Binary Numbers

CS207 Chapter 1

James YU yujq3@sustech.edu.cn

Department of Computer Science and Engineering Southern University of Science and Technology

Jun. 21, 2021

Digital systems

- All things computing have a special-purpose digital computer embedded.
- *Digital systems* represent/manipulate discrete elements of information.
 - 10 decimal digits;
 - 26 letters of alphabet.
- Digit → Digital (computer, system, etc.)

Digital systems

- In a digital system, input is given with the help of switches.
 - Usually have two distinct discrete levels or values: HIGH and LOW.
- Such signals are called digital signals and the circuit within the device is called a digital circuit.
- Digital circuits find applications in computers, telephony, radar navigation, data processing, and many other applications.
 - We first learn the general properties of number systems.

Number systems

- There are several number systems which we normally use:
 - *Decimal*: 0, 1, 2, ..., 9;
 - *Binary*: 0, 1;
 - Octal: 0, 1, 2, ..., 7;
 - Hexadecimal: 0, 1, 2, ..., 9, A, B, ..., F.
- With a decimal system, we have 10 different digits, but only 2 in a binary system.
 - Binary number system is easier to be dealt with.
- In a digital world, we think in binary
 - A light is either off or on.
- ...and we use two digits to express everything: 0 and 1.
 - A decimal 25_{10} becomes 11001_2 in binary.

Number systems

- In general, we can express any number in any base or radix "X".
- ullet Any number with base X, having n digits to the left and m digits to the right of the decimal point, can be expressed as

$$a_n X^{n-1} + a_{n-1} X^{n-2} + a_{n-2} X^{n-3} + \dots + a_2 X^1 + a_1 X^0 + b_1 X^{-1} + b_2 X^{-2} + \dots + b_m X^{-m}$$

for
$$(a_n a_{n-1} \dots a_2 a_1 b_1 b_2 \dots b_m)_X$$
.

• For example,

$$(4021.2)_5 = 4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1}$$

= $(511.4)_{10}$.

- Decimal numbers are the key
 - Base m to base $n \to \text{base } m$ to decimal to base n.
- Base m to decimal:

$$a_n X^{n-1} + a_{n-1} X^{n-2} + a_{n-2} X^{n-3} + \dots + a_2 X^1 + a_1 X^0 + b_1 X^{-1} + b_2 X^{-2} + \dots + b_m X^{-m}$$

- Decimal to base n?
 - We use multiplication for base m to decimal.
 - The inverse of multiplication is division.

• Example: convert 26_{10} into a binary number.

Division	Quotient	Remainder
26/2	13	0
13/2	6	1
6/2	3	0
3/2	1	1
1/2	0	1

• The converted binary number is 11010_2 .

• Example: convert 348₁₀ into a hexadecimal number.

Division	Quotient	Remainder
348/16	21	12
21/16	1	5
1/16	0	1

• The converted binary number is $15C_{16}$.

- For fraction, the computation is reversed again
- Example: convert 25.625₁₀ into a binary number.

Division	Quotient	Remainder
25/2	12	1
12/2	6	0
6/2	3	0
3/2	1	1
1/2	0	1

- Therefore, $25_{10} = 11001_2$.
- $0.625 \times 2 = 1.250, 0.250 \times 2 = 0.500, 0.500 \times 2 = 1.000.$
- Therefore, $(25.625)_{10} = (11001.101)_2$.

Conversion between binary and octal

- The maximum digit in an octal number system is 7.
 - Represented as 1112 in a binary system.
- Starting from the LSB, we group three digits at a time and replace them by the octal equivalent of those groups.
- Example: convert 1011010102 into an octal number.

Starting with LSB and grouping 3 bits	101	101	010
Octal equivalent	5	5	2

- The octal number is 552_8 .
- Example: convert 101111102 into an octal number.

Starting with LSB and grouping 3 bits	001	011	110
Octal equivalent	1	3	6

Conversion between binary and hexadecimal

- Trivially.
- 显然。

Complements

- When human do subtraction, we use "borrow" to borrow a 1 from a higher significant position.
 - What if the position does not want to lend?
- It is hard for circuits to design "borrow". So we use *complements* to implement subtraction.
- For each number system of base r, two types of complements:
 - *r*'s complement;
 - r-1's complement.
- For a binary system: 2's complement and 1's complement.

Complements

- r-1's complement: diminished radix complement. Use r-1 minus each digit:
 - The 9's complement of 546700 is 999999 546700 = 453299.
 - The 9's complement of 012398 is 999999 012398 = 987601.
- r's complement: radix complement.
- Calculate the diminished raid complement, then plus one:
 - The 10's complement of 546700 is 999999 546700 + 1 = 453300.
 - The 10's complement of 012398 is 999999 012398 + 1 = 987602.
- Another way: use r minus the least significant non-zero digit, and r-1 minus digits on the left:
 - The least significant non-zero digit of 546700 is 7: 10 7 = 3;
 - Digits on the left are 546:999 546 = 453;
 - The 10's complement of 546700 is 453 3 00.

Binary subtraction

- Three ways:
 - The direct "borrow" method;
 - The r's complement method;
 - The r-1's complement method
- We discuss the r's complement method in this course.

Binary subtraction

- Subtraction M-N, if M>N:
 - Add M to r's complement of N then discard the end carry.
- Example: 72532 3250

$$M = 72532$$
 10's complement of $N = +96750$ Sum $= 169282$ Discard end carry $= -100000$ $= 69282$

Binary subtraction

- Subtraction M N, if M < N:
 - Add M to r's complement of N,
 - then take an r's complement,
 - then add a negative sign.
- Example: 3250 72532

$$M=03250$$
 10 's complement of $N=+27468$
 $\mathrm{Sum}=30718$
 10 's complement $=69282$
Add a negative sign $=-69282$

Signed binary numbers

- In real life one may have to face a situation where both positive and negative numbers may arise.
 - We have + and -.
 - Digital systems represent everything with binary digits.
- Three types of representations of signed binary numbers:
 - Sign-magnitude representation;
 - 1's complement representation;
 - 2's complement representation.

Sign-magnitude representation

- An additional bit is used as the sign bit, usually placed as the MSB.
 - Generally a 0 is reserved for a positive number and a 1 is reserved for a negative number.
 - Example: an 8-bit signed binary number 01101001 represents a **positive** number whose magnitude is $1101001_2 = 105_{10}$.
 - Example: an 8-bit signed binary number 11101001 represents a **negative** number whose magnitude is $1101001_2 = 105_{10}$, i.e., -105.

1's and 2's complement representation

- In 1's complement representation, both numbers are a complement of each other
 - Example: 0111_2 represents $+7_{10}$ and 1000_2 represents -7_{10} .
 - Also, MSB 0 for positive numbers and 1 for negative numbers.
- In 2's complement representation, 1 is added to 1's complement representation.
 - Example: 0110_2 represents $+6_{10}$ and 1010_2 represents -6_{10} .
 - Also, MSB 0 for positive numbers and 1 for negative numbers.

Signed binary numbers

Decimal	2's complement representation	1's complement representation	Sign-magnitude representation
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011

Binary codes

- Computers and other digital circuits process data in binary format.
- The interpretation of the data is only possible if the code in which the data is being represented is known.
 - Example: 1000010 represents 66 (decimal) in straight binary, 42 (decimal) in BCD, and letter B in ASCII code.

Binary-coded decimal (8421)

- The full form of BCD is "Binary-Coded Decimal".
- Four bits are required to code each decimal number.
 - Example: 35_{10} is represented as $0011\ 0101$ using BCD code, rather than 100011_2 .
 - It is convenient to use BCD for input and output in digital systems.
- Also known as 8-4-2-1 code, as 8, 4, 2, and 1 are the weights of the four bids of BCD.
- Example: Give the BCD equivalent for the decimal number 69.27.

The decimal number
$$6$$
 9 . 2 7 BCD code is 0110 1001 . 0010 0111

• Therefore, $(69.27)_{10} = (01101001.00100111)_{BCD}$.

BCD addition

- There are certain rules to be followed in BCD addition as given below.
 - First add the two numbers using normal rules for binary addition.
 - If the 4-bit sum is equal to or less than 9, it becomes a valid BCD number.
 - If the 4-bit sum is greater than 9, or if a carry-out of the group is generated, it is an invalid result.
 - In such a case, add 0110_2 or 6_{10} to the 4-bit sum in order to skip the six invalid states and return the code to BCD. If a carry results when 6 is added, add the carry to the next 4-bit group.
- Example: $0111_{BCD} + 1001_{BCD}$:

```
0111 \\ +1001 \\ 10000 \rightarrow \text{Invalid BCD number} \\ +0110 \rightarrow \text{Add } 6 \\ 0001 \qquad 0110 \rightarrow \text{Valid BCD number}
```

BCD addition

• Example: $10010010_{BCD} + 01011000_{BCD}$:

	1001	0010
	+0101	1000
	1110	1010 ightarrow Both groups are invalid
	+0110	$+\ 0110\ o \ Add\ 6$
0001	0101	$0000 \rightarrow \text{Valid BCD number}$

BCD subtraction

• Example: $768_{10} - 274_{10}$:

	0111	0110	1000
	+0111	0010	0110
	1110	1000	1110 o Left and right groups are invalid
	+0110	0000	$0110 \rightarrow Add 6$
1	0100	1001	$0100 \rightarrow \text{Ignore carry}$

• The final result is 010010010100_{BCD} or 494₁₀.

Gray code

- Gray code belongs to a class of code known as minimum change code.
 - A number changes by only one bit as it proceeds from one number to the next.

Gray Code	Decimal
000	0
001	1
011	2
010	3
110	4
111	5
101	6
100	7

Error-detection codes

- Binary information may be transmitted through some form of communication medium such as wires or radio waves or fiber optic cables, etc.
 - Any external noise introduced into a physical communication medium changes bit values from 0 to 1 or vice versa.
- An error detection code can be used to detect errors during transmission.
 - The detected error cannot be corrected, but its presence is indicated.
 - Parity bit

	With even parity	With odd parity		
1000001	01000001	11000001		
1010100	11010100	01010100		

Checksum

- Parity bit technique fails for double errors.
- *Checksum* adds all transmitted bytes and transmit the result as an error-detection code.
- Example: initially any word A 10010011 is transmitted; next another word B 01110110 is transmitted.
 - 1 The binary digits in the two words are added and the sum obtained is retained in the transmitter.
 - 2 Then any other word C is transmitted and added to the previous sum retained in the transmitter and the new sum is now retained.
 - 3 After transmitting all the words, the final sum, which is called the Check Sum, is also transmitted.
 - 4 The same operation is done at the receiving end.
 - **5** There is no error if the two sums are equal.

ASCII

- Many applications of the computer require not only handling of numbers, but also of letters.
- To represent letters it is necessary to have a binary code for the alphabet.
- American Standard Code for Information Interchange (ASCII)
 - Seven bits to code 128 characters.

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	4	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	Ì
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	O	_	O	DEL

Binary storage and registers

- Binary information must have a physical existence.
- Binary cell (0 or 1): two stable states;
- Register: a group of binary cells.
 - A 16-bit register: 1100 0011 1100 1001.
 - Assume it is a binary integer value: 50121.
 - Assume it is two ASCII characters with even parity: CI.
 - The same binary storage means different interpretation, depending on the application.

Binary storage and registers

• Register transfer to move binary storages in between.

Binary storage and registers

• Register transfer to move binary storages in between.

Binary logic

- Binary logic deals with variables that take on two discrete values and with logical operations.
- Three basic logical operations:

• AND: $x \cdot y = z$ or xy = z.

• **OR**: x + y = z.

• NOT: x'=z

AND			
y	$x \cdot y$		
0	0		
1	0		
0	0		
1	1		
	<i>y</i> 0 1		

OR			
\overline{x}	y	x + y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT		
x	x'	
0	1	
1	0	

Binary logic

• Logic gates are electronic circuits that operates on one or more inputs signals to produce an output.

• It is fine to have more than two inputs for AND/OR.

$$\begin{array}{ccc}
A & & & \\
B & & & \\
C &$$

Binary logic

• Voltage-operated, though on a range, interpreted to be either of the two values.

Notices

- The lab session will start from today. Attendance is required.
- Sakai site:

```
https://sakai.sustech.edu.cn/portal/directtool/39d1a621-2c43-46f7-90af-fcf9d1360b64/
```