

Рис. 9

Рис. 10

Итак, мы свели работу о нахождении пифагоровых троек к вопросу о том, каким образом квадрат b^2 может быть преобразован в прямоугольник со сторонами длины m,n одинаковой четности $(m \neq n)$. Эта задача легко решается. Пусть $r \neq b$ - делитель чилса b^2 (но не обязательно делитель числа b), для которого $\frac{b^2}{\pi}$ имеет ту же четность, что и r. При этом r дллжно быть той же четнсоти, что и b, хотя это условаие и недостаточно (почему?). Тогда прямоугольник со сторонами длины m=r и $n=\frac{b^2}{m}$ может быть преобразован в «толстый гномон», являющийся разностью квадратов

$$c^2 = [rac{b^2/r + r}{2}]^2$$
 и $a^2 = [rac{b^2/r - r}{2}]^2$. Отметим, что r может равняться 1

Отметим, что r может равняться и что можно ограничиться делителями r < b (почему?).

Итак, все пифагоровы тройки имеют вид

$$a=\frac{b^2-r^2}{2r}, b, c=\frac{b^2+r^2}{2r}$$
 где $1<=r< b$ - такой делитель числа b^2 , что r и b^2/r имеют одинаковую четность (воспадающую с четностью b). Пользуясь этим правилом, можно выписывать пифагоровы тройки автоматически. Попробуйте проедалть это; для контроля мы приводим таб-

Рис. 11

лицу пифагоровых троек с b из первого десятка:

b	r	a	c
3	1	4	5
4	2	3	5
5	1	12	13
6	2	8	10
7	1	24	25
8	2	15	17
8	4	6	10
9	1	40	41
9	3	12	15
10	2	24	26

В таблице встречаются тройки a,b,c, отличающиеся только перестановкой чисел a и b; это объясня -ется тем, что в пифагоровой тройке a и b можно переставлять. Кроме того, мы видим, что не существует пифагоровой тройки с b=2: в этом случае нет подходящего делителя r