An atonal challenge

Ph0wn 2021

Pitch Classes and Set Theory

Pitch-class Set Theory is field of musical analysis often applied for analyzing atonal music. Pitch-class Set Theory studies sets of *pitch-classes*.

A pitch-class gathers all the notes that are n octaves apart, with $n \in \mathbb{N}$. For instance, the pitch-class of C will gather C1, C2, C3, etc.

There are 12 different pitch-classes, and each of them are associated with an integer $i \in [0, 11]$. Table 1 provides the equivalence between pitch classes and [0, 11].

i	Pitch-class
0	С
1	C#, Db
2	D
3	D#, Eb
4	E
5	F
6	F#, Gb
7	G
8	G#, Ab
9	A
10	A#, B♭
11	В

Table 1: The 12 pitch-classes.

See Wikipedia "Pitch Class" for more information.

Chord

A chord is a group of 1 or more notes played at the same time. So, it converts to an integer set.

Example:

- The C-Major chord (C, E, G) corresponds to the set $\{0,4,7\}$.
- Let's suppose we have a C3-C4-E4-G4-C5 chord, the pitch-classes composing this chord are the C-pitch-class, the E-pitch-class and the G-pitch-class, therefore the corresponding set will be {0,4,7}.
- Reciprocally, a single note C3 corresponds to $\{0\}$.