Devoir à la maison n° 7

À rendre le 10 mars

Présentation Ce problème s'intéresse dans la **partie I** à des propriétés des matrices de rang 1. Certaines de ces matrices sont ensuite utilisées dans la **partie II** pour construire des matrices orthogonales permettant dans la **partie III** de prouver l'existence d'une factorisation QR pour une matrice carrée quelconque.

Notations

Pour tous $n, p \in \mathbb{N} \setminus \{0\}$, on note $M_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{R} . L'ensemble des matrices réelles carrées de taille n est noté $M_n(\mathbb{R})$.

Soit $A \in M_n(\mathbb{R})$: on note également A l'endomorphisme de $M_{n,1}(\mathbb{R})$ qui à X associe AX.

Pour tout $A \in \mathcal{M}_{n,p}(\mathbb{R})$, A^T désigne la matrice transposée de A.

Une matrice $A \in M_n(\mathbb{R})$ est dite nilpotente s'il existe un entier $k \in \mathbb{N} \setminus \{0\}$ tel que : $A^k = 0_{M_n(\mathbb{R})}$. L'ensemble $M_{n,1}(\mathbb{R})$ est muni de son produit scalaire canonique $\langle \cdot, \cdot \rangle$ et de la norme associée $\|\cdot\|$. En identifiant $M_1(\mathbb{R})$ et \mathbb{R} , on a pour tous $X, Y \in M_{n,1}(\mathbb{R})$:

$$\langle X, Y \rangle = X^T Y$$
, et: $||X||^2 = \langle X, X \rangle$.

On suppose dans tout ce problème que $n \in \mathbb{N}$ est un entier naturel vérifiant $n \geq 2$.

La partie I a été déjà été traitée dans les exercices à connaître, vous pouvez la passer, ou en profiter pour réviser.

Partie I – Matrices de rang 1

I.1 – Une expression des matrices de rang 1

- 1) Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1. Montrer qu'il existe $X, Y \in M_{n,1}(\mathbb{R}) \setminus \{0_{M_{n,1}(\mathbb{R})}\}$ tels que : $A = XY^T$.
- 2) Réciproquement, soient $X, Y \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{R})}\}$. Montrer que la matrice XY^T est de rang 1.

I.2 – Quelques propriétés

Soit $A \in M_n(\mathbb{R})$ une matrice de rang 1.

- 3) Montrer que $A^2 = tr(A)A$.
- 4) En déduire, par récurrence sur k, une expression de A^k en fonction de A pour tout $k \in \mathbb{N} \setminus \{0\}$.
- 5) Donner une condition nécessaire et suffisante sur la trace de A pour que A soit nilpotente.
- 6) Donner une condition nécessaire et suffisante sur la trace de A pour que A soit diagonalisable.

Partie II - Matrices de Householder

II.1 – Un exemple

On définit :

$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 7) Calculer A^2 . En déduire un polynôme annulateur de A.
- 8) Déterminer les valeurs propres et les vecteurs propres de A.
- 9) Montrer que les sous-espaces propres de A sont orthogonaux.
- 10) Déterminer une matrice $P \in \mathcal{O}_3(\mathbb{R})$ et une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$, telles que : $P^TAP = D$.
- 11) Interpréter géométriquement l'endomorphisme A de $M_{3,1}(\mathbb{R})$.

II.2 – Matrices de Householder

Soit $V \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0_{\mathcal{M}_{n,1}(\mathbb{R})}\}$. On définit $P_V, Q_V \in \mathcal{M}_n(\mathbb{R})$ par :

$$P_V = \frac{1}{\|V\|^2} V V^T, \quad \text{et} : \quad Q_V = I_n - 2 \frac{1}{\|V\|^2} V V^T.$$
 (1)

- **12)** Montrer que $\operatorname{im}(P_V) = \operatorname{Vect}(V)$ et que $\ker(P_V) = \operatorname{Vect}(V)^{\perp}$.
- 13) Montrer que P_V est la projection orthogonale sur la droite Vect(V). Préciser le rang et la trace de la matrice P_V .
- 14) Montrer que Q_V est symétrique et orthogonale.
- 15) Montrer que Q_V est la symétrie orthogonale par rapport à $\operatorname{Vect}(V)^{\perp}$.

Partie III – Factorisation QR

III.1 – Un résultat préliminaire

Soient $U, V \in \mathcal{M}_{n,1}(\mathbb{R})$, tels que : ||U|| = ||V||. On note : D = Vect(U - V).

- **16)** Montrer que D^{\perp} est l'ensemble des $X \in \mathcal{M}_{n,1}(\mathbb{R})$, tels que : ||X U|| = ||X V||.
- 17) Donner la décomposition de U sur la somme directe $M_{n,1}(\mathbb{R}) = D \oplus D^{\perp}$.
- 18) On suppose U et V non colinéaires. Calculer $Q_{U-V}U$ où Q_{U-V} est définie en (1).
- 19) En déduire que pour tous \tilde{U} , $\tilde{V} \in M_{n,1}(\mathbb{R})$, il existe une matrice orthogonale Q, telle que $Q\tilde{U}$ soit colinéaire à \tilde{V} .

III.2 – Factorisation QR

20) Soit $A \in M_n(\mathbb{R})$. Montrer qu'il existe une matrice orthogonale Q_1 , telle que Q_1A soit de la forme :

$$Q_1 A = \begin{pmatrix} \alpha & * & \cdots & * \\ 0 & & & \\ \vdots & & C_1 & \\ 0 & & & \end{pmatrix} \text{ où } \alpha \in \mathbb{R} \text{ et } C_1 \in \mathcal{M}_{n-1}(\mathbb{R}).$$

21) En raisonnant par récurrence sur n, montrer que pour tout $A \in M_n(\mathbb{R})$, il existe une matrice Q orthogonale, telle que QA soit triangulaire supérieure.