Calculating Drug-drug Interactions in Administrative Databases

Using R coding

Polypharmacy and DDIs

Prevalence of DDIs

General population

Prevalence of DDIs

Warfarin users

Why DDIs is important

Exposure to DDIs is associated with

Adverse events

Ineffectiveness of medications

Increasing health utilizations & costs

To measure DDIs

1

Having DDI or not

2

Number of DDIs

3

Duration of DDIs

To measure DDIs

1

Having DDI or not

2

Number of DDIs

3

Duration of DDIs

Outline

- Objectives
- Datasets
- R functions and inputs
- R coding

Objective

Calculating proportion of days with potential drug-drug interactions using R

Calculating potential DDIs with "study drug"

Drug X

Files of drugs that interact with Drug X

Drug X

Drug X

Files of drugs that interact **Drug X** with Drug X Drug_A Drug X Drug B Drug C Patient ID Patient ID Refill day Refill day Days of supply Days of supply 3/6/2019

Rx refill date

1st date of assessment

Drug X

Patient Service date

Index date

Refill day

Days of supply

id	servicedate		indexdate	datenumfill	dayssup		
	1 1	/3/2018	1/1/2018	3	30		
	2	2/3/2018	2/3/2018	1	2		
	2 2/	15/2018	1/5/2018	42	60		
	3	3/1/2018	3/1/2018	1	7		
	3 4	1/5/2018	3/1/2018	36	5		
	3 4/	10/2018	3/1/2018	41	1		
	3 4/	11/2018	3/1/2018	42	1		
	3 4/	20/2018	3/1/2018	51	2		
	3 4/	26/2018	3/1/2018	57	3		
	3 5	6/6/2018	3/1/2018	67	30		
	4 2	2/1/2018	2/1/2018	1	90		
	4 9	9/1/2018	2/2/2018	212	1		
	4 9	9/3/2018	2/3/2018	213	60		
	2/6/2010						1.4
	3/6/2019						14

Calculating DDIs using R

- 2 functions
- 6 inputs

drugs_day2(input1,input2,input5,drugs_day(
 input1,input2,input3,input4,input6)

drugs_day2(input1,input2,input5,drugs_day(input1,input2,input3,input4),input6)

- #input 1: number of patients;
- #input 2: number of day;
- #input 3: number of all drug-drug interactions;
- #input 4: drugs files directory: all other drugs profiles except study drug (cvs. files)
- #input 5: study drug file directory: study drug profile (cvs. file)
- #input 6: assessment time frame

```
drugs day <- function(n pat, n day, n drug, files){</pre>
                                                                                Drug level
 n drug day \leftarrow matrix(0, ncol = n day, nrow = n pat)
 for (k in 1: n drug){
  day on drug <- matrix(0, ncol = n day, nrow = n pat)
                                                                                Person level
  drug supply refill <- read.csv(files[k])
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
                                                                                 Claim level
   n record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug_supply_refill_pat[drug_supply_refill_pat$seq_id==j,]</pre>
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day on drug[i,first:last] <- 1
  n drug day <- n drug day + day on drug
  return(day on drug)
```

```
drugs_day <- function(n_pat, n_day, n_drug, files){</pre>
n drug day <- matrix(0, ncol = n day, nrow = n pat)
for (k in 1: n drug){
  day on drug \leftarrow matrix(0, ncol = n day, nrow = n pat)
  drug supply refill <- read.csv(files[k])
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
   n record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug_supply_refill_pat[drug_supply_refill_pat$seq_id==j,]</pre>
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day_on_drug[i,first:last] <- 1
  n drug day <- n drug day + day on drug
  return(day on drug)
```

Start from an empty matrix
X:number of patients
Y: number of day

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	
1									
2									
3									
4									
5									
6									
•••									

Final output: Summarized drugs profile

```
drugs day <- function(n pat, n day, n drug, files){</pre>
n drug day <- matrix(0, ncol = n day, nrow = n pat)</pre>
for (k in 1: n drug){
  day on drug <- matrix(0, ncol = n day, nrow = n pat)
  drug supply refill <- read.csv(files[k])
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
   n record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug supply refill pat[drug supply refill pat$seq id==i,]
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day on drug[i,first:last] <- 1
  n drug day <- n drug day + day on drug
  return(day_on_drug)
```

For each of drug profile

```
drugs day <- function(n pat, n day, n drug, files){</pre>
 n drug day \leftarrow matrix(0, ncol = n day, nrow = n pat)
 for (k in 1: n drug){
  day on drug <- matrix(0, ncol = n day, nrow = n pat)
  drug supply refill <- read.csv(files[k])
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
   n record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug_supply_refill_pat[drug_supply_refill_pat$seq_id==j,]</pre>
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day on drug[i,first:last] <- 1
  n drug day <- n drug day + day on drug
  return(day_on_drug)
```

An empty matrix: drug A (B, C)
X:number of patients
Y: number of day

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	
1									
2									
3									
4									
5									
6									
•••									

Drug A (B,C) profile

```
drugs day <- function(n pat, n day, n drug, files){</pre>
 n drug day \leftarrow matrix(0, ncol = n day, nrow = n pat)
                                                                For each of patients in the matrix
 for (k in 1: n drug){
  day on drug <- matrix(0, ncol = n day, nrow = n pat)
  drug supply refill <- read.csv(files[k])</pre>
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
   n_record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug_supply_refill_pat[drug_supply_refill_pat$seq_id==j,]</pre>
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day_on_drug[i,first:last] <- 1
  n drug day <- n drug day + day on drug
  return(day_on_drug)
```

For each of patients in the matrix

id	servicedate		indexdate	datenumfill					
	1	1/3/2018	1/1/2018	3	30				
	2	2/3/2018	2/3/2018	1	2				
	2	2/15/2018	1/5/2018	42	60				
	3	3/1/2018	3/1/2018	1	7		/		
	3	4/5/2018	3/1/2018	36	5		ength/		
	3	4/10/2018	3/1/2018	41	1	nı	umber		
	3	4/11/2018	3/1/2018	42	1	of	row =5		
	3	4/20/2018	3/1/2018	51	2	O1	10W -5		
	3	4/26/2018	3/1/2018	57	3				
	3	5/6/2018	3/1/2018	67	30				
	4	2/1/2018	2/1/2018	1	90				
	4	9/1/2018	2/2/2018	212	1	NI	rocord		
	4	9/3/2018	2/3/2018	213	60	IN_	record		
	2/5/2010								2.4
	3/6/2019								24

of A (B, C)

```
drugs day <- function(n pat, n day, n drug, files){</pre>
                                                               Identify the days with prescription
 n drug day \leftarrow matrix(0, ncol = n day, nrow = n pat)
 for (k in 1: n drug){
  day on drug <- matrix(0, ncol = n day, nrow = n pat)
  drug supply refill <- read.csv(files[k])
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
   n_record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug_supply_refill_pat[drug_supply_refill_pat$seq_id==j,]</pre>
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day on drug[i,first:last] <- 1
  n drug day <- n drug day + day on drug
  return(day_on_drug)
```

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	•••
1									
2									
3									
4									
5									
6									
•••									

Drug A profile

X: number of day

~
• •
J
\sqsubseteq
\exists
be
e
<u>, </u>
of
ס
pati
⋢ .
<u>e</u>
) T
S

	1	2	3	4	5	6	7	8	
1		1	1	1	1	1	1		
2									
3				1	1	1	1	1	1
4		1	1	1	1				
5									
6	1	1	1	1	1	1	1	1	
•••									

Drug A profile

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	•••
1									
2		1	1	1	1	1	1	1	
3									
4									
5				1	1	1	1		
6									
•••									

Drug B profile

```
drugs day <- function(n pat, n day, n drug, files){</pre>
 n drug day \leftarrow matrix(0, ncol = n day, nrow = n pat)
 for (k in 1: n drug){
  day on drug <- matrix(0, ncol = n day, nrow = n pat)
  drug supply refill <- read.csv(files[k])
  for (i in 1:n pat) {
   # identify individual patient #
   drug supply refill pat <- drug supply refill[drug supply refill$id==i,]
   n record <- nrow(drug_supply_refill_pat)</pre>
   for (j in 1:n record){
    subdata <- drug supply refill pat[drug supply refill pat$seq id==i,]
    first <- subdata$datenumfill
    last <- subdata$datenumfill+subdata$dayssup-1
    day on drug[i,first:last] <- 1
  n_drug_day <- n_drug_day + day_on_drug
  return(day on drug)
```

Function 1 output:

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	
1	0	1	1	2	2	2	0	0	0
2	0	1	1	1	1	1	1	1	0
3	0	0	0	1	1	1	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	1	2	2	2	1	1
6	1	1	1	1	1	1	1	1	0
•••									

Matrix [A] + Matrix [B] + Matrix [C]

```
drugs day2 <- function(n pat,n day,drugtaget,n drug day, time){
drug<-data.frame(matrix(0, ncol =n day, nrow = n pat))</pre>
for (j in 1:n pat) {
  subkd<-drugtaget[drugtaget$id==i,]
  leng<-length(subkd$id)*1
  for (i in 1:leng){
   subdata <- subkd[ subkd$seg id==i,]</pre>
   firsta <- subdata$datenumfill
   lasta <- subdata$datenumfill+subdata$dayssup-1
   drug[j,firsta:lasta]<-1
n drug day[n drug day < 1] <-0
n drug day[n drug day > 0] <-1
ddi have<-n drug day + drug
ddi have[ddi have < 2] <-0
ddi have[ddi have > 1] <-1
ddi have time <-ddi have[, 1:time]
ddi_have_timea<-as.data.frame(t(ddi_have_time))
colsum <- function(data) apply(data, 2, sum)</pre>
ddi proportion<-colsum(ddi have timea)
ddi proportion<-as.matrix(ddi proportion)
proportion<-mean(ddi proportion)/time
```

Similar steps as function: drugs_day

```
drugs day2 <- function(n pat,n day,drugtaget,n drug day, time){
drug<-data.frame(matrix(0, ncol =n day, nrow = n pat))</pre>
for (j in 1:n pat) {
  subkd<-drugtaget[drugtaget$id==i,]
  leng<-length(subkd$id)*1
  for (i in 1:leng){
   subdata <- subkd[ subkd$seg id==i,]</pre>
   firsta <- subdata$datenumfill
   lasta <- subdata$datenumfill+subdata$dayssup-1
   drug[j,firsta:lasta]<-1
n drug day[n drug day < 1] <-0
n drug day[n drug day > 0] <-1
ddi have<-n drug day + drug
ddi have[ddi have < 2] <-0
ddi have[ddi have > 1] <-1
ddi have time <-ddi have[, 1:time]
ddi_have_timea<-as.data.frame(t(ddi_have_time))
colsum <- function(data) apply(data, 2, sum)</pre>
ddi proportion<-colsum(ddi have timea)
ddi proportion<-as.matrix(ddi proportion)
proportion<-mean(ddi proportion)/time
```

Similar steps as function: drugs_day

Function 1 output:

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	
1	0	1	1	2	2	2	0	0	0
2	0	1	1	1	1	1	1	1	0
3	0	0	0	1	1	1	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	1	2	2	2	1	1
6	1	1	1	1	1	1	1	1	0
•••									

Matrix [A] + Matrix [B] + Matrix [C]

Function 1 output:

X: number of day

Y: number of patients

	1	2	3	4	5	6	7	8	
1	0	1	1	1	1	1	0	0	0
2	0	1	1	1	1	1	1	1	0
3	0	0	0	1	1	1	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	0

Assign "1" if patients took ≥ 1 prescription

	1	2	3	4	5	6	7	8	
1	0	1	1	1	1	1	0	0	0
2	0	1	1	1	1	1	1	1	0
3	0	0	0	1	1	1	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	0

	1	2	3	4	5	6	7	8	
1	0	0	0	0	1	1	1	1	1
2	0	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1	1
4	1	1	1	1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	1

Summarized drug matrix

Drug X matrix

	1	2	3	4	5	6	7	8	
1	0	1	1	1	2	2	2	1	1
2	0	2	2	1	1	1	1	1	0
3	0	0	0	1	1	1	1	2	2
4	1	2	2	2	2	0	0	0	0
5	0	0	0	1	1	1	1	1	1
6	2	2	2	2	2	2	2	2	1

	1	2	3	4	5	6	7	8	
1	0	1	1	1	1	1	0	0	0
2	0	1	1	1	1	1	1	1	0
3	0	0	0	1	1	1	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	0

	1	2	3	4	5	6	7	8	
1	0	0	0	0	1	1	1	1	1
2	0	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1	1
4	1	1	1	1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	1
									·

Summarized drug matrix

Drug X matrix

	1	2	3	4	5	6	7	8	
1	0	0	0	0	1	1	1	0	0
2	0	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	0
									·

	1	2	3	4	5	6	7	8	
1	0	1	1	1	1	1	0	0	0
2	0	1	1	1	1	1	1	1	0
3	0	0	0	1	1	1	1	1	1
4	0	1	1	1	1	0	0	0	0
5	0	0	0	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	0

	1	2	3	4	5	6	7	8	
1	0	0	0	0	1	1	1	1	1
2	0	1	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1	1
4	1	1	1	1	1	0	0	0	0
5	0	0	0	0	0	0	0	0	0
6	1	1	1	1	1	1	1	1	1

Summarized drug matrix

Drug X matrix

Sum the number in each row

```
drugs day2 <- function(n pat,n day,drugtaget,n drug day, time){
drug<-data.frame(matrix(0, ncol =n day, nrow = n pat))</pre>
for (j in 1:n pat) {
  subkd<-drugtaget[drugtaget$id==i,]
  leng<-length(subkd$id)*1
  for (i in 1:leng){
   subdata <- subkd[ subkd$seg id==i,]</pre>
   firsta <- subdata$datenumfill
   lasta <- subdata$datenumfill+subdata$dayssup-1
   drug[j,firsta:lasta]<-1
n drug day[n drug day < 1] <-0
n drug day[n drug day > 0] <-1
ddi have<-n drug day + drug
ddi have[ddi have < 2] <-0
ddi have[ddi have > 1] <-1
ddi have time <-ddi have[, 1:time]
ddi have timea<-as.data.frame(t(ddi_have_time))</pre>
colsum <- function(data) apply(data, 2, sum)</pre>
ddi proportion<-colsum(ddi have timea)
ddi proportion<-as.matrix(ddi proportion)
proportion<-mean(ddi proportion)/time
```

Add the matrix together and identify the days with concomitant medication use.

Proportion of days with DDIs

https://medicationmanagement.github.io/

Snow Feng. PhD xfeng@tuftsmedicalcenter.org