

Quality Assurance Basic Educational Course

Based on Reliability Handbook

Section 4 Failure Mechanisms.

Renesas Design Vietnam Co., Ltd. Design Engineering Division

June 10th, 2014

Section 4 Failure Mechanisms

- 4.1 Failure Classification
- 4.2 Failure Mechanisms related to the Wafer Process
 - 4.2.1 Time Dependent Dielectric Breakdown
 - 4.2.2 Hot Carrier
 - 4.2.3 NBTI (Negative Bias Temperature Instability
 - 4.2.4 Electro migration
 - 4.2.5 Stress Migration
 - 4.2.6 Soft Error
 - 4.2.7 Reliability of Non-Volatile Memory

- 4.3 Failure Mechanisms related to the Assembly Process
 - 4.3.1 Wire Bonding Reliability (Au-Al Joint Reliability)
 - 4.3.2 Ag Ion Migration
 - 4.3.3 Cu Ion Migration
 - 4.3.4 Al Sliding
 - 4.3.5 Mechanism of Filler-Induced Failure
 - 4.3.6 Whiskers
 - 4.3.7 Moisture Resistance of Resin Mold Semiconductor

Devices

- 4.4 Failure Mechanisms related to the Mounting Process and During Practical Use
- 4.4.1 Cracks of the Surface-Mounted Packages in Reflow or Flow Soldering
- 4.5 Mechanism of Failures Related to Handling
 - 4.5.1 Electrostatic Discharge
 - 4.5.2 Latchup
 - 4.5.3 Power MOS FET Damage

- Figure 4.1 Gate Pinhole
- Figure 4.2 Al Wiring Coverage Disconnection
- Figure 4.3 Crack
- Figure 4.4 Damage under Bonding (Bottom View)
- Figure 4.5 Damage on Wire Due to Ultrasonic Fatigue
- Figure 4.6 Internal Voids in Package
- Figure 4.7 No Molding Resin Injected
- Figure 4.8 Short Circuit Due to Conductive Particles in Package
- Figure 4.9 Terminal Breakdown Due to Overvoltage
- Figure 4.10 Electric Field Dependency of TDDB
- Figure 4.11 Temperature Dependency of TDDB
- Figure 4.12 Electric-Field Dependency of Activation Energy
- Figure 4.13 Dielectric Breakdown Mechanism
- Figure 4.14 Major Mechanisms of Hot Carrier Generation
- Figure 4.15 Supply Voltage (Drain Voltage) Dependency of Degradation
- Figure 4.16 LDD Structure

- Figure 4.17 Electric field Dependency of Device Life
- Figure 4.18 Failure Mechanism
- Figure 4.19 Electromigration of Al Wire
- Figure 4.20 Lattice Diffusion, Grain Boundary Diffusion,
- and Surface Diffusion of Polycrystalline Al
- Figure 4.21 Mechanism of Slit-Shaped Void Formation
- Figure 4.22 Slit-Shaped Void
- Figure 4.23 Wedge-Shaped Void
- Figure 4.24 Incorrect Operation in Memory Cell
- Figure 4.25 Accelerated Soft Error Evaluation System
- Figure 4.26 Soft Error Prevention Effect of Polyimide Coating
- Figure 4.27 Stack Type Memory Cell Cross-section
- Figure 4.28 MNOS Memory Cell Cross-section
- Figure 4.29 Stack-Type Memory Cell Vth Change

- Figure 4.31 Interlayer Film Defect Mode (Charge Loss)
- Figure 4.32 Phase Diagram for Au-Al Alloy
- Figure 4.33 Au-Al Alloy State Chart
- Figure 4.34 Cross-section of Au-ball Joint (SEM Image)
- Figure 4.35 Generation of Silver Ion Migration
- Figure 4.36 Cu Ion Migration (Package Cross-Section)
- Figure 4.37 Example of Cu Ion Migration between Inner Leads
- Figure 4.38 Example of Al Sliding
- Figure 4.39 Chip Corner Al Wiring Cross Section
- Figure 4.40 Cross Section of a Semiconductor Device in the Vicinity of the Chip Surface
- Figure 4.41 Example of Whisker Generation
- Figure 4.42 Water Penetration Path in a Plastic Mold Device
- Figure 4.43 Al Corrosion During Storage with High Humidity and High Temperature
- Figure 4.44 Al Corrosion on High Humidity and High Temperature Bias

- Figure 4.45 Surface Charge Expansion Phenomenon
- Figure 4.46 Effects of Bias Application Conditions
- Figure 4.47 Effects of Bias Voltages
- Figure 4.48 Example of Acceleration
- Figure 4.49 Model of Crack Generation in Reflow Soldering
- Figure 4.50 Model of Moisture Diffusion at Humidification
- Figure 4.51 Example of Calculations of the Progress of
- Moisture Absorption for 1-mm Resin Thickness
- Figure 4.52 Moisture Distribution in Packages in Respective Stages
- (Comparison When Moisture Absorptivity Comparable)
- Figure 4.53 Moisture Absorptivity Changes for
- Moisture Absorption/Drying and Results of VPS Heating
- Figure 4.54 Example of Observing External Cracks with a Microscope
- Figure 4.55 Example of Observing Internal Cracks/Delamination
- by Cross-Section Polishing

- Figure 4.56 Example of Observing Internal Cracks/Delamination by SAT
- Figure 4.57 Dehumidification of Plastic Packages
- Figure 4.58 Effect of the Moisture-proof Pack
- Figure 4.59 Reflow Heating Conditions for Eutectic Paste for Surface Mount Devices
- (Package Surface Temperature)
- Figure 4.60 Reflow Heating Conditions for Pb-Free Paste for Surface Mount Devices
- (Package Surface Temperature)
- Figure 4.61 Example of Comparison between EOS Damage and ESD Damage
- Figure 4.62 Wunsch & Bell Plot
- Figure 4.63 Triboelectric Charging
- Figure 4.64 Discharge by Electrostatic Induction and Charging
- Figure 4.65 Contact Charging and Discharging
- Figure 4.66 Discharge Model with Human Body
- (Model in which a Conduction Current Flows between Device Pins)

Figure list

Figure 4.67 Discharge Model for Changed Device

(Model in which an Conduction Current Flows to the Discharging Pin

and a Displacement Current Flows to the Device Capacitance)

Figure 4.68 Test Circuit for Human Body Model

Figure 4.69 Comparison of Human Body and HBM Tester Discharge Currents

Figure 4.70 Machine Model Test Circuit

Figure 4.71 Discharge Waveform for Machine Model Test

(Example with a Low Inductance L)

Figure 4.72 Discharge Waveform of Charged Metal Tweezers

(Completely Different from That of the Machine Model)

Figure 4.73 Discharge Example of the Charged Device Model

(Example of a Discharge to a Metal Tool or the Like)

Figure 4.74 Discharge Waveform for Charged Device Model

(Measured with a 3.5-GHz Oscilloscope)

Figure list

(Device is Charged from High-Voltage Source, Relay is Closed, and Device is

Discharged to a Ground Bar)

Figure 4.76 Relationship between Fraction Defective in Package Assembly Process

and CDM Test Intensity

Figure 4.77 Example of Complex Discharge on HBM and CDM

Figure 4.78 Example of Complex Discharge Current Waveform

Figure 4.79 Cross Section of CMOS Inverter

Figure 4.80 Parasitic Thyristor Equivalent Circuit

Figure 4.81 Latchup Test Circuit (Pulse Current Injection Method)

Figure 4.82 Latchup Test Circuit (Excessive Supply-Voltage Method)

Figure 4.83 Cross Section of a Power MOS FET

Figure 4.84 Equivalent Circuit of a Power MOS FET

Figure 4.85 Avalanche Tolerance Evaluation Circuit Diagram

Figure 4.86 Avalanche Waveforms

Figure 4.87 Electrostatic Discharge Strength of a Gate Oxide Film

Figure 4.88 Vds(ON) - Vgs(th) Characteristics in Practical Use

Figure list

Figure 4.86 Avalanche Waveforms

Figure 4.87 Electrostatic Discharge Strength of a Gate Oxide Film

Figure 4.88 Vds(ON) - Vgs(th) Characteristics in Practical Use

Table list

Table 4.2 Scaling Rule

Table 4.3 Typical Failure Mechanisms related to the Wafer Process

Table 4.4 Au-Al Alloy Characteristics

Table 4.5 Major Methods for Evaluatating the Moisture Resistance

Table 4.6 Package Cracking Types and Problems

Table 4.7 Allowable Storage Conditions for Unpacked Moisture-Proof Packing

Table 4.8 MOS Device Failure Types from the Standpoint of Electric Stress Factors

Table 4.1 Failure Factors, Mechanisms, and Modes

Failure Factors		Failure Mechanisms	Failure Modes	Example
Diffusion	Substrate	Crystal defect	Decreased breakdown voltage	
Junction	Junction Diffused junction Impurity precipitation Isolation Photoresist mask misalignment Surface contamination		Short circuit Increased leakage current	
Oxide film	Gate oxide film Field oxide film	Mobile ion Pinhole Interface state TDDB Hot carrier	Decreased breakdown voltage Short circuit Increased leakage current h _{FE} and/or Vth drift	Figure 4.1
Metallization	Interconnection Contact hole Via hole	Scratch or void damage Mechanical damage Non-ohmic contact Step coverage Weak adhesion strength Improper thickness Corrosion Electromigration Stress migration	Open circuit Short circuit Increased resistance	Figure 4.2
Passivation	Surface protection film Interlayer dielectric film	Pinhole or crack Thickness variation Contamination Surface inversion	Decreased breakdown voltage Short circuit Increased leakage current h _{FE} and/or Vth drift Noise deterioration	

Failure Factors		Failure Mechanisms Failure Modes		Example
Die bonding	Chip-frame	Die detachment	Open circuit	Figure 4.3
	connection	Die crack	Short circuit	
			Unstable/intermittent operation	
			Increased thermal resistance	
Wire bonding	Wire bonding	Wire bonding deviation	Open circuit	Figure 4.4
	connection	Off-center wire bonding	Short circuit	Figure 4.5
	Wire lead	Damage under wire bonding contact	Increased resistance	
		Disconnection		
		Loose wire		
		Contact between wires		
Sealing	Resin	Void	Open circuit	Figures 4.6 and 4.7, Figure 4.8
	Sealing gas	No sealing	Short circuit	
		Water penetration	Increased leakage	
		Peeling	current	
		Surface contamination		
		Insufficient airtightness		
		Impure sealing gas		
		Particles		
Input/output pin	Static electricity	Diffusion junction	Open circuit	Figure 4.9
	Surge	breakdown	Short circuit	
	Over voltage C	Oxide film damage	Increased leakage	
	Over current	Metallization defect/destruction	current	
Others	Alpha particles	Electron-hole pair	Soft error	
	High electric-field	generation	Increased leakage	
	Noise	Surface inversion	current	

Figure 4.1 Gate Pinhole

Figure 4.3 Crack

Figure 4.2 Al Wiring Coverage Disconnection

Figure 4.4 Damage under Bonding (Bottom View)

Figure 4.5 Damage on Wire Due to Ultrasonic Fatigue

Figure 4.6 Internal Voids in Package

Figure 4.7 No Molding Resin Injected

Figure 4.8 Short Circuit Due to Conductive Particles in Package

Figure 4.9 Terminal Breakdown Due to Overvoltage

Important failure mechanisms that chip designers should know

Failure mechanism	The items should be careful on chip design	Remark	
_TDDB	Voltage specification	Must obey the contents specified in design manual of each wafer process.	
-HC	Voltage specification and the rate of transient signal wave etc.		
_NBTI	Voltage specification		
_EM	Maximum allowable current specification of metal wire		
_SM	Depend on wafer process specification.		

Table 4.2 Scaling Rule [1]

Parameter	Constant Electric Field Scaling Factor		
Gate oxide film thickness	1/k	Pulo for maintaining	
Gate length	1/k Rule for maintaining characteristics and results to the characteristics and the characteristics and the characteristics and the characteristics are characteristics.		
Gate width			
Junction depth	1/k	<u> </u>	
Impurity concentration	k		
Voltage	1/k		
Electric field	1		
Current	1/k		

Table 4.3 Typical Failure Mechanisms related to the Wafer Process

Failure Mechanism	Activation Energy (eV)
Time-dependent dielectric breakdown (TDDB)	0.5 to 0.8
Hot carrier	_
NBTI	About 1
Al electromigration	0.6 to 1.0
Al stress migration	About 1
Soft error	_
Volatile failure of Nonvolatile memory	1 or more

TDDB (Time Dependent Dielectric Breakdown)

TDDB is a phenomenon that insulated films such as gate oxide of MOS type semiconductors are degraded and broken with time, when receiving voltage stress.

Explanation of a mechanism

- 1) Impression of voltage to oxide film
- → Holes are injected by the electric field into oxide film at the positive electrode side.
- →Defects (traps) are generated in oxide film.
- 2) Voltage impression continues.
- → Traps increase and they are connected from gate electrode to substrate.
- → Large current flows.
- → Oxide film is broken.

Change of the gate current by voltage stress

Figure 4.10 Electric Field Dependency of TDDB

Figure 4.12 Electric-Field Dependency of Activation Energy^[5]

Figure 4.11 Temperature Dependency of TDDB

Figure 4.13 Dielectric Breakdown Mechanism^[6]

HC (Hot Carrier)

HC is one of the failure mechanisms with the tendency generated with progress of transistor fine structure.

In the area of high electric field in channel, the carriers which flow from source got high energy by electric field, it collides with the atom in the area of channel, and the pairs of electron and hole are generated.

Although almost of holes flow into substrate, the electrons got high energy inject into gate oxide.

By affection of the electrons in gate oxide, the threshold value (Vth) of transistor is changed, the characteristics of transistor shift, and fault of device is caused.

Figure 4.15 Supply Voltage (Drain Voltage) Dependency of Degradation

High speed electron collide with atom of silicon

Figure 4.14 Major Mechanisms of Hot Carrier Generation

Two types of HC degradation

DAHC: It happens, when transistor change from ON to OFF, and OFF to ON.

CHE: In the state of ON of transistor, when the potential of drain does not descend, it happens. (When capacitance load is at the drain etc.)

Figure 4.16 LDD Structure

Lightly Doped Drain (LDD) structure as a way to improve HC degradation.

NBTI (Negative Bias Temperature Instability)

While negative bias is impressed to the gate of PMOS transistor, —electrons holes are injected into gate oxide with time from the substrate side, and the characteristics of a transistor degrade.

Figure 4.17 Electric field Dependency of Device Life [14]

EM(Electromigration)

EM is a phenomenon which the atom of metal wiring moves by current. By this movement of atom, resistance increase and disconnection of wiring occur and the fault of device occurs.

Figure 4.20 Lattice Diffusion, Grain Boundary Diffusion, and Surface Diffusion of Polycrystalline Al

Figure 4.18 Failure Mechanism

Figure 4.19 Electromigration of Al Wire

SM (Stress Migration)

The stress migration is one of the disconnection phenomena of metal wiring. The cause of disconnection is stress generated according to the difference of the thermal expansion coefficient of passivation film or interlayer film, and aluminum wiring.

The atom of Al or Cu moves by stress and slit-like void occurs.

Figure 4.21 Mechanism of Slit-Shaped Void Formation

Figure 4.22 Slit-Shaped Void

Figure 4.23 Wedge-Shaped Void

Test chip α particle source package Tester

Figure 4.25 Accelerated Soft Error Evaluation System

Figure 4.26 Soft Error Prevention Effect of Polyimide Coating

Figure 4.27 Stack Type Memory Cell Cross-section

Figure 4.28 MNOS Memory Cell Cross-section

Data retention of Flash memory

Figure 4.29 Stack-Type Memory Cell Vth Change

Figure 4.30 Gate Oxide Defect Mode (Charge Gain)

Figure 4.31 Interlayer Film Defect Mode (Charge Loss)

Figure 4.32 Phase Diagram for Au-Al Alloy

Table 4.4 Au-Al Alloy Characteristics

Chemical compound	Crystal structure	Expansion coefficient	Hardness (Hv)	Color
Al	f.c.c.	2.3 × 10 ⁻⁵	20 to 50	Silver
AuAl ₂	CaF ₂ structure	0.94 × 10 ⁻⁵	263	Purple
AuAl	ZnS structure	1.20 × 10 ⁻⁵	249	Gray
Au ₂ Al	Unknown	1.26 × 10 ⁻⁵	130	Yellowish golden
Au ₅ Al ₂	γ-brass structure	1.40 × 10 ⁻⁵	271	Ditto
Au₄Al	β-Mn structure	1.20 × 10 ⁻⁵	334	Ditto
Au	f.c.c.	1.42 × 10 ⁻⁵	60 to 90	Gold

Figure 4.33 Au-Al Alloy State Chart

Figure 4.34 Cross-section of Au-ball Joint (SEM Image)

Figure 4.35 Generation of Silver Ion Migration

Figure 4.37 Example of Cu Ion Migration between Inner Leads

Figure 4.36 Cu Ion Migration (Package Cross-Section)

Force to center of die

Figure 4.39 Chip Corner Al Wiring Cross Section

Figure 4.40 Cross Section of a Semiconductor Device in the Vicinity of the Chip Surface

Figure 4.41 Example of Whisker Generation

Figure 4.42 Water Penetration Path in a Plastic Mold Device

Figure 4.43 Al Corrosion During Storage with High Humidity and High Temperature

Figure 4.44 Al Corrosion on High Humidity and High Temperature Bias

Figure 4.45 Surface Charge Expansion Phenomenon

Figure 4.46 Effects of Bias Application Conditions

Figure 4.47 Effects of Bias Voltages

Figure 4.48 Example of Acceleration

Table 4.5 Major Methods for Evaluatating the Moisture Resistance

Evaluation method	Example of test conditions	Features	
High temperature and high humidity storage	85°C/85%RH	Has substantial correlation with actual conditions of use.	
test		Requires a long time for the evaluation.	
High temperature and high humidity bias test	85°C/85%RH/ with bias applied	Has substantial correlation with actual conditions of use.	
		Requires a long time for the evaluation.	
Pressure cooker storage test	130°C/85%RH	Has substantial correlation with actual conditions of use.	
Pressure cooker bias	110°C/85%RH/ with bias applied	Has substantial correlation with	
test (HAST)	120°C/85%RH/ with bias applied	actual conditions of use.	
	130°C/85%RH/ with bias applied	Allows the effects of the biasing to be evaluated.	

Note: The saturation-type pressure cooker storage test (100% RH) is not recommended due to market correlation problems.

Soldering heat problem of SMDs

Figure 4.49 Model of Crack Generation in Reflow Soldering [54]

Figure 4.50 Model of Moisture Diffusion at Humidification [54]

Figure 4.51 Example of Calculations of the Progress of Moisture Absorption for 1-mm Resin Thickness^[54]

Figure 4.52 Moisture Distribution in Packages in Respective Stages (Comparison When Moisture Absorptivity Comparable)

Figure 4.53 Moisture Absorptivity Changes for Moisture Absorption/Drying and Results of VPS Heating^[56]

Figure 4.54 Example of Observing External Cracks with a Microscope

Figure 4.55 Example of Observing Internal Cracks/Delamination by Cross-Section Polishing [59]

Figure 4.56 Example of Observing Internal Cracks/Delamination by SAT

Table 4.6 Package Cracking Types and Problems [59]

No.	Package Crack Type	Shape	Problems
1	Package rear-surface crack		. Moisture resistivity degradation (least degradation)
2	Package side crack		. Moisture resistivity degradation (small degradation)
3	Crack intersecting a bounding wire		. Wire damage, open . Moisture resistivity degradation
4	Package top-surface crack		. Wire damage, open . Wire bond peeled off . Moisture resistivity degradation

Figure 4.57 Dehumidification of Plastic Packages

Figure 4.58 Effect of the Moisture-proof Pack

Allowable Storage Conditions for Unpacked Moisture-Proof Packing Table 4.7

Level*1	JEDEC*2	Humidification Conditions	Classification	Storage Conditions after Unpacking
Α	1	85°C, 85%, 168-hour storage	No moisture-proof packing required	30°C or less and 85% or less
В	2	85°C, 65%, 168-hour storage	1 year or less after unpacking	30°C or less and 70% or less
С	2a	30°C, 70%, (4 weeks + X) storage*3	4 weeks or less after unpacking	30°C or less and 70% or less
D		30°C, 70%, (2 weeks + X) storage*3	2 weeks or less after unpacking	30°C or less and 70% or less
E	3	30°C, 70%, (1 week + X) storage*3	1 week or less after unpacking	30°C or less and 70% or less
F	4	30°C, 70%, (72 hours + X) storage*3	3 days or less after unpacking	30°C or less and 70% or less
G	5	30°C, 70%, (48 hours + X) storage*3	2 days or less after unpacking	30°C or less and 70% or less
S	6	30°C, 70%, (Y + X) storage*3	Y days or less after unpacking	30°C or less and 70% or less

- Notes: 1. Complies with JEITA standard EIAJ ED-4701/301 "Soldering Heat-Resistance Test (SMD)."
 - JEDEC-STD-020 levels corresponding to the moisture-sensitivity level (MSL) with moisture absorption conditions of 30°C, 60%.
 - 3. X: Period of time including the storage time to moisture-proof packing after assembly and the storage time after packing.

Y: Length of warranty period of unpacked storage after delivery

Figure 4.59 Reflow Heating Conditions for Eutectic Paste for Surface Mount Devices (Package Surface Temperature)

Figure 4.60 Reflow Heating Conditions for Pb-Free Paste for Surface Mount Devices
(Package Surface Temperature)

Table 4.8 MOS Device Failure Types from the Standpoint of Electric Stress Factors

Failure Mechanism	Stress Factors	Failure Modes
Bonding wire disconnection due to melting	EOS*	Occurred by high current. The broken ends of wire are rounded.
Melting metal disconnection	Mainly EOS	Occurred by high current. Metal balls as in electromigration are not seen.
Melting polysilicon disconnection	EOS or ESD	For polysilicon, as resistance values are large, power concentrates and melting occurs easily.
Contact section damage	EOS or ESD	Due to reverse bias current in junction, heat is transferred to contact section and aluminum metallization melts.
Heat degradation of oxide film	EOS or ESD	Junction reverse bias current heat is transferred to oxide film, resulting in degradation.
Junction degradation	EOS or ESD	Occurred by junction reverse bias current heat and the like
Hot electron, EOS or ESD Trapping		Carriers accelerated by high electric fields are trapped in MOS transistor oxide films
Oxide film degradation due to electric field	Mainly EOS	Occurred by application of voltage to gate oxide film

Note: * EOS: Electrical overstress

Figure 4.61 Example of Comparison between EOS Damage and ESD Damage

Figure 4.62 Wunsch & Bell Plot

Figure 4.63 Triboelectric Charging

Figure 4.64 Discharge by Electrostatic Induction and Charging

Figure 4.65 Contact Charging and Discharging

Figure 4.66 Discharge Model with Human Body (Model in which a Conduction Current Flows between Device Pins)

Figure 4.67 Discharge Model for Changed Device (Model in which an Conduction Current Flows to the Discharging Pin and a Displacement Current Flows to the Device Capacitance)

Figure 4.68 Test Circuit for Human Body Model

Figure 4.69 Comparison of Human Body and HBM Tester Discharge Currents [72]

Figure 4.70 Machine Model Test Circuit

Figure 4.71 Discharge Waveform for Machine Model Test (Example with a Low Inductance L)

Figure 4.72 Discharge Waveform of Charged Metal Tweezers (Completely Different from That of the Machine Model)

Figure 4.73 Discharge Example of the Charged Device Model (Example of a Discharge to a Metal Tool or the Like)

Figure 4.74 Discharge Waveform for Charged Device Model (Measured with a 3.5-GHz Oscilloscope)

Figure 4.75 Example of CDM Test Circuit (Device is Charged from High-Voltage Source, Relay is Closed, and Device is Discharged to a Ground Bar)

Figure 4.76 Relationship between Fraction Defective in Package Assembly Process and CDM Test Intensity

Figure 4.77 Example of Complex Discharge on HBM and CDM

Figure 4.78 Example of Complex Discharge Current Waveform

Figure 4.79 Cross Section of CMOS Inverter

Figure 4.80 Parasitic Thyristor Equivalent Circuit

Figure 4.81 Latchup Test Circuit (Pulse Current Injection Method)

Figure 4.82 Latchup Test Circuit (Excessive Supply-Voltage Method)

Figure 4.83 Cross Section of a Power MOS FET

Figure 4.84 Equivalent Circuit of a Power MOS FET

Figure 4.85 Avalanche Tolerance Evaluation Circuit Diagram

Figure 4.86 Avalanche Waveforms

Figure 4.87 Electrostatic Discharge Strength of a Gate Oxide Film

Figure 4.88 $V_{ds(ON)}$ - $V_{gs(th)}$ Characteristics in Practical Use

