Lecture 17: Multiway Search Trees

Hyungon Moon

Outline

- m-way search trees
- B-trees
- B⁺-trees

Outline

- m-way search trees
- B-trees
- B⁺-trees

Memory Hierarchy

- Von Neumann model limitation
 - Memory is bottleneck
- Memory hierarchy
 - Register cache memory disk
- Overall performance is closely related to reducing the access to slow memory

Reduce Memory Access

- Number of memory accesses is closely tied to the <u>height</u> of the search tree
- Height-balanced binary search tree has log₂n height
- Can we break log₂n barrier?

→Allow a node to have more than 2, up to m children.

m-way Search Trees

- Root has at least two & at most m subtrees
- Node structure (n<m)

- E_{i} .K < E_{i+1} .K (key)
- E_i .K < all keys in A_i < E_{i+1} .K
- Subtrees A_i are also m-way search trees (recursive definition)

Tree is ordered!

Example: 4-way Search Tree

m-way Search Trees

- Maximum # of nodes happens when all internal nodes are m-nodes (having m subtrees)
 - A full tree with degree m.
- Max # of nodes in a tree of degree m and height h

$$-1 + m + m^2 + ... + m^h = \frac{m^{h-1}}{m-1}$$

- Each node has m-1 elements
- So, max # of elements: $m^h 1$

Searching

```
// Search m-way search tree for an element with key x
E0.k=-MAXKEY;
for(p=root; p; p=Ai)
{
    Let p is a node (n, A0, E1, A1, ..., En, An)
    En+1.k = MAXKEY
    Determine i such that Ei.K <= x < Ei+1.K;
    if(x == Ei.K) return Ei; // x is found
}
// x is not found
return NULL;</pre>
```


Outline

- m-way search trees
- B-trees
- B⁺-trees

B-trees

- Extended m-way search trees by addition of external nodes
 - Replace a NULL pointer to an external node
- Definition
 - If not empty, root node has at least two children
 - All internal nodes (except root) have at least $\left[\frac{m}{2}\right]$ children.
 - All external nodes are at the same level
- Balanced m-way search tree

Example

5-way B-tree example,
$$\left\lceil \frac{5}{2} \right\rceil = 3$$

2-3 and 2-3-4 Trees

- 2-3 tree is B-tree of order 3
- 2-3-4 tree is B-tree of order 4
 - Also called (2,4) tree or 2-4 tree

2-3-4 tree

Height of a (2,4) Tree

- Theorem: A (2,4) tree storing n items has height $O(\log n)$ Proof:
 - Let h be the height of a (2,4) tree with n items
 - Since there are at least 2^i items at depth i = 0, ..., h 1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + ... + 2^{h-1} = 2^h - 1$$

- Thus, $h \leq \log (n + 1)$
- Searching in a (2,4) tree with n items takes $O(\log n)$ time

Choice of m

- Worst-case search time
 - (time to fetch a node + time to search node) * height
- Search time increases if m is too small or too large
- Pick m so that single node fits to a single memory access
 - Size of a cache line or disk block

Insert

- If insertion results in m keys for m-way B-tree (overflow), split node
- Let node p have the format
 - $m, A_0, (E_1, A_1), ..., (E_m, A_m)$
- p is split into two nodes p and q
 - $-\operatorname{Let} k = \left\lceil \frac{m}{2} \right\rceil$
 - node p: k-I, A_0 , (E_1, A_1) , ..., (E_{k-1}, A_{k-1})
 - node q: m-k, A_k , (E_{k+1}, A_{k+1}) , ..., (E_m, A_m)
 - $-(E_k,q)$ is inserted into the <u>parent</u> of p
- Splitting can propagate up to the root

Split Node

Insert 2

need split!

Split overflowed node around middle key

Insert middle key to its parent

Insert 18

Insert 7

Deletion

- Delete from interior node can be done by replacing with the largest in left subtree or the smallest in right subtree
 - Similar to binary search tree
 - Smallest/largest is in the leaf node
 - Deletion from an interior node is transformed into a deletion from a leaf node
 - If deletion results in less than $\left\lceil \frac{m}{2} \right\rceil$ elements, rotation or combine must be done

Example

- Delete 20
 - Replace with 10 or 25

Deletion

- Four cases when deleting an element from a leaf node p
 - p is root: nothing to do.
 - p is not the root:
 - The number of elements in p $\geq \left\lceil \frac{m}{2} \right\rceil 1 \text{: nothing to do}$ $= \left\lceil \frac{m}{2} \right\rceil 2 \text{: } \begin{cases} \text{can bring from the sibling } \\ \text{cannot bring from the sibling } \end{cases}$ $< \left\lceil \frac{m}{2} \right\rceil 2 \text{: not happening}$

- Four cases when deleting an element from a leaf node p
- p is root and left with at least one element after delete
 - OK: root is not empty
- 2. p is internal and left with at least $\left|\frac{m}{2}\right| 1$ elements after delete

$$-\mathsf{OK}:\left[\frac{m}{2}\right]-1$$
 elements $=\left[\frac{m}{2}\right]$ children

- 3. p has $\left\lceil \frac{m}{2} \right\rceil 2$ elements and its sibling q has at least $\left\lceil \frac{m}{2} \right\rceil$ elements
 - Rotation, p++, q--

p is left child of r

3. More rotation examples

p is middle child of r

p is right child of r

- 4. p has $\left|\frac{m}{2}\right| 2$ elements and its sibling q has $\left[\frac{m}{2}\right] 1$ elements
 - p is deficient and q has the minimum number of elements
 - Cannot rotate: cannot reduce q's element
 - p, q, and in-between element E_i in the parent r are combined, reduce the number of element in r by one
 - If r has $\left\lceil \frac{m}{2} \right\rceil$ 2 elements, rotation and combine is applied upward to the root

4. p has $\left\lceil \frac{m}{2} \right\rceil - 2$ elements and its sibling q has

$$\left[\frac{m}{2}\right] - 1$$
 elements

r has insufficient element, combine is applied upward

p is left child of r

Analysis

	Find	Put	Erase	Notes
Hash Table	1 expected	1 expected	1 expected	no ordered map methodssimple to implement
Skip List	log <i>n</i> high prob.	log n high prob.	log n high prob.	randomized insertionsimple to implement
AVL and (2,4) Tree	log <i>n</i> worst-case	log <i>n</i> worst-case	log <i>n</i> worst-case	o complex to implement

Outline

- m-way search trees
- B-trees
- B⁺-trees

B⁺-Trees

- Interior node : index (key)
- Leaf node : data
- Data nodes are linked using linked list

B⁺-Trees

- All data nodes are at the same level and are leaves
 - Data node contains all the keys
- The index nodes define a B-tree of order m
- Let index node p have the format
 - $-m, A_0, (K_1, A_1), ..., (K_n, A_n), n \le m$
 - $-K_i \le all elements in A_i < K_{i+1}$
- Efficient for both direct and sequential access

B⁺-Trees

B⁺-Trees Search

- Exact match
 - Search to leaf node, return exact match
- Range search [A,B]
 - Search to leaf node for A
 - Start from that node, linear search in the data node that exceed B
 - Collect all the elements between them

Range Search

• [23,55]

B⁺-Trees Insert

- Similar to B-tree insert
- Split leaf (data) node if overfull
- Smallest key of the newly created data node is inserted to the parent index node
 - That key exists in both leaf and its parent

• Insert key = 2

Insert into a Data Node

Split overflowed node into half

- Insert smallest key of <u>right half</u> to its parent
 - 2 is duplicated in parent and child nodes

Insert 18

- Delete always occurs on data node
- Data node is deficient if its element is fewer than ceil(c/2), c : capacity of data node
 - Borrow one element from nearest left/right sibling data node and update root index
 - If siblings do not have enough element to borrow,
 merge two data node and delete index in-between
- If index node is deficient, update as in B-tree

Delete 15

Delete 1
Get element from sibling and update parent key

Delete 1
Get element from sibling and update parent key

Delete 2 Merge with sibling, delete in-between key in parent

Delete 2 Merge with sibling, delete in-between key in parent

Delete 3
Get element from sibling and update parent key

Delete 3
Get element from sibling and update parent key

Delete 6 Merge with sibling, delete in-between key in parent

Index node become deficient. Rotate index node (as in B-tree).

Delete 8 Merge with sibling, delete in-between key in parent

Index node deficient

Merge with sibling and in-between key in parent

Index node deficient It is the root : discard

Discussion

- B & B+ trees perform similar on direct access
- B+ trees perform better for sequential access
- B+ trees always have to be traversed to leaf for direct access

Questions?

