# Prédiction des émissions et de la consommation d'énergie de bâtiments



## Introduction

Seattle: objectif 2050, neutralité carbone



- Contexte:
  - Etude des consommations et des émissions de bâtiments
  - Relevés minutieux effectués en 2016 coûteux à obtenir

- But de cette étude:
  - Prédire les consommations et émissions (sans les relevés)
  - Identifier le meilleur algorithme de prédiction
  - Evaluer l'intérêt de l'Energy Star Score dans la prédiction d'émissions

## Description du jeu de données

- Source: Ville de Seattle développement durable et environnement
- Contenu: relevés de 2016 bâtiments non résidentiels
- Variables principales: localisation, surfaces, types, consommation par type ...
- 1 fichier de 3376 lignes et 46 colonnes
- Remplissage: 87,15%
- Nettoyage: Doublons, outliers, métier ...



Corrélation des features et des targets



# Partie 1: Feature engineering

## Feature engineering: vue d'ensemble

- Rendre les données compatibles aux modèles (valeurs numériques)
- Améliorer les performances (ajuster complexité modèle)
- o Techniques: mise en intervalle, encodage, passage au log ...



## Transformation des variables catégorielles

Regroupement des catégories



Transformer des catégories: n catégories -> n variables binaires





Neighborhood\_BALLARD
Neighborhood\_CENTRAL
Neighborhood\_DELRIDGE
Neighborhood\_DELRIDGE
Neighborhood\_EAST
Neighborhood\_GEAST
Neighborhood\_GEATER DUWAMISH
Neighborhood\_LAKE UNION
Neighborhood\_NORTH
Neighborhood\_NORTH
Neighborhood\_NORTHEAST
Neighborhood\_NORTHWEST
Neighborhood\_SOUTHEAST
Neighborhood\_SOUTHEAST
Neighborhood\_SOUTHWEST

## Transformation des variables quantitatives en binaire

Objectif: se passer des relevés de consommation pour prédire



## Transformation de variable quantitative en ratio

- Variables concernées: PropertyGFATotal et PropertyGFAParking
- Objectifs:
  - réduire le nombre de variables
  - avoir une valeur de ratio entre 0 et 1
- Principe: calcul du ratio PropertyGFAParking/PropertyGFATotal

## Passage au log

- Réduire l'amplitude de variables sans perte d'information
- Réduire l'influence des valeurs atypiques
- Targets + PropertyGFABuilding(s)



## Partie 2: Modélisation

## Etapes de prétraitement

- Séparation des features et des targets
  - Une matrice X et un vecteur Y
  - Target 1: consommation totale d'énergie
  - Target 2: émission de CO2

- Séparation des données de train et de test
  - Fonction train\_test\_split de Scikit-learn
  - 30% des données dans le jeu de test
  - Attribut random\_state pour avoir toujours les mêmes jeux de train et de test

Standardisation des données => moyenne nulle et un écart type de 1

## Modèles sélectionnés

• Baseline: Régresseur naïf

#### Modèles linéaires

- Régression linéaire
- Régression Ridge
- SVR linéaire

#### Modèles non linéaires

- SVR non linéaire
- ElasticNet
- GradientBoosting
- RandomForest

## Etapes de la modélisation

Recherche des Entraînement Prédiction sur byperparamètres des modèles performances

## Comparaison des performances

Target1: Consommation

| Algorithme       | RMSE     | R2        | MAE      | Train time | Test Time |
|------------------|----------|-----------|----------|------------|-----------|
| Dummy            | 1.293862 | -0.000468 | 1.025597 | 0.000346   | 0.000079  |
| LinearRegression | 0.717609 | 0.692247  | 0.548646 | 0.002200   | 0.000361  |
| RidgeRegression  | 0.717726 | 0.692146  | 0.548623 | 0.001182   | 0.000323  |
| ElasticNet       | 0.715433 | 0.685638  | 0.542945 | 0.001163   | 0.000273  |
| LinearSVR        | 0.725273 | 0.685638  | 0.547614 | 0.021239   | 0.000502  |
| NonLinearSVR     | 0.788401 | 0.628531  | 0.613518 | 0.050658   | 0.027183  |
| GradientBoosting | 0.693427 | 0.712638  | 0.522880 | 5.351501   | 0.013460  |
| RandomForest     | 0.720334 | 0.689905  | 0.547403 | 0.730587   | 0.020331  |

Target2: Emissions

| Algorithme       | RMSE     | R2        | MAE      | Train time | Test Time |
|------------------|----------|-----------|----------|------------|-----------|
| Dummy            | 1.444219 | -0.000203 | 1.133790 | 0.000551   | 0.000214  |
| LinearRegression | 0.836582 | 0.664386  | 0.647929 | 0.001771   | 0.000285  |
| RidgeRegression  | 0.837484 | 0.663663  | 0.648851 | 0.001512   | 0.000327  |
| ElasticNet       | 0.831768 | 0.668238  | 0.645645 | 0.001469   | 0.000325  |
| LinearSVR        | 0.838664 | 0.662714  | 0.651735 | 0.017630   | 0.000423  |
| NonLinearSVR     | 0.920211 | 0.593934  | 0.690176 | 0.044847   | 0.027910  |
| GradientBoosting | 0.775989 | 0.711243  | 0.597467 | 6.817825   | 0.012745  |
| RandomForest     | 0.830978 | 0.668868  | 0.646089 | 28.837639  | 0.554988  |

- Le GradientBoosting a les meilleurs performances (RMSE, R2, MAE)
- Train time et test time: pas des critères déterminants de choix

## Analyse de l'importance des variables avec SHAP

- SHAP: Contribution de variables à la différence entre la valeur prédite par le modèle et la moyenne des prédictions
- La surface des bâtiments est la variable la plus importante

#### **Target1: Consommation**



#### Target2: Emissions



## Intégration de l'Energy Star Score (1/2)

Target1: Consommation

| Algorithme                            | RMSE     | R2       | MAE      |
|---------------------------------------|----------|----------|----------|
| GradientBoosting                      | 0.693672 | 0.712435 | 0.523052 |
| GradientBoosting with EnergyStarScore | 0.545813 | 0.834670 | 0.359449 |

Target2: Emissions

| Algorithme                            | RMSE     | R2       | MAE      |
|---------------------------------------|----------|----------|----------|
| GradientBoosting                      | 0.775989 | 0.711243 | 0.597467 |
| GradientBoosting with EnergyStarScore | 0.672708 | 0.805607 | 0.512721 |

 L'intégration de l'Energy Star Score au modèle GradientBoosting améliore nettement les performances (RMSE, R2, MAE)

## Intégration de l'Energy Star Score (2/2)

Target1: Consommation







 L'Energy Star Score est la 2ème variable la plus importante pour prédire la consommation et la 3ème pour prédire les émissions

## Conclusion

• Le **GradientBoosting** présente les meilleurs performances

• L'Energy Star Score bien que fastidieux à calculer, améliore nettement les performances de notre meilleur modèle de prédiction d'émissions