Optimisation sans contraintes

Joon Kwon

Master 2 — MathSV

30 septembre 2021

Dans ce chapitre, $f: \mathbb{R}^d \to \mathbb{R}$ et on considère les problèmes de minimisation sans contrainte.

$$\min_{x \in \mathbb{R}^d} f(x)$$

Exemple (Régression logistique avec régularisation Ridge) Soit $d, n \ge 1$ entiers, $\lambda > 0$, $a_1, \ldots, a_n \in \mathbb{R}^d$, $b_1, \ldots, b_n \in \mathbb{R}$.

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \log \left(1 + e^{-b_i(\mathbf{a}_i^\top \mathbf{x})} \right) + \lambda \left\| \mathbf{x} \right\|_2^2 \right\}.$$

Bibliographie

- Stephen Boyd & Lieven Vandenberghe. Convex optimization.
 Cambridge University Press, 2004.
- Jorge Nocedal & Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.
- Joseph-Frédéric Bonnans, et al. Numerical optimization: theoretical and practical aspects. Springer Science & Business Media, 2006.
- Wenyu Sun & Ya-Xiang Yuan. Optimization theory and methods: nonlinear programming. Springer Science & Business Media, 2006.
- Kenneth Lange. Optimization. Springer Science & Business Media, 2013.

Conditions d'optimalité

Descente de gradient

Méthode de Newton

Conditions d'optimalité

Conditions d'optimalité locale

Dans tout le chapitre, f est une application $f: \mathbb{R}^d \to \mathbb{R}$.

Théorème (Conditions nécessaires d'optimalité locale)

Soit x* un minimiseur local de f.

- Si f est différentiable en x^* , alors x^* est un point critique (i.e. $\nabla f(x^*) = 0$).
- Si de plus, f est deux fois différentiable en x*, alors ∇²f(x*) est semi-définie positive.

Remarque

La première condition n'est pas suffisante : les points d'inflexions ou les points-selles sont des points critiques, mais ne sont pas des minimiseurs.

Remarque (Résolution exacte)

Lorsque ∇f a une expression suffisamment simple, on peut :

- sélectionner les points critiques par résolution exacte de l'équation $\nabla f(x) = 0$,
- éventuellement sélectionner les minima locaux,
- en déduire les minimiseurs globaux.

Conditions suffisantes d'optimalité

Théorème (Condition suffisante d'optimalité locale)

Soit $\mathbf{x}^* \in \mathbb{R}^d$. On suppose que :

- f est deux fois différentiable en x*,
- $\nabla f(\mathbf{x}^*) = 0$,
- $\nabla^2 f(x^*)$ est symétrique définie positive.

Alors, x^* est un minimum local de f.

Remarque

Cette condition n'est pas nécéssaire.

Théorème (Condition suffisante d'optimalité globale)

Soit x^* un point critique de f.

- Si f est convexe, alors x* est un minimiseur global de f.
- Si f est strictement convexe, alors x* est l'unique minimiseur global de f.

Descente de gradient

Remarques générales sur les algorithmes itératifs

- Lorsqu'une résolution exacte n'est pas possible, on a recours aux algorithmes itératifs pour rechercher des solutions approchées.
- Les algorithmes itératifs construisent une suite d'itérées $(x^{(t)})_{t\geqslant 1}$.
- On espère une convergence vers une solution.

En pratique, différents critères d'arrêt sont possibles.

- Nombre d'itérations $T \ge 1$ fixé à l'avance.
- Arrêt lorsque $\|\nabla f(x^{(t)})\| \leqslant \varepsilon$, pour $\varepsilon > 0$ fixé à l'avance.
- Arrêt lorsque $f(x^{(t)}) \geqslant f(x^{(t-1)}) \varepsilon$, pour $\varepsilon > 0$ fixé à l'avance.

Descente de gradient

Definition (Descente de gradient)

Soit $x^{(1)} \in \mathbb{R}^d$ et $(\gamma^{(t)})_{t\geqslant 1}$ une suite strictement positive. On appelle descente de gradient associée à la fonction objectif f, au point initial $x^{(1)}$ et aux pas $(\gamma^{(t)})_{t\geqslant 1}$ la suite $(x^{(t)})_{t\geqslant 1}$ définie par :

$$x^{(t+1)} = x^{(t)} - \gamma^{(t)} \nabla f(x^{(t)}), \qquad t \geqslant 1.$$

Remarque

- Méthode de premier ordre i.e. utilise le gradient
- Chaque itération correspond à la résolution d'un problème simplifié

Garanties quantitatives

Théorème

Soit $f: \mathbb{R}^d \to \mathbb{R}$ différentiable et L-régulière, x^* un minimiseur de f, et $x^{(1)} \in \mathbb{R}^d$ quelconque. Soit $(x^{(t)})_{t\geqslant 1}$ les itérées de la descente de gradient associée avec un pas $\gamma^{(t)} = 1/L$ $(t\geqslant 1)$, et $T\geqslant 1$.

Alors,

$$\min_{1 \leqslant t \leqslant T} \left\| \nabla f(x^{(t)}) \right\|_{2}^{2} \leqslant \frac{2L(f(x^{(1)}) - f(x^{*}))}{T}.$$

• Si de plus f est convexe,

$$f(x^{(T+1)}) - f(x_*) \leqslant \frac{2L \|x^{(1)} - x^*\|_2^2}{T}.$$

• Soit K > 0. Si de plus que f est K-fortement convexe,

$$f(x^{(T+1)} - f(x^*)) \le \frac{\beta}{2} \left(1 - \frac{K}{L}\right)^T ||x^{(1)} - x^*||_2^2.$$

Choix du pas par line-search

Line-search exact

$$\gamma^{(t)} = \mathop{\arg\min}_{\gamma>0} \left\{ f\left(x^{(t)} - \gamma \nabla f(x^{(t)})\right) \right\}.$$

- Ce calcul de $\gamma^{(t)}$ correspond à une optimisation en dimension 1.
- Relativement coûteux (en calcul) et inutile.
- En pratique, il existe des méthodes moins coûteuses (voir TP) qui donnent d'assez bons pas γ^(t): règles d'Armijo, de Wolfe, etc.

Discussion sur le conditionnement

Soit A une matrice symétrique semi-définie positive de taille $d \times d$.

- Cas extrême. Si Sp = {λ}, alors A = λI. Et la descente de gradient peut minimiser x → x^TAx en une itération (avec line-search exact).
- Cas "bien conditionné". S'il y a peu d'écarts entre les valeurs propres de A, x → x^TAx est facile à minimiser par la descente de gradient.
- Cas "mal conditionné". S'il y a des écarts importants entre les valeurs propres de A, x → x^TAx est difficle à minimiser par la descente de gradient (i.e. leng).

Au voisinage de
$$x^*$$
, $f(x) \simeq \frac{1}{2}(x - x^*)^T \nabla^2 f(x)(x - x^*)$.
Conclusion

La performance de la descente de gradient dépend du conditionnement $\operatorname{de} \nabla^2 f(x^*)$

Méthode de Newton

Méthode de Newton

Definition (Méthode de Newton)

Soit $x^{(1)} \in \mathbb{R}^d$ et $(\gamma^{(t)})_{t\geqslant 1}$ une suite strictement positive. On appelle méthode de Newton associée à la fonction objectif f, au point initial $x^{(1)}$ et aux pas $(\gamma^{(t)})_{t\geqslant 1}$ la suite $(x^{(t)})_{t\geqslant 1}$ définie par :

$$x^{(t+1)} = x^{(t)} - \gamma^{(t)} \left(\nabla^2 f(x^{(t)}) \right)^{-1} \nabla f(x^{(t)}), \qquad t \geqslant 1.$$

- Méthode du second ordre.
- Bien définie si la hessienne est inversible.
- L'itération correspond à minimiser l'approximation d'ordre 2 de f en $x^{(t)}$.
- Solution exacte en une seule itération si f est quadratique.
- Convergence très rapide dans la région où f est bien approximée par son développement d'ordre 2 en x*.
- On peut choisir le pas $\gamma^{(t)}$ par des méthodes de line-search.
- Ne jamais calculer $(\nabla^2 f(x^{(t)}))^{-1}$ (sauf peut-être pour d petit). Il suffit de résoudre $\nabla^2 f(x^{(t)})u = \nabla f(x^{(t)})$. Ce qui est possible dès lors qu'on sait calculer $\nabla^2 f(x^{(t)})u$ pour tout $u \in \mathbb{R}^d$.
- Magré tout, très coûteux pour d ≫ 1.

Méthodes quasi-Newton

$$x^{(t+1)} = x^{(t)} - \gamma^{(t)} H^{(t)} \nabla f(x^{(t)}), \qquad t \geqslant 1.$$

- Méthode de Newton où a remplacé $(\nabla^2 f(x^{(t)}))^{-1}$ par une approximation $H^{(t)}$.
- Typiquement, $H^{(t+1)}$ a une expression explicite en $H^{(t)}$, $x^{(t+1)}$, $x^{(t)}$ $\nabla f(x^{(t+1)})$ et $\nabla f(x^{(t)})$.
- Méthode d'ordre 1.
- Nombreuses formules différentes pour $H^{(t)}$: BFGS, Broyden, DFP, SR1, etc.