Package 'RobustMetrics'

September 2, 2025

Type Package

2 FScore

Index 10

FScore F-Beta Score

Description

Compute the F-Beta Score.

Usage

```
FScore(
  actual = NULL,
  predicted = NULL,
  TP = NULL,
  FN = NULL,
  FP = NULL,
  TN = NULL,
  beta = 1
)
```

Arguments

```
actual A vector of actual values (1/0 or TRUE/FALSE)

predicted A vector of prediction values (1/0 or TRUE/FALSE)

TP Count of true positives (correctly predicted 1/TRUE)

FN Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)

FP Count of false positives (predicted 1/TRUE, but actually 0/FALSE)

TN Count of true negatives (correctly predicted 0/FALSE)

beta Beta squared is the weight of recall in harmonic mean
```

Details

Calculate the F-Beta Score. Provide either:

- actual and predicted or
- TP, FN, FP and TN.

Value

F-Beta Score.

References

Holzmann, H., Klar, B. (2024). Robust performance metrics for imbalanced classification problems. arXiv:2404.07661. LINK

MCC 3

Examples

```
actual <- c(1,1,1,1,1,1,0,0,0,0)

predicted <- c(1,1,1,1,0,0,1,0,0,0)

FScore(actual, predicted)

FScore(TP=4, FN=2, FP=1, TN=3)
```

MCC

Matthews correlation coefficient

Description

Compute Matthews correlation coefficient.

Usage

```
MCC(
   actual = NULL,
   predicted = NULL,
   TP = NULL,
   FN = NULL,
   FP = NULL,
   TN = NULL
)
```

Arguments

actual	A vector of actual values (1/0 or TRUE/FALSE)	
predicted	A vector of prediction values (1/0 or TRUE/FALSE)	
TP	Count of true positives (correctly predicted 1/TRUE)	
FN	Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)	
FP	Count of false positives (predicted 1/TRUE, but actually 0/FALSE)	
TN	Count of true negatives (correctly predicted 0/FALSE)	

Details

Calculate Matthews correlation coefficient. Provide either:

- actual and predicted or
- TP, FN, FP and TN.

Value

Matthews correlation coefficient.

4 rf.data

References

 $Holzmann, H., Klar, B. (2024). \ Robust performance metrics for imbalanced classification problems. \\ arXiv:2404.07661. \ \ LINK$

Examples

```
actual <- c(1,1,1,1,1,1,0,0,0,0)

predicted <- c(1,1,1,1,0,0,1,0,0,0)

MCC(actual, predicted)

MCC(TP=4, FN=2, FP=1, TN=3)
```

rf.data

Example Random Forest Data

Description

This dataset contains example data from a Random Forest model.

Usage

rf.data

Format

A data frame with 2 columns:

actual Actual values

predicted Predicted probabilities

Source

Full test data set using random forest classifier, see Section 6 in Reference.

References

 $Holzmann, H., Klar, B. (2024). \ Robust performance metrics for imbalanced classification problems. \\ arXiv: 2404.07661. \ LINK$

robFScore 5

Robust F-Beta Score

Description

Compute a robust version of the F-Beta Score.

Usage

```
robFScore(
  actual = NULL,
  predicted = NULL,
  TP = NULL,
  FN = NULL,
  FP = NULL,
  TN = NULL,
  beta = 1,
  d0 = 0.1
)
```

Arguments

actual	A vector of actual values (1/0 or TRUE/FALSE)	
predicted	A vector of prediction values (1/0 or TRUE/FALSE)	
TP	Count of true positives (correctly predicted 1/TRUE)	
FN	Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)	
FP	Count of false positives (predicted 1/TRUE, but actually 0/FALSE)	
TN	Count of true negatives (correctly predicted 0/FALSE)	
beta	Beta squared is the weight of recall in the harmonic mean	
d0	Weight of the estimated true positive probability in the harmonic mean	

Details

Calculate the robust F-Beta Score F_{β,d_0} with two parameters. Provide either:

- actual and predicted or
- TP, FN, FP and TN.

If $d_0=0$, the robust F-Beta Score coincides with the F-Beta Score.

Value

robust F-Beta Score.

6 robFScore2

References

 $Holzmann, H., Klar, B. (2024). \ Robust performance metrics for imbalanced classification problems. arXiv: 2404.07661. \ \ LINK$

Examples

```
actual <- c(1,1,1,1,1,1,0,0,0,0)
predicted <- c(1,1,1,1,0,0,1,0,0,0)
robFScore(actual, predicted, beta=1, d0=0.1)
robFScore(TP=4, FN=2, FP=1, TN=3, beta=1, d0=1)</pre>
```

robFScore2

General robust F-Beta Score

Description

Compute a robust version of the F-Beta Score with two additional parameters.

Usage

```
robFScore2(
  actual = NULL,
  predicted = NULL,
  TP = NULL,
  FN = NULL,
  TN = NULL,
  TN = NULL,
  d1 = 1,
  d0 = 0.1,
  c = 1
)
```

Arguments

actual	A vector of actual values (1/0 or TRUE/FALSE)	
predicted	A vector of prediction values (1/0 or TRUE/FALSE)	
TP	Count of true positives (correctly predicted 1/TRUE)	
FN	Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)	
FP	Count of false positives (predicted 1/TRUE, but actually 0/FALSE)	
TN	Count of true negatives (correctly predicted 0/FALSE)	
d1	Weight of recall in the harmonic mean (corresponds to beta squared)	
d0	Weight of the estimated true positive probability in the harmonic mean	
С	Additional parameter in numerator	

robMCC 7

Details

Calculate the robust F-Beta Score F_{rb} with two additional parameters. Provide either:

- actual and predicted or
- TP, FN, FP and TN.

If $d_1 = \beta^2$, $d_0 = c = 0$, the robust F-Beta Score coincides with the F-Beta Score.

Value

robust F-Beta Score with two additional parameters.

References

Holzmann, H., Klar, B. (2024). Robust performance metrics for imbalanced classification problems. arXiv:2404.07661. LINK

Examples

```
actual <- c(1,1,1,1,1,0,0,0,0)
predicted <- c(1,1,1,1,0,0,1,0,0,0)
robFScore2(actual, predicted, d0 = 0.1, c = 0.1)
robFScore2(TP=4, FN=2, FP=1, TN=3, d0 = 0.1, c = 1)
```

robMCC

Robust Matthews correlation coefficient

Description

Compute a robust version of Matthews correlation coefficient (MCC).

Usage

```
robMCC(
   actual = NULL,
   predicted = NULL,
   TP = NULL,
   FN = NULL,
   FP = NULL,
   TN = NULL,
   d = 0.1
)
```

8 ROC_curve

Arguments

actual	A vector of actual values (1/0 or TRUE/FALSE)	
predicted	A vector of prediction values (1/0 or TRUE/FALSE)	
TP	Count of true positives (correctly predicted 1/TRUE)	
FN	Count of false negatives (predicted 0/FALSE, but actually 1/TRUE)	
FP	Count of false positives (predicted 1/TRUE, but actually 0/FALSE)	
TN	Count of true negatives (correctly predicted 0/FALSE)	
d	Parameter of the robust MCC	

Details

Calculate the robust MCC. Provide either:

- actual and predicted or
- TP, FN, FP and TN.

If d = 0, the robust MCC coincides with the MCC.

Value

robust MCC.

References

 $Holzmann, H., Klar, B. (2024). \ Robust performance metrics for imbalanced classification problems. arXiv: 2404.07661. \ \ LINK$

Examples

```
actual <- c(1,1,1,1,1,1,0,0,0,0)
predicted <- c(1,1,1,1,0,0,1,0,0,0)
robMCC(actual, predicted, d=0.05)
robMCC(TP=4, FN=2, FP=1, TN=3, d=0.05)</pre>
```

ROC_curve	ROC curve

Description

Plot ROC curve together with recall / 1-precision curve.

Usage

```
ROC_curve(actual, predicted, d = c(0.01, 0.05, 0.1, 0.5))
```

ROC_curve 9

Arguments

actual A vector of actual values (1/0 or TRUE/FALSE)

predicted A vector of predicted probabilities (numeric values in [0,1])

d A vector of length 4

Details

Instead of a precision-recall curve, a recall / 1-precision curve is plotted in the same coordinate system as the ROC curve.

Grey circles show the corresponding MCC optimal points; black symbols show points optimal with respect to the robust MCC for different values of d.

Value

ROC curve.

References

 $Holzmann, H., Klar, B. (2024). \ Robust performance metrics for imbalanced classification problems. \\ arXiv: 2404.07661. \ LINK$

Examples

```
actual <- rf.data[, 1]
predicted <- rf.data[, 2]
ROC_curve(actual, predicted, d=c(0.01,0.02,0.1,0.5))</pre>
```

Index

```
* datasets
rf.data, 4
FScore, 2
MCC, 3
rf.data, 4
robFScore, 5
robFScore2, 6
robMCC, 7
ROC_curve, 8
```