Introduction to Machine Learning Knowledge Sharing for CPE/SKE students

Sirakorn Lamyai

Student, Kasetsart U.

October 2, 2018

Outline

Introduction to Machine Learning

What is Machine Learning?

Traditional programming approach

Machine learning approach

Types of Machine Learning Problems

Supervised learning Unsupervised learning Reinforcement learning

Model

A good model

Overfitting and underfitting

► This is Recaptcha.

- ► This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - In some old days, we have to type Captcha texts to distinguish ourself from bots.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - In some old days, we have to type Captcha texts to distinguish ourself from bots.
 - How is it possible that with a single click, an automated system can distinguish bots from humans?

Traditional programming approach

Machine learning approach

In other words...

Machine Learning

In other words...

Machine Learning

= Data + Data analysis algorithm

In other words...

Machine Learning

Data + Data analysis algorithmAdapt to change

1. Supervised learning

- 1. Supervised learning
- 2. Unsupervised learning

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Determined by

Labels

Supervised learning

Unsupervised learning

Reinforcement learning

▶ A result of the combination between...

- ▶ A result of the combination between...
 - ▶ a method to recognise the data, and

- ▶ A result of the combination between...
 - a method to recognise the data, and
 - sample datas for such the method

Determine which group should the purple dot be in (red/green/blue) by **checking the colour of its nearest dot.**

Determine which group should the purple dot be in (red/green/blue) by checking the colour of its nearest dot.

Data

Determine which group should the purple dot be in (red/green/blue) by **checking the colour of its nearest dot.**

Data Method

Good model?

Good model

How should we *draw* the line to predict this data?

Good model

Blue, red, or green line?

1. Underfitting

Our model fails to know the data's trends

- Our model fails to know the data's trends
- Resulting in failure to predict further data

- Our model fails to know the data's trends
- Resulting in failure to predict further data
- 2. Overfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data
- 2. Overfitting
 - Our model memorise instead of generalise

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data

2. Overfitting

- Our model memorise instead of generalise
- Resulting in failure to catch the trend

Good model

Good model must generalise