Instituto Tecnológico de Aeronáutica — ITA Divisão de Ciência da Computação — IEC

Disciplina: Programação Orientada a Objetos - CSI-22

Período: 1º semestre de 2024 **Professores:** Edgar Toshiro Yano Karla Donato Fook

Plano de Disciplina

1. Carga horária semanal: 2-0-2-4

2. Pré-requisitos da disciplina: CES-10

3. Ementa

Conceitos de objetos, classes, instâncias e métodos. Abstração, herança, encapsulamento e polimorfismo. Características de linguagens de tipagem estática e dinâmica. Tipos de dados e operadores. Métodos e variáveis estáticas. Estruturas de dados orientadas a objetos e tipos genéricos. Tratamento de exceção. Linguagem Unificada de Modelagem (UML). Padrões Básicos de Projeto. Programação de interfaces GUI.

4. Objetivos

4.1 Geral

Prover conhecimento sobre as técnicas mais avançadas de programação com a utilização do paradigma da Orientação a Objetos.

4.2 Específicos

- Conhecer Fundamentos e conceitos da Orientação a Objetos
- Conhecer as aplicações da POO
- Conhecer notação UML
- Conhecer Padrões Básicos de Projeto
- Conhecer a Programação de interfaces (GUI)

5. Metodologia de ensino

- Aulas expositivas em sala de aula ou remota, usando aplicativo.
- Aulas práticas em laboratório de microcomputadores.
- Vídeos explicativos acompanhados de Notas de Aula em pdf.

- Dinâmicas para acompanhamento de alunos.
- Utilização do sistema Google Classroom para fornecer material didático aos alunos e para gerenciamento de prazos e entrega de exercícios.

6. Forma de avaliação

1º bimestre: 1 Projeto 1

1 Exercício de laboratório (ExLab1)

2° bimestre: 1 Atividade Avaliativa

1 Exercício de laboratório (ExLab2)

Exame final: Projeto 2

6.1 Critério de avaliação

• 1° Bimestre:

- Nota Projeto 1 (NP1) = Apresentação do Projeto 1 * 0,4 + Projeto 1 * 0,6
- o Nota Exercício Laboratório 1 (NLab1) = Nota ExLab1
- O Nota Bimestral 1 = (NP1+NLab1)/2
- 2° Bimestre:
 - Nota Exercício Laboratório 2 (NLab2) = Nota ExLab2
 - Nota Bimestral 2 = NLab2)
- Exame Final
 - O Nota do Exame = Apresentação do Projeto 2 * 0,4 + Projeto 2 * 0,6

7. Planejamento das aulas teóricas

Semana	Tópicos
1	Apresentação da Disciplina; Bibliografia; Objetivos; Introdução a
	Python
2 a 8	Fundamentos OO: objetos, classes, instâncias e métodos; Abstração.
	Conceitos OO: herança, encapsulamento e polimorfismo; Linguagem
	Unificada de Modelagem (UML)
9 a 16	Características de linguagens de tipagem estática e dinâmica; Tipos de
	dados e operadores; Métodos e variáveis estáticas; Estruturas de dados
	orientadas a objetos e tipos genéricos; Padrões Básicos de Projeto;
	Tratamento de exceção: Programação de interfaces GUI

8. Forma de Execução das Aulas

8.1 Teoria

Quarta-feira: 10h10 até 12h00 – Aulas Presenciais, Videoaulas ou Videoconferências pelo Google Meet.

8.2 Laboratório

Quarta-feira: 08h00 até 10h00 – Os alunos se reúnem em grupo para a execução do roteiro de laboratório ou Projetos.

8.3 Controle de Frequência

Aulas presenciais: A chamada será realizada em sala de aula.

Videoconferências: O controle será realizado com relatório gerado pelo Google Classroom durante o encontro remoto.

9. Planejamento das avaliações

9.1 Verificações

Avaliação	Descrição	Período
1	Apresentação do Projeto 1	Sem. 8
	Entrega do Projeto 1	
2	Atividade Avaliativa	Sem. 14
Exame	Apresentação do Projeto 2	Exames
	Entrega do Projeto 2	

9.2 Laboratórios

Lab	Tópicos	Disponibilização	Entrega
		do Roteiro	
1	Apresentação da proposta para o Projeto 1	Sem. 1	Sem. 2
2	Prática I	Sem. 3	Sem. 4
3	Prática II	Sem. 4	Sem. 5
4	Exercício Laboratório 1	Sem. 7	Sem. 8
5	Apresentação da proposta para o Projeto 2	Sem. 9	Sem. 10
6	Exercício Laboratório 2	Sem. 10	Sem. 11

10.Bibliografia

10.1 Principal

- LOTT, S.F.: PHILLIPS, D. Python object-oriented programming: build robust and maintainable object-oriented Python applications and libraries. 4. ed. [S.l.]: Packt, 2021.
- LARMAN, C. Utilizando UML e Padrões: Uma Introdução à Análise e aos Projetos Orientados a Objetos e ao Desenvolvimento Iterativo. Bookman, 2006.
- SARAIVA, O. Introdução à Orientação a Objetos com C++ e Python. Uma Abordagem Prática. Novatec, 2017.

10.2 Complementar

• Artigos relacionados à disciplina.