學號: R06942128 系級: 電信碩一 姓名: 許祐銘

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- 1. 抽全部9小時內的污染源feature的一次項(加bias)
- 2. 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響

RMSE	Private Score	Public Score	Public + Private
All feature	5.28983	7.48251	6.47959
Only PM2.5	5.62719	7.44013	6.59624

(with learning rate = 100, iteration = 50000)

討論:雖然只抽PM2.5在Public的RMSE較低,但是對於Private或是整體來說,抽取全部 feature 的RMSE 相對比較低,代表除了PM2.5之外的 feature 還是會影響到 PM2.5

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

RMSE	Private Score	Public Score	Public + Private
All feature	5.32875	7.66521	6.60117
Only PM2.5	5.79187	7.57904	6.74491

(with learning rate = 100, iteration = 50000)

討論:很明顯的,跟抽9小時相比的話,RMSE無論是Public或是Private都是變高,這也代表說抽取9小時的 feature 對 traning 是比較有幫助的。

3. (1%)Regularization on all the weight with λ=0.1、0.01、0.001、0.0001, 並作圖顯示訓練後的差別(with RMSE)

RMSE (240 data)	$\lambda = 0.1$	$\lambda = 0.01$	$\lambda = 0.001$	$\lambda = 0.0001$
All feature	6.47958	6.47958	6.47958	6.47958
Only PM2.5	6.59624	6.59624	6.59624	6.59624

(with learning rate = 50, iteration = 50000)

對於題目的四個 λ ,我的model RMSE幾乎沒有變化,但是如果增加 λ 的話會如下表格,以All feature來看,可以看得出來 λ 越大,RMSE會偏向增加,應該是函數過於平滑了。

RMSE (240 data)	$\lambda = I$	$\lambda = 10$	$\lambda = 100$	$\lambda = 1000$
All feature	6.47959	6.47956	6.47975	6.48716

(with learning rate = 50, iteration = 50000)

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一純量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{i=1}^n (y^n-x^n\bullet w)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1\ x^2\ ...\ x^N]^T$ 表示,所有訓練資料的標註以向量 $y=[y^1\ y^2\ ...\ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。 (其中 X^TX 為invertible)

$$L = \sum_{i=1}^{n} (y^{n} - x^{n} \cdot w)^{2} = (Y - Xw)^{T} (Y - Xw)$$

$$= (Y^T - (Xw)^T)(Y - Xw)$$

$$= Y^T Y - Y^T X w - (Xw)^T Y + (Xw)^T (Xw)$$

$$= w^T X^T X w - 2(Xw)^T Y + Y^T Y$$

$$\frac{\partial L}{\partial w} = 2X^T X w - 2X^T Y = 0$$

$$2X^T X w = 2X^T Y$$

$$w = (X^T X)^{-1} (X^T Y)$$