1. Proof that Bifurcated cycle $Q_{2,n}$ is 2-zombie win

Given the following configuration for the zombie and survivor start positions:

Assuming

$$n_1 + n_2 + n_3 + n_4 = n$$
 $n_1 \ge 0$ $n_2 \ge 2$ $n_3 \ge 1$ $n_4 \ge 0$ $n_1 + n_4 \ge 1$ and $n_i \in \mathbb{Z}^+$

Explanation: we must have $n_2 \ge 2$ and $n_1 + n_4 \ge 1$ or the survivor starts adjacent to a zombie and loses immediately.

Now, we see that the survivor wins by running counter-clockwise if

$$n_2 < n_1 + n_3 + n_4 + 1$$
 and
$$n_2 + n_3 < n_1 + n_4 + 1$$

or by running clockwise if

$$n_2 > n_1 + n_3 + n_4 + 1 \qquad \text{and}$$

$$n_2 + n_3 > n_1 + n_4 + 1$$

If either of these conditions are met, the zombies have no choice but to follow the shortest path to the survivor around a cycle, which leads to a survivor win. In fact, these conditions are necessary (?) for the survivor to have a chance.

Now, we can guarantee that these conditions are violated by ensuring that the two zombies are positioned on opposite sides of the cycle. That is, by making $n_1 + n_2 + n_4 = n_3 + 1$ if n is even, or $n_1 + n_2 + n_4 = n_3$ if n is odd (?).

If $n_1 + n_2 + n_4 + 1 = n_3$ then

$$n_2 + (n_1 + n_2 + n_4 + 1) < n_1 + n_4 + 1$$

 $2n_2 < 0$

Which contradicts our assumption that $n_2 \geq 2$. Similarly, if $n_1 + n_2 + n_4 = n_3$ then

$$n_2 + (n_1 + n_2 + n_4) < n_1 + n_4 + 1$$

 $2n_2 < 1$

Again a contradiction. This shows that there is a zombie start which makes it impossible for the survivor to win in this configuration.

Suppose then that the players are positioned as follows:

Assuming

$$n_1 + n_2 + n_3 + n_4 = n$$

 $n_1 \ge 0$
 $n_2 \ge 2$
 $n_3 \ge 2$
 $n_4 \ge 0$
 $n_i \in \mathbb{Z}^+$

Explanation: we must have $n_2 \ge 2$ and $n_3 \ge 2$ or the survivor starts adjacent to a zombie and loses immediately.

Now, we see that the survivor wins by running counter-clockwise if

$$n_1 + n_3 + n_4 < n_2 \qquad \text{and} \qquad \qquad \\ n_3 < n_1 + n_2 + n_4 + 1 \qquad \qquad \\$$

or by running clockwise if

$$n_1 + n_3 + n_4 > n_2 \qquad \text{and} \qquad n_3 > n_1 + n_2 + n_4 + 1$$