

Introduction to Machine Learning Theory II

ML@Cezeaux, 18 February 2020

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

Start from the beginning ...

Supervised Learning

Learn by example

Hypothesis:

Physical modeling:

Algorithmic modeling:

$$(\mu_P, \sigma_P)$$

$$(\mu_{S_1},\sigma_{S_1})$$

Binary classification

Training sample

- Tasty
- Not tasty

This is all the data we will input to the model about the papayas in the real world!

YouTube class on the papaya testing example:

A controlled example:

Papaya tasting

X: set of all features,

x = [softness, color]

Y: set of possible labels,

y = [tasty, not tasty]

D: data generation model,

 $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

 h_S learner: $y_{est;i} = h_S(x_i)$

L metric: $L(y_{true:i} - y_{est:i})$, $i \in$

training

Training sample

- Tasty
- Not tasty

Training sample

Tasty

Not tasty

Empirical Risk Minimization (ERM)

X: set of all features,

x = [softness, color]

Y: set of possible labels,

y = [tasty, not tasty]

D: data generation model,

 $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

 h_S learner: $y_{est;i} = h_S(x_i)$

L metric: $L(y_{true:i} - y_{est:i})$, $i \in$

training

 $L \rightarrow fraction \ of \ incorrect \ predictions$

Training sample

Tasty

Not tasty

Empirical Risk Minimization (ERM)

X: set of all features,

x = [softness, color]

Y: set of possible labels,

y = [tasty, not tasty]

D: data generation model,

 $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

 h_S learner: $y_{est;i} = h_S(x_i)$

L metric: $L(y_{true:i} - y_{est:i})$, $i \in$

training

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

A controlled example:

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Toy model ...

X: set of all features, x = [softness, color]

Y: set of possible labels, y = [tasty, not tasty]

D: data generation model,

 $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

 h_S learner: $y_{est;i} = h_S(x_i)$

L metric: $L(y_{true:i} - y_{est:i})$, $i \in$

training

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Question:

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Training sample

• Tasty

Not tasty

[tasty, not tasty] = [1, 0]

What is the expected loss when this model is applied to an arbitrary test sample?

loss = fraction of incorrect predictions

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

A controlled example:

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Answer:

Training sample

- Tasty
- Not tasty

Answer:

$$L_S(h_S) = 0.0$$

$$L_D(h_S) = 0.25$$

X: set of all features,

x = [softness, color]

Y: set of possible labels,

y = [tasty, not tasty] = [1, 0]

D: data generation model,

 $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

learner: $y_{est:i} = h_S x_i$

metric: $L(y_{true.i} - y_{est:i})$, $i \in$

training

$$L_S(h_S) = 0.0$$
 $L_D(h_S) = 0.25$
 $L_D(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$

A controlled example:

Papaya tasting

Proposed learner:

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

Answer:

Training sample

- Tasty
- Not tasty

$$L_S(h_S) = 0.0$$

$$L_D(h_S) = 0.25$$

X: set of all features,

x = [softness, color]

Y: set of possible labels,

y = [tasty, not tasty]

D: data generation model,

 $D \Longrightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

 h_S learner: $y_{est;i} = h_S x_i$

L metric: $L(y_{true,i} - y_{est;i})$, $i \in$

training

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Question:

How can we avoid overfitting?

Question:

How can we avoid overfitting?

by adding prior knowledge ...

Choosing the learner

```
X: set of all features, x = [softness, color]
```

Y: set of possible labels, y = [tasty, not tasty]

D: data generation model, $D \Rightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

$$h_S$$
 learner: $y_{est;i} = h_S(x_i)$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss: $L(y_{true;i} - y_{est;i})$, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (\mathcal{H}):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_S(h),$$

Choosing the learner

X: set of all features, x = [softness, color]

Y: set of possible labels, y = [tasty, not tasty]

D: data generation model, $D \Rightarrow P(X)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

 h_S learner: $y_{est;i} = h_S(x_i)$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss: $L(y_{true:i} - y_{est:i})$, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} :

$$f \in \mathcal{H}$$

ERM with inductive bias

```
\chi: set of all features, x = [softness, color]
```

Y: set of possible labels, y = [tasty, not tasty]

D: data generation model, $D \Rightarrow P(\chi)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

 h_S learner: $y_{est;i} = h_S(x_i)$

$$h_S(x) = \begin{cases} y_i & \text{if } x = x_i \mid \{x_i \in S\} \\ 0 & \text{otherwise} \end{cases}$$

L: loss: $L(y_{true;i} - y_{est;i})$, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} :

$$f \in \mathcal{H}$$

• *S* is identically independently distributed (*i.i.d.*) from *D*

- A sample S1 is said to be representative of a probability distribution P if one can draw accurate conclusions about P from S1
- If two samples S1 and S2 are representative of P, S1 and S2 are representative in relation to each other

- A sample S1 is said to be representative of a probability distribution P if one can draw accurate conclusions about P from S1
- If two samples S1 and S2 are representative of P, S1 and S2 are representative in relation to each other

Question:

If a sample S_1 identically independently distributed (i.i.d.) from a distribution P, is this enough to guarantee that S_1 is representative of P?

Model assumptions

```
\chi: set of all features, x = [softness, color]
```

Y: set of possible labels, y = [tasty, not tasty]

D: data generation model, $D \Rightarrow P(\chi)$

True Labelling function: y = f(x)

S: training sample: $[x_i, y_i]$, $i \in training$

 h_S learner: $y_{est;i} = h_S(x_i)$

$$h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$$

L: loss: $L(y_{true;i} - y_{est;i})$, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Hypothesis class (${\cal H}$):

$$h: \mathcal{X} \longrightarrow \mathcal{Y}; \qquad h \in \mathcal{H}$$

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h),$$

- \mathcal{H} is finite, $N_{\mathcal{H}}$ = number of hypothesis
- The true labelling function is part of \mathcal{H} :

$$f \in \mathcal{H}$$

- *S* is identically independently distributed (*i.i.d.*) from *D*
- S is statistically representative of D

Things can still go wrong ...

Bad hypothesis and samples

 $\delta \rightarrow$ probability of non-representative (bad) samples

 $1 - \delta \rightarrow confidence parameter$

Things can still go wrong ...

Bad hypothesis and samples

 $\delta \rightarrow$ probability of non-representative (bad) samples

 $1 - \delta \rightarrow confidence parameter$

 ${f \epsilon}
ightarrow {
m contamination}$. A failure will occur when $L_D(h_S) \geq \epsilon$

```
Good hypothesis: \mathcal{H}_G \coloneqq [h \in \mathcal{H} : L_S(h_S) = 0 \& L_D(h_S) < \epsilon]
```

Bad hypothesis:
$$\mathcal{H}_B \coloneqq [h \in \mathcal{H} : L_S(h_S) = 0 \& L_D(h_S) \geq \epsilon]$$

Bad hypothesis and samples

- $\delta \rightarrow$ probability of non-representative (bad) samples
- $1 \delta \rightarrow confidence parameter$
- ${f \epsilon}
 ightarrow {
 m contamination}.$ A failure will occur when $\ L_D(h_S) \ \geq \ \epsilon$

Good hypothesis:
$$\mathcal{H}_G \coloneqq [h \in \mathcal{H} : L_S(h_S) = 0 \ \& \ L_D(h_S) < \epsilon]$$

$$\mathcal{H}_{B} \ \coloneqq \ \begin{bmatrix} h \in \mathcal{H} : L_{S}(h_{S}) = 0 \\ \end{bmatrix} \& \ L_{D}(h_{S}) \geq \epsilon \end{bmatrix}$$
 hypothesis:

Realizability assumption, $f \in \mathcal{H}$

Constructing misleading samples

For 1 element in the training sample

$$x_i \mid h(x_i) = y_i$$

Things can still go wrong ...

Constructing misleading samples

Bad samples

For 1 element in the training sample

$$x_i \mid h(x_i) = y_i$$

$$P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$$

Constructing misleading samples

Bad samples

The world

For 1 element in the training sample

$$x_i \mid h(x_i) = y_i$$

$$P(x_i \in \mathcal{D} : h(x_i) = y_i) = 1 - L_{\mathcal{D},f}(h)$$

$$P(x_i \in \mathcal{D} : h(x_i) = y_i) \le 1 - \epsilon$$

Constructing misleading samples

For **m** elements in the training sample

Since all elements in training are i.i.d.,

$$P(S_m : L_S(h) = 0) \le \prod_{i=1}^m (1 - \epsilon) = (1 - \epsilon)^m$$

For 1 hypothesis

$$P(S_m: L_S(h) = 0) \le (1 - \epsilon)^m$$

For 1 hypothesis

$$P(S_m: L_S(h) = 0) \le (1 - \epsilon)^m$$

For all bad hypothesis

$$P(A \cup B) \leq P(A) + P(B)$$

For 1 hypothesis

$$P(S_m: L_S(h) = 0) \le (1 - \epsilon)^m$$

For all bad hypothesis

$$P(A \cup B) \le P(A) + P(B)$$

$$\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m$$

Things can still go wrong ...

Considering bad hypothesis

For 1 hypothesis

$$P(S_m: L_S(h) = 0) \le (1 - \epsilon)^m$$

For all bad hypothesis

$$P(A \cup B) \le P(A) + P(B)$$

$$\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \leq \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m$$

using...

$$(1-x)^y \leq \exp(-xy)$$

For 1 hypothesis

$$P(S_m: L_S(h) = 0) \le (1 - \epsilon)^m$$

For all bad hypothesis

$$P(A \cup B) \le P(A) + P(B)$$

$$\delta = P(L_S(h) = 0, \forall h \in \mathcal{H}_B) \le \sum_{h \in \mathcal{H}_B} (1 - \epsilon)^m$$

using...

$$(1-x)^y \le \exp(-xy)$$

$$\delta \le N_{\mathcal{H}} \exp(-\epsilon m)$$

In summary ...

PAC learning model

$$\delta \leq N_{\mathcal{H}} \exp(-\epsilon m)$$

Probably **A**pproximately \rightarrow within a contamination level $\leq \epsilon$

- \rightarrow with confidence 1 δ over *m* samples
- Correct

$$m_{\mathcal{H}}(\epsilon, \delta) \ge \frac{\ln(N_{\mathcal{H}}/\delta)}{\epsilon}$$

every *h* from ERM,

$$L_{(\mathcal{D},f)}(h_S) \leq \epsilon.$$

Return to a controlled example ...

Papaya tasting


```
\chi: set of x \in [softness, color]
```

Y: set y = [tasty, not tasty]

D: data generation model: $D \Rightarrow P(\chi)$


```
\chi: set of x \in [softness, color]
```

Y: set y = [tasty, not tasty]

D: data generation model: $D \Rightarrow P(\chi)$

True Labelling function:

 $y = tasty if softness \in [-0.5, 0.5]$ and $color \in [-0.5, 0.5]$

 χ : set of $x \in [softness, color]$

Y: set y = [tasty, not tasty]

D: data generation model: $D \Rightarrow P(\chi)$

True Labelling function:

 $y = tasty if softness \in [-0.5, 0.5]$ and $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_i]$, $i \in training$ m: number of objects for training

 χ : set of $x \in [softness, color]$

Y: set y = [tasty, not tasty]

D: data generation model: $D \Rightarrow P(\chi)$

True Labelling function:

 $y = tasty if softness \in [-0.5, 0.5]$ and $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

H: hypothesis class:

axis aligned squares in steps of 0.05

$$N_H = 20$$

 χ : set of $x \in [softness, color]$

Y: set y = [tasty, not tasty]

D: data generation model: $D \Rightarrow P(\chi)$

True Labelling function:

 $y = tasty if softness \in [-0.5, 0.5]$ and $color \in [-0.5, 0.5]$

S: training sample: $[x_i, y_i]$, $i \in training$

m: number of objects for training

H: hypothesis class:

axis aligned squares in steps of 0.05

$$N_H = 20$$

L: loss: $L(y_{true:i} - y_{est:i})$, $i \in training$

$$L_{\mathcal{D}}(h_S) = \frac{|\{x \in \mathcal{D} : h_S(x) \neq f(x)\}|}{m}$$

Question:

Data model: uniform distribution [-1,1] in both axis

$$1 - \delta = 0.95 \leftarrow \text{ confidence}$$

$$\epsilon = 0.05 \leftarrow contamination$$

$$N_H = 20$$
 — number of possible squares

$$m = ??$$

Minimum number of samples

Data model: uniform distribution [-1,1] in both axis

$$1 - \delta = 0.95 \leftarrow \text{confidence}$$

$$\epsilon$$
 = 0.05 \leftarrow contamination

$$N_H = 20 \leftarrow \text{number of possible}$$
 squares

Minimum number of samples

Data model: uniform distribution [-1,1] in both axis

1 -
$$\delta$$
 = 0.95 ← confidence
 ϵ = 0.05 ← contamination
 N_H = 20 ← number of possible
squares

$$δ = 0.01, ε = 0.01$$
 $δ = 0.05, ε = 0.01$
 $δ = 0.01, ε = 0.05$
 $δ = 0.05, ε = 0.05$

If you still have stomach...

Next theory session:

- Agnostic PAC learning
- Uniform convergence
- Infinity number of hypothesis ...

Thank you!