Turingmaschinen und Registermaschinen

Wie man eine Registermaschine in eine Turingmaschine übersetzt und welche Erkenntnis man daraus gewinnt

Florian Loch

Theoriesemniar bei Prof. Dr. Heinrich Braun und Dr. Martin Holzer

17.03.2015

Inhaltsverzeichnis

- Motivation
- Wiederholung Turingmaschine (TM)
- 3 Vorstellung Registermaschine (RAM)
- Simulation von RAM auf TM
- 5 Simulation von TM auf RAM
- O Zusammenfassung

Motivation

- Turingmaschine ist Teil des Fundaments der theoretischen Informatik
- Algorithmen werden jedoch für registerorientierte Maschinen entwickelt
- Durch Simulation einer Registermaschine innerhalb einer TM ist der Beweis möglich, . . .
 - ...dass eine TM mindestens so mächtig ist wie eine Registermaschine
 - ...dass ein Algorithmus ebenfalls auf einer TM umgesetzt werden kann ¹
 - ...dass ein Algorithmus und dessen Zeitkomplexität prinzipiell unabhängig von der Rechner-Architektur ist (ARM, x86, etc.)
 - ...dass er in jeder Turing-Vollständigen Sprache implementiert werden kann

 $^{^{1}\}text{i.}$ Allg. mit einer polynomiellen Zeitkomplexitätsverschlechterung, bspw. wird aus $T(n)\Rightarrow T^{3}(n))$

Motivation (II)

Überblick

- Motivation
- Wiederholung Turingmaschine (TM)
- ③ Vorstellung Registermaschine (RAM)
- 4 Simulation von RAM auf TM
- Simulation von TM auf RAM
- Zusammenfassung

Wiederholung: Deterministische Turing Maschine

Eine DTM M ist wie folgt definiert:

$$M = \{Q, \Gamma, \Sigma, B, q_0, \delta, [F]\}$$

- ullet Q: Menge aller Zustände, die M annehmen kann
- \bullet Γ : Bandalphabet
- Σ : Eingabealphabet, $\Sigma \subseteq \Gamma$
- B: Blank-Zeichen, $B \in \Gamma \setminus \Sigma$
- q_0 : Startzustand von M, $q_0 \in Q$
- δ : Zustandsüberführungsfunktion, $\delta: Q \times \Gamma \to Q \times \Gamma \times \{R, L, N\}$
- T: Implizite Menge aller Endzustände. Umfasst q, die bei beliebigem a keine Zustandsänderung oder Bewegung des Kopfes bewirken: $\delta\left(q,a\right)=\left(q,a,N\right)$
- ullet F: Menge der Finalzustände, $F\subseteq T$, nur bei binär antwortendem M

Wiederholung: Funktionsweise der Turingmaschine

Abbildung: Aufbau einer TM [1, S. 10]

Überblick

- Motivation
- 2 Wiederholung Turingmaschine (TM)
- 3 Vorstellung Registermaschine (RAM)
- 4 Simulation von RAM auf TM
- Simulation von TM auf RAM
- Zusammenfassung

Beschreibung einer Registermaschine

- Random Access Machine, kurz RAM
- An reale Computer angelehntes Modell eines "Prozessors", mit Assembler programmierten CPUs nachempfunden
- Reale Probleme wie Overflow etc. werden nicht berücksichtigt

Beschreibung einer Registermaschine (II)

Abbildung: Aufbau einer RAM [1, S. 7]

- Verfügt über eine unbegrenzte Menge an Registern, R, welche beliebige $x \in \mathbb{N}$ enthalten können
- ullet Für jedes Register R_i in R gilt, dass es direkt oder indirekt adressiert werden kann
- ullet R_0 ist per Definition der Akkumulator
- ullet Programm P mit endlicher Länge, p=|P|
- ullet Im Befehlszähler b wird die aktuelle Programmzeile vermerkt

Befehle einer Registermaschine

```
LOAD i:
                  c(0) := c(i), b := b + 1.
STORE i: c(i) := c(0), b := b + 1.
ADDi:
       c(0) := c(0) + c(i), b := b + 1.
       c(0) := \max\{c(0) - c(i), 0\}, \ b := b + 1.
SUB i:
MULT i: c(0) := c(0) * c(i), b := b + 1.
DIVi:
                   c(0) := |c(0)/c(i)|, b := b + 1.
GO TO j
           b:=i.
IF c(0)? l GO TO j b := j falls c(0)? l wahr ist, und
                   b := b + 1 sonst.
                   (Dabei ist ? \in \{=, <, \leq, >, \geq\}).
END
                   b := b
```

Abbildung: Standard-Befehle einer RAM [1, S. 8]

Daneben gibt es noch Befehlsvarianten für die Arbeit mit konstanten Werten und für indirekte Adressierung.

Funktionsweise der Registermaschine: Beispiel

```
LOAD 1 //Wert aus Register 1 laden
2 ADD 2 //Wert aus Register 2 aufaddieren
3 STORE 1 //Wert in Register 1 zurueckschreiben
```

Überblick

- Motivation
- 2 Wiederholung Turingmaschine (TM)
- 3 Vorstellung Registermaschine (RAM)
- Simulation von RAM auf TM
- Simulation von TM auf RAM
- 6 Zusammenfassung

Definitionen

- Simulieren \Rightarrow Entwurf einer von M', welche das Verhalten einer Maschine M schrittweise nachahmt
- k ist ein konstanter, endlicher Wert aus $\mathbb N$

Satz: Überführung von RAM zu TM

Satz

Jede logarithmisch t(n)-zeitbeschränkte Registermaschine kann für ein Polynom q durch eine O(q(n+t(n)))-zeitbeschränkte Turingmaschine simuliert werden. [1, S. 17s]

Idee und Ansatz

Idee: Schrittweises überführen der Registermaschine in Turingmaschine:

 $\mathsf{RAM} \to \mathsf{Mehrband}\text{-}\mathsf{TM} \to \mathsf{Mehrspur}\text{-}\mathsf{TM} \Rightarrow \mathsf{(Einspur-)}\mathsf{TM}$

Die Mehrband-Turingmaschine

- Verfügt über k unbegrenzte Bänder
- Pro Band existiert ein eigener LS-Kopf
- LS-Köpfe können unabhängig von einander bewegt werden
- Das pro Schritt gelesene Wort $w \in \Gamma^k$ setzt sich aus den Zellinhalten an den Positionen der LS-Köpfe zusammen
- Zustandsüberführungsfunktion: $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{R, L, N\}^k$

Die Mehrband-Turingmaschine

Treffen wir nun zunächst folgende Vereinbarungen:

- c(i) liefert den Inhalt von Register i; jedoch nur für tatsächlich im Laufe der Ausführung verwendete Register
 - Register in RAM kann beliebigen Wert $(c(i) \in \mathbb{N} \text{ annehmen})$
 - ullet Turingmaschine hat fixes Bandalhphabet Γ
- bin(i) liefert die Binärdarstellung des Wertes i
- bin(c(i)) liefert die Binärdarstellung des in R_i enthaltenen Wertes

Wir wollen nun ein Schema zur Übertragung aufstellen:

- Der Programmzähler b wird durch die Zustände realisiert
- Ein- und Ausgabe werden auf Band 1 geschrieben
- Band 2 wird zur Simulation des Speichers/Register der RAM verwendet: $\&bin(i_1)\#bin(c(i_1))\&\dots\&bin(i_m)\#bin(c(i_m))\#\#$
- Der besseren Übersicht wegen verwenden wir für den Akkumulator ein eigenes Band, Band 3

- Definieren von p+2 Unterprogrammen in U
 - U_0 zur Übertragung der Eingabe (Band 1) in den entsprechenden Bereich des Speichers (die Register) (Band 2)
 - $U_1 \dots U_p$ für die p Programmzeilen
 - U_{p+1} zur Ausgabe auf Band 1

- Definieren von p+2 Unterprogrammen in U
 - U_0 zur Übertragung der Eingabe (Band 1) in den entsprechenden Bereich des Speichers (die Register) (Band 2)
 - $U_1 \dots U_p$ für die p Programmzeilen
 - U_{p+1} zur Ausgabe auf Band 1

- Definieren von p+2 Unterprogrammen in U
 - U_0 zur Übertragung der Eingabe (Band 1) in den entsprechenden Bereich des Speichers (die Register) (Band 2)
 - $U_1 \dots U_p$ für die p Programmzeilen
 - U_{p+1} zur Ausgabe auf Band 1

- Definieren von p+2 Unterprogrammen in U
 - U_0 zur Übertragung der Eingabe (Band 1) in den entsprechenden Bereich des Speichers (die Register) (Band 2)
 - $U_1 \dots U_p$ für die p Programmzeilen
 - U_{p+1} zur Ausgabe auf Band 1

- Definieren von p+2 Unterprogrammen in U
 - U_0 zur Übertragung der Eingabe (Band 1) in den entsprechenden Bereich des Speichers (die Register) (Band 2)
 - ullet $U_1 \dots U_p$ für die p Programmzeilen
 - U_{p+1} zur Ausgabe auf Band 1

Funktionsweise der Registermaschine: Beispiel

```
LOAD 1 //Wert aus Register 1 laden
2 ADD 2 //Wert aus Register 2 aufaddieren
3 STORE 1 //Wert in Register 1 zurueckschreiben
```

Notation in Pseudo-Code, da als Turingprogramm bereits jetzt nicht mehr handhabbar (Zustandsexplosion!)

 U_0 (unter der Annahme, dass die Eingabe in R_1 abgelegt wird):

- $oldsymbol{0}$ Auf Band 2 Markierung für R_1 anlegen
- $oldsymbol{3}$ Zeichenweises Übertragen der Eingabe von Band 1 auf in R_1
- 3 Zu Initialposition auf Band zurücklaufen
- $oldsymbol{0}$ Fertig. In Startzustand von U_1 übergehen

U_1 alias LOAD:

- Speicherband nach rechts ablaufen bis (nach bitweisem Vergleich der Binärdarstellung) R_1 gefunden wurde
- c(1) zeichenweise in R_0 übertragen
- 3 Zu Initialposition auf Band zurücklaufen
- $oldsymbol{0}$ Fertig. In Startzustand von U_2 übergehen

U_1 alias LOAD:

- Speicherband nach rechts ablaufen bis (nach bitweisem Vergleich der Binärdarstellung) R_1 gefunden wurde
- c(1) zeichenweise in R_0 übertragen
- 3 Zu Initialposition auf Band zurücklaufen
- $oldsymbol{0}$ Fertig. In Startzustand von U_2 übergehen

U_1 alias LOAD:

- ullet Speicherband nach rechts ablaufen bis (nach bitweisem Vergleich der Binärdarstellung) R_1 gefunden wurde
- c(1) zeichenweise in R_0 übertragen
- 3 Zu Initialposition auf Band zurücklaufen
- $oldsymbol{0}$ Fertig. In Startzustand von U_2 übergehen

U_1 alias LOAD:

- ullet Speicherband nach rechts ablaufen bis (nach bitweisem Vergleich der Binärdarstellung) R_1 gefunden wurde
- c(1) zeichenweise in R_0 übertragen
- 3 Zu Initialposition auf Band zurücklaufen
- $oldsymbol{0}$ Fertig. In Startzustand von U_2 übergehen

U_1 alias LOAD:

- Speicherband nach rechts ablaufen bis (nach bitweisem Vergleich der Binärdarstellung) R₁ gefunden wurde
- c(1) zeichenweise in R_0 übertragen
- 3 Zu Initialposition auf Band zurücklaufen
- $oldsymbol{0}$ Fertig. In Startzustand von U_2 übergehen

Überführung hin zu Mehrband-Turingmaschine: Erkenntnisse

Folgende Feststellungen bzgl. Laufzeitkomplexität und Speicherverbrauch können getroffen werden:

- Offenkundiger Nachteil: Auf der Suche nach einem Register muss womöglich der gesamte Speicher durchlaufen werden
 - \Rightarrow Aus Speicherzugriffszeit O(1) wird O(s(n))!
- Speicherverbrauchsklasse ändert sich nicht

Die Mehrspur-Turingmaschine

- Verfügt über 1 unendliches Turingband
- ullet Band hat n Spuren
- Es existieren n LS-Köpfe
- Allerdings sind alle LS-Köpfe abhängig voneinander und können nur zusammen verschoben werden
- Das pro Schritt gelesene Wort $w \in \Gamma^k$ setzt sich aus den Zellinhalten an den Positionen der LS-Köpfe zusammen
- Zustandsüberführungsfunktion: $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{R, L, N\}$
- ⇒ Entscheidender Unterschied zu Mehrband-TM: Kann keine Informationen durch die Position der Köpfe speichern

Überführung hin zu Mehrspur-Turingmaschine

Idee zur alternativen Speicherung der Kopfpositionen:

- Bei k Bändern Verwendung von 2k+1 Spuren
- Die geraden Spuren sind äquivalent den einzelnen Bändern
- Die ungeraden Spuren repräsentieren Kopfpositionen der Mehrband-TM (Marker in entsprechender Zelle)
- S_k markiert das Fenster, in dem sich alle Kopfpositionen befinden: $^{\circ}...$ \$
- Das aktuelle Wort w erhält man, indem man der Reihe nach die jeweils markierten Zellen "anfährt" und (von oben nach unten) einliest
 - \Rightarrow Dadurch Aktion bekannt, welche die Mehrband-TM ausführen würde
- \bullet Zu Beginn des t-ten Rechenschritts steht der Kopf an der Position von $\, \hat{}$. Zustand von M' muss Zustand von M entsprechen

Die Mehrband-Turingmaschine

Überführung hin zu Mehrspur-Turingmaschine: Erkenntnisse

Satz

Eine k-Band-Turingmaschine M, die mit Rechenzeit t(n) und Speicherplatz s(n) auskommt, kann von einer Turingmaschine M' mit Zeitbedarf $O(t^2(n))$ und Speicherplatz O(s(n)) simuliert werden. [1, S. 15]

• Zustandszahl explodiert: $Q \times (a \in \Gamma)^k \times \{R, L, N\}^k$

Mehrspur-Turingmaschine zu Ein-Spur-Turingmaschine

- Ziel: Darstellung mehrerer Spuren auf einer Spur
- \bullet Annahme, dass Mehrspur-TM M k Spuren und endliches Bandalphabet Γ hat
- \bullet Für aktuelles Wort w von M gilt $w \in \Gamma^k$
- ullet \Rightarrow Jedes mögliche w wird in M' auf ein neues Zeichen abgebildet (resultiert in großem Bandalphabet)

Mehrspur-Turingmaschine zu Ein-Spur-Turingmaschine (II)

Überblick

- Motivation
- 2 Wiederholung Turingmaschine (TM)
- ③ Vorstellung Registermaschine (RAM)
- 4 Simulation von RAM auf TM
- 5 Simulation von TM auf RAM
- Zusammenfassung

Umwandlung von Turingmaschine zu Registermaschine

Beweisskizze

Die Übertragbarkeit einer beliebigen Turingmaschine auf eine Registermaschine lässt sich konstruktiv durch Implementierung eines universellen Turingmaschinen-Simulators in einer, für registerbasierte Prozessoren kompilierenden, Sprache beweisen.^a

^aEine solche Programmiersprache könnte Assembler, C, Shell-Skript etc. sein.

Überblick

- Motivation
- 2 Wiederholung Turingmaschine (TM)
- ③ Vorstellung Registermaschine (RAM)
- 4 Simulation von RAM auf TM
- 5 Simulation von TM auf RAM
- Zusammenfassung

Zusammenfassung

Folgendes können wir zusammenfassend feststellen:

- Die Grundidee g\u00e4ngiger Rechnerarchitekturen kann in Turingmaschinen transformiert bzw. simuliert werden
- Turingmaschinen und Registermaschinen k\u00f6nnen ineinander \u00fcbersetzt werden und daher die gleichen Problemklassen (alle entscheidbaren Probleme) l\u00f6sen ⇒ sprich sind gleich m\u00e4chtig

Zusammenfassung (II)

Alle hier gezeigten Konzepte und Sprachen sind gleichermaßen mächtig und ineinander überführbar!

Zusammenfassung (II)

Alle hier gezeigten Konzepte und Sprachen sind gleichermaßen mächtig und ineinander überführbar!

Literatur & Quellen

Ingo Wegener. Theoretische Informatik: eine algorithmenorientierte Einführung. 3., überarb. Aufl. Leitfäden der Informatik. Wiesbaden: Teubner, 2005. ISBN: 3-8351-0033-5.

Vielen Dank für Ihre Aufmerksamkeit!

Noch Fragen?