QCD and Monte Carlo event generators

Monte Carlo course seminar - Milan, February 2021

Outline

- Hadron collisions and strong interactions
 - Hadron collisions and strong interactions
 - Renormalization group
 - IR divergences
- MC and Parton Showers
 - Factorization theorem
 - Final state radiation
 - Initial state radiation
- Hadronization: some basics

Strong interactions

QCD from e^+e^- annihilation

Quantum Chromodynamics (QCD) \rightarrow theory describing the interaction between quarks and gluons (strong interactions)

QCD arises already from e^+e^- annihilation $\to R_0$ ratio

$$R_0 = \frac{\sigma(\gamma^* \to \text{hadrons})}{\sigma(\gamma^* \to \mu^+ \mu^-)} = 3 \sum_f c_f^2$$

- Color factor (3 color for each quark)
- Sum over charges of different flavors
 - Threshold and higher order corrections

Strong interactions

Renormalization group

• Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_s(\mu)}{d\mu} = \beta(\alpha_s(\mu)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_s}{\pi}\right)^{n+1}$$

- Coupling $lpha_s$ evolves with scale μ as given by RGE ightarrow LO behavior driven by eta_0
- $eta_0^{\rm QCD}>0$ \Longrightarrow weakly coupled at large energies, asymptotic freedom
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent!

Strong interactions

Renormalization group

 Running coupling given by Renormalization Group Equation (RGE)

$$\alpha_s(\mu) = \frac{1}{\beta_0 \log\left(\frac{\mu^2}{\Lambda_s^2}\right)}$$

- β_0 LO of the β function, is > 0
- Λ_s , parameter that defines value of the coupling at large scales

QCD is weakly coupled for $\mu >> \Lambda_s \longrightarrow$ asymptotically free

Perturbative Quantum Chromodynamics (pQCD)

Factorization theorem

QCD factorization

Separate process PDFs and partonic (hard) interaction

$$\sigma^{F}(p_{1}, p_{2}) = \sum_{\alpha, \beta} \int_{0}^{1} dx_{1} dx_{2} f_{\alpha}(x_{1}, \mu_{F}^{2}) * f_{\beta}(x_{2}, \mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1}, x_{2}p_{2}, \alpha_{s}(\mu_{R}^{2}), \mu_{F}^{2})$$

MC Parton showers

Partons in the initial and final state emit radiation. Initial state Radiation (ISR) and Final State Radiation (FSR) model by Monte Carlo (MC) shower algorithms.

Shower Monte Carlo programs (HERWIG, PYTHIA)

- Libraries for computing SM and BSM cross sections
- Shower algorithms produce the parton shower from final state or initial state partons (accurate only at LO?...)
- Hadronization models, underlying event, decays of unstable hadrons, etc

Collinear limit

- An emitted parton is collinear to an incoming or outgoing parton (θ small)
- σ dominated by collinear emission $q \to qg, g \to gg, g \to q\bar{q}$ (measurement not sensitive to such small scales)

Collinear factorization — Factor out tree level amplitude and splitting

$$|M_{n+1}|^2 d\Phi_{n+1} \Rightarrow |M_n|^2 d\Phi_n \ \frac{\alpha_S}{2\pi} \, \frac{dt}{t} \, P_{q,qg}(z) \, dz \, \frac{d\phi}{2\pi}.$$

$$d\Phi_n = (2\pi)^4 \delta^4 \left(\sum_i^n k_i - q\right) \prod_i^n \frac{d^3 k_i}{(2\pi)^3 2k_i^0}$$

Kinematics of splitting

Kinematics of splitting given by (t, z, ϕ)

- \bullet ϕ represents azimuth of the k, l plane
- z is the fraction of energy of radiated parton

$$z = \frac{k^0}{k^0 + l^0}$$

- t has dimensions of energy
 - virtuality

$$t = (k+l)^2 = k^0 l^0 4 \sin^2 \left(\frac{\theta}{2}\right) \approx k^0 l^0 \theta^2 \approx z(1-z)E^2 \theta^2$$

- transverse momentum $t = k_{\perp}^2 = l_{\perp}^2 = z^2(1-z)^2E^2\theta^2$
- hardness $E^2\theta^2$

AP splitting functions

Altarelli-Parisi splitting functions

$$\begin{split} P_{\rm q,qg}(z) &= C_{\rm F} \frac{1+z^2}{1-z} \\ P_{\rm g,gg}(z) &= C_{\rm A} \left(\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right) \\ P_{\rm g,q\bar{q}}(z) &= T_{\rm f}(z^2 + (1-z)^2) \end{split}$$

We can proceed in an iterative way

$$|M_{n+2}|^2d\Phi_{n+2} = |M_n|^2d\Phi_n\frac{\alpha_{\rm s}(t')}{2\pi}P_{\rm q,qg}(z')\frac{dt'}{t'}dz'\frac{d\phi'}{2\pi}\frac{\alpha_{\rm s}(t)}{2\pi}P_{\rm q,qg}(z)\frac{dt}{t}dz\frac{d\phi}{2\pi}$$

Exclusive final state: limit to the most singular terms, in ordered sequence of angles Collinear approximation \longrightarrow Leading log approximation

Exclusive final state

Exclusive final state: sum the perturbative expansions to all orders in *alphas* Limit to the most singular terms in ordered sequence of angles *alphas*

$$\sigma_0 \alpha_s^n \int \frac{dt_1}{t_1} \dots \frac{dt_n}{t_n} \theta(Q^2 > t_1^2 > \dots > t_n^2 > \Lambda_S^2) = \sigma_0 \frac{\alpha_s^n}{n!} \log^n \left(\frac{Q^2}{\Lambda_S^2}\right)$$

Exclusive final state: limit to the most singular terms, in ordered sequence of angles Collinear approximation \longrightarrow Leading log approximation

General structure

Approximated description of a hadronic final state Model a given hard scattering with arbitrary number of enhanced radiations

- Choose hard interaction with specified Born kinematics.
- Consider all possible splittings for each coloured parton.
- Assign the variables t, z, ϕ at each splitting vertex, t ordered in decreasing way.
- At each splitting vertex assign the weight

$$\frac{\alpha_{\rm S}(t)}{2\pi} P_{\rm i,jl}(z) \frac{dt}{t} dz \frac{d\phi}{2\pi}$$

• Each line has a weight known as Sudakov factor

$$\Delta_{\mathbf{i}}(t',t'') = \exp\left(-\sum_{ij} \int_{t''}^{t'} \frac{dt}{t} \frac{\alpha(t)_{\mathbf{S}}}{2\pi} \int_{0}^{1} dz P_{\mathbf{i},\mathbf{j}\mathbf{i}}(z)\right)$$

Formal representation of a shower

Approximated description of a hadronic final state Model a given hard scattering with arbitrary number of enhanced radiations

$$S_i(t, E) = \frac{t, E}{i}$$

Ensemble of all possible branchings at scale t(...)

Forward evolution equation

$$S_i(t,E) = \Delta_i(t,t_0)S_i(t_0,E) + \sum_{jl} \int_{t_0}^t \frac{dt'}{t'} \int_0^1 dz \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{a_{\rm S}(t')}{2\pi} \Delta_i(t',t_0)S_j(t',zE)S_j(t',(1-z)E)$$

Probabilistic interpretation

$$S_i(t, E) = \frac{t, E}{t}$$

$$\mathcal{S}_i(t,E) = \frac{t,E}{i}$$

$$S_i(t, E) = \frac{t, E}{i}$$

Probability of branching in the infinitesimal volume

Probability of branching in the interval dt'

Probability of first branching in the infinitesimal volume dt'

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- **1** Set scale t = Q, hard scale of the process
- ② Generate random number 0 < r < 1
- Solve $r = \Delta_i(t, t')$ for t'
- $oldsymbol{4}$ i) if $t' < t_0$, no further branching and stop shower
- **3** ii) if $t' \geq t_0$, one branching into partons j, l with energies $E_j = zE_i$ and $E_l = (1-z)E_i$, z following the $P_{i,jl}(z)$ distribution and ϕ uniform in the interval $[0,2\pi]$ (variables, ...)
- **o** For each branched partons set t = t' and start from (2)

Initial state radiation MC

General structure

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Initial state radiation MC

Formal representation

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Forward evolution equation. Great amount of computation time to generate configurations -i, the scattering that we want

Initial state radiation MC

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- lacktriangle Set scale t to Q, hard scale of the process
- ② Generate random number 0 < r < 1
- 3 Solve (...) for t'
- \bullet i) if $t' < t_0$, no further branching and stop shower
- ii) if $t' \geq t_0$, one branching into partons j, I with energies $E_j = zE_i$ and $E_l = (1-z)E_i$, z following the $P_{i,jl}(z)$ distribution and ϕ uniform in the interval $[0,2\pi]$
- For parton j (...), for parton I generate a timelike parton shower according to the algorithm shown previously

Hadronization

Basics

Hadronization

Lund string model

Hadronization

Clustering models