Nonequilibrium quantum criticality of interacting Dirac fermions

Yin-Kai Yu (余荫铠)

yuyk6@mail2.sysu.edu.cn

yuyk6@mail2.sysu

www.yykspace.com

School of physics, Sun Yat-Sen University, Guangzhou 510275, China

第七届全国统计物理与复杂系统学术会议报告 2023 年 7 月 28 日

Collaborators

Zhi Zeng (曾植) SYSU

Zi-Xiang Li (李自翔) IOP, CAS

Shuai Yin (阴帅) SYSU

Contents

- Background
- 2 Model and protoco
- 3 Imaginary-time relaxation dynamics with the AFM ordered initial state
- 4 Imaginary-time relaxation dynamics with the disordered initial state
- 5 Discussion and conclusion

Dirac fermion

Dirac fermions, while being fundamentally significant in relativistic quantum field theories, are also prevalent as low-energy excitation quasi-particles in a diverse range of condensed-matter systems, including graphene, d-wave superconductors, Weyl/Dirac semimetals, and the surface of topological insulators.¹.

¹Castro Neto, Guinea, Peres, Novoselov, and Geim, RMP, (2009).

Interacting Dirac fermions

- The interactions between fermions cause a phase transition from Dirac semimetal to insulator.
- It's described by the Gross-Neveu-Yukawa field theory².
- Spontaneous symmetry breakings: \mathbb{Z}_2 , O(2), SU(2).
- Due to the gapless fermionic fluctuations, universality classes:
 Wilson-Fisher ⇒ chiral Ising, chiral XY and chiral Heisenberg

²Gross and Neveu, PRD, (1974) Wilson and Fisher, PRL, (1972) Haldane, PRL, (1988).

Interacting Dirac fermions

- The interactions between fermions cause a phase transition from Dirac semimetal to insulator.
- It's described by the Gross-Neveu-Yukawa field theory².
- Spontaneous symmetry breakings: \mathbb{Z}_2 , O(2), SU(2).
- Due to the gapless fermionic fluctuations, universality classes:
 Wilson-Fisher ⇒ chiral Ising, chiral XY and chiral Heisenberg.

²Gross and Neveu, PRD, (1974) Wilson and Fisher, PRL, (1972) Haldane, PRL, (1988).

Nonequilibrium dynamics

For the critical phenomena, nonequilibrium dynamics is

- fundamental: critical slowing down near the critical points.
 - At the critical point, it takes an infinitely long time for the system to reach equilibrium. Therefore, what is actually observed as critical behavior is dynamic critical behavior.
- useful: imaginary-time evolution recently finds its application in quantum computers.³
 - Operating a quantum computer always involves non-equilibrium processes.

³Motta, Sun, Tan, ORourke, Ye, Minnich, Brandao, and Chan, Nat. Phys., (2020) Nishi, Kosugi, and Matsushita, npj Quantum Inf., (2021).

Nonequilibrium dynamics

For the critical phenomena, nonequilibrium dynamics is

- fundamental: critical slowing down near the critical points.
 - At the critical point, it takes an infinitely long time for the system to reach equilibrium. Therefore, what is actually observed as critical behavior is dynamic critical behavior.
- useful: imaginary-time evolution recently finds its application in quantum computers.³
 - Operating a quantum computer always involves non-equilibrium processes.

³Motta, Sun, Tan, ORourke, Ye, Minnich, Brandao, and Chan, Nat. Phys., (2020) Nishi, Kosugi, and Matsushita, npj Quantum Inf., (2021).

Relaxation

Relaxation is a most common approach to studying nonequilibrium dynamics.

- Prepare a uncorrelated initial state.
- Quench it to the critical point.
- Explore the time evolution.

Yin-Kai Yu (余荫铠)

Relaxation in classical systems at the critical point

Relaxation in classical systems — real-time evolution It is worth noting, short time critical dynamics⁴:

- **Critical initial slip** behavior memory effects.
- Critical initial slip exponents θ .

⁴ Janssen, Schaub, and Schmittmann, Z. Phys. B, (1989) Li, Schülke, and Zheng, PRL, (1995) Zheng, Int. J. Mod. Phys. B, (1998).

Relaxation in classical systems at the critical point

Relaxation in classical systems — real-time evolution It is worth noting, **short time critical dynamics**⁴:

- Critical initial slip behavior memory effects.
- Critical initial slip exponents θ .

⁴ Janssen, Schaub, and Schmittmann, Z. Phys. B, (1989) Li, Schülke, and Zheng, PRL, (1995) Zheng, Int. J. Mod. Phys. B, (1998).

Relaxation in quantum systems at the critical point

Relaxation in quantum systems — imaginary-time evolution

- amenability to large scale quantum Monte Carlo simulations
- is used to search for ground state in quantum computers⁵
- short imaginary-time dynamics at quanmtum critical point

⁵Motta, Sun, Tan, ORourke, Ye, Minnich, Brandao, and Chan, Nat. Phys., (2020)

⁶Yin, Mai, and Zhong, PRL, (2014)

Relaxation in quantum systems at the critical point

Relaxation in quantum systems — imaginary-time evolution

- amenability to large scale quantum Monte Carlo simulations
- is used to search for ground state in quantum computers⁵
- short imaginary-time dynamics at quanmtum critical point⁶

⁵Motta, Sun, Tan, ORourke, Ye, Minnich, Brandao, and Chan, Nat. Phys., (2020).

⁶Yin, Mai, and Zhong, PRL, (2014).

Our motivation

Current status in this field:

- Quantum phase transitions in Dirac systems have attracted extensive attentions.
- The nonequilibrium dynamics has rarely been studied in fermionic systems.

Questions

- What is the nonequilibrium dynamic behavior of interacting Dirac fermions near the critical point?
- How to determine the critical point and critical exponents of the Gross-Neveu-Yukawa universality classes using dynamical method
- How do gapless fermionic fluctuations affect short time scaling?

Our motivation

Current status in this field:

- Quantum phase transitions in Dirac systems have attracted extensive attentions.
- The nonequilibrium dynamics has rarely been studied in fermionic systems.

Questions:

- What is the nonequilibrium dynamic behavior of interacting Dirac fermions near the critical point?
- How to determine the critical point and critical exponents of the Gross-Neveu-Yukawa universality classes using dynamical methods?
- How do gapless fermionic fluctuations affect short time scaling?

Contents

- Background
- 2 Model and protocol
- 3 Imaginary-time relaxation dynamics with the AFM ordered initial state
- 4 Imaginary-time relaxation dynamics with the disordered initial state
- 5 Discussion and conclusion

Model

2D spin- $\frac{1}{2}$ Hubbard model on a half-filled honeycomb lattice⁷

$$H = -t \sum_{\langle ij \rangle, \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right).$$

⁷Boyack, Yerzhakov, and Maciejko, Eur. Phys. J. Spec. Top, (2021).

Model

Previous results in equilibrium research

model	method	U_c/t	ν	β
honeycomb	QMC ⁸	3.85(2)	1.02(1)	0.76(2)
honeycomb	QMC ⁹	3.77(4)	0.84(4)	0.71(8)
Gross-Neveu	$4-\epsilon~(1{ m st~order})^{10}$	-	0.851	0.804
Gross-Neveu	$4 - \epsilon \; (2nd \; order)^{10}$	-	1.01	0.995
Gross-Neveu	FRG ¹¹	-	1.31	1.31

Cannot reach a consensus within errorbar: U_c , ν .

Yin-Kai Yu (余荫铠) 2023 年 7 月 28 日

11 / 23

⁸Sorella, Otsuka, and Yunoki, PRX, (2016).

⁹Assaad, Parisen Toldin, Hohenadler, and Herbut, PRL, (2015).

¹⁰Rosenstein, Hoi-Lai Yu, and Kovner, Phys. Lett. B, (1993).

¹¹ Janssen and Herbut, PRL, (2014).

Protocol

Explore the imaginary-time relaxation near the critical point by determinant quantum Monte $Carlo^{12}$.

 $^{^{12}\}mbox{Assaad}$, Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, (2002).

Contents

- Background
- 2 Model and protoco
- 3 Imaginary-time relaxation dynamics with the AFM ordered initial state
- 4 Imaginary-time relaxation dynamics with the disordered initial state
- 5 Discussion and conclusion

Yin-Kai Yu (余荫铠) 2023 年 7 月 28 日

12 / 23

AFM order parameter m

AFM structure factor

$$S(\mathbf{q}) = \frac{1}{L^2} \sum_{i,j} e^{i\mathbf{q}\cdot(\mathbf{r}_i - \mathbf{r}_j)} \langle m_i^{(z)} m_j^{(z)} \rangle,$$
 (2)

where staggered magnetization $m_i^{(z)}$ is $m_i^{(z)} = \vec{c}_{i,A}^\dagger \sigma^z \vec{c}_{i,A} - \vec{c}_{i,B}^\dagger \sigma^z \vec{c}_{i,B}$. A and B represent different sublattices, $\vec{c} = (c_\uparrow, c_\downarrow)$.

AFM order parameter is

$$m^2 = S\left(\mathbf{0}\right),\,$$

where $S(\mathbf{0})$ is the AFM structure factor at zero momentum.

13 / 23

AFM order parameter \overline{m}

AFM structure factor

$$S(\mathbf{q}) = \frac{1}{L^2} \sum_{i,j} e^{i\mathbf{q}\cdot(\mathbf{r}_i - \mathbf{r}_j)} \langle m_i^{(z)} m_j^{(z)} \rangle, \tag{2}$$

where staggered magnetization $m_i^{(z)}$ is $m_i^{(z)} = \vec{c}_{i,A}^{\dagger} \sigma^z \vec{c}_{i,A} - \vec{c}_{i,B}^{\dagger} \sigma^z \vec{c}_{i,B}$. A and B represent different sublattices, $\vec{c} = (c_1, c_1)$.

AFM order parameter is

$$m^2 = S\left(\mathbf{0}\right),\,$$

where $S(\mathbf{0})$ is the AFM structure factor at zero momentum.

2023 年 7 月 28 日 13 / 23

Determine the QCP

Dimensionless correlation ratio

$$R = S(\mathbf{0}) / S(\Delta \mathbf{q}), \qquad (4)$$

where $\Delta oldsymbol{q} = \left(\frac{1}{L} oldsymbol{b}_1 + \frac{1}{L} oldsymbol{b}_2 \right)$ is minimum lattice momentum.

Saturated AFM initial state , near the equilibrium QCP universal scaling form

$$R\left(g,\tau,L\right) = f_R\left(gL^{1/\nu},\tau L^{-z}\right),\,$$

where $g = \left(U - U_c \right) / t$, z = 1.

Determine the QCP

Dimensionless correlation ratio

$$R = S(\mathbf{0}) / S(\Delta \mathbf{q}), \qquad (4)$$

where $\Delta q = (\frac{1}{L}b_1 + \frac{1}{L}b_2)$ is minimum lattice momentum.

Saturated AFM initial state, near the equilibrium QCP universal scaling form

$$R(g, \tau, L) = f_R\left(gL^{1/\nu}, \tau L^{-z}\right),$$

where $q = (U - U_c)/t$, z = 1.

Estimation of quantum critical point $\,U_c\,$

$$R(g,\tau,L) = f_R\left(gL^{1/\nu},\tau L^{-z}\right)$$

Fixed τL^{-z} , curves intersect at $g=U-U_c=0$.

$$\Rightarrow$$
 QCP: $U_c = 3.91 \pm 0.03$ $(t = 1)$.

Fitting for ν

Fixing
$$\tau L^{-z}=0.3$$
, $R(g)=f_R\left(gL^{1/\nu}\right)$, $\Rightarrow \ \nu=1.17\pm0.07$.

Fitting for β/ν

Saturated AFM initialized, $g=0\,\,\mathrm{set},$

$$m^2 = \tau^{-2\beta/\nu z} f_{m^2} \left(\tau L^{-z} \right),$$

$$\Rightarrow \beta/\nu = 0.80 \pm 0.03.$$

Limit
$$\tau L^{-z} \to 0$$
, $m^2 \sim \tau^{-2\beta/\nu z} + \tau^{-2\beta/\nu z} \mathcal{O}(\tau L^{-z})$.

Contents

- Background
- 2 Model and protoco
- Imaginary-time relaxation dynamics with the AFM ordered initial state
- 4 Imaginary-time relaxation dynamics with the disordered initial state
- 5 Discussion and conclusion

Yin-Kai Yu (余荫铠) 2023 年 7 月 28 日

17 / 23

Examination for β/ν

Initial DSM at g=0. Here we take $\beta/\nu=0.80$,

$$m^2 = L^{-d} \tau^{d/z - 2\beta/\nu z} f_{m^2} \left(\tau L^{-z}\right).$$

Compare with zero-order approximation $m^2 \sim au^{d/z-2\beta/\nu z}$

Fitting for θ

For the disordered initial state with random spins up or down, the autocorrelation function is defined as

$$A = \frac{1}{L^2} \overline{\sum_{i}} \langle m_i^{(z)} (0) m_i^{(z)} (\tau) \rangle.$$
 (7)

where overline represents the average over various random initial states, and braket represents the expectation value in imaginary-time quantum mechanics.

$$A = L^{\theta z - d} f_A \left(\tau^{-1} L^z \right).$$

2023 年 7 月 28 日 19 / 23

Fitting for θ

For the disordered initial state with random spins up or down, the **autocorrelation function** is defined as

$$A = \frac{1}{L^2} \overline{\sum_{i} \langle m_i^{(z)}(0) m_i^{(z)}(\tau) \rangle}.$$
 (7)

where overline represents the average over various random initial states, and braket represents the expectation value in imaginary-time quantum mechanics.

Universal scaling at the critical point g = 0:

$$A = L^{\theta z - d} f_A \left(\tau^{-1} L^z \right).$$

Fitting for θ

Random initial state at g = 0,

$$A = L^{\theta z - d} f_A \left(\tau^{-1} L^z \right).$$

$$\Rightarrow \theta = -0.84 \pm 0.04.$$

Negative θ

Critical initial slip exponent θ is negative.

 Yin-Kai Yu (余荫铠)
 2023 年 7 月 28 日
 21 / 23

Contents

- Background
- 2 Model and protoco
- Imaginary-time relaxation dynamics with the AFM ordered initial state
- 4 Imaginary-time relaxation dynamics with the disordered initial state
- 5 Discussion and conclusion

Yin-Kai Yu (余荫铠) 2023 年 7 月 28 日

21 / 23

Discussion

model	method	U_c/t	eta/ u	$oldsymbol{ heta}$
honeycomb	QMC (present)	3.91(3)	0.80(3)	-0.84(4)
honeycomb	QMC^{13}	3.85(2)	0.75(2)	-
honeycomb	QMC^{14}	3.77(4)	0.8(1)	-
Gross-Neveu	$4-\epsilon~(1{\rm st~order})^{15}$	-	0.945	-
Gross-Neveu	$4-\epsilon~({ m 2nd~order})^{15}$	-	0.985	-
Gross-Neveu	FRG ¹⁶	-	1.008	-

Controversial ν : present 1.17(7), Sorella 1.02(1) and Assaad0.84(4).

Yin-Kai Yu (余荫铠) 2023 年 7 月 28 日

22 / 23

¹³Sorella, Otsuka, and Yunoki, PRX, (2016).

¹⁴Assaad, Parisen Toldin, Hohenadler, and Herbut, PRL, (2015).

 $^{^{15}}$ Rosenstein, Hoi-Lai Yu, and Kovner, Phys. Lett. B, (1993).

¹⁶ Janssen and Herbut, PRL, (2014).

- For the first time, we demonstrate the nonequilibrium dynamics of interacting Dirac fermions.
- We develop a dynamical methods to determine the critical point and critical exponents of the chiral Heisenberg universality class.
- Specifically, we obtain $U_c=3.91(3)$ and $\nu=1.17(7)>1$ using the dynamic method.

• We find a negative critical initial slip exponent $\theta = -0.84(4)$.

Thanks for your attention!

- For the first time, we demonstrate the nonequilibrium dynamics of interacting Dirac fermions.
- We develop a dynamical methods to determine the critical point and critical exponents of the chiral Heisenberg universality class.
- Specifically, we obtain $U_c=3.91(3)$ and $\nu=1.17(7)>1$ using the dynamic method.
- We find a negative critical initial slip exponent $\theta = -0.84(4)$.

Thanks for your attention!

- For the first time, we demonstrate the nonequilibrium dynamics of interacting Dirac fermions.
- We develop a dynamical methods to determine the critical point and critical exponents of the chiral Heisenberg universality class.
- Specifically, we obtain $U_c=3.91(3)$ and $\nu=1.17(7)>1$ using the dynamic method.
- We find a negative critical initial slip exponent $\theta = -0.84(4)$.

Thanks for your attention!

- For the first time, we demonstrate the nonequilibrium dynamics of interacting Dirac fermions.
- We develop a dynamical methods to determine the critical point and critical exponents of the chiral Heisenberg universality class.
- Specifically, we obtain $U_c=3.91(3)$ and $\nu=1.17(7)>1$ using the dynamic method.
- We find a negative critical initial slip exponent $\theta = -0.84(4)$.

Thanks for your attention!

- For the first time, we demonstrate the nonequilibrium dynamics of interacting Dirac fermions.
- We develop a dynamical methods to determine the critical point and critical exponents of the chiral Heisenberg universality class.
- Specifically, we obtain $U_c=3.91(3)$ and $\nu=1.17(7)>1$ using the dynamic method.
- We find a negative critical initial slip exponent $\theta = -0.84(4)$.

Thanks for your attention!