Topologie

STEP, MINES ParisTech*

29 janvier 2020 (#f301eed)

Table des matières

Structu	res topologiques	3
	Norme	3
	Espace vectoriel normé	3
	Normes sur \mathbb{R}^n	3
	Opérateurs linéaires bornés	4
	Opérateurs linéaires de \mathbb{R}^n dans \mathbb{R}^m	4
	Distance	5
	Espace métrique	6
	Sous-ensemble d'un espace vectoriel normé	6
	Distance point-ensemble et ensemble-ensemble	7
	Isométries	7
	Sous-espace métrique	7
	Structure topologique d'un espace métrique	7
		8
	Espace topologique	8
	Sous-espace topologique	8
	Continuité	8
	Composée d'applications continues	8
	Les espaces métriques sont des espaces topologiques	9
	L'espace topologique généralise l'espace métrique	0
	Produit d'espaces vectoriels normés	0
	Produit d'espaces métriques	0
Limite	10	0
	Limite d'une suite de points	0
	Unicité de la limite d'une suite	1
		.1
	Unicité de la limite d'une fonction en un point	.1
		1
	Continuité de la distance	2

^{*}Ce document est un des produits du projet **O** boisgera/CDIS, initié par la collaboration de (S)ébastien Boisgérault (CAOR), (T)homas Romary et (E)milie Chautru (GEOSCIENCES), (P)auline Bernard (CAS), avec la contribution de Gabriel Stoltz (Ecole des Ponts ParisTech, CERMICS). Il est mis à disposition selon les termes de la licence Creative Commons "attribution – pas d'utilisation commerciale – partage dans les mêmes conditions" 4.0 internationale.

Bestiaire	12
Définitions séquentielles	12
	13
	13
	14
	14
	14
	15
-	15
	15
	15
9	16
Suite de Cauchy	17
Diamètre	17
Suite de Cauchy et diamètre	17
Toute suite convergente est de Cauchy	17
Réciproque ?	17
Espaces complets	18
Complétude de l'espace euclidien	18
	19
	19
	19
•	
•	2 0
•	20
Théorème de Heine-Borel	21
Image d'un compact	21
Existence d'un minimum / maximum	21
Complétude de l'espace des fonctions continues	22
Propriété de l'intersection finie	22
Compacité et propriété de l'intersection finie	23
Compacité et compacité séquentielle	23
	24
±	24
	25
Localement fermé	26
	26
Plongement de Kuratowski	27
Le nombre d'or	28
Spirale d'Euler	28
	29
· · · · · · · · · · · · · · · · · · ·	30
•	30
Localement borné	31
Solutions	90
	32
Normes d'opérateurs	$\frac{32}{34}$

Localement fermé	. 36
Distance entre ensembles	
Plongement de Kuratowski	. 40
Le nombre d'or	. 41
Spirale d'Euler	. 42
Point fixe	. 43
Résolution itérative de systèmes linéaires	. 44
Équation différentielle	. 45
Localement borné	. 47
Références	47

Structures topologiques

Norme

Une norme sur un espace vectoriel E est une application

$$\|\cdot\|: E \to [0, +\infty[$$

telle que pour tous les points x et y de E et tous les scalaires λ dans $\mathbb R$ on ait

- 1. ||x|| = 0 si et seulement si x = 0 (séparation),
- 2. $\|\lambda x\| = |\lambda| \|x\|$ (homogénéité),
- 3. $||x+y|| \le ||x|| + ||y||$ (inégalité triangulaire).

Espace vectoriel normé

Un espace vectoriel E muni d'une norme sur E est un espace vectoriel normé.

Normes sur \mathbb{R}^n

La norme privilégiée sur \mathbb{R}^n est la norme euclidienne $\|\cdot\|_2$, définie par

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}.$$

Elle se déduit du produit scalaire usuel

$$\langle x, y \rangle = x_1 y_1 + \dots + x_n y_n$$

par la relation $||x||_2 = \sqrt{\langle x, x \rangle}$. On la notera simplement $||\cdot||$ s'il n'y a pas d'ambiguité. Deux autres normes communes dont on peut doter \mathbb{R}^n : la norme $||\cdot||_1$, définie par

$$||x||_1 = |x_1| + \dots + |x_n|$$

et la norme $\|\cdot\|_{\infty}$, définie par

$$||x||_{\infty} = \max_{i=1...n} |x_i|.$$

Opérateurs linéaires bornés

Si E et F sont deux espaces vectoriels normés muni des normes $\|\cdot\|_E$ et $\|\cdot\|_F$, l'ensemble des applications linéaires $A: E \to F$ dites bornées, telles que la norme d'opérateur

$$\|A\|:=\sup_{x\neq 0}\frac{\|A\cdot x\|_F}{\|x\|_E}<+\infty$$

est un espace vectoriel normé.

Démonstration Il est clair que si A et B sont des opérateurs linéaires bornés de E dans F et λ est un réel, alors λA et A+B sont des opérateurs linéaires bornés de E dans F; les opérateurs linéaires bornés forment donc un espace vectoriel. De plus la valeur $\|A\|$ est positive et si $\|A\| = 0$, c'est-à-dire si

$$\sup_{x \neq 0} \frac{\|A \cdot x\|_F}{\|x\|_E} = 0,$$

nécessairement $A\cdot x$ est nulle pour tout $x\in E\setminus\{0\}$. Comme $A\cdot 0=0$ par linéarité, l'opérateur A est nul. On a également

$$\|\lambda A\| = \sup_{x \neq 0} \frac{\|\lambda A \cdot x\|_F}{\|x\|_E} = \sup_{x \neq 0} \frac{|\lambda| \|A \cdot x\|_F}{\|x\|_E} = |\lambda| \sup_{x \neq 0} \frac{\|A \cdot x\|_F}{\|x\|_E} = |\lambda| \|A\|$$

et

$$||A + B|| = \sup_{x \neq 0} \frac{||(A + B) \cdot x||_F}{||x||_E}$$

$$= \sup_{x \neq 0} \frac{||A \cdot x + B \cdot x||_F}{||x||_E}$$

$$\leq \sup_{x \neq 0} \frac{||A \cdot x||_F + ||B \cdot x||_F}{||x||_E}$$

$$\leq \sup_{x \neq 0} \frac{||A \cdot x||_F}{||x||_E} + \sup_{x \neq 0} \frac{||B \cdot x||_F}{||x||_E}$$

$$= ||A|| + ||B||$$

ce qui prouve que la norme d'opérateur est bien une norme sur l'espace des opérateurs bornés de E dans F.

Opérateurs linéaires de \mathbb{R}^n dans \mathbb{R}^m

Tout opérateur linéaire de \mathbb{R}^n dans \mathbb{R}^m – munis de leur normes euclidiennes – est borné.

Démonstration Soit e_i le *i*-ème vecteur de la base canonique de \mathbb{R}^n et soit $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Comme $x = x_1 e_1 + \dots + x_n e_n$, on a

$$A \cdot x = A \cdot (x_1 e_1 + \dots + x_n e_n) = \sum_{i=1}^n x_i (A \cdot e_i).$$

Par l'inégalité triangulaire et par homogénéité de la norme,

$$||A \cdot x||_2 \le \sum_{i=1}^n |x_i| ||A \cdot e_i||_2 \le \sum_{i=1}^n ||x||_2 ||A \cdot e_i||_2 = \left(\sum_{i=1}^n ||A \cdot e_i||_2\right) ||x||_2,$$

d'où le caractère borné de A.

Si X est un sous-ensemble d'un espace vectoriel normé E, celui-ci "hérite" de E une mesure de la distance entre deux points x et y avec la grandeur

$$d(x,y) = ||x - y||.$$

FIGURE 1 – Le cercle unité $\{x \in \mathbb{R}^2 \mid ||x|| = 1\}$. Bien que x = (1,0) et y = (0,1) appartiennent au cercle unité, ni x + y ni 2x ne lui appartiennent. Il hérite néanmoins d'une distance d de l'espace euclidien \mathbb{R}^2 (telle que $d(x,y) = ||x-y||_2 = \sqrt{2}$ quand x = (1,0) et y = (0,1)), ce qui fait de lui un espace métrique.

Par contre, à moins que X soit un sous-espace vectoriel de X les additions entre élements de X ou la multiplication d'un élément de X n'ont plus de sens dans X; nous ne pouvons plus définir une norme sur X.

La fonction d définie ci-dessus sur X vérifie automatiquement les axiomes qui font techniquement d'elle une distance:

Distance

Une distance sur un ensemble X est une fonction

$$d: X \times X \to [0, +\infty[$$

telle que pour tous points x, y et z de X, on ait:

- 1. d(x,y) = 0 si et seulement si x = y (séparation),
- 2. d(x,y) = d(y,x) (symétrie),
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (inégalité triangulaire).

Espace métrique

Un espace métrique est un ensemble X muni d'une distance.

Une fonction distance est également appelée une $m\acute{e}trique$.

Sous-ensemble d'un espace vectoriel normé

Soit X un sous-ensemble d'un espace vectoriel normé E. La fonction $d: X \times X \to [0, +\infty[$ définie par

$$d(x,y) := ||x - y||$$

est une distance sur X.

Autrement dit, tout sous-ensemble d'un espace vectoriel normé "est" un espace métrique, c'est-à-dire qu'il existe une fonction distance "naturelle" dont on peut le doter, induite par l'espace vectoriel normé. Cela vaut en particulier pour l'espace vectoriel normé lui-même: tout espace vectoriel normé "est" un espace métrique.

Réciproquement, les espaces métriques ne sont pas plus généraux que les sousensembles d'espace vectoriels normés: tout espace métrique peut en effet être identifié au moyen d'une isométrie avec un tel sous-ensemble (cf. l'exercice "Plongement de Kuratowski"). Les espaces métriques n'exhibent donc aucune propriété qui ne soit déjà manifeste dans l'étude des sous-ensembles d'espaces vectoriel normés.

Démonstration Par construction, la fonction d est bien positive. De plus, pour tous points x, y et z de X:

1. Par l'axiome de séparation des normes,

$$||x - y|| = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y.$$

Cela entraîne que d(x,y) = 0 si et seulement si x = y, soit l'axiome de séparation pour la distance d.

2. Par homogénéité de la norme $\|\cdot\|$, on a

$$||x - y|| = ||(-1) \times (y - x)|| = |-1| \times ||y - x|| = ||y - x||,$$

et donc d(x,y) = d(y,x), d'où la symétrie de la fonction d.

3. Par l'inégalité triangulaire pour les normes, on a

$$||x - z|| = ||x - y - (y - z)|| \le ||x - y|| + ||y - z||,$$

ce qui établit l'inégalité triangulaire pour la distance d.

Distance point-ensemble et ensemble-ensemble

Une distance d sur X associe à deux points de X un réel positif. Cette fonction peut servir de base pour définir une distance entre un point x de X et un ensemble de points de A de X:

$$d(x,A) := \inf_{a \in A} d(x,A) \in [0,+\infty]$$

ou même entre deux ensembles A et B de points de X:

$$d(A,B) = \inf_{a \in A} d(a,B) = \inf_{a \in A} \inf_{b \in B} d(a,b) \in [0,+\infty] \,.$$

Si A est l'ensemble vide, on a $d(x,A)=+\infty$ et si A ou B est vide on a $d(A,B)=+\infty$; ce sont les seuls cas où ces extensions de la distance entre points peuvent prendre des valeurs infinies.

Isométries

Une application $f: X \to Y$ définie entre deux espaces métriques (X, d_X) et (Y, d_Y) telle que:

$$d_Y(f(x), f(y)) = d_X(x, y)$$

est une isométrie.

Les isométries sont les *morphismes* des espaces métriques: les applications qui préservent la structure des espaces métriques. Construire des isométries peut aller de pair avec la construction d'une métrique sur un ensemble qui en est initialement dépourvu ; voir à ce propos l'exercice "Droite réelle achevée".

Sous-espace métrique

Un sous-ensemble Y d'un espace métrique X est un sous-espace métrique de X lorsqu'il est muni de la distance de X, restreinte aux points de Y.

Structure topologique d'un espace métrique

Il est possible de se livrer à un exercice d'abstraction sur les espaces métriques en considérant la distance d(x,A) entre un point x et un ensemble de points A et en regardant uniquement si cette grandeur est nulle – on dira alors que x adhère à A – ou strictement positive:

$$x$$
 adhère à $A \Leftrightarrow d(x, A) = 0$.

En faisant de la sorte pour tous les points et ensembles de points de l'espace métrique et en "oubliant" ensuite la distance qui a permis cette construction, on remplace une mesure quantitative de proximité sur l'ensemble par une mesure uniquement qualitative (dans ce contexte, "x adhère à A" peut être interprété comme "x dans A ou infiniment proche de A").

Relation d'adhérence

Une relation d'adhérence (ou test d'adhérence) sur l'ensemble X est une relation entre éléments de X et sous-ensembles de X telle que:

- 1. Aucun point n'adhère à l'ensemble vide,
- 2. Tout point d'un ensemble adhère à cet ensemble,
- 3. Un point adhère à l'union de deux ensembles si et seulement s'il adhère à l'un des deux ensembles,
- 4. Un point qui adhère à l'ensemble des points adhérents à un ensemble adhère à cet ensemble.

Espace topologique

Un espace topologique est un ensemble muni d'une relation d'adhérence. Les éléments de l'ensemble sont appelés des points, ses sous-ensembles des ensembles de points.

Sous-espace topologique

Un sous-ensemble Y d'un espace topologique X est un sous-espace topologique de X lorsqu'il est muni de la relation d'adhérence de X, restreinte aux points et sous-ensembles de Y.

Continuité

Une application $f: X \to Y$ définie entre deux espaces topologiques est continue en $x \in X$ si, lorsque x adhère à A dans X, f(x) adhère à f(A) dans Y. Une application continue en tout point $x \in X$ est continue.

Les applications continues sont les morphismes des espaces topologiques: elle préservent la structure des espaces topologiques.

Cette caractérisation "abstraite" des fonctions continues se prête à des preuves particulièrement concises de certains résultats. Ainsi:

Composée d'applications continues

La composée de fonctions $f: X \to Y$ continue en $x \in X$ et $g: Y \to Z$ continue en $f(x) \in Y$ est continue en x.

Démonstration Si x adhère à A, par continuité de f en x, f(x) adhère à f(A); donc par continuité de g en g en g en g en g est donc continue en g.

Les espaces métriques sont des espaces topologiques

Soit X un espace métrique muni d'une distance d. La relation définie par

$$x$$
 adhère à $A \Leftrightarrow d(x,A) = 0$

est une relation d'adhérence sur X.

Démonstration

1. Le point x adhère à l'ensemble vide si et seulement si $d(x,\emptyset) = 0$, mais

$$d(x,\varnothing) = \inf_{y \in \varnothing} d(x,y) = +\infty,$$

par conséquent aucun point d'adhère à l'ensemble vide.

2. Si $x \in A$, on a

$$d(x, A) = \inf_{y \in A} d(x, y) = d(x, x) = 0,$$

donc x adhère à A.

3. Si x adhère à A, c'est-à-dire si d(x, A) = 0, alors

$$0 \le d(x,A \cup B) = \inf_{y \in A \cup B} d(x,y) \le \inf_{y \in A} d(x,y) = d(x,A) = 0$$

et donc x adhère à $A \cup B$. De la même façon, du fait de la symétrie des rôles des ensembles A et B, si x adhère à B alors x adhère à $A \cup B$.

Réciproquement, si x adhère à $A \cup B$, alors il existe une suite de points x_k de $A \cup B$ telle que $d(x,x_k) \to 0$ quand $k \to +\infty$. Cette suite x_k admet une suite extraite de points de A et/ou une suite extraite de points de B. Dans le premier cas on a donc d(x,A)=0 et dans le second d(x,B)=0, c'est-à-dire que x adhère à A et/ou à B.

4. Les points y qui adhèrent à l'ensemble A sont caractérisés par d(y,A)=0. Par conséquent, l'ensemble des points x qui adhèrent à cet ensemble sont caractérisés par

$$d(x, \{y \in X \mid d(y, A) = 0\}) = 0.$$

Pour tout x de ce type et pour tout $\varepsilon > 0$, il existe un y tel que $d(y,x) \le \varepsilon/2$ et d(y,A) = 0 et donc un $z \in A$ tel que $d(y,z) \le \varepsilon/2$. L'inégalité triangulaire fournit donc

$$d(x,A) = \inf_{a \in A} d(x,a) \le d(x,z) \le d(x,y) + d(y,z) \le \varepsilon$$

et comme $\varepsilon > 0$ est arbitraire, d(x, A) = 0 : x adhère à A.

L'espace topologique généralise l'espace métrique

Les espaces métriques "sont" des espaces topologiques (c'est-à-dire héritent automatiquement d'une relation d'adhérence, définie à partir de leur distance). A l'inverse, les espaces topologiques qui peuvent être muni d'une distance compatible avec leur relation d'adhérence sont dits *métrisables*. Toutefois, tous les espaces topologiques ne sont pas métrisables ¹; la notion d'espace topologique est donc strictement plus générale que la notion d'espace métrique.

Produit d'espaces vectoriels normés

On appelle produit des espaces vectoriels normés E_1, \ldots, E_n , munis des normes $\|\cdot\|_{E_1}, \ldots, \|\cdot\|_{E_n}$, l'espace vectoriel $E = E_1 \times \cdots \times E_n$, muni de la norme

$$\|(x_1,\ldots,x_n)\| = \sqrt{\|x_1\|_{E_1}^2 + \cdots + \|x_n\|_{E_n}^2}.$$

Produit d'espaces métriques

On appelle produit des espaces métriques X_1, \ldots, X_n , munis des distances d_{X_1}, \ldots, d_{X_n} le produit cartésien $X = X_1 \times \cdots \times X_n$, muni de la distance

$$d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{d_{X_1}(x_1,y_1)^2 + \cdots + d_{X_n}(x_n,y_n)^2}.$$

Limite

Limite d'une suite de points

Une suite x_k de valeurs d'un espace métrique X a comme limite un point ℓ de X – ou $converge\ vers\ \ell$ – si x_k est arbitrairement proche de ℓ à partir d'un certain rang, c'est-à-dire si pour tout $\varepsilon > 0$, il existe un entier n tel que pour tout $k \geq n$, $d(x_k,\ell) \leq \varepsilon$, ou encore si

$$\lim_{k \to +\infty} d(x_k, \ell) = 0.$$

On utilisera alors une des deux notations:

$$\ell = \lim_{k \to +\infty} x_k$$
 ou $x_k \to \ell$ quand $k \to +\infty$.

Une suite possédant une limite est dite convergente.

^{1.} Par exemple, l'espace formé de deux points $\{0,1\}$ où x adhère à A si x appartient à A ou x=0 et $A=\{1\}$ – c'est-à-dire l'espace de Sierpiński – est un espace topologique qui n'est pas métrisable. En effet, si d était une distance sur cet ensemble, telle que d(x,A)=0 si et seulement si x adhère à A, alors on aurait $d(0,\{1\})=d(0,1)=0$, ce qui contredirait l'axiome de séparation pour les distances.

Unicité de la limite d'une suite

Si une suite x_k admet une limite, celle-ci est unique.

Démonstration Par l'inégalité triangulaire, si les points ℓ et ℓ' sont des limites de la suite des x_k , alors pour tout entier k on a

$$d(\ell, \ell') \le d(x_k, \ell) + d(x_k, \ell').$$

Comme il existe des rangs n et n' tels que lorsque $k \ge n$ et $k \ge n'$, on a $d(x_k,\ell) \le \varepsilon/2$ et $d(x_k,\ell') \le \varepsilon/2$, pour $k = \max(n,n')$, on a $d(\ell,\ell') \le \varepsilon$. La valeur $\varepsilon > 0$ étant arbitraire, on en déduit que $d(\ell,\ell') = 0$, soit par l'axiome de séparation, que $\ell = \ell'$. Il n'existe donc qu'une limite possible pour la suite des x_k .

Limite d'une fonction en un point

Soit $f:X\subset Y\to Z$ une application définie sur un sous-ensemble X d'un espace métrique Y et à valeurs dans un espace métrique Z. Soit x un point de Y adhérent à X. Le point $\ell\in Z$ est la limite de f en x si pour toute suite x_k de points de X convergeant vers x mais ne prenant pas la valeur x, on a $\lim_{k\to +\infty} f(x_k)=\ell$. On utilisera alors une des deux notations:

$$\ell = \lim_{y \to x} f(y)$$
 ou $f(y) \to \ell$ quand $y \to x$.

Unicité de la limite d'une fonction en un point

Si la fonction f admet une limite en x, celle-ci est unique.

Démonstration Un corollaire de l'unicité de la limite des suites.

Continuité et limite

Une fonction $f: X \to Y$, où X et Y sont deux espaces métriques, est continue en $x \in X$ si et seulement si la limite de f existe en x et

$$\lim_{y \to x} f(y) = f(x).$$

Démonstration Supposons que f soit telle que $f(y) \to f(x)$ quand $y \to x$. Soit A un sous-ensemble de X tel que x adhère à A. Dans un espace métrique, cela signifie que d(x,A)=0, ou encore qu'il existe une suite de points x_k de A telle que $d(x,x_k)\to 0$ quand $x_k\to x$. Par conséquent, $f(x_k)\to f(x)$ quand $k\to +\infty$, soit $d(f(x_k),f(x))\to 0$ quand $k\to +\infty$. Comme l'ensemble $\{f(x_k)\mid k\in \mathbb{N}\}$ est un sous-ensemble de f(A), nous en déduisons que d(f(x),f(A))=0: le point f(x) adhère à f(A). La fonction f est donc continue en x.

Réciproquement, si $f(y) \not\to f(x)$ quand $y \to x$, il existe une suite x_k tendant vers x telle que $f(x_k)$ ne tende pas vers f(x) et donc un $\varepsilon > 0$ et une suite y_k extraite de x_k telle que $y_k \to x$ et pour tout $k \in \mathbb{N}$, $d(f(y_k), f(x)) > \varepsilon$. Par conséquent, x adhère à $\{y_k \mid k \in \mathbb{N}\}$, mais f(x) n'adhère pas à $f(\{y_k \mid k \in \mathbb{N}\}) = \{f(y_k) \mid k \in \mathbb{N}\}$; la fonction f n'est donc pas continue en x.

Continuité de la distance

Soit X un espace métrique. La fonction distance $d: X \times X \to [0, +\infty[$ est une application continue. Si A est un sous-ensemble non vide de X, la distance à A $x \in X \mapsto d(x, A) \in [0, +\infty[$ est une application continue.

Démonstration Soient (x_0, y_0) et (x, y) deux points de l'espace produit $X \times X$. Par l'inégalité triangulaire, $d(x, y) \le d(x, x_0) + d(x_0, y_0) + d(y_0, y)$ et $d(x_0, y_0) \le d(x_0, x) + d(x, y) + d(y, y_0)$, donc

$$|d(x,y) - d(x_0,y_0)| \le d(x_0,x) + d(y_0,y).$$

Or la distance sur le produit $X \times X$ est définie comme

$$d_{X\times X}((x,y),(x_0,y_0)) = \sqrt{d(x,x_0)^2 + d(y,y_0)^2},$$

donc

$$|d(x,y) - d(x_0,y_0)| \le 2d_{X\times X}((x,y),(x_0,y_0))$$

et
$$d(x,y) \to d(x_0,y_0)$$
 quand $(x,y) \to (x_0,y_0)$.

Pour tout $a \in A$, on a $d(x, a) \le d(x, x_0) + d(x_0, a)$ et donc $d(x, A) \le d(x, x_0) + d(x_0, A)$. En intervertissant x et x_0 , on obtient également $d(x_0, A) \le d(x_0, x) + d(x, A)$. Par symétrie de la distance, ces deux inégalités entraînent

$$|d(x,A) - d(x_0,A)| \le d(x_0,x)$$

et donc $d(x, A) \to d(x_0, A)$ quand $x \to x_0$.

Bestiaire

Définitions séquentielles

Soit X un espace métrique et A un ensemble de points de X.

- Un point $adh\`ere$ à un ensemble A s'il existe une suite de points de A qui converge vers ce point.
- Un ensemble A est ferm'e si la limite de toute suite de points de A qui est convergente (dans X) appartient à A.
- Un point est *frontière* de A s'il existe une suite de points de A qui converge vers ce point et une suite de points du complémentaire de A dans X qui converge vers ce point.
- Un point x est intérieur à un ensemble A si toute suite convergeant vers x appartient à A à partir d'un certain rang.

- Un ensemble V est un voisinage d'un point x de X si toute suite convergeant vers x appartient à V à partir d'un certain rang.
- Un ensemble A est ouvert si toute suite de points de X qui converge vers un point de A appartient à A à partir d'un certain rang.

Ensembles dérivés

Soit A un ensemble de X. On note

- \overline{A} l'adhérence de A (l'ensemble des points adhérents à A),
- ∂A la frontière de A (l'ensemble des points frontières de A).
- \mathring{A} l'intérieur de A (l'ensemble des points intérieurs à A).

Définitions métriques

Soit X un espace métrique et A un ensemble de points de X.

— Un point x adhère à un ensemble A si sa distance à l'ensemble A est nulle:

$$x \in \overline{A} \Leftrightarrow d(x, A) = 0.$$

— Un ensemble A est $ferm\acute{e}$ si tous les points à distance nulle de A appartiennent à A:

$$A = \overline{A} \iff (d(x, A) = 0 \Rightarrow x \in A).$$

— Un point est frontière de A si sa distance à A et au complémentaire de A est nulle:

$$x \in \partial A \iff (d(x, A) = 0 \text{ et } d(x, X \setminus A) = 0).$$

— Un point x est intérieur à un ensemble A si sa distance au complémentaire de A est strictement positive:

$$x \in \mathring{A} \Leftrightarrow d(x, X \setminus A) > 0.$$

— Un ensemble V est un voisinage d'un point x de X si la distance de x au complémentaire de V est strictement positive:

$$V \in \mathcal{V}(x) \iff d(x, X \setminus V) > 0.$$

— Un ensemble A est ouvert si la distance de tout point de A au complémentaire de A est strictement positive:

$$A = \mathring{A} \Leftrightarrow (x \in A \Rightarrow d(x, X \setminus A) > 0).$$

— Pour tout $x \in X$ et $r \ge 0$, on définit la boule ouverte de centre x et de rayon r comme

$$B(x,r) = \{ y \in X \, | \, d(x,y) < r \}$$

et la boule ferm'ee de centre x et de rayon r comme

$$\overline{B}(x,r) = \{ y \in X \mid d(x,y) \le r \}.$$

Définitions topologiques

Soit X un espace topologique et A un ensemble de points de X.

- L'adhérence \overline{A} d'un ensemble A est constituée des points qui adhèrent à l'ensemble A.
- Un ensemble A est fermé s'il est égal à son adhérence:

$$A = \overline{A}$$
 ou $(x \in \overline{A} \Leftrightarrow x \in A)$

— Un point est frontière de A s'il appartient à l'adhérence de A et à celle de son complémentaire:

$$x \in \partial A \iff (x \in \overline{A} = 0 \text{ et } x \in \overline{X \setminus A}).$$

— Un point x est intérieur à un ensemble A s'il n'adhère pas au complémentaire de A

$$x \in \mathring{A} \iff x \notin \overline{X \setminus A}.$$

— Un ensemble V est un voisinage d'un point x de X si x est intérieur à V

$$V \in \mathcal{V}(x) \iff x \notin \overline{X \setminus V}.$$

— Un ensemble A est ouvert s'il est un voisinage de chacun de ses points

$$A = \mathring{A} \iff (x \in A \Rightarrow x \notin \overline{X \setminus A}).$$

Calcul topologique

Avec l'opérateur d'adhérence, les axiomes définissant une relation d'adhérence – et donc un espace topologique – prennent une forme symbolique simple :

- 1. $\overline{\varnothing} = \varnothing$,
- $2. A \subset \overline{A}$
- 3. $\overline{A \cup B} = \overline{A} \cup \overline{B}$,
- 4. $\overline{\overline{A}} = \overline{A}$.

Ouverts et fermés

Un ensemble est ouvert si et seulement si son complémentaire est fermé ; un ensemble est fermé si et seulement si son complémentaire est ouvert.

Démonstration En raisonnant par équivalence, le complémentaire $F = X \setminus U$ d'un ensemble ouvert U – qui vérifie aussi $U = X \setminus F$ – est caractérisé par

$$x \in X \setminus F \Rightarrow x \not\in \overline{X \setminus (X \setminus F)},$$

soit $x \in X \setminus F \Rightarrow x \notin \overline{F}$. La contraposée de cette relation – qui lui est équivalente – est $x \in \overline{F} \Rightarrow x \in F$. Comme $F \subset \overline{F}$, cela équivaut $\overline{F} = F$, c'est-à-dire au caractère fermé de F.

La démonstration de la seconde partie de l'énoncé est immédiate (le complémentaire du complémentaire d'un ensemble est cet ensemble).

Continuité

Une fonction $f: X \to Y$ où X et Y sont des espaces topologiques est continue si et seulement si l'image réciproque de tout ensemble fermé (resp. ouvert) de Y par f est un ensemble fermé (resp. ouvert) de X.

Démonstration Supposons f continue. Si B est un ensemble fermé de Y, par continuité,

$$f(\overline{f^{-1}(B)}) \subset \overline{f(f^{-1}(B))} \subset \overline{B} = B.$$

Prendre l'image réciproque des deux membre de cette équation fournit

$$\overline{f^{-1}(B)} = f^{-1}(B),$$

par conséquent $f^{-1}(B)$ est fermé.

Réciproquement, supposons que l'image réciproque de tout ensemble fermé est un ensemble fermé. Soit A un sous-ensemble de X; l'ensemble $\overline{f(A)}$ étant fermé,

$$\overline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)}).$$

Comme $A \subset f^{-1}(\overline{f(A)})$, on a $\overline{A} \subset f^{-1}(\overline{f(A)})$, donc

$$f(\overline{A}) \subset f(f^{-1}(\overline{f(A)})) \subset \overline{f(A)}.$$

Comme A est arbitraire, f est continue.

Montrons la variante avec des ensembles ouverts plutôt que fermés. Supposons f continue ; si C est un ensemble ouvert de Y, son complémentaire $B = Y \setminus C$ est un ensemble fermé. Comme

$$f^{-1}(C) = f^{-1}(Y \setminus B) = X \setminus f^{-1}(B),$$

son image réciproque est le complémentaire d'un fermé dans X et donc ouverte. La réciproque est établie de façon similaire.

Complétude

Point fixe

Soit $f: X \to X$ une application d'un ensemble X dans lui-même. Un élément $x \in X$ est un point fixe de f si x = f(x).

Points fixes et zéros

Être un point fixe d'une fonction $f: X \to X$, c'est donc être déterminé **implicitement** par l'équation x = f(x). Si X est un sous-espace d'un espace vectoriel, cela équivaut à dire que x est une solution de l'équation x - f(x) = 0, soit un zéro (appelé également une racine) de la fonction $x \in X \mapsto x - f(x)$.

La démarche inverse – qui consiste à caractériser les solutions d'une équation comme des point fixes – peut être utile pour établir des résultats d'existence et d'unicité de solutions ou obtenir des méthodes numériques pour leur calcul. Un exemple élémentaire de ce type de transformation: le nombre d'or est déterminé comme l'unique solution de l'équation

$$x^2 = x + 1, \ x > 0$$

ou encore comme un zéro de fonction par l'équation

$$x^2 - x - 1 = 0, x > 0;$$

il peut également être caractérisé comme un point fixe par l'équation

$$x = 1 + \frac{1}{x}, \ x > 0.$$

Ce type de transformation n'est toutefois pas unique: un zéro de fonction peut être caractérisé par une infinité d'équations de type point fixe. Parmi cette multitude de choix, il faudra déterminer une reformulation qui soit utile aux objectifs poursuivis, ce qui n'a rien d'automatique. On se reportera à l'exercice "Le nombre d'or" pour prolonger l'étude de cet exemple particulier.

FIGURE 2 – Le nombre d'or comme point fixe de $x \mapsto 1 + 1/x$.

Algorithmes et critères de convergence

Dans un algorithme (idéalisé) de calcul d'une suite de valeurs numériques, il n'est pas évident d'établir un critère de convergence qui garantisse exactement que la suite calculée ait une limite, quand cette limite potentielle est inconnue.

Vérifier que $|x_{k+1} - x_k| \to 0$ par exemple est insuffisant pour garantir une limite comme en atteste la suite des $x_k = \sum_{j=0}^k 1/(j+1)$. Vérifier que la série de terme général $|x_{k+1} - x_k|$ est bornée, c'est-à-dire que

$$\sum_{k=0}^{+\infty} |x_{k+1} - x_k| < +\infty$$

va bien garantir la convergence, mais va par contre rejeter des suites convergentes telle que $x_k = \sum_{j=0}^k (-1)^j/(j+1)$. Un critère plus adapté serait d'examiner

le développement décimal de x_k et de vérifier que quel que soit le nombre de décimales souhaité après la virgule, le développement de x_k finit par se stabiliser au-delà d'un certain rang m (qui dépend du nombre de décimales). Mais là aussi, il existe des cas pathologiques qui convergent sans respecter le critère, comme la suite des $x_k = 1 + (-1)^k 2^{-k}$, dont le développement avec 0 décimales après la virgule – c'est-à-dire la partie entière – oscille indéfiniment entre 0 et 1.

C'est la notion de suite de Cauchy qui capture le bon critère; pour une suite numérique (à valeurs réelles ou dans \mathbb{R}^n) "être de Cauchy" – ou "passer le test de Cauchy" ou encore "vérifier le critère de Cauchy" – est équivalent à être convergente.

Suite de Cauchy

Une suite de points x_k d'un espace métrique X est de Cauchy si pour tout $\varepsilon > 0$, il existe un rang m tel que pour tous les entiers $n \ge m$ et $p \ge m$, $d(x_n, x_p) \le \varepsilon$.

Diamètre

Le diamètre d'un sous-ensemble A d'un espace métrique X est donné par:

$$diam(A) = \sup \{d(x, y) \mid x \in A, y \in A\}$$

Suite de Cauchy et diamètre

Une suite de points x_k est de Cauchy si et seulement si

$$\lim_{k \to +\infty} \operatorname{diam}(\{x_n \mid n \ge k\}) = 0.$$

Toute suite convergente est de Cauchy

Toute suite de points convergente dans un espace métrique est de Cauchy.

Démonstration Soit X un espace métrique et x_k une suite convergente, de limite ℓ . Soit $\varepsilon > 0$; il existe un rang m au-delà duquel on a $d(x_k, \ell) \le \varepsilon/2$. Par conséquent, si $n \ge m$ et $p \ge m$,

$$d(x_n, x_p) \le d(x_n, \ell) + d(\ell, x_p) \le \varepsilon.$$

La suite x_k est donc de Cauchy.

Réciproque?

Il est parfois plus facile de vérifier qu'une suite de points dans un espace métrique satisfait le critère de Cauchy que de vérifier qu'elle est convergente, en particulier quand la limite de la suite est inconnue. Malheureusement, dans ce cadre très

général, il n'est pas possible en général de déduire la convergence du fait que la suite vérifie le critère de Cauchy. Ainsi, dans \mathbb{Q} , considéré en tant que sous-espace métrique de \mathbb{R} , la suite qui définie le développement décimal de $\sqrt{2}$ à l'ordre k:

$$x_k = \frac{a_k}{10^k}$$
 où $a_k = \max\{n \in \mathbb{N} \mid n^2 \le 2(10^k)^2\}$

est de Cauchy – on peut prouver que $|x_n - x_p| \le 1/10^m$ quand $n \ge m$ et $p \ge m$ – mais n'est pas convergente. En effet, la suite converge dans \mathbb{R} , mais sa limite $\sqrt{2}$ est irrationelle; cette suite n'a donc pas de limite dans \mathbb{Q} (une telle limite serait aussi une limite dans \mathbb{R} , ce qui contredirait son unicité.)

L'ensemble $\mathbb R$ possède une propriété bien utile qui fait défaut à $\mathbb Q$: toute suite de Cauchy y est convergente.

Espaces complets

Un espace métrique X est complet si et seulement si toute suite de Cauchy est convergente. Un espace vectoriel normé E complet est qualifié d'espace de $Banach^2$.

Complétude de l'espace euclidien

L'espace \mathbb{R}^n est complet.

Démonstration Dans les cas de \mathbb{R} (c'est-à-dire quand n=1), le résultat est une conséquence directe de la construction de \mathbb{R} comme complété de $\mathbb{Q}(^3)$. Pour des valeurs de n>1, si x_k est une suite de Cauchy, ses composantes x_k^1,\ldots,x_k^n sont aussi de Cauchy car pour tout $i\in\{1,\ldots,n\}$,

$$|x_n^i - x_p^i| \le ||x_n - x_p||.$$

Comme $\mathbb R$ est complet, chaque suite x_k^i admet donc une limite, notée ℓ^i . Si l'on note $\ell=(\ell^1,\ldots,\ell^n)$, on déduit de l'égalité

$$||x_k - \ell|| = \sqrt{\sum_{i=1}^n (x_k^i - \ell^i)^2}$$

la convergence de x_k vers ℓ . Toute suite de Cauchy de \mathbb{R}^n est donc convergente.

^{2.} d'après Stefan Banach, un mathématicien polonais du 20ème siècle d'après lequel sont nommés de nombreux concepts et théorèmes.

^{3.} bien sûr si l'on a utilisé une technique alternative pour construire \mathbb{R} , par exemple par les coupures de Dedekind, la complétude de \mathbb{R} n'a rien d'automatique.

Complétude de l'espace des fonctions bornées

Soit X un ensemble et Y un espace métrique complet. L'ensemble des fonctions f de X dans Y bornées – c'est-à-dire telles que $\sup_{x\in X} d(0,f(x))$ soit fini – muni de la distance de la convergence uniforme

$$d(f,g) := \sup_{x \in X} d(f(x), g(x))$$

est complet.

Démonstration Soit f_k une suite de Cauchy de fonctions bornées pour la distance de la convergence uniforme. Pour tout $\varepsilon > 0$, il existe un rang $m \in \mathbb{N}$ tel que si $n \ge m$ et $p \ge m$, on ait

$$\sup_{x \in X} d(f_n(x), f_p(x)) \le \varepsilon.$$

Par conséquent, pour tout $x \in X$, on a $d(f_n(x), f_p(x)) \le \varepsilon$, donc la suite des $f_k(x)$ est de Cauchy dans Y. L'espace Y étant par hypothèse complet, cette suite a une limite, que nous notons $f_{\infty}(x)$. Par continuité de la distance, pour tout $x \in X$ et tout $n \ge m$, on a

$$d(f_n(x), f_{\infty}(x)) = \lim_{p \to +\infty} d(f_n(x), f_p(x)) \le \varepsilon$$

et donc $\sup_{x\in X}d(f_n(x),f_\infty(x))\leq \varepsilon.$ La fonction f_∞ est donc bornée, car

$$d(0, f_{\infty}(x)) \le d(0, f_n(x)) + \varepsilon,$$

et la limite uniforme de la suite des f_k .

Application contractante

Soit X un espace métrique. Une fonction $f: X \to X$ est κ -contractante, où $\kappa \in [0,1[$, si pour tout couple de points x et y de X, on a

$$d(f(x), f(y)) \le \kappa d(x, y).$$

Une telle application est *contractante* si elle est κ -contractante pour un $\kappa \in [0, 1]$.

Théorème de point fixe de Banach

Soit $f:X\to X$ une application contractante dans un espace métrique X complet. L'application f admet un unique point fixe x, c'est-à-dire une unique solution $x\in X$ à l'équation

$$x = f(x)$$
.

Démonstration L'unicité du point fixe (l'existence d'au plus une solution à x = f(x)) est simple à établir: si x et y sont deux points fixes de f, c'est-à-dire

si x=f(x) et y=f(y), alors d(x,y)=d(f(x),f(y)). L'application f étant κ -contractante, on a donc

$$d(x,y) = d(f(x), f(y)) \le \kappa d(x,y);$$

et puisque $0 \le \kappa < 1$, cette inégalité entraı̂ne d(x,y) = 0, soit x = y.

Quant à l'existence du point fixe, sa preuve est constructive: nous allons établir que quel que soit le choix de $x_0 \in E$, la suite de valeurs définie par

$$x_{n+1} = f(x_n)$$

converge vers un point fixe. Le point crucial est d'établir que cette suite admet une limite ℓ ; en effet, si ce résultat est acquis, en passant à la limite sur n dans la relation de récurrence et exploitant la continuité de l'application f, on obtient

$$\ell = \lim_{n \to +\infty} x_{n+1} = \lim_{n \to +\infty} f(x_n) = f(\ell).$$

À cette fin, nous allons prouver que la suite des x_n est de Cauchy; l'existence d'une limite se déduira alors de la complétude de X. On remarque tout d'abord que pour tout entier n,

$$d(x_{n+2}, x_{n+1}) = d(f(x_{n+1}), f(x_n)) \le \kappa d(x_{n+1}, x_n),$$

ce qui par récurrence fournit pour tout n

$$d(x_{n+1}, x_n) \le \kappa^n d(x_1, x_0).$$

Par l'inégalité triangulaire, pour tout couple d'entiers n et p, on a

$$d(x_{n+p}, x_n) \le \sum_{k=0}^{p-1} d(x_{n+k+1}, x_{n+k}) \le \sum_{k=0}^{p-1} \kappa^{n+k} d(x_1, x_0).$$

Dans le second membre apparaît une somme de termes d'une suite géométrique:

$$\sum_{k=0}^{p-1} \kappa^{n+k} = \kappa^n \frac{1-\kappa^p}{1-\kappa} \leq \frac{\kappa^n}{1-\kappa};$$

on en déduit

$$d(x_{n+p}, x_n) \le \frac{\kappa^n}{1 - \kappa} d(x_1, x_0).$$

Le second membre de cette inégalité tend vers 0 indépendamment de p quand n tend vers $+\infty$; la suite des x_n est bien de Cauchy.

Compacité

Compacité séquentielle

Un ensemble K d'un espace métrique est compact (séquentiellement) si toute suite de valeurs de K admet une sous-suite qui converge dans K.

Théorème de Heine-Borel

Un ensemble K de l'espace euclidien \mathbb{R}^n est compact si et seulement si il est fermé et borné.

Démonstration Supposons K compact; soit x_k une suite de points de K qui converge dans \mathbb{R}^n , vers une limite notée ℓ . Il existe alors une sous-suite y_k de x_k qui converge dans K; or comme cette sous-suite a la même limite que x_k , ℓ appartient à K. L'ensemble K est donc fermé.

Si K est non-borné, il existe une suite x_k non-bornée de points de K. Toute sous-suite de x_k étant également non-bornée, elle ne peut donc converger et par conséquent K ne peut pas être compact.

Finalement, supposons K fermé et borné. Soit x_k une suite de valeurs de K. Tout ensemble borné peut être recouvert par un nombre finis d'ensembles fermés et bornés de diamètre arbitrairement faible 4 . Si l'on considère un recouvrement de ce type de K pour un diamètre inférieur à 1, il existe nécessairement un ensemble du recouvrement qui contient l'intégralité d'une sous-suite x_k^0 de x_k ; on le note K_0 . Il est possible de réitérer le raisonnement à la suite des x_k^0 dans K^0 en imposant cette fois-ci un diamètre maximale de 1/2 aux élements du recouvrement et plus généralement de construire une suite y_k extraite de x_k telle que $y_k \in K_m$ si $k \geq m$ et diam $(K_m) \leq 2^{-m}$. La suite des y_k est donc de Cauchy; l'espace euclidien \mathbb{R}^n étant complet, elle est convergente. L'ensemble K étant fermé par hypothèse, cette limite appartient à K; l'ensemble K est donc compact.

Image d'un compact

L'image d'un ensemble compact par une application continue est un ensemble compact.

Démonstration Soit $f: K \subset X \to Y$ où X et Y sont deux espaces métriques et K un sous-ensemble compact de X. Soit y_k une suite de points de f(K); par construction, il existe une suite de points x_k de K tels que $f(x_k) = y_k$. Soit z_k une sous-suite de x_k qui converge vers un $\ell \in K$; par continuité de f en ℓ , la suite des $f(z_k)$ – qui est une suite extraite des y_k – converge vers $f(\ell) \in f(K)$. L'ensemble f(K) est donc compact.

Existence d'un minimum / maximum

Une fonction continue $f: K \to \mathbb{R}$ définie sur un ensemble compact K admet un minimum global et un maximum global.

$$[i_1\varepsilon,(i_1+1)\varepsilon]\times\cdots\times[i_n\varepsilon,(i_n+1)\varepsilon]$$
 où $(i_1,\ldots,i_n)\in\mathbb{Z}^n,$

dont le diamètre est $\varepsilon\sqrt{n}$.

^{4.} par exemple des pavés de la forme

Démonstration Soit $x_k \in K$ une suite minimisante de f, c'est-à-dire telle que

$$\lim_{k \to +\infty} f(x_k) = \inf_{x \in K} f(x).$$

Il existe une suite y_k extraite de x_k qui converge vers un point ℓ de K. Par continuité de f en ℓ , on a

$$f(\ell) = \lim_{k \to +\infty} f(y_k) = \inf_{x \in K} f(x).$$

La fonction f admet donc un minimum en ℓ . En appliquant ce résultat à la fonction -f, on établit que f admet un maximum.

Complétude de l'espace des fonctions continues

Soit X un espace métrique compact et Y un espace métrique complet. L'ensemble des fonctions continues de X dans Y muni de la distance de la convergence uniforme

$$d(f,g) := \sup_{x \in X} d(f(x),g(x))$$

est complet.

Démonstration En préambule: pour toute fonction f continue de X dans Y, la fonction

$$x \in X \mapsto d(f(x), 0) \in \mathbb{R},$$

continue et définie sur un compact, admet un maximum; la fonction f est donc bornée. L'espace des fonction continues de X dans Y est donc un sous-espace métrique de l'espace des fonctions bornées de X dans Y.

Soit f_k une suite de Cauchy de fonctions continues de X dans Y. Cette suite est convergente dans l'espace des fonctions bornées en raison de la complétude de ce dernier. Il nous suffit de montrer que sa limite (uniforme) est continue pour conclure la preuve.

Soit f la limite des f_k et soit $\varepsilon > 0$. Soit k tel que

$$\sup_{x \in X} (f_k(x), f(x)) \le \varepsilon/3.$$

Pour tout $x \in X$, f_k étant continue en x, pour y assez proche de x on a $d(f_k(x), f_k(y)) \le \varepsilon/3$. Or, par l'inégalité triangulaire,

$$d(f(x), f(y)) \le d(f(x), f_k(x)) + d(f_k(x), f_k(y)) + d(f_k(y), f(y)) \le \varepsilon.$$

La fonction f est donc continue.

La notion de compacité peut également être définie dans des espaces topologiques généraux, sans recourir à une distance ou aux suites de points.

Propriété de l'intersection finie

Une collection d'ensembles vérifie la propriété de l'intersection finie si toute sous-collection finie est d'intersection non vide.

Compacité et propriété de l'intersection finie

Un ensemble K d'un espace topologique est compact si pour toute collection de sous-ensembles de K vérifiant la propriété de l'intersection finie, il existe un point adhérent à tous les ensembles de la collection.

Autrement dit, si pour tout $A \in \mathcal{A}$, A est un sous-ensemble de K et si pour toute suite finie $A_1, \ldots, A_k \in \mathcal{A}$ il existe un $x \in K$ tel que $x \in A_1 \cap \cdots \cap A_k$, alors il existe un $x \in K$ adhérent à tout $A \in \mathcal{A}$.

Compacité et compacité séquentielle

Dans les espaces métriques, compacité et compacité séquentielle sont équivalentes.

Démonstration Supposons que K est un sous-ensemble compact de l'espace métrique X. Soit x_k une suite de points de K. Considerons la collection d'ensembles \mathcal{A} définie par

$$\mathcal{A} = \{ A_k \mid k \in \mathbb{N} \} \text{ où } A_k = \{ x_j \mid j \ge k \}.$$

La collection \mathcal{A} vérifie la propriété d'intersection finie: en effet, si $A_{k_1}, A_{k_2}, \ldots, A_{k_p} \in \mathcal{A}$, alors

$$A_{k_1} \cap A_{k_2} \cap \cdots \cap A_{k_p} = A_k$$
 avec $k = \max(k_1, \dots, k_p)$

et donc leur intersection est non-vide. Par conséquent, il existe un $x \in K$ tel que pour tout rang k, x adhère à $A_k = \{x_j \mid j \geq k\}$, c'est-à-dire $d(x, \{x_j \mid j \geq k\}) = 0$. En particulier, il existe un $y_0 := x_{k_0} \in A_0$ tel que $d(x, y_0) \leq 2^{-0}$, un $y_1 := x_{k_1} \in A_{k_0+1}$ tel que $d(x, y_1) \leq 2^{-1}$, etc. La suite y_k est extraite de x_k et vérifie $d(x, y_k) \leq 2^{-k}$, elle converge donc vers x. De toute suite de points de K on peut donc extraire une sous-suite qui converge dans K: K est donc séquentiellement compact.

Réciproquement, supposons K séquentiellement compact. Nous allons montrer que si A est une collection d'ensembles de K telle que

$$\bigcap_{A\in\mathcal{A}} \overline{A} = \varnothing,$$

où \overline{A} désigne l'adhérence de A dans K, alors il existe un nombre fini d'ensemble de A dont l'intersection est vide ; nous aurons alors établi la contraposée de la propriété qui définit la compacité de K et donc la compacité de K. Au préalable, nous allons montrer que sous l'hypothèse ci-dessus d'intersection vide des adhérences, il existe un $\varepsilon > 0$ tel que pour tout $x \in K$, on peut trouver un $A \in A$ tel que $B(x,\varepsilon) \cap \overline{A} = \emptyset$. En effet, si cette propriété n'était pas vérifiée, on pourrait construire une suite x_k de points de K telle que pour tout $A \in A$, il existe un $a_k^A \in \overline{A}$ tel que $d(x_k, a_k^A) < 2^{-k}$. Mais une telle suite aurait alors une sous-suite convergente; la limite serait dans l'adhérence de chacun des $A \in A$, en contradiction avec l'hypothèse initiale. On utilise ce résultat de la façon suivante:

on sélectionne un $x_0 \in K$ et un $A_0 \in A$ tel que $\overline{A_0} \cap B(x_0, \varepsilon) = \emptyset$, puis un $x_1 \in K \setminus B(x_0, \varepsilon)$ et un $A_1 \in A$ tel que $\overline{A_1} \cap B(x_1, \varepsilon) = \emptyset$, ce qui induit

$$(\overline{A_0} \cap \overline{A_1}) \cap (B(x_0, \varepsilon) \cup B(x_1, \varepsilon)) = \varnothing,$$

puis un $x_2 \in K \setminus (B(x_0, \varepsilon) \cup B(x_1, \varepsilon))$ et un $A_2 \in \mathcal{A}$ tel que $\overline{A_2} \cap B(x_2, \varepsilon) = \emptyset$, etc. Le procédé s'arrête en un nombre fini d'étapes, dès que $B(x_0, \varepsilon) \cup \cdots \cup B(x_k, \varepsilon)$ recouvre K. Cela arrive nécessairement puisque les x_k ainsi construits vérifient $d(x_i, x_j) \geq \varepsilon$ si $i \neq j$; si cette suite était infinie, elle ne pourrait admettre de suite extraite convergente, en contradiction avec l'hypothèse de compacité séquentielle. Par conséquent, il existe un rang k tel que

$$K \subset B(x_0, \varepsilon) \cup \cdots \cup B(x_k, \varepsilon)$$

et comme

$$(\overline{A_0} \cap \cdots \cap \overline{A_k}) \cap (B(x_0, \varepsilon) \cup \cdots \cup B(x_k, \varepsilon)) = \emptyset,$$

on en déduit que $\overline{A_0}\cap\cdots\cap\overline{A_k}=\varnothing$ et donc que $A_0\cap\cdots\cap A_k=\varnothing$, ce qui conclut la preuve.

Exercices

Normes d'opérateurs

La fonction norm du module numpy.linalg peut calculer des normes de vecteurs de \mathbb{R}^n , mais également de matrices carrée de $\mathbb{R}^{n \times n}$. Ainsi, on a par exemple:

```
>>> from numpy import inf
>>> from numpy.linalg import norm
>>> A = [[1.0, 2.0], [3.0, 4.0]]
>>> norm(A)
5.477225575051661
>>> norm(A, 1)
6.0
>>> norm(A, 2)
5.464985704219043
>>> norm(A, inf)
7.0
```

En étudiant la documentation de cette fonction, déterminer pour les quatres exemples d'usage ci-dessus s'il existe une norme $\|\cdot\|_{?}$ de vecteurs de \mathbb{R}^n dont la norme d'opérateur associée correspond à cette norme de matrice, c'est-à-dire telle que

$$||A|| = \sup_{x \neq 0} \frac{||A \cdot x||_?}{||x||_?}.$$

(?)

Droite réelle achevée

La droite réelle achevée (ou droite réelle étendue) est composée des nombres réels et de $-\infty$ et $+\infty$. Le but de cet exercice est de doter cet ensemble $[-\infty, +\infty](^5)$ d'une distance aux propriétés "raisonnables". A cette fin, on introduit l'espace métrique X des points du cercle unité de \mathbb{R}^2 d'ordonnée positive:

$$X = \left\{ (x,y) \in \mathbb{R}^2 \ \middle| \ \sqrt{x^2 + y^2} = 1 \ \text{ et } y \geq 0 \right\},$$

muni de la distance euclidienne de \mathbb{R}^2 et la fonction $f:X\to [-\infty,+\infty]$ définie par

$$f(x,y) = \begin{vmatrix} -\infty & \text{si } (x,y) = (-1,0), \\ x/y & \text{si } y > 0, \\ +\infty & \text{si } (x,y) = (1,0). \end{vmatrix}$$

Question 1 Pouvez-vous donner une interprétation géométrique simple à la grandeur calculée par la fonction f?

FIGURE 3 – Construction d'une métrique pour la droite réelle achevée.

(?)

Question 2 Montrer que f est une bijection. (?)

Question 3 En déduire qu'il existe une et une seule fonction distance sur $[-\infty, +\infty]$ qui fasse de f une isométrie; on note $d^{\pm\infty}$ cette distance. (?)

Question 4 Calculer $d^{\pm\infty}(0,+\infty)$, $d^{\pm\infty}(-\infty,+\infty)$, $d^{\pm\infty}(-1,1)$. (?)

Question 5 Montrer que l'injection canonique $x \in \mathbb{R} \mapsto x \in [-\infty, +\infty]$ est une fonction continue. (?)

Question 6 Yoda a dit "deux façons d'interpréter $x_k \to +\infty$ désormais il y a". Qu'est-ce qu'il a voulu dire ? Est-ce que c'est un problème ? (?)

^{5.} Pilule rouge. Dans le monde réel, on trouvera fréquemment la notation $\overline{\mathbb{R}}$ pour désigner l'ensemble des réels étendus; mais cette convention se heurte alors avec la désignation de l'adhérence de \mathbb{R} dans lui-même, une interprétation selon laquelle on aurait $\overline{\mathbb{R}} = \mathbb{R}$.

Question 7 Suggérer une variante de la construction précédente pour doter l'ensemble $\mathbb{R} \cup \{\infty\}$ (∞ sans signe: ni +, ni -) d'une métrique d^{∞} telle $|x_k| \to +\infty$ si et seulement si $d^{\infty}(x_k, \infty) \to 0$. En déduire que cet ensemble est compact. (?)

Localement fermé

Dans un espace métrique 6 X, un ensemble A est localement fermé si chaque point de A a un voisinage ouvert V tel que $A \cap V$ soit fermé dans V (Sato 1959).

Question 0 Expliquer l'expression "fermé dans V" dans la définition ci-dessus; est-ce que cela fait une différence si l'on remplace cette expression par "fermé"? (?)

Question 1 Montrer que dans \mathbb{R} , l'intervalle [0,1[est localement fermé et que l'image de toute suite convergente est localement fermée. Donner un exemple de sous-ensemble de \mathbb{R} qui ne soit pas localement fermé. (?)

Question 2 Montrer que tout ensemble fermé est localement fermé, mais aussi que tout ensemble ouvert est localement fermé. Montrer que l'intersection de deux ensembles localement fermés est localement fermé. (?)

Question 3 Montrer qu'un ensemble est localement fermé si et seulement s'il est l'intersection d'un ensemble fermé et d'un ensemble ouvert. (?)

Distance entre ensembles

Soit A et B deux ensembles compacts non vides de \mathbb{R}^n ; on souhaite évaluer à quel point les deux ensembles diffèrent – en mesurant à quelle distance les points de A peuvent être éloignés de l'ensemble B et réciproquement.

Question 1 Est-ce que la distance entre ensembles classique

$$d(A,B) = \inf_{a \in A} d(a,B) = \inf_{a \in A} \inf_{b \in B} d(a,b)$$

fait l'affaire? (?)

On définit la grandeur

$$d[A,B] = \max \left\{ \sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A) \right\}.$$

appelée distance de Hausdorff entre A et B.

Question 2 Calculer d[A, B] lorsque $A = [-1, 1] \times [-1, 1]$ et $B = [0, 2] \times [0, 2]$.

^{6.} ou plus généralement dans un espace topologique.

FIGURE 4 – Ensembles $A = [-1, 1] \times [-1, 1]$ et $B = [0, 2] \times [0, 2]$.

(?)

Question 3 Cette terminologie de "distance" de Hausdorff est-elle légitime ? (?)

 ${\bf Question}~{\bf 4}~$ La somme de Minkowksi de deux ensembles A et B est définie comme

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Vérifier que la somme de Minkowski de deux ensembles compacts non vides de \mathbb{R}^n est un ensemble compact non vide de \mathbb{R}^n . Cette opération est-elle continue pour la distance de Hausdorff ? (?)

Plongement de Kuratowski

Nous souhaitons établir le résulat suivant: tout espace métrique peut être identifié à un sous-ensemble d'un espace vectoriel normé d'une façon qui préserve la distance entre points.

Soit X un espace métrique et x_0 un point de X. On associe à l'élément x de X la fonction $f_x:X\to\mathbb{R}$ définie par

$$f_x(y) = d(x, y) - d(x_0, y).$$

Question 1 Montrer que la fonction $x \mapsto f_x$ est injective. (?)

Question 2 Montrer que pour tout point x la fonction f_x est bornée. (?)

Question 3 Montrer que l'espace vectoriel E des fonctions bornées de X dans \mathbb{R} est un espace vectoriel qui peut être muni de la norme $\|\cdot\|_{\infty}$ définie par

$$||f||_{\infty} = \sup \{|f(y)| | y \in X\}.$$

(?)

Question 4 Montrer que $x \mapsto f_x$ est une isométrie, c'est-à-dire que pour tout x et y dans X, on a

$$d(x,y) = ||f_x - f_y||_{\infty}.$$

(?)

Le nombre d'or

Le but de cet exercice est de montrer l'existence d'un unique réel positif x tel que $x^2 = x + 1$ – le nombre d'or – et de produire une méthode itérative pour l'évaluer.

Question 1 Montrer l'existence d'un unique point fixe associé à l'application

$$x \in]0, +\infty[\mapsto 1 + \frac{1}{x}$$

et établir qu'il se situe dans l'intervalle fermé [4/3,2]. (?)

Question 2 Montrer que la suite de réels définie par $x_0 \in [4/3, 2]$ et $x_{n+1} = f(x_n)$ converge vers le nombre d'or. (?)

Question 3 Etudier la fonction $f \circ f$ et en exploitant le résultat de l'exercice "Point fixe", en déduire que la suite des x_n converge vers le nombre d'or pour toute valeur initial x_0 strictement positive. (?)

Spirale d'Euler

La spirale d'Euler est la courbe paramétrée du plan déterminée pour $t \geq 0$ par les coordonnées

$$x(t) = \int_0^t \cos s^2 ds$$
 et $y(t) = \int_0^t \sin s^2 ds$

Nous souhaitons établir que cette spirale à un point limite quand $t \to +\infty$ (7).

Question 1 Montrer que si pour toute suite de valeurs t_k tendant vers l'infini, la suite de points de coordonnées $(x_k, y_k) := (x(t_k), y(t_k))$ a une limite dans

^{7.} cette courbe a été introduite par Euler en 1744. Il lui apparait alors manifeste que la courbe est une spirale qui s'enroule après un nombre de tours infinis autour d'un centre bien défini, mais que ce point est très difficile à déterminer par cette construction. Il faudra attendre 1781 pour qu'Euler puisse calculer analytiquement les coordonnées de ce point (cf. Levien (2008)).

FIGURE 5 – Spirale d'Euler $(0 \le t \le 5)$

le plan – limite qui peut dépendre a priori de la suite t_k – alors le point de coordonnées (x(t), y(t)) a une limite dans le plan quand t tend vers $+\infty$. (?)

Question 2 Montrer que pour tout couple (a,b) de réels tels que $0 < a \le b$, les grandeurs

$$I(a,b) := \int_a^b \cos s^2 \, ds \text{ et } J(a,b) := \int_a^b \sin s^2 \, ds$$

vérifient pour un réel $\alpha>0$ les inégalités

$$|I(a,b)| \le \frac{\alpha}{\sqrt{a}} \text{ et } |J(a,b)| \le \frac{\alpha}{\sqrt{a}}.$$

(?)

Question 3 Conclure. (?)

Point fixe

On souhaite montrer que si X est un espace métrique complet et qu'il existe un entier $n \geq 1$ tel que la composée n fois d'une application $f: X \to X$ avec elle-même – notée f^n – est contractante, alors la conclusion du théorème de point fixe de Banach est toujours valable (bien que les hypothèses considérées ici soient plus générales).

Question 1 Soit X un ensemble et $f: X \to X$. Montrer que tout point fixe de f est également un point fixe de f^n ; montrer que si f^n admet un unique point fixe, il est également l'unique point fixe de f. (?)

Question 2 On suppose désormais que X est un espace métrique complet et que f^n est contractante. Montrer que f admet un unique point fixe et que le procédé habituel pour calculer ce point fixe comme une limite est toujours valable. (?)

Résolution itérative de systèmes linéaires

Un opérateur linéaire $A: \mathbb{R}^n \to \mathbb{R}^n$ est diagonalement dominant si la matrice $[a_{ij}]_{ij} \in \mathbb{R}^{n \times n}$ associée vérifie pour tout $i \in \{1, \ldots, n\}$,

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| < |a_{ii}|.$$

Soit D l'opérateur dont la matrice $[d_{ij}]_{ij}$ est la diagonale de $[a_{ij}]_{ij}$:

$$[d_{ij}]_{ij} = \left[\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{array} \right]$$

Question 1 Montrer que deux vecteurs x et y de \mathbb{R}^n vérifient $A \cdot x = y$ si et seulement si

$$x = D^{-1} \cdot (D - A) \cdot x + D^{-1} \cdot y.$$

(?)

Question 2 En déduire que A est inversible et une méthode itérative de calcul de A^{-1} . (?)

Équation différentielle

Soit A un opérateur linéaire de \mathbb{R}^n dans \mathbb{R}^n . On souhaite montrer que pour tout $x_0 \in \mathbb{R}^n$, il existe une unique fonction dérivable $x : [0, +\infty[\to \mathbb{R}^n \text{ à l'équation différentielle}$

$$\dot{x}(t) = A \cdot x(t)$$
 pour tout $t \ge 0$,

assortie de la condition initiale $x(0) = x_0$.

Question 1 Montrer que la fonction $x:[0,+\infty[\to\mathbb{R}^n]$ est solution du problème ci-dessus si et seulement si elle est continue et vérifie pour tout $t\geq 0$ la relation

$$x(t) = x_0 + \int_0^t A \cdot x(s) \, ds.$$

(?)

Question 2 Soit T>0; on note E l'espace des fonctions continues de [0,T] dans \mathbb{R}^n , muni de la norme

$$||x||_{\infty} = \sup_{t \in [0,T]} ||x(t)||.$$

A quelle condition simple l'application $\Phi: E \to E$ définie par

$$\Phi(x) = \left(t \mapsto x_0 + \int_0^t A \cdot x(s) \, ds\right)$$

est-elle contractante ? Quelle conclusion (partielle) quant au problème initial peut-on en tirer ? (?)

Question 3 Soit $\alpha > 0$. On note

$$||x||_{\infty}^{\alpha} = \sup_{t \in [0,T]} ||e^{-\alpha t}x(t)||.$$

Montrer que $\|\cdot\|_{\infty}^{\alpha}$ est une norme sur l'espace des fonctions continues de [0,T] dans \mathbb{R}^n et que muni de cette norme, l'espace E est complet. (?)

Question 4 Reprendre la question 2 avec la norme $\|\cdot\|_{\infty}^{\alpha}$ au lieu de $\|\cdot\|_{\infty}$ et conclure quant à l'existence d'une solution au problème initial. (?)

Localement borné

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$ où U est ouvert. Cette application est dite localement bornée si pour tout point $x \in U$, on peut trouver un rayon r > 0 et une borne $M \ge 0$ tels que pour tout point $y \in U$ tel que $||y - x|| \le r$ on ait $|f(y)| \le M$.

Question 1 Soit A un sous-ensemble borné de U tel que $d(A, \mathbb{R}^n \setminus U) > 0$. Montrer que f est bornée sur A. (?)

Question 2 La fonction f est localement constante si pour tout point $x \in U$, on peut trouver un rayon r > 0 et une valeur $c \in \mathbb{R}$ tels que pour tout point $y \in U$ tel que $||y - x|| \le r$ on ait f(y) = c. La fonction f est-elle nécessairement constante sur tout sous-ensemble borné A de U tel que $d(A, \mathbb{R}^n \setminus U) > 0$? (?)

Solutions

Normes d'opérateurs

norm(A) En l'absence de second argument, la fonction **norm** calcule la norme de Frobenius de l'opérateur A, donnée comme

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}.$$

Il s'agit bien d'une norme sur les applications linéaires de \mathbb{R}^n dans \mathbb{R}^n , car on peut la calculer comme la norme euclidienne de la matrice [A] après une "mise à plat" comme vecteur de \mathbb{R}^{n^2} , c'est-à-dire par la formule $||A||_F = ||\pi([A])||_2$. Mais elle n'est induite par aucune norme de vecteur ; en effet, s'il existait une norme $||\cdot||_2$ telle que $||A||_F = \sup ||A \cdot x||_2 / ||x||_2$, alors on aurait en particulier

$$||I||_F = \sup_{x \neq 0} \frac{||I \cdot x||_?}{||x||_?} = \sup_{x \neq 0} \frac{||x||_?}{||x||_?} = 1.$$

Or, on peut constater que la norme de Frobenius de la matrice associée à l'identité dans \mathbb{R}^n est \sqrt{n} , qui diffère de 1 si n > 1.

norm(A, 1) L'expression norm(A, 1) calcule d'après la documentation de norm la grandeur

$$||A||_1 = \max_{j=1...n} \left(\sum_{i=1}^n |a_{ij}| \right).$$

Le fait que le second argument de l'appel à norm soit 1 peut laisser penser que cette norme de matrice est induite par la norme de vecteurs

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

Vérifions cela ; si $y = A \cdot x$, on a

$$||y||_{1} = \sum_{i=1}^{n} |y_{i}| = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} |a_{ij}| \right) |x_{j}|$$

$$\leq \max_{j=1...n} \left(\sum_{i=1}^{n} |a_{ij}| \right) \sum_{j=1}^{n} |x_{j}|$$

$$= ||A||_{1} ||x||_{1}.$$

Pour conclure, il nous suffit désormais d'exhiber un $x \in \mathbb{R}^n$ tel que $||A \cdot x|| = ||A||_1 ||x||_1$. Si le maximum de $\sum_{i=1}^n |a_{ij}|$ est réalisé en j, il nous suffit de considérer le j-ème vecteur de la base canonique de \mathbb{R}^n , $x = e_j$. En effet, on a alors $||e_j||_1 = 1$ et

$$||A \cdot e_j||_1 = ||(a_{1j}, \dots, a_{nj})||_1 = \sum_{i=1}^n |a_{ij}| = ||A||_1.$$

norm(A, 2) La norme en question est définie par NumPy comme σ_1 , la plus grande valeur singulière de A. Les valeurs singulières $\sigma_1 \geq \sigma_2 \geq \sigma_n \geq 0$ associées à l'opérateur linéaire $A: \mathbb{R}^n \to \mathbb{R}^n$ sont définies à travers une décomposition de A de la forme

$$A = U \cdot \Sigma \cdot V^*$$

où $\Sigma \cdot (x_1, \ldots, x_n) = (\sigma_1 x_1, \ldots, \sigma_n x_n)$ et $U \in \mathbb{R}^n \to \mathbb{R}^n$ et $V \in \mathbb{R}^n \to \mathbb{R}^n$ sont des applications linéaires orthogonales (inversible et dont l'inverse est l'adjoint). Pour montrer que $\sigma_1(\cdot)$ constitue la norme d'opérateur $\|\cdot\|_{22}$ induite par la norme euclidienne $\|\cdot\|_2$ des vecteurs de \mathbb{R}^n , on constate au préalable que pour toute application orthogonale U,

$$\|U\cdot x\| = \sqrt{\langle U\cdot x, U\cdot x\rangle} = \sqrt{\langle U^*\cdot U\cdot x, x\rangle} = \sqrt{\langle x, x\rangle} = \|x\|_2,$$

puis que

$$||A||_{22} = \sup_{\|x\|_2 \le 1} ||(U \cdot \Sigma \cdot V^*) \cdot x||_2$$

$$= \sup_{\|x\|_2 \le 1} ||U \cdot (\Sigma \cdot (V^* \cdot x))||_2$$

$$= \sup_{\|y\|_2 \le 1} ||\Sigma \cdot y||_2$$

$$= \sup_{\|y\|_2 \le 1} \sqrt{\sigma_1^2 y_1^2 + \dots + \sigma_n^2 y_n^2}$$

$$= \sigma_1.$$

norm(A, inf) On constate que l'expression donnée dans la documentation de norm, à savoir

$$||A||_{\infty} = \max_{i=1...n} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$

entretient une troublante ressemblance avec la norme $\|\cdot\|_1$ pour les opérateurs. Plus précisément, si $A^*: \mathbb{R}^n \to \mathbb{R}^n$ désigne l'opérateur adjoint de A, tel que pour tous vecteurs x et y de \mathbb{R}^n , $\langle y, Ax \rangle = \langle A^*y, x \rangle$, associé à la matrice transposée de la matrice associée à A, alors on a

$$||A||_{\infty} = ||A^*||_1.$$

C'est un peu trop gros pour être une coincidence ... Pour montrer que $\|\cdot\|_{\infty}$ est la norme d'opérateur $\|\cdot\|_{\infty\infty}$ associée à la norme de vecteurs $\|\cdot\|_{\infty}$, on peut d'abord constater que pour les vecteurs,

$$\|x\|_{\infty} = \sup_{\|y\|_1 \le 1} \langle y, x \rangle \quad \text{et} \quad \|x\|_1 = \sup_{\|y\|_{\infty} \le 1} \langle y, x \rangle$$

puis en déduire que

$$\begin{split} \|A\|_{\infty\infty} &= \sup_{\|x\|_{\infty} \le 1} \|A \cdot x\|_{\infty} = \sup_{\|x\|_{\infty} \le 1} \sup_{\|y\|_{1} \le 1} \langle y, A \cdot x \rangle \\ &= \sup_{\|x\|_{\infty} \le 1} \sup_{\|y\|_{1} \le 1} \langle A^{*} \cdot y, x \rangle \\ &= \sup_{\|y\|_{1} \le 1} \sup_{\|x\|_{\infty} \le 1} \langle x, A^{*} \cdot y \rangle \\ &= \sup_{\|y\|_{1} \le 1} \|A^{*} \cdot y\| \\ &= \|A^{*}\|_{1} \\ &= \|A\|_{\infty}, \end{split}$$

et donc $\|\cdot\|_{\infty\infty} = \|\cdot\|_{\infty}$.

Droite réelle achevée

Question 1 Quand l'ordonnée y du point p=(x,y) est strictement positive, f(p) représente l'abscisse de l'unique point q de l'intersection de la demi-droite D issue de l'origine (0,0) et passant par p avec la droite horizontale des points d'ordonnée y=1.

En effet, les points de D sont de la forme $(\lambda x, \lambda y)$ pour $\lambda \geq 0$. On a donc $\lambda y = 1$ si et seulement si $\lambda = 1/y$, auquel cas $\lambda x = x/y$.

Dans les cas limites où p=(1,0) et p=(-1,0), la demi-droite D est horizontale, partant vers la droite de l'origine ou vers sa gauche selon le cas. Il n'y a donc pas d'intersection avec la droite horizontale d'équation y=1 dans \mathbb{R}^2 , mais des intersections "à l'infini".

Question 2 La fonction f peut être décomposée comme $f = \psi \circ \phi$ où l'application $\phi : (x,y) \in X \to x \in [-1,1]$ est bijective, d'inverse $\phi^{-1}(x) = (x,\sqrt{1-x^2})$ et l'application $\psi : [-1,1] \to [-\infty,+\infty]$ définie par

$$\psi(x) = \begin{vmatrix} -\infty & \text{si } x = -1, \\ \frac{x}{\sqrt{1 - x^2}} & \text{si } -1 < x < 1, \\ +\infty & \text{si } x = 1. \end{vmatrix}$$

est également bijective, d'inverse

$$\psi^{-1}(x) = \begin{vmatrix} -1 & \text{si } x = -\infty, \\ \frac{y}{\sqrt{1+y^2}} & \text{si } -\infty < x < +\infty, \\ +1 & \text{si } x = +\infty. \end{vmatrix}$$

La fonction f est donc bijective comme composée de fonctions bijectives.

Question 3 La fonction f sera une isométrie quand $[-\infty, +\infty]$ est muni de la distance $d^{\pm\infty}$ – et X la distance induite par la distance euclidienne de \mathbb{R}^2 – si et

seulement si pour toute paire de points p_1 et p_2 dans X

$$d^{\pm\infty}(f(p_1), f(p_2)) = d(p_1, p_2),$$

ce qui rend nécessaire le choix de

$$d^{\pm\infty}(x_1, x_2) := d(f^{-1}(x_1), f^{-1}(x_2)).$$

On vérifiera facilement que ce choix détermine bien une distance sur la droite réelle achevée.

Question 4 On a $f^{-1}(-\infty) = (-1,0), f^{-1}(-1) = (-\sqrt{2}/2, \sqrt{2}/2), f^{-1}(0) = (0,1), f^{-1}(-1) = (\sqrt{2}/2, \sqrt{2}/2) \text{ et } f^{-1}(\infty) = (1,0), \text{ donc } d^{\pm\infty}(0,+\infty) = d((0,1),(1,0)) = \sqrt{2}, d^{\pm\infty}(-\infty,+\infty) = d((-1,0),(1,0)) = 2 \text{ et } d^{\pm\infty}(-1,1) = \sqrt{2}.$

Question 5 Soit $i: x \in \mathbb{R} \to x \in [-\infty, +\infty]$. Pour montrer que i est continue, il nous faut prouver que pour tout $x_1 \in \mathbb{R}$, quand $d(x_2, x_1) \to 0$, alors $d^{\pm \infty}(i(x_2), i(x_1)) = d^{\pm \infty}(x_2, x_1) \to 0$. Or,

$$d^{\pm\infty}(x_2, x_1) = d\left(\left(\frac{x_1}{\sqrt{1+x_1^2}}, \frac{1}{\sqrt{1+x_1^2}}\right), \left(\frac{x_2}{\sqrt{1+x_2^2}}, \frac{1}{\sqrt{1+x_2^2}}\right)\right)$$
$$= \sqrt{\left(\frac{x_1}{\sqrt{1+x_1^2}} - \frac{x_2}{\sqrt{1+x_2^2}}\right)^2 + \left(\frac{1}{\sqrt{1+x_1^2}} - \frac{1}{\sqrt{1+x_2^2}}\right)^2},$$

et cette expression est une fonction continue de ses arguments x_1 et x_2 , nulle quand $x_1=x_2$; cette propriété est donc bien vérifiée.

Question 6 Quand x_k est une suite de réels, $x_k \to +\infty$ est à interpréter classiquement comme: pour tout $M \in \mathbb{R}$, il existe un rang $m \in \mathbb{N}$ tel que si $k \geq m$, alors $x_k \geq M$.

Mais il existe maintenant une seconde interprétation si l'on considère $x_k \in \mathbb{R}$ comme une suite de points dans l'espace métrique $[-\infty, +\infty]$. Cela signifie alors que $d^{\pm\infty}(x_k, +\infty) \to 0$ quand $k \to +\infty$. Or, comme

$$(d^{\pm \infty}(x_k, +\infty))^2 = \left(\frac{x_k}{\sqrt{1+x_k^2}} - 1\right)^2 + \frac{1}{1+x_k^2}$$

$$= \left(\operatorname{sign}(x_k)\sqrt{\frac{x_k^2}{1+x_k^2}} - 1\right)^2 + \frac{1}{1+x_k^2},$$

ces deux conditions sont équivalentes.

Question 7 On admettra sans preuve (la démarche est très similaire à celle menée dans les questions précédentes) que la construction graphique ci-dessous

FIGURE 6 – Construction du compactifié de \mathbb{R} .

permet de doter $\mathbb{R} \cup \{\infty\}$ d'une métrique telle que $|x_k| \to +\infty$ si et seulement si $d^{\infty}(x_k,\infty) \to 0$ et que l'injection canonique associée est continue. On constate graphiquement que dans cette variante, quand le point de la droite d'ordonnée y=2 s'éloigne vers l'infini vers la droite ou vers la gauche, le point correspondant du cercle centré en (0,1) et de rayon 1 converge vers l'origine (0,0).

Si l'on considère une suite de points $x_k \in \mathbb{R} \cup \{\infty\}$, soit il existe une suite de points réels bornée que l'on peut extraire de x_k – auquel cas par compacité des fermés bornés dans \mathbb{R} il existe une sous-suite extraite des x_k convergeant dans \mathbb{R} (et donc dans $\mathbb{R} \cup \{\infty\}$) – soit $|x_k| \to +\infty$ quand $k \to +\infty$ – auquel cas $x_k \to \infty$ dans $\mathbb{R} \cup \{\infty\}$. Dans les deux cas, la suite admet une suite extraite convergente, l'espace est donc compact.

Localement fermé

Question 0 Un sous-ensemble B d'un ensemble A de points d'un espace topologique X est "fermé dans A" s'il est fermé **comme ensemble de points de l'espace topologique** A, muni de la topologie (ou le cas échéant la métrique) induite par X. Et cette propriété peut être différente de être "fermé" (sous-entendu comme ensemble de points de X).

Par exemple, si $X = \mathbb{R}$, $A =]0, +\infty[$ et $B =]0, +\infty[$, B n'est pas fermé dans \mathbb{R} , car la suite $x_k = 2^{-k}$ appartient à B, mais $x_k \to 0 \notin B$ quand $k \to +\infty$. Par contre, toute suite de B convergeant dans A converge dans B car les deux ensembles sont identiques. Par conséquent, B est fermé dans A.

Question 1 Soit $x \in A := [0,1[\ ; \text{si } x > 0, \text{ on peut prendre } V =]x/2,1[$. C'est bien un voisinage ouvert de x et $A \cap V = V$. L'ensemble $A \cap V$ est donc fermé dans V. Si x = 0, on peut prendre V =]-1,1/2[; c'est un voisinage ouvert de x et $A \cap V = [0,1/2[$ est bien fermé dans V.

Soit x_k une suite de \mathbb{R} qui converge vers ℓ et $A = \{x_k \mid k \in \mathbb{N}\}$. Si $a \in A$ et que $a \neq \ell$, alors il existe un $\varepsilon > 0$ tel que $V =]a - \varepsilon, a + \varepsilon[$ vérifie $A \cap V = \{a\}$. V est un voisinage ouvert de a et $A \cap V$ est bien fermé dans V. Si la valeur limite ℓ n'est pas atteinte par un x_k , cela conclut la preuve que A est localement fermé. Dans le cas contraire, pour $a = \ell$, on peut prendre $V = \mathbb{R}$; en effet, A est alors fermé.

L'ensemble des rationnels \mathbb{Q} n'est pas localement fermé. En effet si V est un voisinage de 0 il contient nécessairement un ensemble de la forme $]-\varepsilon,\varepsilon[$ pour un $\varepsilon>0$. Or cet intervalle contient des irrationels, qui peuvent être obtenus comme limite de rationnels dans $]-\varepsilon,\varepsilon[$ et donc de V. Par conséquent, $\mathbb{Q}\cap V$ ne peut pas être fermé dans V, donc \mathbb{Q} n'est pas localement fermé.

Question 2 Si A est fermé, on peut prendre V=X qui est un voisinage ouvert de A (il contient A et est ouvert). On a alors $A\cap V=A$ est donc $A\cap V$ est bien fermé dans V=X.

Si A est ouvert, on peut prendre V=A qui est un voisinage ouvert de A (il contient A et est ouvert). On a alors $A\cap V=A$ est donc $A\cap V$ est bien fermé dans V=A.

Si A et B sont localement fermés et $x \in A \cap B$, il existe des voisinages ouverts U et V de x tels que $A \cap U$ soit fermé dans U et $B \cap V$ soit fermé dans V. Par construction, $U \cap V$ est un voisinage ouvert de x; en effet, d'une part cette intersection contient x et d'autre part pour tout y dans $U \cap V$, $d(y, X \setminus U) > 0$ et $d(y, X \setminus V) > 0$; or

$$d(y, X \setminus (U \cap V)) = d(y, (X \setminus U) \cup (X \setminus V))$$

= min $(d(y, X \setminus U), d(y, X \setminus V))$
> 0.

donc $U \cap V$ est ouvert. L'ensemble A, qui est fermé dans U, est donc fermé dans $U \cap V$ (si une suite de A converge dans $U \cap V$, elle converge dans U et donc sa limite appartient à A); de la même façon, B est fermé dans $U \cap V$. Par conséquent, $A \cap B$ est fermé dans $U \cap V$.

Question 3 Si un ensemble est l'intersection d'un ouvert et d'un fermé dans X, il est l'intersection de deux ensembles localement fermés, donc il est localement fermé (par les résultats de la question précédente).

Réciproquement, supposons que l'ensemble A soit localement fermé. En tout point $a \in A$, il existe un voisinage ouvert V_a tel que $A \cap V_a$ soit fermé dans V_a . L'ensemble $V_a \setminus (A \cap V_a) = V_a \setminus A$ est donc ouvert dans V_a et donc dans X. Par construction, la collection des V_a recouvre A, c'est-à-dire que $A \subset \bigcup_{a \in A} V_a$, donc

$$A = \bigcup_{a \in A} V_a \setminus \left(\bigcup_{a \in A} V_a \setminus A \right).$$

Posons $V=\cup_{a\in A}V_a$; le complémentaire dans X de $\bigcup_{a\in A}V_a\setminus A$ est un ensemble fermé F; de l'équation ci-dessus on déduit donc que $A=V\cap F$ où V est ouvert dans X et F est fermé dans X.

Distance entre ensembles

Question 1 Non, la distance usuelle d(A, B) en convient pas. En effet, cette

distance est nulle dès que l'intersection de A et B est non vide, même si des points de A sont très éloignés de B.

Question 2 Lorsque $A = [-1,1] \times [-1,1]$ et $B = [0,2] \times [0,2]$, il est possible de calculer d(a,B) pour tout $a \in A$. Plus précisément, B étant fermé, l'infimum qui définit la distance est un minimum. Dans ce cas précis, il existe un unique projeté $\pi_B(a)$ de a sur B, qui minimise la distance

$$d(a, \pi_B(a)) = \inf_{b \in B} d(a, b).$$

Il est donné quadrant par quadrant par

$$\pi_B((x,y)) = \begin{vmatrix} (0,y) & \text{si } (x,y) \in [-1,0] \times [0,1] \\ (x,y) & \text{si } (x,y) \in [0,1] \times [0,1] \\ (0,0) & \text{si } (x,y) \in [-1,0] \times [-1,0] \\ (x,0) & \text{si } (x,y) \in [0,1] \times [-1,0] \end{vmatrix}$$

Par conséquent, on a

$$d((x,y),B) = \begin{vmatrix} |x| & \text{si } (x,y) \in [-1,0] \times [0,1] \\ 0 & \text{si } (x,y) \in [0,1] \times [0,1] \\ \sqrt{x^2 + y^2} & \text{si } (x,y) \in [-1,0] \times [-1,0] \\ |y| & \text{si } (x,y) \in [0,1] \times [-1,0] \end{vmatrix}$$

Cette fonction est minimale sur A pour (x, y) = (-1, -1). On a donc

$$\sup_{a \in A} \inf_{b \in B} d(a, b) = \sqrt{2}.$$

On montre de la même façon que

$$\sup_{b \in B} \inf_{a \in A} d(a, b) = \sqrt{2}.$$

La distance de Hausdorff entre A et B vaut donc $\sqrt{2}$.

Question 3 Vérifions que la "distance" de Hausdorff est effectivement une distance sur l'espace des sous-ensembles compacts de \mathbb{R}^n .

1. Axiome de séparation. Si

$$d[A,B] = \max(\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)) = 0,$$

alors pour tout $a \in A$, d(a,B) = 0 et pour tout $b \in B$, d(b,A) = 0, c'est-à-dire $a \in \overline{B}$ et $b \in \overline{A}$. Par conséquent, puisque A et B sont fermés, $A \subset \overline{B} = B$ et $B \subset \overline{A} = A$ et donc A = B.

2. Axiome de symétrie. Il est clair par construction que pour tous les ensembles compacts non vides A et B de \mathbb{R}^n , on a d[A,B]=d[B,A].

3. Pour tout $a \in A$, $b \in B$, $c \in C$, l'inégalité triangulaire fournit $d(a,c) \le d(a,b) + d(b,c)$. Par conséquent, $\inf_{c \in C} d(a,c) \le d(a,b) + \inf_{c \in C} d(b,c)$ et donc

$$\begin{split} \inf_{c \in C} d(a,c) &\leq \inf_{b \in B} d(a,b) + \inf_{b \in B} \inf_{c \in C} d(b,c) \\ &\leq \inf_{b \in B} d(a,b) + \sup_{b \in B} \inf_{c \in C} d(b,c), \end{split}$$

inégalité dont on déduit

$$\sup_{a \in A} \inf_{c \in C} d(a,c) \leq \sup_{a \in A} \inf_{b \in B} d(a,b) + \sup_{b \in B} \inf_{c \in C} d(b,c)$$

et par conséquent

$$\sup_{a \in A} \inf_{c \in C} d(a, c) \le d[A, B] + d[B, C].$$

De façon similaire, on a

$$\sup_{c \in C} \inf_{a \in A} d(a, c) \le \sup_{c \in A} \inf_{b \in B} d(c, b) + \sup_{b \in B} \inf_{a \in A} d(b, a)$$

et par conséquent

$$\sup_{c \in C} \inf_{a \in A} d(a,c) \leq d[A,B] + d[B,C]$$

et donc $d[A, C] \leq d[A, B] + d[B, C]$.

Question 4 Si A et B sont des ensembles non vides de \mathbb{R}^n , A+B est clairement non vide. Si de plus A et B sont compacts, et que l'on considère une suite x_k de points de A+B, alors il existe des a_k de A et b_k de B tels que $x_k=a_k+b_k$. Par compacité de A, il existe une suite $a_{\sigma(k)}$ – où $\sigma:\mathbb{N}\to\mathbb{N}$ est croissante – qui converge vers un $a\in A$; par compacité de B, il existe une suite $b_{\tau(\sigma(k))}$ – où $\tau:\mathbb{N}\to\mathbb{N}$ est croissante – qui converge vers un $b\in B$. Par continuité de la somme dans \mathbb{R}^n , la suite des $x_{\tau(\sigma(k))}$, qui est extraite des x_k , converge vers $a+b\in A+B$.

Soit A, B, C et D quatre ensembles compacts non vides de \mathbb{R}^n . Si $a \in A, b \in B$, $c \in C$ et $d \in D$, on a

$$d(a+b,c+d) = ||a+b-c-d|| \le ||a-c|| + ||b-d||.$$

Par conséquent,

$$\sup_{x \in A+B} \inf_{y \in C+D} d(x,y) = \sup_{a \in A} \sup_{b \in B} \inf_{c \in C} \inf_{d \in D} \|a+b-c-d\|$$

$$\leq \sup_{a \in A} \sup_{b \in B} \inf_{c \in C} \inf_{d \in D} \|a-c\| + \|b-d\|$$

$$\leq \sup_{a \in A} \inf_{c \in C} \|a-c\| + \sup_{b \in B} \inf_{d \in D} \|b-d\|$$

$$\leq d[A,C] + d[B,D].$$

De même, on peut montrer que

$$\sup_{y \in C + D} \inf_{x \in A + B} d(x, y) \le d[A, C] + d[B, D]$$

et par conséquent $d[A+B,C+D] \leq d[A,C]+d[B,D]$. Si $A_k \to A$ et $C_k \to C$, comme $d[A_k+C_k,A+C] \leq d[A,A_k]+d[C,C_k]$, on en déduit que $A_k+C_k \to A+C$. La somme de Minkowski est donc continue.

Plongement de Kuratowski

Question 1 Soit x, x' deux points de X. Pour tout y dans X on a:

$$f_x(y) - f_{x'}(y) = d(x, y) - d(x_0, y) - (d(x', y) - d(x', x_0))$$

= $d(x, y) - d(x', y)$,

par conséquent, si $f_x = f_{x'}$, on a en particulier $f_x(x') = f_{x'}(x')$, soit d(x, x') - d(x', x') = d(x, x') = 0, c'est-à-dire x = x' par l'axiome de séparation.

Question 2 Pour tout $x, y \in X$, on a

$$|f_x(y)| = |d(x,y) - d(x_0,y)| \le d(x,x_0)$$

par l'inégalité triangulaire.

Question 3 Si $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$ sont bornées et $\lambda \in \mathbb{R}$, il est clair que f+g et λf sont bornées. De plus,

- 1. Si $\|f\|_{\infty} = \sup_{x \in E} \|f(x)\| = 0$, alors $\|f(x)\| = 0$ pour tout $x \in E$; par conséquent f = 0,
- 2. On a $\|\lambda f\|_{\infty}=\sup_{x\in E}\|\lambda f(x)\|=|\lambda|\sup_{x\in E}\|f(x)\|=|\lambda|\|f\|_{\infty}.$
- 3. On a

$$||f + g||_{\infty} = \sup_{x \in E} ||f(x) + g(x)||$$

$$\leq \sup_{x \in E} ||\lambda f(x)|| + \sup_{x \in E} ||\lambda g(x)||$$

$$= ||f||_{\infty} + ||g||_{\infty}.$$

Question 4 Soient $x, y \in X$; on a

$$f_x(z) - f_y(z) = d(z, x) - d(z, x_0) - (d(z, y) - d(z, y_0)) = d(z, x) - d(z, y).$$

Par conséquent, par l'inégalité triangulaire,

$$||f_x - f_y||_{\infty} = \sup_{y \in X} |d(z, x) - d(z, y)| \le d(x, y)$$

et d'autre part

$$||f_x - f_y||_{\infty} = \sup_{y \in X} |d(z, x) - d(z, y)| \ge |d(x, x) - d(x, y)| = d(x, y).$$

Finalement, on a bien

$$||f_x - f_y||_{\infty} = d(x, y)$$

et $x \mapsto f_x$ est une isométrie.

Le nombre d'or

Question 1 L'existence d'un unique point fixe associé à l'application

$$f: x \in]0, +\infty[\mapsto 1 + \frac{1}{x}$$

peut être établi par des méthodes classiques d'analyse d'une fonction d'une variable réelle. La fonction $g:x\in]0,+\infty[\to x-f(x)$ est dérivable. Sa dérivée en x vaut $1+1/x^2$, qui est strictement positive, donc la fonction g est strictement croissante et il existe donc au plus un zéro de g. De plus, $g(x)\to -\infty$ quand $x\to 0$ et $g(x)\to +\infty$ quand $g(x)\to +\infty$. Comme g est continue (puisque dérivable), par le théorème des valeurs intermédiaires, g admet bien un zéro sur $]0,+\infty[$. La fonction f admet donc un unique point fixe. Comme g(4/3)=4/3-1-3/4=-5/12<0 et g(2)=2-1-1/2=1/2>0, le point fixe de f se situe dans l'intervalle [3/2,2].

Question 2 Soit x_k la suite de réels définie par $x_0 \in [4/3, 2]$ et $x_{k+1} = f(x_k)$. La fonction f est continue et décroissante croissante ; de plus

$$f(4/3) = 1 + \frac{1}{4/3} = 1 + \frac{3}{4} = \frac{7}{4} \in \left[\frac{4}{3}, 2\right]$$

 et

$$f(2) = 1 + \frac{1}{2} = \frac{3}{2} \in \left[\frac{4}{3}, 2\right].$$

Par conséquent, $f([4/3,2]) \subset [4/3,2]$. Comme $f'(x) = -1/x^2$, pour tout $x \in [4/3,2]$, |f'(x)| < 9/16 < 1. Par le théorème des accroissements finis, la restriction de f à [4/3,2] est donc contractante. L'ensemble [4/3,2] est un ensemble fermé \mathbb{R} ; il est donc complet. L'existence et l'unicité du point fixe de f sur [4/3,2] ainsi que son obtention comme limite de la suite x_k résultent du théorème de point fixe de Banach.

Question 3 Compte tenu des résultats de l'exercice "Point fixe", il suffit d'établir que sur un sous-ensemble complet X de $]0,+\infty[$ tel que $f(X) \subset X$, $f \circ f$ est contractante pour conclure que f possède un unique point fixe sur X, obtenu comme limite de la suite définie par $x_{k+1} = f(x_k)$ pour tout $x_0 \in X$.

Posons $X = [1, +\infty[$; X est complet car c'est un sous-ensemble fermé de \mathbb{R} qui est complet (une suite de Cauchy de X converge dans \mathbb{R} , donc dans X). De plus,

comme pour tout x > 0, 1 + 1/x > 1, on a bien $f([1, +\infty[) \subset [1, +\infty[$. Pour tout $x \ge 1$, on a

$$f(f(x)) = 1 + \frac{1}{(1+1/x)} = 1 + \frac{x}{x+1} = 1 + \frac{x+1}{x+1} - \frac{1}{x+1} = 2 - \frac{1}{x+1}$$

et donc

$$(f \circ f)'(x) = \frac{1}{(x+1)^2}$$

ce qui entraı̂ne que $|(f \circ f)'(x)| \le 1/4 < 1$ si $x \ge 1$. La restriction de $f \circ f$ à $[1, +\infty[$ est donc contractante. Nous avons donc établi toutes les hypothèses garantissant que la suite $x_{k+1} = f(x_k)$ tend vers le nombre d'or si $x_0 \ge 1$. Notons finalement que si $x_0 \in]0, 1[$, $f(x_0) \in [1, +\infty[$; par conséquent le résultat vaut non seulement pour tout $x_0 \in [1, +\infty[$ mais bien pour tout $x_0 \in [0, +\infty[$.

Spirale d'Euler

Question 1 Montrer que (x(t), y(t)) à une limite quand $t \to +\infty$ suppose de montrer qu'il existe un point $T \in \mathbb{R}^2$ tel que pour toute suite de valeurs t_k tendant vers $+\infty$, la suite $(x(t_k), y(t_k))$ tende vers T. Compte tenu de l'hypothèse, cela revient à montrer que la limite d'une telle suite est indépendante du choix de la suite des t_k .

Considérons deux suites s_k et r_k de réels positifs tendant vers $+\infty$ et notons S et R les limites de $(x(s_k),y(s_k))$ et $(x(r_k),y(r_k))$. La suite t_k des réels s_0 , r_0 , s_1 , r_1 , ... est positive et tend vers $+\infty$. Les $(x(t_k),y(t_k))$ sont admettent donc une limite T quand $k \to +\infty$; toute sous-suite étant convergente et de même limite, on a nécessairement T = S = R, ce qui prouve le résultat cherché.

Question 2 Nous traitons le cas de I(a,b), celui de J(a,b) étant similaire. Pour tout a et b tels que $0 < a \le b$, le changement de variable $\tau = s^2$ fournit:

$$I(a,b) = \int_{a}^{b} \cos s^{2} ds = \int_{\sqrt{a}}^{\sqrt{b}} \frac{\cos \tau}{2\sqrt{\tau}} d\tau.$$

Par intégration par parties, on obtient alors

$$I(a,b) = \frac{\sin b}{2\sqrt{b}} - \frac{\sin a}{2\sqrt{a}} + \int_{\sqrt{a}}^{\sqrt{b}} \frac{\sin \tau}{\tau^{3/2}} d\tau.$$

Comme $|\sin \tau| \leq 1$,

$$\left| \int_{\sqrt{a}}^{\sqrt{b}} \frac{\sin \tau}{\tau^{3/2}} \, d\tau \right| \le \int_{\sqrt{a}}^{\sqrt{b}} \frac{d\tau}{\tau^{3/2}} = -\frac{2}{\sqrt{b}} + \frac{2}{\sqrt{a}}.$$

On en déduit

$$|I(a,b)| \le \frac{5}{2\sqrt{a}} + \frac{5}{2\sqrt{b}} \le \frac{5}{\sqrt{a}}.$$

Question 3 Pour établir l'existence d'un point limite à la spirale d'Euler, compte tenu du résultat de la question 1, il nous suffit de montrer que pour toute suite de valeurs t_k tendant vers $+\infty$, la suite des $(x_k, y_k) = (x(t_k), y(t_k))$ est convergente. Comme nous ne connaissons par la valeur de cette limite, nous allons établir que cette suite est de Cauchy; l'ensemble \mathbb{R}^2 étant complet, cela prouvera la convergence de la suite.

Or, pour tout couple d'entier n et p, on a

$$x_n - x_p = x(t_n) - x(t_p) = \int_0^{t_n} \cos s^2 ds - \int_0^{t_p} \cos s^2 ds$$
$$= \int_{t_p}^{t_n} \cos s^2 ds$$
$$= I(t_p, t_n)$$

et de façon similaire,

$$y_n - y_p = \int_{t_n}^{t_n} \sin s^2 \, ds = J(t_p, t_n).$$

En exploitant le résultat de la question 2, on peut alors en déduire que

$$\|(x_n, y_n) - (x_p, y_p)\| = \sqrt{I(t_p, t_n)^2 + J(t_p, t_n)^2} \le \frac{2\alpha}{\sqrt{\min(t_p, t_n)}}.$$

Pour un $\varepsilon > 0$ donné, il suffit de choisir un rang $m \in \mathbb{N}$ tel que

$$t_k \ge \left(\frac{2\alpha}{\varepsilon}\right)^2, \ k \ge m$$

pour avoir la garantie que si $p \ge m$ et $n \ge m$, alors

$$\|(x_n, y_n) - (x_p, y_p)\| \le \frac{2\alpha}{\sqrt{\min(t_n, t_n)}} \le \varepsilon.$$

La suite des (x_k, y_k) est donc de Cauchy.

Point fixe

Question 1 Si x est un point fixe de f, f(x) = x, par conséquent

$$f^{2}(x) = f(f(x)) = f(x) = x,$$

puis

$$f^{3}(x) = f(f^{2}(x)) = f(x) = x,$$

etc. Par récurrence, il est clair que l'on peut établir que pour tout $n \ge 1$, on a $f^n(x) = x$: x est un point fixe de f^n .

Supposons désormais que la fonction itérée f^n admette un unique point fixe x. Comme tout point fixe de f est un point fixe de f^n , f admet au plus un point

fixe. De plus, comme $f^n(x) = x$, en applicant f aux deux membres de cette équation, on obtient

$$f(f^n(x)) = f^n(f(x)) = f(x).$$

Par conséquent, f(x) est un point fixe de f^n ; c'est donc l'unique point fixe x de f^n . On a donc f(x) = x, c'est-à-dire que x est un point fixe de f.

Question 2 Si X est un espace métrique complet et que f^n est contractante, par théorème du point fixe de Banach, f^n admet un unique point fixe x, calculable comme limite de toute suite y_k telle que $y_{k+1} = f^n(y_k)$ et $y_0 \in X$.

Par les résultats de la question 1, x est l'unique point fixe de f. Le "procédé habituel pour construire un point fixe de f" consiste à prendre un $x_0 \in X$ quelconque et à construire par récurrence la suite des $x_{k+1} = f(x_k)$; on souhaite donc montrer que cette suite converge vers l'unique point fixe x de f. La suite $(x_{kn})_k$ – extraite des x_k – converge vers x, car $x_{(k+1)n} = f^n(x_{kn})$. Il en est de même pour la suite extraite $(x_{kn+1})_k$, construite à partir du même procédé mais en initialisant la séquence avec la valeur x_1 , pour la suite $(x_{kn+2})_k$, ..., jusqu'à $(x_{kn+(n-1)})_k$. Ces n suites convergent toutes vers x, donc la suite des $(x_k)_k$ converge également vers le point fixe x.

Résolution itérative de systèmes linéaires

Question 1 La relation $A \cdot x = y$ est vérifiée si et seulement si $D \cdot x + (A - D) \cdot x = y$, soit

$$D \cdot x = (D - A) \cdot x + y.$$

L'opérateur A étant diagonalement dominant, $a_{ii} > 0$ pour tout i; l'opérateur D est donc inversible. La relation ci-dessus est donc équivalente à

$$x = D^{-1} \cdot (D - A) \cdot x + D^{-1} \cdot y.$$

Question 2 La question 1 établit que pour tout $y \in \mathbb{R}^n$, le vecteur $x \in \mathbb{R}^n$ est solution de $A \cdot x = y$ si et seulement s'il est un point fixe de l'application

$$\phi: x \in \mathbb{R}^n \mapsto D^{-1} \cdot (D - A) \cdot x + D^{-1} \cdot y \in \mathbb{R}^n.$$

Cette application est affine: pour tout couple x_1 et x_2 dans \mathbb{R}^n ,

$$\phi(x_1) - \phi(x_2) = D^{-1} \cdot (D - A) \cdot (x_1 - x_2).$$

Notons qu'avec $B:=D^{-1}\cdot(D-A)$ et $[B]_{ij}=b_{ij}$, on a $b_{ii}=0$ et si $i\neq j$, $b_{ij}=-a_{ij}/a_{ii}$. Par conséquent, pour tout $i,\sum_{j=1}^n|b_{ij}|<1$, soit

$$\max_{i=1...n} \sum_{j=1}^{n} |b_{ij}| < 1.$$

On reconnait au membre de gauche de cette inégalité la norme d'opérateur $||B||_{\infty}$ de l'exercice "Normes d'opérateurs"; on a donc pour tout $x \in \mathbb{R}^n$,

$$||B \cdot x||_{\infty} \le \kappa ||x||_{\infty}$$
 avec $\kappa := ||B||_{\infty} < 1$

(on peut aussi établir ce résultat directement). Si l'on munit \mathbb{R}^n de la norme $\|\cdot\|_{\infty}$ (l'espace est alors complet puisque $\|\cdot\|_{\infty}$ est équivalent à la norme euclidienne : on a $\|\cdot\|_2/\sqrt{n} \le \|\cdot\|_{\infty} \le \|\cdot\|_2$), l'application ϕ est contractante. Par le théorème du point fixe de Banach, elle admet donc un unique point fixe x, qui est la solution de $A \cdot x = y$. L'opérateur A est donc inversible et $A^{-1} \cdot y$ peut être calculé comme la limite de la suite $x_{k+1} = B \cdot x_k$ pour un $x_0 \in \mathbb{R}^n$ arbitraire.

Équation différentielle

Question 1 Si la fonction x est continue et vérifie pour tout $t \geq 0$ l'équation intégrale

$$x(t) = x_0 + \int_0^t A \cdot x(s) \, ds,$$

alors nécessairement

$$x(0) = x_0 + \int_0^0 A \cdot x(s) \, ds = x_0,$$

et sa dérivée satisfait $\dot{x}(t) = A \cdot x(t)$.

Réciproquement, si $x(0) = x_0$ et pour tout $t \ge 0$ on a $\dot{x}(t) = A \cdot x(t)$, alors comme le second membre de cette équation est continue comme composée de fonctions continues, \dot{x} est continue, et par intégration entre 0 et t on retrouve l'équation intégrale souhaitée.

Question 2 Par linéarité de l'intégrale et de l'opérateur A, pour tout couple x et y de fonctions continue de [0,T] dans \mathbb{R}^n et tout $t \in [0,T]$, on a

$$(\Phi(x) - \Phi(y))(t) = \int_0^t A \cdot (x(s) - y(s)) ds,$$

et donc

$$\begin{aligned} \|(\Phi(x)(t) - \Phi(y)(t)\| &\leq \int_0^t \|A \cdot (x(s) - y(s))\| \, ds \\ &\leq \int_0^t \|A\| \|x - y\|_{\infty} \, ds \\ &= (\|A\|T) \times \|x - y\|_{\infty}, \end{aligned}$$

soit

$$\|\Phi(x) - \Phi(y)\|_{\infty} \le (\|A\|T) \times \|x - y\|_{\infty}.$$

L'application Φ est donc contractante si $||A|| \le 1/T$. Le théorème du point fixe de Banach prouve alors l'unicité d'une fonction continue telle que

$$x(t) = x_0 + \int_0^t A \cdot x(s) \, ds$$

pour tout $t \in [0, T]$.

Question 3 Le fait que $\|\cdot\|_{\infty}^{\alpha}$ soit une norme se déduit facilement du fait que $\|\cdot\|_{\infty}$ en soit une. On peut constater que pour toute fonction x continue sur [0,T], on a

$$||e^{-\alpha T}x||_{\infty}^{\alpha} \le ||x||_{\infty}^{\alpha} \le ||x||_{\infty}.$$

Les deux normes sont donc équivalentes. En particulier, les notions de convergence de suite de points et de suites de Cauchy sont les mêmes dans les deux espaces. L'espace vectoriel E muni de la norme $\|\cdot\|_{\infty}$ étant complet, c'est également le cas pour E muni de la norme $\|\cdot\|_{\infty}^{\alpha}$.

Question 4 Pour tout couple x et y de fonctions continue de [0,T] dans \mathbb{R}^n et tout $t \in [0,T]$, on a

$$e^{-\alpha t}(x-y)(t) = e^{-\alpha t} \int_0^t A \cdot (x-y)(s) \, ds = \int_0^t A \cdot e^{-\alpha s} (x-y)(s) e^{-\alpha (t-s)} \, ds$$

et donc

$$|e^{-\alpha t}(x-y)(t)| \le \int_0^t ||A|| ||e^{-\alpha s}(x-y)(s)||e^{-\alpha(t-s)}| ds$$

$$\le \left(||A|| T \int_0^t e^{-\alpha(t-s)} ds \right) ||x-y||_{\infty}^{\alpha}.$$

Comme

$$\int_0^t e^{-\alpha(t-s)} \, ds = \left[\frac{e^{-\alpha(t-s)}}{\alpha} \right]_0^t = \frac{1 - e^{-\alpha t}}{\alpha} \le \frac{1}{\alpha},$$

on en déduit que

$$||x-y||_{\infty}^{\alpha} \le \frac{||A|T}{\alpha} ||x-y||_{\infty}^{\alpha}.$$

L'application Φ est donc contractante dès lors que $\alpha > \|A\|T$. Pour tout T > 0, le théorème du point fixe de Banach prouve donc, en sélectionnant un α adapté, l'unicité d'une fonction continue telle que

$$x(t) = x_0 + \int_0^t A \cdot x(s) \, ds$$

pour tout $t \in [0,T]$. Le problème original admet donc une solution unique.

Localement borné

Question 1 Soit A un sous-ensemble borné de \mathbb{R}^n tel $d(A, \mathbb{R}^n \setminus U) > 0$. Supposons que f ne soit pas bornée sur A; cela signifie qu'on peut trouver une suite de $x_k \in A$ telle que $|f(x_k)| \to +\infty$ quand $k \to +\infty$. Comme A est borné, c'est-à-dire si $A \subset K := \overline{B}(0,r)$ pour un r > 0, par compacité la suite x_k a une sous-suite y_k qui converge vers un $\ell \in \mathbb{R}^n$. Comme $d(A, \mathbb{R}^n \setminus U) > 0$ et que $d(y_k, \mathbb{R}^n \setminus U) \geq d(A, \mathbb{R}^n \setminus U)$, en passant à la limite sur k on obtient $d(\ell, \mathbb{R}^n \setminus U) > 0$, soit $\ell \in U$. Mais f est localement bornée au voisinage de ℓ , nous avons donc exhibé une contradiction ; par conséquent, f est bornée sur A.

Question 2 La réponse est non: il suffit de prendre pour U l'ensemble $\mathbb R$ privé de 0 et la fonction $f:U\to\mathbb R$ définie par

$$f(x) = \begin{vmatrix} +1 & \text{si } x > 0, \\ -1 & \text{si } x < 0. \end{vmatrix}$$

Elle est localement constante, mais pas constante sur l'ensemble $A = \{-1, +1\}$ qui est pourtant borné et vérifie $d(A, \mathbb{R} \setminus U) = d(A, \{0\}) = 1 > 0$.

Références

Levien, Raph. 2008. "The Euler Spiral: A Mathematical History."

Sato, Mikio. 1959. "Theory of Hyperfunctions. I." Journal of the Faculty of Science. Section I 8: 139–93.