Deploying Information Agents on the Web

Craig A. Knoblock

University of Southern California and Fetch Technologies

Acknowledgements

- Information Agents
 Research Group
 - Steve Minton, Fetch Tech.
 - Jose Luis Ambite, USC
 - Greg Barish, Fetch Tech.
 - Kristina Lerman, USC
 - Martin Michalowski, USC
 - Ion Muslea, SRI
 - Maria Muslea, USC
 - Sheila Tejada, UNO
 - Snehal Thakkar, USC
 - Rattapoom Tuchinda, USC

- Electric Elves
 - Hans Chalupsky, USC
 - Yolanda Gil, USC
 - Jean Oh, CMU
 - David V. Pynadath, USC
 - Thomas A. Russ, USC
 - Milind Tambe, USC
- Funding
 - DARPA
 - AFOSR
 - NSF
 - Microsoft

Introduction

- The Web is a tremendous resource, but designed for browsing
 - Sites provide limited capabilities for personalization
 - Few sites are designed to be integrated with others
- Goal: Develop technology to rapidly construct personal software agents
 - Build agents that can perform retrieval, integration, and monitoring tasks on any online source

Outline

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- Linking records across sources
- Efficiently executing agent plans
- Current and related work
- Conclusions

Outline

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- Linking records across sources
- Efficiently executing agent plans
- Current and related work
- Conclusions

Electric Elves Project [Chalupsky et al, 2001]

Elves project goal: Apply agent technology to support human organizations

- Develop software agents that automate routine tasks
- Enable software agents and humans to work together
- Support coordination of tasks
- Applications: Office Elves and Travel Elves

Agents for Monitoring Travel [Ambite et al, 2002]

- Office Elves created as an application of the Electric Elves
- Given travel itinerary, generates set of agents for anticipating travel-related failures and opportunities:
 - Price changes
 - Schedule changes
 - Flight delays & cancellations
 - Earlier and close connections
 - Finding the closest restaurant given GPS coordinates

Travel Assistant

Monitoring Travel Plans

Monitoring Tasks

Monitor Flight Status	 Monitor Flights Stop Monitoring Notify Hotel (Fax) Notify Car Rental Counter (Fax)
Status	Active Active Active Active Active Inbound flight 1 Outbound flight 2 Inbound flight 1 Inbound flight 2
Monitor Flight Schedule	Monitor Schedule Stop Monitoring Status
Monitor Earlier Flights	 Monitor Earlier Flights Stop Monitoring Status
Monitor Connecting Flights	 Monitor Connecting Flights Stop Monitoring Active Active Status (Outbound) Status (Inbound)
Monitor Airfare	Decrease only Mode Mode Airfare Active Status

Agents Deployed to Monitor Travel Itinerary

Flight Prices & Schedules

Flight Status

Weather

Restaurants

Monitoring Agents

Flight-Status Agent:

Flight delayed message:

Your United Airlines flight 190 has been delayed. It was originally scheduled to depart at 11:45 AM and is now scheduled to depart at 12:30 PM. The new arrival time is 7:59 PM.

Flight cancelled message:

Your Delta Air Lines flight 200 has been cancelled.

• Fax to hotel message:

Attention: Registration Desk

I am sending this message on behalf of David Pynadath, who has a reservation at your hotel. David Pynadath is on United Airlines 190, which is now scheduled to arrive at IAD at 7:59 PM. Since the flight will be arriving late, I would like to request that you indicate this in the reservation so that the room is not given away.

Monitoring Agents

◆ Airfare Agent: Airfare dropped message The airfare for your American Airlines itinerary (IAD - LAX) dropped to \$281.

Earlier-Flight Agent: Earlier flights message

```
The status of your currently scheduled flight is:

# 190 LAX (11:45 AM) - IAD (7:29 PM) 45 minutes Late
If you would like to return earlier, the following
United Airlines flights will arrive earlier than your
scheduled flights:

# 946 LAX (8:31 AM) - IAD (3:35 PM) 11 minutes Late
-----
# 388 LAX (9:25 AM) - DEN (12:25 PM) 10 minutes Late
# 1534 DEN (1:20 PM) - IAD (6:06 PM) On Time
```


Outline

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- Linking records across sources
- Efficiently executing agent plans
- Current and related work
- Conclusions

Wrappers for Live Access to Online Sources

HTML sources turned into agent-friendly sources

Wrapper


```
<YAHOO WEATHER>
- < ROW >
<TEMP>25</TEMP>
<OUTLOOK>Sunny</OUTLOOK>
<HI>32</HI>
<LO>19</LO>
<APPARTEMP>25</ APPARTEMP>
<HUMIDITY>35%</HUMIDITY>
<WIND>E/10 km/h</WIND>
<VISIBILITY>20 km</VISIBILITY>
<DEWPOINT>9</DEWPOINT>
<BAROMETER>959 mb</BAROMETER>
</ROW>
</YAHOO WEATHER>
```


Extraction Rules

- Wrapper defined by a set of extraction rules
- Extraction rule: sequence of landmarks
 - Define both beginning and end of required information on the page

SkipTo(Phone) SkipTo(<i>) SkipTo(</i>)

Name: Joel's Phone: <i> (310) 777-1111 </i> Review: ...

Learning the Extraction Rules

[Muslea, Minton, & Knoblock, 01]

- Hierarchical wrapper induction
 - Decomposes a hard problem into several easier ones
 - Extracts items independently of each other

Example of Rule Induction

Training Examples:

```
Name: Del Taco  Phone (toll free) : <b> ( 800 ) 123-4567 </b> Cuisine ...
 Name: Burger King  Phone : (310) 987-9876  Cuisine: ...
                             SkipTo(()
Search Space:
                 SkipTo(Phone) SkipTo( ( )
SkipTo( <b>( )
                                               ••• SkipTo(:) SkipTo(()
             SkipTo(Phone) SkipTo(:) SkipTo(()
```


Active Learning

- Problem: May require large number of examples to achieve high accuracy
- Exploit active learning
 - System selects most informative examples to label
 - Want to achieve 100% accuracy with as few examples as possible

Which Example to Label Next

SkipTo(Phone:)

Training Examples

Name: Joel's Phone: (310) 777-1111 Review: The chef...

Name: Kim's Phone: (213) 757-1111 Review: Korean ...

Unlabeled Examples

Name: Chez Jean Phone: (310) 666-1111 Review: ...

Name: Burger King Phone: (818) 789-1211 Review: ...

Name: Café del Rey Phone: (310) 111-1111 Review: ...

Name: KFC Phone: (800) 111-7171 Review:...

Multi-view Learning [Muslea, Minton, Knoblock '00]

Two ways to find start of the phone number:

SkipTo(Phone:)

BackTo((Nmb))

Name: KFC Phone: (310) 111-1111 Review: Fried chicken ...

Multi-view Learning: Co-Testing

Co-Testing for Wrapper Induction

SkipTo(Phone:)

BackTo((Nmb))

Name: Joel's Phone: (310) 777-1111 Review: ...

Name: Kim's Phone: (213) 757-1111 Review: ...

Name: Chez Jean Phone: (310) 666-1111 Review: ...

Name: Burger King Phone: (818) 789-1211 Review: ...

Name: Café del Rey Phone: (310) 111-1111 Review: ...

Name: KFC Phone: (800) 111-7171 Review:...

Not All Queries are Equally Informative

```
SkipTo(Phone:)

... Phone: (800) 171-1771 Fax: (111) 111-1111 Review: ...
```

```
... Phone: <i>(800) 555-5555 </i> Review: A century ago (1891) ...
```


Weak Views

[Muslea, Minton, Knoblock '03]

- Learn "content description" for item to be extracted
 - Too general for extraction
 - (Nmb) Nmb Nmb can't tell a phone number from a fax number
 - Useful at *discriminating* among *query candidates*
 - Learned content descriptions
 - Starts with: (Nmb)
 - Ends with: Nmb Nmb
 - Contains: Nmb Punct
 - Length: [6,6]

Naïve & Aggressive Co-Testing

- Naïve Co-Testing:
 - Query: randomly chosen contention point
 - Output: rule with fewest mistakes on queries
- Aggressive Co-Testing:
 - Query: contention point that most violates weak view
 - Output: committee vote (2 rules + weak view)

Results for Random Sampling

33 most difficult of the 140 tasks from [Kushmerick '97]

Results for Active Learning

agents@USC

Results for Active Learning with Weak Views

Examples to 100% accuracy

Outline

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- > Linking records across sources
- Efficiently executing agent plans
- Current and related work
- Conclusions

Record Linkage (Object Consolidation)

Dept. of Health

Active Learning to Jenning Learning to Determine Matched Records [Tejada, Knoblock, Minton '01,'02]

Learn importance of attributes for matching records

Name Street Phone

Zagat's Art's Deli 12224 Ventura Boulevard 818-756-4124

Dept of Health Art's Delicatessen 12224 Ventura Blvd. 818/755-4100

Mapping rules:

Name > .9 & Street > .87 => mapped

Name > .95 & Phone > .96 => mapped

Mapping Rule Learner

Committee Disagreement

 Chooses an example based on the disagreement of the query committee

Examples	M1	Commi M2	ittee M3	
Art's Deli, Art's Delicatessen	Yes	Yes	Yes	
CPK, California Pizza Kitchen	Yes	No	Yes	
Ca'Brea, La Brea Bakery	No	No	No	

 CPK, California Pizza Kitchen is the most informative example

Exploiting Secondary Sources for Record Linkage [Michalowski, Thakkar, Knoblock '03]

- Primary data source may be insufficient to determine mappings
- Secondary sources can help reduce the uncertainty
- Examples of secondary sources
 - Geocoder
 - Maps street addresses into lat/long coordinates
 - Business directories
 - Provide company officers and locations
 - Area code updates
 - Provide changes in area codes over time

Missing Matches

Record Linkage

Matched Records

Data Source	Name	Address	City	State				
Zagats	Chart House	13950 Panay Way	Marina del Rey	CA				
Dinesite	Chart House	13950 Panay Way	Marina Del Rey	California				
Zagats	Killer Shrimp	523 Washington Blvd.	Marina del Rey	CA				
Dinesite	Killer Shrimp	523 Washington Boulevard	Marina Del Rey	California				
Zagats	CAFE DEL REY	4451 Admiralty Way	Marina del Rey	CA				
Dinesite	Cafe Del Rey	4451 Admiralty Way	Marina Del Rey	California				
Zagats	Koo Koo Roo	4325 Glencoe Ave.	Marina del Rey	CA				
Dinesite	Koo Koo Roo	4325 Glencoe Avenue	Marina Del Rey	California				

Exploiting a Geocoder

Secondary Source

Record Linkage

Matched Records

	Data Source	Name	Address	City	
	Zagats	CAFE DEL REY	4451 Admiralty Way	Marina del Rey	CA
	Dinesite	Cafe Del Rey	4451 Admiralty Way	Marina Del Rey	Calif
	Zagats	Benny s BBQ	4077 Lincoln Blvd.	Marina del Rey	CA
	Dinesite	Benny s Bar-B-Q	4077 Lincoln Boulevard	Marina Del Rey	Calif
	Zagats	Alejo s	4002 Lincoln Blvd.	Marina del Rey	CA
	Dinesite	Alejo Presto Trattoria	4002 Lincoln Boulevard	Marina Del Rey	Calif
Consolidated	Zagats	Aunt Kizzy s Back Porch	4325 Glencoe Ave.	Marina del Rey	CA
Restaurants	Diposito			Marina Del Rey	Calif
	Zagats	26 Beach Cafe	26 Washington St.	Venice	CA
	Dinesite	26 Beach Cafe	26 Washington Boulevard	Marina Del Rey	Calif
	Lugues	-1-1-1	12050 0	riarma del Rey	CA
	Dinesite	Chart House	13950 Panay Way	Marina Del Rey	Calif
	Zagats	Killer Shrimp	523 Washington Blvd.	Marina del Rey	CA
	Dinesite	Killer Shrimp	523 Washington Boulevard	Marina Del Rey	Calif
	Zagats	Koo Koo Roo	4325 Glencoe Ave.	Marina del Rey	ca fornia

26 Beach Cafe 26 Washington St. Venice, CA

26 Beach Cafe 26 Washington Boulevard Marina Del Rey, Calif

Preliminary Results: Secondary Sources

#	Total						
Labeled	Correct						
Examples	Matches	Without	Secondary	y Source	With Secondary Source		
				Average			Average
		Precision	Recall	DT Depth	Precision	Recall	DT Depth
25	109	51%	33%	5	66%	51%	1
	103	J 1 /0	JJ /0	5	00 /0	J 1 /0	•
35					81%		3

 Secondary source reduces the depth of the decision tree that needs to be learned

Outline

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- Linking records across sources
- > Efficiently executing agent plans
- Current and related work
- Conclusions

agents@USC

Efficiently Executing Agent Plans

Problem

- Information gathering may involve accessing and integrating data from many sources
- Total time to execute these plans may be large

Why?

- Slow remote sources
- Unpredictable network latencies
- Binding patterns
 - Source cannot be queried until a previous query has been answered
- Result: execution is often I/O-bound

Theseus Agent Execution System [Barish & Knoblock, '02]

- Plan language and execution system for Webbased information integration
 - Expressive enough for monitoring a variety of sources
 - Efficient enough for real-time monitoring

Streaming Dataflow

- Plans consist of a network of operators
 - Examples: Wrapper, Select, etc.
 - Operators produce and consume data
 - Operators "fire" upon any input data
- Data passed as tuples of a relation

Parallelism in Streaming Dataflow

Dataflow

- Operations scheduled by data availability
 - Independent operations execute in parallel
 - Maximizes horizontal parallelism
- Example: computing (a*b) + (c*d)

Streaming

- Operations emit data as soon as possible
 - Independent data processed in parallel
 - Maximizes vertical parallelism

CarInfo Agent

- Agent for recommending used cars:
 - Combine information from
 - Prices of used cars
 - Safety ratings
 - Reviews
 - Example:
 - 2002 Midsize coupe/hatchback
 - \$4K-\$12K,
 - No Oldsmobiles

The Carlnfo agent

1. Locate cars that meet criteria

- Edmunds.com

The Carlnfo agent

- 1. Locate cars that meet criteria
 Edmunds.com
- 2. Filter out Oldsmobiles

The CarInfo agent

- 1. Locate cars that meet criteria
 Edmunds.com
- 2. Filter out Oldsmobiles
- 3. Gather safety reviews for each NHSTA.gov

The Carlnfo agent

- 1. Locate cars that meet criteria
 - Edmunds.com
- 2. Filter out Oldsmobiles
- 3. Gather safety reviews for each NHSTA.gov
- 4. Gather detailed reviews of each
 - ConsumerGuide.com

ConsumerGuide Navigation

Requires navigating through multiple pages

Highlights for 2002

Stratus sedans share a design with the Chrysler Sebring sedan and convertible. Stratus coupes share a design with the Chrysler Sebring

Sedans come in SE, SXT, SE Plus, ES, and new R/T trim. The SXT and both SE versions come with a 4-cyl engine and offer an optional Chrysler-made 2.7-liter V6. The V6 is standard on the ES and R/T. All but the R/T have mandatory automatic transmission. All sedans have 4-wheel disc brakes, with ABS optional. Curtain side airbags are optional; no torso side airbags are offered. Added at midyear, the R/T sedan has antilock 4-wheel disc brakes, a 5-speed manual transmission, and offers at no extra charge Chrysler's AutoStick automatic transmission with manual shift gate.

Pics

Coupes use powertrains and platforms from Mitsubishi's Eclipse and Galant. They come in SE and R/T models. The SE has a 4-cyl engine or optional 3.0-liter V6. The V6 is standard on the R/T. Both coupes use manual transmission or optional automatic. R/T automatics come with traction control and can be ordered with AutoStick, Four-wheel disc brakes are included with the V6. Among coupes, ABS is optional only on the R/T.

Competition Perennial Best Buys Honda Accord and Toyota Camry continue to shine with refinement, model diversity, and comfort. Both come in coupe and sedan forms, offer economic 4-cylinder or sporty V6 power, have room for four adults, and are reasonably priced.

Dataflow-style CarInfo agent plan

Speculative Execution [Barish & Knoblock '02, '03]

- Basic idea
 - Exploit idle resources to execute future instructions in advance of when they are normally issued
- Challenges
 - How to augment plans for speculation
 - How to ensure correctness and fairness
 - How to decide what to speculate on

How to speculate?

- General problem
 - Means for issuing and confirming predictions
- Two new operators
 - Speculate: Makes predictions based on "hints"

• **Confirm**: Prevents errant results from exiting plan

How to speculate?

- Example: CarInfo
 - Predict cars based on search criteria
 - Makes practical sense:
 - Same criteria yields same cars

How to speculate?

- Example: CarInfo
 - Predict cars based on search criteria
 - Makes practical sense:
 - Same criteria yields same cars

Detailed example

Issuing predictions

Speculative parallelism

Answers to hints

Continued processing

Generation of final results

Confirmation of results

Safety and fairness

Safety

Confirm blocks predictions (and results of) from exiting plan before verification

Fairness

- CPU
 - Speculative operations use "speculative threads"
 - Lower priority threads
- Memory and bandwidth
 - Speculative operations allocate "speculative resources"
 - Drawn from "speculative pool" of memory / objects

Cascading Speculation

 Use predicted cars to speculate about the ConsumerGuide summary and full URLs

- Optimistic performance
 - Execution time: max {1.2, 1.4, 1.5, 1.6} = 1.6 sec
 - Speedup over streaming dataflow: (4.2/1.6) = 2.63

Automatic plan transformation

- Agent plans are automatically modified for speculative execution
 - Successive runs of the plan benefit
 - Even with different input data
- Leverage Amdahl's Law:
 - Consider optimizing only the most expensive path (MEP)
- Algorithm continually refines MEP
 - Until overhead of further optimization outweighs benefits

Learning for Speculative Execution

- Caching
 - Associate a hint with a predicted value
 - 2002 Midsize coupe 4K-12K
 - → Olds Alero, Dodge Stratus, Pontiac Grand Am, Mercury Cougar
- Classification
 - Use features of a hint to predict value
 - EXAMPLE: Predicting car list from Edmunds

	Year	Type	Min	Max	Car list
	2002	Midsize	8000	15000	(Oldmobile Alero, Dodge Stratus)
	2002	Midsize	7500	14500	(Oldmobile Alero, Dodge Stratus)
	2002	SUV	14000	20000	(Nissan Pathfinder, Ford Explorer)
V	2001	Midsize	11000	18000	(Honda Accord, Toyota Camry)
	2002	SUV	18000	22000	(Nissan Pathfinder, Ford Explorer)

Decision list

type = SUV : (Nissan Pathfinder, Ford Explorer)

type = Midsize :

:...min <= 10000 : (Olds Alero, Dodge Stratus)

min > 10000 : (Honda Accord, Toyota Camry)

Learning for Speculative Execution

- ◆ Transduction
 - Transducers are FSM that translate hints into predictions

To create full review URL:

- 1. Insert "http://cg.com/full/"
- 2. Extract & insert the dynamic part of the summary URL (e.g., 20812)
- 3. Insert ".htm"

Speculation Results: Last Tuple

Outline of talk

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- Linking records across sources
- Efficiently executing agent plans
- Current and related work
- Conclusions

agents@USC

Planning to Compose Web Services

[Thakkar, Knoblock, & Ambite, '03]

- Goal: Automatically compose new services from existing web services
- We developed services that can dynamically compose information producing services
 - Builds on data integration techniques to construct plans
 - Turns the plans into Theseus plans for efficient execution
- We are extending this work to more complex services that can change the world (side effects)

Learning to Make Predictions: To Buy or Not To Buy

- Agents can go beyond gathering and monitoring online sources
 - They can help make decisions by exploiting the wealth of online information

Learning to Make Predictions: To Buy or Not To Buy

- Agents can go beyond gathering and monitoring online sources
 - They can help make decisions by exploiting the wealth of online information
- Developed a learning system, Hamlet, to predict whether it is better to wait or buy [Etzioni, Knoblock, Tuchinda, Yates, KDD'03]
- Collected data on airline prices over several months
- Learned a model of the pricing
- In our simulation on collected data, Hamlet saved \$198,074 out of a possible \$320,572 (61.8% of optimal)

Related Agent Systems

- Some notable deployed systems
 - Internet Softbot [Etzioni & Weld, '94]
 - BargainFinder [Krulwich, '96]
 - ShopBot [Perkowitz et al. '96]
 - Warren [Decker et al., '97]
 - Electric Elves [Chalupsky et al., '01]
 - and many others...

Related Work

- Wrapper learning
 - Supervised [Kushmerick '97, Hsu & Dung '98]
 - Unsupervised [Lerman et al. '01, Crescenzi '01]
- Record linkage
 - Learning [Cohen '00, Sarawagi & Bhamidipaty '02]
 - Statistics [Winkler '98]
 - Name matching [Bilenko et al. '03, Cohen et al. '03]
- Efficient plan execution
 - Network query engines [Ives et al. 1999, Naughton et al. 2000, Hellerstein et al. 2001]
 - Agent execution systems [Firby '94, Myers et al. 1996]

Outline of talk

- The Electric Elves: Information agents for monitoring travel
- Wrapping online sources
- Linking records across sources
- Efficiently executing agent plans
- Current and related work
- Conclusions

Conclusions

- Web provides the ideal environment for developing and testing software agents
 - Noted by Etzioni, AAAI'96 in his talk on Softbots
- Yet few have seized this opportunity...why?
- Like robotics, wide variety of hard technical problems
- With Web Services, the Semantic Web, etc. the infrastructure is improving
- Great opportunity for AI
 - Ability to demonstrate and test technologies in a realworld setting
 - Opportunity to apply technologies to make a difference in people's lives

Conclusions (cont.)

- Many interesting technical challenges for building software agents:
 - Wrapping online sources
 - Linking records across sites
 - Efficiently executing agent plans
 - Extraction from text documents
 - Aligning ontologies across sources
 - Planning to integrate data sources
 - Learning to improve performance and capabilities
 - Integrating these capabilities in a robust architecture that can:
 - Respond to failures
 - Explain its behavior
 - Communicate appropriately

More Information

- My home page: http://www.isi.edu/~knoblock
- IJCAI'03 Workshop on Information Integration on the Web
 - Proceedings available online (pointer from my homepage)

The End