

Explicit convergence bounds for Metropolis Markov chains

Isoperimetry, Spectral Gaps and Profiles

Sam Power

University of Bristol

2 December, 2022

Links & Acknowledgements

- ✓ Main paper today: arXiv 2211.08959;
- ✓ All joint work with
 - Christophe Andrieu (Bristol)
 - Anthony Lee (Bristol)
 - ► Andi Q. Wang (Bristol ~> Warwick)

Setting: Task

- ▼ Task: simulation, integration in complex models
 - posterior inference
 - gradient estimation in intractable models
 - **...**
- ▲ Approach: MCMC sampling

Random-Walk Metropolis

- κ Today: target is $\pi(x)$, $x \in E = \mathbb{R}^d$.
- 1. At x,
 - 1.1 Propose $x' \sim \mathcal{N}(x, \sigma^2 \cdot I_d)$.
 - 1.2 Evaluate $r(x, x') = \frac{\pi(x')}{\pi(x)}$.
 - 1.3 With probability min $\{1, r(x, x')\}$, move to x'; otherwise, remain at x.
- $\normalfont{\mathbf{k}}$ Leaves π invariant, ergodic under mild conditions.

Some Notation

$$\swarrow Q(x, dx') = \mathcal{N}(dx'; x, \sigma^2 \cdot I_d).$$

$$\mathbf{k} \ \alpha(x, x') := \min \left\{ 1, r\left(x, x'\right) \right\}.$$

$$\mathbf{k} \ \alpha(x) = \int Q\left(x, \mathrm{d}x'\right) \alpha(x, x').$$

★ The RWM kernel P is given by

$$P(x, \mathrm{d}x^{'}) = Q\left(x, \mathrm{d}x^{'}
ight) \cdot lpha(x, x^{'}) \ + (1 - lpha(x)) \cdot \delta(x, \mathrm{d}x^{'})$$

Convergence Analysis of RWM

- k 'Soft' analysis: Exponential convergence $\stackrel{\approx}{\Longleftrightarrow}$ Lighter-than-Exponential Tails.
- - (and variations on this)
- ★ Today: synthesis of the above.

Main Results

- - ► Target is $\pi(x) \propto \exp(-U(x))$,
 - ightharpoonup U is m-strongly convex, L-smooth,
 - Write $\kappa = L/m$ (scale-free).
- \bowtie Run RWM with $\sigma = \upsilon \cdot (L \cdot d)^{-1/2}$.
- ★ Then,
 - 1. Acceptance rate satisfies $\alpha(x) \geqslant \alpha_0 := \frac{1}{2} \cdot \exp\left(-\frac{1}{2}v^2\right)$.
 - 2. Spectral gap satisfies $\gamma_P \geqslant c(\upsilon) \cdot (\kappa \cdot d)^{-1}$.
 - 3. L² mixing time satisfies $T_*\left(\varepsilon\right)\lesssim \kappa\cdot d\cdot\log\left(\frac{\kappa\cdot d}{\varepsilon}\right)$
- ▶ Paper contains tools which imply simple bounds for much wider class of targets.
- Today: demystify those tools.

Proof Overview

- Roughly:
 - 1. Large-Scale Properties of Target
 - 2. + Small-Scale Properties of Sampler
 - 3. → Good Mixing.
- Precisely:
 - 'Isoperimetric' Profile of Target
 - + 'Close Coupling' of Kernels
 - ► ~ Isoperimetric Profile of Markov Chain
 - ightharpoonup ightharpoonup Good Mixing (in L²).
- True for fairly general Markov chains on metric spaces.
- - 'Metropolis-type' + Acceptance Control → Close Coupling.
- ✓ I will explain all of these terms.

Isoperimetric Profiles of Probability Measures

- $\mathsf{V} \in \mathsf{For}\ A \subseteq E \text{ and } r \geqslant 0, \mathsf{let}\ A_r := \{x \in E : \mathsf{d}(x,A) \leqslant r\}.$
- \swarrow Define the *Minkowski content* of A under π with respect to d by

$$\pi^+\left(A\right)=\lim\inf_{r\to 0^+}rac{\pi\left(A_r
ight)-\pi\left(A
ight)}{r}.$$

 \checkmark The *isoperimetric profile* of π with respect to the metric d is

$$I_{\pi}\left(p
ight):=\inf\left\{ \pi^{+}\left(A
ight):A\subseteq E$$
 , $\pi\left(A
ight)=p
ight\}$, $p\in\left(0,1
ight)$.

 \checkmark (usually) increasing on $\left[0, \frac{1}{2}\right]$, symmetric about 1/2.

Isoperimetric Profiles: Interpretation

- ✓ Isoperimetry relates the mass of sets to the mass of their boundaries.
- For Markov chains: isoperimetry captures how difficult it is to escape a given set.
- \swarrow Escaping small sets $(p \to 0^+)$ happens to be the relevant limit.
- \mathbb{K} If you escape all sets equally easily $(I_{\pi}(p) \geqslant c \cdot p)$,
 - then you mix exponentially quickly.
- \mathbf{k} If you also escape small sets particularly well $(I_{\pi}(p) \gg c \cdot p)$,
 - then things can be even better at the start.
- \mathbb{K} If small sets are hard to escape $(I_{\pi}(p) \ll c \cdot p)$,
 - then things can be much worse.

Isoperimetric Profiles: Examples

- $\mathbf{k} \pi(\mathrm{d}x) \propto \exp\left(-|x|\right) \mathrm{d}x \text{ has } I_{\pi}(p) = \min\{p, 1-p\}.$
- ₭ For log-concave measures,
 - ightharpoonup pprox preserved under products.
 - functional inequalities (PI, LSI, \cdots) imply bounds on I_{π} .
- ✓ Profiles transfer nicely under Lipschitz mappings, bounded change of measure.
- Can be hard to obtain good bounds in some cases.
- Typically very informative.

'Close Coupling' of Markov Kernels

 \swarrow Say that P is (d, δ, τ) -close coupling if for some **fixed** $\delta, \tau > 0$, it holds that

$$d(x, y) \leq \delta \implies TV(P_x, P_y) \leq 1 - \tau.$$

- When two chains get close enough, anywhere in the space,
 - there is a decent chance to make them coalesce.
- In our experience,
 - weaker assumption than global contractivity of dynamics ,
 - typically holds with better constants than minorisation conditions.
- & δ is often small (but not tiny)
- $\not\leftarrow$ τ can be of constant order (e.g. 1/4).

Isoperimetric Profiles of Markov Chains

Define

$$I_{\pi,P}(p) := \mathsf{inf}\left\{\pi \otimes P\left(A imes A^{\complement}
ight) : \pi(A) = p
ight\}$$

- 'How hard is it for this chain to leave sets of a given size?'
- Related to 'conductance', 'conductance profile' of Markov chain.
- \mathcal{L} Good lower bounds on $I_{\pi,P}$ translate into mixing time bounds for P.

$$T_*\left(arepsilonsymp 1
ight)\lesssim \int_{\chi^2(\operatorname{Lio},\pi)^{-1}}^{1/2}rac{p\,\mathrm{d}p}{I_{\pi,P}(p)^2}.$$

I will not go into the details of how this is achieved today.

Isoperimetry: from π to P, to mixing

 \mathbb{K} Suppose that π has profile I_{π} , and P is $(\mathsf{d}, \delta, \tau)$ -close coupling. Then

$$I_{\pi,P}(p) \geq \tau \cdot \min\{p, \delta \cdot I_{\pi}(p)\}$$

$$T_*\left(arepsilontop1
ight)\lesssim au^{-2}\cdot \delta^{-2}\cdot \int_{\chi^2(\log\pi)^{-1}}^{1/2}rac{p\,\mathrm{d}\,p}{I_\pi(p)^2}.$$

(overlooking an additional annoying term related to the min)

 \swarrow Corollary 2: for log-concave π , it holds that

$$\gamma_P \gtrsim au^2 \cdot \delta^2 \cdot I_\pi \left(rac{1}{2}
ight)^2.$$

 \swarrow Our target is fixed, now: look at the kernel P, and control (τ, δ) .

Close Coupling for RWM

For MH algorithms, natural to try

$$\mathrm{TV}\left(P_{x},P_{y}
ight)\leqslant\mathrm{TV}\left(P_{x},Q_{x}
ight)+\mathrm{TV}\left(Q_{x},Q_{y}
ight)+\mathrm{TV}\left(Q_{y},P_{y}
ight).$$

This appears to have some limitations.

- ▶ Being 'Metropolis-type' (not just 'Metropolis-Hastings-type') lets us do better.
 - $\triangleright \alpha(x, x') = \text{Monotone}(f(x')/f(x)).$
 - No 'cross terms', as in general MH.
- We will see that it suffices to control the acceptance rates.
 - ightharpoonup need to control the regularity of π .

Total Variation Bound between Metropolis Kernels

k Lemma: Let P be a Metropolis kernel, and suppose that $\inf_{x \in E} \alpha(x) \geqslant \alpha_0 > 0$. Then for any $x, y \in E$, it holds that

$$TV(P_x, P_y) \leq TV(Q_x, Q_y) + (1 - \alpha_0).$$

Froof: WLOG, assume that $\pi(x) \geqslant \pi(y)$. If both chains propose moving to z, then it is possible to couple the acceptance steps so that whenever x accepts the move, so does y. Use $P(A \cap B) \geqslant P(A) + P(B) - 1$ to see that chains meet w.p. $\geqslant (1 - \operatorname{TV}(Q_x, Q_y)) + \alpha_0 - 1 = \alpha_0 - \operatorname{TV}(Q_x, Q_y)$. Conclude by coupling inequality.

Proof Sketch

- \bigvee WLOG, assume that $\pi(x) \geqslant \pi(y)$.
- \checkmark If both chains propose moving to z, then $\alpha(x,z) \leq \alpha(y,z)$.
- ★ Thus, can couple the acceptance steps so that

$$x$$
 accepts move $\implies y$ accepts move

 \bigvee Use $P(A \cap B) \geqslant P(A) + P(B) - 1$ to see that

$$egin{split} P\left(X^{'}=Y^{'}
ight)&\geqslant P\left(ilde{X}= ilde{Y}
ight)+P\left(X^{'}= ilde{X}
ight)-1\ &\geqslant \left(1- ext{TV}\left(Q_{x},Q_{y}
ight)
ight)+lpha_{0}-1\ &=lpha_{0}- ext{TV}\left(Q_{x},Q_{y}
ight). \end{split}$$

Conclude by coupling inequality.

Acceptance Rate Bounds for RWM

- \mathbf{k} Recall that $\alpha(x, x') = \min \left\{ 1, \frac{\pi(x')}{\pi(x)} \right\}$.
- \mathbb{K} Natural to control growth of $U = -\log \pi$.
- Assumption: for some ψ, it holds that

$$U\left(x+h\right)-U\left(x\right)-\left\langle \nabla U\left(x\right),h\right\rangle \leqslant\psi\left(\left|h\right|\right)$$

Lemma: The acceptance rate satisfies

$$lpha(x)\geqslantrac{1}{2}\cdot\exp\left(-\int\mathcal{N}\left(\mathrm{d}z;0,I_{d}
ight)\cdot\psi\left(\sigma\cdot|z|
ight)
ight),$$

and taking $\sigma = v \cdot d^{-1/2}$ gives that

$$lpha(x)\geqslantrac{1}{2}\cdot\exp\left(-\psi\left(\upsilon
ight)+\mathfrak{O}\left(d^{-1}
ight)
ight).$$

Close Coupling for RWM

K Taking
$$\sigma = \upsilon \cdot d^{-1/2}$$
 allows for $\alpha_0 \geqslant \frac{1}{2} \cdot \exp\left(-\psi(\upsilon) + O\left(d^{-1}\right)\right)$.

 κ Taking $\delta = \sigma \cdot \alpha_0$ allows for

$$\mathsf{d}(x,y) \leqslant \delta \implies \mathrm{TV}\left(Q_x,Q_y
ight) \leqslant rac{1}{2} \cdot lpha_0.$$

 \checkmark Using the coupling result, one may then take $\tau = \frac{1}{2} \cdot \alpha_0$.

Isoperimetric Profile and Mixing of RWM

★ Recalling that

$$I_{\pi,P}(p) \geq \tau \cdot \min\{p, \delta \cdot I_{\pi}(p)\}$$

and taking v so that $\alpha_0 \approx 1$, obtain that

$$egin{align} I_{\pi,P}(p) &\gtrsim \min\left\{p,\sigma\cdot I_{\pi}(p)
ight\}, \ &\gamma_{P} &\gtrsim \sigma^{2}\cdot I_{\pi}\left(rac{1}{2}
ight)^{2} \ &T_{st}\left(arepsilon st
ight) &\lesssim \sigma^{-2}\cdot \int_{\gamma^{2}(\log\pi)^{-1}}^{1/2} rac{p\,\mathrm{d}p}{I_{\pi}(p)^{2}}. \end{split}$$

Deducing main results (1)

⊌ Under m-strong log-concavity, can bound isoperimetric profile as

$$I_{\pi}(p) \geqslant c \cdot m^{1/2} \cdot p \cdot \left(\log rac{1}{p}
ight)^{1/2}$$

 \checkmark Under L-smoothness, take $\sigma = \upsilon \cdot (L \cdot d)^{-1/2}$ and control acceptance ratio as

$$lpha_0\geqslantrac{1}{2}\cdot\exp\left(-rac{1}{2}arphi^2
ight)$$
 .

Good isoperimetry, good acceptance rates → Good mixing.

Deducing main results (2)

$$egin{aligned} \gamma_P &\gtrsim 1/\left(\kappa \cdot d
ight) \ T_*\left(arepsilon times 1
ight) &\lesssim \sigma^{-2} \cdot m^{-1} \int_{\chi^2(\mu_0,\pi)^{-1}}^{1/2} rac{\mathrm{d} p}{p \cdot \log\left(rac{1}{p}
ight)} \ &\lesssim \kappa \cdot d \cdot \log\log\chi^2(\mu_0,\pi). \end{aligned}$$

- Same strategy works well for other targets:
 - Characterise the isoperimetric profile (out of your hands).
 - Control the acceptance rates.

Not discussed in detail

- & Sharpness of bounds w.r.t. d.
- 'Multi-phase convergence', initialisation.
- RWM on targets 'between exponential and Gaussian'.
- RWM on rougher targets.

Ongoing and future work

- RWM on Heavy-tailed targets.
- Other Metropolis algorithms.
- We then the control of the

Recap

- RWM for MCMC sampling.
- - Isoperimetry (of target).
 - Close Coupling (of kernels).
- Explicit control of RWM acceptance rates.
- ✓ Estimates of spectral gap, L² mixing times, asymptotic variance, etc.