```
In [1]: import numpy as np
    from scipy import linalg
    import pandas as pd
    import matplotlib.pyplot as plt

# the commonly used alias for seaborn is sns
    import seaborn as sns

# set a seaborn style of your taste
    sns.set_style("whitegrid")
```

In [2]: df = pd.read_excel('Demo_DataSets.xlsx')

In [3]: df

Out[3]:

	Marketing Budget (X) (In lakhs)	Actual Sales(Y) (In crores)
0	127.4	10.5
1	364.4	21.4
2	150.0	10.0
3	128.7	9.6
4	285.9	17.4
5	200.0	12.5
6	303.3	20.0
7	315.7	21.0
8	169.8	14.7
9	104.9	10.1
10	297.7	21.5
11	256.4	16.6
12	249.1	17.1
13	323.1	20.7
14	223.0	15.5
15	235.0	13.5
16	200.0	12.5

In [4]: print(df.shape) plt.scatter(df['Marketing Budget (X) (In lakhs)'], df['Actual Sales(Y) (In crores)']) plt.show();

(17, 2)

In [5]: # joint plots of Profit and Sales
sns.jointplot('Marketing Budget (X) (In lakhs)', 'Actual Sales(Y) (In crores)'
 , df)
plt.show()

Now lets also check the distribution of marketing and sales

from the above distribution we see that the x variable is normally distributed, since it's mean and median are same, so we do not need to standardize the x variable

we know that the Equation of a straight line is:

y = mx + b

So, The Equation of a Tangent line at any point x will be:

f(x) = mx + b

We already know y and x, therefore in order to solve the above equation we need m which is:

$$m = y2 - y1 / x2 - x1$$

Also, we need to calculate the cost function a simple MSE:

$$f(MSE) = rac{1}{n} \sum_{i=1}^n (y_i - (m*x_i + b))^2$$

Now, in order to find out the optimal value of M and B, we need to find the Slope of the above equation with respect of M:

$$rac{d(MSE)}{dm} = rac{2}{n} \sum_{i=1}^n -x_i (y_i - (m*x_i+b))$$

and with respect to B:

$$rac{d(MSE)}{db} = rac{2}{n} \sum_{i=1}^n (y_i - (m*x_i+b))$$

Now, we need to iterate through the initial value of M and B which we found in the first stage and on each iteration we need to check the value of slope of MSE with respect to M and B, and if it is very very small we are done with our gredient descent

But, in order to find out the optimal value of M and B, we need to keep guessing.. and in order to do so we need to add or suptract M and B by certain number. That certain number is called Learning Rate "LR", which means how much do we need to adjust M or B to reach optimal MSE or slope close to 0

so we take the learning rate as 0.02 and multiply with the slope to get the adjustment needed for M or B

$$LR = 0.02$$

Adjustment In M can be defind as below:

$$riangle_{M_n} = rac{d(MSE)}{dm_n} * LR$$

Adjustment In B can be defind as below:

$$riangle_{B_n} = rac{d(MSE)}{db_n}*LR$$

after we found out the adjustment in M and B, we need to again recalculate the MSE by subtracting the M and B from the previous value of M and B

Suppose the Initial value of:

$$M_1 = 0; B_1 = 0$$

therefore the nth value of M and B:

$$M_n = M_{n-1} - \triangle_{M_{n-1}}$$

$$B_n = B_{n-1} - \triangle_{B_{n-1}}$$

Now, the question is when is to stop the iteration, we will use RELU activation which is MAX(0, f(x))

which means the f(x) of the tanget line at any point in x cannot be less than 0

Now lets calculate the initial value of M and B using matrix multiplication

```
# so first we need to convert our data sets into matrix form
         # but first we need to introduce a new column with only 1 for matrix multiplic
         ation
In [11]: | df["X_prime"] = pd.DataFrame([1 for item in range(len(df['Marketing Budget (X)
         (In lakhs)']))])
In [12]: X = df[["X prime", "Marketing Budget (X) (In lakhs)"]].to numpy()
In [13]: X.shape
Out[13]: (17, 2)
In [14]: X
Out[14]: array([[
                  1., 127.4],
                   1., 364.4],
                  1. , 150. ],
                  1., 128.7],
                   1., 285.9],
                   1., 200.],
                   1., 303.3],
                   1., 315.7],
                   1., 169.8],
                   1., 104.9],
                   1., 297.7],
                   1., 256.4],
                   1., 249.1],
                   1., 323.1],
                   1., 223.],
                   1., 235.],
                   1., 200. ]])
In [15]: # Now we also need to convert y to numpy array
         Y = df["Actual Sales(Y) (In crores)"].to numpy()
In [16]: Y
Out[16]: array([10.5, 21.4, 10. , 9.6, 17.4, 12.5, 20. , 21. , 14.7, 10.1, 21.5,
                16.6, 17.1, 20.7, 15.5, 13.5, 12.5])
```

Now the matrix form to calculate the M and B is:

$$\left[\begin{array}{c} b \\ m \end{array}\right] = (\left[\left. X \right]^T \left[\left. X \right] \right)^{-1} \left[\left. X \right]^T Y$$

In [17]:	<pre># Multiply X by its transpose A = X.transpose().dot(X)</pre>
In [18]:	<pre># Calculate the inverse of A B = linalg.inv(A)</pre>
In [19]:	<pre># Multiply the result by the transpose of X C = B.dot(X.transpose())</pre>
In [20]:	<pre># Multiply the result by the vector Y: D = C.dot(Y)</pre>
In [21]:	# now we have the intercept and slope that we can use as an initial value for Gredient descent D
Out[21]:	array([3.35249683, 0.05276727])
In []:	
In []:	
In []:	

In []:		
In []:		
In []:		
TII [].		
In []:		
In []:		
In []:		
In []:		
In []:		
In []:		
In []:	4	>
		,