UNIDAD DE PROCESAMIENTO DE CS1.

Microoperaciones RT.

- En la tabla se resumen microoperaciones de transferencia que la UP puede satisfacer, y que son suficientes para realizar el conjunto de las cuatro instrucciones del computador simple.
- En la fila (*) se muestra una transferencia múltiple de dos transferencias simples que pueden realizarse en paralelo en un mismo ciclo máquina.
- En color amarillo se indican las señales de control a activar al valor "1" para ejecutar cada microoperación

Micrococcion					Señ	ales d	e co	ont	rol			
Microoperacion es RT	PC		MAR		IR	RT	A	AC		LU	Memoria Principal	
	CLPC	IPC	TIR	TPC	TB	WT	WAC	RAC	sumar	restar	R	W
PC=0	1	О	0	0	0	0	0	0	-	-	0	0
(*) PC←PC+1 IR←M[MAR]	0	1	0	0	1	0	0	0	1	1	1	0
MAR←PC	0	0	0	1	0	0	0	0	1	ı	0	0
MAR←IR5-0	0	0	1	0	0	0	0	0	ı	ı	0	0
RT←M[MAR]	0	0	0	0	0	1	0	0	-	ı	1	0
M[MAR]←AC	0	0	0	0	0	0	0	1	-	-	0	1
AC←AC+RT	0	0	0	0	0	0	1	0	1	0	0	0
AC←AC-RT	0	0	0	0	0	0	1	0	0	1	0	0

UNIDAD DE PROCESAMIENTO DE CS1.

CS1: MICROOPERACIONES

eda	1	MAR ← PC (TPC)
Búsqu	2	$ \begin{array}{c} \text{IR} \leftarrow \text{RAM; PC} \leftarrow \text{PC} + 1 \\ \text{(R, TB, IPC)} \end{array} $

NOTA: Basado en [DIA09]

_		STOP IR _{7,6} =00	ADD A IR _{7,6} =01	SUB A IR _{7,6} =10	STA A IR _{7,6} =11
ıcióı	3	NOP	М		
Ejecución	4	1	RT ← (R, V	RAM ← AC (RAC, W)	
	5	-	$AC \leftarrow AC + RT$ (s, WAC)	$AC \leftarrow AC - RT$ (r, WAC)	-

Microphoroica					Señ	ales d	e co	ont	rol			
Microoperacion es RT	PC		MAR		IR	RT	A	AC		LU	Memoria Principal	
	CLPC	IPC	TIR	TPC	ТВ	WT	WAC	RAC	sumar	restar	R	W
PC=0	1	О	0	0	0	0	0	0	-	-	0	0
(*) PC←PC+1 IR←M[MAR]	0	1	0	0	1	0	0	0	-	ı	1	0
MAR←PC	0	0	0	1	0	0	0	0	ı	ı	0	0
MAR←IR5-0	0	0	1	0	0	0	0	0	-	-	0	0
RT←M[MAR]	0	0	0	0	0	1	0	0	-	ı	1	0
M[MAR]←AC	0	0	0	0	0	0	0	1	-	1	0	1
AC←AC+RT	0	0	0	0	0	0	1	0	1	0	0	0
AC←AC-RT	0	0	0	0	0	0	1	0	0	1	0	0

EJEMPLO DE PROGRAMA CS1.

Programa en		Instr	ucción en binario	Instrucción	
ensamblador (\$DirDato en hexadecimal)	Descripción RT del programa ProgSUMA2	CO 2 bits	Dirección del dato en binario con 6 bits	Instrucción en hexadecimal	
STA \$28	M(\$DirDato de datAux=28) ← AC	11	10 1000	E8	
SUB \$28	AC ← AC - M(\$DirDato de datAux=\$28)	10	10 1000	A8	
ADD \$30	$AC \leftarrow AC + M(\$DirDato de dat1=\$30)$	01	11 0000	70	
ADD \$31	AC ← AC + M(\$DirDato dat2=\$31)	01	11 0001	71	
STA \$32	M(\$DirResultado = 32) ← AC	11	11 0010	F2	
STOP	Fin ejecución	00		00	

Programa **ProgSUMA2.**

Ensamblador		Formato de la Instrucción en binario					
(\$DirDato en hexadecimal)	Descripción RT	со	Dirección del Dato en binario				
STOP	Fin ejecución	00	XXXXXX				
ADD \$DirDato	AC ← AC + M(\$DirDato)	01	A ₅ A ₄ A ₃ A ₂ A ₁ A ₀				
SUB \$DirDato	AC ← AC - M(\$DirDato)	10	A ₅ A ₄ A ₃ A ₂ A ₁ A ₀				
STA \$DirDato	M(\$DirDato) ← AC	11	A ₅ A ₄ A ₃ A ₂ A ₁ A ₀				

Ciclo	Num. Inst. (0-6)	Fase (CAP/EJ)	PC	IR	MAR	AC	RT	M(\$28)	M(\$32)	INSTRUCCIÓN
1	0	CAP	00	00	00	B5	00	00	00	STA \$28
2	0	CAP	01	E8	00	B5	00	00	00	STA \$28
3	0	EJ	01	E8	28	B5	00	00	00	STA \$28
4	0	EJ	01	E8	28	B5	00	B5	00	STA \$28
5	1	CAP	01	E8	01	B5	00	B5	00	SUB \$28
6	1	CAP	02	A8	01	B5	00	B5	00	SUB \$28
7	1	EJ	02	A8	28	B5	00	B5	00	SUB \$28
8	1	EJ	02	A8	28	B5	B5	B5	00	SUB \$28
9	1	EJ	02	A8	28	00	B5	B5	00	SUB \$28
10	2	CAP	02	A8	02	00	B5	B5	00	ADD \$30
11	2	CAP	03	70	02	00	B5	B5	00	ADD \$30
12	2	EJ	03	70	30	00	B5	B5	00	ADD \$30
13	2	EJ	03	70	30	00	A5	B5	00	ADD \$30
14	2	EJ	03	70	30	A5	A5	B5	00	ADD \$30
15	3	CAP	03	70	03	A5	A5	B5	00	ADD \$31
16	3	CAP	04	71	03	A5	A5	B5	00	ADD \$31
17	3	EJ	04	71	31	A5	A5	B5	00	ADD \$31
18	3	EJ	04	71	31	A5	02	B5	00	ADD \$31
19	3	EJ	04	71	31	A7	02	B5	00	ADD \$31
20	4	CAP	04	71	04	Α7	02	B5	00	STA \$32
21	4	CAP	05	F2	04	A7	02	B5	00	STA \$32
22	4	EJ	05	F2	32	A7	02	B5	00	STA \$32
23	4	EJ	05	F2	32	Α7	02	B5	Α7	STA \$32
24	6	CAP	05	F2	05	A7	02	B5	Α7	STOP
25	6	САР	06	00	05	A7	02	B5	A7	STOP
26	6	EJ	06	00	05	A7	02	B5	Α7	STOP
	SUPONIENDO INIC	IALMENTE	AC = B5							
			RT = 00							
			M(30) = A5							
			M(31) = 02							