Formalizing Modal Embeddings of Call-by-Name and Call-by-Value

Floris Reuvers

Supervisor: dr. N.M. van der Weide Second Reader: dr. E.G.M. Hubbers

June 17, 2025

Radboud University

Research Question

How can the unification of call-by-name and call-by-value evaluation strategies using modal logic be formalised in Agda?

Introduction

Context

- Functional Programming Languages
- Evaluation Strategies
 - Call-by-value (cbv): OCaml/F#/SML
 - Call-by-name (cbn)/Lazy Evaluation: Haskell/Clean
- Idea of cbn and cbv
 - cbv: first evaluate the argument, then the beta
 - cbn: evaluate the beta

Let f be defined as

$$f(x) = x * x$$

Let f be defined as

$$f(x) = x * x$$

Let f be defined as

$$f(x) = x * x$$

cbn and cbv evaluation of f(3 + 3)

cbn:

cvb:

Let f be defined as

$$f(x) = x * x$$

$$f(3+3) \rightarrow (3+3) * (3+3)$$
 $f(3+3) \rightarrow f(6)$

Let f be defined as

$$f(x) = x * x$$

cbn: cvb:
$$f(3+3) \to (3+3)*(3+3)$$
 $f(3+3) \to f(6)$ $f(3+3) \to 6*6$

Let f be defined as

$$f(x) = x * x$$

cbn:
 cvb:

$$f(3+3) \rightarrow (3+3)*(3+3)$$
 $f(3+3) \rightarrow f(6)$
 $\rightarrow 6*(3+3)$
 $\rightarrow 6*6$
 $\rightarrow 6*6$
 $\rightarrow 36$

Let f be defined as

$$f(x) = x * x$$

cbn:
 cvb:

$$f(3+3) \rightarrow (3+3)*(3+3)$$
 $f(3+3) \rightarrow f(6)$
 $\rightarrow 6*(3+3)$
 $\rightarrow 6*6$
 $\rightarrow 6*6$
 $\rightarrow 36$
 $\rightarrow 36$

Reasons to unify cbn and cbv

- Reason 1
- Reason 2
- Reason 3

Approaches to unification

- Modal logic
- Linear logic
- Thunks

Background

$$A ::= X \mid A \rightarrow A' \qquad M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Example terms

$$A ::= X \mid A \rightarrow A' \qquad M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Example terms

X

$$A ::= X \mid A \rightarrow A' \qquad M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Example terms

Χ

 $\lambda x.x$

$$A ::= X \mid A \rightarrow A' \qquad M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Example terms

Χ

 $\lambda x.x$

 $\lambda y.yz$

$$A ::= X \mid A \rightarrow A' \qquad M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Example terms

X

 $\lambda x.x$

 $\lambda y.yz$

 $(\lambda y.y)z$

$$A ::= X \mid A \rightarrow A' \qquad M, N, P, Q ::= x \mid \lambda x. M \mid MN$$

Example terms

X

 $\lambda x.x$

 $\lambda y.yz$

 $(\lambda y.y)z$

 $\lambda x. \lambda t. xt(\lambda s. w) wy$

Call-by-name and call-by-value λ -calculus

Closure Rules

Here we define closure rules

Evaluation Relations

Call-by-box λ -calculus

Grammer

$$A ::= X \mid B \rightarrow A \mid B$$
 $B ::= \Box A$

$$M, N, P, Q ::= \varepsilon(x) \mid \lambda x.M \mid MN \mid box(N)$$

Evaluation Relations of λ_b

Embeddings into λ_b

Girard's Translation

Gödel's Translation

Challenges of Formalisation

Overview Challenges

- Variables
- III typed terms
- Formal definition of raise

De Bruijn Indices

Restriction to well-typed terms

Formal definition of raise

Propositions

Girard's Translation

Gödel's Translation

Conclusion

Conclusion