HW1

Clark Saben Abstract Alegbra PSET

August 29, 2023

Problem 1/1. Which of the following rules are operations on the indicated set? For each rule which is not an operation, explain why it is not.

Question A1. $a * b = \sqrt{|ab|}$ on the set \mathbb{Q}

Let a=1,b=2. Then $a*b=\sqrt{\mid 1*2\mid}=\sqrt{2}\notin\mathbb{Q}.$ Therefore * is not an operation on $\mathbb{Q}.$

Question A2. $a * b = a \ln(b)$ on $\{x \in \mathbb{R} \mid x > 0\}$

The operation, $a * b = a \ln(b)$, is an operation on $\{x \in \mathbb{R} \mid x > 0\}$, since for all $a, b \in \{x \in \mathbb{R} \mid x > 0\}$, a will always be real and ln(b) will always be real, since b > 0. Thus, $a * b = a \ln(b) \in \{x \in \mathbb{R} \mid x > 0\}$.

Question A3. a * b is a root of the equation $x^2 - a^2b^2 = 0$ on the set \mathbb{R}

The predefined a*b is not an operation on \mathbb{R} , since a*b is not uniquely defined for all $a,b\in\mathbb{R},\ a\neq 0$, and $b\neq 0$. If $a\neq 0$ and $b\neq 0$, then $a*b=\pm ab$ has two roots, a*b=ab and a*b=-ab.

Question A4. Subtraction, on the set \mathbb{Z}

Subtraction is an operation on \mathbb{Z} , since for all $a, b \in \mathbb{Z}$, $a - b \in \mathbb{Z}$.