

Disciplina : Matemática l Aula 08 – Equivalências Lógicas

Antonio Carlos Sobieranski

"Se a comida é boa, então o serviço é excelente" ($\mathbf{A} \rightarrow \mathbf{B}$)

Equivalências da álgebra de Boole (Tautologias)

REGRA	CONJUNTIVA	DISJUNTIVA
1. Comutativa	$x \wedge y = y \wedge x$	$x \vee y = y \vee x$
2. Associativa	$(x \wedge y) \wedge z = x \wedge (y \wedge z)$	$(x \lor y) \lor z = x \lor (y \lor z)$
3. Idempotência	$x \wedge x = x$	$x \vee x = x$
4. Propriedade V	x ∧ 1 = x	x v 1 = 1 / x v x' = 1
5. Propriedade F	$x \wedge 0 = 0 / x \wedge x' = 0$	$x \vee 0 = x$
6. Absorção	$x \wedge (x \vee y) = x$	$x \lor (x \land y) = x$
7. Distributiva I	$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$	$x \lor (y \land z) = (x \lor y) \land (x \lor z)$
8. Distributiva II	$x \rightarrow (y \land z) = (x \rightarrow y) \land (x \rightarrow z)$	$x \rightarrow (y \lor z) = (x \rightarrow y) \lor (x \rightarrow z)$
9. Lei de Morgan	$(x \wedge y)' = (x' \vee y')$	$(x \lor y)' = (x' \land y')$
10.Def.Implicação	$x \rightarrow y = x' \lor y = (x \land y')'$	$x \rightarrow y = x' \vee y$
11.Negação	x = (x')'	-
12.Contraposição	$x \rightarrow y = y' \rightarrow x'$	-
13.Def.Bi-Implicação	$x \leftrightarrow y = (x \rightarrow y) \land (y \rightarrow x)$	-

Equivalências Tautológicas – analogia circuitos lógicos

$$x.1 = x$$

$$x \cdot 0 = 0$$

$$x + 0 = x$$

$$x + 1 = 1$$

$$x = x + y' = x + y' = x' \cdot y'$$

$$x$$
 y
 $(x \cdot y)' = \begin{cases} x \\ y \end{cases}$
 $x' + y'$

Exercícios

5) Quais as saídas para as seguintes expressões booleanas ?

5.1)
$$P = A' \wedge B \wedge C \wedge (A \vee D)'$$

5.2) [Dv ((AvB) ^ C)'] ^ E

Provar por simplificação (ou tabela verdade – opcionalmente)

- 1) selecione a expressão booleana que não é equivalente à $(x \cdot x)+(x \cdot x')$
- a) $x \cdot (x + x')$ b) $(x + x') \cdot x$ c) x' d) x

- 2) selecione a expressão booleana que é equivalente à (x.y) v (x.y.z)
- a) **x.y**
- b) **x . z**

- c) **y** . **z** d) **x** . **y** . **z**
- 3) selecione a expressão booleana que é equivalente à (x+y). (x+y')
- a) **y**

b) **y'**

- c) **x** d) **x'**
- 4) selecione a expressão booleana que não é equivalente à $x \cdot (x'+y) + y$
- a) x.x' + y. (1 + x) b) 0 + x.y + y c) x.y d) y

Exercícios

- **6)** Simplifique as expressões booleanas abaixo utilizando as equivalências descritas anteriormente (demonstre a equivalência utilizada).
- a) $(x + y) \cdot (x + y')$
- b) (x', y')' + (x' + z)
- c) (x.y') + z
- d) $(x' \cdot y \cdot z) \cdot (x + m)'$
- e) (A+B+C).(D+E)' + (A+B+C).(D+E)
- f) $(A + B)' \cdot (C + D + E)' + (A + B)'$
- g) A' + 1
- h) x.y.z + x.y'.z + x.y'.z' + x'.y'.z + x'.y'.z'

Exercícios

- **7)** Simplifique as expressões booleanas abaixo utilizando as equivalências descritas anteriormente (demonstre a equivalência utilizada).
- a) $(A \rightarrow B) \rightarrow B$
- b) (B' \rightarrow A') \rightarrow B
- c) $(A \leftrightarrow B)$
- d) $(A + B) \leftrightarrow (B + A)$
- e) $(A \rightarrow B) \rightarrow (B' \rightarrow A')$
- f) $(A \rightarrow B) \leftrightarrow (A' + B)$
- g) $(P \cdot P') \rightarrow Q$
- h) $(A.B) \rightarrow (A \rightarrow B')'$