Chapter 1. Nonparametric Curve Estimation

January 18, 2007

1 Introduction

Suppose that we have two variables: predictor (independent variable) X and response (dependent variable) Y. Because of random factor, given X = x, what we can predict is

$$E(Y|X=x),$$

denoted by m(x). In other words, we have a general model

$$Y = m(X) + \varepsilon. \tag{1.1}$$

Suppose (X,Y) has a joint distribution density function f(x,y). Then

$$m(x) = E(Y|X = x) = \int y f_{Y|X}(y|x) dy = \int y \frac{f(x,y)}{f(x)} dy$$

where f(x) is the marginal density function, and $f_{Y|X}(y|x)$ is the conditional density function.

Example 1.1 Suppose

$$\binom{X}{Y} \sim N(\binom{a}{b}, \left(\begin{array}{cc} 1 & c \\ c & 1 \end{array}\right))$$

we have

$$f(x,y) = \frac{1}{2\pi\sqrt{1-c^2}} \exp\left\{-\frac{1}{2(1-c^2)}[(x-a)^2 + (y-b)^2 - 2c(x-a)(y-b)]\right\}$$

and

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{1}{2}(x-a)^2\}$$

Thus

$$f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi(1-c^2)}} \exp\{-\frac{1}{2(1-c^2)}[y-b-c(x-a)]^2\}$$

The conditional mean is

$$E(Y|X = x) = b + c(x - a).$$

In other words, model (1.1) is a linear regression model

$$Y = b + c(X - a) + \varepsilon$$

Example 1.2 Suppose (X,Y) is defined as above, and $W = \exp(X)$. Then the model between Y and W is

$$Y = b + c(\ln(W) - a) + \varepsilon.$$

with $m(x) = b + c(\ln(x) - a)$.

In practice, the joint function is unknown, and thus m(x).

Remark 1.3 In parametric models, we need to estimate parameters in the models. This is actually to estimate the regression curve. The estimation of the parameters is a "by-product" in some sense.

2 Basic idea of estimating m(x)

Suppose $(x_1, y_1), \dots, (x_n, y_n)$ are n observations.

If for each X = x, we have a number of observations, say $(x, y_1), \dots, (x, y_k)$, then m(x) can be estimated as

$$\hat{m}(x) = \frac{1}{k}(y_1 + \dots + y_k).$$

Otherwise, we consider a "neighbor" of x, say (1) $D_x = [x - b, x + b]$ for some b > 0 or (2) $D_x = \{x_i : x_i \text{ is one of the } k \text{ nearest observation to } x\}$, and estimate m(x) by

$$\hat{m}(x) = \frac{\sum_{x_i \in D_x} y_i}{\#\{x_i \in D_x\}},$$

where $\#\{x_i \in D_x\}$ is the number of elements in the set.

Note that the above estimator can be written as

$$\hat{m}(x) = \frac{\sum_{i=1}^{n} w_{ix} y_i}{\sum_{i=1}^{n} w_{ix}},$$

where $w_{ix} = 0$ or 1.

If we use (2), we call the method k-nearest neighbor estimation.

Example 2.1 Suppose the model is

$$Y = \sin(2\pi X) + 0.2\varepsilon$$

where $X \in [0,1]$ and $\varepsilon \sim N(0,1)$ are independent. in this model

$$m(x) = \sin(2\pi x).$$

50 observations are sampled and plotted below. with different k, k-NN can get different estimator of the

The main problem for k-NN is how to choose k. The role of k: too small, the estimator is unstable (big variation); too large, the estimator is biased (cannot detect the variation of the curve) Theoretically, the "best k" in the sense of asymptotic expansion is $k \sim n^{4/5}$.

The disadvantage is the estimation curve $\hat{m}(x)$ is not "smooth".

3 kernel smoothing

To make the estimated curve "smooth", we can replace the weight function w_{ix} by smooth function. Nadaraya (1964) and Watson (1964) proposed to use

$$w_{ix} = h^{-1}K\left(\frac{x - x_i}{h}\right)$$

The shape of the kernel is determined by function K(x), called kernel function. It is convenient to write

$$K_h(x - X_i) = h^{-1}K\left(\frac{x - x_i}{h}\right).$$

The estimator is then

$$\hat{m}(x) = \sum_{i=1}^{n} K_h(x - X_i) y_i / \sum_{i=1}^{n} K_h(x - X_i),$$

which is called the N-W estimator. Here are some of the kernel functions

1. Epanechnikov kernel

$$K(x) = 0.75(1 - x^2)I(|x| \le 1)$$

where $I(|x| \leq 1)$ is the indicator function

2. quadratic kernel

$$K(x) = 9/6(1-x^2)^2 I(|x| \le 1)$$

3. Gaussian kernel

$$K(x) = \exp(-x^2/2)/\sqrt{2\pi}$$
.

The size of the "neighbor" is controlled by h, which is called bandwidth or "window width": the larger h is, more observations are used to estimate the curve. Therefore, if h too small, the estimator is unstable (big variation); if h too large, the estimator is biased (cannot detect the variation of the curve)

Example 3.1 (continued) for the 50 observations above, if we use Gaussian kernel and h = 0.05, then the estimation kernel is

$$\hat{m}(x) = \sum_{i=1}^{50} \frac{1}{\sqrt{2\pi h}} \exp\{-\frac{(x-x_i)^2}{2h^2}\} y_i / \sum_{i=1}^{50} \frac{1}{\sqrt{2\pi h}} \exp\{-\frac{(x-x_i)^2}{2h^2}\}$$

$$= \frac{\sum_{i=1}^{50} \exp\{-200(x-x_i)^2\} y_i}{\sum_{i=1}^{50} \exp\{-200(x-x_i)^2\}}.$$

R code for the calculation (code)

Figure 1: figure for Example 3.1

Figure 2: figure for Example 3.2

Example 3.2 (Motorcycle data) For the motorcycle data, if we use Gaussian kernel and h, then the estimation kernel is

$$\hat{m}(x) = \sum_{i=1}^{133} \frac{1}{\sqrt{2\pi h}} \exp\{-\frac{(x-x_i)^2}{2h^2}\} y_i / \sum_{i=1}^{133} \frac{1}{\sqrt{2\pi h}} \exp\{-\frac{(x-x_i)^2}{2h^2}\}.$$

R code for the calculation (code)

R package: KernSmooth

4 Another look at kernel smoothing

Suppose we are interested in m(x) for a given x. The estimator $\hat{m}(x)$ should be such that

$$\sum_{i=1}^{n} w_{ix} \{ y_i - m(x) \}^2.$$

where w_{ix} is the weight: the closer x_i is to x, the larger weight we assign to the difference $y_i - m(x)$.

The solution is

$$\hat{m}(x) = \sum_{i=1}^{n} w_{ix} y_i / \sum_{i=1}^{n} w_{ix}.$$

5 Statistical properties of K_NN estimator

Suppose the true model is $Y = m(X) + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$. We are going to estimate m(x). There are n observations. We take k observations around x, denoted by $(x_{(i)}, Y_{(i)}), i = 1, ..., k$. The estimator of m(x) is

$$\hat{m}(x) = \sum_{i=1}^{k} Y_{(i)}/k = \sum_{i=1}^{k} m(x_{(i)})/k + \sum_{i=1}^{k} \varepsilon_{(i)})/k$$

We have the bias is

$$bias(\hat{m}(x)) = E\hat{m}(x) - m(x) = \sum_{i=1}^{k} m(x_{(i)})/k - m(x)$$

variance

$$var(\hat{m}(x)) = \sigma^2/k$$

When the n observation is fixed, with bigger k (bigger neighbor), we have bigger bias but smaller variance. With smaller k (bigger neighbor), we have smaller bias but bigger variance.