

Space Programmes: History & Current Status

Historical Perspective

Chinese are acknowledged pioneers of space technology, through development of fireworks.

However, it is only at the **start** of 1900 that study of space as a **formal** discipline began, with development of **rockets** that overcame Earth's **gravity.**

Early Developments

During the decade **1948-1958**, most developments were in the context of **rocket** technology, which saw the **evolution** of German **V-2** rockets & USA's **sounding** rockets.

These were used for **detecting** X-rays and study of upper atmosphere **structure**, including aurorae, **magnetosphere**, ionosphere, Von Allen **belts** etc.

Early Developments

It should be noted that **till** this time it was believed that **only** rockets could perform such **tasks**.

However, launch of **Sputnik-1** by USSR in 1958 **established** that satellites could also be used **effectively.**

Early Space Concepts

Images Courtesy Wikipedia

Next Four Decades

Luna 3, launched in 1959, was the first among many space probes, that were launched to photograph moon.

April 12, 1961 is an important **milestone** for space programmes, as **Yuri Gagarin** established an **orbit** around Earth for the **first** time.

Next Four Decades

This **led** to significantly scaling up of **activities**, which culminated in **USA** putting a man on the **Moon** in 1969.

USSR, followed this with the launch of **Salyut-1** in 1971, which was a kind of **space station**.

Next, **USA** followed this development with the launching of **Skylab** in 1973.

Next Four Decades

India entered the space age in **1967**, with participation in the sounding **rocket** programme and raised the **level** with establishment of **satellite** centre in 1973.

European space programmes were initiated in 1975 with setting up of ESA, an inter-governmental initiative of 22 countries, while ArianeSpace came up in 1980.

The period of **1970-2000** witnessed many milestones e.g. **space station**, space shuttle, missions to Mars, **Jupiter**, Saturn, Venus, **Mercury** etc.

Missions during 1960-2000

Images Courtesy Wikipedia

Last Two Decades & Future

India has not only consolidated its position in launcher segment with PSLV & GSLV, but also has embarked on Moon & Mars missions, including human spaceflight.

Globally, **SpaceX** has emerged as a major private **player** in launch systems with heavy **launchers**, launch-to-orbit missions & fully **reusable** technology.

The **renewed** interest of many other countries in **Moon & Mars** is expected to **significantly** scale up the space **activities** in the next decade.

Last Two Decades & Future

Images Courtesy Wikipedia

Space Mission Configuration

Space Mission Configuration

Space mission is defined as an act of **transporting** a space object to its designated **spot** and then carrying out the **scientific** / technological activities.

In general, space **objects** are termed **spacecraft** which consist of **satellites**, probes, landers etc. as per the **specific** role assigned to these **objects**.

Transportation of these objects is done through **rockets** which are also termed launch **vehicles** and burn a large amount of **propellant** to impart the required **energy.**

Space Mission Classification

Further, **space** mission is broadly divided in terms of **ascent**, orbit/inter-planetary and **entry/reentry** missions.

Ascent mission is the **part** in which space **object** is imparted sufficient **energy** to form an orbit around **earth**.

Space Mission Classification

Orbital mission pertains to the **part** where the object is placed in a desired **orbit** / put on a path to other **planets**.

Lastly, **reentry** (or entry) mission is that **segment** in which the **object** is brought to the surface of **earth** (or planet) in a controlled **manner**.

Space Mission Segments

Ascent Mission Concept

Objective of ascent mission is to **provide** potential (altitude) & kinetic (velocity) **energy** to desired payload, so that it can **remain** at a specified altitude above **earth**.

This is **made** possible through burning of a **large** quantity of propellant. (Typical ascent mission).

It should be **mentioned** that ascent missions are **designed** to perform the above **task** in a safe and optimal **manner**.

Orbital Mission Concept

Objective of **orbital** segment is to perform spacecraft related **tasks** and is broadly grouped as follows.

- 1. Manoeuvres to achieve desired earth orbit.
- 2. Manoeuvres to achieve desired inter-planetary path.
- 3. Manoeuvres to achieve desired orbit around planets.

Typical Orbit/Interplanetary Path

Re-entry Mission Concept

Re-entry or return is the **reverse** of the ascent mission, that involves **recovery** of space objects, without **damage**.

The main **challenge** is the dissipation of large amount of **energy**, imparted during ascent & **orbital** mission phases.

Problem is further **complicated** by the requirement of precise **positioning** during the landing phase.

Typical Reentry Mission Shuttle Reentry Mission

Space Mission Design Strategy

Space missions aim to carry **out** scientific/ technological **tasks** so that their **design** is primarily driven by the **intended** role of the spacecraft.

However, **spacecraft** needs to be **placed** at the correct **location** to enable it to carry out the **desired** task, and hence, we **need** a launch vehicle to achieve positioning.

In most **mission** design activities, we first **design** the spacecraft, and then **synthesize** a suitable launch **vehicle**.

Summary

Space missions aim to create **objects** in space for **various** scientific and technological **needs**.

The **missions** involve the development of a **spacecraft** and a space vehicle for its **transportation**.