

Lecture 3: Diode

ECE3110J, Electronic Circuits

Xuyang Lu 2024 Summer

- Scaling
- Review of Thevenin and Norton Equivalent
- Semiconductor Basics
- Diodes

$$np = n_i^2 = BT^3 \exp(-\frac{E_G}{kT}) \tag{1}$$

- *n* Free electrons in the conduction band.
- p Free holes in the valence band.
- ullet n_i Intrinsic carrier density.

Intrinsic Si

k (Boltzmann's Constant)

$$= 1.38 \times 10^{-23} \text{ J/K} = 8.62 \times 10^{-5} \text{ eV/K}$$
 (2)

	B $(K^{-3} \cdot cm^{-6})$	E_G (eV)
Si	1.08×10^{31}	1.12
Ge	2.31×10^{30}	0.66
GaAs	1.27×10^{29}	1.42

Intrinsic Si

At 300K

$$n_i^2 = (1.08 \cdot 10^{31}) \cdot 300^3 \cdot e^{\frac{-1.12}{(8.62 \cdot 10^{-5}) \cdot 300}}$$
$$= 4.52 \times 10^{19} (1/\text{cm}^6) \tag{3}$$

$$n_i = 6.73 \times 10^9 (1/\mathrm{cm}^3) \approx 10^{10} (1/\mathrm{cm}^3) \qquad \text{(4)}$$

Electrons and Holes

Doped Si (N-type)

- At room temperature, nearly all phosphorus dopants are ionized.
- Each dopant donates one electron away, which creates an electron in the conduction band.
- P: $1s^22s^22p^63s^23p^3$
- B: $1s^22s^22p^1$

Doped Si (N-type)

- If the n-type dopant concentration $N_d\gg n_i$, $n=N_d \text{ and } p=n_i^2/N_d$
- charge neutrality

$$q(N_D + p - N_A - n) = 0$$
 (5)

$$n^2 - (N_D - N_A) n - n_i^2 = 0$$
(6)

$$n = \frac{(N_D - N_A) + \sqrt{(N_D - N_A)^2 + 4n_i^2}}{2}$$
 (7)

Density of States (N-type)

Notice that the fermi level is shifted.

Recap

$$np = n_i^2 \tag{8}$$

$$egin{array}{c} E_i & \overline{q\phi_p} & \updownarrow \\ E_f & \overline{\end{array}$$

$$p = N_a = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{q\phi_p}{kT}} \tag{9}$$

$$n = \frac{n_i^2}{N_a} = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{-q\phi_p}{kT}}$$
 (10)

• Hu, Chenming. Modern semiconductor devices for integrated circuits.

N-Type

$$E_c$$
 E_f

$$E_{i}$$

$$E_v$$

$$np = n_i^2 \tag{11}$$

$$n = N_d = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{q\phi_n}{kT}}$$
 (12)

$$p = \frac{n_i^2}{N_d} = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{-q\phi_n}{kT}}$$
 (13)

Carrier Concentration Practice

- \bullet By ion implantation on crystalline Si with phosphorous concentration equal to $10^{17}~{\rm cm}^{-3}$
- What is the value of n, p, and E_f ?

Strained Silicon for Higher Mobility

Strained Silicon

Johnson's figure of merit

Material	Saturation velocity $\times 10^{-5}~{\rm m/s}$	${\sf V}_{breakdown} \ {\sf MV/cm}$	JFM
Silicon	1.0	0.3	1.0
GaAs	1.5	0.4	2.7
SiC	2.0	3.5	20
InP	0.67	0.5	0.33
GaN	2.5	3.3	27.5

- Diffusion current
- space-charge (Depletion) region
- Drift current

Diffusion

• Magnitude of the current at any point is proportional to the slope of the concentration profile, or the **concentration gradient**, at that point

$$J_{D,n} = qD_n \frac{dn(x)}{dx} \tag{14}$$

$$I_p = Aqpv_{p-\mathsf{drift}} \tag{15}$$

$$I_p = Aqp\mu_p E \tag{16}$$

- \bullet For intrinsic silicon $\mu_p = 480~\mathrm{cm^2/V\cdot s}.$
- \bullet For the electron mobility, $\mu_n=1350~{\rm cm^2/V}$

$$J_S = J_{S,p} + J_{S,n} = q \left(p \mu_p + n \mu_n \right) E$$
 (17)

• The Junction Built-in Voltage

$$V_0 = V_T \ln(\frac{N_A N_D}{n_i^2}) \tag{18}$$

• Derivation: see Streetman and Bannerjee

- Electrons/holes near the junction diffuse to the opposite sides.
- 2 Ionized dopants, fixed in the lattice, are left behind.
- $\textbf{3} \ \, \text{Formation of built-in electric field and} \\ \text{energy barrier } (q\phi_i) \ \, \text{for diffusion}.$

Note:

- E_C , E_i and E_V are parallel to each other.
- E_C , E_i and E_V bending means there is electric field.
- \bullet $\ensuremath{\mathsf{E}}_f$ bending means there is current.

- Some electrons/holes in the neutral regions with sufficient energy continuously diffuse to the opposite sides. → Formation of diffusion current.
- **5** Some electrons/holes wandering into the in the <u>depletion region</u> get swept by the built-in electric field.
 - $\rightarrow \ \, \text{Formation of drift current}.$
- O Diffusion current cancels drift current. No net current flowing.

Forward Bias (When $V_a > 0$)

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) > 0$$
 (19)

- \bullet $e^{\frac{qV_a}{kT}}$ is the diffusion current.
- 2 -1 stands for the drift current.
- 3 The energy barrier formed by the built-in electric field becomes smaller. $a(\phi_i - V_a)$.
- 4 Neamen, Donald A. Semiconductor Physics and Devices Basic Principles, chapter 8

Forward Bias (When $V_a > 0$)

- More electrons/holes diffuse to the opposite sides. \rightarrow Diffusion current increases.
- The drift current is limited by the number of minority carriers on either side of the p-n junction and is unchanged by the increased E-field.
- 3 There is (+) net current flowing.
- The depletion width becomes narrower.

Reverse Bias ($V_a < \mathbf{0}$)

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) < 0$$
 (20)

1 The energy barrier formed by the built-in electric field becomes larger, $q(\phi_i+V_a).$

Diode

PN Junction

Reverse Bias ($V_a < 0$)

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) < 0 \tag{21}$$

- 1 Less electrons/holes diffuse to the opposite sides. \rightarrow Diffusion current decreases, while drift current remains the same.
- 2 There is (-) net current flowing.
- The depletion width becomes wider.

Operating Conditions of Diodes

Diode Current (Forward Bias, $N_A\gg N_D$)

Sedra: 3.5.2

 a greater number of holes (electrons) to overcome the barrier and diffuse into the n (p) region

the steady-state concentration at the edge of the depletion region will be

$$p_n(x_n) = p_{n0}e^{V/V_T} (22)$$

Location-Dependent Recombination

$$p_n(x) = Pn_0 + pn_0(e^{V/V_T} - 1)e^{-(x - x_n)/L_p}$$
(23)

 ${\cal L}_p$ is the diffusion length

Recap

Diode Current

Recap

the value of the hole–diffusion current density, D is diffusivity.

$$J_p(x) = -qD_p \frac{dp_n(x)}{dx} \tag{24}$$

$$p_n(x) = p_{n0} + p_{n0} \left(e^{V/V_T} - 1 \right) e^{-(x - x_n)/L_p}$$
(25)

$$J_p(x) = q \left(\frac{D_p}{L_p}\right) p_{n0} \left(e^{V/V_T} - 1\right) e^{-(x - x_n)/L_p}$$
 (26)

 $J_p(x)$ is highest at $x=x_n$,

$$J_p(x_n) = q\left(\frac{D_p}{L_p}\right) p_{n0} \left(e^{V/V_T} - 1\right) \tag{27}$$

Derivation of PN Junction Current Equation

$$I = A\left(J_p + J_n\right) \tag{28}$$

$$I = Aq \left(\frac{D_p}{L_p} p_{n0} + \frac{D_n}{L_n} n_{p0} \right) \left(e^{V/V_T} - 1 \right)$$
 (29)

Remember the following equation

$$I = I_S \left(e^{V/V_T} - 1 \right) \tag{30}$$

Reverse Breakdown

- the reverse-breakdown current is limited by the external circuit to a "safe" value.
- Two possible mechanisms for pn junction breakdown: the zener effect and the avalanche effect.

Avalanche Breakdown

- Collision of electrons with atoms
- Si diode with breakdown voltages greater than about 5.6 V enter breakdown through an avalanche mechanism.
- Carriers accelerated by electric field gain sufficient energy to break covalent bonds upon impact, thereby creating electron-hole pairs.

Zener Breakdown

- Si diode with very heavy doping (i.e. very narrow depletion region) easily enter into Zener breakdown under reverse bias.
- Electrons tunnel directly between valence and conduction bands.

Diode

Forward

bias

0

Diode

Diode

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) \tag{31}$$

- Turn-on voltage typically 0.5 to 0.7 V
- Saturation current (I_S) typically 10^{-18} to 10^{-9} A
- $\bullet \ kT/q = 0.025875 \ V \ at \ 300 \ K$

Diode Models

- 1. Ideal
- 2. Constant voltage drop
- 3. Large signal model

Ideal Model

Different Diode Models

Constant Voltage Drop Model

Large signal model

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) \tag{32}$$

Simple Diode Circuits with Load-Line Method

Simplified Analysis (Ideal Diode)

$$V_D = 0 (33)$$

$$I_D = \frac{(10-0)V}{10k\Omega} = 1 \text{ mA}$$
 (34)

Constant Voltage Drop

$$I_D = \frac{(10 - 0.6) \ V}{10 \ k\Omega} = 0.94 \ \text{mA}$$
 (35)

Comparison of Different Diode Models

	V_D	I_D
Graphical Analysis	0.6 V	0.95 mA
Mathematical Analysis	0.5742 V	0.944 mA
Ideal Diode Model	0 V	1 mA
Constant Voltage Drop Model	0.6 V	0.94 mA

More Diode Circuit Examples (Constant V-drop)

Examples With Diode Resistance of 100 Ω

Diodes as a Clipper Circuit

Zener Diode Examples

Examples

Examples with Constant V-Drop Model ($V_{on}=0.6V$)

Assume no current flowing through D_3

$$\frac{10 - V_B}{10k} = \frac{V_B - 0.6 + 20}{10k} + \frac{V_B - 0.6 + 10}{10k}$$
 (36)

$$V_B = -6.27V (37)$$

$$V_C = -6.87 \ V \Rightarrow D_3 \ {\rm in \ forward \ bias}$$
 (38)

Assumption NOT valid

Examples with Constant V-Drop Model ($V_{on}=0.6V$)

Calculate ${\cal V}_D$ and ${\cal I}_D$ of each diode.

Assume no current flowing through D_2

$$\frac{10 - V_B}{10k} = \frac{V_B - 0.6 + 20}{10k} \tag{39}$$

$$V_B = -4.7 \ V$$

$$V_C = -0.6 \ V \Rightarrow D_2 \ {\rm indeed \ in \ reverse \ bias}$$

Assumption valid

$$V_{D1} = 0.6 \; V \quad V_{D2} = -4.1 \; V \quad V_{D3} = 0.6 \; V$$

 $I_{D1} = 1.47 \; mA \quad I_{D2} = 0 \; mA \quad I_{D3} = 0.94 \; mA$

Examples with Ideal Model ($V_{on} = 0 \ V$)

Assume D_3 in reverse bias

$$\frac{10 - V_B}{10k} = \frac{V_B + 20}{10k} + \frac{V_B + 10}{10k} \tag{40}$$

$$V_B = -6.67 \ V \tag{41}$$

$$V_C = -6.67~V \Rightarrow D_3 \text{ in forward bias} \quad \text{(42)}$$

Assumption NOT valid

Examples with Ideal Model ($V_{on} = 0 \ V$)

Assume D_2 in reverse bias

$$\frac{10 - V_B}{10k} = \frac{V_B + 20}{10k} \tag{43}$$

$$V_B = -5 \ V$$

$$V_C = 0 \ V \Rightarrow D_2 \ {\rm indeed \ in \ reverse \ bias}$$

Assumption valid

$$V_{D1} = 0 \ V \quad V_{D2} = -5 \ V \quad V_{D3} = 0 \ V$$

 $I_{D1} = 1.5 \ mA \quad I_{D2} = 0 \ mA \quad I_{D3} = 1 \ mA$

Zener Diode ($R_Z = 0$)

Zener Diode ($R_Z \neq 0$)

Zener Diode ($R_Z \neq 0$, If $I_Z > 0$)

What is the smallest ${\cal R}_L$ for reverse breakdown to happen?

$$R_{L,min} = 1.67 \ k\Omega \tag{44}$$

As long as the zener diode operates in reverse breakdown ($I_Z>0$), a constant voltage (5V) appears across R_L .

Zener Diode $(R_Z \neq 0)$

$$\frac{20 - V_L}{5k} = \frac{V_L - 5}{0.1k} + \frac{V_L}{5k} \tag{45}$$

$$I_Z = \frac{5.19 - 5}{0.1k} = 1.9 \ mA > 0 \tag{46}$$

$$V_L = 5.1923 \ V$$
 (47)