Übung 5

Schleifen

- 3 Arten
 - o for
 - o while
 - o do-while

for-Schleife

```
for (start; ende; schritt) {
    //do something
}
```

while-Schleife

```
while (überprüfe einen Ausdruck) {
    //do something
}
```

do-while-Schleife

```
do {
    //do something
} while (überprüfe einen Ausdruck);
```

Dynamisches 1-dimensionales Array

- Was benötigen wir?
 - Datentyp
 - Anzahl der Elemente
- Was müssen wir beim Ende des Programms beachten?
 - Speicher freigeben
 - Array auf NULL setzen

2D-Array / Matrix

- Was benötigen wir?
 - Datentyp
 - (Optional) Anzahl der Zeilen
 - Anzahl der Spalten

Statisches 2D-Array / Matrix

- Wie sieht ein 2D-Array aus?
- Wie greifen wir auf die einzelnen Elemente zu?

2		3	
	00		01
1		4	
	10		11

Dynamisches 2D-Array / Matrix

- Platz für die Zeilen schaffen
 - Array von Pointern
 - jeder Zeiger zeigt auf eine Zeile des 2D-Arrays
 - damit auf ein 1D-Array
- Platz f
 ür die Spalten schaffen
 - Dynamische Speicherallokierung für die Anzahl der Elemente in einer Zeile
- 2D-Array wieder freigeben
 - Jede Zeile
 - Am Ende das gesamte 2D-Array

Matrixaddition

Addition zweier Matrizen

- Was muss ich abfangen?
 - Hat Matrix A gleich viele Zeilen wie Matrix B
 - Hat Matrix A gleich viele Spalten wie Matrix B
- Wie groß ist das Ergebnisarray?
 - So groß wie Matrix A bzw. Matrix B
- Wie berechne ich die Werte der Ergebnismatrix
 - o ergebnis[row][column] = a[row][column] + b[row][column]

a

2	00	3	01
1	10	4	11

b

5		6	
	00		01
7		8	
	10		11

result[0][0] =
$$a[0][0] + b[0][0]$$

$$result[0][0] = 2 + 5$$

$$result[0][0] = 7$$

a

2	00	3	01
1	10	4	11

b

5	00	6	01
7	10	8	11

7		9	
	00		01
?		?	
	10		11

result[0][1] =
$$a[0][1] + b[0][1]$$

$$result[0][1] = 3 + 6$$

$$result[0][1] = 9$$

a

2		3	
	00		01
1		4	
	10		11

b

5	00	6	01
7	10	8	11

7		9	
	00		01
8		?	
	10		11

a

2	00	3	01
1	10	4	11

b

5		6	
	00		01
7		8	
	10		11

7	00	9	01
8	10	12	11

result[1][1] =
$$a[1][1] + b[1][1]$$

result[1][1] = $4 + 8$

$$result[1][1] = 12$$

Matrixmultiplikation

Was muss erfüllt sein, damit eine Matrixmultiplikation möglich ist?

- 2 Matrizen
- Anzahl der Spalten der ersten Matrix muss der Anzahl der Zeilen der zweiten Matrix entsprechen

Wie bestimme ich die Dimensionen des Ergebnisarrays?

- Anzahl der Zeilen: erste Matrix
- Anzahl der Spalten: zweite Matrix

Wie befüllen wir unser Ergebnisarray?

Zeilenweise von links nach rechts

Was enthalten die jeweiligen Indizes des neues Arrays?

- Produkt der Zeile des entsprechenden Indizes * Spalte des entsprechenden Indizes
- Jedes Element der Zeile wird mit dem dazu passenden Element der anderen Spalte multipliziert
 - Zeile1 Element 1 * Spalte 1 Element 1 +
 - Zeile1 Element 2 * Spalte 1 Element 2
 - O USW.

a

2	00	3	01
1	10	4	11

b

5	00	6	01
7	10	8	11

?		?	
	00		01
?		?	
	10		11

a

00	3	01
10	4	11
		00

b

5	00	6	01
7	10	8	11

a

2	00	3	01
1		4	
	10		11

h

5	00	6	01
7	10	8	11

31	00	36	01
?	10	?	11

result[0][1] =
$$a[0][0] * b[0][1] + a[0][1] * b[1][1]$$

result[0][1] = $2 * 6 + 3 * 8$
result[0][1] = 36

a

2	00	3	01
1	10	4	11

b

5	00	6	01
7	10	8	11

31	00	36	01
33	10	?	11

a

2	00	3	01
1	10	4	11

b

5	00	6	01
7	10	8	11

31	00	36	01
			01
33		38	
	10		11

a

1	00	2	01	3	02
4	10	5	11	6	12

b

7	8 01
9	10
11 20	12

result[0][0] =
$$1 * 7 + 2*9 + 3 * 11$$

result[0][0] = $7 + 18 + 33$

$$result[0][0] = 58$$

a

1	00	2	01	3	02
4	10	5	11	6	12

b

7 00	8 01
9	10
11 20	12

$$result[0][1] = 64$$

a

1	00	2	01	3	02
4	10	5	11	6	12

b

7 00	8 01
9	10
11 20	12

result[1][0] =
$$4 * 7 + 5 * 9 + 6 * 11$$

result[1][0] = $28 + 45 + 66$
result[1][0] = 139

a

1	00	2	01	3	02
4	10	5	11	6	12

b

7 00	8 01
9	10
11 20	12

$$result[1][1] = 64$$

Code Idee

- Abfangen Spaltenanzahl Matrix A gleich Zeilenanzahl Matrix B
- Erstelle ein neues Array mit den Dimensionen
 - [Zeilenanzahl Matrix A][Spaltenanzahl Matrix B]
- Iteriere über die Zeilen von Matrix A
 - Iteriere über die Spalten von Matrix B
 - Iteriere über die Spalten von Matrix A und über die Zeilen von Matrix B
 - Fülle das Ergebnisarray
 - Zeilenweise

Code Idee

- Iteriere über die Zeilen von Matrix A
 - Iteriere über die Spalten von Matrix B
 - Iteriere über die Spalten von Matrix A oder über die Zeilen von Matrix B
 - Fülle das Ergebnisarray
 - Zeilenweise
 - O Wie gehen wir vor?
 - Welcher Index bleibt gleich?
 - Bei A?
 - Zeile
 - Bei B?
 - Spalte
 - O Welcher Index verändert sich?
 - Bei A?
 - Spalte
 - Bei B?
 - Zeile

Indexveränderung am Beispiel

a

2		3	
	00		01
1		4	
	10		11

h

5	00	6	01
7	10	8	11

result[1][1] = a[1][
$$^{\circ}$$
] * b[$^{\circ}$][1] + a[1][$^{\circ}$] * b[$^{\circ}$][1] result[1][1] = 1 * 6 + 4 * 8 result[1][1] = 38

Code Idee

```
for (rows_a)

for (columns_b)

for (columns_a)

result[?][?] += a[?][?] * b[?][?]
```