\overline{Y_5}$	$\overline{Y_6}$	$\overline{Y_7}$
0	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1	1	1
1	0	1	0	0	1	1	1	1	0	1	1	1
1	0	1	0	1	1	1	1	1	1	0	1	1
1	0	1	1	0	1	1	1	1	1	1	0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

答: 真值表如下

$A_2A_1A_0$	F	
0 0 0	0	
0 0 1	1	
010	1	
0 1 1	0	
100	1	
101	0	
110	0	
111	1	
	(0.1	1.

(3分)

实现的电路如下图所示

(5分。10根接线,每根半分)

7. 双四选一数据选择器 74LS153 的功能表如表 6-2 所示。用该集成电路构成的组合逻辑电路如图 6-1 所示,输入变量为 A、B、C,输出逻辑函数为 F_1 、 F_2 。写出 F_1 和 F_2 的最简**与或式**,并分析该电路的逻辑功能。(8 分)

表 7-2 74LS153 功能表

第9页 (共7页)

ST	\mathbf{A}_1	\mathbf{A}_0	D ₃ -D ₀	Y
1	×	×	×	0
0	0	0	$D_3 - D_0$	D_0
0	0	1	$D_3 - D_0$	\mathbf{D}_1
0	1	0	$D_3 - D_0$	D_2
0	1	1	$D_3 - D_0$	\mathbf{D}_3
i l			ı	I

答:
$$F_1 = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$
 (2分)
 $F_2 = \overline{ABC} + A\overline{BC} + AB = BC + AC + AB$ (2分)
全加器 (4分)

- 8. 用 FPGA 实现某电路的 Verilog 代码如下,按要求回答问题。(6分)
 - (1) 画出该电路的门级逻辑电路图。
 - (2) 说明该电路的逻辑功能。

```
module muxtwo (out, a, b, sl)
input a, b, sl;
output out;
wire nsl, sela, selb;
assign nsl=~sl;
assign sela=a&nsl;
assign selb=b&sl;
assign out=sela|selb;
```

endmodule

答:

(3分)

二选一数据选择器(多路选择器) (3分)