

Exercice 1 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

On a:

•
$$U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$$

• $Q(p) = SpX(p)$

- $U_S(p) = K_C \cdot X(p)$ $F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + T p}$

Exercice 2 - Prothèse active transtibiale*

B2-07

Présentation

Comportement dynamique de la prothèse

Question 1 À partir des équations caractérisant le système, déterminer les expressions littérales des fonctions de transfert $H_1(p)$, $H_2(p)$, $H_3(p)$ et $H_6(p)$.

Correction d'une On a $H_1(p)(U_M(p)-\Omega_M(p)).$

D'autre part, en utilisant les deux équations du moteur électrique, on a $U_M(p) = RI(p) + E(p)$ et $E(p) = k_c \Omega_M(p)$ soit $U_M(p) = RI(p) + k_c \Omega_M(p)$. De plus $C_M(p) = k_c I(p)$; donc $U_M(p) = R \frac{C_M(p)}{k_c} + k_c \Omega_M(p)$. Par suite, $C_M(p) = \frac{k_c}{R} (U_M(p) - k_c \Omega_M(p)).$

En identifiant, on a donc $H_1(p) = \frac{k_c}{R}$ et $H_6(p) = k_c$. D'après le schéma-blocs,

 $\Delta \alpha(p) = (C(p) - C_M(p)H_2(p))H_3(p)H_4(p) \text{ soit}$

En utilisant l'équation différentielle caractéristique du comportement de la prothèse, on a : $J_M p^2 \Delta \alpha(p) + \mu_m p \Delta \alpha(p) = C_M(p) R_T - C(p) R_T^2 \iff$

$$\Delta\alpha(p) \left(J_M p^2 + \mu_m p \right) = C_M(p) R_T - C(p) R_T^2$$

$$\Leftrightarrow \Delta\alpha(p) = \frac{R_T^2}{J_M p^2 + \mu_m p} \left(\frac{C_M(p)}{R_T} - C(p) \right).$$
Or, $\Delta\alpha(p) = \frac{1}{n} \Delta\alpha'(p)$; donc $H_4(p) = \frac{1}{n}$.

Au final,
$$H_3(p) = \frac{R_T^2}{J_M p + \mu_m}$$
 et $H_2(p) = R_T$.

Question 2 Déterminer la fonction de transfert en boucle fermée FTBF(p) = $\frac{C(p)}{U_M(p)}$

ment avant H_4 . On ajoute donc $H_4(p)H_7(p)$ dans la re-On a alors $F(p) = \frac{\Delta \alpha'(p)}{-} = \frac{H_3(p)}{1 + H_3(p)H_4(p)H_7(p)}$. FTBF(p) = $\frac{H_1(p)H_2(p)F(p)}{1 + H_1(p)H_2(p)H_5(p)H_6(p)F(p)}H_4(p)H_7(p).$ $H_1(p)H_2(p)\frac{H_3(p)}{1+H_3(p)H_4(p)H_7(p)}$ Soit FTBF(p) = $\frac{1 + H_3(p)H_4(p)H_5(p)H_6(p)}{1 + H_1(p)H_2(p)H_5(p)H_6(p)} \frac{H_3(p)}{1 + H_3(p)H_4(p)H_7(p)} = \frac{H_1(p)H_2(p)H_3(p)}{1 + H_3(p)H_4(p)H_7(p) + H_1(p)H_2(p)H_5(p)H_6(p)H_3(p)} H_4(p)H_7(p)$ $= \frac{\frac{k_c}{R} R_T \frac{R_T^2}{J_M p + \mu_m}}{1 + \frac{R_T^2}{J_M p + \mu_m} \frac{k_{RS} d_0^2}{p} + \frac{k_c}{R} R_T \frac{1}{R_T} k_c \frac{R_T^2}{J_M p + \mu_m}} \frac{k_{RS} d_0^2}{p}$ $= \frac{\frac{k_c}{1}R_T^3}{J_M R p^2 + \mu_m R p + R_T R^2 k_{RS} d_0^2 + p k_c k_c R_T^2} k_{RS} d_0^2$ $= \frac{k_c R_T^3}{J_M R p^2 + p (\mu_m R + k_c k_c R_T^2) + R_T R^2 k_{RS} d_0^2} k_{RS} d_0^2.$

Correction On déplace le dernier point de prélève-

Analyse des performances de l'asservissement en couple

Question 3 À l'aide des courbes, valider l'ensemble des critères du cahier des charges en justifiant clairement vos réponses.

Correction • Le régime permanent semble atteint autour de 0,03 s; donc les critère de rapidité est respécté.

• En régime permanent, le couple atteint est de 46 Nm pour une consigne de 50 Nm. Un écart de 10 % correspondrait à un couple atteint de 45 Nm. Le critère de précision est respecté.

Exercice 3 - Moteur à courant continu*

B2-07

Question 1 Réaliser le schéma-blocs.

Question 2 *Mettre le schéma-blocs sous la forme suivante.*

En utilisant le schéma-blocs proposé, on a $\Omega(p) = (C_r(p)A(p) + U(p)B(p))C(p)$.

D'autre part,
$$\Omega(p) = \left(C_r(p) + \frac{K}{R + Lp} \left(U(p) - K\Omega(p)\right)\right) \frac{1}{f}$$

On a donc
$$(f + Jp)\Omega(p) = C_r(p) + U(p)\frac{K}{R + Lp}$$

$$\Leftrightarrow (f+Jp)\Omega(p) + \frac{K^2}{R+Lp}\Omega(p) = C_r(p) + U(p)\frac{K}{R+Lp}$$

$$\Leftrightarrow \left(\left(f + Jp \right) + \frac{K^2}{R + Lp} \right) \Omega(p) = C_r(p) + U(p) \frac{K}{R + Lp}$$

$$\Leftrightarrow \frac{K^2 + (f + Jp)(R + Lp)}{R + Lp} \Omega(p) = C_r(p) +$$

$$U(p)\frac{K}{R+Lp}$$

$$\Leftrightarrow \Omega(p) = \left(C_r(p) + U(p) \frac{K}{R + Lp}\right) \frac{R + Lp}{K^2 + (f + Jp)(R + Lp)}$$

Dés lors plusieurs schéma-blocs peuvent répondre à la question. Par exemple, A(p)=1, $B(p)=\frac{K}{R+Lp}$,

$$C(p) = \frac{R + Lp}{K^2 + (f + Jp)(R + Lp)}.$$

En poursuivant, on a aussi: $\Omega(p) = (C_r(p)(R+Lp) + U(p)$

On a donc aussi, A(p) = R + Lp, B(p) = K, $C(p) = \frac{1}{K^2 + (f + Jp)(R + Lp)}$

Exercice 4 – Conception de la commande d'un robot chirurgical*

B2-07

Question 1 Compléter le schéma-blocs.

Correction

En utilisant l'équation électrique du MCC, on a $U_1(p) = (Lp + R)I_1(p) + E_1(p)$. En utilisant le schémablocs : $I_1(p) = (U_1(p) - E(p))D(p)$. On a donc $I_1(p) = \frac{U_1(p) - E(p)}{R + Lp}$ et $D(p) = \frac{1}{R + Lp}$.

En utilisant la première relation de comportement du MCC, on a $E_1(p)$ en sortie du bloc k_e et $p\Delta_1(p)$ en entrée; donc $H(p) = \frac{1}{n}$.

En utilisant la seconde relation, on a $F(p) = k_t$. En utilisant l'équation de mouvement de l'axe 1, on

a:
$$\Delta C_1(p) = J p^2 \Delta \theta_1(p) - k_1 \frac{r_9'}{r_0} h_2 \Delta F_x(p)$$
.

D'après le schéma-blocs, on a $\Delta\theta_1(p) = (\Delta C_1(p) + \Delta F_x(p)E(p))G(p)H(p)$.

En réageançant l'équation, on a $Jp^2\Delta\theta_1(p) =$

$$\Delta C_1(p) + k_1 \frac{r_9'}{r_0} h_2 \Delta F_x(p) \iff \Delta \theta_1(p) = \left(\Delta C_1(p) + k_1 \frac{r_9'}{r_0} h_2 \Delta F_x(p)\right) \frac{1}{J p^2}.$$

On a donc
$$E(p) = k_1 \frac{r_9'}{r_0} h_2$$
.

De plus
$$G(p)H(p) = \frac{1}{Ip^2}$$
 et $H(p) = \frac{1}{p}$; donc $G(p) =$

 $\frac{1}{Jp}$

En utilisant l'équation électrique du MCC, on a $U_1(p) = (Lp + R)I_1(p) + E_1(p)$. En utilisant le schémablocs : $I_1(p) = (U_1(p) - E(p))D(p)$. On a donc $I_1(p) = \frac{U_1(p) - E(p)}{R + Lp}$ et $D(p) = \frac{1}{R + Lp}$. En utilisant l'équation du PID, on a $U_1(p) = \frac{1}{R + Lp}$

En utilisant l'équation du PID, on a $U_1(p) = (\Delta \theta_{c1}(p) - \Delta \theta_1(p)) \left(\sigma_1 + \frac{\sigma_2}{p}\right) - \sigma_3 p \Delta \theta_1(p) +$

$$\sigma_4 \Delta \theta_{c1}(p) \operatorname{soit} U_1(p) = \left(\Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} \right) - \Delta \theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} \right) \right) - \sigma_3 p \Delta \theta_1(p) + \sigma_4 \Delta \theta_{c1}(p).$$

En utilisant le schéma-blocs, on a $U_1(p) = \Delta_{c1}(p)A(p) + (\Delta_{c1}(p) - \Delta\theta_1(p))B(p) - \Delta\theta_1(p)C(p) = \Delta_{c1}(p)(A(p) + B(p)) - \Delta\theta_1(p)(B(p) + C(p)).$

Par suite,
$$U_1(p) = \Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4 \right) - \left(\frac{\sigma_2}{p} + \frac{\sigma_3}{p} \right)$$

$$\Delta\theta_1(p)\bigg(\sigma_1+\frac{\sigma_2}{p}+\sigma_3p\bigg).$$

On aura donc $B(p) = \sigma_1 + \frac{\sigma_2}{p}$, $C(p) = \sigma_3 p$ et $A(p) = \sigma_4$.

Question 2 À partir de ce schéma-blocs, en notant $H_{processus}(p) = \frac{\Delta \theta_1(p)}{U_1(p)} = \frac{K}{p\left(1+\tau p\right)}, \ exprimer \ K \ et \ \tau \ en \ fonction \ des \ données \ de \ l'énoncé.$

Correction On a
$$H_{\text{processus}}(p) = \frac{D(p)F(p)G(p)}{1 + D(p)F(p)G(p)k_e}H(p)$$

soit $H_{\text{processus}}(p) = \frac{\frac{1}{R + Lp}k_t\frac{1}{Jp}}{1 + \frac{1}{R + Lp}k_t\frac{1}{Jp}k_e}\frac{1}{p}$. Avec $L = 0$,

$$H_{\text{processus}}(p) = \frac{k_t}{RJp + k_t k_e} \frac{1}{p} = \frac{\frac{1}{k_e}}{\frac{RJ}{k_t k_e} p + 1} \frac{1}{p} \text{ soit}$$

$$K = \frac{1}{k_e} \text{ et } \tau = \frac{RJ}{k_t k_e}.$$

Question 3 Exprimer la fonction de transfert en boucle fermée, sous sa forme canonique, notée $B_F(p) = \frac{\Delta \theta_1(p)}{\Delta \theta_{c1}(p)}$ en fonction de K, τ , σ_1 , σ_2 , σ_3 et σ_4 .

$$\begin{aligned} & \text{Correction On a vu que } U_1(p) = \Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) \\ & \Delta \theta_1(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right) \text{ et que } \frac{\Delta \theta_1(p)}{U_1(p)} = \frac{K}{p(1 + \tau p)}. \\ & \text{On a donc } \Delta \theta_1(p) \frac{p(1 + \tau p)}{K} = \Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) - \Delta \theta_1(p) \left(\frac{\sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p}{K} + \sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right) & = \\ & \Delta \theta_{c1}(p) \left(\frac{p(1 + \tau p)}{K} + \sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p\right) & = \\ & \Delta \theta_{c1}(p) \left(\sigma_1 + \frac{\sigma_2}{p} + \sigma_4\right) \text{ et } \\ & B_F(p) & = \frac{\sigma_1 + \frac{\sigma_2}{p} + \sigma_4}{\frac{p(1 + \tau p)}{K} + \sigma_1 + \frac{\sigma_2}{p} + \sigma_3 p} & = \\ & \frac{\sigma_1 p + \sigma_2 + \sigma_4 p}{K} & = K \frac{\sigma_1 p + \sigma_2}{p^2(1 + \tau p) + \sigma_1 K p} + \sigma_2 K + \sigma_3 K p^2 \\ & = K \frac{(\sigma_1 + \sigma_4) p + \sigma_2}{\tau p^3 + p^2(1 + \sigma_3) + \sigma_1 K p + \sigma_2 K}. \end{aligned}$$

Exercice 5 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

•
$$U_c(p) = \frac{1}{K}I(p) + U_s(p)$$

- $U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$ Q(p) = SpX(p)• $U_S(p) = K_C \cdot X(p)$ $F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$

Exercice 6 - Tuyère à ouverture variable* B2-07 Pas de corrigé pour cet exercice.

Présentation du système

Objectif On souhaite vérifier que le système permet de respecter le cahier des charges suivant :

- temps de réponse à 5% : 4 s au maximum;
- précision : l'erreur statique doit être nulle ;
- précision : l'erreur de traînage doit être inférieure à 1 mm pour une consigne de $25 \,\mathrm{mm \, s^{-1}}$.

Modélisation du comportement du vérin - hypothèse fluide compressible

Question 1 À partir des équations, compléter le schéma-blocs en indiquant les fonctions de transferts de chaque bloc.

Question 2 Modifier le schéma-blocs précédent pour intégrer l'effort résistant.

Question 3 Donner l'expression de la fonction de transfert du vérin $H_V(p) = \frac{X(p)}{Q(p)}$. On donnera le résultat sous la forme $H_V(p) = \frac{K_V}{p(1+a_2p^2)}$ en précisant les expression de K_V et a_2 .

Correction $\frac{1}{\frac{1}{M_{op}p^{2}}} = \frac{1}{1 + \frac{K_{F}}{M_{op}p^{2}}} = \frac{1}{K_{F} + M_{op}p^{2}} H_{v}(p) = \frac{\frac{B}{V_{o}p} S \frac{S}{K_{F} + M_{op}p^{2}}}{1 + \frac{B}{V_{o}p} S^{2} \frac{1}{K_{F} + M_{op}p^{2}} p} H_{v}(p) = \frac{\frac{B}{V_{o}p} S \frac{S}{K_{F} + M_{op}p^{2}}}{1 + \frac{B}{V_{o}p} S^{2} \frac{1}{K_{F} + M_{op}p^{2}}} H_{v}(p) = \frac{\frac{B}{V_{o}p} S \frac{1}{K_{F} + M_{op}p^{2}}}{1 + \frac{B}{V_{o}p} S \frac{1}{K_{F} + M_{op}p^{2}}} H_{v}(p) = \frac{\frac{B}{V_{o}p} S \frac{1}{K_{F} + M_{op}p^{2}}}{1 + \frac{B}{V_{o}p} S \frac{1}{K_{F} + M_{op}p^{2}}} H_{v}(p) = \frac{\frac{B}{V_{o}p} S \frac{1}{K_{F} + M_{op}p^{2}}}{1 + \frac{B}{V_{o}p} S \frac{1}{K_{F} + M_{op}p^{2}}}$

Validation du comportement du vérin

Question 4 Donner l'expression de la forme canonique de la fonction de transfert en boucle fermée $H_{BF}(p)$ = . On donnera le résultat en fonction de K_C , K_U , K_D , K_n , K_V et a_2 .

Correction

$$H_{BF}(p) = \frac{X(p)}{X_{ref}(p)} = \frac{K_{c}K_{p}K_{u}K_{D}\frac{K_{v}}{p(1+a_{2}p^{2})}}{1+K_{c}K_{p}K_{u}K_{D}\frac{K_{v}}{p(1+a_{2}p^{2})}}$$

$$H_{BF}(p) = \frac{1}{1+\frac{p(1+a_{2}p^{2})}{K_{c}K_{p}K_{u}K_{D}K_{v}}}}$$

$$H_{BF}(p) = \frac{1}{1+\frac{p}{K_{c}K_{p}K_{u}K_{D}K_{v}}} + \frac{a_{2}}{K_{c}K_{p}K_{u}K_{D}K_{v}}p^{3}}$$

Prise en compte du débit de fuite

Question 5 *Modifier le schéma-blocs précédent pour intégrer le débit de fuite.*

Question 6 Donner l'expression de la fonction de transfert du vérin $H_V(p) = \frac{X(p)}{Q(p)}$. On donnera le résultat sous la forme $H_V(p) = \frac{K_V}{p\left(1+a_1p+a_2p^2+a_3p^3\right)}$ en précisant les expression de K_V , a_1 , a_2 et a_3 .

Retour sur le cahier des charges

On donne la réponse à un échelon et à une rampe de pente $25\,\mathrm{mm\,s^{-1}}$.

Question 7 Le cahier des charges est-il vérifié?

Exercice 7 - Véhicule à trois roues Clever*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Donner l'expression de la fonction de transfert du vérin $H_{V1}(p)$ (telle que $\lambda(p) = H_{V1}(p)Q(p)$) et compléter le schéma-bloc associé à la modélisation actuelle du système.

Question 2 Déterminer la fonction de transfert en boucle fermée FTBF $_1$ (telle que $\alpha(p)=FTBF_1(p)\alpha_c(p)$) du système bouclé. Mettre FTBF $_1(p)$ sous la forme $\frac{K_1}{1+\tau_1p}$ en précisant les expressions de K_1 et de τ_1 .

Correction

$$FTBF_{1}(p) = \frac{C\frac{K_{s}.R}{S.p}}{1 + C\frac{K_{s}.R}{S.p}} = \frac{C.K_{s}.R}{S.p + C.K_{s}.R} = \frac{1}{1 + \frac{S}{C.K_{s}.R}.p}$$

Question 3 À partir du critère de temps de réponse à $5\%(t_{r5\%})$ du système, déterminer l'expression puis la valeur numérique minimale du gain du servo-distributeur.

Correction

$$\begin{split} &t_{R5\%} = \frac{3.S}{C.K_s.R} \text{ soit pour avoir } t_{R5\%} \leq 0.1 \ s = t_0 \ \text{il faut que} : \\ &K_S > \frac{3.S}{C.R.t_0} = \frac{3 \times \pi \times 16^2 \times 10^{-6}}{1 \times \frac{\pi}{180} \times 400 \times 0.1} = 3 \times 18 \times 4 \times 16 \times 10^{-6} = 3,456.10^{-3} \ m^3 s^{-1} V^{-1} \end{split}$$

Question 4 Appliquer la transformation de Laplace aux équations précédentes et compléter le schémablocs.

Question 5 Donner l'expression de la fonction de transfert en boucle fermée du vérin H_{V2} (telle que $\lambda(p) = H_{V2}Q(p)$) et préciser les expressions des coefficients K_V et ω_V de sa forme canonique : $H_{V2}(p) = \frac{K_V}{p\left(1 + \frac{p^2}{\omega_{V}^2}\right)}$.

Question 6 Proposer une modification du schémabloc donné afin de prendre en compte le débit de fuite.

Question 7 Déterminer l'expression de la fonction de transfert H_{V3} (telle que $\lambda(p) = H_{V3}Q(p)$) associée au comportement dynamique du vérin ainsi modélisé. On donnera le résultat sous la forme suivante : $H_{V3}(p) =$

donnera le résultat sous la forme suivante :
$$H_{V3}(p) = \frac{K_V}{p\left(1+a_1p+\frac{p^2}{\omega_V^2}\right)}$$
. Donner l'expression de a_1 en fonction de a_1 en fonction de a_2 of a_1 et a_2 et a_2 et a_2 et a_3 et a_4 et a_4 et a_5 et a_4 et a_5 et a_5

de M_{eq} , δ et S et déterminer l'expression du coefficient d'amortissement ξ_V du second ordre en fonction de M_{eq} , δ , S, B et V_0 .

Correction

$$Q(p) = S\lambda.p + \frac{V_0}{B}p.P_r(p) - \delta.P_r(p)$$

$$H_{V_2}(p) = \frac{\frac{B}{V_0.p}}{\frac{B}{V_0.p}} \frac{S}{S^2} \frac{1}{1 - \frac{B\delta}{B\delta}} \frac{M_{eq} \cdot p}{M_{eq} \cdot p} \frac{BS}{P} = \frac{BS}{(V_0.p - B\delta).M_{eq} \cdot p^2 + BS^2.p} = \frac{\frac{1}{S}}{p\left(1 - \frac{\delta.M_{eq}}{S^2}.p + \frac{V_0.M_{eq}}{BS^2}.p^2\right)}$$

$$\frac{2\xi_F}{1 - \frac{\delta.M_{eq}}{V_0.p}} = \frac{\delta.M_{eq}}{V_0.p} \frac{S^2}{V_0.p} \frac{1}{S^2} \frac{S^2}{V_0.p} \frac{S^2}{V$$

Question 8 Quels sont les critères du cahier des charges validés?

- Ecart de trainage $= 0 \Rightarrow$ validé Ecart dynamique (4.6)
- Ecart dynamique (dépassement pour entrée en trapèze) = 0.8° ⇒ validé Temps de réponse lié à la bande passante et l'amortissement ⇒ validé (ne peut pas être lu sur une entrée en trapèze).