# Physical Metallurgy 12/09 Lecture Review

# Nanocrystalline Metals



Courtesy of Chris Schuh. Used with permission.

Dept. of Mechanical Engineering, MIT

# nanocrystalline metals



## strengthening effects of grain size



Courtesy of Elsevier, Inc., <a href="http://www.sciencedirect.com">http://www.sciencedirect.com</a>. Used with permission.

# strengthening effects of grain size



Courtesy of Elsevier, Inc., <a href="http://www.sciencedirect.com">http://www.sciencedirect.com</a>. Used with permission.

#### dislocation motion in nc materials



Courtesy of Elsevier, Inc., <a href="http://www.sciencedirect.com">http://www.sciencedirect.com</a>. Used with permission.

Grain Boundaries (GB) can act as dislocation sources

#### 3 step process:

- Nucleation
- Propagation
- Reabsorbed at GB

# nc (partial) dislocation emission



# with very fine nc grains (d < 10 nm)



### nc tensile testing data





# mechanically-induced grain growth



#### "Nanovated" material

"Integran's patented Nanovating process, creates materials with 1000 times smaller grain sizes."

"Integran's Grain Boundary Engineering (GBE®) process enhances reliability and durability by altering the internal structure of materials on the nanometre-scale."

Images removed due to copyright restrictions. Please see "Nanovate Technology." Integran, 2008.

conventional grains

average "nanovated" grain size ~ 20 nm

# video – nc testing

Atomistic simulation of nc Al:

Psuedo1ntellectual. "Mechanical Properties of Nano-phase Metals (Tensile test)." August 7, 2007. YouTube. Accessed May 14, 2010. <a href="http://www.youtube.com/watch?v=QVJ1DOIDI2A">http://www.youtube.com/watch?v=QVJ1DOIDI2A</a>

Bending test of nc Ni-W coating on steel:

TJRupert. "Bending test – 25 nm grain size – Nanocrystalline nickel-tungsten." October 6, 2009. YouTube. Accessed May 14, 2010. <a href="http://www.youtube.com/watch?v=xl8Ziy3H8Cl">http://www.youtube.com/watch?v=xl8Ziy3H8Cl</a>

# Have a good day!

MIT OpenCourseWare http://ocw.mit.edu

3.40J / 22.71J / 3.14 Physical Metallurgy Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.