

COMP7/8118 M50

Data Mining

RNN: LSTM

Xiaofei Zhang

Slides compiled from Jiawei Han and Raymond C.W. Wong's work

Traditional LSTM (Long Short Term Memory)

- Disadvantage of Basic RNN
 - The basic RNN model is too "simple".
 - It could not simulate our human brain well.
 - It is not easy for the basic RNN model to converge (i.e., it may take a very long time to train the RNN model)

- Before we give the details of our brain, we want to emphasize that there is an internal state variable (i.e., variable s_t) to store our memory (i.e., a value)
- The next RNN to be described is called the LSTM (Long Short-Term Memory) model.

It could simulate the brain process.

Forget Feature

It could "decide" to forget a portion of the internal state variable.

Input Feature

- It could "decide" to input a portion of the input variable for the model
- It could "decide" the strength of the input for the model (i.e., the activation function) (called the "weight" of the input)

Output Feature

- It could "decide" to output a portion of the output for the model
- It could "decide" the strength of the output for the model (i.e., the activation function) (called the "weight" of the output)

Our brain includes the following steps.

- In the following, we want to compute (weight) values in the traditional LSTM.
- Similar to the neural network, the traditional LSTM model has two steps.
 - Step 1 (Input Forward Propagation)
 - Step 2 (Error Backward Propagation)
- In the following, we focus on "Input Forward Propagation".
- In the traditional LSTM, "Error Backward Propagation" could be solved by an existing optimization tool (like "Neural Network").

Time	X _{t, 1}	X _{t, 2}	У
t=1	0.1	0.4	0.3
t=2	0.7	0.9	0.5

- Consider this example with two timestamps.
 - When t = 1
 - When t = 2
- We use the traditional LSTM to do the training.

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

$$y_0 S_0$$

$$f_1 = \sigma(W_f[x_1, y_0] + b_f)$$

$$= \sigma(\begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.4 \\ 0 \end{pmatrix} + 0.4)$$

$$= \sigma(0.7 \cdot 0.1 + 0.3 \cdot 0.4 + 0.4 \cdot 0 + 0.4)$$

$$= \sigma(0.59)$$

$$= 0.6434$$

$$f_1 = 0.6434$$

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

Time
$$X_{t,1} X_{t,2} y$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

$$y_0 S_0$$

$$i_1 = \sigma(W_i [x_1, y_0] + b_i)$$

$$= \sigma(\begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.4 \\ 0 \end{pmatrix} + 0.2)$$

$$= \sigma(0.2 \cdot 0.1 + 0.3 \cdot 0.4 + 0.4 \cdot 0 + 0.2)$$

$$= \sigma(0.34)$$

$$= 0.5842$$

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_t = \sigma(W_f[x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

Time
$$X_{t, 1}$$
 $X_{t, 2}$ y $t=1$ 0.1 0.4 0.3

0.7

t=2

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) y_t = o_t \cdot tanh(s_t)$$

Step 1 (Input Forward Propagation)

$$a_1 = tanh(W_a [x_1, y_0] + b_a)$$

$$= \tanh\begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.4 \\ 0 \end{pmatrix} + 0.5)$$

 $= \tanh(0.4 \cdot 0.1 + 0.2 \cdot 0.4 + 0.1 \cdot 0 + 0.5)$

= tanh(0.62)

= 0.5511

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$a_1 = 0.5511$$

y_0	S_0
0	0

0.5

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

0.9

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix}$$
 $b_o = 0.3$

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

X _{t, 1}	X _{t, 2}	У
0 1	0 1	0

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

Time
$$x_{t, 1}$$
 $x_{t, 2}$ y $t=1$ 0.1 0.4 0.3 $t=2$ 0.7 0.9 0.5

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

$$s_1 = f_1 \cdot s_0 + i_1 \cdot a_1$$

 $= 0.6434 \cdot 0 + 0.5842 \cdot 0.5511$

= 0.3220

y_0	S_0
0	0

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$a_1 = 0.5511$$

$$s_1 = 0.3220$$

$$f_t = \sigma(W_f[x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

Time
$$X_{t, 1}$$
 $X_{t, 2}$ Y $t=1$ 0.1 0.4 0.3

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

$$y_0 S_0$$

$$o_1 = \sigma(W_o[x_1, y_0] + b_o)$$

$$= \sigma(\begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.4 \\ 0 \end{pmatrix} + 0.3)$$

$$= \sigma(0.8 \cdot 0.1 + 0.9 \cdot 0.4 + 0.2 \cdot 0 + 0.3)$$

$$= \sigma(0.74)$$

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$a_1 = 0.5511$$

$$s_1 = 0.3220$$

$$o_1 = 0.6770$$

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_t = \sigma(W_f[x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) y_t = o_t \cdot tanh(s_t)$$

Time	X _{t, 1}	X _{t, 2}	У
t=1	0.1	0.4	0.3
t=2	0.7	0.9	0.5

$$y_1 = o_1 \cdot tanh(s_1)$$

 $= 0.6770 \cdot tanh(0.3220)$

= 0.2107

y ₀	S_0
0	0

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$a_1 = 0.5511$$

$$s_1 = 0.3220$$

$$o_1 = 0.6770$$

$$y_1 = 0.2107$$

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

 $a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$

$$y_t = o_t \cdot tanh(s_t)$$

$$y_0 S_0$$
 0

Error =
$$y_1 - y$$

$$= 0.2107 - 0.3$$

$$= -0.0893$$

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$a_1 = 0.5511$$

$$s_1 = 0.3220$$

$$o_1 = 0.6770$$

$$y_1 = 0.2107$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

 $i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

Time	X _{t, 1}	X _{t, 2}	У
t=1	0.1	0.4	0.3
t=2	0.7	0.9	0.5

$a_t = tanh(W_a[x_t, y_{t-1}] + b_a)$	$y_t = o_t \cdot tanh(s_t)$
	i e e e e e e e e e e e e e e e e e e e

y ₁	s ₁	
0.2107	0.3220)

$$f_1 = 0.6434$$

$$i_1 = 0.5842$$

$$a_1 = 0.5511$$

$$s_1 = 0.3220$$

$$o_1 = 0.6770$$

 $y_1 = 0.2107$

$$W_{f} = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{f} = 0.4$$

$$W_{i} = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{i} = 0.2$$

$$W_{a} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} \quad b_{a} = 0.5$$

$$W_{o} = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} \quad b_{o} = 0.3$$

$f_2 = \sigma(W_f[x_2, y_1] + b_f)$				
$= \sigma(\begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.9 \\ 0.2107 \end{pmatrix}$	+ 0.4)			
$= \sigma(0.7 \cdot 0.7 + 0.3 \cdot 0)$	0.9 + 0.4 · 0).2107 + 0.4)	
$= \sigma(1.2443)$				
= 0.7763			f_2	= 0.7763

$$W_{f} = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{f} = 0.4$$

$$W_{i} = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{i} = 0.2$$

$$W_{a} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} \quad b_{a} = 0.5$$

$$W_{o} = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} \quad b_{o} = 0.3$$

 $i_2 = 0.6669$

$$\begin{aligned} \mathbf{i}_2 &= \sigma(W_i \left[\mathbf{x}_2, \, \mathbf{y}_1 \right] + \mathbf{b}_i) \\ &= \sigma(\begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.9 \\ 0.2107 \end{pmatrix} + 0.2) \\ &= \sigma(0.2 \cdot 0.7 + 0.3 \cdot 0.9 + 0.4 \cdot 0.2107 + 0.2) \\ &= \sigma(0.6943) \\ &= 0.6669 \end{aligned}$$

$$W_{f} = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{f} = 0.4$$

$$W_{i} = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{i} = 0.2$$

$$W_{a} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} \quad b_{a} = 0.5$$

$$W_{o} = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} \quad b_{o} = 0.3$$

$$f_{t} = \sigma(W_{f} [x_{t}, y_{t-1}] + b_{f})$$

$$s_{t} = f_{t} \cdot s_{t-1} + i_{t} \cdot s_{t}$$

$$i_{t} = \sigma(W_{i} [x_{t}, y_{t-1}] + b_{i})$$

$$o_{t} = \sigma(W_{o} [x_{t}, y_{t-1}] + b_{i})$$

$$s_{t} = f_{t} \cdot s_{t-1} + i_{t} \cdot s_{t}$$

$$a_{t} = tanh(W_{a} [x_{t}, y_{t-1}] + b_{a})$$

$$y_{t} = o_{t} \cdot tanh(s_{t})$$

$$s_{t} = tanh(W_{a} [x_{t}, y_{t-1}] + b_{a})$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

o _t =	$\sigma(W_o[x_t,$	y _{t-1}] +	b _o)
•	(O L (J C 13	Ο,

	·	•	U		ι,	 <u>- 1</u>	_
Ι,	, _	_	to	م <u>ا</u>	. / .	 \	

Time	X _{t, 1}	X _{t, 2}	У
t=1	0.1	0.4	0.3
t=2	0.7	0.9	0.5

$$a_2 = tanh(W_a [x_2, y_1] + b_a)$$

$$= \tanh\begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.9 \\ 0.2107 \end{pmatrix} + 0.5$$

 $= \tanh(0.4 \cdot 0.7 + 0.2 \cdot 0.9 + 0.1 \cdot 0.2107 + 0.5)$

= tanh(0.9811)

= 0.7535

$$a_2 = 0.7535$$

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

0.7 0.5 t=2 0.9

Step 1 (Input Forward Propagation)

$$s_2 = f_2 \cdot s_1 + i_2 \cdot a_2$$

 $= 0.7763 \quad 0.3220 + 0.6669 \quad 0.7535$

= 0.7525

y ₁		s ₁	
0.2107		0.3220	

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_2 = 0.7763$$

$$i_2 = 0.6669$$

$$a_2 = 0.7535$$

$$s_2 = 0.7525$$

$$\begin{aligned} f_t &= \sigma(W_f \left[x_t, \ y_{t-1} \right] + b_f) \\ &= \sigma(W_i \left[x_t, \ y_{t-1} \right] + b_i) \\ &= \sigma(W_o \left[x_t, \ y_{t-1} \right] + b_o) \\ a_t &= tanh(W_a \left[x_t, \ y_{t-1} \right] + b_a) \\ &= v_t tanh(s_t) \\ &= v_t tanh($$

Time
$$X_{t, 1}$$
 $X_{t, 2}$ Y $t=1$ 0.1 0.4 0.3 $t=2$ 0.7 0.9 0.5

y₁ s₁ 0.2107 0.3220

$$W_{f} = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{f} = 0.4$$

$$W_{i} = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} \quad b_{i} = 0.2$$

$$W_{a} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} \quad b_{a} = 0.5$$

$$W_{o} = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} \quad b_{o} = 0.3$$

 $f_2 = 0.7763$

 $i_2 = 0.6669$

 $a_2 = 0.7535$

 $s_2 = 0.7525$

 $o_2 = 0.8471$

$$f_t = \sigma(W_f [x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

TITLE	^ t, 1	^ t, 2	у
t=1	0.1	0.4	0.3

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

t=2	0.7	0.9	0.5

$y_2 = o_2 \cdot tanh(s_2)$

 $= 0.8471 \cdot tanh(0.7525)$

= 0.5393

y ₁	S ₁	
0.2107	0.3220	

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$f_2 = 0.7763$$

$$i_2 = 0.6669$$

$$a_2 = 0.7535$$

$$s_2 = 0.7525$$

$$o_2 = 0.8471$$

$$y_2 = 0.5393$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_t = \sigma(W_f[x_t, y_{t-1}] + b_f)$$

$$s_t = f_t \cdot s_{t-1} + i_t \cdot a_t$$

$$i_t = \sigma(W_i [x_t, y_{t-1}] + b_i)$$

$$o_t = \sigma(W_o[x_t, y_{t-1}] + b_o)$$

Time	X t, 1	X t, 2	У
t=1	0.1	0.4	0.3

$$a_t = tanh(W_a[x_t, y_{t-1}] + b_a) | y_t = o_t \cdot tanh(s_t)$$

$$y_t = o_t \cdot tanh(s_t)$$

t=2 0.9 0.5 0.7

Error =
$$y_2$$
 - y

$$= 0.5393 - 0.5$$

$$= 0.0393$$

$$W_f = \begin{pmatrix} 0.7 \\ 0.3 \\ 0.4 \end{pmatrix} b_f = 0.4$$

$$W_i = \begin{pmatrix} 0.2 \\ 0.3 \\ 0.4 \end{pmatrix} b_i = 0.2$$

$$W_a = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.1 \end{pmatrix} b_a = 0.5$$

$$W_o = \begin{pmatrix} 0.8 \\ 0.9 \\ 0.2 \end{pmatrix} b_o = 0.3$$

$$f_2 = 0.7763$$

$$i_2 = 0.6669$$

$$a_2 = 0.7535$$

$$s_2 = 0.7525$$

$$o_2 = 0.8471$$

$$y_2 = 0.5393$$

LSTM

• Similar to the "neural network", the LSTM model (and the basic RNN model) could also have multiple layers and have multiple memory units in each layer.