

SIL Verification

Slide 6 - 1

Types of Failures - Recap

- Sub Systems can fail because of:
 - Random hardware failures
 - Common cause hardware failures
 - Systematic failures
- Any of these failures drives the SIF into a specific state:
 - Safe failures $\lambda_s =$ Safe undetected failure rate λ_{su}
+ Safe detected failure rate λ_{sd}
 - Dangerous failures $\lambda_d =$ Dangerous undetected failure rate λ_{du}
+ Dangerous detected failure rate λ_{dd}

Slide 6 - 2

Functional Safety Engineering

Systematic Failures - Recap

- **Definition:** A hidden fault in design or implementation such:
 - Software design
 - Specifications
 - Operating manuals
 - Maintenance or test Procedures, etc
- **IEC 61508 approach:**
 - Measures to avoid systematic failures ((tables in 61508-2/3 Annex A/B))
 - Probabilistic calculations for Software can be done (61508-7 Annex D)

Slide 6 - 3

Functional Safety Engineering

Hardware Verification Approaches:

- **IEC 61511-2 approach:**
 - Follow Methodology in IEC 61508-2 & 3 Annex B for hardware systematics
 - Hardware Verification – IEC 61508 or ISA simplified approach allowed
- **IEC 61508-6 approach:**
 - Techniques and Measures to control systematic hardware failures (tables in 61508-2/3 Annex A/B)
 - Hardware Verification (PFD or PFH Calculation)
- **ISA-TR84.00.02-2002 approach:**
 - Detailed Technical Report on 5 Parts - Simplified Equations, FTA, Markov Analysis

Slide 6 - 4

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Random Hardware Failures - Introduction

The Bathtub Curve & Assumed Constant Failure rate

Failure Rate

Burn-in Useful Life Wear-out

Overall Curve

Random Failures

Early failures

Wear-out failures

Slide acknowledgement: Technis

Time

Slide 6 - 5

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Simplified Exponential Distribution - Background

- IEC 61508 / 61511 equations assume a Constant failure rate = λ
- Therefore the exponential distribution can be simplified to -
- Reliability rate – $R(t) = e^{-\lambda t}$
- Unreliability rate – $F(t) = 1 - R(t)$
- Unreliability rate – $F(t) = 1 - e^{-\lambda t}$ (Cumulative Probability of failure)
- If λt is small (<0.1), then $1 - e^{-\lambda t}$ approximates to λt

Probability

$F(t)$

$R(t)$

Time

For a detailed discussion of the simplification refer to Reliability, Maintainability & Risk” Smith – ISBN 978-0-7506-6694-7

Slide 6 - 6

Functional Safety Engineering

Considering the MEAN DOWN TIME (MDT)

Of any unit:

$$\text{MRT} + (\text{Proof Test Interval})/2$$

Of a System with two Redundant Units:

$$\text{MRT} + (\text{Proof Test Interval})/3$$

Slide acknowledgement: Technis

Slide 6 - 11

Functional Safety Engineering

Definitions - Unavailability and Availability - Background

For a 1oo1 System - 10 yrs MTBF; annual proof test interval (PTI) means:

$$\text{Assume } 1/\text{MTBF} = \lambda \text{ (when } \ll 1) = 1/10 = 0.1$$

$$\text{MDT} = \text{MRT} + \text{PTI}/2 = 0.5 \text{ (Assuming MRT is small e.g. 4 hours)}$$

$$\text{Thus Unavailability} = 0.5 \text{ yr} \times 0.1 \text{ pa} = 5\% = \text{PFD} = 0.05$$

$$\text{Unavailability} \equiv \lambda \text{ MDT} \text{ (Approximation when } \lambda \text{ is small)}$$

UNAVAILABILITY is similar to PFDavg

$$\text{NB: actually } \lambda \text{ MDT} / (1 + \lambda \text{ MDT}) \text{ (For when } \lambda \text{ is large)}$$

$$\text{NB: Availability} = 1 - \text{Unavailability}$$

$$\text{NB: Availability} = \text{MTTF} / (\text{MTTF} + \text{MTTR})$$

$$\text{NB: MTBF} = \text{MTTF} + \text{MTTR}$$

Slide 6 - 12

Functional Safety Engineering

Understanding Types of Failure Rate Data

- Generic Data
- Industry specific data
- Site specific data

The type of data used affects the accuracy of the prediction

Slide 6 - 13

Functional Safety Engineering

Examples of Failure Data Sources

- US MIL Handbook 217
- UK BT HRD
- Lees "Loss Prevention in the Process Industries"
- AIChE – Process Equipment Reliability Data Book
- OREDA, PDS, SINTEF Data Book (Offshore)
- Exida Safety Data Handbook
- Manufacturers FMEDA Reports
- UK MoD Def Stan 00-41
- UKAEA (SRD)
- Faradip
- Various Consultants data banks RMC, DNV, DJS
- SN 29500

Slide 6 - 14

Functional Safety Engineering

Example of using Failure Rate Data - Faradip

	PER MILLION HOURS		
Gas pellister 1010(fail .003)	5.00	10	30
Detector smoke ionization	1.00	6.00	40
Detector ultraviolet	5.00	8.00	20
Detector infra red (fail .003)	2.00	7.00	50
Detector rate of rise	1.00	4.00	12
Detector temperature	0.10	2.00	.
Detector flame failure	1.00	10	200
Detector gas IR (fail .003)	1.50	5.00	80
Failure modes (proportion)			
Rate of rise	Spurious 0.6	Fail 0.4	
Gas pellister	Spurious 0.3	Fail 0.7	
Infra red	Spurious 0.5	Fail 0.5	
Smoke (ionize) & UV	Spurious 0.6	Fail 0.4	

Slide acknowledgement: Technis

Slide 6 - 15

Functional Safety Engineering

Estimating Confidence Levels for Failure Data

"Reliability, Maintainability & Risk" Smith – ISBN 978-0-7506-6694-7

- Smith proposes rules of thumb for estimating the confidence level for:
 - Generic Data
 - Industry specific data
 - Site specific data

Slide 6 - 16

Functional Safety Engineering

Failure Modes and Effect Analysis (FMEA)

- Purpose – to study the results or effects of item failure on system operation and to classify each potential failure according to its severity
 - First formal applications in 1960 in the aerospace industry
 - First of all it is a design technique
 - But is also a verification technique
 - It can be used for products, systems and processes
 - Is a single failure mode analysis technique
 - Does not consider multiple failures at the same time
 - Common cause or systematic failures are not addressed
 - Is a bottom-up technique

Slide 6 - 21

Functional Safety Engineering

FMEA can be adjusted to the problem or needs at hand

- FMEA – Failure modes and effects analysis
 - Basic technique (BS EN 60812)
 - DOD MIL-STD-1629A
- FMECA – Failure mode, effect, and critically analysis
- Functional FMEA
- Maintenance FMEA
- Process FMEA
- Software FMEA
- FMEDA – Failure modes, effects and diagnostic analysis

Slide 6 - 22

Functional Safety Engineering

FMEA Process

- The following steps are important
 - Define the system and scope of the analysis
 - List all sub systems and components
 - Identify failure modes
 - Determine rates of occurrence
 - Determine Locatability
 - Identify effects of failure
 - Determine severity
 - Determine detectability – Locatability – Fault Coverage (FD/FL)
 - Criticality Analysis

Slide 6 - 23

Functional Safety Engineering

Example Failure Mode & Effect Analysis

Severity Classification								
1	Fault leading to an Unsafe Failure which is not detected by the system diagnostics							
2	Fault leading to an Unsafe Failure which is detected by the system diagnostics							
3	Fault leading to a Safe Failure which is not detected by the system diagnostics							
4	Fault leading to a Safe Failure which is detected by the system diagnostics							
Identification	Function	Failure Modes	Operational Mode	Failure Effects	Detection Method	Compensating Provisions	Severity Class	Remarks
Temperature Controlled Reference Cells	Provide reference against which other signals can be compared	Fibre Break	Normal	No Profile	Incorrect Trace	Normal operation reports break and location	4	Requires replacement of Optics Module. One instance in fault reports.
Fibre Switch	Allows single laser to connect to multiple fibres	Switch dirty	Normal	Source attenuated	Degraded Trace	QA Zone allocated for Signal / Noise ratio above threshold	4	Unit can be cleaned
Receiver	Detectors Back-scattered light	Surface Degradation	Normal	Reduction in output	Degraded Trace	QA Zone allocated for Signal Level Below threshold	4	Long term gradual failure
Laser (Inc AOD)	Generate Light source for transmission through fibre sensors	Reduction in Power	Normal	Source attenuated	Degraded Trace	QA Zone allocated for Signal / Noise ratio above threshold	4	Most recorded fault
AOD Driver	Provides pulsing function of laser	Incorrect Pulse - Believeable	Normal	Close to correct emission profile	Potential error in temperature value	QA Zone allocated to monitor Standard Deviation Periodic Function Test	2	Include trace analysis for this fault in periodic site Function Test.
Breakout PCB	Provides power distribution to Optics Module	Incorrect Voltage to other circuits	Normal	Module supply out of spec	Degraded Trace	Redundant DTS 800 M4 Unit	4	Most sensitive module is processor which will shut down switching outputs to safe state.
Main Amp	Amplifies Optics Module output for processing	Incorrect Gain	Normal	Incorrect signal to Averager	Incorrect Trace	QA Zone allocated for Signal Level Below threshold	4	Does not affect reported values, but signal could be biased. Detectable during periodic Function Test.
Temperature Control PCB Assembly	Controls temperature of laser diode and Optics coil and AOD.	Temperature sensor fault	Normal	Incorrect control level	On Ref Coil, trace will be offset	Functional Test by applying shock low temp to field sensor.	4	Reference signal offset as per measured signal
Optics Interface PCB Assembly	Gain and offset to main amp plus HV supplies to AODs	Incorrect gain & offset to Main Amp.	Normal	Incorrect signal to Averager	Incorrect Trace	QA Zone allocated for Signal Level Below threshold	4	Trip threshold is against an absolute level. This fault mode is not detectable as the trip threshold is reached therefore no trip. However, there are no reports of this failure mode in fault reports.
Averager PCB Assembly	Accumulates data and generates averages	A/D Converter Fail	Normal	No Output	No Trace	QA Zone allocated for Signal / Noise ratio above threshold	4	Does not affect reported values, but signal could be biased. Detectable during periodic Function Test. Reference signal offset as per measured signal
Power Supply	Provides power to system modules	Output too Low	Normal	Some Modules Failing	Degraded or No Trace	UPS with battery pack. Redundant DTS 800 M4 Unit	4	
Memory PCB Assembly	Stores OS, Application and data	Data Corrupted	Normal	Wrong results	Inconsistent Data	QA Zones set up for inconsistency checking	4	
Processor PCB Assembly	Perform mathematical operations on returned signals	Incorrect Calculation	Normal	Incorrect result	Inconsistency in Trace	QA Zone detects abnormal trace.	2	Project uses redundant pair. One processor in error would lead to discrepancy between units detected by safety logic solver, but possibly only when trip condition occurs.
Output Module	Provides powered outputs to interposing relays to external logic solver	Contacts stick closed	Normal	Fail to open on demand from processor	Failure to transfer status to safety system	Voting in comparison with redundant 800 DTS system in external safety logic solver. Comparison with fault relay status.	4	Original on-board relays now removed and replaced by external high quality relays incorporating Hermetically sealed and gas filled can

Slide 6 - 24

Fault Tree Analysis (FTA)

Slide 6 - 25

WHAT IS FAULT TREE ANALYSIS

- An analysis method to identify causes for an assumed failure (top event)
- Deductive method – focuses on top event
- Logical structure
- Considers Equipment failures & Human errors
- Identify possible causes for a system failure
- Predict:
 - Reliability
 - Availability
 - Failure frequency
- Identify system improvements
- Predict effects of changes in design and operation

Slide 6 - 26

 Functional Safety Engineering

Fault Tree Symbols

TOP	
INTERMEDIATE	
BASIC	<ul style="list-style-type: none">▪ Basic event data are normally failure frequencies.▪ Conversion to probability depends on whether failure is revealed or unrevealed.

Slide 6 - 27

 Functional Safety Engineering

Fault Tree Symbols- 2

LOGIC GATES:

OR gate 	Output occurs if any of the input events happen
AND gate 	Output occurs only when all the input events happen
TRANSFER gate 	Indicates that part of this fault tree is developed elsewhere

Slide 6 - 28

Functional Safety Engineering

AND gate example

Output event occurs only when all the input events happen

Slide 6 - 29

Functional Safety Engineering

OR gate example

Output event occurs in any of the input events happen

Slide 6 - 30

Functional Safety Engineering

The FTA Process

- STEP 1 -** System Definition
- STEP 2 -** Understanding the system
- STEP 3 -** Defining the top event
- STEP 4 -** Constructing the fault tree
- STEP 5 -** Qualitative Analysis
- STEP 6 -** Gather failure rate data
- STEP 7 -** Quantitative Analysis

Slide 6 - 31

Functional Safety Engineering

The FTA Process- 2

Step 1 - System Definitions

- Mark-up system drawing and check off items
- Initial equipment configuration
 - Which valves open/closed / Which pumps on/off?

Step 2 - Understanding the System

- Un-allowed events (considered not possible)
- Existing events (considered certain)
- Other assumptions

Step 3 - Top Event Identification

- Requires precise definition - Use HAZOP, FMEA, experience etc
- Vague or poorly defined top events often lead to a poor analysis
- Example: - 'Compressor Fire' is too general use 'Fire in the oxygen compressor enclosure during normal operation' is good

Slide 6 - 32

Functional Safety Engineering

The FTA Process - 3

Step 4 - Fault Tree Construction

- Begin at top event
- Determine the intermediate faults/causes that result in the top event
- If the basic causes can be determined immediately from the top event then the problem is too simple for FTA
- Identify the logic gate that defines the relationship of those causes to the top event.
- **HOW FAR TO GO?**
 - A branch is of no further interest
 - A branch is known to have very low probability
 - You have reached the stage of individual component failures for which no data is available

Slide 6 - 33

Functional Safety Engineering

The FTA Process - 4

STEP 5 – Fault Tree Reduction (Qualitative Analysis)

- A cut set is any combination of basic events which will cause the top event.
- Cut sets are calculated by Boolean algebra (for complex fault trees many thousands of cut sets may be produced – therefore only simple trees are produced and quantified by hand?).
- Cut sets are used to quantify fault trees.

- 1st Order - 1 Event causes top entry
- 2nd Order - 2 Events needed top entry
- 3rd Order - 3 Events needed top entry

Slide 6 - 34

Functional Safety Engineering

Boolean Algebra

1. AND (A and B) = A.B
2. OR (A or B) = A+B
3. NOT (A) = \bar{A}
4. XOR (A and B) = A.B + B.A

1. A+A = A
2. A + 1 = 1
3. A + 0 = A
4. A.A = A
5. A.1 = A
6. A.0 = 0
7. A+A.B = A
8. A + \bar{A} = 1
9. $\bar{A}.\bar{A} = 0$
10. $\overline{A.B} = \bar{A} + \bar{B}$
11. $\overline{A+B} = \bar{A} \cdot \bar{B}$

Slide 6 - 35

Functional Safety Engineering

The FTA Process - 5

Step 6 – Gathering Failure Data

- Need data on basic event frequencies/probabilities.
- Site historical data is preferred when not available take from reliability database such as Faradip etc
- Engineering judgment needed when data is sparse

Step 7 – Fault Tree Quantification

- Calculation of top event frequency or probability
- How often? = Frequency
- Chance of failure on demand = Probability

Slide 6 - 36

The FTA Process - 6

Common Mode/Dependent Failures

- Quantification assumes all events independent
- CMF causes a number of things to fail simultaneously
- CMF can cause serious errors in results if not included in fault tree
 - Defeats redundancy and/or diversity
 - Can involve both initiating event and mitigating systems

Slide 6 - 39

An Example of CMF

- Danger of overfilling tank, with potential to overpressure tank.
Protect with 3 independent high-level shutdown systems?

Slide 6 - 40

Slide 6 - 41

Slide 6 - 42

	Functional Safety Engineering
ISA TR 84.00.02 (Part 1 & 2) Simple Formulas– Basic of terms	
β	The fraction of undetected failures that have a common cause
λ_{DCCF}	$\beta\lambda_D$
λ_D	Dangerous failure rate
λ_{DD}	Detected dangerous failure rate
λ_{DU}	Undetected dangerous failure rate
$MTTR$	Mean time to repair
PFD_{AVG}	Average probability of failure on demand
T_i	Proof – test interval
λ_s	Safe failure rate
DC	Diagnostic Coverage DC = λ_{DD}/λ_D
T_{ia}	Auto Diagnostic Test Interval

Slide 6 - 45

	Functional Safety Engineering
ISA TR 84.00.02 (Part 1 & 2) Simple Formulas - Approximation	
	1oo1
PFD_{avg}	$\frac{1}{2}\lambda_d T_i$
	1oo2
	$\frac{1}{3}\lambda_d^2 T_i^2$
	1oo3
	$\frac{1}{4}\lambda_d^3 T_i^3$
	2oo2
	$\lambda_d T_i$
	2oo3
λ_d	= Dangerous failure rate
λ_s	= Revealed failure rate
T_i	= Test interval
$MTTR$	= Mean Time to repair
Table showing the most basic simple formula's.	
These formula's do not take into account:	
<ul style="list-style-type: none"> •Test coverage factor •Maintenance interval •Test duration •Override during repair •CCF (Beta Factor) •Systematic failure rate 	

Slide 6 - 46

Functional Safety Engineering

PFD_{avg} Calculations According to ISA.TR84.00.02-2002

The PFD_{avg} is determined by calculating the PFD for all of the components in each SIF loop and combining these individual values to obtain the overall SIF loop PFD_{Avg} value. This is expressed by the following:

$$PFD_{SIF} = \sum PFD_s + \sum PFD_{LS} + \sum PFD_{FE}$$

Where,

PFD_{FE} is the final element PFD_{avg} for a specific SIF,

PFD_S is the sensor PFD_{avg} for a specific SIF,

PFD_{LS} is the logic solver PFD_{avg},

PFD_{SIF} is the PFD_{avg} for the specific SIF in the SIS.

Slide 6 - 49

Functional Safety Engineering

Determining the PFD_{avg} (ISA.TR84.00.02-2002)

The procedure for determining the PFD_{avg} is as follows:

1. Identify each sensor that detects the process condition that could lead to the event the SIF is protecting against

Only those sensors that prevent or mitigate the designated event are included in PFD calculations.

2. List the MTTF^{DU} for each sensor.

3. Calculate the PFD for each sensor configuration using the MTTF^{DU} and the appropriate equation with consideration for redundancy.

Slide 6 - 50

Functional Safety Engineering

System Equations (ISA.TR84.00.02-2002)

The following equations cover the typical configurations used in SIF configurations. To see the derivation of the equations listed, refer to ISA-TR84.0.02-Part 5.

Converting MTTF to failure rate, λ :

$$\lambda^{DU} = 1 \setminus MTTF^{DU}$$

Equations for typical configurations:

$$1oo1 PFD_{avg} = [\lambda^{DU} \times TI/2] + [\lambda^{D_F} \times TI/2]$$

Where λ^{DU} is the undetected dangerous failure rate
 λ^{D_F} is the dangerous systematic failure rate, and
 TI is the proof test interval

Slide 6 - 51

Functional Safety Engineering

Systematic Failures (ISA.TR84.00.02-2002)

ISA equations model the systematic failure λ^{D_F} as an error that occurred during the specification, design, implementation, commissioning, or maintenance that resulted in the SIF component being susceptible to a random failure.

Systematic failures are rarely modeled for SIF Verification calculations due to the difficulty in assessing the failure modes and effects and the lack of failure rate data for various types of systematic failure.

However, these failures are extremely important and can result in a significant impact to the SIF performance, this is addressed through lifecycle process that incorporates design and installation concepts, validation and testing criteria, and management of change and are intended to be a defense against systematic failures..

Slide 6 - 52

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

1oo2 (ISA.TR84.00.02-2002)

1oo2 - System

This architecture consists of two channels connected in parallel, such that either channel can process the safety function. Thus there would have to be dangerous failure in both channels before a safety function failed on demand. It is assumed that any diagnostic testing would only report the faults found and would not change any output states or change the output voting.

```

graph LR
    In1(( )) --> Ch1[Channel]
    In2(( )) --> Ch2[Channel]
    Ch1 --> Diag[Diagnostics]
    Ch2 --> Diag
    Diag --> Voter((1oo2))
    Voter --> Out(( ))
  
```

1oo2 physical block diagram

Slide 6 - 53

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

1oo2 (ISA.TR84.00.02-2002)

$$PFD_{avg} = [((1-\beta) \times \lambda^{DU})^2 \times TI^2/3] + [(1-\beta) \times \lambda^{DU} \times \lambda^{DD} \times MTTR \times TI] + [\beta \times \lambda^{DU} \times TI/2] + [\lambda^D_F \times TI/2]$$

For simplification, $1 - \beta$ is generally assumed to be one, which yields conservative results. Consequently, the equation reduces to

$$PFD_{avg} = [\lambda^{DU})^2 \times TI^2/3] + [\lambda^{DU} \times \lambda^{DD} \times MTTR \times TI] + [\beta \times \lambda^{DU} \times TI/2] + [\lambda^D_F \times TI/2]$$

Where MTTR is the mean time to repair
 λ^{DD} is dangerous detected failure rate, and
 β is fraction of failures that impact more than one channel of a redundant system (CCF).

The second term represents multiple failures during repair. This factor is typically negligible for short repair times (typically less than 8 hours). The third term is the common cause term. The fourth term is the systematic error term.

Spurious Trip Rate (STR) = Safe failure Rate λ_s = Safe failure rate channel 1 (λ_{s1})
+ Safe failure rate channel 2 (λ_{s2})

Slide 6 - 54

Functional Safety Engineering

1oo3 (ISA.TR84.00.02-2002)

1oo3 – System

This architecture consists of three channels connected in parallel, such that either channel can process the safety function. Thus there would have to be dangerous failure in all three channels before a safety function failed on demand.

1oo3 physical block diagram

$$PFD_{avg} = [(\lambda^{DU})^3 \times TI^3/4] + [(\lambda^{DU})^2 \times \lambda^{DD} \times MTTR \times TI^2] + [\beta \times (\lambda^{DU} \times TI/2)] + [\lambda^{D_F} \times TI/2]$$

The second term accounts for multiple failures during repair. This factor is typically negligible for short repair times. The third term is the common cause term and the fourth term is the systematic error term.

$$\text{Spurious Trip Rate (STR)} = \text{Safe failure Rate } \lambda_s = 3\lambda_s$$

Slide 6 - 55

Functional Safety Engineering

2oo2 (ISA.TR84.00.02-2002)

2oo2 – System

This architecture consists of two channels connected in parallel so that both channels need to demand the safety function before it can take place. It is assumed that any diagnostic testing would only report the faults found and would not change any output states or change the output voting.

2oo2 physical block diagram

$$PFD_{avg} = [\lambda^{DU} \times TI] + [\beta \times \lambda^{DU} \times TI] + [\lambda^{D_F} \times TI/2]$$

The second term is the common cause term and the term is the systematic error term.

$$\text{Spurious Trip Rate (STR)} = \text{Safe failure Rate } \lambda_s = 2\lambda_s^2 \text{MTTR}$$

Slide 6 - 56

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

2oo3 (ISA.TR84.00.02-2002)

2oo3 – System
3 channels in parallel with majority voting such that the output state does not change if only 1 channel changes.

The diagram illustrates a 2oo3 safety system architecture. Three input lines from 'Channel' blocks enter a central '2oo3' logic block. A dashed box labeled 'Diagnostics' is positioned between the channels and the 2oo3 block. A vertical dashed line connects the top of the 'Diagnostics' box to the '2oo3' block, indicating a bidirectional communication path.

2oo3 physical block diagram

$$PFD_{avg} = [(\lambda^{DU})^2 \times (TI)^2] + [3\lambda^{DU} \times \lambda^{DD} \times MTTR \times TI] + [\beta \times \lambda^{DU} \times TI/2] + [\lambda_F^D \times TI/2]$$

The second term in the equation represents multiple failures during repair. This factor is typically negligible for short repair times. The third term is the common cause term. The fourth term is the systematic error term.

Spurious Trip Rate (STR) = Safe failure Rate $\lambda_s = 6\lambda_s^2MTTR$

Slide 6 - 57

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

The simplified equations in ISA.TR84.00.02-2002 without the terms for multiple failures during repair, common cause and systematic errors reduce to the following for general use

1oo1	2oo2
$PFD_{avg} = \lambda^{DU} \times TI/2$	$PFD_{avg} = \lambda^{DU} \times TI$
1oo2	2oo3
$PFD_{avg} = [(\lambda^{DU})^2 \times TI^2]/3$	$PFD_{avg} = (\lambda^{DU})^2 \times TI^2$
1oo3	2oo4
$PFD_{avg} = [(\lambda^{DU})^3 \times TI^3]/4$	$PFD_{avg} = (\lambda^{DU})^3 \times (TI)^3$

Slide 6 - 58

Functional Safety Engineering

Implementation

- Calculating the PFD of the function
- The PFD of each subsystem/element is calculated for (1oo1, 1oo2 etc.) for the:
 - Initiator
 - Logic solver
 - Final element
- The total PFD for the combination is then calculated

Slide 6 - 59

Functional Safety Engineering

The Impact of Proof Testing

The Probability of Failure for 1oo1 element = $\frac{1}{2}\lambda_d T_i$

Therefore if the Proof test interval is increased then the PFDavg will also increases proportionally, likewise if the proof test is decreased the PFDavg will also decreases proportionally

Slide 6 - 60

The Impact of Maintenance

The simplified formula for PFDavg = $\frac{1}{2}\lambda_d T_i$

- Assumes that the element is in the ‘as new condition’
- Testing does not cover every aspect (coverage factor < 1)
 - E.g. we do not know the internal condition of a valve
- Only periodic ‘bench type’ maintenance can bring elements back to an ‘as new condition’

•*The PFDavg will increase without routine maintenance*

Slide 6 - 61

The Impact of Imperfect Proof Test and Maintenance

- At the Maintenance Interval the element is maintained and returned to the as new condition:
 - For 1oo1 System:

$$PFD_c = (\frac{1}{2}\lambda_d T_i C + \frac{1}{2}\lambda_d T_m (1 - C))$$

Where:

λ_d = Total unrevealed or dangerous failure rate (per/year)

T_i = Total interval (years)

C = The Proof test coverage factor

T_m = Maintenance interval; interval at which the device is maintained to as new condition (years)

Slide 6 - 62

Functional Safety Engineering

Example Calculation

For a simplified 1oo1 system:

$$PFD_{avg} = \frac{1}{2} \lambda_d T_i$$

Dangerous undetected failure rate λ is 10^{-6} h^{-1} (1 failure in 114 years)

Proof test T_i is annual (every 8760 hours),

So the

$$PFD_{avg} = 0.5 \cdot 10^{-6} \cdot 8760 = 4.38 \cdot 10^{-3}.$$

Slide 6 - 63

Functional Safety Engineering

Design Example

Slide 6 - 64

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Beta Factor: Common Cause Failures in redundant SIS channels

```

graph LR
    A[λd] --- B[λd]
    A --- C(( ))
    B --- C
    C --- D[β λd]
    
```

Example: 1002 with common cause failure RBD block

Slide 6 - 71

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

SIS Analysis: Step 6, find the PFDavg for the 1002D sensor group: Break out the common cause failure fraction for the redundant channels and calculate PFDavgs for each portion

β = common cause failure fraction

λ_d

$\beta \lambda_d$

Redundant section:
 $PFD_{avg} = ((DC \times \lambda_d)^2 \times (MTTR + T_{ia})^2) + (((1-DC \times \lambda_d) \times T_i)^2)/3$

Common cause section
 $PFD_{avg} = ((DC \times (\beta \times \lambda_d)) \times MTTR) + (((1-DC \times (\beta \times \lambda_d)) \times T_i)/2)$

Slide 6 - 72

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering Example

DC = 70%, $\lambda_d = 0.01/\text{yr}$, MTTR = 48 hrs, Tia = 100 msec, Ti = 1 yr, $\beta = 10\%$

β = common cause failure fraction
 $\beta \lambda_d = \lambda_{CCF}$

1002D PFDavg = $((0.7 \times 0.01)^2 \times (0.0055)^2) + ((1-0.7 \times 0.01) \times 1^2)/3 = 3.00E-06$

CCF PFDavg = $((0.7 \times (0.1 \times 0.01)) \times 0.0055) + ((1-0.7 \times (0.1 \times 0.01)) \times \frac{1}{2}) = 1,54E-04$

1002D PFDavg + CCF PFDavg = $3.00E-06 + 1,54E-04 = 1,57E-04$

Slide 6 - 73

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

SIS Analysis: Step 7, repeat steps 3 to 6 for each stage

Example: Dual channel sensors and actuators, single channel logic

PFDavg for sensors + **PFDavg for Logic solver** + **PFDavg for actuators**

Slide 6 - 74

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Example Reducing Spurious Trip Rate

Dual Sensors Spurious
 $= (2 \times 0.01) + (0.1 \times 0.01)$
 $= 0.021$ trips per yr

2oo3 Sensors Spurious
 $= 6x \lambda s^2 (\text{MTTR}) + \beta \lambda s$
 $= (6 \times 0.135^2 \times 8/8760) + (0.1 \times 0.135)$
 $= 0.00001 + 0.0135$
 $= 0.01351$ trips per yr

Slide 6 - 75

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Example evaluation of Diagnostic Coverage for Valve

Failure Mode	% Contribution to dangerous failures	%Detection by partial closure test	% Of Dangerous Faults Detected
Actuator spring breakage or jamming	20	70	14
Solenoid fails to vent	5	50	2.5
Positioner fails to trip	5	100	5
Hoses kinked or blocked	10	100	10
Valve stem or rotary shaft stuck	40	70	28
Actuator linkage fault	5	70	3.5
Seating failures of valve causing high leakage. Due to erosion or corrosion	10	0	0
Foreign bodies or sludge preventing full closure	5	0	0
Total	100%		63%

Slide 6 - 76

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Design example: SIL 2 single or double valve decision

Step 1 Single valve with solenoid

Schematic diagram showing a SIS signal connected to a Solenoid, which is connected to an Actuator and valve. A bypass valve is controlled by an air source (A/S) and has a normally closed position.

Proof test interval $T_i = 1$ year

$PFD_1 = \lambda d_1 \cdot T_i/2$ $PFD_2 = \lambda d_2 \cdot T_i/2$
 $\lambda d_1 = 0.02 /yr$ $\lambda d_2 = 0.04 /yr$
 $PFD_1 = 0.01$ $PFD_2 = 0.02$

Overall PFD = 0.03 based on 1 year test interval
 Qualifies for SIL 1 only

Reliability diagram for single tripping valve

Slide 6 - 77

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

Step 2 : Reliability diagram for 1oo2 tripping valves

Schematic diagram showing a SIS signal connected to two parallel paths. Each path contains a solenoid and an actuator and valve. The outputs of the two paths are connected to a 10% Common Cause logic block.

$\lambda d_1 = 0.02/yr$ $\lambda d_2 = 0.04/yr$

Proof test interval $T_i = 1$ year

$PFD = (\lambda d_1 + \lambda d_2)^2 \cdot T_i^{2/3} + 10\% \cdot (\lambda d_1 + \lambda d_2) \cdot T_i/2$
 $= (0.06)^2 \times 1/3 + (0.1 \times 0.06) \times 1/2$
 $= 0.0042$

Overall PFD = 4.20E-03 based on 1 year test interval
 Qualifies for SIL 2 with adequate margin for sensors and logic

Slide 6 - 78

Functional Safety Engineering

Commentary on Diagnostic claims for Valves

One attraction of high diagnostic coverage is the improvement in safe failure fraction.

Improved SFF allows reduced Fault Tolerance under IEC 61508. If you can establish high Safe Failure Fraction (SFF) using a smart Positioner you can reduce the number of valves needed to meet a SIL target.

Responsibility remains with end user to justify reduced FT requirements by showing diagnostic coverage and SFF are calculated. Vendors will be keen to assist!

IEC 61508-2 clause 7.4.4.5 should be consulted. See also IEC 61508-6 Annex C

Slide 6 - 81

Functional Safety Engineering

Query: Can Diagnostic Coverage of the valve qualify as improved SFF?

Answer: Only if test interval does not add significantly to MTTR and only if safe response or immediate repair is assured. (see 61508-6 annex B).

In practice diagnostic test interval must be at least $T_i/10$ and should be less than 1 week . (see 61508 annex D table D3). Calculations are required.

If Yes does this mean we can claim > 90% SFF for the valve subsystem?

Answer: Yes

Does this qualify for reduced redundancy?

Answer: Yes it does if PFD figures are satisfied.

Slide 6 - 82

Functional Safety Engineering

SUMMARY

Commonly manufacturers of components and subsystems have no influence on the SIL of the complete safety related system.

SIL-rating of a subsystem makes no sense – in the best case this is an indicator that it would be suitable / has the capability to be part of a SIL rated system.

Always the PFDavg or PFH of the safety related system has to be calculated.

Additionally requirements for the avoidance of systematic failures have to be met – 61508 Systematic Capability.

The standard requires an assessment of functional safety capability – Management, Design, Change Control, Implementation, Competency, Operations & Maintainance.

Certificates are not mandatory, and there is no law yet requiring SIL-certificates.

Slide 6 - 83

Functional Safety Engineering

Practical Exercise No: 2

SIL Verification Practical

Slide 6 - 84

Functional Safety Engineering

Exercise No: 2 – SIL Verification

Task 1 Calculate the single channel PFDavg and spurious trip rate for the high temperature trip example. Draw a single channel reliability block diagram and calculate using the failure rates in the table the PFDavg and the spurious trip rate for each sub system and the overall system using a proof testing interval of 6 months.

Assume the system uses 2 relays, 1 relay in the sensor subsystem and 1 relay in the logic solver subsystem, The trip actuation uses a solenoid valve and to vent the air cylinder on a valve that will drive open and release quench water into the reactor.

Task 2: Redraw the RBD and calculate the PFDavg and spurious trip rate for the SIF using the second diagram showing 3 high temperature transmitters on a reactor configured 2oo3 on the basis of proof testing every 6 months, Beta Factor 10% and MTTR of 24 hours.

The 3 temperature transmitters each transmit to a trip amplifier device that acts as a high temperature trip device leading to a single channel actuation as in task 1

Slide 6 - 85

Functional Safety Engineering

Table of fault rates for the Devices

Channel Device	Fail-safe rate per year	Fail –danger rate per year
TE...element	1.5	0.20
TT .Transmitter	0.5	0.05
Cable/terminals	0.01	0.00
TSH....trip amplifier/switch	0.5	0.1
Relay (each)	0.05	0.002
Solenoid Valve	0.04	0.02
Trip Valve	0.4	0.1

Slide 6 - 86

Architectures for Low Demand mode of Operation

Based on Reliability Block Diagrams

IEC 61508 2010 Part 6

Slide 6 - 89

IEC 61508 Part 6 Low demand mode – Index of terms

β	The fraction of undetected failures that have a common cause
β_D	The fraction of those failures that are detected by the diagnostic tests, the fraction that have a common cause ($\beta = 2 \times \beta_D$)
λ_D	Dangerous failure rate (per hour) of a channel in a subsystem, equal 0.5λ (assumes 50 % dangerous failures and 50 % safe failures)
λ_{DD}	Detected dangerous failure rate (per hour) of a channel in a subsystem (this is the sum of all the detected dangerous failure rates within the channel of the subsystem)
λ_{DU}	Undetected dangerous failure rate (per hour) of a channel in a subsystem (this is the sum of all the undetected dangerous failure rates within the channel of the subsystem)
MTTR	Mean time to restoration (hour)
PFDG	Average probability of failure on demand for the group of voted channels
T_1	Proof – test interval (h)
t_{CE}	Channel equivalent mean down time (hour) for 1oo1, 1oo2, 2oo2 and 2oo3 architectures (this is the combined down time for all components in the channel of the subsystem)
t_{GE}	Voted group equivalent mean down time (hour) for 1oo2 and 2oo3 architectures (this is the combined down time for all the channels in the voted group)

Slide 6 - 90

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

IEC 61508 Part 6 – Low Demand Mode

B.3.2.2.1 1oo1 – System: Single channel where any dangerous failure leads to failure of the safety function when a demand arises.

IEC 324/2000

Figure B.4 - 1oo1 Physical Block diagram

IEC 325/2000

Figure B5 – 1oo1 Reliability Block Diagram

Slide 6 - 91

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

1oo1 – System cont'd

Figure B.5 shows that the channel can be considered to comprise of two components, one with a dangerous failure rate λ_{DU} & the other with a dangerous failure rate λ_{DD} . It is possible to calculate the channel equivalent mean down time t_{CE} , adding the individual down times from both components, t_{c1} and t_{c2} , in direct proportion to each component's contribution to the probability of failure of the channel:

$$t_{CE} = \lambda_{DU} / \lambda_D (T_1 / 2 + MRT) + \lambda_{DD} / \lambda_D MTTR$$

For every architecture, the detected dangerous failure rate and the undetected dangerous failure rate are given by

$$\lambda_{DU} = \lambda_D(1-DC); \quad \lambda_{DD} = \lambda_D DC$$

For a channel with down time t_{CE} resulting from dangerous failures

$$PFD = 1 - e^{-\lambda_D t_{CE}} \\ \approx \lambda_D t_{CE} \quad \text{since } \lambda_D t_{CE} \ll 1$$

Hence, for a 1oo1 architecture, the average probability of failure on demand is

$$PFD_G = (\lambda_{DU} + \lambda_{DD})t_{CE}$$

Slide 6 - 92

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

1oo2 Channels

B.3.2.2.2 1oo2 - System

This architecture consists of two channels connected in parallel, such that either channel can process the safety function. Thus there would have to be dangerous failure in both channels before a safety function failed on demand. It is assumed that any diagnostic testing would only report the faults found and would not change any output states or change the output voting.

```

graph LR
    Channel1[Channel] --- Input1(( ))
    Channel1 --- Diagnostics[ ]
    Channel1 --- Output1(( ))
    Channel2[Channel] --- Input2(( ))
    Channel2 --- Diagnostics
    Channel2 --- Output2(( ))
    Diagnostics --> 1oo2((1oo2))
    1oo2 --- Output(( ))
    style Diagnostics fill:none,stroke:none
    
```

IEC 326/2000

Figure B.6 – 1oo2 physical block diagram

Slide 6 - 93

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

1oo2 Channels cont'd

```

graph LR
    Input1(( )) --- Channel1[ ]
    Input1 --- Channel2[ ]
    Channel1 --- LambdaDU1[λDU]
    LambdaDU1 --- LambdaDD1[λDD]
    LambdaDD1 --- tCE[tCE]
    tCE --- LambdaDD2[λDD]
    LambdaDD2 --- Output(( ))
    Channel2 --- LambdaDU2[λDU]
    LambdaDU2 --- LambdaDD3[λDD]
    LambdaDD3 --- tGE[tGE]
    tGE --- LambdaDD4[λDD]
    LambdaDD4 --- Output
    LambdaDD3 --- CCFailure[Common cause failure]
    CCFailure --- Output
    
```

IEC 327/2000

Figure B.7 – 1oo2 reliability block diagram

Figures B.6 and B.7 contain the relevant block diagrams. The value of t_{CE} is as given in B.3.2.2.1, but now it is necessary to also calculate the system equivalent down time t_{GE} , which is given by

$$t_{GE} = \lambda_{DU} / \lambda_D (T_1 / 3 + MRT) + \lambda_{DD} / \lambda_D MTTR$$

The average probability of failure on demand for the architecture is

$$PFD_G = 2((1 - \beta_D)\lambda_{DD} + (1 - \beta)\lambda_{DU})^2 t_{CE} t_{GE} + \beta_D \lambda_{DD} MTTR + \beta \lambda_{DU} (T_1 / 2 + MRT)$$

Slide 6 - 94

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

2oo2 Channels

B.3.2.2.3 2oo2 – System
 This architecture consists of two channels connected in parallel so that both channels need to demand the safety function before it can take place. It is assumed that any diagnostic testing would only report the faults found and would not change any output states or change the output voting.

Figure B.8 – 2oo2 physical block diagram

Figure B.9 – 2oo2 reliability block diagram

$$PFD_G = 2\lambda_d t_{ce}$$

Slide 6 - 95

ProSalus
SAFETY CONSULTANTS

Functional Safety Engineering

1oo2D Channels

B.3.2.2.4 1oo2D – System
 During normal operation, both channels need to demand the safety function before it can take place. In addition, if the diagnostic tests in either channel detect a fault then the output voting is adapted so that the overall output state then follows that given by the other channel. If the diagnostic tests find faults in both channels or a discrepancy that cannot be allocated between the channels, either channel can determine the state of the other channel via a means independent of the channel.

Figure B.10 – 1oo2D physical block diagram

Figure B.11 – 1oo2D reliability block diagram

Slide 6 - 96

1oo2D cont'd

The detected Safe failure rate for every channel is given by

$$\lambda_{SD} = \lambda_{SD} DC$$

Figures B.10 and B.11 contain the relevant block diagrams. The values of the equivalent mean down times differ from those given for the other architectures in B.3.2.2 and hence are labelled t_{CE}' and t_{GE}' . Their values are given by:

$$t_{CE}' = (\lambda_{DU} (T_1 / 2 + MRT) + (\lambda_{DD} + \lambda_{SD}) MTTR) / (\lambda_{DU} + (\lambda_{DD} + \lambda_{SD}))$$

$$t_{GE}' = T_1 / 3 + MRT$$

The average probability of failure on demand for the architecture is:

$$PFD_G = 2(1 - \beta)\lambda_{DU}((1 - \beta)\lambda_{DU} + (1 - \beta_D)\lambda_{DD} + \lambda_{SD}) t_{CE}' t_{GE}' + 2(1 - K)\lambda_{DD} t_{CE}' + \beta\lambda_{DU} (T_1 / 2 + MRT)$$

Slide 6 - 97

B.3.2.2.5 2oo3 – System

Three channels in parallel with majority voting such that the output state does not change if only one channel changes. It is assumed that any diagnostic testing would report faults only and not change the output state.

Figure B.12 – 2oo3 physical block diagram

Figure B.13 – 2oo3 reliability block diagram

Slide 6 - 98

Functional Safety Engineering

2oo3 cont'd

Figures B.12 and B.13 contain the relevant block diagrams. The value of t_{CE} is as given in B.3.2.2.1 and the value of t_{GE} is as given in B.3.2.2.2, The average probability of failure on demand for the architecture is:

$$PFD_G = 6((1 - \beta_D)\lambda_{DD} + (1 - \beta)\lambda_{DU})^2 t_{CE} t_{GE} + \beta_D \lambda_{DD} MTTR + \beta \lambda_{DU} (T_1 / 2 + MRT)$$

B.3.2.2.6 1oo3 – System

Three channels in parallel with a voting arrangement such that the output state follows 1oo3 voting. It is assumed that any diagnostic testing would report faults only and not change the output state. The RBD is as the 2oo3 case but with 1oo3 voting with the value of t_{CE} is as given in B.3.2.2.1 and the value of t_{GE} is as given in B.3.2.2.2 The average probability of failure on demand for the architecture is:

$$PFD_G = 6((1 - \beta_D)\lambda_{DD} + (1 - \beta)\lambda_{DU})^3 t_{CE} t_{GE} t_{G2E} + \beta_D \lambda_{DD} MTTR + \beta \lambda_{DU} (T_1 / 2 + MRT)$$

Where

$$t_{G2E} = \lambda_{DU} / \lambda_D (T_1 / 4 + MRT) + \lambda_{DD} / \lambda_D MTTR$$

Slide 6 - 99

Functional Safety Engineering

Slide 6 - 100