

CLAIMS

1 1. (original) In a spread-spectrum receiver, a method for processing a received analog
2 spread-spectrum signal, comprising:
3 determining whether to attenuate the received analog spread-spectrum signal;
4 based on the attenuation determination, selectively attenuating the received analog spread-
5 spectrum signal to generate a selectively attenuated analog spread-spectrum signal;
6 digitizing the selectively attenuated analog spread-spectrum signal to generate a digital spread-
7 spectrum signal;
8 filtering the digital spread-spectrum signal in an attempt to compensate for interference in the
9 received analog spread-spectrum signal to generate a filtered digital spread-spectrum signal; and
10 de-spreading the filtered digital spread-spectrum signal to generate a de-spread digital signal,
11 wherein the attenuation determination is based on the amplitude of the digital spread-spectrum signal
12 prior to the interference-compensation filtering and the de-spreading.

1 2. (original) The invention of claim 1, wherein the filtering attempts to compensate for off-
2 channel interference in the received analog spread-spectrum signal.

1 3. (original) The invention of claim 1, wherein the selectively attenuated analog spread-
2 spectrum signal has a negative signal-to-noise ratio (SNR).

1 4. (original) The invention of claim 1, wherein:
2 the received analog spread-spectrum signal is attenuated when the amplitude of the digital
3 spread-spectrum signal is greater than an upper threshold; and
4 the received analog spread-spectrum signal is not attenuated when the amplitude of the digital
5 spread-spectrum signal is less than a lower threshold, wherein the upper threshold is greater than the
6 lower threshold.

1 5. (original) The invention of claim 4, wherein the upper threshold is greater than the lower
2 threshold by an amount greater than the level of selective attenuation in order to provide hysteresis in the
3 attenuation determination.

1 6. (original) The invention of claim 1, wherein:
2 the received analog spread-spectrum signal is a radio frequency (RF) signal; and
3 further comprising:

4 converting the RF signal to an intermediate frequency (IF) prior to the digitization; and
5 converting the IF signal to baseband after digitization.

1 7. (original) The invention of claim 6, wherein the filtering and the de-spreading are
2 implemented at baseband.

1 8. (original) The invention of claim 1, wherein:
2 the filtering attempts to compensate for off-channel interference in the received analog spread-
3 spectrum signal;
4 the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio
5 (SNR);
6 the received analog spread-spectrum signal is attenuated when the amplitude of the digital
7 spread-spectrum signal is greater than an upper threshold;
8 the received analog spread-spectrum signal is not attenuated when the amplitude of the digital
9 spread-spectrum signal is less than a lower threshold;
10 the upper threshold is greater than the lower threshold by an amount greater than the level of
11 selective attenuation in order to provide hysteresis in the attenuation determination;
12 the received analog spread-spectrum signal is a radio frequency (RF) signal;
13 further comprising:
14 converting the RF signal to an intermediate frequency (IF) prior to the digitization; and
15 converting the IF signal to baseband after digitization; and
16 the filtering and the de-spreading are implemented at baseband.

1 9. (original) A spread-spectrum receiver, comprising:
2 a variable attenuator adapted to selectively attenuate a received analog spread-spectrum signal to
3 generate a selectively attenuated analog spread-spectrum signal;
4 an analog-to-digital converter (ADC) adapted to digitize the selectively attenuated analog spread-
5 spectrum signal to generate a digital spread-spectrum signal;
6 an interference-compensation filter adapted to filter the digital spread-spectrum signal in an
7 attempt to compensate for interference in the received analog spread-spectrum signal to generate a
8 filtered digital spread-spectrum signal;
9 a digital processor adapted to de-spread the filtered digital spread-spectrum signal to generate a
10 de-spread digital signal; and

11 a controller adapted to control the variable attenuator based on the amplitude of the digital
12 spread-spectrum signal prior to the interference-compensation filter and the digital processor.

1 10. (original) The invention of claim 9, wherein the filter is adapted to attempt to
2 compensate for off-channel interference in the received analog spread-spectrum signal.

1 11. (original) The invention of claim 9, wherein the selectively attenuated analog spread-
2 spectrum signal has a negative signal-to-noise ratio (SNR).

1 12. (original) The invention of claim 9, wherein:
2 the controller is adapted to control the variable attenuator to attenuate the received analog
3 spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper
4 threshold; and
5 the controller is adapted to control the variable attenuator not to attenuate the received analog
6 spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower
7 threshold, wherein the upper threshold is greater than the lower threshold.

1 13. (original) The invention of claim 12, wherein the upper threshold is greater than the
2 lower threshold by an amount greater than the level of selective attenuation in order to provide hysteresis
3 in the attenuation determination.

1 14. (original) The invention of claim 9, wherein:
2 the received analog spread-spectrum signal is a radio frequency (RF) signal; and
3 further comprising:
4 a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the
5 digitization; and
6 a digital downconverter adapted to convert the IF signal to baseband after digitization.

1 15. (original) The invention of claim 14, wherein the filter and the digital processor are
2 adapted to operate at baseband.

1 16. (original) The invention of claim 9, wherein:
2 the filter is adapted to attempt to compensate for off-channel interference in the received analog
3 spread-spectrum signal;

4 the selectively attenuated analog spread-spectrum signal has a negative signal-to-noise ratio
5 (SNR);
6 the controller is adapted to control the variable attenuator to attenuate the received analog
7 spread-spectrum signal when the amplitude of the digital spread-spectrum signal is greater than an upper
8 threshold;
9 the controller is adapted to control the variable attenuator not to attenuate the received analog
10 spread-spectrum signal when the amplitude of the digital spread-spectrum signal is less than a lower
11 threshold;
12 the upper threshold is greater than the lower threshold by an amount greater than the level of
13 selective attenuation in order to provide hysteresis in the attenuation determination;
14 the received analog spread-spectrum signal is a radio frequency (RF) signal;
15 further comprising:
16 a mixer adapted to convert the RF signal to an intermediate frequency (IF) prior to the
17 digitization; and
18 a digital downconverter adapted to convert the IF signal to baseband after digitization;
19 and
20 the filter and the digital processor are adapted to operate at baseband.

1 17. (previously presented) The invention of claim 1, wherein the attenuation determination
2 is independent of any determination of bit error rate.

1 18. (previously presented) The invention of claim 1, wherein the attenuation determination
2 is based on the amplitude of the digital spread-spectrum signal in a time domain.

1 19. (previously presented) The invention of claim 6, wherein the attenuation determination
2 is based on the amplitude of the digital IF signal.

1 20. (new) The invention of claim 1, wherein:
2 the received analog spread-spectrum signal is attenuated when the amplitude of the digital
3 spread-spectrum signal is greater than a first threshold;
4 the received analog spread-spectrum signal is not attenuated when the amplitude of the digital
5 spread-spectrum signal is less than a second threshold, wherein the first threshold is greater than or equal
6 to the second threshold;

7 a transition from the received analog spread-spectrum signal not being attenuated to the received
8 analog spread-spectrum signal being attenuated occurs after the amplitude of the digital spread-spectrum
9 signal is greater than the first threshold for a first specified amount of time; and

10 a transition from the received analog spread-spectrum signal being attenuated to the received
11 analog spread-spectrum signal not being attenuated occurs after the amplitude of the digital spread-
12 spectrum signal is less than the second threshold for a second specified amount of time.

1 21. (new) The invention of claim 1, wherein the attenuation determination is further based
2 on *a priori* knowledge of maximum expected interference-to-carrier ratio.