We are un-doing differentiation. Called antiderivation

Ex If $F(x) = x^2$, then $F(x) = \frac{1}{2x^2} = \frac{1}{2x}$.

Ex Find an antiderivative of f(x) = 1/21x.

ANS: F(x)= x2

We say F(x) is an antiderivative of f(x) if

F/6) = f(x)

Why? algebraic graphical

Ex Find the family of antiderivatives of fax= 1/21x.

On page 2

Use notation: to articulate the same idea:

The family of antiderivates = $\int f(x) dx = F(x) + C$ of f(x) is F(x)'' integrand Cintegral

If time permits: Subtlety of

 $F(x) = \begin{cases} x^{-2} + 1 & \text{for } x > 0 \\ x - 4 & \text{for } x < 0 \end{cases}$

SECTION 4.10 ANTIDERIVATIVES

- (families of) antiderivatives
- definite integrals
- initial value problems
- 1. Find the (family of) antiderivatives for the following.

(a)
$$f(x) = x^3$$

(b)
$$f(x) = 5\sin(x)$$

(c)
$$f(x) = \frac{e^x}{4}$$

$$F(x) = -5\omega S(x) + C$$

$$F(x) = \frac{1}{4} e^{X} + C$$

check:

$$F'(x) = \frac{1}{4}.4x^{3} + 0$$

= x^{3}

(d)
$$f(x) = \sqrt{2}$$

(e)
$$f(x) = \frac{1}{x}$$

(f)
$$f(x) = 1 - x + e^x$$

$$F(x) = \ln |x|$$

$$F(x) = x - \frac{1}{2}x^2 + e^x$$

× Where do absolute Value bars come from?

* What priniple is being used here?

2. Confirm that $F(x) = \sin^2(2x)$ is an antiderivative of $f(x) = 4\sin(2x)\cos(2x)$.

1

why?

$f(x) = x^{-3}$	
	$f(x) = x^{-3}$

	Function	Antiderivative
<u>′</u>	$x^k (k \neq -1)^{\mathbf{u}}$	X K+1/(K+1)
	x^{-1}	In 1x1
	1	×
	$\sin(x)$	- cos(x)
	$\cos(x)$	sin (x)

Function	Antiderivative
e^x	e ^x
$1/(1+x^2)$	tan'(x)
$\sec^2(x)$	tan (x)
$\sec(x)\tan(x)$	Sec(x)
$1/\sqrt{1-x^2}$	sin (x)

3. Evaluate the integrals.

(a)
$$\int (e^{-x} + \sec^2(x)) dx = -e^{-x} + \tan(x) + C$$

(b)
$$\int \frac{x^2 + x^{1/2} + 1}{x^{1/2}} dx = \int (x^3 + 1 + x^3) dx = \frac{2}{5} \times x^5 + x + 2 \times x^5 + C$$

(c)
$$\int (\frac{1}{4}x^4 + \sec(x/\pi)\tan(x/\pi)) dx = \frac{1}{20} \times \frac{5}{4} + \pi \sec(\frac{x}{\pi}) + C$$

What is this?

4. Solve the initial value problem if $f'(x) = x + e^x$ and f(0) = 4.

$$f(x) = \int (x + e^{x}) dx = \frac{1}{2}x^{2} + e^{x} + c$$

$$f(0) = \frac{1}{2}(0^2) + e^0 + C = 1 + C = 4$$
. So $C = 4$.

$$f(x) = \frac{1}{2}x^2 + e^{x} + 4$$

5. A particle moving along the x-axis has acceleration $a(t) = 10\sin(t)$ measured in cm/s^2 . Assume the particle as initial velocity v(0) = 0 and initial position s(0) = 0, find a function that models its velocity, v(t), and its position s(t).

$$S(t) = \int v(t)dt = \int (-10\cos(t) + 10)dt = -10\sin(t) + 10t + c$$

$$S(t) = -10 \sin(t) + 10$$