1. Google Play Store apps and reviews

Mobile apps are everywhere. They are easy to create and can be lucrative. Because of these two factors, more and more apps are being developed. In this notebook, we will do a comprehensive analysis of the Android app market by comparing over ten thousand apps in Google Play across different categories. We'll look for insights in the data to devise strategies to drive growth and retention.

Let's take a look at the data, which consists of two files:

- apps.csv: contains all the details of the applications on Google Play. There are 13 features that describe a given app.
- user_reviews.csv: contains 100 reviews for each app, most helpful first. The text in each review has been pre-processed and attributed with three new features: Sentiment (Positive, Negative or Neutral), Sentiment Polarity and Sentiment Subjectivity.

```
In [140]: # Read in dataset
    import pandas as pd
    apps_with_duplicates = pd.read_csv("datasets/apps.csv")

# Drop duplicates from apps_with_duplicates
    apps = apps_with_duplicates.drop_duplicates()

# Print the total number of apps
    print('Total number of apps in the dataset = ', len(apps))

# Have a look at a random sample of 5 rows
    n=5
    apps.sample(n)
```

Total number of apps in the dataset = 9659

Out[140]:

	Unnamed: 0	Арр	Category	Rating	Reviews	Size	Installs	Туре	Р
2147	2721	Mercari: The Selling App	SHOPPING	4.4	101883	13.0	10,000,000+	Free	_
5195	6191	Background Changer & Eraser	PHOTOGRAPHY	4.0	2076	11.0	500,000+	Free	
8565	9707	Tester EP	TOOLS	NaN	9	4.8	100+	Free	
8330	9455	EJ messenger	COMMUNICATION	5.0	1	25.0	10+	Free	
2656	3385	Hola Launcher- Theme,Wallpaper	PERSONALIZATION	4.5	3277209	7.6	100,000,000+	Free	

2. Data cleaning

Data cleaning is one of the most essential subtask any data science project. Although it can be a very tedious process, it's worth should never be undermined.

By looking at a random sample of the dataset rows (from the above task), we observe that some entries in the columns like Installs and Price have a few special characters (+, \$</code>) due to the way the numbers have been represented. This prevents the columns from being purely numeric, making it difficult to use them in subsequent future mathematical calculations. Ideally, as their names suggest, we would want these columns to contain only digits from [0-9].

Hence, we now proceed to clean our data. Specifically, the special characters <code>,</code> and <code>+</code> present in <code>Installs</code> column and <code>\$ present in Price column need to be removed.

It is also always a good practice to print a summary of your dataframe after completing data cleaning. We will use the info() method to acheive this.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9659 entries, 0 to 9658
Data columns (total 14 columns):
Unnamed: 0
                  9659 non-null int64
App
                  9659 non-null object
                  9659 non-null object
Category
Rating
                  8196 non-null float64
                  9659 non-null int64
Reviews
                  8432 non-null float64
Size
Installs
                  9659 non-null object
                  9659 non-null object
Type
Price
                  9659 non-null object
                  9659 non-null object
Content Rating
Genres
                  9659 non-null object
Last Updated
                  9659 non-null object
Current Ver
                  9651 non-null object
Android Ver
                  9657 non-null object
dtypes: float64(2), int64(2), object(10)
memory usage: 1.1+ MB
None
```

3. Correcting data types

From the previous task we noticed that Installs and Price were categorized as object data type (and not int or float) as we would like. This is because these two columns originally had mixed input types: digits and special characters. To know more about Pandas data types, read this.

The four features that we will be working with most frequently henceforth are Installs, Size, Rating and Price. While Size and Rating are both float (i.e. purely numerical data types), we still need to work on Installs and Price to make them numeric.

```
In [144]: import numpy as np

# Convert Installs to float data type
apps['Installs'] = apps['Installs'].astype(float)

# Convert Price to float data type
apps['Price'] = apps['Price'].astype(float)

# Checking dtypes of the apps dataframe
print(apps.dtypes)
```

```
Unnamed: 0
                     int64
App
                    object
Category
                    object
                   float64
Rating
Reviews
                     int64
Size
                   float64
                   float64
Installs
                    object
Type
                   float64
Price
Content Rating
                    object
Genres
                    object
Last Updated
                    object
Current Ver
                    object
Android Ver
                    object
dtype: object
```

4. Exploring app categories

With more than 1 billion active users in 190 countries around the world, Google Play continues to be an important distribution platform to build a global audience. For businesses to get their apps in front of users, it's important to make them more quickly and easily discoverable on Google Play. To improve the overall search experience, Google has introduced the concept of grouping apps into categories.

This brings us to the following questions:

- Which category has the highest share of (active) apps in the market?
- Is any specific category dominating the market?
- Which categories have the fewest number of apps?

We will see that there are 33 unique app categories present in our dataset. *Family* and *Game* apps have the highest market prevalence. Interestingly, *Tools*, *Business* and *Medical* apps are also at the top.

```
In [146]:
          import plotly
          plotly.offline.init notebook mode(connected=True)
          import plotly.graph_objs as go
          # Print the total number of unique categories
          num categories = len(apps['Category'].unique())
          print('Number of categories = ', num_categories)
          # Count the number of apps in each 'Category'.
          num_apps_in_category = apps['Category'].value_counts()
          # Sort num apps in category in descending order based on the count of apps
          sorted_num_apps_in_category = num_apps_in_category.sort_values(ascending = 1
          data = [go.Bar(
                  x = num_apps_in_category.index, # index = category name
                  y = num_apps_in_category.values, # value = count
          )]
          plotly.offline.iplot(data)
```

Number of categories = 33

5. Distribution of app ratings

After having witnessed the market share for each category of apps, let's see how all these apps perform on an average. App ratings (on a scale of 1 to 5) impact the discoverability, conversion of apps as well as the company's overall brand image. Ratings are a key performance indicator of an app.

From our research, we found that the average volume of ratings across all app categories is 4.17. The histogram plot is skewed to the left indicating that the majority of the apps are highly rated with only a few exceptions in the low-rated apps.

```
In [148]:
          # Average rating of apps
          avg_app_rating = apps['Rating'].mean()
          print('Average app rating = ', avg_app_rating)
          # Distribution of apps according to their ratings
          data = [go.Histogram(
                  x = apps['Rating']
          )]
          # Vertical dashed line to indicate the average app rating
          layout = {'shapes': [{
                         'type' :'line',
                         'x0': avg_app_rating,
                         'y0': 0,
                         'x1': avg app rating,
                         'y1': 1000,
                         'line': { 'dash': 'dashdot'}
                     }]
                     }
          plotly.offline.iplot({'data': data, 'layout': layout})
```

Average app rating = 4.173243045387994

Export to plot.ly »

6. Size and price of an app

Let's now examine app size and app price. For size, if the mobile app is too large, it may be difficult and/or expensive for users to download. Lengthy download times could turn users off before they even experience your mobile app. Plus, each user's device has a finite amount of disk space. For price, some users expect their apps to be free or inexpensive. These problems compound if the developing world is part of your target market; especially due to internet speeds, earning power and exchange rates.

How can we effectively come up with strategies to size and price our app?

- Does the size of an app affect its rating?
- Do users really care about system-heavy apps or do they prefer light-weighted apps?
- Does the price of an app affect its rating?
- Do users always prefer free apps over paid apps?

We find that the majority of top rated apps (rating over 4) range from 2 MB to 20 MB. We also find that the vast majority of apps price themselves under \$10.

```
In [150]:
          %matplotlib inline
          import seaborn as sns
          sns.set_style("darkgrid")
          import warnings
          warnings.filterwarnings("ignore")
          # Select rows where both 'Rating' and 'Size' values are present (ie. the two
          apps_with_size_and_rating_present = apps[(~apps['Rating'].isnull()) & (~apps
          # Subset for categories with at least 250 apps
          large categories = apps with size and rating present.groupby(['Category']).
          # Plot size vs. rating
          plt1 = sns.jointplot(x = large_categories['Size'], y = large_categories['Rat
          # Select apps whose 'Type' is 'Paid'
          paid_apps = apps_with_size_and_rating_present[apps_with_size_and_rating_pres
          # Plot price vs. rating
          plt2 = sns.jointplot(x = paid_apps['Price'], y = paid_apps['Rating'])
```


7. Relation between app category and app price

So now comes the hard part. How are companies and developers supposed to make ends meet? What monetization strategies can companies use to maximize profit? The costs of apps are largely based on features, complexity, and platform.

There are many factors to consider when selecting the right pricing strategy for your mobile app. It is important to consider the willingness of your customer to pay for your app. A wrong price could break the deal before the download even happens. Potential customers could be turned off by what they perceive to be a shocking cost, or they might delete an app they've downloaded after receiving too many ads or simply not getting their money's worth.

Different categories demand different price ranges. Some apps that are simple and used daily, like the calculator app, should probably be kept free. However, it would make sense to charge for a highly-specialized medical app that diagnoses diabetic patients. Below, we see that *Medical and Family* apps are the most expensive. Some medical apps extend even up to \$80! All game apps are reasonably priced below \$20.

Out[152]:

	Category	Арр	Price
3327	FAMILY	most expensive app (H)	399.99
3465	LIFESTYLE	▼ I'm rich	399.99
3469	LIFESTYLE	I'm Rich - Trump Edition	400.00
4396	LIFESTYLE	I am rich	399.99
4398	FAMILY	I am Rich Plus	399.99
4399	LIFESTYLE	I am rich VIP	299.99
4400	FINANCE	I Am Rich Premium	399.99
4401	LIFESTYLE	I am extremely Rich	379.99
4402	FINANCE	I am Rich!	399.99
4403	FINANCE	I am rich(premium)	399.99
4406	FAMILY	I Am Rich Pro	399.99
4408	FINANCE	I am rich (Most expensive app)	399.99
4410	FAMILY	I Am Rich	389.99
4413	FINANCE	I am Rich	399.99
4417	FINANCE	I AM RICH PRO PLUS	399.99
8763	FINANCE	Eu Sou Rico	394.99
8780	LIFESTYLE	I'm Rich/Eu sou Rico/أنا غني/我很有錢	399.99

8. Filter out "junk" apps

It looks like a bunch of the really expensive apps are "junk" apps. That is, apps that don't really have a purpose. Some app developer may create an app called *I Am Rich Premium* or *most expensive* app (H) just for a joke or to test their app development skills. Some developers even do this with malicious intent and try to make money by hoping people accidentally click purchase on their app in the store.

Let's filter out these junk apps and re-do our visualization.

```
In [154]: # Select apps priced below $100
    apps_under_100 = popular_app_cats[popular_app_cats['Price'] < 100]
    fig, ax = plt.subplots()
    fig.set_size_inches(15, 8)

# Examine price vs category with the authentic apps (apps_under_100)
    ax = sns.stripplot(x = 'Price', y = 'Category', data = apps_under_100, jitte
    ax.set_title('App pricing trend across categories after filtering for junk and the string for junk and th
```

Out[154]: Text(0.5, 1.0, 'App pricing trend across categories after filtering for j unk apps')

9. Popularity of paid apps vs free apps

For apps in the Play Store today, there are five types of pricing strategies: free, freemium, paid, paymium, and subscription. Let's focus on free and paid apps only. Some characteristics of free apps are:

- Free to download.
- Main source of income often comes from advertisements.
- Often created by companies that have other products and the app serves as an extension of those products.
- Can serve as a tool for customer retention, communication, and customer service.

Some characteristics of paid apps are:

- Users are asked to pay once for the app to download and use it.
- The user can't really get a feel for the app before buying it.

Are paid apps installed as much as free apps? It turns out that paid apps have a relatively lower number of installs than free apps, though the difference is not as stark as I would have expected!

```
In [156]: trace0 = go.Box(
              # Data for paid apps
              y = apps[apps['Type'] == 'Paid']['Installs'],
              name = 'Paid'
          )
          trace1 = go.Box(
              # Data for free apps
              y = apps[apps['Type'] == 'Free']['Installs'],
              name = 'Free'
          )
          layout = go.Layout(
              title = "Number of downloads of paid apps vs. free apps",
              yaxis = dict(title = "Log number of downloads",
                           type = 'log',
                           autorange = True)
          )
          # Add trace0 and trace1 to a list
          data = [trace0, trace1]
          plotly.offline.iplot({'data': data, 'layout': layout})
```


Export to plot.ly »

10. Sentiment analysis of user reviews

Mining user review data to determine how people feel about your product, brand, or service can be done using a technique called sentiment analysis. User reviews for apps can be analyzed to identify if the mood is positive, negative or neutral about that app. For example, positive words in an app review might include words such as 'amazing', 'friendly', 'good', 'great', and 'love'. Negative words might be words like 'malware', 'hate', 'problem', 'refund', and 'incompetent'.

By plotting sentiment polarity scores of user reviews for paid and free apps, we observe that free apps receive a lot of harsh comments, as indicated by the outliers on the negative y-axis. Reviews for paid apps appear never to be extremely negative. This may indicate something about app quality, i.e., paid apps being of higher quality than free apps on average. The median polarity score for paid apps is a little higher than free apps, thereby syncing with our previous observation.

In this notebook, we analyzed over ten thousand apps from the Google Play Store. We can use our findings to inform our decisions should we ever wish to create an app ourselves.

```
In [158]: # Load user_reviews.csv
    reviews_df = pd.read_csv('datasets/user_reviews.csv')

# Join the two dataframes
    merged_df = pd.merge(apps, reviews_df, on = "App")

# Drop NA values from Sentiment and Review columns
    merged_df = merged_df.dropna(subset = ['Sentiment', 'Review'])

sns.set_style('ticks')
    fig, ax = plt.subplots()
    fig.set_size_inches(11, 8)

# User review sentiment polarity for paid vs. free apps
    ax = sns.boxplot(x = 'Type', y = 'Sentiment_Polarity', data = merged_df)
    ax.set_title('Sentiment_Polarity_Distribution')
```

Out[158]: Text(0.5, 1.0, 'Sentiment Polarity Distribution')

