

Histopathological Cancer Detection

Cyrus Wachong &
Sean Paulsen

Outline

- Our Motivation
- Background
- Dataset Used
- Model Choice and Evaluation
- Training Procedure
- Results
- Future Plan
- Questions

Our Motivation

- We are Biomedical Engineering majors
- Interested in medicine and pathology
- Personally affected by cancer in our lives
- Wanted to train a network

Background

 Histopathology is the microscopic examination of tissue to study the manifestation of disease

Cancer is the leading cause of death in Canada

Manual histopathological image analysis is monotonous and prone to error

Dataset Used

- Found on Kaggle
- 220 025 images
- 96 x 96 pixels

Malignant

• 130 908 healthy and 89 117 malignant

Model choice and evaluation

ResNet-50

 Uses residual blocks eliminating the vanishing gradient problem with deeper neural networks

Residual blocks have two convolutional layers with the output being connected to the input

Conv layer → Conv layer

Testing Procedure

- Initially trained using a subset of the full dataset
- Simple ResNet-50 with 80/20 training/validation split
- Binary cross-entropy loss
- Added transfer learning
- Included layer freezing
- Implemented dynamic learning rate
- Added dropout layer with dropout fraction of 0.5 to minimize overfitting

Results

Initial setup

Transfer Learning

Dynamic Learning Rate

Results

	Epochs	13
	Initial Learning Rate	0.01
	Patience	2
	Preloaded Weights	ImageNet
	Validation Split	80/20
	Final Validation Loss	0.1699
A CONTRACTOR	Final Validation Accuracy	0.9416

Future Plan

- Acquire more data to further generalize network
- Implement basic data augmentation to further generalize network
- Work with larger/deeper networks for more trainable parameters
- Transfer learn with more relevant weights, trained on medical images
- Use semantic segmentation in place of a binary output for localization of tumour pixels

