Claims

We claim:

5

1. A batch or continuous process for the polymerization of olefins, comprising contacting one or more monomers selected from compounds of the formula RCH=CHR¹ with a Group 8-10 transition metal complex of a ligand of the formula VI, XII, IX, XIII, XIV, XV, or XXII and optionally a Bronsted or Lewis acid,

10

15

wherein R and R^1 are independently H, hydrocarbyl, fluoroalkyl, or R and R^1 may be linked to form a cyclic olefin,

XXII

R³ is hydrocarbyl or substituted hydrocarbyl;

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl,

R⁵ is hydrocarbyl or substituted hydrocarbyl;

Z is O or S,

705820 - 85 -

U is $-OR^{10}$, $-SR^{10}$, $-SeR^{10}$ or $-NR^{10}R^8$, wherein R^{10} and R^8 are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R^{10} and R^8 may collectively form a ring with nitrogen;

G¹ is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G¹, C, and N;

G² is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G², V, N, and N;

V is -CR⁶, N, or -PR⁶R⁹; wherein, R⁶ and R⁹ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, silyl or heteroatom connected hydrocarbyl, and in addition, R⁶ and R⁹ may collectively form a ring with phosphorus;

 Ω is hydrocarbyl or substituted hydrocarbyl; and, n is an integer between 2 and 6.

2. The process of claim 1 wherein the monomer of the formula RCH=CHR¹ is selected from ethylene, propylene, 1-butene, 1-hexene, and 1-octene.

3. The process of claim 1 wherein the group 8-10 transition metal is nickel.

4. The process of claim 3 wherein a Lewis acid is used, and said Lewis acid is methylaluminoxane.

25

5

10

15

10

5. The process of claim 4 wherein the ligand of formula **VI** is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

 R^4 is H, hydrocarbyl, substituted hydrocarbyl, or silyl;

 R^5 , R^6 and R^{11} are independently H, hydrocarbyl, or substituted hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or NO₂.

6. The process of claim 5 wherein the ligand of formula **VI** is selected from:

$$R^4$$
 and R^4 R^{11} R^3 R

10

wherein R³ is hydrocarbyl or substituted hydrocarbyl;
R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl; and,
R⁵ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl.

7. The process of claim 6 wherein the ligand of formula VI is

wherein ${\rm Ar}^1$ is 2,6-dimethylphenyl or 2,6-diisopropylphenyl; and, ${\rm Ar}^2$ is phenyl or 1-naphthyl.

8. The process of claim 4 wherein the ligand of formula **XII** is selected from:

10

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

R⁵, R⁶ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or -NO₂.

9. The process of claim 8 wherein the ligand of formula **XII** is selected from:

$$R^3$$
 N and R^{11} R^3 N R^5

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen,

 $\ensuremath{\mathsf{R}}^5$ and $\ensuremath{\mathsf{R}}^{11}$ are independently H, hydrocarbyl, or substituted hydrocarbyl.

10

10. The process of claim 4 wherein the ligand of formula **IX** is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

R¹¹ is hydrocarbyl, or substituted hydrocarbyl;

U is $-OR^{10}$, $-SR^{10}$, $-SeR^{10}$ or $-NR^{10}R^8$, wherein R^{10} and R^8 are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R^{10} and R^8 may collectively form a ring with nitrogen, and

Z is oxygen or sulfur.

11. The process of claim 4 wherein the ligand is of formula XXII and Ω is selected from

10

15

12 The process of claim 11 wherein the ligand of formula XXII is selected from

wherein, R³ is 2,6-disubstituted phenyl.

- 13. A process for the polymerization of olefins comprising contacting one or more monomers of the formula RCH=CHR¹ with a binucleating or multinucleating ligand complexed to a Group 8-10 transition metal M and one or more Lewis acids, wherein the Lewis acid or acids are bound to one or more heteroatoms which are π -conjugated to the donor atom or atoms bound to the transition metal M; and R and R¹ are each, independently selected from hydrogen, hydrocarbyl, fluoroalkyl, or may be linked to form a cyclic olefin.
 - 14. The process of Claim 13 wherein the transition metal M is nickel
- 15. The process of Claim 14 wherein the Lewis acid is a boron or aluminum containing Lewis acid.
 - 16. The process of claim 4 wherein the polymerization is conducted in an inert solvent

- 17. The process of claim 5, 8, 10 or 11 wherein the polymerization is conducted in an inert solvent.
- 18. The process of claim 4 wherein the transition metal olefin polymerization catalyst system is attached to a solid support.
 - 19. The process of claim 5, 8, 10, or 11 wherein the transition metal olefin polymerization catalyst system is attached to a solid support.
- 20. The process of claim 18 wherein the polymerization is conducted in an inert solvent.
 - 21. The process of claim 19 wherein the polymerization is conducted in an inert solvent.
 - 22. The process of claim 18 wherein the polymerization is conducted in the gas phase.
 - 23. The process of claim 19 wherein the polymerization is conducted in the gas phase.
 - 24. An olefin polymerization catalyst comprising (a) a Group 8-10 transition metal, (b) a ligand of the formula VI, XII, IX, XIII, XIV, XV, or XXII and optionally (c) a Bronsted or Lewis acid,

20

$$\begin{array}{c|c}
 & R^3 \\
 & N \\
 & N$$

wherein R³ is hydrocarbyl or substituted hydrocarbyl; R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl; R⁵ is hydrocarbyl or substituted hydrocarbyl; Z is O or S;

10

15

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen.

G¹ is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G¹, C, and N;

 G^2 is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising $G^2 \ V \ N$, and N;

10

15

V is -CR⁶, N, or -PR⁶R⁹; wherein, R⁶ and R⁹ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, silyl or heteroatom connected hydrocarbyl, and in addition, R⁶ and R⁹ may collectively form a ring with phosphorus;

 Ω is hydrocarbyl or substituted hydrocarbyl; and, n is an integer between 2 and 6.

- 25. The catalyst of claim 24 wherein the Group 8-10 transition metal is Ni.
- 26. The catalyst of claim 25 wherein a Lewis acid is used, and said Lewis acid is methylaluminoxane
- 27. The catalyst of claim 26 wherein the ligand of formula **VI** is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl;

R⁵, R⁶ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or NO₂.

28. The catalyst of claim 27 wherein the ligand of formula **VI** is selected from:

$$R^4$$
 N
 N
and
 R^4
 R^3
 N
 N
 N
 R^3
 N

10

5

wherein R^3 is nydrocarbyl or substituted hydrocarbyl; R^4 is H, hydrocarbyl, substituted hydrocarbyl, or silyl; and. R^5 and R^{11} are independently H, hydrocarbyl, or substituted

R³ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl.

15

29. The catalyst of claim 28 wherein the ligand of formula VI is

$$Ar^{2} \longrightarrow N$$

$$Ar^{1} \longrightarrow N$$

$$Ar^{1} \longrightarrow N$$

$$Ar^{1} \longrightarrow N$$

wherein Ar^{1} is 2,6-dimethylphenyl or 2,6-diisopropylphenyl, and Ar^{2} is phenyl or 1-naphthyl.

20

30 The catalyst of claim 26 wherein the ligand of formula **XII** is selected from

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

 R^5 , R^6 and R^{11} are independently H, hydrocarbyl, or substituted hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or -NO₂.

10

5

31 The catalyst of claim 30 wherein the ligand of formula **XII** is selected from:

$$R^3$$
 N and R^{3-} N N R^{11} R^{3-} N N R^{5-}

wherein R³ is hydrocarbyl or substituted hydrocarbyl.

15

U is $-OR^{10}$, $-SR^{10}$, $-SeR^{10}$ or $-NR^{10}R^8$, wherein R^{10} and R^8 are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R^{10} and R^8 may collectively form a ring with nitrogen.

R⁵ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl.

32. The catalyst of claim 26 wherein the ligand of formula **IX** is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

R¹¹ is hydrocarbyl or substituted hydrocarbyl;

U is $-OR^{10}$, $-SR^{10}$, $-SeR^{10}$ or $-NR^{10}R^8$, wherein R^{10} and R^8 are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R^{10} and R^8 may collectively form a ring with nitrogen, and

Z is oxygen or sulfur.

33. The catalyst of claim 26 wherein the ligand is of formula **XXII** and Ω is selected from:

34. The catalyst of claim 33 wherein the ligand of formula **XXII** is selected from:

wherein, R³ is 2,6-disubstituted phenyl.

35. A composition comprising (a) a group 8-10 transition metal M. (b) one or more Lewis acids, and (c) a binucleating or multinucleating ligand of the formula VI

$$R^4$$
 N
 $N=V$

5

wherein the Lewis acid or acids are bound to one or more heteroatoms which are π -conjugated to the donor atoms bound to the transition metal M;

R³ is hydrocarbyl or substituted hydrocarbyl;

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl:

10

G² is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G², V, N and N,

15

V is -CR⁶, N, or -PR⁶R⁹; wherein, R⁶ and R⁹ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, silyl or heteroatom connected hydrocarbyl, and in addition, R⁶ and R⁹ may collectively form a ring with phosphorus.

36. The composition of claim 35 wherein the transition metal M is Ni(II), and the Lewis acid is a boron or aluminum containing acid.

20

37 The composition of claim 36 wherein the compound of formula **VI** is selected from:

wherein the Lewis acid or acids are bound to one or more heteroatoms which are π -conjugated to the donor atom or atoms bound to the transition metal M;

R³ is hydrocarbyl or substituted hydrocarbyl;

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl;

 ${\sf R}^{\sf S}$ and ${\sf R}^{\sf G}$ are independently H, hydrocarbyl, or substituted

10 hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or -NO₂.

38. The composition of claim 37 wherein the ligand of formula VI is

$$R^4$$
 N
 N

wherein R³ is hydrocarbyl or substituted hydrocarbyl; and, R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl.

$$Ar^{2}$$
 N
 N
 N

wherein Ar¹ is 2,6-dimethylphenyl or 2,6-diisopropylphenyl; and, Ar² is phenyl or 1-naphthyl.

5

10

- 40. The catalyst of claim 24 wherein the catalyst is attached to a solid support.
- 41. The catalyst of claim 27 wherein the catalyst is attached to a solid support.
 - 42. The catalyst of claim 30 wherein the catalyst is attached to a solid support.
- 43. The catalyst of claim 32 wherein the catalyst is attached to a solid support.
 - 44. The catalyst of claim 33 wherein the catalyst is attached to a solid support.