Fall 2022 ECEN 748 Data Mining & Analysis

Nick Duffield

Department of Electrical & Computer Engineering
Texas A&M Institute of Data Science

Organization

- Instructor: Nick Duffield
- Contact: duffieldng@tamu.edu; (979) 845-7328
- Class notes: Canvas
- Homework: Canvas
- Class times: MW, 5:45-7:00pm, BLOC 166
- Office hours: MW, 4:15-5:15pm, BLOC 227F

Grading

- Components of the grade
 - Assignments: 60%, roughly every two weeks
 - Class Test: 15%, Wed, October 19, 2022, 5:45 p.m. 7:00 p.m, BLOC 166
 - Final Exam: 25%, Fri, December 9, 2022, 7:30 a.m. 9:30 a.m.
- Discussion of homework assignments is encouraged
- Homework must be executed independently, copying not allowed.
- Assignments must be typeset and submitted on time to receive full credit.
- No late assignments will receive full credit unless justified by an official document (e.g., doctor's note)
- 10% penalty for each 24hr hour period

Course texts and materials

Primary text

 [ZM] Data Mining and Machine Learning: Fundamental Concepts and Algorithms, M. Zaki & W. Meira, Jr. Cambridge University Press, 2020, https://dataminingbook.info, Online and through the TAMU Library

Secondary text

 [MMDS] Mining of Massive Datasets, J. Leskovec, A. Rajaraman, & J, Ullman, http://mmds.org/

Assignments

- Selected examples based on problems in [ZM] and [MMDS]
 - □ Typically selecting, applying or implementing computation
 - Some algebra manipulations to reinforce view "under the hood"
 - □ Solutions include numerical or analytical results, code snippets, reasoning narrative

Course Description

- Overview of data mining, integrating related concepts from machine learning and statistics.
- Fundamental topics including exploratory data analysis, pattern mining, clustering, classification, and regression, with applications to scientific and online data.

Learning outcomes

- Acquire knowledge of foundations and application of methods in data mining and data analysis.
- Prepare students to use methods and tools of data science in research, whether focused on methods or on applications.
- Upon the completion of the course, the student should be able to:
 - Conduct exploratory data analysis including visualization and summarization
 - Apply selected unsupervised machine learning methods to data analytical problems
 - Apply selected supervised machine learning methods to data analytic problems
 - o Select appropriate machine learning method applicable to common problem types
 - o Understand usage rationale, underpinnings, and limitations of machine learning methods
 - Apply common libraries and tools to data analytical problems

Course Topics

Week	Topic	Required Reading	
1	Data and Attributes	ZM Chapters 2, 3	
2	Dimensionality Reduction	ZM Chapter 7	
3	Frequent Itemset Mining & Association Rules	ZM Chapter 8, MMDS Chap. 6	
4	Representative Clustering	MMDS, Chapter 7	
5	Gaussian Mixture Clustering & EM Method	ZM Chapter 13	
6	Hierarchical Clustering	ZM Chapter 14	
7	Density Estimation & Density-Based Clustering	ZM Chapter 15	
8	Bayesian & Nearest Neighbor Classification	ZM Chapter 18	
9	Decision Tree Classification	ZM Chapter 19	
10	Graphs, Pagerank & Search	MMDS Chapter 5	
11	Recommendation Systems	MMDS Chapter 9	
12	Linear and Logistic Regression	ZM Chapters 23 & 24	
13	Support Vector Machines	MMDS Chapter 11, ZM Chapter 21	
14	Perceptrons & Networks	MMDS Chapter 11, ZM Chapter 25	
Class Te	est: Wednesday October 19, 2022, 5:45 p.m. – 7:00 p.m.		

Class Test: Wednesday, October 19, 2022, 5:45 p.m. – 7:00 p.m.

Final Exam: Friday, December 9, 2022, 7:30 a.m. - 9:30 a.m.

About me

- Joined Texas A&M in August 2014
- Worked for 18 years in AT&T Labs-Research in New Jersey
 - Research in data science for communications networks
- Previously Asst. Professor in Europe
- Undergrad/PhD in Physics and Mathematical Physics
- Research Interests:
 - Measurement and analysis of communications networks
 - Measurements in software defined networks
 - □ Network security / cybersecurity
 - Data Science
 - Streaming algorithms
 - Statistical Inference, Machine Learning
 - □ Applications in Transportation, Urban Science Geosciences, Agriculture, ...
- Director of Texas A&M Institute of Data Science
 - https://tamids.tamu.edu

A Quick Tour of the Course

A quick tour of the course

- What is driving the recent growth and abundance of data?
- What does data look like?
- What questions are we trying to answer?
- Exploratory data analysis
- Dealing with high dimensional data
- Finding patterns in the data: clustering
- Learning and classification

Drivers for recent rapid growth in data

Instrumentation of the internet & internet-based services

- Operational data from online social networks
 - □ Billions of users; trillions of connections;
- Search logs at search providers such as Google
- Internet Service Providers
 - □ Traffic measurements: #bytes, #packets between network endpoint pairs
- Internet of Things
 - □ Huge increase in number of connected endpoints
- Retail transactions
 - □ Online retailers, movie purchases

Drivers for recent rapid growth in data (2)

Increased Sensing in Science, Health, Engineering

- Satellite Imaging
 - □ Land use, elevation, slope, soil type & moisture, vegetation, radiance
- Unmanned Aerial Vehicles
 - □ Agricultural imaging down to scale of individual plants
- Weather & Climate
 - □ Wind velocity, precipitation, humidity, temperature, ...
 - Crowdsourcing (Internet connected weather stations)
 - Ocean sensing: temperature, currents
- Transportation
 - □ Location from apps, cell-towers, vehicle state from smart cars
- Health & Medicine
 - □ Genetic sequencing, phenotypes, clinical records, treatments, outcomes, environment & economics, lifestyle
- Energy and Utilities
 - □ Seismological data from oil exploration
 - □ Infrastructure sensors, household smart meters

General properties of data

Most data in this course is in form of a set of records

- E.g. Data matrix D:
 - □ Each row = record containing values of d of attributes
 - □ Such as measured values from n individuals in a survey
- E.g. each record is a list of items
 - □ E.g. list of items purchased in a transaction

ļ		X_1	X_2	• • •	X_d
	X ₁	X ₁₁	<i>X</i> ₁₂	• • •	<i>X</i> _{1<i>d</i>}
$\mathbf{D} =$	X 2	<i>X</i> ₂₁	<i>X</i> ₂₂	• • •	X_{2d}
	:	:	:	٠.	÷
	$\setminus \mathbf{x}_n$	<i>X</i> _{<i>n</i>1}	X_{n2}	• • •	x_{nd}

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

Transaction Database

These are examples of structured data

- o Organized data, e.g. in database with specified field formats
 - □ Information readily searched / retrieved / inserted
- Contrast with unstructured data
 - □ E.g. audio files, images, videos, free text

How to make model of the data?

- Data records = (age, height, weight, ...)
 - o from clinical surveys of children
- What is relation between variables?
 - Model distribution of height and weight as a full
 - □ Used to make clinical growth charts
- Exploratory data analysis
 - For each age, characterize mean, variance, covariance amongst height, weight, ...
 - Multivariate Gaussian model

Finding patterns in the data

- Dataset = retail transactions, each listing items purchase
 - These are called *itemsets*
- What are the most frequently purchased items?
- Which items are frequently purchased together?
 - Information used to advertizing, special offers, recommendations
 - If item A more often bought with item B that without, market together
- How do we find all the frequent itemsets of a given size?

The challenge of data size

- Datasets may be inherently large
 - Data matrix with large number n of records
 - □ See previous examples

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1 & X_{11} & X_{12} & \cdots & X_{1d} \\ \mathbf{x}_2 & X_{21} & X_{22} & \cdots & X_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & X_{n1} & X_{n2} & \cdots & X_{nd} \end{pmatrix}$$

- Computations can have high possible size
 - o n**k possible itemsets of size k built from n objects
- Abstract specification ("find frequent itemsets") often needs careful implementation to compute efficiently

Challenges of high data dimensionality

Data may have large number of attributes

Data matrix with many columns d

$$\mathbf{D} = \begin{pmatrix} & X_1 & X_2 & \cdots & X_d \\ \mathbf{x}_1 & X_{11} & X_{12} & \cdots & X_{1d} \\ \mathbf{x}_2 & X_{21} & X_{22} & \cdots & X_{2d} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_n & X_{n1} & X_{n2} & \cdots & X_{nd} \end{pmatrix}$$

- Challenges
 - Models have large number of parameter
 - d(d-1)/2 variances / covariances in a Gaussian model
 - Cumbersome, more difficult to estimate well
- Dimension reduction
 - Identify small number of attributes (or combinations of attributes) that account for most of the data variation
 - Other dimensions of the data are viewed as noise,

Clustering

- In many data sets, the points evidently disjoin into groups
 - Different subpopulations within data, each with own data characteristic

- Want to automate identification of clusters in data
- Different notions of clustering
 - Representative: cluster points close to a central representative
 - Density based: separated groups of contiguous points
 - Hierarchical clustering: grouping at multiple levels

Classification

- Clustering is type of unsupervised machine learning
 - We have no side information on variables that may distinguish clusters
- Classification
 - For each data point x we are given a class y
 - Example:
 - □ data point **x** = (height, length) of plant leaf
 - class y = plant variety
 - Want to learn the relationship between the data values and the class
- A classifier is a function that can be used to predict the class of any possible data point x
- Supervised machine learning:
 - \circ Compute a classifier from set of (data, class) values $\{(\mathbf{x}_i, \mathbf{y}_i): i=1,...,n\}$
- Methods include:
 - Bayesian, Support Vector Machines, Linear Perceptrons, Boosting

Graphical data mining

- Many interesting dataset can be represented as graphs
- Example: web graph
 - Vertex = web page
 - o Directed edge (a,b) iff page a contains a hyperlink to page b
- Web search problem: how to rank pages by importance
 - Content based criteria:
 - □ is page content relevant for search, e.g. matching keywords
 - Topology based criteria:
 - □ Are there many hyperlinks to that page?
 - □ Google's PageRank algorithms based on random walk of web graph

Regression

- Given variables $X = (X_1, X_2,, X_d)$
 - Known as predictors, explanatory or independent variables
- Response variable Y
- Can we learn a regression function f that predicts Y from X
 - $Y = f(X_1, X_2, ..., X_d) + \varepsilon = f(X) + \varepsilon$ □ Here ε is random error term assumed independent of X
- Linear regression

$$\circ f(X) = \beta + \omega_1 X_1 + \dots + \omega_d X_d = \beta + \omega X$$

- Logistic regression
 - Probability of binary outcome (Y = 1 or 0) follows logistic function □ Prob(Y = 0) = $1/(1+\exp(\omega.X))$
- Learning problem
 - \circ Find the parameters β , ω_1 ,, ω_d that best explain the observations

Neural Networks and Learning

- Machine Learning Inspired By Abstraction of Neural Systems
- From single neuron model

To deep network models

