

### **Digital Image Processing**

Why do we need Image Processing?

It is Motivated by two major applications-

- Improvement of pictorial information for human perception
- Image processing for autonomous machine application
- Efficient storage and transmission



### **Human Perception**

Employ methods capable of enhancing pictorial information for human interpretation and analysis

#### Typical applications:

- Noise filtering
- Content enhancement
  - Contrast enhancement
  - Deblurring
- Remote sensing





### Image Enhancement



Low contrast Image

Enhanced Image







# Medical Imaging







**Brain Tumor** 





# Medical Imaging







**Cancer Detection** 





### Remote Sensing



Satellite Image, Kolkata





#### **Machine Vision Applications**

Here the interest is on procedures for extraction of image information suitable for computer processing

#### Typical Applications:

- Industrial Machine vision for product assembly and inspection
- Automated Target detection and tracking
- Finger print recognition
- Machine processing of aerial and satellite imagery for weather prediction and crop assessment etc













# **Boundary Information**



Importance of Boundary Information

























































Inspection of IC Manufacturing





#### Video Sequence Processing

The major emphasis of image sequence processing is detection of moving parts

This has various applications

- Detection and tracking of moving targets for security surveillance purpose
- To find out the trajectory of a moving target
- Monitoring the movements of organ
   boundaries in medical applications etc.





#### **Movement Detection**









# **Movement Detection**











- An image is a 2-D light intensity function f(x,y)
- A digital image f(x,y) is discretized both in spatial coordinates and brightness
- It can be considered as a matrix whose row, column indices specify a point in the image and the element value identifies gray level value at that point
- These elements are referred to as pixels or pels







- Spatial discretization by grids
- · Intensity discretization by quantization





```
f(0,0) \ f(0,1) \ f(0,2) \dots f(0,N-1) \\ f(1,0) \ f(1,1) \ f(1,2) \dots f(1,N-1) \\ f(2,0) \ f(2,1) \ f(2,2) \dots f(2,N-1) \\ I =
```

Image Size 256x256, 512x512, 640x480, 1024x1024 etc

Quantization: 8 bits





