Estimation and Hypothesis Testing 2 | Les estimateurs et les tests d'hypothèses 2

Nahomi Ichino and/et Yannick Kouogueng

22 May/mai 2025

Covariate Adjustment | Ajustement des covariables

Cluster Randomization \mid Randomisation par grappe

Multiple Arm Experiments | Les éxperiences avec plusieurs bras

Factorial Design | La conception factorielle

A Quick Reminder | *Un pétit rappel*

- Remember: Analyze as you randomize
- We prefer estimators that are unbiased and have greater precision
- Hypothesis testing can be simple with linear regression

- N'oubliez pas : Analysez comme vous randomisez
- Nous préférons les estimateurs non biaisés et plus précis
- ► Test d'hypothèse peut être simple avec la régression linéaire

Covariate Adjustment | Ajustement des covariables

Estimator: Linear regression with covariates |

Estimateur : La régression linéaire avec des covariables

$$Y_i = \beta_0 + \beta_1 Z_i + \gamma X_i + e_i$$

- We can include a pre-treatment covariate X that is predictive of the outcome variable in our regression model.
- Think of X as fixed before the randomization. For example: pre-treatment measure of the outcome.
- Careful: This can bias our estimates, but improve their precision.

- Nous pouvons inclure une covariable pré-traitement X qui est prédictive de la variable de résultat dans notre modèle de régression.
- ▶ Pensez que X est fixé avant la randomisation. Par exemple : un mesure du résultat avant le traitement.
- Attention : Cela peut biaiser nos estimations, mais améliorer leur précision.

Estimator: Linear regression with covariates | Estimateur : La régression linéaire avec des covariables

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 Z_i + \hat{\gamma} X_i + e_i$$

- The estimated coefficient on the treatment variable $(\hat{\beta}_1)$ is again our \widehat{ATE} .
- The estimated coefficient on the covariate $(\hat{\gamma})$ is *not* the causal effect of that variable.
- Le coefficient estimé sur la variable de traitement $(\hat{\beta}_1)$ est encore notre \widehat{ATE} .
- Le coefficient estimé de la covariable $(\hat{\gamma})$ n'est pas l'effet estimé causal de cette variable.

Estimator: Linear regression with covariates | Estimateur : La régression linéaire avec des covariables

Dainet DM

	Reject FM	
	(1)	(2)
EFM Treat	0.093***	0.095***
Standard Error	0.027	0.020
RI p-value	0.001	< 0.001
Hypothesis	+	+
Control Mean	0.82	0.82
Control SD	0.16	0.16
DV Range	[0-1]	[0-1]
Blocked FE	Yes	Yes
Controls	No	16
$Adj-R^2$	0.09	0.23
Observations	998	998

Note: * p < .1, ** p < 0.05, and *** p < 0.01

Estimator: Linear regression with covariates | *Estimateur : La régression linéaire avec des covariables*

```
library(estimatr)
# lm_robust(Y ~ treatment + Language + Gender)
```


Cluster Randomization | Randomisation par grappe

Estimator: Regression with cluster-robust standard errors | Estimateur : La régression avec des erreurs types robustes au niveau du cluster

$$Y_{ic} = \hat{\beta}_0 + \hat{\beta}_1 Z_c + e_{ic}$$

$$Y_{ic} = \hat{\beta}_0 + \hat{\beta}_1 Z_c + \hat{\gamma} X_{ic} + e_{ic}$$

- Our analysis has to take into account the fact that treatment is assigned at the cluster level with cluster-robust standard errors.
- $\hat{\beta}_1$ is the \widehat{ATE} of the treatment on individual units.
- We can also do covariate adjustment at the same time.

- Notre analyse doit prendre en compte le fait que le traitement est attribué au niveau du cluster avec des erreurs types robustes au niveau du cluster.
- $\hat{\beta}_1$ est \widehat{ATE} du traitement sur les unités individuelles.
- Nous pouvons également effectuer un ajustement covariable en même temps.

Cluster Randomization | Randomisation par grappe

```
library(estimatr)

# lm_robust(Y ~ treatment, clusters=cluster_variable)

# lm_robust(Y ~ treatment + covariate, clusters=cluster_variable)
```


Multiple Arm Experiments | Les éxperiences avec plusieurs bras

Estimator 1: Difference-in-Means | Estimateur 1 : La différence en moyennes

- We can always take the difference-in-means between any two groups.
- Nous pouvons toujours tenir compte de la différence de moyens entre deux groupes.

Estimator 2: Linear regression | Estimateur 2 : La régression linéaire

$$Y_i = \hat{\alpha} + \hat{\beta}_A Z_{Ai} + \hat{\beta}_B Z_{Bi} + e_i$$

$$Y_i = \hat{\alpha} + \hat{\beta}_A Z_{Ai} + \hat{\beta}_B Z_{Bi} + \hat{\gamma} X_i + e_i$$

- Regression with an indicator variable for each of the two treatment arms.
 - $ightharpoonup Z_{Ai} = 1$ if unit *i* has treatment Z_A , 0 otherwise
 - $ightharpoonup Z_{Bi} = 1$ if unit i has treatment Z_B , 0 otherwise
- We can also do covariate adjustment at the same time.

- Régression avec une variable indicatrice pour chacun des deux bras de traitement.
 - $Z_{Ai} = 1$ si unité i a traitement Z_A , sinon 0
 - $ightharpoonup Z_{Bi} = 1$ si unité i a traitement Z_B , sinon 0
- Nous pouvons également effectuer un ajustement covariable en même temps.

Estimator 2: Linear regression | Estimateur 2 : La régression linéaire

$$Y_i = \hat{\alpha} + \hat{\beta_A} Z_{Ai} + \hat{\beta_B} Z_{Bi} + e_i$$

- $\hat{\beta}_A$ is the \widehat{ATE} of Z_A (compared with control).
- $ightharpoonup \hat{\beta_B}$ is the \widehat{ATE} of Z_B (compared with control).
- ► How do we estimate the effect of Z_B compared to Z_A ?

- $\hat{\beta}_A$ est \widehat{ATE} de Z_A (par rapport au contrôle).
- $\hat{\beta}_B$ est \widehat{ATE} de Z_B (par rapport au contrôle).
- ► Comment estimer l'effet de Z_B par rapport à Z_A ?

Estimator 2: Linear regression | Estimateur 2 : La régression linéaire

 Z_A only Z_B only
Neither (control) $Y_i = \hat{\alpha} + \hat{\beta_A} Z_{Ai} + \hat{\beta_B} Z_{Bi} + e_i$

Estimators for Multi-arm Designs | Les estimateurs pour les éxperiences avec plusiers bras

```
# library(estimatr)
# difference_in_means(Y ~ treatment,

# condition1="T1",

# condition2="T2")

# 
# library(car)

# M <- lm_robust(Y ~ as.factor(treatment))
# linearHypothesis(M, "T1=T2")</pre>
```


Factorial Design | La conception factorielle

Estimator 1: Difference-in-Means | Estimateur 1 : La différence en moyennes

- ► We use factorial design, when we are interested in interaction effects
- ► If we have a 2*2 factorial design, we have four groups.
- ▶ We can always take the difference-inmeans between any two groups.

- Nous utilisons un plan factoriel quand nous nous intéressons aux effets d'interaction.
- Si nous avons une conception factorielle 2*2, nous avons 4 groupes.
- Nous pouvons toujours tenir compte de la différence de moyens entre deux groupes.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2 : La régression linéaire avec un terme d'interaction

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} Z_{1i} + \hat{\beta}_{2} Z_{2i} + \hat{\beta}_{3} Z_{1i} * Z_{2i} + e_{i}$$

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} Z_{1i} + \hat{\beta}_{2} Z_{2i} + \hat{\beta}_{3} Z_{1i} * Z_{2i} + \hat{\gamma} X_{i} + e_{i}$$

- ▶ Indicator variables for Z_1 and Z_2 .
- We can also do covariate adjustment at the same time.
- ▶ Variables indicatrices pour Z_1 et Z_2 .
- Nous pouvons également effectuer un ajustement covariable en même temps.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2 : La régression linéaire avec un terme d'interaction

$$Y_i = \hat{\beta_0} + \hat{\beta_1} Z_{1i} + \hat{\beta_2} Z_{2i} + \hat{\beta_3} Z_{1i} * Z_{2i} + e_i$$

- ► Estimand | Paramètre: $E[Y(Z_1 = 1)|Z_2 = 0] E[Y(Z_1 = 0)|Z_2 = 0]$
 - $ightharpoonup \widehat{eta}_1$ is the \widehat{ATE} of Z_1 conditional on $Z_2=0\mid \widehat{ATE}$ de Z_1 conditionnel à $Z_2=0$.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2: La régression linéaire avec un terme d'interaction

$$Z_2=1$$
 $Z_2=0$ $Z_1=1$ Both Z_1 and Z_2 Z_1 only $Z_1=0$ Z_2 only Neither

$$Y_i = \hat{\beta_0} + \hat{\beta_1} Z_{1i} + \hat{\beta_2} Z_{2i} + \hat{\beta_3} Z_{1i} * Z_{2i} + e_i$$

- ► Estimand | Paramètre: $E[Y(Z_1 = 1)|Z_2 = 1] E[Y(Z_1 = 0)|Z_2 = 1]$
 - $\hat{\beta}_1 + \hat{\beta}_3 = \widehat{ATE}$ of Z_1 conditional on $Z_2 = 1 \mid \widehat{ATE}$ de Z_1 conditionnel à $Z_2 = 1$
- \triangleright β_3 is called the interaction effect. β_3 est appelé l'effet d'interaction.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2: La régression linéaire avec un terme d'interaction

Antisocial behaviors, z-score		
Intercept	0.151	
Therapy	-0.249**	
	(880.0)	
Cash	-0.079	
	(0.091)	
Cash*Therapy	-0.308**	
	(0.089)	
NOTE: * p<0.05; ** p<0.01; *** p<		

NOTE: *p<0.05; **p<0.01; *** p<0.001. The table reports intent-to-treat estimates of the effect of each treatment arm, controlling for covariates and block fixed effects. Taken from Table 2 of Blattman, Jamison, and Sheridan (2017)

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2: La régression linéaire avec un terme d'interaction

$$\hat{Y} = \hat{\alpha} - 0.249$$
 Therapy -0.079 Cash -0.308 Therapy $*$ Cash

Neither:
$$\hat{Y}=\hat{lpha}$$

Cash only:
$$\hat{Y} = \hat{\alpha} - 0.079$$

Therapy only:
$$\hat{Y} = \hat{\alpha} - 0.249$$

Therapy and Cash:
$$\hat{Y} = \hat{\alpha} - 0.249 - 0.079 - 0.308$$

$$\widehat{ATE}$$
 of Cash conditional on No Therapy $=\hat{lpha}-0.079-\hat{lpha}=-0.079$

$$\widehat{ATE}$$
 of Cash conditional on Therapy = $\hat{\alpha} - 0.249 - 0.079 - 0.308 - (\hat{\alpha} - 0.249) = -0.079 - 0.308 = -0.387$

Interaction effect
$$= -0.079 - 0.308 - (-0.079) = -0.308$$

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2 : La régression linéaire avec un terme d'interaction

```
library(estimatr)
# lm_robust(Y ~ Z1 + Z2 + Z1*Z2)
# lm_robust(Y ~ Z1*Z2)
# lm_robust(Y ~ Z1*Z2 + covariate)
```

