$\bar{x} = \frac{\sum x_i A_i}{\sum A_i}$	$\bar{x} = \frac{\int \tilde{x} dA}{\int dA}$	$\bar{y} = \frac{\sum y_i A_i}{\sum A_i}$	$\bar{y} = \frac{\int \tilde{y} dA}{\int dA}$
$\bar{x} = \frac{\sum x_i V_i}{\sum V_i}$	$\bar{x} = \frac{\int \tilde{x} dV}{\int dV}$	$\bar{y} = \frac{\sum y_i V_i}{\sum V_i}$	$\bar{y} = \frac{\int \tilde{y} dV}{\int dV}$
$\bar{x} = \frac{\sum x_i m_i}{\sum m_i}$	$\bar{x} = \frac{\int \tilde{x} dm}{\int dm}$	$\bar{y} = \frac{\sum y_i m_i}{\sum m_i}$	$\bar{y} = \frac{\int \tilde{y} dm}{\int dm}$
$\bar{x} = \frac{\sum x_i w_i}{\sum w_i}$	$\bar{x} = \frac{\int \tilde{x} dw}{\int dw}$	$\bar{y} = \frac{\sum y w_i}{\sum w_i}$	$\bar{y} = \frac{\int \tilde{y} dw}{\int dw}$

$$V = \int dV = \theta \int \tilde{r} \, dA$$

$$\rho g \ dV = \gamma \ dV = dw$$

$A = \theta \bar{r}L \qquad \qquad V = \theta \bar{r}A$	$SA = \theta \bar{r}$
---	-----------------------

$F_{S} = k(\ell - \ell_{0})$	$dx = h \tan \theta$	$F_s = k dx$

$$P_1 = P_0 + \rho g h = P_0 + \gamma d$$
$$w = \gamma A$$

$P_A = \rho g d_A$	$P_B = \rho g d_B$
$F_1 = P_A h w$	$F_2 = \frac{1}{2}(P_B - P_A)hw$

$$F_1 = \left(1 - \frac{d}{L}\right)F \qquad \qquad F_2 = \frac{d}{L}F$$