TCP: switching from slow start to CA

Q: When should the exponential increase switch to linear? Or how to choose the threshold value?

A: when **cwnd** gets to 1/2 of its value before timeout.

Implementation:

- variable ssthresh
- on loss event, ssthresh is set to 1/2 of cwnd just before loss event

Loss: right after the 8th round, 3 duplicate event occurs 1 transmission round is about 1 RTT

Problem E. ... 2730
When E. 31

Datagram forwarding table

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	perfect range: (1) all addresses within this range share k-bit most significant bits, (2) the MIN address in this range is
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	<k-bit common="" pattern="">000 the MAX address in this range is 1 <k-bit common="" pattern="">111 MASK for this perfect range is</k-bit></k-bit>
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	MASK for this perfect range is <k-bit 1's="">000, e.g., 111111111111111111111110000000000000</k-bit>
otherwise	within this range? 3 (1) destIP ANDed with the MASK (2) result of (1) EORed with the MIN address of this range.

Q: but what happens if ranges don't divide up so nicely?