

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 992 496 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 10.08.2005 Bulletin 2005/32 (51) Int CI.7: **C07D 221/06**, A61K 31/445, C07D 491/04, C07D 513/04, C07D 487/04

(11)

(21) Application number: 99307240.4

(22) Date of filing: 14.09.1999

(54) Annulated 4-carboxyamino-2-methyl-1,2,3,4-tetrahydroquinolines as CETP inhibitors

Anellierte 4-Carboxyamino-2-Methyl-1,2,3,4-Tetrahydrochinoline als CETP-Hemmer

4-carboxyamino-2-methyl-1,2,3,4-tetrahydroquinolines annelés comme inhibiteurs du CETP

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

(30) Priority: 17.09.1998 US 100926 P

(43) Date of publication of application: 12.04.2000 Bulletin 2000/15

(73) Proprietor: Pfizer Products Inc. Groton, Connecticut 06340 (US)

(72) Inventors:

 Deninno, Michael Paul Groton, Connecticut 06340 (US)

Ruggeri, Roger Benjamin
 Groton, Connecticut 06340 (US)

 Wester, Ronald Thure Groton, Connecticut 06340 (US)

(74) Representative:

Simpson, Alison Elizabeth Fraser et al Urquhart-Dykes & Lord LLP 30 Welbeck Street London W1G 8ER (GB)

(56) References cited:

EP-A- 0 818 448

US-A- 5 231 101

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 0 992 496 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

BACKGROUND OF INVENTION

- [0001] This invention relates to cholesteryl ester transfer protein (CETP) inhibitors, pharmaceutical compositions containing such inhibitors and the use of such inhibitors to elevate certain plasma lipid levels, including high density lipoprotein (HDL)-cholesterol and to lower certain other plasma lipid levels, such as low density lipoprotein (LDL)-cholesterol and accordingly to treat diseases which are affected by low levels of HDL cholesterol and/or high levels of LDL-cholesterol and triglycerides, such as atherosclerosis and cardiovascular diseases in certain mammals (i.e., those which have CETP in their plasma), induding humans.
 - [0002] Atherosclerosis and its associated coronary artery disease (CAD) is the leading cause of mortality in the industrialized world. Despite attempts to modify secondary risk factors (smoking, obesity, lack of exercise) and treatment of dyslipidemia with dietary modification and drug therapy, coronary heart disease (CHD) remains the most common cause of death in the U.S., where cardiovascular disease accounts for 44% of all deaths, with 53% of these associated with atherosclerotic coronary heart disease.
 - [0003] Risk for development of this condition has been shown to be strongly correlated with certain plasma lipid levels. While elevated LDL-C may be the most recognized form of dyslipidemia, it is by no means the only significant lipid associated contributor to CHD. Low HDL-C is also a known risk factor for CHD (Gordon, D.J., et al.,: "High-density Lipoprotein Cholesterol and Cardiovascular Disease", Circulation, (1989), 79: 8-15).
- [0004] High LDL-cholesterol and triglyceride levels are positively correlated, while high levels of HDL-cholesterol are negatively correlated with the risk for developing cardiovascular diseases. Thus, dyslipidemia is not a unitary risk profile for CHD but may be comprised of one or more lipid aberrations.
 - [0005] Among the many factors controlling plasma levels of these disease dependent principles, cholesteryl ester transfer protein (CETP) activity affects all three. The role of this 70,000 dalton plasma glycoprotein found in a number of animal species, including humans, is to transfer cholesteryl ester and triglyceride between lipoprotein particles, including high density lipoproteins (HDL), low density lipoproteins (LDL), very low density lipoproteins (VLDL), and chylomicrons. The net result of CETP activity is a lowering of HDL cholesterol and an increase in LDL cholesterol. This effect on lipoprotein profile is believed to be pro-atherogenic, especially in subjects whose lipid profile constitutes an increased risk for CHD.
- 30 [0006] No wholly satisfactory HDL-elevating therapies exist. Niacin can significantly increase HDL, but has serious toleration issues which reduce compliance. Fibrates and the HMG CoA reductase inhibitors raise HDL-C only modestly (~10-12%). As a result, there is a significant unmet medical need for a well-tolerated agent which can significantly elevate plasma HDL levels, thereby reversing or slowing the progression of atherosclerosis.
 - [0007] Thus, although there are a variety of anti-atherosclerosis therapies, there is a continuing need and a continuing search in this field of art for alternative therapies.
 - **[0008]** EP0818448 (970624) discloses the preparation of certain 5,6,7,8 substituted tetrahydroquinolines and analogs as cholesteryl ester transfer protein inhibitors.
 - [0009] U.S. Pat. No. 5,231,102 discloses a class of 4-substituted 1,2,3,4-tetrahydroquinolines that possess an acidic group (or group convertible thereto <u>in vivo</u>) at the 2-position that are specific antagonists of N-methyl-D-aspartate (NMDA) receptors and are therefore useful in the treatment and/or prevention of neurodegenerative disorders.
 - [0010] U.S. Pat. No. 5,288,725 discloses pyrroloquinoline bradykinin antagonists.

SUMMARY OF THE INVENTION

45 [0011] This invention is directed to compounds of Formula I

50

35

prodrugs thereof, and pharmaceutically acceptable salts of said compounds and said prodrugs; wherein R1 is hydrogen, Y, W-X, W-Y;

wherein W is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

X is -O-Y. -S-Y, -N(H)-Y or -N-(Y)₂;

5

10

15

20

30

Y for each occurrence is independently Z or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z;

wherein Z is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2 - C_6)$ alkenyl, $(C_1 - C_6)$ alkyl, hydroxy, $(C_1 - C_6)$ alkoxy, $(C_1 - C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1 - C_6)$ alkylamino wherein said $(C_1 - C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1 - C_6)$ alkoxy, $(C_1 - C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1 - C_6)$ alkylamino, said $(C_1 - C_6)$ alkyl optionally substituted with from one to nine fluorines; R³ is hydrogen or Q;

wherein Q is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V:

wherein V is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N, N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl or (C_2-C_6) alkenyl optionally substituted with from one to nine fluorines; R^4 is Q^1 or V^1 ;

wherein Q¹ a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said

sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V1;

wherein V1 is is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

 $wherein\ said\ V^1\ substituent\ is\ optionally\ mono-,\ di-,\ tri-,\ or\ tetra-substituted\ independently\ with\ halo,\ (C_1-C_6)alkyl,$ (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C₁-C₆)alkyl substituent is optionally mono-substituted with oxo, said (C₁-C₆)alkyl substituent optionally having from one to nine fluorines;

wherein either R3 must contain V or R4 must contain V1; and

R5 and R6, or R6 and R7, and/or R7 and R8 are taken together and form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by R⁵ and R⁶, or R⁶ and R⁷, and/or R⁷ and R⁸ are optionally mono-, di- or tri $substituted\ independently\ with\ halo,\ (C_1-C_6)alkyl,\ (C_1-C_4)alkylsulfonyl,\ (C_2-C_6)alkenyl,\ hydroxy,\ (C_1-C_6)alkoxy,\ (C_1-C_4)alkylsulfonyl,\ hydroxy,\ hydroxy,\$ alkylthio, amino, nitro, cyano, oxo, carboxy, (C1-C6)alkyloxycarbonyl, mono-N- or di-N,N-(C1-C6)alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C1-C6)alkyl substituent also optionally substituted with from one to nine fluorines;

provided that the R5, R6, R7 and/or R8, as the case may be, that do not form at least one ring are each inde $pendently\ hydrogen,\ halo,\ (C_1-C_6) alkoxy\ or\ (C_1-C_6) alkyl,\ said\ (C_1-C_6) alkyl\ optionally\ having\ from\ one\ to\ nine\ fluorines.$ [0012] A preferred group of compounds, designated the A Group, contains those compounds having Formula I as shown above wherein

the C² methyl is beta;

the C4 nitrogen is beta:

R1 is W-X:

30

45

5

W is carbonyl, thiocarbonyl or sulfonyl;

X is -O-Y-, S-Y-, N(H)-Y- or -N-(Y)₂-;

Y for each occurrence is independently Z or (C_1-C_4) alkyl, said (C_1-C_4) alkyl substituted optionally with hydroxy or from one to nine fluorines or said (C1-C4)alkyl optionally mono-substituted with Z;

wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

 $wherein\ said\ Z\ substituent\ is\ optionally\ mono-,\ di-\ or\ tri-substituted\ independently\ with\ halo,\ (C_1-C_4)\ alkyl,\ (C_1-C_4)$ alkoxy, (C₁-C₄)alkylthio, nitro, cyano, oxo, or (C₁-C₆)alkyloxycarbonyl, said (C₁-C₄)alkyl substituent optionally substituent tuted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C1-C6)alkoxy, nitro, cyano or oxo wherein said (C1-C6)alkyl optionally has from one to nine fluorines;

R5 and R6, or R6 and R7, or R7 and R8 are taken together and form one ring that is a partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R5 and R6, or R6 and R7, or R7 and R8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, $\ \, \text{amino, nitro, cyano, oxo, carboxy, } \\ (C_1-C_4) \\ \text{alkyloxycarbonyl, mono-N- or di-N,N-} \\ (C_1-C_4) \\ \text{alkylamino wherein said } \\ (C_1-C_4) \\ \text{alkyloxycarbonyl, mono-N- or di-N,N-} \\ (C_1-C_4) \\ \text{alkylamino wherein said } \\ (C_1-C_4) \\ \text{alkyloxycarbonyl, mono-N- or di-N,N-} \\ (C_1-C_4) \\ \text{alkylamino wherein said } \\ (C_1-C_4) \\ \text{alkyloxycarbonyl, mono-N- or di-N,N-} \\ (C_1-C_4) \\ \text{alkyloxycarbonyl, mo$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C₁-C₄)alkoxy, (C₁-C₄)alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkylamino or s optionally having from one to nine fluorines;

provided that the R5, R6, R7 and/or R8, as the case may be, that do not form the ring are hydrogen;

or a pharmaceutically acceptable salt thereof.

[0013] A group of compounds which is preferred among the A Group of compounds, designated the B Group, contains those compounds wherein

W is carbonyl;

X is O-Y wherein Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl optionally having from one to nine fluorines;

Q is (C₁-C₄)alkyl and V is phenyl, pyridinyl, or pyrimidinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C1-C6)alkyl, hydroxy, (C1-C6)alkoxy, nitro, cyano or oxo wherein said (C1-C6)alkyl substituent optionally has hydroxy or from one to nine fluorines:

R⁶ and R⁷ are taken together and form a mono-unsaturated five to six membered ring optionally having one or two heteratoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^6 and R^7 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_2) alkylamino, wherein said (C_1-C_2) alkyl substituent is optionally mono-substituted with oxo and said (C_1-C_2) alkyl optionally having from one to five fluorines;

R5 and R8 are H;

and pharmaceutically acceptable salts thereof.

[0014] A group of compounds which is preferred among the B Group of compounds, designated the C Group, contains those compounds wherein

Q is methylene and V is phenyl or pyridinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, or nitro wherein said (C_1-C_2) alkyl optionally has from one to five fluorines;

R⁶ and R⁷ taken together form one five or six membered mono-unsaturated ring optionally containing one heteroatom independently selected from nitrogen, oxygen and sulfur;

and pharmaceutically acceptable salts thereof.

[0015] Especially preferred compounds of Formula I are the compounds

[2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g] quinoline-1-carboxylic acid ethyl ester;

[6R, 8S] 8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-1H-2-thia-5-aza-cy-clopenta[b]naphthalene-5-carboxylic acid ethyl ester;

[6R, 8S] 8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-2H-furo[2,3-g]quino-line-5-carboxylic acid ethyl ester;

[2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,8-tetrahydro-2H-furo[3,4-g]quino-line-1-carboxylic acid ethyl ester;

[2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,7,8,9-hexahydro-2H-benzo[g]qui-noline-1-carboxylic acid propyl ester;

and pharmaceutically acceptable salts of said compounds.

[0016] Especially preferred compounds within the C Group of compounds are compounds wherein

30 a. Y is ethyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R⁶ and R⁷ taken together form -CH₂CH₂CH₂-;

b. Y is ethyl;

R3 is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R6 and R7 taken together form -CH2SCH2-;

c. Y is ethyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R⁴ is methyl; and

R⁶ and R⁷ taken together form -OCH₂CH₂-, the oxy attached at the six position;

d. Y is ethyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

45 R6 and R7 taken together form -CH2OCH2-; and

e. Y is propyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R⁶ and R⁷ taken together form -CH₂CH₂CH₂CH₂-,

and pharmaceutically acceptable salts of said compounds.

[0017] A group of compounds which is preferred among the A Group of compounds, designated the D Group, contains those compounds wherein

W is carbonyl;

X is O-Y wherein Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl optionally having from one to nine fluorines;

⁵⁵ Q is (C₁-C₄)alkyl and V is phenyl, pyridinyl, or pyrimidinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines; R^5 and R^6 are taken together and form a mono-unsaturated five to six membered ring optionally having one or two

heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said rings formed by R^5 and R^6 are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_2) alkylamino wherein said (C_1-C_2) alkyl substituent is optionally mono-substituted with oxo and said (C_1-C_2) alkyl optionally having from one to five fluorines; R^7 and R^8 are H; and pharmaceutically acceptable salts thereof

[0018] A group of compounds which is preferred among the D Group of compounds, designated the E Group, contains those compounds wherein

Q is methylene and V is phenyl or pyridinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, or nitro wherein said (C_1-C_2) alkyl optionally has from one to five fluorines; and

R⁵ and R⁶ taken together form one five membered mono-unsaturated ring optionally containing one heteroatom selected from nitrogen, oxygen and sulfur; and pharmaceutically acceptable salts thereof.

[0019] An especially preferred compound of Formula I is the compound [7R,9S] 9-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cyclopenta[a]naphthalene-6-carboxylic acid ethyl ester or a pharmaceutically acceptable salt thereof.

[0020] An especially preferred compound within the E Group of compounds is the compound wherein Y is ethyl;

R3 is 3,5-bis-trifluoromethylphenylmethyl;

20 R⁴ is methyl; and

10

R5 and R6 taken together form -CH2CH2CH2-;

or a pharmaceutically acceptable salt thereof.

[0021] A group of compounds which is preferred among the A Group of compounds, designated the F Group, contains those compounds wherein

5 W is carbonyl;

X is O-Y wherein Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl substituent optionally having from one to nine fluorines;

Q is (C₁-C₄)alkyl and V is phenyl, pyridinyl, or pyrimidinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines;

R⁷ and R⁸ are taken together and form a mono-unsaturated five to six membered ring optionally having one or two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_2) alkylamino wherein said (C_1-C_2) alkyl substituent is optionally mono-substituted with oxo and said (C_1-C_2) alkyl optionally having from one to five fluorines;

R⁵ and R⁶ are H;

and pharmaceutically acceptable salts thereof.

[0022] A group of compounds which is preferred among the F Group of compounds, designated the G Group, contains those compounds wherein

Q is methylene and V is phenyl or pyridinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, or nitro wherein said (C_1-C_2) alkyl optionally has from one to five fluorines;

R⁷ and R⁸ taken together form one five or six membered mono-unsaturated ring optionally containing one heteroatom selected from nitrogen, oxygen and sulfur; and pharmaceutically acceptable salts thereof.

[0023] An especially preferred compound of Formula I is the compound [6S,8R] 6-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-8-methyl-1,2,3,6,7,8-hexahydro-9-aza-cyclopenta[a]naphthalene-9-carboxylic acid ethyl ester or a pharmaceutically acceptable salt thereof.

[0024] An especially preferred compound within the G Group of compounds is the compound wherein Y is ethyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R7 and R8 taken together form -CH2CH2CH2-;

or a pharmaceutically acceptable salt thereof.

[0025] A preferred group of compounds, designated the H Group, contains those compounds having the Formula I as shown above wherein

the C² methyl is beta;

the C4 nitrogen is beta:

R1 is W-Y;

W is carbonyl, thiocarbonyl or sulfonyl;

Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl optionally having from one to nine fluorines or said (C_1-C_4) alkyl optionally monosubstituted with Z wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines; R^4 is (C_1-C_4) alkyl;

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is a partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyl optionally having from one to nine fluorines;

provided that the R⁵, R⁶, R⁷ and/or R⁸, as the case may be, that do not form the ring are hydrogen; or a pharmaceutically acceptable salt thereof.

[0026] A preferred group of compounds, designated the I Group, contains those compounds having the Formula I as shown above wherein

the C2 methyl is beta;

the C⁴ nitrogen is beta:

R1 is W-Z;

10

W is carbonyl, thiocarbonyl or sulfonyl;

Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines; R^4 is (C_1-C_4) alkyl;

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is a partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_4)$ alkyl, $(C_1\text{-}C_4)$ alkylsulfonyl, $(C_2\text{-}C_4)$ alkenyl, hydroxy, $(C_1\text{-}C_4)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_4)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_4)$ alkylamino wherein said $(C_1\text{-}C_4)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_4)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_4)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_4)$ alkylamino or said $(C_1\text{-}C_4)$ alkyl optionally having from one to nine fluorines;

provided that the R⁵, R⁶, R⁷ and/or R⁸, as the case may be,-that do not form the ring are hydrogen; or a pharmaceutically acceptable salt thereof.

[0027] A preferred group of compounds, designated the J Group, contains those compounds having the Formula I as shown above wherein

the C² methyl is beta;

the C4 nitrogen is beta:

5 R¹ is Y;

wherein Y is (C_1-C_6) alkyl, said (C_1-C_6) alkyl optionally having from one to nine fluorines or said (C_1-C_6) alkyl optionally mono-substituted with Z wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl optionally has from one to nine fluorines; R^4 is (C_1-C_4) alkyl;

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is a partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyloxycarbonyl having from one to nine fluorines;

provided that the R^5 , R^6 , R^7 and/or R^8 , as the case may be, that do not form the ring are hydrogen; and pharmaceutically acceptable salts thereof.

[0028] A preferred group of compounds, designated the K Group, contains those compounds having the Formula I as shown above wherein

the C2 methyl is beta;

the C⁴ nitrogen is beta:

R1 is Z;

30

35

40

wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl optionally has from one to nine fluorines; R^4 is (C_1-C_4) alkyl;

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is a partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylsulfonyl, intro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyloxycarbonyl having from one to nine fluorines;

wherein the R^6 , R^7 and/or R^8 , as the case may be, that do not form the ring are hydrogen; and pharmaceutically acceptable salts thereof.

[0029] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia in a mammal (including a human being either male or female).

[0030] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of atherosclerosis in a mammal (including a human being)

[0031] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of peripheral vascular disease in a mammal (including a human being).

[0032] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula

I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of dyslipidemia in a mammal (including a human being).

[0033] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of hyperbetalipoproteinemia in a mammal (including a human being).

[0034] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of hypoalphalipoproteinemia in a mammal (including a human being).

[0035] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of hypercholesterolemia in a mammal (including a human being).

[0036] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of hypertriglyceridemia in a mammal (including a human being).

[0037] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of familial-hypercholesterolemia in a mammal (including a human being).

[0038] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of cardiovascular disorders in a mammal (including a human being).

[0039] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of angina in a mammal (including a human being).

[0040] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of ischemia in a mammal (including a human being).

[0041] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of cardiac ischemia in a mammal (including a human being).

[0042] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of stroke in a mammal (including a human being).

[0043] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of myocardial infarction in a mammal (including a human being).

[0044] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of reperfusion injury in a mammal (including a human being).

[0045] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of angioplastic restenosis in a mammal (including a human being).

40

50

[0046] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of hypertension in a mammal (including a human being).

[0047] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of vascular complications of diabetes in a mammal (including a human being).

[0048] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of obesity in a mammal (including a human being).

[0049] Yet another aspect of this invention is directed to the use of an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt of said compound for the preparation of a medicament for the treatment of endotoxemia in a mammal (including a human being).

[0050] A preferred dosage is about 0.001 to 100 mg/kg/day of a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug. An especially preferred dosage is about 0.01 to 10 mg/kg/day of a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

[0051] This invention is also directed to pharmaceutical compositions which comprise a therapeutically effective

amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0052] This invention is also directed to pharmaceutical compositions for the treatment of atherosderosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia in a mammal (induding a human being) which comprise a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0053] This invention is also directed to pharmaceutical compositions for the treatment of atherosclerosis in a mammal (including a human being) which comprise an atherosclerosis treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0054] This invention is also directed to pharmaceutical compositions for the treatment of peripheral vascular disease in a mammal (including a human being) which comprise a peripheral vascular disease treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0055] This invention is also directed to pharmaceutical compositions for the treatment of dyslipidemia in a mammal (including a human being) which comprise a dyslipidemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier

[0056] This invention is also directed to pharmaceutical compositions for the treatment of hyperbetalipoproteinemia in a mammal (including a human being) which comprise a hyperbetalipoproteinemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0057] This invention is also directed to pharmaceutical compositions for the treatment of hypoalphalipoproteinemia in a mammal (including a human being) which comprise a hypoalphalipoproteinemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0058] This invention is also directed to pharmaceutical compositions for the treatment of hypercholesterolemia in a mammal (including a human being) which comprise a hypercholesterolemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0059] This invention is also directed to pharmaceutical compositions for the treatment of hypertriglyceridemia in a mammal (including a human being) which comprise a hypertriglyceridemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0060] This invention is also directed to pharmaceutical compositions for the treatment of familial-hypercholesterolemia in a mammal (including a human being) which comprise a familial-hypercholesterolemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0061] This invention is also directed to pharmaceutical compositions for the treatment of angina in a mammal (including a human being) which comprise an angina treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0062] This invention is also directed to pharmaceutical compositions for the treatment of ischemia in a mammal (including a human being) which comprise an ischemic treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0063] This invention is also directed to pharmaceutical compositions for the treatment of cardiac ischemia in a mammal (including a human being) which comprise a cardiac ischemic treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0064] This invention is also directed to pharmaceutical compositions for the treatment of stroke in a mammal (including a human being) which comprise a stroke treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0065] This invention is also directed to pharmaceutical compositions for the treatment of a myocardial infarction in a mammal (including a human being) which comprise a myocardial infarction treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0066] This invention is also directed to pharmaceutical compositions for the treatment of reperfusion injury in a mammal (including a human being) which comprise a reperfusion injury treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0067] This invention is also directed to pharmaceutical compositions for the treatment of angioplastic restenosis in a mammal (induding a human being) which comprise an angioplastic restenosis treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0068] This invention is also directed to pharmaceutical compositions for the treatment of hypertension in a mammal (including a human being) which comprise a hypertension treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0069] This invention is also directed to pharmaceutical compositions for the treatment of the vascular complications of diabetes in a mammal (including a human being) which comprise a vascular complications of diabetes treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0070] This invention is also directed to pharmaceutical compositions for the treatment of obesity in a mammal (including a human being) which comprise an obesity treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0071] This invention is also directed to pharmaceutical compositions for the treatment of endotoxemia in a mammal (including a human being) which comprise an endotoxemia treating amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier.

[0072] This invention is also directed to a pharmaceutical combination composition comprising: a therapeutically effective amount of a composition comprising

a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;

a second compound, said second compound being an HMG-CoA reductase inhibitor, an microsomal triglyceride transfer protein (MTP)/Apo B secretion inhibitor, a PPAR activator, a bile add reuptake inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an ACAT inhibitor or a bile acid sequestrant; and/or optionally

a pharmaceutical carrier.

10

40

50

55

[0073] Preferred among the second compounds are an HMG-CoA reductase inhibitor and a MTP/Apo B secretion inhibitor.

[0074] A particularly preferred HMG-CoA reductase inhibitor is lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin or rivastatin.

[0075] Another aspect of this invention is a method for treating atherosderosis in a mammal comprising administering to a mammal suffering from atherosderosis;

a first compound, said first compound being a Formula I compound a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug; and

a second compound, said second compound being an HMG-CoA reductase inhibitor, an MTP/Apo B secretion inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an ACAT inhibitor or a bile acid sequestrant wherein the amounts of the first and second compounds result in a therapeutic effect.

[0076] A preferred aspect of the above method is wherein the second compound is an HMG-CoA reductase inhibitor or an MTP/Apo B secretion inhibitor.

[0077] A particularly preferred aspect of the above method is wherein the HMG-CoA reductase inhibitor is lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin or rivastatin.

[0078] Yet another aspect of this invention is a kit comprising:

 a. a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier in a first unit dosage form;

b. of a second compound, said second compound being an HMG CoA reductase inhibitor, an MTP/Apo B secretion inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an ACAT inhibitor or a bile acid sequestrant and a pharmaceutically acceptable carrier in a second unit dosage form; and

c. means for containing said first and second dosage forms wherein the amounts of the first and second compounds

result in a therapeutic effect.

20

25

[0079] A preferred second compound is an HMG-CoA reductase inhibitor or an MTP/Apo B secretion inhibitor.

[0080] A particularly preferred HMG-CoA reductase inhibitor is lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin or rivastatin.

[0081] As used herein the term mammals is meant to refer to all mammals which contain CETP in their plasma, for example, rabbits and primates such as monkeys and humans. Certain other mammals e.g., dogs, cats, cattle, goats, sheep and horses do not contain CETP in their plasma and so are not included herein.

[0082] The term "treating", "treat" or "treatment" as used herein includes preventative (e.g., prophylactic) and palliative treatment.

[0083] By "pharmaceutically acceptable" is meant the carrier, diluent, excipients, and/or salt must be compatible with the other ingredients of the formulation, and not deleterious to the recipient thereof.

[0084] The expression "prodrug" refers to compounds that are drug precursors which following administration, release the drug in vivo via some chemical or physiological process (e.g., a prodrug on being brought to the physiological pH or through enzyme action is converted to the desired drug form). Exemplary prodrugs upon deavage release the corresponding free acid, and such hydrolyzable ester-forming residues of the Formula I compounds include but are not limited to those having a carboxyl moiety wherein the free hydrogen is replaced by (C1-C4)alkyl; (C2-C7)alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, $\hbox{$4$-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-$($C_1-C_2$) alkylamino($C_2-C_3$) alkyl (such as b-dimethylaminoethyl), and the such as b-dimethylaminoethyl), and the such as b-dimethylaminoethyl), and the such as b-dimethylaminoethyl, as b-dimethylaminoethyl, and the such as b-dimethylaminoethylaminoethylaminoethyl, and the such as b-dimethylaminoethy$ $carbamoyl-(C_1-C_2)alkyl,\ N, N-di(C_1-C_2)alkyl carbamoyl-(C_1-C_2)alkyl\ and\ piperidino-,\ pyrrolidino-\ or\ morpholino(C_2-C_3)alkyl\ and\ piperidino-,\ pyrrolidino-\ or\ morpholino(C_2-C_3)alkyl\ and\ piperidino-,\ pyrrolidino-\ or\ morpholino(C_2-C_3)alkyl\ and\ piperidino-\ or\ morpholino(C_2-C_3)alkyl\ and\ piperidino-\ or\ morpholino(C_3-C_3)alkyl\ and\$ alkyl.

[0085] The following paragraphs describe exemplary ring(s) for the generic ring descriptions contained herein.

[0086] Exemplary five to six membered aromatic rings optionally having one or two heteroatoms selected independently from oxygen, nitrogen and sulfur include phenyl, furyl, thienyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyridiazinyl, pyrimidinyl and pyrazinyl.

[0087] Exemplary partially saturated, fully saturated or fully unsaturated five to eight membered rings optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen include cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and phenyl. Further exemplary five membered rings include 2H-pyrrolyl, 3H-pyrrolyl, 2-pyrrolinyl, 3-pyrrolinyl, pyrrolidinyl, 1,3-dioxolanyl, oxazolyl, thiazolyl, imidazolyl, 2H-imidazolyl, 2-imidazolinyl, imidazolidinyl, pyrazolyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, 1,2-dithiolyl, 1,3-dithiolyl, 3H-1,2-oxathiolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,3,4-thiadiazolyl, 1,2,3,4-oxatriazolyl, 1,2,3,5-oxatriazolyl, 3H-1,2,3-dioxazolyl, 1,2,4-dioxazolyl, 1,3,2-dioxazolyl, 1,3,4-dioxazolyl, 5H-1,2,5-oxathiazolyl and 1,3-oxathiolyl.

[0088] Further exemplary six membered rings include 2H-pyranyl, 4H-pyranyl, pyridinyl, piperidinyl, 1,2-dioxinyl, 1,3-dioxinyl, 1,4-dioxanyl, morpholinyl, 1,4-dithianyl, thiomorpholinyl, pyridazinyl, pyrimidinyl, pyrazinyl, piperazinyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, 1,3,5-trithianyl, 4H-1,2-oxazinyl, 2H-1,3-oxazinyl, 6H-1,3-oxazinyl, 6H-1, 1,2-oxazinyl, 1,4-oxazinyl, 2H-1,2-oxazinyl, 4H-1,4-oxainyl, 1,2,5-oxathiazinyl, 1,4-oxazinyl, o-isoxazinyl, p-isoxazinyl, 1,2,5-oxathiazinyl, 1,2,6-oxathiazinyl, 1,4,2-oxadiazinyl and 1,3,5,2-oxadiazinyl.

Further exemplary seven membered rings include azepinyl, oxepinyl, and thiepinyl.

[0089] Further exemplary eight membered rings include cyclooctyl, cyclooctenyl and cyclooctadienyl.

[0090] Exemplary bicyclic rings consisting of two fused partially saturated, fully saturated or fully unsaturated five or six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen include indolizinyl, indolyl, isolndolyl, 3H-indolyl, 1H-isoindolyl, indolinyl, cyclopenta(b)pyidinyl, pyrano(3,4-b)pyrrolyl, benzofuryl, isobenzofuryl, benzo(b)thienyl, benzo(c)thienyl, 1H-indazolyl, indoxazinyl, benzofuryl, benzo(c)thienyl, 1H-indazolyl, indoxazinyl, benzo(c)thienyl, 1H-indazolyl, indoxazinyl, benzo(c)thienyl, benzo(c)th zoxazolyl, benzimidazolyl, benzthiazolyl, purinyl, 4H-quinolizinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, pteridinyl, indenyl, isoindenyl, naphthyl, tetralinyl, decalinyl, 2H-1-benzopyranyl, pyrido(3,4-b)-pyridinyl, pyrido(3,2-b)-pyridinyl, pyrido(4,3-b)-pyridinyl, 2H-1,3-benzoxazinyl, 2H-1,4-benzoxazinyl, 1H-2,3-benzoxazinyl, 4H-3,1-benzoxazinyl, 2H-1,2-benzoxazinyl and 4H-1,4-benzoxazinyl.

[0091] By alkylene is meant saturated hydrocarbon (straight chain or branched) wherein a hydrogen atom is removed from each of the terminal carbons. Exemplary of such groups (assuming the designated length encompasses the particular example) are methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene).

[0092] By halo is meant chloro, bromo, iodo, or fluoro.

[0093] By alkyl is meant straight chain saturated hydrocarbon or branched chain saturated hydrocarbon. Exemplary of such alkyl groups (assuming the designated length encompasses the particular example) are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, terdarybutyl, pentyl, isopentyl, neopentyl, tertiary pentyl, 1-methylbutyl, 2-methylbutyl,

3-methylbutyl, hexyl, isohexyl, heptyl and octyl.

[0094] By alkoxy is meant straight chain saturated alkyl or branched chain saturated alkyl bonded through an oxy. Exemplary of such alkoxy groups (assuming the designated length encompasses the particular example) are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, neopentoxy, tertiary pentoxy, hexoxy, isobexoxy, heptoxy and octoxy.

[0095] As used herein the term mono-N- or di-N,N- (C_1-C_x) alkyl... refers to the (C_1-C_x) alkyl moiety taken independently when it is di-N,N- (C_1-C_x) alkyl...(x refers to integers).

[0096] It is to be understood that if a carbocyclic or heterocyclic moiety may be bonded or otherwise attached to a designated substrate through differing ring atoms without denoting a specific point of attachment, then all possible points are intended, whether through a carbon atom or, for example, a trivalent nitrogen atom. For example, the term "pyridyl" means 2-, or 4-pyridyl, the term "thienyl" means 2-, or 3-thienyl, and so forth.

[0097] References (e.g., claim 1) to "said carbon" in the phrase "said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo" refers to each of the carbons in the carbon chain including the connecting carbon.

[0098] References to "Nitrogen... di-substituted with oxo" herein (e.g., claim 1) refer to a terminal nitrogen which constitutes a nitro functionality.

[0099] The expression "pharmaceutically-acceptable salt" refers to nontoxic anionic salts containing anions such as (but not limited to) chloride, bromide, iodide, sulfate, bisulfate, phosphate, acetate, maleate, fumarate, oxalate, lactate, tartrate, citrate, gluconate, methanesulfonate and 4-toluene-sulfonate. The expression also refers to nontoxic cationic salts such as (but not limited to) sodium, potassium, calcium, magnesium, ammonium or protonated benzathine (N, N'-dibenzylethylenediamine), choline, ethanolamine, diethanolamine, ethylenediamine, meglamine (N-methylglucamine), benethamine (N-benzylphenethylamine), piperazine or tromethamine (2-amino-2-hydroxymethyl-1,3-propanediol).

[0100] As used herein, the expressions "reaction-inert solvent" and "inert solvent" refers to a solvent or a mixture thereof which does not interact with starting materials, reagents, intermediates or products in a manner which adversely affects the yield of the desired product.

[0101] The term "cis" refers to the orientation of two substituents with reference to each other and the plane of the ring (either both "up" or both "down"). Analogously, the term "trans" refers to the orientation of two substituents with reference to each other and the plane of the ring (the substituents being on opposite sides of the ring).

[0102] Alpha and Beta refer to the orientation of a substituent with reference to the plane of the ring (i.e., page). Beta is above the plane of the ring (i.e., page) and Alpha is below the plane of the ring (i.e., page).

[0103] The chemist of ordinary skill will recognize that certain compounds of this invention will contain one or more atoms which may be in a particular stereochemical or geometric configuration, giving rise to stereoisomers and configurational isomers. All such isomers and mixtures thereof are included in this invention. Hydrates and solvates of the compounds of this invention are also included.

[0104] It will be recognized that the compounds of this invention can exist in radiolabelled form, i.e., said compounds may contain one or more atoms containing an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Radioisotopes of hydrogen, carbon, phosphorous, fluorine and chlorine include ³H, ¹⁴C, ³²P, ³⁵S, ¹⁸F and ³⁶Cl, respectively. Compounds of this invention, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug which contain those radioisotopes and/or other radioisotopes of other atoms are within the scope of this invention. Tritiated, i.e., ³H, and carbon-14, i.e., ¹⁴C, radioisotopes are particularly preferred for their ease of preparation and detectability. Radiolabelled compounds of Formula I of this invention and prodrugs thereof can generally be prepared by methods well known to those skilled in the art. Conveniently, such radiolabelled compounds can be prepared by carrying out the procedures disclosed in the Schemes and/or in the Examples below by substituting a readily available radiolabelled reagent for a non-radiolabelled reagent.

[0105] DTT means dithiothreitol. DMSO means dimethyl sulfoxide. EDTA means ethylenediamine tetraacetic acid. [0106] Other features and advantages of this invention will be apparent from this specification and the appendant daims which describe the invention.

50 DETAILED DESCRIPTION OF THE INVENTION

[0107] In general the compounds of this invention can be made by processes which include processes analogous to those known in the chemical arts, particularly in light of the description contained herein. Certain processes for the manufacture of the compounds of this invention are provided as further features of the invention and are illustrated by the following reaction schemes. Other processes may be described in the experimental section.

VII

50

55

5

10

15

20

25

30

35

40

45

50

55

SCHEME II

XI x XVI (R1 or P1) XII (R¹ or P¹) ΧШ HŅ'

VI V

SCHEME III

j,

XX

R^o

(R1 or P1)

17

XX

SCHEME VI

5

10

15

20

P² or (R⁴O₂C)

LX

LXI

25

30

35

40

45

50

55

P2 or (R4O2C) (R¹ or P¹)

(R1 or P1)

P² or (R⁴O₂C)

LXIII

P² or (R⁴O₂C) R⁶ Ме

Halo

LXII

LXIV

(R¹ or P¹)

SCHEME VII

5

R²⁰
N
Me
(R¹ or P¹)

P² or (R⁴O₂C)

20

LXXI

25

30

35

Substituent R⁸ (R¹ or P¹)

40

45

50

55

LXXII

SCHEME VIII

5 10 LXXXXIV 15 20 25 LXXXI LXXX 30 35 LXXXIII 40 DXXX LXXXXI

[0108] As an initial note, in the preparation of the Formula I compounds it is noted that some of the preparation methods useful for the preparation of the compounds described herein may require protection of remote functionality (e.g., primary amine, secondary amine, carboxyl in Formula I precursors). The need for such protection will vary depending on the nature of the remote functionality and the conditions of the preparation methods. The need for such protection is readily determined by one skilled in the art. The use of such protection/deprotection methods is also within the skill in the art. For a general description of protecting groups and their use, see T.W. Greene, <u>Protective Groups</u> in Organic Synthesis, John Wiley & Sons, New York, 1991.

[0109] For example, in Reaction Schemes I and II certain Formula I compounds contain primary amines or carboxylic acid functionalities which may interfere with reactions at other sites of the molecule if left unprotected. Accordingly, such functionalities may be protected by an appropriate protecting group which may be removed in a subsequent step. Suitable protecting groups for amine and carboxylic acid protection include those protecting groups commonly used in peptide synthesis (such as N-t-butoxycarbonyl, benzyloxycarbonyl, and 9-fluorenylmethylenoxycarbonyl for amines and lower alkyl or benzyl esters for carboxylic acids) which are generally not chemically reactive under the reaction conditions described and can typically be removed without chemically altering other functionality in the Formula I com-

pound.

30

[0110] According to Reaction Scheme I, the Formula III compounds wherein R5, R6, R7, and R8 are as described above and P2 is an appropriate protecting group may be prepared from the appropriate Formula II aromatic amine wherein R5, R6, R7 and R8 are as described above.

[0111] The Formula III tetrahydroquinoline is prepared by treating the appropriate Formula II aromatic amine with the requisite acetaldehyde in an inert solvent such as a hydrocarbon (e.g., hexanes, pentanes or cyclohexane), an aromatic hydrocarbon (e.g., benzene, toluene or xylene), a halocarbon (e.g., dichloromethane, chloroform, carbon tetrachloride or dichloroethane), an ether (e.g., diethyl ether, diisopropyl ether, tetrahydrofuran, tetrahydropyran, dioxane, dimethoxyethane, methyl tert-butyl ether, etc.), a nitrile (e.g., acetonitrile or propionitrile), a nitroalkane (e.g., nitromethane or nitrobenzene), preferably dichloromethane with a dehydrating agent (e.g., sodium sulfate or magnesium sulfate) at a temperature of about 0°C to about 100°C (preferably ambient temperature) for 1-24 hours (preferably 1 hour). The resulting solution is treated with a suitably substituted (e.g., benzyloxycarbonyl, t-butoxycarbonyl, methoxycarbonyl, formyl-, acetyl-, diallyl- or dibenzyl-), preferably carboxybenzyloxy-, N-vinyl species and with a Lewis acid (e.g., boron trifluoride, boron trifluoride etherate, zinc chloride, titanium tetrachloride, iron trichloride, aluminum trichloride, alkyl aluminum dichloride, dialkyl aluminum chloride or ytterbium (III) triflate; preferably boron trifluoride etherate) or a protic acid such as a hydrohalogenic acid (e.g., fluoro, chloro, bromo or iodo), an alkyl sulfonic acid (e.g., p-toluene, methane or trifloromethane) or carboxylic acid (e.g., formic, acetic, trifluoroacetic or benzoic) at a temperature of from about -78°C to about 50°C (preferably ambient temperature) for 0.1 to 24 hours (preferably 1 hour).

[0112] Alternatively, the Formula II amine and acetaldehyde may be condensed by treating a solution of the amine and an alkyl amine base (preferably triethyl amine) in a polar aprotic solvent (preferably dichloromethane) with titanium tetrachloride in a polar aprotic solvent (preferably in dichloromethane) at a temperature between about -78°C to about 40°C (preferably 0°C) followed by treatment with the acetaldehyde at a temperature between about -78°C to about 40°C (preferably 0°C). The reaction is allowed to proceed for about 0.1 to about 10 hours (preferably 1 hour) at a temperature between about 0°C to about 40°C (preferably room temperature) yielding the imine which is reacted with the N-vinyl species as above.

[0113] The compounds of Formula IV wherein R1, R5, R6, R7 and R8 are as described above and P1 and P2 are protecting groups may be prepared from the corresponding Formula III amine by various amine reaction routes known to those skilled in the art.

[0114] Thus, the Formula IV compounds wherein R1, R5, R6, R7, and R8 are as described above and P1 and P2 are appropriately differentiated protecting groups for the amine moieties are prepared from the corresponding Formula III tetrahydroquinoline employing standard methods for derivatizing amines into the functional groups described for R1 above, see Richard Larock, Comprehensive Organic Transformations, VCH Publishers Inc., New York, 1989 and Jerry March, Advanced Organic Chemistry, John Wiley & Sons, New York, 1985. For example, a Formula III compound is treated with the appropriate thiocarbonyl chloride, sulfonyl chloride, or sulfinyl chloride, isocyanate or thioisocyanate in a polar aprotic solvent (preferably dichloromethane) in the presence of a base (preferably pyridine) at a temperature of from about -78°C to about 100°C (preferably starting at 0°C and letting warm to room temperature) for a period of 1 to 24 hours (preferably 12 hours).

[0115] Formula IV carbamate and urea compounds (wherein R1 is W=C(O), X=O-Y, S-Y, N(H)-Y, or NY2) may be prepared from the Formula III amines via the corresponding carbamoyl chlorides by treating the Formula III amine with a phosgene solution in a hydrocarbon solvent (preferably toluene) at a temperature between about 0°C and 200°C (preferably at reflux) for between 0.1 and 24 hours (preferably 2 hours).

[0116] The corresponding ureas may be prepared by treating a solution of the carbamoyl chlorides (prepared as described above) with the appropriate amine in a polar solvent (preferably dichloromethane) at a temperature between about -78°C and about 100°C (preferably ambient temperature) for between 1 and 24 hours (preferably 12 hours).

[0117] The corresponding carbamate may be prepared by treating a solution of the carbamoyl chlorides (prepared as described above) with the appropriate alcohol and a suitable base (preferably sodium hydride) in a polar solvent (preferably dioxane) at a temperature between about -78°C and about 100°C (preferably ambient temperature) for between 1 and 24 hours (preferably 12 hours).

[0118] Alternatively, the corresponding carbamate may be prepared by treating a solution of the carbamoyl chlorides at a temperature between about 0°C and about 200°C in the appropriate alcohol for between 1 and 240 hours (preferably 24 hours).

[0119] The Formula IV compound wherein R1 is Y may be prepared using methods known to those skilled in the art to introduce Y substituents such as an alkyl or alkyl linked substituent. Methods include, for example, formation of the amide from the amine of Formula III and an activated carboxylic acid followed by reduction of the amide with borane in an etheral solvent such as tetrahydrofuran. Alternatively, the alkyl or alkyl linked substituent may be appended by reduction after condensing the amine of Formula III with the required carbonyl containing reactant. Also, the amine of Formula III may be reacted with the appropriate alkyl or aryl halide according to methods known to those skilled in the art. [0120] Thus, the Formula III amine and an acid (e.g., halogenic, sulfuric, sulfonic or carboxylic, preferably acetic)

are treated with the appropriate carbonyl containing reactant in a polar solvent (preferably ethanol) at a temperature of about 0°C to about 100°C (preferably room temperature) for about 0.1 to 24 hours (preferably 1 hour) followed by treatment with a hydride source (e.g., sodium borohydride, sodium cyanoborohydride, preferably sodium triacetoxyborohydride) at a temperature of about 0°C to 100°C (preferably ambient temperature) for 0.1 to 100 hours (preferably 5 hours).

5

15

25

30

50

[0121] The Formula V amine wherein R¹, R⁵, R⁶, R७, and Rፄ are as described above and P¹ is a protecting group may be prepared from the corresponding Formula IV compound by deprotection (P²) using methods known to those skilled in the art, including hydrogenolysis, treatment with an acid (e.g., trifluoroacetic acid, hydrobromic), a base (so-dium hydroxide), or reaction with a nucleophile (e.g. sodium methylthiolate, sodium cyanide, etc.) and for the trialkyls-ilylethoxy carbonyl group a fluoride is used (e.g., tetrabutyl ammonium fluoride). For removal of a benzyloxycarbonyl group, hydrogenolysis is performed by treating the Formula IV compound with a hydride source (e.g., 1 to 10 atmospheres of hydrogen gas: cyclohexene or ammonium formate, in the presence of a suitable catalyst (e.g., 5-20% palladium on carbon, palladium hydroxide; preferably 10% palladium on carbon) in a polar solvent (e.g., methanol, ethanol or ethyl acetate; preferably ethanol) at a temperature between about -78°C and about 100°C, preferably ambient temperature, for 0.1 to 24 hours, preferably 1 hour.

[0122] The compounds of Formula VI wherein R^1 , R^3 , R^5 , R^6 , R^7 and R^8 are as described above and P^1 is a protecting group as described above may be prepared from the corresponding Formula V amine by various amine reaction routes known to those skilled in the art.

[0123] The Formula VI secondary amine wherein R³ is as described above may be prepared using methods known to those skilled in the art to introduce R³ substituents such as an alkyl or alkyl linked substituent. Methods include, for example, formation of an amide from the amine and an activated carboxylic acid followed by reduction of the amide with borane in an etheral solvent such as tetrahydrofuran. Alternatively, an alkyl or alkyl linked substituent may be appended by reduction of the appropriate imine, the imine being formed by condensing the amine with the required carbonyl containing reactant. Also, the amine may be reacted with the appropriate alkyl halide according to methods known to those skilled in the art.

[0124] Thus, the Formula V amine and an acid (e.g., halogenic, sulfuric, sulfonic or carboxylic, preferably hydrochloric) are treated with the appropriate carbonyl containing reagent in a polar solvent (preferably dichloromethane) at a temperature of about 0°C to about 100°C (preferably room temperature) for about 0.1 to 24 hours (preferably 1 hour) followed by treatment with a hydride source (e.g., sodium borohydride or sodium cyanoborohydride; preferably sodium triacetoxyborohydride) at a temperature of about 0°C to about 100°C (preferably ambient temperature) for 0.1 to 100 hours (preferably 5 hours).

[0125] The Formula VII compound wherein R¹, R³, R⁵, R⁶, R⁷ and R⁸ are as described above and P¹ and P² are protecting groups may be prepared from the corresponding Formula IV compound by methods known to those skilled in the art; for example, the methods described for the introduction of the R³ substituent above in the transformation of the Formula V compound to the Formula VI compound. Following this, the corresponding Formula VI compound may be prepared from the Formula VII compound by appropriate deprotection such as the methods described above for the transformation of the Formula IV compound to the Formula V compound.

[0126] When R^3 is H and R^4 is as described above, R^4 may be represented by R^3 in the Formulas VI and VII in Scheme I, thus providing a synthetic scheme for such compounds.

[0127] According to Scheme II, the Formula XI dihydroquinolone compounds wherein R⁵, R⁶, R⁷, R⁸ and Y are as described above, and P¹ is a protecting group, may be prepared from the corresponding Formula X quinolines by treatment with a metallomethyl species and a chloroformate followed by hydrolysis.

[0128] Thus, a mixture of the Formula X quinoline and an excess (preferably 1.5 equivalents) of a methyl magnesium species (Grignard reagent) in a polar aprotic solvent (e.g., diethyl ether or dichloromethane; preferably tetrahydrofuran) is treated with an excess (preferably 1.5 equivalents) of a Y- or P¹-chloroformate at a temperature between about -100°C and about 70°C (preferably -78°C) followed by warming to a temperature between 0°C and about 70°C (preferably ambient temperature) for between 0.1 and 24 hours (preferably 1 hour). The resulting mixture is combined with an excess (preferably 2 equivalents) of an aqueous acid (preferably 1 molar hydrochloric acid) and mixed vigorously for between 0.1 and 24 hours (preferably 1 hour, or until hydrolysis of the intermediate enol ether is determined to be complete).

[0129] Of course, the Formula XI compounds are the formula XVI compounds wherein R¹ is -C(O)OY or P¹ is -C(O) OP¹ without further transformation.

[0130] The Formula XV compounds wherein R⁵, R⁶, R⁷ and R⁸ are as described above may be prepared from the corresponding Formula XI dihydroquinolone by appropriate deprotection (including spontaneous decarboxylation) as described for the transformation of the Formula IV compound to the Formula V compound.

[0131] The Formula XVI compounds wherein R¹, R⁵, R⁶, R⁷ and R⁸ are as described above and P¹ is a protecting group may be prepared from the corresponding Formula XV dihydroquinolone as described for the transformation of the Formula III compound to the Formula IV compound. In certain cases where the reagent has also reacted on the

4-position carbonyl oxygen, the substituent may be conveniently removed by treatment with acid (e.g., aqueous HCl) or base (e.g., aqueous sodium hydroxide).

[0132] Again, for those Formula XVI compounds wherein R¹ or P¹ is the same as for the Formula XI compound such transformation as described above is not needed.

[0133] The Formula VI amine compounds wherein R¹, R³, R⁵, R⁶, Rⁿ and Rⁿ are as described above and P¹ is a protecting group may be prepared from the corresponding Formula XVI dihydroquinolone by a reductive amination sequence. The Formula XVI dihydroquinolone, an excess (preferably 1.1 equivalents) of an R³-amine and an excess (preferably 7 equivalents) of an amine base (preferably triethylamine) in a polar solvent (preferably dichloromethane) are treated with 0.5 to 1.0 equivalents (preferably 0.55 equivalents) of titanium tetrachloride as a solution in a suitable polar solvent (preferably dichloromethane) at a temperature between about 0°C and about 40°C (preferably ambient temperature) for between 1 to 24 hours (preferably 12 hours). The resulting Formula XII imine is reduced by treatment with a reducing agent (preferably sodium borohydride) in an appropriate polar solvent (preferably ethanol) at a temperature between 0°C and about 80°C (preferably room temperature) for between 1 and 24 hours (preferably 12 hours) resulting in a mixture of diastereomeric Formula VI amines, generally favoring the trans isomer. Alternatively, the reduction may be performed by treating the Formula XII imine directly with an excess (preferably 5 equivalents) of zinc borohydride as a solution in ether (preferably 0.2 molar) at a temperature between about 0°C and about 40°C (preferably ambient temperature) for between 1 and 24 hours (preferably 12 hours) resulting in a mixture of diastereomeric Formula VI amines, generally favoring the cis isomer.

15

[0134] Alternatively, the Formula VI amine wherein R¹, R³, R⁵, R⁶, Rⁿ and R³ are as described above and P¹ is a protecting group may be prepared from the corresponding Formula XVI dihydroquinolones by formation of an oxime, reduction and substitution of the amine. Thus, the Formula XVI dihydroquinolone, excess (preferably 3 equivalents) hydroxylamine hydrochloride and an excess (preferably 2.5 equivalents) of base (preferably sodium acetate) are reacted at a temperature between about 0°C and about 100°C (preferably at reflux) for between 1 and 24 hours (preferably 2 hours) in a polar solvent (preferably ethanol). The resulting Formula XIII oxime is treated with excess (preferably 6 equivalents) aqueous base (preferably 2N potassium hydroxide) in a polar solvent (preferably ethanol) and an excess (preferably 4 equivalents) of a nickel-aluminum alloy (preferably 1:1 by weight) at a temperature between about 0°C and about 100°C (preferably ambient temperature) for between 0.25 and 24 hours (preferably 1 hour). The resulting Formula V amine is obtained as a diastereomeric mixture (generally favoring the cis isomer).

[0135] The Formula VI secondary amine wherein R¹, R³, R⁵, R⁶, R⁷ and R⁸ are as described above and P¹ is a protecting group may be prepared from the appropriate Formula V amine as described in Scheme I for the transformation of the Formula V compound to the Formula VI compound.

[0136] According to Scheme III the Formula I compounds as described above may be prepared from the appropriate Formula VI compounds by conversion to the desired carbamate. Thus, the Formula VI amine is treated with the appropriate activated carbonate (e.g., chloroformate, dicarbonate or carbonyl diimidazole followed by the appropriate alcohol) in a polar solvent (preferably dichloromethane) in the presence of an excess of amine base (preferably pyridine) at a temperature between about -20°C and about 40°C (preferably ambient temperature) for between 1 and 24 hours (preferably 12 hours) to yield the Formula I compound.

[0137] Alternatively, according to Scheme III, where appropriate, if the functionality at R¹ is incompatible with the reaction to form the Formula I compound, then the P¹ protected Formula VI compound may be transformed to the Formula I compound through protection/deprotection sequences and introduction of the desired substituents. Thus, the Formula VI amine is treated with the appropriate reagent (e.g., protecting group precursor, activated carbonate (e.g., chloroformate, dicarbonate or carbonyl imidazole)) in a polar solvent (preferably dichloromethane) in the presence of an excess of amine base (preferably pyridine) at a temperature between about -20°C and about 40 °C (preferably ambient temperature) for between 1 and 24 hours (preferably 12 hours) to yield the Formula XX compound.

[0138] Also, the Formula XX compounds, wherein P^2 is present may be obtained as shown in Scheme I for the Formula VII compounds (having P^1).

[0139] The Formula XXI amines wherein R³, R⁵, R⁶, R⁷, R⁸ and R⁴ are as described above and P² is a protecting group may be prepared from the Formula XX compound by selective deprotection of P¹.

[0140] When P¹ is, for example, t-butoxycarbonyl, the Formula XXI compound is conveniently prepared by treatment with an acid (preferably trifluoroacetic acid) at a temperature between about 0°C and about 100°C (preferably room temperature) for 0.1 to 24 hours (preferably 1 hour).

[0141] The compounds of Formula I or compounds of Formula XXII (wherein R¹ is as described above) may be prepared from the corresponding Formula XXI amine (wherein R⁴ or P² is present respectively) by various amine reaction routes known to those skilled in the art; for example, those described in Scheme I for the transformation of the Formula III compound to the Formula IV compound.

[0142] The Formula XXIII amines may be prepared from the Formula XXII compounds by suitable deprotection. When P² is, for example, benzyloxycarbonyl, the Formula XXII compound is prepared by treatment with an excess of a hydride source (e.g., cyclohexene, hydrogen gas or preferably ammonium formate) in the presence of 0.01 to 2

equivalents (preferably 0.1 equivalent) of a suitable catalyst (preferably 10% palladium on carbon) in a polar solvent (preferably ethanol) at a temperature between about 0°C and about 100°C (preferably room temperature) for 0.1 to 24 hours (preferably 1 hour).

[0143] The Formula I compound wherein R⁴ is as described above may be prepared using the methods described for the conversion of the Formula VI compound to the Formula I compound in Scheme III above.

[0144] According to Scheme IV the Formula V compounds wherein R¹, R⁵, R⁷ and R⁸ are as described above, and R⁶ is an ether linked moiety can be obtained from the Formula XXX quinolones having a OP³ moiety, wherein P³ is a protecting group, at the R⁶ position employing the following methods. In addition, in an analogous manner such processes may be used to prepare the corresponding compounds wherein R⁵, R⁷, or R⁸ are an ether linked moiety starting from the corresponding Formula XXX compound having an OP³ moiety at either the R⁵, R⁷, or R⁸ positions.

[0145] Thus, the Formula XXX quinolone is combined with hydroxylamine hydrochloride and a mineral base (preferably sodium acetate) in a polar solvent (preferably ethanol) at a temperature between about 0°C and about 100°C (preferably at reflux) for between 1 and 24 hours (preferably 2 hours) to yield the Formula XXXI oxime.

[0146] The Formula XXXI oxime is treated with an excess (preferably six equivalents) of an aqueous base (preferably 2N potassium hydroxide) and an excess (preferably four equivalents) of a nickel-aluminum alloy (preferably 1:1 by weight) in a polar solvent (preferably ethanol) at a temperature between about 0°C and about 100°C (preferably ambient temperature) for between 0.25 and 24 hours (preferably 2 hours) to prepare the corresponding Formula XXXII amine. If necessary, the P³ protecting group may be removed using standard methods if the oxime transformation does not result in such cleavage.

[0147] Alternatively, the Formula XXX compound may be deprotected (removal of the P³) by methods known to those skilled in the art prior to formation of the Formula XXXI oxime which can then be reduced to form the Formula XXXII amine.

[0148] The Formula V compound wherein R⁶ is an oxy-linked moiety may be prepared by treating the Formula XXXII alcohol under, for example, Mitsunobu conditions. Thus, the appropriate phenol is treated with a phosphine (preferably triphenylphosphine) and an azodicarboxylate (preferably bis-(N-methylpiperazinyl)-azodicarboxamide) and the required alcohol in a polar solvent (preferably benzene).

[0149] Of course, via Schemes I and II the resulting Formula V compound may be transformed into the Formula VI precursors for the Formula I compounds of this invention.

[0150] Alternatively, the Formula XX compound wherein R⁶ is an ether linked moiety and wherein R¹, R³ and R⁴ are as described above (secondary amines) and P¹ and P² are protecting groups may be prepared from the Formula XXXII alcohols as described below. In addition, in an analogous manner such processes may be used to prepare the corresponding compounds wherein R⁵, R⁷, or R⁸ are an ether linked moiety starting from the corresponding Formula XXXII compound and thus ultimately the Formula XXX compound (i.e., the Formula XXX compound having a P³O- at either the R⁵, R⁷, or R⁸ positions).

[0151] The Formula XXXIII secondary amine wherein R³ is as described above may be prepared from the corresponding Formula XXXII compound according to methods in Scheme I described above for the conversion of the Formula V compound to the Formula VI compound.

[0152] The Formula XXXIV compounds wherein R⁴ is as described above may be prepared from Formula XXXIII amines by methods analogous to that described in Scheme III for the transformation of the Formula VI compound to the Formula XX compound.

[0153] The Formula XXXV phenol may be selectively deprotected for example when R⁴O₂CO- is present by treating the Formula XXXIV carbonate with potassium carbonate in a polar solvent (preferably methanol) at a temperature between about 0°C and about 100°C (preferably ambient temperature) for between 1 and 24 hours (preferably 12 hours).

45 [0154] The corresponding, Formula XX ethers may be prepared from the Formula XXXV phenol using, for example, the Mitsunobu conditions described above for the conversion of the Formula XXXII compounds to the Formula V compounds.

[0155] Of course, one skilled in the art will appreciate that the phenol may be derivatized to a variety of functional groups using standard methods, for example, as described in March or Larock, or by conversion to the corresponding triflate for use in a variety of reactions involving transition metal catalysis.

[0156] Although the following description of Scheme V is directed to modifications of the R^6 position (the R^6 position described in Formula I above) those skilled in the art will appreciate that analogous methods may be applied to the R^5 , R^7 and R^8 positions.

[0157] According to Scheme V the Formula LI alcohol wherein R¹, R³, R⁴, R⁵, R⁷ and R⁸ are as described above, P¹ and P² are protecting groups, and X¹ is a linking group wherein a carbon (e.g., methylene) is directly linked to the carbonyl moiety may be prepared from the corresponding ester (wherein R¹² is a convenient alkyl moiety) by reduction. [0158] Thus, the Formula L ester is treated with sodium borohydride/methanol or a borane-dimethylsulfide complex in a polar solvent (preferably tetrahydrofuran) at a temperature between about 0°C and about 100°C (preferably at

reflux) for between 1 and 24 hours (preferably 3 hours).

50

[0159] The Formula LII compounds wherein R¹, R³, R⁴, R⁵, R⁷ and R⁸ are as described above, P¹ and P² are protecting groups and wherein the R⁶ position includes an alkyl halide functionality may be prepared from the corresponding Formula LI alcohol by treatment with a trialkylphosphine (preferably triphenylphosphine) and a dihalogen (e. g., bromine) in a polar solvent (preferably dichloromethane) at a temperature between about -78°C and about 100°C (preferably 0°C) for between 0.1 and 10 hours (preferably 0.5 hours) followed by warming to room temperature for between 0.1 and 10 hours (preferably 3 hours).

[0160] The Formula LIII compounds wherein R1, R3, R4, R5, R7 and R8 are as described above, P1 and P2 are protecting groups, the R⁶ position includes ether or thioether moieties (i.e., Y' is S or O) and R¹³ is a carbon linked substituent may be prepared by treating the Formula LII alkyl halide in a polar solvent (preferably N,N-dimethylformamide) with the requisite alkoxide or thioalkoxide at a temperature between about 0°C and about 100°C (preferably at room temperature) for between 1 and 24 hours (preferably 6 hours).

[0161] Alternatively, the Formula LIII ethers and thioethers may be prepared by treating the corresponding Formula LIV alcohols and thiols (i.e., Y1 is S or O), wherein X1 is a substituent linked directly through carbon to the methylene moiety, with a base (preferably sodium hydride) and the requisite alkylating agent in a polar solvent (preferably N,Ndimethylformamide) at a temperature between about 0°C and about 100°C (preferably at room temperature) for between 1 and 50 hours (preferably 18 hours).

[0162] The Formula LV compounds wherein R1, R3, R4, R5, R7 and R8 are as described above, P1 and P2 are protecting groups, the R⁶ position includes alkyl halides (e.g., fluorides) and X¹ is a substituent that is carbon linked directly to the methylene moiety may be prepared by treating the corresponding Formula LI alcohol with a halogenating agent. For example, the alcohol is treated with a fluorinating agent (preferably diethylaminosulfur trifluoride) in a polar solvent (preferably 1,2-dichloroethane) at a temperature between about 0°C and about 100°C (preferably 80 °C) for between 0.1 and 10 hours (preferably 0.75 hours).

[0163] The Formula LVII amide compounds wherein R1, R3, R4, R5, R7 and are as described above, P1 and P2 are protecting groups and wherein R6 indudes an amide functionality (such that X is a substituent that is carbon linked directly to the carbonyl moiety and R10 and R11 are substituents selected to yield the desired R6 substituent defined above) may be prepared from the corresponding Formula LVI carboxylic acid which may in turn be prepared from the corresponding Formula L carboxylic ester.

[0164] Thus, the Formula L ester is treated with an aqueous hydroxide (preferably lithium, sodium or potassium) in a polar solvent (preferably tetrahydrofuran and/or methanol) at a temperature between about 0°C and about 100°C (preferably room temperature) for between 0.1 and 100 hours (preferably 1 hour).

[0165] The Formula LVII amide may be prepared from the corresponding Formula LVI acid by standard methods. Preferred is conversion of the carboxyic acid to the acid chloride by dissolving the acid in thionyl chloride and maintaining the solution at a temperature between about 0°C and about 80°C (preferably at reflux) for between 0.1 and 24 hours (preferably 1 hour) before evaporation of the excess thionyl chloride. This step is followed by treating the resulting acid chloride residue in a polar solvent (preferably dichloromethane) with the appropriate amine, selected to yield the amide functionality, and optionally an amine base (preferably triethylamine) at a temperature between about -78°C and about 100°C (preferably room temperature) for between 0.1 and 100 hours (preferably 1 hour).

[0166] Although the following Scheme VI is directed to modifications of the R⁸ position, those skilled in the art will appreciate that analogous methods may be applied to the $\ensuremath{R^5}$, $\ensuremath{R^7}$ and $\ensuremath{R^6}$ positions.

[0167] According to Scheme VI the Formula LXI compound wherein R1, R3, R4, R5, R6, and R7 are as described above and P^1 and P^2 are protecting groups may be prepared from the corresponding Formula LX compound by nitration. The Formula LX compound is treated with nitrosyltriflate in a halogenated solvent, such as dichloromethane at a temperature of about -78°C to about 0°C for about 0.5 hour to about 3 hours followed by warming to ambient temperature.

[0168] The Formula LXII amine wherein R1, R3, R4, R5, R6, and R7 are as described above and P1 and P2 are protecting groups may be prepared from the corresponding Formula LXI compound by reduction. The Formula LXI compound is hydrogenated by treatment with hydrogen gas in the presence of a noble metal catalyst (e.g., palladium on carbon) in a polar solvent such as ethanol at a temperature of about 0°C to about 100°C for about 1 to 24 hours at elevated pressure (e.g., 1 to 3 atmospheres).

[0169] The Formula LXIII compound wherein R1, R3, R4, R5 R6, and R7 are as described above, P1 and P2 are protecting groups and R8 is an amine linked functionality may be prepared from the corresponding Formula LXII. The Formula LXII amine is derivatized following procedures analogous to those described in Scheme I for the conversion of the Formula III compound to the Formula IV compound.

[0170] The Formula LXIV compound wherein R1, R3, R4, R5, and R7 are as described above and P1 and P2 are protecting groups may be prepared from the corresponding Formula LXII compound. The Formula LXII amine is treated with t-butyl nitrate and anhydrous cupric halide in a polar solvent at a temperature of about 30°C to about 100°C for about 1 hour to about 24 hours.

[0171] Of course, one skilled in the art will understand that the halide may be derivatized to a variety of functional

groups using standard methods for example as described in Larock or March.

10

[0172] According to Scheme VII the Formula LXXI heterocycles wherein R¹, R³, R⁴, R⁵ and R⁸ are as described above, P¹ and P² are protecting groups and R²⁰ is a nitrogen containing heterocycle fused to the quinoline ring structure, may be prepared from the Formula LXX compound, wherein P³ is a protecting group, by selective deprotection of P³. [0173] When P³ is, for example, benzyloxycarbonyl, the Formula LXX compound is conveniently cleaved to yield the Formula LXXI compound by treatment with a hydrogen source (preferably 3 atmospheres of hydrogen gas) in the presence of a suitable catalyst (preferably 10% palladium on carbon) in a polar solvent (preferably ethanol) at a temperature between about 0°C and about 100°C (preferably room temperature) for 0.1 to 24 hours (preferably 1 hour). [0174] The compounds of Formula LXXII, wherein R¹, R³, R⁴, R⁵ and R⁸ are as described above, P¹ and P² are protecting groups, R²⁰ is a nitrogen containing heterocycle fused to the quinoline ring structure, and the "Substituent" is selected to afford the desired compounds described above, may be prepared from the corresponding Formula LXXI amine by various amine reaction routes known to those skilled in the art, for example, those described in Scheme I for the transformation of the Formula III compound to the Formula IV compound.

[0175] The compounds of Formula LXX may be prepared according to the methods described in Schemes I, II and III. For example, in Scheme II the quinolines of Formula X are formed by methods known to those skilled in the art from the arylamines of Formula II wherein R⁵ and R⁶, R⁶ and R⁷, or R⁷ and R⁸ comprise a ring as described above. These bicyclic arylamines are also synthesized by a variety of methods known to those skilled in the art. Such bicyclic arylamines are used in the sequence of transformations as illustrated in Schemes I and III to prepare the desired compounds.

20 [0176] The compounds of Formula LXX may also be obtained from compounds of Formula I, wherein R⁵ and R⁶, R⁶ and R⁷, or R⁷ and R⁸ contain functionality amenable to cyclization, for example Scheme VIII, thus forming the desired ring, employing methods known to those skilled in the art to cyclize such substituents.

[0177] For example, the Formula LXXXII compound of Scheme VIII is reacted with P³NH₂ to give the P³ protected isoindoline.

[0178] According to Scheme VIII the Formula LXXX diesters are reduced affording the corresponding Formula LXXXI dialcohols according to methods analogous to those described in Scheme V for the transformation of the Formula L compounds to the Formula LI compounds. Activation of these alcohols for electrophillic attack may be achieved by a number of standard methods, such as conversion to a halide or sulfonate (preferably conversion to the Formula LXXXIII bis-bromide by treatment with two equivalents of dibromotriphenylphosphorane). Formation of the Formula LXXXIII thiacycle may be achieved by treatment of the bis-bromide with a sulfide (preferably sodium sulfide) in an aqueous/organic immiscible solvent system (preferably a water and toluene mixture) containing a suitable phase transfer catalyst (preferably triethylhexylammonium bromide) at a temperature between about 0°C and about 100°C (preferably room temperature) for between 1 and 100 hours (preferably 12 hours).

[0179] The Formula LXXXIV oxygen heterocycles may be formed using standard etherification methods including a nucleophillic displacement reaction with an appropriate bis-electrophile from the corresponding Formula LXXXII compound. For example, formation of the oxacyde may be achieved by treatment of a bis-bromide in an aqueous immiscible solvent (preferably benzene) with an aqueous hydroxide solution (preferably 30% sodium hydroxide) containing a suitable phase transfer catalyst (preferably benzyl tri-n-butylammonium chloride) at a temperature between about 0°C and about 100°C (preferably 80°C) for between 1 and 100 hours (preferably 4 hours).

[0180] The Formula LXXXV and LXXXVI lactones, wherein R¹, R³, R⁴, R⁵ and R⁸ are as described above and P¹ and P² are protecting groups, may be formed using standard lactonization methods including an oxidative cyclization of the corresponding Formula LXXXI dialcohol. Thus, a suitable bis-alcohol is treated with an oxidizing agent (preferably pyridinium chlorochromate) in a polar aprotic solvent (preferably dichloromethane) at a temperature between about 0°C and about 100°C (conveniently room temperature) for between 1 and 100 hours (preferably 24 hours) to prepare a mixture of the Formula LXXXVI and Formula LXXXVI lactones which may be separated by standard methods.

[0181] Prodrugs of the compounds of Formula I may be prepared according to methods known to those skilled in the art. Exemplary processes are described below.

[0182] Prodrugs of this invention where a carboxyl group in a carboxylic acid of Formula I is replaced by an ester may be prepared by combining the carboxylic acid with the appropriate alkyl halide in the presence of a base such as potassium carbonate in an inert solvent such as dimethylformamide at a temperature of about 0 to 100°C for about 1 to about 24 hours. Alternatively the acid is combined with appropriate alcohol as solvent in the presence of a catalytic amount of acid such as concentrated sulfuric acid at a temperature of about 20 to 100°C, preferably at a reflux, for about 1 hour to about 24 hours. Another method is the reaction of the acid with a stoichiometric amount of the alcohol in the presence of a catalytic amount of acid in an inert solvent such as toluene or tetrahydrofuran, with concomitant removal of the water being produced by physical (e.g., Dean-Stark trap) or chemical (e.g., molecular sieves) means. [0183] Prodrugs of this invention where an alcohol function has been derivatized as an ether may be prepared by combining the alcohol with the appropriate alkyl bromide or iodide in the presence of a base such as potassium carbonate in an inert solvent such as dimethylformamide at a temperature of about 0 to 100°C for about 1 to about 24

hours. Alkanoylaminomethyl ethers may be obtained by reaction of the alcohol with a bis-(alkanoylamino)methane in the presence of a catalytic amount of acid in an inert solvent such as tetrahydrofuran, according to a method described in US 4,997,984. Alternatively, these compounds may be prepared by the methods described by Hoffman et al. in J. Org. Chem. 1994, 59, 3530.

[0184] Glycosides are prepared by reaction of the alcohol and a carbohydrate in an inert solvent such as toluene in the presence of acid. Typically the water formed in the reaction is removed as it is being formed as described above. An alternate procedure is the reaction of the alcohol with a suitably protected glycosyl halide in the presence of base followed by deprotection.

[0185] N-(1-hydroxyalkyl)amides, N-(1-hydroxy-1-(alkoxycarbonyl)methyl) amides may be prepared by the reaction of the parent amide with the appropriate aldehyde under neutral or basic conditions (e.g., sodium ethoxide in ethanol) at temperatures between 25 and 70°C. N-alkoxymethyl or N-1-(alkoxy)alkyl derivatives can be obtained by reaction of the N-unsubstituted compound with the necessary alkyl halide in the presence of a base in an inert solvent.

[0186] The compounds of this invention may also be used in conjunction with other pharmaceutical agents (e.g., LDL-cholesterol lowering agents, triglyceride lowering agents) for the treatment of the disease/conditions described herein. For example, they may be used in combination with cholesterol synthesis inhibitors, cholesterol absorption inhibitors, MTP/Apo B secretion inhibitors, and other cholesterol lowering agents such as fibrates, niacin, ion-exchange resins, antioxidants, ACAT inhibitors and bile acid sequestrants. In combination therapy treatment, both the compounds of this invention and the other drug therapies are administered to mammals (e.g., humans, male or female) by conventional methods.

[0187] Any HMG-CoA reductase inhibitor may be used as the second compound in the combination aspect of this invention. The term HMG-CoA reductase inhibitor refers to compounds which inhibit the bioconversion of hydroxymethylglutaryl-coenzyme A to mevalonic acid catalyzed by the enzyme HMG-CoA reductase. Such inhibition is readily determined by those skilled in the art according to standard assays (e.g., Meth. Enzymol. 1981; 71:455-509 and references cited therein). A variety of these compounds are described and referenced below however other HMG-CoA reductase inhibitors will be known to those skilled in the art. U.S. Pat. No. 4,231,938 (the disclosure of which is hereby incorporated by reference) discloses certain compounds isolated after cultivation of a microorganism belonging to the genus Aspergillus, such as lovastatin. Also, U.S. Pat. No. 4,444,784 (the disclosure of which is hereby incorporated by reference) discloses synthetic derivatives of the aforementioned compounds, such as simvastatin. Also, U.S. Pat. No. 4,739,073 (the disclosure of which is incorporated by reference) discloses certain substituted indoles, such as fluvastatin. Also, U.S. Pat. No. 4,346,227 (the disclosure of which is incorporated by reference) discloses ML-236B derivatives, such as pravastatin. Also, EP-491226A (the disclosure of which is incorporated by reference) discloses certain pyridyldihydroxyheptenoic acids, such as rivastatin. In addition, U.S. Pat. No. 5,273,995 (the disclosure of which is incorporated by reference) discloses certain pyridyldihydroxyheptenoic acids, such as rivastatin. In addition, U.S. Pat. No. 5,273,995 (the disclosure of which is incorporated by reference) discloses certain 6-[2-(substituted-pyrrol-1-yl)alkyl]pyran-2-ones such as atorvastatin. [0188] Any MTP/Apo B secretion (microsomal triglyceride transfer protein and or apolipoprotein B) inhibitor may be used as the second compound in the combination aspect of this invention. The term MTP/Apo B secretion inhibitor

used as the second compound in the combination aspect of this invention. The term MTP/Apo B secretion inhibitor refers to compounds which inhibit the secretion of triglycerides, cholesteryl ester, and phospholipids. Such inhibition is readily determined by those skilled in the art according to standard assays (e.g., Wetterau, J. R. 1992; Science 258: 999). A variety of these compounds are described and referenced below however other MTP/Apo B secretion inhibitors will be known to those skilled in the art.

40 WO 96/40640 and WO 98/23593 are two exemplary publications.

20

25

30

45

50

55

For example, the following MTP/Apo B secretion inhibitors are particularly useful:

4'-trifluoromethyl-biphenyl-2-carboxylic acid [2-(1H-[1,2,4,]triazol-3-ylmethyl)-1,2,3,4-tetrahydro-isoquinolin-6-yl]-amide;

4'-trifluoromethyl-biphenyl-2-carboxylic acid [2-(2-acetylamino-ethyl)-1,2,3,4-tetrahydro-isoquinolin-6-yl]-amide; (2-{6-[(4'-trifluoromethyl-biphenyl-2-carbonyl)-amino]-3,4-dihydro-1H-isoquinolin-2-yl}-ethyl)-carbamic acid methyl ester;

4'-trifluoromethyl-biphenyl-2-carboxylic acid [2-(1H-imidazol-2-ylmethyl)-1,2,3,4-tetrahydro-isoquinolin-6-yl]-amide;

4'-trifluoromethyl-biphenyl-2-carboxylic acid [2-(2,2-diphenyl-ethyl)-1,2,3,4-tetrahydro-isoquinolin-6-yl]-amide; and

4'-trifluoromethyl-biphenyl-2-carboxylic add [2-(2-ethoxy-ethyl)-1,2,3,4-tetrahydro-isoquinolin-6-yl]-amide.

[0189] Any HMG-CoA synthase inhibitor may be used as the second compound in the combination aspect of this invention. The term HMG-CoA synthase inhibitor refers to compounds which inhibit the biosynthesis of hydroxymethylglutaryl-coenzyme A from acetyl-coenzyme A and acetoacetyl-coenzyme A, catalyzed by the enzyme HMG-CoA synthase. Such inhibition is readily determined by those skilled in the art according to standard assays (Meth Enzymol. 1975; 35:155-160: Meth. Enzymol. 1985; 110:19-26 and references cited therein). A variety of these compounds are

described and referenced below, however other HMG-CoA synthase inhibitors will be known to those skilled in the art. U.S. Pat. No. 5,120,729 (the disclosure of which is hereby incorporated by reference) discloses certain beta-lactam derivatives. U.S. Pat. No. 5,064,856 (the disclosure of which is hereby incorporated by reference) discloses certain spiro-lactone derivatives prepared by culturing a microorganism (MF5253). U.S. Pat. No. 4,847,271 (the disclosure of which is hereby incorporated by reference) discloses certain oxetane compounds such as 11-(3-hydroxymethyl-4-oxo-2-oxetayl)-3,5,7-trimethyl-2,4-undeca-dienoic acid derivatives.

[0190] Any compound that decreases HMG-CoA reductase gene expression may be used as the second compound in the combination aspect of this invention. These agents may be HMG-CoA reductase transcription inhibitors that block the transcription of DNA or translation inhibitors that prevent translation of mRNA coding for HMG-CoA reductase into protein. Such compounds may either affect transcription or translation directly, or may be biotransformed to compounds that have the aforementioned activities by one or more enzymes in the cholesterol biosynthetic cascade or may lead to the accumulation of an isoprene metabolite that has the aforementioned activities. Such regulation is readily determined by those skilled in the art according to standard assays (Meth. Enzymol. 1985; 110:9-19). Several compounds are described and referenced below, however other inhibitors of HMG-CoA reductase gene expression will be known to those skilled in the art. U.S. Pat. No. 5,041,432 (the disclosure of which is incorporated by reference) discloses certain 15-substituted lanosterol derivatives. Other oxygenated sterols that suppress synthesis of HMG-CoA reductase are discussed by E.I. Mercer (Prog.Lip. Res. 1993;32:357-416).

10

30

[0191] Any squalene synthetase inhibitor may be used as the second compound of this invention. The term squalene synthetase inhibitor refers to compounds which inhibit the condensation of 2 molecules of famesylpyrophosphate to form squalene, catalyzed by the enzyme squalene synthetase. Such inhibition is readily determined by those skilled in the art according to standard assays (Meth. Enzymol. 1969; 15: 393-454 and Meth. Enzymol. 1985; 110:359-373 and references contained therein). A variety of these compounds are described in and referenced below however other squalene synthetase inhibitors will be known to those skilled in the art. U.S. Pat. No. 5,026,554 (the disclosure of which is incorporated by reference) discloses fermentation products of the microorganism MF5465 (ATCC 74011) including zaragozic acid. A summary of other patented squalene synthetase inhibitors has been compiled (Curr. Op. Ther. Patents (1993) 861-4).

[0192] Any squalene epoxidase inhibitor may be used as the second compound in the combination aspect of this invention. The term squalene epoxidase inhibitor refers to compounds which inhibit the bioconversion of squalene and molecular oxygen into squalene-2,3-epoxide, catalyzed by the enzyme squalene epoxidase. Such inhibition is readily determined by those skilled in the art according to standard assays (Biochim. Biophys. Acta 1984; 794:466-471). A variety of these compounds are described and referenced below, however other squalene epoxidase inhibitors will be known to those skilled in the art. U.S. Pat. Nos. 5,011,859 and 5,064,864 (the disclosures of which are incorporated by reference) disclose certain fluoro analogs of squalene. EP publication 395,768 A (the disclosure of which is incorporated by reference) discloses certain substituted allylamine derivatives. PCT publication WO 9312069 A (the disclosure of which is hereby incorporated by reference) discloses certain amino alcohol derivatives. U.S. Pat. No. 5,051,534 (the disclosure of which is hereby incorporated by reference) discloses certain cyclopropyloxy-squalene derivatives. [0193] Any squalene cyclase inhibitor may be used as the second component in the combination aspect of this invention. The term squalene cyclase inhibitor refers to compounds which inhibit the bioconversion of squalene-2,3-epoxide to lanosterol, catalyzed by the enzyme squalene cyclase. Such inhibition is readily determined by those skilled in the art according to standard assays (FEBS Lett. 1989;244:347-350.). In addition, the compounds described and referenced below are squalene cyclase inhibitors, however other squalene cyclase inhibitors will also be known to those skilled in the art. PCT publication WO9410150 (the disclosure of which is hereby incorporated by reference) discloses certain 1,2,3,5,6,7,8,8α-octahydro-5,5,8α(beta)-trimethyl-6-isoguinolineamine derivatives, such as N-trifluoroacetyl-1,2,3,5,6,7,8,8α-octahydro-2-allyl-5,5,8α(beta)-trimethyl-6(beta)-isoquinolineamine. French patent publication 2697250 (the disclosure of which is hereby incorporated by reference) discloses certain beta, beta-dimethyl-4-piperidine ethanol derivatives such as 1-(1,5,9-trimethyldecyl)-beta,beta-dimethyl-4-piperidineethanol.

[0194] Any combined squalene epoxidase/squalene cyclase inhibitor may be used as the second component in the combination aspect of this invention. The term combined squalene epoxidase/squalene cyclase inhibitor refers to compounds that inhibit the bioconversion of squalene to lanosterol via a squalene-2,3-epoxide intermediate. In some assays it is not possible to distinguish between squalene epoxidase inhibitors and squalene cyclase inhibitors, however, these assays are recognized by those skilled in the art. Thus, inhibition by combined squalene epoxidase/squalene cyclase inhibitors is readily determined by those skilled in art according to the aforementioned standard assays for squalene cyclase or squalene epoxidase inhibitors. A variety of these compounds are described and referenced below, however other squalene epoxidase/squalene cyclase inhibitors will be known to those skilled in the art. U.S. Pat. Nos. 5,084,461 and 5,278,171 (the disclosures of which are incorporated by reference) disclose certain azadecalin derivatives. EP publication 468,434 (the disclosure of which is incorporated by reference) discloses certain piperidyl ether and thioether derivatives such as 2-(1-piperidyl)pentyl isopentyl sulfoxide and 2-(1-plperidyl)ethyl ethyl sulfide. PCT publication WO 9401404 (the disclosure of which is hereby incorporated by reference) discloses certain acyl-piperidines such as

1-(1-oxopentyl-5-phenylthio)-4-(2-hydroxy-1-methyl)-ethyl)piperidine. U.S. Pat. No. 5,102,915 (the disclosure of which is hereby incorporated by reference) discloses certain cyclopropyloxy-squalene derivatives.

[0195] The starting materials and reagents for the above described Formula I compounds, are also readily available or can be easily synthesized by those skilled in the art using conventional methods of organic synthesis. For example, many of the compounds used herein, are related to, or are derived from compounds in which there is a large scientific interest and commercial need, and accordingly many such compounds are commercially available or are reported in the literature or are easily prepared from other commonly available substances by methods which are reported in the literature.

[0196] Some of the Formula I compounds of this invention or intermediates in their synthesis have asymmetric carbon atoms and therefore are enantiomers or diastereomers. Diasteromeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods known per se., for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by, for example, chiral HPLC methods or converting the enantiomeric mixture into a diasteromeric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, an enantiomeric mixture of Formula I compounds or an intermediate in their synthesis which may contain an acidic or basic moiety may be separated into their corresponding pure enantiomers by forming a diastereomeric salt with an optically pure chiral base or acid (e.g., 1-phenyl-ethyl amine or tahtaric acid) and separating the diasteromers by fractional crystallization followed by neutralization to break the salt, thus providing the corresponding pure enantiomers. All such isomers, including diastereomers, enantiomers and mixtures thereof are considered as part of this invention. Also, some of the compounds of this invention are atropisomers (e.g., substituted biaryls) and are considered as part of this invention.

[0197] Specifically, the Formula I compounds of this invention may be obtained in enantiomerically enriched form by resolving the racemate of the final compound or an intermediate in its synthesis (preferably the final compound) employing chromatography (preferably high pressure liquid chromatography [HPLC]) on an asymmetric resin (preferably ChiralcelTM AD or OD [obtained from Chiral Technologies, Exton, Pennsylvania]) with a mobile phase consisting of a hydrocarbon (preferably heptane or hexane) containing between 0 and 50% isopropanol (preferably between 2 and 20%) and between 0 and 5% of an alkyl amine (preferably 0.1% of diethylamine). Concentration of the product containing fractions affords the desired materials.

[0198] Some of the Formula I compounds of this invention are acidic and they form a salt with a pharmaceutically acceptable cation. Some of the Formula I compounds of this invention are basic and they form a salt with a pharmaceutically acceptable anion. All such salts are within the scope of this invention and they can be prepared by conventional methods such as combining the acidic and basic entities, usually in a stoichiometric ratio, in either an aqueous, non-aqueous or partially aqueous medium, as appropriate. The salts are recovered either by filtration, by precipitation with a non-solvent followed by filtration, by evaporation of the solvent, or, in the case of aqueous solutions, by lyophilization, as appropriate. The compounds can be obtained in crystalline form by dissolution in an appropriate solvent (s) such as ethanol, hexanes or water/ethanol mixtures.

30

[0199] In addition, when the Formula I compounds of this invention form hydrates or solvates they are also within the scope of the invention.

[0200] The Formula I compounds of this invention, their prodrugs and the salts of such compounds and prodrugs are all adapted to therapeutic use as agents that inhibit cholesterol ester transfer protein activity in mammals, particularly humans. Thus, the compounds of this invention elevate plasma HDL cholesterol, its associated components, and the functions performed by them in mammals, particularly humans. By virtue of their activity, these agents also reduce plasma levels of triglycerides, VLDL cholesterol, LDL cholesterol and their associated components in mammals, particularly humans.

[0201] Hence, these compounds are useful for the treatment and correction of the various dyslipidemias observed to be associated with the development and incidence of atherosclerosis and cardiovascular disease, including hypoalphalipoproteinemia, hyperbetalipoproteinemia, hypertriglyceridemia, and familial-hypercholesterolemia.

[0202] Further, introduction of a functional CETP gene into an animal lacking CETP (mouse) results in reduced HDL levels (Agellon, L.B., et al: *J. Biol. Chem.* (1991) 266: 10796-10801.) increased susceptibility to atherosclerosis.(Marotti, K.R., et al: *Nature* (1993) 364: 73-75.). Also, inhibition of CETP activity with an inhibitory antibody raises HDL-cholesterol in hamster (Evans, G.F., et al: *J. of Lipid Research* (1994) 35: 1634-1645.) and rabbit (Whitlock, M.E., et al: *J. Clin. Invest.* (1989) 84: 129-137). Suppression of increased plasma CETP by intravenous injection with antisense oligodeoxynudeotides against CETP mRNA reduced atherosclerosis in cholesterol-fed rabbits (Sugano, M., et al: *J. of Biol. Chem.* (1998) 273: 5033-5036.) Importantly, human subjects deficient in plasma CETP, due to a genetic mutation possess markedly elevated plasma HDL-cholesterol levels and apolipoprotein A-I, the major apoprotein component of HDL. In addition, most demonstrate markedly decreased plasma LDL cholesterol and apolipoprotein B (the major apolipoprotein component of LDL. (Inazu, A., Brown, M.L., Hesler, C.B., et al.: *N. Engl. J. Med.* (1990) 323: 1234-1238.) [0203] Given the negative correlation between the levels of HDL cholesterol and HDL associated lipoproteins, and

the positive correlation between triglycerides, LDL cholesterol, and their associated apolipoproteins in blood with the development of cardiovascular, cerebral vascular and peripheral vascular diseases, the Formula I compounds of this invention, their prodrugs and the salts of such compounds and prodrugs, by virtue of their pharmacologic action, are useful for the prevention, arrestment and/or regression of atherosclerosis and its associated disease states. These include cardiovascular disorders (e.g., angina, cardiac ischemia and myocardial infarction), complications due to cardiovascular disease therapies (e.g., reperfusion injury and angioplastic restenosis), hypertension, stroke, and atherosclerosis associated with organ transplantation.

[0204] Because of the beneficial effects widely associated with elevated HDL levels, an agent which inhibits CETP activity in humans, by virtue of its HDL increasing ability, also provides valuable avenues for therapy in a number of other disease areas as well.

[0205] Thus, given the ability of the Formula I compounds of this invention, their prodrugs and the salts of such compounds and prodrugs to alter lipoprotein composition via inhibition of cholesterol ester transfer, they are of use in the treatment of vascular complications associated with diabetes. Hyperlipidemia is present in most subjects with diabetes mellitus (Howard, B.V. 1987. J. Lipid Res. 28, 613). Even in the presence of normal lipid levels, diabetic subjects experience a greater risk of cardiovascular disease (Kannel, W.B. and McGee, D.L. 1979. Diabetes Care 2, 120). CETP-mediated cholesteryl ester transfer is known to be abnormally increased in both insulin-dependent (Bagdade, J.D., Subbaiah, P.V. and Ritter, M.C. 1991. Eur. J. Clin. Invest. 21, 161) and non-insulin dependent diabetes (Bagdade. J.D., Ritter, M.C.; Lane, J. and Subbaiah. 1993. Atherosclerosis 104, 69). It has been suggested that the abnormal increase in cholesterol transfer results in changes in lipoprotein composition, particularly for VLDL and LDL, that are more atherogenic (Bagdade, J.D., Wagner, J.D., Rudel, L.L., and Clarkson, T.B. 1995. J. Lipid Res. 36, 759). These changes would not necessarily be observed during routine lipid screening. Thus the present invention will be useful in reducing the risk of vascular complications as a result of the diabetic condition.

15

20

25

30

50

[0206] The described agents are useful in the treatment of obesity. In both humans (Radeau, T., Lau, P., Robb, M., McDonnell, M., Ailhaud, G. and McPherson, R., 1995. *Journal of Lipid Research*. 36 (12):2552-61) and nonhuman primates (Quinet, E., Tall, A., Ramakrishnan, R. and Rudel, L., 1991. *Journal of Clinical Investigation*. 87 (5):1559-66) mRNA for CETP is expressed at high levels in adipose tissue. The adipose message increases with fat feeding (Martin, L. J., Connelly, P. W., Nancoo, D., Wood, N., Zhang, Z. J., Maguire, G., Quinet, E., Tall, A. R., Marcel, Y. L. and McPherson, R., 1993. *Journal of Lipid Research*. 34 (3):437-46), and is translated into functional transfer protein and through secretion contributes significantly to plasma CETP levels. In human adipocytes the bulk of cholesterol is provided by plasma LDL and HDL (Fong, B. S., and Angel, A., 1989. *Biochimica et Biophysica Acta*. 1004 (1):53-60). The uptake of HDL cholesteryl ester is dependent in large part on CETP (Benoist, F., Lau, P., McDonnell, M., Doelle, H., Milne, R. and McPherson, R., 1997. *Journal of Biological Chemistry*. 272 (38):23572-7). This ability of CETP to stimulate HDL cholesteryl uptake, coupled with the enhanced binding of HDL to adipocytes in obese subjects (Jimenez, J. G., Fong, B., Julien, P., Despres, J. P., Rotstein, L., and Angel, A., 1989. *International Journal of Obesity*. 13 (5):699-709), suggests a role for CETP, not only in generating the low HDL phenotype for these subjects, but in the development of obesity itself by promoting cholesterol accumulation. Inhibitors of CETP activity that block this process therefore serve as useful adjuvants to dietary therapy in causing weight reduction.

[0207] CETP inhibitors are useful in the treatment of inflammation due to Gram-negative sepsis and septic shock. For example, the systemic toxicity of Gram-negative sepsis is in large part due to endotoxin, a lipopolysaccharide (LPS) released from the outer surface of the bacteria, which causes an extensive inflammatory response. Lipopolysaccharide can form complexes with lipoproteins (Ulevitch, R.J., Johhston, A.R., and Weinstein, D.B., 1981. J. Clin. Invest. 67, 827-37). In vitro studies have demonstrated that binding of LPS to HDL substantially reduces the production and release of mediators of inflammation (Ulevitch, R.J., Johhston, A.R., 1978. J. Clin. Invest. 62, 1313-24). In vivo studies show that transgenic mice expressing human apo-Al and elevated HDL levels are protected from septic shock (Levine, D.M., Parker, T.S., Donnelly, T.M., Walsh, A.M., and Rubin, A.L. 1993. Proc. Natl. Acad. Sci. 90, 12040-44). Importantly, administration of reconstituted HDL to humans challenged with endotoxin resulted in a decreased inflammatory response (Pajkrt, D., Doran, J.E., Koster, F., Lerch, P.G., Amet, B., van der Poll, T., ten Cate, J.W., and van Deventer, S.J.H. 1996. J. Exp. Med. 184, 1601-08). The CETP inhibitors, by virtue of the fact that they raise HDL levels, attenuate the development of inflammation and septic shock.

[0208] The utility of the Formula I compounds of the invention, their prodrugs and the salts of such compounds and prodrugs as medical agents in the treatment of the above described disease/conditions in mammals (e.g. humans, male or female) is demonstrated by the activity of the compounds of this invention in conventional assays and the *in vivo* assay described below. The *in vivo* assay (with appropriate modifications within the skill in the art) may be used to determine the activity of other lipid or triglyceride controlling agents as well as the compounds of this invention. The combination protocol described below is useful for demonstrating the utility of the combinations of the lipid and triglyceride agents (e.g., the compounds of this invention) described herein. Such assays also provide a means whereby the activities of the Formula I compounds of this invention, their prodrugs and the salts of such compounds and prodrugs (or the other agents described herein) can be compared to each other and with the activities of other known compounds.

The results of these comparisons are useful for determining dosage levels in mammals, including humans, for the treatment of such diseases.

[0209] The following protocols can of course be varied by those skilled in the art.

[0210] The hyperalphacholesterolemic activity of the Formula I compounds can be determined by assessing the effect of these compounds on the action of cholesteryl ester transfer protein by measuring the relative transfer ratio of radiolabeled lipids between lipoprotein fractions, essentially as previously described by Morton in J. Biol. Chem. <u>256</u>, 11992, 1981 and by Dias in Clin. Chem. <u>34</u>, 2322, 1988.

CETP IN VITRO ASSSAY

10

[0211] The following is a brief description of the assay of cholesteryl ester transfer in human plasma (*in vitro*) and animal plasma (*ex vivo*): CETP activity in the presence or absence of drug is assayed by determining the transfer of ³H-labeled cholesteryl oleate (CO) from exogenous tracer HDL to the nonHDL lipoprotein fraction in human plasma, or from ³H-labeled LDL to the HDL fraction in transgenic mouse plasma. Labeled human lipoprotein substrates are prepared similarly to the method described by Morton in which the endogenous CETP activity in plasma is employed to transfer ³H-CO from phospholipid liposomes to all the lipoprotein fractions in plasma. ³H-labeled LDL and HDL are subsequently isolated by sequential ultracentrifugation at the density cuts of 1.019-1.063 and 1.10-1.21 g/ml, respectively. For the activity assay, ³H-labeled lipoprotein is added to plasma at 10-25 nmoles CO/ml and the samples incubated at 37° C for 2.5-3 hrs. Non-HDL lipoproteins are then precipitated by the addition of an equal volume of 20% (wt/vol) polyethylene glycol 8000 (Dias). The samples are centrifuged 750 g x 20 minutes and the radioactivity contained in the HDL containing supermatant determined by liquid scintillation. Introducing varying quantities of the compounds of this invention as a solution in dimethylsulfoxide to human plasma, before addition of the radiolabeled cholesteryl oleate, and comparing the relative amounts of radiolabel transferred allows relative cholesteryl ester transfer inhibitory activities to be determined.

25

30

20

CETP IN VIVO ASSSAY

[0212] Activity of these compounds *in vivo* can be determined by the amount of agent required to be administered, relative to control, to inhibit cholesteryl ester transfer activity by 50% at various time points *ex vivo* or to elevate HDL cholesterol by a given percentage in a CETP-containing animal species. Transgenic mice expressing both human CETP and human apolipoprotein AI (Charles River, Boston, MA) may be used to assess compounds *in vivo*. The compounds to be examined are administered by oral gavage in an emulsion vehicle containing olive oil and sodium taurocholate. Blood is taken from mice retroorbitally before dosing. At various times after dosing, ranging from 4h to 24h, the animals are sacrificed, blood obtained by heart puncture, and lipid parameters measured, including total cholesterol, HDL and LDL cholesterol, and triglycerides. CETP activity is determined by a method similar to that described above except that ³H-cholesteryl oleate containing LDL is used as the donor source as opposed to HDL. The values obtained for lipids and transfer activity are compared to those obtained prior to dosing and/or to those from mice receiving vehicle alone.

40 PLASMA LIPIDS ASSAY

[0213] The activity of these compounds may also be demonstrated by determining the amount of agent required to alter plasma lipid levels, for example HDL cholesterol levels, LDL cholesterol levels, VLDL cholesterol levels or triglycerides, in the plasma of certain mammals, for example marmosets that possess CETP activity and a plasma lipoprotein profile similar to that of humans (Crook et al. Arteriosclerosis 10, 625, 1990). Adult marmosets are assigned to treatment groups so that each group has a similar mean ±SD for total, HDL, and/or LDL plasma cholesterol concentrations. After group assignment, marmosets are dosed daily with compound as a dietary admix or by intragastric intubation for from one to eight days. Control marmosets receive only the dosing vehicle. Plasma total, LDL VLDL and HDL cholesterol values can be determined at any point during the study by obtaining blood from an antecubital vein and separating plasma lipoproteins into their individual subclasses by density gradient centrifugation, and by measuring cholesterol concentration as previously described (Crook et al. Arteriosclerosis 10, 625, 1990).

IN VIVO ATHEROSCLEROSIS ASSAY

[0214] Anti-atherosclerotic effects of the compounds can be determined by the amount of compound required to reduce the lipid deposition in rabbit aorta. Male New Zealand White rabbits are fed a diet containing 0.2% cholesterol and 10% coconut oil for 4 days (meal-fed once per day). Rabbits are bled from the marginal ear vein and total plasma cholesterol values are determined from these samples. The rabbits are then assigned to treatment groups so that each

group has a similar mean ±SD for total plasma cholesterol concentration, HDL cholesterol concentration, triglyceride concentration and/or cholesteryl ester transfer protein activity. After group assignment, rabbits are dosed daily with compound given as a dietary admix or on a small piece of gelatin based confection. Control rabbits receive only the dosing vehicle, be it the food or the gelatin confection. The cholesterol/coconut oil diet is continued along with the compound administration throughout the study. Plasma cholesterol values and cholesteryl ester transfer protein activity can be determined at any point during the study by obtaining blood from the marginal ear vein. After 3-5 months, the rabbits are sacrificed and the aortae are removed from the thoracic arch to the branch of the iliac arteries. The aortae are cleaned of adventitia, opened longitudinally and then stained with Sudan IV as described by Holman et. al. (Lab. Invest. 1958, 7, 4247). The percent of the surface area stained is quantitated by densitometry using an Optimas Image Analyzing System (Image Processing Systems). Reduced lipid deposition is indicated by a reduction in the percent surface area stained in the compound-receiving group in comparison with the control rabbits.

ANTIOBESITY PROTOCOL

[0215] The ability of CETP inhibitors to cause weight loss can be assessed in obese human subjects with body mass index (BMI) ≥ 30 kg/m². Doses of inhibitor are administered sufficient to result in an increase of ≥ 25% in HDL cholesterol levels. BMI and body fat distribution, defined as waist (W) to hip (H) ratio (WHR), are monitored during the course of the 3-6 month studies, and the results for treatment groups compared to those receiving placebo.

IN VIVO SEPSIS ASSAY

20

30

40

45

50

[0216] In vivo studies show that transgenic mice expressing human apo-Al and elevated HDL levels are protected from septic shock. Thus the ability of CETP inhibitors to protect from septic shock can be demonstrated in transgenic mice expressing both human apo-Al and human CETP transgenes (Levine, D. M., Parker, T.S., Donnelly, T. M., Walsh, A. M. and Rubin, A.L., 1993. Proc. Natl. Acad. Sci. 90, 12040-44). LPS derived from *E. coli* is administered at 30mg/kg by i.p. injection to animals which have been administered a CETP inhibitor at an appropriate dose to result in elevation of HDL. The number of surviving mice is determined at times up to 48h after LPS injection and compared to those mice administered vehicle (minus CETP inhibitor) only.

[0217] Administration of the compounds of this invention can be via any method which delivers a compound of this invention systemically and/or locally. These methods include oral routes, parenteral, intraduodenal routes, etc. Generally, the compounds of this invention are administered orally, but parenteral administration (e.g., intravenous, intramuscular, subcutaneous or intramedullary) may be utilized, for example, where oral administration is inappropriate for the target or where the patient is unable to ingest the drug.

[0218] In general an amount of a compound of this invention is used that is sufficient to achieve the therapeutic effect desired (e.g., HDL elevation).

[0219] In general an effective dosage for the Formula I compounds of this invention, their prodrugs and the salts of such compounds and prodrugs is in the range of 0.01 to 10 mg/kg/day, preferably 0.1 to 5 mg/kg/day.

[0220] A dosage of the combination pharmaceutical agents to be used in conjuction with the CETP inhibitors is used that is effective for the indication being treated.

[0221] For example, typically an effective dosage for HMG-CoA reductase inhibitors is in the range of 0.01 to 100 mg/kg/day. In general an effect dosage for the MTP/Apo B secretion inhibitors is in the range of 0.01 to 100 mg/kg/day. [0222] The compounds of the present invention are generally administered in the form of a pharmaceutical composition comprising at least one of the compounds of this invention together with a pharmaceutically acceptable vehicle, diluent or carrier. Thus, the compounds of this invention can be administered individually or together in any conventional oral, parenteral, rectal or transdermal dosage form.

[0223] For oral administration a pharmaceutical composition can take the form of solutions, suspensions, tablets, pills, capsules, powders, and the like. Tablets containing various excipients such as sodium citrate, calcium carbonate and calcium phosphate are employed along with various disintegrants such as starch and preferably potato or tapioca starch and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type are also employed as fillers in soft and hard-filled gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. A preferred formulation is a solution or suspension in an oil, for example olive oil, MiglyolTM or CapmulTM, in a soft gelatin capsule. Antioxidants may be added to prevent long term degradation as appropriate. When aqueous suspensions and/or elixirs are desired for oral administration, the compounds of this invention can be combined with various sweetening agents, flavoring agents, coloring agents, emulsifying agents and/or suspending agents, as well as such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.

[0224] For purposes of parenteral administration, solutions in sesame or peanut oil or in aqueous propylene glycol

can be employed, as well as sterile aqueous solutions of the corresponding water-soluble salts. Such aqueous solutions may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose. These aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal injection purposes. In this connection, the sterile aqueous media employed are all readily obtainable by standard techniques well-known to those skilled in the art.

[0225] For purposes of transdermal (e.g.,topical) administration, dilute sterile, aqueous or partially aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, are prepared.

[0226] Methods of preparing various pharmaceutical compositions with a certain amount of active ingredient are known, or will be apparent in light of this disclosure, to those skilled in this art. For examples of methods of preparing pharmaceutical compositions, see Remington's Pharmaceutical Sciences, Mack Publishing Company, Easter, Pa., 15th Edition (1975).

[0227] Pharmaceutical compositions according to the invention may contain 0.1%-95% of the compound(s) of this invention, preferably 1%-70%. In any event, the composition or formulation to be administered will contain a quantity of a compound(s) according to the invention in an amount effective to treat the disease/condition of the subject being treated, e.g., atherosclerosis.

[0228] Since the present invention has an aspect that relates to the treatment of the disease/conditions described herein with a combination of active ingredients which may be administered separately, the invention also relates to combining separate pharmaceutical compositions in kit form. The kit comprises two separate pharmaceutical compositions: a compound of Formula I a prodrug thereof or a salt of such compound or prodrug and a second compound as described above. The kit comprises means for containing the separate compositions such as a container, a divided bottle or a divided foil packet. Typically the kit comprises directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.

[0229] An example of such a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process recesses are formed in the plastic foil. The recesses have the size and shape of the tablets or capsules to be packed. Next, the tablets or capsules are placed in the recesses and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are sealed in the recesses between the plastic foil and the sheet. Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.

[0230] It may be desirable to provide a memory aid on the kit, e.g., in the form of numbers next to the tablets or capsules whereby the numbers correspond with the days of the regimen which the tablets or capsules so specified should be ingested. Another example of such a memory aid is a calendar printed on the card, e.g., as follows "First Week, Monday, Tuesday,..." etc. Other variations of memory aids will be readily apparent. A "daily dose" can be a single tablet or capsule or several pills or capsules to be taken on a given day. Also, a daily dose of Formula I compound can consist of one tablet or capsule while a daily dose of the second compound can consist of several tablets or capsules and vice versa. The memory aid should reflect this.

[0231] In another specific embodiment of the invention, a dispenser designed to dispense the daily doses one at a time in the order of their intended use is provided. Preferably, the dispenser is equipped with a memory-aid, so as to further facilitate compliance with the regimen. An example of such a memory-aid is a mechanical counter which indicates the number of daily doses that has been dispensed. Another example of such a memory-aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.

[0232] The compounds of this invention either alone or in combination with each other or other compounds generally will be administered in a convenient formulation. The following formulation examples only are illustrative and are not intended to limit the scope of the present invention.

[0233] In the formulations which follow, "active ingredient" means a compound of this invention.

50

Formulation 1:Gelatin Capsule	S
Hard gelatin capsules are p	repared using the follow-
	r
Ingredient	Quantity (mg/capsule)
Active ingredient	0.25-100
Starch, NF	0-650
Starch flowable powder	0-50
Silicone fluid 350 centistokes	0-15

[0234] A tablet formulation is prepared using the ingredients below:

Formulation 2: Tablets	
Ingredient	Quantity (mg/tablet)
Active ingredient	0.25-100
Cellulose, microcrystalline	200-650
Silicon dioxide, fumed	10-650
Stearate acid	5-15

[0235] The components are blended and compressed to form tablets.

[0236] Alternatively, tablets each containing 0.25-100 mg of active ingredients are made up as follows:

Formulation 3: Tablets		
Ingredient	Quantity (mg/tablet)	
Active ingredient	0.25-100	
Starch	45	
Cellulose, microcrystalline	35	
Polyvinylpyrrolidone (as 10% solution in water)	4	
Sodium carboxymethyl cellulose	4.5	
Magnesium stearate	0.5	
Talc	1	

[0237] The active ingredients, starch, and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders which are then passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50° - 60°C and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through a No. 60 U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets.

[0238] Suspensions each containing 0.25-100 mg of active ingredient per 5 ml dose are made as follows:

Formulation 4: Suspensions		
Ingredient	Quantity (mg/5 ml)	
Active ingredient	0.25-100 mg	
Sodium carboxymethyl cellulose	50 mg	
Syrup	1.25 mg	
Benzoic acid solution	0.10 mL	
Flavor	q.v.	
Color	q.v.	
Purified Water to	5 mL	

[0239] The active ingredient is passed through a No. 45 mesh U.S. sieve and mixed with the sodium carboxymethyl cellulose and syrup to form smooth paste. The benzoic acid solution, flavor, and color are diluted with some of the

water and added, with stirring. Sufficient water is then added to produce the required volume. [0240] An aerosol solution is prepared containing the following ingredients:

Formulation 5: Aerosol	
Ingredient	Quantity (% by weight)
Active ingredient	0.25
Ethanol	25.75
Propellant 22 (Chlorodifluoromethane)	. 70.00

[0241] The active ingredient is mixed with ethanol and the mixture added to a portion of the propellant 22, cooled to 30°C, and transferred to a filling device. The required amount is then fed to a stainless steel container and diluted with the remaining propellant. The valve units are then fitted to the container.

[0242] Suppositories are prepared as follows:

5

10

15

20

25

30

35

40

45

50

Formulation 6: Suppositories	
Ingredient	Quantity (mg/suppository)
Active ingredient	250
Saturated fatty acid glycerides	2,000

[0243] The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimal necessary heat. The mixture is then poured into a suppository mold of nominal 2 g capacity and allowed to cool.

[0244] An intravenous formulation is prepared as follows:

Formulation 7: Intravenous Solution	
Ingredient	Quantity
Active ingredient dissolved in ethanol 1% Intralipid™ emulsion	20 mg 1,000 mL

[0245] The solution of the above ingredients is intravenously administered to a patient at a rate of about 1 mL per minute.

[0246] Soft gelatin capsules are prepared using the following:

Formulation 8: Soft Gelatin C	apsule with Oil Formulation
Ingredient	Quantity (mg/capsule)
Active ingredient	10-500
Olive Oil or Miglyol™ Oil	500-1000

[0247] The active ingredient above may also be a combination of agents.

GENERAL EXPERIMENTAL PROCEDURES

[0248] NMR spectra were recorded on a Varian XL-300 (Varian Co., Palo Alto, California), a Bruker AM-300 spectrometer (Bruker Co., Billerica, Massachusetts) or a Varian Unity 400 at about 23°C at 300 MHz for proton and 75.4 mHz for carbon nuclei. Chemical shifts are expressed in parts per million downfield from tetramethylsilane. The peak shapes are denoted as follows: s, singlet; d, doublet; t, triplet, q, quartet; m, multiplet; bs=broad singlet. Resonances designated as exchangeable did not appear in a separate NMR experiment where the sample was shaken with several drops of D₂O in the same solvent. Atmospheric pressure chemical ionization (APCI) mass spectra were obtained on a Fisons Platform II Spectrometer. Chemical ionization mass spectra were obtained on a Hewlett-Packard 5989 instrument (Hewlett-Packard Co., Palo Alto, California) (ammonia ionization, PBMS). Where the intensity of chlorine or bromine-containing ions are described, the expected intensity ratio was observed (approximately 3:1 for ³⁵Cl/³⁷Cl-containing ions) and 1:1 for ⁷⁹Br/⁸¹Br-containing ions) and the intensity of only the lower mass ion is given.

[0249] Column chromatography was performed with either Baker Silica Gel (40 µm) (J.T. Baker, Phillipsburg, N.J.) or Silica Gel 60 (EM Sciences, Gibbstown, N.J.) in glass columns under low nitrogen pressure. Radial Chromatography was performed using a Chromatron (model 7924T, Harrison Research). Unless otherwise specified, reagents were used as obtained from commercial sources. Dimethylformamide, 2-propanol, tetrahydrofuran, and dichloromethane used as reaction solvents were the anhydrous grade supplied by Aldrich Chemical Company (Milwaukee, Wisconsin). Microanalyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, NY. The terms "concentrated" and "evaporated" refer to removal of solvent at water aspirator pressure on a rotary evaporator with a bath temperature of less than 45°C. Reactions conducted at "0-20°C" or "0-25°C" were conducted with initial cooling of the vessel in an insulated ice bath which was allowed to warm to room temperature over several hours. The abbreviation "min" and "h" stand for "minutes" and "hours" respectively.

PREPARATIONS

Preparation 1

10

15

30

Preparation 1A and 1B

[0250] cis-(2-Methyl-2,3,4,6,7,8-hexahydro-1H-cyclopenta[g]quinolin-4-yl)-carbamic acid benzyl ester and cis-(2-methyl-2,3,4,6,7,8-hexahydro-1H-cyclopenta[f]quinolin-4-yl)-carbamic acid benzyl ester: Indan-5-ylamine (1.5 g, 11.3 mmol) was dissolved in anhydrous dichloromethane (50 mL). Sodium sulfate (1.0 g) was added, and the mixture was cooled to -25°C. Acetaldehyde (0.63 mL, 11.3 mmol) was added and the reaction was stirred at -25°C for 1 h. The solid sodium sulfate was then filtered off, and to the filtrate at -25°C was added O-benzyl-N-vinyl carbamate (2.0 g, 11.3 mmol), followed by boron trifluoride diethyl etherate (0.14 mL, 1.13 mmol). The reaction was stirred at -25°C for 1 h and was allowed to warm to room temperature over 30 min. The reaction mixture was concentrated and the crude product was purified by silica gel chromatography using ethyl acetate/hexanes as eluent to afford 800 mg cis-(2-methyl-2,3,4,6,7,8-hexahydro-1H-cyclopenta[g]quinolin-4-yl)-carbamic acid benzyl ester ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 1.5 (q, 1H), 2.3 (m, 1H), 3.5 (m, 1H), 5.1 (s, 2H), 6.4 (s, 1H), 7.0 (s, 1H), 7.4 (m, 5H); and 260 mg of the minor product cis-(2-methyl-2,3,4,6,7,8-hexahydro-1H-cyclopenta[f]quinolin-4-yl)-carbamic acid benzyl ester, ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 1.5 (q, 1H), 2.3 (m, 1H), 3.5 (m, 1H), 5.1 (s, 2H), 6.4 (s, 1H), 7.0 (s, 1H), 7.4 (m, 5H).

Preparation 2.

[0251] cis-4-Benzyloxycarbonylamino-2-methyl-2,3,4,6,7,8-hexahydrocyclopenta[g]quinoline-1-carboxylic add ethyl ester: To a solution of cis-(2-methyl-2,3,4,6,7,8-hexahydro-1H-cyclopenta[g]quinolin-4-yl)-carbamic acid benzyl ester (Preparation 1A) (2.0 g, 5.9 mmol) in anhydrous dichloromethane (50 mL) was added pyridine (1.0 mL). The mixture was cooled to 0 °C, and ethyl chloroformate (1.0 mL) was slowly added. The reaction was stirred at 0 °C for 30 min, then at room temperature for 4 h. The reaction mixture was washed twice with 25 mL of 2N HCI. The organic layer was dried over magnesium sulfate, filtered and concentrated *in vacuo*. Purification by silica get chromatography using 15% ethyl acetate/hexanes as eluent afforded the title compound (500 mg). 1 H NMR (CDCl₃) δ 1.1 (d, 3H), 1.2 (t, 3H), 4.2 (m, 2H), 5.2 (s, 2H), 7.0 (s, 1H), 7.3 (s, 1H), 7.4 (m, 5H).

Preparation 3.

[0252] cis-4-Amino-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-carboxylic acid ethyl ester: cis-4-Benzyloxycarbonylamino-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-carboxylic acid ethyl ester (Preparation 2) (500 mg), 10% palladium on carbon (150 mg), and a mixture of ethanol-cyclohexene (1:1, 50 mL) was heated at reflux for 2 h. The reaction mixture was cooled to room temperature, filtered through Celite®, and concentrated in vacuo. Purification by silica gel chromatography using 5% methanol/ethyl acetate afforded the title compound (350 mg). MS m/z 258 (M+-16); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 1.3 (t, 3H), 2.1 (m, 2H), 2.4 (m, 1H), 4.2 (m, 2H), 4.5 (m, 1H), 3.8 (dd, 1H), 7.2 (s, 2H).

Preparation 4.

[0253] cis-4-(3,5-Bis-trifluoromethyl-benzylamino)-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-car-boxylic acid ethyl ester: To a solution of cis-4-amino-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-carboxylic acid ethyl ester (Preparation 3) (0.35 g, 1.28 mmol) in anhydrous 1,2-dichloroethane (50 mL) was added acetic acid (0.73 mL, 1.28 mmol), followed by 3,5-bis(trifluoromethyl)benzaldehyde (0.21 mL, 1.28 mmol) and sodium triacetoxyborohydride (0.406 g, 1.92 mmol). The reaction was stirred at room temperature for 18 h. The reaction mixture

was then diluted with chloroform and washed with 1N NaOH. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated *in vacuo*. Purification by silica gel chromatography using 10% ethyl acetate/hexanes as eluent afforded the title compound (approximately 300 mg). 1 H NMR (CDCl $_{3}$) δ 1.1 (d, 3H), 1.3 (t, 3H), 2.6 (m, 1H), 3.6 (dd, 1H), 4.5 (m, 1H), 7.30 (s, 1H), 7.35 (s, 1H), 7.8 (s, 1H), 8.0 (s, 2H).

Preparation 5

5

20

25

40

[0254] <u>cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-bis-hydroxymethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester</u>. A solution of diester *cis-*4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4-dihydro-2H-quinoline-1,6,7-tricarboxylic acid 1-ethyl ester 6,7-dimethyl ester (185 mg, 0.29 mmol) in 3 mL anhydrous tetrahydrofuran was added to lithium aluminum hydride (2 mL of a 1.0M solution in tetrahydrofuran) dropwise at room temperature and the mixture was stirred at room temperature for 2.5 h. An additional 195 μL of lithium aluminum hydride solution were added and the reaction was stirred

15 Preparation 6

[0255] <u>cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-bis-bromomethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester.</u> To a solution of triphenylphosphine (0.177 g, 0.68 mmol) in anhydrous dichloromethane (0.65 mL) at 0 °C was slowly added bromine (100 mg, 0.64 mmol) in 0.20 ml tetrahydrofuran. After the reaction was stirred at 0 °C for 10 min, a solution of *cis-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-bis-hydroxymethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester (Preparation 5) (0.148 g, 0.26 mmol) in dichloromethane (0.65 ml) was added. The reaction was stirred at 0°C for 10 min, then at room temperature for 1 h. The reaction mixture was concentrated <i>in vacuo* and the crude product was purified by silica gel chromatography using 15% ethyl acetate/hexanes as eluent to afford the desired product (32 mg). MS *m/z* 722 (M+ + NH₄); ¹H NMR (CDCl₃) δ 3.82 (s, 3H), 6.50 (s, 1H).

Example 1

[0256] cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta [g]quinoline-1-carboxylic acid ethyl ester: cis-4-(3,5-Bis-trifluoromethyl-benzylamino)-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-carboxylic acid ethyl ester (Preparation 4) (1.30 g, 2.55 mmol) was dissolved in anhydrous dichloromethane (100 mL), and pyridine (2.05 mL, 25.5 mmol) was added. The mixture was cooled to 0°C, and methyl chloroformate (1.97 mL, 25.5 mmol) was slowly added over 20 min. The reaction was stirred at 0°C for h, then at room temperature for 18 h. The reaction mixture was then diluted with chloroform, and washed twice with 1N HCl. The organic layer was dried over magnesium sulfate, filtered and concentrated in vacuo. Purification by silica gel chromatography using 10% ethyl acetate/hexanes as eluent afforded the title compound (1.00 g). MS m/z 558 (M+); ¹H NMR (CDCl₃) δ 1.1(d, 3H), 2.9 (m, 4H), 3.8 (s, 3H), 6.8 (s, 1H), 7.3 (s, 1H).

[0257] Using the appropriate starting materials, Examples 2-18 were prepared in an analogous manner to the sequence of reactions described for Preparations 1-4 and Examples 1.

Example 2

[0258] <u>cis-8-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]</u> quinoline-5-carboxylic acid ethyl ester. MS *m*/*z* 562.1 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.7 (s, 3H), 6.0 (s, 2H), 6.4 (s, 1H), 7.0 (s, 1H).

Example 3

[0259] cis-8-[(3,5-Bis-trifluoromethyl-benzyl)-ethoxycarbonyl-amino]-6-methyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g] quinoline-5-carboxylic acid ethyl ester. MS m/z 576.2 (M+);¹H NMR (CDCl₃) δ 1.1 (d, 3H), 6.0 (s, 2H), 6.4 (s, 1H), 7.6 (s, 2H), 7.7 (s, 1H).

Example 4

[0260] <u>cis-8-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-2H-furo[2,3-g]</u> quinoline-5-carboxylic acid ethyl ester MS m/z 561 (M+ + 1); ¹H NMR (CDCl₃) δ 3.75 (s, 3H), 6.4 (s, 1H).

Example 5

[0261] cis-9-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-8,9-dihydro-7H-thiazolo[5,4-f]quin-oline-6-carboxylic acid ethyl ester MS m/z 576 (M+ + 1); ¹H NMR (CDCl₃) δ 3.8 (s, 3H), 8.1 (m, 1H).

Example 6

5

10

[0262] <u>cis-1-Acetyl-8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-1,2,3,6,7,8-hexahydro-pyrrolo[2,3-g]quinoline-5-carboxylic acid ethyl ester MS m/z 601.3 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 2.2 (s, 3H), 3.8 (s, 3H), 7.3 (s, 1H).</u>

Example 7

[0263] cis-5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-2,3,6,7-tetrahydro-5H-pyrrolo [3,2-g]quinoline-1,8-dicarboxylic acid 1-tert-butyl ester 8-ethyl ester MS m/z 659.2 (M+); ¹H NMR (CDCl₃) δ 1.1 (d. 3H), 1.5 (s, 9H), 3.1 (t, 2H), 3.8 (s, 3H), 6.6 (s, 1H).

Example 8

20 [0264] cis-1-Acetyl-5-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,5,6,7-hexahydro-pyrrolo[3,2-g]quinoline-8-carboxylic acid ethyl ester MS m/z 601.3 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 2.2 (s, 3H), 3.8 (s, 3H), 6.7 (s, 1H).

Example 9

25

35

40

[0265] <u>cis-9-(Benzyl-methoxycarbonyl-amino)-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cyclopenta[a]naphthalene-6-carboxylic acid ethyl ester</u> MS m/z 440 (M+ +NH4); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 1.3 (t, 3H), 3.8 (s, 3H), 7.2 (m, 2H), 7.3 (m, 5H).

30 Example 10

[0266] cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-isopropoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-carboxylic acid ethyl ester MS m/z 604 (M+ + 18); 1 H NMR (CDCl₃) δ 1.1 (d, 3H), 1.3 (d), 6.8 (br, 1H), 7.7 (s, 2H), 7.8 (s, 1H).

Example 11

[0267] cis-4-[(3,5-Dimethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quino-line-1-carboxylic acid ethyl ester MS m/z 450 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 2.3 (s, 6H), 3.8 (s, 3H), 6.8 (br 4H), 7.3 (s, 1H).

Example 12

[0268] cis-6-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-8-methyl-1,2,3,6,7,8-hexahydro-9-aza-cyclopenta[a]naphthalene-9-carboxylic acid ethyl ester MS m/z 558 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.8 (s, 3H), 6.8 (d, 1H), 7.1 (d, 1H), 7.8 (s, 1H).

Example 13

50 [0269] <u>cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-methyl-3,4-dihydro-2H-benzo[h]</u> <u>quinoline-1-carboxylic acid isopropyl ester</u> MS m/z 617 (M+H)+; ¹H NMR (CDCl₃) δ 8.25 (bd, 1H, J = 9.0 Hz), 3.85 (bs, 3H), 1.15 (bd, 3H, J = 6 Hz).

Example 14

55

[0270] \underline{cis} -4-[(3,5-Bis-trifluoromethyl-benzyl)-(2-methoxy-ethoxycarbonyl)-amino]-2-methyl-2,3,4,6,7,8-hexahydrocyclopenta[g]quinoline-1-carboxylic acid ethyl ester MS m/z 602.4 (M+); 1 H NMR (CDCl₃) δ 1.1 (d, 3H), 1.3 (t, 3H), 6.8 (s, 1H), 7.3 (s, 1H), 7.7 (s, 2H), 7.8 (s, 1H).

Example 15

[0271] <u>cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,7,8,9-hexahydro-2H-benzo</u> [g]quinoline-1-carboxylic acid propyl ester MS *m/z* 588 (M+); ¹H NMR (CDCl₃) δ 1.15 (d, 3H), 1.3 (t, 3H), 1.8 (bs, 4H), 2.75 (bs, 4H), 3.80 (s, 3H), 6.58 (s, 1H), 7.19 (s, 1H).

Example 16

5

[0272] cis-9-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cy-clopenta[a]naphthalene-6-carboxylic acid ethyl ester MS m/z 558.2 (M+ + 1); ¹H NMR (CDCl₃) δ 1.3 (m, 6H), 3.8 (s, 3H), 7.5 (s, 1 H), 7.6 (s, 1 H), 7.7 (s, 1H).

Example 17

[0273] cis-9-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,7,8,9-tetrahydro-2H-furo[3,2-f] quinoline-6-carboxylic acid ethyl ester MS m/z 561 (M+ + 1); ¹H NMR (CDCl₃) 8 3.78 (s, 3H), 6.63 (m, 1H).

Example 18

[0274] cis-9-[(3,5-Bis-trifluoromethyl-benzyl)-isopropoxycarbonyl-amino]-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cyclopenta[a]naphthalene-6-carboxylic acid ethyl ester MS m/z 604 (M+ + 18); ¹H NMR (CDCl₃) δ 2.2 (m, 1H), 4.2 (q, 2H), 7.1 (m, 2H), 7.6 (s, 2H), 7.7 (s, 1 H).

Example 19

25

[0275] cis-5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,5,6,7-hexahydro-pyrrolo [3,2-g]quinoline-8-carboxylic acid ethyl ester. To an ice-cold solution of cis-5-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-2,3,6,7-tetrahydro-5H-pyrrolo[3,2-g]quinoline-1,8-dicarboxylic acid 1-tert-butyl ester 8-ethyl ester (Example 7) (200 mg) in 10 ml anhydrous dioxane was added 4M HCl in dioxane (15 ml) and the resulting solution was stirred for 18 h at room temperature. The solution was concentrated *in vacuo*. The residue was diluted with dichloromethane and washed twice with a saturated sodium bicarbonate solution. The organic phase was dried (MgSO4), filtered and concentrated. The crude product was chromatographed (50% ethyl acetate:hexane) to afford the title product (100 mg). MS m/z 559.3 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.0 (t, 2H), 3.6 (t, 2H), 3.8 (s, 3H), 6.6 (s, 1 H), 6.9 (s, 1 H).

[0276] Example 20 was prepared in an analogous manner to the sequence of reactions described for Preparations 1-4 and 19.

Example 20

0 [0277] <u>cis-8-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-1,2,3,6,7,8-hexahydro-pyrrolo</u> [2,3-g]quinoline-5-carboxylic acid ethyl ester MS *m/z* 559.4 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.0 (m, 2H), 3.5 (m, 2H), 3.7 (s, 3H), 6.3 (s, 1H), 7.8 (s, 1H).

Example 21

45

[0278] cis-5-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-1-formyl-7-methyl-1,2,3,5,6,7-hexahydro-pyrrolo[3,2-g]quinoline-8-carboxylic acid ethyl ester A solution of 5-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,5,6,7-hexahydro-pyrrolo[3,2-g]quinoline-8-carboxylic acid ethyl ester (Example 19) (40 mg) in 2 mL of a 20% phosgene in toluene solution was heated to reflux for 1 h. Phosgene and toluene were evaporated under a stream of nitrogen gas and the residue was purified by chromatography on silica gel (25% ethyl acetate:hexane) to afford 35 mg of the carbamoyl chloride intermediate, which was treated with 100 mg of 10% palladium on carbon in refluxing benzene (5 ml) and cyclohexene (5 ml). After 6 h the mixture was cooled, filtered through Celite® and concentrated. The crude material was chromatographed (30% ethyl acetate:hexane) to afford the title product (20 mg). ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.8 (s, 3H), 6.5 (s, 3H), 8.2 (s, 1H).

[0279] Example 22 was prepared from Example 20 in an analogous manner to Example 21

Example 22

[0280] <u>cis-8-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-1-formyl-6-methyl-1,2,3,6,7,8-hexahydro-pyrrolo[2,3-g]quinoline-5-carboxylic acid ethyl ester MS m/z 588.1 (M+ + 1); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.2 (m, 2H), 6.7 (s, 1H), 8.9 (s, 1H).</u>

Example 23

[0281] cis-8-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-1H-2-thia-5-aza-cyclopenta[b]naphthalene-5-carboxylic acid ethyl ester To a solution of cis-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-bis-bromomethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester (Preparation 6) (32 mg, 0.43 mmol) in 90 μ l toluene was added a solution of Na₂S (12.5 mg, 16 mmol) and triethylhexylammonium bromide (0.35 mg, 0.14 mmol) in 90 μ M H₂O. The resulting biphasic mixture was stirred ovemight. The layers were separated and the aqueous phase was extracted twice with 0.1 ml of ethyl acetate. The combined extracts were dried (MgSO₄) and concentrated. The crude material was purified by silica gel chromatography (20% EtOAc:hexane) to afford the titleproduct (10 mg, 39%). MS m/z 594 (M+ + NH₄); ¹H NMR (CDCl₂) δ 3.76 (s, 3H), 6.74 (s, 1 H).

Example 24

15

[0282] cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,8-tetrahydro-2H-furo[3,4-g] quinoline-1-carboxylic acid ethyl ester To a solution of *cis*-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-bis-bromomethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester (Preparation 6) (50 mg, 0.71 mmol) in 0.25 ml benzene was added benzyl tri-n-butylammonium chloride (23 mg, 0.71 mmol) and 30% NaOH (28 μl). The reaction mixture was heated to 80°C for 4 hours. The mixture was diluted with 0.75 ml ethyl acetate. The organic layer was separated and the aqueous phase was extracted with ethyl acetate (2 x 0.25 ml). The combined extracts were dried (MgSO₄), filtered and concentrated. The crude material was chromatographed on silica gel (25% ethyl acetate:hexane) to afford the title product (10 mg, 25%). MS *m/z* 561 (M+); ¹H NMR (CDCl₃) δ 3.85 (s, 3H), 6.85 (s, 1H).

30 Example 25 and Example 26

[0283] cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-8-oxo-3,4,6,8-tetrahydro-2H-furo [3,4-g]quinoline-1-carboxylic acid ethyl ester and cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-oxo-3,4,6,8-tetrahydro-2H-furo[3,4-g]quinoline-1-carboxylic acid ethyl ester. To a solution of cis-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-bis-hydroxymethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester (Preparation 5) (100 mg, 0.17 mmol) in 25 ml anhydrous dichloromethane was added pyridinium chloro-chromate (100 mg, 0.46 mmol) and the resulting mixture was stirred at room temperature for 24 h. The reaction mixture was poured into a separatory funnel, washed with H₂O and sat NaHCO₃, dried and concentrated. The crude material was chromatographed on silica gel (30-35% ethyl acetate:hexane) to afford cis-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-8-oxo-3,4,6,8-tetrahydro-2H-furo[3,4-g]quinoline-1-carboxylic acid ethyl ester (Example 25) MS m/z 574 (M+); ¹H NMR (CDCl₃) δ 3.8 (s, 3H), 7.5 (s, 1H), 7.8 (s, 1H) and cis-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-oxo-3,4,6,8-tetrahydro-2H-furo[3,4-g]quinoline-1-carboxylic acid ethyl ester (Example 26) MS m/z 575 (M+); ¹H NMR (CDCl₃) δ 1.1 (d, 3H), 3.8 (s, 3H), 7.0 (s, 1H), 8.0 (br, 1H). [0284] The following example was prepared in optically enriched form from the corresponding racemate of Example 1 using the method described in the specification.

Example 27

[0285] [2R,4S] 4-[(3,5-Bis-triffluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cy-clopenta[g]quinoline-1-carboxylic acid ethyl ester.

Claims

1. A compound of the Formula I

Formula I

or a pharmaceutically acceptable salt of said compound;

wherein R1 is hydrogen, Y, W-X, W-Y;

wherein W is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

X is -O-Y, -S-Y, -N(H)-Y or -N-(Y) $_{9}$;

5

10

15

20

25

30

35

40

45

50

55

Y for each occurrence is independently Z or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z;

wherein Z is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl optionally substituted with from one to nine fluorines;

R³ is hydrogen or Q;

wherein Q is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V;

wherein V is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylarino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino or said (C_1-C_6) alkyl or (C_2-C_6) alkenyl are optionally substituted with from one to nine fluorines;

R4 is Q1 or V1;

wherein Q1 a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or

branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V¹;

wherein V¹ is is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V¹ substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent optionally having from one to nine fluorines:

wherein either R3 must contain V or R4 must contain V1; and

 R^5 and R^6 , or R^6 and R^7 , and/or R^7 and R^8 are taken together and form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by R^5 and R^6 , or R^6 and R^7 , and/or R^7 and R^8 are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent optionally having from one to nine fluorines;

provided that the R^5 , R^6 , R^7 and/or R^8 , as the case may be, that do not form at least one ring are each independently hydrogen, halo, (C_1-C_6) alkoxy or (C_1-C_6) alkyl, said (C_1-C_6) alkyl optionally having from one to nine fluorines.

2. A compound as recited in claim 1 wherein

the C² methyl is beta;

the C4 nitrogen is beta:

R1 is W-X;

5

10

15

20

25

30

35

40

45

50

55

W is carbonyl, thiocarbonyl or sulfonyl;

X is -O-Y-, S-Y-, N(H)-Y- or -N-(Y)₂-;

Y for each occurrence is independently Z or (C_1-C_4) alkyl, said (C_1-C_4) alkyl substituent optionally having hydroxy or from one to nine fluorines or said (C_1-C_4) alkyl optionally mono-substituted with Z wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines:

R⁴ is (C₁-C₄)alkyl;

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is a partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyl optionally having from one to nine fluorines;

provided that the R⁵, R⁶, R⁷ and/or R⁸, as the case may be, that do not form one ring are hydrogen; or a pharmaceutically acceptable salt thereof.

3. A compound as recited in claim 2 wherein

W is carbonyl;

X is O-Y wherein Y is (C₁-C₄)alkyl, said (C₁-C₄)alkyl substituent optionally having hydroxy or from one to nine fluorines:

Q is (C₁-C₄)alkyl and V is phenyl, pyridinyl, or pyrimidinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C₁-C₆)alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines; R⁶ and R⁷ are taken together and form a mono-unsaturated five to six membered ring optionally having one or two heteratoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R⁶ and R⁷ is optionally mono-, di- or tri-substituted independently with halo, $(C_1-C_2) \\ alkyl, (C_1-C_2) \\ alkylsulfonyl, \\ hydroxy, (C_1-C_2) \\ alkoxy, (C_1-C_2) \\ alkylthio, \\ amino, \\ oxo, \\ carboxy, (C_1-C_4) \\ alkyloxy-carboxy, \\ amino, \\ oxo, \\ carboxy, \\ carboxy, \\ amino, \\ oxo, \\ carboxy, \\ carbox$ carbonyl, mono-N- or di-N,N-(C1-C2)alkylamino, wherein said (C1-C2)alkyl substituent is optionally mono-substituted with oxo and said (C1-C2)alkyl optionally having from one to five fluorines; and R5 and R8 are H

or a pharmaceutically acceptable salt thereof.

15

20

25

30

35

40

45

50

55

10

5

4. A compound as recited in claim 3 wherein

Q is methylene and V is phenyl or pyridinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C1-C2)alkyl, or nitro wherein said (C1-C2)alkyl optionally has from one to five fluorines; and

R⁶ and R⁷ taken together form one five or six membered mono-unsaturated ring optionally containing one heteroatom independently selected from nitrogen, oxygen and sulfur or a pharmaceutically acceptable salt thereof.

5. A compound as recited in claim 1 wherein said compound is

[2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta [g]quinoline-1-carboxylic acid ethyl ester;

8S] 8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-1H-2-thia-5-aza-cyclopenta[b]naphthalene-5-carboxylic acid ethyl ester;

[6R, 8S] 8-[(3,5-bis-trifluommethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-2H-furo[2,3-g] quinoline-5-carboxylic acid ethyl ester;

[2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,8-tetrahydro-2H-furo[3,4-g] quinoline-1-carboxylic acid ethyl ester; or

[2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,7,8,9-hexahydro-2H-benzo[g] quinoline-1-carboxylic acid propyl ester or

the pharmaceutically acceptable salts of said compounds.

6. A compound as recited in claim 4 wherein

Y is ethyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R⁶ and R⁷ taken together form -CH₂CH₂CH₂-;

or a pharmaceutically acceptable salt thereof.

7. A compound as recited in claim 4 wherein

Y is ethyl:

R3 is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R6 and R7 taken together form -CH2SCH2-;

or a pharmaceutically acceptable salt thereof.

8. A compound as recited in claim 4 wherein Y is ethvl:

R³ is 3,5-bis-trifluoromethylphenylmethyl; R4 is methyl; and

R6 and R7 taken together form -OCH2CH2-, the oxy attached at the six position;

or a pharmaceutically acceptable salt thereof.

9. A compound as recited in claim 4 wherein

Y is ethyl; R³ is 3,5-bis-trifluoromethylphenylmethyl;
R⁴ is methyl; and
R⁶ and R⁵ taken together form -CH₂OCH₂-;
or a pharmaceutically acceptable salt thereof.

10. A compound as recited in claim 4 wherein

Y is propyl;

5

10

20

25

30

35

40

R3 is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R⁶ and R⁷ taken together form -CH₂CH₂CH₂CH₂-;

or a pharmaceutically acceptable salt thereof.

11. A compound as recited in claim 2 wherein

15 W is carbonyl;

X is O-Y wherein Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl optionally having from one to nine fluorines;

Q is (C₁-C₄)alkyl and V is phenyl, pyridinyl, or pyrimidinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines; R^5 and R^6 are taken together and form a mono-unsaturated five to six membered ring optionally having one or two heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said rings formed by R^5 and R^6 are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxy-carbonyl, mono-N- or di-N,N- (C_1-C_2) alkylamino wherein said (C_1-C_2) alkyl substituent is optionally mono-substituted with oxo and said (C_1-C_2) alkyl optionally having from one to five fluorines; and R^7 and R^8 are H or a pharmaceutically acceptable salt thereof.

12. A compound as recited in claim 11 wherein

Q is methylene and V is phenyl or pyridinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, or nitro wherein said (C_1-C_2) alkyl optionally has from one to five fluorines; and

R⁵ and R⁶ taken together form one five membered mono-unsaturated ring optionally containing one heteroatom selected from nitrogen, oxygen or sulfur or a pharmaceutically acceptable salt thereof.

13. A compound as recited in claim 1 wherein said compound is

[7R,9S] 9-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cy-clopenta[a]naphthalene-6-carboxylic add ethyl ester or a pharmaceutically acceptable salt thereof.

14. A compound as recited in claim 12 wherein

Y is ethyl;

R3 is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R5 and R6 taken together form -CH2CH2CH2-;

or a pharmaceutically acceptable salt thereof.

45

50

55

15. A compound as recited in claim 2 wherein

W is carbonyl;

X is O-Y wherein Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl substituent optionally having from one to nine fluorines; Q is (C_1-C_4) alkyl and V is phenyl, pyridinyl, or pyrimidinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines; R^7 and R^8 are taken together and form a mono-unsaturated five to six membered ring optionally having one or two heteratoms selected independently from nitrogen, sulfur and oxygen;

wherein said ring formed by R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_2) alkylsulfonyl, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxy-carbonyl, mono-N- or di-N,N- (C_1-C_2) alkylamino wherein said (C_1-C_2) alkyl substituent is optionally mono-substituted with oxo and said (C_1-C_2) alkyl optionally having from one to five fluorines; and R^5 and R^6 are H

or a pharmaceutically acceptable salt thereof.

16. A compound as recited in claim 15 wherein

Q is methylene and V is phenyl or pyridinyl;

wherein said V ring is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, or nitro wherein said (C_1-C_2) alkyl optionally has from one to five fluorines; and

 R^7 and R^8 taken together form one five or six membered mono-unsaturated ring optionally containing one heteroatom selected from nitrogen, oxygen and sulfur

or a pharmaceutically acceptable salt thereof.

10

20

25

30

35

40

45

5

17. A compound as recited in claim 1 wherein said compound is

[6S,8R] 6-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-8-methyl-1,2,3,6,7,8-hexahydro-9-aza-cy-clopenta[a]naphthalene-9-carboxylic acid ethyl ester or a pharmaceutically acceptable salt thereof.

15 18. A compound as recited in claim 16 wherein

Y is ethyl;

R³ is 3,5-bis-trifluoromethylphenylmethyl;

R4 is methyl; and

R7 and R8 taken together form -CH2CH2CH2-;

or a pharmaceutically acceptable salt thereof.

19. A compound as recited in claim 1 wherein

the C2 methyl is beta;

the C4 nitrogen is beta:

R1 is W-Y:

W is carbonyl, thiocarbonyl or sulfonyl;

Y is (C_1-C_4) alkyl, said (C_1-C_4) alkyl optionally having from one to nine fluorines or said (C_1-C_4) alkyl optionally monosubstituted with Z wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen; -

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen:

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines:

R4 is (C1-C4)alkyl; and

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyl optionally having from one to nine fluorines;

provided that the R⁵, R⁶, R⁷ and/or R⁸, as the case may be, that do not form the ring are hydrogen;

or a pharmaceutically acceptable salt thereof.

20. A compound as recited in claim 1 wherein

the C2 methyl is beta;

the C⁴ nitrogen is beta:

55 R¹ is W-Z;

W is carbonyl, thiocarbonyl or sulfonyl;

Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl substituent optionally has from one to nine fluorines;

R⁴ is (C₁-C₄)alkyl; and

5

10

15

20

25

30

35

40

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyl optionally having from one to nine fluorines;

provided that the R⁵, R⁶, R⁷ and/or R⁸, as the case may be, that do not form the ring are hydrogen; or a pharmaceutically acceptable salt thereof.

21. A compound as recited in claim 1 wherein

the C² methyl is beta;

the C⁴ nitrogen is beta:

R1 is Y;

wherein Y is (C_1-C_6) alkyl, said (C_1-C_6) alkyl optionally having from one to nine fluorines or said (C_1-C_6) alkyl optionally mono-substituted with Z wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substituted with from one to nine fluorines;

R³ is Q-V wherein Q is (C₁-C₄)alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl optionally has from one to nine fluorines; R^4 is (C_1-C_4) alkyl; and

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyl optionally having from one to nine fluorines;

provided that the R^5 , R^6 , R^7 and/or R^8 , as the case may be,-that do not form the ring are hydrogen; or a pharmaceutically acceptable salt thereof.

22. A compound as recited in claim 1 wherein

the C2 methyl is beta;

the C4 nitrogen is beta:

R1 is Z;

wherein Z is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said Z substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkyl, (C_1-C_4) alkylthio, nitro, cyano, oxo, or (C_1-C_6) alkyloxycarbonyl, said (C_1-C_4) alkyl optionally substi-

47

50

55

tuted with from one to nine fluorines;

5

10

15

30

40

45

50

55

 R^3 is Q-V wherein Q is (C_1-C_4) alkyl and V is a five or six membered partially saturated, fully saturated or fully unsaturated ring optionally having one to three heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V ring is optionally mono-, di-, tri- or tetra-substituted independently with halo, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, nitro, cyano or oxo wherein said (C_1-C_6) alkyl optionally has from one to nine fluorines; R⁴ is (C_1-C_4) alkyl; and

R⁵ and R⁶, or R⁶ and R⁷, or R⁷ and R⁸ are taken together and form one ring that is partially saturated or fully unsaturated five or six membered ring optionally having one to two heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring formed by R^5 and R^6 , or R^6 and R^7 , or R^7 and R^8 is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_4) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_4) alkenyl, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino wherein said (C_1-C_4) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_4) alkylamino or said (C_1-C_4) alkyl optionally having from one to nine fluorines;

wherein the R^5 , R^6 , R^7 and/or R^8 , as the case may be, that do not form the ring are hydrogen; or a pharmaceutically acceptable salt thereof.

- 23. The use of an effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt of said compound, for the preparation of a medicament for the treatment of atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia in a mammal (including a human being either male or female).
 - 24. The use as claimed in Claim 23 wherein the medicament is for the treatment of atherosclerosis.
 - 25. The use as claimed in Claim 23 wherein the medicament is for the treatment of peripheral vascular disease.
 - 26. The use as claimed in Claim 23 wherein the medicament is for the treatment of dyslipidemia.
 - 27. The use as claimed in Claim 23 wherein the medicament is for the treatment of hyperbetalipoproteinemia.
- 28. The use as claimed in Claim 23 wherein the medicament is for the treatment of hypoalphalipoproteinemia.
 - 29. The use as claimed in Claim 23 wherein the medicament is for the treatment of hypercholesterolemia.
 - 30. The use as claimed in Claim 23 wherein the medicament is for the treatment of hypertriglyceridemia.
 - 31. The use as claimed in Claim 23 wherein the medicament is for the treatment of cardiovascular disorders.
 - 32. A pharmaceutical composition which comprises a therapeutically effective amount of a compound of claim 1, or a pharmaceutically acceptable salt of said compound and a pharmaceutically acceptable carrier.
 - 33. A pharmaceutical composition for the treatment of atherosderosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia in a mammal which comprise a therapeutically effective amount of a compound of claim 1, or a pharmaceutically acceptable salt of said compound and a pharmaceutically acceptable carrier.
 - 34. A pharmaceutical composition for the treatment of atherosderosis in a mammal which comprises an atherosderosis treating amount of a compound of claim 1, or a pharmaceutically acceptable salt of said compound and a pharmaceutically acceptable carrier.
 - 35. A pharmaceutical combination composition comprising: a therapeutically effective amount of a composition comprising

a first compound, said first compound being a compound of claim 1, or a pharmaceutically acceptable salt of said compound;

a second compound, said second compound being an HMG CoA reductase inhibitor, an MTP/Apo B secretion inhibitor, a PPAR activator, a bile acid reuptake inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an ACAT inhibitor or a bile acid sequestrant; and a pharmaceutical carrier.

- 36. A pharmaceutical combination composition as recited in claim 35 wherein the second compound is an HMG-CoA reductase inhibitor or a MTP/Apo B secretion inhibitor.
- **37.** A pharmaceutical combination composition as recited in claim 35 wherein the second compound is lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin or rivastatin.
- 38. The use of a first compound, said first compound being a compound of Claim 1, or a pharmaceutically acceptable salt of said compound; and a second compound, said second compound being an HMG CoA reductase inhibitor, an MTP/Apo B secretion inhibitor, a cholesterol absorption inhibitor, cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin,

for the preparation of a medicament for the treatment of artherosclerosis.

an antioxidant, an ACAT inhibitor or a bile acid sequestrant

20

30

35

40

5

10

- **39.** The use as claimed in Claim 38 wherein the second compound is an HMG-CoA reductase inhibitor or a MTP/Apo B secretion inhibitor.
- **40.** The use as claimed in Claim 38 wherein the second compound is lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin or rivastatin.
 - 41. A kit comprising:
 - a. a first compound, said first compound being a compound of claim 1, or a pharmaceutically acceptable salt of said compound and a pharmaceutically acceptable carrier in a first unit dosage form;
 - b. a second compound, said second compound being an HMG CoA reductase inhibitor, an MTP/Apo B secretion inhibitor, a cholesterol absorption inhibitor, a cholesterol synthesis inhibitor, a fibrate, niacin, an ion-exchange resin, an antioxidant, an ACAT inhibitor or a bile acid sequestrant and a pharmaceutically acceptable carrier in a second unit dosage form; and
 - c. means for containing said first and second dosage forms

wherein the amounts of first and second compounds result in a therapeutic effect.

- 42. A kit as recited in daim 41 wherein said second compound is an HMG-CoA reductase inhibitor or an MTP/Apo B secretion inhibitor.
- 43. A kit as recited in daim 41 wherein said second compound is lovastatin, simvastatin, pravastatin, fluvastafin, atorvastatin or rivastatin.

45 Patentansprüche

1. Verbindung der Formel I

55

Formel I

20

25

30

35

5

10

15

oder ein pharmazeutisch verträgliches Salz der genannten Verbindung,

worin R1 Wasserstoff, Y, W-X, W-Y darstellt;

worin W ein Carbonyl, Thiocarbonyl, Sulfinyl oder Sulfonyl darstellt;

 $X \text{ für -O-Y, -S-Y, -N(H)-Y oder -N-(Y)}_2 \text{ steht};$

Y für jeweils jedes Auftreten unabhängig Z oder eine vollständig gesättigte, teilweise ungesättigte oder vollständig ungesättigte ein- bis zehngliedrige gerade oder verzweigte Kohlenstoffkette darstellt, worin die Kohlenstoffe, mit Ausnahme des Verbindungskohlenstoffs, optional mit einem oder zwei Heteroatom(en) ersetzt werden können, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind und genannter Kohlenstoff unabhängig mit Halo optional mono-, di- oder trisubstituiert ist, wobei genannter Kohlenstoff mit Hydroxy optional monosubstituiert ist, wobei genannter Kohlenstoff mit Oxo optional monosubstituiert ist, wobei genannter Schwefel mit Oxo optional mono- oder disubstituiert ist, wobei genannter Stickstoff mit Oxo optional mono- oder disubstituiert ist und wobei genannte Kohlenstoffkette mit Z optional monosubstituiert ist; worin Z einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis zwölf-

gliedrigen Ring mit optional einem bis vier Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind, oder einen bicyclischen Ring, bestehend aus zwei kondensierten teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis sechsgliedrigen Ringen, die unabhängig genommen, optional ein bis vier Heteroatom(e) aufweisen, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff, ausgewählt ist/sind;

40

worin genannter Z-Substituent unabhängig mit Halo, (C2-C6)-Alkenyl, (C1-C6)-Alkyl, Hydroxy, (C1-C6)-Alkoxy, (C1-C4)-Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C1-C6)-Alkyloxycarbonyl, Mono-N- oder Di-N, N-(C1-C6)-alkylamino optional mono-, di- oder trisubstituiert ist, worin genannter (C1-C6)-Alkylsubstituent unabhängig mit Halo, Hydroxy, (C₁-C₆)-Alkoxy, (C₁-C₄)-Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C₁-C₆)-Alkyloxycarbonyl, Mono-N- oder Di-N,N-(C1-C6)-alkylamino optional mono-, di- oder trisubstituiert ist, wobei genanntes (C1-C6)-Alkyl optional mit von einem bis neun Fluor(en) substituiert ist; R3 Wasserstoff oder Q darstellt;

50

45

worin Q eine vollständig gesättigte, teilweise ungesättigte oder vollständig ungesättigte ein- bis sechsgliedrige gerade oder verzweigte Kohlenstoffkette darstellt, worin die Kohlenstoffe, mit Ausnahme des Verbindungskohlenstoffs, optional mit einem Heteroatom ersetzt werden können, das aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist und genannter Kohlenstoff unabhängig mit Halo optional mono-, di- oder trisubstituiert ist, wobei genannter Kohlenstoff mit Hydroxy optional monosubstituiert ist, wobei genannter Kohlenstoff mit Oxo optional monosubstituiert ist, wobei genannter Schwefel mit Oxo optional mono- oder disubstituiert ist, wobei genannter Stickstoff mit Oxo optional mono- oder disubstituiert ist und wobei genannte Kohlenstoffkette mit V optional monosubstituiert ist;

55

worin V einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis zwölfgliedrigen Ring mit optional ein bis vier Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind, oder einen bicyclischen Ring, bestehend aus zwei kondensierten teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis sechsgliedrigen Ringen, die unabhängig

genommen, optional ein bis vier Heteroatom(e) aufweisen, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind;

worin genannter V-Substituent unabhängig mit Halo, (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, Hydroxy, (C_1-C_6) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxamoyl, Mono-N- oder Di-N,N- (C_1-C_6) -alkylcarboxamoyl, Carboxy, (C_1-C_6) -alkyloxycarbonyl, Mono-N oder Di-N,N- (C_1-C_6) -alkylamino optional mono-, di-, tri- oder tetrasubstituiert ist, worin genannter (C_1-C_6) -Alkyl- oder (C_2-C_6) -Alkenylsubstituent unabhängig mit Hydroxy, (C_1-C_6) -Alkoxy, (C_1-C_6) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_6) -Alkyloxycarbonyl, Mono-N- oder Di-N, N- (C_1-C_6) -alkylamino optional mono-, di- oder trisubstituiert ist oder genanntes (C_1-C_6) -Alkyl oder (C_2-C_6) -Alkenyl optional mit von einem bis neun Fluor(en) substituiert ist; \mathbb{R}^4 für \mathbb{Q}^1 oder \mathbb{V}^1 steht;

worin Q¹ eine vollständig gesättigte, teilweise ungesättigte oder vollständig ungesättigte ein- bis sechsgliedrige gerade oder verzweigte Kohlenstoffkette darstellt, worin die Kohlenstoffe mit Ausnahme des Verbindungskohlenstoffs, optional mit einem Heteroatom ersetzt werden können, das aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist und wobei genannter Kohlenstoff unabhängig mit Halo optional mono-, di- oder trisubstituiert ist, wobei
genannter Kohlenstoff mit Hydroxy optional monosubstituiert ist, wobei genannter Kohlenstoff mit Oxo optional
monosubstituiert ist, wobei genannter Schwefel mit Oxo optional mono- oder disubstituiert ist, wobei genannter
Stickstoff mit Oxo optional mono- oder disubstituiert ist und wobei genannte Kohlenstoffkette mit V¹ optional monosubstituiert ist;

worin V¹ einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis sechsgliedrigen Ring optional mit einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind:

worin genannter V¹-Substituent unabhängig mit Halo, (C_1-C_6) -Alkyl, (C_1-C_6) -Alkoxy, Amino, Nitro, Cyano, (C_1-C_6) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_6) -alkylamino optional mono-, di-, tri- oder tetrasubstituiert ist, worin genannter (C_1-C_6) -Alkylsubstituent mit Oxo optional monosubstituiert ist, wobei genannter (C_1-C_6) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

worin eines der beiden R3 V enthalten muss oder R4 V1 enthalten muss; und

R⁵ und R⁶, oder R⁶ und R⁷, und/oder R⁷ und R⁸ zusammengenommen sind und mindestens einen vier- bis achtgliedrigen Ring bilden, der teilweise gesättigt oder vollständig ungesättigt ist, wobei er optional ein bis drei Heteroatom(e) aufweist, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind;

worin genannte(r) Ring oder Ringe, die durch R⁵ und R⁶ oder R⁶ und R⁷ und/oder R⁷ und R⁸ gebildet sind, unabhängig mit Halo, (C_1-C_6) -Alkyl, (C_1-C_4) -Alkylsulfonyl, (C_2-C_6) -Alkenyl, Hydroxy, (C_1-C_6) -Alkoxy, (C_1-C_4) -Alkylsulfonyl, Mono-N- oder Di-N,N- (C_1-C_6) -Alkylamino optional mono-, di- oder trisubstituiert sind, worin genannter (C_1-C_6) -Alkylsubstituent unabhängig mit Hydroxy, (C_1-C_6) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_6) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_6) -alkylamino optional mono-, di- oder trisubstituiert ist, wobei genannter (C_1-C_6) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

vorausgesetzt, dass, je nachdem, die R^5 , R^6 , R^7 und/oder R^8 , die nicht mindestens einen Ring bilden, jeweils unabhängig Wasserstoff, Halo, (C_1 - C_6)-Alkoxy oder (C_1 - C_6)-Alkyl darstellen, wobei genanntes (C_1 - C_6)-Alkyl optional von einem bis neun Fluor(e) aufweist.

2. Verbindung nach Anspruch 1, worin

das C²-Methyl β darstellt;

der C4-Stickstoff β darstellt;

R1 für W-X steht;

W für Carbonyl, Thiocarbonyl oder Sulfonyl steht;

X für -O-Y-, S-Y-, N(H)-Y- oder -N-(Y)2- steht;

Y für jeweils jedes Auftreten unabhängig Z oder (C_1-C_4) -Alkyl darstellt, wobei genannter (C_1-C_4) -Alkylsubstituent optional Hydroxy oder von einem bis neun Fluor(e) aufweist oder wobei genanntes (C_1-C_4) -Alkyl mit Z optional monosubstituiert ist, worin Z einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis sechsgliedrigen Ring mit optional einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter Z-Substituent unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Nitro, Cyano, Oxo oder (C_1-C_6) -Alkyloxycarbonyl optional mono-, di- oder trisubstituiert ist, wobei genanntes (C_1-C_4) -Alkyl optional mit von einem bis neun Fluor(en) substituiert ist;

R³ Q-V darstellt, worin Q für (C₁-C₄)-Alkyl steht und V einen fünf- oder sechsgliedrigen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten Ring optional mit einem bis drei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter V-Ring unabhängig mit Halo, (C₁-C₆)-Alkyl, Hydroxy, (C₁-C₆)-Alkoxy, Nitro, Cyano oder Oxo

51

15

5

10

20

25

30

35

40

50

45

optional mono-, di-, tri- oder tetrasubstituiert ist, worin genannter (C₁-C₆)-Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

R4 für (C1-C4)-Alkyl steht;

5

10

15

20

25

30

35

40

45

R5 und R6, oder R6 und R7, oder R7 und R8

zusammengenommen sind und einen Ring bilden, bei dem es sich um einen teilweise gesättigten oder vollständig ungesättigten fünf- oder sechsgliedrigen Ring mit optional einem bis zwei Heteroatom(en) handelt, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind;

worin genannter Ring, der durch R^5 und R^6 , oder R^6 und R^7 , oder R^7 und R^8 gebildet ist, unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylsulfonyl, (C_2-C_4) -Alkenyl, Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, dioder trisubstituiert ist, worin genannter (C_1-C_4) -Alkylsubstituent unabhängig mit Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -Alkylamino optional mono, di- oder trisubstituiert ist oder genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) aufweist; vorausgesetzt, dass, je nachdem, die R^5 , R^6 und/oder R^8 , die keinen Ring bilden, Wasserstoff darstellen; oder ein pharmazeutisch verträgliches Salz davon.

3. Verbindung nach Anspruch 2, worin

W für Carbonyl steht;

X für O-Y steht, worin Y für (C_1-C_4) -Alkyl steht, wobei genannter (C_1-C_4) -Alkylsubstituent optional Hydroxy oder von einem bis neun Fluor(e) aufweist;

Q für (C_1-C_4) -Alkyl steht und V für Phenyl, Pyridinyl, oder Pyrimidinyl steht;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_6) -Alkyl, Hydroxy, (C_1-C_6) -Alkoxy, Nitro, Cyano oder Oxo optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_6) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

R⁶ und R⁷ zusammengenommen sind und einen einfach ungesättigten fünf- bis sechsgliedrigen Ring mit optional einem oder zwei Heteroatom(en) bilden, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind:

worin genannter durch R^6 und R^7 gebildete Ring unabhängig mit Halo, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkylsulfonyl, Hydroxy, (C_1-C_2) -Alkoxy, (C_1-C_2) -Alkylthio, Amino, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N, N- (C_1-C_2) -Alkylamino optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_2) -Alkylsubstituent mit Oxo optional monosubstituiert ist und genanntes (C_1-C_2) -Alkyl optional von einem bis fünf Fluor(e) aufweist; und

R⁵ und R⁸ für H stehen

oder ein pharmazeutisch verträgliches Salz davon.

4. Verbindung nach Anspruch 3, worin

Q für Methylen steht und V für Phenyl oder Pyridinyl steht;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_2) -Alkyl oder Nitro optional mono-, di- oder trisubstituiert ist, worin genanntes (C_1-C_2) -Alkyl optional von einem bis fünf Fluor(e) aufweist; und R^6 und R^7 zusammengenommen einen fünf- oder sechsgliedrigen einfach ungesättigten Ring bilden, optional enthaltend ein Heteroatom, das unabhängig aus Stickstoff, Sauerstoff und Schwefel ausgewählt ist oder ein pharmazeutisch verträgliches Salz davon.

Verbindung nach Anspruch 1, worin genannte Verbindung Folgendes darstellt: [2R,4S]-4-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]chinolin-1-carbonsäure-ethyle-ster;

[6R,8S]-8-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-1H-2-thia-5-azacyclopenta[b]naphthalen-5-carbonsäure-ethylester;

[6R,8S]-8-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-2H-furo[2,3-g] chinolin-5-carbonsäure-ethylester;

[2R,4S]-4-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,8-tetrahydro-2H-furo[3,4-g] chinolin-1-carbonsäure-ethylester; oder

[2R,4S]-4-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,7,8,9-hexahydro-2H-benzo[g] chinolin-1-carbonsäure-propylester oder die pharmazeutisch verträglichen Salze von genannten Verbindungen.

6. Verbindung nach Anspruch 4, worin

Y für Ethyl steht;

R³ für 3,5-Bis-trifluormethylphenylmethyl steht;

52

55

R⁴ für Methyl steht; und R⁶ und R⁷ zusammengenommen -CH₂CH₂- bilden; oder ein pharmazeutisch verträgliches Salz davon.

5 7. Verbindung nach Anspruch 4, worin

Y für Ethyl steht;

R3 für 3,5-Bis-trifluormethylphenylmethyl steht;

R4 für Methyl steht; und

R6 und R7 zusammengenommen -CH2SCH2- bilden;

oder ein pharmazeutisch verträgliches Salz davon.

8. Verbindung nach Anspruch 4, worin

Y für Ethyl steht;

R3 für 3,5-Bis-trifluormethylphenylmethyl steht;

15 R4 für Methyl steht; und

R6 und R7 zusammengenommen -OCH2CH2- bilden, wobei das

Oxy an der Sechsstellung gebunden ist;

oder ein pharmazeutisch verträgliches Salz davon.

20 9. Verbindung nach Anspruch 4, worin

Y für Ethyl steht;

R3 für 3,5-Bis-trifluormethylphenylmethyl steht;

R4 für Methyl steht; und

R⁶ und R⁷ zusammengenommen -CH₂OCH₂- bilden;

25 oder ein pharmazeutisch verträgliches Salz davon.

10. Verbindung nach Anspruch 4, worin

Y für Propyl steht;

R3 für 3,5-Bis-trifluormethylphenylmethyl steht;

30 R4 für Methyl steht; und

R⁶ und R⁷ zusammengenommen -CH₂CH₂CH₂- bilden;

oder ein pharmazeutisch verträgliches Salz davon.

11. Verbindung nach Anspruch 2, worin

W für Carbonyl steht;

X für O-Y steht, worin Y für (C_1-C_4) -Alkyl steht, wobei genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) aufweist;

Q für (C₁-C₄)-Alkyl steht und V für Phenyl, Pyridinyl

oder Pyrimidinyl steht;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_6) -Alkyl, Hydroxy, (C_1-C_6) -Alkoxy, Nitro, Cyano oder Oxo optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_6) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

R⁵ und R⁶ zusammengenommen sind und einen einfach ungesättigten fünf- bis sechsgliedrigen Ring bilden, der optional ein oder zwei Heteroatom(e) aufweist, das/die unabhängig aus Stickstoff, Schwefel und

45 Sauerstoff ausgewählt ist/sind;

worin genannte durch R^5 und R^6 gebildete Ringe unabhängig mit Halo, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkylsulfonyl, Hydroxy, (C_1-C_2) -Alkyloxy, (C_1-C_2) -Alkylthio, Amino, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N, N- (C_1-C_2) -Alkylamino optional mono-, di- oder trisubstituiert sind, worin genannter (C_1-C_2) -Alkylsubstituent mit Oxo optional monosubstituiert ist und genanntes (C_1-C_2) -Alkyl optional von einem bis fünf Fluor(e) aufweist;

50 und

35

40

55

R⁷ und R⁸ für H stehen, oder ein pharmazeutisch verträgliches Salz davon.

12. Verbindung nach Anspruch 11, worin

Q für Methylen steht und V für Phenyl oder Pyridinyl steht;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_2) -Alkyl oder Nitro optional mono-, di- oder trisubstituiert ist, worin genanntes (C_1-C_2) -Alkyl optional von einem bis fünf Fluor(e) aufweist; und

R⁵ und R⁶ zusammengenommen einen fünfgliedrigen einfach ungesättigten Ring bilden, optional enthaltend ein Heteroatom, das aus Stickstoff, Sauerstoff oder Schwefel ausgewählt ist, oder ein pharmazeutisch verträgliches

Salz davon.

5

10

25

35

40

45

50

55

13. Verbindung nach Anspruch 1, worin genannte Verbindung Folgendes darstellt:

[7R,9S]-9-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cyclopenta[a]naphthalen-6-carbonsäure-ethylester, oder ein pharmazeutisch verträgliches Salz davon.

14. Verbindung nach Anspruch 12, worin

Y für Ethyl steht;

R³ für 3,5-Bis-trifluormethylphenylmethyl steht;

R4 für Methyl steht; und

R5 und R6 zusammengenommen -CH2CH2CH2- bilden;

oder ein pharmazeutisch verträgliches Salz davon.

15. Verbindung nach Anspruch 2, worin

W für Carbonyl steht;

X für O-Y steht, worin Y für (C_1-C_4) -Alkyl steht, wobei genannter (C_1-C_4) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

Q für (C_1-C_4) -Alkyl steht und V für Phenyl, Pyridinyl, oder Pyrimidinyl steht;

worin genannter V-Ring unabhängig mit Halo, (C₁-C₆)-Alkyl, Hydroxy, (C₁-C₆)-Alkoxy, Nitro, Cyano oder Oxo optional mono-, di- oder trisubstituiert ist, worin genannter (C₁-C₆)-Alkylsubstituent optional von einem bis neun Fluor (e) aufweist;

R⁷ und R⁸ zusammengenommen sind und einen einfach ungesättigten fünf- bis sechsgliedrigen Ring mit optional einem oder zwei Heteroatom(en) bilden, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind:

worin genannter durch R^7 und R^8 gebildete Ring unabhängig mit Halo, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkylsulfonyl, Hydroxy, (C_1-C_2) -Alkyl, (C_1-C_2) -Alkylthio, Amino, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N, N- (C_1-C_2) -Alkylamino optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_2) -Alkylsubstituent mit Oxo optional monosubstituiert ist und genanntes (C_1-C_2) -Alkyl optional von einem bis fünf Fluor(e) aufweist;

30 und

R⁵ und R⁶ für H stehen

oder ein pharmazeutisch verträgliches Salz davon.

16. Verbindung nach Anspruch 15, worin

Q für Methylen steht und V für Phenyl oder Pyridinyl steht;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_2) -Alkyl oder Nitro optional mono-, di- oder trisubstituiert ist, worin genanntes (C_1-C_2) -Alkyl optional von einem bis fünf Fluor(e) aufweist; und

R⁷ und R⁸ zusammengenommen einen fünf- oder sechsgliedrigen einfach ungesättigten Ring bilden, optional enthaltend ein Heteroatom, das aus Stickstoff, Sauerstoff und Schwefel ausgewählt ist oder ein pharmazeutisch verträgliches Salz davon.

17. Verbindung nach Anspruch 1, worin genannte Verbindung Folgendes darstellt:

[6S,8R]-6-[(3,5-Bis-trifluormethyl-benzyl)-methoxycarbonyl-amino]-8-methyl-1,2,3,6,7,8-hexahydro-9-azacyclopenta[a]naphthalen-9-carbonsäure-ethylester, oder ein pharmazeutisch verträgliches Salz davon.

18. Verbindung nach Anspruch 16, worin

Y für Ethyl steht;

R3 für 3.5-Bis-trifluormethylphenylmethyl steht;

R4 für Methyl steht; und

R⁷ und R⁸ zusammengenommen -CH₂CH₂CH₂- bilden;

oder ein pharmazeutisch verträgliches Salz davon.

19. Verbindung nach Anspruch 1, worin

das C2-Methyl für β steht;

der C4-Stickstoff für β steht;

R1 für W-Y steht;

W für Carbonyl, Thiocarbonyl oder Sulfonyl steht;

Y für (C_1-C_4) -Alkyl steht, wobei genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) aufweist oder genanntes (C_1-C_4) -Alkyl mit Z optional monosubstituiert ist, worin Z ein teilweise gesättigter, vollständig gesättigter oder vollständig ungesättigter drei- bis sechsgliedriger Ring mit optional einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter Z-Substituent unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Nitro, Cyano, Oxo oder (C_1-C_6) -Alkyloxycarbonyl optional mono-, di- oder trisubstituiert ist, wobei genanntes (C_1-C_4) -Alkyl optional mit von einem bis neun Fluor(en) substituiert ist;

 R^3 für Q-V steht, worin Q für (C_1-C_4) -Alkyl steht und V ein fünf- oder sechsgliedriger teilweise gesättigter, vollständig gesättigter oder vollständig ungesättigter Ring mit optional einem bis drei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_6) -Alkyl, Hydroxy, (C_1-C_6) -Alkoxy, Nitro, Cyano oder Oxo optional mono-, di-, tri- oder tetrasubstituiert ist, worin genannter (C_1-C_6) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

R4 für (C1-C4)-Alkyl steht; und

5

10

15

20

25

30

35

40

45

50

55

R⁵ und R⁶, oder R⁶ und R⁷, oder R⁷ und R⁸

zusammengenommen sind und einen Ring bilden, der einen teilweise gesättigten oder vollständig ungesättigten fünf- oder sechsgliedrigen Ring mit optional einem oder zwei Heteroatom(en) darstellt, das/die aus Stickstoff, Schwefel und Sauerstoff unabhängig ausgewählt ist/sind;

worin genannter durch R^5 und R^6 , oder R^6 und R^7 , oder R^7 und R^8 gebildete Ring unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylsulfonyl, (C_2-C_4) -Alkenyl, Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N-oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, di- oder tri-substituiert ist, worin genannter (C_1-C_4) -Alkylsubstituent unabhängig mit Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, di- oder trisubstituiert ist oder genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) aufweist; vorausgesetzt, dass, je nachdem, die R^5 , R^6 , R^7 und/oder R^8 , die nicht den Ring bilden, Wasserstoff darstellen; oder ein pharmazeutisch verträgliches Salz davon.

20. Verbindung nach Anspruch 1, worin

das C2-Methyl β darstellt;

der C4-Stickstoff β darstellt:

R1 für W-Z steht:

W für Carbonyl, Thiocarbonyl oder Sulfonyl steht;

Z einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis sechsgliedrigen Ring optional mit einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter Z-Substituent unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Nitro, Cyano, Oxo oder (C_1-C_6) -Alkyloxycarbonyl optional mono-, di- oder trisubstituiert ist, wobei genanntes (C_1-C_4) -Alkyl optional mit von einem bis neun Fluor(en) substituiert ist;

 R^3 für Q-V steht, worin Q für (C_1 - C_4)-Alkyl steht und V für einen fünf- oder sechsgliedrigen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten Ring mit optional einem bis drei Heteroatom(en) steht, das/ die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_6) -Alkyl, Hydroxy, (C_1-C_6) -Alkoxy, Nitro, Cyano oder Oxo optional mono-, di-, tri- oder tetrasubstituiert ist, worin genannter (C_1-C_6) -Alkylsubstituent optional von einem bis neun Fluor(e) aufweist;

R4 für (C1-C4)-Alkyl steht; und

R5 und R6, oder R6 und R7, oder R7 und R8

zusammengenommen sind und einen Ring bilden, der einen teilweise gesättigten oder vollständig ungesättigten fünf- oder sechsgliedrigen Ring mit optional einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind;

worin genannter durch R⁵ und R⁶, oder R⁶ und R⁷, oder R⁷ und R⁸ gebildete Ring unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylsulfonyl, (C_2-C_4) -Alkenyl, Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N-oder Di-N,N- (C_1-C_4) -Alkylamino optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_4) -Alkylsubstituent unabhängig mit Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -Alkylamino optional mono-, di- oder trisubstituiert ist oder genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) aufweist;

vorausgesetzt, dass, je nachdem, die R⁵, R⁶, R⁷ und/oder R⁸, die nicht den Ring bilden, Wasserstoff darstellen; oder ein pharmazeutisch verträgliches Salz davon.

21. Verbindung nach Anspruch 1, worin

das C2-Methyl β darstellt:

der C4-Stickstoff β darstellt;

R1 für Y steht;

5

10

15

20

25

30

35

40

45

50

55

worin Y für (C_1-C_6) -Alkyl steht, wobei genanntes (C_1-C_6) -Alkyl optional von einem bis neun Fluor(e) aufweist oder genanntes (C_1-C_6) -Alkyl mit Z optional monosubstituiert ist, worin Z einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei- bis sechsgliedrigen Ring mit optional einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter Z-Substituent unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Nitro, Cyano, Oxo oder (C_1-C_6) -Alkyloxycarbonyl optional mono-, di- oder trisubstituiert ist, wobei genanntes (C_1-C_4) -Alkyloptional mit von einem bis neun Fluor(en) substituiert ist;

R³ für Q-V steht, worin Q für (C₁-C₄)-Alkyl steht und V einen fünf- oder sechsgliedrigen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten Ring mit optional einem bis drei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel

und Stickstoff ausgewählt ist/sind;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_6) -Alkyl, Hydroxy, (C_1-C_6) -Alkoxy, Nitro, Cyano oder Oxo optional mono-, di-, tri- oder tetrasubstituiert ist, worin genanntes (C_1-C_6) -Alkyl optional von einem bis neun Fluor (e) aufweist;

R4 für (C1-C4)-Alkyl steht; und

R5 und R6, oder R6 und R7, oder R7 und R8

zusammengenommen sind und einen Ring bilden, der einen teilweise gesättigten oder vollständig ungesättigten fünf- oder sechsgliedrigen Ring mit optional einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind;

worin genannter durch R^5 und R^6 , oder R^6 und R^7 , oder R^7 und R^8 gebildete Ring unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylsulfonyl, (C_2-C_4) -Alkenyl, Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_4) -Alkylsubstituent unabhängig mit Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, di- oder tri-substituiert ist oder genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) aufweist; vorausgesetzt, dass, je nachdem, die R^5 , R^6 , R^7 und/oder R^8 , die nicht den Ring bilden, Wasserstoff darstellen; oder ein pharmazeutisch verträgliches Salz davon.

22. Verbindung nach Anspruch 1, worin

das C2-Methyl β darstellt;

der C4-Stickstoff β darstellt;

R1 für Z steht;

worin Z einen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten drei bis sechsgliedrigen Ring mit optional einem bis zwei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel und Stickstoff ausgewählt ist/sind;

worin genannter Z-Substituent unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Nitro, Cyano, Oxo, oder (C_1-C_6) -Alkyloxycarbonyl optional mono-, di- oder trisubstituiert ist, wobei genanntes (C_1-C_4) -Alkyl optional mit von einem bis neun Fluor(en) substituiert ist;

 R^3 für Q-V steht, worin Q für (C_1 - C_4)-Alkyl steht und V einen fünf- oder sechsgliedrigen teilweise gesättigten, vollständig gesättigten oder vollständig ungesättigten Ring mit optional einem bis drei Heteroatom(en) darstellt, das/die unabhängig aus Sauerstoff, Schwefel

und Stickstoff ausgewählt ist/sind;

worin genannter V-Ring unabhängig mit Halo, (C_1-C_6) -Alkyl, Hydroxy, (C_1-C_6) -Alkoxy, Nitro, Cyano oder Oxo optional mono-, di-, tri- oder tetrasubstituiert ist, worin genanntes (C_1-C_6) -Alkyl optional von einem bis neun Fluor (e) aufweist;

R4 für (C1-C4)-Alkyl steht; und

R⁵ und R⁶, oder R⁶ und R⁷, oder R⁷ und R⁸ zusammengenommen sind und einen Ring bilden, der einen teilweise gesättigten oder vollständig ungesättigten fünf- oder sechsgliedrigen Ring mit optional einem bis zwei Heteroatom (en) darstellt, das/die unabhängig aus Stickstoff, Schwefel und Sauerstoff ausgewählt ist/sind;

worin genannter durch R^5 und R^6 , oder R^6 und R^7 , oder R^7 und R^3 gebildete Ring unabhängig mit Halo, (C_1-C_4) -Alkyl, (C_1-C_4) -Alkylsulfonyl, (C_2-C_4) -Alkenyl, Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cy-

ano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N-oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, di- oder trisubstituiert ist, worin genannter (C_1-C_4) -Alkylsubstituent unabhängig mit Hydroxy, (C_1-C_4) -Alkoxy, (C_1-C_4) -Alkylthio, Amino, Nitro, Cyano, Oxo, Carboxy, (C_1-C_4) -Alkyloxycarbonyl, Mono-N- oder Di-N,N- (C_1-C_4) -alkylamino optional mono-, di- oder trisubstituiert ist oder genanntes (C_1-C_4) -Alkyl optional von einem bis neun Fluor(e) autweist:

5

10

15

25

30

35

50

worin, je nachdem, die R⁵, R⁶, R⁷ und/oder R⁸, die nicht den Ring bilden, Wasserstoff darstellen; oder ein pharmazeutisch verträgliches Salz davon.

- 23. Verwendung einer wirksamen Menge einer Verbindung nach Anspruch 1, oder ein pharmazeutisch verträgliches Salz von genannter Verbindung, für die Herstellung eines Arzneimittels zur Behandlung von Atherosklerose, der peripheren Gefäßerkrankung, Dyslipidämie, Hyperbetalipoproteinämie, Hypoalphalipoproteinämie, Hypercholesterinämie, Hypertriglyceridämie, familiärer Hypercholesterinämie, kardiovaskulären Erkrankungen, Angina pectoris, Ischämie, kardialer Ischämie, Schlaganfall, Myokardinfarkt, Reperfusionsverletzung, angioplastischer Restenose, Hypertension, vaskulären Komplikationen des Diabetes, Adipositas oder Endotoxämie bei einem Säuger (einschließlich eines Menschen, entweder eines Mannes oder einer Frau).
 - 24. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der Atherosklerose bestimmt ist.
- 25. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der peripheren Gefäßerkrankung bestimmt ist.
 - 26. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der Dyslipidämie bestimmt ist.
 - 27. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der Hyperbetalipoproteinämie bestimmt ist.
 - 28. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der Hypoalphalipoproteinämie bestimmt ist.
 - 29. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der Hypercholesterinämie bestimmt ist.
 - 30. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung der Hypertriglyceridämie bestimmt ist.
 - 31. Verwendung nach Anspruch 23, worin das Arzneimittel zur Behandlung kardiovaskulärer Erkrankungen bestimmt ist.
 - 32. Pharmazeutische Zusammensetzung, die eine therapeutisch wirksame Menge einer Verbindung nach Anspruch 1 oder ein pharmazeutisch verträgliches Salz der genannten Verbindung und einen pharmazeutisch verträglichen Träger umfasst.
- 33. Pharmazeutische Zusammensetzung zur Behandlung von: Atherosklerose, der peripheren Gefäßerkrankung, Dyslipidämie, Hyperbetalipoproteinämie, Hypoalphalipoproteinämie, Hypercholesterinämie, Hypertriglyceridämie, familiärer Hypercholesterinämie, kardiovaskulären Erkrankungen, Angina pectoris, Ischämie, kardialer Ischämie, Schlaganfall, Myokardinfarkt, Reperfusionsverletzung, angioplastischer Restenose, Hypertension, vaskulären Komplikationen des Diabetes, Adipositas oder Endotoxämie in einem Säuger, die eine therapeutisch wirksame Menge einer Verbindung nach Anspruch 1 oder ein pharmazeutisch verträgliches Salz von genannter Verbindung und einen pharmazeutisch verträglichen Träger umfasst.
 - 34. Pharmazeutische Zusammensetzung zur Behandlung von Atherosklerose in einem Säuger, die zur Behandlung der Atherosklerose eine Menge einer Verbindung nach Anspruch 1, oder ein pharmazeutisch verträgliches Salz von genannter Verbindung und einen pharmazeutisch verträglichen Träger umfasst.
 - 35. Pharmazeutische Kombinationszusammensetzung umfassend eine therapeutisch wirksame Menge einer Zusammensetzung, umfassend:
- eine erste Verbindung, wobei genannte erste Verbindung eine Verbindung nach Anspruch 1, oder ein pharmazeutisch verträgliches Salz von genannter Verbindung darstellt; eine zweite Verbindung, wobei die genannte zweite Verbindung einen HMG-CoA-Reduktasehemmer, einen MTP/Apo-B-Sekretionshemmer, einen PPAR-Aktivator, einen Gallensäure-Wiederaufnahmehemmer, einen

Cholesterin-Absorptionshemmer, einen Cholesterin-Synthesehemmer, ein Fibrat, Niacin, ein Ionenaustauschharz, ein Antioxidans, einen ACAT-Hemmer oder ein Gallensäurekomplexiermittel darstellt; und einen pharmazeutischen Träger.

- 36. Pharmazeutische Kombinationszusammensetzung nach Anspruch 35, worin die zweite Verbindung einen HMG-CoA-Reduktasehemmer oder einen MTP/Apo-B-Sekretionshemmer darstellt.
 - **37.** Pharmazeutische Kombinationszusammensetzung nach Anspruch 35, worin die zweite Verbindung Lovastatin, Simvastatin, Pravastatin, Fluvastatin, Atorvastatin oder Rivastatin darstellt.
 - 38. Verwendung einer ersten Verbindung, wobei die genannte erste Verbindung eine Verbindung nach Anspruch 1 oder ein pharmazeutisch verträgliches Salz von genannter Verbindung darstellt; und eine zweite Verbindung, wobei die genannte zweite Verbindung einen HMG-CoA-Reduktasehemmer, einen MTP/Apo-B-Sekretionshemmer, einen Cholesterin-Absorptionshemmer, einen Cholesterin-Synthesehemmer, ein Fibrat, Niacin, ein Ionenaustauschharz, ein Antioxidans, einen ACAT-Hemmer oder ein Gallensäurekomplexiermittel
 - zur Herstellung eines Arzneimittels zur Behandlung der Atherosklerose darstellt.
 - **39.** Verwendung nach Anspruch 38, worin die zweite Verbindung einen HMG-CoA-Reduktasehemmer oder einen MTP/Apo-B-Sekretionshemmer darstellt.
 - **40.** Verwendung nach Anspruch 38, worin die zweite Verbindung Lovastatin, Simvastatin, Pravastatin, Fluvastatin, Atorvastatin oder Rivastatin darstellt.
 - 41. Kit, umfassend:

10

15

20

25

30

35

40

50

55

- a. Eine erste Verbindung, wobei die genannte erste Verbindung eine Verbindung nach Anspruch 1 oder ein pharmazeutisch verträgliches Salz der genannten Verbindung und einen pharmazeutisch verträglichen Träger in einer ersten Einheitsdosierungsform darstellt;
- b. eine zweite Verbindung, wobei die genannte zweite Verbindung einen HMG-CoA-Reduktasehemmer, einen MTP/Apo-B-Sekretionshemmer, einen Cholesterin-Absorptionshemmer, einen Cholesterin-Synthesehemmer, ein Fibrat, Niacin, ein Ionenaustauschharz, ein Antioxidans, einen ACAT-Hemmer oder ein Gallensäurekomplexiermittel und einen pharmazeutisch verträglichen Träger in einer zweiten Einheitsdosierungsform darstellt;
 - c. Mittel zum Einschließen der genannten ersten und zweiten Dosierungsformen,
- worin die Mengen der ersten und zweiten Verbindungen zu einer therapeutischen Wirkung führen.
- **42.** Kit nach Anspruch 41, worin die genannte zweite Verbindung einen HMG-CoA-Reduktasehemmer oder einen MTP/Apo-B-Sekretionshemmer darstellt.
- **43.** Kit nach Anspruch 41, worin genannte zweite Verbindung Lovastatin, Simvastatin, Pravastatin, Fluvastatin, Atorvastatin oder Rivastatin darstellt.

45 Revendications

1. Composé de la formule l

Formule I

20

25

30

35

40

45

50

55

5

10

15

ou un sel acceptable du point de vue pharmaceutique dudit composé;

dans lequel R1 est l'hydrogène, Y, W-X, W-Y;

dans lequel W est un radical carbonyle, thiocarbonyle, sulfinyle ou sulfonyle;

X est un radical -O-Y, -S-Y, -N(H)-Y ou -N-(Y)2;

Y, pour chaque utilisation, est indépendamment Z ou une chaîne carbonée linéaire ou ramifiée, de un à dix membres, complètement saturé, partiellement insaturé ou complètement insaturé, dans laquelle les carbones, autres que le carbone connectant, peuvent être remplacés en option par un ou deux hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote et ledit carbone est en option mono-, di- ou tri-substitué indépendamment par un radical halo, ledit carbone est en option mono-substitué par un radical hydroxy, ledit carbone est en option mono-substitué par un radical oxo, ledit soufre est en option mono ou di-substitué par un radical oxo, ledit azote est en option mono-, ou di-substitué par un radical oxo, et ladite chaîne carbonée est en option mono-substituée par Z;

dans lequel Z est un cycle de trois à douze membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à quatre hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote, ou un cycle bicyclique, constitué de deux cycles accolés de trois à six membres, partiellement saturés, complètement saturés ou complètement insaturés, pris indépendamment, ayant en option de un à quatre hétéro atomes sélectionnés indépendamment parmi l'azote, le soufre et l'oxygène;

dans laquelle ledit substituant Z est en option mono-, di- ou tri-substitué indépendamment par un radical halo, (C_2-C_6) alcényle, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_6) alkylamino, dans lequel ledit substituant (C_1-C_6) alkyle est en option mono-, di- ou tri-substitué indépendamment par un radical halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_6) alkylamino, ledit (C_1-C_6) alkyle étant en option substituté par de un à neuf fluors; R^3 est l'hydrogène ou Q;

dans lequel Q est une chaîne carbonée, linéaire ou ramifiée, de un à six membres, complètement saturée, partiellement insaturée ou complètement insaturée, dans laquelle les carbones, autres que le carbone connectant, peuvent être remplacés en option par un hétéro atome sélectionné parmi l'oxygène, le soufre et l'azote et ledit carbone est en option mono-, di- ou tri-substitué indépendamment par un radical halo, ledit carbone est en option mono-substitué par un radical oxo, ledit soufre est en option mono ou di-substitué par un radical oxo, ledit azote est en option mono-, ou di-substitué par un radical oxo, et ladite chaîne carbonée est en option mono-substituée par V;

dans lequel V est un cycle de trois à douze membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à quatre hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote, ou un cycle bicyclique, constitué de deux cycles accolés de trois à six membres, partiellement saturés, complètement saturés ou complètement insaturés, pris indépendamment, ayant en option de un à quatre hétéro atomes sélectionnés indépendamment parmi l'azote, le soufre et l'oxygène;

dans lequel ledit substituant V est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical

halo, (C_1-C_6) alkyle, (C_2-C_6) alcényle, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxamoyle, mono-N- ou di-N,N- (C_1-C_6) alkylcarbamoyle, carboxy, (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N, N- (C_1-C_6) alkylamino, dans lequel ledit substituant (C_1-C_6) alkyle ou (C_2-C_6) alcényle est en option mono-, di- ou tri-substitué indépendamment par le radical hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_6) alkylamino, ou lesdits radicaux (C_1-C_6) alkyle ou (C_2-C_6) alcényle sont en option substitués par de un à neuf fluors; R^4 est Q^1 ou V^1

dans lequel Q¹ est une chaîne carbonée, linéaire ou ramifiée, de un à six membres, complètement saturée, partiellement insaturée ou complètement insaturée, dans laquelle les carbones, autres que le carbone connectant, peuvent être remplacés en option par un hétéro atome sélectionné parmi l'oxygène, le soufre et l'azote et ledit carbone est en option mono-, di- ou tri-substitué indépendamment par un radical halo, ledit carbone est en option mono-substitué par un radical hydroxy, ledit carbone est en option mono-substitué par un radical oxo, ledit soufre est en option mono ou di-substitué par un radical oxo, ledit azote est en option mono-, ou di-substitué par un radical oxo, et ladite chaîne carbonée est en option mono-substituée par V¹;

dans lequel V¹ est un cycle de trois à six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit substituant V¹ est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N, N- (C_1-C_6) alkylamino, dans lequel ledit substituant (C_1-C_6) alkyle est en option mono-substitué par un radical oxo, ledit substituant (C_1-C_6) alkyle ayant également en option de un à neuf fluors;

dans lequel ou R³ doit contenir V ou R⁴ doit contenir V¹; et R⁵ et R⁶, ou R⁶ et R⁷, et/ou R⁷ et Rፄ sont pris ensemble et forment au moins un cycle de quatre à huit membres qui est partiellement saturé ou complètement insaturé, ayant en option de un à trois hétéroatomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle ou lesdits cycles, formé(s) par R^5 et R^6 , ou R^6 et R^7 , et/ou R^7 et R^8 , sont en option mono-, di- ou tri-substitués indépendamment à l'aide des radicaux halo, (C_1-C_6) alkyle, (C_1-C_4) alkylsulfonyle, (C_2-C_6) alcényle, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_6) alkylamino, dans lequel ledit substituant (C_1-C_6) alkyle est en option mono-, diou tri-substitué indépendamment à l'aide des radicaux hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_6) alkylamino, ledit substituant (C_1-C_6) alkyle ayant en option de un à neuf fluors;

sous réserve que les radicaux R^5 , R^6 , R^7 et/ou R^8 , selon le cas, qui ne forment pas au moins un cycle, sont chacun indépendamment l'hydrogène, les radicaux halo, (C_1-C_6) alkoxy ou (C_1-C_6) alkyle, ledit radical (C_1-C_6) alkyle ayant en option de un à neuf fluors.

 Composé selon la revendication 1, dans lequel le radical C² méthyle est bêta; l'azote C⁴ est bêta;

R1 est W-X;

5

10

15

20

25

30

35

40

45

50

55

W est le radical carbonyle, thiocarbonyle ou sulfonyle; X est un radical -0.-y, -s.-y, -N(H)-y ou $-N-(Y)_2-y$; Y, pour chaque cas, est indépendamment Z ou un radical (C_1-C_4) alkyle, ledit substituant (C_1-C_4) alkyle ayant en option un radical hydroxy ou de un à neuf fluors ou ledit (C_1-C_4) alkyle, en option mono- substitué par Z, dans lequel Z est un cycle de trois à six membres, partiellement saturé, complètement saturé ou complètement

dans lequel Z est un cycle de trois à six membres, partiellement saturé, complètement sature ou complètement insaturé, ayant en option de un à deux hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit substituant Z est en option mono-, di- ou tri-substitué indépendamment par les radicaux halo, (C_1-C_4) alkyle, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, ou (C_1-C_6) alkyloxycarbonyle, ledit substituant (C_1-C_4) alkyle étant en option substitué par de un à neuf fluors;

R3 est Q-V dans lequel Q est un radical (C1-C4)alkyle et

V est un cycle de cinq ou six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à trois hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit cycle V est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R4 est un radical (C₁-C₄)alkyle;

R⁵ et R⁶, ou R⁶ et R⁷, ou R⁷ et R⁸ sont pris ensemble et forment un cycle qui est un cycle de cinq ou six membres, partiellement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes indépendamment

sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^5 et R^6 , ou R^6 et R^7 , ou R^7 et R^8 est en option mono-, di- ou tri-substitué indépendamment à l'aide des radicaux halo, (C_1-C_4) alkyle, (C_1-C_4) alkylsulfonyle, (C_2-C_4) alcényle, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N- ou di-N, $N-(C_1-C_4)$ alkylamino, dans lequel ledit substituant (C_1-C_4) alkyle est en option mono, di ou tri-substitué indépendamment à l'aide des radicaux hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N- ou di-N, $N-(C_1-C_4)$ alkylamino ou ledit radical (C_1-C_4) alkyle ayant en option de un à neuf fluors; sous réserve que les entités R^5 , R^6 , R^7 et/ou R^8 , selon le cas, qui ne forment pas un cycle, soient l'hydrogène;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

3. Composé selon la revendication 2, dans lequel

W est un radical carbonyle;

5

15

25

30

35

45

55

X est O-Y dans lequel Y est un radical (C_1-C_4) alkyle, ledit substituant (C_1-C_4) alkyle ayant en option un radial hydroxy ou de un à neuf fluors;

Q est un radical (C1-C4)alkyle et V est le radical phényle, pyridinyle, ou pyrimidinyle;

dans lequel ledit cycle V est en option mono-, di- ou tri-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors:

20 R⁶ et R⁷ sont pris ensemble et forment un cycle de cinq à six membres mono-insaturé, ayant en option un ou deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^6 et R^7 est en option mono-, di- ou tri-substitué indépendamment par les radicaux halo, (C_1-C_2) alkyle, (C_1-C_2) alkylsulfonyle, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_2) alkylamino, dans lequel ledit substituant (C_1-C_2) alkyle est en option mono-substitué à l'aide d'un radical oxo et ledit radical (C_1-C_2) alkyle ayant en option de un à cinq fluors; et R^5 et R^8 sont H,

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

4. Composé selon la revendication 3, dans lequel

Q est le radical méthylène et V est le radical phényle ou pyridinyle;

dans laquelle ledit cycle V est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C_1-C_2) alkyle ou nitro, dans lequel ledit substituant (C_1-C_2) alkyle a en option d'un à cinq fluors; et \mathbb{R}^6 et \mathbb{R}^7 , pris ensemble, forment un cycle de cinq ou six membres mono-insaturé, contenant en option un hétéro atome indépendamment sélectionné parmi l'azote, l'oxygène et le soufre ;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

 Composé selon la revendication 1, dans lequel ledit composé est l'ester éthylique de l'acide [2R,4S]4-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-2-méthyl-2,3,4,6,7,8-hexahydro-cyclopenta [g]quinoléine-1-carboxylique;

l'ester éthylique de l'acide [6R,8S]8-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-6-méthyl-3,6,7,8-tétrahydro-1H-2-thia-5-aza-cyclopenta[b]naphtalène-5-carboxylique;

l'ester éthylique de l'acide [6R,8S]8-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-6-méthyl-3,6,7,8-tétrahydro-2H-furo[2,3-g]quinoléine-5-carboxylique;

l'ester éthylique de l'acide [2R,4S]4-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-2-méthyl-3,4,6,8-tétrahydro-2H-furo[3,4-g]quinoléine-1-carboxylique; ou

l'ester propylique de l'acide [2R,4S]4-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-2-méthyl-3,4,6,7,8,9-hexahydro-2H-benzo[g]quinoléine-1-carboxylique ou les sels acceptables du point de vue pharmaceutique desdits composés.

50 6. Composé selon la revendication 4, dans lequel

Y est le radical éthyle;

R³ est le radical 3,5-bis-trifluorométhylphénylméthyle; R⁴ est le radical méthyle; et

 R^6 et R^7 , pris ensemble, forment le radical - $CH_2CH_2CH_2$ -; ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

7. Composé selon la revendication 4, dans lequel

Y est le radical éthyle;

R³ est le radical 3,5-bis-trifluorométhylphénylméthyle; R⁴ est le radical méthyle; et

R⁶ et R⁷, pris ensemble, forment le radical -CH₂SCH₂-; ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

8. Composé selon la revendication 4, dans lequel

Y est le radical éthyle;

R3 est le radical 3,5-bis-trifluorométhylphénylméthyle;

R4 est le radical méthyle; et

 ${\sf R}^6$ et ${\sf R}^7$, pris ensemble, forment le radical -OCH $_2$ CH $_2$ -, avec l'entité oxy attachée à la position six;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

10

15

20

25

30

35

5

9. Composé selon la revendication 4, dans lequel

Y est le radical éthyle;

R³ est le radical 3.5-bis-trifluorométhylphénylméthyle;

R4 est le radical méthyle; et

R⁶ et R⁷, pris ensemble, forment le radical -CH₂OCH₂-;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

10. Composé selon la revendication 4, dans lequel

Y est le radical propyle;

R³ est le radical 3,5-bis-trifluorométhylphénylméthyle;

R4 est le radical méthyle; et

R⁶ et R⁷, pris ensemble, forment le radical -CH₂CH₂CH₂CH₂-;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

11. Composé selon la revendication 2, dans lequel

W est un radical carbonyle;

X est O-Y, dans lequel Y est un radical (C_1-C_4) alkyle, ledit radical (C_1-C_4) alkyle ayant en option de un à neuf fluors; Q est un radical (C_1-C_4) alkyle et V est le radical phényle, pyridinyle, ou pyrimidinyle;

dans lequel ledit cycle V est en option mono-, di- ou tri-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R⁵ et R⁶ sont pris ensemble et forment un cycle de cinq à six membres mono-insaturé, ayant en option un ou deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel lesdits cycles formés par R^5 et R^6 sont en option mono-, di- ou tri-substitués indépendamment par les radicaux halo, (C_1-C_2) alkyle, (C_1-C_2) alkylsulfonyle, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_2) alkylamino, dans lequel ledit substituant (C_1-C_2) alkyle est en option mono-substitué à l'aide d'un radical oxo et ledit radical (C_1-C_2) alkyle ayant en option de un à cinq fluors; et

R7 et R8 sont un H ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

40

45

50

- 12. Composé selon la revendication 11, dans lequel Q est le radical méthylène et V est le radical phényle ou pyridinyle; dans laquelle ledit cycle V est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C₁-C₂)alkyle ou nitro, dans lequel ledit substituant (C₁-C₂)alkyle a en option d'un à cinq fluors; et
 - R⁵ et R⁶, pris ensemble, forment un cycle de cinq membres, mono-insaturé, contenant en option un hétéro atome sélectionné parmi l'azote, l'oxygène ou le soufre ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.
- 13. Composé selon la revendication 1, dans lequel ledit composé est :

l'ester éthylique de l'acide [7R,9S] 9-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-7-méthyl-1,2,3,7,8,9-hexahydro-6-aza-cyclopenta[a]naphtalène-6-carboxylique ou un sel acceptable du point de vue pharmaceutique de ce dernier.

55 14. Composé selon la revendication 12, dans lequel

Y est le radical éthyle;

R3 est le radical 3,5-bis-trifluorométhylphénylméthyle;

R9 est le radical méthyle; et

R⁵ et R⁶, pris ensemble, forment le radical -CH₂CH₂CH₂-; ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

15. Composé selon la revendication 2, dans lequel

W est un radical carbonyle;

X est O-Y, dans lequel Y est un radical (C_1-C_4) alkyle, ledit substituant (C_1-C_4) alkyle ayant en option de un à neuf fluors;

Q est un radical (C₁-C₄)alkyle et V est le radical phényle, pyridinyle, ou pyrimidinyle;

dans laquelle ledit cycle V est en option mono-, di- ou tri-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R⁷ et R⁸ sont pris ensemble et forment un cycle de cinq à six membres mono-insaturé, ayant en option un ou deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^7 et R^8 est en option mono-, di- ou tri-substitué indépendamment par les radicaux halo, (C_1-C_2) alkyle, (C_1-C_2) alkylsulfonyle, hydroxy, (C_1-C_2) alkoxy, (C_1-C_2) alkylthio, amino, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N- ou di-N,N- (C_1-C_2) alkylamino, dans lequel ledit substituant (C_1-C_2) alkyle est en option mono-substitué à l'aide d'un radical oxo et ledit radical (C_1-C_2) alkyle ayant en option de un à cinq fluors; et R^5 et R^6 sont H.

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

20

25

5

10

15

16. Composé selon la revendication 15, dans lequel Q est le radical méthylène et V est le radical phényle ou pyridinyle; dans lequel ledit cycle V est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C₁-C₂) alkyle ou nitro, dans lequel ledit substituant (C₁-C₂)alkyle a en option d'un ou de cinq fluors; et

R⁷ et R⁸, pris ensemble, forment un cycle de cinq ou six membres mono-insaturé, contenant en option un hétéro atome indépendamment sélectionné parmi l'azote, le soufre et l'oxygène;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

17. Composé selon la revendication 1, dans lequel ledit composé est :

30

l'ester éthylique de l'acide [6S,8R] 6-[(3,5-bis-trifluorométhyl-benzyl)-méthoxycarbonyl-amino]-8-méthyl-1,2,3,6,7,8-hexahydro-9-aza-cyclopenta[a]naphtalène-9-carboxylique ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

18. Composé selon la revendication 16, dans lequel

Y est le radical éthyle;

R3 est le radical 3,5-bis-trifluorométhylphénylméthyle;

R4 est le radical méthyle; et

R⁷ et R⁸, pris ensemble, forment le radical -CH₂CH₂CH₂-;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

40

45

50

35

19. Composé selon la revendication 1, dans lequel

le radical C² méthyle est bêta;

le radical C4 azote est bêta;

R1 est W-Y;

W est le radical carbonyle, thiocarbonyle ou sulfonyle; Y est le radical (C₁-C₄)alkyle, ledit (C₁-C₄)alkyle ayant en option de un à neuf fluors ou ledit (C₁-C₄)alkyle, en option mono- substitué par Z, dans lequel Z est un cycle de trois à six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans laquelle ledit substituant Z est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C_1-C_4) alkyle, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, ou (C_1-C_6) alkyloxycarbonyle, ledit substituant (C_1-C_4) alkyle étant en option substitué par de un à neuf fluors;

R³ est Q-V dans lequel Q est un radical (C₁-C₄)alkyle et V est un cycle de cinq ou six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à trois hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

55

dans lequel ledit cycle V est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R4 est un radical (C1-C4)alkyle; et

 R^5 et R^6 , ou R^6 et R^7 , ou R^7 et R^8 sont pris ensemble et forment un cycle qui est un cycle de cinq ou six membres, partiellement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^5 et R^6 , ou R^6 et R^7 , ou R^7 et R^8 , est en option mono-, di- ou tri-substitué indépendamment à l'aide des radicaux halo, (C_1-C_4) alkyle, (C_1-C_4) alkylsulfonyle, (C_2-C_4) alcényle, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N-ou di-N, $N-(C_1-C_4)$ alkylamino, dans lequel ledit substituant (C_1-C_4) alkyle est en option mono, di ou tri-substitué indépendamment à l'aide des radicaux hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyl, mono-N-

ou di-N,N-(C₁-C₄)alkylamino ou ledit radical (C₁-C₄)alkyle ayant en option de un à neuf fluors; sous réserve que les entités R⁵, R⁶, R⁷ et/ou R⁸, selon le cas, qui ne forment pas le cycle, soient l'hydrogène;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

20. Composé selon la revendication 1, dans lequel

le radical C2 méthyle est bêta;

le radical C4 azote est bêta;

R1 est W-Z:

5

20

25

30

35

40

50

55

W est le radical carbonyle, thiocarbonyle ou sulfonyle;

Z est un cycle de trois à six membres partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes sélectionnées indépendamment parmi l'oxygène, le soufre et l'azote;

dans laquelle ledit substituant Z est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C_1-C_4) alkoy, (C_1-C_4) alkoy, (C_1-C_4) alkoy, (C_1-C_4) alkoy, intro, oyano, oxo, ou (C_1-C_6) alkyloxycarbonyle, ledit substituant (C_1-C_4) alkyle étant en option substitué par de un à neuf fluors;

R³ est Q-V dans lequel Q est un radical (C₁-C₄)alkyle et

V est un cycle de cinq ou six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à trois hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit cycle V est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R4 est un radical (C1-C4)alkyle; et

R⁵ et R⁶, ou R⁶ et R⁷, ou R⁷ et R⁸ sont pris ensemble et forment un cycle qui est un cycle de cinq ou six membres, partiellement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^5 et R^6 , ou R^6 et R^7 , ou R^7 et R^8 , est en option mono-, di- ou tri-substitué indépendamment à l'aide des radicaux halo, (C_1-C_4) alkyle, (C_1-C_4) alkylsulfonyle, (C_2-C_4) alcényle, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N-ou di-N, N- (C_1-C_4) alkylamino, dans lequel ledit substituant (C_1-C_4) alkyle est en option mono, di ou tri-substitué indépendamment à l'aide des radicaux hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N-ou di-N,N- (C_1-C_4) alkylamino ou ledit radical (C_1-C_4) alkyle ayant en option de un à neuf fluors; sous réserve que les entités R^5 , R^6 , R^7 et/ou R^8 , selon le cas, qui ne forment pas le cycle, soient l'hydrogène;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

45 21. Composé selon la revendication 1, dans lequel

le radical C2 méthyle est bêta;

le radical C4 azote est bêta;

R1 est Y;

dans lequel Y est un radical (C_1-C_6) alkyle, ledit radical (C_1-C_6) alkyle ayant en option de un à neuf fluors ou ledit radical (C_1-C_6) alkyle, en option mono-substitué par Z, dans lequel Z est un cycle de trois à six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit substituant Z est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C_1-C_4) alkyle, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, nitro, cyano, oxo, ou (C_1-C_6) alkyloxycarbonyle, ledit substituant (C_1-C_4) alkyle étant en option substitué par de un à neuf fluors;

R³ est Q-V dans lequel Q est un radical (C₁-C₄)alkyle et

V est un cycle de cinq ou six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à trois hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit cycle V est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R4 est un radical (C1-C4)alkyle; et

R⁵ et R⁶, ou R⁶ et R⁷, ou R⁷ et R⁸, sont pris ensemble et forment un cycle qui est un cycle de cinq ou six membres, partiellement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^5 et R^6 , ou R^6 et R^7 , ou R^7 et R^8 , est en option mono-, di- ou tri-substitué indépendamment à l'aide des radicaux halo, (C_1-C_4) alkyle, (C_1-C_4) alkylsulfonyle, (C_2-C_4) alcényle, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N-ou di-N, $N-(C_1-C_4)$ alkylamino, dans lequel ledit substituant (C_1-C_4) alkyle est en option mono, di ou tri-substitué indépendamment à l'aide des radicaux hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkylamino ou ledit radical (C_1-C_4) alkyle ayant en option de un à neuf fluors; sous réserve que les entités R^5 , R^6 , R^7 et/ou R^8 , selon le cas, qui ne forment pas le cycle, soient l'hydrogène;

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

22. Composé selon la revendication 1, dans lequel

le radical C2 méthyle est bêta;

le radical C4 azote est bêta;

R1 est Z;

5

10

15

20

25

30

35

40

45

50

55

dans laquelle Z est un cycle de trois à six membres partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes sélectionnées indépendamment parmi l'oxygène, le soufre et l'azote:

dans laquelle ledit substituant Z est en option mono-, di- ou tri-substitué indépendamment par le radical halo, (C_1-C_4) alkoy, (C_1-C_4) alkoy, (C_1-C_4) alkoy, (C_1-C_4) alkoy, (C_1-C_4) alkoy, (C_1-C_4) alkoy, intro, cyano, oxo, ou (C_1-C_6) alkyloxycarbonyle, ledit substituant (C_1-C_4) alkyle étant en option substitué par de un à neuf fluors;

R3 est Q-V dans lequel Q est un radical (C1-C4)alkyle et

V est un cycle de cinq ou six membres, partiellement saturé, complètement saturé ou complètement insaturé, ayant en option de un à trois hétéro atomes sélectionnés indépendamment parmi l'oxygène, le soufre et l'azote;

dans lequel ledit cycle V est en option mono-, di-, tri-, ou tétra-substitué indépendamment par un radical halo, (C_1-C_6) alkyle, hydroxy, (C_1-C_6) alkoxy, nitro, cyano ou oxo, dans lequel ledit substituant (C_1-C_6) alkyle a en option de un à neuf fluors;

R4 est un radical (C1-C4)alkyle; et

R⁵ et R⁶, ou R⁶ et R⁷, ou R⁷ et R⁸ sont pris ensemble et forment un cycle qui est un cycle de cinq ou six membres, partiellement saturé ou complètement insaturé, ayant en option de un à deux hétéro atomes indépendamment sélectionnés parmi l'azote, le soufre et l'oxygène;

dans lequel ledit cycle formé par R^5 et R^6 , ou R^6 et R^7 , ou R^7 et R^8 , est en option mono-, di- ou tri-substitué indépendamment à l'aide des radicaux halo, (C_1-C_4) alkyle, (C_1-C_4) alkylsulfonyle, (C_2-C_4) alcényle, hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N- ou di-N, N- (C_1-C_4) alkylamino, dans lequel ledit substituant (C_1-C_4) alkyle est en option mono-, di- ou tri-substitué indépendamment à l'aide des radicaux hydroxy, (C_1-C_4) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_4) alkyloxycarbonyle, mono-N-

ou di-N,N- (C_1-C_4) alkylamino ou ledit radical (C_1-C_4) alkyle ayant en option de un à neuf fluors;

dans lequel les entités R⁵, R⁶, R⁷ et/ou R⁸, selon le cas, qui ne forment pas le cycle, soient avdrogène:

ou un sel, acceptable du point de vue pharmaceutique, de ce dernier.

- 23. Utilisation d'une quantité efficace d'un composé selon la revendication 1 ou d'un sel, acceptable du point de vue pharmaceutique, dudit composé pour la préparation d'un médicament pour le traitement de l'athérosclérose, de la maladie vasculaire périphérique, de la dyslipidémie, de l'hyperbêtalipoprotéinémie, de l'hypercholestérolémie de l'hypertriglycéridémie, de l'hypercholestérolémie familiale, des troubles cardiovasculaires, de l'angine de poitrine, de l'ischémie, de l'ischémie cardiaque, de l'apoplexie, de l'infarctus du myocarde, de la lésion au retour de la perfusion, de la resténose angioplastique, de l'hypertension, des complications vasculaires du diabète, de l'obésité ou de l'endotoxémie chez un mammifère (y compris chez l'homme ou chez la femme).
- 24. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de l'athérosclérose.

- 25. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de la maladie vasculaire périphérique.
- 26. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de la dyslipidémie.
- 27. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de l'hyperbêtalipoprotéinémie.
- 28. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de l'hypoalphalipoprotéinénie.
 - 29. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de l'hypercholestérolémie.
 - 30. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement de l'hypertriglycéridémie.
 - 31. Utilisation selon la revendication 23, dans lequel le médicament est pour le traitement des troubles cardiovasculaires.
 - 32. Composition pharmaceutique qui comprend une quantité efficace du point de vue thérapeutique d'un composé selon la revendication 1 ou un sel, acceptable du point de vue pharmaceutique, dudit composé et un excipient acceptable du point de vue pharmaceutique.
 - 33. Composition pharmaceutique pour le traitement de l'athérosclérose, de la maladie vasculaire périphérique, de la dyslipidémie, de l'hyperbêtalipoprotéinémie, de l'hypercholestérolémie, de l'hypercholestérolémie, de l'hypercholestérolémie familiale, des troubles cardiovasculaires, de l'angine de poitrine, de l'ischémie, de l'ischémie cardiaque, de l'apoplexie, de l'infarctus du myocarde, de la lésion au retour de la perfusion, de la resténose angioplastique, de l'hypertension, des complications vasculaires du diabète, de l'obésité ou de l'endotoxémie chez un mammifère qui comprend une quantité efficace du point de vue thérapeutique d'un composé selon la revendication 1 ou un sel, acceptable du point de vue pharmaceutique, dudit composé et un excipient acceptable du point de vue pharmaceutique.
 - 34. Composition pharmaceutique pour le traitement de l'athérosclérose chez un mammifère qui comprend une quantité de traitement de l'athérosclérose d'un composé selon la revendication 1, ou un sel acceptable du point de vue pharmaceutique dudit composé et un excipient acceptable du point de vue pharmaceutique.
 - 35. Composition de combinaison pharmaceutique, comprenant une quantité efficace du point de vue thérapeutique d'une composition comprenant

un premier composé, ledit premier composé étant un composé selon la revendication 1 ou un sel, acceptable du point de vue pharmaceutique, dudit composé;

une deuxième composé, ledit deuxième composé étant un agent inhibiteur de la réductase HMG CoA, un agent inhibiteur de sécrétion MTP/Apo B, un agent activateur PPAR, un agent inhibiteur de la ré-absorption de l'acide biliaire, un agent inhibiteur de l'absorption du cholestérol, un agent inhibiteur de la synthèse du cholestérol, un fibrate, la niacine, une résine échangeuse d'ions, un agent anti-oxydant, un agent inhibiteur ACAT ou un agent séquestrant de l'acide biliaire; et

un excipient pharmaceutique.

5

15

20

25

30

35

40

45

- 36. Composition de combinaison pharmaceutique selon la revendication 35, dans laquelle le deuxième composé est un agent inhibiteur de la réductase HMG-CoA ou un agent inhibiteur de la sécrétion MTP/Apo B.
- 37. Composition de combinaison pharmaceutique selon la revendication 35, dans laquelle le deuxième composé est la lovastatine, la simvastatine, la pravastatine, la fluvastatine, l'atorvastatine ou la rivastatine.
 - 38. Utilisation d'un premier composé, ledit premier composé étant un composé selon la revendication 1, ou un sel, acceptable du point de vue pharmaceutique, dudit composé; et d'un deuxième composé, ledit deuxième composé étant un agent inhibiteur de réductase HMG-CoA, un agent inhibiteur de sécrétion MTP/Apo B, un agent inhibiteur de l'absorption du cholestérol, un agent inhibiteur de la synthèse du cholestérol, un fibrate, la niacine, une résine échangeuse d'ions, un agent anti-oxydant, un agent inhibiteur ACAT ou un agent de séquestration de l'acide biliaire, en vue de la préparation d'un médicament pour le traitement de l'artériosclérose.

- 39. Utilisation selon la revendication 38, dans laquelle le deuxième composé est un agent inhibiteur de la réductase HMG-CoA ou un agent inhibiteur de la sécrétion MTP/Apo B.
- **40.** Utilisation selon la revendication 38, dans lequel le deuxième composé est la lovastatine, la simvastatine, la pravastatine, la fluvastatine, l'atorvastatine ou la rivastatine.

41. Kit comprenant:

a. un premier composé, ledit premier composé étant un composé selon la revendication 1 ou un sel, acceptable du point de vue pharmaceutique, dudit composé et un excipient acceptable du point de vue pharmaceutique dans une première forme de dosage d'unité;

b. un deuxième composé, ledit deuxième composé étant un agent inhibiteur de la réductase HMG-CoA, un agent inhibiteur de la sécrétion MTP/Apo B, un agent inhibiteur de l'absorption du cholestérol, un agent inhibiteur de la synthèse du cholestérol, un fibrate, la niacine, une résine échangeuse d'ions, un agent anti-oxydant, un agent inhibiteur ACAT ou un agent séquestrant de l'acide biliaire et un excipient acceptable du point de vue pharmaceutique dans une deuxième forme de dosage d'unité; et

c. un moyen pour contenir lesdites première et deuxième formes de dosage,

dans lesquelles les quantités du premier et du deuxième composés ont pour résultat un effet thérapeutique.

20

5

10

15

- **42.** Kit selon la revendication 41, dans lequel le deuxième composé est un agent inhibiteur de la réductase HMG-CoA ou un agent inhibiteur de la sécrétion MTP/Apo B.
- **43.** Kit selon la revendication 41, dans lequel le deuxième composé est la lovastatine, la simvastatine, la pravastatine, le fluvastatine, l'atorvastatine ou la rivastatine.

30

25

35

40

45

50

THIS PAGE BLANK (USPTO)