STATEFUL DATA ANALYTICS OVER PROGRAMMING MODELS OF NETWORKS

Author: Gheorghe Pojoga

Supervisors: Prof. Dr. Boris Koldehofe, Bochra Boughzala

faculty of science

faculty of science

faculty of science

faculty of science

faculty of science

faculty of science

faculty of science and engineering

faculty of science and engineering

RMT Architecture

faculty of science and engineering

faculty of science

faculty of science

- Floating Point Numbers
- Loops

- Floating Point Numbers
- Loops

- Floating Point Numbers
- Loops

faculty of science

- Floating Point Numbers
- Loops

faculty of science

- Floating Point Numbers
- Loops

faculty of science

- Floating Point Numbers
- Loops

faculty of science

- Floating Point Numbers
- Loops

faculty of science

P4 Constraints

- Floating Point Numbers
- Loops

faculty of science

P4 Constraints

- Floating Point Numbers
- Loops

P4 Constraints

- Floating Point Numbers
- Loops

Limitations:

- Constant time complexity is required
- Limited amount of memory

faculty of science

bernoulli institute

faculty of science

What are the acceleration capabilities stateful data analytics inside the network?

What are the acceleration capabilities stateful data analytics inside the network?

What are the limitation of the in-network computing model?

What are the acceleration capabilities stateful data analytics inside the network?

What are the limitation of the in-network computing model?

Is it viable to offload stateful end-host operators onto network devices?

faculty of science

 2	1	7	4	5

 1	7	4	5	3

 2	1	7	4	5

1 7 4 5 3					
	 1	7	4	5	3

	7	4	5	3	9

bernoulli institute

... 2 1 7 4 5

1 7 4 5 3					
	 1	7	4	5	3

P4-target Constraints

- Division at runtime
- **S** Floating point numbers

faculty of science

 2	1	7	4	5

- Division at runtime
- Floating point numbers

1 7 4 5 3					
	 1	7	4	5	3

- Division at runtime
- **Representation** Floating point numbers

1 7 4 5					
	 1	7	4	5	3

$$Sum = Sum + 7$$

- Division at runtime
- **S** Floating point numbers

$$Sum = Sum + 7$$

Time Complexity: O(1)

Memory Complexity : O(n), n - the size of the window

Window size = 3

- Division at runtime
- Floating point numbers

Constraints:

- Only integers are accepted
- The set of possible values must be known in advance

faculty of science

Constraints:

- Only integers are accepted
- The set of possible values must be known in advance

Constraints:

- Only integers are accepted
- The set of possible values must be known in advance

If (val < median) : Move Left

If (val == median) : Stay

If (val > median): Move Right

1	4	5	7	7	9

Constraints:

- Only integers are accepted
- The set of possible values must be known in advance

If (val < median) : Move Left

If (val == median) : Stay

If (val > median): Move Right

- Nontrivial operations
- Bit shift of more than 8 bits

Constraints:

- Only integers are accepted
- The set of possible values must be known in advance

If (val < median): Move Left

If (val == median) : Stay

If (val > median): Move Right

P4-target Constraints

Time Complexity : O(1)

Memory Complexity: O(n), n - the number of possible values

- Nontrivial operations
- Bit shift of more than 8 bits

faculty of science

In-Network Computing

End-Host Computing

faculty of science

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4

faculty of science

In-Network Computing

End-Host Computing

P4
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i \right)$$

In-Network Computing

End-Host Computing

P4
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^n S_i \right) + \left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^k S_{ci} \right)$$

In-Network Computing

End-Host Computing

P4
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i \right) + 2 \left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci} \right) + T_{controller} + T_{P4OS}$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

faculty of science

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

DPDK

In-Network Computing

End-Host Computing

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

DPDK
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right)$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$
DPDK
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + \left(\sum_{i=1}^{m+1} L_{Si} + \sum_{i=1}^{m} S_{Si}\right) + T_{DPDK}$$

bernoulli institute

In-Network Computing

End-Host Computing

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

DPDK
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 2\left(\sum_{i=1}^{m+1} L_{Si} + \sum_{i=1}^{m} S_{Si}\right) + T_{DPDK}$$

In-Network Computing

End-Host Computing

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

PDK
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 2\left(\sum_{i=1}^{m+1} L_{Si} + \sum_{i=1}^{m} S_{Si}\right) + T_{DPDK}$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

2 DPDK
$$2\left(\sum_{i=1}^{n+1}L_i + \sum_{i=1}^{n}S_i\right) + 2\left(\sum_{i=1}^{m+1}L_{Si} + \sum_{i=1}^{m}S_{Si}\right) + T_{DPDK}$$

Process a packet (Latency)

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

PPDK
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 2\left(\sum_{i=1}^{m+1} L_{Si} + \sum_{i=1}^{m} S_{Si}\right) + T_{DPDK}$$

Process a packet (Latency)

P4
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=i}^{n} S_i\right) + T_{P4}$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

PDK
$$2\left(\sum_{i=1}^{n+1}L_i + \sum_{i=1}^{n}S_i\right) + 2\left(\sum_{i=1}^{m+1}L_{Si} + \sum_{i=1}^{m}S_{Si}\right) + T_{DPDK}$$

Process a packet (Latency)

P4 2
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=i}^{n} S_i\right) + T_{P4}$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

PDK
$$2\left(\sum_{i=1}^{n+1}L_i + \sum_{i=1}^{n}S_i\right) + 2\left(\sum_{i=1}^{m+1}L_{Si} + \sum_{i=1}^{m}S_{Si}\right) + T_{DPDK}$$

Process a packet (Latency)

P4 2
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=i}^{n} S_i\right) + T_{P4}$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

PDK
$$2\left(\sum_{i=1}^{n+1}L_i + \sum_{i=1}^{n}S_i\right) + 2\left(\sum_{i=1}^{m+1}L_{Si} + \sum_{i=1}^{m}S_{Si}\right) + T_{DPDK}$$

Process a packet (Latency)

P4 2
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=i}^{n} S_i\right) + T_{P4}$$

DPDK 2
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 2 \left(\sum_{i=1}^{m+1} L_{Si} + \sum_{i=1}^{m} S_{Si}\right) + T_{DPDK}$$

In-Network Computing

End-Host Computing

Create / Remove a flow (Latency)

P4
$$2\left(\sum_{i=1}^{n+1} L_i + \sum_{i=1}^{n} S_i\right) + 3\left(\sum_{i=1}^{k+1} L_{ci} + \sum_{i=1}^{k} S_{ci}\right) + T_{controller} + T_{P4OS}$$

PDK
$$2\left(\sum_{i=1}^{n+1}L_i + \sum_{i=1}^{n}S_i\right) + 2\left(\sum_{i=1}^{m+1}L_{Si} + \sum_{i=1}^{m}S_{Si}\right) + T_{DPDK}$$

Process a packet (Latency)

P4 2
$$\left(\sum_{i=1}^{n+1} L_i + \sum_{i=i}^{n} S_i\right) + T_{P4}$$

bernoulli institute

Elephant Flows: in-network computing

Elephant Flows: in-network computing

Mice Flows: end-host computing

Elephant Flows: in-network computing

Mice Flows: end-host computing

	P4 < :	⇒ DPDK
Performance	~	A
Flexibility	A	~

Elephant Flows: in-network computing

Mice Flows : end-host computing

		P4	<⇒>	DPDK	
Performa	псе	~		A	
Flexibility		Λ		V	

P4 Constraints:

- Lack of loops
- Lack of support for floats

- Limited memory
- Lack of support for non-trivial operations, such as
 - Multiplication
 - Division
 - Arbitrary bit shifting

Elephant Flows: in-network computing

1

Mice Flows: end-host computing

	P4 < :	⇒ DPDK
Performance	~	
Flexibility	A	~

P4 Constraints:

- Lack of loops
- Lack of support for floats

P4-Target Constraints:

- Limited memory
- Lack of support for non-trivial operations, such as
 - Multiplication
 - Division
 - Arbitrary bit shifting

and engineering

Viability depends on:

- The ability of the operator to conform to the P4 and P4-target constraints
- The topology of the network
- The size of the flows

