Laplace matrix

Chih-wen Weng

Department of Applied Mathematics, National Yang Ming Chiao Tung University

Algebraic Graph Theory (2024 Fall)

Outline

- **1** The spectrum of $L(\Gamma)$ tells the number of components
- 2 Laplace matrix and graph drawing
- 3 The complement of a graph
- 4 Algebraic connectivity
- 5 Edge interlacing property for Laplace matrix
- **6** Line graph and signless Laplace matrix

The spectrum of $L(\Gamma)$ tells the number of components

Recall

Recall that the Laplace matrix associated with an undirected graph Γ is $L=D-A=NN^T$, where D is the degree matrix and N is incidence matrix of an orientation of Γ . In particular $L\mathbf{1}=0$ and L is positive semidefinite. Hence 0 is the smallest eigenvalue of L. This proves the following lemma.

Lemma

If Γ is an undirected graph with c components, then 0 is a Laplace eigenvalue of Γ with multiplicity at least c.

Example

$$\begin{pmatrix}
\begin{pmatrix}
1 & -1 & & & & & \\
& 1 & -1
\end{pmatrix} & & & & & \\
& & & \ddots & & & \\
& & & & \begin{pmatrix}
2 & -1 & -1 \\
-1 & 1
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
s_1 \\ \vdots \\ s_1 \\ \vdots \\ s_c \\ \vdots \\ s_c
\end{pmatrix} = 0.$$

Lemma

For any $n \times m$ matrix N,

$$\left\{ u \in \mathbb{R}^n \mid N^T u = 0 \right\} = \left\{ u \in \mathbb{R}^n \mid NN^T u = 0 \right\}.$$

Proof.

 \subseteq is clear.

To prove \supseteq , suppose $NN^Tu = 0$. Then

$$\|\mathbf{N}^T u\|^2 = (\mathbf{N}^T u)^T \mathbf{N}^T u = u^T \mathbf{N} \mathbf{N}^T u = 0.$$

Theorem

If Γ is an undirected graph with c components, then 0 is a Laplace eigenvalue of Γ with multiplicity c.

Proof.

It suffices to assume that Γ is connected and prove that the null space of $L=NN^T$ has dimension 1. This is equivalent to prove that the nullspace of N^T has dimension 1. Note that each row of N^T has only two nonzero entries, 1,-1. Hence $N^T\mathbf{1}=0$. We prove the vectors in the nullspace of N^T has the form $s\mathbf{1}$ for some $s\in\mathbb{R}$. Let u be a vector in the nullspace of N^T , and suppose $u_i\neq u_j$ for some i,j. Choose such pair i,j such that the distance $\partial(i,j)$ in Γ is smallest. Note that i,j have an edge ij=e. Hence $0=(N^Tu)_e=\pm(u_i-u_j)\neq 0$, a contradiction. Then the nullspace of N^T has dimension 1.

Remark

The graph $K_3 + K_2$ has 2 components and

$$SP(K_3 + K_2) = (2, 1, -1, -1, -1).$$

Hence the multiplicity of the largest eigenvalue of a graph does not count the number of components of the graph.

8 / 43

Notations

We will use the following notations:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
 are eigenvalues of A , $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are eigenvalues of L .

Remark

If Γ is k-regular, then L = kI - A, and

$$\mu_1 = \mathbf{k} - \lambda_n \ge \mu_2 = \mathbf{k} - \lambda_{n-1} \ge \cdots \ge \mu_n = \mathbf{k} - \lambda_1 = 0,$$

where μ_i and λ_{n-i+1} have the same associated eigenvector.

Laplace matrix and graph drawing

What is $u^T L u$?

For the Laplace matrix $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ of an edge ab, we have

$$(u_a, u_b)L\begin{pmatrix} u_a \\ u_b \end{pmatrix} = (u_a, u_b)\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} u_a \\ u_b \end{pmatrix}$$
$$= (u_a - u_b, -u_a + u_b)\begin{pmatrix} u_a \\ u_b \end{pmatrix}$$
$$= u_a^2 - u_b u_a - u_a u_b + u_b^2$$
$$= (u_a - u_b)^2$$

Lemma

If Γ is an undirected graph with edge set $E\Gamma$ and u is a column vector, then

$$u^T L u = \sum_{\textit{ab} \in \textit{E}\Gamma} (\textit{u}_\textit{a} - \textit{u}_\textit{b})^2 \quad \text{and} \quad \ u^T \textit{Q} u = \sum_{\textit{ab} \in \textit{E}\Gamma} (\textit{u}_\textit{a} + \textit{u}_\textit{b})^2.$$

Proof.

Let N denote the vertex-arc incidence matrix of an orientation Γ^{σ} . Then

$$u^{T}Lu = u^{T}NN^{T}u = ||N^{T}u||^{2}$$
$$= \sum_{ab \in F\Gamma} (u_{a} - u_{b})^{2}.$$

The other case for Q is similar.

Graph drawing and energy

• Let R be an $n \times m$ matrix denoting a drawing of $V\Gamma$ on \mathbb{R}^m , where the i-th row v_i of R denote the vertex i drawn in \mathbb{R}^m .

$$R = (R_1 \cdots R_m) =$$
 $\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ $(n 個點放在 m 維空間)$

The energy of a drawing R is defined to be

$$\sum_{ab \in E\Gamma} \|v_a - v_b\|^2 = \sum_{ab \in E\Gamma} \sum_{i=1}^m (R_{ai} - R_{bi})^2 = \sum_{i=1}^m R_i^T L R_i = \operatorname{tr}(R^T L R).$$

• The smaller the energy of R the closer in average of two adjacent vertices are drawn in \mathbb{R}^m .

Assumptions on *R* **and the goal**

Usually we have restriction on R, for example, the assumptions

$$\mathbf{1}^T R = 0$$
 (所有點的重心在原點), $R^T R = I$ (某種製造點差異性的方式)

appeared in some research papers.

Goal: Minimize $\operatorname{tr}(R^T L R)$ among all $n \times m$ matrices R satisfying that $\mathbf{1}^T R = 0$ and $R^T R = I$.

The case m=1

Minimize the energy trace R^TLR among all $n \times 1$ matrices R satisfying that $\mathbf{1}^TR = 0$ and $R^TR = 1$.

Solution. Choose an orthonormal basis $\{u_1, u_2, \ldots, u_n\}$ of \mathbb{R}^n such that u_i is the μ_i -eigenvector of L. Since $u_n = \frac{1}{n}$, $\mathbf{1}^T R = 0$, and $R^T R = 1$, we might assume $R = \sum_{i=1}^{n-1} c_i u_i$, where $\sum_{i=1}^{n-1} c_i^2 = 1$. Then

$$\operatorname{tr}(R^{T}LR) = \sum_{i=1}^{n-1} c_{i}^{2} \mu_{i} \ge \sum_{i=1}^{n-1} c_{i}^{2} \mu_{n-1} = \mu_{n-1},$$

and if $R = u_{n-1}$ then $\operatorname{tr}(R^T L R) = \mu_{n-1}$. Hence μ_{n-1} is the minimum energy of R.

Theorem

The energy $tr(R^TLR)$ of R takes the minimum value

$$\mu_{n-1} + \mu_{n-2} + \cdots + \mu_{n-m}$$

among all $n \times m$ matrices R satisfying $R^T R = I$ and $\mathbf{1}^T R = 0$.

Proof.

Fix R satisfying the assumptions. Add the unit μ_n -eigenvector $u_n=1/\sqrt{n}$ of L to the first column of R to have an $n\times (m+1)$ matrix R' satisfying $R'^TR'=I$. Since $u_n^TLu_n=0$, $\mu_n=0$ and R'^TR' is $(m+1)\times (m+1)$ matrix, by Eigenvalue Interlacing Theorem,

tr
$$(R^T L R)$$
 = tr $(R'^T L R')$ = the sum of eigenvalues of $R'^T L R'$
 $\geq \mu_n + \mu_{n-1} + \mu_{n-2} + \dots + \mu_{n-m} = \mu_{n-1} + \mu_{n-2} + \dots + \mu_{n-m}$.

The above lower bound is obtained by $R = [u_{n-1}u_{n-2}\cdots u_{n-m}].$

Application

Let $\Gamma=P_3$ be a path with three vertices. Then the Laplace spectrum of Γ is (0,1,3) with corresponding sequence of unit eigenvectors

$$\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

應用上取 m=2 及 L 的最小兩個非 0 特徵值 (可重複) 所對應的兩向量,對每一點以第一向量該點的位置當 x 軸座標,第二向量該點的位置當 y 軸座標,即可在平面上畫出圖.

The complement of a graph

The complement of a graph

Let Γ be a simple graph of order n. The complement $\overline{\Gamma}$ of Γ is the graph with vertex set $V\overline{\Gamma}=V\Gamma$ and edges $xy\in E\overline{\Gamma}$ iff $xy\not\in E\Gamma$ for distinct $x,y\in V\Gamma$. Note that

$$L(\Gamma) + L(\overline{\Gamma}) = nI - J.$$

Proposition

 $\mu_i(\overline{\Gamma}) + \mu_{n-i}(\Gamma) = n$ for $1 \le i \le n-1$. In particular $\mu_1(\Gamma) \le n$ with equality iff $\overline{\Gamma}$ is disconnected.

Proof.

Fix $1 \le i \le n-1$. Since a $\mu_{n-i}(\Gamma)$ -eigenvector u of $L(\Gamma)$ in $\mathbf{1}^{\perp}$ is also an n-eigenvector of nI-J,

$$L(\overline{\Gamma})u=(nI-J)u-L(\Gamma)u=(n-\mu_{n-i}(\Gamma))u.$$

This proves the first statement. Take i=n-1 and use $\mu_{n-1}(\overline{\Gamma})\geq 0$ with equality iff $\overline{\Gamma}$ is disconnected to have the second statement. \square

Example

Determine the spectrum $SP(L(K_{pq}))$ of complete bipartite graph K_{pq} .

Solution. Note that $K_{pq} = \overline{K_p \cup K_q}$ and

$$SP(L(K_p \cup K_q)) = (q^{q-1}, p^{p-1}, 0, 0).$$

Hence

$$SP(L(K_{pq})) = (p+q, q^{p-1}, p^{q-1}, 0).$$

Algebraic connectivity

Algebraic connectivity

Let Γ be a graph with at least two vertices. The second (from the least) Laplace eigenvalue $\mu_{n-1}(\Gamma)$ is called the **algebraic connectivity** of Γ . Note that $\mu_{n-1}(\Gamma) \geq 0$ with equality if and only if Γ is disconnected.

Proposition

Let Γ and Δ be two edge-disjoint graphs on the same vertex set.

Then
$$\mu_{n-1}(\Gamma) \leq \mu_{n-1}(\Gamma) + \mu_{n-1}(\Delta) \leq \mu_{n-1}(\Gamma \cup \Delta) \leq \mu_{n-1}(\Gamma) + 2|E\Delta|$$
. **Proof.** Let z a $\mu_{n-1}(\Gamma \cup \Delta)$ -eigenvector of $\Gamma \cup \Delta$. Then

$$\begin{split} \mu_{n-1}(\Gamma \cup \Delta) \|z\|^2 &= z^T L(\Gamma \cup \Delta) z \\ &= \sum_{ab \in E(\Gamma \cup \Delta)} (z_a - z_b)^2 \\ &= \sum_{ab \in E\Gamma} (z_a - z_b)^2 + \sum_{ab \in E\Delta} (z_a - z_b)^2 \\ &= z^T L(\Gamma) z + z^T L(\Delta) z \\ &\geq (\mu_{n-1}(\Gamma) + \mu_{n-1}(\Delta)) z^T z \end{split}$$

by Rayleigh's principle. Hence $\mu_{n-1}(\Gamma \cup \Delta) \ge \mu_{n-1}(\Gamma) + \mu_{n-1}(\Delta)$.

Continue the proof

Similarly let z' denote an eigenvector corresponding to the Laplace eigenvalue $\mu_{n-1}(\Gamma)$. Then

$$\begin{split} \mu_{n-1}(\Gamma \cup \Delta) \|\mathbf{z}'\|^2 & \leq & \mathbf{z}'^T L(\Gamma \cup \Delta) \mathbf{z}' \\ & = & \sum_{ab \in E(\Gamma \cup \Delta)} (\mathbf{z}_a' - \mathbf{z}_b')^2 \\ & = & \mu_{n-1}(\Gamma) \|\mathbf{z}'\|^2 + \sum_{ab \in E\Delta} (\mathbf{z}_a' - \mathbf{z}_b')^2 \\ & \leq & \mu_{n-1}(\Gamma) \|\mathbf{z}'\|^2 + \sum_{ab \in E\Delta} 2(\mathbf{z}_a'^2 + \mathbf{z}_b'^2) \\ & \leq & \mu_2(\Gamma) \|\mathbf{z}'\|^2 + \sum_{ab \in E\Delta} 2\|\mathbf{z}'\|^2 \\ & = & (\mu_{n-1}(\Gamma) + 2|E\Delta|) \|\mathbf{z}'\|^2. \end{split}$$

Edge interlacing property for Laplace matrix

Lemma

Let N be an $n \times m$ matrix. Then there exists a one-one correspondence between the nonzero eigenvalues of NN^T and N^TN .

Proof.

Suppose μ is a nonzero eigenvalue of NN^T with corresponding eigenvector u. Then $NN^Tu=\mu u\neq 0$. In particular $N^Tu\neq 0$. Since $N^TNN^Tu=\mu N^Tu$, N^Tu is an eigenvector of N^TN corresponding to the eigenvalue μ . Suppose μ has multiplicity m as an eigenvalue of NN^T . Let u_1,u_2,\ldots,u_m be the corresponding orthogonal eigenvectors. If $c_1N^Tu_1+\cdots+c_mN^Tu_m=0$ then $0=N(c_1N^Tu_1+\cdots+c_mN^Tu_m)=\mu(c_1u_1+\cdots+c_mu_m)$, and hence $c_1=c_2=\cdots=c_m=0$. This proves that the multiplicity of μ in NN^T is no larger than that in N^TN . Similarly for the other side, so the two multiplicities are the same.

Proposition (Edge Interlacing)

Let $\Gamma \setminus e$ denote the graph obtained from Γ by deleting the edge e. Then $\mu_{i+1}(\Gamma) < \mu_i(\Gamma \setminus e) < \mu_i(\Gamma)$

Proof.

Let N denote the vertex-arc incidence matrix of an orientation Γ^{σ} and recall that $L(\Gamma) = NN^T$. Note that the vertex-arc incidence matrix N' of the corresponding orientation $(\Gamma \setminus e)^{\sigma}$ is obtained from N be deleting a column. Hence $N^{\prime T}N^{\prime}$ is a principal submatrix of $N^{T}N$. By interlacing property, the *i*th largest eigenvalues of N^TN is no less than that of N^TN' . By previous lemma, we have $\mu_{i+1}(\Gamma) \leq \mu_i(\Gamma \setminus e) \leq \mu_i(\Gamma)$.

Laplace matrix

Remark

If $\Gamma' = \Gamma - x$ for some vertex of Γ , then

$$\lambda_1 \geq \lambda_1' \geq \lambda_2 \geq \lambda_2' \geq \dots \geq \lambda_{n-1} \geq \lambda_{n-1}' \geq \lambda_n \quad \text{(vertex interlacing)}.$$

Laplace matrix does not have vertex interlacing property. Let x be a vertex of degree 2 in P_3 . Then $P_3 - x = 2K_1$, and

$$SP(L(2K_1)) = (0,0)$$
 is not interlacing $SP(L(P_3)) = (3,1,0)$.

Remark

If $\Gamma' = \Gamma - e$ for some edge of Γ , then

$$\mu_1 \ge \mu_1' \ge \mu_2 \ge \mu_2' \ge \cdots \ge \mu_{n-1} \ge \mu_{n-1}' \ge \mu_n = 0 \ge 0 = \mu_n'.$$
 (edge interlacing)

Adjacency matrix does not have edge interlacing property. Let e be an edge in P_3 . Then $P_3 - e = K_1 + K_2$ and $SP(A(K_1 + K_2)) = (1,0,-1)$ is not interlacing $SP(A(P_3)) = (\sqrt{2},0,-\sqrt{2})$. (兩者項數一樣·只差最後一項).

Question

If $\Gamma' = \Gamma - e$ for some edge e of Γ , can we have

$$\lambda_1 \geq \lambda_1' \geq \lambda_2 \geq \lambda_2' \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n-1}' \geq \lambda_n$$
?

Solution. No. Let e be an edge in K_3 . Then $P_3=K_3-e$ and $SP(A(P_3))=(\sqrt{2},0,-\sqrt{2}).$ The sequence $(\sqrt{2},0)$ of first two values is not interlacing $SP(A(K_3))=(2,-1,-1).$

The adjacency matrix does not have edge interlacing property in any sense.

Corollary

Let Δ be a subgraph of Γ . Then $\mu_i(\Delta) \leq \mu_i(\Gamma)$.

Proof.

Use previous proposition to delete edges until all the edges are in Δ . Then delete isolated vertices. Delete an isolated vertex only decreases one zero eigenvalue. $\hfill\Box$

Example

Find $SP(L(K_{1,n-1}))$, where $K_{1,n-1}$ is a star with Laplace matrix

$$L(K_{1,n-1}) = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & 1 & & 0 \\ \vdots & & \ddots & \\ -1 & 0 & & 1 \end{pmatrix}.$$

Solution. Since $L(K_{1,n-1}) = M + I$, where

$$M = \begin{pmatrix} n-2 & -1 & \cdots & -1 \\ -1 & 0 & & 0 \\ \vdots & & \ddots & \\ -1 & 0 & & 0 \end{pmatrix}$$

has nullity n-2, (-1)-eigenvector $\mathbf 1$ and (n-1)-eigenvector $(1-n,1,\ldots,1)$. Hence $SP(L(\mathcal K_{1,n-1}))=(n,1,\ldots,1,0)$.

Corollary

Let Γ be an simple undirected graph on n vertices with at least an edge. Then the largest Laplace eigenvalue satisfying $\mu_1 \geq 1 + k_{\text{max}}$.

Proof.

Since the star $K_{1,k_{\max}}$ has largest Laplace eigenvalue $1 + k_{\max}$ and is a subgraph of Γ , the corollary follows from the interlacing property.

Line graph and signless Laplace matrix

Line graph

The line graph of a graph Γ is the graph $\ell(\Gamma)$ with vertex set $E\Gamma$ and $ee' \in V\ell(\Gamma)$ if e and e' are incident with a common vertex in Γ . The graph $\ell(\Gamma)$ is called the **line graph** of Γ .

Remark

$$\label{eq:Allower} \mathcal{A}(\ell(\Gamma)) = \left\{ \begin{array}{ll} 0, & \text{if } \textit{e} = \textit{e}'; \\ 1, & \text{if } \textit{e}, \textit{e}' \text{ have a uinque common end point;} \\ 0, & \text{else.} \end{array} \right.$$

Theorem

Let Γ be a graph with signless Laplace matrix Q. The the following (i)-(ii) hold.

1 $A(\ell(\Gamma))$ has least eigenvalue at least -2.

$$\lambda_i(|L|) = \left\{ \begin{array}{ll} \lambda_i(A(\ell(\Gamma))) + 2, & \text{if } \lambda_i(|L|) \neq 0; \\ 0, & \text{else.} \end{array} \right.$$

Proof.

Let $Q = NN^T$, where N is the vertex-edge incident matrix of Γ . Observe that

$$(N^T N)_{ee'} = (2I + A(\ell(\Gamma)))_{ee'}.$$

The theorem follows since $Q = NN^T$ and $N^TN = 2I + A(\ell(\Gamma))$ have the same nonzero eigenvalues and the same corresponding multiplicities.

Example

$$\ell(K_3)=K_3$$

eigenvalues

$$A(\ell(K_3))$$
: 2, -1, -1

$$|L|(K_3)$$
: 4, 1, 1

$$L(K_3)$$
: 3, 3, 0

$$\ell(K_{1,3}) = K_3$$

eigenvalues

$$A(\ell(K_{1,3})): 2, -1, -1$$

$$|L|(K_{1,3})$$
: 4, 1, 1, 0

$$L(K_{1,3})$$
: 4, 1, 1, 0

Remark

If Γ is bipartite then L and |L| have the form

$$L = \begin{pmatrix} D & -M \\ -M^T & D' \end{pmatrix}, \qquad |L| = \begin{pmatrix} D & M \\ M^T & D' \end{pmatrix}.$$

Hence

$$\begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix} L \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix} = Q.$$

Thus Q and L have the same set of eigenvalues.

Theorem

Let Γ be a graph with signless Laplace matrix Q. Then the nullity of Q is the number of bipartite component in Γ .

Proof.

As the notation $|L| = NN^T$ in previous page, note that |L|u = 0 iff $N^T u = 0$, and this implies $u_x = -u_y$ for $xy \in E\Gamma$, so the support of u does not contain odd cycles. Hence if u in the kernel of L, then $u_x = 0$ for all x in a non-bipartite component of Γ . Restricted to a bipartite component, u is uniquely determined up to a scalar.

Summary

Let $\lambda_1(\ell(\Gamma)) \geq \ldots \geq \lambda_m(\ell(\Gamma))$ denote the eigenvalues of the line graph of Γ and $\rho_1 \geq \ldots \geq \rho_r$ denote the positive signless Laplace eigenvalues of Γ , where $m = |E\Gamma|$. Then

- **1** n-r is the number of bipartite components in Γ ;
- $\lambda_i((\ell(\Gamma))) = \rho_i 2 \text{ for } 1 \leq i \leq r$

The graphs with the least eigenvalue at least -2 are classified by Cameron, Goethals, Seidel and Shult (1976).

Proposition

 $\mu_1 \le \rho_1.$ Moreover, if Γ is connected, then the equality holds if and only if Γ is bipartite.

Proof.

Exercise.

Let $d_x := |\Gamma_1(x)|$ be the degree of the vertex x in Γ . A bipartite graph is biregular if all vertices in the same part of the bipartite have the same valency.

Proposition

Let Γ be a graph with largest signless Laplace eigenvalue ρ_1 . Then

$$\rho_1 \leq \max_{xy \in E\Gamma} (d_x + d_y).$$

Moreover, if Γ is connected then the above equality holds iff Γ is regular or bipartite biregular.

Proof.

Observe that

$$\rho_1 = \lambda_1(\ell(\Gamma)) + 2 \le d_{\max}(\ell(\Gamma)) + 2 = \max_{\mathsf{x}\mathsf{y} \in \mathsf{E}\Gamma} (d_\mathsf{x} + d_\mathsf{y} - 2) + 2.$$

The equality holds iff the line graph of Γ is regular. This is equivalent to Γ regular or bipartite biregular (exercise).

