# Motion and path planning in a nutshell

Prof. Hadas Kress-Gazit MAE

Guest lecture: CS 4758/6758

March 15, 2012



easy

# "How do I get to point B?"

- Motion planning
  - Bug algorithms
  - Roadmaps, cell decomposition
  - Potential functions
  - Sampling-based methods

# "How do I get to point B?"

- Motion planning
  - Bug algorithms
  - Roadmaps, cell decomposition
  - Potential functions ("vanilla" potential functions)
  - Sampling-based methods (RRT)

## Potential functions — basic idea



## **Definitions**

QE IRh Contiguration

Potential function

$$U: \mathbb{R}^r \longrightarrow \mathbb{R}$$

• Gradient

$$\nabla U(q) = \begin{bmatrix} \frac{\partial U}{\partial q_{n}} (q_{n}) \\ \frac{\partial U}{\partial q_{n}} (q_{n}) \end{bmatrix}$$

Control

# Attractive force = go to goal



Repulsive force = keep away from

Distance from obstade

di(2) = min
4(2,2\*)

g\*E obs;

$$V_{rep}: = \begin{cases} \frac{1}{2} \left( \frac{1}{d.(q)} - \frac{1}{Q} \right)^2 \\ 0 \end{cases}$$



## Potential function

(1)-1 Unt + \(\frac{7}{2}\) Vrep; (9)



complete (every in:t;a)
reach the
year year



Problem



# Problem (2)

Complex en vivonment



# Different approach - samples



- Probabilistically\resolution complete
- Good for complex configuration spaces

# Single queries

- Find a path from q<sub>init</sub> to q<sub>goal</sub>
- Idea:
  - grow tree(s) spanning "relevant" space
  - Connect tree(s)



## Rapidly-Exploring Random Trees (RRT)



## **RRTs**

#### Algorithm:

Given: 9 start, 9 end, 5 tep-5 ize, n = # 6 a # and # 1 for # 1 the tree Find: 6 = (V, E)  $V \in \mathbb{R}^n$   $e \in \mathbb{R}^n \times \mathbb{R}^n$ Init:  $V = \{9\}_{start}\}$   $E = \emptyset$ For i = 1:n

For i=1:n

- sample grand & Cfree

- find gnear = closest point geV to grand

- generate gnew; point on line (grand, gnear)

that is ofep-size away from gnear

- it gnew & Cfree AND (gnear, gnew) & Cfree

then V = V U gnew ; E = E U (gnew, gnew) }

- try to cornect grew to gend
it successful - dome!