Name: Purnanand Kulkarni

EDA Retail (Level - Beginner)

Dataset Link: https://bit.ly/3i4rbWl

```
import urllib.request
from PIL import Image

urllib.request.urlretrieve("https://www.thesparksfoundationsingapore.org/images/logo

Image.open("logo.png")
```

Out[1]:

The SPARKS FOUNDATION

EDA Problem Statement

- Perform 'Exploratory Data Analysis' on dataset 'SampleSuperstore'
- As a business manager, try to find out the weak areas where you can work to make more profit.
- What all business problems you can derive by exploring data?

1. Import Data and Required libraries

1.1 Importing Numpy, Pandas, Seaborn and Matplotlib

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

1.2 Loading CSV file

```
In [3]:
    df = pd.read_csv(r"SampleSuperstore.csv")
```

```
In [4]: df.head()
```

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sal
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.960
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.940
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.620
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.57
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.36{
4										•

2. Information about our data

2.1 Feature Information

- **Ship Mode**: Which shipping mode was chosen for the orders.
- **Segment**: Segment in which the person who ordered belongs.
- **Country**: Country where it was ordered.
- **State**: State where it was ordered.
- **Postal Code**: Postal code of the area where the order was given.
- Region: Region of the Country.
- category: Category under which the Product belongs.
- **Sub-Category**: Sub-Category of the category under which the product belongs.
- Sales: Number of Sales from that order.
- Quantity: Quantity purchased in that order.
- **Discount**: Discount given in that order.
- **Profit**: Profit received from that order.

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9994 entries, 0 to 9993 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Ship Mode	9994 non-null	object
1	Segment	9994 non-null	object
2	Country	9994 non-null	object
3	City	9994 non-null	object
4	State	9994 non-null	object
5	Postal Code	9994 non-null	int64
6	Region	9994 non-null	object
7	Category	9994 non-null	object
8	Sub-Category	9994 non-null	object
9	Sales	9994 non-null	float64
10	Quantity	9994 non-null	int64
11	Discount	9994 non-null	float64
12	Profit	9994 non-null	float64
dtvp	es: float64(3)	, int64(2), obie	ct(8)

memory usage: 1015.1+ KB

2.2 Numerical Feature Information

```
In [6]: df.describe()
```

Out[6]:		Postal Code	Sales	Quantity	Discount	Profit
	count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
	mean	55190.379428	229.858001	3.789574	0.156203	28.656896
	std	32063.693350	623.245101	2.225110	0.206452	234.260108
	min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
	25%	23223.000000	17.280000	2.000000	0.000000	1.728750
	50%	56430.500000	54.490000	3.000000	0.200000	8.666500
	75%	90008.000000	209.940000	5.000000	0.200000	29.364000
	max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

2.3 Dividing the data into Numeric and categorical data.

```
In [7]:
    numeric_features = [feature for feature in df.columns if df[feature].dtype != '0']
    categorical_features = [feature for feature in df.columns if df[feature].dtype == '0
    numeric_features.remove('Postal Code')
    print('We have {} numerical features : {}'.format(len(numeric_features), numeric_features)', cat

We have 4 numerical features : ['Sales', 'Quantity', 'Discount', 'Profit']

We have 8 categorical features : ['Ship Mode', 'Segment', 'Country', 'City', 'State', 'Region', 'Category', 'Sub-Category']
```

2.4 Average Sales, Quantity purchased, Discount given & Profit

```
In [8]:
    for i in numeric_features:
        print(f"The Average {i} is {df[i].mean()}")

The Average Sales is 229.8580008304938
The Average Quantity is 3.789573744246548
The Average Discount is 0.15620272163298934
The Average Profit is 28.656896307784802
```

2.5 Check Null values

```
In [9]:
         df.isnull().sum()
Out[9]: Ship Mode
                         0
                         0
        Segment
                         0
        Country
                         0
        City
                         0
        State
        Postal Code
                         0
                         0
        Region
        Category
                         0
        Sub-Category
                         0
                         0
        Sales
                         0
        Quantity
        Discount
                         0
        Profit
                         0
        dtype: int64
```

3. Asking revelant questions about the data.

3.1 Which shipping mode does customer choose based on the products category and sum of the quantity?

```
In [10]:
    df_shipmode = df[['Ship Mode','Category','Quantity']].groupby(['Ship Mode','Category
    df_shipmode
```

Out[10]: Quantity

Ship Mode	Category	
First Class	Furniture	1238
	Office Supplies	3372
	Technology	1083
Same Day	Furniture	453
	Office Supplies	1147
	Technology	360
Second Class	Furniture	1569
	Office Supplies	4480
	Technology	1374
Standard Class	Furniture	4768
	Office Supplies	13907
	Technology	4122

Most of the customers prefer to choose Standard Mode for shipping while compared to other modes

3.2 What are the states with Maximum and Minimum Sales?

Sales

State	
Washington	13999.960
New York	11199.968
Delaware	10499.970
Michigan	9892.740
Minnesota	9449.950
New Jersey	9099.930
Virginia	8749.950
Pennsylvania	8399.976
California	8187.650
Texas	8159.952
North Carolina	7999.980
Georgia	6354.950
Rhode Island	5399.910
Missouri	4899.930
Nevada	4535.976
Ohio	4499.985
Vermont	4404.900
Kentucky	3080.000
Alabama	3040.000
Montana	2999.950
Wisconsin	2807.840
Illinois	2799.960
Colorado	2549.985
Maryland	2541.980
Nebraska	2479.960
Mississippi	2430.080
Tennessee	2314.116
New Hampshire	2249.910
Arizona	1879.960
Oklahoma	1805.880
Arkansas	1793.980
Massachusetts	1737.180
South Carolina	1690.040
Louisiana	1665.620
Wyoming	1603.136

State	
Utah	1499.950
Oregon	1487.040
lowa	1408.100
District of Columbia	1379.920
Connecticut	1133.350
Idaho	1128.390
New Mexico	883.840
North Dakota	704.760
West Virginia	673.344
Maine	437.850
South Dakota	416.320
Kansas	360.380

Out[13]: <AxesSubplot:title={'center':'State VS Sales'}, xlabel='States', ylabel='Sales'>

We get the Maximum Sales from Florida and Minimum Sales from Kansas

3.3 What are the states with Maximum and Minimum Profits ?

```
state_profit_df = pd.pivot_table(df[['State','Profit']],
                                   index='State', values='Profit',
aggfunc='max')
state_profit_df.sort_values(by='Profit', ascending=False)
```

Out[14]:

	Profit
State	
Indiana	8399.9760
Washington	6719.9808
Delaware	5039.9856
Michigan	4946.3700
Minnesota	4630.4755
New York	3919.9888
Georgia	3177.4750
Virginia	2799.9840
Rhode Island	2591.9568
New Jersey	2365.9818
Missouri	2302.9671
California	1906.4850
Nevada	1644.2913
Alabama	1459.2000
Kentucky	1416.8000
Montana	1379.9770
Maryland	1270.9900
Pennsylvania	1119.9968
Vermont	1013.1270
Illinois	874.9875
Arkansas	843.1706
Nebraska	743.9880
Wisconsin	673.8816
District of Columbia	648.5624
Texas	624.9875
Ohio	607.6080
Oklahoma	523.7052
New Hampshire	517.4793
Massachusetts	503.7822
Utah	449.9850
South Carolina	422.5100
Iowa	394.2680

Profit

State	
Mississippi	388.8128
Louisiana	346.0396
Florida	327.5922
North Carolina	303.8040
Connecticut	294.6710
Idaho	259.5297
Colorado	247.9960
Oregon	228.0792
Tennessee	223.9936
West Virginia	219.4416
Arizona	211.4955
North Dakota	162.0948
Kansas	149.3820
New Mexico	138.3552
South Dakota	132.5898
Maine	131.3550
Wyoming	100.1960

Out[15]: <AxesSubplot:title={'center':'State VS Profit'}, xlabel='States', ylabel='Profit'>

Conclusion:

We get the Maximum Profits from Indiana and Minimum Profits from Wyoming

3.4 Which Products are selling the most?

Out[16]: Sales

Category	Sub-Category	
Furniture	Bookcases	4404.900
	Chairs	4416.174
	Furnishings	1336.440
	Tables	4297.644
Office Supplies	Appliances	2625.120
	Art	1113.024
	Binders	9892.740
	Envelopes	604.656
	Fasteners	93.360
	Labels	786.480
	Paper	733.950
	Storage	2934.330
	Supplies	8187.650
Technology	Accessories	3347.370
	Copiers	17499.950
	Machines	22638.480
	Phones	4548.810

3.4.1 Category VS Sales

```
In [17]:
    plt.figure(figsize=(15,15))
    sns.barplot(x=df['Category'], y=df['Sales'], ec='k', palette='Set2')
    plt.title("Category VS Sales", weight='bold', fontsize=20, pad=20)
    plt.ylabel("Sales", weight="bold", fontsize=15)
    plt.xlabel("Category", weight="bold", fontsize=16)
    plt.xticks(rotation=45)
    plt.show()
```

Category VS Sales

3.4.2 Sub-Category VS Sales

```
In [18]:
    plt.figure(figsize=(15,10))
    sns.barplot(x=df['Sub-Category'], y=df['Sales'], ec='k', palette='Set2')
    plt.title("Sub-Category VS Sales", weight='bold', fontsize=20, pad=20)
    plt.ylabel("Sales", weight="bold", fontsize=15)
    plt.xlabel("Sub-Category", weight="bold", fontsize=16)
    plt.xticks(rotation=45)
    plt.show()
```

Sub-Category VS Sales

3.4.3 Category+Sub-Category VS Sales

Out[19]: <AxesSubplot:title={'center':'Category VS Sales'}, xlabel='Catgrgories', ylabel='Sal

Machines and Copiers from Technology category are TOP 2 in sales

3.5 Which products are purchased in more quantity?

Out[20]: Quantity

Category	Sub-Category	
Furniture	Bookcases	868
	Chairs	2356
	Furnishings	3563
	Tables	1241
Office Supplies	Appliances	1729
	Art	3000
	Binders	5974
	Envelopes	906
	Fasteners	914

	(Quantity

Category	Sub-Category	
	Labels	1400
	Paper	5178
	Storage	3158
	Supplies	647
Technology	Accessories	2976
	Copiers	234
	Machines	440
	Phones	3289

In [105...
df.groupby(['Sub-Category']).sum().plot(kind='pie', y='Quantity', autopct='%1.0f%%',

Out[105... <matplotlib.legend.Legend at 0x19632185e50>

Sub-Categories and Sales

3.5.1 Products VS Quantity

Binders from Office Supplies category are purchased the most

3.6 What are the products with Maximum Profits?

Out[22]: Profit

Category	Sub-Category	
Furniture	Bookcases	1013.1270
	Chairs	770.3520
	Furnishings	387.5676
	Tables	629.0100

Profit

Category	Sub-Category	
Office Supplies	Appliances	793.7160
	Art	112.5740
	Binders	4946.3700
	Envelopes	204.0714
	Fasteners	21.8880
	Labels	385.3752
	Paper	352.2960
	Storage	792.2691
	Supplies	327.5060
Technology	Accessories	829.3754
	Copiers	8399.9760
	Machines	2799.9840
	Phones	1228.1787

3.6.1 Products VS Profits

Out[23]: <AxesSubplot:title={'center':'Products VS Profit'}, xlabel='Category', ylabel='Profi
 t'>

Copiers from Technology category got the most profit.

4. Analysing the Data

4.1 Univariate Analysis

• The term univariate analysis refers to the analysis of one variable, prefix "uni" means "one". The purpose of univariate analysis is to understand the distribution of the values for a single variable.

4.1.1 Numerical Features

Univariate Analysis of Numerical Features

4.1.2 Categorical Features

Univariate Analysis of Categorical Features

4.2 Multivariate Analysis

• Multivariate analysis is the analysis of more than one variable

4.2.1 Checking the Correlation between Numerical Features

In [26]:	df[(list(d	df.columns)	[1:])] . cor	r()		
Out[26]:		Postal Code	Sales	Quantity	Discount	Profit
	Postal Codo	1 000000	-0.023854	0.012761	0.058443	_0.020061

	Postal Code	Sales	Quantity	Discount	Profit
Sales	-0.023854	1.000000	0.200795	-0.028190	0.479064
Quantity	0.012761	0.200795	1.000000	0.008623	0.066253
Discount	0.058443	-0.028190	0.008623	1.000000	-0.219487
Profit	-0.029961	0.479064	0.066253	-0.219487	1.000000

```
In [27]:
    plt.figure(figsize=(15,10))
    sns.heatmap(df.corr(),cmap="CMRmap", annot=True)
    plt.show()
```


We cannot see any distinct correlation between any of the Numerical features

5. Final Conclusion:

- Most of the customers prefer to choose Standard mode for shipping while Compared to other modes.
- 2. From Florida we got maximum sales and least from Kansas.
- 3. From Indiana we got maximum profit and least from Wyoming.

- 4. Technology category has the highest Sales & Machines from Technology category are selling the most.
- 5. Binders from Office Suppliers category are purchased in more quantity.
- 6. By selling Copiers from Technology category we got the maximum profit.
- 7. We can see that the Sales & Quantity graphs are Right Sweked.
- 8. Consumer orders are the most in numbers.
- 9. Most Orders came from California State and West Region.
- 10. We cannot see any distinct / strong correlation between any of the Numerical Variables.