EL6463 Advanced Hardware Design

Midterm

Name: Chen Shen

netID: cs5236

FSM Diagram

Corner Cases

Case 1 (Functional Simulation)

Case 1 (Timing Simulation)

The first case shows the function of reset.

As is said in the specification, when the reset signal is LOW, the counter should output 1, which can be seen in the figure.

Besides, since reset is synchronous, we can see that the counter will change only at a rising edge of clock signal clk.

Case 2 (Functional Simulation)

Case 2 (Timing Simulation)

The second case also shows a part of synchronous feature.

We can see that reset is LOW within a clock period. Because it is synchronous, nothing happened to the output signal counter at that moment.

Case 3 (Functional Simulation)

Case 3 (Timing Simulation)

The third case shows the behavior when UP changes.

From the figures, we can find the counter began counting down after UP is LOW. This also happened at the rising edge of clock signal.

Case 4 (Functional Simulation)

Case 4 (Timing Simulation)

The last case is just the result when normally working.

We can see that if it counted down to 1, it would start from 9 again, which meets the specification.

Function Simulation

Timing Simulation

I also put the figures of the whole simulation to show the tabs of function and timing.

In this project, since there is not so much computation, they seem to be similar to each other.

Resource Utilization

Since the down counter shares a common basic architecture with the up counter, they have the same resource utilization.

	Synthesis stage	Place and Route stage
LUT and FF pairs usage	26 LUTs and 41 FFs	6
IOB usage	24	23
RAM/DSP blocks used (if any)	0	0

Speed of the design

Setup Ho		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.548 ns	Worst Hold Slack (WHS):	0.114 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Falling Endpoints:	0	Number of Falling Endpoints:	0	Number of Falling Endpoints:	0
Total Number of Endpoints	58	Total Number of Endpoints	58	Total Number of Endpoints	30

Critical path delay: 4.452 ns Maximum clock frequency: 224.618 Hz