PSYCH 363 - Stroop Effect: Congruency and Response Time

Keagan McMahon, Brigitta Munds, Benjamin Brown, & Christina Rachmadita

<2020-12-14 Mon> December 14th, 2020

Contents

1	Introduction	1	
2	${f Methods}$	1	
3	Results	1	
4	Conclusions	4	
5	References	4	
	Testing Plots here This is to test your installation of the files and programs needed to make	4	
simple report. To compile to pdf use C-c C-e 1 p.			

1 Introduction

Insert introduction text here...

2 Methods

Insert some method text here This loads an R library

library(random)

3 Results

Insert some results text here and other content (i.e. code, etc)

Now we will see if we can some source code and a simple plot for our export.

```
x = 1:10
y = rnorm(10)
print(mean(y))
0.304133655574248
   Here is some more R source code!
\{a=2
  b=6
  multiply <- function(a,b)</pre>
  return(a * b)
  print(paste(a, "multiplied by", b, "is", (print(multiply(a,b)))))
}
{ for(i in seq(1,10))
if(i\%2==0){
print(i) }
   Now lets try some Python source code from my loop assignment...
letters = ['t', 'r', 'i', 'b', 'q', 'v', 'h', 'p']
position = ['1st', '2nd', '3rd', '4th', '5th', '6th', '7th', '8th']
for x in letters:
  print(x)
for i in sorted(letters):
  print(i)
for x in enumerate(zip(letters, position)):
  print("The {0} letter in list 1 is {0}".format(x))
   Here is a graph of our results for you to see:
plot(x,y,type = 'b')
```


Here is some code that produces a table of data for us:

d

foo	bar
a	0.3333333333333333
b	22
n	32

Here is an example of an inline piece of code, it will generate 20 random numbers:

xinline = rnorm(20)

We can use that code in this way:

The mean of 20 mean 0 normally distributed numbers is 0.2677680022121.

4 Conclusions

Put some type of conclusion content here....

5 References

Insert some references here, such as... This article [1]

References

[1] Britt Anderson. There is no such thing as attention. Frontiers in Psychology, 2:246, 2011.

6 Testing Plots here.....

```
library(ggplot2)

data <- read.csv("/home/keagan/GitRepos/363Stroop/363Stroop_Data_Dec_4.csv")

incongruent <- data[which(data$Congruent == 0),]$Time
  congruent <- data[which(data$Congruent == 1),]$Time
  df <- data.frame(cond = c("Incongruent", "Congruent"), rt = c(mean(incongruent), mean(congruent))
  p <- ggplot(df, aes(x = cond, y = rt, fill = cond)) + geom_bar(stat = "identity", width = 0)

p</pre>
```


library(ggplot2)

```
data <- read.csv("/home/keagan/GitRepos/363Stroop/363Stroop_Data_Dec_4.csv")
Lincongruent <- c()
counter = 1
while(counter <= 20) {
    T = data[which(data$Trial == counter & data$Congruent == 0),]
    mean_RT = mean(T$Time)
    Lincongruent = append(Lincongruent, mean_RT)
    counter = counter + 1
}
Lcongruent <- c()
counter = 1
while(counter <= 20) {
    T = data[which(data$Trial == counter & data$Congruent == 1),]
    mean_RT = mean(T$Time)
    Lcongruent = append(Lcongruent, mean_RT)</pre>
```

```
counter = counter + 1
}

cond_rt_df <- data.frame(Condition = rep(c("Congruent", "Incongruent"), each = 20), RT = c(I
df <- data.frame(Congruent = Lcongruent, Incongruent = Lincongruent)
df$Interference <- df$Incongruent - df$Congruent

incongruent_mean <- mean(data[which(data$Congruent == 0),]$Time)
congruent_mean <- mean(data[which(data$Congruent == 1),]$Time)
overall <- data.frame(cond = c("Incongruent", "Congruent"), rt = c(incongruent_mean, congruent)</pre>
```

cannot open the connection

```
p <- ggplot(overall, aes(x = cond, y = rt, fill = cond)) + geom_bar(stat = "identity", width
p</pre>
```


density_plot <- ggplot(cond_rt_df, aes(x = RT, color = Condition, fill = Condition)) + geom_
density_plot</pre>

interference_hist <- ggplot(df, aes(x = Interference)) + geom_histogram(binwidth = 0.05, cointerference_hist</pre>

RT_congruent <- ggplot(df, aes(x = Congruent)) + geom_histogram(alpha = 0.5, fill = "steelb"
RT_congruent</pre>

RT_incongruent <- ggplot(df, aes(x = Incongruent)) + geom_histogram(alpha = 0.5, fill = "stern")
RT_incongruent</pre>

Response Time for Incongruent Words

RT_cond <- ggplot(cond_rt_df, aes(x = RT, color = Condition, fill = Condition)) + geom_history</pre>
RT_cond

Response Time for Congruent vs. Incongruent Words

