Jegyzőkönyv

а

mágneses szuszceptibilitás méréséről (7)

Készítette: Tüzes Dániel

Mérés ideje: 2008-10-01, szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-10-08

A mérés célja

A feladat egy mágneses térerősségmérő eszköz hitelesítése és néhány anyag κ mágneses szuszceptibilitásának vizsgálata.

Elvi alapok

A Hall szonda legfontosabb része egy kiterjed méretű ellenállás (félvezető), melyen áramot folyatunk. Feltételezve, hogy azon az áram egyenletesen folyik, az áram haladási irányára merőlegesen a szemközti oldalak közötti feszültségkülönbség 0. Ha mágneses térbe helyezzük a berendezést, akkor az előbbi két pont között feszültség lesz mérhető, mert a mágneses tér eltéríti az elektronokat. Különböző mágneses térerősségeket alkalmazva különböző feszültéseket kaphatunk, melyből felvehetünk egy $U_{\it Hall}(B)$ kapcsolatot. Az ezt leíró függvény várt alakja $U_{\it Hall}=C\cdot I_{\it Hall}B$, ahol Ca Hall szondára jellemző állandó, értéke $C=R_{\it Hall}/d$, ahol daz ellenálláslapka vastagsága.

A hitelesítéshez tudni kell, mekkora a mágneses térerősség nagysága adott feszültség esetén. Ennek méréséhez a mágneses indukció jelenségét használjuk fel. Egy ismert tekercset a mágneses tér közepébe helyezünk, majd onnan ismert mágneses térbe visszük. A mágneses fluxussűrűség változására feszültség jelenik meg a tekercs végpontjai között, ezt felintegrálva az elmozdítás kezdetétől a mozgás befejeztéig, megállapíthatjuk a mágneses térerősség nagyságát, ha ismerjük a tekercs paramétereit.

Ha a vizsgált anyag egyik végét a mágneses tér középbe, másik végét az ismert nagyságú térbe tesszük úgy, hogy végpontonként a forgásszimmetrikus minta tengelye merőleges legyen a mágneses térre, akkor a mintára erő fog hatni, melynek nagysága $F=\frac{(\kappa-\kappa_0)AB^2}{2\mu_0}$, ahol κ_0 a levegő szuszceptibilitása és A a minta keresztmetszete.

A mérési módszer ismertetése

A mágneses teret egy elektromágnessel állítjuk elő, melyen átfolyó áram erősségének változtatásával szabályozhatjuk a mágneses tér nagyságát. A tekercs vasmagos, így néhány A segítségével hozzávetőleg 1 T nagyságú mágneses teret hozhatunk létre.

Áramgenerátort kapcsolunk a Hall szondára, melynek értékét 5 *mA* körül állítjuk be és a teljes mérés közben stabil értéken tartjuk. Gyakorlati okok miatt a szonda 0 mágneses térben is mutat feszültséget, ezért ugyan a mágneses térrel nem egyenesen lesz arányos, de lineáris függvénye marad. Továbbá megemlítendő, hogy a hiszterézis miatt a tekercsen átfolyó 0 áram mellett is lesz mágneses tér.

A hitelesítéshez egy ismert tekercset teszünk a tér közepébe (az indukcióvektorokra merőlegesen), melyet homogénnek tekintünk azon a tartományon belül. Eközben egy mérőműszer (fluxmérő) van a két kivezetésére csatlakoztatva, mely időre felintegrálja (egy jelzett kezdőpillanattól) a mérhető feszültséget. A műszer mérési pontosságára való tekintettel a tekercset határozott, ámde nem túl gyors mozdulattal kivesszük a mágneses térből, feltételezve, hogy a tekercsek közötti térhez képest attól már fél méterre 0 a mágnes tér. A fluxmérő

kijelzett értékéből a tekercs paramétereinek ismeretében megadhatjuk a mágneses tér nagyságát az alábbi összefüggés szerint: $B=\Delta\Phi/n\overline{F}$, ahol $\Delta\Phi$ a fluxmérő kijelzett $\int_0^{v\acute{e}g} Udt$ értéke, n a tekercs menetszáma, n=194, \overline{F} pedig az átlagos menetfelület. Ezt az értéket megkapjuk az $\overline{F}=\frac{\pi}{2}\left(r_k^2+r_kr_b+r_b^2\right)$ összefüggésből, ahol r_k a tekercs külső, r_b a belső átmérő fele. Különböző

erősségű mágneses térben vizsgáljuk a Hall szonda feszültségét és a mágneses tér nagyságát.

Ismert átmérőjű, elég hosszú tárgyat lógatunk a mágneses térbe, a felfüggesztési pontja egy nagypontosságú mérleggel van összekötve. Különböző nagyságú mágneses tereket létrehozva vizsgáljuk a mérleggel a kijelzett érték változását, melyből meghatározhatjuk a testre ható erő megváltozását. Tekintsük a jobbra lévő ábrát a mérési elrendezéssel!

Mérési eredmények, hibaszámítás

• a Hall szonda hitelesítése

A hitelesítés során mért értékeket az alábbi táblázatban foglalom össze.

$U_{Hall}(mV)$			átlag (<i>Vs</i>)	B(T)			
69,6	1,16	1,15	1,15	1,16	1,16	1,156	0,119
79,3	1,90	1,90	1,91	1,91	1,91	1,906	0,196
90,7	2,79	2,78	2,79	2,79	2,79	2,788	0,286
102,4	3,71	3,69	3,69	3,69	3,68	3,692	0,377
114,0	4,60	4,60	4,60	4,60	4,60	4,6	0,481
125,5	5,49	5,49	5,46	5,46	5,46	5,472	0,559
136,7	6,33	6,33	6,34	6,35	6,35	6,34	0,650
147,7	7,17	7,17	7,18	7,16	7,16	7,168	0,733
158,1	7,97	7,97	7,97	7,97	7,97	7,97	0,716
168,2	8,74	8,74	8,75	8,77	8,76	8,752	0,897

Az eredményeket grafikusan is ábrázoltam:

A mágneses térerősség értékének meghatározásához szükség volt $\overline{F}=\frac{\pi}{3}\left(r_k^2+r_kr_b+r_b^2\right)$ értékének meghatározására. Ehhez az alábbi adatokat használtam: $r_k=(4,8\pm0,01)\,mm$, $r_b=(3,05\pm0,01)\,mm$, így a tekercs teljes felülete $F=\overline{F}\cdot n=(95,5\pm7)\,cm^2$, ahol n a menetszám, n=194.

A görbe meredekségéből meghatározható a Hall szondára jellemző $R_{\it Hall}$ / d állandó értéke. A szondán $I_{\it Hall}=(5,00\pm0,005)\, mA$ áram folyt a mérés során. Az illesztett egyenes meredeksége

$$8,0657 \pm 3,4 \cdot 10^{-5}. \ U_{\textit{Hall}} = \frac{R_{\textit{Hall}}}{d} I_{\textit{Hall}} B \Rightarrow B = U_{\textit{Hall}} \frac{d}{I_{\textit{Hall}} R_{\textit{Hall}}} \Rightarrow \frac{d}{I_{\textit{Hall}} R_{\textit{Hall}}} = 8,066 \frac{T}{V} \Rightarrow \frac{R_{\textit{Hall}}}{d} = 24,80 \frac{\Omega}{T} \ \text{Az}$$

illesztett egyenes hibája meglepően kicsi, a legnagyobb hibát az áramerősség leolvasási pontatlansága és a fluxmérő felülete jelenti. Így a Hall-állandója a műszernek $R_{{\it Hall}}$ / $d=(24,8\pm0,4)\Omega$ / T . A nagy hibának oka, hogy a fluxmérő drótjának vastagsága nem elhanyagolható a fluxmérő tekercshez képest, így a fluxmérő tekercs teljes méretében jelentős hiba lép fel.

szuszceptibilitás mérése

Különböző mintáknál feljegyeztem az $U_{{\mbox{\scriptsize Hall}}}$ értékekhez tartozó tömegváltozás nagyságát:

5-ös minta			1-es minta				3-as minta				
$U_{Hall}(mV)$	$B^2(T^2)$	m(mg)	F(N)	$U_{Hall}(mV)$	$B^2(T^2)$	m(mg)	F(N)	$U_{Hall}(mV)$	$B^2(T^2)$	m(mg)	F(N)
58,4	0,001	0	0,000	58,2	0,001	0	0,000	58,3	0,001	0	0,000
67,9	0,012	0,7	0,007	67,9	0,012	-0,2	-0,002	67,8	0,012	0,6	0,006
79,0	0,039	1,5	0,015	79,0	0,039	-0,4	-0,004	79,0	0,039	1,6	0,016
90,6	0,085	2,5	0,025	90,7	0,085	-0,7	-0,007	90,6	0,085	3,8	0,037
102,3	0,149	3,2	0,031	102,5	0,150	-1,3	-0,013	102,5	0,150	6,6	0,065
114,1	0,231	3,7	0,036	114,3	0,233	-2,3	-0,021	114,3	0,233	10,1	0,099
125,7	0,330	3,9	0,038	125,9	0,332	-3,1	-0,029	125,8	0,331	14,2	0,139
136,8	0,441	3,9	0,038	136,9	0,442	-4,2	-0,040	137,0	0,443	18,9	0,185
147,8	0,567	3,3	0,032	147,9	0,568	-5,6	-0,055	148,0	0,569	24,0	0,235
158,2	0,700	2,6	0,026	158,2	0,700	-7,1	-0,070	158,3	0,701	29,1	0,285
168,2	0,841	1,6	0,016	168,3	0,843	-8,7	-0,085	168,2	0,841	34,7	0,340
178,6	1,002	0,3	0,003	179,0	1,009	-10,9	-0,107	177,8	0,989	40,4	0,396
186,5	1,134	-0,9	-0,009	186,6	1,136	-12,4	-0,122	186,7	1,137	46,2	0,453
195,0	1,285	-2,3	-0,023	195,1	1,286	-14,1	-0,138	195,1	1,286	51,8	0,508
202,9	1,433	-3,4	-0,033	202,9	1,433	-15,6	-0,153	202,9	1,433	57,7	0,566

A mérési eredmények alapján számolhatunk mágneses szuszceptibilitást a $F = \frac{(\kappa - \kappa_0)AB^2}{2\mu_0}$ képlet

alapján. Ehhez kell ismerni a minták keresztmetszetét. Henger alapú minták esetén elegendő az átmérő ismerete is. Minden minta átmérőjét 5 helyen mértem meg, ezek:

anyag	átmérő (<i>mm</i>)	átlag (mm)	$A(mm^2)$				
5-ös	7,93	8,02	7,98	8,03	8,00	7,992	$50,16 \pm 0,25$
1-es	6,95	6,99	6,96	6,96	6,97	6,966	$38,11 \pm 0,08$
3-as	8,01	8,01	8,01	8,01	8,01	8,01	$50,391\pm0,002$

Az 1-es és 3-as mintára egyenest lehetett illeszteni, melynek meredekségét az ábrán feltüntettem.

Az előző képletből adódóan $\frac{\kappa-\kappa_0}{2\mu_0}A$ a meredekség, így κ értékeire kapjuk, hogy

 $\kappa_1=-(6,73\pm0,26)\cdot10^{-6}$ és $\kappa_3=(2,03\pm0,02)^{-5}$. A hibákat a minták felületméréséből, a mérleg és az illesztés hibájából számoltam. Az egyenesillesztés hibája $\Delta m_1=\pm2,8\cdot10^{-6}$ ill $\Delta m_3=4,1\cdot10^{-6}$

Az 5-ös minta szuszceptibilitását ilyen módszerrel nem lehet meghatározni, mert értéke függ a mágneses térerősség nagyságától. Szabad szemmel egyébként látható volt, hogy míg valószínűleg az 1-es minta réz, a 3-as alumínium, addig az 1-es valamilyen ötvözet. A jelenség egy lehetséges magyarázata a következő. Az ötvözet nagymennyiségben tartalmaz rezet és kismennyiségben ferromágneses anyagot. A mágneses tér kicsiny növelésére ez utóbbi érzékenyebb, így hatása jobban érvényesül, ezért az kezdeti $\kappa>0$. Azonban a kis koncentráció miatt hamar telítődik a mágneses tere a ferromágneses anyagnak, így tovább nem tud hatást kifejteni. A növekvő térerősségben a réz mind jobban érvényesíti hatását, hisz még nem telítődött. Kellő nagyságú tér alkalmazása esetén így akár negatív κ is elérhető.

A telítődés jelenségét kicsiben a 3-as mintában (alumínium) is észrevehetjük.

Melléklet

Az elméleti levezetéseket megtaláljuk a következő műben: Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.