CS6846 – Quantum Algorithms and Cryptography Simon's and Bernstein-Vazirani Algorithms

Instructor: Shweta Agrawal, IIT Madras Email: shweta@cse.iitm.ac.in

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

- f is two-to-one
- $\forall x, y : f(x) = f(y) \iff y = x \oplus s \text{ for some fixed } s \neq 0^n$ find the value of s.

NPTEL

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

- *f* is two-to-one
- $\forall x, y : f(x) = f(y) \iff y = x \oplus s \text{ for some fixed } s \neq 0^n$

find the value of s.

Classical Randomized: $\Theta(2^{n/2})$.

NPTEL

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

- f is two-to-one
- $\forall x, y : f(x) = f(y) \iff y = x \oplus s \text{ for some fixed } s \neq 0^n$ find the value of s.

Classical Randomized: $\Theta(2^{n/2})$.

Quantum: O(n) queries: exponential speedup!

NPTEL

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

- f is two-to-one
- $\forall x, y : f(x) = f(y) \iff y = x \oplus s \text{ for some fixed } s \neq 0^n$ find the value of s.

Classical Randomized: $\Theta(2^{n/2})$.

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that (i) f is two-to-one, (ii) $\forall x,y:f(x)=f(y) \iff y=x\oplus s$ for some fixed $s\neq 0^n$, find the value of s.

Algorithm:

- Prepare a superposition $H^{\otimes n}(|0^n\rangle) = \frac{1}{2^{n/2}} \sum_{x} |x\rangle$.
- Apply the unitary function U_f to this, with ancillary 0^n qubits.
- Measure the last *n* registers in the computational basis. Discard.
- Apply the quantum fourier transform $H^{\otimes n}$ to first n registers.
- Repeat above steps "many" times.

Simon's Algorithm: Analysis

1). First Hadamard gives
$$y = f(x) = f(x_2)$$
 iff $|\gamma_1\rangle = \frac{1}{2^{n/2}} \sum_{x_1=x_2}^{x_1=x_2} \frac{f(x_2)}{f(x_1)}$ into which $|\gamma_1\rangle = \frac{1}{2^{n/2}} \sum_{x_1=x_2}^{x_2=x_2} \frac{f(x_2)}{f(x_2)}$ if $f(x_2)$ if $f(x_2$

$$(\sqrt{2}) = 2^{-n/2} \leq (x, f(x)).$$

Ignore normalizations.

last m bits. Say 9 get y 3). Messure

$$|\gamma_3\rangle = (|x\rangle + |x\oplus s\rangle)|\gamma\rangle.$$

Simon's Algorithm: Analysis

$$\begin{cases} 2^{-n/2-\frac{1}{2}} & (-1)^{(x)\neq x} & |z| \\ 2 & (-1)^{(x)\neq x} & |z| \end{cases}$$

$$\frac{2}{2} \left(-1 \right) \left(\frac{x_1^2}{2} \right) \left(\frac{x_1^2}$$

$$\sqrt{\frac{1}{2}} \left\{ (-1)^{(x_1^2)} \left(1 + (-1)^{(5_1^2)} \right) \right\}$$

Simon's Algorithm: Analysis

flow many times do 3 need to repeat?

Claim:
$$O(n)$$
 repetitions give constant probability

 $Pr(\overline{z}_1...\overline{z}_{k+1})$ are linearly independent $Pr(\overline{z}_1...\overline{z}_{k+1})$ are linearly independent $Pr(\overline{z}_1...\overline{z}_k)$

Prob. \overline{z}_{k+1} is in span of in each iteration is:

 $Prob. \overline{z}_{k+1}$ is in span of $\overline{z}_1...\overline{z}_k$.

Exercise

Given oracle access to $f: \{0,1\}^n \to \{0,1\}$ where $f(x) = \langle x,s \rangle$ (mod 2) for all $x \in \{0,1\}^n$. What is s?

Scratch Pad

- Applying Hadamard on top n bits:
$$|Y_3\rangle = \sum_{\chi} \sum_{\Xi} (-1)^{\sharp (\chi)} + \langle \chi; \Xi \rangle |_{\Xi}\rangle |_{\Xi}$$

Scratch Pad

