





# **Material Subject: Joint Probability Distribution (Discrete)**

**Undergraduate of Telecommunication Engineering** 

#### MUH1F3 - PROBABILITY AND STATISTICS

Telkom University Center of eLearning & Open Education Telkom University Jl. Telekomunikasi No.1, Bandung - Indonesia http://www.telkomuniversitv.ac.id

Lecturer: Nor Kumalasari Caecar Pratiwi, S.T., M.T. (caecarnkcp@telkomuniversity.ac.id)







# السلام عليكم ورحمة الله وبركاته WELCOME

#### **TABLE OF CONTENTS:**

- 1. Joint Probability Mass Functions
- 2. Marginal Probability Mass Functions
- 3. Conditional Probability Distribution
- 4. Covariance and Correlation

#### **LEARNING OBJECTIVES:**

After careful study of this chapter, student should be able to do the following:

- 1. Use joint probability mass functions to calculate probabilities
- 2. Calculate marginal and conditional probability distributions from joint probability distributions
- 3. Interpret and calculate covariance and correlations between random variables



#### JOINT PROBABILITY MASS FUNCTION



For simplicity, we begin by considering random experiments in which only two random variables, called Bivariate. The Joint Probability Mass Function of the discrete random variables X and Y, denoted as  $f_{XY}(xy)$ , satisfies:

$$f_{XY}(xy) \ge 0 \tag{1}$$

$$\sum_{y}\sum_{y}f_{\chi Y}(xy)=1 \tag{2}$$

$$f_{XY}(xy) = P(X = x \text{ and } Y = y) = P(X = x) \cap P(Y = y)$$
(3)





# MARGINAL PROBABILITY MASS FUNCTION Telkom



The Marginal Probability Mass Function of the discrete random variables X and Y, denoted as  $f_X(x)$  or  $f_{Y}(y)$ , satisfies:

$$f_X(x) = P(X = x) = \sum_{y} f_{XY}(x, y)$$
 (4)

$$f_{Y}(y) = P(Y = y) = \sum f_{XY}(x, y)$$
 (5)





## JOINT CUMULATIVE DISTRIBUTION FUNCTION Telkom



Remember that, for a random variable X, we define the CDF as  $F_X(x) = P(X \le x)$ . Now, if we have two random variables X and Y and we would like to study them jointly, we can define the Joint Cumulative Function as follows:

$$F_{XY}(x,y) = P(X \le x \text{ and } Y \le y) = P(X \le x) \cap P(Y \le y)$$
 (6)





#### INDEPENDENT BIVARIATE



The random variable **X** and **Y** become **independent**, if only:

$$f_{XY}(x,y) = P(X=x) \cdot P(Y=y) = f_X(x) \cdot f_Y(y)$$
(7)

or:

$$F_{XY}(x,y) = P(X \le x) \cdot P(Y \le y) = F_X(x) \cdot F_Y(y)$$
(8)





## **COVARIANCE AND CORRELATION**



When two random variables **X** and **Y** are **not independent**, it is frequently of interest to assess how strongly they are related to one another. The **Covariance** between two random variables **X** and **Y** equal to:

$$Cov(XY) = E(XY) - E(X) \cdot E(Y)$$
(9)

Where, the joint expectation should be:

$$E(XY) = \sum x \cdot y \cdot f_{XY}(xy) \tag{10}$$

The Correlation Coefficient of X and Y, equal to:

$$extsf{Cor}( extsf{XY}) = 
ho_{ extsf{XY}} = rac{ extsf{Cov}( extsf{XY})}{\sigma_{ extsf{x}} \cdot \sigma_{ extsf{y}}}$$





#### **EXAMPLE**



Example: Will randomly pick two balls from a box that contains of three blue, two red and three green ball. If:

- X = Random variables are declared elected as a blue ball
- Y = Random variables are declared elected as a red ball
- a. Determine range of random variable X
- b. Determine range of random variable Y
- c. Determine range of joint random variable X and Y
- d. Determine the joint PMF of X and Y
- e. Determine the marginal PMF of X
- f. Determine the marginal PMF of X
- g. Are the random variables **X** and **Y** independent?
- h. If your answers are not independent, specify Cov(XY)] and  $\rho_{XY}$









### Answer:

a. Since **X** is a random variables declared elected as a blue ball, the range of **X** will:

$$R_X = \{0, 1, 2\}$$

b. Since Y is a random variables declared elected as a red ball, the range of Y will:

$$R_Y = \{0, 1, 2\}$$

c. And range of joint random variable X and Y

$$R_{XY} = \{(0,0), (0,1), (0,2), (1,0), (1,1), (2,0)\}$$









Suppose X = 0 and Y = 0, meaning that no blue or red balls are drawn. The two balls are taken from green balls. So that:

$$f_{XY}(0,0) = \frac{3C0 \cdot 2C0 \cdot 3C2}{8C2} = \frac{3}{28}$$

While X = 0 and Y = 1, meaning that no blue drawn. The two balls are taken from 1 red and 1 green ball. So that:

$$f_{XY}(0,1) = \frac{3C0 \cdot 2C1 \cdot 3C1}{8C2} = \frac{6}{28}$$

And X = 0 and Y = 2, meaning that the two balls are taken from red. So that:

$$f_{XY}(0,2) = rac{3C0 \cdot 2C2 \cdot 3C0}{8C2} = rac{1}{28}$$

In the same way, it can be calculated for  $f_{XY}(1,0)$ ,  $f_{XY}(1,1)$  and  $f_{XY}(2,0)$ .









|   |   | Υ    |      |      |
|---|---|------|------|------|
|   |   | 0    | 1    | 2    |
|   | 0 | 3/28 | 6/28 | 1/28 |
| X | 1 | 9/28 | 6/28 | 0    |
|   | 2 | 3/28 |      | 0    |

#### e. The marginal PMF of X

$$\begin{split} f_X(0) &= \frac{3}{28} + \frac{6}{28} + \frac{1}{28} = \frac{10}{28} \\ f_X(1) &= \frac{9}{28} + \frac{6}{28} = \frac{15}{28} \quad \text{and} \quad f_X(2) = \frac{3}{28} = \frac{3}{28} \end{split}$$

B LECTURER CODE. NK







$$f_Y(0)=\frac{3}{28}+\frac{9}{28}+\frac{3}{28}=\frac{15}{28} \ \ , \ f_Y(1)=\frac{6}{28}+\frac{6}{28}=\frac{12}{28} \ \ \text{and} \ \ f_Y(2)=\frac{1}{28}$$

g. Random variables **X** and **Y** independent if  $f_{XY}(xy) = f_X(x) \cdot f_Y(y)$ 

$$f_{xy}(0,0) = f_{x}(0) \cdot f_{y}(0)$$

$$\frac{3}{28} \neq \frac{10}{28} \cdot \frac{15}{28}$$

So, Random variables X and Y are not independent



#### **EXAMPLE**



i. The Cov(XY)] and  $\rho_{XY}$  are

$$\begin{split} E(X) &= \sum x \cdot f_X(x) = \left(0 \cdot \frac{10}{28}\right) + \left(1 \cdot \frac{15}{28}\right) + \left(2 \cdot \frac{3}{28}\right) = \frac{21}{28} \\ E(Y) &= \sum y \cdot f_Y(y) = \left(0 \cdot \frac{15}{28}\right) + \left(1 \cdot \frac{12}{28}\right) + \left(2 \cdot \frac{1}{28}\right) = \frac{14}{28} \\ E(XY) &= \sum x \cdot y \cdot f_{XY}(xy) = \left(0 \cdot 0 \cdot \frac{3}{28}\right) + \left(0 \cdot 1 \cdot \frac{6}{28}\right) + \left(0 \cdot 2 \cdot \frac{1}{28}\right) + \left(1 \cdot 0 \cdot \frac{9}{28}\right) \\ &+ \left(1 \cdot 1 \cdot \frac{6}{28}\right) + \left(1 \cdot 2 \cdot 0\right) + \left(2 \cdot 0 \cdot \frac{3}{28}\right) + \left(2 \cdot 1 \cdot 0\right) + \left(2 \cdot 2 \cdot 0\right) = \frac{6}{28} \\ Cov(XY) &= E(XY) - (E(X) \cdot E(Y)) = \frac{6}{28} - \left(\frac{21}{28} \cdot \frac{14}{18}\right) = -\frac{9}{56} \end{split}$$

May 10, 2020

#### **EXAMPLE**



$$\begin{aligned} \mathbf{E}(\mathbf{X}^2) &= \sum \mathbf{x}^2 \cdot \mathbf{f}_{\mathbf{X}}(\mathbf{x}) = \left(\mathbf{0}^2 \cdot \frac{10}{28}\right) + \left(\mathbf{1}^2 \cdot \frac{15}{28}\right) + \left(\mathbf{2}^2 \cdot \frac{3}{28}\right) = \frac{27}{28} \\ \mathbf{Var}(\mathbf{X}) &= \sigma_{\mathbf{x}}^2 = \mathbf{E}(\mathbf{X}^2) - (\mathbf{E}(\mathbf{X}))^2 = \frac{27}{28} - \left(\frac{21}{28}\right)^2 = \frac{45}{112} \ \ \text{then} \ \ \sigma_{\mathbf{x}} = \sqrt{\frac{45}{112}} \end{aligned}$$

$$E(Y^2) = \sum y^2 \cdot f_Y(y) = \left(0^2 \cdot \frac{15}{28}\right) + \left(1^2 \cdot \frac{12}{28}\right) + \left(2^2 \cdot \frac{1}{28}\right) = \frac{16}{28}$$

$${\rm Var}({\rm Y})=\sigma_{\rm y}^2={\rm E}({\rm Y}^2)-({\rm E}({\rm Y}))^2=\frac{14}{28}-\left(\frac{21}{28}\right)^2=\frac{9}{112}\ \ {\rm then}\ \ \sigma_{\rm x}=\sqrt{\frac{9}{112}}$$

$$\rho_{\rm XY} = \frac{-\frac{9}{56}}{\sqrt{\frac{45}{112}} \cdot \sqrt{\frac{9}{112}}} = -0.894$$







# Thank You



15/15 May 10, 2020