Environmental monitoring

Vincenzo Damico 269656 Ilenia Oliverio 263924 Josseline Michelle Alvarenga Ortez 251905 IOT CLASS PROJECT 2024-2025, PROF. GIANCARLO FORTINO PROF. FRANCESCO PUPO

Content

- Goals
- Architecture
- Context-aware
- Challenges
- Features
- Used technologies
- Future development

Goals

Main Goal:

Museum's environment Monitoring Dashboard

Side Goal:

Museum's environment Realtime updating

Sensor Nodes
TelosB

Base StationTelosB

Edge DevicePC, Python Interface

radio

Serial Port

Sensor Nodes

2 TelosB

MAKEFILE

SensingAppC.nc

SensingC.nc

SensorMsg.h

Base Station

1 TelosB

MAKEFILE

SimpleReceiver AppC.nc

SimpleReceiverC.nc

SensorMsg.h

EDGE device **Mqtt QoS1** Node red HTTP PUT **Adaptation of the FIREBASE Node-message for** Mqtt subscriber **Firebase Adaptation of the Node-message for InfluxDB InfluxDB Grafana**

Flow

Adaptation of the

Node-message for

InfluxDB

msg.payload = [

return msg;

10 11 temperature: msg.temperature,

node: msg.sensorId.toString()

humidity: msg.humidity, luminosity: msg.luminosity

msg.timestamp=msg.timestamp;

EDGE device

Firebase + Android

JetPack Compose

Data

Data Representation

SensorReading NodeData BaseStationData **MAIN ACTIVITY**

Nav

AppFragmentNavigator

View

Screen

HomeScreen
LoginScreen
RegisterScreen

Model

AuthViewModel FirebaseViewModel LogicViewModel RegisterViewModel

Android UI

Context-aware

*Scalable

1* ~ TelosB base station

1* ~ PC that act EdgeDevice

1* ~ Android mobile Device

Measurement Frequency

Challenges

 Radio communication fails between TelosB

Sensors Placement

Uncertainty

Challenges

 MQTT implementation with QoS=1 to balance RealTime constraints & Reliability

Flow management

Integration of Node-red and InfluxDB

Challenges

Integration of InfluxDB and Grafana

Challenges

 Design following the JetPackCompose
 Paradigm

Real time
 syncronization with
 the sensors datas on
 Firebase

Features

Dashboard that provides real-time visualization of the sensors datas

Real time synchronization with Android mobile devices

Cloud integration to store and share data

Easy scalable system

What did we use?

TinyOS (.nc)	Python
Firebase	MQTT (Nodered+ Mosqitto)
Grafana	Android

Future development

Implementation of actuation to change temp, hum, lum

Reinforced learning model for autoregulation of the actuators

Implementation of area data inference model

Advise deployment AI System for better positioning of the sensors

Git-Hub

https://github.com/VincenzoDamico/IOT_TinyOs

Thank you

Vincenzo Damico 269656 Ilenia Oliverio 263924 Josseline Michelle Alvarenga Ortez 251905 **IOT CLASS PROJECT 2024-2025, PROF. GIANCARLO FORTINO PROF. FRANCESCO PUPO**

