13 January 2025 123

$$O(n) \quad f(n) = O(g(n)) \quad f(n) = \Omega(f(n))$$

$$f(n) = \exp(n) \quad \exp(n) \in f(n).$$

$$Lower bound \rightarrow f(n) = 100 n + 5.$$

$$f(n) = \Omega(g(n))$$

$$\Rightarrow c \cdot g(n) \leftarrow f(n). \quad c \rightarrow Trill Elbert r.$$

$$cg(n) \leftarrow 100 n + 5.$$

$$cg(n) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{3}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{3}(0) \leftarrow 100 n + 5.$$

$$c_{4}(0) \leftarrow 100 n + 5.$$

$$c_{5}(0) \leftarrow 100 n + 5.$$

$$c_{7}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{3}(0) \leftarrow 100 n + 5.$$

$$c_{4}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{3}(0) \leftarrow 100 n + 5.$$

$$c_{4}(0) \leftarrow 100 n + 5.$$

$$c_{1}(0) \leftarrow 100 n + 5.$$

$$c_{2}(0) \leftarrow 100 n + 5.$$

$$c_{3}(0) \leftarrow 100 n + 5.$$

$$c_{4}(0) \leftarrow 100 n + 5.$$

$$c_{5}(0) \leftarrow 100 n + 5.$$

$$c_{7}(0) \leftarrow 1$$

New Section 1 Page

- Transitivity: $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$. Valid for O and Ω as well.
- Reflexivity: $f(n) = \Theta(f(n))$. Valid for O and Ω .
- Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- Transpose symmetry: f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
- If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).
- If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $(f_1 + f_2)(n)$ is in $O(\max(g_1(n)), (g_1(n)))$.
- If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$ then $f_1(n)$ $f_2(n)$ is in $O(g_1(n))$.

$$f(n) = O(k \times g(n)), k > 0.$$

$$= f(n) < = C. k \cdot g(n),$$

$$= f(n) < = C. g(n).$$

=)
$$f(n) < = K \cdot g(n)$$
.

=) $f(n) = O(g(n))$

$$\frac{G(n)}{g(n)}$$
, $\frac{1}{g(n)} = O(g(n))$

$$=$$
) $f(n) = C_1, g(n)$) $f(n) = C_2, g(n)$

Multiply

$$f(n). f_2(n) \leq c_1 g_1(n). c_2 g_2(n)$$

$$f_1(n), f_2(n) \leq c_x f_1(n), g_2(n)$$

$$= \int_{1}^{\infty} f_{1}(n) \cdot f_{2}(n) = O\left(g_{1}(n), g_{2}(n)\right)$$

 $f_{1}(n) \cdot f_{2}(n) = O(g_{1}(n) g_{2}(n))$ $f_{1}(n) \cdot f_{2}(n) = (g_{1}(n) g_{2}(n))$

for
$$(i=1,i(=n,i+1))$$
 $print()$
 $for(j=1,i(=n,i+1))$
 $for(j=1,i(=n,i+1))$
 $for(j=1,i(=n,i+1))$
 $print()$

for (i2n;i)=1;i=i/2) { for (i=1; i(=n; i=i*2)} (-) Linearly increase / Levrens in Drash'edly in oran / Levrence $y^{12}1,2,4,8,16,...$ $y^{2}1,2,4,8,16,...}$ $y^{2}1,2,4,16,...}$ $y^{2}1,2,16,...}$ $y^{2}1,2$ (k+1)th step $\log_2(\text{volus}) = \log_2(2^k) = k$

v2 \