Boosting

Foundations and Algorithms

Tuan Quoc Do

Colloquium of Department of Statistics University of South Carolina

September 21, 2017

Tuan Quoc Do Boosting September 21, 2017 1 / 43

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- Fundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- 3 Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

Tuan Quoc Do Boosting September 21, 2017 2 / 43

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- 2 Fundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

3 / 43

AdaBoost

The original boosting algorithm

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$, $y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for i = 1, ..., m For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \chi \to \{-1, +1\}.$
- Aim: select h_t to minimalize the weighted error:

$$\epsilon_t = \mathbf{Pr}_{i \sim D_t}[h_t(x_i) \neq y_i].$$

- Choose $\alpha_t = \frac{1}{2} \ln(\frac{1-\epsilon_t}{\epsilon_t})$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} \text{ if } h_t(x_i) = y_i \\ e^{\alpha_t} \text{ if } h_t(x_i) \neq y_i \end{cases}$$
$$= \frac{D_t(i) \exp\left(-\alpha_t y_i h_t(x_i)\right)}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution). Output the final hypothesis:

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

(□ > ∢∰ > ∢≣ > ∢≣ > □ ∃ 900°

Illustration

Tuan Quoc Do

Margin and Weak Learnability

Margin

$$H(x) = sign(F(x))$$
 where $F(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$
Normalize the weights: let $a_t = \frac{\alpha_t}{\sum_{t'=1}^{T} \alpha_t'}$ and $f(x) = \sum_{t=1}^{T} a_t h_t(x) = \frac{F(x)}{\sum_{t=1}^{T} \alpha_t}$ \Rightarrow Then the margin is $yf(x)$ which has range $[-1, +1]$

γ -weak learning assumption

For any distribution D on the indices $\{1,...,m\}$ of the training examples, the weak learning algorithm A is able to find a hypothesis h with weighted training error at most $\frac{1}{2} - \gamma$ (for $\gamma > 0$):

$$Pr_{i\sim D}[h(x_i)\neq y_i]\leq \frac{1}{2}-\gamma$$

Learnability equivalent

Strong and weak learnability are equivalent. There is nothing in between.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

6 / 43

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- Pundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

Tuan Quoc Do Boosting September 21, 2017 7 / 43

A Bound on AdaBoosts Training Error

Theorem

Given the notation of AdaBoost, let $\gamma_t = \frac{1}{2} - \epsilon_t$, and let D_1 be an arbitrary initial distribution over the training set. Then the weighted training error of the combined classifier H with respect to D_1 is bounded as:

$$Pr_{i \sim D_1}[H(x_i) \neq y_i] \leq \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2} \leq exp(-2\sum_{t=1}^{T} \gamma_t^2) = exp(-2\gamma^2 T)$$

- The training error drops exponentially fast as a function of the number of base classifiers combined
- If $T > \frac{\ln(m)}{2\gamma^2}$ so that $e^{2\gamma^2T} < 1/m$, then the training error of the combined classifier, which is always an integer multiple of 1/m, must in fact be zero

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

Tuan Quoc Do Boosting September 21, 2017 8 / 43

$$D_{t+1}(i) = D_{1}(i) \times \frac{e^{-y_{i}\alpha_{1}h_{1}(x_{i})}}{Z_{1}} \times ... \times \frac{e^{-y_{i}\alpha_{T}h_{T}(x_{i})}}{Z_{T}}$$

$$= \frac{D_{1}(i)exp(-y_{i}\sum_{t=1}^{T}\alpha_{t}h_{t}(x_{i}))}{\prod_{t=1}^{T}Z_{t}} = \frac{D_{1}(i)exp(-y_{i}F(x_{i}))}{\prod_{t=1}^{T}Z_{t}}$$

Therefore

$$\begin{aligned} \mathbf{Pr}_{i \sim D}[H(x_i) \neq y_i] &= \sum_{i=1}^{m} D_1(i) \mathbf{1}[H(x_i) \neq y_i] \leq \sum_{i=1}^{m} D_1(i) \exp(-y_i F(x_i)) \\ &= \sum_{i=1}^{m} D_{T+1}(i) \prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} Z_t \end{aligned}$$

Finally, by the choise of α , we have:

$$\begin{split} Z_t &= \sum_{i=1}^m D_t(i) \mathrm{e}^{-\alpha_t y_i h_t(x_i)} = \sum_{i: y_i = h_t(x_i)} D_t(i) \mathrm{e}^{-\alpha_t} + \sum_{i: y_i \neq h_t(x_i)} D_t(i) \mathrm{e}^{\alpha_t} \\ &= \mathrm{e}^{-\alpha_t} (1 - \epsilon_t) + \mathrm{e}^{\alpha_t} \epsilon_t = \mathrm{e}^{-\alpha_t} (\frac{1}{2} + \delta_t) + \mathrm{e}^{\alpha_t} (\frac{1}{2} - \delta_t) = \sqrt{1 - 4\delta_t^2} \end{split}$$

Tuan Quoc Do Boosting September 21, 2017 9 / 43

The Condition for Weak Learnability

Linear separability

Suppose our training sample S is such that for some weak hypotheses $g_1,...,g_k$ from a given space \mathcal{H} , and for some nonnegative coefficients $a_1,...,a_k$ with $\sum_{j=1}^k a_j = 1$, for some $\gamma > 0$, if the below condition holds:

$$y_i \sum_{j=1}^k a_j g_j(x_i) \ge 2\gamma$$

(Or S is linearly separable with margin 2γ), then the assumption of γ -empirical weak learnability holds as well

Suppose D is any distribution over S, then

$$\sum_{j=1}^k a_j \mathbf{E}_{i \sim D}[y_i g_j(x_i)] \ge 2\gamma$$

Since a_j 's form a distribution, there exist j such that $\mathbf{E}_{i\sim D}[y_ig_j(x_i)] \geq 2\gamma$. We have:

$$\begin{aligned} \boldsymbol{E}_{i \sim D}[y_i g_j(x_i)] &= 1 \cdot \boldsymbol{Pr}_{i \sim D}[y_i = g_j(x_i)] + (-1) \cdot \boldsymbol{Pr}_{i \sim D}[y_i \neq g_j(x_i)] \\ &= 1 - 2 \boldsymbol{Pr}_{i \sim D}[y_i \neq g_j(x_i)] \end{aligned}$$

Therefore

$$Pr_{i\sim D}[y_i\neq g_j(x_i)]=\frac{1-E_{i\sim D}[y_ig_j(x_i)]}{2}\leq \frac{1}{2}-\gamma$$

Tuan Quoc Do Boosting September 21, 2017 11 / 43

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- 2 Fundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

Generalization Error

Definition: convex hull $co(\mathcal{H})$ of \mathcal{H}

$$co(\mathcal{H}) = \{f : x \to \sum_{t=1}^{T} a_t h_t(x) \middle| a_1, ..., a_T \ge 0; \sum_{t=1}^{T} a_t = 1; h_1, ..., h_T \in \mathcal{H}; T \ge 1\}$$

Finite Base Hypothesis Spaces

Let D be a distribution over $\chi \times \{-1, +1\}$, and let S be a sample of m examples chosen independently at random according to D. Assume that the base classifier space $\mathcal H$ is finite, and let $\delta > 0$. Then with probability at least $1 - \delta$ over the random choice of the training set S, every weighted average function $f \in co(\mathcal H)$ satisfies the following bound:

$$\Pr_D[yf(x) \leq 0] \leq \Pr_S[yf(x) \leq \theta] + O(\sqrt{\frac{\log|\mathcal{H}|}{m\theta^2} \cdot \log(\frac{m\theta^2}{\log|\mathcal{H}|}) + \frac{\log(1/\delta)}{m}})$$

for all $\theta > \sqrt{(\ln|\mathcal{H}|)/(4m)}$

Infinite Base Hypothesis Spaces

Let D be a distribution over $\chi \times \{-1, +1\}$, and let S be a sample of m examples chosen independently at random according to D. Assume that the base classifier space $\mathcal H$ has VC-dimension d, and let $\delta > 0$. Assume $m \geq d \geq 1$. Then with probability at least $1 - \delta$ over the random choice of the training set S, every weighted average function $f \in co(\mathcal H)$ satisfies the following bound:

$$Pr_D[yf(x) \le 0] \le Pr_S[yf(x) \le \theta] + O(\sqrt{\frac{d \log(m/d)\log(m\theta^2/d)}{m\theta^2} + \frac{\log(1/\delta)}{m}})$$

for all $\theta > \sqrt{8d \ln(em/d)/m}$

Bounding AdaBoosts Margins

Theorem

Using AdaBoost, given $\gamma_t = \frac{1}{2} - \epsilon_t$, the fraction of training examples with margin at most θ is at most:

$$\prod_{t=1}^{T} \sqrt{(1+2\gamma_t)^{1+\theta}(1-2\gamma_t)^{1-\theta}}$$

- Assume all data points have the same edge γ , if $(1+2\gamma)^{1+\theta}(1-2\gamma)^{1-\theta}<1$, this bound implies that the fraction of training examples with $yf(x)\leq\theta$ goes to zero exponentially fast with T, and must actually be equal to zero at some point since this fraction must always be a multiple of 1/m.
- $\bullet \ \ \text{We have } (1+2\gamma)^{1+\theta}(1-2\gamma)^{1-\theta}<1 \Leftrightarrow \theta<\frac{-\ln(1-4\gamma^2)}{\ln(\frac{1+2\gamma}{1-2\gamma})}=\Upsilon(\gamma)$
- $\Upsilon(\gamma)$ can be shown to be increasing with γ and in $[\gamma,2\gamma]$ for $0\leq\gamma\leq1/2$

Conclusion: When the γ -weak learning assumption holds, then in the limit of a large number of rounds T, all examples will eventually have margin at least $\Upsilon(\gamma)$

⇒ Stronger base classifiers lead to larger margins

4 □ ▶ 4 @ ▶ 4 를

Let
$$f(x) = \sum_{t=1}^{T} a_t h_t(x) = \frac{F(x)}{\sum_{t=1}^{T} \alpha_t}$$
 where $a_t = \frac{\alpha_t}{\sum_{t=1}^{T} \alpha_t}$ We have

$$yf(x) \leq \theta \Leftrightarrow y \sum_{t=1}^{T} \alpha_t h_t(x) \leq \theta \sum_{t=1}^{T} \alpha_t \Leftrightarrow exp(-y \sum_{T=1}^{T} \alpha_t h_t(x) + \theta \sum_{t=1}^{T} \alpha_t) \geq 1$$

$$\Leftrightarrow \mathbf{1}[yf(x) \leq \theta] \leq exp(-y\sum_{t=1}^{T} \alpha_t h_t(x) + \theta \sum_{t=1}^{T} \alpha_t)$$

Therefore

$$\begin{aligned} \mathbf{Pr}_{S}[yf(x) \leq \theta] &= \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}[yf(x) \leq \theta] \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y \sum_{T=1}^{T} \alpha_{t} h_{t}(x) + \theta \sum_{t=1}^{T} \alpha_{t}) \\ &= \frac{\exp(\theta \sum_{t=1}^{T} \alpha_{t})}{m} \sum_{i=1}^{m} \exp(-y \sum_{T=1}^{T} \alpha_{t} h_{t}(x)) = \exp(\theta \sum_{t=1}^{T} \alpha_{t}) (\prod_{t=1}^{T} Z_{t}) \end{aligned}$$

◆ロト ◆団ト ◆差ト ◆差ト 差 りへで

15 / 43

More Aggressive Margin Maximization

Goal: Modify AdaBoost to have the minimum margin of 2γ instead of the $\Upsilon(\gamma)$ We have

$$Pr_{S}[yf(x) \leq \theta] \leq \prod_{t=1}^{T} \left[e^{(\theta-1)\alpha_{t}} \left(\frac{1}{2} + \gamma_{t}\right) + e^{(\theta+1)\alpha_{t}} \left(\frac{1}{2} - \gamma_{t}\right) \right]$$

Rather than choosing α_t as in AdaBoost, we can instead select α_t to minimize the above equation directly, which gives

$$\alpha_t = \frac{1}{2} ln(\frac{1+2\gamma_t}{1-2\gamma_t}) - \frac{1}{2} ln(\frac{1+\theta}{1-\theta})$$

which is smaller than α_t chosen by AdaBoost

Assume $\alpha_t \ge 0$ ($\gamma_t \ge \theta/2$), we can plug this choice back and get:

$$Pr_S[yf(x) \leq \theta] \leq exp\left(-\sum_{t=1}^T RE_b(\frac{1}{2} + \frac{\theta}{2}||\frac{1}{2} + \gamma_t)\right)$$

where $\textit{RE}_\textit{b}(p||q) = p \, \textit{ln}(\frac{p}{q}) + (1-p) \textit{ln}(\frac{1-p}{1-q})$ for $p,q \in [0,1]$

So if θ is chosen ahead of time, and if the γ -weak learning assumption holds for some $\gamma>\theta/2$, then the fraction of training examples with margin at most θ will be no more than

$$\exp\left(-T\cdot RE_{b}\left(\frac{1}{2}+\frac{\theta}{2}||\frac{1}{2}+\gamma\right)\right)$$

Tuan Quoc Do Boosting September 21, 2017 16 / 4.

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- 2 Fundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

17 / 43

AdaBoost minimizes the exponential loss

In AdaBoost, α_t and h_t are chosen to minimize the exponential loss, which is the upper bound of the training error

$$\frac{1}{m}\sum_{i=1}^{m}\mathbf{1}\{y_{i}F(x_{i})\leq 0\}\leq \frac{1}{m}\sum_{i=1}^{m}e^{-y_{i}F(x_{i})}$$

Proof: We showed that

$$\frac{1}{m}\sum_{i=1}^{m} e^{-y_i F(x_i)} = D_t(i) \left(\prod_{t'=1}^{t-1} Z_{t'} \right)$$

This implies that

$$\frac{1}{m}\sum_{i=1}^{m} e^{-y_i F(x_i)} = \frac{1}{m}\sum_{i=1}^{m} exp\left(-y_i (F_{t-1}(x_i) + \alpha_i h_i(x_i))\right)$$
$$= \sum_{i=1}^{m} D_t(i) \left(\prod_{t=1}^{t-1} Z_{t'}\right) e^{-y_i \alpha_t h_t(x_i)} \propto \sum_{t=1}^{m} D_t(i) e^{-y_i \alpha_t h_t(x_i)} = Z_t$$

Moreover we have $Z_t=\mathrm{e}^{-\alpha_t}(1-\epsilon_t)+\mathrm{e}^{\alpha_t}\epsilon_t$, which is minimized at α_t chosen by AdaBoost. The minimum is $Z_t=2\sqrt{\epsilon_t(1-\epsilon_t)}$ which is monotonically increasing for $0\leq\epsilon_t\leq1/2$, and decreasing for $1/2\leq\epsilon_t\leq1$

Algorithm for minimizing exponential loss

Algorithm

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$, $y_i \in \{-1, +1\}$. Initialize $F_0 \equiv 0$.

For t = 1, ..., T:

• Choose $h_t \in \mathcal{H}, \alpha \in \mathcal{R}$ to minimize

$$\frac{1}{m}\sum_{i=1}^{m}\exp\bigg(-y_{i}(F_{t-1}(x_{i})+\alpha_{i}h_{i}(x_{i}))\bigg)$$

• Update $F_t = F_{t-1} + \alpha_t h_t$

Output F_t

19 / 43

Coordinate descent

Algorithm

Goal: minimization of $L(\lambda_1, ..., \lambda_N)$.

Initialize: $\lambda_j \leftarrow 0$ for j = 1, ..., N

For t = 1, ..., T:

- Let j, α minimize $L(\lambda_1,...,\lambda_{j-1},\lambda_j+\alpha,\lambda_{j+1},...,\lambda_N)$ over $j\in\{1,...,N\}$, $\alpha\in\mathcal{R}$
- $\lambda_j \leftarrow \lambda_j + \alpha$

Output $\lambda_1, ..., \lambda_N$

* Can be used with other loss functions

20 / 43

Functional Gradient Descent

Algorithm

Goal: minimization of $\mathcal{L}(F)$. Initialize: $F_0 \leftarrow 0$

For t = 1, ..., T:

- Select $h_t \in \mathcal{H}$ that maximize $-\nabla \mathcal{L}(F_{t-1})$
- Choose $\alpha_t > 0$
- Update $F_t = F_{t-1} + \alpha_t h_t$

Output F_t

In AdaBoost, the partial derivative is $\frac{\partial \mathcal{L}(F)}{\partial F(x_i)} = \frac{-y_i e^{-y_i F(x_i)}}{m}$ Thus on round t, the goal is to find h maximizing

$$\frac{1}{m} \sum_{i=1}^{m} y_i h_t(x_i) e^{-y_i F(x_i)} \propto \sum_{i=1}^{m} D_t(x_i) y_i h_t(x_i) = 1 - 2\epsilon_t$$

*If we fix α on all round, we have α -Boost

Gradient Boosted Models

Arguably the most popular boosting model

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$. Initialize: $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^m \mathcal{L}(y_i, \gamma)$ For t=1, ..., T:

• For i = 1,2,...,m compute:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{t-1}}$$

- Fit a learner h_t to the targets r_{it}
- Compute step magnitude γ_t using line search :

$$\gamma_t = \arg\min_{\gamma} {}_t \sum_{i=1}^m \mathcal{L}\bigg(y_i, f_{t-1}(x_i) + \gamma_t h_t(x_i)\bigg)$$

• Update (v is a fixed shrinkage parameter and in (0,1]):

$$f_t(x) = f_{t-1}(x) + \upsilon \gamma_t h_t(x)$$

Output: $f_T(x)$

Connection with L-1 regularization

- We can apply L-1 constraint to the weight vector: minimize $L(\lambda)$ subject to $||\lambda||_1 \leq B$
- We can also use **BrownBoost** to handle noisy data
- Or we can stop α -Boost early (α -Boost for T rounds \equiv using L-1 penalty with $B=\alpha T$)

Explanation of the similarity

- Assume we know λ is the solution for some $B \ge 0$, and want to find λ' which is the solution when we increase B by some tiny $\alpha > 0$
- We have $||\lambda||_1 = B$ and $||\lambda^{'}||_1 = B + \alpha$
- $B + \alpha = ||\lambda'||_1 = ||\lambda + \delta||_1 \le ||\lambda||_1 + ||\delta||_1 = B + ||\delta||_1$
- ullet Equality hold when $\lambda_j \delta_j \geq 0 \ orall j$, implying $||\delta||_1 = lpha$
- By Taylor expansion:

$$L(\lambda + \delta) \approx L(\lambda) + \nabla L(\lambda) \cdot \delta = L(\lambda) + \sum_{j=1}^{N} \frac{\partial L(\lambda)}{\partial \lambda_j} \cdot \delta_j$$

• Given $||\boldsymbol{\delta}||_1 = \alpha$, RHS is minimized when $\boldsymbol{\delta}$ is all zeros, except for the component j where $|\partial L(\boldsymbol{\lambda})/\partial \lambda_i|$ is the largest, which is set to $-\alpha \cdot sign(\partial L(\boldsymbol{\lambda})/\partial \lambda_i)$

□ ▶ ∢□ ▶ ∢ ≣ ▶ √ ■ ♥ 9 Q (?)

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- 2 Fundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

Iterative projection algorithm

Algorithm

Given: $\mathbf{a}_j \in \mathcal{R}^m, b_j \in \mathcal{R}$ for $j = 1, ..., N, \mathbf{x}_0 \in \mathcal{R}^m$

Problem: minimize $||\mathbf{x} - \mathbf{x}_0||_2^2$ subject to $\mathbf{a}_j \cdot \mathbf{x} = b_j$ for j = 1, ..., N

Goal: find sequence $\mathbf{x}_1, \mathbf{x}_2, ...$ converging to the solution for the problem

Initialize: $\mathbf{x}_1 = \mathbf{x}_0$ For t = 1, 2, ...:

- \bullet Choose a constraint j
- Let $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}: a_j \cdot \mathbf{x} = b_j} ||\mathbf{x} \mathbf{x_t}||_2^2$

Figure: How the iterative projection algorithm proceeds with greedy selection

Convex optimization perspective

Entropy

- The entropy of a distribution is: $H(P) = -\sum_{i=1}^{m} P(i) ln P(i)$
- The relative entropy, or the KullbackLeibler divergence from Q to P is:

$$RE(P||Q) = (-\sum_{i=1}^{m} P(i)lnQ(i)) - H(P) = \sum_{i=1}^{m} P(i)ln(\frac{Q(i)}{P(i)})$$

• We have $D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_t}$. Therefore:

$$\sum_{i=1}^{m} D_{t+1}(i)y_{i}h_{t}(x_{i}) = \frac{1}{Z_{t}}\sum_{i=1}^{m} D_{t}(i)e^{-\alpha_{t}y_{i}h_{t}(x_{i})}y_{i}h_{t}(x_{i}) = -\frac{1}{Z_{t}} \cdot \frac{dZ_{t}}{d\alpha_{t}} = 0$$

where $Z_t = \sum_{i=1}^m D_t(i) e^{-\alpha_t y_i h_t(x_i)}$

• So the feasible set: $\mathcal{P} = \{D : \sum_{i=1}^m D(i)y_ih_j(x_i) = 0 \text{ for } j = 1,...,N\}$

The problem:

minimize: RE(D||U)

subject to: $\sum_{i=1}^{m} D(i)y_i h_j(x_i) = 0$ for j = 1, ..., N and D is a distribution

Iterative projection algorithm corresponding to AdaBoost

Algorithm

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$, $y_i \in \{-1, +1\}$.

Assume: finite, binary hypothesis base ${\cal H}$

Goal: find sequence D_1 , D_2 ,... converging to the solution

Initialize $D_1 = U$.

For t = 1, 2...

- Choose $h_t \in \mathcal{H}$ defining one of the constraints
- $\bullet \ \ \mathsf{Let} \ D_{t+1} = \mathsf{arg} \min_{D: \sum_{i=1}^m D(i) y_i h_i(x_i) = 0} \ \mathsf{RE}(D||D_t)$
- ullet Greedy constraint selection: Choose $h_t \in \mathcal{H}$ so that $\mathsf{RE}(D_{t+1}||D_t)$ is maximized

Theorem for nonempty feasible set

The feasible set P is empty if and only if the data is empirically γ -weakly learnable for some $\gamma>0$

Tuan Quoc Do Boosting September 21, 2017 28 / 43

Proof of equivalence

a) We have the Lagrangian:

$$\mathcal{L} = \sum_{i=1}^{m} D(i) ln(\frac{D(i)}{D_{t}(i)}) + \alpha \sum_{i=1}^{m} D(i) y_{i} h_{j}(x_{i}) + \mu(\sum_{i=1}^{m} D(i) - 1)$$

Computing derivatives and equating with zero, we get:

$$0 = \frac{\partial \mathcal{L}}{\partial D(i)} = ln(\frac{D(i)}{D_t(i)}) + 1 + \alpha y_i h_t(x_i) + \mu$$

Thus: $D(i) = D_t(i)e^{-\alpha y_i h_t(x_i)-1-\mu}$

Since *D* is a distribution, μ will be chosen so that $D(i) = \frac{D_t(i)e^{-\alpha y_i h_t(x_i)}}{7}$

Plugging back to the Lagrangian, we have: $\mathcal{L} = -\ln Z$

b)

$$RE(D_{t+1}||D_t) = \sum_{i=1}^{m} D_{t+1}(i)(-\alpha_t y_i h_t(x_i) - InZ_t)$$
$$= -InZ_t - \alpha_t \sum_{i=1}^{m} D_{t+1}(i) y_i h_t(x_i) = -InZ_t$$

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- 2 Fundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- 3 Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

AdaBoost with confidence-rated predictions

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$, $y_i \in \{-1, +1\}$. Initialize: $D_i(i) = 1/m$ for i = 1, ..., m

For t=1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: \chi \to \mathcal{R}$ and $\alpha_t \in \mathcal{R}$
- Aim: select h_t and α_t to minimalize the normalization factor:

$$Z_t = \sum_{i=1}^m D_t(i) e^{-\alpha_t y_i h_t(x_i)}$$

• Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Output the final hypothesis:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Tuan Quoc Do Boosting September 21, 2017 31 / 43

Predictions with Bounded Range

Range [-1,+1]

Let $z_i = y_i h(x_i)$, which is in the range [-1, +1] as well, so

$$Z = \sum_{i=1}^{m} D(i) e^{-\alpha z_i} = \sum_{i=1}^{m} D(i) exp\left(-\alpha \left(\frac{1+z_i}{2}\right) + \alpha \left(\frac{1-z_i}{2}\right)\right)$$
$$\leq \sum_{i=1}^{m} D(i) \left[\left(\frac{1+z_i}{2}\right) e^{-\alpha} + \left(\frac{1-z_i}{2}\right) e^{\alpha}\right] = \frac{e^{\alpha} + e^{-\alpha}}{2} - \frac{e^{\alpha} - e^{-\alpha}}{2}r$$

where $r = r_t = \sum_{i=1}^m D(i)y_i h_t(x_i)$

The RHS is minimized when $\alpha = \frac{1}{2} ln(\frac{1+r}{1-r})$

Plugging back gives: $Z \le \sqrt{1 - r^2}$

So the upper bound of training error is

$$\prod_{t=1}^{T} \sqrt{1-r_t^2}$$

32 / 43

Weak Hypotheses That Abstain

Range $\{-1,0,+1\}$

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$, $y_i \in \{-1, +1\}$. Assume: weak hypotheses $h_1, ..., h_N$ with range $\{-1, 0, +1\}$ Initialize:

- $A_b^j = \{1 \le i \le m : y_i h_j(x_i) = b\}$ for j = 1, ..., N and for $b \in \{-1, +1\}$
- $d(i) \leftarrow 1 \text{ for } i = 1, ..., m$

For t = 1, ..., T:

- For j = 1, ..., N:
 - $U_b^j \leftarrow \sum_{i \in A_b^j} d(i)$ for $b \in \{-1, +1\}$
 - $G_j \leftarrow |\sqrt{U_+^j} \sqrt{U_-^j}|$
- $\bullet \ j_t = \arg\max_{1 \le j \le N} G_j$
- $\bullet \ \alpha_t = \frac{1}{2} ln(\frac{U_+^{jt}}{U_-^{jt}})$
- for $b \in \{-1, +1\}$, for $i \in A_b^{i_t} : d(i) \leftarrow d(i)e^{-\alpha_t b}$

Output the final hypothesis:

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_{j_t}(x))$$

Tuan Quoc Do Boosting September 21, 2017

Domain-Partitioning Weak Hypotheses

Define the weighted fraction of examples which fall in block j and which are labeled b:

$$W_b^j = \sum_{i: x_i \in X_i \wedge y_i = b} D(i) = \mathbf{Pr}_{i \sim D}[x_i \in X_j \wedge y_i = b]$$

Then we have

$$Z = \sum_{j=1}^{J} \sum_{i: x_{j} \in X_{j}} D(i) exp(-y_{i}c_{j}) = \sum_{j=1}^{J} (W_{+}^{j} e^{-c_{j}} + W_{-}^{j} e^{c_{j}})$$

assuming without loss of generality that the weak learner can freely scale any weak hypothesis h by any constant factor $\alpha \in R$

Using standard calculus, we see that this is minimized when

$$c_j = \frac{1}{2} ln(\frac{W_+^j}{W_-^j})$$

Plugging back gives

$$Z = 2\sum_{j=1}^{J} \sqrt{W_{+}^{j}W_{-}^{j}}$$

Tuan Quoc Do Boosting September 21, 2017 34 / 43

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- Pundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

AdaBoost.M1

Direct multiclass extension of AdaBoost

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \chi$, $y_i \in \mathcal{Y}$. Initialize: $D_i(i) = 1/m$ for i = 1, ..., m For t=1, ..., T:

- Train weak learner using distribution D_t.
- Select weak hypothesis h_t : $\chi \to \mathcal{Y}$ to minimalize the weighted error:

$$\epsilon_t = \mathbf{Pr}_{i \sim D_t}[h_t(x_i) \neq y_i].$$

- If $\epsilon_t \geq \frac{1}{2}$, then set T=t-1 and exit loop
- Choose $\alpha_t = \frac{1}{2} \ln(\frac{1-\epsilon_t}{\epsilon_t})$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution) Output the final hypothesis:

$$H(x) = \arg\max_{y \in \mathcal{Y}} \sum_{t=1}^{T} \alpha_t \mathbf{1}\{h_t(x) = y\}$$

Tuan Quoc Do Boosting September 21, 2017 36 / 43

AdaBoost.MH

Multiclass, multi-label version of AdaBoost based on Hamming loss

Definition: Let
$$\mathcal{H}: \chi \to 2^{\mathcal{Y}}$$
, then **Hamming Loss** of H is: $\frac{1}{K} \cdot \boldsymbol{E}_{(x,Y)} \Big[|H(x)\Delta Y| \Big]$

Given: $(x_1, Y_1), ..., (x_m, Y_m)$ where $x_i \in \mathcal{X}$, $Y_i \subseteq \mathcal{Y}$. Initialize: $D_1(i, \ell) = 1/(mK)$ for i = 1, ..., m and $\ell \in \mathcal{Y}$ (where $K = |\mathcal{Y}|$) For t=1, ..., T:

- Train weak learner using distribution D_t.
- Select weak hypothesis h_t : $\chi \times \mathcal{Y} \to R$ and $\alpha_t \in R$ to minimalize:

$$Z_t = \sum_{i=1}^m \sum_{\ell \in \mathcal{Y}} D_t(i, \ell) exp \bigg(-\alpha_t Y_i[\ell] h_t(x_i, \ell) \bigg)$$

• Update, for i = 1, ..., m and for $\ell \in \mathcal{Y}$:

$$D_{t+1}(i,\ell) = \frac{D_t(i,\ell)exp\Big(-\alpha_t Y_i[\ell]h_t(x_i,\ell)\Big)}{Z_t}$$

Output the final hypothesis:

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x, \ell))$$

Analysis

We can use domain-partitioning weak hypotheses in this algorithm

- Suppose h is associated with a partition $X_1,...,X_J$, we create a partition of the set $\chi \times \mathcal{Y}$ consisting of all set $X_j \times \{\ell\}$ for j=1,...,J and $\ell \in \mathcal{Y}$.
- An appropriate hypothesis h can then be formed which predicts $h(x, \ell) = c_{j\ell}$ for $x \in \chi_j$
- Using similar techniques in confidence-rated predictors, we would choose:

$$c_{j\ell}=rac{1}{2} ln(rac{W_{+}^{j\ell}}{W_{-}^{j\ell}})$$

where

$$W_b^{j\ell} = \sum_{i=1}^m D(i,\ell) \mathbf{1} \{ x_i \in X_j \land Y_i[\ell] = b \}$$

• Plugging back gives:

$$Z_t = \sum_{j=1}^J \sum_{\ell \in \mathcal{Y}} \sqrt{W_+^{j\ell} W_-^{j\ell}}$$

Relation to One-Error and Single-Label Classification

If the goal is to minimize one-error, in AdaBoost.MH, we can define the final output as:

$$H^1(x) = \arg\max_{y \in \mathcal{Y}} \sum_{t=1}^{T} \alpha_t h_t(x, y)$$

Theorem

With respect to any distribution D over observations (x, Y) with $\emptyset \neq Y \subseteq \mathcal{Y}$ we have

$$one - err_D(H^1) \le K \ hloss_D(H)$$

where $K = |\mathcal{Y}|$

This means that AdaBoost.MH can be applied to single-label multiclass classification problems, and the bound on the training error of the final hypothesis is

$$K\prod_{t=1}^T Z_t$$

- Core Analysis
 - Introduction
 - Minimizing training error
 - Margin maximization
- Pundamental perspectives
 - Loss minimization and generalizations of Boosting
 - Convex optimization and Information geometry
- Algorithm extensions
 - Confidence-rated weak predictions
 - Multiclass classification
 - Ranking with Boosting

RankBoost

Using a pair-based weak learner

Given: a finite set $V \subseteq \chi$ of training instances

the set
$$E \subseteq V \times V$$
 of preference pairs (u,v) such that $u < v$
Initialize: for all u , v , let $D_1(u,v) = 1/|E| \times \mathbf{1}[(u,v) \in E]$

For t=1, ..., T:

- Train weak learner using distribution D_t .
- Select $h_t: \chi \to R$ and $\alpha_t \in R$ to minimalize the normalization factor:

$$Z_t = \sum_{u,v} D_t(u,v) exp\left(\frac{1}{2}\alpha_t(h_t(u) - h_t(v))\right)$$

Update, for all u, v:

$$D_{t+1}(u,v) = \frac{D_t(u,v)exp\left(\frac{1}{2}\alpha_t(h_t(u)-h_t(v))\right)}{Z_t}$$

Output the final ranking:

$$F(x) = \frac{1}{2} \sum_{t=1}^{T} \alpha_t h_t(x)$$

Analysis

- a)For any given weak ranking h, Z can be viewed as a convex function of α with a unique minimum that can be found numerically, for instance via a simple binary search
- b) If h has the range $\{-1,+1\}$, $\frac{1}{2}(h(v)-h(u))$ has range $\{-1,0,+1\}$. We can use techniques from "Weak Hypotheses That Abstain" part to minimize Z analytically Specifically, for $b \in \{-1,0,+1\}$, let

$$U_b = \sum_{u,v} D(u,v) \mathbf{1} \{ h(v) - h(u) = 2b \} = \mathbf{Pr}_{(u,v) \sim D} [h(v) - h(u) = 2b]$$

Then

$$Z = U_0 + U_- e^{\alpha} + U_+ e^{-\alpha}$$

It can be verified that Z is minimized when

$$\alpha = \frac{1}{2} ln(\frac{U_+}{U_-})$$

which yields

$$Z = U_0 + 2\sqrt{U_- U_+}$$

- (□) (圖) (重) (重) (重) (9)(()

Reference

- Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT Press, 2012
- Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning. Springer series in statistics.
- James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. Springer Science Business Media; 2013

Tuan Quoc Do September 21, 2017 43 / 43