Counterexamples for chromatic and dichromatic number

Sophie Spirkl

joint work with Alvaro Carbonero, Patrick Hompe, and Ben Moore

SCMS Combinatorics Seminar, May 5/6 2022

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912].

Induced subgraphs

Let G and H be graphs.

H is an **induced subgraph** of G if H can be obtained from G by deleting vertices.

If H is not an induced subgraph of G, then G is H-free.

Colouring

The **chromatic number** $\chi(G)$ is the smallest k such that G has a k-colouring: a function $f:V(G)\to\{1,\ldots,k\}$ with $f(u)\neq f(v)$ for all $uv\in E(G)$.

The **clique number** $\omega(G)$ is the size of a largest clique (a set of vertices all pairwise adjacent) in G.

Questions

▶ What can we say about graphs G with $\chi(G)$ much larger than $\omega(G)$?

A class $\mathcal C$ of graphs is polynomially $\chi\text{-bounded}$ if there is a polynomial function f such that $\chi(G) \leq f(\omega(G))$ for all $G \in \mathcal C$.

Which hereditary classes are χ-bounded? [Gyárfás]

closed under
induced subgraphs

The conjecture

Maybe a class is χ -bounded if its triangle-free graphs have bounded χ ?

Conjecture (Origin unclear; sometimes attributed to Esperet)

For all $k, r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that for every graph G with $\chi(G) \geq n$ and $\omega(G) \leq k$, there is an induced subgraph H of G with $\chi(H) \geq r$ and $\omega(H) = 2$.

► True if we omit "induced" [Rödl]

The counterexample

Theorem (Carbonero, Hompe, Moore, S.)

For every $n \in \mathbb{N}$, there is a graph G with $\chi(G) \geq n$ and $\omega(G) \leq 3$ such that every induced subgraph H of G with $\omega(H) \leq 2$ satisfies $\chi(H) \subset 4$.

Theorem (Scott, Seymour)

For every $k \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that every graph G with $\chi(G) \geq n$ and $\omega(G) \leq k$ contains an induced subgraph H with $\omega(H) \leq 2$ and $\chi(H) = 3$.

odd hole

Zykov graphs

Define D_n as follows: n-1 copies of Dn-1 For every T=(x1,..., xn-1) with xi & Dini, add a vertex Vy and edges xi-> vy for all i. D3: D_2 : $ightharpoonup \chi(D_n) \ge n$. [Zykov]

For all $u,v\in D_n$, there is at most one directed path between them. [Kierstead, Trotter]

Modification

Given D_n , define D'_n :

- $\triangleright V(D'_n) = V(D_n);$
- ightharpoonup if there is a path from u to v of length congruent to 1 modulo 3, add a blue edge $u \rightarrow v$;
- ightharpoonup if there is a path from u to v of length congruent to 2 modulo 3, add a red edge $v \to u$.

Then:

- ▶ D_n is a subgraph of D'_n (so $\chi(D'_n) \ge n$). If $u \to v$ then $v \preceq v$
- ▶ If $u \to v$ and $v \to w$ in red, then $w \to u$ in blue.

Clique number

▶ If $u \to v$ and $v \to w$ then $u \not\to w$. If 4 vertices are pairwise adjacent, one has 22 out-hbrs.

9 / 19

Chromatic number of triangle-free induced subgraphs

▶ If H is an induced subgraph of D_n' with $\omega(H) \leq 2$, then $\chi(H) \leq 4$.

no vertex has an in-edge on out-edge of the same colour

Group and notice that each is stable:

Generalizations

Theorem (Briański, Davies, Walczak)

For every prime $p \geq 2$ and every $n \in \mathbb{N}$, there is graph D_n^p with $\chi(D_n^p) \geq n$ and $\omega(D_n^p) = p$; and $\chi(H) \leq {\omega(H)+2 \choose 3}$ for every induced subgraph H of D_n^p with $\omega(H) < p$.

disproves a conjecture of Esperot Unit

X-bounded => polynomially X-bounded

Generalizations

Theorem (Briański, Davies, Walczak)

For every prime $p\geq 2$ and every $n\in\mathbb{N}$, there is graph D_n^p with $\chi(D_n^p)\geq n$ and $\omega(D_n^p)=p$; and $\chi(H)\leq {\omega(H)+2\choose 3}$ for every induced subgraph H of D_n^p with $\omega(H)< p$.

Theorem (Girão, Illingworth, Powierski, Savery, Scott, Tamitegama, Tan)

For every graph F with at least one edge, there is a constant c_F such that there are graphs of arbitrarily large chromatic number and the same clique number as F in which every F-free induced subgraph has chromatic number at most c_F .

Dichromatic number

Let D be a digraph.

A k-dicolouring of D is a function $f:V(D) \to \{1,\ldots,k\}$ such that no directed cycle is monochromatic. [Erdős, Neumann-Lara]

The dichromatic number $\vec{\chi}(D)$ is the minimum k such that D

has a k-dicolouring.

those can we construct a digraph with large X and small w? randomly (Harutyunyan, Mohar) replicitly (Non)

Dichromatic number

Theorem (Carbonero, Hompe, Moore, S.)

 $\vec{\chi}(D_n') \ge n/4$ and D_n' has no odd induced directed cycle of length at least 5.

• If $H \subseteq D_n^1$ is acyclic, then H is triangle-free so $\mathcal{X}(H) \leq 4$. Thus $\mathcal{X}(D_n^1) \leq 4 \overline{\mathcal{X}}(D_n^1)$.

An odd cycle contains two consecutive edges of the some colour.

Dichromatic number

Theorem (Carbonero, Hompe, Moore, S.)

 $\vec{\chi}(D_n') \ge n/4$ and D_n' has no odd induced directed cycle of length at least 5.

► Call a digraph *t*-chordal if every induced directed cycle has length *t*.

Theorem (Aboulker, Bousquet, de Verclos)

For every n, there is a 3-chordal digraph G_n with $\vec{\chi}(G_n) \geq n$ and $\omega(G_n) = 3$.

Theorem (Carbonero, Hompe, Moore, S.)

For every $t \geq 4$ and every n, there is a t-chordal digraph G_n with $\vec{\chi}(G_n) \geq n$ and $\omega(G_n) = 2$.

Main idea: [Aboulker, Bousquet, de Verclos]

- ▶ Let D' be a t-chordal digraph with $\vec{\chi}(D') = k$. Let D consist of k disjoint copies of D'
- Let \mathcal{I} be the set of all k-vertex independent sets of D with one vertex in each copy of D'
- Construct a digraph G consisting of disjoint copies of D such that in every k-dicolouring, in one copy of D, no $I \in \mathcal{I}$ sees all k colours
- ▶ It follows that G has $\vec{\chi}(G) \ge k+1$

One stable set $I \in \mathcal{I}$:

t copies

8 create a

blow-up of

a t-cycle

from copies

of I

One stable set $I \in \mathcal{I}$:

Now apply induction to this graph D^* and \mathcal{I}^* , defined as follows:

- ▶ if $I' \in \mathcal{I}$ is disjoint from I, then add the union of all t copies of I' as a new set to \mathcal{I}^* ;
- ▶ otherwise, for $I' \neq I$, add t new sets to \mathcal{I}^* , one for each copy of I'.

Now apply induction to this graph D^* and \mathcal{I}^* , defined as follows:

- ▶ if $I' \in \mathcal{I}$ is disjoint from I, then add the union of all t copies of I' as a new set to \mathcal{I}^* ;
- ▶ otherwise, for $I' \neq I$, add t new sets to \mathcal{I}^* , one for each copy of I'.

What got better?

▶ The intersection graph of \mathcal{I}^* has at most the same chromatic number as that for \mathcal{I} ;

▶ The colour class that used to contain *I* got smaller.

No directed P_k , $C_{< k}$

Theorem (Carbonero, Hompe, Moore, S.)

For every $k \geq 3$, the class of digraphs with no monotone induced path on k vertices, and no induced directed cycle on fewer than k vertices is $\vec{\chi}$ -bounded.

Gyárfás path argument, replacing "connected" by "strongly conn.":

Repeating this gives a green path which is forward-induced and vo has no wors after vo

No directed P_k , $C_{\leq k}$

Theorem (Carbonero, Hompe, Moore, S.)

For every $k \geq 3$, the class of digraphs with no monotone induced path on k vertices, and no induced directed cycle on fewer than k vertices is $\vec{\chi}$ -bounded.

- Forward induced
- For every subposh on k vertices, there is a back-edge making it into a cycle

The digraph Gyárfás-Sumner conjecture

Conjecture (Aboulker, Charbit, Naserasr)

For every directed tree T, the class of T-free digraphs is $\vec{\chi}$ -bounded.

- lacktriangle True for stars and $\rightarrow \rightarrow \leftarrow$ [Chudnovsky, Scott, Seymour]
- ▶ True for $\rightarrow \leftarrow \rightarrow$ when $\omega \leq 3$ [Steiner]
- ▶ Open for monotone P_4 ! True for $\omega \leq 4$ [Aboulker, Charbit, Naserasr]

Thank you!

