Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sean U un conjunto no vacío y A un subconjunto de U tal que $A \neq \emptyset$ y $A \neq U$. Se considera en $\mathcal{P}(U)$ la relación de equivalencia definida mediante:

$$X \mathcal{R} Y$$
 si y sólo si $X \cup A = Y \cup A$

Sea $B \in \mathcal{P}(U)$. La clase de equivalencia de B es:

- a) $[B] = \{X \in \mathcal{P}(U) \mid X \cap \overline{A} = B \cap \overline{A}\}\$
- b) $[B] = \{X \in \mathcal{P}(U) \mid X \cap A = B \cap A\}$
- c) Ninguna de las otras dos opciones.

Ejercicio 2

Sean p, q, y r tres proposiciones tales que la proposición

$$(p \longrightarrow q) \longrightarrow r$$

es verdadera. Se puede asegurar que:

- a) Si r es falsa entonces p es verdadera.
- b) Si r es verdadera entonces p es verdadera.
- c) Ninguna de las otras dos opciones.

Ejercicio 3

Sean un conjunto E tal que $\operatorname{card}(E) \geq 2$ y una operación interna \circ , definida sobre E, asociativa, conmutativa y tal que para todo $a \in E$ se satisface la igualdad $a \circ a = a$. Se define en E la relación $\mathcal R$ mediante:

Para todo $a, b \in E$

$$a\Re b$$
 si y sólo si $a\circ b=b$.

Se puede asegurar que :

- a) \mathcal{R} no es una relación de equivalencia.
- b) \mathcal{R} no es una relación de orden.
- c) Ninguna de las otras dos opciones.

Ejercicio 4

Sean $a, b \in \mathbb{Z}$ fijos. Se define en \mathbb{Z} la operación * mediante:

$$x * y = ax + by$$

La operación * es asociativa si y sólo si

- a) a = 1 y b = 1.
- b) a = 0 v b = 1.
- c) Ninguna de las otras dos opciones.

Ejercicio 5

Sean E un conjunto finito no vacío, C un subconjunto arbitrario de E y

$$\mathcal{H} = \{ A \in \mathcal{P}(E) \mid A \cap C = \emptyset \}.$$

Si $n = \operatorname{card}(E)$ y $p = \operatorname{card}(C)$, entonces el cardinal de \mathcal{H} es

- a) n-p.
- b) 2^{p} .
- c) Ninguna de las otras dos opciones.

Ejercicio 1

Veamos que la opción correcta es $[B] = \{X \in \mathcal{P}(U) \mid X \cap \overline{A} = B \cap \overline{A}\}.$

Sabemos que $[B] = \{X \in \mathcal{P}(U) \mid X \cup A = B \cup A\}$. Sea $X \in [B]$. Veamos que $X \cap \overline{A} = B \cap \overline{A}$, En efecto, para todo $y \in U$ se cumple:

$$x \in X \cap \overline{A} \iff x \in X \ y \ x \notin A \iff x \in X \cup A \ y \ x \notin A \iff x \in B \cup A \ y \ x \notin A$$
$$\iff x \in B \ y \ x \notin A \iff x \in B \cap \overline{A}$$

Recíprocamente supongamos que X cumple que $X \cap \overline{A} = B \cap \overline{A}$, veamos que $X \in [B]$. En efecto,

$$x \in X \cup A \iff x \in A \cup (X \cap \overline{A}) \iff x \in A \cup (B \cap \overline{A}) \iff x \in B \cup A$$

No es cierto que $[B] = \{X \in \mathcal{P}(U) \mid X \cap A = B \cap A\}$. Por ejemplo, tomemos $A = \{1, 2, 3\}$, $B = \{1, 2\}$, $X = \{2, 3\}$ y $U = \mathbb{N}$. Se tiene que $X \in [B]$ pues $X \cup A = B \cup A = A$ y sin embargo $X = X \cap A \neq B \cap A = B$.

Ejercicio 2

La opción "Si r es falsa entonces p es verdadera" es correcta. En efecto, si r es falsa entonces el condicional $p \longrightarrow q$ es falso pues si este condicional fuera verdadero, la proposición $(p \longrightarrow q) \longrightarrow r$ sería falsa. Ahora bien, si el condicional $p \longrightarrow q$ es falso entonces necesariamente p es verdadera y q es falsa.

La proposición "Si r es verdadera entonces p es verdadera" no es siempre verdadera. Por ejemplo, si p es falsa, q es falsa (o verdadera) entonces $p \longrightarrow q$ es verdadera y $(p \longrightarrow q) \longrightarrow r$ es verdadera.

Ejercicio 3

Veamos que \Re no es una relación de equivalencia y sí es una relación de orden:

Reflexiva: Para todo $a \in E$ a $\Re a$ pues se satisface la igualdad $a \circ a = a$.

Antisimétrica: Para todo $a,b \in E$, si $a\Re b$ y $b\Re a$, entonces $a \circ b = b$ y $b \circ a = a$. Pero \circ es conmutativa y en consecuencia, $a \circ b = b \circ a$. Por tanto, a = b.

Transitiva : Para todo $a,b,c \in E$, si $a\Re b$ y $b\Re c$, entonces $a \circ b = b$ y $b \circ c = c$. Pero \circ es asociativa y en consecuencia, $a \circ c = a \circ (b \circ c) = (a \circ b) \circ c = b \circ c = c$. Por tanto, $a\Re c$.

La relación \mathcal{R} no es simétrica pues si $a \neq b$ y $a\mathcal{R}b$ entonces $a \circ b = b$ y como la operación \circ es conmutativa resulta que $b \circ a = b \neq a$. Por tanto, no es cierto que $b\mathcal{R}a$. Por tanto se puede asegurar que \mathcal{R} no es una relación de equivalencia.

Ejercicio 4

Veamos que se tiene que cumplir para que la operación * sea asociativa. Sean $x, y, z \in \mathbb{Z}$ arbitrarios. Se tiene:

$$(x * y) * z = (ax + by) * z = a(ax + by) + bz = a^2x + aby + bz$$

 $x * (y * z) = x * (ay + bz) = ax + b(by + z) = ax + aby + b^2z$

Luego la operación es asociativa si y sólo si se cumple para todo $x, y, z \in \mathbb{Z}$ la igualdad $a^2x + aby + bz = ax + aby + b^2z$. O equivalentemente a(a-1)x + b(1-b)y = 0. Por tanto la operación es asociativa si y sólo si se produce la disyunción de los siguientes casos i) a = 0 y b = 0 ii) a = 0 y b = 1 iii) a = 1 y b = 0 iv) a = 1 y b = 1. En consecuencia, la respuesta correcta es: ninguna de las otras dos opciones.

Ejercicio 5

La opción correcta es la c). Basta observar que $\mathcal{H} = \mathcal{P}(E \setminus C)$ pues $A \cap C = \emptyset \iff A \subset (E \setminus C)$. De la proposición 5.15 se deduce que $\operatorname{card}(E) = \operatorname{card}(C) + \operatorname{card}(E \setminus C)$ y en consecuencia $\operatorname{card}(E \setminus C) = n - p$. Aplicando la proposición 5.20 se obtiene que $\operatorname{card}(\mathcal{H}) = 2^{n-p}$.