

Import Required Packages

In [4]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [6]: import sklearn

In [8]: from sklearn.datasets import load_wine
data=load_wine()
data

```
Out[8]: {'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
             1.065e+03],
            [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
             1.050e+03],
            [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
             1.185e+03],
            [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
             8.350e+02],
            [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
             8.400e+02],
            [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
             5.600e+02]]),
       0, 0,
            2, 2]),
       'frame': None.
       'target_names': array(['class_0', 'class_1', 'class_2'], dtype='<U7'),
       'DESCR': '.. wine dataset:\n\nWine recognition dataset\
      n-----\n\n**Data Set Characteristics:**\n\n:Number of Inst
      ances: 178\n:Number of Attributes: 13 numeric, predictive attributes and the
      class\n:Attribute Information:\n
                                - Alcohol∖n
                                           - Malic acid∖n
      Alcalinity of ash\nMagnesium\n
                                    Total phenols\n
                                                     - Flavanoids\n
      - Nonflavanoid phenols\n - Proanthocyanins\n - Color intensity\n
           - OD280/OD315 of diluted wines\n - Proline\n
                                                - class:\n
                    - class 1\n - class 2\n\n:Summary Statistics:\n\
      - class 0\n
      Min
          Max
               Mean
      ====\nAlcohol:
                                            13.0 0.8\nMalic Acid:
                                  11.0 14.8
      0.74 5.80
                2.34 1.12 nAsh:
                                                1.36 3.23
      0.27\nAlcalinity of Ash:
                                 10.6 30.0
                                               3.3\nMagnesium:
                                           19.5
                99.7 14.3\nTotal Phenols:
      70.0 162.0
                                                0.98 3.88
                                 0.34 5.08
                                           2.03 1.00\nNonflavanoid Ph
      0.63\nFlavanoids:
                            0.36 0.12\nProanthocyanins:
      enols:
                 0.13 0.66
                                                           0.41
      3.58
            1.59 0.57\nColour Intensity:
                                            1.3 13.0
                                                       5.1
                                                           2.3\nH
                                      0.96 0.23\n0D280/0D315 of diluted
      ue:
                            0.48 1.71
      wines: 1.27 4.00
                      2.61 0.71\nProline:
          315\n=========\n\n:Missing
      Attribute Values: None\n:Class Distribution: class 0 (59), class 1 (71), clas
      s 2 (48)\n:Creator: R.A. Fisher\n:Donor: Michael Marshall (MARSHALL%PLU@io.ar
      c.nasa.gov)\n:Date: July, 1988\n\nThis is a copy of UCI ML Wine recognition d
      atasets.\nhttps://archive.ics.uci.edu/ml/machine-learning-databases/wine/win
      e.data\n\nThe data is the results of a chemical analysis of wines grown in th
      e same\nregion in Italy by three different cultivators. There are thirteen di
      fferent\nmeasurements taken for different constituents found in the three typ
      es of\nwine.\n\nOriginal Owners:\n\nForina, M. et al, PARVUS -\nAn Extendible
      Package for Data Exploration, Classification and Correlation.\nInstitute of P
```

```
harmaceutical and Food Analysis and Technologies,\nVia Brigata Salerno, 16147
Genoa, Italy.\n\nCitation:\n\nLichman, M. (2013). UCI Machine Learning Reposi
tory\n[https://archive.ics.uci.edu/ml]. Irvine, CA: University of Californi
a,\nSchool of Information and Computer Science.\n\n.. dropdown:: References\
       (1) S. Aeberhard, D. Coomans and O. de Vel,\n
                                                        Comparison of Classif
n\n
iers in High Dimensional Settings,\n
                                        Tech. Rep. no. 92-02, (1992), Dept. o
f Computer Science and Dept. of\n
                                     Mathematics and Statistics, James Cook U
niversity of North Queensland.\n
                                   (Also submitted to Technometrics).\n\n
The data was used with many others for comparing various\n
                                                              classifiers. Th
e classes are separable, though only RDA\n
                                              has achieved 100% correct class
                (RDA: 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed d
ification.\n
ata))\n
           (All results using the leave-one-out technique)\n\n
                                                                  (2) S. Aebe
                                      "THE CLASSIFICATION PERFORMANCE OF RD
rhard, D. Coomans and O. de Vel,\n
        Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. o
A"\n
       Mathematics and Statistics, James Cook University of North Queenslan
f\n
        (Also submitted to Journal of Chemometrics).\n',
d.\n
 'feature names': ['alcohol',
  'malic acid',
  'ash',
  'alcalinity of ash',
  'magnesium',
  'total phenols',
  'flavanoids',
  'nonflavanoid phenols',
  'proanthocyanins',
  'color intensity',
  'hue'.
  'od280/od315 of diluted wines',
  'proline']}
output data=data['target']
input cols=data['feature names']
```

```
input_data=data['data']
output_data=data['target']
input_cols=data['feature_names']
output_cols=data['target_names'][0]
df=pd.DataFrame(input_data,columns=input_cols)
df[output_cols]=output_data
df
```

0		_	г	\neg	Л	٦	
- 1 1		т.		~	/ I	- 1	
U	u	L	L	J	\neg	J	

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flav
0	14.23	1.71	2.43	15.6	127.0	2.80	
1	13.20	1.78	2.14	11.2	100.0	2.65	
2	13.16	2.36	2.67	18.6	101.0	2.80	
3	14.37	1.95	2.50	16.8	113.0	3.85	
4	13.24	2.59	2.87	21.0	118.0	2.80	
173	13.71	5.65	2.45	20.5	95.0	1.68	
174	13.40	3.91	2.48	23.0	102.0	1.80	
175	13.27	4.28	2.26	20.0	120.0	1.59	
176	13.17	2.59	2.37	20.0	120.0	1.65	
177	14.13	4.10	2.74	24.5	96.0	2.05	

178 rows × 14 columns

In [36]: df.drop_duplicates()

Out[36]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flav
0	14.23	1.71	2.43	15.6	127.0	2.80	
1	13.20	1.78	2.14	11.2	100.0	2.65	
2	13.16	2.36	2.67	18.6	101.0	2.80	
3	14.37	1.95	2.50	16.8	113.0	3.85	
4	13.24	2.59	2.87	21.0	118.0	2.80	
173	13.71	5.65	2.45	20.5	95.0	1.68	
174	13.40	3.91	2.48	23.0	102.0	1.80	
175	13.27	4.28	2.26	20.0	120.0	1.59	
176	13.17	2.59	2.37	20.0	120.0	1.65	
177	14.13	4.10	2.74	24.5	96.0	2.05	

178 rows × 14 columns

In [38]: df.isnull().sum()

```
Out[38]: alcohol
         0
  malic acid
         0
  ash
         0
  alcalinity of ash
  magnesium
         0
  total phenols
         0
  flavanoids
         0
  nonflavanoid phenols
         0
  proanthocyanins
         0
  color intensity
         0
         0
  od280/od315 of diluted wines
         0
  proline
         0
  class 0
         0
  dtype: int64
In [42]: y=data.target
  У
2, 2])
In [48]: data['target']
2, 2])
In [56]: df['class 0']
```

```
Out[56]: 0
                 0
                 0
         2
                 0
          3
                 0
          4
                 0
          173
                 2
          174
                 2
          175
                 2
          176
                 2
          177
```

Name: class_0, Length: 178, dtype: int32

In [58]: corre=df.corr(numeric_only=True)

Out[58]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magn
alcohol	1.000000	0.094397	0.211545	-0.310235	0.2
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.0
ash	0.211545	0.164045	1.000000	0.443367	0.2
alcalinity_of_ash	-0.310235	0.288500	0.443367	1.000000	-0.0
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.(
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.2
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.1
nonflavanoid_phenols	-0.155929	0.292977	0.186230	0.361922	-0.2
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.2
color_intensity	0.546364	0.248985	0.258887	0.018732	0.1
hue	-0.071747	-0.561296	-0.074667	-0.273955	0.0
od280/ od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.0
proline	0.643720	-0.192011	0.223626	-0.440597	0.3
class_0	-0.328222	0.437776	-0.049643	0.517859	-0.2

```
In [60]: sns.heatmap(corre,annot=True,cmap='coolwarm')
         plt.show()
```


Short-Cut

In [62]: from sklearn.datasets import load_wine
load wine(as frame=True).frame

_		F 0	\sim 1	
() (17	16	- /	
U	u L	LU		

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flav
0	14.23	1.71	2.43	15.6	127.0	2.80	
1	13.20	1.78	2.14	11.2	100.0	2.65	
2	13.16	2.36	2.67	18.6	101.0	2.80	
3	14.37	1.95	2.50	16.8	113.0	3.85	
4	13.24	2.59	2.87	21.0	118.0	2.80	
173	13.71	5.65	2.45	20.5	95.0	1.68	
174	13.40	3.91	2.48	23.0	102.0	1.80	
175	13.27	4.28	2.26	20.0	120.0	1.59	
176	13.17	2.59	2.37	20.0	120.0	1.65	
177	14.13	4.10	2.74	24.5	96.0	2.05	

178 rows × 14 columns

```
In [89]: plt.figure(figsize=(10,5))
    plt.subplot(1,3,1).scatter(df['ash'],df['alcalinity_of_ash'])
    plt.title("Positive Correlation")
    plt.subplot(1,3,2).scatter(df['total_phenols'],df['nonflavanoid_phenols'])
    plt.title("Negative Correlation")
    plt.subplot(1,3,3).scatter(df['flavanoids'],df['hue'])
    plt.title("No correlation")
    plt.show()
```



```
In [93]: from statsmodels.stats.outliers influence import variance inflation factor
         X=df.drop("class_0",axis=1)
         vif list=[]
         for i in range(len(X.columns)):
             vif list.append(variance inflation factor(X.values,i))
         vif list
Out[93]: [206.1890565710355,
          8.925540511579005,
          165.64036999032706,
          73.14156355409301,
          67.36486845647852,
          62.78693524693161,
          35.53560246690394,
          16.63670778287286,
          17.115665485297978,
          17.022272420024827,
          45.39840748252447,
          54.539165172315194,
          16.37082766215551]
In [95]: X.columns
Out[95]: Index(['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium',
                 'total_phenols', 'flavanoids', 'nonflavanoid_phenols',
                 'proanthocyanins', 'color intensity', 'hue',
                 'od280/od315 of diluted wines', 'proline'],
                dtype='object')
                            1. flavanoids
                            2. od280/od315 of diluted wines
                            3. color intensity
                            4. alcohol
                            5. proline
In [101... vif data=pd.DataFrame(vif list,index=X.columns,columns=['VIF'])
         vif_data
```

Out[101... VIF

alcohol	206.189057
malic_acid	8.925541
ash	165.640370
alcalinity_of_ash	73.141564
magnesium	67.364868
total_phenols	62.786935
flavanoids	35.535602
nonflavanoid_phenols	16.636708
proanthocyanins	17.115665
color_intensity	17.022272
hue	45.398407
od280/od315_of_diluted_wines	54.539165
proline	16.370828

In [107... vif_sorted1=vif_data.sort_values(by='VIF',ascending=True)
vif_sorted1

Out[107... VIF

```
malic_acid
                                 8.925541
                      proline
                                16.370828
        nonflavanoid_phenols
                                16.636708
               color_intensity
                                17.022272
             proanthocyanins
                                17.115665
                   flavanoids
                                35.535602
                         hue
                                45.398407
od280/od315_of_diluted_wines
                                54.539165
                total_phenols
                                62.786935
                  magnesium
                                67.364868
             alcalinity_of_ash
                                73.141564
                          ash 165.640370
                      alcohol 206.189057
```

Out[109... VIF

 malic_acid
 8.925541

 proline
 16.370828

 nonflavanoid_phenols
 16.636708

 color_intensity
 17.022272

 proanthocyanins
 17.115665

 flavanoids
 35.535602

Select The features)

In [114... final_cols=['flavanoids','malic_acid','color_intensity','alcohol','proline','c
 final_df=df[final_cols]
 final_df

Out[114...

	flavanoids	malic_acid	color_intensity	alcohol	proline	class_0
0	3.06	1.71	5.64	14.23	1065.0	0
1	2.76	1.78	4.38	13.20	1050.0	0
2	3.24	2.36	5.68	13.16	1185.0	0
3	3.49	1.95	7.80	14.37	1480.0	0
4	2.69	2.59	4.32	13.24	735.0	0
173	0.61	5.65	7.70	13.71	740.0	2
174	0.75	3.91	7.30	13.40	750.0	2
175	0.69	4.28	10.20	13.27	835.0	2
176	0.68	2.59	9.30	13.17	840.0	2
177	0.76	4.10	9.20	14.13	560.0	2

178 rows \times 6 columns

```
In [120... X=final_df.drop("class_0",axis=1)
y=final_df['class_0']

from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()
scaled_df=pd.DataFrame()
scaled_df[X.columns]=mms.fit_transform(X)
scaled_df['class_0']=y
scaled_df
```

Out[120		flavanoids	malic_acid	color_intensity	alcohol	proline	class_0
	0	0.573840	0.191700	0.372014	0.842105	0.561341	0
	1	0.510549	0.205534	0.264505	0.571053	0.550642	0
	2	0.611814	0.320158	0.375427	0.560526	0.646933	0
	3	0.664557	0.239130	0.556314	0.878947	0.857347	0
	4	0.495781	0.365613	0.259386	0.581579	0.325963	0
	173	0.056962	0.970356	0.547782	0.705263	0.329529	2
	174	0.086498	0.626482	0.513652	0.623684	0.336662	2
	175	0.073840	0.699605	0.761092	0.589474	0.397290	2
	176	0.071730	0.365613	0.684300	0.563158	0.400856	2
	177	0.088608	0.664032	0.675768	0.815789	0.201141	2

178 rows × 6 columns

Model Development

```
In [123... X=scaled_df.drop("class_0",axis=1)
          y=scaled_df['class_0']
In [133... print(scaled_df.shape)
          print(X.shape)
          print(y.shape)
        (178, 6)
        (178, 5)
        (178,)
In [139... from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.3,random_sta
In [141... print(scaled_df.shape)
          print(X_train.shape)
          print(y_train.shape)
          print(X_test.shape)
          print(y_test.shape)
        (178, 6)
        (124, 5)
        (124,)
        (54, 5)
        (54,)
In [143... X_train
```

Out[143		flavanoids	malic_acid	color_intensity	alcohol	proline
	138	0.029536	0.563241	0.377133	0.647368	0.215407
	104	0.333333	0.195652	0.141638	0.389474	0.281027
	78	0.318565	0.049407	0.180887	0.342105	0.336662
	36	0.493671	0.177866	0.283276	0.592105	0.429387
	93	0.402954	0.413043	0.074232	0.331579	0.008559
	71	0.531646	0.152174	0.179181	0.744737	0.094151
	106	0.356540	0.195652	0.180887	0.321053	0.165478
	14	0.696203	0.223320	0.530717	0.881579	0.905136
	92	0.236287	0.156126	0.151024	0.436842	0.154779
	102	0.373418	0.337945	0.129693	0.344737	0.114123

124 rows × 5 columns

```
In [147... y_train
Out[147... 138
                 2
          104
                 1
          78
                 1
          36
                 0
          93
                 1
          71
                 1
          106
                 1
          14
                 0
          92
                 1
          102
                 1
          Name: class_0, Length: 124, dtype: int32
In [149... X_test
```

	flavanoids	malic_acid	color_intensity	alcohol	proline
19	0.567511	0.466403	0.325939	0.686842	0.404422
45	0.487342	0.652174	0.337884	0.836842	0.572040
140	0.033755	0.409091	0.283276	0.500000	0.229672
30	0.613924	0.150198	0.377133	0.710526	0.718260
67	0.350211	0.084980	0.290102	0.352632	0.165478
16	0.590717	0.233202	0.419795	0.860526	0.714693
119	0.274262	0.531621	0.000000	0.255263	0.203994
174	0.086498	0.626482	0.513652	0.623684	0.336662
109	0.544304	0.120553	0.116894	0.152632	0.286733
141	0.033755	0.359684	0.368601	0.613158	0.358060
24	0.478903	0.211462	0.191126	0.650000	0.404422
150	0.259494	0.470356	0.624573	0.650000	0.158345
41	0.493671	0.612648	0.255973	0.626316	0.539943
118	0.191983	0.531621	0.180887	0.457895	0.067047
15	0.542194	0.211462	0.513652	0.684211	0.736091
111	0.407173	0.333992	0.061433	0.392105	0.033524
113	0.352321	0.000000	0.153584	0.100000	0.111270
82	0.261603	0.077075	0.078498	0.276316	0.251070
9	0.592827	0.120553	0.506826	0.744737	0.547076
114	0.411392	0.128458	0.138225	0.276316	0.076320
18	0.757384	0.167984	0.633106	0.831579	1.000000
66	0.599156	0.053360	0.343003	0.547368	0.159772
60	0.158228	0.071146	0.169795	0.342105	0.286733
169	0.130802	0.762846	0.616041	0.623684	0.251070
171	0.035865	0.326087	0.735495	0.457895	0.136947
164	0.071730	0.399209	0.708191	0.723684	0.240371
117	0.369198	0.171937	0.066553	0.365789	0.047789
65	0.487342	0.092885	0.283276	0.352632	0.285307
90	0.244726	0.215415	0.095563	0.276316	0.144080
55	0.514768	0.195652	0.424061	0.665789	0.600571
29	0.419831	0.185771	0.291809	0.786842	0.539943

	flavanoids	malic_acid	color_intensity	alcohol	proline
128	0.445148	0.175889	0.071672	0.352632	0.045649
145	0.044304	0.559289	0.232082	0.560526	0.393723
31	0.601266	0.181818	0.479522	0.671053	0.882311
12	0.510549	0.195652	0.368601	0.715789	0.743224
42	0.679325	0.227273	0.354096	0.750000	0.582739
158	0.204641	0.185771	1.000000	0.871053	0.272468
137	0.054852	0.942688	0.317406	0.394737	0.169044
98	0.719409	0.065217	0.274744	0.352632	0.272468
159	0.160338	0.183794	0.893345	0.644737	0.243937
38	0.485232	0.150198	0.206485	0.536842	0.529244
108	0.358650	0.108696	0.121160	0.313158	0.024251
85	0.337553	0.047431	0.114334	0.431579	0.122682
68	0.202532	0.039526	0.161263	0.607895	0.336662
143	0.097046	0.832016	0.266212	0.681579	0.194009
2	0.611814	0.320158	0.375427	0.560526	0.646933
100	0.386076	0.264822	0.172355	0.276316	0.308131
122	0.377637	0.729249	0.068259	0.365789	0.062054
154	0.050633	0.108696	0.539249	0.407895	0.258203
51	0.559072	0.179842	0.368601	0.736842	0.703994
76	0.356540	0.031621	0.283276	0.526316	0.081312
56	0.561181	0.189723	0.435154	0.839474	0.493581
26	0.548523	0.203557	0.300341	0.621053	0.654066
153	0.103376	0.505929	0.788396	0.578947	0.283167

In [151... y_test

```
Out[151... 19
                   0
           45
                   0
           140
                    2
           30
                    0
           67
                    1
           16
                    0
           119
                    1
           174
                    2
           109
                   1
           141
                   2
           24
                    0
           150
                    2
           41
                    0
           118
                    1
           15
                    0
           111
                    1
           113
                    1
           82
                    1
           9
                    0
           114
                   1
           18
                    0
           66
                   1
           60
                    1
           169
                   2
           171
                   2
           164
                    2
           117
                   1
           65
                   1
           90
                   1
           55
                    0
           29
                    0
           128
                   1
           145
                    2
           31
                    0
           12
                    0
           42
                    0
           158
                    2
           137
                    2
           98
                   1
           159
                    2
           38
                    0
           108
                    1
           85
                   1
           68
                   1
           143
                    2
           2
                    0
           100
                    1
                   1
           122
           154
                    2
           51
                    0
           76
                   1
           56
                    0
           26
153
                    0
                    2
```

Name: class 0, dtype: int32

Linear Regression

```
from sklearn.linear model import LinearRegression
In [156...
          lr=LinearRegression()
          lr.fit(X train,y train)
Out[156...
              LinearRegression
          LinearRegression()
          Model prediciton``
In [159... y pred=lr.predict(X test)
          y pred
Out[159... array([ 0.37403152,
                                             1.68070343, -0.13307837,
                               0.29401935,
                                                                        1.15568096,
                 -0.08788719,
                               0.99804621,
                                             1.75937097,
                                                           0.49134058,
                                                                        1.56398371,
                  0.30987212,
                               1.75407012,
                                             0.31609603,
                                                           1.48053226,
                                                                        0.2161892 ,
                  0.91412681,
                               1.14766025,
                                             0.95404212,
                                                           0.28890117,
                                                                        0.98135694,
                 -0.46534745,
                               0.62803088,
                                             1.20611347,
                                                           1.96456159,
                                                                        2.46165567.
                  2.08150122,
                               0.95388282,
                                             0.72511174,
                                                          1.1823732 ,
                                                                        0.31812313,
                  0.31490204,
                               0.82318408,
                                             1.37770901, -0.13570389,
                                                                        0.03440839,
                 -0.12757274,
                               2.06765879,
                                             1.95927474,
                                                          0.2649601 ,
                                                                        2.16717327,
                  0.2125327 ,
                               1.09996965,
                                             0.92181186,
                                                           0.87910929,
                                                                        1.57383328,
                  0.08908901,
                               0.82004688,
                                             1.05870024,
                                                           1.96657152, -0.02754054,
                  1.12518831,
                               0.27562066,
                                             0.03043692,
                                                           2.19349444])
In [169...
          import warnings
          warnings.filterwarnings('ignore')
          lr.predict([X test.values[0], X test.values[1]])
Out[169... array([0.37403152, 0.29401935])
In [171...
         y pred
Out[171... array([ 0.37403152,
                               0.29401935,
                                             1.68070343, -0.13307837,
                                                                        1.15568096,
                 -0.08788719,
                               0.99804621,
                                             1.75937097,
                                                           0.49134058,
                                                                        1.56398371,
                  0.30987212,
                                1.75407012,
                                             0.31609603,
                                                           1.48053226,
                                                                        0.2161892 ,
                  0.91412681,
                                1.14766025,
                                             0.95404212,
                                                           0.28890117,
                                                                        0.98135694,
                 -0.46534745,
                               0.62803088,
                                             1.20611347,
                                                           1.96456159,
                                                                        2.46165567,
                  2.08150122,
                                             0.72511174,
                               0.95388282,
                                                           1.1823732 ,
                                                                        0.31812313,
                  0.31490204,
                               0.82318408,
                                             1.37770901, -0.13570389,
                                                                        0.03440839,
                 -0.12757274,
                               2.06765879,
                                             1.95927474,
                                                           0.2649601 ,
                                                                        2.16717327,
                  0.2125327 ,
                               1.09996965,
                                             0.92181186,
                                                          0.87910929,
                                                                        1.57383328,
                                                           1.96657152, -0.02754054,
                  0.08908901,
                               0.82004688,
                                             1.05870024,
                  1.12518831,
                               0.27562066,
                                             0.03043692,
                                                           2.19349444])
In [187...
         new df=pd.DataFrame(X test)
          new df['y actual']=y test
```

```
new_df['y_predicted']=y_pred
         new_df['Error']=y_test-y_pred
         new_df['square Error']=np.square(y_test-y_pred)
         total error=np.sum(np.square(y test-y pred))
         total_error
Out[187... 3.925628324409452
In [189... | mean_squared_error=total_error/len(X_test)
         mean_squared_error
Out[189... 0.07269682082239726
         Mean Squared Error Method
In [193...
         from sklearn.metrics import mean_squared_error
         mean_squared_error(y_test,y_pred)
Out[193... 0.07269682082239726
In [196...
         rmse=np.sqrt(mean_squared_error(y_test,y_pred))
          rmse
Out[196... 0.2696234797312676
In [198... y_pred
         errors=y_test-y_pred
         plt.scatter(y_test,y_pred)
          plt.show()
```


Model Deployment

· Using pickle

· using joblib

```
In [229...
import joblib
with open("lr_wine_model.joblib",'wb') as file:
    joblib.dump(lr,file)
```

```
In [231...
         import joblib
          with open("lr_wine_model.joblib",'rb') as file:
              model2=joblib.load(file)
          model2
Out[231...
              LinearRegression
         LinearRegression()
         model1.predict([[1,2,3,4,5]])
In [233...
Out[233... array([-3.96822747])
         model2.predict([[1,2,3,4,5]])
In [223...
Out[223... array([-3.96822747])
In [225... model2.feature_names_in_
Out[225... array(['flavanoids', 'malic_acid', 'color_intensity', 'alcohol',
                 'proline'], dtype=object)
 In [ ]:
```