Jenisha Thevarajah 400473218 Matlab 4

Analytical Calculations:

		1 Calculati								
	7	: Ps = 2.04	U/M	, P < 1.0 m	, Z=0	ANO	241	EIJE	when	
5 Find	E at P()	0=0, Z=1.0)								
$\rho_{s} = 2.0$	4 C/m ²									
dq = Js.										
be-pb	ø dp									
E=2 Sd	A 202. 2									
de = dq										
470	cor2									
lt= Ps .	od ødg									
42	E (22+p2)									
E=25	Ps. pdødp	e un								
	4780(22	1+p2)								
- 00	- C' (?	27	, J	a.i.						
- <u>/ C</u>	- 2 <u>J</u> J	$\frac{2^{n} \mathcal{J}}{(z^{2}+\mathcal{J}^{2})} \cdot \overline{\int}$	=	øαp						
778	6 J-4 9	(2 +3) V	2.462							
= 2 00	Z C' ad									
2.6	$-\int \frac{f}{\sqrt{2}}$	$(\sqrt{\rho^2)^{3/2}}$ $(\sqrt{\nu})^{3/2}$	4 22	142= 02						
٠ ٠	/ (2	· /	₽ d	p= udv						
	P Ate	. 'V' Subshrut	IVN J							
	(pdp	$\frac{1}{2} = \int \frac{vdv}{(v^2)}$	1 = (1 dv						
	U (22+p2)	$J = J \left(v_1 \right)$								
				2 du						
		(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<u> </u>						
(e	$\frac{dP}{2} = \frac{3}{2}$	$\left(-\frac{1}{V}\right)^{\sqrt{2^2+1}}$		U						
0 (22+102)	(1/2								
	-	$\frac{1}{2} - \frac{1}{\sqrt{2^2 + 1}}$								
		Z (22+1								
و آءِ <u>آ</u> ءَ ۽	1 - [1	1 1								
F = <u>z</u> & g	$\frac{s}{z} = \frac{1}{z} = \frac{1}{z}$	1 22+1								

$$F = \frac{2\sqrt{5}}{260} \left[1 - \frac{2}{\sqrt{2^2+1}} \right]$$

$$F (p=0, z=1) = 2^{2\times10^{-16}}$$

$$2.885\times10^{-12} \left[1 - \frac{1}{\sqrt{2}} \right]$$

$$F = 3.308 \times10^{4}$$

MatLab Code:

```
%initalize
Epsilono=8.854e-12;
D=2e-6;
P=[0 \ 0 \ 1];
E=zeros(1,3);
%initialize discretization
Number_of_rho_Steps=100;
Number_of_phi_Steps=100;
rho_lower=0; %the lower boundary of rho
rho_upper=1; %the upper boundary of rho
phi_lower=0; %the lower boundary of phi
phi_upper=2*pi; %the upper boundary of phi
drho=(rho_upper- rho_lower)/Number_of_rho_Steps;
dphi=(phi_upper- phi_lower)/Number_of_phi_Steps;
dQ=D*ds;
for j=1: Number_of_phi_Steps
for i=1: Number_of_rho_Steps
rho = rho_lower + drho/2 + (i-1) * drho; % Rho component of the center of a grid
phi = phi_lower + dphi/2 + (j-1) * dphi; % Phi component of the center of a grid
R = P - [rho * cos(phi), rho * sin(phi), 0]; % Vector from the center of the grid to the observation point
RMag = norm(R); % Magnitude of vector R
ds = drho * rho * dphi; % Area of a single grid
dQ = D * ds; % Charge on a single grid
E = E + (dQ / (4 * pi * Epsilono * RMag^3)) * R; % Contribution to the electric field
end
end
disp(E);
```

Output:

```
1.0e+04 *
```

0.0000 -0.0000 3.3081