DEPI Graduation Project

Suppliers Chain Quality Project

Our Professor: Eng. Yasser Abdulrahman

Mohamed Selim

Youssef Ismail

Ahmed Yahia

Ahmed Hany

Ahmed Ayman

Table of contents

21

Data Overview

Summary of tables, Metadata, and dataset structure.

24

Take aways

Business recommendations based on the analysis.

02

Tech Report

Steps for data cleaning and preparation explained.

05

Next Step

Future actions or areas for further investigation.

03

Analytical Report

Key trends and findings from the data analysis.

05

Executive Summary

Summary of insights and alignment with business goals.

21 Data Overview

About The Data

This is an analysis project of Suppliers "Vendors" Quality and Manufacturing Downtime. Here we deal with a data set of how much some vendors' materials quality is.

We aim for two main objectives:

- To understand who the best and worst suppliers are.
- Identify which plants do a better job finding and rejecting defects, to minimize downtime.

Downtime is the Time during which production is stopped, during setup for an operation, when making repairs, or when stoppages occur due to supply or labor shortages. Defects are imperfections or errors of any type that affect materials.

Entity Relationship Diagram

Plants

Plant_ID Ø interpretation

Vendors

Vendor_ID Ø int

Vendor varchar

Defect_Types

Defect_Type_ID ∅ int

Defect_Type varchar

Sort int

${\bf Defect_Items}$

Date Category_ID Plant_ID Vendor_ID Defect_Type_ID Matrial_Type_ID Defect_ID Defect_qty Downtime_min

Defects

Materials_Type

Category

Table Preparation

Plant	Plant ID
, ranc	i lant ib
Grand Rapids, MI	1
Milwaukee, WI	2
Springfield, IL	3
Chicago, IL	4
Indianapolis, IN	5
Northbrook, IL	6
Detroit, MI	7
Gary, IN	8
Ioliot II	0

City	State	Plant ID
Grand Rapids	MI	1
Milwaukee	WI	2
Springfield	IL	3
Chicago	IL	4
Indianapolis	IN	5
Northbrook	IL	6
Detroit	MI	7
Gary	IN	8
Ioliet	п	a

Plant_ID Ø int State varchar

Plants

```
CREATE TABLE NewPlants (
    City VARCHAR(255),
    State CHAR(2),
    Plant_ID INT PRIMARY KEY
);
INSERT INTO newplants (City, State, Plant ID)
SELECT
    SUBSTRING_INDEX(Plant_Name, ',', 1) AS City,
    CASE
        WHEN Plant_Name REGEXP '.*, [A-Z]'
         THEN SUBSTRING_INDEX(Plant_Name, ', ', -1)
        WHEN Plant_Name REGEXP '.* [A-Z]'
         THEN SUBSTRING INDEX(Plant Name, '', -1)
        ELSE RIGHT(Plant_Name, NULL)
    END AS State,
    Plant ID
FROM Plants;
                                                   SQL
```


Table Preparation

Sub Category	Sub Category ID	Category
Electrical		Electrical
Logistics	2	Logistics
Materials & Components	3	Materials & Components
Mechanicals	4	Mechanicals
Packaging	5	Packaging
Goods & Services	6	Goods & Services

Category	Category ID
Electrical	1
Logistics	2
Materials & Components	3
Mechanicals	4
Packaging	5
Goods & Services	6

Categories	
Sub	Category
Sub_Category_ID ${\mathcal O}$	int
Category	varchar

Categories	
Cat_ID ${\cal O}$	int
Category	varchar

```
ALTER TABLE Categories

DROP COLUMN Sub_Category,

RENAME COLUMN Sub_Category_ID TO Category_ID;

SQL
```


Table Preparation

State	Name
MI	Michigan
WI	Wisconsin
IL	Illinois
IN	Indiana
ОН	Ohio
IA	Iowa

States	
State_ID ${\mathcal O}$	varchar
State Name	varchar

```
CREATE TABLE IF NOT EXISTS States(
    State_ID VARCHAR(2) PRIMARY KEY,
    State_Name VARCHAR(125)
);
INSERT INTO States (State_ID,State_Name)
VALUES
    ('MI', 'Michigan'),
    ('WI', 'Wisconsin'),
    ('IL','Illinois'),
     ('IN','Indiana'),
    ('OH','Ohio'),
    ('IA','Iowa');
                                            SQL
```


Entity Relationship Diagram

Vendor	Vendor ID
roundphase	80
roundphase	113
Quotefix	125
Quotefix	144

Remove duplicates

Remove duplicates [Defect Items]

Step #01

Main	Replaced
Crack	Cracked
Printing defect	Printing defects
Scratch	Scratches
Wrapping	Wrapped
Wrong coloring	Wrong colors
Wrong Label	Wrong Labeling
Wrong Spec	Wrong Specifications
Out of Spec	Out of Specifications

Step#02

Dimensions - Bad Finishing	Wrinkles / Scratches/ Scuffing	Bowed/Warped	Flaps - Incorrect Gap	
Bad Finish	Creases / Wrinkles	Bowed	Bad Flaps	
Incorrect Dimensions	Scratches	Warped	Wrong Flaps	
Lay Flat Dimension	Scratched Glass	Warped Sheets	Gaps	
Dimensions Wrong	Scratch	Warping	Gap Variation	
	Scuffed Packaging			

Step#03

Step #03					
Defect	Main ID	Replaced ID	Defect	Main ID	Replaced ID
Bad Seams	2	3, 4, 99, 206	No Liner	62	249
Scrap attached	15	20	Slitting Errors	49	236
Wrong Size	13	14	Damaged Parts	180	260
Wrong Core	43	48	Dents	111	168, 279
Foreign objects found	30	69, 207	Holes	112	284
Out of Specifications	41	64	Leaking Packaging	188	240
Bowed/Warped	29	66, 281	Missing Components	163	212
Incorrect Dimensions	22	37	Missing Labels	144	178
Excessive Grease	36	237	Not Certified	227	247
Damaged in Transit	38	265	Not Cleaned	217	303
No Adhesive	51	298	Odor	192	304
Wrinkles / Scratches/ Scuffing	16	53	Other	166	210
Too Stiff	24	164	Out of Specifications	41	64
Film Not Sealing	46	74	Packaging Issues	110	137
Roll Tension	44	50	Wrinkles / Scratches/ Scuffing	83	175, 244
Wrong Labeling	57	105	Split Seams	45	101
Wrong Registration	60	182	Water Damage	79	246
Off-set	31	200	Wrong Cut	153	179

Step #01 & Step #02

Remove duplicates [Defect Items]

```
import pandas as pd
df = pd.read excel(r"C:dataset.xlsx", sheet name="Defects")
replacements = {
    'Crack': 'Cracked', 'Printing defect': 'Printing defects', 'Scratch': 'Scratches',
    'Wraped': 'Wraping', 'Wrong coloring': 'wrong colors',
    'Wrong Label': 'Worng Labeling', 'Wrong Spec': 'Wrong Specifications',
    'Out of Spec': 'Out of Specifications','Creases / Wrinkles': 'Wrinkles / Scratches / Scuffing',
    'Scratches': 'Wrinkles / Scratches / Scuffing', 'Scratched Glass': 'Wrinkles / Scratches / Scuffing',
    'Scratch': 'Wrinkles / Scratches / Scuffing', 'Scuffed Packeging': 'Wrinkles / Scratches / Scuffing',
    'Bowed': 'Bowed/Warped', 'Warped': 'Bowed/Warped',
    'Warped Sheets': 'Bowed/Warped', 'Warping': 'Bowed/Warped',
    'Bad Flaps': 'Flaps - Incorrect Gap', 'Wrong Flaps': 'Flaps - Incorrect Gap',
    'Gaps': 'Flaps - Incorrect Gap', 'Gap Variation': 'Flaps - Incorrect Gap',
    'Bad Finish': 'Dimensions - Bad Finishing','Incorrect Dimensions': 'Dimensions - Bad Finishing',
    'Lay Flat Dimension': 'Dimensions - Bad Finishing','Dimensions Wrong': 'Dimensions - Bad Finishing'
                                                                                                      Pvthon
```


Step #01 & Step #02

Remove duplicates [Defect Items]

```
replaced values = []
for old value, new value in replacements.items():
    if old_value in df['Defect'].values:
        replaced values.append((old value, new value))
df['Defect'] = df['Defect'].replace(replacements)
for old value, new value in replaced values:
    print(f"'{old_value}' replaced with '{new_value}'")
output_file_path = r"C:dataset.xlsx"
df.to excel(output file path, index=False)
print(f"Replacements done and saved to {output_file_path}")
                                                                      Python
```


Step #03

Remove duplicates [Defect Items]

```
import pandas as pd
file path = r" C:dataset.xlsx "
duplicates info = df[df.duplicated(subset=['Defect'], keep=False)]
removed ids = []
for defect in duplicates info['Defect'].unique():
    ids = duplicates info[duplicates info['Defect'] == defect]['Defect ID'].tolist()
    if len(ids) > 1:
        removed ids.extend(ids[1:])
df unique = df.drop duplicates(subset=['Defect'])
output file path = r"C:dataset.xlsx"
df unique.to excel(output file path, index=False)
if removed ids:
    print("Removed the following IDs due to duplicates:")
    for removed_id in removed_ids:
        print(removed id)
else: print("No duplicates found.")
print(f"File saved without duplicates to: {output file path}")
                                                                                      Python
```


Dealing with outliers

Defect quantity outliers

```
import pandas as pd
from scipy.stats.mstats import winsorize
df = pd.read excel("C:dataset.xlsx")
Q1 = df['Defect Qty'].quantile(0.25)
Q3 = df['Defect Qty'].quantile(0.75)
IQR = Q3 - Q1
lower bound = 01 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR
print(f"Lower bound for Winsorizing: {lower bound}")
print(f"Upper bound for Winsorizing: {upper_bound}")
original count = df['Downtime min'].count()
df.loc[df['Defect Qty'] < lower bound, 'Defect Qty'] = lower bound</pre>
df.loc[df['Defect Qty'] > upper_bound, 'Defect Qty'] = upper_bound
adjusted count = df.loc[(df['Defect Qty'] < lower bound) | (df['Defect Qty'] > upper bound),
'Defect Qty'].count()
print(f"Handled Defect Oty outliers with Winsorizing.")
df.to excel("C:dataset.xlsx", index=False)
print("Data saved to 'dataset.xlsx'.")
                                                                                           Pvthon
```


Dealing with outliers

Down time outliers

```
import pandas as pd
from scipy.stats.mstats import winsorize
df = pd.read excel("C:dataset.xlsx")
Q1 = df['Downtime min'].quantile(0.25)
Q3 = df['Downtime min'].quantile(0.75)
IOR = 03 - 01
lower bound = 01 - 1.5 * IOR
upper bound = 03 + 1.5 * IOR
print(f"Lower bound for Winsorizing: {lower bound}")
print(f"Upper bound for Winsorizing: {upper bound}")
original count = df['Downtime min'].count()
df.loc[df['Downtime min'] < lower_bound, 'Downtime min'] = lower_bound</pre>
df.loc[df['Downtime min'] > upper bound, 'Downtime min'] = upper bound
adjusted count = df.loc[(df['Downtime min'] < lower bound) | (df['Downtime min'] >
upper_bound), 'Downtime min'].count()
print(f"Handled Downtime outliers with Winsorizing.")
df.to excel("C:dataset.xlsx", index=False)
print("Data saved to 'dataset.xlsx'.")
                                                                                          Python
```


Data Modeling

5758 Inspections

Number of Inspections

11.65 mins

AVG down time in Mins

3225_{defect}

AVG Defects Quantity

Techniques usability

Rejected

Impact

No Impact

Rejected and Impact product has more than 65% of the total defects

