

Database II

Lecture 0: Course Overview

28 August – 2024

Contents

- Class Policies and Organizational Issues
- Course Information
- Organizational Issues
- Course Contents
- Course Materials
- Introduction to the Topic

Course Information

- Course Name:
 - Database II
- Pre-Requirements for the participation
 - Database I
- Type of Course:
 - Lecture with supporting weekly exercises to repeat and adapt the lecture contents and Projects.
- Slides and Extra Notes:
 - Soft Version, available here: https://github.com/mujtabaSultani01/Database-II

Lecture Issues

- Lecture Times per Week
 - ▶ Monday II:20 I2:45 (Lecture)
 - Wednesday II:20 I2:45 (Lecture)
- Office hours
 - ▶ Sunday 10:00 01:00
 - ▶ Wednesday 08:00 01:00
- Private appointment
 - Contact me through email.

Assignments

Weekly basis

> Rules

- ✓ The Assignments should be handover Before the deadline...
- ✓ You will work on the homework in Small groups
- √ There should be no copy and paste
- √ The copy and paste homework has zero points
- ✓ Don't Cheat Yourself, Please!!!...

Examination and Grading

Exams

► Term-wise Project: **20**%

Final-term Exam: 60%

Others

Class Activity: I 0%

► Homework: **10**%

Class Rules

- Full attendance
- Please come on time
- Turn off your mobile.

Don't disturb your classmate !!!!

Problems and Question

Place:

Computer Science Faculty (Lecturer room)

Internet contact :

- ► <u>Mujtaba.cs01@gmail.com</u>
- https://github.com/mujtabaSultani0 I / Database-II

Course Contents

- Introduction to Databases
- Business intelligence

- Enhanced ERD
- Relational Algebra
- Query Optimization
- Stored Procedure
- Stored Functions
- Triggers
- Transaction Management
- Indexing
- Database Administration & Security
- Distributed DBMSs & Replication Servers

Course Materials

- Database Systems: A practical approach to design, implementation, and management. (Main reference)
- Database Systems: Design, Implementation, & Management, by Carlos Coronel and Steven Morris, I3th Ed. (Main reference)
- Database Systems Concepts, 7th Edition, by Silberschatz, Korth and Sudarshan. (Supplementary textbook)
- ► Microsoft SQL Server 2008 R2. (Supplementary textbook)

Data & Information

☐ Data

The term data referred to facts concerning objects and events that could be recorded and stored on computer media.

☐ Information

Data that have been processed in such a way as to increase the knowledge of the person who uses the data.

Knowledge

Information

Data

Data & Information

Data, Information & Knowledge

Transforming Raw Data into Information

Transforming raw data into information

b) Raw data

1.Washington	(A.	Gworge	MONT	241.35	gwashingtor@retsu.adu	Pyuliesadr	2001 Ph.D.
2 Adams		John	PIN	14313	jedens@mlsu.edu	Protessor	1984 Ph.D.
3 Jeferson	L	Thomas	ECON		tjefferson@mtsu.edu	Instructor	2002 M B A
4 Madison	D.	James	FIN	142'36	(mindleson@inters.edu	Associate Professor	1994 Ph.D.
5 Manroe	N.	James	ACCT	24411	imorroe@mtsu.edu	Assistant Professor	1995 Ph.D.
6-Adams	0	John	ACCT	24418	igedens@mbu.edu	Associate Professor	1989 Ph.D.
7 Jackson	C.	Andrew	ECON	N383	ejeckson/diretsujedu	Associate Prolessor	1999 Ph.D.
E Yan Buron	T.	Mortin	PRI	14305	myenburen@intou.edu	Professor	1588 Ph.D.
9 Horrsion	R.	William	MICTO	26118	whomson@intsu.edu	Professor	1994 Ph.D.
10 Tyles	M	John	MONT		Jtyler@esten.edu	Assistant Professor	2000 Ed.O
11 Pok		Chenyl	METG	20143	opolik@mtsu.edu	Associate Professor	2962 Ph.D.
TE Traylor	G.	Zachary	ADDT	3485	steylor@misu.edu	Associate Professor	1995 Ph.D.
13:Fillmore		Millard	JCB	N219	mikitima na Olivetta u. archu	Protessor	1992 Ph.D.
14.Fierce	A.	Franklin	MKTG	14369	phranisi in Giroteu, ecki	Invetructor	2005 M.B.A.
15 Buchenen	T.	James	MGMT	241-45	ibuchanan@mmu.edu	Associate Professor	1996-D.B.A
17 Lincoln	W.	Larry	MEMT	N150	Necoin@wtsu.edu	Associate Professor	1995 Ph.D.
18'Jahoson		Andrew	16YE	11/300	ejsting on Grettuu ardu	Protessor	1987 Ph.D
19 Grent		Kate	MICTG	N128	Figrent@mhsu.edu	Assistant Professor	1989 D.B.A.
26 Purherford		Heyes.	ACCT	26408	hrutterford@intsu.edu	Professor	1992 Ph.D.
21 Cirefield	T	Danise	ADDT		olganitatol@mmu.edu	Assistant Protessor	2018 Ph.D.
22 Active		Emily	ADDT	2641.3	earthur Smitsu edu	Associate Professor	2063 J.D.
23 Clevenland	G	Rabert	ACCT	34401	rolevel and Gratau estu	Associate Professor	1997 Ph.D.
24 Herrison	×	Petricie.	BUGA	31405	phemion@imbu.edu	Associate Professor	2001 J.D.
25 McKinley	BL.	Proofs	151YS	34363	produntay@estsq.edu	Adjunct	1094 M II
25 Floosevelt	F.	Hillory	MGMT	24104	hrposevelt@mtsu.edu	Associate Profession	2002 Ph.D.
27 Wilson		Louis	BOEN	31445	Partition Operation meta-	Professor	1982 Ph.D.
2E Harding		Witness	MICTG	1971-6	wheeling (Bretty, oct.)	Protestor	1984 EdD.
29 Coolidge		Calvin	ECON	1016	cccoldge@mtus.edu	Protessor	1975 Ph.D.
30 Hoover		Line	MONT		Thoover@mtsu.edu	Adjunct	1975 M.H.A.
21:Tomes		theny	ACCT	26416	bitrummer (Drivitou evolu	Protessor	1171 E4D.
32 Johnson		Robert	BCEN	14249	nohosan/dimisu edu	Protessor	2981 Ph.D.

c) Information in summary format

Rank	COUNT	%/INFS	TOT/COL	%/COL. TOT.	%/COL. FAC.
		20.00%		21.74%	
Assistant Professor	2	8.00%	28	7.14%	1.31%
Associate Professor	9	36.00%	37	24.32%	5.88%
Instructor	2	8.00%	18	11.11%	1.31%
Professor	7	28.00%	47	14.89%	4.58%

d) Information in graphical format

SOURCE: Course Technology/Cengage Learning Data entry screen courtesy of Sedona Systems, 2011. Information screens courtesy of JCBDashboard, 2011.

Data Vs Information

Data	Information
Data consist of unprocessed raw facts.	Information the processed form of data.
Data is used as input in the computer.	Information the output of the computer.
Data is not meaningful.	Information meaningful.
Data is normally huge in its volume.	Information normally short in its volume.
Data difficult to reproduce.	Information easier to reproduced if lost.
Data is un independent entity.	Information is depending on data.
Data is not used in decision-making.	It's very important for decision-making.

Data & Information

☐ Metadata

- Data about the data.
- The metadata describe the data characteristics and the set of relationships that links the data found within the database.

Data & Metadata Examples

Roll No	Name	Address	Email	Phone
1	Ahmad	Karte-Chahar	ahmad.afghan@example.com	+93490004999
2	Husain	Karte-Naw	sayed.husain@example.com	+93917897958

Field Name	Data type	Length	Description	Constraint
Roll No	Integer	3	Roll No of the student	Value from 1 to 100
Name	Alphabetic	50	Name of the student	
Address	Alphanumeric	100	Address of the student	
Email	Alphanumeric	25	Email of the student	Must contain @ and .
Phone	Alphanumeric	25	Phone of the student	
Field Name	Data type	Length	Description	Constraint

File Based System

- A collection of application programs that perform services for the end-users such as the production of reports. Each program defines and manages its own data.
- In a typical file processing system, each department in an organization has its own set of files.
- The files are designed specially for their own application. The records in one file not related to the records in any other file.

File Based System

- ☐ Problems with File Based System
 - Inconsistent Data
 - Difficulty of getting quick answers
 - Duplication of data
 - Data dependence
 - Lengthy development times
 - Lack of Security
 - Excessive program maintenance

File Based System

Example:

Sales Department

Client Details				
Name				
Address				
Tel.No				
Preferred type				
Max. Rent				

Drear	mHome Property for Rent
Address _	
City	Postcode
Туре	Rent
	Owner Details
Name	
Address	
Tel.No.	

Database

- Organized collection of logically related data.
- Collection of files storing related data.
- Database is an organized collection of related data that is stored in an efficient and compact manner.

Such as

- ✓ Library database
- ✓ University database
- ✓ Superstore database
- ✓ Airline reservation database
- **√** ...

Introduction to Table

- Table is the fundamental object of the database structure.
- The basic purpose of table is to store data.
- A table consist of rows and columns.
- The data in a table can be manipulated easily.

Student ID	Name	Course	Fee
1	Zahir	MOUS	100
2	Nazir	CCNA	200
3	Hilal	MCSE	150
4	Zubair	MySQL	100

What is Row/Record?

- A logically connected set of one or more fields that describe a person, place or thing is called Row/ Record.
- Row/Record is the horizontal part of the table.
- For example the field that comprise a record for student Name Nazir might consist of Nazir's ID, Name, Course and Fee.

Student ID	Name	Course	Fee	
I	Zahir	MOUS	100	
2	Nazir	CCNA	200	
3	Hilal	MCSE	150	

What is Column/Field?

- A column/field is a collection of cells aligned vertically in a table.
- A column/field is an element in which one piece of information is stored, such as the student's names.
- Fields/columns are the vertical part of the table.

Name

Zahir

Nazir

Hilal

Zubair

Database Management System

- □ **DBMS:** A software system that enables users to define, create, maintain, and control access to the database.
- Examples: DB2 (IBM), SQL Server (MS), Oracle, Sybase, MySQL, ...
- ☐ Database System:
 - The database management system together with the data is called the database system.

Database Management System

□ DBMS Functionalities:

- Define a particular database in terms of its data types, structures, and constraints
- Construct or Load the initial database contents on a secondary storage
- Manipulating the database:
 - Retrieval: Querying, generating reports
 - Modification: Insertions, deletions and updates to its contents.
 - Accessing the database through Web applications
- Processing and Sharing
- Protection or Security

Database Advantages

- Control of data redundancy
- Data consistency
- Data sharing

- Increased productivity of application development
- Enforcement of standards
- Improved data quality
- Improved data accessibility and responsiveness
- Reduced program maintenance
- Multi Users interface

Database Disadvantages

- Cost of DBMS
- Complexity (Installation & Management)
- Hardware Cost
- Professionals required

Simplified Database Environment

Simple Database Example

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

GRADE_REPORT

Section_identifier	Grade B	
112		
119	С	
85	Α	
92	Α	
102	В	
135	Α	
	112 119 85 92 102	

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Components of Database Environment

- Application Program: An application program that is used to perform a series of database activities (create, read, update, and delete) on behalf of database users.
- Database System
- Database Management System (DBMS)
- Data Repository: A centralized knowledge base of all data definitions, data relationships, report formats and other system components.
- **Data Administrator:** Data administrators are persons who are responsible for the overall management of data resources in an organization.

Components of Database Environment

- Database Administrators (DBA): are responsible for physical database design and for managing technical issues in the database environment.
- System Developers: They are systems analysts and programmers who design new application programs.
- End-Users: End users are persons who add, delete and modify data in the database and request information from it.

Home Work

Create groups until next week (Maximum of three students).

References

Database Systems: A practical approach to design, implementation, and management.

Questions ...?

