JFOTS

No Author Given

No Institute Given

1 Results

Table 1. CART – AUC

Dataset name	SMOTE	polynom-fit-SMOTE	Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOTE	SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
abalone19	0.561 ± 0.042	0.503 ± 0.015		0.565 ± 0.042	0.545 ± 0.052	0.537 ± 0.051	0.555 ± 0.047	0.561 ± 0.042	0.505 ± 0.019	0.540 ± 0.045	
abalone9 - 18	0.665 ± 0.059	0.609 ± 0.040	0.672 ± 0.051	0.685 ± 0.051	0.653 ± 0.033	0.684 ± 0.082	0.649 ± 0.038	0.667 ± 0.062	0.658 ± 0.041	0.561 ± 0.075	0.613 ± 0.061
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6$	0.790 ± 0.115	0.815 ± 0.063	0.790 ± 0.115	0.790 ± 0.115	0.815 ± 0.063	0.776 ± 0.100	0.790 ± 0.115	0.790 ± 0.115	0.694 ± 0.110	0.609 ± 0.088	0.713 ± 0.115
$qlass - 0 - 1 - 6_v s_2$		0.570 ± 0.054		0.642 ± 0.063			0.633 ± 0.108	0.628 ± 0.055	0.653 ± 0.106		0.608 ± 0.052
$glass - 0 - 1 - 6_v s_5$		0.858 ± 0.133	0.860 ± 0.133	0.860 ± 0.133	0.794 ± 0.185	0.894 ± 0.133	0.860 ± 0.133	0.860 ± 0.133	0.765 ± 0.151		0.763 ± 0.158
	0.591 ± 0.121	0.563 ± 0.077		0.610 ± 0.101			0.575 ± 0.094	0.606 ± 0.124	0.586 ± 0.076		0.616 ± 0.091
	0.854 ± 0.086	0.835 ± 0.053		0.845 ± 0.086			0.853 ± 0.090	0.854 ± 0.086	0.797 ± 0.109		0.770 ± 0.114
	0.851 ± 0.154	0.849 ± 0.153	0.851 ± 0.154	0.851 ± 0.154	0.862 ± 0.160	0.935 ± 0.107	0.851 ± 0.154	0.851 ± 0.154	0.836 ± 0.150	0.895 ± 0.127	0.791 ± 0.156
$page - blocks - 1 - 3 s_4$		0.949 ± 0.060		0.964 ± 0.068		0.962 ± 0.050	0.983 ± 0.032	0.969 ± 0.059	0.902 ± 0.062		0.924 ± 0.089
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$		0.680 ± 0.048		0.694 ± 0.056		0.712 ± 0.055	0.688 ± 0.037	0.701 ± 0.042	0.662 ± 0.046	0.496 ± 0.008	
$yeast - 1 - 2 - 8 - 9_v s_7$		0.578 ± 0.047				0.647 ± 0.062	0.586 ± 0.023	0.604 ± 0.044	0.554 ± 0.057	0.511 ± 0.004	
$yeast - 1 - 4 - 5 - 8_v s_7$		0.554 ± 0.026	0.535 ± 0.064	0.523 ± 0.045	0.537 ± 0.053	0.518 ± 0.041	0.551 ± 0.029	0.526 ± 0.048	0.506 ± 0.033	0.505 ± 0.003	0.538 ± 0.056
	0.613 ± 0.057	0.623 ± 0.049	0.601 ± 0.067			0.659 ± 0.038	0.616 ± 0.048	0.609 ± 0.053	0.584 ± 0.046	0.511 ± 0.029	
$yeast - 2s_4$		0.840 ± 0.055	0.865 ± 0.043	0.861 ± 0.068			0.865 ± 0.042	0.839 ± 0.037	0.815 ± 0.050	0.583 ± 0.141	
$yeast - 2s_8$	0.730 ± 0.089	0.762 ± 0.068	0.775 ± 0.104	0.778 ± 0.084	0.760 ± 0.070	0.751 ± 0.045	0.747 ± 0.065	0.741 ± 0.087	0.756 ± 0.049	0.520 ± 0.031	0.743 ± 0.049
	0.675 ± 0.044	0.637 ± 0.032				0.719 ± 0.055	0.674 ± 0.083	0.678 ± 0.046			0.606 ± 0.055
	0.862 ± 0.073	0.846 ± 0.068				0.878 ± 0.049	0.868 ± 0.057	0.864 ± 0.076	0.841 ± 0.048		0.777 ± 0.113
	0.730 ± 0.066	0.692 ± 0.047	0.725 ± 0.067			0.768 ± 0.051	0.742 ± 0.059	0.731 ± 0.064	0.679 ± 0.058	0.521 ± 0.033	
$cleveland - 0_{-84}$		0.731 ± 0.129	0.785 ± 0.103	0.782 ± 0.083	0.750 ± 0.127	0.745 ± 0.048	0.801 ± 0.063	0.814 ± 0.055	0.756 ± 0.084	0.736 ± 0.097	0.690 ± 0.070
ecoli - 0 - 1 - 4 - 7 - 82 - 3 - 5 - 6	0.792 ± 0.074	0.794 ± 0.048	0.822 ± 0.039	0.790 ± 0.069	0.776 ± 0.066	0.822 ± 0.050	0.827 ± 0.054	0.806 ± 0.077			0.745 ± 0.084
$ecoli - 0 - 1 = s_2 - 3 - 5$	0.799 ± 0.062	0.806 ± 0.102	0.784 ± 0.059	0.749 ± 0.042	0.788 ± 0.041	0.841 ± 0.058	0.781 ± 0.050	0.800 ± 0.062	0.753 ± 0.087	0.649 ± 0.137	0.759 ± 0.083
$ecoli - 0 - 2 - 6 - 7_{v}s_{3} - 5$	0.799 ± 0.045	0.787 ± 0.062	0.809 ± 0.054	0.822 ± 0.075	0.829 ± 0.057	0.827 ± 0.063	0.778 ± 0.066	0.802 ± 0.047	0.773 ± 0.057	0.566 ± 0.120	0.804 ± 0.060
$ecoli - 0 - 6 - 7_v s_3 - 5$		0.794 ± 0.048				0.834 ± 0.060	0.790 ± 0.056	0.796 ± 0.069		0.594 ± 0.147	
$ecoli - 0 - 6 - 7_v s_5$		0.840 ± 0.074		0.838 ± 0.071			0.825 ± 0.060		0.850 ± 0.078	0.574 ± 0.127	0.835 ± 0.094
$glass - 0 - 1 - 4 - 6_v s_2$		0.560 ± 0.082	0.610 ± 0.072	0.591 ± 0.062	0.613 ± 0.070	0.638 ± 0.077	0.558 ± 0.066	0.576 ± 0.062	0.558 ± 0.071	0.557 ± 0.034	0.569 ± 0.069
$qlass - 0 - 1 - 5_v s_2$		0.597 ± 0.068	0.677 ± 0.082	0.713 ± 0.110	0.631 ± 0.069	0.605 ± 0.090	0.649 ± 0.079	0.678 ± 0.062	0.598 ± 0.070	0.536 ± 0.072	0.561 ± 0.088
weast - 0 - 2 - 5 - 6 - 83 - 7 - 8 - 9		0.712 ± 0.051	0.735 ± 0.038	0.714 ± 0.027	0.717 ± 0.033	0.728 ± 0.046	0.709 ± 0.037	0.700 ± 0.034	0.646 ± 0.062	0.541 ± 0.061	0.643 ± 0.035
yeast - 0 - 3 - 5 - 9 - 87 - 8	0.598 ± 0.035	0.638 ± 0.041	0.621 ± 0.044	0.623 ± 0.050	0.614 ± 0.049	0.629 ± 0.050	0.615 ± 0.028	0.630 ± 0.031	0.550 ± 0.059	0.512 ± 0.016	0.563 ± 0.064
$abalone - 17_v s_7 - 8 - 9 - 10$	0.644 ± 0.041	0.642 ± 0.033	0.643 ± 0.042	0.660 ± 0.045	0.645 ± 0.045	0.667 ± 0.024	0.646 ± 0.039	0.642 ± 0.036	0.633 ± 0.055	0.569 ± 0.057	0.603 ± 0.051
$abalone - 19_v s_1 0 - 11 - 12 - 13$	0.556 ± 0.041	0.517 ± 0.024	0.556 ± 0.050	0.548 ± 0.035	0.541 ± 0.055	0.576 ± 0.050	0.557 ± 0.034	0.560 ± 0.028	0.523 ± 0.039	0.514 ± 0.041	0.527 ± 0.058
$abalone - 20_{v}s_{8} - 9 - 10$		0.584 ± 0.065	0.674 ± 0.065	0.682 ± 0.050	0.630 ± 0.071	0.789 ± 0.061	0.681 ± 0.059	0.696 ± 0.050			0.606 ± 0.068
$abalone - 21_v s_8$	0.726 ± 0.121	0.655 ± 0.074	0.699 ± 0.092	0.691 ± 0.116	0.736 ± 0.075	0.790 ± 0.070	0.692 ± 0.105	0.734 ± 0.126	0.712 ± 0.125	0.614 ± 0.092	0.649 ± 0.081
flare - F	0.558 ± 0.035	0.581 ± 0.030	0.570 ± 0.045	0.578 ± 0.038	0.588 ± 0.025	0.580 ± 0.034	0.576 ± 0.048	0.577 ± 0.035	0.636 ± 0.083	0.575 ± 0.068	0.666 ± 0.078
$kddcup - buffer_overflow_v s_back$ 1	1.000 ± 0.000	0.000 ± 0.000									
$kddcup - rootkit - imap_v s_b ack$ 1	1.000 ± 0.000	0.982 ± 0.036	0.982 ± 0.036	0.982 ± 0.036							
$kr - vs - k - zero_v s_e ight$	0.961 ± 0.050	0.965 ± 0.051	0.965 ± 0.052	0.965 ± 0.051	0.968 ± 0.042	0.966 ± 0.071	0.954 ± 0.058	0.961 ± 0.050	0.771 ± 0.082	0.702 ± 0.042	0.858 ± 0.115
$poker - 8 - 9_v s_5$	0.572 ± 0.039	0.558 ± 0.049	0.566 ± 0.032	0.572 ± 0.032	0.545 ± 0.051	0.585 ± 0.070	0.543 ± 0.028	0.572 ± 0.039	0.531 ± 0.048	0.517 ± 0.054	0.522 ± 0.031
$poker - 8 - 9_v s_6$	0.680 ± 0.087	0.824 ± 0.141	0.670 ± 0.096	0.644 ± 0.084	0.750 ± 0.143	0.628 ± 0.096	0.657 ± 0.105	0.680 ± 0.087	0.999 ± 0.001	0.999 ± 0.001	0.999 ± 0.001
$poker - 8_v s_6$	0.685 ± 0.101	0.685 ± 0.163	0.703 ± 0.123	0.685 ± 0.095	0.691 ± 0.098	0.669 ± 0.162	0.677 ± 0.100	0.685 ± 0.101	0.931 ± 0.085	0.931 ± 0.084	0.832 ± 0.165
$poker - 9_v s_7$	0.564 ± 0.082	0.548 ± 0.063	0.564 ± 0.082	0.562 ± 0.084	0.586 ± 0.095	0.613 ± 0.127	0.563 ± 0.081	0.564 ± 0.082	0.686 ± 0.209	0.647 ± 0.162	0.621 ± 0.158
$winequality - red - 3_v s_5$		0.529 ± 0.066	0.506 ± 0.040	0.518 ± 0.045	0.528 ± 0.089	0.565 ± 0.056	0.525 ± 0.064	0.516 ± 0.043			0.557 ± 0.062
winequality - red - 4	0.552 ± 0.048	0.528 ± 0.030	0.576 ± 0.029	0.572 ± 0.036	0.564 ± 0.040	0.571 ± 0.036	0.548 ± 0.017	0.552 ± 0.050	0.537 ± 0.031	0.531 ± 0.031	0.547 ± 0.038
$winequality - red - 8_v s_6 - 7$	0.543 ± 0.041	0.557 ± 0.050	0.550 ± 0.039	0.562 ± 0.051	0.556 ± 0.054	0.555 ± 0.043	0.545 ± 0.048	0.543 ± 0.041			0.539 ± 0.039
$winequality - red - 8_v s_6$	0.609 ± 0.052	0.608 ± 0.064	0.605 ± 0.046	0.603 ± 0.067	0.579 ± 0.047	0.614 ± 0.058	0.630 ± 0.056	0.609 ± 0.052	0.577 ± 0.044	0.566 ± 0.063	0.571 ± 0.058
$winequality - white - 3 - 9_v s_5$	0.566 ± 0.063	0.544 ± 0.047	0.540 ± 0.054	0.546 ± 0.056	0.533 ± 0.061	0.643 ± 0.056	0.535 ± 0.037	0.566 ± 0.063	0.528 ± 0.031	0.509 ± 0.019	0.525 ± 0.021
$winequality - white - 3_v s_7$	0.539 ± 0.045	0.557 ± 0.060	0.576 ± 0.061	0.567 ± 0.055	0.590 ± 0.046	0.737 ± 0.086	0.524 ± 0.047	0.539 ± 0.045	0.546 ± 0.032	0.578 ± 0.076	0.574 ± 0.066
$winequality - white - 9_v s_4$	0.722 ± 0.163	0.672 ± 0.100	0.721 ± 0.162	0.721 ± 0.162			0.721 ± 0.162	0.722 ± 0.163	0.573 ± 0.112	0.573 ± 0.112	
zoo-3	0.658 ± 0.189	0.608 ± 0.123	0.665 ± 0.158	0.650 ± 0.156	0.635 ± 0.160	0.738 ± 0.159	0.639 ± 0.122	0.658 ± 0.189	0.509 ± 0.127	0.509 ± 0.127	0.509 ± 0.127
ecoli1	0.841 ± 0.056	0.818 ± 0.039	0.827 ± 0.049	0.836 ± 0.039	0.837 ± 0.041	0.842 ± 0.033	0.822 ± 0.048	0.860 ± 0.041	0.751 ± 0.067	0.556 ± 0.105	0.798 ± 0.050
	0.855 ± 0.028	0.838 ± 0.035	0.850 ± 0.033	0.852 ± 0.036		0.866 ± 0.037	0.852 ± 0.041	0.855 ± 0.028	0.777 ± 0.083		0.818 ± 0.056
	0.745 ± 0.049	0.748 ± 0.065	0.768 ± 0.067	0.772 ± 0.049		0.833 ± 0.049	0.775 ± 0.051	0.755 ± 0.053	0.760 ± 0.050	0.554 ± 0.100	
	0.767 ± 0.036	0.770 ± 0.060		0.787 ± 0.033		0.802 ± 0.041	0.794 ± 0.040	0.774 ± 0.025	0.746 ± 0.051	0.673 ± 0.069	
	0.719 ± 0.029	0.733 ± 0.031		0.726 ± 0.058		0.717 ± 0.046	0.726 ± 0.061	0.716 ± 0.033	0.676 ± 0.081	0.591 ± 0.058	
	0.584 ± 0.035	0.567 ± 0.025		0.563 ± 0.045		0.577 ± 0.038	0.565 ± 0.055	0.596 ± 0.045		0.536 ± 0.058	
page-blocks0		0.898 ± 0.010	0.915 ± 0.010	0.914 ± 0.008	0.907 ± 0.009		0.919 ± 0.011	0.917 ± 0.008	0.907 ± 0.013	0.895 ± 0.014	
	0.665 ± 0.020	0.673 ± 0.023				0.678 ± 0.027	0.658 ± 0.021	0.670 ± 0.025	0.659 ± 0.030		0.665 ± 0.027
	0.668 ± 0.024	0.668 ± 0.021	0.680 ± 0.032	0.671 ± 0.025		0.685 ± 0.023	0.674 ± 0.024	0.676 ± 0.014	0.663 ± 0.019	0.665 ± 0.021	
	0.666 ± 0.023	0.690 ± 0.023		0.677 ± 0.028		0.685 ± 0.014	0.674 ± 0.020	0.667 ± 0.013	0.662 ± 0.038		0.666 ± 0.028
	0.643 ± 0.017	0.653 ± 0.017		0.650 ± 0.011			0.652 ± 0.021	0.641 ± 0.009			0.588 ± 0.036
yeast3	0.864 ± 0.029	0.832 ± 0.033	0.863 ± 0.024	0.849 ± 0.015	0.845 ± 0.024	0.860 ± 0.027	0.854 ± 0.031	0.867 ± 0.030	0.826 ± 0.029	0.504 ± 0.003	0.836 ± 0.026

Table 2. SVM – AUC

Dataset name	SMOTE	polynom-fit-SMOTE	Lee	SMOBD	G-SMOTE	IVO-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
	0.593 ± 0.063	0.569 ± 0.048	0.593 ± 0.057	0.599 ± 0.065		0.655 ± 0.056	0.593 ± 0.062	0.593 ± 0.063	0.620 ± 0.082	0.597 ± 0.083	0.610 ± 0.047
abalone9 - 18		0.698 ± 0.036				0.782 ± 0.043	0.739 ± 0.038	0.739 ± 0.051	0.678 ± 0.060		
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6$		0.847 ± 0.078		0.842 ± 0.076	0.845 ± 0.079		0.844 ± 0.075	0.845 ± 0.005	0.844 ± 0.110		0.861 ± 0.092
$glass - 0 - 1 - 6_v s_2$		0.697 ± 0.081	0.744 ± 0.090			0.622 ± 0.083	0.743 ± 0.072	0.740 ± 0.100		0.673 ± 0.092	
$glass - 0 - 1 - 6_v s_5$		0.792 ± 0.117	0.820 ± 0.098	0.820 ± 0.098	0.792 ± 0.116		0.820 ± 0.098	0.820 ± 0.098		0.869 ± 0.153	
	0.642 ± 0.143	0.638 ± 0.134	0.648 ± 0.140	0.637 ± 0.137	0.651 ± 0.137	0.677 ± 0.158	0.648 ± 0.146	0.641 ± 0.143	0.626 ± 0.130	0.631 ± 0.118	0.643 ± 0.119
glass4 0	0.892 ± 0.094	0.852 ± 0.116	0.883 ± 0.108	0.876 ± 0.121	0.876 ± 0.103	0.870 ± 0.111	0.876 ± 0.082	0.892 ± 0.094	0.821 ± 0.068	0.788 ± 0.142	0.810 ± 0.085
glass5	0.818 ± 0.106	0.809 ± 0.103	0.828 ± 0.099	0.828 ± 0.099	0.817 ± 0.106	0.854 ± 0.155	0.818 ± 0.106	0.818 ± 0.106	0.788 ± 0.098	0.870 ± 0.119	0.847 ± 0.117
$page - blocks - 1 - 3_v s_4$	0.904 ± 0.114	0.791 ± 0.070	0.908 ± 0.112	0.907 ± 0.112	0.903 ± 0.119	0.796 ± 0.048	0.888 ± 0.116	0.904 ± 0.114	0.819 ± 0.074	0.862 ± 0.073	0.835 ± 0.124
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$	0.749 ± 0.047	0.741 ± 0.037	0.762 ± 0.040	0.752 ± 0.049	0.747 ± 0.055	0.765 ± 0.030	0.749 ± 0.041	0.746 ± 0.047	0.696 ± 0.066	0.496 ± 0.008	0.706 ± 0.068
$yeast - 1 - 2 - 8 - 9_v s_7$		0.594 ± 0.054	0.608 ± 0.050			0.673 ± 0.069	0.605 ± 0.053	0.610 ± 0.038	0.566 ± 0.052	0.511 ± 0.004	
$yeast - 1 - 4 - 5 - 8_v s_7$		0.568 ± 0.051				0.600 ± 0.034	0.557 ± 0.035	0.571 ± 0.050	0.543 ± 0.035		
$yeast-1_vs_7$		0.671 ± 0.046		0.692 ± 0.043			0.683 ± 0.040	0.689 ± 0.041		0.512 ± 0.030	
$yeast - 2_v s_4$		0.862 ± 0.040		0.875 ± 0.045			0.868 ± 0.046	0.870 ± 0.038		0.605 ± 0.174	
$yeast-2_vs_8$		0.773 ± 0.051	0.747 ± 0.043			0.795 ± 0.064	0.740 ± 0.063	0.736 ± 0.046	0.756 ± 0.071	0.517 ± 0.025	0.692 ± 0.091
	0.765 ± 0.034	0.746 ± 0.032				0.792 ± 0.032	0.757 ± 0.024	0.764 ± 0.034		0.497 ± 0.009	
	0.927 ± 0.029	0.924 ± 0.030	0.927 ± 0.029			0.941 ± 0.024	0.927 ± 0.029	0.927 ± 0.029	0.900 ± 0.064		
	0.843 ± 0.049	0.840 ± 0.046				0.862 ± 0.034	0.842 ± 0.053	0.843 ± 0.049		0.520 ± 0.031	
$cleveland - 0_v s_4$		0.681 ± 0.082				0.845 ± 0.052	0.719 ± 0.088	0.719 ± 0.089		0.666 ± 0.101	0.680 ± 0.101
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$		0.851 ± 0.020	0.867 ± 0.029	0.866 ± 0.019		0.884 ± 0.033	0.871 ± 0.037	0.872 ± 0.032	0.758 ± 0.130	0.595 ± 0.135	0.836 ± 0.070
$ecoli - 0 - 1_v s_2 - 3 - 5$		0.865 ± 0.044 0.842 ± 0.061				0.886 ± 0.047 0.871 ± 0.050	0.858 ± 0.045	0.853 ± 0.041	0.793 ± 0.088		
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5$ $ecoli - 0 - 6 - 7_v s_3 - 5$		0.842 ± 0.061 0.851 ± 0.056	0.838 ± 0.056			0.871 ± 0.050 0.869 ± 0.060	0.835 ± 0.059 0.846 ± 0.061	0.834 ± 0.056 0.846 ± 0.055	0.827 ± 0.054	0.680 ± 0.149 0.680 ± 0.159	
$ecoli - 0 - 6 - I_v s_3 - 5$ $ecoli - 0 - 6 - 7_v s_5$		0.863 ± 0.043				0.869 ± 0.060 0.887 ± 0.047	0.846 ± 0.061 0.859 ± 0.044	0.846 ± 0.033 0.862 ± 0.042		0.680 ± 0.159 0.647 ± 0.163	
$econ - 0 - 6 - t_v s_5$ $alass - 0 - 1 - 4 - 6_v s_2$		0.863 ± 0.043 0.669 ± 0.128	0.863 ± 0.044 0.713 ± 0.107		0.860 ± 0.042 0.665 ± 0.120		0.859 ± 0.044 0.716 ± 0.127	0.862 ± 0.042 0.709 ± 0.101	0.861 ± 0.044 0.609 ± 0.085	0.647 ± 0.163 0.662 ± 0.083	
$glass - 0 - 1 - 4 - 6_v s_2$ $glass - 0 - 1 - 5_v s_2$		0.669 ± 0.128 0.659 ± 0.067		0.702 ± 0.131 0.711 ± 0.071			0.685 ± 0.068	0.696 ± 0.063	0.609 ± 0.085 0.673 ± 0.066	0.662 ± 0.083 0.616 ± 0.162	
$y_i ass = 0 - 1 - 3_v s_2$ $veast = 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9$		0.775 ± 0.041	0.778 ± 0.032			0.791 ± 0.030	0.781 ± 0.029	0.783 ± 0.026	0.735 ± 0.060		
$yeast - 0 - 2 - 3 - 6_v s_3 - 7 - 3 - 9_v s_7 - 8 \ 0$			0.687 ± 0.032	0.690 ± 0.045			0.692 ± 0.034	0.695 ± 0.036	0.634 ± 0.069		
$abalone - 17_v s_7 - 8 - 9 - 10$		0.742 ± 0.040				0.823 ± 0.025	0.816 ± 0.024	0.813 ± 0.019		0.722 ± 0.090	
$abalone - 19_v s_1 0 - 11 - 12 - 13$		0.582 ± 0.058	0.637 ± 0.061			0.659 ± 0.075	0.629 ± 0.067	0.633 ± 0.062	0.631 ± 0.085		
$abalone - 20_v s_8 - 9 - 10$		0.775 ± 0.041				0.884 ± 0.051	0.798 ± 0.055	0.806 ± 0.048	0.743 ± 0.109		
$abalone - 21_v s_8$		0.788 ± 0.120	0.798 ± 0.116			0.839 ± 0.070	0.798 ± 0.117	0.799 ± 0.117		0.728 ± 0.125	
	0.738 ± 0.040	0.689 ± 0.046				0.777 ± 0.047	0.738 ± 0.045	0.738 ± 0.040		0.575 ± 0.068	
$kddcup - buffer_overflow_v s_back$	0.993 ± 0.013	0.997 ± 0.010	0.993 ± 0.013	0.993 ± 0.013	0.993 ± 0.013	1.000 ± 0.000	0.993 ± 0.013	0.993 ± 0.013	0.997 ± 0.010	0.997 ± 0.010	0.997 ± 0.010
$kddcup - rootkit - imap_v s_b ack 0$	0.977 ± 0.023	0.973 ± 0.030	0.977 ± 0.023	0.977 ± 0.042	0.977 ± 0.042	0.977 ± 0.042					
$kr - vs - k - zero_v s_e ight$	0.937 ± 0.052	0.934 ± 0.057	0.937 ± 0.052	0.937 ± 0.052	0.934 ± 0.057	0.950 ± 0.050	0.934 ± 0.057	0.937 ± 0.052	0.845 ± 0.076	0.701 ± 0.041	0.831 ± 0.108
$poker - 8 - 9_v s_5$	0.625 ± 0.067	0.588 ± 0.066	0.617 ± 0.058	0.613 ± 0.056	0.614 ± 0.073	0.677 ± 0.074	0.614 ± 0.047	0.625 ± 0.067	0.634 ± 0.079	0.562 ± 0.085	0.575 ± 0.073
$poker - 8 - 9_v s_6$	0.757 ± 0.064	0.724 ± 0.047	0.757 ± 0.064	0.744 ± 0.054	0.732 ± 0.066	0.937 ± 0.055	0.749 ± 0.086	0.757 ± 0.064	0.979 ± 0.041	0.986 ± 0.037	0.979 ± 0.041
$poker - 8_v s_6$		0.712 ± 0.059	0.783 ± 0.073	0.789 ± 0.066	0.746 ± 0.081	0.968 ± 0.051	0.789 ± 0.065	0.783 ± 0.073	0.869 ± 0.123	0.950 ± 0.107	0.831 ± 0.152
$poker - 9_v s_7$		0.624 ± 0.097		0.636 ± 0.104			0.611 ± 0.087	0.636 ± 0.104	0.729 ± 0.163	0.686 ± 0.139	
$winequality - red - 3_v s_5$		0.542 ± 0.050				0.608 ± 0.057	0.550 ± 0.050	0.540 ± 0.049	0.539 ± 0.096		
winequality - red - 4		0.611 ± 0.029		0.644 ± 0.035			0.641 ± 0.034	0.637 ± 0.033	0.548 ± 0.026		0.609 ± 0.050
$winequality - red - 8_v s_6 - 7$		0.550 ± 0.055		0.571 ± 0.054			0.557 ± 0.048	0.571 ± 0.054		0.518 ± 0.081	
$winequality - red - 8_v s_6$		0.610 ± 0.024	0.615 ± 0.031	0.615 ± 0.030	0.625 ± 0.030		0.625 ± 0.030	0.614 ± 0.031		0.609 ± 0.096	0.622 ± 0.079
$winequality - white - 3 - 9_v s_5$		0.529 ± 0.045				0.685 ± 0.039	0.557 ± 0.051	0.565 ± 0.051		0.528 ± 0.055	
$winequality - white - 3_v s_7$		0.528 ± 0.041				0.756 ± 0.077	0.539 ± 0.047	0.533 ± 0.049		0.607 ± 0.121	
winequality $-$ white $-$ 9 _v s ₄		0.815 ± 0.134	0.815 ± 0.134	0.699 ± 0.218			0.815 ± 0.134	0.815 ± 0.134		0.707 ± 0.175	
	0.611 ± 0.162			0.597 ± 0.163			0.611 ± 0.162	0.611 ± 0.162		0.547 ± 0.174	
	0.885 ± 0.027 0.940 ± 0.024	0.886 ± 0.020 0.932 ± 0.034	0.886 ± 0.020	0.884 ± 0.020 0.940 ± 0.026		0.889 ± 0.015	0.881 ± 0.022 0.942 ± 0.022	0.884 ± 0.026 0.939 ± 0.025	0.875 ± 0.033	0.576 ± 0.145 0.604 ± 0.146	
	0.940 ± 0.024 0.889 ± 0.022	0.932 ± 0.034 0.893 ± 0.024		0.894 ± 0.026 0.894 ± 0.017			0.942 ± 0.022 0.887 ± 0.021	0.939 ± 0.025 0.892 ± 0.021	0.858 ± 0.056		
	0.889 ± 0.022 0.779 ± 0.040	0.893 ± 0.024 0.790 ± 0.020	0.887 ± 0.022 0.785 ± 0.039	0.894 ± 0.017 0.778 ± 0.037			0.887 ± 0.021 0.792 ± 0.034	0.892 ± 0.021 0.778 ± 0.036		0.602 ± 0.169 0.724 ± 0.065	
	0.779 ± 0.040 0.701 ± 0.038	0.790 ± 0.020 0.689 ± 0.043	0.783 ± 0.039 0.690 ± 0.038	0.696 ± 0.034			0.792 ± 0.034 0.698 ± 0.039	0.778 ± 0.036 0.701 ± 0.044	0.742 ± 0.032 0.694 ± 0.062		
	0.701 ± 0.038 0.611 ± 0.026	0.689 ± 0.043 0.642 ± 0.035	0.690 ± 0.038 0.619 ± 0.026	0.596 ± 0.034 0.597 ± 0.031			0.698 ± 0.039 0.614 ± 0.034	0.701 ± 0.044 0.611 ± 0.028	0.694 ± 0.062 0.613 ± 0.039	0.598 ± 0.048 0.559 ± 0.092	
page – blocks0		0.900 ± 0.008	0.931 ± 0.026	0.923 ± 0.009			0.014 ± 0.034 0.930 ± 0.008	0.932 ± 0.008	0.879 ± 0.039		
	0.727 ± 0.000	0.722 ± 0.027	0.729 ± 0.023	0.726 ± 0.003			0.732 ± 0.028	0.728 ± 0.032		0.666 ± 0.030	
	0.727 ± 0.030 0.789 ± 0.027	0.749 ± 0.023	0.729 ± 0.025 0.790 ± 0.026	0.720 ± 0.022 0.790 ± 0.020			0.791 ± 0.019	0.728 ± 0.032 0.793 ± 0.025		0.804 ± 0.018	
	0.789 ± 0.027 0.789 ± 0.022	0.749 ± 0.023 0.734 ± 0.017		0.797 ± 0.026			0.789 ± 0.018	0.790 ± 0.023		0.789 ± 0.027	
	0.711 ± 0.013	0.695 ± 0.013				0.713 ± 0.011	0.709 ± 0.014	0.712 ± 0.013		0.507 ± 0.002	
	0.893 ± 0.022	0.884 ± 0.027				0.896 ± 0.020	0.895 ± 0.023	0.893 ± 0.022		0.504 ± 0.003	

Table 3. KNN – BAC

Dataset name SMOTE	polynom-fit-SMOTE		SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks			JFOTS-prom
$abalone19 \ 0.568 \pm 0.069$	0.519 ± 0.028	0.568 ± 0.069	0.567 ± 0.069	0.549 ± 0.043	0.554 ± 0.047	0.565 ± 0.062	0.568 ± 0.069	0.520 ± 0.030	0.497 ± 0.011	0.520 ± 0.032
$abalone9 - 18 \ 0.719 \pm 0.033$	0.704 ± 0.044	0.704 ± 0.034		0.700 ± 0.048		0.714 ± 0.041	0.720 ± 0.033		0.572 ± 0.063	
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0.834 \pm 0.075$	0.835 ± 0.076			0.835 ± 0.076		0.834 ± 0.075	0.834 ± 0.075		0.800 ± 0.106	
$glass - 0 - 1 - 6_v s_2 0.718 \pm 0.086$	0.682 ± 0.045			0.700 ± 0.056		0.725 ± 0.082	0.717 ± 0.085		0.606 ± 0.086	
$glass - 0 - 1 - 6_v s_5 0.914 \pm 0.097$	0.915 ± 0.098	0.914 ± 0.097			0.881 ± 0.120	0.914 ± 0.097	0.914 ± 0.097		0.842 ± 0.192	
$glass2 0.630 \pm 0.134$	0.633 ± 0.137	0.637 ± 0.151			0.627 ± 0.112	0.635 ± 0.145	0.628 ± 0.133		0.583 ± 0.096	
$glass4 \ 0.901 \pm 0.057$	0.903 ± 0.068	0.876 ± 0.056			0.863 ± 0.038	0.892 ± 0.048	0.901 ± 0.057		0.752 ± 0.141	
$glass5 0.931 \pm 0.110$	0.933 ± 0.110	0.921 ± 0.116			0.862 ± 0.108	0.931 ± 0.110	0.931 ± 0.110		0.867 ± 0.136	
$page - blocks - 1 - 3_v s_4 \ 0.983 \pm 0.023$	0.978 ± 0.024	0.982 ± 0.023			0.980 ± 0.016	0.976 ± 0.025	0.983 ± 0.023		0.835 ± 0.086	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 0.727 \pm 0.045$	0.740 ± 0.038	0.730 ± 0.040			0.731 ± 0.045	0.718 ± 0.035	0.725 ± 0.043			0.643 ± 0.072
$yeast - 1 - 2 - 8 - 9_v s_7 0.672 \pm 0.048$	0.685 ± 0.045	0.668 ± 0.040			0.660 ± 0.052	0.667 ± 0.051	0.672 ± 0.048		0.500 ± 0.000	
$yeast - 1 - 4 - 5 - 8_v s_7$ 0.611 ± 0.040 $yeast - 1_v s_7$ 0.723 ± 0.036	0.595 ± 0.062 0.723 ± 0.042	0.614 ± 0.044 0.726 ± 0.035			0.577 ± 0.042 0.690 ± 0.033	0.605 ± 0.039 0.701 ± 0.051	0.611 ± 0.038 0.722 ± 0.035		0.500 ± 0.000 0.499 ± 0.002	
$yeast - 1_vs_7 - 0.123 \pm 0.036$ $yeast - 2_vs_4 - 0.873 \pm 0.030$	0.723 ± 0.042 0.863 ± 0.035			0.702 ± 0.033 0.873 ± 0.029		0.875 ± 0.027	0.722 ± 0.035 0.874 ± 0.030		0.499 ± 0.002 0.603 ± 0.158	
$yeast - 2_vs_4 0.873 \pm 0.030$ $yeast - 2_vs_8 0.802 \pm 0.051$	0.810 ± 0.046			0.803 ± 0.029 0.803 ± 0.044		0.878 ± 0.027 0.798 ± 0.051	0.874 ± 0.030 0.801 ± 0.050		0.534 ± 0.105	
$yeast - 2_v s_8 = 0.802 \pm 0.031$ $yeast4 = 0.729 \pm 0.025$	0.810 ± 0.046 0.733 ± 0.034			0.803 ± 0.044 0.713 ± 0.033		0.735 ± 0.031	0.801 ± 0.030 0.729 ± 0.025		0.534 ± 0.105 0.500 ± 0.000	
$yeast5 0.929 \pm 0.036$	0.920 ± 0.035			0.910 ± 0.034		0.929 ± 0.034	0.929 ± 0.025 0.929 ± 0.036		0.500 ± 0.000	
$yeast6 0.814 \pm 0.044$	0.816 ± 0.038				0.829 ± 0.035	0.809 ± 0.043	0.929 ± 0.030 0.814 ± 0.044		0.500 ± 0.000	
$cleveland - 0_v s_4 = 0.876 \pm 0.069$	0.868 ± 0.036			0.873 ± 0.033		0.883 ± 0.024	0.876 ± 0.069		0.719 ± 0.135	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$ 0.883 ± 0.018	0.878 ± 0.024			0.884 ± 0.022		0.882 ± 0.021	0.884 ± 0.018		0.568 ± 0.099	
$ecoli - 0 - 1_v s_2 - 3 - 5 \ 0.884 \pm 0.024$	0.887 ± 0.026			0.879 ± 0.024		0.886 ± 0.030	0.884 ± 0.024		0.689 ± 0.160	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.839 \pm 0.051$	0.839 ± 0.051			0.843 ± 0.057		0.838 ± 0.049	0.839 ± 0.050		0.588 ± 0.122	
$ecoli - 0 - 6 - 7_v s_3 - 5 0.851 \pm 0.054$	0.855 ± 0.053			0.847 ± 0.061		0.851 ± 0.052	0.852 ± 0.053		0.614 ± 0.143	
$ecoli - 0 - 6 - 7_v s_5$ 0.866 ± 0.047	0.865 ± 0.056			0.870 ± 0.046		0.865 ± 0.049	0.867 ± 0.048		0.589 ± 0.123	
$glass - 0 - 1 - 4 - 6_v s_2 \ 0.674 \pm 0.098$	0.665 ± 0.088	0.671 ± 0.103		0.645 ± 0.101		0.666 ± 0.105	0.669 ± 0.095		0.582 ± 0.110	
$glass - 0 - 1 - 5_v s_2 0.676 \pm 0.059$	0.674 ± 0.055	0.684 ± 0.063				0.683 ± 0.059	0.675 ± 0.060		0.622 ± 0.128	
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9 \ 0.772 \pm 0.031$	0.768 ± 0.025	0.775 ± 0.028	0.772 ± 0.026	0.773 ± 0.030	0.764 ± 0.033	0.772 ± 0.031	0.773 ± 0.032	0.684 ± 0.075	0.533 ± 0.058	0.683 ± 0.036
$yeast - 0 - 3 - 5 - 9_v s_7 - 8 \ 0.679 \pm 0.037$	0.675 ± 0.035				0.681 ± 0.050	0.669 ± 0.030	0.680 ± 0.038		0.502 ± 0.011	
$abalone - 17_v s_7 - 8 - 9 - 10 \ 0.749 \pm 0.046$	0.719 ± 0.034	0.752 ± 0.045	0.745 ± 0.046	0.713 ± 0.044	0.739 ± 0.042	0.743 ± 0.044	0.749 ± 0.046	0.606 ± 0.033	0.582 ± 0.077	0.612 ± 0.072
$abalone - 19_v s_1 0 - 11 - 12 - 13 \ 0.583 \pm 0.037$	0.551 ± 0.025	0.587 ± 0.040	0.589 ± 0.047	0.554 ± 0.046	0.569 ± 0.045	0.570 ± 0.044	0.582 ± 0.037	0.535 ± 0.032	0.515 ± 0.033	0.523 ± 0.044
$abalone - 20_v s_8 - 9 - 10 \ 0.750 \pm 0.055$	0.662 ± 0.025	0.758 ± 0.062	0.761 ± 0.067	0.667 ± 0.058	0.709 ± 0.052	0.743 ± 0.082	0.746 ± 0.058	0.635 ± 0.056	0.549 ± 0.077	0.638 ± 0.049
$abalone - 21_v s_8 \ 0.830 \ \pm \ 0.084$	0.771 ± 0.079	0.815 ± 0.074	0.815 ± 0.076	0.797 ± 0.080	0.794 ± 0.065	0.822 ± 0.080	0.830 ± 0.084	0.703 ± 0.095	0.667 ± 0.121	0.710 ± 0.089
$flare - F = 0.693 \pm 0.044$	0.674 ± 0.035			0.671 ± 0.043		0.694 ± 0.041	0.692 ± 0.044		0.504 ± 0.009	
$kddcup - buffer_overflow_v s_back 0.957 \pm 0.047$	0.957 ± 0.047				0.960 ± 0.042	0.947 ± 0.043	0.957 ± 0.047		0.957 ± 0.045	
$kddcup - rootkit - imap_v s_b ack 0.973 \pm 0.022$	0.964 ± 0.040	0.973 ± 0.022			0.945 ± 0.027	0.955 ± 0.050	0.973 ± 0.022		0.964 ± 0.040	
$kr - vs - k - zero_v s_e ight$ 0.940 ± 0.050	0.930 ± 0.053			0.926 ± 0.061		0.929 ± 0.060	0.940 ± 0.050		0.500 ± 0.000	
$poker - 8 - 9_v s_5 0.609 \pm 0.059$	0.578 ± 0.036				0.643 ± 0.048	0.614 ± 0.061	0.609 ± 0.059		0.514 ± 0.036	
$poker - 8 - 9_v s_6 0.949 \pm 0.040$	0.912 ± 0.033			0.904 ± 0.053		0.937 ± 0.031	0.949 ± 0.040	0.988 ± 0.038		
$poker - 8_v s_6 0.942 \pm 0.061$	0.851 ± 0.057				0.978 ± 0.018	0.932 ± 0.078	0.942 ± 0.061		0.931 ± 0.113	
$poker - 9_v s_7 0.839 \pm 0.152$	0.839 ± 0.152			0.816 ± 0.135		0.828 ± 0.145	0.839 ± 0.152		0.806 ± 0.192	
winequality $- red - 3_v s_5$ 0.584 \pm 0.061	0.577 ± 0.053				0.592 ± 0.064	0.575 ± 0.052	0.584 ± 0.061		0.493 ± 0.033	
winequality $- red - 4 \ 0.597 \pm 0.027$	0.583 ± 0.043			0.588 ± 0.036		0.602 ± 0.024	0.597 ± 0.026		0.521 ± 0.038	
$winequality - red - 8_v s_6 - 7 \ 0.530 \pm 0.064$	0.543 ± 0.068			0.536 ± 0.055		0.534 ± 0.055	0.531 ± 0.064		0.534 ± 0.070	
winequality $- red - 8_v s_6$ 0.635 \pm 0.050	0.630 ± 0.052			0.595 ± 0.050	0.600 ± 0.052	0.632 ± 0.043	0.635 ± 0.050		0.584 ± 0.077	
winequality – white – 3 – 9_vs_5 0.618 \pm 0.030	0.613 ± 0.033			0.573 ± 0.029	0.602 ± 0.053	0.599 ± 0.034	0.618 ± 0.030		0.518 ± 0.029	
winequality – white – 3_vs_7 0.630 \pm 0.086	0.573 ± 0.064			0.577 ± 0.058 0.879 ± 0.092	0.644 ± 0.084	0.630 ± 0.099 0.878 ± 0.091	0.630 ± 0.086 0.878 ± 0.091		0.599 ± 0.089 0.726 ± 0.177	
winequality - white - 9_vs_4 0.878 \pm 0.091 zoo - 3 0.827 \pm 0.157	0.882 ± 0.095 0.827 ± 0.157	0.878 ± 0.091 0.827 ± 0.157				0.878 ± 0.091 0.827 ± 0.157	0.878 ± 0.091 0.827 ± 0.157		0.726 ± 0.177 0.630 ± 0.130	
ecoli 0.864 ± 0.026	0.827 ± 0.137 0.863 ± 0.019	0.868 ± 0.030			0.864 ± 0.028	0.827 ± 0.137 0.863 ± 0.033	0.827 ± 0.137 0.867 ± 0.023		0.563 ± 0.130 0.563 ± 0.127	
ecoli 0.864 ± 0.026 ecoli 0.915 ± 0.028	0.922 ± 0.025	0.868 ± 0.030 0.913 ± 0.027			0.864 ± 0.028 0.911 ± 0.021	0.863 ± 0.033 0.914 ± 0.027	0.867 ± 0.023 0.915 ± 0.028		0.563 ± 0.127 0.584 ± 0.138	
ecoli3 0.866 ± 0.019	0.857 ± 0.023	0.868 ± 0.015			0.851 ± 0.021 0.851 ± 0.028	0.861 ± 0.027 0.861 ± 0.018	0.915 ± 0.028 0.865 ± 0.015		0.584 ± 0.138 0.575 ± 0.119	
glass0 0.791 ± 0.035	0.799 ± 0.036			0.797 ± 0.027		0.800 ± 0.030	0.800 ± 0.013		0.700 ± 0.116	
$glass0 0.791 \pm 0.033$ $glass1 0.738 \pm 0.047$	0.749 ± 0.053	0.745 ± 0.034			0.740 ± 0.031	0.736 ± 0.030	0.738 ± 0.051		0.551 ± 0.081	
$haberman 0.601 \pm 0.034$	0.616 ± 0.036	0.587 ± 0.044			0.587 ± 0.031	0.584 ± 0.029	0.599 ± 0.030		0.531 ± 0.081 0.535 ± 0.074	
$page - blocks0 0.929 \pm 0.010$	0.911 ± 0.012			0.924 ± 0.039		0.931 ± 0.009	0.930 ± 0.010		0.905 ± 0.012	
$pima 0.685 \pm 0.021$	0.708 ± 0.018	0.686 ± 0.012			0.690 ± 0.021	0.687 ± 0.017	0.693 ± 0.024		0.616 ± 0.053	
$vehicle1 0.723 \pm 0.026$	0.740 ± 0.017	0.720 ± 0.024			0.720 ± 0.021	0.731 ± 0.022	0.724 ± 0.027		0.716 ± 0.030	
vehicle3 0.708 ± 0.018	0.700 ± 0.029	0.712 ± 0.019			0.692 ± 0.023	0.712 ± 0.022	0.706 ± 0.020		0.696 ± 0.023	
$yeast1 = 0.675 \pm 0.010$	0.697 ± 0.012			0.669 ± 0.012		0.674 ± 0.013	0.678 ± 0.010			0.554 ± 0.070
$yeast3 0.873 \pm 0.017$	0.874 ± 0.021			0.870 ± 0.018		0.874 ± 0.017	0.872 ± 0.017			0.843 ± 0.022

Table 4. CART – G-mean

Dataset name	SMOTE	polynom-fit-SMOTE	Lee	SMOBD	G-SMOTE	IVO-SMOTE	Assembled-SMOTI	E SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
abalone19 0.		0.075 ± 0.114			0.282 ± 0.174		0.358 ± 0.122	0.365 ± 0.148	0.084 ± 0.132	0.354 ± 0.206	0.365 ± 0.176
abalone9 - 18 0.		0.508 ± 0.072		0.639 ± 0.076		0.640 ± 0.113	0.588 ± 0.059	0.610 ± 0.105	0.583 ± 0.073	0.442 ± 0.144	
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0$		0.793 ± 0.086	0.723 ± 0.254		0.793 ± 0.086	0.736 ± 0.145	0.723 ± 0.254	0.723 ± 0.254	0.594 ± 0.232	0.407 ± 0.274	
$glass - 0 - 1 - 6_v s_2 = 0.$					0.522 ± 0.101		0.552 ± 0.155	0.564 ± 0.085	0.567 ± 0.180	0.466 ± 0.089	
$glass - 0 - 1 - 6_v s_5 = 0.$		0.828 ± 0.185	0.829 ± 0.185	0.829 ± 0.185	0.706 ± 0.315	0.872 ± 0.170	0.829 ± 0.185	0.829 ± 0.185	0.704 ± 0.209	0.854 ± 0.204	
	$.431 \pm 0.261$	0.399 ± 0.218	0.402 ± 0.248	0.495 ± 0.204	0.430 ± 0.259	0.472 ± 0.209	0.405 ± 0.235	0.453 ± 0.267	0.422 ± 0.228	0.451 ± 0.106	0.526 ± 0.148
glass4 0.	0.841 ± 0.102	0.823 ± 0.064	0.841 ± 0.103	0.831 ± 0.101	0.847 ± 0.097	0.789 ± 0.113	0.840 ± 0.104	0.841 ± 0.102	0.761 ± 0.154	0.740 ± 0.159	0.732 ± 0.148
glass5 0.	$.813 \pm 0.206$	0.812 ± 0.205	0.813 ± 0.206	0.813 ± 0.206	0.826 ± 0.212	0.924 ± 0.129	0.813 ± 0.206	0.813 ± 0.206	0.796 ± 0.201	0.874 ± 0.165	0.742 ± 0.204
$page - blocks - 1 - 3_v s_4 = 0.$	0.967 ± 0.065	0.945 ± 0.069	0.962 ± 0.077	0.961 ± 0.076	0.969 ± 0.072	0.960 ± 0.056	0.983 ± 0.034	0.967 ± 0.065	0.895 ± 0.070	0.874 ± 0.113	0.917 ± 0.100
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$ 0.	0.658 ± 0.088	0.631 ± 0.068	0.683 ± 0.066	0.654 ± 0.085	0.631 ± 0.063	0.694 ± 0.070	0.649 ± 0.054	0.671 ± 0.056	0.603 ± 0.074	0.091 ± 0.057	0.627 ± 0.088
$yeast - 1 - 2 - 8 - 9_v s_7$ 0.		0.424 ± 0.108	0.485 ± 0.061	0.453 ± 0.100		0.598 ± 0.094	0.475 ± 0.048	0.503 ± 0.081		0.143 ± 0.028	
$yeast - 1 - 4 - 5 - 8_v s_7$ 0.		0.397 ± 0.066	0.350 ± 0.169	0.336 ± 0.140		0.388 ± 0.102	0.420 ± 0.060	0.344 ± 0.142			
$yeast - 1_v s_7 = 0.$		0.536 ± 0.090		0.568 ± 0.087			0.544 ± 0.077	0.526 ± 0.084	0.439 ± 0.103	0.099 ± 0.170	
$yeast - 2_v s_4 = 0.$		0.828 ± 0.065		0.851 ± 0.079			0.859 ± 0.048	0.831 ± 0.042	0.800 ± 0.060	0.256 ± 0.341	
$yeast - 2_v s_8$ 0.		0.726 ± 0.093			0.723 ± 0.092		0.712 ± 0.090	0.704 ± 0.128	0.715 ± 0.068	0.187 ± 0.191	0.702 ± 0.069
	$.612 \pm 0.076$	0.541 ± 0.057			0.538 ± 0.073		0.597 ± 0.139	0.614 ± 0.079	0.605 ± 0.088	0.113 ± 0.022	
	$.848 \pm 0.089$	0.829 ± 0.086		0.845 ± 0.081		0.873 ± 0.055	0.858 ± 0.066	0.850 ± 0.091	0.826 ± 0.058	0.142 ± 0.009	
	$.683 \pm 0.098$	0.630 ± 0.070	0.675 ± 0.103	0.707 ± 0.090		0.748 ± 0.063	0.701 ± 0.087	0.684 ± 0.095	0.603 ± 0.088	0.188 ± 0.138	
$cleveland - 0_v s_4$ 0.8		0.648 ± 0.257	0.753 ± 0.151	0.753 ± 0.111			0.782 ± 0.079	0.800 ± 0.067	0.725 ± 0.108	0.701 ± 0.137	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6 0.$		0.776 ± 0.059	0.810 ± 0.047	0.771 ± 0.088		0.818 ± 0.053	0.815 ± 0.063	0.787 ± 0.100	0.652 ± 0.161	0.244 ± 0.269	0.708 ± 0.117
$ecoli - 0 - 1_v s_2 - 3 - 5 = 0.$		0.773 ± 0.149	0.759 ± 0.078	0.719 ± 0.058		0.831 ± 0.076	0.759 ± 0.064	0.781 ± 0.077	0.709 ± 0.154	0.430 ± 0.360	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.$ $ecoli - 0 - 6 - 7_v s_3 - 5 0.$		0.761 ± 0.080 0.772 ± 0.059	0.795 ± 0.067 0.795 ± 0.067	0.807 ± 0.090	0.817 ± 0.064 0.819 ± 0.081	0.820 ± 0.070	0.758 ± 0.079 0.774 ± 0.068	0.785 ± 0.060 0.779 ± 0.084		0.292 ± 0.293 0.366 ± 0.320	
$ecoli - 0 - 6 - 1_v s_3 - 5 \ 0$ $ecoli - 0 - 6 - 7_v s_5 \ 0$		0.772 ± 0.059 0.825 ± 0.087	0.795 ± 0.067 0.816 ± 0.076	0.800 ± 0.075 0.827 ± 0.080		0.826 ± 0.068 0.835 ± 0.050	0.774 ± 0.068 0.812 ± 0.067	0.779 ± 0.084 0.827 ± 0.079	0.743 ± 0.081 0.833 ± 0.106	0.366 ± 0.320 0.363 ± 0.250	
$econ - 0 - 6 - i_v s_5$ 0. $alass - 0 - 1 - 4 - 6_v s_7$ 0.		0.825 ± 0.087 0.389 ± 0.220	0.816 ± 0.076 0.512 ± 0.136	0.827 ± 0.080 0.481 ± 0.121		0.835 ± 0.030 0.597 ± 0.106	0.812 ± 0.067 0.424 ± 0.113	0.827 ± 0.079 0.428 ± 0.176	0.863 ± 0.106 0.362 ± 0.211	0.363 ± 0.230 0.432 ± 0.067	0.813 ± 0.124 0.453 ± 0.121
$glass - 0 - 1 - 4 - 6_v s_2$ 0. $glass - 0 - 1 - 5_v s_2$ 0.		0.589 ± 0.220 0.508 ± 0.112			0.520 ± 0.131 0.560 ± 0.113		0.424 ± 0.113 0.593 ± 0.112	0.428 ± 0.176 0.635 ± 0.083		0.452 ± 0.067 0.366 ± 0.165	
yeast - 0 - 2 - 5 - 6 - 8 - 7 - 8 - 9 0.			0.712 ± 0.047				0.680 ± 0.048	0.668 ± 0.049			
$yeast - 0 - 2 - 3 - 6_v s_3 - 7 - 3 - 9$ 0. $yeast - 0 - 3 - 5 - 9_v s_7 - 8$ 0.		0.568 ± 0.068		0.576 ± 0.037		0.587 ± 0.066	0.561 ± 0.045	0.584 ± 0.050		0.153 ± 0.034 0.153 ± 0.120	
$abalone - 17_v s_7 - 8 - 9 - 10$ 0.		0.546 ± 0.062	0.557 ± 0.005	0.586 ± 0.075		0.605 ± 0.036	0.562 ± 0.067	0.557 ± 0.066		0.417 ± 0.164	
$abalone - 19_v s_1 0 - 11 - 12 - 13 0$		0.203 ± 0.139		0.382 ± 0.097		0.468 ± 0.114	0.393 ± 0.092	0.411 ± 0.076		0.316 ± 0.183	
$abalone - 20_v s_8 - 9 - 10_{-}0_s$		0.371 ± 0.210		0.611 ± 0.088		0.771 ± 0.078	0.609 ± 0.098	0.634 ± 0.081		0.484 ± 0.102	
$abalone - 21_v s_8 = 0.$		0.554 ± 0.125	0.604 ± 0.221			0.768 ± 0.087	0.586 ± 0.234	0.642 ± 0.259		0.473 ± 0.204	
flare - F = 0.		0.422 ± 0.066			0.447 ± 0.050		0.411 ± 0.105	0.421 ± 0.080			0.589 ± 0.146
$kddcup - buffer_overflow_v s_back$ 1.0			1.000 ± 0.000								
$kddcup - rootkit - imap_us_back$ 1.0			1.000 ± 0.000	0.981 ± 0.038	0.981 ± 0.038	0.981 ± 0.038					
$kr - vs - k - zero_v s_e ight = 0.$	0.959 ± 0.053	0.963 ± 0.055	0.963 ± 0.055	0.963 ± 0.055	0.967 ± 0.044	0.962 ± 0.081	0.951 ± 0.063	0.959 ± 0.053	0.731 ± 0.119	0.697 ± 0.043	0.849 ± 0.123
$poker - 8 - 9_v s_5 = 0.$	0.386 ± 0.143	0.300 ± 0.205	0.386 ± 0.080	0.404 ± 0.078	0.266 ± 0.195	0.430 ± 0.145	0.323 ± 0.073	0.386 ± 0.143	0.165 ± 0.210	0.330 ± 0.202	0.249 ± 0.173
$poker - 8 - 9_v s_6 = 0.$	0.595 ± 0.142	0.787 ± 0.178	0.573 ± 0.155	0.529 ± 0.151	0.687 ± 0.188	0.465 ± 0.260	0.524 ± 0.228	0.595 ± 0.142	0.999 ± 0.001	0.999 ± 0.001	0.999 ± 0.001
$poker - 8_v s_6 = 0.$	0.569 ± 0.225	0.537 ± 0.295	0.615 ± 0.179	0.590 ± 0.164	0.581 ± 0.222	0.524 ± 0.289	0.559 ± 0.221	0.569 ± 0.225	0.924 ± 0.094	0.924 ± 0.093	0.786 ± 0.227
$poker - 9_v s_7 = 0.$		0.246 ± 0.246			0.337 ± 0.285		0.267 ± 0.273			0.449 ± 0.338	
$winequality - red - 3_v s_5$ 0.		0.151 ± 0.235		0.132 ± 0.202		0.325 ± 0.219	0.150 ± 0.234	0.132 ± 0.201		0.218 ± 0.218	
winequality - red - 4 = 0.			0.458 ± 0.069		0.409 ± 0.090		0.401 ± 0.044	0.390 ± 0.123	0.316 ± 0.091	0.393 ± 0.111	
winequality $- red - 8_v s_6 - 7$ 0.		0.339 ± 0.185			0.319 ± 0.216		0.312 ± 0.174	0.314 ± 0.168		0.201 ± 0.213	
$winequality - red - 8_v s_6$ 0.		0.479 ± 0.123	0.491 ± 0.099	0.463 ± 0.187	0.409 ± 0.156		0.538 ± 0.107	0.498 ± 0.107	0.427 ± 0.092	0.327 ± 0.229	0.360 ± 0.202
winequality $-$ white $-3 - 9_v s_5$ 0.		0.293 ± 0.173		0.319 ± 0.189		0.557 ± 0.102	0.312 ± 0.129	0.361 ± 0.207	0.230 ± 0.158	0.168 ± 0.137	0.235 ± 0.122
winequality $-$ white $-$ 3 _v s ₇ 0.		0.317 ± 0.190	0.372 ± 0.208	0.383 ± 0.159		0.690 ± 0.122	0.221 ± 0.193	0.296 ± 0.165	0.319 ± 0.121	0.347 ± 0.249	
$winequality - white - 9_v s_4 = 0.$		0.530 ± 0.275	0.587 ± 0.328		0.588 ± 0.329		0.587 ± 0.328	0.588 ± 0.329	0.263 ± 0.325	0.263 ± 0.325	0.263 ± 0.325
	$.451 \pm 0.391$	0.394 ± 0.329		0.480 ± 0.336			0.467 ± 0.313	0.451 ± 0.391	0.321 ± 0.266		
	$.835 \pm 0.063$	0.811 ± 0.044	0.821 ± 0.056	0.830 ± 0.045	0.832 ± 0.045		0.814 ± 0.054	0.857 ± 0.044	0.737 ± 0.077	0.204 ± 0.285	
	$.850 \pm 0.032$	0.831 ± 0.040	0.844 ± 0.036	0.844 ± 0.042		0.863 ± 0.038	0.846 ± 0.046	0.850 ± 0.032	0.756 ± 0.103	0.275 ± 0.300	
	$.719 \pm 0.063$	0.719 ± 0.083		0.754 ± 0.061		0.828 ± 0.054	0.758 ± 0.063	0.732 ± 0.067	0.738 ± 0.062	0.262 ± 0.268	0.704 ± 0.194
	$.763 \pm 0.035$	0.766 ± 0.065	0.765 ± 0.043	0.784 ± 0.035 0.723 ± 0.060	0.777 ± 0.042 0.708 ± 0.049	0.800 ± 0.041	0.791 ± 0.040	0.772 ± 0.025	0.740 ± 0.058	0.651 ± 0.093 0.488 ± 0.104	
glass1 0. haberman 0.	.716 ± 0.029	0.727 ± 0.034 0.542 ± 0.034	0.723 ± 0.058 0.546 ± 0.061	0.723 ± 0.060 0.531 ± 0.060	0.708 ± 0.049 0.542 ± 0.069		0.723 ± 0.062 0.533 ± 0.074	0.712 ± 0.036 0.573 ± 0.056	0.657 ± 0.110 0.534 ± 0.047	0.488 ± 0.104 0.465 ± 0.089	0.652 ± 0.050 0.512 ± 0.071
page - blocks0 0.		0.542 ± 0.034 0.895 ± 0.011		0.531 ± 0.060 0.912 ± 0.008	0.542 ± 0.069 0.905 ± 0.010		0.533 ± 0.074 0.918 ± 0.012	0.573 ± 0.056 0.916 ± 0.008	0.534 ± 0.047 0.904 ± 0.014	0.465 ± 0.089 0.891 ± 0.016	
	0.913 ± 0.012 0.659 ± 0.021	0.895 ± 0.011 0.666 ± 0.026		0.912 ± 0.008 0.658 ± 0.016		0.674 ± 0.027	0.651 ± 0.012 0.651 ± 0.023	0.916 ± 0.008 0.664 ± 0.026	0.651 ± 0.031	0.891 ± 0.016 0.581 ± 0.055	
	0.639 ± 0.021 0.649 ± 0.031	0.666 ± 0.026 0.651 ± 0.027	0.653 ± 0.022 0.663 ± 0.042	0.658 ± 0.016 0.654 ± 0.031		0.674 ± 0.027 0.675 ± 0.025	0.661 ± 0.023 0.660 ± 0.029	0.664 ± 0.026 0.661 ± 0.021	0.651 ± 0.031 0.645 ± 0.023	0.581 ± 0.035 0.645 ± 0.025	
	0.649 ± 0.031 0.652 ± 0.027	0.651 ± 0.027 0.677 ± 0.026		0.654 ± 0.031 0.665 ± 0.033	0.647 ± 0.035 0.656 ± 0.022		0.650 ± 0.029 0.659 ± 0.027	0.661 ± 0.021 0.653 ± 0.015	0.645 ± 0.023 0.645 ± 0.044	0.645 ± 0.025 0.667 ± 0.026	
	0.632 ± 0.027	0.640 ± 0.018		0.639 ± 0.013		0.644 ± 0.021	0.641 ± 0.022	0.628 ± 0.010		0.118 ± 0.016	
	0.033 ± 0.020 0.859 ± 0.032	0.822 ± 0.038			0.639 ± 0.016 0.838 ± 0.027		0.847 ± 0.022 0.847 ± 0.035	0.628 ± 0.010 0.862 ± 0.033		0.118 ± 0.016 0.113 ± 0.031	
geases 0.	.000 ± 0.002	0.022 ± 0.000	0.000 ± 0.021	0.040 ± 0.017	0.000 ± 0.021	0.000 ± 0.000	0.041 ± 0.000	0.002 ± 0.000	0.014 ± 0.000	U.110 ± U.001	0.021 ± 0.000

Table 5. SVM - G-mean

Dataset name	SMOTE	polynom-fit-SMOTE	Lee	SMOBD	G-SMOTE	IVO-SMOTE	Assembled-SMOTE	SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
abalone19 0		0.397 ± 0.159	0.501 ± 0.119	0.509 ± 0.129		0.618 ± 0.081	0.500 ± 0.124	0.500 ± 0.124	0.569 ± 0.152		
abalone9 - 18 0		0.649 ± 0.055	0.731 ± 0.043	0.736 ± 0.051		0.769 ± 0.051	0.723 ± 0.046	0.721 ± 0.064	0.602 ± 0.102		0.604 ± 0.128
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0$		0.828 ± 0.099		0.824 ± 0.097		0.813 ± 0.098	0.826 ± 0.097	0.826 ± 0.097	0.821 ± 0.140		0.845 ± 0.113
$glass - 0 - 1 - 6_v s_2 = 0$		0.660 ± 0.109	0.732 ± 0.102	0.730 ± 0.089	0.652 ± 0.111		0.732 ± 0.084	0.721 ± 0.121	0.712 ± 0.100		
$alass - 0 - 1 - 6_{ess} = 0$		0.747 ± 0.164	0.791 ± 0.132	0.791 ± 0.132	0.747 ± 0.164		0.791 ± 0.132	0.791 ± 0.121 0.791 ± 0.132		0.841 ± 0.201	
	0.546 ± 0.287	0.528 ± 0.283		0.538 ± 0.284		0.593 ± 0.302	0.552 ± 0.291	0.546 ± 0.286	0.550 ± 0.235		
	$.880 \pm 0.113$		0.866 ± 0.136	0.854 ± 0.158	0.859 ± 0.131		0.862 ± 0.100	0.880 ± 0.113	0.799 ± 0.090		
	0.786 ± 0.143	0.774 ± 0.139				0.826 ± 0.200	0.786 ± 0.143	0.786 ± 0.143		0.848 ± 0.154	
$page - blocks - 1 - 3 - s_4 = 0$				0.895 ± 0.133		0.777 ± 0.061	0.873 ± 0.141	0.891 ± 0.135	0.799 ± 0.091		
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 = 0$		0.716 ± 0.046		0.734 ± 0.060		0.753 ± 0.037	0.733 ± 0.048	0.729 ± 0.058	0.639 ± 0.098		
$yeast - 1 - 2 - 8 - 9_v s_7 = 0$		0.510 ± 0.119	0.563 ± 0.075	0.553 ± 0.075	0.567 ± 0.071	0.624 ± 0.106	0.553 ± 0.090	0.564 ± 0.056	0.452 ± 0.120	0.143 ± 0.028	0.510 ± 0.082
$yeast - 1 - 4 - 5 - 8_v s_7 = 0$		0.480 ± 0.091	0.495 ± 0.076	0.498 ± 0.064	0.507 ± 0.087	0.540 ± 0.073	0.487 ± 0.065	0.510 ± 0.079	0.428 ± 0.156	0.099 ± 0.027	0.533 ± 0.085
$yeast - 1_v s_7 = 0$	0.672 ± 0.048	0.637 ± 0.060	0.675 ± 0.045	0.675 ± 0.050	0.627 ± 0.090	0.661 ± 0.077	0.664 ± 0.048	0.671 ± 0.049	0.504 ± 0.109	0.099 ± 0.168	0.529 ± 0.175
$yeast - 2_v s_4 = 0$	0.863 ± 0.044	0.855 ± 0.046	0.868 ± 0.044	0.869 ± 0.051	0.864 ± 0.052	0.865 ± 0.037	0.862 ± 0.053	0.863 ± 0.044	0.837 ± 0.037	0.282 ± 0.380	0.846 ± 0.060
$yeast - 2_v s_8 = 0$		0.737 ± 0.069	0.718 ± 0.058	0.727 ± 0.059	0.704 ± 0.062	0.767 ± 0.086	0.705 ± 0.101	0.705 ± 0.063	0.718 ± 0.109	0.184 ± 0.184	0.650 ± 0.111
yeast4 0.	0.749 ± 0.040	0.718 ± 0.045	0.754 ± 0.049	0.753 ± 0.038	0.742 ± 0.042	0.784 ± 0.039	0.740 ± 0.030	0.749 ± 0.040	0.627 ± 0.044	0.113 ± 0.022	0.709 ± 0.135
yeast5 0.	0.925 ± 0.030	0.922 ± 0.031	0.926 ± 0.030	0.926 ± 0.030	0.928 ± 0.029	0.940 ± 0.025	0.926 ± 0.030	0.925 ± 0.030	0.893 ± 0.073	0.142 ± 0.009	0.818 ± 0.237
yeast6 0.	0.832 ± 0.060	0.828 ± 0.057	0.838 ± 0.065	0.830 ± 0.060	0.833 ± 0.060	0.860 ± 0.035	0.831 ± 0.063	0.832 ± 0.060	0.717 ± 0.079	0.186 ± 0.134	0.802 ± 0.050
$cleveland - 0_v s_4 = 0$	0.652 ± 0.136	0.590 ± 0.134	0.662 ± 0.149	0.674 ± 0.147	0.629 ± 0.131	0.833 ± 0.062	0.652 ± 0.136	0.652 ± 0.136	0.678 ± 0.066	0.594 ± 0.159	0.590 ± 0.228
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6 = 0$	0.865 ± 0.036	0.840 ± 0.023	0.860 ± 0.034	0.859 ± 0.022	0.863 ± 0.038	0.881 ± 0.035	0.865 ± 0.041	0.865 ± 0.036	0.697 ± 0.193	0.358 ± 0.360	0.825 ± 0.085
$ecoli - 0 - 1_v s_2 - 3 - 5 = 0$	0.844 ± 0.048	0.855 ± 0.051	0.854 ± 0.051	0.852 ± 0.050	0.846 ± 0.048	0.881 ± 0.055	0.849 ± 0.051	0.843 ± 0.048	0.754 ± 0.157	0.503 ± 0.416	0.809 ± 0.059
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 = 0$		0.826 ± 0.072	0.825 ± 0.066	0.830 ± 0.065		0.865 ± 0.058	0.821 ± 0.070	0.820 ± 0.064	0.810 ± 0.064		
$ecoli - 0 - 6 - 7_v s_3 - 5 = 0$	0.834 ± 0.065	0.838 ± 0.067	0.830 ± 0.065	0.845 ± 0.070	0.844 ± 0.072	0.862 ± 0.068	0.833 ± 0.071	0.834 ± 0.065	0.832 ± 0.060	0.552 ± 0.332	0.843 ± 0.059
$ecoli - 0 - 6 - 7_v s_5 = 0$		0.854 ± 0.049	0.854 ± 0.050	0.850 ± 0.049	0.850 ± 0.048	0.883 ± 0.050	0.850 ± 0.049	0.853 ± 0.048	0.851 ± 0.051	0.470 ± 0.323	
$glass - 0 - 1 - 4 - 6_v s_2$ 0				0.657 ± 0.186	0.588 ± 0.240		0.678 ± 0.179	0.677 ± 0.149	0.568 ± 0.127		
$glass - 0 - 1 - 5_v s_2 = 0$		0.609 ± 0.103		0.690 ± 0.089			0.660 ± 0.088	0.675 ± 0.079	0.642 ± 0.088		
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9 = 0$		0.749 ± 0.057	0.764 ± 0.036			0.779 ± 0.036	0.767 ± 0.035	0.768 ± 0.033	0.714 ± 0.063		
$yeast - 0 - 3 - 5 - 9_v s_7 - 8 \ 0.0$						0.610 ± 0.087	0.676 ± 0.042	0.679 ± 0.045	0.604 ± 0.093		
$abalone - 17_v s_7 - 8 - 9 - 10 0$		0.709 ± 0.053	0.802 ± 0.027	0.803 ± 0.038		0.816 ± 0.028	0.810 ± 0.027	0.806 ± 0.022	0.606 ± 0.119		
$abalone - 19_v s_1 0 - 11 - 12 - 13 0$		0.445 ± 0.129	0.588 ± 0.098	0.589 ± 0.091		0.617 ± 0.114	0.574 ± 0.106	0.582 ± 0.101	0.556 ± 0.162		
$abalone - 20_v s_8 - 9 - 10 0$		0.747 ± 0.055	0.794 ± 0.050	0.784 ± 0.058		0.880 ± 0.055	0.778 ± 0.069	0.789 ± 0.059	0.687 ± 0.164		
$abalone - 21_v s_8$ 0.		0.741 ± 0.173	0.756 ± 0.170			0.824 ± 0.085	0.757 ± 0.171	0.757 ± 0.171	0.713 ± 0.211		
flare - F = 0		0.630 ± 0.068		0.728 ± 0.060			0.722 ± 0.056	0.723 ± 0.050		0.413 ± 0.119	
$kddcup - buffer_overflow_v s_back = 0$		0.997 ± 0.010		0.993 ± 0.014			0.993 ± 0.014	0.993 ± 0.014		0.997 ± 0.010	
$kddcup - rootkit - imap_v s_back 0.$				0.977 ± 0.023			0.972 ± 0.031	0.977 ± 0.023	0.976 ± 0.045		
$kr - vs - k - zero_v s_e ight = 0$ $poker - 8 - 9_v s_5 = 0$		0.930 ± 0.061 0.402 ± 0.185	0.934 ± 0.035 0.499 ± 0.129	0.934 ± 0.055 0.493 ± 0.126		0.948 ± 0.034 0.624 ± 0.119	0.930 ± 0.061 0.499 ± 0.103	0.934 ± 0.055 0.512 ± 0.141	0.835 ± 0.083 0.572 ± 0.118		
$poker - 8 - 9_v s_5$ 0 $poker - 8 - 9_v s_6$ 0		0.402 ± 0.183 0.666 ± 0.072		0.495 ± 0.126 0.695 ± 0.080		0.624 ± 0.119 0.934 ± 0.059		0.512 ± 0.141 0.711 ± 0.092		0.985 ± 0.040	
$poker - 8 - 9_v s_6$ 0 $poker - 8_v s_6$ 0		0.665 ± 0.072 0.645 ± 0.091		0.095 ± 0.080 0.755 ± 0.089		0.966 ± 0.056	0.689 ± 0.154 0.755 ± 0.089	0.711 ± 0.092 0.746 ± 0.101		0.985 ± 0.040 0.939 ± 0.133	
$poker - 9_v s_7$ 0		0.412 ± 0.283	0.432 ± 0.296	0.432 ± 0.009		0.500 ± 0.030 0.501 ± 0.341	0.793 ± 0.069 0.391 ± 0.267			0.554 ± 0.307	
$poker - 5vs_7 = 0$ $winequality - red - 3vs_7 = 0$		0.222 ± 0.222				0.452 ± 0.171	0.266 ± 0.217	0.231 ± 0.230 0.221 ± 0.221		0.354 ± 0.301 0.354 ± 0.244	
winequality $- red - 3 z s s = 0$ winequality $- red - 4 = 0$		0.528 ± 0.054		0.594 ± 0.057			0.589 ± 0.055	0.584 ± 0.058		0.581 ± 0.054	
winequality $-red - 8_v s_6 - 7$ 0.		0.333 ± 0.189		0.409 ± 0.167			0.377 ± 0.154	0.410 ± 0.167		0.424 ± 0.183	
winequality $- red - 8_v s_6$ 0.		0.501 ± 0.049	0.517 ± 0.061	0.517 ± 0.061	0.530 ± 0.060		0.537 ± 0.056			0.560 ± 0.104	
winequality – white – 3 – 9_vs_5 0.		0.228 ± 0.197	0.368 ± 0.165	0.374 ± 0.001		0.624 ± 0.061	0.364 ± 0.157	0.382 ± 0.160		0.461 ± 0.114	
winequality – white – $3_v s_7$ 0.		0.194 ± 0.199		0.292 ± 0.216			0.278 ± 0.194	0.246 ± 0.209		0.485 ± 0.246	
$winequality - white - 9_v s_4 = 0$		0.777 ± 0.168	0.777 ± 0.168	0.441 ± 0.452			0.777 ± 0.168	0.777 ± 0.168		0.553 ± 0.373	
	0.297 ± 0.377	0.297 ± 0.377	0.297 ± 0.377	0.240 ± 0.373			0.297 ± 0.377		0.359 ± 0.313	0.359 ± 0.313	0.359 ± 0.313
ecoli1 0	0.884 ± 0.027	0.884 ± 0.020	0.885 ± 0.020	0.883 ± 0.020	0.883 ± 0.024	0.888 ± 0.015	0.880 ± 0.022	0.884 ± 0.026	0.874 ± 0.033	0.227 ± 0.328	0.884 ± 0.015
ecoli2 0	0.940 ± 0.025	0.931 ± 0.037	0.940 ± 0.025	0.939 ± 0.027	0.938 ± 0.026	0.938 ± 0.021	0.942 ± 0.022	0.938 ± 0.026	0.857 ± 0.086	0.309 ± 0.346	0.893 ± 0.033
ecoli3 0	0.888 ± 0.023	0.892 ± 0.026	0.886 ± 0.023	0.893 ± 0.018	0.893 ± 0.022	0.893 ± 0.019	0.886 ± 0.021	0.892 ± 0.022	0.854 ± 0.064	0.324 ± 0.356	0.751 ± 0.209
glass0 0.	0.772 ± 0.041	0.787 ± 0.020	0.779 ± 0.040	0.768 ± 0.041	0.787 ± 0.038	0.762 ± 0.037	0.786 ± 0.036	0.771 ± 0.037	0.723 ± 0.039	0.674 ± 0.112	0.738 ± 0.064
glass1 0.	$.694 \pm 0.041$	0.677 ± 0.048	0.680 ± 0.047	0.686 ± 0.036	0.691 ± 0.048	0.662 ± 0.044	0.687 ± 0.043	0.694 ± 0.047	0.675 ± 0.074	0.474 ± 0.093	0.655 ± 0.045
haberman 0.	0.584 ± 0.042	0.606 ± 0.052	0.596 ± 0.038	0.575 ± 0.055	0.589 ± 0.060	0.597 ± 0.046	0.596 ± 0.043	0.583 ± 0.046	0.573 ± 0.062	0.536 ± 0.105	0.605 ± 0.059
page-blocks0 0.	0.931 ± 0.008	0.897 ± 0.009	0.931 ± 0.007	0.922 ± 0.010	0.931 ± 0.008	0.838 ± 0.019	0.930 ± 0.009	0.931 ± 0.008	0.875 ± 0.037	0.888 ± 0.026	0.878 ± 0.031
	0.726 ± 0.030	0.715 ± 0.030	0.728 ± 0.024	0.725 ± 0.022			0.731 ± 0.028	0.727 ± 0.032	0.692 ± 0.018		
	0.786 ± 0.026	0.741 ± 0.027	0.787 ± 0.026		0.796 ± 0.015		0.789 ± 0.018	0.789 ± 0.024		0.798 ± 0.017	
	0.786 ± 0.020	0.728 ± 0.020		0.793 ± 0.024			0.786 ± 0.017	0.787 ± 0.019		0.782 ± 0.029	
	0.710 ± 0.012	0.678 ± 0.016		0.706 ± 0.020			0.709 ± 0.013	0.711 ± 0.012		0.118 ± 0.016	
yeast3 0.	0.891 ± 0.024	0.879 ± 0.029	0.892 ± 0.022	0.891 ± 0.028	0.886 ± 0.021	0.895 ± 0.021	0.894 ± 0.025	0.891 ± 0.024	0.860 ± 0.022	0.113 ± 0.031	0.882 ± 0.018

Table 6. KNN – Precision

Dataset name	SMOTE	polynom-fit-SMOTE	Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLink	s JFOTS-pr		JFOTS-prom
abalone19 (0.023 ± 0.017	0.019 ± 0.018	0.023 ± 0.016	0.023 ± 0.017	0.026 ± 0.018	0.020 ± 0.011	0.023 ± 0.015	0.023 ± 0.017	0.025 ± 0.030	0.002 ± 0.005	0.008 ± 0.005
abalone9 - 18 (0.278 ± 0.044	0.230 ± 0.029	0.233 ± 0.033	0.259 ± 0.042		0.243 ± 0.034	0.246 ± 0.038	0.597 ± 0.184		
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6$ (0.378 ± 0.110	0.413 ± 0.150	0.381 ± 0.119	0.371 ± 0.113	0.414 ± 0.151	0.354 ± 0.099	0.374 ± 0.111	0.378 ± 0.110	0.315 ± 0.136	0.303 ± 0.082	0.425 ± 0.239
$glass - 0 - 1 - 6_v s_2$ (0.278 ± 0.099	0.240 ± 0.046	0.271 ± 0.085	0.272 ± 0.084	0.277 ± 0.066	0.211 ± 0.052	0.288 ± 0.094	0.273 ± 0.093	0.239 ± 0.051	0.194 ± 0.128	0.277 ± 0.091
$glass - 0 - 1 - 6_v s_5$ (0.712 ± 0.154	0.686 ± 0.148	0.686 ± 0.191	0.664 ± 0.174		0.676 ± 0.152	0.689 ± 0.156		0.438 ± 0.241	
	0.182 ± 0.110	0.180 ± 0.114	0.176 ± 0.109	0.180 ± 0.102	0.181 ± 0.113	0.170 ± 0.080	0.170 ± 0.104	0.176 ± 0.105	0.205 ± 0.103		0.179 ± 0.075
	0.558 ± 0.133	0.582 ± 0.119			0.550 ± 0.141		0.556 ± 0.128	0.558 ± 0.133		0.366 ± 0.203	
	0.637 ± 0.131	0.679 ± 0.149					0.637 ± 0.131	0.637 ± 0.131		0.547 ± 0.221	0.505 ± 0.201
$page - blocks - 1 - 3_v s_4$ (0.748 ± 0.095			0.774 ± 0.132		0.778 ± 0.113	0.778 ± 0.098		0.590 ± 0.203	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$ (0.315 ± 0.037		0.319 ± 0.040		0.331 ± 0.053	0.308 ± 0.045	0.300 ± 0.040	0.472 ± 0.122		
$yeast - 1 - 2 - 8 - 9_v s_7$ (0.118 ± 0.023		0.093 ± 0.016	0.114 ± 0.036	0.099 ± 0.022	0.094 ± 0.018	0.095 ± 0.017	0.346 ± 0.235		
$yeast - 1 - 4 - 5 - 8_v s_7$ (0.093 ± 0.032	0.092 ± 0.019	0.086 ± 0.025	0.084 ± 0.028	0.080 ± 0.022	0.089 ± 0.017	0.091 ± 0.016	0.096 ± 0.067		
$yeast - 1_vs_7$ (0.216 ± 0.037	0.201 ± 0.020	0.201 ± 0.027	0.213 ± 0.042		0.188 ± 0.035	0.200 ± 0.027	0.363 ± 0.136		
$yeast - 2_v s_4$ (0.609 ± 0.085			0.634 ± 0.070		0.647 ± 0.078	0.672 ± 0.073	0.848 ± 0.053		
$yeast - 2_v s_8$ (0.500 ± 0.084	0.261 ± 0.088	0.260 ± 0.075	0.347 ± 0.101	0.309 ± 0.042	0.256 ± 0.075	0.270 ± 0.085	0.661 ± 0.293		
	0.200 ± 0.029	0.215 ± 0.030	0.202 ± 0.033	0.207 ± 0.035	0.217 ± 0.034	0.172 ± 0.020	0.211 ± 0.033	0.200 ± 0.029	0.430 ± 0.080		
	0.504 ± 0.073	0.529 ± 0.071		0.496 ± 0.060	0.522 ± 0.068		0.493 ± 0.062	0.503 ± 0.074	0.641 ± 0.145		
	0.225 ± 0.035	0.277 ± 0.041	0.228 ± 0.039	0.221 ± 0.038	0.264 ± 0.038	0.150 ± 0.027	0.224 ± 0.040	0.226 ± 0.035	0.475 ± 0.126		
$cleveland - 0_v s_4$ (0.584 ± 0.121			0.653 ± 0.105		0.600 ± 0.131	0.596 ± 0.150		0.386 ± 0.239	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$ (0.619 ± 0.087		0.572 ± 0.082	0.559 ± 0.090		0.545 ± 0.103	0.559 ± 0.092	0.751 ± 0.091		
$ecoli - 0 - 1_v s_2 - 3 - 5$ (0.756 ± 0.148		0.724 ± 0.150			0.691 ± 0.134	0.729 ± 0.155	0.801 ± 0.152		
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5$ (0.612 ± 0.110	0.576 ± 0.136	0.630 ± 0.140			0.577 ± 0.126	0.575 ± 0.117	0.822 ± 0.124		
$ecoli - 0 - 6 - 7_v s_3 - 5$ (0.645 ± 0.128			0.614 ± 0.117		0.609 ± 0.132	0.619 ± 0.133	0.808 ± 0.092		
$ecoli - 0 - 6 - 7_v s_5$ (0.670 ± 0.189			0.665 ± 0.188		0.645 ± 0.210	0.645 ± 0.201	0.816 ± 0.149		
$glass - 0 - 1 - 4 - 6_v s_2$ (0.241 ± 0.085	0.231 ± 0.091	0.230 ± 0.085	0.230 ± 0.101	0.203 ± 0.063	0.231 ± 0.091	0.235 ± 0.081		0.136 ± 0.130	0.120 ± 0.079
$glass - 0 - 1 - 5_v s_2$ (0.235 ± 0.065			0.246 ± 0.087		0.239 ± 0.056	0.225 ± 0.049		0.200 ± 0.148	
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9$		0.368 ± 0.033	0.330 ± 0.023	0.336 ± 0.033	0.356 ± 0.025		0.332 ± 0.033	0.334 ± 0.028	0.534 ± 0.137		
$yeast - 0 - 3 - 5 - 9_v s_7 - 8$ (0.281 ± 0.053		0.245 ± 0.046	0.263 ± 0.042		0.241 ± 0.030	0.252 ± 0.041		0.040 ± 0.120	
$abalone - 17_v s_7 - 8 - 9 - 10$ (0.281 ± 0.044		0.187 ± 0.028	0.231 ± 0.043		0.194 ± 0.033	0.190 ± 0.033	0.325 ± 0.063		
$abalone - 19_v s_1 0 - 11 - 12 - 13$ (0.056 ± 0.018					0.044 ± 0.014	0.047 ± 0.012		0.016 ± 0.015	
$abalone - 20_v s_8 - 9 - 10$ (0.189 ± 0.051 0.520 ± 0.162	0.169 ± 0.033 0.418 ± 0.108		0.166 ± 0.049 0.485 ± 0.165		0.167 ± 0.034 0.400 ± 0.098	0.161 ± 0.028 0.437 ± 0.122	0.284 ± 0.154		0.188 ± 0.149 0.566 ± 0.187
$abalone - 21_v s_8$ (0.202 ± 0.038										
$kddcup - buffer_overflow_vs_back 1$		0.209 ± 0.028 1.000 ± 0.000			0.209 ± 0.039 1.000 ± 0.000		0.206 ± 0.046 1.000 ± 0.000	0.197 ± 0.032 1.000 ± 0.000	0.369 ± 0.253	0.150 ± 0.320 0.994 ± 0.019	
$kdacup - buffer_overflow_v s_back 1$ $kddcup - rootkit - imap_v s_back 1$					1.000 ± 0.000		1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000		
$kr - vs - k - zero_v s_e ight$ (0.765 ± 0.172			0.758 ± 0.164		0.740 ± 0.055	0.730 ± 0.050		0.000 ± 0.000	
$poker - 8 - 9vs_5$ (0.091 ± 0.037	0.066 ± 0.029	0.064 ± 0.029			0.069 ± 0.027	0.065 ± 0.026		0.000 ± 0.000 0.017 ± 0.035	
$poker - 8 - 9_v s_6$ (0.466 ± 0.080	0.426 ± 0.058	0.435 ± 0.064	0.505 ± 0.045 0.505 ± 0.050		0.434 ± 0.092	0.428 ± 0.060	1.000 ± 0.000		
$poker - 8 - 8_v s_6$ (0.341 ± 0.111	0.308 ± 0.075	0.297 ± 0.004	0.350 ± 0.030 0.350 ± 0.102	0.267 ± 0.049	0.314 ± 0.085	0.310 ± 0.074	1.000 ± 0.000 1.000 ± 0.000		
$poker - 9_v s_7$ (0.507 ± 0.234		0.523 ± 0.012 0.523 ± 0.267	0.550 ± 0.268		0.532 ± 0.241	0.497 ± 0.228		0.698 ± 0.389	
winequality $- red - 3_v s_5$ (0.095 ± 0.058		0.080 ± 0.045		0.161 ± 0.098	0.088 ± 0.050	0.081 ± 0.045		0.008 ± 0.023	
winequality - red - 4 (0.080 ± 0.023			0.096 ± 0.025		0.084 ± 0.015	0.082 ± 0.015	0.116 ± 0.063		
winequality $- red - 8_v s_6 - 7$ (0.040 ± 0.029			0.042 ± 0.026		0.035 ± 0.020	0.031 ± 0.024		0.040 ± 0.049	
winequality $- red - 8_v s_6$ (0.108 ± 0.036	0.087 ± 0.023	0.089 ± 0.019	0.092 ± 0.038	0.094 ± 0.036	0.097 ± 0.037	0.090 ± 0.019			0.125 ± 0.084
winequality – white – 3 – $9_v s_5$ (0.097 ± 0.030					0.060 ± 0.016	0.068 ± 0.019	0.158 ± 0.284		
winequality - white - $3_v s_7$ (0.100 ± 0.065			0.237 ± 0.270		0.114 ± 0.068	0.112 ± 0.065		0.110 ± 0.078	
winequality – white – $9_v s_4$ (0.536 ± 0.319			0.516 ± 0.335		0.514 ± 0.337	0.514 ± 0.337		0.165 ± 0.129	
	$.460 \pm 0.260$				0.460 ± 0.260		0.460 ± 0.260	0.460 ± 0.260		0.253 ± 0.238	
	0.700 ± 0.057	0.713 ± 0.065					0.691 ± 0.046	0.697 ± 0.055		0.139 ± 0.280	
	0.692 ± 0.080	0.751 ± 0.089	0.687 ± 0.100	0.693 ± 0.088	0.727 ± 0.078	0.669 ± 0.064	0.689 ± 0.090	0.690 ± 0.079		0.193 ± 0.309	
ecoli3 (0.475 ± 0.036	0.482 ± 0.036	0.473 ± 0.024	0.478 ± 0.043	0.477 ± 0.041	0.424 ± 0.034	0.476 ± 0.035	0.473 ± 0.037	0.539 ± 0.072	0.113 ± 0.180	0.478 ± 0.181
glass0 (0.608 ± 0.053	0.611 ± 0.056	0.599 ± 0.038	0.606 ± 0.043	0.610 ± 0.047	0.608 ± 0.055	0.616 ± 0.050	0.614 ± 0.054	0.611 ± 0.034	0.508 ± 0.204	0.632 ± 0.081
glass1 (0.614 ± 0.061	0.620 ± 0.068	0.633 ± 0.070	0.634 ± 0.053	0.626 ± 0.059	0.633 ± 0.042	0.616 ± 0.048	0.616 ± 0.064	0.602 ± 0.070	0.444 ± 0.196	0.564 ± 0.063
haberman (0.366 ± 0.033	0.400 ± 0.035	0.348 ± 0.032	0.355 ± 0.015	0.359 ± 0.040	0.362 ± 0.029	0.348 ± 0.021	0.364 ± 0.035	0.435 ± 0.065	0.308 ± 0.120	0.420 ± 0.102
page-blocks0 (0.733 ± 0.025	0.804 ± 0.021	0.732 ± 0.026	0.750 ± 0.029	0.738 ± 0.016	$\bf 0.855\pm0.012$	0.728 ± 0.025	0.732 ± 0.024	0.824 ± 0.055	0.757 ± 0.034	0.771 ± 0.055
pima (0.549 ± 0.026	0.586 ± 0.019		0.552 ± 0.019	0.549 ± 0.022		0.553 ± 0.019	0.556 ± 0.029	0.601 ± 0.031		
	0.476 ± 0.020	0.516 ± 0.027			0.485 ± 0.018		0.487 ± 0.022	0.477 ± 0.021		0.493 ± 0.029	
	0.470 ± 0.028	0.474 ± 0.037	0.473 ± 0.026	0.471 ± 0.028	0.475 ± 0.024	0.470 ± 0.029	0.467 ± 0.026	0.468 ± 0.029	0.534 ± 0.037		
	0.473 ± 0.013	0.541 ± 0.013			0.469 ± 0.012		0.472 ± 0.013	0.475 ± 0.012		0.000 ± 0.000	
yeast3 (0.589 ± 0.026	0.626 ± 0.034	0.587 ± 0.042	0.589 ± 0.036	0.598 ± 0.033	0.583 ± 0.043	0.580 ± 0.035	0.587 ± 0.025	0.752 ± 0.048	0.000 ± 0.000	0.643 ± 0.054

Table 7. CART – Recall

		polynom-fit-SMOTI	Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks	JFOTS-pr		JFOTS-prom
abalone19 0.162	2 ± 0.089	0.019 ± 0.029	0.131 ± 0.081	0.169 ± 0.089	0.112 ± 0.104	0.131 ± 0.099	0.150 ± 0.102	0.162 ± 0.089	0.025 ± 0.041	0.319 ± 0.311	
$abalone9 - 18 \ 0.410$		0.281 ± 0.078	0.429 ± 0.119	0.452 ± 0.098		0.486 ± 0.170	0.381 ± 0.077	0.419 ± 0.131	0.362 ± 0.086	0.352 ± 0.248	
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0.600$		0.650 ± 0.128	0.600 ± 0.232		0.650 ± 0.128		0.600 ± 0.232	0.600 ± 0.232		0.250 ± 0.183	
$glass - 0 - 1 - 6_v s_2$ 0.367		0.244 ± 0.088	0.435 ± 0.125	0.375 ± 0.137		0.369 ± 0.187	0.364 ± 0.211	0.365 ± 0.108		0.450 ± 0.301	
$glass - 0 - 1 - 6_v s_5 0.735$		0.735 ± 0.273	0.735 ± 0.273			0.805 ± 0.272	0.735 ± 0.273	0.735 ± 0.273		0.805 ± 0.313	
glass2 0.275		0.233 ± 0.160	0.239 ± 0.199	0.312 ± 0.182		0.318 ± 0.230	0.239 ± 0.175	0.300 ± 0.232		0.479 ± 0.285	
glass4 0.740		0.707 ± 0.109			0.755 ± 0.151		0.740 ± 0.165	0.740 ± 0.165		0.690 ± 0.146	
glass5 0.720		0.720 ± 0.316	0.720 ± 0.316			0.890 ± 0.221	0.720 ± 0.316	0.720 ± 0.316	0.690 ± 0.309		
$page-blocks-1-3_vs_4\ 0.943$		0.907 ± 0.124			0.950 ± 0.128		0.971 ± 0.065	0.943 ± 0.119		0.793 ± 0.176	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$ 0.493		0.436 ± 0.101			0.442 ± 0.085		0.470 ± 0.090	0.509 ± 0.088		0.980 ± 0.020	
$yeast - 1 - 2 - 8 - 9_v s_7$ 0.247		0.200 ± 0.089	0.260 ± 0.063		0.253 ± 0.107		0.247 ± 0.052	0.280 ± 0.088		1.000 ± 0.000	
$yeast - 1 - 4 - 5 - 8_v s_7$ 0.167		0.173 ± 0.053			0.153 ± 0.112		0.200 ± 0.060	0.153 ± 0.085		1.000 ± 0.000	
$yeast - 1_v s_7 = 0.320$		0.320 ± 0.102	0.307 ± 0.120	0.367 ± 0.109		0.487 ± 0.099	0.340 ± 0.105	0.313 ± 0.099		0.760 ± 0.398	
$yeast - 2_v s_4 = 0.741$		0.718 ± 0.114				0.796 ± 0.091	0.773 ± 0.093	0.729 ± 0.078		0.775 ± 0.310	
$yeast - 2_v s_8 = 0.530$		0.550 ± 0.136	0.600 ± 0.228	0.610 ± 0.181	0.550 ± 0.150		0.540 ± 0.128	0.550 ± 0.180		0.940 ± 0.120	
yeast4 0.401		0.306 ± 0.066	0.428 ± 0.123		0.307 ± 0.079		0.394 ± 0.165	0.405 ± 0.100		0.980 ± 0.020	
yeast5 0.736		0.705 ± 0.137			0.723 ± 0.132		0.750 ± 0.117	0.741 ± 0.155		1.000 ± 0.000	
yeast6 0.494		0.413 ± 0.091 0.517 ± 0.264	0.483 ± 0.140 0.624 ± 0.209	0.528 ± 0.133	0.510 ± 0.099 0.550 ± 0.257		0.516 ± 0.122 0.652 ± 0.140	0.495 ± 0.137 0.681 ± 0.119		0.978 ± 0.067 0.629 ± 0.127	
$cleveland - 0_v s_4$ 0.681											
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$ 0.648		0.634 ± 0.089	0.696 ± 0.090	0.640 ± 0.139		0.750 ± 0.092	0.702 ± 0.104	0.675 ± 0.169	0.464 ± 0.219		
$ecoli - 0 - 1_v s_2 - 3 - 5 0.642$		0.642 ± 0.214	0.608 ± 0.129	0.550 ± 0.093		0.758 ± 0.137	0.617 ± 0.113	0.650 ± 0.128		0.333 ± 0.296	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.655$		0.609 ± 0.135				0.755 ± 0.122	0.618 ± 0.127	0.655 ± 0.106		0.182 ± 0.244	
$ecoli - 0 - 6 - 7_v s_3 - 5 0.655$		0.627 ± 0.103				0.764 ± 0.136	0.655 ± 0.121	0.655 ± 0.140		0.327 ± 0.315	
$ecoli - 0 - 6 - 7_v s_5 = 0.720$		0.710 ± 0.151				0.760 ± 0.102	0.690 ± 0.104	0.720 ± 0.125		0.670 ± 0.332	
$glass - 0 - 1 - 4 - 6_v s_2$ 0.272		0.222 ± 0.157 0.303 ± 0.122	0.310 ± 0.148	0.272 ± 0.131	0.318 ± 0.143 0.364 ± 0.138		0.211 ± 0.112 0.411 ± 0.159	0.235 ± 0.129 0.457 ± 0.129		0.494 ± 0.347 0.596 ± 0.295	
$glass - 0 - 1 - 5_v s_2$ 0.482											
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9 0.522$		0.492 ± 0.104	0.560 ± 0.076 0.380 ± 0.095	0.518 ± 0.056 0.396 ± 0.090	0.513 ± 0.068 0.352 ± 0.087		0.514 ± 0.069	0.499 ± 0.075 0.400 ± 0.067		0.633 ± 0.151 0.932 ± 0.204	
$yeast - 0 - 3 - 5 - 9_v s_7 - 8 0.336$ $abalone - 17_v s_7 - 8 - 9 - 10 0.334$		0.356 ± 0.083 0.310 ± 0.069	0.380 ± 0.095 0.331 ± 0.090			0.412 ± 0.088 0.390 ± 0.046	0.368 ± 0.066 0.334 ± 0.082	0.400 ± 0.067 0.331 ± 0.077		0.932 ± 0.204 0.272 ± 0.224	
$abatone - 17_v s_7 - 8 - 9 - 10 - 0.334$ $abatone - 19_v s_10 - 11 - 12 - 13 - 0.181$		0.310 ± 0.069 0.062 ± 0.048			0.321 ± 0.090 0.131 ± 0.113					0.212 ± 0.224 0.312 ± 0.310	
$abalone - 19_v s_1 0 - 11 - 12 - 13 - 0.181$ $abalone - 20_v s_8 - 9 - 10 - 0.423$						0.262 ± 0.111 0.638 ± 0.119	0.175 ± 0.083	0.188 ± 0.062		0.312 ± 0.310 0.392 ± 0.258	
$abatone - 20_v s_8 - 9 - 10 - 0.425$ $abalone - 21_v s_8 - 0.486$		0.185 ± 0.130 0.329 ± 0.144				0.638 ± 0.119 0.629 ± 0.146	0.392 ± 0.121 0.414 ± 0.225	0.423 ± 0.105 0.500 ± 0.265		0.392 ± 0.238 0.314 ± 0.237	
$abatone - 21_vs_8 0.486$ $flare - F 0.149$		0.329 ± 0.144 0.187 ± 0.062			0.300 ± 0.146 0.210 ± 0.049		0.414 ± 0.225 0.187 ± 0.100	0.300 ± 0.265 0.191 ± 0.075		0.949 ± 0.052	
$kddcup - buffer_overflow_v s_back$ 1.000		1.000 ± 0.000				1,000 ± 0,000	1.000 ± 0.000			0.949 ± 0.032 1.000 ± 0.000	
$kadcup - var j fer_over flow_v s_back 1.000$ $kddcup - rootkit - imap_v s_back 1.000$		1.000 ± 0.000				1.000 ± 0.000	1.000 ± 0.000 1.000 ± 0.000	1.000 ± 0.000 1.000 ± 0.000		0.964 ± 0.000	
$kr - vs - k - zero_v s_e ight 0.925$		0.932 ± 0.103			0.939 ± 0.083		0.909 ± 0.116	0.925 ± 0.101		0.733 ± 0.071	
$poker - 8 - 9_v s_5$ 0.175		0.135 ± 0.100			0.030 ± 0.003 0.111 ± 0.102		0.113 ± 0.056	0.925 ± 0.101 0.175 ± 0.078		0.219 ± 0.197	
$poker - 8 - 9_w s_6$ 0.383		0.654 ± 0.277	0.358 ± 0.186		0.513 ± 0.278		0.333 ± 0.208	0.383 ± 0.172		1.000 ± 0.000	
$poker - 8 - 8_{\pi}s_6 = 0.363$ $poker - 8_{\pi}s_6 = 0.376$		0.378 ± 0.324	0.414 ± 0.246	0.378 ± 0.189		0.363 ± 0.311	0.364 ± 0.193	0.376 ± 0.112		0.863 ± 0.169	
$poker - 9_v s_7$ 0.150		0.125 ± 0.125			0.200 ± 0.132		0.150 ± 0.166			0.325 ± 0.317	
winequality $- red - 3_v s_5$ 0.060		0.080 ± 0.133	0.040 ± 0.080	0.060 ± 0.092		0.160 ± 0.120	0.080 ± 0.133	0.060 ± 0.092		0.100 ± 0.100	
winequality $-red-4$ 0.182		0.121 ± 0.062	0.234 ± 0.069				0.177 ± 0.038	0.182 ± 0.104		0.207 ± 0.126	
winequality $-red - 8_v s_6 - 7$ 0.133		0.156 ± 0.102				0.178 ± 0.089	0.133 ± 0.097	0.133 ± 0.083		0.089 ± 0.109	
winequality $-red - 8_{-86}$ 0.278		0.256 ± 0.132	0.267 ± 0.102	0.267 ± 0.142		0.300 ± 0.122	0.322 ± 0.126	0.278 ± 0.114	0.200 ± 0.083		0.178 ± 0.124
winequality – white – 3 – 9_vs_5 0.183		0.120 ± 0.098				0.338 ± 0.117	0.120 ± 0.073	0.183 ± 0.129	0.079 ± 0.061		
winequality – white – $3_v s_7$ 0.120		0.140 ± 0.120				0.510 ± 0.176	0.090 ± 0.094	0.120 ± 0.087	0.120 ± 0.060		
winequality – white – 9_vs_4 0.467		0.367 ± 0.208	0.467 ± 0.332				0.467 ± 0.332	0.467 ± 0.332		0.183 ± 0.229	
200 - 3 0.383		0.283 ± 0.248				0.517 ± 0.293	0.333 ± 0.236	0.383 ± 0.380		0.317 ± 0.311	
ecoli1 0.775		0.728 ± 0.088			0.765 ± 0.097		0.733 ± 0.113	0.809 ± 0.084		0.821 ± 0.309	
ecoli2 0.773		0.738 ± 0.078				0.827 ± 0.085	0.773 ± 0.102	0.769 ± 0.069		0.662 ± 0.391	
ecoli3 0.561		0.561 ± 0.132	0.622 ± 0.140	0.617 ± 0.103		0.771 ± 0.103	0.628 ± 0.106	0.584 ± 0.108	0.589 ± 0.096		
glass0 0.743		0.726 ± 0.106				0.774 ± 0.071	0.751 ± 0.075	0.743 ± 0.048		0.611 ± 0.127	
glass1 0.666		0.668 ± 0.078		0.679 ± 0.073		0.674 ± 0.074	0.682 ± 0.091	0.645 ± 0.056		0.853 ± 0.132	
haberman 0.445		0.408 ± 0.059		0.390 ± 0.087	0.407 ± 0.106		0.397 ± 0.113	0.449 ± 0.092		0.281 ± 0.097	
page - blocks0 0.865		0.820 ± 0.019			0.841 ± 0.020		0.869 ± 0.024	0.864 ± 0.017			0.807 ± 0.035
pima 0.588		0.584 ± 0.044		0.581 ± 0.039		0.611 ± 0.038	0.565 ± 0.036	0.590 ± 0.039			0.582 ± 0.048
vehicle1 0.519		0.519 ± 0.044		0.527 ± 0.055		0.579 ± 0.047	0.543 ± 0.053	0.537 ± 0.044		0.506 ± 0.042	
vehicle3 0.534		0.558 ± 0.040		0.559 ± 0.058		0.576 ± 0.035	0.537 ± 0.054	0.535 ± 0.028		0.548 ± 0.040	
yeast1 0.531		0.526 ± 0.029			0.540 ± 0.037		0.538 ± 0.031	0.514 ± 0.019		1.000 ± 0.000	
yeast3 0.772		0.704 ± 0.061			0.735 ± 0.045		0.751 ± 0.060	0.778 ± 0.057		0.994 ± 0.006	

Table 8. SVM – Recall

Dataset name SMOTE	polynom-fit-SMOTI	E Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
$abalone19 \ 0.300 \pm 0.131$	0.194 ± 0.099	0.300 ± 0.121	0.312 ± 0.137	0.306 ± 0.132	0.456 ± 0.119	0.300 ± 0.131	0.300 ± 0.131	0.475 ± 0.211	0.637 ± 0.276	0.663 ± 0.179
$abalone9 - 18 \ 0.590 \pm 0.107$	0.448 ± 0.077	0.610 ± 0.073	0.614 ± 0.081	0.586 ± 0.107		0.595 ± 0.071	0.590 ± 0.107		0.681 ± 0.088	
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0.700 \pm 0.155$	0.700 ± 0.155	0.700 ± 0.155			0.725 ± 0.179	0.700 ± 0.155	0.700 ± 0.155		0.742 ± 0.248	
$glass - 0 - 1 - 6_v s_2$ 0.629 ± 0.196	0.504 ± 0.167	0.654 ± 0.175			0.394 ± 0.208	0.643 ± 0.129	0.629 ± 0.196		0.815 ± 0.203	
$glass - 0 - 1 - 6_v s_5 0.650 \pm 0.201$	0.590 ± 0.234	0.650 ± 0.201	0.650 ± 0.201			0.650 ± 0.201	0.650 ± 0.201		0.805 ± 0.313	
$glass2 0.458 \pm 0.275$	0.415 ± 0.259		0.449 ± 0.273			0.471 ± 0.285	0.458 ± 0.275		0.764 ± 0.264	
$glass4~0.802~\pm~0.195$		0.786 ± 0.225	0.771 ± 0.250			0.769 ± 0.171	0.802 ± 0.195		0.752 ± 0.101	
$glass5 \ 0.645 \pm 0.217$	0.625 ± 0.211	0.665 ± 0.203				0.645 ± 0.217	0.645 ± 0.217		0.795 ± 0.258	
$page - blocks - 1 - 3_v s_4 \ 0.836 \pm 0.228$	0.593 ± 0.143	0.843 ± 0.223	0.843 ± 0.223			0.807 ± 0.233	0.836 ± 0.228		0.879 ± 0.150	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 = 0.604 \pm 0.098$	0.556 ± 0.066		0.600 ± 0.097			0.604 ± 0.082	0.600 ± 0.099		0.980 ± 0.020	
$yeast - 1 - 2 - 8 - 9_v s_7$ 0.380 ± 0.090	0.320 ± 0.129	0.393 ± 0.101	0.373 ± 0.100 0.313 ± 0.090			0.380 ± 0.112	0.387 ± 0.078		1.000 ± 0.000	
$yeast - 1 - 4 - 5 - 8_v s_7$ 0.327 ± 0.101 $yeast - 1_v s_7$ 0.540 ± 0.076	0.280 ± 0.107 0.467 ± 0.089	0.307 ± 0.100 0.547 ± 0.065				0.300 ± 0.095 0.533 ± 0.079	0.327 ± 0.101 0.540 ± 0.076		1.000 ± 0.000 0.973 ± 0.080	
$yeast - 1_v s_7 = 0.540 \pm 0.076$ $yeast - 2_v s_4 = 0.781 \pm 0.088$	0.467 ± 0.089 0.761 ± 0.088	0.547 ± 0.065 0.792 ± 0.088		0.467 ± 0.140 0.792 ± 0.108		0.533 ± 0.079 0.781 ± 0.101	0.540 ± 0.076 0.781 ± 0.088		0.973 ± 0.080 0.918 ± 0.120	
$yeast - 2vs_4 = 0.781 \pm 0.088$ $yeast - 2vs_8 = 0.550 \pm 0.120$	0.550 ± 0.102	0.792 ± 0.003 0.560 ± 0.102		0.732 ± 0.108 0.530 ± 0.100		0.761 ± 0.161 0.560 ± 0.162	0.781 ± 0.088 0.550 ± 0.120		0.940 ± 0.120	
$yeast - 2_v s_8 = 0.550 \pm 0.120$ $yeast4 = 0.619 \pm 0.071$	0.550 ± 0.102 0.550 ± 0.066	0.628 ± 0.087	0.623 ± 0.066	0.604 ± 0.074		0.600 ± 0.162 0.600 ± 0.054	0.619 ± 0.071		0.940 ± 0.120 0.980 ± 0.020	
$yeast5 0.882 \pm 0.058$	0.873 ± 0.060	0.882 ± 0.058		0.886 ± 0.055		0.882 ± 0.058	0.882 ± 0.058		1.000 ± 0.020	
$yeast6 0.727 \pm 0.109$	0.716 ± 0.101	0.739 ± 0.119	0.727 ± 0.107		0.824 ± 0.073	0.727 ± 0.118	0.727 ± 0.109		0.978 ± 0.067	
$cleveland - 0_v s_4 = 0.448 \pm 0.177$	0.369 ± 0.163				0.719 ± 0.104	0.448 ± 0.177	0.448 ± 0.177		0.502 ± 0.228	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6 0.771 \pm 0.066$	0.717 ± 0.041	0.765 ± 0.066			0.826 ± 0.069	0.779 ± 0.071	0.771 ± 0.066		0.788 ± 0.152	
$ecoli - 0 - 1_v s_2 - 3 - 5 \ 0.733 \pm 0.090$	0.750 ± 0.091	0.750 ± 0.091			0.825 ± 0.115	0.750 ± 0.091	0.733 ± 0.090		0.833 ± 0.139	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.700 \pm 0.108$	0.700 ± 0.122				0.809 ± 0.125	0.700 ± 0.122	0.700 ± 0.108		0.764 ± 0.153	
$ecoli - 0 - 6 - 7_v s_3 - 5 0.718 \pm 0.111$	0.718 ± 0.111	0.718 ± 0.111			0.800 ± 0.134	0.718 ± 0.125	0.718 ± 0.111		0.764 ± 0.153	
$ecoli - 0 - 6 - 7_v s_5 0.750 \pm 0.092$	0.750 ± 0.092	0.750 ± 0.092	0.750 ± 0.092	0.750 ± 0.092	0.830 ± 0.110	0.750 ± 0.092	0.750 ± 0.092	0.740 ± 0.092	0.870 ± 0.149	0.790 ± 0.181
$glass - 0 - 1 - 4 - 6_v s_2 - 0.568 \pm 0.209$	0.456 ± 0.262	0.592 ± 0.235	0.553 ± 0.274	0.471 ± 0.243	0.411 ± 0.185	0.589 ± 0.267	0.568 ± 0.209	0.561 ± 0.263	0.869 ± 0.165	0.658 ± 0.313
$glass - 0 - 1 - 5_v s_2 - 0.554 \pm 0.135$	0.433 ± 0.142	0.565 ± 0.130	0.578 ± 0.159	0.453 ± 0.132	0.290 ± 0.098	0.532 ± 0.150	0.554 ± 0.135	0.562 ± 0.205	0.811 ± 0.155	0.572 ± 0.203
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9 0.635 \pm 0.064$	0.588 ± 0.087	0.635 ± 0.056	0.651 ± 0.057	0.621 ± 0.065	0.657 ± 0.061	0.643 ± 0.063	0.637 ± 0.062	0.592 ± 0.074	0.729 ± 0.078	0.621 ± 0.096
$yeast - 0 - 3 - 5 - 9_v s_7 - 8 \ 0.560 \pm 0.082$	0.316 ± 0.070	0.556 ± 0.081	0.556 ± 0.095	0.548 ± 0.084	0.428 ± 0.123	0.552 ± 0.071	0.560 ± 0.082	0.512 ± 0.172	0.976 ± 0.072	0.504 ± 0.140
$abalone - 17_v s_7 - 8 - 9 - 10 \ 0.717 \pm 0.043$	0.528 ± 0.079	0.707 ± 0.047	0.707 ± 0.069	0.693 ± 0.054	0.724 ± 0.056	0.721 ± 0.052	0.714 ± 0.041	0.410 ± 0.174	0.793 ± 0.109	0.717 ± 0.159
$abalone - 19_v s_1 0 - 11 - 12 - 13 \ 0.419 \pm 0.158$	0.231 ± 0.125	0.425 ± 0.155			0.463 ± 0.163	0.406 ± 0.164	0.419 ± 0.158	0.412 ± 0.233	0.694 ± 0.141	0.488 ± 0.214
$abalone - 20_v s_8 - 9 - 10 \ 0.654 \pm 0.099$	0.577 ± 0.086	0.662 ± 0.086			0.823 ± 0.103	0.638 ± 0.114	0.654 ± 0.099		0.838 ± 0.080	
$abalone - 21_v s_8 - 0.614 \pm 0.239$	0.586 ± 0.243	0.614 ± 0.239			0.700 ± 0.135	0.614 ± 0.239	0.614 ± 0.239		0.571 ± 0.221	
$flare - F = 0.604 \pm 0.093$	0.419 ± 0.095		0.609 ± 0.105			0.600 ± 0.095	0.604 ± 0.093		0.949 ± 0.052	
$kddcup - buffer_overflow_v s_back 0.987 \pm 0.027$	0.993 ± 0.020	0.987 ± 0.027			1.000 ± 0.000	0.987 ± 0.027	0.987 ± 0.027		0.993 ± 0.020	
$kddcup - rootkit - imap_v s_b ack 0.955 \pm 0.045$					50.955 ± 0.045	0.945 ± 0.060	0.955 ± 0.045		10.955 ± 0.084	
$kr - vs - k - zero_v s_e ight$ 0.880 ± 0.102	0.872 ± 0.113				0.918 ± 0.099	0.872 ± 0.113	0.880 ± 0.102		0.733 ± 0.071	
$poker - 8 - 9_v s_5 = 0.297 \pm 0.142$	0.201 ± 0.135	0.280 ± 0.126	0.272 ± 0.121			0.273 ± 0.105	0.297 ± 0.142		0.480 ± 0.180	
$poker - 8 - 9_v s_6$ 0.514 ± 0.127 $poker - 8_v s_6$ 0.567 ± 0.146	0.449 ± 0.095 0.425 ± 0.118	0.514 ± 0.127 0.567 ± 0.146			0.888 ± 0.112 0.944 ± 0.102	0.499 ± 0.172 0.578 ± 0.131	0.514 ± 0.127 0.567 ± 0.146		0.975 ± 0.075 0.900 ± 0.213	
$poker - 8_v s_6 0.567 \pm 0.146$ $poker - 9_v s_7 0.275 \pm 0.208$	0.425 ± 0.118 0.250 ± 0.194		0.378 ± 0.131 0.275 ± 0.208			0.378 ± 0.131 0.225 ± 0.175	0.367 ± 0.146 0.275 ± 0.208		0.900 ± 0.213 3 0.425 ± 0.275	
$poker - 9_v s_7 0.215 \pm 0.208$ $winequality - red - 3_v s_5 0.100 \pm 0.100$	0.230 ± 0.194 0.100 ± 0.100	0.273 ± 0.208 0.100 ± 0.100			0.375 ± 0.280 0.240 ± 0.120	0.120 ± 0.098	0.275 ± 0.208 0.100 ± 0.100		0.240 ± 0.196	
winequality $- red - 3_v s_5 = 0.100 \pm 0.100$ winequality $- red - 4 = 0.393 \pm 0.088$	0.309 ± 0.063				0.313 ± 0.062	0.120 ± 0.098 0.397 ± 0.084	0.393 ± 0.088		0.652 ± 0.151	
winequality $- red - 8_v s_6 - 7 0.211 \pm 0.116$	0.156 ± 0.113		0.211 ± 0.116			0.178 ± 0.102	0.211 ± 0.116		0.311 ± 0.178	
winequality $- red - 8_v s_6$ 0.289 ± 0.074	0.267 ± 0.054		0.289 ± 0.074			0.311 ± 0.067	0.289 ± 0.074		0.444 ± 0.217	
winequality – white – 3 – 9_vs_5 0.181 ± 0.109	0.095 ± 0.093				0.410 ± 0.087	0.166 ± 0.106	0.181 ± 0.109		0.372 ± 0.212	
winequality – white – $3_v s_7$ 0.110 \pm 0.104	0.080 ± 0.087				0.530 ± 0.155	0.120 ± 0.098	0.110 ± 0.104		0.370 ± 0.290	
winequality – white – $9_v s_4$ 0.633 \pm 0.267			0.400 ± 0.436			0.633 ± 0.267	0.633 ± 0.267		0.483 ± 0.361	
$zoo - 3 \ 0.233 \pm 0.327$	0.233 ± 0.327	0.233 ± 0.327				0.233 ± 0.327	0.233 ± 0.327		0.383 ± 0.380	
$ecoli1 = 0.896 \pm 0.050$	0.839 ± 0.035		0.883 ± 0.040			0.886 ± 0.047	0.896 ± 0.050		0.967 ± 0.062	
ecoli 2 0.915 ± 0.054	0.892 ± 0.073	0.915 ± 0.054	0.912 ± 0.057	0.912 ± 0.057	0.923 ± 0.042	0.919 ± 0.047	0.912 ± 0.057	0.838 ± 0.080	0.935 ± 0.106	0.877 ± 0.066
$ecoli3 \ 0.880 \pm 0.054$	0.869 ± 0.056	0.880 ± 0.054	0.880 ± 0.047	0.891 ± 0.054	0.920 ± 0.038	0.874 ± 0.050	0.886 ± 0.051	0.816 ± 0.122	0.954 ± 0.035	0.752 ± 0.171
$glass0 0.860 \pm 0.064$	0.811 ± 0.063	0.863 ± 0.065	0.877 ± 0.070	0.866 ± 0.063	0.869 ± 0.055	0.874 ± 0.056	0.866 ± 0.063	0.894 ± 0.066	0.951 ± 0.057	0.826 ± 0.106
$glass1 \ 0.758 \pm 0.078$	0.771 ± 0.098	0.745 ± 0.081	0.745 ± 0.105	0.763 ± 0.096		0.750 ± 0.102	0.753 ± 0.078		0.945 ± 0.034	
$haberman \ 0.475 \pm 0.121$	0.440 ± 0.081	0.479 ± 0.097	0.484 ± 0.122			0.494 ± 0.097	0.470 ± 0.122		0.562 ± 0.139	
$page-blocks0$ 0.916 ± 0.019	0.824 ± 0.018	0.914 ± 0.017	0.891 ± 0.023			0.915 ± 0.020	0.916 ± 0.019		0.963 ± 0.015	
$pima 0.708 \pm 0.047$	0.635 ± 0.057		0.694 ± 0.037			0.711 ± 0.051	0.712 ± 0.044		0.844 ± 0.038	
$vehicle1 \ 0.825 \pm 0.086$	0.653 ± 0.058	0.827 ± 0.077	0.822 ± 0.078			0.821 ± 0.067	0.831 ± 0.084		0.897 ± 0.038	
$vehicle3 \ 0.845 \pm 0.056$	0.648 ± 0.053		0.866 ± 0.056			0.845 ± 0.040	0.847 ± 0.055		0.881 ± 0.066	
$yeast1 = 0.716 \pm 0.033$	0.544 ± 0.029		0.724 ± 0.043			0.715 ± 0.038	0.717 ± 0.033		1.000 ± 0.000	
$yeast3 = 0.843 \pm 0.050$	0.802 ± 0.053	0.845 ± 0.045	0.842 ± 0.059	0.833 ± 0.047	0.853 ± 0.041	0.849 ± 0.052	0.843 ± 0.050	0.761 ± 0.046	0.994 ± 0.006	0.826 ± 0.043

Table 9. KNN – AUC

Dataset name	SMOTE	polynom-fit-SMOTE	Lee	SMOBD	G-SMOTE	LVO-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks	JFOTS-pr	JFOTS-re	JFOTS-prom
	0.568 ± 0.069	0.519 ± 0.028	0.568 ± 0.069	0.567 ± 0.069	0.549 ± 0.043	0.554 ± 0.047	0.565 ± 0.062	0.568 ± 0.069			0.520 ± 0.032
abalone9 - 18		0.704 ± 0.044		0.709 ± 0.040			0.714 ± 0.041	0.720 ± 0.033		0.572 ± 0.063	
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6$	0.834 ± 0.075	0.835 ± 0.076	0.834 ± 0.074	0.833 ± 0.074	0.835 ± 0.076	0.833 ± 0.076	0.834 ± 0.075	0.834 ± 0.075	0.800 ± 0.108	0.800 ± 0.106	0.820 ± 0.096
$glass - 0 - 1 - 6_v s_2$	0.718 ± 0.086	0.682 ± 0.045	0.713 ± 0.081	0.714 ± 0.084	0.700 ± 0.056	0.657 ± 0.063	0.725 ± 0.082	0.717 ± 0.085	0.638 ± 0.040	0.606 ± 0.086	0.660 ± 0.084
$glass - 0 - 1 - 6_v s_5$	0.914 ± 0.097	0.915 ± 0.098	0.914 ± 0.097	0.914 ± 0.098	0.894 ± 0.135	0.881 ± 0.120	0.914 ± 0.097	0.914 ± 0.097	0.878 ± 0.118	0.842 ± 0.192	0.801 ± 0.162
	0.630 ± 0.134	0.633 ± 0.137		0.644 ± 0.141		0.627 ± 0.112	0.635 ± 0.145	0.628 ± 0.133		0.583 ± 0.096	
	0.901 ± 0.057	0.903 ± 0.068		0.885 ± 0.056			0.892 ± 0.048	0.901 ± 0.057			0.755 ± 0.062
	0.931 ± 0.110	0.933 ± 0.110		0.931 ± 0.110		0.862 ± 0.108	0.931 ± 0.110	0.931 ± 0.110		0.867 ± 0.136	
$page - blocks - 1 - 3_v s_4$	0.983 ± 0.023			0.983 ± 0.023		0.980 ± 0.016	0.976 ± 0.025	0.983 ± 0.023		0.835 ± 0.086	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$		0.740 ± 0.038		0.733 ± 0.043		0.731 ± 0.045	0.718 ± 0.035	0.725 ± 0.043			0.643 ± 0.072
$yeast - 1 - 2 - 8 - 9_v s_7$		0.685 ± 0.045		0.663 ± 0.040		0.660 ± 0.052	0.667 ± 0.051	0.672 ± 0.048		0.500 ± 0.000	
$yeast - 1 - 4 - 5 - 8_v s_7$	0.611 ± 0.040 0.723 ± 0.036	0.595 ± 0.062 0.723 ± 0.042		0.594 ± 0.052 0.732 ± 0.042		0.577 ± 0.042 0.690 ± 0.033	0.605 ± 0.039 0.701 ± 0.051	0.611 ± 0.038 0.722 ± 0.035		0.500 ± 0.000	0.521 ± 0.048 0.575 ± 0.076
$yeast - 1_v s_7$ $yeast - 2_v s_4$		0.723 ± 0.042 0.863 ± 0.035		0.732 ± 0.042 0.871 ± 0.030		0.861 ± 0.034	0.875 ± 0.037	0.722 ± 0.035 0.874 ± 0.030		0.499 ± 0.002 0.603 ± 0.158	
$yeast - 2_v s_4$ $yeast - 2_v s_8$		0.810 ± 0.046	0.794 ± 0.045			0.806 ± 0.057	0.798 ± 0.051	0.801 ± 0.050		0.534 ± 0.105	
	0.729 ± 0.031	0.733 ± 0.034		0.729 ± 0.027			0.735 ± 0.039	0.729 ± 0.025		0.534 ± 0.103 0.500 ± 0.000	
	0.929 ± 0.036	0.920 ± 0.035	0.925 ± 0.036		0.910 ± 0.034		0.929 ± 0.034	0.929 ± 0.036		0.500 ± 0.000	
	0.814 ± 0.044	0.816 ± 0.038		0.813 ± 0.044			0.809 ± 0.043	0.814 ± 0.044		0.500 ± 0.000	
$cleveland - 0_v s_4$		0.868 ± 0.036		0.875 ± 0.068			0.883 ± 0.024	0.876 ± 0.069		0.719 ± 0.135	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$	0.883 ± 0.018	0.878 ± 0.024	0.880 ± 0.018	0.876 ± 0.018	0.884 ± 0.022	0.877 ± 0.028	0.882 ± 0.021	0.884 ± 0.018	0.739 ± 0.121	0.568 ± 0.099	0.803 ± 0.098
$ecoli - 0 - 1_v s_2 - 3 - 5$	0.884 ± 0.024	0.887 ± 0.026	0.878 ± 0.025	0.880 ± 0.025	0.879 ± 0.024	0.875 ± 0.042	0.886 ± 0.030	0.884 ± 0.024	0.821 ± 0.104	0.689 ± 0.160	0.820 ± 0.066
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5$		0.839 ± 0.051	0.842 ± 0.061	0.840 ± 0.053	0.843 ± 0.057	0.840 ± 0.038	0.838 ± 0.049	0.839 ± 0.050	0.810 ± 0.041	0.588 ± 0.122	0.840 ± 0.027
$ecoli - 0 - 6 - 7_v s_3 - 5$		0.855 ± 0.053		0.858 ± 0.050			0.851 ± 0.052	0.852 ± 0.053		0.614 ± 0.143	
$ecoli - 0 - 6 - 7_v s_5$		0.865 ± 0.056		0.867 ± 0.053			0.865 ± 0.049	0.867 ± 0.048		0.589 ± 0.123	
$glass - 0 - 1 - 4 - 6_v s_2$				0.673 ± 0.099	0.645 ± 0.101		0.666 ± 0.105	0.669 ± 0.095		0.582 ± 0.110	
$glass - 0 - 1 - 5_v s_2$				0.669 ± 0.065			0.683 ± 0.059	0.675 ± 0.060		0.622 ± 0.128	
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9$				0.772 ± 0.026			0.772 ± 0.031	0.773 ± 0.032		0.533 ± 0.058	
$yeast - 0 - 3 - 5 - 9_v s_7 - 8$		0.675 ± 0.035 0.719 ± 0.034		0.670 ± 0.043 0.745 ± 0.046			0.669 ± 0.030 0.743 ± 0.044	0.680 ± 0.038 0.749 ± 0.046		0.502 ± 0.011	0.561 ± 0.065 0.612 ± 0.072
$abalone - 17_v s_7 - 8 - 9 - 10$ $abalone - 19_v s_1 0 - 11 - 12 - 13$		0.719 ± 0.034 0.551 ± 0.025		0.589 ± 0.046		0.759 ± 0.042 0.569 ± 0.045	0.743 ± 0.044 0.570 ± 0.044	0.749 ± 0.046 0.582 ± 0.037			0.512 ± 0.072 0.523 ± 0.044
$abatone - 19_v s_10 - 11 - 12 - 13$ $abatone - 20_v s_8 - 9 - 10$		0.662 ± 0.025		0.589 ± 0.047 0.761 ± 0.067			0.570 ± 0.044 0.743 ± 0.082	0.582 ± 0.057 0.746 ± 0.058		0.515 ± 0.035 0.549 ± 0.077	
abalone $-20_v s_8 - 9 - 10$ $abalone - 21_v s_8$				0.815 ± 0.076		0.794 ± 0.065	0.822 ± 0.082	0.830 ± 0.084		0.667 ± 0.077	
	0.693 ± 0.044	0.674 ± 0.035		0.693 ± 0.044			0.694 ± 0.041	0.692 ± 0.044		0.504 ± 0.009	
$kddcup - buffer_overflow_v s_back$		0.957 ± 0.047		0.957 ± 0.047			0.947 ± 0.043	0.957 ± 0.047		0.957 ± 0.045	
$kddcup - rootkit - imap_us_back$				0.973 ± 0.022		0.945 ± 0.027	0.955 ± 0.050	0.973 ± 0.022			0.964 ± 0.040
$kr - vs - k - zero_v s_e ight$		0.930 ± 0.053	0.944 ± 0.050	0.944 ± 0.049	0.926 ± 0.061	0.944 ± 0.060	0.929 ± 0.060	0.940 ± 0.050		0.500 ± 0.000	
$poker - 8 - 9_v s_5$	0.609 ± 0.059	0.578 ± 0.036	0.617 ± 0.065	0.608 ± 0.062	0.548 ± 0.044	0.643 ± 0.048	0.614 ± 0.061	0.609 ± 0.059	0.546 ± 0.069	0.514 ± 0.036	0.550 ± 0.075
$poker - 8 - 9_v s_6$	0.949 ± 0.040	0.912 ± 0.033	0.949 ± 0.039	0.949 ± 0.039	0.904 ± 0.053	0.976 ± 0.027	0.937 ± 0.031	0.949 ± 0.040	0.988 ± 0.038	0.976 ± 0.048	0.976 ± 0.048
$poker - 8_v s_6$		0.851 ± 0.057	0.942 ± 0.061	0.942 ± 0.061	0.875 ± 0.098	0.978 ± 0.018	0.932 ± 0.078	0.942 ± 0.061		0.931 ± 0.113	
$poker - 9_v s_7$		0.839 ± 0.152		0.839 ± 0.152			0.828 ± 0.145	0.839 ± 0.152		0.806 ± 0.192	
$winequality - red - 3_v s_5$		0.577 ± 0.053		0.583 ± 0.061			0.575 ± 0.052	0.584 ± 0.061		0.493 ± 0.033	
winequality - red - 4		0.583 ± 0.043	0.596 ± 0.029		0.588 ± 0.036	0.557 ± 0.024	0.602 ± 0.024	0.597 ± 0.026		0.521 ± 0.038	
$winequality - red - 8_v s_6 - 7$		0.543 ± 0.068		0.537 ± 0.063		0.530 ± 0.060	0.534 ± 0.055	0.531 ± 0.064		0.534 ± 0.070	
$winequality - red - 8_v s_6$ $winequality - white - 3 - 9_v s_5$			0.624 ± 0.055	0.635 ± 0.051 0.617 ± 0.034		0.600 ± 0.052 0.602 ± 0.053	0.632 ± 0.043 0.599 ± 0.034	0.635 ± 0.050 0.618 ± 0.030		0.584 ± 0.077 0.518 ± 0.029	
winequality – white – 3 – 9_vs_5 winequality – white – 3_vs_7		0.613 ± 0.033 0.573 ± 0.064		0.617 ± 0.034 0.619 ± 0.094			0.630 ± 0.034 0.630 ± 0.099	0.630 ± 0.030		0.518 ± 0.029 0.599 ± 0.089	
winequality – white – 3_vs_7 winequality – white – 9_vs_4		0.882 ± 0.095		0.766 ± 0.164		0.644 ± 0.084 0.774 ± 0.172	0.630 ± 0.099 0.878 ± 0.091	0.630 ± 0.086 0.878 ± 0.091		0.599 ± 0.089 0.726 ± 0.177	
	0.827 ± 0.051			0.717 ± 0.191			0.827 ± 0.051	0.827 ± 0.051		0.630 ± 0.177	
	0.864 ± 0.026	0.863 ± 0.019		0.871 ± 0.024		0.864 ± 0.028	0.863 ± 0.033	0.867 ± 0.023		0.563 ± 0.127	
	0.915 ± 0.028	0.922 ± 0.025		0.914 ± 0.027		0.911 ± 0.021	0.914 ± 0.027	0.915 ± 0.028		0.584 ± 0.138	
	0.866 ± 0.019			0.859 ± 0.025		0.851 ± 0.028	0.861 ± 0.018	0.865 ± 0.015		0.575 ± 0.119	
	0.791 ± 0.035	0.799 ± 0.036	0.786 ± 0.034	0.794 ± 0.028	0.797 ± 0.027	0.787 ± 0.041	0.800 ± 0.030	0.800 ± 0.034	0.778 ± 0.047	0.700 ± 0.116	0.778 ± 0.050
	0.738 ± 0.047	0.749 ± 0.053	0.745 ± 0.044	0.748 ± 0.037	0.739 ± 0.042	0.740 ± 0.031	0.736 ± 0.030	0.738 ± 0.051	0.698 ± 0.068	0.551 ± 0.081	0.685 ± 0.054
	0.601 ± 0.034	0.616 ± 0.036	0.587 ± 0.044		0.588 ± 0.039	0.587 ± 0.030	0.584 ± 0.029	0.599 ± 0.030		0.535 ± 0.074	
page-blocks0		0.911 ± 0.012		0.921 ± 0.012		0.887 ± 0.016	0.931 ± 0.009	0.930 ± 0.010		0.905 ± 0.012	
	0.685 ± 0.021	0.708 ± 0.018		0.687 ± 0.016			0.687 ± 0.017	0.693 ± 0.024		0.616 ± 0.053	
	0.723 ± 0.026	0.740 ± 0.017		0.736 ± 0.025		0.720 ± 0.022	0.731 ± 0.022	0.724 ± 0.027		0.716 ± 0.030	
	0.708 ± 0.018	0.700 ± 0.029		0.718 ± 0.025		0.692 ± 0.023	0.712 ± 0.020	0.706 ± 0.020		0.696 ± 0.023	
	0.675 ± 0.010	0.697 ± 0.012		0.676 ± 0.015			0.674 ± 0.013	0.678 ± 0.010			0.554 ± 0.070
yeast3	0.873 ± 0.017	0.874 ± 0.021	0.874 ± 0.018	0.868 ± 0.022	0.870 ± 0.018	0.868 ± 0.017	0.874 ± 0.017	0.872 ± 0.017	0.847 ± 0.018	0.500 ± 0.000	0.843 ± 0.022

Table 10. CART – BAC

Dataset name	SMOTE	polynom-fit-SMOTI	E Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
abalone19	0.561 ± 0.042	0.503 ± 0.015	0.546 ± 0.038	0.565 ± 0.042	0.545 ± 0.052	0.537 ± 0.051	0.555 ± 0.047	0.561 ± 0.042	0.505 ± 0.019	0.540 ± 0.045	0.547 ± 0.070
abalone9 - 18	0.665 ± 0.059	0.609 ± 0.040	0.672 ± 0.051	0.685 ± 0.051	0.653 ± 0.033	0.684 ± 0.082	0.649 ± 0.038	0.667 ± 0.062	0.658 ± 0.041	0.561 ± 0.075	0.613 ± 0.061
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6$	0.790 ± 0.115	0.815 ± 0.063	0.790 ± 0.115	0.790 ± 0.115	0.815 ± 0.063	0.776 ± 0.100	0.790 ± 0.115	0.790 ± 0.115	0.694 ± 0.110	0.609 ± 0.088	0.713 ± 0.115
$glass - 0 - 1 - 6_v s_2$	0.629 ± 0.058	0.570 ± 0.054	0.663 ± 0.054	0.642 ± 0.063	0.609 ± 0.057	0.588 ± 0.108	0.633 ± 0.108	0.628 ± 0.055	0.653 ± 0.106	0.576 ± 0.043	0.608 ± 0.052
$glass - 0 - 1 - 6_v s_5$	0.860 ± 0.133	0.858 ± 0.133	0.860 ± 0.133	0.860 ± 0.133	0.794 ± 0.185	0.894 ± 0.133	0.860 ± 0.133	0.860 ± 0.133	0.765 ± 0.151		0.763 ± 0.158
glass2	0.591 ± 0.121	0.563 ± 0.077	0.577 ± 0.111	0.610 ± 0.101	0.599 ± 0.108	0.582 ± 0.110	0.575 ± 0.094	0.606 ± 0.124	0.586 ± 0.076	0.550 ± 0.077	0.616 ± 0.091
glass4	0.854 ± 0.086	0.835 ± 0.053	0.854 ± 0.087	0.845 ± 0.086	0.857 ± 0.082	0.808 ± 0.090	0.853 ± 0.090	0.854 ± 0.086	0.797 ± 0.109	0.764 ± 0.140	0.770 ± 0.114
glass5	0.851 ± 0.154	0.849 ± 0.153	0.851 ± 0.154	0.851 ± 0.154	0.862 ± 0.160	0.935 ± 0.107	0.851 ± 0.154	0.851 ± 0.154	0.836 ± 0.150	0.895 ± 0.127	0.791 ± 0.156
$page-blocks-1-3_vs_4$	0.969 ± 0.059	0.949 ± 0.060	0.966 ± 0.068	0.964 ± 0.068	0.972 ± 0.063	0.962 ± 0.050	0.983 ± 0.032	0.969 ± 0.059	0.902 ± 0.062	0.884 ± 0.100	0.924 ± 0.089
$yeast - 0 - 5 - 6 - 7 - 9_v s_4$	0.696 ± 0.057	0.680 ± 0.048		0.694 ± 0.056			0.688 ± 0.037	0.701 ± 0.042	0.662 ± 0.046	0.496 ± 0.008	0.675 ± 0.058
$yeast - 1 - 2 - 8 - 9_v s_7$		0.578 ± 0.047				0.647 ± 0.062	0.586 ± 0.023	0.604 ± 0.044		0.511 ± 0.004	
$yeast - 1 - 4 - 5 - 8_v s_7$		0.554 ± 0.026		0.523 ± 0.045	0.537 ± 0.053		0.551 ± 0.029	0.526 ± 0.048		0.505 ± 0.003	
	0.613 ± 0.057	0.623 ± 0.049		0.635 ± 0.052		0.659 ± 0.038	0.616 ± 0.048	0.609 ± 0.053			0.599 ± 0.068
	0.845 ± 0.046	0.840 ± 0.055		0.861 ± 0.068			0.865 ± 0.042	0.839 ± 0.037		0.583 ± 0.141	
	0.730 ± 0.089	0.762 ± 0.068		0.778 ± 0.084			0.747 ± 0.065	0.741 ± 0.087	0.756 ± 0.049	0.520 ± 0.031	0.743 ± 0.049
	0.675 ± 0.044	0.637 ± 0.032				0.719 ± 0.055	0.674 ± 0.083	0.678 ± 0.046		0.497 ± 0.009	
	0.862 ± 0.073	0.846 ± 0.068		0.859 ± 0.068		0.878 ± 0.049	0.868 ± 0.057	0.864 ± 0.076		0.510 ± 0.001	
	0.730 ± 0.066	0.692 ± 0.047	0.725 ± 0.067	0.747 ± 0.062		0.768 ± 0.051	0.742 ± 0.059	0.731 ± 0.064	0.679 ± 0.058	0.521 ± 0.033	0.687 ± 0.050
$cleveland - 0_v s_4$			0.785 ± 0.103		0.750 ± 0.127		0.801 ± 0.063	0.814 ± 0.055		0.736 ± 0.097	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$		0.794 ± 0.048	0.822 ± 0.039	0.790 ± 0.069	0.776 ± 0.066		0.827 ± 0.054	0.806 ± 0.077		0.550 ± 0.083	
$ecoli - 0 - 1_v s_2 - 3 - 5$		0.806 ± 0.102	0.784 ± 0.059			0.841 ± 0.058	0.781 ± 0.050	0.800 ± 0.062		0.649 ± 0.137	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5$		0.787 ± 0.062		0.822 ± 0.075			0.778 ± 0.066	0.802 ± 0.047		0.566 ± 0.120	
$ecoli - 0 - 6 - 7_v s_3 - 5$		0.794 ± 0.048	0.810 ± 0.052	0.813 ± 0.063		0.834 ± 0.060	0.790 ± 0.056	0.796 ± 0.069	0.773 ± 0.056	0.594 ± 0.147	
$ecoli - 0 - 6 - 7_v s_5$		0.840 ± 0.074		0.838 ± 0.071			0.825 ± 0.060		0.850 ± 0.078		
$glass - 0 - 1 - 4 - 6_v s_2$		0.560 ± 0.082		0.591 ± 0.062			0.558 ± 0.066	0.576 ± 0.062		0.557 ± 0.034	
$glass - 0 - 1 - 5_v s_2$		0.597 ± 0.068		0.713 ± 0.110			0.649 ± 0.079	0.678 ± 0.062		0.536 ± 0.072	
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9$		0.712 ± 0.051		0.714 ± 0.027			0.709 ± 0.037	0.700 ± 0.034		0.541 ± 0.061	
$yeast - 0 - 3 - 5 - 9_v s_7 - 8$		0.638 ± 0.041		0.623 ± 0.050	0.614 ± 0.049		0.615 ± 0.028	0.630 ± 0.031	0.550 ± 0.059	0.512 ± 0.016	
$abalone - 17_v s_7 - 8 - 9 - 10$		0.642 ± 0.033		0.660 ± 0.045		0.667 ± 0.024	0.646 ± 0.039	0.642 ± 0.036		0.569 ± 0.057	
$abalone - 19_v s_1 0 - 11 - 12 - 13$		0.517 ± 0.024		0.548 ± 0.035		0.576 ± 0.050	0.557 ± 0.034	0.560 ± 0.028			
$abalone - 20_v s_8 - 9 - 10$		0.584 ± 0.065				0.789 ± 0.061	0.681 ± 0.059	0.696 ± 0.050		0.589 ± 0.042	
$abalone - 21_v s_8$		0.655 ± 0.074				0.790 ± 0.070	0.692 ± 0.105	0.734 ± 0.126		0.614 ± 0.092	
flare - F kddcup - buffer, verflow, stack	0.558 ± 0.035	0.581 ± 0.030		0.578 ± 0.038			0.576 ± 0.048	0.577 ± 0.035			0.666 ± 0.078
$kddcup - buffer_overflow_v s_back$ $kddcup - rootkit - imap_v s_back$						0.000 ± 0.000 0.000 ± 0.000	1.000 ± 0.000 1.000 ± 0.000	1.000 ± 0.000 1.000 ± 0.000		0.982 ± 0.036	1.000 ± 0.000
$kr - vs - k - zero_v s_e iqht$		0.965 ± 0.051		0.965 ± 0.051			0.954 ± 0.058	0.961 ± 0.050		0.982 ± 0.036 0.702 ± 0.042	
$\kappa r - vs - \kappa - zero_v s_e ignt$ $poker - 8 - 9_v s_5$		0.965 ± 0.051 0.558 ± 0.049				0.585 ± 0.070	0.543 ± 0.038 0.543 ± 0.028	0.961 ± 0.030 0.572 ± 0.039		0.702 ± 0.042 0.517 ± 0.054	
			0.670 ± 0.032	0.572 ± 0.032 0.644 ± 0.084	0.750 ± 0.031						0.922 ± 0.031
$poker - 8 - 9_{\pi}s_6$	0.680 ± 0.087 0.685 ± 0.101	0.824 ± 0.141 0.685 ± 0.163		0.685 ± 0.084	0.750 ± 0.145 0.691 ± 0.098		0.657 ± 0.105 0.677 ± 0.100	0.680 ± 0.087 0.685 ± 0.101	0.939 ± 0.001 0.931 ± 0.085		
	0.564 ± 0.082	0.548 ± 0.063		0.562 ± 0.084			0.563 ± 0.081		0.686 ± 0.209		
$poker - 9_v s_7$ $winequality - red - 3_v s_5$		0.548 ± 0.063 0.529 ± 0.066		0.562 ± 0.084 0.518 ± 0.045		0.565 ± 0.056	0.503 ± 0.081 0.525 ± 0.064	0.504 ± 0.082 0.516 ± 0.043		0.528 ± 0.049	
winequality $- red - 3_v s_5$ winequality $- red - 4$		0.529 ± 0.000 0.528 ± 0.030		0.572 ± 0.045	0.528 ± 0.089 0.564 ± 0.040		0.525 ± 0.004 0.548 ± 0.017	0.516 ± 0.043 0.552 ± 0.050		0.528 ± 0.049 0.531 ± 0.031	
winequality $- red - 4$ winequality $- red - 8_v s_6 - 7$		0.528 ± 0.050 0.557 ± 0.050		0.562 ± 0.051			0.545 ± 0.048	0.543 ± 0.041		0.529 ± 0.053	
winequality $- red - 8_v s_6 - r$ winequality $- red - 8_v s_6$		0.608 ± 0.064	0.605 ± 0.039		0.579 ± 0.047		0.630 ± 0.056	0.609 ± 0.052		0.529 ± 0.063 0.566 ± 0.063	
winequality $-$ vet $ 9_vs_5$ winequality $-$ white $ 3$ $ 9_vs_5$		0.544 ± 0.047		0.546 ± 0.056		0.643 ± 0.056	0.535 ± 0.037	0.566 ± 0.063		0.509 ± 0.003	
winequality - white - 3 _v s ₇		0.557 ± 0.060		0.567 ± 0.055		0.737 ± 0.086	0.524 ± 0.047	0.539 ± 0.045		0.578 ± 0.076	
winequality – white – 9_vs_4		0.672 ± 0.100		0.721 ± 0.162			0.721 ± 0.162	0.722 ± 0.163		0.573 ± 0.010	
	0.658 ± 0.189	0.608 ± 0.123	0.665 ± 0.158	0.650 ± 0.156		0.738 ± 0.159	0.639 ± 0.122	0.658 ± 0.189		0.509 ± 0.127	
	0.841 ± 0.056	0.818 ± 0.039	0.827 ± 0.049		0.837 ± 0.041		0.822 ± 0.048	0.860 ± 0.041		0.556 ± 0.105	
	0.855 ± 0.028	0.838 ± 0.035	0.850 ± 0.033	0.852 ± 0.036		0.866 ± 0.037	0.852 ± 0.040	0.855 ± 0.028		0.578 ± 0.113	
	0.745 ± 0.049	0.748 ± 0.065	0.768 ± 0.067	0.772 ± 0.049		0.833 ± 0.049	0.775 ± 0.051	0.755 ± 0.053	0.760 ± 0.050	0.554 ± 0.100	
	0.767 ± 0.036	0.770 ± 0.060		0.787 ± 0.033		0.802 ± 0.041	0.794 ± 0.040	0.774 ± 0.025		0.673 ± 0.069	
	0.719 ± 0.029	0.733 ± 0.031		0.726 ± 0.058		0.717 ± 0.046	0.726 ± 0.061	0.716 ± 0.033	0.676 ± 0.081	0.591 ± 0.058	
	0.584 ± 0.035	0.567 ± 0.025		0.563 ± 0.045	0.572 ± 0.052		0.565 ± 0.055	0.596 ± 0.045		0.536 ± 0.058	
page - blocks0		0.898 ± 0.010		0.914 ± 0.008	0.907 ± 0.002		0.919 ± 0.011	0.917 ± 0.008		0.895 ± 0.014	
	0.665 ± 0.020	0.673 ± 0.023	0.660 ± 0.021	0.665 ± 0.015		0.678 ± 0.027	0.658 ± 0.021	0.670 ± 0.025	0.659 ± 0.030	0.600 ± 0.041	0.665 ± 0.027
	0.668 ± 0.024	0.668 ± 0.021		0.671 ± 0.025		0.685 ± 0.023	0.674 ± 0.024	0.676 ± 0.014		0.665 ± 0.021	0.667 ± 0.032
	0.666 ± 0.023	0.690 ± 0.023	0.655 ± 0.023			0.685 ± 0.014	0.674 ± 0.020	0.667 ± 0.013		0.680 ± 0.023	
	0.643 ± 0.017	0.653 ± 0.017	0.653 ± 0.016	0.650 ± 0.011	0.649 ± 0.012		0.652 ± 0.021	0.641 ± 0.009		0.507 ± 0.002	
yeast3	0.864 ± 0.029	0.832 ± 0.033	0.863 ± 0.024	0.849 ± 0.015	0.845 ± 0.024	0.860 ± 0.027	0.854 ± 0.031	0.867 ± 0.030	0.826 ± 0.029	0.504 ± 0.003	0.836 ± 0.026

Table 11. SVM – BAC

Dataset name SMOTE	polynom-fit-SMOT	E Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
$abalone19 \ 0.593 \pm 0.063$	0.569 ± 0.048	0.593 ± 0.057	0.599 ± 0.065	0.602 ± 0.063	0.655 ± 0.056	0.593 ± 0.062	0.593 ± 0.063	0.620 ± 0.082	0.597 ± 0.083	0.610 ± 0.047
$abalone9 - 18 \ 0.740 \pm 0.052$	0.698 ± 0.036	0.745 ± 0.035	0.750 ± 0.042		0.782 ± 0.043	0.739 ± 0.038	0.739 ± 0.051	0.678 ± 0.060	0.661 ± 0.091	0.668 ± 0.076
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0.845 \pm 0.075$	0.847 ± 0.078		0.842 ± 0.076		0.828 ± 0.078	0.844 ± 0.075	0.845 ± 0.075	0.844 ± 0.110		0.861 ± 0.092
$glass - 0 - 1 - 6_v s_2 0.740 \pm 0.099$	0.697 ± 0.081		0.740 ± 0.079	0.690 ± 0.076		0.743 ± 0.072	0.740 ± 0.100	0.724 ± 0.090	0.673 ± 0.092	
$glass - 0 - 1 - 6_v s_5 0.820 \pm 0.098$	0.792 ± 0.117	0.820 ± 0.098	0.820 ± 0.098	0.792 ± 0.116		0.820 ± 0.098	0.820 ± 0.098		0.869 ± 0.153	
$glass2 0.642 \pm 0.143$	0.638 ± 0.134	0.648 ± 0.140	0.637 ± 0.137		0.677 ± 0.158	0.648 ± 0.146	0.641 ± 0.143	0.626 ± 0.130	0.631 ± 0.118	
$glass4$ 0.892 \pm 0.094		0.883 ± 0.108	0.876 ± 0.121			0.876 ± 0.082	0.892 ± 0.094	0.821 ± 0.068	0.788 ± 0.142	
$glass5 0.818 \pm 0.106$	0.809 ± 0.103	0.828 ± 0.099	0.828 ± 0.099	0.817 ± 0.106		0.818 ± 0.106	0.818 ± 0.106		0.870 ± 0.119	
$page - blocks - 1 - 3_v s_4 \ 0.904 \pm 0.114$	0.791 ± 0.070		0.907 ± 0.112			0.888 ± 0.116	0.904 ± 0.114		0.862 ± 0.073	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 0.749 \pm 0.047$	0.741 ± 0.037				0.765 ± 0.030	0.749 ± 0.041	0.746 ± 0.047	0.696 ± 0.066		0.706 ± 0.068
$yeast - 1 - 2 - 8 - 9_v s_7 0.606 \pm 0.041$	0.594 ± 0.054	0.608 ± 0.050			0.673 ± 0.069	0.605 ± 0.053	0.610 ± 0.038	0.566 ± 0.052		0.584 ± 0.039
$yeast - 1 - 4 - 5 - 8_v s_7 0.571 \pm 0.051$	0.568 ± 0.051				0.600 ± 0.034	0.557 ± 0.035	0.571 ± 0.050	0.543 ± 0.035	0.505 ± 0.003	0.576 ± 0.050
$yeast - 1_v s_7 0.690 \pm 0.041$	0.671 ± 0.046		0.692 ± 0.043			0.683 ± 0.040	0.689 ± 0.041	0.596 ± 0.086	0.512 ± 0.030	0.630 ± 0.066
$yeast - 2_v s_4 = 0.870 \pm 0.039$	0.862 ± 0.040		0.875 ± 0.045			0.868 ± 0.046	0.870 ± 0.038	0.848 ± 0.033		
$yeast - 2_v s_8 = 0.736 \pm 0.046$	0.773 ± 0.051	0.747 ± 0.043			0.795 ± 0.064	0.740 ± 0.063	0.736 ± 0.046	0.756 ± 0.071	0.517 ± 0.025	0.692 ± 0.091
$yeast4 = 0.765 \pm 0.034$	0.746 ± 0.032				0.792 ± 0.032	0.757 ± 0.024	0.764 ± 0.034	0.688 ± 0.023	0.497 ± 0.009	0.744 ± 0.086
$yeast5 = 0.927 \pm 0.029$	0.924 ± 0.030	0.927 ± 0.029			0.941 ± 0.024	0.927 ± 0.029	0.927 ± 0.029	0.900 ± 0.064		0.860 ± 0.135
$yeast6 \ 0.843 \pm 0.049$	0.840 ± 0.046	0.848 ± 0.054			0.862 ± 0.034	0.842 ± 0.053	0.843 ± 0.049	0.756 ± 0.054	0.520 ± 0.031	0.816 ± 0.041
$cleveland - 0_v s_4 - 0.719 \pm 0.089$	0.681 ± 0.082				0.845 ± 0.052	0.719 ± 0.088	0.719 ± 0.089	0.718 ± 0.048		0.680 ± 0.101
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6 \ 0.872 \pm 0.032$	0.851 ± 0.020	0.867 ± 0.029	0.866 ± 0.019		0.884 ± 0.033	0.871 ± 0.037	0.872 ± 0.032	0.758 ± 0.130	0.595 ± 0.135	0.836 ± 0.070
$ecoli - 0 - 1_v s_2 - 3 - 5 \ 0.854 \pm 0.041$	0.865 ± 0.044				0.886 ± 0.047	0.858 ± 0.045	0.853 ± 0.041	0.793 ± 0.088	0.692 ± 0.199	0.820 ± 0.055
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.834 \pm 0.056$	0.842 ± 0.061	0.838 ± 0.056	0.843 ± 0.056		0.871 ± 0.050	0.835 ± 0.059	0.834 ± 0.056		0.667 ± 0.149	
$ecoli - 0 - 6 - 7_v s_3 - 5 0.846 \pm 0.055$	0.851 ± 0.056	0.843 ± 0.056			0.869 ± 0.060	0.846 ± 0.061	0.846 ± 0.055	0.845 ± 0.051		
$ecoli - 0 - 6 - 7_v s_5 0.861 \pm 0.043$	0.863 ± 0.043				0.887 ± 0.047	0.859 ± 0.044	0.862 ± 0.042		0.647 ± 0.163	
$glass - 0 - 1 - 4 - 6_v s_2$ 0.710 ± 0.101	0.669 ± 0.128 0.659 ± 0.067	0.713 ± 0.107	0.702 ± 0.131 0.711 ± 0.071	0.665 ± 0.120		0.716 ± 0.127 0.685 ± 0.068	0.709 ± 0.101 0.696 ± 0.063	0.609 ± 0.085 0.673 ± 0.066	0.662 ± 0.083 0.616 ± 0.162	0.631 ± 0.134 0.641 ± 0.105
$glass - 0 - 1 - 5_v s_2$ 0.696 \pm 0.063 $yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9$ 0.782 \pm 0.026					0.791 ± 0.030					
$yeast - 0 - 2 - 3 - 6_v s_3 - 1 - 8 - 9 \cdot 0.182 \pm 0.026$ $yeast - 0 - 3 - 5 - 9_v s_7 - 8 \cdot 0.696 \pm 0.035$	0.775 ± 0.041 0.640 ± 0.032	0.778 ± 0.032 0.687 ± 0.036			0.660 ± 0.053	0.781 ± 0.029 0.692 ± 0.034	0.783 ± 0.026 0.695 ± 0.036	0.735 ± 0.062 0.634 ± 0.069		0.765 ± 0.050
$yeast - 0 - 3 - 5 - 9_vs_7 - 8 0.696 \pm 0.035$ $abalone - 17_vs_7 - 8 - 9 - 10 0.814 \pm 0.021$	0.640 ± 0.032 0.742 ± 0.040				0.823 ± 0.025	0.692 ± 0.034 0.816 ± 0.024	0.693 ± 0.036 0.813 ± 0.019		0.722 ± 0.090	0.588 ± 0.081 0.746 ± 0.114
$abalone = 17_v s_7 = 3 = 5 = 10 0.014 \pm 0.021$ $abalone = 19_v s_1 0 = 11 = 12 = 13 0.633 \pm 0.062$	0.582 ± 0.058	0.637 ± 0.024			0.659 ± 0.025	0.629 ± 0.067	0.633 ± 0.062	0.631 ± 0.085		0.572 ± 0.097
$abalone - 20_v s_1 - 11 - 12 - 13 - 0.033 \pm 0.002$ $abalone - 20_v s_8 - 9 - 10 - 0.806 \pm 0.048$	0.775 ± 0.041	0.809 ± 0.043			0.884 ± 0.051	0.798 ± 0.055	0.806 ± 0.048	0.743 ± 0.109		
$abalone - 21_v s_8 - 9 - 10$ 0.500 \pm 0.045 $abalone - 21_v s_8$ 0.798 \pm 0.117	0.778 ± 0.041 0.788 ± 0.120	0.798 ± 0.116			0.839 ± 0.070	0.798 ± 0.033 0.798 ± 0.117	0.799 ± 0.117			
$flare - F = 0.738 \pm 0.040$	0.689 ± 0.046				0.777 ± 0.047	0.738 ± 0.045	0.738 ± 0.040		0.575 ± 0.068	
$kddcup - buffer_overflow_v s_back$ 0.993 \pm 0.013	0.997 ± 0.010				1.000 ± 0.000	0.993 ± 0.013	0.993 ± 0.013	0.997 ± 0.010		
$kddcup - rootkit - imap_us_back 0.977 \pm 0.023$					3 0.977 ± 0.023	0.973 ± 0.030	0.977 ± 0.023	0.977 ± 0.042		
$kr - vs - k - zero_v s_e ight$ 0.937 \pm 0.052	0.934 ± 0.057				0.950 ± 0.050	0.934 ± 0.057	0.937 ± 0.052	0.845 ± 0.076		
$poker - 8 - 9_v s_5 = 0.625 \pm 0.067$	0.588 ± 0.066	0.617 ± 0.058			0.677 ± 0.074	0.614 ± 0.047	0.625 ± 0.067	0.634 ± 0.079		
$poker - 8 - 9_v s_6 = 0.757 \pm 0.064$	0.724 ± 0.047		0.744 ± 0.054			0.749 ± 0.086	0.757 ± 0.064		0.986 ± 0.037	
$poker - 8_v s_6 = 0.783 \pm 0.073$	0.712 ± 0.059	0.783 ± 0.073	0.789 ± 0.066		0.968 ± 0.051	0.789 ± 0.065	0.783 ± 0.073		0.950 ± 0.107	
$poker - 9_v s_7 - 0.636 \pm 0.104$	0.624 ± 0.097		0.636 ± 0.104			0.611 ± 0.087	0.636 ± 0.104			
$winequality - red - 3_v s_5 = 0.540 \pm 0.049$	0.542 ± 0.050	0.539 ± 0.049			0.608 ± 0.057	0.550 ± 0.050	0.540 ± 0.049		0.526 ± 0.117	
$winequality - red - 4 0.638 \pm 0.034$	0.611 ± 0.029	0.632 ± 0.033	0.644 ± 0.035	0.625 ± 0.032	0.617 ± 0.029	0.641 ± 0.034	0.637 ± 0.033	0.548 ± 0.026	0.599 ± 0.051	0.609 ± 0.050
$winequality - red - 8_v s_6 - 7 0.571 \pm 0.054$	0.550 ± 0.055	0.572 ± 0.054	0.571 ± 0.054	0.555 ± 0.062	0.541 ± 0.063	0.557 ± 0.048	0.571 ± 0.054	0.542 ± 0.067	0.518 ± 0.081	0.550 ± 0.060
$winequality - red - 8_v s_6 \ 0.614 \pm 0.031$	0.610 ± 0.024	0.615 ± 0.031	0.615 ± 0.030	0.625 ± 0.030	0.627 ± 0.065	0.625 ± 0.030	0.614 ± 0.031	0.637 ± 0.044	0.609 ± 0.096	0.622 ± 0.079
$winequality - white - 3 - 9_v s_5 \ 0.565 \pm 0.051$	0.529 ± 0.045	0.559 ± 0.057	0.560 ± 0.048	0.542 ± 0.039	0.685 ± 0.039	0.557 ± 0.051	0.565 ± 0.051	0.519 ± 0.064	0.528 ± 0.055	0.565 ± 0.055
$winequality - white - 3_v s_7 = 0.533 \pm 0.049$	0.528 ± 0.041	0.549 ± 0.066	0.547 ± 0.067	0.546 ± 0.039	0.756 ± 0.077	0.539 ± 0.047	0.533 ± 0.049	0.561 ± 0.063	0.607 ± 0.121	0.594 ± 0.077
$winequality - white - 9_v s_4 = 0.815 \pm 0.134$	0.815 ± 0.134	0.815 ± 0.134	0.699 ± 0.218	0.815 ± 0.134	4 0.695 ± 0.214	0.815 ± 0.134	0.815 ± 0.134	0.707 ± 0.175	0.707 ± 0.175	0.707 ± 0.175
$zoo - 3$ 0.611 \pm 0.162	0.611 ± 0.162	0.611 ± 0.162	0.597 ± 0.163	0.611 ± 0.162	2 0.595 ± 0.161	0.611 ± 0.162	0.611 ± 0.162	0.547 ± 0.174	0.547 ± 0.174	0.547 ± 0.174
$ecoli1 \ 0.885 \pm 0.027$	0.886 ± 0.020	0.886 ± 0.020	0.884 ± 0.020	0.883 ± 0.024	0.889 ± 0.015	0.881 ± 0.022	0.884 ± 0.026	0.875 ± 0.033	0.576 ± 0.145	0.885 ± 0.015
$ecoli2 \ 0.940 \pm 0.024$	0.932 ± 0.034		0.940 ± 0.026			0.942 ± 0.022	0.939 ± 0.025		0.604 ± 0.146	
$ecoli3 \ 0.889 \pm 0.022$	0.893 ± 0.024		0.894 ± 0.017			0.887 ± 0.021	0.892 ± 0.021	0.858 ± 0.056	0.602 ± 0.169	0.794 ± 0.122
$glass0 \ 0.779 \pm 0.040$	0.790 ± 0.020		0.778 ± 0.037			0.792 ± 0.034	0.778 ± 0.036		0.724 ± 0.065	
$glass1 0.701 \pm 0.038$	0.689 ± 0.043	0.690 ± 0.038			0.677 ± 0.038	0.698 ± 0.039	0.701 ± 0.044	0.694 ± 0.062		0.664 ± 0.042
$haberman 0.611 \pm 0.026$	0.642 ± 0.035	0.619 ± 0.026	0.597 ± 0.031			0.614 ± 0.034	0.611 ± 0.028	0.613 ± 0.039		
$page-blocks0~0.931\pm0.008$	0.900 ± 0.008	0.931 ± 0.007	0.923 ± 0.009			0.930 ± 0.008	0.932 ± 0.008		0.892 ± 0.025	
$pima 0.727 \pm 0.030$	0.722 ± 0.027	0.729 ± 0.023	0.726 ± 0.022			0.732 ± 0.028	0.728 ± 0.032	0.706 ± 0.018		
$vehicle1 \ 0.789 \pm 0.027$	0.749 ± 0.023	0.790 ± 0.026	0.790 ± 0.020			0.791 ± 0.019	0.793 ± 0.025		0.804 ± 0.018	
$vehicle3 \ 0.789 \pm 0.022$	0.734 ± 0.017		0.797 ± 0.026			0.789 ± 0.018	0.790 ± 0.021		0.789 ± 0.027	
$yeast1 = 0.711 \pm 0.013$	0.695 ± 0.013				0.713 ± 0.011	0.709 ± 0.014	0.712 ± 0.013		0.507 ± 0.002	
$yeast3 - 0.893 \pm 0.022$	0.884 ± 0.027	0.894 ± 0.020	0.893 ± 0.026	0.889 ± 0.020	0.896 ± 0.020	0.895 ± 0.023	0.893 ± 0.022	0.867 ± 0.019	0.504 ± 0.003	0.885 ± 0.016

Table 12. KNN – G-mean

Dataset name SMOTE	polynom-fit-SMOTE		SMOBD			Assembled-SMOTE S				JFOTS-prom
$abalone19 \ 0.392 \pm 0.183$	0.189 ± 0.159	0.392 ± 0.183	0.392 ± 0.183	0.319 ± 0.174	0.390 ± 0.106	0.388 ± 0.176	0.392 ± 0.183		0.049 ± 0.097	
$abalone9 - 18 \ 0.696 \pm 0.043$	0.666 ± 0.064	0.676 ± 0.047	0.681 ± 0.055	0.662 ± 0.069	0.649 ± 0.054	0.687 ± 0.056	0.696 ± 0.044		0.331 ± 0.247	
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 0.817 \pm 0.096$	0.818 ± 0.097	0.817 ± 0.096	0.816 ± 0.096	0.818 ± 0.097	0.816 ± 0.097	0.817 ± 0.096	0.817 ± 0.096		0.771 ± 0.133	
$glass - 0 - 1 - 6_vs_2$ 0.704 ± 0.096 $glass - 0 - 1 - 6_vs_1$ 0.905 ± 0.110	0.663 ± 0.056 0.906 ± 0.111	0.697 ± 0.092 0.905 ± 0.110	0.699 ± 0.094 0.904 ± 0.111	0.679 ± 0.069	0.629 ± 0.089 0.863 ± 0.158	0.709 ± 0.095 0.904 ± 0.110	0.703 ± 0.095 0.905 ± 0.110		0.456 ± 0.254 0.767 ± 0.326	
$glass - 0 - 1 - 6_v s_5 0.905 \pm 0.110$ $glass2 0.543 \pm 0.246$	0.906 ± 0.111 0.523 ± 0.291		0.904 ± 0.111 0.558 ± 0.255		0.863 ± 0.158 0.551 ± 0.222	0.904 ± 0.110 0.520 ± 0.295		0.859 ± 0.157 0.562 ± 0.211		
		0.522 ± 0.300 0.870 ± 0.063	0.880 ± 0.262		0.858 ± 0.042				0.582 ± 0.282 0.643 ± 0.328	
$glass4 0.897 \pm 0.063$ $glass5 0.917 \pm 0.145$	0.898 ± 0.075 0.919 ± 0.146	0.870 ± 0.063 0.906 ± 0.151			0.838 ± 0.042 0.849 ± 0.125	0.888 ± 0.054 0.917 ± 0.145	0.897 ± 0.063 0.917 ± 0.145		0.643 ± 0.328 0.842 ± 0.172	
$glasss 0.917 \pm 0.145$ $page - blocks - 1 - 3_ss_4 0.983 \pm 0.023$		0.906 ± 0.131 0.982 ± 0.023	0.917 ± 0.145 0.983 ± 0.023		0.849 ± 0.125 0.980 ± 0.016	0.976 ± 0.026	0.917 ± 0.145 0.983 ± 0.023		0.842 ± 0.172 0.821 ± 0.096	
$page - biocks - 1 - 3_v s_4$ 0.983 \pm 0.023 $yeast - 0 - 5 - 6 - 7 - 9_v s_4$ 0.714 \pm 0.053	0.730 ± 0.045	0.982 ± 0.023 0.717 ± 0.050	0.983 ± 0.023 0.719 ± 0.050		0.980 ± 0.016 0.717 ± 0.054	0.976 ± 0.026 0.702 ± 0.043	0.983 ± 0.023 0.711 ± 0.052		0.821 ± 0.096 0.000 ± 0.000	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 - 0.714 \pm 0.055$ $yeast - 1 - 2 - 8 - 9_v s_7 - 0.646 \pm 0.063$	0.750 ± 0.045 0.654 ± 0.060		0.719 ± 0.050 0.634 ± 0.055		0.717 ± 0.034 0.621 ± 0.079	0.702 ± 0.043 0.638 ± 0.067	0.711 ± 0.052 0.646 ± 0.063		0.000 ± 0.000 0.000 ± 0.000	
$yeast - 1 - 2 - 8 - 9_v s_7 - 0.646 \pm 0.063$ $yeast - 1 - 4 - 5 - 8_v s_7 - 0.573 \pm 0.058$	0.534 ± 0.060 0.528 ± 0.098		0.634 ± 0.035 0.543 ± 0.086		0.621 ± 0.079 0.519 ± 0.063	0.563 ± 0.062	0.573 ± 0.052		0.000 ± 0.000	
$yeast - 1 - 4 - 5 - 8_v s_7 - 0.573 \pm 0.058$ $yeast - 1_v s_7 - 0.715 \pm 0.040$	0.528 ± 0.098 0.711 ± 0.049		0.726 ± 0.086		0.519 ± 0.063 0.671 ± 0.040	0.688 ± 0.058	0.573 ± 0.032 0.713 ± 0.039		0.000 ± 0.000 0.000 ± 0.000	
$yeast - 2_v s_4 = 0.868 \pm 0.034$	0.857 ± 0.039		0.867 ± 0.034			0.870 ± 0.030	0.869 ± 0.034		0.250 ± 0.382	
$yeast - 2_v s_4$ 0.608 \pm 0.034 $yeast - 2_v s_8$ 0.789 \pm 0.064	0.791 ± 0.059	0.782 ± 0.058			0.792 ± 0.068	0.787 ± 0.063	0.789 ± 0.063		0.250 ± 0.352 0.084 ± 0.251	
$yeast - 2.58 = 0.769 \pm 0.004$ $yeast4 = 0.702 \pm 0.035$	0.791 ± 0.039 0.704 ± 0.046		0.700 ± 0.003			0.708 ± 0.051	0.702 ± 0.003		0.004 ± 0.231 0.000 ± 0.000	
yeast5 0.927 ± 0.040	0.917 ± 0.039	0.922 ± 0.040			0.931 ± 0.052	0.927 ± 0.037	0.927 ± 0.040		0.000 ± 0.000	
$yeast5 = 0.527 \pm 0.040$ $yeast6 = 0.802 \pm 0.054$	0.802 ± 0.047	0.802 ± 0.054	0.801 ± 0.054		0.826 ± 0.032	0.795 ± 0.053	0.802 ± 0.054		0.000 ± 0.000 0.000 ± 0.000	
$cleveland - 0_v s_4 = 0.869 \pm 0.083$	0.863 ± 0.039	0.878 ± 0.031				0.880 ± 0.027	0.869 ± 0.083		0.605 ± 0.313	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$ 0.882 ± 0.018	0.874 ± 0.026	0.878 ± 0.020				0.880 ± 0.022	0.882 ± 0.019		0.273 ± 0.300	
$ecoli - 0 - 1_{-82} - 3 - 5 0.880 \pm 0.028$	0.882 ± 0.030		0.875 ± 0.029			0.882 ± 0.034	0.880 ± 0.028		0.482 ± 0.397	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.880 \pm 0.028$	0.829 ± 0.060	0.833 ± 0.029 0.833 ± 0.068			0.834 ± 0.043		0.830 ± 0.028 0.830 ± 0.058		0.359 ± 0.397	
$ecoli - 0 - 2 - 0 - 7_0 s_3 - 5 0.831 \pm 0.039$ $ecoli - 0 - 6 - 7_0 s_3 - 5 0.844 \pm 0.061$	0.848 ± 0.060		0.850 ± 0.059		0.834 ± 0.042 0.833 ± 0.057	0.844 ± 0.060	0.845 ± 0.060		0.373 ± 0.238 0.373 ± 0.344	
$ecoli - 0 - 6 - 7_v s_5$ 0.860 ± 0.051	0.856 ± 0.066		0.859 ± 0.063			0.859 ± 0.054	0.860 ± 0.053		0.318 ± 0.333	
$glass - 0 - 1 - 4 - 6_v s_2$ 0.636 \pm 0.142			0.628 ± 0.160			0.617 ± 0.164	0.629 ± 0.139		0.361 ± 0.333 0.361 ± 0.314	
$glass - 0 - 1 - 4 - 0_0 s_2$ 0.030 \pm 0.142 $glass - 0 - 1 - 5_0 s_2$ 0.662 \pm 0.070	0.660 ± 0.063		0.654 ± 0.077			0.669 ± 0.068	0.661 ± 0.070		0.418 ± 0.323	
$east - 0 - 2 - 5 - 6$, $s_3 - 7 - 8 - 9$ 0.767 \pm 0.036	0.760 ± 0.030		0.768 ± 0.028			0.768 ± 0.035	0.768 ± 0.036		0.219 ± 0.202	
$veast - 0 - 3 - 5 - 9_{-87} - 8 0.662 \pm 0.042$	0.649 ± 0.043		0.652 ± 0.050	0.657 ± 0.048	0.653 ± 0.065	0.650 ± 0.037	0.664 ± 0.044		0.028 ± 0.084	
$abalone - 17_v s_7 - 8 - 9 - 10 0.722 \pm 0.061$	0.672 ± 0.048					0.714 ± 0.059	0.721 ± 0.061		0.387 ± 0.004	
$abalone - 19_v s_1 0 - 11 - 12 - 13 0.492 \pm 0.070$	0.379 ± 0.064		0.500 ± 0.091		0.454 ± 0.085	0.462 ± 0.085	0.492 ± 0.070		0.251 ± 0.218	
$abalone - 20_{-88} - 9 - 10 \ 0.714 \pm 0.080$	0.580 ± 0.045		0.728 ± 0.093		0.661 ± 0.085	0.696 ± 0.129	0.708 ± 0.085		0.198 ± 0.264	
$abalone - 21_{-88}$ 0.810 \pm 0.104			0.794 ± 0.093		0.769 ± 0.082	0.801 ± 0.098	0.810 ± 0.104		0.515 ± 0.290	
$flare - F = 0.651 \pm 0.061$	0.619 ± 0.057	0.647 ± 0.072	0.651 ± 0.063	0.614 ± 0.068	0.654 ± 0.053	0.653 ± 0.057	0.651 ± 0.062	0.286 ± 0.168	0.043 ± 0.085	0.328 ± 0.193
$kddcup - buffer_overflow_v s_back 0.954 \pm 0.051$	0.954 ± 0.051				0.958 ± 0.044	0.944 ± 0.046	0.954 ± 0.051		0.954 ± 0.048	
$kddcup - rootkit - imap_us_back 0.972 \pm 0.023$	0.962 ± 0.043	0.972 ± 0.023	0.972 ± 0.023	0.952 ± 0.049	0.943 ± 0.029	0.952 ± 0.055	0.972 ± 0.023	0.962 ± 0.042	0.962 ± 0.042	0.962 ± 0.042
$kr - vs - k - zero_v s_e ight$ 0.937 \pm 0.052	0.926 ± 0.057	0.941 ± 0.052	0.941 ± 0.052	0.921 ± 0.067	0.941 ± 0.065	0.924 ± 0.066	0.937 ± 0.052	0.634 ± 0.339	0.000 ± 0.000	0.588 ± 0.393
$poker - 8 - 9_{\pi}s_{5} - 0.486 \pm 0.126$	0.406 ± 0.091	0.498 ± 0.136	0.484 ± 0.129	0.294 ± 0.170	0.577 ± 0.084	0.492 ± 0.132	0.486 ± 0.126	0.226 ± 0.242	0.086 ± 0.173	0.215 ± 0.267
$poker - 8 - 9_v s_6 = 0.948 \pm 0.042$	0.908 ± 0.036	0.947 ± 0.041	0.947 ± 0.041	0.899 ± 0.060	0.976 ± 0.027	0.936 ± 0.032	0.948 ± 0.042	0.987 ± 0.040	0.974 ± 0.051	0.974 ± 0.051
$poker - 8_v s_6 = 0.940 \pm 0.065$	0.838 ± 0.067	0.940 ± 0.065	0.939 ± 0.065	0.860 ± 0.122	0.978 ± 0.018	0.926 ± 0.087	0.940 ± 0.065	0.889 ± 0.148	0.918 ± 0.138	0.798 ± 0.301
$poker - 9_v s_7 - 0.773 \pm 0.290$	0.773 ± 0.291	0.773 ± 0.290	0.773 ± 0.291	0.748 ± 0.276	0.723 ± 0.265	0.761 ± 0.284	0.773 ± 0.290	0.635 ± 0.441	0.719 ± 0.319	0.558 ± 0.393
$winequality - red - 3_v s_5 = 0.388 \pm 0.206$	0.371 ± 0.193	0.388 ± 0.206	0.388 ± 0.206	0.371 ± 0.193	0.392 ± 0.208	0.371 ± 0.192	0.388 ± 0.206	0.239 ± 0.244	0.044 ± 0.132	0.324 ± 0.219
$winequality - red - 4 0.525 \pm 0.046$	0.484 ± 0.086	0.523 ± 0.055	0.525 ± 0.039	0.482 ± 0.074	0.410 ± 0.056	0.535 ± 0.039	0.525 ± 0.046	0.331 ± 0.088	0.198 ± 0.190	0.415 ± 0.102
$winequality - red - 8_v s_6 - 7 0.332 \pm 0.195$	0.334 ± 0.202	0.345 ± 0.197	0.345 ± 0.197	0.334 ± 0.148	0.302 ± 0.179	0.356 ± 0.152	0.332 ± 0.195	0.296 ± 0.213	0.232 ± 0.246	0.328 ± 0.135
winequality $- red - 8_v s_6$ 0.573 \pm 0.083	0.555 ± 0.083	0.555 ± 0.089	0.573 ± 0.083	0.486 ± 0.100	0.496 ± 0.102	0.567 ± 0.074	0.573 ± 0.083	0.456 ± 0.174	0.403 ± 0.231	0.491 ± 0.201
$winequality - white - 3 - 9_v s_5$ 0.533 \pm 0.061		0.532 ± 0.068	0.532 ± 0.067		0.462 ± 0.111	0.496 ± 0.072	0.533 ± 0.061		0.238 ± 0.164	
$winequality - white - 3_v s_7 = 0.489 \pm 0.249$	0.360 ± 0.208				0.502 ± 0.209	0.479 ± 0.264	0.489 ± 0.249		0.420 ± 0.242	
$winequality - white - 9_v s_4 = 0.865 \pm 0.105$	0.869 ± 0.109		0.646 ± 0.344			0.865 ± 0.105	0.865 ± 0.105		0.567 ± 0.383	
$zoo - 3 \ 0.769 \ \pm \ 0.280$			0.545 ± 0.387			0.769 ± 0.280	0.769 ± 0.280		0.410 ± 0.343	
$ecoli1 \ 0.863 \pm 0.027$	0.862 ± 0.021		0.870 ± 0.025			0.862 ± 0.034	0.866 ± 0.023		0.162 ± 0.325	
$ecoli2 \ 0.914 \pm 0.029$	0.921 ± 0.027		0.913 ± 0.028		0.911 ± 0.021	0.913 ± 0.027	0.914 ± 0.029		0.229 ± 0.354	
$ecoli3 \ 0.865 \pm 0.020$	0.856 ± 0.023		0.858 ± 0.026		0.850 ± 0.029	0.860 ± 0.019	0.865 ± 0.016		0.220 ± 0.339	
$glass0 \ 0.787 \pm 0.035$	0.794 ± 0.037		0.789 ± 0.028		0.785 ± 0.040	0.796 ± 0.030	0.796 ± 0.035		0.649 ± 0.237	
$glass1 \ 0.736 \pm 0.049$	0.747 ± 0.053	0.743 ± 0.045		0.737 ± 0.043	0.738 ± 0.033	0.735 ± 0.031	0.736 ± 0.053		0.299 ± 0.233	
$haberman 0.595 \pm 0.037$	0.601 ± 0.051	0.575 ± 0.055		0.575 ± 0.050	0.570 ± 0.045	0.574 ± 0.038	0.594 ± 0.031		0.468 ± 0.119	
$page-blocks0$ 0.929 ± 0.010	0.909 ± 0.013		0.920 ± 0.012		0.881 ± 0.018	0.931 ± 0.009	0.929 ± 0.010		0.903 ± 0.013	
$pima 0.684 \pm 0.021$	0.706 ± 0.019		0.687 ± 0.016		0.688 ± 0.022	0.686 ± 0.017	0.692 ± 0.024		0.606 ± 0.058	
$vehicle1 \ 0.722 \pm 0.026$	0.739 ± 0.018		0.735 ± 0.025		0.718 ± 0.023	0.730 ± 0.023	0.723 ± 0.027		0.714 ± 0.032	
$vehicle3 \ 0.707 \pm 0.019$	0.696 ± 0.030		0.717 ± 0.025		0.688 ± 0.024	0.711 ± 0.021	0.705 ± 0.020		0.692 ± 0.026	
$yeast1 = 0.674 \pm 0.010$	0.690 ± 0.014		0.674 ± 0.016			0.673 ± 0.014	0.677 ± 0.011		0.000 ± 0.000	
$yeast3 0.871 \pm 0.019$	0.871 ± 0.023	0.872 ± 0.020	0.865 ± 0.025	0.868 ± 0.019	0.866 ± 0.018	0.872 ± 0.019	0.870 ± 0.019	0.838 ± 0.020	0.000 ± 0.000	0.836 ± 0.027

Table 13. CART – Precision

Dataset name SMOTE	polynom-fit-SMOTI	E Lee	SMOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOT	E SMOTE-TomekLink	s JFOTS-pr	JFOTS-rc	JFOTS-prom
$abalone19 \ 0.028 \pm 0.014$	0.013 ± 0.019	0.023 ± 0.014	0.031 ± 0.013	0.038 ± 0.035	5 0.018 ± 0.015	0.026 ± 0.012	0.028 ± 0.014	0.009 ± 0.015	0.011 ± 0.010	0.012 ± 0.008
$abalone9 - 18 \ 0.236 \pm 0.058$	0.222 ± 0.067	0.237 ± 0.029	0.256 ± 0.070	0.270 ± 0.050	0.196 ± 0.057	0.224 ± 0.048	0.230 ± 0.057	0.341 ± 0.078	0.147 ± 0.117	0.260 ± 0.116
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 0.438 \pm 0.237$	0.488 ± 0.186	0.438 ± 0.237	0.438 ± 0.237	0.488 ± 0.186	3 0.433 ± 0.240	0.438 ± 0.237	0.438 ± 0.237	0.335 ± 0.271	0.149 ± 0.124	0.363 ± 0.262
$glass - 0 - 1 - 6_v s_2 0.253 \pm 0.080$	0.222 ± 0.146	0.281 ± 0.059	0.284 ± 0.073	0.268 ± 0.116	0.168 ± 0.106	0.262 ± 0.128	0.254 ± 0.087	0.328 ± 0.180	0.180 ± 0.070	0.323 ± 0.238
$glass - 0 - 1 - 6_v s_5 \ 0.759 \ \pm \ 0.183$	0.704 ± 0.145	0.759 ± 0.181	0.759 ± 0.181	0.604 ± 0.280	0.747 ± 0.186	0.759 ± 0.181	0.759 ± 0.181	0.583 ± 0.228	0.534 ± 0.207	0.587 ± 0.342
$glass2 0.214 \pm 0.174$	0.174 ± 0.128	0.214 ± 0.185				0.204 ± 0.153	0.228 ± 0.173		0.151 ± 0.111	
$glass4 \ 0.610 \pm 0.155$	0.573 ± 0.117			0.580 ± 0.186		0.612 ± 0.176	0.610 ± 0.155		0.552 ± 0.321	
$glass5 0.693 \pm 0.211$	0.620 ± 0.145				0.734 ± 0.202	0.693 ± 0.211	0.693 ± 0.211		0.710 ± 0.238	
$page - blocks - 1 - 3_v s_4 \ 0.931 \ \pm \ 0.030$			0.906 ± 0.076		0.777 ± 0.084	0.928 ± 0.035	0.931 ± 0.030		0.719 ± 0.267	
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 0.340 \pm 0.051$	0.377 ± 0.045	0.370 ± 0.062				0.353 ± 0.044	0.348 ± 0.079		0.096 ± 0.003	
$yeast - 1 - 2 - 8 - 9_v s_7$ 0.101 ± 0.020	0.133 ± 0.063		0.089 ± 0.030		0.097 ± 0.023	0.098 ± 0.017	0.113 ± 0.033		0.032 ± 0.000	
$yeast - 1 - 4 - 5 - 8_v s_7$ 0.072 ± 0.044	0.112 ± 0.041			0.076 ± 0.048		0.086 ± 0.025	0.070 ± 0.048		0.044 ± 0.000	
$yeast - 1_v s_7 = 0.203 \pm 0.070$	0.234 ± 0.065			0.186 ± 0.065		0.186 ± 0.051	0.198 ± 0.071		0.055 ± 0.029	
$yeast - 2_v s_4 = 0.621 \pm 0.047$	0.673 ± 0.044	0.689 ± 0.044				0.676 ± 0.055	0.619 ± 0.059		0.259 ± 0.269	
$yeast - 2_v s_8 = 0.273 \pm 0.116$	0.518 ± 0.154		0.346 ± 0.088		0.259 ± 0.064	0.386 ± 0.144	0.287 ± 0.113		0.044 ± 0.005	
$yeast4 \ 0.223 \pm 0.033$	0.258 ± 0.052		0.240 ± 0.049	0.216 ± 0.059 0.638 ± 0.056		0.237 ± 0.092	0.226 ± 0.035		0.034 ± 0.001 0.030 ± 0.000	
$yeast5 0.649 \pm 0.091$ $yeast6 0.269 \pm 0.050$	0.624 ± 0.086 0.272 ± 0.072			0.638 ± 0.036 0.354 ± 0.076		0.646 ± 0.077 0.288 ± 0.081	0.655 ± 0.095 0.273 ± 0.051		0.030 ± 0.000 0.025 ± 0.003	
$yeasib$ 0.269 \pm 0.050 $cleveland - 0_v s_4$ 0.558 \pm 0.149		0.281 ± 0.096 0.506 ± 0.173				0.288 ± 0.081 0.555 ± 0.136	0.273 ± 0.031 0.558 ± 0.149		0.025 ± 0.003 0.454 ± 0.243	
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$ 0.502 ± 0.110	0.583 ± 0.115			0.536 ± 0.073		0.589 ± 0.116	0.539 ± 0.149 0.539 ± 0.140		0.434 ± 0.243 0.119 ± 0.161	
$ecoli - 0 - 1 - 4 - 1_v s_2 - 3 - 3 - 5 0.302 \pm 0.110$ $ecoli - 0 - 1_v s_2 - 3 - 5 0.654 \pm 0.151$	0.708 ± 0.060			0.620 ± 0.073		0.614 ± 0.178	0.611 ± 0.143		0.337 ± 0.315	
$ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.034 \pm 0.131$ $ecoli - 0 - 2 - 6 - 7_v s_3 - 5 0.581 \pm 0.102$	0.691 ± 0.140			0.626 ± 0.057		0.547 ± 0.134	0.607 ± 0.110		0.174 ± 0.221	
$ecoli - 0 - 2 - 0 - 7_0 s_3 - 5 0.561 \pm 0.102$ $ecoli - 0 - 6 - 7_0 s_3 - 5 0.563 \pm 0.149$	0.746 ± 0.229			0.625 ± 0.123		0.537 ± 0.134 0.537 ± 0.145	0.570 ± 0.110		0.277 ± 0.221	
$ecoli - 0 - 6 - 7_v s_5$ 0.697 \pm 0.197	0.744 ± 0.157			0.775 ± 0.182		0.688 ± 0.200	0.676 ± 0.205		0.268 ± 0.302	
$alass - 0 - 1 - 4 - 6_{\pi}s_{2}$ 0.231 ± 0.080	0.164 ± 0.111			0.244 ± 0.101		0.184 ± 0.099	0.201 ± 0.102		0.130 ± 0.041	
$glass - 0 - 1 - 5_v s_2 = 0.335 \pm 0.060$	0.249 ± 0.137	0.392 ± 0.230				0.300 ± 0.102	0.338 ± 0.098		0.180 ± 0.098	
$yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9 0.377 \pm 0.050$	0.444 ± 0.067	0.409 ± 0.051				0.373 ± 0.056	0.359 ± 0.046		0.185 ± 0.168	
$yeast - 0 - 3 - 5 - 9_v s_7 - 8 \ 0.206 \pm 0.036$	0.326 ± 0.058	0.237 ± 0.046				0.230 ± 0.031	0.244 ± 0.044		0.105 ± 0.014	
$abalone - 17_v s_7 - 8 - 9 - 10 \ 0.162 \pm 0.052$	0.229 ± 0.038	0.160 ± 0.023				0.176 ± 0.045	0.161 ± 0.053		0.088 ± 0.070	
$abalone - 19_v s_1 0 - 11 - 12 - 13 \ 0.049 \pm 0.022$	0.040 ± 0.031	0.047 ± 0.023	0.043 ± 0.015	0.050 ± 0.037	0.045 ± 0.017	0.055 ± 0.018	0.053 ± 0.016	0.043 ± 0.044	0.020 ± 0.013	0.039 ± 0.036
$abalone - 20_v s_8 - 9 - 10 \ 0.155 \pm 0.024$	0.128 ± 0.097	0.161 ± 0.065	0.159 ± 0.042	0.169 ± 0.069	0.131 ± 0.031	0.161 ± 0.045	0.156 ± 0.024	0.180 ± 0.095	0.049 ± 0.032	0.140 ± 0.094
$abalone - 21_v s_8 - 0.278 \pm 0.171$	0.354 ± 0.197	0.272 ± 0.166	0.264 ± 0.191	0.382 ± 0.208	0.278 ± 0.121	0.281 ± 0.179	0.285 ± 0.173	0.425 ± 0.166	0.240 ± 0.210	0.399 ± 0.271
$flare - F = 0.155 \pm 0.060$	0.247 ± 0.080	0.175 ± 0.067	0.187 ± 0.051	0.224 ± 0.070	0.215 ± 0.094	0.177 ± 0.058	0.180 ± 0.044	0.197 ± 0.121	0.051 ± 0.018	0.201 ± 0.077
$kddcup - buffer_overflow_v s_back 1.000 \pm 0.000$	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	0.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000
$kddcup - rootkit - imap_v s_b ack 1.000 \pm 0.000$	1.000 ± 0.000	1.000 ± 0.000				1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000
$kr - vs - k - zero_v s_e ight$ 0.881 ± 0.077	0.888 ± 0.067	0.911 ± 0.071				0.901 ± 0.094	0.881 ± 0.077		0.045 ± 0.016	
$poker - 8 - 9_v s_5 0.066 \pm 0.033$	0.079 ± 0.065	0.066 ± 0.028				0.049 ± 0.022	0.066 ± 0.033		0.031 ± 0.042	
$poker - 8 - 9_v s_6 0.247 \pm 0.095$	0.643 ± 0.299	0.345 ± 0.312				0.274 ± 0.188	0.247 ± 0.095		0.934 ± 0.107	
$poker - 8_v s_6 = 0.509 \pm 0.330$	0.375 ± 0.281			0.503 ± 0.308		0.474 ± 0.347	0.509 ± 0.330		0.967 ± 0.100	
$poker - 9_v s_7 0.166 \pm 0.198$	0.120 ± 0.126	0.166 ± 0.198				0.148 ± 0.176	0.166 ± 0.198		0.272 ± 0.317	
winequality $- red - 3_v s_5$ 0.026 \pm 0.045	0.073 ± 0.151			0.026 ± 0.061		0.034 ± 0.059	0.026 ± 0.045		0.053 ± 0.096	
winequality $- red - 4 0.072 \pm 0.035$	0.060 ± 0.028	0.088 ± 0.016				0.069 ± 0.012	0.071 ± 0.036		0.049 ± 0.021	
$winequality - red - 8_v s_6 - 7 0.060 \pm 0.045$	0.072 ± 0.045	0.060 ± 0.039				0.061 ± 0.041	0.060 ± 0.045		0.050 ± 0.063	
winequality $- red - 8_v s_6$ 0.123 \pm 0.048	0.201 ± 0.174			0.132 ± 0.087		0.140 ± 0.054	0.123 ± 0.048		0.105 ± 0.079	
winequality – white – 3 – 9_vs_5 0.059 ± 0.048	0.055 ± 0.038				0.101 ± 0.029	0.041 ± 0.024	0.059 ± 0.048		0.029 ± 0.029	
winequality – white – 3_vs_7 0.068 ± 0.047	0.111 ± 0.088	0.088 ± 0.054 0.360 ± 0.282			0.252 ± 0.070	0.047 ± 0.044	0.068 ± 0.047		0.122 ± 0.124 0.167 ± 0.300	
$winequality - white - 9_v s_4 = 0.377 \pm 0.294$	0.345 ± 0.283					0.360 ± 0.282	0.377 ± 0.294			
$zoo - 3 0.196 \pm 0.192$ $ecoli1 0.715 \pm 0.043$	0.170 ± 0.169 0.705 ± 0.047	0.301 ± 0.296 0.708 ± 0.040			0.579 ± 0.380 0.666 ± 0.041	0.334 ± 0.365 0.712 ± 0.038	0.196 ± 0.192 0.731 ± 0.043	0.104 ± 0.163	0.104 ± 0.163 0.296 ± 0.203	0.104 ± 0.163
$ecoli2 0.715 \pm 0.045$ $ecoli2 0.706 \pm 0.080$	0.703 ± 0.047 0.702 ± 0.097	0.740 ± 0.040 0.740 ± 0.129				0.692 ± 0.099	0.731 ± 0.043 0.724 ± 0.092		0.296 ± 0.203 0.270 ± 0.271	
ecoli3 0.474 ± 0.059	0.504 ± 0.083	0.462 ± 0.084				0.486 ± 0.068	0.482 ± 0.062		0.198 ± 0.178	
$qlass0 0.637 \pm 0.044$	0.656 ± 0.076	0.689 ± 0.072				0.710 ± 0.111	0.482 ± 0.062 0.660 ± 0.066		0.563 ± 0.176 0.563 ± 0.126	
$glass0 0.037 \pm 0.044$ $glass1 0.620 \pm 0.044$	0.649 ± 0.047			0.619 ± 0.051		0.620 ± 0.072	0.625 ± 0.041		0.441 ± 0.107	
haberman 0.366 ± 0.044	0.350 ± 0.027			0.353 ± 0.059		0.344 ± 0.063	0.388 ± 0.055		0.327 ± 0.105	
$page - blocks0 \ 0.763 \pm 0.029$	0.798 ± 0.020		0.762 ± 0.033	0.787 ± 0.018		0.765 ± 0.028	0.771 ± 0.024		0.785 ± 0.025	
$pima = 0.552 \pm 0.030$	0.566 ± 0.022	0.553 ± 0.038				0.550 ± 0.020	0.559 ± 0.034		0.484 ± 0.051	
vehicle 1.0495 ± 0.033	0.498 ± 0.039	0.505 ± 0.024		0.482 ± 0.033		0.491 ± 0.030	0.503 ± 0.004 0.503 ± 0.025		0.498 ± 0.031	0.485 ± 0.031
vehicle3 0.471 ± 0.033	0.512 ± 0.040	0.467 ± 0.042				0.490 ± 0.025	0.473 ± 0.028		0.495 ± 0.035	
$yeast1 = 0.470 \pm 0.023$	0.495 ± 0.029	0.487 ± 0.020				0.484 ± 0.033	0.474 ± 0.016	0.436 ± 0.068	0.292 ± 0.001	0.414 ± 0.103
$ueast3 - 0.687 \pm 0.048$	0.689 ± 0.064	0.670 ± 0.045				0.682 ± 0.048	0.684 ± 0.046		0.111 ± 0.001	

Table 14. SVM – Precision

Adabam 19 (1001 ± 0.008 0.009 ± 0.008 0.009 ± 0.008 0.009 ± 0.008 0.002 ± 0.008 0.009 ± 0.009 ± 0.009 ± 0.008 0.009 ±	Dataset name SMOTE	polynom-fit-SMOTI	Lee	SMOBD			Assembled-SMOT	E SMOTE-TomekLink	s JFOTS-pr	JFOTS-rc	JFOTS-prom
$ \begin{array}{c} coli - 0 - 1 - 3 - 7 - 5 - 2 & 0.77 \pm 0.287 \\ glass - 0 - 1 - 6 - 6 & 7 & 20 & 20 & 10 & 20 & 20 & 20 & 20 & 20$	$abalone19 \ 0.019 \pm 0.008$	0.026 ± 0.013	0.019 ± 0.008	0.020 ± 0.008	0.022 ± 0.008	0.024 ± 0.006	0.019 ± 0.008		0.017 ± 0.009	0.011 ± 0.004	0.012 ± 0.002
$ glass = 0 - 1 - 6 p. (294 \pm 0.094) = 0.0916 - 0.0916 - 0.098 + 0.018 + 0.098 - 0.0916 - 0.098 + 0.098 + 0.098 - 0.098 + $											
gloade 0.188 ± 0.107 gloade 0.107 gl											
glass 0.78 \(\) = 0.10											
$ \begin{array}{c} p_{glack b} = 0.788 \pm 0.151 \\ p_{glack b} = 0.788 \pm 0.151 \\ p_{glack b} = 0.788 \pm 0.151 \\ p_{glack b} = 0.56 \pm 0.107 \\ p_{glack b} = 0.58 \pm 0.005 \\ p_{glack b} = 0.005 \\ p_$											
$page - blocks - 1 - 3 - s_4 \ \ 6500 \pm 0.070 \ \ $											
$ \begin{aligned} & \text{geat} - 1 - 4 - 5 - 6 - 6 - 7 - 7 - 9 + 6 + 0.384 \pm 0.065 & 0.448 \pm 0.079 & 0.390 \pm 0.066 & 0.410 \pm 0.082 & 0.388 \pm 0.083 & 0.391 \pm 0.051 & 0.392 \pm 0.073 & 0.231 \pm 0.024 & 0.074 \pm 0.023 & 0.074 \pm 0$											
pearl - 1 - 2 - 8 - 9 - 9 - 007 ± 0.022 0.073 ± 0.023 0.											
$past - 1 - 4 - 5 - 8.s. p. 0076 \pm 0.024 \\ past - 1 - 4 - 5 - 8.s. p. 0076 \pm 0.024 \\ past - 2.s. t. 0.85 \pm 0.045 \\ past - 2.s. t. 0.85 \pm 0.045 \\ past - 2.s. t. 0.85 \pm 0.055 \\ past - 0.024 \\ past - 0.025 \\ past - 0.0$											
$ \begin{array}{c} y_{outst} - 1_{-N_T} & 0.99 \pm 0.039 & 0.211 \pm 0.041 & 0.193 \pm 0.099 & 0.193 \pm 0.089 & 0.105 \pm 0.051 & 0.081 \pm 0.035 & 0.051 & 0.081 \pm 0.035 & 0.083 \pm 0.035 & 0.881 \pm 0.035 & 0.883 \pm 0.085 & 0.085 \\ y_{outst} - 2_{-N_T} & 0.229 \pm 0.229 & 0.888 \pm 0.111 & 0.51 \pm 0.277 & 0.983 \pm 0.285 & 0.518 \pm 0.211 & 0.888 \pm 0.095 & 0.518 \pm 0.021 & 0.089 \pm 0.020 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 & 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.067 & 0.081 \pm 0.081 & 0.081 \pm 0.081 & 0.081 \pm 0.081 \\ y_{outst} & 0.002 \pm 0.061 & 0.081 \pm 0.081 & 0.081 & 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.061 & 0.081 \pm 0.081 & 0.081 & 0.081 & 0.081 & 0.081 \\ y_{outst} & 0.002 \pm 0.002 & 0.002 \pm 0.002 & 0.002 \pm 0.002 & 0.002 & 0.002 \\ y_{outst} & 0.002 \pm 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.002 \\ y_{outst} & 0.002 \pm 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.002 \\ y_{outst} & 0.002 \pm 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.002 \\ y_{outst} & 0.002 \pm 0.002 & 0.002 & 0.002 & 0.002 & 0.002 $											
$poset - 2_{-4.8} & 0.685 \pm 0.056 \\ poset - 2_{-5.8} & 0.685 \pm 0.056 \\ poset 0.09 \pm 0.029 \pm 0.029 \\ poset 0.09 \pm 0.091 \\ poset 0.09 \pm 0.091 \\ poset 0.09 \pm 0.091 \\ poset 0.091 \\ poset 0.091 & 0.091 \\ poset 0.091 $											
$\begin{aligned} & poset 4 - 2 - s_0 & 0.429 \pm 0.292 \\ & poset 4 & 0.201 \pm 0.033 \\ & poset 5 & 0.502 \pm 0.007 \\ & 0.255 \pm 0.033 \\ & 0.$											
$posst5 0.395 \pm 0.007 \\ posst5 0.395 \pm 0.007$											
$ cecls - 0 - 1 - 4 - 7 + 9 - 3 - 5 = 0.777 \pm 0.195 \\ cecls - 0 - 1 - 4 - 7 + 9 - 3 - 5 = 0.777 \pm 0.103 \\ cecls - 0 - 1 - 4 - 7 + 9 - 3 - 5 = 0.777 \pm 0.103 \\ cecls - 0 - 2 - 6 - 7 - 4 - 5 = 0.776 \pm 0.103 \\ cecls - 0 - 2 - 6 - 7 - 4 - 5 = 0.767 \pm 0.103 \\ cecls - 0 - 2 - 6 - 7 - 4 - 5 = 0.707 \pm 0.103 \\ cecls - 0 - 2 - 6 - 7 - 4 - 5 = 0.707 \pm 0.103 \\ cecls - 0 - 2 - 6 - 7 - 4 - 5 = 0.707 \pm 0.103 \\ cecls - 0 - 2 - 6 - 7 - 4 - 5 = 0.805 \pm 0.107 \\ cecls - 0 - 4 - 6 - 7 - 4 = 0.808 \pm 0.107 \\ cecls - 0 - 4 - 6 - 7 - 4 = 0.808 \pm 0.107 \\ cecls - 0 - 6 - 7 - 4 = 0.808 \pm 0.107 \\ cecls - 0 - 6 - 7 - 4 = 0.808 \pm 0.107 \\ cecls - 0 - 6 - 7 - 4 = 0.808 \pm 0.102 \\ cecls - 0 - 1 - 8 - 2 = 0.808 \pm 0.102 \\ cecls - 0 - 1 - 8 - 2 = 0.808 \pm 0.102 \\ cecls - 0 - 1 - 8 - 2 = 0.808 \pm 0.102 \\ cecls - 0 - 6 - 5 - 8 - 8 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 1 - 8 - 2 = 0.808 \pm 0.102 \\ cecls - 0 - 6 - 5 - 8 - 8 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 1 - 8 - 2 = 0.008 \pm 0.002 \\ cecls - 0 - 1 - 8 - 2 = 0.008 \pm 0.002 \\ cecls - 0 - 1 - 8 - 2 = 0.008 \pm 0.002 \\ cecls - 0 - 1 - 8 - 2 = 0.008 \pm 0.002 \\ cecls - 0 - 2 - 8 - 2 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.008 \pm 0.002 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 = 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 5 - 9 - 8 - 0.0022 \pm 0.003 \\ cecls - 0 - 3 - 2 - 0 - 2 - 0.002 \\ cecls - 0 - 3 - 2 - 0 - 2 - 0.0022 \\ cecls - 0 - $											
$coil - 0 - 1 - e - 3 - 5 \ 0.777 \pm 0.103 \\ coil - 0 - 2 - 6 - 7 - 6 - 5 \ 0.766 \pm 0.189 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.766 \pm 0.189 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.197 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.197 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.197 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.195 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.195 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.195 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.195 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 7 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 6 - 5 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 6 \ 0.865 \pm 0.082 \\ coil - 0 - 6 - 6 \ 0.865 \pm 0.082 \\ coil - 0 - 6 \ 0.865 \pm 0.082 \\ $											
$ ccoli - 0 - 2 - 6 - 7.4.9 - 5 \ 0.805 \pm 0.189 \ ccoli - 0 - 6 - 7.4.9 - 5 \ 0.805 \pm 0.189 \ 0.885 \pm 0.147 \ 0.885 \pm 0.187 \ 0.885 \pm 0.187 \ 0.885 \pm 0.187 \ 0.885 \pm 0.187 \ 0.885 \pm 0.183 \$											
$ coll - 0 - 6 - 7 - 8 - 9 - 0 805 \pm 0.190 \\ coll - 0 - 6 - 7 - 8 - 9 - 0 805 \pm 0.190 \\ coll - 0 - 6 - 7 - 8 - 9 - 0 805 \pm 0.082 \\ doll - 0 - 6 - 7 - 8 - 9 - 0 805 \pm 0.082 \\ doll - 0 - 6 - 7 - 8 - 9 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 0 - 1 - 8 - 8 - 0.082 \\ doll - 0 - 1 - 1 - 1 - 1 \\ doll - 0 - 1 - 1 - 1 - 1 \\ doll - 0 - 1 - 1 - 1 - 1 \\ doll - 0 - 1 - 1 - 1 \\ doll - 0 - 1 - 1 - 1 \\ doll - 0 - 1 - 1 - 1 \\ doll - 0 - 1 \\ do$											
$ coli = 0 - 6 - 7_{e8}, 0.786 \pm 0.181 \\ glass = 0 - 1 - 4 - 6_{e.9}, 0.253 \pm 0.082 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.062 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.063 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 5_{e.9}, 0.275 \pm 0.033 \\ glass = 0 - 1 - 0.075 \pm 0.023 \\ glass = 0 - 1 - 0.075 \pm 0.023 \\ glass = 0 - 1 - 0.075 \pm 0.023 \\ glass = 0 - 1 - 0.075 \pm 0.023 \\ glass = 0 - 1 - 0.075 \pm 0.023 \\ glass = 0 - 0.075 \pm 0.002 \\ glass = 0 - 0.075 \pm 0.002 \\ glass = 0 - 0.075 \pm 0.002 \\ gla$											
$ \begin{aligned} glass = 0 - 1 - 4 - 6 \cdot s_2 & 0.255 \pm 0.082 \\ geat - 0 - 2 - 5 - 6 \cdot s_3 - 7 - 8 - 9 & 0.505 \pm 0.082 \\ geat - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 3 - 5 - 6 \cdot s_3 - 8 & 0.275 \pm 0.003 \\ grad - 0 - 1 \cdot s_3 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 \\ grad - 0 - 1 \cdot s_4 \cdot s_4 - 1 \cdot s_4 -$											
$ \begin{array}{c} glass = -1 - 1 - s_{xy} & 0.278 \pm 0.002 \\ great = -0 - 2 - 5 - s_{xy} = -8 & 0.272 \pm 0.003 \\ great = -0 - 3 - 5 - s_{xy} = -8 & 0.272 \pm 0.003 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.038 \pm 0.008 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.278 \pm 0.003 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.022 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.023 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.017 \pm 0.010 \\ global = -1 - (1 + s_{xy} + N - 2) & 0.$											
$past - 0 - 2 - 5 - 6, s_0 - 7 - 8 - 9 & 0.505 \pm 0.061 \\ past - 0 - 3 - 5 - 9, s_0 - 8 & 0.272 \pm 0.030 \\ abdome - 17, s_7 - 8 - 9 & 10 & 0.174 \pm 0.025 \\ abdome - 17, s_7 - 8 - 9 & 10 & 0.174 \pm 0.025 \\ abdome - 19, s_0 - 1 & 1 & 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 1 & 0.055 \\ abdome - 10, s_0 - 1 & 0$											
$ \frac{abctone - 17, sy - 8 - 9 - 10 \ 0.174 \pm 0.025}{abctone - 19, sy - 0 - 11 \ 0.065 \pm 0.025} = 0.025 \ 0.025 \pm 0.005 \ 0.033 \pm 0.008 \ 0.033 \pm 0.008 \ 0.035 \pm 0.008 \ $											
$abslone = 20.8, a = 9 - 10 0.189 \pm 0.055 0.284 \pm 0.049 0.024 \pm 0.048 0.188 \pm 0.052 0.292 \pm 0.048 0.137 \pm 0.027 0.132 \pm 0.098 0.284 \pm 0.075 0.286 \pm 0.048 0.055 \pm 0.089 0.075 \pm 0.089 0.085 \pm 0.089 0.082 \pm 0.075 0.084 0.084 \pm 0.081 0.084 0.084 0.084 0.084 0.084 \pm 0.081 0.084 $											
$ bidome - 21.s_0 \ .0466 \pm 0.088 \ .0462 \pm 0.171 \ .0452 \pm 0.101 \ .0412 \pm 0.012 \ .0451 \pm 0$											
$ \begin{array}{c} hidsup-buffer_{e}ver flows, such call 0.000 \pm 0.0001 \\ hidsup-buffer_{e}ver flows, such call 0.0000 \pm 0.00001 \\ hidsup-buffer_{e}ver flows, such call 0.0000 \pm 0.00001 \\ hidsup-buffer_{e}ver flows, such call 0.0000 \pm 0.00001 \\ hidsup-buffer_{e}ver flows, such call 0.000001 \\ hidsup-buffer_{e}ver flows, such call 0.00001 \\ hid$											
$ bidiagy - buffer-serf[low.snock 1.000 \pm 0.000] \\ bidiagy - buffer-serf[low.snock 1.000 \pm 0.000] \\ bidiagy - buffer - 8-bas 1.0000 \pm 0.000] \\ bidiagy - buffer - 8-bas 1.0000 \pm 0.000] \\ bidiagy - buffer - 8-bas 1.0000 \pm 0.000] \\ bidiagy - buffer - 8-bas 1.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.0000$											
$\begin{array}{c} poker = 8 - \theta_{s/8} \\ poker = 8 - \theta_{s/8} \\ 0.095 \pm 0.008 \\ 0.095 \pm 0.008 \\ 0.096 \pm 0.002 \\ 0.096 \pm 0.008 \\ 0.096 \pm 0.002 \\ 0.098 \pm 0.008 \\ 0.008 \pm 0.0$											
$ \begin{array}{c} poler = 8 - 9 - 8 \\ poler = 8 - 9 - 8 \\ poler = 9 - 8 $											
$ \begin{array}{c} poker - 8.ss_0 \ 0.942 \pm 0.002 \\ poker - 8.ss_0 \ 0.942 \pm 0.002 \\ poker - 9.ss_0 \ 0.017 \pm 0.435 \\ poker - 9.ss_0 \ 0.017 \pm 0.435 \\ \hline \ $											
$ \begin{array}{c} speciments speciments$											
$ \begin{aligned} & winequality - rad - 8s_{-} = 7 & 0.05 \pm 0.028 & 0.025 & 0.028 & 0.024 & 0.031 & 0.039 & 0.088 \pm 0.024 & 0.035 & 0.025 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.028 & 0.021 & 0.017 & 0.014 \pm 0.032 & 0.028 \pm 0.028 & 0.035 \pm 0.029 & 0.055 \pm 0.029 & 0.055 \pm 0.029 & 0.055 \pm 0.028 & 0.033 \pm 0.021 & 0.024 \pm 0.039 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.029 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.029 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.029 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.028 & 0.055 \pm 0.029 & 0.055 \pm 0.028 & 0.055 \pm 0.058 & 0.058 \pm 0.038 & 0.055 \pm 0.028 & 0.055 \pm 0.058 & 0.058 \pm 0.038 & 0.055 & 0.058 & 0.05$											
$ \frac{winequality - red - 8.se, \ 0.122 \pm 0.019}{colored colored c$											
$ \begin{aligned} & winequality - white - 3.ex & 0.051 \pm 0.044 & 0.055 \pm 0.055 & 0.061 \pm 0.045 & 0.089 \pm 0.055 & 0.082 \pm 0.046 & 0.082 \pm 0.026 & 0.082 \pm 0.046 & 0.082 \pm 0.082 & 0.$											
$ \begin{array}{c} xos - 3 \ 0.317 \pm 0.411 \\ cochi \ 1079 \pm 0.037 \\ cochi \ 0.079 \pm 0.035 \\ cochi \ 0.079 \pm 0.035 \\ cochi \ 0.079 \pm 0.035 \\ cochi \ 0.081 \pm 0.047 \\ cochi \ 0.081 \pm 0.048 \\ cochi \ 0.081 \pm 0.048 \\ cochi \ 0.081 \pm 0.048 \\ cochi \ 0.081 \pm 0.081 \\ cochi \ 0.081 \pm 0.081$											
$ \begin{array}{c} codi1 \ 0.679 \pm 0.037 \\ codi2 \ 0.837 \pm 0.036 \\ 0.834 \pm 0.037 \\ 0.859 \pm 0.042 \\ $											
$ cold 2 \ 0.835 \pm 0.047 \\ cold 3 \ 0.504 \pm 0.032 \\$											
$ \begin{array}{c} cocksi & 0.504 \pm 0.032 \\ glasst & 0.585 \pm 0.052 \\ glasst & 0.585 \pm 0.052 \\ glasst & 0.555 \pm 0.062 \\ \\ blaceman & 0.245 \pm 0.056 \\ \\ blaceman & 0.245 \pm 0.062 \\ \\ blaceman & 0.505 \pm 0.007 \\ \\ blaceman & 0.245 \pm 0.062 \\ \\ blaceman & 0.505 \pm 0.007 \\ \\ blaceman & 0.505 \pm 0.0$											
$\begin{array}{c} glass60 \ 0.858 \pm 0.058 \\ glass1 \ 0.559 \pm 0.068 \\ 0.688 \pm 0.0560 \\ 0.688 \pm 0.0560 \\ 0.688 \pm 0.0560 \\ 0.588 \pm 0.066 \\ 0.598 \pm 0.068 \\ 0.588 \pm 0.067 \\ 0.588 \pm 0.068 \\ 0.588 \pm 0.067 \\ 0$											
$\begin{array}{c} glass4 \ \ 0.550 \pm 0.002 \\ haberman \ \ 0.22 \pm 0.005 \\ page - holeckel 0 \ \ 0.664 \pm 0.017 \\ prima \ \ \ 0.005 \pm 0.007 \\ prima \ \ \ \ 0.005 \pm 0.007 \\ prima \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$											
$haberman 0.421 \pm 0.064 \\ pag - Mockeb 0.664 \pm 0.017 \\ pag - Mockeb 0.064 \pm 0.018 \\ pag - Mockeb 0.004 \\ pag - Mockeb 0.005 \\ pag - Mo$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c} \text{rehicle} & 0.538 \pm 0.002 \\ \text{rehicle3} & 0.515 \pm 0.0016 \\ \text{great1} & 0.497 \pm 0.007 \\ \end{array} \begin{array}{c} 0.549 \pm 0.027 \\ \text{o.} & 0.513 \pm 0.020 \\ \text{great1} & 0.497 \pm 0.007 \\ \end{array} \begin{array}{c} 0.538 \pm 0.027 \\ \text{o.} & 0.513 \pm 0.020 \\ \text{o.} & 0.515 \pm 0.020 \\ \end{array} \begin{array}{c} 0.512 \pm 0.028 \\ 0.513 \pm 0.020 \\ \text{o.} & 0.515 \pm 0.022 \\ \text{o.} & 0.515 \pm 0.022 \\ \end{array} \begin{array}{c} 0.544 \pm 0.025 \\ 0.515 \pm 0.017 \\ \text{o.} & 0.515 \pm 0.017 \\ \end{array} \begin{array}{c} 0.549 \pm 0.048 \\ 0.513 \pm 0.020 \\ 0.513 \pm 0.020 \\ 0.513 \pm 0.020 \\ 0.512 \pm 0.030 \\ \end{array} \begin{array}{c} 0.515 \pm 0.022 \\ 0.514 \pm 0.020 \\ 0.515 \pm 0.017 \\ \end{array} \begin{array}{c} 0.540 \pm 0.022 \\ 0.515 \pm 0.017 \\ 0.588 \pm 0.014 \\ 0.292 \pm 0.001 \\ 0.422 \pm 0.001 \\ 0.422 \pm 0.001 \\ \end{array} \begin{array}{c} 0.594 \pm 0.048 \\ 0.515 \pm 0.017 \\ 0.588 \pm 0.014 \\ 0.292 \pm 0.001 \\ 0.422 \pm 0.001 \\ \end{array} \begin{array}{c} 0.594 \pm 0.048 \\ 0.594 \pm 0.018 \\ 0.5$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$yeast1 \ \ 0.497 \pm 0.007 \qquad \textbf{0.591} \pm \textbf{0.019} \qquad 0.593 \pm 0.019 \qquad 0.503 \pm 0.020 0.487 \pm 0.019 0.500 \pm 0.017 0.531 \pm 0.022 \qquad 0.496 \pm 0.010 \qquad 0.498 \pm 0.006 \qquad 0.558 \pm 0.114 0.292 \pm 0.001 0.424 \pm 0.091 0.001 + 0.0$											

Table 15. KNN – Recall

Dataset name SMOTE	polynom-fit-SMOTE	Lee Si	MOBD	G-SMOTE	LVQ-SMOTE	Assembled-SMOTE	SMOTE-TomekLinks	JFOTS-pr	JFOTS-rc	JFOTS-prom
$abalone19 \ 0.200 \pm 0.13$	0.062 ± 0.056	$0.200 \pm 0.139 0.200$	0 ± 0.139	0.138 ± 0.087	0.175 ± 0.092	0.194 ± 0.126	0.200 ± 0.139	0.062 ± 0.062	0.013 ± 0.025	0.169 ± 0.128
$abalone9 - 18 \ 0.543 \ \pm \ 0.06$		$0.514 \pm 0.076 - 0.52$	4 ± 0.088	0.486 ± 0.106	0.462 ± 0.083	0.529 ± 0.086	0.543 ± 0.068	0.305 ± 0.140	0.186 ± 0.166	0.314 ± 0.109
$ecoli - 0 - 1 - 3 - 7_v s_2 - 6 \ 0.700 \pm 0.15$		$0.700 \pm 0.155 0.70$				0.700 ± 0.155		0.642 ± 0.224		
$glass - 0 - 1 - 6_v s_2 0.600 \pm 0.142$		0.587 ± 0.145 0.58			0.497 ± 0.142	0.603 ± 0.145	0.600 ± 0.142	0.414 ± 0.098	0.314 ± 0.207	0.431 ± 0.195
$glass - 0 - 1 - 6_v s_5 \ 0.850 \ \pm \ 0.19$		$0.850 \pm 0.196 0.850$			0.810 ± 0.246	0.850 ± 0.196				0.640 ± 0.322
$glass2 0.424 \pm 0.259$		0.436 ± 0.310 0.46			0.438 ± 0.236	0.435 ± 0.303	0.424 ± 0.259			0.318 ± 0.159
$glass4~0.850~\pm~0.11$		$0.802 \pm 0.114 + 0.81$			0.783 ± 0.078	0.833 ± 0.099	0.850 ± 0.111			0.550 ± 0.139
$glass5 \ 0.885 \pm 0.22$		0.865 ± 0.241 0.88			0.780 ± 0.212	0.885 ± 0.226	0.885 ± 0.226			0.700 ± 0.273
$page - blocks - 1 - 3_v s_4 \ 0.986 \pm 0.04$		$0.986\pm0.0430.98$				0.971 ± 0.047	0.986 ± 0.043			0.793 ± 0.222
$yeast - 0 - 5 - 6 - 7 - 9_v s_4 0.604 \pm 0.090$		$0.608 \pm 0.086 0.60$			0.592 ± 0.081	0.576 ± 0.069	0.600 ± 0.090			0.385 ± 0.139
$yeast - 1 - 2 - 8 - 9_v s_7 \ 0.500 \pm 0.10$		$0.493 \pm 0.085 0.48$			0.453 ± 0.111	0.487 ± 0.108	0.500 ± 0.100			0.173 ± 0.100
$yeast - 1 - 4 - 5 - 8_v s_7$ 0.407 ± 0.081		0.413 ± 0.083 0.36			0.333 ± 0.079	0.393 ± 0.081	0.407 ± 0.076			0.100 ± 0.131
$yeast - 1_v s_7 = 0.620 \pm 0.073$		0.627 ± 0.080 0.64			0.540 ± 0.076	0.580 ± 0.099	0.620 ± 0.073	0.260 ± 0.092		
$yeast - 2_v s_4 = 0.792 \pm 0.071$		0.788 ± 0.077 0.79				0.800 ± 0.067	0.792 ± 0.071			0.690 ± 0.097
$yeast - 2_v s_8 \ 0.700 \pm 0.13$		0.690 ± 0.122 0.70 0.537 ± 0.057 0.53			0.680 ± 0.125	0.700 ± 0.134				0.640 ± 0.143
$yeast4 = 0.537 \pm 0.057$ $yeast5 = 0.886 \pm 0.077$					0.548 ± 0.098 0.914 ± 0.103	0.544 ± 0.082 0.886 ± 0.071	0.537 ± 0.057 0.886 ± 0.077	0.340 ± 0.072 0.745 ± 0.115		0.313 ± 0.112
$yeast5 = 0.886 \pm 0.077$ $yeast6 = 0.687 \pm 0.094$					0.914 ± 0.103 0.766 ± 0.073	0.886 ± 0.071 0.675 ± 0.094	0.886 ± 0.077 0.687 ± 0.094	0.745 ± 0.115 0.482 ± 0.147		
$yeasib = 0.087 \pm 0.094$ $cleveland = 0_v s_4 = 0.802 \pm 0.140$		0.817 ± 0.052 0.80			0.662 ± 0.073	0.675 ± 0.094 0.817 ± 0.052	0.802 ± 0.140			0.576 ± 0.081 0.502 ± 0.232
$ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6$ 0.834 \pm 0.03				0.834 ± 0.049	0.826 ± 0.060	0.834 ± 0.034	0.834 ± 0.034			0.665 ± 0.178
$ecoli - 0 - 1 - 4 - t_s s_2 - 3 - 5 - 6$ 0.834 \pm 0.03 $ecoli - 0 - 1_s s_2 - 3 - 5$ 0.808 \pm 0.065				0.834 ± 0.049 0.792 ± 0.067	0.826 ± 0.000 0.800 ± 0.076	0.834 ± 0.034 0.817 ± 0.073	0.834 ± 0.034 0.808 ± 0.065			0.700 ± 0.118
$ecoli - 0 - 1_v s_2 - 3 - 3 - 0.808 \pm 0.063$ $ecoli - 0 - 2 - 6 - 7_v s_3 - 5 - 0.745 \pm 0.114$					0.764 ± 0.093	0.817 ± 0.073 0.745 ± 0.114	0.808 ± 0.003 0.745 ± 0.114			0.700 ± 0.119 0.727 ± 0.070
$ecoli - 0 - 2 - 6 - I_v s_3 - 5 0.745 \pm 0.114$ $ecoli - 0 - 6 - 7_v s_3 - 5 0.764 \pm 0.109$		0.733 ± 0.129 0.73 0.773 ± 0.124 0.76			0.764 ± 0.093 0.745 ± 0.106	0.764 ± 0.114 0.764 ± 0.109	0.745 ± 0.114 0.764 ± 0.109			0.655 ± 0.045
$ecoli - 0 - 6 - 7_v s_5 = 0.704 \pm 0.108$ $ecoli - 0 - 6 - 7_v s_5 = 0.790 \pm 0.104$		0.790 ± 0.104 0.79				0.790 ± 0.104	0.794 ± 0.109 0.790 ± 0.104			0.760 ± 0.143
alass - 0 - 1 - 4 - 6, s ₂ 0.497 ± 0.18		0.496 ± 0.198 0.49		0.424 ± 0.191	0.399 ± 0.126	0.474 ± 0.204	0.485 ± 0.179			0.261 ± 0.213
$glass - 0 - 1 - 5_v s_2 = 0.574 \pm 0.135$		0.597 ± 0.137 0.56			0.460 ± 0.120	0.575 ± 0.123	0.574 ± 0.135			0.344 ± 0.209
$weast - 0 - 2 - 5 - 6 - 8 - 7 - 8 - 9 - 0.699 \pm 0.071$		0.707 ± 0.057 0.69			0.649 ± 0.056	0.699 ± 0.061	0.699 ± 0.071			0.424 ± 0.076
$yeast - 0 - 3 - 5 - 9 - 87 - 8 - 0.536 \pm 0.062$		0.540 ± 0.070 0.52			0.504 ± 0.108	0.520 ± 0.067				0.216 ± 0.172
$abalone - 17vs_7 - 8 - 9 - 10 0.559 \pm 0.092$		0.566 ± 0.094 0.55			0.531 ± 0.097	0.545 ± 0.088	0.559 ± 0.092			0.262 ± 0.154
$abalone - 19.810 - 11 - 12 - 13 0.281 \pm 0.085$	0.156 ± 0.050	0.287 ± 0.094 0.29	4 ± 0.105	0.188 ± 0.097	0.237 ± 0.092	0.250 ± 0.101	0.281 ± 0.085	0.112 ± 0.073	0.138 ± 0.142	0.150 ± 0.135
$abalone - 20_v s_8 - 9 - 10 - 0.538 \pm 0.119$	0.346 ± 0.052	0.554 ± 0.132 0.56 3	2 ± 0.142	0.362 ± 0.119	0.469 ± 0.116	0.523 ± 0.175	0.531 ± 0.126	0.285 ± 0.119	0.115 ± 0.180	0.338 ± 0.134
$abalone - 21_v s_8 \ 0.686 \pm 0.17$	0.557 ± 0.162	$0.657 \pm 0.159 - 0.65$	7 ± 0.159	0.614 ± 0.170	0.614 ± 0.129	0.671 ± 0.170	0.686 ± 0.178	0.429 ± 0.202	0.357 ± 0.241	0.429 ± 0.181
$flare - F = 0.465 \pm 0.092$	0.415 ± 0.079	$0.460 \pm 0.103 0.46$	5 ± 0.091	0.410 ± 0.094	0.470 ± 0.081	0.465 ± 0.081	0.465 ± 0.092	0.111 ± 0.083	0.009 ± 0.018	0.148 ± 0.114
$kddcup - buffer_overflow_v s_back 0.913 \pm 0.095$	0.913 ± 0.095	$0.913 \pm 0.095 0.91$	3 ± 0.095	0.893 ± 0.100	0.920 ± 0.083	0.893 ± 0.085	0.913 ± 0.095	0.913 ± 0.090	0.913 ± 0.090	0.913 ± 0.090
$kddcup - rootkit - imap_v s_b ack 0.945 \pm 0.04$		$0.945 \pm 0.045 0.943$			0.891 ± 0.055	0.909 ± 0.100		0.927 ± 0.079	0.927 ± 0.079	0.927 ± 0.079
$kr - vs - k - zero_v s_e ight$ 0.887 ± 0.098					0.902 ± 0.119	0.864 ± 0.118	0.887 ± 0.098			0.503 ± 0.353
$poker - 8 - 9_v s_5 = 0.265 \pm 0.121$					0.373 ± 0.103	0.272 ± 0.129	0.265 ± 0.121			0.121 ± 0.156
$poker - 8 - 9_v s_6 0.920 \pm 0.081$		0.919 ± 0.081 0.91				0.896 ± 0.063	0.920 ± 0.081	0.975 ± 0.075		
$poker - 8_v s_6 0.910 \pm 0.120$		$0.910 \pm 0.120 0.91$				0.887 ± 0.157	0.910 ± 0.120			0.728 ± 0.334
$poker - 9_v s_7 \ 0.700 \ \pm \ 0.31$		$0.700 \pm 0.312 0.700$			0.600 ± 0.255	0.675 ± 0.297	0.700 ± 0.312			0.475 ± 0.378
winequality $- red - 3_v s_5$ 0.200 \pm 0.12		$0.200 \pm 0.126 0.20$				0.180 ± 0.108	0.200 ± 0.126			0.160 ± 0.120
$winequality - red - 4 = 0.317 \pm 0.052$		0.317 ± 0.059 0.31				0.328 ± 0.047	0.317 ± 0.052			0.200 ± 0.093
$winequality - red - 8_v s_6 - 7 \ 0.167 \pm 0.134$		$0.178 \pm 0.133 0.178$				0.167 ± 0.114	0.167 ± 0.134			0.133 ± 0.083
winequality - red - $8_v s_6$ 0.378 ± 0.11		0.356 ± 0.120 0.37				0.367 ± 0.100	0.378 ± 0.113			0.300 ± 0.165
winequality - white - $3 - 9_v s_5$ 0.313 \pm 0.06 winequality - white - $3_v s_7$ 0.320 \pm 0.172		$0.313 \pm 0.076 \ 0.313$ $0.330 \pm 0.185 \ 0.30$			0.234 ± 0.115	0.272 ± 0.083 0.320 ± 0.204	0.313 ± 0.068 0.320 ± 0.172	0.121 ± 0.100		0.184 ± 0.107 0.170 ± 0.119
winequality - white - $3_v s_7$ 0.320 \pm 0.172 winequality - white - $9_v s_4$ 0.800 \pm 0.20		0.330 ± 0.185 0.30 0.800 ± 0.208 0.56				0.320 ± 0.204 0.800 ± 0.208	0.820 ± 0.172 0.800 ± 0.208	0.210 ± 0.130 0.517 ± 0.391		
$zoo - 3 \ 0.700 \pm 0.30$		0.700 ± 0.208 0.36 0.700 ± 0.306 0.46				0.700 ± 0.208 0.700 ± 0.306	0.700 ± 0.306			0.317 ± 0.391 0.300 ± 0.267
ecoli1 0.837 ± 0.048		0.847 ± 0.055 0.84				0.839 ± 0.067	0.844 ± 0.043			0.784 ± 0.086
ecoli2 0.908 ± 0.04		0.908 ± 0.062 0.90				0.908 ± 0.062	0.908 ± 0.062			0.812 ± 0.080
ecoli3 0.840 ± 0.00		0.846 ± 0.035 0.82			0.835 ± 0.063	0.828 ± 0.037	0.840 ± 0.002			0.558 ± 0.223
$glass0 0.854 \pm 0.052$		0.851 ± 0.061 0.86			0.843 ± 0.052	0.869 ± 0.060	0.871 ± 0.041			0.786 ± 0.034
$alass1 0.732 \pm 0.076$				0.718 ± 0.068	0.708 ± 0.052	0.726 ± 0.054	0.732 ± 0.085			0.647 ± 0.082
$haberman 0.546 \pm 0.083$				0.486 ± 0.090	0.469 ± 0.090	0.509 ± 0.091	0.548 ± 0.073			0.408 ± 0.103
$page - blocks0 - 0.896 \pm 0.023$				0.884 ± 0.024	0.789 ± 0.032	0.901 ± 0.021	0.897 ± 0.023	0.810 ± 0.001		
$pima 0.660 \pm 0.035$				0.651 ± 0.033	0.640 ± 0.036	0.661 ± 0.034		0.578 ± 0.044		
$vehicle1 = 0.717 \pm 0.054$		0.711 ± 0.044 0.73			0.679 ± 0.052	0.726 ± 0.052	0.721 ± 0.057			0.633 ± 0.078
vehicle3 0.671 ± 0.035		0.679 ± 0.039 0.70			0.619 ± 0.048	0.687 ± 0.036	0.668 ± 0.036			0.610 ± 0.056
$yeast1 = 0.641 \pm 0.016$		0.641 ± 0.018 0.63			0.586 ± 0.024	0.636 ± 0.024	0.648 ± 0.020			0.169 ± 0.221
$yeast3 - 0.817 \pm 0.038$	0.809 ± 0.043	0.820 ± 0.041 0.80	5 ± 0.046	0.809 ± 0.040	0.807 ± 0.025	0.822 ± 0.038	0.816 ± 0.038	0.724 ± 0.034	0.000 ± 0.000	0.739 ± 0.053