União e Interseção de Conjuntos

José Antônio O. Freitas

MAT-UnB

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente.

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
,

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}, B = \{2, 3, 4\}$$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}, B = \{2, 3, 4\} e C = \{r, s, t\}.$$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então $A \cap B$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cap B = \{2, 3\}$$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cap B = \{2, 3\}$$

$$A \cap C$$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}, B = \{2, 3, 4\} e C = \{r, s, t\}.$$
 Então

$$A \cap B = \{2, 3\}$$
$$A \cap C = \emptyset.$$

Sejam A e B dois conjuntos. Definimos a **interseção** de A e B como sendo o conjunto $A \cap B$ cujos elementos pertencem aos conjuntos A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}, B = \{2, 3, 4\} e C = \{r, s, t\}.$$
 Então

$$A \cap B = \{2, 3\}$$
$$A \cap C = \emptyset.$$

Sejam A e B dois conjuntos.

Sejam A e B dois conjuntos. Definimos a **união** de A com B

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$,

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B.

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
,

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}, B = \{2, 3, 4\}$$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}, B = \{2, 3, 4\} \ e \ C = \{r, s, t\}.$$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cup B$$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cup B = \{1, 2, 3, 4\}$$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cup B = \{1, 2, 3, 4\}$$

$$A \cup C$$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cup B = \{1, 2, 3, 4\}$$

 $A \cup C = \{1, 2, 3, r, s, t\}.$

Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto $A \cup B$, cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

Sejam
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{r, s, t\}$. Então

$$A \cup B = \{1, 2, 3, 4\}$$

 $A \cup C = \{1, 2, 3, r, s, t\}.$

Sejam A e B dois conjuntos.

i)
$$(A \cap B) \subseteq A$$
;

- *i*) $(A \cap B) \subseteq A$;
- ii) $(A \cap B) \subseteq B$;

- *i*) $(A \cap B) \subseteq A$;
- ii) $(A \cap B) \subseteq B$;
- *iii*) $A \subseteq A \cup B$;

- i) $(A \cap B) \subseteq A$;
- ii) $(A \cap B) \subseteq B$;
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- ii) $(A \cap B) \subseteq B$;
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos segue que $x \in A \cup B$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos segue que $x \in A \cup B$. Logo todo elemento de A também está em $A \cup B$,

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos segue que $x \in A \cup B$. Logo todo elemento de A também está em $A \cup B$, ou seja, $A \subseteq (A \cup B)$.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos segue que $x \in A \cup B$. Logo todo elemento de A também está em $A \cup B$, ou seja, $A \subseteq (A \cup B)$. De modo análogo prova-se a quarta afirmação.

Sejam A e B dois conjuntos. Então:

- i) $(A \cap B) \subseteq A$;
- $ii) (A \cap B) \subseteq B;$
- *iii*) $A \subseteq A \cup B$;
- iv) $B \subseteq A \cup B$.

Prova: Para provar a primeira afirmação seja $x \in A \cap B$ um elemento qualquer. Da definição de interseção de conjuntos temos $x \in A$ e $x \in B$. Assim podemos afirmar com certeza que $x \in A$. Logo todo elemento de $A \cap B$ também está em A, ou seja, $A \cap B \subseteq A$. De modo análogo prova-se a segunda afirmação sobre a interseção.

Para a terceira afirmação, seja $x \in A$. Da definição de união de conjuntos segue que $x \in A \cup B$. Logo todo elemento de A também está em $A \cup B$, ou seja, $A \subseteq (A \cup B)$. De modo análogo prova-se a quarta afirmação.