Bài tập Hàm số lượng giác - Toán 11

I. Bài tập trắc nghiệm

Bài 1. Hàm số:

$$y = \sqrt{\frac{cosx-1}{3+sinx}}$$

có tập xác định là:

A. R

B. $R\setminus\{k2\pi, k\in Z\}$.

C. $\{k2\pi, k \in Z\}$.

D. Ø

Lời giải:

Với mọi x thì:

$$\sin x \ge -1 \Rightarrow \sin x + 3 \ge 2 > 0$$

Do đó, hàm số đã cho xác định khi và chỉ khi

$$\cos x - 1 \ge 0 \Leftrightarrow \cos x = 1$$

$$\Leftrightarrow$$
 x= k2 π (k \in Z)

Chọn đáp án C

Bài 2. Hàm số $y = \sin x \cos 2x$ là:

A. Hàm chẵn.

B. Hàm không có tính chẵn, lẻ.

C. Hàm không có tính tuần hoàn.

D. Hàm lẻ.

Lời giải:

Do y= sinx là hàm lẻ, y=cos2x là hàm chẵn Nên hàm số y= sinx cos2x là hàm lẻ

Chọn đáp án D

Bài 3. Hàm số $y = \frac{\tan 3x}{\sin^3 x}$ thỏa mãn tính chất nào sau đây?

- A. Hàm chẵn.
- B. Hàm không có tính chẵn, lẻ.
- C. Xác định trên R.
- D. Hàm lẻ.

Lời giải:

Do y=sinx

nên y= sin³x là hàm lẻ và y=tan3x là hàm lẻ

nên y=
$$\frac{tan_{3x}}{sin_{3x}}$$
 là hàm số chẵn

Chú ý: có thể kiểm tra trực tiếp hai điều kiện

$$\begin{cases} \forall x \in D \to -x \in D \\ f(-x) = f(x) \end{cases}$$

Để thấy hàm số $y=f(x)=\frac{tan_3x}{sin_3x}$ là hàm chẵn

Chọn đáp án A

Bài 4. Trong các hàm số sau, hàm số nào là hàm lẻ?

A.
$$y = \sin 2x$$

B. $y = \sin 2x.\cos x$.

C.
$$y = \frac{\tan x}{\cos x}$$

D.
$$y = \frac{\cot x}{\sin x}$$

Lời giải:

Do y=tanx là hàm lẻ

y=cosx là hàm chẵn

Nên hàm số
$$y = \frac{\tan x}{\cos x}$$
 là hàm lẻ

Chọn đáp án C

Bài 5. Trong các hàm số sau, hàm số nào là hàm chẵn?

$$y = \frac{\tan 2x}{\tan^2 x + 1}$$

B.
$$y = sinx.cos2x$$

C.
$$y = \cos x \cdot \sin^2 x$$

D.
$$y = \cos x \sin 3x$$
.

Lời giải:

Do $y = \sin^2 x$ và $y = \cos x$ là hàm chẵn nên hàm số $y = \cos x$. $\sin^2 x$ là hàm chẵn.

Chọn đáp án C

Bài 6. Hàm số $y = \frac{\cos x}{(2\sin x - \sqrt{3})}$ có tập xác định là:

A.
$$R \setminus \{\frac{\pi}{3} + k2\pi, k \in Z\}$$
.

B.
$$R \setminus \{\frac{\pi}{6} + k\pi, k \in Z\}$$
.

C. R\{
$$\frac{\pi}{6}$$
+k2 π , $\frac{5\pi}{6}$ +k2 π , k \in Z}.

$$D.\ R\backslash \{\frac{\pi}{3} + k2\pi, \, \frac{2\pi}{3} + k2\pi, \, k\in Z\}.$$

Lời giải:

Hàm số $y = \frac{\cos x}{2\sin x - \sqrt{3}}$ xác định khi:

$$2\sin x - \sqrt{3} \neq 0 \Leftrightarrow \sin x \neq \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \begin{bmatrix} x \neq \frac{\pi}{3} + k2\pi \\ 2\pi \\ x \neq \frac{2\pi}{3} + k2\pi \end{bmatrix}, k \in Z$$

Chọn đáp án D

Bài 7. Hàm số $y = \tan \frac{x}{2} - \frac{\pi}{4}$ có tập xác định là:

A.
$$R\setminus\{\frac{\pi}{2}+k2\pi, k\in Z\}$$
.

B.
$$R \setminus \{\frac{\pi}{2} + k\pi, k \in Z\}$$
.

C.
$$\mathbb{R}\setminus\{\frac{3\pi}{2}+k2\pi, k\in\mathbb{Z}\}.$$

D. R.

Ta có:

y= tan
$$\left(\frac{x}{2} - \frac{\pi}{4}\right) = \frac{\sin\left(\frac{x}{2} - \frac{\pi}{4}\right)}{\cos\left(\frac{x}{2} - \frac{\pi}{4}\right)}$$
,

Nên hàm số xác định khi:

$$\cos\left(\frac{x}{2} - \frac{\pi}{4}\right) \neq 0 \Leftrightarrow \frac{x}{2} - \frac{\pi}{4} \neq \frac{\pi}{2} + k \pi; \ k \in \mathbb{Z}$$
$$\Leftrightarrow \frac{x}{2} \neq \frac{3\pi}{4} + k \pi \Leftrightarrow x \neq \frac{3\pi}{2} + k 2\pi$$

Chọn đáp án C

Bài 8. Tập xác định của hàm số $y = \cot(2x - \frac{\pi}{3}) + 2$ là:

$$A.\ R\backslash\{\frac{\pi}{6}+k\pi,\,k\in Z\}.$$

B.
$$R \setminus \{\frac{\pi}{6} + k2\pi, k \in Z\}$$
.

C.
$$R \setminus \{\frac{5\pi}{12} + \frac{k\pi}{2}, k \in Z\}$$

D.
$$\mathbb{R}\setminus\{\frac{\pi}{6}+\frac{k\pi}{2}, k\in\mathbb{Z}\}.$$

Lời giải:

Hàm số y=
$$\cot\left(2x - \frac{\pi}{3}\right) + 2$$
 xác định

Khi và chỉ khi
$$\sin\left(2x - \frac{\pi}{3}\right) \neq 0$$

$$\Leftrightarrow 2x - \frac{\pi}{3} \neq k\pi \ (k \in Z)$$

$$\Leftrightarrow 2x \neq \frac{\pi}{3} + k\pi \Leftrightarrow x \neq \frac{\pi}{6} + \frac{k\pi}{2}$$

Chọn đáp án D

Bài 9. Hàm số:

$$y = \sqrt{\frac{1 - cosx}{1 - sinx}}$$

có tập xác định là:

A. $R\setminus\{k\pi, k\in Z\}$.

B.
$$\mathbb{R}\setminus\{\frac{\pi}{2}+\pi, k\in\mathbb{Z}\}.$$

C.
$$\mathbb{R}\setminus\{\frac{\pi}{2}+k2\pi, k\in\mathbb{Z}\}$$

D.
$$\mathbb{R}\setminus\{\frac{k\pi}{2}, k\in\mathbb{Z}\}.$$

Lời giải:

$$Do \begin{cases} 1 - sinx \ge 0 \\ 1 - cosx > 0 \end{cases}$$

Nên hàm số y=
$$\sqrt{\frac{1-cosx}{1-sinx}}$$
 xác định

Khi 1-sinx $\neq 0$

$$\Leftrightarrow \sin x \neq 1 \Leftrightarrow x \neq \frac{\pi}{2} + k2\pi \ (k \in Z)$$

Chọn đáp án C

Bài 10. Cho hàm số
$$y = \frac{\sin x}{1 + \tan x}$$
 và $k \in Z$.

Khoảng nào dưới đây không nằm trong tập xác định của hàm số?

A.
$$\left(-\frac{\pi}{2} + k2\pi; \frac{\pi}{2} + k2\pi\right)$$
.

B.
$$\left(\pi + k2\pi; \ 3\frac{\pi}{2} + k2\pi\right)$$
.

C.
$$(3\frac{\pi}{4} + k2\pi; 3\frac{\pi}{2} + k2\pi)$$

D.
$$(\frac{\pi}{2} + k2\pi; 3\frac{\pi}{4} + k2\pi)$$
.

Lời giải:

Hàm số
$$y = \frac{sinx}{1+tanx}$$
 xác định

$$\operatorname{Khi} \left\{ \begin{matrix} \cos x \neq 0 \\ 1 + \tan x \neq 0 \end{matrix} \right. \leftrightarrow \left\{ \begin{matrix} x \neq \frac{\pi}{2} + k\pi \\ x \neq -\frac{\pi}{4} + k\pi \end{matrix} \right.$$

Do khoảng
$$\left(\frac{-\pi}{2} + k2\pi; \frac{\pi}{2} + k2\pi\right)$$
 có chứa $\frac{-\pi}{4} + k2\pi$

Nên khoảng này không nằm trong tập xác định của hàm số

II. Bài tập tự luận có lời giải

Bài 1: Giá trị nhỏ nhất của hàm số $y = 3 - 4\sin^2 x \cos^2 x$ là:

Lời giải:

Ta có:

$$y = 3 - 4.\sin^2 x.\cos^2 x$$

= 3 - (2.\sin x.\cosx)^2 = 3 - \sin^2 2x

Với mọi x ta có:

$$0 \le \sin^2 2x \le 1 \iff 3 \ge 3 - \sin^2 2x \ge 2$$

Vậy giá trị nhỏ nhất của hàm số đã cho là 2

Bài 2: Hàm số $y = 1-\cos 2x$ có chu kì là:

Lời giải:

Tập xác định của hàm số đã cho là R mà $\cos^2 x$ có chu kì là π nên y= $\sqrt{1-\cos^2 x}$ cũng có chu kì là π

Bài 3:Hai hàm số nào sau đây có chu kì khác nhau?

Hàm số sinx có chu kì là 2π , hàm số tanx có chu kì là π

Vậy hai hàm số $y = \sin x$ và $y = \tan x$ có chu kì khác nhau.

Bài 4: Chu kì của hàm số $y = 2\sin(2x + \frac{\pi}{3}) - 3\cos(2x - \frac{\pi}{4})$ là:

Lời giải:

Chu kì của hàm số:

$$y = 2\sin\left(2x + \frac{\pi}{3}\right)$$
 là $T_1 = \frac{2\pi}{2} = \pi$

Chu kì của hàm số:

$$y = 3\cos\left(2x - \frac{\pi}{4}\right) \text{ là } T_2 = \frac{2\pi}{2} = \pi$$

Do đó, hàm số đã cho có chu kì $T=\pi$

Bài 5: Chu kì của hàm số $y = \sin^2 x - 2\cos^3 x$ là:

Lời giải:

Chu kì của hàm số y=sin²x là π , chu kì của hàm số y=cos³x là ($\frac{2\pi}{3}$ nên chu kì của hàm số đã cho là 2π

Bài 6: Trong các hàm số sau, hàm số nào không là hàm chẵn và cũng không là hàm lẻ?

Lời giải:

Xét phương án B:

$$y = \sqrt{2}\sin\left(x - \frac{\pi}{4}\right) = \sin x - \cos x$$

Tập xác định: D= R; $\forall x \in D \implies -x \in D$

$$f(-x) = \sin(-x) - \cos(-x) = -\sin x - \cos x$$
$$-f(x) = -\sin x - \cos x$$

$$\Rightarrow f(x) \neq f(-x); f(-x) \neq -f(x)$$

Do đó, hàm số đã cho không là hàm chẵn và cũng không phải là hàm lẻ

Bài 7: Hàm số $y = (\sin x + \cos x)^2 + \cos 2x$ có giá trị lớn nhất là:

Lời giải:

Ta có:

$$y = (\sin x + \cos x)^2 + \cos 2x$$

$$= \sin^2 x + \cos^2 x + 2\sin x \cdot \cos x + \cos 2x$$

$$=1+\sin 2x+\cos 2x$$

$$=1+\sqrt{2}\sin\left(2x+\frac{\pi}{4}\right)\leq 1+\sqrt{2}$$

Vì với mọi x thì $\sin\left(2x + \frac{\pi}{4}\right) \le 1$

$$\Leftrightarrow \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right) \leq \sqrt{2}$$

Suy ra hàm số có giá trị lớn nhất là $1 + \sqrt{2}$

Bài 8: Hàm số $y = \sqrt{3} \sin x - \cos x$ có giá trị nhỏ nhất là:

Cách 1:

Áp dụng bất đẳng thức bunhia- xcopski

Ta có:

$$(\sqrt{3}\sin x - \cos x)^2 \le \left[(\sqrt{3})^2 + (-1)^2 \right] \cdot (\sin^2 x + \cos^2 x) = 2$$
$$\Rightarrow -2 \le \sqrt{3}\sin x - \cos x \le 2$$

Cách 2:

Ta có:

$$y = \sqrt{3}\sin x - \cos x = 2 \cdot \left(\frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cdot\cos x\right)$$
$$= 2 \cdot \left(\cos\frac{\pi}{6}\cdot\sin x - \sin\frac{\pi}{6}\cdot\cos x\right)$$
$$= 2 \cdot \sin\left(x - \frac{\pi}{6}\right) \Rightarrow -2 \le 2 \cdot \sin\left(x - \frac{\pi}{6}\right) \le 2$$

Vậy giá trị nhỏ nhất của hàm số đã cho là -2.

Bài 9: Cho hàm số $y = \frac{\cos x - 1}{\cos x + 2}$. Mệnh đề nào trong số các mệnh đề sau đây là sai?

Lời giải:

Hàm số y=
$$f_1 = \cos x - 1$$
 có chu kì $T_1 = 2\pi$

Hàm số
$$y = f_2 = \cos x + 2$$
 có chu kì $T_2 = 2\pi$

Do đó, hàm số
$$y = \frac{\cos x - 1}{\cos x + 2}$$
 có chu kì $T = 2\pi$

Vậy D sai .

Bài 10: Hàm số nào sau đây có giá trị lớn nhất bằng 2?

Các hàm số y= tanx- cotx và y= 2tanx không có giá trị lớn nhất, hàm số y= $\frac{\sin(2x-\frac{\pi}{4})}{\sin(2x-\frac{\pi}{4})}$ có giá trị lớn nhất là 1

Cũng có thể nhận ngay ra đáp án C vì:

$$y = \sqrt{2} (\cos x - \sin x) = 2\sin(\frac{\pi}{4} - x)$$

III. Bài tập vận dụng

Bài 1 Hãy xác định các giá trị của x trên đoạn $[-\pi; \frac{3\pi}{2}]$ để hàm số y = tanx

- a) Nhận giá trị bằng 0
- b) Nhận giá trị bằng 1
- c) Nhận giá trị dương
- d) Nhận giá trị âm.

Bài 2 Tìm tập xác định của các hàm số:

a)
$$y = \frac{1 + cosx}{sinx}$$
; b) $y = \sqrt{\frac{1 + cosx}{1 - cosx}}$; c) $y = tan(x - \frac{\Pi}{3})$; d) $y = cot(x + \frac{\Pi}{6})$

Bài 3 Dựa vào đồ thị hàm số $y = \sin x$, hãy vẽ đồ thị của hàm số $y = |\sin x|$.

Hướng dẫn giải bài 3:

$$\text{Ta c\'o} \ \left| sinx \right| = \left\{ \begin{array}{l} sinx, sinx \geq 0 \\ -sinx, sinx \leq 0. \end{array} \right.$$

Mà $\sin x < 0 \Leftrightarrow x \in (\pi + k2\pi, 2\pi + k2\pi)$, $k \in Z$ nên lấy đối xứng qua trục Ox phần đồ thị của hàm số $y = \sin x$ trên các khoảng này còn giữ nguyên phần đồ thị hàm số $y = \sin x$ trên các đoạn còn lại ta được đồ thị của hàm số $y = \sin x$

Bài 4 Chứng minh rằng $\sin 2(x + k\pi) = \sin^2 x$ với mọi số nguyên k. Từ đó vẽ đồ thị hàm số $y = \sin^2 x$

Bài 5 Dựa vào đồ thị hàm số $y = \cos x$, tìm các giá trị của x để $\cos x = \frac{1}{2}$

Bài 6 Dựa vào đồ thị hàm số $y = \sin x$, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.

Bài 7 Hãy xác định các giá trị của x trên đoạn $[-\pi; \frac{3\pi}{2}]$ để hàm số y=tanx

- a) Nhận giá trị bằng 0.
- b) Nhận giá trị bằng 1.
- c) Nhận giá trị dương.
- d) Nhận giá trị âm.

Bài 8 Tìm tập xác định của hàm số

a)
$$y = \frac{1 + \cos x}{\sin x}$$
.

b)
$$y = \sqrt{\frac{1 + \cos x}{1 - \cos x}}$$

c)
$$y = \tan(x - \frac{\pi}{3})$$
.

d)
$$y = \cot(x + \frac{\pi}{6})$$
.

Bài 9 Dựa vào đồ thị hàm số $y = \sin x$, hãy vẽ đồ thị của hàm số $y = |\sin x|$

Bài 10 Chứng minh rằng $\sin 2(x+k\pi)=\sin^2 x$ với mọi số nguyên k. Từ đó vẽ đồ thị hàm số $y=\sin^2 x$.