2. Оптимальное решение задачи о фальшивой монете при наличии эталонной.

задача о фальшивой монете при наличии этало-на. Имеется n монет, среди которых возможно находится одна фальшивая, и еще одна монета, про которую точно известно, что она настоящая. Требуется определить фальшивую монету за минимальное число взвешиваний или установить, что фальшивых монет нет.

Решение

Эталонная монета позволяет строить оптимальные деревья взвешиваний, где выполняется равенство:

$$3^l = 2n_l + 1,$$

где n_l обозначает число монет, распределяемых на l уровне. Последовательность n_l вычисляется по формуле:

$$n_l = 3n_{l-1} + 1, \quad n_0 = 0.$$

Примеры: $n_1 = 1$, $n_2 = 4$, $n_3 = 13$, и т.д.

Схемы взвешивания

Схема 1:

- Разделяем n_i монет на три группы: n_{i-1} на каждую чашу весов и одну оставляем. Эталонную монету кладём на одну из чаш.
- ullet Если весы уравновешены: задача сводится к поиску среди оставшихся n_{i-1} монет.
- Если нет: переходим к следующему уровню.

Схема 2:

- Кладём по n_{i-1} "лёгких" и $n_{i-1}+1$ "тяжёлых "кандидатов на весы.
- ullet Если весы уравновешены: ищем среди оставшихся $n_{i-1}+1$ монет.
- Если нет: переходим к следующему уровню с соответствующей группой.

Схема 3:

• Аналогична схеме 2, но распределение кандидатов изменяется на основе предыдущего результата.

Во всех случаях дерево взвешиваний распределяет исходы на три равные части, обеспечивая минимальное число шагов.