10/55/228 JC06 Rec'd PCT/PTO 03 JUN 2001

24

SEQUENCE LISTING

<110> Yorkshire Cancer Research

<120> Replication Protein

<130> SW/P101151WO

<140> PCT/GB03/05334

<141> 2003-12-05

<160> 73

1

<170> PatentIn version 3.1

<210> 1

<211> 5

<212> PRT

<213> Homo sapiens

<400> 1

Asp Ser Ser Ser Gln 5

<210> 2

<211> 24

<212> DNA

<213> Homo sapiens

<400> 2

gttgaggagg aactctgcaa gcag

<210> 3

<211> 8

```
<212> PRT
<213> Homo sapiens
<400> 3
Val Glu Glu Leu Cys Lys Gln
1 5
<210> 4
<211> 78
<212> DNA
<213> Homo sapiens
<400> 4
gccacccaca ccacgaagag atgtgtttgc ccacgttcca gtgcaggggt ggagcacagc
                                                                     60
                                                                     78
ccggcttgtt acagatat
<210> 5
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 5
                                                                     32
aaccccctct tccgccgccc ccaatcgcaa ga
<210> 6
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 6
                                                                     32
tcttgcgatt gggggcggcg gaagaggggg tt
```

<210>	7	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> aagcag	7 acac aggccccgga tcggctgcct	30
<210>	8	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	8 ccga tccggggcct gtgtctgctt	30
<210>	9	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Primer	
<400> aagcac	9 agtc acaggagcag acctgtctc	29
.210	10	
<210>	10	
	29	
<212>	DNA	
<<17>	Artificial Sequence	

<220>		
<223> Primer		29
<400> 10 aatctgctcc tgtgactgtg ccctgtctc		23
<210> 11		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		20
<400> 11 aagttctacg acctgtctc		29
<210> 12		
<211> 29		
<212> DNA		
<213> Artificial Sequence	6	
<220>		
<223> Primer		29
<400> 12 aatcgtagaa cttgtgacag acctgtctc		29
<210> 13		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		20
<400> 13 attcttcttc tcctgtctc		29
<210> 14	page 4	

11 4

<211> 29 <212> DNA <213> Artificial Sequence	
<220>	29
<223> Primer	
<400> 14 aaagaagaag aatccttgcg acctgtctc	
<210> 15	
<211> ²⁹	
<212> DNA	
<212> DNA <213> Artificial Sequence	
<220>	29
<223> Primer	•
<400> 15 aatctgcagc agttctttcc ccctgtctc	
<210> 16	
<211> 29	
- DNA	
<212> DNA <213> Artificial Sequence	
<220>	29
<223> primer	
<400> 16 aagggaaaga actgctgcag acctgtctc	
<210> 17	, , , , , , , , , , , , , , , , , , ,
<211> 18	
DNA	
<212> UNA <213> Artificial Sequence	
Page	. 5
<220> Page	

<223>	Primer	
<400> cagtcc	17 ccac cacaggcc	18
<210>	18	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ggcttc	18 ctca gacccctctg	20
<210>	19	
<211>	25	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Primer	
<400>	19	25
acacag	acct ctccagagca cttag	23
<210>	20	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> atggtg	20 pacct tcagggagc	19
<210>	21	
<211>	25	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	21 gcga tgtcctctgg gcagg	25
<210>	22	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	22 ctca acggctccat gctgc	25
	acggeteent getge	
<210>	23	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	23 ggcg acttgagcgt tgagg	25
3 333		
<210>	24	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	

```
<400> 24
gatgccaggg gtatggggcg ccggg
<210>
       25
       25
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Primer
<400> 25
tccgagccct tccactcctc tctgg
<210>
       26
<211>
       845
<212>
       PRT
<213>
       Mouse
<400>
       26
Met Phe Asn Pro Gln Leu Gln Gln Gln Gln Gln Leu Gln Gln Gln 10 15
Gln Gln Ile Leu Gln Leu Gln Gln Leu Gln Gln Ser Pro Pro Gln 35 40 45
Ala Ser Leu Ser Ile Pro Val Ser Arg Gly Leu Pro Gln Gln Ser Ser 50 60
Pro Gln Gln Leu Leu Ser Leu Gln Gly Leu His Ser Thr Ser Leu Leu 65 70 75 80
Asn Gly Pro Met Leu Gln Arg Ala Leu Leu Gln Gln Gly 85 90 95
Leu Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Gly Ala Ser Leu 100 \hspace{1cm} 105 \hspace{1cm} 110
Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Ala Phe Asn Val Thr
115 120 125
                                        Page 8
```

25

25

Ala Pro Ser Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Met Val Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Ile Asn Pro Ser Gln Leu Asn His Ser Gly Arg Asn Thr Gln Lys Gln Ala Arg Thr Pro Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser Gln Thr Val Pro Leu Glu Asp Arg 195 200 205 Glu Asp Pro Thr Glu Gly Ser Glu Glu Ala Thr Glu Leu Gln Met Asp 210 215 220 Thr Cys Glu Asp Gln Asp Ser Leu Val Gly Pro Asp Ser Met Leu Ser Glu Pro Gln Val Pro Glu Pro Glu Pro Phe Glu Thr Leu Glu Pro Pro 255 Ala Lys Arg Cys Arg Ser Ser Glu Glu Ser Thr Glu Lys Gly Pro Thr 260 265 270 Gly Gln Pro Gln Ala Arg Val Gln Pro Gln Thr Gln Met Thr Ala Pro Lys Gln Thr Gln Thr Pro Asp Arg Leu Pro Glu Pro Pro Glu Val Gln 290 295 300 Met Leu Pro Arg Ile Gln Pro Gln Ala Leu Gln Ile Gln Thr Gln Pro Lys Leu Leu Arg Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Ala Pro Gln Gln Asp Gln Val Glu Pro Gln Val Pro Ser Gln Pro Pro Trp Gln Leu Gln Pro Arg Glu Thr Asp Pro Pro Asn Gln Ala Gln 355 360 365 Thr Gln Pro Gln Pro Leu Trp Gln Ala Gln Ser Gln Lys Gln Ala Gln 370 375 380

Thr Gln Ala His Pro Gln Val Pro Thr Gln Ala Gln Ser Gln Glu Gln 390 Thr Ser Glu Lys Thr Gln Asp Gln Pro Gln Thr Trp Pro Gln Gly Ser 405 410 415 Val Pro Pro Glu Gln Ala Ser Gly Pro Ala Cys Ala Thr Glu Pro 420 425 430 Gln Leu Ser Ser His Ala Ala Glu Ala Gly Ser Asp Pro Asp Lys Ala Leu Pro Glu Pro Val Ser Ala Gln Ser Ser Glu Asp Arg Ser Arg Glu 450 455 460 Ala Ser Ala Gly Gly Leu Asp Leu Gly Glu Cys Glu Lys Arg Ala Gly 465 470 475 480 Glu Met Leu Gly Met Trp Gly Ala Gly Ser Ser Leu Lys Val Thr Ile 485 490 495 Leu Gln Ser Ser Asn Ser Arg Ala Phe Asn Thr Thr Pro Leu Thr Ser 500 505 510 Gly Pro Arg Pro Gly Asp Ser Thr Ser Ala Thr Pro Ala Ile Ala Ser 515 520 525 Thr Pro Ser Lys Gln Ser Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala 530 540 Ser Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Ala Gln 545 550 555 560 His Gln Gln Arg Leu Gly Glu Ile Gln His Ser Ser Gln Thr Cys Leu 565 570 575 Leu Ser Leu Leu Pro Met Pro Arg Asp Ile Leu Glu Lys Glu Ala Glu 580 585 590 Asp Pro Pro Lys Arg Trp Cys Asn Thr Cys Gln Val Tyr Tyr Val 595 600 605 Gly Asp Leu Ile Gln His Arg Arg Thr Gln Glu His Lys Val Ala Lys 610 620 Gln Ser Leu Arg Pro Phe Cys Thr Ile Cys Asn Arg Tyr Phe Lys Thr 635 Page 10

Pro Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys
645 650 655 Ala Gln Glu Leu Lys Thr Leu Glu Lys Glu Thr Gly Ser Pro Asp Glu 660. 665 670 Asp His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Ser Gly Gln 675 680 685 Glu Glu Asp Glu Asp Asp Asp Glu Glu Glu Glu Glu Glu Glu Ile 690 695 700 Glu Ala Glu Glu Glu Phe Cys Lys Gln Val Lys Pro Arg Glu Thr Ser 705 710 715 720 Ser Glu Gln Gly Lys Gly Ser Glu Thr Tyr Asn Pro Asn Thr Ala Tyr 725 730 735 Gly Glu Asp Phe Leu Val Pro Val Met Gly Tyr Val Cys Gln Ile Cys 740 745 750 His Lys Phe Tyr Asp Ser Asn Ser Glu Leu Arg Leu Ser His Cys Lys 755 760 765 Ser Leu Ala His Phe Glu Asn Leu Gln Lys Tyr Lys Ala Lys Asn Pro 770 780 Ser Pro Pro Pro Thr Arg Pro Val Ser Arg Lys Cys Ala Ile Asn Ala 785 790 795 800 Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser His Gln Pro Ser Pro 805 810 815 Gln Asp Thr Val Lys Met Pro Ser Lys Val Lys Pro Gly Ser Pro Gly 820 825 830

Leu Pro Pro Pro Leu Arg Arg Ser Thr Arg Leu Lys Thr 835 840 845

<210> 27

<211> 716

<212> PRT

<213> Mouse

<400> 27 Ser Thr Ser Leu Leu Asn Gly Pro Met Leu Gln Arg Ala Leu Leu Leu 1 5 10 15 Gln Gln Leu Gln Gly Leu Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr 20 25 30 Asp Gly Ala Ser Leu Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg 35 40 45 Ala Phe Asn Val Thr Ala Pro Ser Leu Ala Ala Pro Ser Leu Thr Pro 50 60 Pro Gln Met Val Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Ile Asn Pro 85 90 95 Ser Gln Leu Asn His Ser Gly Arg Asn Thr Gln Lys Gln Ala Arg Thr Pro Ser Ser Thr Thr Pro Asn Arg Lys Thr Val Pro Leu Glu Asp Arg 115 120 125 Glu Asp Pro Thr Glu Gly Ser Glu Glu Ala Thr Glu Leu Gln Met Asp 130 135 140 Thr Cys Glu Asp Gln Asp Ser Leu Val Gly Pro Asp Ser Met Leu Ser 145 150 155 160 Glu Pro Gln Val Pro Glu Pro Glu Pro Phe Glu Thr Leu Glu Pro Pro Ala Lys Arg Cys Arg Ser Ser Glu Glu Ser Thr Glu Lys Gly Pro Thr 180 185 190 Gly Gln Pro Gln Ala Arg Val Gln Pro Gln Thr Gln Met Thr Ala Pro Gln Thr Gln Thr Pro Asp Arg Leu Pro Glu Pro Pro Glu Val Gln 210 215 220

Met Leu Pro Arg Ile Gln Pro Gln Ala Leu Gln Ile Gln Thr Gln Pro Lys Leu Leu Arg Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Ala Page 12

Pro Gln Gln Asp Gln Val Pro Thr Gln Ala Gln Ser Gln Glu Gln Thr Ser Glu Lys Thr Gln Asp Gln Pro Gln Thr Trp Pro Gln Gly Ser Val 275 280 285 Pro Pro Glu Gln Ala Ser Gly Pro Ala Cys Ala Thr Glu Pro Gln 290 295 300 Leu Ser Ser His Ala Ala Glu Ala Gly Ser Asp Pro Asp Lys Ala Leu 305 310 315 320 Pro Glu Pro Val Ser Ala Gln Ser Ser Glu Asp Arg Ser Arg Glu Ala 325 330 335 Ser Ala Gly Gly Leu Asp Leu Gly Glu Cys Glu Lys Arg Ala Gly Glu 340 345 350 Met Leu Gly Met Trp Gly Ala Gly Ser Ser Leu Lys Val Thr Ile Leu 355 360 Gln Ser Ser Asn Ser Arg Ala Phe Asn Thr Thr Pro Leu Thr Ser Gly 370 375 380 Pro Arg Pro Gly Asp Ser Thr Ser Ala Thr Pro Ala Ile Ala Ser Thr 400 Pro Ser Lys Gln Ser Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser 405 410 415 Ser Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Ala Gln His 420 425 430 Gln Gln Arg Leu Gly Glu Ile Gln His Ser Ser Gln Thr Cys Leu Leu 435 440 445 Ser Leu Leu Pro Met Pro Arg Asp Ile Leu Glu Lys Glu Ala Glu Asp 450 460 Pro Pro Pro Lys Arg Trp Cys Asn Thr Cys Gln Val Tyr Tyr Val Gly 465 470 475 480 Asp Leu Ile Gln His Arg Arg Thr Gln Glu His Lys Val Ala Lys Gln
485 490 495 Ser Leu Arg Pro Phe Cys Thr Ile Cys Asn Arg Tyr Phe Lys Thr Pro 500 505 510

Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala 515 520 525 Gln Glu Leu Lys Thr Leu Glu Lys Glu Thr Gly Ser Pro Asp Glu Asp 530 540 His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Ser Gly Gln Glu 545 550 555 560 Glu Asp Glu Asp Asp Asp Glu Glu Glu Glu Glu Glu Glu Ile Glu 565 570 575 Ala Glu Glu Phe Cys Lys Gln Val Lys Pro Arg Glu Thr Ser Ser 580 585 590 Glu Gln Gly Lys Gly Ser Glu Thr Tyr Asn Pro Asn Thr Ala Tyr Gly 595 600 605 Glu Asp Phe Leu Val Pro Val Met Gly Tyr Val Cys Gln Ile Cys His 610 620 Lys Phe Tyr Asp Ser Asn Ser Glu Leu Arg Leu Ser His Cys Lys Ser 625 635 640 Leu Ala His Phe Glu Asn Leu Gln Lys Tyr Lys Ala Lys Asn Pro Ser 645 650 655 Pro Pro Pro Thr Arg Pro Val Ser Arg Lys Cys Ala Ile Asn Ala Arg 660 665 670 660 Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser His Gln Pro Ser Pro Gln Asp Thr Val Lys Met Pro Ser Lys Val Lys Pro Gly Ser Pro Gly Leu 690 695 700 Pro Pro Pro Leu Arg Arg Ser Thr Arg Leu Lys Thr 705 710 715

<210> 28

<211> 714

<212> PRT

<213> Mouse

28 <400>

Met Phe Asn Pro Gln Leu Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln 10 15 Gln Gln Ile Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala Ser Leu Ser Ile Pro Val Ser Arg Gly Leu Pro Gln Gln Ser Ser 50 60 Pro Gln Gln Leu Leu Ser Leu Gln Gly Leu His Ser Thr Ser Leu Leu 65 70 75 80 Asn Gly Pro Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly 85 90 95 Leu Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Gly Ala Ser Leu Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Ala Phe Asn Val Thr 115 120 125 Ala Pro Ser Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Met Val Thr 130 Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Ile Asn Pro Ser Gln Leu Asn His Ser Gly Arg Asn Thr Gln Lys Gln Ala Arg Thr Pro Ser Ser Thr Thr 180 185 190 Pro Asn Arg Lys Thr Val Pro Leu Glu Asp Arg Glu Asp Pro Thr Glu 195 200 205 Gly Ser Glu Glu Ala Thr Glu Leu Gln Met Asp Thr Cys Glu Asp Gln 210 215 220 Asp Ser Leu Val Gly Pro Asp Ser Met Leu Ser Glu Pro Gln Val Pro 225 230 235 240 Glu Pro Glu Pro Phe Glu Thr Leu Glu Pro Pro Ala Lys Arg Cys Arg

Ser Ser Glu Glu Ser Thr Glu Lys Gly Pro Thr Gly Gln Pro Gln Ala 260 265 270 Arg Val Gln Pro Gln Thr Gln Met Thr Ala Pro Lys Gln Thr Gln Thr 280 Pro Asp Arg Leu Pro Glu Pro Pro Glu Val Gln Met Leu Pro Arg Ile 300 Gln Pro Gln Ala Leu Gln Ile Gln Thr Gln Pro Lys Leu Leu Arg Gln 315 Ala Gln Thr Gln Thr Ser Pro Glu His Leu Ala Pro Gln Gln Asp Gln 325 330 335 Val Pro Thr Gln Ala Gln Ser Gln Glu Gln Thr Ser Glu Lys Thr Gln 340 345 350 Asp Gln Pro Gln Thr Trp Pro Gln Gly Ser Val Pro Pro Pro Glu Gln Ala Ser Gly Pro Ala Cys Ala Thr Glu Pro Gln Leu Ser Ser His Ala 370 380 Ala Glu Ala Gly Ser Asp Pro Asp Lys Ala Leu Pro Glu Pro Val Ser 385 390 395 400 385 400 Ala Gln Ser Ser Glu Asp Arg Ser Arg Glu Ala Ser Ala Gly Gly Leu Asp Leu Gly Glu Cys Glu Lys Arg Ala Gly Glu Met Leu Gly Met Trp 420 425 430 Gly Ala Gly Ser Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asn Ser 435 440 445 Arg Ala Phe Asn Thr Thr Pro Leu Thr Ser Gly Pro Ser Pro Gly Asp Ser Thr Ser Ala Thr Pro Ala Ile Ala Ser Thr Pro Ser Lys Gln Ser Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Ser Ser Ser Gln Gln 485 490 495 Glu Phe Gln Asp His Met Ser Glu Ala Gln His Gln Gln Arg Leu Gly 500 510

 Glu
 Ile
 Gln
 His
 Ser
 Gln
 Thr
520
 Cys
 Leu
 Leu
 Leu
 Pro
 Met

 Pro
 Arg
 Asp
 Ile
 Leu
 Glu
 Lys
 Glu
 Ala
 Glu
 Asp
 Pro
 Pro
 Lys
 Arg

 Trp
 Cys
 Asn
 Thr
 Cys
 Gln
 Val
 Tyr
 Tyr
 Val
 Gly
 Asp
 Leu
 Ile
 Gln
 His
 S60

 Arg
 Arg
 Thr
 Gln
 Glu
 His
 Lys
 Val
 Ala
 Lys
 Gln
 Ser
 Leu
 Arg
 Pro
 Pro
 Arg
 Gln
 Ser
 Pro
 Pro
 Arg
 Thr
 Pro
 Arg
 Lys
 Pro
 Arg
 Glu
 Arg
 Glu</

Ser Glu Thr Tyr Asn Pro Asn Thr Ala Tyr Gly Glu Asp Phe Leu Val 675 680 685

Pro Val Met Gly Tyr Val Cys Gln Ile Cys His Lys Phe Tyr Asp Ser 690 695 700

Asn Ser Glu Leu Arg Leu Ser His Cys Lys 705 710

<210> 29

<211> 898

<212> PRT

<213> Homo sapiens

29 <400> Met Phe Ser Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln Gln Leu Gln Gln Leu Gln Gln Gln Leu Gln Gln Gln Leu Gln Gln Gln Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro 50 60 Gln Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu 65 70 75 80 Asn Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Gly 85 90 95 Leu Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala 115 120 125 Ser Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr 130 Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys
195 200 205 Ser Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys 225 230 235 240

Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu 245 250 255

Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu 260 265 270 Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr 275 280 285 Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu 290 295 300 Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala 305 310 315 320 Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu 340 345 350 His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu 400 Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr 420 425 430 Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln 500 510

Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val 515 520 525 Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala 530 540 Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala 545 550 555 560 Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val 565 570 575 Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln 580 585 590 Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Glu Phe 595 600 605 Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile 610 615 620 Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg 625 630 635 640 Asp Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys 645 650 655 Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg 660 670 Thr Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr 675 680 685 Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val 690 695 700 Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu 705 710 715 720 Lys Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala 725 730 735 Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Glu Asp Asp Glu Asp 740 745 750 Glu Glu Glu Ile Glu Val Glu Glu Glu Leu Cys Lys Gln Val Arg Ser 755 760 765 Page 20

Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro 770 780

Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile 785 790 795 800

Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu 805 810 815

Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys 820 825 830

Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys 835 840 845

Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly 850 860

Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val 865 870 875 880

Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu 885 890 895

Lys Thr

<210> 30

<211> 898

<212> PRT

<213> Homo sapiens

<400> 30

Leu Gln Gln Leu Gln Gln Gln Leu Gln Gln Gln Leu Gln Gln 20 25 30

Gln Gln Leu Leu Gln Leu Gln Leu Leu Gln Gln Ser Pro Pro Gln
35 40 45

Ala Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro 50 60 Page 21

Gln Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu 65 70 75 80 Asn Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Gly 85 90 95 Leu Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu 100 105 110 Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala 115 120 125 Ser Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr 180 185 190 Pro Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp 210 215 220 Thr Pro Glu Asp Gln Asp Leu Leu Pro Cys Pro Glu Asp Ile Ala Lys 225 230 235 240 Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu 245 250 255 Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu 260 265 270 Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr 275 280 285 Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala 305 310 315 320

Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln 325 330 335 Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu 340 345 350 His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His 370 380 Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr 420 425 430 Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His 435 Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro 465 470 475 480 Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln 500 505 510 Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val 515 520 525 Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala 530 540 Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Gly Ser Asp Ser Arg Ala 545 550 555 560 Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val

Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe 595 600 605 Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile 610 615 620 Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg 635 Asp Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys 645 650 655 Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg 660 670 Thr Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr 675 680 685 Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val 690 695 700 Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu 705 710 715 720Lys Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala 725 730 735 Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp 740 745 750 Glu Glu Glu Ile Glu Val Glu Glu Leu Cys Lys Gln Val Arg Ser 755 760 765 Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro 770 780 Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile 785 790 795 800 Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu 805 810 815 Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys 820 825 830 Page 24

Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys 845

Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly 850 860

Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val 865 870 875

Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu 885 890 895

Lys Thr

<210> 31

<211> 896

<212> PRT

<213> Homo sapiens

<400> 31

Ser Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala Pro 35 40 45

Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln Gln 50 60

Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn Gly 65 70 75 80

Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu Asp 85 90 95

Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr Met $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser Pro 115 120 125 Page 25 Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser Asp 200 Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro 210 220 Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys 225 230 235 240 Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro 245 250 255 Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln 290 295 300 Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln

Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln 390 Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln
405 410 415 Val Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr Pro Gln
420 425 430 Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His 450 455 460 Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly 485 490 495 Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser 510 Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu 515 520 525 Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly Gly 530 540 Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe Ser 545 550 555 560 Thr Val Pro Leu Thr Leu Val Pro Arg Pro Ser Asp Ser Val Ser Ser 565 Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln Asp $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$ His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln His 610 620 Met Ser Gln Ala Cys Leu Leu Pro Leu Leu Pro Val Pro Arg Asp Val 630 635 Page 27

Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr 645 650 655 Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr Gln 660 670 Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr Val Cys 675 680 685 Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys Ser 690 695 700 Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys Glu 705 710 715 720 Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Gly Ala Val Gly 725 730 735 Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu Glu 740 745 750 Glu Ile Glu Val Glu Glu Leu Cys Lys Gln Val Arg Ser Arg Asp 755 760 765 Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro Asn Thr 770 775 780 Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile Cys Arg 785 790 795 800 Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu Ser His 805 810 815 Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys Ala Ala 820 825 830 Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys Ala Ile 835 840 845 Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly Arg Pro 850 860 Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr Ala 865 870 875 880 Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys Thr

<210> 32

<211> 842

<212> PRT

<213> Homo sapiens

<400> 32

Met Phe Ser Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln 15

Leu Gln Gln Leu Gln Gln Gln Leu Gln Gln Gln Gln Gln Gln 20 25 30

Gln Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln 35 40 45

Ala Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro 50 60

Gln Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu 65 70 75 80

Asn Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Gln Gly 85 90 95

Leu Asp Gln Phe Val Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu 100 105 110

Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala 115 120 125

Ser Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr 130 135 140

Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu 145 150 155 160

Gly Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu 165 170 175

Ser Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr 180 185 190

Pro Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys 195 200 205 Page 29 Ser Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp 210 215 220 Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys 225 230 235 240 Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu 260 265 270 Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr 275 280 285 Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln 325 330 335 Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val His Thr Gln Ala Gln 370 380 Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln 385 390 395 400 Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu
420 425 430 Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn

Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg 465 470 475 480 Glu Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile 485 490 495 Leu Gln Ser Ser Asp Ser Arg Ala Phe Ser Thr Val Pro Leu Thr Pro 505 Val Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser 515 520 525 Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala 530 535 540 Ser Cys Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Pro Gln 545 555 560 His Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu 565 570 575 Leu Ser Leu Leu Pro Met Pro Arg Asp Val Leu Glu Thr Glu Asp Glu 580 585 590 Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met 595 Gly Asp Leu Ile Gln His Arg Arg Thr Gln Asp His Lys Val Ala Lys 610 620 Gln Pro Leu Arg Pro Phe Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu 660 665 670 Asp His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu Glu Glu Ile Lys Val Glu Glu Glu Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp 715 Page 31

Lys Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe 725 730 735

Leu Val Pro Val Met Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr 740 745 750

His Ser Asn Ser Gly Ala Gln Leu Ser His Cys Lys Ser Leu Gly His 755 760 765

Phe Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr 770 775 780

Thr Arg Pro Val Ser Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu 785 790 795 800

Thr Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr 805 810 815

Gln Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro 820 825 830

Leu Pro Arg Arg Ser Thr Arg Leu Lys Thr 835 840

<210> 33

<211> 837

<212> PRT

<213> Homo sapiens

<400> 33

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gl
n Gln Pro Gl
n 20 25 30

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 35 40 45

Gly Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu 50 60

Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr 65 70 75 80 Page 32

Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 145 150 155 160 Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser 165 170 175 Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu 195 200 205 200 Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro 225 235 240 Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala 260 Gìn Val Leu Pro Arg Phe Gìn Pro Arg Val Leu Gìn Val Gìn Ala Gìn Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala

Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser 340 345 350 Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys 355 360 365 Gln Val Gln Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro 370 375 380 Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp 420 425 430 Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly 450 460 Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val 465 470 475 480 Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp 485 490 495 Ser Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser 500 505 510 Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln 515 520 525 Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln 530 540 Gln Glu Phe Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro 565 570 575 Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Arg 580 585 590 Page 34

Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln 595 600 605 His Arg Arg Thr Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro 610 620 Phe Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys 645 650 655 Ser Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp 675 680 685 Asp Glu Asp Glu Glu Glu Ile Glu Val Glu Glu Glu Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr 705 710 715 720Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met
725 730 735 Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly 740 745 750 Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln 765 760 Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser 770 780 Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr 785 790 795 800 Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys Thr 835

<210> 34

<211> 818

<212> PRT

<213> Homo sapiens

<400> 34

Met Phe Ser Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln 15

Leu Gln Gln Leu Gln Gln Gln Leu Gln Gln Gln Leu Gln Gln 20 25 30

Gln Gln Leu Leu Gln Leu Gln Leu Leu Gln Gln Ser Pro Pro Gln 35 40 45

Ala Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro 50 60

Gln Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu 65 70 75 80

Asn Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Gln Gly 85 90 95

Asn Leu Arg Gly Tyr Gly Met Ala Ser Pro Gly Leu Ala Ala Pro Ser 100 105 110

Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro 115 120 125

Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro 130 135 140

Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln 145 150 155 160

Ala Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser 165 170 175

Gln Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly Ser Glu 180 185 190

Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro
195 200 205

Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu 210 220 Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser 225 230 235 240 Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro 290 295 300 Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln 305 Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln 325 330 335 Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln 340 Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln 370 380 Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro 385 390 395 400 Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln
420 425 430 Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val 435 440 445 Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala

Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala 465 470 475 480 Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val 490 Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe 515 520 525 Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile 530 540 Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys 565 570 575 Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg
580 585 590 Thr Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr 595 600 605 Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val 610 620 Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu 625 630 635 640 Lys Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala 645 650 655 Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu Glu Glu Ile Glu Val Glu Glu Glu Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile 715

Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu 725 730 735

Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys $740 \hspace{1cm} 745 \hspace{1cm} 750$

Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys 765 765

Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly 770 775 780

Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val 785 790 795 800

Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu 805 810 815

Lys Thr

<210> 35

<211> 820

<212> PRT

<213> Homo sapiens

<400> 35

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 10 15

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 20 25 30

Gly Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Asn 35 40 45

Leu Arg Gly Tyr Gly Met Ala Ser Pro Gly Leu Ala Ala Pro Ser Leu 50 60

Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln 65 70 75 80

Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met 85 90 95
Page 39

Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala 100 Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg 130 135 140 Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala 215 210 220 Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val 230 Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser 260 265 270 Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln 345

Thr Tyr Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln 360 Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Ser Met Glu Lys Thr Leu Pro Glu Pro Val Gly 420 425 430 Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser 465 470 475 480 Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala 500 505 510 Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln 515 520 525 Glu Phe Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly 530 540 Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His 580 585 590 Arg Arg Thr Gln Asp His Arg Ile Ala Lys Gln Ser Leu Arg Pro Phe

Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu 610 620His Val Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser 625 630 635 640 Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val 645 650 655 Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp 660 665 670 Glu Asp Glu Glu Glu Ile Glu Val Glu Glu Glu Leu Cys Lys Gln Val 675 680 685 Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr 690 695 700 Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly 705 710 715 720 Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Asn Asn Ser Gly Ala 725 730 735 Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys 740 745 750 Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg 755 760 765 Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser 770 780 Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser 785 790 795 800 Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr 805 810 815 Arg Leu Lys Thr 820 <210> 36

<211>

<212>

414

PRT

<400> 36

Gln Gln Leu Leu Gln Leu Gln Leu Leu Gln Gln Ser Pro Pro Gln 35 40 45

Ala Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro 50 60

Gln Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu 65 70 75 80

Asn Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Gln Gly 85 90 95

Asn Leu Arg Gly Tyr Gly Met Ala Ser Pro Gly Leu Ala Ala Pro Ser $100 \hspace{1cm} 105 \hspace{1cm} 110$

Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro 115 120 125

Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro 130 135 140

Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln 145 150 155 160

Ala Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser 165 170 175

Gln Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly Ser Glu 180 185

Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro
195 200 205

Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu 210 215 220

Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser 225 230 235 240 Page 43 Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys 245 250 255

Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro 260 265 270

Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln 275 280 285

Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro 290 295 300

Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln 305 310 315 320

Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln 325 330 335

Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln 340 345 350

Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln 355 360 365

Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln 370 375 380

Pro Gln Ala His Ser Gln Pro His Leu Pro Gln Val Leu Ser Gln Gln 385 390 395 400

Leu Arg Gly Thr Ala Leu Pro Leu Gln Val Pro Gly Pro Leu 405 410

<210> 37

<211> 75

<212> PRT

<213> Homo sapiens

<400> 37

Leu Gln Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln Leu
1 5 10 15

Gln Gln Gln Leu Gln Gln Gln Leu Leu Gln Leu Gln Gln Leu
20 25 30

Leu Gln Gln Ser Pro Pro Gln Ala Pro Leu Pro Met Ala Val Ser Arg

Gly Leu Pro Pro Gln Gln Pro Gln Gln Pro Leu Leu Asn Leu Gln Gly 50 60

Thr Asn Ser Ala Ser Leu Leu Asn Gly Ser Met 65 70 75

<210> 38

<211> 33

<212> PRT

<213> Homo sapiens

<400> 38

Gln Gln Leu Gln Gln Gln Gln Gln Leu Gln Gln Gln Leu
1 5 10 15

Gln Gln Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro 20 25 30

Pro

<210> 39

<211> 52

<212> PRT

<213> Homo sapiens

<400> 39

Leu Gl
n Gl
n Leu Gl
n Gl<

Gln Gln Leu Leu Gln Leu Gln Leu Leu Gln Gln Ser Pro Pro Gln 35 40 45

Ala Pro Leu Pro 50 <210> 40

<211> 26

<212> PRT

<213> Homo sapiens

<400> 40

Pro Pro Thr Pro Arg Arg Asp Val Phe Ala His Val Pro Val Gln Gly 10 15

Trp Ser Thr Ala Arg Leu Val Thr Asp Met 20 25

<210> 41

<211> 24

<212> PRT

<213> Homo sapiens

<400> 41

Gly Leu Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly $10 \ \ \, 15$

Leu Thr Met Pro Thr Ala Thr Leu 20

<210> 42

<211> 56

<212> PRT

<213> Homo sapiens

<400> 42

Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln 10 15

Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln 20 25 30

Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln 35 40 45

Lys Gln Val Gln Thr Gln Thr Tyr 50 , 55

<210> 43

<211> 28

<212> PRT

<213> Homo sapiens

<400> 43

Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln 1 5 10 15

Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr
20 25

<210> 44

<211> 112

<212> PRT

<213> Homo sapiens

<400> 44

Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln 10 15

Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu 20 25 30

His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu 35 40 45

Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His 50 55 60

Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu 65 70 75 80

Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro
85 90 95

Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr
100 105 110

<210> 45 <211> 2687

<212> DNA

<213> Mouse

<400> 45 catgttcaac	ccgcaactcc	agcagcagca	acagttgcag	cagcagcagc	aacagttgca	60
gcagcagctc	cagcagcagc	agctccagca	gcagcaacag	cagatactgc	agctccaaca	120
gctgctgcaa	cagtccccac	cacaggcctc	cttgtccatt	cctgtcagcc	ggggcctccc	180
ccagcagtca	tcccgcaac	agcttctgag	tctccagggc	ctccactcga	cctccctgct	240
caatggcccc	atgctgcaaa	gagctttgct	cctacagcag	ttgcaaggac	tggaccagtt	300
tgcaatgcca	ccagccacgt	atgacggtgc	cagcctcacc	atgcctacgg	caacactggg	360
taacctccgt	gctttcaatg	tgacagcccc	aagcctagca	gctcccagcc	ttacaccacc	420
ccagatggtc	accccaaatc	tgcagcagtt	ctttccccag	gctactcgac	agtctctgct	480
ggggcctcct	cctgttgggg	tcccaataaa	cccttctcag	ctcaaccact	cagggaggaa	540
cacccagaaa	caggccagaa	cccctcttc	caccaccccc	aatcgcaagg	attcttcttc	600
tcagacggtg	cctctggaag	acagggaaga	ccccacagag	gggtctgagg	aagccacgga	660
gctccagatg	gacacatgtg	aagaccaaga	ttcactagtc	ggtccagata	gcatgctgag	720
tgagccccaa	gtgcctgagc	ctgagccctt	tgagacattg	gaaccaccag	ccaagaggtg	780
caggagctca	gaggagtcca	ccgagaaagg	ccctacaggg	cagccacaag	caagggtcca	840
gcctcagacc	cagatgacag	caccaaagca	gacacagacc	ccggatcggc	tgcctgagcc	900
accagaagtc	caaatgctgc	cgcgtatcca	gccacaggca	ctgcagatcc	agacccagcc	960
aaagctgctg	aggcaggcac	agacacagac	ctctccagag	cacttagcgc	cccagcagga	1020
tcaggtagag	ccacaggtac	catcacagcc	cccatggcag	ttgcagccac	gggagacaga	1080
cccaccgaac	caagctcagg	cacagaccca	gcctcagccc	ctctggcagg	cgcagtcaca	1140
gaagcaggcc	cagacacagg	cacatccaca	ggtacccacc	caagcacagt	cacaggagca	1200
gacatcagag	aagacccagg	accagcctca	gacctggcca	caggggtcag	tacccccacc	1260
agaacaagcg	tcaggtccag	cctgtgccac	ggaaccacag	ctatcctctc	acgctgcaga	1320
agctgggagt	gacccagaca	aggccttgcc	agaaccagta	agtgcccaga	gcagtgaaga	1380
caggagccgg	gaggcgtccg	ctggtggcct	ggatttggga	gaatgtgaaa	agagagcggg	1440
agagatgctg	gggatgtggg	gggctgggag	ctccctgaag	gtcaccatcc	tgcagagtag	1500
caacagccgg	gcctttaaca	ccacacccct	cacatctgga Page	cctcgccctg 48	gggactctac	1560

ctctgccacc	cctgccattg	ccagcacacc	ctccaagcaa	agcctccagt	tcttctgcta	1620
catctgcaag	gccagcagca	gcagccagca	ggagttccag	gatcacatgt	cagaggctca	1680
gcaccaacag	cggcttgggg	aaatacaaca	ctcgagccag	acctgcctgc	tgtccctgct	1740
gcccatgcct	cgggacatcc	tggagaaaga	agcggaagat	cctccgccca	aacgctggtg	1800
caacacctgc	caggtgtact	acgtgggaga	cttgatccag	caccgtagga	cacaggagca	1860
caaggttgcc	aaacaatccc	tgaggccctt	ctgcaccata	tgcaaccgtt	acttcaagac	1920
ccctcgaaag	tttgtggagc	acgtgaagtc	ccagggacac	aaggacaagg	cccaagagct	1980
gaagacactt	gaaaaggaga	caggcagccc	agatgaggac	cacttcatca	ctgtggacgc	2040
cgtcggttgc	tttgagagtg	gtcaagaaga	ggacgaggat	gacgacgagg	aagaagaaga	2100
agaaggagag	attgaggctg	aggaggaatt	ctgcaagcag	gtgaagccga	gagaaacatc	2160
ctcagagcaa	gggaagggct	ctgagacgta	caaccccaac	acagcctatg	gtgaggattt	2220
cctggtgcca	gtgatgggct	atgtctgtca	aatctgtcac	aagttctacg	acagcaactc	2280
agaattgcgg	ctttctcact	gcaagtccct	ggcccacttt	gagaacctgc	agaaatacaa	2340
agccaagaac	ccaagccctc	ctcctacccg	gcctgtgagc	cgcaagtgtg	ccatcaacgc	2400
ccgcaacgcc	ctgactgcac	tgttcacctc	tagccaccag	cccagccccc	aggacacagt	2460
gaaaatgccc	agcaaggtga	agcctggatc	ccccggactc	cctcctcccc	ttcggcgctc	2520
aacacgcctc	aaaacctgat	agagggagct	ctggccactc	agcctgacta	aggctcagtc	2580
tgctaatgct	tcctaggtat	ctgtgtagaa	atgttcaagt	ggttggtgtt	tttactcaaa	2640
atccaataaa	gagtcagtag	tttggcaaaa	aaaaaaaaa	aaaaaaa		2687

<210> 46 <211> 2922 <212> DNA <213> Homo sapiens

<400> 46 tgggggctgc ggggccggcc catccgtggg ggcgacttga gcgttgaggg cgcgcgggga 60 120 ggcgagccac catgttcagc cagcagcagc agcagctcca gcaacagcag cagcagctcc agcagttaca gcagcagcag ctccagcagc agcaattgca gcagcagcag ttactgcagc 180 tccagcagct gctccagcag tccccaccac aggccccgtt gcccatggct gtcagccggg 240 300 ggctccccc gcagcagcca cagcagccgc ttctgaatct ccagggcacc aactcagcct 360 ccctcctcaa cggctccatg ctgcagagag ctttgctttt acagcagttg caaggactgg 420 accagtttgc aatgccacca gccacgtatg acactgccgg tctcaccatg cccacagcaa Page 49

cactgggtaa	cctccgaggc	tatggcatgg	catccccagg	cctcgcagcc	cccagcctca	480	
caccccaca	actggccact	ccaaatttgc	aacagttctt	tccccaggcc	actcgccagt	540	
ccttgctggg	acctcctcct	gttggggtcc	ccatgaaccc	ttcccagttc	aacctttcag	600	
gacggaaccc	ccagaaacag	gcccggacct	cctcctctac	cacccccaat	cgaaaggatt	660	
cttcttctca	gacaatgcct	gtggaagaca	agtcagaccc	cccagagggg	tctgaggaag	720	
ccgcagagcc	ccggatggac	acaccagaag	accaagattt	accgccctgc	ccagaggaca	780	
tcgccaagga	aaaacgcact	ccagcacctg	agcctgagcc	ttgtgaggcg	tccgagctgc	840	
cagcaaagag	attgaggagc	tcagaagagc	ccacagagaa	ggaacctcca	gggcagttac	900	
aggtgaaggc	ccagccgcag	gcccggatga	cagtaccgaa	acagacacag	acaccagacc	960	
tgctgcctga	ggccctggaa	gcccaagtgc	tgccacgatt	ccagccacgg	gtcctgcagg	1020	
tccaggccca	ggtgcagtca	cagactcagc	cgcggatacc	atccacagac	acccaggtgc	1080	
agccaaagct	gcagaagcag	gcgcaaacac	agacctctcc	agagcactta	gtgctgcaac	1140	
agaagcaggt	gcagccacag	ctgcagcagg	aggcagagcc	acagaagcag	gtgcagccac	1200	
aggtacagcc	acaggcacat	tcacagggcc	caaggcaggt	gcagctgcag	caggaggcag	1260	
agccgctgaa	gcaggtgcag	ccacaggtgc	agccccaggc	acattcacag	ccccaaggc	1320	
aggtgcagct	gcagctgcag	aagcaggtcc	agacacagac	atatccacag	gtccacacac	1380	
aggcacagcc	aagcgtccag	ccacaggagc	atcctccagc	gcaggtgtca	gtacagccac	1440	
cagagcagac	ccatgagcag	cctcacaccc	agccgcaggt	gtcgttgctg	gctccagagc	1500	
aaacaccagt	tgtggttcat	gtctgcgggc	tggagatgcc	acctgatgca	gtagaagctg	1560	
gtggaggcat	ggaaaagacc	ttgccagagc	ctgtgggcac	ccaagtcagc	atggaagaga	1620	
ttcagaatga	gtcggcctgt	ggcctagatg	tgggagaatg	tgaaaacaga	gcgagagaga	1680	
tgccaggggt	atggggcgcc	gggggctccc	tgaaggtcac	cattctgcag	agcagtgaca	1740	
gccgggcctt	tagcactgta	cccctgacac	ctgtcccccg	ccccagtgac	tccgtctcct	1800	
ccacccctgc	ggctaccagc	actccctcta	agcaggccct	ccagttcttc	tgctacatct	1860	
gcaaggccag	ctgctccagc	cagcaggagt	tccaggacca	catgtcggag	cctcagcacc	1920	
agcagcggct	aggggagatc	cagcacatga	gccaagcctg	cctcctgtcc	ctgctgcccg	1980	
tgccccggga	cgtcctggag	acagaggatg	aggagcctcc	accaaggcgc	tggtgcaaca	2040	
cctgccagct	ctactacatg	ggggacctga	tccaacaccg	caggacacag	gaccacaaga	2100	
ttgccaaaca	atccttgcga	cccttctgca	ccgtttgcaa	ccgctacttc	aaaacccctc	2160	
gcaagtttgt	ggagcacgtg	aagtcccagg	ggcataagga	caaagccaag	gagctgaagt	2220	
cgcttgagaa	agaaattgct	ggccaagatg	aggaccactt	cattacagtg	gacgctgtgg	2280	
gttgcttcga	gggtgatgaa	gaagaggaag	aggatgatga Page	ggatgaagaa 50	gagatcgagg	2340	
			. ~5~				

2400 ttgaggagga actctgcaag caggtgaggt ccagagatat atccagagag gagtggaagg gctcggagac ctacagcccc aatactgcat atggtgtgga cttcctggtg cccgtgatgg 2460 2520 gctatatctg ccgcatctgc cacaagttct atcacagcaa ctcaggggca cagctctccc 2580 actgcaagtc cctgggccac tttgagaacc tgcagaaata caaggcggcc aagaacccca gccccaccac ccgacctgtg agccgccggt gcgcaatcaa cgcccggaac gctttgacag 2640 2700 ccctqttcac ctccagcggc cgcccaccct cccagcccaa cacccaggac aaaacaccca 2760 gcaaggtgac ggctcgaccc tcccagcccc cactacctcg gcgctcaacc cgcctcaaaa cctgatagag ggacctccct gtccctggcc tgcctgggtc cagatctgct aatgcttttt 2820 2880 aggagtctgc ctggaaactt tgacatggtt catgttttta ctcaaaatcc aataaaacaa 2922

<210> 47

<211> 897

<212> PRT

<213> Homo sapiens

<400> 47

Gln Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Leu Gln Gly Leu 85 90 95

Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser 115 120 125 Page 51

Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly
145 150 155 160 Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser 165 170 175 Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 180 185 190 Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser 195 200 205 Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro 260 265 270 Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val 275 280 285 Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala 290 295 300 Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln 305 Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser

Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys 390 Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala 485 490 495 Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly 530 540 Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe 545 550 560 Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser 565 570 575 Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln $\frac{600}{600}$ Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln 615 His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp 630 635 Page 53

Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr 660 665 670 Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr Val 680 Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys 705 710 715 720 Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala Val 725 730 735 Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu 740 745 750 Glu Glu Ile Glu Val Glu Glu Leu Cys Lys Gln Val Arg Ser Arg 755 760 765 Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro Asn 770 780 Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile Cys 785 790 795 800 Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu Ser 805 810 815 His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys Ala 820 825 830 Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys Ala 835 840 845 Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys

Т	h	r

<210> 48
<211> 49
<212> PRT
<213> Homo sapiens
<400> 48
Met Phe Ser Gln Gln Gln Gln Gln Leu Gln Gln Gln
1 5 10
Leu Gln Gln Leu Gln Gln Gln Leu Gln Gln Gln Leu
20 25 30
Gln Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro
35 40 45
Ala
<210> 49
<211> 215
<212> DNA
<213> Homo sapiens

<400> 49
tgggggctgc ggggccggcc catccgtggg ggcgacttga gcgttgaggg cgcgcgggga 60
ggcgagccac catgttcagc cagcagcagc agcagctcca gcaacagcag cagcagctcc 120
agcagttaca gcagcagcag ctccagcagc agcaattgca gcagcagcag ttactgcagc 180
tccagcagct gctccagcag tccccaccac aggcc 215

<210> 50

<211> 101

<212> DNA

<213> Homo sapiens

Gln Gln 15

Gln Gln

Pro Gln

<400> cagcago	50 ctcc agcagttaca	gcagcagcag	ctccagcagc	agcaattgca	gcagcagcag	60
ttactgo	agc tccagcagct	gctccagcag	tccccaccac	a		101
<210>	51					
<211>	72					
<212>	DNA					
<213>	Homo sapiens					
<400> ggactgg	51 gacc agtttgcaat	gccaccagcc	acgtatgaca	ctgccggtct	caccatgccc	60
acagcaa	acac tg					72
<210>	52					
<211>	15					
<212>	DNA					
<213>	Homo sapiens					
<400> aggatto	52 cttc ttctc					15
<210>	53					
<211>	86					
<212>	DNA					
<213>	Homo sapiens					
	53 gtgc agccccaggc	acattcacag	ccccaaggc	aggtgcagct	gcagctgcag	60
aagcag	gtcc agacacagac	atatcc				86
<210>	54					
<211>	168					
<212>	DNA					
<213>	Homo sapiens					
<400> ccacag	54 gtac agccacaggc	acattcacag	ggcccaaggc Page		gcagcaggag	60

gcagagccgc tgaagcaggt	gcagccacag	gtgcagcccc	aggcacattc	acagccccca	120
aggcaggtgc agctgcagct	gcagaagcag	gtccagacac	agacatat		168
<210> 55					
<211> 336					
<212> DNA					
<213> Homo sapiens					
<400> 55 caggtgcagt cacagactca	accacaata	ccatccacan	acacccannt	acsaccsssa	60
ctgcagaagc aggcgcaaac					120
					180
gtgcagccac agctgcagca					240
ccacaggcac attcacaggg					300
aagcaggtgc agccacaggt			ayccccaay	gcaggcgcag	
ctgcagctgc agaagcaggt	ccayacacay	dcatat			336
<210> 56					
<211> 24					
<212> DNA					
<213> Homo sapiens					
<400> 56					24
gttgaggagg aactctgcaa	gcag				24
<210> 57					
<211> 78					
<212> DNA					
<213> Homo sapiens					
<400> 57					
gccacccaca ccacgaagag	atgtgtttgc	ccacgttcca	gtgcaggggt	ggagcacagc	60
ccggcttgtt acagatat					78
<210> 58					
<211> 863					

<212> PRT

<213> Homo sapiens

<400> 58

Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln Gln 20 25 30

Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn Gly 35 40 45

Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu Asp 50 55 60

Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr Met 65 70 75 80

Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser Pro 85 90 95

Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro Asn 100 105 110

Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro 115 120 125

Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser Gly 130 140

Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro Asn 145 150 155 160

Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser Asp 165 170 175

Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro 180 185 190

Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys 195 200 205

Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro 210 215 220

Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val 275 280 285 Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu 325 330 335 Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln 355 360 365 Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln 380 Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr Pro Gln 385 Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu 485 490 495 Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly Gly 500 505 510 Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe Ser 515 520 525 Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser Ser 530 540 Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe 545 550 555 560 Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln Asp 565 570 575 His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln His 580 585 590 Met Ser Gln Ala Leu Leu Ser Leu Leu Pro Val Pro Arg Asp Val Leu 595 600 605 Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys 610 625 Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr Gln Asp 625 635 640 His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr Val Cys Asn 645 650 655 Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys Ser Gln 660 670 Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys Glu Ile 675 680 685 Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala Val Gly Cys 690 695 700 Phe Glu Gly Asp Glu Glu Glu Glu Glu Asp Asp Glu Asp Glu Glu Glu 705 715 720 Ile Glu Val Glu Glu Leu Cys Lys Gln Val Arg Ser Arg Asp Ile 725 730 735

Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala 740 745 750

Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile Cys Arg Ile 755 760 765

Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu Ser His Cys 770 780

Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys 785 790 795 800

Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys Ala Ile Asn 805 810 815

Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro 820 825 830

Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr Ala Arg 835 840 845

Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys Thr 850 855 860

<210> 59

<211> 873

<212> PRT

<213> Homo sapiens

<400> 59

Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Leu Gln Gly Asn 85 90 95 Leu Arg Gly Tyr Gly Met Ala Ser Pro Gly Leu Ala Ala Pro Ser Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$ Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser Gln 165 170 175 Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly Ser Glu Glu 180 185 190 Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu Pro 210 215 220 210 Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser 225 230 235 240 Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala 245 250 255 Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp 260 265 270 Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro 275 280 285 Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg 290 295 300 Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala 305 310 315 320 Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val 325 330 335

Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro 420 425 430 Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Met Glu Lys Thr Leu 465 470 475 480 Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu
485 490 495 Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu
500 510 Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile Leu 515 520 525 Gln Ser Ser Asp Ser Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val 530 540 Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser 565 570 575 Cys Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Pro Gln His 580 585 590

Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu 600 Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu 610 620 Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly 625 635 640 Asp Leu Ile Gln His Arg Arg Thr Gln Asp His Lys Ile Ala Lys Gln 645 650 655 Ser Leu Arg Pro Phe Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro 660 665 670 Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala 675 680 685 Lys Glu Leu Lys Ser Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu Asp 690 695 700 His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu 705 710 715 720 Glu Glu Glu Asp Asp Glu Asp Glu Glu Glu Ile Glu Val Glu Glu 725 730 735 Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys 740 745 750 Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu 755 760 765 Val Pro Val Met Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His 770 780 Ser Asn Ser Gly Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe 785 790 795 800 Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr 805 810 815 Arg Pro Val Ser Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr 820 825 830 Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln 835 840 845 Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu 850 855 860

Pro Arg Arg Ser Thr Arg Leu Lys Thr 865 870

<210> 60

<211> 892

<212> PRT

<213> Homo sapiens

<400> 60

Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 55 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu 85 90 95

Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser 115 120 125

Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro 130 140

Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly 145 150 155 160

Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser 165 170 175 Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 180 185 190 180 190 Asn Arg Lys Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly 195 200 205 Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala 225 230 235 240 Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu 245 250 255 Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln 260 265 270 Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln 275 280 285 Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg 290 . 295 300 Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr 305 310 320 Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln 370 375 380 Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln 385 390 395 400 Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser 435 Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val His Val Cys 470 Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg 515 520 525 Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val 530 535 540 Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe Ser Thr Val Pro Leu 550 Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala 565 570 575 Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu 625 635 640 Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr 645 650 655 Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr Gln Asp His Lys Ile 660 665 670 Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys 690 695 700

Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys Glu Ile Ala Gly Gln 705 710 715 720

Asp Glu Asp His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Gly 725 730 735

Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu Glu Glu Ile Glu Val 740 745 750

Glu Glu Glu Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu 755 760 765

Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val 770 775 780

Asp Phe Leu Val Pro Val Met Gly Tyr Ile Cys Arg Ile Cys His Lys 785 790 795 800

Phe Tyr His Ser Asn Ser Gly Ala Gln Leu Ser His Cys Lys Ser Leu 805 810 815

Gly His Phe Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys Asn Pro Ser 820 825 830

Pro Thr Thr Arg Pro Val Ser Arg Arg Cys Ala Ile Asn Ala Arg Asn 835 840 845

Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro 850 855 860

Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln 865 870 875

Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys Thr 885

<210> 61

<211> 868

<212> PRT

<213> Homo sapiens

<400> 61

Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 60 Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80 Gly Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu 85 90 95 Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr 100 105 110 Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser 115 120 125 Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro 130 135 140 Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly 145 150 160 145 Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser 165 170 175 Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 180 185 190 Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser 195 200 205 Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr 210 220 Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu 225 230 235 240 Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu 245 250 255

Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala 290 295 300 Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys 385 390 Gln Val Gln Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His 420 Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly 465 470 475 Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser 515 520 525 Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala 545 550 555 560 Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln 565 570 575 Glu Phe Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly 580 585 590 Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His 625 635 640 Arg Arg Thr Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe 645 650 655 Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu 660 670 His Val Lys Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser 675 680 685 Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val 690 700 Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Glu Asp Asp 705 710 715 720 Glu Asp Glu Glu Glu Ile Glu Val Glu Glu Leu Cys Lys Gln Val 725 730 735 Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr 740 745 750 Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly 755 760 765 Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala 770 780

Gln Leu Ser His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys 785 790 795 800

Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg 805 810 815

Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser 820 825 830

Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser 835 840 845

Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr 850 855 860

Arg Leu Lys Thr 865

<210> 62

<211> 841

<212> PRT

<213> Homo sapiens

<400> 62

Gln Leu Gln Gln Gln Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu 85 90 95

Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser 115 120 125 Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro 130 135 140 Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly 145 150 155 160 Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser 165 170 175 Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 180 185 190 Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser 195 200 205 Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro 260 265 270 Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val 275 280 285 Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala 290 295 300 Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His

Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu 465 470 480 Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu 580 585 590 Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr Gln Asp His Lys Ile Ala Lys Gln 610 620 Ser Leu Arg Pro Phe Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro 625 635 640 Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala 645 650 655 Lys Glu Leu Lys Ser Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu Asp 660 665 670 His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu 675 680 685 Glu Glu Glu Asp Glu Asp Glu Glu Glu Ile Glu Val Glu Glu Glu 690 700 Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys 705 710 715 720 Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu 725 730 735 Val Pro Val Met Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His 740 745 750 Ser Asn Ser Gly Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe 755 760 765 Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr 770 775 780 Arg Pro Val Ser Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr 785 790 795 800 Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys Thr 835 840

<210> 63

<211> 785

<212> PRT

<213> Homo sapiens

<400> 63

Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Leu Gln Gln Leu Gln Gly Leu
85 90 95

Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr 100 105 110

Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser 115 120 125

Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro 130 135 140

Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly 145 150 155 160

Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser 165 170 175

Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 180 185 190

Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser 195 200 205

Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr 210 215 220

Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro 260 265 270 Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val 275 280 285 Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala 290 295 300 Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val 355 Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala 370 380 Gly Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val 385 390 395 400 Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly 420 425 430 Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe

Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln 485 490 495 Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln 500 510 His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg Asp 515 520 525 Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn 530 540 Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr 545 550 555 560 Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr Val 565 570 575 Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys 580 585 590 Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys 595 600 605 Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala Val 610 620 Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu 625 635 640 Glu Glu Ile Glu Val Glu Glu Glu Leu Cys Lys Gln Val Arg Ser Arg 645 650 655 Asp Ile Ser Arg Glu Glu Trp Lys Gly Ser Glu Thr Tyr Ser Pro Asn 660 665 670 Thr Ala Tyr Gly Val Asp Phe Leu Val Pro Val Met Gly Tyr Ile Cys 675 680 685 Arg Ile Cys His Lys Phe Tyr His Ser Asn Ser Gly Ala Gln Leu Ser 690 700 His Cys Lys Ser Leu Gly His Phe Glu Asn Leu Gln Lys Tyr Lys Ala 705 710 715 720 Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys Ala 725 730 735 Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly Arg 740 745 750

Pro Pro Ser Gln Pro Asn Thr Gln Asp Lys Thr Pro Ser Lys Val Thr 755 760 765

Ala Arg Pro Ser Gln Pro Pro Leu Pro Arg Arg Ser Thr Arg Leu Lys 770 780

Thr 785

<210> 64

<211> 889

<212> PRT

<213> Homo sapiens

<400> 64

Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Leu Gln Gly Leu 85 90 95

Asp Gln Phe Ala Met Pro Pro Ala Thr Tyr Asp Thr Ala Gly Leu Thr $100 \hspace{1cm} 105 \hspace{1cm} 110$

Met Pro Thr Ala Thr Leu Gly Asn Leu Arg Gly Tyr Gly Met Ala Ser 115 120 125

Pro Gly Leu Ala Ala Pro Ser Leu Thr Pro Pro Gln Leu Ala Thr Pro 130 140

Asn Leu Gln Gln Phe Phe Pro Gln Ala Thr Arg Gln Ser Leu Leu Gly 145 150 155 160 Pro Pro Pro Val Gly Val Pro Met Asn Pro Ser Gln Phe Asn Leu Ser 165 170 175 Gly Arg Asn Pro Gln Lys Gln Ala Arg Thr Ser Ser Ser Thr Thr Pro 180 185 190 Asn Arg Lys Asp Ser Ser Ser Gln Thr Met Pro Val Glu Asp Lys Ser 195 200 205 Asp Pro Pro Glu Gly Ser Glu Glu Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro Cys Pro Glu Asp Ile Ala Lys Glu 225 230 235 240 Lys Arg Thr Pro Ala Pro Glu Pro Glu Pro Cys Glu Ala Ser Glu Leu 245 250 255 Pro Ala Lys Arg Leu Arg Ser Ser Glu Glu Pro Thr Glu Lys Glu Pro 260 265 270 Pro Gly Gln Leu Gln Val Lys Ala Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala Gln Thr Gln Thr Ser Pro Glu His 345 Leu Val Leu Gln Gln Lys Gln Val Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys Gln Val Gln Thr Gln Thr Tyr Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro 440 Pro Ala Gln Val Ser Val Gln Pro Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Leu Ala Pro Glu Gln Thr Pro Val 465 470 480 Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala 485 490 495 Gly Gly Met Glu Lys Thr Leu Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu Met Pro Gly Val Trp Gly Ala Gly 530 540 Gly Ser Leu Lys Val Thr Ile Leu Gln Ser Ser Asp Ser Arg Ala Phe 545 550 560 Ser Thr Val Pro Leu Thr Pro Val Pro Arg Pro Ser Asp Ser Val Ser 565 570 575 Ser Thr Pro Ala Ala Thr Ser Thr Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser Cys Ser Ser Gln Gln Glu Phe Gln $595 \hspace{1.5cm} 600 \hspace{1.5cm} 605$ Asp His Met Ser Glu Pro Gln His Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu Ser Leu Leu Pro Val Pro Arg 625 630 635 Val Leu Glu Thr Glu Asp Glu Glu Pro Pro Pro Arg Arg Trp Cys Asn 645 650 655

Page 81

Thr Cys Gln Leu Tyr Tyr Met Gly Asp Leu Ile Gln His Arg Arg Thr
660 665 670 Gln Asp His Lys Ile Ala Lys Gln Ser Leu Arg Pro Phe Cys Thr Val 680 Cys Asn Arg Tyr Phe Lys Thr Pro Arg Lys Phe Val Glu His Val Lys 690 695 700 Ser Gln Gly His Lys Asp Lys Ala Lys Glu Leu Lys Ser Leu Glu Lys 705 710 715 720 Glu Ile Ala Gly Gln Asp Glu Asp His Phe Ile Thr Val Asp Ala Val 725 730 735 Gly Cys Phe Glu Gly Asp Glu Glu Glu Glu Asp Asp Glu Asp Glu 740 745 750 Glu Glu Ile Glu Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys 755 760 765 Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu 770 780 Val Pro Val Met Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His 785 790 795 800 Ser Asn Ser Gly Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe 805 810 815 Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr Arg Pro Val Ser Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln 850 855 860

Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu 865 870 875 880

Pro Arg Arg Ser Thr Arg Leu Lys Thr 885

<210> 65 <211> 873 <212> PRT

<213> Homo sapiens

<400> 65

Gln Leu Leu Gln Leu Gln Gln Leu Leu Gln Gln Ser Pro Pro Gln Ala 35 40 45

Pro Leu Pro Met Ala Val Ser Arg Gly Leu Pro Pro Gln Gln Pro Gln 50 55 60

Gln Pro Leu Leu Asn Leu Gln Gly Thr Asn Ser Ala Ser Leu Leu Asn 65 70 75 80

Gly Ser Met Leu Gln Arg Ala Leu Leu Gln Gln Leu Gln Gly Asn 85 90 95

Leu Arg Gly Tyr Gly Met Ala Ser Pro Gly Leu Ala Ala Pro Ser Leu 100 105 110

Thr Pro Pro Gln Leu Ala Thr Pro Asn Leu Gln Gln Phe Pro Gln 115 120 125

Ala Thr Arg Gln Ser Leu Leu Gly Pro Pro Pro Val Gly Val Pro Met
130 135 140

Asn Pro Ser Gln Phe Asn Leu Ser Gly Arg Asn Pro Gln Lys Gln Ala 145 150 155 160

Arg Thr Ser Ser Ser Thr Thr Pro Asn Arg Lys Asp Ser Ser Ser Gln 165 170

Thr Met Pro Val Glu Asp Lys Ser Asp Pro Pro Glu Gly Ser Glu Glu 180 185 190

Ala Ala Glu Pro Arg Met Asp Thr Pro Glu Asp Gln Asp Leu Pro Pro 195 200 205

Cys Pro Glu Asp Ile Ala Lys Glu Lys Arg Thr Pro Ala Pro Glu Pro 210 215 220 Glu Pro Cys Glu Ala Ser Glu Leu Pro Ala Lys Arg Leu Arg Ser Ser 225 230 235 240 Glu Glu Pro Thr Glu Lys Glu Pro Pro Gly Gln Leu Gln Val Lys Ala 245 250 255 Gln Pro Gln Ala Arg Met Thr Val Pro Lys Gln Thr Gln Thr Pro Asp Leu Leu Pro Glu Ala Leu Glu Ala Gln Val Leu Pro Arg Phe Gln Pro 275 280 285 Arg Val Leu Gln Val Gln Ala Gln Val Gln Ser Gln Thr Gln Pro Arg Ile Pro Ser Thr Asp Thr Gln Val Gln Pro Lys Leu Gln Lys Gln Ala 305 310 315 320 Gln Thr Gln Thr Ser Pro Glu His Leu Val Leu Gln Gln Lys Gln Val 325 330 335 Gln Pro Gln Leu Gln Gln Glu Ala Glu Pro Gln Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Gly Pro Arg Gln Val Gln Leu Gln Gln Glu Ala Glu Pro Leu Lys Gln Val Gln Pro Gln Val Gln Pro Gln Ala His Ser Gln Pro Pro Arg Gln Val Gln Leu Gln Leu Gln Lys 385 Gln Val Gln Thr Gln Thr Tyr Pro Gln Val His Thr Gln Ala Gln Pro Ser Val Gln Pro Gln Glu His Pro Pro Ala Gln Val Ser Val Gln Pro 420 Pro Glu Gln Thr His Glu Gln Pro His Thr Gln Pro Gln Val Ser Leu Ala Pro Glu Gln Thr Pro Val Val Val His Val Cys Gly Leu Glu Met Pro Pro Asp Ala Val Glu Ala Gly Gly Gly Met Glu Lys Thr Leu 465 470 475 480

Pro Glu Pro Val Gly Thr Gln Val Ser Met Glu Glu Ile Gln Asn Glu 485 490 495 Ser Ala Cys Gly Leu Asp Val Gly Glu Cys Glu Asn Arg Ala Arg Glu
500 505 510 Met Pro Gly Val Trp Gly Ala Gly Gly Ser Leu Lys Val Thr Ile Leu 515 520 525 Gln Ser Ser Asp Ser Arg Ala Phe Ser Thr Val Pro Leu Thr Pro Val 530 540 Pro Arg Pro Ser Asp Ser Val Ser Ser Thr Pro Ala Ala Thr Ser Thr 545 550 555 560 Pro Ser Lys Gln Ala Leu Gln Phe Phe Cys Tyr Ile Cys Lys Ala Ser 565 570 575 Cys Ser Ser Gln Gln Glu Phe Gln Asp His Met Ser Glu Pro Gln His 580 590 Gln Gln Arg Leu Gly Glu Ile Gln His Met Ser Gln Ala Cys Leu Leu 595 600 605 Ser Leu Leu Pro Val Pro Arg Asp Val Leu Glu Thr Glu Asp Glu Glu 610 620 Pro Pro Pro Arg Arg Trp Cys Asn Thr Cys Gln Leu Tyr Tyr Met Gly 625 635 640 Asp Leu Ile Gln His Arg Arg Thr Gln Asp His Lys Ile Ala Lys Gln 645 650 655 Ser Leu Arg Pro Phe Cys Thr Val Cys Asn Arg Tyr Phe Lys Thr Pro 660 665 670 Arg Lys Phe Val Glu His Val Lys Ser Gln Gly His Lys Asp Lys Ala 675 680 685 Lys Glu Leu Lys Ser Leu Glu Lys Glu Ile Ala Gly Gln Asp Glu Asp 690 695 700 His Phe Ile Thr Val Asp Ala Val Gly Cys Phe Glu Gly Asp Glu Glu 705 715 720 Glu Glu Glu Asp Glu Asp Glu Glu Glu Ile Glu Val Glu Glu Glu 725 730 735 Leu Cys Lys Gln Val Arg Ser Arg Asp Ile Ser Arg Glu Glu Trp Lys 740 745 750

Gly Ser Glu Thr Tyr Ser Pro Asn Thr Ala Tyr Gly Val Asp Phe Leu 755 760 765

Val Pro Val Met Gly Tyr Ile Cys Arg Ile Cys His Lys Phe Tyr His
770 780

Ser Asn Ser Gly Ala Gln Leu Ser His Cys Lys Ser Leu Gly His Phe 785 790 795 800

Glu Asn Leu Gln Lys Tyr Lys Ala Ala Lys Asn Pro Ser Pro Thr Thr 805 810 815

Arg Pro Val Ser Arg Arg Cys Ala Ile Asn Ala Arg Asn Ala Leu Thr 820 825 830

Ala Leu Phe Thr Ser Ser Gly Arg Pro Pro Ser Gln Pro Asn Thr Gln 835 840 845

Asp Lys Thr Pro Ser Lys Val Thr Ala Arg Pro Ser Gln Pro Pro Leu 850 860

Pro Arg Arg Ser Thr Arg Leu Lys Thr 865 870

<210> 66

<211> 2821

<212> DNA

<213> Homo sapiens

<400> 66 tgggggctgc ggggccggcc catccgtggg ggcgacttga gcgttgaggg cgcgcgggga 60 120 ggcgagccac catgttcagc cagcagcagc agcagctcca gcaacagcag ggccccgttg 180 cccatggctg tcagccgggg gctccccccg cagcagccac agcagccgct tctgaatctc 240 cagggcacca actcagcctc cctcctcaac ggctccatgc tgcagagagc tttgctttta 300 cagcagttgc aaggactgga ccagtttgca atgccaccag ccacgtatga cactgccggt 360 420 ctcgcagccc ccagcctcac acccccacaa ctggccactc caaatttgca acagttcttt 480 ccccaggcca ctcgccagtc cttgctggga cctcctcctg ttggggtccc catgaaccct tcccagttca acctttcagg acggaacccc cagaaacagg cccggacctc ctcctctacc 540 Page 86

acccccaatc	gaaaggattc	ttcttctcag	acaatgcctg	tggaagacaa	gtcagacccc	600
ccagaggggt	ctgaggaagc	cgcagagccc	cggatggaca	caccagaaga	ccaagattta	660
ccgccctgcc	cagaggacat	cgccaaggaa	aaacgcactc	cagcacctga	gcctgagcct	720
tgtgaggcgt	ccgagctgcc	agcaaagaga	ttgaggagct	cagaagagcc	cacagagaag	780
gaacctccag	ggcagttaca	ggtgaaggcc	cagccgcagg	cccggatgac	agtaccgaaa	840
cagacacaga	caccagacct	gctgcctgag	gccctggaag	cccaagtgct	gccacgattc	900
cagccacggg	tcctgcaggt	ccaggcccag	gtgcagtcac	agactcagcc	gcggatacca	960
tccacagaca	cccaggtgca	gccaaagctg	cagaagcagg	cgcaaacaca	gacctctcca	1020
gagcacttag	tgctgcaaca	gaagcaggtg	cagccacagc	tgcagcagga	ggcagagcca	1080
cagaagcagg	tgcagccaca	ggtacagcca	caggcacatt	cacagggccc	aaggcaggtg	1140
cagctgcagc	aggaggcaga	gccgctgaag	caggtgcagc	cacaggtgca	gccccaggca	1200
cattcacagc	ccccaaggca	ggtgcagctg	cagctgcaga	agcaggtcca	gacacagaca	1260
tatccacagg	tccacacaca	ggcacagcca	agcgtccagc	cacaggagca	tcctccagcg	1320
caggtgtcag	tacagccacc	agagcagacc	catgagcagc	ctcacaccca	gccgcaggtg	1380
tcgttgctgg	ctccagagca	aacaccagtt	gtggttcatg	tctgcgggct	ggagatgcca	1440
cctgatgcag	tagaagctgg	tggaggcatg	gaaaagacct	tgccagagcc	tgtgggcacc	1500
caagtcagca	tggaagagat	tcagaatgag	tcggcctgtg	gcctagatgt	gggagaatgt	1560
gaaaacagag	cgagagagat	gccaggggta	tggggcgccg	ggggctccct	gaaggtcacc	1620
attctgcaga	gcagtgacag	ccgggccttt	agcactgtac	ccctgacacc	tgtccccgc	1680
cccagtgact	ccgtctcctc	cacccctgcg	gctaccagca	ctccctctaa	gcaggccctc	1740
cagttcttct	gctacatctg	caaggccagc	tgctccagcc	agcaggagtt	ccaggaccac	1800
atgtcggagc	ctcagcacca	gcagcggcta	ggggagatcc	agcacatgag	ccaagcctgc	1860
ctcctgtccc	tgctgcccgt	gccccgggac	gtcctggaga	cagaggatga	ggagcctcca	1920
ccaaggcgct	ggtgcaacac	ctgccagctc	tactacatgg	gggacctgat	ccaacaccgc	1980
aggacacagg	accacaagat	tgccaaacaa	tccttgcgac	ccttctgcac	cgtttgcaac	2040
cgctacttca	aaacccctcg	caagtttgtg	gagcacgtga	agtcccaggg	gcataaggac	2100
aaagccaagg	agctgaagtc	gcttgagaaa	gaaattgctg	gccaagatga	ggaccacttc	2160
attacagtgg	acgctgtggg	ttgcttcgag	ggtgatgaag	aagaggaaga	ggatgatgag	2220
gatgaagaag	agatcgaggt	tgaggaggaa	ctctgcaagc	aggtgaggtc	cagagatata	2280
tccagagagg	agtggaaggg	ctcggagacc	tacagcccca	atactgcata	tggtgtggac	2340
ttcctggtgc	ccgtgatggg	ctatatctgc	cgcatctgcc	acaagttcta	tcacagcaac	2400
tcaggggcac	agctctccca	ctgcaagtcc	ctgggccact Page	ttgagaacct 87	gcagaaatac	2460

aaggcggcca ag	jaaccccag	ccccaccacc	cgacctgtga	gccgccggtg	cgcaatcaac	2520
gcccggaacg ct	ttgacagc	cctgttcacc	tccagcggcc	gcccaccctc	ccagcccaac	2580
acccaggaca aa	acacccag	caaggtgacg	gctcgaccct	cccagccccc	actacctcgg	2640
cgctcaaccc gc	ctcaaaac	ctgatagagg	gacctccctg	tccctggcct	gcctgggtcc	2700
agatctgcta at	gctttta	ggagtctgcc	tggaaacttt	gacatggttc	atgtttttac	2760
tcaaaatcca at	aaaacaag	gtagtttggc	tgtgcaaaaa	aaaaaaaaa	aaaaaaaaa	2820
a						2821

<211> 2850

<212> DNA

<400> 67 tgggggctgc	ggggccggcc	catccgtggg	ggcgacttga	gcgttgaggg	cgcgcgggga	60
ggcgagccac	catgttcagc	cagcagcagc	agcagctcca	gcaacagcag	cagcagctcc	120
agcagttaca	gcagcagcag	ctccagcagc	agcaattgca	gcagcagcag	ttactgcagc	180
tccagcagct	gctccagcag	tccccaccac	aggccccgtt	gcccatggct	gtcagccggg	240
ggctccccc	gcagcagcca	cagcagccgc	ttctgaatct	ccagggcacc	aactcagcct	300
ccctcctcaa	cggctccatg	ctgcagagag	ctttgctttt	acagcagttg	caaggtaacc	360
tccgaggcta	tggcatggca	tccccaggcc	tcgcagcccc	cagcctcaca	ccccacaac	420
tggccactcc	aaatttgcaa	cagttctttc	cccaggccac	tcgccagtcc	ttgctgggac	480
ctcctcctgt	tggggtcccc	atgaaccctt	cccagttcaa	cctttcagga	cggaaccccc	540
agaaacaggc	ccggacctcc	tcctctacca	cccccaatcg	aaaggattct	tcttctcaga	600
caatgcctgt	ggaagacaag	tcagaccccc	cagaggggtc	tgaggaagcc	gcagagcccc	660
ggatggacac	accagaagac	caagatttac	cgccctgccc	agaggacatc	gccaaggaaa	720
aacgcactcc	agcacctgag	cctgagcctt	gtgaggcgtc	cgagctgcca	gcaaagagat	780
tgaggagctc	agaagagccc	acagagaagg	aacctccagg	gcagttacag	gtgaaggccc	840
agccgcaggc	ccggatgaca	gtaccgaaac	agacacagac	accagacctg	ctgcctgagg	900
ccctggaagc	ccaagtgctg	ccacgattcc	agccacgggt	cctgcaggtc	caggcccagg	960
tgcagtcaca	gactcagccg	cggataccat	ccacagacac	ccaggtgcag	ccaaagctgc	1020
agaagcaggc	gcaaacacag	acctctccag	agcacttagt	gctgcaacag	aagcaggtgc	1080
agccacagct	gcagcaggag	gcagagccac		gcagccacag 88	gtacagccac	1140

aggcacattc	acagggccca	aggcaggtgc	agctgcagca	ggaggcagag	ccgctgaagc	1200
aggtgcagcc	acaggtgcag	ccccaggcac	attcacagcc	cccaaggcag	gtgcagctgc	1260
agctgcagaa	gcaggtccag	acacagacat	atccacaggt	ccacacacag	gcacagccaa	1320
gcgtccagcc	acaggagcat	cctccagcgc	aggtgtcagt	acagccacca	gagcagaccc	1380
atgagcagcc	tcacacccag	ccgcaggtgt	cgttgctggc	tccagagcaa	acaccagttg	1440
tggttcatgt	ctgcgggctg	gagatgccac	ctgatgcagt	agaagctggt	ggaggcatgg	1500
aaaagacctt	gccagagcct	gtgggcaccc	aagtcagcat	ggaagagatt	cagaatgagt	1560
cggcctgtgg	cctagatgtg	ggagaatgtg	aaaacagagc	gagagagatg	ccaggggtat	1620
ggggcgccgg	gggctccctg	aaggtcacca	ttctgcagag	cagtgacagc	cgggccttta	1680
gcactgtacc	cctgacacct	gtccccgcc	ccagtgactc	cgtctcctcc	acccctgcgg	1740
ctaccagcac	tccctctaag	caggccctcc	agttcttctg	ctacatctgc	aaggccagct	1800
gctccagcca	gcaggagttc	caggaccaca	tgtcggagcc	tcagcaccag	cagcggctag	1860
gggagatcca	gcacatgagc	caagcctgcc	tcctgtccct	gctgcccgtg	ccccgggacg	1920
tcctggagac	agaggatgag	gagcctccac	caaggcgctg	gtgcaacacc	tgccagctct	1980
actacatggg	ggacctgatc	caacaccgca	ggacacagga	ccacaagatt	gccaaacaat	2040
ccttgcgacc	cttctgcacc	gtttgcaacc	gctacttcaa	aacccctcgc	aagtttgtgg	2100
agcacgtgaa	gtcccagggg	cataaggaca	aagccaagga	gctgaagtcg	cttgagaaag	2160
aaattgctgg	ccaagatgag	gaccacttca	ttacagtgga	cgctgtgggt	tgcttcgagg	2220
gtgatgaaga	agaggaagag	gatgatgagg	atgaagaaga	gatcgaggtt	gaggaggaac	2280
tctgcaagca	ggtgaggtcc	agagatatat	ccagagagga	gtggaagggc	tcggagacct	2340
acagccccaa	tactgcatat	ggtgtggact	tcctggtgcc	cgtgatgggc	tatatctgcc	2400
gcatctgcca	caagttctat	cacagcaact	caggggcaca	gctctcccac	tgcaagtccc	2460
tgggccactt	tgagaacctg	cagaaataca	aggcggccaa	gaaccccagc	cccaccaccc	2520
gacctgtgag	ccgccggtgc	gcaatcaacg	cccggaacgc	tttgacagcc	ctgttcacct	2580
ccagcggccg	cccaccctcc	cagcccaaca	cccaggacaa	aacacccagc	aaggtgacgg	2640
ctcgaccctc	ccagccccca	ctacctcggc	gctcaacccg	cctcaaaacc	tgatagaggg	2700
acctccctgt	ccctggcctg	cctgggtcca	gatctgctaa	tgctttttag	gagtctgcct	2760
ggaaactttg	acatggttca	tgtttttact	caaaatccaa	taaaacaagg	tagtttggct	2820
gtgcaaaaaa	aaaaaaaaa	aaaaaaaaa				2850

<211> 2907

. at

<400> 68 tgggggctgc	ggggccggcc	catccgtggg	ggcgacttga	gcgttgaggg	cgcgcgggga	60
ggcgagccac	catgttcagc	cagcagcagc	agcagctcca	gcaacagcag	cagcagctcc	120
agcagttaca	gcagcagcag	ctccagcagc	agcaattgca	gcagcagcag	ttactgcagc	180
tccagcagct	gctccagcag	tcccaccac	aggccccgtt	gcccatggct	gtcagccggg	240
ggctccccc	gcagcagcca	cagcagccgc	ttctgaatct	ccagggcacc	aactcagcct	300
ccctcctcaa	cggctccatg	ctgcagagag	ctttgctttt	acagcagttg	caaggactgg	360
accagtttgc	aatgccacca	gccacgtatg	acactgccgg	tctcaccatg	cccacagcaa	420
cactgggtaa	cctccgaggc	tatggcatgg	catccccagg	cctcgcagcc	cccagcctca	480
cacccccaca	actggccact	ccaaatttgc	aacagttctt	tccccaggcc	actcgccagt	540
ccttgctggg	acctcctcct	gttggggtcc	ccatgaaccc	ttcccagttc	aacctttcag	600
gacggaaccc	ccagaaacag	gcccggacct	cctcctctac	cacccccaat	cgaaagacaa	660
tgcctgtgga	agacaagtca	gacccccag	aggggtctga	ggaagccgca	gagccccgga	720
tggacacacc	agaagaccaa	gatttaccgc	cctgcccaga	ggacatcgcc	aaggaaaaac	780
gcactccagc	acctgagcct	gagccttgtg	aggcgtccga	gctgccagca	aagagattga	840
ggagctcaga	agagcccaca	gagaaggaac	ctccagggca	gttacaggtg	aaggcccagc	900
cgcaggcccg	gatgacagta	ccgaaacaga	cacagacacc	agacctgctg	cctgaggccc	960
tggaagccca	agtgctgcca	cgattccagc	cacgggtcct	gcaggtccag	gcccaggtgc	1020
agtcacagac	tcagccgcgg	ataccatcca	cagacaccca	ggtgcagcca	aagctgcaga	1080
agcaggcgca	aacacagacc	tctccagagc	acttagtgct	gcaacagaag	caggtgcagc	1140
cacagctgca	gcaggaggca	gagccacaga	agcaggtgca	gccacaggta	cagccacagg	1200
cacattcaca	gggcccaagg	caggtgcagc	tgcagcagga	ggcagagccg	ctgaagcagg	1260
tgcagccaca	ggtgcagccc	caggcacatt	cacagccccc	aaggcaggtg	cagctgcagc	1320
tgcagaagca	ggtccagaca	cagacatatc	cacaggtcca	cacacaggca	cagccaagcg	1380
tccagccaca	ggagcatcct	ccagcgcagg	tgtcagtaca	gccaccagag	cagacccatg	1440
agcagcctca	cacccagccg	caggtgtcgt	tgctggctcc	agagcaaaca	ccagttgtgg	1500
ttcatgtctg	cgggctggag	atgccacctg	atgcagtaga	agctggtgga	ggcatggaaa	1560
agaccttgcc	agagcctgtg	ggcacccaag	tcagcatgga	agagattcag	aatgagtcgg	1620
cctgtggcct	agatgtggga	gaatgtgaaa	acagagcgag	agagatgcca	ggggtatggg	1680
gcgccggggg	ctccctgaag	gtcaccattc	tgcagagcag Page		gcctttagca	1740

ctgtacccct	gacacctgtc	ccccgcccca	gtgactccgt	ctcctccacc	cctgcggcta	1800
ccagcactcc	ctctaagcag	gccctccagt	tcttctgcta	catctgcaag	gccagctgct	1860
ccagccagca	ggagttccag	gaccacatgt	cggagcctca	gcaccagcag	cggctagggg	1920
agatccagca	catgagccaa	gcctgcctcc	tgtccctgct	gcccgtgccc	cgggacgtcc	1980
tggagacaga	ggatgaggag	cctccaccaa	ggcgctggtg	caacacctgc	cagctctact	2040
acatggggga	cctgatccaa	caccgcagga	cacaggacca	caagattgcc	aaacaatcct	2100
tgcgaccctt	ctgcaccgtt	tgcaaccgct	acttcaaaac	ccctcgcaag	tttgtggagc	2160
acgtgaagtc	ccaggggcat	aaggacaaag	ccaaggagct	gaagtcgctt	gagaaagaaa	2220
ttgctggcca	agatgaggac	cacttcatta	cagtggacgc	tgtgggttgc	ttcgagggtg	2280
atgaagaaga	ggaagaggat	gatgaggatg	aagaagagat	cgaggttgag	gaggaactct	2340
gcaagcaggt	gaggtccaga	gatatatcca	gagaggagtg	gaagggctcg	gagacctaca	2400
gccccaatac	tgcatatggt	gtggacttcc	tggtgcccgt	gatgggctat	atctgccgca	2460
tctgccacaa	gttctatcac	agcaactcag	gggcacagct	ctcccactgc	aagtccctgg	2520
gccactttga	gaacctgcag	aaatacaagg	cggccaagaa	ccccagcccc	accacccgac	2580
ctgtgagccg	ccggtgcgca	atcaacgccc	ggaacgcttt	gacagccctg	ttcacctcca	2640
gcggccgccc	accctcccag	cccaacaccc	aggacaaaac	acccagcaag	gtgacggctc	2700
gaccctccca	gcccccacta	cctcggcgct	caacccgcct	caaaacctga	tagagggacc	2760
tccctgtccc	tggcctgcct	gggtccagat	ctgctaatgc	tttttaggag	tctgcctgga	2820
aactttgaca	tggttcatgt	ttttactcaa	aatccaataa	aacaaggtag	tttggctgtg	2880
caaaaaaaa	aaaaaaaaa	aaaaaaa				2907

<211> 2836

<212> DNA

<400> 69						
tgggggctgc	ggggccggcc	catccgtggg	ggcgacttga	gcgttgaggg	cgcgcgggga	60
ggcgagccac	catgttcagc	cagcagcagc	agcagctcca	gcaacagcag	cagcagctcc	120
agcagttaca	gcagcagcag	ctccagcagc	agcaattgca	gcagcagcag	ttactgcagc	180
tccagcagct	gctccagcag	tccccaccac	aggccccgtt	gcccatggct	gtcagccggg	240
ggctccccc	gcagcagcca	cagcagccgc	ttctgaatct	ccagggcacc	aactcagcct	300
ccctcctcaa	cggctccatg	ctgcagagag	ctttgctttt Page	acagcagttg 91	caaggactgg	360

accagtttgc	aatgccacca	gccacgtatg	acactgccgg	tctcaccatg	cccacagcaa	420
cactgggtaa	cctccgaggc	tatggcatgg	catccccagg	cctcgcagcc	cccagcctca	480
cacccccaca	actggccact	ccaaatttgc	aacagttctt	tccccaggcc	actcgccagt	540
ccttgctggg	acctcctcct	gttggggtcc	ccatgaaccc	ttcccagttc	aacctttcag	600
gacggaaccc	ccagaaacag	gcccggacct	cctcctctac	cacccccaat	cgaaaggatt	660
cttcttctca	gacaatgcct	gtggaagaca	agtcagaccc	cccagagggg	tctgaggaag	720
ccgcagagcc	ccggatggac	acaccagaag	accaagattt	accgccctgc	ccagaggaca	780
tcgccaagga	aaaacgcact	ccagcacctg	agcctgagcc	ttgtgaggcg	tccgagctgc	840
cagcaaagag	attgaggagc	tcagaagagc	ccacagagaa	ggaacctcca	gggcagttac	900
aggtgaaggc	ccagccgcag	gcccggatga	cagtaccgaa	acagacacag	acaccagacc	960
tgctgcctga	ggccctggaa	gcccaagtgc	tgccacgatt	ccagccacgg	gtcctgcagg	1020
tccaggccca	ggtgcagtca	cagactcagc	cgcggatacc	atccacagac	acccaggtgc	1080
agccaaagct	gcagaagcag	gcgcaaacac	agacctctcc	agagcactta	gtgctgcaac	1140
agaagcaggt	gcagccacag	ctgcagcagg	aggcagagcc	acagaagcag	gtgcagccac	1200
aggtacagcc	acaggcacat	tcacagggcc	caaggcaggt	gcagctgcag	caggaggcag	1260
agccgctgaa	gcaggtgcag	acaggtccac	acacaggcac	agccaagcgt	ccagccacag	1320
gagcatcctc	cagcgcaggt	gtcagtacag	ccaccagagc	agacccatga	gcagcctcac	1380
acccagccgc	aggtgtcgtt	gctggctcca	gagcaaacac	cagttgtggt	tcatgtctgc	1440
gggctggaga	tgccacctga	tgcagtagaa	gctggtggag	gcatggaaaa	gaccttgcca	1500
gagcctgtgg	gcacccaagt	cagcatggaa	gagattcaga	atgagtcggc	ctgtggccta	1560
gatgtgggag	aatgtgaaaa	cagagcgaga	gagatgccag	gggtatgggg	cgccgggggc	1620
tccctgaagg	tcaccattct	gcagagcagt	gacagccggg	cctttagcac	tgtacccctg	1680
acacctgtcc	cccgccccag	tgactccgtc	tcctccaccc	ctgcggctac	cagcactccc	1740
tctaagcagg	ccctccagtt	cttctgctac	atctgeaagg	ccagctgctc	cagccagcag	1800
gagttccagg	accacatgtc	ggagcctcag	caccagcagc	ggctagggga	gatccagcac	1860
atgagccaag	cctgcctcct	gtccctgctg	cccgtgcccc	gggacgtcct	ggagacagag	1920
gatgaggagc	ctccaccaag	gcgctggtgc	aacacctgcc	agctctacta	catgggggac	1980
ctgatccaac	accgcaggac	acaggaccac	aagattgcca	aacaatcctt	gcgacccttc	2040
tgcaccgttt	gcaaccgcta	cttcaaaacc	cctcgcaagt	ttgtggagca	cgtgaagtcc	2100
caggggcata	aggacaaagc	caaggagctg	aagtcgcttg	agaaagaaat	tgctggccaa	2160
gatgaggacc	acttcattac	agtggacgct	gtgggttgct	tcgagggtga	tgaagaagag	2220
gaagaggatg	atgaggatga	agaagagatc	gaggttgagg Page		caagcaggtg	2280

aggtccagag	atatatccag	agaggagtgg	aagggctcgg	agacctacag	ccccaatact	2340
gcatatggtg	tggacttcct	ggtgcccgtg	atgggctata	tctgccgcat	ctgccacaag	2400
ttctatcaca	gcaactcagg	ggcacagctc	tcccactgca	agtccctggg	ccactttgag	2460
aacctgcaga	aatacaaggc	ggccaagaac	cccagcccca	ccacccgacc	tgtgagccgc	2520
cggtgcgcaa	tcaacgcccg	gaacgctttg	acagccctgt	tcacctccag	cggccgccca	2580
ccctcccagc	ccaacaccca	ggacaaaaca	cccagcaagg	tgacggctcg	accctcccag	2640
ccccactac	ctcggcgctc	aacccgcctc	aaaacctgat	agagggacct	ccctgtccct	2700
ggcctgcctg	ggtccagatc	tgctaatgct	ttttaggagt	ctgcctggaa	actttgacat	2760
ggttcatgtt	tttactcaaa	atccaataaa	acaaggtagt	ttggctgtgc	aaaaaaaaa	2820
aaaaaaaaa	aaaaaa					2836

<211> 2754

<212> DNA

<213> Homo sapiens

<400> 70 60 tgggggctgc ggggccggcc catccgtggg ggcgacttga gcgttgaggg cgcgcgggga 120 ggcgagccac catgttcagc cagcagcagc agcagctcca gcaacagcag cagcagctcc agcagttaca gcagcagcag ctccagcagc agcaattgca gcagcagcag ttactgcagc 180 240 tccagcagct gctccagcag tccccaccac aggccccgtt gcccatggct gtcagccggg 300 ggctccccc gcagcagcca cagcagccgc ttctgaatct ccagggcacc aactcagcct 360 ccctcctcaa cggctccatg ctgcagagag ctttgctttt acagcagttg caaggactgg 420 accagtttgc aatgccacca gccacgtatg acactgccgg tctcaccatg cccacagcaa 480 cactgggtaa cctccgaggc tatggcatgg catccccagg cctcgcagcc cccagcctca caccccaca actggccact ccaaatttgc aacagttctt tccccaggcc actcgccagt 540 ccttgctggg acctcctcct gttggggtcc ccatgaaccc ttcccagttc aacctttcag 600 gacggaaccc ccagaaacag gcccggacct cctcctctac cacccccaat cgaaaggatt 660 720 cttcttctca gacaatgcct gtggaagaca agtcagaccc cccagagggg tctgaggaag ccgcagagcc ccggatggac acaccagaag accaagattt accgccctgc ccagaggaca 780 840 tcgccaagga aaaacgcact ccagcacctg agcctgagcc ttgtgaggcg tccgagctgc 900 cagcaaagag attgaggagc tcagaagagc ccacagagaa ggaacctcca gggcagttac 960 aggtgaaggc ccagccgcag gcccggatga cagtaccgaa acagacacag acaccagacc Page 93

1020 tgctgcctga ggccctggaa gcccaagtgc tgccacgatt ccagccacgg gtcctgcagg 1080 tccaggccca ggtgcagtca cagactcagc cgcggatacc atccacagac acccaggtgc 1140 agccaaagct gcagaagcag gcgcaaacac agacctctcc agagcactta gtgctgcaac 1200 agaagcaggt gcagccacag ctgcagcagg aggcagagcc acagaagcag gtgcagccac 1260 aggtccacac acaggcacag ccaagcgtcc agccacagga gcatcctcca gcgcaggtgt 1320 cagtacagcc accagagcag acccatgagc agcctcacac ccagccgcag gtgtcgttgc 1380 tggctccaga gcaaacacca gttgtggttc atgtctgcgg gctggagatg ccacctgatg cagtagaagc tggtggaggc atggaaaaga ccttgccaga gcctgtgggc acccaagtca 1440 1500 gcatggaaga gattcagaat gagtcggcct gtggcctaga tgtgggagaa tgtgaaaaca 1560 gagcgagaga gatgccaggg gtatgggggcg ccgggggctc cctgaaggtc accattctgc 1620 agagcagtga cagccgggcc tttagcactg tacccctgac acctgtcccc cgccccagtg 1680 actccgtctc ctccacccct gcggctacca gcactccctc taagcaggcc ctccagttct 1740 tctgctacat ctgcaaggcc agctgctcca gccagcagga gttccaggac cacatgtcgg 1800 agcctcagca ccagcagcgg ctaggggaga tccagcacat gagccaagcc tgcctcctgt ccctgctgcc cgtgccccgg gacgtcctgg agacagagga tgaggagcct ccaccaaggc 1860 1920 gctggtgcaa cacctgccag ctctactaca tgggggacct gatccaacac cgcaggacac 1980 aggaccacaa gattgccaaa caatccttgc gacccttctg caccgtttgc aaccgctact 2040 tcaaaacccc tcgcaagttt gtggagcacg tgaagtccca ggggcataag gacaaagcca 2100 aggagctgaa gtcgcttgag aaagaaattg ctggccaaga tgaggaccac ttcattacag 2160 tggacgctgt gggttgcttc gagggtgatg aagaagagga agaggatgat gaggatgaag aagagatcga ggttgaggag gaactctgca agcaggtgag gtccagagat atatccagag 2220 2280 aggagtggaa gggctcggag acctacagcc ccaatactgc atatggtgtg gacttcctgg 2340 tgcccgtgat gggctatatc tgccgcatct gccacaagtt ctatcacagc aactcagggg 2400 cacagctctc ccactgcaag tccctgggcc actttgagaa cctgcagaaa tacaaggcgg ccaagaaccc cagccccacc acccgacctg tgagccgccg gtgcgcaatc aacgcccgga 2460 2520 acgetttgae agecetgtte acetecageg geegeecace eteccagece aacacecagg 2580 acaaaacacc cagcaaggtg acggctcgac cctcccagcc cccactacct cggcgctcaa cccgcctcaa aacctgatag agggacctcc ctgtccctgg cctgcctggg tccagatctg 2640 ctaatgcttt ttaggagtct gcctggaaac tttgacatgg ttcatgtttt tactcaaaat 2700 2754

<211> 2587

<212> DNA

<213> Homo sapiens

<400> 71 tgggggctgc ggggccggcc catccgtggg ggcgacttga gcgttgaggg cgcgcgggga 60 ggcgagccac catgttcagc cagcagcagc agcagctcca gcaacagcag cagcagctcc 120 180 agcagttaca gcagcagcag ctccagcagc agcaattgca gcagcagcag ttactgcagc tccagcagct gctccagcag tccccaccac aggccccgtt gcccatggct gtcagccggg 240 300 ggctccccc gcagcagcca cagcagccgc ttctgaatct ccagggcacc aactcagcct 360 ccctcctcaa cggctccatg ctgcagagag ctttgctttt acagcagttg caaggactgg accagtttgc aatgccacca gccacgtatg acactgccgg tctcaccatg cccacagcaa 420 480 cactgggtaa cctccgaggc tatggcatgg catccccagg cctcgcagcc cccagcctca 540 caccccaca actggccact ccaaatttgc aacagttctt tccccaggcc actcgccagt 600 ccttgctggg acctcctct gttggggtcc ccatgaaccc ttcccagttc aacctttcag 660 gacggaaccc ccagaaacag gcccggacct cctcctctac cacccccaat cgaaaggatt 720 cttcttctca gacaatgcct gtggaagaca agtcagaccc cccagagggg tctgaggaag 780 ccgcagagcc ccggatggac acaccagaag accaagattt accgccctgc ccagaggaca tcgccaagga aaaacgcact ccagcacctg agcctgagcc ttgtgaggcg tccgagctgc 840 900 cagcaaagag attgaggagc tcagaagagc ccacagagaa ggaacctcca gggcagttac 960 aggtgaaggc ccagccgcag gcccggatga cagtaccgaa acagacacag acaccagacc 1020 tgctgcctga ggccctggaa gcccaagtgc tgccacgatt ccagccacgg gtcctgcagg 1080 tccaggcctc cacaggtcca cacacaggca cagccaagcg tccagccaca ggagcatcct 1140 ccagcgcagg tgtcagtaca gccaccagag cagacccatg agcagcctca cacccagccg 1200 caggtgtcgt tgctggctcc agagcaaaca ccagttgtgg ttcatgtctg cgggctggag 1260 atgccacctg atgcagtaga agctggtgga ggcatggaaa agaccttgcc agagcctgtg 1320 ggcacccaag tcagcatgga agagattcag aatgagtcgg cctgtggcct agatgtggga gaatgtgaaa acagagcgag agagatgcca ggggtatggg gcgccggggg ctccctgaag 1380 1440 gtcaccattc tgcagagcag tgacagccgg gcctttagca ctgtacccct gacacctgtc 1500 ccccgcccca gtgactccgt ctcctccacc cctgcggcta ccagcactcc ctctaagcag 1560 gccctccagt tcttctgcta catctgcaag gccagctgct ccagccagca ggagttccag gaccacatgt cggagcctca gcaccagcag cggctagggg agatccagca catgagccaa 1620 gcctgcctcc tgtccctgct gcccgtgccc cgggacgtcc tggagacaga ggatgaggag 1680 Page 95

cctccaccaa ggcgctggtg caacacctgc cagctctact acatggggga cctgatccaa	1740
caccgcagga cacaggacca caagattgcc aaacaatcct tgcgaccctt ctgcaccgtt	1800
tgcaaccgct acttcaaaac ccctcgcaag tttgtggagc acgtgaagtc ccaggggcat	1860
aaggacaaag ccaaggagct gaagtcgctt gagaaagaaa ttgctggcca agatgaggac	1920
cacttcatta cagtggacgc tgtgggttgc ttcgagggtg atgaagaaga ggaagaggat	1980
gatgaggatg aagaagagat cgaggttgag gaggaactct gcaagcaggt gaggtccaga	2040
gatatatcca gagaggagtg gaagggctcg gagacctaca gccccaatac tgcatatggt	2100
gtggacttcc tggtgcccgt gatgggctat atctgccgca tctgccacaa gttctatcac	2160
agcaactcag gggcacagct ctcccactgc aagtccctgg gccactttga gaacctgcag	2220
aaatacaagg cggccaagaa ccccagcccc accacccgac ctgtgagccg ccggtgcgca	2280
atcaacgccc ggaacgcttt gacagccctg ttcacctcca gcggccgccc accctcccag	2340
cccaacaccc aggacaaaac acccagcaag gtgacggctc gaccctccca gcccccacta	2400
cctcggcgct caacccgcct caaaacctga tagagggacc tccctgtccc tggcctgcct	2460
gggtccagat ctgctaatgc tttttaggag tctgcctgga aactttgaca tggttcatgt	2520
ttttactcaa aatccaataa aacaaggtag tttggctgtg caaaaaaaaa aaaaaaaaa	2580
aaaaaaa	2587

<211> 2898

<212> DNA

<400> 72	
tgggggctgc ggggccggcc catccgtggg ggcgacttga gcgttgaggg cgcgcggg	gga 60
ggcgagccac catgttcagc cagcagcagc agcagctcca gcaacagcag cagcagc	tcc 120
agcagttaca gcagcagcag ctccagcagc agcaattgca gcagcagcag ttactgca	agc 180
tccagcagct gctccagcag tccccaccac aggccccgtt gcccatggct gtcagccg	ggg 240
ggctccccc gcagcagcca cagcagccgc ttctgaatct ccagggcacc aactcag	cct 300
ccctcctcaa cggctccatg ctgcagagag ctttgctttt acagcagttg caaggac	tgg 360
accagtttgc aatgccacca gccacgtatg acactgccgg tctcaccatg cccacage	caa 420
cactgggtaa cctccgaggc tatggcatgg catccccagg cctcgcagcc cccagcc	tca 480
caccccaca actggccact ccaaatttgc aacagttctt tccccaggcc actcgcca	agt 540
ccttgctggg acctcctcct gttggggtcc ccatgaaccc ttcccagttc aacctttc Page 96	cag 600

gacggaaccc	ccagaaacag	gcccggacct	cctcctctac	cacccccaat	cgaaaggatt	660
cttcttctca	gacaatgcct	gtggaagaca	agtcagaccc	cccagagggg	tctgaggaag	720
ccgcagagcc	ccggatggac	acaccagaag	accaagattt	accgccctgc	ccagaggaca	780
tcgccaagga	aaaacgcact	ccagcacctg	agcctgagcc	ttgtgaggcg	tccgagctgc	840
cagcaaagag	attgaggagc	tcagaagagc	ccacagagaa	ggaacctcca	gggcagttac	900
aggtgaaggc	ccagccgcag	gcccggatga	cagtaccgaa	acagacacag	acaccagacc	960
tgctgcctga	ggccctggaa	gcccaagtgc	tgccacgatt	ccagccacgg	gtcctgcagg	1020
tccaggccca	ggtgcagtca	cagactcagc	cgcggatacc	atccacagac	acccaggtgc	1080
agccaaagct	gcagaagcag	gcgcaaacac	agacctctcc	agagcactta	gtgctgcaac	1140
agaagcaggt	gcagccacag	ctgcagcagg	aggcagagcc	acagaagcag	gtgcagccac	1200
aggtacagcc	acaggcacat	tcacagggcc	caaggcaggt	gcagctgcag	caggaggcag	1260
agccgctgaa	gcaggtgcag	ccacaggtgc	agccccaggc	acattcacag	ccccaaggc	1320
aggtgcagct	gcagctgcag	aagcaggtcc	agacacagac	atatccacag	gtccacacac	1380
aggcacagcc	aagcgtccag	ccacaggagc	atcctccagc	gcaggtgtca	gtacagccac	1440
cagagcagac	ccatgagcag	cctcacaccc	agccgcaggt	gtcgttgctg	gctccagagc	1500
aaacaccagt	tgtggttcat	gtctgcgggc	tggagatgcc	acctgatgca	gtagaagctg	1560
gtggaggcat	ggaaaagacc	ttgccagagc	ctgtgggcac	ccaagtcagc	atggaagaga	1620
ttcagaatga	gtcggcctgt	ggcctagatg	tgggagaatg	tgaaaacaga	gcgagagaga	1680
tgccaggggt	atggggcgcc	gggggctccc	tgaaggtcac	cattctgcag	agcagtgaca	1740
gccgggcctt	tagcactgta	cccctgacac	ctgtcccccg	ccccagtgac	tccgtctcct	1800
ccacccctgc	ggctaccagc	actccctcta	agcaggccct	ccagttcttc	tgctacatct	1860
gcaaggccag	ctgctccagc	cagcaggagt	tccaggacca	catgtcggag	cctcagcacc	1920
agcagcggct	aggggagatc	cagcacatga	gccaagcctg	cctcctgtcc	ctgctgcccg	1980
tgccccggga	cgtcctggag	acagaggatg	aggagcctcc	accaaggcgc	tggtgcaaca	2040
cctgccagct	ctactacatg	ggggacctga	tccaacaccg	caggacacag	gaccacaaga	2100
ttgccaaaca	atccttgcga	cccttctgca	ccgtttgcaa	ccgctacttc	aaaacccctc	2160
gcaagtttgt	ggagcacgtg	aagtcccagg	ggcataagga	caaagccaag	gagctgaagt	2220
cgcttgagaa	agaaattgct	ggccaagatg	aggaccactt	cattacagtg	gacgctgtgg	2280
gttgcttcga	gggtgatgaa	gaagaggaag	aggatgatga	ggatgaagaa	gagatcgagg	2340
tgaggtccag	agatatatcc	agagaggagt	ggaagggctc	ggagacctac	agccccaata	2400
ctgcatatgg	tgtggacttc	ctggtgcccg	tgatgggcta	tatctgccgc	atctgccaca	2460
agttctatca	cagcaactca	ggggcacagc	tctcccactg Page		ggccactttg	2520

.

agaacctgca	gaaatacaag	gcggccaaga	accccagccc	caccacccga	cctgtgagcc	2580
gccggtgcgc	aatcaacgcc	cggaacgctt	tgacagccct	gttcacctcc	agcggccgcc	2640
caccctccca	gcccaacacc	caggacaaaa	cacccagcaa	ggtgacggct	cgaccctccc	2700
agcccccact	acctcggcgc	tcaacccgcc	tcaaaacctg	atagagggac	ctccctgtcc	2760
ctggcctgcc	tgggtccaga	tctgctaatg	ctttttagga	gtctgcctgg	aaactttgac	2820
atggttcatg	tttttactca	aaatccaata	aaacaaggta	gtttggctgt	gcaaaaaaaa	2880
aaaaaaaaa	aaaaaaa					2898

<211> 2883

<212> DNA

<400> 73 tgggggctgc	ggggccggcc	catccgtggg	ggcgacttga	gcgttgaggg	cgcgcgggga	60
ggcgagccac	catgttcagc	cagcagcagc	agcagctcca	gcaacagcag	cagcagctcc	120
agcagttaca	gcagcagcag	ctccagcagc	agcaattgca	gcagcagcag	ttactgcagc	180
tccagcagct	gctccagcag	tccccaccac	aggccccgtt	gcccatggct	gtcagccggg	240
ggctccccc	gcagcagcca	cagcagccgc	ttctgaatct	ccagggcacc	aactcagcct	300
ccctcctcaa	cggctccatg	ctgcagagag	ctttgctttt	acagcagttg	caaggactgg	360
accagtttgc	aatgccacca	gccacgtatg	acactgccgg	tctcaccatg	cccacagcaa	420
cactgggtaa	cctccgaggc	tatggcatgg	catccccagg	cctcgcagcc	cccagcctca	480
cacccccaca	actggccact	ccaaatttgc	aacagttctt	tccccaggcc	actcgccagt	540
ccttgctggg	acctcctcct	gttggggtcc	ccatgaaccc	ttcccagttc	aacctttcag	600
gacggaaccc	ccagaaacag	gcccggacct	cctcctctac	cacccccaat	cgaaagacaa	660
tgcctgtgga	agacaagtca	gaccccccag	aggggtctga	ggaagccgca	gagccccgga	720
tggacacacc	agaagaccaa	gatttaccgc	cctgcccaga	ggacatcgcc	aaggaaaaac	780
gcactccagc	acctgagcct	gagccttgtg	aggcgtccga	gctgccagca	aagagattga	840
ggagctcaga	agagcccaca	gagaaggaac	ctccagggca	gttacaggtg	aaggcccagc	900
cgcaggcccg	gatgacagta	ccgaaacaga	cacagacacc	agacctgctg	cctgaggccc	960
tggaagccca	agtgctgcca	cgattccagc	cacgggtcct	gcaggtccag	gcccaggtgc	1020
agtcacagac	tcagccgcgg	ataccatcca	cagacaccca	ggtgcagcca	aagctgcaga	1080
agcaggcgca	aacacagacc	tctccagagc		gcaacagaag 98	caggtgcagc	1140

1200 cacagctgca gcaggaggca gagccacaga agcaggtgca gccacaggta cagccacagg 1260 cacattcaca gggcccaagg caggtgcagc tgcagcagga ggcagagccg ctgaagcagg 1320 tgcagccaca ggtgcagccc caggcacatt cacagccccc aaggcaggtg cagctgcagc 1380 tgcagaagca ggtccagaca cagacatatc cacaggtcca cacacaggca cagccaagcg 1440 tccagccaca ggagcatcct ccagcgcagg tgtcagtaca gccaccagag cagacccatg 1500 agcagcctca cacccagccg caggtgtcgt tgctggctcc agagcaaaca ccagttgtgg 1560 ttcatgtctg cgggctggag atgccacctg atgcagtaga agctggtgga ggcatggaaa 1620 agaccttgcc agagcctgtg ggcacccaag tcagcatgga agagattcag aatgagtcgg 1680 cctgtggcct agatgtggga gaatgtgaaa acagagcgag agagatgcca ggggtatggg 1740 gcgccggggg ctccctgaag gtcaccattc tgcagagcag tgacagccgg gcctttagca 1800 ctgtacccct gacacctgtc ccccgcccca gtgactccgt ctcctccacc cctgcggcta 1860 ccagcactcc ctctaagcag gccctccagt tcttctgcta catctgcaag gccagctgct 1920 ccagccagca ggagttccag gaccacatgt cggagcctca gcaccagcag cggctagggg 1980 agatccagca catgagccaa gcctgcctcc tgtccctgct gcccgtgccc cgggacgtcc 2040 tggagacaga ggatgaggag cctccaccaa ggcgctggtg caacacctgc cagctctact 2100 acatggggga cctgatccaa caccgcagga cacaggacca caagattgcc aaacaatcct 2160 tgcgaccctt ctgcaccgtt tgcaaccgct acttcaaaac ccctcgcaag tttgtggagc 2220 acgtgaagtc ccaggggcat aaggacaaag ccaaggagct gaagtcgctt gagaaagaaa 2280 ttgctggcca agatgaggac cacttcatta cagtggacgc tgtgggttgc ttcgagggtg 2340 atgaagaaga ggaagaggat gatgaggatg aagaagagat cgaggtgagg tccagagata 2400 tatccagaga ggagtggaag ggctcggaga cctacagccc caatactgca tatggtgtgg 2460 acttcctggt gcccgtgatg ggctatatct gccgcatctg ccacaagttc tatcacagca 2520 actcaggggc acagctctcc cactgcaagt ccctgggcca ctttgagaac ctgcagaaat 2580 acaaggcggc caagaacccc agccccacca cccgacctgt gagccgccgg tgcgcaatca acgcccggaa cgctttgaca gccctgttca cctccagcgg ccgcccaccc tcccagccca 2640 2700 acacccagga caaaacaccc agcaaggtga cggctcgacc ctcccagccc ccactacctc 2760 ggcgctcaac ccgcctcaaa acctgataga gggacctccc tgtccctggc ctgcctgggt 2820 ccagatctgc taatgctttt taggagtctg cctggaaact ttgacatggt tcatgttttt 2880 2883 aaa