TARGET - SQL ANALYSIS

By Bharath krishna

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1. Data type of columns in a table
 - 2. Time period for which the data is given
 - 3. Cities and States covered in the dataset

Sol:

1.1

Cutomers table

Orders table

Order_items table

1.2.

Query

FROM `dsml-target-business-case-1.target.orders`

Output

1.3

Query:

output:

Quer	y results			
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION D
Row	customer_city	/	customer_state	
1	acu		RN	
2	ico		CE	
3	ipe		RS	
4	ipu		CE	
5	ita		sc	
6	itu		SP	
7	jau		SP	
8	luz		MG	
9	poa		SP	

2.In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Soln:

2.1

Query:

sample output:

month	monthname	year //	no_of_orders
9	September	2016	7
10	October	2016	379
12	December	2016	1
1	January	2017	966
2	February	2017	1998
3	March	2017	3041
4	April	2017	2697
5	May	2017	4176
6	June	2017	3611
7	July	2017	4576

2.2

Query:

```
else
'Night'
end as duration
FROM `dsml-target-business-case-1.target.orders` ) as x
group by duration
order by count(duration)
```

Qu	er	y results		
JOB	IN	FORMATION	RESULTS	JSON
Row	/	duration		no_of_sales
1		Dawn		394
2		Morning		22240
3		Afternoon		38365
4		Night		38442

3. Evolution of E-commerce orders in the Brazil region:

- 1.Get month on month orders by region, states
- 2. How are customers distributed in Brazil

Query:

3.1

output:

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH P	REVIEW
Row	month	monthname	//	year //	state		no_of_orders
1	9	September		2016	RR		1
2	9	September		2016	RS		1
3	9	September		2016	SP		2
4	10	October		2016	SP		113
5	10	October		2016	RS		24
6	10	October		2016	RJ		56
7	10	October		2016	MT		3
8	10	October		2016	GO		9
9	10	October		2016	MG		40
10	10	October		2016	CE		8
11	10	October		2016	SC		11

3.2

Query:

sample output:

	Quer	y results		
	JOB IN	FORMATION RESULTS	JSON EXECUTION DE	ETAILS EXECUT
	Row	customer_city	customer_state	no_of_customer
	1	acu	RN	3
	2	ico	CE	8
	3	ipe	RS	2
	4	ipu	CE	4
1	5	ita	SC	3
	6	itu	SP	136
	7	jau	SP	74
	8	luz	MG	2
	9	poa	SP	85
	10	uba	MG	53
	11	una	BA	5

4.Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

- 4.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)
- 4.2 Mean & Sum of price and freight value by customer state

```
Soln:
Query:
4.1
select round((max(total_cost)-
min(total_cost))/min(total_cost),2) * 100 as percentage_increase
from
(select extract(year from order_date) as year,
       sum(cost) as total_cost
from
(SELECT o.order_id,
     date(o.order_purchase_timestamp) as order_date,
      oi.price,
      oi.freight_value,
      oi.price + oi.freight_value as cost
FROM `dsml-target-business-case-1.target.order_items` as oi
join `dsml-target-business-case-1.target.orders` as o
on o.order_id=oi.order_id
where (date(o.order_purchase_timestamp) between '2017-01-01' and '2017-08-
31') or (date(o.order_purchase_timestamp) between '2018-01-01' and '2018-08-31')
order by order_date) as x
group by year)
output:
     Query results
                         RESULTS
     JOB INFORMATION
           percentage_incr
                139.0
4.2
Query:
SELECT c.customer_state,
     round(sum(oi.price),2) as total_price,
      round(avg(oi.price),2) as avg_price,
      round(sum(oi.freight_value),2) as total_freight_val,
      round(avg(oi.freight_value),2) as avg_freight_val,
  FROM `dsml-target-business-case-1.target.order_items` oi
  join `dsml-target-business-case-1.target.orders` o
      on o.order_id=oi.order_id
  join `dsml-target-business-case-1.target.customers` c
      on o.customer_id=c.customer_id
```

limit 10

group by c.customer_state

5. Analysis on sales, freight and delivery time

- 5.1 Calculate days between purchasing, delivering and estimated delivery
- 5.2 Create columns
- 5.3 time_to_delivery = order_purchase_timestamporder_delivered_customer_datediff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date
- 5.4 Sort the data to get the following:
 - 5.4.1 Top 5 states with highest/lowest average freight value sort in desc/asc limit 5
 - 5.4.2 Top 5 states with highest/lowest average time to delivery
 - 5.4.3 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Soln:

5.1

Query:

SELECT

```
date(order_purchase_timestamp) as purchase_date,
    date(order_delivered_customer_date) as delivered_date,
    date(order_estimated_delivery_date) as est_delivery_date,
    abs(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)) as delivery_days,
    abs(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)) as est_delivery_days,
```

```
FROM `dsml-target-business-case-1.target.orders` where order_status='delivered' LIMIT 10
```

Output:

Quer	y results				
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXEC
Row	purchase_date	delivered_date	est_delivery_date	delivery_days	est_delivery_day
1	2017-04-14	2017-05-08	2017-05-18	23	9
2	2017-05-10	2017-05-23	2017-05-18	12	5
3	2017-04-22	2017-05-05	2017-05-18	12	12
4	2017-05-09	2017-05-16	2017-05-18	7	1
5	2017-04-26	2017-05-08	2017-05-18	12	9
6	2017-05-10	2017-05-12	2017-05-18	1	5
7	2017-05-10	2017-05-17	2017-05-18	6	0
8	2017-04-18	2017-05-10	2017-05-18	21	7
9	2017-05-10	2017-05-18	2017-05-18	7	0
10	2017-04-15	2017-05-16	2017-05-18	30	1

5.2

Query:

SELECT

FROM `dsml-target-business-case-1.target.orders`
where order_status='delivered'
LIMIT 10

_ . .

Output:

```
Query results
                                                                                   JOB INFORMATION
                    RESULTS
                                 JSON EXECUTION DETAILS
                                                                  EXECUTION GRAPH PREVIEW
Row order_purchase_timestamp order_delivered_customer_date order_estimated_delivery_date time_to_delivery diff_estimated_gelivery_date.
  1 2017-04-14 22:06:32 UTC 2017-05-08 11:10:26 UTC 2 2017-05-10 14:03:27 UTC 2017-05-23 13:12:27 UTC
                                                                                23
                                                            2017-05-18 00:00:00 UTC
                                                            2017-05-18 00:00:00 UTC
   3 2017-04-22 15:50:30 UTC 2017-05-05 13:27:50 UTC 2017-05-18 00:00:00 UTC 12
                                                                                                            13
   4 2017-05-09 17:42:45 UTC 2017-05-16 23:22:20 UTC 2017-05-18 00:00:00 UTC
                                                                                                            2
                                                     2017-05-18 00:00:00 UTC
   5 2017-04-26 01:01:39 UTC 2017-05-08 08:54:36 UTC 6 2017-05-10 20:47:02 UTC 2017-05-12 17:00:05 UTC
                                                                                               12
                                                                                                            10
                                                            2017-05-18 00:00:00 UTC
   7 2017-05-10 15:34:59 UTC 2017-05-17 11:14:40 UTC 2017-05-18 00:00:00 UTC
                                                           2017-05-18 00:00:00 UTC
   8 2017-04-18 21:20:40 UTC 2017-05-10 11:50:00 UTC
                                                                                               21
                           2017-05-18 17:09:46 UTC
   9 2017-05-10 22:02:40 UTC
                                                            2017-05-18 00:00:00 UTC
                                                                                                             0
  10 2017-04-15 15:37:38 UTC
                                 2017-05-16 14:49:55 UTC
                                                            2017-05-18 00:00:00 UTC
                                                                                               30
                                                      2017-05-18 00:00:00 UTC
  11 2017-04-22 13:55:16 UTC 2017-05-12 13:55:55 UTC
```

5.3

Query:

```
select z.customer_state,
    round(avg(z.time_to_delivery),2) as avg_time_to_delivery,
```

```
round(avg(z.diff_estimated_delivery),2) as avg_est_del,
       round(avg(z.freight_value),2) as freight_avg
from
(select y.order_id,
      y.time_to_delivery,
      y.diff_estimated_delivery,
      oi.freight_value,
       c.customer_state
from
(select x.order_id,
       x.customer_id,
       x.purchase_date,
       x.delivered_date,
       x.est_delivery_date,
       abs(date_diff(x.delivered_date,x.purchase_date,day)) as time_to_delivery,
        abs(date_diff(x.delivered_date,x.est_delivery_date,day)) as diff_estimated_delivery
from
(SELECT order_id,
       customer_id,
       extract(date from order_purchase_timestamp) as purchase_date,
       extract(date from order_delivered_customer_date) as delivered_date,
      extract(date from order_estimated_delivery_date) as est_delivery_date
FROM `dsml-target-business-case-1.target.orders`
where order_status='delivered') as x) as y
 left join `dsml-target-business-case-1.target.order_items` as oi
   on y.order_id=oi.order_id
 left join `dsml-target-business-case-1.target.customers` c
  on y.customer_id=c.customer_id) as z
 group by z.customer_state
```

Query results

JOB IN	FORMATION RESULTS		JSON	EXECUTION DET	TAILS EXE
Row	customer_state	//	avg_time_to_del	avg_est_del	freight_avg
1	GO		15.34	13.82	22.56
2	SP		8.66	11.93	15.12
3	RS		15.13	15.39	21.61
4	BA		19.19	13.79	26.49
5	MG		11.92	14.08	20.63
6	MT		17.91	15.82	28.0
7	RJ		15.07	15.09	20.91
8	SC		14.95	13.02	21.51
9	SE		21.42	14.74	36.57
10	PE		18.22	15.59	32.69
11	TO		17.4	13.61	37.44

```
5.4.1
```

```
Query:
select z.customer_state,
       round(avg(z.freight_value),2) as freight_avg
from
(select y.order_id,
      y.time to delivery,
      y.diff_estimated_delivery,
      oi.freight_value,
       c.customer_state
from
(select x.order_id,
       x.customer_id,
       x.purchase_date,
       x.delivered_date,
       x.est_delivery_date,
        abs(date_diff(x.delivered_date,x.purchase_date,day)) as time_to_delivery,
        abs(date_diff(x.delivered_date,x.est_delivery_date,day)) as diff_estimated_delivery
from
(SELECT order_id,
      customer_id,
       extract(date from order_purchase_timestamp) as purchase_date,
       extract(date from order_delivered_customer_date) as delivered_date,
       extract(date from order_estimated_delivery_date) as est_delivery_date
FROM `dsml-target-business-case-1.target.orders`
where order_status='delivered') as x) as y
 left join `dsml-target-business-case-1.target.order_items` as oi
   on y.order_id=oi.order_id
 left join `dsml-target-business-case-1.target.customers` c
  on y.customer_id=c.customer_id) as z
 group by z.customer_state
 order by freight_avg
 limit 5
```

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	EXE
Row	customer_state	//	freight_avg	
1	SP		15.12	
2	PR		20.47	
3	MG		20.63	
4	RJ		20.91	
5	DF		21.07	

Query:

```
select z.customer_state,
       round(avg(z.time_to_delivery),2) as avg_time_to_delivery
from
(select y.order_id,
      y.time_to_delivery,
      y.diff_estimated_delivery,
      oi.freight_value,
       c.customer_state
from
(select x.order_id,
        x.customer_id,
        x.purchase_date,
        x.delivered_date,
        x.est_delivery_date,
        abs(date_diff(x.delivered_date,x.purchase_date,day)) as time_to_delivery,
        abs(date_diff(x.delivered_date,x.est_delivery_date,day)) as diff_estimated_delivery
from
(SELECT order_id,
      customer_id,
       extract(date from order_purchase_timestamp) as purchase_date,
       extract(date from order_delivered_customer_date) as delivered_date,
       extract(date from order_estimated_delivery_date) as est_delivery_date
FROM `dsml-target-business-case-1.target.orders`
 where order_status='delivered') as x) as y
 left join `dsml-target-business-case-1.target.order_items` as oi
    on y.order_id=oi.order_id
  left join `dsml-target-business-case-1.target.customers` c
  on y.customer_id=c.customer_id) as z
  group by z.customer_state
  order by avg_time_to_delivery desc
  limit 5
```

output:

Query results JOB INFORMATION RESULTS JSON Row avg_time_to_del customer_state 1 ΑP 28.22 2 RR 28.17 26.34 3 4 ΑL 24.45 5 PΑ 23.7

5.4.3

Query:

```
select z.customer_state,
       round(avg(z.diff_estimated_delivery),2) as avg_est_del
from
(select y.order_id,
      y.time_to_delivery,
      y.diff_estimated_delivery,
      oi.freight_value,
       c.customer_state
from
(select x.order_id,
       x.customer_id,
       x.purchase_date,
       x.delivered_date,
       x.est_delivery_date,
        abs(date_diff(x.delivered_date,x.purchase_date,day)) as time_to_delivery,
        abs(date_diff(x.delivered_date,x.est_delivery_date,day)) as diff_estimated_delivery
from
(SELECT order_id,
       customer id,
       extract(date from order_purchase_timestamp) as purchase_date,
       extract(date from order_delivered_customer_date) as delivered_date,
       extract(date from order_estimated_delivery_date) as est_delivery_date
FROM `dsml-target-business-case-1.target.orders`
where order_status='delivered') as x) as y
 left join `dsml-target-business-case-1.target.order_items` as oi
   on y.order_id=oi.order_id
 left join `dsml-target-business-case-1.target.customers` c
  on y.customer_id=c.customer_id) as z
 group by z.customer_state
 order by avg_est_del desc
```

	Quer	y results			
	JOB IN	FORMATION	RESULTS	JSON	EXE
F	Row	customer_state	//	avg_est_del	
	1	RR		26.24	
	2	AP		25.53	
	3	AC		22.21	
	4	AM		21.43	
	5	RO		20.56	

6.Payment type analysis:

- 6.1 Month over Month count of orders for different payment types
- 6.2 Distribution of payment installments and count of orders

Soln:

```
Query:
```

```
SELECT extract(month from o.order_purchase_timestamp) as month,
    format_date("%B",datetime(o.order_purchase_timestamp)) as monthname,
    extract(year from o.order_purchase_timestamp) as year,
    p.payment_type,
    count(p.order_id) as no_of_orders

FROM `dsml-target-business-case-1.target.payments` p
    join `dsml-target-business-case-1.target.orders` o
    on o.order_id=p.order_id
    group by monthname,month,p.payment_type,year
    order by year,month
```

Quer	y results			<u>*</u>	SAVE RESULTS
JOB IN	NFORMATION	RESULTS JSON	EXECUTION DE	TAILS EXECUTION GRAPH	PREVIEW
Row	month	monthname	year	payment_type	no_of_orders
1	9	September	2016	credit_card	3
2	10	October	2016	credit_card	254
3	10	October	2016	voucher	23
4	10	October	2016	debit_card	2
5	10	October	2016	UPI	63
6	12	December	2016	credit_card	1
7	1	January	2017	voucher	61
8	1	January	2017	UPI	197
9	1	January	2017	credit_card	583
10	1	January	2017	debit_card	9
11	2	February	2017	credit_card	1356

6.2

Query:

SELECT

```
payment_installments,
    count(*) as no_of_orders
FROM `dsml-target-business-case-1.target.payments`
group by payment_installments
LIMIT 1000
```

Output:

Quer	y results	
JOB IN	IFORMATION	RESULTS
Row	payment_installr	no_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328