Calculating Volumes Using Cylindrical Shells

Stephen Styles

September 20, 2020

The formula to calculate the volume using cylindrical shells is:

$$V = \int_{a}^{b} 2\pi \, r(x) f(x) \, dx$$

Where r(x) is the radius to the line you are rotating about. Using we just consider rotations around the y-axis, so in this cause r(x) = x. However, if we consider rotations around the line x = a, then our radius would be r(x) = x - a.

This can also be extended to rotations around the x-axis or a line y = a using the formula:

$$V = \int_{c}^{d} 2\pi \, r(y) f(y) \, dx$$

Where r(y) = y if we are rotation around the x-axis or r(y) = y - a if we are rotating around the line y = a

Examples:

1. Find the volume of the solid generated by rotating the region bounded by the curves y = x and $y = x^2$, about the y-axis.

Solution:

$$x = x^2$$
 if and only if $x = 0, 1$

$$V = \int_0^1 2\pi x (x - x^2) dx$$
$$= 2\pi \int_0^1 x^2 - x^3 dx$$
$$= 2\pi \left(\frac{x^3}{3} - \frac{x^4}{4}\right) \Big|_0^1$$
$$= \frac{\pi}{6}$$

2. Find the volume of the solid generated by rotating the region bounded by the curves $y = \sqrt{x}$ and y = x, about the line x = -4.

Solution:

$$x = \sqrt{x}$$
 if and only if $x = 0, 1$

1

$$V = \int_0^1 2\pi (x+4)(\sqrt{x} - x) dx$$

$$= 2\pi \int_0^1 x^{3/2} - x^2 + 4\sqrt{x} - 4x dx$$

$$= 2\pi \left(\frac{2x^{5/2}}{5} - \frac{x^3}{3} + \frac{8x^{3/2}}{3} - 2x^2 \right) \Big|_0^1$$

$$= \frac{22\pi}{15}$$

3. Find the volume of the solid generated by rotating the region bounded by the curves $y = \frac{1}{x\sqrt{x^2+1}}$, x=1, and x=2 about the line y-axis.

Solution:

$$V = \int_{1}^{2} 2\pi x \frac{1}{x\sqrt{x^{2} + 1}} dx$$
$$= 2\pi \int_{0}^{1} \frac{1}{x^{2} + 1} dx$$
$$= 2\pi \sinh^{-1}(x) \Big|_{1}^{2}$$
$$= 2\pi \left(\sinh^{-1}(2) - \sinh^{-1}(1)\right)$$

4. Determine the volume of the solid obtained by rotating the region bounded by $x = (y-1)^2$ and x = 5y - 11 about the line y = -1.

Solution:

$$5y - 11 = (y - 1)^{2}$$

$$\Rightarrow 5y - 11 = y^{2} - 2y + 1$$

$$\Rightarrow 0 = y^{2} - 7y + 12$$

$$\Rightarrow 0 = (y - 3)(y - 4)$$

$$\Rightarrow y = 3, 4$$

Therefore we know these curves will intersect at the points (1,2) and (0,1)

$$V = 2\pi \int_{3}^{4} (y+1) ((5y-11) - (y-1)^{2}) dx$$

$$= 2\pi \int_{3}^{4} -y^{3} + 6y^{2} - 5y - 12 dx$$

$$= 2\pi \left(\frac{-y^{4}}{4} + 2y^{3} - \frac{5y^{2}}{2} - 12y \right) \Big|_{3}^{4}$$

$$= \frac{3\pi}{2}$$

Questions:

1. Calculate the volume of the solid generated by rotating the region bounded by the curves $y = \frac{1}{x}$, x = 1, and x = 3 about the line y-axis.

2. Calculate the volume of the solid generated by rotating the region bounded by the curves $y=\left(\frac{x}{2}\right)^2$, y=4, and y=0 about the line y-axis.

3. Determine the volume of the solid obtained by rotating the region bounded by $x = (y-3)^2$ and x = -4y + 9 about the line y = -2.

4. Determine the volume of the solid generated by rotating the region bounded by the curves $y = \sin(x^2)$ and $y = \sqrt{\pi}$, about the y-axis.