

Maestría en Ciencias Naturales y Matemáticas Clase 3 - Cálculo Avanzado de Varias Variables

Mg: Julián Uribe Castañeda

UPB

28 de febrero de 2023

Topología en \mathbb{R}^n - Conjuntos abiertos y cerrados

A continuación definimos algunos conceptos básicos de topología.

Definición (bola abierta en \mathbb{R}^n).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n , $a \in \mathbb{R}^n$ y $\varepsilon > 0$. Entonces definimos la bola abierta en \mathbb{R}^n con centro a y radio ε como

$$B_d(a;\varepsilon) = \{x \in \mathbb{R}^n : d(a,x) < \varepsilon\}.$$

El concepto de bola abierta será muy importante para nuestro estudio, ya que la noción de continuidad, diferenciabilidad y otras nociones importante dependen de esta definición.

Definición (conjunto abierto en \mathbb{R}^n respecto a una métrica d).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica para \mathbb{R}^n y $U \subseteq \mathbb{R}^n$. Decimos que U es un conjunto abierto en \mathbb{R}^n bajo la métrica d, si para todo $a \in U$, existe $\varepsilon > 0$ tal que $B_d(a; \varepsilon) \subseteq U$.

Definición (conjunto cerrado en \mathbb{R}^n respecto a una métrica d).

Sea $d:\mathbb{R}^n imes \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica para \mathbb{R}^n y $U \subseteq \mathbb{R}^n$. Decimos que U es un conjunto cerrado en \mathbb{R}^n bajo la métrica d, si:

$$U^c = \{x \in \mathbb{R}^n : x \notin U\}$$

es un conjunto abierto en \mathbb{R}^n bajo la métrica d.

Teorema (Las bolas abiertas en \mathbb{R}^n son conjuntos abiertos).

Dados $a \in \mathbb{R}^n$ y $\varepsilon > 0$, tenemos que $B_d(a; \varepsilon)$ es un conjunto abierto en \mathbb{R}^n bajo la métrica d.

Demostración.

Sea $b \in B_d(a,\varepsilon)$ y entonces tenemos los siguientes casos:

Caso (1): Si b=a, entonces al tomar $\delta:=\varepsilon$ tenemos que $B_d(b,\delta)\subseteq B_d(a,\varepsilon)$.

De hecho, tenemos que $B_d(b,\delta) = B_d(a,\varepsilon)$.

Para ver que $B_d(b,\delta)\subseteq B_d(a,\varepsilon)$, tomemos $x\in B_d(b,\delta)$ y veamos que $x\in B_d(a,\varepsilon)$.

$$\left\{ d(a,x) \leq d(a,b) + d(b,x) \leq d(a,b) + \delta < d(a,b) + \varepsilon - d(a,b) = \varepsilon. \right.$$

De lo anterior, concluimos que $d(a,x) < \varepsilon$, lo cual significa que $x \in B_d(a,\varepsilon)$ y así $B_d(b,\delta) \subseteq B_d(a,\varepsilon)$. En particular $B_d(a,\varepsilon)$ es un conjunto abierto en \mathbb{R}^n bajo la métrica d.

Teorema (propiedades de conjuntos abiertos).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica para \mathbb{R}^n , entonces:

(1) Si $\{U_{\alpha}\}_{\alpha\in J}$ es una colección de conjuntos abiertos en \mathbb{R}^n bajo la métrica d, entonces

$$\bigcup_{\alpha \in I} U_{\alpha}$$

es un conjunto abierto en \mathbb{R}^n bajo la métrica d.

(2) Si $\{U_i\}_{i=1}^n$ es una colección de conjuntos abiertos en \mathbb{R}^n bajo la métrica d, entonces

$$\bigcap_{i=1}^n U_i$$

es un conjunto abierto en \mathbb{R}^n bajo la métrica d.

Demostración.

(1) Dado $a \in \bigcup_{\alpha \in J} U_{\alpha}$, tenemos que existe $\beta \in J$ tal que $a \in U_{\beta}$. Así, existe $\varepsilon > 0$ tal que

$$B_d(a,\varepsilon)\subseteq U_\beta\subseteq\bigcup_{\alpha\in J}U_\alpha$$
,

lo cual implica que $B_d(a,\varepsilon)\subseteq\bigcup_{\alpha\in I}U_\alpha$ y así $\bigcup_{\alpha\in I}U_\alpha$ es un conjunto abierto.

(2) Dado $a \in \bigcap_{i=1}^n U_i$, tenemos que $a \in U_i$ para cada $i \in \{1, ..., n\}$. Así, existen $\varepsilon_1, ..., \varepsilon_n$ números positivos tales que $B_d(a; \varepsilon_i) \subseteq U_i$ para cada $i \in \{1, ..., n\}$. Si tomamos $\varepsilon := \min_{1 \le i \le n} \varepsilon_i$, entonces para cada $i \in \{1, ..., n\}$ se tiene que

$$B_d(a; \varepsilon) \subseteq B_d(a; \varepsilon_i) \subseteq U_i$$

lo cual implica que $B_d(a;\varepsilon)\subseteq U_i$ para cada $i\in\{1,\ldots,n\}$ y así $B_d(a;\varepsilon)\subseteq\bigcap_{i=1}^n U_i$. Esto demuestra que $\bigcap_{i=1}^n U_i$ es un conjunto abierto.

Corolario (propiedades de conjuntos cerrados).

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica para \mathbb{R}^n , entonces:

(1) Si $\{U_{\alpha}\}_{\alpha\in J}$ es una colección de conjuntos cerrados en \mathbb{R}^n bajo la métrica d, entonces

$$\bigcap_{\alpha \in I} U_{\alpha}$$

es un conjunto cerrado en \mathbb{R}^n bajo la métrica d.

(2) Si $\{U_i\}_{i=1}^n$ es una colección de conjuntos cerrados en \mathbb{R}^n bajo la métrica d, entonces

$$\bigcup_{i=1}^{n} U_{i}$$

es un conjunto cerrado en \mathbb{R}^n bajo la métrica d.

Demostración.

- (1) Supongamos que $\{U_{\alpha}\}_{\alpha\in J}$ es una colección de conjuntos cerrados en \mathbb{R}^n bajo la métrica d. Para probar que $\bigcap_{\alpha\in J}U_{\alpha}$ es cerrado, es necesario verificar que $\left(\bigcap_{\alpha\in J}U_{\alpha}\right)^c$ es abierto. En este caso, tenemos que
- (\checkmark) Para cada $\alpha \in J$ se tiene que U^c_α es abierto.
- (\checkmark) Por el teorema anterior, tenemos que $\left(\bigcap_{\alpha\in J}U_{\alpha}\right)^{c}=\bigcup_{\alpha\in J}U_{\alpha}^{c}$ es abierto.
- Así, tenemos que $\bigcap_{\alpha \in I} U_{\alpha}$ es cerrado.
- (2) Supongamos que $\{U_i\}_{i=1}^n$ es una colección finita de conjuntos cerrados en \mathbb{R}^n bajo la métrica d. Para probar que $\bigcup_{i=1}^n U_i$ es cerrado, es necesario verificar que $\left(\bigcup_{i=1}^n U_i\right)^c$ es abierto. En este caso, tenemos que
- (\checkmark) Para cada $i \in \{1,...,n\}$ se tiene que U_i^c es abierto
- (\checkmark) Por el teorema anterior, tenemos que $\left(\bigcup_{i=1}^n U_i\right)^c = \bigcap_{i=1}^n U_i^c$ es abierto.

Así, tenemos que $\bigcup_{i=1}^{n} U_{\alpha}$ es cerrado.

Observación (teorema anterior).

Es importante resaltar en el teorema anterior que no siempre la intersección arbitraria de abiertos es un conjunto abierto. Para entender esto veamos el siguiente ejemplo.

Ejemplo (intersección de abiertos no necesariamente es abierto).

Sea $d: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ la métrica Euclídea sobre \mathbb{R} , entonces:

- (1) Demostrar que para todo $a \in \mathbb{R}$ y todo $\varepsilon > 0$ se tiene $B_d(a; \varepsilon) = (a \varepsilon, a + \varepsilon)$
- (2) Demostrar que {0} no es conjunto abierto en ℝ con la métrica Euclídea.
- (3) Demostrar que $\bigcap_{n=1}^{\infty} B_d\left(0; \frac{1}{n}\right) = \{0\}.$

Solución:

(1) Dado $a \in \mathbb{R}$ y $\varepsilon > 0$ tenemos que

$$B_d(a;\varepsilon) = \{x \in \mathbb{R} : d(a,x) < \varepsilon\} = \{x \in \mathbb{R} : \sqrt{(x-a)^2} = |x-a| < \varepsilon\}.$$

Ahora, recordando la definición de la función valor absoluto, tenemos que:

$$|x-a| = \begin{cases} x-a & \text{si } x-a \ge 0, \\ -(x-a) & \text{si } x-a < 0 \end{cases} = \begin{cases} x-a & \text{si } x \ge a, \\ a-x & \text{si } x < a. \end{cases}$$

De esta manera, tenemos que

$$|x-a|<\varepsilon \iff \begin{cases} x-a<\varepsilon & \text{si } x\geq a,\\ & \Longleftrightarrow \end{cases} \begin{cases} x< a+\varepsilon & \text{si } x\geq a,\\ & \Longleftrightarrow a-\varepsilon < x < a+\varepsilon. \end{cases}$$

Esto muestra que $B_d(a; \varepsilon) = \{x \in \mathbb{R} : a - \varepsilon < x < a + \varepsilon\} = (a - \varepsilon, a + \varepsilon)$.

- (2) Si $\{0\}$ fuera un conjunto abierto, entonces existiría un número $\varepsilon > 0$ tal que $B_d(0;\varepsilon) \subseteq \{0\}$. Pero esto no es posible ya que $B_d(0;\varepsilon) = (-\varepsilon,\varepsilon)$ tiene infinitos puntos y $\{0\}$ solo tiene un punto.
- (3) Supongamos que $x \in \bigcap_{n=1}^{\infty} B_d\left(0; \frac{1}{n}\right)$, entonces $x \in B_d\left(0; \frac{1}{n}\right)$ para cada $n \ge 1$. Así, tenemos que:

$$x \in B_d\bigg(0; \frac{1}{n}\bigg) \text{ para cada } n \geq 1 \iff -\frac{1}{n} < x < \frac{1}{n} \text{ para cada } n \geq 1.$$

Y como $\lim_{n\to\infty} \frac{1}{n} = \lim_{n\to\infty} \frac{1}{n} = 0$, entonces el teorema de estricción nos dice que

$$\lim_{n\to\infty} x = 0.$$

Pero $\lim_{n\to\infty} x = x$, lo cual muestra que x = 0 es el único punto de $\bigcap_{n=1}^{\infty} B_d\left(0; \frac{1}{n}\right)$.

Observación (uniones de conjuntos cerrados).

De manera similar es importante resaltar que no siempre la unión de conjuntos cerrados es cerrado. Se deja como ejercicio al lector verificar esto.

← ← □ → ← □ → ← □ → へ ○ へ ○

Problemas..

- (1) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n . Demostrar que \mathbb{R}^n y \emptyset son conjuntos abiertos y cerrados en \mathbb{R}^n respecto a la métrica d.
- (2) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n , $A \subseteq \mathbb{R}^n$ y $a \in A$. Decimos que a es un punto interior de A, si existe $\varepsilon > 0$ tal que $B_d(a; \varepsilon) \subseteq A$. Si denotamos por int(A) al conjunto de puntos interiores de A, entonces demostrar que int(A) es un conjunto abierto en \mathbb{R}^n bajo la métrica d.
- (3) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n y $A \subseteq \mathbb{R}^n$ Demostrar que

$$A$$
 es un conjunto abierto en \mathbb{R}^n bajo la métrica $d\iff int(A)=A$.

(4) Sea $d: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ una métrica en \mathbb{R}^n y $A \subseteq \mathbb{R}^n$. Demostrar que

$$int(A) = \bigcup_{\substack{B \subseteq A \\ B \text{ abierto}}} B.$$

Esto nos dice que int(A) es el conjunto abierto más grande contenido en A.

(5) Suponiendo que $\mathbb R$ tiene la métrica Euclídea, encontrar el interior de los siguientes conjuntos.

- (a) $A = (5,7) = \{x \in \mathbb{R} : 5 < x < 7\}.$
- (b) $B = [3,8) = \{x \in \mathbb{R} : 3 \le x < 8\}.$
- (c) $C = (2,4) \cup (4,8] = \{x \in \mathbb{R} : 2 < x < 40 \ 4 < x \le 8\}.$
- (d) $D = \left\{ x \in \mathbb{R} : x = \frac{1}{n} \text{ para algún } n \in \mathbb{N} \right\}.$
- (6) Verificar si los conjuntos dados en (5) son conjuntos abiertos respecto a la métrica Euclídea en \mathbb{R} .
- (7) Verificar si los conjuntos dados en (5) son conjuntos cerrados respecto a la métrica Fuclídea en $\mathbb R$
- (8) Suponiendo que \mathbb{R}^2 tiene la métrica Euclídea, encontrar el interior de los siguientes conjuntos.
- (a) $A = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1\}.$
- (b) $B = \{(x,y) \in \mathbb{R}^2 : 0 \le x < 1, 0 < y \le 1\}.$
- (c) $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$
- (d) $D = \{(x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 \le 16\}.$
- (9) Verificar si los conjuntos dados en (8) son conjuntos abiertos respecto a la métrica Euclídea en \mathbb{R}^2