

Общероссийский математический портал

Г. П. Климов, Системы обслуживания с разделением времени. 1, Teopus вероятн. u ее npuмен., 1974, том 19, выпуск 3, 558-576

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 79.139.187.156

5 ноября 2023 г., 23:48:28

19

СИСТЕМЫ ОБСЛУЖИВАНИЯ С РАЗДЕЛЕНИЕМ ВРЕМЕНИ. І

Г. П. КЛИМОВ

§ 1. Описание системы

Система состоит из конечного множества $\Omega = \{\alpha\}$ фаз обслуживания. У каждой фазы обслуживания допускается неограниченная очередь. Одновременно обслуживание может проходить только на одной фазе (в этом и состоит разделение обслуживания во времени). Прерывание обслуживания на фазе не допускается.

Поступившее требование направляется в очередь фазы $\alpha \in \Omega$ с вероятностью $p_{\alpha}, \sum_{\alpha \in \Omega} p_{\alpha} = 1$. Требование, обслуженное на фазе α , направляется

в очередь фазы β с вероятностью $p_{\alpha\beta}$; $\sum_{\beta\in\Omega}p_{\alpha\beta}\leqslant 1$ для всех $\alpha\in\Omega$; а с ве-

роятностью $1-\sum_{\beta\in\Omega}p_{\alpha\beta}$ покидает систему.

Входящий поток требований — пуассоновский с интенсивностью a. Длительность обслуживания на фазе $\alpha \in \Omega$ определяется ф.р. B_{α} (t). Длительности обслуживания требований на фазах предполагаются независимыми между собой и от входящего потока требований.

Нам осталось лишь определить порядок обслуживания требований, т. е. правило, указывающее по состоянию системы, какое требование и на какой фазе следует обслуживать.

В каждый момент времени очередь в системе характеризуется вектором

$$l = \{l_{\alpha}, \ \alpha \in \Omega\},\$$

где l_{α} — длина очереди у фазы α в рассматриваемый момент (без учета обслуживаемого требования, если такое имеется). Через L обозначим множество значений, принимаемых l. Элемент $l = \{l_{\alpha}, \alpha \in \Omega\}$, для которого все $l_{\alpha} = 0$, будем обозначать через 0.

После завершения обслуживания на некоторой фазе выбор очередной фазы обслуживания осуществляется в зависимости от количества $l \in L$, оставшихся в системе требований. Именно, пусть каждому $l \in L$, $l \neq 0$, сопоставляется элемент $u(l) \in \Omega$. От отображения

$$0 \neq l \mapsto u(l)$$

потребуем лишь, что $u(l) = \alpha$ влечет $l_{\alpha} \neq 0$.

Если после завершения обслуживания на некоторой фазе количество требований, оставшихся в системе, характеризуется вектором $l \in L$

и $l \neq 0$, то начинается обслуживание на фазе $\alpha = u$ (l). Требование, заставшее систему свободной, сразу же начинает обслуживаться с той фазы, на которую это требование поступило. Требования, ожидающие начала обслуживания на некоторой фазе, обслуживаются в порядке их поступления на эту фазу. Функцию u = u (l), определяющую порядок обслуживания требований в системе, естественно назвать функцией переключения (фаз обслуживания).

Таким образом, вся система обслуживания задается набором объектов Ω ; $p = \{p_{\alpha}, \alpha \in \Omega\}$; $P = \{p_{\alpha\beta}; \alpha, \beta \in \Omega\}$; a; $\{B_{\alpha}(t), \alpha \in \Omega\}$; u.

§ 2. Функция потерь

Пусть c_{α} — стоимость ожидания (за единицу времени) у фазы $\alpha \in \Omega$. Положим

$$l(t) = \{l_{\alpha}(t), \alpha \in \Omega\},\$$

где $l_{\alpha}(t)$ — длина очереди у фазы α в момент t (без учета требования, обслуживаемого в момент t, если такое имеется). Если $x_l(t)$ — индикатор события $\{l(t) = l\}, \ l \in L$, и

$$X_{l}(T) = \int_{0}^{T} x_{l}(t) dt,$$

то суммарные потери до момента T равны

$$\sum_{l=I} (c, l) X_l(T),$$

где

$$c = \{c_{\alpha}, \alpha \in \Omega\}, l = \{l_{\alpha}, \alpha \in \Omega\}; (c, l) = \sum_{\alpha \in \Omega} c_{\alpha} l_{\alpha}.$$

Средние же потери за единицу времени до момента T равны

$$J_{T} = \mathbf{M} \frac{1}{T} \sum_{l \in L} (c, l) X_{l}(T) = \frac{1}{T} \int_{0}^{T} \sum_{l \in L} (c, l) \mathbf{M} x_{l}(t) dt =$$

$$= \frac{1}{T} \int_{0}^{T} \sum_{l \in L} (c, l) \mathbf{P} \{l(t) = l\} dt = \frac{1}{T} \int_{0}^{T} (c, \mathbf{M} l(t)) dt,$$

где $\mathbf{M}\ l\ (t) = \{\mathbf{M}l_{\alpha}\ (t),\ \alpha \in \Omega\}$. Для стационарного режима средние потери за единицу времени равны

$$J = (c, \ \tilde{l}) \tag{1}$$

где $\bar{l}=\{\bar{l}_{\alpha},\ \alpha\in\Omega\}$, а \bar{l}_{α} есть математическое ожидание длины очереди у фазы α в стационарном режиме. Позже мы укажем условия, при которых каждое из \bar{l}_{α} конечно.

Обозначим через U множество функций переключения u. Ясно, что потери J зависят от выбранного порядка обслуживания требований в системе, т. е. от функции переключения $u \in U$. Подчеркивая это, мы будем писать J = J(u).

В этой работе решается следующая задача:

1) найти условия, при которых существует функция переключения $u^* \subset U$, такая, что

$$J(u^*) = \min_{u \in U} J(u) \tag{2}$$

(всякую функцию $u^* \in U$, удовлетворяющую (2), будем называть *опти-* мальной функцией переключения);

2) указать структуру оптимальной функции переключения.

§ 3. Оптимальный порядок обслуживания

Сделаем следующие предположения.

 $\Pi 1$. Начиная с любой фазы обслуживания каждое требование с положительной вероятностью покидает систему после прохождения конечного числа фаз обслуживания. Формально это означает следующее. Для n-й степени матрицы

$$P = \{p_{ij}\}_{i,j \in \Omega}$$

положим

$$P^n = \{p_{ij}^{(n)}\}_{i,j \in \Omega}.$$

Тогда для каждого $i \in \Omega$ существует целое число $n \geqslant 1$, такое, что

$$1 - \sum_{j \in \Omega} p_{ij} > 0.$$

П2. Первые два момента длительности обслуживания на любой фазе конечны, т. е.

$$eta_{i1} = \int\limits_0^\infty t\,dB_i\left(t
ight) < \infty, \quad eta_{i2} = \int\limits_0^\infty \,\,t^2\,dB_i\left(t
ight) < \infty$$

для всех $i \subseteq \Omega$.

ПЗ. Выполнено условие эргодичности

$$ho = \sum_{i \in \Omega} \lambda_i \beta_{i1} < 1,$$

где набор $\Lambda = \{\lambda_i, \ i \in \Omega\}$ определяется системой уравнений

$$\lambda_j = \sum_{i \in \Omega} p_{ij} \lambda_i + a p_j, \quad j \in \Omega,$$

или в матричном виде

$$(I - P') \Lambda = ap \tag{1}$$

где I — единичная матрица, P' — матрица, транспонированная с P, $p = \{p_i, i \in \Omega\}$. Из П1 следует, что система (1) имеет единственное решение Λ . Это будет показано позже.

Пусть $M \subseteq \Omega$. Обозначим через γ_i (M) среднее суммарное время обслуживания требования (без учета ожидания), начиная с фазы $i \in M$, до первого выхода из множества фаз M. В частности, положим $\gamma_i = \gamma_i$ (Ω).

Ясно, что

$$\gamma_i = \left(1 - \sum_{j \in \Omega} p_{ij}\right) \beta_{i1} + \sum_{j \in \Omega} p_{ij} \left(\beta_{i1} + \gamma_j\right) = \sum_{j \in \Omega} p_{ij} \gamma_j + \beta_{i1}$$

или в матричном виде

$$(I - P) \gamma = \beta, \tag{2}$$

где $\gamma = \{\gamma_i, i \in \Omega\}, \beta = \{\beta_{i1}, i \in \Omega\}.$

Из П1 следует, что система (2) имеет единственное решение γ. Это будет показано позже.

Для любого $M \in \Omega$ числа γ_i (M), $i \in M$ определяются аналогично. Для этого нужно в матрице I-P вычеркнуть столбцы и строки, соответствующие фазам из $\Omega \setminus M$, а в векторах γ и β вычеркнуть компоненты, соответствующие тем же фазам.

Определим последовательно множества $\Omega_1^*, \ \ldots, \ \Omega_s^*, \$ полагая

$$\Omega_{i}^{*} = \left\{ \alpha \in \Omega_{i} : \frac{c_{\alpha}(\Omega_{i})}{\gamma_{\alpha}(\Omega_{i})} = \min_{\beta \in \Omega_{i}} \frac{c_{\beta}(\Omega_{i})}{\gamma_{\beta}(\Omega_{i})}, \quad j \geqslant 1, \right.$$
(3)

где

$$\Omega_1 = \Omega; \quad c_\alpha (\Omega_1) = c_\alpha; \quad \Omega_{i+1} = \Omega_i \setminus (\Omega_1^* + \ldots + \Omega_i^*);$$
 (4)

$$c_{\alpha}(\Omega_{i+1}) = \gamma_{\alpha}(\Omega_{i}) \left[\frac{c_{\alpha}(\Omega_{i})}{\gamma_{\alpha}(\Omega_{i})} - \min_{\beta \in \Omega_{i}} \frac{c_{\beta}(\Omega_{i})}{\gamma_{\alpha}(\Omega_{i})} \right], \quad \alpha \in \Omega_{i+1}.$$
 (5)

Число $s \ge 1$ определяется условием

$$\Omega = \Omega_1^* + \ldots + \Omega_s^*, \ \Omega_s^* \neq \emptyset$$

Для любой выбранной функции переключения (фаз обслуживания) будем говорить, что фаза $\alpha \in \Omega$ имеет преимущество (или более высокий приоритет) по отношению к фазе β , если в любой момент начала обслуживания требования на фазе β число требований на фазе α равно нулю.

Цель работы — доказать следующее утверждение.

Теорема. Для оптимальности функции переключения $u^* \in U$ необходимо и достаточно, чтобы при $1 \leqslant i < j \leqslant s$ каждая фаза из Ω_j^* имела преимущество по отношению к любой фазе из Ω_i^* .

§ 4. Вложенная цепь Маркова

Рассмотрим случайный процесс

$$\eta(t) = \{n(t), i(t), \xi(t)\}, t \geqslant 0,$$

где $n(t) = \{n_i(t), i \in \Omega\}$, $n_i(t)$ — число требований, находящихся в момент t на фазе i; i(t) = 0 при n(t) = 0; если же $n(t) \neq 0$, то i(t) есть номер фазы, на которой происходит обслуживание в момент t; $\xi(t) = 0$ при n(t) = 0; если же $n(t) \neq 0$, то $\xi(t)$ есть остаток времени дообслуживания на фазе i(t), начиная с момента t.

Для определенности будем считать, что n (+0) = 0 (с вероятностью 1). Ясно, что процесс η (t) является марковским. В этом параграфе изучается распределение сл. в. η (t) в специальные моменты времени, а именно в мо-

менты окончания обслуживания на фазах. В § 6 изучается распределение сл. в. $\eta(t)$ в стационарном режиме.

Пусть n_{iN} — число требований, оставшихся на фазе после завершения N актов обслуживания. Под актом обслуживания понимается обслуживание на одной из фаз. Положим

$$n_N = \{n_{iN}, i \in \Omega\}.$$

Через i_N обозначим номер фазы, на которой происходил N-й акт обслуживания. Процесс $\eta_N = \{n_N, i_N\}, N = 1, 2, \ldots$, вкладывается (по терминологии Кендалла) в процесс η (t), $t \geqslant 0$, и образует цепь Маркова со счетным числом состояний.

Для $n=\{n_i,\,i\in\Omega\}$ \in L и набора $z=\{z_i,\,i\in\Omega\}$ чисел z_i положим

$$z^n = \prod_{i \in \Omega} z_i^{n_i}.$$

Будем писать $|z| \leqslant 1$, если $|z_i| \leqslant 1$ для всех $i \in \Omega$. Запись z=1 означает, что все $z_i=1$.

Положим для $|z| \leqslant 1$ и $i \in \Omega$

$$P_{iN}(z) = \mathbf{M}z^{n_N} \delta_{i, i_N}; \quad \overline{P}_N(z) = \mathbf{M}z^{n_N} = \sum_{i \in \Omega} P_{iN}(z),$$

где $\delta_{i,j}$ — символ Кронекера. Далее, положим

$$R_{iN}(z) = \mathbf{M}z^{n_N} \delta_{i, u(n_N)}, \quad i \in \Omega.$$

Отметим, что $\delta_{i, u(n_N)} = 1$, т. е. $u(n_N) = i$, если после N актов обслуживания $n_N \neq 0$ и сразу же начинается обслуживание на фазе i.

Лемма 1. Для
$$z=\{z_j,\ j\in\Omega\}$$
 $u\mid z_j\mid\leqslant 1$

$$z_{i}P_{iN+1}(z) = [R_{iN}(z) + \bar{P}_{N}(0) p_{i}z_{i}] \beta_{i}(a - a(p, z)) Q_{i}(z),$$
 (1)

где

$$Q_i(z) = \sum_{j \in \Omega} p_{ij} z_j + 1 - \sum_{j \in \Omega} p_{ij}, \qquad (2)$$

а β_i (•) есть преобразование Лапласа — Стилтьеса ф. р. B_i (t).

Д о к а з а т е л ь с т в о. Пусть $z = \{z_i, i \in \Omega\}$ — набор чисел z_i , таких, что $0 \leqslant z_i \leqslant 1$. Требования, находящиеся в системе, будем разделять на красные и синие следующим образом. Каждое требование, поступающее на фазу i (после некоторой фазы обслуживания или при поступлении в систему), объявляется красным с вероятностью z_i и синим — с вероятностью $1-z_i$ независимо от цвета остальных требований, находящихся в системе. Таким образом, требование, переходя от фазы к фазе, может менять свой цвет. Теперь функциям, участвующим в формуле (1), можно придать следующий вероятностный смысл.

 P_{iN+1} (z) есть вероятность того, что (N+1)-й акт обслуживания проходил на фазе i и после завершения этого акта в системе не остались синие требования;

 $R_{iN}\left(z\right)$ — вероятность того, что после завершения N актов обслуживания в системе осталось хотя бы одно требование, все оставшиеся требования красного цвета и следующий акт обслуживания будет проходить на фазе i;

 \bar{P}_N (0) — вероятность того, что после завершения N актов обслуживания в системе не останется ни одного требования;

 β_i (a [1 — (p, z]) — вероятность того, что за время обслуживания на фазе i в систему не поступят синие требования;

 $Q_{i}\left(z\right)$ — вероятность того, что требование, обслуженное на фазе i, не станет синим (либо покинет систему, либо останется и будет красным).

Теперь формула (1) получается из следующего утверждения. Для того чтобы (N+1)-й акт обслуживания проходил на фазе i, после завершения этого акта в системе не остались синие требования и само требование, обслуженное за этот акт, было красным (вероятность чего равна $z_i P_{iN+1}(z)$, необходимо и достаточно, чтобы

- 1) после завершения N актов обслуживания в системе не остались синие вызовы и на следующем акте обслуживалось красное требование на фазе i (вероятность чего равна $R_{iN}(z) + \bar{P}_N(0) p_i z_i$);
- 2) за (N+1)-й акт обслуживания на фазе i в систему не поступали синие вызовы (вероятность чего равна β_i (a-a(p,z));
- 3) требование, обслуженное за (N+1)-й акт на фазе i, либо покинет систему, либо останется в системе и будет по-прежнему красным (вероятность чего равна $Q_i(z)$).

Лемма 2. Если $z=\{z_i,\,i\in\Omega\}$ и $\mid z_i\mid\leqslant 1,$ то при $N o\infty$ существуют пределы

$$\lim P_{iN}(z) = P_i(z), \lim \overline{P}_N(z) = \overline{P}(z) = \sum_{i \in \Omega} P_i(z),$$
$$\lim R_{iN}(z) = R_i(z).$$

При этом

$$z_i P_i(z) = [R_i(z) + \bar{P}(0) p_i z_i] \beta_i(a - a(p, z)) Q_i(z);$$
 (3)

$$\lim \mathbf{P}\{i_N = i\} = P_i(1) = \frac{\lambda_i}{\lambda}; \ \overline{P}(0) = \frac{a}{\lambda} (1 - \rho);$$

$$R_i(1) = \frac{\lambda_i}{\lambda} - \frac{ap_i}{\lambda} (1 - \rho); \ \lambda = \sum_{i \in \Omega} \lambda_i.$$
(4)

Доказательство. Существование пределов следует из того, что однородная цень Маркова η_N , $N=1,2,\ldots$, неприводима и непериодична. Равенство (3) следует тогда из равенства (1). Остается убедиться лишь в справедливости формул (4). Для этого мы воспользуемся условием эргодичности системы (см. предположение ПЗ в § 3), проверив выполнение достаточного условия существования стационарного распределения для цепи Маркова (см. [1] или [2], § 45). Сформулируем последнее условие.

Через E обозначим множество состояний цепи Маркова η_N . Для каждой функции $\phi = \phi(x)$ на E определим функцию $A\phi = (A\phi)(x)$ соотношением

$$(A \varphi) (x) = M \{ \varphi (\eta_{N+1}) \mid \eta_N = x \}, x \in E.$$

Для того чтобы однородная неприводимая и непериодическая цепь Маркова η_N обладала стационарным распределением, достаточно существования числа $\epsilon>0$, неотрицательной функции $\phi(x)$ на E и конечного множества E_0 состояний из E, таких, что

В нашем случае $E=L\times\Omega$. Для $x=(n,i)\in E$ через $\phi(x)$ обозначим среднее время, необходимое для обслуживания всех требований, количество которых характеризуется набором $n=\{n_j,j\in\Omega\}$, если прервать поступление требований в систему. Ясно, что

$$\varphi\left(x\right)=\sum_{j\in\Omega}n_{j}\gamma_{j}.$$

Если $x=(n,i) \in E$ и $n \neq 0$, то $(A \varphi)(x)$ есть сумма следующих слагаемых:

- 1) среднего суммарного времени обслуживания всех требований, количество которых характеризуется набором $n = \{n_j, j \in \Omega\}$, без учета среднего времени обслуживания одного из требований на фазе $\alpha = u$ (n);
- 2) среднего суммарного времени обслуживания всех требований, поступивших в систему за один акт обслуживания на фазе а.

Таким образом,

$$\begin{split} \left(A\varphi\right)\left(x\right) &= \sum_{\boldsymbol{j} \in \Omega} n_{\boldsymbol{j}} \gamma_{\boldsymbol{j}} - \beta_{\alpha 1} + \sum_{k \in \Omega} \left(a p_{k} \beta_{\boldsymbol{j} 1}\right) \gamma_{k} = \\ &= \varphi\left(x\right) - \beta_{\alpha 1} \left(1 - \sum_{k \in \Omega} a p_{k} \gamma_{k}\right) = \varphi\left(x\right) - \beta_{\alpha 1} (1 - \rho), \end{split}$$

так как согласно (1), (2) § 3 имеем

$$\sum_{k \in \Omega} a p_k \gamma_k = a(p, \gamma) = a(p, (I - P)^{-1}\beta) = a((I - P')^{-1}p, \beta) = (\Lambda, \beta) = \rho.$$
 (6)

Пусть E_0 состоит из элементов $(n,\,i) \in E$, для которых n=0. Если $x=(0,\,i) \in E_0$, то

$$(A\varphi) = \sum_{j \in \Omega} p_j \sum_{k \in \Omega} (ap_k \beta_{j1}) \gamma_k = \rho \sum_{j \in \Omega} p_j \beta_{j1} < \infty.$$

Остается положить

$$\varepsilon = (1 - \rho) \min_{j \in \Omega} \beta_{j1} > 0,$$

и тогда для выбранной функции $\varphi = \varphi(x)$ и множества E_0 выполняются неравенства (5). Следовательно, цень Маркова $\eta_N, N \geqslant 1$, имеет стационарное распределение. В частности, $\overline{P}(1) = 1$.

Найдем теперь P_i (1), R_i (1), \bar{P} (0). Из (3) следует для $z_i \neq 0$:

$$\bar{P}(z) = \sum_{i \in \Omega} P_i(z) = \sum_{i \in \Omega} \left[\frac{R_i(z)}{z_i} + \bar{P}(0) p_i \right] b_i(z), \tag{7}$$

где $b_i(z) = \beta_i(a - a(p, z))Q_i(z)$.

Положим

$$x_{j} = \frac{\partial}{\partial z_{j}} \overline{P}(z)|_{z=1}, x_{ij} = \frac{\partial}{\partial z_{j}} R_{i}(z)|_{z=1}.$$
 (8)

Из определения функций $\overline{P}(z)$ и $R_i(z)$ следует, что

$$x_{j} = \sum_{i \in \Omega} x_{ij}. \tag{9}$$

Теперь из (7), используя равенства

$$\frac{\partial}{\partial z_j} b_i(z) \big|_{z=1} = a \rho_j \beta_{i1} + p_{ij} = d_{ij}, \quad \frac{\partial}{\partial z_j} \frac{R_i(z)}{z_i} \Big|_{z=1} = x_{ij} - R_i(1) \delta_{ij},$$

получаем:

$$R_{j}(1) = \sum_{i \in \Omega} [R_{i}(1) + \bar{P}(0) p_{i}] d_{ij}.$$
 (10)

Так как согласно (3)

$$P_{i}(1) = R_{i}(1) + \overline{P}(0) p_{i},$$
 (11)

то (10) записывается в виде

$$P_{j}(1) - \sum_{i \in \Omega} d_{ij} P_{i}(1) = \overline{P}(0) p_{j}, \quad j \in \Omega.$$

$$(12)$$

Из равенства же $\overline{P}(z)=\sum_{i\in\Omega}P_i(z)$ с учетом $\overline{P}(1)=1$ получаем:

$$\sum_{i=0}^{\infty} P_i(1) = 1. \tag{13}$$

Проверим, что набор

$$P_i(1) = \frac{\lambda_i}{\lambda}, \quad \bar{P}(0) = \frac{a}{\lambda}(1-\rho)$$

является решением системы (12), (13). В самом деле, уравнение (13) удовлетворяется, а левая часть (12) равна

$$rac{\lambda_j}{\lambda} - rac{ap_j}{\lambda} \sum_{i \in \Omega} \lambda_i eta_{i1} - rac{1}{\lambda} \sum_{i \in \Omega} p_{ij} \lambda_i = rac{1}{\lambda} \left(\lambda_j - \sum_{i \in \Omega} p_{ij} \lambda_i
ight) - rac{ap_j}{\lambda}
ho = rac{ap_j}{\lambda} - rac{ap_j}{\lambda}
ho,$$

что равно правой части (12). Здесь мы воспользовались равенствами из предположения ПЗ § 3.

Для корректности приведенных рассуждений остается лишь убедиться в том, что каждая из матриц I-P и I-D обратима; здесь $D=\{d_{ij}\}_{i,j\in\Omega}$. Эту цель преследует

Лемма 3. Из предположения $\Pi 1 \S 3$ следует, что матрица I - P обратима. Кроме того,

$$|I - D| = (1 - \rho) |I - P|.$$
 (14)

Доказательство. Воспользуемся теоремой Адамара, указывающей достаточное условие обратимости матрицы (см., например, [3]).

Так как

$$\sum_{j\in\Omega}\,p_{ij}^{(n+1)}\leqslant\sum_{j\in\Omega}\,p_{ij}^{(n)},\quad i\in\Omega,$$

то, начиная с некоторого n_0 ,

$$1 - \sum_{i \in \Omega} p_{ij}^{(n)} > 0$$

для всех $i \in \Omega$ и $n \geqslant n_0$. Но тогда матрица $wI - P^n$ удовлетворяет условию теоремы Адамара для всех чисел w, таких, что $|w| \geqslant 1$. Следовательно, все собственные значения матрицы P^n , а значит, и P, по абсолютной величине меньше 1. В частности, $|I - P| \neq 0$.

Докажем теперь формулу (14). Матрица D может быть записана в виде

$$D = P + a\beta p',$$

где β — вектор-столбец из элементов $\{\beta_{i1}, i \in \Omega\}$, p' — вектор-строка из элементов $\{p_i, i \in \Omega\}$. Но тогда

$$I - D = [I - a\beta p' (I - P)^{-1}] (I - P) = (I - \beta \Lambda') (I - P),$$

где Λ — определяется согласно (1) § 3. Для получения (14) остается воспользоваться равенством

$$|I - \beta \Lambda'| = 1 - (\beta, \Lambda) = 1 - \rho.$$

§ 5. Случайные процессы η_N^+ и η_N^-

Рассмотрим случайный процесс $\eta(t) = \{n(t), i(t), \xi(t)\}$ в последовательные моменты $0 < \tau_1 < \tau_2 < \ldots$ (не совпадающие с вероятностью 1), такие, что

$$\xi(\tau_N - 0) = 0, \ n(\tau_N - 0) \neq 0; \ N = 1, 2, \ldots$$

Положим

$$i_N^{\pm} = i \ (\tau_N \pm 0), \ n_N^{\pm} = n \ (\tau_N \pm 0).$$

Тогда каждый из процессов

$$\eta_N^+ = \{ \boldsymbol{n}_{N}^+, \, \bar{\boldsymbol{i}_N} \}, \, \bar{\eta_N} = \{ \bar{n}_N, \, \bar{i}_N \}, \, N = 1, 2, \ldots, \}$$

образует цець Маркова. Пусть

$$P_{iN}^{\pm}\left(z\right)=\mathbf{M}z^{n\frac{+}{N}}\delta_{i,\,i_{N}^{-}},\quad R_{iN}^{+}\left(z\right)=\mathbf{M}z^{n_{N}^{+}}\delta_{i,\,i_{N}^{+}},$$

где $z = \{z_i, i \in \Omega\}$, $|z_i| \leqslant 1$, и предположим, что B_i (+0) = 0 для всех $i \in \Omega$. Тогда с вероятностью 1 момент τ_N есть момент завершения N-го акта обслуживания, следовательно,

$$\bar{i_N} = i_N, \ n_N^+ = n_N, \ i_N^+ = u \ (n_N^+) = u \ (n_N)$$

при $n \neq 0$ с вероятностью 1.

Лемма 4. Пусть B_i (+0) = 0 для всех $i \in \Omega$. Тогда

$$P_{iN}^{+}(z) = P_{iN}(z), R_{iN}^{+}(z) = R_{iN}(z), z_{i} P_{iN}^{+}(z) = P_{iN}^{-}(z)Q_{i}(z)$$
 (1)

u, следовательно, при $N o \infty$ существуют пределы

$$\lim P_{iN}^{\pm}(z) = P_i^{\pm}(z), \quad \lim R_{iN}^{+}(z) = R_i^{+}(z),$$

такие, что

$$P_{i}^{+}(z) = P_{i}(z), \quad R_{i}^{+}(z) = R_{i}(z), \quad z_{i}P_{i}^{+}(z) = P_{i}^{-}(z)Q_{i}(z).$$
 (2)

Нам нужно убедиться лишь в формуле (1). В терминах красных и синих требований левая часть (1) есть вероятность следующего события: N-й акт обслуживания проходил на фазе i; после завершения этого акта в системе не остались синие требования, и само требование, обслуженное за этот акт, было красным. Правая же часть (1) есть вероятность события: N-й акт обслуживания проходил на фазе i; до завершения этого акта в системе находились только красные требования; требование, обслуженное за этот акт, либо покинуло систему, либо по-прежнему осталось красным. Но указанные события совпадают.

\S 6. Связь процессов n_N^+ и n (t) в стационарном режиме

Лемма 5. Если B_i (+0)=0 для всех $i\in\Omega$, то для $z=\{z_i,\,i\in\Omega\}$, $|z_i|<1$, при $t\to\infty$ существуют пределы

$$\lim \mathbf{M} z^{n(t)} = P^*(z) = \frac{\lambda}{a} \frac{1}{1 - (p, z)} \sum_{i = 0} P_i(z) \left[1 - \frac{z_i}{Q_i(z)} \right]; \tag{1}$$

$$\lim \mathbf{P}\left\{i\left(t\right)=i\right\}=\lambda_{i}\beta_{i1},\ i\in\Omega;$$
(2)

$$\lim \mathbf{M} [e^{-s\xi(t)} | i(t) = i] = \frac{1}{s\beta_{i1}} [1 - \beta_i(s)], \quad s > 0, \quad i \in \Omega.$$
 (3)

Отметим еще, что $P^*(0) = \lim_{t \to \infty} P(n(t) = 0) = 1 - \rho$.

Доказательство разобъем на несколько этапов.

- 1°. Покажем сначала, что указанные пределы существуют. Процесс η (t) является регенерирующим. Точками регенерации служат моменты начала периодов занятости системы. В силу предельной теоремы для регенерирующих процессов (см. [4]) указанные пределы существуют, если
- 1) распределение длины одного цикла регенерации абсолютно непрерывно;
 - 2) средняя длина одного цикла регенерации конечна.

Условие 1) выполнено, так как длина одного цикла регенерации есть сумма двух независимых случайных величин: периода отсутствия требований в системе и периода занятости системы; причем распределение первой сл. в. имеет плотность.

Условие 2) выполнено, если среднее значение периода занятости конечно. Убедимся в этом.

Так как период занятости системы не зависит от порядка обслуживания требований, то будем считать, что требования обслуживаются в порядке

их поступления в систему. Если § есть время обслуживания одного требования до выхода его из системы, то средняя длина периода занятости равна (см., например, [2], § 13)

$$\pi_1 = \frac{M\xi}{1 - aM\xi},$$

если $a \ \mathrm{M}\xi < 1$. Но $\rho = a \ \mathrm{M}\xi$. Это следует из равенства

$$\mathbf{M}\boldsymbol{\xi} = \sum_{i \in \Omega} p_i \boldsymbol{\gamma}_i$$

и формулы (6) § 4.

2°. Положим

$$P_i^*(z, s, t) = \mathbf{M}(z^{n(t)}e^{-s\xi(t)}\delta_{i, i(t)}), \quad i \in \Omega.$$

Из предыдущего пункта следует существование предела

$$\lim_{t \to \infty} P_i^*(z, s, t) = P_i^*(z, s),$$

независимого от распределения сл. в. $\eta(t) = \{n(t), i(t), \xi(t)\}$ в начальный момент времени t = 0.

Покажем, что

$$(-s + a - a (p, z)) P_i^*(z, s) = \lambda [R_i(z) + \overline{P}(0)p_iz_i]\beta_i(s) - \lambda P_i^-(z).$$
(4)

Будем рассматривать процесс η (t) в стационарном режиме; другими словами будем считать, что распределение сл. в. η (0) совпадает с предельным распределением сл. в. η (t) при $t \to \infty$. В частности, для любого $t \geqslant 0$

$$P_i^*(z, s, t) = P_i^*(z, s).$$
 (5)

Рассматривая возможные изменения процесса η (t) в промежутке от t до t+h, имеем при $h\downarrow 0$

$$P_{i}^{*}(z, s, t + h) = \mathbf{M} \left\{ z^{n(t+h)} e^{-s\xi(t+h)} \delta_{i, i(t+h)} \right\} =$$

$$= \mathbf{P} \left\{ \xi(t) = 0 \right\} ah p_{i} z_{i} \beta_{i}(s) +$$

$$+ \mathbf{P} \left\{ 0 < \xi(t) \leqslant h \right\} \mathbf{M} \left\{ z^{n(t+h)} e^{-s\xi(t+h)} \delta_{i, i(t+h)} \middle| 0 < \xi(t) \leqslant h \right\} +$$

$$+ \mathbf{P} \left\{ \xi(t) > h \right\} \mathbf{M} \left\{ z^{n(t+h)} e^{-s\xi(t+h)} \delta_{i, i(t+h)} \middle| \xi(t) > h \right\} + o(h). \tag{6}$$

Так как при $h \downarrow 0$

$$\begin{array}{c|c} \mathbf{M} & \{z^{n(t+h)}\delta_{i,\,i(t+h)} \mid 0 < \xi \ (t) \leqslant h\} \rightarrow R_i \ (z), \\ \mathbf{M} & \{e^{-s\xi(t+h)} \mid 0 < \xi \ (t) \leqslant h, \ i \ (t+h) = i\} \rightarrow \beta_i \ (s), \end{array}$$

то второе слагаемое равно

$$\mathbf{P} \{0 < \xi(t) \leqslant h\} R_i(z)\beta_i(s) + o(h).$$

Преобразуем третье слагаемое. При ξ (t) > h

$$i(t + h) = i(t), \quad \xi(t + h) = \xi(t) - h.$$

Учитывая поступление требований в промежутке от t до t+h, запишем третье слагаемое в виде

$$\mathbf{P}\left\{\xi\left(t\right)>h\right\}\left(1-ah+ah\sum_{j\in\Omega}p_{j}z_{j}\right)\mathbf{M}\left\{z^{n\left(t\right)}e^{-s\left[\xi\left(t\right)-h\right]}\boldsymbol{\delta}_{i,\;i\left(t\right)}\left|\;\xi\left(t\right)>h\right\}+o\left(h\right).$$

Ho

$$P_{i}^{*}(z, s, t) = P \{ \xi(t) > h \} M \{ z^{n(t)} e^{-s\xi(t)} \delta_{i,i(t)} | \xi(t) > h \} + P \{ 0 < \xi(t) \leqslant h \} M \{ z^{n(t)} e^{-s\xi(t)} \delta_{i,i(t)} | 0 < \xi(t) \leqslant h \},$$

и так как при $h \downarrow 0$

$$\mathbf{M} \left\{ z^{n(t)} \ \delta_{i,i(t)} \mid 0 < \xi(t) \leqslant h \right\} \rightarrow P_i^-(z),$$

то окончательно третье слагаемое в (6) зацишем в виде

$$[1 - ah + ah (p, z) + sh] [P_i^* (z, s, t) - P \{0 < \xi(t) \le h\} P_i^-(z)] + o(h)$$

Теперь формула (6) с учетом (5) принимает вид

$$[-s + a - a(p, z)] P_i^*(z, s) = \mathbf{P} \{ \xi(t) = 0 \} a p_i z_i \beta_i(s) + \frac{1}{h} \mathbf{P} \{ 0 < \xi(t) \leqslant h \} [R_i(z) \beta_i(s) - P_i^-(z)] + o(h)/h.$$
 (7)

Полагая

$$\lim_{h\downarrow 0} \frac{1}{h} \mathbf{P} \{0 < \xi(t) \leqslant h\} = \lambda_0$$

и принимая во внимание, что $\mathbf{P}\left\{\xi\left(t\right)=0\right\}=P^{*}\left(0\right),$ получим из (7):

$$[-s+a-a(p,z)]P_{i}^{*}(z,s) = \lambda_{0} \left[R_{i}(z)+P^{*}(0)\frac{a}{\lambda_{0}}p_{i}z_{i}\right]\beta_{i}(s)-\lambda_{0}P_{i}^{-}(z). \quad (8)$$

При s = a - a (p, z) получаем (см. еще лемму 4):

$$z_{i}P_{i}(z) = \left[R_{i}(z) + P^{*}(0) \frac{a}{\lambda_{0}} P_{i}z_{i}\right] \beta_{i}(a - a(p, z)) Q_{i}(z).$$

Теперь из леммы 2 имеем

$$\bar{P}(0) = P^*(0) \frac{a}{\lambda_0} = \frac{a}{\lambda} (1 - \rho).$$
 (9)

Из (8) и формул лемм 2 и 4 при z=1 получаем:

$$sP_i^*(1, s) = \lambda_0 P_i(1) [1 - \beta_i(s)]$$

или

$$P_i^*(1, s) = \frac{\lambda_0}{\lambda} \cdot \frac{\lambda_i}{s} [1 - \beta_i(s)],$$
 (10)

откуда находим:

$$1 - P^*(0) = \sum_{i \in \Omega} P_i^*(1, 0) = \frac{\lambda_0}{\lambda} \sum_{i \in \Omega} \lambda_i \beta_{i1} = \frac{\lambda_0}{\lambda} \rho,$$

что вместе с (9) дает $\lambda_0 = \lambda$. Формула (8) теперь совпадает с (4).

3°. Так как $\lambda_0=\lambda$, то формула (9) дает P^* (0) = 1 — ρ . Так как, далее, $\mathbf{P}\left\{i\left(t\right)=i\right\}=P_i^*$ (1, 0), то из (10) следует (2). В силу же равенства

$$P_i^* (1, s) = \mathbf{P} \{i (t) = i\} \mathbf{M} [e^{-s\xi(t)} | i (t) = i]$$

из (10) получаем (3).

Нам осталось получить формулу (1). Положим в (4) s=0 и просуммируем левую и правую части по всем $i \in \Omega$. Получим

$$a\left[1-(p,z)\right]\sum_{i\in\Omega}P_{i}^{*}\left(z,\,0\right)=\lambda\left\{ \sum_{i\in\Omega}R_{i}\left(z\right)+\bar{P}\left(0\right)\left(p,\,z\right)-\sum_{i\in\Omega}P_{i}^{-}\left(z\right)\right\} .$$

Теперь формула (1) следует из того, что

$$\begin{split} &\sum_{i\in\Omega}P_{i}^{*}\left(z,\,0\right)=P^{*}\left(z\right)-P^{*}\left(0\right);\quad \bar{P}\left(0\right)=\frac{a}{\lambda}\,P^{*}\left(0\right),\\ &\sum_{i\in\Omega}R_{i}\left(z\right)=\bar{P}\left(z\right)-\bar{P}\left(0\right)=\sum_{i\in\Omega}P_{i}(z)-\bar{P}\left(0\right), \end{split}$$

и формулы (2) § 5.

Замечание. Положим

$$p_{ik}^* = \lim_{t \to \infty} \mathbf{P} \left\{ n_i \left(t \right) = k \right\}, \ p_{ik}^+ = \lim_{N \to \infty} \mathbf{P} \left\{ n_{iN} = k \mid i_N = i \right\}.$$

Если $p_{ij}=0$ для всех i и j из Ω , то $p_{ik}^*=p_{ik}^*$ для всех $i\in\Omega$ и всех целых чисел $k\geqslant 0$. В самом деле, в этом случае для набора $z=\{z_j,\,j\in\Omega\}$, такого, что $z_j=1$ для всех $j\in\Omega$, кроме $j=i\in\Omega$, и $|z_i|\leqslant 1$ из (1) следует:

$$P^*(z) = P_i(z)/P_i(1).$$

§ 7. Соотношения для первых моментов вложенной цепи Маркова

Для вложений цепи Маркова $\eta_N=\{n_N,\ i_N\},\ N\geqslant 1,$ где $n_N=\{n_{jN},\ j\in\Omega\},$ положим

$$x_j = \lim_{N \to \infty} \mathbf{M} n_{jN}, \quad x_{ij} = \lim_{N \to \infty} \mathbf{M} n_{jN} \delta_{i, u(n_N)}.$$

Отметим, что x_j и x_{ij} могут быть определены согласно (8), (9) § 4 и что x_{ij}/R_i (1) есть среднее число требований на фазе j в момент переключения обслуживания на фазу i (в стационарном режиме).

Лемма 6. Для любых i u j us Ω

$$x_{ij} + x_{ji} = \sum_{\alpha \in \Omega} (x_{\alpha i} d_{\alpha j} + x_{\alpha j} d_{\alpha i}) + c_{ij}, \tag{1}$$

г∂е

$$d_{ij} = ap_j eta_{i1} + p_{ij}, \ \lambda c_{ij} = \sum_{lpha \in \Omega} \lambda_lpha \left(a^2 p_i p_j eta_{lpha 2} + a p_i eta_{lpha 1} p_{lpha j} + a p_j eta_{lpha 1} p_{lpha i}
ight) + 2 \lambda_i \delta_{ij} - \lambda_i \, d_{ij} - \lambda_j \, d_{ji}.$$

Доказательство следует из (7) § 4 и формул

$$\frac{\partial}{\partial z_{i}} b_{\alpha}(z)|_{z=1} = ap_{i}\beta_{\alpha 1} + p_{\alpha i} = d_{\alpha i},$$

$$\frac{\partial^{2}}{\partial z_{i}\partial z_{j}} b_{\alpha}(z)|_{z=1} = a^{2}p_{i}p_{j}\beta_{\alpha 2} + ap_{i}\beta_{\alpha 1}p_{\alpha j} + ap_{j}\beta_{\alpha 1}p_{\alpha i},$$

$$\frac{\partial}{\partial z_{i}} \frac{R_{\alpha}(z)}{z_{\alpha}}\Big|_{z=1} = x_{\alpha i} - R_{\alpha}(1) \delta_{\alpha i},$$

$$\frac{\partial^{2}}{\partial z_{i}\partial z_{j}} \frac{R_{\alpha}(z)}{z_{\alpha}}\Big|_{z=1} = \frac{\partial^{2}}{\partial z_{i}\partial z_{j}} R_{\alpha}(z)|_{z=1} - x_{\alpha i}\delta_{\alpha j} - x_{\alpha j}\delta_{\alpha i} + 2R_{\alpha}(1) \delta_{\alpha i}\delta_{\alpha j},$$

$$\frac{\partial^{2}}{\partial z_{i}\partial z_{j}} \bar{P}(z)|_{z=1} = \sum_{\alpha \in \Omega} \frac{\partial^{2}}{\partial z_{i}\partial z_{j}} R_{\alpha}(z)|_{z=1}.$$

§ 8. Вид функции потерь

Так как

$$l_{i}(t) = n_{i}(t) - \delta_{i,i(t)}, i \in \Omega,$$

то

$$Ml_i(t) = Mn_i(t) - P\{i(t) = i\}.$$

Полагая

$$ar{n}_i = \lim_{t \to \infty} \mathbf{M} n_i(t), \ \ ar{l}_i = \lim_{t \to \infty} \mathbf{M} l_i(t),$$

с учетом (2) § 6 получим:

$$\overline{l}_i = \overline{n}_i - \lambda_i \beta_{i1};$$

поэтому функция потерь (1) § 2 принимает вид

$$J = (c, \bar{l}) = (c, \bar{n}) - \sum_{i \in \Omega} c_i \lambda_i \beta_{i1}. \tag{1}$$

Здесь $ar{n}=\{ar{n}_i,\ i\in\Omega\}$. Выразим $ar{n}$ и затем J через $\{x_{ij}\}$.

Предполагая, что B_i (+0) = 0 для всех $i \in \Omega$, воспользуемся для этой цели формулой (3) § 4 и формулой (1) § 6, переписав последнюю в виде

$$[1 - (p, z)] P^*(z) = \frac{\lambda}{a} \sum_{i \in \Omega} \left[P_i(z) - P_i(z) \frac{z_i}{Q_i(z)} \right] = \frac{\lambda}{a} \left\{ \overline{P}(z) - \sum_{\alpha \in \Omega} |R_{\alpha}(z) + \overline{P}(0) p_{\alpha} z_{\alpha}| \beta_{\alpha} (a - a(p, z)) \right\}.$$

$$(2)$$

Так как $\frac{\partial}{\partial z_i} P^*(z)|_{z=1} = \bar{n}_i$, то вторая производная по z_i левой части (2) в точке z=1 равна $-2p_i\bar{n}_i$. Эта же производная правой части (2) с учетом формул, помещенных в конце предыдущего параграфа, равна

$$\begin{split} &-\frac{\lambda}{a}\sum_{\alpha\in\Omega}\left\{\left[R_{\alpha}\left(1\right)+\bar{P}\left(0\right)p_{\alpha}\right]a^{2}p_{i}^{2}\beta_{\alpha2}+2\left[\frac{\partial}{\partial z_{i}}R_{\alpha}\left(z\right)\Big|_{z=1}+\bar{P}\left(0\right)p_{\alpha}\delta_{\alpha i}\right]ap_{i}\beta_{\alpha1}\right\}=\\ &=-\frac{\lambda}{a}\sum_{\alpha\in\Omega}\left\{\frac{\lambda_{\alpha}}{\lambda}a^{2}p_{i}^{2}\beta_{\alpha2}+2\left[x_{\alpha i}+\frac{a}{\lambda}\left(1-\rho\right)p_{\alpha}\delta_{\alpha i}\right]ap_{i}\beta_{\alpha1}\right\}=\\ &=-\left\{ap_{i}^{2}\sum_{\alpha\in\Omega}\lambda_{\alpha}\beta_{\alpha2}+2\lambda p_{i}\sum_{\alpha\in\Omega}x_{\alpha i}\beta_{\alpha1}+2\left(1-\rho\right)ap_{i}^{2}\beta_{i1}\right\},\end{split}$$

откуда находим:

$$\bar{n}_i = \lambda \sum_{\alpha \in \Omega} x_{\alpha i} \beta_{\alpha 1} + \frac{a p_i}{2} \sum_{\alpha \in \Omega} \lambda_{\alpha} \beta_{\alpha 2} + (1 - \rho) a p_i \beta_{i1}.$$

Таким образом, получена

Лемма 7.

$$J = \lambda \sum_{i, \alpha \in \Omega} c_i x_{\alpha i} \beta_{\alpha 1} + \text{const},$$

ede const не зависит от выбора функции переключения u=u (n); или в векторно-матричной записи

$$J = \lambda (c, X'\beta) + const, \tag{3}$$

где

$$c = \{c_i, i \in \Omega\}, \ \beta = \{\beta_{i1}, i \in \Omega\}, \ X = \{x_{ij}; \ i, j \in \Omega\}.$$

§ 9. Экстремальная задача

Согласно $\S 2$ наша цель — в классе $U = \{u\}$ всех функций переключения (фаз обслуживания) найти функцию переключения u^* , для которой

$$J\left(u^{\ast }\right) =\min_{u\in U}J\left(u\right) .$$

Функционал J=J(u) записывается в виде (3) § 8, в котором числа x_{ij} , составляющие матрицу X, естественно зависят от выбранной функции переключения $u \in U$. Кроме того, эти числа удовлетворяют системе уравнений (1) § 7. В связи с этим рассмотрим следующую задачу линейного программирования: найти минимум линейного функционала (3) § 8 по $X=\{x_{ij}\}$, где все x_{ij} неотрицательны и удовлетворяют системе линейных уравнений (1) § 7. Если этот минимум равен J^* и существует функция переключения $u^* \in U$, для которой $J(u^*)=J^*$, то, конечно, u^* есть оптимальная функция переключения (на которой достигается минимум функционала J(u) по всем $u \in U$). Мы скоро убедимся, что это на самом деле имеет место, и найдем вид функции переключения. Очевидно, что вместо функционала (3) § 8 мы можем рассматривать функционал $J=(c,X'\beta)$.

Итак, рассмотрим следующую задачу линейного программирования: найти минимум функционала

$$J = (c, X'\beta), \tag{1}$$

где элементы матрицы $X=\{x_{ij},\,i,\,j \in \Omega\}$ удовлетворяют неравенствам

$$x_{ij} \geqslant 0$$
 для всех $i, j \in \Omega$ (2)

и системе уравнений

$$x_{ij} + x_{ji} - \sum_{\alpha \in \Omega} (x_{\alpha i} d_{\alpha j} + x_{\alpha j} d_{\alpha i}) = c_{ij}.$$
 (3)

Для произвольного порядка π элементов из Ω будем писать $i < \pi j$ или проще i < j (когда ясно, о каком порядке π идет речь), если элемент $i \in \Omega$ предшествует элементу $j \in \Omega$ согласно порядку π .

Мы будем еще использовать следующее предположение: ∂n любого порядка π элементов из Ω существует набор чисел $\{x_{ij}\}$, удовлетворяющих (2), (3), ∂n которого $x_{ji}=0$ при i < j.

Это предположение не является ограничением, так как в существовании такого набора $\{x_{ij}\}$ можно убедиться непосредственно, вспомнив вид коэффициентов c_{ij} , а еще проще это вытекает из следующих рассуждений. Выберем функцию переключения, соответствующую дисциплине обслуживания с относительным приоритетом (фаз обслуживания), предоставляющей преимущество фазе i по отношению к фазе j, если i < j. Для такой функции переключения набор $\{x_{ij}\}$ удовлетворяет (2), (3) и условию $x_{ii} = 0$ при i < j.

§ 10. Оценка снизу функционала потерь

Пусть r — число элементов из Ω . Выберем некоторую нумерацию этих элементов числами $1, 2, \ldots, r$. Мы можем считать, что $\Omega = \{1, 2, \ldots, r\}$.

Запишем систему уравнений (3) § 9 в матричном виде

$$X + X' = X'D + D'X + C,$$

где $D = \{d_{ij}\}, \ C = \{c_{ij}\}$ или в виде

$$(I - D') X + X' (I - D) = C.$$

Используя запись (см. конец § 4) $D=P+a\beta p'$ или $I-D=I-P-a\beta p'$, получим

$$(I - P')X + X' (I - P) = ap\beta'X + aX'\beta p' + C.$$
 (1)

Для $k=\overline{1,r}$ через R_k обозначим матрицу, образованную из P заменой последних r-k столбцов нулевыми столбцами. В конце § 4 мы видели, что любое собственное значение матрицы P по модулю меньше единицы. Следовательно, то же самое верно и для матрицы R_k . В частности, допустимо разложение

$$(I-R_k)^{-1} = \sum_{n\geqslant 0} R_k^n.$$

Положим

$$w_k = (I - R_k)^{-1} \beta = \sum_{n \ge 0} R_k^n \beta;$$
 (2)

отсюда видно, что $w_k \geqslant 0$ (запись $w \geqslant 0$ для вектора w означает, что компоненты этого вектора неотрицательны). Представим w_k в виде

$$w_{k} = u_{k} + v_{k}; \quad u_{k} \geqslant 0, \ v_{k} \geqslant 0;$$

$$w_{k} = (w_{k1}, \dots, w_{kr})'; \quad u_{k} = (w_{k1}, \dots, w_{kk}, 0, \dots, 0)'.$$
(3)

Так как $R_h u_h = P u_h$, $R_h v_h = 0$, то из (2) следует:

$$\beta = (I - P) u_h + v_h. \tag{4}$$

Умножим каждую из частей равенства (1) слева на вектор-строку u_k' и справа на вектор-столбец u_k . Так как

$$\begin{array}{ll} u_k' \, (I-P') X u_k \, = [(I-P) u_k']' X u_k \, = (\beta'-v_k') X u_k \, = \\ & = (X'\beta, \, u_k) - (v_k, \, X u_k) \, = u_k' X' \, (I-P) u_k; \\ a u_k' p \beta' X u_k \, = a \, (p, \, u_k) \, (X'\beta, \, u_k) \, = a u_k' X' \beta p' u_k; \\ u_k' C u_k \, = (C u_k, \, u_k), \end{array}$$

TO

$$[1 - a(p, u_k)](X'\beta, u_k) = (v_k, Xu_k) + \frac{1}{2}(Cu_k, u_k).$$
 (5)

Отметим, что 1 — a (p, u_h) > 0, так как из (4) следует:

$$\begin{aligned} u_k &= (I-P)^{-1} \left(\beta - v_k\right) = \sum_{n \geqslant 0} P^n \left(\beta - v_k\right) \leqslant \sum_{n \geqslant 0} P^n \beta = (I-P)^{-1} \beta = \\ &= \gamma = (\gamma_1, \dots, \gamma_r)', \end{aligned}$$

T. e.
$$a(p, u_h) \leqslant a(p, \gamma) = \rho < 1$$
.

Положим

$$h_{k} = \frac{(v_{k}, Xu_{k})}{1 - a(p, u_{k})}, \quad b_{k} = \frac{1}{2} \frac{(Cu_{k}, u_{k})}{1 - a(p, u_{k})},$$

$$X'\beta = y = (y_{1}, \dots, y_{r})';$$
(6)

тогда равенство (5) запишется в виде

$$(u_k, y) = h_k + b_k, k = 1, 2, \ldots, r,$$

или

или в векторной записи

$$Wy = h + b. (7)$$

Функционал же потерь (1) § 9 в новых обозначениях равен J=(c,y).

Отметим, что матрица W обратима. В самом деле, из (2) следует: $w_h - \beta \geqslant 0$, т. е.

$$w_{ki} \geqslant \beta_{i1} > 0. \tag{8}$$

Лемма 8. Если

$$W'^{-1}c \geqslant 0, \tag{9}$$

то $J=(c,\,y)\geqslant J^*=(z,\,b),$ где $W'^{-1}c=z=(z_1,\,\ldots,\,z_r)'.$ Кроме того, $J=J^*$ тогда и только тогда, когда $z_k>0$ влечет $x_{ji}=0$ при $i\leqslant k < j.$ Д о к а з а т е л ь с т в о. Из (7) и (9) следует:

$$J = (c, y) = (c, W^{-1}h) + (c, W^{-1}b) = (c, h) + (c, b) \geqslant J^* = (c, b),$$

причем равенство достигается тогда и только тогда, когда $z_h>0$ влечет $h_h=0$. Но в силу (3) и (6)

$$[1 - a(p, u_k)] h_k = (v_k, Xu_k) = \sum_{i \leq k < j} w_{ki} w_{kj} x_{ji}.$$

Остается заметить, что] согласно (8) равенство $h_h=0$ равносильно $x_{ji}=0$ для всех i и j, таких, как $i\leqslant k < j$.

В силу предположения, сформулированного в конце § 9, существует набор чисел $\{x_{ij}\}$, удовлетворяющих (2), (3) § 9, для которого $x_{ji}=0$ при i < j. Для такого набора все $h_k=0$; следовательно $J=J^*$. В частности, это означает, что при выполнении условия (9) указанный набор $X=\{x_{ij}\}$ является одним из решений задачи линейного программирования (1)—(3) § 9.

В следующем параграфе мы покажем, что существует такая нумерация фаз из Ω , при которой условие (9) выполняется автоматически.

§ 11. Структура оптимальной дисциплины обслуживания

Определим последовательно фазы α_r , α_{r-1} , . . . , α_1 согласно следующим рекуррентным соотношениям:

$$M_r = \Omega; \ c_{\alpha}(M_r) = c_{\alpha}, \ \ \alpha \in M_r;$$

$$\frac{c_{\alpha_i}(M_i)}{\gamma_{\alpha_i}(M_i)} = \min_{\alpha \in M_i} \frac{c_{\alpha}(M_i)}{\gamma_{\alpha}(M_i)} = m_i, \alpha_i \in M_i;$$
(1)

$$M_{i-1} = \Omega \setminus \{\alpha_r, \ldots, \alpha_i\} = M_i - \{\alpha_i\};$$
 (2)

$$c_{\alpha}(M_{i-1}) = \gamma_{\alpha}(M_i) \left[\frac{c_{\alpha}(M_i)}{\gamma_{\alpha}(M_i)} - m_i \right], \ \alpha \in M_{i-1}.$$
 (3)

Видно, что упорядоченный набор фаз α_r , α_{r-1} , ..., α_1 может быть определен неоднозначно (если минимум в (1) достигается на нескольких фазах из M_i).

Пронумеруем теперь фазы из Ω так, чтобы $\alpha_i = i, i = 1, \ldots, r$. Лемма 9. Для указанной нумерации фаз

$$W'^{-1}c = z,$$

$$z = \left\{\frac{c_1(M_1)}{\gamma_1(M_1)}, \ldots, \frac{c_r(M_r)}{\gamma_r(M_r)}\right\}'.$$
(4)

г∂е

B частности, $W'^{-1}c \geqslant 0$.

Доказательство разобьем на этапы.

1°. Проверим прежде всего, что $w_{ki}=\gamma_i\;(M_k),\;k\geqslant i.$ Из (3), (4) § 10 следует, что

$$\beta_k = (I_k - P_k)\overline{w}_k,$$

где I_k — единичная матрица размерности $k \times k$; P_k — матрица размерности $k \times k$; получаемая из матрицы P отбрасыванием последних r-k строк и столбцов;

$$\beta_k = (\beta_{11}, \ldots, \beta_{k1})'; \quad \overline{w}_k = (w_{k1}, \ldots, w_{kk})'.$$

Поэтому так же, как компонента γ_i вектора $\gamma = (\gamma_1, \ldots, \gamma_r)'$, удовлетворяющего уравнению $\beta = (I-P)\gamma$, имеет смысл среднего суммарного времени обслуживания требования, начиная с фазы $i \in M_r$ до первого выхода из множества фаз M_r , так и компонента \overline{w}_{hi} вектора \overline{w}_h имеет тот же смысл, если M_r заменить на M_h ; т. е. $w_{hi} = \gamma_i (M_h), \ i \in M_h$.

 2° . Полагая $z=(z_1,\ldots,z_r)'$, запишем (4) в виде c=W'z или развернуто

$$c_{1}(M_{r}) = w_{11}z_{1} + w_{21}z_{2} + \dots + w_{r1}z_{r},$$

$$c_{2}(M_{r}) = w_{22}z_{2} + \dots + w_{r2}z_{r},$$

$$\vdots \\ c_{r}(M_{r}) = w_{rr}r_{r}.$$
(5)

Из последнего уравнения получаем:

$$z_r = \frac{c_r}{w_{rr}} = \frac{c_r (M_r)}{\gamma_r (M_r)},$$

а так как $w_{ri} = \gamma_i (M_r)$, то система уравнений (5), кроме последнего, с учетом обозначений (2) и (3) и соотношения (1) запишется в виде

$$c_{1}(M_{r-1}) = w_{11}z_{1} + w_{21}z_{2} + \dots + w_{r-11}z_{r-1},$$

$$c_{2}(M_{r-1}) = w_{22}z_{2} + \dots + w_{r-12}z_{r-1},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$c_{r-1}(M_{r-1}) = w_{r-1}z_{r-1}z_{r-1}.$$

$$(6)$$

Отметим, что в силу (1) c_i (M_{r-1}) $\gg 0$ для всех $i \leqslant r-1$. Система же уравнений (6) аналогична системе (5), если в (5) число r заменить на r-1 Остается воспользоваться методом индукции.

Положим теперь

$$L(i) = z_i + \ldots + z_r, \ i = \overline{1, r}.$$

Обозначим через L_1, \ldots, L_s множество различных значений функции L (α) на Ω ; $s \leqslant r$. Будем считать, что $L_1 > L_2 > \ldots > L_r$. Пусть

$$M_i^* = \{\alpha \in \Omega : L(\alpha) = L_i\}. \tag{7}$$

Лемма 10. Для того чтобы функция переключения $u \in U$ была оптимальной, необходимо и достаточно, чтобы фазы из M_i^* имели преимущество перед фазами из M_j^* , если i < j.

Доказательство. Согласно лемме 9 $W'^{-1}c \geqslant 0$. В силу леммы 8 функция переключения $u \in U$, порождающая $X = \{x_{\alpha\beta}\}$, оптимальна тогда и только тогда, когда $z_k > 0$ влечет $x_{\beta\alpha} = 0$ при $\alpha \leqslant k < \beta$. Отметим, далее, что в силу определения (7)

- 1) при $1 \leqslant i < j \leqslant r$ номер каждой фазы из M_i^* меньше номера любой фазы из M_i^* ;
- 2) если $\alpha \in M_i^*$ и $z_{\alpha} > 0$, то $z_{\beta} = 0$ для всех других фаз из M_i^* ; при этом $\beta < \alpha$; в связи с этим положим $\omega_i = \alpha$, если $\alpha \in M_i^*$ и $z_{\alpha} > 0$;

3) в M_i^* при $i \neq r$ существует фаза $\alpha \in M_i^*$, такая, что $z_{\alpha} > 0$.

Необходимость. Пусть $1\leqslant i < j\leqslant r,\ k=\omega_i \in M_i^*$. Тогда $z_k>0$ и, следовательно, $x_{\beta\alpha}=0$ при $\alpha\leqslant k<\beta$. В частности, $x_{\beta\alpha}=0$ при $\alpha\in M_i^*$ и $\beta\in M_j^*$. Таким образом, всякая фаза $\alpha\in M_i^*$ имеет преимущество перед любой фазой $\beta\in M_j^*$.

Достаточность. Пусть $\alpha \in M_i^*$, $\beta \in M_i^*$ и i < j. Так как фаза α имеет преимущество перед фазой β , то $x_{\beta\alpha} = 0$. При этом $\alpha \leqslant k = \omega_i < \beta$. Если теперь $z_k > 0$, то в силу того, что фаза k совпадает с одной из фаз $\{\omega_i\}$, $x_{\beta\alpha} = 0$ при $\alpha \leqslant k < \beta$.

Теперь теорема § 3 следует из леммы 10, если учесть, что множества $\Omega_1^*,\ldots,\Omega_s^*$ совпадают соответственно с множествами M_s^*,\ldots,M_1^* .

Поступила в редакцию 7.6.73

ЛИТЕРАТУРА!

- [1] M. D. Maustafa, Input-output Markov processes, Proc. Koninkijke Nederl. Akad. Wetensch., 60 (1957), 112—118.
- [2] Г. Н. Климов, Стохастические системы обслуживания, М., изд-во «Наука», 1966.
- [3] М. Пароди, Локализация характеристических чисел матриц и ее применения, М., ИЛ, 1960.
- [4] В. Л. Смит, Теория восстановления и смежные с ней вопросы, сб. перев.: «Математика», 5:3 (1961).

TIME-SHARING SERVICE SYSTEMS. I

G. P. KLIMOV (MOSCOW)

(Summary)

The paper deals with a multiphase time-sharing system. Such an order of service is found that minimizes an additive loss functional.