

AN0055

应用笔记

AT32F4xx ethernet PMT

前言

随著物联网的发展,各式各样的装置都必须具备连网的能力,单晶片也不例外,为此我们以雅特力的 AT32F407系列,演示了一系列的范例,以其用户能基于这些范例,使用雅特力的开发版发展出自己 所需要的功能。

支持型号列表:

支持型号	AT32F407xx
------	------------

目录

1	概述			5
2	使用	说明		6
	2.1	硬件酉	2置	6
	2.2 软件配置		2置	6
		2.2.1	MCU 端	6
		2.2.2	PC 端	7
3	版本	历史		10

表目录

表 1.	默认 RX 脚位	6
表 2 .	文档版本历史	l O

图目录

图 1. AT-START-F407 V1.0 实验板	6
图 2. 配置 RX 脚位	6
图 3. 配置 MII 以及时钟	7
图 4. 配置 IP、网路遮罩及闸道器	7
图 5. PMT 初始化	7
图 6. 设置 PC 端的 IP、网路遮罩及闸道器	8
图 7. 打开 WakeMeOnLan	8
图 8 运行信息打印	9

1 概述

本使用指南展示如何使用 Magic Packet,透过 ethernet 将单片机唤醒,用户可基于这个功能,开发自己想添加的应用。

2 使用说明

2.1 硬件配置

- 1. DM9162 以太网模块
- 2. AT-START-F407 V1.0 实验版
- 3. 以太网线
- 4. PHY 上必須外掛晶振 25MHz 或 50MHz, 根据是 MII 還是 RMII 而定

注: 模块上的电阻是接通默认的RX pin还是复用的RX pin将会影响到软件的配置。

2.2 软件配置

2.2.1 MCU 端

1. 配置 RX GPIO 脚位,工程里使用默认脚位

表 1. 默认 RX 脚位

功能	脚位
ETH_MII_RXD0	PC4
ETH_MII_RXD1	PC5
ETH_MII_RXD2	PB0
ETH_MII_RXD3	PB1

图 2. 配置 RX 脚位

```
/* Configure PC4, PC5, PB0, and PB1 as input */
GPI0_InitStructure.GPI0_Pins = GPI0_Pins_4 | GPI0_Pins_5;
GPI0_InitStructure.GPI0_Mode = GPI0_Mode_IN_FLOATING;
GPI0_Init(GPIOC, &GPI0_InitStructure);

GPI0_InitStructure.GPI0_Pins = GPI0_Pins_0 | GPI0_Pins_1;
GPI0_InitStructure.GPI0_Mode = GPI0_Mode_IN_FLOATING;
GPI0_Init(GPIOB, &GPI0_InitStructure);
```

2. ETH 配置选择 MII 介面,并配置来源时钟

图 3. 配置 MII 以及时钟

```
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_MII);
/* Get 25MHz from system clock 200MHz on PA8 pin (MCO) */
RCC_CLKOUTConfig(RCC_CLKOUT_SYSCLK, RCC_MCOPRE_8);
```

3. 配置 MCU 端的 IP 位置、网路遮罩及闸道器

图 4. 配置 IP、网路遮罩及闸道器

```
IP4_ADDR(&ipaddr, 192, 168, 1, 37);
IP4_ADDR(&netmask, 255, 255, 255, 0);
IP4_ADDR(&gw, 192, 168, 1, 3);
```

4. 在 main loop 中呼叫 ETH_PMTConfiguration(),关闭 EMAC 发送功能,开启 Magic Packet 检测功能,单片机进入 Stop mode

图 5. PMT 初始化

```
woid ETH_PMTConfiguration(void)

EXTI_InitType EXTI_InitStructure;

//Disable transmitter
ETH_DMATransmissionCmd(DISABLE);
ETH_MACTransmissionCmd(DISABLE);

//Disable receiver
ETH_MACReceptionCmd(DISABLE);

ETH_DMAReceptionCmd(DISABLE);

ETH_DMAReceptionCmd(DISABLE);

//Configure external interrupt
EXTI_InitStructure.EXTI_Line = EXTI_Line19;
EXTI_InitStructure.EXTI_LineEmable = EMABLE;
EXTI_InitStructure.EXTI_InieEmable = EMABLE;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
EXTI_Init(EEXTI_InitStructure);

//Enable Magic Packet Detect
ETH_MagicPacketDetectionCmd(ENABLE);

//Emable receiver
ETH_PowerDownCmd(ENABLE);

//Enable receiver
ETH_MACReceptionCmd(ENABLE);

//Enable receiver
ETH_MACRECEPTIONCMd(ENABLE);

//Enter stop mode
SysTick->CTRL = 0x00;
SYSTICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-STICK-ST
```

2.2.2 PC 端

1. 设定 PC 端的 IP 位置、网路遮罩及闸道器

图 6. 设置 PC 端的 IP、网路遮罩及闸道器

IP 位址与闸道器需要跟 MCU 端设置在同一个网域下

2. 打开 PC 端的发送魔术封包的工具,这里使用 WakeMeOnLan

图 7. 打开 WakeMeOnLan

这里需要手动输入单片机的 IP

3. 点击右键选择唤醒此计算机或是按下 F8 键唤醒单片机

图 8. 运行信息打印

唤醒后会不断打印 Free Run

3 版本历史

表 2. 文档版本历史

日期	版本	变更
2019.12.16	1.0.0	最初版本

重要通知 - 请仔细阅读

买方自行负责对本文所述雅特力产品和服务的选择和使用,雅特力概不承担与选择或使用本文所述雅特力产品和服务相关的任何责任。

无论之前是否有过任何形式的表示,本文档不以任何方式对任何知识产权进行任何明示或默示的授权或许可。如果本文档任何部分涉及任何 第三方产品或服务,不应被视为雅特力授权使用此类第三方产品或服务,或许可其中的任何知识产权,或者被视为涉及以任何方式使用任何 此类第三方产品或服务或其中任何知识产权的保证。

除非在雅特力的销售条款中另有说明,否则,雅特力对雅特力产品的使用和/或销售不做任何明示或默示的保证,包括但不限于有关适销性、适合特定用途(及其依据任何司法管辖区的法律的对应情况),或侵犯任何专利、版权或其他知识产权的默示保证。

雅特力产品并非设计或专门用于下列用途的产品: (A) 对安全性有特别要求的应用,如:生命支持、主动植入设备或对产品功能安全有要求的系统; (B) 航空应用; (C) 汽车应用或汽车环境; (D) 航天应用或航天环境,且/或(E) 武器。因雅特力产品不是为前述应用设计的,而采购商擅自将其用于前述应用,即使采购商向雅特力发出了书面通知,风险由购买者单独承担,并且独力负责在此类相关使用中满足所有法律和法规要求。

经销的雅特力产品如有不同于本文档中提出的声明和/或技术特点的规定,将立即导致雅特力针对本文所述雅特力产品或服务授予的任何保证 失效,并且不应以任何形式造成或扩大雅特力的任何责任。

© 2020 雅特力科技 (重庆) 有限公司 保留所有权利