Some useful constants:

- h (Planck's constant) = 6.626×10^{-34} J-s
- c (Speed of light) = $2.998 \times 10^8 \approx 3 \times 10^8 \text{ m/s}$
- m_e (Mass of electron) = 9.1×10^{-31} kg
- e (Charge on an electron) = 1.6×10^{-19} C
- \hbar (Reduced Planck's constant) = 1.055×10^{-34} J-s

1 Photoelectric effect

• Let the frequency of the incident light on the metal surface be ν , and the work function of the metal be ϕ . The energy of the ejected photon is given by:

$$E = h\nu - \phi$$

Which can be rewritten in terms of the wavelength (λ) and the speed of light (c) as:

$$E = \frac{hc}{\lambda} - \phi$$

In the case where

$$\phi = h\nu_0 = \frac{hc}{\lambda_0}$$

 ν_0 and λ_0 are called the **threshold frequency and wavelength** respectively.

• For a particle of mass m travelling with a velocity v, its (De Broglie) wavelength takes the form:

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

Where p is the linear momentum of the particle in question.

• When an electron of charge -e is accelerated across a potential difference V, it acquires the kinetic energy E = eV. From this, it follows that the *De Broglie wavelength* of the particle is:

$$\lambda = \frac{h}{\sqrt{2m_e eV}}$$

 m_e being the mass of the electron.

2 Schrödinger equation

• The time independent Schrödinger equation for a particle having the wavefunction ψ (in a single dimension) is

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}+V(x)\psi=E\psi$$

The left hand side of the above equation is abbreviated to a *single operator* known as the **Hamiltonian**, which represents the **total energy of a particular system**. We now have a compact version of the S.E: $|\hat{H}\psi = E\psi|$

• A wavefunction ψ is said to be **normalised** if its probability density over the entire space is 1. More formally, the following relation must hold

$$\int_{-\infty}^{\infty} \psi^* \psi dx = 1$$

Where ψ^* is the **complex conjugate** of ψ . Note that psi is normalized only for a 1 dimensional case above.

• Suppose that Δx and Δp denotes the uncertainty in the measurement of position and momentum respectively. Heisenberg's uncertainty principle states

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

3 Particle In a Box

1. 1D case:

We consider a box of length L, quantum number n, particle mass m and wavelength of the particle λ

- Acceptable values of linear momentum $p = \frac{nh}{2L}$
- \bullet Solution to the Schrödinger equation for the n^{th} excited state:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

• Permitted energy values:

$$E_n = \frac{n^2 h^2}{8mL^2}$$

The energy of the lowest state (n = 1) is called the **zero-point energy**

2. **2D** case:

A box of dimensions L_x and L_y along the x and y directions is considered, with the quantum numbers n_x and n_y

• Solution to the Schrödinger equation:

$$\psi_{n_x n_y}(x, y) = \sqrt{\left(\frac{4}{L_x L_y}\right)} \sin\left(\frac{n_x \pi x}{L_x}\right) \sin\left(\frac{n_y \pi y}{L_y}\right)$$

• Permissible energy values:

$$E_{n_x n_y} = \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2}\right) \frac{h^2}{8m}$$

4 Rigid Rotor

1. **2D** case:

We consider here a particle of mass m rotating in a circle of radius r. The moment of inertia of the system is taken to be $I = mr^2$

- Angular momentum $J_z = m_l \hbar$ where $m_l = 0, \pm 1, \pm 2...$
- Permissible energy values $E_n = \frac{n^2 \hbar^2}{2I} = \frac{m_l^2 \hbar^2}{2I}$ where m_l and $n = 0, \pm 1, \pm 2...$

2. **3D** case:

In addition to the previously defined quantities, we introduce l: the **orbital angular momentum** quantum number.

- Permissible energy values $E_l = l(l+1)\frac{\hbar^2}{2mr^2}$ Here, $l=0,1,2\ldots$ and $m_l=-l,(-l+1)\ldots(l-1),l$
- Angular momentum is quantized and given by the values $J = \sqrt{l(l+1)}\hbar$

5 Simple Harmonic Oscillator

Here, we are concerned only with the permissible energy values:

$$E_v = \left(v + \frac{1}{2}\right)h\nu$$

Where ν is the **vibrational frequency** given by $\frac{1}{2\pi}\sqrt{\frac{k}{m}}$. The values of ν include the set of all non-negative integers.