King Saud University College of computer and information Sciences CSC 311 – Design and Analysis of Algorithms

جامعة الملك سعود كلية عليوم الحاسب والمعلومات 311 عال _

MidTerm Exam II, Fall 2018	November 6 th		Exam time: 17:00-18:30		
Student's come	7		Section:\1:00 AM		
Problem 1 (2 points)		(23.)/30)		
Compare dynamic programming an	d standard recursion by	filling out the table b	elow		

Algorithm	Top-down or bottom- up?	Solve the same subproblem once?	
Dynamic Programming	Top-down V	once. /	
Standard recursion	bottom-UP	more the once	

Problem 2 (9 points)

Let X and Y be two strings such that X= "recursion" and Y= "election"

We define X_i and Y_j as two prefixes of X and Y of length i and j, respectively.

We use a matrix C to store the optimal solutions of the subproblems. Let C[i, j] be the length of Longest Common Subsequence (LCS) of X_i and Y_j .

(a) For Xi and Yj, what must be true about C[i, j]?

[+'s O(m.n)

(b) Compute the length of an LCS of X and Y by filling out the matrix C.

the table is in (c).

Ning Saud University College of computer and information Sciences CSC 311 – Design and Analysis of Algorithms

جامعة الملك سعود كلية علوم الحاسب والمعلومات 211 عال –

(c) What is LCS of X and Y? Explain how you can obtain the LCS from the table C.

		K	6	1	0 3	2	+	,	5	n	
100	Xi	0	0	0	0	0	0				The explain:
1	٣	0	0	0	0	0			1375		I we this formula when
2	e	0	1	1	1	1		1	-		I fill MP the table: 1
3	6	0	1	1	1	2	2	2	2	2	if x;= Y;
4	W	0 1	10	1	1	2	2	2	2		١٠٠١ . ١٠١١ .
5	4	0	W	-16	-12	2	12	2	2		otherwise
15	S	0	/1	1	1	1	-2 5	2	12		max (c[:-1,1]), c[:]) :
7	1	0	1	1	1	2	2	3	3		After I full up the tables I
8	0	0	1	1	1	2		3	(4)		/ cleternine the weight and I
9	n		\	1	1	12		1	1) do like what I drewton
- 2								L			the matrix.
			9			C		-1	0	n	
0 0	. L	CS o	f Yan	dr=	e c	ion					
	3 4 5 6 7 8 9	2 e 3 L 4 X 5 5 7 1 8 0 9 n	xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XI	Xi	Xi	Xi	Xi

Problem 3 (9 points)

Let A_1, \ldots, A_4 be matrices with dimensions 2×3 , 3×10 , 10×3 , 3×5 , respectively. In finding an optimal parenthesization of the matrix chain product $A_1 * A_2 * A_3 * A_4$, we use two tables $m[\cdot, \cdot]$ and $s[\cdot, \cdot]$ below. Here m[i,j] stores the optimal cost of computing subchain $A_1 \ldots A_j$ and s[i,j] records the index k where the optimal parenthesization splits $A_1 \ldots A_j$ between A_k and A_{k+1} for some k with $i \le k \le j-1$.

a- What is the recursive equation of m[i,j]?

b- Fill the empty entries in the two tables. Show your work in each case.

Design and Analysis of Algorithms

m

My table in the back of Previous page.

c- Now, give the optimal parenthesization of the matrix chain product A1*A2*A3*A4. Show how you came up with the solution using the tables above.

First: I compute that MEI, 43=3, so I split on A3 (Som lift to right)

second: MI1,3]=1, so I split on A, +++> (A,).(A,A3)

Problem 4 (5 points)

Consider the following equation system:

 $x_1 + 4x_2 + 3x_3$

 $| x_1 + 4x_2 + 3x_3 \leq$

0=[H.H] m ?=[E. E] ME , 0=[S. 53 M , 0= [1.1] M *

(* m [1:2]) A1. A2 = 2×3×10 = 60 A 2- A3 = 3x lox3 = 30

A3. A4 = 10x3x5 = 150

 # m [2,4] (Ac. As). As = [1][] = [4,1] + 3+3+5 90+0+45 = (35) minimum

A2. (A3. A4) ... (232) + ... [3/4] + 2*10*5 0 + 150 + 150 = 300

(* m [134]

m [1:4] = min { m[1:1]+m[2:4]+2+3+5 , m[1:2]+m[3:4]+2+10+5 , m[1:2]+m[4:4]+2+3+5}
= min { 0+135+30=165 , 60+150+100=310 , 108+0+30=[138]}

10000

Problem 5 (5 points)

Give the pseudo-code of an algorithm that takes as input an array A of integers, and returns the length of the longest contiguous subsequence of odd numbers in A.

Example:

Example:

The length of the longest contiguous zeros subsequence in [1, 2, 19, 5, 4, 7, 51, 23, 22, 13, 15, 36] is 3.

What is the time complexity of your algorithm? hint: Use Dynamic programming paradigm.

+ consider that I create anew Array called B, and the length of it is like A.

if (AE0] % 2 1 =0) Rise () 1 1 1 1

For Clash 2 and Ca Night of A ; CATE 16 (A[1]A) 71

BE(1-1]+15

3

* Now I have Array & which contain of Tramber of old numbers, so I have to create

a method that find max element of army,

King Saud University

College of computer and Information Sciences

CSC 311 - Design and Analysis of Algorithms

321014

حامة الملك سعود كلية علوم الحضب والمعلومات 311 عال ــ

int m = BEOJ

for Lint (=1) ix length of B , C++1 {

14 (BE1) > m)

m=BEij;

3

return m;

1

whic is maximum number in the array

(wax sed. of ogg unupers)