Ikerketa Operatiboa

1. Talde lana - 5 Ariketa

Jon Tomas, Jon Ander Asua, Adrian Sanchez eta Jorge Mentxaka

1. Plko problema planteatu eta grafikoki ebatzi.

1.1 - Puntuak eta zuzenak atera

BC zuzena A = (15,0) B = (15,30) C = (30,20) D = (45,0) $y - y_1 = x - x_1$ $y - y_2 - y_1 = x - x_1$ $x_2 - x_1$ CD zuzena $\frac{y - 20}{0 - 20} = \frac{x - 30}{45 - 30} \Rightarrow y = -\frac{4}{3}x + 60$

Beste bi zuzenak formularik gabe atera ditzakegu

1.2 - Murrizketak

Max
$$z = x$$
non $x >= 15$
 $2/3x + y <= 40$
 $4/3x + y <= 60$
 $x, y >= 0$
Bigarren eta hirugarren murrizketak *3
 $2x + 3y \le 15$
 $4x + 3y \le 180$
 $x, y \ge 0$

1.3 - Zuzenak marraztu

- $r: x \ge 15$ $s: 2x + 3y \le 120$
- $t: 4x + 3y \le 180$
- O u: x ≥ 0
- $v: y \ge 0$
- hf: x = 10
- $\begin{array}{l} \text{a: } r(x) \land s(x,y) \land t(x,y) \land u(x) \land v(y) \\ \\ \xrightarrow{} \quad x \ge 15 \land 2 \times + 3 \text{ y} \le 120 \land 4 \times + 3 \text{ y} \le 180 \land x \ge 0 \land y \ge 0 \end{array}$

$$\nabla hf = \left(\frac{\partial hf}{\partial x_1}, \frac{\partial hf}{\partial x_2}\right) = (1,0)$$

1.4 - Soluzioa

Gradientearen arabera mugitzerakoan jotzen den azkenengo puntua D puntua da, ondorioz D puntua optimoa da:

$${y = 0 \atop 4x + 3y = 180} \rightarrow 4x = 180 \rightarrow x = 45$$

Soluzio optimo bideragarria

$$x^* = 45$$
$$y^* = 0$$

$$Z^* = 45$$

2. Bi faseetako metodoa erabiliz ebatzi.

• Hasteko, lasaiera aldagaiak eta aldagai artifizialak sartuko ditugu helburu funtzioa minimizatzera pasa ondoren:

A matrizea definituko dugu:

A MATRIZEA

Min
$$z = -x$$

non $x - r + q_1 = 15$
 $2x + 3y + s = 120$
 $4x + 3y + t = 180$
 $x, y, r, s, t, q_1 \ge 0$

1. Fasea

 Helburu funtzioan soilik aldagai artifizialak

Min
$$z = q_1$$

non $x - r + q_1 = 15$
 $2x + 3y + s = 120$
 $4x + 3y + t = 180$
 $x, y, r, s, t, q_1 \ge 0$

• Hasierako soluzio bideragarria

•
$$X_B = (q_1, s, t) = (15, 120, 180)$$

•
$$X_N = (x,y,r) = (0,0,0)$$

Hasierako Taula

Coin	Aoin	B^(-1)*b	0	0	0	0	0	1
			х	У	r	s	t	q1
1	q1	15	1	0	-1	0	0	1
0	s	120	(2)	3	0	1	0	0
0	t	180	4)	3	0	0	1	0
z=15		zj	1	0	-1	0	0	1
		wj	1	0	-1	0	0	0

- Kostu-murriztuak: ∃W_j > 0 → Jarraitu
- Sartze-irizpidea: W_j = max {z_k − c_k} = 1 → x sartu
- Irtetze-irizpidea: $\frac{x_{Bi}}{y_{ij}} = \min \left\{ \frac{x_{Bk}}{y_{kj}} / y_{kj} > 0 \right\} = 15 \rightarrow q_1$ irten

Taula berria:
$$\left\{ \begin{array}{l} \bullet \quad e_2 \leftarrow e_2 - 2e_1 \\ \bullet \quad e_3 \leftarrow e_3 - 4e_1 \end{array} \right\}$$

Coin	Aoin	B^(-1)*b	0	0	0	0	0	1
			x	y	r	S	t	q1
0	x	15	1	0	-1	0	0	1
0	s	90	0	3	2	1	0	-2
0	t	120	0	3	4	0	1	-4
z=0		zj	0	0	0	0	0	0
		wj	0	0	0	0	0	-1

- Kostu-murriztuak: ∀W_j ≤ 0 → Gelditu
- Lehenengo fasea bukatu dugu q₁ ez dago oinarrian

Hasierako soluzio bideragarria lortu dugu

x=15, y=0, r=0, s=90, t=120, q1=0; z=0 izanik

2. Fasea

 Hasierako PL-ko problema ebatziko dugu, q1 kontuan izan gabe, lehenengo fasean lortutako emaitzaz baliatuz:

$$\begin{aligned} & \text{Min } z = -x \\ & \text{non } x - r + q_1 = 15 \\ & 2x + 3y + s = 120 \\ & 4x + 3y + t = 180 \\ & x, y, r, s, t, q_1 \ge 0 \end{aligned}$$

Hasierako Taula

Coin	Aoin	B^(-1)*b	-1	0	0	0	0
			X	У	r	s	t
-1	x	15	1	0	-1	0	0
0	s	90	0	3	2	1	0
0	t	120	0	3	4	0	1
z=-15		zj	-1	0	1	0	0
		wj	0	0	1	0	0

- Kostu-murriztuak: ∃W_j > 0 → Jarraitu
- Sartze-irizpidea: W_j = max {z_k − c_k} = 1 → r sartu
- Irtetze-irizpidea: $\frac{x_{Bi}}{y_{ij}} = \min \left\{ \frac{x_{Bk}}{y_{kj}} / y_{kj} > 0 \right\} = 30 \rightarrow t$ irten

Taula berria:
$$\begin{cases} \bullet & e_3 \leftarrow \frac{e_3}{4} \\ \bullet & e_1 \leftarrow e_1 + e_3 \\ \bullet & e_2 \leftarrow e_2 - 2e_3 \end{cases}$$

Coin	Aoin	B^(-1)*b	-1	0	0	0	0
			X	у	r	S	t
-1	x	45	1	3/4	0	0	1/4
0	s	30	0	3/2	0	1	-2
0	r	30	0	3/4	1	0	1/4
z=-45		zj	-1	-3/4	0	0	-1/4
		wj	0	-3/4	0	0	-1/4

- Kostu-murriztuak: $\forall W_i \leq 0 \rightarrow \text{Gelditu} \rightarrow \text{optimoa aurkitu dugu}$.
- Soluzio optimoa: x*=45, y*=0, r*=30, s*=30, t*=0; z=45 izanik.
- Maximizazio problemako soluzioa honako hori da, z-ri zeinua aldatu diogu ebatzi dugun problema minimizatzen zelako.
- Gainera, soluzio optimoa bakarra da, oinarrizkoak ez diren aldagaien kostumurriztuak ≠ 0 direlako.

Konklusioa

Bi faseetako metodoan eta metodo grafikoan soluzio bera lortu dugu:

• Problemaren soluzio optimo bideragarria: x*=45; y*=0; z*=45 izanik

$$\max z = x$$

$$non x \ge 15$$

$$2x + 3y \le 120$$

$$4x + 3y \le 180$$

$$x, y \ge 0$$