Метрические методы классификации

Евгений Борисов

методы ML

- *метрические* измеряем расстояния, определить ближайших
- логические построить правило (комбинацию предикатов)
- статистические восстановить плотность, определить вероятность
- линейные построить разделяющую поверхность
- композиции собрать несколько классификаторов в один

датасет - размеченная матрица признаков

- х вектор-признак
- у метка класса
- n размер пространства признаков
- т количество примеров

метрические методы: регрессия

метрика - функция расстояния

$$\rho: X \times X \rightarrow [0, \infty)$$

аксиома тождества : $\rho(x,y)=0 \Leftrightarrow x=y$

симметрия: $\rho(x,y) = \rho(y,x)$

неравенство треугольника: $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$

Примеры:

Евклидова метрика: $\rho(x,y) = \sqrt{\sum_i (x_i - y_i)^2}$

метрика Минковского: $\rho(x,y) = \sqrt[n]{\sum_i w_i |x_i - y_i|^n}$

метрика Чебышева: $\rho(x,y) = \max_i |x_i - y_i|$

метрический подход в методах ML

использование расстояний между объектами

гипотеза компактности: близкие объекты лежат в одном классе

профиль компактности - метод оценки данных и метрик на них

доля объектов, у которых т-тый сосед из другого класса

о задаче классификации

разделение данных на части (классы)

Учебный набор: [объект, ответ]

Задача: классификатор

объект → вектор-признак → класс

метрический классификатор

X - пространство признаков размерности m

 $X_{l} \subset X$ – объекты учебной выборки

 \mathbf{y}_l – метки классов учебного набора X_l

метрический классификатор

Х - пространство признаков размерности

 $u \in X$ – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

метрический классификатор

Х - пространство признаков размерности

 $egin{aligned} \mathbf{m} & & & & & \\ X_l \subseteq X - o 6 \mathtt{5} e \kappa m \mathtt{b} & & & & & \\ y_l - \mathsf{m} e m \kappa u \kappa \wedge a c c o \mathsf{b} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$

 $u \in X$ – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

v(i,u) - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

метрический классификатор

Х - пространство признаков размерности

 $egin{aligned} \mathbf{m} & & & & & \\ X_l \subseteq X - o 6$ ъекты учебной выборки $& & & & & \\ y_l - метки классов учебного набора <math>X_l \end{aligned}$

 $u \in X$ – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

v(i,u) - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

$$\Gamma_y(u) = \sum_i \left[y = y_i \right] v(i,u)$$
 - оценка близости **u** к классу **y**

метрический классификатор

Х - пространство признаков размерности

 $egin{aligned} \mathbf{m} & & & & & \\ X_l \subseteq X - o 6$ ъекты учебной выборки $& & & & & \\ y_l - метки классов учебного набора <math>X_l \end{aligned}$

 $u \in X$ – выберем объект

выстроим соседей из X, и объекта и по расстоянию (вариационный ряд)

$$\rho(u, x_u^1) \leq \rho(u, x_u^2) \leq \cdots \leq \rho(u, x_u^n)$$

 $v(i\,,u)$ - ф-ция оценки важности і-того соседа объекта и, убывает по мере удаления от и

$$\Gamma_y(u) = \sum_i \left[y = y_i \right] v(i,u)$$
 - оценка близости ${f u}$ к классу ${f y}$

$$a(u, X_l) = \underset{y \in y_l}{argmax} \Gamma_y(u)$$

метод ближайшего соседа (1NN)

v(i,u) = [i=1]

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод ближайшего соседа (1NN)

$$v(i,u) = [i=1]$$

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод k-соседей (kNN)

$$v(i,u) = [i < k]$$

достоинства:

- более устойчив к шуму чем 1NN
- есть параметр количество соседей k

недостатки:

• возможны неоднозначности

метод ближайшего соседа (1NN)

v(i,u) = [i=1]

достоинства:

- простота
- интерпретируемость

недостатки:

- неустойчив к шуму
- нет параметров
- недостаточная точность
- выборка хранится целиком

метод k-соседей (kNN)

v(i,u) = [i < k]

достоинства:

- более устойчив к шуму чем 1NN
- есть параметр количество соседей к

<u>недостатки</u>:

• возможны неоднозначности

метод взвешенных к-соседей

$$v(i,u) = [i < k]w_i$$

w_i - вес соседа

как выбирать вес w;?

метод взвешенных k-соседей

$$v(i,u) = [i < k]w_i$$
 w_i - вес соседа

как выбирать вес w;?

$$v(i,u) = K\left(\frac{\rho(u,x_u^i)}{h}\right)$$

 $v(i,u) = K \left(\frac{\rho(u,x_u^i)}{h} \right)$ выбираем степень важности і-того соседа на основании расстояния до него

метод взвешенных k-соседей - парзеновское окно

выбираем степень важности і-того соседа на основании расстояния

$$a(u, X_l) = \underset{y \in y_l}{argmax} \sum_{i} [y(i) = y] K \left(\frac{\rho(u, x_u^i)}{h} \right)$$

метрические методы: литература

Борисов E.C. Методы машинного обучения. 2024 https://github.com/mechanoid5/ml_lectorium_2024_I

Машинное обучение для людей https://vas3k.ru/blog/machine_learning/

Константин Воронцов - Машинное обучение. ШАД Яндекс https://www.youtube.com/playlist?list=PLJOzdkh8T5kp99tGTEFjH_b9zqEQiiBtC

Радослав Нейчев - Машинное обучение, ФПМИ, 2020 https://www.youtube.com/playlist?list=PL4_hYwCyhAvZyW6qS58x4uElZgAkMVUvj