

Кластеризация

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ

Вопросы занятия

- 1. Задача кластеризации: постановка и примеры;
- 2. Основные алгоритмы;
- 3. Метрики качества кластеризации.

В конце занятия научимся:

- производить кластеризацию данных;
- выбирать наиболее подходящий алгоритм для задачи.

типы задач

- классификация
- ранжирование
- регрессия
- кластеризация

ПРИМЕРЫ ЗАДАЧ КЛАСТЕРИЗАЦИИ

Пользовательская сегментация. Как выглядят типичные пользователи? (находим сектора, работаем с ними отдельно)

Логистика. Где расположить магазины, чтобы охватить большее колво покупателей?

Новости. О чём сейчас пишут СМИ? (Новостной портал кластеризует новости и выдает их отдельными темами)

EDA. Есть 100млн обращений пользователей. О чём они пишут?

ДОПОЛНИТЕЛЬНЫЕ ПРИЛОЖЕНИЯ

Создание дополнительных фич. Можно дополнить имеющиеся данные метками принадлежности к одному из классов;

Разметка данных. Если нет проставленных классов, но нужно сделать классификатор, то в создании разметки для обучающей выборки сильно поможет кластеризация;

Поиск структуры данных как часть эксплоративного анализа.

Постановка задачи кластеризации

Пусть X — множество объектов, Y — множество идентификаторов (меток) кластеров. На множестве X задана функция расстояния между объектами $\rho(x,x')$.

Дана конечная обучающая выборка объектов $X^{**m}=\{x1,...,xm\}\subset X$. Необходимо разбить выборку на подмножества (кластеры), то есть каждому объекту $x_i\in X^{**m}$ сопоставить метку $y_i\in Y$, таким образом чтобы объекты внутри каждого кластера были близки относительно метрики ρ , а объекты из разных кластеров значительно различались.

Определение

Алгоритм кластеризации — функция $a: X \to Y$, которая любому объекту $x \in X$ ставит в соответствие идентификатор кластера $y \in Y$.

Множество Y в некоторых случаях известно заранее, однако чаще ставится задача определить оптимальное число кластеров, с точки зрения того или иного критерия качества кластеризации. Кластеризация (обучение без учителя) отличается от классификации (обучения с учителем) тем, что метки объектов из обучающей выборки *у* изначально не заданы, и даже может быть неизвестно само множество Y.

Решение задачи кластеризации объективно неоднозначно по ряду причин:

- Не существует однозначного критерия качества кластеризации. Известен ряд алгоритмов, осуществляющих разумную кластеризацию "по построению", однако все они могут давать разные результаты. Следовательно, для определения качества кластеризации и оценки выделенных кластеров необходим эксперт предметной области;
- Число кластеров, как правило, заранее не известно и выбирается по субъективным критериям. Даже если алгоритм не требует изначального знания о числе классов, конкретные реализации зачастую требуют указать этот параметр;
- Результат кластеризации существенно зависит от метрики. Однако существует ряд рекомендаций по выбору метрик для определенных классов задач.

Число кластеров фактически является гиперпараметром для алгоритмов кластеризации.

Теорема невозможности Клейнберга

Клейнберг постулировал три простых свойства в качестве аксиом кластеризации и доказал теорему, связывающую эти свойства.

- Алгоритм кластеризации а является масштабно инвариантным (англ. scale-invariant), если для любой функции расстояния ρ и любой константы α>0 результаты кластеризации с использованием расстояний ρ и α·ρ совпадают.
- **Полнота** (англ. *Richness*). Множество результатов кластеризации алгоритма аа в зависимости от изменения функции расстояния рр должно совпадать со множеством всех возможных разбиений множества объектов *X*.
- Алгоритм кластеризации является **согласованным** (англ. *consistent*), если результат кластеризации не изменяется после допустимого преобразования функции расстояния.

Исходя из этих аксиом Клейнберг сформулировал и доказал теорему:

Для множества объектов, состоящего из двух и более элементов, не существует алгоритма кластеризации, который был бы одновременно масштабно-инвариантным, согласованным и полным.

Теорема невозможности Клейнберга

Типология задач кластеризации

Типы входных данных

- Признаковое описание объектов. Каждый объект описывается набором своих характеристик, называемых признаками (англ. *features*). Признаки могут быть как числовыми, так и категориальными;
- Матрица расстояний между объектами. Каждый объект описывается расстоянием до всех объектов из обучающей выборки.

Цели кластеризации

- Классификация объектов. Попытка понять зависимости между объектами путем выявления их кластерной структуры. Разбиение выборки на группы схожих объектов упрощает дальнейшую обработку данных и принятие решений, позволяет применить к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»). В данном случае стремятся уменьшить число кластеров для выявления наиболее общих закономерностей;
- Сжатие данных. Можно сократить размер исходной выборки, взяв один или несколько наиболее типичных представителей каждого кластера. Здесь важно наиболее точно очертить границы каждого кластера, их количество не является важным критерием;
- Обнаружение новизны (обнаружение шума). Выделение объектов, которые не подходят по критериям ни в один кластер. Обнаруженные объекты в дальнейшем обрабатывают отдельно.

Разнообразие алгоритмов кластеризации

Методы кластеризации

- •Графовые алгоритмы кластеризации. Наиболее примитивный класс алгоритмов. В настоящее время практически не применяется на практике;
- •Вероятностные алгоритмы кластеризации. Каждый объект из обучающей выборки относится к каждому из кластеров с определенной степенью вероятности;
- •Иерархические алгоритмы кластеризации. Упорядочивание данных путем создания иерархии вложенных кластеров;
- •Алгоритм *k*-средних (англ. *k-means*). Итеративный алгоритм, основанный на минимизации суммарного квадратичного отклонения точек кластеров от центров этих кластеров;
- •Распространение похожести (англ. *affinity propagation*). Распространяет сообщения о похожести между парами объектов для выбора типичных представителей каждого кластера;
- •Сдвиг среднего значения (англ. *mean shift*). Выбирает центроиды кластеров в областях с наибольшей плотностью;
- •Спектральная кластеризация (англ. *spectral clustering*). Использует собственные значения матрицы расстояний для понижения размерности перед использованием других методов кластеризации;
- •Основанная на плотности пространственная кластеризация для приложений с шумами (англ. *Density-based spatial clustering of applications with noise*, *DBSCAN*). Алгоритм группирует в один кластер точки в области с высокой плотностью. Одиноко расположенные точки помечает как шум.

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

Как и в других задачах:

разные алгоритмы справляются лучше с разными формами зависимостей

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ Меры качества кластеризации

Для оценки качества кластеризации задачу можно переформулировать в терминах задачи дискретной оптимизации. Необходима так сопоставить объектам из множества X метки кластеров, чтобы значение выбранного функционала качества приняло наилучшее значение.

В качестве примера, стремятся достичь минимума среднего внутрикластерного расстояния или максимума среднего межкластерного расстояния.

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

ТИПЫ КЛАСТЕРИЗАЦИИ

Жёсткая кластеризация

(1 объект - 1 класс)

Мягкая (fuzzy) кластеризация

(1 объект - несколько (или 0) классов)

Иерархическая кластеризация

(объект внутри кластера 2.1 -> внутри кластера 2)

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. PREPROCESSING

PREPROCESSING

Все методы кластеризации основываются на метриках и потому крайне чувствительны к одному масштабу данных, поэтому

StandardScaler - must have

K-MEANS

АЛГОРИТМ

Задать начальные значения центроидов кластеров

Повторять, пока центроиды смещаются:

- * присвоить наблюдениям номер кластера с **ближайшим** к ним центром
- * передвинуть центроиды кластеров к среднему значению координат членов кластера

Update Cluster Assignments

ЦЕЛЬ

Минимизировать внутриклассовые отличия от центроида:

$$\sum_{i=0}^n \min_{\mu_j} (||x_i - \mu_j||)^2$$

Связанные с этим проблемы:

- * предположение о выпуклости и однородности кластеров
- * проклятие размерности

Update Cluster Assignments

ИТОГ

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

Пространство нарезается на лоскуты из прямых гиперплоскостей

ОГРАНИЧЕНИЯ

Алгоритм может выдавать контринтуитивные результаты

- Если указано не то число кластеров
- 2. Кластеры не выпуклые и близко расположены
- 3. Разная дисперсия близких кластеров

КОЛИЧЕСТВО КЛАСТЕРОВ

Идея: перебирать от 1 до N кластеров, засечь, с какого момента *качество* перестанет быстро улучшаться

(T.e. $k^* = argmin(\Delta J(C_{k+1}) / \Delta J(C_k)))$

Качество - сумма квадратов расстояний от точек до центроидов кластеров

НАЧАЛЬНОЕ ПРИБЛИЖЕНИЕ

Алгоритм очень зависит от начального приближения: метод сойдётся всегда, но к разным локальным минимумам.

Какие точки выбрать?

- * Мультистарт: N наборов начальных приближений, выбор лучшего
- * Наиболее удалённые друг от друга точки:
 - * удалить аномалии (посчитать среднее расстояние до q ближайших соседей, отбросить δ % самых удалённых)
 - * взять 2 самые дальние друг от друга точки, они составят множество U
 - * k-2 раз добавлять в U по 1 точке, расстояние которой до ближайшей из старых точек U будет максимально большим

УСКОРЕНИЕ. MINI BATCH KMEANS

Способ: каждый шаг брать не все точки, а лишь подмножества (batch), обновляя центроиды как среднее признаков объектов кластера как текущего, так и всех предыдущих шагов

Результат: рост скорости с мизерным падением качества

РАЗВИТИЕ. МЯГКИЙ ВАРИАНТ (ЕМ)

Более мягкий вариант KMeans: каждому объекту ставить в соответствие не 1 кластер, а вектор близости к каждому кластеру

Повторять, пока центроиды смещаются:

- * оценить близость каждого объекта к каждому центроиду кластеров
- * присвоить объектам номер кластера с ближайшим к ним центром
- * передвинуть центроиды кластеров к **средневзвешенному** значению координат всех объектов, взвешивая по близости объекта к текущему центроиду кластера

РЕАЛИЗАЦИЯ В SKLEARN

sklearn.cluster.KMeans

- * n clusters=8
- * init='k-means++'
- * n_init=10
- * max iter=300
- * tol=0.0001
- * precompute_distances='auto'
- * verbose=0
- * random_state=None
- * copy_x=True
- * n_jobs=1
- * algorithm='auto'

Основные параметры

- * n_clusters количество кластеров для разбиения
- * init: 'k-means+', 'random', ndarray начальное приближение
- * max_iter кол-во итераций
- * n_jobs кол-во процессоров (-1 max)

Основные характеристики

- 11 параметров
- по умолчанию: 10 начальных умных запусков на 1 процессоре, кластеризация на 8 групп

Основные методы

* fit, fit_predict, fit_transform, transform, predict

HIERARCHICAL CLUSTERING

ИДЕЯ

АЛГОРИТМ

Все объекты - отдельные кластеры

Повторять, пока > 1 кластера:

* соединить 2 ближайших кластера

ПРИМЕР

Дендрограмма кластеризации цветков ириса.

Проведена иерархическая кластеризация, визуально отображаемая в виде дендрограммы.

На картинке цветом линии отмечены 3 кластера, а цветом надписи - настоящий вид цветка

ПРИМЕР

Дендрограмма кластеризации цветков ириса.

Проведена иерархическая кластеризация, визуально отображаемая в виде дендрограммы.

На картинке цветом линии отмечены 3 кластера, а цветом надписи - настоящий вид цветка

РАССТОЯНИЕ МЕЖДУ ОБЪЕКТАМИ

РАССТОЯНИЕ МЕЖДУ ОБЪЕКТАМИ

Межкластерное расстояние основывается на расстоянии между объектами. Если с межкластерным расстоянием есть рекомендация брать Уорда, то выбор функции расстояния между объектами более зависит от данных. Слева представлен пример оригинальных данных 3 сигналов, с которыми не справляется косинусное и евклидово расстояние, однако справляется расстояние городских кварталов (I1)

* sklearn, clustering example

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{6}(W,S) = \min_{w,s} \rho(w,s)$$

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\mathrm{II}}(W,S) = \max_{w,s} \rho(w,s)$$

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- Расстояние между центрами
- * Расстояние Уорда

$$R^{\Gamma}(W,S) = \frac{1}{|W| * |S|} \sum_{w} \sum_{s} \rho(w,s)$$

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\mathrm{II}}(W,S) = \rho^2(\sum_{w} \frac{w}{|W|}, \sum_{s} \frac{s}{|S|})$$

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{y}(W,S) = \frac{|W| * |S|}{|W| + |S|} \rho^{2} \left(\sum_{w} \frac{w}{|W|}, \sum_{s} \frac{s}{|S|} \right)$$

СВОЙСТА РАССТОЯНИЙ

Расстояние **монотонно**, **если** при каждом слиянии расстояние между кластерами растёт: $R_2 <= R_3 <= R_4$..

Расстояние между центрами - не монотонно. Остальные - да

Расстояние растягивающее, если при каждом слиянии увеличение расстояний между кластерами растёт:

$$R_3-R_2 \le R_4-R_3 \le R_5-R_4...$$

Расстояние дальнего соседа и Уорда - растягивающие

РЕКОМЕНДУЕМОЕ РАССТОЯНИЕ

Расстояние Уорда (Ward)

Оно:

- * монотонное
- * растягивающее
- * работает с центрами кластеров

РЕАЛИЗАЦИЯ В SKLEARN

<u>AgglomerativeClustering</u>

- * n clusters=2
- * affinity='euclidean'
- * memory=Memory(cachedir=None)
- * connectivity=None
- * compute_full_tree='auto'
- * linkage='ward'
- * pooling_func=<function mean>

Основные параметры

- * n_clusters количество кластеров для разбиения
- * linkage: «ward», «complete», «average»
- affinity: "euclidean", "I1", "I2", "manhattan", "cosine", «precomputed» (для linkage = «ward» доступно только евклидово)
- * connectivity априорные знания о структуре данных, подробнее на следующем слайде

Основные методы

* fit, fit_predict

РЕАЛИЗАЦИЯ В SKLEARN. CONNECTIVITY

DBSCAN

ИДЕЯ Density-Based Spatial Clustering of Applications with Noise

Рассматриваем объекты как ядра, вокруг которых собираются другие объекты

Если не собираются - это выброс

Если ядра связаны - то они и достижимые из них объекты образуют кластер

ИДЕЯ Density-Based Spatial Clustering of Applications with Noise

Все точки делятся на 3 типа:

- * ядра (в eps-окрестности >= N точек)
- * достижимые из ядра (в eps-окрестности < N точек, > 0 ядер)
- * выбросы (остальные)

Ядра и достижимые из них точки образуют кластеры Выбросы не принадлежат ни одному кластеру

РЕАЛИЗАЦИЯ В SKLEARN

DBSCAN

- * eps=0.5
- * min_samples=5
- * metric='euclidean'
- * algorithm='auto'
- * leaf_size=30
- * p=None
- * n_jobs=1

Основные параметры

- * eps размер окрестности
- * min_samples кол-во точек в окрестности ядра
- * n_jobs кол-во процессоров для расчёта (-1 max)

Основные методы

* fit, fit_predict

ДОСТОИНСТВА И НЕДОСТАТКИ

Достоинства:

- * не нужно указывать кол-во кластеров
- * произвольная форма данных
- * обнаруживает выбросы

Недостатки:

- * сложность выбора eps
- * плохо работает с кластерами разной плотности

AFFINITY PROPAGATION

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. AFFINITY PROPAGATION

ИДЕЯ

Объекты обмениваются двумя видами сообщений:

- * насколько объект 1 готов быть экземпляром объекта 2
- * насколько объект 2 готов предоставить право быть объекту 1 своим экземпляром

Итог:

К объектов - представителей кластеров

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. AFFINITY PROPAGATION

РЕАЛИЗАЦИЯ В SKLEARN

Affinity Propogation

- * damping=0.5
- * max_iter=200
- * convergence_iter=15
- * copy=True
- * preference=None
- * affinity='euclidean'
- * verbose=False

Основные параметры

- * preference априорные знания о возможности быть экземпляром
- * damping скорость затухания [0.5-1]
- * convergence_iter условие останова, сколько должно пройти итераций без изменений

Основные методы

* fit, fit_predict

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. ВЫБОР АЛГОРИТМА

КАКОЙ АЛГОРИТМ ВЫБРАТЬ?

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points

* sklearn, сравнение кластеризаторов

МЕТРИКИ КАЧЕСТВА

ARI: ADJUSTED RAND INDEX

Дано:

y_pred - вектор меток кластеризации

y_true - реальные кластеры

[0, 0, 0, 1, 1, 1]

[2, 2, 2, 7, 7, 7]

 $ARI \in [-1, 1];$

1 - точное соответствие

0 - случайное разбиение кластеров

 $ARI(y_pred, y_true) = 1$

Метрике не важны названия кластеров

СИЛУЭТ

нет знания правильных кластеров.

Оценим, насколько сильно **один объект** сидит внутри своего кластера и далеко от ближайшего соседнего:

$$s = \frac{b - a}{max(a, b)}$$

а - среднее расстояние до объектов внутри кластера

b - среднее расстояние до объектов ближайшего кластера

$$s = mean(s)$$

среднее значение по всем объектам - силуэт

СРАВНЕНИЕ МЕТРИК

ПРАКТИКА

clustering.ipynb

- 1. Кластеризация позволяет находить структуру в незамеченных данных, что может послужить дополнительными признаками обучения или являться самодостаточной целью
- 2. В задаче кластеризации нет правильного решения. Метрики качества служат лишь слабым приближением для создания новых алгоритмов или нахождениям критерия останова
- 3. Разные алгоритмы кластеризации принципиально работают по-разному, для конкретного набора данных необходимо выбирать наиболее подходящий

Кластеризация

КУХАЛЬСКИЙ НИКОЛАЙ ГЕННАДЬЕВИЧ