La Nage du Requin

ELANKUMARAN Vishwa, PROCTOR Jordan, TOMILINA Ekaterina

Université de Bordeaux

7 décembre 2020

Introduction

Définition

Diffusion anomale : la variance de la position n'est pas fonction linéaire du temps

Principe des déplacements du requin

Le requin se trouve à S_0 . Il a un paramètre de mémoire p.

A l'instant 1, il se déplace de $X_1=\zeta_1\sim S_{lpha}$ avec S_{lpha} une loi lpha-stable.

Pour tous les instants suivants, il se déplace de :

 X_k avec probabilité p, les X_k étant choisis uniformément parmi tous les déplacements précédents

 ζ_n avec probabilité $1-p,\$ les ζ_k étant indépendantes toutes de même loi S_{C}

BUT

Etudier l'influence asymptotique des lois de probabilité symétriques α -stables sur une marche aléatoire.

Sommaire

- 1 Les lois symétriques α -stables
 - Definition
 - Comment simuler la variable $X \sim S_{\alpha}$?

- Simulations de la Nage du Requin
 - Le cas sous-critique
 - Le cas critique
 - Le cas supercritique

Les lois symétriques α -stables

Définition

Les lois symétriques lpha-stables Soient lpha et σ deux paramètres réels, avec $lpha \in \]0\,;2].$ On dit qu'une variable aléatoire X suit une loi symétrique lpha-stable de paramètre d'échelle σ si $\forall t \in \mathbb{R}$,

$$\mathbb{E}(e^{itX}) = e^{-\sigma^{\alpha}|t|^{\alpha}}$$

Exemple

Les seules lois α -stables à expression analytique sont : la loi de Lévy ($\alpha=\frac{1}{2}$), la loi de Cauchy ($\alpha=1$), loi Normale ($\alpha=2$)

Les lois symétriques α -stables

Ces trois lois appartiennent d'ailleurs à la famille des lois stable à quatre paramètres : un paramètre α qui est l'exposant caractéristique, un paramètre $\sigma \in \mathbb{R}$ d'échelle, un paramètre $\beta \in (-1;1)$ d'asymétrie et un paramètre $\mu \in \mathbb{R}$ de localisation.

Exemple

Loi de Lévy :
$$S(\frac{1}{2}, \sigma, 1, \mu) = \sqrt{(\frac{\sigma}{2\pi}) \frac{1}{(x-\mu)}^{\frac{2}{3}}} e^{\frac{\sigma}{2x-\mu}}$$
 pour $\mu < x < \infty$ Loi de Cauchy : $S(1, \sigma, 0, \mu) = \frac{1}{\pi} \frac{\sigma}{(x-\mu)^2 + \sigma^2}$ pour $x \in (-\infty; \infty)$

Loi Normale :
$$S(2, \sigma, \beta, \mu) = \frac{1}{2\sigma\sqrt(\pi)}e^{\frac{-(x-\mu)^2}{4\gamma^2}}$$
 pour $x \in (-\infty; \infty)$

Nous avons choisi ici, comme dit précédemment, $\sigma = 1$.

Les lois symétriques α -stables

Simulation d'une variable $X \sim S_{lpha}$

Soient $U \sim U[-1,1]$ et $v \sim U[0,1]$ et $\alpha \in]0,2].$ On peut alors définir X comme :

$$\begin{cases} X = \frac{\sin(\frac{\alpha U}{2})}{(\cos(\frac{\pi U}{2})^{\frac{1}{\alpha}}} \left(\frac{\cos(\frac{(1-\alpha)\pi U}{2})}{-\log(V)}\right)^{\frac{1-\alpha}{\alpha}} \text{ si } \alpha \neq 1. \\ X = \tan(\frac{\pi U}{2}) \text{ si } \alpha = 1. \end{cases}$$

Simulations de la Nage du Requin

Nous allons étudier la convergence asymptotique de la position du requin dans trois cas différents : le cas sous-critique ($\alpha p < 1$), le cas critique ($\alpha p = 1$) et enfin le cas supercritique ($\alpha p > 1$).

Représentation directe de la convergence des trajectoires

Représentation directe de la convergence des trajectoires

Représentation directe de la convergence des trajectoires

Dans le cas sous-critique, c'est-à-dire $\alpha p < 1$, nous avons la convergence en loi suivante :

$$(\frac{1}{n})^{\frac{1}{\alpha}}S_n \xrightarrow{L} S_{\alpha}(\sigma_{\alpha})$$

L'histogramme semble bien suivre la densité d'une loi de Cauchy (α =1).

Ici, l'histogramme semble bien suivre la loi de Cauchy ($\alpha = 1$).

L'histogramme semble suivre la densité de la loi Normale ($\alpha = 2$).

L'histogramme semble suivre la densité de la loi de Lévy ($\alpha = \frac{1}{2}$).

Le cas critique

Dans le cas sous-critique, c'est-à-dire $\alpha p=1$, nous avons la convergence en loi suivante :

$$(\frac{1}{n\log(n)})^{\frac{1}{\alpha}}S_n \overset{L}{\longrightarrow} S_{\alpha}(\sigma_{\alpha})$$

avec $\sigma_{\alpha} = ((1-p)\Gamma(1+\alpha))^{\frac{1}{\alpha}}$

Le cas critique

Ici, l'histogramme semble bien suivre la loi Normale ($\alpha = 2$).

Dans le cas supercritique, c'est-à-dire $\alpha p>1$, nous avons la convergence en loi suivante :

$$\lim_{n\to\infty} \frac{S_n}{n^p} = Z$$

avec Z une variable aléatoire réelle finie presque sûrement.

Attention!

Ce cas n'existe pas pour $p < \frac{1}{2}$ vu que $\alpha \in]0,2]$.

Nous pouvons voir en traçant l'histogramme des simulations que l'histogramme ne semble pas suivre une densité Normale malgré α =2. En effet, il converge presque sûrement vers une varible Z inconnue.

Conclusion

En conclusion, nous pouvons formuler plusieurs remarques suite à ce travail :

Asymptotiquement, dans les cas sous-critique et critique, si certains déplacements suivent une loi α -stable, la position converge vers une loi α -stable du même α dont on peut connaître le paramètre d'échelle en fonction de celui-ci et du paramètre de mémoire p.

Dans le cas supercritique, l'on ne peut cependant pas déterminer la loi de la variable aléatoire vers laquelle la position du requin converge asymptotiquement.