Discrete Mathematics

Propositional Logic

Shin Hong

2 Sep, 2019

Textbook coverage

- Sec. I.I Propositional logic
- Sec. I.3. Propositional equivalence
- Sec. I.2 Applications of propositional logic

Propositional Logic

Logic

- Logic, or a logic system, is a set of rules to specify and derive a certain kind of statements
 - to achieve clarity and correctness in an argument

- A logic system has the syntactic and the semantic aspects
 - syntax: symbolic structure of the statements
 - semantics: a relation between symbolic structures and meaning

Propositional Logic

Propositional Logic

- A statement in the propositional logic consists one or multiple propositions connected with logical operators
- A proposition is a declarative sentence that is either true or false
 - | + | = 2
 - Vancouver is the capital of Canada
 - $-\frac{1+2+3}{}$
 - $\times + + = 2$

- A propositional variable is a symbol that represents a propositional statement
 - the value of a propositional variable is either true or false
 - the value is definitive within a statement

Propositional Logic

Propositional Logic

- An atomic proposition is a propostion that cannot be expressed in term of simpler terms
- A compound proposition is formed with other propositions and logical operators
 - logical operators (connectives): negation, disjunction, conjunction, XOR, implication, etc.
 - E.g., The negation of p for a proposition p, denoted as $\neg p$, is the proposition that is true only when p is false.
- Formal grammar

```
P := A \mid C
A := p \mid q \mid r \mid ...
C := \neg P \mid (P) \mid P \lor P \mid P \land P \mid ...
```

Propositional Logic

Evaluation

 A propositional statement with propositional variables may have different evaluations (truth values) depending on the values of each propositional variable

-ex.
$$p \lor (q \land r)$$

• An assignment (model or valuation) of a proposional statement is a combination of truth values of the propositional variables

- e.g. ,
$$\phi_1=(p:\mathsf{T},\ q:\mathsf{T}$$
 , $r:\mathsf{T})$ or $[\![\phi_1]\!]_p=\mathsf{T}$, $[\![\phi_1]\!]_q=\mathsf{T}$, $[\![\phi_1]\!]_r=\mathsf{T}$ $\phi_2=(p:\mathsf{T},\ q:\mathsf{T}$, $r:\mathsf{F})$ or $[\![\phi_2]\!]_p=\mathsf{T}$, $[\![\phi_2]\!]_q=\mathsf{T}$, $[\![\phi_2]\!]_r=\mathsf{F}$

Propositional Logic

Implication (Conditional Statement)

- An implication is a logical connective such that $p \to q$ evaluates to True when q is true if p is true
 - $p \rightarrow q$ is equivalent with $\neg p \lor q$
 - used to state a condition
 - examples
 - if you do not take midterm, you get F
 - if you are in the Handong campus, you are in Pohang
 - $x < y \rightarrow x < y + 1$
 - $(2 + 3 = 4) \rightarrow (1 + 2 = 4)$
- The converse of $p \rightarrow q$ is $q \rightarrow p$.
- The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$.
- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Propositional Logic

Logic

Discrete Math.

Equivalence

- The condition that two propositions p and q evaluate to the same can be expressed as $(p \to q) \land (q \to p)$, or simply $p \leftrightarrow q$
 - have the same truth value for every assignment
 - a statement $p \leftrightarrow q$ refers as p if and only if q (or simply p iff q)

Propositional Logic

Example

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	

• De Morgan's law:

$$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \leftrightarrow \neg p \land \neg q$$

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$	
Т	T	Т	F	F	F	F	
T	F	T	F	F	T	F	
F	T	T	F T		F	F	
F	F	F	T	T	T	Т	

Propositional Logic

Propositional Satisfiability

- ullet A proposition p is **satisfiable** if there exists an assignment that makes p true
- A proposition p is **unsatisfiable** if p is not satisfiable
 - A unsatisfiable proposition is called as contradiction
- A proposition p is **valid** if p is true for all assignments
 - A valid proposition is called as tautology
 - E.g., if x = y, then x = yI just want to live while I am alive Bon Jovi

Propositional Logic

Logic Puzzle: Knight or Knaves

• An island has two kinds of inhabitants, knights, who always tell the truth, and knaves, who always lie.

- You go to the island and meet A and B.
 - A says "B is a knight."
 - B says "The two of us are of opposite types."

What are the types of A and B?

Propositional Logic

Discrete Math.

Logic Puzzle: Treasure

- There are 3 trunks only one of which contains a treasure.
- Trunk I and Trunk 2 are inscribed with "This trunk is empty" and Trunk 3 is inscribed with "Treasure is in Trunk 2".
- You know that only of the three inscription is true.
- Where's the treasure?

Propositional Logic

Discrete Math.

System Specification

- Logic-based languages (formal languages) are powerful tools for specifying and analyzing software requirements rigorously
- E.g., Lufthansa A320 Airbus accident at Warsaw in 1993
 - Specification: Turn on reverse thrust when the airplane is running on runway for landing
 - System Design (adopted)
 - Set REVERSE_THRUST as ON iff
 MODE = LANDING and ALTITUDE = 0
 - Set MODE as LAND iff
 VELOCITY > 0 and LANDING_GEAR_ANG > 0

Propositional Logic

Discrete Math.

Application: N-Queen Problem

Problem

- Place N Queens on a NxN grid, while not placing two Queens on the same vertical, horizontal or diagonal line

Modeling

- Proposition $p_{i,i}$ indicates whether a Queen is placed at the i-row and at the j-th column

$$Q_1 = \bigwedge_{i=1..n} \bigvee_{j=1..n} p_{i,j}$$

$$Q_4 = \bigwedge_{i=1..n} \bigwedge_{j=1..n} \bigwedge_{k=1..i+j-1} \neg (p_{i,j} \land p_{k,i+j-k})$$

$$Q_2 = \bigwedge_{i=1..n} \bigwedge_{j=1..n-1} \bigwedge_{k=j+1..n} \neg (p_{i,j})$$

$$Q_{2} = \bigwedge_{i=1..n} \bigwedge_{j=1..n-1} \bigwedge_{k=j+1..n} \neg (p_{i,j} \land p_{i,k}) \qquad Q_{5} = \bigwedge_{i=1..n} \bigwedge_{j=1..n} \bigwedge_{k=1..n-i+j-1} \neg (p_{i,j} \land p_{k,n-i+j}) \text{ Propositional Logic}$$

$$Q_3 = \bigwedge_{i=1,n} \bigwedge_{j=1,n-1} \bigwedge_{k=j+1,n} \neg (p_{j,i} \land p_{k,i})$$

$$Q_1 \wedge Q_2 \wedge Q_3 \wedge Q_4 \wedge Q_5$$

Logic

Discrete Math.

Application: Sudoku Puzzle

- A Sudoku puzzle is represented as a 9x9 grid with nine 3x3 subgrids called subgrids
 - each cell has a number in 1 to 9
- The puzzle is solved by assigning a number to each cell so that every row, every column, and every of a block contains each of the 9 numbers.
- Modeling
 - p(i, j, n) holds when row i and column j has n

[(,) ,)	
$\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{j=1}^{9} p(i, j, n)$	/ i:
$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n)$	$\int_{i=1}^{9}$

		9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	

Propositional Logic

Discrete Math.