MATIGO EXAMINATIONS BOARD

545/2 CHEMISTRY

MARKING GUIDE 2023

PAPER 2

Qn	Answer	Mar
1/ \	A + 0 00A N	ks
1(a)	At: 8:00Am No colour change because cobolt (II) chloride is still a solid and has not dissolved.	03
	Acc: No observable change 10:00Am: The bottom is more coloured because the concentration of cobalt (II) Chloride molecules are high at the	
	bottom.	
	acc: continous random	
	After 2days.	
	The pink colour is uniformly distrivuted because the water molecules are in constant random motion thus move	
	the cobalt (II) Chloride particles ore evenly spread.	
(b)	A roveysible chamical reaction. (reversible reaction)	
\	Blue to pink	
2	(i) R ₁ //	
_		
	$\begin{pmatrix} (iii) & 1 & 0 \\ (iv) & Q & 1 \end{pmatrix}$	
0()		
3(a)	$2H_2O_{2(l)}$ \longrightarrow $2H_2O_{(l)} + O_{2(g)}$	
	reject: if not balanced	
	reject $\frac{1}{2}$ if no states	
/**\		
(ii)	(i) Addition of Manganese (IV) oxide catalyst. 🗸	

	(ii) Increasing temperature for the reaction.				
(1) (1)	(iii) Using more concentrated hydrogen peroxide.				
(b) (i)	It continued to burn with a white bright fame to form a white ash (solid)				
(ii)	$2Mg_{(s)} + O_{2(s)} \longrightarrow 2MgO_{(s)}$				
4(a)	$2Cu_{(s)} + O_{2(s)} \longrightarrow 2CuO_{(s)}$				
(b)	$KNO_{3(s)}$ \longrightarrow $KNO_{2(s)} + O_{2(g)}$				
(c)	$2NaHCO_{3(s)} \longrightarrow Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(l)}$				
(d)	$2Zn(NO_3)_{2(s)} \longrightarrow 2ZnO_{(s)} + 4NO_{2(s)} + O_{2(s)}$				
(e)	$2Mg_{(s)} + O_{2(g)} \longrightarrow 2MgO_{(s)}$				
5(a)	Isotopes are atoms of the same element with same atomic number but different mass number				
(b)(i)	^{12}C ang ^{14}C				
(ii)	$\frac{12}{6}C\sqrt{\frac{acc:C-12}{}}$				
(iii)	Hydrogen ,Oxygen,∕magnesium, sodium any 1 ✓				
(iv)	16 0 18 0 V				
6(a)	Elements: Fe S O H2O.				
	Percentage composition: 20.2 11.5 23 45.3				
	Moles: $\frac{20.2}{56}$ $\frac{11.5}{32}$ $\frac{23}{16}$ $\frac{45.3}{18}$				
	56 32 16 18				
	0.3607				
	Mole ratio $\frac{0.3607}{0.3594}$ $\frac{0.3594}{0.3594}$ $\frac{1.4375}{0.3594}$ $\frac{2.517}{0.3594}$				
	$1 : 1 : 4 : 7 \checkmark$				
	Therefore; Empirical formula of T is FeSO ₄ .7H ₂ O. \checkmark				

(b)	Molecular formula = (Empirical formula)n			
	$278 = (FeSO_4.7H_2O)n$			
	$270 = (56 + 32 + 16 \times 4 + 7 \times 18)n$			
	278 = 278n ✓			
	$n = \frac{278}{278} = 1.$			
	\checkmark			
	Therefore; molecular formula of T is FeSO _{4.7} H ₂ O ₂ V			
(c)	$Fe^{2+}(aq)$ \longrightarrow $Fe^{3+}(aq) + e$. \bigvee	05		
7(a) (i)	The black solid turns to Frown residue			
	reject: black precipitate			
(ii)	It's a reducing agent			
	reject: reduction reaction.			
(b)	R. F. m of CuO = $64 + 16 = 80$	05		
	3 moles CuO reacted with 2 mole NH_3			
	$3 \times 80 g CuO \ reacted \ with \ 2 \times 22.4 dm^3$			
	14.4g CuO reacted with $\frac{14.4 \times 2 \times 22.4}{80 \times 3} = 2.688 dm^3$			
	80 × 3			
8(a)(i)	Fermentation Combustion			
O(a)(1)	Enzyme zymase is required. No enzyme is required.			
	Heat energy produced does not go beyond 60°C Heat energy produced goes beyond 60°C.			
(ii)	 Used in the manufacture of medicine. 			
(11)	 Used as a disinfectant in hand washing. 			
	Used to sterilize surgical equipment in any hospital			
	• It's used as a beverage.			
(b)	Photosynthesis.			
	R.F.M of $C_6H_{12}O_6 = 12 \times 6 + W2 + 6 \times 16$			
	= 180.			
(c)	2800J of heat were produced by 180g.			
	14,000 x 1000J of heat produced by $\frac{180 \times 14,000 \times 1000}{2800}$ g			
	2800			
	= 900,000g.			
	1000g is equivalent to $1kg$.			

		900,0	$000g$ is equivalent to $\frac{900,000 \times 1}{1000}$ kg		
		Therefore;	= 900kg. 900kg of sugar would produce14,000KJ.	X	
9(a)(i)	Cathode. Bubbles of a colorless g	as that burns with a	pop – sound.	reject: glowing splint	
(ii)	Anode; A green – yellow gas th 1:1	at turns a blue litm	us paper red then bleaches it.		
(b)(i)	2Cl _(aq) Cl	2(g) + 2e			
(ii)	Cl ₂ + 2KBr _(aq)	-	r _{2 (aq).}		
(iii)	Graphite is cheap and		<i>y</i> .	Emphasize this	
10	(i) Haematite (ii) Hot air (iii) wrought iron/pig (iv) -Cheap -It's a strong red			·	
			SECTION B		
11(a)	Name: Sodium Carbona Formulae: Na ₂ CO ₃	yte. V			
(b)	Compounds: Mass composition	$ m Na_2CO_3 \ 2.7$	$^{ m H_2O}_{4.59}$		
	Moles	²⁷ / ₁₀₆	4.59/18		
		0.025	0.255		
	Mole ratio	0.025 0.025	$\frac{0.255}{0.255}$		

	1 1 10	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(ii)	Sodium Carbonate decahydrated. reject: formula	
(c)(i)	Sodium Carbonate and Zinc nitrate.	
(ii)	$Na_2CO_{3(aq)} + Zn(NO_2)_{(aq)} \longrightarrow ZnCO_{3(s)} + 2NaNO_{3(aq)} $	
(d)	A white solid decomposes to give a yellow residue when hot and white on cooling.	
	e.g. $\operatorname{ZnCO3}_{(s)} \longrightarrow \operatorname{ZnO}_{(s)} + \operatorname{CO}_{2(g)}$	
(e)(i)	Reagent: Ammonia solution. Observations: Zinc ions: a white precipitate soluble in excess to form a colourless solution. Lead (II) ions: A white precipitate insoluble in excess.	15
10()(1)		
12(a)(i)	Thermal decomposition is the heating of a substance to decompose to simpler stable substances, $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$	
(1.1)		
(ii)	To a solution containing calcium ions, and a few drops of ammoria solution. Observation: No observable change.	
(b)(i)	Thistle funnel Gas syringe $W/A = 1$ Reject; for poor diagram No clamp on the syringe Conical flask Stop Clock Alcium carbonate	
(c)	(i) The rate of reaction decreases.	
	(ii) The rate of reaction increases.	
(d)	(i) A hydrocarbon is a compound which consists of carbon and hydrogen atoms only.	
	(ii) Alkane. V X	
	(iii) Carbon monoxide and water. V	

(e)	(i) Used in the preservation of fizzy drinks.						
	(ii) Used in the manufacture of fire extinguishers.						
	(iii) Used as a refrigerate						
13(a)	(i) Soap is sodium or potassium salt of a long chain carboxylic acid.						
	(ii) Saponification.						
(b)	(i) Sim sim, G/nuts, coconut, maton fat.						
	(ii) Sodium hydroxide or potassium hydroxide.						
	\checkmark Any 1						
(c)(i)	A fixed volume of a known concentration of sodium hydroxide is mixed with a fixed volume of sim sim oil.						
	The mixture is stirred and heated on fire until frothing stops						
	$NaOH_{(aq)} + RCOOR^1$ \nearrow $RCOONa_{(aq)} + R^1OH$						
	Concentrated sodium/chloride colution is added to precipitate soap out.						
	The soap solid formed is filtered off and purified then treated with perfumes and dyes.						
	OR						
	Solid soap is filtered off from excess solution and heat in an oven.						
(ii)	Rain water: lather was easily formed:						
	A white precipitate was formed.						
	$Ca^{2+}_{(aq)} + 2St_{(aq)} \longrightarrow CaSt_{2(s)}$						
(d)	Temporary hard water \						
14(a)	(i) Molarity is the number of moles of a substance contained in one litre of solution.						
(00)	(ii) Standard solution is a solution of a known concentration						
	(iii) Primary standard: is a compound used to prepare a standard solution.						
(b)(i)	1000cm³ HCl contains 0.12moles.						
, , , ,	20.0 \(\text{V} \)						
	$ \begin{array}{c c} 20.8 \text{cm}^3 \text{ HCl contains} & \frac{20.8 \times 0.12}{1000} \\ 2.496 \times 10^{-3} \text{ moles.} \end{array} $						
	2.490 × 10 moles.						
	Mole ratio:						
	Mole ratio: $Na_2CO_{3(s)} + 2HCl(aq)$ \longrightarrow $2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$						
	$\begin{array}{ccc} & \text{Na}_2\text{CO}_{3(s)} + 2\text{HCI}(aq) & \longrightarrow & 2\text{NaCI}_{(aq)} + \text{H}_2\text{O}_{(l)} + \text{CO}_{2(g)} \\ & \text{Mole ratio} & A: B \end{array}$						
	$\begin{array}{c} \text{Niole ratio} A \cdot B \\ 2 : 1 \end{array}$						
	2 Moles HCl react with 1 mole Na ₂ CO ₃						
	2 moles from reactivities mayous						

END

(+256780413120)

