DAT604 - Simulation & Modeling Techniques

Misha Kollontai

Problem

- Solar power is becoming more and more viable for homeowners
- Far too many factors come into play to evaluate the financial implications
 - Environmental variables
 - Size limitations
 - Power consumption
 - Initial investment

Goal

Create a simulation which can be used to investigate the viability of a solar panel system

Overview

Gather Data on Solar Exposure (NSRDB)

- Determine location (lat/long)
- Pull hourly GHI for location (NSRDB API)
- Calculate average daily exposure broken out by month
- Calculate st. dev of daily exposure broken out by month

STD	GHI			
		Month		
1366.215244	3087.322581	1		
1390.704285	2388.500000	2		
1780.111746	4682.806452	3		
2026.809093	5718.066667	4		
1959.323513	6850.806452	5		
1314.185321	6877.333333	6		
1422.765663	7179.741935	7		
1244.565085	6675.580645	8		
1458.029514	4153.066667	9		
1663.581128	3316.354839	10		
1411.190278	2925.000000	11		
1327.766465	2846.580645	12		

Create System Defining Solar Panels

- Define the area, efficiency, PR of the solar panel array. Defaults based on average panel
- Determine state (to determine average price of power)
- Determine initial expenditure for panel install

```
In [33]: def define system3(A=80,r=0.175,PR=0.8,lat=lat,long=long,state='Texas',initial cost=15000):
             '''Create a system object defining our solar panel system
             A - surface area of the panels (in m^2)
             r - solar panel efficiency (between 15 and 21%, default 17.5%)
             PR - performance ratio (between 50 and 90%, default 75%
             lat - latitude of the location
             long - longitude of the location
             returns: System object
             start = State(P=0, N=0, PB=0, MP = -initial_cost, C = 0)
             ""Create a state tracking the positive/negative months as well as the balance overall
                    number of months where more power was generated than used
                    number of months where less power was generated than used
             PB - overall balance of power
             FB - overall financial expenditure
             t\theta = \theta
             '''13 years worth of operation'''
             t end = 13*12
             return System(start=start, t0=t0, t end=t end, A=A, r=r, PR=PR, state = state, lat=lat, long=long)
```

Determine The Demand on System

- Look at average household consumption in the US
- Decided to skew towards the high end of the table to be conservative
- Normally distributed demand

State	Number of Customers	Average Monthly Consumption (kWh)
Montana	509,526	850
Nevada	1,183,660	947
New Mexico	889,841	639
Utah	1,091,162	742
Wyoming	272,427	841
Pacific Contiguous	18,418,260	649
California	13,591,152	546
Oregon	1,750,240	901
Washington	3,076,868	957
Pacific Noncontiguous	723,792	539
Alaska	287,526	572
Hawaii	436,266	518
U.S. Total	133,893,321	914

```
In [8]: #### Function generating a value for the demand on our system in a day.
    def days_demand_norm(mean = 40, std = 6):
        demand_day = np.random.normal(mean,std)
        if demand_day < 0:
            demand_day = 0
        return demand_day

days_demand_norm()

Out[8]: 35.27083922041013</pre>
```

Run Simulation

- Run for 13 years (Median length of homeownership)
- Assume standard efficiency & Performance Ratio
- Look at Different Surface Areas
- Calculate Delta of Power Generated to Consumed

Refine Simulation

- Start accounting for price/kWh
- Account for initial cost of installation
- Account for what would have been spent on power without Solar

Re-run to See Efficiency Effect

- Simulate multiple panel systems with different efficiencies
- Assume an area of 80 sq m (half of an average US roof)

