广义相对论学习笔记

Tales

2024年7月24日

前言

这是本人在 2024 年暑假自学广义相对论时所做的一些笔记。主要内容是主持学习会以及平时自主学习时的准备内容。会尽量全部整理成 $ext{IMT}_{ ext{E}} ext{X}$ 格式。

2024年7月24日

目录

第零章	广义相	对论的数学基础	1
0.1	张量 .		1
	0.1.1	广义坐标变换	1
	0.1.2	广义相对论中的张量的定义	2
	0.1.3	张量代数	2
0.2	平移与	联络	3
	0.2.1	矢量的平移	4
	0.2.2	联络的性质	4
0.3	普通微	商与协变微商	6
	0.3.1	标量场的普通微商与协变微商	6
	0.3.2	协变矢量场的普通微商与协变微商	7
	0.3.3	协变微商的莱布尼茨法则	7
	0.3.4	逆变矢量场的协变微商	8
	0.3.5	高阶张量场的协变微商	8
0.4	曲率与	挠率	8
	0.4.1	曲率张量	8
	0.4.2	挠率的几何意义	9
	0.4.3	曲率的几何意义	10
	0.4.4	曲率张量的性质	10
0.5	度规张	量	11
	0.5.1	距离与度规	11
	0.5.2	度规的正则形式与幺正基	11
	0.5.3	张量指标的升降	11

0.6	Christ	offel 符号	12
	0.6.1	联络与度规的关系	12
	0.6.2	等效原理的数学基础	14
0.7	测地线	3与短程线	14
	0.7.1	测地线	14
	0.7.2	短程线	16
0.8	无挠黎	學曼空间的曲率张量	17
	0.8.1	曲率张量的对称性	17
	0.8.2	三个派生的重要张量	18
	0.8.3	曲率张量的独立分量	19
	0.8.4	里奇张量和爱因斯坦张量的独立分量	20
	0.8.5	毕安基恒等式	20
0.9	几个重	重要的运算	21
	0.9.1	度规的微分	21
	0.9.2	一个特殊的克氏符	22
	0.9.3	散度的运算	22

第零章 广义相对论的数学基础

0.1 张量

0.1.1 广义坐标变换

设新、旧坐标之间的关系为

$$x'^{\mu} = x'^{\mu}(x^{\nu}) \quad \mu, \nu = 1, 2, 3, 4$$

则坐标微分元之间的关系为

$$dx'^{\mu} = \frac{\partial x'^{\mu}}{\partial x^{\nu}} dx^{\nu} \tag{1}$$

注意,变换矩阵 $\frac{\partial x'^{\mu}}{\partial x^{\nu}}$ 是空间点的函数;但是在某一个确定的空间点上,变换矩阵是常数矩阵。所以,对于每一个确定的空间点,式 (1.1) 可视作线性变换,但是不同的空间点的变换矩阵不同。

如果变换矩阵非奇异,即变换矩阵的行列式 $\det(\frac{\partial x'^{\mu}}{\partial x^{\nu}})\neq 0$ 或 ∞ ,则坐标微分元的逆变换存在,即

$$dx^{\mu} = \frac{\partial x^{\mu}}{\partial x^{\prime \nu}} dx^{\nu} \tag{2}$$

正、逆变换之间的变换矩阵满足如下关系

$$\frac{\partial x'^{\mu}}{\partial x^{\nu}} \cdot \frac{\partial x^{\mu}}{\partial x'^{\nu}} = \frac{\partial x^{\mu}}{\partial x^{\nu}} = \delta^{\mu}_{\nu} = \begin{cases} 1, & \mu = \nu \\ 0, & \mu \neq \nu \end{cases}$$

 δ^{μ}_{ν} 即 Kroneker 符号。

这说明式 (1.1)和式 (1.2)中的两个变换矩阵互为逆矩阵。

广义坐标变换与洛伦兹变换对比:

- 变换矩阵不一定正交矩阵。
- 变换矩阵的矩阵元不一定是常数。

0.1.2 广义相对论中的张量的定义

张量的定义有两个要点:

- 1. 分量的个数。
- 2. 在坐标变换下按照特定的规律变化。

使用上指标表示逆变指标,下指标表示斜边指标。

• 零阶张量: 在广义坐标变换下不变的量。又称标量,不变量。

$$U'(\mathbf{x'}) = U(\mathbf{x})$$

• 一阶逆变张量

$$V'^{\mu} = \frac{\partial x'^{\mu}}{\partial x^{\nu}} V^{\nu}$$

• 二阶逆变张量

$$T^{\prime\mu\nu} = \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \frac{\partial x^{\prime\nu}}{\partial x^{\beta}} T^{\alpha\beta}$$

• 一阶协变张量

$$V'_{\mu} = \frac{\partial x^{\mu}}{\partial x'^{\nu}} V_{\nu}$$

• 混合张量

它既有逆变指标, 也有协变指标。

$$T^{\prime\mu_1\mu_2\dots\mu_p}_{\;\;\nu_1\nu_2\dots\nu_q}=(\frac{\partial x^{\prime\mu_1}}{\partial x^{\alpha_1}}\dots\frac{\partial x^{\prime\mu_p}}{\partial x^{\alpha_p}})\cdot(\frac{\partial x^{\beta_1}}{\partial x^{\prime\nu_1}}\dots\frac{\partial x^{\beta_q}}{\partial x^{\prime\nu_q}})T^{\alpha_1\alpha_2\dots\alpha_p}_{\beta_1\beta_2\dots\beta_q}$$

称为 (p,q) 阶张量。

下面证明, Kroneker 符号是 (1,1) 阶张量:

$$\delta^{\prime\mu}_{\ \nu} = \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \frac{\partial x^{\nu}}{\partial x^{\prime\beta}} \delta^{\alpha}_{\beta} = \frac{\partial x^{\prime\mu}}{\partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial x^{\prime\nu}} = \frac{\partial x^{\prime\mu}}{\partial x^{\prime\nu}} = \begin{cases} 1, & \mu = \nu \\ 0, & \mu \neq \nu \end{cases}$$
(3)

式 (1.3)说明, δ''_{ν} 在新坐标系下同样满足 Kroneker 符号的定义,且满足张量的定义,因此 Kroneker 符号是张量。

0.1.3 张量代数

• 张量的加减法: 只有同阶的张量才可做加减法。

$$C^{\mu\nu}_{\rho\tau\lambda} = A^{\mu\nu}_{\rho\tau\lambda} + B^{\mu\nu}_{\rho\tau\lambda}$$

• 张量的乘法: 指"外乘",不要求同阶,外乘可使张量的阶数升高。

$$C^{\mu\nu}_{\rho\tau\lambda} = A^{\mu}_{\rho\tau} \cdot B^{\nu}_{\lambda}$$

• **张量的缩并**:混合的一堆上下指标相同时,代表求和。缩并使张量的结束降低,即使一个 (p,q) 阶的张量降低至 (p-1,q-1) 阶。

$$C^{\nu}_{\rho\lambda} = C^{\mu\nu}_{\rho\mu\lambda}$$

• 张量的标积: 两个矢量的标积定义为他们外乘后再缩并

$$C = A^{\mu}B_{\mu}$$

• 张量的对称性:存在于上标与上标之间,或者下标与下标之间。

对称张量: $T^{\mu\nu} = T^{\nu\mu}$ 反对称张量: $T^{\mu\nu} = -T^{\nu\mu}$

任意一个(含有两个下标或者两个上标的)张量 $T^{\mu\nu}$ 都可以拆成一个对称张量 $T^{(\mu\nu)}$ 与 反对称张量 $T^{[\mu\nu]}$ 之和:

$$T^{\mu\nu}=T^{(\mu\nu)}+T^{[\mu\nu]}$$

其中:

$$T^{(\mu\nu)} \equiv \frac{1}{2}(T^{\mu\nu} + T^{\nu\mu})$$

$$T^{[\mu\nu]} \equiv \frac{1}{2}(T^{\mu\nu} - T^{\nu\mu})$$

0.2 平移与联络

- 张量是逐点定义的,只有同一点的张量相减,计算结果才能保持张量的变换性质。
- 张量场的微分需要使用相邻两点的张量差。

基于以上理由, 我们需要引入矢量的平移。

0.2.1 矢量的平移

首先研究协变矢量场的平移。设矢量场 A_{μ} 在相邻两点的值分别为 $A_{\mu}(P)$ 和 $A_{\mu}(Q)$ 。将 P 点的矢量平移至 Q 点后,记作 $A_{\mu}(P \to Q)$,一般来说, $A_{\mu}(Q) \neq A_{\mu}(P \to Q)$ 。定义 $A_{\mu}(P \to Q)$ 具有 Q 点的协变矢量的变换性质,即

$$A'_{\mu}(P \to Q) = (\frac{\partial x^{\nu}}{\partial x'^{\mu}})_{Q} \cdot A_{\nu}(P \to Q)$$

平移后的 $A_{\mu}(P \to Q)$ 相比 $A_{\mu}(P)$ 会有一个改变量,记作 $\delta A_{\mu}(P)$ 。定义这个改变量正比与 $A_{\mu}(P)$ 和位移 dx^{μ} ,表示为:

$$\delta A_{\mu}(P) = A_{\mu}(P \rightarrow Q) - A_{\mu}(P) = \Gamma^{\lambda}_{\mu\nu}(P) \cdot A_{\lambda}(P) \cdot dx^{\nu} \tag{4} \label{eq:deltaA}$$

式 (1.4)中所引入的比例系数 $\Gamma^{\lambda}_{\mu\nu}(P)$ 叫做 P 点的仿射联络,简称联络。可以看到平移的定义的两点要求:

- 1. 平移后的矢量 $A_{\mu}(P \to Q)$ 是 Q 点的矢量。
- 2. 平移所引起的改变量与原矢量 $A_{\mu}(P)$ 即平移的位移 dx^{μ} 呈线性关系。

这种平移称为'Levi-Civita'平移。

0.2.2 联络的性质

一个自然的问题: 联络是张量吗?

由

$$A'_{\mu}(P \rightarrow Q) = (\frac{\partial x^{\nu}}{\partial x'^{\mu}})_{Q} \cdot A_{\nu}(P \rightarrow Q)$$

出发,推导联络的变换性质。目标:将上式三项都写成 P 点的函数。

$$\begin{split} A'_{\mu}(P \to Q) &= A'_{\mu}(P) + \Gamma'^{\lambda}_{\mu\nu}(P) \cdot A'_{\lambda}(P) \cdot dx'^{\nu} \\ & (\frac{\partial x^{\nu}}{\partial x'^{\mu}})_{Q} = (\frac{\partial x^{\nu}}{\partial x'^{\mu}})_{P} + (\frac{\partial^{2} x^{\nu}}{\partial x'^{\mu} \partial x'^{\alpha}})_{P} \ dx'^{\alpha} = (\frac{\partial x^{\nu}}{\partial x'^{\mu}})_{P} + (\frac{\partial^{2} x^{\nu}}{\partial x'^{\mu} \partial x'^{\beta}} \frac{\partial x'^{\beta}}{\partial x^{\alpha}})_{P} \ dx^{\alpha} \\ A_{\nu}(P \to Q) &= A_{\nu}(P) + \Gamma^{\lambda}_{\nu\alpha}(P) \cdot A_{\lambda}(P) \cdot dx^{\alpha} \end{split}$$

代入,并省去角标 P (因为此时所有的量均在 P 点取值),得到:

$$A'_{\mu} + \Gamma'^{\lambda}_{\ \mu\nu} \cdot A'_{\lambda} \cdot dx'^{\nu} = (\frac{\partial x^{\nu}}{\partial x'^{\mu}} + \frac{\partial^{2} x^{\nu}}{\partial x'^{\mu} \partial x'^{\beta}} \frac{\partial x'^{\beta}}{\partial x^{\alpha}} dx^{\alpha}) \cdot (A_{\nu} + \Gamma^{\lambda}_{\nu\alpha} \cdot A_{\lambda} \cdot dx^{\alpha})$$

再代入

$$A'_{\mu} = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} A_{\alpha} \qquad dx'^{\nu} = \frac{\partial x'^{\nu}}{\partial x^{\sigma}} dx^{\sigma}$$

展开,并略去坐标微分元的二阶小量,得到:

左边 =
$$\frac{\partial x^{\alpha}}{\partial x'^{\mu}} A_{\alpha} + \Gamma'^{\lambda}_{\mu\nu} \cdot \frac{\partial x^{\beta}}{\partial x'^{\lambda}} A_{\beta} \cdot \frac{\partial x'^{\nu}}{\partial x^{\sigma}} dx^{\sigma}$$

= $\frac{\partial x^{\alpha}}{\partial x'^{\mu}} A_{\alpha} + \Gamma'^{\lambda}_{\mu\nu} A_{\beta} \frac{\partial x^{\beta}}{\partial x'^{\lambda}} \frac{\partial x'^{\nu}}{\partial x^{\sigma}} dx^{\sigma}$
右边 = $\frac{\partial x^{\nu}}{\partial x'^{\mu}} A_{\nu} + \frac{\partial x^{\nu}}{\partial x'^{\mu}} \Gamma^{\lambda}_{\nu\alpha} A_{\lambda} dx^{\alpha} + \frac{\partial^{2} x^{\nu}}{\partial x'^{\mu} \partial x'^{\beta}} \frac{\partial x'^{\beta}}{\partial x^{\alpha}} dx^{\alpha} A_{\nu}$
= $\frac{\partial x^{\alpha}}{\partial x'^{\alpha}} A_{\nu} + \Gamma^{\lambda}_{\nu\alpha} A_{\lambda} \frac{\partial x^{\nu}}{\partial x'^{\mu}} dx^{\alpha} + \frac{\partial^{2} x^{\nu}}{\partial x'^{\mu} \partial x'^{\beta}} \frac{\partial x'^{\beta}}{\partial x^{\alpha}} A_{\nu} dx^{\alpha}$

消去左右两边相同的项,得到:

$$\Gamma^{\prime}_{\ \mu\nu}A_{\beta}\frac{\partial x^{\beta}}{\partial x^{\prime\lambda}}\frac{\partial x^{\prime\nu}}{\partial x^{\sigma}}dx^{\sigma} = \Gamma^{\lambda}_{\nu\alpha}A_{\lambda}\frac{\partial x^{\nu}}{\partial x^{\prime\mu}}dx^{\alpha} + \frac{\partial^{2}x^{\nu}}{\partial x^{\prime\mu}\partial x^{\prime\beta}}\frac{\partial x^{\prime\beta}}{\partial x^{\alpha}}A_{\nu}dx^{\alpha}$$

替换哑标,得到:

$$\Gamma^{\prime \lambda}_{\ \mu \nu} A_{\beta} \frac{\partial x^{\beta}}{\partial x^{\prime \lambda}} \frac{\partial x^{\prime \nu}}{\partial x^{\sigma}} dx^{\sigma} = \Gamma^{\beta}_{\nu \sigma} A_{\beta} \frac{\partial x^{\nu}}{\partial x^{\prime \mu}} dx^{\sigma} + \frac{\partial^{2} x^{\beta}}{\partial x^{\prime \mu} \partial x^{\prime \gamma}} \frac{\partial x^{\prime \gamma}}{\partial x^{\sigma}} A_{\beta} dx^{\sigma}$$

合并同类项,得到:

$$(\Gamma'^{\lambda}_{~\mu\nu}\frac{\partial x^{\beta}}{\partial x'^{\lambda}}\frac{\partial x'^{\nu}}{\partial x^{\sigma}}-\Gamma^{\beta}_{\nu\sigma}\frac{\partial x^{\nu}}{\partial x'^{\mu}}-\frac{\partial^{2}x^{\beta}}{\partial x'^{\mu}\partial x'^{\gamma}}\frac{\partial x'^{\gamma}}{\partial x^{\sigma}})A_{\beta}dx^{\sigma}=0$$

由 A_beta dx^{σ} 都是 P 点的任意矢量, 所以前面系数为零, 即:

$$\begin{split} &(\Gamma'^{\lambda}_{\ \mu\nu}\frac{\partial x^{\beta}}{\partial x'^{\lambda}}\frac{\partial x'^{\nu}}{\partial x^{\sigma}}-\Gamma^{\beta}_{\nu\sigma}\frac{\partial x^{\nu}}{\partial x'^{\mu}}-\frac{\partial^{2}x^{\beta}}{\partial x'^{\mu}\partial x'^{\gamma}}\frac{\partial x'^{\gamma}}{\partial x^{\sigma}})=0\\ &\Gamma'^{\lambda}_{\ \mu\nu}\frac{\partial x^{\beta}}{\partial x'^{\lambda}}\frac{\partial x'^{\nu}}{\partial x^{\sigma}}=\Gamma^{\beta}_{\nu\sigma}\frac{\partial x^{\nu}}{\partial x'^{\mu}}+\frac{\partial^{2}x^{\beta}}{\partial x'^{\mu}\partial x'^{\gamma}}\frac{\partial x'^{\gamma}}{\partial x^{\sigma}} \end{split}$$

两边同时乘以 $\frac{\partial x'^{\tau}}{\partial x^{\beta}} \frac{\partial x^{\sigma}}{\partial x'^{\rho}}$,得到:

$$\Gamma^{\prime\lambda}_{\ \mu\nu} \frac{\partial x^{\beta}}{\partial x^{\prime\lambda}} \frac{\partial x^{\prime\nu}}{\partial x^{\sigma}} \cdot \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \frac{\partial x^{\sigma}}{\partial x^{\prime\rho}} = \Gamma^{\beta}_{\nu\sigma} \frac{\partial x^{\nu}}{\partial x^{\prime\mu}} \cdot \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \frac{\partial x^{\sigma}}{\partial x^{\prime\rho}} + \frac{\partial^{2}x^{\beta}}{\partial x^{\prime\mu}\partial x^{\prime\gamma}} \frac{\partial x^{\prime\gamma}}{\partial x^{\sigma}} \cdot \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \frac{\partial x^{\sigma}}{\partial x^{\prime\rho}}$$

$$\Gamma^{\prime\lambda}_{\ \mu\nu} \delta^{\tau}_{\lambda} \delta^{\nu}_{\rho} = \Gamma^{\beta}_{\nu\sigma} \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \frac{\partial x^{\nu}}{\partial x^{\prime\mu}} \frac{\partial x^{\sigma}}{\partial x^{\prime\rho}} + \frac{\partial^{2}x^{\beta}}{\partial x^{\prime\mu}\partial x^{\gamma}} \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \delta^{\gamma}_{\rho}$$

$$\Gamma^{\prime\tau}_{\ \mu\rho} = \Gamma^{\beta}_{\nu\sigma} \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \frac{\partial x^{\nu}}{\partial x^{\prime\mu}} \frac{\partial x^{\sigma}}{\partial x^{\prime\rho}} + \frac{\partial^{2}x^{\beta}}{\partial x^{\prime\rho}\partial x^{\rho}} \frac{\partial x^{\prime\tau}}{\partial x^{\beta}} \frac{\partial x^{\prime\tau}}{\partial x^{\beta}}$$

$$(5)$$

式 (1.5)即联络在坐标变换下的变化公式。显然,联络的变换不满足张量的定义,因此它不是张量。

可以证明, 逆变矢量在平移下的改变量为:

$$\delta A^{\mu}(P) \equiv A^{\mu}(P \to Q) - A^{\mu}(P) = -\Gamma^{\mu}_{\lambda\nu} \cdot A^{\lambda}(P) \cdot dx^{\nu} \tag{6}$$

联络的性质:

1. 在同一空间引入两种联络 $_1\Gamma^{\lambda}_{\mu\nu}$ 和 $_2\Gamma^{\lambda}_{\mu\nu}$,虽然这两个联络都不是张量,但是他们的差 $\delta\Gamma^{\lambda}_{\mu\nu}$ 是 (1,2) 阶张量。

$$\delta\Gamma^{\lambda}_{\mu\nu} =_1 \Gamma^{\lambda}_{\mu\nu} -_2 \Gamma^{\lambda}_{\mu\nu}$$

2. 联络一般是非对称的,但是可以分解成对称部分和反衬部分之和:

$$\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{(\mu\nu)} + \Gamma^{\lambda}_{[\mu\nu]}$$

对称部分叫做对称联络,它不是张量:

$$\Gamma^{\lambda}_{(\mu\nu)} = \frac{1}{2}(\Gamma^{\lambda}_{\mu\nu} + \Gamma^{\lambda}_{\nu\mu})$$

反衬部分叫做挠率张量,他是张量:

$$\Gamma^{\lambda}_{[\mu\nu]} = \frac{1}{2}(\Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\nu\mu})$$

联络总共有 64 个分量,其中对称部分 40 个独立分量,反称部分(挠率张量) 24 个独立分量。

0.3 普通微商与协变微商

0.3.1 标量场的普通微商与协变微商

标量场 $U(\mathbf{x})$ 的普通微商用 $U_{,\mu}$ 表示为

$$U_{,\mu} \equiv \frac{\partial U(\mathbf{x})}{\partial x^{\mu}}$$

变换到新坐标系为 $U'_{,\mu}$,容易看出:

$$U'_{,\mu} \equiv \frac{\partial U(\mathbf{x})}{\partial x^{\mu}} = \frac{\partial U'}{\partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial x'^{\mu}} = \frac{\partial U}{\partial x^{\alpha}} \frac{\partial x^{\alpha}}{\partial x'^{\mu}} = U_{,\alpha} \frac{\partial x^{\alpha}}{\partial x'^{\mu}}$$

可见 $U_{,\mu}$ 是协变矢量。

定义标量场的协变微商等于它的协变微商,用";"表示协变微商,有:

$$U_{;\mu} = U_{,\mu}$$

0.3.2 协变矢量场的普通微商与协变微商

协变矢量场的普通微商定义为:

$$A_{\mu,\nu} \equiv \frac{\partial A_{\mu}}{\partial x^{\nu}} \equiv \lim_{Q \to P} \frac{A_{\mu}(Q) - A_{\mu}(P)}{\Delta x^{\nu}}$$

由于空间中不同两点的张量差 $A_{\mu}(Q) - A_{\mu}(P)$ 不再是张量,所以普通微商一般不再具有张量的性质。

协变矢量的协变微商用平移的方式定义:

$$A_{\mu;\nu} \equiv \lim_{Q \to P} \frac{A_{\mu}(Q) - A_{\mu}(P \to Q)}{\Delta x^{\nu}}$$

代入式 (1.4), 得:

$$\begin{split} A_{\mu;\nu} &\equiv \lim_{Q \to P} \frac{A_{\mu}(Q) - (A_{\mu}(P) + \Gamma^{\lambda}_{\mu\alpha} A_{\lambda} \Delta x^{\alpha})}{\Delta x^{\nu}} \\ &= \lim_{Q \to P} \frac{A_{\mu}(Q) - A_{\mu}(P)}{\Delta x^{\nu}} + \lim_{Q \to P} \frac{\Gamma^{\lambda}_{\mu\alpha} A_{\lambda} \Delta x^{\alpha}}{\Delta x^{\nu}} \\ &= A_{\mu,\nu} - \Gamma^{\lambda}_{\mu\alpha} A_{\lambda} \delta^{\alpha}_{\nu} \\ &= A_{\mu,\nu} - \Gamma^{\lambda}_{\mu\nu} A_{\lambda} \end{split}$$
(7)

式 (1.7)即协变矢量的协变微商公式。平移的操作保证 $A_{\mu}(Q)$ 和 $A_{\mu}(P \to Q)$ 都是 Q 点的张量,所以 $A_{\mu;\nu}$ 仍具有张量的性质。容易证明它是二阶的协变张量。

0.3.3 协变微商的莱布尼茨法则

规定协变微商和普通微商一样服从莱布尼茨法则:

$$(A_{\cdots}B_{\cdots})_{:\lambda} = (A_{\cdots\lambda})(B_{\cdots}) + (A_{\cdots\lambda})(B_{\cdots\lambda})$$

$$(8)$$

0.3.4 逆变矢量场的协变微商

为了求逆变矢量场 $A^{\mu}(\mathbf{x})$ 的协变微商,引入任意的协变矢量场 $B_{\mu}(\mathbf{x})$,让二者进行内乘构成标量场,且标量场的协变微商即普通微商,所以有:

$$\begin{split} (A^{\mu}B_{\mu})_{;\lambda} &= (A^{\mu}B_{\mu})_{,\lambda} \\ A^{\mu}_{;\lambda}B_{\mu} + A^{\mu}B_{\mu;\lambda} &= A^{\mu}_{,\lambda}B_{\mu} + A^{\mu}B_{\mu,\lambda} \\ A^{\mu}_{;\lambda}B_{\mu} + A^{\mu}(B_{\mu,\lambda} - \Gamma^{\nu}_{\mu\lambda}B_{\nu}) &= A^{\mu}_{,\lambda}B_{\mu} + A^{\mu}B_{\mu,\lambda} \\ A^{\mu}_{;\lambda}B_{\mu} &= A^{\mu}_{,\lambda}B_{\mu} + \Gamma^{\nu}_{\mu\lambda}A^{\mu}B_{\nu} \end{split}$$

由于 B_{μ} 的任意性,可得:

$$A^{\mu}_{:\lambda} = A^{\mu}_{:\lambda} + \Gamma^{\mu}_{\nu\lambda} A^{\nu} \tag{9}$$

式 (1.9)即逆变矢量的协变微商公式。

0.3.5 高阶张量场的协变微商

利用莱布尼茨法则和式 (1.7)、式 (1.9),可以得到任意阶逆变、协变、混合张量的协变微商公式。

下面仅举出几个二阶张量的协变微商计算:

$$T_{\mu\nu;\lambda} = T_{\mu\nu,\lambda} - \Gamma^{\rho}_{\mu\lambda} T_{\rho\nu} - \Gamma^{\rho}_{\nu\lambda} T_{\mu\rho} \tag{10}$$

$$T^{\mu\nu}_{;\lambda} = T^{\mu\nu}_{,\lambda} + \Gamma^{\mu}_{\rho\lambda} T^{\rho\nu} + \Gamma^{\nu}_{\rho\lambda} T^{\mu\rho} \tag{11}$$

$$T^{\mu}_{\nu;\lambda} = T^{\mu}_{\nu,\lambda} + \Gamma^{\mu}_{\rho\lambda} T^{\rho}_{\nu} - \Gamma^{\rho}_{\nu\lambda} T^{\mu}_{\rho} \tag{12}$$

下面求 Kroneker 符号的协变微商:

由"Kroneker 符号是二阶混合张量",得:

$$\delta^{\mu}_{\nu;\lambda} = \delta^{\mu}_{\nu,\lambda} + \Gamma^{\mu}_{\rho\lambda}\delta^{\rho}_{\nu} - \Gamma^{\rho}_{\nu\lambda}\delta^{\mu}_{\rho} = \delta^{\mu}_{\nu,\lambda}$$

且 δ^{μ}_{ν} 的分量是常数,所以 $\delta^{\mu}_{\nu,\lambda}=0$,所以有 $\delta^{\mu}_{\nu;\lambda}=0$

0.4 曲率与挠率

0.4.1 曲率张量

协变微商是否可交换次序?

对一个给定的协变矢量场 $A_{\lambda}(\mathbf{x})$, 求两次协变微商 $A_{\lambda:\mu:\nu}$, 得:

$$\begin{split} A_{\lambda;\mu;\nu} &= A_{\lambda;\mu,\nu} - \Gamma^{\rho}_{\lambda\nu} A_{\rho;\mu} - \Gamma^{\rho}_{\mu\nu} A_{\lambda;\rho} \\ &= (A_{\lambda,\mu,\nu} - \Gamma^{\rho}_{\lambda\mu,\nu} A_{\rho} - \Gamma^{\rho}_{\lambda\mu} A_{\rho,\nu}) + (-\Gamma^{\rho}_{\lambda\nu} A_{\rho,\mu} + \Gamma^{\rho}_{\lambda\nu} \Gamma^{\sigma}_{\rho\mu} A_{\sigma}) + (-\Gamma^{\rho}_{\mu\nu} A_{\lambda;\rho}) \end{split} \tag{13}$$

改变协变微商的顺序后,有:

$$A_{\lambda;\nu;\mu} = (A_{\lambda,\nu,\mu} - \Gamma^{\rho}_{\lambda\nu,\mu}A_{\rho} - \Gamma^{\rho}_{\lambda\nu}A_{\rho,\mu}) + (-\Gamma^{\rho}_{\lambda\mu}A_{\rho,\nu} + \Gamma^{\rho}_{\lambda\mu}\Gamma^{\sigma}_{\rho\nu}A_{\sigma}) + (-\Gamma^{\rho}_{\nu\mu}A_{\lambda;\rho}) \eqno(14)$$

二者之差为:

$$A_{\lambda;\mu;\nu} - A_{\lambda;\nu;\mu} = R^{\rho}_{\lambda\mu\nu} A_{\rho} - 2\Gamma^{\rho}_{[\mu\nu]} A_{\lambda;\rho}$$

其中 $R^{\rho}_{\lambda\mu\nu}$ 定义为曲率张量。

$$R^{\rho}_{\lambda\mu\nu} \equiv \Gamma^{\rho}_{\lambda\nu,\mu} - \Gamma^{\rho}_{\lambda\mu,\nu} + \Gamma^{\rho}_{\sigma\mu}\Gamma^{\sigma}_{\lambda\nu} - \Gamma^{\rho}_{\sigma\nu}\Gamma^{\sigma}_{\lambda\mu} \tag{15}$$

联络的反称部分 $\Gamma^{\rho}_{[\mu\nu]}$ 定义为挠率张量:

$$\Gamma^{\rho}_{[\mu\nu]} = \frac{1}{2} (\Gamma^{\rho}_{\mu\nu} - \Gamma^{\rho}_{\nu\mu}) \tag{16}$$

挠率的几何意义 0.4.2

设空间中有两个从 O 点出发的无穷小位移 dx^{μ} 和 δx^{μ} , 分别用 OQ' 和 OQ 表示。

现在把 dx^{μ} 平移 δx^{μ} 到 Q 点, 平移后的矢量用 QP 表示。再把 δx^{μ} 平移 dx^{μ} 到 Q' 点, 平移后的矢量用 Q'P' 表示。若空间是**平直**的,P' 与 P 必定重合,形成封闭的平行四边形 PQOQ';如果空间不是平直的,会有:

 dx^{μ} 平移 δx^{μ} 后变成

$$QP = dx^{\mu} - \Gamma^{\mu}_{\lambda\nu} dx^{\lambda} \delta x^{\nu}$$

 δx^{μ} 平移 dx^{μ} 后变成

$$Q'P'=\delta x^{\mu}-\Gamma^{\mu}_{\lambda\nu}\delta x^{\lambda}dx^{\nu}$$

P' 与 P 两点之差为

$$\Delta = OQ + QP - (OQ' + Q'P')$$

$$= \delta x^{\mu} + (dx^{\mu} - \Gamma^{\mu}_{\lambda\nu} dx^{\lambda} \delta x^{\nu}) - [dx^{\mu} + (\delta x^{\mu} - \Gamma^{\mu}_{\lambda\nu} \delta x^{\lambda} dx^{\nu})]$$

$$= (\Gamma^{\mu}_{\nu\lambda} - \Gamma^{\mu}_{\lambda\nu}) \delta x^{\nu} dx^{\mu}$$

$$= 2\Gamma^{\mu}_{[\nu\lambda]} \delta x^{\nu} dx^{\mu}$$
(17)

可见,当且仅当挠率为零时,上述的平移操作才能构成封闭的四边形。当空间有挠时,必须对上述无穷小平移附加一个移动 Δ ,才能构成闭合回路。这个附加的移动,正是空间挠率(扭曲)产生的几何效应。

0.4.3 曲率的几何意义

在空间无挠的情况下,讨论空间的曲率。这时,通过平移 dx^{μ} 和 δx^{μ} ,可以构成闭合的四边形。考虑另一个矢量 A^{μ} ,让它从 O 点开始,沿此封闭路径平移。先把 A^{μ} 平移 δx^{μ} 到 Q,再平移 $(dx^{\mu} - \Gamma^{\mu}_{\lambda\nu} dx^{\lambda} \delta x^{\nu})$ 到 P,然后平移 $-(\delta x^{\mu} - \Gamma^{\mu}_{\lambda\nu} \delta x^{\lambda} dx^{\nu})$ 到 Q',最后平移 $-dx^{\mu}$ 回到 O 点。回到 O 点后, A^{μ} 变成了 $A'^{\mu} = A^{\mu} + \delta A^{\mu}$,且 δA^{μ} 仍是逆变矢量,有:

$$\delta A^{\mu} = A'^{\mu} - A^{\mu} = A^{\mu}(O \to Q \to P \to Q' \to O) - A^{\mu}$$
$$= A^{\mu}(O \to Q \to P) - A^{\mu}(O \to Q' \to P) \tag{18}$$

经过一系列复杂的计算,得到:

$$\delta A^{\mu} = -R^{\mu}_{\lambda\nu\gamma} A^{\lambda} \delta x^{\nu} dx^{\gamma} \tag{19}$$

这说明,任意一个逆变矢量绕无穷小闭合回路平移一周,都不会与原矢量重合,除非该 回路的空间曲率为零。

任意一个矢量绕无穷小闭合回路平移一周后,必须在附加一个转动,才能与原矢量重合,这个附加的转动正式空间曲率产生的几何效应。

0.4.4 曲率张量的性质

1. 曲率张量的后一对指标是反称的(曲率张量的定义为式(1.15)):

$$R^{\rho}_{\lambda\mu\nu} = -R^{\rho}_{\lambda\nu\mu}$$

- 2. 曲率张量只有两种独立的缩并方式:
 - 一、二两个指标缩并

$$A_{\mu\nu} = R^{\lambda}_{\lambda\mu\nu}$$

• 一、三两个指标缩并

$$R_{\mu\nu}=R^{\lambda}_{\mu\lambda\nu}$$

0.5 度规张量

我们已在仿射空间中引人了联络,但还没有引人度量。引入度量的仿射空间称为黎曼空间,黎曼空间中的几何称为黎曼几何。引人度量,就是引入度规和距离的概念。

0.5.1 距离与度规

用二次型定义空间相邻两点间的距离 ds:

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu \tag{20}$$

要求距离是标量,与坐标系的选择无关;由于 dx^μ 是一阶逆变张量,则 $g_{\mu\nu}$ 必须是二阶协变张量;由于 $dx^\mu dx^\nu$ 对称,则 $g_{\mu\nu}$ 必定是对称张量

0.5.2 度规的正则形式与幺正基

如果度规分量 $g_{\mu\nu}$ 是常数,且行列式 $det(g_{\mu\nu})\neq 0$,则一定可以找到一个坐标变换,将二次型 $ds^2=g_{\mu\nu}dx^\mu dx^\nu$ 化成坐标微分元的平方和(或差)的形式,使其度规张量在新的坐标系下的分量为

$$g_{\mu\nu} = \begin{cases} \pm 1 &, \mu = \nu \\ 0 &, \mu \neq \nu \end{cases}$$
 (21)

事实上,当且仅当黎曼空间平直时,才能在全空间把度规张量变换到式 (1.21)的形式。然而,在空间中任一点 P 的邻域,由于 $g_{\mu\nu}(P)$ 仅取那一点的值,可以看作常数,所以一定能够在一点的邻域把度规化成式 (1.21)的形式。这就是说,黎曼空间虽然就整体来说,一般不是平直的;但该空间中每一点的邻域,却都可看作局域平直的。

0.5.3 张量指标的升降

黎曼空间中的张量指标,可以借助于度规张量来升降。

首先定义逆变度规张量:

$$g^{\alpha\lambda} = \frac{\Delta^{\alpha\lambda}}{g} \tag{22}$$

其中 $g \equiv det(g_{\alpha\beta})$ 为协变度规张量 $g_{\alpha\beta}$ 的行列式; $\Delta^{\alpha\beta}$ 是 $g_{\alpha\beta}$ 的代数余子式。

显然,式(1.22)满足:

$$g^{\alpha\lambda}g_{\lambda\beta} = \frac{\Delta^{\alpha\lambda}}{q} \cdot g_{\lambda\beta} = \delta^{\alpha}_{\beta}$$

协变度规张量可用来降低逆变指标,这叫做指标的下降,逆变度规张量可用来升高斜边指标, 这叫做指标的上升。

$$A_{\alpha} \equiv g_{\alpha\beta}A^{\beta} \quad A^{\alpha} \equiv g^{\alpha\beta}A_{\beta}$$

0.6 Christoffel 符号

我们在仿射空间中建立了联络,又建立了度规,从而定义了黎曼空间。但是,是否可以给出联络与度规之间的关系呢?

另一方面,我们在仿射空间中定义了平移,却没有对矢量长度在平移下的变化加以限制。 在欧氏空间中,矢量长度在平移下是不变的;我们希望黎曼空间能够保持这一重要性质,这 自然会对联络的形式加以限制。

在无挠空间中,联络是对称的。本节将指出,矢量长度的平移不变性能唯一地确定"对称联络"与"度规张量"的泛函关系。把这种由度规完全确定的对称联络,称为克里斯多菲(Christoffel)符号,或简称克氏符

0.6.1 联络与度规的关系

将 P 点的逆变矢量 $A^{\mu}(P)$ 平移至临近点 Q,有:

$$A^{\mu}(P\rightarrow Q) = A^{\mu}(P) - \Gamma^{\mu}_{\nu\lambda}(P)A^{\nu}(P)dx^{\lambda} \eqno(23)$$

如果平移不改变矢量长度,则有:

$$g_{\mu\nu}(Q)A^{\mu}(P\rightarrow Q)A^{\nu}(P\rightarrow Q) = g_{\mu\nu}(P)A^{\mu}(P)A^{\nu}(P) \eqno(24)$$

把 $g_{\mu\nu}(Q)$ 在 P 点作泰勒展开,有:

$$g_{\mu\nu}(Q) = g_{\mu\nu}(P) + g_{\mu\nu,\lambda}(P) \cdot dx^{\lambda}$$
 (25)

将式 (1.23)、式 (1.25)代入式 (1.24), 并略去坐标微分元的二阶小量, 有:

$$(g_{\mu\nu} + g_{\mu\nu,\lambda}dx^{\lambda}) \cdot (A^{\mu} - \Gamma^{\mu}_{\nu\lambda}A^{\nu}dx^{\lambda}) \cdot (A^{\nu} - \Gamma^{\nu}_{\sigma\lambda}A^{\sigma}dx^{\lambda}) = g_{\mu\nu}A^{\mu}A^{\nu}$$

$$(g_{\mu\nu}A^{\mu} - g_{\mu\nu}\Gamma^{\mu}_{\sigma\lambda}A^{\sigma}dx^{\lambda} + g_{\mu\nu,\lambda}A^{\mu}dx^{\lambda})(A^{\nu} - \Gamma^{\nu}_{\sigma\lambda}A^{\sigma}dx^{\lambda}) = g_{\mu\nu}A^{\mu}A^{\nu}$$

$$g_{\mu\nu}A^{\mu}A^{\nu} - g_{\mu\nu}A^{\mu}\Gamma^{\nu}_{\sigma\lambda}A^{\sigma}dx^{\lambda} - g_{\mu\nu}\Gamma^{\mu}_{\sigma\lambda}A^{\sigma}dx^{\lambda}A^{\nu} + g_{\mu\nu,\lambda}A^{\mu}dx^{\lambda}A^{\nu} = g_{\mu\nu}A^{\mu}A^{\nu}$$

$$(26)$$

替换哑标,合并同类项,有:

$$\begin{split} g_{\mu\nu}\Gamma^{\nu}_{\sigma\lambda}A^{\mu}A^{\sigma}dx^{\lambda} + g_{\mu\nu}\Gamma^{\mu}_{\sigma\lambda}A^{\sigma}A^{\nu}dx^{\lambda} - g_{\mu\nu,\lambda}A^{\mu}A^{\nu}dx^{\lambda} &= 0 \\ g_{\mu\alpha}\Gamma^{\alpha}_{\nu\lambda}A^{\mu}A^{\nu}dx^{\lambda} + g_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda}A^{\mu}A^{\nu}dx^{\lambda} - g_{\mu\nu,\lambda}A^{\mu}A^{\nu}dx^{\lambda} &= 0 \\ (g_{\mu\alpha}\Gamma^{\alpha}_{\nu\lambda} + g_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda} - g_{\mu\nu,\lambda})A^{\mu}A^{\nu}dx^{\lambda} &= 0 \end{split} \tag{27}$$

注意到 A^{α} 是任意矢量, dx^{λ} 是任意位移, 所以有:

$$g_{\mu\alpha}\Gamma^{\alpha}_{\nu\lambda} + g_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda} - g_{\mu\nu,\lambda} = 0 \tag{28}$$

轮换指标 $\mu \to \nu, \nu \to \lambda, \lambda \to \mu$, 上式可以写成:

$$g_{\nu\alpha}\Gamma^{\alpha}_{\lambda\mu} + g_{\alpha\lambda}\Gamma^{\alpha}_{\nu\mu} - g_{\nu\lambda,\mu} = 0 \tag{29}$$

$$g_{\lambda\alpha}\Gamma^{\alpha}_{\mu\nu} + g_{\alpha\mu}\Gamma^{\alpha}_{\lambda\nu} - g_{\lambda\mu,\nu} = 0 \tag{30}$$

式 (1.29)加上式 (1.29),再减去式 (1.28),并注意到在无挠黎曼空间中,联络对称,以及度规的对称性,可以得到:

$$\begin{split} &(g_{\nu\alpha}\Gamma^{\alpha}_{\lambda\mu}+g_{\alpha\lambda}\Gamma^{\alpha}_{\nu\mu}-g_{\nu\lambda,\mu})+(g_{\lambda\alpha}\Gamma^{\alpha}_{\mu\nu}+g_{\alpha\mu}\Gamma^{\alpha}_{\lambda\nu}-g_{\lambda\mu,\nu})-(g_{\mu\alpha}\Gamma^{\alpha}_{\nu\lambda}+g_{\alpha\nu}\Gamma^{\alpha}_{\mu\lambda}-g_{\mu\nu,\lambda})=0\\ &g_{\nu\alpha}(\Gamma^{\alpha}_{\lambda\mu}-\Gamma^{\alpha}_{\nu\lambda})+g_{\alpha\lambda}(\Gamma^{\alpha}_{\nu\mu}+\Gamma^{\alpha}_{\mu\nu})+g_{\alpha\mu}(\Gamma^{\alpha}_{\lambda\nu}-\Gamma^{\alpha}_{\nu\lambda})=g_{\nu\lambda,\mu}+g_{\lambda\mu,\nu}-g_{\mu\nu,\lambda}\\ &0+0+2g_{\alpha\lambda}\Gamma^{\alpha}_{\mu\nu}=g_{\nu\lambda,\mu}+g_{\lambda\mu,\nu}-g_{\mu\nu,\lambda} \end{split}$$

得到:

• 第一类克氏符:

$$\Gamma_{\lambda\mu\nu} \equiv g_{\alpha\lambda}\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2}(g_{\nu\lambda,\mu} + g_{\lambda\mu,\nu} - g_{\mu\nu,\lambda}) \tag{31}$$

• 第二类克氏符:

$$\Gamma^{\alpha}_{\mu\nu} = \frac{1}{2} g^{\alpha\lambda} (g_{\nu\lambda,\mu} + g_{\lambda\mu,\nu} - g_{\mu\nu,\lambda}) \tag{32}$$

式 (1.32)即无挠黎曼空间中,在保持矢量长度平移不变性的条件下,对称联络与度规的泛函关系式。满足此式的联络,称为克氏符。

由式 (1.28)还可知道, 度规张量的协变微商为零:

$$g_{\mu\nu;\lambda} = g_{\mu\nu,\lambda} - \Gamma^{\alpha}_{\mu\lambda} g_{\alpha\nu} - \Gamma^{\alpha}_{\nu\lambda} g_{\mu\alpha} = 0 \tag{33}$$

易证: $g^{\mu\nu}_{;\lambda}=0$; 已知 $\delta^{\mu}_{\nu;\lambda}=0$

所以度规的逆变形式、协变形式、混合形式的协变微商均为0。

0.6.2 等效原理的数学基础

引理:对无挠黎曼时空中的任何一点,都可以找到一个坐标变换,把那点的克氏符的所有分量都变到零。

0.7 测地线与短程线

在仿射空间中推广直线的方式有两种:

- 一种是定义为线上任意相邻两点的切矢量都互相平行的曲线(自平行线),即测地线。
- 另一种是定义为两点之间的短程线。

0.7.1 测地线

四维时空中曲线的参数方程可以写成:

$$x^{\mu} = x^{\mu}(\lambda) \tag{34}$$

 λ 是一个标量性的参量。曲线上任意一点的切矢量定义为:

$$A^{\mu} = \frac{dx^{\mu}}{d\lambda} \tag{35}$$

这是一个逆变矢量。设曲线上相邻两点 P 和 Q 的坐标分别为 x^{μ} 和 $x^{\mu}+dx^{\mu}$ 。P 点的切矢量 $A^{\mu}(P)$ 平移到 Q 点后变成 $A^{\mu}(P\to Q)$,若要求 $A^{\mu}(P\to Q)$ 与 $A^{\mu}(Q)$ 平行,则有:

$$A^{\mu}(Q) = F(\lambda + d\lambda)A^{\mu}(P \to Q) \tag{36}$$

F 是参数 λ 的函数,P 点的 F 为 $F(\lambda)$,Q 点的 F 为 $F(\lambda+d\lambda)$ 。把 Q 点的 F 在 P 点 展开,有:

$$F(\lambda + d\lambda) = F(\lambda) + \frac{dF}{d\lambda}d\lambda \tag{37}$$

显然 $F(\lambda)=1$ (此时相当于没有平移,自然平移前后矢量的比为 1),定义 $f(\lambda)=\frac{dF}{d\lambda}$ 。于是式 (1.36)可以写作:

$$A^{\mu}(Q) = [1 + f(\lambda)d\lambda] \cdot A^{\mu}(P \to Q) \tag{38}$$

将所有量在 P 点表示,有:

$$A^{\mu}(P \to Q) = A^{\mu}(P) - \Gamma^{\mu}_{\alpha\beta}(P) \cdot A^{\alpha}(P) dx^{\beta} = \frac{dx^{\mu}}{d\lambda} - \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} d\lambda \tag{39}$$

$$A^{\mu}(Q) = A^{\mu}(P) + dA^{\mu}(P) = \frac{dx^{\mu}}{d\lambda} + \frac{d^2x^{\mu}}{d\lambda^2}d\lambda \tag{40}$$

将式 (1.39)和式 (1.40)代入式 (1.38), 并略去 $d\lambda$ 的二阶小量, 得到:

$$\begin{split} \frac{dx^{\mu}}{d\lambda} + \frac{d^{2}x^{\mu}}{d\lambda^{2}}d\lambda &= \left[1 + f(\lambda)d\lambda\right] \cdot \left(\frac{dx^{\mu}}{d\lambda} - \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{d\lambda}\frac{dx^{\beta}}{d\lambda}d\lambda\right) \\ \frac{dx^{\mu}}{d\lambda} + \frac{d^{2}x^{\mu}}{d\lambda^{2}}d\lambda &= \frac{dx^{\mu}}{d\lambda} - \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{d\lambda}\frac{dx^{\beta}}{d\lambda}d\lambda + f(\lambda)\frac{dx^{\mu}}{d\lambda}d\lambda \\ \frac{d^{2}x^{\mu}}{d\lambda^{2}} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{d\lambda}\frac{dx^{\beta}}{d\lambda} &= f(\lambda)\frac{dx^{\mu}}{d\lambda} \end{split} \tag{41}$$

如果参量 λ 选的好,式 (1.41)还可以化简。引入参量变换:

$$\lambda = \lambda(\sigma) \tag{42}$$

又有:

$$\frac{dx^{\mu}}{d\lambda} = \frac{dx^{\mu}}{d\sigma} \cdot \frac{d\sigma}{d\lambda} \tag{43}$$

$$\frac{d^{2}x^{\mu}}{d\lambda^{2}} = \frac{d}{d\lambda} \left(\frac{dx^{\mu}}{d\sigma} \cdot \frac{d\sigma}{d\lambda} \right)$$

$$= \frac{d\sigma}{d\lambda} \frac{d}{d\sigma} \left(\frac{dx^{\mu}}{d\sigma} \right) \frac{d\sigma}{d\lambda} + \frac{dx^{\mu}}{d\sigma} \frac{d^{2}\sigma}{d\lambda^{2}}$$

$$= \frac{d^{2}x^{\mu}}{d\sigma^{2}} \cdot \left(\frac{d\sigma}{d\lambda} \right)^{2} + \frac{dx^{\mu}}{d\sigma} \cdot \frac{d^{2}\sigma}{d\lambda^{2}}$$

$$(44)$$

于是,式(1.41)可以写成:

$$\left(\frac{d^2x^{\mu}}{d\sigma^2} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{d\sigma}\frac{dx^{\beta}}{d\sigma}\right) \cdot \left(\frac{d\sigma}{d\lambda}\right)^2 = \frac{dx^{\mu}}{d\sigma} \cdot \left[f(\lambda)\frac{d\sigma}{d\lambda} - \frac{d^2\sigma}{d\lambda^2}\right] \tag{45}$$

如果式 (1.42)满足:

$$f(\lambda)\frac{d\sigma}{d\lambda} - \frac{d^2\sigma}{d\lambda^2} = 0 \tag{46}$$

则测地线方程可以化简为:

$$\frac{d^2x^{\mu}}{d\sigma^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma} = 0 \tag{47}$$

而满足式 (1.46)的标量性参量 σ 为仿射参量。

比较式 (1.41)和式 (1.47)可知,当采用仿射参量时, $f(\sigma) = 0$,自平行条件式 (1.38)化简为:

$$A^{\mu}(Q) = {}^{\mu}(P \to Q) \tag{48}$$

即,从P点平移到Q点的切矢量,恰等于Q点的切矢量。

由式 (1.46)可知, 仿射参量的选取不唯一。当 σ 是仿射参量时

$$\tau = a\sigma + b$$

也是仿射参量,其中 a, b 为常数,即仿射参量作线性变换后得到的参量,仍是仿射参量。

0.7.2 短程线

黎曼空间中的任意两点 A 与 B 之间,取极值的一条线称为短程线。对于度规正定的空间,取极值的线一定是最短的一条。然而,对于具有不定度规的空间,例如我们的四维时空,两点间取极值的线却不一定是最短的一条,有时反而是最长的一条。研究表明,如果连接 A、B 两点的曲线是有因果联系的亚光速曲线 (即类时线),则它们中取极值的线为最长线,而不是最短线。在黎曼几何中,把取极值的线 (不管是最短线还是最长线) 统称为短程线。

引入曲线长度的泛函

$$S = \int_{A}^{B} ds \tag{49}$$

短程线需满足

$$\delta S = \delta \int_{A}^{B} ds = 0 \tag{50}$$

 $\overrightarrow{\mathrm{ffi}}\ ds = (g_{\alpha\beta} dx^\alpha dx^\beta)^{1/2} = (g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta)^{1/2} d\lambda$

 λ 是一个标量型参量, $\dot{x}^{\alpha} = \frac{dx^{\alpha}}{d\lambda}$.

于是可得到

$$\delta \int_{A}^{B} L d\lambda = 0 \quad \sharp \dot{\mp} L \equiv (g_{\alpha\beta} \dot{x}^{\alpha} \dot{x}^{\beta})^{1/2} \tag{51}$$

在拉格朗日函数中,广义坐标与广义速度相互独立,注意到 $g_{\alpha\beta}=g_{\alpha\beta}(x^{\nu})$,变分后可得:

$$\begin{split} \delta L &= \delta (g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta)^{1/2} \\ &= \frac{1}{2(g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta)^{1/2}} \cdot \delta (g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta) \\ &= \frac{1}{2(g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta)^{1/2}} [\dot{x}^\alpha \dot{x}^\beta \frac{\partial g_{\alpha\beta}}{\partial x^\nu} \delta x^\nu + 2g_{\nu\beta} \dot{x}^\beta \delta (\dot{x}^\nu)] \\ &= \frac{1}{2(g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta)^{1/2}} [\dot{x}^\alpha \dot{x}^\beta \frac{\partial g_{\alpha\beta}}{\partial x^\nu} \delta x^\nu - 2\frac{d}{d\lambda} (g_{\nu\beta} \dot{x}^\beta) \delta x^\nu] + \frac{1}{(g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta)^{1/2}} \frac{d}{d\lambda} (g_{\nu\beta} \dot{x}^\beta \delta x^\nu) \end{split}$$

如果取 λ 为线长s,有

$$g_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta} = g_{\alpha\beta}\frac{dx^{\alpha}}{d\lambda}\frac{dx^{\beta}}{d\lambda} = g_{\alpha\beta}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 1$$

于是可得到

$$\begin{split} \delta L &= \frac{1}{2(g_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta})^{1/2}}[\dot{x}^{\alpha}\dot{x}^{\beta}\frac{\partial g_{\alpha\beta}}{\partial x^{\nu}}\delta x^{\nu} - 2\frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta})\delta x^{\nu}] + \frac{1}{(g_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta})^{1/2}}\frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta}\delta x^{\nu}) \\ &= \frac{1}{2}[\dot{x}^{\alpha}\dot{x}^{\beta}\frac{\partial g_{\alpha\beta}}{\partial x^{\nu}}\delta x^{\nu} - 2\frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta})\delta x^{\nu}] + \frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta}\delta x^{\nu}) \\ &\simeq \frac{1}{2}\dot{x}^{\alpha}\dot{x}^{\beta}\frac{\partial g_{\alpha\beta}}{\partial x^{\nu}}\delta x^{\nu} - \frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta})\delta x^{\nu} \\ &= [\frac{1}{2}\dot{x}^{\alpha}\dot{x}^{\beta}\frac{\partial g_{\alpha\beta}}{\partial x^{\nu}} - \frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta})]\delta x^{\nu} = 0 \end{split} \tag{52}$$

得到

$$\begin{split} \frac{1}{2}\dot{x}^{\alpha}\dot{x}^{\beta}\frac{\partial g_{\alpha\beta}}{\partial x^{\nu}} - \frac{d}{ds}(g_{\nu\beta}\dot{x}^{\beta}) &= 0\\ \frac{1}{2}g_{\alpha\beta,\nu}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} - (g_{\nu\beta,\alpha}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} + g_{\nu\beta}\frac{d^{2}x^{\beta}}{ds^{2}}) &= 0\\ g_{\nu\beta}\frac{d^{2}x^{\beta}}{ds^{2}} + (g_{\nu\beta,\alpha} - \frac{1}{2}g_{\alpha\beta,\nu})\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} &= 0 \end{split}$$

注意到

$$g_{\nu\beta,\alpha}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = g_{\nu\alpha,\beta}\frac{dx^{\beta}}{ds}\frac{dx^{\alpha}}{ds} = g_{\nu\alpha,\beta}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds}$$

$$\qquad \qquad \mathbb{I} \qquad g_{\nu\beta,\alpha} = g_{\nu\alpha,\beta}$$

于是可得到

$$g_{\nu\beta}\frac{d^2x^{\beta}}{ds^2} + (g_{\nu\beta,\alpha} - \frac{1}{2}g_{\alpha\beta,\nu})\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0$$

$$g_{\nu\beta}\frac{d^2x^{\beta}}{ds^2} + \left[\frac{1}{2}(g_{\nu\beta,\alpha} + g_{\nu\alpha,\beta}) - \frac{1}{2}g_{\alpha\beta,\nu}\right]\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0$$

$$g_{\nu\beta}\frac{d^2x^{\beta}}{ds^2} + \frac{1}{2}(g_{\nu\beta,\alpha} + g_{\nu\alpha,\beta} - g_{\alpha\beta,\nu})\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0$$

$$g^{\mu\nu}g_{\nu\beta}\frac{d^2x^{\beta}}{ds^2} + \frac{1}{2}g^{\mu\nu}(g_{\nu\beta,\alpha} + g_{\nu\alpha,\beta} - g_{\alpha\beta,\nu})\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0$$

$$\frac{d^2x^{\mu}}{ds^2} + \frac{1}{2}g^{\mu\nu}(g_{\nu\beta,\alpha} + g_{\nu\alpha,\beta} - g_{\alpha\beta,\nu})\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0$$

$$\frac{d^2x^{\mu}}{ds^2} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds} = 0$$

$$(53)$$

其中 $\Gamma^{\mu}_{\alpha\beta}=rac{1}{2}g^{\mu\nu}(g_{
u\beta,\alpha}+g_{
u\alpha,\beta}-g_{\alpha\beta,
u})$ 为克氏符,见式 (1.32)。

它形式上与测地线方程式 (1.47)完全一样,s 是仿射参量。不过式 (1.53)中的 $\Gamma^{\mu}_{\alpha\beta}$ 是克氏符,与度规张量之间存在确定的关系(见式 (1.32)),而式 (1.47)中的 $\Gamma^{\mu}_{\alpha\beta}$ 却可以不是克氏符。此外,式 (1.47)在有挠时空中也成立,这时"是非对称联络,包含挠率的贡献。

0.8 无挠黎曼空间的曲率张量

0.8.1 曲率张量的对称性

己知曲率张量与联络的关系为

$$R^{\rho}_{\lambda\mu\nu} \equiv \Gamma^{\rho}_{\lambda\nu,\mu} - \Gamma^{\rho}_{\lambda\mu,\nu} + \Gamma^{\rho}_{\sigma\mu}\Gamma^{\sigma}_{\lambda\nu} - \Gamma^{\rho}_{\sigma\nu}\Gamma^{\sigma}_{\lambda\mu} \tag{54}$$

易证后两个指标的反对称性:

$$R^{\rho}_{\lambda\mu\nu} = -R^{\rho}_{\lambda\nu\mu}$$

为了进一步讨论曲率张量的对称性,引入(0,4)型表示:

$$R_{\rho\lambda\mu\nu} \equiv g_{\rho\sigma} R^{\sigma}_{\lambda\mu\nu} \tag{55}$$

于是又可得到以下对称性:

1. 后一对指标是反称的:

$$R^{\rho}_{\lambda\mu\nu} = -R^{\rho}_{\lambda\nu\mu} \quad R_{\rho\lambda\mu\nu} = -R_{\rho\lambda\nu\mu} \tag{56}$$

2. 前一对指标也是反称的:

$$R_{\rho\lambda\mu\nu} = -R_{\lambda\rho\mu\nu} \tag{57}$$

3. 前一对指标和后一对指标是对称的:

$$R_{\rho\lambda\mu\nu} = R_{\mu\nu\rho\lambda} \tag{58}$$

4. 里奇恒等式:

$$R^{\rho}_{\lambda\mu\nu} + R^{\rho}_{\mu\nu\lambda} + R^{\rho}_{\nu\lambda\mu} = 0 \qquad R_{\rho\lambda\mu\nu} + R_{\rho\mu\nu\lambda} + R_{\rho\nu\lambda\mu} = 0 \tag{59}$$

证明从略(有空再写)。

0.8.2 三个派生的重要张量

通过曲率张量的缩并, 可以得到下面三个重要的张量。

1. 里奇张量

之前介绍过曲率张量的两种可能的缩并方式。但是,在无挠黎曼空间中,克氏符的对称性增加了曲率张量的对称性,导致一、二指标缩并

$$A_{\mu\nu} = R^{\lambda}_{\lambda\mu\nu} = g^{\lambda\rho}R_{\rho\lambda\mu\nu} = 0$$

即,曲率张量只剩下一种独立的缩并方式,即一、三指标缩并,称其为里奇(Ricci)张量。

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu} \tag{60}$$

显然, 里奇张量是对称的:

$$R_{\mu\nu} = R^{\lambda}_{\mu\lambda\nu} = g^{\lambda\rho}R_{\rho\mu\lambda\nu} = g^{\lambda\rho}R_{\lambda\nu\rho\mu} = g^{\rho\lambda}R_{\lambda\nu\rho\mu} = R^{\rho}_{\nu\rho\mu} = R_{\nu\mu}$$

2. 曲率标量

定义里奇张量的缩并为曲率标量:

$$R = g^{\mu\nu}R_{\mu\nu} = R^{\mu}_{\mu} \tag{61}$$

3. 爱因斯坦张量

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R\tag{62}$$

0.8.3 曲率张量的独立分量

下面讨论 n 维空间中的曲率张量 $R_{\mu\nu\tau\lambda}$ 的独立分量数目。四维空间即 n=4 的情况。下面分集中请况讨论。

1. 四个指标全部相同时:

由于后两个指标反称,所以显然有:

$$R_{\mu\mu\mu\mu} = 0$$

2. 四个指标中只包含两个不同的值:

由对称性可知, $R_{\mu\mu\nu\nu}=R_{\nu\nu\mu\mu}=0$,所以只有 $R_{\mu\nu\mu\nu}$ 是独立的。所以,只有两个指标相异时,不为零的独立分量个数为

$$C_n^2 = \frac{n!}{2 \times (n-2)!}$$

3. 四个指标中包含三个不同值:

从 n 个数中先任取三个数作为指标,共有 C_n^3 种取法。现在取定一种组合,第四个指标必定与先选出的三个指标中的一个相同。考虑到前一对指标反对称,后一对指标也反对称,相同的两个指标不可能都处于前一对,也不可能都处于后一对,只能一个处于前一

对,另一个处于后一对。再考虑到前一对指标与后一对指标对称,不难看出**这组指标只有一种独立的排列方式**。但是第四个指标可与前三个指标中的任意一个重复,又对应三种独立组合方式,所以,独立分量数目为

$$C_n^3 \times 3 = \frac{n!}{2! \times (n-3)!}$$

4. 四个指标均取不同值:

从 n 个数中取出 4 个,共有 C_n^4 种取法。不考虑里奇恒等式时,每一种组合对应三种独立的排列方式 (即 $R_{\mu\nu\tau\lambda}$ $R_{\mu\tau\lambda\nu}$ $R_{\mu\lambda\nu\tau}$);考虑里奇恒等式时,独立排列方式减少一个。所以,独立分量数目为

$$C_n^4 \times 2 = \frac{2 \times n!}{4!(n-4)!}$$

综上所述, n 维黎曼空间中曲率张量的独立分量的数目为

$$N = C_n^2 \times 1 + C_n^3 \times 3 + C_n^4 \times 2 = \frac{n^2(n^2 - 1)}{12}$$

对于四维空间, N=20。

0.8.4 里奇张量和爱因斯坦张量的独立分量

里奇张量 $R_{\mu\nu}$ 是对称张量,独立分量数目为

$$N=\frac{n(n+1)}{2}$$

对于四维空间, N=10。

曲率标量 R 是不变量,在 n 维空间中只有一个分量。由于里奇张量和度规张量都是对称的,爱因斯坦张量 $G_{\mu\nu}$ 也是对称的,也有 $N=\frac{n(n+1)}{2}$ 个独立分量,对于四维空间,N=10。

0.8.5 毕安基恒等式

从曲率张量的定义式 (1.54), 可以证明曲率张量的一个微分恒等式

$$R^{\rho}_{\lambda\mu\nu;\sigma} + R^{\rho}_{\lambda\nu\sigma;\mu} + R^{\rho}_{\lambda\sigma\mu;\nu} = 0 \tag{63}$$

式 (1.63)证明从略,有空再写。

现在缩并式 (1.63) 的指标 ρ 和 σ ,得

$$R^{\sigma}_{\lambda\mu\nu;\sigma} - R_{\lambda\nu;\mu} + R_{\lambda\mu;\nu} = 0$$

两边乘以 $g^{\nu\lambda}$,并注意到 $g^{\nu\lambda}_{;\sigma}=0$,于是得到

$$\begin{split} g^{\nu\lambda}(R^{\sigma}_{\lambda\mu\nu;\sigma} - R_{\lambda\nu;\mu} + R_{\lambda\mu;\nu}) &= 0 \\ R^{\sigma}_{\mu;\sigma} - R_{;\sigma} + R^{\nu}_{\mu;\nu} &= 0 \\ R^{\nu}_{\mu;\nu} - \frac{1}{2}R_{;\sigma} &= 0 \\ (R^{\nu}_{\mu} - \frac{1}{2}\delta^{\nu}_{\mu}R)_{;\nu} &= 0 \end{split} \tag{64}$$

还可以写成协变或逆变张量的形式

$$(R_{\nu\mu} - \frac{1}{2}g_{\mu\nu}R)^{;\nu} = 0 \tag{65}$$

$$(R^{\nu\mu} - \frac{1}{2}g^{\mu\nu}R)_{;\nu} = 0 \tag{66}$$

式 (1.64)、式 (1.65)、式 (1.66)说明,爱因斯坦张量的协变散度为 0。

几个重要的运算 0.9

0.9.1 度规的微分

设 g 是协变度规张量 $g_{\mu\nu}$ 的行列式, $\Delta^{\mu\nu}$ 为相应的代数余子式。由于某一矩阵元乘以对 应的代数余子式等于行列式,某一矩阵元乘以非对应的代数余子式等于0,有:

$$g \times \delta^{\nu}_{\alpha} = g_{\alpha\rho} \times \Delta^{\nu\rho} \tag{67}$$

已定义的逆变度规张量为

$$g^{\mu\nu} \equiv \frac{\Delta^{\mu\nu}}{q} \tag{68}$$

(70)

由式 (1.67)、式 (1.68)可得

$$\frac{\partial}{\partial g_{\alpha\rho}}(g \cdot \delta^{\nu}_{\alpha}) = \frac{\partial}{\partial g_{\alpha\rho}}(g_{\alpha\rho}\Delta^{\nu\rho})$$

$$\delta^{\nu}_{\alpha}\frac{\partial g}{\partial g_{\alpha\rho}} = \Delta^{\nu\rho}$$

$$\frac{\partial g}{\partial g_{\nu\rho}} = \Delta^{\nu\rho}$$

$$= q \cdot q^{\nu\rho}$$
(69)

于是

$$dg = \frac{\partial g}{\partial g_{\mu\nu}} dg_{\mu\nu} = g \cdot g^{\mu\nu} dg_{\mu\nu} = -g \cdot g_{\mu\nu} dg^{\mu\nu} \tag{71}$$

同时也可以得到

$$\frac{\partial g}{\partial x^{\alpha}} = \frac{\partial g}{\partial g_{\mu\nu}} \frac{\partial g_{\mu\nu}}{\partial x^{\alpha}} = g \cdot g^{\mu\nu} \frac{\partial g_{\mu\nu}}{\partial x^{\alpha}} = -g \cdot g_{\mu\nu} \frac{\partial g^{\mu\nu}}{\partial x^{\alpha}}$$
 (72)

0.9.2 一个特殊的克氏符

$$\Gamma^{\mu}_{\alpha\mu} = \frac{1}{2}g^{\mu\nu}(g_{\mu\nu,\alpha} + g_{\alpha\nu,\mu} - g_{\alpha\mu,\nu}) = \frac{1}{2}g^{\mu\nu}g_{\mu\nu,\alpha} = -\frac{1}{2}g_{\mu\nu}g^{\mu\nu}_{,\alpha} = \frac{1}{2g}\frac{\partial g}{\partial x^{\alpha}} = \frac{\partial}{\partial x^{\alpha}}(ln\sqrt{-g})$$

0.9.3 散度的运算

与欧氏空间相比, 散度运算需要用协变微商代替普通微商, 且散度只能对逆变指标求, 如果需要对协变指标求散度, 需要使用度规将指标升高后再求。散度运算会使张量降阶。

逆变矢量的散度

$$\operatorname{div} A^{\mu} = A^{\mu}_{;\mu} = A^{\mu}_{,\mu} + \Gamma^{\mu}_{\alpha\mu} A^{\alpha} = \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\mu}} (\sqrt{-g} A^{\mu})$$
 (73)

达朗贝尔算符

$$\Box \Phi = \operatorname{div}(\operatorname{grad}\Phi) = \operatorname{div}(g^{\mu\nu}\frac{\partial \Phi}{\partial x^{\nu}}) = \frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^{\mu}}(\sqrt{-g}g^{\mu\nu}\frac{\partial \Phi}{\partial x^{\nu}}) \tag{74}$$

0.9.4