## **FUNDAMENTOS MATEMATICOS**

Table 8.3 Powers of Integers, Modulo 19

| a  | $a^2$ | $a^3$ | $a^4$ | a <sup>5</sup> | a <sup>6</sup> | $a^7$ | $a^8$ | a <sup>9</sup> | a <sup>10</sup> | a <sup>11</sup> | a <sup>12</sup> | a <sup>13</sup> | a <sup>14</sup> | a <sup>15</sup> | $a^{16}$ | $a^{17}$ | a <sup>18</sup> |
|----|-------|-------|-------|----------------|----------------|-------|-------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|----------|-----------------|
| 1  | 1     | 1     | 1     | 1              | 1              | 1     | 1     | 1              | 1               | 1               | 1               | 1               | 1               | 1               | 1        | 1        | 1               |
| 2  | 4     | 8     | 16    | 13             | 7              | 14    | 9     | 18             | 17              | 15              | 11              | 3               | 6               | 12              | 5        | 10       | 1               |
| 3  | 9     | 8     | 5     | 15             | 7              | 2     | 6     | 18             | 16              | 10              | 11              | 14              | 4               | 12              | 17       | 13       | 1               |
| 4  | 16    | 7     | 9     | 17             | 11             | 6     | 5     | 1              | 4               | 16              | 7               | 9               | 17              | 11              | 6        | 5        | 1               |
| 5  | 6     | 11    | 17    | 9              | 7              | 16    | 4     | 1              | 5               | 6               | 11              | 17              | 9               | 7               | 16       | 4        | 1               |
| 6  | 17    | 7     | 4     | 5              | 11             | 9     | 16    | 1              | 6               | 17              | 7               | 4               | 5               | 11              | 9        | 16       | 1               |
| 7  | 11    | 1     | 7     | 11             | 1              | 7     | 11    | 1              | 7               | 11              | 1               | 7               | 11              | 1               | 7        | 11       | 1               |
| 8  | 7     | 18    | 11    | 12             | 1              | 8     | 7     | 18             | 11              | 12              | 1               | 8               | 7               | 18              | 11       | 12       | 1               |
| 9  | 5     | 7     | 6     | 16             | 11             | 4     | 17    | 1              | 9               | 5               | 7               | 6               | 16              | 11              | 4        | 17       | 1               |
| 10 | 5     | 12    | 6     | 3              | 11             | 15    | 17    | 18             | 9               | 14              | 7               | 13              | 16              | 8               | 4        | 2        | 1               |
| 11 | 7     | 1     | 11    | 7              | 1              | 11    | 7     | 1              | 11              | 7               | 1               | 11              | 7               | 1               | 11       | 7        | 1               |
| 12 | 11    | 18    | 7     | 8              | 1              | 12    | 11    | 18             | 7               | 8               | 1               | 12              | 11              | 18              | 7        | 8        | 1               |
| 13 | 17    | 12    | 4     | 14             | 11             | 10    | 16    | 18             | 6               | 2               | 7               | 15              | 5               | 8               | 9        | 3        | 1               |
| 14 | 6     | 8     | 17    | 10             | 7              | 3     | 4     | 18             | 5               | 13              | 11              | 2               | 9               | 12              | 16       | 15       | 1               |
| 15 | 16    | 12    | 9     | 2              | 11             | 13    | 5     | 18             | 4               | 3               | 7               | 10              | 17              | 8               | 6        | 14       | 1               |
| 16 | 9     | 11    | 5     | 4              | 7              | 17    | 6     | 1              | 16              | 9               | 11              | 5               | 4               | 7               | 17       | 6        | 1               |
| 17 | 4     | 11    | 16    | 6              | 7              | 5     | 9     | 1              | 17              | 4               | 11              | 16              | 6               | 7               | 5        | 9        | 1               |
| 18 | 1     | 18    | 1     | 18             | 1              | 18    | 1     | 18             | 1               | 18              | 1               | 18              | 1               | 18              | 1        | 18       | 1               |

### Grupo multiplicativo

- $-G = \langle Z_n^*, \times \rangle$ . El conjunto  $Z_n^*$  continene aquellos enteros de 1 a 1-n que son relativamente primos
- $-G = \langle Z_p^*, \times \rangle$ . Es un grupo cuando p es primo

### Orden de un grupo |G|

No. de elementos en un grupo G. En  $G = \langle Z_n^*, \times \rangle$  puede probarse que el orden de un grupo es  $\phi(n)$ 

### Ejemplo

•  $G = \langle Z_{21} *, \times \rangle$ ,  $|G| = \phi(21) = \phi(3) \times \phi(7) = 2 \times 6 = 12$ Hay 12 elementos en el grupo 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, y 20. Son relativamente primos con 21.

• Orden de un elemento ( $\delta(a)$ )

El orden de un elemento a de un grupo =  $\langle Z_n *, \times \rangle$ , es el más pequeño Z<sup>+</sup> k tal que:  $a^k = \underbrace{a \circ a \circ \ldots \circ a}_{} = 1$ 

Hasta obtener el elemento identidad de  $Z_n$ . (1 es el elemento identidad)

k times

#### Ejemplo

Determinar el  $\delta(a)$  en  $Z_{11}$  a=3

$$a^{1} = 3$$
  
 $a^{2} = a \cdot a = 3 \cdot 3 = 9$   
 $a^{3} = a^{2} \cdot a = 9 \cdot 3 = 27 \equiv 5 \mod 11$   
 $a^{4} = a^{3} \cdot a = 5 \cdot 3 = 15 \equiv 4 \mod 11$   
 $a^{5} = a^{4} \cdot a = 4 \cdot 3 = 12 \equiv 1 \mod 11$ 

El 
$$\delta(3) = 5$$

$$a^{6} = a^{5} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11$$
  
 $a^{7} = a^{5} \cdot a^{2} \equiv 1 \cdot a^{2} \equiv 9 \mod 11$   
 $a^{8} = a^{5} \cdot a^{3} \equiv 1 \cdot a^{3} \equiv 5 \mod 11$   
 $a^{9} = a^{5} \cdot a^{4} \equiv 1 \cdot a^{4} \equiv 4 \mod 11$   
 $a^{10} = a^{5} \cdot a^{5} \equiv 1 \cdot 1 \equiv 1 \mod 11$   
 $a^{11} = a^{10} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11$   
 $\vdots$ 

• Orden de un elemento ( $\delta(a)$ )

### Ejemplo

- Encontrar el orden de todos los elementos en  $G = \langle Z_{10} *, \times \rangle$ .
- Solución:

El grupo tiene  $\phi(10) = 4$  elementos 1, 3, 7, 9. El orden de cada elemento es:

```
1^1 \equiv 1 \mod (10) \to \delta(1) = 1.
```

$$3^4 \equiv 1 \mod (10) \rightarrow \delta(3) = 4.$$

$$7^4 \equiv 1 \mod (10) \rightarrow \delta (7) = 4$$
.

$$9^2 \equiv 1 \mod (10) \rightarrow \delta(9) = 2$$
.

Orden de un elemento: Teorema de Euler

#### Teorema de Euler

Si a es un elemento de  $G=<\!\!Z_n*,\times\!\!>$  entonces :  $a^{(\phi)}\!\!=1\mbox{ mod } n$ 

Relación  $a^i = 1 \mod n$  cuando  $i = \phi(n)$ 

### Ejemplo

- Muestre los resultados de  $a^i \equiv x \pmod{8}$  para  $G = \langle Z_8 *, \times \rangle$ .
- Solución:

 $\phi(8)$ = 4. Los elementos son 1,3,5,7

|              | i = 1 | i = 2 | i = 3        | i = 4 | i = 5        | i = 6 | i = / |
|--------------|-------|-------|--------------|-------|--------------|-------|-------|
| <i>a</i> = 1 | x: 1  | x: 1  | x: 1         | x: 1  | x: 1         | x: 1  | x: 1  |
| a = 3        | x: 3  | x: 1  | <i>x</i> : 3 | x: 1  | <i>x</i> : 3 | x: 1  | x: 3  |
| <i>a</i> = 5 | x: 5  | x: 1  | x: 5         | x: 1  | x: 5         | x: 1  | x: 5  |
| a = 7        | x: 7  | x: 1  | <i>x</i> : 7 | x: 1  | <i>x</i> : 7 | x: 1  | x: 7  |

- El área sombreada muestra el resultado del Teorema de Euler: 5<sup>4</sup>= 1 mod 8.
- El valor de x puede ser 1 para algunos valores de i, el valor de i da el orden del elemento:  $\delta(1)=1, \, \delta(3)=2, \, \delta(5)=2, \, \delta(7)=2$

Orden de un elemento: Teorema de Euler

#### **Teorema**

El orden de un elemento  $\delta(a)$  divide a |G|

#### Ejemplo

- Cuáles son los posibles órdenes de los elementos en  $Z_{11}$ ?
- Solución:
  - $|Z_{11}| = 10$
  - 1, 2, 5, 10 dividen a 10

```
ord(1) = 1 ord(6) = 10

ord(2) = 10 ord(7) = 10

ord(3) = 5 ord(8) = 10

ord(4) = 5 ord(9) = 5

ord(5) = 5 ord(10) = 2
```

En G =  $\langle Zn*, \times \rangle$ , cuándo el orden de un elemento es el mismo que  $\phi$  (n), entonces es llamado raíz primitiva del grupo

#### Ejemplo

• El G =  $\langle Z_8 *, \times \rangle$  no tiene raíz primitiva porque ningún elemento tiene orden igual a  $\phi(8) = 4$ .

### Ejemplo

- Cuáles son las raices primitivas de  $G = \langle Z_7 *, \times \rangle$
- Solución: 3 y 5

$$- \phi(7) = 6$$

$$-a^i \equiv x \pmod{7}$$

**Table 9.5** *Example 9.50* 

|                              |              | i = 1        | i = 2        | i = 3        | i = 4        | i = 5        | i = 6        |
|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                              | a = 1        | <i>x</i> : 1 | x: 1         | <i>x</i> : 1 | <i>x</i> : 1 | x: 1         | <i>x</i> : 1 |
|                              | a = 2        | <i>x</i> : 2 | <i>x</i> : 4 | <i>x</i> : 1 | <i>x</i> : 2 | x: 4         | <i>x</i> : 1 |
| Primitive root $\rightarrow$ | a = 3        | <i>x</i> : 3 | <i>x</i> : 2 | <i>x</i> : 6 | x: 4         | <i>x</i> : 5 | <i>x</i> : 1 |
|                              | a = 4        | x: 4         | <i>x</i> : 2 | <i>x</i> : 1 | <i>x</i> : 4 | <i>x</i> : 2 | <i>x</i> : 1 |
| Primitive root $\rightarrow$ | <i>a</i> = 5 | <i>x</i> : 5 | <i>x</i> : 4 | <i>x</i> : 6 | <i>x</i> : 2 | <i>x</i> : 3 | <i>x</i> : 1 |
|                              | <i>a</i> = 6 | <i>x</i> : 6 | <i>x</i> : 1 | <i>x</i> : 6 | <i>x</i> : 1 | <i>x</i> : 6 | <i>x</i> : 1 |

$$-\delta(1)=1$$
,  $\delta(2)=3$ ,  $\delta(3)=6$ ,  $\delta(4)=3$ ,  $\delta(5)=6$ ,  $\delta(6)=2$ 

• El G =  $\langle Z_n *, \times \rangle$  tiene raices primitivas solo si n=2,4,p<sup>t</sup> \u00e3 2p<sup>t</sup>

### Ejemplo

- Para cada valor de n, el grupo  $G = \langle Z_n *, \times \rangle$  tiene raíz primitiva? : n= 17, 20, 38, y 50?
- Solución:

 $G = \langle Z_{17}^*, \times \rangle$  tiene raíz primitiva, 17 es primo. (pt, t es 1)

- b.  $G = \langle Z_{20} *, \times \rangle$  no tiene raíz primitiva
- c.  $G = \langle Z_{38} *, \times \rangle$  tiene raíz primitiva,  $38 = 2 \times 19$  (19 primo)
- d.  $G = \langle Z_{50} *, \times \rangle$  tiene raíz primitiva,  $50 = 2 \times 5^2$  (5 ptimo)

Si  $G = \langle Z_n^*, \times \rangle$  tiene una raíz primitiva, el número de raices primitivas es  $\phi(\phi(n))$ .

#### Ejemplo

• 
$$G = \langle Z_{17}^*, \times \rangle \operatorname{es} \phi(\phi(17)) = \phi(16) = 8$$

# Grupo cíclico

Si  $G = \langle Z_n^*, \times \rangle$  tiene una raíz primitiva, es cíclico. Cada raíz primitiva es llamado elemento generador

$$Z_n * = \{g^1, g^2, g^3, ..., g^{\phi(n)}\}$$

#### Ejemplo

El elemento a=2, es una raíz primitiva en Z<sub>11</sub>?

2 es un elemento generador y Z<sub>11</sub> es un grupo.

• El G =  $\langle Z_{10}^*, \times \rangle$  tiene dos raices primitivas,  $\phi(10) = 4$  and  $\phi(\phi(10)) = 2$ . Las raices son 3 and 7. 3 y 7 son elementos generadores del grupo.

$$g = 3 \rightarrow g^1 \mod 10 = 3$$
  $g^2 \mod 10 = 9$   $g^3 \mod 10 = 7$   $g^4 \mod 10 = 1$   $g = 7 \rightarrow g^1 \mod 10 = 7$   $g^2 \mod 10 = 9$   $g^3 \mod 10 = 3$   $g^4 \mod 10 = 1$ 

El grupo  $G = \langle Z_n^*, \times \rangle$  es un grupo cíclico si tiene raices primitivas

El grupo  $G = \langle Z_p^*, \times \rangle$  siempre es un grupo cíclico

### **SUB-GRUPOS**

#### Teorema:

Dado (G,\*) un grupo cíclico. Cada elemento de a  $\epsilon G$  con  $\delta(a)$  = s es el elemento primitivo de un subgrupo cíclico con s elementos.

• El G =  $\langle Z_{11}^*, \times \rangle$  con  $\delta(3)$  = 5. Las potencias de 3 genera el sub-conjunto H={1,3,5,9}

| $\times$ mod 11 | 13459                                                                      |
|-----------------|----------------------------------------------------------------------------|
| 1               | 1 3 4 5 9                                                                  |
| 3               | 3 9 1 4 5                                                                  |
| 4               | 4 1 5 9 3                                                                  |
| 5               | 5 4 9 3 1                                                                  |
| 9               | 1 3 4 5 9<br>1 3 4 5 9<br>3 9 1 4 5<br>4 1 5 9 3<br>5 4 9 3 1<br>9 5 3 1 4 |



.

# Escoger Generadores de un Grupo

Sea  $G = \langle Z_n^*, \times \rangle$  un grupo cíclico y m = |G|. Y la factorización prima de  $m = p_1^{\alpha 1} \dots p_n^{\alpha n}$ ,  $m_i = m/p_i$  para  $i = 1, \dots, n$ . Entonces  $g \in G$  es un elemento generador si y sólo si para todo  $i = 1, \dots, n$ :  $g^{mi} \neq 1$ 

### Ejemplo

Determine todos los generadores de Z<sub>11</sub>

#### Solución:

− m= $\phi(11)$ =10, la factorización de 10= 2x5. El test si un dado a $\epsilon$  es un generador se Z<sub>11</sub> da por a<sup>2</sup> ≠1 mod 11 y a<sup>5</sup> ≠1 mod 11

| a              | 1 | 2  | 3 | 4 | 5 | 6  | 7  | 8  | 9 | 10 |
|----------------|---|----|---|---|---|----|----|----|---|----|
| $a^2 \bmod 11$ | 1 | 4  | 9 | 5 | 3 | 3  | 5  | 9  | 4 | 1  |
| $a^5 \bmod 11$ | 1 | 10 | 1 | 1 | 1 | 10 | 10 | 10 | 1 | 10 |

- Los generadores de  $Z_{11} = \{2,6,7,8\}$ 

# Algoritmo

Elija un primo p=2q+1. Para algún primo q.

```
Algorithm FIND-GEN(p) q \leftarrow (p-1)/2 found \leftarrow 0 While (found \neq 1) do g \stackrel{\$}{\leftarrow} \mathbf{Z}_p^* - \{1, p-1\} If (g^2 \mod p \neq 1) and (g^q \mod p \neq 1) then found \leftarrow 1 EndWhile Return g
```

## **CRIPTOSISTEMA ELGAMAL**





Bob

Escoge un primo grande p

Escoge el elemento generador  $e_1 \in Zp$ (raiz primitiva)

- a) Escoge  $K_{pr} = d \in \{2, \dots, p-2\}$
- b) Calcula  $k_{pub} = e_2 \equiv e_1^d \mod p$

$$k_{\text{pub}=}(e_{1}, e_{2}, p)$$

Alice

- Escoge  $r \in \{2, \dots p-2\}$ c)
- d) Calcula  $C_1 \equiv e_1^r \mod p$
- Calcula  $K_M \equiv e_2^r \mod p$ e)
- Cifra mensaje P  $\in$  Zp f)  $C_2 \equiv P. K_M \mod p$   $(C_1, C_2)$

$$(C_1, C_2)$$

- g) Calcula  $K_M \equiv C_1^d \mod p$
- h)Descifrado  $P \equiv C_2 \cdot K_M^{-1} \mod p$

Bob

```
e<sub>1</sub>,e<sub>2</sub> = Clave Privada
d= Clave Pública
```

Alicia

generar una clave pública y privada cada vez que envía un mensaje.

r= Clave Privada  $C_1, C_2$  = Clave Pública P = mensaje

## **EJEMPLO**

Bob

#### Alice

Mensaje P=26

Escoge p=29

Elemento generador  $e_1 = 2$ 

- a) Escoge  $K_{pr} = d = 12$
- b) Calcula  $e_2 = 7 \equiv 2^{12} \mod 29$

 $\langle k_{pub} = (29,2,7)$ 

- c) Escoge r = 5
- d) Calcula  $C_1 = 3 \equiv 2^5 \mod 29$
- e) Calcula  $K_M = 16 \equiv 7^{5} \mod 29$
- f) Cifrado mensaje P  $C_2 = 10 \equiv 26.16 \mod 29$

(3,10)

g) Calcula  $K_M = 16 \equiv 3^{12} \mod 29$ 

h)Descifrado  $26 \equiv 10.20 \mod 29$ 

 Sara quiere enviar el mensaje "I like math" a Niwar

- Generación de claves por Niwar
  - claves públicas son (3,23,29) =>( $e_1$ , $e_2$ ,P)
  - clave privada d= 4

- Sara cifra el mensaje (3,23,29)
  - 1. Convierte el mensaje en equivalencias numéricas

| Letter                     | A | В | C | D | E | F | G | H | I | J | K  | L  | M  | N  | O  | P  | Q  | R  | S  | T  | U  | V  | W  | X  | Y  | Z  |
|----------------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Numerical<br>Equivalent P: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Pi= 08 11 08 10 04 12 00 19 07

2. Selecciona un número 1 < r < p-2 r = 5

3. Calcula 
$$C_1 \equiv e_1^r \mod p =$$
  $C_1 \equiv 3^5 \mod 29$   $C_1 \equiv 11$ 

4. Calcula 
$$K_M \equiv e_2^r \mod p => K_M \equiv 23^5 \mod 29$$
  
 $K_M = 25$ 

5. Calcula  $C_2$  para todos los bloques, con bloque < P

$$C_2 \equiv Pi. K_M \mod p$$

$$C_{21} = 8.25 \text{ mod } 29 = 26$$
  $C_{25} = 4.25 \text{ mod } 29 = 13$   $C_{22} = 11.25 \text{ mod } 29 = 14$   $C_{26} = 12.25 \text{ mod } 29 = 10$   $C_{23} = 8.25 \text{ mod } 29 = 26$   $C_{27} = 0.25 \text{ mod } 29 = 0$   $C_{24} = 10.25 \text{ mod } 29 = 18$   $C_{28} = 19.25 \text{ mod } 29 = 11$   $C_{29} = 7.25 \text{ mod } 29 = 1$ 

6. Concatena  $C_1C_{2i}$ , cada  $C_{2i}$  es igual al número de dígitos de P 11261426181310001101

Niwar descifra el mensaje (d=4)

#### 11261426181310001101

- 1. Calcula  $K_M \equiv C_1^d \mod p => K_M \equiv 11^4 \mod 29$  $K_M \equiv 25$
- 2. Calcula Pi  $\equiv C_2.K_M^{-1} \mod p$ 
  - 2.1. Calcula  $K_M^{-1} \mod p = 25^{-1} \mod 29 = 7$
  - 2.2. Calcula Pi para cada bloque

$$P_1 = 26.7 \mod 29 = 08$$
  $P_6 = 10.7 \mod 29 = 12$ 

$$P_2 = 14.7 \mod 29 = 11$$
  $P_7 = 0.7 \mod 29 = 00$ 

$$P_3 = 26.7 \mod 29 = 08$$
  $P_8 = 11.7 \mod 29 = 19$ 

$$P_4 = 18.7 \mod 29 = 10$$
  $P_9 = 1.7 \mod 29 = 07$ 

$$P_5 = 13.7 \mod 29 = 04$$

3. El mensaje original se obtiene siguiendo los mismos pasos del RSA

I like math

Generación de claves

#### **Algorithm 10.9** ElGamal key generation

### Cifrado

#### **Algorithm 10.10** ElGamal encryption

```
ElGamal_Encryption (e_1, e_2, p, P)  // P is the plaintext 

Select a random integer r in the group \mathbf{G} = \langle \mathbf{Z}_p^*, \times \rangle  C_1 \leftarrow e_1^r \mod p  // C_1 \mod C_2 are the ciphertexts return C_1 and C_2
```

#### Descifrado

#### **Algorithm 10.11** ElGamal decryption

## Protocolo ElGamal

#### • Bob

- p = 11
- $-e_1=2.$
- $-d=3e_2=e_1^d=8.$ 
  - *Clave pública* (2, 8, 11)
  - Clave privada 3.

#### • Alice

- r = 4
- P = 7 (mensaje)

#### Plaintext: 7

 $C_1 = e_1^r \mod 11 = 16 \mod 11 = 5 \mod 11$  $C_2 = (P \times e_2^r) \mod 11 = (7 \times 4096) \mod 11 = 6 \mod 11$ 

Ciphertext: (5, 6)

• Bob Recibe (5 y 6) y calcula

 $[C_2 \times (C_1^d)^{-1}] \mod 11 = 6 \times (5^3)^{-1} \mod 11 = 6 \times 3 \mod 11 = 7 \mod 11$ 

Plaintext: 7

### • Bob usa un No. aleatorio de 512 bits

| <i>p</i> = | 115348992725616762449253137170143317404900945326098349598143469219<br>0568986986226459321297547378718951443688917652647309361592999937280<br>61165964347353440008577 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $e_1$ =    | 2                                                                                                                                                                    |

| <i>d</i> =       | 1007                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e <sub>2</sub> = | 978864130430091895087668569380977390438800628873376876100220622332<br>554507074156189212318317704610141673360150884132940857248537703158<br>2066010072558707455 |

Alicia envía el mensaje P=3200

| P =              | 3200                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r =              | 545131                                                                                                                                                             |
| C <sub>1</sub> = | 887297069383528471022570471492275663120260067256562125018188351429<br>417223599712681114105363661705173051581533189165400973736355080295<br>736788569060619152881  |
| C <sub>2</sub> = | 708454333048929944577016012380794999567436021836192446961774506921<br>244696155165800779455593080345889614402408599525919579209721628879<br>6813505827795664302950 |

• Bob calcula el texto plano  $P = C_2 \times ((C_1)^d)^{-1} \mod p = 3200 \mod p$ 

| $\mathbf{P} = 3200$ |  |
|---------------------|--|
|---------------------|--|