# COMPUTER SECURITY

Chapter 6: Network Security

# NETWORK HARDENING

# FIREWALLS

### **Firewalls**

What is a Firewall?

Public

Network

### **Firewalls**

- A firewall is an integrated collection of security measures
  - designed to prevent unauthorized electronic access to a networked computer system.
- A network firewall is similar to firewalls in building construction
  - in both cases they are intended to isolate one "network" or "compartment" from another.

Private

Network

#### Firewall Policies

- A firewall can be employed to filter incoming or outgoing traffic
  - based on a predefined set of rules called firewall policies.



### Policy Actions

- Packets flowing through a firewall can have one of three outcomes:
  - Accepted: permitted through the firewall
  - Dropped: not allowed through with no indication of failure
  - Rejected: not allowed through, accompanied by an attempt to inform the source that the packet was rejected

### **Policy Actions**

- Policies used by the firewall to handle packets are based on several properties of the packets being inspected, including the protocol used, such as:
  - TCP or UDP
  - the source and destination IP addresses
  - the source and destination ports
  - the application-level payload of the packet (e.g., whether it contains a virus).

## Firewall Security Policy Example

| Rule | Туре | Source Address | Destination Address | <b>Destination Port</b> | Action |
|------|------|----------------|---------------------|-------------------------|--------|
| 1    | TCP  | *              | 192.168.1.*.        | 25                      | Permit |
| 2    | UDP  | *              | 192.168.1.*.        | 69                      | Permit |
| 3    | TCP  | 192.168.1.*.   | *                   | 80                      | Permit |
| 4    | TCP  | *              | 192.168.1.18        | 80                      | Permit |
| 5    | TCP  | *              | 192.168.1.*.        | *                       | Deny   |
| 6    | UDP  | *              | 192.168.1.*.        | *                       | Deny   |

- External traffic can reach the entire internal network on TCP/25 and UDP/69.
- Internal traffic can go out to port 80 on the external network.
- External traffic can reach TCP/80 on one internal server.
- All other traffic from external to internal is disallowed

### Blacklisting and Whitelisting

- Two fundamental approaches to creating firewall policies (or rulesets)
  - to effectively minimize vulnerability to the outside world while maintaining the desired functionality for the machines
    - in the trusted internal network (or individual computer):





#### Blacklists and White Lists



#### Blacklist approach

- All packets are allowed through except those that fit the rules defined specifically in a blacklist.
- This type of configuration is more flexible in ensuring that service to the internal network is not disrupted by the firewall
- naïve from a security perspective assumes the network administrator can enumerate all properties of malicious traffic.

#### Blacklists and White Lists



- Whitelist approach
  - A safer approach to defining a firewall ruleset is the default-deny policy
  - packets are dropped or rejected unless they are specifically allowed by the firewall.
  - Rules are created for traffic that is allowed
    - Much more secure configuration
  - Before a new service will work, a new rule has to be defined to it
    - Slightly less convenient.

## Types of Firewalls

- Packet filtering (stateless) gateways or screening routers
- Stateful inspection firewalls
- Application-level gateways, also known as proxies
- Circuit-level gateways
- Guards
- Personal or host-based firewalls

- Flood guards serve as preventive control
  - against denial-of-service (DoS) or distributed denial-ofservice (DDoS) attacks
    - Protect availability
- Flood guards are available either as standalone devices or as firewall components
- Capable of monitoring network traffic to identify DoS attacks in progress
  - generated through packet flooding.

- A sophisticated firewall
- like an application proxy, can interpret data at the protocol level and respond
- The distinction between a guard and an application proxy can be fuzzy;
  - the more protection features an application proxy implements, the more it becomes like a guard

- Guards may implement any programmable set of rules; for example:
  - Limit the number of email messages a user can receive
  - Limit users' web bandwidth
  - Filter documents containing the word "Secret"
  - Pass downloaded files through a virus scanner

- A security concept
- A form of Intrusion Detection System

## Packet-Filtering Gateways

- A packet-filtering gateway controls access on the basis of packet address and specific transport protocol type
  - e.g., HTTP traffic.
- If a packet matches the packet filter's set of rules,
   the packet filter will drop or accept it
- Packet-filtering gateways maintain no state from one packet to the next
  - They simply look at each packet's IP addresses and ports and compare them to the configured policies

## Packet-Filtering Gateways



## Packet-Filtering Gateways Example



## Packet-Filtering Gateways - Example

- Here, firewall is filtering traffic on the basis of source IP
  - rather than port.

• Filtering rules can also be based on combinations of addresses and protocols

Src: 100.50.25.x

Src: other addresses

100.50.25.x Network

## Packet-Filtering (Stateless) Gateways

- A stateless firewall doesn't maintain any remembered context ("state") with respect to the packets it is processing
  - treats each packet attempting to travel through it in isolation
    - without considering packets that it has processed previousl.



Allow outbound SYN packets, destination port=80 Allow inbound SYN-ACK packets, source port=80

#### Stateless Restrictions

 Stateless firewalls may have to be fairly restrictive in order to prevent most attacks.



Allow outbound SYN packets, destination port=80 Drop inbound SYN packets,
Allow inbound SYN-ACK packets, source port=80

## Stateful Inspection Firewall

- Stateful inspection firewalls maintain state information from one packet to the next
  - In contrast to packet-filtering gateways
- It maintains records of all connections passing through it
- Can determine packet designation:
  - if a packet is the start of a new connection, a part of an existing connection, or is an invalid packet.



### Statefull Firewalls

- Stateful firewalls can tell when packets are part of legitimate sessions
  - originating within a trusted network.
- Stateful firewalls maintain tables containing information on each active connection
  - including IP addresses, ports, and sequence numbers of packets



### Statefull Firewalls

- Example: can allow only inbound TCP packets that respond to a connection initiated within internal network
  - Using these tables

### Statefull Firewall Example

Allow only requested TCP connections:





- Firewall is counting the number of systems coming from external IP 10.1.3.1
- After the external system reaches out to a fourth computer, the firewall hits a configured threshold
  - begins filtering packets from that address.



- In real life, it can be difficult to define rules that require state/context
  - and that attackers cannot circumvent





## **Application Layer Firewall**

- Application layer firewall works like a proxy
  - can "understand" certain applications and protocols.
- It may inspect the contents of the traffic,
  - blocking what it views as inappropriate content (i.e. websites, viruses, vulnerabilities, ...)

## **Application Proxy Firewall**

- An application proxy simulates the behavior of an application at OSI layer 7
  - so that the real application receives only requests to act properly

## **Application Proxy Firewall**

- Application proxies can serve a number of purposes:
  - Filtering potentially dangerous application-layer requests
  - Log requests/accesses
  - Cache results to save bandwidth
- For example, web proxy is used by companies often to monitor and filter employee internet use

## **Application Proxy**



## Circuit-Level Gateway

- A firewall that essentially allows one network to be an extension of another.
- Operates at OSI layer 5, the session layer
- Functions as a virtual gateway between two networks
- One use of a circuit-level gateway is to implement a VPN

## Circuit-Level Gateway



#### Personal Firewalls

- A personal firewall runs on a workstation or server
  - can enforce security policy like other firewalls.
- Restricts traffic by source IP and destination port
- Can also restrict which applications are allowed to use the network.

#### Personal Firewalls



#### Personal Firewalls

- Example: Windows firewall configuration dialog
  - an administrator can select which protocols and applications should be allowed to communicate
    - to and from the host



#### What Firewalls Can and Cannot Do

- Firewalls can protect an environment only if they control the entire perimeter
- Firewalls do not protect data outside the perimeter
- Firewalls are the most visible part of an installation to the outside
  - so they are an attractive target for attack

#### What Firewalls Can and Cannot Do

- Firewalls must be correctly configured
  - configuration must be updated as the environment changes,
  - firewall activity reports must be reviewed periodically for evidence of attempted or successful intrusion

#### Firewalls - summary

- Device that filters traffic between a protected "inside" network and less trustworthy "outside" network
- Most firewalls run as dedicated devices
  - Easier to design correctly and inspect for bugs
  - Easier to optimize for performance
- Firewalls implement security policies
  - or set of rules that determine what traffic can or cannot pass through

## Firewalls – summary (cont.)

- A firewall is an example of a reference monitor, which means it should have three characteristics:
  - Always invoked (cannot be circumvented)
  - Tamperproof
  - Small and simple enough for rigorous analysis

#### Comparison of Firewall Types

| Packet<br>Filter                                                      | Stateful<br>Inspection                                                                              | Application<br>Proxy                                                                                          | Circuit<br>Gateway                                                                    | Guard                                                                          | Personal<br>Firewall                                                                                    |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Simplest<br>decision-<br>making rules,<br>packet by<br>packet         | Correlates<br>data across<br>packets                                                                | Simulates<br>effect of an<br>application<br>program                                                           | Joins two<br>subnetworks                                                              | Implements<br>any<br>conditions<br>that can be<br>programmed                   | Similar to<br>packet filter,<br>but getting<br>more<br>complex                                          |
| Sees only<br>addresses<br>and service<br>protocol type                | Can see<br>addresses and<br>data                                                                    | Sees and<br>analyzes full<br>data portion<br>of pack                                                          | Sees addresses<br>and data                                                            | Sees and<br>analyzes full<br>content of<br>data                                | Can see full<br>data portion                                                                            |
| Auditing limited because of speed limitations                         | Auditing<br>possible                                                                                | Auditing<br>likely                                                                                            | Auditing likely                                                                       | Auditing<br>likely                                                             | Auditing<br>likely                                                                                      |
| Screens based<br>on connection<br>rules                               | Screens based<br>on<br>information<br>across<br>multiple<br>packets—in<br>either headers<br>or data | Screens<br>based on<br>behavior of<br>application                                                             | Screens based<br>on address                                                           | Screens based<br>on<br>interpretation<br>of content                            | Typically, screens based on content of each packet individually, based on address or content            |
| Complex<br>addressing<br>rules can<br>make<br>configuration<br>tricky | Usually<br>preconfigured<br>to detect<br>certain attack<br>signatures                               | Simple proxies can substitute for complex decision rules, but proxies must be aware of application's behavior | Relatively<br>simple<br>addressing<br>rules; make<br>configuration<br>straightforward | Complex guard functionality; can be difficult to define and program accurately | Usually starts in mode to deny all inbound traffic; adds addresses and functions to trust as they arise |

# MONITORING YOUR NETWORKS

## Security Principles

- Network Separation/Segmentation
  - Using Virtual Devices (VLans)
  - Creating dedicated virual networks
  - Example:
    - Create one network for the employees of the company
    - A separate network for handling the printers
      - Printers do not need access to the same network resources that employees do
    - Enables easier monitoring of traffic between networks
    - Routers will be configured between both networks
      - To allow employees to print

## **Network Monitoring**

- Creating baseline of your network
  - Can be achieved through traffic monitoring
  - Knowing how the network works typically will allow detecting of atypical activity

## **Network Monitoring**

- Analyzing logs
  - The practice of collecting logs from different networks
    - Also client services
  - Performing automated analysis on them
  - This can result in network intrusions and malicious activities detection
  - Things that may be analyzed:
    - Firewall logs
    - Authentication logs

## **Analyzing Logs**

- External devices and services should be closely monitored
  - They may be subject to more malicious traffic
    - Increases risk of compromise

•

## **Analyzing Logs**

- Analysis of logs:
  - Look for specific network messages
    - Like a firewall log
    - Attempted connection to internal service from an untrusted source address
  - Connections from internal network to known botnet addresses
    - May show a compromised machine on the network

•

## **Analyzing Logs**

- Log Analysis systems are configured using userdefined rules
  - To match interesting or atypical log entries
- Alerts would be sent to security engineers
  - For further investigation
- Log data needs to be normalized
  - Different devices and systems may not be formatted in a common way.
  - Make it easier for analysts to further process the data

## **Analysis Logs**

- Post-Fail analysis:
  - Investigating a compromised happened after a breach has been detected

## Log Analyzer - example

- Splunk data analyzer:
- Shows various components associated with the host
  - User can add and delete components to track



## IDS/IPS

## INTRUSION DETECTION/ PREVENTION SYSTEMS (IDS/IPS)

- Operate by monitoring network traffic and analyzing it
- Look for behavior/characteristics that may indicate malicious traffic

Intrusion Detect

**提出的。**2.1420

#### **Intrusion Detection Systems**

- Intrusion
  - Actions aimed at compromising the security of the target (confidentiality, integrity, availability of computing/networking resources)

## **Intrusion Detection System**

- Security controls we covered so far:
  - Perimeter controls, firewall, and authentication and access controls
  - Block certain actions
  - Most of these controls are preventive
    - They block known bad things from happening
- After using those controls, some users are admitted to use a computing system

## Intrusion Detection System

- Studies show that most computer security incidents are caused by insiders
  - or people impersonating them
  - people who would not be blocked by a firewall
- Insiders require access with significant privileges to do their daily jobs

## Intrusion Detection System

- Harm from insiders may not be malicious
  - it is honest people making honest mistakes
- Harm can also result from potential malicious outsiders
  - who have somehow passed the screens of firewalls and access controls exist
- Prevention, although necessary, is not a complete computer security control
  - Detection during an incident copes with harm that cannot be prevented in advance

## Intrusion Detection Systems



- Intrusion detection (IDS)
  - The identification through intrusion signatures and report of intrusion activities
- Intrusion prevention (IPS)
  - The process of both detecting intrusion activities and managing automatic responsive actions throughout the network



#### IDS

- Can be host based or network based
- Network Intrusion Detection System (NIDS):
  - Deployed on the network
    - Monitors traffic for network segment or subnet
- Resemble firewalls
  - However, firewalls alerts of outside threats
  - NIDS alert from threats inside the network

#### IDS

- Host based IDS:
  - Deployed on a host
    - Software that monitors traffic to and from that host only
    - Monitors system files for unauthorized changes

#### Host-based IDS



Fig. 2. Architecture of Host based IDS

#### Network based NIDS



#### Network based NIDS



#### NIDS and Host-based IDS



#### Popular NIDS systems

- Snort
  - Open source NIDS system
  - https://www.snort.org/
- Suricata
  - Open source IDS/IPS system
  - https://suricata-ids.org/
- Zeek (Bro) NIDS
  - Open-source software network analysis framework
  - https://www.zeek.org/

## Systems Location

#### • NIDS:

- Needs access to all traffic
  - Analyzing traffic between hosts
- Using port mirroring functionality
  - Send a copy of network packets seen on one switch port to the NIDS port
- Passive observer that only watches traffic
- NIPS (Network Intrusion Prevention System):
  - Has to be placed in line with traffic
  - So it can take action on the traffic
  - Active observer, can block or drop packets

## Intrusion Detection Systems (IDS)



## Intrusion Detection Systems (IDS)

- IDSs complement preventative controls as a next line of defense
  - monitor activity to identify malicious or suspicious events.

## Intrusion Detection Systems (IDS)

- IDSs may:
  - Monitor user and system activity
  - Audit system configurations for vulnerabilities and misconfigurations
  - Assess integrity of critical system and data files
  - Recognize known attack patterns in system activity
  - Identify abnormal activity through statistical analysis
  - Manage audit trails and highlight policy violations
  - Install and operate traps to record information about intruders

# Types of IDS

- Detection method
  - Signature-based
    - can only detect known patterns
  - Heuristic
    - for patterns of behavior that are out of the ordinary
- Location
  - Front end
    - looks at traffic as it enters the network
  - Internal
    - monitors traffic within the network

# Types of IDS

- Scope
  - Host-based IDS (HIDS)
    - protects a single host by monitoring traffic from the OS
  - Network-based IDS (NIDS)
    - a server or appliance that monitors network traffic
- Capability
  - Passive
  - Active, also known as intrusion prevention systems (IPS)
    - tries to block or otherwise prevent suspicious or malicious behavior once it is detected

## **IDS** Components

- The IDS manager compiles data from the IDS sensors to determine if an intrusion has occurred.
- This determination is based on a set of site policies, which are rules and conditions that define probable intrusions.
- If an IDS manager detects an intrusion, then it sounds an alarm.



### **IDS** Data

- Dorothy Denning identified several fields that should be included in IDS event records [1987]
  - Subject: the initiator of an action on the target
  - Object: the resource being targeted, such as a file, command, device, or network protocol
  - Action: the operation being performed by the subject towards the object

### **IDS Data**

- Dorothy Denning identified several fields that should be included in IDS event records [1987] (cont.):
  - Exception-condition: any error message or exception condition that was raised by this action
  - Resource-usage: quantitative items that were expended by the system performing or responding to this action
  - Time-stamp: a unique identifier for the moment in time when this action was initiated

### **Intrusions**

- An IDS is designed to detect a number of threats, including the following:
  - masquerader: an attacker who is falsely using the identity and/or credentials of a legitimate user
    - to gain access to a computer system or network
  - Misfeasor: a legitimate user who performs actions he is not authorized to do
  - Clandestine user: a user who tries to block or cover up his actions by deleting audit files and/or system logs

### **Intrusions**

- In addition, an IDS is designed to detect automated attacks and threats, such as:
  - port scans: determine which ports on a host are open for TCP connections
  - Denial-of-service attacks: network attacks meant to overwhelm a host and shut out legitimate accesses
  - Malware attacks: replicating malicious software attacks, such as Trojan horses, computer worms, viruses, etc.

•

### **Intrusions**

- In addition, an IDS is designed to detect automated attacks and threats, such as (cont.):
  - ARP spoofing: an attempt to redirect IP traffic in a local-area network
  - DNS cache poisoning: a pharming attack directed at changing a host's DNS cache
    - to create a falsified domain-name/IP-address association

### Possible Alarm Outcomes

Alarms can be sounded (positive) or not (negative)



From Security in Computing, Fifth Edition, by C

Alarm

No

Alarm

# The Base-Rate Fallacy

- Desirable properties for intrustion detection system:
  - a high true-positive rate and a low false-negative rate
  - Difficult to create in practice
    - Trade-off between these two properties exists
- If number of actual intrusions is relatively small compared to the amount of data being analyzed
  - => the effectiveness of an intrusion detection system can be reduced.

# The Base-Rate Fallacy

- The effectiveness of some IDSs can be misinterpreted
  - due to a statistical error known as the base-rate fallacy.
- This occurs when the probability of some conditional event is assessed
  - without considering the "base rate" of that event.

## Base-Rate Fallacy Example

- Suppose an IDS is 99% accurate
  - having a 1% chance of false positives or false negatives.
- An intrusion detection system generates 1,000,100 log entries.
- Only 100 of the 1,000,100 entries correspond to actual malicious events.

## Base-Rate Fallacy Example

- Of the 100 malicious events, 99 will be detected as malicious
  - => we have 1 false negative.
- Nevertheless, of the 1,000,000 benign events,
   10,000 will be mistakenly identified as malicious
  - => we have 10,000 false positives!
- Thus, there will be 10,099 alarms sounded,
   10,000 of which are false alarms
  - That is, roughly 99% of our alarms are false alarms.

# IDS • IDs

### • Questions?



- Software systems that collect security-relevant data from a variety of products
  - hardware and software products
  - usually audit logs
- Create a unified security dashboard for security operations center personnel.
- SIEMs range in functionality
  - Simple ones allow for basic search and alerting
  - Complex platforms allow for completely custom dashboards, reports, alerts, and correlation

https://www.youtube.com/watch?v=ZuLazPgFtBE



- Without an SIEM, analysts would need to:
  - log into each device individually on a constant basis
  - manually correlate events on one system against events on another
- This is impossible on any reasonably sized system.

# NETWORK ARCHITECTURES

# Demilitarized Zone (DMZ)



# Demilitarized Zone (DMZ)

- A form of network architecture
  - A network enclave is dedicated to services that should be somewhat accessible from the outside.

DMZ

• <u>DMZ</u>

# Demilitarized Zone (DMZ) Example

- A firewall protects a DMZ that contains web, email, and FTP servers
- A second firewall protects an internal network that should not be reachable from the Internet from the DMZ

• in case a DMZ host becomes comprised.



# Demilitarized Zone (DMZ) Example

- The hosts that need to be accessible from the Internet are typically the most at risk from outside attacks
- With DMZ, they can only do limited damage
  - to internal hosts that do not need to be reachable from the Internet

An even more careful option wou eparate the web, email, and FTP servers from

with further firewalls

 A process that can be used by firewalls to prevent IP addresses leakage

For example, if internal host sends it to external host it

asks for a reply from



- The source firewall converts the source address in the packet into the firewall's own address.
- The firewall makes an entry in a translation table
  - Showing the destination address, the source port, and the original source address
    - Enables forwarding replies to the original source address.

- The firewall converts address back on any return packets
  - This has the effect of concealing the true address of the internal host
    - prevents the internal host from being reached directly



| Table of translations performed |                  |
|---------------------------------|------------------|
| Source                          | Dest             |
| 192.168.1.35:80                 | 65.216.161.24:80 |

### **NAT Firewall**

- Allow internet traffic to pass through the gateway only if a device on the private network requested it
- Any unsolicited requests or data packets are discarded
  - preventing communication with potentially dangerous devices on the internet
- If inbound internet traffic does not have a private IP address to forward to beyond the gateway => data should be discarded
  - the NAT firewall then knows the traffic is unsolicited

# Data Loss Prevention (DLP)

- Approach similar to firewall or guard
- DLP is a set of technologies that can:
  - Detect (and possibly prevent) attempts to send sensitive data where it is not allowed to go



# Data Loss Prevention (DLP)

- Can be implemented as
  - Agent installed as an OS rootkit
  - Network-based solutions
    - Monitor connections and file transfers
  - Applications specific
    - E.g., software for monitoring email
- Indicators DLP looks for:
  - Keywords
  - Traffic patterns
  - Encoding/encryption



# Data Loss Prevention (DLP)

 DLP is best for preventing accidental incidents, as malicious users will often find ways to circumvent it

# Summary

- Networks are threatened by attacks aimed at interception, modification, fabrication, and interruption
- WPA2 has many critical security advantages over WEP
- Malicious DoS attacks are usually either volumetric in nature or exploit a bug

# Summary

- Network encryption can be achieved using specialized tools
  - some for link encryption and some for end-to-end
  - such as VPNs, SSH, and the SSL/TLS protocols

# Summary

- A wide variety of firewall types exist
  - ranging from very basic IP-based functionality to complex application-layer logic, and both on networks and hosts
- There are many flavors of IDS
  - each detects different kinds of attacks in very different parts of the network

### • Questions?

