Collaborative Filtering Improvements on Deep Matrix Factorization Research focus: How to add external data to a deep MF model?

Rafael Benatti, Clara Gard, Liora Taieb

17 Octobre 2023

Roadmap

- Matrix Factorization (baseline)
- Deep MF
 - Paper implementation (hyperparameters)
 - Paper limits (nan values, loss function)
- Improvements
 - Model improvements
 - Data augmentation

Matrix Factorization

Metric	Value
Train RMSE	0.811
Test RMSE	0.882
Plateforme RMSE	0.930
Accuracy	23.79 %

Deep MF

MF to Deep MF

→ Non linear model, use of Binary Cross Entropy loss

Hyperparameters

Paper limit: ponderation of nan values

Metric	Value
Train RMSE	0.814
Test RMSE	0.865
Plateforme RMSE	0.852
Accuracy	24.93 %
	₹ ∃ ▶ □ ∃

Model improvements

Reformulations of the method:

- \rightarrow Under-representation of lowest grades
 - Regularization terms in the loss function

$$\ell(Y, \hat{Y}) = \mathsf{BCE}(Y, \hat{Y}) + \lambda \cdot \|p\|_F + \mu \cdot \|q\|_F$$

- → Slower and more unstable convergency of the optimizer.
- Chained NN

Data augmentation

First attempt :

Adding new ratings to the metrics.

• Distance between movies :

$$d(M_1, M_2) = 1 - I/U$$

With I the common genres between M_1 and M_2 , and U the union.

- Rate *nan* values with mean of ratings in neighborhood of M_1 .
- ightarrow Overfitting, we added a biais in the model.

Second attempt :

Adding rows of genres.

- One hot encoding of genres for each movie.
- → No biais added, but no improvement either.

	Train	Test	Plateforme	Accuracy
DeepMF	0.814	0.865	0.852	24.93%
First attempt	0.719	0.955	-	-%
Second attempt	0.814	0.865	-	-%

Conclusion

	Train	Test	Plateforme	Accuracy
MF	0.811	0.882	0.930	23.79%
DeepMF	0.814	0.865	0.852	24.93%
DeepMF regularized	0.748	0.889	-	-%
Data augmentation - 1	0.719	0.955	-	-%
Data augmentation - 2	0.814	0.865	-	-%

Confusion matrix for DeepMF

References

Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, Jiajun Chen, *Deep Matrix Factorization Models for Recommender Systems*, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)