UNIVERSIDADE FEDERAL DO MARANHÃO DEPARTAMENTO DE MATEMÁTICA

DISCIPLINA: ÁLGEBRA LINEAR PROF: GREICIANE

3ª AVALIAÇÃO DE ÁLGEBRA LINEAR

- 1. Verifique se cada uma das aplicações a seguir são transformações lineares.
 - (a) Reflexão $R_r(x,y)$ em relação a uma reta r que passa pela origem: seja r dada pela equação vetorial (x,y)=t(a,b), então $R_r:\mathbb{R}^2\to\mathbb{R}^2$ é dada por $R_r(x,y)=(\frac{a^2-b^2}{a^2+b^2}\cdot x+\frac{2ab}{a^2+b^2}\cdot y,\frac{2ab}{a^2+b^2}\cdot x+\frac{b^2-a^2}{a^2+b^2}\cdot y)$, onde (a,b) é qualquer vetor na direção de r e $(x,y)\in\mathbb{R}^2$.
 - (b) Translação: $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x,y) = (x+a,y+b), onde $a,b \in \mathbb{R}$ e $(x,y) \in \mathbb{R}^2$.
- 2. Calcule a matriz associada em relação à base canônica de cada uma das transformações a seguir.
 - a) Rotação de um ângulo π de um vetor no \mathbb{R}^2
 - b) Reflexão de um vetor no \mathbb{R}^2 em relação a uma reta com equação vetorial (x, y) = t(2, -1)
- 3. Encontre a transformação linear $T: M_{2\times 2} \to P_2$ tal que

$$T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = 2, T\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) = 2x + x^2, T\left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right) = -x,$$

$$T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = 5x^2.$$

- 4. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $T(x,y) = (2x+y, x-3y), (x,y) \in \mathbb{R}^2$. Determine $[T]^{\alpha}_{\alpha}$, onde $\alpha = \{(1,1),(1,2)\}$.
- 5. Verifique se a transformação linear $T: \mathbb{R}^3 \to P_2$, $T(a,b,c) = (a+b+c) + (a+2b+c)x + (a+2c)x^2$ é um isomorfismo e calcule a inversa T^{-1} , se ela existir.

1