Linkage Disequilibrium (LD)

Jan Graffelman¹

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

jan.graffelman@upc.edu

November 14, 2018

Jan Graffelman (UPC) 1 / 24

Contents

- Introduction to LD
- 2 LD statistics
- Stimation of LD
- 4 Examples
- 6 Computer exercise

Jan Graffelman (UPC) 2 / 24

- LD: an association between the alleles at different sites in the genome.
- The terms suggests this to be a consequence of the physical closeness of the sites, but this is not necessarily so.
- LD is an important concept in disease-marker association studies.

Jan Graffelman (UPC) 3 / 24

Linkage Disequilibrium (LD) and Hardy-Weinberg equilibrium (HWE)

- Both concepts refer to association between alleles
- HWE refers to association between alleles at the same locus (within one marker)
- LD refers to association between alleles at different loci (between markers)

Jan Graffelman (UPC) 4 / 24

Measures of LD

- D (deviation from independence)
- Lewontin's $D' = D \over D_{max}$ ("standardization" of D)
- R²
- χ^2 statistic of a contingency table
- p − value in a chi-square test or in an exact test

• ...

Jan Graffelman (UPC) 5 / 24

Haplotype

- A haplotype is a combination of alleles at adjacent loci on a chromosome that are transmitted together to the next generation.
- In practice, a haplotype often refers to a set of SNPs on a single chromosome that are statistically associated.
- A haplotype map of the human genome has been constructed (www.hapmap.org).

Jan Graffelman (UPC) 6 / 24

Introduction to LD

- Consider a population of *n* individuals
- Consider two sites (two bi-allelic markers) on the same chromosome
- One marker with alleles A and a, and one marker with alleles B and
 b
- Four possible haplotypes: AB, Ab, aB and ab
- Allele frequencies p_A, p_a, p_B and p_b
- Expected probabilities of each haplotype under independence:

	SNP2			
		В	b	
SNP1	Α	$p_A p_B$	$p_A p_b$	p_A
	а	$p_a p_B$	$p_a p_b$	p_a
		р _R	рь	1

Jan Graffelman (UPC) 7 / 24

Introduction to LD

Observed probabilities of each haplotype in presence of LD

$$D = p_{AB} - p_A p_B$$
 or $D = P_{AB} P_{ab} - P_{Ab} P_{aB}$

D > 0: known as "coupling" D < 0: known as "repulsion"

Jan Graffelman (UPC) 8 / 24

How to compute *D*?

- p_A and p_B can be estimated by the sample allele frequencies \hat{p}_A and \hat{p}_B
- p_{AB} is unobserved and thus unknown
- We have data at the genotype level, and p_{AB} is at the haplotype level.

Jan Graffelman (UPC) 9 / 24

The data

Observed genotype data

2 220. 100 go01) po untu						
		SNP2				
		BB	Bb	bb		
SNP1	AA	n_{AABB}	n_{AABb}	n_{AAbb}		
	Aa		n_{AaBb}			
	aa	n _{aaBB}	n_{aaBb}	n_{aabb}		

- This data can be considered a sample from a MN distribution with 9 categories, where the probability of each of the 9 categories ultimately depends on the four haplotype probabilities p_{AB} , p_{Ab} , p_{aB} and p_{ab} .
- We will use a maximum likelihood approach

Jan Graffelman (UPC) 10 / 24

ML estimation

$$\theta = (p_{AB}, p_{Ab}, p_{aB}, p_{ab}), \quad \mathbf{x} = (n_{AABB}, n_{AABb}, \dots n_{aabb})$$

$$L(\theta|\mathbf{x}) = \frac{n!}{n_{AABB}! \dots n_{aabb}!} \cdot (p_{AB}^2)^{n_{AABB}} \dots (p_{ab}^2)^{n_{aabb}}$$

$$I(\theta|\mathbf{x}) = C + 2n_{AABB} \ln(p_{AB}) + \dots + 2n_{aabb} \ln(p_{ab})$$

- The problem can be reparametrized in terms of p_A , p_B and P_{AB}
- (because $p_A = p_{AB} + p_{Ab}$, $p_B = p_{AB} + p_{aB}$, $p_{AB} = 1 (p_{Ab} + p_{aB} + p_{ab})$)
- Setting $\frac{\partial I}{\partial \theta} = 0$, no closed form solution can be found.
- We maximize the likelihood by a Newton-Raphson algorithm
- Alternatively the EM algorithm may be used

Jan Graffelman (UPC) 11 / 24

Example data set

- Data from the FAMuSS (Functional SNPs Associated with Muscle Size and Strength) study (Foulkes, 2009)
- n = 1397 individuals and 225 SNPs
- Muscle performance variables

Jan Graffelman (UPC) 12 / 24

Computing LD in R

```
> fms <- read.delim(file="c:/data/FMS_data.txt",header=TRUE,sep="\t")
> n <- nrow(fms)
> p <- ncol(fms)
> print(n)
[1] 1397
> print(p)
Γ17 347
> attach(fms)
> actn3 r577x[1:10]
 [1] CC CT CT CT CC CT TT CT CT CC
Levels: CC CT TT
> actn3_rs540874[1:10]
[1] GG GA GA GA GG GA AA GA GA GG
Levels: AA GA GG
> Actn3Snp1 <- genotype(actn3_r577x,sep="")
> Actn3Snp2 <- genotype(actn3_rs540874,sep="")
> out <- LD(Actn3Snp1,Actn3Snp2)
> class(out)
[1] "LD"
> attributes(out)
$names
[1] "call"
              "D"
                        "D'"
                                   "r"
                                             "R^2"
                                                        "n"
                                                                  "X^2"
[8] "P-value"
$class
[1] "LD"
> out$D
[1] 0.1945726
> out$"D'"
[1] 0.8858385
```

Jan Graffelman (UPC) 13 / 24

ML Estimation

lt.	$I(P_{AB}, P_A, P_B x)$	P_{AB}	P_A	P_B
0	-1471.8874	0.0100000	0.508276	0.434483
1	-1469.9878	0.0438867	0.503479	0.429587
2	-1460.8970	0.0375485	0.514644	0.441162
3	-1459.0183	0.0297541	0.514183	0.440727
4	-1458.2618	0.0288494	0.508727	0.435198
5	-1458.0022	0.0263196	0.509216	0.435692
6	-1457.9928	0.0257361	0.507443	0.433847
7	-1457.9840	0.0251530	0.509738	0.432716
8	-1457.9716	0.0253836	0.508019	0.434685
9	-1457.9709	0.0257321	0.507963	0.434594
10	-1457.9696	0.0256473	0.508296	0.434473
11	-1457.9696	0.0256113	0.508247	0.434500
12	-1457.9696	0.0256208	0.508278	0.434481
13	-1457.9696	0.0256212	0.508276	0.434483

After convergence:

$$p_{AB} = 0.0256212, p_{Ab} = p_A - p_{AB} = 0.4826544, p_{aB} = p_B - p_{AB} = 0.408862, p_{ab} = 1 - (p_{AB} + p_{Ab} + p_{aB}) = 0.08286239$$

D = -0.1952159

Jan Graffelman (UPC) 14 / 24

Introduction to LD

- \bullet -0.25 < D < +0.25
- D' is an attempt to standardize D.

$$D' = \frac{D}{D_{max}}$$

$$D_{max} = \begin{cases} \min(p_A p_b, p_a p_B) & D > 0 \text{ (coupling)} \\ \min(p_A p_B, p_a p_b) & D < 0 \text{ (repulsion)} \end{cases}$$

- -1 < D' < 1.
- $D' \approx 0$: low LD
- |*D'*| close to 1 : high LD.

Jan Graffelman (UPC) 15 / 24 Introduction to LD

- The genotype data can be recoded as indicator data, creating indicators for the carriers of the A and B allele.
- \bullet R^2 is the squared correlation between these indicators.
- R^2 is related to the χ^2 statistic of a 2 × 2 contingency table: $R^2 = \chi^2/(2n)$.
- The χ^2 statistic is related to D

$$R^2 = \chi^2/(2n) = \frac{D^2}{p_A p_B p_a p_b}$$

Jan Graffelman (UPC) 16 / 24

LD heatmap: graphics for LD with many SNPs

```
> library(LDheatmap)
> Actn3Snp1 <- genotype(actn3 r577x.sep="")
> Actn3Snp2 <- genotype(actn3 rs540874.sep="")</pre>
> Actn3Snp3 <- genotype(actn3_rs1815739,sep="")
> Actn3Snp4 <- genotype(actn3_1671064,sep="")
> ActnAll <- data.frame(Actn3Snp1.Actn3Snp2.Actn3Snp3.Actn3Snp4)
> LD(ActnAll)$"D'"
> ActnAll <- data.frame(Actn3Snp1,Actn3Snp2,Actn3Snp3,Actn3Snp4)
> LD(ActnAll)$"D'
          Actn3Snp1 Actn3Snp2 Actn3Snp3 Actn3Snp4
                 NA 0.8858385 0.9266828 0.8932708
Actn3Snp1
Actn3Snp2
                           NA 0.9737162 0.9556019
                 NΑ
Actn3Snp3
                                      NA 0.9575870
                 NΑ
                           NA
Actn3Snp4
                 NΑ
                           NA
                                     NA
                                                NA
```

> LDheatmap(ActnAll,LDmeasure="D',")

> install.packages("LDheatmap")

Jan Graffelman (UPC) 17 / 24

LD Heatmap

Jan Graffelman (UPC) 18 / 24

Another Heatmap (HaploView)

100 (successive) SNPs on chromosome 1 of a sample of 45 individuals from a Chinese population of the HapMap project (www.hapmap.org), 27 remaining after removing monomorphics.

Jan Graffelman (UPC) 19 / 24

LD and physical distance

Jan Graffelman (UPC) 20 / 24

LD and recombination

- Let θ be the rate of recombination between two loci. $0 < \theta < 0.5$.
- Let D_0 be the degree of LD in generation 0. Then it can be shown that:

$$D_1 = (1 - \theta)D_0$$

$$D_t = (1-\theta)^t D_0$$

Jan Graffelman (UPC) 21 / 24

LD pruning

- It is often convenient to have independent genetic variants.
- Genetic variants that are physically close on a chromosome typically have high correlations.
- A subset of variants can be selected that is, at least approximately, independent.
- In practice, a window of fixed size is defined (in kb or as a variant number).
- An R² statistic can be calculated for each pair of variants in the window.
- Remove variants from the window until al remaining pairs of variants have $R^2 < t$, where t is some threshold.
- Can produces windows with fewer, approximately independent variants.
- The process is known as LD pruning.
- Easy to do in the widely used PLINK software.

Jan Graffelman (UPC) 22 / 24

References

- Weir, B.S. (1996) Genetic Data Analysis II, Chapter 3, Sinauer Associates, Massachusetts.
- Foulkes, A.S. (2009) Applied statistical genetics with R. Springer.

Jan Graffelman (UPC) 23 / 24

Computer exercise

- Install the R packages genetics, HardyWeinberg and LDheatmap.
- Load the database http://www-eio.upc.es/ jan/data/bsg/CHBChr2-2000.rda
- Calculate the statistics D,D',R^2 and χ^2 for SNPs 12 and 13. Interpret the results.
- Calculate the statistics D, D', R^2 and χ^2 for SNPs 12 and 1000. Interpret the results.
- Select the first 100 SNPs from the database that have complete information (no missings).
- Compute 4 matrices of association statistics, for D, D', R^2 and χ^2 respectively.
- Extract the subdiagonal part of each matrix into a vector.
- Make a scatterplot matrix of the 4 association statistics. Are they related?
- Make an LDheatmap for each of the four association statistics. Are the results similar?

Jan Graffelman (UPC) 24 / 24