PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-025364

(43)Date of publication of application: 01.02.1994

(51)Int.CI.

CO8F255/02

(21)Application number: 03-325264

(71)Applicant: HIMONT INC

(22)Date of filing: 13.11.1991

(72)Inventor: PEREGO GABRIELE

GALIMBERTI MAURIZIO ALBIZZATI ENRICO

(30)Priority

Priority number: 90 22038

Priority date: 13.11.1990

Priority country: IT

(54) GRAFTED SYNDIOTACTIC POLYPROPYLENE

(57) Abstract:

PURPOSE: To provide a syndiotactic polypropylene of which chemical and physical properties are improved by a grafted monomer contg. functional groups.

CONSTITUTION: Grafting reaction is carried out by mixing a polymer, a monomer to be grafted, an initiator and optionally a stabilizer in a soln. by using suitable inert solvent or in a molten state. Further, the reaction can be carried out in a dry solid state while maintaining the polymer at a temp. lower than its melting point but sufficient to decompose the initiator or in an aq. suspension of a temp. above 100° C by using an autoclave, or by optical radiation. As the initiator, e.g. benzoyl peroxide is used. As the monomer, 3–20C mono- and poly- carboxylic acids having at least one olefinic unsaturation, as well as their derivatives such as anhydrides, ester, amides, salts, nitriles and thioacids are used. Maleic anhydride can be exemplified.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-25364

(43)公開日 平成6年(1994)2月1日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 8 F 255/02

MQD

7142-4 J

審査請求 未請求 請求項の数4(全 3 頁)

(21)出願番号

特願平3-325264

(22)出願日

平成3年(1991)11月13日

(31)優先権主張番号 22038A/90

(32)優先日

1990年11月13日

(33)優先権主張国

イタリア (IT)

(71)出願人 591012901

ハイモント、インコーポレーテッド

アメリカ合衆国デラウエア州、ニューカッ

スル、カウンティー、センターピル、ロー

ド、2801

(72)発明者 ガブリエレ、ペレゴ

イタリー国トリノ、イブレア、ピア、フォ

(72)発明者 マウリツィオ、ガリムベルチ

イタリー国ミラノ、ピア、ベルトイパ、4

(72)発明者 エンリコ、アルビツァッティ

イタリー国ノバラ、アロナ、ピア、ロー

₹、64

(74)代理人 弁理士 佐藤 一雄 (外2名)

(54) 【発明の名称 】 グラフト化シンジオタクチックポリプロピレン

(57)【要約】

(修正有)

【目的】 官能基を含むグラフト化モノマーで化学的、 物理的性質の改良されたシンジオタクチックポリプロピ レンの提供。

【構成】 グラフト化方法では適切な不活性溶媒を用い て溶液により又はポリマー、グラフト化されるモノマ ー、開始剤及び場合により安定剤を混ぜて溶融状態によ りグラフト化反応を行う。更に、ポリマーの融点以下で あるが但し開始剤を分解させる上で充分な温度にポリマ ーを維持して乾燥固体状態により又はオートクレーブを 用い100℃以上の温度にして水性懸濁液により又は光 照射により上記反応を行うことも可能である。開始剤は 例えば過酸化ベンゾイルが、またモノマーは3~20個 の炭素原子及び少なくとも1つのオレフィン性不飽和を 含むモノ及びポリカルボン酸並びに無水物、エステル、 アミド、塩、ニトリル及びチオ酸のような上記酸の誘導 体で、無水アレイン酸を例示しうる。

【特許請求の範囲】

【請求項1】官能基を含むモノマーでグラフト化された シンジオタクチックポリプロピレン。

【請求項2】炭素原子3~20個を含むα-β不飽和酸 及びそれらの誘導体でグラフト化されたシンジオタクチ ックポリプロピレン。

【請求項3】無水マレイン酸でグラフト化されたシンジ オタクチックポリプロピレン。

【請求項4】グラフト化無水マレイン酸の量が0.1~ 10重量%である、請求項3に記載のシンジオタクチッ 10 行われる。不飽和モノマーは別々の単位として又は様々 クポリプロピレン。

【発明の詳細な説明】

【0001】本発明は官能基を含むモノマーでグラフト 化されたシンジオタクチックポリプロピレンに関する。 炭化水素ポリマーの化学的不活性がそれらの良好な安定 性及び耐久性に寄与している。他方、反応性のこの同様 の欠如はこれら物質の使用を制限する。一部の適用は、 チャージ又は繊維のような他の物質との良好な付着性、 ペイントに用いられる他のポリマーとの混和性並びに他 の様々な適用を要する場合のように、産生される炭化水 20 素ポリマーに関して表面の異なる性質又は異なる物理的 性質により適合化される。これらの結果を果たす重要か つ有用な方法は炭化水素ポリマーに物質の特徴及びその 化学反応性を改良させる一部の重合モノマー又は化合物 をグラフト化することからなる。上記改質はいくつかの 出版物及び特許明細書、特にJ.Pol.Sci.:Pol.Lett.Ed., Vol.21,23-30(1983); Acta Polymerica, Vol.36,361-365 (1985);米国特許第3, 414, 551号;米国特許第 3,652,730号;米国特許第4,506,056 号明細書で文献記載されている。

【0002】無水マレイン酸はポリオレフィングラフト 化反応で最も多く用いられるモノマーの1つであり、特 に溶液、乾燥固体状態、溶融、水性懸濁液及び光照射に よりグラフト化反応を行うこと並びに更に改質反応を容 易に行うことを可能にする。

【0003】溶液中でのグラフト化は様々な方法で反応 を行える可能性、ポリマー鎖の部分毎の潜在的反応性及 びポリエチレンの場合における望ましくない架橋反応の 回避のような様々な利点を提供する。一般に、この方法 はポリマーの分解を有意に制限できる可能性を与える。 最近、均一相で操作する新規触媒系の使用により、高度 のタクティシティ (r, rペンタドの約85%) 及び高 収率を有するシンジオタクチックポリプロピレンが現在 市販されている(J.A.Ewen, R.L. Jones, A.Razavi, J.D.Fer rara, J.Am.Chem.Soc., Vol.110,6255-56,1988).

【0004】シンジオタクチックポリプロピレンは、ア イソタクチックポリプロピレンと同処理条件下で比較し たところ、更に多量のモノマーのグラフト化を可能にす ることがわかった。更にそのグラフト化はより厳しくな い条件下において同含有率のグラフト化モノマーで行う 50 ート、アクリルポリエステル、メタクリル酸、クロトン

ことができる。したがって、ポリマー物質の分解はグラ フト化反応中により少なくなる。この利点は溶融状態で 操作した場合に特に重要である。

2

【0005】本発明のシンジオタクチックグラフト化ポ リプロピレンはその化学的及び物理的特徴の改質並びに グラフト化コポリマーの製造の双方に関してシンジオタ クチックポリプロピレンに興味ある適用分野を開く。ビ ニルモノマーでのグラフト化は通常開始剤の自己分解が 活性化される温度でラジカル開始剤を用いることにより な長さのポリマー鎖として結合させることができる。

【0006】本発明に適したグラフト化方法では適切な 不活性溶媒を用いて溶液により又はポリマー、グラフト 化されるモノマー、開始剤及び場合により安定剤を混ぜ て溶融状態によりグラフト化反応を行う。更に、ポリマ 一の融点以下であるが但し開始剤を分解させる上で充分 な温度にポリマーを維持して乾燥固体状態により又はオ ートクレーブを用い100°C以上の温度にして水性懸濁 液により又は光照射により上記反応を行うことも可能で ある。

【0007】溶液でのグラフト化は多数の利点、特にポ リマー鎖の部分毎の潜在的反応性に加えてその方法の多 様性及び効率的標準化といった利点を有する。溶液グラ フト化用に適した溶媒はベンゼン、トルエン、キシレ ン、テトラクロロエタン、o - ジクロロベンゼンのよう に用いられるポリプロピレンを溶解させる不活性溶媒で ある。

【0008】適切なラジカル開始剤としては過酸化ベン ゾイルのような過酸化アシル、過酸化ジ-tert-ブチル、 過酸化ジクミル、過酸化クミルブチル、ペルオキシピバ ル酸 1 , 1 - ジ-tert-ブチル、過安息香酸 tert-ブチ ル、過オクタン酸 tert-ブチル、ジ(過フタル酸) ter t-ブチル、ペルオキシモノ炭酸ジアルキル及びペルオキ シジカーボネートのような過酸化ジアルキル又はアラル キルがある。

【0009】ポリマーの分解反応を減少できる補助剤と しては、それらが重要である場合として、窒素、リン及 びイオウを含む様々な化合物、例えばN-メチルアセト アミド、N, N-ジメチルアセトアミド、トリフェニル 40 ホスフィン、リン酸トリエチル及びジメチルスルホキシ ドがある。

【0010】ポリマーの改質用に好ましいモノマーは3 ~20個の炭素原子及び少なくとも1つのオレフィン性 不飽和を含むモノ及びポリカルボン酸並びに無水物、エ ステル、アミド、塩、ニトリル及びチオ酸のような上記 酸の誘導体である。上記酸、無水物及び他の誘導体の例 としてはマレイン酸、アクリル酸、フマル酸、イタコン 酸、グリシジルアクリレート、シアノアクリレート、炭 素原子3~20個を含むヒドロキシアルキルメタクリレ

酸、イソクロトン酸、無水マレイン酸、無水イタコン 酸、アクリロニトリル、メタクリロニトリル、アクリル 酸ナトリウムがある。

【0011】単独で又は上記不飽和カルボン酸もしくは それらの誘導体と組合せて用いることができる他のモノ マーとしてはスチレン、クロロスチレン類、プロモスチ レン類及びビニルビリジン類を含めて炭素原子2~20 個を有するビニルモノマーがある。使用可能な他のモノ マーは酪酸ビニル、乳酸ビニル、ステアリン酸ビニル、 アジピン酸ビニルのようなビニルエステル、アリルエス 10 テル、ビニルエーテル又はジビニルベンゼン、トリアリ ルホスフィン及びトリアリルシアヌレートのような2以 上のビニルもしくはアリル基を有するモノマーである。 【0012】通常、ラジカルグラフト化反応をシンジオ タクチックボリプロピレンに生じさせうるすべての化合 物が適する。シンジオタクチックポリプロピレンにグラ フト化されるモノマーの量は0.1~10重量%である ことが好ましい。

【0013】用いられるラジカル開始剤の量はポリマー の重量に対して好ましくは0.01~10%、更に好ま 20 【0017】比較例2 しくは0.1~3%である。グラフト化されるモノマー はポリマーの重量に対して好ましくは0.1~100 %、更に好ましくは10~100%の量で用いられる。 溶液でプロセスを行う場合、モノマー及び開始剤は好ま しくは双方ともポリマーに加えられ、しかる後溶媒が導 入され、温度が望ましい値にされるが、その際系を攪拌 下で維持する。適切な温度は試薬及び溶媒の混合物が均 一になって開始剤の分解が活性化される温度である。下 記例は本発明を制限するためでなく、説明するために示 されている。

【0014】実施例1

スターラー装備の三首100mlフラスコ内にMw=20 0.000のシンジオタクチックポリプロピレン2.0 g、無水マレイン酸2.0g、過酸化ベンゾイル1.2 4 g 及びキシレン25 mlを導入した。系を均一かつ充分 に攪拌された溶液を得ることができる温度である120 ℃にし、これらの条件下全部で3時間維持した。それを

冷却し、室温で攪拌下12時間かけてメタノール200 ml中で沈澱させた。次いでポリマーを濾過し、アセトン で熱時抽出して非グラフト化無水マレイン酸を完全に除 去し、乾燥させた。カルボキシル、従ってグラフト化無 水マレイン酸の測定をメタノール中0.1N水酸化ナト リウム及びフェノールフタレインで130℃においてポ リマー溶液の滴定により行った。グラフト化無水マレイ ン酸の計算濃度はポリマーに対して1.38重量%であ atc.

【0015】比較例1

実施例1の操作及び成分を用いたが、但しMw=20 0,000のアイソタクチックポリプロピレンサンプル を用いた。0.62%に相当する無水マレイン酸の濃度 をカルボキシル滴定により計算した。

【0016】実施例2

実施例1の操作及び成分を用いたが、但しMw=15 0,000のシンジオタクチックポリプロピレンサンプ ルを用いた。1.64%に相当するグラフト化無水マレ イン酸の濃度をカルボキシル滴定により計算した。

実施例2の操作及び成分を用いたが、但しMw=15 0.000のアイソタクチックポリプロピレンサンプル を用いた。1.00%に相当する無水マレイン酸の濃度 をカルボキシル滴定により計算した。

【0018】実施例3

実施例1の操作及び成分を用いたが、但しMw=15 0,000のシンジオタクチックポリプロピレンサンプ ル2.0g、アクリル酸1.47g、過酸化ベンゾイル 1. 24g及びキシレン25mlを用いた。3. 45%に 30 相当するグラフト化アクリル酸の濃度をカルボキシル滴 定により計算した。

【0019】比較例3

実施例3の操作及び成分を用いたが、但しMw=15 0,000のアイソタクチックポリプロピレンサンプル を用いた。2.64%に相当するカルボキシルの濃度を カルボキシル滴定により計算した。