# Sample of Coding

My primary area of interest is computational civil Engineering. In past two years I have created numerous Matlab GUIs, out of which I would present some of my favourite GUIs. These are my original works and I don't think you will find these things anywhere on Internet.

# 1) Vertical Stress Distribution by Bosinessq Equation and Westergaard Equation



Screenshot of GUI

## (A) Figure File



Screenshot of figure file

## (B).m File

Main functions are shown as the whole file consist of is 600 lines.

#### Draw Curve pushbutton

```
function pushbutton3_Callback(hObject, eventdata, handles)
q=str2num(get(handles.Q,'String'));
z=str2num(get(handles.Z,'String'));
i=str2num(get(handles.I,'String'));
f=str2num(get(handles.Fi,'String'));
x=i:(f-i)/20:f;
sigy=3*q/2/pi*z.^3*(x.^2+z.^2).^(-2.5);
axes(handles.graph)
xlabel=('Radial Distance in m');
ylabel=('Stress in kN/sqm');
plot(x,3*q/2/pi*z.^3*(x.^2+z.^2).^(-2.5),x,q/pi*z*(2*x.^2+z.^2).^(-1.5));
hleg1=legend('Bousinessq','Westergaard');
guidata(hObject.handles);
```

#### Calculate pushbutton

```
function pushbutton4_Callback(hObject, eventdata, handles)
q=str2num(get(handles.Q,'String'));
z=str2num(get(handles.Z,'String'));
x=str2num(get(handles.R,'String'));
sigb=3*q/2/pi*z.^3*(x.^2+z.^2).^(-2.5);
sigw=q/pi*z*(2*x.^2+z.^2).^(-1.5);
set(handles.TV_B,'String',num2str(sigb));
set(handles.TV_W,'String',num2str(sigw));
```

#### 2) Mohr Coulomb Envelope for Tri-axial Test



Screenshot of GUI

## (A) Figure File



### (B) .m File (only main pushbutton)

```
function pushbutton1 Callback(hObject, eventdata, handles)
sS31=str2num(get(handles.s31, 'String'));
sS32=str2num(get(handles.s32, 'String'));
sS33=str2num(get(handles.s33,'String'));
sSd1=str2num(get(handles.sd1, 'String'));
sSd2=str2num(get(handles.sd2,'String'));
sSd3=str2num(get(handles.sd3,'String'));
Su1=str2num(get(handles.u1, 'String'));
Su2=str2num(get(handles.u2, 'String'));
Su3=str2num(get(handles.u3, 'String'));
sT1=str2num(get(handles.t1,'String'));
sT2=str2num(get(handles.t2,'String'));
sT3=str2num(get(handles.t3,'String'));
sS31=sS31-Su1;
sS32=sS32-Su2;
sS33=sS33-Su3;
sS11=sSd1+sS31;
sS12=sSd2+sS32;
sS13=sSd3+sS33;
axes (handles.graph)
x=sS31:0.1:sS11;
set(gca, 'DataAspectRatio', [1 1 1]);
title('Mohr Coulomb Envelope');
```

```
xlabel('Normal Stress');
ylabel('Shear Stress');
plot(x, sqrt(((sS11-sS31)/2).^2-(x-(sS11+sS31)/2).^2));
hold on
x=sS32:0.1:sS12;
plot(x, sqrt(((sS12-sS32)/2).^2-(x-(sS12+sS32)/2).^2));
hold on
x=sS33:0.1:sS13;
plot(x, sqrt(((sS13-sS33)/2).^2-(x-(sS13+sS33)/2).^2));
hold on
S1=((sS11+sS31)/2+(sS11-sS31)/2*cosd(2*sT1));
T1=(sS11-sS31)/2*sind(2*sT1);
phi = (45-sT1) *2;
c=T1-S1*tand(phi);
x=-5:.1:20;
plot(x,c+x*tand(phi));
plot(x,0);
guidata(hObject.handles);
```

# (3) Design of T section using LSM



Screenshot of GUI

# (4) Lateral Earth Pressure due to backfilling



Thank You