

Gramáticas libres de contexto

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Gramáticas libres de contexto

Al igual que los Lenguajes regulares

Son reconocidos por los autómatas finitos

Existen lenguajes

que pueden ser reconocidos por autómatas de pila

Gramáticas libres de contexto

Una gramática consiste en una colección de reglas de sustitución

variable → variables y/o terminales

Los terminales son el alfabeto del lenguaje

Una cadena del lenguaje esta conformada unicamente por terminales

Todas los string del lenguaje constituyen la gramática del lenguaje

Existe una variable de inicio

Desde la misma se derivan todos las cadenas validas de ese lenguaje.

La secuencia de sustituciones para obtener una cadenas se conoce como derivación

Ejemplo:

Sean las reglas:

 $A \rightarrow 0A1$

 $A \rightarrow B$

 $B \rightarrow \#$

Con

A variable de inicio

Se puede derivar:

 $A \to 0A1 \to 00A11 \to 000A111 \to 000B111 \to 000#111$

 $L = \{0^n # 1^n / n \ge 0\}.$

Lenguaje libre de contexto

Todos los strings que se pueden generar mediante derivación

Constituyen el lenguaje de la gramática

Si llamaremos G₁ a la una gramática determinada

Indicaremos L(G₁) al lenguaje de la gramática G₁

Cualquier lenguaje que pueda generarse por alguna gramática libre de contexto

Es conocido como lenguaje libre de contexto

Gramáticas libres de contexto (Def. Formal)

Una gramática libre de contexto es un 4-tupla (V, Σ, R, S), donde

V es un set finito de variables

 Σ es un set finito disjunto a V de terminales

R es un set finito de reglas, cada una parte de una variable y termina en un string compuesto de variables y/o terminales

S ∈V es la variable de inicio

Gramáticas ambiguas

Si un String se puede derivar de dos o mas maneras diremos que es un <u>String ambiguo</u>.

Una gramática con al menos un String ambiguo es una <u>gramática</u> <u>ambigua</u>

Ejemplo:

Reglas: $A \rightarrow 0B \mid 0C1 \mid 1 \mid B \rightarrow 0101 \mid C \rightarrow 0A0$

 $A \rightarrow 0B \rightarrow 00101$

 $A \to 0C1 \to 00A01 \to 00101$

Lenguajes no libres de contexto

Un lenguaje es libre de contexto

Si y solo si existe un autómata finito de pila que lo reconoce

Un lenguaje regular

Pertenece a los lenguajes libres de contexto

(cualquier AFND se puede construir con un Autómata de pila sin leer o escribir en la pila)

Existen lenguajes que son no libres de contexto

Estos no pueden ser reconocidos por un autómata de pila

Ejemplo: $B = \{a^nb^nc^n | n \ge 0\}$

Presentación realizada en Julio de 2020