

DOCUMENT RESUME

ED 151 161

SE 023 766

AUTHOR TITLE Harris, Daniel J.: Koffer, William J. Wastewater Sampling Methodologies and Flow Measurement Techpiques.

INSTITUTION
REPORT NO
PUB DATE
NOTE

Environmental Protection Agency, Washington, D. C.

EPA-907/9-74-005 Jun 74

156p.; Not available in hard copy due to marginal legibility of original document

EDRS PRICE DESCRIPTORS MP-\$0.83 Plus Postage. HC Not Available from EDRS. Environment: *Equipment Standards: *Laboratory Procedures: *Pollution: *Post Secondary Education: Public Health: *Sampling: Sanitation: *Water

Pollution Control: Water Resources
*Waste Water Treatment

IDENTIFIERS.

This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA), Region VII, Field Investigations Section. The results of five separate sampler performance studies are reported which indicated significant differences between automatic compositors and manual sampling methods. (CS)

Reproductions supplied by EDRS are the best that can be made 'from the original document.

PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Bernard Lukco

TO THE EDUCATIONAL RESOURCES INFOHMATION CENTER (ERIC) AND USERS OF THE ERIC SYSTEM

US DEPARTMENT OF HEAL&H
EDUCATION & WELFARE
NATIONAL INSTITUTE OF
EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

EPA 907/9-74-005

WASTEWATER SAMPLING METHODOLOGIES AND FLOW MEASUREMENT TECHNIQUES

BEST COPY AVAILABLE

BY

JUS. ENVIRONMENTAL PROTECTION AGENCY, REGION VII

SURVEILLANCE AND ANALYSIS DIVISION

TECHNICAL SUPPORT BRANCH

FIELD INVESTIGATIONS SECTION

DANIEL J. HARRIS AND WILLIAM J. KEFFER

JUNE 1974

The Superintendent of Documents Classification Number is:

EP 1.2: W28/10

, 3

DISCLAIMER

Mention of brand name of equipment does not constitute endorsement or recommendation of product by the Environmental Protection Agency. The information and findings presented in this paper are not to be construed as representing official equipment design or modification specifications.

ACKNOWLEDGEMENTS

The Environmental Protection Agency, Region VII Field Investigations Section wishes to acknowledge the cooperation of the tities of Kansas City, Kansas; Kansas City, Missouri; Lincoln, Nebraska; and Ashland, Nebraska, and Richards-Gebaur Air Force Base in allowing the section to conduct sampler comparison studies at their wastewater treatment facilities.

The section is also indebted to the Instrumentation Specialties Company of Lincoln, Mebraska; the N-Con Systems Company of New Mochelle, New York; and to Sirco Controls Company of Seattle, Washington, for loan of sampling equipment which was used in the sampler comparison studies.

TABLE OF CONTENTS

	PAGE NO
DISCLAIMER	·
ACKNOWLEDGEMENTS	. 11
TABLE OF CONTENTS	. 111
LIST OF FIGURES.	. vii
	· viii
I. INTRODUCTION	. VIII
II. STRUCTURE AND ACTIVITIES OF THE FIELD INVESTIGATIONS SECTION	· · · · · · · · · 4.
III. SAMPLER RELIABILITY, INSTALLATION, AND OPERATION .	• •
A. SAMPLER RELIABILITY	:. : 10
1. SAMPLER INVENTORY	. 10
a. SIGMAMOTOR MODELS WA-2 AND WD-2	. 12
b. BRAILSFORD MODEL EV-1	, 13
c. BRAILSFORD MODEL DU-1	. 14
d. BRAILSFORD MODEL EP-1	. / 15
e. HANTS MARK 3B	. 16
f. ISCO MODEL 1391-X	. 17
g. ISCO MODEL 1392	J8
h. STRCO MODEL MKV7S	. 18
i. PRO-TECH MODEL C6-125P	. 20
j. QCEC MODEL CVE.	21.
k. N-CON SCOUT	. 22
N-CON SURVEYOR.	. 23

		nare no
•		PAGE NO
	m. N-CON SENTINEL	23
•	2. INCIDENCE OF SAMPLER MALFUNCTION	24
ه <i>سو</i>	B. INSTALLATION AND OPERATION OF SAMPLING EQUIPMENT	27
٧.	SAMPLING METHODS AND DATA VARIABILITY	32
. •	A. PERFORMANCE OF AUTOMATIC WASTEWATER SAMPLING EQUIPMENT	32
1	1. RICHARDS-GEBAUR AFB TUDY	32
• •	2. THERESA STREET SEWAGE TREATMENT PLANT - LINCOLN, NEBRASKA	50
	3. ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT.	53
	4. KANSAS CITY, KANSAS, KAW POINT SEWAGE TREATMENT PLANT - OCTOBER 19731	, 57
• .	5. KANSAS CITY, KANSAS, KAW POINT SEWAGE TREATMENT PLANT - DECEMBER 17-19, 1973	. 59
	B. COMPARISON OF TWO MANUAL GRAB SAMPLING METHODS	65
	C. INTERLABORATORY VARIATIONS	. 72
	D. SUMMARY AND DISCUSSION	. 75
	1. SAMPLER PERFORMANCE	. 75
	2. ADDITIONAL PERFORMANCE STUDIES	. 79
	3. SELECTION OF SAMPLING EQUIPMENT	. ; 80
	4. FLOW PROPORTIONAL SAMPLING	. 81
	5. SAMPLING METHODOLOGY	. 83
,	6. THE IDEAL AUTOMATIC SAMPLER	. 85
	7. THE PROFESSIONAL IN THE FIELD	. 87

		PAGE NO.
٧.	HYDRAULIC MEASUREMENTS	. 89
	A. WEIRS, FLUMES, AND RECORDING EQUIPMENT.	. 90
	1. WEIRS	. 90
	2. FLUMES	. 92
	3. FLOW RECORDING EQUIPMENT	. 93
	a. FACILITY RECORDERS	. 93
•	. b. PORTABLE RECORDERS	. 94
	(1) BELFORT LIQUID LEVEL RECORDER .	94
	(2) MANNING DIPPER RECORDER	. 95
	c. DISCHARGE CALCULATIONS	. 96
	B. WET WELL VOLUME DISPLACEMENT	. , 96
	.C. FLOW RATES IN PIPES	. 97
	1. VOLUMETRIC MEASUREMENT	. 97
•	2. PIPE WEIRS	. 97
	3. TRAJECTORY METHODS	. 9 8
	a. CALIFORNIA PIPE METHOD	. 98
	b. PURDUE METHOD	. 99
	4. ORIFICE BUCKET	. 99
	5. MANNING FORMULA	. 100
٠	6. FLOWMETER	101
	D. OPEN CHANNEL FLOW	, 102
	1. STREAM GAGING	. 102
	2. ELECTROMAGNETIC WATER CURRENT METER	. 104
	E. PRECISION OF THREE MEASUREMENT METHODS	. 105

′_

•	-			•	•		·		•	•	1*		1	•	P/	GE NO	٠.
-	• . `							•		٠,		1	•			٠.	
VI. CON	ICLUS	JONS.		•	• :-	٠		• •	٠,			•		•	•	110	
APPENDI)	(<u>-</u>	NAMES.	AND	ADD	RFS!	S FS	OF I	MANI	IFA∩	TH	RÈRS	. Δ:	חוי			• • •	
A I ENDIA		SUPPL														113	
SIBLIOG	WPHY		• • •												,	115	

LIST OF FIGURES

IGURE NO.		PAGE NO.
1	Flow Rates - Richards-Gebaur Sewage Treatment Plant	. 40
2	Extraneous Flow_Project - Grab Sampling of Influent With Bucket - September 7, 1972	69
. 3	Extraneous Flow Project - Grab Sampling of . Influent With Submersible Pump - November 6, 1972	70

LIST OF TABLES

TABLÉ NO.		PAGE NO
•		-
· I	INVENTORY OF AUTOMATIC WASTEWATER SAMPLERS	11
.11	INCIDENCE OF SAMPLER MALFUNCTION	. 26 ′
III	RICHARDS-GEBAUR SEWAGE TREATMENT PLANT RAW WASTE	. 37
iv.	RICHARDS-GEBAUR SEWAGE TREATMENT PLANT PRIMARY EFFLUENT	. 38
V	RICHARDS-GEBAUR SEWAGE TREATMENT PLANT FINAL EFFLUENT	• 39
VI	RICHARDS-GEBAUR SEWAGE TREATMENT PLANT NFS COMPARISON RATIO OF SAMPLING METHOD VALUE TO MANUAL FLOW VALUE	. · 41
VII .	APPARENT REMOVAL EFFICIENCIES OF RICHARDS- GEBAUR FACILITY WITH VARIOUS COMBINATIONS OF 24-HR SAMPLING METHODS	43 _.
, VIII	RICHARDS-GEBAUR, NONFILTERABLE SOLIDS REMOVAL EFFICIENCY AS A FUNCTION OF NUMBER OF GRAB SAMPLES, TIME OF COLLECTION, COLLECTION INTERVAL, AND DAYS OF SAMPLING	45
IX	RICHARDS-GEBAUR AIR FORCE BASE STUDY - ANALYSES OUTS TOE RANGE OF MANUAL FLOW-COMPOSITED SAMPLES.	. 49
X 7	STATISTICAL SUMMARY OF RICHARDS-GEBAUR STUDY	. 51.
XI	THERESA STREET SEWAGE TREATMENT PLANT - LINCOLN, NEBRASKA - WASTEWATER * CHARACTERIZATION	. 54
XII,	ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT - RAW WASTE	. , 55
XIII	. ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT - FINAL EFFLUENT	. 56
XIV	APPARENT REMOVAL EFFICIENCIES OF ASHLAND, NEBRASKA, SEWAĞE TREATMENT PLANT	. 58

TABLE NO	<u>).</u>	PAGE	MO
•		7710E	<u></u>
· XV	RAW DATA AND STATISTICAL SUMMARY OF SAMPLER-		
* "\	COMPARISON STUDY AT KANSAS CITY, KANSAS, KAW POINT SEWAGE, TREATMENT PLANT.	. 62	
. XVI	INFLUENT - EXTRANEOUS ELON DOO 150-		
ž . v	SEPTEMBER 7, 1972 - GRAB SAMPLING WITH	# /*'	
		67	•
XVII	INFLUENT - EXTRANEOUS FLOW PROJECT - NOVEMBER 6: 1972 - GRAB SAMPLING WITH	. ,	τ
	SUBMERSIBLE PUMP.	68	•
XVfII	INTERLABORATORY ANALYTICAL AND SAMPLE		7
2 ·	VARIATION - KAW POINT SEWAGE TREATMENT PLANT - KANSAS CITY, KANSAS APRIL 1973.		٠
		74	
XIX	SUMMARY OF FLOW DATA OBTAINED USING A PRICE TYPE PYGMY METER (PPM) AND A MARSH MCBIRNEY		^
	CURRENT METER (MMCM)	, 107	
		107 AND	
•		108	۔

I. INTRODUCTION

The Environmental Protection Agency, Region VII, Field Investigations Section has been responding to an increasing number of requests for information resulting from its water/wastewater sampling activities and its experience with various commercial sampland flow measurement devices. These requests have come from state environmental agencies, other EPA regions, engineering consulting firms, commercial laboratories, industries, universities, vocational schools, and individuals. It is the purpose of this report to consolidate and summarize the activities, experience, sampling methods, and field measurement techniques of the Field Investigations. Section in order to provide a ready source of information for these interested parties.

During the past two years there has been a dramatic expansion in demand for wastewater chemistry data on point source discharges and a concurrent shift away from general purpose stream studies. In order to meet these needs and to provide data for enforcement efforts, compliance monitoring, water quality standards evaluations, and waste treatment ficility operational assistance and performance evaluation, the Field Investigations Section has minimized efforts requiring manual methods of sample collection and has placed increasing reliance upon commercially available automatic wastewater sampling equipment.

Emphasis on point source sampling has been accompanied by a corresponding increase in the need for hydraulic discharge

measurements for the purposes of making up flow-proportional samples, calculating pollutant loadings, and setting effluent limitations. With the hundreds of discharges sampled every year, the Field Investigations Section has been forced to resort to an ever expanding variety of flow measurement techniques as a result of the plethera of sampling site configurations encountered in its field surveys.

As the section gained familiarity and experience with various compositors and hydraulic measurement methods and with the accumulation of large volumes of water quality information, it became apparent that different sampling equipment and flow measurement techniques resulted in significant data dissimilarity. These discrepancies raised several questions regarding: (a) the reliability of various commercial sampling equipment, (b) the representativeness of samples collected by different automatic sampling equipment, (c) the variation in wastewater chemistry data which can be expected as a result of differences in performance of equipment and changes in manual collection methods, (d) the adequacy of discrete grab sample analysis for routine surveys and monitoring programs, (e) the necessity of Now-proportional sampling of raw municipal wastewaters, and (f) the precision of flow measurement methods.

During the past twelve months the Field Investigations Section has mounted several special sampling efforts and has extracted data from past and continuing surveys and has drawn upon the collective experience of the section's staff to gain insight into the preceding

considerations. This report details the results of that, twelve-month effort.

It is not the function of this report to serve as a substitute for the judgement of the professional in the field but rather to provide a basis for the development of sound sampling programs and to focus attention upon those sources of error and data variability which the section has gained knowledge of, often at considerable time and expense. It is the opinion of the Field Investigations staff that data quality control should start in the field instead of the laboratory.

As the experience of the section continues to grow, as new sampling situations are encountered, and as new equipment comes on the market and becomes available to the section for testing and evaluation, it is expected that this report will be revised and expanded.

IL STRUCTURE AND ACTIVITIES OF THE FIELD INVESTIGATIONS SECTION

The Field Investigations Section, which is located in the offices of the EPA, Region VII Laboratory*, consists of eight professional and subprofessional employees who are responsible for planning the field surveys and sample collection activities of the Surveillance and Analysis Division. This division, with its laboratory capability, provides the water quality information of the agency in the four-state region of Missouri, Nebraska, Kansas, and Iowa.

The Field Investigations professional staff includes two sanitary engineers (GS-13 and 11), one chemical engineer (GS-11), and one hydrologist (GS-9). The subprofessional staff consists of four engineering technicians in grades ranging from GS-3 to 6. The regional laboratory, with a staff of eight professional chemists (GS-7 to 13) and three microbiologists (GS-7, 9 and 12), is responsible for operating the mobile laboratories of the section during field surveys.

In areas outside the range in which analytical support can be provided by the regional laboratory, field sampling teams normally operate within a 161-km (100-mile) radius of a mobile laboratory which is generally set up at a wastewater treatment facility in a community within the area of interest. Because of logistics problems in some of the more sparsely populated areas of the region, it is frequently necessary to work field teams outside of

^{* 25} Funston Road, Kansas Gity, Kansas 66115

this lol-km (100-mile) radius. Ten to twenty-five percent of the total field activity may be conducted at distances up to 322 km (200 miles) from the laboratory base. Operating at these greater distances reduces the section capability by an estimated fifty percent and greatly increases the unit cost of sample collection.

Prior to mounting a survey the section makes every effort to ascertain and consolidate the various data needs of the agency and of the state in order to avoid duplication of effort and to minimize the number of laboratory set ups. It requires a minimum of one wk to ten days to prepare and stock a mobile laboratory; get it on site; have electricity, water, and phone installed; and then torn down and returned to Kansas City following completion of a survey. If possible, field activities in areas requiring mobile laboratory support are restricted to surveys of thirty days duration or longer,

Major field equipment currently available to the Field Investigations Section, in addition to analytical equipment permanently housed in the regional laboratory, are listed below with the approximate initial costs:

'n	Mobile Laboratory	. \\$15,000
1	Mobile Laboratory (on loan)	
.7	GSA Vehicles (monthly operating cost)	800
5	Boats and Motors	5,000
50	Composite Sample Collectors (approximately \$560 Peach)	28,000

Flow Recording and Measuring Equipment*

\$ 6,600

Current meters.

Weirs

Float recorders

.Conductance liquid level recorders

Field Analysis Equipment

6,100

pH meters

· Conductivity meters

Fluorometers

Dissolved oxygen merters

Sonar depth meters

Portable Generators

.1,200

Metal Detector

300

The section attempts to carefully review the locations to be sampled in order to limit sample collection and to reduce the analytical work load on the laboratory to the absolute min required to provide the necessary information. In the routine monitoring of municipal wastewater treatment facilities, the section normally utilizes unattended compositors to collect three 24-hr composites at all influent and effluent stations. Lagoon effluents are generally grab sampled due to the more uniform character of these discharges. Scheduling three days of sampling at each site allows the section some latitude in the event of compositor malfunction or missed dilutions in the laboratory. In the absence of any evidence

^{*} See Chapter V

on municipal was tewaters include:

Water temperature

Flow (instantaneous or continuous depending upon plant recorders and/or flow measurement devices)

pН

Specific conductance

Five-day biochemical oxygen demand >

Chemical oxygen demand

Nonfilterable solids (Total suspended solids)

Ammonia nitrogen'

Total kjeldahl mitrogen

Nitrite-nitrate nitrogen

Total phosphorus

Fecal coliform

Industrial wastewaters offer almost endress variety and it is difficult to generalize sampling efforts: Current industrial sampling has been oriented toward a 5-day work period at each plant with unattended mechanical time-composite sample collectors installed at each point of interest. Sample collection periods are generally 24 km and samples are split with company personnel. Analytical requirements vary widely but generally include the same analyses as for municipal wastewaters plus several metal analyses and frequently oil and grease. Those industrial wastes which require use of the gas chromotography-mass spectrometer (GC-MS) for

8

analyses, require analytical times which are orders of magnitude greater than the time necessary for other determinations. A single sample for GC-MS analysis can demand as much as one man-month of professional analytical time.

Under favorable conditions a mobile laboratory field operation works best with a crew of seven people including: (a) two engineers, (b) two engineering technicians, (c) one chemist, (d) one microbiologist, and (e) one laboratory technician. Working entirely within a 161-km (100-mile) radius of the mobile laboratory this staff (which is rotated at 2-wk intervals) would be able to install compositors and collect approximately 100 samples per wk for field and laboratory analyses. Total time and cost for a 30-day field survey is estimated as follows:

Engineers

- 1 man-month office preparation
- 2 man-months field work
- . 2 man-months data analyses and report writing

Engineering Technicians

- 2 man-months mobile laboratory and equipment repair and preparation
- 4 man-months field work

Laboratory Personnel

- 6 man-morths mobile laboratory work
- 6. man-months regional laboratory analytical work

Clerical

2 man-months planning and report preparation

Cos ts

Salariesť	\$23 _~ 500
Per Diem	7,300
Travel of Personnel	, 400
Government Bill of Ladings .	. 400
Vehicles	1,000
Miscellaneous Equipment	1,500
(Ice, batteries, containers,	
utilities, chemicals, etc.)	•

This results in an average cost per sample of \$85.25 for survey work not requiring use of the GC-MS. The cost for estimating purposes should be raised to \$100.00 per sample to cover management and other overhead.

\$34,100

^{*} Salaries are multiplied by a factor of 1.2 to account for compensatory time allotted following the 10-to-12-hr, 7-day-a-week work schedule normally used in the field.

III. SAMPLER RELIABILITY, INSTALLATION, AND OPERATION

A. SAMPLER RELIABILITY

Within the past two yr the Field Investigations Section has purchased fifty commercial compositors of fifteen makes and models and, as a result of numerous surveys, has collectively accumulated approximately 90,000 hr of field operational experience with the units on municipal and industrial raw and treated wastewaters under summer and winter conditions. This experience has pointed out design weaknesses, operational difficulties, and maintenance problems and has given the section an understanding of the capabilities and limitations of each sampler.

A previous evaluation (1) of commercially available samplers reported that his summary of on-site experience with these instruments will be of value to others in the water pollution control field in selecting compositors for specific applications and in avoiding some of those operational problems encountered by the Field Investigations Section.

1. SAMPLER INVENTORY

Table I is an inventory of fourteen various makes and models of commercially available compositors which the Field Investigations Section has used routinely on field sampling efforts or has gained some experience with, courtesy of the manufacturer. The section also has two additional compositors which were either special order or were made in the laboratory; however, as these are nonstandard,

TABLE I

INVENTORY OF AUTOMATIC WASTEWATER SAMPLERS

Sampler	Cost	Power * Supply	Type Of Sample	Type Öf Pump	Intake Tube ID mm(a)	Liquid Intake Velocity cm/sec(b)	Purge . Cycle
ulynamotor WA-2	450	· AC 🍞	Time	Peristaltic '	3.17	7.9	No ,
Signamotor WD-2	650	AC-DC	Time	Peristaltic	3.17	7.9	No
Brailsford EV-1	. 583	AC-DC	Time or Flow	Vacuum Pump	4.76	0.45	No 🍼
Brailsford DU-1	[*] 325	DC	Time or Flow	Piston -	4.76	0.45	No
Brailsford EP-1	300 (, DC	Time	Piston	4.76	0.45	No.
Hants Mark 3B	595	Manual Vacuum	Time	Manual Vacuum	5.35	75 ^(d)	No
ISTO 1391-X	995	AC-DC	Time or Flow	Peristaltiç	6.35	21	´ Yes ·
1500 1392	, 995	AC -DC	Time or Flow	Peristaltic	6.35	61	Yes
Sirco MKV\$7	1.,275	AC -DC	Time or Flow	Piston	9.52	, 98	Yes
Pro-Tech CG-125P	580	Gas	Time or Flow	Gas Lift	3.17	207	Yes
OCEC CVE	620	AC	Time	Piston -	6.35	61-152	Yes
NcCon Scout	450	DC	Time	Peristaltic	6.35	7.6	Yes
N-Con Surveyor	275	AC	Time or Flow	Impeller -	12.70	- 36	Gravity
N+Con Sentinel(c)	Unknown	AC	Time or Flow	Optional	'NA	Variable .	, NA

⁽a) Multiply by 0.0394 to obtain inches

⁽b) Multiply by 0.0328 to obtain fps (c) Loaned courtesy of manufacturer

⁽d) Mean

12

not read by available items, they will not be discussed an this a

The names and addresses of the manufacturers of the compositors shown in Table I can be found in the appendix. The cost figures for each compositor represented the basic unit only and do not reflect such optional extras as rechargeable battery packs, flow-proportioning devices, or multiplexing units, etc. Type of sample refers to whether the ristrument is restricted to taking a time-composite sample or if it has flow-proportional capability (optional extra). It can be seen that most of the units can collect both types of samples. Intake tube ID and liquid intake. velocity refer, respectively, to the inside diameter of the sample intake line and to the velocity of the liquid in this line during the sampling cycle. Table I also indicates whether or not the sampler has a purge cycle to prevent hose clogging and to reduce cross contamination of discrete samples or aliquots.

a. SIGMAMOTOR MODELS WA-2 AND WD-2

The operation of these two compositors is identical with the exception of the alternate battery pack power source on Model WD-2. These units rely on a timer and peristaltic pump for collection of time-composite samples. Six of these units have been used for several thousand hours of running time. The units are durable and easily installed in manholes. Routine sampling with 4.5-m (15-ft) heads as possible. Because of the 3.17-mm (1/8-in.) ID antake line and the 7.9-1/sec (0.26-fps) liquid intake velocity, these units

13

are best suited to vaste streams without large or high density suspended material.

Field use has revealed some operational problems with these units. These compositors have no by-pass switch on the timer and during installation it is necessary to reset the timer to zero several times to check the operation of the pump prior to setting the timer to the appropriate sample collection cycle.

The motor unit of these compositors is at the bottom of the fiber glass case which has a 1.2-cm (0.5-in.) lip on it. If the sample container overflows, this lip will retain enough water to short out and permanently damage the motor. This situation occurred during one of the field surveys of the section and motor replacement cost was \$37.40.

Battery operation of the WD-2 model is restricted unless extra batteries and recharger are available. Only one day of operation is possible from a fully charged battery pack.

b. BRAILSFORD MODEL EV-1

This unit collects a single 3.8-1 (1-gal) sample during an 8-, 16-, 24-, or 48-hr period. Operation is dependent upon a vacuum pump and metering chamber. Maximum pumping head for this compositor is about 1.2 to 1-8 m (4 to 6 ft). The unit will operate continuously for five days on a 12-v, rechargeable battery. For reliable operation this compositor should be installed level and the metering chamber cleaned at frequent intervals. A build up of solids in the metering chamber will cause the float to stick and

will result in incomplete composites. Because of the small diameter sampling hose and low liquid intake velocity, this sampler is best utilized for sampling was tewaters with low suspended solids concentrations.

With an optional head detector and a suitable weir this unit will collect flow-proportional samples.

c: BRAILSFORD MODEL DU-1

This compositor utilizes a small piston pump to collect a single 7.6-1 (2-gal) sample over a variable time period. When used in conjunction with a linear head detector and an appropriate weir, this compositor will collect flow-proportional samples. The instrument, with the exception of the optional head detector, is self-contained and can be easily installed in a manhole. Overflow of the sample bottle is prevented by a float activated cut off switch which fits in the top of the bottle. This switch is sensitive to positions from vertical and necessitates level installation of the compositor. If routine servicing is assured, this switch can be by-passed. Maximum head is about 1.2 to 1.8 m (4 to 6 ft).

Battery voltage must be checked routinely on these units. When batteries under power show less than 5.5-v, they should be replaced. Iron and/or lime precipitation and scouring of the piston chamber has been a problem with boiler blowdown and water plant wastes. The discharge nipple of the piston pump is in a restricted location behind the pump mounting plate. Attaching tubing to this nipple is difficult, especially under winter field

26

conditions. Because of the 4.76-mm (3/16-in.) ID intake line and the 0.45-cm/sec (0.18-fps) liquid intake velocity, this sampler is best used on waste streams with low suspended solids concentrations.

d. BRAILSFORD MODEL EP-1

This compositor is an "explosion proof" unit with a castaluminum housing for motor and 6-v lantern battery power source. Sampling is by a piston pump with a stroke which—can be adjusted for different sample volumes or composite periods. The unit does not have flow proportioning capability. Head limitations are about the same as for the Brailsford EV-1 and DU-1.

Operational reliability of these units has been very good with wastewaters having low suspended solids levels. Because of the relatively low cost of these compositors, they are the unit of choice in situations where equipment security is minimal and vandalism is of concern. One of these samplers sustained a shotgun blast with minimal damage.

One operational difficulty with the instrument is the necessity of having to remove nine screws in order to get the aluminum back plate off to change or check the battery. This procedure is time consuming and it would appear that a design using a spring loaded clasp of some sort would be just as effective. Inadvertently, these units have been totally submerged several times and have continued to operate; however, as there is no gasket between the back plate and the motor housing, they will admit water. Whether or not these units are actually explosion proof has not been determined by the authors:

HANTS MARK 3B

This sampler is a vacuum operated sampler which collects twelve discrete 400-ml (13.5-oz) samples at time intervals ranging from 0.5 up to 12 hr, depending upon the particular spring-wound timer that is interfaced with it. Samples can be analyzed individually, combined on an equal volume basis, or proportioned on the basis of readings taken from external flow measuring equipment, The sample bottles are evacuated by means of a manually operated pump supplied with the unit.

These compositors are reliable, relatively well constructed, and almost goof proof. Because of the high liquid velocity, these units are well suited for sampling wastewater with high solids levels.

This unit has a separate intake tube for each sample container and it is difficult to adequately clean these twelve intake lines in the field. The large tube mest and screened intake make it impossible to use this compositor in flow velocities above 0.46 m/sec (1.5 fps) or in depths of less than 15 cm (6 in.). Also, the screened intake is not streamlined and tends to collect solids which should be removed at frequent intervals to avoid possible bias in the sample data.

Replacement parts are not readily available for this sampler since the United States distributor does not maintain an inventory and needed items must come from England. Parts orders take more than sixty days, even for the simplest items, and the company will not accept parts orders for less than \$25.

f ISCO MODEL 1391-X

The Field Investigations Section has accumulated about 1,500 hr of experience with three of these units and has had minimal operational problems with them. As many as 28 discrete, 500-ml (17-oz) samples are collected at a preset time interval by a peristaltic type pump which purges the intake line after each cycle. Flow-proportional sampling is possible by interfacing the unit with a flow metering device or by manually compositing individual samples according to an external flow measurement record.

The unit is self-contained, operates from either line or battery power source, and is designed to fit in a manhole. The bottom half of the unit, which holds the sample containers, is insulated and has room for about 2.3 kg (5 lb) of ice. Data compiled by the section (Chapter IV) would indicate that these units are best suited for sampling wastewaters with low suspended solids concentrations.

The only significant operational problem has been due to occasional clogging of the intake line. Although the pump back cycles after each collection interval, this is not always sufficient to clear the line. The case of these units is molded of a black plastic and the manufacturer suggests that the units be painted white if they are to be operated in direct sunlight. This precaution will increase the life of the electronics and of the ice in the sample container. In warm weather, ice will not last for 24 hr in these units.

As of this writing, the Model 1391 is no longer being produced and has been replaced by the Model 1392 which has a higher-liquid intake velocity. The 1391 can be modified at the factory to increase the intake velocity. The Field Investigations Section 'has had its three units modified at a cost of \$125 each.

g. ISCO MODEL 1392

The section has accumulated about 600 hr of experience with four of these units. This model is practically identical to the. 1391-X with the exception of the liquid intake velocity which has been increased to 61 cm/sec (2 fps) in an attempt to improve solids capture efficiency. The water chemistry data accumulated by the section are too limited to determine whether or not this unit can effectively be used on high solids level wastes.

h. SIRCO MODEL MKV7S

Field experience with this unit has been limited to about 300 hr of operation of a model which was loaned to the section prior to receipt of its own sampler. The primary reasons for purchasing this instrument were the AC-DC operation, discrete (24-bottle) sample collection, and the high, 98-cm/sec (3.2-fps), liquid intake velocity which was believed to be more suitable for high solids level raw wastes.

To date, field use has not revealed any operational difficulties with the sampler; however, cleaning of parts which come in contact with the sample is somewhat laborious.

The unit purchased by the section was checked out in the laboratory upon arrival and several deficiencies were noted:

(a) polarity of battery was reversed and not as indicated on battery terminals, (b) an electrical component and some wiring were burnt out and were replaced at a cost of about twenty dollars, and (c) functions of electrical toggle switches on the instrument panel were not well marked, i.e. off-on switch reads left to right and switch moves vertically. The operation manual supplied with this unit is extremely "sketchy" and should be expanded to give more detailed operational information.

The precision of the discrete sample volumes was also checked out in the laboratory by putting the intake line in a container filled with tap water and running the unit through the 24-bottle collection cycle. With a mean sample volume of about 280 ml (9.5 oz) the standard deviation was ±30 ml (1 oż). One reason for this variation is due to the design of the sample container compartment which is a round plastic tub and the 24 sample bottles which are wedged shaped segments of the sampler compartment. Although there is a retainer plate to hold the sample bottles in position, the bottles are somewhat undersized in relation to the diam of the container compartment and there is an accumulated space of about 1.3 cm (0.5 in.) in the 24-bottle sample ring. Consequently, the mouths of the sample bottles are not self-centering with respect to the stops of the sample distributor arm. This space is sufficient to allow the arm to distharge samples outside the mouths of

some of the sample bottles and down into the plastic tub. Another reason for the sample volume variation is the high velocity of the sample as it enters the metering chamber. Discrete sample volumes are controlled by the vertical spacing of electrical probes within the metering chamber. The turbulence in the metering chamber as a result of the liquid intake velocity is sufficient to vary the water level at which the electrical probes sense completion of the sampling cycle.

1. PRO-TECH MODEL C6-125P

Two of these compositors were purchased because of the explosion-proof feature and because of the partial purge of the intake screen during each sampling interval.

This unit is pressure operated with small canisters of freon gas and collects a single 3.8-1 (1-gal) sample over a variable time period. With an optional sensing device the instrument will collect flow-proportional samples.

Personnel in the Field Investigations Section have accumulated about 600 hr of experience with this compositor and have been plagued with minor problems related to poor assembly. Most of the case screws have fallen out at one time or another and all internal hoses have been replaced due to leaks in the gas system. When repaired, the samplers performed very well on wastes with high solids because of the screen area of the intake and the purging action of the gas flow.

Experience has revealed several perational difficulties:

(a) the 22.9-cm (9-in.) intake sample chamber must be installed

vertically in the waste stream and requires about 30.5 cm (12 in.)

of water for reliable operation, (b) considerably more individual expertise is required to obtain satisfactory performance with this unit than with other compositors, (c) the unit is difficult to repair and service due to restricted access to the case interior, and (d) the design is such that only a 3.8-1 (1-gal) sample cor-

j. QCEC MODEL CVE

tainer can be housed inside the case.

These samplers were developed by the Dow Chemical Company and are made under license. Sampler operation is accomplished by a solenoid-controlled vacuum sump similar to laboratory pumps used by microbiologists for Millipore filtrations. The variable timer activated pump draws sample portions through a 6.35-mm (0.25-in.)

ID tube at a velocity which can be adjusted from 61 to 152 cm/sec (2 to 5 fps). The intake and discharge line of the unit are blown clear before and after each sampling cycle. Equal volume sample increments composited at a preset time interval or according to flow based on signals from external flow metering equipment are drawn into a 3.8-1 (1-gal) glass jug.

Because of the high vacuum and the purge cycle this unit seldom clogs and is the compositor of choice for sampling raw wastewaters with high solids levels.

*Use of these units has revealed several operational deficiencies: (a) lid retaining straps break and rubber gaskets regular basis, (b) samples have frequently been missed due to loss of vacuum in the system; vacuum loss commonly occurs at the mouth of the glass jug sample container because of vibration or temperature changes which cause the rubber stopper to lose its seal; screw (caps over the stopper have been used to rectify this problem but are an inconvenience, (c) if one wants to use the serf-contained sample container compartment sample volumes are limited to 3.8 l (1 gal) because of space restrictions, (d) because the compositor draws a vacuum in the sample container glass containers must be used, (e) the sample container compartment is not insulated and ice cannot be maintained for a practical length of time, and (f) the sampler is not suited for installation in manboles or other restricted areas because of its weight and apparently unnecessarily large bulk.

k. N-CON SCOUT

The Field Investigations Section has one of these compositors in use. They are a well-made, DC-powered unit equipped with a peristaltic pump and a very flexible timer. This instrument is suited only for time-composite samples and because of the 7.6-cm/sec (0.25-fps) liquid intake velocity it is best utilized on wastewaters with low concentrations of suspended solids.

Although the timing mechanism is somewhat complex and fragile, this unit is preferred by the Field Investigations Section over other similar samplers due to the self-purging feature, DC capability, and lower cost.

1. N-CON SURVEYOR

Operational problems, include the limited 1.8-m (6-ft) suction head and a 12.7-mm (0.5-in.) ID constriction on the intake side of the purp which is threaded for a standard garden hose coupling. This constriction has been a constant source of clogging when the compositor is used to sample wastewaters with appreciable suspended solids concentrations. An additional problem is the diverter tube which transports about fifteen percent of the throughput to the sample contained. This tube must be kept above the liquid level in the sample container or back siphoning of the sample will occur. Transport through the diverter tube seems to work best when back. Pressure on it is maintained by raising a portion of the intake. line to an elevation which is above the point where the diverter tube couples to the pump.

m. N-CON SENTINEL

The Field Investigations Section does not have any of these compositors and experience has been limited to about forty hours of operation on a raw waste with a unit provided courtesy of the manufacturer.

This is the only unit the section has had the opportunity to evaluate which has a refrigerated sample container compartment. In operation, a portion of the waste stream is continuously diverted to an integral flow through sampling chamber by gravity or external pump. In the sampling chamber a dipper arm rotates through an arc of approximately 90 degrees at a preset time interval or in

response to signals from an integrating flow meter and collects a sample from the diverted waste stream. As the dipper rotates above level, it pours the collected aliquot into/a funnel which delivers it to a container in the refrigerated. management below.

Although this unit appears to be almost clog proof, two features were noted which could possibly bias the representativeness of the collected composite. On the model tested, the discharge end of the dipper was not centered over the funnel. On the upstroke of the dipper arm during a sampling cycle, the dipper was observed to pour some of the collected waste outside of the funnel and back into the flow-through, sampling chamber. It would appear that heavier suspended material could have been lost. Secondly, the sampling chamber has a relatively large cross-sectional area with a flow-through velocity which is dependent upon the volume of water supplied to it. This increase in area and corresponding decrease, in velocity could result in heavier material settling to the bottom of the sampling chamber below the reach of the dipper arm.

This sampler because of its size, 0.64 x 0.79 x 1.52 m (25 x 31 x 60 in.), and weight, 113 kg (250 lb), is best suited for long-term or permanent monitoring programs.

2. INCIDENCE OF SAMPLER MALFUNCTION

The information presented in Table II shows the incidence of malfunction of eleven different makes and models of samplers. These data resulted from two surveys of industrial and municipal waste-water treatment facilities in the greater Kansas City Metropolitan Area.

Referring to Table II; the data show the total number of times each sampler was used as well as whether it was used on raw or treated waste. The reason for the lower use of compositors at . effluent stations was due to the number of lagoons included in the Lagoon effluents were manually grab sampled. of sampler failure is also broken down as to influent or effluent station. Those incidents of failure are only those instances in which a 24-hr composite was short or missed altogether as a direct result of a sampler malfunction which could not reasonably have been prevented by the field sampling team. The predominate cause of malfunction was plugging of the intake lines with suspended solid material; secondary causes included loose tubing and assorted hardware. In considering the data on the three Brailsford samplers (DU-1, EV-1, and EP-1), it should be pointed out that these units are termed effluent samplers by the manufacturer. However, because of site conditions and the absence of line current at many sampling points the section has found it necessary to use these compositors on raw wastes. It should also be pointed out that the data in Table II do not include all possible combinations of field team. personnel and, therefore, could be biased as a result of differences in field routine and individual expertise of team members.

Statistically, the data are too limited to recommend or reject any particular compositor; however, it is apparent that sampling of raw wastewaters produces the major number of compositor malfunctions and that considerably more reliable operation can be expected when sampling treated wastewaters.

TABLE II

INCIDENCE OF SAMPLER MALFUNCTION

			Overall	Influen	t Samplin	g Stations	Effluen	t Samplin	g Stations
Automatic Wastewater Sampler	Times	Total Times Failed	Failure Rate Percent	Used	Failure	Failure Rate Percent	Used	Failure	Failure Rate Percent
Sigma motor WA-2	24	6	25	5	4*	50	16	2 ,	13
Signametor WO-2	31	4	13	15	2	13 ·	15/	. 2	13
Brailsford DU-1	45	15	3 3	40	13	33 ,	/5	2	4,0
Brailsford EV-1	29	5	17	2,6	5	19	, 3	0	ø
Brailsford EP-1	63	6 *	10	55	6 •	11	8	0	0 `
OCEC CVE	90	4	4 .	.77	4	5	13	-0	0
Pro-Tech C6-125P	10	4	40	, NOT	BROKEN D	OWN			
ISCO 1391-X	. 16	4	25	ીદ	4	25	. 0	0	0
ISCO 1392	17	1	5	15	1	7	2	0	0
N-Con Scout	14	2	14	14	2	1 4	0	. 0	0
N-Con Surveyor	` 7	3 -	43	5 5	. 3	ر 60	2	0	0 .
Tótals and Mean Failure Rates	346	54	16	271	44	16	_ 65	6	• 9 - ´

The overall ability of the Field Investigations Section to cottain a complete 24-hr composite sample probably runs between 80 and 84 percent since the 16 percent compositor malfunction rate does not reflect mistakes in installation, variations in the expersise of different field teams, excessive drops in head, submerging of consisters, or winter operation.

B. INSTALLATION AND OPERATION OF SAMPLING EQUIPMENT

In the field, the engineering staff works closely with the technicians. At new locations which have not been previously sampled it is a policy of the Field Investigations Section to have a professional present to select the sampling point, to inspect the flow measurement equipment of the facility or determine a suitable measurement method, and to supervise installation of the sampling equipment. It is felt that this practice reduces the risk of compositor malfunction and missed samples, improves the representativeness of the data, and results in a more detailed and informative report.

The primary reason for the large variety of compositors used by the section is due to the plethora of sampling requirements, waste stream characteristics, and site conditions encountered in the field. Utilization of the sampling equipment of choice is often precluded by the physical characteristics of the point of interest including accessibility, site security, and the availability of

Raw municipal wastewaters are preferably sampled at points of highly turbulent flow in order to insure good mixing; however, in many instances the desired location is not accessible. 'Raw waste sampling points in order of preference are: (a) the upflow siphon following a barminutor*, (b) the upflow distribution box following pumping from main plant wet well, (c) aerated grit chamber, (d) pump wet well, and (e) flume throat.

In order to provide position stability and to reduce velocity displacement, a sash weight, sole plate or other weight, secured with a rope, is tied to the end of the sampler intake tube which is positioned at mid-depth in the flow:

The section has experienced incidents of theft and vandalism of equipment. This is an item of major concern at sites which are outside the confines of fenced treatment facilities. Manhole installations in which battery-operated equipment can be put in the manhole and the cover replaced will generally provide sufficient security. In exposed locations which require composite samples, one must either risk loss and tampering with equipment or utilize manual sampling methods. If manpower limitations require use of unattended equipment, obviously only low-value compositors should be considered. As "water pollution" is a popular subject with the general public, tampering with equipment can sometimes be reduced if people in the area are aware of the nature and purpose of the activity. One of the authors experienced this situation during a

^{*} In absence of grit chamber

survey of a receiving stream in a rural area downstream from a treatment facility.

In every case the field team will utilize electrical line current if it is available at the sampling site. Generally, line-operated compositors are more reliable than battery-operated models and, in the sampling of raw stewaters, the incidence of intake tube plugging is reduced due to the high vacuum and purging feature of the samplers which are preferably sed on these wastes. Line current has been available at about 50 percent of the treatment facilities which the section has surveyed. In a survey of over 100 private, municipal, and industrial waste treatment plants in the greater Kansas City area, only 45 percent of the facilities had an electrical power source. Power availability at lagooms, which accounted for 55 percent of the survey, was even less.

The physical and chemical characteristics of the waste stream also play a part in determining the type of sampler to use. Wide fluctuations in pH, strength, color, and volume encountered with some industrial wastewaters will generally require a discrete sample collector in order that aliquots can be analyzed individually.

With the exception of cold weather sampling conditions, all samples are kept on its during the composite period. The ISCO, QCEO-CVE, and Sirco units are the only compositors used by the section which have an integral ice compartment. With the other units samples are chilled by placing the sample collection container

in an ice chest* along with a 2.27-kg (5-1b) bag of ice. The ice chest is stood on end with the drain hole on top and the discharge tube of the sampler is threaded through this hole and into the sample contained.

winter operation of sampling equipment can be a trying experience. During particularly cold weather sampler malfunctions due to freezing of intake lines man run as high as 60 percent.

If possible, the samplers should be installed in manholes below the freezing line by taping (fiber glass tapicalle unit to steps or by suspending with a rope tied securely to a take in the ground. When installing samplers in manholes or wet wells, care should be taken to position it at a level which will not result in submergence of the compositor in the event of precipitation. Because of the limited suction head of many of the battery-operated compositors, it is not always possible to maintain an allequate elevation. If heavy rainfall appears probable, the sampling sould be postponed or use of a Brailsford EP-1 considered. Section personnel have inadvertenely submerged several of these units without any apparent damage. However, they do admit water to the case and it is recommended that the backing plate be removed and the interior of the case all the to dry prior to additional usage.

Veather and line current is available, 1.2- to 1.8-m. (4- to 6.ft) heat tapes** can be wrapped around the sample contains and the

^{*} Progress Defrigeration Company, Louisville, Kentucky - Model A-52
** Thermostatically protected 3°C

intake lines. To provide insulation, large plastic bags* can be wrapped around the intake line and heat tape and loosely placed over the sampler.

When using the Brailsford EP-1 models where 110 v AC is available, it is possible to place the entire unit with sample bottle in an ice chest and wrap a heat tape around the bottle for protection. If the chest drain plug is removed and the chest set or hung vertically with the drain plug on the bottom, the intake tube can be run dut the drain hole and also heat taped to provide sampling reliably below 0°C:

As of this writing, the vast majority of the samples collected by the section (estimated 95 percent) have been time composited.

When flow-proportional sampling is done, discrete samples are manually composited on the basis of readings from external flow or level recorders. As a result of data presented and discussed in Chapter IV, the Field Investigations Section continues to have mixed pinfons regarding flow-proportional samples.

IV. SAMPLING METHODS AND DATA VARIABILITY

PERFORMANCE OF AUTOMATIC WASTEWATER SAMPLING EQUIPMENT

As the Field Investigations Section acquired and gained experience with a number of different makes and models of commercially available samplers and with the accumulation of large volumes of water quality information, discrepancies in data were noted which appeared to result from variations in compositor performance.

As of this writing, the section has conducted five field studies for the purpose of comparing the water chemistry data of samples collected concurrently with the various compositors listed in Table I. Samples were analyzed according to Standard Methods (2) for five-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nonfilterable solids (NFS). Pata obtained from different compositor combinations were compared to each other and to those data resulting from manual sampling methods.

1. RICHARDS-GEBAUR AFB STUDY.

The AFB is served by a 5,680 cu m/day (1.5 mgd) standard rate trickling filter plant with effluent chlorination. Three sampling stations were set up at this plant. The stations were: (a) the raw waste (upstream of the Parshall flume and digester supernatant return), (b) the effluent from the primary clarifier, and (c) the final effluent.

A QCEC Model CVE sampler was installed to collect timecomposite samples (15-min cycle time) at the influent and,

^{*} Also termed total suspended solids

concurrently, an ISCO Model 1391-X was used to collect discrete samples at 2-hr intervals for manual flow proportioning and compositing. Flow measurements were obtained with a Manning Dipper Stage Recorder* and a staff gage installed in the throat of the 22.9-cm (9-in.) Parshall flume located at the plant influent.

At the effluent of the primary clarifier a Sigmamotor Model WD-2 compositor was used to collect time-composite samples (15-min cycle time) and a Hants Mark 3B was used to collect discrete samples at 2-hr intervals for manual flow proportioning and compositing. A 90-degree, V-notch weir equipped with a Manning Dipper Stage Recorder and a staff gage was temporarily installed in order to get flow measurements at this station.

At the plant final effluent a Brailsford DU-1 mechanical compositor was used to collect time-composite samples (4-min cycle time) and a Hants Mania 3B sampler was installed to collect samples at 2-hr intervals for manual flow compositing. For flow measurements a 90-degree, V-notch weir was temporarily installed and equipped with a Belfort Float Stage Recorder* with stilling well and staff gage.

At each of the three stations the intake lines of the compositors were tied together and suspended at mid-depth in the waste stream. Grab samples were manually collected at 4-hr intervals for individual analysis and for flow compositing at each of the three stations in order to provide additional data for comparison.

^{*} See Page 95

Because of plant operation problems, compositor malfunctions, and a heavy rainfall; there were some departures from the planned sampling effort. On May 21 the plant operators by-passed for two 10-min periods at 1300 and 1400 hr in order to facilitate rodding out of a clogged digester line. On May 22 a period of heavy rainfall occurred between 0030 and 0530 hr with about 5 cm (2 in.) of total precipitation.— The temporary weir at the primary effluent was submerged for several hr during this period and flow rates were taken from readings on the Parshall flume located at the influent. Because of this rainfall the plant by-passed a portion of the raw waste for a period of nine hr. The total by-passed waste volume was estimated to be 17,000 cu m (4.5 mil gal). Several afternoon thundershowers also occurred on May 22 and increased plant flows but did not necessitate further by-passing.

Difficulty was experienced with the clock mechanism of the Hants 3B samplers located at the primary and final effluent. At the primary effluent the flow-composite samples obtained with this instrument were short two and four hr. respectively, on May 22-23 and 23-24. At the final effluent the May 22-23 composite was short two hr and on May 23-24 four of the twelve bottles of the Hants sampler were about twenty to thirty percent short of the volume necessary to make the flow composite.

In addition to sampler malfunctions, a cursory examination of the facility during the study revealed the following plant operational problems:

- a. Comminutor seals were gone and large solids passed the comminutor without removal.
- b. Sludge removed from the primary tanks was accompanied by large volumes of water which caused excessive amounts of digester supernatant to be returned to the plant. During the entire survey the primary effluent appeared black and septic.
- only one trickling filter was in operation and no recirculation was practiced. There were 27 hourly periods during the 72-hr survey when plant flows exceeded the 2,850-cu m/day (2,75-mgd) capacity of the trickling filter unit. Filter capacity was exceeded several times each day during the survey at periods which were not related to rainfall.
- d. One of the secondary clarifier units was septic during the entire investigation and clumps of sludge up to 15.2 cm (6 in.) in diam continuously rose to the surface and were discharged with the clarifier overflow.

All samples were kept on ice and delivered to the EPA, Region VII, Laboratory where they were analyzed according to Standard Methods (2). No special attempts were made during the collection period to refine compositing methods or sample delivery procedures. In the laboratory, normal personnel assignments and rotations were observed; consequently, the water chemistry data represented the work of several professional analysts. These data are presented in Tables III, IV, and V. The flow data are shown graphically in Figure 1.

An examination of Table III, which shows the water chemistry data of the samples collected from the raw waste by the four different sampling methodologies, would indicate that the results obtained with the QCEC compositor differed significantly from the data of samples collected by the other methods. Looking at the

be seen that there was a definite decrease in strength of the waste during the early morning hours. Discounting other factors, the time-composite samples collected with the QCEC would be expected to have been biased low because the samples included equal volume aliquots of the low-flow, low-strength, early-morning waste. How-ever, for each of the three parameters it is evident that the QCEC samples were of higher strength than the flow-composited ISCO samples, the manually-collected flow-composited samples. In all but four out of fifty-four analyses for the three parameters, the QCEC samples were of greater strength than any of the discrete, manually-collected grab samples.

Table IV, which shows the water chemistry data of samples collected from the primary effluent, also indicates a bias. Except for BOD5 on May 22 and COD on May 23, the flow-composited samples obtained with the Hants unit were of higher strength than those flow-composited samples collected manually.

Table V presents the water chemistry data of the final effluent samples and does not indicate any apparent bias with respect to the four different sampling techniques.

The NFS data for the three days of sampling are summarized in Table VI and presented in the form of ratios after unitizing the results on the basis of the concentrations found in the manually-collected and flow-composited samples. Examination of this table

TABLE IÏI

RICHARDS-GEBAUR SEWAGE TREATMENT PLANT
RAW WASTE

Date May Sample Type And Time					
24-hr Mech Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) 21-22 Meap of 4-hr Interval Grab Samples Grab. 1200 1600 193 447 275 127 2800 2400 0400 104 22 17 0800 104 22 17 163 Coefficient of Variation, percent 24-hr Mech Time Comp (4-hr Grabs) Grab Sample Standard Deviation, 1 mg/1 160 24-hr Mech Time Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples 97 177 44 67 67 67 67 67 67 67 67	May	Sample Type And Time	UU.		1
24-hr Manual Flow Comp (4-hr Grabs) 21-22 Meap of 4-hr Interval Grab Samples Grab. 1200 1600 193 467 270 2000 193 467 270 2000 194 235 369 153 360 0400 0800 73 328 52 Grab Sample Standard Deviation, img/i 63 Grab Sample Standard Grab Samples 24-hr Mech Flow Comp (1SCO) 24-hr Mech Time Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples 97 107 111 223 72 2000 1600 111 223 73 22-23 Mean of 4-hr Interval Grab Samples Grab Sample Standard Deviation, img/i 63 Grab Sample Standard Deviation, img/i 63 162 24-hr Mech Time Comp (4-hr Grabs) 99 225 109 107 177 4 Grab 1200 1600 111 223 72 2000 162 351 166 Grab Sample Standard Deviation, img/i 44 95 37 Coefficient of Variation, percent 45 54 56 47 24-hr Mech Flow Comp (1SCO) 24-hr Mech Flow Comp (1SCO) 24-hr Mech Time Comp (1SCO) 24-hr Mech Time Comp (1SCO) 24-hr Mech Time Comp (4-hr Grabs) 107 25-2 166 160 24-hr Manual Flow Comp (4-hr Grabs) 107 25-2 166 167 168 24-hr Manual Flow Comp (4-hr Grabs) 107 25-2 106 107 108 109 109 100 100 100 101 100		24-hr Mech Flow Comp (ISCO)	7:	330	120
24-hr Manual Flow Comp (4-hr Grabs) 113 275 121 21-22 Meap of 4-hr Interval Grab Samples 124 356 148 Grab 1200 195 447 277 2000 153 467 277 2000 154 23 38 36 2400 22 72 72 0800 73 328 52 Grab Sample Standard Deviation, 1 mg/1 63 163 88 Coefficient of Variation, percent 51 45 60 24-hr Mech Flow Comp (15CO) 84 165 47 24-hr Manual Flow Comp (4-hr Grabs) 99 225 109 Mean of 4-hr Interval Grab Samples 97 177 74 Grab 1200 167 171 128 1600 111 223 72 2000 162 351 106 2400 169 143 62 2400 169 143 62 2400 169 143 66 Grab Sample Standard Deviation, 1 mg/1 44 95 37 Coefficient of Variation, percent 45 54 50 24-hr Mech Flow Comp (15CO) 153 306 - 149 24-hr Mech Flow Comp (15CO) 153 306 - 149 24-hr Mech Flow Comp (15CO) 153 526 1 186 24-hr Mech Flow Comp (15CO) 153 526 1 186 24-hr Mech Flow Comp (4-hr Grabs) 107 252 106 24-hr Mech Flow Comp (4-hr Grabs) 107 252 106 24-hr Mech Flow Comp (4-hr Grabs) 107 252 106 24-hr Mech Flow Comp (4-hr Grabs) 107 252 106 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Grab Sample Standard Deviation, 1 mg/1 25 106 Grab Sample Standard Deviation, 1 mg/1 25 106 Grab Sample Standard Deviation, 1 mg/1 27 280 Grab Sample Standard Deviation, 1 mg/1 27 388 Grab Sample Standard Deviation, 1 mg/1 23 319 127 Hay 21-22 May 22-23 May 22-24 May 22-25 May 22-24	,	24-hr Mech Time Comp (QCEC)	215	588	254
Meap of 4-hr Interval Grab Samples		24-hr Manual Flow Comp (4-hr Grabs)	113	279 .	1
Grab 1200 195 447 277 278 2000 193 467 277 278 153 394 153 395 394 234 396 222 77 78 322 52 52 52 52 52 52 5	21-22	Meap of 4-hr Interval Grab Samples	124	356	1 .
2000 533 153 2400 104 23 36 2400 22 72 76 77 324 52 52 66 60 60 60 60 60 60 6		- Grab. 1200	195	497 -	1
2400 0400 0400 0400 0400 0400 0400 0800 Grab Sample Standard Deviation, 1 mg/1 63 Coefficient of Variation, perçent 24-hr Mech Flow Comp (ISCO) 24-hr Manual Flow Comp (4-hr Grabs) 1600 24-hr Manual Flow Comp (4-hr Grabs) 2000 1600 111 223 2200 162 2400 1600 1600 174 135 66 Grab Sample Standard Deviation, 1 mg/1 Coefficient of Variation, percent 24-hr Mech Flow Comp (4-hr Grabs) 24-hr Manual Flow Comp (4-hr Grabs) 67 68 69 60 60 60 60 60 60 60 60 60		1	1		275
O400 22 73 328 52 73 328 52 52 73 328 52 52 73 328 52 52 52 52 52 52 52	_		1		t
Grab Sample Standard Deviation, i.mg/i 63 163 88 Coefficient of Variation, perçent 51 45 60 24-hr Mech Flow Comp (ISCO) 84 165 47 24-hr Mech Time Comp (QCEC) 140 36 126 24-hr Manual Flow Comp (4-hr Grabs) 99 225 109 Mean of 4-hr Interval Grab Samples 97 177 74 Grab 1200 107 171 128 2000 111 223 72 2000 162 351 106 2400 109 143 62 0400 109 143 62 0400 109 143 62 Grab Sample Standard Deviation, i.mg/i 44 95 37 Coefficient of Variation, percent 45 54 56 24-hr Mech Flow Comp (ISCO) 153 306 − 149 24-hr Mech, Time Comp (QCEC) 153 526 186 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 27 Grab: 1200 131 256 106 Mean of 4-hr Interval Grab Samples 98 236 27 Grab: 1200 131 256 107 2400 80 197 304 21 23-24 Grab: 1200 131 256 107 Grab Sample Standard Deviation, img/i 43 24 38 Coefficient of Variation, percent 44 3 24 38 Coefficient of Variation, percent 44 3 38 Coefficient of Variation, percent 44 3 38 Coefficient of Variation, percent 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	•		1	1	36
Grab Sample Standard Deviation, 1 mg/i 63 163 88 Coefficient of Variation, perçent 51 46 60 24-hr Mech Flow Comp (ISCO) 84 165 47 24-hr Mech Time Comp (QCEC) 140 36 126 24-hr Manual Flow Comp (4-hr Grabs) 99 225 109 Mean of 4-hr Interval Grab Samples 97 177 74 Grab 1200 107 171 128 1600 111 223 72 2000 162 37 106 2400 109 143 62 0400 16 40 9 0800 74 135 66 Grab Sample Standard Deviation, 1 mg/l 44 95 37 Coefficient of Variation, percent 45 54 50 24-hr Mech Flow Comp (ISCO) 153 306 149 24-hr Mech Time Comp (QCEC) 153 526 186 24-hr Mech Time Comp (QCEC) 153 526 186 24-hr Manual Flow Comp (4-hr Grabs) 107 252 166 Mean of 4-hr Interval Grab Samples 98 236 97 Grab 1200 131 26 167 Grab 1200 131 26 167 Grab 1200 131 26 167 Grab 1200 153 304 31 Coefficient of Variation, percent 43 294 38 Grab Sample Standard Deviation, ± mg/l 43 94 38 Coefficient of Variation, percent 44 44 44 44 Arithmetic Mean Of All Data Politis 123 319 127 May 21-22 137 388 161 May 22-23 May 22-23 May 22-23 105 238 89	N	1	1	1	1
Coefficient of Variation, percent 51			 	 	+
24-hr Mech Flow Comp (ISCO) 24-hr Mech Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) 39 225 109 Mean of 4-hr Interval Grab Samples 1600 107 171 128 1600 111 223 72 2000 162 351 106 2400 109 143 62 2400 109 143 62 0800 18 40 9 0800 18 40 9 0800 18 40 9 0800 18 40 9 0800 18 540 9 0800 18 554 56 Grab Sample Standard Deviation, ± mg/l 44 95 37 Coefficient of Variation, percent 45 54 50 24-hr Mech Flow Comp (ISCO) 153 306 - 149 24-hr Mech Time Comp (QCEC) 153 526 186 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 97 - Grab: 1200 153 526 186 2400 97 304 21 2400 80 197 90 0400 153 524 41 2400 80 197 90 0400 16 59 16 0800 170 97 0400 16 59 16 0800 170 97 0400 16 59 16 0800 170 97 0400 16 59 16 0800 170 97 0800 170 97 090 0900 16 59 16 0900 170 97 090 94 Arithmetic Mean Of All Data Politis 123 319 127 May 21-22 May 22-23 May 22-23 May 23-24 40 105 238 89				 	+
24-hr Mech Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) 39 223 109 Mean of 4-hr Interval Grab Samples Grab. 1200 1600 111 223 72 2000 162 351 106 2400 0400 0800 Grab Sample Standard Deviation, img/l 24-hr Mech Time Comp (QCEC) 24-hr Mech Time Comp (QCEC) 24-hr Mech Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 97 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 97 23-24 Grab Sample Standard Deviation, img/l 153 526 186 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 97 24-hr Mean of 4-hr Interval Grab Samples 98 236 97 Grab: 1200 153 526 106 1600 97 304 21 2500 1600 97 304 21 2500 1600 97 304 21 250 94 Grab Sample Standard Deviation, img/l 40 250 94 Arithmetic Mean Of All Data Politis 123 319 127 May 21-22 May 22-23 May 23-24		 	 	 	
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab. 1200 1600 1111 223 72 2000 162 351 106 2400 0400 0800 18 40 99 24-hr Mech Flow Comp (ISCO) 24-hr Mech. Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples 97 177 128 107 108 109 109 107 107 108 109 109 109 109 109 109 109	. •		1		
Mean of 4-hr Interval Grab Samples 97. 177 74			1	Ì	i
Grab. 1200 1600 1111 223 72 2000 162 351 106 2400 109 143 62 0800 74 135 66 Grab Sample Standard Deviation, = mg/1 24-hr Mech Flow Comp (ISCO) 24-hr Mech, Time Comp (QCEC) 24-hr Menual Flow Comp (QCEC) 153 24-hr Mean of 4-hr Interval Grab Samples 98 23-24 Grab: 1200 131 260 1600 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 211 2400 97 304 319 250 94 Grab Sample Standard Deviation, ± mg/1 42 94 38 Coefficient of Variation, percent 44 Arithmetic Mean Of All Data Polyis May 21-22 May 22-23 May 23-24 May 23-24				1	1
1600 111 223 72 2000 162 351 106 2400 109 143 62 66 66 66 66 66 66 6	22-23	,		Ī	/4 -
2000 162 351 106 2400 109 143 62 62 62 66 62 64 65 66 62 64 65 66 62 64 65 65 66 65 65 65 65	`(1
2400 0400 0800 109 143 62 9 0800 74 135 66 Grab Sample Standard Deviation, ± mg/1 Coefficient of Variation, percent 45 24-hr Mech Flow Comp (ISCO) 24-hr Mech, Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) 45 24-hr Manual Flow Comp (4-hr Grabs) 46 47 48 495 495 37 Coefficient of Variation, percent 45 54 50 24-hr Mech, Time Comp (QCEC) 45 46 24-hr Manual Flow Comp (4-hr Grabs) 46 24-hr Manual Flow Comp (4-hr Grabs) 47 48 495 496 496 496 496 497 496 497 498 498 498 498 499 499 499 499 499 499		. 450	, -	,	l .
0400 0800 74 135 66 Grab Sample Standard Deviation, ± mg/1 Coefficient of Variation, percent 45 54 50 24-hr Mech Flow Comp (ISCO) 24-hr Mech, Time Comp (QCEC) 153 526 186 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 27 Grab: 1200 131 266 107 27 108 109 109 110 2000 153 204 107 109 109 109 109 109 109 109 109 109 109	•		1	1	1
O800 74 135 66	,	0400	1	1	1
Coefficient of Variation, percent 45 54 50 24-hr Mech Flow Comp (ISCO) 153 306 - 149 24-hr Mech Time Comp (QCEC) 153 526 186 24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 27 Grab: 1200 131 28/ 107 1600 97 304 21 2000 153 204 41 2400 80 197 98 Q400 80 197 98 Grab Sample Standard Deviation, ± mg/l 42 250 94 Grab Sample Standard Deviation, percent 42 -4 Arithmetic Mean Of All Data Polyts 123 319 127 May 21-22 137 388 161 May 22-23 May 22-23 May 23-24		. 0800	_		
24-hr Mech Flow Comp (ISCO) 24-hr Mech Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) 24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab: 1200 131 28/ 107 1600 97 304 21 2400 97 304 21 2400 153 004 41 2400 16 50 16 0800 10 250 94 Grab Sample Standard Deviation, ± mg/l Arithmetic Mean Of All Data Points 123 319 127 May 21-22 May 22-23 May 23-24		Grab Sample Standard Deviation, 1 mg/1	44	95	37
24-hr Mech Time Comp (QCEC) 24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples 98 236 97 Grab: 1200 1600 97 304 2100 153 286 107 287 107 1600 97 304 21 2000 153 2000 153 2000 153 2000 153 2000 165 2000 165 50 16 50 16 70 60 60 60 60 70 70 70 70 7		Coefficient of Variation, percent	45	54	50
24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 27 Grab: 1200 131 26 107 1600 97 304 21 2000 153 004 41 2400 80 197 90 0400 16 50 16 0800 110 250 94 Grab Sample Standard Deviation, ± mg/l 42 240 Arithmetic Mean Of All Data Points 123 319 127 May 21-22 137 388 161 May 22-23 May 23-24 40 105 238 89	I	24-hr Mech Flow Comp (ISCO)	153	306 -	149
24-hr Manual Flow Comp (4-hr Grabs) 107 252 106 Mean of 4-hr Interval Grab Samples 98 236 27 Grab: 1200 131 28 107 107 1600 97 304 21 2000 153 204 41 2400 80 197 26 16 50 16 10 250 94 Grab Sample Standard Deviation, ± mg/l 42 250 94 Arithmetic Mean Of All Data Points 123 319 127 May 21-22 137 388 161 May 22-23 May 23-24 40 105 238 89	· ,]	24-hr Mech, Time Comp (QCEC)	1 5 3	526 I	186
Grab: 1200		244hr Manual Flow Comp (4-hr Grabs)	107	•	106
1600 97 304 31 2000 153 334 41 2400 80 197 60 0400 16 59 16 0800 110 250 94 Grab Sample Standard Deviation, ± mg/1 43 94 38 Coefficient of Variation, percent 44 4 4 4 Arithmetic Mean Of All Data Points 123 319 127 May 21-22 137 388 161 May 22-23 40 105 238 89	23-24	Mean of 4-hr Interval Grab Samples	98	236	. 27
1600 97 304 31 2000 153 334 41 2400 80 197 48 6000 16 50 16 50 16 10 250 94 6 6 6 6 6 6 6 6 6	•	'Grab: 1200	131	28/	107
2400 2400 0400 16 50 16 50 16 10 250 94 Grab Sample Standard Deviation, ± mg/l 42 Coefficient of Variation, percent 42 Arithmetic Mean Of All Data Points 123 319 127 May 21-22 May 22-23 May 23-24 May 23-24 All Bas 161 105 238 89		· · · · · · · · · · · · · · · · · · ·	97	304	
0400	İ			004 7	
110 250 94	t	,		197	₹ 6
Grab Sample Standard Deviation, # mg/l 42 94 38 Coefficient of Variation, percent 44 - 4 Arithmetic Mean Of All Data Points 123 319 127 May 21-22 137 388 161 May 22-23 40 105 238 89			1		1
Coefficient of Variation, percent 44	f	<u> </u>			
Arithmetic Mean Of All Data Polyts 123 319 127 Hay 21-22 137 388 161 May 22-23 105 238 89	ŀ			-	
May 21-22 May 22-23 May 23-24 May 23					
May 22-23 May 23-24 4 Q 105 238 89			Į.	• 1	
May 23-24 4 103 236 89		May 22-23			
			128	330	89 132

TABLE IV
RICHARDS-GEBAUR SEWAGE TREATMENT PLANT
PRIMARY EFFLUENT

Date May 1973 Sample Type And Time B005 mg/1 C00 mg/1	NFS mg/1 333 83 106 104 112 144 88 82 142 58 32 30 123 56 80 78 80 84
24-hr Mech Time Comp (Sigmamotor) 97 209 24-hr Manual Flow Comp (4-hr Grabs) 57 151 Mean of 4-hr Interval Grab Samples 94 226 Grab !200 127 279 1600 155 309 2000 104 249 2400 110 290 0400 29 139 9800 39 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	83 106 104 112 144 88 82 142 58 32 30 123 56 80 78 80
24-hr Mech Time Comp (Sigmamotor) 97 209 24-hr Manual Flow Comp (4-hr Grabs) 57 151 Mean of 4-hr Interval Grab Samples 94 226 Grab !200 127 279 1600 155 309 2000 104 249 2400 110 290 0400 29 139 9800 39 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Manual Flow Comp (5igmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	83 106 104 112 144 88 82 142 58 32 30 123 56 80 78 80
24-hr Mech Time Comp (Sigmamotor) 97 209 24-hr Manual Flow Comp (4-hr Grabs) 57 151 Mean of 4-hr Interval Grab Samples 94 226 Grab 1200 127 279 1600 155 309 2000 104 249 2400 110 290 0400 29 139 9800 39 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	83 106 104 112 144 88 82 142 58 32 30 123 56 80 78 80
24-hr Manual Flow Comp (4-hr Grabs) 57 151 Mean of 4-hr Interval Grab Samples 94 226 Grab 1200 127 279 1600 155 309 2000 104 249 2400 110 290 0400 29 139 9800 39 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 2400 117 243	106 104 112 144 88 82 142 58 32 30 123 56 80 78
Mean of 4-hr Interval Grab Samples 94 226	104 112 144 88 82 142 58 32 30 123 56 80 78
Grab 1200 127 279 1600 155 309 2000 104 249 2400 110 290 0400 29 139 9800 39 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	112 144 88 82 142 58 32 30 123 56 80 78
1600 155 309 2000 104 249 2400 110 290 29 139 29 139 29 29 139 39 94 24 24 24 24 25 25 203 2400 2400 25 203 2400 24	144 88 82 142 58 32 30 123 56 80 78 80
2000 104 249 2400 110 290 0400 29 139 9800 39 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	88 82 142 58 32 30 123 56 80 78 80
2400 0400 0400 29 139 9800 Grab Sample Standard Deviation, ± mg/l Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 24-hr Mech Time Comp (Sigmamotor) 24-hr Manual Flow Comp (4-hr Grabs) 132 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 1600 133 243 2000 125 203 2400 117 243	82 ° 142 58 32 30 123 56 80 78 80
0400 29 139 94 Grab Sample Standard Deviation, ± mg/l 45 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 2400 2400 117 243	142 58 32 30 123 56 80 78 80
Grab Sample Standard Deviation, ± mg/l 145 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 2400 117 243 243 243 244 245 245 246 246 247 247 248 257 268 268 269 269 269 2	58 32 30 123 56 80 78 80
Grab Sample Standard Deviation, ± mg/l 145 81 Coefficient of Variation, percent 48 36 24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 2400 117 243	32 30 123 56 80 78 80
Coefficient of Variation, percent 48 36	30 123 56 80 78 80
24-hr Mech Flow Comp (Hants) 125 324 24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 2400 117 243	123 56 80 78 80
24-hr Mech Time Comp (Sigmamotor) 100 192 24-hr Manual Flow Comp (4-hr Grabs) 132 264 235 22-23	56 8 0 7 8 80
24-hr Manual Flow Comp (4-hr Grabs) 132 264 Mean of 4-hr Interval Grab Samples 124 235 Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	8 0 7 8 80
22-23 Mean of 4-hr Interval Grab Samples 124 235	7 8 80
Grab 1200 102 179 1600 133 243 2000 125 203 2400 117 243	80
1600	
2000 125 203 2400 117 243	84
2400 117 243	
0400	73 ·
	60
0400 . 54 . 145	32
0800 213 394	138
Grab Sample, Standard Deviation, ± mg/l 47 79	32
Coefficient of Variation, percent 38 34	41
24-hr Mech Flow Comp (Hants) 180 268	187
24-hr Mech Time Comp (Sigmamotor) 175 318.	125
24-hr Manual Flow Comp (4-hr Grabs) 158 318	129
Mean of 4-hr Interval Grab Samples 152 217	151
Grab 1200 126 260 V	96
1600 129 296	124
2000 163 308	136
2400 160 310	128
0400 141 324	178
0800 192 .495	246 .
Grab Sample Standard Deviation, ± mg/1 23 75	.49
Coefficient of Variation, percent - 15 23	32
Arithmetic Mean Of All Data Points 129 275	129
May 21-22 99 267	156
May 22-23 5 5U 120 253	84
May 23-24 166 305	148

TABLE V

RICHARDS-GEBAUR SEWAGE TREATMENT PLANT
FINAL EFFLUENT

Date May 1973 24-hr Mech Flow Comp (Hants) 24-hr Mech Time Comp (Brailsford)	800 ₅		
1 1	mg/1	CQD mg/1	NFS mg/1
24-hr Mech Time Comp (Brailsford)	43	143	84
	35	137-	51 .
24-hr Manual Flow Comp (4-hr Grabs)	29	128	62
Mean of 4-hr Interval Grah Samples	28	137	59
27-22 Grab: 1200	25	143	60
, 1600	33	181	53
2000	25	154	51
2400	2 6	141	59
. 0400	34	98	78
0800	27	105	56 '
Grab Sample Standard Deviation, ± mg/l	3.7	28	8.8
, Coefficient of Variation, percent	14	20	15
24-hr Mech Flow Comp (Hants)	23	147.	29
24-hr'Mech Time Comp (Brailsford)	23	137	30
· 24-hr Manual Flów Comp (4-hr Grabs)	16	153	39
22-23 Mean of 4-hr Interval Grab Samples	24	126	31
Grab. 1200	32	146	35
1600	27	199	49
~ 2000	19	96	30
2400	, 21	109 .	28
0400 . 0800	r 22	96 110	1 6 28
Grab Sample Standard Deviation, ± mg/1	4.7	37	9.9
Coefficient of Variation, percent	20	29	32
24-hr Mech Ffow Comp (Hants)	26	173	86
24 5 4 5 7 5 6 5 6 7 7 7 7 7	17	181	76
24-hr Mech Time Comp (Brailsford)		141	60
24-hr Manual Flow Comp (4-hr Grabs)	12		62
24-hr Manual Flow Comp (4-hr Grabs)	12 15	149	75
24-hr Manual Flow Comp (4-hr Grabs)		14 9 133	
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab, Samples Grab: 1200 1600	15		75
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab, Samples Grab: 1200 1600 2006	15 11	133	75 86
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab: 1200 1600 2000 2000	15 11 21 22 14	133 137 185 173	75 86 86
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab, Samples Grab: 1200 1600 2000 2000 0400	15 11 21 22 14 12	133 137 185	75 86 86 82
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab, Samples Grab: 1200 1600 2000 2400 0400 0800	15 11 21 22 14 12 8	133 137 185 173	75 86 86 82 78
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab: 1200 1600 2000 2000 2000 0400 0800 Grab Sample Standard Deviation, ± mg/1	15 11 21 22 14 12 8	133 137 185 173 141 123	75 86 86 82 78 55
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab: 1200 1600 2000 2400 0400 0800 Grab Sample Standard Deviation, ± mg/1 Coefficient of Variation, percent	15 11 21 22 14 12 8	133 137 185 173 141 123	75 86 86 82 78 55 61
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab: 1200 1600 2000 2400 0400 0800 Grab Sample Standard Deviation, ± mg/1 Coefficient of Variation, percent Arithmetic Mean Of All Data Points	15 11 21 22 14 12 8 5.1	133 137 185 173 141 123 22 15	75 86 86 82 78 55 61
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab, Samples Grab: 1200 1600 2000 2000 2000 Grab Sample Standard Deviation, ± mg/l Coefficient of Variation, percent Arithmetic Mean Of All Data Points May 21-22	15 11 21 22 14 12 8 5.1 35	133 137 185 173 141 123 22 15	75 86 86 82 78 55 61 12 16
24-hr Manual Flow Comp (4-hr Grabs) Mean of 4-hr Interval Grab Samples Grab: 1200 1600 2000 2400 0400 0800 Grab Sample Standard Deviation, ± mg/1 Coefficient of Variation, percent Arithmetic Mean Of All Data Points	15 11 21 22 14 12 8 5.1	133 137 185 173 141 123 22 15	75 86 86 82 78 55 61 12 16

¥.

FIGURE 1 - Flow Rates - Richards-Gebaur Sewage Treatment Plant

RICHARDS-GEBAUR SEWAGE TREATMENT PLANT NES COMPARISON RATIO OF SAMPLING METHOD VALUE TO MANUAL FLOW VALUE

Station	Sample Method	•	Date		Average
	Sample Hethou	May 21	May 22	May 23	nver age
. ,	QCEC 💉	2.099	1.155	1.755	1 .669
	1200	0.991	0.431	1.406	0.942
Influent 🥌	Manual Flow	1.0`	1.0	-1.0	1:0
	Manual Grab	1.223	ბ.679	-0.820	0.907
	Hants	3.141	1.537	1.449	2:042
* 566	Sigmamotor	0.783	0,700	0.968	0.817
Primary Effluent	"Manual Flow	1.0	1.0	-1.0	1.0
•	_Manual Grab	0.981	0.975 1	1.170	1.042
9	Hants	1.354	0,743	1.387	1.161
	Brailsford :	°0.822	0.769 -	1.225	0.939
Final Iffluent	Manual Flow *	10.	1.0	1.0	1.0
; 2.	Manual Grab	0.951	0.794	1.209	0.985

would show that in eight out of nine comparisons with the high valuum (650- to 700-mm Hq) QCEC and Hants units the solids levels exceeded those of the manually collected samples. In seven of nine cases the samples collected by the slower-acting peristaltic and piston type compositors (ISCO, Sigmamotor, and Brailsford) yielded-lower solids levels. One could also calculate similar ratios for BOD5 and COD. These calculations would show that in eight out of nine and seven out of nine cases for BOD5 and NFS, respectively, the QCEC and Hants samplers resulted in higher parameter concentrations.

The apparent removal efficiencies of the Richards-Gebaur facility can be calculated in a number of ways. Table VII shows the sixteen combinations of sampling methods and removal efficiencies resulting from the four 24-hr sampling methods used on the plant raw waste and final effluent. An examination of this table would indicate that the apparent removal efficiencies for BOD5, COD, and NFS ranged between 71:89, 39-73, and 36-72 percent, respectively. The table also shows that apparent removal efficiencies of COD and NFS with the QCEC on the influent increased significantly and that there was a corresponding increase in the coefficients of variation. With the QCEC combinations excluded the mean BOD5; COD, and NFS removals were 77, 43, and 47 percent, respectively. Considering the QCEC combinations alone these corresponding percentages increased to 86, 71, and 70 percent, respectively. Considering all the sixteen combinations of sampling methods the coefficients

TABLE VII

APPARENT REMOVAL EFFICIENCIES OF RICHARDS GEBAUR FACILITY WITH VARIOUS COMBINATIONS OF 24-HR SAMPLING METHODS

Sumple Meth	od Complination	Remove	al-Effiche Percent	neies
influent	Effluent	B00 ₅	COD	NFS
'anual Flow Comp	Manual Flow Comp Hants Flow Comp Mean of Manual Grabs	82 71 •79	44 : 39 .45, , ,	52 41 51
	Brails Firm Comp Manual Flow Comp Hants Flow Comp	76 83	47	49
ISCO Flow Comp	Mean of Manual Grabs Brayisford - Time Comp	72 . 80	42. 49 - 43 .	37 48 50
Mean of Mahual Grabs	Manua Flow Comp Hants Flow Comp Mears & Manual Grabs Brasishird - Time Comp	82 71 79 76	45 40 . 46 ·	48 : ,36 47 · 50
OCEC Time (Comp.	Manual Flow Comp. Hants Flow Gemp Mean of Menual Grabs Frantsford F Time Comp	- 89 82 87 ∤ 85	72 69 73	71 65 71
Mean and Coefficient of Variation Including Combinations	CoeffwCent Variation, %	.79 6.	50 25	53
Mean and Coefficient of Variation Excluding Combinations		5.3	· 7.2	12
Mean with TIEC Turbina	tron Alone, ma/	36	71	7,0

of variation of the removal efficiencies were 6.6, 25 and 21

percent, for BOD5, COD, and NFS, respectively.

Given the present refinement of sampling technology, these.

variations in removal efficiencies are believed to be typical of what can be expected with routine surveys and monitoring programs. The impact of these variations in determining whether or not a particular facility is in compliance with permit requirements is obvious.

The grab sample data in Tables III, IV, and V indicated wide fluctuations in water chemistry data over a 24-hr period which decreased as the wastewater passed through the plant. The coefficient of variation of the NFS data range from 44-60, 30-41, and, 15-32 percent, respectively, in the raw waste, primary effluent, and final effluent.

Table VMI was constructed using the three days of grab sampling data and the manual, flow composite data of the raw waste and the plant final effluent. This table shows apparent NFS removal efficiencies as a function of number of grab samples collected per day wine of collection, collection interval (24, 12, 8, 4 hr), and the number of days of sampling. These grab sample efficiencies are compared to the removal efficiencies resulting from the manual-collected and flow-composited, 24-hr samples. An examination of this table would indicate that the NFS removal efficiency as a result of collecting one sample from the influent and effluent at 2400 hr on the first day of sampling was thirty-one

TABLE VIII RYCHĀRŌS-GEBAUR

MOMENTEDARIE SOURCE REMOVAL FERICIENCY AS A FUNCTION OF NUMBER OF GRAB SAMPLES, TIME OF COLLECTION, COLLECTION INTERVAL, AND DAYS OF SAMPLING

1	_			-	E SO	*						-					_				_	R	aw	Was	<u>je</u>							_	. -				_									
9.	- May 10	١.								. 1.			-			-	-	-	•		1	-	_					2nd	-	-		•	ì.	1						3re	•	'	-			
100	mp kaq	- _{64.0} 1	. ,	+ -		-	-		`	· -''	·		,	.	-				,	T	: :	+-			1				1	\top]	7.						•		· •	1		i`	3		1
,	•	941 4		Sian ['				-	•	-			. '.	+ -	- <u>-</u>	+-	1 2	-								-,+		٠,٠	1	-		-	 26		-	•	17		† !		•	1.3
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gan -	Startung	-	• •	i	٠ ،	· _ ˈ	, I =	r		T .	1 3	: _	: .T =				=	<u> </u>	Τ.	2	9	•	2	=	· 	3	2 2	8 2		1	3	1	-8	3	980	8	8	3	8~	3	982	
ŀ	7			1	fune (mal)			1	%	8	3	2	0070	8	8 ≈	+ 5	2	1 2	3	5	1	1 2	3	₹	750	*	3	2	=	~	~ .	1=	: ~	+	+	Ť	-	+	+=	1 -	+	<u> </u>		1=		1
•	•	₹.	, ta	,		Bair Mesa III ad	4	، ' ا	25#	778	-153		L ₩	3.	, 1 68		1 16	1 15	1 19	1	1.5	1	12	186	62	•		95	"		11 d	11 10	11	1	11 11	161	81	1 1	-	<u> </u>	* 4	+-	-	15		+
•	151	F		11-1	1. t		Borts	(est	150	278	- 153	30		,,	-+ - : 1168	10	, 197	- : '5	1 19	1	_T 4 { 17	1	• } 17	. 129	14	*	59	132	167	H	119 11	83 j 11	, 11	5 14	1 14	13	3 7	31	*	119) H 	1 40 + —	199	1	• 10'	+
ļ		' 0	>	4 ;	(294 1444	34		30 30	16	18	61	30 38	12	-15	•	<u>+</u>	†	+ -	+	•	. ;	1	- † -		T			L	-1		٠٠'	!	-	1				,		1	÷			1		1
i	•		6	1	144 144 144	4 51 50		51 50	\$4 16 69	19	61	41 31	11	1	•	ì					,	1	ŕ	ļ	; i*	1		P,	7		ļ	!		i				1		I I				1		
-		-	٠	٠.	100	14	. †-	4	اُن	. 18	+ -1	15	+ 11	*	네 ;		3 5	, '	4	;	1	j	,	1		1	Ţ	•	. !	.	,		ŀ	1			1			,	t	,	1			
1			•	. • <u> </u>	- 600	53	+	53 61	+	+	+ -	<u> </u>	+	+	- 1	+	9 4	<u>.</u>	• 3	15 1		' 	į		È	1.			! ! !	i		1		į			1		•	>	ļ	1	j	;	-	ļ
	,,	1		- 10-	100	ŭ W	+	36 10 11	? -		+-	+-	-	+	+-	-	- +	-	- +-	4	9	1	-								!			!			-	1	:	1	:	ı		,° 	- ·	۲
-		- - "	- - -			- 15	1-	148 51	4a :	- -	-	† -	+-	-	. T -	Ť.		Ţ.		•		-		17	1	- 34		 	ا			4		į	1		1	:		,	ŀ	٠.	1	1		-
		i	,	7	3 40 3 40 3 40 3 40 3 40 3 40 3 40 3 40	16	1	44	i	ì	,	1		-	;	1	·	ı		1			77 75	15 6 23 6	4 2 34	- 14 - 21	1 78				,	1		i		İ	1	-	;	i		1	3'			
	2=	į,	•)/80)/80)/80	32	+	- 11	1	+	+-	+-	+- 1	+	÷ -	-+	-	+	+	+	-+	1			1	1	 	63	51 54 62	Z 8 3	-	1	1.	. !			1		,		}	1	1		,	
				. '-	1700	11		- 45	ļ,	<u> </u> -	+ •	-	•	+	- +		+	+		-+	+	-	+	-		1	<u>.</u>	-	+		3).	55		•			i	1	1	i	_		1	! -		
1	i 		1	i Nas Jim	120	1	+	46	+	+	†	+	<u> </u>	†		1		-	-		_	-	_	-	7		 	├	-		-+	-+	- 4	<u>.</u>	.,	*); };	11/3	94	: i	ı	,	4			
	-	-			100			51 60 63 54	i	7		1													¥		1	<u> </u>				}				63			-11	14 15		1	1	ì		
			┵.	24	7.00		5	55 30 49,				1														-			-			_ :	-	-	*	65	***	."		1	sı	# ·	F	1	1	
	3	4			110		+	58 56 51	+	\dagger	+	+	1	1	•	•	_	1						7		I			Ŀ						\perp	.	1		_	-	31	22	15	,	,	
		4	, .		2 3 2 2 2	-		51 55 55	1	+	•	+	+	\dagger	-		1	_					1			1-	-		\prod	٠,				.	+	-	1		1	+	-	l c	+	10 4 10 4	بإ.	ı, .
		ŀ		<u> </u>	111		5	- <u>;;</u>		‡	+	+	4	1	1	7	7	_		-			1	+	+	\pm	土	1	上	上						ユ	1	ľ		_[_	I_					_

4

58

46

percent. It can be seen that the removal efficiency based on the first day 24-hr manual flow composites was 49 percent. In a similar manner, the treatment efficiency resulting from collecting one sample per day at 2400 hr for three days from the influent and effluent was 28 percent besed on the mean of the three samples collected at each station. The mean flow-composite sample efficiency over this three-day period was 52 percent. Table VIII also shows those efficiencies based on collecting: (a) two samples per day at 12-nr intervals as a result of collecting the first sample at 1200, 1600, or 2000 hr, (b) three samples per day at 8-hr intervals as a result of collecting the first sample at 1.200 or 1600 hr, and (c) six samples per day at 4-hr intervals as a result of collecting the first sample at 1200 hr. All efficiencies on the diagonal of the table are the result, of collecting samples from each of the two stations at the same time. Those efficiencies shown below and above the diagonal resulted from the effluent samples which were collected at multiples of 4-hr intervals following. preceding collection of the graw waste samples.

The table clearly indicates the fallacy of relying upon single grab samples and demonstrates that varying collection time will change apparent plant efficiency over a broad range. Looking at the efficiencies resulting from collecting one sample per day for three days it can be seen that the removals ranged from -100 to +70 percent. It is apparent that as the daily frequency of grab sampling increased the resulting efficiency range narround arm

47

approached those efficiencies resulting from the manual, flow-composited samples. Comparing six grab samples per day with the flow composites for one, two, and three days the differences were 10, 3, and 5 percent, respectively.

The variation in analytical results obtained with different sampling techniques can be studied in relation to the interlaboratory variation resulting from analytical quality control (AQC) studies. Standard Methods (2) contains a discussion of precision and recy for BODS, COD, and NFS based on the results of a number of cooperating laboratories analyzing artificially prepared identical samples. These discussions are excerpted below.

BODs Precision and Accuracy

"There is no standard against which the accuracy of the BOD test can be measured. To obtain precision data, a glucose-glytamic acid mixture was analyzed by 34 laboratories, with: each laboratory using its own seed material (settled stale sewage). The geometric mean of all results was 184 mg/l and the standard deviation of that mean was ±31 mg/l (17%). The precision obtained by a single analyst in his own laboratory was ±11 mg/l (5%) at a BOD of 218 mg/l." (2, p. 494)

COD Precision and Accuracy

"A set of synthetic unknown samples containing potassium acid phthalate and sodium chloride was tested by 74 laboratories. At 200 mg/l COD in the absence of chloride, the standard deviation was ±13 mg/l (coefficient of variation, 6.5%). At 160 mg/l COD and 100 mg/l chloride; the standard deviation was ±10 mg/l (6.5%), while at 150 mg/l COD and 1,000 mg/l chloride, at standard deviation was ±14 mg/l (10.8%).

The accuracy of this method has been determined by Moore and Associates. For most

organic compounds the ordation is 95 to 100 of the theoretical value. Benzene, toluene and pyridine are not oxidized." (2, p. 499)

NFS Precision and Accuracy

"The precision of the determination varies directly with the concentration of suspended matter in the sample. The standard deviation was ±5.2 mg/l (coefficient of variation 33%) at 15 mg/l, ±24 mg/l (10%) at 242 mg/l, and ±13 mg/l (7.6%) at 1,707 mg/l (n = 2; 4 x 10). There is no satisfactory procedure for obtaining the accuracy of the method on was later samples, since the true concentration of suspended matter is unknown." (2, p. 538)

Table IX was constructed using the coefficients of variation resulting from the AQC studies reported in Standard Methods (2) and the water chemistry data of the manually flow-composited samples. In construction of this table, it was assumed that the manually flow-composited samples most accurately described actual wastewater characteristics and that data resulting from the other techniques were normally distributed about the manual flow analyses. This table indicates that 62 of the analyses (77 percent) resulting from the other sampling methods were outside the range of the manual flow sample data *1 standard deviation* (s). In a similar manner, it can be shown that 39 analyses (48 percent) were outside the range of :3s. Since the range of *3s for COD and NFS included all interlaboratory analyses (assuming normal distribution) it is apparent that the variation in data from the Richards-Gebaur study is greater than can be explained by laboratory analytical variation

^{*} Arrived at by multiplying manual flow data by Standard Methods coefficient of variation.

TABLE IX

RICHARDS-GEBAUR AIR FORCE BASE STUDY - CANALYSES OUTSIDE RANGE OF MANUFL FLOW-COMPOSITED SAMPLES'

		Ι	. 4:	Analyse	s Out Of	Range (*	"	
Date		, E	3005,	1.	00	T .	iFS -	
9gy 1973	Type of Sample	Conc. mg/1	Std.* Dev ± mg/1	Conc. mg/l	Std.* Dev. ± mg/l	Conc. mg/l	Std.* Dev. ± 'mg/1	Total Out Of Range
	Influent	Stan	dard Meth	ods, Co	efficient	of Vari	ation	
<u></u>			5%	, 6	.5%	1	0%	
21-22	Manual Flow ISCO - Flow Manual Time QCEC - Time	113 95 124 215	5.6 *	279 330 356 588	18.1	121 120 148 254	12.1	8 .
22-234	Manual Flow ISCO"- Flow Manual Time QCEC - Time	99 _84 _97 140	•	223 165 177 388	14.5	109 47 63 126	, 10.9 *	• • • • • • • • • • • • • • • • • • •
23-24	Manual Flow ISCO - Flow Manual Time QCEC - Time	107 253 98 153	5.4 · * *	252 306 236 526	16.4 *	106 149 87 186	10.6	- 8
Prin	mary Effluent	Stan	dard Meth	ods Coe	fficient	of Vari	ation], . .
1;			5%		. 5*	1		
21-22	Manual Flow ' Hants - Flow Manual Time Sigmamotor - Time	57 150 • 94 97	2:8	151 480 226 209	æ 9.8 + +	* 106 333 104 83	10.6	. 3
22-23	Manual Flow Hants - Flow Manual Time Sigmamotor - Time	132. 125 124 100	6 6 * *	264 .324 235 192	17.2 * *,	80 123 78 56	8.0	-8 • •
23-24	Manual Flow Hants - Flow Manual Time Sigmamotor - Time	158 180 152 175	ኡ 9 *	318 268 317 318	• 20 7 ••	129 187 151 125	.1 209	, "5 ′ ••••••
Fir	nal Effluent		dard Metho	fds Coe	fficient	of Varia	tion	
<u> </u>	Manual Class		5%		5%		3%	,
21 ⁹ 22	Mänyal Flow Hants - Flow & Manual Time Brailsford - Time	29 43 28 35	1.4	128 143 . 137 137	8.3 * . * *	62 84 59 '51	20.5	. 6
22-23	Manual Flow Hants - Frlow . Manual Time . Brailsford - Time	16° 23 24 23	0.8 * *	153 147 126 137	10.0	39 29 31 30	12.9	5
23-24	Manual Flow Hants - Flow Manual Time Brailsford - Time	12 26 15 . 17	0.6	141 173 149 181	9.2	62 86 75 76	20.5	6
Y [BOK	ises out of Fange,	-	24	-	22	-	16	62 ,

Manual flow data multiplied by coefficient of Pariations reported in Standard Methods

alone. Real variations in sampling methods become particularly evident when one considers that 17 BODs analyses (63 percent) were outside the ±3s (3 x 5 percent) variation reported by a single laboratory and that the AQC statistical data used for the COD and NFS comparisons include interlaboratory systematic variation which was not a factor in the AFB study.

The standard deviation and coefficient of variation of the three water chemistry parameters resulting from the four sampling techniques employed at each of the three stations are shown in Table X. The coefficients of variation are all greater than those values reported in Standard Methods (2, p. 494, 499, 538) for the corresponding parameters. Included in the statistical data shown in Table X would be: (a) differences in composite performance and manual sampling methods, (b) actual variations in water quality, and (c) laboratory analytical random errors.

2. THERESA STREET SEWAGE TREATMENT PLANT - LINCOLN, NEBRASKA

A comparative study of compositor performance was undertaken at the Theresa Street Sewage Treat Plant in Lincoln, Nebraska, June 25 through 28, 4973.

The Theresa Street facility is currently undergoing an extensive expansion with the addition of expanded activated sludge facilities. The present plant is a 113,550-cu m/day (30-mgd) facility with all wastes receiving preaeration grit removal and primary clarification. Approximately 18,900 cu m/day (5 mgd) of the flow is then treated by a trickling filter system while the remaining

TABLE X

STATISTICAL SUMMARY OF RICHARDS-GEBAUR STUDY

			•		COO	·	. *		3
Station	Mean mg/1	S ± mg/h	Coefficient Of Variation Percent	Mean mg/1	\$ 1 mg/1	Coefficient Of Variation Percent	Mean mg/1	5: ± mp/1	Coefficient Of Variation Percent
Influent	123.3	35.5	28.7	318.8	125.1	39.2	126.3.	51.7	41,9
Primary Effluons	128.6	· 29 .2	,22 . 7	275.2	81.5	29.6	.179.5	72.4	55.9
Fine L Effluent	24.2	8.5 .	35.1	- 146.0	15.7	10.7	57.0	20.1	. 35.3

64

waste is treated by a high rate activated sludge system with secondary clarifiers.

The three sampling stations selected were the raw waste at the distribution box to the preaeration tank and the plant final effluent with one station at the overflow of the secondary clarifiers and the other at the outfall to Salt Creek. At the influent are and the other at the outfall to Salt Creek. At the influent are ISCO Model 780 sampler* with an uniced sample container compartment was set to collect discrete camples at 1-hr intervals for manual flow compositing each morning between 1730 and 0300 nr. This sampler was installed and operated by city laboratory personnel who provided a portion of the composited sample to the EPA field investigations team each morning. Concurrently, the EPA field team used a QCEC-CVE compositor with iced sample chamber at the same sampling point. This sampler was set to take 25-ml sample aliquots at 14-min intervals. A portion of this time-composite sample was split with city laboratory personnel.

The EPA field team used a Brailsford DU-1 (6-min cycle time) with an iced sample chamber set to collect final effluent samples at the secondary clarifiers. A portion of this sample was given to city laboratory personnel. At the outfall to Salt Creek city personnel used an ISCO Model 780 compositor with an uniced sample compartment to collect discrete samples at 1-hr intervals for manual flow compositing according to hourly readings taken from the plant influent flow recorder. A portion of this composite sample was supplied to the EPA field team.

^{*} Similar to Model 1391 but not suitable for manhole installation

. 53

Table XI presents the results and arithmetic means of the analyses reported by the EPA, Region VII, Laboratory on the samples collected by the city and by EPA. An examination of this table would show that the BOD5, COD, and NFS concentrations of the raw waste samples collected with the QCEC compositor were, respectively, 125, 134, and 182 percent greater than the levels found in the samples collected with the ISCO unit. The corresponding percentages for the effluent samples were 104, 129, and 92.

3. ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT

A third comparison study was conducted at the Ashland, Nebraska, sewage treatment plant during the week of July 28, 1973.

An ISCO Model 1391 and a Hants Mark 3B sampler were paired and set to simultaneously sample the raw waste in the throat of a 15.24-cm (6-in.) Parshall flume and the final effluent at the discharge of the chlorine contact chamber overflow weir. The intake lines of the samplers were tied together and suspended at mid depth at each of the two stations. The instruments collected discrete samples at 2-hr intervals which were manually flow composited according to the flow recordings of the influent Parshall flume.

The data resulting from the 5-day sampling effort at the influent and effluent are shown in Tables XII and XIII, respectively. The variation in wastewater chemistry data resulting from the two different compositors is apparent. The arithmetic mean BOD5, COD, and NFS concentrations of the raw waste samples collected with the mants are second with the mants.

TABLE XI-

THERESA STREET SEWAGE TREATMENT PLANT LINCOLN, NEBRASKA WASTEWATER CHARACTERIZATION

		_				
Station And Compositor	Date June - 1973	Time Military	Flow* cu m/day	800 ₅	600 mg/1	NFS mg/1.
Influent	25-26	0800 To 0930	103,000	335	. 536	186
ISCO-780	26-27	0800 °c 0800.	104,000	360	598	190-
City Operated	27'-28	0800 To 0800	108,000	173	. 661	192-
'	7 Arit	hmetic Mean	105,000	289	598	189
Influent	25-26	1025 To 0945	,	'310 ^	875	385
QCEC-CVE	26-27	0945 to 0745		465	610	ح 328
EPA Operated	27 -2 8	0745, "0 0745 *		310	924	. 322
	Ariti	mmetic Mean		362	, 803	345
ff]uer+	2 5- 26	0800 TG 0800 -		37	107	53
. J-7%.	26-27	೧ ९ 00 € 03 00		51	92	31
/ 1 Opershed	27-25	1897 - 1800		57	. 106	32
	Ariti	nmé*ic Mean	,	48	102	3 9
·flue:	25-26	1015 % 1015		PQ	188	58
arailsfor	26-27	1015 70 0750	f	48	88	16
- 'pera' j	27 - 28	0750 tu 1755	-•	22	121	'35
-	Arith	nmetic M e an		50	132 .	36,
fluen:		OCES Bata x 100,		125	134	182
ffluent	Mean Me	Brailsford Data x	100, %	104	129	92

ultiply by 264.2 to obtain gpd

TABLE XII
ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT
RAW WASTE

Date July		00 ₅ 1/1		COD ng/1		FS g/1
1973	ISCO	Harits	1500	Hants	I SCO	Hants
23-24	180	220	622	1,064/900	180	476
24-25	136	246	424	669	110	330-
25-26	277	1520	728/ 68 8	1,744	320	805
26-27	258 ′	450	556	972	· 300	860
27-28*		470		1,270	,	1,335
Arithmetic Mean .	213	381	604	1,103	228	761
BOD/COD-BOD/NFS Ratio		•	0.35	0.34	0.94	0.50
- Hants x 100, x	1	7,9 4	1	83	3:	34

^{*} ISCO Compositor Majfunctioned

TABLE XIII

ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT

Da te July	180 mg	•		00 g/1	ng ng	s *** /1 .*
1973	ISCO	Hants	·ISCO	Hants	ISCO*	Hants
23-24,	, .13 , ·	22	41	4. 65	8	. 3
24-25	# 15	\$ 10	29	45	્રદ	• 5
25-26	22	. 39	28 <	44	'2	9
26-27		. 17.	. 32	. 40	3	10
27-28	F.	11	36	- 48	10	2,7
Arithmetic Mean	13	. 20	33	48* ,	5	31 ,
BOD/COD-BOD/NFS Ratio	Ø,		0.39	0.42	2.6	1.8
Hants ISCO x 100, 2		154	1	46/	2	20

57

higher than the values resulting from these samples collected with the ISCO compositor. The effluent samples also indicated a significant difference in compositor for formance with the BODs, COD, and NFS values resulting from use of the Hants compositor being, respectively, 154, 146, and 220 percent greater than the concentrations of the samples values collected with the ISCO sampler.

Tables XIII and XIII-show that the BODs/COD ratios of the raw waste samples collected with the ISCO and Hants compositors were 0.39 and 0.42, respectively. These ratios were 0.35 and 0.34 for the effluent samples. The close agreement between those ratios indicates high laboratory analytical quality control and further emphasizes real differences in sampling efficiency between the two compositors.

Table XIV presents the apparent removal efficiencies of the Ashland sewage treatment plant for the three parameters using each of the four possible combinations of compositors. It can be seen that the removal efficiency for BOD₅, COD, and NFS range between 91-97, 92-97, and 95-99 percent, respectively.

4. KANSAS CITY, KANSAS, KAW POINT SEWAGE TREATMENT PLANT

A fourth comparison test was conducted on October 10 and 11, 1973, at the Kansas City, Yansas, Kaw Point primary sewage treatment plant.

Three samplers were installed and set to time composite the raw waste of the plant for a period of about 20 hr at a point immediately upstream from the bar screens. The compositors used

TABLE XIV

APPARENT REMOVAL EFFICIENCIES OF ASHLAND, NEBRASKA, SEWAGE TREATMENT PLANT

Compositor Combination		Parameter Percent Removal			
Influent	Effluent	800 ₅ Percent	. COO Percent	NFS Percent	
ISCO ISCO Hants Hants	ISCO Hants Hents ISCO	94 91 95 97	95 92 96 ≉	98 95 99	

RIC

71

These compositors, the intake lines of which were tied together and suspended about 46 cm (18 in:) below the liquid surface, collected equal volume aliquots at intervals of 1, 40, and 60 min, respectively.

The collected samples were delivered to the EPA, Region VII, Laboratory where duplicate analyses for NFS were run. The results of those analyses are indicated below.

·	Compositor	NFS mg/1	*	Mean NFS mg/1
	QCEC	250 1,080		1,160
۱.	Sirco	,760 680	. · · ·	720
•	ISCO	644		582

It can be seen that the Sirco unit produced samples with NFS data intermediate between those values resulting from the ISCO and QCEC compositors. Referring back to Table I (page 11), it can be seen that the liquid intake velocity of the Sirco unit also lies between the velocities of the other two samplers.

5. KANSAS CITY, KANSAS; KAW POINT SEWAGE TREATMENT PLANT - DECEMBER 17-19; 1973.

A more comprehensive comparison study was conducted at the Kaw Point sewage treatment plant during December 17, and 19, 1973. Sixteen different methods, including four manual sampling techniques; and twelve different makes and models of automatic

compositors were employed to concorrently sample the raw waste of this facility.

posited manually at 2-hr intervals using a bucket as well as a submersible pump*. This variation in manual sampling methods was introduced to determine if solids were settling out in the bucket during transfer from the waste stream to the laboratory sample containers. Using the bucket pump, samples were pumped directly from the source to the container.

The twelve sampless, the intake limes of which were tied together and suspended in the middle of the waste stream, were used to take time-composite samples by drawing equal volume aliquots at, intervals which ranged from continuous up to librar. Samples were collected over a period of approximately 24 nr on both December 17-18 and 18-19. With the exception of an N-Con Sentinel sampler which has a refrigerated sample container compartment and which was provided courtesy of the manufacturer, none of the samples were kept refrigerated during the sampling period. The collected samples were analyzed by the EPA, Région VII, Laboratory for 8005 (December 18-13 only), COD; and MFS which were run in duplicate.

Random laboratory analytical errors for NFS were minimized by drawing a courts with a wife-mouthed pipette from the samples.

^{*} Teer Submers Lie Durd. Model 11809, Dayton Electric Par Pauturity 1. 199. Chicago, 1171nois 50648

The results of the comparison test are presented in Table XV and are arranged according to the liquid intake velocity of the particular technique or compositor used. An examination of this table would indicate that there was go correlation betweeh concentration of parameter and liquid intake-velocity. Calculation would a show that there was no correlation between cross-sectional area of the intake line and concentration for between an intake tube cross-sectional area-velocity product factor and concentration The data resulting from this comparison test do not support those results obtained in previous tests and the reason for this is not entirely understood. The nature of the waste which included meat processing scraps, soap, grease, and fiber glass was probably a contributing factor. Without constant attention upon the part of the Two sani/tary engineers who were on duty throughout the sampling period, most of the compositors would have failed. day period the following equipment malfunctions were noted and corrected:

Brailsford EP-1. - Cleaned eight times, solids visibly accumulated in the bottom of loops in the intake hose during the entire sampling period.

Sigmamotor WA-2. - Clogged three times, cleaned with compressed as .

short on the first day, four bottles empty on the second day.

N-Con Surveyor - Completely clogged six times with meat and skin scraps at the constriction on the intake side of the pump.

· TABLE AV

RAW DATA AND STATISTICAL SUMMARY OF SAMPLER COMPARISON STUDY AT A KANSAS CITY, KANSAS, KAW POINT SEWAGE TREATMENT PLANT

			•	•						76			
same term state		+ 1 -		n 1			Jec - '	a,			₩ [17]	9. 1973	
The state of the s		* .	ادر بعر		* *42 '	* Setem	104' On		3	Derent	· , ·n	Hear	5.44
350			17- 1	ੂ18÷19					•,				1-7
Tunin (arg.)	~.•	€r	31	. T. 20	., .6 67.	1,25		.34,	٠.			,,۲	راد
Tan Tar; no year	$I \mid \cdot \mid \cdot \mid$	70 m	3 70	٠, ١,	1,600	.241	• ;		.~3	٠.	İ	' 15	15
1 mail ford : 4.	. · · · · · · ·	.	∵~		1,560	360	٠.	. 4				1	1
1 4 1 mires et ? !			1. 4	٠. ٠٠	, 100	2,0	64 2	o∠ઉ		1,550	4.5	1.35-1	453
- 1 0 Model 191	. .	- 1	4,5	• •		1,000	•	۰۰. ور	- 1		۶۰,	:*	1 '
u for on Surveyor 7		- mg	3,530	.7990	540	940	943	* 1.7	! .	,	-44,	7941-	- 11
1 192°	\	, 2-	2, 2	2,40	.2130	3-1	• •	75	- 30	135		53.0	· K
o war en	•	Sm.		ر٠٠. 🚅	-27	1 310	·]	1 1,2,	ł	. *	,	1 1	٠,٥
9 0614-6VE , - #	. ***		רזי יי	2,560	903.	,410		1,60	2.	-4	-	-74	9 €
STORE MARKS TO STORE STO	, (11 €	/ሀቢ	3,.5	2.55	ે.550	910	1.60	, ,,	161.7		•	96.	190
1. person	ル	*:9%	2.17	965	470	, 180	1.33		1	ય.	:-	5:0	320
10 OCE 111		٠ ورد	1, 1,	· . · • •	00€. ∡	1,080	٠,٠٠٠	-	ł	, r.y	. >=	1.000	1 0
13 Pro Tech Gals 26 3 grant	•	14.			40	1,250	ا فين. ١	516 تو ش	1		, ,	.060	10
14 Manual Samo (1) 300		±1	. **		∠ ≥70	190,	104.9	,3%	1 .	10.3	N _X	900	140
- 15 Manual Samo	, ,,,,,,	Jr. 90	:	, ,	4/4	150	1,180	'.'6	17	1 ,	5/9	yu≢	60
16 ' N-Con Senting 1 332		3.6	.897	1 490	3,,30	• 980	1,03	, 10%	٠٠	∌hd	950	350	3
Arithmetic Mean, Mg. 4		***		7.3.2	4,40	1,370	1, 50	1,10	, 67	1,020	985	, ,00 0	• 01
s Standard Deyration at mg/1 ,		4	Γ	70	729	237	289	1 265	Ŀ	. 34	198	164	↓ ∴
. Coefficient of Wellation, Percent	-		·	7.	,	22	25	1.24	\Box	?0	- 24	14	↓
- Methods Out by Ranie		, a	Ţ.,	6	. ,	5		6	<u>1 · </u>	6	5	5	'ـــــــــــــــــــــــــــــــــــــ
Standard Deviation Due to Sampling (S	.S _b , '" i '					744	271	24%	<u> </u>	127 ~	,170	155	↓ ∴'
Arithmetic Mean far 10 q Braitsford EF	r• į k	6/4 7	2.500	40	,170	1,110	1 ,190	1_150	36	,)60	- 0 ب ېرىنىد	1,040	107
Standard Deviation (s), tmg/1		, 2	ja z	÷.	135	- 165	227	193	\Box	137	144	115	$\lfloor \cdot \rfloor$
Coefficient of Variation, Percent		,	11	17	10	. 15	19	, -	<u> </u>	13	14	11	
Hethods Out of Range		1	<u> </u>		6	5	9	,	<u> </u>		, 6	8	ا ا
' Standard Deviation wie to Sample (Sp.	1. 1	1		·		130	203	164	· .	* F	ጎ/	45	!

at Multiply by 0 032H . Lotain fps.

(B) Provided Cursesy I the manufactures -

wanter to the term manual those simplified white and a section one of comme

7:

there shot on the free day - two lettles empty on the second day.

QCEC-CVE (61 cm/sec) - Clogged once, cleaned with compressed air.

Sirus MKV7S - One bottle short the first day - sampler fire appeared to be about twenty percent fast as all twenty-four bottles were filled in nineteen hours.

<u>Pro-Tech (6-150)</u> - Clogged completely four times and cleaned by reversing inlet and outlet lines for one sample cycle.

<u>Teel Submersible Pump</u> - Twenty-four failures due primarily to fiber glass batting clumps and ir several instances grease.

It is apparent that only the three QCEC samplers which were operated at liquid intake velocities above 61 cm/sec (2 fps) and the N-Con Sentinel performed satisfactorily.

It is felt that the high solids level in the wastewater, particularly the fiber glass, may have acted as a straining mechanism in the tubes and orifice of the various compositors to an extent that would have masked those effects due to liquid intake velocity. With the exception of the December 18-19 COD data, the flow proportional samples collected with a bucket were of higher strength than the arithmetic mean of the concentrations found in the samples cultered by other methods. Looking at the arithmetic mean of the NFS data for each method, it can be seen that only one compositor (DCEC-CVE set at 91 cm/sec) produced higher strength samples than those resulting from manual flow-proportional sampling with a

it is apparent that the data result. From the other methods are not normally a utilibuted.

Because the results obtained with the Brails ford EP-1 (method 3) differed significantly from the other data, the mean, standard, deviation (s), and the coefficient of variation were calculated, with and without the Brails ford data. Except for the December 17-18 COD data, deletion of the Brails ford results increased the mean and decreased the s. Looking at the NFS s, it can be seen that excluding the Brails ford data resulted in throwing more of the compositor data outside the range of the manual flow data.

The duplicate analyses for NFS_made it possible to determine the variation due to random laboratory error and that which could be attributed to variations in sampler performance. Using the method developed by Youden (3) for statistical analysis of interlaboratory collaborative tests, the standard deviation due to variations in sampler performance can be calculated. from the equations:

$$s^2 = s_b^2 + s_r^2$$
 Formula (1)

$$S_r = \sqrt{\sum d^2/2n}$$
 Formula (2)

where:

s = standard deviation of the raw data

s = standard déviation du- tr variations in sampling technique ar, compositor per-

- sr = standard deviation due to random laboratory analytical error.
- d = absolute value of difference between duplicate analyses
- n = number of samples

Because taking the difference between duplicates cancels out all factors affecting data variability except those due to random laboratory error, a single estimate of s_r can be obtained using the data for both days (n=32). Using the differences calculated in Table XV it can be shown that s_r for the NFS data is equal to ± 101 mg/l. Solving Formula (1) for s_b and using the s of the raw data it is a simple matter to calculate s_b . These values are shown in Table XV for the NFS raw data with and without the Brailsford results. Disregarding the means of the duplicate analysis it can be seen that s_b ranged from ± 92 to 271 mg/l. Computation would show that the coefficient of variation due to sample performance varied from 9 to 22 percent.

B. COMPARISON OF TWO MANUAL GRAB SAMPLING METHODS

In addition to variations in water chemistry data resulting from differences in performances of automatic wastewater compositors, the Field Investigations staff has also found evidence of data variability due to different manual grab sampling techniques.

The data shown in Tables XVI and XVII and presented graphically in Figures 2 and 3 were extracted from an "ongoing" study of an extraneous flow facility. This facility, which is essentially a primary treatment plant, is activated by the rising water level

in a sanitary sewer resulting from storm water infiltration. This unit takes flows in excess of sewer capacity, colorinates, and provides approximately thirty minutes of sedimentation. The clarifier overflow is piped to a stream and the settled solids are returned to the sewer. The raw waste to this facility is residential in character and becomes progressively weaker in strength as rainfall and infiltration continue.

The influent and effluent of this facility have been sampled on three separate occasions during suitable rainfall events. The data spown in Tables XVI and XVII were selected from the raw waste sampling results from the first two events. During the first event (September 7, 1972) the raw waste was sampled with a bucket at 10-min intervals from the time the clarifier started filling. During the second event (November 6, 1972) the raw waste was sampled with a submersible pump* suspended at mid depth in the entering waste stream. During the first event, five laboratory containers were filled from the bucket. During the second event, the five containers were filled directly from the discharge end of the pump hose which had an estimated liquid velocity of 4.4 m/sec (14.4 fps). In the laboratory, aliquots for BOD5 and NFS determinations were extracted from the same sample container. Aliquots for SOD analysis were taken from a separate, preserved, sample.

Comparing Tables XVI and XVII, it can be seen that the duration of sampling was longer for the second event and that there was a

79

Teel Submersible Pump, Model 18809, Dayton Electric Manufacturing Company, Chicago, Illinois 60648

TABLE AVI

EXTRANCOUS FLOW PROUDED - SEPTEMBER 7, 1972

GRAB SAMPLING WITH BUCKET

ſ		3,11,13		,	PÓCKE I		
	Time Military	Elapsed Time Hours + Minutes	800 a	1	N°	BOG COD Rati	- 1
	1030	00 + 20	175	-	+		\dashv
	1035	70 • 05	185	27%	30A	0.6	- 1
	1040	06 • 10	185	427	32)	3 4	- !
	1050	00 + 20		247	312	3 7	5
1	1100	20 +, 30	155	199	288	J 7	-
	1110	20 + 46	170	537	. 220	رځ د	- 1
	1120	00 + 50	1 198	389	- 388	5	٠,١
İ	1130	01 + 00	198	288	285	7 7	,
	1140	01 + 10	163	226	192	0 72	.
	1150	, , , , , , , , , , , , , , , , , , ,	165	156 ,	168	1.06	
ſ	, T200	01 + 20	153	330	176	0 46	ŀ
	• 1210	01 + 30	168	192	188	[™] 2.88	1
ľ		01 + 40	203	178	120	` `∢	9
-	1 2 20	01 + 50	170	175	156	5 37	
	1230	02 + 00	215	194	308	1 11	-
	1240	02 + 10	160	148	152	1 08	ł
1	1250	02 + 20	188	182	268	; 03	-
	1300	, ∩2 + 30	, 273	1 190	-728	1 -43	
	1310	02 + 40	215	154	216	1 40	
	1320	02 + 50 *	?35	50.5	-Ja-	15	
	1330	23 + 00	230	293	104	1 13	1.
	345	33 + 10	,255	224	728	1 14	
	350.	23 + 29	253	. 233 °	204	i na	
	1400	03 + 30	235	207	. 232	1 14	
	+ 4 10	03 + 40	268	205	\$000	1 31	
	1420	· 03 + 50	. 275	233	200	^ 96	
	1430, .	94 + 90	:05	195	115	≱ c ,	1.
; <i>,</i>	1440	94 ÷ 13	• 253	207	₹74	1.42	1
-	1450	. 94 + 20	243	218	148	: 1 <u>1</u> .	
*	1500 •	04 + 30	265	247	276	1 07	
	1510.	04 + 40 _	713	177	144	• 1,20	ž
	1520*	04 (+ 50	225	171	ι	1.31	
	Vea.		267	234*	244 .	, *1 98	1
•	Scan	nd Deviation (s)	±36	±95	±145	20.30	1
	-						• _

TABLE XVII

INFLIENT - EXTRANEOUS FLOW ROUSELT - NOVEMBER 6, 1972 :

GRAB SAMPLING WITH SUBMERSIBLE PUMP.

	_		•			-
Time :_	Elapsed Time	80L 5	• (1)6	• ¥F`S	8 <u>00</u>	
M traty	Hoùrs + Minutes	mg /1	~ng /	*14/1	Patio .	
۱۵,۰ ,	00 + 00	255	416	192	0 61	•
-1525 .	DC + 10	203	, 404 ,	172	3 43	
04-	20 ❖ 20	230	446	.1-	בי כי	
2 1055	. 00 + 30	303,	Śu	320	ુ 56	
1105	00 + 40	275	- 435 -	276	0 63	
, 3115	9C + 50	243	.412	264	0 59	
¥ 7.25	51 • 90	1975	879	400	5 22	
:135	ار ۱۰ در	245	577	360	0 42	
1,45	1 51 · 29 🔏	233	492	352*	0 47	
1455	51 + 30	188	356	356	0 53	
205	01 + 45	, 190	456	294	0.42	1
1215	01 + 50	213	414	332	0 51.	١
1225	· 12 · _ 10	145	324	290	0 44,	l
1.35	.02 + 1n	145 *	257-	230	0 55	1
245	22 → 22		289	220	0 47	
1755	72 + 30	14 .	1305	174-	0 46	
P1305	92 • ·40	105*	213	174	0 49	١
1315	0 50	110	285	42	0 38	ľ
.32*	23 - 10	130	, '5	" D2	0 72	
35%	- 02 - 30	96	159 .	*94	2.57	
1425	04 • Or	70-	150	H4	2, .	
1453,	36 * قو	1,**	3 23			
525	51 + 40	8^	149	- 54	, 54	
*	Mear	177	362	216	7	•
-	Standard eviation (s	1 5	1167	. "	54	
less	25 + 40	4 76	115	, 44	2 61	
1725	oe + o2	118		54	2 55	١
445	06 ÷ 30	115	47		2.	
•-,5	07 + 00	-,00	4-	1,5		
★ 51	30 • تو	193	16.	37	3 62	
1825		165	*44.	38	1 14	
1955	06 + 3C	115	16"	15	9 6A	ļ
, 925	.09 + 30	140	. 294	19	2.63	'
ن ، پ	4 79 - 30	184	?5	1,9	3 85	
-	2	į,	Ţ .		4 63	
7055	€0 : 30	. 16-	35,		5 56	
2125	10	, , '	£)		12.58	
<u> </u>						_

FIGURE 2 - Extraneous Flow Project - Grab Sampling of Influent With Bucket - September 7, 1972

2

time period. Consequently, the water chemistry data are compared over the approximate same elapsed time period.

Figure 2 shows the fate of BOD3, COD, and NFS levels with time for the first event and indicates that the concentrations, particularly NFS, did not follow or reflect each other very well and. That 19 of the 31 sets of grab samples collected (61 percent) had BOD5/COD ratios greater than unity. The mean BOD/COD ratio as 0.98 with a standard deviation (s) of ±0.30. Figure 3, which shows the data for the second event using the submersible pump, indicates that there was an improvement in the manner in which the parameters followed each other and that only one data point out of thirty-five had a BOD5/COD ratio greater than one. An evaluation of the data from the second event over the same elapsed time period as that of the first event resulted in a mean BOD/COD ratio 0.52 with a s of ±0.11. Table XVII also shows a decrease in the of the NFS data from ±145 mg/1 to ±101 mg/1.

A BOD5/COD ratio greater than unity is never encountered in a domestic waste and very seldom encountered in an industrial waste. The two waste of this facility originates in a residential area with no known industrial wastes or toxicants which would affect. BOD5 values. Analyses from the first event which are not reproduced here indicated only negligible concentrations of heavy metals and a mean effluent BOD5/COD ratio of 0.62 (twenty-four samples) with-all ratios less than one

, 72

Although these two events were completely independent and the data from the first event could once vably represent actual wastewater characteristics, the data resulting from use of the bucket is at least questionable. Comparing the two events, it can be seen that there was a decline in BODs and NFS concentrations of the samples to lected during the second event; however, the NFS/BODs ratios, which were 1.18 and 1.27 for event 1 and 2 respectively, were in approximate agreement. Although the BODs and NFS levels decreased during the recond event, there was a 55 percent increase in COD. Since ft is impossible to agitate the contents of a pail and fill a small-mouthed container simultaneously, it is believed that use of the bucket to collect samples allowed some of the heavier, nonbiodegradable solids to settle out. The high discharge velocity of the pump is believed to have effectively prevented any settlement and to have resulted in a more representative sample.

Data comparison from these two events cast suspicion upon manual methods of sampling which involved dipping of samples out of raw waste sources, and, wonsequently, raised the question of whether or not manual grab sampling is a suitable "yardstick" for evaluating the performance of automatic wastewater samplers.

C. '-INTER BORATORY ARIATIONS

On April 15 through 18, 1973, Field Investigations personnel conducted a performance test at the 113,500-eu.m/day (30-mgd) Kaw Point primary was tewater treatment plant in Kansas C.t., Kansas.

The Hants SE samplers Personnel installed.

.7.3

compositor was installed at the effluent and set to collect samples at hourly intervals. Between 0800 and 1000 hr each morning the discrete samples collected at each of the two stations were manually composited according to the hourly pumping rate records for the three influent pumps serving the plant. The composited samples, with no preservation other than icing, were split between the treatment plant laboratory and the EPA, Region VII, Laboratory for analysis.

In addition to the flow-proportional composite samples, two grab samples were manually collected each morning at both of the sampling stations. During the last 24-hr composite period, grab samples were collected at 2-hr intervals from the influent and analyzed for COD. The grab samples were not split with city personnel.

Table XVIII which also shows the calculated removal efficiencies for the three parameters using the EPA and city analyses of the composite samples and the EPA analyses of the grab samples. An examination of this table would indicate wide ranges in removal efficiencies as a result of variations in interlaboratory analyses and grab sample characteristics.

It can be seen that the greatest interlaboratory variation was in COD analysis. The four-day arithmetic mean COD of the influent samples analyzed by EPA and the city was 1,990 and 1,030

TABLE XVIII .

INTERLABORATORY ANALYTICAL AND SAMPLE VARIATION

KAW POINT SEWAGE TREATMENT PLANT - KANSAS CITY, KANSAS

APRIL 1873.

•	, -	•	• •	•	}	`. ·	مرح	•		· , ·	•	,
-		Same of	the ston fames	" - Note	784	eq.1	1 -1	75, mg/1,	•	, Rif		
	,	Seat Hamples	And Flow Measurement Per		; 4L	Purpostes	∠ret Samp e	Compo		1-a:	FF Lang	. 7
í			200		4.	(21,	April No pr		(1)	An'		7
	أسمر وابد	5.	4 : PX 900 A	.1		45 . W	1 4 2	-180	.4	45	5.4	-,-
-	وسهر روه	975	4 3, 000-0400 ¹	X	- 3 - 3 - 96	* .	134	5 e	£	29 28	×	賽
١	Percent A		1.		ую́	11 16	311 284	;		94 # 65		
·	nel ene	835	1 100,2900	43 63	2 5	¥3 4d8	',320	2.320	28 4¶3	M 300	#9 I,380	45
ļ	, [rn ærr	6			540 118	. !	296		***	, 548 .		· . i
1		5446	300		-4-	<u>, , , , , , , , , , , , , , , , , , , </u>	33' 58	3.68	•	* -		*
1	Terr in	-E-17	<u></u>	· · · · · · · · · · · · · · · · · · ·	17.	-		+			-,+	
	m	78x 5 79.5	* * (35°, pa, r *	4 2 1	-570 17	1 1	***	€ · ,	1.50.	4 % 4 %	,	
.	11 x t	7900	4		.50		650	,,,	194	45 132 196	/34	. 44
i					 		6.:			-,4		· ' '
į			TEF	1 4 1	18	49 5s	50	, me	- ;	6 <u>4</u>	-; · -	720
	٠		/		,	,	46%	,,,,,		, 56°, ,		
	استو ۱۶۱ ه	835	18 363 7977 a.s		, 100 + 1 1474 + 16	1,5" 3"	5,61 6,1 650	55	. 95'	36	•	
-	Ferzeni is	-	,	<u> </u>	15,	1/4 - 74 -	45	4	-			
	forgrasy (ner (in	E name: Heyr Jer no Jen mog In Remova		. \$:	,,,	46° 54° 125 213	260 502	1990 1921	588	425 49		
	,	17 226	*		<u></u>	L		74 2 /70 3 250			21	
į		7 400 500 800	,	-	•		2.	2.950 2.950		٠ -	٠ ,	;
4	· Infl Jant	200 27 200	•				• •	1,820 7,020 -,030				ľ
:	٠.	9 3230		* * *	•	•	• •	'2,110 1,4004		,		
	· - म्रह	8 1600 8 1600	! ************************************		• · · · · · · · · · · · · · · · · · · ·	<u>· · ·</u>	-:	940 940	•	*	· ·	
1	. Silan	dard Der ion Pictont of far	• •4/	,		, , r	<u></u>	545 80		e		

a) Sulfigly by 164 . In attain gam. Flow is a proprosing area of the in the percent

The society endings of the second of th

pronounced with concentrations of 2,320 and 493 mg/l, respectively. This difference is in excesse of interlaboratory variations reported in Standard Methods (2, p. 499). Investigation of laboratory technique revealed that the EPA laboratory used larger aliquots which were either drawn from a well-mixed sample with an open-tip pipette or poured into a graduated cylinder. The manner in which these larger aliquots were drawn is believed to have resulted in greater and more representativeness amounts of nonfilterable residue.

The data clearly indicate the inadequacy of relying upon a limited number of grab samples for determining wastewater characteristics or plant performance. In every case, the removal efficiencies calculated from the grab sample data were less than those efficiencies determined from the composite sample data reported by the two laboratories. The COD analyses of the raw waste grab samples collected at 2-hr intervals April 17-18 ranged from 1,030 to 2,950 mg/l, had a mean of 1,810 mg/l, and a standard deviation of ±545 mg/l (coefficient of variation, thirty percent).

D. SUMMAN AND DISCUSSION

1. SAMPLER PERFORMANCE

In every case, the sampler comparison studies on raw waste indicated variations in water chemistry data which were greater than could be explained by laboratory analytical error. This variation was particularly marked with the NFS parameter. The Richards-Gebaur study resulted in data which showed that in eight

of nine cases the high-vacuum, high-liquid intake velicity norts

38 and QCEC-CVE samplers produced time-to-posite samples with NFS

Tevels that range from 15 to 214 percent gleater than the concent

trations found in manually-normedted, flow-to-posited samples.

collected with the QCL1 compositor range from 15 to 100 percent. greater than the levels present in those samples collected manually. This sampler was used to collect time-composite samples which included equal volumes of the early morning low-flow, low-strength waste that would, in theory, have biased the sample low?

A statistical analysis of all the raw waste data resulting from the three-day Richards-Gebaur-study resulted in coefficients of variation of 29, 39, and 42 percent, respectively, for BODS, COD, and NFS. Included in this variation were: (a) actual changes in wastewater characteristics, (b) differences in sampler performance and margar techniques, (c) field errors manual compositings methods, and (d, laboratory random analytical errors. "Standard Methods reports (2, p. 494, 499, 532) coefficients of variation of 5, 6.5, and 10 to 33 percent, respectively, for these three parameters as a result of interlaboratory analytical collaborative tests on identical samples. As an estimate of the analytical error which could be expected from a single laboratory, the Standard Methods variance for COD and NFS are high since systematic errors of a number of Taboratories, are included. It is appired that the

major source of data variability is due to actual changes in water chemistry and field techniques.

The comparison study of the QCEC-CVE and ISCO samplers at the Theresa Street sewage treatment plant in Lincol. Nebraska, showed that the QCEC compositor produced time-composite samples that were, respectively, 125, 134, and 182 percent higher in BOD, COD, and NFS than those flow-composite samples obtained with an ISCO Model 780. The corresponding percentages for the effluent samples were. 104, 129, and 92.

A-comparison of raw waste flow-proportional samples collected over a five-day period with the Hants 3B and ISCO 1391 at Ashland, Nebraska, also indicated a bias. The mean BOD₅, COD, and NFS concentrations of the Hants samples were 179, 183, and 334 percent higher than the level found in the ISCO samples. The corresponding values for the effluent samples were 154, 146, and 220 percent, respectively.

Raw waste samples collected concurrently with a OCEC-CVE, Sinch MKV7S, and an ISCO sampler at the Kansas City Raesas, Kaw Point plant had mean NFS concentrations of 1,160,720, and 582 mg/l, respectively. These concentrations had the same relationship to each other as did the liquid intake velocities of the samplers.

The comparison study at the Kaw Point plant using four different ent manual sampling techniques and twelve-different compositors did not angwe any correlation between liquid intake velocity and parameter concentrations. This lack of correlation was felt to be due

pended solids in the waste. Because duplicate analysis for NFS was run for this study, it was possible to isolate and estimate data variability due to laboratory random analytical error and that due to differences in compositor performance. Standard deviation of laboratory error was ±101 mg/l (coefficient of variation, approximately 10 percent). The deviation due to sampler performance ranged from ±92 to 271 mg/l (coefficient of variation 9 to 24 percent), depending upon whether or not the Brailsford EP-1 sample data was included.

The comparison studies indicated that the high vacuum, high liquid intake velocity samplers were more effective in capturing solid material. Although these units also produced higher concentrations of BOD5 and COD, the increase in NFS was disproportionately greater. It would appear that the slower-acting peristaltic and piston pump type samplers are either not capturing settleable materials or that after introduction to the intake line particle settling velocities are higher than liquid intake velocities. Another factor could be the agitation of sample increments during collection. The greater intake velocities of those compositors which have yielded high strength samples may be breaking up larger size suspended material as the aliquot passes through the sampling train and into the collection container. In the laboratory, suspension of smaller sized particles would be more amendable to extraction of representative amounts of residue with routine pipetting procedures.

2. ADDITIONAL PERFORMANCE STUDIES

The Richards-Gebaur study indicated extremely wide ranges in apparent facility removal efficiencies as a function of grab sample data which was manipulated to show effects of collection time, sampling frequency and interval, and days of sampling. Additional comparison studies using identical sampling equipment to collect discrete, time-composite, and flow-composite samples would be useful in developing more adequate grab sampling methodologies.

At this point the Field Investigations Section is of the opinion that little more can be gained from field evaluation of sampling equipment on the basis of sample representativeness.

Under field conditions, variables cannot be controlled, actual concentrations of wastewater chemistry parameters are unknown, and manual grab sampling is of questionable value as a "yardstick" against which to measure the performance of automatic sampling equipment.

The variability of NFS concentrations indicates that it is _____ especially difficult to obtain representative sample concentrations of this parameter because of its sensitivity to changes in collection methodologies. Given the "state of the art" of currently available compositors and ever-increasing varieties of equipment coming on the market, there is an urgent need for development of a syntietic suspended solids waste to evaluate samplers under controlled laboratory conditions. "A suitable controlled laboratory conditions." A suitable controlled laboratory conditions. "A suitable controlled laboratory conditions." A suitable controlled laboratory conditions.

(b) could be used to determine the representativeness of samples collected by various makes and models of compositors, (c) could determine the suitability of specific equipment for particular applications, (d) would be a step toward standardization of sampling methods, (e) could result in reduced water chemistry variability, and (f) would increase data credibility for enforcement activities.

Development of a synthetic solids waste to be used in conjunction with laboratory evaluation of sampler performance would require consideration of the following variables: (a) particle size and specific gravity, (b) sampler liquid intake velocity, (c) intake tube diameter, (d) orientation of intake line with respect to waste stream velocity vectors, and (e) liquid temperature and viscosity.

3. SELECTION OF SAMPLING EQUIPMENT

Although the results of the sampler comparison studies are not conclusive and additional work is needed, it is the opinion of the. Field Investigations Section that high-vacuum, sampling equipment produces more representative samples. On waste sources with appreciable concentrations of large and/or heavy settleable material such as a raw municipal wastewater, the section makes every effort to install a high vacuum unit when compatible with site conditions and data requirements. Since these units yield higher results, they are of advantage to treatment plants in determination of removal efficiencies.

21

Variations in compositor performance at effluent sampling. stations were found to be smaller due to water chemistry equalization resulting from plant retention times and, it is felt, to the lower levels of suspended material which are smaller, more uniform, and of lower density than the particles found in raw waste. Although high-vacuum samplers can be effectively used on these wastes, the data would indicate that well-treated effluents with no visible solids can be representatively sampled with the slower acting compositors.

4. FLOW PROPORTIONAL SAMPLING

With present sampling technology, the section feels that flow compositing of raw municipal wastewaters and other wastes with appreciable settleable solids is neither necessary nor justified. The variations in sampler performance and manual sampling techniques completely mask actual changes in wastewater chemistry characteristics. At best, variations traceable to differences in compositor performance ranged from ±9 to 24 percent. In some instances differences in NFS levels were over 300 percent. Data discrepancies of this magnitude do not warrant the extra time and expense involved in installing sophisticated sampling equipment and flow measurement devices.

The comparison studies on treated wastes would indicate that well-treated, sparkling effluent with no visible solids are amenable to flow-proportional sampling and that a suitable compositor can be selected without regard to variations in performance.

8

This would also apply to industrial wastes which were all in solu-

Because of work load, the need for expediency, and the limited scope of most surveys the section generally does not collect flow-proportional samples. Approximately 5 percent of the sampling stations the section surveys have weirs or flumes equipped with flow totalizers which are in proper working order suitable for manual compositing of flow-proportional samples. Most of these totalizers are located at the facility influent. About 40 percent of the stations have only a weir or flume and 50 percent have no measurement device of any sort. It is extremely rare to find a facility with suitable flow-measurement devices on both influent and effluent stations.

Most of the flow-proportional sampling efforts of the section are confined to data gathering for enforcement activities, in-depth, evaluations of new and existing treatment facilities, and investigations of industrial processes where mass balances are of critical importance.

It should also be pointed out that manual flow compositing of discrete grab samples, whether collected with an automatic sampler or manually, introduces another possible source of error and requires more time of the professional in the field. Sources of error would include: (a) not shaking the discrete sample prior to compositing, (b) miscalculation of correct sample volumes as a result of having to use a slide rule or electronic calculator to

determine discharge rates from exponential functions based on head measurements, and (c) misreading of graduated cylinders. It would appear that those automatic collection devices which collect flow-proportional aliquots and composite them in a single container would be most effective in eliminating this source of error.

5. SAMPLING METHODOLOGY

Bata from grab samples collected during the comparison studies showed wide fluctuations in wastewater strength over a 24-hr period. The Richards-Gebaur study resulted in NFS coefficients of variation which ranged from 44 to 60 percent on the raw waste, 30 to 41 percent on the gramary effluent, and 15 to 32 percent on the final effluent. Based upon collection of one grab sampler per day for three days, it was shown that the apparent solids removal efficiency of the Richards-Gebaur facility ranged from -103 to +70 percent depending upon sample sollection time. Comparing six grab samples per day with 24-hr manual flow composites for one, two, and three days, it was shown that mean grab sample efficiencies differed from the mean manual composite efficiencies by 10, 3, and 35 percent, respectively.

The raw grab sample data from the Kansas City, Kansas, Kaw Point sewage treatment plant investigation of April 15 to 18, 1973, resulted in a COD standard deviation of ± 545 mg/l and a coefficiently of variation of 30 percent. Removal efficiencies of this facility calculated on the basis of two grab samples were in some instances only a third of the efficiencies obtained with composite sample data.

These variations emphasize the importance of an adequate sampling program and appropriate equipment. A poll of EPA, Surveillance and Analysis staff-members around the country resulted in a general concurrence that for normally variable domestic wastewaters a minimum of 3 evenly-spaced grab samples collected over a 24-nr period, repeated for a minimum of 3 wk days, will result in a fair estimate of water chemistry characteristics.

It is the opinion of the field Investigations Section that either time or flow-proportional sampling should be used in routine surveys and monitoring of municipal treatment plants unless those variations which occur throughout the day are of interest. Analyses of an adequate number of discrete grab samples to characterize wastewaters and plant efficiencies is an inordinate drain of laboratory resources and is not economically justified. The use of automatic compositors can easily be offset by savings in analyses costs.

The section confines most of its grab sampling efforts to special studies and enforcement activities. Because of the strict chain of custody procedures which can be exercised with manually collected grab samples, they are often used to support those data resulting from use of unattended compositors.

Considerable judgement is required for industrial wastewater flows which vary widely in composition and volume throughout the work day. Initial surveys of industrial wastewaters should be carried and only after a thorough understanding of plant processes. Surveys should include 24-hr-a-day composite sampling for a period

For max information of wastewater quality and variability, it is frequently a good idea to install two compositors - one with discrete sample jars and on an hr cycle to provide for a flow proportional composite and also individual hourly samples for analysis.

A second compositor taking small aliquots at more frequent intervals (10 to 15 min) can be used to obtain a second composite sample which should contain portions of all of the batch discharges of short duration. Comparison of analyses from the two composites should give a good indication of whether or not sampling at a 1-hr frequency is adequate. There are several varieties of discrete bottle compositors now on the market with a multiplex capability which provides for frequent samples, to be composited in each of the hourly sample jars negating the need for a second sampler.

6. THE IDEAL AUTOMATIC SAMPLER

Manufacturers of samplers have yet to produce a unit which will meet all the sampling requirements and the physical site conditions encountered by the Field Investigations Section.

Development of such a unit would greatly simplify the logistical problems of providing an adequate stock of spare replacement parts and would save that time now spent in becoming familiar with the operation and repair of a large variety of samplers.

As a result of field experience and sampler performance comparison studies, the section has developed a list of the features write the ideal" sampler would incorporate.

- 1. Capability for AC/DC operation with adequate dry battery energy storage for 120-hr operation at 3-hr sampling intervals.
- Suitable for suspension in a standard manhole and still provide access for inspection and sample removal.
- 3. Total weight including batteries under 18 kg (40 lb).
- 4. Sample collection interval adjustable from 10-min to 4 hr.
- 5. Capability for flow-proportional and time-composite samples.
- 6. Capable of collecting a single 9.5-1 (2.5-gal) sample and/or collecting 500-ml (0.13-gal) discrete samples in a minimum of 24 containers.
- 7. Capability for multiplexing repeated aliquots into discrete bottles.
- 8. One intake hose with a minimum ID of 0.64 cm (0.25 in.) and a weighted streamlined intake screen which will prevent accumulation of solids.
- 9. 'Intake hose' liquid velocity adjustable from 0.61 to 3 m/sec (2.0 to 10 fps) with dial setting.
- 10. Minimum lift of 6.1 m (20 ft).
- 11. Explosion proof.
- 12. Watertight exterior case to protect components in the event of rain, or submersion.
- 13. Exterior case capable of being locked and with lugs for attaching steel cable to prevent tampering and provide some security.
- 14. No metal parts in contact with waste source or samples.
- 15. An integral sample container compartment capable of maintaining samples at 4 to 6°C for a period of 24 hr at ambient temperatures up to 38°C.

- 16. With the exception of the intake hose, capable of operating in a temperature range between -10 to 40°C.
- 17. Purge cycle before and after each collection interval and sensing mechanism to purge in event of plugging during sample collection and then collect complete sample.
- 18. Capable of being repaired in the field.

7: THE PROFESSIONAL IN THE FIELD

The data has shown many sources of data variability and.

emphasizes the importance of having a professional in the field to select sampling locations, equipment, and methodology. It is solvious that those individuals responsible for surveys and sample collection activities can use any of the generally accepted sampling techniques and equipment and still intentionally or unintentionally manipulate apparent was tewater chemistry characteristics and facility removal efficiencies.

The practice of using low-paid, unsupervised personnel to collect samples for analysis by highly-paid professional chemists is a misappropriation of technical and economic resources which can only result in unrepresentative data.

It is little wonder that there are so many disagreements among various responsible Federal, state, city, and individual groups regarding water chemistry characteristics and facility performance. When variations in sampling methodology and laboratory systematic and random errors are further compounded by errors in flow measurements, differences can become, astronomical. Without an adequate monitoring program and tight controls on sampling

techniques, equipment, and laboratory procedures, data interpretation can be reduced to little more than an exercise in futility.

V. HYDRAULIC MEASUREMENTS

Calculation of loadings, effluent limitation quantities, and flow-proportional sampling require hydraulic measurements. The need for accurate rate measurements is just as great, if not greater than the need for good representative water chemistry data. Ideally, the professional in the field surveying a wastewater system strives to develop a materials mass balance using the combination of flow rate and parameter concentration. Because of biological activity, errors in flow measurements, sampling methods, and laboratory analytical random errors, a mass balance is seldom achieved in practice.

Because of the variety of sampling station configurations encountered and the essentially empirical nature of most measurement techniques, flow rate accuracy remains as one of the weakest aspects of the field survey.

The Field Investigations Section has no special expertise in the area of hydraulics and a detailed discussion of the subject is beyond the scope of this report and would be presumptuous and redundant in light of the number of excellent references (4, 5, 6, 7, 8, 9) available. Personnel responsible for flow measurement data would be well advised to obtain and study the first four of these references, particularly (4) which discusses most of those methods likely to be of use in the field.

This chapter reports these methods and equipment which the Field Investigations Section has used in its surveys and indicates those factors which can result in significant error.

A. WEIRS, FLUMES, AND RECORDING EQUIPMENT

1. WEIRS'

Approximately 50 percent of those sampling stations surveyed by the section have no flow measurement device of any sort and it is frequently necessary for the section to make temporary installations of equipment. We're can be placed relatively quickly and are generally used at those sites requiring discharge measurements.

Weirs commonly installed by section personnel or encountered at wastewater treatment facilities have included: (a) 90° V-notch, (b) 60° V-notch, (c) contracted rectangular, (d) suppressed rectangular, and (e) Cipolletti. The following necessary conditions are reported (4, p., 12-13) for setting weirs and getting accurate discharge rate measurements:

- a. The upstream face of the bulkhead should be smooth and in a vertical plane perpendicular to the axis of the channel.
- b. The upstream face of the weir plate should be smooth, straight, and flush with the upstream face of the bulkhead.
- c. The entire crest should be a level, plane surface which forms a sharp, right-angled edge where it intersects the upstream face. The thickness of the crest, measured in the direction of flow; should be between 1 to 2 mm (0.03 to 0.08 in.). Both side edges of rectangular weirs should be truly vertical and of the same thickness as the crest.

- d. The apstream corners of the notch must be sharp.

 They should be machined or filed perpendicular to the upstream face, free of burns or scratches, and not smoothed off with abrasive cloth or paper. Knife edges should be avoided because they are difficult to maintain.
- e. The downstream edges of the notch should be relieved by chamfering if the plate is thicker than the prescribed crest width. This chamfer should be at an angle of 45 deg or more to the surface of the crest.
- f. The distance of the crest from the bottom of the approach channel (weir pool) should preferably be not less than twice the depth of water above the crest and in no case less than 0.305 m (1 ft).
- g. The distance from the sides of the weir to the sides of the approach channel should preferably be no less than twice the depth of water above the crest and never less than 0.305 m (1 ft).
- h. The overflow sheet (nappe) should touch only the upstream edges of the crest and sides.
- i.. Air should circulate freely both under and on the sides of the nappe.
- j. The measurement of head on the weir should be taken as the difference in elevation between the crest and the water surface at a point upstream from the weir a distance of four times the max head on the crest.
- k. The cross-sectional area of the approach channel should be at least eight times that of the overflow sheet at the crest for a distance upstream from fifteen to twenty times the depth of the sheet.

It is probably safe to say that the Field Investigations. Section has never encountered a weir installation which met all of the preceding requirements. Weir crests are not chamfered, are covered with debris and biological growth, are not flush with buikhead plates, and are too close to bottom and sides of approach channel. Velocities of approach (Va) are too high as a result of

the weir pool being underdesigned to start with or as a result of deposition of solids. A Va between 0.305 and 0.61 m/sec (1 to 2 fps) can result in a discharge rate enfor ranging from -10 to -25 percent. If weir pool Va are significant, they should be measured with a current meter* or estimated with floats (if nothing else is available) and corrected for (4, p. 25-26).

Some observed weir deficiencies can be corrected; however, from a practical standpoint a loss of accuracy must be expected as it is seldom feasible to optimize all installation requirements.

Even at those locations at which the lection installs equipment, site conditions such as limited space, hidraulic head, and concrete abutment structures impose investigative restraints which are a compromise between time, economics, and data requirements.

2. FLUMES

The Parshall flume is one of the most common types of flow measurement devices installed at wastewater treatment facilities and is preferred because: (a) it can operate with relatively small losses of head, (b) it is refatively insensitive to velocity of approach, (c) if properly installed, it will give good measurements over a wide range of downstream submergence, and (d) flow velocities are sufficiently high to eliminate solids deposition.

Because of the time required to properly install these devices, the section has not set Parshall flumes at any survey sites and

^{**} See Page 102

experience has been confined to those flumes encountered at wastewater treatment facilities.

Prior to taking water measurement data, a Parshall flume should be checked to see that: (a) longitudinal and lateral axes of crest floor are level, (b) side walls are parallel and throat dimensions close to design tolerances, (c) approach flows are uniformly tributed in the upstream convergence section, (d) head measurement devices (if installed) at correct location, and (e) flow variations are within the range for which the flume is accurate.

- .3. FLOW RECORDING EQUIPMENT
- a. FACILITY RECORDERS

About 25 percent of those facilities which have weirs or flumes also have continuous flow recording equipment. Aforoximately, half of these installations and recorders which are in proper working order.

Sources of measurement error with recording equipment are common to both weirs and flumes are include:

- (1) Stilling well in wrong location with respect to weir or flume crest.
- (2) Trash and debris in stilling well and conduit between filme and well plugged.
- (3) Float dirty, punctured, not vertical, and rubbing against side of stilling well. Slack in float cable.
- (4) Wrong recorder multiplier and chart paper. Pen not inked and not giving responsive trace. Recorder does not zero. An error in calibration of 1.5 cm (0.60 in.) can cause an error in rate measurement ranging to several hundred percent at low depths on small weirs and twenty to thirty percent for

moderate depths in flumes with throat widths under 30.5 cm, (12 in.).

Prior to using flow data from plant recorders, the instrumentation should be manually checked by taking an instantaneous head measurement with a staff gage or rule, calculating a discharge rate, and checking this rate against the recorder.

b. PORTABLE RECORDERS

(1) BELFORT LIQUID LEVEL RECORDER

The section has three Belfort Portable Liquid Level Recorders* which have been in use for four or five yr. These recorders are relatively rugged and extremely reliable when properly installed. The units have many positive features which include the following:

- (a) Fairly inexpensive at approximately \$320 each.
- (b) Accurate and fasily read head measurements over a limitless range of water levels because the pin traverses up and down over the full width of the chart as water levels rise or fall.
- (c) Optional recording times available from six hours to eight days per chart revolution.
- (d) Mechanisments mechanically simple and in most cases can be repaired in the field.

The primary disadvantage of the Belfort Recorder is related to installation. The unit requires a stilling well for a float and must be mounted level. One can easily spend an entire day in construction and installation of stilling well and mounting platform and calibration of recorder. The min diam of the stilling well (dependent upon float) is about 10 cm (4 in.). This well offers an

^{*} No 5-FW-1, Belfort Instrument Company, 1600 South Clinton Street, Baltimore, Maryland 21224

obstruction to flow and, consequently, the unit cannot be used for small channels or in high velocity channels carrying large amounts of debris. The instrument is almost impossible to install in man-holes.

(2) MANNING DIPPER RECORDER

The Manning Dipper Recorder* senses and records water levels by means of a weighted electrical probe on the end of a thin metal cable which extends from the bottom of the recorder. The probe follows the surface of the water and merely swings aside when hit by debris.

The primary advantages of this instrument are an adaptability to an almost limitless variety of site configurations and its ease of installation. At most locations the unit can be installed and calibrated in fifteen to twenty min. The adjustable bracket included with the unit makes it particularly suited for manhole installations where it can be installed up to 7.6 m** (25 ft) above the water surface. Since the unit operates on a 6-v battery***, manhole installation provides, good equipment security as all components are below street grade and manhole covers are replaced.

The disadvantages of this unit include: (a) cost, units are about \$835 each, (b) limited recorder range with respect to changes in water level, (c) accuracy, recorder chart cannot be read

^{***} Eveready Hot Shot #1461, Ray-O-Vac #641, or equivalent

^{*} Mode? 70015, Manning Environmental Corporation, 112 Dakota , Street, Santa Gruz, California 95060

^{**} Longer cables are available

cated electronically and generally cannot be repaired in the field c. DISCHARGE CALCULATIONS

It should be pointed out that many portable recorders, including the Belfort and Manning units discussed previously, record water level only and do not have an internal integrating mechanism for totalizing flows. With Parshall flumes and most weirs flow fate is a nonlinear function of head and must either be determined from published tabulations (4) or calculated with the different expenential formulas reported for various flumes and weirs. Since many tabulations do not cover every variety of flow measurement device, it is frequently necessary to make these calculations in the field when flow proportioning samples. Although any good slide rule is suitable for these calculations, they are slow; introduce a greater probability of error, and are definitely not "technician proof." To reduce time and increase accuracy, it is recommended that the individual have a portable electronic calculator* with an exponential function key as part of his field equipment.

B. WET WELL VOLUME DISPLACEMENT

Wastewaters are often collected in a wet well prior to introduction to a treatment stem. In the absence of flow measurement devices, these wells to be used to obtain rate measurements by

Hewlett Packart Todel HP-35 or 45, Texas Instruments Model SR-50, Sharp PC-1801, or equivalent

"pump down" which can be established with the Belfort or Manning

C. FLOW RATES IN PIPES

VOLUMETRIC MEASUREMENT

On small discharges, the section frequently uses a container of known capacity and a stopwatch to determine instantaneous flow rates. With the plastic sampling buckets normally used by the section, discharge rates are limited to a maximum of about 76 l/min (20 gpm).

PIPE WEIRS

The section has three sets of V-notch weirs*, designed for pipe installation, which were purchased at a cost of approximately \$350 each. The weir is of a clear plastic material calibrated in gpd and is mounted in a semicircular aluminum frame which has a rubber gasket around the outside to insure a good pipe fit. Proper installation of the weir is aided by a bubble level attached to the frame. The weirs are held in place by extended rods which are slipped into a screw thread and socket and forced up against the crown of the pipe.

Maximum weir flow rates with 15.2-, 20.3-, 25.4-, 30.5-, and 38.1-cm (6-, 8-, 10-, 12-, and 15-in.) diam pipes are 143; 244; 586 1,071; and 2,951 cu m/day (10,000; 17,000; 40,900; 74,750, and

^{*}N.'B. Products, 35 Beulah Poad, New Britain, Pa.

206,000 gpd), respectively. The set also has six adaptor plates which the weirs can be set into in order to fit them to larger size pipes. These adaptor plates do not increase the weir capacities.

Although these weirs provide a quick method for getting instantaneous flow rates, the likelihood of error is appreciable since variations in approach velocities cannot be corrected for. In addition, max weir capacities are much lower than max pipe capacities since the weir and frame obstruct a significant part of the cross-sectional area of the pipe.

- TRAJECTORY METHODS
- a. CALIFORNIA PIPE METHOD

The "Water Measurement Manual" states four essential requirements for this method: (1) discharge pipe must be level, (2) it must discharge partially full, (3) it must discharge freely into air, and (4) the velocity of approach must be a min. Discharge rates are computed from the formula:

$$Q = 8.69 \left(1 - \frac{a}{d}\right)^{1.88} d^{2.48}$$

where: Q = discharge rate, cfs

a = distance measured in the plane at the end of the pipe, from the top of the inside surface of the pipe to the water surface, ft

d = internal diam of the pipe, ft.

This formula was developed from experimental data for pipes 7.62 to 25.4 cm (3 to 10 in.) in diam and tests have shown that the 113

formula does not hold up at an a/d ratio of less than 0.5 (4. p. 197). This formula should not be used with corrugated metal pipes.

b. PURDUE METHOD

This is a more general form of the trajectory method which can be used with pipes flowing full and with high velocities. Basically the method consists of measuring the horizontal (X) and vertical (Y) coordinates of the path of a jet of water issuing from a level pipe. The reader is referred to the "Water Measurement Manual!" (A, p. 200-203) for a description of this method and for graphs showing discharge rates of different size pipes as a function of the X and Y coordinates.

4. ORIFICE BUCKET

As of this writing, the Faeld Investigations Section has no experience with the orifice bucket and is presently evaluating the device in the laboratory. Basically the unit is nothing more than a sturdy 18.9-1-(5-gail) or larger can with a number of rubber stoppered holes in the bottom and with a graduated piezometer tube on the outside for reading water levels. A screen or dispersion device of some sort should be mounted in the bucket to reduce. direct velocity impingement on the orifices. Brior to field use the device must be calibrated in the laboratory by removing one of the rubber stoppers and determining the flow rate through the orifice at different constant heads with a known veriable water source. From the laboratory data a rating curve is developed for the bucket showing gpm versus head for one orifice. If hole size

tolerances are carefully controlled, it is not necessary to develop a rating curve for two or more orifices open, as flow rate through each orifice will be the same and equal to that rate determined for one orifice. Consequently, in the field larger discharge rates are determined by multiplying the rate for one hole by the number of holes open. Since it is necessary to have a constant head in the bucket, this device is obviously not suitable for those discharges with rapid fluctuations in volume. Additional information can be found in (10, p. 30) and (11).

5. MANNING FORMULA

Discharge rates can also be calculated by determining the cross-sectional area of the flow and the average velocity in the cross section. With circular conduits the section frequently uses the Manning formula to estimate velocity.

$$v = \frac{1.486}{1.486}$$
 $r^2/3$ 1/2

where: V = average velocity, fps

r = hydraulic radius, a/p

a * area of cross section of stream, sq ft

p = wetted perimeter of pipe, ft

s = slope, ft per 100 ft

n ̇̀≖ roughness factor

The roughness factors for various pipe materials can be found in hydraulic reference and text books (12, 13).

Flow rates for pipes 0.152 to 1.22 m (6 to 48 in.) in diam at various depths of flow and slopes are available in tabulated form

(6) and are relatively inexpensive.

In the field, section personnel use a carpenters square with an attached, pock size, inclinometer* to measure pipe slopes. If one is working at the open end of a pipe, the depth of flow should be measured as far up in the pipe as possible, otherwise errors due to drawdown will be introduced into the discharge calculation. If one is interested in a number of measurements and is not certain about a roughness factor (n), it is frequently possible to gage pipe discharges at a downstream points in an open channel and then solve the Manning Formula for n.

6. FLOWMETER

The section has also used a number of different velocity meters to determine pipe flow rates. One such meter is a digital flow** device with a built-in counter that counts the revolutions of a propeller. Velocities are determined from a rating curve supplied with the instrument. This is a rugged instrument which is not sensitive to low velocities and is, therefore, best suited to those high velocity flows which might damage other types of meters.

At times the section has also used Price type current meters to determine pipe velocities. These meters should be used with

^{**} Digital Flowmeter, Model 2030, General Oceanics, Inc., 5535 Northwest Seventh Avenue, Miami, Florida 33127

^{*} Keuffel and Esser Company, New York

high velocity, turbulent flows.

D. OPEN CHANNEL \FLOW

1. STREAM GAGING

In its field activities, the section also does a significant amount of stream gaging at locations where receiving water quality is of interest. Basic items of equipment required for stream gaging include: (a) current meter, (b) wading rod, (c) sound box or earphones to indicate meter revolutions, (d) stopwatch, (e) tag line, and (f) small clipboard and discharge measurement forms. Meters, wading rods, earphones, and tag lines are available from a number of suppliers*. It is recommended that one purchase equipment from a single manufacturer, as components are not always interchangeable. The discharge measurement forms** used by the section are printed on a rubberized paper and are supplied by the General Services Administration (Form No. 7-EPA-5300-1).

As of this writing, the section has relied upon the Price type current meter (both standard and pygmy) for stream gaging. In the near future, the section will also have the Ott meter available. The transfer is of advantage in some situations where vertical velocity gradients are a problem.

^{**} The Field Investigations Section will furnish one copy of this form for examination or duplication

^{*} Weather Measure Corporation, P. O. Box 41257, Sacramento, California 95841 - Kahlsico Scientific Corporation, P. O. Box 1166, El Cajon, California 92022 - EPIC, Inc., 150 Nassau Street, New York, New York 10038

treated accordingly. The Price type meters are especially sensitive to worn pivots and errors in velocity measurement of 20 percent of flow under 0.15 m/sec (0.5 fps) are common with worn pivots bent cups, and solids under the cup and bushing. When using a current meter with a questionable pivot pin or old rating, it is better to look for a site with velocities of about 0.30 m/sec (1 fps) or better as errors due to inertia of the meter will be minimized. Regular oils should not be used on these meters during winter weather as the increase in viscosity can seriously affect the accuracy of rate measurement. The silicone type lubricants are not affected by changes in temperature.

Although there are a number of types of wading rods available: the section uses the USGS type top-setting rod. These rods are made under contract for the USGS and sources change from year to year. Within the Region, current information on these rods would be available from the USGS Water Resources Division, Rolla, Missouri. It is understood that this division must endorse orders for this rod.

The section has received some requests for information concerning meter calibration. Manufacture no longer supply current meters which have been calibrated by the National Bureau of Standards and the section relies upon those rating tables furnished with each meter. If desired, the bureau* will calibrate meters.

In 1972 the cost for calibration to government and private agencies was \$116 per meter.

2. ELECTROMAGNETIC WATER CURRENT METER

The section has one of these units** which has received rather limited use in the past two yr. This is a battery-operated, portable instrument which gives a direct meter readout in fps of X and Y velocity components. The velocity sensing probe is all magnetic, has no moving parts and is an integral part of a 1.3-cm (0.5-in.) diam cable leading from the meter. This cable, with attached probe, can be purchased in desired lengths. The meter has a recorder output terminal.

This unit has been used, primarily, in pipes with high velocity discharges and in small open channels. Although the unit is portable, it is rather heavy and not suited to a one-man operation for gaging streams. Since yelocity readout is affected by probe orientation, the probe must either be held by hand or fixed on a rigid rod when taking measurements. The price (\$2,500) and complexity of this unit Pohibits rough handling or any service in the field.

A trial run of this instrument (see Section E) when it was first received resulted in meter fluctuations of 0.3 fms at a full

⁽Correspondence Only) National Bureau of Standards, Hydraulics Section, Washington, D.C. 20234 - (Meters should be sent to) National Bureau of Standards, Hydraulics Section, Route 705, Quincy Orchard Road, Gaithersburg, Md. 20760

^{**} Model 721, Marsh-McBirney, Inc., 10453 Metropolitan Avenue, Kensington, Md. 20795

scale setting of 1 fps while being held at a single position in a flowing stream. As a result of this, the meter was returned to the factory and an alternate 5-sec "time constant" was added to dampen out meter fluctuations. With this addition the instrument has a toggle switch to select the standard, 1-sec time constant* or alternate 5-sec constant. This addition has greatly increased the usefulness of the instrument.

E. PRECISION OF THREE MEASUREMENT METHODS

Soon after the section received the Marsh-McBirney current meter (MMCM) a water course was sought in which it could be compared with the Price type pygmy current meter (PPM). As a result of a previous investigation, the weir pool upstream of a 61-cm (24-ih.), sharp-crested, contracted, rectangular weir** was selected. With this discharge it was possible to get three independent flow rates simultaneously. These three rates were: (1) the rated wair discharge, (2) the rate resulting from MMCM velocity readings and the weir pool cross-sectional area (plane parallel to weir bulkhead), and (3) the rate resulting from the PPM velocity readings and the pool cross-sectional area.

The cross section selected was about 2.13 m (7 ft) upstream from the weir bulkhead, had formed vertical sides 1.83 m (6 ft) apart, and was relatively uniform in depth. The arithmetic mean

^{*} After positioning probe, user must wait three times the time constant before recording a velocity reading

^{**} Midwest Solvents Company discharge in Atchison, Kansas

depth (25 measurements) was 30.7 cm (12.1 in.) with max and min depths being 35.6 cm (14.0 in.) and 26.7 cm (10.5 in.), respectively

Traversing of the cross section began at 1115 hr and ended at 1535 hr June 3, 1972. Using both the MMGM and PPM, which were mounted on essentially identical wading rods, velocity measurements were made at 7.6-cm (0.25-ft) intervals across the section at depths of 6.1, 12.2, 18.3, and 24.4 cm (0.2, 0.4, 0.6) and 0.8 ft).

The weir head during the cross sectioning ranged from 18.9 cm (0.62 ft) to 20.4 cm (0.67 ft) and the mean head (8 readings) was 19.8 cm (0.65 ft).

Table XIX shows the flow data resulting from cross sectioning with each of the two meters. The weir discharge rate and a summation of the incremental flow rates resulting from each meter were as follows:

	. · b			
	1/sec	cfs -		
Weir	93.2	3.29		
Price Pygmy Meter (PPM)	, 117.2	4.14		,
Electromagnetic Current Meter (MMCM)	98.8	3.49	· •	
Mean	103.1	3.64	*(10 to	14 percent)

These data would indicate that under ideal circumstances the section cannot determine flow rates any closer than *10 percent. It should be pointed out that in routine surveys the section would never take 96 velocity readings in a 1.83-m (6-ft) cross section

TABLE XIX

SUMMARY OF FLOW DATA OBTAINED USING A PRICE TYPE PYGMY METER (PPM) AND A MARSH MCBIRNEY CURRENT METER (MMCM)

		•		•	•			_		•		
Distance From Initial Point, ft(a)	0.	00	0.	25	0.	50	0.	75 .	1.	00	1.	25
Depth, ft(a)	1.	08)-e	08	. 1.	12	1	08 ~	 	17	} . ,	08
Area, ft ^{2(b)}	0.	27	0.	27	0.		0.		┼──	29	0.	
Depth From Water Surface Of Velocity						Veloci	<u> </u>				*	
Measurement, ft(a)	PPM	ИМСМ	PPM	MMC4	PPM	MMCH	PPH	МИСН	PPM	MHCM	PPM	HHOH
0.2 0.4 0.6 . 0.8	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.08 0.04 0.07 0:05	0.0 0.0 0.0 0.0	0.06 0.06 0.02 0.04	0.0 0.0 0.0 0.0	0.23 0.09 0.03 0.02	0.20 0.00 0.00 0.00	0.17 0.12 0.07 0.03	0.15 0.05 0.00 0.05	0.45 0.20 0.069	0. 20 0. 30
Méan	0.00	0.0	0.06	0.0	0.05	0.0	0.09	0.05	0.10	0.04	_	0.13
Discharge, cfs(c)	0.00	0.Ò	0.016	0.0	0.014	0.0	0.024	 	<u> </u>	-	0.065	
Velocity Ratio PPM/HMCM	1.	-		-	*.		2,		2.0	<u> </u>	2.	

·	ζ.						-		_			
Distance From Initial Point, ft(a)	¥1.	50 .	1.	.75 .	2.	00	1 2	.25	1	50	1.,	75·
Depth, ft ^(a)	1.	08	 	08	╆──		+	.00	+	00 .	+	/३
Åréa, ft ^{z(b)} .	. 0.	27	o.	27	0.	25	0.	25	0.		 	
Depth From Water Surface Of Velocity						Ve loci	ty, fp	<u> </u>	1 · ·	•		
Measurement, ft(a)	RPM	имам	PPM	ммсн	PPM	HMO1	PRM	HÌMCM	' PPM	ММСМ	PPM	ниси
0.2 0.4 0.6 0.8	0.56° 0.43 0.22 0.09	0.20 0.40 0.40 0.40	0.74 0.86 0.42 0.16	0.60 0.60 0.50 0.15	0.96 1.11 0.80 0.38	0.70 0.70 0.60 0.20	1,21 1,25 1,05 0,57	0.75 0.85 0.85 0.65	1.32 1.24 1.09 0.80	1.00< 1.05 0.80	1.42 1.28 1.11	1.00 1.10 0.90 0.80
Mean	O. 32 🛰	0435	Q.54	0.45	0.81	0.55	1.02	0.80	1.12	0.90	1.14	
Discharge, cfs (c)	0.086	0.094	0.	0.22	0.202	0.137	0. 255	0.200	0.280			
Velocity Ratio PPM/FMCM	1.9	9Ó.	1.7		1.5		1.:		1.7		• 1.2	Щ,

⁽a) Multiply by 0.3048 to obtain m
(b) Multiply by 0.0929 obtain sq m
(c) Multiply by 1.7 to obtain cu m/min

TABLE XIX (CONTINUED)

SUMMARY OF FLOW DATA OBTAINED USING A PRICE TYPE PYGMY METER (PPM) AND A MARSH MCBIRNEY CURRENT METER (MMCM)

٠,٠						ω .	•					
Distance From Initial Point, ft(a)	3.	00	3.	25	3.	50 '	3.	75	4.	00	4.	25
Depth, ft ^(a)	- 1.	00 -	0.	96	0.	96	0.	96	Ö.	96	0.9	92
Area, ft ^{2(b)}	0.	2 5	0,	24	0.	24	0.	24	0.	24	0.	23
Depth From Water	Velocity, fps					<u> </u>						
Surface Of Velocity Measurement, ft ^(a)	PPM	МНСН	PPM	нисн	PPM	ммсн	PPM	HHCH	PPM	MMCH	PPM	MOMEN
0.2 0.4 0.6	1.39 1.24 1.08 0.77	1.15' 1.05 0.90 0.65	1.33 1.20 1.00 0.67	1.15 1.05 0.80 0.65	1.30 1.14 0.86 0.28	1.20 1.05 0.90 0.50	1'.38 1.25 1.06 0.60	1.15 1.05 0.80 0.50	1.35 1.22 0.96 0.38	1.20 1. 05 0.90 0.15	1.38 1.22 1.00 0.20	1.25 1.15 1.00 0.30
Hean .	1.12	0.95	1.05	0.90	0.90	0.90	1.07	Q. 85	0.98	0.80	0. 95 -	0.90
Discharge, cfs(c)	0.280	0.238	0.252	0.216	0.216	0.216	0.257	0.204	0.235	0,192	0.218	0.207
Velocity Ratio PPH/MMCM	1.	20	1.	15	1.0	00	1.	25	1.	20	1.0)5

												•
Distance From Initial Point, ft(a)	-41	50 -	4.	75	5.	00	5.	25	5.	50 .	5.	75
Depth, ft(a)	, 0.	92	. 0.9	92	0.	92	0.	92 (0.	88	0.	88
irea, ft ² (b)	0.	23	• 0.:	23	. 0.	23 •	0.	23	0.	22 🗪	· 0.	22
Depth From Water Surface Of Valocity		_ `	,		20	Veloci	ty, fp	5 - \m			4_	
Measurement, it(a)	PPM	MHQ1	PPM	ММСМ	PPM	MMCM	,PPH	имсм	P PM	MHCM	PPM	ммси
0.2 .0.4 0.6 0.8	1.38 1.21 1.01 0.62	1.25 1.10 0.95 0:80	1.37 1.29 1.07 0.65	1,35 1,15 0,96 0 50	1.38 1.30 1.23 0.84	1.30 [°] 1.20 1.00 0.80	1.12 1.04 1.29 0.81	1,00 0,80 0,90 0,55	0. 66 0.76 0.80 0.46	0.70 0.65 0.75 0.50	0.57 0.74 0.65 0.26	0.60 0.60 0.45 0.25
Mean	1.05	1.00.	1.09	1.00	1.17	1.10	1.07	0.80	0.67	0.65	0.56	0.50
Discharge, cfs(c)	0.242	0.230	0.251	0.230	0.274	0.253	0.246	0 184	0.147	0.143	0.123	0.110
Velocity Ratio PPM/MMCH	1.0)5	1.	10	, 1,1	10	1,:	35	1.0	05	1.	10

⁽a) Multiply by 0.3048 to obtain m

⁽b) Multiply by 0.0929 to obtain sq m

^{&#}x27;(c) Multiply by 1.7 to obtain cu m/min

that was only 30.7 cm (12.1 in.) deep. In routine work a max of twelve measurements would have been taken. General flow measurement precision in routine surveys is probably on the order of 20 or 25 percent.

VI. CONCLUSIONS

As a result of experience, sampler comparison studies, and accumulated survey information, the Field Investigations Section has reached the following conclusions:

- . 1. Overall failure rate of commercially available samplers is approximately 16 percent.
- Major cause of sampler malfunction is due to plugging of intake lines.
 - 3. Operational reliability of commercially available samplers varies significantly and application is a major factor in selecting appropriate equipment.
 - 4. Variations in nonfilterable solids concentrations of raw maste samples as a result of differences in sampling equipment or collection method are at least 9 to 24 percent.
 - 5. Currently available sampling equipment cannot be relied upon to produce representative samples.
- 6. High vacuum samplers produce more representative samples and should be used on raw municipal wastewaters and other wastes with significant levels of large heavy suspended material.
- 7. Any sampler compatible with site conditions and data requirements can be used to sample well-treated effluents with no visible solids.
- 8. Flow-proportional sampling of raw municipal wastewaters with currently available sampling equipment is neither necessary nor justified.
- 9. Adequate discrete grab sampling programs for routine surveys and monitoring of municipal wastewaters require an inordinate amount of laboratory resources and should be replaced with automatic compositing equipment.
- 10. Current sampling equipment and methodologies need to be refined to improve data reproducibility and accuracy.

- il. Apparent wastewater chemistry characteristics and facility removal efficiencies can easily be manipulated by choice of sampling equipment and methodology.
- 12. There is need for development of a synthetic suspended solids waste to evaluate sampler performance under controlled laboratory conditions.
- 13. Under ideal conditions the precision of flow measurement by section personnel is ±10 percent.

APPENDIX

NAMES AND ADDRESSES OF MANUFACTURERS AND SUPPLIERS OF SAMPLERS LISTED IN TABLE I

Sigmamotor Model WA-2 and WD-2

Sigmamotor, Inc. 14 Elizabeth Street Middleport, New York 14105

Brailsford Model EV-1, DU-1, and EP-1

Brailsford and Company Milton Road Rye, New York 10880

Hants Mark 38.

Testing Machines 400 Bayview Avenue Amityville, New York, 14701

ISCO Model 1391 and 1392

Instrumentation Specialties Company P. O. Box 5347 Lincoln, Nebraska 68505

Sirco MKV7S

Sirco Controls Company 401 Second Avenue West Seattle, Washington 98119

Pro-Tech C6-125P

Pro-Tech, Inc. Roberts Lane Malvern, Pennsylvania 19355

QCÈC Model CVE

Quality Control Equipment Company 2505 McKinley Avenue Des Moines, Iowa 50315

N-Con Scout, Surveyor, and Sentinel

N-Con Systems Company, Inc. Clean Waters Building New Rochelle, New York 10801

BIBLIOGRAPHY

- 1. Shelley, P. E., and Kirkpatrick, G. A., "An Assessment of Automatic Sewer Flow Samplers," Prepared for Office of Research and Monitoring, U.S. Environmental Protection Agency, EPA-R2-73-261, Washington, D. C. (1973).
- 2. "Standard Methods for the Examination of Water and Wastewater," 13th Ed., Amer. Pub. Health Assn., New York, N. Y. (1965).
- 3. Youden, W. J., "Statistical Techniques for Comporative Tests," Assn. of Offic. Anal. Chemists, Washington, D. C. (1973).
- 4. "Water Measurement Manual," 2nd Ed., U.S. Dept. of Interior, Bureau of Reclamation (1971) Available from Super. of Documents, U.S. Gov. Printing Office, Washington, D. C. 20402 Order No. I 27.19/2: W29/2.
- 5. "Hydrographic Data Book," 8th Ed., Leupold Stevens, Inc.,
 P. O. Box 25347, Portland, Oregon 97225.
- 6. "Flow Tables for Circular Pipes," Manning Environmental Corp.,
- 7. "Stream-Gaging Procedures," Water Supply Paper 888, U.S. Dept. of Interior, Geological Survey (1962) out of print.
- 8. Bauer, S. W., and Graf, W. H., "Free Overfall as Flow Measuring Device," Jour. Irrigation Drain. Div. Proc. Amer. Soc. Civil Engr., 97, IRL, 7987 (1971).
- 9. "Peerless Pump Cat. B-127," Peerless Pump Div., Food Machinery and Chem., Corp., 301 West Ave. 26, Los Angeles 31, Calif.
- 10. Smoot, C. W., "Orifice Bucket for Measurement of Small Discharges from Wells," Water Resources Div. Bull., Illinois Water Survey, Champaign, Illinois, Nov. (1963).
- 11. "Memos from Smitty," Water Well Journal, May-June (1955).
- 12. King, W. K., and Brater, E. F., "Handbook of Hydraulics,"
 5th Ed., McGraw-Hill, New York (1963).
- Davis, C. V., and Soremsen, K. E., "Handbook of Applied Hydraulics," 3rd Ed., McGraw-Hill, New York (1969).

	<u> </u>	4
TECHNICAL R	EPORT DATA he reverse before completing;	· 2 A
1 REPORT NO EPA 907./9-74-005	· 3. RECIPIENT'S ACCE	SEION'NO.
4 TITLE AND SUBTITLE	5 REPORT DATE	
•	June 1974 -	Tssue ·
Washewater Sampling Methodologies and		ANIZATION CODE
Flow Measurement Techniques		•
7 AUTHORISI	S. PERFORMING ORG	ANIZATION REPORT NO.
Daniel 1 Leans and Hilliam 1. Koffen		
Daniel J. Harris and William J. Keffer		
3 PERFORMING ORGANIZAT ON NAME A DADDRESS	10 PROGRAM ELEMI	ENT NO.
U.S. Environmental Protection Agency, Regi	1	
1735 Baltimore - Room 249	11 CONTRACT/GRA	NT NO.
Kansas City, Missouri 64108		• .
		<u>.</u>
12 SPONSORING A SENCY NAME AND ADDRESS	L Company of the Comp	AND PERIOD COVERED
	Technical Stud	ies 10/72-11/73
, , ,	2	• •
. '	,	
15 SUPPLEMENT ARY NOTES		
•	A'	20130
The Superintendent of Documents classific	ation number is: EP 1.2:W2	
16 ABSTRACT		
wastewater samplers is presented. The res studies are reported which indicated signi chemistry of samples collected concurrentl manual sampling methods. High vacuum samp of nonfilterable solids which were in some levels found in samples collected by slowe Minimum variations in solids data directly collection methods were on the order of 9 methods related to wastewater sampling act three independent flow measurements were f	ficant differences in the way by different automatic collers were found to collect instances two and three tir acting samplers and by matraceable to differences it 24 percent. Hydraulic mivities are discussed. The	mastewater ompositors and concentrations imes as great as inval methods. in samplers and measurement e precision of
	CUMENT ANALYSIS	
DESCRIPTORS	b. IDENTIFIERS/OPEN ENOEQ TERMS	CORATI Field/Group
wastewater sampling, sampling equipment, field sampling techniques, sampler performance, wastewater characterization,		
treatment plant performance		
		<u> </u>
INITIAL PRINTING FOO Canica / Augilahio	19 SECURITY CLASS (This Report)	130
Initial Printing - 500 Copies / Available	20 SECURITY CLASS (This page)	22. PRICE
upon application to Region VII Public office or through NTIS on microfiche	== == ····· Garage [17] page/	
(ris or unrough Hils on microfiche		

TITLE AND SUBTITLE

INSTRUCTIONS

- 1. REPORT NUMBER
 Insert the EPA report number as it appears on the cover of the publication
- 2. LEAVE BLANK
- 3. RECIPIENTS ACCESSION NUMBER
 Reserved for use by each report recipients
- Title should indicate clearly and briefly the subject coverage of the report and be displayed prominently. Set subtitle if used, in small type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume number and include subtitle for the specific title.
- 5. REPORT DATE

 Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected fe g., date of issue date of approval, date of preparation etc.
- . PERFORMING ORGANIZATION CODE
 - , Leave blank
- 7. AUTHORIS)
 Give name(s) in conventional order John R. Doc. J. Robert Doc. etc.) List author's affiliation if it differs from the performing organization.
- 8. PERFORMING ORGANIZATION REPORT NUMBER
 Insert if performing organization wishes to assign this number
- 9 PERFORMING ORGANIZATION NAME AND ADDRESS
 Give name, street city, state, and ZIP code. List no more than two le-cls of an organizational hirearchy
- PROGRAM ELEMENT NUMBER

 Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.
- 11. CONTRACT/GRANT NUMBER Insert contract or grant number under which report was prepared
- 12. SPONSORING AGENCY NAME AND ADDRESS Include ZIP code.
- 13. TYPE OF REPORT AND PERIOD COVERED Indicate interim final, etc., and if applicable, dates covered.
- 14. SPONSORING AGENCY CODE Leave blank
- 15. SUPPLEMENTARY NOTES

 Enter information not included elsewhere but useful, such as Prepared in cooperation with, Translation of, Presented at conference of To be published in, Supersedes, Supplier and etc.
- 16. ABSTRACT
 Include a brief (200 words or less) fa. tual summary of the most significant information contained in the report. If the report contains significant bibliography or literature survey mention it here
- 17. KEY WORDS AND DOCUMENT ANALYSIS

 (a) DESCRIPTORS Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used as index entries for catalogues.
 - (b) IDI NTIFIERS AND OPEN ENDLO TERMS. Use identifiers for project names, code names, equipment designators etc. Use open ended terms written in descriptor form for those subjects for which no descriptor exists:
 - (c) COSATI FIELD GROUP Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the misority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will folious primary posting(s).

 DISTRIBUTION STATEMENT
- Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any availability to the public, with address and price

 19. & 20. SECURITY CLASSIFICATION
- DO NOT submit classified reports to the National Technical Information service.

 21. NUMBER OF PAGES
 Insert the total number of pages, instuding this one and unnumbered pages, but exclude distribution list, if any
- 22. PRICE
 Insert the price set by the National Technical Information Service or the Government Printing Office, if known

Supplement II

WASTEWATER SAMPLING METHODOLOGIES AND FLOW MEASUREMENT TECHNIQUES

Evaluation of The Quantum Science Limited Model QS-3000.

by

Robert L. Greenall

April 19, 1976

Manufacturer:

Quantum Science Ltd. 27 St. Georges Road

Cheltenham, Glos. G.L. 50 3 DT

England -

∵Price: ′

\$171.00 (As of October 16, 1975)

Type of Sample:

Flow related or time average, isokinetic

sampling

Time-Composite Range:

3 hours to 8 days

Sample Size:

3 liters maximum (0.79 galloms)

Construction Material: The sample chamber is unplasticized polyvinyl chloride. All other parts with the exception of the regulator are polyprophlene.

Sampler Description

The QS-3000 sampler offers a unique approach to liquid sampling. It has no moving parts, and requires no power to operate. The sample chamber is immersed in the sample stream, and the sample is forced by hydrostatic pressure through a 60mm (.236 inches) inlet into the chamber. The sampling rate is determined by the rate of air release, which is controlled by the adjustable regulator and the depth of liquid above the inlet. The sample can be collected in either a flow related or time related manner. Due to the design of the inlet plug, samples are reportedly collected isokinetically. The following is a diagram and major parts list of the QS-3000.

- 1. Air regulator controlling sampling rate.
- 2. Coupler connecting regulator to a snorkel, or the TA inlet ring (see below).
- 3, Fixing arm.
- 4. Snorkel coupler allowing more snorkels to be used in deep water.
- 5. One or more snorkels (3 are supplied as standard).
- 6. Sample chember.
- 7. Blank plug.
- 8. Inlet plug.

For a more detailed description and operating procedure, refer to the attached brochure.

Evaluation Procedure

Field Test

The sampling performance evaluation of the QS-3000 was done at the Kansas City, Kansas Kaw Point Sewage Treatment Plant (STP) Effluent. The solids content of the primary effluent is high enough to rigorously test the ability of the sampler to collect a sample with a representative content of suspended solids. The samples collected were compared with those collected by an Isco 1392 installed at the same location. The Isco 1392 was chosen for comparison because it is the sampler most often used by Water Section personnel to sample STP effluents, and because its' sampling capabilities are as good as any sampler available at this time.

The QS-3000 was installed in the clarifier trough by clamping the snorkel to trench jacks which were wedged across the trough. The Isco sample inlet was placed nearby in the same trough. Samples were collected from both samplers for 3 days. They were analyzed at the Regional Laboratory for chemical oxygen demand (COD), non-filterable solids (NFS), and ammonia (NH3).

Laboratory Test

A laboratory test was conducted to determine if the QS-3000 sampled at the rate at which the regulator was set. The sampler was immersed in a 20 gallon (76 liters) aquarium and allowed to sample for 24 hours. The test was performed on 2 days.

Results

The results obtained from the comparison test with the Isco 1392 are presented below:

March 8-9

	•		•		
			: ISCO	QS-3000	Difference
		COD	938 mg/1	908 mg/1	2%.
,	•	NFS.	164 mg/1	'196 mg/l	9%.
•	•	NH3	18 mg/1	16 mg/1	6%
March	10-11		. '		. (*
• .	~	COD	840 mg/1	875 mg/1	. 2%
	۴.	NFS	164 mg/1	213 mg/1	13%
J	٠,	NH3	.16 mg/1	14 mg/1.	.7%
March	11-12				
, •	•	COD .	610 mg/1	660 mg/l	4%
بند	•	NFS	112 mg/1	152 mg/l	15%
		NH ₃	15 mg/1	14 mg/1/7	3%.

The average percent difference of the daily results for COD, NFS, and NH3 are 3%, 12%, and 5% respectively. The percentages are within expected random error for their respective analysis.

The following results were obtained from the laboratory test.

ua te	3-18	•	, 3–19 .
Sampling Time Depth of Water	24 hrs. 37 cm		24 hrs.

Depth of Water 37 cm 35 cm 35 cm Regulator Setting 1.5 liters/24 hrs. 0.75 liters/24 hrs. Sample Collected 3.5 liters 2.8 liters

The sampler collected more than two (2) times the amount for which it was set.

Discussion

The comparison demonstrated that the QS-3000 is suitable for use as a was tewater and stream compositor. The percent differences of the analytical results are within expected random error for the analyses. The character and amount of suspended solids of the waste effluent were such that similar results should be expected if a stream test was conducted.

The results from the laboratory test do not correlate with the observations gained during field testing. The level of the was tewater in the Kaw Point clarifier was not constant therefore no exact testing of sampling rate could be done. The regulator was set at an approximate average head, and the amount of sample collected was observed to be less than the setting. This observation did not confirm the results obtained from the laboratory test.

The laboratory test was not an ideal test. The liquid was static while the field testing was done in a moving stream. Ideal testing of sampling rate should be done in a moving stream at a stationary head.

Several problems were noted in use of the QS-3000. It is difficult to submerge an air filled container with a volume of approximately three (3 liters (183 cubic inches). It must be either weighted or braced in position in order to remain submerged. This requirement introduces the other problem. There are no mounting brackets on the sampler. During testing it was ecured by clamping the snorkel, but this part is not substantial enough to hold the sampler in a swift stream. Chances of breaking the snorkel and losing the sampler are too great. A metal harness for the sample chamber will have to be fabricated for future use.

The over-all performance of the QS-3000 was very good. Considering performance, initial cost, ease of use and maintenance; the sampler could be a very useful piece of equipment for future sampling needs.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY SURVEILLANCE AND ANALYSIS DIVISION

REGION VII
25 FUNSTON ROAD
KANSAS CITY, KANSAS 68118

February 4, 1976

Mr. Dick Fleenor c/o Manning Environmental Corporation 120 DuBois Street P.O. Box 1356 Santa Cruz, California 95061

Dear Mr. Fleenor:

Attached is the brief report of our efforts to use the sonar-type flowmeter you loaned to us for evaluation. Basically, we had considerable difficulty in establishing the calibration of the unit for a temporary installation. You will note, we apparently had some interference due to the spread of the signal cone and due to the lack of an adequate portable support for the transducer. The flow chart which was obtained from the trial of this unit is attached. The chart shows remarkable stability as shown by the zero points which occur during the nighttime hours when the pump is shut off on both days of record. The comparison of the flow record obtained from your sonar meter and the plant permanent flow recorder differ by 20 percent which is a significant volume of water. This error could be caused by an error of approximately one inch in the calibration of the unit which, as you can read in the attached report, could have been easy to make.

I am not too familiar with the capabilities of the sonar-type unit and the requirements for targets for calibration, but some very specific instructions and techniques for setup will be required to make this unit perform with optional accuracy for temporary field setups.

Sincerely,

William J. Keffer

Chief

Water Section

Attachments

A QUICK EVALUATION OF THE USE OF THE MANNING UTL-2100 ULTRASONIC LEVEL TRANSMITTER

Βv

Harry Kimball

U.S. Environmental Protection Agency, Region VII

Surveillance and Analysis Division

February 4 1976

The purpose of this report is to outline the procedure used in setting up and the problems encountered with the Manning UTL-2100 Ultrasonic Level Transmitter plus some suggestions for future use.

The Level Transmitter was loaned to the U.S. Environmental Protection.

Agency by the Manning Environmental Corporation and was used at the treatment plant at Westpoint, Nebraska, January 21 thru January 23, 1976

The Level Transmitter was installed on a six-inch Parshall flume with the use of a tripod. The transducer was located so that there was about two feet of space between the face of the transducer and the highest expected level of flow. (Experimentation in the lab showed that about two feet of space was necessary for proper operation.)

The distance from the face of the transducer to the bottom of the flume

was measured to be 44 inches. The transducer was then removed and positioned over a manhole cover for calibration. This is where problems were encountered. The tripod was not tall enough to hold the transducer 44 inches above the target (manhole cover). One member of the team had to hold the transducer 44 inches above the target while another set the range as described in the attached Calibration instruction sheet. It was difficult to hold the transducer absolutely at the right height and level which caused the meter to jump while it was being zeroed. Also, the presence of the person holding the transducer will cause a change in the reading. (This was determined in the lab before the field test.) Another possible source of error was the fact that the manhole cover had three rights 1/2-inch high and 3/4-inch wide on top of it.

The transducer was then positioned 23 inches above the target.

This could be done with the tripod. The span was set according to the Calibration instruction sheet. This gave a span of 21 inches (from 44 inches to 23 inches. It was placed 44 inches above the bottom of the flume in a limit position (there is a bubble on the top of the transducer for this purpose) and secured with fiberglass tape.

Due to the fact, that the meter could not be brought to zero or 100 without the echo light remaining on (see the Calibration sheet), the meter readings at the 44- and 23-inch distances were marked on the strip chart recorder. This left the 21-inch span with 47 units on the paper tape instead of fifty.

The instrument case with strip chart recorder was wrapped in a plastic bag and set on the ground. The case appeared to be well sealed against moisture, but the plastic bag was used for added protection against frost.

The first and most important recommendation is the use of a tall stripod. The largest source of error is probably in the calibration of the instrument. The setting of the range was very rough due to the lack of a solid support. A collapsible five-foot tripod would have increased the precision of the range calibration substantially. It would be best if the tripod were designed so that the leveling of the transducer could be done with thumbscrews rather than by moving the tripod, which also changed the height of the transducer.

A steel target should be carried by the operator for calibration rather than relying on finding a manhole cover or something else at the treatment plant.

CALIBRATION

CAUTION: DO NOT OPERATE THIS UNIT WITH TRANSDUCER DISCONECTED.

- 1. Turn power on
- 2. Turn span and range pots CCW to stops
 Perpendicular a) exactly upright or vertical, b) being at right angles to a given line or plane

Note: In all cases, the Transducer face must be parallel to the surface being measured, so the beam will be perpendicular to the surface.

- 3. Set target at zero level (minimum level, no flow, maximum distance)
- 4. Turn range pot CW until echo light stops flashing, then turn slowly CCW until meter reads zero % (Note: echo light may flash occasionally, but not regularly. Tweak pot if necessary)
- 5. Move target to max level (Full flow, minimum distance)
- 6. Turn span pot CW until echo light stops flashing, then CCW until
 . meter reads 100%. (The echo light may flash occasionally, causing
 the meter to jump above 100%. Tweak pot for 100%)

ECHO LICHT

What it Tel'ls You,

Power On, Calibration Switches Down

OFF: Good Echo, In range, in span

FLASHING: Good Eche, out of range, span, or both

ON; Inadequate (bad) echo

Note: False Indications

1. If power off or low

- 2. If gain too high (meter over 100% and echo light out)
- 3. Unit improperly grounded (meter over 100%, or bouncing around)

GAIN (Aiming the Transducer)

Lift meter switch up, the meter now indicates the strength of the returned echo. With the target at min. level (zero, max distance from Transducer) aim the Transducer from a maximum indication.

- 1. If over 100% reduce gain (CCW)
- 2. If under 70% increase gain (CW)

It is normal for the meter be bounce about 10%, if it periodically bounces above and below this amount, either the target is moving (ripples, waves turbulent air between Transducer and surface) or the unit is improperly grounded.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY SURVEILLANCE AND ANALYSIS DIVISION

REGION VII 25 FUNSTON ROAD KANSAS CITY, KANSAS 00110

February 4, 1976

Mr. Dick Fleenor Manning Environmental Corp. 120 DuBois Street P. O. Box 1356 Santa Cruz, California 95061

Dear Mr. Fleenor: .

We appreciate the opportunity to test the prototype Portable Discrete Wastewater Sampler Model #4040 which you recently sent us. As we have discussed before, we feel that this unit and its predecessor the S-4000 are among the most flexible and desirable units on the market today. We have used the compositor for several weeks in various sample collection efforts and are now packing it up to ship it back to you.

Basically the unit is similar to the \$-4000 in that it operates with a vacuum pump off a 12 volt lead acid battery contained in the case. The intake velocity with the sample hose sublied is \$-5.0 to \$-5.1 fps at a \$-600t suction head. The unit supplied to us operated through \$-5.0 days of hourly sample collections of \$-300 ml samples at a \$-600t suction head with one fully charged battery as supplied.

Specific comments by our field staff are listed below and should be evaluated from the perspective that we do feel this is one of the best units on the market today.

A. Specific Attractions .

- 1. The new quick connect intake hose fitting is a real time, saver, especially during cold weather, and performed flawlessly during our trials.
- 2. Addition of the samples/bottle-bottles/sample option significantly increases the range of application of this unit.
- 3. Sealing the controls against the atmosphere in the installation sides should improve the longevity of the circuitry.
- B. Areas of Needed Improvement
 - 1. The normal way we carry the compositor to and from each site is by one handle. In this position the lead acid

battery routinely leaked on the components of the sampler mechanism, on the ground, and occasionally on the clothes of the sample collector.

- The case hardware and fit of the components is still not ideal. As received from you, some of the latches were loose and by the time we had used the unit for a month it was necessary to take numerous extra precautions to keep the parts together.
- 3. The manual cycle switch which was on the S-4000 and has now been deleted was a very desirable feature and should have been retained. We routinely use this to check performance at each installation prior to leaving the site.
- 4. The ice compartment is still not large enough to maintain 4°C during the summer and the shape of the bottles is not conduct to removing all the solids when measured quantities are removed for preparation of whole composites.
- 5. We frequently have access to 110 Volt AC at sampling sites and it would be a distinct advantage to have the compositor capable of AC-DC operation.
- 6. Our limited experience with the new type sample aliquot
 size mechanism is that it is a large step backward. The
 knife edge slot created by the spiral slotted sleeve tends
 to catch any stringy solids and cause the volume of the
 samples collected to vary considerably during the composite
 period.
- 7. A-quick connect fitting on the distributor arm similar to that on the intake hose would facilitate use of the #4040 with a single bottle and increase its flexibility.

I hope this review suits your expectations and we will be pleased to cooperate in similar efforts in the future, if you so desire.

Sincerely,

William J. Keffen Chief

Water Section

SUBJECT:

Sigmamotor LMS 400 Flowmeter Serial Numbers 118

DATE: July 16, 1975

and 127

FROM:

Daniel J. Harris Sanitary Engineer -3

10:

All Water Survey Staff

The subject instruments have been tested under laboratory conditions at various controlled temperatures using the following flow rate situation:

Primary Device 18-inch Parshall flume.

Head (constant): 10 inch (0.833 ft)

Flow Rate (caleulated): 2.93 mgd (4.530 ft 3/sec)

The following data indicate the maximum percentage variation in flow at the three temperatures which were selected:

Temperature		Instrument	Serial Number
<u>°C</u> , <u>°F</u>		118	127
2 5 77	g to a constant	0	-2
5 41 .	g the install	-3	-4.
46 114	*	+10	- +3
30 86		-1	2

Over the four-day testing period, the mean daily flow rate of instrument No. 118, as determined from the instrument totalizer, was within 0.5 percent of the calculated rate. The totalizer reading of instrument No. 127 was also within this percentage.

Previous difficulties with these instruments are considered to be eliminated and the subject equipment fully suitable for field work.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

SUBJECT. Evaluation of the Instrumentation Specialties

DATE: July 23, 1975

Company (ISCO) Mode: 1700 Flow Meter

FROM:

Daniel J. Harris

Sanitary Engineer, Water Section, Region VII

TO

Files

The prototype of the subject instrument, which was not in production at the time of this writing, was loaned to the Water Section for evaluation. This memorandum reports the results of a laboratory test which was run on the ISCO 1700 and presents an appraisal of the instrument features.

A brief list of pertinent specifications of the 1700 Flow Meter follows:

Sensor: Head level pressure detector

Power Source: 12-v DC or power pack for 112-v conversion

Pressure Source: Internal air pump and tank

Size: Length 18.5 in. (with battery)

Height 10.1 in.

Wi 10 in.

Shart Recorder: None, has output terminal

Totalizer: Direct read out, no conversions - can be reset

to zero

Bubble Rate: Adjustable externally

Head Range: 0-1, 0-2, and 0-3 ft

Case: Heavy plastic, reportedly waterproof

Case Latenes: Plastic

'<u>⊬rice</u>: `Not availab]e

The subject instrument was tested at various temperatures under laboratory conditions using the following simulated situation:

Primary Device: 18-inch Parshall flume

Head: 10 inches (0.833 ft)

Formula:
$$0 = 4 \text{ M Ha}$$
 1(522W 0.026

where Q'- thin rate, its

W = throat width, ft

Ha 🎏 √ Head, ft

$$Q(0.833 \text{ ft}) = 4.530 \text{ ft } 3/\text{sec}$$

Instrument Settings:

Range = 1 ft

Scaling constant = 6.00 ft 3/sec*

*Flow rate through 18-inch Parshall flume with 1-ft head.

. The following table indicates the temperatures at which the instrument was tested and the flows taken from the instrument flow totalizer as well as the calculated elapsed flows.

Date July 1975 M	Time Hilitar <u>y</u>	Temp.	Elapsed 'Time Seconds	Totalizer Reading ft ³	Calculated Total Flow ft ³	Remarks
14 14	1140 1152 1244 1506 2016 1720 1730 0733 1037 1247 1515 1758 0732 1247 1445	25 25 25 25 25 25 25 42 46 31 30 30	0 720 3,840 12,360 30,960 106,800 107,400 244,380 255,420 263,220 272,100 281,880 330,720 349,620 356,700	0 3,090 17,450 55,890 137,640 480,720 481,940 1.075 x 10 ⁶ 1.12 1.161 1.2047 1.2491 1.472 1.559 1.592	0 3,261 17,395 55,990 140,248 483,804 486,522 1.11 x 10 ⁶ 1.157 1.193 1.233 1.277 1.498 1.583 1.615	Room Temperature

An examination of the table would indicate that the totalizer flows compared favorably with the calculated flows and were well within the tolerances needed for any practical application. Temperature change had no noticeable effect on the instrument other than producing some variation in water volume which resulted in minor changes in head. This change was probably responsible for the difference between the totalizer readings and the calculated flow rate.

The instrument was found to be simple to set up. The end of the 1/8 in: I.D. bubble tube does not have to be at the same elevation as the bottomer crest of the primary device. Differences in elevation (within 6 the can be zeroed out with an adjustment knob. The instrument is an equipped with a sensor which detects sudden increases in head and will momentarily increase the air flow rate. This feature reduces waiting time in setting up and calibrating the flowmeter.

The instrument requires a separate circular disk, which is read electronically by the instrument for each type of primary device. These disks are readily changed in a matter of seconds.

The instrument tested was well constructed with good quality hardware. The heavy plastic case would appear to permit a great deal of abuse.

The flexible plastic latches on the prototype are a source of concern. Field experience by the Water Section has indicated that this type of latch frequently breaks after a few months of use.

From the standpoint of simplicity and ease of finstallation, a self-contained recorder would be desirable for monitoring flow patterns.

For monitoring Meeds of various regulatory agencies, it would be useful if the case had a built-in compartment for storing the extra disks necessary for different primary flow devices:

The case was not equipped with a handle. In some monitoring, situations, such as a manhole, a surface for setting the instrument on is not available. The manufacturer should give some consideration to providing a handle or some feature which will enable a field crew to suspend the instrument. Suspension of the prototype would be supewhat difficult.

The instrument tested was not equipped with an off and, on switch.

The "zero adjust" knob of the instrument tested was found; to be extremely sensitive on the 0 to 1 foot range. Calibration of the instrument could be easily lost by inadvertently brushing against this knob. The manufacturer should consider putting a locking device on the knob.

This instrument was returned to the Instrumentation Specialties Company (ISCO) on July 18, 1975. At that time, the manufacturer indicated that a chart recorder would be made available for this instrument.

With the optional chart recorder and the minor modifications recommended, the ISCO 1700 is judged to be entirely suitable for use by the Water Section in its routine monitoring activities.

151

SUPPLEMENT 1

WASTEWATER SAMPLING METHODOLOGIES

and

"FLOW MEASUREMENT TECHNIQUES

SIGMAMOTOR MODEL MV-1

K. S. RITCHEY

JULY 24, 1975

INTRODUCTION

This report is a supplement to the Water Section's ongoing evaluation of new wastewater sampling equipment and flow measurement devices. Presented are the results of a limited laboratory and field evaluation of the Sigmamotor Model MV-1 wastewater sampler which was loaned to the section through the courtesy of the manufacturer.

SAMPLER SPECIFICATIONS

Power Supply: 112-v AC

Type of Pump: Finger Pump

Purge Cycle: Yes

Type of Sample: Time composite

Case Material: Fiberglass

Size: 13.3 x 15.2 x 34.2 inches (33.8 x 28.7 x 87 cm)

Timer: Digital type series 333 Shawnee Programmable - Mode Solid-State Timer

Sample Cycle Time: 1/100 to 99.99 minutes

Sampling Time: 1)100 to 99.99 minutes

Price: \$1,480

152

141

Sampling Collection Container: Manufacturer recommends 5 gailon (18.9 liter) container

Intake Tube ID: 0:25 or 0.375 inches (0.635 or 0.375 cm)

Motor Horsepower: 0.25

Maximum Head: 16.5 ft*(5 m)

Sample Collection Container Compartment; None

OPERATIONAL DESCRIPTION

The unit collected varying volumes of sample at preset time intervals. Sample volumes were dependent upon head, intake tube ID cycle time, and pumping rates. Pumping rates were adjustable ugh a variable gear reducer located between the pump and motor. The maximum setting of the reducer produced 450 rpm.

The output stage of the timer can have the timing sequence changed by means of external jumpers which can make the timer an interval timer, a delay timer, or a repeat cycle pulse generator.

TESTING

The laboratory phase of the evaluation was confined to determining the maximum intake velocity of the sampler using Tygon intake tubing with two different diameters. Each of the intake tubes were 25 ft (7.6 m) long and were connected to a 0.5 m (1.27 cm) ID tube which was fixed to the finger pump. The results of the tests which were run at zero head are as follows:

Setting Intake Tube ID, inches (cm) Intake Velocity, ft/sec (in./sec)

Maximum 0.375 (0.952)

1.9 (0.58)

Maximum ' 0.25 (0.635)

3.1 (0.95)

The second phase of the testing was conducted at the Kansas City,

Kansas, Kaw Point Sewage Treatment Plant. This phase was conducted to determine the operational reliability of the unit when used to sample a raw wastewater. The raw waste of the Kaw Point plant included domestic as well as industrial wastewater. From past experience, this waste was found to be very difficult to sample because of meat scraps and fiberous type material which plugged sampler intake lines, valves, and metering chambers. Pertinent information regarding the sampling situation and the instrument settings were as follows:

Sampling Head: 6 ft (1.8 m)

Intake Tube ID: 0.25 and 0.375 inch (0.635 and 0.952 cm)

Pump Setting: Maximum

Intake Tube ID

0.25 in. (0.635 cm)* 0.375 in. (0.952 cm)

Cycle Time:

1 minute

1 minute

Sample Time:

•24\seconds

18 seconds

Sample Volume Per Cycle:

350 ml

260 ml

The sampler was tested with each of the two sizes of intake.

tubes through 48 cycles. The unit did not plug or fail to take a

sample throughout the 48 cycles with either of the two intake tubes.

OPERATIONAL DEFICIENCIES

During the laboratory and field testing, the Water Section noted several operational problems with the unit which included the following:

1. The rubber gasket around the edges of the fiberglass case came loose.

- 2. There were air leaks at the tube connections which resulted in decreased sample volumes. Section personnel rectified this deficiency by securing the connections with small hose clamps.
- 3. The end of the tube on the discharge side of the pump had to be kept above the liquid level in the sample collection container. If the tube was in contact, back siphoning occurred following the purge cycle.
- 4. The air pressure bulb collected moisture which reduced the amount of air used to purge the intake tube after samoling.
- 5. When the intake tubing was in a horizontal plane, the purge cycle did not clear the intake tube.

 OVERALL APPRAISAL OF SAMPLER

When evaluating samplers, the findings of the section are or ented toward the monitoring needs of the division and tend to reflect judgements based upon past collective experience. This appraisal was written with these constraints in mind.

The variable intake velocity of the Sigmamotor Model MV-1 was a desirable feature which was not available in other equipment on the market. The heavy duty equipment used in constructing the unit appeared to make it ideal for permanent monitoring installations involving raw wastewaters with heavy suspended solids. Data were not available to indicate whether or not the maximum intake velocity of this unit was sufficient to produce representative samples of raw wastewaters.

Those characteristics which made the sampler suitable for permanent locations detracted from the usefulness of the unit for

5

the routine five and six day dompliance monitoring investigations conducted by the section. These sampler features or lack of them included the size and weight, the absence of a battery power option, and the lack of an insulated sample collection container compartment.

Based on the needs of the Water Section, the Sigmamotor Model MV-1 was not found to be a significant improvement over other wastewater/sampling equipment on the market.