LABORATOR#2

I. ECUAŢII NELINIARE: METODE ITERATIVE DE PUNCT FIX

ALGORITM (Metodă iterativă de punct fix)

Date: ϕ (construită pornind de la f), a, b; $n = 0: x_n \in [a, b];$ $n \ge 1: x_n = \phi(x_{n-1});$ n = n + 1; repeat step for $n \ge 1$;

OBS: Metodele iterative de punct fix au viteza/ordinul de convergență cel puțin liniară.

EX#1 Fie ecuația:

$$x^3 + 4x^2 - 10 = 0, \quad x \in [1, 2].$$
 (1)

- (a) Să se construiască în Python o funcție MetPunctFix care are ca date de intrare (i) funcția de punct fix ϕ , (ii) aproximarea inițială x_0 și (iii) numărul maxim de iterații N, iar ca dată de ieșire soluția aproximativă generată de metoda de punct fix cu datele de intrare de mai sus.
- (b) Să se implementeze următoarele cerințe:
 - (b1) Să se construiască graficul funcției $f(x) = x^3 + 4x^2 10$ pe intervalul [1, 2].
 - (b2) Considerăm funcțiile $\phi_j: \mathscr{D}_{\phi_j} \cap [1,2] \longrightarrow \underline{\mathbb{R}}, j=1,2,3,4,$ unde \mathscr{D}_{ϕ_j} sunt domeniile de definiție ale funcțiilor ϕ_i , $j = \overline{1,4}$, definite prin:

(i)
$$\phi_1(x) = -x^3 - 4x^2 + x + 10$$
;

(ii)
$$\phi_2(x) = \sqrt{(10/x) - 4x}$$
;

(ii)
$$\phi_2(x) = \sqrt{(10/x) - 4x};$$

(iii) $\phi_3(x) = \frac{1}{2}\sqrt{10 - x^3};$

(iv)
$$\phi_4(x) = \sqrt{10/(x+4)}$$
.

Să se construiască graficele funcțiilor ϕ_j , $|\phi_j'|$, $j=\overline{1,4}$, pe intervalul maxim [1,2] și să se determine care dintre acestea verifică ipotezele Teoremei lui Brouwer.

- (b3) Să se construiască aproximările x_n , $n = \overline{1, N}$, pentru soluția ecuației (1), apelând procedura MetPunctFix cu ϕ_i , $j = \overline{1,4}$, $x_0 = 1$ şi N = 20.
- (b4) Care dintre funcțiile ϕ_j , $j = \overline{1,4}$, generează cea mai rapidă metodă de punct fix în cazul alegerii valorii inițiale $x_0 = 1$?

II. ECUAŢII NELINIARE: METODA NEWTON-RAPHSON

ALGORITM (Metoda Newton-Raphson)

```
Date: f, f', a, b;

n = 0: x_n \in [a, b];

n \ge 1: x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})};

n = n+1; repeat step for n \ge 1;
```

OBS: Metoda Newton-Raphson are viteza/ordinul de convergență cel puțin pătratică.

EX#2 Fie $f: [-1,1] \longrightarrow \mathbb{R}$, $f(x) = x + e^{-x^2} \cos x$.

- (a) Reprezentați graficul funcției f și salvați imaginea cu numele Graficf.eps
- (b) Creați o funcție NewtonRaphsonf care are ca date intrare (i) funcția f, (ii) derivata acesteia f', (iii) aproximarea inițială x_0 și numărul maxim de iterații N, iar ca date de ieșire primele N aproximări ale rădăcinii funcției f generate de metoda Newton-Raphson. Rulați funcția NewtonRaphsonf pentru f și f' corespunzătoare $\mathbf{EX\#2}$, $x_0=0$ și N=10.
- $\mathbf{EX\#3}$ (a) Creați fișierul funcție NewtonRaphson cu datele de intrare f, f', prima aproximare x_0 și toleranța TOL și data de ieșire $x_{\mathsf{aprox}},$ generat de metoda Newton-Raphson și criteriul de oprire $|f(x_n)| < \mathsf{TOL}.$
 - (b) Fie $f:[0,\pi/2] \longrightarrow \mathbb{R}$, $f(x)=\cos x-x$, $x_0=\pi/4$ și $TOL=10^{-8}$. Apelați funcția creată la subpunctul (a) pentru aceste date de intrare.

Afișati, în același sistem de coordonate xOy, graficul funcției f, dreapta de ecuație y = 0 și șirul de aproximări generat.