

GEOMETRÍA

Capítulo 15

Rectas, planos y ángulo diedro

MOTIVATING | STRATEGY

En geometría del espacio estudiamos a los puntos, rectas y planos que forman a los poliedros y sólidos geométricos, por ejemplo:

RECTAS, PLANOS Y ÁNGULO DIEDRO

Determinación de un plano

Existen cuatro formas para determinar un plano.

1. Tres puntos no colineales

2. Una recta y un punto exterior a ella

3. Dos rectas secantes

4. Dos rectas paralelas

Posiciones relativas entre rectas y planos

1. Recta contenida en un plano

2. Recta paralela a un plano

3. Recta secante a un plano

4. Ángulo entre una recta un plano

AH: proyección de AB sobre P.

α: medida del ángulo que forma L con P.

Recta perpendicular a un plano

Teorema de las tres perpendiculares

Si:
$$\overrightarrow{L} \perp \overrightarrow{L_1} \ y \ \overrightarrow{L_1} \perp \overrightarrow{L_2}$$
, entonces: $\overrightarrow{L_3} \perp \overrightarrow{L_2}$

ÁNGULO DIEDRO

Es la figura formada por dos semiplanos que tienen la misma recta de origen común.

En la figura

- . P y Q son las caras del diedro.
- . AB es la arista del diedro.

Notación

- . Ángulo diedro: P \overrightarrow{AB} Q
- . Diedro AB

Además

- . md AB: medida del diedro AB
- . md $\overline{AB} = \alpha$

HELICO | PRACTICE

1. Se tiene un \overline{AB} exterior a un plano P. Si $\overline{AB} = \sqrt{61}$ y la diferencia entre las distancias de A y B hacia el plano P es 5, calcule la longitud de la proyección de dicho segmento sobre el plano P.

- Dato: $d_2 d_1 = 5$
- Piden x.
- Se traza AM perpendicular a BB`
- Del grafico en BB`:

$$BM = 5$$

• ABM : Pitágoras

$$\sqrt{61^2} = 5^2 + x^2$$

$$61 = 25 + x^2$$

$$36 = x^2$$

$$X = 6$$

2. En la figura, si AB = 41 y BH = 9, halle la longitud de la proyección de AB sobre el plano P.

- Piden x.
- ABH: Pitágoras

$$41^2 = 9^2 + x^2$$

$$1681 = 81 + x^2$$

$$1600 = x^2$$

x = 40

HELICO | PRACTICE

Resolución

12

B

3. En la figura, $\overline{AB} \perp \square P$, calcule x

15

Se traza AC.

• ABC: Pitágoras

$$y^2 = 12^2 + 9^2$$

$$y^2 = 144 + 81$$

$$y^2 = 225$$

$$y = 15$$

Notable de 37° - 53°

$$x = 37^{\circ}$$

4. Halle la medida de un ángulo diedro si se sabe que un punto interior de dicho diedro, dista de las caras $5\sqrt{3}$ u y 8 u, y dista de la arista 10 u.

5. Se tiene una región rectangular ABCD donde AB = 7 y BC = 5. Luego, por el extremo A se traza la perpendicular \overline{AP} a dicha región, tal que AP = $2\sqrt{6}$. Halle la m \not PCD.

6. En la figura, el rectángulo ABCD representa el borde de una puerta, que al abrirla alrededor de \overline{AB} hasta la posición ABC'D' determina un ángulo diedro de 120°. Si BC = 0,5m y CD = $\sqrt{13}$ / 2 m; calcule C'D

HELICO | PRACTICE

7. En la figura, el AB representa a un cable metálico bien tensado, el cual forma 30° con la pared vertical y 45° con el piso horizontal, siendo AB = 6m. Si desde A y B se trazan los segmentos AM y BN perpendiculares a la línea del borde común; calcule

• Piden MN = x.

ANB: Notable de 30° y 60°

$$NB = 3 m$$

AMB: Notable de 45° y 45°

$$MB = 3\sqrt{2} m$$

MNB: Teorema de Pitágoras

$$x^2 + 3^2 = (3\sqrt{2})^2$$

$$x^2 = 9$$

$$x = 3$$

MN = 3 m