Modèle relationnel

Définition générale du modèle L'algèbre relationnelle

Objectifs

- Utiliser des structures de données simples issues de la vie courante (tables)
- Proposer des langages de haut niveau (4ème génération) utilisés par des programmeurs et des gestionnaires
- Proposer une indépendance entre les données et les traitements
- Permettre des vues « utilisateur » différentes des relations implantées.

Définition d'une relation (table)

Relation

- Nombre de lignes = cardinalité de la relation
- Le nom des attributs est unique
- L'ordre des lignes et des colonnes est indifférent
- Degré = nombre de colonnes

Domaine d'un attribut

- Le domaine d'un attribut est l'ensemble des valeurs prises par un attribut
- Le domaine se définit :
 - Soit en extension
 - Couleur des yeux = {bleu, vert, noir, marron}
 - Soit en compréhension
 - Poids bébé = {1,5 ; 5,2}

Clé d'une relation

- Il s'agit d'un attribut (ou d'un ensemble d'attributs) dont deux occurrences différentes ne prennent pas la même valeur.
- Il s'agit donc d'un identifiant des occurrences
- Exemple : Dans une relation VOITURE, le numéro minéralogique est une clé.

Schéma de relations

Il s'agit de la représentation symbolique de la relation par ses attributs.

PRODUIT (N°PRODUIT, NOM, QTE EN STOCK)

Nom
Attribut (clé)
Attributs non
(souligné)
clé

Définition de l'algèbre relationnelle

- Elle définit des opérations sur les relations
- Dans la plupart des systèmes relationnels, la réponse à une requête s'obtient par l'utilisation d'un ou plusieurs opérateurs relationnels

Opérateurs relationnels

- L'algèbre relationnelle utilise des opérateurs qui se divisent en deux grandes classes :
 - les opérateurs unaires qui portent sur UNE relation
 - les opérateurs binaires qui portent sur DEUX relations

Opérateurs relationnels

- Opérateurs unaires :
 - sélection
 - complément
 - projection
- Opérateurs binaires :
 - l'union
 - l'intersection
 - la différence
 - la division
 - les produits

Théorie des ensembles

Les opérateurs unaires

Consiste à supprimer des occurrences de la relation qui ne satisfont pas à une condition donnée.

Exemple : Considérons la relation Commande

N°	Date	Montant
Commande		
28	Octobre	1986
29	Octobre	2024
30	Novembre	1610
52	Décembre	512

La sélection permet de répondre à la question : Donnez les commandes passées après le mois d'octobre

N°	Date	Montant
Commande		
30	Novembre	1610
52	Décembre	512

 La condition peut contenir plusieurs critères

Représentation graphique

Prédicats

- Simples: = égal, != ou <> différent, > supérieur,
 >= supérieur ou égal, < inférieur, <= inférieur ou égal, between (exp_1 between exp_2 and exp_3), in (exp_1 in), like (exp like chaîne où chaîne contient des caractères de substitution (_ pour un seul caractère ou % pour une chaîne de caractère)
- Nulle : Valeur non définie : Is [not] null

Prédicats

- composés : constitué de plusieurs prédicats simples ou composés ; reliés par les opérateurs logiques : and, or ou not
- Not placé devant un prédicat en inverse le sens
- And est prioritaire devant or

Sélection

- Notation : σ_(E)R ou Select (R,E) où E représente l'expression de la sélection et R la relation sur laquelle porte la sélection
- Exemples :
 - σ_(Date>octobre)(Commande)
 - σ_(Date>octobre Λ montant<=1500)(Commande)

Rappels algèbre booléenne

AND

Table de la loi ET			
b/a 0 1			
0	0	0	
1	0	1	

a ET b est VRAI si et seulement si a est VRAI et b est VRAI

OR

Table de la loi OU			
b/a 0 1			
0	0	1	
1	1	1	

a OU b est VRAI si et seulement si a est VRAI ou b est VRAI (ou inclusif) → l'un ou l'autre ou les 2

XOR

Table de la loi OU		
b/a	0	1
0	0	1
1	1	0

a OU b est VRAI si et seulement si a est VRAI ou b est VRAI (ou exclusif) → l'un ou l'autre mais pas les 2

Complément

Consiste à construire la relation qui contient toutes les Occurrences qui n'existent pas (c'est la relation qui exprime le FAUX)

Soit la relation R :

Professeur	Elève
Pierre	Toto
Pierre	Loulou
Pierre	Babette
Alice	Toto
Alice	Babette
Alice	Loulou
Alice	Riri
Paul	Loulou
Paul	Babette
Paul	Riri

Le complément de R sera :

Professeur	Elève
Pierre	Riri
Paul	Toto

Complément

Représentation graphique

Relation 2

En général, non implanté dans les SGBD-R

Projection

Consiste à supprimer les colonnes d'une relation

Soit la relation ETUDIANT:

Num_étu	Nom_étu	Nom_départ	Adr_départ
521	Loulou	Informatique	Lyon
632	Babette	Mathématique	Marseille
569	Fifi	Informatique	Lille
451	Loulou	Informatique	Lille

La projection sur nom_étu, nom_départ donne :

Nom_étu	Nom_départ
Loulou	Informatique
Babette	Mathématique
Fifi	Informatique

La projection sur nom_départ, adr_départ donne :

Nom_départ	Adr_départ
Informatique	Lyon
Mathématique	Marseille
Informatique	Lille

Projection

Représentation graphique

Projection

- Notation : $\pi_Y(R)$ ou Proj $_Y(R)$ où Y représente un sous-ensemble d'attributs de la relation R.
- Exemples :
 - π nom etu (Etudiant)
 - π nom depart, adr depart (Etudiant)
 - $\pi_{\text{nom_etu}}$ ($\sigma_{\text{nom_depart=informatique}}$)(Etudiant)
 - Équivalent à : σ nom_depart=informatique (π nom_etu (Etudiant)

Les opérateurs binaires

Union

Permet de fusionner deux relations en une seule.

Cette opération n'est possible que sur des relations ayant les mêmes attributs.

Soit la relation OUVRIER

a • 4 •	1	1 , •		
\sim 01f	la ra	lation.	(' A I	\square
DUIL.	ıaıc	lation		

Num_empl	Nom_empl
15	Loulou
17	Fifi
56	Babette

Nom_empl
Jojo Sophie

L'union permet de construire la relation EMPLOYE

Num_empl	Nom_empl
3	Jojo
21	Sophie
15	Loulou
17	Fifi
56	Babette

Union

Représentation graphique

Union

- Notation : T(X) = R(X)∪S(X) où R et S sont deux relations ayant les mêmes attributs.
- $T(X) = \{ \langle x \rangle / \langle x \rangle \in \mathbb{R} \ \lor \ \langle x \rangle \in \mathbb{S} \}$

Intersection

Permet de fournir des occurrences présente dans l'une et l'autre des relations. Cette opération n'est possible que sur des relations ayant les mêmes attributs.

Soit la relation INGENIEUR

Num_empl	Nom_empl
3	Jojo
21	Sophie
15	Loulou
56	Babette

Soit la relation CHEF DE SERVICE

Num_empl	Nom_empl
3	Jojo
15	Loulou
28	Riri

Intersection

La question : Donnez les numéros et noms des chefs de service qui sont ingénieurs

L'intersection permet de construire la relation suivante

Num_empl	Nom_empl
3	Jojo
15	Loulou

Intersection

Représentation graphique

 Notation : T(X) = R(X)∩S(X) où R et S sont des relations ayant les mêmes attributs

Différence

Permet d'obtenir les occurrences de la relation 1 qui n'appartiennent pas à la relation 2. Les deux relations doivent avoir les mêmes attributs.

Cette opération n'est pas commutative.

Soit la relation INSCRITS

Nom_etu	Nom_UV
Toto	Maths
Jojo	Maths
Toto	Physique
Babette	Chimie
Jojo	Chimie

Soit la relation RECUS

Nom_etu	Nom_UV
Toto	Maths
Jojo	Maths
Babette	Chimie

Différence

Notation: (Relation 1) – (Relation 2)

Question : Donnez le nom des étudiants qui sont collés à

une UV: (inscrits)-(reçus)

La différence permet de construire la relation suivante

Nom_etu	Nom_UV
Toto	Physique
Jojo	Chimie

Différence

Représentation graphique

 Notation : La différence de deux relations R(X) et S(X), notée R\S ou Moins(R,S) est une relation T(X) constituée des nuplets présents dans R mais pas dans S

Division

Permet d'obtenir les occurrences de la relation 1 qui sont associées à toutes les occurrences de la relation 2. Une relation est donc divisée par une autre relation contenant exclusivement des attributs de la première relation.

Soit la relation suivante

Nom_etu	Nom_prof
Toto	Paul
Fifi	Pierre
Loulou	Paul
Riri	Jacques
Toto	Pierre
Fifi	Paul
Loulou	Jacques

Soit la relation suivante

Nom_etu Toto Fifi

Division

La division permet de répondre à la question suivante : Donnez le nom des profs qui enseignent conjointement aux élèves figurant dans la seconde relation.

La relation résultat est :

Nom_prof Paul

Pierre

Représentation graphique :

Nom_de_table

Nom_de_table

La division n'est pas implantée sous les SGBD-R

Division

- La division de R(X,Y) par S(Y) notée R÷S ou Div(R,S) est une relation T(X) dont l'extension est composée de la projection de R sur X restreinte aux seuls n-uplets apparaissant dans R en liaison avec chacun des n-uplets de S.
- Prof_Etu ÷Etu = {Paul, Pierre}

Les produits

Cette opération consiste à former une relation contenant les attributs des deux relations opérandes.

Le produit cartésien se construit en combinant toutes les possibilités.

Soit la relation LIVRE

Titre	Auteur
X	Toto
Υ	Loulou

Soit la relation EDITION

Couleur	Edition
Rouge	Luxe
Blanc	Broché
Vert	Cartonné

Le produit cartésien permet d'associer les titres, auteurs, couleur et édition

Titre	Auteur	Couleur	Edition
X X X Y Y	Toto Toto Toto Loulou Loulou Loulou	Rouge Blanc Vert Rouge Blanc Vert	Luxe Broché Cartonné Luxe Broché Cartonné

 Notation : Soient R(X) et S(Y), deux relations où X et Y sont des ensembles disjoints. Le produit cartésien de R(X) par S(Y) noté R x S est une relation T(X\(\triangle\)Y) dont l'extension est constituée par l'ensemble des n-uplets obtenus en concaténant chaque n-uplet de R avec chaque n-uplet de S.

Le thêta-produit consiste en un produit cartésien doublé d'une sélection. On ne retient que les occurrences qui vérifient une condition logique. Thêta prend les valeurs : <, <=, >, >=, != ou <>

Soit la relation EMPLOYE

Nom_emp	Salaire_emp
E1	2 000
E2	1 500
E3	1 000
E3	1 000

Soit la relation CHEF

Nom_chef	Salaire_chef
Toto	2 500
Loulou	1 300

Le thêta-produit permet de répondre à la question : Donnez le nom des employés qui gagnent plus qu'un chef de service

On effectue d'abord un produit cartésien puis une sélection dont la condition est salaire_emp > salaire_chef

Produit cartésien

Nom_emp	Salaire_emp	Nom_chef	Salaire_chef
E1	2 000	Toto	2 500
E1	2 000	Loulou	1 300
E2	1 500	Toto	2 500
E2	1 500	Loulou	1 300
E3	1 000	Toto	2 500
E3	1 000	Loulou	1 300

Sélection

Nom_emp	Salaire_emp	Nom_chef	Salaire_chef
E1	2 000	Loulou	1 300
E2	1 500	Loulou	1 300

Thêta-produit

- Le thêta-produit (θ-produit) entre R(X) et
 S(Y) est noté de différentes façons :
 - Join(θ-expression) (R,S)

Attributs de jointure

- Join (R, S, θ-expression)
- R \bowtie (θ -expression)
- θ-expression : utilise le prédicat d'égalité dans le cas de l'équijointure

Jointure naturelle (équijointure)

La jointure naturelle permet de réaliser une liaison logique entre deux tables. La condition de sélection est **l'égalité** entre les deux clés des deux relations.

C'est un thêta-produit qui prend la valeur '= 'entre des attributs identiques.

Soit la relation EMPLOYE

Num_emp	Nom_emp	Num_service
02	Toto	S1
10	Loulou	S8
72	Babette	S6
62	Riri	S1

Soit la relation SERVICE

Num_service	Nom_service
S 1	Informatique
S 6	Mathématiques
S 8	Sociologie
S4	Anglais

Jointure naturelle

La jointure naturelle permet de répondre à la question : Donnez le nom des employés et le nom de leur service.

Num_emp	Nom_emp	Num_service	Nom_service
02	Toto	S1	Informatique
10	Loulou	S8	Sociologie
72	Babette	S6	Mathématiques
62	Riri	S1	Informatique

Rq: Le service S4 Anglais qui n'a pas « d'associé », n'est pas présent dans la jointure.

La jointure naturelle est l'une des opérations fondamentales de l'algèbre relationnelle.

Jointure naturelle

Jointure extérieure

Il s'agit d'une jointure naturelle qui permet de faire figurer les occurrences qui n'ont pas « d'associé » dans l'autre relation. On leur associe alors la valeur nulle (symbole ⊥).

Soit la relation EMPLOYE

Num_emp	Nom_emp	Num_service
02	Toto	S1
10	Loulou	S8
72	Babette	S6
62	Riri	S1
25	Fifi	S 5

Soit la relation SERVICE

Num_service	Num_bâtiment
S1	B8
S6	B9
S8	В3
S4	В3
S2	B1

Jointure extérieure

La jointure extérieure conduit à la relation :

Num_emp	Nom_emp	Num_service	Num_bâtiment
02	Toto	S1	B8
10	Loulou	S8	В3
72	Babette	S6	В9
62	Riri	S1	B8
25	Fifi	S5	
		S4	В3
		S2	B1

Jointure extérieure

Cette opération binaire qui n'est pas commutative permet de faire apparaître en totalité les occurrences d'une des deux relations. On définira une semi-jointure gauche ou une semi-jointure droite.

Exemple de semi-jointure droite :

Soit la relation EMPLOYE

Num_emp	Nom_emp	Num_service
02 10 72 62 25	Toto Loulou Babette Riri Fifi	\$1 \$8 \$6 \$1 \$5

Soit la relation SERVICE

Num_service	Num_bâtiment	
S 1	B8	
S 6	В9	
S 8	В3	
S4	В3	
S2	B1	

Le résultat de la semi-jointure droite donne le résultat suivant :

Num_emp	Nom_emp	Num_service	Num_bâtiment
02	Toto	S1	В8
10	Loulou	S 8	B3
72	Babette	S6	В9
62	Riri	S 1	В8
25	Fifi	S5	土

- On peut procéder de la même manière pour la semi-jointure gauche.
- La jointure naturelle de deux semijointures opposées fournit comme résultat une jointure extérieure.

Auto-jointure

- C'est une jointure naturelle dans laquelle les deux relations initiales ne font qu'une.
- Soit la relation Enseignant

Num_ens	Nom_ens	Grade	Salaire
12	Toto	Assistant	1 500
56	Loulou	MDC	2 000
27	Babette	Assistant	2 100
43	Riri	MDC	2 300
51	Fifi	MDC	2 300

Auto-jointure

- L'autojointure permet de répondre à la question suivante : Donnez le nom des assistants qui gagnent plus qu'un MDC ?
- La relation résultat est :

Nom_ens

Babette

Contrainte d'intégrité référentielle

- Dans un schéma de relation, on peut être amené à utiliser une clé primaire d'une table A dans une autre table B.
 Dans ce cas, on parlera de clé étrangère.
- On devra vérifier dans ce cas que les données de la table B contenant la clé étrangère sont bien contenues (ou égales) à celles de la table A contenant la clé primaire.

Contrainte d'intégrité référentielle

- On définit donc des contraintes d'intégrité référentielle :
 - Clé étrangère(B)⊆clé primaire(A)
- Soit le schéma de relation suivant :

Employé (<u>numEmp</u>, nomEmp, adrEmp, <u>numSer</u>)

Service (numSer, libelléSEr, localisationSer)

numSer(Employé) ⊆numSer(Service)

Exercice

Soit le schéma de relation suivant :

```
Produit (<u>Nprod</u>, libelle, pu)
Depot (<u>Ndep</u>, adr, volume)
Stock (<u>Nprod, Ndep</u>, qte)
```

- 1. Libellé et pu de tous les produits
- 2. Libellé des produits dont le prix est supérieur à 150€
- 3. Libellé et pu des produits stockés dans le dépôt 12
- 4. Adresse et numéro des dépôts ayant des produits en rupture de stock
- 5. Donner les contraintes d'intégrité référentielles