Exercice 10 — renforcement. Résoudre les équations suivantes d'inconnue x.

$$(E_1) \ x^2 - 3x - 4 = 0$$

$$(E_3) \ x^2 - 4\sqrt{3}x + 10 = 0$$

$$(E_5) \ 5x^2 - 2x - 7 = 0$$

$$(E_2) x^2 = 2(x-1)$$

$$(E_6) -2x^2 + 6x + 1 = 0$$

 $solutions. \ \ S_1 = \{-1,4\}; \ S_2 = \{\}; \ S_3 = \left\{-\sqrt{2}+2\sqrt{3},\sqrt{2}+2\sqrt{3}\right\}; \ S_4 = \left\{-1,\frac{2}{5}\right\}; \ S_5 = \left\{-1,\frac{7}{5}\right\}; \ S_6 = \left\{\frac{3}{2}-\frac{\sqrt{11}}{2},\frac{3}{2}+\frac{\sqrt{11}}{2}\right\}; \ S_7 = \left\{-1,\frac{7}{5}\right\}; \ S_8 = \left\{-1,\frac{7}{5}\right\}; \ S_9 = \left\{-1,\frac{7}{$

Défi Exprimer à l'aide de $m \neq 0$ les solutions de $mx^2 + (4m+1)x + 4m + 2 = 0$ d'inconnue x.

3.3 Exercices: le discriminant

Exercice 11 Sans résoudre, entourez l'équation quadratique ayant deux solutions réelles distinces.

$$(E_1) x^2 + 1 = 0$$

$$(E_2)$$
 $x^2 + 2x + 3 = 0$

$$(E_2)$$
 $x^2 + 2x + 3 = 0$ (E_3) $x^2 + 2x + 1 = 0$ (E_4) $x^2 + 2x - 2 = 0$

$$(E_4) x^2 + 2x - 2 = 0$$

Exercice 12 Sans résoudre, entourez l'équation quadratique ayant une solution unique.

$$(E_1) x^2 + 2 = 0$$

$$(E_2) x^2 + x + 3 = 0$$

$$(E_3) x^2 + x - 1 = 0$$

$$(E_2) x^2 + x + 3 = 0$$
 $(E_3) x^2 + x - 1 = 0$ $(E_4) 4x^2 - 4x + 1 = 0$

Exercice 13 Complétez les espaces.

- 1) Pour une équation quadratique sous forme standard $ax^2 + bx + c = 0$, $(a \neq 0)$ le discriminant est donné $\operatorname{par} \Delta = \dots$
 - Si Δ est, l'équation a deux solutions disctinces.
 - Si Δ est, l'équation a une unique solution.
 - Si $\Delta < 0$, l'équation solutions réelles.
 - Si $\Delta \geqslant 0$, les solutions de l'équation sont $r_1 = \dots$ et $r_2 = \dots$
- 2) Le discriminant de l'équation $2x^2 + 4x 1 = 0$ vaut $\Delta = \dots$

- 6) L'équation $x^2 2(m+1)x + m^2 + 5 = 0$ d'inconnue x admet une unique solution. $m = \dots$

Exercice 14 Sans cherchez à les résoudre donner le nombre de solutions dans \mathbb{R} des équations suivantes d'inconnue x.

$$(E_1) 2x^2 + 3x = 4$$

$$(E_3) 7x^2 + 1 = 2\sqrt{7}$$

$$(E_5) \sqrt{3}x^2 + x = \sqrt{2}$$

$$(E_2)$$
 $3x^2 = 2(2x-1)$

$$(E_4)$$
 $4x(x-1)-3=0$

$$\begin{vmatrix} (E_3) & 7x^2 + 1 = 2\sqrt{7}x \\ (E_4) & 4x(x-1) - 3 = 0 \end{vmatrix}$$

$$\begin{vmatrix} (E_5) & \sqrt{3}x^2 + x = \sqrt{2} \\ (E_6) & (2x-1)^2 + x(x+2) = 0 \end{vmatrix}$$

Exercice 15 Sans chechez à la résoudre, donner le nombre de solution de l'équation $x^2 - 2mx + 4(m-1) = 0$ d'inconnue x.

Exemple 3.3 Résoudre dans \mathbb{R} les inéquations quadratiques d'inconnue x suivantes.

$$(I_1) x^2 - 3x - 5 < 0$$

$$(I_2)$$
 $-2x^2 + 3x + 1 \ge 0$

$$(I_3) 2x^2 + 3x + 5 > 0$$

La fonction $f(x) = x^2 - 3x - 5$ ad-

met racine(s) réelle(s).

Exercice 16 Résoudre dans \mathbb{R} les inéquations suivantes.

$$(I_1)$$
 $3x^2 - 4x + \frac{4}{3} \le 0$ (I_2) $5x^2 - 50, 5x + 5 < 0$ (I_3) $x^2 + x + 1 > 0$ (I_4) $-2x^2 + 3x + 1 < 0$

$$(I_4) -2x^2 + 3x + 1 < 0$$

Exercice 17 À l'aide du tableau de signe, résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x.

$$(I_1) (3x^2 + x + 2)(x+3) \le 0$$

$$(I_2) (-5x^2 + x + 4)(3 - 2x) < 0$$

x	$-\infty$	$+\infty$
$3x^2 + x + 2$		
x + 3		
×		

x	$-\infty$	$+\infty$
$-5x^2 + x + 4$		
3-2x		
×		

Exercice 18 À l'aide du tableau de signe, résoudre dans \mathbb{R} les inéquations suivantes d'inconnue x.

$$(I_1) \ \frac{3x^2 - 4x + 7}{2x + 1} \leqslant 0$$

$$(I_2) \ \frac{3x^2 + 9x + 6}{(x+3)^2} < 0$$

x	$-\infty$		+	∞
$3x^2 - 4x + 7$				
$(2x+1)^2$				
$\frac{3x^2 - 4x + 7}{2x + 1}$				

x	$-\infty$	$+\infty$
$3x^2 + 9x + 6$		
$(x+3)^2$		
$\frac{3x^2 + 9x + 6}{(x+3)^2}$		

solution de l'exercice 16. $\mathscr{S}_1 = \emptyset$; $\mathscr{S}_2 =]0.1, 10.0[$; $\mathscr{S}_3 =]-\infty, \infty[$; $\mathscr{S}_4 = \left|-\infty, \frac{3}{4} - \frac{\sqrt{17}}{4}\right| \cup \left|\frac{3}{4} + \frac{\sqrt{17}}{4}, \infty\right|$;

solution de l'exercice 18. $\mathscr{S}_1 = \left] -\infty, -\frac{1}{2} \right[: \mathscr{S}_2 =]-2, -1[:$

solution de l'exercice 17. $\mathscr{S}_1 =]-\infty, -3]; \mathscr{S}_2 = \left]-\infty, -\frac{4}{5}\right[\cup \left]1, \frac{3}{2}\right[;$