SCIM106

AY24/25 SEM 2

miimi

RSA Encryption Process

A	В	C	D	Е	F	G	Н	I	J	K	L	M
A 0	1	2	3	4	5	6	7	8	9	10	11	12
N 13	0	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Step 1: RSA Setup

- Public key: $n = 29 \times 31 = 899, e = 41$
- · Message: ME
- · Caesar values:

$$M = 12, E = 04$$

Step 2: Encryption Formula

The encryption formula for RSA is:

$$C \equiv M^e \pmod{n}$$

where:

- M is the plaintext number,
- $oldsymbol{\cdot}$ e is the encryption exponent,
- n is the modulus.

Step 3: Encrypt M=12

Compute:

$$C_M \equiv 12^{41} \pmod{899}$$

Break 50 into binary:

$$41 = 101001_2 = 32 + 8 + 1$$

Thus:

$$12^{41} = 12^{32} \times 12^8 \times 12^1$$

Repeated squaring:

Power	Result (mod 899)
12^{1}	12
12^{2}	$144 \equiv 144 \pmod{899}$
12^{4}	$144^2 = 20736 \equiv 59 \pmod{899}$
12^{8}	$59^2 = 3481 \equiv 784 \pmod{899}$
12^{16}	$784^2 = 614656 \equiv 639 \pmod{899}$
12^{32}	$639^2 = 408321 \equiv 175 \pmod{899}$

Now multiply the relevant powers:

$$C_M \equiv 175 \times 784 \times 12 \pmod{899}$$

$$175 \times 784 = 137200 \equiv 552 \pmod{899}$$

$$552 \times 12 = 6624 \equiv 331 \pmod{899}$$

$$C_M = 331$$

Step 4: Encrypt E=4

Final Answer: Encrypted Message

Letter	Plaintext (ASCII)	Ciphertext		
H	72	1177		
I	73	1034		

The encrypted message HI is:

(1177, 1034)

Properties of the encryption/decryption keys for RSA systems

In the RSA cryptosystem, the encryption key is given as:

where:

- $n=p \times q$, with p and q being large distinct prime numbers,
- e is the public exponent, chosen such that:

$$gcd(e, \varphi(n)) = 1,$$

• $\varphi(n) = (p-1)(q-1)$ is Euler's totient function.

Condition for Determining the Decryption Key d:

The decryption key d is defined as the modular inverse of e modulo $\varphi(n)$. In other words, d satisfies the congruence:

$$d \cdot e \equiv 1 \pmod{\varphi(n)}$$
.

This can also be written as:

$$d = e^{-1} \pmod{\varphi(n)}.$$

Summary of the steps:

- 1. Select two large prime numbers p and q.
- 2. Compute $n = p \times q$.
- 3. Compute $\varphi(n) = (p-1)(q-1)$.
- 4. Choose e such that $1 < e < \varphi(n)$ and $gcd(e, \varphi(n)) = 1$.
- 5. Find *d* such that:

$$e \cdot d \equiv 1 \pmod{\varphi(n)}$$
.

The value of d can be computed using the **Extended Euclidean Algorithm**.

3. Determine the block size for the RSA encryption.

Encryption key:

$$(p \times q, e)$$

$$\gcd(e,p\times q)=1$$

$$n=p\times q=pq$$

Number of bits
$$= \lfloor \log_2(pq) \rfloor + 1$$

$$c = m^e \mod(p \times q)$$

Solution to Problem 4

(1) Graph Diagram of G:

(2) Degrees of Vertices 2 and 5:

Vertex	Degree
2	3
5	5

E.G. Problem 5

Given Incident Matrix:

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Explanation:

- Rows = Vertices: v_1, v_2, v_3, v_4
- Columns = Edges: e_1, e_2, e_3, e_4, e_5
- An entry of 1 in the matrix indicates that the vertex (row) is incident to the edge (column).

(1) Graph Diagram of G:

(2) Adjacency Matrix of G:

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Note: Entry $A_{11}=1$ indicates the self-loop at vertex v_1 . and G is **not** a simple graph because there is a self-loop at vertex v_1 (edge e_5).

Boolean function

Given the Boolean function:

$$F(x, y, z) = xy + y\bar{z} + z\bar{x}$$

(1) Sum-of-Product (SOP) Expansion

We first create the truth table for all possible values of x,y,z:

x	y	z	xy	$y\bar{z}$	$z\bar{x}$	F(x,y,z)
0	0	0	0	0	0	0
0	0	1	0	0	1	1
0	1	0	0	1	0	1
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	1	0	1
1	1	1	1	0	0	1

From the truth table, F(x,y,z)=1 for the following input combinations:

$$(0,0,1), (0,1,0), (0,1,1), (1,1,0), (1,1,1)$$

The corresponding minterms (sum-of-products terms) are:

$$\begin{split} \bar{x}\bar{y}z & \text{ for } (0,0,1), \\ \bar{x}y\bar{z} & \text{ for } (0,1,0), \\ \bar{x}yz & \text{ for } (0,1,1), \\ xy\bar{z} & \text{ for } (1,1,0), \\ xyz & \text{ for } (1,1,1). \end{split}$$

Therefore, the sum-of-product expansion is:

$$F(x, y, z) = \bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz + xy\bar{z} + xyz.$$

(2) All Possible Triples (x, y, z) for which

$$F(x, y, z) = 1$$
:

The triples where the output is 1 are:

$$(0,0,1), (0,1,0), (0,1,1), (1,1,0), (1,1,1).$$

Boolean function 2

Given Truth Table:

x	y	F(x,y)
0	0	1
0	1	1
1	0	1
1	1	0

(1) Sum-of-Product (SOP) Expansion

From the truth table, F(x,y)=1 for the following input combinations:

- $(0,0) \rightarrow \bar{x}\bar{y}$
- $(0,1) \rightarrow \bar{x}y$
- $(1,0) \rightarrow x\bar{y}$

Thus, the SOP expression is:

$$F(x,y) = \bar{x}\bar{y} + \bar{x}y + x\bar{y}$$

This can also be simplified using Boolean algebra:

$$F(x,y) = \bar{x} + \bar{y}$$

(because $\bar{x}\bar{y} + \bar{x}y = \bar{x}$ and $\bar{x} + x\bar{y} = \bar{x} + \bar{y}$).

(2) Circuit Diagram

Simplified expression: $F(x,y) = \bar{x} + \bar{y}$

\boldsymbol{x}	y	AND	OR	NAND	NOR	XOR
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

12.

In each of the following alternatives, specify the induction hypothesis in the proof by induction on n that every positive integer n is a product of primes:

(a) Using mathematical induction

- Base case: P(2): 2 is prime, so P(2) is true.
- Assume : $P(2), P(3), \dots, P(k)$ are all true, meaning each of these numbers is a product of primes.
- **Induction:** $P(k) \rightarrow k$ is a product of primes.
- wts: P(k+1) is also true
 - Case I: k+1 is prime, then k+1 is product of primes.
 - Case II: If k+1 is not prime, then $k+1=a\cdot b$, where $2\leq a,b\leq k$. Then a and b can be written as a prove of prime

Part2

Let x be a real number in the open interval (-1,0). Prove using mathematical induction that for any positive integer

$$n > 1, (1+x)^n > 1 + nx.$$

Let P(k) be the statement:

$$(1+x) > 1 + kx$$
, for $k > 1$, $k \in \mathbb{Z}^+$.

Theorem. Let $x\in (-1,0)$ be a real number. Then for any integer n>1,

$$(1+x)^n > 1 + nx.$$

STEP1 P(n) is true for all n

STEP2 Prove $\forall n \in \mathbb{Z}^+$.

STEP3 Base Case: n=2. Substitute n=2 into the inequality:

Since $x \in (-1,0)$, we have $x^2 > 0$. Thus,

Therefore, the base case holds.

STEP4 We show that the conditional statement

$$\forall n > 1[P(2) \land P(3) \land \dots \land P(n)] \to P(n+1)$$

is true for all positive integers n.

Induction Hypothesis: Assume that for some integer $k \geq 2$, the inequality holds:

$$(1+x)^k > 1 + kx.$$

Inductive Step: We need to show that:

$$(1+x)^{k+1} > 1 + (k+1)x$$
.

Observe that:

$$(1+x)^{k+1} = (1+x)^k (1+x).$$

By the induction hypothesis:

$$(1+x)^k > 1 + kx.$$

Substituting this into the expression for $(1+x)^{k+1}$:

$$(1+x)^{k+1} > (1+kx)(1+x).$$

Now expand the right-hand side:

$$(1+kx)(1+x) = 1+x+kx+kx^2 = 1+(k+1)x+kx^2$$
.
Since $x \in (-1,0)$, we have $x^2 > 0$, so $kx^2 > 0$ for $k > 2$.

Therefore:

$$1 + (k+1)x + kx^2 > 1 + (k+1)x$$
.

This shows:

$$(1+x)^{k+1} > 1 + (k+1)x.$$

Conclusion: By the principle of mathematical induction, the inequality

$$(1+x)^n > 1 + nx$$

holds for all integers n > 1, where $x \in (-1, 0)$.

RSA Decryption Process

A	В	C	D	Е	F	G	Н	I	J	K	L	M
A 0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
N 13	14	15	16	17	18	19	20	21	22	23	24	25

Step 1: RSA Setup

- Public key: $n = 29 \times 31 = 899, e = 41$
- · Message: ME
- · Caesar values:

$$M = 12, E = 04$$

Step 2: Encryption Formula

The encryption formula for RSA is:

$$C \equiv M^e \pmod{n}$$

where:

- *M* is the plaintext number,
- e is the encryption exponent,
- *n* is the modulus.

Step 3: Encrypt M=12

Compute

$$C_M \equiv 12^{41} \pmod{899}$$

Break 50 into binary:

$$41 = 101001_2 = 32 + 8 + 1$$

Thus:

$$12^{41} = 12^{32} \times 12^8 \times 12^1$$

Repeated squaring:

Power	Result (mod 899)
12^{1}	12
12^{2}	$144 \equiv 144 \pmod{899}$
12^{4}	$144^2 = 20736 \equiv 59 \pmod{899}$
12^{8}	$59^2 = 3481 \equiv 784 \pmod{899}$
12^{16}	$784^2 = 614656 \equiv 639 \pmod{899}$
12^{32}	$639^2 = 408321 \equiv 175 \pmod{899}$

Now multiply the relevant powers:

$$C_M \equiv 175 \times 784 \times 12 \pmod{899}$$

$$175 \times 784 = 137200 \equiv 552 \pmod{899}$$

$$552 \times 12 = 6624 \equiv 331 \pmod{899}$$

$$C_M = 331$$

Step 4: Encrypt E=4

Final Answer: Encrypted Message

Letter	Plaintext (ASCII)	Ciphertext
H	72	1177
I	73	1034

The encrypted message HI is:

(1177, 1034)

UK Traffic Light System Using Gray Code Sequence

Counting Sequences

- Standard Binary Count: $00 \rightarrow 01 \rightarrow 10 \rightarrow 11$
- Gray Code Sequence: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$

Inputs and Outputs

- · Inputs:
 - J: First control switch (bit 1)
 - K: Second control switch (bit 2)
- · Outputs (Traffic Light Signals):
 - X: Red light
 - Y: Amber (Yellow) light
 - Z: Green light

Gray Code Sequence: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$ Inputs: J, K Outputs: X (Red), Y (Amber), Z (Green)

J	K	X (Red)	Y (Amber)	Z (Green)
0	0	1	0	0
0	1	1	1	0
1	1	0	0	1
1	0	0	1	0

Boolean Expressions

$$X = J'$$
$$Y = J \oplus K$$

- Z = JK
- $J \oplus K$ is the XOR of J and K
- ullet JK is the AND of J and K

• J' is the NOT of J

