Recitation 12

 $https://cims.nyu.edu/\ cd2754/$

Fall 2021

Convex functions inequality

Proof the following inequality:

Given convex function f defined on \mathbb{R}^n , show for any x, y in the domain of f

$$f(y) \ge f(x) + \nabla f(x)^{T}(y - x)$$

$$\forall x, y \in \mathbb{R}^{n}, \alpha \in (0,1) \text{ we have.}$$

$$f(\alpha y + (1-\alpha)x) \le \alpha f(y) + (1+\alpha) f(x)$$

$$Thu.$$

$$f(x + \lambda(y - x)) \le f(x) + \lambda(f(y) - f(x))$$

$$J(y) \geqslant J(x) + \frac{f(x + \lambda(y + x)) - f(x)}{\lambda}$$

$$as \quad \lambda - 20, \text{ we have.}$$

$$J(y) \geqslant J(x) + f(x)^{T}(y - x)$$

Convex functions and convex sets

For $f: \mathbb{R}^n \to \mathbb{R}$, define the epigraph $\operatorname{epi}(f) \subset \mathbb{R}^{n+1}$ to be the set of all points above the graph of f: $\operatorname{epi}(f) := \{(x, t) \in \mathbb{R}^{n+1} \mid t \geq f(x)\}.$

- 1. Prove that f is convex if and only if epi(f) is convex.
- 2. Prove that if f, g are convex functions, then $h(x) = \max(f(x), g(x))$ is convex.

1. Let
$$x_r, x_2 \in \mathbb{R}^n$$
, $y_1, y_2 \in \mathbb{R}$ $d \in (0,1)$ and (x_i, y_i) $(x_2, y_2) \in \mathbb{R}$ $(x_1, y_1) \in \mathbb{R}$ $(x_1, y_2) \in \mathbb{R}$ $(x_2, y_2) \in \mathbb{R}$ $(x_1, y_2) \in \mathbb{R}$ $(x_2, y_2) \in \mathbb{R}$ $(x_1, y_2$

$$= 7 \quad \forall y_1 + (1-d)y_2 \geq \propto f(x_1) + (1-d)f(y_2) \geq f(dx_1 + (1-d)x_2)$$

$$(x_1, y_1), (x_2, y_2) \in epi(f) = 7(dx_1 + (1-d)x_2, dy_1 + (1-d)y_2) \in epi(f), epi(f) \iff epi$$

2. f, y convex

=) epi(f), epi(g) couvex

Intersection of convex sels is convex

There epi(max(d,g)) = epi(f) / epi(g) is convex

epi(h) convex => h convex

12

Questions: Ridge Regression

Let $X \in \mathbb{R}^{n \times d}$, n > d, and not have full rank. (X is a data matrix) Recall that the OLS solution is $\hat{x} = (X^T X)^{-1} X^T y$.

- 1. Since *X* is not full rank, what does this say about the features?
- 2. What is the issue with the OLS solution?
- 3. The ridge regression solution is given by $(X^TX + \lambda Id_d)^{-1}X^Ty$. How does this fix the issue?
- 4. Suppose that X has SVD $X = U\Sigma V^T$, and X has singular values $\sigma_1, ..., \sigma_d$. What are the eigenvalues of $X^TX + \lambda Id_d$?
- 5. How does increasing λ affect the condition number of $(X^TX + \lambda Id_d)$?
- 1. Linear dependent columns, duplicated features
- 2. Non unique solution, problem is not well-oblined

- 3 $(x^{T}x + \lambda Id)^{-1}x^{T}y$ ensures a unique solution as $(x^{T}x + \lambda Id)$ is invertible
- 4. suppose $\sigma_1 \dots \sigma_d$ are singular values of X, the eigenvalue of $X^TX : \sigma_1^2 \dots \sigma_d^2$ eigenvalue of $(X^TX + \lambda Id) : \sigma_1^2 + \lambda \dots \sigma_d^2 + \lambda$ Note σ_1 may be O.
- 5. condition number: max n;
 The higher condition number is, the more "unstable" the mutrix is.
 The transformation is much higher along some dimension than others.

 Creates problem when solving/optim; zing.

is X has zero-valued singular value.

Condition number of
$$\chi^{7}\chi = \frac{G_{1}^{2}}{G_{d}^{2}} = \frac{C}{O} = \infty$$
 (very unstable)

Condition number of $\chi^{7}\chi + \pi^{7}O = \frac{G_{1}^{2} + \pi}{G_{1}^{2} + \pi} < \infty$

we can adjust the condition number by changing ?.