Théorèmes Algèbre

Groupe:

Un groupe est un couple (G,*) où G et un ensemble $\neq \emptyset$ muni d'une loi de composition interne

 $*: G \times G \to G$ qui est :

- Associative : $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
- Existence d'un neutre noté e: $\exists e \in G, \forall g \in G, g * e = e * g = g$
- Existence d'un inverse $h: \forall g \in G, \exists h \in G, g*h = h*g = e$, on note $h = g^{-1}$

Un groupe (G,*) est dit abélien si $\forall a,b \in G$, a*b=b*a

Groupe symétrique :

Soit $n \in \mathbb{N}$. On définit $\mathfrak{S}_{\mathbf{n}}$ l'ensemble des bijections de $[\![1,n]\!]$ dans lui-même :

$$\mathfrak{S}_{n} = \{\sigma : [1, n] \rightarrow [1, n] | \sigma \text{ bijective} \}$$

Un élément de \mathfrak{S}_n est appelé permutation.

Pour
$$\sigma \in \mathfrak{S}_n$$
, on note $\sigma = \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$

Propriété : \mathfrak{S}_n est de cardinal n!

Définition du cycle :

Un cycle est une permutation $\sigma \in \mathfrak{S}_{\mathbf{n}}$ telle que $\exists i_1, \ldots, i_p \in \llbracket 1, n \rrbracket$ 2 à 2 distincts (avec $2 \leq p \leq n$) tq $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \ldots, \sigma(i_{n-1}) = i_n, \sigma(i_n) = i_1$ et $\forall i \in \llbracket 1, n \rrbracket \backslash \{i_1; \ldots; i_p\}, \sigma(i) = i$

On note aussi $\sigma = (i_1, ..., i_p)$. L'entier p est appelé longueur du cycle σ .

Commutation des permutations à supports disjoints :

Deux permutations de \mathfrak{S}_n à supports disjoints commutent entre elles.

Toute permutation se décompose en un produit de cycles à supports disjoints.

Toute permutation se décompose en un produit de transpositions.

Signature:

Soit $\sigma \in \mathfrak{S}_{\mathbf{n}}$ et (i,j) un couple tel que $1 \leq i \leq j \leq n$. On dit que σ réalise une inversion du couple $(i\,j)$ si $\sigma(i) > \sigma(j)$. On note $I(\sigma)$ le nombre de tels couples sur lesquels σ réalise une inversion, aussi appelé nombre d'inversions de σ .

On nomme signature d'une permutation $\sigma \in \mathfrak{S}_n$ le réel

$$\varepsilon(\sigma) = (-1)^{I(\sigma)} = \prod_{1 \le i < j \le n} \operatorname{sgn}(\sigma(i) - \sigma(j))$$

Signature d'une transposition :

La signature d'une transposition est toujours -1

Signature de composée :

Soient
$$\sigma, \tau \in \mathfrak{S}_n$$
 alors $\varepsilon(\sigma \circ \tau) = \varepsilon(\sigma) \times \varepsilon(\tau)$

Ainsi
$$\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)$$

Signature d'un cycle:

Soit c un cycle de longueur p, alors $\varepsilon(c) = (-1)^{p-1}$

Déterminant :

Soit $A\in M_n(\mathbb{K})$. On note $A=\left(a_{ij}\right)_{1\leq i,j\leq n}$ et on note déterminant de A le scalaire :

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} a_{\sigma(i),i} \in \mathbb{K}$$

Encore noté
$$\begin{vmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{vmatrix}$$

Déterminant des matrices triangulaires supérieures :

Soit $T=\left(a_{ij}\right)_{1\leq i,j\leq n}\in M_n(\mathbb{K})$ triangulaire supérieure alors

$$\det(T) = \prod_{i=1}^{n} a_{i,i}$$

Déterminant de la transposée :

Soit
$$A = (a_{ij})_{1 \le i, i \le n} \in M_n(\mathbb{K})$$
, alors $\det(A) = \det({}^t A)$

Multilinéarité du déterminant :

Le déterminant est une forme multilinéaire, ie il est linéaire par rapport à chacune de ses colonnes

De plus, c'est une forme multilinéaire alternée, *ie* échanger deux colonnes de la matrice résultera en l'opposé du déterminant.

Matrice avec deux colonnes égales :

Soit $A \in M_n(\mathbb{K})$ ayant deux colonnes égales, alors $\det(A) = 0$

Colonnes liées :

Soit $A \in M_n(\mathbb{K})$. Si les colonnes de A sont liées, alors $\det(A) = 0$

Produit des déterminants :

Soient $A, B \in M_n(\mathbb{K})$, $\det(A \times B) = \det(A) \det(B)$

Inversibilité et déterminants :

- i. $A \text{ inversible} \Leftrightarrow \det(A) \neq 0$
- ii. Si A inversible, alors $\det(A^{-1}) = \frac{1}{\det(A)}$

Opérations sur les déterminants :

(Les énoncés utilisés pour les colonnes fonctionnent aussi pour les lignes)

- L'opération $C_i \leftarrow C_i + \lambda C_j$ ne modifie pas le déterminant
- L'opération $C_i \leftrightarrow C_j$ multiplie le déterminant par -1
- L'opération $C_i \leftarrow \lambda C_i$ multiplie le déterminant par λ .

Développement de A par rapport à la colonne C_i

On note Δ_{ij} le mineur de A obtenu en supprimant L_i et \mathcal{C}_j

Et A_{ij} le cofacteur de A, $A_{ij} = (-1)^{i+j} \Delta_{ij}$

$$\det(A) = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \Delta_{ij}$$

Développement de A par rapport à la ligne L_i

$$\det(A) = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \Delta_{ij}$$

Déterminant d'une matrice triangulaire par blocs :

Soient $n, p \in \mathbb{N}^*$, $A \in M_n(\mathbb{K})$, $B \in M_{n,p}(\mathbb{K})$, $C \in M_p(\mathbb{K})$, alors

$$\det\begin{pmatrix} A & B \\ 0_{M_{p,n}(\mathbb{K})} & C \end{pmatrix} = \det(A) \det(C)$$

Comatrice:

La comatrice de A, notée Com(A), est la matrice des cofacteurs de A:

$$Com(A) = (A_{ij})_{1 \le i, j \le n}$$

Inverse d'une matrice :

Soit $A \in M_n(\mathbb{K})$ inversible, alors

$$A^{-1} = \frac{1}{\det(A)} {}^{t}\operatorname{Com}(A)$$

Détermination d'une matrice :

<u>Définition</u>: Matrice extraite

Soit $A \in M_n(\mathbb{K})$. On appelle matrice extraite de A toute matrice obtenue à partir de A en supprimant un certain nombre de ses lignes & colonnes.

Rang des matrices extraites : Soit $A \in M_n(\mathbb{K})$ le rang de A est supérieur au rang de n'importe quelle matrice extraite de A.

Lemme: Mineur et rang

Soit $A \in M_n(\mathbb{K})$. Soit $r \in [1; \min(n, p)]$. On a l'équivalence :

 $rg(A) \ge r \Leftrightarrow il existe un mineur d'ordre r de A qui est non nul$

<u>Théorème</u>: Soit $A \in M_n(\mathbb{K})$ non nulle. Le rang de A est égal à l'ordre maximal des mineurs non nuls extraits de A, c'est-à-dire $\operatorname{rg}(A) = r$ ssi il existe un mineur d'ordre r de A non nul et tous les mineurs d'ordre supérieur à r+1 de A sont nuls.

Formules de Cramer

Soit $(a_{i,j})_{1 \le i \le n}$ et $b_1, ..., b_n$ des scalaires. Le système linéaire de n équations à n inconnues suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

a pour écriture matricielle AX = B où

$$A = \left(a_{ij}\right)_{1 \leq i, j \leq n} M_n(\mathbb{K}), X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in M_{n,1}(\mathbb{K}), B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in M_{n,1}(\mathbb{K})$$

Si $\det A = 0$, le système ci-dessus admet une unique solution donnée par :

$$\forall j \in [\![1;n]\!], x_j = \frac{\det(C_1,\ldots,C_{j-1},B,C_{j+1},\ldots,C_n)}{\det(A)} = \frac{\begin{vmatrix} a_{11}\ldots a_{1\,j-1}\ b_1\ a_{1\,j+1}\ldots a_{1,n}\\ \vdots\\ a_{n1}\ldots a_{n\,j-1}\ b_1\ a_{n\,j+1}\ldots a_{n,n} \end{vmatrix}}{\det A}$$

Où C_1, \ldots, C_n sont les colonnes de A.

Déterminant d'un endomorphisme

Dans toute cette parte, E désigne un \mathbb{K} -ev de dimension finie $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$

Lemme/définition: (Déterminant d'un endomorphisme)

Soient \mathcal{B} et \mathcal{B}' deux bases de E. Alors $Mat_{\mathcal{B}'}(u)$ et $Mat_{\mathcal{B}'}(u)$ ont le même déterminant. Ce déterminant est le déterminant de l'endomorphisme u.

Premières propriétés sur les déterminants d'endomorphismes :

- (i) $\det(Id_E) = 1$
- (ii) $\forall \lambda \in \mathbb{K}, \det(\lambda u) = \lambda^n \det(u), \text{ avec } n = \dim E$
- (iii) $\det(u \circ v) = \det(u) \det(v)$
- (iv) Si *u* est bijectif, $\det(u^{-1}) = (\det(u))^{-1} = \frac{1}{\det(u)}$

Déterminant d'une famille de vecteurs

Soit E un \mathbb{K} -ev de dimension $n \in \mathbb{N}^*$ muni d'une base $\mathcal{B} = (e_1, \dots, e_n)$. Soient $x_1, \dots, x_n \in E$.

$$\forall i \in [1; n], x_i = \sum_{k=1}^n \alpha_{k,i} e_k$$

Notons $X_i = Mat_{\mathcal{B}}(x_i)$, qui est une matrice coonne.

$$Mat_{\mathcal{B}}(x_1,\ldots,x_n) = (X_1\,X_2\,X_3\,\ldots X_n) = \begin{pmatrix} \alpha_{11} & \ldots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \ldots & \alpha_{nn} \end{pmatrix} \in M_n(\mathbb{K})$$

<u>Définition</u>: On appelle déterminants dans la base \mathcal{B} de la famille $(x_1, ..., x_n)$ de vecteurs de E le scalaire $\det_{\mathcal{B}}(x_1, ..., x_n) = \det(Mat_{\mathcal{B}}(x_1, ..., x_n))$

Propriété: (Relation base/déterminant)

Soit $F = (x_1, ..., x_n)$ une famille de vecteurs de E. Les 2 assertions suivantes sont équivalentes :

- (i) F est une base de E
- (ii) $\det_{\mathcal{B}}(F) \neq 0$

<u>Propriété</u>: Soit $u \in \mathcal{L}(E)$ et $(x_1, ..., x_n)$ une famille de n vecteurs de E.

Alors $\det_{\mathcal{B}}(u(x_1), ..., u(x_n)) = \det(u) \det_{\mathcal{B}}(x_1, ..., x_n)$