Becoming a successful Data Scientist: Error Analysis

As of now, you should know

- how to construct models (the "recipe")
- how to use them for prediction
- some simple metrics on how they perform

In this module, the topics to be covered provide answers: model diagnostics In other words: the importance of Error Analysis in diagnosing and improving models.

Classification: Beyond accuracy

Let's re-run the MNIST problem and examine measures of error more detailed than accuracy

```
In [5]: mnh = mnist_helper.MNIST_Helper(random_seed=42)
    mnh.setup()
    _= mnh.fit()
```

Retrieving MNIST_784 from cache

Examine the score (n.b., ran with L2 penalty)

```
In [6]: clf = mnh.clf
    # Cross validation
    scores = cross_val_score(clf, mnh.X_train, mnh.y_train, cv=10)
    print("Avg cross val score={s:3.2f}\n".format( s=scores.mean()) )

# How many zero coefficients were forced by the penalty ?
    sparsity = np.mean(clf.coef_ == 0) * 100

print("Sparsity with {p} penalty: {s:.2f}.".format(p=clf.penalty, s=sparsity) )
```

Avg cross val score=0.88

Sparsity with l2 penalty: 16.07.

We achieved an out of sample accuracy of about 87%

That sounds good, but is it really?

If each of the 10 labels occurs with equal frequency among the training examples

- We could mis-predict *every* occurrence of a single digit (i.e., 10% of the training examples)
- And still achieve an Accuracy of 90% if we perfectly predict all other digits

Would that be satisfactory?

This motivates the need to measure Conditional Performance or Conditional Loss
Performance/Loss conditioned on meaningful subsets of training examples
We will examine some conditional metrics for the Classification task.

Return to parent notebook

Binary classification: Conditional accuracy

To review:

For a Binary Classification task, we can partition the examples into a two dimensions

- Row labels: the *predicted* class
- Column labels: the true class

P N**P** TP FP**N** FN TN

The correct predictions

- True Positives (TP) are examples predicted as Positive that were in fact Positive
- True Positives (TN) are examples predicted as Negative that were in fact Negative

The incorrect predictions

- False Positives (FP) are examples predicted as Positive that were in fact Negative
- False Positives (FN) are examples predicted as Negative that were in fact Positive

Unconditional Accuracy can thus be written as

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

We can also define some conditional Accuracy measures

Imbalanced data: the case for conditional accuracy

It is quite possible that the number of Positive and Negative examples in a dataset are quite different

• Titanic example: many fewer examples with Survived than Not Survived

When this occurs, unconditional measures are highly influenced by success on the dominant category

• Titanic example: The Negative examples are almost twice as numerous as the Positive

$$TP + FN \ll TN + FP$$

Conditional metrics are one way of placing focus on success in the dominant category.

Recall

Conditioned on Positive examples.

$$ext{Recall} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

- The fraction of Positive examples that were correctly classified
- Also goes by the names: True Positive Rate (TPR), Sensitivity

Degenerate case:

- You can achieve 100% Recall by always predicting Positive
- But Unconditional Accuracy will suffer.

Specificity

Conditioned on Negative examples

$$Specificity = \frac{TN}{TN + FP}$$

- The fraction of Negative examples that were correctly classified
- Also goes by the name: True Negative Rate (TNR)

Precision

A metric to tell you the fraction of your Positive predictions that were correct.

$$Precision = \frac{TP}{TP + FP}$$

Degenerate case:

- You can achieve 100% Precision: Predict Positive for only a *single example* that is actually Positive
- But you fail to correctly predict all other Positive examples

False Positive Rate (FPR)

The fraction of Negative examples misclassified as Positive.

$$egin{array}{lll} ext{FPR} & = & rac{ ext{FP}}{ ext{FP+TN}} \ & = & 1- ext{Specificity} \end{array}$$

Return to parent notebook

Precison/Recall Tradeoff

Ideally, we would like our model to have both

- High Recall: correctly identify a large fraction of Positive examples
- High Precision: do not mis-identify too many Negative examples as positive

But it may not be possible to have both.

We will

- Show how to trade off one measure for the other
- Discuss when to favor one type of error over another

Some Classification models (e.g., Logistic Regression)

- Use hyper-parameters (e.g., threshold)
- To convert a numerical "score" to a Categorical predicted value

By varying the threshold, we can change predictions to favor a particular Conditional Performance metric.

We will show how this happens and demonstrate ways to evaluate the trade-off between metrics.

Recall our methodology for Classification via Logistic Regression:

- Compute a numerical "score" for our example based on its features $\hat{s}^{(\mathbf{i})} = \Theta \cdot \mathbf{x}^{(\mathbf{i})}$
- Construct a probability distribution (over the target classes) from the scores $\hat{p}^{(\mathbf{i})} = \sigma(\hat{s}^{(\mathbf{i})})$
- Predict by comparing the probability to a threshold

We can visualize the step of converting probabilities to predicted class by plotting lines (hyper-planes) of constant score/probability

For a given constant value of score or probability:

- Examples above the line are classified as Positive
- Examples below the line are classified as Negative

We can choose any score/probability as our decision boundary for prediction.

Let's see what happens as we vary the boundary.

Separation bounday as function of probability threshold

- By choosing the boundary $\Theta^T \mathbf{x} = -1 \ (\text{resp., prob} = 0.27)$
- Rather than the boundary $\Theta^T \mathbf{x} = 0 \ \ (\mathrm{resp., prob} = 0.50)$

we potentially increase the number of examples classified as Positive

- Increasing the number of TP → Increasing Recall
- But also potentially increasing the number of FP → Decreasing Precision

Thus, by varying threshold, we can choose the trade-off between Recall and Precision.

Precision vs Recall: which one to favor?

What factors might lead us to favor one metric over the other?

Consider a diagnostic test whose goal is to classify highly infectious patients as Positive

- High Recall: catch most infected patients
- Low Precision: frighten patients that are misclassified as Positive

You might favor Recall

• When a False Negative has very bad consequences (e.g., lead to an increase in infections in population)

You might favor Precision

• When a False Positive has very bad consequences (e.g., cause a non-infected patient to isolate)

Precision/Recall trade-off: plot

To be concrete: let's examine the trade-off between Recall and Precision in the context of a binary classifier

- Using MNIST examples: classify an example as being a **single** chosen digit versus the 9 other digits
- Create a binary classifier for a single MNIST digit

```
In [7]: | # Fetch the MNIST data into object
        mnh d = mnist helper.MNIST Helper(random seed=42)
        mnh d.setup()
        # Turn the 10 class training set into a binary training set
        # - Same examples, different targets
        # - targets are now "is 'digit'" or "is not 'digit'" for a single digit
        diait = '5'
        y train d, y test d = mnh d.make binary(digit)
        # Fit a binary model: Is digit/Is not digit
        mnh d.fit(y train=y train d)
        scores = cross val score(mnh d.clf, mnh d.X train, y train d, cv=3, scoring="acc
        uracy")
        from sklearn.model selection import cross val predict
        y train pred = cross val predict(mnh d.clf, mnh d.X train, y train d, cv=5, meth
        od="decision function")
```

Retrieving MNIST_784 from cache


```
In [8]:
        from sklearn.metrics import precision_recall_curve
        precisions, recalls, thresholds = precision recall curve(y train d, y train pred
        # Convert thresholds (log odds) to probability
        probs = np.exp(thresholds)/(1+np.exp(thresholds))
        def plot precision recall vs threshold(precisions, recalls, thresholds, probs=No
        ne):
            fig, ax = plt.subplots(1,1, figsize=(12,4))
            if probs is None:
                horiz = thresholds
                label = "Threshold"
            else:
                horiz = probs
                label = "Probability threshold"
              = ax.plot(horiz, precisions[:-1], "b--", label="Precision", linewidth=2)
            = ax.plot(horiz, recalls[:-1], "g-", label="Recall", linewidth=2)
            _ = ax.set_xlabel(label, fontsize=16)
            = ax.legend(loc="upper left", fontsize=16)
            = ax.set ylim([0, 1])
            = ax.set xlim([ horiz.min(), horiz.max()])
            return fig, ax
        fig, ax = plot precision recall vs threshold(precisions, recalls, thresholds, pr
        obs=probs)
        plt.close(fig)
```

In [9]: fig

Out[9]:

Vou can say how warving the threshold affects Decall and Dresision
You can see how varying the threshold affects Recall and Precision • One at the expense of the other

ROC/AUC: Evaluating the Precision/Recall tradeoff

There is another common tool used to evaluate the trade-off between competing metrics.

The **ROC** is a plot of True Positive Rate (TPR) versus the False Positive Rate (FPR) as we vary the threshold.

Our goal is to choose a threshold (corresponding to a point on the curve)

- With the highest True Positive Rate (TPR): fraction of correctly classified Positives
- With the smallest *acceptable* False Positive Rate (FPR): fraction of negatives that are misclassified as Positive

We illustrate by showing the ROC/AUC curve for three different classifiers on the MNIST digit recognition problem.

• Logistic Regression
• KNN
• Random Forests

In [10]: # ROC curves for binary classifier: Is Digit/Is not Digit
 clh.AUC_plot(X_train=mnh.X_train, y_train=y_train_d, X_test=mnh.X_train, y_test=
 y_train_d)

The "ideal" curve would resemble an inverted "L"

- With a top, horizontal line near a TPR of 1
- ullet That rises vertically from a FPR of near 0

That would imply that there is a choice of threshold with low FPR and high TPR.

You decide which threshold produces an acceptable trade-off

But you can also compare the curves across models

- A model whose curve is closer to the inverted "L" shape has a better trade-off
- We can measure this by the *Area Under the Curve* (AUC) of the model
 - Higher AUC gets us closer to the ideal
- The model whose curve has highest AUC might be the model of choice.

Note on the mechanics of plotting the ROC/AUC

To produce the ROC/AUC curve

- Fit a binary classifier
- For each possible value of the threshold
 - Predict using this threshold
 - Evaluate the TPR and FPR
 - This gives a single point on the curve

Fortunately: most ML toolkits will implement this process for you

 But the principle of "there is no magic" means that you should always understand what is happening

$oldsymbol{F_1}$: Another way to combine Precision and Recall

There another metric call the ${\cal F}_1$ which expresses the trade-off between Precision and Recall as a single number:

$$\mathrm{F_1} = rac{\mathrm{TP}}{\mathrm{TP} + rac{\mathrm{FN+FP}}{2}}$$

Return to parent notebook

Multinomial classification: Confusion matrix

So far we have been dealing with a classifier with only two classes.

So the simple grid

P N**P** TP FP**N** FN TN

was sufficient.

The generalization of the grid to multiple classes is called the *Confusion Matrix*

Here is the Confusion Matrix for a classifier on the task of predicting which of 10 digits is represented by an image (MNIST digit recognition)

In [11]: # Now predict the value of the digit on the second half: fig, ax = plt.subplots(figsize=(12,6)) confusion_mat = mnh.create_confusion_matrix() digits = range(0,10) _= clh.plot_confusion_matrix(confusion_mat, digits, ax=ax, normalize=True)

Normalized confusion matrix

• Column labels: the *predicted* class

• Row labels: the true class

The entry in the matrix for row i, column j

• **Percentage** of examples for true digit i that were predicted as digit j.

The diagonal of the Confusion Matrix is the Recall for each digit/

The non-diagonal elements of a row show how often a given digit was mistaken for another.

The confusion matrix for MNIST digit recognition tells us that our classifier

- Does a great job (97% correct) on images corresponding to digits 0,1
- Is struggling (< 80% correct) on images of the digits 5, 8
 - Mis-classifying them as "3" most often

Studying the Confusion Matrix in depth can help you

- Diagnose the weaknesses in your model
- And perhaps take steps to compensate for them (improve the model)
- By analyzing the examples belonging to the subset corresponding to non-diagonal entries

This is the true power of Error Analysis!

- Having a process and the tools to diagnose mis-prediction will make you more successful!
- That is why we emphasize the importance of the Error Analysis step of the Recipe

Return to parent notebook

Regression: beyond RMSE/ R^2

What is the process of diagnosing errors for the Regression task?

Answer: Examining the residuals.

We illustrate that by examining the errors for one of our first models

• Using Linear Regression with the single, raw feature (Size) to fit the "curvy" dataset of Price Premium

```
In [12]: v1, a1 = 1, .005
v2, a2 = v1, a1*2
curv = recipe_helper.Recipe_Helper(v = v2, a = a2)
X_curve, y_curve = curv.gen_data(num=50)

(xlabel, ylabel) = ("Size", "Price Premium")

figp, axp = curv.gen_plot(X_curve,y_curve, xlabel, ylabel)

fig, axs = curv.regress_with_error(X_curve, y_curve, xlabel=xlabel, ylabel=ylabel)
plt.close(fig)

Coefficients:
    [9.86448852] [[0.93673892]]
R-squared (test): 0.91
```

Root Mean squared error (test): 13.73

Root Mean squared error (train): 13.13

R-squared (train): 0.91

Let's focus on the Test errors (which are the <i>residuals</i> : difference between predicted and true targets)

In [13]: fig

Out[13]:

Not good!

- There is a clear pattern to the errors:
 - Positive mis-prediction for extreme values of the single feature (Size)
 - Negative mis-prediction for central values of the single feature
- Non-constant variance
 - Absolute value of the errors at the extremes are larger

Let's consider the business implication of this pattern

- We overprice extremely large and extremely small homes
- We underprice homes of a more common size

This systematic mispricing may drive away customers!

A new feature (Size squared)

- Is large for extreme values of the Size feature
- Is small for central values of the feature

That is: it has the same pattern as the residuals of the single-feature model.

So adding it as a new synthetic feature "predicts" the residuals and thus result in a two-feature model with *smaller* residuals

Once we added that term, we saw that the target was fit well by the model

$$\hat{\mathbf{y}} = eta_0 + eta_1 * \mathbf{x} + eta_2 * \mathbf{x}^2$$

```
In [14]: print("Done")
```

Done