Matemática Discreta para Computação e Informática

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

Matemática Discreta para Computação e Informática

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Noções de Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

2 – Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

◆ Lógica Matemática

- básica para qq estudo em Computação e Informática
- em particular, para estudo de Matemática Discreta
- Para desenvolver qq algoritmo (qq software)
 - necessários conhecimentos básicos de Lógica
- Existem linguagens de progr. baseadas em Lógica
 - desenvolvidas segundo o paradigma lógico
 - exemplo: Prolog

◆ Diretrizes Curriculares do MEC para Cursos de Computação e Informática

Lógica Matemática é uma ferramenta fundamental na definição de conceitos computacionais

◆ Para matérias da Área de Formação Tecnológica, como Inteligência Artificial

Como base ao estudo da Inteligência Artificial são imprescindíveis conhecimentos de Lógica Matemática, ...

- ◆ Lógica permite definir Teorema
- ◆ Por que teoremas e suas demonstrações são fundamentais para a Computação e Informática?
 - teorema (freqüentemente) pode ser visto como
 - * problema a ser implementado computacionalmente
 - demonstração
 - * solução computacional
 - * algoritmo o qual *prova-se*, sempre funciona!

- ◆ David Parnas, importante pesquisador internacional e um dos pioneiros da Engenharia de Software
 - XIII SBES Seminários Brasileiros de Engenharia de Software

o maior avanço da Engenharia de Software nos últimos dez anos foi os provadores de teoremas

♦ Objetivo

- introduzir principais conceitos e terminologia necessários para MD
 - * não é uma abordagem ampla nem detalhada
 - existe uma disciplina específica de Lógica

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1 Lógica

♦ Estudo centrado em

- Lógica Booleana ou Lógica de Boole
 - * George Boole: inglês, 1815-1864
 - * um dos precursores da Lógica
- estudo dos princípios e métodos usados para
 - * distinguir sentenças verdadeiras de falsas

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.1 Proposições

Def: Proposição

Construção (sentença, frase, pensamento) que pode-se atribuir juízo

- tipo de juízo na Lógica Matemática
 - * verdadeiro-falso
 - * interesse é na "verdade" das proposições
- ♦ Forma tradicional de tratar com a "verdade"
 - dois valores verdade V (verdadeiro) e F (falso)
 - proposições só podem assumir esses valores
- Denotação do valor verdade de uma proposição p

V(p)

Exp: Proposição

- Brasil é um país
- Buenos Aires é a capital do Brasil
- 3 + 4 > 5
- 7 1 = 5

(valor verdade V)

(valor verdade F)

(valor verdade V)

(valor verdade F)

Ou seja

- V(Brasil é um país) = V
- V(Buenos Aires é a capital do Brasil) = F
- V(3 + 4 > 5) = V
- V(7-1=5)=F

Exp: Não são proposição

Vá tomar banho.

Que horas são?

Parabéns!

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.2 Conetivos

- **♦** Proposições introduzidas
 - proposições atômicas ou átomos
 - não podem ser decompostas em proposições mais simples
- ♦ É possível construir proposições mais complexas
 - compondo proposições
 - usando operadores lógicos ou conetivos

Exp: Proposições Compostas

Windows é sistema operacional e Pascal é ling. de programação

Vou comprar um PC ou um MAC

Linux não é um software livre

Se chover canivetes, então todos estão aprovados em MD

A = B se e somente se $(A \subseteq B \in B \subseteq A)$

- Proposições compostas podem ser usadas para construir novas proposições compostas
 - A = B se e somente se $(A \subseteq B \in B \subseteq A)$

♦ Cinco conetivos que serão estudados

- e (conjunção)
- ou (disjunção)
- não (negação)
- se-então (condicional)
- se-somente-se (bicondicional)

Negação

- ◆ Uma proposição p ou é verdadeira ou é falsa
- ♦ Negação de uma proposição
 - introduzindo a palavra não
 - prefixando a proposição por não é fato que (ou equivalente)

Exp: Negação

Brasil é um país

Linux é um software livre

$$3 + 4 > 5$$

Brasil *não* é um país Linux *não* é um *software* livre *Não* é fato que 3 + 4 > 5

♦ Negação de p

• lê-se: "não p"

♦ Semântica da negação

- se p é verdadeira, então ¬p é falsa
- se p é falsa, então ¬p é verdadeira

◆ Tabela Verdade

- descreve os valores lógicos de uma proposição
- em termos das combinações dos valores lógicos das proposições componentes e dos conetivos usados

Def: Negação

Semântica da Negação ¬p

Conjunção

◆ Conjunção de duas proposições p e q

 $p \wedge q$

• lê-se: "p e q"

◆ Reflete uma noção de simultaneidade

- verdadeira, apenas quando p e q são simultaneamente verdadeiras
- falsa, em qualquer outro caso

Def: Conjunção

Semântica da Conjunção p A q

p	q	p v d
٧	٧	V
V	F	F
F	٧	F
F	F	F

- quatro linhas para expressar todas as combinações de valores lógicos de p e q
- quantas linhas para n proposições?

Exp: Conjunção

Verdadeira

• Windows é sist. operacional e Pascal é ling. de programação

Falsa

- Windows é sistema operacional e Pascal é planilha eletrônica
- Windows é editor de textos e Pascal é ling. de programação
- Windows é editor de textos e Pascal é planilha eletrônica

Exercício: Conjunção

Suponha que p e q são respectivamente V e F. Valor lógico?

- p ^ ¬q
- ¬p ∧ q
- ¬p ^ ¬q

Exercício: Conjunção

Determine o V(p), sabendo que

•
$$V(q) = V e V(p \wedge q) = F$$

Disjunção

◆ Disjunção de duas proposições p e q

pvq

• lê-se: "p ou q"

- ◆ Reflete uma noção de "pelo menos uma"
 - verdadeira, quando pelo menos uma das proposições é verdadeira
 - falsa, somente quando simultaneamente p e q são falsas

Def: Disjunção

Semântica da Disjunção p v q

p	q	pvq
V	V	V
V	Ŧ	٧
F	٧	V
F	F	F

Exp: Disjunção

Verdadeira

- Windows é sist. operacional ou Pascal é ling. de programação
- Windows é sistema operacional ou Pascal é planilha eletrônica
- Windows é editor de textos ou Pascal é ling. de programação

Falsa

Windows é editor de textos ou Pascal é planilha eletrônica

Exercício: Disjunção

Suponha que p e q são respectivamente V e F. Valor lógico?

- p v ¬q
- ¬p v ¬q
- p \((¬p \(v \, q))

Exercício: Disjunção

Determine o V(p), sabendo que

•
$$V(q) = F e V(p v q) = F$$

Condição

◆ Condição de duas proposições p e q

$$p \rightarrow q$$

• lê-se: "se p então q"

♦ Reflete a noção

- partir de uma premissa p verdadeira
- obrigatoriamente deve-se chegar a uma conclusão q verdadeira
- para que p → q seja verdadeira

♦ Entretanto, partindo de uma premissa falsa

• qualquer conclusão pode ser considerada

♦ Portanto p → q é

- falsa, quando p é verdadeira e q é falsa
- verdadeira, caso contrário

Def: Condição

Semântica da Condição p → q

р	q	$p \rightarrow q$
V	٧	V
V	F	F
F	٧	V
F	F	V

Exp: Condição

Verdadeira

- se Windows é sist. operacional então Pascal é ling. de progr.
- se Windows é editor de textos então Pascal é ling. de programação
- se Windows é editor de textos então Pascal é planilha eletrônica

Falsa

• se Windows é sist. operacional então Pascal é planilha eletrônica

Exercício: Condição

Determine o V(p), sabendo que

•
$$V(q) = F e V(p \rightarrow q) = F$$

•
$$V(q) = F e V(q \rightarrow p) = V$$

Exercício: Condição

Determine o V(p) e V(q), sabendo que

•
$$V(p \rightarrow q) = V e V(p \land q) = F$$

•
$$V(p \rightarrow q) = V e V(p \vee q) = F$$

Bicondição

♦ Bicondição de duas proposições p e q

$$p \leftrightarrow q$$

• lê-se: "p se e somente se q"

- ◆ Reflete a noção de condição "nos dois sentidos"
 - considera simultaneamente
 - * ida: p é premissa e q é conclusão
 - * volta: q é premissa e p é conclusão

♦ Portanto p ⇔ q é

- verdadeira, quando p e q são ambas verdadeiras ou ambas falsas
- falsa, quando p e q possuem valor verdade distintos

Def: Bicondição

Semântica da Bicondição p ↔ q

р	q	p⇔q
V	٧	V
V	F	F
F	V	F
F	F	V

Exp: Bicondição

Verdadeira

- Windows é sist. oper. se e somente se Pascal é ling. de progr.
- Windows é ed. de textos se e somente se Pascal é planilha eletr.

Falsa

- Windows é sist. Oper. se e somente se Pascal é planilha eletr.
- Windows é ed. de textos se e somente se Pascal é ling. de progr.

Exercício: Bicondição

Determine o V(p), sabendo que

•
$$V(q) = V e V(p \Leftrightarrow q) = F$$

•
$$V(q) = F e V(q \Leftrightarrow p) = V$$

Exercício: Bicondição

Determine o V(p) e V(q), sabendo que

•
$$V(p \leftrightarrow q) = V e V(p \land q) = V$$

•
$$V(p \leftrightarrow q) = V e V(p \vee q) = V$$

•
$$V(p \leftrightarrow q) = F e V(\neg p \lor q) = V$$

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.3 Fórmulas, Linguagem Lógica e Tabelas Verdade

- ♦ Fórmulas Lógicas ou simplesmente Fórmulas
 - palavras da Linguagem Lógica
 - introduzido formalmente adiante
 - * quando do estudo da Definição Indutiva
 - *informalmente*, sentença lógica corretamente construída sobre o alfabeto cujos símbolos são
 - * conetivos (∧, ∨, →, ...)
 - * parênteses
 - * identificadores (p, q, r, ...)
 - * constantes, etc.

♦ Se a fórmula contém variáveis

- não necessariamente possui valor verdade associado
- valor lógico depende do valor verdade das sentenças que substituem as variáveis na fórmula

Exp: Fórmulas

Suponha p, q e r são sentenças variáveis

- valores verdade constantes V e F
- qualquer proposição
- p, q e r
- $\neg p$, $p \land q$, $p \lor q$, $p \rightarrow q$ e $p \leftrightarrow q$
- p v (¬q)
- $(p \land \neg q) \rightarrow F$
- $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
- $p v (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$

Precedência entre os conetivos

- reduzir os parênteses
- simplificar visualmente

♦ Ordem de precedência entre os conetivos

- entre parênteses, dos mais internos para os mais externos
- negação (¬)
- conjunção (x) e disjunção (v)
- condição (→)
- bicondição (↔)

Exp: Precedência de Conetivos

$$p \vee (\neg q)$$

$$(p \wedge \neg q) \rightarrow F$$

$$\neg (p \wedge q) \leftrightarrow (\neg p \vee \neg q)$$

$$p \vee (q \wedge r) \leftrightarrow (p \vee q) \wedge (p \vee r)$$

$$p \vee (q \wedge r) \leftrightarrow (p \vee q) \wedge (p \vee r)$$

- qualquer omissão de parênteses resulta em ambigüidade
- (por quê?)

♦ Tabelas Verdade

- como construir uma tabela verdade de uma dada fórmula?
- explicitar todas as combinações possíveis dos valores lógicos
 - * das fórmulas atômicas componentes
- fórmula atômica não-constante
 - * dois valores lógicos: V e F
- fórmula atômica constante
 - * valor verdade fixo (V ou F)

- ♦ Uma fórmula atômica (não-constante): negação
 - tabela: 2 linhas
 - 2¹ possíveis combinações dos valores lógicos
- Duas fórmulas atômicas (não-constantes): conjunção, condição ...
 - tabela: 4 linhas
 - 2² possíveis combinações dos valores lógicos
- n fórmulas atômicas (não-constantes)
 - tabela: 2ⁿ linhas
 - 2ⁿ possíveis combinações de valores lógicos
 - (fácil verificar tal resultado)

Exp: Tabela Verdade

Construção da tabela verdade para a fórmula p v ¬q

р	q
V	V
V	F
F	V
F	F

	р	q	¬q	p v ¬q
	V	V	IL	V
	V	F	V	V
	F	V	F	F
•	F	F	V	V

Exp: Tabela Verdade: $p \land \neg q \rightarrow F$

Não foi introduzida uma coluna para o valor constante F

• seria redundante (conteria somente F)

	р	q	¬q	p ^ ¬q	p ∧ ¬q → F
•	V	V	F	F	V
	V	F	V	V	F
•	F	V	F	F	V
•	F	E	V	F	V

Exp: Tabela Verdade: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

р	q	r	q∧r	p v (q ^ r)	pvq	pvr	(p v q) \wedge (p v r)	$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$
V	V	٧	٧	V	V	V	V	V
V	V	F	F	>	V	V	V	V
V	F	V	F	>	V	V	V	V
V	F	F	F	\	V	V	V	V
F	V	V	٧	V	V	V	V	V
F	V	F	F	Щ	٧	F	F	V
F	F	٧	F	F	F	V	F	V
F	F	F	F	H	F	F	F	V

Exercício: Tabela Verdade

•
$$\neg (p \rightarrow \neg q)$$

•
$$p \wedge q \rightarrow p \vee q$$

•
$$\neg p \rightarrow (q \rightarrow p)$$

•
$$(p \rightarrow q) \rightarrow p \wedge q$$

•
$$p \rightarrow (q \rightarrow (q \rightarrow p))$$

•
$$\neg (p \rightarrow (\neg p \rightarrow q))$$

•
$$p \land q \rightarrow (p \leftrightarrow q \lor r)$$

•
$$\neg p \land r \rightarrow q \lor \neg r$$

•
$$p \rightarrow r \leftrightarrow q \vee \neg r$$

•
$$p \rightarrow (p \rightarrow \neg r) \leftrightarrow q \vee r$$

•
$$(p \land q \rightarrow r) \lor (\neg p \leftrightarrow q \lor \neg r)$$

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.4 Lógica nas Linguagens de Programação

- ◆ Em geral, LP possuem o tipo de dado lógico (booleano) predefinido
- **♦** Pascal
 - tipo de dado é boolean
 - valores lógicos V e F são **true** e **false**
 - declaração (definição) das variáveis p, q e r

```
p, q, r: boolean
```

♦ Já foi introduzido que as noções de

- igualdade e contido (entre conjuntos)
- pertinência (de um elemento a um conjunto)
- resultam em valores lógicos
- ♦ Analogamente, relações entre expressões aritméticas resultam em valores lógicos

◆ Trechos de programas em Pascal

(qual o valor lógico resultante?)

$$7 - 1 = 5$$

$$n + 1 > n$$

♦ Conetivos lógicos Pascal (e na maioria das LP)

 not
 (negação)

 and
 (conjunção)

 or
 (disjunção)

 <=</td>
 (condição)

 =
 (bicondição)

Exp: Programa em Pascal

Calcular o valor lógico de p v (q x r) para qq valores de p, q e r lidos

```
program valor_logico (input, output);
var p, q, r: boolean;
begin
   read (p, q, r);
   if p or (q and r)
   then write('verdadeiro')
   else write('falso')
end.
```

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.5 Tautologia e Contradição

Def: Tautologia, Contradição

Seja w uma fórmula

- Tautologia
 - * w é verdadeira
 - * para qq combinação possível de valores de sentenças variáveis
- Contradição
 - * w é falsa
 - * para qq combinação possível de valores de sentenças variáveis

Exp: Tautologia, Contradição

Suponha p uma fórmula

- p v ¬p é tautologia
- p ∧ ¬p é contradição

р	¬р	p v ¬p	p ^ ¬p
V	F	V	F
F	V	V	F

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.6 Implicação e Equivalência

- ◆ Conetivos condição e bicondição induzem relações entre fórmulas
 - Condição: implicação
 - Bicondição: equivalência
- ♦ Importância destas relações
 - Relação de implicação
 - * relacionada com o conceito de teorema
 - Relação de equivalência
 - * "mesmo significado" entre fórmulas (sintaticamente) diferentes

Def: Relação de Implicação

p e q fórmulas

$$p \Rightarrow q$$

p implica em q

se e somente se

p → q é uma tautologia

Exp: Relação de Implicação

(interprete os nomes)

Adição: p⇒pvq

Simplificação:p ∧ q ⇒ p

р	q	pvq	$p \rightarrow (p \vee q)$	p∧q	$(p \land q) \rightarrow p$
V	V	V	\	V	V
V	F	V	V	F	V
F	V	٧	V	F	V
F	F	F	V	F	V

Def: Relação de Equivalência

p e q fórmulas

 $p \Leftrightarrow q$

p é equivalente a q

se e somente se

p ↔ q é uma tautologia

Exp: Relação de Equivalência

р	q	r	q∧r	p v (q x r)	pvq	pvr	(p v q) ^ (p v r)	$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$
V	٧	٧	V	V	V	V	V	V
V	V	F	F	V	V	V	V	V
V	F	V	F	V	V	V	V	V
V	F	F	F	V	٧	V	V	V
F	V	V	V	V	V	V	V	V
F	V	F	F	F	V	Œ	F	V
F	F	٧	F	F	F	V	F	V
F	F	F	F	F	F	F	F	V

Exp: ...Relação de Equivalência

Distributividade do conetivo ou sobre o conetivo

$$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$$

Exercício

verificar se o conetivo e distribui-se sobre o conetivo ou

♦ Exemplos de equivalência que seguem

• importantes para o estudo das Técnicas de Demonstração

Exp: Bicondição \times Condição $p \Leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

Bicondição pode ser expressa por duas condições: ida e volta

р	q	p⇔q	$p \rightarrow q$	q→p	$(b \rightarrow d) \vee (d \rightarrow b)$	$(p \leftrightarrow q) \leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$
V	٧	V	V	V	V	V
V	F	F	F	V	F	V
F	V	F	V	F	F	V
F	F	V	V	V	V	V

Exp: Contraposição

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

р	q	$p \rightarrow q$	¬р	¬q	¬q → ¬p	$p \rightarrow q \leftrightarrow \neg q \rightarrow \neg p$
V	V	V	Ш	Œ	V	V
V	F	Ŧ	П	\	F	V
F	V	V	V	F	V	V
F	F	V	V	٧	V	V

Exp: Redução ao Absurdo

$$p \rightarrow q \Leftrightarrow p \land \neg q \rightarrow F$$

р	q	$p \rightarrow q$	¬q	p ^ ¬q	p∧¬q→F	$p \rightarrow q \Leftrightarrow p \land \neg q \rightarrow F$
V	V	V	Ŧ	П	V	V
V	F	F	V	V	F	V
F	V	V	F	F	V	V
F	F	V	V	F	V	V

♦ Exercícios CIC

Idempotência

- * p ∧ p ⇔ p
- * p v p ⇔ p

Comutativa

- $* p \land q \Leftrightarrow q \land p$
- $* p v q \Leftrightarrow q v p$

Associativa

- $* p \land (q \land r) \Leftrightarrow (p \land q) \land r$
- $* p v (q v r) \Leftrightarrow (p v q) v r$

Distributiva

$$* p v (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$$

♦ ...Exercícios CIC

Dupla negação

DeMorgan

$$* \neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

$$* \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

Absorção

$$* p \land (p \lor q) \Leftrightarrow p$$

$$* p v (p \wedge q) \Leftrightarrow p$$

♦ Exercícios ECP

- Bastam os conetivos ¬ e ∧
 - Prove que os conetivos estudados pode ser expresso usando somente ¬ e ∧
- Conetivos EXORe NAND
 - Prove que tais conetivos podem ser expressos usando os conetivos já estudados

X	у	x EXOR y	x NAND y
V	>	Æ	F
V	F	\	\
F	V	V	V
F	F	F	V

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.1.7 Quantificadores

♦ Proposição sobre um conjunto de valores

n > 1

- dependendo do valor de n
- assume valor verdadeiro ou falso
 - * para cada valor de n considerado, é uma proposição diferente

Quantificadores

- dada uma proposição sobre um conjunto de valores
- frequentemente é desejável quantificar os valores a serem considerados

Proposição Sobre um Conjunto

Def: Proposição sobre um Conjunto

Proposição Sobre A

valor lógico depende do elemento x ∈ A considerado

Exp: Proposição sobre N

```
n > 1n! < 10</li>n + 1 > n2n é ímpar
```

Quais proposições são verdadeiras para qualquer n∈N?

proposição p a qual descreve alguma propriedade de x ∈ A

♦ Toda a proposição p sobre A determina 2 conjuntos

Conjunto verdade de p

```
\{x \in A \mid p(x) \text{ \'e verdadeira }\}
```

Conjunto falsidade de p

$$\{x \in A \mid p(x) \text{ \'e falsa}\}$$

Exp: Conjuntos Verdade e Falsidade

Suponha N

n > 1

- { 2, 3, 4,...} conjunto verdade
- { 0, 1 } conjunto falsidade

n! < 10

- { 0, 1, 2, 3 } conjunto verdade
- $\{n \in \mathbb{N} \mid n > 3\}$ conjunto falsidade

n+1>n

- N conjunto verdade (o próprio conjunto universo)
- Ø conjunto falsidade

"2n é ímpar"

- Ø conjunto verdade
- N conjunto falsidade (o próprio conjunto universo)

♦ Uma proposição p sobre A é

- Tautologia
 - * se p(x) é verdadeira para qualquer $x \in A$
 - * conjunto verdade é A
- Contradição
 - * se p(x) é falsa para qualquer $x \in A$
 - * conjunto falsidade é A

Exp: Tautologia, Contradição

Conjunto universo N

n! < 10

- não é tautologia nem contradição
 - * para n = 0, a fórmula é verdadeira
 - * para n = 4, a fórmula é falsa

n+1>n

- é tautologia
- conjunto verdade é o conjunto universo N

"2n é ímpar"

- é contradição
- conjunto falsidade é o conjunto universo N

Quantificador

- ♦ Com freqüência, para uma proposição p(x)
 - desejável quantificar os valores de x que devem ser considerados
- Quantificadores são usados em Lógica (suponha
 - Quantificador universal, simbolizado por ∀

$$(\forall x \in A)(p(x))$$
 $(\forall x \in A) p(x)$ $\forall x \in A, p(x)$

Quantificador existencial, simbolizado por ∃

$$(\exists x \in A)(p(x))$$
 $(\exists x \in A) p(x)$ $\exists x \in A, p(x)$

- ♦ Denotação alternativa para $(\forall x \in A) p(x) e (\exists x \in A) p(x)$
 - quando é claro o conjunto de valores

$$(\forall x)(p(x))$$
 $(\forall x) p(x)$ $\forall x, p(x)$
 $(\exists x)(p(x))$ $(\exists x) p(x)$ $\exists x, p(x)$

♦ Leitura de $(\forall x \in A) p(x)$

qualquer x, p(x) ou "para todo x, p(x)

♦ Leitura de $(\exists x \in A) p(x)$

existe pelo menos um x tal que p(x) ou existe x tal que p(x)

- ◆ Como a leitura induz, o valor verdade de um proposição quantificada é
 - $(\forall x \in A) p(x)$ é verdadeira
 - * se p(x) for verdadeira para *todos* os elementos de A
 - $(\exists x \in A) p(x)$ é verdadeira
 - * se p(x) for verdadeira para pelo menos um elemento de A

Def: Quantificador Universal, Quantificador Existencial

Seja p(x) proposição lógica sobre um conjunto A

Quantificador Universal: $(\forall x \in A) p(x) \notin$

- verdadeira, se o conjunto verdade for A
- falsa, caso contrário

Quantificador Existencial: (3x) p(x)é

- verdadeira, se o conjunto verdade for não-vazio
- falsa, caso contrário

Exp: Quantificador Universal, Quantificador Existencial

```
(\forall n \in \mathbb{N})(n < 1) é falsa

(\exists n \in \mathbb{N})(n < 1) é verdadeira

(\forall n \in \mathbb{N})(n! < 10) é falsa

(\exists n \in \mathbb{N})(n! < 10) é verdadeira

(\forall n \in \mathbb{N})(n + 1 > n) é verdadeira

(\exists n \in \mathbb{N})(n + 1 > n) é verdadeira

(\forall n \in \mathbb{N})(2n \in \mathbb{N}) é verdadeira

(\exists n \in \mathbb{N})(2n \in \mathbb{N}) é verdadeira
```

Sempre que uma proposição quantificada universalmente é verdadeira

- a mesma proposição quantificada existencialmente é verdadeira
- vale sempre ???

♦ Generalização de p(x)

$$p(x_1, x_2,..., x_n)$$

- p descreve alguma propriedade de $x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n$
- cada elemento x₁, x₂,..., x_n pode ser individualmente quantificado
 - * a ordem dos quantificadores existencial e universal
 - pode alterar o valor verdade da proposição
- Exemplo, para o conjunto universo N, tem-se que
 - * $(\forall n)(\exists m)(n < m)$ é verdadeira
 - * (∃m)(∀n)(n < m) é falsa

Obs: Existe pelo menos um × Existe um único

É comum quantificar existencialmente de forma única

- simbolizado por ∃!
- existe um elemento e este é único
 - * não pode existir mais de um

```
(\exists ! n \in \mathbb{N})(n < 1) é verdadeira

(\exists ! n \in \mathbb{N})(n! < 10) é falsa

(\exists ! n \in \mathbb{N})(n + 1 > n) é falsa

(\exists ! n \in \mathbb{N})(2n \in \mathbb{N}) é falsa
```

```
(\exists n \in \mathbb{N})(n < 1) é verdadeira

(\exists n \in \mathbb{N})(n! < 10) é verdadeira

(\exists n \in \mathbb{N})(n + 1 > n) é verdadeira

(\exists n \in \mathbb{N})(2n \in \mathbb{N}) é verdadeira
```

Obs: ...Existe pelo menos um × Existe um único

∃! é equivalentemente a

$$(\exists!x) p(x) \Leftrightarrow (\exists x) p(x) \land (\forall x)(\forall y)((p(x) \land p(y) \rightarrow x = y))$$

- primeiro termo: existe
- segundo termo: único

Negação de Proposições Quantificadas

Negação de proposição quantificada é intuitiva

$$(\forall x \in A) p(x)$$

 $(\forall x \in A) p(x) \notin V$, se p(x) for V para todos os elementos de A

Negação: não é V para todos os elemento de A

existe pelo menos um x tal que não é fato que p(x)

$$\sim ((\forall x \in A) p(x)) \Leftrightarrow (\exists x) \sim p(x)$$

Raciocínio análogo para $(\exists x \in A) p(x)$

$$\sim ((\exists x \in A) p(x)) \Leftrightarrow (\forall x) \sim p(x)$$

Exp: Negação de Proposições Quantificadas

 Negação pode ser estendida para proposições que dependem de n elementos individualmente quantificados

Exp: Negação de Proposições Quantificadas

Proposições quantificadas

- (∀n)(∃m)(n < m) é verdadeira
- (∃m)(∀n)(n < m) é falsa

Negação

- (∃n)(∀m)(n≥m) é falsa
- (∀m)(∃n)(n≥m) é verdadeira

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.2 Técnicas de Demonstração

♦ Teorema: uma proposição do tipo

$$p \rightarrow q$$

prova-se ser verdadeira sempre (tautologia)

$$p \Rightarrow q$$

- * p hipótese
- * q tese

♦ Corolário

• teorema que é consequência quase direta de outro já demonstrado

◆ Lema

- teorema auxiliar
- resultado importante para a prova de outro

◆ Teoremas são fundamentais em Computação e Informática

- Exemplo: permite verificar se uma implementação é correta
- um algoritmo que prova-se, sempre funciona

◆ Fundamental identificar claramente a hipótese e a tese

exemplo

0 é o único elemento neutro da adição em *N*

reescrita identificando claramente a hipótese e a tese

se 0 é elemento neutro da adição em N, então 0 é o único elemento neutro da adição em N

- ♦ Na demonstração de que p ⇒ q
 - hipótese p é suposta verdadeira
 - * não deve ser demonstrada

◆ Todas as teorias possuem um conjunto de premissas (hipóteses)

- são supostas verdadeiras
- sobre as quais todo o raciocínio é construído

◆ Teoria dos Conjuntos

- baseada em uma premissa: noção de elemento é suposta
- algumas abordagens consideram a noção de conjunto como sendo uma premissa

Hipótese de Church

Computação e Informática é construída sobre tal premissa

Obs: Hipótese de Church x Computação e Informática

Algoritmo, procedimento efetivo ou função computável

- um dos conceitos mais fundamentais da Computação e Informática
- intuitivamente

uma seqüência finita de instruções, as quais podem ser realizadas mecanicamente, em um tempo finito

Tal intuição *não* corresponde a um conceito formal de algoritmo Início do século XX

- pesquisadores se dedicaram a formalizar tal conceito
- diversas formalizações matemáticas foram desenvolvidas
 - * 1936, Alan Turing propôs o modelo Máquina de Turing

Obs: ...Hipótese de Church x Computação e Informática

1936: Alonzo Church apresentou a Hipótese de Church

qualquer função computável pode ser processada por uma Máquina de Turing, ou seja, existe um procedimento expresso na forma de uma Máquina de Turing capaz de processar a função

Como a noção intuitiva de algoritmo não é matematicamente precisa

- impossível demonstrar formalmente se a Máquina de Turing é o mais genérico dispositivo de computação
- entretanto, foi mostrado que todos os demais modelos possuem, no máximo, a mesma capacidade computacional

Obs: ...Hipótese de Church x Computação e Informática

Para todos o desenvolvimento subsequentes

- Hipótese de Church é suposta
- premissa básica para toda a Computação e Informática

Se for encontrado um modelo mais geral do que a Máquina de Turing??

- pela semântica do →
- estudos desenvolvidos continuam válidos (por quê?)

Teoria da Computação estuda

Máquina de Turing, Hipótese de Church e conceitos correlatos

- ♦ Um teorema pode ser apresentado na forma p ⇔ q
 - uma técnica usual é provar em separado
 - * ida $p \rightarrow q$
 - * volta q → p

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

- ◆ Para um teorema p → q existem diversas técnicas para provar (demonstrar) que, de fato, p ⇒ q
 - Prova Direta
 - Prova por Contraposição
 - Prova por Redução ao Absurdo ou Prova por Absurdo
 - Prova por Indução

♦ Prova por indução

- aplicação particular do Princípio da Indução Matemática
- capítulo específico adiante
- ◆ Demais tipos de prova são introduzidos a seguir
- ◆ Ao longo da disciplina
 - cada demonstração é um exemplo das técnicas
 - cada exercícios de demonstração é um exercício das técnicas

◆ Para qualquer técnica de demonstração

- especial atenção aos quantificadores
- provar a proposição

$$(\forall x \in A) p(x)$$

- * provar para $todo x \in A$
- * mostrar para um elemento a ∈ A é um exemplo e não uma prova
- provar a proposição

$$(\exists x \in A) p(x)$$

- ∗ basta provar para um a ∈ A

* um exemplo é uma prova (compare com o caso universal)

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.2.1 Prova Direta

Def: Prova Direta ou Demonstração Direta

Pressupõe verdadeira a hipótese

• a partir desta, prova ser verdadeira a tese

Exp: Prova Direta

a soma de dois números pares é um número par

Reescrevendo na forma de p → q

se n e m são dois números pares quaisquer, então n + m é um número par Qualquer par n pode ser definido como n = 2r, para algum natural r

Suponha que n e m são dois pares quaisquer

Então existem r, s∈N tais que

$$n = 2r$$
 e $m = 2s$

Portanto

$$n + m = 2r + 2s = 2(r + s)$$

Como a soma de dois naturais r + s é natural

$$n + m = 2(r + s)$$

Logo, n + m é um número par

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.2.2 Prova por Contraposição

♦ Baseia-se no resultado denominado contraposição

$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

Def: Prova (ou Demonstração) por Contraposição

Para provar p → q, prova-se

$$\neg q \rightarrow \neg p$$
 (prova direta)

- a partir de ¬q
- obter ¬p

Exp: Prova por Contraposição

$$n! > (n+1) \rightarrow n > 2$$

Por contraposição

$$n \le 2 \rightarrow n! \le n+1$$

Muito simples!!!

- testar para os casos n = 0, n = 1 e n = 2
- exercício

2 – Noções de Lógica e Técnicas de Demonstração

2.1 Lógica

- 2.1.1 Proposições
- 2.1.2 Conetivos
- 2.1.3 Fórmulas, Ling. Lógica e Tabelas Verdade
- 2.1.4 Lógica nas Linguagens de Programação
- 2.1.5 Tautologia e Contradição
- 2.1.6 Implicação e Equivalência
- 2.1.7 Quantificadores

2.2 Técnicas de Demonstração

- 2.2.1 Prova Direta
- 2.2.1 Prova por Contraposição
- 2.2.1 Prova por Redução ao Absurdo

2.2.3 Prova por Redução ao Absurdo

♦ Baseia-se no resultado redução ao absurdo

$$p \rightarrow q \Leftrightarrow (p \land \neg q) \rightarrow F$$

Def: Prova (Demonstração) por Redução ao Absurdo

Ou simplesmente Prova (Demonstração) por Absurdo

Para provar p → q, prova-se

$$(p \land \neg q) \rightarrow F$$
 (prova direta)

- supor a hipótese p
- supor a negação da tese ¬q
- concluir uma contradição (em geral, q ∧ ¬q)

♦ Prova por contra-exemplo

- é demonstração por absurdo
 - * construção da contradição q ∧ ¬q
 - * em geral, apresentação de um contra-exemplo

Exp: Prova por Redução ao Absurdo

0 é o único elemento neutro da adição em *N*

Reescrevendo na forma de $p \rightarrow q$:

se 0 é elemento neutro da adição em N, então 0 é o único elemento neutro da adição em N

Uma prova por redução ao absurdo

Exp: ...Prova por Redução ao Absurdo

- suponha
 - * (hipótese) 0 é o elemento neutro da adição em N
 - * (negação da tese) 0 não é o único neutro da adição em N
- seja e um outro neutro da adição em N tal que e ≠ 0
- como 0 é elemento neutro, para qq n∈N

$$* n = 0 + n = n + 0$$

- * em particular, para n = e: e = 0 + e = e + 0
- como e é elemento neutro, para qq n∈N

$$* n = n + e = e + n$$

* em particular, para n = 0: 0 = 0 + e = e + 0

Exp: ...Prova por Redução ao Absurdo

- portanto, como e = 0 + e = e + 0 e 0 = 0 + e = e + 0
 - * pela transitividade da igualdade: e = 0
 - * contradição!!! pois foi suposto que e ≠ 0

Logo, é absurdo supor que o neutro da adição em N não é único

Portanto, 0 é o único neutro da adição em N

Matemática Discreta para Computação e Informática

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Noções de Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- 5 Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

Matemática Discreta para Computação e Informática

P. Blauth Menezes

blauth@inf.ufrgs.br

Departamento de Informática Teórica Instituto de Informática / UFRGS

