Span and Linear Independence

- 1. Write a function to determine if a vector b is in the span of a set of vectors $S=v_1,v_2,...,v_n$. For example: is [4,3,1]' in the span of [1,2,1]', [3,-2,6]', [5,0,0]'?
 - (a) Your function should have 2 inputs and 1 output. The inputs should be a Matrix A where the columns of A are the vectors in S and a vector **b**. The output should be the vector of constants **c**.
 - (b) Remember that **b** is in span S if there are constants c_1 , c_2 ,..., c_n such that $\mathbf{b} = c_1 \cdot s_1 + c_2 \cdot s_2 + ... + c_n \cdot s_n$. You can create a matrix A where the columns are the vectors in $S=v_1,v_2,...,v_n$. Set up an augmented matrix to determine the constants.
 - (c) If your program determines that **b** is in span S, output a vector of the constants $\mathbf{c} = [\mathbf{c}_1, \, \mathbf{c}_2, \, ..., \, \mathbf{c}_n].$
 - (d) Check to see if your program works by making A = [[1,2,6]',[4,-3,1]',[9,0,4]'] and $\mathbf{b} = [35,13,29]'$. The constants should be $c_1=2$, $c_2=-3$, and $c_3=5$. (Be careful creating the **A** matrix and **b** vector: Each vector inside **A** should be a **column** and **b** vector is also a column vector.)
- 2. Write a script to determine if the columns of a matrix are linearly independent. Your program should
 - (a) Ask for the user to input a matrix.
 - (b) Find the reduced echelon form of the matrix.
 - (c) Print using fprintf whether the columns of the matrix are linearly independent or dependent using the result of part b.