ADATSZERKEZETEK ÉS ALGORITMUSOK

Hatékonyság

- Milyen hatékony egy algoritmus?
 - Legtöbbször csak a lépésszám nagyságrendje érdekes.
 - Hogyan függ a lépésszám az input méretétől?
 - Az input méretét legtöbbször n-nel jelöljük.
 - A lépésszám ennek egy f függvénye, azaz ha n méretű az input, akkor az algoritmus f(n) lépést végez.
 - Igazából az f függvény az érdekes.
 - 100n vagy 101n, általában mindegy
 - n^2 vagy n^3 már sokszor nagy különbség, de néha mindegy
 - n^2 vagy 2n már mindig nagy különbség

Függvények nagyságrendje

- Definíció A g aszimptotikus felső korlátja f-nek
 - Ha f(x) és g(x) az R^+ egy részhalmazán értelmezett valós értékeket felvevő függvények, akkor $f = \mathcal{O}(g)$ jelöli azt a tényt, hogy vannak olyan c, k > 0 állandók, hogy $|f(x)| \le c * |g(x)|$ teljesül, ha $x \ge k$.
- Például:
 - 100n + 300 = O(n)
 - hiszen k = 300; c = 101-re teljesülnek a feltételek
 - $100n + 300 \le 101n$, ha $n \ge 300$

Függvények nagyságrendje

- Definíció A g aszimptotikus alsó korlátja f-nek
 - Ha f(x) és g(x) az R^+ egy részhalmazán értelmezett valós értékeket felvevő függvények, akkor $f = \Omega(g)$ jelöli azt a tényt, hogy vannak olyan c, k > 0 állandók, hogy $|f(x)| \ge c * |g(x)|$ teljesül, ha $x \ge k$.
- Például:
 - $100n 300 = \Omega(n)$
 - hiszen k = 300; c = 99-re teljesülnek a feltételek

Függvények nagyságrendje

- Definíció A g aszimptotikus éles korlátja f-nek
 - Ha $f = \Omega(g)$ és $f = \mathcal{O}(g)$ egyaránt teljesül, akkor $f = \Theta(g)$
- Például:
 - $100n 300 = \Theta(n)$

Példa

Példa

"Külső" algoritmusok

Adattárolás sémája

- Az adattárolás egy háttértárolón (lemezen) nem bit/byte egységbe van szervezve
 - Nagyobb egységek: lap (HDD: szektor, SSD: blokk, NAS: hálózati csomag)
 - Ez lehet például 2048 byte, vagy 4096 byte
 - Ez az átvitel egysége
 - Lényegében az átvitelek száma határozza meg a sebességet
 - A háttértárról egy lap olvasása lassabb, mint a főmemória (RAM) olvasása
 - ~ms vs. ~ns
 - Még SSD esetén is!

Mágneslemez esetén

Külső algoritmusok

- Az eddig látott rendezéseknél feltettük, hogy az adatok a központi memóriában vannak
 - Ennek megfelelt, hogy a hatékonyságot az összehasonlítások számában mértük.
- Ha az adatok háttértárban vannak, akkor a futási idő döntő részét az I/O utasítások teszik ki.
 - Az I/O egysége az 1 blokk, ami k * 512 byte valamely kis k-val, pl. 1024 v. 2048 byte.
 - A hatékonyságot a szükséges blokk I/O-k számában mérjük.
- Külső rendezésre igazából csak az összefésüléses rendezés (MergeSort) alkalmas.
 - Miért?