

✓ We need to know the excess porewater pressure at a desired time because we have to determine the vertical effective stress to calculate the consolidation settlement.
 ✓ Solution of the 1D consolidation equation can be found in two ways:

 Based on Fourier series expansion
 Based on Finite Difference Scheme.

2. FD Solution of Terzaghi's Consolidation Equation

- The governing 1D Consolidation equation is: $\frac{\partial u}{\partial t} = C_V \frac{\partial^2 u}{\partial z^2}$ Where, u is the excess pore water pressure, C_V is the coefficient of consolidation, z is the depth and t is time.

- The above equation allows us to predict the change in excess porewater pressure at various depths within the soil with time. $C_V = \frac{k}{m_v \gamma_w}$

- Applying Taylor's series expansion to Terzaghi's eqn. $\frac{\partial u}{\partial t} = \frac{1}{\Delta t} \left(u_{i,j+1} - u_{i,j} \right) \qquad \frac{\partial^2 u}{\partial z} = \frac{1}{(\Delta z)^2} \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right) \\
= u_{i,j+1} = u_{i,j} + \frac{C_v \Delta t}{(\Delta z)^2} \left(u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \right) \qquad (2.1)$ - Equation (1) is valid for non-boundary nodes.
- Special conditions apply to boundary nodes.

-FDE at node 3: $\frac{du}{dx} = 1 \Longrightarrow \frac{u_4 - u_2}{2\Delta x} = 1$ - The FDE at an impermeable boundary is, thus: $\frac{\partial u}{\partial z} = 0 \Longrightarrow \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta z} = 0 \Longrightarrow u_{i+1,j} = u_{i-1,j}$ - And the governing consolidation equation becomes: $u_{i,j+1} = u_{i,j} + \frac{C_v \Delta i}{(\Delta z)^2} (2u_{i-1,j} - 2u_{i,j}) \qquad (2.2)$

- For example, at an impermeable boundary, no flow across it can occur and, consequently: $\frac{\partial u}{\partial z} = 0 \qquad \qquad \text{Neumann Boundary}$ $\frac{\Delta x}{1} \qquad \frac{\Delta x}{2} \qquad \frac{\Delta x}{3} \qquad \frac{\Delta x}{4}$ Dirichlet $\begin{cases} u = 0 & \text{at } x = 0 \\ \text{Neumann} \end{cases}$ $\begin{cases} u = 0 & \text{at } x = 1 \\ \frac{du}{dx} = 1 & \text{at } x = 1 \end{cases}$

** Initial u distribution:- required to be determined first.

- For a layered soil with different k and C_V , Scott (1963) proposed the following FDE equation: $u_{k,j+1} = u_{k,j} + \frac{k_T + k_B}{k_B + k_T} \frac{\Delta t}{(C_V)^2} \left(\frac{2k_T}{k_T + k_B} u_{i+1,j} - 2u_{i,j} + \frac{2k_B}{k_T + k_B} u_{i-1,j} \right)$ where suffix T and B stand for top and bottom layers.

2.1 Procedure to apply FDM to 1D consolidation problem

1. Divide the soil layer into a depth-time grid. Care must be taken in selecting Δt and Δz . For numerical convergence, researchers have proposed the following: $\alpha = \frac{C_V \Delta t}{(\Delta z)^2} < \frac{1}{2} \qquad \alpha = 0.25 \text{ usually ensures convergence}$ 2. Identify the boundary conditions. If the boundary is a drainage boundary, u is zero. If, however, the boundary is an impervious boundary, then no flow can occur across it and Eqn (2.2) has to be used.

Column	1	2	3	4	5	6			
Depth	Time (yr)								
	0.00	0.1	0.2	0.3	0.4	0.5			
0.0	0.0	0.0	0.0	0.0	0.0	0.0			
1.0	78.0	<u>57.0</u>	*						
2.0	72.0	*	*						
3.0	62.0	*	*						
4.0	48.0	*	*						
5.0	30.0	39.0	*						

3. Estimate the distribution of initial u.

4. Calculate u at interior nodes using eqn. (2.1) and at impermeable boundary nodes using eqn. (2.2). If the boundary is permeable, then u is zero.

EXAMPLE 2.1

Column	1	2	3	4	5	6			
Depth	Time (yr)								
	0.00	0.1	0.2	0.3	0.4	0.5			
0.0	0.0	0.0	0.0	0.0	0.0	0.0			
1.0	78.0	<u>57.0</u>	46.3	39.4	34.5	30.7			
2.0	72.0	71.0	65.0	59.1	54.0	49.7			
3.0	62.0	61.0	60.0	58.4	56.5	54.5			
4.0	48.0	47.0	48.5	50.0	51.0	51.6			
5.0	30.0	39.0	43.0	45.8	47.9	49.5			

Assignment #2:

1. Redo example 2.1, assuming that the initial excess pore water pressure is distributed according to:

$$\Delta u_0 = \frac{180}{\sqrt{z}}$$

14