流体力学

- 【1】図1のように、上部が大きく開いた箱の側面下部の小さな穴から、密度 ρ の流体が流出する. 点 A における大気圧を p_A 、点 B における大気圧を p_B 、重力加速度を g として以下の問いに答えよ.
 - (1) ベルヌーイの定理を圧力単位の式で示し、式の各項を ρg で除したときの呼び名を書け、
 - (2) 点 A における大気圧が点 B の大気圧と等しいとき、流出速度 v を求めよ.
 - (3) 点 A における大気圧が点 B の大気圧より Δp だけ低いとき、流出速度 v を求めよ.

- 図 1
- 【2】無限遠方の速度がx方向にUの一様流中に,x軸に平行に置かれた薄い物体がある. 流れは,y方向の無限遠方で圧力勾配のない定常な2次元非圧縮性層流で,x方向の速度をu,y方向の速度をvとする.物体付近の流れについて以下の問いに答えよ. ただし,流体の動粘度をvとする.
 - (1) 物体付近の流れの x 方向の代表長さを L, y 方向の代表長さを δ とするとき, v の大きさを, L, δ , U を用いて表せ.
 - (2) ナビエストークス方程式のx成分を書き、各項の大きさをL、 δ 、U、v を用いて表せ、なお、圧力項は省略してよい。
 - (3) $L \gg \delta$ が成り立つとき、(2) で求めた方程式における慣性項と粘性項との釣り合いから δ をL、U、vを用いて表せ.
 - (4) L=1 m, U=10 km/h とするとき, δ は10 mm より大きいか小さいか計算で示せ. なお、 $\nu=1.5\times10^{-5}$ m²/s とせよ.

- 【3】半径 a, 密度 ρ の小さな球が、粘度 μ , 密度 ρ_0 の静止流体中を一定速度 Uで鉛直下方向へ落下している。重力加速度を g とし、ストークス近似が成り立つとして以下の問いに答えよ。
 - (1) ストークス近似が成立するためには、どのような条件が必要か述べよ.
 - (2) 球の表面におけるせん断応力の大きさを近似的に求め、球に働くせん断応力による全抵抗の大きさを推定せよ.
 - (3) 球に働く流体からの抵抗を(2)で求めた値としたとき、一定速度Uを求めよ.