Homework 5

ALECK ZHAO

February 28, 2017

1. Suppose that $R = \prod_{i=1}^{m} R_i$ is a product of rings. If M_i is an R_i module for each i, then $\bigoplus_{i=1}^{m} M_i$ is naturally an R-module, via the rule

$$(r_1,\cdots,r_m)\cdot(x_1,\cdots,x_m)=(r_1x_1,\cdots,r_mx_m)$$

For $i = 1, \dots, m$, let $e_i \in R$ be the tuple whose *i*th entry is 1_R , and whose other entries are all 0. Define the submodule $M_i := e_i M$. Show that M_i is naturally an R_i -module, and that $M = \bigoplus_{i=1}^m M_i$.

2. Let R be a PID, let $d \in R$ be a nonzero nonunit, and let $d \sim p_1^{k_1} \cdots p_m^{k_m}$ be a prime factorization of d, where p_1, \cdots, p_k are pairwise non-associated prime elements and $k_i > 0$ for all i. Show that the canonical homomorphism

$$R \to \prod_{i=1}^{m} R/\left\langle p_i^{k_i} \right\rangle$$
$$r \mapsto \left(r + \left\langle p_1^{k_1} \right\rangle, \dots, r + \left\langle p_m^{k_m} \right\rangle \right)$$

induces an isomorphism $R/\left\langle d\right\rangle \cong\prod_{i=1}^{m}R/\left\langle p_{i}^{k_{i}}\right\rangle .$

- 3. Keep the notation of Problem 2. Let M be an R-module such that dM=0. By the paragraph preceding Theorem 7, Section 7.1, $M/dM\cong M$ is naturally an $R/\langle d\rangle$ -module. Hence by Problem 2, M is naturally an $R/\langle p_1^{k_1}\rangle \times \cdots \times R/\langle p_m^{k_m}\rangle$ -module. Let $M=\bigoplus_{i=1}^m M_i$ be the corresponding direct sum decomposition obtained from Problem 1.
 - (a) Show that $M_i = p_i M$ as submodules of M for all i.
 - (b) Show that if $\langle d \rangle = \operatorname{ann}(M)$, then $p_i M \neq 0$ for all i.