

Requirements Engineering & Management

## Scenarios II – Use Cases

Prof. Dr. Klaus Pohl



## **Agenda**



Offen im Denken

- 1. Introduction to Use Cases
- 2. Modelling Use Cases with Use Case Diagrams
- 3. Specifying Use Cases with Use Case Templates



## Framework for Requirements Engineering



Offen im Denken





## 1. Introduction to Use Cases

## Why Use Cases?



- Use cases <u>structure complex processes</u> with multitudes of possible <u>sequences of actions</u>.
- One use case shows a single sequence of actions to <u>reduce</u> <u>complexity</u>.
- Hence, use cases support the <u>understandability</u> of requirements.





## **Use Case: Definition**



**Offen** im Denken

D A use case is a <u>specific way of using the system</u> by performing some part of the functionality. Each use case <u>constitutes a complete course of events</u> initiated by an actor and it specifies the <u>interaction that takes place</u> <u>between an actor and the system</u>. A use case is thus a special sequence of related transactions performed by an actor and the system in dialogue. The <u>collected use cases specify all the existing ways of using the system</u>.

### **Scenarios and Use Cases**



- Use cases can be used to group scenarios:
  - Related to a specific set of goals.

- Use cases can <u>integrate</u> related scenarios:
  - Main scenario
  - Alternative scenarios
  - Exception scenarios

Offen im Denken

## **Integration of Scenarios with Use Cases**



Prof. Dr. K. Pohl

# 2. Modelling Use Cases with Use Case Diagrams

## **Use Case Diagrams – Overview**



- Use case diagrams represent the
  - relevant relations between external actors (such as users) and the use case
  - and relations between use cases.

- A single use case diagram does not represent the involved use cases at a sufficient level of detail!
  - A more detailed specification of the involved use cases is required.

More details later in this lecture!

**Offen** im Denken

## **Modelling Construct: Actor**

- Represents <u>external entities</u> interacting with the system
- Abstracts from specific actor instances by describing roles
- Interacts with the system by participating in use cases



#### **Offen** im Denken

## **Modelling Construct: Use Case**

- A <u>specific way of using the system</u> using the system "functionality"
- Constitutes (abstracts from) a <u>complete course of events</u> initiated by an actor and the <u>interaction</u> between an actor and the system
- Collected use cases specify all the existing <u>ways of using the</u> <u>system</u>



#### **Offen** im Denken

## **Modelling Construct: System Boundary**

- Separates the system from its operational context
- <u>Use cases</u> are placed <u>inside</u> the system boundary while <u>external actors</u> are placed <u>outside</u>.
- The system boundary defines the <u>scope</u> for which the requirements are specified.

# Notation [name] Online shop



#### **Offen** im Denken

## **Modelling Construct: Association**

- Represents the <u>participation</u> of an actor in a use case
- Instances of <u>actors</u> (i.e. instances of external entities having the respective role) can <u>communicate with</u> instances of <u>use cases</u>.
- Association relations are bidirectional.



**Offen** im Denken

## **Overview on Introduced Modelling Constructs**



## **Modelling Construct: Use Case Generalization**

- Specializes a more general use case into one or multiple specialized, i.e. more specific use cases
- Specialized use cases may have <u>additional properties</u> and associations.





**Offen** im Denken

## **Modelling Construct: Actor Generalization**

- Specializes a more <u>general actor</u> into one or multiple <u>specialized</u>, i.e. more specific actors
- Specialized actors may have <u>additional properties</u> and associations.



Offen im Denken

## **Example of a Use Case Diagram**





**Offen** im Denken

## **Modelling Construct: Extend Relationship**

- The extend relationship allows to extend a use case with <u>additional functionality</u>, i.e. the corresponding sequence of interactions is conditionally executed.
- Extending use cases can be used in different extended use cases.
- An extend relationship consists of a <u>condition</u> and a reference to an <u>extension point</u> within the extended use case.



**Offen** im Denken

## **Modelling Construct: Include Relationship**

- An include relationship expresses that <u>one (included) use case</u> is executed when another use case is executed.
- Use case A <u>includes in any case</u> the behaviour of use case B.
- Include relationships are typically used when <u>a sequence of</u> <u>interactions is part of more than one use cases</u> of the system.





Offen im Denken

## **Example of a Use Case Diagram**





**Offen** im Denken

## **Overview on Introduced Modelling Constructs (Cont.)**



# 3. Specifying Use Cases with Use Case Templates

## **Use Case Templates - Overview**



- A **template** in general:
  - is based on <u>expert knowledge</u>.
  - defines <u>relevant</u> types of <u>information</u>.
  - **structures** the information.
- Use case templates:
  - provide <u>detailed descriptions</u> for the use cases defined in a use case diagram.
  - Use case templates shall be <u>specifically designed</u> for each company's or project specific purposes.
- Common use case <u>reference templates</u> are a good <u>starting point</u> for individual, project-specific customization.

## **Use Case Templates - Categories**



- Use case templates provide slots to define information in different categories.
- Commonly used <u>categories</u> are:
  - Use case <u>management</u> information
  - Use case <u>diagram</u> information
  - Contextual information
  - <u>Scenario</u> information
  - References to other models and diagrams
- Use case templates can be defined on different <u>levels of detail</u>:
  - High-level use case templates
  - **Detailed** use case templates



#### **Offen** im Denken

## **High-Level Use Case Template**

| No.                    |             | Section                         | Content / Explanation                                                                                                              |
|------------------------|-------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| ID                     | 1.2         | Name                            | Unique name for the use case.                                                                                                      |
| Management             | 2.1         | Author(s)                       | Name of the authors of the use case description.                                                                                   |
| Context                | 3.1         | Source                          | Source from where the use case stems.                                                                                              |
| Use Case<br>Definition | 4.2         | Short description               | Concise description of the use case.                                                                                               |
|                        | 4.4         | Goal(s)                         | Goal(s) that shall be satisfied by executing the use                                                                               |
|                        |             |                                 | case.                                                                                                                              |
|                        | 4.5/<br>4.6 | Actor(s)                        | Enumeration of all actors involved in the use case.                                                                                |
|                        | 4.7         | Pre-condition(s)                | Prerequisites to be fulfilled before use case execution.                                                                           |
|                        | 4.8         | Post-condition(s)               | A list of conditions that hold after execution of the use case.                                                                    |
| Relationships          | 5.2         | Relationship to other use cases | Short description of the relations to other use cases (apply only if these relationships are not documented by a use case diagram. |

## Summary



- A use case specifies a complete sequence of system—user interactions related to a part of the system's functionality.
- A use case connects scenarios related to the same set of goals and thereby structures all possible interactions sequences to reduce complexity.
- A use case groups main, alternative and exception scenarios.
- A use case diagram represents a part of a use case and focuses on relations between use cases and use cases with actors.
- Use case templates are based on expert knowledge and define and structure relevant information.



## Literature



| [Caroll 2000] | J.M. Caroll (Ed.): Making Use – Scenario-Based Design of |
|---------------|----------------------------------------------------------|
|               | Human Computer Interactions. MIT Press, Cambridge,       |
|               | 2000.                                                    |

| [Cockburn 2001] | A. Cockburn: Writing effective Use Cases. Addison-Wesley, |
|-----------------|-----------------------------------------------------------|
|                 | Bosten, 2001.                                             |

| [Jacobson et al. 1992] | I. Jacobson, M. Christerson, P. Jonsson, G. Oevergaard:  |
|------------------------|----------------------------------------------------------|
| -                      | Object-Oriented Software Engineering – A Use Case Driven |
|                        | Approach, Addison-Wesley, Reading, 1992.                 |

| [Rumbaugh et al. 2005] | J. Rumbaugh, I. Jacobson, G. Booch: The Unified Language |
|------------------------|----------------------------------------------------------|
| -                      | Reference Manual. 2nd edition, Addison-Wesley, Boston,   |
|                        | 2005.                                                    |

| K. Weidenhaupt, K. Pohl, M. Ja   | rke, P. Haumer: Scenario Usage in |
|----------------------------------|-----------------------------------|
| System Development – A Repo      | ort on Current Practice. IEEE     |
| Software, Vol. 15, No. 2, IEEE F | Press, Los Alamitos, pp. 22-45.   |



## 7000

## **Literature for Further Reading**



| [Alexander and Maiden 2004] | I. Alexander, N. Maiden (Eds.): Scenarios, Stories, Use Cases – Through the system Development Life-Cycle. Wiley, Chichester, 2004.                                                                                                                                               |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Haumer et al. 1998]        | P. Haumer, K. Pohl, K. Weidenhaupt: Requirements Elicitation and Validation with Real World Scenes. IEEE Transactions on Software Engineering, Vol. 24, No. 12, 1998, pp. 1036-1054.                                                                                              |
| [Rolland et al. 1998a]      | C. Rolland, C. Ben Achour, C. Cauvet, J. Raylt, A. Sutcliffe, N. Maiden, M. Jarke, P. Haumer, K. Pohl, E. Dubois, P. Heymans: A Proposal for a Scenario Classification Framework. Requirements Engineering Journal, Vol. 3, No. 1, Springer, Berlin, Heidelberg, 1998, pp. 23-47. |
| [Rolland et al. 1998b]      | C. Rolland, C. Souveyet, C. Ben Achour: Guiding Goal Modelling Using Scenarios. IEEE Transactions on Software Engineering, Vol. 24, No 1., 1998, pp. 1055-1071.                                                                                                                   |
| [Sutcliffe et al. 1998]     | A. Sutcliffe, N. Maiden, S. Minocha, M. Darrel: Supporting scenario-Based Requirements Engineering. IEEE Transactions on Software Engineering, Vol. 24, No. 12, 1998, pp. 1072-1088.                                                                                              |

## **Image References**



Offen im Denken

- [1] Licensed by http://www.iconshock.com/
- [2] Provided by Microsoft Office

## Legend

**D** Definition

**E** Example



Requirements Engineering & Management

## Vielen Dank für Ihre Aufmerksamkeit

