Министерство науки и высшего образования Российской Федерации

Московский политехнический университет

Институт принтмедиа и информационных технологий

Кафедра «Информатика и Информационные Технологии»

Промежуточный отчет по дисциплине

«Проектная деятельность»

Способы выполнения задания «Поиск источника света»

Выполнили:

Карпушкин С. Е.

Мосягин А. Д.

Попереков В. Э.

Шлячков Е. А.

Андреев Е. А.

Бежнарь М. Д.

(Группа 201-723)

Проверил:

Ильин Г. А.

Оглавление

Задание	2
Описание основных принципов работы, необходимых компонентов и технологии их производства.	
3D-Модель изделия	
Компоненты	
Смета	
Технология производства изделия	
Чертёж изделия	
Чертёж нижней платформы	5
Чертёж уголка	6
Спецификация	7
Электросхема изделия	8
Алгоритм поиска источника света и навеления	8

Задание.

Необходимо спроектировать и изготовить автономное устройство с лазерным целеуказателем, способное осуществлять автоматический поиск яркого источника света и наведение на него целеуказателя.

Описание основных принципов работы, необходимых компонентов и технологии их производства.

Принцип действия: светодиод ищется путём вращения двух сервопривода 2 с уголком (2) с фоторезистором (12). Сервопривод 1 отвечает за горизонтальное наведение, сервопривод 2 за вертикальное.

Алгоритм работы: устройство начинает поиск светодиода с помощью сервопривода 1 по горизонтали с целью поиска самого яркого столбца. Затем выполняет поиск самой яркой точки в нём и стреляет в это место лазером (6).

3D-Модель изделия

Рисунок 1 – 3D Модель изделия

Компоненты:

- 1. Плата Arduino UNO
- 2. Сервопривод х2
- 3. Набор проводов «папа-мама»
- 4. Набор проводов «папа-папа»
- 5. Фоторезистор

- 6. Лазерный мини-модуль
- 7. Макетная плата ВВ-601Р
- 8. Пластмассовый уголок
- 9. Фанера

Смета

Таблица 1 - Смета

Название	Количество	Цена за штуку	Стоимость	Ссылки
Плата Arduino LEONARDO	1	389₽	389₽	Выдано
Сервопривод	2	415₽	830₽	Выдано
Набор проводов «папа-мама»	1	140 ₽	140 ₽	Выдано
Набор проводов «папа-папа»	1	140 ₽	140₽	Выдано
Фоторезистор	1	30₽	30₽	Выдано
Лазерный мини- модуль	1	150 ₽	150₽	Выдано
Макетная плата ВВ-601Р	1	250 ₽	250 ₽	Выдано
Фанера 1,525 кв. м	1	215₽	215 ₽	Выдано
Саморез	2	16₽	32 ₽	https://leroymerlin.ru/product/k omplekt-dlya-krepleniya- rulonnyh-shtor-3-dlya-okna- 83151405/
Уголок	1	8₽	8₽	Выдано
Итого	2 184 ₽			

Технология производства изделия

В нижней части изделия, на куске фанеры, с помощью саморезов крепится плата Ардуино, клеятся сервопривод 1 и макетная плата. На сервопривод 1 крепится качелька, на которую клеится сервопривод 2. К сервоприводу 2 клеится уголок с лазером и фоторезистором. Пластмассовый уголок печатается на 3D-принтере.

Чертёж изделия

Рисунок 2 – Чертёж изделия

Чертёж нижней платформы

Рисунок 3 — Чертёж нижней платформы

Чертёж уголка

Рисунок 4 – Чертёж уголка

Спецификация

	Фармат	Зона	Поз.	Обозначение		,	Наименование		Кол.	Приме- чание	
Перв. примен.								Сборочные	<u>единицы</u>		
Перв			1	ARDUINO	7 LEON	IARDO		ARDUINO LEON	VARDO	1	
_	Н		2	Уголок				Уголок		1	
Справ. №	Н	1						<u>Дета</u>	<u>1/1U</u>	+	
לעט			5	Качелька				Качелька			
	Ш		6	Лазер				Лазер			
			7	Макетная плата				Макетная плата			
	Ш		8	Нижняя платформа				Нижняя плат	1		
	9 Резистор						Резистор	1			
	Ш		10	Саморез 2.2ттХ4.5тт			77/77	Саморез 2.2ттХ4.5тт			
D,	11 [Сервопривод				Сервопривод			
даш.			12	Фоторезистор				Фоторезисти	1		
Подп. и дата											
уди.	П										
№ дубл.	Ш										
Инв.	Ш									_	
No	\mathbb{H}							1		-	
Взам. инв.											23 13
Baar	Н							+		+	
a	Н									+	
дат	\mathbb{H}							+		+	
Подп. и дата	H		T								
110	Изм.	An	m	№ докум.	Подп.	Дата					
подл.		ραδ		טטאטיי.	TIUUII.	диши	,		Лит.	Лист	Λυςποθ 1
Инв. № подл.	Н.ки	ЭНП) 8	<i>D.</i>				2	δορκα			

Рисунок 5 - Спецификация

Электросхема изделия

Замер освещенности осуществляется с помощью фоторезистора 12. Показания с данного фоторезистора снимается с помощью делителя напряжения (резистор 9). На основе этих показаний плата микроконтроллера ардуино выполняет заложенный в неё алгоритм и происходят вращения серводвигателей 11.

Рисунок 6 – Электросхема изделия

Алгоритм поиска источника света и наведения

Листинг 1 – алгоритм поиска цели и наведения на неё

```
#include <Servo.h> // библиотека для управления сервоприводами
#include <math.h> // библиотека математических операций
Servo servog; // горизонтальный сервопривод
Servo servov; // вертикальный сервопривод
#define LASER 8 // пин лазера
int PhotoRes = 0; // пин фоторезистора
const int l = 5; // расстояние от устройства до стенда
int max = 0, x = 0, y = 1;
boolean centr = false, f = 0;
float ygolX = 0.0, ygolY = 0.0;
void setup()
    servog.attach(5); // пин горизонтального сервопривода
    servov.attach(6); // пин вертикального сервопривода
    pinMode(LASER, OUTPUT); // режим работы лазера - выход
    pinMode (PhotoRes, INPUT); // режим работы фоторезистора -
вход
```

```
Serial.begin(9600); // функция для работы с портом, в
скобках указывается скорость вывода на экран
void loop()
    if (f == 0) // ожидание размещения устройства и выстрел
лазером в первую цель
        delay(30000);
        digitalWrite(LASER, HIGH);
        delay(12000);
        digitalWrite(LASER, LOW);
        f = 1;
    }
    for (int i = 0; i < 3; i++)
        while ((analogRead(PhotoRes) > max) && (x < 4)) //
горизонтальное вращение башни вправо пока увеличивается
светимость и устройство не дошло до края стенда
            max = analogRead(PhotoRes);
            servog.write(atan2(x, 1) - ygolX);
            ygolX = atan2(x, 1);
            if ((x == 4) \&\& (max < analogRead(PhotoRes))) //
проверка наличия горящего светодиода в правом столбце стенда
                max = analogRead(PhotoRes);
        }
        if (abs(max - analogRead(PhotoRes)) > 2) // выполняется
когда горящий светодиод не находится в правом столбце стенда
            x = x - 2; // горизонтальный поворот на два столбца
влево
            if (x >= 0)
            {
                servog.write(atan2(x, 1) - ygolX);
                ygolX = atan2(x, 1);
            }
            else
            {
                servog.write(-atan2(abs(x), 1) - ygolX);
                ygolX = -atan2(abs(x), 1);
            }
            centr = true;
            while ((analogRead(PhotoRes) > max) && (x > -4)) //
выполняется когда горящий светодиод находится в левой части
стенда
                centr = false;
```

```
max = analogRead(PhotoRes);
                x--;
                if (x >= 0)
                    servog.write(atan2(x, 1) - ygolX);
                    ygolX = atan2(x, 1);
                }
                else
                {
                    servog.write(-atan2(abs(x), 1) - ygolX);
                    ygolX = -atan2(abs(x), 1);
                }
                if ((x == -4) \&\& (max < analogRead(PhotoRes)))
// проверка наличия горящего светодиода в крайнем левом столбце
                    max = analogRead(PhotoRes);
            }
            if ((abs(max - analogRead(PhotoRes)) > 2) ||
(centr)) // финальная наводка на столбец с горящим светодиодом
                x++;
                if (x >= 0)
                {
                    servog.write(atan2(x, 1) - ygolX);
                    ygolX = atan2(x, 1);
                }
                else
                {
                    servog.write(-atan2(abs(x), 1) - ygolX);
                    ygolX = -atan2(abs(x), 1);
                }
            }
        }
        max = analogRead(PhotoRes); // начало поиска горящего
светодиода в найденном столбце с нижнего ряда
        servov.write(atan2(y, 1) - ygolY);
        ygolY = atan2(y, 1);
        while ((analogRead(PhotoRes) > max) && (y < 4))</pre>
//вращает вертикальный сервопривод пока увеличивается светимость
и устройство не дошло до верхнего края стенда
            max = analogRead(PhotoRes);
            y++;
            servov.write(atan2(y, 1) - ygolY);
            ygolY = atan2(y, 1);
            if ((y == 4) && (max < analogRead(PhotoRes))) //</pre>
проверка наличия горящего светодиода в верхнем ряду
                max = analogRead(PhotoRes);
        }
```

```
if (abs(max - analogRead(PhotoRes)) > 2) // выполняется
когда горящий светодиод не в верхнем ряду
        {
            y--;
            servov.write(atan2(y, 1) - ygolY);
            ygolY = atan2(y, 1);
        }
        digitalWrite(LASER, HIGH); // выстрел лазером
        delay(12000);
        digitalWrite(LASER, LOW);
        servov.write(-ygolY); // возвращение в исходную позицию:
нижний ряд, центральный светодиод
        ygolY = 0.0;
        servog.write(-ygolX);
        ygolX = 0.0;
        x = 0;
        y = 1;
        max = 0;
        centr = false;
   }
}
```