Elastic Fabric Adapter: A Viable Alternative to RDMA over InfiniBand for DBMS?

Master Thesis Presentation

By: Dwarakanandan B.M

Advisor-1: **Tobias Ziegler**

Advisor-2: Prof. Dr. Carsten Binnig

18th Workshop ACM SIGMOD 2022

Data Management Lab Technical University of Darmstadt

Trend 1: High Performance Networks

Nvidia Mellanox CS7500 100 GB/s InfiniBand Smart Director Switch

Networks are Fast So?

Trend 2: The Cloud

- In the cloud, RDMA is offered only by Microsoft Azure
- Supported by very limited number of instance types

Cloud native High-Performance networks

Fig:1 Azure Accelerated Networking (SR-IOV)

Fig:2 AWS Enhanced Networking (Kernel-Bypass)

Motivation

- In 2019 AWS announced a new network fabric called Elastic Fabric Adapter (EFA)
- EFA has primarily been marketed towards HPC workloads by AWS.
- Most research also primarily been driven by the HPC community
- No official hardware specifications provided by AWS
- In-depth evaluation of EFA needed to better understand its implications on system design

Research question

Can EFA be a viable alternative to RDMA over InfiniBand for data-intensive systems?

Elastic Fabric Adapter

- Modified ENA Adapter (AWS Nitro)
- Scalable Reliable Datagram protocol
- Low level *ibverbs* library
- Emulated features using high level frameworks - libfabric

Fig:3 EFA Hardware and Software Stack

SRD (EFA) in a Nutshell

SRD (EFA)	RC RDMA (IB)	Sockets (TCP/IP)
Ethernet	InfiniBand	Ethernet
reliable	reliable	reliable
Messages	Messages	Stream
unordered	ordered	ordered
user-space	user-space	kernel-space
asynchronous	asynchronous	synchronous
no one-sided	one-sided	no one-sided

Fig:4 SRD compared to reliable connected RDMA and traditional TCP/IP sockets

Evaluation Methodology

Isolate the fundamental properties of EFA and RDMA:

InfiniBand Verbs Performance Tests (perftest)

Multi-threaded evaluations and other EFA specific features:

libefa and *efa-bench*

Evaluate EFA's programming interfaces:

OSU Micro-Benchmarks (OMB)

Fig:5 Evaluation software stack

Libfabric and efa-bench

Fig:6 libfabric - Fabric setup flow

Fig:7 Architecture of efa-bench

Setup

RDMA bare-metal

56 CPUs

1 TB memory

Mellanox ConnectX-5 (MT27800 100G)

EFA c5n.18xlarge

72 vCPUs

192 GB memory

EFA 100G Network adapter

Fig:8 EFA Evaluation setup on the AWS Cloud

Latency evaluation

EFA's SRD vs UD protocol

Synchronous bandwidth

Impact of Message size on Synchronous bandwidth

> Similar to the latency gap, RDMA achieves 10x more bandwidth than EFA-SRD.

Fig:11

Asynchronous bandwidth - Message rate

Fig:12

Impact of transmission depth (outstanding operations) on Message Rate

Network Interface parallelism

Fig:14 NIC Architecture showcasing connection queues

Impact of connection pairs (Send queues) on Message Rate

Multi-threaded evaluation

Interface evaluation

Performance implication of EFA interfaces (TX Depth - 256)

If the application does not intend to use any of libfabric's feature set, ibverbs might be the optimal choice

Fig:18

One sided operations - RMA

Fig:20 libfabric - EFA RDM Communication Protocol V4

Performance of emulated RMA operations compared to send/recv

Message Segmentation Overhead

Link Latency at Saturation

EFA In Summary

- Latency Better than TCP, but there is a substantial gap compared to RDMA
- Bandwidth Strongly dependent on the transmission depth and the message size
- Message Rate Multiple flows are needed to fully exploit the NIC
- No one-sided operations Emulated in software with a performance penalty
- Cloud Native & Proprietary Migration to AWS cloud a prerequisite (Vendor Lock-in)

So... is EFA a viable alternative?

An Ongoing Saga: For now EFA still has considerable limitations compared to RDMA over InfiniBand

However in comparison with the only other cloud alternative TCP/IP, EFA paired with its SRD protocol has potential for data-intensive systems