

#### Clustering

#### Outline:

- 1. Introduction
- 2. K-means clustering algorithm
- 3. Gaussian mixture model clustering algorithm





#### Clustering

#### Outline:

- 1. Introduction
- 2. K-means clustering algorithm
- 3. Gaussian mixture model clustering algorithm

#### What is clustering?

- Unsupervised learning
- Input: an unlabeled dataset
- Output: groups (clusters)
- Principle: dividing the examples into a number of groups (clusters) such that examples in the same group are more similar to other examples in the same group than those in other groups.
- Goal: to find distinct groups or "clusters" within a data set.



#### Clustering

- Duration: 2 hrs
- Outline:
  - 1. Introduction
  - 2. K-means clustering algorithm
  - 3. Gaussian mixture model clustering algorithm



#### **General**

- K-means clustering is the most commonly used clustering algorithm.
- K-means clustering is a distance-based algorithm.
- K-means tries to to group the closest points to form a cluster (K-means tries to minimize the variance of data points within a cluster).
- K-means is best used on small data sets because it iterates over all of the data points → it'll take more time to classify data points in the large data set.

#### K-means clustering implementation

- Step 1: initialization
- Partition the data points into K clusters randomly. Find the centroids of each cluster
- Step 2: data clustering
  - For each data point:
- Calculate the distance from the data point to each cluster
- Assign the data point to the closest cluster

#### K-means clustering implementation

- Step 3: centroid determination
- Re-compute the centroid of each cluster
- Step 4: iteration
- Repeat step 2 and step 3 until terminated

















#### How to figure out the best value of K?

- Just try the different value of K
- Check the total variation within each cluster



### Bài tập áp dụng 1

- Cho 2 trọng tâm của 2 cụm (cluster) của dữ liệu 2D như sau:
- Centroid của cụm 1: (1,5)
- Centroid của cụm 2: (4,1)
- Giả sử có 3 mẫu dữ liệu A, B, C có các vector đặc trưng lần lượt
   là: (1.1,1.2), (2.0,3.0) và (6.3,1.5)
- Cho biết các mẫu dữ liệu này thuộc về cụm nào?

### Bài tập áp dụng 2

Cho ảnh sau:



 Bàng phương pháp K-means clustering với K = 3, hãy trích ra bông hoa trên nền đen như ảnh sau:



# Bài tập về nhà

Úng dụng phương pháp Kmeans clustering phát hiện quả chín

trên cây.



# Bài tập về nhà (tt)

Úng dụng phương pháp Kmeans clustering phát hiện quả chín

trên cây.





#### Clustering

Duration: 2 hrs

Outline:

- 1. Introduction
- 2. K-means clustering algorithm
- 3. Gaussian mixture model clustering algorithm

#### **Drawback of K-means**

#### GaussianMixture



#### **KMeans**



#### **GMM** clustering

- GMM clustering is a powerful clustering algorithm.
- GMM clustering is distribution-based.

#### **Gaussian distribution**

- Gaussian distribution 

  Normal distribution
- Gaussian distribution has a bell-shaped curve.
- The data points symmetrically distributed around the mean value.

#### 1D Gaussian pdf

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

x: input data

μ: mean

 $\sigma^2$ : variance.



### 2D Gaussian pdf



x: input vector (length = 2)

 $\mu$ : mean vector (length = 2)

 $\Sigma$ : 2 × 2 covariance matrix

$$f(x \mid \mu, \Sigma) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left[-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right]$$

#### Gaussian mixture model

- Linear combination of M Gaussian distributions
- pdf of GMM:

$$p(\mathbf{x}|\lambda) = \sum_{i=1}^{M} w_i \ g(\mathbf{x}|\mu_i, \Sigma_i)$$

Ex: M = 2

- x: D-dimension data
- $\omega_i$ : mixing coeff cients,
- $1 \le \omega_i \le M$  for all i = 1, ..., M

and 
$$\sum_{i=1}^{M} \omega_i = 1$$

• *g*: Gaussian density components



#### **GMM** clustering alogrithms

- GMM parameters:
- number of Gaussian components (M)
- weights  $(\omega_i)$
- Saussian components (mean  $\mu$ , covariance Σ)
- GMM assumes that all the data points are generated from a mixture of a finite number of Gaussian distributions, and each of these distributions represent a cluster → tends to group the data points belonging to a single distribution together.

#### **GMM** clustering algorithm

- GMM training input:
- > number of Gaussian components  $(M) \equiv$  number of clusters
- training data points (x)
- Goal: to model this data using GMM
- Mixing coefficients  $\omega_1, \omega_2, ..., \omega_M$
- Mean  $\mu_1, \mu_2, \dots, \mu_M$
- ▶ Covariance  $Σ_1, Σ_2, ..., Σ_M$
- Solution: EM algorithm

#### **Expectation-Maximization (EM) algorithm**

- EM is a statistical algorithm for finding the right model parameters.
- EM is used when the data has missing values (latent variables).
- EM tries to use the existing data → determine the optimum latent variables → find the model parameters → go back and update the latent variable, and so on.
- E-step: the available data is used to estimate (guess) the values of the missing variables
- M-step: based on the estimated values generated in the E-step, the complete data is used to update the parameters

#### **GMM-based motion detection**

https://www.youtube.com/watch?v=0nz8JMyFF14&t=844s