Step-1

Consider that $f = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3)$

The objective is to find 3×3 the symmetric matrix A which produce the function $f = x^T A x$ and check and check whether the symmetric matrix A is positive definite or not.

Step-2

Given quadratic is,

$$f = 2(x_1^2 + x_2^2 + x_3^2 - x_1 x_2 - x_2 x_3)$$

= $2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1 x_2 - 2x_2 x_3$

Find the 3×3 symmetric matrix which produce $f = x^T Ax$ as,

 $a_{ii} = \text{coefficient of } x_i^2$

 $a_{ij} = \frac{1}{2} \left(\text{coefficient of } x_{ij} \right) \text{ where } i \neq j$

Step-3

Therefore, the function $f = x^T A x$ can be written as,

$$f = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$
Where

Step-4

Recall: the real symmetric matrix A to be positive definite if and only if all pivots satisfy $d_k > 0$ where d_k is ratio of $\det(A_k)$ to $\det(A_{k-1})$.

Step-5

Now the upper left determinants are,

$$A_1 = 2 > 0$$

$$A_2 = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix}$$
$$= 4 - 1$$
$$= 3 > 0$$

$$A_3 = |A|$$
= 2(4-1)+1(-2)+0
= 6-2
= 4 > 0

The pivots are $\frac{A_1}{1}, \frac{A_2}{A_1}$ and $\frac{A_3}{A_2}$

That is, $\frac{2}{1}$, $\frac{3}{2}$ and $\frac{4}{3}$ all are positive.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 have pivots $2, \frac{3}{2}$ and $\frac{4}{3}$.

Therefore, A is positive definite.

Step-6

(b)

Consider that
$$f = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_1x_3 - x_2x_3)$$
.

The objective is to find 3×3 the symmetric matrix A which produce the function $f = x^T A x$ and check and check whether the symmetric matrix A is positive definite or not.

Step-7

Given quadratic is,

$$f = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_1x_3 - x_2x_3)$$

= $2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$

Therefore, the function $f = x^T A x$ can be written as,

$$f = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
Where the matrix

Step-8

Now the upper left determinants are,

$$A_1 = 2 > 0$$

$$A_2 = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix}$$
$$= 3 > 0$$

Continuing the previous steps,

$$A_3 = |A|$$
= 2(4-1)+1(-2-1)-1(1+2)
= 6-3-3
= 0

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
 is singular.
Therefore,

Step-9

$$x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Consider,

$$Ax = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ this means the symmetric matrix A is **positive semidefinite** but not positive definite.