EECS 388

Introduction to Computer Security

Lecture 3:

Randomness and **Pseudorandomness**

September 3, 2024 Prof. Halderman

Review: Message Integrity

Problem: Integrity of message from Alice to Bob over an *untrusted channel*

Approach: Alice must append bits to message that only Alice (or Bob) can make

Ideal solution: Random functions

Practical solution: Pseudorandom functions (PRFs)

 $f_{\nu}()$ is a PRF if it's practically indistinguishable from a random function (unless you know k)

Today's lecture: What are some actual functions that (we hope) behave as PRFs?

Where do these random keys **k** come from?

What else are PRFs useful for?

Review: Cryptographic Hashes

First step towards a practical solution...

Cryptographic Hash Function

Fixed function *H*(). *No key*!

Input: arbitrary length data

Output: fixed size *digest* (**n** bits)

Properties of strong hash functions:

Preimage resistance

Given output \mathbf{h} , hard to find any input \mathbf{m} s.t. $\mathbf{h} = \mathbf{H}(\mathbf{m})$

Collision resistance

Hard to find any pair of inputs \mathbf{m}_{1} , \mathbf{m}_{2} s.t. $\mathbf{H}(\mathbf{m}_{1}) = \mathbf{H}(\mathbf{m}_{2})$

Note: Collisions exist [why?], but should be hard to find

Second-preimage resistance

Given \mathbf{m}_1 , hard to find different \mathbf{m}_2 s.t. $H(\mathbf{m}_1) = H(\mathbf{m}_2)$

Computing hashes with **OpenSSL**:

```
$ echo "hello world 1" | openssl dgst -sha256
07bafbe63a0e7c57c572aedf1c228022b537e28785013d7b
e017fc78731a8cc5
$ echo "hello world 0" | openssl dgst -sha256
8bfa9a398e97152beaaf385847808ad2d828c1c7251f1a45
bc7697723827e7e7
```

Observe how changing even a single bit of the input produces output that appears completely unrelated.

Annoying question:

Are existing hashes *actually strong*?

Annoying answer:

We don't know.

Candidates: MD5, SHA-1, SHA-256, SHA-512, SHA-3

Review: Constructing SHA-256

SHA-256 is a widely used hash function that is currently thought to be strong

Input: arbitrary length data

Output: 256-bit digest

Built from a **compression function** *h*:

Inputs: (256 bits, 512 bits), Output: 256 bits reduces 768 bits to 256 bits using a complicated internal function (details out of scope for 388)

Uses the Merkle–Damgård (MD) construction (illustrated below) to accept arbitrary-length input by repeatedly applying h():

- Pad input m to the next multiple of 512 bits (adds <u>at least</u> 1 bit, uses fixed algorithm [why?]) and split into 512-bit blocks: b₀, b₁, ... b_{n-1}
- 2. $\mathbf{y}_0 := \langle 256\text{-bit constant} \rangle$ $\mathbf{y}_1 := \mathbf{h}(\mathbf{y}_0, \mathbf{b}_0) \quad \dots \quad \mathbf{y}_i := \mathbf{h}(\mathbf{y}_{i-1}, \mathbf{b}_{i-1})$
- 3. Return y_n which is defined to be SHA-256(m)

MD Hash Pitfall: Length Extension Attacks

Merkle–Damgård hash functions are susceptible to length extension attacks:

Given
$$y = H(x)$$
 for some unknown x , attackers can calculate
$$z = H(x \parallel padding \parallel s)$$
for arbitrary suffix s .

That is, given:

An attacker can produce:

Note that this doesn't violate preimage, second-preimage, or collision resistance.

[But why is it a problem?]

Suppose Alice and Bob use this as a verifier:

$$v := SHA-256(k \text{ } / / m)$$

Alice Mallory** Bob **

- 1. Alice sends **m** = "Please go to the bank."
- Since v' is the correct verifier for m',
 Bob will accept the modified message as valid

You'll explore how this is done in Project 1!

Practical Solution: HMAC

Message Authentication Code (MAC)

Designed to be used as a secure verifier:

Inputs: key, arbitrary length dataOutput: fixed size digest (n bits)

HMAC construction turns any secure hash function **H**() into a MAC:

$$\operatorname{HMAC}_k(m) = H(k \oplus c_1 \parallel H(k \oplus c_2 \parallel m))$$
 $\operatorname{constant} \quad \operatorname{constant} \quad \operatorname{concatenation} \quad \operatorname{363636...} \quad \operatorname{5c5c5c...}$

Design protects against length extension!

Example: HMAC-SHA-256 is an HMAC constructed using SHA-256 for *H*()

For practical purposes, we believe we can treat **HMAC-SHA-256** as a PRF

Can *reduce* PRF security of HMAC-SHA-256 to a (weaker) security property of SHA-256's compression function

\$ echo "hi" | openssl dgst -sha256 -hmac Secr3t
8074cdfd007e5cfdc71c2c1cd393a5fefa890d7702956a13
66a155d79d1cbe77

At last, this gives Alice and Bob a suitable approach for protecting message integrity:

$$v := HMAC-SHA-256_k(m)$$

$$k_{Alice} \xrightarrow{m, v} Mallory \xrightarrow{m', v'} Bob k$$

$$Computes and sends Rejects message if
$$v := HMAC-SHA-256_k(m) \quad v' \neq HMAC-SHA-256_k(m')$$$$

Randomness and Pseudorandomness

How should we choose a "secret" key k?

Select a uniform random value [Why?]

Careful: People are often sloppy about what is "random"

True Randomness

Output of a *physical process* that is inherently unpredictable [Examples?]

Inherent in all physical systems (Heisenberg)

Absent in simplest abstract Turing machine

True randomness in software is scarce. Getting it requires careful engineering. Can't just look at the *output* of a process and determine that it was random

Requires assessing the *generation procedure*

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Example: Extract an unbiased random bit from a biased coin (Von Neumann's method)

Since true randomness is expensive, often want to take a *small amount of it* and create a longer sequence that's "as good as random"

Pseudorandom Generator (PRG)

Definition of a PRG

Review: Pseudorandom Function (PRF)

$$f_{k}: \{0,1\}_{m} \rightarrow \{0,1\}_{n}$$

m-bit input and **n**-bit output

Cannot practically distinguish $f_k(\mathbf{x})$ from random function without knowing \mathbf{k}

Pseudorandom Generator (PRG)

$$\boldsymbol{g}_{\mathbf{k}} \colon \bot \to \{0,1\}_{\mathbf{n}} \text{ for } \mathbf{n} = \mathsf{poly}(\lfloor \mathbf{k} \rfloor)$$

k is a truly random seed

No other inputs

Output is much larger than the input

(Can think of output as stream of bits)

Cannot practically distinguish $g_k()$ from a random stream of bits without knowing k

Security definition: (Similar to PRF definition)

- 1. Let **k** be a secret seed
- 2. Toss a coin (in secret) to get bit **b**
- 3. If b=0, s := a truly random stream If b=1, $s := g_k()$
- 4. Output **s** to Mallory
- 5. Mallory guesses **b** in polynomial time*

We say g() is a secure PRG if Mallory can't do meaningfully better than random guessing

* Usual complexity-theoretic caveats... no brute-forcing

Annoying question again:

Do PRGs actually exist?

Same annoying answer:

We don't know. (Would imply P≠NP.)

Building a PRG from a PRF

Given a secure PRF f(), we can construct a PRG g() and prove that it's secure.*

Construction:

For some random key \mathbf{k} and PRF $\mathbf{f}()$, define $\mathbf{g}_{\mathbf{k}}() := \mathbf{f}_{\mathbf{k}}(0) \ // \ \mathbf{f}_{\mathbf{k}}(1) \ // \ \mathbf{f}_{\mathbf{k}}(2) \ // \ \dots$

Theorem (informal):

If f() is a secure PRF and g() is built from f() by this construction, then g() is a secure PRG.

You're not responsible for the proof, but here it is (at right), if you're interested:

(*Hard exercise: Build a PRF from a PRG)

Proof by contradiction: If g() as constructed is not a secure PRG, f() can't be a secure PRF:

- 1. If **g**() is not a secure PRG, there exists an algorithm **M*** that can distinguish its output from random. (This is from the definition of a secure PRG.)
- 2. We can apply \mathbf{M}^* to construct an algorithm \mathbf{M} to distinguish $\mathbf{f}()$ from a random function $\mathbf{r}()$:
 - a. Query **h**() with inputs 0, 1, 2, ...
 - b. Let s := h(0) // h(1) // h(2) // ...
 - c. Apply **M*** to **s** and return the result.
- 3. If **h**() is **r**(), **s** is a random stream, so **M** outputs 0. If **h**() is **f**(), **s** is **g**() (by construction), so **M** outputs 1. Thus, **M** wins the PRF game for **f**().

This contradicts our assumption that f() is a secure PRF. Therefore, g() must be a secure PRG.

Getting Randomness

Randomness is **an input** to your program

Typically provided by the OS, via special APIs

OS continuously gathers inputs from physical sources that are hard for adversary to predict, "extracts" uniform bits from them.

[What if attacker can predict some of them?]

[What if an attacker learns internal state?] If compromise is **transient**, can recover by adding more randomness.

How quickly can we recover, though?

Getting Randomness

Randomness is **an input** to your program

Typically provided by the OS, via special APIs

OS continuously gathers inputs from physical sources that are hard for adversary to predict, "extracts" uniform bits from them.

[What if attacker can predict some of them?]

Generating 16 random bytes with **openssl**:

```
$ openss1 rand -hex 16
4345b3cccecb66bef87f9289d72b8d2a
$ openss1 rand -hex 16
578fbc36ad4d88ab7d98d7fd16e3737d
```

Caution! Not all "random" APIs are secure (or even unpredictable!) C's rand() function is notoriously bad, as are typical math packages.

Use APIs specified as suitable for cryptography:

```
C (Linux): #include <sys/random.h>
    getrandom(buf, size, 0);
```

Python: import secrets

data = secrets.randbits(256);

JavaScript: const array = new Uint8Array(32);

self.crypto.getRandomValues(array);

Bad Randomness Example: Elections

DVSorder is a privacy flaw that affects

Dominion ICP and ICE ballot scanners

To protect privacy, Dominion scanners assign each ballot a random-looking ID Linked to ballot scans that many jurisdictions publish online

My group discovered that these "random" IDs are fully predictable

Chosen by a *linear congruential generator*, known since 1970s to be unsuitable for security. Using only public information, <u>anyone</u> can deduce the algorithm and "unshuffle" all ballots

Bad Randomness Example: Elections

My group discovered that these "random" IDs are fully predictable

Chosen by a *linear congruential generator*, known since 1970s to be unsuitable for security. Using only public information, <u>anyone</u> can deduce the algorithm and "unshuffle" all ballots

Randomness as an Attack Target

Good randomness is needed everywhere in cryptography. RNG is very good attack target!

Dual-EC DRBG: 2006 NIST standard that NSA (allegedly)

backdoored. Evidence in Snowden documents.

Construction allows for the existence of a <u>secret backdoor key</u> that can be used to recover the internal RNG state (and determine future output) given knowledge of small amount of past output.

Coming Up

Reminders:

Quiz on Canvas after every lecture
Lab Assignment 1 due Thursday at 6 p.m.
Project 1, Part 1 due Sept. 12 at 6 p.m.

Thursday

Confidentiality

Simple ciphers,
AES,
block cipher modes

Next Week

Wrap Up Crypto Unit

Combining confidentiality and integrity; Diffie-Hellman, RSA encryption, digital signatures