GIẢI TÍCH (CƠ SỞ) Phần 1. **Không gian metric**

Phiên bản đã chỉnh sửa - có phần bổ sung của bài trước

PGS TS Nguyễn Bích Huy

Ngày 6 tháng 12 năm 2004

Nội dung chính của môn Cơ sở Chuyên ngành: Toán Giải tích Phương pháp Giảng dạy Toán

Phần 1: Không gian metric

- 1. Metric trên một tập hợp. Sự hội tụ. Không gian đầy đủ.
- 2. Tập mở. Tập đóng. Phần trong, bao đóng của tập hợp.
- 3. Ánh xạ liên tục giữa các không gian metric. Các tính chất:
 - Liên hệ với sự hội tụ
 - Liên hệ với ảnh ngược của tập mở, tập đóng.
 - Ánh xạ mở, ánh xạ đóng, ánh xạ đồng phôi.
- 4. Tập compắc. Các tính chất căn bản:
 - Hệ có tâm các tập đóng.
 - Tính chất compắc và sự hội tụ.
 - Ảnh của tập compắc qua ánh xạ liên tục.

Phần 2: Độ đo và tích phân.

- 1. σ -đại số trên tập hợp. Độ đo và các tính chất căn bản.
- 2. Các tính chất của độ đo Lebesgue trên \mathbb{R} (không xét cách xây dựng).
- 3. Hàm số đo được. Các tính chất căn bản.

- Các phép toán số học, lấy max, min trên 2 hàm đo được.
- Lấy giới hạn hàm đo được (không xét: hội tụ theo độ đo, định lý Egoroff, Lusin).
- 4. Tích phân theo một độ đo. Các tính chất căn bản (không xét tính liên tục tuyệt đối).
- 5. Các định lý Levi, Lebesgue về qua giới hạn dưới dấu tích phân.

Phần 3: Giải tích hàm.

- 1. Chuẩn trên một không gian vecto. Chuẩn tương đương. Không gian Banach.
- 2. Ánh xạ tuyến tính liên tục. Không gian các ánh xạ tuyến tính liên tục (không xét ánh xạ liên hợp, ánh xạ compắc, các nguyên lý cơ bản).
- 3. Không gian Hilbert. Phân tích trực giao. Chuổi Fourier theo một hệ trực chuẩn. Hệ trực chuẩn đầy đủ.

§1 Metric trên một tập hợp. Sự hội tụ. Không gian đầy đủ

Phần này có thêm phần bổ sung của bài trước

1. Tóm tắt lý thuyết

1.1 Không gian metric

Định nghĩa 1 Cho tập $X \neq \emptyset$. Một ánh xạ d từ $X \times X$ vào \mathbb{R} được gọi là một metric trên X nếu các điều kiện sau được thỏa mãn $\forall x, y, z \in X$:

i.
$$d(x,y) \geqslant 0$$

 $d(x,y) = 0 \Leftrightarrow x = y$

ii.
$$d(x, y) = d(y, x)$$

iii.
$$d(x,y)\leqslant d(x,z)+d(z,y)$$
 (bất đẳng thức tam giác)

Nếu d là metric trên X thì cặp (X,d) gọi là một không gian metric.

Nếu d là metric trên X thì nó cũng thỏa mãn tính chất sau

$$|d(x,y)-d(u,v)|\leqslant d(x,u)+d(y,v)$$
 (bất đẳng thức tứ giác)

Ví dụ. Ánh xạ $d: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$, định bởi

$$d(x,y) = \left[\sum_{i=1}^{m} (x_i - y_i)^2\right]^{1/2}, x = (x_1, x_2, \dots, x_m), y = (y_1, y_2, \dots, y_m)$$

là một metric trên \mathbb{R}^m , gọi là metric thông thường của \mathbb{R}^m .

Khi m=1, ta có d(x,y)=|x-y|. Trên \mathbb{R}^m ta cũng có các metric khác như

$$d_1(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

$$d_2(x,y) = \max_{1 \le i \le m} |x_i - y_i|$$

Ví dụ. Ký hiệu $C_{[a,b]}$ là tập hợp các hàm thực x=x(t) liên tục trên [a,b]. Ánh xạ

$$d(x,y) = \sup_{a \leqslant t \leqslant b} |x(t) - y(t)|, \quad x, y \in C_{[a,b]}$$

là metric trên $C_{[a,b]}$, gọi là metric hội tụ đều.

1.2 Sự hội tụ

Định nghĩa 2 Cho không gian metric (X, d). Ta nói dãy phần tử $\{x_n\} \subset X$ hội tụ $(h \hat{\rho} i \ t u)$ theo metric d, nếu cần làm rõ) về phần tử $x \in X$ nếu $\lim_{n \to \infty} d(x_n, x) = 0$.

Khi đó ta viết

$$\lim_{n \to \infty} d(x_n, x) = 0 \text{ trong } (X, d)$$
$$x_n \xrightarrow{d} x$$
$$x_n \to x$$
$$\lim d(x_n, x) = 0$$

Như vậy, $\lim_{n\to\infty} d(x_n,x)=0$ trong (X,d) có nghĩa

$$\forall \varepsilon > 0, \exists n_0 : \forall n \in \mathbb{N}^*, n \geqslant n_0 \Rightarrow d(x_n, x) < \varepsilon$$

Ta chú ý rằng, các metric khác nhau trên cùng tập X sẽ sinh ra các sự hội tụ khác nhau.

Tính chất.

- 1. Giới hạn của một dãy hội tụ là duy nhất.
- 2. Nếu dãy $\{x_n\}$ hội tụ về x thì mọi dãy con của nó cũng hội tụ về x.
- 3. Nếu $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$ thì $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$

Ví dụ. Trong \mathbb{R}^m ta xét metric thông thường. Xét phần tử $a=(a_1,\ldots,a_m)$ và dãy $\{x^n\}$ với $x^n=(x_1^n,x_2^n,\ldots,x_m^n)$. Ta có

$$d(x_n, a) = \sqrt{\sum_{i=1}^{m} (x_i^n - a_i)^2} \ge |x_i^n - a_i|, \quad \forall i = 1, 2, \dots, m$$

Từ đây suy ra:

$$\lim_{n \to \infty} x^n = a \operatorname{trong} (\mathbb{R}^m, d) \iff \lim_{n \to \infty} x_i^n = a_i \operatorname{trong} \mathbb{R}, \forall i = 1, 2, \dots, n$$

Ví dụ. Trong $C_{[a,b]}$ ta xét metric hội tụ đều. Ta có

$$x_n \xrightarrow{d} x \iff (\forall \varepsilon > 0, \exists n_0 : \forall n \geqslant n_0 \Rightarrow \sup_{a \leqslant t \leqslant b} |x_n(t) - x(t)| < \varepsilon)$$

$$\iff \text{dãy hàm } \{x_n(t)\} \text{ hội tụ đều trên } [a, b] \text{ về hàm } x(t)$$

$$\implies \lim_{n \to \infty} x_n(t) = x(t), \quad \forall t \in [a, b]$$

Như vậy, $\lim_{t\to\infty} x_n(t) = x(t)$, $\forall t \in [a,b]$ là điều kiện cần để $\lim_{t\to\infty} x_n = x$ trong $C_{[a,b]}$ với metric hội tụ đều. Chú ý này giúp ta *dự đoán* phần tử giới hạn.

1.3 Không gian metric đầy đủ

Định nghĩa 3 Cho không gian metric (X, d). Dãy $\{x_n\} \subset X$ được gọi là dãy Cauchy (dãy cơ bản) nếu

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0$$

hay

$$\forall \varepsilon > 0, \exists n_0 : \forall n, m \geqslant n_0 \Rightarrow d(x_n, x_m) < \varepsilon$$

Tính chất.

- 1. Nếu $\{x_n\}$ hội tụ thì nó là dãy Cauchy.
- 2. Nếu dãy $\{x_n\}$ là dãy Cauchy và có dãy con hội tụ về x thì $\{x_n\}$ cũng hội tụ về x.

Định nghĩa 4 Không gian metric (X, d) gọi là $d\hat{a}y \, du$ nếu mỗi dãy Cauchy trong nó đều là dãy hội tụ.

Ví dụ. Không gian \mathbb{R}^m với metric d thông thường là đầy đủ.

Thật vậy, xét tùy ý dãy Cauchy
$$\{x^n\}, x^n = (x_1^n, \dots, x_m^n)$$
.

• Vì
$$\begin{cases} d(x^n, x^k) \geqslant |x_i^n - x_i^k| & (i = 1, \dots, m) \\ \lim_{n,k \to \infty} d(x^n, x^k) = 0 \end{cases} \Rightarrow \lim_{n,k \to \infty} |x_i^n - x_i^k| = 0,$$

nên ta suy ra các dãy $\{x_i^n\}_n$ $(i=1,\ldots,m)$ là dãy Cauchy trong \mathbb{R} , do đó chúng hội tụ vì \mathbb{R} đầy đủ.

• Đặt $a_i = \lim_{n \to \infty} x_i^n$ (i = 1, 2, ..., m) và xét phần tử $a = (a_1, ..., a_m)$, ta có $\lim_{n \to \infty} x^n = a$ trong (\mathbb{R}^m, d) .

Ví dụ. Không gian $C_{[a,b]}$ với metric hội tụ đều d là đầy đủ.

Giả sử $\{x_n\}$ là dãy Cauchy trong $(C_{[a,b]},d)$.

Với mỗi $t \in [a,b]$, ta có $|x_n(t) - x_m(t)| \leq d(x_n, x_m)$. Từ giả thiết $\lim_{n,m\to\infty} d(x_n, x_m) = 0$ ta cũng có $\lim_{n,m\to\infty} |x_n(t) - x_m(t)| = 0.$

Vậy với mỗi $t \in [a, b]$ thì $\{x_n(t)\}$ là dãy Cauchy trong \mathbb{R} , do đó là dãy hội tụ.

Lập hàm x xác định bởi $x(t) = \lim x_n(t), t \in [a, b]$. Ta cần chứng minh $x \in C_{[a,b]}$ và $\lim d(x_n, x) = 0$.

Cho $\varepsilon>0$ tùy ý. Do $\{x_n\}$ là dãy Cauchy, ta tìm được n_0 thỏa

$$\forall n, m \geqslant n_0 \Rightarrow d(x_n, x_m) < \varepsilon$$

Như vậy ta có

$$|x_n(t) - x_m(t)| < \varepsilon, \quad \forall n \geqslant n_0, \forall m \geqslant n_0, \quad \forall t \in [a, b]$$

Cố định n, t và cho $m \to \infty$ trong bất đẳng thức trên ta có

$$|x_n(t) - x(t)| < \varepsilon, \quad \forall n \geqslant n_0, \quad \forall t \in [a, b]$$

Như vậy, ta đã chứng minh rằng

$$\forall \varepsilon > 0, \exists n_0 : \forall n \geqslant n_0 \Rightarrow \sup_{a \leqslant t \leqslant b} |x_n(t) - x(t)| \leqslant \varepsilon$$

Từ đây suy ra:

- Dãy hàm liên tục $\{x_n(t)\}$ hội tụ đều trên [a,b] về hàm x(t), do đó hàm x(t) liên tục trên [a,b].
- $\bullet \lim_{n \to \infty} d(x_n, x) = 0.$

Đây là điều ta cần chứng minh.

2. Bài tập

Bài 1 Cho không gian metric (X, d). Ta định nghĩa

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$
, $x, y \in X$

- 1. Chứng minh d_1 là metric trên X.
- 2. Chứng minh $x_n \xrightarrow{d_1} x \iff x_n \xrightarrow{d} x$
- 3. Giả sử (X,d) đầy đủ, chứng minh (X,d_1) đầy đủ.

Giải.

- 1. Hiển nhiên d_1 là một ánh xạ từ $X \times X$ vào \mathbb{R} . Ta kiểm tra d_1 thỏa mãn các điều kiện của metric
 - (i) Ta có: $d_1(x,y) \ge 0$ do $d(x,y) \ge 0$ $d_1(x,y) = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$

(ii)
$$d_1(y,x) = \frac{d(y,x)}{1+d(y,x)} = \frac{d(x,y)}{1+d(x,y)} = d(x,y)$$

(iii) Ta cần chứng minh

$$\frac{d(x,y)}{1+d(x,y)} \le \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)}$$

Để gọn, ta đặt a = d(x, y), b = d(x, z), c = d(z, y).

Ta có $a \leq b + c$; $a, b, c \geq 0$ (do tính chất của metric d)

$$\Rightarrow \frac{a}{1+a} \leqslant \frac{b+c}{1+b+c} \qquad \left(\text{ do hàm } \frac{t}{1+t} \text{ tăng trên } [0,\infty) \right)$$

$$\Rightarrow \frac{a}{1+a} \leqslant \frac{b}{1+b+c} + \frac{c}{1+b+c} \leqslant \frac{b}{1+b} + \frac{c}{1+c} \quad (\text{dpcm})$$

2. • Giả sử $x_n \stackrel{d}{\longrightarrow} x$. Ta có

$$\lim d(x_n, x) = 0$$

$$d_1(x_n, x) = \frac{d(x_n, x)}{1 + d(x_n, x)}$$

Do đó, $\lim d_1(x_n, x) = 0$ hay $x_n \xrightarrow{d_1} x$

• Giả sử $x_n \xrightarrow{d_1} x$. Từ

$$\lim d_1(x_n, x) = 0$$

$$d(x_n, x) = \frac{d_1(x_n, x)}{1 - d_1(x_n, x)}$$

ta suy ra $\lim d(x_n, x) = 0$ hay $x_n \stackrel{d}{\longrightarrow} x$.

- 3. Xét tùy ý dãy Cauchy $\{x_n\}$ trong (X, d_1) , ta cần chứng minh $\{x_n\}$ hội tụ trong (X, d_1) .
 - Ta có

$$\lim_{n,m\to\infty} d_1(x_n,x_m) = 0$$

$$d(x_n, x_m) = \frac{d_1(x_n, x_m)}{1 - d_1(x_n, x_m)}$$

 $\Rightarrow \lim_{n \to \infty} d(x_n, x_m) = 0$ hay $\{x_n\}$ là dãy Cauchy trong (X, d)

$$\Rightarrow \{x_n\}$$
 là hội tụ trong (X,d) (vì (X,d) đầy đủ)

• Đặt $x = \lim_{n \to \infty} x_n$ (trong (X, d)), ta có $x = \lim_{n \to \infty} x_n$ trong (X, d_1) (do câu 2).

Bài 2 Cho các không gian metric $(X_1, d_1), (X_2, d_2)$. Trên tập $X = X_1 \times X_2$ ta định nghĩa

$$d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

- 1. Chứng minh d là metric trên X.
- 2. Giả sử $x^n = (x_1^n, x_2^n), (n \in \mathbb{N}^*), a = (a_1, a_2)$. Chứng minh $x^n \stackrel{d}{\to} a \iff \begin{cases} x_1^n \stackrel{d_1}{\to} a_1 \\ x_2^n \stackrel{d_2}{\to} a_2 \end{cases}$
- 3. Giả sử (X_1, d_1) , (X_2, d_2) đầy đủ. Chứng minh (X, d) đầy đủ.

Giải.

1. Ta kiểm tra tính chất i), iii) của metric. Giả sử $x=(x_1,x_2),y=(y_1,y_2),z=(z_1,z_2),$ ta có:

i)
$$d(x,y) = d_1(x_1, y_1) + d_2(x_2, y_2) \ge 0$$

 $d(x,y) = 0 \iff \begin{cases} d_1(x_1, y_1) = 0 \\ d_2(x_2, y_2) = 0 \end{cases} \iff \begin{cases} x_1 = y_1 \\ x_2 = y_2 \end{cases} \iff x = y$

iii) Cộng từng vế các bất đẳng thức:

$$d_1(x_1, y_1) \leqslant d_1(x_1, z_1) + d_1(z_1, y_1)$$

$$d_2(x_2, y_2) \leqslant d_2(x_2, z_2) + d_2(z_2, y_2)$$

ta có

$$d(x,y) \leqslant d(x,z) + d(z,y)$$

2. Ta có

$$d_1(x_1^n, a_1), d_2(x_2^n, a_2) \le d(x^n, a) = d_1(x_1^n, a_1) + d_2(x_2^n, a_2)$$

Do đó:

$$\lim d(x^n, a) = 0 \iff \begin{cases} \lim d_1(x_1^n, a_1) = 0 \\ \lim d_2(x_2^n, a_2) = 0 \end{cases}$$

3. Giả sử $\{x^n\}$ là dãy Cauchy trong $(X,d), x^n = (x_1^n, x_2^n)$. Ta có $\{x_i^n\}$ là dãy Cauchy trong (X_i, d_i) (vì $d_i(x_i^n, x_i^m) \leq d(x^n, x^m)$). Suy ra

$$\exists a_i \in X_i : x_i^n \xrightarrow{d_i} a_i \quad (\text{do } (X_i, d_i) \text{ dầy dủ})$$

$$\Rightarrow x^n \xrightarrow{d} a := (a_1, a_2) \quad (\text{theo câu 2}))$$

Bài 3 Ký hiệu S là tập hợp các dãy số thực $x = \{a_k\}_k$. Ta định nghĩa

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{|a_k - b_k|}{1 + |a_k - b_k|}, \quad x = \{a_k\}, y = \{b_k\}$$

- 1. Chứng minh d là metric trên X.
- 2. Giả sử $x_n = \{a_k^n\}_k, n \in \mathbb{N}^*, x = \{a_k\}_k$. Chứng minh

$$x_n \xrightarrow{d} x \iff \lim_{n \to \infty} a_k^n = a_k, \ \forall k \in \mathbb{N}^*$$

3. Chứng minh (S, d) đầy đủ.

Giải.

1. Đầu tiên ta nhận xét rằng chuỗi số định nghĩa số d(x,y) là hội tụ vì số hạng thứ k nhỏ hơn $1/2^k$.

Với $x = \{a_k\}, y = \{b_k\}, z = \{c_k\},$ các tính chất i), iii) kiểm tra như sau:

i) Hiển nhiên $d(x,y) \ge 0$,

$$d(x,y) = 0 \Leftrightarrow a_k = b_k \quad \forall k \in \mathbb{N}^* \Leftrightarrow x = y$$

iii) Từ lý luận bài 1 ta có

$$\frac{|a_k - b_k|}{1 + |a_k - b_k|} \leqslant \frac{|a_k - c_k|}{1 + |a_k - c_k|} + \frac{|c_k - b_k|}{1 + |c_k - b_k|} \quad \forall k \in \mathbb{N}^*$$

Nhân các bất đẳng thức trên với $1/2^k$ rồi lấy tổng, ta có

$$d(x,y) \leqslant d(x,z) + d(z,y)$$

2. Ta có

$$d(x_n, x) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{|a_k^n - a_k|}{1 + |a_k^n - a_k|} \quad n \in \mathbb{N}^*$$

• Giả sử $x_n \longrightarrow x$. Ta có: $\forall k \in \mathbb{N}^*$

$$\frac{1}{2^k} \cdot \frac{|a_k^n - a_k|}{1 + |a_k^n - a_k|} \leqslant d(x_n, x) \tag{*}$$

$$\Rightarrow |a_k^n - a_k| \leqslant \frac{2^k d(x_n, x)}{1 - 2^k d(x_n, x)} \left(\text{khi } n \text{ dủ lớn để } d(x_n, x) < \frac{1}{2^k} \right)$$

Do đó $\lim_{n\to\infty} a_k^n = a_k$.

• Giả sử $\lim_{n\to\infty} a_k^n = a_k \quad \forall k \in \mathbb{N}^*.$

Cho $\varepsilon>0$ tùy ý. Ta chọn số k_0 sao cho $\sum_{k=k_0+1}^{\infty}\frac{1}{2^k}<\frac{\varepsilon}{2}$. Xét dãy số:

$$s_n = \sum_{k=1}^{k_0} \frac{1}{2^k} \cdot \frac{|a_k^n - a_k|}{1 + |a_k^n - a_k|}, n \in \mathbb{N}^*$$

Do $\lim s_n = 0$ nên có n_0 sao cho $s_n < \frac{\varepsilon}{2} \, \forall n \geqslant n_0$.

Với $n \ge n_0$, ta có

$$d(x_n, x) = s_n + \sum_{k=k_0+1}^{\infty} (\dots) \leqslant s_n + \sum_{k=k_0+1}^{\infty} \frac{1}{2^k} < \varepsilon$$

Như vậy ta đã chứng minh

$$\forall \varepsilon > 0 \ \exists n_0 : \forall n \geqslant n_0 \Rightarrow d(x_n, x) < \varepsilon$$

hay $\lim d(x_n, x) = 0$.

3. Xét tùy ý dãy Cauchy $\{x_n\}$ trong $(S,d), x_n = \{a_k^n\}_k$. Lý luận tương tự ở (*) ta có

$$|a_k^n - a_k^m| \leqslant \frac{2^k d(x_n, x_m)}{1 - 2^k d(x_n, x_m)} \longrightarrow 0 \text{ khi } m, n \longrightarrow \infty$$

Suy ra $\{a_k^n\}_n$ là dãy Cauchy trong $\mathbb{R},$ do đó hội tụ.

Đặt $a_k = \lim_{n \to \infty} a_k^n$ và lập phần tử $a := \{a_k\}$. Áp dụng câu 2) ta có $x_n \longrightarrow a$ trong (S, d).

Bài 4 Trên $X = C_{[0,1]}$ xét các metric

$$d(x,y) = \sup_{0 \leqslant x \leqslant 1} |x(t) - y(t)|$$

$$d_1(x,y) = \int_{0}^{1} |x(t) - y(t)| dt$$

- 1. Chúng minh: $(x_n \xrightarrow{d} x) \Rightarrow (x_n \xrightarrow{d_1} x)$
- 2. Bằng ví dụ dãy $x_n(t) = n(t^n t^{n+1})$, chứng minh chiều " \Leftarrow " trong câu 1) có thể không đúng.
- 3. Chứng minh (X, d_1) không đầy đủ.

Giải.

1. Ta có

$$|x(t) - y(t)| \leqslant d(x, y) \quad \forall t \in [0, 1]$$

$$\Rightarrow \int_0^1 |x(t) - y(t)| dt \leqslant d(x, y) \int_0^1 dt = d(x, y)$$

$$\Rightarrow d_1(x, y) \leqslant d(x, y) \quad \forall x, y \in C_{[0, 1]}$$

Do đó, nếu $\lim d(x_n, x) = 0$ thì cũng có $\lim d_1(x_n, x) = 0$.

2. Ký hiệu x_0 là hàm hằng bằng 0 trên [0,1]. Ta có:

•
$$d_1(x_n, x_0) = \int_0^1 |x_n(t) - x_0(t)| dt = \int_0^1 n(t^n - t^{n+1}) dt = \frac{n}{(n+1)(n+2)} \to 0$$
 khi $n \to \infty$.

• $d(x_n,x_0)=\sup_{0\leqslant t\leqslant 1}n(t^n-t^{n+1})=n\left(\frac{n}{n+1}\right)^n.\frac{1}{n+1}$ (hãy lập bảng khảo sát hàm $n(t^n-t^{n+1})$ trên [0,1]). Do đó

$$\lim_{n \to \infty} d(x_n, x_0) = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n \cdot \frac{n}{n+1} = \frac{1}{e} \neq 0$$

Suy ra $x_n \stackrel{d}{\longrightarrow} x_0$.

3. Xét dãy $\{x_n\} \subset C_{[0,1]}$ xác định như sau:

$$x_n(t) = \begin{cases} 0 & t \in [0, \frac{1}{2}] \\ n(t - \frac{1}{2}) & t \in [\frac{1}{2}, \frac{1}{2} + \frac{1}{n}] \\ 1 & t \in [\frac{1}{2} + \frac{1}{n}, 1] \end{cases} \quad (n \geqslant 2)$$

• Trước tiên ta chứng minh $\{x_n\}$ là dãy Cauchy trong $(C_{[0,1]}, d_1)$. Thật vậy, với m < n, ta có:

$$d_1(x_n, x_m) = \int_0^1 |x_n(t) - x_m(t)| dt$$

=
$$\int_{1/2}^{1/2+1/m} |x_n(t) - x_m(t)| dt$$

$$\leq \int_{1/2}^{1/2+1/m} 1 dt = \frac{1}{m}$$

Do đó $\lim_{m \to \infty} d_1(x_n, x_m) = 0$

• Ta chứng minh $\{x_n\}$ không hội tụ trong $(C_{[0,1]}, d_1)$. Giả sử trái lại:

$$\exists x \in C_{[0,1]} : \lim d_1(x_n, x) = 0$$

Khi đó

$$\begin{split} d_1(x_n,x) \geqslant \int_0^{1/2} |x_n(t) - x(t)| \, dt &= \int_0^{1/2} |x(t)| \, dt \quad , \quad \forall n \in \mathbb{N}^* \\ \Rightarrow \int_0^{1/2} |x(t)| \, dt &= 0 \Rightarrow x(t) \equiv 0 \text{ trên } [0,\frac{1}{2}]. \end{split}$$

Mặt khác, với mỗi $a \in \left(\frac{1}{2},1\right)$ ta có $\frac{1}{2} + \frac{1}{n} < a$ khi n đủ lớn.

Do đó

$$d_1(x_n, x) \geqslant \int_a^1 |x_n(t) - x(t)| dt = \int_a^1 |1 - x(t)| dt$$

$$\Rightarrow x(t) = 1 \quad \forall t \in [a, 1] \text{ (lý luận như trên)}$$

Do $a > \frac{1}{2}$ tùy ý, ta suy ra $x(t) = 1 \quad \forall t \in (\frac{1}{2}, 1].$

Ta gặp mâu thuẫn với tính liên tục của hàm x.

§2 Tập mở, tập đóng. Phần trong, bao đóng của một tập hợp

1. Tập mở. Phần trong

Cho không gian metric (X, d). Với $x_0 \in X, r > 0$, ta ký hiệu $B(x_0, r) = \{x \in X : d(x, x_0) < r\}$ gọi là quả cầu mở tâm x_0 , bán kính r.

Định nghĩa 1 Cho tập hợp $A \subset X$.

- 1. Điểm x được gọi là điểm trong của tập hợp A nếu $\exists r > 0 : B(x,r) \subset A$
- 2. Tập hợp tất cả các điểm trong của A gọi là $phần\ trong$ của A, ký hiệu Int A hay $\overset{\circ}{A}$. Hiển nhiên ta có Int $A\subset A$.
- 3. Tập A gọi là $t\hat{q}p$ $m\mathring{\sigma}$ nếu mọi điểm của nó là điểm trong. Ta qui ước \emptyset là mở. Như vậy, A mở $\Leftrightarrow A = \operatorname{Int} A \Leftrightarrow (\forall x \in A \; \exists r > 0 : B(x,r) \subset A)$

Tính chất.

- 1. Họ các tập mở có ba tính chất đặc trưng sau:
 - i) \emptyset, X là các tập mở.
 - ii) Hợp của một số tùy ý các tập mở là tập mở.
 - iii) Giao của hữu hạn các tập mở là tập mở.
- 2. Phần trong của A là tập mở và là tập mở lớn nhất chứa trong A.

Như vậy:

$$(B \subset A, B \text{ m\'o}) \Rightarrow B \subset \text{Int } A$$

Ví dụ. Quả cầu mở $B(x_0, r_0)$ là tập mở.

Thật vậy, $\forall x \in B(x_0, r_0)$ ta có $r = r_0 - d(x, x_0) > 0$. Ta sẽ chỉ ra $B(x, r) \subset B(x_0, r_0)$. Với $y \in B(x, r)$, ta có $d(y, x_0) \leq d(y, x) + d(x, x_0) < r + d(x, x_0) = r_0$ nên $y \in B(x_0, r_0)$.

Ví dụ. Trong \mathbb{R} với metric thông thường, các khoảng mở là tập mở.

Thật vậy, trong \mathbb{R} ta có B(x,r)=(x-r,x+r).

- Mỗi khoảng hữu hạn (a,b) là quả cầu tâm $\frac{a+b}{2}$, bán kính $\frac{b-a}{2}$ nên là tập mở.
- $(a, +\infty), (a \in \mathbb{R})$ là tập mở vì $\forall x \in (a, +\infty)$ ta đặt r = x a thì $(x r, x + r) \subset (a, +\infty)$.

Ví dụ. Trong \mathbb{R}^2 với metric thông thường mỗi hình chữ nhật mở $A=(a,b)\times(c,d)$ là tập mở. Thật vậy, xét tùy ý $x=(x_1,x_2)\in A$. Ta đặt $r=\min\{x_1-a,b-x_1,x_2-c,d-x_2\}$ thì có $B(x,r)\subset A$.

Đinh lí 1

- 1. Mỗi tập mở trong \mathbb{R} là hợp của không quá đếm được các khoảng mở đôi một không giao nhau.
- 2. Mỗi tập mở trong \mathbb{R}^2 là hợp của không quá đếm được các hình chữ nhật mở.

2. Tập đóng. Bao đóng của một tập hợp

Định nghĩa 2

- 1. Tập hợp $A \subset X$ gọi là tập đóng nếu $X \setminus A$ là tập mở.
- 2. Điểm x được gọi là một điểm dính của tập A nếu $A \cap B(x,r) \neq \emptyset, \forall r > 0$.
- 3. Tập tất cả các điểm dính của A gọi là bao đóng của A, ký hiệu là \overline{A} hay $\operatorname{Cl} A$. Hiển nhiên ta luôn có $A \subset \overline{A}$.

Tính chất.

1. \emptyset, X là các tập đóng.

Giao của một số tùy ý các tập đóng là tập đóng.

Hợp của hữu hạn tập đóng là tập đóng.

2. \overline{A} là tập đóng và là tập đóng nhỏ nhất chứa A.

Như vậy $(B \supset A, B \text{ dống}) \Rightarrow B \supset \overline{A}$

3. $A \text{ d\'{o}ng} \Leftrightarrow A = \overline{A}$.

Định lí 2

1.
$$x \in \overline{A} \Leftrightarrow (\exists \{x_n\} \subset A : \lim x_n = x)$$

- 2. Các tính chất sau là tương đương:
 - a) A là tập đóng;
 - b) $\forall \{x_n\} \subset A (\lim x_n = x \Rightarrow x \in A).$

Ví dụ. Quả cầu đóng $B^*(x_0,r):=\{x\in X:d(x,x_0)\leqslant r\}$ là tập đóng.

Chứng minh. Do sự tương đương của tính chất a), b) nên ta chứng minh $B^*(x_0, r)$ có tính chất b). Xét tùy ý dãy $\{x_n\}$ mà $\{x_n\} \subset B^*(x_0, r), x_n \longrightarrow x$, ta phải chứng minh $x \in B^*(x_0, r)$. Thật vậy:

$$\begin{cases} d(x_n, x_0) \leqslant r & \forall n = 1, 2, \dots \\ \lim d(x_n, x_0) = d(x, x_0) & \text{(do tính chất 3) của sự hội tụ)} \\ \Rightarrow d(x, x_0) \leqslant r & \text{(đpcm)} \end{cases}$$

Bài tập

Bài 1 Chứng minh rằng trong một không gian metric ta có

- 1. $A \subset B \Rightarrow \overline{A} \subset \overline{B}$;
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$;
- 3. $\overline{\overline{A}} = \overline{A}$

Giải.

- 1. Ta có: $(\overline{B} \text{ là tập đóng}, \overline{B} \supset A) \Rightarrow \overline{B} \supset \overline{A}$.
- 2. Ta có: $\overline{A}\subset \overline{A\cup B}, \overline{B}\subset \overline{A\cup B}$ (do câu 1)) nên $\overline{A}\cup \overline{B}\subset \overline{A\cup B}$ Mặt khác:

$$\left\{ \begin{array}{c} \overline{A} \cup \overline{B} \text{ là tập đóng (do } \overline{A}, \overline{B} \text{ đóng)} \\ \overline{A} \cup \overline{B} \supset A \cup B \end{array} \right.$$
 $\Rightarrow \overline{A} \cup \overline{B} \supset \overline{A \cup B} \text{ (do tính chất "nhỏ nhất" của bao đóng)}$

- 7 11 0 D 2 11 0 D (do tinii chat inio iniat cua ba
- 3. Ta có \overline{A} là tập đóng nên nó bằng bao đóng của nó.

Bài 2 Trong $C_{[a,b]}$ ta xét metric hội tụ đều. Giả sử $x_0 \in C_{[a,b]}$. Ta xét các tập sau:

$$M_1 = \{x \in C_{[a,b]} : x(t) > x_0(t) \,\forall t \in [a,b] \}$$

$$M_2 = \{x \in C_{[a,b]} : x(t) \geqslant x_0(t) \,\forall t \in [a,b] \}$$

$$M_3 = \{x \in C_{[a,b]} : \exists t \in [a,b] : x(t) \geqslant x_0(t) \}$$

Chứng minh M_1 mở, M_2 và M_3 đóng.

Giải.

• Chứng minh M_1 mở. Xét tùy ý $x \in M_1$, ta có

$$x(t) - x_0(t) > 0 \quad \forall t \in [a, b]$$

$$\Rightarrow r := \inf_{a \le t \le b} [x(t) - x_0(t)] > 0 \quad (\text{vì } \exists t_0 \in [a, b] : r = x(t_0) - x_0(t_0) > 0)$$

Ta sẽ chứng minh $B(x,r) \subset M_1$. Thật vậy, với $y \in B(x,r)$ ta có:

$$\sup_{a \leqslant t \leqslant b} |y(t) - x(t)| < r$$

$$\Rightarrow |y(t) - x(t)| < r \quad \forall t \in [a, b]$$

$$\Rightarrow y(t) > x(t) - r \quad \forall t \in [a, b]$$

$$\Rightarrow y(t) - x_0(t) > x(t) - x_0(t) - r \geqslant r - r = 0 \quad \forall t \in [a, b]$$

$$\Rightarrow y \in M_1$$

• Chứng minh M_2 đóng.

Giả sử $\{x_n\} \subset M_2, x_n \stackrel{d}{\longrightarrow} x$, ta cần chứng minh $x \in M_2$. Ta có

$$\begin{cases} \lim_{n \to \infty} x_n(t) = x(t) \ \forall t \in [a, b] \ \left(\text{do } x_n \xrightarrow{d} x \right) \\ x_n(t) \geqslant x_0(t) \ \forall t \in [a, b], \ \forall n \in \mathbb{N}^* \ \left(\text{do } x_n \in M_2 \right) \end{cases}$$

Suy ra $x(t) \ge x_0(t) \forall t \in [a, b]$, do đó $x \in M_2$.

• Chứng minh M_3 đóng.

Cách 1. Đặt $M_4 = \{x \in C_{[a,b]} : x(t) < x_0(t) \ \forall t \in [a,b] \}$. Ta có $M_3 = C_{[a,b]} \setminus M_4$ và M_4 là tập mở (chứng minh tương tự M_1 mở) nên M_3 đóng.

Cách 2. Giả sử $\{x_n\} \subset M_3, x_n \xrightarrow{d} x$ ta cần chứng minh $x \in M_3$.

Do $x_n \in M_3$ nên tồn tại $t_n \in [a, b]$ thỏa $x_n(t_n) \ge x_0(t_n)$. Dãy $\{t_n\}$ bị chặn nên có dãy con $\{t_{n_k}\}_k$ hội tụ về một $t_0 \in [a, b]$. Ta sẽ chứng minh $x(t_0) \ge x_0(t_0)$. Đầu tiên ta chứng minh

$$\lim_{k \to \infty} x_{n_k}(t_{n_k}) = x(t_0) \tag{1}$$

Thật vậy:

$$|x_{n_k}(t_{n_k}) - x(t_0)| \leqslant |x_{n_k}(t_{n_k}) - x(t_{n_k})| + |x(t_{n_k}) - x(t_0)| \leqslant d(x_{n_k}, x) + |x(t_{n_k}) - x(t_0)|$$
 (2)

và vì vế phải của (2) hội tụ về 0 khi $k \to \infty$ nên (1) đúng.

Từ $x_{n_k}(t_{n_k}) \geqslant x_0(t_{n_k})$ và (1) ta có $x(t_0) \geqslant x_0(t_0)$. Ta đã chứng minh $\exists t_0 \in [a, b] : x(t_0) \geqslant x_0(t_0)$ hay $x \in M_3$.

Bài 3 Trong $C_{[a,b]}$ với metric hội tụ đều ta xét các tập hợp sau:

$$\begin{split} M_1 &= \left\{ x \in C_{[a,b]} : x \text{ là đơn ánh}, 0 \leqslant x(t) \leqslant 1 \ \forall t \in [a,b] \right\} \\ M_2 &= \left\{ x \in C_{[a,b]} : x \text{ là toàn ánh}, 0 \leqslant x(t) \leqslant 1 \ \forall t \in [a,b] \right\} \end{split}$$

Chứng minh M_1 không là tập đóng, M_2 là tập đóng.