Text Classification and Multitask Learning

Hong Zhang

Yahoo Researh

October 30, 2017

Text Classification

Regularization Techniques

Oiscussion

2 / 14

- Text classification is a classical topic in Natural Language Processes, e.g., spam filtering, sentiment analysis, DA, RA, intent models, . . .
- Two components: Sentence representation and classification

Sentence embedding

Traditional Methods:

- Bag of words and its TFIDF (term frequency-inverse document frequency)
- Bag of ngrams and its TFIDF

Deep Learning:

- Word-based ConvNets
- Character-based ConvNets
- LSTM

LSTM

- Use the last state as the sentence representation
- Use the average of the states as the representation (not yet implemented)

Text Classification

Regularization Techniques

Oiscussion

Regularizations

DA-movie has 8.5k training data and 1k validation data. The dimension of Glove embedding is 300 and hidden state's dimension is 256. Overfitting is an obvious problem. Standard regularization techniques:

- early stop
- dropout
- label smoothing
- ridge/lasso
- multitask learning

multitask learning

Discussion

Possible future directions:

- ensemble
- try different classifier, for example SVM
- use the mean of the hidden state instead of the last state
- add more features

Discussion: how much data do we need?

It is difficult to predict the learning curve

- VC dimension provides a theoretical bound, which is useless in this
 case.
- Depends on a lot of factors:
 - classification method
 - complexity of the classifier
 - how well the classes are separated
 - data quality
 - ...

Dataset used by LeCun et al. (Character-based ConvNet)

Dataset	Classes	Train Samples	Test Samples	Epoch Size
AG's News	4	120,000	7,600	5,000
Sogou News	5	450,000	60,000	5,000
DBPedia	14	560,000	70,000	5,000
Yelp Review Polarity	2	560,000	38,000	5,000
Yelp Review Full	5	650,000	50,000	5,000
Yahoo! Answers	10	1,400,000	60,000	10,000
Amazon Review Full	5	3,000,000	650,000	30,000
Amazon Review Polarity	2	3,600,000	400,000	30,000

Error Rate

Model	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW	11.19	7.15	3.39	7.76	42.01	31.11	45.36	9.60
BoW TFIDF	10.36	6.55	2.63	6.34	40.14	28.96	44.74	9.00
ngrams	7.96	2.92	1.37	4.36	43.74	31.53	45.73	7.98
ngrams TFIDF	7.64	2.81	1.31	4.56	45.20	31.49	47.56	8.46
Bag-of-means	16.91	10.79	9.55	12.67	47.46	39.45	55.87	18.39
LSTM	13.94	4.82	1.45	5.26	41.83	29.16	40.57	6.10
Lg. w2v Conv.	9.92	4.39	1.42	4.60	40.16	31.97	44.40	5.88
Sm. w2v Conv.	11.35	4.54	1.71	5.56	42.13	31.50	42.59	6.00
Lg. w2v Conv. Th.	9.91	-	1.37	4.63	39.58	31.23	43.75	5.80
Sm. w2v Conv. Th.	10.88	-	1.53	5.36	41.09	29.86	42.50	5.63
Lg. Lk. Conv.	8.55	4.95	1.72	4.89	40.52	29.06	45.95	5.84
Sm. Lk. Conv.	10.87	4.93	1.85	5.54	41.41	30.02	43.66	5.85
Lg. Lk. Conv. Th.	8.93	-	1.58	5.03	40.52	28.84	42.39	5.52
Sm. Lk. Conv. Th.	9.12	-	1.77	5.37	41.17	28.92	43.19	5.51
Lg. Full Conv.	9.85	8.80	1.66	5.25	38.40	29.90	40.89	5.78
Sm. Full Conv.	11.59	8.95	1.89	5.67	38.82	30.01	40.88	5.78
Lg. Full Conv. Th.	9.51	-	1.55	4.88	38.04	29.58	40.54	5.51
Sm. Full Conv. Th.	10.89	-	1.69	5.42	37.95	29.90	40.53	5.66
Lg. Conv.	12.82	4.88	1.73	5.89	39.62	29.55	41.31	5.51
Sm. Conv.	15.65	8.65	1.98	6.53	40.84	29.84	40.53	5.50
Lg. Conv. Th.	13.39	-	1.60	5.82	39.30	28.80	40.45	4.93
Sm. Conv. Th.	14.80	-	1.85	6.49	40.16	29.84	40.43	5.67

Some thoughts on DA and RA

Given the DA label and RA label are correlated (YK's result suggested: Using DA label as feature improves RA's result. And vice versa). Possible

- On test time iteratively using DA prediction and RA prediction.
- Change the structure of the graph, e.g.,

Thank you

