Resolução da Prova 3 de Mecânica Quântica I (F689, Turma B, 10. semestre de 2015)

Pedro Rangel Caetano*

Universidade Estadual de Campinas, 10. semestre de 2017

- 1. Confira problema 12 da lista 3.
- 2. Um sistema esta no estado

$$\psi(t=0) = \frac{1}{2} \left(\frac{3}{2\pi}\right)^{1/2} \sin \theta e^{-i\phi}$$

(A) Em qual estado de momento angular total e momento angular na direção z o sistema está?

Resolução:

No formulário foi fornecido que

$$Y_1^1 = -\frac{1}{2} \left(\frac{3}{2\pi}\right)^{1/2} \sin \theta e^{i\phi}$$

e que

$$Y_l^{-m} = (-1)^m (Y_l^m)^*$$

portanto

$$Y_1^{-1} = \frac{1}{2} \left(\frac{3}{2\pi} \right)^{1/2} \sin \theta e^{-i\phi}$$

e $\psi(t=0)=Y_1^{-1}.$ Denotando por $|\psi(t=0)\rangle$ o ket correpondente à função de onda $\psi(t=0)$ temos então

$$|\psi(t=0)\rangle = |l=1, m=-1\rangle$$

O sistema está no autoestado de L^2 com autovalor $2\hbar^2$ e de L_z com autovalor $-\hbar$.

^{*}Email: p.r.caetano@gmail.com

(B) Se fossemos medir o momento angular na direção x, \hat{L}_x , quais são os valores possível que poderíamos achar? Justifique.

Resolução:

Quando l=1, o formulário fornece que a representação de L_{x} na base z é

$$L_{x} = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Os valores possíveis são os autovalores desta matriz:

$$\begin{vmatrix} -\lambda & \hbar/\sqrt{2} & 0\\ \hbar/\sqrt{2} & -\lambda & \hbar/\sqrt{2}\\ 0 & \hbar/\sqrt{2} & -\lambda \end{vmatrix} = 0$$
$$-\lambda^3 + 2\lambda \frac{\hbar^2}{2} = 0$$
$$\lambda (\hbar - \lambda) (\hbar + \lambda) = 0$$

De onde é claro que os valores possíveis são $-\hbar$, 0 e \hbar .

(C) Quais são os autovetores de \hat{L}_x correspondentes a estes autovalores na base z. A base z é a base de autovetores de S_z .

•
$$\lambda = 0$$

$$\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} b \\ a+c \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Já normalizando, temos então o vetor

$$|1 0\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

• $\lambda = \pm \hbar$

$$\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \pm \hbar \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
$$\begin{pmatrix} b \\ a+c \\ b \end{pmatrix} = \begin{pmatrix} \pm \sqrt{2}a \\ \pm \sqrt{2}b \\ \pm \sqrt{2}c \end{pmatrix}$$
$$\begin{cases} b = \pm \sqrt{2}a \\ a+c = \pm \sqrt{2}b \\ b = \pm \sqrt{2}c \end{cases}$$

Daí, $\alpha=c=\pm\frac{1}{\sqrt{2}}b$. Para que o vetor seja normalizado, devemos ter $\alpha^2+b^2+c^2=2b^2=1$, portanto

$$|1 \pm 1\rangle = \begin{pmatrix} \pm \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \pm \frac{1}{2} \end{pmatrix}$$

- (D) Quais são as probabilidades de encontrar os valores possíveis de \hat{L}_x que foram achados no item (B)?
 - Probabilidade de encontrar 0:

$$\langle 1 \, 0 | \psi \rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= -\frac{1}{\sqrt{2}}$$

logo

$$\begin{split} \mathfrak{P}\left[S_{x}=0\right] &= \left|\langle 1 \ 0 | \psi \rangle \right|^{2} \\ &= \frac{1}{2} \end{split}$$

• Probabilidade de encontrar $\pm\hbar$:

$$\langle 1 \pm 1 | \psi \rangle = \begin{pmatrix} \pm \frac{1}{2} & \frac{1}{\sqrt{2}} & \pm \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= \frac{1}{2}$$

logo

$$\begin{split} \mathfrak{P}\left[S_{x} = \pm \hbar\right] &= \left|\left\langle 1 \, \pm 1 \middle| \psi \right\rangle\right|^{2} \\ &= \frac{1}{4} \end{split}$$

- 3. Seja um conjunto de partículas com spin 1/2 movendo na direção y. Seja um aparato de Stern-Gerlach com o campo magnético apontando numa direção n̂'. O feixe passa por dois aparatos de Stern-Gerlach (SG), o primeiro com o campo magnético na direção z e o segundo com o campo magnético na direção x. Em ambos a componente inferior está bloqueada.
 - (A) Faça a representação deste sistema.

Resolução:

Figura 1: Esquema da situação descrita no enunciado. Figura retirada de [1].

(B) Qual é a fração de partículas que deixa o segundo SG em relação ao que deixa o primeiro SG? Justifique a resposta.

Resolução:

Suponha, como na figura, que N_0 partículas saem do primeiro SG_z . Como a componente inferior está bloqueada, todas estas partículas estão no estado $|+\rangle_z$, o autoestado de S_z com autovalor $\hbar/2$. O segundo SG mede a componente do momento angular na direção x. Como uma medida de S_x para uma partícula no estado $|\psi\rangle$ fornece $+\hbar/2$ com probabilidade $|_x\langle+|\psi\rangle|^2$, a probabilidade de uma partícula no estado $|+\rangle_z$ sair de SG_x , que possui a saída inferior bloqueada, é

$$p = |_{x} \langle +|+\rangle_{z}|^{2}$$

Nos dados da prova, foi fornecido que os autovetores do operador spin na direção $\hat{n}=\sin\theta\cos\varphi\hat{x}+\sin\theta\sin\varphi\hat{y}+\cos\theta\hat{z}$ na base comum de S^2 e S_z são

$$\left| S_{n} = +\frac{\hbar}{2} \right\rangle = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2)e^{i\varphi} \end{pmatrix}$$

$$\left| S_{n} = -\frac{\hbar}{2} \right\rangle = \begin{pmatrix} \sin(\theta/2) \\ -\cos(\theta/2)e^{i\varphi} \end{pmatrix}$$

Para $\hat{\mathbf{n}} = \hat{\mathbf{x}}$ temos $\theta = \pi/2$ e $\phi = 0$, portanto

$$|+\rangle_{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Podemos agora calcular a probabilidade pedida; Como

$$_{x}\langle +|+\rangle_{z} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}}$$

temos p = 1/2. Em média, se saem N_0 partículas de SG_z , sairão $N_0/2$ partículas de SG_x .

(C) Se adicionarmos um terceiro SG, após os dois primeiros SG, que transmite somente a componente superior de S_z , qual fração de partículas que deixa o terceiro SG em relação ao que deixa o primeiro SG? Justifique a resposta.

Resolução:

Figura 2: Esquema da nova situação. Figura retirada de [1].

Agora temos a situação descrita na Figura 2. Note que as partículas que entram no último SG_z estão no estado $|+\rangle_x$. A probabilidade de emergirem é então

$$p = |_{z} \langle +|+\rangle_{x}|^{2}$$
$$= 1/2$$

Se entram $\frac{N_0}{2}$ partículas, sairão $\frac{N_0}{4}$ partículas, portanto.

(D) Agora o segundo SG com o campo na direção x, ambos os feixes, o superior e o inferior e o terceiro SG na direção z transmite apenas na direção inferior. Qual a fração de partículas que deixa o terceiro SG em relação ao que deixa o primeiro SG? Justifique a resposta.

Resolução: Após passar pelo segundo SG, todas as partículas colapsam no estado $|+\rangle_x$ ou $|-\rangle_x$: o feixe entrando o último SG é portanto uma mistura de N₀ partículas nestes dois estados: $\frac{N_0}{2}$ no estado $|+\rangle_x$ e $\frac{N_0}{2}$ no estado $|-\rangle_x$. Como **ambas** as partículas possuem probabilidade 1/2 de sair na direção inferior, pois

$$|_{z}\langle -|+\rangle_{\mathbf{x}}|^{2}=|_{z}\langle -|-\rangle_{\mathbf{x}}|^{2}$$

o número de partículas saindo na parte inferior do terceiro SG será

$$\left(\frac{\mathsf{N}_0}{2} + \frac{\mathsf{N}_0}{2}\right) \frac{1}{2} = \frac{\mathsf{N}_0}{2}$$

Observação: Note que o resultado deste último item depende que a medição realizada por S_x de fato colapse os estados da partícula dos autoestados de S_x antes de misturarmos as partículas de novo. Ou seja, devemos ser capazes de determinar se as partículas do feixe entrando o último SG_z sairam na saída superior ou inferior de SG_x . É possível construir um aparato de Stern-Gerlach modificado, descrito por Feynman e discutido em [1], onde orientamos três magnetos de forma que partículas de spin up e down seguem trajetórias diferentes dentro do aparelho (ou pelo menos seguiriam classicamente - lembre-se que o conceito de trajetória não está bem definido em mecânica quântica), se juntando na saída (cf. Figura 3).

Figura 3: Aparato de Stern-Gerlach modificado. Figura retirada de [1].

A diferença aqui é que sem interromper a trajetória superior ou inferior, não conseguimos saber qual das duas trajetórias a partícula seguiu: na verdade, esta pergunta sequer faz muito sentido. O estado da partícula, portanto, não colapsa em um dos autoestados do momento angular na direção selecionada pelo aparato SG, se mantendo inalterado. Se trocássemos o segundo aparato SG (SG_x) neste exercício por um destes aparatos modificados, o feixe de N₀ partículas emergindo dele estaria no mesmo estado em que entrou, $|+\rangle_z$. Neste caso, portanto, **nenhuma partícula emergiria do último SG**_z **na saída de baixo!** Uma discussão interessante destes aspectos do experimento de Stern-Gerlach pode ser lida na seção 1.2 do livro de Townsend ([)], disponível nas melhores livrarias digitais russas.