Laboratorio di architettura degli elaboratori

CIRCUITI SEQUENZIALI Lezione 4

STRUMENTI SOFTWARE

Logisim (https://sourceforge.net/projects/circuit)

CONTATTI

- Prof. F. Fontana (<u>federico.fontana@uniud.it</u>)
- Y. De Pra (yuri.depra@uniud.it)

Corrrezione esercizio 3.1

- a) Progettare un half-adder, ossia un circuito combinatorio che somma due bit e genera il bit risultato ed un riporto. L'half-adder va realizzato come modulo (sottocircuito) Logisim.
- b) Utilizzando 4 moduli half-adder, costruire un circuito che ricevuto in ingresso un numero binario di 4 cifre, restituisca in uscita il numero binario successivo.

Esercizio 3.1a

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Nota: abbiamo due uscite

$$S = A'B + AB' = A XOR B$$

 $C = AB$

Circuito

Modulo

Esercizio 3.1b

Utilizziamo quattro half-adder collegati in modo che il riporto di del modulo N sia un ingresso del modulo N+1; il secondo ingresso del modulo sarà invece una delle 4 cifre binarie di input prese in ordine dal meno significativo al più significativo.

Nota1: Il primo half-adder ha come input la costante 1.

Nota2: abbiamo 4 input e 5 output.

Correzione esercizio 3.2

- a) Utilizzando due moduli half-adder, progettare un full-adder, ossia un circuito combinatorio che somma due bit ed un riporto in ingresso. Il circuito genera un bit risultato ed un eventuale riporto in uscita. Realizzare il full-adder come modulo Logisim.
- b) Progettare un circuito che calcoli la somma di due numeri binari di 4 bit ciascuno.

Esercizio 3.2a

А	В	C _{input}	S	С
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

L'uscita S del primo modulo é input del secondo modulo. Il carry input è l'altro input del secondo modulo.

Se uno dei due moduli genera un riporto, allora l'uscita carry C vale 1.

Circuito

Modulo

Esercizio 3.2b

Carichiamo il progetto precedente del full-adder a 2 bit e lo utilizziamo come modulo.

Il modulo full-adder N riceve in ingresso i due bit alla posizione N dei numeri binari da sommare ed il riporto del modulo N-1. il primo modulo ha come ingress carry input una variabile (o una costante)

impostata a zero.

Flip-flop di tipo D

- Lo stato Q assume il valore dell'input D quando il clock è in posizione UP
- *Enable* = 0 blocca l'aggiornamento dello stato (default 1)
- Preset = 1 imposta Q=1 in modo asincrono (default 0)
- Clear = 1 imposta Q=0 in modo asincrono (default 0)

Esercizio 4.1

Utilizzare il modulo del secondo punto dell'esercizio 3.1b (calcolatore del numero successivo a 4 bit) per costruire un contatore binario ciclico a 4 cifre in forma di circuito sequenziale **senza ingressi** e con 4 uscite che, ad ogni ciclo di clock, incrementa il valore binario in uscita di una unità. Il contatore riparte da zero dopo avere raggiunto il valore massimo (1111).

Esercizio 4.2

Modificare il circuito in modo che siano presenti due ingressi di controllo:

- a) un segnale **S** che, se è pari a 1, blocca il contatore nella posizione corrente. Se **S** viene successivamente posto a 0 il circuito deve ricominciare a contare dallo stato corrente.
- b) un segnale **R** che, se è pari a 1, imposta il contatore al numero 0011. Se **R** viene successivamente posto a 0 il circuito deve ricominciare a contare partendo da 0011.

Esercizio 4.3

Modificare il circuito in modo che, una volta giunto al numero 13 (1101), il contatore riparta a contare dal numero 3 (0011).