Résumé du cours Transformée de Laplace

Transformée de Laplace 0.1

Les fonctions de E_0 0.1.1

Définition 0.1

E₀ est l'ensemble de toutes les combinaisons linéaires à coefficients réels ou complexes des fonctions de la forme $t \mapsto t^n e^{rt} \mathcal{U}(t-\alpha)$ où α est un réel positif, n un entier positif et r un nombre complexe quelconque.

Existence de $\int_0^{+\infty} f(t)e^{-pt}dt$ pour f élément de E_0

Définition 0.2

Si une fonction g de la forme : $t \mapsto g(t) = k\mathcal{U}(t-\alpha)t^ne^{rt}$ avec k réel, r complexe, a réel positif, le nombre complexe r est appelé exposant de la fonction q.

Propriété 0.1 et définition

L'intégrale $\int_0^{+\infty} f(t)e^{-pt}dt$ est absolument convergente si p est un nombre réel appartenant à l'intervalle $|\sigma(f), +\infty|$ où $\sigma(f)$ est la plus grande des parties réelles des exposants des fonctions composant la combinaison linéaire réalisant f.

Le réel $\sigma(f)$ est appelé **abscisse** de convergence de f.

Définition de la transformation de Laplace dans E_0 0.1.3

Soit f un élément de E_0 d'abscisse de convergence $\sigma(f)$.

La transformée de Laplace de f est la fonction, notée F, définie sur $\sigma(f)$, $+\infty$ par

$$p\mapsto F(p)=\int_0^{+\infty}f(t)e^{-pt}dt$$

On notera : $f \supset F$ ou $f(t) \supset F(p)$ ou $F = \mathcal{L}(f)$ ou $F(p) = \mathcal{L}[f](p)$ Le symbole : \mathcal{L} désignant la transformation de Laplace : $f \mapsto F$.

Théorème de la valeur initiale et de la valeur finale 0.2

Théorème 0.1 Théorème de la valeur initiale

Si une fonction f de E_0 admet pour transformée de Laplace la fonction F, **alors** $\lim_{p \to +\infty} F(p) = 0$ et

$$\lim_{p \to +\infty} pF(p) = f(0^+)$$

Théorème 0.2 Théorème de la valeur finale

Si une fonction f de E_0 admet pour transformée de Laplace la fonction F et si $\lim_{t\to +\infty} f(t)$ existe et est finie, alors

$$\lim_{p\to 0} pF(p) = \lim_{t\to +\infty} f(t)$$

Définition 0.3 Produit de convolution

Soient f et g deux fonctions appartenant à E_0 .

On appelle produit de convolution (ou convolée) de f et g la fonction causale h notée f * g définie pour tout $t \in \mathbb{R}^+$ par :

$$h(t) = (f * g)(t) = \int_0^t f(x)g(t - x)dx$$

0.3 Dictionnaire d'images

Condition(s)	Fonction f	$\mathcal{L}(f) = F$
p > 0	$\mathcal{U}(t)$	$\frac{1}{p}$
p > 0	$t\mathcal{U}(t)$	$\frac{1}{p^2}$
p > 0	$t^n \mathcal{U}(t), n \in \mathbb{N}$	$\frac{\frac{1}{p^2}}{\frac{n!}{p^{n+1}}}$
$p > \mathcal{R}(a)$	$e^{-at}\mathcal{U}(t)$	$\frac{1}{p+a}$
p > 0	$(\cos(\omega t))\mathcal{U}(t)$	$\frac{p}{p^2 + \omega^2}$
p > 0	$(\sin(\omega t))\mathcal{U}(t)$	$\frac{\omega}{p^2 + \omega^2}$
$f \in E_0, \ p > \sigma(f)$	f(t)	F(p)
$g \in E_0, \ p > \sigma(g)$	g(t)	G(p)
$f \in E_0, \ p > \sigma(f), \ a > 0$	f(at)	$\frac{1}{a}F\left(\frac{p}{a}\right)$
$f \in E_0, \ p > \sigma(f), \ \tau > 0$	f(t- au)	$F(p)e^{-\tau p}$
$f \in E_0, \ p > \sigma(f) - a, \ a \in \mathbb{R}$	$f(t)e^{-at}$	F(p+a)
$f \in E_0, \ p > \sigma(f), \ f \in \mathcal{C}^0$	f'(t)	$pF(p) - f(0^+)$
$f \in E_0, \ p > \sigma(f), \ f \in \mathcal{C}^1$	f" (t)	$p^2F(p) - pf(0^+) - f'(0+)$
$f \in E_0, \ p > \sigma(f)$	$\int_0^t f(x)dx$	$\frac{F(p)}{p}$
$f \in E_0, \ p > \sigma(f)$	-tf(t)	$\frac{dF}{dp}(p)$
$(f,g) \in E_0^2, \ p > \max (\sigma(f), \sigma(g))$	$\lambda f(t) + \mu g(t)$	$\lambda F(p) + \mu G(p)$
$(f,g) \in E_0^2, \ p > \max (\sigma(f), \sigma(g))$	(f*g)(t)	$F(p) \times G(p)$
$f \in E, \ p > \sigma(f)$	$f_0(t)$	$F_0(p) = \mathcal{L}[f_0](p)$
f périodique de période T		
$f_0(t) = \begin{cases} f(t) \text{ si } t \in [0, T] \\ 0 \text{ sinon} \end{cases}$	f(t)	$F(p) = \mathcal{L}[f](p) = \frac{F_0(p)}{1 - e^{-pT}}$