Lecture 18 BT 206 13/03/2023

Microbial Growth

 Microbial growth = increase in number of cells, not cell size

The Growth Cycle

Microorganisms show a characteristic growth pattern when inoculated into a fresh culture medium.

Figure 6-8 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

Physical and Chemical

- Physical: Temperature, pH, Osmotic Pressure
- Chemical: Carbon, Nitrogen, Sulfur, Phosphorous, Trace Elements, Oxygen, and Organic Growth Factors

On Temperature

- Classified based on Three: Psychrophiles, Mesophiles, Thermophiles
- Range
 - Minimum growth temperature: Psychrophiles
 - Optimum growth temperature: Mesophiles
 - Maximum growth temperature: Thermophiles

Temperature

Psychrotrophs

Grow between 0°C and 20-30°C

Cause food spoilage

Also known as moderate psychrophiles or facultative

psychrophiles

- pH
 - Most bacteria grow between pH 6.5 and 7.5
 - Food preservation using pH: pickles, cheeses
 - Acidophiles (e.g. survives pH=1 in the drainage waters of coal mines –oxidizes sulfur to form sulfuric acid)
 - Molds and yeasts grow between pH 5 and 6 (greater pH range compared to bacteria)

Media buffers: Peptones, amino acids, phosphate salts

- Osmotic Pressure
 - Hypertonic environments, increase salt or sugar, cause plasmolysis
 - Examples: salty fish, honey,
 - Extreme or obligate halophiles require high osmotic pressure 30% (Dead Sea)
 - Facultative halophiles tolerate high osmotic pressure (2 to 15%)
 - Usual concentration is 1.5%
 - Some bacteria are lysed in distilled water (hypotonic)

- Carbon
 - Structural organic molecules, energy source
 - ½ the dry wt is carbon
 - Chemoheterotrophs use organic carbon sources
 - Autotrophs use CO₂
- Nitrogen (14% of dry wt)
 - In amino acids, proteins
 - Most bacteria decompose proteins
 - Some bacteria use NH₄⁺ or NO₃⁻
 - A few bacteria use N_2 in nitrogen fixation-can form symbiotic relationship with the roots of legumes

- Sulfur (4% of dry wt)
 - In amino acids, thiamine, biotin
 - Most bacteria decompose proteins
 - Some bacteria use SO_4^{2-} or H_2S (eg. extremophiles)
- Phosphorus
 - In DNA, RNA, ATP, and membranes
 - PO₄³⁻ is a source of phosphorus
- Trace Elements (Zn, Cu, Mo)
 - Inorganic elements required in small amounts
 - Usually as enzyme cofactors
 - Usually present in tap water; even distilled

Oxygen (table 6.1) KNOW THIS!

obligate aerobes	Faultative anaerobes (use oxygen or ferment)	Obligate anaerobes (cannot use oxygen-cannot live in oxygen)	Aerotolerant anaerobes (only anaerobic growth-eg. Produce lactic acid-inhibit aerobes)	Microaerophiles (only aerobic growth, but low conc. of oxygen)			
8888	() (Sec. 6)	DO NOT make SOD or catalase	000000				
(The presence of the enzymes SOD (superoxide dismutase and catalase allow for growth in the presence of oxygen)							

Lecture 19 BT 206 14/03/2023

Toxic Forms of Oxygen

- Singlet oxygen: O₂ boosted to a higher-energy state
- Superoxide free radicals: O₂⁻ (formed in small amounts during normal respiration)

$$O_2^- + 2 H^+ \xrightarrow{\text{superoxide dismutase}} H_2O_2 + O_2$$

• Peroxide anion: O_2^{2-} (active ingredient in benzoyl peroxide)

$$2 H_2O_2 \xrightarrow{\text{catalase}} 2 H_2O + O_2$$

$$H_2O_2 + 2 O^+ \xrightarrow{\text{peroxidase}} 2 H_2O$$

- Hydroxyl radical (OH•) (formed in cellular respiration by ionizing radiation)
- All of these ions are used by WBCs to protect the body!

- Organic Growth Factors (essential organic compounds an organism is unable to synthesize)
 - Organic compounds obtained from the environment
 - Vitamins, amino acids, purines, pyrimidines

Culture Media

- What is required to grow microorganisms?
- Culture Medium: Nutrients prepared for microbial growth (pH, moisture, trace elements, organic cofactors, C, N, P, S source, oxygen? Etc)
- Sterile: No living microbes
- Definitions
 - Inoculum: Introduction of microbes into medium
 - Culture: Microbes growing in/on culture medium

Agar

- Complex polysaccharide
- Used as solidifying agent for culture media in Petri plates, slants, and deeps
- Generally not metabolized by microbes
- Liquefies at 100°C
- Solidifies ~40°C

Culture Media

- Chemically Defined Media: Exact chemical composition is known (table 6.2 and 6.3) be able to recognize this type of media
 - Fastidious organisms require more growth factors
- Complex Media: Extracts and digests of yeasts, meat, or plants (be able to recognize this type of media)
 - Nutrient broth
 - Nutrient agar (broth + agar)

TABLE 6.2	A Chemically Defined Medium for Growing a Typical Chemoheterotroph, Such as <i>E. coli</i>		
Constituent		Amount	
Glucose		5.0 g	
Ammonium phosphate, monobasic (NH ₄ H ₂ PO ₄)		1.0 g	
Sodium chlorid	e (NaCl)	5.0 g	
Magnesium sulfate (MgSO ₄ · 7H ₂ O)		0.2 g	
Potassium phosphate, dibasic (K ₂ HPO ₄)		1.0 g	
Water		1 liter	lenjan

TABLE 6.4	Composition of Nutrient Agar, a Complex Medium for the Growth of Heterotrophic Bacteria		
Constituent		Amount	
Peptone (partially digested protein)		5.0 g	
Beef extract	3.0 g		
Sodium chloric	8.0 g		
Agar	15.0 g		
Water	1 liter		

Anaerobic Culture Methods

- Reducing media
 - Contain chemicals (thioglycollate or oxyrase) that combine O₂
 - Heated to drive off O₂

Anaerobic jar

Anaerobic Culture Methods

Anaerobic chamber

Lecture 20 BT 206 15/03/2023

Capnophiles require high CO₂

Candle jar

Campylobacter jejuni

• CO₂-packet

Selective Media

- Suppress unwanted microbes and encourage desired microbes.
- Bismuth sulfate
 suppresses gram + and
 normal gram intestinal bacteria and is
 used to isolate
 Salmonella

Differential Media

- Make it easy to distinguish colonies of different microbes.
- Blood agar-select for organisms that produce hemolysins (Group A strep)
- Selective and Differential: High salt + fermentation of mannitol –isolate *S. aureus*

S. aureus on Tellurite-Glycine medium

Enrichment Media

- Encourages growth of desired microbe
- Assume a soil sample contains a few phenol-degrading bacteria and thousands of other bacteria
 - Inoculate phenol-containing culture medium with the soil and incubate
 - Transfer 1 ml to another flask of the phenol medium and incubate
 - Transfer 1 ml to another flask of the phenol medium and incubate
 - Only phenol-metabolizing bacteria will be growing

- A pure culture contains only one species or strain
- A colony is a population of cells arising from a single cell or spore or from a group of attached cells
- A colony is often called a colony-forming unit (CFU)

Streak Plate

Works well when the bacteria is present in high numbers