CSE271 Section 2 Introduction to Digital Systems

Lecture 31

Instructor: Lin Li http://www.cse.psu.edu/~lili/cse271

Shift Registers

- > A register is a collection of flip flops, with a common name and a common clock.
- > Shift register -- data moves one place to the right on each clock or shift input.

Red NOT gate

- Leading-edge triggered shift register
- . Circuit presents a load of 1 to the clock, rather than a load of 4.

Serial-in Serial-out Shift Register

Only 1 bit (at left) may be loaded into the register at a time and only 1 bit (at right) may be read.

3

Application: Shift Register Storage

When load=0, the data circulate around the n flip flops.

Data is available only at q_n, once every n clock cycles.

When load=1, x can be stored into q_1 .

To initialize register to all 0's, we can let x=0 and load=1 for n clock cycles.

Serial-in Parallel-out Shift Register

D flip flop implementation.

We can initialize the register using clear' input.

Application: input port from modem (converting serial data to parallel data).

5

Parallel-in Serial-out Shift Register

Parallel-in Serial-out Shift Register

There is an independent active low static clear. When Enable'=0, clock is inverted and go through. When Enable'=0 and load'=0, IN_2 is stored into q_2 . When Enable'=0 and load'=1, q_1 is shift into q_2 .

Load is done synchronously.

7

Right/Left Shift Register

Most computers include both left/right shift and rotate instructions. Right/left shift register can shift the stored bits in both directions.

Ologi							
	Clear'	S ₀	S ₁	q ₁ *	q ₂ *	q ₃ *	q_4^*
Static clear	0	Х	Х	0	0	0	0
Hold	1	0	0	q₁	q_2	q_3	q_4
Shift left	1	0	1	q_2	q_3	q_4	LS
Shift right	1	1	0	RS	q_1	q_2	q_3
Load	1	1	1	IN ₁	IN_2	$\overline{IN_3}$	IN_4

Application of Right/Left Shift Register

- > Typically used in ALU for better performance
 - Multiplied by 2 can be done by one-bit shifting left.
 - □ 4*2: 0100 shift left one bit and get 1000 (8).
 - Divided by 2 can be done by one-bit shifting right.
 - □ 4/2: 0100 shift right one bit and get 0010 (2).