Semaine n° 26 : du 8 avril au 12 avril

Lundi 8 avril

• Cours à préparer : Chapitre XXV - Probabilités sur un univers fini

Les définitions des parties 1.1 et 1.2 sont à connaître parfaitement.

- Partie 1.1 : Expérience aléatoire, univers, événement ; événement impossible, événement certain ; événements incompatibles ; événements deux à deux incompatibles, mutuellement incompatibles.
 - Variable aléatoire, univers image; pour une variable aléatoire X, événement $(X \in A)$; si X est réelle, événements (X = x), $(X \le x)$, etc.
 - Système complet d'événements; système complet d'événements $(X=x)_{x\in X(\Omega)}$
- Partie 1.2 : Probabilité sur un univers fini, espace probabilisé fini; événement presque sûr, événement négligeable; probabilité uniforme; propriétés d'une probabilité; formule des probabilités totales; détermination par les images des événements élémentaires.
- Partie 1.3 : Probabilité conditionnelle ; si B est un événement de probabilité non nulle, P_B est une probabilité ; formule des probabilités composées, formule des probabilités totales ; formules de Bayes.
- Exercices à traiter en TD
 - Feuille d'exercices n° 24 : exercices 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17.

Mardi 9 avril

- Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 1.4 : Couple d'événements indépendants; famille finie d'événements mutuellement indépendants.
- Exercices à corriger en classe
 - Feuille d'exercices nº 24 : exercices 10, 12, 13.

Jeudi 11 avril

- Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 2.2 : Loi d'une variable aléaoire; image d'une variable aléatoire X par une application f, loi de f(X); loi conditionnelle.
 - Partie 2.4 : Loi uniforme; loi de Bernoulli; loi binomiale.
- Exercices à corriger en classe
 - Feuille d'exercices nº 24 : exercices 11, 14, 15.

Vendredi 12 avril

- \bullet Cours à préparer : Chapitre XXV Probabilités sur un univers fini
 - Partie 2.5 : Couple de variables aléatoires; loi conjointe, lois marginales.
 - $Partie\ 2.6$: Variables aléatoires indépendantes; lemme des coalitions; somme de n variables aléatoires mutuellement indépendantes de même loi de Bernoulli.

Échauffements

Mardi 9 avril

• Cocher toutes les assertions vraies :

Soit *n* un entier ≥ 3 et $E = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n ; x_1 = x_2 = \dots = x_n\}.$

 $\Box \dim E = n - 1. \qquad \Box \dim E = 1.$

 $\Box \dim E = n. \qquad \Box E = \mathbb{R}.$

• Cocher toutes les assertions vraies : Dans $\mathbb{R}_3[X]$, l'espace des polynômes à coefficients réels de degré ≤ 3 , on considère les deux sous-espaces vectoriels :

 $E = \{ P \in \mathbb{R}_3[X] ; P(0) = P(1) = 0 \} \text{ et } F = \{ P \in \mathbb{R}_3[X] ; P'(0) = P''(0) = 0 \},$

où P' (resp. P'') est la dérivée première (resp. seconde) de P.

 $\Box \dim E = 3. \qquad \Box E + F = \mathbb{R}_3[X].$

 \square dim F=1. \square E et F sont supplémentaires dans $\mathbb{R}_3[X]$.

Jeudi 11 avril

• Cocher toutes les assertions vraies : Soit l'espace vectoriel $E = \mathbb{R}^3$. On note $\mathcal{B} = (e_1, e_2, e_3)$ sa base canonique. Soit f l'endomorphisme de E défini par

 $\forall (x, y, z) \in E, f(x, y, z) = (x + 3z, 0, y - 2z)$

 $\Box f(e_1) = e_1 + 3e_3, f(e_2) = 0, f(e_3) = e_2 - 2e_3.$

 $\Box f(e_1) = e_1, f(e_2) = e_3, f(e_3) = 3e_1 - 2e_3.$

 \Box f est de rang 3 car E est de dimension 3.

 \Box f est de rang 2 car (e_1, e_3) est une base de Im f.

 $\square \operatorname{Ker} f = \{0\}.$

 \square Ker f est de dimension 1 car dim Ker $f = \dim E - \operatorname{rg} f$.

 \square Ker f est un sous-espace vectoriel de Im f car dim Ker $f \leq \dim \operatorname{Im} f$.

 $\ \, \square \ \, \text{L'égalit\'e} \ll \dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f \gg \text{suffit pour affirmer que Im} \, f \text{ et Ker} \, f \text{ sont supplémentaires}.$

 \Box f est surjective.

 \Box f est injective.

Vendredi 12 avril

• Soit $u: x \mapsto \frac{1}{x} \ln(x + \cos x)$ et $f: x \mapsto (x + \cos x)^{1/x}$. On note $\mathscr C$ la courbe représentative de f.

 \square Pour obtenir un $DL_2(0)$ de f, il suffit de prendre un $DL_2(0)$ de $\ln(x + \cos x)$.

 $\Box f(x) = e^{u(x)}$ donc, si $u(x) = \alpha + \beta x + \gamma x^2 + o(x^2)$ au voisinage de 0, alors :

 $f(x) = 1 + p(x) + \frac{p(x)^2}{2!} + o(x^2)$ où $p(x) = \alpha + \beta x + \gamma x^2$

 \Box Le $DL_2(0)$ de f est : $f(x) = e\left[1 - x - \frac{4}{3}x^2\right] + o\left(x^2\right)$.

 \square Du $DL_2(0)$ de f, on déduit un prolongement par continuité de f en 0 en une fonction dérivable en 0, et un positionnement de $\mathscr C$ au-dessus de sa tangente au point d'abscisse 0.

• Cocher toutes les assertions vraies : Soit E et F deux \mathbb{R} -espaces vectoriels de dimensions finies et f une application linéaire de E dans F. On pose dim E = n et dim F = m.

 \square Si f est injective, alors $n \leq m$. \square Si f est surjective, alors $n \geq m$.

 \square Si $n \leq m$, alors f est injective. \square Si $n \geq m$, alors f est surjective.