Homework 3

Yu-Chieh Kuo B07611039[†]

[†]Department of Information Management, National Taiwan University

Problem 1

1.(a)

To prove d_2 is a metric on X, we need to show that

- 1. $d_2(p,q) > 0$ if $p \neq q$ and d(p,p) = 0.
- 2. $d_2(p,q) = d_2(q,p)$.
- 3. $d_2(p,q) \le d_2(p,r) + d_2(r,q) \ \forall r \in X$.

Also, since d is a metric on X, we have d(p,q) > 0 if $p \neq q$ and d(p,p) = 0.

To 1., we have

$$d_2(p,q) = \frac{d(p,q)}{1+d(p,q)} > 0$$

$$d_2(p,p) = \frac{d(p,p)}{1+d(p,p)} = 0.$$

To 2., we have

$$d_2(p,q) = \frac{d(p,q)}{1+d(p,q)} = \frac{d(p,q)}{1+d(p,q)} = d_2(q,p).$$

To 3., if d(p,q) > 0, then

$$\begin{array}{lcl} d_2(p,q) & = & \dfrac{d(p,q)}{1+d(p,q)} & = 1-\dfrac{1}{1+d(p,q)} \\ & \leq & 1-\dfrac{1}{1+d(p,r)+d(r,q)} & = \dfrac{d(p,r)+d(r,q)}{1+d(p,r)+d(r,q)} \\ & \leq & \dfrac{d(p,r)}{1+d(p,r)} + \dfrac{d(r,q)}{1+d(r,q)} & = d_2(p,r)+d_2(r,q). \end{array}$$

This property holds when d(p,q) = 0 as well.

The significance of d_2 indicates that we can define another metric based on a defined metric.

1.(b)

As 1.(a), we could find ρ is a metric by checking those three properties:

- 1. $\rho(a, b) > 0$ if $a \neq b$ and $\rho(a, a) = 0$.
- 2. $\rho(a, b) = \rho(b, q)$.
- 3. $\rho(a,b) < \rho(a,c) + \rho(c,b) \ \forall c \in \{0,1\}^{\mathbb{N}}$.

To 1., we define \mathbb{N}_+ as the set containing positive natural numbers and positive infinity. If a=b, then $a_i=b_i \implies \rho(a,b)=0$, where $i\in\mathbb{N}_+$. If $a\neq b$, then there exists some $i\in\mathbb{N}_+$ is a positive number such that $a_i\neq b_i$, which implies $|a_i-b_i|>0$. Therefore, $\rho(a,b)>0$.

To 2., since $|a_i - b_i| = |b_i - a_i|$, we have

$$\rho(a,b) = \sum_{i=1}^{\infty} \frac{|a_i - b_i|}{2^i} = \sum_{i=1}^{\infty} \frac{|b_i - a_i|}{2^i} = \rho(b,a).$$

To 3., since $a_i, b_i \in \mathbb{R} \ \forall i \in \mathbb{N}_+$, and the triangle inequality holds for real numbers, we can say that $\forall c_i \in \{0,1\}^{\mathbb{N}}, |a_i + b_i| \leq |a_i - c_i| + |c_i - b_i| \text{ holds. Thus,}$

$$\rho(a,b) = \sum_{i=1}^{\infty} \frac{|a_i - b_i|}{2^i} \\
\leq \sum_{i=1}^{\infty} \frac{|a_i - c_i| + |c_i - b_i|}{2^i} \\
= \sum_{i=1}^{\infty} \frac{|a_i - c_i|}{2^i} + \sum_{i=1}^{\infty} \frac{|c_i - b_i|}{2^i} \\
= \rho(a,c) + \rho(c,b).$$

By checking the definition of metric, we can find that ρ is a metric.

After substituting $\{0,1\}^{\mathbb{N}}$ into the infinite product space $Y = X_1 \times X_2 \times \cdots$, and substituting $|a_i - b_i|$ into $d_i(a_i, b_i)$, to check new ρ is a metric or not, we could still follow the same process as above.

At first, if a=b, then $a_i=b_i \forall i \in \mathbb{N}_+$, which implies $d_i(a_i,b_i)=0 \forall i \in \mathbb{N}_+$. Hence, it's clearly that $\rho(a,b)=\sum_{i=1}^{\infty}\frac{d_i(a_i,b_i)}{2^i}=0$. If $a\neq b$, then there exists some $i\in \mathbb{N}_+$ is a positive number such that $a_i\neq b_i$, which implies $d_i(a_i,b_i)>0$ for this i. Therefore, it's clearly that $\rho(a,b)>0$.

Secondly, since d_i is a metric for $i \in \mathbb{N}_+$, we have

$$\rho(a,b) = \sum_{i=1}^{\infty} \frac{d_i(a_i, b_i)}{2^i} = \sum_{i=1}^{\infty} \frac{d_i(b_i, a_i)}{2^i} = \rho(b, a).$$

Lastly, since d_i is a metric for $i \in \mathbb{N}_+$, the triangle inequality holds. Therefore,

$$\rho(a,b) = \sum_{i=1}^{\infty} \frac{d_i(a_i - b_i)}{2^i} \\
\leq \sum_{i=1}^{\infty} \frac{d_i(a_i - c_i) + d_i(c_i - b_i)}{2^i} \\
= \sum_{i=1}^{\infty} \frac{d_i(a_i - c_i)}{2^i} + \sum_{i=1}^{\infty} \frac{d_i(c_i - b_i)}{2^i} \\
= \rho(a,c) + \rho(c,b).$$

By checking the definition of metric, we can find that ρ is a metric.

Problem 2

First, we show that E' is closed.

By **Definition 2.18** in Rudin, it suffices to say every limit point of E' is a limit point of E. Given a limit point $p \in E'$, every neighborhood V of p contains a point p' such that $p' \in E'$. Since p' is a limit point of E, there exists an open neighborhood U of p' contains $q \neq p'$ such that $q \in E$, where

$$U = V \cap B\left(p', \frac{1}{2}d(p, p')\right) \subseteq V.$$

(Note that B(a,b) means the open ball centering at a with radius b.)

Therefore, since $q \neq p$, $q \in U \subseteq V$, and $q \in E$, p is a limit point of E.

Next, we would like to show that X-E' is open, which is equivalent to prove E' is close. Given a point $p \in X-E'$, there exists an open neighborhood V of p contains no points $q \neq p$ such that $q \in E$. Next, to show V is an open neighborhood of p such that $V \subseteq X-E'$, we assume by contradiction that there exists a limit point q of E such that $q \neq p$ and $q \in V$, then here we could contruct a neighborhood U as

$$U = V \cap B\left(q, \frac{1}{2}d(p, q)\right) \subseteq V,$$

where U is an open neighborhood of q containing on points of E, leading to a contrary. Consequently, $V \subseteq X - E'$ is an open neighborhood of $p \in X - E'$ i.e., X - E' is open, equivalent to E' is closed.

Second, we want to prove that E and \bar{E} have the same limit points. It is equivalent to prove that whether $E' = \bar{E}'$.

- $(E' \subseteq \bar{E}')$: Since $E \subseteq \bar{E}$, $E' \subseteq \bar{E}'$ obviously.
- $(E' \subseteq \bar{E}')$: Given a limit point p of $\bar{E} = E \cup E'$. If p is a limit point of E, the proof is done; if p is a limit point of E', since E' is closed, it has to be that $p \in E'$ or p is a limit point of E. In any case, E' subset $q\bar{E}'$ is true.

Lastly, the problem comes to whether E and E' always have the same limit point. It seems to have an easy yes; however, the answer is false. Consider

$$E = \{\frac{1}{n} : n \in \mathbb{Z}_+\} \subseteq \mathbb{R}.$$

Here $E' = \{0\}$ but $(E')' = \emptyset$.

Problem 3

- (a) This problem is equivalent to show that $E^{\circ} \subseteq (E^{\circ})^{\circ}$. Given any $x \in E^{\circ}$, there exists r > 0 such that $B(x,r) \subseteq E$. Since B(x,r) is an open set, all points in B(x,r) are interior points. That is, $\forall y \in B(x,r)$, $\exists s > 0$ s.t. $B(y,s) \subseteq B(x,r) \subseteq E$. This implies that every $y \in B(x,r)$ is an interior point of E i.e., $B(x,r) \subseteq E^{\circ} \implies x \in (E^{\circ})^{\circ} \iff E^{\circ} \subseteq (E^{\circ})^{\circ}$.
- (b) By **Definition 2.18** in Rudin, since E is open, every point of E is an interior point of E i.e. $E \subseteq E^{\circ}$. Also, $E^{\circ} \subseteq E$ since all points in E° must be in E. Thus, $E = E^{\circ}$.
- (c) $G \subseteq E \implies G^{\circ} \subseteq E^{\circ}$, and $G = G^{\circ}$ by (b). Hence $G = G^{\circ} \subseteq E^{\circ}$.
- (d) $((E^{\circ})^c \subseteq \bar{E}^c)$: Given any $x \in (E^{\circ})^c$, if $x \notin E$, then $x \in E^c \subseteq \bar{E}^c$; if $x \in E$, then every neighborhood U of x must satisfy $U \cap E^c \neq \emptyset$ i.e., x is a limit point of E^c , which means $x \in (E^c)' \subseteq \bar{E}^c$. For both cases, $x \in \bar{E}^c$ at all.
 - $(\bar{E}^c \subseteq (E^\circ)^c)$: Given any $x \in \bar{E}^c$, it shows that either $x \in E^c$ or $x \in (E^c)'$. If $x \in E^c$, then $x \neq E \implies x \neq E^\circ$ i.e., $x \in (E^\circ)^c$. On the other hand, if $x \in (E^c)'$, then every neighborhood V of x must satisfy $V \cap E^c \neq \emptyset$. Hence, x is not an interior point of E, i.e., $E \notin E^\circ \implies x \in (E^\circ)^c$.
- (e) The answer is **NO**. Consider X is a metric space in \mathbb{R} and $E = \mathbb{Q} \subseteq X$. We have $E^{\circ} = \emptyset$ since $\overline{\mathbb{Q}}$ is dense in \mathbb{R} , and $(\overline{E})^{\circ} = R$ since \mathbb{Q} is dense in \mathbb{R} and \mathbb{R} is open.
- (f) The answer is **NO**. Following by the setting in (e), we have $\bar{E} = \mathbb{R}$ since \mathbb{Q} is dense in \mathbb{R} , and $\bar{E}^{\circ} = \bar{\emptyset} = \emptyset$ since $\bar{\mathbb{Q}}$ is dense in \mathbb{R} .

Problem 4

4.(a)

Consider E be the set of points having only rational coordinates. Since \mathbb{Q} is countable, $E = \mathbb{Q}^k$ is also countable.

Now, given any $\mathbf{p} = (p_1, \dots, p_k) \in \mathbb{R}^k$, we would like to show that \mathbf{p} is a limit point of E.