

TOPIC 3. RNA-seq

Applications of RNA-seq: gene expression quantification and splicing variant annotation.

Omics Techniques Bachelor's Degree in Bioinformatics Sònia Casillas, UAB

The transcriptome

What is the transcriptome?

All the transcripts of a cell, and their quantities, in a specific stage of development and a given physiological condition

The aims of transcriptomics

- To catalog all types of transcripts, including mRNAs, ncRNAs and sRNAs
- To determine the transcriptional structure of the genes, including the transcription start sites, 5' and 3' UTRs, the splicing patterns and other post-transcriptional modifications
- To quantify changes in the levels of expression of each transcript during development and under different physiological conditions

Why study of RNA is so important?

RNA profiling provides clues about:

- Genes and other expressed sequences of a genome
- Gene regulation and regulatory sequences
- Function of the genes and their interaction
- Functional differences between tissues and cell types
- Identification of candidate genes for any given process or disease

Experimental methods to analyze the transcriptome

ONE SINGLE GENE

- Northern Blot
- RT-PCR
- 5' i 3' RACE
- Quantitative RT-PCR (Real-Time PCR)

WHOLE TRANSCRIPTOME

- EST sequencing
- Microarrays
- RNA-Seq

Experimental methods to analyze the transcriptome

- ESTs
 - Sequencing cDNA libraries
- Microarrays
 - Multiple DNA probes fixed on a glass slide
 - Hybridization of fluorescently-labelled RNA
- RNA-seq
 - Massive sequencing of cDNA libraries

Expressed Sequence Tags (ESTs)

Annotation of genes using ESTs

Limitation of ESTs

- Low-throughput
- Elevated cost
- Quantification is not accurate
- Different isoforms are generally indistinguishable

Experimental methods to analyze the transcriptome

- ESTs
 - Sequencing cDNA libraries
- Microarrays
 - Multiple DNA probes fixed on a glass slide
 - Hybridization of fluorescently-labelled RNA
- RNA-seq
 - Massive sequencing of cDNA libraries

How do microarrays work?

Hybridization of one sample

Competitive hybridization of **two samples**

Gene expression arrays

Gene expression arrays

- Short oligonucleotides of 25 nucleotides
- Multiple probes at the 3'-end exons of the gene
- They allow quantifying the abundance of transcripts

Affymetrix GeneChip microarray

High level of expression

Medium level of expression

No expression

Genome tiling arrays

Genome tiling arrays

- Long oligonucleotides of 60 nucleotides
- Overlapping probes that cover the region of interest
- They allow identifying novel transcribed sequences

Characterization of a novel testis transcript using tiling arrays

Limitations of microarrays

- Lack of reproducibility & standardization
 - Cross-hybridization
 - Low affinity of probes
 - Batch effects
- Small dynamic range & saturation (~1000-fold range)
- Relative measures (always probe-dependent)
- Little information on actual gene
- Inability to detect unknown sequences (transcripts or SNPs)

In the case of *genome tiling arrays*, also:

Elevated cost

Experimental methods to analyze the transcriptome

- ESTs
 - Sequencing cDNA libraries
- Microarrays
 - Multiple DNA probes fixed on a glass slide
 - Hybridization of fluorescently-labelled RNA
- RNA-seq
 - Massive sequencing of cDNA libraries

RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods.

RNA-Seq [...] is expected to revolutionize the manner in which eukaryotic transcriptomes are analysed. 77

RNA-seq

Whole RNA sequencing using NGS technologies:

- Identification of transcribed sequences
- Quantification of transcript abundance
- Multiple reads along each RNA
- Analysis of alternative transcript isoforms

Figure 1. Wang et al. (2009) Nature Reviews Genetics 10: 57-63

RNA-seq mapping of short reads in exon-exon junctions

Intron

Exon

Exon

Advantages of RNA-seq

- It is not necessary to know the genomic sequence of transcribed regions in advance
- It allows detecting novel transcripts
- High precision in the detection of the limits of the transcripts
- It allows detecting all splicing variants and alternative start and end sites of distinct transcripts
- It allows detecting SNPs in transcribed regions
- It allows detecting the specific transcription profiles of each allele
- Quantification of the levels of expression of each transcript is accurate (long dynamic range)
- Very reproducible
- Requires small amount of initial RNA

Transcript reconstruction by RNA-seq

Align-thenassemble

Potentially more sensitive, but requires a reference genome, confounded by structural variation

Genome

de-novo assembly

Likely to only capture highly expressed transcripts, but does not require a reference genome, robust to variation

Unspliced vs. spliced mapping

Unspliced mapping

e.g. BWA, Bowtie

Spliced mapping

e.g. Tophat

Assembly of transcripts from spliced alignments

Assembly of transcripts

e.g. Cufflinks

Quantification of transcripts' expression levels

What are the genes' and transcripts' expression levels?

Gene expression **QUANTIFICATION**, typically reported in **RPKM/FPKM**: # of reads (fragments) per kb of <u>exonic</u> bases per million reads in the <u>library</u>

Testing for differentially-expressed genes

How do expression levels and/or splicing patterns differ between two conditions?

Gene **DIFFERENTIAL** expression for individual isoforms between conditions

A typical workflow for RNA-seq

Tuxedo Workflow (steps 1-4)

- Map reads to a reference genome:
 Tophat
- Assemble reads into transcripts:Cufflinks
- 3. Reconcile transcripts across multiple samples: **Cuffmerge**
- 4. Quantify isoform expression and compare among samples: **Cuffdiff**
- Visualization: Integrated GenomesViewer (IGV)

Summary

Table 1 Advantages of RNA-Seq compared with other transcriptomics methods							
Technology	Tiling microarray	cDNA or EST sequencing	RNA-Seq				
Technology specifications							
Principle	Hybridization	Sanger sequencing	High-throughput sequencing				
Resolution	From several to 100 bp	Single base	Single base				
Throughput	High	Low	High				
Reliance on genomic sequence	Yes	No	In some cases				
Background noise	High	Low	Low				
Application							
Simultaneously map transcribed regions and gene expression	Yes	Limited for gene expression	Yes				
Dynamic range to quantify gene expression level	Up to a few-hundredfold	Not practical	>8,000-fold				
Ability to distinguish different isoforms	Limited	Yes	Yes				
Ability to distinguish allelic expression	Limited	Yes	Yes				
Practical issues							
Required amount of RNA	High	High	Low				
Cost for mapping transcriptomes of large genomes	High	High	Relatively low				

Table 1. Wang et al. (2009) Nature Reviews Genetics 10: 57-63

The transcriptional landscape of a genome

Typical structure of a protein-coding gene

Alternative splicing

Alternative poly-A sites

Initial/final exons

Alternative promoters

Figure 1. Nielsen and Graveley (2010) Nature 463: 457-463

Figure 1. Li et al. (2007) Nature Reviews Neuroscience 8: 819-831.

Example of alternative splicing: α-tropomiosine

Figure 8.22. Evolution. Barton et al. (2007) Cold Spring Harbor Laboratory Press

Other examples of alternative splicing

Figure 2. Nielsen and Graveley (2010) Nature 463: 457-463

QUIZ

Exons mutualment

excloents

Final transcripció alternatiu

Punt splicing 3' alternatiu

Retenció d'introns

Methods to specifically analyze alternative splicing

Alternative splicing arrays

Alternative splicing arrays

- Probes at the exons and exon junctions
- They allow quantifying the expression of different isoforms

Alternative splicing in *Drosophila melanogaster*

Table 1 | Classification of alternative splicing events

Splicing event	Diagram	FlyBase r5.12	modENCODE	New events	Short poly(A)+ RNA-Seq	Significantly changing
Cassette exons		793	2,717	2,014	2,369	1,539
Alternative 5' splice sites		843	5,192	4,599	4,583	3,142
Alternative 3' splice sites		879	6,253	5,505	5,579	3,242
Mutually exclusive exons		229	251	123	228	226
Coordinate cassette exons		301	1,227	979	992	467
Alternative first exons		1,767	4,936	3,442	4,473	3,996
Alternative last exons		227	604	432	553	471
Retained/unprocessed introns Total		1,434 6,437	2,679 (5,667) 23,859 (26,847)	1,275 (4,263) 18,369 (21,478)	2,439 (35,641) 21,216 (54,418)	868 (8,998) 13,951 (22,081)

The number of retained/unprocessed introns in parentheses indicates the total number identified, whereas the number not in parentheses indicates the subset of identified events that have been validated by cDNA sequences or FlyBase 5.12 annotations.

Alternative splicing is present in:

7473 genes

60.7% of the 12,295 genes expressed and with multiple exons

Alternative splicing in humans

- 92-94% of the human genes show alternative splicing
- 86% of them in appreciable quantities (>15% frequency of the rarest transcript)
- Most alternative transcripts are expressed in different tissues as a result of a specific regulation

Figure 2. Wang et al. (2008) Nature 456: 470-476.

Regulation of alternative splicing

Developmentally regulated splicing variants in *D. melanogaster*

Figure 4. Graveley et al. (2011) Nature 471: 473-479

Tissue-regulated splicing variants in humans

Figure 1. Wang et al. (2008) Nature 456: 470-476.

Non-coding RNAs

Туре	Name	Size	Genes	Transcripts	Function		
Small non-coding RNAs							
rRNAs	ribosomal RNAs	114-5000 nt	549 + 2	549 + 2	Component of ribosome		
tRNAs	transfer RNAs	73-93 nt	624* + 22	624* + 22	Translation		
miRNAs	micro RNAs	21-23 nt	3,837	3,837	Gene expression regulation		
snRNAs	small nuclear RNAs	100-300 nt	1,912	1,912	Splicing		
snoRNAs	small nucleolar RNAs	60-300 nt	978	978	RNA modification		
Long non-coding RNAs							
IncRNAs	long non-coding RNAs	>200 nt	15,877	26,414	Regulation, imprinting		

Number of transcripts from GENCODE v21 data, http://www.gencodegenes.org/stats.html

^{*} Number of transcripts from GENCODE v7 data

QUIZ

