7/27/2019	Neural Networks and Deep Learning - Home Cour	sera
	concepts on Deep Neural Networks 10 questions	9/10 points (90%)
•	✓ Congratulations! You passed!	Next Item
~	1/1 point	
1. W hat	is the "cache" used for in our implementation of forward propagation and backward	propagation?
0	We use it to pass variables computed during forward propagation to the corresponstep. It contains useful values for backward propagation to compute derivatives.	nding backward propagation
Cor Co	rect rect, the "cache" records values from the forward propagation units and sends it to t ts because it is needed to compute the chain rule derivatives.	he backward propagation
	It is used to cache the intermediate values of the cost function during training.	
	We use it to pass variables computed during backward propagation to the corresp step. It contains useful values for forward propagation to compute activations.	onding forward propagation
	It is used to keep track of the hyperparameters that we are searching over, to spee	ed up computation.
✓ 2.	1/1 point	
	g the following, which ones are "hyperparameters"? (Check all that apply.)	
	size of the hidden layers $n^{[l]}$	
Cor	rect	
	activation values $a^{[l]}$	
Un	selected is correct	

Correct

learning rate α

2019	Neural Networks and Deep Learning - Home Coursera	
Quiz, 1	concepts on Deep Neural Networks 0 questions elected is correct	9/10 points (90%)
Corr	number of layers L in the neural network $oldsymbol{ ext{ect}}$	
Un-s	weight matrices $W^{[l]}$	
Corr	number of iterations	
~	1 / 1 point	
3. Which	of the following statements is true?	
0	The deeper layers of a neural network are typically computing more complex features of the earlier layers.	input than the
Corr	ect	
	The earlier layers of a neural network are typically computing more complex features of the indeeper layers.	nput than the
	1/1	

point

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

Key concepts on Deep Neural Networks Quiz, 10 questions

9/10 points (90%)

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

1/1 point

6.

Consider the following neural network.

Key concepts on Deep Neural Networks

9/10 points (90%)

How many layers does this network have?

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The number of layers L is 4. The number of hidden layers is 3. \\ \hline \end{tabular}$

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers L is 4. The number of hidden layers is 4.
The number of layers \boldsymbol{L} is 5. The number of hidden layers is 4.

1/1 point

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

0/1 point

8.

There are certain functions with the following properties:

Key concepts on Deep Neural Networks

9/10 points (90%)
(এটা টেলিট্রার মার্টিটেরটার বিষয়ের মার্টিটেরটার মার্টি number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True **False**

This should not be selected

1/1 point

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[1]}$ will have shape (4, 1)

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Key concepts on Deep Neural Networks

9/10 points (90%)

Un-selected is correct

On-selected is correct			
$b^{[1]}$ will have shape (3, 1)			
Un-selected is correct			
$W^{[2]}$ will have shape (3, 4)			
Correct			
Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$			
$b^{[2]}$ will have shape (1, 1)			
Un-selected is correct			
$W^{[2]}$ will have shape (3, 1)			
Un-selected is correct			
$b^{[2]}$ will have shape (3, 1)			
Correct			
Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1).$			
$W^{[3]}$ will have shape (3, 1)			
Un-selected is correct			
$b^{[3]}$ will have shape (1, 1)			
Correct			
Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.			
$W^{[3]}$ will have shape (1, 3)			
Correct			
Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$			
$b^{[3]}$ will have shape (3, 1)			

Un-selected is correct

. Key concepts on Deep Neural Networks Quiz, 10 questions

9/10 points (90%)

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $igcap W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcap W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]},n^{[l-1]})$

Correct

True

