Resumo de aula 3

1 Função, Domínio, Imagem e Gráfico

Função

Uma função f de um conjunto A em um conjunto B, indicado por

$$f: A \longrightarrow B$$

é uma lei a qual para cada elemento x do conjunto A faz corresponder exatamente um elemeto chamado f(x), no conjunto B.

Domínio

O conjunto A é chamado de domínio da função f e o conjunto B é o contra domínio de f

Imagem

A imagem de f é o conjunto de todos os valores possíveis de f(x) quando x varia por todo o domínio, ou seja, a imagem de f é o conjunto $\{f(x) \in \mathbb{R} \mid x \in A\}$.

Gráfico

O gráfico de f é o conjunto de pares ordenados

$$\{(x, f(x)) \mid x \in A\} = \{(x, y) \mid y = f(x), x \in A\}$$

Se tanto A como B forem subconjuntos dos reais, dizemos que f é uma função real de variável real.

Observação:

Por simplificação, deixaremos muitas vezes de explicitar o domínio e o contradomínio de uma função; quando tal ocorrer, ficar implícito que o contradomínio é $\mathbb R$ e o domínio o "maior" subconjunto de $\mathbb R$ para o qual faz sentido a lei em questão.

Exemplo 1.1. Seja $y = f(x), f(x) = x^3$. Tem-se

(a) O domínio de f, $D_f = \mathbb{R}$, pois para que x^3 seja um número real, x pode ser qualquer

real.

- (b) O valor que f assume em $x \in f(x) = x^3$. Essa função associa a cada real x o número real $y = f(x) = x^3$.
- (c) O gráfico de f

$$G_f = \{(x, y) \mid y = x^3, x \in \mathbb{R}\}$$

Se
$$x = -1$$
, $y = f(-1) = (-1)^3 = -1 \Longrightarrow (x, y) = (-1, -1)$
Se $x = 0$, $y = f(0) = (0)^3 = 0 \Longrightarrow (x, y) = (0, 0)$

Se
$$x = 0$$
, $y = f(0) = (0)^3 = 0 \Longrightarrow (x, y) = (0, 0)$

Se
$$x = 1$$
, $y = f(1) = (1)^3 = 1 \Longrightarrow (x, y) = (1, 1)$

Se
$$x = \frac{1}{2}$$
, $y = f(\frac{1}{2}) = (\frac{1}{2})^3 = \frac{1}{8} \Longrightarrow (x, y) = (\frac{1}{2}, \frac{1}{8})$

Se
$$x = -\frac{1}{2}$$
, $y = f(-\frac{1}{2}) = (-\frac{1}{2})^3 = -\frac{1}{8} \Longrightarrow (x, y) = (-\frac{1}{2}, -\frac{1}{8})$

Se x = 0, $y = f(0) = (0) = 0 \implies (x, y) = (0, 0)$ Se x = 1, $y = f(1) = (1)^3 = 1 \implies (x, y) = (1, 1)$ Se $x = \frac{1}{2}$, $y = f(\frac{1}{2}) = (\frac{1}{2})^3 = \frac{1}{8} \implies (x, y) = (\frac{1}{2}, \frac{1}{8})$ Se $x = -\frac{1}{2}$, $y = f(-\frac{1}{2}) = (-\frac{1}{2})^3 = -\frac{1}{8} \implies (x, y) = (-\frac{1}{2}, -\frac{1}{8})$ Se calcularmos mais pontos ordenados (x, y), obteremos uma ideia melhor para esboçar o gráfico da função. O esboço de gráfico de função, veremos mais tarde na aplicação de derivada. Veja abaixo o gráfico de f:

х	f(x)
0	0
$ \begin{array}{c} 0 \\ \frac{1}{2} \\ 1 \\ 2 \\ -\frac{1}{2} \end{array} $	$\frac{1}{8}$
1	1
2	8
$-\frac{1}{2}$	$-\frac{8}{8}$
- 1 - 2	- 1
- 2	- 8

Exemplo 1.2. Seja f a função dada por $f(x) = \sqrt{x}$. Tem-se

- (a) O domínio de $f, D_f = \{x \in \mathbb{R} \mid x \geq 0\}$, pois para que \sqrt{x} seja um número real, xtem que ser positivo ou zero.
- (b) O gráfico de f,

$$G_f = \{(x, y) \mid y = \sqrt{x}, x \in D_f\} = \{(x, \sqrt{x}) \mid x \ge 0\}$$

Veja abaixo o gráfico de f:

x	\sqrt{x}
0	0
1	$\frac{1}{2}$
4	- Z
1	1]
4	2
	0 1 4

Exemplo 1.3. Considere a função g dada por $g(x) = \frac{1}{x}$. Tem-se (a) O domínio de g, $D_g = \{x \in \mathbb{R} \mid x \neq 0\} = \mathbb{R} - \{0\}$, pois para que $\frac{1}{x}$ seja um número real, x não pode ser zero.

(b) O gráfico de g,

$$G_g = \{(x, y) \mid y = \frac{1}{x}, x \in D_g\} = \{(x, \frac{1}{x}) \mid x \in \mathbb{R}, x \neq 0\}$$

Veja abaixo o gráfico de g:

Exemplo 1.4. (Função Constante) Uma função $y = f(x), x \in \mathbb{R}$, dada por f(x) = k, kconstante, denomine - se função constante.

Por exemplo, f(x) = 2 é uma função constante: tem-se

(a)
$$D_f = \mathbb{R}$$

(b) O gráfico de f,

$$G_f = \{(x, y) \mid y = 2, x \in \mathbb{R}\} = \{(x, 2) \mid x \in \mathbb{R}\}$$

Veja abaixo o gráfico de f:

X	у
-2	2
-1	2
0	2
1	2 2 2 2
2	2

Exemplo 1.5. (Função Linear) Uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$, dada por f(x) = ax, a constante, denomine - se função linear, seu gráfico é a reta que passa pelos pontos (0,0) e (1,a)

Exemplo 1.6. Esboce os gráficos: (a)f(x) = 2x (b)f(x) = -2x

(a)

_	17 1949
x	y = f(x)
0	0
1	2

(b)

	1975 199
х	y = g(x)
0	0
1	-2

