Formules de probabilités et statistique

Probabilités et statistique pour la biologie (STAT1)

Jacques van Helden 2018-01-21

Combinatoire

Nom	Conditions	Formule
Permutations (factorielle)		$n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$
Arrangements	Sans remise, ordonné	$A_n^x = \frac{n!}{(n-x)!} = n \cdot (n-1) \cdot \dots \cdot (n-x+1)$
Combinaison (choose, coefficient binomial)	Sans remise, sans ordre	$n \cdot (n-1) \cdot \dots \cdot (n-x+1)$ $\binom{n}{x} = C_n^x = \frac{n!}{x!(n-x)!}$

Concepts de probabilité

Description	Conditions	Formule
Définition fréquentielle de la probabilité		$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$
Probabilité de non-réalisation		$P(\neg A) = 1 - P(A)$
Probabilités conditionnelles		$P(A \mid B) = \frac{P(A \land B)}{P(B)}$ $P(B \mid A) = \frac{P(A \land B)}{P(A)}$
Probabilité de A ou B	En général	$P(A \lor B) = P(A) + P(B) - P(A \land B)$
Probabilité de A ou B	Evénements mutuellement exclusifs	$P(A \lor B) = P(A) + P(B)$
Probabilité de A et B	En général	$P(A \land B) = P(A) \cdot P(B \mid A)$
Probabilité de A et B	Evénements indépendants	$P(A \wedge B) = P(A) \cdot P(B)$
Règle de Bayes		$P(A \land B) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B)$ $\implies P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)}$ $\implies P(B \mid A) = \frac{P(B) \cdot P(A \mid B)}{P(A)}$

Distributions de probabilité discrètes

Géométrique

- Conditions : nombre d'échecs avant le premier succès dans un schéma de Bernoulli
- Densité:

$$P(X = x) = (1 - p)^x p$$

• Répartition :

$$P(X \le x) = \sum_{i=0}^{x} (1-p)^{i} p$$

- Moyenne : $\mu_G = (1-p)/p$ Variance : $\sigma_G^2 = \frac{(1-p)}{p^2}$

Binomiale

- Conditions : Nombre de succès au cours d'une série d'essais indépendants avec probabilité constante de succès (Schéma de Bernoulli)
- Densité:

$$P(X = x) = C_n^x p^x (1 - p)^{n-x}$$

• Répartition :

$$P(X \le x = \sum_{i=0}^{x} C_n^i p^i (1-p)^{n-i}$$

- Moyenne : $\mu_B = np$
- Variance : $\sigma_B^2 = np(1-p)$ Rapport moyenne/variance: $\sigma_B^2 < \mu_B$

Poisson

- Conditions : nombre de succès observés au cours d'un intervalle de temps, en fonction du nombre attendu (λ)
- Application : approximation de la binomiale quand $n \to \infty, p \to 0$ et $\mu = np$ faible $(\mu_B \to \lambda)$
- Densité :

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{r!}$$

• Répartition :

$$P(X \le x) = \sum_{i=0}^{x} \frac{e^{-\lambda} \lambda^{i}}{i!}$$

- Moyenne : $\mu_P = \lambda$
- Variance : $\sigma_P^2 = \lambda$
- Rapport moyenne/variance: $\sigma_P^2 = \mu_P$

Hypergéométrique

- Conditions : Tirage non ordonné, sans remise dans un ensemble fini avec deux catégories.
- Exemple-type: urne avec boules de deux couleurs
- Densité :

$$P(X=x) = \frac{C_m^x C_n^{k-x}}{C_{m+n}^k}$$

• Répartition :

$$P(X \le x = \sum_{i=x}^{\min(k,m)} \frac{C_m^i C_n^{k-i}}{C_{m+n}^k}$$

 $\begin{array}{ll} \bullet & \text{Moyenne}: \ \mu_H = k \cdot \frac{m}{m+n} \\ \bullet & \text{Variance}: \ \sigma_H^2 = \frac{k \frac{m}{N} (1 - \frac{m}{N}) (N-k)}{(N-1)}; N = m+n \end{array}$

Echantillonnage et estimation

- Les symboles grecs (μ, σ) correspondent aux statistiques de population, les symboles romains (\bar{x}, s) aux statistiques d'échantillon.
- L'accent circonflexe () indique les estimateurs de paramètres de population calculés à partir de paramètres d'échantillons.

Symbole	Description
\overline{N}	Taille (nombre d'individus) de la population.
$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$	Moyenne de la population.
$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu^2$	Variance de la population
$\sigma = \sqrt{\sigma^2}$	Écart-type de la population
n	Effectif (nombre d'individus) de l'échantillon.
$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	Moyenne d'échantillon.
$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}$	Variance de l'échantillon
$s = \sqrt{s^2}$	Écart-type de l'échantillon
$\hat{\sigma}^2 = \frac{n}{n-1} s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$	Estimateur non-biaisé de la variance de la population.
$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$	Estimateur non-biaisé de l'écart-type de la population.
$<\sigma_{\bar{X}}>=rac{\hat{\sigma}}{\sqrt{n}}$	Erreur standard: écart-type attendu sur la moyenne d'échantillon.
$\bar{x} \pm \frac{\hat{\sigma}}{\sqrt{(n)}} \cdot t_{1-\alpha/2}^{n-1}$	Intervalle de confiance autour de la moyenne.

Test de comparaison de moyennes

Symbole	Description
$\overline{\mu_1,\mu_2}$	Moyennes respectives des populations 1 et 2.
σ_1,σ_2	Écarts-types respectifs des populations 1 et 2.
n_1, n_2	Effectifs (nombre d'individus) des échantillons prélevés sur les populations 1 et 2 .
$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	Formule générale de la moyenne d'échantillon
$ar{x}_1,ar{x}_2$	Moyennes d'échantillons.
$\delta = \mu_2 - \mu 1$	Différence entre les moyennes des populations.
$d = \hat{\delta} = \hat{\mu}_2 - \hat{\mu}_1 = \bar{x}_2 - \bar{x}_1$	$d=$ Taille d'effet: dans un test de comparaison de moyennes, il s'agit de la différence entre les moyennes d'échantillons, utilisée comme estimateur de δ .
$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}$	Formule générale de la variance d'échantillon
s_1^2, s_2^2	Variances mesurées sur les échantillons.
$\hat{\sigma}_p = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}$	Écart-type groupé (pooled standard deviation), utilisé comme estimateur de l'écart-type commun des deux populations, en supposant leurs variances égales (hypothèse de travail d'homoscédasticité).
$\hat{\sigma}_{\delta} = \hat{\sigma}_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	Erreur standard sur la différence entre moyennes, en supposant que les populations ont la même variance (test de Student).
$t_S = \frac{\hat{\delta}}{\hat{\sigma}_{\delta}} = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	Statistique t de Student, $\nu = n_1 + n_2 - 2$ d.l.
$t_W = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	Statistique t de Welch, $\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}$ d.l.