PAT-NO:

JP354133766A

DOCUMENT-IDENTIFIER: JP 54133766 A

TITLE:

VARIABLE BRIGHTNESS LIGHTING SYSTEM FOR LIGHTING INSTRUMENT

PUBN-DATE:

October 17, 1979

INVENTOR-INFORMATION:

NAME

COUNTRY

SAITO, KUNIHIRO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

ICHIKOH IND LTD N/A

APPL-NO: JP53041246

APPL-DATE: April 10, 1978

INT-CL (IPC): H05B037/02

US-CL-CURRENT: 315/83, 315/170

ABSTRACT:

PURPOSE: To make brightness of lighting instruments variable by providing a terminal at an intermediate portion between plural batteries connected in series and switching this terminal by a whole voltage terminal.

CONSTITUTION: Two sets of battery V1, V2 are connected in series, and a whole voltage terminal is connected with a switch Sw1 while a terminal provided at an intermediate portion between the batteries is connected with a switch Sw1. When head lamps IR, IL are tobe lighted normally, the switch Sw1 is closed and main filaments M, M or dimmer filaments D, D are fed with current by switching a dimm switch Sw2. When a switch Sw1' is closed and a switch Sw2' is connected with a terminal L, the dimmer filaments D, D are lighted by a voltage of the battery V1 alone, thereby, brightness thereof may be decreased.

COPYRIGHT: (C)1979,JPO&Japio

(19日本国特許庁(JP)

①特許出願公開

⑩公開特許公報(A)

昭54-133766

Int. Cl.²
H 05 B 37/02

庁内整理番号 ③公開 昭和54年(1979)10月17日

7254—3K

発明の数 1 審査請求 未請求

(全 3 頁)

の灯具の可変点灯方式

20特

預 昭53—41246

②出

願 昭53(1978) 4月10日

@発 明 者 斉藤邦弘

埼玉県南埼玉郡白岡町大字白岡

1030-- 5

⑪出 願 人 市光工業株式会社

東京都品川区東五反田5丁目10

番18

仍代 理 人 弁理士 秋本正実

明. 網 書

発明の名称 灯具の可変点灯方式

特許請求の範囲

直列に接続した複数のペッテリと。酸ペッテリ、を電源とし少なくとも1個の灯体を備える車輌用 灯具において、前記複数のペッテリの各ペッテリ 間の内少なくとも1カ所には別電圧端子を設け、 全電圧端子と該別電圧端子とをスイッチにより切 換え可能にし、もつて灯体の光度を可変になした 10 ことを特徴とする灯具の可変点灯方式。

発明の詳細な説明

本発明は灯具の可変点灯方式に関する。特化、 パッテリを電源とする灯具における光度可変点灯 方式に関する。

従来のこの種のもの、例えばパッテリを電源とした単輪用照明灯や信号灯においてその灯体の明るさを変える方式は多数あるが、そのいずれも実際の使用に際して問題がある。

ます。広く用いられている抵抗方式について述 っぺれは、これは灯具とパッテリとの間に抵抗を挿 入し、この抵抗値により電流を制御して明るさを 変える方式である。ところがこの方式では抵抗で の消費電力が大きく、むだが多い。形状も大型と なつてスペース的にも不利である。

次に半導体方式について述べる。これはトランシスタや SCRなどの半導体を用い、パンテリの直流電流を交流化してその実効電流を変えることにより明るさを変える方式である。しかしこの方式には、高価格でありかつ信頼性がやや低いという問題がある。

フイルター方式は、電流ではなく灯具のレンズ の透過率を変え、もつて明るさを変える方式であるが、これは機構が難しく、コスト高になり、大型になつてしまりものである。

ダブルフイラメント方式は、灯具の各電球のフィラメントをダブルにし、フィラメントを切換えることで明るさを変える方式である。ところがこの方式であるともともとダブルフィラメントの電球を用いている場合は、そのダブルフィラメントの部分を更にダブルにする必要があるわけであり、

1 事実上困難である。特に、従来より、車輌用前照 灯にかけるメインフィラメントとディマーフィラ メント。リヤコンピネーションランプのストップ ライトとテールライト切換えのためのダブルフィ s ラメントなど、もともとダブルフイラメントを用 いている例が多いので、これに更にダナルフィラ メント方式を適用するのは実際上不可能である。

上記事情に幾み。本発明は、従来からのダブル フイラメントの部分にもそのまま適用でき、すべ 10 てのものに汎用できるとともに。抵抗方式の如き むだな消費電力も要さず、形状も小型で機構も簡 単で低価格化を図り得、しかも信頼性の高い灯具 の可変点灯方式を提供することを目的とする。

以下、図面を参照して本発明の実施の一例につ 15 いて説明する。

第1図に示すのは自動車用へッドランプに本発 明の可変点灯方式を適用したものである。 即ちか かるヘッドランプなどにあつては、例えば車の改 滞に伴り低速走行時において先行車の運転者に対 ,する防敗を考慮して,ランプを明るさを少し暗く

特開昭54—133766 (2) したい場合があるので、このよりな時化本方式を 用いて構成すれば所望の波光を達成できるのであ 3.

第1図中1R,1L は各々右倒ヘッドランプ。左 倒ヘッドランプであり、M 。Dは各々のメインフ イラメント,デイマーフイラメントである。即ち 本例にあつては各ヘッドランプとしてダブルフィ ラメント型のものを用いているのであつて,光度 可変にするために更にフィラメントをダブルにす ることは事実上不可能なものである。なおメイン フイラメントMは前方を明るく照射するのに用い るものであり、アイマーフイラメントDはそれよ り滅光した状態で前方を照射するのに用いるもの である。

とのヘッドランプ IR, IL の复源としては、2 個のパッテリV』, V,を用いる。 両者は直列に接続 され、V.の日がわがアースされ、V.の日がわはへ ツドランプ iR,1L の点灯 , 消灯をなすライテイ ングスイツチ Sw』 に接続されている。通常のヘツ ドランプ 1R,1L の点灯の時は、このスイッチ

, Sw. を閉じ、更にメイン/ディャー切換スインチ Sws を用いてメインフィラメント M かディマーフ イラメント Dかのいずれかに通常する。図示の状 態にあつては切換スイッチ Swe はメインがわ端子 s mではなく端子 d の方に切換えられており、デイ マーフイラメントDが発光している。

本発明にあつては、かかる状態で更に成光を可 能にすべく、パッテリ V1, V,の間に別電圧端子 1 を設ける。これをライテイングスイプチ Swa と連 10 動するスイツチ Swi を介して、更に高電圧端子 h 。 低電圧端子 & を有する光度可変用スイツチ Sw。 K よりその光度を切換え可能になすのである。図示 の状態ではこのスイッチ Swand 高速圧端子 h の方 に切換えられているから、電圧は病パンテリV.と is Voとの和でディマーフィラメント Dを点灯させて いる。ところがこの状態から光度可変スインチ Sw。を低電圧端子』の方に切換えると、パンテリ Viの①端子からの電流のみがデイマーワイラメン。 トDを流れ、パンテリVoの電流は寄与しないので、 ョパッテリ V,の電圧のみで点灯することになる。よ

つて、ヘッドランプ 1R,1L はデイマーの状態か 5更に一段暗くすることができるのである。.

第2図に示すのは本発明の他の実施例であつて。 これは本発明の方式を自動車用コンピネーション ランプに適用したものである。図中、 2R,2L は 各々右側,左側のテール・ストップランプである。 3 R, 3 L, 4 R, 4 L は フロント右側 , フロント左側 , リヤ右側,リヤ左側のターンシグナルランプであ る。かかる信号灯も、後続車の選転者に対する防 肢のため。多少暗くしたい場合があるので、本発 男を適用するのである。

本例におけるテール・ストップランプ 2R, 2L は各々テールランプ用のフィラメント』とストツ プランプ用のフイラメント8とを有するダプルフ イラメント型のものであつて、第1図の例のヘッ ドランプ同様、更にダブルにして光度可変に構成 するのは事実上不可能なものである。

本例の電源としては第1図の例と同様、2個の 直列接続したパッテリVi, Voを用い、両パッテリ V_i , V_s の間に別電圧端子 t を設ける。この端子 t

特開昭54-133766(3)

」は光度可変スインチ Sw。の一方の低電圧端子 & に接続される。一方このスイッチ Sw。の他方の高電圧端子 b は、パッテリ V,の⊕がわに接続される。

従つて通常の場合はスイツチSw。を高電圧端子 s h に切換えておいて、各信号灯を点灯させる。つ まりテールランプ点灯用のスインチ Sw. を閉じて テール・ストップランプ 2R, 2L のテールランプ 用フィラメントTを発光させ、或はスインチ Sw。 を閉じてテール・ストツプランプ 2R, 2L のスト 10 ツプランプ用フイラメント8を発光させ、東は必 要に応じて方向指示用切換えスイッチ Sw, により 右側のターンシグナルランプ 3R,4R か左側のタ ーンシグナルランプ 3L,4L かのいずれかを点灯 させる、この状態では各個号灯はパンテリ V_i , V_o 15 の双方の電圧の和を受けるから明るく発光する。 この状態から減光させたい時化、光度可変スイツ ナ Sw. を低電圧端子もの方に切換えればよいので ある。このようにすると各個号灯にはパンテリ V, からの電流のみが流れることになり、所望の減光 っを達成できるのである。(なお第3図中Fはフラ

ッシャユニットである)。

上配各例では、2個のパンテリを用い、その両方のパンテリを電源として用いるか、1個のみを用いるかを切換えるようにしたものであり、例えば第3図に示すように、6Vと12V との切換えをなせるような電源を用い得る。また、第4図の如く3個のパンテリ V1、V2、V2を用いて、別電圧囃子1、1、2を設け、3 段階切換えをなせるようにしてもよい。第3図の例では 4V、6V、12V の3種の電圧を所望により使用できる。

上述の如く本発明に係る灯具の可変点灯方式は 直列に接続した複数のパッテリと、該パッテリを 電源とし少なくとも1個の灯体を備える車輌用り 具において、前配をのパッテリの各パッテリの の内少なくとも1カ所には別電圧端子を設けて、切り を開発し、もつて灯体の光度を可変になりしたと とを特徴とするものであるので、別電圧端子と とを特徴とするものであるので、別電圧端子と とを特徴とするものであるがけて従来品にも 後え用のスイッチとを増設するだけで従来品にも そのまま適用でき、可変点灯機構がきわめて簡単

なか、当然のことではあるが、本発明は上配実 施例にのみ改定されるものではない、

図面の簡単な説明

V₁ 、V₂ 、V₃ … パンテリ、 1R, 1L, 2R, 2L, 3R, 1 3L, 4R, 4L … 灯体、 t , t₁ , t₃ … 別能圧嫌子、Sw₄ 。 Sw₄ … スインチ (光度可変スインチ)

等 許 出 顧 人 市光工集株式会社 代理人 弁理士 秋 本 正 実

(19) JAPAN PATENT BUREAU (JP)(11) Publication No.: Showa 54-133766

(12) OFFICIAL GAZETTE LAID-OPEN PATENT (A)

(43) Date of laying open: October 17, 1979

(51) Int. Cl.² H –5 B 37/01

I.D. Code

(52) Japan Class.

Intraoffice No.

93 A 1

7254-3K

Lay open: October 17, 1979

Number of inventions: 1 Request for example: none

(Total of 3 pages)

(54) Title: VARIABLE-BRIGHTNESS LIGHTING SYSTEM FOR A LIGHTING INSTRUMENT

(21) Application No.: Showa 53-41246

(71) Applicant:

ICHIKOH IND. K.K.

1018, 5-Chome, Himachi-Gotanda,

Shinagawa-ku, Tokyo-to

(22) Date of Application: 4/10/1978

(74) Agent:

M. AKIMOTO, Patent Agent

(72) Inventor: K. SAITO 1030-5 Oaza-Shirooka, Shirooka-cho, Saitama-gun, Saitama-ken

SPECIFICATION

Title of the invention:

Variable-brightness lighting system for a lighting instrument

Patent Claim

Variable-brightness lighting system for a lighting instrument, for a vehicular lighting instrument having multiple batteries connected in series and at least one light that uses the said batteries as its electrical source, in which a separate voltage terminal is provided at least one place between the said battery of the said multiple batteries, and the entire voltage terminal and the said separate voltage terminal are made suitably using a switch so as to make the brightness of the light variable.

Detailed explanation of the invention

The invention relates to a variable-brightness lighting system for a lighting instrument, and especially to that which uses a battery as the electrical source.

Conventionally, there are many systems that change the brightness of vehicular lights or signal lights, that use a battery as their electrical source, but all of these systems have had problems during practical application.

First of all, in the widely used resistance system, a resistance is inserted between the lighting instrument and the battery and the electrical current is controlled by the resistance for changing the brightness. However, in this system, a large amount of electricity is consumed, with waste, and the system is large in size, requiring a large space.

Next, the semiconductor system uses a transistor or SCR, etc., and the DC of the battery is converted to AC and the effective current of the AC is changed to make the brightness variable. However, this system is costly and has low reliability.

In the filter system, transmittance or the lens of the lighting instrument, not electrical current, is changed for variable brightness, but the mechanism is complex, large and costly.

In the double-filament system, the filament of each light of the lighting instrument is made double and the filaments are switched for variable brightness. However, with this system, a part of the filament needs to be doubled for the light to produce a double filament, which is difficult in practice. Especially, there are already many examples of use of a double filament, such as a main and dimmer filament of a vehicular headlight, double filament for switching between the stoplight and taillight of a vehicular rear combination light, etc., therefore, additional use of the double filament system is impossible in practice.

To address the above situation, this invention offers a variable-brightness lighting system for a lighting instrument of high reliability, which can be applied to the conventional double filament, can be used for general purposes and does not require high consumption of electricity as the resistance system does, is of small size, has a simple mechanism and is of low cost.

An example of this invention is explained below with the aid of figures.

Figure 1 shows the application of this invention to an automobile headlight. During low-speed driving, the brightness of the light is decreased in such a headlight to prevent glare for the driver of the preceding car. The present system can achieve such decrease of brightness.

In Figure 1, 1R, 1L are the right headlight and left headlight, respectively, and M and D are the main filament and the dimmer filament. That is, in this example, each headlight has a double filament and further doubling of the filament to achieve variable brightness is impossible in practice. Incidentally, dimmer filament D is for illuminating the front with lower brightness than that of main filament M.

Two batteries, V₁, V₂, are the sources of electricity for headlights 1R, 1L. These batteries are connected in series when the negative end of V₁ is used for grounding and the positive end of V₂ is connected to lighting switch SW₁ for turning headlights 1R and 1 L ON and OFF. This switch, SW₁, is closed for normal ON of headlights 1R, 1L and the main/dimmer switching switch SW₂ is used to energize main filament M or dimmer filament D. Under the conditions illustrated, switch SW₂ is switched to terminal d for lighting of the dimmer filament and not to the main-side terminal m.

In this invention, a separate voltage terminal t is provided between batteries V_1 , V_2 to further decrease the brightness. Brightness-changing switch SW_1 , which has high-voltage terminal hand low-voltage terminal l, varies the brightness via said separate voltage terminal t and switch SW_1 , that is linked with lighting switch SW_2 . Under the illustrated conditions, switch SW_1 is switched to high-voltage terminal h so that dimmer filament D is turned ON by the sum of the voltages of both batteries V_1 and V_2 . When brightness changing switch SW_2 is switched from such a condition to low-voltage terminal l, current from the positive end of battery V_1 only runs to dimmer filament D and current from battery V_2 does not contribute, so that the light is turned ON by voltage of battery V_1 only. Therefore, headlights 1R, 1L are darker than dimmer brightness.

Figure 2 shows another example of this invention, the application of this invention to an automobile combination light. In the figure, 2R, 2L are the right and left tail/stoplights. 3R, 3L, 4R, 4L are the front right, front left, rear right and rear left turn signal lights, respectively. This invention is applied in order to decrease the brightness of such a signal light because sometimes these lights are required to prevent glare.

In this example, tail/stoplights 2R and 2L are the double filament-type with taillight filament T and stoplight filament S, and, similarly to the headlight of Figure 1, further doubling of these lights is impossible in practice.

Similarly to the Figure 1 example, two batteries connected in series, V_1 , V_2 , are the electrical source in this example and a separate voltage terminal t is provided between batteries V_1 and V_2 . This terminal t is connected to low-voltage terminal l, which is one of the brightness-changing switches, SW_4 . On the other hand, high-voltage terminal h of switch SW_4 is connected to the positive end of battery V_2 .

Therefore, normally, switch SW₄ is switched to high-voltage terminal h for turning ON the signal lights. That is, switch SW_{5[?hard to read]} for the taillight is closed to energize filament T for the taillight of tail/stoplights 2R and 2L, or switch SW6 is closed to energize filament S for the stoplight of tail/stoplights 2R, 2L, or, when needed, direction-indicating switch SW₇ is used to turn ON one of the right side turn signal lights 3R, 4R or left side turn signal lights 3L, 4L. Under these conditions, the signal lights receive the sum of the voltages of both batteries V₁, V₂ so that the light illuminates brightly.

To decrease the brightness under these conditions, switching of the brightness-changing switch SW_4 to low-voltage terminal I suffices. Then the electric current from battery V_1 only runs to the signal light, so that the brightness is decreased (incidentally, in Figure 3, F is a flasher [sic] unit).

In the above examples, 2 batteries or one of those is used as the source of electricity. For example, as shown in Figure 3, 6V and 12V batteries can be switched to be used as the electric source. Also, as shown in Figure 4, 3 batteries, V_1 , V_2 , V_3 can be used with separate voltage terminals t_1 , t_2 for 3-step switching. In the example of Figure 3, 3 types of batteries, 4V, 6V and 12V, can be used, as desired.

As shown above, the variable-brightness lighting system for a lighting instrument of this invention has at least one separate voltage terminal between multiple batteries for a vehicular lighting instrument that has multiple batteries connected in series and at least one light that uses the said multiple batteries as its electrical source, for switching across the entire voltage terminal and separate voltage terminals via a switch, and thereby the brightness of the light is made variable. Therefore, the invention can be applied to a conventional system by merely adding the switch for switching to the separate voltage terminals and the mechanism for changing the brightness changing is very simple. Even if the brightness is switched to lower brightness, electricity is not consumed wastefully, unlike in the resistance system, in order to conserve energy. Its reliability is extremely high and its size and cost can be reduced.

Incidentally, needless to say, this invention is not limited to the above examples.

Brief explanation of the figures

Figure 1 is a circuit diagram of the first practical example of this invention. Figure 2 is a circuit diagram of a second practical example of the same and Figures 3 and 4 are examples of the electrical sources that can be used in the above examples.

 V_1 , V_2 , V_3 are batteries, 1R, 1L, 2R, 2L, 3R, 3L, 4R, 4L are lights, t_1 , t_2 , t_3 are separate voltage terminals, $SW_{[2?\,illegible]}$, SW_4 are switches (brightness-changing switches).

Applicant: ICHIKOH KOGYO K.K. Agent: M. AKIMOTO, Patent Agent

Figure 1

