

UNIVERSIDADE SALESIANA DE SÃO PAULO ENGENHARIA ELÉTRICA

Otimização de um Refrigerador Cycle Defrost

Orientador: Professor Marcus Vinícius Ataíde

Evandro Luis Silva Teixeira Gerson Cezar Stein Junior Guilherme Martino

Introdução

Funcionamento do Refrigerador

Objetivos

SISTEMA ON-OFF

Objetivos

ROTAÇÃO DO COMPRESSOR E SUBSTITUIÇÃO DO TERMOSTATO

Objetivos

O Projeto:

- Desenvolver o Hardware
- Desenvolver o Softw

Testes Iniciais

MAPEAMENTO DAS TEMPERATURAS INTERNAS DO REFRIGERADOR

Testes Iniciais

ENSAIO DE CONSUMO ENERGÉTICO

Desenvolvimento do Hardware

Microcontrolador

MCF51MM256

CodeFire 32 bit, 50MHz, ADC 16 bit, DAC 12 bit, 4 Timer

PWM

MC9S08JM60

Circuito de Gravação e Depuração - OSB

• IHM

Display LCD 16x2, 4 Push-Button

• Transdutor de Temperatura

Divisor de Tensão, Buffer LT1013, Termistor NTC

Desenvolvimento do Hardware

Inversor de Frequência

- FSB50250
 500V RMS, 1A, 1500V RMS
- IRAMS10P60A
 600V RSM, 10A, 2000V RMS
- IR3101 500V RMS, 1.6A, 1500V RMS

Desenvolvimento do Software

Linguagem C

IDE CodeWarrior

• O software foi desenvolvido utilizando as boas pratica de desenvolvimento Firmware.

• Maquina de estado,

• Estruturado em Modulo, onde cada modulo é responsável por uma tarefa.

-5,0

0,0

MAPEAMENTO DAS TEMPERATURAS INTERNAS

-15,0

-20,0

-10,0

CONSUMO

Consumo	18,8 kWh/més	NÃO CONFORME
Îndice de eficiência	0,665	* considerando uma tolerância de + 4%
Classe de consumo	Α	classe de consumo real

TESTES DE VALIDAÇÃO DO HARDWARE & SOFTWARE

Conclusão

CUSTO DOS COMPONENTES: \$56,73 PARA LOTE DE 1000 UNIDADES

Agradecimentos

- Primeiramente a Deus por nos ter dado condição e sabedoria.
- As empresas MABE, BIOSENSOR e o Centro Universitário Salesiano de São Paulo nos ter fornecido por todo o material necessário para o desenvolvimento do projeto.

Muito Obrigado!