Algorithms for Programming Contests - Week 4

Tobias Meggendorfer, Philipp Meyer, Christian Müller, Gregor Schwarz conpra@in.tum.de

07.11.2018

Graphs

A weighted graph is a tuple G = (V, E, c), where

- *V* is a non-empty set of *vertices*,
- E is a set of edges,
- $c: E \to \mathbb{R}$ is the weight function.

A directed graph is a graph with $E \subseteq V \times V = \{(u, v) \mid u, v \in V\}$.

An undirected graph is a graph with $E \subseteq \{\{u, v\} \mid u, v \in V\}$.

A path from v_1 to v_n is a sequence $p = v_1 v_2 \dots v_n$ such that $(v_i, v_{i+1}) \in E$ for all $i \in [1, n-1]$, and $v_i \neq v_i$ for all $i \neq j$.

The length of a path is the sum of its edge weights.

Shortest Path Problem - Classification

- Single Pair Shortest Path (SPSP): Find the shortest path between s and t.
- Single Source Shortest Path (SSSP):
 Find the shortest path between s and all the other nodes.
- All Pairs Shortest Path (APSP):
 Find the shortest path between any pair of nodes.

Shortest Path Problem - Applications

- transportation
- networking and telecommunication
- six degrees of separation
- plant and facility layout
- . . .

- Published by Edsger W. Dijkstra in 1959
- Dijkstra's Algorithm solves the SSSP.

Find the shortest path between s and t!

Algorithm 1 Dijkstra's Algorithm

```
Input: Graph G = (V, E, c)
  procedure Dijkstra(G, src)
      for each vertex v \in V do
           \operatorname{dist}[v] \leftarrow \infty, \operatorname{prev}[v] \leftarrow null
      end for
      dist[src] \leftarrow 0
       PQ \leftarrow PriorityQueue over V
      for each vertex v \in V do
           PQ.insert(v, dist[v])
      end for
      while PQ is not empty do
           v \leftarrow PQ.deleteMin()
           for each neighbor w of v do
               if dist[v] + c(v, w) < dist[w] then
                   dist[w] \leftarrow dist[v] + c(v, w)
                   PQ.decreaseKey(w, dist[w])
                   prev[w] \leftarrow v
               end if
           end for
      end while
  end procedure
```

Analysis of Dijkstra's Algorithm

Running time

- With Fibonacci heap as priority queue:
- |V| insert operations: $\mathcal{O}(|V|)$
- |E| decreaseKey operations: $\mathcal{O}(|E|)$
- |V| deleteMin operations: $\mathcal{O}(|V| \log |V|)$
- In total: $\mathcal{O}(|\overline{E}| + |V| \log |V|)$

Note, that the running time is the same as for Prim's Algorithm.

Limitations of Dijkstra's Algorithm

Dijkstra's Algorithm may not work for graphs with negative edge weights!

Vertex *t* is not updated because it was already visited.

- Published by Richard Bellman and Lester Ford in 1958 and 1956 respectively.
- Solves SSSP even if the graph has negative edge weights.
- Idea: Start with shortest paths of length 1 and then successively construct all shortest paths of length 2, 3, ..., |V| 1.

$$Q = (s)$$

$$Q = (a,b)$$

$$Q = (b, c)$$

$$Q = (c, a, d)$$

$$Q = (a, d, t)$$

Active edge

Predecessor

$$Q = (d, t, c)$$

$$Q = (t, c)$$

$$Q = (c)$$

$$Q = (t)$$

$$Q = ()$$

$$Q = ()$$

end procedure

Algorithm 2 Bellman-Ford Algorithm (no negative cycles)

```
Input: Graph G = (V, E, c) with no negative cycles
  procedure Bellman-Ford(G, src)
       for each vertex v \in V do
           \operatorname{dist}[v] \leftarrow \infty, \operatorname{prev}[v] \leftarrow null
       end for
       dist[src] \leftarrow 0
       Q \leftarrow \mathsf{FIFO}\text{-}\mathsf{Queue}
       Q.insert(src)
       while Q is not empty do
            v \leftarrow Q.pop()
           for each neighbor w of v do
                if dist[v] + c(v, w) < dist[w] then
                    dist[w] \leftarrow dist[v] + c(v, w)
                    prev[w] \leftarrow v
                    if w not in Q then
                         Q.push(w)
                    end if
                end if
           end for
       end while
```

Negative Cycles

- If there are negative cycles in the graph, the distance between s
 and t can become arbitrarily short.
- Detection of negative cycles becomes necessary.

Negative Cycle Detection

- Idea: Process FIFO-Queue in phases.
- One phase = processing all nodes currently in the queue.
- After phase i, all shortest paths of length i were detected.
- Longest shortest path contains at most n-1 edges if there is no negative cycle.
- If there are nodes left in the queue after phase n, then there is a negative cycle.
- Cycle can be constructed by recursively visiting the predecessors of a node that is left in the queue after phase n.

```
Algorithms for Programming Contests - Week 4
```

Bellman-Ford Algorithm

Algorithm 3 Bellman-Ford Algorithm (negative cycle detection)

```
Input: Graph G = (V, E, c)
   procedure Bellman-Ford(G, src)
       for each vertex v \in V do
           \operatorname{dist}[v] \leftarrow \infty, \operatorname{prev}[v] \leftarrow null
      end for
      dist[src] \leftarrow 0
       Q, Q' \leftarrow \mathsf{FIFO}\text{-Queue}
       Q.insert(src)
       for phase 1 to |V| do
           while Q is not empty do
               v \leftarrow Q.pop()
               for each neighbor w of v do
                   if dist[v] + c(v, w) < dist[w] then
                       dist[w] \leftarrow dist[v] + c(v, w)
                       prev[w] \leftarrow v
                       if w not in Q' then
                            Q'.push(w)
                       end if
                   end if
               end for
           end while
           swap(Q,Q')
      end for
      if Q is not empty then
           return there exists a negative cycle
      end if
   end procedure
```

Initialization

Phase 1:
$$Q = (s) \longrightarrow Q' = (a)$$

Phase 2:
$$Q = (a) \longrightarrow Q' = (b)$$

Phase 3:
$$Q = (b) \longrightarrow Q' = (c)$$

Phase 4:
$$Q = (c) \longrightarrow Q' = (d, t)$$

Phase 5:
$$Q = (d, t) \longrightarrow Q' = (a)$$

Phase 6:
$$Q = (a) \longrightarrow Q' = (b)$$

After phase 6 = |V|: Q = (b)

The queue is not empty o negative cycle o predecessor backtracking

Analysis of Bellman-Ford Algorithm

Running time

- At most $\mathcal{O}(|V|)$ phases.
- One phase takes at most $\mathcal{O}(|V| + |E|)$ operations. Pop all |V| nodes, consider all |E| edges, push all |V| nodes.
- In total: $\mathcal{O}(|V||E|)$

How to solve APSP?

- Naive approach: Executing Dijkstra algorithm |V| times
 - Runtime: $\mathcal{O}(|V||E|+|V|^2\log|V|)$
 - Can neither handle negative edge weights nor negative cycles.
- Floyd-Warshall Algorithm:
 - Runtime $\mathcal{O}(|V|^3)$
 - Can handle negative edge weights.
 - Negative cycle detection possible.
 - Easy to code.
- \Rightarrow Apply the naive approach if the graph is sparse!

- Represent graph in distance matrix.
- Idea: successively add vertices as intermediate nodes for shortest paths.

$$\mathsf{dist} = \begin{bmatrix} s & a & b & c & d & t \\ s & 0 & 4 & 1 & \infty & \infty & \infty \\ \infty & 0 & \infty & 2 & \infty & \infty \\ \infty & 2 & 0 & 2 & 1 & \infty \\ \infty & \infty & \infty & 0 & \infty & 3 \\ d & \infty & \infty & \infty & 2 & 0 & 5 \\ \infty & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$$

- When considering a vertex k as intermediate node, there are two possibilities:
 - Shortest path between i and j does not go over k.
 - Shortest path between i and j uses k as intermediate node.
- Update: $dist[i][j] = min\{dist[i][j], dist[i][k] + dist[k][j]\}$

$$\mathsf{dist} = \begin{pmatrix} s & a & b & c & d & t \\ s & 0 & 4 & 1 & \infty & \infty & \infty \\ \infty & 0 & \infty & 2 & \infty & \infty \\ \infty & 2 & 0 & 2 & 1 & \infty \\ \infty & \infty & \infty & 0 & \infty & 3 \\ d & \infty & \infty & \infty & 2 & 0 & 5 \\ t & \infty & \infty & \infty & \infty & \infty & 0 \end{pmatrix}$$

Algorithm 4 Floyd-Warshall Algorithm

```
Input: Graph G = (V, E, c)
  procedure FLOYD-WARSHALL(G)
       dist[][] \leftarrow array of size |V| \times |V| initialized to \infty
       for each vertex v \in V do
           \operatorname{dist}[v][v] \leftarrow 0
       end for
       for each edge (u, v) \in E do
           dist[u][v] \leftarrow c(u, w)
       end for
       for each vertex k \in V do
           for each vertex i \in V do
                for each vertex j \in V do
                    if dist[i][k] + dist[k][j] < dist[i][j] then
                         \operatorname{dist}[i][j] \leftarrow \operatorname{dist}[i][k] + \operatorname{dist}[k][j]
                     end if
                end for
           end for
       end for
  end procedure
```

Analysis of Floyd-Warshall Algorithm

Running time

- Consider each of the $\mathcal{O}(|V|)$ vertices as intermediate node.
- Check if the shortest path between all $\mathcal{O}(|V|^2)$ vertex pairs becomes shorter by passing over intermediate node.
- In total: $\mathcal{O}(|V|^3)$

- Order of loops matter: $k \to i \to j$
- Negative cycles exists
 ⇔ negative entries on diagonal of matrix.
- Shortest path tree can be reconstructed by bookkeeping the update steps in another $|V| \times |V|$ matrix.
- Floyd-Warshall algorithm is an example of Dynamic Programming (discussed later in class).
- Other application: computation of transitive closure.

Longest Path Problem

- Longest Path Problem: Find a simple path of maximum length between two nodes in a graph.
- NP-hard for general graphs.
- Polynomial time algorithms exist for directed acyclic graphs.
- Application in DAGs: Finding critical paths in scheduling problems.

Longest Path Problem

- Approach 1:
 - Negate all edge weights in given DAG.
 - The shortest path in the modified graph is the longest path in the original graph.
 - Use Bellman-Ford to compute shortest path.
 - Complexity: $\mathcal{O}(|V||E|)$
- Approach 2:
 - Compute topological ordering of nodes in DAG.
 - Process nodes in topological order.
 - For each node v in the DAG check whether the distance to any of its successors can be increased by passing over v.
 - Complexity: $\mathcal{O}(|V| + |E|)$

