MA 101 (Mathematics - I)

Supplementary Examination: Part - II

Maximum Marks: 24

Date: March 15, 2021 **Time:** 6:35 pm - 7:35 pm

Instructions:

- The answers of the questions are to be filled in the response form. You get exactly one hour time (from 6:35 pm to 7:35 pm) for doing this.
- You should submit the response form at 7:35 pm (or before). Although you get extra 3 minutes for submission only (the portal will close at 7:38 pm), it is advised not to take any risk of submitting after 7:35 pm. No request will be entertained if you fail to submit your responses through the portal due to any reason.
- The response form permits only one submission. It does not allow revision.

Type of Questions and Marking scheme:

- The first question is writing your Roll number. It is compulsory. It has no marks.
- Q.2 to Q.7 are of single correct option type questions, where exactly one option is correct. Each of these questions carries 2 marks for correct answer, −1 mark for incorrect answer, and 0 mark for no answer. No answer will be considered if you do not mark any option or if you mark option (E) given in the response form.
- Q.8 to Q.13 are of multiple correct option type questions, where one or more of the options is (are) correct. In each of these questions, you get 2 marks if you choose all the correct options and choose no wrong option. In all other cases, you get 0 mark.
- 1. Write your Roll number.
- 2. Let $f(x,y) = 4x^5y^2 3x^4y^3 + 5\sin(xy^2) + 8$ and $g(x,y) = (1+x^2+y^2)\sin(1+x^2+y^2)$ for all $(x,y) \in \mathbb{R}^2$. Then
 - (A) both $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$ are onto
 - (B) $f: \mathbb{R}^2 \to \mathbb{R}$ is onto but $q: \mathbb{R}^2 \to \mathbb{R}$ is not onto
 - (C) $g: \mathbb{R}^2 \to \mathbb{R}$ is onto but $f: \mathbb{R}^2 \to \mathbb{R}$ is not onto
 - (D) neither $f: \mathbb{R}^2 \to \mathbb{R}$ nor $q: \mathbb{R}^2 \to \mathbb{R}$ is onto

Answer: (A)

Explanation: Let $\varphi(x) = f(x, 1)$ and $\psi(x) = g(x, 0)$ for all $x \in \mathbb{R}$. Using the IVP of continuous functions of one real variable, it is easy to see that $\varphi : \mathbb{R} \to \mathbb{R}$ and $\psi : \mathbb{R} \to \mathbb{R}$ are onto. Consequently f and g are onto.

- 3. Let S be a nonempty open set in \mathbb{R}^2 and let $f: S \to \mathbb{R}$. Consider the following two statements **P** and **Q**.
 - **P**: If $D_{\mathbf{u}}f(\mathbf{x}) = 0$ for all $\mathbf{x} \in S$ and for all $\mathbf{u} \in \mathbb{R}^2$ with $\|\mathbf{u}\| = 1$, then f must be a constant

function.

Q: If $f_x(x,y) = 0$ for all $(x,y) \in S$, then it is necessary that $f(x_1,y) = f(x_2,y)$ for all $(x_1, y), (x_2, y) \in S.$

Then

- (A) both \mathbf{P} and \mathbf{Q} are true (B) **P** is true but **Q** is false
- (C) \mathbf{Q} is true but \mathbf{P} is false (D) both \mathbf{P} and \mathbf{Q} are false

Answer: (D)

Explanation: Consider $S = A \cup B$, where $A = \{(x, y) \in \mathbb{R}^2 : x < 0\}$ and $B = \{(x, y) \in \mathbb{R}^2 : x < 0\}$ x > 0}. Define f(x, y) = 0 if $(x, y) \in A$ and f(x, y) = 1 if $(x, y) \in B$.

- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuously differentiable function. Let C be a closed, simple, piecewise smooth and counter clockwise oriented curve in \mathbb{R}^2 which encloses domain D in \mathbb{R}^2 . Let Whise smooth and counter electric status of $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and P = (1,1). Then $\iint_D [(Tf') \cdot P](x,y) dx dy$ is equal to (A) $\oint_C (f,f) \cdot dR$ (B) $-\oint_C (f,f) \cdot dR$ (C) $\oint_C (-f,f) \cdot dR$ (D) None of (A), (B) and (C) is true

Answer: (A)

Explanation: By Green's Theorem,

$$\iint\limits_{D} [(Tf') \cdot P](x,y) dxdy = \iint\limits_{D} [(f_x(x,y) - f_y(x,y)] dxdy = \oint\limits_{C} (f,f) \cdot dR.$$

- 5. Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a never vanishing continuously differentiable function. Let $\|\nabla f\|^2 = 2f$ and $\operatorname{div}(f\nabla f)=5f$. Let **n** be the unit outward normal to the sphere $S=\{(x,y,z):x^2+y^2+z^2\}$ $z^2=1$ and $D=\{(x,y,z): x^2+y^2+z^2\leq 1\}$. If $\frac{\partial f}{\partial \mathbf{n}}$ is the directional derivative of f along \mathbf{n} ,

 - (A) $\iint_{S} \frac{\partial f}{\partial \mathbf{n}} d\sigma = 4\pi$ (B) $\iint_{S} \frac{\partial f}{\partial \mathbf{n}} d\sigma = 7\pi$ (C) $\iint_{S} \frac{\partial f}{\partial \mathbf{n}} d\sigma = -7\pi$ (D) $\iint_{S} \frac{\partial f}{\partial \mathbf{n}} d\sigma = 3 \iiint_{D} f dV$

Answer: (A)

Explanation: Note that $\operatorname{div}(f\nabla f) = f\nabla \cdot (\nabla f) + \|\nabla f\|^2$. Hence Since, f is never vanishing function, it follows that $\nabla \cdot (\nabla f) = 3$. By Stoke's Theorem,

$$\iint\limits_{S} \frac{\partial f}{\partial \mathbf{n}} d\sigma = \iint\limits_{S} \nabla f \cdot \mathbf{n} d\sigma = \iiint\limits_{D} \nabla \cdot (\nabla f) dV = 4\pi.$$

- 6. For $(x,y,z)\in\mathbb{R}^2$, let $\hat{n}(x,y,z)=\left(\frac{1}{x},\frac{1}{1+y},\frac{1}{1+|z|^2}\right)$. If \hat{n} is the outward normal to the surface Sin \mathbb{R}^3 , then which of the following statements is (are) true?
 - (A) S is orientable if origin is not lying on the surface S
 - (B) S is orientable if origin and (0, -1, 0) are not lying on the surface S
 - (C) S is orientable if S does not intersect the curve $\{(0, -1, t): t \in \mathbb{R}\}$
 - (D) The set in \mathbb{R}^3 on which possibly S could not be orientable is set of content zero in \mathbb{R}^3

Answer: (D)

Explanation: The set of continuity of \hat{n} is $D = \{(r, s, t) \in \mathbb{R}^3 : r \neq 0, s \neq -1\}$.

7. Let D be the domain in \mathbb{R}^2 bounded by the curves $y = 1 - x^2$ and $y = 2(1 - x^2)$. Let $\ln r$ denote natural logarithm of r. Then

(A)
$$\iint_D \frac{x^2}{y} dy dx$$
 exists and equals to $\frac{2}{3} \ln 2$. (B) $\iint_D \frac{x^2}{y} dy dx$ exists and equals to $\frac{4}{3} \ln 2$. (C) $\iint_D \frac{x^2}{y} dy dx$ exists and equals to $\frac{1}{3} \ln 2$. (D) $\iint_D \frac{x^2}{y} dy dx$ does not exist

(C)
$$\iint_D \frac{x^2}{y} dy dx$$
 exists and equals to $\frac{1}{3} \ln 2$. (D) $\iint_D \frac{x^2}{y} dy dx$ does not exist

Answer: (A)

Explanation: Introduce change of variables x = v and $y = u(1 - v^2)$. Then the D will be transferred to $[1, 2] \times [-1, 1]$. Here $|J(u, v)| = 1 - v^2$.

$$\iint_{D} \frac{x^{2}}{y} dy dx = \int_{-1}^{1} \int_{1}^{2} \frac{v^{2}}{u} du dv = \frac{2}{3} \ln 2.$$

8. For $m, n, k, \ell \in \mathbb{N}$ with k, ℓ even, let $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ be defined by $f(x,y) = \frac{x^m y^n}{x^k + y^\ell}$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$. Then $\lim_{(x,y)\to(0,0)} f(x,y)$ exists (in \mathbb{R}) if

(A)
$$m = 3, n = 5, k = \ell = 8$$
 (B) $m = 5, n = 2, k = 8, \ell = 8$

(A)
$$m = 3, n = 5, k = \ell = 8$$
 (B) $m = 5, n = 2, k = 8, \ell = 6$ (C) $m = 5, n = 1, k = 8, \ell = 2$ (D) $m = 2, n = 4, k = 8, \ell = 6$

Answer: (C)

Explanation: In (C), $|f(x,y)| = \left| \frac{x^4y}{x^8+y^2} \right| |x| \le |x| \le \sqrt{x^2+y^2}$ for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ and hence $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. In (A), (B), (D), first take the sequence $\left((\frac{1}{n},0) \right)$. Then take the sequence $\left(\left(\frac{1}{n^8}, \frac{1}{n^8}\right)\right)$ in (A), the sequence $\left(\left(\frac{1}{n^6}, \frac{1}{n^8}\right)\right)$ in (B) and the sequence $\left(\left(\frac{1}{n^6}, \frac{1}{n^8}\right)\right)$ in (D).

9. Let $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 6\}$ and let $f(x, y, z) = 3(x^2 + y^2 + z^2)$ for all $(x, y, z) \in S$. Then

(A) there exists
$$\mathbf{x}_0 \in S$$
 such that $f(\mathbf{x}_0) = 4$

(B) there exists
$$\mathbf{x}_0 \in S$$
 such that $f(\mathbf{x}_0) = 7$

(C) there exists
$$\mathbf{x}_0 \in S$$
 such that $f(\mathbf{x}_0) = 9$

(D) there exists
$$\mathbf{x}_0 \in S$$
 such that $f(\mathbf{x}_0) = 19$

Answer: (C), (D)

Explanation: Using Lagrange multiplier method, we can see that the minimum value of f(x,y,z) subject to the constraint x+2y+3z=6 is $\frac{54}{7}$. Also, f is not bounded above on S. Since $f: S \to \mathbb{R}$ is continuous, it follows that the range of f is $\left[\frac{54}{7}, \infty\right)$.

10. For $\alpha \in \mathbb{R}$, let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = \begin{cases} \frac{xyz}{(x^2 + y^2 + z^2)^{\alpha}} & \text{if } (x, y, z) \neq (0, 0, 0), \\ 0 & \text{if } (x, y, z) = (0, 0, 0). \end{cases}$ Then

(A)
$$f$$
 is differentiable at $(0,0,0)$ if $0<\alpha\leq\frac{1}{2}$

(B) f is differentiable at
$$(0,0,0)$$
 if $\frac{1}{2} < \alpha < 1$

- (C) f is differentiable at (0,0,0) if $\alpha \geq 1$
- (D) f is differentiable at (0,0,0) only if $0 < \alpha < 1$

Answer: (A), (B)

Explanation: If $\alpha \leq 0$, then clearly f is differentiable at (0,0,0). Again, we have $f_x(0,0,0) = f_y(0,0,0) = f_z(0,0,0) = 0$. If $0 < \alpha < 1$, then $\lim_{\mathbf{h} \to \mathbf{0}} \frac{|f(\mathbf{h}) - f(\mathbf{0}) - 0|}{\|\mathbf{h}\|} = 0$ and if $\alpha \geq 1$, then $\lim_{\mathbf{h} \to \mathbf{0}} \frac{|f(\mathbf{h}) - f(\mathbf{0}) - 0|}{\|\mathbf{h}\|} \neq 0$.

- 11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^2 e^{-x^4 y^2}$ for all $(x,y) \in \mathbb{R}^2$. Then
 - (A) f has at least six critical points
 - (B) f has at least one saddle point
 - (C) f has at least one local maximum
 - (D) f attains absolute maximum on \mathbb{R}^2

Answer: (A), (C), (D)

Explanation: Solving the system of equations $f_x(x,y) = 2x(1-2x^4)e^{-x^4-y^2} = 0$ and $f_y(x,y) = -2x^2ye^{-x^4-y^2} = 0$, we see that $\left(\pm\frac{1}{\sqrt[4]{2}},0\right)$ and (0,y) for $y \in \mathbb{R}$, are all the critical points of f. Since $f(x,y) \geq 0 = f(0,y)$ for all $x,y \in \mathbb{R}$, f has a local minimum at each of the points (0,y) for $y \in \mathbb{R}$. Also, f has local maximum at each of the points $\left(\pm\frac{1}{\sqrt[4]{2}},0\right)$ and since $\lim_{\|(x,y)\|\to\infty} f(x,y) = 0$, it follows that f attains absolute maximum at each of the points $\left(\pm\frac{1}{\sqrt[4]{2}},0\right)$.

- 12. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $\alpha = \int_0^x \int_0^y \int_0^z f(t,y) dt dz dy$ and $\beta = \int_0^x \int_0^y (y-t) f(t,y) dt dy$. Then which of the following statements is (are) true?
 - (A) $\alpha = \beta$ if f is continuous on \mathbb{R}^2
 - (B) $\alpha = \beta$ if f is continuous on every bounded set $D \subset \mathbb{R}^2$ except possibly on a set $E \subset D$ of content zero
 - (C) $\alpha = \beta$ if f is Riemann integrable on every bounded set D in \mathbb{R}^2
 - (D) $\alpha \neq \beta$ even if f is Riemann integrable on every bounded set D in \mathbb{R}^2

Answer: (A), (B), (D)

Explanation: By Fubini's Theorem

$$\beta = \int_0^x \int_0^y (y - t) f(t, y) dt dy = \int_0^x \int_0^y \int_t^y f(t, y) dz dt dy = \int_0^x \int_0^y \int_0^z f(t, y) dt dz dy = \alpha$$

Note that Fubini's theorem can be applied in case f is discontinuous except on a set of content zero in bounded set.

13. Let $f: D = [0,1] \times [0,1] \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}^c \cap [0,1] \text{ and } y \in \mathbb{Q} \cap [0,1]; \\ 1 - \frac{1}{q}, & \text{if } x = \frac{p}{q} \text{ in lowest term and } y \in \mathbb{Q} \cap [0,1] \\ 0, & \text{otherwise.} \end{cases}$$

Then which of the following statement is (are) true?

(A) f is integrable and $\iint_D f(x,y)dxdy = 1$.

(B) Repeated integral $\int_{0}^{1} \left(\int_{0}^{1} f(x,y) dx \right) dy$ exists

(C) Repeated integral $\int_{0}^{1} \left(\int_{0}^{1} f(x,y) dx \right) dy$ does not exist

(D) Repeated integral $\int_{0}^{1} \left(\int_{0}^{1} f(x,y) dy \right) dx$ does not exist

Answer: (C), (D)

Explanation: Let $P_n = Q_n \times R_n = \{\frac{i}{n}: i = 0, 1, \dots, n\} \times \{\frac{j}{n}: j = 0, 1, \dots, n\}$. Note that $M_{ij} = 1$ and $m_{ij} = 0$ for all i, j. Hence f is not Reimann integrable. For $y \in \mathbb{Q}$, we get $m_i = 1$ and $m_i \geq 1 - \frac{1}{n}$. This implies $\int_0^1 f(x, y) dx = 1$. When $y \in \mathbb{Q}^c$, we get $\int_0^1 f(x, y) dx = 0$. Hence $\int_0^1 \left(\int_0^1 f(x, y) dx\right) dy$ does not exist. Similarly $\int_0^1 \left(\int_0^1 f(x, y) dy\right) dx$ does not exist.

