School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2019)

Tutorial exercises: Week 6

ID	A (°C)	B (mm)	c (hPa)	CLASS
1	22.5	4.6	1021.2	AUT
2	16.7	21.6	1027.0	AUT
3	29.6	0.0	1012.5	SUM
4	33.0	0.0	1010.4	SUM
5	13.2	16.4	1019.5	SPR
6	14.9	8.6	1016.4	SPR
7	18.3	7.8	995.4	WIN
8	16.0	5.6	1012.8	WIN

- 1. What is **Discretisation**, and where might it be used?
 - (a) Summarise some approaches to **supervised** discretisation.
 - (b) Discretise the above dataset according to the (unsupervised) methods of **equal width**, **equal frequency**, and **k-means** (breaking ties where necessary).
- 2. Find the (sample) **mean** and (sample) **standard deviation**¹ for the attibutes in the above dataset:
 - (a) In its entirety, and;
 - (b) For each individual class².
 - (c) How could we use this information when building a classifier over this data?

Given the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY
А	S	h	h	F	N
В	S	h	h	Τ	N
С	0	h	h	F	Y
D	r	m	h	F	Y
Ε	r	С	n	F	Y
F	r	С	n	T	N

- 3. If we wished to perform **feature selection** (or **feature weighting**) on this dataset, where the class is PLAY:
 - (a) Which of *Humi* and *Wind* has the greatest **Pointwise Mutual Information** for the class Y? What about N?
 - (b) Which of the attributes has the greatest **Mutual Information** for the class, as a whole? (Note that we need to extend the lecture definition to handle non–binary attributes.)

¹n.b. You might need a calculator.

²We would ideally do this with more instances!

ID	A (°C)	B (mm)	c (hPa)	CLASS
1	22.5	4.6	1021.2	AUT
2	16.7	21.6	1027.0	AUT
3	29.6	0.0	1012.5	SUM
4	33.0	0.0	1010.4	SUM
5	13.2	16.4	1019.5	SPR
6	14.9	8.6	1016.4	SPR
7	18.3	7.8	995.4	WIN
8	16.0	5.6	1012.8	WIN

- 1. What is **Discretisation**, and where might it be used?
 - (a) Summarise some approaches to supervised discretisation.
 - (b) Discretise the above dataset according to the (unsupervised) methods of **equal width**, **equal frequency**, and **k-means** (breaking ties where necessary).

Discretisation: continuous ___ nominal. (attribute)

When we have a discrete classifier, but the data is continuous.

- (a) Sort the values, and create nominal value for a region where most of the instances having the same label.
- (b) i) Equal width. (Based on value range, regardless number) $Bin Range = \frac{mox min}{n}$
 - ii) Equal frequency (Based on number of instance in each bin)

Bin Range = total number

Two above should SORT the attribute value in farmer.

iii) K-means.

k seeds \longrightarrow stable k clusters \longrightarrow give each cluster a bin name.

- 2. Find the (sample) **mean** and (sample) **standard deviation**¹ for the attibutes in the above dataset:
 - (a) In its entirety, and;
 - (b) For each individual class².
 - (c) How could we use this information when building a classifier over this data?

Given the following dataset:

ID	Outl	Тетр	Ниті	Wind	PLAY
A	s	h	h	F	N
В	S	h	h	T	N
C	0	h	h	F	Y
D	r	m	h	F	Y
E	r	С	n	F	Y
F	r	С	n	T	N

2.(a) Mean :
$$M_A = \frac{1}{N} \sum A_i$$

Standard Deviation:
$$6_c = \sqrt{\frac{\sum (C_i - \mu_c)^2}{(N-1)}}$$

(c) We can build a normal pof. which allow us estimate the probability of observing any given value. Using pointwise estimation.

- 3. If we wished to perform **feature selection** (or **feature weighting**) on this dataset, where the class is PLAY:
 - (a) Which of *Humi* and *Wind* has the greatest **Pointwise Mutual Information** for the class Y? What about N?
 - (b) Which of the attributes has the greatest **Mutual Information** for the class, as a whole? (Note that we need to extend the lecture definition to handle non–binary attributes.)

3. (a)
$$PMI(A;c) = log_2 \frac{P(A\cap c)}{P(A)P(c)}$$
 — only for binary attributes and classes.

PMI (Humi; Y) =
$$log_2 \frac{\frac{3}{6}}{\frac{4}{6} \times \frac{3}{6}} = log_2(1) = 0$$
 uncorrelated

PMI (Wind; Y) =
$$\log_2 \frac{0}{\frac{2}{6}x^{\frac{2}{6}}} = \log_2(0) = -\infty$$
 perfectly regative correlated

(b) MI (
$$\chi_i$$
 c) = $\sum_{\chi \in \chi} \sum_{c \in \{r, \omega\}} P(\chi, c) PMI(\chi_i c)$

For Outl: