<u>สิ่งที่ผมรู้ หากคุณอ่าน คุณจะรู้ตามผมไปด้วย</u>

20-06-2007

n-Gram

Filed under: n-Gram — ejeepss @ 12:12:49

n-Gram

บทความเขียนสมัยยังศึกษา ซึ่งเป็นหนึ่งในหลายๆ เทคนิคย่อยของ Search Engine เพื่อทำให้ทราบว่า คอมพิวเตอร์สามารถรู้ ได้อย่างไร หากมีประโยคหนึ่งประโยค สามารถตัดคำได้อย่างไร ในหลายๆ เช่น ภาษาอังกฤษ , สเปน หรือภาษาอื่น ๆ ยิ่งหาก เป็นภาษาไทย ภาษาเราไม่ได้แบ่งคำโดยใช้การเว้นวรรค (Space) การตัดคำจึงเป็นเรื่องที่ยากกว่าภาษาอังกฤษ ที่ใช้การเว้น วรรค ในการแบ่งคำ เพราะฉะนั้น n-Gram สามารถเข้ามาช่วยเสริมการตัดคำได้ แต่หากให้ได้ผลดี ควรมีคลังข้อมูลของคำ ขนาดใหญ่ (Corpus) เพื่อช่วยทำการจัดหมวดหมุ่ และความคล้ายคลึงเชิงมุม เพื่อหาว่าคำต่อไปควรเป็นคำว่าอะไร ต่อไป ถึง จะได้ประสิทธิภาพมากที่สุด

1. บทนำ

ระบบการค้นคืนสารสนเทศ (Information Retrieval) ในขั้นตอนการประมวลผลข้อความ (Text processing) สิ่งที่เป็นพื้นฐาน ที่จำเป็นอย่างยิ่งคือ "หน่วยคำ" ดังนั้นการหาขอบเขตของแต่ละคำจึงเป็นสิ่งแรกที่ต้องคำนึงถึง เพราะหากเลือกการหาขอบ เขตคำไม่เหมาะสมอาจนำมาสู่ระบบการประมวลผลข้อความที่ไม่ถูกต้อง สำหรับภาษาไทยการหาขอบเขตคำค่อนข้างเป็น ปัญหาเนื่องจากลักษณะการเขียนภาษาไทยนั้นไม่มีการใช้ตัวอักษรหรือสัญลักษณ์ที่นำมาใช้คั่นระหว่างคำหรือว่ามีการวรรค ระหว่างคำเหมือนภาษาอังกฤษ งานต่างๆ ในด้านการประมวลผลภาษาไทยนั้น จึงจำเป็นอย่างยิ่งที่ต้องทราบขอบเขตของคำ นั่นคือต้องมีกระบวนการตัดคำ (Word Segmentation) ที่เหมาะสมก่อนเป็นอันดับแรก

ซึ่งนิยามของการตัดคำ คือ การแบ่งตัวอักษรจากข้อความ (String) เพื่อหาขอบเขตของแต่ละหน่วยคำ (Morpheme) เนื่อง จากส่วนใหญ่ ฿าษาไทยมีการเขียนในลักษณะที่ติดกันโดยไม่มีการใช้เครื่องหมายวรรคตอนคั่นระหว่างคำเหมือนภาษาอังกฤษ ซึ่งใช้ช่องว่าง (Space) คั่นระหว่างคำ แต่ภาษาไทยจะมีการเว้นวรรคเป็นระยะเพื่อให้ผู้อ่านทำความเข้าใจกับความหมายของ ข้อความ การตัดคำและการกำกับหมวดคำภาษาไทยได้รับความสนใจอย่างต่อเนื่องมาเป็นลำดับจนถึงปัจจุบัน โดยเฉพาะงาน ด้านการตัดคำภาษาไทย มีงานวิจัยจำนวนไม่น้อยที่ได้เสนอวิธีการในการตัดคำภาษาไทยแบบต่าง ๆ โดยมุ่งหวังให้วิธีการที่ เสนอมีประสิทธิภาพดีกว่าวิธีการที่ผ่าน ๆ มา ซึ่งบางวิธีการจะได้ผลลัพธ์ทางเลือกในการตัดคำมากกว่าหนึ่งรูปแบบ [1] จึงจำ เป็นต้องเลือกทางเลือกใดทางเลือกหนึ่งที่ดีที่สุดโดยอาศัยกฎทางไวยากรณ์ (Syntax) และความหมาย(Semantic) มาช่วย ตัดสิน มีผู้นำเสนอวิธีการที่อาศัยความถี่ของการใช้คำภาษาไทยเพื่อเลือกประโยคที่มีการตัดคำที่ถูกต้อง เนื่องจากการใช้กฎ ไวยากรณ์ภาษาไทยในการเลือกจะทำให้ฐานความรู้มีขนาดใหญ่

วิธีการตัดคำภาษาไทยสามารถแบ่งได้เป็น 3 หลักการใหญ่ คือ หลักการตัดคำโดยใช้กฎ (Rule Base Approach) หลักการตัด คำโดยใช้พจนานุกรม (Dictionary Approach) และหลักการตัดคำโดยใช้คลังข้อมูล (Corpus Based Approach) แต่ละวิธี การต่างก็ให้ผลในด้านความถูกต้อง ความรวดเร็วของการทำงานและปริมาณการใช้ทรัพยากรต่างๆ ที่แตกต่างกัน นอกจากนี้ยัง มีการตัดคำแบบที่เรียกว่า N-Gram [2] ซึ่งเป็นลักษณะการตัดคำที่ไม่ใส่ใจในความหมายของคำ

2. ความหมายของ N-Gram

N-Gram คือ แบบจำลองที่ใช้คำนวณค่าความน่าจะเป็นของชุดอักขระ (Character Sequence) ที่เกิดขึ้นร่วมกันเป็นคำ หรือค่า ความน่าจะเป็นของคำที่เขียนเรียงกัน (Word Sequence) ที่เกิดขึ้นร่วมกันเป็นประโยค โดยค่าความน่าจะเป็นของชุดอักขระ หรือคำ ประมาณได้จากคลังข้อมูลที่สร้างไว้ ซึ่ง N-Gram ได้ใช้หลักการของสถิติในหลาย ๆ ด้านมาประยุกต์ใช้

3. การนำ N-Gram มาประยกต์ใช้

การเขียนในภาษาไทยนั้นจะมีความแตกต่างกับภาษาอังกฤษอย่างเด่นชัด เนื่องจากภาษาอังกฤษจะมีช่องว่างในการระบุคำแต่ ละคำ งานวิจัยที่เกี่ยวข้องกับภาษาไทยส่วนใหญ่นั้นจะอาศัยโปรแกรมตัดคำ โดยใช้พจนานุกรมในการตัดคำแต่ก็ไม่ได้มี ประสิทธิภาพที่ดี 100% เนื่องจากมีความเป็นไปได้ที่คำที่ปรากฏในเอกสาร อาจจะไม่ปรากฏในพจนานุกรม ซึ่งงานวิจัยในไทย ส่วนใหญ่จึงได้นำเสนอแนวคิดใหม่ โดยทำการนำบางส่วนของข้อความนั้นออกมาเป็นข้อความตามค่า N ซึ่งเรียกวิธีนี้ว่า N-Gram เข้ามาใช้ในการตัดคำแทน

3.1 N-Gram กับการประมวลผล**B**าษาธรรมชาติ

N-Gram ถูกนำไปประยุกต์ใช้กับงานด้านการประมวลผลภาษาธรรมชาติ (NLP: Natural Language Processing) ซึ่งส่วน ใหญ่จะนำไปใช้แก้ไขข้อจำกัดการตัดคำในภาษาไทย เนื่องจากในระบบการตัดคำด้วยพจนานุกรม ซึ่งมักจะพบปัญหาว่ากรณีที่ คำที่ปรากฏในเอกสารนั้นไม่มีอยู่ในพจนานุกรมนั้น ในขณะที่วิธี N-Gram คือ การนำบางส่วนของข้อความนั้นออกมาเป็นหน่วย คำ (Term) ตามค่า N เพื่อใช้แทนการตัดคำ โดยทำให้ลดเวลาในการค้นหาคำในเอกสารกับคำในพจนานุกรม แต่ใน฿าษาไทย นั้นจะไม่สามารถกำหนดได้ว่า 1 ตัวอักษรคือ 1 Gram เนื่องจากภาษาไทยมีสระและวรรณยุกต์ ดังนั้นในภาษาไทยจึงถือว่ากรณี

ที่ตัวอักขระเป็นตำแหน่งที่มีสระและวรรณยุกต์อยู่ด้วยจะถือว่าเป็น 1 Gram โดยทั่วไปในภาษาไทยนิยมใช้การตัดคำแบบ 2, 3 และ 4 Gram [4]

3.2 Gram

คือ หน่วยที่ใช้ในการสร้างแบบจำลอง อาจจะเป็นเสียง คำ หรือ อักขระก็ได้และ Gram มีได้หลายขนาดแล้วแต่จะกำหนด ตั้งแต่ 1 จนถึง N ในแบบจำลองเอ็นแกรมนี้ใช้ความยาวของชุดอักขระและคำที่เขียนเรียงกันแตกต่างกัน ได้แก่ 2-Gram , 3-Gram , 4- Gram ฯลฯ ถ้าจะประมาณค่าความน่าจะเป็นของชุดคำหรือชุดอักขระจากคลังข้อมูลโดยการใช้วิธี N-Gram ผลที่ได้ มีดังนี้

- การประมาณค่าด้วย 2-Gram (Probability bigram) คือ การประมาณค่าความน่าจะเป็นของชุดอักขระที่เกิดขึ้นร่วมกันว่ามี ค่าเท่ากับผลคุณของความน่าจะเป็นที่จะพบอักขระ(คำ) ทีละ 2 ตัว (คำ) ติดกันในชุดอักขระนั้น
- การประมาณค่าด้วย 3- Gram (Probability trigram) คือ การประมาณค่าความน่าจะเป็นของชุดอักขระที่เกิดขึ้นร่วมกันว่ามี ค่าเท่ากับผลคูณของความน่าจะเป็นที่จะพบอักขระ(คำ) ทีละ 3 ตัว (คำ) ติดกันในชุดอักขระนั้น
- การประมาณค่าด้วย 4- Gram (Probability quadigram) คือ การประมาณค่าความน่าจะเป็นของชุดอักขระที่เกิดขึ้นร่วมกัน ว่ามีค่าเท่ากับผลคูณของความน่าจะเป็นที่จะพบอักขระ (คำ) ทีละ 4 ตัว (คำ) ติดกันในชุดอักขระนั้น หรืออาจประมาณค่าความ น่าจะเป็นจากความยาวของเอ็นแกรมมากกว่า 4-แกรม ก็ได้ขึ้นอยู่กับความจำเป็นในการทดลอง แต่ระบบของเอ็นแกรมก็ยิ่งซับ ซ้อนมากขึ้นตามลำดับ

4. หลักการทำงานของ N-Gram

การประมาณค่าความน่าจะเป็นของชุดอักขระ โดยการใช้เอ็นแกรมดังที่กล่าวมา คือ การใช้สมมติฐานของมาร์คอฟ (Markov assumption) ว่า การปรากฏของตัวอักษรตัวหนึ่งขึ้นกับตัวอักษรก่อนหน้าเพียง n-1 ตัว ซึ่งวิธีนี้มักนิยมใช้ในงานระบุภาษาของ ข้อความกันมาก เนื่องจากสามารถใช้เพื่อระบุภาษาได้อย่างมีประสิทธิภาพและเรียบง่ายกว่า โดยสามารถประมาณได้ดังนี้

- ใบแกรม P(c1c2c3.....cn) = P(c1) P(c2|c1) P(c3|c2)P(cn|cn-1)
- ไตรแกรม P(c1c2c3....cn) = P(c1) P(c2|c1) P(c3|c1c2)...P(cn|cn-2cn-1)
- ควอดิแกรม P(c1c2c3.....cn) = P(c1) P(c2|c1) P(c3|c1c2) P(c4|c1c2c3)... P(cn|cn-3cn-2cn-1)

โดยที่

- P แทน ค่าความน่าจะเป็น
- c แทน อักขระหรือตัวอักษร
- (c1c2c3.....cn) แทน ชดอักขระที่ประกอบด้วยอักขระตั้งแต่ 3 ตัวขึ้นไปจนถึง n ตัว

ส่วนความน่าจะเป็นของชุดคำที่รวมกันเป็นประโยค w1w2w3....wn หากประมาณค่าด้วยเอ็นแกรมต่าง ๆ ผลที่ได้ดังนี้ โดยที่

- พ แทน คำ
- n แทน จำนวนนับต่อไป
- P แทน ค่าความน่าจะเป็น
- (w1w2w3.....wn) แทน ชุดคำที่ประกอบด้วยคำมากกว่า 3 คำขึ้นไป
- ความน่าจะเป็นของประโยคโดยใช้วิธี 2-Gram คือ P(w1w2w3.....wn) = P(w1) P(w2|w1) P(w3|w2) ... P(wn|wn-1)
- ความน่าจะเป็นของประโยคโดยใช้วิธี คือ 3- Gram คือ P(w1w2w3...wn) = P(w1) P(w2|w1) P(w3|w1w2)...P (wn|wn-2wn-1)

$$P\left(w_{1}w_{2} \times w_{T}\right) = \prod_{i=1}^{T} P\left(w_{i} \middle| w_{1} \times w_{i-1}\right)$$

โดยที่

- P คือ ค่าความน่าจะเป็น (Probability) ซึ่งประมาณได้จากคลังข้อมูล
- T คือ จำนวนของคำ
- i คือ ลำดับของคำโดยเริ่มต้นที่ลำดับที่ 1
- $P(wi \mid w1...wi-1)$ คือ ความน่าจะเป็นของคำ wi หลังจากเกิดคำ w1w2...wi-1 ก่อนหน้านี้

ความน่าจะเป็นของประโยคนี้ $P(w1\ w2....wT)$ สามารถประมาณได้ โดยถือว่าการปรากฏของคำ wi นั้นขึ้นอยู่กับจำนวนคำ ข้างหน้า n-1 ตัวเท่านั้นหรือขึ้นอยู่กับขนาดของเอ็นแกรม ดังนั้นถ้าหากประมาณค่าความน่าจะเป็นของประโยคนี้ โดยใช้ 2-แก

22/7/2553

รม จะปรับเปลี่ยนสมการดังนี้

$$P(w_1w_2 | K | w_T) = P(w_1 | < s >) P(w_2 | w_1) K P(w_i | w_{i-1})$$

- P(w1|.. s ..) หมายถึง ความน่าจะเป็นของคำที่หนึ่งเมื่อเกิดเป็นคำแรกของประโยค ซึ่ง ในที่นี้คือช่องว่าง
- P(w2|w1) หมายถึง ความน่าจะเป็นของคำ w2 หลังจากเกิดคำ w1
- P(wi | wi-1) หมายถึง ความน่าจะเป็นของคำ wi หลังจากเกิดคำ wi-1

ดังนั้น จากสูตรประมาณค่าความน่าจะเป็นด้วย 2-Gram หากต้องการหาความน่าจะเป็นของประโยค "He like to eat banana" โดยใช้ N-Gram ในระดับของคำ ผลออกมาคือ

$$\underbrace{P(\text{He} \mid <\!\!s\!\!>)} \qquad P(\text{like} \mid \text{He}) \qquad P(\text{to} \mid \text{like}) \qquad P(\text{eat} \mid \text{to}) \qquad P(\text{banana} \mid \text{eat})$$

ส่วนค่าความน่าจะเป็นจะหาได้จากคลังข้อมูล เช่น

$$P(\text{like} \mid \text{He}) = \underline{c(\text{He-like})}$$

 $c(\text{He})$

โดยที่ c คือ จำนวนนับ จากสูตรนี้หมายถึง ค่าความน่าจะเป็นของ like เมื่อเกิดร่วมกับคำว่า He คำนวณได้จากนำจำนวนนับ ของ He ที่เกิดร่วมกับคำว่า like หารด้วยจำนวนนับของการเกิด He เดี่ยว ๆ วิธีการใช้แบบจำลองเอ็นแกรมนี้เป็นวิธีทางสถิติที่ นิยมใช้กันมากที่สุด เพราะเป็นวิธีที่เรียบง่าย มีประสิทธิภาพสูง และเหมาะสำหรับวิเคราะห์ภาษา สามารถใช้ระบุภาษาได้ดีกว่า วิธีอื่น ๆ

5. ตัวอย่างงานวิจัยที่นำมา N-Gram มาใช้กับ**B**าษาไทย

อัษฎางค์ (2004) ได้นำเสนองานวิจัยเรื่อง "การย่อความเอกสารภาษาไทยโดยกรรมวิธีการแยกค่าแบบเดี่ยว" โดยนำเสนอแนว คิดในการย่อความเอกสารสำหรับภาษาไทย ที่ทำการแก้ไขข้อจำกัดการตัดคำในภาษาไทยโดยใช้ N-Gram และสามารถย่อ ความเอกสารโดยไม่ขึ้นกับประเภทของเนื้อหา ไม่ใช้พจนานุกรม และไม่อาศัยการเรียนรู้ชุดข้อมูลสอน โดยใช้แต่เพียงความรู้ ทางคณิตศาสตร์เท่านั้น ซึ่งผลลัพธ์ของการย่อความนั้น จะทำการเลือกย่อหน้าที่มีใจความสำคัญจากเอกสารต้นฉบับ โดยใช้ ทฤษฎีการแยกค่าแบบเดี่ยว และในการวัดประสิทธิภาพนั้นได้ทำการทดสอบกับชุดข้อมูลทดสอบที่เป็นเอกสารข่าว ประกอบไป ด้วยข่าวเกษตรกรรม ข่าวทั่วๆ ไป และบทความ รวมจำนวนทั้งสิ้น 30 เอกสาร ซึ่งผลของการวัดประสิทธิิทพแสดงให้เห็นว่า สามารถแก้ไขข้อจำกัดในเรื่องการตัดคำในภาษาไทยได้โดยวิธี N-Gram และจำนวน Gram ให้ประสิทธิภาพที่ดีที่สุดได้แก่ 3-Gram

6. สรุป

จากการศึกษา N-Gram นั้น จะเห็นว่า N-Gram น่าจะเป็นวิธีการที่นำมาใช้กับภาษาไทยได้ดีวิธีหนึ่ง และผลงานวิจัยของหลาย ๆ ท่าน จะแสดงให้เห็นว่าประสิทธิภาพของ N-Gram ที่ดีอยู่ที่ 3-Gram และ 4-Gram ซึ่งงานวิจัยส่วนใหญ่เลือกใช้แบบจำลอง N-Gram เพื่อพัฒนาระบบการระบุภาษาของคำโดยมีเหตุผลหลัก ๆ ดังนี้ [3]

- 1. N-Gram เป็นวิธีทางสถิติที่เป็นพื้นฐานและเรียบง่ายมากที่สุด ซึ่งจะช่วยลดต้นทุนในการทำระบบการระบุ฿าษา
- 2. สามารถนำ N-Gram มาใช้ร่วมกับวิธีอื่น ๆ ได้ เนื่องจากจะช่วยเพิ่มประสิทธิภาพของระบบให้ดีมากยิ่งขึ้น
- 3. N-Gram สามารถใช้ระบุภาษาได้ทุกภาษา ในกรณีระบุภาษาที่ใช้ชุดอักขระที่เป็นตัวอักษรประเภทเดียวกัน แต่ต่าง฿าษากัน เช่น อักษรโรมันที่ใช้เขียนภาษาอังกฤษ เยอรมัน อิตาเลียน หรืออักษรไทย ที่ใช้เขียนคำทับศัพท์ภาษาอังกฤษ ญี่ปุ่น และ ฝรั่งเศส เป็นต้น
- 4. เนื่องจากรูปแบบของข้อมูลนำเข้าเพื่อทดสอบ และข้อมูลการฝึกควรจะเรียบง่ายมากที่สุด ไม่มีการประมวลผลเบื้องต้น (Preprocess) เช่น การ Encoding ข้อมูลหรือการใส่ Tag ลงบนข้อมูล ดังนั้น N-Gram จึงเป็นวิธีที่ดีที่สุดที่จะลดความยุ่งยากใน การพัฒนาระบบ
- 5. ใน N-Gram เพียงใช้คลังข้อมูลจำนวนน้อยก็สามารถระบุภาษาของคำได้ถูกต้อง

7. เอกสารอ้างอิง

- [1] นัฐวุฒิ ไชยเจริญ, "การตัดคำและการกำกับหมวดคำภาษาไทยแบบเบ็ดเสร็จด้วยคอมพิวเตอร์", วิทยานิพนธ์ อศ.ม., กรุงเทพฯ : จุฬาลงกรณ์มหาวิทยาลัย, 2544.
- [2] วีรยา อมรพงษ์กุล, อัษฎา฿รณ์ พิมพ์สมบูรณ์, จันทิมา พลพินิจ และ อุมา฿รณ์ สายแสงจันทร์, "การประยุกต์เอ็นแกรมและ

เว็กเตอร์โมเดลสำหรับระบบย่อข้อความ฿าษาไทย", The 1st Thailand Computer Science conference (ThCSC), 2004. [3] อัครพล เอกวงศ์อนันต์, "การระบุคำไทยและคำทับศัพท์ด้วยแบบจำลองเอ็นแกรม", วิทยานิพนธ์ อศ.ม., กรุงเทพฯ : จุฬาลงกรณ์มหาวิทยาลัย, 2548.

[4] อัษฎางค์ แตงไทย และ ชุลีรัตน์ จรัสกุลชัย, "การย่อความภาษาไทยโดยกรรมวิธีการแยกค่าแบบดี่ยว", The Procof NCSEC. 2004.

ขอบพระคุณที่สนใจอ่าน

Comments (1)

ejeepss

- Pages:
 - o <u>1. หน้าแรก</u>
 - 2. พักสายตา
 - o <u>3. เกี่ยวกับผม</u>
- ลิงค์.. (Link)
 - o <u>CAT CA</u>
 - o <u>CAT IDC</u>
 - o ejeepss.multiply.com
 - itsecurity.thaipki.com
 - o <u>itwizard.info</u>
 - o Mrgill
 - o Nuchit Atjanawat
 - o O'Reilly's CD bookshelf
 - o pay@cat
 - o <u>tewwss.multiply.com</u>
 - o <u>www.java2s.com</u>
 - ฟอนต์สวย ๆ
 - สนุก ดอท คอม
 - อดิศร ขาวสังข์
 - o <u>เกษมนัส ใม้เรียง</u>
- Categories:
 - o .NET Techonology
 - 'bobj' is undifined คืออะไร?
 - Ajax Control ToolKit
 - Graph with ASP.NET + Crystal Report
 - ทำ SQL Server Caching ใน ASP.NET กัน
 - มาทำ Connection Pooling กันเถอะ
 - มาทำ Output Caching ใน ASP.NET กันเ
 - มาทำ SQL Server Session State กัน
 - o Google Tools & Service
 - แกะรอย Webด้วย Google Analytics
 - Information Theory
 - Basic Concept
 - Convolution Code
 - Huffman Code
 - Lena คณคือใคร?
 - o IR & Search Engine
 - o <u>ik & Search Engine</u>
 ask.com เว็บนอกสายตา!
 - <u>Information Extraction</u>
 - n-Gram

- robot.txt คือไฟล์อะไร?
- มาสร้าง Search Engine กัน
- o Open Source
 - apache2traid 1.4.4
 - <u>Install Apache Tomcat 6</u>
 - Install JDK6
 - Install MySQL 5.0.24
 - Modify Osticket กันเถอะ
 - OsTicket 1.6rc
 - Replicate MySQL 5.x
 - WampServer2.0c
 - ผังมโนภาพ [FreeMind]
- o Web Security
 - Arp Spoof หรือ Arp Posion
 - CAPTCHAs ไม่มี ไม่ได้แล้ว
 - Phishing (ฟิชชิ่ง)
 - SQL Injection Attacks
 - ตั้ง Password อย่างไรดี 1
 - ตั้ง Password อย่างไรดี 2
 - <u>ป้องกัน Spam Blog ใน WordPress</u>
 - สมัคร MasterCard SecureCode กัน
 - เลือกบัตรเครดิต 1
 - เลือกบัตรเครดิต 2
 - "How Online Shopping work?
- o <u>กินไป อิ่มไป</u>
 - ก๋วยเตี๋ยว นายบี๋
- ท่องเที่ยว
 - กระบี
 - ดอยอินทนนท์
 - ปาย แม่ฮ่องสอน
 - ภูชี้ฟ้า 1
 - ฏชีฟา 2
 - ฏูเก็ต ไข่มุกฯ
 - สวนผึ้ง ราชบุรี
 - หมู่เกาะสิมิลัน
 - หัวหิน 1 (Hideaway Resort)
 - หัวหิน 2 (Hideaway Resort)
 - อัมพวา ตลาดน้ำฯ
 - อาดัง ราวี หลีเป๊ะ 1
 - อาดัง ราวี หลีเป๊ะ 2
 - เกาะเกร็ด
 - <u>เกาะเสม็ด</u>
 - เขื่อนขุนด่านฯ
- พูดถึงภาพยนตร์
 - Die Hard 4.0
 - <u>Transformer</u>
- พูดถึงหนังสือ
 - An inconvenient trueth
 - I'm a PILOT
 - I'm a Surgeon
 - The world is flat
 - กลยุทธ The Long Tail
 - อัจฉริยะสร้างได้
 - Blue Ocen Strategy
 - เข็มทิศชีวิต
- o <u>เรื่องอื่</u>นๆ
 - Linux Virus ELS file format
 - Packet FTP ทำงานอย่างไร

- SQL Language & Grammar
- vi editor เบื้องต้น
- VPN & VPN pass-through
- คอมไพเลอร์
- สวิทช์ประหยัดไฟ
- ใช้งาน CATKM Blog
- o <u>เอกสารบรรยาย (PDF)</u>
 - Intro SQL Injection
 - Servlet & JSP Technology
 - Web Security Example
 - คู่มือ OpenOffice.org
 - งานวิจัยส่ง NCCIT07
- Search:

ค้นหา

• Archives:

- <u>สิงหาคม 2009</u>
- o <u>กรกฎาคม 2009</u>
- <u>มิถุนายน 2009</u>
- o พฤษ าคม 2009
- o <u>เมษายน 2009</u>
- o <u>มีนาคม 2009</u>
- o <u>กุม าพันธ์ 2009</u>
- o มกราคม 2009
- o <u>ธันวาคม 2008</u>
- o <u>พฤศจิกายน 2008</u>
- o ตุลาคม 2008
- o <u>กันยายน 2008</u>
- สิงหาคม 2008
- o <u>กรกฎาคม 2008</u>
- o มิถุนายน 2008
- o <u>พฤษ าคม 2008</u>
- o <u>เมษายน 2008</u>
- o มีนาคม 2008
- กุม าพันธ์ 2008
- มกราคม 2008
- ธันวาคม 2007
- พฤศจิกายน 2007
- o <u>ตุลาคม 2007</u>
- o <u>กันยายน 2007</u>
- สิงหาคม 2007
- กรกฎาคม 2007
- o <u>มิถุนายน 2007</u>

• Meta:

- o <u>ล็อกอิน</u>
- o RSS
- o Comments RSS
- o Valid XHTML
- o XFN
- o WP

จำนวนผู้เข้าชม 142074

Powered by WordPress