$1 \quad 1 \mid \mid \sum w_j C_j$

1.1 Alternative Formulation 1

The notation implies that we have a single machine and the objective is to minimize a weighted sum of the completion times.

Parameters:

$$l = C_{max} - 1$$

Decision variables:

 $x_{jt} = 1$ if job j starts at time t, 0 otherwise

Model

$$\min \sum_{j=1}^{n} \sum_{t=0}^{l} x_{jt} \times (t+p_j) \times w_j$$
s.t.
$$\sum_{t=0}^{l} x_{jt} = 1 \quad \forall j$$

$$\sum_{j=1}^{n} \sum_{s=\max\{0,t-p_j\}}^{\max\{0,t-1\}} x_{js} \le 1 \quad \forall t$$

$$(1)$$

1.2 Alternative Formulation 2

Decision variables:

 $x_{jk} = 1$ if job j precedes job k, 0 otherwise

Note that the completion of time of job j is $C_j = \sum_{k=1}^n P_k \times x_{kj} + p_j$

Model

$$\min \sum_{j=1}^{n} \left[\sum_{k=1}^{n} x_{kj} \times p_{j} \right] \times w_{j}$$
s.t.
$$x_{kj} + x_{jk} = 1 \quad \forall (j, k), j \neq k$$

$$x_{jj} = 0 \quad \forall j$$

$$x_{kj} + x_{lk} + x_{jl} \ge 1 \quad \forall (j, k, l), \quad j \neq k \neq l$$

$$x_{jk} \in \{0, 1\} \quad \forall (j, k)$$

$$(2)$$

2
$$Q_m \mid r_j, M_j, prec, d_j \mid \theta_1 C_{max} + \theta_2 \sum w_j T_j$$

The notation implies that there are m machines in parallel each with a different speed v_i . Jobs have release dates r_j and due dates d_j . Each job j can only processed by machines in the set M_j . There are precedence constraints between jobs. The objective is to minimize a composite objective that consists of the makespan and and a weighted sum of tardiness.

Parameters

- 1. p_{ij} processing time of job j on machine i
- 2. v_i speed of machine i
- 3. r_i , d_i release date and due date of job
- 4. M_j set of machines that can process job j
- 5. l: max time
- 6. w_i : weight of job j

Decision Variables

- 1. T_j tardiness of job j
- 2. C_{max} : makespan
- 3. x_{ijt} : 1 if job j assigned to machine i at time t, 0 otherwise

Model

$$\begin{aligned} & \min \quad \theta_{1}C_{max} + \theta_{2} \sum_{j=1}^{n} w_{j}T_{j} \\ & \text{s.t.} \quad C_{max} \geq \sum_{i=1}^{m} \sum_{t=0}^{l} x_{ijt} \times (t + \frac{p_{ij}}{v_{i}}) \quad \forall j \\ & T_{j} \geq 0 \quad \forall j \\ & T_{j} \geq \sum_{i=1}^{m} \sum_{t=0}^{l} x_{ijt} \times (t + \frac{p_{ij}}{v_{i}}) - d_{j} \quad \forall j \\ & \sum_{i=1}^{m} \sum_{t=0}^{l} x_{ijt} \times t \geq r_{j} \quad \forall j \\ & \sum_{i=1}^{m} \sum_{t=0}^{l} x_{ijt} = 1 \quad \forall j \\ & \sum_{i=1}^{l} \sum_{t=0}^{l} x_{ijt} = 0 \quad \forall (i,j) \quad s.t. \quad i \not\in M_{j} \\ & \sum_{j=1}^{n} \sum_{s=max\{0,t-\frac{p_{ij}}{v_{i}}\}} x_{ijs} \leq 1 \quad \forall (i,t) \\ & \sum_{j=1}^{m} \sum_{t=0}^{l} x_{ijt} \times (t + \frac{p_{ij}}{v_{i}}) \leq \sum_{i=1}^{m} \sum_{t=0}^{l} x_{ikt} \times t \quad \forall (j,k) \quad s.t.j \quad precedes \quad k \end{aligned}$$

3 Scheduling with custom scenario

3.1 Scenario

- 1. Multiple jobs with precedence constraints
- 2. Jobs belong to categories and can be ran together in parallel if they belong to the same category at no additional cost
- 3. Continuous time
- 4. Objective is to minimize makespan

3.2 Mathematical Model

Let there be n jobs and c categories. Let a_j be the parameter that denotes the category that job j belongs to. Let p_j be the duration of job j. Let z_{ij} be the binary parameter that denotes whether

job i has to come before job j due to precedence constraints. Finally, let d_j be the due date of job j.

Decision variables:

1. C_{max} : makespan

2. s_i : start time of job j

3. e_i : end time of job j

4. y_{ij} : no overlap constraint

Model:

$$\begin{aligned} & \min \quad C_{max} \\ & \text{s.t.} \quad C_{max} \geq e_{j} \quad \forall j \\ & e_{j} = s_{j} + p_{j} \quad \forall j \\ & e_{j} \leq d_{j} \quad \forall j \\ & e_{i} \leq s_{j} \quad \forall (i,j) \quad s.t. \quad z_{ij} = 1 \\ & e_{i} \leq s_{j} + M \times y_{ij} \quad \forall (i,j) \quad s.t. \quad i < j, \quad z_{ij} = 0 \quad a_{j} = a_{i} \\ & e_{i} \leq s_{j} + M \times (1 - y_{ij}) \quad \forall (i,j) \quad s.t. \quad i < j, \quad z_{ij} = 0, \quad a_{j} = a_{i} \\ & y_{ij} \in \{0,1\} \\ & s_{j} \geq 0 \quad \forall j \\ & e_{i} \geq 0 \quad \forall j \end{aligned}$$

4 Modeling Extensions

4.1 Modeling the number of machine startups

Let x_t be the binary decision variable denoting whether the machine is active or not at time t. Let s_t be the binary decision variable denoting whether the machine is started up at time t. Then the following three inequalities derive s_t from x_t

$$x_t \ge s_t \tag{5}$$

$$1 - x_{t-1} \ge s_t \tag{6}$$

$$x_t - x_{t-1} \le s_t \tag{7}$$