Formulation

Experiments

Dynamics in Classifier

intern

Multimedia Laboratory @ CUHK

Sep 20, 2017

Formulation

Experiment

- 1 Formulation
- 2 Experiments

Formulation

Experiments

Formulation

Experiment

Background

- How Imagenet1k is cleaned
 - 671 leaf nodes, 329 internal nodes
 - Classse are balanced
- Difficulty to classify on ImageNet22k (Deng et al. 2009) comes from
 - Fine-grained classed with few instance to train

Experiments

Hierachical Prediction

Feature of a sample \mathbf{x}_i . Ground truth label $\mathbf{y}_i = c_i$, i.e. $y_i^{c_i}$.

$$P(y_i^{c_i}|\mathbf{x}_i) = \sum_{c_k \in PAR(c_i)} P(y_i^{c_i}|y_i^{c_k}, \mathbf{x}_i) P(y_i^{c_k}|\mathbf{x}_i)$$

$$= P(y_i^{c_i}|y_i^{PAR(c_i)}, \mathbf{x}_i) P(y_i^{PAR(c_i)}|\mathbf{x}_i)$$

Genralize to atribute depth *d*:

$$P(y_i^{c_i}|y_i^{\operatorname{PAR}(c_i,d)},\mathbf{x}_i)P(y_i^{\operatorname{PAR}(c_i,d)}|\mathbf{x}_i)$$

Hierachical Prediction

Feature of a sample \mathbf{x}_i . Ground truth label $\mathbf{y}_i = c_i$, i.e. $y_i^{c_i}$.

$$P(y_i^{c_i}|\mathbf{x}_i) = \sum_{c_k \in PAR(c_i)} P(y_i^{c_i}|y_i^{c_k}, \mathbf{x}_i) P(y_i^{c_k}|\mathbf{x}_i)$$

$$= P(y_i^{c_i}|y_i^{PAR(c_i)}, \mathbf{x}_i) P(y_i^{PAR(c_i)}|\mathbf{x}_i)$$

Genralize to atribute depth *d*:

$$P(y_i^{c_i}|y_i^{\operatorname{PAR}(c_i,d)},\mathbf{x}_i)P(y_i^{\operatorname{PAR}(c_i,d)}|\mathbf{x}_i)$$

Prediction at depth d

$$P(y_i^{\text{Par}(c_i,d)}|\mathbf{x}_i) = \frac{\sum_{j \in \text{FIND}(c_i,0,d)} e^{f_j}}{\sum_{j \in AII} e^{f_j}}$$

Formulation

Feature of a sample \mathbf{x}_i . Ground truth label $\mathbf{y}_i = c_i$, i.e. $y_i^{c_i}$.

$$P(y_i^{c_i}|\mathbf{x}_i) = \sum_{c_k \in PAR(c_i)} P(y_i^{c_i}|y_i^{c_k}, \mathbf{x}_i) P(y_i^{c_k}|\mathbf{x}_i)$$

$$= P(y_i^{c_i}|y_i^{PAR(c_i)}, \mathbf{x}_i) P(y_i^{PAR(c_i)}|\mathbf{x}_i)$$

Genralize to atribute depth *d*:

$$P(y_i^{c_i}|y_i^{\operatorname{PAR}(c_i,d)},\mathbf{x}_i)P(y_i^{\operatorname{PAR}(c_i,d)}|\mathbf{x}_i)$$

Prediction conditioned by depth d

$$P(y_i^{\operatorname{Par}(c_i,d)}|\mathbf{x}_i) = \frac{e^{f_{c_i}}}{\sum_{j \in \operatorname{FIND}(c_i,d,-1)} e^{f_j}}$$

Experiments

Hierachical Loss

E.g. For Cifar100, given logits \mathbf{f} and ground truth label y_i

$$\begin{array}{lcl} L_i^{100} & = & -\log\left(\frac{\Sigma_{j\in \mathrm{FIND}(y_i,2,2)}\mathrm{e}^{f_j}}{\Sigma_{j\in \mathrm{FIND}(y_i,0,2)}\mathrm{e}^{f_j}}\right) \\ L_i^{20} & = & -\log\left(\frac{\Sigma_{j\in \mathrm{FIND}(y_i,1,2)}\mathrm{e}^{f_j}}{\Sigma_{j\in \mathrm{FIND}(y_i,0,2)}\mathrm{e}^{f_j}}\right) \\ L_i^{group} & = & -\log\left(\frac{\Sigma_{j\in \mathrm{FIND}(y_i,2,2)}\mathrm{e}^{f_j}}{\Sigma_{j\in \mathrm{FIND}(y_i,1,2)}\mathrm{e}^{f_j}}\right) \end{array}$$

Earmulation

Experiments

Experiments

Statistic Info of ImageNet

Formulation

Experiments

Samples/Class

ImgNet	imgs	imgs/cls	histogram	distribution
~1k	~1.4M	~1.4K ¹	200 200 200 200 200 200 200 200 200 200	17 200 del 400 del 1500
~10k	~28.96M	~2.8K	9 3 200 200 400 500 600 700 600	30° 30°
~17k	9.4M	545	600 600 200 1 50 350 256 260 260 360	10° di griss unios trina traine train

 $^{^{1} \}rm images/class$ of ILSVR2012 competition $= 1.3 \rm k$ for all most all classes. We download the latest dataset.

Dynamics in Classifier

intern

Experiments

Statistic Info of ImageNet

Hierachical Categories

All sub-datasets are sampled from ImageNet, and 1K covers most of 22k, thus, it is observed that characteristic of categories' distribution are similar.

Figure 1: Left: Distribution of nodes' child number, Right: Igonore outliers

Dynamics in Classifier

intern

Formulation

Experiments

Statistic Info of ImageNet

Hierachical Categories

All sub-datasets are sampled from ImageNet, and 1K covers most of 22k, thus, it is observed that characteristic of categories' distribution are similar.

Figure 2: Distribution of nodes' depth

Dynamics in Classifier

intern

Experiments

Learning Curve

Figure 3

Formulation

Experiments

Learning Curve

Figure 4: The initial value of loss100 is 5, loss group is 1.6 and loss20 0.27.

Experiments

Figure 5: The distribution of weight matrix's sinlge value. It is a common trading on different dataset that the class codes to a concentrating into a subspace

Orthogonality

Figure 6: $logits=weight^T \cdot fcin$. The logits of imagenet become positive may because the reference sample do not cover the whole validation dataset and there are many instance of similar classes.

Formulation

Experiments

Formulation

Experiments

Reflections

- Generalize to WordNet Tree
 - Key Obstacle: The number of child of node is not same, i.e. function FIND cannot feed with fix-length matrix and return matrix. Hostile for gpu matrix operation.
- Structure Code for Feature

Experiments

Deng, Jia et al. (2009). "Imagenet: A large-scale hierarchical image database." In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, pp. 248–255.