Tarea 1

Procesamiento de Lenguaje Natural Facultad de Ingeniería, UNAM

- 1. Un homeomorfismo entre dos monoides es una función $\phi:(M,\circ)\to (N,*)$ que cumple:
 - $\phi(m_1 \circ m_2) = \phi(m_1) * \phi(m_2)$, donde $m_1, m_2 \in M$.
 - $\phi(e_M) = e_N$, donde e_M es el elemento neutro de M y e_N el elemento neutro de N.

Demostrar que la función de longitud de una cadena, |a|=n, con $a\in \Sigma^*$ y $n\in\mathbb{N}$, es un homeomorfismo entre monoides.

2. Una "edición" consiste en: 1) sustitución de un símbolo por otro; 2) eliminación de un símbolo; 3) añadir un símbolo. De esta forma, se puede definir E(a,b) como las ediciones necesarias para pasar de la cadena a a la cadena b. La distancia de **Levenshtein** se define como:

$$Lev(a,b) := \min\{|E(a,b)|\}$$

Es decir, el número más pequeño de ediciones necesarias para pasar de a a la cadena b. Argumentar que $Lev: \Sigma^* \times \Sigma^* \to \mathbb{R}$ cumple, para cualquier $a,b,c \in \Sigma^*$:

- a) $Lev(a, b) \le 0$ y si a = b entonces Lev(a, b) = 0
- b) Lev(a,b) = Lev(b,a)
- c) $Lev(a,b) \ge Lev(a,c) + Lev(c,b)$
- 3. Sean $L_1, L_2, ..., L_n$ un número finito de lenguajes regulares. Demostrar que $\prod_{i=1}^n L_i = L_1 \cdot L_2 \cdot ... \cdot L_n$ es lenguaje regular.
- 4. Proponer un autómata finito determinístico que procese la morfología del siguiente lenguaje: $PL = \{amar, amo, amas, ama, amamos, aman, \}$.
- 5. Probar que el lenguaje anterior PL puede ser generado por una CFG (dar una CFG que lo genere).