

S Thenmozhi

Department of Computer Applications

Cloud Computing Essentials

S Thenmozhi

Department of Computer Applications

Concepts

PES
UNIVERSITY
CELEBRATING 50 YEARS

- Virtualization
- Load Balancing
- Scalability & Elasticity
- Deployment
- Replication
- Monitoring
- Identity and access management

Virtualization

- Partitioning the resources of a physical system into multiple virtual resources
- Key technology of cloud computing
- Allows pooling of resources
- Serve multiple users using multi-tenancy
- Physical resources are virtualized
- Allows multiple OS to run on same underlying resource

Virtualization

Virtualization

Hypervisor

- The Virtualization layer consists of a Hypervisor or Virtual Machine Monitor(VMM)
- Hypervisor presents a virtual operating platform for the Guest OS
- Type 1 or Native Hypervisor
 - Runs directly on the host hardware, controls the hardware and monitor the Guest OS
- Type 2 or Hosted Hypervisor
 - Runs on top of host OS and monitor the Guest OS

Virtualization

PES UNIVERSITY CELEBRATING 50 YEARS

- Virtual machines are files that recreate the computing environment of a physical computer.
- A hypervisor is software that runs these files.
- Hypervisors allocate hardware resources to virtual machines and ensure they remain independent from one another, thereby maintaining the system.

Virtualization

Type-1 Hypervisor

Hardware

Type-2 Hypervisor

Virtualization

PES UNIVERSITY DELEBRATING 50 YEARS

Examples

Hypervisor	Туре
Citrix Xen Server	Type 1
Oracle VM Server	Type 1
KVM	Type 1
VMWare ESX/ESXi	Type 1
Microsoft Hyper V	Type 1
Xen Hypervisor	Type 1
VMWare Workstation	Type 2
VirtualBox	Type 2

Virtualization

Types

- Full Virtualization
- Para Virtualization
- Hardware Virtualization

Virtualization

Full Virtualization

- Decouples the guest OS from underlying hardware.
- Guest OS doesn't require any modification and doesn't aware that it is being virtualized
- Direct execution of user requests and binary translation of OS requests

Virtualization

Para Virtualization

- Guest OS kernel is modified to enable communication with the hypervisor to improve performance and efficiency.
- Hyper calls communicate with the virtualization layer hypervisor

Virtualization

User Applications

Unmodified Guest OS

Virtual Machine Monitor

System Hardware

User Applications

Modified Guest OS

Virtual Machine Monitor

System Hardware

(a) Full Virtualization

(b) Para Virtualization

Virtualization

Hardware Virtualization

- Hardware assisted virtualization is enabled by hardware features such as Intel's Virtualization
 Technology (VT-x) and AMD's AMD-V
- Privileged and sensitive calls are set to automatically trap the hypervisor
- No need for Binary translations or para virtualizations

THANK YOU

S Thenmozhi

Department of Computer Applications

thenmozhis@pes.edu

+91 80 6666 3333 Extn 393