En statistiques inférentielles classiques...

- I. On pose une question de recherche visant à comprendre un phénomène.
- II. On pose une hypothèse nulle (H_0) : une description de l'univers dans laquelle existe l'analyse.
 - \triangleright On veut rejeter H_0 .
 - ightharpoonup On établit les valeurs critiques qui permettraient de rejeter H_0 avec une faible probabilité de se tromper si H_0 est vraie.
 - Cette « faible probabilité » correspond à l'erreur de type 1.
- III. On pose une hypothèse alternative (H_A) : l'hypothèse du chercheur.
 - > Le chercheur construit un modèle du phénomène qu'il tente de comprendre.
 - > Le modèle correspond généralement à une ou plusieurs variables.
 - Chaque variable est généralement accompagnée d'un **paramètre**, qui reflète l'importance de la variable à l'intérieur du modèle.
 - > Le chercheur s'inspire principalement de la documentation théorique pour construire son modèle.
- IV. On récolte un échantillon : un groupe d'observations.
 - ightharpoonup On utilise ce **groupe** d'observations pour estimer les valeurs des paramètres H_0 (i.e. l'importance des différentes variables du modèle du chercheur).
- V. On conclue.
 - \succ Le chercheur vérifie quelle était la probabilité d'obtenir les valeurs des paramètres estimées à partir de l'échantillon, si H_0 est vraie.
 - \succ Si cette probabilité est plus faible que la probabilité d'erreur de type 1 maximale établie au début, on rejette H_0 .