Вычеты и суммы

 \triangleright Определение 1. Пусть f — функция, голоморфная в *проколотой* окрестности точки z_0 . Вычетом формы f(z) dz в точке z_0 называется интеграл

$$\operatorname{res}_{z=z_0} f(z) \, dz := \frac{1}{2\pi i} \int_{\partial U(z_0)} f(z) \, dz.$$

Задача 0. Если $f(z) = \frac{a}{z-z_0} + g(z)$, а функция g голомофрна в точке z_0 , то $\mathop{\mathrm{res}}_{z=z_0} f(z)\,dz = a$.

Задача 1. Найдите вычеты формы a) $\frac{dz}{z^2+1}$; б) $\operatorname{tg} z \, dz$; в) $z^n \sin z \, dz$ во всех точках.

Задача 2. Вычет формы не зависит 17 от выбора локальной координаты:

$$\mathop{\rm res}_{z=Z(w_0)} f(z) \, dz = \mathop{\rm res}_{w=w_0} f(Z(w)) Z'(w) \, dw$$

для любой функции Z(w), голоморфной в точке w_0 .

Задача 3. a)
$$\operatorname{res}\left\{(1-z)^{-(n+1)}\frac{dz}{z^{k+1}}\right\} = \operatorname{res}\left\{(1+w)^{n+k}\frac{dw}{w^{k+1}}\right\};$$
 б) $\operatorname{res}\left\{(1-4z)^{-1/2}\frac{dz}{z^{k+1}}\right\}.$

Задача 4. Найдите вычет на бесконечности формы $z^n dz$.

Задача 5. Сумма вычетов голоморфной формы по всем точкам *сферы Римана* $\mathbb{C}P^1 := \mathbb{C} \cup \{\infty\}$ равна нулю.

Задача 6. Найдите вычеты формы $z^2 \operatorname{ctg} z \, dz$ во всех точках сферы Римана.

ightharpoonup Напомним, что (для натуральных k) по определению $\zeta(k) = \sum_{n \in \mathbb{N}} \frac{1}{n^k}$.

Задача 7. $\zeta(2k) = -\frac{1}{2}[z^{2k-1}]\{\operatorname{ctg}(\pi z)\} = (-1)^{k-1}\frac{2^{2k-1}\pi^{2k}}{(2k)!}B_{2k}$ (второе равенство можно считать определением чисел Бернулли).

Задача 8. Вычислите сумму $\sum_{n\in\mathbb{Z}} \frac{1}{n^2+1}$.

¹⁷Именно поэтому мы определяем вычет для форм, а не для функций.

$$ightharpoonup$$
 Напомним¹⁸, что $\Gamma(s)=\int\limits_0^{+\infty}t^se^{-t}\frac{dt}{t}$ (при $s>1$).

Задача 9. а)
$$\int\limits_0^{+\infty} t^s e^{-nt} \frac{dt}{t} = \frac{\Gamma(s)}{n^s};$$
 б) $\Gamma(s)\zeta(s) = \int\limits_0^{+\infty} \frac{t^s}{e^t-1} \frac{dt}{t}$ (при $s>1$).

Задача 10. а) (При Re s>1) $\int\limits_C \frac{z^s}{e^z-1}\frac{dz}{z}=(e^{2\pi is}-1)\Gamma(s)\zeta(s)$, где контур C обходит вокруг луча $[0;+\infty)$.

б)
$$\frac{\Gamma(1-s)e^{-\pi is}}{2\pi i}\int\limits_C \frac{z^s}{e^z-1}\frac{dz}{z}$$
 — аналитическое продолжение ζ -функции на $\mathbb{C}\setminus\mathbb{Z}_{>0}$;

Задача 11. а)
$$\zeta(-k) = -k! \cdot [z^{k+1}] \left\{ \frac{z}{e^z - 1} \right\} = -\frac{B_{k+1}}{k+1}.$$

б*) Почему суммирование расходящихся рядов по Эйлеру (см. листок про формулу Эйлера–Маклорена и числа Бернулли) дает тот же ответ?

Задача 12. а)
$$\widehat{\zeta}(2k) = \widehat{\zeta}(1-2k)$$
, где $\widehat{\zeta}(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s)$. б*) $\widehat{\zeta}(s) = \widehat{\zeta}(1-s)$.

 $^{^{18}}$ Определение гамма-функции, пригодное для произвольных комплексных s, можно узнать из одноименного листка.