Solutions to Tutorial 7

MA1521 CALCULUS FOR COMPUTING

1. Let $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$.

Then $\mathbf{u} = \operatorname{proj}_{\mathbf{w}} \mathbf{a}$ is parallel to \mathbf{w}

and $\mathbf{v} = \mathbf{a} - \text{proj}_{\mathbf{w}} \mathbf{a}$ is perpendicular to \mathbf{w}

and $\mathbf{a} = \mathbf{u} + \mathbf{v}$.

We compute

$$\mathbf{u} = \frac{\mathbf{a} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w} = \frac{3+6+4}{1+9+16} (\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) = \frac{1}{2} (\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$$

and

$$\mathbf{v} = \mathbf{a} - \mathbf{u} = (3\mathbf{i} + 2\mathbf{j} + \mathbf{k}) - \frac{1}{2}(\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) = \frac{1}{2}(5\mathbf{i} + \mathbf{j} - 2\mathbf{k}).$$

- 2. The line ℓ is perpendicular to lines ℓ_1 and ℓ_2 . Therefore it is perpendicular to their direction vectors \mathbf{v}_1 and \mathbf{v}_2 respectively. Hence the cross product of \mathbf{v}_1 and \mathbf{v}_2 gives the direction vector of the line ℓ . Note that $\mathbf{v}_1 = \langle 3, -4, 4 \rangle$ and $\mathbf{v}_2 = \langle 3, -1, 5 \rangle$. So, a direction vector of ℓ is the cross product $\mathbf{v}_1 \times \mathbf{v}_2 = \langle -16, -3, 9 \rangle$. Thus a parametric equation for ℓ through the point P(1, -2, 3) and parallel to $\langle -16, -3, 9 \rangle$ is given by: (x, y, z) = (1, -2, 3) + t(-16, -3, 9).
- 3. Let A(x, y, z) be the point of intersection of the two lines. Set 2t-1=4s+7, -3t+2=2s-2 and 4t-3=-3s+2. Solving for t and s, we get t=2 and s=-1. For ℓ_1 , t=2 and we get A(x,y,z)=(3,-4,5).

A normal vector of the plane is given by $\langle 2, 3, 4 \rangle \times \langle 4, 2, -3 \rangle = \langle 1, 22, 16 \rangle$. Therefore, the equation of the plane is x + 22y + 16 = -5.

4. (a) $\overrightarrow{AB} = (3\mathbf{i} + 0\mathbf{j} + \mathbf{k}) - (3\mathbf{i} + 3\mathbf{j} + 0\mathbf{k}) = 0\mathbf{i} - 3\mathbf{j} + \mathbf{k}$,

and
$$\overrightarrow{AC} = (0\mathbf{i} + 2\mathbf{j} + \mathbf{k}) - (3\mathbf{i} + 3\mathbf{j} + 0\mathbf{k}) = -3\mathbf{i} - \mathbf{j} + 1\mathbf{k}$$
.

A vector normal to the plane is $\overrightarrow{AB} \times \overrightarrow{AC} = -2\mathbf{i} - 3\mathbf{j} - 9\mathbf{k}$.

An equation of the plane is given by

$$-2x - 3y - 9z = -2 \cdot 0 - 3 \cdot 2 - 9 \cdot 1$$

$$\implies 2x + 3y + 9z = 15.$$

(b) The distance is given by

$$\frac{|2 \cdot 0 + 3 \cdot 0 + 9 \cdot 0 - 15|}{\sqrt{(2)^2 + (3)^2 + (9)^2}} = \frac{15}{\sqrt{94}}.$$

1

(c) $\overrightarrow{OD} = 4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. Parametric equations of the line which contains the line segment *OD* are given by

(*)
$$x = 4t, \quad y = 2t, \quad z = t.$$

Hence at the point of intersection (of the line and the plane) we have

$$2(4t) + 3(2t) + 9t = 15 \Rightarrow t = \frac{15}{23}.$$

By (*), the point of intersection is $\frac{15}{23}(4, 2, 1)$.

5. Note that two non-parallel planes will intersect (in a straight line), so that the shortest distance between them is 0. In this question, Π_1 and Π_2 are parallel because the vector $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ (or the vector $4\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$) is perpendicular to them.

Choose a point P on Π_1 and find the distance from P to Π_2 .

In Π_1 : 2x + 2y - z = 1, let x = 1, y = 0 to obtain z = 1. Thus, P(1, 0, 1) lies on Π_1 . The distance from the point (x_0, y_0, z_0) to the plane ax + by + cz = d is

$$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Thus,

distance between
$$\Pi_1$$
 and Π_2 = distance from P to Π_2 =
$$\frac{|(4)(1) + (4)(0) + (-2)(1) - 5|}{\sqrt{4^2 + 4^2 + (-2)^2}}$$
 =
$$\frac{1}{2}$$
.

6. For particles to collide, we equate the two vector functions using the *same* parameter *t*:

$$\mathbf{r}_1(t) = \mathbf{r}_2(t).$$

Equating the three components, we get

$$t = 1 + 2t$$
, $t^2 = 1 + 6t$, $t^3 = 1 + 14t$.

This system does not have solutions. For example, from the first equation, we get t = -1. But t = -1 does not satisfy the other two equations.

So, we conclude that the 2 particles do not collide.

For the path to intersect, we equate the two vector functions using *different* parameters *s* and *t*:

$$\mathbf{r}_1(t) = \mathbf{r}_2(s).$$

Equating the components, we get

$$t = 1 + 2s$$
, $t^2 = 1 + 6s$, $t^3 = 1 + 14s$.

This system has a solution t = 2, s = 1/2.

So, we conclude that the 2 paths intersect.

7.
$$\lim_{x \to 0} \frac{\|A + xB\| - \|A\|}{x} = \lim_{x \to 0} \frac{(\|A + xB\| - \|A\|)(\|A + xB\| + \|A\|)}{x(\|A + xB\| + \|A\|)}$$
$$= \lim_{x \to 0} \frac{\|A + xB\|^2 - \|A\|^2}{x(\|A + xB\| + \|A\|)} = \lim_{x \to 0} \frac{A \cdot A + 2xA \cdot B + x^2 B \cdot B - A \cdot A}{x(\|A + xB\| + \|A\|)}$$
$$= \lim_{x \to 0} \frac{2A \cdot B + xB \cdot B}{(\|A + xB\| + \|A\|)} = \frac{2A \cdot B}{2\|A\|} = \|B\| \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}.$$

(2nd Solution). By the definition of derivative, $\frac{d}{dx}||A + xB||_{x=0} = \lim_{x\to 0} \frac{||A + xB|| - ||B||}{x}$. So we consider the function ||A + xB|| and proceed to find its derivative at x = 0.

Let
$$f(x) = ||A + xB|| = ((A + xB) \cdot (A + xB))^{\frac{1}{2}} = (A \cdot A + 2xA \cdot B + x^2A \cdot A)^{\frac{1}{2}} = (||A||^2 + 2xA \cdot B + x^2||A||^2)^{\frac{1}{2}}$$
.

Therefore,
$$f'(x) = \frac{2A \cdot B + 2x ||A||^2}{2(||A||^2 + 2xA \cdot B + x^2 ||A||^2)^{\frac{1}{2}}}$$
. Thus $f'(0) = \frac{A \cdot B}{||A||} = ||B|| \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$.

Solutions to Further Exercises

- 1. A vector along the line is given by $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{vmatrix} = 3\mathbf{i} \mathbf{j} 2\mathbf{k}$. Hence the parametric equations of the line are x = 3t, y = 1 t, z = 2 2t.
- 2. Consider the equations x = y and x + 1 = y/2 for the first and the second lines respectively. The solution to x = y and x + 1 = y/2 is x = y = -2, Hence by the equation of the first line, z = -2, but this does not satisfy the equation y/2 = z/3 for the second line. Therefore the two lines do not intersect. Clearly they are not parallel as their direction numbers are not proportional. That is they form a pair of skew lines.

A vector perpendicular to both of the lines is $\mathbf{n} = \langle 1, 1, 1 \rangle \times \langle 1, 2, 3 \rangle = \langle 1, -2, 1 \rangle$. Pick any point on each of the lines, say $P_1(-2, -2, -2)$ and $P_2(-2, -2, -3)$, and form the vector $\mathbf{b} = P_1 P_2 = \langle 0, 0, -1 \rangle$. The distance between the two skew lines is given by the absolute value of the scalar projection of $P_1 P_2$ along \mathbf{n} , that is,

$$\frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|} = \frac{|1 \cdot 0 - 2 \cdot 0 - 1 \cdot 1|}{\sqrt{1 + 4 + 1}} = \frac{1}{\sqrt{6}}.$$

Alternatively, x - 2y + z = 0 and x - 2y + z + 1 = 0 are the equations of the two parallel planes containing the lines x = t, y = t, z = t and x = s - 1, y = 2s, z = 3s respectively. Then just find the distance from a point on one of the planes to the other plane. For example the distance from (0,0,0) to the plane x - 2y + z + 1 = 0 is $\frac{1}{\sqrt{6}}$.

We may also find the point Q_1 on the line $\ell_1: x=t, y=t, z=t$ and the point Q_2 on the line $\ell_2: x=s-1, y=2s, z=3s$ such that the distance between Q_1 and Q_2 is $\frac{1}{\sqrt{6}}$. Let $Q_1=(t,t,t)$ and $Q_2=(-1+s,2s,3s)$. Then $Q_2Q_1=\langle t+1-s,t-2s,t-3s\rangle$. We have $\langle t+1-s,t-2s,t-3s\rangle\cdot\langle 1,1,1\rangle=0$ and $\langle t+1-s,t-2s,t-3s\rangle\cdot\langle 1,2,3\rangle=0$. That is 3t-6s+1=0, 6t-14s+1=0. Solving for t and s, we obtain $s=-\frac{1}{2}$, $t=-\frac{4}{3}$. Thus $Q_1=(-\frac{4}{3},-\frac{4}{3},-\frac{4}{3}), Q_2=(-\frac{3}{2},-1,-\frac{3}{2})$. Then $Q_1Q_2=\sqrt{(-\frac{4}{3}+\frac{3}{2})^2+(-\frac{4}{3}+1)^2+(-\frac{4}{3}+\frac{3}{2})^2}=\sqrt{\frac{1}{36}+\frac{1}{9}+\frac{1}{36}}=\frac{1}{\sqrt{6}}$.

3. The surface so generated is a double cone. Let P(x,y,z) be a point on the double cone. Let N be the foot of perpendicular from P onto the y-z plane. Then PN/ON is the slope 3 of the line 3y = x. Hence, $\frac{|x|}{\sqrt{y^2+z^2}} = 3$. That is $x^2 - 9y^2 - 9z^2 = 0$.

There is a general formula for the equation of surface of revolution as follow: Let y = f(x) be a continuous function. We rotate the graph of f(x) through 360° about the x-axis to get a surface. The equation of that surface is:

$$\sqrt{y^2 + z^2} = |f(x)| \text{ or } y^2 + z^2 = f(x)^2.$$

In our case, f(x) = x/3. Thus we get the equation $y^2 + z^2 = x^2/9$.