Concentration of Measure: Markov's, Chebyshev's and Hoeffding's Inequalities

Mohammad Sadegh Talebi Department of Computer Science

(Partially based on Yevgeny Seldin's Slides)

Outline

- Motivation
- 2 Recap: Independent Random Variables
- Markov's Inequality
- Chebyshev's Inequality
- 6 Hoeffding's Inequality
- 6 Application: Confidence Intervals

Motivation: Supervised Learning

- ullet A finite hypothesis class ${\cal H}$
- A sample $S = ((X_1, Y_1), \dots, (X_n, Y_n))$, with elements independently drawn from a fixed (but unknown) distribution.
- $\ell(h(X),Y)$ is the loss of $h \in \mathcal{H}$ on (X,Y)
- $L(h) = \mathbb{E}[\ell(h(X), Y)]$ is unknown.
- Empirical loss of h:

$$\widehat{L}(h, \mathbf{S}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i)$$

ullet $\widehat{L}(h,S)$ is an unbiased estimator of L(h): $\mathbb{E}[\widehat{L}(h,S)] = L(h)$

Motivation: Supervised Learning

- ullet A finite hypothesis class ${\cal H}$
- A sample $S = ((X_1, Y_1), \dots, (X_n, Y_n))$, with elements independently drawn from a fixed (but unknown) distribution.
- $\ell(h(X),Y)$ is the loss of $h \in \mathcal{H}$ on (X,Y)
- $L(h) = \mathbb{E}[\ell(h(X), Y)]$ is unknown.
- Empirical loss of h:

$$\widehat{L}(h, \mathbf{S}) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i)$$

• $\widehat{L}(h,S)$ is an unbiased estimator of L(h): $\mathbb{E}[\widehat{L}(h,S)] = L(h)$

What can be said about L(h)?

Motivation: Bernoulli Trials

Assume a certain treatment is successful with probability p, and failing otherwise.

- p is unknown, but is fixed for all subject patients.
- Let X_1, \ldots, X_n be the realized outcomes on n patients.
- Sample mean:

$$\widehat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$\bullet \ \mathbb{E}[\widehat{p}_n] = p$$

Motivation: Bernoulli Trials

Assume a certain treatment is successful with probability p, and failing otherwise.

- p is unknown, but is fixed for all subject patients.
- Let X_1, \ldots, X_n be the realized outcomes on n patients.
- Sample mean:

$$\widehat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

 $\bullet \ \mathbb{E}[\widehat{p}_n] = p$

How close is \widehat{p}_n to p for a given n?

Motivation: Bernoulli Trials

Assume a certain treatment is successful with probability p, and failing otherwise.

- p is unknown, but is fixed for all subject patients.
- Let X_1, \ldots, X_n be the realized outcomes on n patients.
- Sample mean:

$$\widehat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

 $\bullet \ \mathbb{E}[\widehat{p}_n] = p$

How close is \widehat{p}_n to p for a given n? How much patients do we need to try so that \widehat{p}_n is not farther than p by some ε ?

Outline

- Motivation
- 2 Recap: Independent Random Variables
- Markov's Inequality
- 4 Chebyshev's Inequality
- 5 Hoeffding's Inequality
- 6 Application: Confidence Intervals

Recap: Independence

Independence

ullet Two events A and B are independent if $\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$

Recap: Independence

Independence

- Two events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
- ullet Two random variables (r.v.'s) X and Y are independent if

$$F_{X,Y}(x,y) = F_X(x)F_Y(y) \qquad \forall x,y$$

Recap: Independence

Independence

- Two events A and B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
- ullet Two random variables (r.v.'s) X and Y are independent if

$$F_{X,Y}(x,y) = F_X(x)F_Y(y) \qquad \forall x,y$$

- X and Y are independent $\Longrightarrow \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
- A collection of r.v.'s X_1, \ldots, X_n are independent if every pair in the collection is independent.
- If X_1, \ldots, X_n are independent and have identical distribution (i.e., $F_{X_1} = \ldots = F_{X_n}$), then they are called independent identically distributed (i.i.d.) r.v.'s.

Recap: Asymptotic Convergence Results

Consider i.i.d. r.v.'s X_1, \ldots, X_n , with $\mathbb{E}[X_1] = \mu$ and $\mathrm{Var}(X_1) = \sigma^2 < \infty$.

• Sample mean:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• \overline{X}_n is an unbiased estimate of μ :

$$\mathbb{E}[\overline{X}_n] = \mu$$

• By the Central Limit Theorem (CLT), \overline{X}_n asymptotically converges to μ in distribution:

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{\text{distribution}}{\longrightarrow}_{n \to \infty} \mathcal{N}(0, \sigma^2)$$

Recap: Asymptotic Convergence Results

Consider i.i.d. r.v.'s X_1, \ldots, X_n , with $\mathbb{E}[X_1] = \mu$ and $\mathrm{Var}(X_1) = \sigma^2 < \infty$.

• Sample mean:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• \overline{X}_n is an unbiased estimate of μ :

$$\mathbb{E}[\overline{X}_n] = \mu$$

• By the Central Limit Theorem (CLT), \overline{X}_n asymptotically converges to μ in distribution:

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{\text{distribution}}{\longrightarrow}_{n \to \infty} \mathcal{N}(0, \sigma^2)$$

• By the Strong Law of Large Numbers (SLLN), \overline{X}_n asymptotically converges to μ almost surely:

$$\overline{X}_n \stackrel{\text{almost surely}}{\longrightarrow}_{n \to \infty} \mu$$

CLT and SLLN provide nice results but asymptotically (as $n \to \infty$).

CLT and SLLN provide nice results but asymptotically (as $n \to \infty$).

• How close is \overline{X}_n to μ when n is *finite* (and not necessarily large)?

CLT and SLLN provide nice results but asymptotically (as $n \to \infty$).

- How close is \overline{X}_n to μ when n is *finite* (and not necessarily large)?
- How many samples n do we need so that \overline{X}_n does not exceed μ by no more than a specified ε ?

CLT and SLLN provide nice results but asymptotically (as $n \to \infty$).

- How close is \overline{X}_n to μ when n is *finite* (and not necessarily large)?
- How many samples n do we need so that \overline{X}_n does not exceed μ by no more than a specified ε ?
- Can we derive a data-dependent rule to stop collecting samples for to reach a given accuracy?

CLT and SLLN provide nice results but asymptotically (as $n \to \infty$).

- How close is \overline{X}_n to μ when n is *finite* (and not necessarily large)?
- How many samples n do we need so that \overline{X}_n does not exceed μ by no more than a specified ε ?
- Can we derive a data-dependent rule to stop collecting samples for to reach a given accuracy?

Concentration inequalities (or tail inequalities) are tools from probability to study the deviation of a r.v. from its mean *non-asymptotically* (i.e., for finite n).

CLT and SLLN provide nice results but asymptotically (as $n \to \infty$).

- How close is \overline{X}_n to μ when n is *finite* (and not necessarily large)?
- How many samples n do we need so that \overline{X}_n does not exceed μ by no more than a specified ε ?
- Can we derive a data-dependent rule to stop collecting samples for to reach a given accuracy?

Concentration inequalities (or tail inequalities) are tools from probability to study the deviation of a r.v. from its mean *non-asymptotically* (i.e., for finite n).

Most often, concentration inequalities provide upper bounds on

$$\mathbb{P}\Big(f(X_1,\ldots,X_n)>\varepsilon\Big)$$

Outline

- Motivation
- Recap: Independent Random Variables
- Markov's Inequality
- 4 Chebyshev's Inequality
- 5 Hoeffding's Inequality
- 6 Application: Confidence Intervals

Markov's Inequality

Theorem (Markov's Inequality)

Suppose X is a non-negative r.v. Then for all $\varepsilon > 0$,

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[X]}{\varepsilon}$$

Markov's Inequality

Theorem (Markov's Inequality)

Suppose X is a non-negative r.v. Then for all $\varepsilon > 0$,

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[X]}{\varepsilon}$$

Proof. Define
$$Y = \mathbb{I}(X \geq \varepsilon) = \begin{cases} 1 & X \geq \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

Markov's Inequality

Theorem (Markov's Inequality)

Suppose X is a non-negative r.v. Then for all $\varepsilon > 0$,

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[X]}{\varepsilon}$$

Proof. Define $Y = \mathbb{I}(X \ge \varepsilon) = \begin{cases} 1 & X \ge \varepsilon \\ 0 & \text{otherwise} \end{cases}$. Y is a Bernoulli r.v. and

$$\mathbb{E}[Y] = \mathbb{P}(Y = 1)$$
. Thus,

$$\mathbb{P}(X \ge \varepsilon) = \mathbb{P}(Y = 1) = \mathbb{E}[Y] \le \mathbb{E}\left[\frac{X}{\varepsilon}\right]$$

• $\mathbb{P}(X \ge \alpha \mathbb{E}[X]) \le \alpha^{-1}$ valid for X > 0.

- $\mathbb{P}(X \ge \alpha \mathbb{E}[X]) \le \alpha^{-1}$ valid for X > 0.
- $X \in \{0, 1, \ldots\}$. Then, $\mathbb{P}(X \neq 0) = \mathbb{P}(X \geq 1) \leq \mathbb{E}[X]$.

- $\mathbb{P}(X \ge \alpha \mathbb{E}[X]) \le \alpha^{-1}$ valid for X > 0.
- $X \in \{0, 1, \ldots\}$. Then, $\mathbb{P}(X \neq 0) = \mathbb{P}(X \geq 1) \leq \mathbb{E}[X]$.
- $\mathbb{P}(X \ge \varepsilon) = \mathbb{P}(e^X \ge e^{\varepsilon}) \le e^{-\varepsilon} \mathbb{E}[e^X]$

- $\mathbb{P}(X \ge \alpha \mathbb{E}[X]) \le \alpha^{-1}$ valid for X > 0.
- $X \in \{0, 1, \ldots\}$. Then, $\mathbb{P}(X \neq 0) = \mathbb{P}(X \geq 1) \leq \mathbb{E}[X]$.
- $\mathbb{P}(X \ge \varepsilon) = \mathbb{P}(e^X \ge e^{\varepsilon}) \le e^{-\varepsilon} \mathbb{E}[e^X]$
- For X_1, \ldots, X_n i.i.d. with range [0,1] with mean μ ,

$$\mathbb{P}(\mu - \overline{X}_n > \varepsilon) \le \frac{1 - \mu}{\varepsilon + 1 - \mu} \le \frac{1}{\varepsilon + 1}$$

(Bad news: the upper bound does not decay with n)

- $\mathbb{P}(X \ge \alpha \mathbb{E}[X]) \le \alpha^{-1}$ valid for X > 0.
- $X \in \{0, 1, \ldots\}$. Then, $\mathbb{P}(X \neq 0) = \mathbb{P}(X \geq 1) \leq \mathbb{E}[X]$.
- $\mathbb{P}(X \ge \varepsilon) = \mathbb{P}(e^X \ge e^{\varepsilon}) \le e^{-\varepsilon} \mathbb{E}[e^X]$
- For X_1, \ldots, X_n i.i.d. with range [0,1] with mean μ ,

$$\mathbb{P}(\mu - \overline{X}_n > \varepsilon) \le \frac{1 - \mu}{\varepsilon + 1 - \mu} \le \frac{1}{\varepsilon + 1}$$

(Bad news: the upper bound does not decay with n)

Theorem (Markov's Inequality – Extended)

Suppose X is a non-negative r.v. and f is a monotonically increasing function. Then for all $\varepsilon > 0$,

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[f(X)]}{f(\varepsilon)}$$

Outline

- Motivation
- Recap: Independent Random Variables
- Markov's Inequality
- 4 Chebyshev's Inequality
- 5 Hoeffding's Inequality
- 6 Application: Confidence Intervals

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

For all $\varepsilon > 0$,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

Chebyshev's Inequality

Theorem (Chebyshev's Inequality)

For all $\varepsilon > 0$,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

Proof.

$$\begin{split} \mathbb{P}(|X - \mathbb{E}[X]| \geq \varepsilon) &= \mathbb{P}(|X - \mathbb{E}[X]|^2 \geq \varepsilon^2) \\ &\leq \frac{\mathbb{E}[|X - \mathbb{E}[X]|^2]}{\varepsilon^2} \qquad \text{(Markov's inequality)} \\ &= \frac{\operatorname{Var}(X)}{\varepsilon^2} \end{split}$$

Chebyshev's Inequality: Examples

Example 1: A fair coin is tossed 20 times. Let X_1, \ldots, X_{20} be the realized outcomes. Then,

$$\mathbb{P}(|\overline{X}_{20} - \mu| \ge 0.2) \le \frac{\operatorname{Var}(\overline{X}_{20})}{0.2^2} = \frac{\frac{1}{20}\operatorname{Var}(X_1)}{0.04} = \frac{\frac{1}{20} \cdot \frac{1}{4}}{0.04}$$

Chebyshev's Inequality: Examples

Example 1: A fair coin is tossed 20 times. Let X_1, \ldots, X_{20} be the realized outcomes. Then,

$$\mathbb{P}(|\overline{X}_{20} - \mu| \ge 0.2) \le \frac{\operatorname{Var}(\overline{X}_{20})}{0.2^2} = \frac{\frac{1}{20}\operatorname{Var}(X_1)}{0.04} = \frac{\frac{1}{20} \cdot \frac{1}{4}}{0.04}$$

Example 2: A fair die is rolled 60 times. Let X_1,\ldots,X_{20} be the realized outcomes. Upper bound

$$\mathbb{P}(|\sum_{i} X_i - 210| \ge 20)$$

Chebyshev's Inequality: Examples

Example 1: A fair coin is tossed 20 times. Let X_1, \ldots, X_{20} be the realized outcomes. Then,

$$\mathbb{P}(|\overline{X}_{20} - \mu| \ge 0.2) \le \frac{\operatorname{Var}(\overline{X}_{20})}{0.2^2} = \frac{\frac{1}{20}\operatorname{Var}(X_1)}{0.04} = \frac{\frac{1}{20} \cdot \frac{1}{4}}{0.04}$$

Example 2: A fair die is rolled 60 times. Let X_1,\ldots,X_{20} be the realized outcomes. Upper bound

$$\mathbb{P}(|\sum_{i} X_i - 210| \ge 20)$$

- $\mathbb{E}[X_1] = \frac{7}{2}$. Hence, $\mathbb{E}[\sum_i X_i] = 210$.
- $\operatorname{Var}(\sum_{i} X_i) = \frac{35}{12}$
- $\mathbb{P}(|\sum_i X_i 210| \ge 20) \le \frac{175}{20^2}$

Chebyshev's Inequality

Theorem (Chebyshev's Inequality for I.I.D. Variables)

Let X_1, \ldots, X_n be i.i.d. r.v.'s. Then, for all $\varepsilon > 0$,

$$\mathbb{P}(|\overline{X}_n - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X_1)}{n\varepsilon^2}$$

Chebyshev's Inequality

Theorem (Chebyshev's Inequality for I.I.D. Variables)

Let X_1, \ldots, X_n be i.i.d. r.v.'s. Then, for all $\varepsilon > 0$,

$$\mathbb{P}(|\overline{X}_n - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(X_1)}{n\varepsilon^2}$$

Chebyshev's inequality provides a result that decays at a rate of $\frac{1}{n}$.

Outline

- Motivation
- Recap: Independent Random Variables
- Markov's Inequality
- 4 Chebyshev's Inequality
- 6 Hoeffding's Inequality
- 6 Application: Confidence Intervals

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be independent r.v.'s with support [0,1]. Then, for all $\varepsilon > 0$,

(i)
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \ge \varepsilon\right) \le e^{-2\varepsilon^2/n}$$

(ii)
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \le -\varepsilon\right) \le e^{-2\varepsilon^2/n}$$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be independent r.v.'s with support [0,1]. Then, for all $\varepsilon > 0$,

(i)
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \ge \varepsilon\right) \le e^{-2\varepsilon^2/n}$$

(ii)
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \le -\varepsilon\right) \le e^{-2\varepsilon^2/n}$$

• Using a union bound:

$$\mathbb{P}\bigg(\Big|\sum_{i=1}^n X_i - \mathbb{E}\Big[\sum_{i=1}^n X_i\Big]\Big| \geq \varepsilon\bigg) \leq 2e^{-2\varepsilon^2/n}$$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be independent r.v.'s with support [0,1]. Then, for all $\varepsilon > 0$,

(i)
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \ge \varepsilon\right) \le e^{-2\varepsilon^2/n}$$

(ii)
$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \le -\varepsilon\right) \le e^{-2\varepsilon^2/n}$$

Using a union bound:

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i} - \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]\right| \ge \varepsilon\right) \le 2e^{-2\varepsilon^{2}/n}$$

- $\bullet \ \ \mathsf{Also,} \ \mathbb{P}\bigg(\left| \frac{1}{n} \sum_{i=1}^n X_i \frac{1}{n} \mathbb{E} \Big[\sum_{i=1}^n X_i \Big] \right| \geq \varepsilon \bigg) \leq 2e^{-2n\varepsilon^2}$
- If X_i 's are i.i.d. with mean μ : $\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n X_i \mu\right| \le \varepsilon\right) \ge 2e^{-2n\varepsilon^2}$. Hoeffding's bound decays exponentially fast in n.

Hoeffding's Inequality: Alternative Form

If X_i 's are i.i.d. with mean μ : $\mathbb{P}\bigg(\frac{1}{n}\sum_{i=1}^n X_i - \mu \geq \varepsilon\bigg) \leq \underbrace{e^{-2n\varepsilon^2}}_{=\delta}$

Solving $\delta=e^{-2n\varepsilon^2}$ for ε yields $\varepsilon=\sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)}$ Hence,

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n} X_i - \mu \ge \sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)}\right) \le \delta$$

or alternatively:

$$\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \leq \sqrt{\frac{1}{2n} \log \left(\frac{1}{\delta}\right)} \qquad \text{with probability at least } 1 - \delta$$

For X_1,\ldots,X_n i.i.d., it holds that for all $\delta\in(0,1)$,

$$\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \le \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta}\right)}$$

with probability at least $1-\delta$

Hoefdding's Inequality: Proof

The proof of Hoeffding's inequality relies on the following lemma:

Lemma (Hoeffding's Lemma)

Let X be a r.v. supported on [a,b]. Then,

$$\mathbb{E}[e^{\lambda(X-\mathbb{E}[X])}] \le e^{\frac{\lambda^2(b-a)^2}{8}}, \quad \forall \lambda \in \mathbb{R}$$

For proof, see Yevgeny's lecture notes.

Hoeffding's Inequality: Proof

Proof of (i). Let $Z:=\sum_{i=1}^n X_i - \mathbb{E}\Big[\sum_{i=1}^n X_i\Big]$.

Hoeffding's Inequality: Proof

Proof of (i). Let
$$Z:=\sum_{i=1}^n X_i - \mathbb{E}\Big[\sum_{i=1}^n X_i\Big]$$
. Let $\lambda>0$. Then
$$\mathbb{P}(Z\geq \varepsilon) = \mathbb{P}(e^{\lambda Z}\geq e^{\lambda \varepsilon}) \\ \leq e^{-\lambda \varepsilon}\mathbb{E}\big[e^{\lambda Z}\big] \qquad \text{(Markov's inequality)} \\ = e^{-\lambda \varepsilon}\mathbb{E}\Big[e^{\lambda \Big(\sum_{i=1}^n X_i - \mathbb{E}\big[\sum_{i=1}^n X_i\big]\Big)}\Big] \\ = e^{-\lambda \varepsilon}\prod_{i=1}^n\mathbb{E}\big[e^{\lambda (X_i - \mathbb{E}[X_i])}\big] \qquad \text{(independence)} \\ \leq e^{-\lambda \varepsilon}\prod_{i=1}^n\mathbb{E}\big[e^{\lambda^2/8}\big] = e^{-\lambda \varepsilon + \frac{n\lambda^2}{8}} \qquad \text{(Hoeffding's lemma)}$$

Hoeffding's Inequality: Proof

Proof of (i). Let $Z:=\sum_{i=1}^n X_i-\mathbb{E}\Big[\sum_{i=1}^n X_i\Big]$. Let $\lambda>0$. Then

$$\begin{split} \mathbb{P}(Z \geq \varepsilon) &= \mathbb{P}(e^{\lambda Z} \geq e^{\lambda \varepsilon}) \\ &\leq e^{-\lambda \varepsilon} \mathbb{E}\big[e^{\lambda Z}\big] \qquad \text{(Markov's inequality)} \\ &= e^{-\lambda \varepsilon} \mathbb{E}\big[e^{\lambda \left(\sum_{i=1}^{n} X_{i} - \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]\right)\right]} \\ &= e^{-\lambda \varepsilon} \prod_{i=1}^{n} \mathbb{E}\big[e^{\lambda \left(X_{i} - \mathbb{E}\left[X_{i}\right]\right)}\big] \qquad \text{(independence)} \\ &\leq e^{-\lambda \varepsilon} \prod_{i=1}^{n} \mathbb{E}\big[e^{\lambda^{2}/8}\big] = e^{-\lambda \varepsilon + \frac{n\lambda^{2}}{8}} \qquad \text{(Hoeffding's lemma)} \end{split}$$

This is valid for any $\lambda > 0$, hence

$$\mathbb{P}(Z \ge \varepsilon) \le \min_{\lambda > 0} e^{-\lambda \varepsilon + \frac{n\lambda^2}{8}} = e^{\min_{\lambda > 0} \left(-\lambda \varepsilon + \frac{n\lambda^2}{8} \right)}$$

Hence, the *smallest* (hence, best) bound, attained at $\lambda = 4\varepsilon n^{-1}$, is:

$$\mathbb{P}(Z \ge \varepsilon) \le e^{-2\varepsilon^2/n}$$

Hoeffding's Inequality: Generic Ranges

Theorem (Hoeffding's Inequality)

Let X_1, \ldots, X_n be independent r.v.'s such that $X_i \in [a_i, b_i]$ almost surely, that is $\mathbb{P}(X_i \in [a_i, b_i]) = 1$. Then, for all $\varepsilon > 0$,

$$\mathbb{P}(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \ge \varepsilon) \le e^{-\frac{2\varepsilon^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}$$

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] \le -\varepsilon\right) \le e^{-\frac{2\varepsilon^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}$$

Hoeffding's Inequality: Examples

Example 1 (revisited): A fair coin is tossed 20 times. Let X_1, \ldots, X_{20} be the realized outcomes.

By Hoeffding's inequality,

$$\mathbb{P}\left(\left|\frac{1}{20}\sum_{i=1}^{20}X_i - \frac{1}{2}\right| \ge 0.1\right) \le 2e^{-2\cdot 20\cdot 0.1^2}$$

Hoeffding's Inequality: Examples

Example 1 (revisited): A fair coin is tossed 20 times. Let X_1, \ldots, X_{20} be the realized outcomes.

By Hoeffding's inequality,

$$\mathbb{P}\left(\left|\frac{1}{20}\sum_{i=1}^{20}X_i - \frac{1}{2}\right| \ge 0.1\right) \le 2e^{-2\cdot 20\cdot 0.1^2}$$

Compare it to the result from Chebyshev's inequality.

Hoeffding's Inequality: Sub-Gaussian Case

Sub-Gaussian Random Variable

A r.v. X is said to be R-sub-Gaussian if

$$\mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}] \le e^{\frac{\lambda^2 R^2}{2}}, \quad \forall \lambda \in \mathbb{R}$$

- \bullet A r.v. with range [a,b] is sub-Gaussian with $R=\frac{b-a}{2}$ (by Hoeffding's Lemma)
- A Gaussian r.v. is sub-Gaussian with $R = \sigma$ (why?).
- Intuitively, the tail of a sub-Gaussian r.v. decays at least as fast as that
 of a Gaussian.

Hoeffding's Inequality: Sub-Gaussian Case

Sub-Gaussian Random Variable

A r.v. X is said to be R-sub-Gaussian if

$$\mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}] \le e^{\frac{\lambda^2 R^2}{2}}, \quad \forall \lambda \in \mathbb{R}$$

- A r.v. with range [a,b] is sub-Gaussian with $R=\frac{b-a}{2}$ (by Hoeffding's Lemma)
- A Gaussian r.v. is sub-Gaussian with $R = \sigma$ (why?).
- Intuitively, the tail of a sub-Gaussian r.v. decays at least as fast as that
 of a Gaussian.

Theorem (Hoeffding's Inequality: Sub-Gaussian Case)

Let X_1, \ldots, X_n be i.i.d. R-sub-Gaussian r.v.'s with mean μ . Then, with probability at least $1 - \delta$,

$$\frac{1}{n} \sum_{i=1}^{n} X_i - \mu \le R \sqrt{\frac{2}{n} \log\left(\frac{2}{\delta}\right)}$$

Outline

- Motivation
- Recap: Independent Random Variables
- Markov's Inequality
- 4 Chebyshev's Inequality
- 5 Hoeffding's Inequality
- 6 Application: Confidence Intervals

Definition

Consider X_1, \ldots, X_n be sampled from some distribution ν , and let θ be a parameter of ν (e.g., mean, variance).

A $(1 - \delta)$ -confidence interval for θ is a function

$$\mathtt{CI}(X_1,\ldots,X_n,\delta)\subset\mathbb{R}$$

if
$$\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta$$

Definition

Consider X_1, \ldots, X_n be sampled from some distribution ν , and let θ be a parameter of ν (e.g., mean, variance).

A $(1 - \delta)$ -confidence interval for θ is a function

$$\mathtt{CI}(X_1,\ldots,X_n,\delta)\subset\mathbb{R}$$

if
$$\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta$$

- 1δ is often called the confidence level.
- CI traps the (unknown) parameter θ with probability at least 1δ .
- CI is a function of samples X_1, \ldots, X_n , hence a random interval.
- Confidence intervals act as certificate for the corresponding point estimates.

Definition

Consider X_1, \ldots, X_n be sampled from some distribution ν , and let θ be a parameter of ν (e.g., mean, variance).

A $(1 - \delta)$ -confidence interval for θ is a function

$$\mathtt{CI}(X_1,\ldots,X_n,\delta)\subset\mathbb{R}$$

if
$$\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta$$

Definition

Consider X_1, \ldots, X_n be sampled from some distribution ν , and let θ be a parameter of ν (e.g., mean, variance).

A $(1 - \delta)$ -confidence interval for θ is a function

$$\mathtt{CI}(X_1,\ldots,X_n,\delta)\subset\mathbb{R}$$

if
$$\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta$$

Example: X_1, \ldots, X_n are drawn from a Bernoulli with mean μ .

- Sample mean $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- A (1δ) -CI for $\theta = \mu$ is:

$$\operatorname{CI}(X_1,\ldots,X_n,\delta) = \left[\overline{X}_n - d,\,\overline{X}_n + d\right]$$

for some d determined by X_1, \ldots, X_n and δ .

How to construct confidence intervals?

How to construct confidence intervals?

Let X_1,\ldots,X_n be i.i.d. samples from ν with mean μ and support [0,1]. Define

$$\mathtt{CI} = \left[\overline{X}_n - \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, \ \overline{X}_n + \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)} \right].$$

By Hoeffding's inequality, $\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta$

How to construct confidence intervals?

Let X_1,\ldots,X_n be i.i.d. samples from ν with mean μ and support [0,1]. Define

$$\mathtt{CI} = \left[\overline{X}_n - \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, \ \overline{X}_n + \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)} \right].$$

By Hoeffding's inequality, $\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta \Longrightarrow \mathtt{CI}$ is a $(1 - \delta)$ -Cl for μ .

• CI above is a certificate for the point estimate \overline{X}_n of μ .

How to construct confidence intervals?

Let X_1,\ldots,X_n be i.i.d. samples from ν with mean μ and support [0,1]. Define

$$\mathtt{CI} = \left[\overline{X}_n - \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, \ \overline{X}_n + \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)} \right] \ .$$

By Hoeffding's inequality, $\mathbb{P}(\mu \in \mathtt{CI}) \geq 1 - \delta \Longrightarrow \mathtt{CI}$ is a $(1 - \delta)$ -Cl for μ .

- CI above is a certificate for the point estimate \overline{X}_n of μ .
- Since $\mu \in [0, 1]$,

$$\mathtt{CI} = \left[\max \left(\overline{X}_n - \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, 0 \right), \ \min \left(\overline{X}_n + \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, 1 \right) \right]$$

Example: Consider samples collected in $\underline{\mathsf{S1.csv}}$. If they are independent samples from a Bernoulli with mean μ , then:

(a) Sample mean: $\overline{X}_n = 0.43$

Example: Consider samples collected in $\underline{\mathsf{S1.csv}}$. If they are independent samples from a Bernoulli with mean μ , then:

- (a) Sample mean: $\overline{X}_n = 0.43$
- (b) A 0.99-CI for μ :

$$CI_1 = [0.267, 0.593]$$

Example: Consider samples collected in $\underline{\mathsf{S1.csv}}$. If they are independent samples from a Bernoulli with mean μ , then:

- (a) Sample mean: $\overline{X}_n = 0.43$
- (b) A 0.99-CI for μ :

$$CI_1 = [0.267, 0.593]$$

(c) A 0.9-CI for μ :

$$CI_2 = [0.307, 0.553]$$

Example: Consider samples collected in $\underline{\mathsf{S1.csv}}$. If they are independent samples from a Bernoulli with mean μ , then:

- (a) Sample mean: $\overline{X}_n = 0.43$
- (b) A 0.99-CI for μ :

$$CI_1 = [0.267, 0.593]$$

(c) A 0.9-CI for μ :

$$\mathtt{CI}_2 = [0.307\,, 0.553]$$

(d) Repeat (a)-(c) with <u>S2.csv</u> and compare the results.

Example: Consider samples collected in $\underline{\mathsf{S1.csv}}$. If they are independent samples from a Bernoulli with mean μ , then:

- (a) Sample mean: $\overline{X}_n = 0.43$
- (b) A 0.99-CI for μ :

$$CI_1 = [0.267, 0.593]$$

(c) A 0.9-CI for μ :

$$CI_2 = [0.307, 0.553]$$

(d) Repeat (a)-(c) with <u>S2.csv</u> and compare the results.

For example, CI₁ tells us that $\mathbb{P}(0.267 \le \mu \le 0.593) \ge 0.99$. Can we obtain the exact value of μ using S1 or S2?

Let X_1,\ldots,X_n be independent samples with a common mean μ and common range [b,a]. Then, for any $\delta\in(0,1)$,

$$\begin{split} \operatorname{CI} &= \left[\max \left(\overline{X}_n - (b-a) \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, \underset{\bullet}{\mathbf{a}} \right), \ \min \left(\overline{X}_n + (b-a) \sqrt{\frac{1}{2n} \log \left(\frac{2}{\delta} \right)}, \underset{\bullet}{\mathbf{b}} \right) \right] \\ &\text{is a } (1-\delta)\text{-CI for } \mu. \end{split}$$

- Note that samples could have different distributions.
- Result is valid for a fixed n that does not depend on data (e.g., n is not determined by a stopping rule).
- \bullet Extension beyond fixed n using time-uniform confidence intervals.

