MS 221 - Homework Set (10)

(Surface Integrals /Taylors Theorem)

QUESTION 1

Use the change of variables

$$u = x + y,$$
 $v = \frac{y}{x + y}$

to show that

$$\int_0^1 \int_0^{1-x} e^{y/(x+y)} dy dx = \frac{e-1}{2}$$

QUESTION 2

Let Ω be some fixed region in the xy-plane and let $\mathcal{S} \subset \mathbf{R}^3$ be the surface given by

$$z = (x - y)^2 \quad \forall \ (x, y) \in \Omega.$$

Denote the **upward pointing** unit normal field to this surface by n. If the **vector** field $F: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

$$\mathbf{F}(x, y, z) = \begin{bmatrix} x + y \\ 0 \\ 2z \end{bmatrix}$$

determine the function $f: \Omega \to \mathbf{R}: (x, y) \mapsto f(x, y)$ such that

$$\int \int_{\mathcal{S}} \langle \boldsymbol{F}, \, \boldsymbol{n} \rangle \, dA_{\mathcal{S}} = \int \int_{\Omega} f(x, \, y) \, dx \, dy.$$

QUESTION 3

Show that the vector field

$$F: \mathbf{R}^3 \to \mathbf{R}^3: \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} \sin y \\ x \cos y + \sin z \\ y \cos z \end{bmatrix}$$

is conservative and find a scalar potential φ .

QUESTION 4

Throughout this question Ω will denote the disc in the xy-plane which is centred at the origin and has radius 2, that is $\Omega = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \leq 4\}$ and \mathbf{S} will denote the surface in \mathbf{R}^3 given by

$$z = 4 - (x^2 + y^2) \qquad \forall \ (x, y) \in \Omega$$

If \boldsymbol{F} is the vector field

$$F: \mathbb{R}^3 \to \mathbb{R}^3: \left[egin{array}{c} x \\ y \\ z \end{array} \right] \mapsto \left[egin{array}{c} x+yz \\ y+xz \\ xyz \end{array} \right]$$

do the following:

- (a) Sketch the surface \mathcal{S} together with its boundary curve \mathcal{C} .
- (b) Calculate the unit (upward pointing) normal field to the surface \mathcal{S} .
- (c) Determine the function $\varphi:\Omega\to \mathbf{R}:(x,y)\mapsto \varphi(x,y)$ such that

$$\iint_{\mathcal{S}} \langle \boldsymbol{\nabla} \times \boldsymbol{F}, \, \boldsymbol{n} \rangle \, dA_{\boldsymbol{\mathcal{S}}} = \iint_{\Omega} \varphi(x, \, y) \, dx dy.$$

Note: You are **NOT** asked to evaluate this integral.

(d) Using Stokes' Theorem, or otherwise, evaluate

$$\iint_{\mathcal{S}} \langle \boldsymbol{\nabla} \times \boldsymbol{F}, \, \boldsymbol{n} \rangle \, dA_{\mathcal{S}}$$

where n is the normal field obtained in part (b).

QUESTION 5

Find the **Taylor series** of the function $f(x, y) = x^3 - y^2 + y$ about the point (2, -3).

QUESTION 6

Find all terms **up to second order** in the **Taylor series** of the function $f(x, y) = \sin(xy)$ about the point (0, -1).