UNIVERSIDAD DE **CONCEPCION** FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA I (520135) PRACTICA 7 Números Complejos

Efectuar las operaciones indicadas escribiendo el resultado en la forma (a + bi)

a)
$$\left(\frac{2}{3}i - \frac{i}{4}\right) + i\left(\frac{2}{3}i - \frac{i}{6}\right)$$
 b) $(3 + 2i)(4 + 8i)$ c) $\frac{1}{1 + 3i}$ d) $\frac{10 + 5i}{3 - 2i}$

b)
$$(3+2i)(4+8i)$$

c)
$$\frac{1}{1+3i}$$

d)
$$\frac{10+5i}{3-2i}$$

Problema 2 Sean
$$z_1 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
 y $z_2 = \frac{1}{\sqrt{3 + i}}$

Calcular a) $z_1 + z_2$

c)
$$z_1^2 + z_2^2$$

Problema 3 Sean $z_1 = 4 + 4i$ y $z_2 = 1 - i\sqrt{3}$ determinar el modulo y argumento de

a)
$$z_2$$
 y z_2 b) z_1^2 c) $z_1.z_2$

b)
$$z_1^2$$

c)
$$z_1.z_2$$

d)
$$\frac{z_1}{z}$$

d)
$$\frac{z_1}{z_2}$$
 e) $\frac{z_1 + z_2}{z_1 - z_2}$

| | Problema 4 Sea $z = \frac{-1}{2} + i \frac{\sqrt{3}}{2}$

calcular a)
$$z^2$$
 b) $1+z+z^2$

b)
$$1 + z + z^2$$

c)
$$\frac{1+z}{(1-z)^2} + \frac{1-z}{(1+z)^2}$$

Problema 5 Si $z_1 = 1 + i$ y $z_2 = \sqrt{3} + i$ Dar forma cartesiana ,canónica y polar al complejo

a)
$$z = z_2 - 3i(4i - 8)$$
 b) $z = \frac{3z_1}{1 - i}$ c) $\frac{3iz_1}{2i(z_2 - 4i)}$

$$b) z = \frac{3z_1}{1-i}$$

$$c)\frac{3iz_1}{2i(z_2-4i)}$$

Problema 6 Calcular:

a)
$$(2-3i)^7$$
; $(5+7i)^{23}$; $(1-i)^{-3}$

b)
$$\sqrt{-1}$$
 ; $\sqrt[5]{-32}$

c)
$$\sqrt[7]{2+3i}$$
 ; $\sqrt[0.2]{3-0.4i}$

Problema 7 a) Resuelva en \mathbb{C} la ecuación $z^4 - 2z^3 + z = 2$

b) sea
$$z_1$$
 , $z_2 \in \mathbb{C}$: Demuestre que $|z_1.z_2| = |z_1||z_2|$