92-93 Individual	1	34	2	121	3	2	4	$\frac{3}{5}$	5	720
Illuividuai	6	11260	7	11	8	80	9	13	10	9

	1	2 km	2	45	3	6	4	211	5	9
92-93 Group	6	-7	7	26	8	$2+\sqrt{3}$	9	70	10	$\frac{\sqrt{13}}{3}$

Individual Events

I1 X is a point on the line segment BC as shown in figure 1.

If AB = 7, CD = 9 and BC = 30, find the minimum value of AX + XD.

Reference: 1983 FG8.1, 1991 HG9, 1996 HG9

Reflect point A along BC to A'.

By the property of reflection.

$$A'B \perp BC$$
 and $A'B = 7$

Join A'D, which cuts BC at X.

$$\triangle ABX \cong \triangle A'BX$$
 (S.A.S.)

$$AX + XD = A'X + XD$$

This is the minimum when A', X, D are collinear.

Draw AE // BC which intersects DC produced at E.

Then
$$A'E \perp DE$$
 (corr. \angle s, $BC // A'E$)

$$A'E = 30$$
 and $CE = 7$ (opp. sides, rectangle)

$$A'D^2 = 30^2 + (7+9)^2 = 1156 \Rightarrow A'D = 34$$

The minimum value of AX + XD = 34

Reference: 1997 HG3, 2000 FI2.2, 2002 FI1.3, 2004 HG7, 2010HG4, 2013 HG2

$$\triangle AOD \sim \triangle COB$$
 (equiangular)

$$\frac{AO^2}{OC^2} = \frac{\text{area of } \Delta AOD}{\text{area of } \Delta BOC} = \frac{25}{36}$$

$$\frac{AO}{OC} = \frac{5}{6}$$

Area of
$$\triangle AOB = \frac{5}{6} \times \text{area of } \triangle BOC = \frac{5}{6} \times 36 = 30$$

Area of
$$\triangle COD = \frac{6}{5} \times \text{area of } \triangle AOD = \frac{6}{5} \times 25 = 30$$

Area of quadrilateral ABCD = 25 + 30 + 36 + 30 = 121

In figure 3, ABCD is a square of side $8(\sqrt{2}+1)$. Find the radius of the small circle at the centre of the square.

Let AC and BD intersect at O. $AC \perp BD$.

Let H, K be the centres of two adjacent circles touch each other at E.

$$HE = EK = \frac{1}{4} = 2(\sqrt{2} + 1) = KP, HK = 4(\sqrt{2} + 1)$$

 $OH = OK = HK \cos 45^\circ = 2(2 + \sqrt{2})$

$$OH = OK = HK \cos 45^{\circ} = 2(2 + \sqrt{2})$$
$$OP = OK - KP = 2(2 + \sqrt{2}) - 2(\sqrt{2} + 1) = 2$$

 \therefore The radius = 2

I4 Thirty cards are marked from 1 to 30 and one is drawn at random. Find the probability of getting a multiple of 2 or a multiple of 5.

Let A be the event that the number drawn is a multiple of 2.

B be the event that the number drawn is a multiple of 5.

 $A \cap B$ is the event that the number drawn is a multiple of 10.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{15}{30} + \frac{6}{30} - \frac{3}{30}$$
$$= \frac{18}{30} = \frac{3}{5}$$

I5 The areas of three different faces of a rectangular box are 120, 72 and 60 respectively. Find its volume.

Let the lengths of sides of the box be a, b, c, where a > b > c.

$$ab = 120 \quad \cdots \quad (1)$$

$$bc = 60 \quad \cdots \quad (2)$$

$$ca = 72 \qquad \cdots (3)$$

$$(1)\times(2)\times(3)$$
: $(abc)^2 = (60\times6\times2)^2$
 $abc = 720$

The volume is 720.

I6 For any positive integer n, it is known that $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$. Find the value

of
$$12^2 + 14^2 + 16^2 + \dots + 40^2$$
. (Reference: 1989 HG3)
 $12^2 + 14^2 + 16^2 + \dots + 40^2 = 4 \times (6^2 + 7^2 + 8^2 + \dots + 20^2)$
 $= 4 \times \left[1^2 + \dots + 20^2 - \left(1^2 + \dots + 5^2\right)\right]$
 $= 4 \times \left[\frac{20(21)(41)}{6} - \frac{5(6)(11)}{6}\right]$
 $= 4(2870 - 55) = 11260$

If x and y are prime numbers such that $x^2 - y^2 = 117$, find the value of x. 17

Reference: 1995 HG4, 1997 HI1

$$(x + y)(x - y) = 117 = 3^2 \times 13$$

Without loss of generality, assume $x \ge y$.

$$x + y = 117, x - y = 1 \cdot \cdot \cdot \cdot (1)$$

or
$$x + y = 39$$
, $x - y = 3$ (2)

or
$$x + y = 13, x - y = 9 \cdot \cdot \cdot \cdot (3)$$

From (1), x = 59, y = 58, not a prime, rejected

From (2), x = 21, y = 18, not a prime, rejected

From (3),
$$x = 11$$
, $y = 2 \Rightarrow x = 11$

I8 If m is the total number of positive divisors of 54000, find the value of m.

Reference 1994 FI3.2, 1997 HI3, 1998 HI10, 1998 FI1.4, 2002 FG4.1, 2005 FI4.4

$$54000 = 2^4 \times 3^3 \times 5^3$$

Positive divisors are in the form $2^x \times 3^y \times 5^z$ where x, y, z are integers and $0 \le x \le 4$, $0 \le y \le 3$, $0 \le z \le 3$ Total number of positive factors = $5 \times 4 \times 4 = 80$

If a is a real number such that $a^2-a-1=0$, find the value of $a^4-2a^3+3a^2-2a+10$. 19

Reference: 2000 HG1, 2001 FG2.1, 2007 HG3, 2009 HG2

By division algorithm,

$$a^{4}-2a^{3}+3a^{2}-2a+10$$

$$= (a^{2}-a-1)(a^{2}-a+3)+13$$

$$= 13$$

 $a^{2} - a + 3$ $a^{2} - a - 1 \overline{\smash{\big)} a^{4} - 2a^{3} + 3a^{2} - 2a + 10}$

$$\frac{a^4 - a^3 - a^2}{-a^3 + 4a^2 - 2a}$$

$$\frac{-a^3 + a^2 + a}{3a^2 - 3a + 10}$$

$$\frac{3a^2 - 3a - 3}{13}$$

I10 In figure 4, BDE and AEC are straight lines, AB = 2, BC = 3, $\angle ABC = 60^{\circ}$, AE : EC = 1 : 2. If BD : DE = 9 : 1 and area of $\triangle DBA$

$$=\frac{a\sqrt{3}}{20}$$
, find the value of a .

Area of
$$\triangle ABC = \frac{1}{2}AB \cdot BC \cdot \sin 60^\circ = \frac{2}{2} \cdot 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$$

Area of
$$\triangle ABE = \frac{1}{3}$$
 area of $\triangle ABC = \frac{\sqrt{3}}{2}$

Area of
$$\triangle ABD = \frac{9}{10}$$
 area of $\triangle ABE = \frac{9\sqrt{3}}{20}$

$$\Rightarrow a = 9$$

distance diagram velocity diagram

Group Events

G1 A car P is $10\sqrt{2}$ km north of another car Q. The two cars start to move at the same time with P moving south-east at 4 km/h and Q moving north-east at 3 km/h. Find their smallest distance of separation in km.

Consider the relative velocity.

Keep Q fixed, the velocity of P relative to Q is 5 km/h in the direction of PB, where $\angle BPQ = \theta$.

Let
$$\angle APB = \alpha$$
, $\angle APQ = 45^{\circ}$

$$\sin \alpha = \frac{3}{5}, \cos \alpha = \frac{4}{5}$$

$$\sin \theta = \sin(45^\circ - \alpha) = \sin 45^\circ \cos \alpha - \cos 45^\circ \sin \alpha$$
$$= \frac{1}{\sqrt{2}} \cdot \frac{4}{5} - \frac{1}{\sqrt{2}} \cdot \frac{3}{5} = \frac{1}{5\sqrt{2}}$$

When the course of PB is nearest to Q (i.e at G),

The shortest distance is $GQ = PQ \sin \theta = 10\sqrt{2} \times \frac{1}{5\sqrt{2}} = 2 \text{ km}$

G2 If α , β are the roots of the equation $x^2 - 3x - 3 = 0$, find $\alpha^3 + 12\beta$.

$$\alpha^{2} - 3\alpha - 3 = 0$$

$$\Rightarrow \alpha^{3} = 3\alpha^{2} + 3\alpha = 3(3\alpha + 3) + 3\alpha = 12\alpha + 9$$

$$\alpha + \beta = 3, \ \alpha\beta = -3$$

$$\alpha^{3} + 12\beta = 12\alpha + 9 + 12\beta$$

$$= 12 \times 3 + 9 = 45$$

G3 As shown in figure 1, the area of $\triangle ABC$ is 10. D, E, F are points on AB, BC and CA respectively such that AD : DB = 2 : 3, and area of $\triangle ABE$ = area of quadrilateral BEFD. Find the area of $\triangle ABE$.

Join *DE*. Area of $\triangle ADE$ = area of $\triangle DEF$

 \therefore $\triangle ADE$ and $\triangle DEF$ have the same base and the same height

$$\therefore DE //AC$$

$$BE : EC = BD : DA = 3 : 2$$
 (theorem of equal ratio)

Area of
$$\triangle ABE$$
 = Area of $\triangle ABC \times \frac{BE}{BC} = 10 \times \frac{3}{3+2} = 6$

- G4 What is the maximum number of regions produced by drawing 20 straight lines on a plane?
 - 2 lines: maximum number of regions = 4 = 2 + 2
 - 3 lines: maximum number of regions = 7 = 2 + 2 + 3
 - 4 lines: maximum number of regions = 11 = 2 + 2 + 3 + 4

.....

20 lines, maximum number of regions = $2 + 2 + 3 + ... + 20 = 1 + \frac{21}{2} \times 20 = 211$

G5 The product of 4 consecutive positive integers is 3024. Find the largest integer among the four. Let the four integers be x, x + 1, x + 2, x + 3.

Reference 1993 HG6, 1995 FI4.4, 1996 FG10.1, 2000 FG3.1, 2004 FG3.1, 2012 FI2.3, 2013HI5

$$x(x + 1)(x + 2)(x + 3) = 3024$$

 $(x^2 + 3x)(x^2 + 3x + 2) = 3024$
 $(x^2 + 3x)^2 + 2(x^2 + 3x) + 1 = 3025$
 $(x^2 + 3x + 1)^2 = 55^2$
 $x^2 + 3x + 1 = 55$ or $x^2 + 3x + 1 = -55$
 $x^2 + 3x - 54 = 0$ or $x^2 + 3x + 56 = 0$
 $(x - 6)(x + 9) = 0$ or no real solution
 $x > 0$ $x = 6$

Method 2

$$3024 + 1 = 3025 = 55^2$$

 $3024 = 55^2 - 1^2 = (55 - 1)(55 + 1)$
 $3024 = 54 \times 56 = 6 \times 9 \times 7 \times 8$
The largest integer is 9.

The largest integer = 9

G6 Find the sum of all real roots of the equation (x+2)(x+3)(x+4)(x+5) = 3.

Reference 1993 HG5, 1995 FI4.4, 1996 FG10.1, 2000 FG3.1, 2004 FG3.1, 2012 FI2.3, 2013 HI5

Let
$$t = x + 3.5$$

 $(t - 1.5)(t - 0.5)(t + 0.5)(t + 1.5) = 3$
 $t^4 - \frac{5}{2}t^2 + \frac{9}{16} - 3 = 0$
 $(t^2 - \frac{5}{4})^2 - 4 = 0$
 $(t^2 - \frac{5}{4} + 2)(t^2 - \frac{5}{4} - 2) = 0$
 $(t^2 - \frac{13}{4}) \Rightarrow t = \pm \frac{\sqrt{13}}{2}$
 $(t^2 - \frac{13}{4}) \Rightarrow t = \pm \frac{13}{4} \Rightarrow$

Let
$$y = x^2 + 7x$$

 $(y + 10)(y + 12) = 3$
 $y^2 + 22y + 117 = 0$
 $(y + 9)(y + 13) = 0$
When $y = -9 = x^2 + 7x$
 $x^2 + 7x + 9 = 0$
When $y = -13 = x^2 + 7x$
 $x^2 + 7x + 13 = 0$
 $\Delta = 49 - 52 < 0$, no solution
 \therefore Sum of roots = -7

Sum of real roots = -7

G7 If a is an integer and $a^7 = 8031810176$, find the value of a.

$$1280000000 = 20^7 < 8031810176 < 30^7 = 21870000000$$

Clearly *a* is an even integer.

$$2^7 \equiv 8, 4^7 \equiv 4, 6^7 \equiv 6, 8^7 \equiv 2 \pmod{10}$$

 $\therefore a = 26$

If x and y are real numbers satisfying $\begin{cases} x^2 - xy + y^2 - 3x - 3y = 1 \\ xy = 1 \end{cases}$ and x > y > 0,

find the value of x. **Reference: 2010 FI1.3, 2013 FI4.4**

Let
$$t = x + y$$
, (1) becomes $(x + y)^2 - 3 - 3(x + y) = 1$
 $t^2 - 3t - 4 = 0$
 $(t + 1)(t - 4) = 0$
 $t = -1$ (rejected) or $t = 4$
 $x + y = 4$ and $xy = 1$

x and y are the roots of
$$u^2 - 4u + 1 = 0$$

$$x = 2 + \sqrt{3}$$

G9 Each side of a square is divided into four equal parts and straight lines are joined as shown in figure 2. Find the number of rectangles which are not squares. (**Reference: 2013 FI1.1**)

Number of rectangles including squares = $C_2^5 \times C_2^5 = 100$

Number of squares = 16 + 9 + 4 + 1 = 30

Total number of rectangles which are not squares = 100 - 30 = 70

(Figure 2)

G10 If $0^{\circ} \le \theta \le 90^{\circ}$ and $\cos \theta - \sin \theta = \frac{\sqrt{5}}{3}$, find the value of $\cos \theta + \sin \theta$.

Reference: 1992 HI20, 1995 HI5, 2007 HI7, 2007 FI1.4, 2014 HG3

$$(\cos\theta - \sin\theta)^2 = \frac{5}{9}$$

$$1 - 2\sin\theta\cos\theta = \frac{5}{9}$$

$$\frac{4}{9} - 2\sin\theta\cos\theta = 0$$

$$2-9\sin\theta\cos\theta=0$$

$$2(\sin^2\theta + \cos^2\theta) - 9\sin\theta\cos\theta = 0$$

$$2 \tan^2 \theta - 9 \tan \theta + 2 = 0$$

$$\tan \theta = \frac{9 + \sqrt{65}}{4}$$
 or $\frac{9 - \sqrt{65}}{4}$

When
$$\tan \theta = \frac{9 + \sqrt{65}}{4}$$
, $\sin \theta = \frac{9 + \sqrt{65}}{3(\sqrt{13} + \sqrt{5})}$, $\cos \theta = \frac{4}{3(\sqrt{13} + \sqrt{5})}$,

Original equation LHS =
$$\cos \theta - \sin \theta = -\frac{5 + \sqrt{65}}{3(\sqrt{13} + \sqrt{5})} = -\frac{\sqrt{5}}{3}$$
 (reject)

When
$$\tan \theta = \frac{9 - \sqrt{65}}{4}$$
, $\sin \theta = \frac{9 - \sqrt{65}}{3(\sqrt{13} - \sqrt{5})}$, $\cos \theta = \frac{4}{3(\sqrt{13} - \sqrt{5})}$,

Original equation LHS =
$$\cos \theta - \sin \theta = \frac{\sqrt{5}}{3}$$

$$\therefore \cos \theta + \sin \theta = \frac{9 - \sqrt{65}}{3(\sqrt{13} - \sqrt{5})} + \frac{4}{3(\sqrt{13} - \sqrt{5})} = \frac{\sqrt{13}}{3}$$

Method 2

$$\cos \theta > \sin \theta \Rightarrow \theta < 45^{\circ} \Rightarrow 2\theta < 90^{\circ}$$

$$(\cos\theta - \sin\theta)^2 = \frac{5}{9}$$

$$1 - 2\sin\theta\cos\theta = \frac{5}{9}$$

$$\sin 2\theta = \frac{4}{9} \Rightarrow \cos 2\theta = \frac{\sqrt{65}}{9} :: 2\theta < 90^{\circ}$$

$$(\cos\theta - \sin\theta)(\cos\theta + \sin\theta) = \frac{\sqrt{5}}{3}(\cos\theta + \sin\theta)$$

$$\cos^2\theta - \sin^2\theta = \frac{\sqrt{5}}{3} (\cos\theta + \sin\theta)$$

$$\frac{\sqrt{65}}{9} = \cos 2\theta = \frac{\sqrt{5}}{3} (\cos \theta + \sin \theta)$$

$$\cos\theta + \sin\theta = \frac{\sqrt{65}}{9} \div \frac{\sqrt{5}}{3} = \frac{\sqrt{13}}{3}$$

Method 3

$$(\cos\theta - \sin\theta)^2 = \frac{5}{9}$$

$$1 - 2\sin\theta\cos\theta = \frac{5}{9}$$

$$2\sin\theta\cos\theta = \frac{4}{9}$$

$$1 + 2\sin\theta\cos\theta = \frac{13}{9}$$

$$\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta = \frac{13}{9}$$

$$(\cos\theta + \sin\theta)^2 = \frac{13}{9}$$

$$\cos \theta + \sin \theta = \frac{\sqrt{13}}{3} \text{ or } -\frac{\sqrt{13}}{3}$$

$$0^{\circ} \le \theta \le 90^{\circ}$$

$$\therefore \cos \theta + \sin \theta > 0$$

$$\cos\theta + \sin\theta = \frac{\sqrt{13}}{3}$$