Rigidity Theory for Matroids

Mike Develin Jeremy Martin Victor Reiner

develin@post.harvard.edu
jmartin@math.ku.edu
reiner@math.umn.edu

Full paper: arXiv:math.CO/0503050

1

Rigidity Theory for Graphs

Framework for a graph
$$G = (V, E)$$
 in \mathbb{R}^d : joints \longleftrightarrow vertices bars \longleftrightarrow edges

Pivoting framework: bars are fixed in length, but can pivot around joints

Telescoping framework: bars are attached to joints at fixed angles, but are allowed to change in length

Problem: When is a framework in \mathbb{R}^d rigid?

Examples of Rigid and Flexible Graphs

- A graph is 1-rigid if and only if it is connected.
- \bullet Every d-rigid graph is d-connected, and in particular has minimum degree $\geq d.$
- Every triangulation is 2-rigid.

• Triangulations are typically not 3-rigid.

Matroids

- A matroid independence system M on a finite ground set E is a collection of subsets of E such that...
 - $(1) \quad \emptyset \in M;$

 - $\begin{array}{ll} (2) & I \subset J, J \in M \implies I \in M; \\ (3) & I, J \in M, |I| < |J| \implies \exists e \in J I \colon I \cup e \in M. \end{array}$

A matroid can be described equally well by any of the following data:

Bases(maximal independent sets) Circuits (minimal dependent sets)

Rank function r(A) = size of maximal ind't subset of A

Closure operator $\bar{A} = \{e : r(A \cup e) = r(A)\}$

E = set of vectorsLinear matroid:

 $M = \{\text{linearly independent subsets}\}\$

Graphic matroid: E = edges of a graph

 $M = \{\text{acyclic edge subsets}\}$

Tutte polynomial of M (an incredibly nice invariant!):

$$T_M(x,y) = \sum_{A \subseteq E} (x-1)^{r(E)-r(A)} (y-1)^{|A|-r(A)}$$

The d-Rigidity Matroid of a Graph

Let G = (V, E) be a graph and $d \ge 2$ an integer. Define the **d-rigidity matroid** $\mathcal{R}^d(G)$ on E by the closure operator

 $\overline{F} := \{ \text{edges whose length in every generic pivoting framework in } \mathbb{R}^d$ is determined by the lengths of the edges in $F \}$

• Replacing "length" with "slope" gives the **d-slope matroid** (or **d-parallel matroid**), denoted $S^d(G)$.

Representing the d-Rigidity Matroid

 $\mathcal{R}^d(G)$ can be represented by the **d-rigidity matrix** $R = R^d(G)$

- R has |E| rows and d|V| columns Rows of $R \longleftrightarrow \text{edges}$ Columns of $R \longleftrightarrow \text{coordinates}$ of vertices in \mathbb{R}^d Entries of R are polynomials in d|V| variables
- Right nullvectors of R (syzygies among columns) = infinitesimal motions of vertices that preserve all edge lengths

$$G$$
 is d -rigid \iff right nullspace = {rigid motions of \mathbb{R}^d } \iff rank $R = d|V| - \binom{d+1}{2}$

- Left nullvectors of R (syzygies among rows) = polynomial constraints ("stresses") on edge lengths
- r(F) = rank of corresponding row-selected submatrix of R

$$G$$
 is d -rigidity-independent \iff left nullspace $= 0$ \iff $\mathbb{R}^d(G) = 2^E$

 $\mathcal{S}^d(G)$ is represented analogously by the **d-parallel matrix** $P^d(G)$

Combinatorial Rigidity in the Plane

Theorem 1 The following are equivalent:

- (1) G = (V, E) is 2-rigidity-independent, i.e., $\mathcal{R}^2(G) = 2^E$.
- (2) (Recski's condition) For each $e \in E$, adding a parallel edge \tilde{e} produces a graph that decomposes into two forests.

(3) (Laman's condition) For $\emptyset \neq F \subset E$,

$$|F| \le 2|V(F)| - 3.$$

(Idea: edges are not concentrated in any one region of G. K_4 is the smallest simple counterexample.)

(4) $T_G(q,q)$ is monic of degree r(G).

Problem: Generalize these criteria to arbitrary d.

Pictures, Planar Duality and Matroids

Picture of G: an arrangement of points and lines that correspond to vertices and edges of G

Picture space of G: the algebraic variety $X = X^d(G)$ of all pictures

Theorem 2 The following are equivalent:

- (1) G is d-parallel independent;
- (2) The d-dimensional picture space of G is irreducible;
- (3) $T_G(q, q^{d-1})$ is monic of degree r(G).

Corollary 3 (Planar Duality) $\mathcal{R}^2(G) = \mathcal{S}^2(G)$.

Corollary 4 The rigidity properties of G depend only on its underlying graphic matroid.

Rigidity Matroids of Matroids??

Motivated by Corollary 4...

...let's try to develop a version of rigidity theory in which the underlying objects of study are **matroids** rather than **graphs**.

Why do we want to do this?

- Provide combinatorial proofs of Laman's Theorem, Planar Duality Theorem, and other fundamental results of rigidity theory
- Generalize these theorems to a wider setting
- Explain geometric invariants (cross-ratio, tree polynomials) combinatorially
- Add to the toolbox of graph rigidity theory...
- ... and the theory of matroids themselves.

A Trinity of Independence Complexes

• There are **three** plausible notions of "d-rigidity-independence" for an arbitrary matroid M (with ground set E):

Combinatorial: M is d-Laman-independent if

$$d \cdot r(F) > |F|$$
 for all $\emptyset \neq F \subset E$

 \dots provided that this condition gives a matroid (for which d)?

Linear algebraic: M is **d-rigidity-independent** if the rows of R are linearly independent

... where $R=R^d(M)$ is the rigidity matrix of M (generalizing the construction for the graphic case)

Geometric: M is **d-slope-independent** if $X^d(M)$ is irreducible

... where $X^d(M)$ is some matroidal analogue of the picture space

d-Laman Independence

Let $d \in (1, \infty)_{\mathbb{R}}$. The **d-Laman complex of** M is defined as $\mathcal{L}^d(M) = \{ F \subset E : d \cdot r(F') > |F| \text{ for all } \emptyset \neq F' \subseteq F \}.$

Theorem 5 $d \in \mathbb{Z} \iff \mathcal{L}^d(M)$ is a matroid for every M.

Theorem 6 The following are equivalent:

- (1) M is d-Laman-independent, i.e., $\mathcal{L}^d(M) = 2^E$.
- (2) $T_M(q^{d-1}, q)$ is monic in q of degree (d-1)r(M).
- (3) M has an Edmonds decomposition as a disjoint union $E = I_1 \cup I_2 \cup \cdots \cup I_d$

where

- each I_k is independent in M; and
- there is no collection of nonempty subsets $J_1 \subset I_1, \ldots, J_d \subset I_d$ such that $\overline{J_1} = \cdots = \overline{J_d}$.

(The proof relies on Edmonds' theorem on matroid partitioning.)

d-Slope Independence

Let M be represented by vectors $E = \{v_1, \ldots, v_n\}$ spanning \mathbb{F}^r . For $0 < k < d \in \mathbb{N}$, let $\mathbb{G}(k, \mathbb{F}^d) = \{k \text{-dimensional subspaces of } \mathbb{F}^d\}$.

The (k, d)-photo space $X = X_{k,d}(M)$ is defined as

$$\{(\phi, W_1, \dots, W_n) \in \operatorname{Hom}(\mathbb{F}^r, \mathbb{F}^d) \times \mathbb{G}(k, \mathbb{F}^d)^n : \phi(v_i) \in W_i \ (\forall i)\}.$$

(k, d)-slope independence: the map $X \to \mathbb{G}(k, \mathbb{F}^d)^n$ is dense.

(k, d)-slope complex of M:

$$\mathcal{S}^{k,d}(M) = \{A \subset E : M|_A \text{ is } (k,d)\text{-slope independent}\}.$$

Theorem 7 Let $m = \frac{d}{d-k}$. The following are equivalent:

- (1) M is (k, d)-slope independent.
- (2) The photo space X is an irreducible variety.
- (3) M is m-Laman independent. (So $\mathcal{S}^{k,d}(M) = \mathcal{L}^m(M)$.)

Theorem 8 If \mathbb{F} is the finite field \mathbb{F}_q , then |X| is given by a certain Tutte polynomial specialization (involving q-binomial coefficients).

d-Rigidity Independence

Let M be represented by vectors $E = \{v_1, \ldots, v_n\}$ spanning \mathbb{F}^r . Let $\psi = (\psi_{ij})$ be a $(d \times r)$ matrix of transcendentals (regarded as a "generic" linear map $\mathbb{F}^r \to \mathbb{F}^d$).

Defn: The *d*-rigidity matroid $\mathcal{R}^d(M)$ is represented over $\mathbb{F}(\psi)$ by the vectors

$$\{v_i \otimes \psi(v_i) : i \in [n]\}$$

in $\mathbb{F}^r \otimes \mathbb{F}(\psi)^d$. (This generalizes the construction of $\mathcal{R}^d(G)$.)

Theorem 9 (The Nesting Theorem) Let M be a representable matroid and d > 1 an integer. Then:

$$\mathcal{S}^{1,d}(M) \subseteq \mathcal{R}^d(M) \subseteq \mathcal{L}^d(M) \subseteq \mathcal{S}^{d-1,d}(M).$$

Corollary 10 Equality holds throughout when d = 2.

(This generalizes both Laman's Theorem and the Planar Duality Theorem.)

Uniform Matroids

Let |E| = n. The **uniform matroid** $U_{r,n}$ is defined as $\{S \subset E : |S| \leq r\}$.

- Every $U_{r,n}$ is representable over a suitable field (e.g., \mathbb{R}).
- $\mathcal{L}^d(U_{r,n})$ and $\mathcal{S}^{k,d}(U_{r,n})$ are uniform matroids for all k,d.

Example 1: $U_{2,3}$ (= graphic matroid of 3-cycle)

$$\mathcal{L}^{d}(U_{2,3}) = \begin{cases} U_{2,3} & \text{if } 1 < d \le \frac{3}{2} \\ U_{3,3} & \text{if } d > \frac{3}{2} \end{cases}$$

$$S^{1,d}(U_{2,3}) = \begin{cases} U_{3,3} & \text{if } d = 2\\ U_{2,3} & \text{if } d = 3, 4, \dots \end{cases}$$

- For $\phi: \mathbb{F}^2 \to \mathbb{F}^2$, the slopes of the $\phi(v_i)$ may be specified freely
- For $\phi : \mathbb{F}^2 \to \mathbb{F}^d \ (d > 2)$, the three lines $\phi(v_i)$ must be coplanar

$$\mathcal{R}^{d}(U_{2,3}) = \begin{cases} U_{3,3} & \text{if } d = 1\\ U_{2,3} & \text{if } d = 2, 3, \dots \end{cases}$$

• Two sides of a triangle determine the third iff the triangle is flat!

Uniform Matroids (II)

Example 2: $U_{2,4}$, represented as follows. (All representations are projectively equivalent to this one, up to the choice of μ .)

$$v_1 = (1, 0)$$
 $v_2 = (0, 1)$
 $v_3 = (1, 1)$
 $v_4 = (1, \mu)$
 $v_4 = (1, \mu)$

$$\mathcal{L}^{d}(U_{2,4}) = \begin{cases} U_{2,4} & \text{if } 1 \le d \le \frac{3}{2} \\ U_{3,4} & \text{if } \frac{3}{2} < d \le 2 \\ U_{4,4} & \text{if } d > 2 \end{cases}$$

$$S^{1,d}(U_{2,4}) = \begin{cases} U_{3,4} & \text{if } d = 2\\ U_{2,4} & \text{if } d = 3, 4, \dots \end{cases}$$

• For d > 1, each $\phi : \mathbb{F}^2 \to \mathbb{F}^d$ preserves the cross-ratio μ , so there is an additional constraint on the slopes of the $\phi(v_i)$. Therefore

$$\mathcal{R}^d(U_{2,4}) = \begin{cases} U_{2,4} & \text{if } d = 1\\ U_{3,4} & \text{if } d = 2, 3, \dots \end{cases}$$

Open Questions

- 1. Is $\mathcal{R}^d(M)$ a combinatorial invariant of M? That is, is it independent of the choice of representation of M, or at least of the ground field \mathbb{F} ? Is the question easier if M is required to be graphic?
- 2. Give a combinatorial explanation for the identity

$$q^{d \cdot r(M)} |X_{d-k,d}(M^{\perp})| = q^{(d-k)n} |X_{k,d}(M)|$$

where r is the rank of M and M^{\perp} is the dual matroid.

- **3.** Describe the defining equations of the photo space. (These polynomials may be generating functions for certain bases of M.) What geometric invariants (such as the cross ratio) show up?
- **4.** Study the singular locus of the photo space. (It is smooth iff M contains only loops and coloops.)
- **5.** Explain the "dimension scaling phenomenon"

$$\mathcal{S}^{k,d}(M) = \mathcal{S}^{\lambda k, \lambda d}(M).$$

6. Generalize other rigidity-theoretic facts to the setting of matroids: for example, Henneberg's and Crapo's constructions of \mathcal{L}^2 .