Seminar on Topological Dynamics of Definable Group Actions Section 2,3(part)

March 25, 2022

1 Extensions of types

Assume $M \leq N \leq \mathfrak{C}$ where M, N are both small. Assume G, V are definable in M, G acts transtively on V. Then G^N acts transtively on V^N because it's a first order property. There is a natural restriction function $r: S_V(N) \to S_V(M)$ (it's a G^M -mapping). We can consider weakly generic types and almost periodic types both in $S_V(N)$ and $S_V(M)$.

We have a useful lemma about weakly generic sets and types.

Lemma 1. Let X be a flow.

- 1. If U_1, U_2 are not weakly generic, then $U_1 \cup U_2$ is not weakly generic.
- 2. Every open set U containing WGen is generic.
- 3. Every partial weakly generic type extends to a complete weakly generic type.
- *Proof.* 1. Suppose V is non-generic, then $U_2 \cup V$ is non-generic since U_2 is not weakly generic, and $U_1 \cup (U_2 \cup V)$ is non-generic since U_1 is not weakly generic. Hence $U_1 \cup U_2$ is not weakly generic.
 - 2. Since no point in $X \setminus U$ is weakly generic, by compactness, we can find non-weakly-generic open sets $V_1, ..., V_k$ such that $U \cup V_1 \cup ... \cup V_k = X$. By (1), $V_1 \cup ... \cup V_k$ is non-weakly-generic, so U is generic.
 - 3. By 1. \Box

Lemma 2. Assume $\varphi(x)$ is formula over M.

- 1. φ is generic in V^M iff it is generic in V^N .
- 2. If φ is weakly generic in V^M , then it's weakly generic in V^N . If M is ω -saturated, then the converse holds.

- 3. If $p \in S_V(M)$ is weakly generic, then there is a weakly generic type $q \in S_V(N)$ extending p, that is $WGen_V(M) \subseteq r(WGen_V(N))$.
- 4. If M is ω -saturated, then for every weakly generic type $q \in S_V(N)$, q|M is weakly generic in $S_V(M)$. Together with 3, that is, $WGen_V(M) = r(WGen_V(N))$.

Proof. We may assume $\varphi(x) \vdash V(x)$.

- 1. The formula $\exists A \subseteq G(|A| = k) (\forall x \in V \bigvee_{a \in A} \varphi(a^{-1}x))$ describes the generic set.
- 2. If φ is weakly generic in V^M , there is a non-generic formula over M ψ such that $\varphi \vee \psi$ is generic in V^M , then we apply 1.

If φ is weakly generic in V^N , then there is a non-generic formula over N ψ such that $\varphi \vee \psi$ is generic in V^N . We regard $\psi = \psi'(x; \bar{b})$ where ψ' is a L(M)-formula and \bar{b} are parameters from N. There is a partial type of y over finite parameters appearing in φ and ψ' forcing $\varphi(x) \vee \psi'(x; \bar{y})$ be generic in V^M (one formula) and $\psi'(x; \bar{y})$ non-generic in V^M (infinite fomulas). If M is ω -saturated, the realization \bar{a} makes $\psi'(x; \bar{a})$ a non-generic formula in V^M and $\varphi(x) \vee \psi'(x; \bar{a})$ generic in V^M .

3. It follows 1 and lemma 1.3.

4. It follows 2. \Box

Recall that a type $q \in S(N)$ is an heir of $p \in S(M)$ if $p \subseteq q$ and for every $\varphi(x; \bar{c}) \in q$ where \bar{c} comes from N, there is $\varphi(x; \bar{b}) \in p$ where \bar{b} comes from M. A type $q \in S(N)$ is a coheir of $p \in S(M)$ if $p \subseteq q$ and q is finitely satisfiable in M.

Lemma 3. Assume $p \in S_V(M)$, $q \in S_V(N)$, $p \subseteq q$.

- 1. If q is an heir of p, then $r(cl(G^N \cdot q)) \subseteq cl(G^M \cdot p)$.
- 2. $r(cl(G^N \cdot q))$ is G^M -invariant in $S_V(M)$.
- *Proof.* 1. Suppose not, there is a formula φ (we may assume $\varphi(x) \vdash V(x)$) over M such that $[\varphi] \cap cl(G^M \cdot p) = \emptyset$ and $\varphi \in g \cdot q$ for some $g \in G^N$. So $\varphi(g^{-1} \cdot x) \in q$. Since q is an heir of p, we have $g' \in G^M$ such that $\varphi(g'^{-1} \cdot x) \in p$, so $\varphi \in g' \cdot p$, a contradiction.
 - 2. $cl(G^N \cdot q)$ is G^N -invariant, so it's G^N -invariant because G^M is a subgroup of G^N . Then $r(cl(G^N \cdot q))$ is G^M -invariant because r is a G^M -mapping.

Proposition 4. Assume $p \in S_V(M)$ is almost periodic, then there is an almost periodic $q \in S_V(N)$ extending p.

Proof. For any $q \in S_V(M)$ extending p, $r(cl(G^N \cdot q)) \subseteq cl(G^M \cdot p)$ and it's G^M -invariant, hence $r(cl(G^N \cdot q)) = cl(G^M \cdot p)$ by minimality.

Let $q_0 \in S_V(M)$ be an heir of p, so $r(cl(G^N \cdot q_0)) = cl(G^M \cdot p)$. Let $q_1 \in cl(G^N \cdot q_0)$ be almost periodic, then $cl(G^N \cdot q_1) \subseteq cl(G^N \cdot q_0)$ and $r(cl(G^N \cdot q_1)) \subseteq r(cl(G^N \cdot q_0))$, hence $r(cl(G^N \cdot q_1)) = cl(G^M \cdot p)$ by minimality (of $cl(G^M \cdot p)$).

Now every $q \in cl(G^N \cdot q_1)$ with r(q) = p is an almost periodic extension of p.

There is a question if every weakly generic type in $S_V(M)$ has a weakly generic heir extension in $S_V(N)$. Lemma 2.4. partly answer it.

Corollary 5. Assume G is a 0-definable group in an ω -saturated model N and $p \in S_G(N)$. Then the following are equivalent.

- 1. p is weakly generic.
- 2. For every ω -saturated $M \leq N$, p|M is weakly generic in $S_G(M)$.
- 3. For any finite $A \subseteq N$, there is an ω -saturated $M \preceq N$ containing A, such that p|M is weakly generic in $S_G(M)$.

Proof. It's just lemma 2.4.

Assume $M \leq N$ are ω -saturated, a non-weakly-generic type in $S_V(M)$ can't extend to a weakly generic type in $S_V(N)$ by lemma 2.4. However, it can happen that a weakly generic but not almost periodic type extend to an almost periodic type. We will see it in the second example of section 3.

2 An example

Consider the group $(\mathbb{Z},+)$ acting on $2^{\mathbb{Z}}$ by right shift. Namely, let $k \in \mathbb{Z}, f \in 2^{\mathbb{Z}}$, then $(k \cdot f)(n) = f(n-k)$. The topology of $2^{\mathbb{Z}}$ is just the countable product of discrete topology $2 = \{0,1\}$. There is an $\eta \in 2^{\mathbb{Z}}$ whose orbit $\mathbb{Z} \cdot \eta$ is dense(just concatenate all finite string to construct that). So $2^{\mathbb{Z}}$ is point transitive. If $f \in 2^{\mathbb{Z}}$ is periodic, |o(f)| is finite, hence f is almost periodic.

Periodic functions are dense, so $WGen(2^{\mathbb{Z}}) = 2^{\mathbb{Z}}$. There are functions not almost periodic, such as η . So the notion of weakly generic point is weaker than almost periodic point in topological dynamics.

Now we are going to transfer the example into model-theoretic setting, interprete $2^{\mathbb{Z}}$ as a space of types over some model. If M is a model, M embeds into S(M) as constant types. (What are algebraic types?) The image of M is discrete and S(M) is a compactification. We can identify Z with the dense orbit $Z \cdot \eta$, then $2^{\mathbb{Z}}$ is also a compactification of \mathbb{Z} . We need to expand $(\mathbb{Z}, +)$ to make $2^{\mathbb{Z}}$ a space of types over \mathbb{Z} .

For a set A, let $2^{\subseteq A}$ [$2^{<A}$] denote the set of all [finite] functions $\sigma \subseteq A \times 2$. \mathbb{Z} also acts by right shift on $2^{\subseteq A}$ and $2^{<A}$. The sets $[\sigma] = \{f \in 2^{\mathbb{Z}} : \sigma \subseteq f\}$ form a basis of topology on $2^{\mathbb{Z}}$. We expand $(\mathbb{Z}, +)$ by unary predicates $P_{\sigma}(x)$, $\sigma \in 2^{<\mathbb{Z}}$, defined by $P_{\sigma}(n) \iff n \cdot \eta \in [\sigma]$.

We expand $(\mathbb{Z}, +)$ by unary predicates $P_{\sigma}(x)$, $\sigma \in 2^{<\mathbb{Z}}$, defined by $P_{\sigma}(n) \iff n \cdot \eta \in [\sigma]$. Let $M = (\mathbb{Z}, +, P_{\sigma})_{\sigma \in 2^{<\mathbb{Z}}}$, T = Th(M).

Proposition 6. For all $n \in \mathbb{Z}$ and $P_{\sigma}(x)$, the following hold.

- 1. $P_{\sigma}(x-n)$ is equivalent in M to $P_{n\cdot\sigma}(x)$.
- 2. $\neg P_{\sigma}(n)$ is equivalent to the disjunction $\bigvee_{v \in 2^X \setminus \{\sigma\}} P_v(x)$ where $X = dom(\sigma)$

3. If $\sigma_1, \sigma_2 \in 2^{<\mathbb{Z}}$ are compatible, then $P_{\sigma_1} \wedge P_{\sigma_2}$ is consistent, otherwise, it is inconsistent.

Proof. Easy to check. \Box

Proposition 7. Let $\Delta = \{P_{\sigma}(x) : \sigma \in 2^{<\mathbb{Z}}\}$, consider the Δ -type space.

- 1. Each Δ -type over M is determined by its formulas without parameters. $S_{\Delta}(\emptyset) = S_{\Delta}(M)$.
- 2. Each function $f \in 2^{\mathbb{Z}}$ determines a complete Δ -type $p_f(x)$, generated by $\{P_{f \mid X}(x) : X \subseteq \mathbb{Z} \text{ is finite}\}$. This is a bijection from $2^{\mathbb{Z}}$ to $S_{\Delta}(\emptyset)$. Moreover, $S_{\Delta}(\emptyset)$ is isomorphic to $2^{\mathbb{Z}}$ via $p_f \mapsto f$ as \mathbb{Z} -flow, where \mathbb{Z} acts on $S_{\Delta}(\emptyset)$ by translation.
- 3. $tp_{\Delta}(0) = p_{\eta}$.

Proof. 1. By Proposition 6.1.

2. Each p_f is complete by the previous proposition, it's consistent since the orbit of η is dense. If f(n) = 0, g(n) = 1, let $\sigma = \{(n,0)\}$, then $P_{\sigma}(x) \in p_f$ and $P_{\sigma}(x) \notin p_g$, hence the map is injective. It's surjective because any complete Δ -type also determines a function in $2^{\mathbb{Z}}$ as $f(n) = 0 \iff P_{\{(n,0)\}}(x) \in p$. An basis of $S(\emptyset)$ maps to a basis of $2^{\mathbb{Z}}$ and vise versa.

2	sy to check.	
۸.	SV to check	- 1 - 1

Remark 8. Let's take a review about the relationship of all the spaces(\mathbb{Z} -flows). $2^{\mathbb{Z}}$ is a compactification of \mathbb{Z} , and $2^{\mathbb{Z}} \cong S_{\Delta}(\emptyset) \cong S_{\Delta}(M)$ via $f \mapsto p_f$ as \mathbb{Z} -flows. S(M) is also a compactification of \mathbb{Z} , also $S_{\Delta}(M)$ is a quotient space of S(M), and the equivalence relation is \mathbb{Z} -invariant.

By the isomorphism and discussion at the start of the section, every type in $S_{\Delta}(M)$ is weakly generic but not every type is almost periodic. Actually, it also holds for S(M).

Proposition 9. In S(M) there are weakly generic types not almost periodic.

Proof. Let $P_f = \{p \in WGen(M) : p_f \subseteq p\}$ for $f \in 2^{\mathbb{Z}}$. It's closed because $P_f = WGen(M) \cap [p_f]$, and it's non-empty because $\pi(WGen(M)) = WGen(S_{\Delta}(M)) = S_{\Delta}(M)$ where π is the natural surjective morphism from S(M) to $S_{\Delta}(M)$ by Lemma 1.4 of the paper.

We claim that no type in P_{η} is almost generic. Assume $r \in P_{\eta}$, $\mathbb{Z}r \subseteq WGen(M)$ because $r \in WGen(M)$, then $cl(\mathbb{Z}r) \subseteq WGen(M)$. For every $\sigma \in 2^{<\mathbb{Z}}$, $\mathbb{Z}r$ meets $[P_{\sigma}]$, hence for any $f \in 2^{\mathbb{Z}}$, we have $cl(\mathbb{Z}r) \cap P_f \neq \emptyset$.

For periodic f with period k, let $\bar{P}_f = \bigcup_{i < k} P_{i \cdot f}$, the set is closed and \mathbb{Z} -invariant, and $cl(\mathbb{Z}r) \cap \bar{P}_f \subsetneq \bar{P}_f$. So $cl(\mathbb{Z}r)$ is not minimal.

Remark 10. Is tp(0/M) is weakly generic? If so, we can also prove the proposition by choosing tp(0/M).