Exercice 1 1) (Cours)

z) $X \subseteq B(n,p)$ alors pour hout t réel $\Psi_X(t) := E(e^{itX}) =$ $= \sum_{x \in D_X} e^{itx} P_X(x) \quad \text{avec} \int D_X = \int_0^{\infty} (1/2, \dots, n) P_X(x) = \int_0^{\infty} P_X(x) =$

 $\Psi_{\chi}(t) = \sum_{\kappa=0}^{n} e^{it\kappa} C_{\kappa}^{\chi} \rho^{\chi} (1-\rho)^{n-\kappa} = \sum_{\kappa=0}^{n} C_{\kappa}^{\chi} (\rho e^{it})^{\chi} (1-\rho)^{n-\kappa}$

On rappelle la formule du binôme: $(a+b)^n = \sum_{\kappa=0}^n C_{\kappa}^{\kappa} a^{\kappa} b^{n-\kappa}$.

Ainsi $\Psi_{x}(t) = \left(pe^{it} + (1-p)\right)^{n} = (1-p+pe^{it})^{n}$

3) X GP (x) also pour tout réel t, $\Psi_X(t) = E(e^{it X}) = \frac{1}{2}$

= $\sum_{x \in D_X} e^{itx} P_X(x)$ avec $\int_{X} D_X = N$ $P_X(x) = \frac{\lambda^x}{x!} e^{-\lambda}$. Alors $\varphi(t) = \sum_{x=0}^{\infty} e^{itx} \frac{\lambda^x}{x!} e^{-\lambda} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^{it})^x}{x!}$. On rappelle que $e^y = \sum_{x=0}^{\infty} \frac{y^x}{x!}$. Ainsi $\Psi_X(t) = e^{-\lambda} e^{\lambda e^{it}}$.

 $\varphi_{\times}(t) = e^{\lambda(e^{it}-1)}$

Exercice 21 1X, indique le nombre de succès au bout de n'expériences de type Bernouilli de paramètre $p = \frac{\lambda}{n}$. Donc s'n est assez grand p est assez petit (voisin de 0).

Donc pour chaque n $X_n \hookrightarrow \mathcal{B}'(n, p = \frac{\lambda}{n})$ et d'après l'exercice 6 $(1 - p) = (1 - p + pe^{it})^n = (1 - \frac{\lambda}{n} + \frac{\lambda}{n}e^{it})^n$ pour hout réelt.

2) $4 \cdot (t) = (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln 4 \cdot (t) = \ln \left[(1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n \right] = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \left[(1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n \right] = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \left[(1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n \right] = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \left[(1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n \right] = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln \ln (1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it})^n = \ln (1 - \frac{\lambda}{$

1 On sait que $\ln(1+x) \sim x \text{ quand } x \rightarrow 0$. (2) en posant $x = -\frac{\lambda}{n} + \frac{\lambda}{n}e^{it}$ lun x = 0 en fait un développement limité à l'ordre 1 donne donc $\ln (1+x) = f(x) = f(0) + \frac{x}{1!} f'(0) + x E(x)$ avec $\lim_{x \to 0} E(x) = \int_{0}^{x} dx$ Ainsi $\ln(1+x) = 0 + \frac{x}{1!} \frac{1}{1+0} + x \stackrel{?}{\varepsilon}(x)$. Let $\ln\left(1 - \frac{\lambda}{n} + \frac{\lambda}{n} e^{it}\right) = \frac{1}{n} + \frac{\lambda}{n} e^{it}$ Ainsily (t)= n ln (1- \(\frac{\partial}{n} + \frac{\partial}{n} = \frac{\partial}{n} + \lambda = \frac{\partial}{n} + \lamb $\mathcal{E}\left(-\frac{\lambda}{n} + \frac{\lambda}{n} e^{it}\right)$ PMYn(t) - + + heit et par suite (1) $\xrightarrow{n \to +\infty}$ $= \lambda + \lambda e^{it}$ $= \lambda (e^{it} - 1) = \phi(t)$ $= \phi(t)$ Exercise 3:

4) $X \subseteq \mathcal{E}(\lambda)$ on rappelle que le support de $X: C_X = [0, +\infty[$ et la deunité de X est $f_X(x) = \int_X e^{-\lambda x} \sin x \in C_X$ since. La fonction caracteristique de X: prom tout tréel

(x) (t) := E(eitx) = Seitx f(x) dx = Seitx \(\lambda = \lambda \) dx =

R + $=\lambda\int_{0}^{+\infty} e^{(it-\lambda)x} dx = \lambda\int_{0}^{+\infty} \frac{1}{(it-\lambda)x} e^{(it-\lambda)x} e^{(it-\lambda$

2)
$$Y \subseteq f_{y}(y) = \frac{1}{2}e^{-\lambda |y|} = \int_{\frac{1}{2}}^{\frac{3}{2}} e^{-\lambda y} \quad \text{if } y > 0$$

et $C_{y} = \mathbb{R}$.

In fourtion canacteristique de Y : $C_{y}(t) := E(e^{it}Y)$ pour bout tiel $C_{y}(t) := E(e^{it}Y$

L'exercice suivant n'est pas à faire en TD car il comporte trop de calcul mathématique vous l'ignorez syn

Exercise 4:
$$X \subseteq U(0, G^2)$$
 et $\Phi(t)$ sa fonction canactéristique alors $C_X = \mathbb{R}$ et $f_X(x) = \frac{1}{0 \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}$

On a $\Phi_X(t) = E(e^{itX}) = \int e^{itX} f_X(x) dx = \int e^{itX} \frac{1}{0 \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} dx$
 $\Rightarrow \Phi_X'(t) = \int_{\mathbb{R}} ix e^{itX} f_X(x) dx = \int_{\mathbb{R}} ix e^{itX} \frac{1}{0 \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} dx$

on deuve par rapport à la variable $f_X(x) = f_X(x) = f_X($

Pour réécure cette intégrale on utilisé d'intégration par parties $\phi_{X}'(t) = \frac{\lambda \sigma^{2}}{\sigma V_{2}\pi} \int_{IR} e^{itx} \frac{x e^{-\frac{\chi^{2}}{2\sigma^{2}}} dx}{\sigma^{2} itx} dx = \int u dv = \left[uv\right]^{-\frac{\chi^{2}}{2\sigma^{2}}} dv$ $u = e^{itx} \implies du = ite^{itx} dx$ $dv = -\frac{\chi^{2}}{2\sigma^{2}} dx \implies v = e^{W} = e^{-\frac{\chi^{2}}{2\sigma^{2}}}$ $\Phi_{\chi}'(4) = \frac{-i\sigma^2}{\sigma \sqrt{2\pi}} \left[e^{it\chi} e^{-\frac{\chi^2}{2\sigma^2}} \right]^{+} i\sigma^2 \frac{1}{\sigma \sqrt{2\pi}} \int_{\mathbb{R}} ite^{it\chi} e^{-\frac{\chi^2}{2\sigma^2}} dx$ $\phi_{\chi}'(t) = i \sigma^{2}(it) \int_{0}^{t} e^{itx} f_{\chi}(x) dx = -\sigma^{2}t \phi_{\chi}(t)$ 2) On sait que $\phi'_{x}(t) = -\sigma^{2}t \phi_{x}(t)$ on a alors une e.d.o. de type: $(0y' + \sigma^{2}ty = 0)$ équation linéaire SSH. $(9) \frac{dy}{dt} = - \frac{c}{c} + y = \frac{dy}{y} = - \frac{c}{c} + dt$ (=) \(\frac{dy}{y} = \int_{\text{-}}^2 \text{tdt (=)(1)Film |y| = -\frac{2}{2} t^2 + cte de plus y (0) = $\phi(0) = 1$ (lavalem d'une fonction Caractéristèpre est 1 au point t=0) on peut alors déterminer cte $-\frac{2}{2}t^2$ cte = cte $-\frac{2}{2}t^2$ (1) (=) y(1)= e = e = e = e = = 1 =) $1 = y(0) = e^{t}$ e = = > cte = 0 = > cte = 0 = > cte = 0 = 2 = Aufinal $y(t) = e^{-\frac{2}{2}t^2}$ chol à line $\phi(t) = e^{-\frac{2}{2}t^2}$