Projeto de extensão UNICAMP

PRIMEIRA FASE PROVA BETA

Daniel Koiti Oshiro

Solução da OMU

Campinas 2024

Sumário

Ι	Introdução	2
II	Exercício 1:	2
III	Exercício 2	4
IV	Exercício 3	5
\mathbf{V}	Exercício 4	7
VI	Exercício 5	11

Parte I

Introdução

Este texto foi montado com puro amadorismo e nunca foi corrigido, muito menos compartilhado. Logo, a possibilidade de que hajam sérios erros conceituais é bem grande.

Espero a compreensão e desejo a todos leitores deste texto que sempre usem um lápis, para corrgir todas as minhas ínumeras falhas.

Parte II

Exercício 1:

- a) Trivial. Basta aplicar a operação B repetidas vezes até chegar no desejado.
- b) Vamos partir da suposição errônea de que é possível. Chegaremos em um absurdo. Para isso vamos precisar de alguns lemas:
 - Lema 0.1. A operação A muda a paridade da entrada.
 - **Lema 0.2.** A operação *B* não muda a paridade da entrada.
 - Lema 0.3. As operações A e B comutam em questão de paridade.
 - **Lema 0.4.** As operações A e B são crescentes e são fechdas em \mathbb{N} quando o valor de entrada é natural.

Dado a trivialidade das observações, deixaremos a demonstração a cargo do leitor.

Agora, suponha que seja possível, então existe uma sequência finta de operações que geram 2024^{99} .

Suponha que operação final é A. Então teríamos que:

$$(k+1)^4 = 2024^{99}$$

Veja que 2024^{99} é par, então, considerando os lemas, temos que k deve ser impar. Implicando que k+1 é par. Considerando a **fatoração em primos** e sua unicidade temos que:

$$(2^{c_1} \cdot 3^{c_2} \cdot \dots \cdot p_i^{c_i})^4 = 2024^{99}$$

$$(2^{4c_1} \cdot 3^{4c_2} \cdot \dots \cdot p_i^{4c_i}) = (2^3 \cdot 11^1 \cdot 23^1)^{99}$$

$$(2^{4c_1} \cdot 3^{4c_2} \cdot \dots \cdot p_i^{4c_i}) = (2^{297} \cdot 11^{99} \cdot 23^{99})$$

Ora, então deve existir $c_1 \in \mathbb{N}$ tal que:

$$4c_1 = 297$$
 (1)

Impossível!. Então a última operação não pode ser A.

A última operação deve ser B. O que pode ser possível. Se a última operação é B, então:

$$3k + 8 = 2024^{99}$$

Agora, veja que:

$$2024 \equiv 2 \pmod{3} \ e \ 2 \equiv -1 \pmod{3}$$

Logo:

$$2024 \equiv -1 \pmod{3} \Rightarrow 2024^{99} \equiv -1 \pmod{3}$$

Por outro lado:

$$8 \equiv 2 \pmod{3}$$

Implicando que:

$$2024^{99} - 8 \equiv -1 - 2 \pmod{3} \Rightarrow 2024^{99} - 8 \equiv 0 \pmod{3}$$

Ou seja, k de fato pertence aos naturais!!!

Portanto, se é possível, então a última operação deve ser B.

Agora, vamos decorrer com a mesma análise já feita. Se a última operação é B, podemos supor que existe um n natural que gera o número k. Novamente, este número pode vir de qualquer uma das duas operações. Isto é, pelo menos uma das igualdades devem ser válidas para $n \in \mathbb{N}$:

$$3n + 8 = k$$
$$(n+1)^4 = k$$

Partindo da primeira:

$$3n = k - 8$$

$$3n = \frac{2024^{99} - 8}{3} - 8$$

$$3n = \frac{2024^{99} - 32}{3}$$

$$9n = 2024^{99} - 32$$

Outra vez por congruência modular:

$$2024 \equiv 8 \pmod{9} \ e \ 8 \equiv -1 \pmod{9}$$

Logo:

$$2024 \equiv -1 \pmod{9} \Rightarrow 2024^{99} \equiv -1 \pmod{9}$$

Por outro lado:

$$32 \equiv 5 \pmod{9}$$

Implicando que:

$$2024^{99} - 32 \equiv -1 - 5 \pmod{9} \Rightarrow 2024^{99} - 32 \equiv -6 \pmod{9}$$

Ou seja, B não pode ser a penúltima operação, pois para isto acontecer n deveria ser fracionário!

Ora, então a penúltima operação só pode ser A. Usando a segunda igualdade queremos verificar se é possível:

$$(n+1)^4 = k$$

Agora, relembre os lemas. Se temos necessáriamente que a última operação é B e sabemos que ela não troca a paridade, então k era par. Se vamos supor que a penúltima operação deve ser A, então n deve ser impar. Usando novamente a decomposição em primos:

$$(2^{c_1} \cdot 3^{c_2} \cdot \dots \cdot p_i^{c_i})^4 = k$$

$$(2^{c_1} \cdot 3^{c_2} \cdot \dots \cdot p_i^{c_i})^4 = k$$

$$(2^{c_1} \cdot 3^{c_2} \cdot \dots \cdot p_i^{c_i})^4 = \frac{2024^{99} - 8}{3}$$

$$(2^{4c_1} \cdot 3^{4c_2} \cdot \dots \cdot p_i^{4c_i}) \cdot 3 = 2^3(2^{294} \cdot 11^{99} \cdot 23^{99} - 1)$$

$$(2^{4c_1} \cdot 3^{4c_2+1} \cdot \dots \cdot p_i^{4c_i}) = 2^3 \cdot 3^{d_2} \cdot \dots \cdot p_i^{d_j}$$

Então temos que:

$$4c_1 = 3 \tag{2}$$

Outra vez impossível para $c_1 \in \mathbb{N}!!$. Ora, então a penúltima operação não pode ser A ou B.

Concluímos que dada a possibilidade, então o valor de entrada não pode ser natural. Logo, como a entrada é 1, não é possível efetuar o desejado.

Observação 1. Com rigor provamos que se existe uma sequência finita que gera o o número desejado, então ela não pode ser composta por duas ou mais operações. Sabendo que com o número 1 de entrada, então a primeira aplicação não gera (obviamente) 2024⁹⁹ podemos afirmar o desejado.

Parte III

Exercício 2

O uso de geometria análica é altamente recomendado para validar formalmente os resultados, porém entendo que o exercício não tem como finalidade cobrar esses conhecimentos. Um outro argumento que fortalece este meu ponto é a análise qualitativa exigida.

- a) Os pontos são sempre da forma (x, y, z). No caso em que temos (x, y, y^2) temos uma superfície similar a uma parábola. Considerando a superfície y = -1 temos (x, -1, z). Ora, então obviamente a interseção das duas superfícies gera uma reta no plano xz. Podemos pensar, parametricamente, por z = 1, **neste plano**.
- b) De maneira similar aos passos tomados no item anterior, temos que gera uma parábola.
- c) Na curva z=1 gera duas retas paralelas; na curva z=0 gera uma reta; A interseção é vazia na curva z=-1.
- d) podemos pensar em coordendas polares; o que se limita a falar:

$$x = x; y = rcos(\theta); z = rsen(\theta)$$
(3)

Onde obviamente a reparametrização é feita conforme o desejado. Entretanto, podemos tentar "construir" a equação. Perceba que ela é gera uma circunferência no plano xz. lodo podemos pensar em algo como $x^2 + z^2 = r^2$.

e) Veja que as curvas geram interseções simétricas nos planos x = 1 e x = -1 e ambas no eixo yz. Veja também que as superfícies geram circunferências nos planos z = 1 e z = 2. Podemos pensar em:

$$z = x^2 + y^2 \tag{4}$$

Ora, estão é exatamente a expressão desejada. Veja que a equação da circunferência é sempre da forma:

$$a^2 + b^2 = r^2 (5)$$

Ora, então temos que:

$$1 = x^2 + y^2 \tag{6}$$

Determina a circunferência da interseção de z=1 com a superfície. E:

$$2 = x^2 + y^2 \tag{7}$$

De fato determina uma circunferência de raio $\sqrt{2}$.

Parte IV

Exercício 3

a) Basta substituir:

$$8(1)^{3} - (1) \cdot (-1) - (1) - 5 \cdot (-1) - 13 = 0$$

$$8(1) + 1 - 1 + 5 - 13 = 0$$

$$8 + 5 - 13 = 0$$

$$0 = 0$$

b) Podemos tentar reescrever a equação:

$$8x^{3} - xy - x - 5y - 13 = 0$$

$$8x^{3} - xy - 5y - x - 13 = 0$$

$$8x^{3} - y(x+5) - x - 13 = 0$$

$$-y(x+5) = -8x^{3} + x + 13$$

$$y = \frac{8x^{3} - x - 13}{(x+5)}$$

Agora podemos reformular a pergunta para:

Quais são os valores inteiroes de x que deixam y inteiros? Podemos pensar como:

$$8x^3 - x - 13 \equiv 0 \mod(x+5) \tag{8}$$

Apelando para fatorações fracionárias:

$$8x^2 - 40x + 199 - \frac{1008}{x+5}$$

Ora, então todas as soluções são todos os valores de x:

$$|x+5| \in A = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008\}$$

Por exemplo, tome $x+5=126 \Rightarrow x=121$. Neste caso temos:

$$y = 112.479 (9)$$

Verificando:

$$8(121)^3 - (121)(112.479) - (121) - 5(112.479) - 13 = 0$$

Para finalizar, basta fazer a contagem.

- c) Podemos tabelar os resultados somente para os possíveis valores positivos 1 de x Contando os dados temos 17 resultados primos.
- d) Tabelando e contando novamente os resultados temos um total de 4 soluções:

$$(-4, -521)$$

 $(-3, -113)$
 $(-2, -25)$
 $(-1, -5)$

¹No comunicado da organização feito no sábado, é considerado a definição usual de primos: naturais positivos dividos por um e eles mesmos.

É primo?	X	positivo	negativo	-X	у	-y	x por y	-x por -y
NÃO	-4	1	-1	-6	-521	1735	ok	Não
NÃO	-3	2	-2	-7	-113	1375	ok	Não
NÃO	-2	3	-3	-8	-25	1367	ok	Não
NÃO	-1	4	-4	-9	-5	1459	ok	Não
NÃO	1	6	-6	-11	-1	1775	Não	Não
OK	2	7	-7	-12	7	1975	Não	Não
OK	3	8	-8	-13	25	2197	Não	Não
NÃO	4	9	-9	-14	55	2439	Não	Não
OK	7	12	-12	-17	227	3275	Não	Não
NÃO	9	14	-14	-19	415	3919	Não	Não
OK	11	16	-16	-21	664	4630	Não	Não
OK	13	18	-18	-23	975	5407	Não	Não
NÃO	16	21	-21	-26	1559	6695	Não	Não
OK	19	24	-24	-29	2285	8129	Não	Não
OK	23	28	-28	-33	3475	10267	Não	Não
OK	31	36	-36	-41	6619	15315	Não	Não
OK	37	42	-42	-47	9647	19775	Não	Não
OK	43	48	-48	-53	13250	24812	Não	Não
NÃO	51	56	-56	-61	18949	32425	Não	Não
NÃO	58	63	-63	-68	24775	39927	Não	Não
OK	67	72	-72	-77	33417	50725	Não	Não
OK	79	84	-84	-89	46955	67139	Não	Não
OK	107	112	-112	-117	87502	114400	Não	Não
NÃO	121	126	-126	-131	112479	142735	Não	Não
OK	139	144	-144	-149	149200	183774	Não	Não
OK	163	168	-168	-173	206225	246557	Não	Não
NÃO	247	252	-252	-257	478387	538875	Não	Não
OK	331	336	-336	-341	863444	944090	Não	Não
OK	499	504	-504	-509	1972245	2093209	Não	Não
NÃO	1003	1008	-1008	-1013	8008150	8250072	Não	Não

Parte V

Exercício 4

a) Para b = 2 temos determinar os intervalos:

$$[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1]$$

 $[1, 5/4], [5/4, 3/2], [3/2, 7/4], [7/4, 2]$

Veja que para calcular s(8) tomamos sempre o valor de $f(x)=x^2$ no começo do intervalo, então estamos calculando:

$$\sum_{i=1}^{8} \frac{f(x_i^-)}{4}, \ x_i = 0, 1/4, ..., 7/4$$

Podemos calcular como:

$$\frac{0+0,0625+0,25+0,5625+1+1,5625+2,25+3,0625}{4}=2,1875$$

Graficamente temos: Analogamente, para calcular S(8):

Figura 1: s(8)

$$\sum_{i=1}^{8} \frac{f(x_i^+)}{4}, \ x_i = 1/4, 1/2, ..., 2$$

Podemos calcular como:

$$\frac{0,0625+0,25+0,5625+1+1,5625+2,25+3,0625+4}{4}=3,1875$$

Graficamente temos:

Figura 2: S(8)

b) Vamos utilizar a expressão descrita anteriormente:

$$\sum_{i=1}^{8} \frac{f(x_i^-)}{4}$$

Manipulando:

$$\frac{1}{4} \sum_{i=1}^{8} (x_i^-)^2$$

Outra vez:

$$\frac{1}{4} \left(0^2 + \frac{1}{4}^2 + \dots + \frac{7}{4}^2\right)$$

Generalizando:

$$s(n) = \frac{b^3}{6n^3} [n(n-1)(2n-1)]$$

Vamos tirar uma prova real, considerando b=2 e n=8:

$$s(8) = \frac{2^3}{6 \cdot 8^3} [8 \cdot (7) \cdot (15)] = \frac{35}{16} = 2,1875$$

Exatamente o resultado esperado.

Da mesma forma temos que:

$$S(n) = \frac{b^3}{6n^3} [n(n+1)(2n+1)]$$

Fazendo o teste:

$$S(8) = \frac{2^3}{6 \cdot 8^3} [8 \cdot (9) \cdot (17)] = \frac{51}{16} = 3,1875$$

Para determinar a diferença basta:

$$S(n) - s(n) = \frac{b^3}{6n^3} [n(n+1)(2n+1)] - \frac{b^3}{6n^3} [n(n-1)(2n-1)] = \frac{b^3}{n}$$

Verificando outra vez:

$$S(8) - s(8) = \frac{2^3}{8} = 1$$

De fato, bate com o desejado.²

c) Ora, queremos resolver:

$$S(N_1) - s(N_1) = \frac{1^3}{N_1} < 0.01$$

Logo:

$$\frac{1^3}{0.01} < N_1 \Rightarrow N_1 > 100$$

Tome $N_1 = 101$, por exemplo.

Analogamente:

$$\frac{1^3}{0,0001} < N_2 \Rightarrow N_2 > 10.000$$

Tome $N_2 = 10.001$, por exemplo.

d) As duas áreas se aproximam para grandes valores de n, então podemos escolher qualquer uma delas e tentar simplificar a expressão. Vamos considerar S(n):

$$S(n) = \frac{b^3}{6n^3} [n(n+1)(2n+1)] = \frac{b^3(n+1)(2n+1)}{6n^2}$$
$$= \frac{b^3}{3} + \frac{b^3}{2n} + \frac{b^3}{6n^2}$$

Ou seja, para grandes valores de n temos:

$$S(n) \approx \frac{b^3}{3}$$

De fato:

$$\int_0^b x^2 dx = \frac{b^3}{3}$$

 $^{^2\}mathrm{Fiz}$ a verificação no geogebra e a aproximação **numérica** é de 0,00001 casas decimais.

Parte VI

Exercício 5

Observação 2. O enunciado está mal escrito³. É direto que precisamos considerar as probabilidades P(N) onde N é um nome qualquer da lista dos 344 aceitos. Sinceramente não entendi o que exatamente o enunciado esperava. Há rifas em que escolhemos o nome de pessoas, porém neste caso não há repetição. Há rifas que escolhemos nomes e números, similar ao jogo do bixo. Há rifas puramente numéricas. Outro problema evidente é que a equiprobabilidade citada não permite uma solução muito calculável a primeira vista.

Entenderemos que na situação (A) nós e mais 9 participantes vamos comparar números de uma rifa e **necessariamente** um dos participantes irá ganhar. Também entendemos em uma rifa não existe a possibildiade de comprar números repetidos.

Sendo assim, podemos calcular a probabilidade de vitória:

$$\frac{1}{10} = 0, 1 \equiv 10\%$$

Entendendo que no jogo (B) a aposta é sobre sobre os nomes dos participantes podemos calcular a probabilidade complementar.

Consideração 1: a ordem não importa. Ou seja, se em grupo há Nelson, Douglas, Lucas e Daniel, ..., isto é igual a sair Douglas, Daniel, Lucas, Nelson,

Consideração 2: todos os nomes e resultados possíveis são equiprováveis. Sob estas suposições, a quantidade de casos totais é encontrada por combinação com repetição:

$$C_n^k = \frac{(n+k-1)!}{k!(n-1)!}$$

Substituindo os valores:

$$C_n^k = \frac{(344 + 9 - 1)!}{9!(344 - 1)!} = \frac{(352)!}{9!(343)!}$$

A quantidade de casos onde não temos nomes com repetição:

$$344 \cdot 343 \cdot \dots \cdot 336$$

Logo, a probabilidade de casos sem repetição (ou seja, casos em que perdemos):

$$\frac{344 \cdot 343 \cdot \dots \cdot 336}{\frac{(352)!}{9!(343)!}}$$

Em que podemos aproximar por:

$$\frac{343 \cdot \dots \cdot 336 \cdot 9!}{352 \cdot 351 \cdot 350 \cdot 349 \cdot 348 \cdot 347 \cdot 346 \cdot 345} \approx 0$$

Então a chance de ganharmos é aproximadamente 1.

A escolha deve ser a (B).

 $^{^{3}}i.e.$, na minha opnião.