Representing Negative Numbers in Binary

("Two's complement")

8 4 2 1

•••

Sgn 4 2 1

0 1 0 1 5

1 1 0 1 -5

If 8 bits, then
-5 = 10000101

<u>- 4 2 1</u>

0 1 1 0 1 1

- 4	2	1
-----	---	---

-6 -5 **-**3 -2 -1 **-**0

<u>4 2 1</u>

-5 -3 **-2** -1 Hmm.

-6 -5 **-**0

+ 1101 + (-5)+ (-2)+

One's Complement

_	4	2	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1

From 3, how do we get -3?

One's Complement

_	4	2	1	
1	0	0	0	_7
1	0	0	1	-6 From 3, how c
1	0	1	0	-5
1	0	1	1	-4
1	1	0	0	-3 5
1	1	0	1	-2
1	1	1	0	-1 $+ (-5)$
1	1	1	1	-0
0	0	0	0	0
0	0	0	1	1
0	0	1	0	$\frac{+(-3)}{}$
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6 + (-2)
0	1	1	1	7

One's Complement

	4	2	1	
1	0	0	0	- 7
1	0	0	1	-6
1	0	1	0	- 5
1	0	1	1	-4
1	1	0	0	- 3
1	1	0	1	-2
1	1	1	0	-1
1	1	1	1	-0
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

Two's Complement

_	4	2	1	
1	0	0	0	-8
1	0	0	1	-7
1	0	1	0	-6
1	0	1	1	-5
1	1	0	0	-4
1	1	0	1	-3
1	1	1	0	-2
1	1	1	1	-1
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

Two's Complement

$$\begin{array}{c|c}
5 & 0101 \\
+ (-5) & Invert the digits. \\
\hline
 & Then add 1.
\end{array}$$

_	4	2	1	
1	0	0	0	-8
1	0	0	1	-7
1	0	1	0	-6
1	0	1	1	-5
1	1	0	0	-4
1	1	0	1	-3
1	1	1	0	-2
1	1	1	1	-1
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

How do you represent -3?

$$-8 + 4 + 1 = 3$$

$$-8 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 3$$

Two's Complement

-8_	4	2	1	_
1	0	0	0	-8
1	0	0	1	-7
1	0	1	0	-6
1	0	1	1	-5
1	1	0	0	-4
1	1	0	1	-3
1	1	1	0	-2
1	1	1	1	-1
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7