

DOMINOS - PREDICTIVE PURCHASE ORDER SYSTEM

- AASHIFA

1. Introduction

The **Domino's Predictive Purchase Order System** aims to forecast **pizza sales** for the upcoming week using historical sales data. Based on the **forecasted sales for each pizza type**, the system calculates the required **ingredient quantities** using a separate **pizza ingredients file**. This ensures efficient **inventory management** and helps optimize **weekly purchase orders**, reducing both stockouts and excess inventory.

2. Dataset Overview

2.1 Datasets Used

Dataset	Description	
pizza_sales.csv	Historical sales data for different pizza types.	
Inizza ingredients csv	Ingredient breakdown for each pizza type (dough, cheese, toppings, etc.).	

3. Approach

- Data Collection: Sales data and pizza ingredient composition were combined.
- **Exploratory Data Analysis (EDA):** Time series trends, seasonality, and pizza-wise demand patterns were identified.
- Model Selection & Comparison: Multiple models (ARIMA, SARIMA, Prophet, LSTM, Random Forest) were evaluated for accuracy.
- **Forecasting:** Prophet was selected as the final forecasting model based on its balanced performance for trend and seasonality.
- **Purchase Order Generation:** Forecasted pizza sales were converted into ingredient-level demand for the next 7 days.

4. Model Evaluation

4.1 Model Evaluation (Based on MAPE)

Model	MAPE Value	Comments
ARIMA	0.4902	Smooth predictions; may miss day-to-day fluctuations.
SARIMA	0.4440	Better at capturing seasonal patterns.
Prophet	0.4372	Best balance between trend capture and seasonality.
LSTM	0.4540	Higher error than Prophet, struggles with short-term fluctuations
Random Forest	0.5726	Over-smooths and struggles with rapid fluctuations.

4.2 Why the Prophet Model Was Chosen

- Balanced trend capture and seasonality handling.
- Works well with irregular holidays and promotions, which were common in the sales data.
- In-built trend, seasonality, and holiday components reduce manual effort.
- Consistently delivered the lowest MAPE among all models tested.

5. Exploratory Data Analysis (EDA)

5.1 Sales Trends

• **Hours**: The highest sales occur around midday (**around 12-2pm**) with a secondary peak around **(6-7pm)**.

 Days: Friday records the highest sales, followed by Saturday, while Sunday is slightly lower.

• Months: January, March, November have the highest sales, while **December** has relatively lower sales.

5.2 Top-Selling Pizzas

• The Classic Deluxe Pizza leads in sales, followed by Barbecue Chicken Pizza and Hawaiian Pizza.

Chicken and classic flavors dominate customer preferences.

5.3 Revenue and Size Preferences

- Large pizzas contribute the highest revenue, showing a clear customer preference for larger sizes, likely for group orders.
- A few top-selling pizzas contribute disproportionately to overall revenue, making them key products to focus on.

5.4 Order Volume by Category

• Classic and Chicken categories drive the highest order volumes, indicating strong demand for familiar and versatile flavors.

6. Final Outputs

6.1 Forecast Files Saved

File Name	Description
final_forecast.csv	Forecasted daily sales for all pizzas over the next period.
next_week_purchase_order.csv	Forecasted ingredient purchase quantities for the next 7
	days.

7. Forecast Plots and Observations

Observations from Plots

- Holiday Spikes: Sudden spikes (likely due to promotions or holidays) were captured by Prophet.
- Clear Trend and Seasonality Patterns: Prophet's decomposition plots highlight both overall trends and weekly cycles, which match the nature of pizza sales.

Visualization Benefits

- Provides visual validation that certain pizza types (like BBQ Chicken) follow unique sales trends.
- Helps store managers and procurement teams quickly understand sales patterns before approving purchase orders.

8. Purchase Order Generation Logic

Process Overview

- Pizza Forecast: Prophet generates 7-day sales forecasts for each pizza.
- Ingredient Breakdown: Each forecasted pizza sale is converted into ingredient quantities using pizza_ingredients.
- Total Ingredient Demand: For each ingredient (cheese, sauce, etc.), the total required quantity across all pizzas is calculated.
- **Final CSV Output:** Results in next_week_purchase_order.csv, which can be directly used by the **procurement team** for ordering ingredients.

9. Conclusion

The Domino's Predictive Purchase Order System integrates:

- Sales forecasting for pizzas.
- Conversion into ingredient-level demand.
- Weekly purchase order generation.

With Prophet's high accuracy and clear seasonality detection, this system offers:

- Just-in-time inventory planning.
- Reduced stockouts.
- Minimized wastage.

Key Benefits

- Forecast accuracy validated using MAPE comparison.
- · Handles holidays and irregular sales.
- Direct CSV output ready for purchase systems.