Шаблон отчёта по лабораторной работе

9

Сильвен Макс Грегор Филс , НКАбд-03-22

Содержание

1	Цель работы	5											
2	Выполнение лабораторной работы :												
	2.1 Реализация циклов в NASM:	6											
	2.2 Обработка аргументов командной строки:	9											
	2.3 Программа вычисления суммы аргументов командной строки: .	11											
	2.4 Выводы по результатам выполнения заданий:	14											
3	Задание для самостоятельной работы :												
	3.1 Выводы по результатам выполнения заданий:	17											
4	Выводы, согласованные с целью работы :												
Сп	писок литературы	19											

Список иллюстраций

2.1	Ресунок																												6
	Ресунок																												7
2.3	Ресунок																												8
2.4	Ресунок																												8
2.5	Ресунок																												9
2.6	Ресунок																												10
2.7	Ресунок																												11
2.8	Ресунок																												12
2.9	Ресунок																												12
2.10	Ресунок										•	•					•					•							13
2.11	Ресунок	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		14
3.1	Ресунок																												16
	Ресунок																												

Список таблиц

1 Цель работы

• В девятой лабораторной работе мы научимся писать программы с циклами и обработкой аргументов с помощью командной строки.

2 Выполнение лабораторной работы:

2.1 Реализация циклов в NASM:

• Здесь мы начали с создания каталога для программаы лабораторной работы No 9, а затем переместились в девятой каталог лаборатории "~/work/arch-pc/lab09", после чего мы создали файл "lab9-1.asm". (рис. 2.1)

Рис. 2.1: Ресунок

• Затем мы заполнили код нашей программы в файле lab9-1.asm. (рис. 2.2)

Рис. 2.2: Ресунок

• После этого мы скомпилировали файл, создали исполняемый файл и проверили его работу.(рис. 2.3)

```
fsmaksgregor@dk6n50:~/work/... © mc[fsmaksgregor@dk6n50]:~/... © fsmaksgregor@dk6n50:~/work/... © fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ nasm -f elf lab9-1.asm fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-1 lab9-1.o fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ./lab9-1 BBeдите N: 10

10

9

8

7

6

5

4

3

2

1

fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ []
```

Рис. 2.3: Ресунок

• Мы внесли изменения в наш код, а затем создали исполняемый файл.(рис. 2.4)

```
fsmaksgregor@dk6n50:~/work/...  
mc[fsmaksgregor@dk6n50]:~/...  
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ nasm -f elf lab9-1.asm
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-1 lab9-1.o
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ./lab9-1

Введите N: 10

7

5

3

1
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ...
```

Рис. 2.4: Ресунок

• Регистр есх принимает пять значений, которые являются: 9,7,5,3,1, мы можем заметить, что количество циклов не соответствует числу, введенному

пользователем

• На этот раз мы использовали стек, и в конечном итоге количество циклов соответствует числу, которое было введено в начале.(рис. 2.5)

```
fsmaksgregor@dk6n50:~/work/... © mc[fsmaksgregor@dk6n50]:~/... © fsmaksgregor@dk6n50:~/work/... © fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ nasm -f elf lab9-1.asm fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-1 lab9-1.o fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ./lab9-1 Bведите N: 10
9
8
7
6
5
4
3
2
1
0
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ [
```

Рис. 2.5: Ресунок

2.2 Обработка аргументов командной строки:

• На этом шаге мы создали файл lab9-2.asm, затем заполнили в нем наш код.(рис. 2.6)

```
mc [fsmaksgregor@dk6n50]:~/work/arch-pc/lab09
                                             fsmaksgregor@dk6n50:~/work/arch-pc/lab09
                                                                                     3
lab9-2.asm
                    [----] 7 L:[ 1+ 5
                                            6/ 20] *(59 / 172b) 0010 0x00A
                                                                               [*][X]
%include 'in_out.asm'
SECTION .text
global _start
 start:
 pop ecx.
 pop edx
 sub ecx, 1
 cmp ecx, 0
 jz _end
 pop eax
 call sprintLF
 loop next
 end:
 call quit
```

Рис. 2.6: Ресунок

• После этого мы скомпилировали файл и создали исполняемый файл.(рис. 2.7)

Рис. 2.7: Ресунок

• И, как вы можете видеть, на этот раз при запуске программы мы добавили в команду три аргумента, и в этом случае были обработаны три аргумента.

2.3 Программа вычисления суммы аргументов командной строки :

• Первым делом мы создали файл lab9-3.asm, затем заполнили кодом программы.(рис. 2.8)

```
[----] 36 L:[ 1+11 12/ 30] *(508 /1429b) 0010 0x00A
lab9-3.asm
                                                                                  [*][X
%include 'in_out.asm'
SECTION .data
msg db "Результат: ",0
SECTION .text
global _start
_start:
рор есх : Извлекаем из стека в 'есх' количество
pop edx ; Извлекаем из стека в `edx` имя программы
 аргументов без названия программы)
mov esi, 0 ; Используем 'esi' для хранения
cmp ecx,0h ; проверяем, есть ли еще аргументы
jz _end ; если аргументов нет выходим из цикла
рор eax ; иначе извлекаем следующий аргумент из стека
call atoi ; преобразуем символ в число
add esi,eax ; добавляем к промежуточной сумме
loop next ; переход к обработке следующего аргумента
mov eax, msg ; вывод сообщения "Результат: "
call sprint
```

Рис. 2.8: Ресунок

• После этого мы скомпилировали файл, затем создали исполняемый файл, ввели нужное количество аргументов и запустили prgoram.(рис. 2.9)

```
mc[fsmaksgregor@dk6n50]:~/work/arch-pc/lab09

fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ nasm -f elf lab9-3.asm
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-3 lab9-3.o
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ./lab9-3 12 13 7 10 5
Результат: 47
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ [
```

Рис. 2.9: Ресунок

• Затем мы изменили код, чтобы вычислить произведение аргументов командной строки.(рис. 2.10)

Рис. 2.10: Ресунок

• После этого е скомпилировал код и запустил исполняемый файл.(рис. 2.11)

```
fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ nasm -f elf lab9-3.asm fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ld -m elf_i386 -o lab9-3 lab9-3.o fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ ./lab9-3 1 2 3 4 5 Результат: 120 fsmaksgregor@dk6n50 ~/work/arch-pc/lab09 $ [
```

Рис. 2.11: Ресунок

2.4 Выводы по результатам выполнения заданий:

• В этой части работы мы узнали, как манипулировать циклами, как правильно использовать стек для написания программ

3 Задание для самостоятельной работы:

- В этой части мы должны были написать программу, которая находит сумму значений функции f(x) для x = x1, x2, ..., x
- сначала мы создали наш файл test.asm, где будет находиться наш код, затем мы написали программу.(рис. 3.1)

```
mc [fsmaksgregor@dk6n50]:~/work/arch-pc/lab09
                                                fsmaksgregor@dk6n50:~/work/arch-pc/lab09
                                                                                           3
                    [----] 0 L:[ 1+ 0
                                                        / 390b) 0037 0x025
test.asm
                                           1/ 38] *(0
                                                                                      [*][X]
%include 'in_out.asm'
SECTION .data
msg db "Результат : ",0
msg1 db " Функция : f(x) = 30x-11",0
SECTION .text
global _start
_start:
pop ecx
pop edx
sub ecx,1
mov esi, 0
next:
cmp ecx,0h
jz _end
mov ebx,30
pop eax
call atoi
mul ebx
add eax,-11
add esi,eax
loop next
_end:
mov eax,msg1
call sprintLF
mov eax, msg
call sprint
mov eax, esi
```

Рис. 3.1: Ресунок

• Затем мы протестировали нашу программу.(рис. 2.1)

Рис. 3.2: Ресунок

3.1 Выводы по результатам выполнения заданий:

В этой части мы узнали, как вычислить сложную математическую операцию, которая имеет функции, используя циклы и стек.

4 Выводы, согласованные с целью работы :

• В девятой лабораторной работе мы узнали, как использовать циклы и стек в NASM.

Список литературы