Engineering Design Presentation (EDP)

Table of Contents

Page No	Content
5	Preliminary Analysis
12	Accumulator Management System
36	Motor and Motor Controller
47	Supervisory and Control System
54	Safety System

Why Electric?

General approach

Gathering Information

Design

Optimization

- Collecting information.
- Manipulating information as per need.

- Preparing model in software environment.
- Structuring it to system level.
- Finalizing control strategy and dynamic system model.

- Performing many trial runs.
- Checking whether the design characteristics meet the required characteristics.

Design Objectives

- Vehicle speed: 0 to 100 kmph in 3-5s
- Maximum speed: 110-125 kmph

Force on car =
$$ma + \frac{1}{2}C_d\rho Av^2 + C_rW\cos\theta + W\sin\theta$$

Parameters	Values
Mass of the vehicle (m)	280 kg
Drag Coefficient (C _d)	0.725
Density of air (ρ)	1.125
Frontal Area (A)	0.86 m ²
Road frictional resistance coefficient (C _r)	0.015
Slope Angle (θ)	0
Diameter of Wheel	45.72 cm (18")

Transmission Concept Selection

Methodology-I

Make a list of considerable motors as permitted by Formula Bharat rules.

Tabulate maximum speed (rpm) without flux weakening.

Tabulate Final Gear Ratio for achieving design objectives of maximum vehicle speed. Using the gear ratios and torque-speed characteristics, compare 0-100 kmph timings of each motor from vehicle dynamics calculation simulations.

Power density and cost considerations are taken into account along with timings to select appropriate motors.

Motor selection

Motor	EMRAX 188	EMRAX 208	REX90
Maximum Power	52 kW	68 kW	70 kW
Weight	7kg	9kg	17.3 kg
Cost	3260 €	3580 €	9000€
Maximum RPM	6500	6000	4000
Final Ratio for 150 kmph	3.73	3.45	2.30
Maximum Torque	90 Nm	140 Nm	200 Nm
0-100kmph Time	5.839 s	3.93 s	4.14 s

Methodology-II

Use Torque-Speed Characteristics to simulate Lap time Vehicle Dynamics of Car.

Compute Drive Cycle characteristics for total energy requirements.

Using
appropriate assumptions
and efficiency
considerations,
estimate net
energy requirements for
pack design.

Preliminary Analysis is complete. Proceed to cell selection and detailed analysis.

E11 IITG Racing
IIT Guwahati
E11_IITG Racing_PiEV-EDP_2022_V1

Accumulator and AMS

Pack sizing

Tractive Energy required for 1 laps (5 km) = 699 Wh Tractive Energy required for 5 laps (25 km) = 3.5 kWh

Motor efficiency = 94% Controller efficiency = 97% Transmission efficiency = 96%

Pack energy required = 3.99 kWh

Considering a factor of safety of 15%,
Final Pack energy = 4.59 kWh

Current Requirements

Max tractive power during the drive cycle = 40.1 kW Again, considering the efficiencies, Max continuous power delivered by pack = 45.81 kW Max peak power delivered by pack = 77.69 kW

Max continuous current required = 130.9

A

Max peak current required = 221.9 A

Cell Comparison

	LG INR18650HE2	LPHDA885155	NMC (HHPOWER)
Туре	Cylinder	Pouch	Pouch
Voltage	3.6 V	3.7 V	3.7 V
Capacity	2.5 Ah	16.8 Ah	32 Ah
Max discharge	8C	10C	8C
Configuration	7P98S	1P95S	1P95S
Pack Energy	6.17 kWh	5.9 kWh	11.25 kWh

Cell and Pack Size

LG INR18650HE2 2500mAh (8c) LI-ION BATTERY

- Chemistry: ICR
- Capacity (mAh) : 2500
- Output Voltage : 3.6V
- Charge Rate: 0.5C
- Continuous Discharge Rate: 8C
- Peak discharge Rate: 35C for 1s
- Weight of single cell: 48gm

Pack:

Series : 350/3.6 ≈ 98 Parallel : 130.9/20 ≈ 7

7P98S (Voltage = 352.8V; Current= 140A)

Can sustain 221.9A for few secs

Pack Total Energy= **6.17 kWh** (>4.59kWh)

AMS Architecture

BQ79614 functions

- Voltage monitoring (2.4mV accuracy)
- Temperature sensing
- Autonomous passive cell balancing
- Configurable digital low-pass filters
- Overvoltage and undervoltage protection
- Over temperature and Under temperature protection

Measurement (ADC and Timing)

Main ADC Measurement Path

2 filters on Analog side 1 filter on Digital side 192µs for one cycle

Passive Cell balancing

- The device automatically sets balance timers registers
- Each channel is controlled by a Mosfet.

- Odd-even cycles
- Stops if balancing timer is 0 or voltage reaches threshold.

BQ79631 functions

BQ79600 functions

Additional Code considerations

Charging

Communication error

Short circuit across any cell

Fault in any cell

Direct MCU control of AIR

Accumulator Mechanical Configuration

Design Target:

- Abides by the rules
- Safe and easy to assemble
- Easy to maintain
- Light weight with robust design
- Packing in vehicle with impact protection

Battery Pack Cad Model

Module Configuration

- Total 7 modules
- Each module contain 98 cells
- 7P14S Configuration
- Each cell holds properly
- Light weight
- Rule compliant

Mass distribution for module

- Mass of each cell: 0.048 kg
- Mass of module : 2kg
- Total mass of module = 2 + (0.048*98)
 - = 6.7kg
- 6.7 kg < 12kg

Module Simulation and Structural Analysis

All constraints : FIXED MOUNTS

EDP_2022_V1

Analysis at 40 g load in horizontal direction

Analysis at 20 g load in vertical direction

Force fig.

Force fig.

Equivalent Elastic Max. Strain 0.015353 m/m

Equivalent Elastic Max. Strain 0.012278 m/m

Equivalent Elastic Max. Strain 0.00089949 m/m

Equivalent (von -Mises) Stress Max. 1.5231e9 Pa

Equivalent (von -Mises) Stress Max. 1.2293e9 Pa

Equivalent (von -Mises) Stress Max. 2.1735e7 Pa

Total Deformation 1.9741 mm

Total Deformation 3.7764 mm

Total Deformation 5.1691e-5 m

Cooling of Accumulator

Thermal Specification of cell

Weight	48 gm
Internal Resistance	12 mΩ
Voltage	3.6 V
Rated Working Temperature	0-50 deg Celsius
Chemistry	ICR
Chemical	Lithium cobalt oxides
Molar Heat Capacity (Cp)	0.735 KJ/K-kg
Battery Pack Configuration	1 Module = 14S7P and 7 module in series

Thermal Analysis of Battery pack

Using the drive cycle from Buddh international circuit the thermal analysis of the battery pack was conducted

Average power dissipated = 933.7 W

Total energy released by the battery pack as heat = 1080.9 kJ

Using
$$Q_{battery} = m_{battery}Cp\Delta T$$

 $T_{5 \text{ drive cycle}} = 55.6 ^{\circ}C$

Thus, Cooling is required as the battery packs crosses the rated operation temperature

Battery pack without cooling

Cooling process and Fan selection

Passive Air Cooling	Active Air Cooling	Liquid Cooling
No additional Cost	Low Cost	High Cost
Low Cooling	Moderate Cooling	Cooling Efficient
Cannot be used as a cooling option for high performance or for long durations	Can be used when lower amount of cooling is required	Is used when there is a large amount of generation of heat

Fan Specification:-

Specification	Value
Dimensions	92mm x 92mm x 25mm
Speed	3000 RPM
Max volume flow rate	50 CFM

Battery pack with cooling

Temperature of 28.8°C was maintained after installation of the cooling system

Battery Charger

Charger selection criterion:

- Charging voltage = 350V
- Standard charge current = 1.25 A*7= 8.75A

Charger Specification	Current Ways	Dilong Technology	Magenta Power	Elcom
Output voltage	225-450 V	250-420V	230 @ 50 Hz AC	321-417
Max Charging Current(A)	13.5	12	16	7
IP protection	IP67	IP67	IP54	IP46
Output power (kW)	3	3.3	3.3	3

Specifications of Dilong (DA3K3M17/ M17E OBC)

- Input voltage: 85 264 Vac
- Input Current: 16@220 Vac
- Input Frequency: 47 63 Hz
- Active Power Factor correction: >= 0.99
- Efficiency: 95%
- Accumulator full charge time: 2 Hrs 5 mins
- Cooling type: Air
- Constant power and constant voltage state automatic conversion.

Charging Time Calculation:

- Battery Total energy: 9*686Wh = 6.17kWh
- Assuming 10% losses in heat.
- Effective output power: 3300*0.9 = 2.97kW
- Charging Time: Maximum Battery power
 / effective Output power

= 2 hrs 5 mins

Charging and Discharging Contact

AMP+HVP800 from TE Connectivity

Operating Temp

-40°C to

125°C

•	Operating voltage range	850 Vdc
•	Contact Current Rating	200A
•	UL Flammability Rating	UL 94V- 0
•	IP Rating	IP6K9K

Charger Cables

TE Connectivity, HVA280 EV Charging Cable

	Rating	1071
•	IP Rating	IP69K
•	Temperature	-40°C to 140°C
•	Color	Orange

40A

Current

Fuse

Eaton BUSSMANN XEV30-250-SP

Current Rating	250 A
Voltage Rating	500 VDC
 Diameter 	30 mm

• Fuse Type Fast blow

Insulation Material

Nomex Paper

•	Dielectric	32kV/mm
	Strength	

•	Thermal	0.15
	Insulation	W/mK

•	Temperature	300°C
	Resistance	

• Tensile Strength 2.85 Mpa

Durability

High

Thickness 0.25 mm

Flame Retardant

Maintenance plug

Amphenol Radlok

- Current 70 A 500 A Rating
- Voltage 1000 V Rating
- Tool-free mechanical locking
- One way locking mechanism

High Voltage Disconnect

TE Connectivity AMP + Manual Service Disconnect

• Current Rating 350 A

Voltage Rating 700 VDC

Temperature -40°C – 65°C Rating

Number of 2 contacts

High Voltage Wiring

Polycab

Core Material Copper

Current Rating 600 A

• Voltage Rating 1.1 kV

Nominal Area 75 sq mm

Low Voltage Pack Cell Configuration

- Nominal Cell Voltage: 3.3 V
- Cell Capacity: 2.5 Ah
- Nominal discharge: 10 A
- Total Voltage Required: 12 V
- Power required = 120 W (100W for pump and 20W for fans)
- Cell current required: 120/12 = 10A
- No of cells in series = 12/3.3 = 3.63 ≈ 4 cells
- No of cells in parallel = 10/9 = 1 cell

Fig.- A123 ANR26650M1-B

The required configuration is **4S1P**

Motor and Motor Controller

Selected Motor: EMRAX 208

Type Technical data	EMRAX 208 High Voltage			EMRAX 208 Medium Voltage			EMRAX 208 Low Voltage		
Air cooled = AC Liquid cooled = LC Combined cooled = Air + Liquid cooled = CC	AC	LC	сс	AC	LC	сс	AC	LC	сс
Ingress protection	IP21	IP65	IP21	IP21	IP65	IP21	IP21	IP65	IP21
Cooling medium specification (Air Flow = AF; Inlet Water/glycol Flow = WF; Ambient Air = AA) If inlet WF temperature and/or AA temperature are lower, then continuous power is higher.	AF=20m/s; AA=25°C	WF=8I/min at 50°C; AA=25°C	WF=8I/min at 50°C; AA=25°C	AF=20m/s; AA=25°C	WF=8I/min at 50°C; AA=25°C	WF=8I/min at 50°C; AA=25°C	AF=20m/s; AA=25°C	WF=8I/min at 50°C; AA=25°C	WF=8I/min at 50°C; AA=25°C
Weight [kg]	9,1	9,4	9,3	9,1	9,4	9,3	9,1	9,4	9,3
Diameter ø / width [mm]									
Maximal battery voltage [Vdc] and max load RPM	550 Vdc (6000 RPM)			350 Vdc (6000 RP 1)			120 Vdc (6000 RPM)		
Peak motor power at max load RPM (few min at cold start / few seconds at hot start) [kW]	68								
Continuous motor power (at 6500 RPM)	33	35	41	33	35	41	33	35	41
Maximal rotation speed [RPM]			6000 (70	00 for a few se	netic field w	akening)			
Maximal motor current (for 2 min if cooled as described in Manual) [Arms]	200				320			800	
Continuous motor current [Arms]	100				160			400	
Maximal peak motor torque [Nm]					140				
Continuous motor torque [Nm]	64	68	80	64	68	80	64	68	80

Best Torque Rating

Controller Selection

CONTROLLER	PEAK CURRENT [Arms]	CONT. CURRENT [Arms]	PEAK VOLTAGE [Vdc]	PEAK POWER [kW]	SWITCHING FREQUENCY [kHz]	WEIGHT [kg]	BEST SENSOR	MFW OPTION	SENSORLESS OPTION	OTHER SENSOR OPTIONS	NEEDED SENSOR IN CASE OF 2XUVW CONNECTORS OR TWIN MOTOR
Drivetrain innovation DTI HV-500	350	250	720	250	814	6.7	Encoder RM44SI		N	Hall sensors, encoder, resolver	
Emsiso emDrive 500	800	500	120	95	16	5.2	Encoder RM44SC (SSI)	Υ	Υ	resolvers, hall sensors	tandem resolver
Unitek Bamocar D3 400 125/250	180	125	400	70	824	5.8					
Unitek Bamocar D3 400 200/400	280	200	400	110	824	6.8	1-pole pair resolver	Y	N	sin/cos encoders, hall sensors	tandem resolver
Unitek Bamocar D3 700 125/250	180	125	700	125	816	5.8	1-pole pair resolver	Ť	IN IN		
Unitek Bamocar D3 700 200/400	280	200	700	200	816	6.8					
Sevcon Gen4-S8	300	200	400	100	8	10					
Sevcon Gen4-S10	400	200	800	300	8	10.9	Encoder RM44AC (sin/cos)	Υ	N	Resolver	tandem resolver
Sevcon Gen5-S9	400	200	450	180	812	6.8					
RMS PM100DX	350	300	400	100	12	7.5					
RMS PM100DZ	200	150	800	100	12	7.5					
RMS PM150DX	450	250	400	150	12	10.7	5-pole pair resolver	Y	N	,	tandem 5-pole pair
RMS PM150DZ	300	225	800	150	12	10.7	5-pole pail resolver	ı	IN IN		resolver
RMS PM250DX	750	450	400	300	12	20					
RMS PM250DZ	600	450	800	460	12	20					
Scott Drive SD100	330	260	400	130	1015	12.5					
Scott Drive SD200	450	360	400	180	1015	12.5	5-pole pair resolver	Y	v N	Hall sensors, N analog/sin/cos encoders	tandem resolver
Scott Drive SD250	600	480	400	240	1116	14	5-pole pair resolver	Y	IN		
Scott Drive SD300	500	400	800	400	1116	14					

Cooling Process of Motor and Controller

Calculation Process for Required Cooling

$$Q_{DT} = m_{AIR} C p_{AIR} (T_{AIRO} - T_{AIRI}) = m_W C p_W (T_{WO} - T_{WI})$$

Where Q_{DT} = Power dissipated by the Motor and Controller = $(1 - \eta_{Motor} \times \eta_{Controller}) P_{max}$

$$P_{max}$$
= 68kW ; η_{motor} = 94%; $\eta_{controller}$ = 97%

$$m'_W$$
= 8 lpm

We get
$$T_{WO} = 50^{\circ}\text{C}$$
; $T_{WI} = 40.47^{\circ}\text{C}$

Using LMTD method

$$Q_{DT} = U_O A_O F LMTD_{CF}$$

Where
$$U_0 = 162.67 \text{ W/(m}^2 ^\circ\text{C})$$
; $A_0 = 6.257 \text{ m}^2$

We get
$$T_{AIRO}$$
 =28.835 °C ; T_{AIRI} =25 °C

With the help of Cooling fan air must pass through the radiator at speeds of about 67.2 kmph

Simulation of Radiator cooling

Specification table for Cooling System

Component	Specification	Value	Component	Specification	Value
	Dimensions	418mm×216mm×38m m	Water Dump	Power	100 Watt
	Tube Diameter	1.75mm	Water Pump	Max Discharge Capacity	8LPM
Radiator	Tube thickness	0.3mm	Thermostat	Range	45 deg- 50 deg Celsius
	Fin Spacing	2mm	Catch-can	Dimension	203mm×162mm×100 mm
	Fin Height	9.25mm			
	Fin Density	95 fins/dm			
	Dimension	200mm×200mm×32m m			
Cooling Fan	RPM	700			
	Air Flow	86.57 CFM			

Gearing

Experience in CV + Reliable + Efficient + Cheap +Light -----> Chain Drive

Р	Possible combinations of Sprocket Teeth	Actual Ratio
	31-9	3.44
	38-11	3.45
	45-13	3.46
	55-16	3.44
	76-22	3.45

Gearing

Selected Chain No. 525 with pitch 0.625""

MATLAB Code for necessary design calculations

Results

Front Sprocket			
Parameter	Results		
No of Teeth	11		
Teeth in Contact	4.5		
Diameter in mm	56.3478		

Rear Sprocket			
Parameter	Results		
No of Teeth	38		
Teeth in Contact	22.46		
Diameter in mm	192.24		

Parameter	Result
Number of chain links	56
Centre to Centre Distance(mm)	240.35 (favourable as per proposed chassis design)

Other values such as contact angles, critical back-tension on each tooth (at maximum motor torque) etc. required for sprocket design are calculated and tabulated using the same code.

Torque Control: Differential

Limited Slip Differential over Open for better Torque Vectoring

Torsen	Clutch Type (Salisbury)
Cheap	Expensive
Reliable without Oil	Oil sealed
~3.3 kg	~2.6 kg
When one wheel loses grip, all the torque goes to that wheel.	Very wide adaptations in torque bias. Different characteristic for accelerating and braking

Packaging: CAD Model

Compact Packaging to be mounted on chassis

Regenerative Braking

Supervisory Control System (SCS)

Basic flow of information in SCS

APPS Signal Processing model

Brake Plausibility Model

Ready To Drive Mode Model

- 1. Initially, the ECU takes the raw data from APPS and gives the filtered value to the motor controller.
- 2. Then the ECU takes the raw data from BPPS and the plausibility of the system is checked, if it does not satisfy the required conditions, the motor is turned off immediately.

E11 IITG Racing IIT Guwahati E11_IITG Racing_PiEV-EDP_2022_V1

Shutdown Circuit Overview

E11 IITG Racing IIT Guwahati E11_IITG Racing_PiEV-EDP_2022_V1

Shutdown Circuit Schematic

Pre-charge Circuitry

Tractive System Voltage	380 V
Capacitance	440 μF
Precharge Resistance	600 Ω
$\tau = R^*C$	0.264 sec
Precharge Time (5 $ au$)	1.32 sec

Brake System Plausibility Device

The BSPD ensures the 500ms delay by the RC circuit (R = $1k\Omega$ and C = 500μ F). In one time constant (τ = 500ms), the potential across the resistor crosses 3.15 V which is greater than the non-inverting input and cut-offs the continuous supply at the outer pin.

Insulation Monitoring device

Specification	Value
Model	Bender ISOMETER® iso165C-1
Application in	Automotive
Nominal supply voltage	12 V
Max. operational current	300 mA (typ. 185 mA)
Max. current	5 A
Rated voltage range	DC 0 to 600 V
Temperature range	-40 to +85 °C
Response value Alarm 1 (Error)	30 kΩ to 1 MΩ (default: 300 kΩ)
Response value Alarm 2 (Warning)	40 kΩ to 2 MΩ (default: 55 kΩ)

- Bender ISOMETER® iso165C-1 IMD is used in electric vehicles and is chosen as an alternative to ISOMETER® IR155-4203 / IR155-4204.
- The response value of Alarm (Error) is set to $190k\Omega$ ($500\Omega/V*380V$).

Tractive System Active Light

The HV passes through a potential divider and then to a comparator with LV supply. It passes through Optocoupler to reach the LV. The HV and LV are separated by 12.7 mm in the PCB. The output RED+ is high when HV > 60V. Lower than that the output GRN+ is high.

E11 IITG Racing
IIT Guwahati
E11_IITG Racing_PiEV-EDP_2022_V1

Thank you