Flussdichten

in $[km * km^{-2}]$

- Grundgebierge ~ 1.8
- Bundsandstein ~ 0.64
- Muschelkalk ~ 0.28

Fehler bbei der Niederschlagsmessung

$$N = k * (N_G + \delta N_B + \delta N_M)$$

Fehlerquellen - Wind - Benetzung - Verdunstung

Niederschlagsmeßnetz

Räumliche Verteilung der Niederschlagsstationen der Erde - Abbildung von GPCC

Deutschland - Abbildung DWD a. Kämt 2007

Bestimmung des Gebietsniederschlages

arithmetisches Mittel

- $$\begin{split} \bullet & \ \bar{N} = \sum_{i=1}^n w_i * N_i \\ \bullet & \ w_i = \text{Gewichtung der Station i} \\ \bullet & \ w_i = \frac{A_i}{\sum_{i=1}^n A_i} \\ \bullet & \ N_i = \text{Niederschlagsmenge der Station i in mm} \end{split}$$

Beispiel

Station	Ni	Ai	wi
1	20 mm	4	0,138
2	30 mm	7	0,241
3	20 mm	3	0,103
4	82 mm	6	0,207
5	108 mm	9	0,310
_	_	_	_
		29	1,0

- a) arithmetisches Mittel $\bar{N} = \sum_{i=1}^{n} w_i * N_i = 59,4mm$
- b) nur stationen * 23.5 = 65 mm

Thiessen-Polygon

Inverses Distanzverfahren (IDW)

Höhenregression

häufige Kombination ist IDW + Höhenregression

Isohyetenmethode

 ${\bf Isohyeten - Linien \ gleichen \ Niederschlages}$ Sehr genau

Kriging (optimal interpolation)

Überbegriff für ein Set von verschiedenen Methoden. Minimierung des Schätzfehlers