DEVOIR À LA MAISON N°14

Problème 1 –

Dans ce problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Partie I - Division selon les puissances croissantes

Le but de cette partie est de montrer le résultat suivant.

Division selon les puissances croissantes -

Soient $(A,B) \in \mathbb{K}[X]^2$ tel que $B(0) \neq 0$ et $p \in \mathbb{N}$. Alors il existe un unique couple $(Q,R) \in \mathbb{K}[X]^2$ tel que $A = BQ + X^{p+1}R$ et deg $Q \leqslant p$. On appelle Q et R le quotient et le reste de la division de A par B selon les puissances croissantes à l'ordre p.

- **1.** Montrer l'unicité du couple (Q, R).
- 2. En raisonnant par récurrence sur p, montrer l'existence du couple (Q, R).
- 3. On donne ci-dessous un exemple de calcul effectif d'une division selon les puissances croissantes. Avec les notations précédentes, $A=3+4X-X^3$, $B=1-2X+X^3$ et p=2. On a donc $A=B\times(3+10X+20X^2)+36X^3-10X^4-20X^5$. Ainsi le quotient est $Q=(3+10X+20X^2)$ et le reste est $R=36-10X-20X^2$.

Effectuer la division selon les puissances croissantes de $A = 2 - X + X^2 - X^3$ par $B = 1 - 2X + X^2$ à l'ordre 2. On présentera les calculs comme dans l'exemple et on donnera le quotient et le reste de cette division.

Partie II - Application aux développements limités

1. Soit $(A, B) \in \mathbb{R}[X]^2$ tel que $B(0) \neq 0$. On note Q le quotient de la division selon les puissances croissantes de A par B à l'ordre p. Justifier le développement limité suivant

$$\frac{A(x)}{B(x)} \underset{x \to 0}{=} Q(x) + o(x^p)$$

2. Soient f et g deux fonctions de la variable réelle à valeurs dans \mathbb{R} définies au voisinage de 0. On suppose qu'il existe $(A,B) \in \mathbb{R}_p[X]^2$ tel que $B(0) \neq 0$, $f(x) = A(x) + o(x^p)$ et $g(x) = B(x) + o(x^p)$. On note Q le quotient de la division selon les puissances croissantes de A par B à l'ordre p. Montrer avec soin que

$$\frac{f(x)}{g(x)} \underset{x \to 0}{=} Q(x) + o(x^p)$$

3. A l'aide de la question précédente, déterminer un développement limité à l'ordre 4 au voisinage de 0 de $x\mapsto \frac{\cos x}{\exp x}$.

Partie III - Décomposition en éléments simples

- 1. Ecrire la division selon les puissances croissantes de X^3-1 par X+1 à l'ordre 3. En déduire la décomposition en éléments simples de $\frac{X^3-1}{X^4(X+1)}$.
- 2. Décomposer en éléments simples $\frac{X^2+1}{(X-1)^4(X+1)^3}$ à l'aide de la division selon les puissances croissantes.

Problème 2 -

On définit deux suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ en posant $P_0=0$, $Q_0=1$ et pour tout $n\in\mathbb{N}$

$$P_{n+1} = P_n + XQ_n$$

$$Q_{n+1} = -XP_n + Q_n$$

Il est évident que $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ sont des suites de polynômes à coefficients *réels*, ce que l'on ne demande pas de montrer. On pose enfin $R_n = \frac{P_n}{Q_n}$ et $Z_n = Q_n + i P_n$ pour tout $n \in \mathbb{N}$.

Dans une première partie, on étudiera certains cas particuliers puis on étudiera le cas général dans la partie suivante.

Il est *fortement conseillé* de vérifier si les résultats obtenus dans le cas général sont cohérents avec ceux obtenus dans les cas particuliers.

Partie I - Etude de cas particuliers

- **1.** Calculer P₁, Q₁, P₂, Q₂, P₃, Q₃, P₄, Q₄.
- **2.** Donner la décomposition en facteurs irréductibles de P_2 , Q_2 , P_3 , Q_3 , P_4 , Q_4 dans $\mathbb{R}[X]$.
- **3.** Donner la décomposition en éléments simples de R_2 , R_3 , R_4 dans $\mathbb{R}(X)$.

Partie II – Etude du cas général

- 1. Montrer que pour tout $n \in \mathbb{N}$, $Z_n = (1+iX)^n$.
- 2. Soit $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Montrer que pour tout $n \in \mathbb{N}$.

$$P_n(\tan\alpha) = \frac{\sin(n\alpha)}{\cos^n(\alpha)} \qquad \qquad Q_n(\tan\alpha) = \frac{\cos(n\alpha)}{\cos^n(\alpha)}$$

A partir de maintenant, on suppose n non nul.

On sera amené dans plusieurs questions à distinguer des cas selon la parité de n.

- 3. Donner une expression développée de Z_n à l'aide de la formule du binôme de Newton et en déduire des expressions de P_n et Q_n .
- 4. Déterminer la parité, le degré et le coefficient dominant des polynômes P_n et Q_n .
- 5. A l'aide de la question II.2, déterminer les racines de P_n et Q_n . Montrer en particulier que toutes les racines de P_n et Q_n sont réelles et simples.
- **6.** Factoriser P_n et Q_n sous forme de produits de facteurs irréductibles de $\mathbb{R}[X]$.
- 7. Calculer la partie entière de la fraction rationnelle R_n .
- **8.** Calculer P'_n et Q'_n en fonction de P_{n-1} et Q_{n-1} .
- 9. Déterminer la décomposition en éléments simples de la fraction rationnelle R_n .
- 10. Calculer les produits suivants

$$A_n = \prod_{0 < 2k < n} \tan \frac{k\pi}{n} \qquad \qquad B_n = \prod_{0 < 2k + 1 < n} \tan \frac{(2k + 1)\pi}{2n}$$