$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

$\chi_{c0}(1P)$ MASS

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3414.75± 0.31 OUR A	VERAGE				
$3414.2 \pm 0.5 \pm 2.3$	5.4k	UEHARA	80	BELL	$\gamma \gamma ightarrow \ \chi_{c0} ightarrow \ { m hadrons}$
3406 \pm 7 \pm 6	230	$^{ m 1}$ ABE	07	BELL	$e^+e^- o J/\psi(c\overline{c})$
$3414.21 \pm 0.39 \pm 0.27$		ABLIKIM	05 G	BES2	$\psi(2S) \rightarrow \gamma \chi_{c0}$
$3414.7 \ \ \begin{array}{c} + \ 0.7 \\ - \ 0.6 \end{array} \ \pm 0.2$		² ANDREOTTI	03	E835	$\overline{p}p \rightarrow \chi_{c0} \rightarrow \pi^0\pi^0$
$3415.5 \pm 0.4 \pm 0.4$	392	³ BAGNASCO	02	E835	$\overline{p}p \rightarrow \chi_{c0} \rightarrow J/\psi \gamma$
$3417.4 \ \ \begin{array}{c} + \ 1.8 \\ - \ 1.9 \end{array} \ \pm 0.2$		² AMBROGIANI	99 B	E835	$\overline{p}p \rightarrow e^+e^-\gamma$
$3414.1 \pm 0.6 \pm 0.8$		BAI			ψ (2 S) $ ightarrow$ γ X
$3417.8 \pm 0.4 \pm 4$		² GAISER	86	CBAL	ψ (2 S) $ ightarrow$ γ X
3416 \pm 3 \pm 4		⁴ TANENBAUM	78	MRK1	e^+e^-
• • • We do not use th	ie followin	g data for average	s, fits	, limits,	etc. • • •
$3414.6~\pm~1.1$	266	UEHARA	13	BELL	$\gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0$
3416.5 ± 3.0		EISENSTEIN	01	CLE2	$e^+e^- \rightarrow e^+e^- \chi_{c0}$
3422 ± 10		⁴ BARTEL	78 B	CNTR	$e^+e^- \rightarrow J/\psi 2\gamma$
3415 ± 9		⁴ BIDDICK	77	CNTR	$e^+e^- \rightarrow \gamma X$

 $[\]frac{1}{2} \, {\rm From \ a}$ fit of the J/ψ recoil mass spectrum. Supersedes ABE,K 02 and ABE 04G.

$\chi_{c0}(1P)$ WIDTH

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
10.5±0.6 OUR FIT							
10.5 ± 0.8 OUR AVER	AGE Error	includes scale fac	ctor o	f 1.1.			
$10.6\!\pm\!1.9\!\pm\!2.6$	5.4k	UEHARA	80	BELL	$\gamma \gamma ightarrow \ \chi_{c0} ightarrow \ { m hadrons}$		
$12.6 {+ 1.5 + 0.9 \atop - 1.6 - 1.1}$		ABLIKIM	05 G	BES2	$\psi(2S) \rightarrow \gamma \chi_{c0}$		
$8.6^{igoplus 1.7}_{-1.3}\!\pm\!0.1$		ANDREOTTI	03	E835	$\overline{p}p \rightarrow \chi_{c0} \rightarrow \pi^0\pi^0$		
$9.7 \!\pm\! 1.0$	392	¹ BAGNASCO	02	E835	$\overline{p}p \rightarrow \chi_{c0} \rightarrow J/\psi \gamma$		
$16.6^{+5.2}_{-3.7}\!\pm\!0.1$		AMBROGIANI	99 B	E835	$\overline{p}p \rightarrow e^+e^-\gamma$		
$14.3 \pm 2.0 \pm 3.0$		BAI	981	BES	$\psi(2S) \rightarrow \gamma \pi^+ \pi^-$		
$13.5 \pm 3.3 \pm 4.2$		GAISER	86	CBAL	$\psi(2S) \rightarrow \gamma X, \gamma \pi^0 \pi^0$		
• • • We do not use the following data for averages, fits, limits, etc. • • •							
13.2 ± 2.1	266	UEHARA	13	BELL	$\gamma\gamma \to K_S^0 K_S^0$		
$^{ m 1}$ Recalculated by ANDREOTTI 05A.							

 $^{^2}$ Using mass of $\psi(2S)=3686.0$ MeV. 3 Recalculated by ANDREOTTI 05A, using the value of $\psi(2S)$ mass from AULCHENKO 03.

 $^{^4}$ Mass value shifted by us by amount appropriate for $\psi(2S)$ mass = 3686 MeV and $J/\psi(1S)$ mass = 3097 MeV.

$\chi_{c0}(1P)$ DECAY MODES

Scale factor/

Mode Fraction (Γ_i/Γ) Confidence level Hadronic decays $2(\pi^{+}\pi^{-})$ $(2.24\pm0.18)\%$ $\rho^0 \pi^+ \pi^ (8.7 \pm 2.8) \times 10^{-3}$ Γ_3 $f_0(980) f_0(980)$ $\pi^+ \pi^- \pi^0 \pi^0$ $(6.5 \pm 2.1) \times 10^{-4}$ $(3.3 \pm 0.4)\%$ $(2.8 \pm 0.4)\%$ Γ_7 $(3.2 \pm 0.4) \times 10^{-3}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ (1.75 ± 0.14) % $\Gamma_{9} \hspace{1cm} \textit{K}_{0}^{*}(1430)^{0} \, \overline{\textit{K}}_{0}^{*}(1430)^{0} \rightarrow$ $(9.6 \begin{array}{c} +3.5 \\ -2.8 \end{array}) \times 10^{-4}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K_0^*(1430)^0 \overline{K}_2^*(1430)^0 + \text{c.c.} \rightarrow (7.8 \ ^{+1.9}_{-2.4}) \times 10^{-4}$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K_{1}(1270)^{+}K^{-} + \text{c.c.} \rightarrow$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $K_{1}(1400)^{+}K^{-} + \text{c.c.} \rightarrow$ $(6.1 \pm 1.9) \times 10^{-3}$ $\times 10^{-3}$ Γ_{12} < 2.6 CL=90% $\pi^{+}\pi^{-}K^{+}K^{-}$ $(1.6 \begin{array}{c} +1.0 \\ -0.9 \end{array}) \times 10^{-4}$ $f_0(980) f_0(980)$ Γ_{13} $(7.8 \begin{array}{c} +2.0 \\ -2.5 \end{array}) \times 10^{-4}$ $f_0(980) f_0(2200)$ Γ_{14} Γ_{15} $f_0(1370) f_0(1370)$ $\times 10^{-4}$ < 2.7 CL=90% $\times 10^{-4}$ $f_0(1370) f_0(1500)$ < 1.7 CL=90% $(6.6 \begin{array}{c} +3.5 \\ -2.3 \end{array}) \times 10^{-4}$ Γ_{17} $f_0(1370) f_0(1710)$ $f_0(1500) f_0(1370)$ $f_0(1500) f_0(1500)$ Γ_{18} < 1.3 $\times 10^{-4}$ CL=90% $\times 10^{-5}$ Γ_{19} < 5 CL=90% $f_0(1500) f_0(1710)$ < 7 $\times 10^{-5}$ CL=90% $\Gamma_{21} \quad K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\Gamma_{22} \quad K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ $(8.6 \pm 0.9) \times 10^{-3}$ $(4.2 \pm 0.4) \times 10^{-3}$ Γ_{23}^{-} $K^{+}K^{-}\pi^{0}\pi^{0}$ $(5.4 \pm 0.9) \times 10^{-3}$ $\Gamma_{24} K^{+} \pi^{-} \overline{K}{}^{0} \pi^{0} + \text{c.c.}$ $(2.44\pm0.33)\%$

$$\Gamma_{25} \qquad \rho^{+} K \qquad K^{+} + \text{c.c.} \qquad (1.18 \pm 0.21) \%$$

$$\Gamma_{26} \qquad K^{*} (892)^{-} K^{+} \pi^{0} \rightarrow \qquad (4.5 \pm 1.1) \times 10^{-3}$$

$$K^{+} \pi^{-} \overline{K^{0}} \pi^{0} + \text{c.c.} \qquad (5.6 \pm 1.0) \times 10^{-3}$$

$$\Gamma_{28} \qquad K^{+} K^{-} \eta \pi^{0} \qquad (3.0 \pm 0.7) \times 10^{-3}$$

$$\Gamma_{29} \qquad 3(\pi^{+} \pi^{-}) \qquad (1.20 \pm 0.18) \%$$

$$\Gamma_{30} \qquad K^{+} \overline{K^{*}} (892)^{0} \pi^{-} + \text{c.c.} \qquad (7.2 \pm 1.6) \times 10^{-3}$$

$$\Gamma_{31} \quad K^*(892)^0 \overline{K}^*(892)^0$$
 (1.7 ±0.6) × 10⁻³
 $\Gamma_{32} \quad \pi \pi$ (8.33±0.35) × 10⁻³

 $\rho^{+} K^{-} K^{0} + \text{c.c.}$

 (1.18 ± 0.21) %

 $(4.5 \pm 1.1) \times 10^{-3}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₃₃	$\pi^{0}\eta$	< 1.8	\times 10 ⁻⁴	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_{34}	$\pi^{0}\eta'$	< 1.1	\times 10 $^{-3}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\pi^0 \eta_c$	< 1.6	$\times 10^{-3}$	CL=90%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · •			CI = 90%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• •			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	т 42 Г	K			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₄₅	$\frac{\pi^+\pi^-\eta'}{2}$	< 3.5	_	CL=90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₄₆	$K^{0}K^{+}\pi^{-}+\text{c.c.}$	< 9		CL=90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_{47}	$\mathcal{K}^+ \mathcal{K}^- \pi^0$	< 6	\times 10 ⁻⁵	CL=90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_{48}	$K^+K^-\eta$	< 2.2	$\times 10^{-4}$	CL=90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_{49}	$K^{+}K^{-}K^{0}_{S}K^{0}_{S}$	(1.4 ± 0.5)	$) \times 10^{-3}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Γ ₌₁	$K^+K^-\phi$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	' 53 Γ _{= 4}	$\phi_{\pi} + \pi - \pi^0$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		• •			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					6 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					5=1.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Γ_{61}	$p\overline{p}\pi^+\pi^-$			S=1.4
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Γ ₆₂	$p\overline{p}\pi^{0}\pi^{0}$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Γ ₆₃	$p\overline{p}K^+K^-$ (non-resonant)	$(1.19\pm0.26$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Γ ₆₄	$p\overline{p}K_{S}^{0}K_{S}^{0}$	< 8.8	\times 10 ⁻⁴	CL=90%
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Γ_{65}		$(1.24\pm0.11$	$(1) \times 10^{-3}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Γ ₆₇				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Γ60	$\frac{\overline{p}}{\overline{n}}n\pi^{+}\pi^{0}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$A\overline{A}$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					CI 000/
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Γ_{74} $K^{+} \overline{p} \Lambda + \text{c.c.}$ $(1.22 \pm 0.12) \times 10^{-3}$ S=1.3 Γ_{75} $K^{+} \overline{p} \Lambda (1520) + \text{c.c.}$ $(2.9 \pm 0.7) \times 10^{-4}$		$\sum (1305) \cdot M\pi + C.C.$			
Γ_{75} $K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$ (2.9 ±0.7) × 10 ⁻⁴		1			
	, ,	•			S=1.3
$I_{76} \Lambda(1520)\Lambda(1520)$ (3.1 ±1.2) × 10 ⁻⁴					
	I ₇₆	$\Lambda(1520)\Lambda(1520)$	(3.1 ± 1.2)	$) \times 10^{-4}$	

Γ ₇₇	$\Sigma^0 \overline{\Sigma}{}^0$	$(4.4 \pm 0.4) \times 10^{-}$	4
Γ ₇₈	$\Sigma^{+}\overline{\Sigma}^{-}$	$(3.9~\pm 0.7~) \times 10^{-}$	4 S=1.7
Γ ₇₉	$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$(1.6~\pm 0.6~)\times 10^{-}$	4
	$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$(2.3~\pm 0.6~) \times 10^{-}$	4
	$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.90\pm0.34)\times10^{-}$	4
	<u>=</u> 0 <u>=</u> 0	$(3.1~\pm 0.8~)\times 10^{-}$	4
	<u>=</u> − = +	(4.7 ± 0.7) $ imes$ 10 $^-$	4
Γ ₈₄	$\eta_c \pi^+ \pi^-$	< 7 × 10 ⁻	4 CL=90%

Radiative decays

	$\gamma J/\psi(1S)$	(1.27	$(1.27 \pm 0.06) \%$					
Γ ₈₆	$\gamma ho^{f 0}$	< 9	\times 10 ⁻⁶	CL=90%				
Γ ₈₇	$\gamma \omega$	< 8	$\times 10^{-6}$	CL=90%				
Γ ₈₈	$\gamma\phi$	< 6	$\times 10^{-6}$	CL=90%				
Γ ₈₉	$\gamma \gamma$	(2.23	$\pm 0.13) \times 10^{-4}$					

CONSTRAINED FIT INFORMATION

A multiparticle fit to $\chi_{c1}(1P)$, $\chi_{c0}(1P)$, $\chi_{c2}(1P)$, and $\psi(2S)$ with 4 total widths, a partial width, 25 combinations of partial widths obtained from integrated cross section, and 84 branching ratios uses 239 measurements to determine 49 parameters. The overall fit has a $\chi^2=342.4$ for 190 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

<i>x</i> ₂	25									
<i>x</i> ₈	14	4								
<i>x</i> ₃₀	7	2	29							
<i>x</i> ₃₂	15	4	16	5						
<i>x</i> 36	8	2	9	3	21					
<i>x</i> ₄₂	13	3	14	5	28	17				
<i>x</i> ₄₃	12	3	13	4	27	16	22			
<i>×</i> 50	9	2	8	3	14	8	12	11		
<i>×</i> 55	10	3	10	4	14	9	12	12	7	
^x 56	7	2	9	3	13	6	15	15	8	8
<i>x</i> ₆₉	8	2	9	3	20	12	17	16	8	9
<i>x</i> 85	4	1	5	1	14	9	10	10	5	5
<i>x</i> 89	-16	-4	_9	-6	5	4	2	4	-2	-4
Γ	-22	-6	-17	-8	-16	_9	-15	-14	-10	-13
	x_1	x_2	<i>x</i> ₈	<i>x</i> ₃₀	<i>x</i> ₃₂	<i>x</i> 36	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>×</i> 50	×55

× ₆₉	11			
^X 85	-21	8		
<i>x</i> 89	2	4	9	
Γ	-7	_9	-8	<u>-48</u>
	^X 56	× ₆₉	×85	×89

$\chi_{c0}(1P)$ PARTIAL WIDTHS

$\chi_{c0}(1P) \Gamma(i)\Gamma(\gamma J/\psi(1S))/\Gamma(total)$

 $\Gamma(\rho \overline{\rho}) \times \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$ $\Gamma_{56}\Gamma_{85}/\Gamma$ VALUE (eV) DOCUMENT ID 30.0 ± 2.3 OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • • 1,2 Bagnasco 02 E835 \overline{p} $p
ightarrow \chi_{c0}
ightarrow J/\psi \gamma$ $26.6 \pm 2.6 \pm 1.4$ $48.7^{+11.3}_{-8.9}\pm2.4$ 1,2 AMBROGIANI 99B E835 $\overline{p}p \rightarrow \gamma J/\psi$ ¹ Calculated by us using B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0593 \pm 0.0010. 2 Values in $(\Gamma(p\overline{p})\times\Gamma(\gamma J/\psi(1S))/\Gamma_{\mbox{total}})$ and $(\Gamma(p\overline{p})/\Gamma_{\mbox{total}}\times\Gamma(\gamma J/\psi(1S))/\Gamma_{\mbox{total}})$ are not independent. The latter is used in the fit since it is less correlated to the total width. $-\chi_{c0}(1P)$ $\Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$ — $\Gamma(2(\pi^+\pi^-)) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_{89}/\Gamma$ VALUE (eV) DOCUMENT ID TECN **COMMENT 49 ±10 OUR AVERAGE** Error includes scale factor of 1.8. BELL $\gamma\gamma \rightarrow \chi_{c0} \rightarrow 2(\pi^{+}\pi^{-})$ $44.7 \pm 3.6 \pm 4.9$ 3.6k **UEHARA** EISENSTEIN 01 CLE2 $e^+e^- \rightarrow e^+e^- \chi_{c0}$ $75 \pm 13 \pm 8$ $\Gamma(\rho^0 \rho^0) \times \Gamma(\gamma \gamma) / \Gamma_{\text{total}}$ $\Gamma_3\Gamma_{89}/\Gamma$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • BELL $\gamma\gamma \rightarrow \chi_{c0} \rightarrow 2(\pi^{+}\pi^{-})$ <12 <252 UEHARA $\Gamma(\pi^+\pi^-K^+K^-)\, imes\,\Gamma(\gamma\gamma)/\Gamma_{
m total}$ $\Gamma_8\Gamma_{89}/\Gamma$ TECN COMMENT DOCUMENT ID 41 ±4 OUR FIT 08 BELL $\gamma\gamma \rightarrow \chi_{c0} \rightarrow K^+K^-\pi^+\pi^-$ 38.8±3.7±4.7 1.7k **UEHARA** $\Gamma(K^+K^-\pi^+\pi^-\pi^0) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{21}\Gamma_{89}/\Gamma$ DOCUMENT ID TECN COMMENT EVTS DEL-AMO-SA..11M BABR $\gamma\gamma \to \kappa^+ \kappa^- \pi^+ \pi^- \pi^0$ 1094 $\Gamma(K^+\overline{K}^*(892)^0\pi^- + \text{c.c.}) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{30}\Gamma_{89}/\Gamma$ DOCUMENT ID TECN COMMENT 17 ±4 OUR FIT 08 BELL $\gamma \gamma \rightarrow \chi_{c0} \rightarrow K^+ K^- \pi^+ \pi^-$ **16.7±6.1±3.0** 495 ± 182 UEHARA HTTP://PDG.LBL.GOV Created: 5/30/2017 17:21 Page 5

```
\Gamma(K^*(892)^0\overline{K}^*(892)^0) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{31}\Gamma_{89}/\Gamma
                                                                  TECN
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                   BELL \gamma \gamma \rightarrow \chi_{c0} \rightarrow K^+ K^- \pi^+ \pi^-
                  90
                         <148
                                      UEHARA
                                                           80
<6
\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{32}\Gamma_{89}/\Gamma
VALUE (eV)
                                            DOCUMENT ID
                                                                     TECN COMMENT
19.5± 1.4 OUR FIT
23 \pm 5 OUR AVERAGE
29.7^{\,+\,17.4}_{\,-\,12.0}\,{\pm\,4.8}
                         103^{+60}_{-42}
                                          ^{\mathrm{1}} UEHARA
                                                                09 BELL 10.6 e^+e^- \rightarrow e^+e^-\pi^0\pi^0
                                          ^2 NAKAZAWA 05 BELL 10.6 e^+e^- 
ightarrow e^+e^-\pi^+\pi^-
   ^1We multiplied the measurement by 3 to convert from \pi^0\pi^0 to \pi\pi. Interference with
     the continuum included.
   <sup>2</sup>We have multiplied \pi^+\pi^- measurement by 3/2 to obtain \pi\pi.
\Gamma(\eta\eta) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{36}\Gamma_{89}/\Gamma
VALUE (eV)
                                             DOCUMENT ID
                                                                         TECN COMMENT
                                                                   10A BELL 10.6 e^+e^- \rightarrow e^+e^-nn
9.4 \pm 2.3 \pm 1.2
                                           <sup>1</sup> UEHARA
   <sup>1</sup> Interference with the continuum not included.
\Gamma(\omega\omega) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{39}\Gamma_{89}/\Gamma
                                                 DOCUMENT ID TECN COMMENT
VALUE (eV)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              ^{1} LIU
                                                                      12B BELL \gamma \gamma \rightarrow 2(\pi^+\pi^-\pi^0)
                                  90
   <sup>1</sup> Using B(\omega \to \pi^+ \pi^- \pi^0) = (89.2 ± 0.7)%.
\Gamma(\omega\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{40}\Gamma_{89}/\Gamma
VALUE (eV)
                                             DOCUMENT ID TECN COMMENT
• • We do not use the following data for averages, fits, limits, etc. • •
                                          ^{1} LIU
                                                                 12B BELL \gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0
                              90
< 0.34
   <sup>1</sup> Using B(\phi \to K^+K^-) = (48.9 \pm 0.5)% and B(\omega \to \pi^+\pi^-\pi^0) = (89.2 \pm 0.7)%.
\Gamma(K^+K^-) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{42}\Gamma_{89}/\Gamma
VALUE (eV)
                                           DOCUMENT ID
                                                                   TECN COMMENT
13.9 ± 1.1 OUR FIT
                                           NAKAZAWA 05 BELL 10.6 e^+e^- \rightarrow e^+e^- \kappa^+ \kappa^-
14.3 \pm 1.6 \pm 2.3
                          153\pm17
\Gamma(K_s^0 K_s^0) \times \Gamma(\gamma \gamma) / \Gamma_{\text{total}}
                                                                                                         \Gamma_{43}\Gamma_{89}/\Gamma
                                                                              TECN COMMENT
7.3 \pm 0.6 OUR FIT
                                                 <sup>1</sup> UEHARA
                                                                        13 BELL \gamma \gamma \rightarrow \kappa_S^0 \kappa_S^0
8.7 \pm 1.7 \pm 0.9
                                     266
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                                        07B BELL e^+e^- \rightarrow e^+e^- \chi_{c0}
7.00 \pm 0.65 \pm 0.71
                              134 \pm 12
                                                   CHEN
   <sup>1</sup> Supersedes CHEN 07B.
```

	\		_	- /-
$\Gamma(K^+K^-K^+K^-) \times \Gamma(\gamma)$ VALUE (eV) EVTS	γ)/ total DOCUMENT ID	TECN	l ₅	₀ Г ₈₉ /Г
6.4±0.7 OUR FIT				
7.9 ± 1.3 ± 1.1 215 ± 36	UEHARA 08	BELL	$\gamma\gamma \rightarrow \chi_{c0} \rightarrow 2(K$	r+ K-)
$\Gamma(\phi\phi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ VALUE (eV) EVTS	DOCUMENT ID	TECN	•	₅ Г ₈₉ /Г
1.82\pm0.19 OUR FIT 1.72\pm0.33\pm0.14 56 \pm 11 • • • We do not use the follow			$\gamma\gamma ightarrow 2(K^+K^-)$ nits, etc. $ullet$ $ullet$	
$2.3 \pm 0.9 \pm 0.4$ 23.6 ± 9.6	UEHARA 08	BELL	$\gamma \gamma \rightarrow \chi_{c0} \rightarrow 2(R)$	K+K-)
$^{ m 1}$ Supersedes UEHARA 08. U	sing B($\phi \rightarrow K^+K^-$	(48	$.9 \pm 0.5)\%$.	
Y ₀ 0)	(1 <i>P</i>) BRANCHING	G RATI	OS	
	HADRONIC DEC			
	HADRONIC DEC	LATS -		
$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}$ $VALUE$ 0.0224±0.0018 OUR FIT	DOCUMENT ID			Γ_1/Γ
$\Gamma(ho^0\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-))$			ECN COMMENT	Γ_2/Γ_1
0.39±0.12 OUR FIT 0.39±0.12	TANENBAUM	78 M	RK1 $\psi(2S) \rightarrow \gamma \chi_{C}$	0
$\Gamma(\rho^0\pi^+\pi^-)/\Gamma_{\text{total}}$ $VALUE$ 0.0087±0.0028 OUR FIT	DOCUMENT ID			Γ ₂ /Γ
$\Gamma(f_0(980)f_0(980))/\Gamma_{\text{total}}$				Γ ₄ /Γ
VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID	TE	COMMENT	
6.5±2.1±0.2 36 ± 9	$^{ m 1}$ ABLIKIM	04G B	$=$ S $\psi(2S) ightarrow \gamma 2\pi^{-1}$	$+_{2\pi}-$
1 ABLIKIM 04G reports [Fig. $\gamma\chi_{c0}(1P))]=(6.5\pm1.6\pm\gamma\chi_{c0}(1P))=(9.99\pm0.27$ second error is the systemat	$(1.3) imes 10^{-5}$ which $(1.3) imes 10^{-2}$. Our first $(1.3) imes 10^{-2}$	we divide error is tl	by our best value B(y neir experiment's error	<i>b</i> (2 <i>S</i>) →

 $\Gamma \big(\pi^+\pi^-\pi^0\pi^0\big)/\Gamma_{\rm total}$ 1 HE 08B CLEO $e^+e^- \rightarrow 2$ Γ_5/Γ 1751.4 3.3±0.4±0.1

 $^1\,\text{HE}$ 08B reports 3.54 \pm 0.10 \pm 0.43 \pm 0.18 % from a measurement of [Γ($\chi_{C0}(1P)$ \rightarrow $\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\rm total}]\times [{\sf B}(\psi(2S)\to\gamma\chi_{c0}(1P))] \text{ assuming B}(\psi(2S)\to\gamma\chi_{c0}(1P))=\\ (9.22\pm0.11\pm0.46)\times 10^{-2}, \text{ which we rescale to our best value B}(\psi(2S)\to\gamma\chi_{c0}(1P))$ $= (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\rho^+\pi^-\pi^0+\text{c.c.})/\Gamma_{\text{total}}$ Γ_6/Γ VALUE~(%) EVTS 1358.5 1,2 HE OBB CLEO $e^+e^- \rightarrow \gamma h^+h^-h^0h^0$

¹ HE 08B reports 3.04 \pm 0.18 \pm 0.42 \pm 0.16 % from a measurement of $[\Gamma(\chi_{c0}(1P) \rightarrow \rho^+\pi^-\pi^0 + \text{ c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Calculated by us. We have added the values from HE 08B for $\rho^+\pi^-\pi^0$ and $\rho^-\pi^+\pi^0$ decays assuming uncorrelated statistical and fully correlated systematic uncertainties.

 $\Gamma(4\pi^0)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{7}}/\Gamma$

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT3.2±0.4±0.13296 1 ABLIKIM11ABES3 $e^{+}e^{-} \rightarrow \psi(2S) \rightarrow \gamma \chi_{c0}$

 1 ABLIKIM 11A reports $(3.34\pm0.06\pm0.44)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to 4\pi^0)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.62\pm0.31)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(\pi^{+}\pi^{-}K^{+}K^{-})/\Gamma_{\text{total}}$$

VALUE (units 10^{-3})

DOCUMENT ID

17.5 ± 1.4 OUR FIT

 $\Gamma(K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + \text{c.c.})/\Gamma(\pi^{+}\pi^{-}K^{+}K^{-})$ Γ_{30}/Γ_{8}

ALUE <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

 0.41 ± 0.09 OUR FIT

0.41\pm0.10 TANENBAUM 78 MRK1 $\psi(2S)
ightarrow \gamma \chi_{c0}$

 $\Gamma(K_0^*(1430)^0\overline{K}_0^*(1430)^0 \to \pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$ Γ_9/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT9.6 $^{+3.5}_{-2.8}\pm0.3$ 83 1 ABLIKIM05QBES2 $\psi(2S) \rightarrow \gamma\pi^+\pi^-K^+K^-$

 1 ABLIKIM 05Q reports $(10.44\pm2.37^{+3.05}_{-1.90})\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to~K^*_0(1430)^0\overline{K}^*_0(1430)^0\to~\pi^+\pi^-K^+K^-)/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming ${\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(K_0^*(1430)^0\overline{K}_2^*(1430)^0 + \text{c.c.} \to \pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$$
 Γ_{10}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT $7.8^{+1.9}_{-2.4} \pm 0.2$ 621 ABLIKIM05QBES2 $\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$

 1 ABLIKIM 05Q reports $(8.49\pm1.66^{+1.32}_{-1.99})\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to K_0^*(1430)^0\overline{K}_2^*(1430)^0+\text{c.c.}\to \pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}]\times[\mathrm{B}(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $\mathrm{B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value $\mathrm{B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K_1(1270)^+ K^- + \text{c.c.} \to \pi^+ \pi^- K^+ K^-) / \Gamma_{\text{total}}$ Γ_{11} / Γ

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT $\mathbf{6.1^{+1.9}_{-1.8} \pm 0.2}$ 68 1 ABLIKIM05QBES2 $\psi(2S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$

 1 ABLIKIM 05Q reports $(6.66\pm1.31^{+1.60}_{-1.51})\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to K_1(1270)^+\,K^-+{\rm c.c.}\to\pi^+\pi^-\,K^+\,K^-)/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming ${\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. The measurement assumes ${\rm B}(K_1(1270)\to K\rho(770))=42\pm6\%.$

$\Gamma(K_1(1400)^+ K^- + \text{c.c.} \rightarrow \pi^+ \pi^- K^+ K^-) / \Gamma_{\text{total}}$ Γ_{12}

VALUE (units 10^{-3}) CL% DOCUMENT ID TECN COMMENT ψ (2.6 90 1 ABLIKIM 05Q BES2 ψ (2S) $\rightarrow \gamma \pi^+ \pi^- K^+ K^-$

 $\begin{tabular}{llll} 1 ABLIKIM 05Q reports $<$ 2.85×10^{-3} from a measurement of $[\Gamma(\chi_{c0}(1P) \to K_1(1400)^+ K^- + \text{c.c.} \to \pi^+ \pi^- K^+ K^-)/\Gamma_{total}]$ \times $[B(\psi(2S) \to \gamma \chi_{c0}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = 9.99 \times 10^{-2}$. The measurement assumes $B(K_1(1400) \to K^*(892)\pi) = 94 \pm 6\%. $$ $$$

$\Gamma(f_0(980)f_0(980))/\Gamma_{\text{total}}$

 Γ_{13}/Γ

 VALUE (units 10^{-5})
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 15.9 $^{+10.2}_{-8.8} \pm 0.4$ 28
 1 ABLIKIM
 05Q
 BES2
 $\psi(2S) \rightarrow \gamma \pi^{+} \pi^{-} K^{+} K^{-}$

 1 ABLIKIM 05Q reports $[\Gamma(\chi_{c0}(1P)\to f_0(980)f_0(980))/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))]=(1.59\pm0.50^{+0.89}_{-0.72})\times 10^{-5}$ which we divide by our best value ${\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. One of the $f_0(980)$ mesons is identified via decay to $\pi^+\pi^-$ while the other via K^+K^- decay.

$\Gamma(f_0(980) f_0(2200)) / \Gamma_{\text{total}}$

 Γ_{14}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT7.8 $^{+2.0}_{-2.5} \pm 0.2$ 771 ABLIKIM05QBES2 $\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$

 1 ABLIKIM 05Q reports $(8.42\pm1.42^{+1.65}_{-2.29})\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to f_0(980)\,f_0(2200))/\Gamma_{\rm total}] \times [B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The f_0 mesons are identified via $f_0(980)\to \pi^+\pi^-$ and $f_0(2200)\to K^+K^-$ decays.

HTTP://PDG.LBL.GOV

Page 9

$\Gamma(f_0(1370)f_0(1370))/\Gamma_{\text{total}}$

VALUE (units 10^{-4})

VALUE (units 10^{-4})

 Γ_{15}/Γ

<2.7	90	$^{ m 1}$ ABLIKIM	05Q BES2	ψ (2 S) $ ightarrow$ $\gamma\pi^{-}$	$+\pi^-K^+K^-$
$^{ m 1}$ ABLIKIM (05Q reports	$< 2.9 \times 10^{-4}$	from a me	asurement of [Γ	$(\chi_{c0}(1P) \rightarrow$
		$[B(\psi(2S))]$			
	,	$1\pm0.46)\times10^{-2}$, , , ,
$\gamma \chi_{c0}(1P))$	$= 9.99 \times 10^{-}$	2 . One of the $f_0($	1370) mesons	is identified via de	ecay to $\pi^+\pi^-$
while the ot	ther via $\mathit{K}^+\mathit{K}$	— decay. Both boted result.	ranching fract	ions for these f_0	decays are im-

$\Gamma(f_0(1370)f_0(1500))/\Gamma_{\text{total}}$

CL%

 Γ_{16}/Γ

<1.7	90	¹ ABLIKIM	05 Q	BES2	$\psi(2S) \rightarrow \gamma \pi^{+}$	$\pi^- \kappa^+ \kappa^-$
		$< 1.8 \times 10^{-4}$				
		$_{\rm cal}$] \times [B(ψ (2 S)				
$\gamma \chi_{c0}(1P)$	$= (9.22 \pm 0.$	$11\pm0.46)\times10^{-2}$	which w	e resca	le to our best valı	ue B $(\psi(2S) ightarrow$
		$^{-2}$. The $\it f_0$ meson			0 \ ,	
$f_0(1500) \rightarrow$	K^+K^- de	ecays. Both branch	ing frac	tions fo	or these f_0 decays	s are implicitly
included in	the quoted r	esult.				

DOCUMENT ID

TECN COMMENT

$\Gamma(f_0(1370)f_0(1710))/\Gamma_{\text{total}}$

 Γ_{17}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$6.6^{+3.5}_{-2.3}\pm0.2$	61	$^{ m 1}$ ABLIKIM	05Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$

 1 ABLIKIM 05Q reports $(7.12\pm1.85^{+3.28}_{-1.68})\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to f_0(1370)\,f_0(1710))/\Gamma_{\rm total}] \times [B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The f_0 mesons are identified via $f_0(1370)\to \pi^+\pi^-$ and $f_0(1710)\to K^+K^-$ decays. Both branching fractions for these f_0 decays are implicitly included in the quoted result.

$\Gamma(f_0(1500)f_0(1370))/\Gamma_{\text{total}}$

 Γ_{18}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<1.3	90	^L ABLIKIM	05 Q	BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$
					surement of $[\Gamma(\chi_{c0}(1P) \rightarrow P))]$ assuming $B(\psi(2S) \rightarrow P)$
					le to our best value $B(\psi(2S) ightarrow 0$
$\gamma \chi_{c0}(1P)) = 9$	0.99×10^{-2}	$f_{ m 0}$. The $f_{ m 0}$ meson	ns are	identifie	d via $f_0(1500) ightarrow \ \pi^+\pi^-$ and
$f_0(1370) ightarrow K^2$ included in the	$^+K^-$ decay	rs. Both branch lt.	ing fra	ctions fo	or these f_0 decays are implicitly

$\Gamma(f_0(1500)f_0(1500))/\Gamma_{\text{total}}$

 Γ_{19}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
<0.5	90	¹ ABLIKIM	05Q BES2	$\psi(2S) \rightarrow \gamma \pi^+ \pi^- K^+ K^-$

¹ ABLIKIM 05Q reports $< 0.55 \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \to f_0(1500)f_0(1500))/\Gamma_{\rm total}] \times [B(\psi(2S) \to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S) \to \gamma\chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma\chi_{c0}(1P)) = 9.99 \times 10^{-2}$. One of the $f_0(1500)$ is identified via decay to $\pi^+\pi^-$ while the other via K^+K^- decay. Both branching fractions for these f_0 decays are implicitly included in the quoted result.

DOCUMENT ID TECN COMMENT

$\Gamma(f_0(1500) f_0(1710)) / \Gamma_{\text{total}}$ *VALUE* (units 10⁻⁴) *CL%*

 Γ_{20}/Γ

<0.7	90	¹ ABLIKIM	05Q BES2	$\psi(2S) \rightarrow \gamma \pi^{-1}$	$+\pi^-$ K $+$ K $^-$
¹ ABLIKIM 05	Q reports	$< 0.73 \times 10^{-4}$	from a me	asurement of [Γ	$(\chi_{c0}(1P) \rightarrow$
		$_{cal}] \times [B(\psi(2S))]$			
00.		$11\pm0.46)\times10^{-2}$, v			
		$^{-2}$. The $\it f_0$ mesor		• • •	
		ecays. Both branch	ing fractions f	or these f_0 decay	s are implicitly
included in th	e quoted r	esult.			

$\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{21}/Γ

$\Gamma(K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-})/\Gamma_{\text{total}}$

 Γ_{22}/Γ

 $\Gamma(\mathit{K}^+\mathit{K}^-\pi^0\pi^0)/\Gamma_{\mathsf{total}}$

 Γ_{23}/Γ

VALUE (%) EVTS DOCUMENT ID TECN COMMENT **0.54±0.09±0.01** 213.5 1 HE 08B reports 0.59 ± 0.05 ± 0.08 ± 0.03 % from a measurement of [Γ(χ_{c0} (1P) →

¹ HE 08B reports $0.59 \pm 0.05 \pm 0.08 \pm 0.03$ % from a measurement of $[\Gamma(\chi_{c0}(1P) \rightarrow K^+ K^- \pi^0 \pi^0)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma \chi_{c0}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma \chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma \chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+\pi^-\overline{K}{}^0\pi^0 + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{24}/Γ

Created: 5/30/2017 17:21

VALUE (%) EVTS DOCUMENT ID TECN COMMENT

2.44 \pm 0.32 \pm 0.07 401.7 1 HE 08B CLEO $e^+e^- \rightarrow \gamma h^+h^-h^0h^0$

 $^{^{1}}$ HE 08B reports 2.64 \pm 0.15 \pm 0.31 \pm 0.14 % from a measurement of $[\Gamma(\chi_{c0}(1P)\to K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}+\text{ c.c.})/\Gamma_{\text{total}}]\times [\mathsf{B}(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $\mathsf{B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $\mathsf{B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\rho^+ K^- K^0 + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{25}/Γ

 VALUE (%)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 1.18±0.20±0.03
 179.7
 1 HE
 08B
 CLEO
 $e^+e^- → γh^+h^-h^0h^0$

¹ HE 08B reports $1.28\pm0.16\pm0.15\pm0.07$ % from a measurement of $[\Gamma(\chi_{c0}(1P)\to\rho^+K^-K^0+\text{ c.c.})/\Gamma_{total}]$ \times $[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^*(892)^- K^+ \pi^0 \rightarrow K^+ \pi^- \overline{K}{}^0 \pi^0 + \text{c.c.}) / \Gamma_{\text{total}}$

 Γ_{26}/Γ

 VALUE (%)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.45±0.11±0.01
 64.1
 1 HE
 08B
 CLEO
 $e^+e^- \rightarrow \gamma h^+ h^- h^0 h^0$

 1 HE 08B reports 0.49 \pm 0.10 \pm 0.07 \pm 0.03 % from a measurement of $[\Gamma(\chi_{c0}(1P)\to K^*(892)^-K^+\pi^0\to K^+\pi^-\overline{K}^0\pi^0+{\rm c.c.})/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming ${\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times 10^{-2},$ which we rescale to our best value ${\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K_S^0 K_S^0 \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{27}/Γ

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT**5.6±1.0±0.2** 152 ± 14 1 ABLIKIM050 BES2 $\psi(2S) \rightarrow \gamma \chi_{c0}$

 1 ABLIKIM 050 reports $[\Gamma(\chi_{c0}(1P)\to K_S^0K_S^0\pi^+\pi^-)/\Gamma_{\rm total}]\times [{\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))]=(0.558\pm0.051\pm0.089)\times 10^{-3}$ which we divide by our best value ${\rm B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+K^-\eta\pi^0)/\Gamma_{\text{total}}$

 Γ_{28}/Γ

 $\frac{VALUE (\%)}{0.30 \pm 0.07 \pm 0.01}$ $\frac{EVTS}{56.4}$ $\frac{DOCUMENT ID}{1}$ HE 08B CLEO $e^+e^- → γh^+h^-h^0h^0$

 1 HE 08B reports 0.32 \pm 0.05 \pm 0.05 \pm 0.02 % from a measurement of $[\Gamma(\chi_{c0}(1P)\to K^+K^-\eta\pi^0)/\Gamma_{\rm total}]\times [{\sf B}(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming ${\sf B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value ${\sf B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{29}/Γ

<u>VALUE (units 10⁻³)</u>
12.0±1.8 OUR EVALUATION

DOCUMENT ID

TECN COMMENT

Treating systematic error as correlated.

12.0 \pm 1.7 OUR AVERAGE

¹ Rescaled by us using B($\psi(2S) \rightarrow \gamma \chi_{c0}$)= (9.4 \pm 0.4)% and B($\psi(2S) \rightarrow J/\psi(1S) \pi^+ \pi^-$) = (32.6 \pm 0.5)%.

$$\Gamma(K^+\overline{K}^*(892)^0\pi^- + \text{c.c.})/\Gamma_{\text{total}}$$

 Γ_{30}/Γ

Created: 5/30/2017 17:21

VALUE DOCUMENT ID

0.0072±0.0016 OUR FIT

HTTP://PDG.LBL.GOV

Page 12

```
\Gamma(K^*(892)^0\overline{K}^*(892)^0)/\Gamma_{\text{total}}
                                                                                                                               \Gamma_{31}/\Gamma
VALUE (units 10^{-3})
                                                    DOCUMENT ID
1.68^{+0.59}_{-0.53}\pm0.05
                                                                          05Q BES2 \psi(2S) \to \gamma \pi^{+} \pi^{-} K^{+} K^{-}
                                                 <sup>1</sup> ABLIKIM
• • • We do not use the following data for averages, fits, limits, etc. • • •
                               30 \pm 6 ^{2,3} ABLIKIM
1.53\!\pm\!0.39\!\pm\!0.04
                                                                          04H BES
                                                                                               Repl. by ABLIKIM 05Q
   ^{1}\text{ABLIKIM 05Q reports } [\Gamma(\chi_{c0}(1P) \to K^{*}(892)^{0}\overline{K}^{*}(892)^{0})/\Gamma_{\text{total}}] \times [\text{B}(\psi(2S) \to \gamma\chi_{c0}(1P))] = (0.168 \pm 0.035^{+0.047}_{-0.040}) \times 10^{-3} \text{ which we divide by our best value}
      B(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
   <sup>2</sup> Assumes B(K^*(892)^0 \rightarrow K^-\pi^+) = 2/3.
   ^3 ABLIKIM 04H reports [\Gamma(\chi_{c0}(1P) \rightarrow K^*(892)^0 \overline{K}^*(892)^0)/\Gamma_{	ext{total}}] \times [B(\psi(2S) \rightarrow K^*(892)^0)/\Gamma_{	ext{total}}]
      \gamma \chi_{c0}(1P))] = (1.53 \pm 0.29 \pm 0.26) \times 10^{-4} which we divide by our best value B(\psi(2S) \rightarrow
      \gamma \chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}. Our first error is their experiment's error and our
      second error is the systematic error from using our best value.
\Gamma(\pi\pi)/\Gamma_{\text{total}}
                                                                                                                               \Gamma_{32}/\Gamma
VALUE (units 10^{-3})
8.33 ± 0.35 OUR FIT
\Gamma(\pi^0\eta_c)/\Gamma_{\rm total}
                                                                                                                               \Gamma_{35}/\Gamma
                         ^{1}\operatorname{Using}\mathsf{B}(\eta_{\mathcal{C}}\to\ \mathcal{K}_{S}^{0}\ \mathcal{K}^{\pm}\pi^{\mp})\times\mathsf{B}(\mathcal{K}_{S}^{0}\to\ \pi^{+}\pi^{-})\times\mathsf{B}(\pi^{0}\to\ \gamma\gamma)=(1.66\pm0.11)\times10^{-2}.
                                                                                                                               \Gamma_{36}/\Gamma
\Gamma(\eta\eta)/\Gamma_{\text{total}}
VALUE (units 10^{-3})
2.95 ± 0.19 OUR FIT
\Gamma(\eta\eta)/\Gamma(\pi\pi)
                                                                                                                            \Gamma_{36}/\Gamma_{32}
                                                                                         TECN
                                                                                                     COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.26\ \pm 0.09\ ^{+0.03}_{-0.02}
                                                      <sup>1</sup> ANDREOTTI 05C E835 \overline{p}p \rightarrow 2 mesons
                                                      ^{1} BAI
                                                                                03C BES
                                                                                                     \psi(2S) \rightarrow 5\gamma
0.24 \pm 0.10 \pm 0.08
   <sup>1</sup>We have multiplied \pi^0\pi^0 measurement by 3 to obtain \pi\pi.
\Gamma(\eta \eta')/\Gamma_{\text{total}}
                                                                                                                               \Gamma_{37}/\Gamma
VALUE (units 10^{-3}) CL\%
                                                            DOCUMENT ID
                                          EVTS
                                                          <sup>1</sup> ASNER
                                     35 \pm 13
                                                                                    09 CLEO \psi(2S) \rightarrow \gamma \eta' \eta
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                          <sup>2</sup> ADAMS
                                                                                    07 CLEO \psi(2S) \rightarrow \gamma \chi_{CO}
 < 0.5
                             90
```

 1 ASNER 09 reports $<0.25\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to\eta\eta')/\Gamma_{total}]\times[\mathrm{B}(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $\mathrm{B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value $\mathrm{B}(\psi(2S)\to\gamma\chi_{c0}(1P))=9.99\times10^{-2}.$

² Superseded by ASNER 09. ADAMS 07 reports $< 0.5 \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \to \eta \eta')/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c0}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = 9.99 \times 10^{-2}$.

 $\Gamma(\eta'\eta')/\Gamma_{\mathsf{total}}$

VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 1.96 \pm 0.20 \pm 0.05 0.4k 1 ASNER 09 CLEO $\psi(2S) \rightarrow \gamma \eta' \eta'$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $1.57\pm0.40\pm0.04$ 23 ² ADAMS 07 CLEO $\psi(2S) \rightarrow \gamma \chi_{c0}$

¹ ASNER 09 reports $(2.12\pm0.13\pm0.21)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to\eta'\eta')/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Superseded by ASNER 09. ADAMS 07 reports $(1.7 \pm 0.4 \pm 0.2) \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \to \eta' \eta')/\Gamma_{total}] \times [B(\psi(2S) \to \gamma \chi_{c0}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = 0.0922 \pm 0.0011 \pm 0.0046$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\omega\omega)/\Gamma_{\text{total}}$ Γ_{39}/Γ

 1 ABLIKIM 11K reports $(0.95\pm0.03\pm0.11)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to\omega\omega)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.62\pm0.31)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

² ABLIKIM 05N reports $[\Gamma(\chi_{c0}(1P) \rightarrow \omega\omega)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P))] = (0.212 \pm 0.053 \pm 0.037) \times 10^{-3}$ which we divide by our best value $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\omega \phi)/\Gamma_{\text{total}}$ Γ_{40}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT1.16 ± 0.21 ± 0.03761 ABLIKIM11KBES3 $\psi(2S) \rightarrow \gamma$ hadrons

 $^{^1}$ ABLIKIM 11K reports $(1.2\pm0.1\pm0.2)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to\omega\phi)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.62\pm0.31)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
\Gamma(\omega K^+ K^-)/\Gamma_{\text{total}}
                                                                                                                                   \Gamma_{41}/\Gamma
VALUE (units 10^{-3})
                                                                           13B BES3 e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c0}
                                                <sup>1</sup> ABI IKIM
1.94\pm0.06\pm0.20
                                 1.4k
    <sup>1</sup> Using 1.06 \times 10^8 \ \psi(2S) mesons and B(\psi(2S) \to \chi_{c0} \gamma) = (9.68 \pm 0.31)\%.
\Gamma(K^+K^-)/\Gamma_{\text{total}}
                                                                                                                                   \Gamma_{42}/\Gamma
VALUE (units 10^{-3})
                                                          DOCUMENT ID
5.91 ± 0.32 OUR FIT
\Gamma(K_S^0 K_S^0)/\Gamma_{\text{total}}
                                                                                                                                   \Gamma_{43}/\Gamma
VALUE (units 10^{-3})
                                                          DOCUMENT ID
3.10 ± 0.18 OUR FIT
\Gamma(K_s^0 K_s^0)/\Gamma(\pi\pi)
                                                                                                                               \Gamma_{43}/\Gamma_{32}
                                                                                           TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                    ^{1,2} CHEN
                                                                                   07B BELL e^+e^- \rightarrow e^+e^- \chi_{c0}
0.31 \pm 0.05 \pm 0.05
   ^1 Using \Gamma(\pi\pi) 	imes \Gamma(\gamma\gamma)/\Gamma_{	ext{total}} from the \pi^+\pi^- measurement of NAKAZAWA 05 rescaled
      by 3/2 to convert to \pi\pi.
    <sup>2</sup>Not independent from other measurements.
                                                                                                                               \Gamma_{43}/\Gamma_{42}
0.52 ± 0.04 OUR FIT
• • We do not use the following data for averages, fits, limits, etc. •
                                                    ^{1,2} CHEN
                                                                                  07B BELL e^+e^- \rightarrow e^+e^-\chi_{c0}
0.49 \pm 0.07 \pm 0.08
   <sup>1</sup>Using \Gamma(K^+K^-) × \Gamma(\gamma\gamma)/\Gamma_{\text{total}} from NAKAZAWA 05.
    <sup>2</sup>Not independent from other measurements.
\Gamma(\pi^+\pi^-\eta)/\Gamma_{\text{total}}
                                                                                                                                   \Gamma_{44}/\Gamma
VALUE (units 10^{-3})
                                                                                            TECN COMMENT
                                         CL%
                                                                                           CLEO \psi(2S) \rightarrow \gamma h^+ h^- h^0
                                        90
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                       <sup>2</sup> ABLIKIM
                                                                                   06R BES2 \psi(2S) 
ightarrow \gamma \chi_{c0}
                                        90
 <1.0
   ^1 ATHAR 07 reports < 0.21 \times 10 ^{-3} from a measurement of [ \Gamma(\chi_{c0}(1P) \rightarrow \pi^+\pi^-\eta)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P))] assuming B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.22 \pm 1.00)
      0.11\pm0.46)\times10^{-2}, which we rescale to our best value B(\psi(2S)\to\gamma\chi_{c0}(1P)) =
   ^2 ABLIKIM 06R reports <1.1\times10^{-3} from a measurement of [\Gamma(\chi_{c0}(1P)\to\pi^+\pi^-\eta)/\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))] assuming {\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.2\pm0.4)\times10^{-2}, which we rescale to our best value {\rm B}(\psi(2S)\to\gamma\chi_{c0}(1P))=9.99\times10^{-2}.
```

 $\Gamma(\pi^+\pi^-\eta')/\Gamma_{\text{total}}$

VALUE (units
$$10^{-3}$$
) CL% DOCUMENT ID TECN COMMENT
<0.35 90 1 ATHAR 07 CLEO $\psi(2S) \rightarrow \gamma h^+ h^- h^0$

 1 ATHAR 07 reports < 0.38 \times 10^{-3} from a measurement of $[\Gamma(\chi_{c0}(1P)\to\pi^+\pi^-\eta')/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=9.99\times10^{-2}.$

$\Gamma(\overline{K}^0K^+\pi^- + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{46}/Γ

 Γ_{45}/Γ

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<0.09	90	¹ ATHAR	07	CLEO	$\overline{\psi(2S)} \rightarrow \gamma h^+ h^- h^0$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

< 0.6		^{2,3} ABLIKIM	06 R	BES2	$\psi(2S) \rightarrow \gamma \chi_{c0}$
< 0.7	90	^{3,4} BAI	99 B	BES	$\psi(2S) \rightarrow \gamma \chi_{c0}$

 1 ATHAR 07 reports $<0.10\times10^{-3}$ from a measurement of [$\Gamma(\chi_{c0}(1P)\to\overline{K}^0\,K^+\pi^-+c.c.)/\Gamma_{total}]\times$ [$B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=9.99\times10^{-2}$.

 2 ABLIKIM 06R reports $< 0.70 \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \to \overline{K}^0 \, K^+ \pi^- + \text{ c.c.})/\Gamma_{\text{total}}] \times [B(\psi(2S) \to \gamma \chi_{c0}(1P))]$ assuming $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.2 \pm 0.4) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma \chi_{c0}(1P)) = 9.99 \times 10^{-2}$.

 3 We have multiplied the $K^0_S\,K^+\,\pi^-$ measurement by a factor of 2 to convert to $K^0\,K^+\,\pi^-$

$\Gamma(K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{47}/Γ

<i>VALUE</i> (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT
<0.06	90	¹ ATHAR	07	CLEO	$\overline{\psi(2S)} \rightarrow \gamma h^+ h^- h^0$

 $^{^1}$ ATHAR 07 reports < 0.06 \times 10 $^{-3}$ from a measurement of [$\Gamma(\chi_{c0}(1P)\to K^+K^-\pi^0)/\Gamma_{total}]\times [B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=9.99\times10^{-2}.$

$\Gamma(K^+K^-\eta)/\Gamma_{\text{total}}$

 Γ_{48}/Γ

⁴ Rescaled by us using B($\psi(2S) \to \gamma \chi_{c0}$)= (9.4 \pm 0.4)% and B($\psi(2S) \to J/\psi(1S) \pi^+ \pi^-$) = (32.6 \pm 0.5)%.

 $^{^1}$ ATHAR 07 reports < 0.24 \times 10^{-3} from a measurement of [$\Gamma(\chi_{c0}(1P)\to K^+K^-\eta)/\Gamma_{total}] \times [B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times 10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=9.99\times 10^{-2}$.

$\Gamma(K^+K^-K_S^0K_S^0)/\Gamma_{\text{total}}$			٦/و				
VALUE (units 10 ⁻³)	VTS DOCUMENT ID						
1.38±0.46±0.04 16.8±	4.8 ¹ ABLIKIM	050 BES2 $\psi(2S) ightarrow \gamma \chi_{c0}$					
$^{ m 1}$ ABLIKIM 050 reports [[$f(\chi_{c0}(1P) \rightarrow K^+K^-)$	$-\kappa_S^0 \kappa_S^0)/\Gamma_{\text{total}}] \times [B(\psi(2S))$	\rightarrow				
$\gamma \chi_{C0}(1P))] = (0.138 \pm$	$0.039 \pm 0.025) \times 10^{-3}$	which we divide by our best v . Our first error is their experime from using our best value.	alue/				
$\Gamma(K^+K^-K^+K^-)/\Gamma_{\text{total}}$		Г ₅	₀ /Γ				
<u>VALUE (units 10⁻³)</u> 2.75±0.28 OUR FIT	DOCUMENT ID	<u></u>					
2.75±0.28 OUR FIT							
$\Gamma(K^+K^-\phi)/\Gamma_{\text{total}}$			₁ /Γ				
$VALUE (units 10^{-3}) \qquad EVTS$	DOCUMENT ID	TECN COMMENT					
0.95±0.24±0.03 38		06T BES2 $\psi(2S) \rightarrow \gamma 2K^{+}2K^{+}$					
1 ABLIKIM 06T reports $(1.03\pm0.22\pm0.15)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to K^+K^-\phi)/\Gamma_{\rm total}]\times[B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.2\pm0.4)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.							
$\Gamma(\overline{K}^0K^+\pi^-\phi + \text{c.c.})/\Gamma_{\text{to}}$			₂ /Γ				
VALUE (units 10^{-3})		TECN COMMENT					
$3.68 \pm 0.30 \pm 0.50$	ABLIKIM 1	15M BES3 $\psi(2S) ightarrow \gamma \chi_{c0}$					
$\Gamma(K^+K^-\pi^0\phi)/\Gamma_{\text{total}}$		Г ₅	3/F				
VALUE (units 10 ⁻³)		TECN COMMENT					
$1.90 \pm 0.14 \pm 0.32$	ABLIKIM 1	15M BES3 $\psi(2S) \rightarrow \gamma \chi_{c0}$					
$\Gamma(\phi\pi^+\pi^-\pi^0)/\Gamma_{ ext{total}}$ VALUE (units 10^{-3}) EVTS		TECN COMMENT	4/Γ				
1.18 \pm 0.07 \pm 0.13 538 ¹ Using 1.06 \times 10 ⁸ ψ (2 <i>S</i>) m		BES3 $e^+e^- \rightarrow \psi(2S) \rightarrow \gamma $	^χ c0				
$\Gamma(\phi\phi)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-3})$ 0.77 \pm 0.07 OUR FIT	DOCUMENT ID	Г ₅ ; —	₅ /Γ				
Γ(pp̄)/Γ _{total} <u>VALUE (units 10⁻⁴)</u> 2.25±0.09 OUR FIT	DOCUMENT ID	Γ ₅	₆ /Γ				

 $\Gamma(p\overline{p}\pi^{0})/\Gamma_{\text{total}}$ Γ_{57}/Γ

VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT
0.68±0.07 OUR AVERAGE	Error includes scale f	actor o	of 1.3.	
$0.72 \pm 0.06 \pm 0.02$	$^{ m 1}$ ONYISI	10	CLE3	$\psi(2S) \rightarrow \gamma p \overline{p} X$
$0.54 \pm 0.11 \pm 0.01$	² ATHAR	07	CLEO	$\psi(2S) \rightarrow \gamma h^+ h^- h^0$

 1 ONYISI 10 reports $(7.76\pm0.37\pm0.51\pm0.39)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to p\overline{p}\pi^0)/\Gamma_{\rm total}]\times[{\sf B}(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming ${\sf B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value ${\sf B}(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. 2 ATHAR 07 reports $(0.59\pm0.10\pm0.08)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to 10^{-2})]$

² ATHAR 07 reports $(0.59 \pm 0.10 \pm 0.08) \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \rightarrow p\overline{p}\pi^0)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\eta)/\Gamma_{\text{total}}$ Γ_{58}/Γ

VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT	
0.35±0.04 OUR AVERAGE					
$0.34 \pm 0.04 \pm 0.01$	$^{ m 1}$ ONYISI	10	CLE3	$\psi(2S) \rightarrow \gamma p \overline{p} X$	
$0.36 \pm 0.11 \pm 0.01$	² ATHAR	07	CLEO	$\psi(2S) \rightarrow \gamma h^+ h^- h^0$	

¹ONYISI 10 reports $(3.73 \pm 0.38 \pm 0.28 \pm 0.19) \times 10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \to p\overline{p}\eta)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S) \to \gamma\chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \to \gamma\chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

second error is the systematic error from using our best value.
² ATHAR 07 reports $(0.39 \pm 0.11 \pm 0.04) \times 10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \rightarrow p\overline{p}\eta)/\Gamma_{total}] \times [B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow \gamma\chi_{c0}(1P)) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ Γ_{59}/Γ

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT**0.51±0.05±0.01**1 ONYISI10 CLE3 $\psi(2S) \rightarrow \gamma p \overline{p} X$

 1 ONYISI 10 reports (5.57 \pm 0.48 \pm 0.42 \pm 0.14) \times 10 $^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to p\overline{\rho}\omega)/\Gamma_{total}]\times [B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\phi)/\Gamma_{\text{total}}$ Γ_{60}/Γ

VALUE (units 10^{-5})EVTSDOCUMENT IDTECNCOMMENT**5.9±1.4±0.2**42 ± 81 ABLIKIM11FBES3 $\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$

 $^{^{1}}$ ABLIKIM 11F reports $(6.12\pm1.18\pm0.86)\times10^{-5}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to p\overline{p}\phi)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.62\pm0.31)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{61}/Γ *VALUE* (units 10^{-3}) TECN COMMENT **2.1** \pm **0.7 OUR EVALUATION** Error includes scale factor of 1.4. Treating systematic error as correlated. **2.1** \pm **1.0 OUR AVERAGE** Error includes scale factor of 2.0. $1.57 \!\pm\! 0.21 \!\pm\! 0.53$ $\psi(2S) \rightarrow \gamma \chi_{c0}$ ¹ TANENBAUM 78 MRK1 ψ (25) $\to \gamma \chi_{c0}$ $4.20\pm 1.15\pm 0.18$ ¹Rescaled by us using B($\psi(2S) \rightarrow \gamma \chi_{c0}$)= (9.4 \pm 0.4)% and B($\psi(2S) \rightarrow$ $J/\psi(1S)\pi^{+}\pi^{-}) = (32.6 \pm 0.5)\%.$ $\Gamma(p\overline{p}\pi^0\pi^0)/\Gamma_{\text{total}}$

 $0.102 \pm 0.027 \pm 0.003$ 39.5

 1 HE 08B reports 0.11 \pm 0.02 \pm 0.02 \pm 0.01 % from a measurement of [$\Gamma(\chi_{c0}(1P)
ightarrow$ $p \overline{p} \pi^0 \pi^0 / \Gamma_{\mathsf{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c0}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c0}(1P)) = 0$ $(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value B($\psi(2S)\to\gamma\chi_{c0}(1P)$) $= (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p}K^+K^-(non-resonant))/\Gamma_{total}$

DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) 11F BES3 $\psi(2S) \rightarrow \gamma p \overline{p} K^+ K^-$ 48 ± 8 ¹ ABLIKIM $1.19 \pm 0.26 \pm 0.03$

 1 ABLIKIM 11F reports $(1.24\pm0.20\pm0.18)\times10^{-4}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to 0.18)\times10^{-4}]$ $p\overline{p}K^+K^-$ (non-resonant))/ Γ_{total}] \times [B($\psi(2S) \to \gamma \chi_{c0}(1P)$)] assuming B($\psi(2S) \to \gamma \chi_{c0}(1P)$) = (9.62 \pm 0.31) \times 10⁻², which we rescale to our best value B($\psi(2S) \to \gamma \chi_{c0}(1P)$) $\gamma \chi_{c0}(1P) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\overline{p}K_S^0K_S^0)/\Gamma_{\text{total}}$

 Γ_{64}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<8.8	90	¹ ABLIKIM	06 D	BES2	$\psi(2S) \rightarrow \chi_{c0} \gamma$
1 Using $B(\psi(2S))$	$(x, x, \infty) =$	$(9.2 \pm 0.5)\%$			

$\Gamma(p\overline{n}\pi^-)/\Gamma_{\text{total}}$

 Γ_{65}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
12.4±1.1 OUR AVER	RAGE				
$12.6\!\pm\!1.1\!\pm\!0.3$	5150	$^{ m 1}$ ABLIKIM	12 J	BES3	$\psi(2S) \rightarrow \gamma p \overline{n} \pi^-$
$11.0 \pm 3.0 \pm 0.3$		² ABLIKIM	061	BFS2	$\psi(2S) \rightarrow \gamma p \pi^{-} X$

¹ ABLIKIM 12J reports $[\Gamma(\chi_{c0}(1P) \to p\overline{n}\pi^-)/\Gamma_{total}] \times [B(\psi(2S) \to \gamma\chi_{c0}(1P))] = (1.26 \pm 0.02 \pm 0.11) \times 10^{-4}$ which we divide by our best value $B(\psi(2S) \to \gamma\chi_{c0}(1P))$ $= (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^2}$ ABLIKIM 06I reports $[\Gamma(\chi_{c0}(1P)
ightarrow \ p \overline{n} \pi^-)/\Gamma_{ ext{total}}] imes [B(\psi(2S)
ightarrow \ \gamma \chi_{c0}(1P))] = 0$ $(1.10\pm0.24\pm0.18) imes 10^{-4}$ which we divide by our best value B($\psi(2S)
ightarrow \gamma \chi_{c0}(1P)$) $= (9.99 \pm 0.27) imes 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(\overline{p}n\pi^+)/\Gamma_{\text{total}}$ Γ_{66}/Γ VALUE (units 10^{-4}) 12J BES3 $\psi(2S) \rightarrow \gamma \overline{p} n \pi^+$ $13.4 \pm 1.1 \pm 0.4$ 5808 $^{1}\text{ABLIKIM 12J reports} \ [\Gamma\big(\chi_{c0}(1P) \to \ \overline{p}n\pi^{+}\big)/\Gamma_{\text{total}}] \times [\mathrm{B}(\psi(2S) \to \ \gamma\chi_{c0}(1P))] =$ $(1.34 \pm 0.03 \pm 0.11) \times 10^{-4}$ which we divide by our best value B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) = (9.99 \pm 0.27) imes 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(p\overline{n}\pi^-\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 12J BES3 $\psi(2S) \rightarrow \gamma p \overline{n} \pi^- \pi^0$ 2480 $22.9 \pm 2.0 \pm 0.6$ $^{1}\,\text{ABLIKIM 12J reports}\,[\Gamma\big(\chi_{c0}(1P)\to\ p\,\overline{n}\pi^{-}\pi^{0}\big)/\Gamma_{\text{total}}]\times[\mathsf{B}(\psi(2S)\to\ \gamma\chi_{c0}(1P))]=$ $(2.29 \pm 0.08 \pm 0.18) \times 10^{-4}$ which we divide by our best value B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) $= (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\overline{p}n\pi^{+}\pi^{0})/\Gamma_{\text{total}}$ Γ_{68}/Γ VALUE (units 10⁻⁴) DOCUMENT ID TECN COMMENT **EVTS** 12J BES3 $\psi(2S) \rightarrow \gamma \overline{p} n \pi^+ \pi^0$ ¹ ABLIKIM $21.6 \pm 1.7 \pm 0.6$ 1 ABLIKIM 12J reports $[\Gamma(\chi_{c0}(1P)
ightarrow \overline{p} n \pi^+ \pi^0) / \Gamma_{total}] imes [B(\psi(2S)
ightarrow \gamma \chi_{c0}(1P))] = 0$ $(2.16\pm0.07\pm0.16)\times10^{-4}$ which we divide by our best value B($\psi(2S)\to\gamma\chi_{c0}(1P)$) $= (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$ Γ_{69}/Γ VALUE (units 10^{-4}) DOCUMENT ID 3.21 ± 0.25 OUR FIT $\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}}$ Γ_{70}/Γ VALUE (units 10^{-5}) CL% EVTS¹ ABLIKIM 12I BES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^ 115 \pm 12 \pm 3$ 426 • • • We do not use the following data for averages, fits, limits, etc. • • • ² ABLIKIM <400 06D BES2 $\psi(2S) \rightarrow \chi_{c0} \gamma$ ¹ ABLIKIM 12I reports (119.0 \pm 6.4 \pm 11.4) \times 10⁻⁵ from a measurement of [$\Gamma(\chi_{c0}(1P) \rightarrow$ $\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{total}} \times [B(\psi(2S) \to \gamma \chi_{c0}(1P))] \text{ assuming } B(\psi(2S) \to \gamma \chi_{c0}(1P)) = 0$ $(9.68 \pm 0.31) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) = $(9.99 \pm 0.27) imes 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Using B($\psi(2S) \rightarrow \chi_{c0} \gamma$) = (9.2 ± 0.5)% $\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^- \text{(non-resonant)})/\Gamma_{\text{total}}$ Γ_{71}/Γ VALUE (units 10^{-5})

Created: 5/30/2017 17:21

 1 ABLIKIM 12I BES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi$ <50 1 ABLIKIM 12I reports < 54 imes 10 $^{-5}$ from a measurement of $[\Gamma(\chi_{c0}(1P)$ ightarrow $\Lambda \overline{\Lambda} \pi^+ \pi^- \text{(non-resonant)})/\Gamma_{\text{total}} \times [\mathsf{B}(\psi(2S) \to \gamma \chi_{c0}(1P))] \text{ assuming } \mathsf{B}(\psi(2S) \to \gamma \chi_{c0}(1P))$ $\gamma \chi_{c0}(1P)) = (9.68 \pm 0.31) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow$ $\gamma \chi_{c0}(1P) = 9.99 \times 10^{-2}$.

$\Gamma(\Sigma(1385)^{+}\overline{\Lambda}\pi^{-}+\text{c.c.})/\Gamma_{\text{total}}$

 Γ_{72}/Γ

$\Gamma(\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.})/\Gamma_{\text{total}}$

 Γ_{73}/Γ

VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		IECN	COMMENT
<50	90	1 ABLIKIM	121	BES3	$\overline{\psi(2S)} \rightarrow \gamma \Sigma (1385)^{-} \overline{\Lambda} \pi^{+}$
¹ ABLIKIM 121	reports	$<$ 50 \times 10 ⁻⁵	from	a meas	surement of $[\Gamma(\chi_{c0}(1P) \rightarrow$
Σ (1385) $^-\overline{\Lambda}\pi^+$	+ c.c.)	$/\Gamma_{total}] \times [B(\psi)]$	2 <i>S</i>) →	$\gamma \chi_{c0}$	(1P))] assuming $B(\psi(2S) \to$
			ich we	rescale	to our best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c0}(1P)) = 9$	9.99×10^{-1}	0^{-2} .			

$\Gamma(K^{+}\overline{p}\Lambda + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{74}/Γ

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT1.22 ± 0.12 OUR AVERAGEError includes scale factor of 1.3. $1.28 \pm 0.09 \pm 0.03$ 9k 1,2 ABLIKIM13DBES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\rho} K^+$ $0.99 \pm 0.19 \pm 0.03$ 3 ATHAR07CLEO $\psi(2S) \rightarrow \gamma h^+ h^- h^0$

 1 ABLIKIM 13D reports $(1.32\pm0.03\pm0.10)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to K^{+}\overline{p}\Lambda + \text{c.c.})/\Gamma_{\text{total}}]\times[B(\psi(2S)\to \gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.68\pm0.31)\times10^{-2},$ which we rescale to our best value $B(\psi(2S)\to \gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Using B($\Lambda \rightarrow p\pi^-$) = 63.9%.

³ ATHAR 07 reports $(1.07\pm0.17\pm0.12)\times10^{-3}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to K^+\overline{p}\Lambda+\text{c.c.})/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.99\pm0.27)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K^+\overline{p}\Lambda(1520) + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{75}/Γ

Created: 5/30/2017 17:21

$\Gamma\big(\varLambda(1520)\overline{\varLambda}(1520)\big)/\Gamma_{\mathsf{total}}$

 Γ_{76}/Γ

VALUE (units 10 ')	EVIS	DOCUMENT IL	<u> </u>	ECN	COMMENT	
$3.1 \pm 1.2 \pm 0.1$	28 ± 10	$^{ m 1}$ ABLIKIM	11F B	ES3	ψ (2 S) $ ightarrow$	$\gamma p \overline{p} K^+ K^-$
¹ ABLIKIM 11F						
$[\Gamma(\chi_{c0}(1P) \rightarrow$	$\Lambda(1520)\overline{\Lambda}($	1520))/ Γ_{total}] ×	$E[B(\psi(2S))]$	5) →	$\gamma \chi_{c0}(1P)$))] assuming
		$(9.62\pm0.31)\times1$				
$B(\psi(2S) \rightarrow \gamma \chi)$	$\zeta_{C0}(1P)) = ($	$9.99 \pm 0.27) \times 10^{-2}$	0^{-2} . Our	first e	rror is their	experiment's
error and our se	cond error is	the systematic err	or from 11	sing AI	ir hest value	e

 $\Gamma\big(\Sigma^0\,\overline{\Sigma}{}^0\big)/\Gamma_{total}$

 Γ_{77}/Γ

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					•
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
4.4±0.4 OUR AVER	AGE	-			
$4.6\!\pm\!0.5\!\pm\!0.1$	243	¹ ABLIKIM			$\psi(2S) \rightarrow \gamma \Sigma^{0} \overline{\Sigma}^{0}$
$4.1\!\pm\!0.6\!\pm\!0.1$	78 ± 10	² NAIK	80	CLEO	$\psi(2S) \rightarrow \gamma \Sigma^{0} \overline{\Sigma}^{0}$
¹ ABLIKIM 13H rep	orts (4.78 \pm 0	$.34 \pm 0.39) \times 10^{-4}$	from :	a measui	rement of $[\Gamma(\chi_{c0}(1P) ightarrow$
					$(2S) \rightarrow \gamma \chi_{c0}(1P)) =$
$(9.62\pm0.31) imes 3$	10^{-2} , which	we rescale to our	best v	alue B(y	$\psi(2S) \to \gamma \chi_{c0}(1P)) =$
$(9.99 \pm 0.27) \times 1$	$.0^{-2}$. Our fire	st error is their ex	perime	nt's erro	r and our second error is
the systematic er	ror from using	g our best value.			
² NAIK 08 reports	(4.41 ± 0.56)	$\pm 0.47) \times 10^{-4}$	from a	measure	ement of $[\Gamma(\chi_{c0}(1P) ightarrow$
$\Sigma^0 \overline{\Sigma}{}^0) / \Gamma_{total}]$	\times [B(ψ (2 S)	$\rightarrow \gamma \chi_{c0}(1P))]$	assumi	ing B(ψ	$(2S) \rightarrow \gamma \chi_{c0}(1P)) =$
$(9.22 \pm 0.11 \pm 0.4)$	$16) imes 10^{-2}$, w	hich we rescale to	our be	st value	$B(\psi(2S) \rightarrow \gamma \chi_{c0}(1P))$
$= (9.99 \pm 0.27)$	$ imes 10^{-2}$. Our	first error is their	experir	ment's e	rror and our second error
is the systematic	error from us	ing our best value			

$\Gamma\big(\Sigma^{+}\overline{\Sigma}^{-}\big)/\Gamma_{total}$

 Γ_{78}/Γ

VALUE (units 10^{-4})	<i>EVTS</i>	DOCUMENT ID		CN	COMMENT
3.9±0.7 OUR AVERAC	GE Error in	ncludes scale fact	or of 1.7.		
$4.4\!\pm\!0.5\!\pm\!0.1$	148	¹ ABLIKIM			$\psi(2S) \rightarrow \gamma \Sigma^{+} \overline{\Sigma}^{-}$
$3.0\pm0.6\pm0.1$	39 ± 7	² NAIK	08 CL	_EO	$\psi(2S) \rightarrow \gamma \Sigma^{+} \overline{\Sigma}^{-}$
¹ ABLIKIM 13H repor	ts (4.54 \pm 0	$.42 \pm 0.30) \times 10^{-}$	⁴ from a m	easur	ement of $[\Gamma(\chi_{c0}(1P) ightarrow$
$\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}]$ >	$E[B(\psi(2S)$	$\rightarrow \gamma \chi_{c0}(1P)$	assuming	$B(\psi$	$(2S) \rightarrow \gamma \chi_{c0}(1P)) =$
					$\gamma(2S) \to \gamma \chi_{c0}(1P)) =$
$(9.99 \pm 0.27) \times 10^{-5}$	$^{-2}$. Our firs	st error is their ex	kperiment's	s erro	r and our second error is
the systematic error	r from using	our best value.			
² NAIK 08 reports (3	0.25 ± 0.57	$\pm 0.43) \times 10^{-4}$	from a me	easure	ement of $[\Gamma(\chi_{c0}(1P) ightarrow$
$\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}]$ $ imes$	$\in [B(\psi(2S))]$	$\rightarrow \gamma \chi_{c0}(1P)$	assuming	$B(\psi$	$(2S) \rightarrow \gamma \chi_{c0}(1P)) =$
					$B(\psi(2S) \to \gamma \chi_{c0}(1P))$
				ıt's er	ror and our second error
is the systematic er	ror from usi	ng our best valu	e.		

$\Gamma\big(\boldsymbol{\varSigma}(1385)^{+}\,\overline{\boldsymbol{\varSigma}}(1385)^{-}\big)/\Gamma_{total}$

 Γ_{79}/Γ

*	,				
<i>VALUE</i> (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
$15.9 \pm 5.7 \pm 0.4$	27	$^{ m 1}$ ABLIKIM	121	BES3	$\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda} \pi^+ \pi^-$
¹ ABLIKIM 121 reports	s (16.4 ±	$5.7 \pm 1.6) \times 10^{-5}$	from	a measu	rement of $[\Gamma(\chi_{c0}(1P) ightarrow$
)] assuming $B(\psi(2\mathcal{S}) ightarrow$
$\gamma \chi_{c0}(1P)) = (9.68$	\pm 0.31)	\times 10 ⁻² , which w	e resc	ale to ou	ur best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c0}(1P)) = (9.99$	\pm 0.27)	$ imes$ 10^{-2} . Our first	error	is their e	experiment's error and our
second error is the sy	/stematio	error from using	our be	st value.	

$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+})/\Gamma_{\text{total}}$

VALUE (units 10^{-5})

 Γ_{80}/Γ

23±6±1	33	¹ ABLIKIM	121	BES3	$\overline{\psi(2S)} ightarrow$	$\gamma \Lambda \overline{\Lambda} \pi^+ \pi^-$
¹ ABLIKIM 121 reports	s (23.5 ±	$6.2 \pm 2.3) \times 10^{-5}$	from	a measu	rement of [$\Gamma(\chi_{c0}(1P) \rightarrow$
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{-}$						
$\gamma \chi_{c0}(1P)) = (9.68)$	$\pm 0.31)$	\times 10 ⁻² , which w	e resc	ale to οι	ır best valu	e B(ψ (2 S) \rightarrow

second error is the systematic error from using our best value.

 $\gamma \chi_{c0}(1P) = (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our

DOCUMENT ID

TECN

COMMENT

 $\Gamma(K^- \Lambda \overline{\Xi}^+ + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{81}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.90 \pm 0.34 \pm 0.05$	57	¹ ABLIKIM	151	BES3	$\psi(2S) \rightarrow \gamma K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$
					c.c.)/ Γ_{total}] \times [B($\psi(2S)$ \rightarrow
					e by our best value B $(\psi(2S) ightarrow$
$\gamma \chi_{c0}(1P)) =$	(9.99 ± 0)	$0.27) imes 10^{-2}$. Our	first e	rror is th	neir experiment's error and our
second error is	the syste	matic error from u	sing ou	ır best v	alue.

 $\Gamma(\Xi^0\overline{\Xi}{}^0)/\Gamma_{total}$

 Γ_{82}/Γ

VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
3.1±0.8±0.1	23.3 ± 4.9	¹ NAIK	08	CLEO	$\psi(2S) \rightarrow \gamma \overline{\Xi}^0 \overline{\Xi}^0$
1					_ ,

 1 NAIK 08 reports (3.34 \pm 0.70 \pm 0.48) \times 10 $^{-4}$ from a measurement of [$\Gamma(\chi_{c0}(1P) \rightarrow$ $\overline{\Xi}{}^0\overline{\Xi}{}^0)/\Gamma_{\mathsf{total}}] \ \times \ [\mathsf{B}(\psi(2S) \ \to \ \gamma\chi_{\boldsymbol{c}0}(1P))] \ \text{assuming} \ \mathsf{B}(\psi(2S) \ \to \ \gamma\chi_{\boldsymbol{c}0}(1P)) = 0$ $(9.22\pm0.11\pm0.46)\times10^{-2}$, which we rescale to our best value B $(\psi(2S)\to\gamma\chi_{c0}(1P))$ $= (9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^{-}\overline{\Xi}^{+})/\Gamma_{\text{total}}$

 Γ_{83}/Γ

VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT	ID	TECN	COMMENT	
4.7±0.7±0.1	95 =	⊢ 11	¹ NAIK	08	CLEO	$\overline{\psi(2S)} ightarrow$	$\gamma \Xi^{+} \overline{\Xi}^{-}$
14/ 1 .				C	•		

• • • We do not use the following data for averages, fits, limits, etc. • • •

<10.3 90
2
 ABLIKIM 06D BES2 $\psi(2S) \rightarrow \chi_{c0} \gamma$

 1 NAIK 08 reports (5.14 \pm 0.60 \pm 0.47) \times 10^{-4} from a measurement of [Γ($\chi_{C0}(1P)$ \rightarrow $\Xi^-\overline{\Xi}^+)/\Gamma_{\mathrm{total}}] \times [\mathrm{B}(\psi(2S) \to \gamma \chi_{c0}(1P))]$ assuming $\mathrm{B}(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.22 \pm 0.11 \pm 0.46) \times 10^{-2}$, which we rescale to our best value $\mathrm{B}(\psi(2S) \to \gamma \chi_{c0}(1P))$ = $(9.99 \pm 0.27) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\eta_c \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{84}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<7\times10^{-4}$	90	1,2 ABLIKIM	13 B	BES3	$e^+e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c0}$
• • • We do not u	se the f	ollowing data for ave	erages	, fits, lin	nits, etc. • • •

$$<$$
41 $imes$ 10 $^{-4}$ 90 1,3 ABLIKIM 13B BES3 $^{+}$ e $^{-}$ \rightarrow ψ (2 S) \rightarrow $\gamma\chi_{c0}$

² Using B($\psi(2S) \to \chi_{c0} \gamma$) = (9.2 ± 0.5)%

 $^{^{1}}$ Using 1.06 \times 10 8 $\,\psi(2S)\,$ mesons and B($\psi(2S)\rightarrow\,\,\chi_{c0}\gamma)=$ (9.68 \pm 0.31)%.

 $^{^2 \, {\}rm From \ the} \ \eta_{\it C} \rightarrow \ {\it K}_{\it S}^{\ 0} \, {\it K}^{\pm} \pi^{\mp} \ {\rm decays}.$

³ From the $\eta_c \rightarrow \kappa^+ \kappa^- \pi^0$ decays.

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\pi\pi)/\Gamma_{\text{total}}$			$\Gamma_{56}/\Gamma imes \Gamma_{32}/\Gamma$
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
18.8±1.2 OUR FIT	1	F025	_ 0 0
15.3±2.4±0.8			$\overline{p}p \rightarrow \chi_{c0} \rightarrow \pi^0 \pi^0$
¹ We have multiplied $B(p\overline{p}) \cdot B(\pi^0)$	$^{\sigma}\pi^{o}$) measurement	by 3 to obt	cain $B(p\overline{p})\cdot B(\pi\pi)$.
$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\pi^0\eta)/\Gamma_{\text{total}}$	nl		$\Gamma_{56}/\Gamma imes \Gamma_{33}/\Gamma$
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
<0.4	ANDREOTTI (05C E835	$\overline{p}p \rightarrow \pi^0 \eta$
$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\pi^0\eta')/\Gamma_{\text{tot}}$	al		$\Gamma_{56}/\Gamma imes \Gamma_{34}/\Gamma$
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
<2.5	ANDREOTTI (05C E835	$\overline{p}p \rightarrow \pi^0 \eta$
$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\eta\eta)/\Gamma_{\text{total}}$			$\Gamma_{56}/\Gamma \times \Gamma_{36}/\Gamma$
$VALUE (units 10^{-7})$	DOCUMENT ID	TECN	COMMENT
6.6±0.5 OUR FIT			
$4.0\pm1.2^{+0.5}_{-0.3}$	ANDREOTTI (05C E835	$\overline{p}p \rightarrow \eta \eta$
$\Gamma(\rho \overline{\rho})/\Gamma_{\text{total}} \times \Gamma(\eta \eta')/\Gamma_{\text{total}}$			$\Gamma_{56}/\Gamma \times \Gamma_{37}/\Gamma$
VALUE (units 10 ⁻⁶)		TECN	30,
• • We do not use the following			
$2.1^{+2.3}_{-1.5}$	ANDREOTTI (05C E835	$\overline{p} p \rightarrow \pi^0 \eta$
R/	ADIATIVE DEC	AYS —	
$\Gamma(\gamma J/\psi(1S))/\Gamma_{total}$			Γ ₈₅ /Γ
,	OCUMENT ID	TECN CO	MMENT
127± 6 OUR FIT			
• • We do not use the following			
\bullet \bullet We do not use the following $200\pm20\pm20$	DAM 05A	CLEO e ⁺	$e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c0}$
• • • We do not use the following	DAM 05A	CLEO e ⁺	$e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c0}$
• • • We do not use the following $200\pm20\pm20$ 1 A 1 Uses B $(\psi(2S) ightarrow \gamma \chi_{c0} ightarrow \gamma$	DAM 05A	CLEO e ⁺	$e^- \rightarrow \psi(2S) \rightarrow \gamma \chi_{c0}$
• • • We do not use the following $200\pm20\pm20$ 1 Al 1 Uses B($\psi(2S) \to \gamma \chi_{c0} \to \gamma$ ATHAR 04. $\Gamma(\gamma \rho^0)/\Gamma_{total}$	DAM 05A $\gamma J/\psi)$ from ADAI	CLEO e^+ M 05A and	$e^- o \psi(2S) o \gamma \chi_{c0}$ B $(\psi(2S) o \gamma \chi_{c0})$ from Γ_{86}/Γ
• • • We do not use the following $200\pm20\pm20$	DAM 05A $\gamma J/\psi)$ from ADAI $\frac{DOCUMENT\ IL}{1}$ BENNETT	CLEO e ⁺ M 05A and D TEC 08A CL	$e^- ightarrow \psi(2S) ightarrow \gamma \chi_{c0}$ $\mathrm{B}(\psi(2S) ightarrow \gamma \chi_{c0})$ from $\mathrm{F86/F}$ $\mathrm{EN} \frac{\mathrm{COMMENT}}{\psi(2S) ightarrow \gamma \gamma ho^0}$
• • • We do not use the following $200\pm20\pm20$	DAM 05A $\gamma J/\psi$) from ADAI $\frac{DOCUMENT\ IL}{1\ BENNETT}$ data for averages,	CLEO e ⁺ M 05A and D TEC 08A CL fits, limits,	$e^- ightarrow \psi(2S) ightarrow \gamma \chi_{c0}$ $\mathrm{B}(\psi(2S) ightarrow \gamma \chi_{c0})$ from Γ_{86}/Γ Γ_{86}/Γ $\Gamma_{80} \sim \Gamma_{80} \sim \Gamma_{80} \sim \Gamma_{80}$ $\Gamma_{80} \sim \Gamma_{80} \sim \Gamma_{80$
• • • We do not use the following $200\pm20\pm20$	DAM 05A $\gamma J/\psi$) from ADAI $\frac{DOCUMENT\ IL}{1}$ BENNETT data for averages, $\frac{2}{4}$ ABLIKIM	CLEO e ⁺ M 05A and D TEC 08A CLI fits, limits, c	$e^- ightarrow \psi(2S) ightarrow \gamma \chi_{c0}$ $\mathrm{B}(\psi(2S) ightarrow \gamma \chi_{c0})$ from $\mathrm{F86/\Gamma}$ EO $\frac{\mathrm{COMMENT}}{\psi(2S) ightarrow \gamma \gamma \rho^0}$ etc. $\bullet \bullet$
• • • We do not use the following $200\pm20\pm20$	DAM 05A $\gamma J/\psi$) from ADAI $\frac{DOCUMENT}{1}$ BENNETT data for averages, $\frac{2}{4}$ ABLIKIM \times 10 ⁻⁶ from a me (P))] assuming B(ψ	CLEO e^+ M 05A and e^+ 0 e^+ 08A CLI fits, limits, e^+ 11E BE assurement e^+ e^+ e^+ e^+ e^+ e^+	$\begin{array}{ccc} \mathbf{Fe}^- & \psi(2S) \to \gamma \chi_{c0} \\ \mathbf{Fg}(\psi(2S) \to \gamma \chi_{c0}) \text{ from} \\ & & \mathbf{Fg6/F} \\ \hline \mathbf{Fg}(\Sigma) & & \underline{\mathbf{Fg}}(\Sigma) & \underline{\mathbf{Fg}}(\Sigma) \\ \mathbf{Fg}(\Sigma) & & \underline{\mathbf{Fg}}(\Sigma) \\ \mathbf$
• • • We do not use the following $200\pm20\pm20$	DAM 05A $\gamma J/\psi$) from ADAI $\frac{DOCUMENT\ IE}{1}$ BENNETT data for averages, $\frac{2}{4}$ ABLIKIM \times 10 ⁻⁶ from a me $\frac{1}{4}$ P())] assuming B($\frac{1}{4}$ best value B($\frac{1}{4}$ (2S) \times 10 ⁻⁶ from a me $\frac{1}{4}$ P())] assuming B($\frac{1}{4}$) assuming B($\frac{1}{4}$) assuming B($\frac{1}{4}$) assuming B($\frac{1}{4}$)	CLEO e^+ M 05A and 0 08A CLI fits, limits, 0 11E BE assurement of 0 $0 > 0 > 0$ assurement of $0 > 0$	$\begin{array}{ccc} \text{Fe}^- & \psi(2S) \rightarrow \gamma \chi_{c0} \\ \text{B}(\psi(2S) \rightarrow \gamma \chi_{c0}) \text{ from} \\ & & & & & & \\ \hline \textbf{F86/F} \\ \hline \frac{\text{CN}}{\text{EO}} & \frac{\text{COMMENT}}{\psi(2S) \rightarrow \gamma \gamma \rho^0} \\ \text{etc.} & \bullet & \bullet \\ \text{S3} & \psi(2S) \rightarrow \gamma \gamma \rho^0 \\ \text{of} & [\Gamma(\chi_{c0}(1P) \rightarrow \gamma \rho^0)/\chi_{c0}(1P)) = (9.2 \pm 0.4) \times \\ \chi_{c0}(1P) = 9.99 \times 10^{-2}. \\ \text{of} & [\Gamma(\chi_{c0}(1P) \rightarrow \gamma \rho^0)/\chi_{c0}(1P)] = (9.62 \pm 0.31) \times \\ \end{array}$

 $\mathsf{HTTP://PDG.LBL.GOV} \qquad \qquad \mathsf{Page}\ 24 \qquad \qquad \mathsf{Created:}\ 5/30/2017\ 17{:}21$

 $\Gamma(\gamma\omega)/\Gamma_{\text{total}}$ Γ_{87}/Γ *VALUE* (units 10^{-6}) CL% ¹ BENNETT 90 0.0 ± 2.8 08A CLEO $\psi(2S) \rightarrow \gamma \gamma \omega$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² ABLIKIM 11E BES3 $\psi(2S) \rightarrow \gamma \gamma \omega$ 90 5 ± 11 1 BENNETT 08A reports $<8.8\times10^{-6}$ from a measurement of $[\Gamma(\chi_{\rm C0}(1P)\to~\gamma\omega)/~\Gamma_{\rm total}]\times[{\rm B}(\psi(2S)\to~\gamma\chi_{\rm C0}(1P))]$ assuming ${\rm B}(\psi(2S)\to~\gamma\chi_{\rm C0}(1P))=(9.2\pm0.4)\times10^{-6}$ 10^{-2} , which we rescale to our best value B $(\psi(2S)
ightarrow \gamma \chi_{c0}(1P)) = 9.99 imes 10^{-2}$. ² ABLIKIM 11E reports $< 12.9 \times 10^{-6}$ from a measurement of $[\Gamma(\chi_{c0}(1P) \to \gamma \omega)/\Gamma_{total}]$ imes [B($\psi(2S)
ightarrow ~\gamma \chi_{c0}(1P)$)] assuming B($\psi(2S)
ightarrow ~\gamma \chi_{c0}(1P)$) = (9.62 \pm 0.31) imes 10 $^{-2}$ which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) = 9.99 × 10⁻². $\Gamma(\gamma\phi)/\Gamma_{\text{total}}$ Γ_{88}/Γ VALUE (units 10^{-6}) TECN COMMENT ¹ BENNETT 0.1 ± 1.6 08A CLEO $\psi(2S) \rightarrow \gamma \gamma \phi$ • • • We do not use the following data for averages, fits, limits, etc. • • • 15 ± 7 ² ABLIKIM 11E BES3 $\psi(2S) \rightarrow \gamma \gamma \phi$ ¹BENNETT 08A reports $<6.4\times10^{-6}$ from a measurement of $[\Gamma(\chi_{c0}(1P)\to\gamma\phi)/\Gamma_{total}]\times[B(\psi(2S)\to\gamma\chi_{c0}(1P))]$ assuming $B(\psi(2S)\to\gamma\chi_{c0}(1P))=(9.2\pm0.4)\times10^{-2}$ 10^{-2} , which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) = 9.99×10^{-2} . 2 ABLIKIM 11E reports $< 16.2 \times 10^{-6}$ from a measurement of $[\Gamma(\chi_{c0}(1P) o \gamma \phi)/\Gamma_{total}]$ \times [B($\psi(2S) \to \gamma \chi_{c0}(1P)$)] assuming B($\psi(2S) \to \gamma \chi_{c0}(1P)$) = $(9.62 \pm 0.31) \times 10^{-2}$, which we rescale to our best value B($\psi(2S) \rightarrow \gamma \chi_{C0}(1P)$) = 9.99 × 10⁻². $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ Γ_{89}/Γ VALUE (units 10^{-4}) 2.23 ± 0.13 OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • • 08 BELL $B^{\pm} \rightarrow K^{\pm} \gamma \gamma$ ¹ WICHT <7 1 WICHT 08 reports $[\Gamma(\chi_{c0}(1P)\rightarrow~\gamma\gamma)/\Gamma_{total}]\times[\mathrm{B}(B^{+}\rightarrow~\chi_{c0}\,K^{+})]<~0.11\times10^{-6}$ which we divide by our best value B($B^+ \rightarrow \chi_{c0} K^+$) = 1.50 × 10⁻⁴. $\Gamma(\gamma\gamma)/\Gamma(\gamma J/\psi(1S))$ Γ_{89}/Γ_{85} VALUE (units 10^{-2}) DOCUMENT ID COMMENT TECN 1.76±0.13 OUR FIT 2.0 ± 0.4 OUR AVERAGE $2.2 \pm 0.4 \, ^{+0.1}_{-0.2}$ ¹ ANDREOTTI 04 E835 $p\overline{p} \rightarrow \chi_{c0} \rightarrow \gamma\gamma$ ² AMBROGIANI 00B E835 1.45 ± 0.74 $\overline{p}p \rightarrow \chi_{C2} \rightarrow \gamma \gamma, \gamma J/\psi$

¹ The values of B($p\bar{p}$)B($\gamma\gamma$) and B($\gamma\gamma$)B($\gamma J/\psi$) measured by ANDREOTTI 04 are not independent. The latter is used in the fit because of smaller systematics.

² Calculated by us using B($J/\psi(1S) \rightarrow e^{+}e^{-}$) = 0.0593 ± 0.0010.

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$

 $\Gamma_{56}/\Gamma \times \Gamma_{85}/\Gamma$

VALUE (units 10⁻⁷) EVTS DOCUMENT ID TECN COMMENT

28.5±1.6 OUR FIT 28.2±2.1 OUR AVERAGE

28.0 \pm 1.9 \pm 1.3 392 ^{1,2,3} BAGNASCO 02 E835 $\overline{p}p \rightarrow \chi_{c0} \rightarrow J/\psi \gamma$ 29.3 $^{+5.7}_{-4.7}\pm$ 1.5 89 ^{1,2} AMBROGIANI 99B $\overline{p}p \rightarrow \chi_{c0} \rightarrow J/\psi \gamma$

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$

 $\Gamma_{56}/\Gamma \times \Gamma_{89}/\Gamma$

VALUE (units 10⁻⁸) DOCUMENT ID TECN COMMENT

5.0 ±0.4 OUR FIT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $6.52 \pm 1.18 ^{+0.48}_{-0.72}$

 1 ANDREOTTI 04 E835 $p\overline{p}
ightarrow \chi_{c0}
ightarrow \gamma \gamma$

$\chi_{c0}(1P)$ CROSS-PARTICLE BRANCHING RATIOS

$\Gamma(\chi_{c0}(1P) \to p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma\chi_{c0}(1P))/\Gamma_{\text{total}}$

 $\Gamma_{56}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}$

<u>VALUE (units 10^{−6})</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **22.5±0.9 OUR FIT**

23.7±1.0 OUR AVERAGE

$$\begin{split} \Gamma\big(\chi_{c0}(1P) \to \rho \overline{\rho}\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(\psi(2S) \to \gamma \chi_{c0}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S) \pi^+ \pi^-\big) & \Gamma_{56}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

VALUE (units 10⁻⁵) DOCUMENT ID TECN COMMENT

6.53±0.27 OUR FIT

 1 BAI

98I BES $\psi(2S)
ightarrow \gamma \chi_{c0}
ightarrow \gamma \overline{p} p$

¹ Values in $(\Gamma(p\overline{p}) \times \Gamma(\gamma J/\psi(1S))/\Gamma_{total})$ and $(\Gamma(p\overline{p})/\Gamma_{total} \times \Gamma(\gamma J/\psi(1S))/\Gamma_{total})$ are not independent. The latter is used in the fit since it is less correlated to the total width.

² Calculated by us using B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0593 \pm 0.0010.

³ Recalculated by ANDREOTTI 05A.

¹ The values of B($p\bar{p}$)B($\gamma\gamma$) and B($\gamma\gamma$)B($\gamma J/\psi$) measured by ANDREOTTI 04 are not independent. The latter is used in the fit because of smaller systematics.

 $^{^{1}}$ Calculated by us. NAIK 08 reports B($\chi_{c0} \to p \overline{p}) = (25.7 \pm 1.5 \pm 1.5 \pm 1.3) \times 10^{-5}$ using B($\psi(2S) \to \gamma \chi_{c0}) = (9.22 \pm 0.11 \pm 0.46)\%$.

¹ Calculated by us. The value for B($\chi_{c0} \rightarrow p\overline{p}$) reported in BAI 98I is derived using B($\psi(2S) \rightarrow \gamma \chi_{c0}$) = (9.3 ± 0.8)% and B($\psi(2S) \rightarrow J/\psi(1S) \pi^+ \pi^-$) = (32.4 ± 2.6)% [BAI 98D].

$\Gamma(\chi_{c0}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma_{total}$ $\Gamma_{69}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}$

32.0 ± 2.3 OUR FIT 31.7±2.3 OUR AVERAGE

 $32.0 \pm 1.9 \pm 2.2$

VALUE (units 10^{-6})

369 $31.2 \pm 3.3 \pm 2.0$ $131\pm12\,$ ¹ ABLIKIM

13H BES3 $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda}$ 08 CLEO $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda}$

TECN COMMENT

¹ Calculated by us. ABLIKIM 13H reports B($\chi_{c0} \to \Lambda \overline{\Lambda}$) = (33.3 \pm 2.0 \pm 2.6) \times 10⁻⁵ from a measurement of B($\chi_{c0} \rightarrow \Lambda \overline{\Lambda}$) \times B($\psi(2S) \rightarrow \gamma \chi_{c0}$) assuming B($\psi(2S) \rightarrow \gamma \chi_{c0}$) = (9.62 ± 0.31)%.

² Calculated by us. NAIK 08 reports B($\chi_{c0} \to \Lambda \overline{\Lambda}$) = (33.8 \pm 3.6 \pm 2.2 \pm 1.7) \times 10⁻⁵ using B($\psi(2S) \to \gamma \chi_{c0}$) = (9.22 \pm 0.11 \pm 0.46)%.

$\Gamma(\chi_{c0}(1P) \to \Lambda \overline{\Lambda})/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))$ $\Gamma_{69}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$ $J/\psi(1S)\pi^{+}\pi^{-}$ $\frac{VALUE \text{ (units } 10^{-5})}{9.3\pm0.7 \text{ OUR FIT}} \qquad \frac{EVTS}{DOCUMENT \text{ ID}} \qquad \frac{TECN}{DOCUMENT} \qquad \frac{COMMENT}{DOCUMENT}$

 $p\overline{p}) = (2.17 \pm 0.07) \times 10^{-3}$

Created: 5/30/2017 17:21

13.0 $^{+3.6}_{-3.5}\pm$ **2.5** 15.2 $^{+4.2}_{-4.0}$ 1 BAI 03E BES $\psi(2S) \rightarrow \gamma \Lambda \overline{\Lambda}$

 $^{1}\,\text{BAI 03E reports}\,[\,\,\text{B}(\chi_{c0}\to\,\Lambda\overline{\Lambda})\,\,\text{B}(\psi(2S)\to\,\gamma\chi_{c0})\,\,/\,\,\text{B}(\psi(2S)\to\,J/\psi\,\pi^{+}\,\pi^{-})\,\,]\,\times\,\, \\ [\,\text{B}^{2}(\Lambda\to\,\pi^{-}\,p)\,\,/\,\,\text{B}(J/\psi\to\,p\,\overline{p})\,\,] = (2.45^{\,+\,0.68}_{\,-\,0.65}\,\pm\,0.46)\%.$ We calculate from this measurement the presented value using B($\Lambda \to \pi^- p$) = (63.9 \pm 0.5)% and B($J/\psi \to$

$\Gamma(\chi_{c0}(1P) \rightarrow \gamma J/\psi(1S))/\Gamma_{total} \times \Gamma(\psi(2S) \rightarrow \gamma \chi_{c0}(1P))/\Gamma_{total}$ $\Gamma_{85}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10 -)	EVIS	DOCUMENT ID		TECN	COMMENT
0.127±0.006 OUR FIT					
0.131±0.035 OUR AVE	RAGE				
$0.151 \!\pm\! 0.003 \!\pm\! 0.010$	4.3k	ABLIKIM	120	BES3	$\psi(2S) \rightarrow \gamma \chi_{c0}$
$0.069\!\pm\!0.018$		¹ OREGLIA	82	CBAL	$\psi(2S) \rightarrow \gamma \chi_{c0}$
0.4 ± 0.3		² BRANDELIK	79 B	DASP	$\psi(2S) \rightarrow \gamma \chi_{c0}$
0.16 ± 0.11					$\psi(2S) \rightarrow \gamma \chi_{c0}$
3.3 ± 1.7		³ BIDDICK	77	CNTR	$e^+e^- \rightarrow \gamma X$

• • • We do not use the following data for averages, fits, limits, etc. • •

08 CLEO $\psi(2S) \to \gamma \chi_{c0}$ 05A CLEO Repl. by MENDEZ 08 ⁴ MENDEZ 560 $0.125 \pm 0.007 \pm 0.013$ 5 ADAM 172 $0.18 \pm 0.01 \pm 0.02$

¹ Recalculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.

² Recalculated by us using B($J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$) = 0.0588 \pm 0.0010.

³ Assumes isotropic gamma distribution.

⁴Not independent from other measurements of MENDEZ 08.

⁵ Not independent from other values reported by ADAM 05A.

```
\Gamma(\chi_{c0}(1P) \to \gamma J/\psi(1S))/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))
J/\psi(1S) \text{ anything}) \qquad \qquad \Gamma_{85}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{9}^{\psi(2S)} = \Gamma_{85}/\Gamma \times \Gamma_{134}^{\psi(2S)}/(\Gamma_{11}^{\psi(2S)} + \Gamma_{12}^{\psi(2S)} + \Gamma_{13}^{\psi(2S)} + \Gamma_{13}^{\psi
```

 $\frac{\textit{VALUE}~(\text{units}~10^{-2})}{\textbf{0.207} \pm \textbf{0.011}~\textbf{OUR}~\textbf{FIT}}~\frac{\textit{EVTS}}{}$ DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

08 CLEO $\psi(2S) \rightarrow \gamma \chi_{c0}$ $0.201 \pm 0.011 \pm 0.021$ 560 ¹ MENDEZ 172 **ADAM** 05A CLEO Repl. by MENDEZ 08 $0.31 \pm 0.02 \pm 0.03$

$\Gamma(\chi_{c0}(1P) o \gamma J/\psi(1S))/\Gamma_{\mathsf{total}} \, imes \, \Gamma(\psi(2S) o \gamma \chi_{c0}(1P))/\Gamma(\psi(2S) o$ $\Gamma_{85}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$ $J/\psi(1S)\pi^{+}\pi^{-}$

VALUE (units 10^{-2}) DOCUMENT ID TECN 0.367±0.019 OUR FIT $0.358 \pm 0.020 \pm 0.037$ 560 **MENDEZ** 08 CLEO $\psi(2S) \rightarrow \gamma \chi_{c0}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.55 \pm 0.04 \pm 0.06$ 172 ¹ ADAM 05A CLEO Repl. by MENDEZ 08

$\Gamma(\chi_{c0}(1P) \to \gamma \gamma)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma_{total}$

 $\Gamma_{89}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}$

Created: 5/30/2017 17:21

$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
2.23±0.14 OUR FIT	· ———				
2.18 ± 0.18 OUR AVER	AGE				
$2.17\!\pm\!0.17\!\pm\!0.12$	0.8k	ABLIKIM	12A	BES3	$\psi(2S) \rightarrow \gamma \chi_{c0} \rightarrow 3\gamma$
$2.17\!\pm\!0.32\!\pm\!0.10$	0.2k	ECKLUND	08A	CLEO	$\psi(2S) \rightarrow \gamma \chi_{c0} \rightarrow 3\gamma$
$3.7 \pm 1.8 \pm 1.0$		LEE	85	CBAL	$\psi(2S) \rightarrow \gamma \chi_{c0}$

$$\Gamma(\chi_{c0}(1P) \to \pi\pi)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma\chi_{c0}(1P))/\Gamma_{total}$$

$$\Gamma_{co}/\Gamma \times \Gamma^{\psi(2S)}/\Gamma^{\psi(2S)}$$

 $\Gamma_{32}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}$ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

8.32±0.29 OUR FIT 8.80 ± 0.34 OUR AVERAGE

10A BES3 $e^+e^-
ightarrow \psi(2S)
ightarrow \gamma \chi_{c0}$ ¹ ABLIKIM $9.11\!\pm\!0.08\!\pm\!0.65$ 17k 09 CLEO $\psi(2S) \rightarrow \gamma \pi^{+} \pi^{-}$ 09 CLEO $\psi(2S) \rightarrow \gamma \pi^{0} \pi^{0}$ ² ASNER $8.81 \pm 0.11 \pm 0.43$ 8.9k ³ ASNER $8.13 \pm 0.19 \pm 0.89$ 2.8k

 1 Calculated by us. ABLIKIM 10A reports B($\chi_{c0} \rightarrow ~\pi^0 \, \pi^0) = (3.23 \pm 0.03 \pm 0.23 \pm$ $0.14) \times 10^{-3}$ using B($\psi(2S) \to \gamma \chi_{c0}$) = (9.4 \pm 0.4)%. We have multiplied the $\pi^0 \pi^0$ measurement by 3 to obtain $\pi\pi$.

² Calculated by us. ASNER 09 reports B($\chi_{c0} \rightarrow \pi^+\pi^-$) = (6.37 \pm 0.08 \pm 0.31 \pm 0.32) \times 10⁻³ using B(ψ (2S) $\rightarrow \ \gamma \chi_{c0}$) = (9.22 \pm 0.11 \pm 0.46)%. We have multiplied the $\pi^+\pi^-$ measurement by 3/2 to obtain $\pi\pi$.

 3 Calculated by us. ASNER 09 reports B($\chi_{c0} \rightarrow ~\pi^0 \, \pi^0) = (2.94 \pm 0.07 \pm 0.32 \pm 0.15) \times$ 10^{-3} using B($\psi(2S) \rightarrow \gamma \chi_{c0}$) = (9.22 \pm 0.11 \pm 0.46)%. We have multiplied the $\pi^0 \pi^0$ measurement by 3 to obtain $\pi \pi$.

¹Not independent from other measurements of MENDEZ 08.

¹Not independent from other values reported by ADAM 05A.

$\Gamma(\chi_{c0}(1P) \to \pi\pi)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma\chi_{c0}(1P))/\Gamma(\psi(2S) \to J/\psi(1S)\pi^{+}\pi^{-})$ $\Gamma_{32}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$

 $VALUE (units 10^{-4})$ EVTS DOCUMENT ID TECN COMMENT

24.1±0.8 OUR FIT

20.7±1.7 OUR AVERAGE

$\Gamma(\chi_{c0}(1P) \to \eta \eta)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma_{total}$ $\Gamma_{36}/\Gamma \times \Gamma_{124}^{\psi(2S)}/\Gamma^{\psi(2S)}$

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

2.95±0.18 OUR FIT 3.12±0.19 OUR AVERAGE

 $3.23 \pm 0.09 \pm 0.23$ 2132 1 ABLIKIM 10A BES3 $e^+e^- o \psi(2S) o \gamma \chi_{c0}$ 2.93 $\pm 0.12 \pm 0.29$ 0.9k 2 ASNER 09 CLEO $\psi(2S) o \gamma \eta \eta$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $2.86\pm0.46\pm0.37$ 48 ³ ADAMS 07 CLEO $\psi(2S) \rightarrow \gamma \chi_{c0}$

 1 Calculated by us. ABLIKIM 10A reports B($\chi_{c0} \to \eta \eta) = (3.44 \pm 0.10 \pm 0.24 \pm 0.13) \times 10^{-3}$ using B($\psi(2S) \to \gamma \chi_{c0}) = (9.4 \pm 0.4)\%$.

² Calculated by us. ASNER 09 reports B($\chi_{c0} \to \eta \eta$) = $(3.18 \pm 0.13 \pm 0.31 \pm 0.16) \times 10^{-3}$ using B($\psi(2S) \to \gamma \chi_{c0}$) = $(9.22 \pm 0.11 \pm 0.46)\%$.

$$\begin{split} \Gamma\big(\chi_{c0}(1P) \to \eta \eta\big)/\Gamma_{\text{total}} \, \times \, \Gamma\big(\psi(2S) \to \gamma \chi_{c0}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S) \pi^+ \pi^-\big) & \Gamma_{36}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

<u>VALUE (units 10⁻³)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.85** ±**0.05 OUR FIT**

 $0.578 \pm 0.241 \pm 0.158$

BAI 03C BES $\psi(2S)
ightarrow \gamma \eta \eta$

$$\begin{split} \Gamma\big(\chi_{c0}(1P) \to \, \mathit{K}^+\,\mathit{K}^-\big)/\Gamma_{\rm total} \, \times \, \Gamma\big(\psi(2S) \to \, \gamma \chi_{c0}(1P)\big)/\Gamma_{\rm total} \\ \Gamma_{42}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)} \end{split}$$

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

5.91±0.28 OUR FIT

5.97±0.07±0.32 8.1k ¹ ASNER 09 CL

09 CLEO $\psi(2S) \rightarrow \gamma K^+ K^-$

 $^{^{1}}$ We have multiplied $\pi^{0}\pi^{0}$ measurement by 3 to obtain $\pi\pi$.

² Calculated by us. The value for B($\chi_{c0} \to \pi^+\pi^-$) reported in BAI 98I is derived using B($\psi' \to \gamma \chi_{c0}$)= (9.3 ± 0.8)% and B($\psi' \to J/\psi \pi^+\pi^-$) = (32.4 ± 2.6)% [BAI 98D]. We have multiplied $\pi^+\pi^-$ measurement by 3/2 to obtain $\pi\pi$.

³ Superseded by ASNER 09. Calculated by us. The value of B($\chi_{c0}(1P) \rightarrow \eta \eta$) reported by ADAMS 07 was derived using B($\psi(2S) \rightarrow \gamma \chi_{c0}(1P)$) = (9.22 \pm 0.11 \pm 0.46)% (ATHAR 04).

¹ Calculated by us. ASNER 09 reports B($\chi_{c0} \rightarrow K^+ K^-$) = (6.47 \pm 0.08 \pm 0.35 \pm 0.32) \times 10⁻³ using B(ψ (2S) $\rightarrow \gamma \chi_{c0}$) = (9.22 \pm 0.11 \pm 0.46)%.

```
\Gamma(\chi_{c0}(1P) \to K^+K^-)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma\chi_{c0}(1P))/\Gamma(\psi(2S) \to \gamma\chi_{c0}(1P))
                                                                                                                 \Gamma_{42}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}
J/\psi(1S)\pi^+\pi^-)
```

VALUE (units 10^{-3}) 1.71 ± 0.08 OUR FIT

 $1.63\pm0.10\pm0.15$

 774 ± 38

 1 BAI

98I BES $\psi(2S) \rightarrow \gamma K^+ K^-$

¹ Calculated by us. The value for B($\chi_{c0} \to K^+K^-$) reported by BAI 981 is derived using $B(\psi(2S) \rightarrow \gamma \chi_{c0}) = (9.3 \pm 0.8)\%$ and $B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-) = (32.4 \pm 2.6)\%$

$$\begin{split} \Gamma\big(\chi_{c0}(1P) \to \, \mathcal{K}_S^0 \, \mathcal{K}_S^0\big) / \Gamma_{\rm total} \, \times \, \Gamma\big(\psi(2S) \to \gamma \chi_{c0}(1P)\big) / \Gamma_{\rm total} \\ \Gamma_{43} / \Gamma \times \Gamma_{134}^{\psi(2S)} / \Gamma^{\psi(2S)} \end{split}$$

VALUE (units 10^{-4}) TECN COMMENT 3.09 ± 0.16 OUR FIT

3.18±**0.17 OUR AVERAGE**

 $3.22 \pm 0.07 \pm 0.17$ 2.1k $3.02\pm0.19\pm0.33$ 322

 1 Calculated by us. ASNER 09 reports B($\chi_{c0} \rightarrow~\kappa_S^0 \, \kappa_S^0) =$ (3.49 \pm 0.08 \pm 0.18 \pm $0.17) \times 10^{-3}$ using B($\psi(2S) \rightarrow \gamma \chi_{c0}$) = $(9.22 \pm 0.11 \pm 0.46)\%$.

$\Gamma(\chi_{c0}(1P) \to K_S^0 K_S^0) / \Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P)) / \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P)) / \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P)) / \Gamma(\psi(2S) \to \chi_{c0}(1P)) / \Gamma$ $J/\psi(1S)\pi^+\pi^-$

VALUE (units 10^{-4})

9.0 ± 0.5 OUR FIT $5.6 \pm 0.8 \pm 1.3$

¹ BAI

99B BES $\psi(2S) \rightarrow \gamma K_S^0 K_S^0$

¹ Calculated by us. The value of B($\chi_{c0} \to K_S^0 K_S^0$) reported by BAI 99B was derived using $B(\psi(2S) \to \gamma \chi_{CO}(1P)) = (9.3 \pm 0.8)\%$ and $B(\psi(2S) \to J/\psi \pi^+ \pi^-) = (32.4 \pm 2.6)\%$

$\Gamma(\chi_{c0}(1P) \rightarrow 2(\pi^+\pi^-))/\Gamma_{\mathsf{total}} \times \Gamma(\psi(2S) \rightarrow \gamma \chi_{c0}(1P))/\Gamma(\psi(2S) \rightarrow \gamma \chi_{c0}(1P))$ $\Gamma_1/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}$ $J/\psi(1S)\pi^+\pi^-)$

VALUE (units 10^{-3})

6.5 ± 0.5 OUR FIT

6.9±2.4 OUR AVERAGE Error includes scale factor of 3.8.

 $4.4 \pm 0.1 \pm 0.9$

99B BES

 $\psi(2S) \rightarrow \gamma \chi_{c0}$

Created: 5/30/2017 17:21

 9.3 ± 0.9

² TANENBAUM 78 MRK1 $\psi(2S) \rightarrow \gamma \chi_{c0}$

 $^{^1}$ Calculated by us. The value for B($\chi_{c0}
ightarrow 2\pi^+ 2\pi^-$) reported in BAI 99B is derived using $\mathsf{B}(\psi(2S) \to \gamma \chi_{c0}) = (9.3 \pm 0.8)\%$ and $\mathsf{B}(\psi(2S) \to J/\psi(1S)\pi^+\pi^-) = (32.4 \pm 2.6)\%$ [BAI 98D].

² The value B($\psi(1S) \to \gamma \chi_{c0}$)×B($\chi_{c0} \to 2\pi^+ 2\pi^-$) reported in TANENBAUM 78 is derived using B($\psi(2S) \to J/\psi(1S)\pi^+\pi^-$)×B($J/\psi(1S) \to \ell^+\ell^-$) =(4.6 ± 0.7)%. Calculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.

```
\Gamma(\chi_{c0}(1P) \to \pi^+\pi^-K^+K^-)/\Gamma_{\text{total}} \times \Gamma(\psi(2S) \to \gamma\chi_{c0}(1P))/\Gamma_{\text{total}}
                                                                                                                                                                                                                     \Gamma_8/\Gamma\times\Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}
 VALUE (units 10^{-3})
                                                                                                                            DOCUMENT ID
1.75 ± 0.14 OUR FIT
1.64\pm0.05\pm0.2
                                                                                                                           ABLIKIM
                                                                                                                                                                               05Q BES2 \psi(2S) \rightarrow \gamma \chi_{c0}
\Gamma\big(\chi_{c0}(1P)\to\pi^+\pi^-\,K^+\,K^-\big)/\Gamma_{\rm total}\,\times\,\Gamma\big(\psi(2S)\to\gamma\,\chi_{c0}(1P)\big)/\Gamma\big(\psi(2S)\to\gamma\,\chi_{c0}(1P)\big)
                                                                                                                                                                                                                     \Gamma_8/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}
 J/\psi(1S)\pi^+\pi^-
 VALUE (units 10^{-3})
5.1 \pm 0.4 OUR FIT
5.8 \pm1.6 OUR AVERAGE Error includes scale factor of 2.3.
4.22 \pm 0.20 \pm 0.97
                                                                                                                                                                               99B BES
                                                                                                                                                                                                                            \psi(2S) \rightarrow \gamma \chi_{c0}
                                                                                                                      ^{1} TANENBAUM 78 MRK1 \psi(2S)
ightarrow~\gamma\chi_{m{c}m{0}}
7.4 \pm 1.0
        <sup>1</sup> The reported value is derived using B(\psi(2S) \to \pi^+\pi^- J/\psi) \times B(J/\psi \to \ell^+\ell^-) =
             (4.6 \pm 0.7)\%. Calculated by us using B(J/\psi \rightarrow \ell^+\ell^-) = 0.1181 \pm 0.0020.
\Gamma(\chi_{c0}(1P) \to K^+ K^- K^+ K^-)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma_{total}
                                                                                                                                                                                                                 \Gamma_{50}/\Gamma\times\Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}
 VALUE (units 10^{-4})
                                                                                                                                                                                                  TECN COMMENT
                                                                                                                           DOCUMENT ID
2.74±0.28 OUR FIT
                                                                                                                                                                              06T BES2 \psi(2S) \rightarrow \gamma 2K^{+}2K^{-}
                                                                                                                     <sup>1</sup> ABLIKIM
3.20 \pm 0.11 \pm 0.41
                                                                                        278
        <sup>1</sup> Calculated by us. The value of B(\chi_{c0} \rightarrow 2K^+2K^-) reported by ABLIKIM 06T was derived using B(\psi(2S) \rightarrow \gamma \chi_{c0}(1P)) = (9.2 ± 0.4)%.
\Gamma(\chi_{c0}(1P) \to K^+ K^- K^+ K^-)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P)/\Gamma_{total}
                                                                                                                                                                                                                 \Gamma_{50}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)}
\Gamma(\psi(2S) \to J/\psi(1S)\pi^+\pi^-)
 VALUE (units 10^{-4})
                                                                                                                           DOCUMENT ID
8.0\pm0.8 OUR FIT
                                                                                                                     <sup>1</sup> BAI
                                                                                                                                                                               99B BES \psi(2S) \rightarrow \gamma 2K^{+}2K^{-}
6.1\pm0.8\pm0.9
        <sup>1</sup> Calculated by us. The value of B(\chi_{c0} \rightarrow 2K^+2K^-) reported by BAI 99B was derived
             using B(\psi(2S) \rightarrow \gamma \chi_{c0}(1P)) = (9.3 ± 0.8)% and B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-) = (32.4 ±
             2.6)% [BAI 98D].
\Gamma(\chi_{c0}(1P) \to \phi \phi)/\Gamma_{total} \times \Gamma(\psi(2S) \to \gamma \chi_{c0}(1P))/\Gamma_{total}
                                                                                                                                                                                                                 \Gamma_{55}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma^{\psi(2S)}
VALUE (units 10^{-4})
                                                                                                                                                                                                  TECN COMMENT
0.77 ± 0.07 OUR FIT
0.78±0.08 OUR AVERAGE
                                                                                                                     <sup>1</sup> ABLIKIM
0.77 \pm 0.03 \pm 0.08
                                                                                       612
                                                                                                                                                                                11K BES3 \psi(2S) \rightarrow \gamma hadrons
                                                                                                                     <sup>2</sup> ABLIKIM
                                                                                           26
                                                                                                                                                                               06T BES2 \psi(2S) \rightarrow \gamma 2K^{+}2K^{-}
0.86 \pm 0.19 \pm 0.12
        <sup>1</sup> Calculated by us. The value of B(\chi_{c0} \to \phi \phi) reported by ABLIKIM 11K was derived using B(\psi(2S) \to \gamma \chi_{c0}(1P)) = (9.62 ± 0.31)%.
```

Created: 5/30/2017 17:21

 2 Calculated by us. The value of B($\chi_{c0} \to \phi \phi$) reported by ABLIKIM 06T was derived using B($\psi(2S) \to \gamma \chi_{c0}(1P)$) = (9.2 \pm 0.4)%.

HTTP://PDG.LBL.GOV

$$\begin{split} \Gamma\big(\chi_{c0}(1P) &\to \phi\phi\big)/\Gamma_{\text{total}} \,\times\, \Gamma\big(\psi(2S) \to \gamma\chi_{c0}(1P)\big)/\Gamma\big(\psi(2S) \to \\ J/\psi(1S)\pi^+\pi^-\big) & \Gamma_{55}/\Gamma \times \Gamma_{134}^{\psi(2S)}/\Gamma_{11}^{\psi(2S)} \end{split}$$

VALUE (units 10⁻⁴) DOCUMENT ID TECN COMMENT

2.24±0.21 OUR FIT

2.6 ±**1.0** ±**1.1** BAI

99B BES $\psi(2S) \rightarrow \gamma 2K^{+}2K^{-}$

$\chi_{c0}(1P)$ REFERENCES

ABLIKIM	15I	PR D91 092006	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	15M	PR D91 112008	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	15N	PR D91 112018	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13B	PR D87 012002	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	13D	PR D87 012007	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13H	PR D87 032007	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	13V	PR D88 112001	M. Ablikim <i>et al.</i>	(BES III Collab.)
UEHARA	13	PTEP 2013 123C01	S. Uehara <i>et al.</i>	(BELLE Collab.)
ABLIKIM	12A	PR D85 112008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	121	PR D86 052004	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	12.J	PR D86 052011	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	120	PRL 109 172002	M. Ablikim <i>et al.</i>	(BES III Collab.)
LIU	12B	PRL 108 232001	Z.Q. Liu <i>et al.</i>	(BELLE Collab.)
ABLIKIM	11A	PR D83 012006	M. Ablikim <i>et al.</i>	(BES III Collab.)
	11A 11E	PR D83 112005	M. Ablikim <i>et al.</i>	
ABLIKIM				(BES III Collab.)
ABLIKIM	11F	PR D83 112009	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	11K	PRL 107 092001	M. Ablikim <i>et al.</i>	(BES III Collab.)
DEL-AMO-SA		PR D84 012004	P. del Amo Sanchez et al.	(BABAR Collab.)
ABLIKIM	10A	PR D81 052005	M. Ablikim <i>et al.</i>	(BES III Collab.)
ONYISI	10	PR D82 011103	P.U.E. Onyisi <i>et al.</i>	(CLEO Collab.)
UEHARA	10A	PR D82 114031	S. Uehara <i>et al.</i>	(BELLE Collab.)
ASNER	09	PR D79 072007	D.M. Asner et al.	(CLEO Collab.)
UEHARA	09	PR D79 052009	S. Uehara <i>et al.</i>	(BELLE Collab.)
BENNETT	08A	PRL 101 151801	J.V. Bennett et al.	(CLEO Collab.)
ECKLUND	08A	PR D78 091501	K.M. Ecklund et al.	(CLEO Collab.)
HE	08B	PR D78 092004	Q. He <i>et al.</i>	(CLEO Collab.)
MENDEZ	80	PR D78 011102	H. Mendez <i>et al.</i>	(CLEO Collab.)
NAIK	80	PR D78 031101	P. Naik <i>et al.</i>	(CLEO Collab.)
UEHARA	80	EPJ C53 1	S. Uehara <i>et al.</i>	(BELLE Collab.)
WICHT	80	PL B662 323	J. Wicht <i>et al.</i>	(BELLE Collab.)
ABE	07	PRL 98 082001	K. Abe <i>et al.</i>	(BELLE Collab.)
ADAMS	07	PR D75 071101	G.S. Adams et al.	(CLEO Collab.)
ATHAR	07	PR D75 032002	S.B. Athar <i>et al.</i>	(CLEO Collab.)
CHEN	07B	PL B651 15	W.T. Chen et al.	(BELLE Collab.)
ABLIKIM	06D	PR D73 052006	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06I	PR D74 012004	M. Ablikim et al.	(BES Collab.)
ABLIKIM	06R	PR D74 072001	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06T	PL B642 197	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05G	PR D71 092002	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05N	PL B630 7	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05O	PL B630 21	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05Q	PR D72 092002	M. Ablikim et al.	(BES Collab.)
ADAM	05A	PRL 94 232002	N.E. Adam et al.	(CLEO Collab.)
ANDREOTTI	05A	NP B717 34	M. Andreotti et al.	(FNAL E835 Collab.)
ANDREOTTI	05C	PR D72 112002	M. Andreotti et al.	(FNAL E835 Collab.)
NAKAZAWA	05	PL B615 39	H. Nakazawa et al.	(BELLE Collab.)
ABE	04G	PR D70 071102	K. Abe <i>et al.</i>	(BELLE Collab.)
ABLIKIM	04G	PR D70 092002	M. Ablikim et al.	(BES Collab.)
ABLIKIM	04H	PR D70 092003	M. Ablikim et al.	(BES Collab.)
ANDREOTTI	04	PL B584 16	M. Andreotti <i>et al.</i>	(E835 Collab.)
ATHAR	04	PR D70 112002	S.B. Athar <i>et al.</i>	(CLEO Collab.)
BAI	04F	PR D69 092001	J.Z. Bai <i>et al.</i>	(BES Collab.)
ANDREOTTI	03	PRL 91 091801	M. Andreotti <i>et al.</i>	(FNAL E835 Collab.)
				(= ===============================

 $^{^1}$ Calculated by us. The value of B($\chi_{c0}\to\phi\phi$) reported by BAI 99B was derived using B($\psi(2S)\to\gamma\chi_{c0}(1P)$) = (9.3 \pm 0.8)% and B($\psi(2S)\to J/\psi\pi^+\pi^-$) = (32.4 \pm 2.6)% [BAI 98D].

AULCHENKO BAI BAI ABE,K BAGNASCO EISENSTEIN AMBROGIANI AMBROGIANI BAI BAI GAISER LEE OREGLIA BRANDELIK BARTEL TANENBAUM Also BIDDICK	03 03C 03E 02 02 01 00B 99B 99B 98D 98I 86 85 82 79B 78B 78	PL B573 63 PR D67 032004 PR D67 032004 PR D67 112001 PRL 89 142001 PL B533 237 PRL 87 061801 PR D62 052002 PR D60 072001 PR D58 092006 PRL 81 3091 PR D34 711 SLAC 282 PR D25 2259 NP B160 426 PL 79B 492 PR D17 1731 Private Comm. PRL 38 1324	V.M. Aulchenko et al. J.Z. Bai et al. J.Z. Bai et al. K. Abe et al. S. Bagnasco et al. B.I. Eisenstein et al. M. Ambrogiani et al. J.Z. Bai et al. G. Trilling C.J. Biddick et al.	(KEDR Collab.) (BES Collab.) (BES Collab.) (BELLE Collab.) (FNAL E835 Collab.) (FNAL E835 Collab.) (FNAL E835 Collab.) (FNAL E835 Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (Crystal Ball Collab.) (SLAC) (SLAC, CIT, HARV+) (DASP Collab.) (DESY, HEIDP) (SLAC, LBL) (LBL, UCB) (UCSD, UMD, PAVI+)
--	---	---	--	--