Course: Modeling & Simulation [NETW 707]

Spring 2023 Project (Deadline May 30th 2023)

Part A:

Consider a data link layer that operates as follows:

- Each packet received from the upper layer is fragmented into M sub-packets.
- The M sub-packets are then encoded together to generate N coded sub-packets where N >> M.
- The transmitter starts sending the encoded sub-packets sequentially each time slot without waiting for any acknowledgements.
- On the receiver side once the receiver correctly receives \underline{any} M of the encoded sub-packets correctly (assuming the transmitter has sent K packets at that point of time where $M \le K \le N$), it has the ability to reconstruct the original M sub-packets and forward the re-assembled packet to the upper layer. It will also send an ACK to the transmitter.
- Upon receiving an ACK, the transmitter stops sending any further encoded sub-packets (i.e., N-K sub-packets). The transmitter will get a new packet from the upper layer, fragment it, encode it and send it similar the operation previously described above.

Use Markov modeling to **CALCUATE** *the delay* for sending each upper layer packet given the operation of the data link layer described above assuming $N \rightarrow \infty$ (i.e., the receiver will always be able to receive correctly M encoded sub-packets before all N generated encoded sub-packets have been sent).

Assume that BPSK is used with E_b derived from your ID gh-xyzwv as $E_b = 1.5 + 0.xyzwv$ and $N_0 = 1$.

Assume the probability of error p_e of the transmitted sub-packets could be evaluated given that the sub-packet length $L=100\ bit$ and assume that the ACK channel is error free.

Z	Q(z)	Z	Q(z)	Z	Q(z)	Z	Q(z)
0.0	0.50000	1.0	0.15866	2.0	0.02275	3.0	0.00135
0.1	0.46017	1.1	0.13567	2.1	0.01786	3.1	0.00097
0.2	0.42074	1.2	0.11507	2.2	0.01390	3.2	0.00069
0.3	0.38209	1.3	0.09680	2.3	0.01072	3.3	0.00048
0.4	0.34458	1.4	0.08076	2.4	0.00820	3.4	0.00034
0.5	0.30854	1.5	0.06681	2.5	0.00621	3.5	0.00023
0.6	0.27425	1.6	0.05480	2.6	0.00466	3.6	0.00016
0.7	0.24196	1.7	0.04457	2.7	0.00347	3.7	0.00011
0.8	0.21186	1.8	0.03593	2.8	0.00256	3.8	0.00007
0.9	0.18406	1.9	0.02872	2.9	0.00187	3.9	0.00005

Q-function table

Part B:

Build a python model to simulate the system shown in Problem 4 with the parameters corresponding to your ID. Compare between the simulation and analytical results for the delay. Sketch the delay as a function of the packet length from $L=10\ bits$ to $L=100\ bits$.

