

TP N°2: Curvas características del transistor TBJ BC548C

Accifonte, Franco - 93799 franco.accifonte@gmail.com

Iturria, Germán - 86270 german.iturria@gmail.com

Vázquez, Matías - 91523 mfvazquez@gmail.com

30 de octubre de 2014

En el siguiente trabajo se analizan las principales características de polarización y frecuencias medias de transistores TBJ tipo NPN. Estudiando las curvas de transferencia y de salida, obtenidas en mediciones, se consiguen los parámetros característicos y se calculan los parámetros de pequeña señal. Finalmente se realiza un modelo básico de Spice con los parámetros calculados y se presentan simulaciones para contrastar con las mediciones.

1. Desarrollo

A continuación se detalla el desarrollo del trabajo realizado, tanto la realización de las simulaciones mediantes *Spice*, como las mediciones realizadas.

1.1. Simulación de transistores BC548C

En primera instancia se obtuvieron con LTSPICE las curvas de transferencia, la ganancia de corriente entre base y colector y las curvas de salida propias al transistor. Usando las bibliotecas PHIL_BJT y SIEMENS proporcionadas por la cátedra.

1.1.1. Curva de transferencia

Se simuló I_C vs. V_{BE} para $V_{CE} = 1,25$ V para ambas bibliotecas. Se varió la tensión V_{BE} entre 0V y 0,9V con pasos de 0,01V, utilizando el circuito simulado en la figura 1.

Figura 1: Circuito utilizado para la obtención de las curvas de transferencia.

1.1.2. Ganancia de corriente entre base y colector

Para ambas bibliotecas se simuló el circuito de la figura ?? bajo las condiciones de medición del multímetro que se utilizará en las mediciones. Estas son $I_B=10\mu\mathrm{A}$ y $V_{CE}=2,8\mathrm{V}$. Se obtuvo el parámetro BETADC del Simulation Output File.

Figura 2: Circuito utilizado para la obtención de las curvas de salida y de la ganancia de corriente.

Se obtuvieron los siguientes valores:

■ PHIL_BJT: $h_{FE} = 460$

• SIEMENS: $h_{FE}=432$

1.1.3. Curva de salida

Se simuló I_C vs. V_{CE} para $I_B=cte$ para ambas bibliotecas. Se varió la tensión V_{CE} entre 0V y 5V con pasos de 0,01V, utilizando el circuito simulado en la figura 2.

La corriente I_B se determinó mediante la ecuación 1 para cada valor de I_C deseado, utilizando el parámetro h_{FE} correspondiente al transistor de cada biblioteca.

$$I_B = \frac{I_C}{h_{FE}} \tag{1}$$

A continuación se listan los valores de I_B utlizados.

■ PHIL_BJT con $h_{FE} = 460$

• $I_C = 5$ mA: $I_B = 10,9 \mu$ A

• $I_C = 25 \text{mA}$: $I_B = 54, 3 \mu \text{A}$

■ SIEMENS con $h_{FE} = 432$

• $I_C = 5$ mA: $I_B = 11, 6\mu$ A

• $I_C = 25$ mA: $I_B = 57,9 \mu$ A

1.2. Obtención de parámetros de las hojas de datos

1.3. Obtención de las curvas de forma experimental

Se obtuvieron las curvas de tres transistores **TBJ BC548C** distintos utilizando una placa experimental, un regulador de tensión **LM317** y un **LM7805**, un potenciómetro lineal de $20k\Omega$ y resistencias de valores apropiados para cada medición. También se midió para cada transistor el valor de h_{FE} utilizando un muletillero con esta función.

1.3.1. Curva de transferencia

Para obtener la curva i_C v
s v_{BE} se utilizó el banco de mediciones presentado en la figura 3. El integrado LM317 fija la tensión
 $V_{CE}=1,25{\rm V}$ y el integrado LM7805 provee una alimentación constante de 5V

Figura 3: Circuito para la medición de la curva de transferencia I_D vs. V_{BE}

- 1.3.2. Ganancia de corriente entre base y colector
- 1.3.3. Curva de salida
- 1.4. Ajustes realizados
- 1.5. Simulación del modelo modificado
- 2. Análisis y comparación de los resultados
- 2.1. Curvas obtenidas
- 2.2. Comparación de los resultados
- 3. Conclusiones