0.1 有理标准型

命题 0.1

设矩阵 A 的特征矩阵 $\lambda I - A$ 的法式为

$$\operatorname{diag}\{1,\cdots,1,d_1(\lambda),\cdots,d_k(\lambda)\},\$$

其中 $d_i(\lambda)$ 为非常数首一多项式且 $d_i(\lambda) \mid d_{i+1}(\lambda)$ $(i=1,2,\cdots,k-1)$,则 A 的不变因子就是

$$1, \dots, 1, d_1(\lambda), \dots, d_k(\lambda).$$

证明 由推论??可知,矩阵 A 的特征矩阵 M-A 的法式为

$$\operatorname{diag}\{1,\cdots,1,d_1(\lambda),\cdots,d_k(\lambda)\},\$$

其中 $d_i(\lambda)$ 为非常数首一多项式且 $d_i(\lambda)$ | $d_{i+1}(\lambda)$ ($i=1,2,\cdots,k-1$),则根据不变因子的定义可知,A 的不变因子就是

$$1, \cdots, 1, d_1(\lambda), \cdots, d_k(\lambda)$$
.

引理 0.1

设r阶矩阵

$$F = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_r & -a_{r-1} & -a_{r-2} & \cdots & -a_1 \end{pmatrix},$$

则

(1) F 的行列式因子为

$$1, \cdots, 1, f(\lambda), \tag{1}$$

其中共有r-1个1, $f(\lambda) = \lambda^r + a_1 \lambda^{r-1} + \cdots + a_r$, F 的不变因子也由(1)式给出, F 的不变因子分别为:

$$1, \cdots, 1, f(\lambda)$$
.

进而, $\lambda I - F$ 相抵于 diag $\{1, \dots, 1, f(\lambda)\}$.

(2) F 的极小多项式等于 $f(\lambda)$.

证明 (1) F的 r 阶行列式因子就是它的特征多项式, 由命题??得

$$|\lambda I - F| = \lambda^r + a_1 \lambda^{r-1} + \dots + a_r.$$

对任一 $k < r, \lambda I - F$ 总有一个k 阶子式其值等于 $(-1)^k$, 故 $D_k(\lambda) = 1$. 又由推论**??**可知, $\lambda I - F$ 的法式为 diag $\{1, \dots, 1, f(\lambda)\}$. 故 $\lambda I - F$ 相抵于 diag $\{1, \dots, 1, f(\lambda)\}$.

(2) 因为 F 的特征多项式为 $f(\lambda)$, 所以 F 适合多项式 $f(\lambda)$. 设 e_i ($i=1,2,\cdots,r$) 是 r 维标准单位行向量,则不难算出:

$$e_1F = e_2$$
, $e_1F^2 = e_2F = e_3$, \cdots , $e_1F^{r-1} = e_{r-1}F = e_r$.

显然, e_1 , e_1F ,···, e_1F ^{r-1} 是一组线性无关的向量,从而任取 $g(x) \in P_{r-1}[x]$ 且 g(x) 非零,则存在一组不全为零的数 a_1 , a_2 ,···, a_r ,使得

$$g(x) = a_1 x^{r-1} + a_2 x^{r-2} + \dots + a_r$$
.

于是将F代入上式,再在等式两边同乘 e_1 得到

$$e_1g(F) = a_1e_1F^{r-1} + a_2e_1F^{r-2} + \dots + a_re_1F.$$

又因为 $e_1, e_1F, \cdots, e_1F^{r-1}$ 是一组线性无关的向量,且 a_1, a_2, \cdots, a_r 不全为零,所以 $e_1g(F) \neq 0$.即 g(F) 的第一行不为零,故 $g(F) \neq O$.因此 F 不可能适合一个次数不超过 r-1 的非零多项式,从而 F 的极小多项式就是 $f(\lambda)$.

引理 0.2

设 λ -矩阵 $A(\lambda)$ 相抵于对角 λ -矩阵

$$\operatorname{diag}\{d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda)\},\tag{2}$$

 λ -矩阵 $B(\lambda)$ 相抵于对角 λ -矩阵

$$\operatorname{diag}\{d'_{1}(\lambda), d'_{2}(\lambda), \cdots, d'_{n}(\lambda)\},\tag{3}$$

且 $d_1'(\lambda), d_2'(\lambda), \cdots, d_n'(\lambda)$ 是 $d_1(\lambda), d_2(\lambda), \cdots, d_n(\lambda)$ 的一个置换(即若不计次序, 这两组多项式完全相同),则 $A(\lambda)$ 相抵于 $B(\lambda)$.

证明 利用初等行对换及初等列对换即可将(2)式变成(3)式,因此(2)式所示的矩阵与(3)式所示的矩阵相抵,从而 $A(\lambda)$ 与 $B(\lambda)$ 相抵.

定理 0.1

设A 是数域 \mathbb{K} 上的n 阶方阵,A 的不变因子组为

$$1, \cdots, 1, d_1(\lambda), \cdots, d_k(\lambda),$$

其中 deg $d_i(\lambda) = m_i \ge 1$, 则 A 相似于下列分块对角阵:

$$F = \begin{pmatrix} F_1 & & & \\ & F_2 & & \\ & & \ddots & \\ & & & F_k \end{pmatrix}, \tag{4}$$

其中 F_i 的阶等于 m_i , 且 F_i 是形如引理 0.1 中的矩阵, F_i 的最后一行由 $d_i(\lambda)$ 的系数(除首项系数之外)的 负值组成. 此即, 设 $d_i = \lambda^{m_i} + a_{1i}\lambda^{m_i-1} + \cdots + a_{m_i,i}$, 则

$$F = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{m_i,i} & -a_{m_i-1,i} & -a_{m_i-2,i} & \cdots & -a_{1i} \end{pmatrix}.$$

(4)式称为矩阵 A 的有理标准型或 Frobenius 标准型, 每个 F; 称为 Frobenius 块.

证明 注意到 $\lambda I - A$ 的第 n 个行列式因子就是 A 的特征多项式 $|\lambda I - A|$, 再由不变因子的定义可知:

$$|\lambda I - A| = d_1(\lambda)d_2(\lambda)\cdots d_k(\lambda).$$

而 $|\lambda I - A|$ 是一个 n 次多项式, 因此 $m_1 + m_2 + \cdots + m_k = n$. 一方面, $\lambda I - A$ 的法式为

$$\operatorname{diag}\{1,\cdots,1,d_1(\lambda),d_2(\lambda),\cdots,d_k(\lambda)\},\$$

其中有n-k 个 1. 另一方面, 对 $\lambda I-F$ 的每个分块都施以 λ -矩阵的初等变换, 由引理 0.1可知, $\lambda I-F$ 相抵于如下对角阵:

$$\operatorname{diag}\{1,\cdots,1,d_1(\lambda);1,\cdots,1,d_2(\lambda);\cdots;1,\cdots,1,d_k(\lambda)\},\tag{5}$$

其中每个 $d_i(\lambda)$ 前各有 m_i-1 个 1, 从而共有 $\sum_{i=1}^k (m_i-1) = n-k$ 个 1. 因此 (5) 式所示的矩阵与 $\lambda I-A$ 的法式只相 差主对角线上元素的置换, 由引理 0.2 可得 $\lambda I-A$ 与 $\lambda I-F$ 相抵, 从而 A 与 F 相似.

$$1, 1, 1, \lambda - 1, (\lambda - 1)^2, (\lambda - 1)^2(\lambda + 1),$$

则 A 的有理标准型为

$$\begin{pmatrix} 1 & & & & & \\ & 0 & 1 & & & \\ & -1 & 2 & & & \\ & & & 0 & 1 & 0 \\ & & & 0 & 0 & 1 \\ & & & -1 & 1 & 1 \end{pmatrix}.$$

定理 0.2

设数域账上的n阶矩阵A的不变因子为

$$1, \cdots, 1, d_1(\lambda), \cdots, d_k(\lambda),$$

其中 $d_i(\lambda) \mid d_{i+1}(\lambda)$ $(i=1,\cdots,k-1)$,则 A 的特征多项式为 $d_1(\lambda)d_2(\lambda)\cdots d_k(\lambda)$,极小多项式为 $m(\lambda)=d_k(\lambda)$.

证明 首先证明特征多项式,根据不变因子和行列式因子的定义可知

$$1 \cdot 1 \cdot d_1(\lambda)d_2(\lambda) \cdot \cdot \cdot d_k(\lambda) = D_n(\lambda).$$

其中 $D_n(\lambda)$ 为 $\lambda I_n - A$ 的 n 阶行列式因子, 即 A 的特征多项式 $|\lambda I_n - A|$. 因此

$$|\lambda I_n - A| = d_1(\lambda)d_2(\lambda)\cdots d_k(\lambda).$$

然后证明极小多项式,设A的有理标准型为

$$F = \begin{pmatrix} F_1 & & & \\ & F_2 & & \\ & & \ddots & \\ & & & F_k \end{pmatrix}.$$

因为相似矩阵有相同的极小多项式, 故只需证明 F 的极小多项式是 $d_k(\lambda)$ 即可. 但 F 是分块对角阵, 由极小多项式的性质 (6) 知 F 的极小多项式是诸 F_i 极小多项式的最小公倍式. 又由引理 0.1 知 F_i 的极小多项式为 $d_i(\lambda)$. 因为 $d_i(\lambda)$ | $d_{i+1}(\lambda)$, 故诸 $d_i(\lambda)$ 的最小公倍式等于 $d_k(\lambda)$.

例题 0.2 下面两个 4 阶矩阵

的不变因子分别为 $A:1,\lambda,\lambda,\lambda^2$ 和 $B:1,1,\lambda^2,\lambda^2$. 它们的特征多项式和极小多项式分别相等, 但它们不相似.