

Image Super-Resolution Models

Alexandros Avramis s222751, Thomas Chiras s212859, Nikolaos Stefanidis s212472 and Spyridon Vlachospyros s213160

DTU Compute

Department of Applied Mathematics and Computer Science

Proof of concept on MNIST

Idea: In order to prove that our idea is valid we began our investigation on an easy to train dataset like MNIST

Goal: Train a VAE aiming to create a network that can increase the resolution of the input image

• Handwritten digits from 0-9

• Consists of 1x28x28 black and white image

- Linear VAE

- Initial VAE network trained with linear layers
- Encoder with 4 hidden linear layers
- Decoder with 4 hidden linear layers
- Trained for 150 epochs with 0.001 lr and 64 batch

Results

Images/ metrics	PSNR	MSE	SSIM
Input-target	64.8	0.022	0.74
Output- target	65.9	0.02	0.79

Conv VAE

- VAE with convolutional layers
- Encoder with 5 hidden convolutional layers
- Bottleneck with 3 linear layers (894 features)
- Decoder with 5 hidden Trans-convolutional layers
- Trained for 150 epochs with 0.001 lr and 64 batch

Images/ metrics	PSNR	MSE	SSIM	0 *
Input- target	64.8	0.022	0.74	10 -
Output- target	68.8	0.009	0.90	Ó

Results

Target Output

STL-10 Dataset

Idea: After proving that out initial idea is working on the MNIST dataset we tried to follow the same test in a more complex dataset like STL-10

The dataset

Consists of 100k 3x96x96 images from ImageNet splitting into 10 classes: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck

Linear VAE

- Trained a VAE model with linear layers on STL
- Rescale the images to 3x64x64 due to lack of computational power.
- Encoder with 5 hidden linear layers
- Decoder with 5 hidden linear layers
- Trained for 150 epochs with 0.001 lr and 64 batch

The architecture of the VAE is the same as the one we use for the MNIST dataset.

Results

Images/ metrics	PSNR	MSE	SSIM		F 198	
Input- target	72.03	0.004	0.90			
Output- target	63.07	0.036	0.36	Input	Output	Target

Conv VAE

Output-

target

66.2

- VAE with convolutional layers on STL-10
- Encoder with 5 hidden convolutional layers
- Bottleneck with 3 linear layers (894 features)
- Decoder with 5 hidden Trans-convolutional layers
- Trained for 150 epochs with 0.001 lr and 64 batch

Images/ **PSNR** metrics Input-72.03 0.004 0.90 target

Output

Convolution Network

Architecture

Idea: By keeping the shape of the image constant and expanding the channels, the model would be able to accommodate larger detail in the structures of the image

Results

Images/ metrics	PSNR	MSE	SSIM
Input- target	66.47	0.02	0.78
Output- target	69.23	0.008	0.82

▶ Pre-trained SR-Convolution Networl

Idea: SRCNN is a type of convolution network that tries to convert a low-resolution input image to a high-resolution output. The network consists of 3 main layers: the patch extraction layer, the Non-linear mapping layer and the reconstruction layer. The network is targeting only the Y channel of each image.

SRCNN architecture

