Minimisation d'un automate

Lucas Willems

30 novembre 2016

Introduction

Problème

Trouver l'automate avec un nombre minimal d'état reconnaissant un langage L donné.

Definition (Congruence de Nerode)

Soit $\mathcal{A}=(Q,\Sigma,i,F,\delta)$ déterministe. La congruence de Nerode est définie pour tous états q et q' par :

$$q \sim q' \Longleftrightarrow \forall w \in \Sigma^* \ (q \cdot w \in F \Leftrightarrow q' \cdot w \in F)$$

Proposition

Soit \mathcal{A} un automate déterministe acceptant L. L'automate minimal $\mathcal{A}_{\mathcal{L}}$ est égal à \mathcal{A}/\sim où \sim est la congruence de Nerode de \mathcal{A} .

Reformulation du problème

Trouver la congruence de Nerode d'un automate reconnaissant L.

L'algorithme itératif

Définition & Proposition

Soit $\mathcal{A}=(Q,\Sigma,i,F,\delta)$ déterministe. On définit les relations d'équivalences $(\sim_i)_{i\in\mathbb{N}}$ sur Q par :

$$q \sim_0 q' \Longleftrightarrow (q \in F \leftrightarrow q' \in F)$$

 $q \sim_{i+1} q' \Longleftrightarrow q \sim_i q' \text{ et } \forall a \in \Sigma \ q \cdot a \sim_i q' \cdot a$

Et on a: $\forall i \geq |Q| \sim_i = \sim$

Algorithme & Complexité (Itératif)

Etats	q_1	q_2	q 3	q 4	q 5	q 6	q 7	q 8
\overline{q}_i	1	1	1	3	2	3	4	2
$\overline{q \cdot a_i}$	2	2	3	2	2	2	4	2
$\overline{q \cdot b_i}$	3	3	3	1	3	1	4	2
\overline{q}_{i+1}	1,2,3	1,2,3	1,3,3	3,2,1	2,2,3	3,2,1	4,4,4	2,2,2

La complexité est en $O(|\Sigma||Q|^2)$.

L'algorithme d'Hopcroft (définitions & lemmes)

Definition (Stabilité et coupure)

Soit $\mathcal{A} = (Q, \Sigma, i, F, \delta)$ déterministe. Soit $a \in \Sigma$ et $B, C \subset Q$. On pose $B_1 = \{q \in B \mid q \cdot a \in C\}$ et $B_2 = \{q \in B \mid q \cdot a \notin C\}$. On définit :

- Si $B_1 = \emptyset$ ou $B_2 = \emptyset$, alors B est **stable** pour (C, a).
- Sinon, B est **coupé** par (C, a) en B_1 et B_2 .

Lemme

Soit $B, C \subset Q$, $C = C_1 \uplus C_2$ et $a \in \Sigma$.

- **1** B stable pour (C_1, a) et $(C_2, a) \Rightarrow B$ stable pour (C, a)
 - ② B stable pour $(C, a) \Rightarrow (B \text{ stable pour } (C_1, a) \Leftrightarrow B \text{ stable pour } (C_2, a))$

$$P = \{\}$$
$$S = \{\}$$

$$P = \{\}$$
$$S = \{\}$$

Initialisation

$$P = \{ \bullet, \bullet \}$$

$$S = \{(\bullet, 0), (\bullet, 1), (\bullet, 0), (\bullet, 1)\}$$

$$\xrightarrow{\text{Lemme}} S = \{(\bullet, 0), (\bullet, 1), (\bullet, 0), (\bullet, 1)\}$$

$$P = \{ \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0) \}$$

$$B = \bullet$$

$$P = \{ \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0) \}$$

$$B = \bullet \longrightarrow B$$
 est coupé en $\{f\}$ et $\{a, b\}$

$$P = \{ \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0) \}$$

$$B = \bullet \longrightarrow B$$
 est coupé en $\{f\}$ et $\{a, b\}$

$$P = \{ \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0) \}$$

$$B = \bullet$$
 \longrightarrow B est coupé en $\{f\}$ et $\{a, b\}$
 $B = \bullet$ \longrightarrow B est stable

$$P = \{ \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0) \}$$

$$B = \longrightarrow B$$
 est coupé en $\{f\}$ et $\{a, b\}$
 $B = \longrightarrow B$ est stable

$$B = \longrightarrow B \text{ est stable}$$

$$P = \{ \bullet, \bullet, \bullet \} \text{ avec } \bullet = \bullet \uplus \bullet$$

$$\Rightarrow \begin{cases} S = \{(\bullet, 0), (\bullet, 0), (\bullet, 0), (\bullet, 1), (\bullet, 1)\} \\ S = \{(\bullet, 0), (\bullet, 0), (\bullet, 0), (\bullet, 1), (\bullet, 1)\} \end{cases}$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0), (\bullet, 0) \}$$

$$B =$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0), (\bullet, 0) \}$$

Traitement de (• , 1)
$$B = \bullet \longrightarrow B$$
 est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0), (\bullet, 0) \}$$

$$B =$$
 \longrightarrow $B \text{ est stable}$

$$B = \bullet$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0), (\bullet, 0) \}$$

$$B =$$
 \longrightarrow B est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (-\bullet, 1), (\bullet, 0), (\bullet, 0) \}$$

$$B = \longrightarrow B$$
 est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$B = \bullet$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 1), (\bullet, 0), (\bullet, 0) \}$$

$$B = \longrightarrow B$$
 est stable $B = \longrightarrow B$ est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0), (\bullet, 0) \}$$

$$B =$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0), (\bullet, 0) \}$$

Traitement de (• , 0) $B = \bullet \longrightarrow B$ est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0), (\bullet, 0) \}$$

$$B =$$
 \longrightarrow B est stable

$$B = \bullet$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0), (\bullet, 0) \}$$

$$B =$$
 \longrightarrow B est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0), (\bullet, 0) \}$$

$$B = \longrightarrow B$$
 est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$B = \bullet$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0), (\bullet, 0) \}$$

$$B =$$
 \longrightarrow B est stable

$$B = \bullet \longrightarrow B$$
 est stable $B = \bullet \longrightarrow B$ est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0) \}$$

$$B =$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0) \}$$

Traitement de (\bullet , 1) $B = \bullet \longrightarrow B$ est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0) \}$$

$$B =$$
 \longrightarrow $B \text{ est stable}$

$$B = \bullet$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0) \}$$

$$B =$$
 \longrightarrow B est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0) \}$$

$$B = \longrightarrow B$$
 est stable

$$B = \bullet \longrightarrow B$$
 est stable

$$B = \bullet$$

$$P = \{ \bullet, \bullet, \bullet \}$$

$$S = \{ (\bullet, 0) \}$$

$$B = \bullet \longrightarrow B$$
 est stable $B = \bullet \longrightarrow B$ est stable

L'algorithme d'Hopcroft (algorithme)

Algorithme (Hopcroft)

```
Data: A = (Q, \Sigma, i, F, \delta) déterministe
P = \{F, Q \mid F\}
S = \{(\min(F, Q \setminus F), a) \mid a \in \Sigma\}
while S \neq \emptyset do
    Prendre et supprimer un élément (C, a) de S
    for B \in P coupé en B_1 et B_2 par (C, a) do
        Remplacer B par B_1 et B_2 dans P
        for b \in \Sigma do
            if (B, b) \in S then
                 Remplacer (B, b) par (B_1, b) et (B_2, b) dans S
            else
                Ajouter (min(B_1, B_2), b) dans S
            end
        end
    end
```

L'algorithme d'Hopcroft (terminaison)

A chaque passage dans la boucle while :

- Soit la partition est raffinée
- Soit S perd un élément

Comme la partition ne peut être raffinée qu'un nombre fini de fois, S va finir par être vide. Ainsi, le programme termine.

L'algorithme d'Hopcroft (correction)

A chaque passage dans la boucle while, l'invariant suivant est respecté :

- Tout (B, a) de $(P \times \Sigma) \setminus S$ laisse stable tous les éléments de P
- $ext{@} \ orall (q,q') \in Q^2, L_q = L_{q'} \ \Rightarrow \ \overline{q} = \overline{q'} \qquad ext{où}$
 - \overline{q} est l'unique $B \in P$ tel que $q \in B$
 - $L_q = \{ w \in \Sigma^* \mid q \cdot w \in F \}$

En sortant de la boucle while, on a alors :

- Tout (B, a) de $(P \times \Sigma)$ laisse stable tous les éléments de P
- $\forall (q, q') \in Q^2, L_q = L_{q'} \Rightarrow \overline{q} = \overline{q'}$

Ce qui donne :

$$\forall (q,q') \in Q^2, \overline{q} = \overline{q'} \Leftrightarrow L_q = L_{q'}$$

On obtient bien la congruence de Nerode.

L'algorithme d'Hopcroft (complexité)

La complexité des instructions dans la boucle *while* pour un séparateur (C,a) est en $O(|a^{-1}C|)$ où $a^{-1}C=\{q\in Q\,|\, q\cdot a\in C\}$ car on peut :

- Obtenir et parcourir les éléments de $a^{-1}q$ en $O(|a^{-1}q|)$.
- Obtenir et parcourir les éléments de $a^{-1}C$ en $O(|a^{-1}C|)$.
- Obtenir \overline{q} et $|\overline{q}|$ en temps constant pour $q \in Q$.
- Obtenir la liste des éléments de P coupés par (C, a) en $O(|a^{-1}C|)$.

Pour $a \in \Sigma$ et $q \in Q$, notons $C_1,...,C_k$ toutes les parties contenant q traitées par l'algorithme, classées par ordre de traitement. Alors, par construction, $\forall i \in \llbracket 1,k-1 \rrbracket, |C_{i+1}| \leq \frac{|C_i|}{2}$ donc $k \leq \log_2(|Q|)$.

Ainsi, la complexité de l'algorithme est en $O(|\Sigma||Q|\log_2(|Q|))$ car :

$$\begin{split} \sum_{(C,a) \text{ trait\'ee}} O(|a^{-1}C|) &= \sum_{\substack{q \in Q \\ a \in \Sigma}} O(|\{(C,a) \,|\, (C,a) \text{ trait\'ee et } q \cdot a \in C\}|) \\ &= \sum_{\substack{q \in O}} O(\log_2(|Q|)) = O(|\Sigma||Q|\log_2(|Q|)) \end{split}$$

Lien avec l'algorithme de Brzozowski (algorithme 1)

Lemme

Soit $\mathcal{A}=(Q,\Sigma,i,F,\delta)$ déterministe reconnaissant L. Alors, D(R(A)) est l'automate minimal reconnaissant L^r , où D donne le déterminisé, R le miroir et L^r le langage miroir de L.

Algorithme & Complexité (Brzozowski naïf)

Data: $A = (Q, \Sigma, i, F, \delta)$ déterministe A' = D(R(D(R(A))))

La complexité est en $O(|\Sigma| \exp(|Q|))$.

Lien avec l'algorithme de Brzozowski (algorithme 2)

L'algorithme précédent est nettement améliorable! Un algorithme présenté dans <u>DFA minimization : from Brzozowski to Hopcroft</u> est polynomial. Essayons de le comprendre intuitivement.

Prenons $\mathcal{A} = (Q, \Sigma, i, F, \delta)$ déterministe. L'idée est la suivante :

- Considérer que l'automate minimal a 2 états : $P = \{F, Q \setminus F\}$. Initialiser une liste d'état à tester : $S = \{(F, a) \mid a \in \Sigma\}$.
- ② Pour $(F,a) \in S$, regarder si les états de l'automate D(R(A)) obtenus en lisant une seule lettre a depuis l'état initial I se trouvent dans les états déjà présents dans l'automate minimal (i.e. regarder si (F,a) coupe F et $Q \setminus F$). Ainsi, 2 cas :
 - Soit les états s'y trouvent, alors l'automate est bien minimal.
 - Soit ils ne s'y trouvent pas tous, alors l'automate n'est pas encore minimal. Du coup, on raffine les états et on ajoute dans S les états qui ne se trouvaient pas dans l'automate.
- Recommencer 2 en prenant un autre élément de S.

Lien avec l'algorithme de Brzozowski (algorithme 2)

Algorithme & Complexité (Brzozowski amélioré)

```
Data: A = (Q, \Sigma, i, F, \delta) déterministe
P = \{F, Q \mid F\}
S = \{(\min(F, Q \setminus F), a) \mid a \in \Sigma\}
while S \neq \emptyset do
    Prendre et supprimer un élément (C, a) de S
    P' = P
    for B \in P coupé en B_1 et B_2 par (C, a) do
         Remplacer B par B<sub>1</sub> et B<sub>2</sub> dans P
    end
    if P \neq P' then
        for b \in \Sigma do
          | Ajouter (a^{-1}C, b) dans S
         end
    end
```

La complexité est en $O(|\Sigma||Q|^2)$.

end

Conclusion

- Le meilleur algorithme conçu est celui d'Hopcroft avec une complexité en $O(|\Sigma||Q|\log_2(|Q|))$.
- Les algorithmes d'Hopcroft et de Brzozowski a priori différents se ressemblent beaucoup au niveau de leur implémentation.