

UNIVERSITY OF GHANA

(All rights reserved)

BSC. MATERIALS SCIENCE AND ENGINEERING END OF FIRST SEMESTER EXAMINATIONS: 2016/2017 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

MTEN 409: GLASSES, CEMENTS AND CONCRETES (2 Credits)

TIME ALLOWED: TWO (2) HOURS

ANSWER ALL QUESTIONS.

1.

- a. Describe the glass transition temperature, Tg using specific volume vs temperature plots for crystalline and glasses.
- b. With the aid of appropriate diagram describe the effect of cooling rate on the density of glasses.
- c. Contrast the crystallite and random-network models glass structure.
- d. Name the Zachariasen rules to be satisfied by an oxide in order to form a glass.
- e. Describe the three types of cations commonly found in oxide glass including their functions. Give two examples of each.
- f. By what mechanism does a network former modifier function?
- g. State two requirements for the formation of noncrystalline ceramic from a melt instead of a crystalline ceramic to be possible.
- h. Using Table 1 (page 2) as a guide, why are SiO₂ and B₂O₃ good glass formers but NaCl and CaSiO₃ are not good glass formers?

30 Marks

2.

- a. For each of the following types of glass, state typical composition, properties and two applications. (i) fused silica glass; (ii) soda lime silica glass and (iii) Pyrex.
- b. For soda-lime-silica glass, describe the function of each of the three components.
- c. For silica melt containing 5 % soda, state the composition of the final liquid to solidify under equilibrium conditions and at what temperature. Use Figure 1 (page 2).
- d. What are glass ceramics? Compare the general characteristics of glass with glass ceramics.
- e. Describe the process for making glass ceramics with the aid of appropriate diagram.

30 Marks

EXAMINER: DR. LUCAS N. W. DAMOAH

Page 1 of 3

Table 1 Factors Affecting Glass-Forming Ability

Compo- sition	<i>Т</i> _{тр} (°С)	$\Delta H_f/T_{mp}$ (cal/mole/°K)	$(1/\eta)_{mp}$ (poise ⁻¹)	$(\Delta II_f/T_{\mathrm{mp}}) \times (1/\eta)_{\mathrm{mp}}$	Comments
B ₂ O ₃	450	7.3	2 × 10 ⁻⁵	1.5 × 10 ⁻⁴	Good glass former
SiO ₂	1713	1.1	1×10^{-6}	1.1×10^{-6}	Good glass former
Na ₂ Si ₂ O ₅	874	7.4	5×10^{-4}	3.7×10^{-3}	Good glass former
Na ₂ SiO ₃	1088	9.2	5×10^{-3}	4.5×10^{-2}	Poor glass former
CaSiO ₃	1544	7.4	10-1	0.74	Very diffi- cult to form as glass
NaCl	800.5	6.9	50	345	Not a glass former

Figure 1 SiO₂-Na₂O phase diagram. Additions of soda (Na₂O) to silica dramatically reduce the melting temperature of silica by forming eutectics.

3.

- a. What are the components of Portland cement and typical compositions?
- b. Name and describe the functions of the typical phases in Portland cement.
- c. What are the typical phase compositions of and the characteristics of Type I and Type III?
- d. Describe the role of gypsum in Portland cement.

20 Marks

4.

- a. What are the components and typical batch composition of concretes?
- b. Name and describe three (3) pozzolans and their effect on the properties of concrete.
- c. Describe the manufacture of the following concretes
 - i. Autoclaved Aerated Concrete (AAC)
 - ii. Prestressed concrete

20 Marks

EXAMINER: DR. LUCAS N. W. DAMOAH Page 3 of 3