# Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2015 : Lecture 23



Avinash Sharma CVIT, IIIT Hyderabad

#### Lecture Plan

- Basic concepts in Probability Theory
- Introduction to Probabilistic Graphical Models
- Bayesian Network
  - Representation
  - Conditional Independence
  - Inference
- Combining Classifiers (Next Class)

#### **Probabilities**

- Probability distribution  $P(X \mid \xi)$ 
  - X is a random variable
    - Discrete
    - Continuous
  - $-\xi$  is background state of information

#### Discrete Random Variables

Finite set of possible outcomes

$$X \in \{x_1, x_2, x_3, ..., x_n\}$$

$$P(x_i) \ge 0$$

$$\sum_{i=1}^n P(x_i) = 1$$

X binary:  $P(x) + P(\overline{x}) = 1$ 



#### Continuous Random Variable

 Probability distribution (density function) over continuous values

$$X \in [0,10] \qquad P(x) \ge 0$$

$$\int_{0}^{10} P(x)dx = 1 \qquad P(x)$$

$$P(5 \le x \le 7) = \int_{5}^{7} P(x)dx$$

#### **More Probabilities**

Joint

$$P(x, y) \equiv P(X = x \land Y = y)$$

- Probability that both X=x and Y=y
- Conditional

$$P(x \mid y) \equiv P(X = x \mid Y = y)$$

Probability that X=x given we know that Y=y

# Rules of Probability

Product Rule

$$P(X,Y) = P(X | Y)P(Y) = P(Y | X)P(X)$$

Marginalization

$$P(Y) = \sum_{i=1}^{n} P(Y, x_i)$$

X binary:  $P(Y) = P(Y, x) + P(Y, \overline{x})$ 

## **Bayes Rule**

$$P(H,E) = P(H | E)P(E) = P(E | H)P(H)$$

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

#### Introduction to GM's

- A Graphical Model (GM) is a visual, abstract, and mathematically formal description of properties of families of probability distributions (densities, mass functions)
- GM's are a marriage between probability theory and graph theory where the graph theoretic side provides
  - an intuitively appealing interface for modeling highly-interacting sets of variables
  - a data structure that lends itself naturally to the design of efficient general-purpose algorithms.
- GM's provide a natural tool for dealing with uncertainty and complexity in engineering & applied mathematics domain.
- The notion of modularity is fundamental to the idea of a GM
  - a complex system is built by combining simpler parts.
  - Probability theory provides the glue whereby the parts are combined.

#### Introduction to GM's

#### GM's provides:

- Structure: A method to explore the structure of "natural" phenomena (causal vs. correlated relations, properties of natural signals)
- Algorithms: A set of algorithms that provide "efficient" probabilistic inference and statistical decision making
- Language: A mathematically formal, abstract, visual language with which to efficiently discuss families of probabilistic models.
- Approximation: Methods to explore systems of approximation and their implications. E.g., what are the consequences of a (perhaps known to be) wrong assumption?
- Data-base: Provide a probabilistic "data-base" and corresponding "search algorithms" for making queries about properties in such model families.

### Classes of GM's



# Representation in Bayesian Net

- Probabilistic GM's are graphs in which nodes represent random variables, and the (absence of) arcs represent conditional (in)dependence. Hence they provide a compact representation of joint probability distributions.
- Undirected graphical models, also called Markov Random Fields
  (MRFs) or Markov networks, have a simple definition of
  independence that two (sets of) nodes A and B are conditionally
  independent given a third set, C, if all paths between the nodes in A
  and B are separated by a node in C.
- Directed graphical models also called Bayesian Networks or Belief Networks (BNs), have a more complicated notion of independence, which takes into account the directionality of the arcs.

# Representation in Bayesian Net

- The directed graphical models have a more complicated notion of independence than undirected models, they do have following advantages.
  - One can regard an arc from A to B as indicating that A ``causes'' B. This can be used as a guide to construct the graph structure.
  - Directed models can encode deterministic relationships, and are easier to learn (fit to data).



 Bayesian networks are so called as they use Bayes' rule for inference.

# Representation in Bayesian Net





| С | P(R=F) P(R=T) |     |  |
|---|---------------|-----|--|
| F | 0.8           | 0.2 |  |
| T | 0.2           | 0.8 |  |

| SR  | P(W=F) | P(W=T) |
|-----|--------|--------|
| F F | 1.0    | 0.0    |
| T F | 0.1    | 0.9    |
| FΤ  | 0.1    | 0.9    |
| T T | 0.01   | 0.99   |

### **Bayesian Networks**



| Smoking=    | no   | light | heavy |
|-------------|------|-------|-------|
| P(C=none)   | 0.96 | 0.88  | 0.60  |
| P(C=benign) | 0.03 | 0.08  | 0.25  |
| P(C=malig)  | 0.01 | 0.04  | 0.15  |

### **Product Rule**

• P(C,S) = P(C|S) P(S)

| S     | $C \Rightarrow$ | none  | benign | malignant |
|-------|-----------------|-------|--------|-----------|
| no    |                 | 0.768 | 0.024  | 0.008     |
| light |                 | 0.132 | 0.012  | 0.006     |
| heav  | $\overline{y}$  | 0.035 | 0.010  | 0.005     |

# Marginalization

| $S \downarrow C \Rightarrow$ | none  | benign | malig | total | _        |
|------------------------------|-------|--------|-------|-------|----------|
| no                           | 0.768 | 0.024  | 0.008 | .80   |          |
| light                        | 0.132 | 0.012  | 0.006 | .15   | P(Smoke) |
| heavy                        | 0.035 | 0.010  | 0.005 | .05   |          |
| total                        | 0.935 | 0.046  | 0.019 |       | )        |
|                              |       |        |       |       |          |
| P(Cancer)                    |       |        |       |       |          |

# **Bayes Rule Revisited**

$$P(S \mid C) = \frac{P(C \mid S)P(S)}{P(C)} = \frac{P(C,S)}{P(C)}$$

| $S^{\downarrow}$ $C \Rightarrow$ | none       | benign     | malig      |
|----------------------------------|------------|------------|------------|
| no                               | 0.768/.935 | 0.024/.046 | 0.008/.019 |
| light                            | 0.132/.935 | 0.012/.046 | 0.006/.019 |
| heavy                            | 0.030/.935 | 0.015/.046 | 0.005/.019 |

| Cancer=    | none  | benign | malignant |
|------------|-------|--------|-----------|
| P(S=no)    | 0.821 | 0.522  | 0.421     |
| P(S=light) | 0.141 | 0.261  | 0.316     |
| P(S=heavy) | 0.037 | 0.217  | 0.263     |

# A Bayesian Network



## Independence



Age and Gender are independent.

$$P(A,G) = P(G)P(A)$$

$$P(A|G) = P(A) A \perp G$$

$$P(G|A) = P(G) \quad G \perp A$$

$$P(A,G) = P(G|A) P(A) = P(G)P(A)$$

$$P(A,G) = P(A|G) P(G) = P(A)P(G)$$

# Conditional Independence



# More Conditional Independence: Naïve Bayes



Serum Calcium and Lung Tumor are dependent

Serum Calcium is independent of Lung Tumor, given Cancer

P(L|SC,C) = P(L|C)

# Naïve Bayes in general



2n + 1 parameters: P(h)  $P(e_i \mid h), P(e_i \mid \overline{h}), i = 1, \dots, n$ 

# More Conditional Independence: Explaining Away



Exposure to Toxics and Smoking are independent

 $\mathsf{E} \perp \mathsf{S}$ 

Exposure to Toxics is dependent on Smoking, given Cancer

P(E = heavy | C = malignant) >
P(E = heavy | C = malignant, S=heavy)

# Put it all together



# General Product (Chain) Rule for Bayesian Networks

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i \mid Pa_i)$$

$$Pa_i = parents(X_i)$$

#### Conditional Independence

A variable (node) is conditionally independent of its non-descendants given its parents.



#### Another non-descendant



Cancer is independent of Diet given Exposure to Toxics and Smoking.

#### Independence and Graph Separation

- Given a set of observations, is one set of variables dependent on another set?
- Observing effects can induce dependencies.
- d-separation (Pearl 1988) allows us to check conditional independence graphically.

## Sample of General Product Rule



 $p(x_1, x_2, x_3, x_4, x_5, x_6) = p(x_6 | x_5) p(x_5 | x_3, x_2) p(x_4 | x_2, x_1) p(x_3 | x_1) p(x_2 | x_1) p(x_1)$ 

# Arc Reversal - Bayes Rule



$$p(x_1, x_2, x_3) = p(x_3 | x_1) p(x_2 | x_1) p(x_1)$$

#### is equivalent to



$$p(x_1, x_2, x_3) = p(x_3 | x_1) p(x_2, x_1)$$
  
=  $p(x_3 | x_1) p(x_1 | x_2) p(x_2)$ 



$$p(x_1, x_2, x_3) = p(x_3 | x_2, x_1) p(x_2) p(x_1)$$
  
is equivalent to



$$p(x_1, x_2, x_3) = p(x_3, x_2 | x_1) p(x_1)$$

$$= p(x_2 | x_3, x_1) p(x_3 | x_1) p(x_3)$$

#### D-Separation of variables

- Fortunately, there is a relatively simple algorithm for determining whether two variables in a Bayesian network are conditionally independent: *d-separation*.
- Definition: X and Z are d-separated by a set of evidence (observed) variables E iff every undirected path from X to Z is "blocked".
- A path is "blocked" iff one or more of the following conditions is true: ...

#### A path is blocked when:

- There exists a variable V on the path such that
  - it is in the evidence set E (Observed Variables)
  - the arcs putting V in the path are "tail-to-tail"



- Or, there exists a variable V on the path such that
  - it is in the evidence set *E* (Observed Variables)
  - the arcs putting V in the path are "tail-to-head"



• Or, ...

#### ... a path is blocked when:

- ... Or, there exists a variable V on the path such that
  - it is NOT in the evidence set *E* (Observed Variables)
  - neither are any of its descendants
  - the arcs putting V on the path are "head-to-head"



#### D-Separation and independence

- Theorem [Verma & Pearl, 1998]:
  - If a set of evidence variables E d-separates X and Z in a Bayesian network's graph, then X and Z will be independent.
- *d*-separation can be computed in linear time.
- Thus we now have a fast algorithm for automatically inferring whether learning the value of one variable might give us any additional hints about some other variable, given what we already know.

# Inference in Bayesian Network

- The general probabilistic inference problem is to find the probability of an event given a set of evidence;
- This can be done in Bayesian nets with sequential applications of Bayes Theorem;
- In 1986 Judea Pearl published an innovative algorithm for performing inference in Bayesian nets.

#### Predictive Inference



#### Combined



# **Explaining** away



- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up.
- If we then observe heavy smoking, the probability of exposure to toxics goes back down.

# Propagation Example

"The impact of each new piece of evidence is viewed as a perturbation that propagates through the network via message-passing between neighboring variables . . ." (Pearl, 1988, p 143`



 The example above requires five time periods to reach equilibrium after the introduction of data (Pearl, 1988, p 174)

#### References

- http://www.cs.ubc.ca/~murphyk/Bayes/bnintr o.html
- Introduction to Bayesian Networks
- <u>Tutorial on Bayesian Networks</u>