

Boxen mit INGA

Alexander Willecke, Keno Garlichs

Idee

Konzept

- Daten werden mit Gyroskop und Accelerometer erfasst
- Jeder Node sendet UDP-IPv6-Pakete an das Gateway, sobald er einen Schlag registriert
- Gateway sammelt Daten der Knoten überträgt diese über einen selbst gebauten Adapter an die PlayStation

Datenformat: Knoten -> Gateway

Es existieren zwei unterschiedliche Arten von Payloads. Beide bestehen aus einem Byte.

Bit	7	6	5	4	3	2	1	0
Button	0	-	SE	ST		\triangle	\bigcirc	X
Movement	1	S	-	-	L	D	R	U

- Wenn Bit 7 den Wert "0" hat, sind die Daten als Buttons zu interpretieren. Falls das Bit "1" ist, sind es Richtungsangaben.
- Beispiel: An dem Knoten in der linken Hand ist das Steuerkreuz angeschlossen. Wird ein Schlag hiermit ausgeführt, also der Button SQUARE gedrückt, sieht das Byte folgendermaßen aus:

0 0 0 0 1 0 0 0

Werden nun die Tasten "Right" und "Up" auf dem Steuerkreuz gedrückt, sieht das Byte folgendermaßen aus:

1 1 0 0 0 0 1 1

Funktionsweise des Adapters

- Gatewayknoten sendet über I²C-Bus Informationen über gedrückte Tasten an zwei 8-Bit Portexpander (PCF8574P)
- Diese schalten ihre Ausgänge entsprechend
- PlayStation fragt die so simulierten Taster regelmäßig ab

Steuerkreuz

- Teil eines alten PlayStation-Controllers
- Portexpander wertet Tasten aus
- Wird über I²C von INGA abgefragt

Adapter

- Herzstück ist ein Atmega8 AVR-Microcontroller
- Als I²C-Slave an den Gatewayknoten und als SPI-Slave an die PlayStation angeschlossen
- INGA meldet dem AVR, wenn neue Daten bereit stehen und schreibt diese auf den Bus
- Der µ-Controller hält in einer C-Structure den Status der einzelnen Tasten bereit
- Playstation fragt als SPI-Master regelmäßig die Zustände der Tasten ab
- Mircocontroller antwortet mit entsprechenden Daten und emuliert somit einen vollständigen PS-Controller

Adapter

Mögliche Erweiterungen

- Zuerst: Adapter zum Laufen bringen
- Optimierung des Energieverbrauchs angeschlossen
- Combos (zumindest für einige Charaktere) implementieren
 Sehr aufwändig, da der Controller eine verteilte Gestenerkennung durchführen müsste

Demonstration