Linear filtering

1

Roadmap

Machine Vision Technology											
Semantic information					Metric 3D information						
Pixels	Segments	Images	Videos		Camera		Multi-view Geometry				
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM			

Binary Gray Scale Color White the second of the second of

Binary image representation

Y

O: Black
1: White

Row q

P

Source: Ulas Bagci

3

Color Image - one channel

Color image representation

Source: Ulas Bagci

7

Motivation: Image denoising

• How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the *filter kernel*
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

Source: S. Lazebnik

9

Defining convolution

Let f be the image and g be the kernel. The output of convolving f
with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Convention: kernel is "flipped"

f

Key properties

- Linearity: filter $(f_1 + f_2)$ = filter (f_1) + filter (f_2)
- **Shift invariance:** same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Source: S. Lazebnik

11

Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],a * e = a

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

13

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):

clip filter (black): imfilter(f, g, 0)
 wrap around: imfilter(f, g, 'circular')
 copy edge: imfilter(f, g, 'replicate')
 reflect across edge: imfilter(f, g, 'symmetric')

Source: S. Marschner

15

Practice with linear filters

Original

?

Original

0

Filtered (no change)

Source: D. Lowe

17

Practice with linear filters

Original

Original

Shifted *left* By 1 pixel

Source: D. Lowe

19

Practice with linear filters

Original

Original

Blur (with a box filter)

Source: D. Lowe

21

Practice with linear filters

Original

(Note that filter sums to 1)

- $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

Sharpening filter

- Accentuates differences with local average

Source: D. Lowe

23

Sharpening

before

after

Sharpening

What does blurring take away?

Source: D. Lowe

25

Sharpening

What does blurring take away?

Let's add it back:

datail

Source: D. Lowe

26

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

27

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

0.003 0.013 0.022 0.013 0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen

29

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

with 30 x 30 σ = 5 with 30 x kernel kernel

• Standard deviation σ : determines extent of smoothing

Source: K. Grauman

Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

Source: K. Grauman

31

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Source: S. Lazebnik

33

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

35

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

Source: K. Grauman

Why is separability useful?

- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Source: S. Lazebnik

37

Noise

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Source: S. Seitz

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

39

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

What's wrong with the results?

Source: S. Lazebnik

41

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Source: K. Grauman

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman

43

Median filter

Source: M. Hebert

Gaussian vs. median filtering

Gaussian

3x3

Median

Source: S. Lazebnik

45

Sharpening revisited

before

after

Sharpening revisited

What does blurring take away?

Let's add it back:

Source: S. Lazebnik

47

Unsharp mask filter

