JP5345221

Patent number:

JP5345221

Publication date:

1993-12-27

Inventor:

OKANISHI RYOSUKE; SASAKI KAZUYOSHI; KURODA

YOSHITO; ISHIKAWA KEIJI; GOTO OSAMU

Applicant:

HITACHI TOOL

Classification:

- international:

B23D77/00; B23D77/00; (IPC1-7): B23D77/00;

B23D77/00

- european:

Application number: JP19920180492 19920615 Priority number(s): JP19920180492 19920615

Report a data error here

Abstract of JP5345221

PURPOSE:To provide a reamer with high efficiency by lengthening the life of a cemented carbide coating reamer and increasing the rigidity thereof. CONSTITUTION:In a coating reamer where plural cutting edges having torsion are formed on the outer periphery of a tool main body 1, the rake angle of the outer peripheral cutting edge in a section perpendicular to the axis of the edge part is set to -29 deg.-0 deg., and the core diameter 3 of the edge part is set within the range of 70-90% to the tool edge diameter so as to be excellent in the tool rigidity and high accuracy.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-345221

(43)公開日 平成5年(1993)12月27日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

B 2 3 D 77/00

7347-3C

審査請求 未請求 請求項の数3(全 4 頁)

(21)出願番号	特願平4-180492	(71)出願人	000233066
			日立ツール株式会社
(22)出顧日	平成4年(1992)6月15日		東京都江東区東陽4丁目1番13号
		(72)発明者	岡西 良祐
			大阪市淀川区野中北1丁目13番20号 日立
			ツール株式会社大阪工場内
		(72)発明者	佐々木 一良
			大阪市淀川区野中北1丁目13番20号 日立
			ツール株式会社大阪工場内
		(72)発明者	黒田 潜人
			大阪市淀川区野中北1丁目13番20号 日立
			ツール株式会社大阪工場内
			最終頁に続く

(54) 【発明の名称】 コーティングリーマ

(57)【要約】

【目的】 超硬コーティングリーマの長寿命化を計ると ともに高剛性化を計り、高能率なリーマを提供する。

【構成】 工具本体の外周にねじれを有する複数の切れ 刃が形成されたコーティングリーマにおいて、該刃部の 軸直角断面における外周切れ刃のすくい角を $-29^\circ\sim0^\circ$ に設定し、かつ該刃部の芯厚を工具刃径に対して $70\sim90\%$ の範囲に設定し、工具剛性と高精度に優れた ものである。

【特許請求の範囲】

【請求項1】 工具本体の外周にねじれを有する複数の 切れ刃が形成されたリーマにおいて、該刃部の軸直角断 面における外周切れ刃のすくい角を-29°~0°に設 定し、かつ該刃部の芯厚を工具刃径に対して70~90 %の範囲に設定したことを特徴とするリーマ。

【請求項2】 請求項1記載のリーマにおいて、該切れ 刃のねじれ角を5°~30°の範囲に設定したことを特 徴とするリーマ。

て、その被覆層が、A1、Si、周期率表第4a、5 a、6 a 族遷移金属の炭化物、窒化物、酸化物、硼化 物、および炭化硼素、硬質窒化硼素、硬質炭素さらにこ れらの固容体または混合体からなる群のうちから選ばれ た1種または2種以上の硬質物質を1層または2層以上 の多層で $0.2\sim20\mu$ の厚みで被覆した事を特徴とす るリーマ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本考案はリーマの性能向上、特に 20 拡大しろの発生を少なくし寸法精度の向上に関する。

[0002]

【従来の技術】一般鋼材や鋳鉄などのリーマ作業におい ては、穴明け後、寸法・精度を必要とする作業に使用さ れる。そのため、リーマのすくい角は正角 $(0^{\circ} \sim 10)$ 。) が使用され、ねじれ角はビビリをきらうため10° 前後のものが多用されている。また、テーパ穴加工用で は30°前後のものも使用されている。

【0003】また、これらリーマに共通する問題点は、 ・工具の弾性変形がしやすくなっていることである。ま ず、構成刃先が付着すると、この構成刃先が事実上の切 り刃となるためリーマ径が拡大したことと同一となり精 度が低下する。しかし被覆すれば構成刃先の付着は有る 程度抑えられるものの、シャープな切り刃は維持するた め、被覆しずらく、また被覆に対してもリーマ形状の観 点からは検討されていなかった。

【0004】また、被削材の弾性変形に付いては省略す るが、工具の弾性は、すくい角が正の時は、切削力によ は、切削力により切り刃が回転中心に押される形となる ため、結果として負のすくい角が拡大しろが小さく寸法 精度上は優れていることになる。(リーマ加工精度加工 技術データファイル 202J00-01)

[0005]

【発明が解決しようとする課題】しかし、実際使用され ているリーマの大半はすくい角が正のものであり、この ことは工具として切れ味が良く、抵抗が小さいため切削 面粗さが良いなどの特徴を生かしたものである。

を同様に発揮させるためには、高速度鋼、超硬合金によ らず、リーマに被覆処理をすることにより、摩擦抵抗・ 切削抵抗を軽減するとともに、工具剛性を向上する等の

検討が必要である。

[0007]

【課題を解決するための手段】以上の点に鑑み、本願発 明は、外周切れ刃のすくい角を-29°~0°に設定 し、かつ該刃部の芯厚を工具刃径に対して70~90% の範囲に設定したものであり、すくい角を負とすること 【請求項3】 請求項1ないし2記載のリーマにおい 10 により上記拡大しろを減少させ、また切削抵抗の増加を 心厚を厚くすることにより工具剛性を補ったものであ る。さらに心厚を厚くすることにより、拡大しろにとど まらず、リーマの振れー特に下穴が曲がっている場合、 リーマ仕上げ後もその曲がりをなぞってしまうことも防 ぐことができる。

[0008]

【作用】従って、本願発明は工具本体の外周にねじれを 有する複数の切れ刃が形成されたリーマにおいて、該刃 部の軸直角断面における外周切れ刃のすくい角を-29 °~0°に設定し、かつ該刃部の芯厚を工具刃径に対し て70~90%の範囲に設定したリーマであり、切れ刃 のねじれ角を5°~30°、さらに被覆層としては、A 1、Si、周期率表第4a、5a、6a族遷移金属の炭 化物、窒化物、酸化物、硼化物、および炭化硼素、硬質 窒化硼素、硬質炭素さらにこれらの固容体または混合体 からなる群のうちから選ばれた1種または2種以上の硬 質物質を1層または2層以上の多層で0. $2\sim20\mu$ の 厚みに被覆したものである。

【0009】すくい角を負としさらに被覆することによ すくい角が正のため構成刃先が付着し易く、また被削材 30 り、リーマすくい面では切り屑のすべりが良くなり切り 屑の流れが溝部で軸方向に増速され、切り屑に引っ張り 応力を作用させて亀裂を発生させ分断する為、切り屑の 排出が良くなる。そのため切削面への傷やリーマへの絡 みも減少する。また、リーマ逃げ面では、特にマージン 部のすべり、耐摩耗性が向上するため、面粗さ、寸法精 度をより良くすることができる。

【0010】以下、数値限定した理由に付いて説明す る。すくい角をネガとすることにより切削抵抗は増え剛 性が不足するため、リーマの芯厚を工具刃径に対して7 り切り刃が後方へ押される形となり、すくい角が負の時 40 $0 \sim 90$ %の範囲に設定した。すくい角を-29° ~ 0 、芯厚を工具刃径に対して70~90%したのは、両 者のパランスより設定したものであり、すくい角をそれ 以上に大きくすると切削抵抗がふえすぎまた、心厚は7 0%未満では、振動・ビビリ等を生じやすくなり、また 90%を越えると切り屑排出等のフルート部に十分なス ペースがとれなくなるため上記範囲とした。

【0011】さらに、皮膜としては、上記の通りである が、本願発明に最適な被覆方法は、PVD法で十分であ る。その理由は、リーマの刃物角が大きくとれるため被 【0006】しかし、すくい角を負としたとき上記特徴 50 覆時に過熱、膜厚の不均一性が減少するためである。刃 3

物角は、すくい角と逃げ角により形成される角度であ り、従来のリーマではすくい角+10°、逃げ角15° 前後であるため刃物角は65°前後と鋭角になるが、後 述する本願実施例ではすくい角-20°、逃げ角15° であり刃物角は95°と鈍角になる。そのため被覆時に 均一な皮膜を得ることができる。以下、実施例をもとに 詳細に説明する。

[0012]

【実施例】図1~図2は本発明の一実施例であり、Ti mm、2枚刃、右刃右ねじれのリーマである。軸直角に おける外周切れ刃のすくい角を-20°、マージン幅 0. 05mm、逃げ角を15°とし、該刃部の心厚を工 具刃形の80%すなわち11.2mmとし、さらに外周* *切れ刃のねじれ角を10°としたものである。尚、比較 のため、市販のリーマ(すくい角が+5°、超硬合金 製)も試験した。

【0013】両リーマを下記の切削諸元で実施した。切 削試験の条件はダクタイル鋳鉄材のドリル下穴加工後、 リーマしろφ0.5mm、11kwマシニングセンター を用い切削速度54m/min、送り0.1mm/re v、加工深さ40mm、切削油として水溶性エマルジョ ンを用いた。その結果、本願発明のコーティングリーマ Nコーティングを施した超硬合金を用い、工具刃径14 10 は表1に示すように内径精度が良く切削面粗さも良好で あった。尚、内径精度はゲージ合わせによる。

[0014]

【表1】

区分	加工数	工具摩耗幅	内径精度	仕上げ面粗さ
本発明例	100個	0.06	良	3 S
	200個	0.08	良	3 S
	400個	0.09	良	3 S
	800個	0.12	良	4 S
比較例	100個	0.08	良	3 S
	200個	0.13	良	5 S
	400個	0.19	不可	8 S

注)内径精度は基準寸法±0.025にたいする評価を 示す

[0015]

【発明の効果】以上のように本発明によれば、すくい角 をネガとし、かつ剛性を補うため芯厚を厚くすることに より、振動・ビビリを防止し、総合的に高性能なコーテ ィングリーマが可能となった。

【図面の簡単な説明】

【図1】図1は本発明品の一例を示し、その説明図であ

【図2】図2は図1の軸直角断面における断面図であ る。

【符号の説明】

- 1 本体
- 2 刃溝
- 3 芯厚
- θ b すくい角
- 30 θc 逃げ角
 - m マージン幅

【図1】

【図2】

フロントページの続き

(72)発明者 石川 圭二

大阪市淀川区野中北1丁目13番20号 日立 ツール株式会社大阪工場内 (72)発明者 後藤 理

大阪市淀川区野中北1丁目13番20号 日立 ツール株式会社大阪工場内