Group Assessment

BRAC University

Semester: Fall 2022 Course No: CSE251

Course Title: Electronic Devices and Circuits

Student IDs:

Set-1

(i)

In the circuit shown in Fig. the voltage at the emitter was measured and found to be -0.7 V. If $\beta = 50$, find I_E , I_B , I_C , and V_C .

Solution:

Let, the BJT is in active mode.

Given,
$$V_E = -0.7V$$
 $T_E = \frac{-0.7 - (-10)}{10} = 0.93 \text{ mA}$
 $T_C = \alpha T_E = \frac{\beta}{\beta + 1} T_E = \frac{50}{51} \times 0.93$
 $= 0.92 \text{ mA}$
 0.00
 $T_B = T_C - T_C = 0.01 \text{ mA}$
 $T_C = \frac{10 - V_C}{5} = 0.92$
 $T_C = 0.92 \text{ mA}$
 $T_C = \frac{10 - V_C}{5} = 0.92$
 $T_C = 0.92 \text{ mA}$

Here,
$$V_{CE}=V_{C}-V_{E}=5.45-(-0.7)>0.2V$$

(ii) Consider the circuit shown below. Does it follow the Static Discipline? Calculate the noise margins NM_0 and NM_1 .

Solution: See the slides on MOSFET.

Set-2

Consider an NMOS transistor fabricated with L = 0.18 μ m and W = 2 μ m. The process technology is specified to have $k_n'=387~\mu\text{A}/\text{V}^2$, and $V_T=0.5~\text{V}$. Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of the saturation region with $I_{DS}=100~\mu\text{A}$. If V_{GS} is kept constant, find V_{DS} that results in $I_D=50~\mu\text{A}$.

For MOSFET

$$I_{D} = 0, \text{ if } V_{GS} < V_{T}$$

$$I_{D} = k \left[(V_{GS} - V_{T}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right], \text{ if } V_{GS} \ge V_{T} \text{ and } V_{DS} < (V_{GS} - V_{T})$$

$$I_{D} = \frac{1}{2} k (V_{GS} - V_{T})^{2}, \text{ if } V_{GS} \ge V_{T} \text{ and } V_{DS} \ge (V_{GS} - V_{T})$$

Solution:

the transistor transconductance parameter k_n ,

$$k_n = k'_n \left(\frac{W}{L}\right)$$
$$= 387 \left(\frac{2}{0.18}\right) = 4.3 \text{ mA/V}^2$$

With the transistor operating in saturation,

$$I_D = \frac{1}{2} k_n V_{OV}^2$$

Thus,

$$100 = \frac{1}{2} \times 4.3 \times 10^3 \times V_{OV}^2$$

which results in

$$V_{OV} = 0.22 \text{ V}$$

Thus,

$$V_{GS} = V_{tn} + V_{OV} = 0.5 + 0.22 = 0.72 \text{ V}$$

and since operation is at the edge of saturation,

$$V_{DS} = V_{OV} = 0.22 \text{ V}$$

With V_{GS} kept constant at 0.72 V and I_D reduced from the value obtained at the edge of saturation, the MOSFET will now be operating in the triode region, thus

$$I_D = k_n \left[V_{OV} V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$50 = 4.3 \times 10^3 \left[0.22 V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

which can be rearranged to the form

$$V_{DS}^2 - 0.44 V_{DS} + 0.023 = 0$$

This quadratic equation has two solutions

$$V_{DS} = 0.06 \text{ V}$$
 and $V_{DS} = 0.39 \text{ V}$

The second answer is greater than V_{OV} and thus is physically meaningless, since we know that the transistor is operating in the triode region. Thus we have

$$V_{DS} = 0.06 \text{ V}$$

Set-3

- (i) Draw the I-V graph of a **MOSFET**. Identify all the regions. [You have to draw for at least three V_{GS} values and mark V_{ov} on the graph.]
- (ii) Draw the I-V graph of a **BJT**. Identify all the regions. [You have to draw for at least three I_B values on the graph.]
- (iii) Draw DTL and RTL inverter circuits. Why do we need these circuits? Explain.

Solution: See the class lecture.

Set-4

- (i) **Derive** the expressions for y and q (separately).
- (ii) Consider y and p nodes to be shorted together. Now find the expression for q.
- (iii) Design a circuit using Op-Amp to implement the expression:

$$f = \exp\left(\frac{1}{4}x - 2y + \frac{d}{dt}z\right)$$

Solution:

(i) See the class lecture (exponent and differentiator, respectively)

$$y = -I_sR \exp(x/V_T)$$
, $q = -RC (dp/dt)$

(ii)
$$q = -RC dy/dt = -RC d(-I_sR exp(x/V_T))/dt$$

