Cloud & Devops Master - PROJECT WORK Progettare e configurare un'architettura cloud per il monitoraggio e controllo di impianti industriali

Obiettivo

L'obiettivo di questo project work è quello di progettare, e successivamente configurare, un'infrastruttura su Google Cloud Platform (GCP) per conto di un'azienda produttrice di impianti di deumidificazione che desidera monitorare in tempo reale i dati provenienti dalle schede dei loro impianti. Allo stesso tempo dovrà essere possibile inviare comandi per la gestione dell'impianto da remoto. L'azienda desidera creare un sistema che consenta alle schede dei dispositivi di connettersi ad un gateway che raccolga i dati dai sensori in tempo reale e li invii al cloud GCP per l'elaborazione e la visualizzazione.

Descrizione del Project Work

In questo Project Work, il team dovrà immaginare di affiancare il cliente nelle diverse attività chiave al fine di progettare un'infrastruttura nel cloud Google, per supportare l'intero flusso dei dati dalla raccolta, visualizzazione e invio comandi da remoto.

Si chiede di seguire un approccio completo che includa la progettazione dell'architettura, l'ottimizzazione dei dati da inviare e meccanismi di allarme in tempo reale.

I vincoli della progettazione sono:

- progettare un'architettura scalabile ed efficiente che consenta la connessione delle schede dei dispositivi al gateway esterno, l'invio e la ricezione dei dati in cloud GCP
- sicurezza dei protocolli di comunicazione
- affidabilità delle connessioni
- il costo a macchina per i servizi cloud non deve superare € 0,50 / anno

Il team potrà scegliere i servizi GCP che ritiene più adeguati all'ottenimento del risultato.

Successivamente, bisognerà studiare una tecnica per ottimizzare al massimo la dimensione dei dati da inviare in cloud, per evitare duplicazioni di informazioni, ma pensando anche che dovranno essere facilmente interrogabili da API o query SQL.

Le schede prevedono diversi tipi di variabili, che cambiano in base alla tipologia di macchina. Ogni variabile è identificata da un codice univoco (indirizzo MODBUS).

Un tipo di variabile che le schede producono sono gli allarmi: errori o guasti nella macchina. Sono gli stessi per tutte le macchine: un insieme di allarmi di esempio è il seguente.

Codice	Descrizione	Tipologia
500	allarme generico	boolean
501	allarme sonde macchina	boolean
502	allarmi ingressi	boolean
503	allarmi da logiche	boolean
504	allarmi circuito frigo 1	boolean

505	allarmi circuito frigo 2	boolean
506	allarmi resettabili	boolean
507	allarmi non resettabili	boolean
550	guasto sonda CO2 ambiente	boolean
551	guasto sonda VOC ambiente	boolean
552	guasto sonda temperatura ambiente	boolean
553	guasto sonda temperatura esterna	boolean
554	guasto sonda temperatura acqua	boolean
555	guasto sonda temperatura mandata	boolean
556	guasto sonda temperatura protezione antigelo batt acqua	boolean
557	guasto sonda temperatura sbrinamento recuperatore	boolean
558	guasto sonda umidità ambiente	boolean
600	allarme resistenze elettriche grave	boolean
601	allarme resistenze elettriche lieve	boolean
602	allarme fuga gas	boolean
603	allarme ventilazione	boolean
604	allarme ventilatore ricircolo	boolean
605	allarme ventilatore estrazione	boolean
606	allarme ventilatore condensazione	boolean
607	allame flussostato grave	boolean
608	allarme flussostato lieve	boolean
609	allarme sequenza fasi	boolean
650	segnalazione pulire filtri	boolean
651	segnalazione pulire tubo ionizzatore	boolean
652	segnalazione sostituire tubo ionizzatore	boolean
653	allarme protezione antigelo batteria acqua	boolean
654	allarme protezione batteria acqua lieve	boolean
655	allarme alta temperatura acqua per on compressore	boolean
656	allarme bassa temperatura per on compressore	boolean
657	allarme antigelo batteria acqua kit controllo temperatura mandata grave	boolean
658	allarme antigelo batteria acqua kit controllo temperatura mandata lieve	boolean
659	allarme macchina scarica	boolean
660	allarme mancanza comunicazione con display	boolean
661	allarme mancanza comunicazione con ionizzatore	boolean
662	allarme mancanza comunicazione modbus master	boolean

Un'altra tipologia di variabili sono le variabili binarie: ogni tipologia di macchine ha le proprie variabili, mappate in modalità differenti. Degli esempi di variabili possono essere i seguenti. Notare che il codice della variabile è univoco solo all'interno di una tipologia di macchina.

Tipologia A

Codice	Descrizione	Tipologia
1	On / Off	boolean
2	On effettivo	boolean
3	Stagione	boolean
4	Stagione effettiva	boolean
5	Abilitazione fasce orarie su display macchina	boolean
6	Deumidifica attiva	boolean
7	Richiesta acqua per trattamento aria	boolean
8	Warning filtri sporchi	boolean
9	Allarme generico	boolean
10	Reset allarmi	boolean

11	Abilitazione deumidifica	boolean
12	Abilitazione riscaldamento	boolean
13	Abilitazione raffreddamento	boolean
14	Abilitazione free-cooling\heating	boolean
15	Presenza riscaldamento dell'aria	boolean
16	Presenza raffreddamento dell'aria	boolean
17	Presenza recuperatore	boolean
18	Presenza free-cooling\heating	boolean
19	Riscaldamento attivo	boolean
20	Raffreddamento attivo	boolean
21	Ricambio attivo	boolean
22	Free-cooling\heating attivo	boolean
23	Sbrinamento attivo	boolean
24	Abilitazione riduzione ventilazione	boolean
25	Abilitazione umidifica	boolean
26	Sbrinamento recuperatore attivo	boolean
27	Presenza condensatore remoto	boolean
28	Presenza valvola acqua	boolean
29	Presenza valvola acqua on-off	boolean
30	Presenza valvola acqua modulante	boolean
31	Presenza e abilitazione batteria acqua calda	boolean
32	Presenza e abilitazione batteria acqua fredda	boolean
33	Presenza controllo temperatura	boolean
34	On compressore 1	boolean
35	On compressore 2	boolean
36	On ventilatore mandata	boolean
37	On resistenza elettriche	boolean

Tipologia B

Codice	Descrizione	Tipologia
1	Unità ON	boolean
2	Forzatura deumidifica	boolean
3	Abilitazione forzatura deumidifica [1]	boolean
4	Forzatura riscaldamento [2]	boolean
5	Abilitazione forzatura riscaldamento [1]	boolean
6	Reset allarmi	boolean
7	Reset pulizia filtri	boolean
8	Forzatura raffreddamento [2]	boolean
9	Abilitazione forzatura raffreddamento [1]	boolean
10	Stato compressore	boolean
11	Stato valvola acqua	boolean
12	Stato resistenza elettrica	boolean
13	Presenza valvola acqua	boolean
14	Presenza resistenza elettrica	boolean
15	Presenza allarme	boolean
16	Filtri da pulire	boolean
17	Presenza ventilatori elettronici	boolean
18	Presenza opzione sbrinamento gas caldo	boolean
19	Allarme sonda	boolean
20	Allarme alta pressione	boolean
21	Allarme bassa pressione	boolean
22	Allarme macchina scarica	boolean
23	Allarme bassa temperatura per ON compressore	boolean

24	Allarme sovratemperatura resistenza elettrica	boolean
25	Allarme sovratemperatura resistenza elettrica	boolean
26	Allarme ventilatore	boolean
27	Sbrinamento attivo	boolean
28	Richiesta deumidifica	boolean
29	Richiesta riscaldamento	boolean
30	Richiesta raffreddamento	boolean

Le macchine producono anche variabili analogiche (solamente interi e decimali): anche queste distinte in base alla tipologia.

Tipologia A

Codice	Descrizione	Tipologia
1	temperatura ambiente	float
2	temperatura esterna	float
3	umidità relativa ambiente	float
4	set umidità relativa	float
5	set umidità relativa effettiva	float
6	set temperatura / set temperatura inverno	float
7	set temperatura estate	float
8	set temperatura effettivo	float
9	Percentuale ventilatore mandata	integer
10	Percentuale ventilatore estrazione	integer
11	Percentuale valvola acqua	integer
12	Percentuale umidificatore	integer
13	Percentuale valvola gas	integer
14	Percentuale serranda free-cooling	integer
15	Percentuale serranda ricircolo	integer
16	Set sbrinamento statico	float
17	Differenziale sbrinamento statico	float
18	Tempo sgocciolamento sbrinamento statico	integer
19	Temperatura mandata in ambiente	integer
20	Versione software	float
21	Percentuale ricambio, step fisso e minimo di 5%	integer
22	Percentuale ricambio effettivo	integer
23	Temperatura protezione batteria acqua	float
24	Temperatura ingresso batteria acqua	float
25	temperatura ambiente	float

Tipologia B

Codice	Descrizione	Tipologia
1	Forzatura umidifica	integer
2	Set temperatura	float
3	Set umidità relativa	float
4	Ventilatore di ricircolo in standby (1 == Off, 2 == Minima, 3 === Nominale)	integer
5	Differenziale on raffreddamento	float
6	Differenziale off raffreddamento	float
7	Differenziale on deumidifica	float
8	Differenziale off deumidifica	float
9	Differenziale on riscaldamento	float
10	Differenziale off riscaldamento	float
11	Inizio rampa umidifica	float

12	Fine rampa umidifica	float
13	Offset temperatura ambiente	float
14	Offset umidità ambiente	float
15	Ore di attesa promemoria pulizia filtri	integer
16	Taratura fase 1 – ventilatore mandata	integer
17	Taratura fase 2 – ventilatore mandata	integer
18	Taratura fase 2 – ventilatore estrazione	integer
19	Taratura fase 3 – ventilatore mandata	integer
20	Taratura fase 3 – serranda ricircolo	integer
21	Taratura fase 1 – ventilatore mandata	integer
22	Taratura fase 2 – ventilatore mandata	integer
23	Taratura fase 2 – ventilatore estrazione	integer
24	Taratura fase 3 – ventilatore mandata	integer
25	Taratura fase 3 – serranda ricircolo	integer

È importante quindi organizzare i dati in una struttura applicabile a tutte le macchine e che sia resistente a future aggiunte di nuove variabili o macchine, in modo da poter inviare tutti i dati necessari tramite MQTT in formato binario, numerico e/o stringa.

Infine, è richiesto di progettare meccanismi di allarme in tempo reale che segnalino eventuali anomalie o condizioni critiche. Questo consentirà all'azienda di essere prontamente informata di qualsiasi situazione che richieda un intervento immediato. Sfruttate i servizi di monitoraggio e allarme di GCP per implementare questa funzionalità.

L'aspetto più importante di questo project work è l'inclusione dei costi dell'infrastruttura e del servizio nel costo delle macchine di deumidificazione. Ciò significa che è richiesto di tenere i costi dell'infrastruttura più bassi possibile.

È richiesto di calcolare e presentare i costi associati all'infrastruttura implementata, in modo che l'azienda possa includerli nel prezzo finale delle loro macchine.

Ricordiamo che l'intera progettazione dovrà essere svolta secondo le best practice di Google per quanto riguarda la sicurezza, la scalabilità e l'ottimizzazione dei costi durante l'intero processo.

Output attesi

Il team dovrà consegnare la seguente documentazione:

- Documento di progetto con assunzioni fatte per la realizzazione della proposta fatta e calculator dei costi teorici di infrastruttura
- Template Terraform o altra soluzione di IaC individuata dal team di lavoro dell'architettura
- Codice sorgente degli script scritti per simulare un impianto
- Screenshot del report di billing del progetto (costi di infrastruttura reali) e confronto con il calcolo teorico mappando eventuali azioni di miglioramento

NOTA IMPORTANTE: il servizio **IoT Core** della GCP, per quanto ancora disponibile e documentato, è stato **deprecato** e sarà disattivato il 16 agosto del 2023. Non è pertanto utilizzabile nel progetto. È compito del team di lavoro identificare una soluzione alternativa e relativa integrazione. È importante immaginare una soluzione che, a prescindere dalla modalità di sottoscrizione dello stream MQTT, permetta di utilizzare servizi scalabili che possano operare naturalmente nel contesto della GCP.