Übungsblatt 16 zur Homologischen Algebra II

Aufgabe 1. Universelle Eigenschaft der Garbifizierung

Seien \mathcal{F} und \mathcal{G} Prägarben auf einem topologischen Raum X (oder einer Örtlichkeit). Sei $\alpha: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Prägarben. Sei \mathcal{G} sogar eine Garbe. Sei $\mathcal{F} \xrightarrow{\iota} s(\mathcal{F})$ die Garbifizierung von \mathcal{F} . Konstruiere einen Garbenmorphismus $\overline{\alpha}: s(\mathcal{F}) \to \mathcal{G}$ mit $\overline{\alpha} \circ \iota = \alpha$ und weise insbesondere seine Wohldefiniertheit nach.

Aufgabe 2. Halme des Pushforwards

a) Sei X ein topologischer Raum. Sei $f:Y\hookrightarrow X$ die Inklusion eines abgeschlossenen Teilraums. Sei $\mathcal E$ eine Garbe auf Y. Zeige:

$$(f_*\mathcal{E})_x \cong \begin{cases} \mathcal{E}_x, & \text{falls } x \in Y, \\ \{0\}, & \text{falls } x \notin Y. \end{cases}$$

- b) Mache dir anhand eines Beispiels klar, dass die analoge Aussage für Inklusionen offener Teilräume im Allgemeinen nicht gilt.
- c) Folgere, dass der Pushforward-Funktor $f_*: \mathrm{AbShv}(Y) \to \mathrm{AbShv}(X)$ in der Situation von Teilaufgabe a) exakt ist.
- d) Sei $f: Y \to X$ eine abgeschlossene stetige Abbildung. Sei \mathcal{E} eine Garbe auf Y. Sei $x \in X$. Zeige: $(f_*\mathcal{E})_x \cong \Gamma(f^{-1}[x], \mathcal{E})$.

Hinweis: Beachte, dass die Faser $f^{-1}[x]$ im Allgemeinen nicht offen sein wird. Die rechte Seite ist daher als Kolimes über die $\mathcal{E}(U)$, wobei $U \subseteq Y$ alle offenen Mengen mit $f^{-1}[x] \subseteq U$ durchläuft, definiert.

Tipp: Eine stetige Abbildung $f: Y \to X$ ist genau dann abgeschlossen, wenn für alle $x \in X$ und alle offenen Umgebungen U von $f^{-1}[x]$ in Y eine offene Umgebung V von x mit $f^{-1}[V] \subseteq U$ existiert. (Siehe zum Beispiel Torsten Wedhorn, Manifolds, sheaves, and cohomology, Seite 86.)

Aufgabe 3. Der Satz von Jordan-Hölder

Ein Objekt X einer abelschen Kategorie heißt genau dann einfach, wenn es genau zwei Unterobjekte besitzt. (Ein Unterobjekt ist ein Monomorphismus $U \xrightarrow{i} X$. Unterobjekte $U \xrightarrow{i} X$, $U' \xrightarrow{i'} X$ werden genau dann als gleich angesehen, wenn es einen Isomorphismus $q: U \to U'$ mit $i' \circ q = i$ gibt.) Das Nullobjekt zählt also nicht als einfach.

Eine Jordan-Hölder-Reihe für ein Objekt X ist eine Filtrierung $0 = X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X_{n-1} \hookrightarrow X_n = X$, sodass die Quotienten X_i/X_{i-1} jeweils einfache Objekte sind.

a) Zeige: Je zwei Jordan–Hölder-Reihen eines Objekts X haben dieselbe Länge und bis auf Isomorphie treten dieselben Quotienten auf.

Tipp: Lasse dich vom klassischen Beweis des Satzes über Schreier-Zassenhaus, zum Beispiel für Gruppen oder Moduln, inspirieren.

b) Sei A eine $(n \times n)$ -Matrix über einem algebraisch abgeschlossenen Körper K. Der Vektorraum K^n wird durch die Setzung $f(X) \cdot v := f(A)v$ für $f \in K[X]$ und $v \in K^n$ zu einem K[X]-Modul. Hängen die Jordanform von A und Jordan-Hölder-Reihen von K^n als K[X]-Modul miteinander zusammen?

Aufgabe 4. Serresche Quotientenkategorien

Sei \mathcal{A} eine abelsche Kategorie. Sei \mathcal{B} eine Serresche Unterkategorie von \mathcal{A} , das ist eine volle Unterkategorie \mathcal{B} von \mathcal{A} , welche das Nullobjekt von \mathcal{A} enthält und für jede kurze exakte Sequenz $0 \to X' \to X \to X'' \to 0$ in \mathcal{A} folgendes gilt: X liegt genau dann in \mathcal{B} , wenn X' und X'' in \mathcal{B} liegen.

- a) Zeige: Ist X ein Objekt von \mathcal{B} , so liegt jedes in \mathcal{A} zu X isomorphe Objekt ebenfalls in \mathcal{B} .
- b) Mache dir kurz klar: Die Kategorie der endlich-dimensionalen Vektorräume ist eine Serresche Unterkategorie der Kategorie aller Vektorräume.
- c) Die Serresche Quotientenkategorie \mathcal{A}/\mathcal{B} hat als Objekte dieselben wie \mathcal{A} . Die Morphismen definiert man über

$$\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y) := \operatorname{colim}_{X',Y'} \operatorname{Hom}_{\mathcal{A}}(X',Y/Y'),$$

wobei X' über alle Unterobjekte von X mit $X/X' \in \mathcal{B}$ und Y' über alle Unterobjekte von Y mit $Y' \in \mathcal{B}$ läuft. Wie ist die Morphismenverkettung in \mathcal{A}/\mathcal{B} zu definieren? Wie wird \mathcal{A}/\mathcal{B} zu einer abelschen Kategorie? Welchen Funktor $F: \mathcal{A} \to \mathcal{A}/\mathcal{B}$ kann man kanonisch angeben? Wieso ist dieser exakt? Wieso gilt genau dann F(X) = 0, wenn $X \in \mathcal{B}$? Wieso ist $F: \mathcal{A} \to \mathcal{A}/\mathcal{B}$ unter allen exakten Funktoren $G: \mathcal{A} \to \mathcal{C}$ mit dieser Eigenschaft initial? Kläre so viele dieser Fragen, wie du möchtest.

Bemerkung: Serresche Quotientenkategorien sind zur algorithmischen Implementierung von Kategorien kohärenter Modulgarben auf gewissen Schemata nützlich (siehe Artikel von Mohamed Barakat und anderen).

Eine Aufgabe zu AB5