TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

ARQUITECTURA Y SISTEMAS OPERATIVOS

Trabajo Práctico N.º 1: Introducción a la Arquitectura de Computadoras

Objetivos:

- Diferenciar entre las arquitecturas von Neumann y Harvard.
- Relacionar las generaciones de computadoras con sus tecnologías y capacidades clave.
- Evaluar conceptos básicos de forma autónoma mediante ejercicios autoevaluables.

Consigna:

1. Tareas:

Ejercicio 1: Identificación de Componentes de Hardware

Instrucciones:

Relaciona cada componente con su función principal seleccionando la opción correcta.

Componente	Función
CPU	Ejecutar cálculos y procesar instrucciones.
Memoria RAM	Permitir el acceso rápido a datos temporales
Disco SSD	Alm acenar datos de form a perm anente.
Placa m adre	Conectar todos los componentes para que trabajen

Ejercicio 2: Diferencias entre Arquitecturas

Instrucciones:

Elige si las siguientes afirmaciones corresponden a la arquitectura **von Neumann** o **Harvard**.

- 1. Usa una memoria unificada para datos e instrucciones. Von Neumann
- 2. Es común en microcontroladores como ARM Cortex-M. Hardvard

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN

- A DISTANCIA
 3. Puede causar un cuello de botella debido al uso de un único bus para datos e instrucciones. Von Neumann
 - 4. Separa físicamente las memorias para datos e instrucciones, aumentando la velocidad. **Hardvard**

Ejercicio 3: Generaciones de la Arquitectura de Computadoras

Instrucciones:

Completa la tabla con las características que correspondan a cada generación.

Generación	Tecnología	Capacidades típicas
Primera	Válvulas de vacío	RAM en kilobytes; < 0.01 MFLOPS
Segunda	Transistor	RAM en kilobytes-mb; 0.01-0.1 MFLOPS
Tercera	Circuito integrado (ICs	RAM en megabytes; 0.1-1 MFLOPS