Лекции по алгебре, 3 сем (преподаватель Демченко О. В.) Записали Костин П.А., Щукин И.В.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1 Теория групп

1.1 3.09.2019

Опр

$$G$$
 - мн-60, $*: G*G \Rightarrow G, \ (g_1,g_2) \Rightarrow (g_1*g_2) \ (g_1g_2)$

1.
$$(g_1g_2)g_3 = g_1(g_2g_3) \quad \forall g_1, g_2, g_3 \in G$$

2.
$$\exists e \in G : eq = qe = q \quad \forall q \in G$$

3.
$$\forall g \in G \quad \exists \widetilde{g} \in G : g\widetilde{g} = g\widetilde{g} = e$$

4.
$$g_1g_2=g_2g_1 \quad \forall g_1,g_2\in G$$
 - тогда это абелева группа

Пример

1.
$$(\mathbb{Z},+)$$
 - $rpynna$

2.
$$(\mathbb{Z}, ullet)$$
 - не группа

$$3. (R, +)$$
 - группа кольца

4.
$$(R^*, \bullet)$$

5. Группа самосовмещения D_n , например D_4 - квадрат, композиция - группа, $|D_n|=2n$

6.
$$GL_n(K) = \{A \in M_n(K) : |A| \neq 0\},$$
умножение - группа

7. $\mathbb{Z}n\mathbb{Z}$ - частный случай n.3,4

Свойства (групп)

$$\overline{1.}\ e$$
 - единственный, e,e' - нейтральные: $e=ee'=e'$

$$2.\ \widetilde{g}$$
 - единственный

Пусть
$$\widetilde{g}, \hat{g}$$
 - обратные, тогда $\widetilde{g}g = g\widetilde{g} = e = \hat{g}g = g\hat{g}$

$$\widehat{g}=e\widehat{g}=(\widetilde{g}g)\widehat{g}=\widetilde{g}(g\widehat{g})=\widetilde{g}e=\widetilde{g}$$

3.
$$(ab)^{-1} = b^{-1}a^{-1}$$

Это верно, если
$$(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$$
, докажем первое:

$$(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} = (a(bb^{-1}))a^{-1} = (ae)a^{-1} = aa^{-1} = e$$

4.
$$(g^{-1})^{-1} = g$$

$$\underbrace{g} g \in G \quad n \in \mathbb{Z}, \ mor \partial a \ g = \begin{bmatrix} \overbrace{g...g}^n, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1}...g^{-1}}_n, & n < 0 \end{bmatrix}$$

Свойства (степени)

$$1. \ g^{n+m} = g^n g^m$$

2.
$$(q^n)^m = q^{nm}$$

Опр

 $g \in G, n \in N$ - порядок g (ord g = n), если:

$$1. \ g^n = e$$

2.
$$q^m = e \Rightarrow m \geqslant n$$

Пример

1.
$$D_4 \operatorname{ord}(nosopom 90^\circ) = 4$$

 $D_4 \operatorname{ord}(nosopom 180^\circ) = 2$

2.
$$(\mathbb{Z}/6\mathbb{Z}, +) \operatorname{ord}(\overline{1}) = 6$$

 $\operatorname{ord}(\overline{2}) = 3$

$\mathbf{y}_{ ext{TB}}$

$$g^m = e \quad \operatorname{ord}(g) = n \Rightarrow m : n \ (n > 0)$$

Док-во

$$m = nq + r, \ 0 \le r < n$$

 $e = g^m = g^{nq+r} = (g^n)^q g^r = g^r \Rightarrow r = 0$

Опр

 $H \subset G$ называется подгруппой G (H < G) (u сама является группой), если:

1.
$$g_1, g_2 \in H \Rightarrow g_1g_2 \in H$$

$$2. e \in H$$

3.
$$q \in H \Rightarrow q^{-1} \in H$$

Пример

$$\overline{1}$$
. $n\mathbb{Z} < \mathbb{Z}$

2.
$$D_4$$

3.
$$SL_n(K) = \{A \in M_n(K) : |A| = 1\}, SL_n(K) < GL_n(K)$$

Мультипликативная запись	Аддитивная запись
g_1g_2	$g_1 + g_2$
e	0
g^{-1}	-g
g^n	ng

Опр

 $H < G, g_1, g_2 \in G$, тогда $g_1 \sim g_2$, если:

1.
$$g_1 = g_2 h, h \in H$$
 (левое)

2.
$$g_2 = hg_1, h \in H \ (npasoe)$$

Док-во (эквивалентности)

- $\stackrel{\cdot}{1}$. $\stackrel{\cdot}{(}$ $\stackrel{\cdot}{c}$ $\stackrel{\cdot}{g_1}=g_2h \stackrel{*h^{-1}}{\Rightarrow} g_2=g_1h^{-1}$
- 2. (peфлексивность) g = ge
- 3. (транзитивность) $g_1 = g_2 h, g_2 = g_3 h \Rightarrow g_1 = g_3 (h_2 h_1), \ r \partial e \ h_2 h_1 \in H$

Опр

 $[a] = \{b : a \ b\}$ классы эквивалентности

Опр

$$[g]=gH=\{gh,h\in H\}$$
 (левый класс смежности) $gh\sim g\Rightarrow gh\in [g]$ $g_1\in [g]\Rightarrow g_1\sim g\Rightarrow g_1=gh$

y_{TB}

$$[e] = H$$

Установим биекцию:

$$[g] = gh \leftarrow H$$

$$gh \leftarrow h$$

Очевидно, сюръекция, почему инъекция?

$$gh_1 = gh_2 \stackrel{*g^{-1}}{\Rightarrow} h_1 = h$$

Теорема (Лагранжа)

1.2 10.09.2019

Следствие

G - кон. группа, $a \in G$, ord a = m, $H = \{a^n : n \in \mathbb{Z}\}$, тогда |H| = m

Док-во

$$\{a^0=e,a_1,...,a^{m-1}\}$$
 - подмножество H
Докажем, что все остальные элементы тоже здесь есть $n\in\mathbb{Z}\Rightarrow n=mq+r,\ 0\leqslant m-1$ $a^n=a^{mq+r}=(a^m)^qa^r=a^r$ $a^k=a^l,\ 0\leqslant k\leqslant l\leqslant m-1,\$ умножим на a^{-k} $e=a^{l-k}\ o\leqslant l-k\leqslant m-1\ m$ - наименьшее \mathbb{N} такое что $a^m=e$ $l-k=0\Rightarrow l=k$ Докажем, что $|H|=m$ $\Rightarrow |G|: m=\mathrm{ord}\ a,\ m.o.\ в$ группе порядок эл-та - делитель порядка группы

Напоминание

Следствие (теорема Эйлера)

$$\overline{n,a \in \mathbb{N}}, (a,n) = 1, mor \partial a \ a^{\varphi(n)} \equiv 1 (mod n)$$

Док-во

$$\begin{array}{l} \textit{Paccмompuм} \ G = (\mathbb{Z}/n\mathbb{Z})* \ |G| = \varphi(n) \\ \overline{a} \in G, \ \mathrm{ord} \ \overline{a} = k \\ \varphi(n) \vdots k \Rightarrow \varphi(n) = kl \\ \overline{a} = \overline{1} \\ \overline{a}^{\varphi(n)} = \overline{1} \end{array}$$

Опр

G - циклическая группа, если $\exists g \in G: \forall g' \in G: \exists k \in \mathbb{Z}: g' = g^k$ Такой g называется образующим

Пример

 \mathbb{Z} (образующий - единица и минус единица)

Замечание

 \overline{N} юбая ииклическая группа - коммунитативна

Док-во

$$\overline{g'g''} = g''g' = g^kg^l = g^lg^k$$

Пусть G,H - группы, рассмотрим $G \times H = \{(g,h) : g \in G, h \in H\}$

Введем операцию $(g,h)*(g',h') \stackrel{def}{=} (g*_{G}g',h*_{H}h')$

Докажем, что это группа.

Доказательство ассоциативности:

$$((g,h)(g',h'))(g'',h'')\stackrel{?}{=}(g,h)((g',h')(g'',h'')$$
 $(gg',hh')(g'',h'')\stackrel{?}{=}(g,h)(g'g'',h'h'')$ $((gg')g'',(hh')h'')\stackrel{?}{=}(g(g',g''),h(h'h'')$ - очевидно

Нейтральный элемент:

Рассмотрим
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{1}, \overline{1})\}$$

$y_{\underline{\mathbf{T}}\underline{\mathbf{B}}}$

Конечная группа порядка п является циклической тогда и только тогда, когда она содержит элемент порядка п (|G|=n, G - циклическая $\equiv \exists g \in G : \mathrm{ord} \ g=n)$

Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ - циклическая $((\overline{1},\overline{1}),(\overline{0},\overline{2}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{2}))$ Рассмотрим $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ - не циклическая

Опр

 $\varphi:G\to H$ - биекция и $\varphi(g_1,g_2)=\varphi(g_1)\varphi(g_2)$ $\forall g_1,g_2\in G,$ тогда φ - изоморфизм

1.
$$D_3 \rightarrow S_3$$

2.
$$U_n = \{z \in \mathbb{C} : z^n = 1\} \leftarrow \mathbb{Z}/n\mathbb{Z}$$
$$(\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n} = \varphi \overline{a}\overline{a})$$
$$\overline{a} = \overline{b} \to \varphi(\overline{a}) = \varphi(\overline{b})$$
$$\varphi(\overline{a} + \overline{b}) \stackrel{?}{=} \varphi(\overline{a})\varphi(\overline{b})$$
$$\cos\frac{2\pi(a+b)}{n} + i\sin\frac{2\pi(a+b)}{n} = (\cos\frac{2\pi a}{n} + i\sin\frac{2\pi a}{n})$$

Опр

Две группы называются изоморфными, если между ними существует изоморфизм

$\mathbf{y}_{\mathbf{TB}}$

Изоморфизм - отношение эквивалентности

Док-во

т.к. композиция изоморфизмов - изоморфизм $G \stackrel{e}{\to} H \stackrel{\psi}{\to} H$ $(\psi \circ \varphi)(g_1g_2) = \psi(\varphi(g_1g_2)) = \psi(\varphi(g_1)\varphi(g_2)) = \psi(\varphi(g_1))\psi(\varphi(g_2)) = (\psi \circ \varphi)(g_1) \circ (\psi \circ \varphi)(g_2)$

Рефлексивность - тождественное отображение - изоморфизм

Tранзитивность: $G \underset{\varphi}{\rightarrow} H, H \underset{\varphi^{-1}}{\rightarrow} G$

Теорема

G - uuклическая группа

1)
$$|G| = n \Rightarrow G \cong \mathbb{Z}/n\mathbb{Z}$$

2)
$$|G| = \infty \Rightarrow G \cong \mathbb{Z}$$

Док-во

1) g - обр. G, значит $G = \{e, g, g^2, ..., g^{n-1}\}$ (среди них нет одинаковых), построим изоморфизм в $\mathbb{Z}/n\mathbb{Z}$: $\varphi(g^k) = \overline{k}$

Проверим, что $\varphi(g^kg^l) = \varphi(g^k) + \varphi(g^l) = \overline{k} + \overline{l}$

Левая часть: $\varphi(g^{k+l} = \overline{(k+l)} \mod n = \overline{k} + \overline{l}$

2) $G = \{..., g^{-1}, e, g, g^2, ...\}$ (тоже нет совпадающих элементов, иначе $g^k = g^l$, при k > l, тогда $g^{k-l} = e$, но тогда конечное число элементов, потому что оно зацикливается через каждые k-l элементов), построим отображение в \mathbb{Z} .

 $arphi(g^n)=n$ -, очевидно, биекция. И нужно доказать, что $arphi(g^ng^k)=arphi(g^n)-arphi(g^k)=n+k$

1.3 17.09.2019

y_{TB}

$$|G| = p, p - npocmoe \Rightarrow G \cong \mathbb{Z}/p\mathbb{Z}$$

Док-во

$$g \in G, g \neq e, \text{ ord } g = p$$

$$\Rightarrow G = \left\{e = g^0, g, ..., g^{p-1}\right\}$$

y_{TB}

$$H,G$$
 - группы, $\varphi:G \to H$ - изоморфизм $\Rightarrow n = \operatorname{ord} g = \operatorname{ord} \varphi(g)$

Док-во

Пусть
$$g^n = e$$
, $\varphi(g^n) = \varphi(e) \stackrel{?}{=} e$

$$\varphi(e)^2 = \varphi(e^2) = \varphi(e)$$

Теперь докажем, что меньшего нет

$$\varphi(g)^m = e, \ m \in \mathbb{N} \stackrel{?}{\Rightarrow} m \geqslant n$$
$$\varphi(g^m) = \varphi(g)^m = e = \varphi(e) \quad \Rightarrow g^m = e \Rightarrow m \ge n$$

Опр

H < G, тогда H - нормльная подгруппа, если $\forall h \in H, g \in G \Rightarrow g^{-1}hg \in H$ - сопряжение элемента h с помощью элемента g, обозначается: $H \triangleleft G$

Замечание

Элементы подгруппы при сопряжении переходят в элементы подгруппы

Замечание

Подгруппа любой коммунитативной группы нормальна

Пример

 D_3 - 6 элементов, 3 поворота и 3 симметрии

$$\{e,l,r\}$$
 - нормальная $\{e,s_1\}$ - не нормальная

$\mathbf{y_{rb}}$

 $H \triangleleft G \Leftrightarrow \mathit{pas}\mathit{биениe}$ на Π и Π кдассы смежности по H совпадают

$$\forall g \quad gH = Hg$$

Док-во

Берем произвольный элемент из левого и правого и докажем, что совпадают. Берем слева:

$$h \in H \quad gh \in gH$$
$$gh = \underbrace{(g^{-1})^{-1}hg^{-1}}_{\in H}g = h_1g$$

Теперь справа:

$$g \in G$$
, $h \in H$, $g^{-1}hg = h_1$
 $hg \in Hg = gH \Rightarrow gh_1, h_1 \in H$

$$H \triangleleft G \ g_1 H * g_2 H \stackrel{\mathrm{def}}{=} g_1 g_2 H$$

Док-во (коррекнтности)

Хотим проверить, что

$$\widetilde{g}_1 H = g_1 H, \quad \widetilde{g}_2 H = g_2 H \stackrel{?}{\Rightarrow} \widetilde{g}_1 \widetilde{g}_2 H = g_1 g_2 H$$

Аналогично прошлому доказательству

$$g_2^{-1}h_1g_2 = h_3 \in H$$

$$\widetilde{g}_1\widetilde{g}_2h = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$$

$$= h_3$$

$$\widetilde{g}_1H = g_1H \Rightarrow \widetilde{g}_1 = g_1h_1$$

$$\widetilde{g}_2H = g_2H \Rightarrow \widetilde{g}_2 = g_2h_2$$

Не использовали условие $g_2^{-1}h_1g_2 = h_3 \in H$

$$\widetilde{g}_1\widetilde{g}_2H = g_1h_1g_2h_2h = g_1g_2(g_2^{-1}h_1g_2)h_2h$$

Осталось доказать, что получается группа

- 1) Нейтральный элемент $eH=H, \quad eH*gH=(eg)H=gH$
- 2) Ассоциативность $(g_1H + g_2H) * g_3H \stackrel{?}{=} g_1H * (g_2H * g_3H)$ $(g_1g_2)H * g_3H = (g_1g_2)g_3H$
- 3) $gH * g^{-1}H = (gg^{-1})H = eH$

G/H

Была эквивалентность: $a \sim b \Leftrightarrow a - b \stackrel{.}{:} h$

$$G = \mathbb{Z}$$

$$H=h\mathbb{Z},\quad g_1g_2^{-1}\in H$$
 - мульт. запись , $\quad g_1-g_2\in n\mathbb{Z}$ - адд. запись $[a]+[b]=[a+b]$

Аддитивная группа кольца класса вычетов - это то же самое, что фактор группа группы $\mathbb Z$ по подгруппе $n\mathbb Z$

Пример

Как в произвольной группе найти подгруппу?

$$[g,h]=ghg^{-1}h^{-1},\ g,h\in G$$
 - коммутатор элементов $h,g\in G$

Коммутант - множество проззведений всех возможных коммунтаторов

Обозначается $K(G) = \{[g_1, h_1]...[g_n, h_n], g_1, h_1 \in G\}$

Док-во (коммутант - подгруппа)

Hейтральный элемент: [e,e]=e

Обратный элемент? $[g_1, h_1]...[g_n, h_n]$

Как его найти? $[g,h^{-1}]^{-1}=(ghg^{-1}h^{-1})^{-1}=hgh^{-1}g^{-1}=[h,g]$ $([g_1,h_1]...[g_n,h_n])^{-1}=[g_1,h_1]...[g_n,h_n]$

Значит это подгруппа

Нормальная ли? $g^{-1}[g_1,h_1]...[g_n,h_n]g$

$$g^{-1}[g_1, h_1]g(g^{-1}[g_2, h_2]g)...(g^{-1}[g_n, h_n]g)$$

Нужно доказать, что сопряжение коммунтатора лежит в коммутанте

$$g^{-1}g_1h_1g_1^{-1}h_1^{-1}g = \underbrace{g^{-1}g_1h_1g_1^{-1}h_1^{-1}}_{=[g^{-1}g_1,h_1]}\underbrace{h_1g^{-1}h_1^{-1}g}_{=[h_1,g^{-1}]}$$

y_{TB}

 Φ актор-группа (G/K(G)) по коммутанту - коммунитативна

Док-во

$$g_1, g_2 \in G$$
 $g_1K(G)g_2K(G) \stackrel{?}{=} g_2K(G)g_1K(G)$
 $g_1g_2K(G) = g_1g_2K(G)$ $g_2K(G)g_1K(G) = g_2g_1K(G)$
 $[g_1, g_2] = g_1g_2(g_2g_1)^{-1} \in K(G)$

$\underline{\mathbf{y_{TB}}}$

$$\mathbb{Z}_n \times \mathbb{Z}_m \simeq \mathbb{Z}_{mn}$$
, если $(m,n) = 1$

Док-во

 \overline{Hy} жно построить изоморфизм $[a]_{mn}\mapsto ([a]_n,[a]_m)$

$$[a]_{mn} = [a']_{mn} \Rightarrow [a]_n = [a']_n, [a]_m = [a']_m$$

Теперь нужно проверить биекцию

Сюръекция:
$$\forall b, c \in \mathbb{Z} \ \exists x \in \mathbb{Z} : \begin{cases} [x]_n = [b]_n \\ [x]_m = [c]_m \end{cases}$$
, no KTO всё хорошо

Инъективность:

$$[a]_n = [b]_n$$

$$[a]_m = [b]_m \Rightarrow [a]_{mn} = [b]_{mn}$$

На языке сравнений:

$$\begin{array}{l} a \equiv b(n) \\ a \equiv b(m) \\ \end{array} \Rightarrow a \equiv b(mn)$$

На самом деле достаточно было проверить одно

Опр

$$arphi:G o H$$
 - гомоморфизм, если $arphi(g_1g_2)=arphi(g_1)arphi(g_2)$ изоморфизм = гомоморфизм + биективность $arphi\in Hom(G,H)$ - множество гомоморфизмов

Примеры

1)
$$\mathbb{C}^* \to \mathbb{R}^*$$

$$z \to |z|$$

$$2) \quad GL_n(K) \to K^*$$

$$A \to \det A$$

3)
$$S_n \to \{\pm 1\}$$

$$\sigma \to \left\{ \begin{array}{ll} +1, & \textit{ecnu } \sigma \textit{ - четн.} \\ -1, & \textit{ecnu } \sigma \textit{ - неч.} \end{array} \right.$$

4)
$$a \in G \quad G \to G$$

$$q \to a^{-1}qa$$

$$(a^{-1}ga)(a^{-1}g_1a) = a^{-1}g_1ga$$