	(A) Ultra-low frequency (B) Low frequency (C) Ultra high frequency (D) High frequency				
	PART – B (5 × 10 = 50 Marks) Answer ALL Questions	Marks	BL	СО	PO
26. a.	Describe the architecture of ATMega 328P with neat diagram.	10	3	I	3
b.	(OR) Elaborate the types of interrupts and its features in detail of the ATMega 328P Arduino.	10	3	1	3
27. a.	Describe the five steps involved in programming in detail with suitable example.	10	3	2	2
	(OR)				
b.	Write short notes on	(2.5)	1	2	3
	(i) Structures	(2.5)	1		
	(ii) Unions	(2.5)	1		
	(iii) Data storage (iv) Libraries	(2.5)	2		
		(2.5)			
28. a.	Explain the working principle of the interfacing device RS232 with appropriate circuit and sample code.	10	3	3	3
b.	(OR) Write a sketch for the communication process between the master Arduino board and slave Arduino device in I^2C protocol.	-10	4	3	5
29. a.	Sketch a code for Arduino uno to blink the ON-BOARD LED with 60% duty cycle and total time period of 1000 ms.	10	3	4	2
	(OR)				
b.i	In Arduino uno board, can the digital pin 13 be used as either input or output? Justify.	4	3	4	2
ii.	Explain the timer modes of operation of Arduino.	6	4	4	1
30. a.	Write a code to transmit data between two Arduino boards using simple, low-cost, wireless modules and explain the circuit arrangement.	10	4	5	11
4	(OR)				
b.	Write a code to interface a DC motor using H-bridge and controlled by a slide switch.	10	4	5	4

25. Which of the following is not RFID type?

		-	 	1		1 -	- 1
Reg. No.	10,00			Diff			

B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth and Sixth Semester

18ECO10	8J –	EMB	ED	DED	SYST	ΓEM	DES	IGN	US	SIN	G A	RDU	INO
											A .	0010	00001

	(For the candidates damitted from the academic year 2018-2019 to 2019-20	20)			
Note:				Fi.	1
(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR she	eet shou	ıld b	e hai	nde
	over to hall invigilator at the end of 40 th minute.				
(ii)	Part - B should be answered in answer booklet.				
Time: 2½	Hours All San Market and Hours	Max	. Ma	arks:	/5
	DADE: A (25 . 1 . 25 Mayles)	Marks	BL	СО	PC
	$PART - A (25 \times 1 = 25 Marks)$				
	Answer ALL Questions				
1.	How many 16 bit general purpose registers are there in ATMEGA 328P?	1	1	1	3

	(A) 2 (C) 3	Landard Miles Line (e.	(B) 1 (D) 4					
2.	Which o	of the following equation ca	n generate maximum	delay?	1	2	1	3

(A)	f	(B) f
	2	32
(C)	f	(D) f
	4	0

3	. ATMEGA 328P has	levels of pipelining.	1	2	1
	(A) 2	(B) 1			

ΔI	2	(D) 1
C)	3	(D) 4

4.	After every arithmetic operation	is updated.	1 1 I
	(A) Status register	(B) Instruction register	

(C)	ALU	(D) STACK	
		that all is also many put out a	Carl Water

(C) Source code	(D) Sketch	

υ.	(1) 11 (pu 1~pu){		
	/		
	}		

7.		The statement: ptr=buffer; simply initializes PTR to point to buffer and copies the of buffer into the of PTR.				2	2	2
		LVALUE, R VALUE						
	` '		. ,	- 17				
	(C)	L VALUE, L VALUE	(D)	R VALUE, R VALUE				
8.	The	general syntax for a structure is			1	1	2	2
		Struct structruetag {	(B)	Structure tag struct {				
	()	Structure member list;		Structure member list};				
		}		~ 1				
	(C)	Structure member list {	(D)	Structure memberlist structreu				
	(0)	Struct structure tag;};	(D)	tag {				
		Struct structure tag,,,						
				Struct;};				
9	A 1	nion acts like	that	is capable of holding a	1	1	2	3
,	11 (type of data.		to is capable of florang a				
	(A)	Large buffer, pre-defined	(B)	Register, pre-defined				
		Small buffer, pre-defined		Small buffer, int				
	(0)	Sman barren, pre acimica	(1)	Sindir Buller, Inc				
10.	i = 5	k + k * 2, where $k = 4$ and the k	ASTE	RISK(*) is the multiplication	1	2	2	3
		r. The value of "j" is						
	(A)		(B)	18				
	(C)		(D)					
	(0)	20	(D)	50				
11	This	function sets the serial commun	ns sneed	1	1	3	3	
11.		Serial.Read		Serial.Begin (speed)				
	` /	Serial. Write	, ,	Serial.Print(VAL, FORMAT)				
	(C)	Serial. Write	(D)	Serial Tillic (VAL, FORWAT)				
12.	The	is used to meas	ure tl	ne performance of the analog	1	2	3	3
		nunication system.		per personal or the annual g				
		SNR(signal to noise ratio)	(B)	Output power				
		Output voltage		Output current				
	(0)	o arpar vortage	(2)					
13.	Find	the correct step order of SPI			1	2	3	5
	1.	master outputs the clock signal						
		master switches the ss/cs pin to	o low	voltage state, which activates				
	the slave							
	3. master send data, one bit at a time. ALON MOSI line. Slave reads							
	as received							
	4. If a response is needed, slave returns one bit at a time to master							
		along MISO line. The master reads the bits as received						
	(A)	(A) 3,1,4,2 (B) 2,1,3,4						
		1,2,3,4		4,3,2,1				
	(0)	1,2,5,4	(D)	7,2,2,1				
14	I^2C protocol, if the slave device has successfully received the previous					1	3	5
д Г.								
	sequence it will the SDA line, down to the condition called							
			(D)	Dull not palmovuladas				
		Not pull, acknowledge		_				
	(C)	Not pull, not acknowledge	(D)	ruii, acknowleage				

15.	What statement is used to send out	t an	analog data in IO PIN using	1	1	3	3		
	Arduino IDE? (A) Analog read (PIN)	(B)	Analog write (PIN)						
	(C) Analog reference (TYPE)								
1.0	To seed a signal on an entered sign			1	2	4	1		
16.	To read a signal on an external pin, the data direction bit	we w	fill need to write ato		2	4	1		
	(A) Logic high, DDXN	(B)	Logic low, DDXN						
	(C) Logic low, PORTXN			-ar					
17.	The function "delay (1000)" paus returns	es tl	he programand	1	2	4	1		
	(A) 1000 milliseconds, nothing	(B)	1000 seconds, nothing						
	(C) 1000 milliseconds, low								
18.	If the logic levels of clock prescale bits are 101, then divide factor is 1 4								
	(A) 256	(B)	64		,				
	(C) 32	` ′	128						
		(-)							
19.	The standard frequency of PWM	signa	al used in Arduino board is	1	1	4	2		
	approximately	(D)	400 11-						
	(A) 490 KHz (C) 940 KHz	` /	490 Hz 940 Hz						
	(C) 340 KHZ	(D)	940 HZ						
20.	The syntax of PINMODE() function	is		1)	2	4	2		
	(A) PINMODE (PIN)								
	(C) PINMODE (MODE, PIN)	(D)	PINMODE (PIN, MODE)						
21.	How many bits does access code have	in F	Bluetooth frame format?	1	2	5	4		
	(A) 64 bits		72 bits						
			1024 bits						
						_	11		
22.	The NEO-6M GPS can track	_		I.	1	5	11		
	time.	mgn	est level of sensitivity in real						
	(A) 22, 40	(B)	50, 20						
	(C) 22, 50	, ,	18, 50						
22	1 II . I		1 1	1	2	5	11		
23.	satellite should be at anytime through		ver about, where each GPS	1	2	3	11		
	informations.	nout	the day and shows the orbital						
	(A) Pseudorandom code		Ephemeris						
	(C) Almanac	(D)	Random						
24.	Infrared light is	ra	diation with wavelengths	1	1	5	9		
2-11	than those of visible l		aranon manoronguis						
	· ·	_	Electromagnetic, longer						
	(C) Electromagnetic, shorter	(D)	Magnetic, shorter						

Page **2** of **4** Page **3** of **4**