

Einspritz-Übergänge

PROJEKT: MSS54

MODUL: EINSPRITZUNG

EINSPRITZ - ÜBERGÄNGE

AUTORISATION

AUTOR (ZS-M-57)	DATUM
GENEHMIGT (ZS-M-57)	DATUM
GENEHMIGT (EA-E-2)	DATUM

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

X	Neudefinition		Funktionsänderung	Funktionsfehler
Ве	schreibung:			
1. E	Bilanzierung der ein	gespritzten und	verbrannten Kraftstoffmassel	n bei Betriebsartenübergängen
Ве	gründung:			
	n einigen Betriebsa Jesaugt	rten wird Krafts	toff im Saugrohr gespeichert	und erst beim nächsten Arbeitsspiel
Ak	tuelle Dokument	tation: Kap 4	.03	
			Bisherige Änderungen	
	Version	Datum	1	Beschreibung
		2.8.2003	B Erste Version	
	S360	10.09.04	Variabelliste überarb	eitet/ B.Riksén

	NAME	A BTEILUNG	DATUM
AUTOR	E. OTTO /P. SCHMID	EA-E-2	06.03.04
BEARBEITER	B. RIKSEN	ZS-M-57	

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

Inhaltsverzeichnis

1	FUI	NKTIONSBESCHREIBUNG	4
	1.1	Physikalischer Hintergrund	4
	1.2	FES (FRÜHES EINLASS SCHLIEßT) UND SES (SPÄTES EINLASS SCHLIEßT)	4
	1.2	P.1 Betrieb mit FES	4
	1.2	P.2 Übergang von FES auf SES	4
	1.2		
	1.2		
	1.3	2V-BETRIEB	
	1.4	SCHUBABSCHALTUNG (SA) UND ZYLINDERABSCHALTUNG (ZAS)	6
	1.5	KRAFTSTOFFBILANZ	6
	1.6	APPLIKATIONSHINWEISE	7
2	DA ⁻	TEN DES MODULS	7

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

MSS54: Einspritzung

Einspritz-Übergänge

1 FUNKTIONSBESCHREIBUNG

1.1 PHYSIKALISCHER HINTERGRUND

Dieses Modul dient zur Bilanzierung der eingespritzten und verbrannten Kraftstoffmassen. Dies ist bei Betriebsartenübergängen notwendig, da in einigen Betriebsarten Kraftstoff im Saugrohr gespeichert und erst beim nächsten Arbeitsspiel angesaugt wird.

Der Wandfilm wird bei diesem Modul nicht berücksichtigt.

Die Berechnung muss für jedes Segment, bzw. für jeden Zylinder individuell sein.

1.2 FES (FRÜHES EINLASS SCHLIEßT) UND SES (SPÄTES EINLASS SCHLIEßT)

In der Betriebsart FES wird die Menge des benötigten Luft-Kraftstoffgemisches durch die Ventilöffnungszeiten bestimmt.

Bei hohen Drehzahlen ist die Betriebsart FES aufgrund der minimalen Ventilöffnungszeiten nicht mehr möglich und es erfolgt ein Wechsel in die Betriebsart SES.

In der Betriebsart SES wird zunächst die Volllastmenge angesaugt, nach UT wird die nicht benötigte Menge wieder in das Saugrohr zurückgeschoben und dann erst das Einlass-Ventil geschlossen. Die in das Ansaugrohr zurückgeschobene Menge steht dann für das nächste Arbeitsspiel wieder zur Verfügung. Im stationären Fall wird beim zweiten Arbeitsspiel die stationär abgestimmte Kraftstoffmasse eingespritzt, im instationären Fall, d.h., bei Betriebsartenwechsel und Lastwechsel, ändern sich die Verhältnisse, so dass eine Bilanzierung der verbrannten und der vorgelagerten Kraftstoffmasse erfolgen muss.

1.2.1 BETRIEB MIT FES

In der Betriebsart FES wird kein Gemisch in den Zylinder zurückgeschoben, so dass auch keine Bilanzierung der Kraftstoffmenge erforderlich ist.

1.2.2 ÜBERGANG VON FES AUF SES

Bei frühem Einlass schließt (FES) wird kein Gemisch in den Saugkanal zurückgeschoben, d.h., das im Saugrohr befindliche Gemisch ist Null. (Der Wandfilm wird nicht betrachtet.) Beim Betrieb mit SES wird der Zylinder komplett mit Gemisch gefüllt, im Zylinder homogenisiert und ein Teil der Ladung ins Saugrohr zurückgeschoben. Um ein stöchiometrisches Gemisch zu erreichen, muss im ersten Arbeitsspiel die Kraftstoffmenge für Volllast bei Lambda = 1 eingespritzt werden und über den Korrekturfaktor auf das gewünschte Luftverhältnis angereichert werden. In den folgenden Arbeitsspielen muss sichergestellt sein, dass das Gemisch im Zylinder und der zurückgeschobene Anteil homogen das applizierte Lambda besitzen.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

MSS54: Einspritzung

Einspritz-Übergänge

Seite 5 von 8

1.2.3 BETRIEB MIT SES (INKL. ZYLINDERABSCHALTUNG MIT SES)

Beim Betrieb mit SES ist die aktuell benötigte Vollastmenge für Lambda = 1 und die im vorhergehenden AS rückgeströmte Kraftstoffmenge maßgeblich für die Einspritzung. Die aktuell benötigte stationäre Kraftstoffmenge wird bei der Einspritzung nicht berücksichtigt. Diese geht anschließend in die zurückgeströmte Kraftstoffmenge des aktuellen AS ein und wird somit erst im folgenden AS berücksichtigt.

Für jedes Segment, bzw. jeden Zylinder gibt es eine individuelle, gespeicherte Menge.

mk_korr = mk_vollast - mk_gespeichert [tpu_segm_index] korrigierte Einspritzmenge

mk_gespeichert [tpu_segm_index] = mk_vollast – mk_stat im Saugrohr gesp. Menge

1.2.4 ÜBERGANG VON SES AUF FES

Beim Übergang von SES auf FES befindet sich im Ansaugrohr die im vorherigen AS gespeicherte Kraftstoffmenge. Ist diese Menge größer als die für das AS benötigte, wird die korrigierte Einspritzmenge auf Null begrenzt und die gespeicherte Kraftstoffmenge auf Null gesetzt. Die durchgeführte Korrektur ist einmalig. Ist nach diesem AS immer noch Kraftstoff im Ansaugrohr gespeichert, wird die nächste Verbrennung zu fett sein.

(Dieser Fall tritt ein, wenn ein Übergang von SES auf FES erfolgt und die Last kleiner als 0.7 ist, d.h., kleiner als die halbe Vollast.)

mk_korr = mk_stat - mk_gespeichert [tpu_segm_index]

If (mk_stat <= mk_gespeichert [tpu_segm_index]) mk_korr = 0

1.3 2V-BETRIEB

Beim 2V-Betrieb wird alternierend nur eines von beiden Einlassventilen geöffnet. Die eingespritzte Kraftstoffmasse wird aus Symmetriegründen jedoch immer gleichmäßig auf beide Einlassventile verteilt, so dass nur ein Teil der eingespritzten Menge in den Zylinder gesaugt werden kann.

Beim alternierenden 2V-Betrieb wird wechselweise vor das geschlossen gehaltene Einlassventil Kraftstoff vorgelagert und im nächsten Arbeitsspiel angesaugt. Es muss eine Bilanz aus dem letzten und dem aktuellen AS gebildet werden.

Beim Übergang in den 2V-Betrieb muss eine Mehrmenge (vorgelagerte Kraftstoffmenge) eingespritzt werden. Die Mehrmenge darf nicht das Doppelte von der benötigten Menge betragen, da sonst beim folgenden AS nicht eingespritzt werden müsste. In den folgenden n Arbeitsspielen wird die Mehrmenge jeweils neu berechnet. Um das Motorverhalten zu definieren, wird ein Kraftstofffanggrad definiert, der das Verhältnis von der angesaugten zur eingespritzten Kraftstoffmasse definiert. Bei einem Fanggrad größer 0.5 und kleiner 1 ergibt sich ein abregelndes Verhalten der Mehrmenge.

Wird die Betriebsart 2V verlassen, wird die aktuelle Einspritzmenge um die Mehrmenge vermindert und die Mehrmenge im folgenden auf Null gesetzt. Der Fanggrad nimmt den Wert 1 an, wodurch die vorgelagerte Kraftstoffmasse im nächsten AS ebenfalls zu Null wird.

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

MSS54: Einspritzung Einspritz-Übergänge

Seite 6 von 8

mk_gespeichert [tpu_segm_index] = mk_korr * (1 - kr_fang) vor geschlossenem Ventil

mk_Zyl = mk_korr * kr_fang + mk_gespeichert [tpu_segm_index] im Zylinder

mk_korr = mk_stat - mk_Übergang eingespr. Kraftstoffmasse

Daraus folgt durch Einsetzen von Gl. 3 in Gl. 2 und mit der Bedingung: mk_Zyl = mk_stat

mk_Übergang =(mk_stat - mk_gespeichert [tpu_segm_index])/kr_fang - mk_stat

mk_korr = (mk_stat - mk_gespeichert [tpu_segm_index])/kr_fang

mk_gespeichert [tpu_segm_index] = mk_korr * (1 - kr_fang)

kr_fang = Variable aus dem Kennfeld über Last und Drehzahl mit der Dimension [5,5]

1.4 SCHUBABSCHALTUNG (SA) UND ZYLINDERABSCHALTUNG (ZAS)

In den Betriebsarten SA und ZAS werden die Einlassventile geschlossen gehalten. Wurde im vorhergehenden AS Kraftstoff vorgelagert, bleibt dieser im Saugrohr gespeichert und steht im nächsten aktiven AS wieder zur Verfügung.

Die letzte vorgelagerte Kraftstoffmenge muss rechnerintern gespeichert bleiben und wird beim nächsten aktiven AS wieder berücksichtigt.

1.5 KRAFTSTOFFBILANZ

Zusammengefasst ergibt sich die Kraftstoffmassenbilanz folgendermaßen:

if (SES)

mk_korr = ((mk_vollast - mk_gespeichert [tpu_segm_index]) / kr_fang)

mk_gespeichert [tpu_segm_index] = mk_vollast - mk_stat + (mk_korr * (1.0 - kr_fang))

else if (FES)

if (mk_stat <= mk_gespeichert [tpu_segm_index]) mk_korr = 0

else mk_korr = ((mk_stat - mk_gespeichert [tpu_segm_index]) / kr_fang)

mk_gespeichert [tpu_segm_index] = (mk_korr * (1 - kr_fang))

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

MSS54: Einspritzung

Einspritz-Übergänge

1.6 APPLIKATIONSHINWEISE

- Applikation von kr_fang zwischen 0.51 und 1; für 4V-und 3V-Betrieb muss kr_fang = 1 sein

2 DATEN DES MODULS

Die Berechnung der Funktion erfolgt im Slave.

	Winkel	background	1ms	10ms	20ms	100ms	1s
Task	Х						

Variablen

Variable	Initialisierung	Einheit	Bereich	Quant.	Impl.	Seite
mk_stat	0	mg / Asp	0 - 131.07	0.01	uword	
mk_vollast	0	mg / Asp	0 - 131.07	0.01	uword	
mk_gespeichert	0	mg / Asp	0 - 131.07	0.01	uword	
[tpu_seg_to_datagrave]						
mk_korr	0	mg / Asp	0 - 131.07	0.01	uword	
kr_fang	0			0.001	uword	, and the second

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03

Einspritz-Übergänge

Parameter

Applgröße	Stützstellen	Einheit	Bereich	Quant.	Impl.	Seite	
B_TIUEB			0-1	1	ubyte		
	0: Tiueb inakiv / 1: Tiueb aktiv						

Kennlinien

Applgröße	Stützstellen	Einheit	Bereich	Quant.	Impl.	Seite
				•	•	•

Kennfelder

Applgröße	Stützstellen	Einheit	Bereich	Quant.	Impl.	Seite
kf_ti_kr_fang	5xn, 5xwi	-	0.51p bis 1p		uword	4
		Г	<u> </u>			
		•			•	

	Abteilung	Datum	Name	Dateiname
Autor	ZS-M-57	02.08.04	Riksén	4.03