QNHCK2-16 Series Open Loop Mode Dismountable Hall Effect Current Sensor

QNHCK2-16 series dismountable hall effect current Sensor is an open loop device based on the measuring principle of the hall effect, with a galvanic isolation between primary and secondary circuit.It provides accurate electronic measurement of DC, AC or pulsed currents.

Electrical data (Ta=25°C±5°C)

Туре	QNHCK2-16						Unit
Management of Boston and	20	30	50	70	100	150	
Rated current (lpn)	100000	9550 F2	07070		1000000000	10000000000000000000000000000000000000	A
Measure range (lp)	±22	±33	±55	±77	±110	±150	Α
Rated output (Vo)	2.5 ± 2V						
	2.5 ± 0.625V						
	2.5 ± 1V 2.5 ± 1.25V						
Supply voltage	+5V (5%)						V
Power Consumption	≤10						mA
Galvanic isolation	2.5 (50HZ,AC,1min)						KV
Accuracy	≤1						%
Linearity	≤1						%FS
Offset voltage	@lp=0 ta=25℃ 2.5(1%)						V
Magnetic offset	@lp=±lpn-0 ≤±25						mV
Offset drift	@lp=0 Ta=-25~80°C ≤±1						mV/℃
Response time	≤7						μs
Bandwidth	DC~50						KHz
Load resistance	≥10						kΩ
Operating temperature	-25 to +85						$^{\circ}$
Storage temperature	-40 to +125						$^{\circ}$
Mass(approx)	75						g

Applications

- · Variable speed drives
- · Welding machine
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Electrochemical

Products Features

- · Easy mounting
- · Small size and space saving
- · No insertion losses
- · High immunity to external interference

Dimension (mm)

Elucidation: 1(Red):+5V 2(Yellow): Vout 3(Black):GND 4(Blue):Vref

Directions for use

- When the current will be measured goes through a Sensor, the voltage will be measured at the output end.(Note: The false wiring may result in the damage of the Sensor)
- 2. The output amplitude of the Sensor can be adjusted according to users' requirements.
- 3. Custom design in the different rated input current and the output voltage are Sensor.