Контрольные и тестовые вопросы по ПР2

«Анализ данных с использованием кластерного анализа в RapidMiner» по вариантам с ответами

Вариант 1

- 1. Какой тип алгоритма является основой метода K-Means?
 - А) Иерархический
 - B) Разделяющий (partitioning)
 - С) Эволюционный
 - D) Графовый

Ответ: В

- 2. Что произойдет при выборе слишком большого значения k в алгоритме K-Means?
 - А) Увеличится точность на тестовой выборке
 - В) Кластеры станут разреженными и переобученными
 - С) Алгоритм станет иерархическим
 - D) Улучшится интерпретируемость кластеров

Ответ: В

- 3. Почему важно нормализовать данные перед кластерным анализом?
 - А) Для визуализации
 - В) Чтобы уменьшить число итераций
 - С) Чтобы все признаки вносили равный вклад в метрику расстояния
 - D) Для бинаризации переменных

Ответ: С

- 4. Какая метрика расстояния чаще всего используется в K-Means?
 - А) Манхэттенское
 - В) Евклидово
 - С) Косинусное
 - D) Джаккарда

Ответ: В

- 5. Что может служить критерием остановки в K-Means?
 - А) Превышение порога времени
 - В) Сходимость центроидов или достижение максимального числа итераций
 - С) Рост качества классификации
 - D) Размер обучающей выборки

Ответ: В

- 6. В каком случае K-Means может не сработать корректно?
 - А) При наличии категориальных признаков без кодирования
 - В) При использовании данных без выбросов
 - С) При одинаковом числе признаков и наблюдений
 - D) При применении PCA перед кластеризацией

Ответ: А

- 7. Какое преимущество дает построение графиков распределения по кластерам после кластеризации?
 - А) Снижает дисперсию модели
 - В) Обеспечивает визуальную проверку корректности кластеров
 - С) Ускоряет расчеты
 - D) Автоматически определяет количество кластеров

Ответ: В

- 8. Почему K-Means чувствителен к начальному положению центроидов? **Ответ:** Инициализация влияет на траекторию схождения алгоритма, что может привести к разным результатам кластеризации при разных запусках.
- 9. Как можно оценить качество кластеризации без учёта истинных меток? **Ответ:** С помощью метрик внутренней оценки, таких как силуэтный коэффициент, индекс Калински-Харабаза, внутрикластерная и межкластерная дисперсия.
- 10. Назовите два типа визуализаций, полезных для интерпретации кластеров в RapidMiner.

Ответ: Boxplot (для анализа распределения признаков по кластерам), Heatmap (для визуального сравнения средних значений).

Вариант 2

- 1. Какая характеристика является основной целью применения кластерного анализа?
 - А) Предсказание целевого признака
 - В) Максимизация плотности
 - С) Группировка объектов на основе схожести
 - D) Снижение размерности

Ответ: С

- 2. Какой оператор RapidMiner используется для автоматической замены пропущенных значений?
 - A) Filter Examples
 - B) Normalize
 - C) Replace Missing Values
 - D) Select Attributes

Ответ: С

- 3. Что обозначает «центроид» в алгоритме K-Means?
 - А) Центр распределения всех признаков
 - В) Среднее значение признаков в кластере
 - С) Первый элемент кластера
 - D) Медиана всех наблюдений

Ответ: В

- 4. Почему выбор метрики расстояния критичен в кластеризации?
 - А) Она определяет число кластеров
 - В) Она влияет на структуру кластеров и границы между ними
 - С) Она нормализует признаки
 - D) Она кодирует категориальные признаки

Ответ: В

- 5. Как влияет наличие выбросов на результат кластеризации методом K-Means?
 - А) Алгоритм становится устойчивее
 - В) Центроиды адаптируются
 - С) Центроиды смещаются, ухудшая разделение кластеров
 - D) Выбросы игнорируются автоматически

Ответ: С

- 6. Что является типичным недостатком K-Means?
 - А) Не умеет работать с числовыми признаками
 - В) Требует нормализации и фиксированного числа кластеров
 - С) Требует разметки данных
 - D) Ограничен только двумерными задачами

Ответ: В

- 7. Что означает плотность внутри кластера?
 - А) Количество объектов в кластере
 - В) Среднее расстояние до центроида
 - С) Степень схожести объектов между собой
 - D) Отношение размера кластера к его среднему

Ответ: С

8. Почему алгоритм K-Means не рекомендуется для кластеризации категориальных признаков?

Ответ: Он основан на вычислении расстояний, которые неприменимы к категориальным значениям без предварительного кодирования.

9. Назовите одну метрику, которая может быть визуализирована через Неаtmap для оценки качества кластеров.

Ответ: Среднее значение признака внутри каждого кластера (mean attribute value).

10. Какие типы кластеров плохо выявляет K-Means?

Ответ: Нелинейные, не сферические, разной плотности или сильно перекрывающиеся кластеры.

Вариант 3

- 1. Какая предпосылка лежит в основе работы алгоритма K-Means?
 - А) Кластеры должны быть плотными и равномерно распределёнными
 - В) Все признаки категориальные
 - С) Кластеры имеют одинаковую дисперсию и форму
 - D) Центроиды равны нулю

Ответ: С

- 2. Что такое «инерция» в контексте кластерного анализа?
 - А) Скорость схождения центроидов

- В) Количество итераций
- С) Сумма квадратов расстояний точек до ближайшего центроида
- D) Влияние выбросов на кластеризацию

Ответ: С

- 3. Что будет, если не нормализовать данные перед кластеризацией?
 - А) Улучшится интерпретируемость
 - В) Все признаки будут обрабатываться одинаково
 - С) Признаки с большим масштабом будут доминировать, искажая кластеризацию
 - D) Алгоритм остановится

Ответ: С

- 4. Что делает оператор "Clustering Performance" в RapidMiner?
 - А) Объединяет кластеры
 - В) Определяет количество кластеров
 - С) Вычисляет внутрикластерную и межкластерную дисперсии
 - D) Удаляет шум

Ответ: С

- 5. Как влияет увеличение числа кластеров на значение внутрикластерной дисперсии?
 - А) Оно увеличивается
 - В) Оно уменьшается
 - С) Оно остаётся постоянным
 - D) Оно становится недоступным

Ответ: В

- 6. Какой способ инициализации центроидов минимизирует вероятность попадания в локальные минимумы?
 - А) Случайный выбор
 - B) K-Means++
 - С) Первый элемент
 - D) Среднее значение всех данных

Ответ: В

- 7. Когда использование силуэтного коэффициента наиболее оправдано?
 - А) При линейной регрессии
 - В) Для оценки качества модели классификации

- С) Для оценки качества кластеризации без меток классов
- D) Только при использовании PCA

Ответ: С

- 8. В чём заключается основная идея K-Means++ инициализации? Ответ: Центроиды выбираются так, чтобы они были максимально удалены друг от друга, что повышает шансы на успешную кластеризацию.
- 9. Почему K-Means не работает с отсутствующими значениями? **Ответ:** Алгоритм требует численного сравнения расстояний, и пропущенные значения нарушают вычисление расстояния между точками.
- 10. Какой подход может быть использован в RapidMiner для автоматического определения числа кластеров?

Ответ: Построение графика зависимости внутрикластерной дисперсии от числа кластеров («метод локтя»).

Вариант 4

- 1. Что представляет собой кластер в результате работы алгоритма K-Means?
 - А) Набор признаков
 - В) Совокупность центроидов
 - С) Группа объектов, близких по метрике расстояния
 - D) Граф взаимосвязей

Ответ: С

- 2. Какая стратегия используется в K-Means для назначения объектов кластерам?
 - А) Случайная
 - В) Максимизация плотности
 - С) Назначение по минимальному расстоянию до центроида
 - D) Принудительное деление на равные группы

Ответ: С

- 3. Что такое межкластерная дисперсия?
 - А) Вариация внутри одного кластера
 - В) Среднее расстояние между объектами одного кластера

- С) Расстояние между центроидами кластеров
- D) Объём выборки

Ответ: С

- 4. Какой тип данных нужно преобразовать перед применением K-Means?
 - А) Признаки с отсутствующими значениями
 - В) Нормализованные числовые данные
 - С) Категориальные признаки
 - D) Класс метки

Ответ: С

- 5. Почему важно учитывать дисбаланс в данных при кластеризации?
 - А) Он ускоряет расчёты
 - В) Он увеличивает плотность кластеров
 - С) Он может привести к формированию односторонних кластеров
 - D) Он всегда автоматически устраняется

Ответ: С

- 6. Как визуализировать результат кластеризации в RapidMiner?
 - A) С помощью Apply Model
 - В) Построить диаграмму рассеяния с цветом по кластеру
 - C) **Yepe3** Cross Validation
 - D) C помощью таблицы корреляций

Ответ: В

- 7. Какой недостаток у K-Means при наличии кластеров разной плотности?
 - А) Центроиды смещаются в сторону малых кластеров
 - В) Алгоритм работает быстрее
 - С) Центроиды не обновляются
 - D) Он становится чувствительным к нормализации

Ответ: А

8. Что происходит, если задать k больше, чем количество уникальных объектов?

Ответ: Некоторые кластеры останутся пустыми, так как не смогут быть заполнены уникальными точками.

9. Назовите два критерия, по которым можно сравнивать альтернативные результаты кластеризации.

Ответ: Внутрикластерная дисперсия (inertia), силуэтный коэффициент (silhouette score).

10. Как можно оценить устойчивость кластеризации?

Ответ: Повторный запуск с разной инициализацией центроидов, сравнение результатов по стабильности кластерных распределений.