AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Please cancel claims 4 and 5 without prejudice or disclaimer, and add new claim 7.

1. (Currently amended) An electronic control apparatus comprising:

a plurality of power source circuits providing a plurality of power sources of a plurality of different voltages; and

a microcomputer,

wherein any one of the plurality of power sources is used as a power source of the microcomputer, and

wherein the microcomputer is reset <u>immediately</u> when it is detected that any one of the plurality of power sources is not set to a voltage in respective specified ranges by checking whether the plurality of power sources are respectively set to the voltages in the specified ranges.

2. (Currently amended) An electronic control apparatus as in claim 1, wherein:

the microcomputer has a CPU, a peripheral circuit, an analog-digital converting unit, a reset control unit and an oscillation circuit;

the power source circuits have a first power output circuit outputting a first voltage that is applied to the peripheral circuit and the analog-digital converting unit, and a second power output circuit outputting a second voltage that is lower than the first voltage and applied to the reset control unit, the oscillation circuit and the CPU;

a first voltage abnormality detecting circuit is provided for detecting that the first voltage is lower than a specified voltage thereof;

a second voltage abnormality detecting circuit is provided for detecting that the second voltage is lower than a specified voltage; and

the microcomputer is reset <u>immediately</u> when any one of the first voltage and the second voltage is detected to be lower than the first specified voltage and the second specified voltage by any one of the first and second abnormality detecting circuits.

3. (Currently amended) An electronic control apparatus as in claim 2, wherein:

a first current abnormality detecting unit is provided for detecting that a current flowing into the first power output circuit is outside a first specified range; and a second current abnormality detecting unit is provided for detecting that a current flowing into the second power output circuit is outside a second specified range,

wherein the microcomputer is reset <u>immediately</u> when any one of the currents flowing into the first power output circuit and the second power output circuit is detected as being outside the first specified range and the second specified range by any one of the first current abnormality detecting circuit and the second current abnormality detecting circuit.

- 4. (Canceled).
- 5. (Canceled).

6. (Currently amended) An electronic control apparatus comprising:

a plurality of power source circuits providing a plurality of power sources of a plurality of different voltages;

a microcomputer; and

detecting means for detecting that the plurality of the power sources are set to respective specified voltages when the plurality of power sources are driven,

wherein any one of the plurality of power sources is used as the power source of the microcomputer, and

wherein the microcomputer is reset <u>immediately</u> when it is detected that any one of the power sources reaches the respective specified voltages.

7. (New) An electronic control apparatus comprising:

first and second power source circuits providing first and second power sources with first and second voltages different from one another, respectively;

a microcomputer connected to the first and second power source circuits and operable with the first and second voltages;

a first abnormality detection circuit for detecting an abnormal value of the first voltage and an abnormal value of a first current in the first power source circuit, the abnormal levels of the first voltage and the first current being outside predetermined first voltage and current ranges, respectively;

a second abnormality detection circuit for detecting an abnormal value of the second voltage and an abnormal value of a second current in the second power source circuit, the abnormal values of the second voltage and the second current being outside predetermined second voltage and current ranges, respectively; and

a reset control circuit for immediately resetting the microcomputer in response to an abnormality signal generated by either of the first and the second abnormality detection circuits.