Universidade Federal de Pelotas

Cursos de Ciência e Engenharia de Computação

Disciplina: Cálculo Numérico Computacional

Profa. Larissa A. de Freitas

Lista de Exercícios – Resolução Numérica de Equações Algébricas e Transcendentes

Questão 1 – Determine a raiz da função $f(x) = -12 - 21x + 18x^2 - 2.75 x^3$ com o método da bissecção e da falsa posição. Utilize as aproximações iniciais a = -1 e b = 0 e um critério de parada de 1%.

Questão 2 — Determine a raiz da função $f(x) = ln(x^2)$ - 0.7 com o método da bissecção e da falsa posição. Utilize três iterações e as aproximações iniciais a = 0.5 e b = 2.

Questão 3 – Determine a maior raiz real de $f(x) = 0.95x^3 - 5.9x^2 + 10.9x - 6$

- a) Graficamente
- b) Usando o método da tangente (três iterações, $x_0 = 3.5$)
- c) Usando o método da secante (três iterações, $x_0 = 2.5$ e $x_1 = 3.5$)

Questão 4 – Determine a menor raiz real de $f(x) = 8sen(x)e^{-x} - 1$

- a) Graficamente
- b) Usando o método da tangente (três iterações, $x_0 = 0.3$)
- c) Usando o método da secante (três iterações, $x_0 = 0.5$ e $x_1 = 0.4$)

Questão 5 – O polinômio $p(x) = x^5 - 10/3 x^3 + 5/21 x$ tem suas cinco raízes, todas no intervalo [-1, 1]

- **a)** Verifique que $x1 \in [-1, -0.75]$, $x2 \in [-0.75, -0.25]$, $x3 \in [-0.25, 0.25]$, $x4 \in [0.3, 0.8]$, $x5 \in [0.8, 1]$
- **b)** Encontre as raízes utilizando os método elencados abaixo, usando ε = 10 ⁻⁵

x1: Tangente $x_0 = -0.8$

x2: Bissecçãoa = -0.75 e b = -0.25x3: Falsa Posiçãoa = -0.25 e b = 0.25x4: Secante $x_0 = 0.3$ e $x_1 = 0.8$ x5: Secante $x_0 = 0.8$ e $x_1 = 1$

Questão 6 – Compare o desempenho dos métodos da Bissecção, Falsa Posição, Secante e Tangente nas equações abaixo:

a) $f(x) = e^{-x^2} - \cos(x)$ $\varepsilon = 1 = \varepsilon = 2$	$\xi \in [1, 2]$
--	------------------

b)
$$f(x) = x^3 - x - 1$$
 $\varepsilon = 1 = \varepsilon = 10^{-6}$ $\xi \in [1, 2]$

c)
$$f(x) = 4 \operatorname{sen}(x) - e^x$$
 $\varepsilon = 1 = \varepsilon = 10^{-5}$ $\xi \in [0, 1]$

d)
$$f(x) = x \log(x) - 1$$
 $\varepsilon = 1 = \varepsilon = 10^{-7}$ $\xi \in [2, 3]$