(Q6)

Theorem 1. Prove the following statement is true, by proving its contrapositive is true.

"If
$$x + y \notin \mathbb{Q}$$
, then $x \notin \mathbb{Q}$ or $y \notin \mathbb{Q}$."

Proof. The given statement can be expressed mathematically as:

$$x + y \notin \mathbb{Q} \Rightarrow x \notin \mathbb{Q} \text{ or } y \notin \mathbb{Q}$$

The contrapositive of which is:

$$x \in \mathbb{Q}$$
 and $y \in \mathbb{Q} \Rightarrow x + y \in \mathbb{Q}$

By the definition of rational numbers, we can assign values to x and y as such:

Let
$$x = \frac{a}{b}, y = \frac{c}{d}$$
, where $a, b, c, d \in \mathbb{Z}$ and $b, d \neq 0$.

Therefore,

$$x + y = \frac{ad}{bd} + \frac{bc}{bd}$$
$$= \frac{ad + bc}{bd}$$

This holds because $b, d \neq 0$, thus $bd \neq 0$.

We assume that the set of integers is closed under addition and multiplication, thus ad, bc, and $ad + bc \in \mathbb{Z}$.

Therefore, $\frac{ad+bc}{bd}$ is a rational number, which means the contrapositive is true, and thus the original statement.