MATH324 (Statistics) – Lecture Notes McGill University

Masoud Asgharian

Winter 2019

Contents

1	Lecture 0	2
2	Lecture 1	2
3	Lecture 2 3.1 Markov's Inequality	2 2 3
4	Lecture 3	4
5	Lecture 4	4
6	Lecture 5	4
7	Lecture 6	4
8	Lecture 7	4
9	Lecture 8	4
10	Lecture 9	4
11	Lecture 10	4
12	Lecture 11	4
13	Lecture 12	4

1 Lecture 0

2 Lecture 1

3 Lecture 2

3.1 Markov's Inequality

Let X be a random variable and h be a **non-negative** function; ie:

$$h: R \to R^+ \cup \{0\} = [0, \infty)$$

Suppose $E(h(x))\ <\infty$, then for some $\lambda>0$, we have:

$$P(h(x) \ge \lambda) \le \frac{E[h(x)]}{\lambda} \tag{1}$$

Proof. Suppose X is a continuous random variable:

$$E[h(x)] = \int_{x} h(x)d_{x}(x)dx$$

$$= \left(\int_{x:h(x)\geq\lambda} h(x)f_{x}(x)dx + \int_{x:h(x)<\lambda} h(x)f_{x}(x)dx\right)$$

$$\geq \int_{x:h(x)\geq\lambda} h(x)f_{x}(x)dx \qquad \underline{since} \ h \geq 0$$

$$\geq \lambda \int_{x:h(x\geq\lambda} f_{x}(x)dx = \lambda \ P(h(x)\geq\lambda)$$

$$\implies P(h(x) \ge \lambda) \le \frac{E(h(x))}{\lambda}$$

The proof for the discrete case is similar.

Now consider $h(x) = (x - \mu)^2$, then:

$$P(|x - \mu| \ge \lambda) = P((x - \mu)^2 \ge \lambda^2)$$

$$\le \frac{E[(x - \mu)^2]}{\lambda^2} \qquad if \ E[(x - \mu)^2] < \infty$$

Let $\mu = E(X)$, then $E[(x - \mu)^2] = Var(X)$ denoted by σ_x^2 . We therefore have:

$$P(|x - \mu_x| \ge \lambda) \le \frac{\sigma_x^2}{\lambda^2}$$
 where $\mu_x = E(x)$ (2)

Now consider $\lambda = K\sigma_x$ where K is a known number. Then:

$$P(|x - \mu_x| \ge K\sigma_x) \ge \frac{\sigma_x^2}{K^2 \sigma_x^2} = \frac{1}{K^2}$$
 (3)

3.2 Chebyshev's Inequality

Chebyshev's Inequality is a special case of Markov's Inequality.

- 4 Lecture 3
- 5 Lecture 4
- 6 Lecture 5
- 7 Lecture 6
- 8 Lecture 7
- 9 Lecture 8
- 10 Lecture 9
- 11 Lecture 10
- 12 Lecture 11
- 13 Lecture 12