Homework 9 for MATH 312

Ashok M. Rao

October 16, 2017

Strang 6.5.22 For S_1 the characteristic function is $p(\lambda) = \lambda^2 - 10\lambda + 9 = (\lambda - 9)(\lambda - 1)$ giving $\lambda = 1, 9$. For S_2 we have $p(\lambda) = \lambda^2 - 20\lambda + 64 = (\lambda - 4)(\lambda - 16)$ so $\lambda = 4, 16$. By diagonalizing, the square root falls on the eigenvalues giving for S_1

$$A_1^{1/2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

And for S_2 ,

$$A_2^{1/2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

The roots normalize QQ^T and it is clear that in both cases $S=A^TA$, in fact $S=A^2$ since $A=A^T$ in this case.

Strang 6.5.35 For positive definite S with eigenvalues indexed in descending order, the matrix $(\lambda_1 I - S)$ will have eigenvalues $\lambda_1 - \lambda_i \ge 0$ so the matrix is positive semidefinite. (These are the eigenvalues because the characteristic function $p(\lambda + \lambda_1)$ is just shifted across).

Strang 7.1.6 A has eigenvalues $\lambda=0,4$ either by a trivial characteristic function or that these are the only values so that $\det A=0$ while $\operatorname{Tr} A=4$. Very similarly, A^TA has eigenvalues 0 and 25, giving $\sigma_1=5$ and $\sigma_2=0$. corresponding to eigenvectors $v_1=(2,1)/\sqrt{5}$ and $v_2=(1,-2)/\sqrt{5}$. These are orthogonal (orthonormal, now) as they must be since A^TA is symmetric. AA^T has the same eigenvalues as A^TA but with eigenvectors $u_1=(1,2)/\sqrt{5}$ and $u_2=(2,-1)/\sqrt{5}$.

SVD example To find the SVD we first calculate A^TA and AA^T for the singular values and orthogonal bases,

$$A^{T}A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} = \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}, \quad AA^{T} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$$

It seems easier to find eigenvalues from AA^T , which are shared with A^TA (except for $\lambda=0$ in the nullspace). This gives $det(AA^T-\lambda I)=(\lambda-9)(\lambda-25)$ and so we have $\sigma_1,\sigma_2=5,3$. These correspond to eigenvectors for A^TA which are respectively $v_1=(1,1,0)$ and $v_2=(1,-1,4)$. Likewise for AA^T we have $u_1=(1,1)$ and $u_2=(-1,1)$. By the fact that $Av_i=\sigma_i u_i$ and normalizing, we can get the SVD

$$A = \frac{5}{\sqrt{2}}(1,1)\frac{1}{\sqrt{2}}(1,1,0)^T + \frac{3}{\sqrt{2}}(-1,1)\frac{1}{\sqrt{18}}(1,-1,4)^T = \frac{5}{2}\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} -1 & 1 & -4 \\ 1 & -1 & 4 \end{bmatrix}$$

Or put in the form $A = U\Sigma V^T$,

$$U\Sigma V^{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 3 & 0 \\ -1 & 1 & -4 \\ -2\sqrt{2} & 2\sqrt{2} & \sqrt{2} \end{bmatrix}$$

Strang 7.4.11 For $A = (3, 4, 0)^T$,

$$A^TA = \begin{bmatrix} 9 & 12 & 0 \\ 12 & 16 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad AA^T = [25], \quad U\Sigma V^T = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 0 & 1 \\ -4 & 3 & 0 \end{bmatrix}$$

Singular value $\sigma_1=5$ corresponds to the vector $v_1=(1/5)(3,4)$ and $\sigma_2=0$ corresponds to $v_2=(1/5)(4,-3)$. The pseudoinverse can now be calculated like $A^+=V\Sigma^+U^T$,

$$A^{+} = \frac{1}{5} \begin{bmatrix} 3 & 0 & -4 \\ 4 & 0 & 3 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3/25 \\ 4/25 \\ 0 \end{bmatrix}, \quad A^{+}A = \begin{bmatrix} 9/25 & 12/25 & 0 \\ 12/25 & 16/25 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad AA^{+} = \begin{bmatrix} 1 \end{bmatrix}$$