Progetto per il Corso di

Metodi di Ottimizzazione

Corso di Laurea Magistrale in

Ingegneria Informatica

OPTICOOK

Formola Paolo Matr. A18000451

Mattia Nicola Tamburrino Matr. A18000469

Prof. Alessandro Formisano

Problema in Esame

Si vuole ottenere, sulla base di un dataset di ricette e degli ingredienti nel frigorifero a disposizione dell'utente, un "**MEAL**" ottimo, composto da primo e secondo piatto. L'ottimo sarà caratterizzato dai seguenti obiettivi:

- 1. Avvicinarsi quanto più possibile all'apporto calorico desiderato
- 2. Massimizzare la quantità di ingredienti disponibili utilizzati.
- 3. Garantire la priorità agli ingredienti prossimi alla scadenza.

L'obiettivo è quello di ottenere delle ricette **realizzabili** e che contengono il maggior numero di ingredienti da cucinare, garantendo priorità agli ingredienti in scadenza.

Stato dell'Arte: Meal Planning Problem (MPP)

	Meta-Heuristics		Other Methods	
	Reference	Approach	Reference	Approach
so	Bulka et al. [20]	GA	Stigler [21]	LP
	Gaál et al. [22]	GA	Leung et al. [23]	MILP
	Kahraman and Seven [13]	GA	Petot et al. [24]	CBR and RBR
	Wang et al. [25]	GA	Khan and Hoffmann [26]	CBR
	Kashima et al. [14]	GA	Valdez-Pena and Martinez-Alfaro [27]	MILP
	Osthus [28]	GA	Noah et al. [29]	RBR
	Funabiki et al. [16]	Greedy	Kashima et al. [30]	FMP
	Gumustekin et al. [11]	EDA, GA	Aberg [31]	Branch&Bound
	Isokawa and Matsui [17]	GA	Lee et al. [32]	T2FO
	Hernández-Ocaña et al. [18]	BFOA	Hsiao and Chang [12]	Branch&Bound
	Moreira et al. [19]	GA	Jothi et al. [33]	CBR
			Kovásznai [34]	CBR
			Chávez et al. [15]	MP and BM
			Kale and Auti [35]	DT
мо	Kaldrim and Köse [36]	MOEA		
	Seljak [37]	MOEA		
	Moreira et al. [38]	MOEA		

Il nucleo dei problemi MPP è la creazione di piani alimentari (longevi) che rispondano a criteri complessi, includendo aspetti nutrizionali, preferenze individuali, vincoli di spesa e restrizioni dietetiche.

Il nostro problema è abbastanza simile ma fa riferimento a un unico meal anziché più meal distribuiti su più giorni. Inoltre, nella formulazione multiobiettivo del nostro problema vengono prese in considerazione sia le ricette a disposizione che gli ingredienti disponibili nel frigo dell'utente.

Costruzione del dataset

I dati delle ricette sono stati ricavati dal sito **GialloZafferano** tramite un **web scraper**. Dopo un processo di semplificazione dei dati (conversione ad unità di misura comune, rimozione q.b., rimozione ridondanza dai nomi degli ingredienti...) si è arrivati ad ottenere un numero di:

- 871 Primi
- 548 Secondi
- 284 Ingredienti

<u>Le quantità saranno</u> <u>espresse tutte in grammi.</u>

Costruzione del dataset

NB: Le ricette presentano dei dosaggi in media per 4 persone.

```
"ingredient": "Pecorino",
"title": "Spaghetti all'Amatriciana",
                                        "quantity": 75,
 "ratings": 4.2,
                                        "unit": "g"
"total_time": 35,
                                      },
'ingredients": [
                                        "ingredient": "Vino bianco",
   "ingredient": "Spaghetti",
                                        "quantity": 50.
   "quantity": 320,
                                        "unit": "g"
   "unit": "g"
                                      },
                                        "ingredient": "Sale",
   "ingredient": "Pomodori pelati",
                                        "quantity": 0.64,
   "quantity": 400,
                                        "unit": "a"
   "unit": "g"
                                      },
                                        "ingredient": "Peperoncino",
   "ingredient": "Guanciale",
                                        "quantity": 25,
   "quantity": 150,
   "unit": "g"
                                        "unit": "g"
```


Funzioni Obiettivo:

1. Minimizzare

$$F_1 = \left| 1 - \frac{1}{C} \sum_{i=1}^{2} c_i \right|$$

2. Minimizzare

$$F_2 = \sum_{i=1}^2 \sum_j \frac{1}{q_{ij}}$$

$$q_{ij} = \begin{cases} \text{quantit\`a dell'ingrediente j-esimo nel frigo richiesto nella recipe i-esima.} & \text{se } j \in F \\ 10^{-16} & \text{altrimenti} \end{cases}$$

In questo modo favoriamo le ricette che richiedono ingredienti presenti in quantità maggiore nel frigo

3. Minimizzare

$$F_3 = \sum_{i=1}^{2} \sum_{j} (D_{ij})^2$$

$$D_{ij} = \begin{cases} \text{giorni rimanenti alla scadenza dell'ingrediente } j \text{ nel frigorifero} & \text{se } j \in F \\ 100 & \text{altrimenti} \end{cases}$$

In questo modo stiamo penalizzando di molto la scelta di recipe che contengono ingredienti che non si trovano nel frigo.

Formulazione del Problema

Notazione:

- *i,j*: la i si riferisce all'i-esima recipe nel meal, la j al j-esimo ingrediente nella
- i-esima recipe.
- **C**: Calorie da assumere idealmente in un pasto (valore fisso, ad esempio C=1000 Kcal).
- c;: Calorie della ricetta i-esima.
- q_{ij} : Quantità dell'ingrediente j-esimo richiesto nella recipe i-esima che si trova nel frigo.
- D_{ij} : Giorni rimanenti alla data di scadenza del j-esimo ingrediente nel frigo dell'utente, nella i-esima recipe.

Risoluzione del Problema

Si è deciso di utilizzare NSGA-II (Non-dominated Sorting Genetic Algorithm), in quanto, grazie al fatto che è basato sul concetto di dominanza paretiana, riesce ad esplorare lo spazio di ricerca in modo tale da trovare delle soluzioni che siano Pareto-ottime. In questo modo, il fronte di Pareto conterrà tutti gli individui dominanti, caratterizzati da una coppia di ricette tale che, se si vuole provare a migliorare uno degli obiettivi cambiando il primo o il secondo piatto, sarà inevitabile peggiorare almeno uno degli altri obiettivi.

Diagramma di flusso di NSGA-II

Dati in ingresso

- C: 1000 (Kcal da assumere per primo e secondo piatto).
- 100 generazioni
- Popolazione iniziale di 100 individui
- Tre frigoriferi
 differenziati per
 quantità: <u>frigo povero,</u>
 <u>frigo medio e frigo</u>
 <u>ricco.</u> Ci serviranno per
 commentare i risultati

In figura vediamo meglio il non-dominated sorting di NSGA.

N.B.: F₃ assume questi valori a causa del quadrato applicato ad un numero che può essere 1,2...,10 o 100

Crossover

Mutazione

Risultati

L'algoritmo è stocastico, i risultati mostrati in foto sono stati ottenuti eseguendo diverse volte l'algoritmo e selezionando i grafici quando il fronte di pareto ottenuto ha le stesse dimensioni della popolazione (100 individui).

Risultati

Facciamo partire il codice python e visualizziamo gli output relativi a frigo povero, frigo medio e frigo ricco.

Considerazioni e possibili miglioramenti

I risultati che si ottengono a valle del filtraggio sulle quantità a disposizione dipendono molto dalle ricette presenti nel dataset, che sono ricette molto "ricche" di ingredienti (GialloZafferano...), anche per i piatti più semplici, quindi attualmente bisogna avere un frigo mediamente grande (in particolare relativo a sale, olio, pepe e eventuali spezie e foglie aromatiche, dato che praticamente sono contenuti in tutte le ricette!). Sarebbe interessante scoprire come performa l'algoritmo avendo a disposizione un dataset di ricette più "semplici", costituite solo da ingredienti di base, ma trovare un dataset del genere **GRATIS** non è semplice.

Riferimenti Bibliografici

Almanza-Ojeda, G. I., Chicaiza, J., León-Acurio, J., Pesántez-Avilés, F. A., & Mafla-Endara, P. (2018). **Healthy Menus Recommendation: Optimizing the Use of the Pantry**. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1025–1032).

https://www.researchgate.net/publication/328450699_Healthy_Menus_Recommendation_Optimizing_the_Use_of_t he_Pantry

https://www.christophtrattner.info/pubs/healthrecsys18.pdf

baopng. (2022). NSGA-II [Source code]. GitHub. https://github.com/baopng/NSGA-II

Ramos-Pérez, J.-M. Miranda, G. Segredo, E. León, C. Rodríguez-León, C. **Application of multi-objective evolutionary algorithms for planning healthy and balanced school lunches.** Mathematics 2021 https://www.mdpi.com/2227-7390/9/1/80/review_report

Takenori Obo, Takumi Senchi, and Tomoyuki Kato. **Multi-objective Optimization for Meal Planning using Multi-Island Genetic Algorithm.** The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021, Beijing, China, Oct.31-Nov.3, 2021 https://iwaciii2021.bit.edu.cn/docs/2021-12/2f89aadb7208457184d2276ac13fe748.pdf

Dipartimento di Ingegneria Aversa, 19.12.2023

Formola Paolo Mattia Nicola Tamburrino Prof. Alessandro Formisano

Grazie per l'attenzione...e BUON APPETITO!!!

