Matching to Produce Information

Ashwin Kambhampati Carlos Segura-Rodriguez Peng Shao

University of Pennsylvania

29th Stony Brook International Conference on Game Theory

July 16, 2018

Motivation

- In many organizations,
 - Teams are formed to produce information.
 - Managers assign workers to teams.
- Are decentralized teams inefficient? If so, when and why?
- We study how complementarities among workers affect information acquisition and team formation.

Model

- N > 2 workers.
- Stochastic state θ .
- Common prior: $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$.
- Workers can obtain Gaussian signals with mean θ and variance σ^2 .
- Signals are correlated:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \theta \\ \theta \\ \vdots \\ \theta \end{pmatrix}, \sigma^2 \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1N} \\ \rho_{21} & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{N1} & \cdots & \cdots & 1 \end{bmatrix} \end{pmatrix}$$

Model

Teams form	Workers choose	Nature draws	Workers take
	number of signals	sigņals	action

Figure: Timing.

- Workers form teams before acquiring signals.
- Each worker can belong only to one team.
- Teams have at most two workers; fixed cost K > 0 of forming a pair.
- Within team, worker *i* chooses integer of draws m_i at cost $c(m_i)$.
- Cost function c satisfies increasing marginal costs and c(0) = 0.
- Information generated within team observed only by members.
- Workers choose $a \in \mathbb{R}$ with utility: $u(a, \theta) = -(a \theta)^2$.

Draw Procedure ($m_i = 3$ and $m_j = 2$)

Solution Concept

We introduce a new solution concept to capture:

- Cooperative team formation (one-to-one matching).
- Non-cooperative (after-match) behavior inside teams.

Production Subgame (Inside Each Team)

• Utility in team S = (i, j) given strategy profile (m_i, m_j) ,

$$v_i^{S}(m_i, m_j) = -E_{x^{S}} \left[\max_{a \in \mathbb{R}} E_{\theta}[(\theta - a)^2 \mid x^{S}] \right] - c(m_i)$$

$$= -\underbrace{E_{x^{S}} \left[E_{\theta}[(\theta - E(\theta \mid x^{S}))^2 \mid x^{S}] \right]}_{:=f(m_i, m_j, \rho_{ij})} - c(m_i),$$

where x^S is the vector of realized draws.

• We require that the chosen vector $m^* = (m_i^*, m_j^*)$ is a pure-strategy Pareto-Efficient Nash Equilibrium.

PEN Characterization

Lemma

The posterior variance in a team acquiring (m, n) signals with pairwise correlation $\rho \in (-1, 1]$ is,

$$f(m,n,\rho) = \left(\left(\min\{n,m\} \frac{2}{1+\rho} + |m-n| \right) \sigma^{-2} + \sigma_{\theta}^{-2} \right)^{-1}.$$

PEN Characterization

Proposition

If $c(1) < \frac{\min\{\sigma_{\theta}^2, \sigma^2\}}{1+\gamma}$ and $\gamma = \frac{\sigma^2}{\sigma_{\theta}^2} \ge 1$, then there exist correlations,

$$-1 < \rho^* \le \rho^{***} \le \rho^{**} < 1$$

for which the following properties hold:

- For $\rho \leq \rho^*$, there is a unique PEN. It is symmetric.
- **2** For $\rho \in (\rho^*, \rho^{***}]$, there is at least one symmetric and one asymmetric PEN.
- **3** For $\rho > \rho^{***}$, all PEN are asymmetric.
- For $\rho > \rho^{**}$, there is a unique PEN up to the identity of each worker. In it, one worker takes a strictly positive number of draws and the other takes none.

Coalitional Subgame Perfect Equilibrium (CSPE)

Definition

Let Π be a feasible partition of workers and $M^* = \{m^*(S)\}$ be a collection of PEN, one for every feasible team. The tuple (Π, M^*) is a **Coalitional Subgame Perfect Equilibrium (CSPE)** if there does not exist a feasible team S' such that for all $i \in S'$,

$$v_i(m^*(S')) - K * \mathbb{I}_{\{|S'|=2\}} > v_i(m^*(S_{\Pi}(i))) - K * \mathbb{I}_{\{|S_{\Pi}(i)|=2\}}.$$

Existence CSPE

Theorem

A CSPE exists.

Correlation	Equilibrium	Payoff
0	(5,4)	(-0.23, -0.21)
Alone	(7)	(-0.32)

Figure: Roommate Problem.

Asymmetric Effort Inefficiency $(\sigma = \sigma_{\theta} = 1, c(m) = 0.01m^2)$

Stratification Inefficiency

$$(\sigma = \sigma_{\theta} = 1, c(m) = 0.01m^2)$$

Inefficiencies are Ubiquitous

- We find conditions (non-zero measure sets of correlation matrices) under which the CSPE is inefficient.
- I focused on welfare inefficiencies, but there are information inefficiencies as well.
 - ▶ In a simulation, we find that 21.06% of correlation matrices with a unique CSPE do not maximize welfare and 18.28% do not maximize information production.
- Economic Takeaway: If a manager knows the correlation structure of her workers, and workers are sufficiently "heterogeneous", she can profitably intervene.

Thank you!

Existence PEN

Proposition

In every team, there exists a pure strategy PEN of the Production Subgame.

Proof.

NE existence show by exhibiting a Potential Function:

$$\Phi(m,n,\rho):=-f(m,n,\rho)-c(m)-c(n).$$

No mixed strategy NE Pareto-dominates all pure strategy NE.

Equilibrium Correspondence

Suppose
$$c(m)=0.019m$$
, $\sigma^2=\frac{1}{4}$ and $\sigma^2_{\theta}=1$.

Figure: Equilibrium correspondence when c(m) = 0.019m, $\sigma^2 = \frac{1}{4}$ and $\sigma_{\theta}^2 = 1$.

After-Match Game Matters (Chade and Eeckhout (2018))

Figure: Equilibrium correspondence when we fix the variance of Player 1 to be 1, $\sigma_{\theta} = 1$ d = 0.01 and $h(m) = m^2$ and allow the variance for the second player to take different values.