MATH562: Continuous Optimisation Homework 2

Name: Keegan Gyoery UM-ID: 31799451

- 1. **A:** min $f(\mathbf{x}) = x_1 + x_2 \ln x_1 \ln x_2$
 - a) The first order necessary condition a point must satisfy is $\nabla f(\mathbf{x}) = \mathbf{0}$. Considering the gradient of $f(\mathbf{x})$,

$$\nabla f(\mathbf{x}) = \left(1 - \frac{1}{x_1}, \ 1 - \frac{1}{x_2}\right).$$

Thus, the necessary condition for a point to be a minimum is $\left(1 - \frac{1}{x_1}, 1 - \frac{1}{x_2}\right) = (0, 0)$.

b) Considering the conditions from above,

$$1 - \frac{1}{x_1} = 0$$

$$\therefore x_1 = 1,$$

$$1 - \frac{1}{x_2} = 0$$

Thus, the point $\hat{\mathbf{x}} = (1,1)$ satisfies the necessary condition for a local minimum.

c) Considering the Hessian of $f(\mathbf{x})$, and $\mathbf{h} = (h_1, h_2) \neq \mathbf{0}$,

$$Hf(\mathbf{x}) = \begin{bmatrix} \frac{1}{x_1^2} & 0\\ 0 & \frac{1}{x_2^2} \end{bmatrix},$$

$$\mathbf{h}^T Hf(\mathbf{x})\mathbf{h} = \mathbf{h}^T \begin{bmatrix} \frac{1}{x_1^2} & 0\\ 0 & \frac{1}{x_2^2} \end{bmatrix} \mathbf{h}$$

$$= \frac{h_1^2}{x_1^2} + \frac{h_2^2}{x_2^2}$$

$$> 0 \,\forall \mathbf{h}, \mathbf{x}.$$

Thus $Hf(\mathbf{x})$ is P.S.D and P.D, and so too is $Hf(\hat{\mathbf{x}})$. Clearly, $\hat{\mathbf{x}}$ satisfies the second order necessary condition and the two second order sufficient conditions, and so $\hat{\mathbf{x}}$ is a local minimum.

B: min $f(\mathbf{x}) = 2\ln(x_1 + x_2 + 1) - \ln x_1 - 1.5\ln x_2$

a) The first order necessary condition a point must satisfy is $\nabla f(\mathbf{x}) = \mathbf{0}$. Considering the gradient of $f(\mathbf{x})$,

$$\nabla f(\mathbf{x}) = \left(\frac{2}{x_1 + x_2 + 1} - \frac{1}{x_1}, \frac{2}{x_1 + x_2 + 1} - \frac{1.5}{x_2}\right).$$

Thus, the necessary condition for a point to be a minimum is $\left(\frac{2}{x_1+x_2+1}-\frac{1}{x_1},\,\frac{2}{x_1+x_2+1}-\frac{1.5}{x_2}\right)=(0,0).$

$$\left(\frac{2}{x_1+x_2+1} - \frac{1}{x_1}, \frac{2}{x_1+x_2+1} - \frac{1.5}{x_2}\right) = (0,0)$$

b) Considering the conditions from above,

$$\frac{2}{x_1 + x_2 + 1} - \frac{1}{x_1} = 0$$

$$2x_1 = x_1 + x_2 + 1$$

$$\therefore x_2 = x_1 - 1 \dots (A),$$

$$\frac{2}{x_1 + x_2 + 1} - \frac{1.5}{x_2} = 0$$

$$2x_2 = 1.5x_1 + 1.5x_2 + 1.5$$

$$\therefore x_2 = 3x_1 + 3 \dots (B).$$

Combining equations (A) and (B),

$$x_1 - 1 = 3x_1 + 3$$

$$\therefore x_1 = -2$$

$$\therefore x_2 = -3$$

Thus, the point $\hat{\mathbf{x}} = (-2, -3)$ satisfies the necessary condition for a local minimum.

c) Considering the Hessian of $f(\mathbf{x})$, and $\mathbf{h} = (h_1, h_2) \neq \mathbf{0}$,

$$Hf(\mathbf{x}) = \begin{bmatrix} \frac{-2}{(x_1 + x_2 + 1)^2} + \frac{1}{x_1^2} & \frac{-2}{(x_1 + x_2 + 1)^2} \\ \frac{-2}{(x_1 + x_2 + 1)^2} & \frac{-2}{(x_1 + x_2 + 1)^2} + \frac{1}{x_1^2} \end{bmatrix},$$

$$\therefore Hf(-2, -3) = \begin{bmatrix} \frac{1}{8} & -\frac{1}{8} \\ -\frac{1}{8} & \frac{1}{24} \end{bmatrix},$$

$$\mathbf{h}^T Hf(-2, -3)\mathbf{h} = \mathbf{h}^T \begin{bmatrix} \frac{1}{8} & -\frac{1}{8} \\ -\frac{1}{8} & \frac{1}{24} \end{bmatrix} \mathbf{h}$$

$$= \frac{h_1^2}{8} - \frac{h_1 h_2}{4} + \frac{h_2^2}{24}$$

Consider $\mathbf{h} = (1, 1)$,

$$\mathbf{h}^{T}Hf(-2, -3)\mathbf{h} = (1, 1)^{T}Hf(-2, -3)(1, 1)$$

$$= \frac{1}{8} - \frac{1}{4} + \frac{1}{24}$$

$$= -\frac{1}{12}$$

$$< 0.$$

Thus $Hf(\hat{\mathbf{x}})$ is not P.D or P.S.D, so $\hat{\mathbf{x}}$ fails the second order necessary condition, and thus cannot be a local minimum.

C: min $f(\mathbf{x}) = x_1 x_2 - \ln x_1 - \ln x_2$

a) The first order necessary condition a point must satisfy is $\nabla f(\mathbf{x}) = \mathbf{0}$. Considering the gradient of $f(\mathbf{x})$,

$$\nabla f(\mathbf{x}) = \left(x_2 - \frac{1}{x_1}, \ x_1 - \frac{1}{x_2}\right).$$

2

Thus, the necessary condition for a point to be a minimum is $\left(x_2 - \frac{1}{x_1}, x_1 - \frac{1}{x_2}\right) = (0, 0)$.

b) Considering the conditions from above,

$$x_2 - \frac{1}{x_1} = 0$$

$$\therefore x_1 x_2 = 1,$$

$$x_1 - \frac{1}{x_2} = 0$$

$$\therefore x_1 x_2 = 1.$$

Thus, the point $\hat{\mathbf{x}} = \left(t, \frac{1}{t}\right)$ satisfies the necessary condition for a local minimum.

c) Considering the Hessian of $f(\mathbf{x})$, and $\mathbf{h} = (h_1, h_2) \neq \mathbf{0}$,

$$Hf(\mathbf{x}) = \begin{bmatrix} \frac{1}{x_1^2} & 1\\ 1 & \frac{1}{x_2^2} \end{bmatrix},$$

$$\therefore \mathbf{h}^T Hf(\mathbf{x}) \mathbf{h} = \mathbf{h}^T \begin{bmatrix} \frac{1}{x_1^2} & 1\\ 1 & \frac{1}{x_2^2} \end{bmatrix} \mathbf{h}$$

$$= \frac{h_1^2}{x_1^2} + 2h_1h_2 + \frac{h_2^2}{x_2^2}$$

$$= \left(\frac{h_1}{x_1} + \frac{h_2}{x_2}\right)^2$$

$$> 0 \ \forall \mathbf{h}, \mathbf{x}.$$

Thus $Hf(\mathbf{x})$ is P.S.D and P.D, and so too is $Hf\left(t,\frac{1}{t}\right)$. Clearly, $\hat{\mathbf{x}}$ satisfies the second order necessary condition and the two second order sufficient conditions, and so $\hat{\mathbf{x}}$ is a local minimum.

2. Consider the problem

$$\min f(\mathbf{x}) = 5(x_1^2 - x_2)^2 + x_1^2 + (x_2 - 5)^2$$

a) The gradient and Hessian for the function $f(\mathbf{x})$ are

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 20x_1^3 - 20x_1x_2 + 2x_1, -10x_1^2 + 12x_2 - 10 \end{pmatrix},$$

$$Hf(\mathbf{x}) = \begin{bmatrix} 60x_1^2 - 20x_2 + 2 & -20x_1 \\ -20x_1 & 12 \end{bmatrix}.$$

b) Considering the neccessary and sufficient conditions for a P.S.D. matrix, we get the restrictions,

$$60x_1^2 - 20x_2 + 2 \ge 0\dots(1),$$

$$12 \ge 0, \text{ which is true,}$$

$$12(60x_1^2 - 20x_2 + 2) - 400x_1^2 \ge 0$$

$$\therefore 40x_1^2 - 30x_2 + 3 \ge 0\dots(2).$$

c) To check that $\hat{\mathbf{x}} = \left(0, \frac{5}{6}\right)$ is a local minimum, it must first satisfy the first and second

order necessary conditions. Examining the gradient at \hat{x} , and the restrictions above,

$$\nabla f\left(0, \frac{5}{6}\right) = (0, 0)$$

$$(2) \to -22 \ngeq 0.$$

Thus, $Hf\left(0,\frac{5}{6}\right)$ is not P.S.D., and so $\hat{\mathbf{x}}$ cannot be a local minimum.

3. Using the MATLAB code,

```
load('hw3/m5.mat');
disp('5x5 Matrix');
disp(A);
d = eig(A);
disp('Eigenvalues for 5x5 Matrix');
disp(d);
load('hw3/m10.mat');
disp('10x10 Matrix');
disp(A);
d = eig(A);
disp('Eigenvalues for 10x10 Matrix');
disp(d);
```

we get the output for the 5x5 matrix, .

5x5 Matrix

92	57	94	34	17
29	8	13	17	61
76	6	57	80	27
76	54	47	32	66
39	78	2	53	69

Eigenvalues for 5x5 Matrix

$$2.4278 + 0.0000i$$

$$0.8473 + 0.0000i$$

$$-0.1484 + 0.1350i$$

$$-0.1484 - 0.1350i$$

$$-0.3982 + 0.0000i$$

Clearly, this matrix is not even symmetric and and thus cannot be P.D. or P.S.D. From the output for the 10x10 matrix, .

10x10 Matrix

Columns 1 through 6

33013	12697	30768	33018	21593	30411
12697	15105	13077	14789	9262	14112
30768	13077	37332	30123	22348	34225
33018	14789	30123	38842	21910	33404
21593	9262	22348	21910	21567	18235
30411	14112	34225	33404	18235	45860
24658	12789	29603	27045	17257	34599
30946	14456	32304	32365	18993	36148
26746	9934	28436	29322	17190	29540
21768	10257	25177	22599	16307	28274

Columns 7 through 10

24658	30946	26746	21768
12789	14456	9934	10257
29603	32304	28436	25177
27045	32365	29322	22599
17257	18993	17190	16307
34599	36148	29540	28274
32713	28418	20952	20917
28418	39818	31948	29437
20952	31948	31540	24930
20917	29437	24930	24586

Eigenvalues for 10x10 Matrix

1.0e+05 *

0.0001

0.0053

0.0281

0.0348

0.0441

0.0884

0.1000

0.1480

0.1720 2.5829

We can clearly see that all the eigenvalues are positive, and thus, the matrix is P.D.

- 4. Suppose M is P.D.
 - a) If M is P.D., then M has all positive eigenvalues. Thus, no eigenvalue of M is 0, and hence M is invertible, and thus M^{-1} exists. By definition, $M^{-1}M=I$, and noting M is symmetric, so taking the transpose gives,

$$(M^{-1}M)^{T} = I^{T}$$

$$M^{T}(M^{-1})^{T} = I$$

$$M(M^{-1})^{T} = I$$

$$\therefore (M^{-1})^{T} = M^{-1}.$$

Thus, M^{-1} is real and symmetric. Finally, condsider the eigenvalues λ_i of M, given by $M\mathbf{x} = \lambda \mathbf{x}$. Manipulating for M^{-1} ,

$$M\mathbf{x} = \lambda \mathbf{x}$$

$$\therefore \mathbf{x} = M^{-1}\lambda \mathbf{x}$$

$$= \lambda M^{-1}\mathbf{x}$$

$$\therefore \frac{1}{\lambda} \mathbf{x} = M^{-1}\mathbf{x}$$

$$\therefore M^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}.$$

Clearly, the eigenvalues of M^{-1} are $\frac{1}{\lambda_i}$, which are all positive. Thus, M^{-1} is P.D.

- b) Refer to the proof above, showing that the eigenvalues of ${\cal M}^{-1}$ are the inverse of the eignevalues of ${\cal M}.$
- c) Let ${\bf u}$ be an eigenvector of M, where λ is the associated eigenvalue. Thus,

$$M\mathbf{u} = \lambda \mathbf{u}$$
$$\mathbf{u} = M^{-1}\lambda \mathbf{u}$$
$$\therefore M^{-1}\mathbf{u} = \frac{1}{\lambda}\mathbf{u}.$$

Clearly, ${\bf u}$ is an eigenvector of M^{-1} with eigenvalue $\frac{1}{\lambda}$. Now let ${\bf u}$ be an eigenvector of M^{-1} , where $\frac{1}{\lambda}$ is the associated eigenvalue. Thus,

$$M^{-1}\mathbf{u} = \frac{1}{\lambda}\mathbf{u}$$
$$\mathbf{u} = M\frac{1}{\lambda}\mathbf{u}$$
$$\therefore M\mathbf{u} = \lambda\mathbf{u}.$$

Clearly, \mathbf{u} is an eigenvector of M with eigenvalue λ .

5. Suppose that M is P.S.D. Therefore, M is real and symetric, and so can be rewritten $M=QDQ^T$, where Q is orthonormal, and D is diagonal, with the eigenvalues of M along the diagonal. All eigenvalues of M are non-negative, and so let N be given by QLQ^T , where Q is the same as above, and L is another diagonal matrix with the square root of the eigenvalues of M along the diagonal. That is, $D=\operatorname{diag}[\lambda_1 \ \lambda_2 \ \dots \ \lambda_n]$, and $L=\operatorname{diag}[\sqrt{\lambda_1} \ \sqrt{\lambda_2} \ \dots \ \sqrt{\lambda_n}]$. Noting that

7

because Q is orthonormal, $Q^T = Q^{-1}$, and so,

$$N^{2} = NN$$

$$= (QLQ^{T}) (QLQ^{T})$$

$$= (QL) (QQ^{T}) (LQ^{T})$$

$$= (QL) (I) (LQ^{T})$$

$$= (QL) (LQ^{T})$$

$$= (QLLQ^{T})$$

$$= (QL^{2}Q^{T})$$

$$= (QDQ^{T})$$

$$\therefore N^{2} = M.$$

As $N=QLQ^T$, the eigenvalues of N are all non-negative, and as N is written in the above form, where L is diagonal and Q is orthonormal, then N is also P.S.D. Thus, there exists an N P.S.D. such that $N^2=M$.