final_project_expert_annotations

PBMC Single-Cell Classification: Expert Annotation Approach \P

Bonus exercise¶

Author: Kristof Torkenczy

Course: Tech 27 Machine Learning

Approach: Expert-curated SeuratData annotations

Project Overview¶

This analysis leverages **expertly curated cell type annotations** from the SeuratData package to perform high-accuracy PBMC (Peripheral Blood Mononuclear Cell) classification. Rather than relying on algorithmic marker-based approaches, this pipeline uses professional annotations validated by the single-cell genomics community.

Expert Annotation Approach

Method: Professional curation by Seurat team and community

- Source: SeuratData package with peer-reviewed annotations
- Quality: Multi-study consensus and expert validation
- \mathbf{Detail} : 9-20 detailed cell subtypes vs marker
- Standardization: Consistent nomenclature across studies

Key Features:

- Expert-curated training data: Pre-validated cell type annotations
- Comprehensive ML evaluation: 11 different machine learning algorithms
- **High-quality datasets**: pbmc3k (training) + pbmcMultiome (testing)
- **Detailed analysis**: Complete downstream analysis with high-resolution figures
- Clinical relevance: Disease-relevant cell subtypes and biomarkers

Datasets:

- **pbmc3k**: Training dataset with expert annotations (2,700 cells, 9 cell types)
- **pbmcMultiome_full**: Test dataset with expert annotations (11,909 cells, 20 cell types)
- **Technology**: 10x Chromium (v1 and Multiome) with cross-platform validation
- Source: SeuratData package with expert validation

1. Data Download and Organization¶

Download and organize SeuratData expert-annotated PBMC datasets.

In [1]:

Download annotated (SeuratData) data
!python download_data_unified.py --approach annotated --quiet

2. Exploratory Data Analysis with Expert Annotations¶

Perform comprehensive EDA on expert-annotated datasets without additional annotation steps.

In [2]:

Run EDA with expert annotations (no additional annotation needed) !python eda_unified.py --approach annotated --quiet

3. Machine Learning Pipeline¶

Train and evaluate 9 machine learning algorithms on expert-annotated data with both same-dataset and cross-dataset validation.

In [3]:

Run complete ML pipeline
!python run_pipeline_unified.py --approach annotated --mode both --quiet

4. Results Summary¶

Dataset Overview¶

Dataset	Cells (Raw)	Cells (Processed)	Genes	Cell Types	Technology
PBMC 3k	2,700	2,638	$13,714 \rightarrow 2,000 \text{ HVGs}$	9	10x v1
PBMC Multiome	11,909	10,412	$36,601 \rightarrow 2,000 \; \mathrm{HVGs}$	19	10x Multiome

Expert Cell Types Identified:

- **PBMC 3k**: B, CD14+ Mono, CD8 T, DC, FCGR3A+ Mono, Memory CD4 T, NK, Naive CD4 T, Platelet
- **PBMC Multiome**: 19 detailed cell subtypes including B cells, T cell subsets, Monocytes, NK cells, DCs, and others

Same-Dataset Performance (PBMC Multiome internal validation)¶

Top 3 Performing Models:

Rank	Model	CV Accuracy	Test Accuracy	F1-Score	ROC-AUC	PR-AUC
1	Keras MLP	82.9%	85.2 % 85.2% 85.1%	85.1%	97.4%	90.6%
2	SVM (RBF)	84.2%		85.1%	97.8%	91.8%
3	Gradient Boosting	84.1%		85.0%	97.5%	91.0%

Key Performance Insights:

- Exceptional accuracy: 85% on 19 detailed cell types
- High AUC scores: >97% ROC-AUC indicates excellent discrimination
- Challenging task: 19 cell types vs. typical 5-8 broad categories

Cross-Dataset Performance (Train on PBMC $3k \rightarrow$ Test on Multiome)¶

Traditional ML Models:

Rank	Model	Train Accuracy	Test Accuracy	F1-Score	Specificity
1	Naive Bayes	96.2%	79.9%	76.3%	92.7%
2	Logistic Regression	98.7%	80.0%	76.3%	92.5%
3	Keras MLP	99.9%	80.2%	76.2%	92.8%

Transfer Learning Methods:

Method	Accuracy	F1-Score	Notes
Scanpy Ingest (Standard)	74.6%	69.4%	State-of-the-art manifold mapping

Method	Accuracy	F1-Score	Notes
k-NN Transfer Learning	20.1%	9.0%	Custom implementation

Expert Annotation Advantages¶

High-Quality Labels: Expert labels Detailed Resolution: 19 cell subtypes

vs 5-8 broad categories

Cross-Platform Validation: $10x v1 \rightarrow Multiome technology transfer$

Clinical Relevance: Disease-relevant cell subtypes identified

Standardized Nomenclature: Consistent with literature standards

Key Findings¶

- 1. Expert annotations enable 80%+ cross-dataset accuracy for 19 detailed cell types
- 2. **Traditional ML** is much closer to the transfer learning, this indicates that there was mistakes in the automatic annotation
- 3. Naive Bayes does well in cross-dataset scenarios with expert annotations
- 4. Technology transfer works: $10x v1 \rightarrow Multiome$ with minimal performance loss
- 5. **Deep learning competitive**: Keras MLP achieves top-3 performance consistently

5. Methodology Deep Dive¶

Expert Annotation Pipeline¶

- 1. Data Source: SeuratData package with community-validated annotations
 - Standardization: Consistent cell type nomenclature
 - Detail Level: 9-20 cell subtypes vs simplified approaches

2. Preprocessing:

- Mitochondrial filtering: < 20% MT gene content
- HVG selection: 2,000 most variable genes
- Normalization: Log-transformation and scaling
- Dimensionality reduction: PCA (50 components) + UMAP

3. Machine Learning Evaluation:

- 13 algorithms: Traditional ML + Deep Learning + Transfer Learning
- Cross-validation: 5-fold stratified CV
- Comprehensive metrics: Accuracy, Precision, Recall, F1, Specificity, ROC-AUC, PR-AUC
- Transfer learning: Scanpy Ingest (standard) + custom k-NN

Performance Analysis¶

Why Naive Bayes probably works well in Cross-Dataset:

- 1. Probabilistic approach handles uncertainty in feature distributions
- 2. Independence assumption robust to dataset-specific correlations
- 3. No overfitting to training dataset specifics

Traditional ML vs Transfer Learning:

- Traditional ML: 79.9% (leverages expert-curated features optimally)
- Transfer Learning: 74.6% much closer. So likely annotation in first was wrong.

6. Visualizations¶

Same-Dataset Performance Comparison¶

Performance comparison of 11 ML algorithms on PBMC Multiome dataset with 19 expert-annotated cell types.

Cross-Dataset Model Rankings \P

 $\label{lem:entropy} Enhanced\ metrics\ visualization\ showing\ comprehensive\ performance\ across\ multiple\ evaluation\ criteria.$

Confusion Matrices - Top Performers \P

 $Confusion\ matrices\ for\ the\ top\ 3\ performing\ models\ in\ cross-dataset\ validation.$

Data Quality Assessment \P

 $\label{lem:quality} Quality\ control\ metrics\ for\ PBMC\ 3k\ training\ dataset\ showing\ mitochondrial\ content,\ gene\ counts,\ and\ UMI\ distribution.$

Enhanced analysis of PBMC Multiome test dataset with UMAP embeddings and cell type distributions.

7. Conclusions¶

Major Findings¶

1. Expert Annotations Enable High-Resolution Classification

- **85.2**% **accuracy** on 19 detailed cell subtypes (vs typical 5-8 broad categories)
- **Professional curation** provides superior training labels compared to algorithmic approaches
- Cross-platform robustness: 80% accuracy in $10x v1 \rightarrow Multiome$ transfer

2. Traditional ML Competitive with Deep Learning

- Naive Bayes: 79.9% cross-dataset accuracy (best overall)
- SVM/Logistic Regression: Consistent 80%+ performance
- Keras MLP: Top same-dataset performer (85.2%)
- **Key insight**: Algorithm choice less critical than data quality

3. Transfer Learning Limitations with Expert Data

• Scanpy Ingest: 74.6% (state-of-the-art manifold mapping)

- Traditional ML: 79.9% (leveraging expert features directly)
- Conclusion: Expert curation provides features superior to learned embeddings

I am glad to see that transfer learning does better here. This indicates that marker based annotation needs to be revised.