جواب سوالات Homwork 7

-۲

با فرض D2 خاموش داریم:

$$\frac{V_o - 2}{1k} + \frac{V_o - 5}{1k} = 0 \implies V_o = 3.5 \text{ v}$$

و چون ولتاژ آند D_2 از ولتاژ کاتد آن بیشتر است پس فرض گرفته شده اشتباه است و D_2 روشن است و V_z برابر V_z است

$$I = \frac{5 - V_z}{Ik} = 3 \, \text{mA}$$

در زمان t < t < t و مان t < t < t و دیودهای D_{τ} قطع و دیودهای D_{τ} و D_{τ} روشن هستند پس مدار معادل به صورت زیر خواهد بود: (دیودها ایده آل)

$$V_{\bullet} = 1\Delta + \frac{(\Upsilon\Delta - 1\Delta)}{\Upsilon_{\bullet} + 1} = 1\Delta/\Upsilon \wedge V$$

 $V_{\circ}=$ ۵ $V_{\circ}=$ 8 در زمان $V_{\circ}=$ 1 در زمان $V_{\circ}=$ 8 هر سه دیود هدایت می کنند پس داریم $V_{\circ}=$ 8 در زمان $V_{\circ}=$ 8 هر سه دیود هدایت می کنند پس داریم $V_{\circ}=$ 8 در زمان $V_{\circ}=$ 8 هر سه دیود هدایت می کنند پس داریم $V_{\circ}=$ 8 در زمان $V_{\circ}=$ 8 هر سه دیود هدایت می کنند پس داریم

در زمان $t_{4} < t < t_{0}$ و D_{7} و D_{7} و D_{7} قطع و ديود D_{7}

پس مدار معادل V_{\circ} به صورت زیر خواهد بود:

$$D_1 \text{ and } D_2 \text{ on}$$

$$5 + \frac{5 - 0.7 - V_A}{2} = \frac{V_A - 0.7 - (-5)}{1.1}$$

$$5 + 2.15 - 3.909 = V_A \left(\frac{1}{2} + \frac{1}{1.1}\right) \Rightarrow V_A = 2.30 \text{ V}$$
Then $I_{D1} = \frac{5 - 0.7 - 2.3}{2} = 1.0 \text{ mA}$

$$I_{D2} = \frac{2.3 - 0.7 - (-5)}{1.1} = 6.0 \text{ mA}$$

$$D_1$$
 and D_2 cutoff, $I_{D1} = I_{D2} = 0$

$$I_{D3} = \frac{15 - 0.7 - (-10)}{R_1 + R_4} = \frac{24.3}{6.15 + 1.32} = 3.25 \text{ mA}$$

$$V_A = 15 - (3.25)(6.15) = -5 \text{ V}$$

برای $V_0 = V_i$ باید $V_0 = V_i$ و مشن باشند.

ابرابر است با: V_A در حالت خاموش بودن D_1 برابر است با:

$$V_A = \frac{E_3 - E_2}{2R}R + E_2 + E_1 = 6V$$

پس برای روشن شدن $\, {\bf D}_1 \,$ ورودی باید از $\, \, 6 \,$ ولت بیشتر باشد.

ار در حالت خاموشی D_2 برابر است با: V_{o}

$$V_0 = E_1 + E_3 = 8V$$

ایای روشن شدن V_i ، D_2 باید کمتر از B ولت باشد.

$$6 < V_i < 8$$

الف)

For $v_i > 0$, $v_i \stackrel{+}{\longrightarrow} R_1$ $R_2 \stackrel{\nu_0}{\Longrightarrow} R_L$

$$v_0 = \left(\frac{R_2 \parallel R_L}{R_2 \parallel R_L + R_1}\right) |v_i|$$

$$R_2 \parallel R_L = 2.2 \parallel 6.8 = 1.66 \text{ k}\Omega$$

$$v_0 = \left(\frac{1.66}{1.66 + 2.2}\right) v_i = 0.43 |v_i|$$

ب)

مدار معادل تونن دو سر دیود.

$$\begin{cases} R_{1h} = Y\Delta \cdot \Omega \parallel \Delta \cdot \cdot \Omega = \frac{\Delta \cdot \cdot \Omega}{\gamma} \\ V_{th} = V_{I} \times \frac{Y\Delta \cdot}{Y\Delta \cdot + \Delta \cdot \cdot} = V_{I} \times \frac{1}{\gamma} = \frac{V_{I}}{\gamma} \end{cases}$$

تغییرات $V_{\rm T}$ شامل دو قسمت میباشد

$$V_{\rm I} = 1 \Delta V$$
 $V_{\rm I} = 1 \Delta V$
 $V_{\rm I} = -1 \Delta V$
 $V_{\rm I} = -1 \Delta V \Rightarrow KVL: V_{\rm D} = V_{\rm th} - R_{\rm th} \times i_{\rm D} = \frac{1 \Delta}{\gamma} - \frac{\Delta \cdot \cdot}{\gamma} i_{\rm D} \Rightarrow i_{\rm D} = \frac{1 \Delta - \gamma V_{\rm D}}{\Delta \cdot \cdot} A$
 $\Rightarrow i_{\rm D} = \gamma (1 \Delta - \gamma V_{\rm D}) \, mA$

این رابطه را در رابطه دیود (نمودار $i_{
m D}$ بر حسب $V_{
m D}$) قرار میدهیم. طبق نمودار فرض می $V_{
m D}$ دیود در در ناحیه خطی کار می کند پس داریم: $V_{\rm D} > .0^{
m V}$

$$i_D = 1 \cdot (V_D - \cdot / \Delta) = Y(1 \Delta - YV_D) \Rightarrow V_D = Y / 14 V$$

مقدار به دست آمده در $V_{\rm D} > au/\Delta^{
m V}$ صدق می کند پس دیود در این ناحیه در ناحیه خطی کار می کند. $\Rightarrow V_i = \Delta V$, $V_D = \gamma/\Delta V$ $i_D = \frac{1}{2} \cdot (V_D - \frac{1}{2} / \Delta) = \frac{1}{2} \cdot (\frac{1}{2} / 4 - \frac{1}{2} / \Delta) = \frac{1}{2} / 4 \text{ mA}$

$$V = -10V \Rightarrow$$

 \mathbf{i}_D با ۱۵۷ - \mathbf{V}_I دیود در ناحیه شکست قرار دارد ($\mathbf{V}_\mathrm{D}=-\mathsf{*V}$) در این حالت \mathbf{i}_D باید منفی باشد پس را حساب میکنیم:

$$i_{D} = \frac{V_{th} - V_{D}}{R_{th}} = \frac{-\frac{\tau_{D}}{r} - (-r)}{\frac{\Delta \cdot \cdot}{r}} = \frac{-\tau}{\Delta \cdot \cdot} = \frac{-\tau}{\Delta \cdot \cdot} A \Rightarrow i_{D} = -r MA$$

ناکمتر از صفر یعنی منفی به دست آمد لذا دیود در ناحیه شکست قرار دارد پس داریم:

 $\Rightarrow V_{I} = -10V \quad , \quad V_{D} = -7V \quad , \quad i_{D} = -9\,\text{mA}$

