Série de TD-5

(Séries Statistiques à une variable)

Exercice 1:

Soit la série statistique discrète donnée par le tableau suivant :

Caractère (X)	2	4	5	8	10	11	12	14	15	18	20
Effectifs (n _i)	1	2	1	4	2	7	6	3	4	2	1

- 1) Déterminer l'étendue et le mode de cette série.
- 2) Calculer la moyenne de cette série.
- 3) Calculer les effectifs cumulés, les fréquences, les fréquences cumulées t construire le graphe des effectifs cumulés.
- 4) déterminer la médiane de cette série.

Exercice 2:

On effectue un contrôle de qualité pendant 100 heures de travail sur deux machines produisant des pièces mécaniques. Certaines pièces présentent un défaut qui les rend inutilisables.

On a relevé le nombre de pièces inutilisables constatées durant chaque heure.

Machine A:

Nombre de pièces inutilisables	0	1	2	3	4	5 .	6	7
Nombre d'heures	13	42.	38	2	2	1	1	1

Machine B:

Nombre de pièces inutilisables	0	1	2	3	4	5	
Nombre d'heures	35	40	1	1	10	13	

- 1) Calculer le nombre moyen m_A des pièces inutilisables pendant 100 heures étudiées pour la machine A. Calculer ensuite la variance V_A .
- Même question pour la machine B (m_B , V_B).

2) Déterminer les médianes de A et B.

Exercice 3:

Un contrôle de vitesse sur une route expresse donne les résultats suivants :

Vitesse en Km/h (V)	[90,100[[100,110[[110,120[[120,130[[130,140[
Effectifs (n _i)	40	110	- 80	40	30

- 1) Calculer l'étendue et le mode de cette série.
- 2) calculer la moyenne et l'ecart-type de cette série.
- 3) Calculer les fréquences et les fréquences cumulées croissantes de cette série.
- 4) Tracer l'histogramme ainsi que le graphe des fréquences cumulées croissantes.
- 5) Déterminer approximativement la valeur de la médiane.

Lorrigé de la série de TD-5 (\$\$-10).

Ex	01:
----	-----

						_ au
	ni	ni	ni ni	Nip	fi	To P
	2	1	2	2	0,033	0,033
	4	2	8	N	0,006	0,099
	5	1	<u> </u>	닉	0,037	0,132
	8	4	32	8	0,121	01253
	10	2	20	αN	0,066	01319
	11	7	77	17	0,212	01534
	12	b	72	23	0,181	0,712
	14	3	42	26	0,09	0,802
	15	4	60	30	0,121	0,923
ļ	18	2	36	32	0,066	01989
	20	1	کھ	33	0,033	2.
stal	\times	33	374	>	1.	
		4.4				

on a $n = \stackrel{\Omega}{\underset{i=1}{\text{Thi}}} = 33$ (effectif total).

2% Calcul de l'étendre et le mode: # Ft=!

n'étendue de ulte sirie et la différence entre les valeurs extremes de la serie:

 $E_{t} = X_{max} - X_{min} = 20 - 2 = 18$

he mode de ætte serie et la jaleur du caractère correspondant à l'effectif maximum:

on a $X = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} (374)$ X = 11,33 $if_{i}=? if_{i}=?$ * Ni P = Ing $\left(C = \overline{\Lambda_1 \Lambda \Lambda_1} \right)$ (U= 1,11) Fimp = I fr (= 1,11) N'il Sapre des effectifs cumulés croissants. 32 26 23 17 ΛO 4 10 11 12 14 15 18

39 Lalcul de Me:

on a le nombre de valurs pris par le.

Laractère discret
$$\times$$
 et impair:

 $N=11=2\times5+1 \Rightarrow Me=M_{K+1}=M_b=11$

Lanc $Me=11$
 $(K=5)$

Lanc $Me=11$
 $(K=5)$

Lanc $Me=11$
 $M=\frac{1}{N_A}$
 $M=\frac{1}{N_A}$

 $V_B = \frac{1}{n_B} \sum_{i=1}^{S} n_i b_i - m_B^2$

= 3,13

2% Con calcule le médiunes pour A et B

(み)

a/La médiane de la vérie ordonnée de 100 yaleurs relatives à la machine A et la 51 eure valeur, cont ici $\frac{1+1}{2} = 1$. b) la médiane de la série ordonnée de 100 y alours relatives à la machine 13 9t la demi-somme entre la so= et la 51 me valeur, sit ici 1+1=1. KX03! Soit X={Vitesse en km/h} => X NUSC avec n = Ini = 300 (effectif total) 2% habent de l'étendre d'du mode. #/ EL= Xmax - Xmin = 140 - 90 = 50. 4) duisque X NYSC => la clusse modale gui correspond à nmax est; [100, MOL => MOE]100, MOL, Lar interpolation lineaine, in. part calculer approximativement Mo! Mo ~ 100 + 110 = 105.

 $V = \sqrt{\text{Var}(x)}$

$$39$$
 $\beta_{c} = \frac{ni}{n}$; $\forall c = 1.5$
 $F_{i}^{cm} = \int_{-2.1}^{2.1} f_{i}$; $\forall c = 1.5$

40/4 Priagramme des Film A

