Amendments to the Claims

1. (currently amended) A compound or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by a formula below (1A):

$$Z_{p} \xrightarrow{(L_{p_{2}})} \xrightarrow{(L_{p_{1}})} \xrightarrow{3} \xrightarrow{RP_{3}} \xrightarrow{R$$

wherein

R and R' are independently C_1 - C_5 alkyl, C_1 - C_5 -fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

 $RP_3 \ and \ RB \ are \ independently_selected \ from \ \underline{is} \ hydrogen, \ \underline{halo, or} \ C_1-C_5 \ alkyl; \underline{-C_4-C_5}$ $fluoroalkyl, \ O \ C_1-C_5 \ alkyl, \ S \ C_4-C_5 \ alkyl, \ O \ C_1-C_5 \ fluoroalkyl, \ CN, \ NO_2, \ acetyl, \ S \ C_4-C_5 \ fluoroalkyl, \ CN, \ NO_2, \ acetyl, \ S \ C_4-C_5 \ fluoroalkyl, \ C_2-C_5 \ alkenyl, \ O \ C_3-C_5 \ eycloalkenyl;$

 $\label{eq:RPRT3} RP, RT_3, and RB-are independently selected from hydrogen, halo, C_4-$C_5 alkyl, C_4-$C_5 alkyl, O_4-$C_5 alkyl, O_4-$C_5 fluoroalkyl, $CN.-NO_2, acetyl.-$S_6$-$C_5 fluoroalkyl, C_2-$C_5 alkenyl, C_3-$C_5 eycloalkyl, or C_3-$C_5 eycloalkenyl; C_4-$C_5 alkenyl, C_5-$C_5 eycloalkyl, or C_5-$C_5 eycloalkenyl; C_5-$$

$$-(L_{P1})$$
 is $-(CH_2)_m$ -O-;
 $-(L_{P2})$ is

a bond,
$$--(CH_2)_{\overline{m}}$$
 $--CH$ $---$, or $---(CH_2)_{\overline{m}}$ $-- ---$

- and (L_{TB}) isare divalent linking groups independently selected from

the group consisting of

where m is 0, 1, or 2<u>i</u>, and each R40 is independently hydrogen, C₁-C₅ alkyl, or C₄-C₅ fluoroalkyl;

Zp is a_branched C3-C5 alkyl, or 1-ethyl-1-hydroxypropyl: 3-methyl-3-hydroxypentyl,

```
3 methyl-3 hydroxypentenyl,
3-methyl-3 hydroxypentynyl,
3 ethyl-3 hydroxypentyl,
3 ethyl 3 hydroxypentenyl,
3-ethyl-3 hydroxypentynyl,
3-ethyl-3-hydroxy-4-methylpentyl,
3-ethyl-3-hydroxy 4-methylpentenyl.
3 ethyl 3 hydroxy-4 methylpentynyl,
3-propyl-3-hydroxypentyl.
3-propyl-3-hydroxypentenyl,
3 propyl-3 hydroxypentynyl,
1 hydroxy-2-methyl-1-(methylethyl)propyl,
2 methyl-3 hydroxy 4 dimethylpentyl.
2 methyl-3-hydroxy-3-ethylpentyl.
2 ethyl-3-hydroxy 3 ethylpentyl,
2-ethyl-3-hydroxy-4-dimethylpentyl.
3 methyl-3 hydroxy 4.4 dimethylpentyl,
3 methyl-3 hydroxy 4,4 dimethylpentenyl.
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl.
3 ethyl-3 hydroxy 4,4 dimethylpentenyl,
3-ethyl-3-hydroxy-4:4-dimethylpentynyl,
1-hydroxycyclopentenyl,
1-hydroxycyclohexenyl,
1 hydroxycycloheptenyl.
1-hydroxycyclooctenyl,
1-hydroxycyclopropyl;
1-hydroxyevelobutyl.
1 hydroxycyclopentyl.
1-hydroxycyclohexyl,
2 oxocyclohexyloxy,
2 oxocyclohexylmethyl.
3-methyl 2-oxocyclohexyloxy,
3 methyl 2 oxocyclohexylmethyl.
```

```
3.3 dimethyl-2 oxocyclohexyloxy.
                        3.3-dimethyl 2-oxocyclohexylmethyl,
                        2-hydroxycyclohexyloxy,
                        2 hydroxycyclohexylmethyl,
                        3-methyl-2-hydroxycyclohexyloxy.
                        3-methyl-2-hydroxycyclohexylmethyl.
                        3,3 dimethyl-2 hydroxycyclohexyloxy.
                        3,3 dimethyl 2 hydroxycyclohexylmethyl,
                        1-hydroxycycloheptyl, or
                        1-hydroxyevelooetyl:
provided, however, that when
                        3-methyl-3-hydroxypentyl,
                        3 methyl 3 hydroxypentenyl,
                        3 methyl-3 hydroxypentynyl,
                        3-ethyl-3-hydroxypentyl,
                        3 ethyl 3 hydroxypentenyl,
                        3-ethyl-3-hydroxypentynyl,
                        3 ethyl 3 hydroxy 4 methylpentyl,
                        3-ethyl-3-hydroxy-4-methylpentenyl,
                        3 ethyl-3 hydroxy 4 methylpentynyl.
                        3-propyl-3-hydroxypentyl,
                        3-propyl 3 hydroxypentenyl,
                        3 propyl-3-hydroxypentynyl,
                        3-methyl-3-hydroxy-4,4-dimethylpentyl,
                        3 methyl-3-hydroxy-4,4-dimethylpentenyl,
                        3 methyl 3 hydroxy 4,4 dimethylpentyl.
                        3-ethyl-3-hydroxy-4.4-dimethylpentynyl,
                        3 ethyl 3 hydroxy 4,4 dimethylpentenyl,
                        3 ethyl 3 hydroxy 1,4 dimethylpentynyl.
                        2-methyl-3-hydroxy-4-dimethylpentyl.
                        2 methyl-3 hydroxy 3 ethylpentyl.
                        2 ethyl-3 hydroxy 3 ethylpentyl,
```

Zp-is

2 ethyl-3 hydroxy 4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P4}) and (L_{P2}) combine as a bond;

Z_{TB} is selected from

- $-O (C_1-C_5$ alkyl),
- -O-(C2-C5-alkenyl),
- -O-(C₃-C₅-eycloalkyl),
- -O-(C₃-C₅-cycloalkenyl),
- -O (C₁-C₅ hydroxyalkyl),
- -O-(C₁-C₅-fluoroalkyl),
- -O-(C₁-C₅ alkyl) phenyl,
- -O-(C₁-C₅-alkyl)-(O)-(C₁-C₅-alkyl),
- -O (C₁-C₅-alkyl) NH₂
- O (C1-C5 alkyl) NH (C1-C5 alkyl)2
- -O (C₁-C₅-alkyl)-C(O) NH₂
- -O-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl).
- -O (C₁-C₅ alkyl)-C(O) N (C₁-C₅ alkyl)₂.
- $-O-(C_1-C_5-alkyl)-C(O)-OH$
- -O-(C₁-C₅-alkyl)-C(O)-NH-5-tetrazolyl,
- $-O (C_1-C_5 -alkyl) \cdot C(O) \cdot (C_1-C_5 -alkyl)$
- -O (C₁-C₅ alkyl) C(O) (O-C₁-C₅ alkyl).
- O (C1-C5 alkyl) NH2
- -O-(C₁-C₅ alkyl) NH-(C₁-C₅ alkyl).
- -O (C1-C5 alkyl)-N (C1-C5 alkyl)2.
- -O (C₁-C₅-alkyl)-NH-SO₂-(C₁-C₅-alkyl).
- -O (C₁-C₅ alkyl) N-pyrrolidin 2-one.
- -O (C₁-C₅ alkyl)-N-pyrrolidine.
- -O (C₄-C₅ alkyl) (1 methylpyrrolidin-2-one 3 yl),
- -O (C₁-C₅_alkyl) SO₂-(C₁-C₅-alkyl,)
- -O (C₁-C₅ alkyl) SO₂-NH₂.

```
-O (C<sub>1</sub>-C<sub>5</sub> alkyl) SO<sub>2</sub>-NH (C<sub>1</sub>-C<sub>5</sub> alkyl),
```

$$-O(C_1-C_5$$
 alkyl) $SO_2-N(C_1-C_5$ alkyl)2.

$$-O$$
- $(C_1$ - C_5 -alkyl)- $S(O)$ - $(C_1$ - C_5 -alkyl,)

$$-O \cdot (C_1 - C_5 \cdot alkyl) \cdot P(O) \cdot (O \cdot C_1 - C_5 \cdot alkyl)_2$$

$$-O$$
-(C₁-C₅-alkyl),

$$-O-SO_2-(C_1-C_5 \text{ alkyl,})$$

$$-O-SO_2-NH-(C_1-C_5-alkyl)$$
.

$$-O-SO_2-N-(C_1-C_5-alkyl)_2$$

$$-O-S(O)-(C_1-C_5-alkyl,)$$

$$-0-S(0)-NH_2$$
;

$$-O-S(O)-NH-(C_1-C_5-alkyl),$$

$$-O-S(O) N (C_1-C_5 alkyl)_2$$

-S-(C₁-C₅-fluoroalkyl), -S-(C1-C5-hydroxyalkyl), -S-(C₁-C₅-alkyl) phenyl. -S-(C₁-C₅-alkyl)-O-(C₁-C₅-alkyl). -S (C₁-C₅ alkyl) C(O) OH; $-S-(C_1-C_5-alkyl)-C(O)-(C_1-C_5-alkyl)$ -S- $(C_1$ - C_5 -alkyl) C(O) O $(C_1$ - C_5 -alkyl), S (C1 C5 alkyl) C(O) NH2 $-S-(C_1-C_5 \text{ alkyl}) \cdot C(O) \cdot NH-(C_1-C_5 \text{ alkyl}),$ $-S - (C_1 - C_5 - alkyl) - C(O) - N - (C_1 - C_5 - alkyl)_2$ -S (C₁-C₅ alkyl) NH₂ $-S-(C_1-C_5-alkyl)-NH-(C_1-C_5-alkyl)$ -S-(C₁-C₅-alkyl)-N-(C₁-C₅-alkyl)₂ -S (C₁-C₅ alkyl) NH SO_2 -(C₁-C₅ alkyl). -S-(C₁-C₅ alkyl) N-pyrrolidin-2-one. -S-(C₁-C₅-alkyl)-N-pyrrolidine. -S (C₁-C₅ alkyl) (1-methylpyrrolidin 2 one 3 yl), -S-(C₁-C₅-alkyl)-SO₂-(C₁-C₅-alkyl), -S-(C₁-C₅-alkyl)-SO₂-NH₂ -S-(C₁-C₅-alkyl)-SO₂-NH-(C₁-C₅-alkyl), -S-(C₁-C₅-alkyl)-SO₂-N-(C₁-C₅-alkyl)₂ -S-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl). $-S-(C_1-C_5-alkyl)-P(O)-(O-C_1-C_5-alkyl)_2$ -S-(C₁-C₅-alkyl)-5-tetrazolyl, $-S \cdot (C_1 \cdot C_5 \cdot alkyl) \cdot S(O) \cdot (C_1 \cdot C_5 \cdot alkyl)$ -S (C₁-C₅ alkyl) S(O) NH₂ $-S - (C_1 - C_5 - alkyl) - S(O) - NH - (C_1 - C_5 - alkyl)$ -S-(C₁-C₅-alkyl)-S(O)-N-(C₁-C₅-alkyl)₂-

 $-S-(C_1-C_5-alkyl)-S(O)-(C_1-C_5-alkyl)$.

```
-SO_2-(C_1-C_5-alkyl)
-SO<sub>2</sub>-(C<sub>2</sub>-C<sub>5</sub>-alkenyl),
-SO2-(C3-C5_cycloalkyl).
-SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub>-cycloalkenyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>-hydroxyalkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>-fluoroalkyl).
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>) phenyl,
-<del>SO<sub>2</sub>-NH</del>2_
-SO2-NH-(C1-C5 alkyl);
-SO<sub>2</sub>-NH-CH<sub>2</sub>-C(O)OH,
-SO_2-NH-CH<sub>2</sub>-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)OH,
-SO<sub>2</sub>-NH (C<sub>1</sub>-C<sub>5</sub>-alkyl)-C(O)(O-C<sub>1</sub>-C<sub>5</sub>-alkyl):
-SO<sub>2</sub>-NHC(O) (C<sub>2</sub>-C<sub>6</sub>-cycloalkyl).
-SO<sub>2</sub>-NH-C(O) (C<sub>1</sub>-C<sub>5</sub>-alkyl),
-SO2-N-(C1-C5-alkyl)2.
-80<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>-alkyl) O-(C<sub>1</sub>-C<sub>5</sub>-alkyl).
-SO_2-(C_1-C_5-alkyl)-C(O)-(C_1-C_5-alkyl);
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N (C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>-alkyl) C(O) NH<sub>2</sub>
-SO_2-(C_1-C_5 alkyl)-C(O) NH-(C_1-C_5 alkyl),
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl).
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl) N-pyrrolidin-2-one,
-SO2-(C1-C5-alkyl)-N-pyrrolidine,
-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl) (1 methylpyrrolidin-2 one 3 yl),
```

-SO₂-(C₁-C₅-alkyl)-C(O)-O-(C₁-C₅-alkyl).

```
-SO<sub>2</sub> (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) OH,
  -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl) 5 tetrazolyl,
  -SO_2-(C_1-C_5-alkyl) SO_2-(C_1-C_5-alkyl),
  -SO2-(C1-C5 alkyl)-SO2-NH2
  -SO2-(C1-C5 alkyl) SO2-NH (C1-C5 alkyl);
  -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
  -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
  -SO<sub>2</sub> (C<sub>1</sub> -C<sub>5</sub> alkyl) P(O) (O -C<sub>1</sub> -C<sub>5</sub> alkyl)<sub>2</sub>.
  -SO_2-(C<sub>1</sub>-C<sub>5</sub>-alkyl),
  -SO<sub>2</sub>-(C<sub>2</sub>-C<sub>5</sub>-alkenyl),
  -SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub>-eyeloalkyl),
  -SO<sub>2</sub>-(C<sub>3</sub>-C<sub>5</sub>-cycloalkenyl),
   -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyf),
  -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>-fluoroalkyl),
  -SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>) phenyl,
   -SO<sub>2</sub>-N=CHN(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
  -S(O) NH2
   -S(O) NH (C<sub>1</sub>-C<sub>5</sub>-alkyl),
  -S(O) NH CH2-C(O)OH
- S(O) NH (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O)OH.
   -S(O) NH-CH2-C(O)(O-C1-C5 alkyl),
   -S(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
   -S(O)HC(O)-(C<sub>2</sub>-C<sub>6</sub>-cycloalkyl).
   -S(O) NH C(O) (C<sub>1</sub>-C<sub>5</sub>-alkyl),
   -S(O) N (C<sub>1</sub>-C<sub>5</sub>-alkyl)<sub>2</sub>
   -S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) O (C<sub>1</sub>-C<sub>5</sub> alkyl),
   -S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) (C<sub>1</sub>-C<sub>5</sub> alkyl),
   -S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O) (O-C<sub>1</sub>-C<sub>5</sub> alkyl).
```

-S(O) (C₁-C₅-alkyl) NH (C₁-C₅-alkyl).

```
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) N (C<sub>1</sub>-C<sub>5</sub> alkyl)2
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) NH<sub>2</sub>
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) NH (C<sub>1</sub>-C<sub>5</sub> alkyl),
-S(O) \cdot (C_1 - C_5 \cdot alkyl) - C(O) - N - (C_1 - C_5 \cdot alkyl)_{27}
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) NH-SO<sub>2</sub> (C<sub>1</sub>-C<sub>5</sub> alkyl),
-S(O)-(C_1-C_5-alkyl)-NH-S(O)-(C_1-C_5-alkyl),
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) N-pyrrolidin-2-one,
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) N pyrrolidine.
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) (1-methylpyrrolidin 2-one-3-yl),
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O) (O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) OH,
-S(O)-(C_4-C_5-alkyl)-5-tetrazolyl,
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl);
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) SO_2 NH<sub>2</sub>
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) S(O) NH<sub>2</sub>
-S(O) (C<sub>1</sub>-C<sub>5</sub>-alkyl) SO<sub>2</sub>-NH (C<sub>1</sub>-C<sub>5</sub>-alkyl),
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) S(O) NH (C<sub>1</sub>-C<sub>5</sub> alkyl),
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) SO_2-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) S(O) N (C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>.
-S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl) SO_2-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-S(O) (C<sub>1</sub>-C<sub>5</sub>-alkyl) S(O) (C<sub>1</sub>-C<sub>5</sub>-alkyl).
-S(O)-(C_1-C_5-alkyl)-P(O)-(O-C_1-C_5-alkyl)_2
-S(O) N=CHN(C1-C5 alkyl) 2.
-NHC(S)NH2
-NHC(S)NH-(C_1-C_5-alkyl),
-NHC(S)N-(C_1-C_5-alkyl)_2
-NHC(S)NH-(C2-C5-alkenyl),
-NHC(S)NH-(C2-C5-cycloalkyl),
```

```
-NHC(S)NH-(C3-C5 cycloalkenyl),
-NHC(S)NH (C1-C5 fluoroalkyl),
-NHC(S)NH-C<sub>1</sub>-C<sub>5</sub>-hydroxyalkyl,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub>-fluoroalkyl)
-NHC(S)NH-phenyl.
-NHC(S)NH - (C_1 - C_5 - alkyl) - C(O) - OH.
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) O (C<sub>1</sub>-C<sub>5</sub> alkyl),
-NHC(S)NH-(C_1-C_5-alkyl)-C(O)-(C_1-C_5-alkyl),
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-(O-C<sub>1</sub>-C<sub>5</sub> alkyl),
-NHC(S)NH (C1-C5 alkyl) NH2
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub>-alkyl) NH (C<sub>1</sub>-C<sub>5</sub>-alkyl),
-NHC(S)NH-(C1-C5 alkyl) N (C1-C5 alkyl)2
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) NH<sub>2</sub>
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-C(O)-NH-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-NHC(S)NH-(C_1-C_5-alkyl)-C(O)-N-(C_1-C_5-alkyl)_2
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH-SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub> alkyl),
-NHC(S)NH-(C_1-C_5-alkyl)-NH-S(O)-(C_1-C_5-alkyl).
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) N-pyrrolidin-2-one,
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) N pyrrolidine,
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl) (1-methylpyrrolidin 2 one-
       <del>-3-yl),</del>
-NHC(S)NH-(C1-C5 alkyl)-5-tetrazolyl,
-NHC(S)NH (C1-C5-alkyl) SO2-(C1-C5-alkyl).
NHC(S)NH (C<sub>1</sub>-C<sub>5</sub>-alkyl)-SO<sub>2</sub>-NH<sub>2</sub>
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) SO<sub>2</sub>-NH (C<sub>1</sub>-C<sub>5</sub> alkyl).
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N (C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) S(O) (C<sub>1</sub>-C<sub>5</sub> alkyl).
-NHC(S)NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl)-S(O)-NH<sub>2</sub>
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub> alkyl)-S(O) NH (C<sub>1</sub>-C<sub>5</sub> alkyl).
```

```
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub>-alkyl)-S(O)-N (C<sub>1</sub>-C<sub>5</sub>-alkyl)<sub>2</sub>,
-NHC(S)NH (C<sub>1</sub>-C<sub>5</sub>-alkyl)-P(O) (O-C<sub>1</sub>-C<sub>5</sub>-alkyl)<sub>2</sub>-,
-NHC(O)NH2,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub>_alkyl),
-NHC(O)N-(C1-C5_alkyl)2.
-NHC(O)NH-(C2-C5-alkenyl),
-NHC(O)NH-(C<sub>3</sub>-C<sub>5</sub> cycloalkyl),
-NHC(O)NH (C<sub>3</sub>-C<sub>5</sub> cycloalkenyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> hydroxyalkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub>-fluoroalkyl),
-NHC(O)NH-phenyl.
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl) NH<sub>2</sub>
-NHC(O)NH - (C_1 - C_5 - alkyl) - NH - (C_1 - C_5 - alkyl).
-NHC(O)NH (C<sub>1</sub>-C<sub>5</sub>-alkyl)-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>.
-NHC(O)NH (C1-C5 alkyl) O (C1-C5 alkyl),
-NHC(O)NH (C1-C5-alkyl) NH2.
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl)-NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl);
-NHC(O)NH (C1-C5 alkyl) N (C1-C5 alkyl)2.
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl)-C(O) NH<sub>2</sub>
-NHC(O)NH (C1-C5 alkyl) C(O) NH (C1-C5 alkyl).
-NHC(O)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) N (C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
NHC(O)NH (C<sub>1</sub>-C<sub>5</sub> alkyl) C(O) (C<sub>1</sub>-C<sub>5</sub> alkyl).
-NHC(O)NH (C<sub>1</sub>-C<sub>5</sub>-alkyl) NH SO<sub>2</sub>-(C<sub>1</sub>-C<sub>5</sub>-alkyl),
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl)-N-pyrrolidin 2-one,
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-N-pyrrolidine,
-NHC(O)NH (C1-C5_alkyl)-
          (1 methylpyrrolidin 2-one-3-yl),
-NHC(O)NH-(C_1-C_5-alkyl)-C(O)-OH
-NHC(O)NH-(C_1-C_5-alkyl)-C(O)-O-(C_1-C_5-alkyl);
```

```
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub> alkyl)-5 tetrazolyl,
NHC(O)NH (C1 C5 alkyl) SO2 (C1 C5 alkyl).
-NHC(O)NH-(C_1-C_5-alkyl)-SO_2-NH_2
-NHC(O)NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl)-SO<sub>2</sub>-NH-(C<sub>1</sub>-C<sub>5</sub>-alkyl),
-NHC(O)NH (C<sub>1</sub>-C<sub>5</sub> alkyl)-SO<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>
\hbox{-} \hbox{NHC}(O)\hbox{NH-}(C_1\hbox{-} C_5\hbox{-}\hbox{alkyl})\hbox{-} \hbox{P}(O)\hbox{-}O\hbox{-}(C_1\hbox{-}C_5\hbox{-}\hbox{alkyl})_2,
-NH2.
-NH-(C_1-C_5-alkyl)
-NH-CH<sub>2</sub>-C(O)OH,
-N-(C_1-C_5-alkyl)_2
NH-C(O)-NH2.
-NH-C(O)-NH-(C_{\downarrow}-C_{5}-alkyl).
-NH-C(O) N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>.
-NH - C(O) + C_1 - C_5 - alkyl)
-NH-SO<sub>2</sub>-(C_1-C_5-alkyl),
-NH-S(O)-(C_1-C_5-alkyl),
-N(CH<sub>3</sub>)(OCH<sub>3</sub>).
-N(OH)(CH_3)
-N pyrrolidin 2 one,
-N-pyrrolidine.
(1-methylpyrrolidin-2-one 3-yl).
-CO<sub>2</sub>H,
-CO<sub>2</sub>Me,
-CO<sub>2</sub>Et,
-C(O)CH<sub>2</sub>S(O)Me,
-C(O)CH2S(O)Et,
-C(O)CH<sub>2</sub>S(O)<sub>2</sub>Me.
-C(O)CH<sub>2</sub>S(O)<sub>2</sub>Et,
-C(O)CH2CH2S(O)Me,
-C(O)CH2CH2S(O)Et,
```

- -C(O)CH₂CH₂S(O)₂Me,
- -C(O)CH2CH2S(O)2Et.
- -C(O)CH(Me)CH2CO2H,
- $-C(O)CH(Me)CH_2CO_2Me$
- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH₂CO₂tBu,
- -C(O)CH(Me)CH(Me)CO₂H.
- -C(O)CH(Me)CH(Me)CO₂Me;
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me)_2CO2H,
- -C(O)CH(Me)C(Me)_2CO₂Me,
- -C(O)CH(Me)C(Me) 2CO2Et.
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me)_2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO2Et,
- -C(O)CH(Me)CH(Et)CO2iPr.
- -C(O)CH(Me)CH(Et)CO2tBu.
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$
- -C(O)C(O)NHMe,
- -C(O)C(O)NMe₂,
- -C(O)NH₂,
- -C(O)NMe2,
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,

- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- -C(O)NH-C(Me)₂-C(O)OEt,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et) C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₂)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH.
- -C(O)NH-CH(eyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$
- $-C(O)NH-C(Me)_2-C(O)OH$.
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF₃)-C(O)OH.
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH2-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu.
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH.
- -C(O)NMe-CH(F)-C(O)OH,

- -C(O)NMe-CH(CF₂)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH.
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl) C(O)OH,
- -C(O)NHS(O)Me.
- -C(O)NHSO₂Me,
- -C(O) NH 5 tetrazolyl,
- -C(O)NHS(O)Me.
- -C(O)NHS(O)Et,
- -C(O)NHSO2Me,
- -C(O)NHSO₂Et.
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr.
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me.
- -C(O)NHCH2S(O)Et.
- -C(O)NHCH2SO2Me,
- -C(O)NHCH₂SO₂Et.
- -C(O)NHCH₂CH₂S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me.
- -C(O)NHCH2CH2SO2Et.
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO2Me.
- -C(O) N(Me)-5-tetrazolyl.
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,

- -C(O)N(Me)SO2Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr.
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu
- $-C(O)N(Me)CH_2S(O)Me$
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et.
- -C(O)N(Me)CH₂CH₂S(O)Me,
- $-C(O)N(Me)CH_2CH_2S(O)Et$
- -C(O)N(Me)CH₂CH₂SO₂Me,
- $-C(O)N(Me)CH_2CH_2SO_2Et$
- -CH₂CO₂H,
- -CH₂-5 tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH₂NHS(O)Me.
- -CH2NHS(O)Et,
- -CH2NHSO2Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- $\hbox{-}CH_2NHCH_2CH_2SO_2CH_3\hbox{-}$
- -CH2NH(CH2CO2H).
- $-CH_2N(C(O)Me)(CH_2CO_2H)_{:}$

- -CH2-N pyrrolidin 2 one,
- -CH₂ (1 methylpyrrolidin 2 one 3 yl),
- -CH₂S(O)Me, .
- -CH₂S(O)Et,
- $-CH_2S(O)_2Me$,
- $-CH_2S(O)_2Et$.
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- -CH₂S(O)tBu,
- $-CH_2S(O)_2tBu$
- $-CH_2CO_2H$, $CH_2C(O)NH_2$,
- $-CH_2C(O)NMe_2$
- -CH₂C(O)NHMe.
- -CH₂C(O) N pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO2H,
- -CH(OH)C(O)NH₂;
- -CH(OH)C(O)NHMe,
- $\hbox{-}CH(OH)C(O)NMe_{27},$
- -CH(OH)C(O)NEt2;
- $-CH_2CH_2CO_2H_2$
- $-CH_2CH_2CO_2Me$
- $\hbox{-}\hbox{CH}_2\hbox{CH}_2\hbox{CO}_2\hbox{Et},$
- $\hbox{-}\hbox{CH}_2\hbox{CH}_2\hbox{C}(\hbox{O})\hbox{NH}_2,$
- -CH2CH2C(O)NHMe,
- $-CH_2CH_2C(O)NMe_2$
- -CH2CH2-5 tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH2CH2S(O)Me,

Serial No.:10/579,564

- -CH2CH2S(O)2Et,
- -CH2CH2S(O) Et,
- -CH₂CH₂S(O)iPr.
- -CH2CH2S(O)2iPr,
- -CH2CH2S(O)tBu.
- $-CH_2CH_2S(O)_2tBu$
- -CH2CH2S(O)NH2;
- -CH2CH2S(O)NHMe,
- -CH2CH2S(O)NMe2.
- -CH2CH2S(O)2NH2,
- -CH₂CH₂S(O)₂NHMe
- $-CH_2CH_2S(O)_2NMe_2;$
- -CH₂CH₂CH₂S(O)Me,
- -CH2CH2CH2S(O)Et.
- -CH₂CH₂CH₂S(O)₂Me,
- -CH2CH2CH2S(O)2Et,
- CH(Me)CH₂C(O)OH,
- $-C(Me)_2CH_2C(O)OH_7$

-5-tetrazolyl,

-1,3,4 oxadiazolin 2 one-5 yl,

-imidazolidine-2,4-dione-5-yl,

-isoxazol 3 ol-yl, or

-1,3,4 oxadiazolin 2-thione-5-yl;

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when $Z_{\rm TB}$ is at the 6 position.; and

provided that -(L_{TB})- Z_{TB} is substituted at either the 5 or 6 position of the benzothiophene ring_; and

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when the group (L_{TB}) Z_{TB} is at the 6 position.; and

provided that RB' is substituted at either the 4 or 5 position of the benzothiophene ring, except that RB' is substituted only at the 5 position of the benzothiophene ring when the group (L_{TB}) Z_{TB} is at the 6 position of the phenyl ring; and

provided that RP is substituted at either the 2, or 5 or 6 position of the phenyl ring.

2-6. (canceled)

7. (currently amended) The compound of Claim 1, or a pharmaceutically acceptable salt thereof,

wherein for Formula IA:

R and R' are independently methy or ethyl;

RP and RT₂ are independently, hydrogen or methyl;

RP₃ and RB are independently is hydrogen, methyl, or ethyl: and.—O-methyl, or eyelopropyl;

(Lpt) and (LTB) divalent linking groups are both bonds;

(L_{P2}) is a bond, -CH₂-, or -CH(OH)-, or -C(Me)OH-;

Zp is 1,1 dimethylethyl; 1 hydroxycyclopentyl, 1 hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

Z_{TB}-is

-CO₂H,

-CO₂Me.

-CO₂Et.

-C(O)CH2S(O)Me,

-C(O)CH2S(O)Et,

-C(O)CH₂S(O)₂Me.

-C(O)CH2S(O)2Et,

-C(O)CH2CH2S(O)Me,

-C(O)CH2CH2S(O)Et,

-C(O)CH2CH2S(O)2Me,

- $-C(O)CH_2CH_2S(O)_2Et$
- -C(O)CH(Me)CH2CO2H,
- -C(O)CH(Me)CH2CO2Me.
- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me.
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me)_2CO2H.
- -C(O)CH(Me)C(Me)_2CO2Me,
- -C(O)CH(Me)C(Me)_2CO₂Et,
- -C(O)CH(Me)C(Me)_2CO2iPr,
- -C(O)CH(Me)C(Me)_2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H.
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO2Et,
- -C(O)CH(Me)CH(Et)CO2iPr.
- -C(O)CH(Me)CH(Et)CO2tBu.
- -C(O)C(O)OH.
- -<u>C(O)C(O)NH2</u>-
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$
- -C(O)NH2;
- -C(O)NMe₂-
- $-C(O)NH-CH_2-C(O)OH$
- $-C(O)NH-CH_2-C(O)OMe$
- -C(O)NH-CH2-C(O)OEt.

- -C(O)NH-CH₂-C(O)OiPr.
- -C(O)NH-CH₂-C(O)OtBu.
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH CH(Me) C(O)OMe.
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH.
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OMe,
- -C(O)NH-C(Me)2-C(O)OEt.
- $-C(O)NH-C(Me)_2-C(O)iPr_7$
- $-C(O)NH-C(Me)_2-C(O)tBu$
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH
- $-C(O)NH-CH(CF_3)-C(O)OH$
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(eyclopropyl) C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH_7$
- -C(O)NH-CF(Me)-C(O)OH.
- -C(O)NH-C(Me)(CF₃)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe CH2-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu.
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH.
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₂)-C(O)OH,

- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl) C(O)OH.
- -C(O)NMe-C(Me)2-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_2)-C(O)OH_7$
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O) NH-5 tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et.
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu.
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et.
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO2Me,
- -C(O)-N(Me)-5 tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et.

- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu.
- -C(O)N(Me)SO₂tBu;
- $-C(O)N(Me)CH_2S(O)Me$
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH2SO2Me,
- -C(O)N(Me)CH₂SO₂Et.
- $\hbox{-} \hbox{$C(O)$N(Me)$CH$_2$CH$_2$S(O)$Me},$
- $\textcolor{red}{\textbf{-C(O)N(Me)CH}}\textcolor{blue}{\underline{\text{CH}}}\textcolor{blue}{\underline{\text{2}S(O)Et}},$
- $-\frac{C(O)N(Me)CH_{2}CH_{2}SO_{2}Me,}{}$
- -C(O)N(Me)CH₂CH₂SO₂Et,
- -CH2CO2H,
- -CH₂-5 tetrazolyl,
- -CH₂CO₂Me.
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH2NHS(O)Et,
- -CH2NHSO2Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3-
- -CH2NH(CH2CO2H),
- $-CH_2N(C(O)Me)(CH_2CO_2H)$

- -CH₂-N-pyrrolidin-2-one,
- -CH₂ (1 methylpyrrolidin 2 one 3 yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et.
- -CH₂S(O)₂Me,
- $-CH_2S(O)_2Et$
- -CH₂S(O)iPr.
- -CH₂S(O)₂iPr.
- -CH₂S(O)tBu,
- $-CH_2S(O)_2tBu$
- $-CH_2CO_2H$, $CH_2C(O)NH_2$,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O) N pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH)-CO₂H,
- -CH(OH)C(O)NH₂;
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2;
- -CH2CH2CO2H,
- $\hbox{-}CH_2CH_2CO_2Me,$
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$
- $\hbox{-}CH_2CH_2C(O)NHMe,$
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5 tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH2CH2S(O)Me,

-CH₂CH₂S(O)₂Et

-CH₂CH₂S(O) Et,

-CH₂CH₂S(O)iPr.

-CH₂CH₂S(O)₂iPr,

-CH₂CH₂S(O)tBu.

-CH2CH2S(O)2tBu,

-CH2CH2S(O)NH2;

-CH₂CH₂S(O)NHMe,

-CH2CH2S(O)NMe2.

-CH₂CH₂S(O)₂NH₂,

-CH₂CH₂S(O)₂NHMe

-CH₂CH₂S(O)₂NMe₂,

-CH₂CH₂CH₂S(O)Me,

-CH₂CH₂CH₂S(O)Et.

-CH2CH2CH2S(O)2Me, or

 $\hbox{-}CH_2CH_2CH_2S(O)_2Et.$

8-9. (canceled)

10. (currently amended) A compound according to claim 1 represented by formulae below or a pharmaceutically acceptable salt-or ester prodrug derivative thereof:

C7)

C8)

C9)

C10)

C11)

C12)

C17)

Page 30 of 36

C18)

C19)

C20)

C21)

$$+$$

C22)

11. (currently amended) The compound according to claim 1 represented by the structural formula AA or a pharmaceutically acceptable salt-or ester prodrug thereof:

12. (currently amended) A compound according to claim 1 or a pharmaceutically acceptable salt-or-ester prodrug thereof wherein said compound is selected from

$$\begin{array}{c} & & & \\ & &$$

Serial No.:10/579,564

13. (canceled)

14. (currently amended) The salt derivative of the A compound according to claim 1 wherein the pharmaceutically acceptable salt is a sodium or potassium salt.

15. (previously presented) A pharmaceutical formulation comprising the compound according to claim 1 together with a pharmaceutically acceptable carrier or diluent.

16-19. (canceled)

20. (currently amended, withdrawn) A method of treating a mammal to prevent or alleviate the pathological effects of Acne. Actinic keratosis, Alopecia. Alzheimer's disease, Benign prostatic hyperplasia, Bladder cancer, Bone maintenance in zero gravity, Bone fracture healing, Breast cancer, Chemoprovention of Cancer, Crohn's disease, Colon cancer, Type I diabetes, Host graft rejection, Hypercalcemia, Type II diabetes. Leukemia, Multiple sclerosis, Myelodysplastic syndrome, Insufficient sebum secretion, Osteomalacia, Osteoporosis, Insufficient dermal firmness, Insufficient dermal hydration, Psoriatic arthritis, Prostate cancer, or Psoriasis, Renal osteodystrophy, Rheumatoid arthritis, Scleroderma, Skin cancer, Systemic lupus erythematosus, Skin cell damage from, Mustard vesicants, Ulcerative colitis, Vitiligo, or Wrinkles: wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to claim 1 or a pharmaceutically acceptable salt thereof.

- 21. (withdrawn) The method of claim 20 for the treatment of psoriasis.
- 22. (withdrawn) The method of claim 20 for the treatment of osteoporosis.
- 23-35. (canceled)
- 36. (new) A compound of according to Claim 1, or a pharmaceutically acceptable salt thereof,

R and R' are each ethyl;

RP₃ is methyl; and

 (L_{P2}) is a -C(O)- or -CH(OH)-.

37. (new) A compound according to claim 1 wherein Z_{TB} includes a carboxylic acid group functionalized as a N,N-diethylglycolamido ester or morpholinylethyl ester.