

WEBENCH® Design Report

VinMin = 6.0V VinMax = 22.0V Vout = 5.0V lout = 1.5A Device = LM25119PSQ/NOPB Topology = Buck Created = 4/12/16 7:34:32 AM BOM Cost = \$10.43 BOM Count = 40 Total Pd = 0.74W

Design: 4116161/29 LM25119PSQ/NOPB LM25119PSQ/NOPB 6.0V-22.0V to 3.30V @ 2.0A



1. This regulator device is qualified for Automotive applications. All passives and other components selected in this design may not be qualified for Automotive applications. The user is required to verify that all components in the design meet the qualification and safety requirements for their specific application. View WEBENCH(R) Disclaimer.

## **Electrical BOM**

| #  | Name   | Manufacturer                  | Part Number                         | Properties                                                     | Qty | Price  | Footprint                        |
|----|--------|-------------------------------|-------------------------------------|----------------------------------------------------------------|-----|--------|----------------------------------|
| 1. | Cboot1 | AVX                           | 08053C104KAT2A<br>Series= X7R       | Cap= 100.0 nF<br>ESR= 280.0 mOhm<br>VDC= 25.0 V<br>IRMS= 0.0 A | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |
| 2. | Cboot2 | AVX                           | 08053C104KAT2A<br>Series= X7R       | Cap= 100.0 nF<br>ESR= 280.0 mOhm<br>VDC= 25.0 V<br>IRMS= 0.0 A | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |
| 3. | Ccomp1 | Yageo America                 | CC0805KRX7R9BB682<br>Series= X7R    | Cap= 6.8 nF<br>VDC= 50.0 V<br>IRMS= 0.0 A                      | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |
| 4. | Ccomp2 | Samsung Electro-<br>Mechanics | CL21C200JBANNNC<br>Series= C0G/NP0  | Cap= 20.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                     | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |
| 5. | Ccomp3 | Yageo America                 | CC0805KRX7R9BB153<br>Series= X7R    | Cap= 15.0 nF<br>VDC= 50.0 V<br>IRMS= 0.0 A                     | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |
| 6. | Ccomp4 | Kemet                         | C0805C181K5GACTU<br>Series= C0G/NP0 | Cap= 180.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                    | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |
| 7. | Cin    | Panasonic                     | 35SVPF39M<br>Series= SVPF           | Cap= 39.0 uF<br>ESR= 30.0 mOhm<br>VDC= 35.0 V<br>IRMS= 2.8 A   | 1   | \$0.50 | CAPSMT_62_E7 106 mm <sup>2</sup> |
| 8. | Cinx   | Kemet                         | C0805C104K5RACTU<br>Series= X7R     | Cap= 100.0 nF<br>ESR= 64.0 mOhm<br>VDC= 50.0 V<br>IRMS= 1.64 A | 1   | \$0.01 | 0805 7 mm <sup>2</sup>           |

| # Name       | Manufacturer      | Part Number                       | Properties                                                       | Qty | Price  | Footprint                                |
|--------------|-------------------|-----------------------------------|------------------------------------------------------------------|-----|--------|------------------------------------------|
| 9. Cout_ch1  | MuRata            | GRM31CR60J107ME39L<br>Series= X5R | Cap= 100.0 uF<br>ESR= 4.885 mOhm<br>VDC= 6.3 V<br>IRMS= 4.4118 A | 2   | \$0.20 | 1206_190 11 mm <sup>2</sup>              |
| 10. Cout_ch2 | Panasonic         | 6SVPE220M<br>Series= SVPE         | Cap= 220.0 uF<br>ESR= 10.0 mOhm<br>VDC= 6.3 V<br>IRMS= 3.9 A     | 1   | \$0.41 | CAPSMT_62_F61 74 mm <sup>2</sup>         |
| 11. Cramp1   | Yageo America     | CC0805KRX7R9BB821<br>Series= X7R  | Cap= 820.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                      | 1   | \$0.01 | 0805 7 mm <sup>2</sup>                   |
| 12. Cramp2   | Yageo America     | CC0805KRX7R9BB821<br>Series= X7R  | Cap= 820.0 pF<br>VDC= 50.0 V<br>IRMS= 0.0 A                      | 1   | \$0.01 | 0805 7 mm <sup>2</sup>                   |
| 13. Cres     | Taiyo Yuden       | EMK212B7474KD-T<br>Series= X7R    | Cap= 470.0 nF<br>VDC= 16.0 V<br>IRMS= 0.0 A                      | 1   | \$0.02 | 0805 7 mm <sup>2</sup>                   |
| 14. Css1     | Yageo America     | CC0805KRX7R9BB153<br>Series= X7R  | Cap= 15.0 nF<br>VDC= 50.0 V<br>IRMS= 0.0 A                       | 1   | \$0.01 | 0805 7 mm <sup>2</sup>                   |
| 15. Css2     | Yageo America     | CC0805KRX7R9BB153<br>Series= X7R  | Cap= 15.0 nF<br>VDC= 50.0 V<br>IRMS= 0.0 A                       | 1   | \$0.01 | 0805 7 mm <sup>2</sup>                   |
| 16. Cvcc1    | MuRata            | GRM155R61A474KE15D<br>Series= X5R | Cap= 470.0 nF<br>VDC= 10.0 V<br>IRMS= 0.0 A                      | 1   | \$0.01 | 0402 3 mm <sup>2</sup>                   |
| 7. Cvcc2     | MuRata            | GRM155R61A474KE15D<br>Series= X5R | Cap= 470.0 nF<br>VDC= 10.0 V<br>IRMS= 0.0 A                      | 1   | \$0.01 | 0402 3 mm <sup>2</sup>                   |
| 18. D1       | ON Semiconductor  | MBRS2040LT3G                      | VF@Io= 430.0 mV<br>VRRM= 40.0 V                                  | 1   | \$0.12 | SMB 44 mm <sup>2</sup>                   |
| 9. D2        | ON Semiconductor  | MBRS2040LT3G                      | VF@Io= 430.0 mV<br>VRRM= 40.0 V                                  | 1   | \$0.12 | SMB 44 mm <sup>2</sup>                   |
| 20. L1       | Bourns            | PM2110-680K-RC                    | L= 68.0 µH<br>DCR= 27.0 mOhm                                     | 1   | \$1.21 |                                          |
| 21. L2       | Coilcraft         | SER2915L-333KL                    | L= 33.0 µH<br>DCR= 1.5 mOhm                                      | 1   | \$1.88 | PM2110 890 mm <sup>2</sup>               |
| 22. M1       | Texas Instruments | CSD17308Q3                        | VdsMax= 30.0 V<br>IdsMax= 47.0 Amps                              | 1   | \$0.34 | SER2915L 652 mm²  TRANS_NexFET_Q3 18 mm² |

| # Name      | Manufacturer              | Part Number                      | Properties                                            | Qty | Price  | Footprint                 |
|-------------|---------------------------|----------------------------------|-------------------------------------------------------|-----|--------|---------------------------|
| 23. M2      | Texas Instruments         | CSD18531Q5A                      | VdsMax= 60.0 V<br>IdsMax= 100.0 Amps                  | 1   | \$0.90 | TRANS_NexFET_Q5A 55       |
| 24. M3      | Texas Instruments         | CSD17308Q3                       | VdsMax= 30.0 V<br>IdsMax= 47.0 Amps                   | 1   | \$0.34 | TRANS_NexFET_Q3 18 mm²    |
| 25. M4      | Texas Instruments         | CSD18532Q5B                      | VdsMax= 60.0 V<br>IdsMax= 100.0 Amps                  | 1   | \$1.14 | TRANS_NexFET_Q5B 58 mm²   |
| 26. Rcomp1  | Panasonic                 | ERJ-6ENF2492V<br>Series= ERJ-6E  | Res= 24.9 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 27. Rcomp2  | Panasonic                 | ERJ-6ENF1242V<br>Series= ERJ-6E  | Res= 12.4 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 28. Rfb1    | Panasonic                 | ERJ-6ENF1151V<br>Series= ERJ-6E  | Res= 1.15 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 29. Rfb2    | Panasonic                 | ERJ-6ENF6041V<br>Series= ERJ-6E  | Res= 6.04 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 30. Rfb3    | Panasonic                 | ERJ-6ENF1151V<br>Series= ERJ-6E  | Res= 1.15 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 31. Rfb4    | Susumu Co Ltd             | RR1220P-362-D<br>Series= RR12    | Res= 3.6 kOhm<br>Power= 100.0 mW<br>Tolerance= 0.5%   | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 32. Rramp1  | Panasonic                 | ERJ-6ENF1003V<br>Series= ERJ-6E  | Res= 100.0 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0% | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 33. Rramp2  | Panasonic                 | ERJ-6ENF6492V<br>Series= ERJ-6E  | Res= 64.9 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 34. Rsense1 | Panasonic                 | ERJ-L14KF33MU<br>Series= ERJ-L14 | Res= 33.0 mOhm<br>Power= 330.0 mW<br>Tolerance= 1.0%  | 1   | \$0.11 | 1210 15 mm <sup>2</sup>   |
| 35. Rsense2 | Stackpole Electronics Inc | CSR1206FK25L0<br>Series= ?       | Res= 25.0 mOhm<br>Power= 500.0 mW<br>Tolerance= 1.0%  | 1   | \$0.10 | 1206 11 mm <sup>2</sup>   |
| 36. Rt      | Panasonic                 | ERJ-6ENF5112V<br>Series= ERJ-6E  | Res= 51.1 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 37. Ruv1    | Panasonic                 | ERJ-6ENF5492V<br>Series= ERJ-6E  | Res= 54.9 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 38. Ruv2    | Panasonic                 | ERJ-6ENF1912V<br>Series= ERJ-6E  | Res= 19.1 kOhm<br>Power= 125.0 mW<br>Tolerance= 1.0%  | 1   | \$0.01 | 0805 7 mm <sup>2</sup>    |
| 39. U1      | Texas Instruments         | LM25119PSQ/NOPB                  | Switcher                                              | 1   | \$2.60 |                           |
|             |                           |                                  |                                                       |     |        | SQA32A 49 mm <sup>2</sup> |





















## Operating Values

| Ope | Operating values |                         |          |                                                                    |  |  |  |  |
|-----|------------------|-------------------------|----------|--------------------------------------------------------------------|--|--|--|--|
| #   | Name             | Value                   | Category | Description                                                        |  |  |  |  |
| 1.  | Cin IRMS         | 837.203 mA              | Current  | Input capacitor RMS ripple current                                 |  |  |  |  |
| 2.  | Cout_ch1 IRMS    | 166.495 mA              | Current  | Output Channel 1 Capacitor RMS ripple current                      |  |  |  |  |
| 3.  | Cout_ch2 IRMS    | 248.449 mA              | Current  | Output Channel 2 Capacitor RMS ripple current                      |  |  |  |  |
| 4.  | lin Avg          | 675.19 mA               | Current  | Average input current                                              |  |  |  |  |
| 5.  | L1 lpp           | 576.755 mA              | Current  | Peak-to-peak inductor ripple current                               |  |  |  |  |
| 6.  | L1 Irms          | 1.509 A                 | Current  | Inductor ripple current                                            |  |  |  |  |
| 7.  | L2lpp            | 860.651 mA              | Current  | Channel 2 Inductor Peak to peak Current                            |  |  |  |  |
| 8.  | L2 Irms          | 2.015 A                 | Current  | Inductor ripple current                                            |  |  |  |  |
| 9.  | M1 Irms          | 720.176 mA              | Current  | MOSFET RMS ripple current                                          |  |  |  |  |
| 10. | M2 Irms          | 1.316 A                 | Current  | MOSFET RMS ripple current                                          |  |  |  |  |
| 11. | M3 Irms          | 779.166 mA              | Current  | MOSFET RMS ripple current                                          |  |  |  |  |
| 12. | M4 Irms          | 1.842 A                 | Current  | MOSFET RMS ripple current                                          |  |  |  |  |
| 13. | SW1 lpk          | 1.788 A                 | Current  | Peak switch current                                                |  |  |  |  |
| 14. | SW2 lpk          | 2.43 A                  | Current  | Peak switch current                                                |  |  |  |  |
| 15. | BOM Count        | 40                      | General  | Total Design BOM count                                             |  |  |  |  |
| 16. | FootPrint        | 2.218 k mm <sup>2</sup> | General  | Total Foot Print Area of BOM components                            |  |  |  |  |
| 17. | Frequency        | 99.908 kHz              | General  | Switching frequency                                                |  |  |  |  |
| 18. | IC Tolerance     | 12.0 mV                 | General  | IC Feedback Tolerance                                              |  |  |  |  |
| 19. | Pout1            | 7.503 W                 | General  | Channel 1 output Power                                             |  |  |  |  |
| 20. | Pout2            | 6.609 W                 | General  | Channel 2 output Power                                             |  |  |  |  |
| 21. | Total BOM        | \$10.43                 | General  | Total BOM Cost                                                     |  |  |  |  |
| 22. | M3 TjOP          | 31.324 degC             | Op_Point | M3 MOSFET junction temperature                                     |  |  |  |  |
| 23. | M4 TjOP          | 32.403 degC             | Op_Point | M4 MOSFET junction temperature                                     |  |  |  |  |
| 24. | Vout Actual      | 952.318 mV              | Op_Point | Vout Actual calculated based on selected voltage divider resistors |  |  |  |  |
| 25. | Duty Cycle 1     | 23.051 %                | Op_point | Duty cycle for Channel 1                                           |  |  |  |  |
| 26. | Duty Cycle 2     | 15.177 %                | Op_point | Duty cycle for Channel 2                                           |  |  |  |  |
| 27. | Efficiency       | 94.999 %                | Op_point | Steady state efficiency                                            |  |  |  |  |
| 28. | IC Tj            | 44.882 degC             | Op_point | IC junction temperature                                            |  |  |  |  |
| 29. | IOUT1_OP         | 1.5 A                   | Op_point | lout1 operating point                                              |  |  |  |  |
| 30. | IOUT2_OP         | 2.0 A                   | Op_point | lout2 operating point                                              |  |  |  |  |
| 31. | M1 TjOP          | 31.024 degC             | Op_point | M1 MOSFET junction temperature                                     |  |  |  |  |
|     |                  |                         |          |                                                                    |  |  |  |  |

| #   | Name           | Value       | Category | Description                                                                      |
|-----|----------------|-------------|----------|----------------------------------------------------------------------------------|
| 32. | M2 TjOP        | 31.711 degC | Op_point | M2 MOSFET junction temperature                                                   |
| 33. | VIN OP         | 22.0 V      | Op_point | Vin operating point                                                              |
| 34. | Vout1 OP       | 5.002 V     | Op_point | Operational Voltage 1                                                            |
| 35. | Vout1 p-p      | 3.873 mV    | Op_point | Peak-to-peak output1 ripple voltage                                              |
| 36. | Vout2 OP       | 3.304 V     | Op_point | Operational Voltage 2                                                            |
| 37. | Vout2 p-p      | 9.901 mV    | Op_point | Peak-to-peak output2 ripple voltage                                              |
| 38. | Cin Pd         | 21.027 mW   | Power    | Input capacitor power dissipation                                                |
| 39. | Cout ch1 Pd    | 33.854 µW   | Power    | Ouput channel 1 capacitor power dissipation                                      |
| 40. | Cout ch2 Pd    | 617.267 µW  | Power    | Ouput channel 2 capacitor power dissipation                                      |
| 41. | IC Pd          | 372.038 mW  | Power    | IC power dissipation                                                             |
| 42. | L1 Pd          | 77.961 mW   | Power    | Inductor power dissipation                                                       |
| 43. | L2 Pd          | 7.7 mW      | Power    | Inductor power dissipation                                                       |
| 44. | M1 Pd          | 17.567 mW   | Power    | M1 MOSFET total power dissipation                                                |
| 45. | M1 PdCond      | 4.892 mW    | Power    | M1 MOSFET conduction losses                                                      |
| 46. | M1 PdSw        | 12.676 mW   | Power    | M1 MOSFET switching losses                                                       |
| 47. | M2 Pd          | 33.843 mW   | Power    | M2 MOSFET total power dissipation                                                |
| 48. | M2 PdCond      | 10.172 mW   | Power    | M2 MOSFET conduction losses                                                      |
| 49. | M2 PdSw        | 23.671 mW   | Power    | M2 MOSFET switching losses                                                       |
| 50. | M3 Pd          | 22.736 mW   | Power    | M3 MOSFET total power dissipation                                                |
| 51. | M3 PdCond      | 5.732 mW    | Power    | M3 MOSFET conduction losses                                                      |
| 52. | M3 PdSw        | 17.005 mW   | Power    | M3 MOSFET switching losses                                                       |
| 53. | M1 Rdson       | 9.432 mOhm  | Power    | Drain-Source On-resistance                                                       |
| 54. | M3 Rdson       | 9.441 mOhm  | Power    | Drain-Source On-resistance                                                       |
| 55. | M4 Pd          | 47.447 mW   | Power    | M4 MOSFET total power dissipation                                                |
| 56. | M4 PdCond      | 14.881 mW   | Power    | M4 MOSFET conduction losses                                                      |
| 57. | M4 PdSw        | 32.566 mW   | Power    | M4 MOSFET switching losses                                                       |
| 58. | M2 Rdson       | 5.875 mOhm  | Power    | Drain-Source On-resistance                                                       |
| 59. | M4 Rdson       | 4.386 mOhm  | Power    | Drain-Source On-resistance                                                       |
| 60. | Rsense1 Pd     | 57.134 mW   | Power    | Current Limit Sense Resistor Power Dissipation                                   |
| 61. | Rsense2 Pd     | 84.823 mW   | Power    | Current Limit Sense Resistor Power Dissipation                                   |
| 62. | Total Pd       | 742.928 mW  | Power    | Total Power Dissipation                                                          |
| 63. | Cross Freq Ch1 | 7.502 kHz   |          | Bode plot crossover frequency                                                    |
| 64. | Cross Freq Ch2 | 7.546 kHz   |          | Bode plot crossover frequency                                                    |
| 65. | Phase Marg Ch1 | 46.938 deg  |          | Bode Plot Phase Margin                                                           |
| 66. | Phase Marg Ch2 | 51.91 deg   |          | Bode Plot Phase Margin                                                           |
| 67. | Vout Tolerance | 11.658 %    |          | Vout Tolerance based on IC Tolerance and voltage divider resistors if applicable |

## **Design Inputs**

| #   | Name    | Value   | Description            |
|-----|---------|---------|------------------------|
| 1.  | lout    | 1.5     | Maximum Output Current |
| 2.  | lout1   | 1.5     | Output Current #1      |
| 3.  | lout2   | 2.0     | Output Current #2      |
| 4.  | VinMax  | 22.0    | Maximum input voltage  |
| 5.  | VinMin  | 6.0     | Minimum input voltage  |
| 6.  | VinTyp  | 8.0     | Typical input voltage  |
| 7.  | Vout    | 5.0     | Output Voltage         |
| 8.  | Vout1   | 5.0     | Output Voltage #1      |
| 9.  | Vout2   | 3.3     | Output Voltage #2      |
| 10. | base_pn | LM25119 | Base Product Number    |
| 11. | source  | DC      | Input Source Type      |
| 12. | Та      | 30.0    | Ambient temperature    |

## **Design Assistance**

2. LM25119 Product Folder: http://www.ti.com/product/LM25119: contains the data sheet and other resources.

<sup>1.</sup> Outline The LM5119 is a dual synchronous buck controller intended for step-down regulator applications from a high voltage or widely varying input supply. The control method is based upon current mode control utilizing an emulated current ramp. Current mode control provides inherent line feed-forward, cycle-by-cycle current limiting and ease of loop compensation. The use of an emulated control ramp reduces noise sensitivity of the pulse-width modulation circuit, allowing reliable control of very small duty cycles necessary in high input voltage applications. Sequencing the 2 outputs The LM(2)5119 contains an enable function allowing shutdown control of channel2, independent of channel1. If the EN2 pin is pulled below 2.0V, channel2 enters shutdown mode. If the EN2 input is greater than 2.5V, channel2 returns to normal operation. Diode Emulation A fully synchronous buck regulator implemented with a freewheel MOSFET rather than a diode has the capability to sink current from the output in certain conditions such as light load, over-voltage or pre-bias startup. The LM(2)5119 provides a diode emulation feature that can be enabled to prevent reverse (drain to source) current flow in the low side free-wheel MOSFET.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.