Sequential Circuit Analysis

Mealy or Moore???

- The output of a sequential circuit can be expressed in two different ways:
 - Moore model: Outputs= f(present state)
 - Mealy model: Outputs: f(present state, inputs)

An example sequential circuit

- A sequential circuit with two JK flip-flops
- State or memory: Q1Q0
- One input: X; One output: Z

How do you describe a sequential circuit?

- A combinational circuit Truth table, which shows how the outputs are related to the inputs
- A sequential circuit State table, which shows inputs and current states
 on the left, and outputs and next states on the right
 - Need to find the next state of the FFs based on the present state and inputs
 - Need to find the output of the circuit as a function of
 - > current state for a circuit of the Moore model
 - > current state and inputs for a circuit of the Mealy model

State table of example circuit

Preser	Present State		Next State	Outputs
Q_1	Q_{0}	X	Q_1 Q_0	Z
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

The outputs are easy

From the diagram, you can see that

$$Z = Q_1Q_0X$$

Mealy model circuit !!!

Presen	t State	Inputs	Next State	Outputs -
Q_1	Q_0	X	Q_1 Q_0	Z
0	0	0		0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1		1

Flip-flop input equations

Finding the next states is harder

Step 1:

Find Boolean expressions for the flip-flop inputs i.e., How do the inputs (say, J & K) to the flip-flops depend on the current state and input

Step 2:

Use these expressions to find the actual flip-flop input values for each possible combination of present states and inputs i.e., Fill in the state table (with new intermediate columns)

Step 3:

Use flip-flop characteristic tables or equations to find the next states, based on the flip-flop input values and the present states

Step 1: Flip-flop input equations

 For our example, the flip-flop input equations are:

$$J_1 = X' Q_0$$
 $K_1 = X + Q_0$
 $J_0 = X + Q_1$
 $K_0 = X'$

Step 2: Flip-flop input values

• With these equations, we can make a table showing J_1 , K_1 , J_0 and K_0 for the different combinations of present state Q_1Q_0 and input X

$$J_1 = X' Q_0$$
 $J_0 = X + Q_1$
 $K_1 = X + Q_0$ $K_0 = X'$

Presen	t State	Inputs	Flip-flop Inputs				
Q_1	Q_0	X	J_1	K ₁	J_0	K ₀	
0	0	0	0	0	0	1	
0	0	1	0	1	1	0	
0	1	0	1	1	0	1	
0	1	1	0	1	1	0	
1	0	0	0	0	1	1	
1	0	1	0	1	1	0	
1	1	0	1	1	1	1	
1	1	1	0	1	1	0	

Step 2: Flip-flop input values

Presen	t State	Inputs	Flip-flop Inputs				
Q_1	Q_0	X	J_1	K ₁	Jo	Ko	
0	0	0	0	0	0	1	
0	0	1	0	1	1	0	
0	1	0	1	1	0	1	
0	1	1	0	1	1	0	
1	0	0	0	0	1	1	
1	0	1	0	1	1	0	
1	1	0	1	1	1	1	
1	1	1	0	1	1	0	

Step 3: Find the next states

- Finally, use the JK flip-flop characteristic tables or equations to find the next state of each flip-flop, based on its present state and inputs
- The general JK flip-flop characteristic equation is:

$$Q(t+1) = K'Q(t) + JQ'(t)$$

In our example circuit, we have two JK flip-flops, so we have to apply this
equation to each of them:

$$Q_1(t+1) = K_1'Q_1(t) + J_1Q_1'(t)$$

 $Q_0(t+1) = K_0'Q_0(t) + J_0Q_0'(t)$

 We can also determine the next state for each input/current state combination directly from the characteristic table

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Step 3 concluded

• The next states for Q_1 and Q_0 , are calculated using these equations:

$$Q_{1}(t+1) = K_{1}'Q_{1}(t) + J_{1}Q_{1}'(t)$$

$$Q_{0}(t+1) = K_{0}'Q_{0}(t) + J_{0}Q_{0}'(t)$$

Present	t State	Inputs	FF Inputs			Next S	Next State	
Q_1	Q_0	X	J_1	K ₁	J_0	Ko	Q_1	Q_0
0	0	0	0	0	0	1		
0	0	1	0	1	1	0		
0	1	0	1	1	0	1	1	
0	1	1	0	1	1	0		
1	0	0	0	0	1	1		
1	0	1	0	1	1	0		
1	1	0	1	1	1	1		
1	1	1	0	1	1	0		

Step 3 concluded

Using the characteristic equations:

$$Q_1(t+1) = K_1'Q_1(t) + J_1Q_1'(t)$$

$$Q_0(t+1) = K_0'Q_0(t) + J_0Q_0'(t)$$

Or the characteristic table

J	K	Q(†+1)
0	0	Q(†)
0	1	0
1	0	1
1	1	Q'(†)

Presen ⁻	t State	Inputs	FF Inputs			Next S	Next State	
Q_1	Q_0	X	J_1	K_1	J_0	Ko	Q_1	Q_0
0	0	0	0	0	0	1	0	
0	0	1	0	1	1	0		
0	1	0	1	1	0	1		
0	1	1	0	1	1	0		
1	0	0	0	0	1	1		
1	0	1	0	1	1	0		
1	1	0	$\bigcirc 1$	1	1	1	0	
1	1	1	0	1	1	0		

Step 3 concluded

• Finally, here are the next states for Q_1 and Q_0 , using these equations:

$$Q_1(t+1) = K_1'Q_1(t) + J_1Q_1'(t)$$

 $Q_0(t+1) = K_0'Q_0(t) + J_0Q_0'(t)$

Presen	t State	Inputs	FF Inputs			Next State		
Q_1	Q_0	X	J_1	K ₁	J_0	Ko	Q_1	Q_0
0	0	0	0	0	0	1	0	0
0	0	1	0	1	1	0	0	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	1
1	0	1	0	1	1	0	0	1
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	0	0	1

Getting the state table columns straight

- The table starts with Present State and Inputs
 - Present State and Inputs yield FF Inputs
 - Present State and FF Inputs yield Next State, based on the flip-flop characteristic tables
 - Present State and Inputs yield Output

Presen	Present State Inputs		FF Inputs				Next State		Outputs
Q_1	Q_0	X	J_1	K_1	J_0	Ko	Q_1	Q_0	Z
0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0
0	1	1	0	1	1	0	0	1	0
1	0	0	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0
1	1	1	0	1	1	0	0	1	1

A different look

Present State		Inputs	Next State		Outputs
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Procent State			Next		Output Z		
Present State Q1 Q0		Input X= 0		In _i X=	out = 1	X= 0	X= 1
0	0	0	0	0	1	0	0
0	1	1	0	0	1	0	0
1	0	1	1	0	1	0	0
1	1	0	0	0	1	0	1

State diagrams (Mealy model)

- We can also represent the state table graphically with a state diagram
- A diagram corresponding to our example state table is shown below

Presen	t State	Inputs	Next	State	Outputs
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Sizes of state diagrams

- Always check the size of your state diagrams
 - If there are n flip-flops, there should be 2^n nodes in the diagram
 - If there are m inputs, then each node will have 2^m outgoing arrows
- In our example,
 - We have two flip-flops, and thus four states or nodes.
 - There is one input, so each node has two outgoing arrows.

Moore type circuit

- Two inputs: X and Y; One output: Z
- One state: A
- Note that Z= A, just a function of the current state

State table (Moore)

Present state	Inp	uts	Next state	Output
A	Х	Y	Α	Z
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) State table

	Next State				Out the set
Present State	Inputs XY				Output 7
Α	00	01	10	11	
0	0	1	1	0	0
1	1	0	0	1	1

State diagram (Moore)

Present state	Inputs		Next state	Output
A	Х	Y	Α	Z
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(b) State table

Sequential circuit analysis summary

- To analyze sequential circuits, you have to:
 - Find Boolean expressions for the outputs of the circuit and the flip-flop inputs
 - Use these expressions to fill in the output and flip-flop input columns in the state table
 - Finally, use the characteristic equation or characteristic table of the flip-flop to fill in the next state columns.
- The result of sequential circuit analysis is a state table or a state diagram describing the circuit