Contents

Units Layers [Convolution] Layers [Convolution] [Receptive field] Layers [Dilated Convolution, Deformable Convolution] Layers [Upsampling, Learnable Upsampling] Layers [Batch Norm, Dropout] Layers [Group Convolutions and its variants] Blocks VGG Inception ResNet* MobileNet* **Architectures** VGG, Inception, ResNet*, MobileNet* Neural Architecture Search (NAS) Summary

Big Picture

Big Picture

Big Picture Net **Blocks Units (layers)** Convolution **Pooling Softmax** Concat/Normalize

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```


- kernel size F ?
- padding size P?
- stride S?

- kernel size F = 4x4
- padding size P = 2
- stride S = 1

- kernel size, F = 3x3
- padding size, P = 1
- stride, S = 2

- kernel size, F = 3x3
- padding size, P = 1
- stride, S = 2

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```


The **receptive field** is defined as the region in the input space that a particular CNN's feature is looking at (i.e. be affected by)

- kernel size, F = 3x3
- padding size, P = 1
- stride, S = 2

A receptive field of a feature can be described by

- its center location
- its size

Tiela)

- kernel size F = 3x3,
- padding size P = 1,
- stride S = 2

- kernel size F = 3x3,
- padding size P = 1,
- stride S = 2

$$n_{out} = \left\lfloor \frac{n_{in} + 2p - k}{s} \right\rfloor + 1$$

$$j_{out} = j_{in} * s$$

$$r_{out} = r_{in} + (k - 1) * j_{in}$$

$$start_{out} = start_{in} + \left(\frac{k - 1}{2} - p\right) * j_{in}$$

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```

Layers [Dilated Convolution]

(used for Semantic Segmentation, Object Recognition)

Also known as "atrous convolutions".

Dilated convolutions "inflate" the kernel by inserting spaces between the kernel elements. The dilation "rate" is controlled by an additional hyperparameter **d**.

- input size I = 7x7
- kernel size F = 3x3,
- padding size P = 0,
- stride S = 1
- dilation rate d = 2

Layers [Dilated Convolution]

(used for Semantic Segmentation, Object Recognition)

- input size I = 7x7
- kernel size F = 3x3,
- padding size P = 0,
- stride S = 1
- dilation rate d = 2

For 'normal' convolution we have:

$$W2 = (W1 - F + 2P)/S + 1,$$

 $H2 = (H1 - F + 2P)/S + 1$
 $D2 = K$
 $F' = (F - 1) \cdot (d - 1)$

How this will change?

Layers [Dilated Convolution]

- Detection of fine-details by processing inputs in higher resolutions.
- Broader view of the input to capture more contextual information.
- Faster run-time with less parameters

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n) \qquad \longrightarrow \qquad \mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n) \qquad \longrightarrow \qquad \mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```

Layers [Upsampling]

Nearest Neighbor

Bilinear

			1	1	2	2
1	2	-	1	1		2
3	4		3	3	4	4
			3	3	4	4

Input: [2 x 2] Output: [2 x 2]

		1.00	1.25	1.75	2.00
1	2	1.50	1.75	2.00	2.50
3	4	2.50	2.75	3.25	3.50
		3.00	3.25	3.75	4.00

Input: [2 x 2]

Output: [2 x 2]

Layers [Learnable Upsampling: Transpose Convolution]

Output contains copies of the filter weighted by the input, summing at where at overlaps in

Need to crop one pixel from output to make output exactly

Layers [Learnable Upsampling: Transpose Convolution]

[Heavily used for Semantic Segmentation, GANs, Autoencoders]

Contents

```
Units
```

Layers [Convolution]

Layers [Convolution] [Receptive field]

Layers [Dilated Convolution, Deformable Convolution] Layers [Upsampling, Learnable Upsampling]

Layers [Dropout, Batch Norm]

Layers [Group Convolutions and its variants]

Blocks

VGG

Inception ResNet*

MobileNet*

Architectures

VGG, Inception, ResNet*, MobileNet*

Neural Architecture Search (NAS)

AutoML

Summary

Layers [Dropout]

- In-network ensembling
- Reduce overfitting

(a) Standard Neural Net

(b) After applying dropout.

Layers [Batch Normalization]

BN: data-driven normalizing each layer, for each batch

- Greatly accelerate training
- Less sensitive to initialization
- Improve regularization

$$\Rightarrow \text{ layer } \Rightarrow x \Rightarrow \hat{x} = \frac{x - \mu}{\sigma} \Rightarrow y = \gamma \hat{x} + \beta$$

- μ : mean of x in mini-batch
- σ : std of x in mini-batch
- γ: scale
- *β*: shift

- μ , σ : functions of x, analogous to responses
- γ , β : parameters to be learned, analogous to weights

arXiv:1502.03167

Layers [Batch Normalization]

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```

Layers [Group Convolution]

Normal Convolution:

conv 5x5

Layers [Group Convolution]

Normal Convolution:

conv 3x3

Normal Convolution: conv 1x1 A special name: point-wise convolutions

special name depth-wise
convolutions or
channel-wise
convolutions

gconv 3x3 (g=3)

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```

Blocks [VGG]

arXiv:1409.4842

Blocks [GoogleNet / Inception]

- to find out optimal local sparse structure and to repeat it spatially
- to split operations for cross-channel correlations and at spatial correlations into a series of independently operations.
- split-transform-merge strategy

Blocks [GoogleNet / Inception]

- to find out optimal local sparse structure and to repeat it spatially
- to split operations for cross-channel correlations and at spatial correlations into a series of independently operations.
- split-transform-merge strategy

Bottleneck

arXiv:1409.4842

Blocks [GoogleNet / Inception]

arXiv:1409.4842

Blocks [ResNet]

$$G(x) = x + F(x)$$

In the basic design, F(x) contains two 3×3 convolution layers along with a batch normalization and/or a rectied linear unit activation function.

arXiv:1512.03385

Blocks [ResNet, bottleneck]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to Inception)

Blocks [ResNet, bottleneck]

Blocks [ResNet, bottleneck]

Blocks [ResNeXt]

Inception: heterogeneous multi-branch

ResNeXt: uniform multi-branch

arXiv:1611.05431

Blocks [ResNeXt]

arXiv:1611.05431

Blocks [MobileNet V1]

MobileNet v1

- M number of input channels
- N the number of output channels
- $D_K * D_K$ the kernel size
- $D_F * D_F$ the feature map size

Standard convolution computation cost

$$D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$$

Depthwise separable convolution computational cost

$$D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F$$

Reduction in computation:

$$\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F}$$

$$= \frac{1}{N} + \frac{1}{D_K^2}$$

https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69

Blocks [MobileNet V2]

https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048b9618d

Blocks [MobileNet V2]

arXiv:1801.04381v3

https://medium.com/@yu4u/why-mobilenet-and-its-variants-e-g-shufflenet-are-fast-1c7048b9618d

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
```

Neural Architecture Search (NAS)

Summary

Net [VGG16]

- 3 3x3 Conv as the module
- Stack the same module
- Same computation for each module
 (1/2 spatial size => 2x filters)

Net [GoogLeNet]

Net [ResNet & ResNetX]

arXiv:1611.05431

Net [ResNet]

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv1	112×112	7×7 , 64, stride 2								
conv2_x	56×56	3×3 max pool, stride 2								
		$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$				
conv4_x			$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$				
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $				
	1×1	average pool, 1000-d fc, softmax								
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9				

Net [ResNet]

- (a) ResNet18: original structure.
- (b) ResNet-18-A: removing the first maxpooling layer.
- (c) ResNet-18-B: changing the stride size in the first conv layer from 2 to 1.
- (d) Root-ResNet-18: replacing the 7×7 conv layer with three stacked 3×3 conv layers in ResNet18-B.

The corresponding mAPs on PASCAL 2007 test (training on "07+12" from scratch) are 73.1%, 75.3%, 77.6% and 78.5%, respectively.

Net [ResNetX]

Table 1. (**Left**) ResNet-50. (**Right**) ResNeXt-50 with a $32\times4d$ template (using the reformulation in Fig. 3(c)). Inside the brackets are the shape of a residual block, and outside the brackets is the number of stacked blocks on a stage. "C=32" suggests grouped convolutions [24] with 32 groups. The numbers of parameters and FLOPs are similar between these two models.

stage	output	ResNet-50		ResNeXt-50 (32×4d)		
conv1	112×112	7×7, 64, strid	e 2	7×7, 64, stride 2		
conv2		3×3 max pool, stride 2		3×3 max pool, stride 2		
	56×56	1×1, 64 3×3, 64 1×1, 256	×3	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128, C = 32 \\ 1 \times 1, 256 \end{bmatrix}$	×3	
conv3	28×28	1×1, 128 3×3, 128 1×1, 512	×4	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256, C = 32 \\ 1 \times 1, 512 \end{bmatrix}$	×4	
conv4	14×14	1×1, 256 3×3, 256 1×1, 1024	×6	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512, C = 32 \\ 1 \times 1, 1024 \end{bmatrix}$	×6	
conv5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix}$]×3	$\begin{bmatrix} 1 \times 1, 1024 \\ 3 \times 3, 1024, C=32 \\ 1 \times 1, 2048 \end{bmatrix}$	×3	
	global average pool 1000-d fc, softmax			global average pool 1000-d fc, softmax		
# params.		25.5×10^6		25.0×10^6		
FLOPs		4.1 ×10 ⁹		4.2×10^9		

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```


searching for best blocks

The is finding one particular building block which is then repeated many times to create the deep architecture.

starting from units

Discover new connections of the whole net

start from units/simple blocks

- identity
- 1x7 then 7x1 convolution
- 3x3 average pooling
- 5x5 max pooling
- 1x1 convolution
- 3x3 depthwise-separable conv
- 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
- 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

Figure 1. Overview of Neural Architecture Search [71]. A controller RNN predicts architecture A from a search space with probability p. A child network with architecture A is trained to convergence achieving accuracy R. Scale the gradients of p by R to update the RNN controller.

arXiv:1707.07012

arXiv:1707.07012

Exploring Randomly Wired Neural Networks for Image Recognition [arXiv:1904.01569]

use three classical random graph models to generate randomly wired graphs for networks

arXiv:1904.01569

Contents

Units

Layers [Convolution]

Layers [Convolution] [Receptive field]

Layers [Dilated Convolution, Deformable Convolution]

Layers [Upsampling, Learnable Upsampling] Layers [Batch Norm, Dropout]

Layers [Group Convolutions and its variants]

Blocks VGG

Inception ResNet*

MobileNet*

Architectures

VGG, Inception, ResNet*, MobileNet*

Neural Architecture Search (NAS)

Comparison

Summary

Net [Comparison]

Contents

```
Units
    Layers [Convolution]
    Layers [Convolution] [Receptive field]
    Layers [Dilated Convolution, Deformable Convolution]
    Layers [Upsampling, Learnable Upsampling]
    Layers [Batch Norm, Dropout]
    Layers [Group Convolutions and its variants]
Blocks
    VGG
    Inception
    ResNet*
    MobileNet*
Architectures
    VGG, Inception, ResNet*, MobileNet*
Neural Architecture Search (NAS)
Summary
```

Summary

- When you see huge DN, don't be scare.
 Usually it can be decomposed.
- Automatic topology learning (NAS) is rising, but it is still important to understand basic blocks/units
- Classification problem is solved, but features matter