Attribution for Data with Graphical Feature Dependencies

Layerwise Relevance Propagation

4/29/2024

Jared Winslow

Interpretable Machine Learning

Motivation

Considerations and Advancements:

- Adversarial Examples [1]
- LRP on Tabular Data [7]
- Dominant Sets on MI Graphs [5]

Overview

Project Steps:

- Dependency Measures
- Graph Metrics
- Data Generation
- Layerwise Relevance Propagation

Dependency Measures

From most information to least:

- 1. Joint Distribution
- 2. Bayesian Network
- 3. Interaction Information
- 4. Mutual Information
- 5. Correlation

Dependency Measures

Bayesian Network:

$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i \mid \text{Parents}(x_i))$$

Mutual Information (MI):

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

Interaction Information:

$$I(X; Y; Z) = H(X) + H(Y) + H(Z) - H(X, Y) - H(X, Z) - H(Y, Z) + H(X, Y, Z)$$

Entropy:

$$H(X) = -\sum_{x \in \mathcal{X}} P(x) \log P(x)$$

Graph Metrics

Metrics for individual features in dependency graph:

- Relative eigenvector centrality
- Other centralities (e.g., betweenness, etc.)

Metrics for graph-level feature dependency:

- Average eigenvector centrality
- Entropy of the eigenvector centrality distribution
- Graph clustering coefficient (i.e., proportion of triplets)
- Number of dominant sets (i.e., cliques)

Data Generation: Correlation

Simulating correlation matrices:

$$C = WW^T + D$$

$$N = diag(C)^{-1/2}$$

$$\Sigma = NCN$$

- 0.8

- 0.5

Data Generation: Graph Metric to Correlation

Data Generation: Graph Metric to Correlation

Data Generation: Graph Metric to Correlation

Data Generation: Linearly Related Features

$$\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{o}, \boldsymbol{\Sigma})$$

$$X_{ij} = \begin{cases} X_{ij} & \text{if } j \neq 4 \text{ or } Z_i = 1, \\ 0 & \text{if } j = 4 \text{ and } Z_i = 0, \end{cases}$$

where $Z_i \sim \text{Bernoulli}(0.5)$ independently for each sample i.

$$\mathbf{y_1} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
 $\mathbf{y_2} = f(\mathbf{X}\boldsymbol{\beta}) + \boldsymbol{\epsilon}$

 $y_i = y_i + 10 \cdot X_{i4}$ for all $i \in$ outlier indices

Data Generation: Nonlinearly Related Features

$$\mathbf{X} \sim \mathcal{N}(\mathbf{o}, \Sigma)$$

$$\mathbf{X^{nl}} = X_j X_k + f_l(t)$$

$$X_{ij}^{nl} = egin{cases} X_{ij}^{nl} & ext{if } j
eq 4 ext{ or } Z_i = 1, \ ext{o} & ext{if } j = 4 ext{ and } Z_i = 0, \end{cases}$$

$$\begin{aligned} \textbf{y_1} &= \textbf{X}^{nl} \boldsymbol{\beta} + \boldsymbol{\varepsilon} \\ \textbf{y_2} &= f(\textbf{X}^{nl} \boldsymbol{\beta}) + \boldsymbol{\varepsilon} \end{aligned}$$

 $y_i = y_i + 10 \cdot X_{i4}^{nl}$ for all $i \in \text{outlier indices}$

Data Generation: Nonlinearly Related Features

Layerwise Relevance Propagation

Gamma rule:

$$R_i^{(l)} = \sum_{j} \left(\frac{a_i(w_{ij} + \gamma w_{ij}^+)}{\sum_{j} a_i(w_{ij} + \gamma w_{ij}^+)} R_j^{(l+1)} \right)$$

Epsilon rule:

$$R_i^{(l)} = \sum_{j} \left(\frac{w_{ij}}{\sum_{i} w_{ij} + c\epsilon_1 + \epsilon_2} R_j^{(l+1)} \right)$$

where $\epsilon_1 = sqrt(\sum_i w_{ij}^2)$

$$R_i^{(l)} = \sum_i \left(\frac{(w_{ij})^2}{\sum_i (w_{ij})^2} R_j^{(l+1)} \right)$$

Layerwise Relevance Propagation: Explanations

Layerwise Relevance Propagation: Outliers

References I

- [1] T.R. Dieter and H. Zisgen. "Evaluation of the Explanatory Power Of Layer-wise Relevance Propagation using Adversarial Examples". In: Neural Process Lett 55 (2023), pp. 8531–8550. DOI: 10.1007/s11063-023-11166-8.
- [2] Maximilian Kohlbrenner et al. Towards Best Practice in Explaining Neural Network Decisions with LRP. 2020. arXiv: 1910.09840 [cs.LG].
- [3] S. Lapuschkin. Opening the machine learning black box with Layer-wise Relevance Propagation.

 https://www.semanticscholar.org/paper/Opening-the-machine-learning-black-box-withLapuschkin/c601b185b6080ded463d3c236fa4f9f849f0435b.
 Accessed: 2024-04-28.

References II

- [4] G. Montavon et al. "Layer-Wise Relevance Propagation: An Overview". In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Vol. 11700. Lecture Notes in Computer Science. Cham: Springer, 2019. DOI: 10.1007/978-3-030-28954-6_10.
- [5] M. Pavan and M. Pelillo. "A new graph-theoretic approach to clustering and segmentation". In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, WI, USA: IEEE, 2003, p. 1211348. ISBN: 0-7695-1900-8. DOI: 10.1109/CVPR.2003.1211348.
- [6] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning Important Features Through Propagating Activation Differences. 2019. arXiv: 1704.02685 [cs.CV].

References III

[7] Ihsan Ullah et al. "Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation". In: *Applied Sciences* 12.1 (2022), p. 136. DOI: 10.3390/app12010136.

Thank you!

https://github.com/jaredwins99/

(