THE INTEGER-MAGIC SPECTRA OF BICYCLIC GRAPHS WITHOUT PENDANT

W.C. SHIU AND RICHARD M. LOW

ABSTRACT. Let A be a non-trivial, finitely-generated abelian group and $A^* = A - \{0\}$. A graph is A-magic if there exists an edge labeling using elements of A^* which induces a constant vertex labeling of the graph. For connected bicyclic graphs G (without pendant), we determine the set of numbers $k \geq 2$, where G has a \mathbb{Z}_k -magic labeling.

1. Introduction

Let G=(V,E) be a connected simple graph. For any non-trivial, finitely generated abelian group A (written additively), let $A^*=A-\{0\}$. A mapping $f:E\to A^*$ is called a *labeling* of G. Any such labeling induces a map $f^+:V\to A$, defined by $f^+(v)=\sum_{uv\in E}f(uv)$. If there exists a

labeling f whose induced map on V is a constant map, we say that f is an A-magic labeling of G and that G is an A-magic graph. The corresponding constant is called an A-magic value. The integer-magic spectrum of a graph G is the set $\mathrm{IM}(G) = \{k \mid G \text{ is } \mathbb{Z}_k\text{-magic and } k \geq 2\}$. Note that the integer-magic spectrum of a graph is not to be confused with the set of achievable magic values. $\mathbb{Z}\text{-magic}$ (or $\mathbb{Z}_1\text{-magic}$) graphs were considered by Stanley [29,30], where he pointed out that the theory of magic labelings could be studied in the general context of linear homogeneous diophantine equations. Doob [1--3] and others [7,9,15,16,26] have studied A-magic graphs and \mathbb{Z}_k -magic graphs were investigated in [4,6,8,10--14,17--20,27,28].

2. Bicyclic graphs

A connected (p, p + 1)-graph G is called a *bicyclic* graph. A characterization of bicyclic graphs without pendant is given in [25]. For the sake of completeness, we include the results and their proofs (Lemma 2.1, Theorems 2.2 and 2.3, and Corollary 2.4).

Date: March 28, 2012: Version: v.1.0.

²⁰⁰⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. group-magic graphs, integer-magic graphs, integer-magic spectra, bicyclic graphs.

Definition. A vertex of degree k is called a k-vertex. A vertex of degree greater than k is called a k^+ -vertex.

Lemma 2.1. Let G be a (p, p+1)-bicyclic graph without pendant. Then, the number of 2^+ -vertices in G is at most two.

Proof. It is known that $\sum_{v \in V(G)} d(v) = 2(p+1)$, where d(v) denotes the

 $v \in V(G)$ degree of v. Let x be the number of 2^+ -vertices in G. Then, $2(p-x)+3x \le \Box$ 2(p+1). Hence, $x \leq 2$.

Definition. A one-point union of two cycles is a simple graph obtained from two cycles, say C_m and C_n where $m, n \geq 3$, by identifying one vertex from each cycle. Without loss of generality, we may assume the m-cycle to be $u_0u_1\cdots u_{m-1}u_0$ and the *n*-cycle to be $u_0u_mu_{m+1}\cdots u_{n+m-2}u_0$. We denote this graph by U(m, n).

Definition. A theta graph is the union of three internally disjoint (simple) paths that have the same two distinct end vertices. Without loss of generality, we may assume that $s,t,r\geq 1$ such that $P_s=u_0u_1\cdots u_s$ $P_t = u_0 u_{s+1} u_{s+2} \cdots u_{s+t-1} u_s$ and $P_r = u_0 u_{s+t} u_{s+t+1} \cdots u_{s+t+r-2} u_s$. Note that in this paper, P_i denotes a path of length i. We denote this graph by $\Theta(s,t,r)$.

Definition. A long dumbbell graph is a simple graph obtained from two cycles C_m and C_n , by joining a path of length l (again, denoted by P_l in this paper) for $m, n \geq 3$ and $l \geq 1$. Without loss of generality, we may assume

$$C_m = u_0 u_1 \cdots u_{m-1} u_0, \quad P_l = u_{m-1} u_m \cdots u_{m+l-1}$$

and $C_n = u_{m+l-1} u_{m+l} \cdots u_{m+n+l-2} u_{m+l-1}.$

We denote this graph by D(m, n; l).

Theorem 2.2. Let G be a (p, p+1)-bicyclic graph without pendant. Then, G contains only one 2^+ -vertex if and only if G is a one-point union of two cycles.

Proof. Suppose G contains only one 2^+ -vertex. Let d be the degree of the 2^+ -vertex. Since 2(p-1)+d=2(p+1), d=4. Since G contains one 4vertex and (p-1) 2-vertices, G is eulerian and contains two cycles. Hence, G is a one-point union of two cycles. The converse is clear.

Theorem 2.3. Let G be a (p, p+1)-bicyclic graph without pendant. Then, G contains two 2^+ -vertices if and only if G is either a long dumbbell graph or a theta graph.

Proof. Suppose G contains only two 2^+ -vertices. Let d be the sum of the degrees of the 2⁺-vertices. Since 2(p-2)+d=2(p+1), d=6. Since the degree of the 2⁺-vertices is greater than 2, the two 2⁺-vertices must

be 3-vertices. Since G contains two 3-vertices and (p-2) 2-vertices, G is edge-traceable. The two 3-vertices are connected to each other by joining either one path or three disjoint paths. If the 3-vertices are connected by one path, then two disjoint cycles are incident with these 3-vertices respectively. Hence, G is a long dumbbell graph. If the vertices are connected by three paths, then G is a theta graph. The converse is clear.

Corollary 2.4. A bicyclic graph without pendant is either a one-point union of two cycles, a long dumbbell graph or a theta graph.

3. Main results

We first recall the the following useful result, found in [16].

Theorem A. Let G be a \mathbb{Z}_k -magic graph, with k|n. Then, G is a \mathbb{Z}_n -magic graph.

Using Theorem A, we obtain the following two theorems which describe the integer-magic spectra of U(m,n).

Theorem 3.1. Let $m, n \geq 3$. If m and n have the same parity, then $IM[U(m,n)] = \{2,3,4,\ldots\}$.

Proof. Since m and n have the same parity, this implies that U(m,n) is an eulerian graph with an even number of edges. Traveling along an eulerian circuit of U(m,n), we label its edges with $a,-a,a,-a,\ldots,a,-a$, where $a \neq 0$. This yields a \mathbb{Z}_k -magic labeling, for all $k \in \{2,3,4,\ldots\}$.

Note that U(m, n) is also \mathbb{Z} -magic, when m and n have the same parity.

Theorem 3.2. Let $m, n \geq 3$. If m and n have different parity, then $IM[U(m,n)] = 2\mathbb{N}$.

Proof. Without loss of generality, suppose that m is even and n is odd. In order for U(m,n) to be \mathbb{Z}_k -magic, we must consecutively label the edges of C_m with non-zero x,y,x,y,\ldots,x,y . The edges of C_n must then be consecutively labeled with non-zero $z,x+y-z,z,x+y-z,\ldots,z,x+y-z,z$. See Figure 1. Then, U(m,n) has a \mathbb{Z}_k -magic labeling $\iff x+y \equiv x+y+2z \pmod{k}$. In order for $0 \equiv 2z \pmod{k}$, k must be even. Clearly, U(m,n) is \mathbb{Z}_2 -magic, since every vertex is of even degree. Using Theorem A, this implies that U(m,n) is \mathbb{Z}_4 -magic, \mathbb{Z}_6 -magic, etc.

FIGURE 1

Next, we establish the integer-magic spectra of long dumbbell graphs.

Theorem 3.3. Let $m, n \geq 3$, and $l \geq 1$. If $m \cdot n$ is even, then $IM[D(m, n; l)] = \emptyset$.

Proof. Since $m \cdot n$ is even, (WLOG) we can assume that m is even. If D(m,n;l) has a \mathbb{Z}_k -magic labeling, then the edges of subgraph C_m must be consecutively labeled with non-zero x,y,x,y,\ldots,x,y (with its vertices having magic value x+y). However, this would force the edge (from the path of length l) connecting C_m to be labeled 0. Hence, D(m,n;l) is not \mathbb{Z}_k -magic, for all k.

Theorem 3.4. Let $m, n \ge 3$, and $l \ge 1$. If $m \cdot n$ is odd, then $IM[D(m, n; l)] = \{3, 4, 5, ...\}$.

Proof. Since $m \cdot n$ is odd, m and n must both be odd. We first note that D(m,n;l) is not \mathbb{Z}_2 -magic, since it contains vertices of different parity. Figure 2 provides a \mathbb{Z}_k -magic labeling of D(m,n;l), for $k=4,5,6,\ldots$ Figures 3 and 4 provide \mathbb{Z}_3 -magic labelings of D(m,n;l), for l odd and even, respectively.

Figure 2. \mathbb{Z}_k -magic labeling of D(m, n; l), for $k = 4, 5, 6, \ldots$

FIGURE 3. \mathbb{Z}_3 -magic labeling of D(m, n; l), for odd l

FIGURE 4. \mathbb{Z}_3 -magic labeling of D(m, n; l), for even l

Lastly, we focus on the integer-magic spectra of theta graphs.

Theorem 3.5. $\Theta(s,t,r)$ is \mathbb{Z}_2 -magic if and only if s=t=r=1.

Proof. A graph G is \mathbb{Z}_2 -magic if and only if the degrees of the vertices are of the same parity.

Theorem 3.6. Let $s \cdot t \cdot r > 1$. If exactly one of s, t and r is odd, then $\mathrm{IM}[\Theta(s,t,r)] = \{2k \mid k \geq 2\}$. If exactly one of s, t and r is even, then $\mathrm{IM}[\Theta(s,t,r)] = \{4,5,6,\ldots\}$. Otherwise, $\mathrm{IM}[\Theta(s,t,r)] = \{3,4,5,\ldots\}$.

Proof. Let $G = \Theta(s,t,r)$, where $s,t,r \geq 1$. Without loss of generality, let the three internally disjoint (simple) paths (having the same two distinct end vertices) be $P_s = u_0u_1 \cdots u_s$, $P_t = u_0u_{s+1}u_{s+2} \cdots u_{s+t-1}u_s$ and $P_r = u_0u_{s+t}u_{s+t+1} \cdots u_{s+t+r-2}u_s$. Suppose that G is \mathbb{Z}_k -magic (with magic labeling f) and has \mathbb{Z}_k -magic value m. Furthermore, let x_1, x_2, \ldots, x_s be the edge labeling of P_s (under f, read from left to right). Similarly, let y_1, y_2, \ldots, y_t and z_1, z_2, \ldots, z_r be the edge labelings of P_t and P_r , respectively (under f, read from left to right).

CASE 1. (s is odd and t, r are even): In this case, we must have that $x_1 + y_1 + z_1 = m$ and $x_1 + (m - y_1) + (m - z_1) = m$. This implies that

 $2x_1 = 0$. Thus, $IM(G) \subseteq \{4, 6, 8, \dots\}$. Figure 5 gives a \mathbb{Z}_{2n} -magic labeling of G, for $n \geq 2$.

FIGURE 5. \mathbb{Z}_{2n} -magic labeling of $\Theta(s,t,r)$, $n \geq 2$, for s odd and t,r even.

CASE 2. (s,t) are odd and r is even): In this case, we must have that $x_1+y_1+z_1=m$ and $x_1+y_1+(m-z_1)=m$. This implies that $x_1+y_1+z_1=m$ and $x_1+y_1-z_1=0$. Figure 6 gives a \mathbb{Z}_{2n} -magic labeling of G, for $n\geq 2$. Figure 7 gives a \mathbb{Z}_{2n+1} -magic labeling of G, for $n\geq 3$. Figure 8 gives a \mathbb{Z}_{5} -magic labeling of G. It is straight-forward to show (using indirect proof) that G is not \mathbb{Z}_{3} -magic.

FIGURE 6. \mathbb{Z}_{2n} -magic labeling of $\Theta(s,t,r)$, $n \geq 2$, for s,t odd and r even.

FIGURE 7. \mathbb{Z}_{2n+1} -magic labeling of $\Theta(s,t,r), n \geq 3$, for s,t odd and r even.

FIGURE 8. \mathbb{Z}_5 -magic labeling of $\Theta(s,t,r)$, for s,t odd and r even.

CASE 3. (s, t, and r are odd): Figure 9 gives a \mathbb{Z}_k -magic labeling of G, for $k \geq 3$.

FIGURE 9. \mathbb{Z}_k -magic labeling of $\Theta(s,t,r), \ k \geq 3$, for s,t, and r odd.

CASE 4. (s, t, and r are even): Figure 10 gives a \mathbb{Z}_k -magic labeling of G, for $k \geq 3$.

FIGURE 10. \mathbb{Z}_k -magic labeling of $\Theta(s,t,r)$, $k \geq 3$, for s,t, and r even.

References

- M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combinatorics, Graph Theory and Computing (1974), 361-374.
- [2] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17 (1974), 205-217.
- [3] M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25 (1978), 94-104.
- [4] M.C. Kong, S-M Lee, and H. Sun, On magic strength of graphs, Ars Combinatoria, 45 (1997), 193-200.
- [5] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461.
- [6] S-M Lee, Yong-Song Ho and R.M. Low, On the integer-magic spectra of maximal planar and maximal outerplanar graphs, *Congressus Numerantium*, 168 (2004), 83-90.
- [7] S-M Lee, A. Lee, Hugo Sun, and Ixin Wen, On group-magic graphs, JCMCC, 38 (2001), 197-207.
- [8] S-M Lee and F. Saba, On the integer-magic spectra of two-vertex sum of paths, Congressus Numerantium, 170 (2004), 3-15.
- [9] S-M Lee, F. Saba, E. Salehi, and H. Sun, On the V₄-group magic graphs, Congressus Numerantium, 156 (2002), 59-67.
- [10] S-M Lee, F. Saba, and G.C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92 (1993), 177-184.
- [11] S-M Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria, 67 (2003), 199-212.
- [12] S-M Lee, E. Salehi and H. Sun, Integer-magic spectra of trees with diameters at most four, JCMCC, 50 (2004), 3-15.
- [13] S-M Lee, L. Valdes, and Yong-Song Ho, On group-magic spectra of trees, double trees and abbreviated double trees, JCMCC, 46 (2003), 85-95.
- [14] R.M. Low and S-M Lee, On the integer-magic spectra of tessellation graphs, Australas. J. Combin., 34 (2006), 195-210.

- [15] R.M. Low and S-M Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.
- [16] R.M. Low and S-M Lee, On group-magic eulerian graphs, JCMCC, 50 (2004), 141-148.
- [17] R.M. Low and L. Sue, Some new results on the integer-magic spectra of tessellation graphs, Australas. J. Combin., 38 (2007), 255-266.
- [18] E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82 (2007), 41-53.
- [19] E. Salehi, On zero-sum magic graphs and their null sets, Bulletin of the Institute of Mathematics, Academia Sinica, 3 (2008), 255-264.
- [20] E. Salehi and P. Bennett, On integer-magic spectra of caterpillars, JCMCC, 61 (2007), 65-71.
- [21] J. Sedlácek, On magic graphs, Math. Slov., 26 (1976), 329-335.
- [22] J. Sedlácek, Some properties of magic graphs, in Graphs, Hypergraph, and Bloc Syst. 1976, Proc. Symp. Comb. Anal., Zielona Gora (1976), 247–253.
- [23] W.C. Shiu, P.C.B. Lam and S-M. Lee, Edge-magicness of the composition of a cycle with a null graph, Congressus Numerantium, 132 (1998), 9-18.
- [24] W.C. Shiu, P.C.B. Lam and S-M. Lee, On a construction of supermagic graphs, JCMCC, 42 (2002), 147-160.
- [25] W.C. Shiu, M.H Ling and R.M. Low, The edge-graceful spectra of connected bicyclic graphs without pendant, JCMCC, 66 (2008), 171–185.
- [26] W.C. Shiu and R.M. Low, Group-magicness of complete N-partite graphs, JCMCC, 58 (2006), 129-134.
- [27] W.C. Shiu and R.M. Low, Integer-magic spectra of sun graphs, J. Comb. Optim., 14 (2007), 309-321.
- [28] W.C. Shiu and R.M. Low, \mathbb{Z}_k -magic labelings of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309–316.
- [29] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J., 40 (1973), 607-632.
- [30] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, Duke Math. J., 40 (1976), 511-531.
- [31] W.D. Wallis, Magic Graphs, Birkhauser Boston, (2001).

DEPARTMENT OF MATHEMATICS, HONG KONG BAPTIST UNIVERSITY, 224 WATERLOO ROAD, KOWLOON TONG, HONG KONG

E-mail address: wcshiu@hkbu.edu.hk

DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192, USA

E-mail address: richard.low@sjsu.edu