Analysis of Environmental Data - Lab 5 Olivia Dinkelacker

```
Q1:

exp_fun = function(x, a, b)
{
    return(a * b * exp(-b * x))
}

curve(
    exp_fun(x, 2.2, 1/15), add = FALSE, from = 0, to = 50, ann = FALSE, axes = TRUE, ylab = "f(x)"); box()
```

Q2:

Q3: a is the parameter that determines the starting height of the curve.

Q4: The parameter b determines the rate of decay.

Q6:

The a parameter is the initial slope.

Q7:

The parameter b determines the height of a graph $\,$. The highest point of the curve occurs at an x value of 1/b.

Q8: curve(line_point_slope(x, 800, 0.2, -0.0003), add = TRUE)

I chose the x value by taking a value in the middle of the x axis, and the y axis because it fitted the data well.

Marbled Salamander - first time breeders


```
Q10:

exp_fun = function(x, a, b)
{
    return(a * exp(-b * x))
}

curve(
    exp_fun(x, 0.8, 0.003), add = TRUE, from = 0, to = 1500, ann = FALSE, axes = TRUE, ylab = "f(x)"); box()
```

I chose these values because I tested many different ones and they resulted in the best fit.

Q12: I chose those parameters based on guesses. 0.015 and 0.01 resulted in the best fit.

```
ricker_fun = function(x, a, b)
{
  return(a * x * exp(-b * x))
}

#create curve
curve(
  ricker_fun(x, 0.015, 0.01),
  from = 0, to = 1500, add = TRUE,
  main = "Ricker function: a = 1, b = 1",
  ylab = "f(x)", xlab = "x")
```


Q14:

dat_dispersal\$residslinear <- dat_dispersal\$disp.rate.ftb - predicted dat_dispersal\$residsexpo <- dat_dispersal\$disp.rate.ftb - predicted2 dat_dispersal\$residsricker <- dat_dispersal\$disp.rate.ftb - predicted3

linear residuals

exponential residuals

Histogram of dat_dispersal\$residsricker

