

Computer System Security

Assoc. Prof. Noha A. Hikal

Information Technology Dept.

Faculty of Computers and Information Sciences

Subject Code:IT424

4th level-IT&IS

Week 6-18 March 2020

Outlines:

- 1. Quick reminder
- 2. Asymmetric Cryptography
- 3. Key management

1. Quick Reminder

Some Basic Terminology

- plaintext original message
- ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- **key** info used in cipher known only to sender/receiver
- >/encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering plaintext from ciphertext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Cryptography

Cryptographic system can be categorized by:

- Type of encryption operations used
 - 1. Substitution
 - Transposition
 - 3. Product
- Number of keys used
 - 1. Single-key or private
 - 2. Two-key or public
- Way in which plaintext is processed
 - 1. Block
 - Stream

Symmetric & Asymmetric Cryptography

Symmetric Enc. System

- AKA Private Key or Secrete Key
- Key must remain secrete to ensure authenticity for the source and the content.
- Exchanging Keys is an issue as the number of users increase. For n users:

$$\frac{n(n-1)}{2}$$

Keys required.

Key Distribution is an issue.

Asymmetric Enc. System

- AKA Public key
- Keys are produced together or one is derived from the other one mathematically.
- Key management excel here.

 When keys compromised, a key management is a major issue.

Symmetric Cryptography:

■ Substitution methods:

- 1. Ceaser cipher
- 2. Playfair cipher

■ Transposition methods

- 1. Row transposition, Block transposition
- 2. Railfence method

Product method

- 1. DES, 2DES, 3DES
- 2. AES

Stream vs Block Ciphers

Stream cipher

- Message is encrypted in bits or bytes
- Usable for real time applications.

Block cipher

- Message is broken into fixed size blocks and each block is encrypted.
- Padding is used for short blocks

	<u>Stream</u>	<u>Block</u>
speed of transformation	Fast	Slow
Error propagation	Low	High
Padding	No	Yes
Immunity to insertion of symbols	No	Yes

2. Asymmetric Cryptography

Asymmetric Cryptography

Table 9.3 Applications for Public-Key Cryptosystems

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Public-Key Cryptography limitations

- Can be used for secrecy or authentication
- Public-key algorithms are slow
- So usually want to use private-key encryption to protect message contents, Hence need a session key

3. Key Management

RECALL: Symmetric & Asymmetric Cryptography

Symmetric Enc. System

- ► AKA Private Key or Secrete Key
- Key must remain secrete to ensure authenticity for the source and the content.
- Exchanging Keys is an issue as the number of users increase. For n users:

$$\frac{n(n-1)}{2}$$

Keys required.

Key Distribution is an issue.

Asymmetric Enc. System

- AKA Public key
- Keys are produced together or one is derived from the other one mathematically.
- Key management excel here.

 When keys compromised, a key management is a major issue.

Key Management

<u>key distribution</u> refers to the procedures by which keys are securely provided to parties legitimately asking for them.

Public-key encryption helps address key distribution problems

Have two aspects of this:

- Distribution of public keys
- Use of public-key encryption to distribute secret keys

key management is a major issue. It involves storing, safeguarding, and activating keys

Distribution of Public Keys

- can be done using one of the following techniques:
 - 1. Public announcement
 - 2. Publicly available directory
 - 3. Public-key authority
 - 4. Public-key certificates

1- Public Announcement

- users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user

2-Publicly Available Directory

- can obtain greater security by registering keys with a public directory
- directory must be trusted with properties:
 - 1. contains {name, public-key} entries
 - 2. participants register securely with directory
 - 3. participants can replace key at any time
 - 4. directory is periodically published
 - 5. directory can be accessed electronically
- still vulnerable to tampering or forgery

3-Public-Key Authority

Public-Key Authority (continued)

- 1. Improve security by tightening control over distribution of keys from directory
- 2. Has properties of directory
- 3. Requires users to know public key for the directory
- 4. Then users interact with directory to obtain any desired public key securely

require real-time access to directory when keys are needed

4- Public-Key Certificates

Public-Key Certificates (continued)

- 1. Certificates allow key exchange without real-time access to public-key authority
- 2. A certificate binds identity to public key
 - 1. Usually with other info such as period of validity, rights of use etc
- 3. With all contents **signed** by a trusted public-key or certificate authority (CA)
- 4. Can be verified by anyone who knows the public-key authorities public-key

THANK YOU

Reference:

- 1. Textbook: Security in Computing, 5th Edition, 2015 by Charles P. Pfleeger.
- 2. Stallings W, Brown L, Bauer MD, Bhattacharjee AK. Computer security: principles and practice. Upper Saddle River, NJ, USA: Pearson Education; 2012.
- 3. Internet resources.

