ФИО	Группа	1	2	3	4	5	Σ	Оценка	Подпись

Контрольный вопрос. Формулировка основной теоремы вычислительной математики.

1. (6) Вычислить f(2.5), пользуясь линейной, квадратичной и кубической интерполяцией. Оценить погрешность, используя остаточный член интерполяции.

x	1.0	2.0	3.0	4.0	5.0
f(x)	1.0	2.0	3.0	3.9	4.8

2. (5) Дана система нелинейных уравнений:

$$\begin{cases} y = \sin(2x) \\ x^2 + y^2 = 1 \end{cases}$$

Локализовать корни и выписать формулы для их уточнения методом Ньютона. Выписать матрицу A и вектор правых частей \vec{f} получаемой СЛАУ $A\vec{r}_1 = \vec{f}$ для нахождения значений переменных на первой итерации метода для одного из корней системы.

3. (5) Вычислить интеграл функции, заданной таблично, с помощью метода Симпсона. Определить ошибку по правилу Рунге.

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f(x)	0.0	0.01	0.039	0.089	0.156	0.240	0.339	0.451	0.574

4. (12) Основываясь на квадратурной формуле из задачи 3 (метод Симпсона), построить таблицу Бутчера явного трёхстадийного метода Рунге-Кутты для решения задачи Коши для ОДУ. Исследовать полученный метод на сходимость при $\mathbf{t} \in [0, \infty)$ для задачи:

$$\begin{cases} \frac{dy}{dt} = -3y\\ y(0) = 1 \end{cases}$$

5*. (14) Задача Коши для ОДУ:

$$\begin{cases} \dot{x} = x - xy; x(0) = 1\\ \dot{y} = \frac{1}{2}xy - \frac{1}{4}y; y(0) = 3 \end{cases}$$

решается явным методом Рунге-Кутты:

$$\begin{array}{c|cc}
0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\hline
& 1 - \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}
\end{array}$$

ФИО	Группа	1	2	3	4	5	Σ	Оценка	Подпись

Контрольный вопрос. Определение аппроксимации разностной схемы.

- 1. (5) Построить интерполяционный многочлен второй степени на сетке из нулей полинома Чебышева и на сетке из экстремумов полинома Чебышева для функции $y = e^x$ на отрезке [0, 2].
- 2. (6) Предложить сходящийся метод простых итераций для нахождения полуширины функции $y=xe^{-x^2}$ на её полувысоте при x>0. Выполнить две итерации с помощью предложенного метода.
- 3. (5) Вычислить интеграл функции, заданной таблично, с помощью метода Симпсона. Уточнить полученное значение с помощью экстраполяции Ричардсона.

5	x	-0.5	-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3
	f(x)	-0.824	-0.597	-0.405	-0.244	-0.111	0.0	0.091	0.164	0.222

4. (12) Основываясь на квадратурной формуле из задачи 3 (метод Симпсона), построить таблицу Бутчера явного трёхстадийного метода Рунге-Кутты для решения задачи Коши для ОДУ. Исследовать полученный метод на сходимость при $\mathbf{t} \in [0, \infty)$ для задачи:

$$\begin{cases} \frac{dy}{dt} = y^2\\ y(0) = 2 \end{cases}$$

5*. (14) Задача Коши для ОДУ:

$$\begin{cases} \dot{x} = x - \frac{1}{2}x^2 - xy; x(0) = 2\\ \dot{y} = y - 2xy - y^2; y(0) = 0.1 \end{cases}$$

решается явным методом Рунге-Кутты:

$$\begin{array}{c|c}
0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
1 - \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}
\end{array}$$

ФИО	Группа	1	2	3	4	5	Σ	Оценка	Подпись

Контрольный вопрос. Определение устойчивости разностной схемы.

1. (6) Вычислить f(2.5), пользуясь линейной, квадратичной и кубической интерполяцией. Оценить погрешность, используя остаточный член интерполяции.

x	0.0	1.0	2.0	3.0	4.0
f(x)	10.0	3.7	1.4	0.5	0.2

2. (5) Дана система нелинейных уравнений:

$$\begin{cases} x^2 - 2x + y^2 - 6y + 8 = 0\\ x^2 - y = 0 \end{cases}$$

Локализовать корни и выписать формулы для их уточнения методом Ньютона. Выписать матрицу A и вектор правых частей \vec{f} получаемой СЛАУ $A\vec{r}_1 = \vec{f}$ для нахождения значений переменных на первой итерации метода для одного из корней системы.

3. (5) Вычислить интеграл функции, заданной таблично, с помощью метода трапеций. Определить ошибку по правилу Рунге.

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	1.0	0.985	0.941	0.870	0.774	0.658	0.528

4. (12) Основываясь на квадратурной формуле из задачи 3 (метод трапеций), построить таблицу Бутчера явного трёхстадийного метода Рунге-Кутты для решения задачи Коши для ОДУ. Исследовать полученный метод на сходимость при $t \in [0, \infty)$ для задачи:

$$\begin{cases} \frac{dy}{dt} = y^3\\ y(0) = 0.5 \end{cases}$$

5*. (14) Задача Коши для ОДУ:

$$\begin{cases} \dot{x} = x - xy; x(0) = 1\\ \dot{y} = \frac{1}{2}xy - \frac{1}{4}y; y(0) = 3 \end{cases}$$

решается явным методом Рунге-Кутты:

$$\begin{array}{c|cccc}
0 & & & \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & & \\
& 1 - \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}$$

ФИО	Группа	1	2	3	4	5	Σ	Оценка	Подпись

Контрольный вопрос. Определение сходимости разностной схемы.

- 1. (5) Построить интерполяционный многочлен второй степени на сетке из нулей полинома Чебышева и на сетке из экстремумов полинома Чебышева для функции y = ln(x) на отрезке [1, 2].
- 2. (6) Предложить сходящийся метод простых итераций для нахождения полуширины функции $y = xe^{-x}$ на её полувысоте при x > 0. Выполнить две итерации с помощью предложенного метода.
- 3. (5) Вычислить интеграл функции, заданной таблично, с помощью метода трапеций. Уточнить полученное значение с помощью экстраполяции Ричардсона.

x	0.0	0.2	0.4	0.6	0.8	1.0	1.2
f(x)	0.0	0.200	0.395	0.562	0.642	0.540	0.157

4. (12) Основываясь на квадратурной формуле из задачи 3 (метод трапеций), построить таблицу Бутчера явного трёхстадийного метода Рунге-Кутты для решения задачи Коши для ОДУ. Исследовать полученный метод на сходимость при $t \in [0, \infty)$ для задачи:

$$\begin{cases} \frac{dy}{dt} = 2y\\ y(0) = -1 \end{cases}$$

5*. (14) Задача Коши для ОДУ:

$$\begin{cases} \dot{x} = x - \frac{1}{2}x^2 - xy; x(0) = 0.1\\ \dot{y} = y - 2xy - y^2; y(0) = 2 \end{cases}$$

решается явным методом Рунге-Кутты:

$$\begin{array}{c|c}
0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\hline
1 - \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}$$