Distributed Trust and Blockchains Date: 22-08-2019

Instructor: Sujit Prakash Gujar Scribes: Padma Dhar, Sarat Sristi

Lecture 2: Digital Signatures and DigiCash scheme

1 Recap

Hash functions: Hash functions are any functions that map arbitrary size data onto data of fixed size (i.e many \rightarrow one function).

Desirable properties of hash functions:

- 1. It should be Deterministic
- 2. It should be efficient to compute.
- 3. Pre-image resistance: It should be difficult to find a message from the given hash value.

$$H(M) \to M$$

4. Second Pre-image resistance: Given a message x, it is difficult to find another message y such that

$$H(x) = H(y)$$
, given $x \neq y$

5. Collision resistance: It is difficult to find two messages x, y such that their hash function outputs are equal.

Definition 1 (Commitment Scheme). A (non-interactive) Commitment Scheme (for a message space M) is a triple (Setup, Commit, Open) such that:

- (a) $CK \leftarrow Setup(1^k)$ generates the public commitment key.
- (b) for any $m \in M$, $(c, d) \leftarrow Commit_{CK}(m)$ is the commitment/opening pair for m. c = c(m) serves as the commitment value, and d = d(m) as the opening value. We often omit mentioning the public key CK when it is clear from the context.
- (c) OpenCK(c, d) \rightarrow m \in M \cup \bot , where \bot is returned if c is not a valid commitment to any message. We often omit mentioning the public key CK when it is clear from the context.
- (d) Correctness: for any $m \in M$, OpenCK(CommitCK(m)) = m

RSA

Encryption:

- 1. Choose tow large primes p, q.
- 2. Calculate $n = p \times q$.
- 3. Calculate $\phi = (p 1) \times (q 1)$.

- 4. Choose e and d such that $e.d = 1 \mod \phi(n)$.
- 5. Calculate cipher text $c = (m^e) \mod n$.

Decryption:

$$d = c^d \mod n = ((m^e) \mod n)^d \mod n = m^{e \times d} \mod n = m$$

Merkle Tree

Definition 2. Merkle tree in cryptography is a tree in which every leaf node is labelled with the hash of a data block, and every non-leaf node is labelled with the cryptographic hash of the labels of its child nodes.

- 1. Hash trees allow efficient and secure verification of the contents of large data structures. Hash trees are a generalization of hash lists and hash chains.
- 2. Demonstrating that a leaf node is a part of a given binary hash tree requires computing a number of hashes proportional to the logarithm of the number of leaf nodes of the tree.
- 3. height of tree = $\log(\text{nodes of data})$
- 4. In the given diagram, transaction A,B,C,D are stored at the leaf nodes. The hash of each of them is calculated and stored one level up in the tree. Then 2 of these hashes are combined via hash to generate a new hash and so on each level up.

credits: https://hackernoon.com/merkle-trees-181cb4bc30b4

2 Digital signatures

Definition 3. (Digital signature). A signature scheme is a tuple of three PPT algorithms: (Gen,Sign,Vrfy) satisfying the following:

1. The key-generation algorithm Gen takes as input a security parameter n, and outputs a pair of keys (pk,sk). pk is the public key and sk is the secret key. Assume both have length n.

- 2. The signing algorithm Sign, takes as input a private key sk and a message $\in \{0,1\}^*$. It outputs a signature σ , denoted $\sigma \leftarrow Sign_{sk}(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a public key pk, and a message m, and a signature . It outputs a bit b=1, meaning valid, and b=0 meaning invalid. We denote this as b = $Vrfy_{pk}(m, \sigma)$

2.1 RSA based digital signature :

- 1. Gen(n): Outputs (N,e,d), where N=pq, where p and q are both n bit primes, $ed=1 \mod N$.
- 2. Sign: On input a private key sk = (N,d), and a message $m \in \mathbb{Z}_n^*$,

$$\sigma = m^d \bmod N$$

3. Vrfy: On input a public key pk=(N,e), and a message $m\in Z$, and a signature scheme Z, output 1 if and only if:

$$m = \sigma^e \mod N$$

2.1.1 Forging a signature on an arbitrary message:

If an adversary wants to output a forgery of any given message m, then he can successfully forge the signature of m by having two signatures of chosen messages.

- 1. Let m_1 be any random chosen messages and σ_1 be its respective signature.
- 2. Now adversary calculate $m_2 = m/m_1$ and send this resultant m_2 to signer to get signature σ_2 .
- 3. Now note, any valid sign for m, is

$$\sigma = m^d = (m_1.m_2)^d = m_1^d \cdot m_2^d = (\sigma_1.\sigma_2) \mod N$$

2.1.2 Solution (Hashed RSA):

- 1. The basic idea is to modify the textbook RSA by applying some hash function H to the message before signing.
- 2. The scheme considers a public known function:

$$H: \{0,1\}^* \to Z_N$$

3. The sign σ is computed from m, as follows:

$$\sigma = [H(m)]^d \mod N$$

- 4. If the hash function is collision resistant, it becomes difficult to find two messages $m \neq m_1$, st $H(m) = H(m_1)$.
- 5. so, lets consider

$$s_1 = [H(m_1)]^d \mod N$$

 $s_2 = [H(m_2)]^d \mod N$
 $s_3 = [H(m_1.m_2)]^d \mod N$

If we try to apply forge the signature s_3 , we have to find m_1 and m_2 st:

$$[H(m_1.m_2)] = [H(m_1)].[H(m_2)]$$

2.2 ElGamal Scheme

2.2.1 Key aspects:

- 1. Based on the Discrete Logarithm problem.
- 2. Randomized encryption scheme.

2.2.2 Key Generation:

Participant A generates the public/private key pair.

- 1. Generate large prime p and generator g of the multiplicative group \mathbb{Z}_{p}^{*} .
- 2. Select a random integer a, $1 \le a \le p-2$, and compute $g^a \mod p$.
- 3. A's public key is (p, g, g^a) ; A's private key is a.

2.2.3 Encryption:

Participant B encrypts a message m to A.

- 1. Obtain A's public key (p, g, g^a) .
- 2. Represent the message as integers in the range of $\{0, 1, 2, ..., p-1\}$.
- 3. Select a random integer k, $1 \le k \le p-2$.
- 4. Compute $\gamma = g^k \mod p$ and $\delta = m \times (g^a)^k$.
- 5. Send cipher text $c = (\gamma, \delta)$.

2.2.4 Decryption:

Participant A receives encrypted message m from B.

- 1. Use private key a to compute $(\gamma^{p-1-a}) \mod p$. Note : $(\gamma^{p-1-a}) = (\gamma^{-a})$.
- 2. Recover m by computing $(\gamma^{-a}) \times \delta \mod p$.

$$= (\gamma^{-a}) \times \delta \mod p$$

$$= (g^a)^{-k} \mod p \times m \times (g^a)^k \mod p$$

$$= (g^{-ak}) \times (g^{ak}) \times m \mod p$$

$$= m \mod p$$

$$= m$$

2.2.5 Sign:

1. Select key
$$k$$
 randomly.
 $r{=}(g^k){\times}\ mod\ p$ $s{=}(k^{-1})\times(m-xr){\times}(mod\ p)$ return $((r{,}s))$

2.2.6 Verify:

We have
$$s=(k^{-1})\times(m\text{-}xr)$$

$$ks=(m\text{-}xr)$$

$$m=(ks)+(xr)$$

$$(g^m)=(g^{ks+xr})=(g^{x^r})\times(g^{k^s})$$

$$(g^m)=(h^r)\times(\mathbf{r}^s)$$

$$Verify\ if\ (\mathbf{g}^m)==(h^r)\times(r^s).$$

If true, return true, else false.

Digital Currency 3

3.1 First attempt at digital currency

Advantages 3.1.1

- Proof of Ownership due to digital signature. No fake ownership can be claimed.
- No double spending as Mohit has to check with bank as soon as he receives the note from Amit.
- Transfer of ownership possible.

3.1.2 Challenges

- Bank knows how the user is spending money. There is no anonymity possible.
- Bank has to always be online and never be down.

3.2 Attempt to Introduce anonymity

3.2.1 DigiCash

- Here, we are also providing anonymity to the issuer-Amit as Bank does not know serial Number.
- A doubt might arise that since the bank does not provide serial number, there maybe a possibility of 2 people choosing the same serial number thus causing a collision. However, if the size of the serial number is taken to be very large- 256 bits, possibility of such an occurrence becomes extremely negligible.