# VLSI DESIGN FLOW: RTL TO GDS

Lecture 22 Static Timing Analysis – Part I



Sneh Saurabh Electronics and Communications Engineering IIIT Delhi

#### Lecture Plan

#### Static Timing Analysis (STA)

- Basics of STA (this lecture)
- Subsequent Lectures:
  - ➤ Mechanics of STA
  - ➤ Advanced concepts of STA
  - ➤ Constraints





### Static Timing Analysis (STA): What is done?

- Ensures that the circuit is in a valid state at each clock cycle
- Verifies that the design is capable of operating at the given frequency
  - Information of frequency comes from constraints
- Ensures that the design does not have setup or hold violation at flip-flop
- The analysis is based on worst case scenario and takes a pessimistic view wherever possible
  - ➤ Verification is done without test vector and simulation (therefore static)
  - ➤ Ensures that design will not have setup or hold violations for any test vector

| STA                                                                                     | Simulation                                                             |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| No test-vector required                                                                 | Test vector required                                                   |
| No check of functionality                                                               | Checks<br>functionality                                                |
| Analysis performed taking pessimistic view of delays and other attributes of the design | Simulation done<br>based on<br>specified test<br>vectors and<br>delays |

### Synchronous Circuit: Data Propagation

Consider a synchronous circuit shown alongside.

#### Assume that:

- Flip-flops are ideal
- Buffers have some delay
- Inputs at the port IN are applied as shown [using identifiers for clarity]
- State defined by the combination of values at the Q-pin
- Initial state is {PQ}

Let us understand the behavior of the circuit in different clock cycles for various cases of delay of the buffers.



### Synchronous Circuit: Synchronous Behavior



### Synchronous Circuit: Zero Clocking



### Synchronous Circuit: Double Clocking



- In effect, the data gets captured by two flop-flops by the same clock edge (double clocking)
- The circuit goes into invalid states

### Synchronous Circuit: Verification

#### To ensure synchronous behavior:

- Avoid Zero Clocking: setup analysis or late analysis
- Avoid Double Clocking: hold analysis or early analysis
- A synchronous circuit can contain many flip-flops
  - > Data can propagate sequentially through a pipeline before reaching the output
- Examine each pair of launch and capture flip-flops separately



- Various types of combinational gates can be encountered in a path
- Add the delay of all the combinational circuit elements (and also the wire delay) in the path and check for delay requirements
- Real flip-flops have ST, HT, CK-Q delay
- Account for them (make the verification a bit more pessimistic)

# Static Timing Analysis (STA): Setup Requirement (1)

 Ensures that the data sent by launch flip-flop in a given clock cycle is captured reliably by the capture flip-flop in the next clock cycle

 Ensures that the setup requirement of the flip-flop is also met



Arrival Time of data at the D-pin:  $t_{arrival} = T_{launch} + T_{clk-ql} + T_{data}$ 

Required time for data to settle at FF2/D:  $t_{req,set} = T_{period} + T_{capture} - T_{setup-c}$ 

To avoid zero clocking and setup-time constraints of flip-flops:  $t_{req,set} > t_{arrival}$ 

Setup requirement:  $T_{period} + T_{capture} - T_{setup-c} > T_{launch} + T_{clk-ql} + T_{data}$ 

# Static Timing Analysis (STA): Setup Requirement (2)



#### Setup requirement:

$$\begin{split} T_{period} + T_{capture} - T_{setup-c} &> T_{launch} + T_{clk-ql} + T_{data} \\ T_{period} &> (T_{launch} - T_{capture}) + T_{clk-ql} + T_{data} + T_{setup-c} \end{split}$$

 $T_{period} > \delta_{lc} + T_{clk-ql} + T_{data} + T_{setup-c} [\delta_{lc} \text{ is the clock skew}]$ 

#### **Most Restrictive:**

$$T_{period} > \delta_{lc} + T_{clk-ql} + T_{data,max} + T_{setup-c}$$

#### Setup Violations can occur if:

- Clock Period is decreased (clock frequency is increased)
- Delay of capture clock path is decreased
- Delay of data path is increased
- Delay of launch clock path is increased

What happens for an ideal flip-flop?

What happens for an ideal clocking structure?

# Static Timing Analysis (STA): Hold Requirement (1)

 The hold check is from one active edge of the clock in the launch flip-flop to the same clock edge at the capture flip-flop (independent of clock-period)

 Ensures that the hold requirement of the flip-flop is also met



Data Reaches D-pin:  $t_{arrival} = T_{launch} + T_{clk-ql} + T_{data}$ 

Data to arrive at FF2/D after the required time:  $t_{req,hold} = T_{capture} + T_{hold-c}$ 

To avoid double clocking and hold-time constraints of flip-flops:  $t_{arrival} > t_{req,hold}$ 

Hold requirement:  $T_{launch} + T_{clk-ql} + T_{data} > T_{capture} + T_{hold-c}$ 

### Static Timing Analysis (STA): Hold Requirement (2)



#### Hold requirement:

$$T_{launch} + T_{clk-ql} + T_{data} > T_{capture} + T_{hold-c}$$
  
$$\delta_{lc} + T_{clk-ql} + T_{data} > T_{hold-c}$$

#### Most Restrictive requirement:

$$\delta_{lc} + T_{clk-ql} + T_{data,min} > T_{hold-c}$$

- Hold Violations can occur if:
  - Delay of data path is decreased
  - Delay of launch clock path is decreased
  - Delay of capture clock path is increased

What happens for an ideal flip-flop?

What happens for an ideal clocking structure?

#### References

• S. Saurabh, "Introduction to VLSI Design Flow". Cambridge: *Cambridge University Press*, 2023.

