Literature Survey:

Sr.No	Title of paper	Name of Authors	Published Year	Remarks	
01	Automatic Stress Detection Using Wearable Sensors and Machine Learning	Shruti Gedam and Sanchita Paul	July, 2020	 a. Support vector machine, Random forest and K-Nearest Neighbor are the most effective classification algorithms. b. (The above algorithms give 95.98% accuracy) c. Stress can majorly occurred in 1.working environment 2. Driving 	
02	Stress detection using deep neural networks	Russell and Zhandong	August, 2020	 3.Academics a. Deep neural networks for developing robust, continuous, and non-invasive methods for stress detection and emotion classification. b. This can be achieves 99.80% and 99.55% accuracy rates for binary and 3-class Classification. 	
03	Machine Learning and IOT for Prediction and Detection of Stress	Mr.Purnendu Shekhar Pandey	2017	 a. Classifiers used in this paper are 1. SVM 2. Logistic Regression 3. VF - 15 4. Naive Bayes 5. VF - 15 with weights to features. B. Out this SVM and Logistic Regression gives best test and train results 	
04	Stress Detection with Machine Learning and Deep Learning using Multimodal Physiological Data	Pramod Bobade and Vani M.	September 06,2020	 a. Dataset used here is WESAD. b. Six machine learning (Random Forest, Decision Tree, Ad-aBoost, k-Nearest Neighbor, Linear Discriminant Analysis and Kernel Support Vector Machine) and a deep learning artificial neural network (ANN). c. This model has achieved the accuracy of 84.32% and 95.21% on a three-class and a binary classification. 	
05	A Decision Tree Optimized SVM Model for Stress Detection using Bio signals	Alana Paul Cruz, Aravind Pradeep, Kavali Riya Sivasankar.	July, 2020	a. Dataset used here is "drive dB" [Stress Recognition in Automobile Drivers] b. Algorithm are 1. Cubic SVM with Gaussian 92.6% Tree Optimized SVM 96.3%	