2A/B PHYSICS ASSIGNMENT 1: MEASUREMENT

NAN	ΛΕ:	5	OWTIONS		DUE	DATE:			
1.	What each.		e between a funda	mental unit and	d a <i>deri</i>	wed unit? G	ive an example		
FU	NOAM	ENTAL: basi	o of all measu	wements in	r scie	incl. e.	g.m.s, kg	, A , K , me	ol, col
DE	RIVE	: combine	shion of fun	damental.	unix), e.	g. ms", m	5 ² , kgms (1)	,
				,				(.)	7 -3
2.	Write	the following in	a scientific notatio	. Include the	unite				(2)
۷.	(a)		6.43 × 10			293 mm	2-93	XID mm	
	(c)	0.0085 C	8.5 X10	C	(d)	28.4 x 10 ⁻⁷	s _ 2.84	x10 S	
	(e)	89.42 nanoseco	onds 8.942	10 S	(f)	0.0000412	GJ 4: 12 x	40 T	
3.	Conv	vert the following	g to <i>standard unit</i> s						
	(a)	0.021 mm	2.1 X10 m		(b)	4953 milli	on kilometres	4:953×1	0 m
	(c)	26.4 μs	2.64x10 5		(d)	34.4 m ²	3. LLL X10	2 m	
	(e)	4.85 x 10 ⁻³ mm	3 4-85×10	12 3 m	(f)	756 cm ²	7-56x10	2 2 m	
									(6)
4.	How		figures are in the					2	
	(a)	1.003	<u>4</u> (b)	0.0021	_2	_ (c)	4.61 x 10 ⁻⁴		
	(d)	2×10^3	(e)	20000		_ (f)	3000.0	_5_	(6)
5.	Perfo	rm the following	calculations, givi	ng your answer	s to the	correct nun	nber of signific	ant figures.	
	(a)	21.6 + 41.24	+ 28	91			(2)		
	(b)	$\frac{(61.4)(2.4 \times 10^{-5})}{(3.016 \times 10^{-5})}$	2 ⁰⁻⁴)	4.9X10	,6		(2)		
	(c)	$\frac{(28.65 + 7.4)}{(2.649 \times 10^{-3})}$	$\frac{-3.105)}{10^3)}$	33.0 2.649×103	=	1-25 >	(10 (2	2)	
									(()

- 6. A group of students measured a glass rectangular block with the dimensions 10.52 cm x 20.2 cm x 3.2 cm.
 - (a) Write the dimensions individually, giving the absolute uncertainty and percentage uncertainty.

(6)

(b) Calculate the volume of the block, giving your answer in scientific notation with the correct number of significant figures and standard units. Include the absolute uncertainty involved.

$$V = l \times w \times h$$

$$= (0.202)(0.1052)(3.2 \times 10^{-2})$$

$$= 6.8 \times 10^{-4} \text{ m}^3 \pm 3.7\%$$

$$= 6.8 \times 10^{-4} \pm 2.5 \times 10^{-5} \text{ m}^3$$

(3)

7. A group of students investigated the relationship between the volume of a confined gas and its pressure. They understood that the relationship was given by:

$$P = \frac{k}{V},$$

k = constant.

Their results are given in the table below.

Pressure (cm of Hg)	Volume (L)	√ (L-1)
20.0	10.0	0/100
30.0	6.7	0.149
40.0	5.0	0,200
50.0	4.0	0-250
60.0	3.3	0.303
70.0	2.9	0.345

(a) Manipulate the data to generate a straight-line graph. Record your data in the vacant column.

(b) Either graph the data on the grid provided, or use your calculator to generate a line of best fit.

Equation:
$$P = \frac{1.92 \times 10^2}{1.22} + 1.22$$
 (4)

(c) Use the graph to determine the value of the constant k.

gradient =
$$\frac{(75.0-0)}{(0-38-0)}$$
 = 2.0×10^2 cmHgL (2)

$$P = \frac{k}{V}$$

$$\Rightarrow k = PV$$

$$= \text{gradient}_{3}$$

$$= 2 - 0 \times 10^{2} \text{ cm Hg L} \qquad (1)$$
(3)