Assignment-1

Submit to Manohar at CSTAR on 27^{th} Jan, 2015 between 10AM and 4PM. (No prior/post submissions allowed)

List of notations

- 1. $\mathbb{N} = \text{Set of Natural Numbers}$.
- 2. \mathbb{Z} = Set of Integers.
- 3. $\mathbb{Q} = \text{Set of Rational Numbers.}$
- 4. \mathbb{R} = Set of Real Numbers.
- 5. $M_{m \times n}(\mathbb{R}) = \text{Set of all } m \times n \text{ matrices over } \mathbb{R}.$
- 6. $Inv_n(\mathbb{R}) = \text{Set of all } n \times n \text{ invertible matrices over } \mathbb{R}.$

Definitions:

- 1. $\mathbb{R}^n(\mathbb{R}) = \{(x_1, x_2, x_3, \dots, x_n) \mid x_i \in \mathbb{R} \text{ for } i = 1, \dots, n\}.$
- 2. Linear combination: Let $v_i \in \mathbb{R}^n$ and $a_i \in \mathbb{R}$, for i = 1, 2, ..., k, then $\sum_{i=1}^k a_i v_i$ is called a linear combination of vectors $v_1, v_2, v_3, ..., v_k$.
- 3. **Zero linear combination**: Let $v_1, v_2, v_3, \ldots, v_k \in \mathbb{R}^n$, If suppose $\sum_{i=1}^k a_i v_i = 0$ then it must be true that $a_i = 0, \forall i = 1, 2, \ldots, k$.
- 4. Let $A = \{v_1, v_2, v_3, \dots, v_k\}$ and $A \subseteq \mathbb{R}^n(\mathbb{R})$. A is said to be **independent** if \exists no zero linear combination for any vectors of A. Otherwise we say that A is dependent.

Whenever required use the above notations and definitions to solve the following problems.

- 1. Which of the following sets form a group under the given operation, Justify your answers.
 - (a) $(M_{n\times n}(\mathbb{R}), *)$; * is usual matrix multiplication.
 - (b) $(Inv_n(\mathbb{R}), *)$; * is usual matrix multiplication.
 - (c) $(\mathbb{N}, *)$; a * b = a + b + k, where k is a fixed and $k \in \mathbb{N}$.
 - (d) $(\mathbb{Z}, *)$; a * b = a + b k, where k is a fixed and $k \in \mathbb{Z}$.

- (e) $(\mathbb{Z}, *)$; a * b = a + b + ab.
- (f) $(\mathbb{Z} \setminus \{1\}, *)$; a * b = a + b ab.
- (g) $(\mathbb{Q} \setminus \{1\}, *)$; a * b = a + b ab.
- (h) $(\mathbb{Q}, *)$; a * b = (a + b)/k, where k is a fixed and $k \in \mathbb{N}$.
- 2. Let $M = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$. Find whether (M, *) is group or not under usual matrix multiplication, if it is a group check whether this is abelian group or not.
- 3. Describe all possible groups with 4 elements.
- 4. Find out whether the following subsets of $\mathbb{R}^3(\mathbb{R})$ Independent or Dependent.
 - (a) $A_1 = \{(1,0,0), (0,1,0)\}, A_2 = \{(1,0,0), (0,1,0), (0,0,1)\}$
 - (b) $A_3 = \{(1,0,0), (0,1,0), (0,0,1)(0,0,0)\}, A_4 = \{(1,0,0), (1,1,0), (1,1,1)\}$
 - (c) $A_5 = \{(1,2,3), (2,3,1), (3,2,1)\}, A_6 = \{(1,0,0), (0,1,0), (0,0,1), (1,2,3)\}$

Prove or Disprove the following statements:

- 5. Let (G, *) be a group such that $a^2 = e, \forall a \in G$, where e is identity element of G, then (G, *) is an abelian group.
- 6. If (G, *) is a group such that $\forall a, b \in G, (a * b)^i = a^i * b^i$ for three consecutive integers then G is an abelian group.
- 7. If G is a finite group of even order, then there exists an element $a \neq e$ such that $a = a^{-1}$ (i.e self inverse).
- 8. Let (G, *) be a semi group (Closure and Associative) such that $\forall a, b, c \in G$ it satisfies the following two conditions then (G, *) is a group.
 - (a) if a * b = a * c then b = c and
 - (b) if b * a = c * a then b = c
- 9. Let $(G = \{g_1, g_2, \dots, g_n\}, *)$ be a group and $x = g_1 * g_2 * \dots * g_n$ then x * x = e, where e is the identity element of G.
- 10. Zero vector i.e $(0,0,\ldots,0)$ must belong to every independent set of $\mathbb{R}^n(\mathbb{R})$.
- 11. Subset of an independent set is always independent, i.e if $A \subseteq B$ and B is independent then A must be independent. Assume $A, B \subseteq \mathbb{R}^n(\mathbb{R})$.

- 12. Let H_1, H_2 are two subgroups of a group (G, *) then $(H_1 \bigcup H_2, *)$ is a subgroup of G if and only if either $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.
- 13. Let (G, *) be a group and for $a \in G$ define $N(a) = \{x \in G | xa = ax\}$ then N(a) is a subgroup of G.
- 14. Let (G,*) be a group and center of G is defined as $Z=\{x\in G|xa=ax, \forall a\in G\}$ then Z is a subgroup of G.
- 15. Let (G, *) be a group and (H, *) is subgroup of G. Define $\mathbf{C}(H) = \{x \in G | xh = hx, \forall h \in H\}$, then $\mathbf{C}(H)$ is a subgroup of G.
- 16. Let H, K are two subgroups of a group (G, *). Define $HK = \{hk | h \in H \text{ and } k \in K\}$ then HK is a subgroup of G.