Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 12

Prof. Erik Demaine

Computational geometry

Algorithms for solving "geometric problems" in 2D and higher.

Fundamental objects:

point

line segment

line

Basic structures:

Computational geometry

Algorithms for solving "geometric problems" in 2D and higher.

Fundamental objects:

point

line segment

line

Basic structures:

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

Query: Axis-aligned box (in 2D, a rectangle)

Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution using ideas we know:

- Interval trees
 - Represent each point x by the interval [x, x].
 - Obtain a dynamic structure that can list k answers in a query in O(k lg n) time.

1D range searching

In 1D, the query is an interval:

Second solution using ideas we know:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list k answers in a query in $O(k + \lg n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $O(k + \lg n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node x stores in key[x] the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

Example of a 1D range tree

Example of a 1D range query

General 1D range query

Pseudocode, part 1: Find the split node

```
1D-RANGE-QUERY(T, [x_1, x_2])

w \leftarrow \text{root}[T]

while w is not a leaf and (x_2 \le key[w] \text{ or } key[w] < x_1)

do \text{ if } x_2 \le key[w]

then \ w \leftarrow left[w]

else \ w \leftarrow right[w]

\triangleright w is now the split node

[traverse left and right from w and report relevant subtrees]
```


Pseudocode, part 2: Traverse left and right from split node

```
1D-RANGE-QUERY(T, [x_1, x_2])
    [find the split node]
    \triangleright w is now the split node
    if w is a leaf
    then output the leaf w if x_1 \le key[w] \le x_2
                                                          ▶ Left traversal
     else v \leftarrow left[w]
           while \nu is not a leaf
             do if x_1 \le key[v]
                  then output the subtree rooted at right[v]
                        v \leftarrow left[v]
                  else v \leftarrow right[v]
           output the leaf v if x_1 \le key[v] \le x_2
           [symmetrically for right traversal]
```

Analysis of 1D-Range-Query

Query time: Answer to range query represented by $O(\lg n)$ subtrees found in $O(\lg n)$ time. Thus:

- Can test for points in interval in $O(\lg n)$ time.
- Can count points in interval in $O(\lg n)$ time if we augment the tree with subtree sizes.
- Can report the first k points in interval in $O(k + \lg n)$ time.

Space: O(n)

Preprocessing time: $O(n \lg n)$

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\lg n)$ time we can find $O(\lg n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, every node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

Analysis of 2D range trees

Query time: In $O(\lg^2 n) = O((\lg n)^2)$ time, we can represent answer to range query by $O(\lg^2 n)$ subtrees. Total cost for reporting k points: $O(k + (\lg n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \lg n)$.

Preprocessing time: $O(n \lg n)$

d-dimensional range trees

Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + \lg^d n)$ to report k points.

Space: $O(n \lg^{d-1} n)$

Preprocessing time: $O(n \lg^{d-1} n)$

Best data structure to date:

Query time: $O(k + \lg^{d-1} n)$ to report k points.

Space: O($n (\lg n / \lg \lg n)^{d-1}$)

Preprocessing time: $O(n \lg^{d-1} n)$

Primitive operations: Crossproduct

Given two vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, is their counterclockwise angle θ

- *convex* (< 180°),
- *reflex* (> 180°), or
- borderline (0 or 180°)? convex

$$\theta \xrightarrow{v_1} v_2$$
reflex

Crossproduct
$$v_1 \times v_2 = x_1 y_2 - y_1 x_2$$

= $|v_1| |v_2| \sin \theta$.

Thus,
$$sign(v_1 \times v_2) = sign(sin \theta) > 0$$
 if θ convex,
 < 0 if θ reflex,
 $= 0$ if θ borderline.

Primitive operations: Orientation test

Given three points p_1, p_2, p_3 are they

- in clockwise (cw) order,
- in counterclockwise (ccw) order, or
- collinear?

$$(p_2 - p_1) \times (p_3 - p_1)$$

- > 0 if ccw
- < 0 if cw
- = 0 if collinear

Primitive operations: Sidedness test

Given three points p_1, p_2, p_3 are they

- in clockwise (cw) order,
- in counterclockwise (ccw) order, or
- collinear?

Let L be the oriented line from p_1 to p_2 . Equivalently, is the point p_3

- *right* of *L*,
- *left* of *L*, or
- on L?

Line-segment intersection

Given n line segments, does any pair intersect? Obvious algorithm: $O(n^2)$.

Sweep-line algorithm

- Sweep a vertical line from left to right (conceptually replacing *x*-coordinate with time).
- Maintain dynamic set *S* of segments that intersect the sweep line, ordered (tentatively) by *y*-coordinate of intersection.
- Order changes when

 - existing segment finishes, or \(\) endpoints
 - two segments cross
- Key event points are therefore segment endpoints.

Sweep-line algorithm

Process event points in order by sorting segment endpoints by x-coordinate and looping through:

- For a left endpoint of segment s:
 - Add segment s to dynamic set S.
 - Check for intersection between s and its neighbors in S.
- For a right endpoint of segment s:
 - Remove segment s from dynamic set S.
 - Check for intersection between the neighbors of s in S.

Analysis

Use red-black tree to store dynamic set *S*.

Total running time: $O(n \lg n)$.

Correctness

Theorem: If there is an intersection, the algorithm finds it.

Proof: Let X be the leftmost intersection point. Assume for simplicity that

- only two segments s_1 , s_2 pass through X, and
- no two points have the same x-coordinate.

At some point before we reach X,

 s_1 and s_2 become consecutive in the order of S.

Either initially consecutive when s_1 or s_2 inserted, or became consecutive when another deleted.

