CYBER502x Computer Forensics

Unit 1: Computer Forensics Fundamentals

What is Computer Forensics

- "Gathering and analyzing data in a manner as free from distortion or bias as possible to reconstruct data or what has happened in the past on a system" -- Farmer and Venema, 1999
- A science and process of collecting, preserving, analyzing and reporting legally admissible evidence to court.

Types of Computer Forensics Technology

- System forensics (*inux, Windows, etc.)
 - Memory forensics
- Mobile device forensics
- Network forensics
- Internet and cloud forensics

Digital Forensics vs Anti-Digital-Forensics

- Digital Forensics
 - Meant to discover information about illegal activities of a user
- Anti Digital Forensics (or ADF)
 - Designed to thwart discovery of information about illegal activities of a user
 - to manipulate, erase, or obfuscate digital data
 - to make its examination difficult, time consuming, or virtually impossible

Anti-Digital-Forensics (ADF)

- ADF techniques can be categorized based upon their intended actions or the effect they have
 - overwriting data and metadata (wiping)
 - hiding/obfuscation data (steganography, cryptography, and lowtech methods)
 - exploitation of bugs in forensic tools.
- Examples
 - Timestomp, slacker, ccleaner etc.
 - Conferences: DEFCON, BlackHat, BlueHat, ToorCon, ShmooCon...

Expert Witness

- One of a computer forensic expert's most important functions
 - following the procedures of the court
 - testifying the scientific basis of findings, analyses, and conclusions in court.
 - demonstrating the scientific knowledge associated with their areas of expertise.

Verification

- Confirms or dispels the existence of an incident
- Document activities on the electronic devices
 - What kind of incident
 - Which systems directly/indirectly affected
 - What are/were they used for?
 - Criticality
 - sensitivity
 - What is the damage
 - Potential business impact

Verification

- Against
 - Dead System
 - Live System
- Follow policies and procedures
- Gather as much information as possible prior to doing anything

If the system is up and connected

- Should we disconnect it from network?
- Once we confirmed the incident, should we turn the compromised system off?
 - Lose system memory and volatile data
- Gracefully shutdown the system vs forcefully shutdown

Loss of volatile data when system is off

- System date and time
- A list of the users who are currently logged on
- Open files
- A list of currently running processes
- A list of currently open sockets
- The applications listening on open sockets
- A list of the systems that have current or had recent connections to the system

Forensic Investigation Procedure

 Step 1: Establish detailed chain-of-custody!

Chain of Custody

- Maintain a record of how evidence has been handled from the moment it was collected to the moment it was presented in a court
 - Who owns it
 - When
 - timeline
 - location of the evidence
- The evidence is stored in a tamper-proof manner

Forensic Investigation Procedure

- Step 2: Working with evidence
 - Acquire the Evidence
 - Authenticate the Evidence
 - Analysis the Evidence
 - Present the Evidence

Acquire evidence

- What is "evidence"?
 - Information processed, stored, or transmitted in binary form that may be relied on in court
 - Data and info about the data
 (files, meta-data, non-filesystem data, anything at all!)

Acquire evidence

- Where to glean evidence?
 - Different cyber crimes result in different types of digital evidence
 - Cyber stalkers: e-mail
 - Computer hackers: malware, backdoors
 - Child pornographers: digitized images, audio files.

Acquire evidence

- How to glean evidence?
 - Acquire volatile data first
 - For example, to acquire network interface info
 - ipconfig /all > myWindowsNetworkSettings.txt
 - ifconfig –a > myUnixNetworkSettings
 - Bitstream copy the digital evidence from the hard drives

What is a bitstream copy?

- It is often called a hard drive imaging, bit stream imaging or forensic imaging
- It makes a bit-for-bit copy of all sectors on the media
- It is performed on the hard drive level, therefore ignores the EOF marker.

Examples of copies that are NOT bitstream copies

- cp, tar, cpio, dump, restore
- These tools will copy all the content until the End-of-File marker
- They do not copy any deleted data
- They have their place it's NOT in forensics!

Examples of bitstream copy

- Examples
 - Unix utility: dd
 - FTK imager
 - ...

Authenticate the Evidence

- Digital evidence must be preserved in its original state.
- Law requires that evidence be authentic and unaltered.

Cryptographic Hash algorithm for authentication

- What is a cryptographic hash algorithm
 - One-way form of encryption
 - Always produces the same bits for a given data input
 - Collision free algorithm: Functionally impossible to create a document that has the same hash value as another document

Cryptographic Hash algorithm (cont'd)

Commonly used cryptographic hash algorithms

- MD5
- Secure Hash Algorithm (SHA) from NIST
 - SHA-1
 - SHA-2
 - SHA-3

Hash functions used by forensic examiners

- Three ways
 - Preserve evidence: verify that evidence is intact and has not changed
 - Conduct a hash analysis: match evidence to certain file(s) or group
 - Positively verify that a file has been altered

Analysis

- General steps:
 - Start an analysis by looking at the partition table on the suspect drive
 - Generate a timeline
 - Retrieve deleted files.
 - Check for hidden data
 - Hash analysis
 - Keyword search for terms related to your case
 - Signature Analysis
 - OS specific Media Analysis
 - Glean evidence from Registry
 - Collect information through Recycle bin

Reporting

- The task assigned and a factual statement
- The steps followed, the equipment and methodologies used
- the facts or data
 - Supports the statement
 - Rejects the statement
- Findings and conclusions written
 - Could be used in court
 - Used by your organization

Reporting (cont'd)

- Start your report from beginning
- Include analysis details along with data (recovered files, registry value, keyword search hits, etc.)
- Your statements and conclusion should be stated in an accurately way, useful phrases include
 - "It is my professional opinion..."
 - "The evidence indicates..."
 - "Based on my knowledge..."

Report Outlines by Melia Kelley

- Title page: case name, date, investigator name, and contact information
- Table of Contents
- Executive Summary: high level view of important findings
- Objectives
- Evidence Analyzed: Serial numbers, hash values, pictures taken at the scene, etc.
- Steps Taken: Your results should be reproducible including software and hardware used, and version numbers.
- Relevant Findings: Documents of Interest; Internet Activity; Software of Note; USB Devices, etc
- **Timeline:** a concise timeline of important events, possibly using a good graphic
- Conclusion: Highlight the important issues in a list of concise findings
- Signature: be signed
- Exhibits: your curriculum vitae, chain of custody documentation, supporting document linked from the body of the report, etc.
- http://www.forensicmag.com/article/2012/05/report-writing-guidelines

Challenges in Digital Forensics

- Technological progress is making this job harder.
 - Increasing storage densities
 - Cloud Computing
 - Pervasive Encryption
 - Solid State Drive
 - •

Reference links

- http://www.dfrws.org/ since 2001
 - http://www.dfrws.org/archive/papers
- Volatility foundation/Open Memory Forensics Workshop (OMFW) Since 2008
 - http://www.volatilityfoundation.org/
 - http://www.volatilityfoundation.org/#!omfw/component_74511
- SANS Investigative Forensic Toolkit (SIFT)
 - http://forensics.sans.org/community/downloads/