МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и кибербезопасности Направление: 02.03.01 Математика и компьютерные науки

Отчет по дисциплине: «Основы архитектуры ЦВМ»

«Синтез последовательных схем. Счетчики.»

Студент, группы 5130201/40003	Адиатуллин Т. Р.
Руководитель, Преподаватель	Вербова Н. М.
	2025

Цель работы

Изучить принципы синтеза последовательных схем на примере синтеза недвоичного счётчика.

1 Синтез недвоичного вычитающего счётчика с коэффициентом пересчёта 5

1.1 Расчёт параметров счётчика

Коэффициент пересчёта:

$$K_{\rm cq}=5$$

Определим необходимое количество триггеров:

$$m \ge |\log_2 K| = |\log_2 5| = 2.3219 \approx 3$$

Число избыточных состояний:

$$N = 2^m - K = 2^m - 5 = 8 - 5 = 3$$

Из возможных состояний счётчика исключим его последние состояния —

$$Q_1\overline{Q_2}Q_3$$
, $Q_1Q_2\overline{Q_3}$, $Q_1Q_2Q_3$ (101, 110, 111),

которые будем трактовать как десятичные цифры 5, 6, 7. Тогда порядок изменения состояний счётчика будет следующим:

$$\overline{Q_1Q_2Q_3}$$
, $\overline{Q_1Q_2}Q_3$, $\overline{Q_1}Q_2\overline{Q_3}$, $\overline{Q_1}Q_2Q_3$, $Q_1\overline{Q_2Q_3}$
(000, 001, 010, 011, 100)

1.2 Таблица функционирования счётчика

№ coct.	Q_1^t	Q_2^t	Q_3^t	Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}
0	0	0	0	1	0	0
1	0	0	1	0	0	0
2	0	1	0	0	0	1
3	0	1	1	0	1	0
4	1	0	0	0	1	1

1.3 Прикладные таблицы

Исходя из таблицы функционирования счётчика, были составлены индивидуальные таблицы переходов для каждого триггера. Эти таблицы отражают изменение состояния триггера от текущего момента Q_i^t к следующему Q_i^{t+1}

$Q_1^t > Q_1^{t+1}$	Q_2		!0	Q_2
Q_3	00	_	_	00
$!Q_3$	00	_	10	01
	$!Q_1$	(Q_1	$!Q_1$

$Q_2^t > Q_2^{t+1}$	Q_2		!0	Q_2
Q_3	11	_	_	00
$!Q_3$	10	_	01	00
	$!Q_1$	(Q_1	$!Q_1$

$Q_3^t > Q_3^{t+1}$	Q_2		!(Q_2
Q_3	10	_	_	10
$!Q_3$	01	_	01	00
	$!Q_1$	4	Q_1	$!Q_1$

1.4 Карты Карно для ЈК-триггеров

На основе прикладных таблиц построим карты Карно в соответствии с их принципом составления.

$Q_i^t > Q_i^{t+1}$	J	K
00	0	*
01	1	*
10	*	1
11	*	0

J_1	Q_2		!	Q_2
Q_3	0	_	_	0
$!Q_3$	1	_	*	1
	$!Q_1$	Q_1		$!Q_1$

J_2	Q_2		!	Q_2
Q_3	*	_	_	0
$!Q_3$	*	_	1	0
	$!Q_1$	Q_1		$!Q_1$

J_3	Q_2		!	Q_2
Q_3	*	_	_	*
$!Q_3$	1	_	1	0
	$!Q_1$	Q_1		$!Q_1$

K_1	Q_2		!	Q_2
Q_3	*	_	_	*
$!Q_3$	*	_	1	*
	$!Q_1$	Q_1		$!Q_1$

K_2	Q_2		!	Q_2
Q_3	0	_	_	*
$!Q_3$	1	_	*	*
	$!Q_1$	Q_1		$!Q_1$

K_3	Q_2		!	Q_2
Q_3	1	_	_	1
$!Q_3$	*	_	*	*
	$!Q_1$	Q_1		$!Q_1$

1.5 Логические уравнения входов триггеров

$$J_1 = \overline{Q_2} \cdot \overline{Q_3}$$

$$J_2 = Q_1$$

$$J_3 = Q_1 \cdot \overline{Q_2} \vee Q_1$$

$$K_1 = 1$$

$$K_2 = \overline{Q_3}$$

$$K_3 = 1$$

1.6 Схема счетчика

Согласно рассчитанным уравнениям была спроектирована схема вычитающего счётчика с коэффициентом счёта K=5 в программной среде Multisim (см. Рис. 1.)

Рис. 1: Схема вычитающего счётчика с коэффициентом пересчёта 5

2 Исследование K155ИE6 (SN74192)

2.1 Схема для исследования

Рис. 2: Схема исследования ИС К155ИЕ6 (SN74192)

Рис. 3: Схема подключения ИС К155ИЕ6

2.2 Проверка работы схемы

Рис. 4: Суммирование в динамике

Рис. 5: Осциллограммы сигналов

2.3 Суммирующий счетчик с K = 6

Рис. 6: Осциллограммы сигналов

3 Вывод

В ходе лабораторной работы был синтезирован недвоичный вычитающий счётчик с коэффициентом пересчёта 5 и проверена его работоспособность в среде Multisim. Кроме того, был изучен принцип действия счётчика на микросхеме К155ИЕ6 (SN74192), на основе которого реализован счётчик с коэффициентом пересчёта 6.