

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Summary

BVDSS	RDSON	ID
-30V	7.5mΩ	-55A

Description

The 60P03D is the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 60P03D meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

PDFN3*3 Pin Configuration

Absolute Maximum Ratings (TA=25°C unless otherwise specified)

Symbol	Paramet	Max.	Units	
Vdss	Drain-Source Voltage	-30	V	
Vgss	Gate-Source Voltage	±20	V	
lo	Continuous Drain Current	T _A = 25°C	-55	Α
		T _A = 100°C	-30	Α
Ідм	Pulsed Drain Current note1	-168	Α	
Eas	Single Pulsed Avalanche Energy ⁿ	45	mJ	
Po	Power Dissipation	T _A = 25°C	37	W
TJ, TSTG	Operating and Storage Temperature Range		-55 to +150	°C

Thermal Data

Symbol	Parameter	Parameter Typ.		Unit
ReJA	Thermal Resistance from Junction-to-Ambient note3	al Resistance from Junction-to-Ambient note3		°CW
Resc	Thermal Resistance from Junction-to-Case		3.36	°CW

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Static Characte	eristics	•				
V(BR)DSS	Drain-Source Breakdown Voltage	V _G s = 0V, I _D = -250μA	-30	-	-	V
Igss	Gate-body Leakage current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
	Zero Gate Voltage Drain Current TJ=25°C TJ=100°C	V _{DS} = -30V, V _{GS} = 0V	-	-	-1	μА
IDSS			-	-	-100	
VGS(th)	Gate-Threshold Voltage	V _{DS} = V _{GS} , I _D = -250 µA	-1	-	-2.5	V
D	Drain-Source On-Resistance ⁴	V _G s = -10V, I _D = -30A	-	7.5	14	~ 0
RDS(on)	Drain-Source On-Resistance	V _G S = -4.5V, I _D = -15A	-	10	22	mΩ
g fs	Forward Transconductance ⁴	V _{DS} = -5V, I _D = -30A	-	57	-	S
Dynamic Chara	acteristics ⁵				•	
Ciss	Input Capacitance		-	2396	-	pF
Coss	Output Capacitance	V _{DS} = -15V, V _{GS} = 0V, f = 1MHz	-	325	-	
Crss	Reverse Transfer Capacitance	- 11VII 12	-	283	-	
Rg	Gate Resistance	f=1MHz	-	10.5	-	Ω
Switching Cha	racteristics ₅			•		
Qg	Total Gate Charge		-	30	-	nC
Qgs	Gate-Source Charge	Vgs = -10V,Vbs = -15V, lb= -30A	-	5	-	
Qgd	Gate-Drain Charge		-	7.5	-	
t d(on)	Turn-On Delay Time		-	14.1	-	
tr	Rise Time	Vgs = -10V, Vdd = -15V,	-	20	-	ns
t d(off)	Turn-Off Delay Time	R _G = 3Ω, I _D = -30A	-	94	-	
t f	Fall Time]	-	65	-	
trr	Body Diode Reverse Recovery Time	I _F = -30A, dI/dt =	-	19	-	ns
Qrr	Body Diode Reverse Recovery Charge	100A/µs	-	9	-	nC
Drain-Source Body Diode Characteristics						
VsD	Diode Forward Voltage⁴	Is=-1A, VGS=0V	-	-	-1.2	V
ls	Continuous Source Current Tc=25°C	-	-	-	-55	Α

Note:

- 1. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C.
- 2. The EAS data shows Max. rating. The test condition is VDD= -25V, VGS= -10V, L= 0.1mH, IAS= -30A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Performance Characteristics

Figure 1: Output Characteristics

Figure 3:Forward Characteristics of Reve

Figure 5: RDS(ON) vs. ID

Figure 2: Typical Transfer Characteristic

Figure 4: RDS(ON) vs. VGS

Figure 6:Normalized RDS(on) vs. Temper

Typical Performance Characteristics

Figure 7: Capacitance Characteristics

Figure 8: Gate Charge Characteristics

Figure 9: Power Dissipation

Figure 10: Safe Operating Area

Figure 11:Normalized Maximum Transie

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Mechanical Data- PDFN3.3X3.3-8L

S	COMMON				
M B O L	MM				
0	MIN	NOM	MAX		
Α	0.70	0.75	0.85		
A1	1	1	0.05		
b	0.20	0.30	0.40		
С	0.10	0.152	0.25		
D	3.15	3.30	3.45		
D1	3.00	3.15	3.25		
D2	2.29	2.45	2.65		
Е	3.15	3.30	3.45		
E 1	2.90	3.05	3.20		
E2	1.54	1.74	1.94		
E 3	0.28	0.48	0.65		
E4	0.37	0.57	0.77		
E5	0.10	0.20	0.30		
е	0.60	0.65	0.70		
K	0.59	0.69	0.89		
L	0.30	0.40	0.50		
L1	0.06	0.125	0.20		
t	0	0.075	0.13		
θ	10°	12°	14°		