305 Lecture 5.3 - Rules for Not

Brian Weatherson

This lecture discusses the rules for negation.

Associated Reading

forall x, section 16.8.

A New Symbol

• 1

Read this as 'contradiction', or 'the false'. It is a sentence that can't be true.

• How do we know that a contradiction has obtained?

Contradiction and Negation

- How do we know that a contradiction has obtained?
- By proving some sentence and the negation of that very sentence.

Contradiction and Negation

- How do we know that a contradiction has obtained?
- By proving some sentence and the negation of that very sentence.
- This is going to be our rule for proving things from a negation.

Neg-Elimination

```
egin{array}{c|c} m & \neg \mathcal{A} \\ n & \mathcal{A} \\ & \bot & \neg \to m, \ n \end{array}
```

Neg-Elimination

From contradictory sentences, infer \bot .

Show that if the unnegated part were true, something absurd would follow.

Absurdity

 In engineering, a perpetual motion machine, or some other kind of free energy.

Absurdity

- In engineering, a perpetual motion machine, or some other kind of free energy.
- In finance, a risk-free way to make a guaranteed profit.

Absurdity

- In engineering, a perpetual motion machine, or some other kind of free energy.
- In finance, a risk-free way to make a guaranteed profit.
- In logic, a sentence and its negation.

Neg-Introduction

$$egin{array}{c|c} i & & \mathcal{A} \\ j & & \perp \\ \neg \mathcal{A} & \neg \mathrm{I} \ i-j \end{array}$$

Neg-Introduction

- If A implies a contradiction, infer $\neg A$.

Indirect Proof

$$egin{array}{c|c} i & & \neg \mathcal{A} \\ j & & \bot \\ & & \mathcal{A} & & \mathrm{IP} \; i{-}j \end{array}$$

Indirect Proof

• If ¬A implies a contradiction, infer A.

Explosion

$$egin{array}{c|c} m & \perp & & \\ \mathscr{A} & \mathbf{X} & m & & \\ \end{array}$$

Explosion

- · A contradiction implies anything.
- Note that this rule is redundant; we can replicate it using Indirect Proof.
- I think they've added it because it is an interesting rule if you don't like Indirect Proof.

For Next Time

- That's a lot of rules we've set out.
- We will start looking at how they work in practice.