

Forest Cover Type Prediction

Use cartographic variables to classify forest categories 1,694 teams • 4 years ago

Chloe Wu, Erik Hou, Adam Sohn, Curtis Lin

Motivation - Aid conservation efforts

- Forests are 740 million acres of United States ~ one third of total land.
- Forests are homes for a myriad of species.
- Forests can be strengthened by sustainable usage and weakened by wildfire and development.
- Developing an machine learning-based forest classification tool provides conservationists a tool to leverage minimal data to better characterize the environment.

Data analysis plan

EDA

Elevation - Elevation in meters

Aspect - Aspect in degrees azimuth

Slope - Slope in degrees

Horizontal Distance To Hydrology - Horz Dist to nearest surface water features

Vertical_Distance_To_Hydrology - Vert Dist to nearest surface water features

Horizontal Distance To Roadways - Horz Dist to nearest roadway

Hillshade_9am (0 to 255 index) - Hillshade index at 9am, summer solstice

Hillshade_Noon (0 to 255 index) - Hillshade index at noon, summer solstice

Hillshade 3pm (0 to 255 index) - Hillshade index at 3pm, summer solstice

Horizontal_Distance_To_Fire_Points - Horz Dist to nearest wildfire ignition points

Wilderness_Area (4 binary columns, 0 = absence or 1 = presence) - Wilderness area designation

Soil_Type (40 binary columns, 0 = absence or 1 = presence) - Soil Type designation

Cover_Type (7 types, integers 1 to 7) - Forest Cover Type designation

Continuous

Discrete

Data Clean

	Soil_Type6	Soil_Type7	Soil_Type8	Soil_Type14	Soil_Type15	Son_Type16
count	15120.000000	15120.0 <u>15</u>	120.000000	15120.000000	15120.0	15120.000000
mean	0.042989	0.0	0.000066	0.011177	0.0	0.007540
std	0.202840	0.0	0.008133	0.105123	0.0	0.086506
min	0.000000	No data	0.000000	0.000000	No date	0.000000
25%	0.000000	IVV YIGILA	0.000000	0.000000		0.000000
50%	0.000000	0.0	0.000000	0.000000	0.0	2,000000
75%	0.000000	0.0	0.000000	0.000000	0.0	0.000000
max	1.000000	0.0	1.000000	1.000000	0.0	1.000000

Baseline Analysis

Classifier	Accuracy
Support Vector Machine (SVM) Un-normalized	0.8488
Random Forest	0.8208
Decision Tree	0.7923
K-Nearest Neighbors	0.7919
Logistic Regression	0.6759
Support Vector Model (SVM) Normalized	0.6232
Gaussian Naive Bayes	0.5983

Minimal hyperparameter tuning & no Feature Engineering

Feature Engineering - Categorization

Error Analysis

- 1 Cathedral family Rock outcrop complex, extremely stony
- 2 Vanet Ratake families complex, very stony.
- 3 Haploborolis Rock outcrop complex, rubbly
- 4 Ratake family Rock outcrop complex, rubbly

Improvement (Max delta)

Random Forest: 0.8208 (baseline) -> 0.8302 (no bagging) -> N/A (w/ bagging) -> 0.8543 (w/ hyperparameter tuning)= + 3.35%

0.8488 (baseline) -> 0.8492 (no bagging) -> 0.8415 (w/ bagging) -> 0.8611 (w/ hyperparameter tuning) = + 1.23%SVM:

Decision Tree: 0.7923 (baseline) -> 0.7897(no bagging) -> 0.8646 (w/ Adaboost) -> 0.8560 (w/ hyperparameter tuning) = + 7.23%

Feature Engineering - Feature Reduction


```
'Horizontal_Distance_To_Hydrology'
'Vertical_Distance_To_Hydrology'

'Aspect'
'Slope'
'Hillshade_9am'
'Hillshade_Noon'
'Hillshade_3pm'
```

Improvement (Max delta)

Random Forest: 0.8208 (baseline) -> 0.8781 (no bagging) -> N/A (w/ bagging) -> 0.8796(w/ hyperparameter tuning) = + 5.88% SVM: 0.8488 (baseline) -> 0.8479 (no bagging) -> N/A(w/ bagging) -> 0.8479 (w/ hyperparameter tuning) = - 0.09%

Decision Tree: 0.7923 (baseline) -> N/A (no bagging) -> 0.8805(w/ Adaboost) -> 0.8814(Adaboost w/ hyperparameter tuning) = + 8.91%

Hyperparameter Tuning

Classifier	Baseline	After Tuning
Random Forest	0.8208	0.8796
Decision Tree w/ AdaBoost	0.7923 (no AdaBoost)	0.8814

Hyperparameter Modified:

Modified # of estimators, Max depth, Learning Rate

Kaggle Submission

Model	Random Forest	DT w/ Adaboost
Kaggle Test Result	0.74107	0.76251

Conclusion

Random Forest and Decision Tree were optimal due to their abilities to navigate complex decision boundaries.

Still, classifiers had difficulty disambiguating Cover Type 1 & 2.

Next recommended steps are:

- Address possible over-fit
- Modify training data set
 - o change train/dev %, perhaps eliminate dev set for final step.
 - o ensemble learn w/ split training set
- Seek location data such as latitude and longitude

