Neural Networks in Lean4

mkaratarakis

May 13, 2025

Chapter 1

NN

Definition 1. An (artificial) neural network is a directed graph G=(U,C), where neurons $u\in U$ are connected by directed edges $c\in C$ (connections). The neuron set is partitioned as $U=U_{\rm in}\cup U_{\rm out}\cup U_{\rm hidden}$, with $U_{\rm in},U_{\rm out}\neq\emptyset$ and $U_{\rm hidden}\cap(U_{\rm in}\cup U_{\rm out})=\emptyset$. Each connection $(v,u)\in C$ has a weight w_{uv} , and each neuron u has real-valued quantities: network input ${\rm net}_u$, activation ${\rm act}_u$, and output ${\rm out}_u$. Input neurons $u\in U_{\rm in}$ also have a fourth quantity, the external input ${\rm ext}_u$. The predecessors and successors of a vertex u in a directed graph G=(U,C) are defined as ${\rm pred}(u)=\{v\in V\mid (v,u)\in C\}$ and ${\rm succ}(u)=\{v\in V\mid (u,v)\in C\}$ respectively. Each neuron u is associated with the following functions:

$$f_{\mathrm{net}}^{(u)}: \mathbb{R}^{2|\mathrm{pred}(u)| + \kappa_1(u)} \to \mathbb{R}, \quad f_{\mathrm{act}}^{(u)}: \mathbb{R}^{1 + \kappa_2(u)} \to \mathbb{R}, \quad f_{\mathrm{out}}^{(u)}: \mathbb{R} \to \mathbb{R}.$$

These functions compute net_u , act_u , and out_u , where $\kappa_1(u)$ and $\kappa_2(u)$ count the number of parameters of those functions, which can depend on the neurons. Specifically, the new activation act'_u of a neuron u is computed as follows:

$$\mathrm{act}_u' = f_{\mathrm{act}}^{(u)}\big(f_{\mathrm{net}}^{(u)}\big(w_{uv_1}, \dots, w_{uv_{\mathrm{pred}(u)}}, f_{\mathrm{out}}^{(v_1)}(\mathrm{act}_{v_1}), \dots, f_{\mathrm{out}}^{(v_{\mathrm{pred}(u)})}(\mathrm{act}_{v_{\mathrm{pred}(u)}}), \sigma^{(u)}\big), \theta^{(u)}\big)$$

where $\sigma^{(u)}=(\sigma_1^{(u)},\dots,\sigma_{\kappa_1(u)}^{(u)})$ and $\theta=(\theta_1^{(u)},\dots,\theta_{\kappa_2(u)}^{(u)})$ are the input parameter vectors.

Bibliography