Integrity Checking (CPP-003)

CPP-Identifier	CPP-003
CPP-Label	Integrity Checking
Author	Johan Kylander
Contributors	Bertrand Caron
Evaluators	Maria Benauer, Felix Burger, Laura Molloy
Date of edition completed	29.08.2025
Change history	Comments
Version 1.0 - 29.08.2025	Milestone version

1. Description of the CPP

The TDA supports periodic integrity checking, reporting any damaged or missing Files.

Inputs and outputs

Input(s)		
Data	Information package	
Metadata	Fixity metadata	
	Storage management information	
Documentation / guidance	Storage management policy - Integrity checking	
	Storage management policy - Checksum algorithms	
Output(s)		
Metadata	Fixity metadata	
	Provenance metadata	

Definition and scope

Integrity checking is a periodically performed process where a checksum is calculated for a target *Information Package* and compared to the existing stored checksum (as calculated in CPP-001 **Checksum Generation and Recording**). The goal of integrity checking is to confirm that a target *Information Package* has remained unaltered across its life cycle. A TDA must perform and document periodic checks, and the frequency of the checks should be defined in its policy as part of the **Risk Mitigation** (CPP-012) approach.

Integrity checking is closely related to the process of **Checksum Validation** (CPP-002). Whereas Checksum Validation is tied to **Ingest** (CPP-029), **Enabling Access** (CPP-025), or **Replication** (CPP-011) (i.e. processes where *Files* are transferred or new copies are created), Integrity Checking is related to continuous risk management. Integrity checking aims to mitigate bit rot and provides evidence for trustworthy preservation by maintaining a continuous audit trail verifying that a *File* has remained unchanged and authentic over time.

Periodic integrity checks are performed separately on all accessible copies of a target *Information Package* (for example, off-line copies in a dark archive are usually excluded from periodic integrity checks). Copies on different storage media might be subjected to different intervals of checks. The results of the integrity checks, including *Fixity Metadata*, should be documented as preservation actions.

If integrity checks discover problems in the integrity of the target *Information Packages*, this information must be clearly documented in a digital archive's system, so that the broken *Information Packages* can be restored from valid copies (see CPP-004 **Data Corruption Management**).

Process description

Trigger event(s)

Trigger event	CPP-identifier
Frequency of integrity checks defined in a digital archives policy	CPP-012 (Risk Mitigation)
Suspicion of an error triggering an integrity check on an ad hoc basis	

Step-by-step description

No	Supplier	Input	Steps	Output	Customer
1	CPP-012 (Risk Mitigation)	Storage management policy - Integrity checking	Gather a batch of targets to check and their corresponding Fixity metadata (e.g. Information	AIPs	
		Fixity metadata	Packages whose last-checked timestamp is older than the specified checking frequency)		
2		Storage Management information	For each AIP in the selected batch (steps 2a to 2e):		
2A	CPP-001 (Checksum Generation and Recording)	Fixity metadata	Gather the AIP 's fixity metadata	Fixity metadata	

2B	Fixity metadata (algorithms)	Calculate the checksum of the AIP from the specified File path	Fixity metadata	
2C	Fixity metadata	Compare the calculated checksum with the stored checksum	Checksums match: proceed to next step	
			Alert that any of the checksums does not match: • mark broken AIP for repair • Proceed to next step	CPP-004 (Data Corruption Management)
2D		Store the new integrity checking event to the AIP	Provenance metadata	
2E		Update the timestamp of the integrity check	Fixity metadata (timestamp)	
3		Document the event and its timestamp	Provenance metadata	

Rationale(s)¹ and worst case(s)

Rationale	Impact of inaction or failure of the process
Periodic integrity checks on all copies	Data can get corrupted and degenerate (i.e. the chain of custody is not safeguarded, and the authenticity of <i>IPs</i> may be destroyed)

2. Dependencies and relationships with other CPPs

Dependencies

CPP-ID	CPP-Title	Relationship description
CPP-001	Checksum Generation and Recording	CPP-001 is responsible for creating checksums that are used in integrity checking.
CPP-012	Risk Mitigation	The frequency and target of periodic integrity checks (CPP-003) is defined by an institutional storage management policy as part of risk mitigation (CPP-012).

Other relations

Relation	CPP-ID	CPP-Title	Relationship description
Required By	CPP-013	Object Management Reporting	Periodic integrity checking provides reports on the integrity of data and reports corrupted <i>AIPs</i> .
Required By	CPP-016	Metadata Ingest and Management	The timestamp of the <i>AIPs</i> checksum needs to be updated to keep track of the last successful check.
Triggers	CPP-004	Data Corruption Management	In case of broken target <i>Information</i> , <i>Packages</i> must be marked for repair.
Affinity with	CPP-007	Virus Scanning	Both processes aim to ensure the "health" of files. However, Integrity

¹ Term derived from PREMIS.

			Checking focuses on detecting technical corruption of <i>Files</i> (e.g. bit rot), whereas virus scanning looks to mitigate human-made risks (e.g. malicious code).
Not to be confused with	CPP-002	Checksum Validation	Both CPPs can get input from CPP-001, and both calculate a checksum from an <i>Information Package</i> and compare it to a given checksum. The difference is that CPP-002 is done during the ingest or access phases (relating to transfer of content, changes in space), while CPP-003 is done periodically during the preservation of the contents in the archival storage (relating to changes over time). Thus, CPP-002 and CPP-003 are not only triggered by different processes, but also trigger different responses.

3. Links to frameworks

Certification

Certification framework	Term used in framework to refer to the CPP	Section
CTS	Fixity checks	R14 Storage & Integrity
Nestor Seal	Integrity checks	C15 Integrity: Functions of the archival storage
ISO 16363 Link	Fixity checks	4.4.1.2

Other frameworks and reference documents

Reference Document	Term used in framework to refer to the process	Section
OAIS <u>Link</u>	Error checking	4.2.3.4
PREMIS Link	Fixity check	1.5.2, Glossary

4. Reference implementations

Publicly available documentation

Institution	Organisation type	Language	Hyperlink
TIB – Leibniz Information Centre	National library	English	https://wiki.tib.eu/confluence/spaces/lza/pages/93608391/
for Science and Technology and University Library, Germany	Non-commercial digital preservation service		Preservation+of+data+integrity+as+part+of+the+process+ routines; and https://wiki.tib.eu/confluence/spaces/lza/pages/93608373/
	Research infrastructure Archival+Storage#ArchivalStorage-Integ		Archival+Storage#ArchivalStorage-Integrityassurance
	Research performing organisation		
CSC – IT Center for Science Ltd., Finland	Non-commercial digital preservation service	English	https://digitalpreservation.fi/en/services/quality_reports/20 24
Archivematica	Digital preservation system	English	https://www.archivematica.org/en/docs/storage-service-0. 23/fixity/#fixity-docs
AUSSDA - Austrian Social Science Data Archive	Discipline-specific data repository	English	https://aussda.at/fileadmin/user_upload/p_aussda/Documents/kaczmirek_bischof_2024_preservation_fixity_checks_v1_0-1.pdf