Neural Word Segmentation Learning for Chinese

Zhen Cheng

Chinese Word Segmentation

- Input: xsentence/list of characters
- Output: y*
 list of words
- Definition:

$$y^* = \underset{y \in \text{GEN}(x)}{\operatorname{arg max}} (\sum_{i=1}^n \operatorname{score}(y_i | y_1, \cdots, y_{i-1}))$$

- Challenges:
 - Ambiguity
 - Out-of-vocabulary words

Chinese Word Segmentation

Previous approaches:

- Formalized as a sequence labeling task:
 - Character-based
 - Fixed size local windows

Disadvantages: only contextual information, simple interactions

- Traditional methods:
 - Maximum Entropy(Berger et al., 1996)
 - Conditional Random Fields (Lafferty et al., 2001)

Disadvantage: depends on the choice of features

GCNN-LSTM Model

GCNN-LSTM Model

GCNN-LSTM Model

- Features: directly evaluates the whole segmented sentences
 - Character Embedding
 - Gated Combination Neural Network
 - Sentence Score = Word Score + Link Score
 - Decoding with Beam Search
- Dataset:
 - PKU
 - MSR

Character Embedding

- Why not word embedding?
 - The data sparsity of n-gram
 - Words is derived from characters
 - Chain word candidates incrementally

counts	I	like	enjoy	deep	learning	NLP	modeling	
I	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
modeling	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Gated Combination Neural Network

Objective:

To obtain word representation through characters

• Input:

 $\mathbf{c}_i \ (1 \leq i \leq L)$ d-dimensional character vector

Output:

$$\mathbf{w} = g(\mathbf{W}^{(L)} \left[egin{array}{c} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_L \end{array}
ight]) \, \, \, ext{d-dimensional word vector}$$

Gated Combination Neural Network

GCNN updates output function

• Word vector:

$$\mathbf{w} = \mathbf{z}_N \odot \hat{\mathbf{w}} + \sum_{i=1}^L \mathbf{z}_i \odot \mathbf{c}_i$$

• Update gates: $\mathbf{z}_N + \sum_{i=1}^L \mathbf{z}_i = \mathbf{1}$

$$\begin{bmatrix} \mathbf{z}_N \\ \mathbf{z}_1 \\ \vdots \\ \mathbf{z}_L \end{bmatrix} = \exp(\mathbf{U}^{(L)} \begin{bmatrix} \hat{\mathbf{w}} \\ \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_L \end{bmatrix}) \odot \begin{bmatrix} 1/\mathbf{Z} \\ 1/\mathbf{Z} \\ \vdots \\ 1/\mathbf{Z} \end{bmatrix}$$

Gated Combination Neural Network

GCNN updates output function

Activation:

$$\hat{\mathbf{w}} = \tanh(\mathbf{W}^{(L)} \begin{bmatrix} \mathbf{r}_1 \odot \mathbf{c}_1 \\ \vdots \\ \mathbf{r}_L \odot \mathbf{c}_L \end{bmatrix})$$

$$\begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_L \end{bmatrix} = \sigma(\mathbf{R}^{(L)} \begin{bmatrix} \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_L \end{bmatrix})$$

Sentence Score = Word Score + Link Score

Word Score: the score of the ith word

$$Word_Score(\mathbf{y}_i) = \mathbf{u} \cdot \mathbf{y}_i$$

- Link Score: base on LSTM
 - A prediction p(t+1) about next word y(t+1): $\mathbf{p}_{t+1} = \tanh(\mathbf{W}^p \mathbf{h}_t + \mathbf{b}^p)$

h(t) is the hidden state at time t

- Link_Score(\mathbf{y}_{t+1}) = $\mathbf{p}_{t+1} \cdot \mathbf{y}_{t+1}$
- Sentence Score:

$$s(y_{[1:n]}, \theta) = \sum_{t=1} (\mathbf{u} \cdot \mathbf{y}_t + \mathbf{p}_t \cdot \mathbf{y}_t)$$

Decoding with Beam Search

- Why not Viterbi search?
 - Viterbi uses Markov assumption
 - Want to capture the whole history of segmentation.

Decoding with Beam Search

Three steps for every position i

- Using GCNN to generate word vectors
- Generate segmentation ending at I
- Choose the k-max of candidates

```
Algorithm 1 Beam Search.
Input: model parameters \theta
          beam size k
          maximum word length w
         input character sequence c[1:n]
Output: Approx. k best segmentations
 1: \pi[0] \leftarrow \{(score = 0, \mathbf{h} = \mathbf{h}_0, \mathbf{c} = \mathbf{c}_0)\}
 2: for i = 1 to n do
       X \leftarrow \emptyset
      for j = \max(1, i - w) to i do
         \mathbf{w} = \text{GCNN-Procedure}(c[j:i])
         X.add((index = j - 1, word = \mathbf{w}))
      end for
      Y \leftarrow \{ y.\mathsf{append}(x) \mid y \in \pi[x.index] \text{ and }
       x \in X
      \triangleright Filter k-Max
      \pi[i] \leftarrow k- arg max y.score
                     u \in Y
13: end for
14: return \pi[n]
```

Training

Structured margin loss:

$$\Delta(y^{(i)}, \hat{y}) = \sum_{t=1}^{m} \mu \mathbf{1} \{ y^{(i),t} \neq \hat{y}^t \}$$
 • Loss function:

$$J(\theta) = \frac{1}{|\Omega|} \sum_{(x^{(i)}, y^{(i)}) \in \Omega} l_i(\theta) + \frac{\lambda}{2} ||\theta||_2^2$$

$$l_i(\theta) = \max_{\hat{y} \in GEN(x^{(i)})} (s(\hat{y}, \theta) + \Delta(y^{(i)}, \hat{y}) - s(y^{(i)}, \theta))$$

Parameter update:

$$\theta_{t,i} = \theta_{t-1,i} - \frac{\alpha}{\sqrt{\sum_{\tau=1}^{t} g_{\tau,i}^2}} g_{t,i}$$

Performances of different beam sizes on PKU dataset

• Beam size = 4 is enough

Performances of different score strategies on PKU dataset

Link score make sense because of the complete segmentation history

Results on MSR dataset with different maximum decoding word length settings

- Allowing longer words can improve the performance
- Time consuming should be considered

Max. word length	F ₁ score	Time (Days)
4	96.5	4
5	96.7	5
6	96.8	6

Compare with other models

Models	PKU			MSR		
Wiodels	P	R	F	P	R	F
(Zheng et al., 2013)	92.8	92.0	92.4	92.9	93.6	93.3
(Pei et al., 2014)	93.7	93.4	93.5	94.6	94.2	94.4
(Chen et al., 2015a)*	94.6	94.2	94.4	94.6	95.6	95.1
(Chen et al., 2015b) *	94.6	94.0	94.3	94.5	95.5	95.0
This work	95.5	94.9	95.2	96.1	96.7	96.4
+Pre-trained character embedding						
(Zheng et al., 2013)	93.5	92.2	92.8	94.2	93.7	93.9
(Pei et al., 2014)	94.4	93.6	94.0	95.2	94.6	94.9
(Chen et al., 2015a)*	94.8	94.1	94.5	94.9	95.9	95.4
(Chen et al., 2015b)*	95.1	94.4	94.8	95.1	96.2	95.6
This work	95.8	95.2	95.5	96.3	96.8	96.5

Compare with other models

Models	PKU	MSR	PKU	MSR
(Tseng et al., 2005)	95.0	96.4	-	-
(Zhang and Clark, 2007)	94.5	97.2	-	-
(Zhao and Kit, 2008b)	95.4	97.6	-	-
(Sun et al., 2009)	95.2	97.3	-	-
(Sun et al., 2012)	95.4	97.4	-	-
(Zhang et al., 2013)	_	-	96.1*	97.4*
(Chen et al., 2015a)	94.5	95.4	96.4*	97.6*
(Chen et al., 2015b)	94.8	95.6	96.5*	97.4*
This work	95.5	96.5	-	_