Основные понятия теории множеств: 7/8

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2019

Трансфинитная рекурсия

Для любых множества X и ординала lpha обозначим

$$X^{<\alpha} := \{f \mid \exists \beta < \alpha (f : \beta \to X)\}.$$

Вообще, если $f: \beta \to X$, где β — ординал, то f называют β -посл-тью элементов X, или трансфинитной последовательностью элементов X длины β ; поэтому $X^{<\alpha}$ — это просто множество всех трансфинитных последовательностей элементов X длины меньше α .

Теорема (о трансфинитной рекурсии)

Фиксируем некоторый ординал α . Пусть $h: X^{<\alpha} \to X$. Тогда существует и единственная $f: \alpha \to X$ такая, что для любого $\beta \in \alpha$,

$$f(\beta) = h(f \upharpoonright_{\beta}). \tag{*}$$

Доказательство.

Пусть $\gamma \in \alpha$. Мы будем называть функцию f из $\gamma+1$ в X чудесной, если (\star) верно для всех $\beta \in \gamma+1$. Рассмотрим

$${f S} \;:=\; \{\gamma \in \alpha \mid {\sf сущ}\mbox{-{\sf et}}\mbox{-{\sf et}$$

Для каждого $\gamma \in S$ через f_{γ} мы будем обозначать соответствующую (единственную) чудесную функцию из $\gamma+1$ в X.

• • •

Доказательство (продолжение).

Заметим, что для любых $\gamma, \gamma' \in \mathcal{S}$,

$$\gamma \leqslant \gamma' \implies f_{\gamma} \subseteq f_{\gamma'}.$$

Действительно, пусть $\{\gamma,\gamma'\}\subseteq S$ и $\gamma\leqslant\gamma'$; тогда ограничение $f_{\gamma'}$ на $\gamma+1$, очевидно, является чудесным, а потому совпадает с f_{γ} .

Давайте установим по трансфинитной индукции, что S=lpha.

Пусть $\gamma \in \alpha$. Предположим, что для каждого $\beta < \gamma$ имеется единственная чудесная функция f_{β} из $\beta+1$ в X. Возьмём

$$\mathbf{R} := \bigcup \{ f_{\beta} \mid \beta < \gamma \}.$$

Доказательство (продолжение).

Легко видеть, что R — функция из γ в X, причём для всякого $\beta<\gamma$ ограничение R на $\beta+1$ совпадает с f_{β} . Далее, возьмём

$$g := R \cup \{(\gamma, h(R))\}.$$

Разумеется, g будет чудесной функцией из $\gamma+1$ в X. Осталось лишь установить её единственность. Пусть g' — чудесная функция из $\gamma+1$ в X. Проверим, что g (β) = g' (β) для всех $\beta \in \gamma+1$.

- Если $\beta \in \gamma$, то $\beta+1 \subseteq \gamma$ и ограничение g' на $\beta+1$, будучи чудесным, совпадает с f_{β} , т.е. с ограничением g на $\beta+1$, а потому $g'(\beta)=g(\beta)$. В итоге $g\upharpoonright_{\gamma}=g'\upharpoonright_{\gamma}$.
- Более того, $g'(\gamma) = h(g' \upharpoonright_{\gamma}) = h(g \upharpoonright_{\gamma}) = g(\gamma).$

Таким образом, g=g'. Поэтому $\gamma \in \mathcal{S}$ и $f_{\gamma}=g$.

Доказательство (окончание).

В силу принципа трансфинитной индукции, S=lpha. Определим

$$f := \bigcup \{f_{\gamma} \mid \gamma \in \alpha\}.$$

Нетрудно убедиться, что f окажется нужной функцией из lpha в X.

Теорему о трансфинитной рекурсии можно параметризовать, но это нужно главным образом для ординальной арифметики и комбинаторики, которыми мы пока заниматься не собираемся.

Частично-определённая трансфинитная рекурсия

Теорема (о трансфинитной рекурсии, частичной)

Фиксируем некоторый ординал α . Пусть $h:\subseteq X^{<\alpha}\to X$. Тогда сущ. и единственная $f:\subseteq \alpha\to X$ такая, что:

а. для любого $\beta \in \text{dom}(f)$,

$$f(\beta) = h(f \upharpoonright_{\beta});$$

b. либо $\mathrm{dom}\,(f)=\alpha$, либо $\mathrm{dom}\,(f)=\gamma$ для некоторого $\gamma<\alpha$, причём $f\not\in\mathrm{dom}\,(h)$.

Доказательство.

Зафиксируем какой-нибудь объект $\mathbf{b} \notin X$ и положим $X' := X \cup \{\mathbf{b}\}$. Теперь расширим h до $h' : (X')^{<\alpha} \to X'$ следующим образом:

$$h'(g') := \begin{cases} h(g') & \text{если } \bowtie \not\in \mathsf{range}(g') \ \mathsf{id} \ g' \in \mathsf{dom}(h), \\ \mathsf{id} & \text{иначе.} \end{cases}$$

В силу теоремы о трансфинитной рекурсии, существует и единственная $f': \alpha \to X'$ такая, что для любого $\beta \in \alpha$,

$$f'(\beta) = h'(f' \upharpoonright_{\beta}).$$

Возьмём

$$f := f' \cap (\alpha \times X).$$

Нетрудно убедиться, что f будет искомой.

Вариант для класс-функций

Теорема (о трансфинитной «классовой рекурсии»)

Фиксируем некоторый ординал α . Пусть $\Phi(x,y)$ — тотальное функциональное условие. Тогда существует и единственная функция f c dom $(f) = \alpha$ такая, что для любого $\beta \in \alpha$,

$$f(\beta) = \llbracket \Phi \rrbracket (f \upharpoonright_{\beta}).$$

Доказательство.

Несложная модификация доказательства теоремы о трансфинитной рекурсии (грубо говоря, надо забыть об X и заменить h на $\llbracket \Phi \rrbracket$). \square

Параметрическую и частичную версии этой теоремы также нетрудно сформулировать и доказать.

Теорема (Цермело о полном упорядочении; ZFC)

Для любого A существует \leqslant_A такое, что $\langle A, \leqslant_A \rangle$ — в.у.м.

Доказательство.

Пусть η — функция выбора на $\mathcal{P}(A)\setminus\{\varnothing\}$. Тогда для каждого ординала α существует и единственная $f_{\alpha}:\subseteq\alpha\to A$ такая, что:

а. для любого $\beta \in \mathsf{dom}\,(f_\alpha)$,

$$f_{\alpha}(\beta) = \eta(A \setminus \text{range}(f_{\alpha} \upharpoonright_{\beta}));$$

b. либо $\mathrm{dom}\,(f_\alpha)=\alpha$, либо $\mathrm{dom}\,(f_\alpha)=\gamma$ для нек-ого $\gamma\in\alpha$, причём $\mathrm{range}\,(f_\alpha\restriction_\gamma)=A.$

Покажем, что найдётся ординал α , для которого dom $(f_{\alpha}) \neq \alpha$; тогда мы получим $A \sim \gamma$ для некоторого $\gamma \in \alpha$, а $\langle \gamma, \in_{\gamma} \rangle$ — в.у.м.

4 D X 4 D X

Доказательство (продолжение).

Заметим, что для любых ординалов lpha и eta,

$$\alpha \in \operatorname{dom}(f_{\alpha+1}), \quad \beta \in \operatorname{dom}(f_{\beta+1}),$$

$$f_{\alpha+1}(\alpha) = f_{\beta+1}(\beta) \qquad \Longrightarrow \quad \alpha = \beta.$$

Стало быть, условие

$$\Phi(x,y) := «y — ординал» \land x = f_{y+1}(y)$$

функционально. Поэтому, в силу Repl,

$$X := \{ y \mid \exists x \in A \Phi(x, y) \}$$

является множеством. Понятно, что X не может совпадать с классом всех ординалов. Значит, существует ординал α такой, что $f_{\alpha+1}(\alpha)$ не определено, а потому $\mathrm{dom}(f_{\alpha+1}) \neq \alpha+1$.

По поводу кардинальных чисел

Из теоремы Цермело и базовых результатов о в.у.м. следует:

Теорема (о сравнимости по мощности; в ZFC)

Для любых X и Y верно $X \preccurlyeq Y$ или $Y \preccurlyeq X$.

Ординал называют кардиналом, или кардинальным числом, если он не равномощен никакому меньшему ординалу (т.е. никакому своему элементу). Для обозначения кардиналов используют κ , μ , λ и т.п.

Ясно, что для любых кардиналов κ и μ ,

$$\kappa \sim \mu \iff \kappa = \mu.$$

Более того, имеет место следующее.

Предложение

Для любых кардиналов κ и μ ,

$$\kappa \iff \mu \iff \kappa \leqslant \mu.$$

Доказательство.

Очевидно.

 \Longrightarrow Предположим, что $\kappa \preccurlyeq \mu$. Рассуждая от противного, допустим, что $\kappa \not\leqslant \mu$. Тогда $\kappa > \mu$, откуда $\kappa \succcurlyeq \mu$. Ввиду теоремы К.–Ш.–Б., мы получаем $\kappa \sim \mu$, а потому $\kappa = \mu$ — противоречие.

Теорема (в ZFC)

Для каждого X имеется единственный кардинал, равномощный X.

Доказательство.

Понятно, что X равномощно некоторому ординалу α , ввиду теоремы Цермело и теоремы о связи в.у.м. и ординалов. Определим

$$\operatorname{card}(X) := \bigcap \{ \beta \in \alpha + 1 \mid \beta \sim X \}.$$

Таким образом, card (X) является наименьшим из ординалов, равномощных X. Легко проверить, что он будет искомым кардиналом. \square

В дальнейшем $\operatorname{card}(X)$ будет обозначать кардинал, равномощный X; вместо $\operatorname{card}(X)$ часто пишут |X|, разумеется.

Предложение (в ZFC)

Для любых Х и Ү верно следующее:

- i. card $(X) = \operatorname{card}(Y)$ тогда и только тогда, когда $X \sim Y$;
- іі. card $(X) \leqslant \operatorname{card}(Y)$ тогда и только тогда, когда $X \preccurlyeq Y$.

Сложение и умножение кардиналов

Для любых кардиналов κ и μ определим

$$\kappa + \mu := \operatorname{card}(\kappa \times \{0\} \cup \mu \times \{1\}),$$

 $\kappa \cdot \mu := \operatorname{card}(\kappa \times \mu).$

Хотя кардиналы представляют собой частные случаи ординалов, + и \cdot на кардиналах определяются не так, как на ординалах. Например,

$$\omega$$
, $\omega + 1$, $\omega + \omega$, $\omega \cdot \omega$

являются попарно различными ординалами, однако при этом

$$\aleph_0 \ = \ \aleph_0 + 1 \ = \ \aleph_0 + \aleph_0 \ = \ \aleph_0 \cdot \aleph_0.$$

Отметим, что класс всех кардиналов

$$\mathsf{Card} := \{ \kappa \mid \kappa - \mathsf{кардинал} \}$$

не является множеством. Действительно, в противном случае \bigcup Card также было бы множеством, но оно, как нетрудно видеть, совпадает с классом всех ординалов (в качестве простого упражнения).

Запись 2^A может иметь разный смысл в зависимости от того, идёт ли речь о множествах в целом, об ординалах или о кардиналах. В случае кардиналов считается, что

$$2^{\kappa} := \operatorname{card}(\mathfrak{P}(\kappa)),$$

а не множеству всех функций из κ в 2 (которое, впрочем, имеет ту же мощность). Очевидно, $2^\kappa > \kappa$ для всех кардиналов κ .

Для каждого кардинала κ обозначим

 $\kappa^+ :=$ наименьший из кардиналов, бо́льших κ .

Вместо \aleph_0^+ пишут \aleph_1 , вместо $\aleph_1^+ - \aleph_2$ и так далее. На самом деле, можно было бы определить \aleph_α для произвольного ординала α .

$$2^{\aleph_0} = \aleph_1. \tag{CH}$$

Многие, включая Кантора, пытались её доказать.

$$2^{\aleph_0} = \aleph_1. \tag{CH}$$

Многие, включая Кантора, пытались её доказать.

Теорема (Гёдель, 1940)

Можно доказать, что ¬СН нельзя доказать в ZFC.

$$2^{\aleph_0} = \aleph_1. \tag{CH}$$

Многие, включая Кантора, пытались её доказать.

Теорема (Гёдель, 1940)

Можно доказать, что ¬СН нельзя доказать в ZFC. *%интересно*

4□ > 4□ > 4□ > 4□ > 4□ > 9

$$2^{\aleph_0} = \aleph_1. \tag{CH}$$

Многие, включая Кантора, пытались её доказать.

Теорема (Гёдель, 1940)

Можно доказать, что ¬CH *нельзя доказать в* ZFC.

%интересно

Теорема (Коэн, 1963)

Можно доказать, что CH нельзя доказать в ZFC.

$$2^{\aleph_0} = \aleph_1. \tag{CH}$$

Многие, включая Кантора, пытались её доказать.

Теорема (Гёдель, 1940)

Можно доказать, что ¬СН нельзя доказать в ZFC.

%интересно

Теорема (Коэн, 1963)

Можно доказать, что CH нельзя доказать в ZFC. %ещё интереснее