1. Design Markov Chain

- (a) Proof. We prove that graph G is strongly connected. Consider $\sigma, \sigma' \in V$, if $\sigma = \sigma'$, then path p is the self-loop. If $\sigma \neq \sigma'$, then we can construct a path p from σ to σ' . In each step of the path, let i be the first index such that $\sigma_i \neq \sigma'_i$, we add the edge that swaps σ_i with σ_j for some index j where $\sigma_j = \sigma'_i$. We claim that such index $j \geq i$, and after the swap, the first i integers of the destination vertex equals $\sigma'_1 \cdots \sigma'_i$. For i = 1, every other j > 1, and we get σ'_1 at index 1 after one swap, so claim is true. Now we prove claim is true for i > 1. By induction hypothesis, the first i 1 integers of the vertex is $\sigma'_1 \cdots \sigma'_{i-1}$ and that $\sigma'_i \neq \sigma'_k = \sigma_k$ for $k = 1, \cdots, i 1$ since σ' is a permutation. So there is some $j \neq k$ for $k = 1, \cdots, i 1$ such that $\sigma_j = \sigma'_i$ and we swap σ_j with σ_i such that the first i integers in the permutation is equal to $\sigma'_1 \cdots \sigma'_i$, hence the claim is true in the inductive case. By i = n, we have $\sigma'_1 \cdots \sigma'_n$ as the resulting vertex. Since choice of σ, σ' arbitrary, we can always find such path, so graph is strongly connected.
- (b) To find the transition probabilities P on Markov chain on G such that stationary distribution p has $p_{\sigma} \propto 2^{-inv(\sigma)}$, we first note that the maximum number of degrees is same for all vertices, specifically $r = \binom{n}{2}$, since we have edge connecting two vertices by arbitrarily swapping 2 numbers. Therefore,

$$P_{ij} = \frac{1}{\binom{n}{2}} \min\{1, 2^{inv(\sigma_1) - inv(\sigma_2)}\}$$
 $P_{ii} = 1 - \sum_{j \neq i} P_{ij}$

2. Streaming

(a) We express $\mathsf{E}\{c\}$ in terms of $f_1 = |\{t : \sigma_t = i\}|$. Let c_j be arbitrary where $j \in [k]$, then we can express c_j as follows

$$c_j = f_1 h_j(1) + \dots + f_n h_j(n) = \sum_{i=1}^n f_i h_j(i)$$

Also note that $(h_j(i))^2$: $[n] \to \{1\}$ outputs 1 with probability 1, so then $\mathsf{E}\{(h_j(i))^2\}=1$. Also we have that $\mathsf{E}\{h_j(i)\}=0$ for arbitrary hash function h_j and arbitrary input $i=1,\cdots,n$.

$$\begin{split} \mathsf{E} \left\{ c_j^2 \right\} &= \mathsf{E} \left\{ \left(f_1 h_j(1) + \dots + f_n h_j(n) \right)^2 \right\} \\ &= \mathsf{E} \left\{ \sum_{i=1}^n f_i^2 (h_j(i))^2 + \sum_{i' \neq i}^n f_{i'} f_i h_j(i') h_j(i) \right\} \\ &= \sum_{i=1}^n f_i^2 \mathsf{E} \left\{ (h_j(i))^2 \right\} + \mathsf{E} \left\{ \sum_{i' \neq i}^n f_{i'} f_i h_j(i') h_j(i) \right\} \\ &= \sum_{i=1}^n f_i^2 + \sum_{i' \neq i}^n f_{i'} f_i \mathsf{E} \left\{ h_j(i') h_j(i) \right\} \\ &= \sum_{i=1}^n f_i^2 + \sum_{i' \neq i}^n f_{i'} f_i \mathsf{E} \left\{ h_j(i') \right\} \mathsf{E} \left\{ h_j(i) \right\} \qquad (h_j(i), h_j(i') \text{ independent)} \\ &= \sum_{i=1}^n f_i^2 \end{split}$$

So then,
$$\mathsf{E}\{c\} = \mathsf{E}\left\{\frac{1}{k}\left(c_1^2 + \dots + c_k^2\right)\right\} = \frac{1}{k}\sum_{i=1}^k \mathsf{E}\left\{c_j^2\right\} = \frac{1}{k}\sum_{i=1}^k\sum_{i=1}^n f_i^2 = \sum_{i=1}^n f_i^2$$

(b) Note

$$(1-\epsilon)\mathsf{E}\left\{c\right\} \leq c \leq (1+\epsilon)\mathsf{E}\left\{c\right\} \iff |\,\mathsf{E}\left\{c\right\} - c\,| \leq \epsilon\mathsf{E}\left\{c\right\}$$

So proving $\mathsf{P}\left((1-\epsilon)\mathsf{E}\left\{c\right\} \le c \le (1+\epsilon)\mathsf{E}\left\{c\right\}\right) \ge \frac{1}{2}$ is equivalent to

$$\mathsf{P}\left(\mid\mathsf{E}\left\{c\right\}-c\mid\leq\epsilon\mathsf{E}\left\{c\right\}\right)\geq\frac{1}{2}\qquad\text{or}\qquad\mathsf{P}\left(\mid\mathsf{E}\left\{c\right\}-c\mid>\epsilon\mathsf{E}\left\{c\right\}\right)<\frac{1}{2}$$

We note the previous expression can be reformulated with chebyshev's inequality

$$\mathsf{P}\left(\left|\,\mathsf{E}\left\{c\right\}-c\,\right|>\epsilon\mathsf{E}\left\{c\right\}\right)<\frac{\mathsf{V}\left\{c\right\}}{\epsilon^{2}\mathsf{E}\left\{c\right\}^{2}}$$

Note from previous $\mathsf{E}\left\{c_{j}^{2}\right\} = \mathsf{E}\left\{c\right\} = \sum_{i=1}^{n} f_{i}^{2}$. We then compute $\mathsf{V}\left\{c\right\}$

$$\begin{split} \mathsf{V}\left\{c\right\} &= \frac{1}{k^2} \sum_{j=1}^k \mathsf{V}\left\{c_j^2\right\} \\ &= \frac{1}{k^2} \sum_{j=1}^k \mathsf{E}\left\{c_j^4\right\} - \mathsf{E}\left\{c_j^2\right\}^2 \\ &\leq \frac{1}{k^2} \sum_{j=1}^k 3 \mathsf{E}\left\{c_j^2\right\}^2 - \mathsf{E}\left\{c_j^2\right\}^2 \\ &= \frac{2}{k^2} \sum_{j=1}^k \mathsf{E}\left\{c_j^2\right\}^2 \\ &= \frac{2}{k} \mathsf{E}\left\{c\right\}^2 \end{split}$$

So then

$$\mathsf{P}\left(\left|\,\mathsf{E}\left\{c\right\}-c\,\right|>\epsilon\mathsf{E}\left\{c\right\}\right)<\frac{\mathsf{V}\left\{c\right\}}{\epsilon^{2}\mathsf{E}\left\{c\right\}^{2}}\leq\frac{\frac{2}{k}\mathsf{E}\left\{c\right\}^{2}}{\epsilon^{2}\mathsf{E}\left\{c\right\}^{2}}=\frac{2}{k\epsilon^{2}}$$

Let $k=\frac{4}{\epsilon^2}$ such that $\mathsf{P}\left(\mid\mathsf{E}\left\{c\right\}-c\mid>\epsilon\mathsf{E}\left\{c\right\}\right)<\frac{1}{2},$ which satisfies the probability constraint given in the problem specification.

3. Linear Programming