BECHTEL CORP SAN FRANCISCO CALIF COAL GASIFICATION STUDY HANDBOOK.(U) APR 77 AD-A042 385 F/6 21/4 N68305-76-C-0009 UNCLASSIFIED CEL-CR-77.014 1 of 2 AD A042385

CR77.014

CIVIL ENGINEERING LABORATORY Naval Construction Battalion Center Port Hueneme, California

Sponsored by NAVAL FACILITIES ENGINEERING COMMAND

COAL GASIFICATION STUDY HANDBOOK

April 1977

An Investigation Conducted by

BECHTEL CORPORATION San Francisco, California

N68305-76-C-0009

DDC DECEMBER JUL 28 1977 C

DC FILE COPY

Approved for public release; distribution unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS BEFORE COMPLLTING FORM REPORT DOCUMENTATION PAGE 2 GOVT ACCESSION NO 3. RECIPIENT'S CATALOG HUMBER CR-77,014 COAL GASIFICATION STUDY HANDBOOK. 6. PERFORMING ORG. REPORT NUMBER B CONTRACT OR GRANT NUMBER AUTHOR/A N68305-76-C-0009 Bechtel Corporation PROGRAM ELEMENT, PROJECT. 62765N; F57.571; ZF57.571 P.O. Box 3965 001; ZF57.571.001.01.015 San Francisco, CA 94119 Apr 11 1977 Civil Engineering Laboratory 104 Naval Construction Battalion Center Port Hueneme, CA 93043 15. SECURITY CLASS. (of this report) Naval Facilities Engineering Command Unclassified 200 Stovall Street 154. DECLASSIFICATION DOWNGRADING Alexandria, VA 22332 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. BUTION STATEMENT (of the abstract entered in Block 20, if different from Report) KEY WORDS (Continue on reverse side if necessary and identify by block number, Coal; coal gasification; cost analysis; emission reduction; fuels; clean burning; plant design ABSTRACT (Continue on reverse side If necessary and identify by block number) The purpose of this handbook is to provide: first, a procedure for evaluating the costs of a coal gasification plant in terms of the capital investment and operating costs. These are to be sensitive to several parameters defining coal, fuel gas, and sulfur emissions; second, a procedure for the derating of Navy base boilers, to reflect the change in performance resulting DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

053 300

LB

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Block 20 Cont'd

from introduction of fuel gas in place of coal or oil.

The gas plant analysis is based in part on a detailed analysis of the gas treatment section of the plant. The remaining part of the plant performance is based on conventional stoichiometry and near approach to equilibrium in the gas production section. The boiler derating method is based on observations of the relative contribution to heat transfer made by radiation and convection, and on conventional relations describing these transfer processes.

UNCLASSIFIED

CONTENTS

Section		Page
1	INTRODUCTION	1-1
	Purposes	1-1
	Background	1-1
	Proficiency	1-2
	Glossary	1-2
2	GASIFICATION PLANT ANALYSIS	2-1
	Summary	2-1
	System Data and Nomenclature	2-1
	Procedure and Examples	2-6
3	BOILER DERATING	3-1
	Summary	3-1
	System Data and Nomenclature	3-1
	Procedure and Examples	3-7

WORKSHEETS

ILLUSTRATIONS

Figure		Page
3-1	Theoretical Adiabatic Combustion Temperature Variation with Percent Excess Air for Various Boiler Fuels	3-4
3-2	Radiant Heat Transfer Function Variation with Combustion Reaction Temperature	3-4
3-3	Combustion Product Gas Emissivity Variation with Adiabatic Combustion Temperature	3-5
3-4	Overall Convection Heat Transfer Coefficient Variation with that of the Outer Tube Surface	3-6
3-5	Relative Convection Heat Transfer Coefficient Variation with Relative Combustion Products Gas Mass Flow	3-6
	TABLES	
Table		Page
2-1	Gasifier Plant Characteristics — Data Supporting Use of the Hand Method	2-7
3-1	Fuel in Air Combustion Product Gas Quantities	3-5
3-2	Estimating Procedure Work Sheet for Effects of Fuel Changes on Industrial Saturated Steam Boiler Performance	3-13

Section 1

INTRODUCTION

PURPOSES

The function of this handbook is to provide:

- A procedure for evaluating the costs of a coal gasification plant in terms of the capital investment and operating costs. These are to be sensitive to several parameters defining coal, fuel gas, and sulfur emissions. Hand calculation is practical.
- A procedure for the derating of Navy base boilers, to reflect the change in performance resulting from introduction of fuel gas in place of coal or oil. Hand calculation is practical.

BACKGROUND

The techniques of computation are based on principles discussed in the final report on the subject contract.*

The gas plant analysis is based in part on a detailed analysis of the gas treatment section of the plant. The remaining part of the plant performance is based on conventional stoichiometry and near approach to equilibrium in the gas production section.

The boiler derating method is based on observations of the relative contribution to heat transfer made by radiation and convection, and on conventional relations describing these transfer processes.

^{*}Civil Engineering Laboratory. Contract Report CR 77.013, "Coal Gasification Study," Bechtel Corporation, San Francisco, CA, 1977.

PROFICIENCY

Both procedures below are to some extent the extrapolations of performances calculated in detail. Their accuracy is tied in part to the validity of the base system.

- The gas plant analysis is expected to be capable at nearly all heating values of coal (perhaps down to 6,000 Btu/lb). Fortunately, the thermodynamic character of the gasifier performance forces the calculated effects to apply. The method has not been tried on low heating value coals. There are, furthermore, limits to the range of performance which can be reasonably described by the gas treatment process. These are the ranges covered in the computer runs and presented in graphical form in the contract report.
- The boiler derating method is of a proficiency sufficient for conceptual design, falling off in accuracy as extrapolation is lengthened. Some comments on validity appear in the contract report.

GLOSSARY

- l. Combustibles Considered in this report to be the gaseous components of useful fuel value, exclusive of ${\rm H_2S.}$
- 2. Fire Tube A boiler in which the hot gases pass through the Boiler main exchanger tube bundle "in-tube."
- Fuel Gas Considered in this report to be the gases from the reactor exclusive of water vapor.
- 4. Hot Fuel Gas Considered in this report to be all the hot raw gases from the reactor. Cool fuel gas is considered to be the same, but leaving the waste heat recovery section at perhaps 350° F.
- 5. High Heating Considered in this report to be the higher heating Value, HHV value of the 100 1b coal used as the basis for the reactor performance analysis.
- 6. Product Gas The gas exported from the plant for consumption.

- Quench Water The low pressure steam injected for quench purposes in the entrained solids reactor.
- 8. Savings The ratio of the present value of savings offered by the subject investment program divided by the present value of the investment required for instituting that program.
- 9. Service The percentage of time for which a plant, or section factor of a plant, is operating usefully.
- 10. Sour Gas A gas containing hydrogen sulfide and other minor sulfur compounds.
- 11. Sweet Gas A gas free of sulfur components.
- 12. Waste Heat Generally, the recovery of sensible heat from hot gases, but more specifically in the present analysis considered as the recovery of heat from the raw hot reactor gases.
- 13. Water Tube A boiler in which the main exchanger carries water Boiler "in-tube."

Section 2

GASIFICATION PLANT ANALYSIS

SUMMARY

The computation scheme for analysis of a coal gasification plant is presented in this section. The main features of the scheme are:

- Evaluation of gasifier performance
- Evaluation of gas treatment for sulfur removal
- Evaluation of the capital and operating costs, including unit product cost, using discounted future costs

The method applies to typical reactors operating in a fluidized or entrained solids mode with either air/steam or oxygen/steam as blast. The rationale for the analysis is given in the final report to the Navy for the present contract. The results of the analysis are considered to support a conceptual design. Within several sets of results developed from the analysis, comparisons can be drawn about the performance and costs of gasification and gas cleanup.

SYSTEM DATA AND NOMENCLATURE

Each of the nominal cases represents a different gasifier type and blast mode. The performance of each can be characterized by a set of values set out in Table 2-1. With these it is possible to fix approximately the rates of flow of oxygen, steam, and coal necessary to operate in a manner which extends the past experience with the reactors. Similar data are presented to support the calculations in subsequent parts of the procedure.

The list of nomenclature contains the symbols used in the computation procedure. Units are identified in computation steps.

NOMENCLATURE

Variables

C _p , C' _p	=	Molal heat capacity; Specific heat
C	=	Capital cost, dollars
e(SO ₂)	=	Emission of SO ₂ , 1b per 10 ⁶ Btu HHV (Coal)
E	=	Energy, Btu or kWhr
ΔН	=	Enthalpy change, Btu/mol
$\Delta H_{\mathbf{c}}$	=	Heat of combustion, Btu/mol
$^{\Delta H}f$	=	Heat of formation, Btu/mol
HHV(coal)	=	High heating value of coal, dry, Btu/100 lb of moist coal charged to gasifier
HHV'(coal)	=	High heating value of coal, dry, Btu/100 lb of moist coal charged to gasifier, for which the fraction of carbon converted becomes γ
n	=	Number of mols
$\Sigma n_{\mathbf{i}}$	=	Total number of mols
0	=	Operating cost, dollars per year
P	=	Pressure
Q	=	Heat effect, Btu
ΣQ	=	Total heat effect, Btu
R _{wc}	=	Ratio of total water to carbon charged to the gasifier, mol/mol
R_{qc}	=	Ratio of quench water to carbon charged to the gasifier, mol/mol
R _{oc}	=	Ratio of free oxygen to carbon charged to the gasifier, mol/mol
R _{bc}	=	Ratio of blast gas (not steam) to carbon charged to the gasifier, mol/mol
Rps	=	Fraction of high pressure steam going to process (165 psia) use
T	=	Temperature, degrees F
W	=	Weight
α	=	Fraction of gasified carbon which is carbon monoxide
Y	=	Fraction of carbon in coal which is gasified

Subscripts

Certain quantities, usually mols of a species representing some portion of a large quantity or associated with some feature of the system will be identified by the subscripts below, if not by other commonly recognized symbols.

blst = Blast

CFG = Cool fuel gas, from reactor, moist, sour

= Combustion

cmbs1 = Combustible

evap = Evaporation

FG = Fuel gas, from reactor, dry basis, sour

HFG = Hot fuel gas from reactor, raw

H₂,CO = Hydrogen/carbon monoxide mixture

 H_2O_d = Water that undergoes decomposition

H₂,fc = Hydrogen, net, in coal after some loss to combination with oxygen in coal

H_{2,n,fg} = Hydrogen net in fuel gas after some loss to combination with oxygen and sulfur in coal

hp = High pressure

i = i the component, or process features

j = j the component, or process feature

 $N_2, O_2 = N_2/O_2$ mixture

PG = Product gas

qnch = Quench water

rctr = Reactor stm = Steam

= Expansion

Numeral Subscripts - Performance Study

0 = Denotes association with feed coal to gasifier.

1 = Denotes association with blast to gasifier

2 = Denotes association with hot raw fuel gas

3 = Denotes association with waste heat recovery

Numerical Subscripts - Cost Study

CONTRACTOR OF THE PROPERTY OF

1,2,3, etc = Used to identify capital or operating cost items as indicated

Superscripts

= Used to identify a cost item as belonging to the nominal case, as opposed to a variant case

Table 2-1

GASIFIER PLANT CHARACTERISTICS
DATA SUPPORTING USE OF THE HAND METHOD*

	Gasifier Rates and Conditions	Not	Nominal Cases*			
		Case 1	Case 2	Case 3		
(1)	Oxygen blast/gaseous carbon, R					
	$R_{oc} = n_1 (0_2 \text{ blst}) n_o(C) =$	0.450	0.365	0.489		
(2)	Water/gaseous carbon, R_{wc} :					
	$R_{wc} = [n_2(H_2O) + n_2(H_2O_d)] \div n_o(C) =$	0.5475	1.193	0.490		
(3)	Water quench/gas carbon, R :					
	$R_{qc} = \frac{n_1(qnch)}{n_0(C)} =$	0.1966	0	0		
(4)	Blast gas (not steam)/gaseous carbon $R_{BC} = \frac{n_1(N_2, 0_2)}{n_1(0_2)} \times R_{OC} =$	0.459	0.372	2.329		
(5)	Enthalpy, generated steam, ref. (liquid water at 70°F, Btu/lb:					
	a. h(stm, b1st); sat'd, 900°F, 900°F; 65 psia. b. h(stm,hp); 900°F; 1,055 psia	1,133 1,410	1,440 1,410	1,440 1,410		
(6)	$Gp(N_2, O_2)$, Molar heat capacity,					
	blast gas:	7.1	7.1	7.1		
(7)	Cp(Fuel gas, hot) Btu/mol°F=	8.43	8.52	7.96		
(8)	Cp(Fuel gas, cool) Btu/mol°F =	7.35	7.35	7.1		
(9)	Cp(slag) Btu/1b°F =	0.25	0.25	0.25		
(10)	Reactor temperature:					
	T(reactor)	>200°F +MP(ASH)	<200°F -SP(ASH)	>200°F -SP(ASH)		
(11)	Fraction of gaseous carbon which is CO:					
	α =	0.85	0.672	0.802		

*Note: Typical values only; calculate actual values in procedure.
Conversion constant: 3,415.2 Btu = 1 kWhr.

		Case 1	Case 2	Case 3
(12)	Fraction of carbon in coal converted to gas:			
	<pre>γ = Anthracite γ = Eastern/Midwest coal γ = Western coal</pre>	0.87 0.95 0.98	0.83 0.89 0.95	0.83 0.89 0.95
(13)	Energy consumption, grinding and miscellaneous, kW, plant-wide	900	550	550
(14)	Fraction of high pressure steam going to process use from 165 psia header ${\rm R}_{\rm ps}$	0.34	0.21	0.26
(15)	Compression energy:			
	(a) Air-to-oxygen plant, Btu/mol(b) Dry blast to gasifier, Btu/mol(c) Raw gas compression, Btu/mol	21,296 9,218 2,676	21,296 9,218 2,676	21,296 9,218 2,676
(16)	Recovered energy expansion of fuel gas, Btu/mol	1,354	1,354	1,354
(17)	Gas treatment section, constants: a: b:	0.124 0.110	0.016 0.076	0.160 0.294
(18)	Capital cost/field cost ratio, (C_8/C_7)	1.355	1.308	1.33
(19)	Gas need at Claus plant, Q(Claus) Btu/hr	1x10 ⁶	1x10 ⁶	2x10 ⁶
(20)	Gas requirement for drying coal Btu/lb evaporation	3,163	3,163	3,163
(21)	Gas treatment pressure, psia	150	150	150
(22)	Identification of nominal cases			
	Basis			
	Blast Mode	0 ₂ /steam	n 0 ₂ /steam	Air/steam
	Gasifier Type	-	ed Fluidized solids	Fluidized solids
	Sulfur Content in Coal, %	2	2	2
	Sulfur Emission in Gases 1b SO ₂			
	per 10 ⁶ Btu HHV of Coal	1.2	1.2	1.2
	Gas Treatment Pressure, Optimum, psia	150	150	150

AND DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE PARTY

PROCEDURE AND EXAMPLES

A worker using the computation scheme starts with the ultimate analysis of the coal received at the plant and considers the behavior of the gasification process on the basis of 100 lb of this coal. Later, he converts his performance numbers to a basis of one hour's operation of the plant, and still later, to the 25-year basis for finding the costs and life-cycle production of gas.

Table 2-1 is the source of characteristic performance data necessary to several steps in the computation. The values are more or less self-evident in their development, and their validity or replacement with values pertinent to still other schemes of operation is straightforward.

The worker starts with the ultimate analysis of coal and on the basis of 100 lb of coal entering the plant. The subsequent drying of coal to a lower moisture content will be accounted for in the necessary diversion of fuel gas to support drying operations.

The final form for the computation of average gas cost is the same one used in displaying costs in the report. The present prices of coal and electricity are used in computing the recurring annual costs of these items.

The examples attached show the manner of executing the computations.

DESIGN BASIS

CASE I VARIANT

Reactor Capacity:

Heating value of reactor output, sour, $Btu/hr - 250x10^6$

Emission Of SO₂:

Product from combustion of fuel gas, 1b $SO_2/10^6$ Btu HHV (coal), 0.6 $e(SO_2)$

Ultimate Analysis Of Coal:

			% or 1b per	100 lb coal
	Carbon		60.47	W(C)
	Hydrogen		3.70	W(H ₂)
	Oxygen		5.96	w(o ₂)
	Nitrogen		1,41	w(N ₂)
	Sulfur		2.00	W(S)
	Moisture		5.00	W(H ₂ O)
	Ash		21.46	W(Ash)
		Total	100	
Ash	Softening Temperature	=	2500 °F	
Ash	Melting Temperature		2650 °F	

Note: $W(evap) = W(H_2O) - W_O(H_2O)$

REACTOR PERFORMANCE

Basis: 100 lb coal, with moisture

Carbon gasification See Table 2-1, items (11)	and (12).	
Carbon conversion, expected fraction	y = 0.95	(1)
Ratio $CO/(CO + CO_2)$, expected value	$\alpha = 0.85$	_(2)
Feedstock and resulting char		
Carbon: $\frac{60.47 \times 0.95/12}{W_{O}(C) \times (\gamma)/12} =$	4,787 Mol	(3)
Hydrogen: $\frac{3.70}{W_o(H_2)/2 - W_o(O_2)/16} =$	1.478 Mol	(4)
Oxygen: $\frac{5.96}{W_0(O_2)/32} =$	0.186 Mol	(5)
Nitrogen: $\frac{1.41 /28}{W_0(N_2)/28} =$	0.050 Mol	(6)
Sulfur: $\frac{2.00 / 32}{W_{o}(S) / 32} =$	0.0625 Mol	(7)
Moisture: $\frac{1.94}{W_0(H_2^0)} =$	0.1078 Mol	(8)
Char: $\frac{21.46 + (0.05) \times 60.47}{W_{O}(Ash) + (1-0) \times W_{O}(C)} =$	24.48 1b W _o (char)	(9)
Heat of combustion @ carbon conversion γ,	HHV' coal:	
$\frac{4.787 \times (173,934) + 1.478 \times (122,976) + 0.000}{n_o(C) \times \Delta H_c(C) + n_o(H_2,fc) \times \Delta H_c(H_2) + n_o(H_2,fc)}$	$\frac{625 \times (184,640)}{S) \times \Delta H_{C}(S)} =$	
	HHV' (coal)	(10)
$(AH_c(S) = At. wt. x 5,770 Btu/1b)$		
Heat of combustion @ full conversion, HHV		
$\frac{1025 \ 920 + 0.05263 \times 4.787 \times 173,934}{\text{HilV (coal)} + [1-\gamma)/\gamma] \times n_{O}(C) \times AH_{O}(C)}$	1 069 7/7 Bt u	(11)

$$\begin{array}{c} \text{Blast} \\ \text{Steam:} & \frac{c.5475 \times 4.787}{R_{\text{MC}} \times n_0(\text{C})} - \left[\frac{a.68}{n_0(\text{H}_2\text{O})} + 2N_0(\text{O}_2) + n_1 \frac{(\text{Quench})}{(\text{Quench})} \right] \\ & (2) \% \\ \\ \text{Quench:} & \frac{c.646 \times 4.787}{R_{\text{QC}} \times n_0(\text{C})} = \\ & \frac{a.941}{n_1(\text{stm})} \frac{\text{Mol}}{n_1(\text{stm})} \\ \text{Oxygen:} & \frac{c.48 \times 4.787}{R_{\text{QC}} \times n_0(\text{C})} = \\ & \frac{2.184}{n_1(\text{quench})} \frac{\text{Mol}}{n_1(\text{Quench})} \\ \text{Nitrogen:} & \left[\frac{(.457 - .450)}{(R_{\text{BC}} - R_{\text{OC}})} : R_{\text{DC}} \right] \times 2.754}{(4) \% (1) \%} = \frac{2.0437}{n_1(\text{O}_2\text{blst})} \\ \text{Carbon monoxive:} & \frac{a.85 \times 4.787}{a \times n_0(\text{C})} = \frac{4.069}{n_1(\text{N}_2\text{blst})} \\ \text{Carbon dioxide:} & \frac{A.75 \times 4.787}{a \times n_0(\text{C})} = \frac{4.069}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{4.069}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{(2 - \alpha) \times n_0(\text{C})} = \frac{2.678}{n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787 - 2 \times 2.754}{n_0(\text{C}_2) - n_2(\text{CO}_2)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787}{n_0(\text{H}_2) + n_1(\text{H}_2\text{O}_d)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787}{n_0(\text{H}_2) + n_1(\text{H}_2\text{O}_d)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787}{n_0(\text{H}_2) + n_1(\text{H}_2\text{O}_d)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787}{n_0(\text{H}_2) + n_1(\text{H}_2\text{O}_d)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787}{n_0(\text{H}_2) + n_1(\text{H}_2\text{O}_d)} \\ \text{Water decomposed:} & \frac{(2 - G85) \times 4.787}{n_0(\text{H}$$

*See Table 2-1.

Combustibles:
$$\frac{2 \times 4.787 - 2 \times 2.754}{2 \text{n}_{0}(\text{C}) - 2 \text{n}_{1}(0_{2} \text{blst}) + \text{n}_{0}(\text{H}_{2}, \text{fc}) - \text{n}_{0}(\text{S})}{(14)} = \frac{6.682 - \text{Mol}}{\text{N}_{2}(\text{cmbs1})} (32)$$

Total hot raw gas:

$$\frac{4.787 + 1.4155}{n_0(C) + n_2(H_2, N, fg) + n_1, 2(H_20) + n_2(N_2) + n_2(H_2S)}$$

(41)
 $\frac{8.979}{\Sigma n_1}$ (33)

Heat Effects

Heating value of fuel gas, excepting $\mathrm{H}_2\mathrm{S}$:

$$\frac{6.682}{n_0(H_{2,C0})} \times \frac{122,157}{c(32)} = \frac{86,620}{Q_c(Sweet Gas)}$$
(34)

Heat release in reactor:

$$\frac{4.787 \times 173,934 - [4.787 - 2.153] \times [2 \times 122,157]}{n_{o}(C) \times \Delta H_{c}(C) - [n_{o}(C)-n_{1}(O_{2})] \times [2\Delta H_{c}(H_{2},CO)]} = \frac{/87.099}{O(reactor)}$$
(35)

Heat release in combustion of H₂S:

$$\frac{a \cdot 625 \times 241,092}{n_2(H_2S) \times \Delta H_c(H_2S)} = \frac{15 \cdot 68 \text{ Btu}}{Q_c(H_2S)}$$
(36)

Sum of heat release effects:

$$\frac{816620}{Q_{c}(\text{Sweet gas}) + Q(\text{reactor}) + Q_{c}(H_{2}S)} + \frac{189099}{Q_{c}(H_{2}S)} = \frac{1020800}{EQ} \text{ Btu}$$

Heating value of unconverted carbon in char:

$$\frac{173,934 \times 4.787 \times [(1-95)/.95]}{\Delta II_{c}(C) \times n_{o}(C) \times [(1-\gamma)/\gamma]} \frac{43.822}{Q_{c}(Char)} (38)$$

Miscellaneous

$$n_2(H_2O) + n_2(H_2O_d) = \frac{2.621}{(27)} n_{1,2}(H_2O)$$
 (42)

Estimation of Steam Generation

Heat addition to reactor as steam blast (ref'd to 70°F), Btu:

$$\frac{1,200 \times 18 \times 1/33}{n_1(\text{stm}) \times 18 \times h(\text{stm})} \frac{24 473}{n_1(\text{stm})} \frac{\text{Btu}}{(5a)^*} (50)$$

Heat addition to reactor as blast gas $(N_2, 0_2)$, Btu:

$$\begin{bmatrix} 2.754 + 0.043 \end{bmatrix} \times 7.1 \times 7.1 \times 7.0^{\circ} F) = \frac{2340}{0_1(0_2) + 0_1(0_2)} \times C_p(T_{in} - 70^{\circ} F) = \frac{2340}{0_1(0_2, 0_2)}$$
(51)

Heat addition to reactor as warm coal from drying process:

$$\frac{(100 - 3.06) \times 0.25 \times (250 - 70)}{(100 \text{ lb} - W_{\text{evap}}) \times C'_{\text{p}} \times (T_{\text{coal}} - 70)} = \frac{4362}{Q_{\text{o}}(\text{coal})} \text{ (52)}$$

Heat loss from reactor as hot slag:

$$\frac{24.48 \times 0.25 \times (2000-70)}{\text{W(slag)} \times \text{C}'_{p} \times (\text{T}_{slag}-70)} = \frac{\text{//8/3} \text{ Btu}}{\text{Q(slag)}}$$
(53)

Heat loss from reactor as exit cool fuel gas:

$$\frac{\mathcal{E}.479 \times 7.35}{(\Sigma n_{1}) \times C_{p}(CFG) \times (350 - 70)} = \frac{18479}{Q(CFG)} = \frac{18479}{Q(CFG)}$$
(54)

Total heat release to hot raw product gas:

$$\frac{189 \text{ C99} + 24473 + 2340 + 4362 - 11813}{\text{Q(rctr)} + \text{Q}_1(\text{stm}) + \text{Q(N}_2, \text{O}_2) + \text{Q(coal)} - \text{Q(char)}}{\text{Q(HFG)}} = \frac{208447 \text{ Bt u}}{\text{Q(HFG)}}$$
(55)

Temperature reached in reactor:

$$\frac{208447/[8.43 \times 8.479] + 70}{Q(HFG)/[C_{p_{(7)}*}(HFG) \times \Sigma n_{i}] + 70} \frac{2824-}{T(retr)}$$
(56)

Case 1: This temperature should be at least 2800°F Cases 1,2, &3: See Item (10), Table 2-1.

^{*}See Table 2-1.

^{**} See Design Basis.

Generation of high pressure steam by waste heat recovery:

Case I only:

Case 3 only:

$$\begin{bmatrix} & & & & & & & & & & \\ 0 \text{ (HFG)} - 0 \text{ (CFG)} \end{bmatrix} \colon h(\text{stm, hp}) & & & & & & & \\ (55) & (54) & (5b), \text{ Table 2-1} & & & & & & \\ \end{bmatrix}$$

Case 3 only:

ENERGY MANAGEMENT

Basis: 100 lb coal, with moisture

Compression Energy

Oxygen Plant Compressor (Oxygen Blast System Only):

Air is raised from 14.7 to 165 psia @ 70°F, and liquified.

$$\frac{21,296 \times 2.754}{21,296 \times n_1(0_2)} = \frac{45 872}{E_c(AIR)} (60)$$

$$\frac{E_c(AIR)}{E_c(AIR)} = \frac{45 872}{E_c(AIR)} (60)$$

Air Blast Compressor (Air Blast System Only):

Air feed is raised from 14.7 to 50 psia @ 70°F:

$$\frac{9,218 \times 0}{9,218 \times 0} = \frac{\text{Btu}}{\text{E}_{c}(\text{AIR})}$$
(61)

Raw Gas Compression, dry:

Raw Gas Compression from 35 to 165 psia @ 100°F:

$$\frac{2,676 \times [8.979, 1.424]}{2,676 \times [\Sigma n_i - n_2(H_2O)]} = \frac{20.230}{E_c(FG)}$$

$$\frac{E_c(FG)}{(15c)*(33)}$$

Recovered Energy

Fuel Gas Expansion: 135 to 40 psia:

$$\frac{1,354 \times \left[\$.979 - 1.424\right]}{1,354 \times \left[\Sigma n_{1} - n_{2}(H_{2}0)\right]} = \frac{10.236}{E_{X}(FG)} = \frac{10.236}{E_{X}(FG)}$$

$$(64)$$

$$(16)* (33) (31)$$

Steam Expansion: 1,055 to 2.89, 165, 422 psia:

$$\frac{(17.4) \times [327 + 149 \times .343] - 322 [117.4 \times .343 + 9.0]}{W(stm,hp) \times [327 + 149 \times Rps] - 332 [W(stm,hp) \times Rps + W_1(stm)]} = \frac{31 0/9}{E_x(stm)}$$

Where $W_1(stm) = 18 \times n_1(stm)$ 1b; this value to be entered for Chars 24 3 cmly (12)

^{*}See Table 2-1.

PLANT SCALE PERFORMANCE
COAL HANDLING AND GASIFICATION

Basis: 100 1b coal or 1.0 hour, as noted

Coal Rate, 1b/hr

$$\frac{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb: } [\$/6620 + 15068]}{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb: } [Q_{c}(H_{2},CO) + Q_{c}(H_{2}S)]} = \frac{30060 \text{ b/hr}}{\text{W(Coal)}} (70)$$

Assemble previous results in 71_{i} or 72_{i} ; compute entries for 73_{i} , 74_{i} , 76_{i} (See note).

Source Component	Basis: 10	00 1b Coal		1 Hour's 0		
Item Sub	Lb	n Mols	1	Mol/Fract.		
í	71 _i	72 i	73 _i	74 _i	75 _i	76 _i
Feed						
(70) a Coal	●100		•	-	NA	-360
Blast			2/1	_		
(12) b Stm	21.62	1.200	361		18.016	65
(14) c 0 ₂	68,93	2.154	647		32.000	2076
$(15) d N_2$	1,16	0.0431	13		28.010	3
e(SubΣ)	• 91,72	3.347	•1021	NA	NA	275
(13) f Quench	• 16,95	0.944	• 283	NA	18.016	• 50
g Total	• 208.68	4.340	•1304	NA	NA	4627
Effluent						
* h Evapn	• 3.06		•	_	NA	• 92
Sour Gas		4.069	/223	0,538	22.210	2467
(25) j CO	113.97	0.718	216	0,095	28.010	3452 950
(26) k CO ₂	31.60				44.010	
(28) 1 H ₂	5.27	2,613	786	0,346	2.016	158
(29) m N ₂	2.61	0.093	28	0.0123	28.016	78
	2.13	0.0625	19	0.0083	34.076	64
2		7.5555	227/	1 000		4677
o Dry FG	155,58	1.424	428	1.000	18.016	77/
(31) p 11 ₂ 0					10.010	
(33) q (HFG)	0 181.26	8.979	2699	-	NA	• 13
(9) r Char s Total	• 24.48				NA NA	•627
s total	200.00				1421	

Note: 73i/72i = 76i/71i = W(Coal)/10071i/72i = 76i/73i = 75i

* See Design Basis. PLANT SCALE PERFORMANCE ENERGY EFFECTS

Basis: 100 1b coal or 1.0 hour, as noted

Мес	hanica	1 Energy	Basis: 100	O lb Coal	Basis: 1 1	Hour's Operation
Source	Compo	nent	Btu	kWhr	Btu	kWhr
ltem	Sub.		80 _i	81 _i	82 ₁	83 _i
Compr	ession					
	b c d	Oxy plant Air blast Raw fuel ; Misc. Total	-	5,424	6.081 3.074 22.946×10	1781
Recov	orv Fy	pansion				
(64) (65)	f g	Fuel gas	10 236 31 020 • 41 255	2,997 9,085 12.080	3.077 9.324 12.401x11	901 2132 3 633
Net D	emand					
(e,h)	j	Electric p	owr - 35 071	• 10.270	• 10,54210	• 3 086
Heat	Releas	e Effects:	Progress	ive combus	tion of co	l to final products
	k	Sweet gas			245.476× 4.529	
(35) (38)	m n	Reactor Char	189 099		56,843 13:172	
(11)			•1064 609 •1069 717		• 320 , 020x • 321 . 557x	
Total	Energ q	y to Plant	•1104788		• 332. 049x	rok
Note:	82 _i /80 81 _i /80	$= 83_{i}/81_{i}$ $= 83_{i}/82_{i}$	i = W(Coal) i = 0.2928)/100 l × 10 ⁻³		

^{*}See Table 2-1.

PLANT COSTS

Capital Costs

\$1000

Oxygen/Air Plant:

(85)

Gasification Module:

Compression/Expansion:

$$\frac{(2271/2210) \times 1706}{(N_0/N_0^\circ) \times C_3^\circ} = \frac{1748}{C_3}$$
(87)
(73₀) (see note)

Gas Treatment Module:

$$\frac{\{1 + .124x [2.00 - 2.00]\} \times \{1 - .110 \times \ln[0.60 / (.2)] \times 230^{3}}{\{1 + a \times [W_{0}(S) - W_{0}^{0}(S)]\} \times \{1 - b \times \ln[e(S0_{2})/e^{o}(S0_{2})] \times C_{4}^{0}} }{(17a)^{*}(7)}$$

$$(17b)^{*} \text{ (See Design Basis)}$$

$$\frac{2478}{C_{4}}$$

$$(88)$$

*See Table 2-1.

Note: Values for C° , for the nominal cases, are in the Final Report, Appendix F.

Coal Preparation Module:	\$1,000	
$ [30060 / 30/00] \cdot {}^{5} \times 2850 = $	2846	(89)
$[W(Coal) / W^{\circ}(Coal)] \cdot 5 \times C_{5}^{\circ}$	C ₅	
Utilities, Piping, Waste Disposal: constant	2727	(90)
	c ₆	
Direct Field Cost:	22/24	(91)
Sum: $C_1 + C_2 + C_3 + C_4 + C_5 + C_6 =$	^C ₇	
Total Capital Cost		(92)
22 124 x (1.355) =	29 978 C ₈	
$\frac{C_7 \times (C_8/C_7)}{(18)*}$	C ₈	
Operating Costs, Annual, Based on 90% Service Factor	\$1,000	
Coal @ W(Coal) lb/hr:		(96)
$\frac{(30\ 060\ /\ 2,000)\ x\ (7,889\ hr/yr)}{(W(Coal)/\ 2,000)\ x\ (7,889\ hr/yr)\ z\ (\$/ton)} =$	2964 0(coal)	•
Electric power @ E _p kW:		(97)
3086 x 7889 x 0.030 =	730	(2.)
(E _D) x (7,889 hr/yr) (\$/kWhr)	O(pwr)	•
(83)		
Catalyst, Chemicals, from Nominal Case: Equipment, Supplies, Utilities Operating Personnel		
Maintenance Materials and Labor	1488	(98)
From Report, Subtotal, 0°(Misc) =	O(_{Misc)}	-

*See Table 2-1.

Fuel Gas Production over 25 Years, based on hourly rates $\frac{[245.5 \times 10^{6} - 920 \times 3.163 - 1 \times 10^{6}] \times 0.197 \times 10^{6}}{[0]_{c} (\text{Sweet Gas}) - W_{o} (\text{evap}) \times 3.163 - 0 (\text{Claus})] \times 0.197 \times 10^{6}} = (82k) (76h) (20) (19)*$ $\frac{47.59 \times 10^{12} B7U}{\Sigma Q(PG)} (99)$

Next use the Discounted Costs of Gas Production form provided for summing discounted future costs.

Note 1: Capital costs of the nominal plant, C° , are in the Final Report. * See Table 2-1.

DISCOUNTED COSTS OF GAS PRODUCTION

Line		Differ- ential	Project	Amount, Thous	ount, Thousands of Dollars		Discounted Cost.
Number	Cost Element	Inflation Rate	Year	One Time	Recurring	Factor	Thousands of Dollars
(1)	First-Year Construction	+0	2	5 096	17%	0.867	4 418
(2)	Second-Year Construction	+0	3	10 193	342	0.788	3 052
(3)	Third-Year Construction	+0	4	14 689	492	0.717	10 532
(4)	Total Investment			• 29 978			• 22 982
(5)	Coal	+5	5-29		2964	12.268	36 362
(6)	Electricity	+6	5-29		730	14.057	10 262
(7)	Operating Labor and Materials	+0	5-29		1488	6.505	9679
(8)	Total Operating Costs				• 5182		• 56 303
(9)	Total Project Costs						• 19 285
(10)	Fuel Off Alternative	+8	5-29		4 765	18,631	88772
(11)	Energy Available over 25 years, bil	lions of Btu			•		47 592
(12)	Product Gas Unit Cost, \$/million Btu (line 9 divided by line II)						1.67
(13)	Fuel Oil Alternative Unit Cost, \$ million Btu (line 10 divided by line 11)						
(14)	Savings/Investment Ratio, SIR = (1)	ne 10 - 11ne	8)/line 4			-	7.32

cost of gas from GASPLANT program, \$/106 Btu

1.63

WORKSHEET FOR PLANT ANALYSIS

DESIGN BA	SIS CASE	= 2	VARIANT		
Reac	tor Capacity:				
	Heating value of reacto	or out	put, sour,	Btu/hr — 25	60x10 ⁶
Emis	sion Of SO ₂ :				
	Product from combustion	of f	uel gas,		
	15 SO ₂ /10 ⁶ Btu HHV (coa	1), _	0.60 e(S	02)	
Ulti	mate Analysis Of Coal:				
	Carbon			% or 1b per 60.47	100 lb coal W(C)
	Hydrogen			3.70	W(H ₂)
	Oxygen			5.96	w(o ₂)
	Nitrogen			1.41	w(N ₂)
	Sulfur			2.00	W(S)
	Moisture			5,00	w(H ₂ O)
	Ash			21.46	W(Ash)
		Tot	al al	100	
Ash	Softening Temperature	=		2500 °F	
Ash	Melting Temperature	=		2650 °F	

Note: $W(\text{evap}) = W(H_2^0) - W_0^H_2^0$

REACTOR PERFORMANCE

Basis: 100 lb coal, with moisture

Carbon gasification See Table 2-1, items (11)	and (12).	
Carbon conversion, expected fraction	y = 0.89	_(1)
Ratio $CO/(CO + CO_2)$, expected value	$\alpha = \frac{0.612}{}$	_(2)
Feedstock and resulting char		
Carbon: $\frac{60.47 \times 0.89}{W_{O}(C) \times (\gamma)/12} =$	4.485 Mol	(3)
Hydrogen: $\frac{3.70}{W_0(H_2)/2 - W_0(O_2)/16} = \frac{3.70}{V_0(H_2)/2 - W_0(O_2)/16}$	1,478 Mol	(4)
Oxygen: $\frac{5.96 / 32}{W_0(O_2)/32} =$	0,1863 Mol	(5)
Nitrogen: $\frac{\frac{41}{W_0(N_2)/28}}{ = \frac{1}{W_0(N_2)/28}}$	0.0504- Mol	(6)
Sulfur: $\frac{2.00 / 32}{W_0(S)/32}$	0.0625 Mol	(7)
Moisture: $\frac{5.00}{W_0(H_2O)} = $	n _o (H ₂ O)	(8)
Char: $\frac{21.46 \div (J89) \times 60.47}{W_{O}(Ash) + (1-) \times W_{O}(C)} =$	28.// 1b W _o (char)	(9)
Heat of combustion @ carbon conversion γ, Η	HV' coal:	
$\frac{4.485 \times (173,934) + 1.478 \times (122,976) + 0.06}{n_{o}(C) \times \Delta H_{c}(C) + n_{o}(H_{2},fc) \times \Delta H_{c}(H_{2}) + n_{o}(S)}$	$\frac{25 \times (184,640)}{\times \Delta H_{c}(S)} =$	
	973 305 Btu HHV' (coal)	(10)
$(\Delta II_c(S) = \Delta t. \text{ wt. } \times 5,770 \text{ Btu/1b})$		
Heat of combustion @ full conversion, HHV (coal)	
$\frac{973305 + [(1-0.89)/0.89]_{X} + 4.485 \times 173.934}{\text{IIIV (coal)} + [1-\gamma)/\gamma] \times n_{O}(C) \times All_{C}(C)}$	/ 069 7/8 Bt u	(11)

$$Steam: \frac{I_{0}\theta_{3} \times A_{0}\theta_{5} - [\ell, 278 + 2 \times \ell, 1863 + 0.0]}{R_{wc} \times n_{o}(C) - [n_{o}(H_{2}0) + 2N_{o}(0_{2}) + n_{1} \text{ (ouench)}]} (13) \frac{Mo!}{n_{1}(\text{stm})} (12)$$

$$Quench: \frac{CC \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C - Mo!}{n_{1}(\text{stm})} (13) \frac{Mo!}{n_{1}(\text{stm})} (12)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C - Mo!}{n_{1}(n_{2}b \text{lst})} (13) \frac{Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C - Mo!}{n_{1}(n_{2}b \text{lst})} (13) \frac{Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C - Mo!}{n_{1}(n_{2}b \text{lst})} (13) \frac{Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C - Mo!}{n_{1}(n_{2}b \text{lst})} (13) \frac{Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (13) \frac{Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{qc} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (13)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0} \times n_{o}(C)} = \frac{-C \times Mo!}{n_{1}(n_{2}b \text{lst})} (14)$$

$$Quench: \frac{C_{0} \times A_{0}\theta_{5}}{R_{0}$$

*See Table 2-1.

 $\frac{2.669 \text{ Mol}}{n_2(H_20)} (31)$

Combustibles:
$$\frac{2 \times 4.485 \times 2 \times 1.637 + 1.478 - 0.0625}{2n_{0}(C) - 2n_{1}(0_{2}blst) + n_{0}(H_{2},fc) - n_{0}(S)} = \frac{7.112 \text{ Mol}}{N_{2}(cmbs1)} (32)$$

Total hot raw gas:

$$\frac{4.485 + 1.4155}{n_0(C) + n_2(H_2, N, fg) + n_1, 2(H_2O) + n_2(N_2) + n_2(H_2S)}$$
(41)
(42)

$$\frac{11.395}{\Sigma n_1}$$
(33)

Heat Effects

Heating value of fuel gas, excepting HoS:

$$\frac{7.1/2 \times 122,157}{n_{o}(H_{2},C0) \times \Delta H_{c}(H_{2},C0)} = \frac{868.780 \text{ Btu}}{0_{c} \text{ (Sweet Gas)}}$$
(34)

Heat release in reactor:

$$\frac{4.485 \times 173,934 - [4.485 - 1.637] \times [2 \times 122,157]}{n_{o}(C) \times AH_{c}(C) - [n_{o}(C) - n_{1}(0_{2})] \times [2AH_{c}(H_{2},C0)]} = \frac{84 288}{0 \text{ (reactor)}}$$
(35)

Heat release in combustion of H2S:

$$\frac{c.062S \times 241,092}{n_2(H_2S) \times \Delta H_c(H_2S)} = \frac{75.06S \times Btu}{Q_c(H_2S)}$$
(36)

Sum of heat release effects:

$$\frac{868780 + 84288 + 15068}{Q_{c}(\text{Sweet gas}) + Q(\text{reactor}) + Q_{c}(H_{2}S)} = \frac{968/36}{\Sigma Q}$$
(37)

Heating value of unconverted carbon in char:

$$\frac{173,934 \times 4.485 \times [(1-.89)/.89]}{\Delta H_{c}(C) \times n_{o}(C) \times [(1-\gamma)/\gamma]} \frac{96.416}{Q_{c}(Char)}$$
(38)

Miscellaneous

$$n_o(H_2, fc) - n_o(S) = \frac{1.4/SS}{n_2(H_2, n, fg)}$$
 (41)

Estimation of Steam Generation

Heat addition to reactor as steam blast (ref'd to 70°F), Btu:

$$\frac{4.700 \times 18 \times 1440}{n_1(\text{stm}) \times 18 \times h(\text{stm})} \frac{121 \times 24 - Bt \cdot u}{0} (50)$$

$$\frac{Q}{1 \text{ (stm)}} (5a)^*$$

Heat addition to reactor as blast gas $(N_2, 0_2)$, Btu:

Heat addition to reactor as warm coal from drying process:

$$\frac{(100 - 4.0) \times 0.25 \times (76 - 70)}{(100 \text{ lb} - \text{W}_{evap}) \times \text{C'}_{p} \times (\text{T}_{coal} - 70)} = \frac{-6 - \text{Btu}}{Q_{o}(\text{coal})}$$
(52)

Heat loss from reactor as hot slag:

$$\frac{28 \cdot ll \times 0.25 \times (7C - 70)}{W(\text{slag}) \times C_p^{l} \times (T_{\text{slag}} - 70)} = \frac{-C - Btu}{Q(\text{slag})}$$
(53)

Heat loss from reactor as exit cool fuel gas:

$$\frac{(1,395 \times 7.35 \times (350 - 70))}{(\Sigma n_1) \times C_p(CFG) \times (350 - 70)} = \frac{23 \ 450 \text{ Btu}}{Q(CFG)} (54)$$

$$(33) \quad (8)^*$$

Total heat release to hot raw product gas:

$$\frac{84\ 288\ +\ |2|\ 824 +\ 0.0\ +\ 0.0\ -\ 0.0\ -\ 0.0\ }{Q(retr)\ +\ Q_1(stm)\ +\ Q(N_2,0_2)\ +\ Q(coal)\ -\ Q(char)} = \frac{206 //2}{Q(HFG)}$$
(55)

Temperature reached in reactor:

$$\frac{206 \text{ HZ} / [8.52 \times 11.395^{-}] + 70}{Q(\text{HFG}) / [C_{p}(\text{HFG}) \times \Sigma n_{i}] + 70} \qquad \frac{2192}{T(\text{retr})}$$
(56)

Case 1: This temperature should be at least $2800^{\circ}F$ Cases 1,2, &3: See Item (10), Table 2-1.

^{*}See Table 2-1.

^{**} See Design Basis.

Generation of high pressure steam by waste heat recovery:

Case 1 only:

Case 2 only:

Case 3 only:

$$[Q(HFG) - Q(CFG) - Q_1(N_2, O_2)] : h(stm, hp) = W_3(stm, hp)$$
 (59)

ENERGY MANAGEMENT

Basis: 100 lb coal, with moisture

Compression Energy

Oxygen Plant Compressor (Oxygen Blast System Only):

Air is raised from 14.7 to 165 psia @ 70°F, and liquified.

$$\frac{21,296 \times /(637)}{21,296 \times n_1(0_2)} = \frac{34.862 \times Btu}{E_c(AIR)}$$
(60)

Air Blast Compressor (Air Blast System Only):

Air feed is raised from 14.7 to 50 psia @ 70°F:

$$\frac{9,218 \times 0.0}{9,218 \times n_1(0_2)} = \frac{-0 - Btu}{E_c(AIR)}$$
(61)
(15b)* (14)

Raw Gas Compression, dry:

Raw Gas Compression from 35 to 165 psia @ 100°F:

$$\frac{2,676 \times [0.395 - 2.669]}{2,676 \times [\Sigma n_1 - n_2(H_20)]} = \frac{23.35}{E_c(FG)}$$

$$\frac{E_c(FG)}{(15c)*(33)} = \frac{23.35}{E_c(FG)}$$

Recovered Energy

Fuel Gas Expansion: 135 to 40 psia:

$$\frac{1,354 \times [0.395 - 2.669]}{1,354 \times [\Sigma n_{1} - n_{2}(11_{2}0)]} = \frac{11815 \text{ Btu}}{\text{E}_{x}(FG)}$$
(64)
(16)* (33) (31)

Steam Expansion: 1,055 to 2.89, 165, 422 psia:

$$\frac{(129.55) \times [327 + 149 \times .21] - 322 [129.55] \times .21 + 84.62}{W(\text{stm,hp}) \times [327 + 149 \times \text{Rps}] - 332 [W(\text{stm,hp}) \times \text{Rps} + W_1(\text{stm})]} = \frac{(14)*}{E_{\mathbf{x}}(\text{stm})}$$

Where $W_1(stm) = 18 \times n_1(stm) 1b$ (12)

^{*}See Table 2-1.

PLANT SCALE PERFORMANCE
COAL HANDLING AND GASIFICATION

Basis: 100 lb coal or 1.0 hour, as noted

Coal Rate, 1b/hr

$$\frac{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb} : [868780 + 15068]}{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb} : [Q_{c}(H_{2},CO) + Q_{c}(H_{2}S)]} = \frac{28,285}{\text{W(Coal)}} (70)$$

Assemble previous results in 71_i or 72_i ; compute entries for 73_i , 74_i , 76_i (See note).

Source Component	Basis: 100 1b Coal		Basis: 1 Hour's Operation			
Item Sub	Lb	n, Mols	N _i Mols	Mol/Fract.	Mol/wt.	Lb
i	71 _i	72 _i	73 _i	74 _i	75 _i	76 _i
Feed						
(70) a Coal	●100		• NA		NA	• 28 28
Blast (12) b Stm	84.68	4.700	1329.7	-	18.016	23 95
(14) c 0 ₂	52.38	1.637	463.0		32.000	14 81
(15) d N ₂	6.88	6.0314	8.8		28.010	24
e(SubΣ)	• 137.94		•	NΛ	NA	-3901
(13) f Quench	• -	-	•	NA	18.016	•
g Total	• 237,94		•	NA	NA	•6730
Effluent						
* h Evapn	• -0-	-0-	• -0 -	_	NA	• -0
Sour Gas (25) j CO	84.42	3,014	852,5	6,345	28.010	23 87
(26) k CO ₂	64.74	1.471	416.1	0.169	44.010	18 3
(28) 1 H ₂	8.26	4,098	1154.1	0.479	2.016	2 3
(29) m N ₂	2.27	0.081	22.9	0-009	28.016	64
(30) n (H ₂ S)	2.13	0.0625	17.7	0.007	34.076	60
o Dry FG		8,7265	2468,3	1.000	3,.070	45 7
(31) p H ₂ 0	161,82	2,669	754.9	1.000	18.016	1360
(33) q (HFG)	• 209.91	11.395	-3223,2			•59 37
(9) r Char	• 28.11	17,0,0	•		NA	• 79
s Total	• 238.02		•	***	NA	067 3

Note: 73i/72i = 76i/71i = W(Coal)/10071i/72i = 76i/73i = 75i

^{*}See Design Basis.

PLANT SCALE PERFORMANCE ENERGY EFFECTS

Basis: 100 lb coal or 1.0 hour, as noted

ource	Compo	onent	Btu	kWhr	Btu	kWhr	
Item	Sub.		80 _i	81 i	82	83 _i	
Compr	essio	n					
60)	a	Oxy plant	34 862	10,208	9.86×106	2887	
(61)		Air blast				1020	
(63)	C	Raw fuel g	gas 23 357	6.837	6.605	1434	
		Misc.	6 641	1.945	· 18,343×10	530	
	е	Total	• 64 854	• 18.990	• 18,343410	• 5 37/	
Recov	ery E	xpansion		2.46	.,	076	
64)	f	Fuel gas	11 815	3.460	3,343	7.9	
65)	g	Steam	<u>4 290</u> <u>21 105</u>	2.720	2,626	167	
	h	Total	• 21 105	• 6.180	3,343 2,626 5,969×10	• 1748	
Net E	emand						
e,h)	j	Electric p	wr 43 149	• 12.810	. 12.374x10	• 3 623	
Heat	Releas	se Effects:	Progress	ive combus		l to final	product
34)	k	Sweet gas	868 780		245,734x10	•	
36)		H ₂ S	15 068		4.262		
35)		Reactor	84 288		23.841		
		Char	96 416		27.271		
		Total	1064-552		•301 , 108		
11)			0 1 069 718		•302.570×	06	
Total	Eners	gy to Plant					
j,p)	q		• 1 113 467		•314.994 X	06	
lote:	82 /90	$0_{i} = 83_{i}/81_{i}$	= W(Co1)	/100			
	04.100	- 00./01.	- w(Coal)	/100			

*See Table 2-1.

PLANT COSTS

(LAN) 60313		
Capital Costs	\$1000	
Oxygen/Air Plant:		(35)
$\frac{\left[\frac{(463 + 8.8)}{(N_c + N_d)} / \frac{(470 + 10)}{(N_c^{\circ} + N_d^{\circ})}\right]^{0.6} \times \frac{5992}{x} = \frac{1}{(73_c)(73_d)}$ (See Note)	543C C ₁	
Gasification Module:		
	58/2 C ₂	(86)
Compression/Expansion:		
$\frac{2468}{(1/3)} \times \frac{2369}{(1/3)} = \frac{(1/3)^{\circ}}{(1/3)^{\circ}} \times \frac{1/358}{(1/3)^{\circ}} = \frac{(1/3)^{\circ}}{(1/3)^{\circ}} \times $	787/ c ₃	(87)
Gas Treatment Module:		
$ \frac{\{1 + .006 \times [2.0 - 2.0]\} \times \{1006 \times \ln[6.06 \times 1]\} \times \{1006 \times \ln[6.06 \times 1]\} \times \{1006 \times \ln[6.06 \times 1]\} \times \{1006 \times 1]}{\{1 + .006 \times [2.0 - 2.0]\} \times \{1006 \times 1]} $	$\frac{(5)^{1/2}}{(5)^{2}} = \frac{38}{(5)^{2}} = \frac{38}{(5)^{2}}$	43 =
	Design Basis)	
	4045 C ₄	(88)

*See Table 2-1.

Note: Values for $\text{C}^{\circ}\text{,}$ for the nominal cases, are in the Final Report, Appendix F.

Coal Preparation Module:	\$1,000	
	2189 C ₅	(89)
$[w(coal) / w'(coal)] \cdot j \times c_5$	^C 5	
Utilities, Piping, Waste Disposal: constant	2343	(90)
	C ₆	
Direct Field Cost:	21957 C7	(91)
Sum: $C_1 + C_2 + C_3 + C_4 + C_5 + C_6 =$	c ₇	
Total Capital Cost		(92)
2195% (1,308) =	28,720 Cg	
$C_7 \times (C_8/C_7)$ (18)*	С ₈	
Operating Costs, Annual, Based on 90% Service Factor	\$1,000	
Coal @ W(Coal) lb/hr:		(96)
$ \frac{(28285 / 2,000) \times (7,889 \text{ hr/yr})}{(W(\text{Coal})/2,000) \times (7,889 \text{ hr/yr})} = \frac{25}{(\$/\text{ton})} = $	2789 0(coal)	-
Electric power @ E _D kW:		(97)
3623 7889 0.030 =	857	
$\frac{3623}{(E_{\rm D}) \times (7,889 \text{ hr/yr})} \frac{0.030}{(\text{s/kWhr})} = {}$	O(pwr)	
(83g)		
Catalyst, Chemicals, from Nominal Case: Equipment, Supplies, Utilities		
Operating Personnel Maintenance Materials and Labor	1488	(98)
From Report, Subtotal, 0°(Misc) =	0(_{Misc)}	-

^{*}See Table 2-1.

Next use the Discounted Costs of Gas Production form provided for summing discounted future costs.

Note 1: Capital costs of the nominal plant, C° , are in the Final Report. *See Table 2-1.

DISCOUNTED COSTS OF GAS PRODUCTION

Line		Differ- ential	Project	Amount,	Thous	ands	Discount	Discounted Cost.		
Number	Cost Element	Inflation Rate	Year	One Time		Recurring		Factor	Thousands of Dollars	
	First-Year Construction	+()	2	4 8	380	1.7%		0.867	4 230	
(2)	Second-Year Construction	+()	3	97	770	342		0.788	7 700	
(3)	Third-Year Construction	+0	4	14 0	070	49%		0.717	10 690	
(4)	Total Investment			• 28 7	120				• 22 020	
(5)	Coal	+5	5-29				2789	12.268	34 24	
(6)	Electricity	+6	5-29				857	14.057	12 OSC	
	Operating Labor and Materials	+0	5-29				1488	6.505	9 680	
(8)	Total Operating Costs					•	5134		● 55 950	
(9)	Total Project Costs								• 77 970	
(10)	Fuel Oil Alternative	+8	5-29				4 820	18.631	89 801	
(11)	Energy Available over 25 years, b.	illions of Bru				-			48 200	
(12)	Product Cas Unit Cost, \$/million	Stu (line 9 di	vided by I	ine 11)					1.62	
(13)	Fuel Oil Alternative Unit Cost, \$	million Btu (line 10 di	vided by	line l	1)			1.86	
(14)	Savings/Investment Batto, SIR = (line 10 - line	8)/11me 4						1.54	

Cost of gas from GASPLANT program, #/106 Btu

1.62

Section 3

BOILER DERATING

SUMMARY

This section contains the pertinent data and computational worksheets for boiler derating estimate analyses when changing boilers to coalderived gas fuels. The methods result in estimated derating factors for boiler efficiency steam capacity and combustion product flow rates resulting from the fuel change.

SYSTEM DATA AND NOMENCLATURE

Definition of Typical Boilers

Three types of boilers are included in this study:

- Water tube boilers up to 200,000 lb/hr of steam production
- Fire tube boilers up to 10,000 lb/hr of steam production
- Stoker feed, coal-fired water tube boilers up to 200,000 lb/hr of steam production

The representative (or standard) boiler configuration for each boiler type is assumed to be rated at the maximum capacity stated above. It is assumed that the rating change factors defined for the maximum capacity boiler for each boiler type will generally apply to lower capacity boilers of that type.

All boilers are used for heating service, generating saturated steam at maximum pressures of 150 psig and minimum of 80 psig. No units

deliver superheated steam. The oldest boilers were installed in 1942, and the majority of all boilers were installed in the 1940's. They are predominantly fueled with oil ranging from No. 6 Venezuelan crude to No. 2 diesel with limited natural gas.

Based on the above information, additional general assumptions for these boiler designs can be made. Saturation pressures at 150 psig correspond to steam temperatures of $366^{\circ} F$. These conditions along with the age of boilers support an assumption of natural steam circulation in the boilers. The low steam temperatures, boiler age, and heating application to military bases support an assumption that air preheaters are not used with the subject boilers.

Water Tube Boiler. The standard boiler of this type is assumed to be oil-fired and to deliver saturated steam at 150 psig and 366°F. It is assumed that no air preheaters are used and that the boiler probably was field erected in the 1940's, although today it would be bought as a packaged unit.

Based on relative heat absorption data, the heat transferred to steam by radiation to the water walls and by convection to the boiler tube banks are approximately equal. For this boiler, the total heat transfer is assumed to be 0.5 by radiation and 0.5 by convection.

Fire Tube Boiler. The standard fire tube boiler is assumed to be oil-fired and working with steam conditions of 100 psig and 338°F. This boiler is assumed to function without an air preheater and to have been field erected in the early 1940's. Heat transfer in fire tube boilers is expected to be greater by the convection mode rather than the radiant mode. This is based on the more compact designs for fire tube boilers with combustion product flow being forced through the tubing at greater velocities than in water tube boilers. The total heat transfer in this unit is assumed to be 0.4 by radiation and 0.6 by convection.

Stoker Feed, Coal-Fired Water Tube Boiler. This boiler is assumed to be similar in requirements to the oil-fired, water tube boiler, except for the coal-firing. Steam conditions are again assumed to be 150 psig and $366^{\circ}F$. No air preheaters are used, and the unit is assumed to have been field erected in the 1940's. Total heat transfer in this unit is assumed to be 0.5 by radiation and 0.5 by convection.

Nomenclature

q = Heat transfer rate, Btu/sec.

δ = Stefan-Boltzman constant.

A = Effective heat transfer area, ft².

 T_1 = Temperature of combustion gas, ${}^{O}R$.

 T_2 = Temperature of water walls, ${}^{O}R$.

e = Effective emissivity of combustion gas.

 $U_0 = 0$ Outer tube wall heat transfer coefficient, Btu/ft²-hr- $^{\circ}$ F.

 U_L = Inner tube wall heat transfer coefficient, $Btu/ft^2-hr^{-o}F$.

G = Mass velocity or mass flow of gas over the tubes, 1b/hr ft² of cross-sectional area.

 C_p = Specific heat at constant pressure, Btu/lb- o F.

k = Conductivity of gas, Btu-ft/ft²-hr-^oF.

D = Outside tube diamter, ft.

U = Absolute gas viscosity, 1b/ft-hr.

F = Arrangement factor.

 T_b = Average bulk absolute temperature of gas, ${}^{\circ}R$.

 T_f = Average film absolute temperature, ${}^{O}R$.

NOTE: The reference heat transfer is identified by subscript 1 (prior to fuel change) and the new heat transfer case by subscript 2 (after change to low-Btu gas fuel).

Figure 3-1. Theoretical Adiabatic Combustion Temperature Variation with Percent Excess Air for Various Boiler Fuels

Figure 3-2. Radiant Heat Transfer Function Variation with Combustion Reaction Temperature ${\sf Temperature}$

was all and the property with a property of

Figure 3-3. Combustion Product Gas Emissivity Variation with Adiabatic Combustion Temperature

Table 3-1 FUEL IN AIR COMBUSTION PRODUCT GAS QUANTITIES

Fuel	Stoichfometric Air/Fuel Ratio	Excess Air (%)	Actual Air/Fuel Ratio	High Heating Value (Btu/lh)	Combustion Gas (1b/1b fuel)	Products Flow (1b/10,000 Stu)
No. 2 Diesel Oil	13.051	12	14.617	19,600	15.617	7.968
No. 6 Residual Oil	12.845	12	14.386	18,600	15.386	8.272
Natural Gas	16.434	8	17.749	23,250	18.749	8.064
Coal, Unit Mine	11.545	40	16.163	10,709	17.163	16.03
Low-Btu Gas, 286 Btu/cu ft	4.6154	10	5.0769	5,280	6.0769	11.51
Low-Btu Gas, 269 Btu/cu ft	4,9349	10	5.4284	5,314	6.4284	12.10
Low-Btu Gas, 157 Btu/cu ft	2.3730	10	2.6103	2,708	3.6103	13.33
Low-Btu Gas, 125 Btu/cu ft	2.3977	10	2,6375	1,921	3.6375	18.94

CONTRACTOR OF THE PROPERTY SECTION OF THE SECTION O

Figure 3-4. Overall Convection Heat Transfer Coefficient Variation with That of the Outer Tube Surface

Figure 3-5. Relative Convection Heat Transfer Coefficient Variation with Relative Combustion Products Gas Mass Flow

PROCEDURE AND EXAMPLES

The worksheet shows the computation necessary to estimate the boiler performance rating factors for conversion to the three fuels for each of the three boiler types. The three fuel changes are to low-Btu gases of 286, 269, and 125 Btu/ft³. Additional worksheets are included.

The computational methodology is best explained by defining each computational step. These definitions are numbered to correspond with those on the worksheet.

- Boiler Type. Identify the type of boiler by entering the letters WT for water tube or FT for fire tube boilers.
- 2 Steam Temperature, ^oF. Enter the saturated steam temperature for the boiler being analyzed. In the sample computations, the assumed temperatures are 366 F for water tube boilers and 338 F for fire tube boilers.
- <u>Fuel</u>. Identify the fuel for which the boiler was originally designed.
- 4 Excess Air, %. Enter the percent of excess air supplied to the furnace section for combustion of the original fuel.
- 5 Fraction of Heat Transferred by Radiation. Enter the fraction of total heat transferred (steam generated) that occurs in the furnace section of the boiler.
- 6 Fraction of Heat Transferred by Convection. Enter the fraction of total heat transferred (steam generated) that occurs in the convection tube bundles of the boiler.
- ① Check. The sum of ⑤ and ⑥ must equal 1.00 to account for all heat transferred in the boiler.
- 8 Combustion Temperature, ^oF. Enter the temperature from Figure 3-1 as a function of fuel ③ and excess air ④.
- Combustion Temperature, R. Add 460 to
 8.

THE RESERVE OF THE STREET

- Emissivity. Enter the emissivity from Figure 3-3 as a function of fuel 3 and combustion temperature 8.
- Combustion Products Rate, 1b/10,000 Btu. Enter the combustion products rate from Table 3-1 as a function of fuel (3) and excess air (4).
- Fuel, Type, and High Heating Value, Btu/cu ft. Enter here the type and high heating value of the coal-derived gas fuel to be burned in the boiler. In the sample computations, gases of 286, 269, and 125 Btu/ft³ are used.
- Excess Air, %. Enter the percent of excess air supplied to the furnace air for combustion of the conversion gas to be used in place of the original design fuel. In the sample computations 10 percent excess air is used for all gas fuels.
- Combustion Temperature, ${}^{\circ}F$. Enter the temperature from Figure 3-1 as a function of fuel (13) and excess air (14).
- (16) Combustion Temperature, R. Add 460 to (15) .
- Emissivity. Enter the emissivity from Figure 3-3 as a function of fuel (13) and combustion temperature (15)
- Combustion Products Rate, 1b/10,000 Btu. Enter the combustion products rate from Table 3-1 as a function of fuel (13) and excess air (14).
- Ratio of Products. Compute the ratio of combustion products rate with conversion gas fuel to that with the original fuel $(19 \div 12)$. The result indicates the change in combustion products flow rate through the boiler per unit of fuel heat release.

A number greater than 1.00 means an increase in flow rate is required to obtain the same fuel heat release.

Flow rate increases are limited to 1.10 in order to exclude cases requiring major rebuilding of boiler systems to accommodate large gas flow increases.

A number less than 1.00 means a decrease in flow rate is required to obtain the same fuel heat release. For such cases, the ratio used is 1.00, which means that boiler capacity can be increased by injecting additional fuel to maintain the original gas flow rate. This occurs for boilers originally designed for stoker coal-fueling.

- Compute the ratio of radiant heat transfer with conversion gas fuel to that with the original fuel [(18)/(11)x(17)/(10)]. The result indicates the change in radiant heat transfer performance in the furnace section of the boiler. A number less than 1.00 means that the heat transfer rate is reduced.
- Compute the ratio of combustion product gas temperature decrease by radiant heat transfer with conversion gas fuel to that with the original fuel (21 / 20). A number less than 1.00 means that the temperature decrease in the furnace is reduced.
- Stack Temperature, ${}^{\circ}F$. Enter the measured stack gas temperature or estimate it as the saturated steam temperature plus $100{}^{\circ}F$ for water tube boilers (2) + 100) or + 200 ${}^{\circ}F$ for fire tube boilers (2) + 200).
- Compute the approximate temperature decrease of the original fuel combustion gases resulting from radiant heat transfer in the furnace section of the boiler $(5) \times (8) (23)$.
- Compute the approximate temperature of the original fuel combustion gases entering the convection tube bundle section of the boiler ((8) (24)).
- Compute the approximate temperature of the conversion gas fuel combustion gas entering the convection tube bundle section of the boiler (15 2 x 24).
- Compute the convection heat transfer driving temperature difference ratio of the conversion gas fuel case to the original fuel case [($\frac{26}{2}$ $\frac{2}{2}$)].

- Enter the relative convection heat transfer coefficient from Figure 3-5. The factor $(U_0)_2/(U_0)_1$ is for water tube boilers. The factor $(U_i)_2/(U_i)_1$ is for fire tube boilers. Both factors are a function of the ratio of products (20).
- Enter the overall convective heat transfer coefficient from Figure 3-4 as a function of $U_0 = (U_0)_2/(U_0)_1 = 28$. This step is required only for water tube boilers.
- Compute the overall convective heat transfer coefficients ratio of the conversion gas fuel case to the original fuel case. For water tube boilers, this ratio is 29 /0.5. For fire tube boilers this ratio is 28 .
- Compute the ratio of convection heat transfer with conversion gas fuel to that with the original fuel (30 x 2)). The result indicates the change in convection heat transfer performance in the tube bundle section of the boiler. A number less than 1.00 means that the heat transfer rate is reduced.
- Compute the ratio of combustion product gas temperature decrease by convection heat transfer with conversion gas fuel to that with the original fuel (31 / 20). A number less than 1.00 means that the temperature decrease in the tube bundle section is reduced.
- Compute the total boiler heat transfer performance effect (ratio of steam generation) as (5×2)) + (6×3)). This sums the effects in the radiant furnace and convection tube bundle sections of the boiler.
- 34 Compute the total boiler combustion gas temperature decrease effect (ratio of available energy extraction) as (5) x 22) + (6) x 32).
- Ompute the temperature increase by combustion in the furnace of the original fuel (8 70.F).
- 36 Compute the temperature increase by combustion in the furnace of the conversion gas fuel (15 70.F).

Ompute the overall boiler efficiency effect of the fuel change as (34 x 35) / 36. This value indicates the efficiency change expected to occur with the change in boiler fuel. This value times the original fuel boiler efficiency estimates the boiler efficiency with the conversion gas fuel.

Table 3-2

ESTIMATING PROCEDURE WORKSHEET FOR EFFECTS OF FUEL CHANGES ON INDUSTRIAL SATURATED STEAM BOILER PERFORMANCE

1)		UNITS	A	8	С	D	E		6	H	I
2	BOILER TYPE WI WATER TUBE		wi	WT	WT	wT	WT	WT	er	FT	FT
	FT FIRE TUBE		366	365	366	366	366	366	338	338	338
	STEAM TEMPERATURE										
	INITIAL CONDITIONS										
3	FUEL		Oil	0.7	61	2001	Chi	Coal	011	0.1	0.1
3	EXCESS AIR	×	12	12	12	40	40	45	12	12	12
3	FRACTION OF HEAT TRANSFERRED BY RADIATION		.50	.50	-50	.50	.50	.51	-40	.40	-40
•	FRACTION OF HEAT TRANSFERRED BY CONVECTION		.50	.50	-5 1	.50	1.50	.50	.60	.60	.60
9	CHECK, (\$) + (\$) - 1.00		1.00	1.00	1.00	1.50	1.50	1.00	1.00	1,00	1.10
1	COMBUSTION TEMPERATURE. FI AND (4)		3980	3980	3380	2300	2300	35.	308-	3 9 80	3981
90700	COMBUSTION TEMPERATURE 400.	R	4440	4440	444^		210	27 - 1	4444	4440	4440
10	TEMPERATURE FUNCTION F (1)		375	375	375	60	4.1	60	3.75	3.75	375
TO	EMISSIVITY F (3) AND (8)		./28	./28	.128	.254	.24	.244	. 128	.128	.128
12		10 000 BTU	8.272	8.272	8.272	11 3		14 .3	9 272	8.272	8.272
			1	NET		ADRTO	MBTU	48°	MBTU	MRTO	4871
+	NEW FUEL CONDITIONS		MBTO	METO	-270	-	-	-	-		-
11)	FUEL GAS HIGH HEATING VALUE	CUFT	-	-		•				-	125
10	EXCESS AIR	*	-								10
15	COMBUSTION TEMPERATURE FE (1) AND (4)		-					-		-	2170
16	COMBUSTION TEMPERATURE (15) + 460.		-			-	+				2630
17	TEMPERATURE FUNCTION. F (16)					-					49
10	EMISSIVITY, F((1) AND (15))		-				-	the state of the s		the second second	.296
19	COMBUSTION PRODUCTS RATE, F(13 AND 14)	10 000 BTU	11.51	12.10	18.94	11.51	12.10	18.94	11.51	12.10	18 14
20	RATIO OF PRODUCTS.(19) (12) ≤ 1.10		(1.39)	(1.46)	(2.29)	(.718)	(.755)		(1, 39)	(1.46)	(2 2)
			1.10	1.10	1.10	1.00	100	1.10	1.10	1112	1.15
10	EXCESS AIR COMBUSTION TEMPERATURE, F(1) AND (4) COMBUSTION TEMPERATURE (5) - 486. TEMPERATURE FUNCTION, F (8) EMISSIVITY, F(1) AND (5)	*	286 10 2950 3410 133 ./92	269 10 2710 3170 101 .221	125 10 2170 2630 49 , 246	286 16 2750 3410 /33 .192	269 10 -710 3170 101 -221	725 10 2170 2630 47 .246	286 10 2950 34.0 133 .192	269 15 2710 3170 101 .221	

Table 3-2 (Continued)

COMPUTATIONAL STEP	UNITS	A	В	C	D	E	F	6	1 4	I	
EFFECTS ON RADIANT HEAT TRANSFER											
$\left(\frac{\bullet_2}{\bullet_1}\right), \cdot \frac{\bullet_1}{\bullet_1}, \cdot \frac{\bullet_2}{\bullet_1}$.532	.465	.251	1,676	1,465	.791	.512	.447	.242	
$\left(\frac{\triangle^{T}_{2}}{\triangle^{T}_{1}} \right)_{1} \cdot \frac{21}{29}$.484	.423	.228	1.676	1.965	-719	.465	.406	.120	
STACK TEMPERATURE, WATER TUBE - (2) + 100		466	966	966	466	46.6	466				
FIRE TUBE - (2) - 200		1 700	100	7 66	4100	/	7.00	538	538	538	
△1, · (1) · (2)	,	1757	1757	1757	917	917	917	1377	377	1377	
Test - (2)		2223	2223	2223	/383	/383	/383	2603	2503	2603	
T _{th2} - (15) - (22) + (24)		2100	1967	1769	1413	/367	:511	23/2	2/5/	867	
The $2-T_1$ $29-2$ $29-2$ $29-2$ $29-2$ $29-2$ $29-2$.934	. 862		1.019		-	.871	.800	. 675	
(U)2/(U)1, FOR FIRE TUBE		11700	1.00	1100	1.00	7700	100	1.078	1.078	1.078	-
u ₂ , r ₍₂₀₎		.512	.512	.5/2	.500	.500	.5/2		-	-	
U2/U1. WATER TUBE - 28 - 63		1.024	1.024	1.024	1,000	1,000	1.024				
FIRE TUBE - 20								1.078	1.078	7,078	
(1/1) · (1)		.956	.883	.774	1.029	.984	1.153	.939	.862	.728	
$\begin{pmatrix} \Delta^{\mathbf{r}}_{\mathbf{J}} \end{pmatrix}_{\mathbf{r}} \cdot \frac{\mathbf{n}}{\mathbf{n}}$.8%9	.803	.704	1.029	.984	1,048	. 854	.784	.662	
	. 19	• @									

Table 3-2 (Continued)

STEP NO.	COMPUTATIONAL STEP	UNITS	A	3	С	D	E	E	G	н	I	
	TOTAL PERFORMANCE EFFECTS											
9	(12) TOTAL +(() x (2)) + (() x (3))		.744	. 674	.5/2	1,352	1.224	.972	.768	.696	.534	
•	$\left(\frac{\triangle^{\intercal_2}}{\triangle^{\intercal_1}}\right)_{\texttt{TOTAL}} \cdot (\textcircled{\$} \star \textcircled{2}) \cdot (\textcircled{\$} \star \textcircled{2})$. 676	. 613	.466	1.352	1.22+	.884	78	.633	.485	
99	Δ T _{comb 1} * (1) - 70.		3910	3910	3910	2230	2230	2230	E110	3910	3910	
(ΔT _{comb 2} - (15) - 76		2880	2640	2100	2880	2640	2100	288.	2690	2100	
(D)	(EFF. 2) TOTAL 39		.918	.908	.868	1,047	1.034	.939	,948	.938	.9:3	

WORKSHEET FOR PLANT ANALYSIS

DESIGN BASIS	
Reactor Capacity:	
Heating value of reactor output,	sour, Btu/hr - 250x10 ⁶
Emission Of SO ₂ :	
Product from combustion of fuel ga	as,
1b SO ₂ /10 ⁶ Btu HHV (coal),	e(S0 ₂)
Ultimate Analysis Of Coal:	
	% or 1b per 100 1b coal
Carbon	W(C)
Hydrogen	W(H ₂)
Oxygen	w(o ₂)
Nitrogen	W(N ₂)
Sulfur	
Moisture	
Ash	W(Ash)
Total	100
Ash Softening Temperature =	°F
Ash Melting Temperature =	°F

Note: $W(\text{evap}) = W(H_2O) - W_O(H_2O)$.

REACTOR PERFORMANCE

Basis: 100 lb coal, with moisture

Carbon	gasification	See	Table	2-1,	items	(11)	and	(12).

Carbon conversion, expected fraction
$$\gamma =$$
____(1)

Ratio CO/(CO + CO₂), expected value
$$\alpha =$$
 (2)

Feedstock and resulting char

Carbon:
$$\frac{x}{W_0(C)} = \frac{Mo1}{x(\gamma)/12}$$

$$\frac{n_0(C)}{n_0(C)}$$

Hydrogen:
$$\frac{/2 - /16}{W_o(H_2)/2 - W_o(O_2)/16} = \frac{Mo1}{n_o(H_2, fc)}$$
(4)

Oxygen:
$$\frac{/32}{W_0(O_2)/32} = \frac{Mo1}{n_0(O_2)}$$
 (5)

Nitrogen:
$$\frac{/28}{W_O(N_2)/28} = \frac{MO1}{n_O(N_2)}$$
 (6)

Sulfur:
$$\frac{/32}{W_{o}(S)/32} = \frac{Mol}{n_{o}(S)}$$
 (7)

Moisture:
$$\frac{/18}{W_0(H_2O)} = \frac{MO1}{n_0(H_2O)}$$
 (8)

Char:
$$\frac{+ ()x}{W_o(Ash) + (1-Y)x} = \frac{1b}{W_o(char)}$$
 (9)

Heat of combustion @ carbon conversion γ , HHV' coal:

$$\frac{x(173,934) + x(122,976) + x(184,640)}{n_{o}(C) \times \Delta H_{c}(C) + n_{o}(H_{2},fc) \times \Delta H_{c}(H_{2}) + n_{o}(S) \times \Delta H_{c}(S)} =$$

$$(AH_{C}(S) = At. wt. x 5,770 Btu/1b)$$

Heat of combustion @ full conversion, HHV (coal)

$$\frac{+ \quad x \quad x \quad 173,934}{\text{HHV (coal)} + \left[1-\gamma\right]/\gamma \quad x \quad n_{o}(C) \quad x \quad \Delta H_{c}(C)} = \frac{\text{Btu}}{\text{HHV (coal)}}$$
(11)

Basis: 100 lb coal, with moisture
Blast
Steam: $\frac{x}{R_{\text{wc}}} = \frac{x}{R_{\text{o}}(C)} - \left[\frac{1}{R_{\text{o}}(H_{2}0) + 2N_{\text{o}}(O_{2}) + n_{1}} \frac{\text{(Quench)}}{\text{(13)}} \right] = \frac{1}{R_{\text{o}}(C)}$ $(2)* \frac{1}{R_{\text{o}}(C)} = \frac{1}{R_{\text{o}}(C)} + \frac{1}{R_{\text{o}}(C)} = \frac{1}{R_{\text{o}$
Quench: $\frac{x}{R_0} = \frac{Mo1}{n_1(quench)}$ (13)
Oxygen: $\frac{x}{(1)^*} = \frac{Mol}{n_1(0_2blst)}$ (14)
Nitrogen:
Reactor Gases
Carbon monoxide: $\frac{x}{\alpha \times n_{o}(C)} = \frac{Mol}{n_{2}(CO)}$ (25)
Carbon dioxide: $\frac{x}{(1-\alpha)} = \frac{\text{Mol}}{(1-\alpha)(C)}$ (26)
Water decomposed: $\frac{(2 -)x}{(2 - \alpha) \times n_{0}(C) - 2xn_{1}} = \frac{Mo1}{n_{2}(H_{2}O_{d})} (27)$
Hydrogen: $\frac{-}{n_o(H_2, fc) - n_o(S) + n(H_2O_d)} = \frac{Mo1}{n_2(H_2)} (28)$
Nitrogen: $\frac{Mo1}{n_0(N_2) + n_1(N_2blst)} = \frac{Mo1}{n_2(N_2)}$ (29)
Sulfur as hydrogen sulfide: $\frac{n_{o}(S)}{n_{o}(S)} = \frac{Mol}{n_{2}(S)} (30)$
Water Vapor: $\frac{+ + + 2x - (n_0(H_2O) + n_1(stm) + n_1(qnch) + 2xn_0(o_2) - n_2(H_2O_d)}{(5)}$ (5)
$\frac{\text{Mol}}{\text{n}_2(\text{H}_2\text{O})} (31)$

*See Table 2-1.

Combustibles:
$$\frac{2x}{2n_{o}(C)} - \frac{2x}{2n_{1}(0_{2}blst)} + \frac{-}{n_{o}(H_{2},fc)} - \frac{=}{n_{o}(S)}$$

$$(14) \qquad \qquad \frac{Mo1}{N_{2}(cmbs1)}(32)$$

Total hot raw gas:

$$\frac{+}{n_{o}(C) + n_{2}(H_{2}, N, fg) + n_{1,2}(H_{2}0) + n_{2}(N_{2}) + n_{2}(H_{2}S)}}{(41)}$$

$$\frac{Mo1}{\Sigma n_{i}} (33)$$

Heat Effects

Heating value of fuel gas, excepting H_2S :

$$\frac{x \ 122,157}{n_{o}(H_{2},C0) \ x \ \Delta H_{c} \ (H_{2},C0)} = \frac{Btu}{Q_{c} \ (Sweet \ Gas)} (34)$$

Heat release in reactor:

$$\frac{x \ 173,934 - [-] \ x \ [2 \ x \ 122,157]}{n_{o}(C) \ x \ \Delta H_{c}(C) - [n_{o}(C) - n_{1}(0_{2})] \ x \ [2\Delta H_{c} \ (H_{2},C0)]} = \underbrace{Btu}_{O(reactor)}$$
(35)

Heat release in combustion of H_2S :

$$\frac{x \ 241,092}{n_2(H_2S) \ x \ \Delta H_c(H_2S)} = \frac{Btu}{Q_c(H_2S)}$$
(36)

Sum of heat release effects:

$$\frac{+}{Q_c(\text{Sweet gas}) + Q(\text{reactor}) + Q_c(\text{H}_2\text{S})} = \frac{\text{Btu}}{\Sigma Q}$$
(37)

Heating value of unconverted carbon in char:

$$\frac{173,934 \times \times \left[(1-)/\right]}{\Delta H_{c}(C) \times n_{o}(C) \times \left[(1-\gamma)/\gamma \right]} \qquad Q_{c}(Char)$$
(38)

Miscellaneous

$$n_o(H_2, fc) - n_o(S) = n_2(H_2, n, fg)$$
 (41)

Estimation of Steam Generation

Heat addition to reactor as steam blast (ref'd to 70°F), Btu:

$$\frac{x \ 18 \ x}{n_{1}(\text{stm}) \ x \ 18 \ x \ h(\text{stm})} \frac{0}{(5a)^{*}} (50)$$

Heat addition to reactor as blast gas $(N_2, 0_2)$, Btu:

$$\begin{bmatrix} + & x & 7.1(& -70^{\circ}F) = \\ n_1(0_2) & + & n_1(N_2) \end{bmatrix} \times C_p(T_{in}^{-70^{\circ}F}) = Q_1(N_2, 0_2)$$
(51)

Heat addition to reactor as warm coal from drying process:

$$\frac{(100 -) \times 0.25 \times}{(100 \text{ lb} - W_{\text{evap}}) \times C'_{\text{p}} \times (T_{\text{coal}} - 70)} = \frac{\text{Btu}}{Q_{\text{o}}(\text{coal})} (52)$$

Heat loss from reactor as hot slag:

$$\frac{\text{x 0.25 x (} - 70)}{\text{W(slag) x C'_p x (T_{slag} - 70)}} = \frac{\text{Btu}}{\text{Q(slag)}}$$
(53)

Heat loss from reactor as exit cool fuel gas:

$$\frac{x}{(\Sigma n_1)} \times C_p(CFG) \times (350 - 70) = \frac{Btu}{Q(CFG)}$$
(54)

Total heat release to hot raw product gas:

$$\frac{+ + + + -}{Q(rctr) + Q_1(stm) + Q(N_2, O_2) + Q(coal) - Q(char)} = \frac{Btu}{Q(HFG)}$$
(55)

Temperature reached in reactor:

$$\frac{/[]{Q(HFG)/[C_{p_{(7)}}^{(HFG)} \times \Sigma n_{i}] + 70}}{T(rctr)}$$

$$\frac{}{T(rctr)}$$
(56)

Case 1: This temperature should be at least 2800°F Cases 1,2, &3: See Item (10), Table 2-1.

^{*}See Table 2-1.

^{**} See Design Basis.

Generation of high pressure steam by waste heat	recovery:	
Case 1 only:		
$\begin{bmatrix} - & - &] : & = \\ [O(HFG) - O(CFG) - O_1(Stm)] : h(stm, hp) \\ (55) & (54) & (5b), Table 2-1 \end{bmatrix}$	W ₃ (stm, hp)	(57)
(55) (54) 1 (5b), Table 2-1	3	
Case 2 only:		
[]: = [O(HFG) - O(CFG)]: h(stm, hp) (55) (54) (5b), Table 2-1	1b W ₃ (stm, hp)	(58)
Case 3 only:		
$ [\frac{-}{Q(HFG)} - \frac{-}{Q(CFG)} - \frac{-}{Q_1(N_2, 0_2)}] \div h(stm, hp) = $	W ₃ (stm, hp)	(59)

ENERGY MANAGEMENT

Basis: 100 lb coal, with moisture

Compression Energy

Oxygen Plant Compressor (Oxygen Blast System Only):

Air is raised from 14.7 to 165 psia @ 70°F, and liquified.

$$\frac{21,296 \times 21,296 \times n_1(0_2)}{(15a)^*} = \frac{Btu}{E_c(AIR)}$$
(60)

Air Blast Compressor (Air Blast System Only):

Air feed is raised from 14.7 to 50 psia @ 70°F:

$$\frac{9,218 \times 9,218 \times n_1(0_2)}{(15b)*} = \frac{Btu}{E_c(AIR)}$$
(61)

Raw Gas Compression, dry:

Raw Gas Compression from 35 to 165 psia @ 100°F:

$$\frac{2,676 \times \left[- \right]}{2,676 \times \left[\Sigma n_{1} - n_{2}(H_{2}O) \right]} = \frac{Btu}{E_{c}(FG)}$$
(63)

Recovered Energy

Fuel Gas Expansion: 135 to 40 psia:

$$\frac{1,354 \times [-]}{1,354 \times [\Sigma n_1 - n_2(H_20)]} = \frac{Btu}{E_x(FG)}$$
(64)
(16)* (33) (31)

Steam Expansion: 1,055 to 2.89, 165, 422 psia:

Where $W_1(stm) = 18 \times n_1(stm)$ 1b entered only for Cases 2 and 3.

^{*}See Table 2-1.

PLANT SCALE PERFORMANCE
COAL HANDLING AND GASIFICATION

Basis: 100 lb coal or 1.0 hour, as noted

Coal Rate, 1b/hr

$$\frac{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb: } [}{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb: } [Q_{c}(H_{2},CO) + Q_{c}(H_{2}S)]} = \frac{1\text{b/hr}}{\text{W(Coal)}} (70)$$

Assemble previous results in 71_i or 72_i ; compute entries for 73_i , 74_i , 76_i (See note).

Source Component	Basis: 1	00 lb Coal	Basis:	1 Hour's 0	peration	
Item Sub	Lb	n, Mols	N Mols	Mol/Fract.	Mol/wt.	Lb
I.	71 _i	72 _i	73 _i	74 _i	75 _i	76 _i
Feed						
(70) a Coal	●100		•	_	NA	•
Blast				-	10.016	
(12) b Stm					18.016	
(14) c 0 ₂						
(15) d N_2					28.010	
e(SubΣ)	•		•	NA	NA	•
(13) f Quench	•		•	NA	18.016	•
g Total	•		•	NA	NA	•
Effluent						
* h Evapn	•		•		NA	•
Sour Gas						
(25) j CO					28.010	
(26) k CO ₂					44.010	
(28) 1 H ₂					2.016	
(29) m N ₂					28.016	
(30) n (H ₂ S)					34.076	
				1 000		
o Dry FG				1.000	18.016	
(31) p H ₂ 0		-			10.010	
(33) q (HFG) (9) r Char	1		•		NA	:
s Total					NA NA	

Note: 73i/72i = 76i/71i = W(Coal)/10071i/72i = 76i/73i = 75i

^{*}See Design Basis.

PLANT SCALE PERFORMANCE ENERGY EFFECTS

Basis: 100 1b coal or 1.0 hour, as noted

Mechanical Energy		Basis: 100 1b Coal		Basis: 1 Hour's Operation		
Source	Compo	ment	Btu	kWhr	Btu	kWhr
Item	Sub.		80 i	81 _i	82 i	83 _i
Compr	ession	L				
(61)	b c d	Oxy plant Air blast Raw fuel g Misc. Total	gas	•		
	f g	pansion Fuel gas Steam Total	•	•	•	•
Net D (e,h)		Electric p	owr•	•	•	•
Heat	Releas	e Effects:	Progress	ive combus	tion of coa	l to final products.
(36) (35) (38)	m n o	Sweet gas H ₂ S Reactor Char Total Coal	•		-	
Total (j,p)	Energ q	y to Plant	•		•	
Note:	82 ₁ /80 81 ₁ /80	i = 83i/81i $i = 83i/82i$	= W(Coal))/100 1 × 10 ⁻³		

^{*}See Table 2-1.

PLANT COSTS

Capital Costs	\$1000	
Oxygen/Air Plant:		(85)
$ \frac{\left[(+)/(+) \right]^{0.6} \times }{\left[(N_c + N_d) / (N_c^{\circ} + N_d^{\circ}) \right]^{0.6} \times } = $ $ (73_c) (73_d) $ (See Note)	C ₁	
Gasification Module:		(86)
$\begin{bmatrix} / & x \\ N_q & / & N_q^{\circ} \end{bmatrix} \times \begin{bmatrix} C_2^{\circ} \\ 2 \end{bmatrix}$ (73 _q) (see note)	c ₂	
Compression/Expansion:		
$\frac{(\ /\) \times}{(N_{o}/N_{o}^{\circ}) \times C_{3}^{\circ}} =$ $(73_{o}) \text{ (see note)}$	С3	(87)
Gas Treatment Module:		
		=
	C ₄	(88)

*See Table 2-1.

Note: Values for C° , for the nominal cases, are in the Final Report, Appendix F.

Coal Preparation Module:	\$1,000	
$ [W(Coal) / W^{\circ}(Coal)] \cdot \stackrel{5}{\cdot} \times \frac{c_{5}^{\circ}}{ = } $	C ₅	(89)
Utilities, Piping, Waste Disposal: constant	5	(90)
	C ₆	
Direct Field Cost:		(91)
Sum: $c_1 + c_2 + c_3 + c_4 + c_5 + c_6 =$	c ₇	
Total Capital Cost		(92)
$\frac{x}{C_7} \frac{(C_8/C_7)}{(18)*}$	C ₈	
Operating Costs, Annual, Based on 90% Service Factor	\$1,000	
Coal @ W(Coal) lb/hr:		(96)
$\frac{(/2,000) \times (7,889 \text{ hr/yr})}{(W(\text{Coal})/2,000) \times (7,889 \text{ hr/yr})} = {(\$/\text{ton})}$	0(coal)	
Electric power @ E _D kW:		(97)
$(E_D) \times (7,889 \text{ hr/yr}) (\$/\text{kWhr})$ (83g)	O(pwr)	
Catalyst, Chemicals, from Nominal Case: Equipment, Supplies, Utilities Operating Personnel		(98)
Maintenance Materials and Labor From Report, Subtotal, 0°(Misc) =	O(_{Misc)}	(90)

^{*}See Table 2-1.

Next use the Discounted Costs of Gas Production form provided for summing discounted future costs.

Note 1: Capital costs of the nominal plant, C° , are in the Final Report. *See Table 2-1.

DISCOUNTED COSTS OF GAS PRODUCTION

...

Line Number		Differ- ential	Project Year	Amount, Thousands of Dollars		Discount	Discounted Cost,
	Cost Element	Inflation Rate		One Time	Recurring	Factor	Thousands of Dollars
(1)	First-Year Construction	+0	2		172	0.867	
(2)	Second-Year Construction	+0	3		34%	0.788	
(3)	Third-Year Construction	+0	4		49%	0.717	
(4)	Total Investment			•			•
(5)	Coal	+5	5-29			12.268	
(6)	Electricity	+6	5-29			14.057	
(7)	Operating Labor and Materials	+0	5-29			6.505	
(8)	Total Operating Costs				•		•
(9)	Total Project Costs						•
(10)	Fuel Ofl Alternative	+8	5-29			18.631	
(11)	Energy Available over 25 years, b	illions of Btu					
(12)	Product Gas Unit Cost, \$/million	Btu (line 9 di	vided by 1	ine 11)			
(13)	Fuel Oil Alternative Unit Cost, \$ million Btu (line 10 divided by line 11)						
(14)	Savings/Investment Ratio, SIR = (line 10 - line 8)/line 4						

WORKSHEET FOR PLANT ANALYSIS

DESIGN BASIS	je i	
Reactor Capacity:		
Heating value of reactor output, s	our, Btu/hr — 2	50×10 ⁶
Emission Of SO ₂ :		
Product from combustion of fuel ga	s,	
1b SO ₂ /10 ⁶ Btu HHV (coal),	e(SO ₂)	
Ultimate Analysis Of Coal:		
	% or 1b per	100 1b coal
Carbon		W(C)
Hydrogen		W(H ₂)
Oxygen		W(O ₂)
Nitrogen		w(N ₂)
Sulfur		W(S)
Moisture		W(H ₂ O)
Ash		W(Ash)
Total	100	
Ash Softening Temperature ≈	°F	
Ash Melting Temperature =	°F	

Note: $W(evap) = W(H_2O) - W_O(H_2O)$

REACTOR PERFORMANCE

Basis: 100 lb coal, with moisture

Carbon gasification See Table 2-1, items (11) and (12).

Carbon conversion, expected fraction $\gamma =$ (1)

Ratio CO/(CO + CO₂), expected value $\alpha =$ (2)

Feedstock and resulting char

Carbon: $\frac{x}{W_0(C)} = \frac{Mo1}{x(\gamma)/12}$ $\frac{n_0(C)}{n_0(C)}$

Hydrogen: $\frac{/2 - /16}{W_o(H_2)/2 - W_o(O_2)/16} = \frac{Mo1}{n_o(H_2, fc)}$ (4)

Oxygen: $\frac{/32}{W_0(0_2)/32} = \frac{Mo1}{n_0(0_2)}$ (5)

Nitrogen: $\frac{/28}{W_0(N_2)/28} = \frac{Mo1}{n_0(N_2)}$ (6)

Sulfur: $\frac{/32}{W_{O}(S)/32} = \frac{Mo1}{n_{O}(S)}$ (7)

Moisture: $\frac{/18}{W_0(H_20)} = \frac{Mo1}{n_0(H_20)}$ (8)

Char: $\frac{+ ()x}{W_O(Ash) + (1-Y)x} = \frac{1b}{W_O(char)}$ (9)

Heat of combustion @ carbon conversion γ, HHV' coal:

 $\frac{x(173,934) + x(122,976) + x(184,640)}{n_{o}(C) \times \Delta H_{c}(C) + n_{o}(H_{2},fc) \times \Delta H_{c}(H_{2}) + n_{o}(S) \times \Delta H_{c}(S)} =$

 $\frac{\text{Btu}}{\text{HHV' (coal)}} \tag{10}$

 $(\Delta H_{c}(S) = At. wt. \times 5,770 Btu/1b)$

Heat of combustion @ full conversion, HHV (coal)

 $\frac{+}{\text{HHV (coal)}} + \frac{x}{[1-\gamma)/\gamma} \frac{x}{n_{o}(C)} \frac{x}{x} \frac{173,934}{C} = \frac{Btu}{\text{HHV (coal)}}$ (11)

Date to to cour, with more and
Blast
Steam: $\frac{x}{R_{\text{WC}}} \times \frac{1}{R_{\text{O}}(C)} - \left[\frac{1}{R_{\text{O}}(H_2O)} + \frac{1}{2} \frac{1}{R_{\text{O}}(0_2)} + \frac{1}{R_{\text{O}}(0_2)} \right] = \frac{1}{R_{\text{O}}(13)} = \frac{1}{R_{\text{O}}(12)}$
Ouench: $\frac{x}{R_{qc} \times n_{o}(C)} = \frac{Mo1}{n_{1}(quench)} (13)$
Oxygen: $\frac{x}{R_{oc} \times n_o(C)} = \frac{Mol}{n_1(O_2blst)}$ (14)
Nitrogen:
Reactor Gases
Carbon monoxide: $\frac{x}{\alpha \times n_{_{O}}(C)} = \frac{Mol}{n_{_{2}}(C0)}$ (25)
Carbon dioxide: $\frac{x}{(1-\alpha)} = \frac{Mo1}{n_2(CO_2)}$ (26)
Water decomposed: $\frac{(2 -)x - 2x}{(2 - \alpha) \times n_0(C) - 2xn_1} = \frac{Mo1}{n_2(H_2O_d)}$ (27)
Hydrogen: $\frac{-}{n_{o}(H_{2},fc) - n_{o}(S) + n(H_{2}O_{d})} = \frac{Mo1}{n_{2}(H_{2})} (28)$
Nitrogen: $\frac{m_0(N_2) + n_1(N_2blst)}{n_2(N_2)} = \frac{mo1}{n_2(N_2)} (29)$
Sulfur as hydrogen sulfide: $\frac{n_{o}(S)}{n_{o}(S)} = \frac{Mo1}{n_{2}(S)} (30)$
Water Vapor: $\frac{+ + + 2x - (qnch) + n_1(stm) + n_1(qnch) + 2xn_0(o_2) - n_2(H_2o_d)}{(5) (27)}$
$\frac{\text{Mol}}{\text{n}_2(\text{H}_2\text{O})} (31)$

*See Table 2-1.

Combustibles:
$$\frac{2x}{2n_{o}(C)} - \frac{2x}{2n_{1}(0_{2}blst)} + \frac{-}{n_{o}(H_{2},fc)} - \frac{=}{n_{o}(S)}$$

$$(14) \qquad \qquad \frac{Mol}{N_{2}(cmbsl)} (32)$$

Total hot raw gas:

$$\frac{+}{n_{o}(C) + n_{2}(H_{2}, N, fg) + n_{1,2}(H_{2}O) + n_{2}(N_{2}) + n_{2}(H_{2}S)}}{(41)}$$

$$\frac{Mo1}{\Sigma n_{1}} (33)$$

Heat Effects

Heating value of fuel gas, excepting $\mathrm{H}_2\mathrm{S}$:

$$\frac{x \ 122,157}{n_{o}(H_{2},C0) \ x \ \Delta H_{c} \ (H_{2},C0)} = \frac{Btu}{Q_{c} \ (Sweet \ Gas)} (34)$$

Heat release in reactor:

$$\frac{x \ 173,934 - [-] \ x \ [2 \ x \ 122,157]}{n_{O}(C) \ x \ \Delta H_{C}(C) - [n_{O}(C) - n_{1}(O_{2})] \ x \ [2\Delta H_{C}(H_{2},CO)]} = \frac{Btu}{Q(reactor)}$$
(35)

Heat release in combustion of H_2S :

$$\frac{x \ 241,092}{n_2(H_2S) \ x \ \Delta H_c(H_2S)} = \frac{Btu}{Q_c(H_2S)}$$
(36)

Sum of heat release effects:

$$\frac{+}{Q_{c}(\text{Sweet gas}) + Q(\text{reactor}) + Q_{c}(H_{2}S)} = \frac{Btu}{\Sigma Q}$$
(37)

Heating value of unconverted carbon in char:

$$\frac{173,934 \times \times [(1-)/]}{\Delta H_{c}(C) \times n_{o}(C) \times [(1-\gamma)/\gamma]} = \frac{0}{Q_{c}(Char)}$$
(38)

Miscellaneous

$$n_{\sigma}(H_2, fc) - n_{\sigma}(S) = n_2(H_2, n, fg)$$
 (41)

Estimation of Steam Generation

Heat addition to reactor as steam blast (ref'd to 70°F), Btu:

$$\frac{x \ 18 \ x}{n_{1} \underset{(12)}{\text{(stm)}} \ x \ 18 \ x \ h(\text{stm})} \underbrace{0}_{1} \underset{(5a)^{*}}{\text{(stm)}}$$
(50)

Heat addition to reactor as blast gas $(N_2, 0_2)$, Btu:

$$\begin{bmatrix} + \\ n_1(O_2) + n_1(N_2) \end{bmatrix} \times 7.1(-70^{\circ}F) = \frac{Btu}{O_0(coal)}$$
(51)

Heat addition to reactor as warm coal from drying process:

$$\frac{(100 -) \times 0.25 \times}{(100 \text{ lb} - W_{\text{evap}}) \times C'_{\text{p}} \times (T_{\text{coal}} - 70)} = \frac{\text{Btu}}{Q_{\text{o}}(\text{coal})} (52)$$

Heat loss from reactor as hot slag:

$$\frac{x \ 0.25 \ x \ (\ -70)}{W(slag) \ x \ C_p' \ x \ (T_{slag} \ -70)} = \frac{Btu}{Q(slag)} (53)$$

Heat loss from reactor as exit cool fuel gas:

$$\frac{x}{(\Sigma_{n_f})} \times \frac{x}{(\Sigma_{p_f})} \times \frac{x}{(350 - 70)} = \frac{Btu}{Q(CFG)}$$
 (54)

Total heat release to hot raw product gas:

$$\frac{+}{Q(rctr) + Q_1(stm) + Q(N_2, O_2) + Q(coal) - Q(char)} = \frac{Btu}{Q(HFG)}$$
(55)

Temperature reached in reactor:

$$\frac{/[] + 70}{Q(HFG)/[C_p(HFG) \times \Sigma n_i] + 70}$$
 T(retr) (56)

Case 1: This temperature should be at least $2800^{\circ}F$ Cases 1,2, &3: See Item (10), Table 2-1.

Generation of high pressure steam by waste heat recovery:

Case 1 only:

$$\begin{bmatrix} - & - &] \vdots & = & 1b & (57) \\ O(HFG) - O(CFG) - O_1(Stm) \end{bmatrix} \vdots h(stm, hp) & W_3(stm, hp) \\ (55) & (54) & (5b), Table 2-1 & W_3(stm, hp) \end{bmatrix}$$

Case 2 only:

$$\begin{bmatrix} & & & & & & & & & \\ \hline [O(HFG) - O(CFG)] : h(stm, hp) & & & & & \\ \hline (55) & (54) & (5b), Table 2-1 & & & & \\ \end{bmatrix}$$

Case 3 only:

$$[Q(HFG) - Q(CFG) - Q_1(N_2, O_2)] : h(stm, hp) = W_3(stm, hp)$$
 (59)

ENERGY MANAGEMENT

Basis: 100 1b coal, with moisture

Compression Energy

Oxygen Plant Compressor (Oxygen Blast System Only):

Air is raised from 14.7 to 165 psia @ 70°F, and liquified.

$$\frac{21,296 \times }{21,296 \times n_1(0_2)} = \frac{Btu}{E_c(AIR)} (60)$$

$$\frac{E_c(AIR)}{E_c(AIR)} = \frac{1}{2} \frac{$$

Air Blast Compressor (Air Blast System Only):

Air feed is raised from 14.7 to 50 psia @ 70°F:

$$\frac{9,218 \times 0}{9,218 \times 0} = \frac{8tu}{E_{c}(AIR)}$$
(61)
(15b)* (14)

Raw Gas Compression, dry:

Raw Gas Compression from 35 to 165 psia @ 100°F:

$$\frac{2,676 \times [-]}{2,676 \times [\Sigma n_{i} - n_{2}(H_{2}0)]} = \frac{Btu}{E_{c}(FG)}$$
(63)

Recovered Energy

Fuel Gas Expansion: 135 to 40 psia:

$$\frac{1,354 \times \left[- \right]}{1,354 \times \left[\Sigma n_{i} - n_{2}(H_{2}O) \right]} = \frac{Btu}{E_{x}(FG)}$$
(64)
(16)* (33) (31)

Steam Expansion: 1,055 to 2.89, 165, 422 psia:

Where $W_1(stm) = 18 \times n_1(stm)$ 1b entered only for Cases 2 and 3. (12)

^{*}See Table 2-1.

PLANT SCALE PERFORMANCE
COAL HANDLING AND GASIFICATION

Basis: 100 lb coal or 1.0 hour, as noted

Coal Rate, lb/hr

$$\frac{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb: [}}{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb: [}Q_{c}(H_{2},CO) + Q_{c}(H_{2}S)]} = \frac{1b/hr}{W(Coal)}(70)$$

Assemble previous results in 71, or 72; compute entries for 73, 74, 76, (See note).

Source Component		00 1b Coal		1 Hour's O		
Item Sub	Lb	n Mols		Mol/Fract.		
í	71 _i	72 _i	73 _i	74 _i	75 _i	76 _i
Feed						
(70) a Coal	•100			_	NA	
Blast				-		
(13) b Stm					18.106	
(14) c 0 ₂					32.000	
(15) d N ₂					28.010	
e(SubΣ)				NA	NA	
(12) f Quench	•		•	NA	18.016	
g Total	•		•	NA	NA	•
Effluent						
(43) h Evapn				-	NA	
Sour Gas				-		
(25) j CO					28.010	
(26) k CO ₂					44.010	
(28) 1 H ₂					2.016	
(29) m N ₂					28.016	
(30) n (H ₂ S)					34.076	
o Dry FG				1.000		
(31) p H ₂ 0				-	18.106	
(33) q (HFG)				_		
(9) r Char				-	NA	
s Total					NA	

Note: 73i/72i = 76i/71i = W(Coal)/10071i/72i = 76i/73i = 75i PLANT SCALE PERFORMANCE ENERGY EFFECTS

Basis: 100 lb coal or 1.0 hour, as noted

Mechanical Energy		Basis: l	00 lb Coal	Basis: 1 Hour's Operation		
Source	Compo	nent	Btu	kWhr	Btu	kWhr
Item	Sub.		80 _i	81 _i	82 i	83 _i
Compr	ession	1				
(60)	а	Oxy plant				
(61)	ь	Air blast Raw fuel g Misc.				
(63)	С	Raw fuel g	gas			
(13)*	d	Misc.				
	е	Total			•	
Recov	ery Ex	xpansion				
(64)	f	Fuel gas				
		Steam				
	h	Total				
Net I	emand					
		Electric p	wr.			
Heat	Releas	se Effects:	Progres	sive combus	tion of co	al to final product
		Sweet gas				1
(36)		4-				
(35)	m	Reactor				
	n					
		Total	•			
(11)	P	Coal				
		gy to Plant				
(j,p)	P		•			
Noto:	92 /91) = 93 /91	- W(Car	1)/100		
Note:	i	$a_{i} = 83_{i}/81_{i}$	- w(coa	-3		
	81,/80	$\int_{\mathbf{i}}^{\mathbf{i}} = 83_{\mathbf{i}}^{1}/82_{\mathbf{i}}^{1}$	= 0.292	81 x 10		

*See Table 2-1.

PLANT COSTS

Capital Costs \$1000	
Oxygen/Air Plant:	(85)
$\frac{\left[\binom{+}{0}/\binom{+}{1}\right]^{0.6} \times \frac{1}{0.6} $	
Gasification Module:	
$ \begin{bmatrix} / &] \times \\ N_h / N_h^{\circ} \end{bmatrix} \times C_2^{\circ} = $ $ (73_q) \text{ (see note)} $	(86)
Compression/Expansion:	
$\frac{(/) \times =}{(N_f/N_f^\circ) \times C_3^\circ} = C_3$ $(73_0) \text{ (see note)}$	(87)
Gas Treatment Module:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=
	(88)

*See Table 2-1.

Note: Values for C°, for the nominal cases, are in the Final Report, Appendix F.

Coal Preparation Module:	\$1,000	
$\begin{bmatrix} & & & & \\ \mathbb{W}(\text{Coal}) & / & \mathbb{W}^{\circ}(\text{Coal}) \end{bmatrix} \cdot \overset{5}{\cancel{5}} \times \overset{C}{\cancel{5}} = $	C ₅	(89)
Utilities, Piping, Waste Disposal: constant	,	(90)
	c ₆	
Direct Field Cost:		(91)
Sum: $C_1 + C_2 + C_3 + C_4 + C_5 + C_6 =$	C ₇	
Total Capital Cost		(92)
$\frac{x (C_8/C_7)}{(18)*}$	C ₈	
perating Costs, Annual, Based on 90% Service Factor	\$1,000	
Coal @ W(Coal) lb/hr:		(96)
$\frac{(/ 2,000) \times (7,889 \text{ hr/yr})}{(W(Coal)/ 2,000) \times (7,889 \text{ hr/yr}) \times (\$/ton)} =$	O(coal)	•
Electric power @ E _D kW:		(97)
(E _D) x (7,889 hr/yr) (\$/kWhr) (83g)	0(pwr)	
Catalyst, Chemicals, from Nominal Case: Equipment, Supplies, Utilities Operating Personnel		
Maintenance Materials and Labor		(98)
From Report, Subtotal, 0°(Misc) =	O(Misc)	

^{*}See Table 2-1.

Fuel Gas Production over 25 Years, based on hourly rates $\frac{[- x 3,163 -] \times 0.197 \times 10^{6}}{[Q_{c}(Sweet Gas) - W_{o}(evap) \times 3,163 - Q(Claus)] \times 0.197 \times 10^{6}} = (82k) (20) (19)*$

Next use the Discounted Costs of Gas Production form provided for summing discounted future costs.

Note 1: Capital costs of the nominal plant, C° , are in the Final Report. *See Table 2-1.

DISCOUNTED COSTS OF GAS PRODUCTION

Line		Differ- ential	Project Year	Amount, Tho	usands of Dollars	Discount Factor	Discounted Cost, Thousands of Dollars
Number	Cost Element	Inflation Rate		One Time	Recurring		
(1)	First-Year Construction	+0	2		17%	0.867	
(2)	Second-Year Construction	+0	3		34%	0.788	
(3)	Third-Year Construction	+0	4		49%	0.717	
(4)	Total Investment						•
(5)	Coal	+5	5-29			12.268	
(6)	Electricity	+6	5-29			14.057	
(7)	Operating Labor and Materials	+0	5-29			6.505	
(8)	 Total Operating Costs 						• •
(9)	Total Project Costs						•
(10)	Fuel Oil Alternative	+8	5-29			18.631	
(11)	Energy Available over 25 years, b	illions of Btu					
(12)	Product Gas Unit Cost, \$/million	Btu (line 9 di	vided by 1	ine 11)			
(13)	Fuel Oil Alternative Unit Cost, \$	million Btu (line 10 di	vided by line	11)		
(14)	Savings/Investment Ratio, SIR = (line 10 - line	8)/line 4				

WORKSHEET FOR PLANT ANALYSIS

DESIGN BASIS									
Reactor Capacity:									
Heating value	of reacto	or output, sour	, Btu/hr — 25	50x10 ⁶					
Emission Of SO ₂ :	ssion Of SO ₂ :								
Product from	combustion	of fuel gas,							
1b SO ₂ /10 ⁶ Bt	u HHV (coa	al),e(so ₂)						
Ultimate Analysis	Ultimate Analysis Of Coal:								
			% or 1b per	100 lb coal					
Carbon				W(C)					
Hydrogen				W(H ₂)					
Oxygen				W(O ₂)					
Nitrogen				$w(N_2)$					
Sulfur				W(S)					
Moisture				W(H ₂ O)					
Ash				W(Ash)					
		Total	100						
Ash Softening Tem	perature	=	°F						
Ash Melting Tempe	rature	=	°F						

Note: $W(evap) = W(H_2O) - W_O(H_2O)$

REACTOR PERFORMANCE
Basis: 100 lb coal, with moisture

Carbon gasification See Table 2-1, items (11) and	nd (12).	
Carbon conversion, expected fraction	γ =	(1)
Ratio $CO/(CO + CO_2)$, expected value	α =	_(2)
Feedstock and resulting char		
Carbon: $\frac{x}{W_{O}(C)} \frac{12}{x(\gamma)/12} =$	Mol n _O (C)	(3)
Hydrogen: $\frac{/2 - /16}{W_0(H_2)/2 - W_0(O_2)/16} =$	n _o (H ₂ ,fc)	(4)
Oxygen: $\frac{/32}{W_0(O_2)/32} =$	$\frac{\text{Mo1}}{\text{n}_{o}(\text{O}_{2})}$	(5)
Nitrogen: $\frac{/28}{W_o(N_2)/28} =$	Mo1 n _o (N ₂)	(6)
Sulfur: $\frac{/32}{W_o(s)/32}$ =	Mol n _o (S)	(7)
Moisture: $\frac{/18}{W_0(H_20)} =$	m _o (H ₂ 0)	(8)
Char: $\frac{+ ()x}{W_O(Ash) + (1-Y)x} =$	W _O (char)	(9)
Heat of combustion @ carbon conversion γ, HH	V' coal:	
$\frac{x(173,934) + x(122,976) +}{n_{o}(C) \times \Delta H_{c}(C) + n_{o}(H_{2},fc) \times \Delta H_{c}(H_{2}) + n_{o}(S)}$	$\frac{\times (184,640)}{\times \Delta H_{c}(S)} =$	
	HHV' (coal)	(10)
$(\Delta H_{C}(S) = At. wt \times 5,770 Btu/1b)$		
Heat of combustion @ full conversion, HHV (co	oal)	
$\frac{+}{\text{HHV (coal)} + [1-\gamma)/\gamma] \times n_{O}(C) \times \Delta H_{C}(C)} =$	HHV (coal)	(11)

PRECEDING PAGE BLANK-NOT FILMED

Basis: 100 lb coal, with moisture

Blast

Steam:
$$\frac{x - [+ +]}{R_{wc} \times n_{o}(C) - [n_{o}(H_{2}O) + 2N_{o}(O_{2}) + n_{1} \text{ (Quench)}]} = (2)*$$
 (13)
$$\frac{Mo1}{n_{1}(\text{stm})} (12)$$

Quench:
$$\frac{x}{R_{qc} \times n_{o}(C)} = \frac{Mo1}{n_{1}(quench)} (13)$$

Oxygen:
$$\frac{x}{R_{oc} \times n_{o}(C)} = \frac{Mo1}{n_{1}(0_{2}blst)}$$
 (14)

Reactor Gases

Carbon monoxide:
$$\frac{x}{\alpha \times n_0(C)} = \frac{Mo1}{n_2(C0)}$$
 (25)

Carbon dioxide:
$$\frac{x}{(1-\alpha)} = \frac{Mo1}{n_2(CO_2)}$$
 (26)

Water decomposed:
$$\frac{(2 -)x - 2x}{(2 - \alpha) \times n_0(C) - 2xn_1} = \frac{Mo1}{n_2(H_2O_d)} (27)$$

Hydrogen:
$$\frac{-}{n_o(H_2, fc) - n_o(S) + n(H_2O_d)} = \frac{Mo1}{n_2(H_2)} (28)$$

Nitrogen:
$$\frac{m_0(N_2) + n_1(N_2blst)}{n_2(N_2)} = \frac{m_01}{n_2(N_2)}$$
 (29)

Sulfur as hydrogen sulfide:
$$\frac{m_0(S)}{n_0(S)} = \frac{Mo1}{n_2(S)} (30)$$

$$\frac{+}{a_0(H_2O) + n_1(stm) + n_1(qnch) + 2xn_0(O_2) - n_2(H_2O_d)}$$
(5) (27)

$$\frac{\text{Mol}}{n_2(\text{H}_2\text{O})}$$
 (31)

Total hot raw gas:

$$\frac{+}{n_{o}(C) + n_{2}(H_{2}, N, fg) + n_{1,2}(H_{2}0) + n_{2}(N_{2}) + n_{2}(H_{2}S)}}{(41)}$$

$$\frac{Mo1}{\Sigma n_{i}} (33)$$

Heat Effects

Heating value of fuel gas, excepting H₂S:

$$\frac{x \ 122,157}{n_{o}(H_{2},C0) \ x \ \Delta H_{c} \ (H_{2},C0)} = \frac{Btu}{Q_{c} \ (Sweet \ Gas)} \ (34)$$

Heat release in reactor:

$$\frac{x \ 173,934 - [-] \ x \ [2 \ x \ 122,157]}{n_{O}(C) \ x \ \Delta H_{C}(C) - [n_{O}(C) - n_{1}(O_{2})] \ x \ [2\Delta H_{C}(H_{2},CO)]} = \frac{Btu}{O(reactor)}$$
(35)

Heat release in combustion of H_2S :

$$\frac{x \ 241,092}{n_2(H_2S) \ x \ \Delta H_c(H_2S)} = \frac{Btu}{Q_c(H_2S)}$$
(36)

Sum of heat release effects:

$$\frac{+}{Q_{c}(Sweet gas) + Q(reactor) + Q_{c}(H_{2}S)} = \frac{Btu}{\Sigma Q}$$
(37)

Heating value of unconverted carbon in char:

$$\frac{173,934 \times \times [(1-)/]}{\Delta H_{c}(C) \times n_{o}(C) \times [(1-\gamma)/\gamma]} = \frac{Q_{c}(Char)}{Q_{c}(Char)}$$
(38)

Miscellaneous

$$n_o(H_2, fc) - n_o(S) = n_2(H_2, n, fg)$$
 (41)

Estimation of Steam Generation

Heat addition to reactor as steam blast (ref'd to 70°F), Btu:

$$\frac{\text{x 18 x}}{\text{n}_{1}(\text{stm}) \text{ x 18 x h(stm)}} \frac{\text{Btu}}{\text{(50)}} (50)$$

$$\frac{\text{Q}_{1} \text{ (stm)}}{\text{(5a)*}}$$

Heat addition to reactor as blast gas $(N_2, 0_2)$, Btu:

$$\begin{bmatrix} + & & x & 7.1(& -70^{\circ} F) \\ n_{1}(0_{2}) & + & n_{1}(N_{2}) \end{bmatrix} \times C_{p}(T_{in}^{-70^{\circ}} F) = \frac{Btu}{Q_{o}(coal)}$$
(51)

Heat addition to reactor as warm coal from drying process:

$$\frac{(100 -) \times 0.25 \times}{(100 \text{ lb} - W_{\text{evap}}) \times C'_{\text{p}} \times (T_{\text{coal}} - 70)} = \frac{\text{Btu}}{Q_{\text{o}}(\text{coal})} (52)$$

Heat loss from reactor as hot slag:

$$\frac{x \ 0.25 \ x \ (-70)}{W(slag) \ x \ C_p} = \frac{Btu}{Q(slag)} (53)$$

Heat loss from reactor as exit cool fuel gas:

$$\frac{x}{(\Sigma_{n_1})} \times C_p(CFG) \times (350 - 70) = \frac{Btu}{Q(CFG)}$$
 (54)

Total heat release to hot raw product gas:

$$\frac{+}{Q(rctr) + Q_1(stm) + Q(N_2, O_2) + Q(coal) - Q(char)} = \frac{Btu}{Q(HFG)}$$
(55)

Temperature reached in reactor:

$$\frac{/[]{(HFG)/[C_p(HFG) \times \Sigma n_i] + 70}}{}$$
 T(retr) (56)

Case 1: This temperature should be at least 2800 °F Cases 1,2, &3: See Item (10), Table 2-1.

 ENERGY MANAGEMENT

Basis: 100 1b coal, with moisture

Compression Energy

Oxygen Plant Compressor (Oxygen Blast System Only):

Air is raised from 14.7 to 165 psia @ 70° F, and liquified.

$$\frac{21,296 \times 21,296 \times n_1(0_2)}{(15a)*} = \frac{Btu}{E_c(AIR)}$$
(60)

Air Blast Compressor (Air Blast System Only):

Air feed is raised from 14.7 to 50 psia @ 70°F:

$$\frac{9,218 \times 9,218 \times n_{1}(0_{2})}{(15b)*} = \frac{Btu}{E_{c}(AIR)}$$
(61)

Raw Gas Compression, dry:

Raw Gas Compression from 35 to 165 psia @ 100°F:

$$\frac{2,676 \times [-]}{2,676 \times [\Sigma n_{1} - n_{2}(H_{2}0)]} = \frac{Btu}{E_{c}(FG)}$$
(63)

Recovered Energy

Fuel Gas Expansion: 135 to 40 psia:

$$\frac{1,354 \times [-]}{1,354 \times [\Sigma n_{i} - n_{2}(H_{2}O)]} = \frac{Btu}{\Sigma x} (64)$$

$$(16)* (33) (31)$$

Steam Expansion: 1,055 to 2.89, 165, 422 psia:

$$\frac{(\) \times [327 + 149 \times \] - 322 [\ \times \ + \]}{\mathbb{W}(\text{stm,hp}) \times [327 + 149 \times \text{Rps}] - 332 [\mathbb{W}(\text{stm,hp}) \times \text{Rps} + \mathbb{W}_{1}(\text{stm})]} = \frac{\text{Btu}}{(14)*}$$

Where $W_1 \text{ (stm)} = 18 \times n_1 \text{ (stm)}$ 1b entered only for Cases 2 and 3. (12)

^{*} See Table 2-1.

PLANT SCALE PERFORMANCE
COAL HANDLING AND GASIFICATION

Basis: 100 1b coal or 1.0 hour, as noted

Coal Rate, 1b/hr

$$\frac{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb:} [}{(250 \times 10^{6} \text{ Btu/hr}) \times 100 \text{ lb:} [Q_{c}(H_{2},CO) + Q_{c}(H_{2}S)]} = \frac{1b/hr}{W(Coal)}(70)$$

Assemble previous results in 71_i or 72_i ; compute entries for 73_i , 74_i , 76_i (See note).

Source Component	Basis: 10	00 1b Coal		1 Hour's O		
Item Sub	Lb	n Mols	N _i Mols	Mol/Fract.		
i	71 _i	72 _i	73 _i	74 _i	75 _i	76 _i
Feed						
(70) a Coal Blast	•100		•	-	NA	•
(13) b Stm (14) c O ₂					18.106 32.000	
$(15) d N_2$					28.010	
e(SubΣ)	•			NA	NA	
(12) f Quench	•		•	NA	18.016	•
g Total	•		•	NA	NA	•
Effluent						
(43) h Evapn Sour Gas	•		•	_	NA	•
(25) j CO					28.010	
(26) k CO ₂					44.010	
(28) 1 H ₂					2.016	
(29) m N ₂					28.016	
(30) n (H ₂ S)					34.076	
o Dry FG				1.000		
(31) p H ₂ O					18.106	
(33) q (HFG)						
(9) r Char	•			-	NA	
s Total					NA	

Note: 73i/72i = 76i/71i = W(Coal)/10071i/72i = 76i/73i = 75i PLANT SCALE PERFORMANCE ENERGY EFFECTS

Basis: 100 lb coal or 1.0 hour, as noted

Mec	Mechanical Energy		Basis: 100	0 1b Coal	Basis: 1 H	Hour's Operation
Source	Compo	nent	Btu	kWhr	Btu	kWhr
Item	Sub.		80 _i	81 _i	82 i	83 _i
Compr	ession					
(61) (63) (13)*	b c d	Oxy plant Air blast Raw fuel g Misc. Total	gas			_
Doggan	E.					
	f g					
Net D	emand					
(e,h)	j	Electric p	wr·			
Heat	Releas	e Effects:	Progress	ive combus	tion of coa	l to final products.
	k	Sweet gas	rogress	Combas		That produces.
(35)	m n o	Reactor Char Total				
Total		y to Plant				
Note:	82 ₁ /80 81 ₁ /80	$i = 83_{i}/81_{i}$ $i = 83_{i}/82_{i}$	= W(Coal))/100 1 × 10 ⁻³		

*See Table 2-1.

PLANT COSTS

Capital Costs \$1000	
Oxygen/Air Plant:	(85)
$ \frac{\left[(+)/(+) \right]_{0.6}^{0.6} \times }{\left[(N_{k} + N_{1}) / (N_{k}^{\circ} + N_{1}^{\circ}) \right]_{0.6}^{0.6} \times } $	
Casification Module: $ \begin{bmatrix} / & x \\ N_h / N_h^{\circ} & C_2^{\circ} \\ (73_q) \text{ (see note)} \end{bmatrix} = C_2 $	(86)
Compression/Expansion: $\frac{(\ /\) \ x}{(N_f/N_f^\circ) \ x \ C_3^\circ} = \frac{C_3}{(73_o) \ (\text{see note})}$	(87)
Gas Treatment Module:	
c_4	(88)

*See Table 2-1.

Note: Values for C° , for the nominal cases, are in the Final Report, Appendix F.

Coal Preparation Module:	\$1,000	
$[W(Coal) / W^{\circ}(Coal)] \stackrel{5}{\cdot} \times C_{5}^{\circ} =$		(89)
Utilities, Piping, Waste Disposal: constant		(90)
	C ₆	
Direct Field Cost:		(91)
Sum: $c_1 + c_2 + c_3 + c_4 + c_5 + c_6 =$	C ₇	
Total Capital Cost		(92)
$\frac{x}{c_7} \times \frac{(c_8/c_7)}{(18)*}$	C ₈	•
Operating Costs, Annual, Based on 90% Service Factor	\$1,000	
Coal @ W(Coal) lb/hr:		(96)
$(\frac{\text{/ 2,000)} \times (7,889 \text{ hr/yr})}{(\text{W(Coa1)/ 2,000)} \times (7,889 \text{ hr/yr})} = \frac{\text{($$/$ton)}}{}$	0(coal)	-
Electric power @ E _D kW:		(97)
(E _D) x (7,889 hr/yr) (\$/kWhr) = (83g)	0(pwr)	
Catalyst, Chemicals, from Nominal Case: Equipment, Supplies, Utilities Operating Personnel Maintenance Materials and Labor		(98)
From Report, Subtotal, 0°(Misc) =	O(Misc)	

*See Table 2-1.

Next use the Discounted Costs of Gas Production form provided for summing discounted future costs.

Note 1: Capital costs of the nominal plant, $\textbf{C}^{\text{O}}\text{,}$ are in the Final Report. *See Table 2-1.

DISCOUNTED COSTS OF GAS PRODUCTION

Line	C. a. Plana	Differ- ential	Project Year	Amount, Thous	ands of Dollars	Discount Factor	Discounted Cost, Thousands of Dollars		
Number	Cost Element	Inflation Rate		One Time	Recurring				
(1)	First-Year Construction	+0	2		17%	0.867			
(2)	Second-Year Construction	+0	3		34%	0.788			
(3)	Third-Year Construction	+0	4		49%	0.717			
(4)	Total Investment						•		
(5)	Coal	+5	5-29			12.268			
(6)	Electricity	+6	5-29			14.057			
(7)	Operating Labor and Materials	+0	5-29			6.505			
(8)	Total Operating Costs						• •		
(9)	Total Project Costs						•		
(10)	Fuel Oil Alternative	+8	5-29			18.631			
(11)	Energy Available over 25 years, bil	lions of Btu							
(12)	Product Gas Unit Cost, \$/million Btu (line 9 divided by line 11)								
(13)	Fuel Oil Alternative Unit Cost, \$ m	illion Btu (line 10 di	wided by line l	1)				
(14)	Savings/Investment Ratio, SIR = (li	ne 10 - line	8)/line 4						

ESTIMATI	STEP COMPUTATIONAL STEP UNITS UNITS	1) BOILER TYPE, WT WATER TUBE 2) STEAM TEMPERATURE F	INITIAL CONDITIONS	FUEL EXCESS AIR EXCESS AIR FRACTION OF HEAT TRANSFERRED BY RADIATION FRACTION OF HEAT TRANSFERRED BY CONVECTION	CHECK. (3 + (8 × 1.00 COMBUSTION TEMPERATURE, F(3) AND (4)	COMBUSTION TEMPER TEMPERATURE FUNCT	(12) COMBUSTION PRODUCTS RATE, F(3) AND (4)) 10,000 BTU	NEW FUEL CONDITIONS	FUELGA		COMBUSTION TEMPERATURE, COMBUSTION TEMPERATURE, (\$) + 450.	(T) TEMPERATURE FUNCTION, F (16)	COMBUSTION PRODUC	RATIO OF PRODUCTS, (9 - (2 ≥ 1.10	
----------	-------------------------------------	--	--------------------	---	--	-------------------------------------	---	---------------------	--------	--	--	----------------------------------	-------------------	-----------------------------------	--

EFFECTS ON RADIANT HEAT TRANSFER (*1) (*1) (*1) (*1) (*1) (*1) (*1) (*
--

STEP	0	3	(3)	(3)	(2)	a	
COMPUTATIONAL STEP	TOTAL PERFORMANCE EFFECTS	$\left(\frac{q_2}{q_1}\right)_{TOTAL} \cdot (\S \times \mathfrak{Y}) \cdot (\S \times \mathfrak{Y}))$	$\left(\frac{\triangle^{1}2}{\triangle^{1}_{1}}\right)_{\mathtt{TOTAL}}^{*}(\widehat{\mathbb{S}}_{x},\widehat{\mathbb{R}})+(\widehat{\mathbb{G}}_{x},\widehat{\mathbb{R}})$	Δ V _{comb 1} * (0) - 70.	$\Delta T_{comb 2} = (15) - 70$.	(EFF. 1) TOTAL 38	
UNITS					•		
	+						
	+						
	+						
	+						
	+						
	1						

BECHTEL CORP SAN FRANCISCO CALIF COAL GASIFICATION STUDY HANDBOOK. (U) APR 77 AD-A042 385 F/6 21/4 N68305-76-C-0009 UNCLASSIFIED CEL-CR-77.014 NL 2 0 2 END DATE AD A042385 9 -77 DDC

ESTIMATING PROCEDURE WORK SHEET FOR EFFECTS OF FUEL CHANGES ON INDUSTRIAL SATURATED STEAM BOILER PERFORMANCE			
ESTIMATING PROCEDUR	UNITS	ED BY RADIATION ED BY CONVECTION F(3) AND (4) F F(3) AND (4) F F(13) AND (4) F F(13) AND (4) P F(14) AND (4) P F(15) AND (4) P	
	NO. BOILER TYPE. WT WATER TUSE TEAM TEMPERATURE	FUEL EXCESS AIR FRACTION OF HEAT TRANSFERRED BY RADIATION FRACTION OF HEAT TRANSFERRED BY RADIATION FRACTION OF HEAT TRANSFERRED BY RADIATION FRACTION OF HEAT TRANSFERRED BY CONVECTION CHECK, (3+6) = 1.00 COMBUSTION TEMPERATURE. F(3) AND (4) EMPERATURE FUNCTION F(3) AND (4) COMBUSTION PRODUCTS RATE. F(3) AND (4) COMBUSTION TEMPERATURE. F(1) AND (5) COMBUSTION PRODUCTS RATE. F(1) AND (5) COMBUSTION PRODUCTS RATE. F(1) AND (5)	

The state of convective heat transfer that \mathbf{r}_{0} and $\mathbf{r}_{$
--

COMPUTATIONAL	TOTAL PERFORMANCE EFFECTS	(42) TOTAL -(5) x (3) > (6)	$\left(\frac{\triangle^{T}_{2}}{\triangle^{T}_{1}}\right)_{TOTAL}^{-1}(\S_{x}\otimes)\cdot(\S_{x}\otimes)$	∆ T _{comb 1} * (B) = 70.	∆ T _{comb 2} * (15) - 70.	(EFF. 1) TOTAL 35	
AL STEP	E EFFECTS	(A)	(S) * (32)				
UNITS				u			
							· · · · · · · · · · · · · · · · · · ·
-							
						•	

0 -					
ESTIMATING PROCEDURE WORK SHEET FOR EFFECTS OF FUEL CHANGES ON INDUSTRIAL SATURATED STEAM BOILER PERFORMANCE	S P		# # all 000,011		# 6 (1) AND (4) F R F F F F F F F F
	COMPUTATIONAL STEP BOILER TYPE, WT WATER TUBE STEAM TEMPERATURE	ERRED E	COMBUSTION TEMPERATURE (B) + 460. COMBUSTION TEMPERATURE (B) + 460. TEMPERATURE FUNCTION, F (B) EMISSIVITY, F (J) AND (B) COMBUSTION PRODUCTS RATE, F (J) AND (A)	EW FUEL CONDITIONS	F.(1) • 460. • 60. • 60. • 7.10