Date: Thursday, November 4, 2010.

Instructions:

- This is a closed book exam. No notes, cheat sheets, textbook, or printed material allowed.
- You have 120 minutes to solve this exam.
- This exam has 5 problems each worth 10 points. However, not all problems are of equal difficulty.
- Please write your name on the top of every page in the space provided.
- If your solution does not fit in the space provided, and continues onto one of the back sheets, please indicate clearly where we should look for the solution.
- Unless otherwise stated, recall that "prove that", "show that" for a problem means you need to formally prove what you are claiming.
- Answering "I don't know" for a problem does not receive any points.
- You may use, without proof, any result that you were asked to prove in the homework or was proved in the lecture. If you use such a result, please explicitly state the result you are using (like "'Reverse of a regular language is regular' was proved in a homework", rather than saying "this was shown in a homework").

Name	
Netid	

Problem	Maximum Points	Points Earned	Grader
1	10		
2	10		
3	10		
4	10		
5	10		
Total	50		

Problem 1. [Category: Comprehension] **True/False.** Decide for each statement whether it is true or false. Circle **T** if the statement is *necessarily true*; circle **F** if it it is not necessarily true. Each correct answer is worth **1 point**.

(a) Let $M=(Q,\Sigma,\delta,q_0,F)$ be the minimal DFA recognizing the language L(M). Suppose M' is same as M except the initial state is changed to $q\neq q_0$, i.e., $M'=(Q,\Sigma,\delta,q,F)$. Assuming all states in Q are reachable from q,M' is the minimal DFA recognizing L(M').

(b) Let $M = (Q, \Sigma, \delta, q_0, F)$ be the minimal DFA recognizing the language L(M). Since every pair of states of M is distinguishable, if w is accepted from state q then w is not accepted from state q' $(\neq q)$.

(c) If L is regular then $\operatorname{suffix}(L,x)$ is always regular, no matter what x is. (For a definition of $\operatorname{suffix}(L,x)$ see problem 2.)

T
F

T. F

- (d) For a decidable language L, L^R may or may not be decidable. (L^R denotes the reverse of language L.) ${f T}$
- (e) If $L \subseteq \{0\}^*$ then L is decidable.
- (f) If $L \leq_m \{0^n 1^n \mid n \geq 0\}$ then L is decidable. **T**
- (g) If L is not recursively enumerable then \overline{L} must be recursively enumerable. $\bf T$
- (h) $L_k = \{M \mid M \text{ halts after at most } k \text{ steps on } \epsilon\}$ is not decidable because of Rice's theorem. **T**
- (i) If L is recursively enumerable and $L' \subseteq L$ then L' is recursively enumerable because the enumerator for L also enumerates L'.
- (j) If $A \leq_m B$ then $\overline{A} \leq_m \overline{B}$. **T**

Problem 2. [Category: Comprehension+Design] Consider the language $L = L(\epsilon \cup (1 \cup 0)1^*)$ and a DFA M that accepts L:

- (a) Recall that for a DFA $M=(Q,\Sigma,\delta,q_0,F)$, suffix $(M,q)=\{w\in\Sigma^*\mid q\xrightarrow{w}_M q' \text{ and } q'\in F\}$. In other words, it is the collection of all words accepted if q were the initial state.
 - For each state q of M describe the language suffix(M, q), using either regular expressions or formal set notation. [2.5 Points]

(b) Recall that for a language $L\subseteq \Sigma^*$, and a string $x\in \Sigma^*$, suffix language of L with respect to x, is defined as

$$\operatorname{suffix}(L,x) = \{ y \in \Sigma^* \mid xy \in L \}$$

In other words, $\operatorname{suffix}(L,x)$ is the collection of strings y which when prefixed by x, result in a string in L

For each of the following values of x, describe suffix(L,x). (Hint: You may use the DFA M and the previous problem to simplify your calculations.) [3.5 Points]

- (a) $x = \epsilon$
- (b) x = 0
- (c) x = 1
- (d) x = 00
- (e) x = 01
- (f) x = 10
- (g) x = 11
- (c) Give a minimal DFA for L.

[4 Points]

Problem 3. [Category: Comprehension] Consider the following Turing machine M on input alphabet $\{0,1\}$. All transitions not shown in the diagram below are assumed to go to the reject state q_{rej} .

(a) Give the formal definition of M as a tuple.

[3 Points]

(b) Describe the computation of M on the input 0111 formally, as a sequence of instantaneous descriptions/configurations. Points]

CS 373 Midterm II Name:	6
(c) Is there any input on which M does not halt? If so, give an example string.	[1 Point]
(d) What is the language recognized by M ?	[1 Point]

Problem 4. [Category: Comprehension+Proof]

(a) Suppose A and B are recursively enumerable languages such that $A \cup B$ and $A \cap B$ are both decidable. Prove that A is decidable. [5 Points]

(b) Suppose A is recursively enumerable and $A \leq_m \overline{A}$. Prove that A is decidable.

[5 Points]

Problem 5. [Category: Proof] Let $L = \{M \mid M \text{ is a TM and } L(M) \text{ has at least } 11253 \text{ strings}\}$. Prove the following facts.

(a) L is undecidable.

[2 Points]

(b) L is recursively enumerable.

[4 Points]

(c) \overline{L} is not recursively enumerable.

[4 Points]

CS 373 Midterm II	Name:	9

(Additional Space for Problem 5)