4.2) Control Function Approach

Vitor Kamada

August 2019

Endogeneity

$$y_1 = z_1 \delta_1 + \alpha_1 y_2 + u_1$$
 $E(z'u_1) = 0$
 $y_2 = z\pi_2 + v_2$
 $E(z'v_2) = 0$

Endogeneity: $Cov(u_1, v_2) \neq 0$

$$u_1 = \rho_1 v_2 + e_1$$

Control Function Approach

$$y_1 = z_1 \delta_1 + \alpha_1 y_2 + u_1$$

 $y_1 = z_1 \delta_1 + \alpha_1 y_2 + \rho_1 v_2 + e_1$
 $y_2 = z \pi_2 + v_2$

$$y_1 = z_1 \delta_1 + \alpha_1 y_2 + \rho_1 \hat{v}_2 + error$$

 $error_i = e_{i1} + \rho_1 z_i (\hat{\pi}_2 - \pi_2)$

Card (1995). Using Geographic Variation in College Proximity to Estimate the Return to Schooling

```
import pandas as pd
from linearmodels import IVGMM
file="https://github.com/VitorKamada/ECO7110/raw/master/Data/card.dta
df = pd.read stata(file)
df['const'] = 1
Demo = ['const', 'black', 'exper', 'expersq',
        'south','smsa','smsa66']
Region = ['reg662', 'reg663', 'reg664', 'reg665',
           'reg666', 'reg667', 'reg668', 'reg669']
df['blackeduc'] = df['educ']*df['black']
df['blacknearc4'] = df['black']*df['nearc4']
```

```
# Reduce decimal points to 2
pd.options.display.float_format = '{:,.2f}'.format
```

```
print(df[['lwage','educ','nearc4'] +
           Demo].describe(percentiles=[]))
```

		lwage	educ	nearc4
	count	3,010.00	3,010.00	3,010.00
	mean	6.26	13.26	0.68
	std	0.44	2.68	0.47
	min	4.61	1.00	0.00
	50%	6.29	13.00	1.00
	max	7.78	18.00	1.00
	avnars	q south	n smsa	a smsa66
	•	•		
3	,010.0	0 3,010.00	3,010.00	3,010.00
	95.5	8 0.46	0.71	L 0.65
	84.6	2 0.49	0.45	0.48
	0.0	0.00	0.00	0.00
	64.0	0.00	1.00	1.00
	529.00	0 1.00	1.00	1.00

Card (1995): OLS

$$Log(wage) = \alpha_1 educ + \alpha_2 black \cdot educ + z_1 \delta_1 + u_1$$

	Parameter	Std. Err.	T-stat	P-value
educ	0.0708	0.0039	18.070	0.0000
blackeduc	0.0179	0.0060	2.9607	0.0031
const	4.6846	0.0772	60.676	0.0000
black	-0.4191	0.0769	-5.4532	0.0000
exper	0.0822	0.0068	12.168	0.0000
expersq	-0.0021	0.0003	-6.6535	0.0000
south	-0.1442	0.0281	-5.1293	0.0000
smsa	0.1341	0.0192	6.9873	0.0000
smsa66	0.0250	0.0185	1.3480	0.1777
reg662	0.0989	0.0351	2.8151	0.0049 ac

Vitor Kamada

	Parameter	Std. Err.	T-stat	P-value
const black	3.7346 -0.2828	0.9410 0.4998	3.9688 -0.5658	0.0001 0.5716
exper	0.1059	0.0249	4.2576	0.0000
expersq	-0.0022	0.0005	-4.5839	0.0000
south	-0.1425	0.0298	-4.7795	0.0000
smsa	0.1112 0.0180	0.0310 0.0205	3.5890 0.8775	0.0003 0.3802
smsa66	0.0180	0.0205	0.8775	0.3802
educ	0.1274	0.0560	2.2741	0.0230
blackeduc	0.0109	0.0398	0.2739	0.7842

◆ロト ◆団ト ◆豆ト ◆豆 ◆ りへで

	Parameter	Std. Err.	T-stat	P-value
nearc4	0.3192	0.0956	3.3391	0.0008
blacknearc4	0.0030	0.1695	0.0176	0.9860
const	16.639	0.2193	75.877	0.0000
black	-0.9375	0.1462	-6.4119	0.0000
exper	-0.4126	0.0321	-12.866	0.0000
expersq	0.0009	0.0017	0.5094	0.6105
south	-0.0517	0.1419	-0.3645	0.7155
smsa	0.4021	0.1107	3.6311	0.0003
smsa66	0.0254	0.1105	0.2303	0.8179
reg662	-0.0786	0.1854	-0.4242	0.6715

8/10

Vitor Kamada ECO 7110 Econometrics II August 2019

	Parameter	Std. Err.	T-stat	P-value
nearc4	-0.0909	0.0327	-2.7798	0.0054
blacknearc4	0.8747	0.1806	4.8445	0.0000
const	0.2570	0.1398	1.8375	0.0661
black	11.550	0.1523	75.816	0.0000
exper	0.0533	0.0303	1.7622	0.0780
expersq	-0.0079	0.0017	-4.7835	0.0000
south	-0.2528	0.0959	-2.6367	0.0084
smsa	0.1953	0.0634	3.0780	0.0021
smsa66	0.0469	0.0683	0.6874	0.4918
reg662	-0.1564	0.0655	-2.3872	0.0170

9/10

Vitor Kamada ECO 7110 Econometrics II August 2019

Endogeneity Test

```
Exog = df[['educ']+['blackeduc']+['Res1']+['Res2']+Demo+Region]
CF = IVGMM(df.lwage, Exog, None, None).fit()
```

	Parameter	Std. Err.	T-stat	P-value
educ	0.1274	0.0536	2.3766	0.0175
blackeduc	0.0109	0.0380	0.2871	0.7740
Res1	-0.0568	0.0538	-1.0562	0.2909
Res2	0.0070	0.0387	0.1812	0.8562