From the recursion, we obtain $a_0 = 1$, so we have the following equation:

$$a_n = (1 - 2p)a_{n-1} + p,$$
 with $a_0 = 1$.

This recursion is in the form given in problem 6 ($\alpha = 1 - 2p$, $\beta = p$), so we obtain

$$a_n = (1 - 2p)^n + p \left(\frac{1 - (1 - 2p)^n}{2p} \right)$$
$$= \frac{1 + (1 - 2p)^n}{2}.$$

14.2 End of Chapter Problems

- 1. Solve the following recurrence equations, that is, find a closed form formula for a_n .
 - (a) $a_n = 2a_{n-1} \frac{3}{4}a_{n-2}$, with $a_0 = 0, a_1 = -1$.
 - (b) $a_n = 4a_{n-1} 4a_{n-2}$, with $a_0 = 2, a_1 = 6$.
- 2. I toss a biased coin n times. Let P(H) = p and let $a_{n,k}$ be the probability that I observe k heads.
 - (a) By conditioning, on the last coin toss, show that $a_{n+1,k+1} = p \cdot a_{n,k} + (1-p) \cdot a_{n,k+1}$.
 - (b) Using part (a), prove that for $0 \le k < n$, we have $\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$.
- 3. * You toss a biased coin repeatedly. If P(H) = p, what is the probability that two consecutive Hs are observed before we observe two consecutive Ts? For example, this event happens if the observed sequence is $THT\underline{HH}THTT\cdots$.
- 4. I toss a biased coin n times and record the sequence of heads and tails. Assume P(H) = p (where $0). Let <math>a_n$ be the probability that the number of heads is divisible by 3. Write a set of recursive equations to compute a_n .