REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)	
July 2015	Briefing Charts	July 2015-July 2015	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER		
FLUORINATED SILSESQUIOXANE	In-House		
WETTING (Briefing Charts)			
	5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)		5d. PROJECT NUMBER	
Joseph Mabry, Andrew Guenthner, Sco	tt Iacono, Raymond Campos, Sean		
Ramirez, Brian Moore, Timothy Hadda	d, Rebecca Stone, Yvonne Diaz		
		5e. TASK NUMBER	
	5f. WORK UNIT NUMBER		
		Q0BG	
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NO.	
Air Force Research Laboratory (AFMC			
AFRL/RQRP			
10 E. Saturn Blvd.			
Edwards AFB, CA 93524-7680			
9. SPONSORING / MONITORING AGENCY		10. SPONSOR/MONITOR'S ACRONYM(S)	
Air Force Research Laboratory (AFMC			
AFRL/RQR			
5 Pollux Drive	11. SPONSOR/MONITOR'S REPORT		
Edwards AFB CA 93524-7048	NUMBER(S)		
		AFRL-RQ-ED-VG-2015-299	
12 DISTRIBUTION / AVAIL ARILITY STATE	MENT		

Distribution A: Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES

Briefing Charts presented at 250th ACS National Meeting; Boston, MA; 16-20 August 2015. PA#15445.

14. ABSTRACT

Briefing Charts

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Joseph Mabry
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	30	19b. TELEPHONE NO (include area code)
Unclassified	Unclassified	Unclassified	SAK		661-275-5857

Silicones & Silicone-Modified Materials

ACS Fall National Meeting - Boston

FLUORINATED SILSESQUIOXANES: STRUCTURE, SOLUBILITY, AND WETTING

Joseph Mabry, Andrew Guenthner, Scott Iacono, Raymond Campos, Sean Ramirez, Brian Moore, Timothy Haddad, Rebecca Stone, Yvonne Diaz

> Air Force Research Laboratory Rocket Propulsion Division joseph.mabry@us.af.mil (661) 275-5857

Distribution Statement A: Approved for public release; distribution unlimited.

Applied Materials Group

The Applied Materials Group at Edwards Air Force Base

Mr. Ray Campos

Dr. Greg Yandek

Mr. Chris Lee

Dr. Jeff Alston

Mr. Kevin Greeson

Dr. Andrew Guenthner

Mr. Jason Lamb

Ms. Yvonne Diaz

Dr. Josiah Reams

Mr. Jacob Marcischak

Dr. Tim Haddad

Mr. Mike Ford

Dr. Joe Mabry

Non-wetting surfaces

Contact angles with water:

Superhydrophilic $\theta \sim 0^{\circ}$

Hydrophilic $0^{\circ} < \theta < 90^{\circ}$

Hydrophobic $\theta > 90^{\circ}$

Superhydrophobic $\theta^* > 150^\circ$

Similarly, superoleophobic surfaces display contact angle $\theta^* > 150^\circ$ with oils or alkanes

Fluorinated POSS Synthesis

$$R_fSiX_3$$
 OH $^-/H_2O$ solvent

$$R_f = -CH_2CH_2(CF_2)_nCF_3$$

 $n = 0, 3, 5, 7$

- Crystalline solids
- Soluble in fluorinated solvents

$$F_3\mathsf{CF}_2\mathsf{CF$$

Hydrophobic Materials

- Spin-cast surface of FD POSS
- ~4 µm rms roughness by AFM
- 154° Static water contact angle

Angew Chem, 2008

Zisman Analysis

Fluorodecyl: $R = -CH_2-CH_2-(CF_2)_7-CF_3$

GG analysis results in surface energy calculation of: $\gamma_c = 8 \text{ mN/m}$

PTFE ~18 mN/m PDMS ~24 mN/m

Contacting liquids:

hexadecane (γ_{lv} = 27.5 mN/m), dodecane (25.3), decane (23.8), octane (21.6), heptane (20.1) and pentane (15.5)

ACS AMI, 2010

Designing Omniphobic Surfaces

- Constructing super-repellent surfaces
 - Three key ingredients

PMMA + 44 wt% POSS electrospun coating (beads on a string) morphology

Science, 2007

Omniphobic Fabrics Repel "Everything" (even "Wetting" Fluids)

Nylon shell fabric bonded to a Gore–Tex membrane

Ethylene glycol

Rapeseed oil

Water

JACS, 2013

Anticon 100 polyester fabric

Separation of Oil-Water and Emulsions

• Developed simple membranes and apparatus for gravity-driven, continuous separation of oil-water emulsions.

Superhydrophobic/ Superoleophilic

Science, 2007

Gravity Driven - Continuous Flow

Emulsion Separation

Nature Comms, 2012

Not all F-POSS are the same!

Most common compounds found in a cage mixture

Fluoropropyl₈T₈

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C} \\ \text{Si} \\ \text{ONa} \\ \text{ONa} \\ \text{CH}_{2}\text{CH}_{2}\text{C} \\ \text{Si} \\ \text{ONa} \\ \text{ONa} \\ \text{CH}_{2}\text{CH}_{2}\text{C} \\ \text{ONa} \\ \text{ONa} \\ \text{CH}_{2}\text{CH}_{2}\text{C} \\ \text{ONa} \\ \text{ONa} \\ \text{CH}_{2}\text{CH}_{2}\text{CF}_{3} \\ \text{F}_{3}\text{CH}_{2}\text{CH}_{2}\text{C} \\ \text{OSi} \\ \text{CH}_{2}\text{CH}_{2}\text{CF}_{3} \\ \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CF}_{3} \\ \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CF}_{3} \\ \text{CH}_{2}\text{CH}_$$

Trisodium salt from trimethoxy silane

Fukuda, Macromolecules, 2005

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$CH_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$CH_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$CH_{2}\text{CH}_{2}\text{C}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$CH_{2}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$CH_{2}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$CH_{2}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$CH_{2}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$CH_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{C}$$

$$S_{3}\text{ONa}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$$

$$F_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2$$

DISTRIBUTION A. Approved for public release; distribution unlimited.

HSP Data for TFP Compounds

Octa-trifluoropropyl-POSS

Dodeca-trifluoropropyl-POSS

Ind Eng Chem Res, 2012

Corner-Capped F-POSS

$$CF_{3}CH_{2}CH_{2}Si(OCH_{3})_{3} \xrightarrow{NaOH/H_{2}O} \xrightarrow{R_{5}iO} SiO_{Na} \xrightarrow{R_{5}iO} SiO_$$

 $R = CH_2CH_2CF_3$

- $R_f = CH_2CH_2CF_3$ $CH_2CH_2(CF_2)_5CF_3$ $CH_2CH_2(CF_2)_7CF_3$ $CH_2CH_2(CF_2)_9CF_3$
 - CH₂CH(CF₃)₂ CH₂CH₂CH₂OCF(CF₃)₂

- Diverse architectures linear, branched, ether
- Corner cap yields moderate to good (73–83 %)
- Soluble in common organic solvents

Solid Surface Energy Estimation

Structure of candidate molecules

$$\mathsf{F_3C}(\mathsf{F_2C})_7(\mathsf{H_2C})_2(\mathsf{H_3C})_2\mathsf{Si}^{\bigcirc} \mathsf{Si}(\mathsf{CH_3})_2(\mathsf{CH_2})_2(\mathsf{CF_2})_7\mathsf{CF_3}$$

Linear disiloxane resin (M₂)

Fluorodecyl: $R_f = -CH_2CH_2(CF_2)_7CF_3$

Fluorooctyl: $R_f = -CH_2CH_2(CF_2)_5CF_3$

Fluorohexyl: $R_f = -CH_2CH_2(CF_2)_3CF_3$

Fluoropropyl: $R_f = -CH_2CH_2CF_3$

ACS AMI, 2010

$$\begin{array}{c|c} R(H_3C)_2SiO & OSi(CH_3)_2R \\ R(H_3C)_2SiO & Si & OSi(CH_3)_2R \\ \hline \\ R(H_3C)_2SiO & Si & OSi(CH_3)_2R \\ \hline \\ R(H_3C)_2SiO & OSi(CH_3)_2R \\ \hline \\ Q_4M_8 & OSi(CH_3)_2R \\ \hline \end{array}$$

Q₄ FluoroDecyl Synthesis

Solid Surface Energy (γ_{sv}) via Girifalco-Good Method

HSP Data for Fluoroalkyl Compounds

Incompletely Condensed Silsesquioxane

 Incompletely condensed silsesquioxane synthesis yields a disilanol capable of functionalization with dichlorosilanes.

Synthesis of Disilanol FluoroPOSS

Disilanol FluoroPOSS has a molecular weight of 4009 g/mol.

- Can be reacted with functional dichlorosilane to add any desired functionality
- Platform for molecules with superhydrophobic or oleophobic properties
- A variety of fluoroPOSS compounds have been synthesized

Organic-Substituted FluoroPOSS

- Soluble in diethyl ether
- Can be directly blended in polymers
- Potential non-ionic surfactants

JACS, 2011

F-POSS Copolymers

AIBN, CTA
$$65^{\circ}C, C_{6}F_{6}$$

$$R_{f}$$

	$M_{\rm w} ({\rm g \ mol^{-1}})$	PDI	Conv.%	$T_{\mathbf{g}}$ (°C)	20400			
F-POSS wt% (mol%)					$(\theta_{ m adv})$	$(\theta_{ m rec})$	$(\theta_{\rm adv})$	$(\theta_{ m rec})$
0	58 100	1.08	73	127	$77.8 \pm 1.3^{\circ}$	$57.8\pm2.5^{\circ}$	Wetted	Wetted
1 (0.02)	58 700	1.05	72	129	$109.2\pm2.4^{\circ}$	$61.5 \pm 1.9^{\circ}$	$67.8 \pm 1.4^{\circ}$	Wetted
5 (0.12)	23 000	1.01	30	124	$117.8\pm1.6^{\circ}$	$95.7 \pm 2.9^{\circ}$	$76.7 \pm 1.1^{\circ}$	$68.8 \pm 1.9^{\circ}$
10 (0.25)	26 900	1.01	29	124	$118.2\pm1.4^{\circ}$	$101.1\pm2.5^{\circ}$	$77.2\pm0.4^{\circ}$	$69.5 \pm 2.1^{\circ}$
25 (0.79)	37 700	1.03	41	125	$120.8 \pm 1.8^{\circ}$	$97.0\pm2.4^{\circ}$	$82.9 \pm 0.4^{\circ}$	$74.6 \pm 2.0^{\circ}$
F-POSS-MA	n/a	n/a	n/a	n/a	$117.1\pm0.6^{\circ}$	$93.8 \pm 1.5^{\circ}$	$78.1\pm0.4^{\circ}$	$63.0 \pm 1.2^{\circ}$

Water

Polym Chem, 2013

Hexadecane

SF₅-Terminated F-POSS

Gard, Chem Mater, 2000

Chemical Formula: C₆₄H₃₂F₁₃₆O₁₂S₈Si₈ Exact Mass: 4055.56

F-@F-POSS

Bassindale, Angew Chem, 2003

$$R = \frac{F_2}{C} =$$

Now soluble in common organic solvents!

Chem Mater, 2008

Summary

- Solubility and wetting characteristics vary widely
- Not all types of fluorinated functionality give the same results
- Even minor changes in structure may produce drastically different results
- Solubility behavior is difficult to predict based on structure
- Prediction of water and hydrocarbon wetting behavior is also extremely difficult

Applied Materials Group

The Applied Materials Group at Edwards Air Force Base

Mr. Ray Campos

Dr. Greg Yandek

Mr. Chris Lee

Dr. Jeff Alston

Mr. Kevin Greeson

Dr. Andrew Guenthner

Mr. Jason Lamb

Ms. Yvonne Diaz

Dr. Josiah Reams

Mr. Jacob Marcischak

Dr. Tim Haddad

Mr. Mike Ford

Dr. Joe Mabry

NRC post-doc positions available!

AFRL/RQR

Silicones and Silicone-Modified Materials VII

An International Symposium at the American Chemical Society National Meeting Boston, Massachusetts, August 16-20, 2015

Dr. Stephen John Clarson, College of Engineering and Applied Science, 550 ERC, University of Cincinnati, Cincinnati, OH 45221, USA,

Tel: 513-556-5430, Email: Stephen.Clarson@UC.Edu

Dr. Michael J. Owen, Michigan Molecular Inst., 1910 West Saint Andrews Road, Midland, MI 48640, USA, Tel: 989-631-7339, Email: michaelowen01@chartermi.net

Dr. Steven D. Smith, Procter and Gamble Company, Miami Valley Innovation Center, Cincinnati, OH 45252, USA, Tel: 513-627-2102, Email: smith.sd@pg.com

Dr. Mark E. Van Dyke, Wake Forest University School of Medicine and the Wake Forest Institute for Regenerative Medicine, NRC 129, Medical Center Boulevard, Winston Salem, NC 27157, USA Tel: 336-713-7266, Email: mayandyk@wfubmc.edu

Dr. Michael A. Brook, Department of Chemistry, McMaster University, Hamilton, ON L8S 4M1,

Canada Tel: 905-525-9140, Email: mabrook@mcmaster.ca

Dr. Joseph M. Mabry, AFRL, Edwards AFB, CA 93524, USA

Tel: 661-275-5857, Email: Joseph.Mabry@edwards.af.mil

Silicon-Containing Polymers and Composites

December 2016 Omni Hotel, San Diego, CA

CHAIR:

Dr. Joseph M. Mabry ACS Division of Polymer Chemistry Air Force Research Laboratory Edwards AFB, CA 93524 Phone: 661-917-7225

E-mail:

joe.mabry@outlook.com joseph.mabry@us.af.mil

ORGANIZING TEAM:

Prof. Stephen J. Clarson, University of Cincinnati Dr. Jonathan D. Goff, Gelest, Inc.

Prof. Kenneth J. Wynne, Virginia Commonwealth Univ.

Dr. Dylan J. Boday, IBM

Prof. Anish Tuteja, University of Michigan

Dr. Andrew J. Guenthner, ACS Mojave Desert Section

Prof. Scott T. Iacono, US Air Force Academy

Dr. Gregory R. Yandek, Air Force Research Laboratory

Prof. Yoshiki Chujo, Kyoto University, Japan Prof. Richard M. Laine, University of Michigan

YAMAZEN

Enabling Your Technology

the language of science

abcr

http://polyacs.net/Workshops/14Silicon/home.htm

U.S. AIR FORCE

Comparison of Surface Energy Parameters for POSS Compounds

Table 3. Computed Values of the Dispersion (γ_{sv}^d), Acidic (γ_{sv}^+), and Basic (γ_{sv}^-) Components of Solid-Surface Energy (mN/m) for Various Fluoroalkylated Silicon-Containing Moieties

	alkanes (Zisman analysis)	all liquids ^b (eq 1 with $\varphi_{sl} = 1$)	diiodomethane, dimethyl sulfoxide and water (eq 5)				
	γο	γ _{sv}	γ_{sv}	dispersion (γ_{sv}^d)	polar (γ ^p _{sv})	acidic (γ _{sv} ⁺)	basic (γ _{sv})
fluorodecyl T ₈	5.5	9.3	8.8	8.7	0.1	0.04	0.1
fluorooctyl T ₈	7.4	10.6	10.9	10.6	0.3	0.2	0.1
fluorohexyl T ₈	8.5	11.6	47.4	11.4	36.0	20.8	15.6
fluoropropyl T ₈	19.7	18.7	38.4	19.1	19.3	11.8	7.9
hexafluoro-i-butyl T ₈	17.7	19.1	26.9	26.8	0.1	0.002	0.8
fluorodecyl T ₈	5.5	9.3	8.8	8.7	0.1	0.04	0.1
fluorodecyl Q ₄	14.5	14.3	14.9	14.5	0.8	0.0	0.2
fluorodecyl M ₂	19.6	26.8	39.7	30.9	8.8	2.0	9.7

Predicted values based on Hansen Solubiliy Parameters (for "liquid" surfaces)

		γ _{lv} (dyn / cm)	γ ^d _{lv} (dyn / cm)
Fluorodecyl T8	(est. HSP)	34.6	24.8
Fluorohexyl T8	(est. HSP)	37.7	26.2
Fluoropropyl T8		43.7	28.6
Hexafluoroi-i-buty	1T8	43.5	21.4
Fluorodecyl M2		30.3	20.5

- For perfluoroheptane, the predicted value of γ_{lv} of 21 dyn/cm is close to expectations
- Agreement for the dispersive component is better, but $\gamma^{d}_{lv} < \gamma_{lv}$ without rearrangement