

IIC2223/IIC2224 - Teoría de Autómatas y Lenguajes Formales - 2' 2024

Tarea 1

Publicación: Viernes 16 de agosto.

Entrega: Jueves 22 de agosto hasta las 23:59 horas.

Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si está en blanco).
- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Un stop-autómata finito determinista \mathcal{A} es igual a un autómata finito determinista con la diferencia que la ejecución de \mathcal{A} sobre una palabra se detiene apenas llega a un estado final y acepta. En cambio, si nunca llega hasta un estado final, \mathcal{A} llegará hasta el término de la palabra y rechaza. Notar que \mathcal{A} puede no necesariamente leer toda la palabra debido a que encontró un estado final antes de llegar al término de la palabra.

- 1. Formalice la definición de un stop-autómata finito determinista con su estructura, ejecución, condición de aceptación y lenguaje aceptado.
- 2. Demuestre formalmente que para todo stop-autómata finito determinista existe un autómata finito determinista que acepta el mismo lenguaje.

Solución

Pregunta 1.1. Definamos un stop-autómata \mathcal{S} como la tupla $(Q, \Sigma, \delta, q_0, F)$, siendo Q el conjunto de estados, Σ el alfabeto de entrada, δ la función de transición, q_0 el estado inicial y F los estados finales. Definamos δ como:

$$\delta: (Q \setminus F) \times \Sigma \to Q$$

Sea $w = a_1 \dots a_n$ una palabra en Σ^* . Definamos una ejecución parcial de \mathcal{S} sobre w como:

$$\rho: q_0 \stackrel{a_1}{\to} q_1 \stackrel{a_2}{\to} \dots \stackrel{a_k}{\to} q_k$$

tal que

IIC2223/IIC2224 1 Tarea 1

$$\delta(q_i, a_{i+1}) = q_{i+1} \quad \forall i < k$$

Diremos que la ejecución parcial ρ es de aceptación si $q_k \in F$. De esta forma, diremos que \mathcal{S} acepta w si existe alguna ejecución parcial (o si existe algún $k \leq n$) de aceptación. Finalmente podemos definir el lenguaje aceptado de \mathcal{S} como $\mathcal{L}(\mathcal{S}) = \{w \in \Sigma \mid \mathcal{S} \text{ acepta a } w\}$.

Distribución de puntaje

- 1 punto por definir la tupla del stop-autómata.
- 1 punto por definir la ejecución parcial correctamente.
- 1 punto por definir la condición para una ejecución de aceptación.
- 1 punto por determinar la condición de aceptación y el lenguaje aceptado del stop-autómata.

Pregunta 1.2. Sea $\mathcal{S} = (Q, \Sigma, \delta, q_0, F)$ un stop-autómata. Podemos construir un autómata finito determinista $\mathcal{A} = (Q', \Sigma, \delta', q_0, F')$, siendo $Q' = Q \uplus \{q_+\}$ y $F' = F \uplus \{q_+\}$. En otras palabras, agregamos un estado adicional q_+ al conjunto de estados posibles y al conjunto de estados finales. A la vez, la función de transición δ' se contruye de la siguiente manera, para cualquier $a \in \Sigma$:

- Si $q \in Q \setminus F$: $\delta'(q, a) = \delta(q, a)$
- Si $q \in F$: $\delta'(q, a) = q_+$
- Si $q = q_+$: $\delta'(q, a) = q_+$

Ahora demostraremos que $\mathcal{L}(\mathcal{S}) = \mathcal{L}(\mathcal{A})$ por doble contención.

$$\mathcal{L}(\mathcal{S}) \subseteq \mathcal{L}(\mathcal{A})$$

Sea una palabra $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{S})$. Luego existe una ejecución parcial de aceptación ρ :

$$\rho: q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_k} q_k$$

tal que

- $\delta(q_i, a_{i+1}) = q_{i+1}$
- $q_k \in F$

Sea entonces ρ' la ejecución en \mathcal{A} :

$$\rho': q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_k} q_k \xrightarrow{a_{k+1}} q_+ \xrightarrow{a_{k+2}} \dots \xrightarrow{a_n} q_+$$

Tenemos entonces:

- La ejecución comienza en q_0 .
- Si i < k, entonces, por contrucción $q_i \notin F$. Luego, como $\delta(q_i, a_{i+1}) = q_{i+1}$, entonces $\delta'(q_i, a_{i+1}) = q_{i+1}$.
- Si i = k, como $q_k \in F$, $\delta'(q_k, a_{k+1}) = q_+$ por definición.
- Si i > k, entonces $\delta'(q_i, a_{i+1}) = q_+$.
- Por construcción, $q_+ \in F'$.

Por lo tanto ρ' es ejecución de aceptación de \mathcal{A} sobre w. Finalmente $w \in \mathcal{L}(\mathcal{A})$.

$$\mathcal{L}(\mathcal{S}) \supseteq \mathcal{L}(\mathcal{A})$$

Sea una palabra $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{A})$. Luego existe una ejecución de aceptación ρ :

$$\rho: q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n$$

tal que

- $\delta'(q_i, a_{i+1}) = q_{i+1}$
- $q_n \in F'$

Tenemos dos casos: $q_n \in F$ o bien $q_n = q_+$. En el primer caso, si $q_n \in F$ entonces, por definición $\delta'(q_i, a_{i+1}) = q_{i+1} = \delta(q_i, a_{i+1})$. Por lo tanto ρ es una ejecución parcial de aceptación de \mathcal{S} sobre w, y finalmente $w \in \mathcal{L}(\mathcal{S})$. En el segundo caso, si $q_n = q_+$, entonces, por construcción existe algún k tal que $q_k \in F$ y, para todo i > k se cumple que $q_i = q_+$: debe existir un estado desde el cual todos los estados siguientes en la ejecución son nuestro estado adicional q_+ . Por lo tanto, ρ es de la forma:

$$\rho: q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_k} q_k \xrightarrow{a_{k+1}} q_+ \xrightarrow{a_{k+2}} \dots \xrightarrow{a_n} q_+$$

Podemos truncar esta ejecución y definir ρ' como la ejecución parcial:

$$\rho': q_0 \stackrel{a_1}{\rightarrow} q_1 \stackrel{a_2}{\rightarrow} \dots \stackrel{a_k}{\rightarrow} q_k$$

Finalmente, como ρ' es ejecución parcial de aceptación de S sobre w, se cumple que $w \in \mathcal{L}(S)$.

Distribución de puntaje

- 1 punto por construir correctamente \mathcal{A} partir del stop-autómata \mathcal{S} con un estado adicional.
- 1 punto por establecer una igualdad entre las transiciones de S y A para estados no finales.
- 1 punto por agregar las transiciones correspondientes al estado adicional.
- 1 punto por demostrar que los lenguajes aceptados son iguales.

Pregunta 2

Considere el alfabeto binario $\Sigma = \{0, 1\}$. Considere la operación \oplus entre bits tal que $i \oplus j = (i + j)$ mód 2 para todo $i, j \in \{0, 1\}$. Por ejemplo, $0 \oplus 1 = 1$ y $1 \oplus 1 = 0$. Para un n > 0 y dos palabras $u = a_1 \dots a_n \in \Sigma^*$ y $v = b_1 \dots b_n \in \Sigma^*$ se define la operación $u \oplus v$ entre palabras tal que $u \oplus v = (a_1 \oplus b_1) \dots (a_n \oplus b_n)$. Por ejemplo, $001 \oplus 101 = 100$ y $0011 \oplus 0101 = 0110$. También, se define $\bigoplus u$ como $\bigoplus u = a_1 \oplus a_2 \oplus \dots \oplus a_n$. Por ejemplo, si u = 0110, entonces $\bigoplus u = 0$. Por último, en el caso especial que $u = \epsilon$ y $v = \epsilon$, entonces se define $u \oplus v = \epsilon$ y $\bigoplus u = 0$.

- 1. Demuestre que si L es regular entonces $L^{\oplus =1} = \{u \in L \mid \bigoplus u = 1\}$ es regular.
- 2. Demuestre que si L es regular entonces $\bigoplus L = \{u \in \Sigma^* \mid \exists v \in L. \ |u| = |v| \land \bigoplus (u \oplus v) = 1\}$ es regular.

Solución

Problema 2.1. Para este problema se proponen dos posibles soluciones.

Propuesta (1): Por definición de lenguajes regulares tenemos que, como L es un lenguaje regular, entonces existe un autómata finito determinista \mathcal{A} tal que $\mathcal{L}(\mathcal{A}) = L$. Por otro lado, se puede ver que para que $\oplus u = 1$ la cantidad de 1's que debe tener la palabra u tiene que ser impar. Debido a esto último, hacemos un autómata \mathcal{A}' el cual acepta palabras $w \in \{0,1\}^*$ que tengan una cantidad impar de 1's. El autómata queda de la siguiente forma:

La idea de este autómata es que el estado 0 indica que se han leído una cantidad par de 1's, mientras que el estado 1 indica que la cantidad es impar, por lo que es de aceptación. Con esto tenemos entonces que $\mathcal{L}(\mathcal{A}') = \{w \mid \oplus w = 1\}$.

Como tenemos ya los autómatas \mathcal{A} y \mathcal{A}' podemos hacer el producto de estos $\mathcal{A} \times \mathcal{A}'$. Por propiedad de construcción del producto de autómatas tenemos que $\mathcal{L}(\mathcal{A} \times \mathcal{A}') = \{w \mid w \in L \land \oplus w = 1\}$. Por definición, tenemos que $\mathcal{L}(\mathcal{A} \times \mathcal{A}') = L^{\oplus = 1}$.

Distribución de puntaje

- 1 punto por establecer que existe \mathcal{A} tal que $\mathcal{L}(\mathcal{A}) = L$.
- 1 punto por hacer la construcción del autómata.
- 1 punto por explicar el producto entre los autómatas.
- 1 punto por definir que $\mathcal{L}(\mathcal{A} \times \mathcal{A}') = \{ w \mid w \in L \land \oplus w = 1 \}.$

<u>Propuesta (2)</u>: Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ el autómata que define a L, procedemos a hacer la creación de un nuevo autómata \mathcal{A}' tal que:

$$\mathcal{A}' = (Q \times \{0, 1\}, \Sigma, \delta', (q_0, 0), F \times \{1\})$$

$$\delta'((q, a), b) = (\delta(q, b), a \oplus b) \ \forall q \in Q, \forall a, b \in \{0, 1\}$$

Lo que hace este autómata básicamente es seguir la ejecución de \mathcal{A} pero llevando también como información la un 0 y un 1, que representa si es que hay una cantidad par o no de 1's respectivamente. Es por esto que el estado final es $F \times \{1\}$ dado que el 1 nos indica que termino con una cantidad impar.

P.D:
$$\mathcal{L}(\mathcal{A}') = L^{\oplus = 1}$$

$$\mathcal{L}(\mathcal{A}') \subset L^{\oplus =1}$$
:

Sea $w = b_1...b_n \in \mathcal{L}(\mathcal{A}')$, existe una ejecución de aceptación ρ tal que:

$$\rho: (q_0, a_0) \xrightarrow{b_1} (q_1, a_1) \xrightarrow{b_2} \dots \xrightarrow{b_n} (q_n, a_n)$$

Por construcción de \mathcal{A}' , y por definición de \mathcal{A} , tenemos que $q_0 \xrightarrow{b_1} q_1 \xrightarrow{b_2} \dots \xrightarrow{b_n} q_n$ es ejecución de aceptación de \mathcal{A} sobre w. Por lo tanto $w \in \mathcal{L}(\mathcal{A})$.

Es fácil ver por inducción que:

$$\oplus b_1...b_i = b_1 \oplus b_2 \oplus ... \oplus b_i = a_i$$

Como es ejecución de aceptación entonces $a_n = 1$, por lo que $\oplus w = 1$. Por lo tanto, como $w \in \mathcal{L}(\mathcal{A})$ y $\oplus w = 1$ entonces $w \in L^{\oplus = 1}$.

$$\mathcal{L}(\mathcal{A}') \supseteq L^{\oplus =1}$$
:

Sea $w = b_1...b_n \in L^{\oplus = 1}$ sabemos por definición que $w \in \mathcal{L}(\mathcal{A})$ y $\oplus w = 1$. Como $w \in \mathcal{L}(\mathcal{A})$ entonces sabemos que existe una ejecución de aceptación en \mathcal{A} : $q_0 \xrightarrow{b_1} q_1 \xrightarrow{b_2} ... \xrightarrow{b_n} q_n$. Ademas, como $\oplus w = 1$ sabemos que $b_1 \oplus b_2 \oplus ... \oplus b_n = 1$, por lo tanto, $a_n = 1$ para la siguiente ejecución. Por lo tanto, sabemos que la siguiente ejecución ρ sobre \mathcal{A}' es de aceptación:

$$\rho: (q_0,a_0) \xrightarrow{b_1} (q_1,a_1) \xrightarrow{b_2} \dots \xrightarrow{b_n} (q_n,a_n)$$

Como $q_n \in F$ y $a_n = 1$ entonces ρ es ejecución de aceptación.

Dado que existe la ejecución ρ de aceptación sobre \mathcal{A}' entonces, $w \in \mathcal{L}(\mathcal{A}')$.

Distribución de puntaje

- 1 punto por definir $Q' = Q \times \{0, 1\}$ correctamente.
- 1 punto por definir $q_0' = (q_0, 0), F' = F \times \{1\}$ correctamente.
- 1 punto por definir δ' correctamente.
- 1 punto por demostrar que $\mathcal{L}(\mathcal{A}') = L^{\oplus = 1}$.

Problema 2.2. Sea $\oplus L = \{u \mid \exists v \in L. |u| = |v| \land \oplus (u \oplus v) = 1\}$ y $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ el autómata tal que $\mathcal{L}(\mathcal{A}) = L$. Definimos el autómata NFA \mathcal{A}' de la siguiente forma:

$$\mathcal{A}' = (Q \times \{0, 1\}, \Sigma, \Delta', (q_0, 0), F \times \{1\})$$

$$\Delta' = \{((p, a), b, (q, a')) \mid \exists c \in \{0, 1\}. \ \delta(p, c) = q \land a' = a \oplus (b \oplus c)\}$$

La idea de \mathcal{A}' es tratar de probar las posibles combinaciones de palabras $v \in L$ y comprobar que exista al menos una que cumpla con ser de aceptación. Ademas, usa la información de la paridad de 1's similar a lo que se hacia en la proposición 2 de la solución del problema anterior.

$$\underline{P.D}: \mathcal{L}(\mathcal{A}') = \oplus L$$

$$\mathcal{L}(\mathcal{A}') \subseteq \oplus L$$
:

Sea $w = b_1...b_n \in \mathcal{L}(\mathcal{A}')$ sabemos que existe una ejecución de aceptación ρ de la siguiente forma:

$$\rho: (q_0, a_0) \xrightarrow{b_1} (q_1, a_1) \xrightarrow{b_2} \dots \xrightarrow{b_n} (q_n, a_n)$$

Por definición de Δ' : $\exists c \in \{0,1\}.\delta(p,c) = q$, por lo tanto $\exists c_1...c_n \in \{0,1\}^*$ tal que $q_0 \xrightarrow{c_1} q_1 \xrightarrow{c_2} ... \xrightarrow{c_n} q_n$ es ejecución de aceptación de \mathcal{A} sobre $v = c_1....c_n$. Podemos ver que tanto v como w tienen la misma cantidad de caracteres, por lo que |v| = |w|.

Similar que en el problema anterior, por inducción podemos ver que:

$$\oplus (b_1...b_i \oplus c_1...c_i) = a_i$$

Como $a_n = 1$ entonces $\oplus (u \oplus v) = 1$. Como tenemos que $v \in \mathcal{L} \land |v| = |w| \land \oplus (u \oplus v) = 1$, por definición tenemos que $w \in \oplus L$.

$$\mathcal{L}(\mathcal{A}') \supseteq \oplus L$$
:

Sea $w = b_1...b_n \in \oplus L$ sabemos por definición que existe $v = c_1...c_n \in L$ tal que $|v| = |w| \land \oplus (u \oplus v) = 1$. Como $v \in L$ entonces sabemos que existe una ejecución de aceptación en $\mathcal{A}: q_0 \xrightarrow{c_1} q_1 \xrightarrow{c_2} ... \xrightarrow{c_n} q_n$. Ademas, como $\oplus (u \oplus v) = 1$ entonces sabemos que $a_n = 1$ para la siguiente ejecución ρ sobre \mathcal{A}' (por definición de Δ'):

$$\rho: (q_0, a_0) \xrightarrow{b_1} (q_1, a_1) \xrightarrow{b_2} \dots \xrightarrow{b_n} (q_n, a_n)$$

Por como se construye Δ' sabemos que $q_n \in F$. Ademas, tenemos que $a_n = 1$ entonces tenemos que ρ es una ejecución de aceptación.

Como existe al menos una ejecución de aceptación de w sobre \mathcal{A}' entonces tenemos que $w \in \mathcal{L}(\mathcal{A}')$.

Distribución de puntaje

- 1 punto por definir correctamente $Q' = Q \times \{0, 1\}$.
- 1 punto por definir correctamente $q'_0 = (q_0, 0)$ y $F \times \{1\}$.
- 1 punto por definir correctamente Δ' .
- 1 punto por demostrar que $\mathcal{L}(\mathcal{A}) = \oplus L$.

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.