Respostas Segunda prova de Aprendizado de Máquina

- · Aluno: Edwin Jahir Rueda Rojas
- code e os dados: https://github.com/ejrueda/MasterUFPA/tree/master/Materias/Aprendizado%20de%20maquina/Tarefas/prova_2 (https://github.com/ejrueda/MasterUFPA/tree/master/Materias/Aprendizado%20de%20maquina/Tarefas/prova_2)

```
In [3]:
```

- 1 **import** numpy **as** np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as pl
- 4 from PIL import Image
- 5 %matplotlib inline

Ponto 1

1) [2.0 pts] Use os dados Breast Cancer Wisconsin (Diagnostic) Data Set do UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic))). Use validação cruzada para avaliar qual dos algoritmos tem maior acurácia nos dados:

- SVM Linear
- SVM RBF

Decida que tipo de padronização (normalização) dos dados você usará para cada algoritmo (ou nenhuma). justifique.

```
In [2]:
          1 data = pd.read csv("./data/wdbc.csv", header=None)
           2 print(data.shape)
             data = data.drop(0, axis=1)
             data.head()
         (569, 32)
Out[2]:
                                                                        10 ...
                                                                                             24
                                                                                                   25
                                                                                                          26
                                                                                                                27
                                                                                                                      28
          0 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 ... 25.38 17.33 184.60 2019.0 0.1622 0.6656 0.7119
          1 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 ... 24.99 23.41 158.80 1956.0 0.1238
                                                                                                                   0.2416
                                                                                                            0.1866
          2 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 ... 23.57 25.53 152.50 1709.0 0.1444 0.4245 0.4504
          3 M 11.42 20.38
                           77.58
                                  386.1 0.14250 0.28390 0.2414 0.10520 0.2597 ... 14.91 26.50
                                                                                          98.87
                                                                                                 567.7 0.2098
                                                                                                            0.8663 0.6869
          4 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 0.1809 ... 22.54 16.67 152.20 1575.0 0.1374 0.2050 0.4000
         5 rows × 31 columns
In [3]:
          1 | X = data.iloc[:, 1:]
           2 y = np.array(data.iloc[:,0].values)
In [4]:
              for idx in range(len(y)):
           2
                  if y[idx]=="M":
           3
                      y[idx]=1
                  elif y[idx]=="B":
                       v[idx]=0
In [5]:
          1 | v = v.astvpe(int)
In [6]:
          1 from sklearn import svm
             from sklearn.model selection import cross val score
             clf1 = svm.SVC(kernel='linear') #kernel lineal
             score1 = cross val score(clf1, X, y, n jobs=2, cv=10)
```

```
In [7]: 1 plt.figure(figsize=(8,3))
    plt.xticks(range(1,11), range(1,11))
    plt.grid()
    4 plt.title("score com os dados sim normalização")
    5 plt.xlabel("k-folds")
    6 plt.ylabel("score")
    7 x = range(1,11)
    8 plt.plot(x, score1, label="score", linewidth=1.5)
    9 print("score promedio: ", np.mean(score1))
    10 upper = score1 + np.std(score1)
    11 upper[upper>1]=1
    12 plt.fill_between(x, upper, score1 - np.std(score1), alpha=0.2, color='grey')
    13 plt.legend();
```

score promedio: 0.9543179068360554

Scalando os dados

```
In [8]:
             def data scale(df, l cols=-1):
           2
           3
                 df: DataFrame de entrada
                 l cols: lista de columnas a escalar, por defecto -1 para escalar todas
                 return: retorna un df con las columnas estandarizadas así:
                 (X - mean(X))/(max(X) - min(X))
           7
                 0.00
           8
                 df scale = df.copy()
                 if l cols == -1:
           9
                      l cols = df.columns
          10
                 for col in l cols:
          11
                     #se cambia cada columna
          12
         13
                     #df scale[col] = (df scale[col] - min(df scale[col]))/(max(df scale[col]) - min(df scale[
         14
                      df scale[col] = (df scale[col] - min(df scale[col]))/((max(df scale[col]) - min(df scale[
          15
                  return df scale
          1 data.columns
 In [9]:
 Out[9]: Int64Index([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
                     18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
                    dtype='int64')
In [10]:
          1 #Escalando os dados
          2 X scale = data scale(X)
```

```
1 from sklearn import svm
In [11]:
            from sklearn.model selection import cross val score
          3
             clf2 = svm.SVC(kernel='linear') #kernel lineal
             score2 = cross val score(clf2, X scale, y, n jobs=2, cv=10)
             plt.figure(figsize=(7,3))
             plt.xticks(range(1,11), range(1,11))
          9 plt.grid()
         10 plt.title("score com o SVM Linear", size=14)
         11 plt.xlabel("k-folds", size=14)
         12 plt.ylabel("score", size=14)
         13 plt.plot(range(1,11), score2, label="test", linewidth=2)
         14 print("score promedio com o SVM Linear", np.mean(score2))
         15 upper2 = score2 + np.std(score2)
         16 | upper2[upper2>1]=1
         17 plt.fill between(x, upper2, score2 - np.std(score2), alpha=0.2, color='grey', label="std")
         18 plt.legend(loc=4);
```

score promedio com o SVM Linear 0.9772210699161695


```
In [12]:
          1 from sklearn import svm
             from sklearn.model selection import cross val score
          3
             clf3 = svm.SVC(kernel='rbf') #kernel lineal
             score3 = cross val score(clf3, X scale, y, n jobs=2, cv=10)
             plt.figure(figsize=(7,3))
             plt.xticks(range(1,11), range(1,11))
          9 plt.grid()
         10 plt.title("score com o SVM RBF", size=14)
         11 plt.xlabel("k-folds", size=14)
         12 plt.ylabel("score", size=14)
         13 plt.plot(x, score3, label="test", linewidth=2, color="green")
         14 print("score promedio do SVM RBF: ", np.mean(score3))
         15 upper2 = score3 + np.std(score3)
         16 | upper2[upper2>1]=1
         17 plt.fill between(x, upper2, score3 - np.std(score3), alpha=0.2, color='grey', label="std")
         18 plt.legend(loc=4);
```

score promedio do SVM RBF: 0.9527180019013048

gráfico da relação dos scores

```
In [13]: 1 plt.figure(figsize=(7,3))
2 plt.xticks(range(1,11), range(1,11))
3 plt.grid()
4 plt.title("comparação Linear vs RBF", size=14)
5 plt.xlabel("k-folds", size=14)
6 plt.ylabel("score", size=14)
7 plt.plot(x, score2, linewidth=2, color="blue", label="linear")
8 plt.plot(x, score3, linewidth=2, color="green", label="RBF")
9 plt.legend(loc=4);
```


Clonclução

• o modelo SVM com o kernel linear é melhor que o SVM com kernel RBF já que ele é melhor o igual em todos os k-folds, como o gráfico anterior mostra.

Ponto 2

2) [2.0 pts] Implemente em uma linguagem de programação de sua escolha uma Rede Neural Artificial Multilayer Perceptron treinada com o algoritmo backprogation que resolva o problema do OU-EXCLUSIVO. Para validar sua implementação utilize a arquitetura apresentada na aula sobre Redes Neurais. Mostre que os resultados foram os mesmos. Avalie como ficaria a solução se considerarmos uma arquitetura com 2 neurônios na camada escondida e um neurônio na camada de saída. Lembrando que a função de ativação do neurônio deve ser sigmoide.

Out[2]:


```
In [2]:
            import numpy as np
            class RNN MLP:
          3
          4
                 def init (self, X, y):
                     self.X = X
          6
                     self.v = v
          7
                     self.lr = 0.4 #learning rate
                     #inicialización de los pesos en cero
          8
          9
                     self.thetal = np.zeros((X.shape[1] + 1, 1))
         10
                     self.theta2 = np.zeros((X.shape[1] + 2, 1))
         11
                     self.count = 0
         12
         13
                 def sigmoid(self, z):
         14
         15
                     função para calcular a sigmoide
         16
         17
                     return (1/(1 + np.exp(-z)))
         18
         19
                 def get_weigths(self):
         20
         21
                     função para retornar os pesos da rede entrenada
         22
         23
                     return (self.theta1, self.theta2)
         24
         25
                 def get_count(self):
         26
         27
                     retorna o número de iterações que a rede
         28
                     precisó para converger
         29
         30
                     return self.count
         31
         32
                 def predict(self, X):
         33
         34
                     função para predecir a saída esperada
         35
         36
                     y_p = []
         37
                     for idx in range(X.shape[0]):
         38
                         x1 = np.concatenate(([1],X[idx]))
         39
                         h1 = self.sigmoid(self.thetal.T.dot(x1)) #hipótesis da camada oculta
         40
                         #para computar a saída da camada oculta
         41
                         x2 = np.concatenate(([1],X[idx],h1))
         42
                         h2 = self.sigmoid(self.theta2.T.dot(x2)) #hipótesis final
```

```
43
                y p.append(np.float(h2))
44
            y p = np.array(y p)
45
            y_p[y_p>=0.5] = 1
46
            y p[y p<0.5] = 0
47
48
            return y p
49
50
       def error(self, X, y):
51
52
            função para o calculo do erro da rede
53
54
            y p = self.predict(X)
55
            return np.mean((y p - y)**2)
56
57
58
       def train(self,X,y, bias=1):
59
60
            função para o treinamento da rede
61
            X: matriz com os dados de treinamento
62
            y: vector objetivo
63
64
            while (self.error(X,y) != 0):
65
                for idx in range(X.shape[0]):
66
                    x1 = np.concatenate(([1],X[idx]))
67
                    h1 = self.sigmoid(self.thetal.T.dot(x1)) #hipótesis da camada oculta
68
                    #para computar a saída da camada oculta
69
                    x2 = np.concatenate(([1],X[idx],h1))
70
                    h2 = self.sigmoid(self.theta2.T.dot(x2)) #hipótesis final
71
72
                    #Backpropagation
73
74
                    erro saida = (y[idx] - h2)*h2*(1 - h2)
                    self.theta2 = (self.theta2.T + (self.lr*erro_saida*x2)).T
75
                    erro interno = h1*(1 - h1)*erro saida*self.theta2[-1]
76
                    self.theta1 = (self.theta1.T + (self.lr*erro interno*x1)).T
77
78
79
                self.count += 1
```

```
In [3]:
         1 \mid X = \text{np.array}([[1,0],[0,0],[0,1],[1,1]]) \#Entrada XOR
          2 \mid y = \text{np.array}([1,0,1,0]) \# salida objetivo
          3 obj = RNN MLP(X, y) #clase para entrenar
          4 obj.train(X,y) #treino do modelo
           print("predição do modelo:", obj.predict(X))
          6 print("error do modelo:", obj.error(X, y))
        predição do modelo: [1. 0. 1. 0.]
        error do modelo: 0.0
In [4]:
         1 print("learning rate:", 0.4)
          2 print("número de iterações do modelo:", obj.count)
          3 print("pesos da camada de entrada:")
          4 print(obj.get weigths()[0])
          5 print("pesos da camada oculta:")
          6 print(obj.get weigths()[1])
        learning rate: 0.4
        número de iterações do modelo: 1575
        pesos da camada de entrada:
        [[0.65829301]
         [1.43380589]
         [1.45335442]]
        pesos da camada oculta:
        [[-0.79544225]
         [-0.25472723]
         [-0.26251389]
         [ 1.18628356]]
```

Rede com dois neurônios na camada escondida


```
In [204]:
            1 | import numpy as np
               class RNN MLP 2:
            3
            4
                   def init (self, X, y, lr=0.1):
                       self.X = X
            6
                       self.v = v
            7
                       self.lr = lr #learning rate
            8
                       self.num nce = 2 #número de neurônios na camada escondida
            9
                       self.num nsa = 1 #número de nerônios na camada de saída
           10
                       #inicialización de los pesos en cero
           11
                       #número de pesos na camada escondida(como o bias)
           12
                       self.theta1 = np.random.random((X.shape[1]+1, self.num nce))
           13
                       #número de pesos na camada de saída(com o bias)
           14
                       self.theta2 = np.random.random(((self.num nce + 1)*self.num nsa, 1))
           15
                       self.count = 0 #para contar as iterações que a rede faz para converger
           16
                   def sigmoid(self, z):
           17
           18
                       função para calcular a sigmoide
           19
           20
                       return (1/(1 + np.exp(-z)))
           21
           22
                   def get_weigths(self):
           23
           24
                       função para retornar os pesos da rede entrenada
           25
           26
                       return (self.theta1, self.theta2)
           27
           28
                   def get_count(self):
           29
           30
                       retorna o número de iterações que a rede
           31
                       precisó para converger
           32
           33
                       return self.count
           34
           35
                   def predict(self, X):
           36
           37
                       função para predecir a saída esperada
           38
           39
                       y_p = []
                       for idx in range(X.shape[0]):
           40
           41
                           #entrada para a camada inicial
           42
                           x1 = np.concatenate(([1],X[idx]))
```

```
43
                #print(self.thetal.shape, x1.shape)
44
                h1 = self.sigmoid(x1.dot(self.theta1)) #hipótesis da camada oculta
45
                #para computar a saída da camada oculta
46
                x2 = np.concatenate(([1],h1))
                h2 = self.sigmoid(x2.dot(self.theta2)) #hipótesis final
47
48
                y p.append(np.float(h2))
49
            y p = np.array(y p)
50
            y_p[y_p>=0.5] = 1
51
            y p[y p<0.5] = 0
52
53
            return y p
54
55
       def error(self, X, y):
56
57
            função para o calculo do erro da rede
58
59
            y p = self.predict(X)
            return np.mean((y p - y)**2)
60
61
62
63
       def train(self,X,y, bias=1):
64
65
            função para o treinamento da rede
66
            X: matriz com os dados de treinamento
67
            y: vector objetivo
68
69
            for i in range(40000): #para quando a rede tenha como erro zero
70
                for idx in range(X.shape[0]):
71
                    #entrada para a camada inicial
72
                    x1 = np.concatenate(([1],X[idx]))
73
                    #print(self.theta1.shape, x1.shape)
74
                    h1 = self.sigmoid(x1.dot(self.theta1)) #hipótesis da camada oculta
75
                    #para computar a saída da camada oculta
76
                    x2 = np.concatenate(([1],h1))
77
                    h2 = self.sigmoid(x2.dot(self.theta2)) #hipótesis final
78
79
                    #Backpropagation
80
81
                    erro saida = (y[idx] - h2)*h2*(1 - h2)
82
                    self.theta2 = self.theta2 + ((self.lr*erro_saida*x2).T).reshape(3,1)
83
                    erro_interno = h1*(1 - h1)*sum(erro saida*self.theta2)
                    self.theta1 = self.theta1 + (self.lr*erro interno.reshape(2,1).dot(x1.reshape(1,3))
84
85
                if self.error(X, y) == 0:
```

```
86
                               break
           87
                           self.count += 1
In [210]:
           1 \mid X = \text{np.array}([[1,0],[0,0],[0,1],[1,1]]) \#Entrada XOR
            2 | y = np.array([1,0,1,0]) #salida objetivo
             obj = RNN MLP 2(X, y, lr=0.1) #clase para entrenar
              obj.train(X,y) #treino do modelo
              print("predição do modelo:", obj.predict(X))
              print("error do modelo:", obj.error(X, y))
          predição do modelo: [1. 0. 1. 0.]
          error do modelo: 0.0
In [211]:
            1 print("pesos da camada de entrada:")
            2 print(obj.get weigths()[0])
            3 print("pesos da camada oculta:")
              print(obj.get weigths()[1])
          pesos da camada de entrada:
          [[0.38806811 0.25898045]
           [4.9152757 5.03040498]
           [4.91805205 5.0376233 ]]
          pesos da camada oculta:
          [[-7.57961129]
           [ 2.60026043]
           [ 5.6856643411
```

Ponto 3

3) [2.0 pts] Dado o conjunto de dados abaixo:

- a) aplique o método de agrupamento aglomerativo utilizando a métrica single-link e o critério de dissimilariade distância Euclidiana.
- b) aplique o algoritmo K-means utilizando distância Euclidiana considerando K = 2. O Algoritmo deve parar caso não apresente convergência após 5 iterações. Considere também que os centros iniciais são: cliente1 e cliente4.
- c) Avalie qual melhor solução de clusterização considerando 3 grupos.

In [7]:

```
2 Image.open("ponto3.png")
        ----- Dados -----
Out[7]:
               X1
                     X2
                            X3
                                  X4
                                         X5
                    10.000 9.000 7.000
                                       10,000
               .000
              9.000
                    9.000 | 8.000 | 9.000
                                        9,000
                    5,000 6,000 7,000
             5.000
                                        7,000
             6,000
                    6.000 | 3.000 | 3.000
                                        4.000
              1.000
                     2.000 2.000 1.000
                                        2.000
             4.000
                    3,000 2,000 3,000
                                        3,000
                     4.000 5.000 2.000
              2.000
                                        5.000
```

1 | print("----")

a) aplique o método de agrupamento aglomerativo utilizando a métrica single-link e o critério de dissimilariade distância Euclidiana.

Para o cálculo da distância Euclidiana

```
In [31]: 1 np.round(np.sqrt(sum((c_5 - c_6)**2)),4)
```

Out[31]: 3.873

```
In [5]: 1 print("------ Single Linkage (Euclidiana) ----")
2 Image.open("Selección_021.png")
```

----- Single Linkage (Euclidiana) ------

Out[5]:

	C ₁	C2	Сз	C ₄	C ₅	Ce	$D(C_3, C_1C_2) = min\{6.8557, 6.6332\} = 6.6332$
C ₂	3,3166	-	-	-	-	-	$D(C_4, C_1C_2) = min\{10.247, 10.198\} = 10.198$
Сз	6,8557	6,6332	-	-	-	-	$D(C_5, C_1C_2) = min\{15.7797, 16.1864\} = 16.1864$
C ₄	10,247	10,198	6	-	-	-	$D(C_6, C_1C_2) = min\{13.1149, 13\} = 13$
C ₅	15,7797	16,1864	10,0995	7,0711	-	-	$D(C_7, C_1C_2) = min\{11.2694, 12.1655\} = 11.2694$
C ₆	13,1149	13	7,2801	3,873	3,873	-	
C ₇	11,2694	12,1655	6,3246	5,099	4,899	4,3589	

```
In [6]: 1 print("----- Single Linkage (Euclidiana) ----")
2 Image.open("Selección_022.png")
```

----- Single Linkage (Euclidiana)

Out[6]:

	Сз	C ₄	C ₅	Ce	C ₇	$D(C_3, C_4C_6) = min\{6, 7.2801\} = 6$
C ₄	6	-	-	-	-	$D(C_5, C_4C_6) = min\{7.0711, 3.873\} = 3.873$
C ₅	10,0995	7,0711	-	-	-	$D(C_7, C_4C_6) = min\{5.099, 4.3589\} = 4.3589$
Се	7,2801	3,873	3,873	-	-	$D(C_1C_2, C_4C_6) = min\{10.198, 13\} = 10.198$
C ₇	6,3246	5,099	4,899	4,3589	-	
C ₁ C ₂	6,6332	10,198	16,1864	13	11.2694	

```
1 print("-----")
 In [7]:
            2 Image.open("Selección 023.png")
          ----- Single Linkage (Euclidiana) ------
 Out[7]:
                                                                                 D(C_3, C_5C_4C_6) = min\{10.0995, 6\} = 6
                         Сз
                                  C<sub>5</sub>
                                            C<sub>7</sub>
                                                     C<sub>1</sub>C<sub>2</sub>
                                                                                 D(C_7, C_5C_4C_6) = min\{4.899, 11.2694\} = 4.899
                   C<sub>5</sub>
                       10,0995
                                                                                 D(C_1C_2, C_5C_4C_6) = min\{16.1864, 10.198\} = 10.198
                   C<sub>7</sub>
                        6,3246
                                  4.899
                 C<sub>1</sub>C<sub>2</sub>
                        6,6332
                                 16,1864
                                          11.2694
                 C<sub>4</sub>C<sub>6</sub>
                                  3,873
                                           4.3589
                                                    10,198
 In [8]:
            1 print("-----")
            2 Image.open("Selección 024.png")
          ----- Single Linkage (Euclidiana) ------
 Out[8]:
                                                                               D(C_3, C_7C_5C_4C_6) = min\{6.3246, 6\} = 6
                         Сз
                                  C<sub>7</sub>
                                          C<sub>1</sub>C<sub>2</sub>
                                                                               D(C_1C_2, C_7C_5C_4C_6) = min\{11.2694, 10.198\} = 10.198
                   C<sub>7</sub>
                       6,3246
                 C<sub>1</sub>C<sub>2</sub>
                       6,6332
                                11.2694
               C<sub>5</sub>C<sub>4</sub>C<sub>6</sub>
                                 4.899
                                          10.198
 In [9]:
           1 print("-----")
            2 Image.open("Selección 025.png")
          ----- Single Linkage (Euclidiana)
 Out[9]:
                                                                               D(C_1C_2, C_3C_7C_5C_4C_6) = min\{6.6332, 10.198\} = 6.6332
                        Сз
                                 C<sub>1</sub>C<sub>2</sub>
                 C<sub>1</sub>C<sub>2</sub>
                       6,6332
             C7C5C4C6
                         6
                                 10.198
           1 print("-----")
In [11]:
            2 Image.open("Selección 026.png")
               ----- Single Linkage (Euclidiana) ------
Out[11]:
                             C<sub>1</sub>C<sub>2</sub>
            C3C7C5C4C6
                            6.6332
```

Out[13]:

Nó	Fusão	Nível
1	C1 e C2	3,3166
2	C4 e C6	3,873
3	C5 e C4C6	3,873
4	C7 e C5C4C6	4,899
5	C3 e C7C5C4C6	6
6	C1C2 e C3C7C5C4C6	6.6332

```
In [4]: 1 print("------ Single Linkage (Euclidiana) ----")
2 print("Gráfico:")
3 Image.open("Selección_028.png")
```

----- Single Linkage (Euclidiana)

Gráfico:

b) aplique o algoritmo K-means utilizando distância Euclidiana considerando K = 2. O Algoritmo deve parar caso não apresente convergência após 5 iterações. Considere também que os centros iniciais são: cliente1 e cliente4.

```
In [26]:
          1 data
          2 #seleção dos centros inicias
          3 c1 = data.iloc[0].values
            c4 = data.iloc[3].values
          5 print("centroide 1: ", c1)
            print("centroide 2: ", c4)
         centroide 1: [ 7 10 9 7 10]
         centroide 2: [6 6 3 3 4]
In [56]:
          1 from sklearn.cluster import KMeans
          2
            num iter = 5 #o algoritmo só apresenta 5 iterações
            num cen = 2 #numero de centros finais
          5 centroides = np.concatenate((c1,c4)).reshape(2,5) #centros iniciais
            kmeans = KMeans(n clusters=num cen, init=centroides, max iter=num iter, n init=1).fit(data)
In [57]:
          1 new centers = kmeans.cluster_centers_
          2 print("-----")
          3 print("centro 1: ", new_centers[0])
          4 print("centro 2: ", new centers[1])
         ----- Resultado -----
         centro 1: [8. 9.5 8.5 8. 9.5]
         centro 2: [3.6 4. 3.6 3.2 4.2]
         c) Avalie qual melhor solução de clusterização considerando 3 grupos.
In [58]:
          1 #o algoritmo vai para ao convergir
          2 #os centros inicias são escohlidos da forma random
          3 num cen2 = 3 #numero de centros finais
          4 kmeans2 = KMeans(n clusters=num cen2).fit(data)
```

Ponto 4

4) [2.0 pts] Implemente o método K-means. Os parâmetros de entrada são número K de clusters, o número M máximo de iterações, e um arquivo ARFF com o conjunto de treino (assuma que todos os atributos do ARFF devem ser levados em conta). O critério deparada não precisa ser limitado a usar apenas o valor de M. Faça um tratamento (leve em conta) para o caso de algum cluster ficar com nenhum vetor associado a ele

A classe KNN é feita para resolver o algoritmo k-means, ela tem as seguintes funções

- Inicialização: a inicialização recebe os parâmetros k:número de cluster, num_max_iter:número máximo de iterações do algoritmo e um arff: o cual e o arquivo .arff.
- get_cent_inicias: retorna os centrois calculados inicialmente pelo algoritmo.
- get_groups: retorna um dicionário com os índices dos clusters computados, indices do "toDataFrame()".
- get_iters: retorna o número de iterações que o programa fez para convergir.
- get_centroides: retorna os centroides computados.
- toDataFrame: retorna o DataFrame feito com os dados arff.
- train: treina o modelo e retorna os centroides computados.

```
In [15]:
           1 | import numpy as np
           2 import pandas as pd
              class KNN():
           4
           5
                  Classe para gerar k clusters com o algoritmo k-means,
                  tendo en conta a distância Euclidian.
                  Parâmetros:
                  k: número de cluster a gerar
           9
                  num max iter: número maximo de iterções para a conversão do algoritmo
                  arff: arguivo .arff com os dados de treino
          10
          11
          12
                  def __init__(self, k, num_max_iter, arff):
                      """ inialização das variáveis""
          13
          14
                      self.k = k
          15
                      self.num max iter = num max iter
                      self.arff = arff
          16
          17
                      self.d grupos = {}
          18
                      self.centroides = {}
          19
                      self.centro inicias = {}
          20
                      self.iters = 0
          21
          22
                  def toDataFrame(self):
          23
          24
                       converte o arquivo arff num DataFrame
          25
          26
                      firts = True
          27
                      header = []
          28
                      flag data = False
          29
                      data = []
          30
                      for line in self.arff:
          31
                          if flag data == False:
          32
                               if "@attribute" in line.lower():
          33
                                       attri = line.lower().split()
          34
                                       columnName = attri[attri.index("@attribute")+1]
          35
                                       header.append(columnName)
                               elif "@data" in line.lower():
          36
          37
                                   flag data = True
          38
          39
                           elif flag data==True:
                               l = line.replace("\n","").split(",")
          40
                               if "%" in l:
          41
          42
                                   continue
```

```
43
                    l = [float(i) for i in l] #converte de string á float
44
                    if firts:
                        data = np.array(l).reshape(1,len(l))
45
                        #print(data.shape)
46
47
                        firts = False
48
                    else:
49
                        data = np.concatenate((data,np.array(l).reshape(1,len(l))))
50
                        #break
51
            df = pd.DataFrame(data=data, columns=header)
52
            return df
53
54
        def dist_euclidean(self, x1, x2):
55
56
            para calculo da distância euclidiana
57
58
            return np.sqrt(sum((x1 - x2)**2))
59
60
        def get_centroides(self):
61
62
            para obter os centroides computados pelo k-means,
63
            retorna um dicionário com os centroides.
64
65
            return self.centroides
66
        def get_groups(self):
67
68
69
            retorna um dicinário com os índices dos dados de cada cluster
70
71
            return self.d grupos
72
73
        def get_cent_inicias(self):
74
75
            retorna os centroides iniciais computados
76
77
            return self.centro inicias
78
        def get_iters(self):
79
80
81
            retorna as iterações que fez o algoritmo
82
83
            return self.iters
84
85
        def train(self):
```

```
\mathbf{H}^{-}\mathbf{H}^{-}\mathbf{H}
86
87
             função para treinar o algoritmo k-means
88
89
             data train = self.toDataFrame()
90
             assert data train.shape[0]>=self.k, "o valor de k tem que ser menor o igual que o número
91
             #indices dos clusters
             idx = np.random.choice(data_train.index, size=self.k, replace=False)
92
93
             for i in range(self.k):
94
                 self.centroides[i] = data train.iloc[idx[i]].values
95
             #inicialização da lista dos centros
96
             self.centro inicias = self.centroides.copy()
97
             for j in range(self.num max iter):
98
                 self.iters += 1
                 for d in self.centroides:
99
100
                     self.d\ grupos[d] = []
101
                 #calcular a qual dado pertence o dado
                 for ix, row in data_train.iterrows():
102
103
                     flag f = True
                     for g in self.centroides:
104
105
                         if flag f:
106
                              aux = self.dist euclidean(self.centroides[g], row.values)
107
                             flag f = False
108
                              aux g = g
109
                         elif aux > self.dist euclidean(self.centroides[g], row.values):
110
                              aux = self.dist euclidean(self.centroides[g], row.values)
111
                              aux_g = g
112
113
                     ax d = self.d grupos[aux g]
114
                     ax d.append(ix)
                     self.d grupos.update({aux_g:ax_d})
115
116
117
                 aux centro = self.centroides.copy() #para comparar si os centros mudam
118
                 #Para o calculo dos novos centroides
119
                 for d in self.d grupos.keys():
120
                     if len(self.d grupos[d]) != 0:
121
                         aux data = data train.iloc[self.d grupos[d]]
122
                         aux data.append(pd.DataFrame([self.centroides[d]], columns=aux data.columns)
123
                                          ignore index=True)
124
                         self.centroides.update({d:aux data.mean().values})
125
126
                 #Si os centros não mudam o algoritmo vai parar
127
                 count = 0
128
                 for i in self.centroides:
```

• Se cria o objeto e se treina, para 3 clusters com um máximo de 100 iterações.

```
In [20]: 1 obj = KNN(k=3, num_max_iter=100, arff=content)
2 g = obj.train()
```

In [21]: 1 obj.toDataFrame()

Out[21]:

	sepallength	sepalwidth	petallength	petalwidth
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	6.3	2.5	4.9	1.5
15	6.1	2.8	4.7	1.2
16	6.4	2.9	4.3	1.3
17	6.6	3.0	4.4	1.4
18	6.8	2.8	4.8	1.4
19	6.7	3.0	5.0	1.7
20	6.0	2.9	4.5	1.5
21	5.7	2.6	3.5	1.0
22	5.5	2.4	3.8	1.1
23	5.5	2.4	3.7	1.0
24	5.8	2.7	3.9	1.2

	sepallength	sepalwidth	petallength	petalwidth
25	6.0	2.7	5.1	1.6
26	5.4	3.0	4.5	1.5
27	6.0	3.4	4.5	1.6
28	6.7	3.0	5.2	2.3
29	6.3	2.5	5.0	1.9
30	6.5	3.0	5.2	2.0
31	6.2	3.4	5.4	2.3
32	5.9	3.0	5.1	1.8
33	100.0	120.0	123.0	140.0
34	110.0	100.0	102.0	130.0
35	140.0	90.0	120.0	130.0

```
In [22]:
         1 print("-----")
         2 for i in q:
               print("Cluster " + str(i)+":", g[i])
         3
           print()
         5 print("-----")
         6 c i = obj.centro inicias
         7 for i in c i:
               print("Cluster " + str(i)+":", c_i[i])
            print()
           print("----- Grupos gerados (Cluster, indices) -----")
        11 | qq = obj.qet groups()
        12 | for i in qq:
        13
               print("Cluster " + str(i)+":", gg[i])
        14 print()
        15 | print("----- Número de iterações para convergir -----")
        16 print(obj.get iters())
        ----- Clusters gerados ------
        Cluster 0: [116.66666667 103.33333333 115.
                                                      133.333333331
        Cluster 1: [6.12631579 2.84210526 4.60526316 1.54210526]
        Cluster 2: [4.85
                             3.3
                                       1.43571429 0.2
        ----- Clusters iniciais ------
        Cluster 0: [110. 100. 102. 130.]
        Cluster 1: [6.3 2.5 5. 1.9]
        Cluster 2: [4.8 3. 1.4 0.1]
        ----- Grupos gerados (Cluster, índices) ------
        Cluster 0: [33, 34, 35]
        Cluster 1: [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
        Cluster 2: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
        ----- Número de iterações para convergir ------
        2
```

Ponto 5

5) [2.0 pts] Fazer questão (slide 23 e 24) da aula sobre teste de significância do prof. Ronnie.

$$d_t = d \pm t_{1-\alpha,k-1} \hat{\sigma_t}$$

$$d_t = 0.004 \pm 2.06 * 0.003$$

$$d_t = 0.004 \pm 0.00618$$

$$d_1 = 0.004 + 0.00618 = 0.01018$$

$$d_2 = 0.004 - 0.00618 = -0.00218$$

- Como o intervalo é bem próximo de zero, não se pode dezir que a diferencia entre os modelos seja estadisticamente significativa.