Disciplinas:

 MAP 5706 - Introdução à Análise Real (DINTER)

MAP 0216 - Introdução à Análise Real

MAT 0206 - Análise Real

Semestre: 2020/2

Professor: Rodrigo Bissacot - Sala 147A - IME-USP

mail: rodrigo.bissacot@gmail.com

Listas de exercícios e informações sobre o curso em:

https://sites.google.com/site/matbissacot/Home/teaching/analise2020

Monitores:

João Maia - mail: joao.vitor.maia@usp.br Rafael Severiano - mail: rafaelseveriano@usp.br Thiago Alexandre - mail: thiago2.alexandre@usp.br Thiago Raszeja - mail: tcraszeja@gmail.com

Monitorias:

João Maia - Segundas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Alexandre - Terças 17h-18h - Link: FÓRUM DE DISCUSSÃO Rafael Severiano - Quintas 14h-15h - Link: FÓRUM DE DISCUSSÃO Thiago Raszeja - Sexta 19h-20h - Link: FÓRUM DE DISCUSSÃO.

Lista 4: Supremo e Ínfimo. Topologia da Reta Parte I: Abertos, Fechados, Fronteira e Fecho de subconjuntos de \mathbb{R} .

ENTREGA: DIA 23 DE OUTUBRO - SEXTA ÀS 23:59 - HORÁRIO DE SÃO PAULO

MODO DE ENVIAR A LISTA: Envie sua lista para o endereço prova.analise.2020@gmail.com, com o seguinte assunto (título) da mensagem, em maiúsculo:

LISTA 4 - NOME - NUSP - SIGLA DA DISCIPLINA

SOBRE A ENTREGA DESTA LISTA 3 E DA LISTA 4:

NO DIA 23 ENVIE APENAS UMA DAS LISTAS. CORRIGIREMOS APENAS UMA DELAS. OS QUE JÁ ENVIARAM A LISTA 3, SE QUISEREM TRO-CAR, E QUE SEJA CORRIGIDA SUA LISTA 4, BASTA ENVIAR A LISTA 4 E COMENTAR ISSO NA MENSAGEM.

SOBRE A UTILIZAÇÃO DA LISTA 4 NA P1 NESTA SEXTA:

DIFERENTEMENTE DAS LISTAS 1, 2 E 3, CASO NECES-SITE DE ALGUM RESULTADO DA LISTA 4 EM UMA AL-GUMA QUESTÃO DA PROVA, VOCÊ PRECISA REPRO-VAR A QUESTÃO NA PROVA. (REFAZER A QUESTÃO QUE QUEIRA USAR).

Exercício 1. Seja K um corpo ordenado. Sejam, $a, b \in K$ tais que $a \le b + \varepsilon$ para todo $\varepsilon > 0$. Mostre que $a \le b$.

Definição. Dizemos que um subconjunto $A \subset \mathbb{R}$ é limitado superiormente quando existe $\beta \in \mathbb{R}$ tal que $x \leq \beta$, para todo $x \in A$. Dizemos que $A \subset \mathbb{R}$ é limitado inferiormente quando existe $\alpha \in \mathbb{R}$ tal que $\alpha \leq x$, para todo $x \in A$. Dizemos que $A \subset \mathbb{R}$ é limitado quando A for limitado inferiormente e superiormente.

Exercício 2. Sejam $A \subset B$ subconjuntos não vazios de \mathbb{R} .

- (a) Mostre que inf $B \leq \inf A$ quando B é limitado inferiormente.
- (b) Mostre que sup $A \leq \sup B$ quando B é limitado superiormente.
- (c) Conclua que quando A e B são limitados temos que

$$\inf B \le \inf A \le \sup A \le \sup B.$$

(d) É verdade que, se $A \subset B$ e $A \neq B$ então sup $A < \sup B$?

Comentário: O que o último exercício nos diz é que se já temos o supremo de um conjunto, ao adicionarmos mais elementos neste de forma que o novo conjunto também possua supremo, o supremo do novo conjunto é no mínimo o supremo do anterior já que os elementos deste continuam sendo cotados pelo supremo do conjunto inicial. O mesmo raciocínio vale para o ínfimo, ao adicionarmos elementos em um conjunto o ínfimo se mantém ou diminui.

Exercício 3.

Sejam A, B conjuntos não-vazios de números reais, satisfazendo

$$x \in A, y \in B \Rightarrow x \le y$$

- (a) Prove A é limitado superiormente e que B é limitado inferiormente.
- (b) Prove que $\sup A \leq \inf B$.
- (c) Mostre que sup $A = \inf B$ se, e somente se, para todo $\varepsilon > 0$, existem $x \in A$ e $y \in B$ tais que $y x < \varepsilon$.

Comentário: Esse exercício será fundamental na parte de integração, para caracterizar quando uma função é Riemann integrável.

Exercício 4.

Sejam A, B subconjuntos limitados de \mathbb{R} não-vazios. Mostre que:

- (a) A + B é limitado.
- (b) $\sup (A + B) = \sup A + \sup B$
- (c) $\inf (A + B) = \inf A + \inf B$.

Exercício 5.

Sejam A, B subconjuntos limitados de \mathbb{R} não-vazios e $c \in \mathbb{R}$.

Definimos $c.A = \{c.x : x \in A\}$

- (a) Mostre que c.A é limitado.
- (b) Se c < 0 mostre que sup $c \cdot A = c \cdot \inf A$ e que inf $c \cdot A = c \cdot \sup A$.
- (b) Se c > 0 mostre que sup $c.A = c.\sup A$ e que inf $c.A = c.\inf A$.

Exercício 6. Dados $A, B \subset \mathbb{R}$ subconjuntos não-vazios e limitados de números reais positivos.

Definimos o conjunto $A.B = \{x.y : x \in A \in y \in B\}.$

Já mostramos em aula que A.B é limitado e que sup $A.B = \sup A. \sup B.$

Mostre que inf $A.B = \inf A.\inf B$

Exercício 7. Seja $X \subset \mathbb{R}$. Uma função $f: X \to \mathbb{R}$ chama-se limitada quando sua imagem $f(X) = \{y \in \mathbb{R}; \exists \ x \in \mathbb{R} \ \text{tal que} \ f(x) = y\}$ é um subconjunto limitado da reta. Neste caso definimos como sup f como sendo o supremo do conjunto f(X). Às vezes escrevemos $\sup_{x \in X} f(x)$ ao invés de sup f para evidenciar o domínio da função f, ou o subconjunto do domínio que estamos considerando. Considere f e g funções limitadas.

- (a) Seja $A \subset X$, mostre que $\sup f|_A := \sup_{x \in A} f(x) \le \sup_{x \in X} f(x) = \sup f$. Aqui $f|_A$ denota a restrição de f ao subconjunto A.
- (b) f(X) + g(X) denota o conjunto $\{f(x) + g(y) \in \mathbb{R}; x \in X \in y \in X\}$. Mostre que $(f + g)(X) \subset f(X) + g(X)$.
- (c) Mostre que $\sup(f+g) \le \sup f + \sup g$.
- (d) Dê um exemplo onde $\sup(f+g) < \sup f + \sup g$.

OS EXERCÍCIOS A e B FORAM PASSADOS EM AULA. NÃO PRECISAM SER ENTREGUES, CASO NÃO CONSIGA RESOLVÊ-LOS, OLHE EM ALGUM LIVRO OU PERGUNTE NAS MONITORIAS:

Exercício A.

- 1. Mostre que \mathbb{R} e \emptyset são abertos.
- 2. Mostre que se $(A_i)_{i\in I}$ uma família de subconjuntos abertos de \mathbb{R} , então $A=\bigcup_{i\in I}A_i$ é aberto.
- 3. Mostre que se $A_1, A_2, ..., A_k$ é uma coleção finita subconjuntos abertos de \mathbb{R} , mostre que $A_1 \cap A_2 \cap \cdots \cap A_k$ é aberto.

Exercício B.

- 1. Mostre que \mathbb{R} e \emptyset são fechados
- 2. Mostre que se $(F_i)_{i\in I}$ uma família de subconjuntos fechados de \mathbb{R} , então $F = \bigcap_{i\in I} F_i$ é fechado.
- 3. Mostre que se $F_1, F_2, ..., F_k$ é uma coleção finita de subconjuntos fechados de \mathbb{R} , mostre que $F_1 \cup F_2 \cup \cdots \cup F_k$ é fechado.

Definição. Dado um subconjunto $X \subset \mathbb{R}$, chamamos de fecho de X o conjunto dos pontos aderentes ao conjunto X. Um ponto $y \in \mathbb{R}$ é dito ponto aderente ao conjunto X quando:

 $\forall \ \varepsilon > 0 \ existe \ x \in X \ tal \ que \ x \in (y - \varepsilon, y + \varepsilon).$

Notação: Fecho de X: \overline{X} .

Note que todo elemento $a \in X$ pertence ao fecho de X. De fato, para cada $\varepsilon > 0$ podemos tomar x = a e então temos que $x \in (a - \varepsilon, a + \varepsilon)$. Ou seja, $X \subseteq \overline{X}$.

Exercício 8. Sejam X e Y subconjuntos de \mathbb{R} não vazios. Prove se for verdade ou dê contra-exemplo se for falso:

- (a) $int(X \cup Y) = int(X) \cup int(Y)$.
- (b) $int(X \cap Y) = int(X) \cap int(Y)$.
- (c) $\overline{(X \cap Y)} = \overline{X} \cap \overline{Y}$.
- (d) $\overline{(X \cup Y)} = \overline{X} \cup \overline{Y}$.

Observação:

- int(X) denota o interior do conjunto X.

Exercício 9. Seja $X\subset\mathbb{R}$ não vazio. Mostre que:

- (a) $\partial X = \overline{X} \text{int } X$.
- (b) $\overline{X} = X \cup \partial X$.

Observação:

- ∂X denota a fronteira de X.

Exercício 10. Seja $X\subset\mathbb{R}$ não vazio. Mostre que:

- (a) X é aberto se, e somente se, $\partial X \cap X = \emptyset$.
- (b) $int(X) = X \partial X$.
- (c) X é fechado se, e somente se, $\partial X \subset X$.
- (d) ∂X é fechado.

Exercício 11. Seja $X \subset \mathbb{R}$.

- (a) Mostre que X é denso em \mathbb{R} se, e somente se, $\operatorname{int}(X^c) = \emptyset$.
- (b) Mostre que se X é aberto e fechado, então $X=\emptyset$ ou $X=\mathbb{R}.$

Exercício 12.

(a) Seja $b \in \mathbb{R}$ tal que |b| < 1. Mostre que dado $\varepsilon \in \mathbb{R}, \varepsilon > 0$ existe $n_0 \in \mathbb{N}$ (que pode depender de ε) tal que $|b^n| < \varepsilon$ para todo $n \ge n_0$.

Comentário: Você está mostrando que $\lim_{n\to+\infty} b^n = 0$.

Exercício 13. Seja $p \in \mathbb{N}$ número natural fixo com p > 1.

- (a) Mostre que dado qualquer número real positivo a > 0, existe $n \in \mathbb{N}$ tal que $0 < \frac{1}{n^n} < a$.
- (b) Mostre que o conjunto $Q_p = \{\frac{m}{p^n}; m \in \mathbb{Z} \ e \ n \in \mathbb{N}\}$ é denso em \mathbb{R} .

Exercício 14.

- (a) Seja $a \in \mathbb{Q}$ um número racional não nulo e $x \in (\mathbb{R} \mathbb{Q})$. Mostre que a.x e a + x são irracionais.
- (b) Dê exemplo de dois números irracionais x, y tais que x + y é racional.
- (c) Mostre ainda um caso onde x,y são irracionais e ambos, x+y e x.y sejam racionais.

A questão acima pode ser resolvida usando irracionais do tipo raiz de um número primo, porém, decidir se dados dois irracionais o produto ou a soma é um número racional é uma tarefa que pode ser muito complicada. É um problema em aberto saber se a soma e o produto do número de Euler e Pi são irracionais.

Definição. Um número real α é dito algébrico quando existe um polinômio p(x) de coeficientes inteiros tal que α é raiz de p(x). Em outras palavras, p(x) é da forma $p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ com $a_i \in \mathbb{Z}$ para todo $0 \le i \le n$ e $p(\alpha) = 0$. Quando um número real não é algébrico ele é chamado de trascendente.

Comentário: Note que na definição acima poderíamos ter usado coeficientes racionais ao invés de inteiros. De fato, se α é raiz do polinômio $p(x) = \frac{a_n}{b_n} x^n + \frac{a_{n-1}}{b_{n-1}} x^{n-1} + \ldots + \frac{a_1}{b_1} x + \frac{a_0}{b_0}$ onde $a_i \in \mathbb{Z}, b_i \in \mathbb{Z}^*$ para todo $0 \le i \le n$, podemos multiplicar o polinômio por $b_n.b_{n-1}...b_1.b_0$ e assim obtemos um polinômio com coeficientes inteiros que tem α como raiz. Resumindo em palavras: todo número real que é raiz de um polinômio com coeficientes racionais é também raiz de um polinômio de coeficientes inteiros.

Exercício 15.

Mostre que se um número real $\alpha \neq 0$ é algébrico então $-\alpha$ e α^{-1} são algébricos.

Comentário: É possível mostrar que o conjunto dos números algébricos é um corpo (subcorpo de \mathbb{R}), não faremos isso no curso, consulte um livro de álgebra.