810198358 Jy Siw 1 Syn 1 5 Oies Flag variable: two-sample Z-test Multinomial variable: X2-test Continuous variable: two-sample t-test Ho: M = M2 Ha: M + M2 - two-sample (2 0.1 0.01352+ 0.1 = 0.43 10.053 P-value 2P(+ 599 > 0.43) = 0.66 vince (0.1 / 0.66) p-value be stant of it with the test, trains of the Ho · Cool valid wie partition

Expecto	Married	Single	oons (4
-	1040 × 2000		
Trained	2/600	2669	2600
-	10000000	100000000	3
Test	2600	2600	2699
-		c	13 7
E:	M	5	
Train		769	431
Test	240	231	129
0:	1 M	S	0
Tr	min 800	750	450
	est 240	250	
		200	110
42 (Oi)	$\frac{1 - E(i)^2}{i} = 0 + \frac{2}{(19)^2}$	$0 + \frac{1}{769} + 0$ $(29 = 5.2)$	1231 (13)
P-value =			7
Tim valid .	1 Cs. June 6 (0		

Between-sample variability:
V
$MSTR = \frac{1}{k-1} \left(\sum_{i=1}^{k} n_i \left(\overline{x}_i - \overline{n} \right)^2 \right)$
Within-Sample variability.
$MSE = \frac{1}{n_{+}-K} \left(\frac{\sum_{i=1}^{n} (n_{i-1}) s_{i}^{2}}{\sum_{i=1}^{n} (n_{i-1}) s_{i}^{2}} \right)$ $S_{i}^{2} = \frac{1}{n_{i-1}} \left(\frac{n_{i,j}-n_{i,j}}{n_{i-1}} \right)$
For MSTR MSTRAIL; E sou out i vie (d
(Cleans of white of the control of t
i compersion de la comp
s.a.m

credit card	Debit card	Check (7
100	80	50
110	120 700	70 120
90	90	80 260
100	110	80
T = 90	100	70
MSTR = 1/K-1	ξ(n; (x; π)²)=	$2 \left(10^{2} + 10^{2} + 20^{2} \right)$ 1200
MSE = 1/n+-1	(E (n: 1) E	(n;-1) (n;-n;)
(32	$\frac{1}{3}$ $\propto (0 + 10^{2} + 10^{2} + 0)$ $\frac{1}{3}$ $\propto (20^{2} + 20^{2} + 10^{2} + 10)$ $\propto \frac{1}{3}$ $\propto (20^{2} + 0^{2} + 10^{2} + 10)$	102))
19 [200 + 10	00 + 600) = 1/9 [1800].[200]
F MSTR	. 6	

assist 5 pound (is langur a 6 se Colist inch pe (d (60 Kheight & 75 N sin cus) e sili (5 jelail a -180 im il cès (c Coms weight 20, height = 0 ! Geom

با اجرای کد زیر داریم: (با توجه به coefficient ها)

```
cereals = read.csv(file.choose(), header = TRUE);
cereals[1:5, ];

fibers = cereals$fiber;
ratings = cereals$rating;
lm.out = lm(ratings~fibers)
plot(
   fibers,
   ratings,
   main = "Rating based on fiber",
   xlab = "Fiber content",
   ylab = "Rating"
)
abline(lm.out)
summary(lm.out)
```

Rating based on fiber


```
lm(formula = ratings ~ fibers)
Residuals:
   Min
            1Q
                Median
-20.436 -8.159 -2.037
                         6.491
                                27.216
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            35.2566
                        1.7674
                               19.948 < 2e-16 ***
             3.4430
                        0.5524 6.233 2.45e-08 ***
fibers
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 11.48 on 75 degrees of freedom
Multiple R-squared: 0.3412, Adjusted R-squared: 0.3325
F-statistic: 38.85 on 1 and 75 DF, p-value: 2.445e-08
```

The regression equation is:

```
rating[ i ] = 35.2566 + 3.4430 * fibers[ i ]
```

(13)

مقدار عرض از مبدا (در اینجا 35.2566) در این مثال معنی میدهد. معنای آن این است که اگر یک محصولی اصلا fiber نداشته باشد، rating آن 35.2566% می باشد.

(15)

با توجه به مقدار R-squared در summary، که برابر 0.3 است، نمیتوان گفت که مدل ما بخوبی fit شده روی داده train.

(16

با جَاگذاری مقدار fiber = 3 در معادله بالا: (point estimation) rating [3] = 35.2566 + 3.4430 * 3 = 45.5856

مقدار فوق، بر آورد نقطه اى ميانگين rating يک محصول با gram fiber 3 است.

```
(17
```

با اجرای کد زیر داریم:

بازه اطمینان برای میانگین rating یک محصول با fiber = 3gram برابر [48.35314, 48.35314] می باشد. (با مرکز 45.58553، همان برآورد نقطه ای سوال قبل)

(18

با اجرای کد زیر داریم:

بازه پیش بینی rating یک محصول با fiber = 3gram (دقت شود که در اینجا میانگین برآورد نمیشود و مقدار متغیر هدف یک random record برآورد میشود) برابر [22.55513, 68.61593] می باشد.

با توجه به نمودار های residual بر حسب xi، دیده میشود که متغیر هدف (rating) کمی به راست چوله است (نمودار QQ). اما میتوان از خطی بودن مدل و همگنی واریانس ها اطمینان حاصل کرد (نمودار residuals vs fitted)


```
sugars = cereals$sugars;
 24 mreg.out = lm(ratings~sugars + fibers)
 25 summary(mreg.out)
 24:39 (Top Level)
Console Terminal × Background Jobs
🤦 R 4.2.2 · ~/ 🖈
lm(formula = ratings ~ sugars + fibers)
Residuals:
    Min
              1Q
                 Median
                                      Max
-12.133 -4.247 -1.031
                            2.620
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          1.5463 33.376 < 2e-16 ***
0.1621 -13.470 < 2e-16 ***
(Intercept) 51.6097
             -2.1837
sugars
               2.8679
                                   9.486 2.02e-14 ***
fibers
                          0.3023
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.219 on 74 degrees of freedom
Multiple R-squared: 0.8092, Adjusted R-squared: 0.804
F-statistic: 156.9 on 2 and 74 DF, p-value: < 2.2e-16
```

The estimated multiple regression equation is:

```
rating[i] = 51.6097 + 2.8679 * fibers[i] + -2.1837 * sugars[i]
```

(21)

تفسير ضريب fiber در معادله سوال قبل:

با ثابت نگه داشتن مقدار sugar، میانگین rating برای یک محصول با هر گرم افزایش fiber، 2.8679 در صد افزایش می یابد.

(22)

مقدار r-squared در حالت r-squared حدود 0.8 می باشد که نسبت به حالت simple regression با مقدار 0.3 بسیار بزرگتر است. بدلیل استفاده از داده بیشتر در مدل، رگرسیون حاصل بهتر توانسته record ها را برآورد کند.