Bi-CMOS 8-BIT SERIAL-INPUT LATCHED DRIVER

DESCRIPTION

The M54975 is a semiconductor integrated circuit fabricated using Bi-CMOS technology. It contains a serial input to serial/parallel output 8-bit CMOS shift register and CMOS latch as well as bipolar 8-bit parallel-output driver.

FEATURES

- Serial input to serial/parallel output
- Cascade connections possible through serial output
- Latch circuit included for each stage
- Enable input for output control
- Low supply current Icc ≥ 10μA at standby
- Serial input/output level is compatible with standard CMOS
- Wide operating temperature range Ta=-20 +75°C

APPLICATION

Thermal printer head dot driver, Serial-to parallel conversion, Relay and Solenoid driver

FUNCTION

The M54975 consists of an 8-bit D-type flip-flop, the output of which is connected to 8 latches.

When data is applied to the serial data input (S-IN) and a clock pulse is applied to clock input (T), an "L" to "H" change of the clock will cause the data input signals to enter the internal shift registers and the data in the shift registers will be shifted in order.

Using a number of M54975 units for bit expansion in series will entail connecting serial output (S-OUT) to S-IN of the next-stage M54975.

In parallel output, when the latch input is set to "H" and the output-control input (enable input \overline{EN}) is "L", a clock pulse changing from "L" to "H" will cause the serial data input signal to appear at output $\overline{O1}$, and the data will be shifted in order at outputs $\overline{O2} - \overline{O8}$.

The parallel output will yield a signal that is inverted with respect to the serial data input.

Setting the LATCH input to "L" will prevent data from entering the latch

When the \overline{EN} input is set to "H", all outputs $(\overline{O1} - \overline{O8})$ will be set to OFF. Since the internal logic state of the IC is uncertain at poweron time, set the \overline{EN} input to "H" (and outputs $\overline{O1} - \overline{O8}$ will set to

Bi-CMOS 8-BIT SERIAL-INPUT LATCHED DRIVER

OFF) until the input data is set and the internal logic state has been determined.

L-GND is the ground of the CMOS logic circuit section and P-GND

is the ground for the output driver section ($\overline{O1}$ – $\overline{O8}$), which is made up of bipolar transistors that are capable of driving large currents.

TIMING CHART

^{*} The state of the shaded part is unstable.

INPUT/OUTPUT CIRCUIT DIAGRAM

Bi-CMOS 8-BIT SERIAL-INPUT LATCHED DRIVER

ABSOLUTE MAXIMUM RATINGS (Ta=-20 to 75°C)

Symbol	Parameter	Con	ditions	Ratings	Unit
Vcc	Supply voltage			-0.5 - +8	V
Vı	Input voltage			-0.5 - Vcc+0.5	V
Vo	Supply voltage Input voltage Output voltage Output current Power dissipation Operating temperature	S-OUT		-0.5 - Vcc+0.5	V
l vo		01 – 08 : OFF		-0.5 - +30	V
lo	Output current	01 – 08 : ON		350	mA
Pd	Dower discipation	n ∣ Ta=25°C ⊢i	M54975P	1.25	10/
Power dissipation	Fower dissipation		M54975FP	0.8	W
Topr	Operating temperature			-20 – 75	°C
Tstg	Storage temperature			-55 – 125	°C

RECOMMENDED OPERATING DONDITION

Symbol	Parameter	Conditions	Limits			Unit
			Min.	Тур.	Max.	
Vcc	Supply voltage		4	5	6	V
Vo	Applied output voltage	01 − 08 : OFF			30	V
lo	Output current (per circuit)	M54975P			300	A
		M54975FP			100	mA

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=5V, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit	
Symbol	Parameter		rest conditions	Min.	Тур.	Max.	Offic
ViH	High-level input voltage		Ta=-20 – 75°C	0.7Vcc		Vcc	V
VIL	Low-level input voltage			0		0.3Vcc	V
RIN	Input resistance			50		_	kΩ
Voн	High-level output voltage	S-OUT	Hals4A	4.9		_	V
Vol	Low-level output voltage	S-OUT	lo ≤1μA	_		0.1	V
Іон	High-level output current	S-OUT	VoH=4.5V	-100		_	μΑ
lol	Low-level output current	S-OUT	VoL=0.4V	400		_	μΑ
VOL1			IoL=100mA	_		1.2	V
VOL2	Low-level output voltage $\overline{O1} - \overline{O8}$	IoL=200mA	_		1.4	V	
Vol3			IoL=300mA	_		1.6	V
lolk	Output leak current	01 – 08	Vo=30V	_		50	μΑ
Icc1	- Supply current		Input: open, All driver outputs: OFF	_		10	μΑ
ICC2			One driver output is ON.	_		1.7	mA

TIMING REQUIREMENTS (Ta=-20 to 75°C, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Linit
			Min.	Тур.	Max.	Unit
f(T)	Clock frequency	Input duty: 40 – 60%			2	MHz
tw(T)	Clock pulse width		200			ns
tw(L)	Latch pulse width		200			ns
t su	Data setup time		100			ns
th	Data hold time		100			ns
td(T-L)	Clock-latch time		400			ns
tr(T)	Clock pulse rise time				500	ns
tf(T)	Clock pulse fall time				500	ns

Bi-CMOS 8-BIT SERIAL-INPUT LATCHED DRIVER

TIMING CHART

SWITCHING CHARACTERISTICS (Ta=25°C, Vcc=5V, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			
		rest conditions	Min.	Тур.	Max.	Unit
tplh	Low-to-high-level output propagation time From input T to output S-OUT	$V_{IL}=5V$ $V_{IL}=0V$ $RL(S-OUT)=\infty$ $RL(\overline{ON})=100\Omega$ $(N=1-8)$ $CL=15pF$			0.3	μs
tPHL	High-to-low-level output propagation time From input T to output S-OUT				0.3	μs
tplh	Low-to-high-level output propagation time From input T to output ON				10	μs
tPHL	High-to-low-level output propagation time From input T to output ON				2	μs
tPLH	Low-to-high-level output propagation time From input EN to output ON				10	μs
tPHL	High-to-low-level output propagation time From input EN to output ON				2	μs

TEST CIRCUIT

- \bullet The input waveform: $t_r \leq 20 ns, \ t_f \leq 20 ns$
- The capacitance CL includes the wiring stray capacitance and probe input capacitance.

TIMING CHART

Bi-CMOS 8-BIT SERIAL-INPUT LATCHED DRIVER

Driver output Vol vs. Iol

400

TYPICAL CHARACTERISTICS (Vcc=5V, unless otherwise noted)

Duty cycle vs. allowable output current (M54975P)

Duty cycle vs. allowable output current (M54975P)

Duty cycle vs. allowable output current (M54975FP)

Duty cycle vs. allowable output current (M54975FP)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.