Tarefa 01 – Otimização de Sistemas

Pedro Miranda Rodrigues

No. 36

$$F(x) = 4x_1 + 6x_2 \Rightarrow \max$$

$$x_1 + x_2 \le 18$$

$$0.5x_1 + x_2 \le 12$$

$$x_1 \le 12$$

$$x_2 \le 9$$

$$x_1, x_2 \ge 0$$

- $F(x) = 4x1 + 6x2 \rightarrow max$
- W(x) = -(4x1 + 6x2) = -4x1 6x2
 - $x1 + x2 \le 18$
 - $0,5x1 + x2 \le 12$
 - $x1 \le 12$
 - x2 ≤ 9
 - $x1; x2 \ge 0$

Metodo Simples

- x1 + x2 + s1 = 0
- 0.5x1 + x2 + s2 = 12
- x1 + s3 = 12
- x2 + s4 = 9
- W + 4x1 + 6x2 = 0

Tabela Inicial

Base	W	x1	x2	s1	s2	s3	s 4	b
s1	0	1	1	1	0	0	0	18

s2	0	0,5	1	0	1	0	0	12
s3	0	1	0	0	0	1	0	12
s4	0	0	1	0	0	0	1	9
W	1	4	6	0	0	0	0	0

• Iteração 01:

• Elemento Pivô: 1 (4,2)

Base	W	x1	x2	s1	s2	s3	s 4	b
s1	0	1	0	1	0	0	-1	9
s2	0	0,5	0	0	1	0	-1	3
s3	0	1	0	0	0	1	0	12
s4	0	0	1	0	0	0	1	9
W	1	4	0	0	0	0	-6	-54

• Iteração 02:

• Elemento Pivô: 0,5 (2,1)

Base	W	x1	x2	s1	s2	s3	s 4	b
s1	0	0	0	1	-2	0	1	3
s2	0	1	0	0	2	0	-2	6
s3	0	0	0	0	-2	1	2	6
s4	0	0	1	0	0	0	1	9
W	1	0	0	0	-8	0	2	-78

• Iteração 03:

• Elemento Pivô: 1 (1,6)

Base	W	x1	x2	s1	s2	s3	s 4	b
s1	0	0	0	1	-2	0	1	3
s2	0	1	0	2	-2	0	0	12
s3	0	0	0	-2	2	1	0	0
s4	0	0	1	-1	2	0	0	6
W	1	0	0	-2	-4	0	0	-84

Resultado:

• x1 = 12

•
$$x2 = 6$$

•
$$F(x) = 4x1 + 6x2 \rightarrow max$$

•
$$x1 = 12$$

•
$$x2 = 16$$

Metodo Grafico

 Identificar as restrições: reescrever as desigualdades como equações para traçar as retas

•
$$X_1 + X_2 = 18$$

• Quando
$$x_1 = 0 \rightarrow x_2 = 18$$

• Quando
$$x_2 = 0 \rightarrow x_1 = 18$$

•
$$0.5x_1 + x_2 = 12$$

• Quando
$$x_1 = 0 \rightarrow x_2 = 12$$

• Quando
$$x_2 = 0 \rightarrow x_1 = 24$$

•
$$x_1 = 12$$
 (linha vertical)

•
$$x_2 = 9$$
 (linha horizontal)

• Determinar a região permissivel: interseção de todos os semiplanos definidos pelas desigualdades

• Encontrar os vértices

- Os vértices da região permissivel são:
 - A = (0, 0)
 - B = (12, 0) (interseção de x_1 = 12 com x_2 = 0)
 - C = (12, 6) (interseção de x_1 = 12 com 0,5 x_1 + x_2 = 12)
 - D = (6, 9) (interseção de x_2 = 9 com $x_1 + x_2$ = 18)
 - E = (0, 9) (interseção de x_2 = 9 com x_1 = 0)

- Avaliar F(x) nos vértices
 - A: $F(0,0) = 4 \times 0 + 6 \times 0 = 0$
 - B: $F(12,0) = 4 \times 12 + 6 \times 0 = 48$
 - C: $F(12,6) = 4 \times 12 + 6 \times 6 = 48 + 36 = 84$
 - D: $F(6,9) = 4 \times 6 + 6 \times 9 = 24 + 54 = 78$
 - E: $F(0,9) = 4 \times 0 + 6 \times 9 = 54$
 - Solução ótima: Ponto C = (12, 6) com F = 84

Método Gráfico - Solução de Programação Linear

