Grundlagen der Programmierung (GdP)

Ralf Möller, FH-Wedel

- Voraussetzungen:
 - Mengenlehre, Relationen, Funktionen
- Lernziele allgemein:
 - Fundamente und Grundprinzipien der Programmierung
 - Systematische Entwicklung von Programmen
- Organisation:
 - Vorlesung, Übungen, Tutorien

GdP: Das Konzept zur Lehre

- Vorlesung: Mi 9.30 Uhr, 11.00 Uhr, HS 4
 - Vermittlung stofflicher Inhalte
 - Austeilen von Aufgaben
- Übung: Alissa Kaplunova, Mo 14.00 Uhr, HS 4
 - Klären von Fragen, Wiederholung der Vorlesungsinhalte
 - Durchführung von Übungen in Kleingruppen
- Tutorium: Alissa Kaplunova, Mo 9.30 Uhr, SemR 1
 - Klären von Fragen

Literatur, Details und Zusatzinformationen

Infos: http://www.fh-wedel.de/~mo/lectures/gdp-sose-03.html

Literatur:

Weitere, ergänzende Literatur auf der obigen Webseite

Überblick über die Vorlesung

- Einführung: Algorithmen, Entwurf von Algorithmen
- Aussagenlogik, Prädikatenlogik, Spezifikation der Aufgabe von Algorithmen
- Zuweisungen, Kontrollstrukturen, Bedingungen und die systematische Entwicklung von Algorithmen
- Funktionen, Prozeduren, Rekursion
- Komplexität von Algorithmen
- Abstrakte Automaten und Formale Sprachen

Danksagungen

- Die Vorlesung baut auf der gleichnamigen Vorlesung von Uwe Schmidt aus früheren Semestern auf.
- Folien zu dem Buch "Logik für Informatiker" von Uwe Schöning wurden übernommen von Javier Esparza http://www.brauer.in.tum.de/lehre/logik/SS99/
- Folien zu dem Buch "Theoretische Informatik kurz gefaßt" wurden übernommen von Angelika Steger http://www14.in.tum.de/lehre/200055/info4/

1 Einleitung 1.1 Algorithmus

1.1 AlgorithmusComputer führt Routineaufgaben aus

Vergleich)

Welche Operationen?

(erste Definition)

(einfache Operationen)

Aufgabe,

• hohe Geschwindigkeit

• einfache Operationen (Addition,

Welche Reihenfolge der Operationen?

beschreibt eine Methode zur Lösung einer

besteht aus einer endlichen Folge von Schritten

Beschreibung durch Algorithmus

Computer

Fragen

Algorithmus

Prozeß	Abarbeitung eines Algorithmus
Prozessor	Einheit die einen Prozeß ausführt
Algorithmus	in der Datenverarbeitung: Ein Algorithmus berechnet aus Eingabedaten Ausgabedaten (Resultate)
formal	Ein Algorithmus berechnet eine Funktion $f: E \longrightarrow A$. E ist der Wertebereich der Eingabedaten, A ist der Wertebereich der Ausgabedaten.
Daten	Werte aus bestimmten Wertebereichen

ein spezieller Prozessor Computer • Zentraleinheit Central Processing Komponenten Unit, CPU, Ausführung der Basisoperationen • Speicher - Daten mit denen die Basisoperationen manipulieren - Operationen des Algorithmus das Programm • Ein- und Ausgabe-Geräte I/O $10^6 - 10^9$ Operationen/Sekunde. Geschwindigkeit

Zuverlässigkeit	sehr hoch
Fehlerursache	der Algorithmus
Prozeß	berechnet eine Funktion für bestimmte Eingabedaten
Speicher	immer billiger ⇒immer größer 1970 : 64 KByte 1980 : 640 KByte 1990 : 8 MByte 2000 : 256 MByte
Kosten	pro Operation immer billiger

Programme und Programmiersprachen Algorithmus in einer Sprache formulieren, die der Prozessor

verstaht

Algorithmus

	Versteint
Interpretation	• verstehen, was jeder Schritt bedeutet
	• Operation ausführen

Programmiersprache Sprache, in der ein Algorithmus für einen Computer formuliert wird

Programm

programmieren

 ${f Elementar-}$

operationen

Algorithmen in Programme umsetzen Operationen, die ein Prozessor ausführen kann

ein in einer Programmiersprache formulierter

Sprachhierarchie	$maschinennah \Rightarrow problemorientiert$
Maschinensprache	Programmiersprache, die ein Computer direkt versteht (eine Folge von 0-en und 1-en)
Assemblersprache	Maschinensprache in einer für Menschen lesbaren (nicht unbedingt verständlichen) Form: Jede Instruktion erhält einen Namen
Assembler	Ein Programm zur Transformation einer Assemblersprache in die zugehörige Maschinensprache
höhere Programmier– sprache	Zur Vereinfachung der Programmierung Anpassung der Programmiersprache an problem- und aufgabenorientierte Notation • komplexere Elementaroperationen
	• übersichtlichere Anordnung der Anweisungen
Compiler	ein Programm zur Transformation von Programmen einer höheren Programmiersprache in die Maschinen- oder Assemblersprache eines Computers

Abgrenzung	Hardware ⇔ Software: fließend
Hardware	implementiert eine Menge von Elementaroperationen
Betriebssystem	erweitert diese Menge um neue Elementaroperationen, die durch (kurze) Programme implementiert sind
Basis-Software	erweitert diese Menge nochmals, z.B. durch E/A-Operationen
\hookrightarrow	Für die Programmentwicklung ist es unwesentlich, wie die Elementaroperationen implementiert sind, entscheidend ist, welche Operationen verfügbar sind

Beispiele

Arithmetik

Multiplikation

in Hardware (\(\Leftrightarrow \text{Coprozessor} \)
in Software (\(\Leftrightarrow \text{Emulation} \)
als Instruktion

durch Zurückführen auf Addition

Algorithmenentwicklung auch für die

Hardware–Entwicklung von Bedeutung

für reelle Zahlen

Operationen	im Rechner und Betriebssystem sind
Funktionen	Eine Funktion ist eine eindeutige Zuordnung von Elementen einer Menge D zu den Elementen einer Menge R . Jedem Element aus D darf höchstens ein Element von R zugeordnet sein. Ist f eine solche Funktion, so schreibt man $f:D\longrightarrow R$
Urbildbereich	D heißt Urbildbereich
Bildbereich	R heißt Bildbereich
Definitionsbereich	Nicht jedem Element aus D muß ein Element aus R zugeordnet sein. Ist einem Element d kein Element aus R zugeordnet, so ist f für d nicht definiert. Die Menge der Elemente von D , für die f definiert ist, heißt Definitionsbereich und wird mit
	Def(f)
	bezeichnet.
Operationen	auf den Wertebereichen sind Funktionen
	Alle Operatoren $(+, -, *, div, mod, \land, \lor, \ldots)$ sind Namen für Funktionen

totale Funktion	f heißt totale Funktion, wenn
	Def(f) = D
	ist.
partielle Funktion	f heißt partielle Funktion, wenn
	$Def(f) \subset D$
	ist.
Bild	Ordnet die Funktion f dem Element $d \in D$ das Element $r \in R$ zu, so heißt r Bild von d unter f . Man schreibt
	$f:d\mapsto r$
	oder
	f(d) = r
${\bf einstellig}$	$f: D \longrightarrow R$
n-stellig	$f: D_1 \times \ldots \times D_n \longrightarrow R$

Funktion	zu einer Funktion (Spezifikation) gibt es viele
	verschiedene Algorithmen

Funktion \Rightarrow Algorithmus \Rightarrow Programm \Rightarrow Ausführung

Algorithmus zu einem Algorithmus gibt es viele verschiedene Programme

Programme

zu einem Programm gibt es viele verschiedene
Prozessoren und Maschinenprogramme

zentral	Wie entwirft man Algorithmen?
	Viel schwieriger als die Programmierung (Umsetzung: Algorithmus ⇒Programm)
	Es gibt keinen Algorithmus zur Entwicklung von Algorithmen!!!
	aber Prinzipien, Techniken, Richtlinien
Berechenbarkeit	Gibt es Funktionen (Prozesse) für die es keinen Algorithmus gibt?
\hookrightarrow	Wenn ja ⇒ nicht alles kann mit einem Computer berechnet werden !!!
•	Kann man für eine Funktion (Prozeß) entscheiden, ob es hierfür einen Algorithmus gibt?

Komplexität	
Fragen	Welche und wieviele Betriebsmittel braucht ein Prozeß zur Ausführung eines Algorithmus?
${\bf Betriebs mittel}$	• Zeit
	• Speicher
	• Prozessoren
	• Geräte
Vergleich	Wann ist ein Algorithmus besser als ein anderer?
Komplexität	eines Algorithmus. Die Komplexität eines Algorithmus ist der Aufwand an Betriebsmitteln bei der Berechnung.

Maschinenmodell
Komplexität
Kompiezitat

mit den elementaren Operationen und Ablaufsteuerungen bildet die Basis für die Komplexitätsabschätzungen und den Vergleich von Algorithmen • Turing–Maschine • Registermaschine • Parallelrechner einer Funktion = Komplexität des berechnet.

bestmöglichen Algorithmus, der diese Funktion

Frage

Korrektheit

denselben Wert wie die zugehörige Funktion? ist schwierig.

Antwort

Korrektheitsbeweise und -argumentationen geführt werden!!!

können immer nur relativ zu einer Spezifikation

Hier ist noch viel Forschung notwendig.

umfangreich und schwierig.

Berechnet ein Algorithmus immer genau

Korrektheitsbeweise für Programme sind sehr

setzt eine Spezifikation voraus.

Behauptung: "Dieses Programm ist richtig"

Entwurf von Algorithmen

Algorithmen, Programme, 2.1Programmiersprachen

Algorithmus ist eine Verarbeitungsvorschrift, die aus genau bestimmten Elementaroperationen aufgebaut ist, und bei deren Interpretation die

Reihenfolge der Ausführung der Elementaroperationen genau festgelegt ist. in Daten-

verarbeitung

Die Elementaroperationen berechnen aus

Eingabedaten (Parametern) neue Ausgabedaten (Resultate)

-
1

	Interpretation nach endlich vielen Schritten ein Ergebnis liefert
Beispiel	
nicht terminierend:	Sisyphos: mußte einen Felsen auf einen Berg wälzen, von dem der immer wieder herabrollte.
Problem	Ist sichergestellt, daß ein Algorithmus für alle möglichen Eingaben terminiert.
\hookrightarrow	
 Korrektheit	(1) ein Algorithmus berechnet immer

Ein Algorithmus terminiert, wenn seine

Terminierung

★
 Korrektheit
 (1) ein Algorithmus berechnet immer dengleichen Wert wie die zugehörige Funktion (partielle Korrektheit)
 (2) der Algorithmus terminiert immer

Sprachen	zur Formulierung von Algorithmen
Umgangssprache	großes Vokabular, komplizierte Grammatik, mehrdeutig
	\hookrightarrow für Computer unverständlich
	\hookrightarrow für Menschen verständlich
Mathematische Formelsprache	großes Vokabular, exakt, eindeutig, ausdruckskräftig, komplexe Operationen
	\hookrightarrow für Computer schon besser geeignet,
	 → durch die hohe Ausdruckskraft nicht immer automatisch in eine für Computer verständliche Sprache umsetzbar

Programmier exakt, eindeutig, einfache sprache Elementaroperationen länglicher als Formelsprache \hookrightarrow noch gut lesbar Maschinensprache kleines Vokabular, schlecht lesbar, einfache Elementaroperationen gut auf einem Computer auszuführen

Programmieren

schlecht zum Entwickeln und

höhere

Syntax

eines Satzes (einer Sprache): grammatikalische Aufbau des Satzes

eines Satzes (einer Sprache): Interpretation des

Satzes, Zuordnung einer Bedeutung zu dem

nur sehr wenigen syntaktisch richtigen Sätzen

sinnvoll interpretiert werden.

kann eine Bedeutung zugeordnet werden, kann

Syntax und Semantik

Satz

Semantik

Zusammenfassung, Kernpunkte

- Algorithmusbegriff
- Sprachen zur Formulierung von Algorithmen
 - Begriffe: Syntax, Semantik
- Ausführung von Algorithmen
 - Begriffe: Prozessor, Betriebsmittel, ...

Was kommt beim nächsten Mal?

- Grundlagen zur Formulierung von Algorithmen insbesondere für Bedingungen
- Aussagenlogik