Exercise 14.7. Let n an integer and p a divides n and $p \neq n$. Prove that $\langle p \rangle$ is a maximal ideal in Z_n if and only if p is prime.

Proof.

- (\Rightarrow) Suppose $\langle p \rangle$ is a maximal ideal in Z_n , if p is not prime, then q divides p and $q \neq 1$ and $q \neq p$. We have $\langle q \rangle$ is a ideal that properly contains p but is not Z_n since $1 \notin \langle q \rangle$.
- (\Leftarrow) Suppose p is a prime, and let R a ideal of Z_n . If R properly contains $\langle p \rangle$, let $q \in R$ but $q \notin \langle p \rangle$, then $\gcd(p,q) = 1$ since p is prime, then $1 \in Z_n \to R = Z_n$.

Exercise 14.9. Suppose that R is a commutative ring and $a \in R$. If $\{0\}$ is a maximal ideal of R, then $aR = \{ar \mid r \in R\} = \{0\}$ or $a \in aR$.

Proof. We need to show that aR is an ideal, it is trivial that aR is a subring. For any $ar \in aR$ and $b \in R$, $(ar)b = a(rb) \in aR$, therefore aR is an ideal. If aR property contains $\{0\}$, then aR = R since $\{0\}$ is maximal.

Exercise 14.14. If A and B are ideals of a ring R, show that the sum of A and B, $A + B = \{ a + b \mid a \in A, b \in B \}$ is also an ideal.

Proof. By ideal-test:

- 0. A + B is non-empty, since A and B are non-empty.
- 1. For any $x y \in A+B$, $x-y=a_0+b_0-a_1-b_1=(a_0-a_1)+(b_0-b_1)\in A+B$.
- 2. For any $x \in A + B$, $r \in R$, $xr = (a + b)r = ar + br \in A + B$

Exercise 14.16. If A and B are ideals of a ring R, show that the product of A and B, $AB = \{ a_0b_0 + a_1b_1 + \cdots + a_nb_n \mid a_i \in A, b_i \in B, n \text{ is positive integer } \}$, is an ideal. (Note that $a_i = a_j$ where $i \neq j$ is possible, same for b_i)

Proof. Trivial, similar to Exercise 14.14.

Exercise 14.18. Let A and B be ideals of a ring, show that $AB \subseteq A \cap B$.

Proof. It is trivial, every element in AB is also in A, since A ideal, similarly, is also in B, since B ideal.

Exercise 14.22. If R is a finite commutative ring with unity, prove that every prime ideal of R is also a maximal ideal.

Proof. For any prime ideal I of R, we know R/I is an integral ideal, since R is finite, so is R/I, then we know R/I is a field. Therefore I is a maximal ideal.

Exercise 14.39. Prove that the only ideals of a field F are $\{0\}$ and F.

Proof. Suppose I is an ideal of F that contains non-zero elements, otherwise, $I = \{0\}$. Let $a \in I$ where a is non-zero, then $aa^{-1} = 1 \in I$ since I is an ideal, then I = F since $1 \in I$.

Exercise 14.40. Let R a commutative ring with unity, if the only ideals of R are $\{0\}$ and R, show that R is a field.

Proof. Since the only ideals of R are $\{0\}$ and R, we know $\{0\}$ is the maximal ideal of R, then $R/\{0\}$ is a field, so is R.

But unfortunately, we can't use ring isomorphism for now. \Box

Exercise 14.41. Prove that every idemportant $(a^2 = a)$ in a commutative ring with unity other than 0 and 1 is a zero divisor.

Proof. For any idemponent a, $a + (1 - a) = 1 \rightarrow a^2 + (1 - a)a = a \rightarrow a + (1 - a)a = a \rightarrow (1 - a)a = 0$. Therefore, a is a zero divisor with (1 - a). \square

Exercise 14.42. Show that $R[x]/\langle x^2+1 \rangle$ is a field.

Proof. We need to show $\langle x^2 + 1 \rangle$ is maximal in $\mathbf{R}[x]$. We denote $\langle x^2 + 1 \rangle$ by I, observe that in $\mathbf{R}[x]/I$, x^2 is treated as -1 since $x^2 + 1 + I = 0 + I$, therefore any element in $\mathbf{R}[x]/I$ has form ax+b+I. Let J an ideal that properly contains I and ax + b a non-zero element in J, then

$$0 + J$$

$$= (ax + b)(ax - b) + J$$

$$= (a^{2}x^{2} - b^{2}) + J$$

$$= -a^{2} - b^{2} + J \quad \text{(since } I \subset J\text{)}$$

$$= (-a^{2} - b^{2}) \left(\frac{1}{-a^{2} - b^{2}}\right) + J$$

$$= 1 + J$$

Therefore $1 \in J$ and $J = \mathbf{R}[x]$, which proves that $I = \langle x^2 + 1 \rangle$ is maximal. \square

Exercise 14.45. Let R be the ring of continuous functions from R to R. Show that $I = \{ f \in R \mid f(0) = 0 \}$ is maximal ideal of R.

Proof. It is trivial that I is an ideal. Let J an ideal that properly contains I, then there is $f \in J$ where $f(0) \neq 0$. Let g(x) = f(0) - f(x), then g(0) = f(0) - f(0) = 0 and $g \in J$. Let h(x) = f(x) + g(x) = f(x) + f(0) - f(x) = f(0), then h(x) is a constant function. It is easy to find $h^{-1}(x) = \frac{1}{f(0)}$ and show that $h^{-1}(x)h(x) = 1 \in J$. The continuity of g is trivial.

Exercise 14.50. Let R be a ring and I an ideal of R. Prove that R/I is commutative iff $rs - sr \in I$ for all $rs \in R$.

Proof.

- (\Rightarrow) For any $r \in R$, rs + I = (r + I)(s + I) = (s + I)(r + I) = sr + I, therefore $rs sr \in I$.
- (\Leftarrow) For any $r \in R$, (r+I)(s+I) = rs + I = sr + I = (s+I)(r+I), since $rs sr \in I$ implies rs + I = sr + I.

Exercise 14.57. An integral domain D is called a principal ideal domain, if every ideal of D has form $\langle a \rangle = \{ ar \mid r \in D \}$ for some $a \in D$. Show that Z is a principal ideal domain.

Proof. Admit. \Box

Exercise 14.60. Let R a principal ideal domain, show that every non-trivial prime ideal is maximal.

Proof. Let $\langle p \rangle$ a non-trivial prime ideal, note that $p \neq 0$ since $\langle p \rangle$ is non-trivial. Then for any ideal $\langle r \rangle$ that properly contains $\langle p \rangle$, we can show $r \notin \langle p \rangle$, if so, then $\langle r \rangle$ is the smallest ideal that contains r, but $\langle p \rangle$ is smaller and $r \in \langle p \rangle$.

Since $p \in \langle r \rangle$, we know there is k such that rk = p, note that $k \neq 0$, since $p \neq 0$. Now by $\langle p \rangle$ is prime and $r \notin \langle p \rangle$, we know $k \in \langle p \rangle$ and there is $q \in R$ such that pq = k, similarly, $q \neq 0$. Then rkq = pq = k, by cancellation we know rq = 1 and $1 \in \langle r \rangle$, therefore $\langle r \rangle = R$ and $\langle p \rangle$ is maximal.

Exercise 14.61. Let R a commutative ring and $A \subseteq R$. Show that the annihilator of A, $Ann(A) = \{ r \in R \mid ra = 0 \ \forall a \in A \}$ is an ideal.

Proof.

- 0. Ann(A) is non-empty, since 0a = 0.
- 1. For any $s \ t \in \text{Ann}(A)$ and $a \in A$, (s-t)a = sa ta = 0 0 = 0.
- 2. For any $s \in \text{Ann}(A)$, $t \in R$ and $a \in A$, sta = tsa = t0 = 0.

Exercise 14.81. Let R a commutative ring with unity and for any $a \in R$, $a^2 = a$. Let I be a prime ideal of R, show that |R/I| = 2.

Proof. We know R/I is an integral ideal since I is prime, then for any $a \in R$ but $a \notin I$, a + I is non-zero element of R/I, then by $a^2 + I = a + I$, we know a + I = 1 + I, therefore $|R/I| = |\{0 + I, 1 + I\}| = 2$.