数字电子技术基础

重点复习

组合逻辑电路

半加器与全加器; 编码器与译码器; 数据选择器

逻辑函数化简

数制与编码; 公式法化简; 卡诺图化简

时序逻辑电路

时序逻辑电路分析与设计; 计数器;

触发器

基本触发器; 同步触发器; 边沿触发器

555定时器

施密特触发器; 单稳态触发器; 多谐振荡触发器

第三章、第八章以及第九章不考

期末试题

<u></u>题型:

包括化简作图题,分析题,设计题

题量:

约12道大题

第1章 逻辑代数基础

重点掌握

- 1.1 数制与编码
- 1.2 逻辑函数的公式化简
- 1.3 逻辑函数的图形化简

数制-十进制

数码为: 0~9; 基数是10。

运算规律: 逢十进一, 即: 9+1=10。

十进制数的权展开式:

同样的数码在不同的数 位上代表的数值不同。 10³、10²、10¹、10⁰ 称为十进制的权。各 数位的权是10的幂。

任意一个十进制数都可以表示为各个数位 上的数码与其对应的 权的乘积之和,称为 权展开式。

即: $(5555)_{10} = 5 \times 10^3 + 5 \times 10^2 + 5 \times 10^1 + 5 \times 10^0$

又如: $(209.04)_{10} = 2 \times 10^2 + 0 \times 10^1 + 9 \times 10^0 + 0 \times 10^{-1} + 4 \times 10^{-2}$

数制转换

- 1、二进制数与八进制数的相互转换
- (1) 二进制数转换为八进制数:

(2) 八进制数转换为二进制数:

$$(374.26)_8 = 011 \ 111 \ 100.010 \ 110$$

2、十进制数转换为二进制数

采用的方法 — 基数连除、连乘法

原理: 将整数部分和小数部分分别进行转换。 整数部分采用基数连除法,小数部分 采用基数连乘法。转换后再合并。 整数部分采用基数连除法, 先得到的余数为低位,后得 到的余数为高位。

小数部分采用基数连乘法, 先得到的整数为高位,后得 到的整数为低位。

所以: (44.375)₁₀ = (101100.011)₂

采用基数连除、连乘法,可将十进制数转换为任意的N进制数。

逻辑函数的公式化简

逻辑代数的基本公式和常用公式

序号	公式	序号	公式
		10	$\overline{1} = 0$ $\overline{0} = 1$
1	0-A=0	11	0+A=A
2	1-A=A	12	1+A=1
3	A-A=A	13	A+A=A
4	A-A=0	14	A+A=1
5	A-B=B-A	15	A+B=B+A
6	A-(B-C)=(A-B)-C	16	A+(B+C)=(A+B)+C
7	A-(B+C)=A-B+A-C	17	A+B-C=(A+B)-(A+C)
8	A-B=A+B	18	$\overline{A+B} = \overline{A} \cdot \overline{B}$
9	—————————————————————————————————————	19	A+A-B=A+B

冗余律: $AB + \overline{A}C + BC = AB + \overline{A}C$

例题

$$Y = \overline{A}\overline{C} + \overline{A}\overline{B} + BC + \overline{A}\overline{C}\overline{D}$$

$$= \overline{A}\overline{C} (1 + \overline{D}) + \overline{A}\overline{B} + BC$$

$$= \overline{A}\overline{C} + \overline{A}\overline{B} + BC$$

$$= \overline{A}\overline{C} + \overline{A}C + \overline{A}\overline{B} + BC$$

$$= \overline{A} + \overline{A}B + BC$$

$$= \overline{A} + BC$$

$$= \overline{A} + BC$$

$$Y = ABC + ABD + A\overline{C}D + \overline{C}\overline{D} + A\overline{B}C + \overline{A}C\overline{D}$$

$$= AC(B + \overline{B}) + ABD + \overline{C}(AD + \overline{D}) + \overline{A}C\overline{D}$$

$$= AC + A\overline{C} + \overline{C}\overline{D} + ABD + \overline{A}C\overline{D}$$

$$= A + \overline{D}(\overline{C} + \overline{A}C) + ABD$$

$$= A + \overline{A}\overline{D} + \overline{C}\overline{D} + ABD$$

$$= A + \overline{D} + \overline{C}\overline{D} + ABD$$

$$= A + \overline{D}$$

例题

$$Y = \overline{AC} + \overline{ABC} + \overline{BC}$$
 $= \overline{AC} + \overline{ABC} \cdot \overline{BC}$
 $= (AC + \overline{ABC}) \cdot (B + C)$
 $= AC + BC$ 与或式
 $= \overline{AC} + \overline{BC}$
 $= \overline{AC} + \overline{BC}$ 与非-与非式

逻辑函数的图形化简

逻辑函数的图形化简法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。

卡诺图的<mark>特点</mark>是任意两个相邻的最小项在图中也是相邻的。 (相邻项是指两个最小项只有一个因子互为反变量,其余因子均 相同,又称为逻辑相邻项)。

对相邻的方格画"圈"

- 对 "1"画圈
- · 圈要求大、少,每圈包含 2ⁿ个"1"
- · 每个"1"可重复使用,但每圈 至少必须包含一个新的"1"
- 所有的"1"必须圈完。

$$Y = C\overline{D}(A \oplus B) + \overline{A}B\overline{C} + \overline{A}\overline{C}D$$
 给定约束条件为 $AB + CD = 0$

$$Y = A\overline{B}C\overline{D} + \overline{A}BC\overline{D} + \overline{A}B\overline{C} + \overline{A}\overline{C}D$$

$$ABCD + ABC\overline{D} + AB\overline{C}D + AB\overline{C}\overline{D} + \overline{A}BCD + \overline{A}\overline{B}CD + A\overline{B}CD = 0$$

因此
$$\begin{cases} Y = B + \overline{A}D + AC \\ AB + CD = 0 \end{cases}$$

$$Y(ABCD) = \sum m(0,1,2,4,5,9) + \sum d(7,8,10,11,12,13)$$

$$\begin{cases} Y = \overline{C} + \overline{B}\overline{D} \\ \sum d(7, 8, 10, 11, 12, 13) = 0 \end{cases}$$

$Y=F(A,B,C,D)=\sum m(1,2,3,4,6,7,10,15)$

$$Y = \overline{A}\overline{B}D + \overline{B}C\overline{D} + \overline{A}B\overline{D} + BCD$$

$$Y(A,B,C,D) = \sum m(3,5,8,9,10,12) + \sum d(0,1,2,13)$$

第2章 门电路

学习要点:

- 基本逻辑门电路的逻辑功能
 - 2.1 半导体器件的开关特性
 - 2.2 分立元件门电路
 - 2.3 CMOS集成门电路

例题: 试根据下图所示输入信号A、B的波形,对应画出组合逻辑电路Y的输出波形

$$Y = \overline{A \cdot \overline{AB} \cdot B \cdot \overline{AB}}$$

$$= A \cdot \overline{AB} + B \cdot \overline{AB}$$

$$= A \cdot \overline{B} + B \cdot \overline{A}$$

$$= A \oplus B$$

第4章 组合逻辑电路

学习要点:

- 组合电路的分析方法和设计方法
- 利用数据选择器、译码器等进行逻辑设计的方法
- · 加法器、编码器等中规模集成电路的逻辑功能和使用方法

重点掌握组合逻辑电路的分析与设计方法; 掌握常用的组合逻辑电路的逻辑功能。

组合逻辑电路的特点

一、组合逻辑电路的特点

$$\begin{cases} Y_0 = f_0(I_0, I_1, \dots, I_{n-1}) \\ Y_1 = f_1(I_0, I_1, \dots, I_{n-1}) \\ \vdots \\ Y_{m-1} = f_{m-1}(I_0, I_1, \dots, I_{n-1}) \end{cases}$$

组合逻辑电路的分析

电路功 能描述 例: 用与非门设计一个举重裁判表决电路。设举重比赛有3个 裁判,一个主裁判和两个副裁判,只有当两个或两个以上裁判 判明成功,并且其中有一个为主裁判时,表明成功的灯才亮。

真值表

 $\sqrt{1}$

设主裁判为变量A,副裁判分别为B和C;表示成功与否的灯为Y,根据逻辑要求列出真值表。

Α	В	C	Y	•	4	В	C	Υ
0	0	0	0	1		0	0	0
0	0	1	0	1		0	1	1
0	1	0	0	1		1	0	1
0	1	1	0	1		1	1	1

$$Y = m_5 + m_6 + m_7 = A\overline{B}C + AB\overline{C} + ABC$$

组合逻辑电路的基本设计方法

电路功 能描述

穷举法

真值表

例:设计一个楼上、楼下开关的控制逻辑电路来控制楼梯上的路灯,使之在上楼前,用楼下开关打开电灯,上楼后,用楼上开关关灭电灯;或者在下楼前,用楼上开关打开电灯,下楼后,用楼下开关关灭电灯。

设楼上开关为A, 楼下开关为B, 灯泡为Y。并设A、B闭合时为1, 断开时为0; 灯亮时Y为1, 灯灭时Y为0。根据逻辑要求列出真值表。

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

已为最简与 或表达式

例题:组合逻辑电路设计:用与非门设计一个监视交通信号灯工作状态的组合逻辑电路。 有红、黄、绿三盏交通信号灯,正常情况下,必有一盏而且只能一盏灯点亮。其他情况 都是故障灯,要发出故障信号。

答案:①定义红、黄、绿三盏交通信号灯输入对应R,A,G,故障信号输出为Z;②定义三盏信号灯,灯灭为0,灯亮为1;有故障时Z为1,否则为0。

根据逻辑抽象得, 真值表

R	Α	G	Z
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

得逻辑表达式为:

$$Z = \overline{R}\overline{A}\overline{G} + RA + RG + GA$$

$$Z = \overline{\overline{Z}} = \overline{\overline{R}}\overline{A}\overline{\overline{G}} + RA + RG + GA$$

$$= \overline{\overline{R}}\overline{A}\overline{\overline{G}} \cdot \overline{RA} \cdot \overline{RG} \cdot \overline{GA}$$

半加器与全加器

一、半加器

能对两个1位二进制数进行相加而求得和及进位的逻辑电路称为半加器。

二、全加器

能对两个1位二进制数进行相加并考虑低位来的进位,即相当于3个1位二进制数相加,求得和及进位的逻辑电路称为全加器。

低位向本位的进位

二、全加器

全加器真值表:

A_i	B_i	S_i	$\overline{C_i}$	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 A_i 、 B_i : 加数, C_{i-1} : 低位来的进位, S_i : 本位的和,

 C_i : 向高位的进位。

例题: 试分析下图所示逻辑电路的功能

$$S = A \oplus B \oplus C_{i-1}$$

$$C = \overline{(\overline{A} \oplus B)C_{i-1}} \cdot \overline{AB}$$

$$= (A \oplus B)C_{i-1} + AB$$

$$= (\overline{A}B + A\overline{B})C_{i-1} + AB$$

$$= \overline{A}BC_{i-1} + A\overline{B}C_{i-1} + AB$$

真值表

A_i	\boldsymbol{B}_i	C_{i-1}	S_{i}	C_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

为全加器逻辑电路图

编码器与译码器

二进制编码器: 用n位二进制代码对 $N = 2^n$ 个信号进行编码的电路

真值表	输入		输出		
共旧仪	+削/\	Y ₂	Y ₁	Y_0	<u> </u>
	I_0	0	0	0	
输入相互	I_1	0	0	1	
排斥,任	I_2	0	1	0	
何时刻只	I_3	0	1	1	输入8个互斥的信号
能有一个输入信号	I_4	1	0	0	输出3位二进制代码
有效	I_5	1	0	1	
13 XX	I_6	1	1	0	
	I_7	1	1	1	28

二-十进制编码器

1、8421 BCD码编码器

真值表

输入		输	出	
I	Y_3	Y_2	Y_1	Y_0
$0(I_0)$	0	0	0	0
$1(I_1)$	0	0	0	1
$2(I_2)$	0	0	1	0
$3(I_3)$	0	0	1	1
$4(I_4)$	0	1	0	0
$5(I_{5})$	0	1	0	1
$6(I_{6})$	0	1	1	0
$7(I_7)$	0	1	1	1
$8(I_8)$	1	0	0	0
$9(I_9)$	1	0	0	1

一进制代码一斥的数码

逻辑表达式

	_				
输入		输	出		
I	Y_3	Y_2	\boldsymbol{Y}_1	Y_0	$Y_3 = I_8 + I_9 = I_8 I_9$
$0(I_0)$	0	0	0	0	$oldsymbol{V} = oldsymbol{I} + oldsymbol{I} + oldsymbol{I} + oldsymbol{I}$
$1(I_1)$	0	0	0	1	$Y_2 = I_4 + I_5 + I_6 + I_7$
$2(I_2)$	0	0	1	0	$=\overline{I_4I_5I_6I_7}$
$3(I_3)$	0	0	1	1	— I 4 I 5 I 6 I 7
$4(I_4)$	0	1	0	0	$Y_1 = I_2 + I_3 + I_6 + I_7$
$5(I_{5})$	0	1	0	1	
6 (I ₆)	0	1	1	0	$=I_{2}I_{3}I_{6}I_{7}$
$7(I_7)$	0	1	1	1	$oldsymbol{V} = oldsymbol{I} + oldsymbol{I$
8 (<i>I</i> ₈)	1	0	0	0	$Y_0 = I_1 + I_3 + I_5 + I_7 + I_9$
$9(I_9)$	1	0	0	1	$=\overline{I_1}\overline{I_3}\overline{I_5}\overline{I_7}\overline{I_9}$
	-				- — <i>1</i>

逻辑表达式

逻辑图

$$Y_3 = I_8 + I_9$$

$$= \overline{I_8 I_9}$$

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

= $\overline{I_4 I_5 I_6 I_7}$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

= $\overline{I_2 I_3 I_6 I_7}$

$$Y_0 = I_1 + I_3 + I_5 + I_7 + I_9$$

$$= \overline{I_1 I_3 I_5 I_7 I_9}$$

译码器

把代码状态的特定含义翻译出来的过程称为译码, 实现译码操作的电路称为译码器。

译码器就是把一种代码转换为另一种代码的电路。

一、二进制译码器

把二进制代码的各种状态,按其原意翻译成对应输出信号的电路。

设二进制译码器的输入端为*n*位二进制代码,则输出端为2ⁿ个,且对应于输入代码的每一种状态,2ⁿ个输出中只有一个为1(或为0),其余全为0(或为1)。

译码器的输出任何时刻都只有一个有效。

二进制译码器可以译出输入变量的全部状态,故又称为变量译码器。

3位二进制译码器

真值表

4	俞	<u> </u>				输	出			
A_2	A_1	A_0	Y_0	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	Y_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

输入: 3位二进制代码 输出: 8个互斥的信号

逻辑表达式

逻辑图

3线-8线译码器

电路特点:与门组成的阵列

将与门换成与非门,则输出为 反变量,即为低电平有效。

2、集成3位二进制译码器74LS138

 A_2 、 A_1 、 A_0 为二进制译码输入端, $\overline{Y_7} \sim \overline{Y_0}$ 为译码输出端 (低电平有效), S_1 、 $\overline{S_2}$ 、 $\overline{S_3}$ 为选通控制端。当 $S_1 = 1$ 、 $\overline{S_2} + \overline{S_3} = 0$ 时,译码器处于工作状态;当 $S_1 = 0$ 或 $\overline{S_2} + \overline{S_3} = 1$ 时,译码器处于禁止状态,译码器的输出端全为1。只有当 $S_1 = 1$ 、 $S_2 + S_3 = 0$ 时,译码器正常运行。

真值表

	输		λ				<i>t.</i> ≙			ш		
使	能	逆	<u> </u>	择			输			出		
S_1	$\overline{S}_2 + \overline{S}_3$	A_2	A_1	A_0	\overline{Y}_7	\overline{Y}_{6}	\overline{Y}_{5}	$\overline{Y}_{\!\scriptscriptstyle 4}$	\overline{Y}_3	\overline{Y}_2	\overline{Y}_1	\overline{Y}_{0}
×	1	×	X	×	1	1	1	1	1	1	1	1
0	X	×	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
_1	0	1	1	1	0	1	1	1	1	1	1	1

输入: 自然二进制码

输出: 低电平有效

例题:设计集成二进制译码器74LS138和与非门构成全加器和全减器

全加器真值表

$\overline{A_i}$	B_i	S_i C_i	
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

$$S_{i} = \overline{A}_{i}\overline{B}_{i}C_{i-1} + \overline{A}_{i}B_{i}\overline{C}_{i-1} + A_{i}\overline{B}_{i}\overline{C}_{i-1} + A_{i}B_{i}C_{i-1}$$

$$C_{i} = \overline{A}_{i}B_{i}C_{i-1} + A_{i}\overline{B}_{i}C_{i-1} + A_{i}B_{i}\overline{C}_{i-1} + A_{i}B_{i}C_{i-1}$$

全减器真值表

$\overline{A_i}$	B_i	D_i E_i	
0	0	0	0 0
0	0	1	1 0
0	1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1	0 1
1	1	0	0 1
1	1	1	1 1

$$D_i = \overline{A}_i \overline{B}_i E_{i-1} + \overline{A}_i B_i \overline{E}_{i-1} + A_i \overline{B}_i \overline{E}_{i-1} + A_i B_i E_{i-1}$$

$$E_i = \overline{A}_i \overline{B}_i E_{i-1} + \overline{A}_i B_i \overline{E}_{i-1} + \overline{A}_i B_i E_{i-1} + A_i B_i E_{i-1}$$

$$\begin{split} S_i &= \overline{A}_i \overline{B}_i C_{i-1} + \overline{A}_i B_i \overline{C}_{i-1} + A_i \overline{B}_i \overline{C}_{i-1} + A_i B_i C_{i-1} \\ &= \underline{Y}_1 + \underline{Y}_2 + \underline{Y}_4 + \underline{Y}_7 \\ &= \overline{\overline{Y}_1} \cdot \overline{\overline{Y}_2} \cdot \overline{\overline{Y}_4} \cdot \overline{\overline{Y}_7} \end{split}$$

$$\begin{split} C_i &= \overline{A}_i B_i C_{i-1} + A_i \overline{B}_i C_{i-1} + A_i B_i \overline{C}_{i-1} + A_i B_i C_{i-1} \\ &= \underline{Y}_3 + \underline{Y}_5 + \underline{Y}_6 + \underline{Y}_7 \\ &= \overline{\overline{Y}_3} \cdot \overline{\overline{Y}}_5 \cdot \overline{\overline{Y}}_6 \cdot \overline{\overline{Y}}_7 \end{split}$$

例题:用译码器74LS138设计一个组合逻辑电路,输入M、输出N均为3位二进制数,两 者间保持下列数据关系, 当3≤M≤5时, N=M+2; M>5时, N=M-1; 当M < 3时, N=M

	M			N	
\overline{A}	В	C	N_0	N_1	N_2
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	0

$$\begin{split} N_0 &= \overline{A}BC + A\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} + ABC \\ &= m_3 + m_4 + m_5 + m_6 + m_7 \\ &= \overline{m_3} + \overline{m_4} + \overline{m_5} + \overline{m_6} + \overline{m_7} \\ &= \overline{m_3} \cdot \overline{m_4} \cdot \overline{m_5} \cdot \overline{m_6} \cdot \overline{m_7} \\ &= \overline{Y_3} \cdot \overline{Y_4} \cdot \overline{Y_5} \cdot \overline{Y_6} \cdot \overline{Y_7} \\ N_1 &= \overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + ABC \\ &= m_2 + m_4 + m_5 + m_7 \\ &= \overline{Y_2} \cdot \overline{Y_4} \cdot \overline{Y_5} \cdot \overline{Y_7} \\ N_2 &= \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + AB\overline{C} \end{split}$$

 $= m_1 + m_3 + m_5 + m_7$

 $= \overline{Y_1} \cdot \overline{Y_2} \cdot Y_5 \cdot Y_7$

3.4 数据选择器

常用的4选1数据选择器

逻辑抽象 (输入、出信号分析,选择控制信号状态约定,真值表)、列逻辑表达式、画逻辑图

由地址码决定 从4路输入中选 择哪1路输出。

逻辑表达式

$$Y = D_0 \overline{A}_1 \overline{A}_0 + D_1 \overline{A}_1 A_0 + D_2 A_1 \overline{A}_0 + D_3 A_1 A_0 = \sum_{i=0}^{3} D_i m_i$$

例题: 用数据选择器实现以下组合逻辑函数

$$Y = \overline{\left(A \oplus C\right) \cdot \overline{\left(A\overline{B}\overline{C} + \overline{A}\overline{B}C\right)}}$$

$$Y = A \oplus C \cdot \overline{\overline{B}} (A\overline{C} + \overline{A}C)$$

$$= \overline{A \oplus C} + \overline{B}(A\overline{C} + \overline{A}C)$$

$$=\overline{AC+AC}+\overline{B}(AC+\overline{AC})$$

$$= (\overline{A}+C)(A+\overline{C})+\overline{B}(A\overline{C}+\overline{A}C)$$

$$=\overline{A} (\overline{B}+B)C+A(B+\overline{B})\overline{C}+\overline{A}\overline{B}C+\overline{A}\overline{B}C$$

$$=\overline{A}\overline{B}(C+\overline{C})+\overline{A}B\overline{C}+A\overline{B}(C+\overline{C})+ABC$$

$$D_0 = 1$$
, $D_1 = \overline{C}$, $D_2 = 1$, $D_3 = C$

例题: 用如图所示的8选1数据选择器CT74LS151实现下列函数

$$Y(A, B, C, D) = \sum m(1, 5, 6, 7, 9, 11, 12, 13, 14)$$

(1) 写出标准与或式

$$Y(A,B,C,D) = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + \overline{A}BCD$$
$$+A\overline{B}\overline{C}D + A\overline{B}CD + AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D}$$
$$= \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BCD + ABC\overline{D}$$

(2) 确定数据选择器输入变量的表达式

$$Y' = \boldsymbol{D}_{0} \overline{A}_{2} \overline{A}_{1} \overline{A}_{0} + \boldsymbol{D}_{1} \overline{A}_{2} \overline{A}_{1} A_{0} + \boldsymbol{D}_{2} \overline{A}_{2} A_{1} \overline{A}_{0} + \boldsymbol{D}_{3} \overline{A}_{2} A_{1} A_{0} + \boldsymbol{D}_{4} A_{2} \overline{A}_{1} \overline{A}_{0} + \boldsymbol{D}_{5} A_{2} \overline{A}_{1} A_{0} + \boldsymbol{D}_{6} A_{2} A_{1} \overline{A}_{0} + \boldsymbol{D}_{7} A_{2} A_{1} A_{0}$$

比较两个表达式,确定两者相等的条件,确定数据选择器各个输入变量

$$Y = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}D + \overline{A}BC + A\overline{B}\overline{C}D + A\overline{B}CD + AB\overline{C} + ABC\overline{D}$$

$$Y' = \boldsymbol{D}_{0} \overline{A}_{2} \overline{A}_{1} \overline{A}_{0} + \boldsymbol{D}_{1} \overline{A}_{2} \overline{A}_{1} A_{0} + \boldsymbol{D}_{2} \overline{A}_{2} A_{1} \overline{A}_{0} + \boldsymbol{D}_{3} \overline{A}_{2} A_{1} A_{0} + \boldsymbol{D}_{4} A_{2} \overline{A}_{1} \overline{A}_{0} + \boldsymbol{D}_{5} A_{2} \overline{A}_{1} A_{0} + \boldsymbol{D}_{6} A_{2} A_{1} \overline{A}_{0} + \boldsymbol{D}_{7} A_{2} A_{1} A_{0}$$

比较两式可得:

$$A_2 = A$$
, $A_1 = B$, $A_0 = C$
 $D_0 = D$, $D_1 = 0$, $D_2 = D$, $D_3 = 1$, $D_4 = D$,
 $D_5 = D$, $D_6 = 1$, $D_7 = \overline{D}$

第5章 触发器

触发器: 存放二进制数字信号和两状态逻辑信号的单元电路。

一个触发器能保存一位二进制信息。

触发器的必备特点:

- 1. 具有两个能自行保持的稳态(1态或0态);
- 2. 外加触发信号时, 电路的输出状态可以翻转;
- 3. 在触发信号消失后, 能将获得的新态保存下来。

基本要求: 具有两个稳定的状态: 1状态和0状态, 能接收、保持、输出信号

重点掌握掌握RS、JK、D和T触发器的逻辑符号、逻辑功能表示方法、触发方式及触发器间的相互转换。

基本RS触发器

・工作原理

R	S	Q Q
0	1	0 1 (复位)
1	0	1 0 (置位)
1	1	保持
0	0	不定 (约束)

特性方程: $\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ RS = 0 \text{ (约束条件)} \end{cases}$

同步RS触发器

特性方程:

$$\mathbf{Q}^{n+1} = \mathbf{S} + \mathbf{\overline{R}} \mathbf{Q}^n$$

$$RS = 0$$

0

X

 \mathbf{Q}^n

控制端

(Clock Pulse)

同步D触发器

•特性方程:

将S=D、R=D代入同步RS 触发器的特性方程,得同步D触发器的特性方程;

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ RS = 0 \end{cases}$$

$$\Leftrightarrow S = \overline{R} = D$$

$$Q^{n+1} = S + \overline{R}Q^n$$

$$= D + DQ^n$$

$$= D$$

$$CP = 1 期间有效$$

边沿D触发器

(1) CP = 0时

主触发器封门、 Q_M 保持 从触发器开门、 $Q = Q_M$

(2) CP=1时

主触发器开门, $Q_M = D$, Q_M "跟随" D变化。 从触发器封门,Q信号被锁存。

(3) CP下降沿到来时,主触发器锁存CP下降时刻D的值,即Q_M=D,随后将该值送入从触发器,使Q=D、Q=D。

 $Q^{n+1}=D$

下降沿时刻有效

边沿JK触发器

&

 $\mathbf{Q}_{\mathbf{M}}$

以用边沿D触发器构成

的电路为例:

$$D = \overline{J + Q^{n}} + KQ^{n}$$

$$= (J + Q^{n})(\overline{K} + \overline{Q^{n}})$$

$$= J\overline{Q^{n}} + \overline{K}Q^{n} + J\overline{K}$$

$$= J\overline{Q^{n}} + \overline{K}Q^{n}$$

CP下降沿时刻有效!

$$\mathbf{Q}^{n+1} = \mathbf{J}\overline{\mathbf{Q}^n} + \mathbf{K}\mathbf{Q}^n$$
 特性表

J	K	Q^{n+1}	说明
0	0	\mathbf{Q}^n	保持
0	1	0	清0
1	0	1	置1
1	1	$\overline{\mathbf{Q}}^n$	翻转

· 边沿JK触发 器的特点

- ①时钟脉冲边沿触发。
- ②功能齐全,使用方便 灵活。
- ③抗干扰能力极强,工 作速度很高。

· 边沿JK触发器 的逻辑符号

例题:在CP下降沿触发的边沿JK触发器中,CP,J,K的波形如下图所示,试对应画出 Q,\bar{Q} ,触发器起始状态为0

J	K	Q^{n+1}	说明
0	0	\mathbf{Q}^n	保持
0	1	0	清0
1	0	1	置1
1	1	$\overline{\mathbf{Q}}^n$	翻转

$$\mathbf{Q}^{n+1} = \mathbf{J}\overline{\mathbf{Q}}^n + \mathbf{K}\overline{\mathbf{Q}}^n$$

例题:已知JK触发器波形如图所示,画出 Q 端的波形,触发器的初始状

态为0

第6章 时序逻辑电路

学习要点:

- 时序电路的分析方法和设计方法
- · 计数器、寄存器等中规模集成电路的逻辑功能和使用方法

时序逻辑电路概述

1. 时序电路的特点

- · 逻辑功能特点: 电路任何时刻的稳态输出不仅与该时刻的输入 信号有关, 而且还取决于电路原来的状态(具有记忆功能)。
- 结构特点:由存储单元和组合电路组成,一定包含触发器; 存储电路的状态反馈到组合电路的输入端,与外部的输入信 号共同决定组合电路的输出。

2. 时序电路的逻辑功能表示方法

时序电路的逻辑功能可用逻辑表达式、状态表、卡诺图、

输出方程

状态图、时序图和逻辑图6种方式表示,这些表示方法在本质上

是相同的,可以互相转换。

逻辑表达式有:

$$\begin{cases} Y_i = F_i(X_1, X_2, \cdots, X_p; Q_1^n, Q_2^n, \cdots, Q_q^n) & i = 1, 2, \cdots, m \\ W_j = G_j(X_1, X_2, \cdots, X_p; Q_1^n, Q_2^n, \cdots, Q_q^n) & j = 1, 2, \cdots, r \\ Q_k^{n+1} = H_k(W_1, W_2, \cdots, W_r; Q_1^n, Q_2^n, \cdots, Q_q^n) & k = 1, 2, \cdots, t \end{cases}$$
状态方程

- ・ X: 时序电路现在输入信号 Y: 时序电路现在输出信号
- · W: 存储电路输入信号(激励、驱动信号)
- ・ Q: 存储电路的状态输出信号

时序逻辑电路的分析方法

时序电路的分析步骤:

例

分析下图所示的时序电路, 画出状态图和时序图。

时钟方程: $CP_2 = CP_1 = CP_0 = CP$ 同步时序电路的时钟 方程可省去不写。

程

输出方程: $Y = Q_1^n Q_2^n$

驱动方程:
$$egin{cases} J_2 = Q_1^n \ J_1 = Q_0^n \ J_0 = \overline{Q}_2^n \end{cases}$$

$$egin{aligned} m{I}_2 &= m{Q}_1^n & m{K}_2 &= \overline{m{Q}}_1^n \ m{I}_1 &= m{Q}_0^n & m{K}_1 &= \overline{m{Q}}_0^n \ m{I}_0 &= \overline{m{Q}}_2^n & m{K}_0 &= m{Q}_2^n \end{aligned}$$

$$J_0 = \overline{Q}_2^n$$

$$K_1 = \overline{Q}_0^n$$

$$K_0 = Q_2^n$$

CP下降 沿有效

(2)

求状态方程

JK触发器的特性方程:

$$egin{cases} J_2 = Q_1^n \ , & K_2 = \overline{Q}_1^n \ J_1 = Q_0^n \ , & K_1 = \overline{Q}_0^n \ J_0 = \overline{Q}_2^n \ , & K_0 = Q_2^n \end{cases}$$

将各触发器的驱动方程代入,即得电路的状态方程:

$$\begin{cases} Q_{2}^{n+1} = J_{2}\overline{Q}_{2}^{n} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}\overline{Q}_{2}^{n} + Q_{1}^{n}Q_{2}^{n} = Q_{1}^{n}\\ Q_{1}^{n+1} = J_{1}\overline{Q}_{1}^{n} + \overline{K}_{1}Q_{1}^{n} = Q_{0}^{n}\overline{Q}_{1}^{n} + Q_{0}^{n}Q_{1}^{n} = Q_{0}^{n}\\ Q_{0}^{n+1} = J_{0}\overline{Q}_{0}^{n} + \overline{K}_{0}Q_{0}^{n} = \overline{Q}_{2}^{n}\overline{Q}_{0}^{n} + \overline{Q}_{2}^{n}Q_{0}^{n} = \overline{Q}_{2}^{n} \end{cases}$$

计算、列状态表

$$egin{cases} Q_2^{n+1} = Q_1^n \ Q_1^{n+1} = Q_0^n \ Q_0^{n+1} = \overline{Q}_2^n \end{cases}$$

$$Y = \overline{Q}_1^n Q_2^n$$

$$\begin{cases} Q_2^{n+1} = 1 \\ Q_1^{n+1} = 1 \\ Q_0^{n+1} = \overline{1} = 0 \end{cases}$$

$$Y = \overline{1} \cdot 1 = 0$$

	,	态	7,	大 ス	态	输出
Q_2'	Q_1^n	Q_0^n	Q_2^{n-1}	Q_{1}^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	0	1	0	1	0
0	1	1	1	1	1	0
1	0	0	0	0	0	1
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	0	0

状态图

画状态图、时序图

排列顺序:

被利用了的状态

不能自启动的电路若因为干扰进入无效循环,则电路不能正常工作。

101

5

电路功能

有效循环的6个状态分别是0~5这6个十进制数字的格雷码,并且在时钟脉冲*CP*的作用下,这6个状态是按递增规律变化的,即:

$$000 {\rightarrow} 001 {\rightarrow} 011 {\rightarrow} 111 {\rightarrow} 110 {\rightarrow} 100 {\rightarrow} 000 {\rightarrow} \dots$$

所以这是一个用格雷码表示的六进制同步加法计数器。当对第6个脉冲计数时,计数器又重新从000开始计数,并产生输出 Y=1。

时序逻辑电路的设计方法

时序电路的设计步骤:

例

设计一个按自然态序变化的7进制同步加法计数器,计数规则为逢七进一,产生一个进位输出。

1

建立原始状态图

排列顺序:

$$Q_{2}^{n}Q_{1}^{n}Q_{0}^{n} \xrightarrow{/Y} 000 \xrightarrow{/0} 001 \xrightarrow{/0} 010 \xrightarrow{/0} 011$$

$$\downarrow /0$$

$$110 \xrightarrow{/1} 101 \xrightarrow{/0} 100$$

- 2 状态化简 已经最简。
- 3 状态分配 已是二进制状态。

选触发器, 求时钟、输出、状态、驱动方程

因需用3位二进制代码,选用3个CP下降沿触发的JK触发器,分别用 FF_0 、 FF_1 、 FF_2 表示。

由于要求采用同步方案, 故时钟方程为:

$$CP_0 = CP_1 = CP_2 = CP$$

输出方程:

现态的卡诺图

无效状态作约束项处理

$$Y = Q_2^n Q_1^n$$

状态方程

	现态的卡诺图						
•	$Q_1^nQ_0^n$ Q_0^{n+1}						
Q_2^n		00	01	11	10		
	0	1	0	0	1		
	1	1	0	X	0		

$$(a)$$
 Q_0^{n+1} 的卡诺图

$$Q_1^n Q_0^n$$
 $Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$ Q_2^n 00 01 11 10 0 011 110 × 000 次态的卡诺图

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n + \overline{Q}_1^n \overline{Q}_0^n$$

$$= \left(\overline{Q}_2^n + \overline{Q}_1^n\right) \overline{Q}_0^n$$

$$= \overline{Q}_2^n \overline{Q}_1^n \overline{Q}_0^n$$

$$= \overline{Q}_2^n \overline{Q}_1^n \overline{Q}_0^n + \overline{1} \overline{Q}_0^n$$

状态方程

$$(c)$$
 Q_2^{n+1} 的卡诺图

$$Q_{1}^{n+1} = Q_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{2}^{n} \overline{Q}_{0}^{n} Q_{1}^{n}$$

$$Q_{2}^{n+1} = Q_{1}^{n} Q_{0}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{1}^{n} Q_{2}^{n}$$

不化简,以便使之与JK触发 器的特性方程的形式一致。

$$\begin{cases} Q_0^{n+1} = \overline{Q_2^n Q_1^n} \overline{Q_0^n} + \overline{1} Q_0^n \\ Q_1^{n+1} = Q_0^n \overline{Q_1^n} + \overline{Q_2^n} \overline{Q_0^n} Q_1^n \\ Q_2^{n+1} = Q_1^n Q_0^n \overline{Q_2^n} + \overline{Q_1^n} Q_2^n \end{cases}$$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

比较,得驱动方程:

$$\begin{cases} J_0 = \overline{Q_2^n Q_1^n}, & K_0 = 1 \\ J_1 = Q_0^n, & K_1 = \overline{\overline{Q}_2^n \overline{Q}_0^n} \\ J_2 = Q_1^n Q_0^n, & K_2 = Q_1^n \end{cases}$$

$$Y = Q_2^n Q_1^n$$

检查电路能否自启动

将无效状态111代入状态方程计算:

$$\begin{cases} Q_0^{n+1} = \overline{Q_2^n Q_1^n} \overline{Q_0^n} + \overline{1} Q_0^n = 0 \\ Q_1^{n+1} = Q_0^n \overline{Q_1^n} + \overline{Q_2^n} \overline{Q_0^n} Q_1^n = 0 \\ Q_2^{n+1} = Q_1^n Q_0^n \overline{Q_2^n} + \overline{Q_1^n} Q_2^n = 0 \end{cases}$$

可见111的次态为有效状态000, 电路能够自启动。

计数器

在数字电路中,能够记忆输入脉冲个数的电路称为计数器。

十进制计数器

十进制同步计数器

十进制同步加法计数器

排列顺序:

状态

$$Q_3^n Q_2^n Q_1^n Q_0^n \xrightarrow{/C} 0000 \xrightarrow{/0} 0001 \xrightarrow{/0} 00010 \xrightarrow{/0} 0010 \xrightarrow{/0} 0010$$

$$0 \xrightarrow{n} 10$$

选用4个CP下降沿触发的 JK触发器,分别用FF。、 FF₁、FF₂、FF₃表示。

/0 **/**0 **/**0 **/**0

时钟方程:

$$CP_0 = CP_1 = CP_2 = CP_3 = CP$$

输出方程: $C = Q_3^n Q_0^n$

$$Q_0^{n+1} = \overline{Q}_0^n = 1 \cdot \overline{Q}_0^n + \overline{1} \cdot Q_0^n$$

$$Q_1^{n+1} = \overline{Q}_3^n Q_0^n \cdot \overline{Q}_1^n + \overline{Q}_0^n \cdot Q_1^n$$

状态方程:

$$\begin{cases} Q_0^{n+1} = 1 \cdot \overline{Q}_0^n + \overline{1} \cdot Q_0^n \\ Q_1^{n+1} = \overline{Q}_3^n Q_0^n \cdot \overline{Q}_1^n + \overline{Q}_0^n \cdot Q_1^n \end{cases}$$

$$\begin{cases} Q_1^{n+1} = \overline{Q}_3^n Q_0^n \cdot \overline{Q}_1^n + \overline{Q}_0^n \cdot Q_1^n \\ Q_2^{n+1} = Q_1^n Q_0^n \cdot \overline{Q}_2^n + \overline{Q}_1^n Q_0^n \cdot Q_2^n \\ Q_3^{n+1} = Q_2^n Q_1^n Q_0^n \cdot \overline{Q}_3^n + \overline{Q}_0^n \cdot Q_3^n \end{cases}$$
与JK触发器的特性方程 $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

与JK触发器的特性方程 $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

比较,得驱动方程:

$$\begin{cases} J_0 = K_0 = 1 \\ J_1 = \overline{Q}_3^n Q_0^n, & K_1 = Q_0^n \end{cases}$$

$$J_2 = K_2 = Q_1^n Q_0^n$$

$$J_3 = Q_2^n Q_1^n Q_0^n, & K_3 = Q_0^n \end{cases}$$

疑 $J_0 = K_0 = 1$ 动 $J_1 = \overline{Q}_3^n Q_0^n$, $K_1 = Q_0^n$ 方 $J_2 = K_2 = Q_1^n Q_0^n$ $J_3 = Q_2^n Q_1^n Q_0^n$, $K_3 = Q_0^n$

输出方程:

$$C = Q_3^n Q_0^n$$

将无效状态1010~1111分别代入状态方程进行计算,可以验证在*CP*脉冲作用下都能回到有效状态,电路能够自启动。

例

用同步74LS163来构成一个十二进制计数器。

(1) 写出状态 S_{N-1} 的二进制代码。

$$S_{N-1} = S_{12-1} = S_{11} = 1011$$

(2) 求归零逻辑。

$$\overline{CR} = \overline{LD} = \overline{P}_{N-1} = \overline{P}_{11}, P_{N-1} = P_{11} = Q_3^n Q_1^n Q_0^n$$

(3) 画连线图。

(a)用同步清零端 \overline{CR} 归零

Do~D3可随意处理

(b)用同步置数端 $L\overline{D}$ 归零

D₀~D₃必须都接0

第7章 脉冲信号的产生与整形

•矩形脉冲的基本特性:

- 获取矩形脉冲波形(时钟)的途径:
 - 1、用多谐振荡器直接产生
 - 2、用整形电路把已有的周期性变化的波形整形产生
 - 矩形脉冲波形的整形电路
 - ——施密特触发器、单稳态触发器。

施密特触发器 将缓慢变化或快速变化的非矩形脉冲变换 成陡峭的矩形脉冲。

单稳态触发器 将宽度不符合要求的脉冲变换成符合要求 的矩形脉冲。

 用555定时器也可以构成施密特触发器、单稳态触发器和 多谐振荡器。

555定时器的功能表

\overline{R}_{D}	TH	TR	U_{o}	T
0	×	×	0	导通
1	>2V _{CC} /3	> V _{CC} /3	0	 导通
1	< 2V _{CC} /3	< V _{CC} /3	1	截止
1	< 2V _{CC} /3	> V _{CC} /3	保持	保持

施密特触发器

• 特点: (1) 电平触发: 触发信号 U_I 可以是变化缓慢的模拟信号, U_I 达某一电平值时,输出电压 U_O 突变。 U_O 为脉冲信号。

(2) 电压滞后传输:滞回特性。

• 用途: 整形,构成单稳态触发器和多谐振荡器等。

