

Introduction

- Recent changes in production, access & sharing of geospatial information:
 - until the end of last century: limited to professionals and National Mapping Agencies (NMAs)
 - 1994: Spatial Data Infrastructure (SDI)
 - driven by governments and NMAs
 - OGC standards for geospatial interoperability
 - from local to national/international scales
 - 2007: Volunteered Geographic Information (VGI)
 - crowdsourced geospatial data
 - enabled by mobile, Web & remote sensing technology
 - several projects in several disciplines

Purpose of the work

- Analyze the most relevant initiatives for Europe related to SDIs and VGI:
 - Infrastructure for Spatial Information in Europe (INSPIRE)
 - OpenStreetMap (OSM)
- Compare them for a number of characteristics & outline pros & cons:
 - 1. Overall approach
 - 2. Spatial scope
 - 3. Data structure and encoding
 - 4. Data access
 - 5. Licensing
- Review available FOSS4G solutions specific to INSPIRE and OSM
- Discuss on the combination/integration of the two initiatives

INSPIRE

DIRECTIVE 2007/2/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 14 March 2007

- establishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
- Aims to create a European SDI for the purposes of EU environmental policies.
- Provides a comprehensive framework for interoperability of spatial data:
 - environmental spatial data sharing
 - assisting in cross-boundary policy-making
- In force since 2007 and implemented in various stages, with full implementation required by 2020

INSPIRE

Based on the SDIs established and operated by EU Member States

OpenStreetMap (OSM)

011010

- The most popular VGI project to date:
 - started by Steve Coast in UK in 2004
 - a free, editable geospatial database of the world edited by volunteers

1. Approach – INSPIRE

- Top-down initiative:
 - Public sector data
 - Legislatively defined
 - Transposition in MS
 - Governance (CT, MIG)
- Implementation
- Maintenance and evolution
- Growing community:
 - 7200+ providers
 - Broader than the EU
 - Annual conference
 - Helsinki 2019
 - Dubrovnik 2020

1. Approach – OpenStreetMap

- Bottom-up initiative:
 - created, updated & maintained by 1M+ contributors

1. Approach – OpenStreetMap

- Bottom-up initiative:
 - created, updated & maintained by 1M+ contributors
- Supported (not controlled) by the OpenStreetMap Foundation (OSMF):
 - Board
 - several Working Groups

1. Approach – OpenStreetMap

- Bottom-up initiative:
 - created, updated & maintained by 1M+ contributors
- Supported (not controlled) by the OpenStreetMap Foundation (OSMF):
 - Board
 - several Working Groups
- Annual "State of the Map" community conference:

2. Spatial scope – INSPIRE

34 spatial data themes for environmental applications:

ANNEX: 3

340 spatial object types

Land cover

incl. raster, historical, spatio-temporal

ANNEX: 1 Addresses Administrative units Cadastral parcels Coordinate reference systems Geographical grid Geographical names systems Hydrography Protected sites Transport networks ANNEX: 2 Elevation Geology

Orthoimagery

2. Spatial scope - OpenStreetMap

- The richest and most diverse geospatial database:
 - any verifiable object with a physical location can be mapped
 - several hundreds spatial object types, but no historical events
 - list maintained & updated collaboratively on the Map Features wiki page

building	cathedral	-:	A building that was built as a cathedral. Used in conjunction with amenity=place_of_worship, religion=*, denomination=* and landuse=religious for the cathedral grounds where it is in current use.	
building	chapel	4	A building that was built as a chapel. Used in conjunction with amenity=place_of_worship, religion=*, denomination=* and landuse=religious for the chapel grounds where it is in current use.	
building	church	-4	A building that was built as a church. Used in conjunction with amenity=place_of_worship, religion=*, denomination=* and landuse=religious for the church grounds where it is in current use.	
building	mosque	4	A mosque. Used in conjunction with amenity=place_of_worship, religion=*, denomination=* and landuse=religious for the grounds where it is in current use.	

3. Data structure and encoding – INSPIRE

Conceptual data model (UML class diagrams) allows complex data structures

300+ predefined spatial object types

Encoding based on same conceptual model

Default encoding

- GML
- Alternative encodings
 - GeoJSON
 - Geopackage (tbd)
- Central component
 - Registry
- Validation
 - Abstract & Executable test suites
 - INSPIRE Reference Validator

3. Data structure and encoding - OpenStreetMap

- Conceptual data model is based on a flat data structure
- Any object is described by:
 - an element (geometry) node, way or relation
 - one or more tags (simple attributes based on key-value pairs)
- Tags are flexible contributors can introduce new ones!
- Only basic data validation (e.g. on topology) available

3. Data Coordinate Reference System

INSPIRE

- Specific 2D and 3D pan-European CRSs are required:
 - based on both geodetic and plane coordinates
- Provision of data sets in additional CRSs under current discussion.
 - would lower the implementation burden
 - CRS transformation to be implemented using FOSS4G tools (e.g. proj4, GDAL)

OpenStreetMap

- All data provided in WGS84 (with no 3D component):
 - intrinsic CRS compatibility

4. Data access - INSPIRE

- Based on
 - OGC standards
 - Distributed SOA approach
- APIs (aka Network Services)
 - Discovery (CSW)
 - View (WMS, WMTS)
 - Download (ATOM, WFS, SOS, WCS)
- INSPIRE Geoportal
 - Single access point of view
 - One of many perspectives on **INSPIRE** data

INSPIRE Data Sets - EU & EFTA Country overview

Select a COUNTRY

Austria	560 ★ 416 ◆ 435	Finland	□ 556 ▲ 39 ○ 161	Latvia	139 🕹 10 👁 20	Portugal	656 ★ 110 ● 236
Belgium	월 600 ₺ 262 ❷ 467	France	40027 ★ 12588 ◆ 14736	Liechtenstein	1 60 1 10 3 12	Romania	112 ± 24 ⊕ 28
Bulgaria	169 ± 2 ◆ 3	Germany	28832 ★ 10666 ◆ 10656	Lithuania	12 81 ₹ 56 12	Slovakia	260 ₺ 19 • 18
Croatia	112 ± 7 → 8	Greece	57 ± 2 ● 57	Luxembourg	🖺 217 🕹 192 🐠 163	Slovenia	87 ★ 15 ② 8
e Cyprus	42 ± 3 ⊕ 3	Hungary	112 ₺ 9 • 7	* Malta	157 ★ 136 ◆ 152	spain spain	🖺 208 🕹 132 🍪 138
Czech Republic	148 ♣ 37 ◆ 93	Iceland	147 ♣ 7 ❷ 0	Netherlands	204 ₺ 123 � 133	Sweden	295 ₺ 30 • 127
Denmark	228 ★ 39 ● 33	Ireland	월 50 ♣ 0 ❷ 0	Norway	167 ★ 42 ● 13	+ Switzerland	208 ± 2 ● 0
Estonia	75 ★ 14 • 23	Italy	20523 ★ 7 ◆ 209	Poland	28856 ₹ 41 • 8	United Kingdo	m 🖹 20787 🕹 63 🐼 165

- No metadata catalogues, search is only based on tags
- Several ways to access data:
 - Export button from the OSM website

- No metadata catalogues, search is only based on tags
- Several ways to access data:
 - Export button from the OSM website
 - APIs
 - OSM API
 - Overpass API
 - Ohsome platform

https://wiki.openstreetmap.org/wiki/API https://wiki.openstreetmap.org/wiki/Overpass_API https://heigit.org/big-spatial-data-analytics-en/ohsome

- No metadata catalogues, search is only based on tags
- Several ways to access data:
 - Export button from the OSM website
 - APIs
 - OSM API
 - Overpass API
 - Ohsome platform
 - Planet & Full History Planet

Complete OSM Data

Latest Weekly Planet XML File

80 GB, created 5 hours ago. md5: 5fd4ff76a44556220da3103b5dbcf972.

Latest Weekly Changesets

2.8 GB, created 5 hours ago. md5: f1c8d8c139b4c3bd9bdfafb2c5d12ab6.

Latest Weekly Planet PBF File

46 GB, created 5 hours ago. md5: f697e20b1c0a7d7ad5f12ba15b784b93.

Complete OSM Data History

Latest Full History Planet XML File

121 GB, created 5 hours ago. md5: e7a75c74e8c5f8a4ac44ad1aef89acc3.

Latest Full History Planet PBF File

76 GB, created 5 hours ago. md5: eb49dd11ec7b646fd79245bf0f332bcd.

- No metadata catalogues, search is only based on tags
- Several ways to access data:
 - Export button from the OSM website
 - APIs
 - OSM API
 - Overpass API
 - Ohsome platform
 - Planet & Full History Planet
 - predefined OSM extracts
 - by Geofabrik, Interline, HR University of Applied Science, etc.

http://download.geofabrik.de

https://www.interline.io/osm/extracts

20 https://osmaxx.hsr.ch

5. Data license

INSPIRE

- No obligation set on the data license:
 - the infrastructure is very heterogeneous
 - partially open access
 - multiple languages
 - View/Download services restricted under certain conditions

OpenStreetMap

- Database available under the Open Database License (ODbL)
 - since late 2012 (CC BY-SA 2.0 before)
 - fully open access

FOSS4G tools – INSPIRE

- A very rich INSPIRE-compliant ecosystem:
 - data serving (WMS/WMTS, WFS, WCS, SOS):

data/metadata catalogues (CSW)

data consumption

ETL (Extract-Transform-Load) tools

FOSS4G tools - OpenStreetMap

- Many open source solutions for editing, download, visualization, routing & QA
- OSM's flat data structure makes OSM data usable by default in GIS software
- OSM-specific software mostly available for client applications:

 OSMDownloader application to download raw OSM data and use it to train classification models

download OSM data and correct topology

load OSM basemaps

load OSM basemaps as TMS layers

INSPIRE-OSM integration

- Combining data from the two would benefit several stakeholders:
 - public authorities, professionals, businesses, researchers, humanitarian organisations, and the same INSPIRE/OSM communities
- BUT the two initiatives are very different by nature, each with pros & cons:
 - INSPIRE
 - legal, technical & organisational reference
 - rigorous & complex requirements, slow implementation
 - service oriented architecture
 - license heterogeneity
 - OSM
 - simplicity & flexibility, huge data availability
 - heterogeneity of content
 - modern technologies & license interoperability

INSPIRE-OSM integration

- FOSS4G offers mature solutions for INSPIRE/OSM integration:
 - data search, access & download in client applications
 - data transformation to align data models
 - data encoding and web publication
- Only isolated, case study-specific examples of integration
 - benefits largely unexplored
 - need to establish an integrated framework
 - knowledge (technical, managerial, legal)
 - awareness (involvement of stakeholders)
- An effort is required!
- It is our shared interest to make the most out of INSPIRE & OSM

Minghini M., Kotsev A. & Lutz M. (2019) Comparing INSPIRE and OpenStreetMap data: How to make the most out of the two worlds. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences* XLII-4/W14, 167–174. https://doi.org/10.5194/isprs-archives-XLII-4-W14-167-2019

Thank you! Questions?

marco.minghini@ec.europa.eu | alexander.kotsev@ec.europa.eu @MarcoMinghini | @Alex_Kotsev

Inspire Helsinki 2019 22–24 October, Finland

- Organised by the Finnish National Land Survey and Ministry of Agriculture and Forestry & supported by the JRC of the European Commission and Spatineo.
- A technical event focused on new technologies for geospatial data:
 - keynote presentations
 - hands-on workshops
 - data challenges
 - team registration open until September 8, 2019
 - prizes and benefits worth more than 20'000€!

Stay in touch

EU Science Hub: ec.europa.eu/jrc

- Twitter: @EU_ScienceHub
- Facebook: EU Science Hub Joint Research Centre
- in LinkedIn: Joint Research Centre
- YouTube: **EU Science Hub**

