Отчёт по практическим заданиям

Прикладная математика. Лекция №2.

Задача. Провести изоляцию корней и найти их значения для заданых уравнений:

1)
$$x - \sin(x) = 0.25$$
; 2) $e^x - x^2 = 0$; 3) $x^3 + 3x^2 - 24x + 1 = 0$;

Решение. (/practical-tasks/nonlinear-equals/task-12.m) Для решения этих уравнений я использовал бинарный поиск (бисекцию), метод Ньютона-Рафсона и метод Секущих. Соотвествующие методы описаны в файлах в виде функций с соотвествующимим названиями, я лишь поясню специфику их реализации.

RootSeparation - функция для отделения корней заданой функции. Она принимает на вход саму функцию f, отрезок для поиска корней [a,b], интервал с которым ищутся корни e и PlotFlag, отвечающий за построение графика функции и выделения промежутков с корнями. Все ниже приведённые графики это результат выполнения RootSeparation с $PlotFlag=1.\ e$ - очень важный параметр, т. к. для, например, сильно осцелирующих функций некоторые корни по ходу выполнения функции могут пропускаться.

Для определения промежутка на котором встречаются корни, можно первоначально построить график функции и визуально определить в каких точках функция обращается в ноль. Возвращает функция два массива левых и правх границ промежутков, на которых точно есть корни.

edit_bisection - функция реализующая метод поиска корня функции f, на интервале [a,b]. Аналогично RootSeparation есть параметр PlotFlag для построения графика.

newton_method - реализация метода Ньютона-Рафсона, параметры аналогично.

secant_method - реализация метода секущих (модификация метода Ньютона-Рафсона), параметры аналогично.

1) Рассмотрим уравнение $x-\sin x=0.25$. Визуально корень точно есть на промежутке [0,2]. Результат трёх методов x=1.1713.

Рис. 1: Визуализация $x - \sin x = 0.25$

2) Рассмотрим уравнение $e^x-x^2=0$. Визуально корень точно есть на промежутке [-1,0]. Результат трёх методов x=-0.7025.

Рис. 2: Визуализация $e^x - x^2 = 0$

3) Рассмотрим уравнение $x^3 + 3x^2 - 24x + 1 = 0$. Визуально корень точно есть на промежутке [-8,6]. Результат трёх методов:

 $\forall x \in \{-6.637500, 0.042500, 3.596250\}.$

Интервалы с корнями (отмечены красным) 100 Функция Границы интервалов 20 0 -20 -40 -8 -6 -4 -2 0 2 4 6

Рис. 3: Визуализация $x^3 + 3x^2 - 24x + 1 = 0$