1 Сравнение BigARTM с другими библиотеками

Сравниваем BigARTM с реализацией алгоритма Online VB LDA в библиотеке для тематического моделирования Gensim 1 и Vowpal Wabbit 2 . Для сравнения будем строить тематическую модель для документов из английской Википедии (корпус описан далее).

Перплексия. Алгоритм LDA представляет тематическую модель в виде распределений Дирихле на строчки Θ и столбцы Φ :

$$\boldsymbol{\theta}_d \sim \operatorname{Dir}(\boldsymbol{\gamma}_d), \quad \boldsymbol{\phi}_t \sim \operatorname{Dir}(\boldsymbol{\lambda}_t)$$
 (1)

Для того чтобы сравнить перплексию матриц Φ, Θ для hold-out документов, мы будем брать средние распределения

$$\boldsymbol{\theta}_d^{\text{mean}} = \mathbb{E}_{\text{Dir}(\boldsymbol{\gamma}_d)} \boldsymbol{\theta}_d, \quad \boldsymbol{\phi}_t^{\text{mean}} = \mathbb{E}_{\text{Dir}(\boldsymbol{\gamma}_d)} \boldsymbol{\phi}_t.$$
 (2)

Параметры эксперимента

- Машина: x86 64, 32 ядра, 1324.898MHz
- Corpus: English Wikipedia shapshot 2014-12-08, hold-out 100'000 documents
- Topics: 100
- One pass through train documents of the corpus
- Batch size: 10'000 (chunksize in Gensim, -minibatch in VW)
- Update rule: $\rho = (\tau_0 + t)^{-\kappa}, \ \tau_0 = 1, \ \kappa = 0.5$
- Update after each batch in non-parallel implementation, update after *P* batches when running in *P* parallel threads (update_every = num_processors)
- LDA Priors: $\alpha = 0.1$, $\beta = 0.1$ ($\theta_d \sim \text{Dir}(\alpha)$, $\phi_t \sim \text{Dir}(\beta)$)

2 On LDA and ARTM

Данный раздел посвящён сравнению моделей LDA и ARTM. В экспериментах, сравнивающих BigARTM с Gensim и VW.LDA, мы показали, что алгоритм Online PLSA со сглаживающим регуляризатором и Online VB LDA работают схожим образом. Поэтому в этом эксперименте будут оцениваться характеристики PLSA со сглаживающим регуляризатором (который мы далее будем называть LDA) и ARTM (суть PLSA с набором регуляризаторов).

¹http://radimrehurek.com/gensim/

 $^{^2 {\}tt https://github.com/JohnLangford/vowpal_wabbit/wiki/Latent-Dirichlet-Allocation}$

Library	Proc.	Train Time	Inference Time	Perplexity	
BigARTM Smoothing	1	62 min	$127 \mathrm{sec}$	4000	
${\rm Gensim}\ {\rm LDA}$	1	$369 \min$	$395 \sec$	4161	
Vowpal Wabbit LDA	1	$73 \min$	$120 \sec$	4108	
BigARTM Smoothing	8	8 min	$24 \mathrm{sec}$	4304	
Gensim LDA-Multicore	8	$70 \min$	$338 \sec$	4470	

Таблица 1: Сравнение BigARTM с реализацией LDA в библиотеке Gensim и Vowpal Wabbit. Train Time — время на обучение модели, Inference Time — время вычисления θ_d для всех документов из hold-out. Perplexity — перплексия посчитанная по обученной модели $\{\phi_t\}$ на hold-out документах $\{vec\theta_d\}$, в случае Gensim и VW в качестве распределений ϕ_t и θ_d брались средние из соответствующих распределений Дирихле.

 ${\it Puc.}$ 1: ${\it BigARTM}$ speed up

Текстовая коллекция Все наши эксперименты проводились на корпусе английской Википедии 3 , объём которой $|D| \approx 3.7 \times 10^6$ документов. Словарь имеет размер $|W| \approx 10^5$, общая длина коллекции в словах $n \approx 577 \times 10^6$.

Параметры эксперимента В этом эксперименте мы будем пользоваться следующими функционалами качества моделирования:

- Перплексия на контрольной выборке 4.
- Разреженность матрицы Ф.
- ullet Разреженность матрицы Θ документов обучающей выборки.
- Характеристики ядер тем (размер, чистота, контрастность) ([?] ССЫЛ-КА НА НУЖНУЮ ПУБЛИКАЦИЮ КВ!!!).

Обе модели будут иметь следующий общий набор параметров, с которыми будет запускаться BigARTM: 1 проход по коллекции 5 , 10 проходов по каждому документу, 100 выделяемых тем. Матрица Θ , построенная на предыдущем проходе по документу, используется в качестве начального приближения на текущем. Параметры обновления матрицы Φ , κ и τ_0 , равны 0.5 и 64 соответственно 6 . Порог p(t|w) для ядровых функционалов — 0.25,. Размер батча равен 10000, обновления модели производится каждые батч.

Параметры LDA
$$\alpha = \beta = \frac{1}{|T|}$$

Рис. 2: Comparison of LDA (thin) and ARTM (bold) models. X axis is a number of processed documents.

Регуляризатор для ARTM, представляющий собой смесь разреживания и декорреляции тем, описывается формулой

 $^{^3 {\}rm K}$ оллекция была получена с помощью gensim.make_wikicorpus.

 $^{^4}$ Объём контрольной выборки, на которой перплексия измерялась в ходе прохода по коллекции — 10 тыс. документов. Кроме того, была измерена результирующая перплексия на выборке из 100 тыс. документов.

 $^{^5}$ Подразумевается один полный проход по всей коллекции и повторный проход по первым 1.5×10^5 документам для уточнения их распределений.

⁶Как это было в экспериментах в ?? РАЗДЕЛ ПРО СРАВНЕНИЕ БИБЛИОТЕК!!!

Таблица 2: Comparison of LDA and ARTM models. Quality functionals: \mathcal{P}_{10k} \mathcal{P}_{100k} — hold-out perplexity on 10.000 and 100.000 documents sets, \mathcal{S}_{Φ} , \mathcal{S}_{Θ} — sparsity of Φ and Θ matrices (in %), \mathcal{K}_s , \mathcal{K}_p , \mathcal{K}_c — average topic kernel size, purity and contrast respectively.

Model/Functional	\mathcal{P}_{10k}	\mathcal{P}_{100k}	\mathcal{S}_{Φ}	\mathcal{S}_Θ	\mathcal{K}_s	\mathcal{K}_p	\mathcal{K}_c
LDA	3499	3827	0.0	0.0	931	0.535	0.516
ARTM	3592	3944	96.3	80.5	1135	0.810	0.732

$$R(\Phi, \Theta) = -\beta \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} - \alpha \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} - \gamma \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to \max.$$
(3)

Отсюда получаются формулы М-шага

$$\phi_{wt} \propto \left(n_{wt} - \beta \underbrace{\beta_w[t \in T]}_{\text{sparsing topic}} - \gamma [t \in T] \phi_{wt} \underbrace{\sum_{s \in T \setminus t} \phi_{ws}}_{\text{decorrelation}} \right)_{+}; \tag{4}$$

$$\theta_{td} \propto \left(n_{td} - \alpha \underbrace{\alpha_t[t \in T]}_{\text{sparsing topic}} \right)_{+}. \tag{5}$$

Коэффициенты β_w и α_t примем равными 1, $\forall w, t$. Коэффициенты регуляризации α, β и γ возьмём постоянными на протяжении всего прохода по коллекции. Их значения: $\alpha = 0.15, \beta = 0.009, \gamma = 7.8 \times 10^5$.

Результаты В таблице 2 приведены финальные значения функционалов качества после одного прохода по коллекции для моделей LDA и ARTM. Видно, что комбинация регуляризаторов разреживания и декорреляции улуч-шает качество результирующей модели с небольшими потерями перплексии.

Более подробно процесс обучения представлен на 2. На верхнем графике показано убывание перплексии и замеры разреженностей матриц Φ и Θ . На нижнем — усреднённые характеристики ядер тем. Видно, что LDA совершенно не способствует разреживанию и даёт менее чистые и контрастные ядра тем, чем ARTM.