

Algorithms for Scientific Computing Wavelets

Felix Dietrich

Technische Universität München

Department of Informatics 5

Chair of Scientific Computing in Computer Science (SCCS)

Summer 2020

Part I

Haar Wavelets as a Hierarchical Basis

Remember the 1D Hierarchical Basis

- "mother of all hat functions": $\phi(x) := \max\{1 |x|, 0\}$
- hat functions on level $l \in \mathbb{N}$ with mesh width $h_l = 2^{-l}$ at grid points $x_{l,i} = i \cdot h_l$:

$$\phi_{l,i}(x) := \phi\left(\frac{x - x_{l,i}}{h_l}\right)$$

hierarchical basis functions on level I:

$$\phi_{I,i}(x)$$
 for all $i \in \mathscr{I}_I := \{i : 1 \leq i < 2^I, i \text{ odd}\}$

resulting hierarchical basis

$$\Psi_n := \bigcup_{l=1}^n \{ \phi_{l,i} : i \in \mathscr{I}_l \}.$$

• with corresponding function spaces:

$$W_I := \operatorname{span} \{ \phi_{I,i} : i \in \mathscr{I}_I \}$$
 and $V_n = \bigoplus_{I=1}^n W_I$

Hierarchical vs. Nodal Basis

→ for piecewise *linear* (basis) functions

Hierarchical vs. Nodal Basis

→ for piecewise *linear* (basis) functions

Now: how to build a piecewise constant basis?

Piecewise Constant Basis – Attempt # 1

Piecewise Constant Basis - Attempt # 1 (cont.)

Discussion:

- obviously qualifies as a "hierarchical basis"
 w.r.t. hierarchical levels and mesh widths
- built from a "mother of all step functions", e.g.:

$$\phi(x) := \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

- hierarchical basis functions on level *I*: $\phi_{l,i}(x) := \phi\left(\frac{x x_{l,i}}{h_l}\right)$
- nodal basis on level *I*: $V_I = \text{span}\{\phi_{I,i}(x): i = 0, \dots, 2^I 1\}$
- hierarchical surplus: $W_l = \text{span}\{\phi_{l,i}(x): 1 \le i < 2^l, i \text{ odd}\}$

Piecewise Constant Basis - Attempt # 1 (cont.)

Discussion:

- obviously qualifies as a "hierarchical basis"
 w.r.t. hierarchical levels and mesh widths
- built from a "mother of all step functions", e.g.:

$$\phi(x) := \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

- hierarchical basis functions on level I: $\phi_{l,i}(x) := \phi\left(\frac{x x_{l,i}}{h_l}\right)$
- nodal basis on level *I*: $V_I = \text{span}\{\phi_{I,i}(x): i = 0, \dots, 2^I 1\}$
- hierarchical surplus: $W_l = \text{span}\{\phi_{l,i}(x): 1 \le i < 2^l, i \text{ odd}\}$
- are functions represented well by coarse-level basis functions?
- would hierarchical surpluses be small in such a setting?

Attempt #2: "Hierarchical Haar Basis"

- for each *interval*, we obtain a contribution from each *level*
- course-level representations will consist of average values
- each "surplus" level add corrections to averages

Hierarchical Haar Basis

again a hierarchical basis with "mother Haar function":

$$\psi(x) := \begin{cases} 1 & \text{if } 0 < x < 1 \\ -1 & \text{if } 1 < x < 2 \\ 0 & \text{otherwise} \end{cases}$$

hierarchical Haar basis functions on level I:

$$\psi_{l,i}(x) := \psi\left(\frac{x - x_{l,i}}{h_l}\right)$$
 for all $i \in \mathscr{I}_l := \{i : 0 \le i < 2^l, i \text{ even}\}$

hierarchical surplus space for each level:

$$W_l := \operatorname{span} \{ \psi_{l,i} : i \in \mathscr{I}_l \}$$

- space of piecewise constant functions $V_n = \bigoplus_{l=0}^n W_l$
 - \rightarrow includes a step function on interval (0,1) for I=0

Hierarchical Haar Basis - Coefficients

• consider a piecewise constant function $\in V_1$:

$$s(x) := a\phi_{1,0}(x) + b\phi_{1,1}(x) \begin{cases} a & \text{if } 0 < x < \frac{1}{2} \\ b & \text{if } \frac{1}{2} < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Hierarchical Haar Basis - Coefficients

• consider a piecewise constant function $\in V_1$:

$$s(x) := a\phi_{1,0}(x) + b\phi_{1,1}(x) \left\{ egin{array}{ll} a & ext{if } 0 < x < rac{1}{2} \\ b & ext{if } rac{1}{2} < x < 1 \\ 0 & ext{otherwise} \end{array}
ight.$$

• condition in interval $0 < x < \frac{1}{2}$:

$$v_{0,0}\underbrace{\psi_{0,0}(x)}_{=\phi_{0,0}(x)}+v_{1,0}\psi_{1,0}(x)=v_{0,0}+v_{1,0}=a$$

• condition in interval $\frac{1}{2} < x < 1$:

$$v_{0,0}\psi_{0,0}(x)+v_{1,0}\psi_{1,0}(x)=v_{0,0}-v_{1,0}=b$$

solve linear system of equations:

$$v_{0,0} = \frac{1}{2}(a+b)$$
 $v_{1,0} = \frac{1}{2}(a-b)$

Hierarchical Haar Basis - Transformation

• represent a piecewise constant function $s(x) \in V_l$:

$$s(x) = \sum_{i=0}^{2^{l}-1} c_{l,i} \, \phi_{l,i}(x)$$

write as coarse function plus hierarchical surplus:

$$s(x) = \underbrace{\sum_{i} c_{l,i} \phi_{l,i}(x)}_{\in V_l} = \underbrace{\sum_{i} c_{l-1,i} \phi_{l-1,i}(x)}_{\in V_{l-1}} + \underbrace{\sum_{i \in \mathscr{I}_l} d_{l,i} \psi_{l,i}(x)}_{\in W_l}$$

• examine intervals $x_{l,2i} < x < x_{l,2i+1}$ and $x_{l,2i+1} < x < x_{l,2i+2}$:

$$c_{l-1,i} + d_{l,2i} = c_{l,2i}$$
 and $c_{l-1,i} - d_{l,2i} = c_{l,2i+1}$

• leads to formula for $c_{l-1,i}$ and $d_{l,2i}$ (note the even index 2i):

$$c_{l-1,i} = \frac{1}{2}(c_{l,2i} + c_{l,2i+1})$$
 $d_{l,2i} = \frac{1}{2}(c_{l,2i} - c_{l,2i+1})$

Part II Haar Wavelets as Wavelets

Change of Notation – Scaling Function

define scaling function:

$$\phi(x) := \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

nodal basis functions on level /:

$$\phi_{l,k}(x) := 2^{l/2} \phi\left(\frac{x - x_{l,k}}{h_l}\right) = 2^{l/2} \phi\left(\frac{x - k \cdot 2^{-l}}{2^{-l}}\right) = 2^{l/2} \phi\left(2^l x - k\right)$$

(remember: $x_{l,k} = k \cdot 2^{-l}$ and $h_l = 2^{-l}$)

- scaling with $2^{l/2}$ to be discussed ...
- resulting nodal basis on level /:

$$V_l = \text{span}\{\phi_{l,k}(x): k = 0, \dots, 2^l - 1\}$$

Change of Notation – Wavelet Functions

define mother Haar wavelet:

$$\psi(x) := \begin{cases} 1 & \text{if } 0 < x < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Haar wavelet functions on level /:

$$\psi_{l,k}(x) := 2^{l/2} \psi\left(2^{l} x - k\right) = 2^{l/2} \psi\left(\frac{x - 2^{-l} k}{2^{-l}}\right) = 2^{l/2} \psi\left(\frac{x - x_{l,k}}{h_{l}}\right)$$

for $k = 0, ..., 2^l - 1$, (but no "stride two")

- Important changes:
 - shifted numbering of levels: $\psi(x)$ defined on [0,1]
- thus: supports of $\psi_{l,k}(x)$ and $\psi_{l,k+1}(x)$ no longer overlap
- index $k = 0, \dots, 2^l 1$ used with "stride 1"

Change of Notation – Wavelet Functions (cont.)

define mother Haar wavelet:

$$\psi(x) := \begin{cases} 1 & \text{if } 0 < x < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Haar wavelet functions on level /:

$$\psi_{l,k}(x) := 2^{l/2} \psi(2^l x - k)$$
 for $k = 0, ..., 2^l - 1$.

wavelet space for each level:

$$W_l := \text{span} \left\{ \psi_{l,k} : k = 0, \dots, 2^l - 1 \right\}$$

• definition of function spaces: $V_{l+1} = V_l \oplus W_l$

Haar Wavelet Functions

Haar Wavelets - Transformation

• represent a piecewise constant function $s(x) \in V_I$:

$$s(x) = \sum_{k=0}^{2^{l}-1} c_{l,k} \, \phi_{l,k}(x)$$

write as coarse function plus hierarchical surplus:

$$s(x) = \underbrace{\sum_{k} c_{l,k} \, \phi_{l,k}(x)}_{\in V_{l}} = \underbrace{\sum_{k} c_{l-1,k} \, \phi_{l-1,k}(x)}_{\in V_{l-1}} + \underbrace{\sum_{k} d_{l-1,k} \, \psi_{l-1,k}(x)}_{\in W_{l-1}}$$

• transform $c_{l,2k}$ to $c_{l-1,k}$ and $d_{l-1,k}$:

$$c_{l-1,k} = \frac{1}{\sqrt{2}}(c_{l,2k} + c_{l,2k+1})$$
 $d_{l-1,k} = \frac{1}{\sqrt{2}}(c_{l,2k} - c_{l,2k+1})$

• backward transform $c_{l-1,k}$ and $d_{l,2k}$ to $c_{l,2k}$ and $c_{l,2k+1}$:

$$c_{l,2k} = \frac{1}{\sqrt{2}}(c_{l-1,k} + d_{l-1,k})$$
 $c_{l,2k+1} = \frac{1}{\sqrt{2}}(c_{l-1,k} - d_{l-1,k})$

Haar Wavelets – Transformation (2)

scheme for wavelet decomposition:

$$c^{(J-1)}$$
 $c^{(J-2)}$ $c^{(J-2)}$ $c^{(J-3)}$... $c^{(J-1)}$ $c^{(J-2)}$ $c^{(J-2)}$ $c^{(J-3)}$ $c^{(J-3)}$

scheme for assembly:

$$\ldots$$
 $d^{(J-3)}$ $d^{(J-2)}$ $d^{(J-1)}$ \ldots $d^{(J-3)}$ $d^{(J-2)}$ $d^{(J-1)}$ $d^{(J-1)}$

• Note: computational effort for transformations is only $\mathcal{O}(N)$

Haar Wavelets – Transformation (3)

Scheme for data structures:

$$C^{(J-1)} d^{(J-1)}$$

c (J-2) d(J-2)	d ^(J-1)
----------------	--------------------

$$c^{(J-3)} d^{(J-3)} d^{(J-2)}$$

Haar Wavelets - Orthogonality

Haar wavelets are orthogonal functions:

$$\int \psi_{l,i}(x) \, \psi_{m,j}(x) \, dx := \left\{ \begin{array}{l} 1 \quad \text{if } l = m \text{ and } i = j \\ 0 \quad \text{otherwise} \end{array} \right.$$

• two different wavelet functions $\psi_{l,i}
eq \psi_{l,j}$ on the same level l

$$\int \psi_{l,i}(x) \, \psi_{l,j}(x) \, dx = 0 \qquad \text{(no overlap of functions!)}$$

• two wavelet functions $\psi_{I,i} \neq \psi_{m,j}$ on different levels I < m

$$\int \psi_{l,i}(x)\,\psi_{m,j}(x)\,dx=\psi_{l,i}(x_{m,j}^+)\int \psi_{m,j}(x)\,dx=0$$

• scalar product of a wavelet functions $\psi_{l,i}$ with itself

$$\int (\psi_{l,i}(x))^2 dx = \int_{x_{l,i}}^{x_{l,i}+2^{-l}} (2^{l/2})^2 dx = 1$$

Haar Wavelets - Summary and Next Steps

Haar wavelets:

- hierarchical basis of piecewise constant and ...
- ... orthogonal basis functions
- $\mathcal{O}(N)$ effort for hierarchical transformation (compare tutorial)

Haar Wavelets - Summary and Next Steps

Haar wavelets:

- hierarchical basis of piecewise constant and ...
- ... orthogonal basis functions
- $\mathcal{O}(N)$ effort for hierarchical transformation (compare tutorial)

Next steps:

- applications in signal and image processing
- extension to 2D (and higher dimensions)
- is there a piecewise linear/polynomial/higher-order orthogonal(!) wavelet basis?

Part III

Wavelets in Signal and Image Processing

Scaling Functions and Wavelet Functions in 2D

Use tensor product, as for hierarchical basis:

• 2D scaling functions on levels l_1, l_2 :

$$\phi_{\vec{l},\vec{k}}(x_1,x_2) := \phi_{l_1,l_2,k_1,k_2}(x_1,x_2) := \phi_{l_1,k_1}(x_1) \cdot \phi_{l_2,k_2}(x_2)$$

• 2D wavelet functions on levels l_1, l_2 :

$$\psi_{\vec{l},\vec{k}}(x_1,x_2) := \psi_{l_1,l_2,k_1,k_2}(x_1,x_2) := \psi_{l_1,k_1}(x_1) \cdot \psi_{l_2,k_2}(x_2)$$

- thus straightforward extension to 3D and higher dimensions
- construction of basis function equivalent to 2D/3D Fourier Transform (also for Hierarchical Basis)
- however: 2D/3D Wavelet transform typically not a straightforward sequence of 1D transforms
 - → instead: sequence of level-wise transforms

2D Wavelets – A Single Transformation Step

2D Wavelets – Storage Scheme

cc1	cd1	cd2	
dc1	dd1		cd3
d	c2	dd2	
dc3		23	dd3

2D Wavelets – Example Image (JPEG 200)

(Image by Alessio Damato, cmp. Wikipedia article on "Wavelet transform")

Wavelet-Based Compression of Image Data

Typical steps for image compression:

- Conversion of colour model (separation of brightness and colour information)
- 2. 2D discrete Wavelet transform
- 3. Quantisation of the coefficients (→ reduce information)
- efficient encoding
 (loss-less compression of the quantised coefficients)

In practice:

- different algorithms: EZF, SPIHT, ...
- similar to JPEG, but often much better quality
- see, e.g., Walker: "Wavelet-based Image Compression" for full details

Example: 3D Image Compression

(wavelet-based compression of raster data, A. Dehmel)

Example: 3D Image Compression (2)

(wavelet-based compression of raster data, A. Dehmel)

From Fourier Transform to Wavelets

(Discrete) Fourier Transform:

$$f(x) \sim \sum c_k e^{ikx}$$
 or $f_n = \sum F_k e^{i\pi kn/N}$

- *f* contains only spatial information
- c_k , F_k contain only frequency information
- no relation between frequency and location

From Fourier Transform to Wavelets

(Discrete) Fourier Transform:

$$f(x) \sim \sum c_k e^{ikx}$$
 or $f_n = \sum F_k e^{i\pi kn/N}$

- *f* contains only spatial information
- c_k , F_k contain only frequency information
- no relation between frequency and location

Windowed Fourier Transform:

$$f(x) = \frac{1}{2\pi} \int \int F(u,k)g(x-u)e^{ikx}dk\,du, \quad F(u,k) = \int f(x)g(x-u)e^{-ikx}dx$$

- F(u,k): frequency k at location u
- $g(\xi)$ a window function
 - → narrow windows do not allow to locate coarse frequencies
 - → but wide windows decrease accuracy in location

From Fourier Transform to Wavelets (2)

Continuous Wavelet Transform:

$$W(a,b) = \int f(t)\psi_a^b(t) dt$$
 and $f(x) = \frac{1}{C_{\psi}} \int \int W(a,b) \frac{\psi_a^b(x)}{a^2} da db$

- continuous in a and b
- $\psi_a^b(t) = |a|^{-1/2} \psi\left(\frac{t-b}{a}\right)$ with "mother wavelet" ψ
- infinitely many (redundant) coefficients → computationally not feasible

From Fourier Transform to Wavelets (2)

Continuous Wavelet Transform:

$$W(a,b) = \int f(t)\psi_a^b(t) dt$$
 and $f(x) = \frac{1}{C_{\psi}} \int \int W(a,b) \frac{\psi_a^b(x)}{a^2} da db$

- continuous in a and b
- $\psi_a^b(t) = |a|^{-1/2} \psi\left(\frac{t-b}{a}\right)$ with "mother wavelet" ψ
- infinitely many (redundant) coefficients → computationally not feasible

Multiresolution Analysis/Discrete Wavelet Transform:

- restrict (a,b) to discrete values $(a,b):=\left(\frac{1}{2^j},\frac{k}{2^j}\right)$
- thus discrete wavelet functions:

$$\psi_{j,k} = \psi_k^{2^{-j}} = 2^{j/2} \psi(2^j t - k)$$

combines frequency and location: higher spatial resolution for higher frequencies

Part IV

More Complicated Wavelets

Reference/more details --- Aboufadel & Schlicker: Discovering Wavelets

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118032909 or

Mother and Father Wavelets - General Situation

- mother wavelet $\psi(x)$
- father wavelet $\phi(x)$, also called scaling function
- basis built from scaling functions on each level I:

$$\phi_{l,k}(x) := 2^{l/2} \phi(2^l x - k) \quad V_l := \text{span}\{\phi_{l,k}(x)\}$$

surplus basis built from wavelet functions on each level I:

$$\psi_{l,k}(x) := 2^{l/2} \psi(2^l x - k)$$
 $W_l := \text{span}\{\psi_{l,k}(x)\}$

- definition of function spaces: $V_{l+1} = V_l \oplus W_l$
- wavelet basis functions are orthonormal:

$$\langle \psi_{l,k}(x), \psi_{m,j}(x) \rangle = \int \psi_{l,k}(x) \psi_{m,j}(x) dx = \begin{cases} 1 & \text{if } l = m \text{ and } k = j \\ 0 & \text{otherwise} \end{cases}$$

• also: scaling basis functions are orthonormal on each level

Scaling and Wavelet Functions

- note: $\phi_{l-1,k} \in V_l \supset V_{l-1}$, and also $\psi_{l-1,k} \in V_l = V_{l-1} \oplus W_{l-1}$
- hence, all $\phi_{l-1,k}$ and $\psi_{l-1,k}$ can be uniquely represented via the basis functions of V_l , i.e., the $\phi_{l,k}$:

$$\phi_{l-1,0}(x) = \sum_{i} p_{i} \phi_{l,i}(x) = 2^{l/2} \sum_{i} p_{i} \phi \left(2^{l} x - i\right)$$

$$\psi_{l-1,0}(x) = \sum_{i} q_{i} \phi_{l,i}(x) = 2^{l/2} \sum_{i} q_{i} \phi \left(2^{l} x - i\right)$$

- for efficiency: p_i and q_i should be non-zero for only a few i
- for Haar wavelets:

Scaling and Wavelet Functions (2)

• do for all scaling functions $\phi_{l-1,k}$:

$$\phi_{l-1,k}(x) = 2^{l/2} \sum_{i} p_{i} \phi \left(2^{l} x - 2k - i \right)$$

$$\stackrel{2k+i \to i}{=} 2^{l/2} \sum_{i} p_{i-2k} \phi \left(2^{l} x - i \right) = \sum_{i} p_{i-2k} \phi_{l,i}(x)$$

Note:
$$\phi_{l,k}(x) = 2^{l/2}\phi\left(2^{l}x - k\right) = 2^{l/2}\phi\left(2^{l}x - 2^{l}\frac{k}{2^{l}}\right) = 2^{l/2}\phi\left(2^{l}\left(x - \frac{k}{2^{l}}\right)\right) = \phi_{l,0}\left(x - \frac{k}{2^{l}}\right)$$
 and thus: $\phi_{l-1,k}(x) = \phi_{l-1,0}\left(x - \frac{k}{2^{(l-1)}}\right) = 2^{l/2}\sum_{i}q_{i}\phi\left(2^{l}\left(x - \frac{k}{2^{(l-1)}}\right) - i\right) = \dots$

- and similar for wavelet functions: $\psi_{l-1,k}(x) = \sum_i q_{i-2k} \phi_{l,i}(x)$
- for Haar wavelets:

 p_{i-2k} and q_{i-2k} are non-zero only for i=2k and i=2k+1:

$$\phi_{l-1,k}(x) = \frac{1}{\sqrt{2}}\phi_{l,2k}(x) + \frac{1}{\sqrt{2}}\phi_{l,2k+1}(x)$$

$$\psi_{l-1,k}(x) = \frac{1}{\sqrt{2}} \phi_{l,2k}(x) - \frac{1}{\sqrt{2}} \phi_{l,2k+1}(x)$$

Wavelet Transformations and Filtering

• consider a signal function represented on (fine) level *l* + 1:

$$f_{l+1}(x) = \sum_{i} c_{i}^{(l+1)} \phi_{l+1,i}(x)$$

• and a decomposition $f_{l+1} = f_l + g_l$, where $f_l \in V_l$ and $g_l \in W_l$:

$$f_{l+1}(x) = \sum_{i} c_{i}^{(l+1)} \phi_{l+1,i}(x) = \sum_{j} c_{j}^{(l)} \phi_{l,j}(x) + \sum_{j} d_{j}^{(l)} \psi_{l,j}(x)$$

$$= \sum_{j} \left(c_{j}^{(l)} \sum_{i} p_{i-2j} \phi_{l+1,i}(x) \right) + \sum_{j} \left(d_{j}^{(l)} \sum_{i} q_{i-2j} \phi_{l+1,i}(x) \right)$$

$$= \sum_{i} \phi_{l+1,i}(x) \sum_{j} \left(p_{i-2j} c_{j}^{(l)} + q_{i-2j} d_{j}^{(l)} \right)$$

• two different representations of $f_{l+1}(x)$, but $\{\phi_{l+1,k}(x)\}$ a basis:

$$\Rightarrow c_i^{(l+1)} = \sum_j \left(p_{i-2j} c_j^{(l)} + q_{i-2j} d_j^{(l)} \right)$$

Wavelet Transformations and Filtering (2)

• *p_i* and *q_i* determine transformation of coefficients:

$$c_i^{(I+1)} = \sum_j \left(p_{i-2j} c_j^{(I)} + q_{i-2j} d_j^{(I)} \right)$$

- solves assembly: for given f_l and g_l (i.e., given coefficients $c_j^{(l)}$ and $d_j^{(l)}$), find coefficients $c_i^{(l+1)}$ for f_{l+1}
- for Haar wavelets:

even
$$i$$
: $c_i^{(l+1)} = \frac{1}{\sqrt{2}} c_{i/2}^{(l)} + \frac{1}{\sqrt{2}} d_{i/2}^{(l)}$
odd i : $c_i^{(l+1)} = \frac{1}{\sqrt{2}} c_{(i-1)/2}^{(l)} - \frac{1}{\sqrt{2}} d_{(i-1)/2}^{(l)}$

Wavelet Transformations and Filtering (3)

· now: fine-level representation given as

$$f_{l+1}(x) = \sum_{i} c_{i}^{(l+1)} \phi_{l+1,i}(x)$$

• wanted: decomposition $f_{l+1} = f_l + g_l$ with

$$f_l(x) + g_l(x) = \sum_j c_j^{(l)} \phi_{l,j}(x) + \sum_j c_j^{(l)} \psi_{l,j}(x)$$

• use that $\{\phi_{l,k}(x)\}$ and $\{\psi_{l,k}(x)\}$ are orthonormal basis for V_l and W_l , and $V_l \perp W_l$:

$$\Rightarrow c_j^{(l)} = \langle f_{l+1}(x), \phi_{l,j}(x) \rangle = \left\langle \sum_i c_i^{(l+1)} \phi_{l+1,i}(x), \phi_{l,j}(x) \right\rangle$$

$$= \sum_i c_i^{(l+1)} \langle \phi_{l+1,i}(x), \phi_{l,j}(x) \rangle$$

$$= \dots$$

Wavelet Transformations and Filtering (4)

continued:

$$c_{j}^{(I)} = \langle f_{l+1}(x), \phi_{l,j}(x) \rangle = \dots = \sum_{i} c_{i}^{(l+1)} \langle \phi_{l+1,i}(x), \phi_{l,j}(x) \rangle$$

$$= \sum_{i} c_{i}^{(l+1)} \langle \phi_{l+1,i}(x), \sum_{k} p_{k-2j} \phi_{l+1,k}(x) \rangle$$

$$= \sum_{i} c_{i}^{(l+1)} \sum_{k} p_{k-2j} \langle \phi_{l+1,i}(x), \phi_{l+1,k}(x) \rangle = \sum_{i} c_{i}^{(l+1)} p_{i-2j}$$

• similar computation for $d_j^{(l)}$, and therefore:

$$c_j^{(I)} = \sum_i p_{i-2j} c_i^{(I+1)} \qquad d_j^{(I)} = \sum_i q_{i-2j} c_i^{(I+1)}$$

again, for Haar wavelets:

$$c_j^{(l)} = rac{1}{\sqrt{2}}\,c_{2j}^{(l+1)} + rac{1}{\sqrt{2}}\,c_{2j+1}^{(l+1)} \qquad d_j^{(l)} = rac{1}{\sqrt{2}}\,c_{2j}^{(l+1)} - rac{1}{\sqrt{2}}\,c_{2j+1}^{(l+1)}$$

Wanted: decomposition $f_{l+1} = f_l + g_l$ with

• coarser representation $f_l(x) = \sum c_i^{(l)} \phi_{l,j}(x)$ with

$$c_j^{(I)} = \sum_i p_{i-2j} c_i^{(I+1)}$$

corresponds to a low-pass filter (averaging)

• oscillatory surplus $g_l(x) = \sum d_j^{(l)} \psi_{l,j}(x)$ with

$$d_j^{(l)} = \sum_i q_{i-2j} c_i^{(l+1)}$$

corresponds to a high-pass filter (difference computation)

• and reconstruction: $c_i^{(l+1)} = \sum\limits_j \left(p_{i-2j} c_j^{(l)} + q_{i-2j} d_j^{(l)} \right)$

How to Determine the Filtering Coefficients?

we need coefficients for low-pass and high-pass filter:

$$c_j^{(l)} = \sum_i p_{i-2j} c_i^{(l+1)}$$
 $d_j^{(l)} = \sum_i q_{i-2j} c_i^{(l+1)}$

- reconstruction then: $c_i^{(l+1)} = \sum_j \left(p_{i-2j} c_j^{(l)} + q_{i-2j} d_j^{(l)} \right)$
- requires scaling equation for scaling and wavelet functions:

$$\phi_{l-1,k}(x) = \sum_{i} p_{i-2k} \, \phi_{l,i}(x) \qquad \psi_{l-1,k}(x) = \sum_{i} q_{i-2k} \, \phi_{l,i}(x)$$

- requires orthogonal scaling and wavelet functions:
 - $-\phi_{l,k}\perp\phi_{l,j}$ and $\psi_{l,k}\perp\psi_{l,j}$ for $k\neq j$
 - $-\psi_{l,k}\perp\phi_{m,j}$ if $m\leq l$ and arbitrary k,j (i.e., $W_l\perp V_m$)

How to Determine the Wavelet Functions? (2)

scaling equation for mother and father wavelet:

$$\phi(x) = \sqrt{2} \sum_{k} p_k \, \phi(2x - k) \qquad \psi(x) = \sqrt{2} \sum_{k} q_k \, \phi(2x - k)$$

also called dilation equation

for Haar wavelet:

$$\phi(x) = \phi(2x) + \phi(2x-1)$$
 $\psi(x) = \phi(2x) - \phi(2x-1)$

- for more complicated wavelets:
 - more than 2 non-zeros p_k (and q_k)
 - $-p_k$ and q_k determined to satisfy orthogonality
 - often no analytical expression for $\phi(x)$ and $\psi(x)$ available
 - obtain $\phi(x)$ and $\psi(x)$ as solutions of the scaling equation
 - \rightarrow see worksheet "cranking the machine"

Towards More Complicated Wavelets

"Wish List:"

• orthonormal basis of scaling functions on each level:

$$\left\langle \phi_{l,k}(x),\phi_{l,j}(x) \right
angle = \left\{ egin{array}{ll} 1 & ext{if and } k=j \ 0 & ext{otherwise} \end{array}
ight.$$

scaling/wavelet functions obey top scaling equation:

$$\phi_{l-1,k}(x) = \sum_{i} p_{i-2k} \, \phi_{l,i}(x) \qquad \psi_{l-1,k}(x) = \sum_{i} q_{i-2k} \, \phi_{l,i}(x)$$

- scaling/wavelet functions have **compact support** $\rightsquigarrow p_i \neq 0$ only for few i (same for q_i)
- as additional criteria: "vanishing moments" of wavelet functions

$$\int \psi(t) dt = 0$$
 $\int t \psi(t) dt = 0$ etc

Towards More Complicated Wavelets (2)

orthonormal basis of scaling functions:

· on each level:

$$\left\langle \phi_{l,k}(x),\phi_{l,j}(x) \right\rangle = \left\{ egin{array}{ll} 1 & ext{if and } k=j \ 0 & ext{otherwise} \end{array}
ight.$$

combine with scaling equation and compact support:

$$\phi_{l-1,k}(x) = \sum_{i} p_{i-2k} \, \phi_{l,i}(x)$$
 where $p_i \neq 0$ only for few i

and obtain:

$$\langle \phi_{l-1,k}(x), \phi_{l-1,m}(x) \rangle = \left\langle \sum_{i} p_{i-2k} \phi_{l,i}(x), \sum_{j} p_{j-2m} \phi_{l,j}(x) \right\rangle$$
$$= \sum_{i} p_{i-2k} \sum_{j} p_{j-2m} \left\langle \phi_{l,i}(x), \phi_{l,j}(x) \right\rangle = \sum_{i} p_{i-2k} p_{i-2m}$$

• in particular (for k = m): $\sum_{i} (p_{i-2k})^2 = \sum_{i} p_i^2 = 1$

Towards More Complicated Wavelets (3)

• in addition – for k = 0 and arbitrary $m \neq 0$:

$$\langle \phi_{l-1,0}(x), \phi_{l-1,m}(x) \rangle = \sum_{i} \rho_{i} \rho_{i-2m} = 0$$

similar argument: scaling and wavelet functions are orthogonal!

$$\langle \phi_{l-1,0}(x), \psi_{l-1,0}(x) \rangle = \left\langle \sum_{i} p_{i} \phi_{l,i}(x), \sum_{j} q_{j} \phi_{l,j}(x) \right\rangle$$

$$= \sum_{i} p_{i} \sum_{j} q_{j} \left\langle \phi_{l,i}(x), \phi_{l,j}(x) \right\rangle = \sum_{i} p_{i} q_{i} \stackrel{!}{=} 0$$

and wavelet functions of one level are orthogonal:

$$\langle \psi_{l,k}(x), \psi_{l,m}(x) \rangle = 0 \quad \leadsto \sum_{i} q_i q_{i-2(k-m)} = \begin{cases} 0 & \text{if } k \neq m \\ 1 & \text{if } k = m \end{cases}$$

• to satisfy these requirements: $q_k = (-1)^k p_{N-1-k}$, for $k = 0, \dots, N-1 = 2^l - 1$

Towards More Complicated Wavelets (3)

• in addition – for k = 0 and arbitrary $m \neq 0$:

$$\langle \phi_{l-1,0}(x), \phi_{l-1,m}(x) \rangle = \sum_{i} p_{i} p_{i-2m} = 0$$

similar argument: scaling and wavelet functions are orthogonal!

$$\langle \phi_{l-1,0}(x), \psi_{l-1,0}(x) \rangle = \left\langle \sum_{i} p_{i} \phi_{l,i}(x), \sum_{j} q_{j} \phi_{l,j}(x) \right\rangle$$

$$= \sum_{i} p_{i} \sum_{j} q_{j} \left\langle \phi_{l,i}(x), \phi_{l,j}(x) \right\rangle = \sum_{i} p_{i} q_{i} \stackrel{!}{=} 0$$

and wavelet functions of one level are orthogonal:

$$\langle \psi_{l,k}(x), \psi_{l,m}(x) \rangle = 0 \quad \leadsto \sum_{i} q_i q_{i-2(k-m)} = \begin{cases} 0 & \text{if } k \neq m \\ 1 & \text{if } k = m \end{cases}$$

• to satisfy these requirements: $q_k = (-1)^k p_{N-1-k}$, for $k = 0, \dots, N-1 = 2^l - 1$

See here for a wonderful description of more complicated wavelets:

https://www.continuummechanics.org/wavelets.html

Daubechies Wavelets (D4)

- setting: $\phi(x) = 0$ outside of interval [0,3] \rightarrow non-zero coefficients are p_0 , p_1 , p_2 , and p_3
- orthogonality requires $\sum p_i^2 = 1$ and $\sum p_i p_{i-2m} = 0$:

$$p_0^2 + p_1^2 + p_2^2 + p_3^2 = 1$$
 and $p_0p_2 + p_1p_3 = 0$

• plus vanishing moments $\int \psi(t) dt = 0$ and $\int t \psi(t) dt = 0$ together with $q_k = (-1)^k p_{N-1-k}$ leads to

$$-p_0 + p_1 - p_2 + p_3 = 0$$
 and $-p_1 + 2p_2 - 3p_3 = 0$

one solution to this system:

$$p_0 = rac{1+\sqrt{3}}{4\sqrt{2}}, \quad p_1 = rac{3+\sqrt{3}}{4\sqrt{2}}, \quad p_2 = rac{3-\sqrt{3}}{4\sqrt{2}}, \quad p_3 = rac{1-\sqrt{3}}{4\sqrt{2}}$$

Daubechies Wavelets (D4) - Scaling Function

no analytical expression available \rightarrow iterative approximation

see tutorials: \rightarrow "cranking the machine"

Daubechies Wavelets (D4) - Wavelet Function

Daubechies Wavelets (D4) - Transform

```
Algorithm to compute c_{j}^{(l)} = \sum_{i} p_{i-2j} c_{i}^{(l+1)} and d_{j}^{(l)} = \sum_{i} q_{i-2j} c_{i}^{(l+1)} (1 level):
```

- Input: coefficients $c_i^{(l+1)}$, $i = 0, ..., 2^{l+1} 1$ stored in array c[:]
- requires helper array cl[:] for $c_j^{(l)}$, $j=0,\ldots,2^l-1$
- requires helper array dl[:] for $d_j^{(l)}$, $j = 0, ..., 2^l 1$
- filter coefficients p_i and q_i stored in arrays p[0:3] and q[0:3] resp.
- main loop:

 $c^{(J-1)}$

 $d^{(J-1)}$

- copy cl[:] and dl[:] into c[:] as in:
- missing: treat boundaries → e.g.: periodic wrap-around

Finally: Multiresolution Analysis

Definition: Multiresolution Analysis

nested sequence of function spaces:

$$\cdots \subset V_0 \subset V_1 \subset V_2 \subset V_3 \subset \cdots$$

- with a scaling function ϕ such that $\phi(2^l x k)$ is an orthonormal Basis of V_l (and $V_l = \operatorname{span}\{\phi_{l,k} \colon k \in \mathbb{Z}\}$)
- $\bigcup V_l$ is dense in $L^2(\mathbb{R})$
- V₁ satisfy separation property: ∩ V₁ = {0}
- $f(t) \in V_l$ if and only if $f(2^{-l}t) \in V_0$

Finally: Multiresolution Analysis

Definition: Multiresolution Analysis

nested sequence of function spaces:

$$\cdots \subset V_0 \subset V_1 \subset V_2 \subset V_3 \subset \cdots$$

- with a scaling function ϕ such that $\phi(2^l x k)$ is an orthonormal Basis of V_l (and $V_l = \operatorname{span}\{\phi_{l,k} \colon k \in \mathbb{Z}\}$)
- $\bigcup V_l$ is dense in $L^2(\mathbb{R})$
- V₁ satisfy separation property: ∩ V₁ = {0}
- $f(t) \in V_l$ if and only if $f(2^{-l}t) \in V_0$

Last but not least: find coefficients c_k such that $s(x) \approx \sum c_k \phi_{l,k}(x)$?

 \rightarrow use orthogonality: $c_k = \langle s(x), \phi_{l,k}(x) \rangle$ (orthogonal projection to space V_l)

Summary: Wavelets

- Piecewise constant scaling function, basis transforms
- Haar wavelet, mother wavelet, father wavelet
- Signal and image processing, filtering with wavelets
- More complicated wavelets: Daubechie D4
- Multiresolution analysis

References and Further Material

Textbooks:

- E. Aboufadel, S. Schlicker: Discovering Wavelets.
 Whiley, New York, 1999
- I. Daubechies: *Ten Lectures on Wavelets*. CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1992.
- J. S. Walker: A Primer on Wavelets and their Scientific Applications, Second Edition. Chapman and Hall/CRC, 2008.

Articles:

- G. Strang: Wavelet transforms versus Fourier transforms.
 Bulletin of the American Mathematical Society 28 (1993), p. 288–305.
- J. S. Walker: Wavelet-based Image Compression

See the course webpage for URLs and online access.