LEÇON N° 14:

Congruences dans \mathbb{Z} . Anneau $\mathbb{Z}/n\mathbb{Z}$.

Pré-requis :

- Relation d'équivalence;
- Définitions d'un groupe, d'un anneau, d'un corps;
- Division euclidienne dans \mathbb{Z} , notation d'un cardinal $(|\cdot|)$;
- Nombres premiers (et notation ∧), PGCD, théorème de Bézout.

14.1 Congruences dans \mathbb{Z} $(n \in \mathbb{N}, n \geqslant 2)$

Définition 1 : Soit $(x,y) \in \mathbb{Z}^2$. On dit que x est congru à y modulo n si $x-y \in n\mathbb{Z}$. On note alors $x \equiv y$ [n].

Proposition 1 : La relation de congruence est une relation d'équivalence.

démonstration :

Réfléxivité : $x - x = 0 \cdot n \in n\mathbb{Z}$, $donc \ x \equiv x \ [n]$.

Symétrie : On suppose que $x \equiv y$ [n], c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que x - y = kn. Alors $y - x = -k \cdot n \in n\mathbb{Z}$, donc $y \equiv x$ [n].

Transitivité : On suppose cette fois que $x \equiv y$ [n] et $y \equiv z$ [n], c'est-à-dire qu'il existe $k, k' \in \mathbb{Z}$ tels que x-y=kn et y-z=k'n. Alors $x-z=(x-y)+(y-z)=kn+k'n=(k+k')n\in n\mathbb{Z}$, donc $x\equiv z$ [n].

Les trois points de la définition d'une relation d'équivalence sont vérifiées, donc celle de congruence en est une.

Proposition 2 : La relation de congruence est compatible avec l'addition et la multiplication de \mathbb{Z} , c'est-à-dire que

$$\left\{ \begin{array}{l} x \equiv y \; [n] \\ x' \equiv y' \; [n] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x + x' \equiv y + y' \; [n] \\ x \cdot x' \equiv y \cdot y' \; [n]. \end{array} \right.$$

démonstration : On a les implications suivantes :

$$\begin{cases} x = y + kn \\ x' = y' + k'n \end{cases} \Leftrightarrow \begin{cases} x + x' = y + y' + \overbrace{(k + k')} n \\ x \cdot x' = y \cdot y' + \underbrace{(ky' + k'y + nkk')}_{\in \mathbb{Z}} n. \end{cases}$$

$$\Leftrightarrow \begin{cases} x + x' \equiv y + y' [n] \\ x \cdot x' \equiv y \cdot y' [n], \end{cases}$$

 \Diamond

ce qui démontre le résultat.

Exercice: Soit $p \in \mathbb{N}$. Montrer que $x \equiv y$ [n] implique à la fois $px \equiv py$ [n] et $x^p \equiv y^p$ [n].

<u>Solution</u>: En effet, il existe $k \in \mathbb{Z}$ tel que x-y=kn. D'une part, on a ainsi que $p(x-y)=p(kn) \Leftrightarrow px-py=(pk)n \Leftrightarrow px\equiv py\ [n]$. Attention cependant à la réciproque, parce que la division par p ne garantit que le multiplicateur de n soit entier! Il faut alors que p divise n pour satisfaire cette condition.

D'autre part, on procède par récurrence pour la seconde congruence. Pour p=1, il n'y a aucun problème. Supposant le résultat vrai au rang p-1, on applique la proposition 2 pour montrer qu'il l'est toujours au rang p, et ainsi achever la récurrence. \diamondsuit

14.2 L'anneau $\mathbb{Z}/n\mathbb{Z}$ $(n \in \mathbb{N}^*)$

Définition 2 : L'ensemble quotient de $\mathbb Z$ sur la relation de congruence est noté $\mathbb Z/n\mathbb Z$. On note $\overline x$ la classe d'équivalence de x dans $\mathbb Z/n\mathbb Z$, c'est-à-dire $\overline x=\{y\in\mathbb Z\mid y\equiv x\;|n|\}$.

Théorème 1 : Pour tout $x \in \mathbb{Z}$, il existe un unique $r \in \overline{x}$ tel que $0 \leqslant r < n$.

démonstration: On effectue la division euclidienne de x par n: il existe un unique couple $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que x = qn + r et $0 \le r < n$, donc $r \Leftrightarrow x [n] \Leftrightarrow r \in \overline{x}$ et $0 \le r < n$.

Exercice: Montrer qu'en partiulier, $x \equiv y$ [n] si et seulement si x et y ont même reste dans la division euclidienne par n.

Solution: Notons x = qn + r et y = q'n + r', avec $0 \le r, r' < n$. On a alors les équivalences suivantes :

$$\begin{split} x \equiv y \; [n] & \Leftrightarrow & x - y = kn \Leftrightarrow qn + r - q'n - r' = kn \Leftrightarrow r - r' = n(k - q + q') \\ & \Leftrightarrow & r \equiv r' \; [n] \overset{0 \leqslant r, r' < n}{\Leftrightarrow} \; r = r', \end{split}$$

et le résultat est ainsi démontré.

Corollaire $1: \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$, et $|\mathbb{Z}/n\mathbb{Z}| = n$.

démonstration: Par le théorème précédent, $r \in \overline{x}$ est unique. Donc, par transitivité, tous les éléments congrus à r modulo n le sont aussi à x modulo n, ce qui nous amène à écrire que $\overline{r} = \overline{x}$. Mais $\overline{r} = \{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$, d'où le résultat.

Proposition 3 : On définit une addition + et une multiplication \cdot sur $\mathbb{Z}/n\mathbb{Z}$ de la manière suivante : pour tous $\alpha, \beta \in \mathbb{Z}/n\mathbb{Z}$, il existe $a, b \in \mathbb{Z}$ tels que $\overline{a} = \alpha$ et $\overline{b} = \beta$, et l'on pose ainsi

$$\alpha+\beta=\overline{a}+\overline{b}=\overline{a+b}$$
 et $\alpha\cdot\beta=\overline{a}\cdot\overline{b}=\overline{a\cdot b}.$

démonstration: Il faut vérifier que + et \cdot sont bien définies sur $\mathbb{Z}/n\mathbb{Z}$:

$$\left\{ \begin{array}{l} \alpha = \overline{a} = \overline{a'} \\ \beta = \overline{b} = \overline{b'} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a \equiv a' \; [n] & \text{prop 2} \\ b \equiv b' \; [n] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a + b \equiv a' + b' \; [n] \\ a \cdot b \equiv a' \cdot b' \; [n] \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \overline{a + b} = \overline{a' + b'} \\ \overline{a \cdot b} = \overline{a' \cdot b}, \end{array} \right.$$

donc cette définition est indépendante du choix des représentants, ce qui la rend pertinente.

Théorème 2 : $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau commutatif.

démonstration : Découle directement du fait que \mathbb{Z} soit un anneau commutatif.

14.3 Eléments inversibles

Théorème $3: \overline{x} \in \mathbb{Z}/n\mathbb{Z}$ est inversible si et seulement si $x \wedge n = 1$.

démonstration : On a les équivalences suivantes :

$$\begin{array}{ll} \overline{x} \ \textit{inversible dans} \ \mathbb{Z}/n\mathbb{Z} & \Leftrightarrow & \exists \ \overline{y} \in \mathbb{Z}/n\mathbb{Z} \ | \ \overline{x} \cdot \overline{y} = \overline{1} \\ & \Leftrightarrow & \exists \ x,y \in \mathbb{Z} \ | \ x \cdot y \equiv 1 \ [n] \\ & \Leftrightarrow & \exists \ x,y,u \in \mathbb{Z} \ | \ x \cdot y + u \cdot n = 1 \\ & \overset{\textit{B\'ezout}}{\Leftrightarrow} & x \wedge n = 1. \end{array}$$

Théorème 4 : Les propositions suivantes sont équivalentes :

- (i) n premier;
- (ii) $\mathbb{Z}/n\mathbb{Z}$ est intègre;
- (iii) $\mathbb{Z}/n\mathbb{Z}$ est un corps.

démonstration :

- (i) \Rightarrow (iii): $n \text{ premier} \Rightarrow \forall \ a \in \{1, \dots, n-1\}, a \land n = 1 \stackrel{\textit{thm } 3}{\Rightarrow} \forall \ \overline{a} \in (\mathbb{Z}/n\mathbb{Z})^*, \overline{a} \text{ est inversible } \Rightarrow \mathbb{Z}/n\mathbb{Z} \text{ est un corps.}$
- (ii) \Rightarrow (i): On procède par contraposée : n non premier $\Rightarrow \exists n_1, n_2 \in \mathbb{N} \mid (n_1 n_2 = n \text{ et } 1 < n_1, n_2 < n) \Rightarrow \overline{n_1} \cdot \overline{n_2} = \overline{n} = \overline{0}$. Mais $\overline{n_1} \neq \overline{0}$ et $\overline{n_2} \neq \overline{0}$, donc $\mathbb{Z}/n\mathbb{Z}$ n'est pas intègre.

Enfin, puisque tout corps est intègre, le théorème est démontré.

14.4 Applications

14.4.1 Théorème des restes chinois

Théorème 5 (des restes chinois) : Soient $p,q\in\mathbb{N}^*$. Alors

$$p \wedge q = 1 \quad \Leftrightarrow \quad \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbf{Z}/pq\mathbb{Z}.$$

démonstration :

"⇒": Soit f l'application définie par

$$\begin{array}{ccc} f: \mathbb{Z} & \longrightarrow & \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \\ x & \longmapsto & (\overline{x}, \widetilde{x}). \end{array}$$

On vérifie aisément grâce à la proposition 3 que f est un morphisme d'anneaux.

Déterminons alors son noyau. Soit $x \in \mathbb{Z}$ tel que $f(x) = (\overline{0}, \widetilde{0})$. Alors on a simultanément $\overline{x} = \overline{0}$ et $\widetilde{x} = \widetilde{0}$, c'est-à-dire p et q divisent x. Or $p \land q = 1$ par hypothèse, donc la produit pq divise aussi x, de sorte que $x \in pq\mathbb{Z}$, et le noyau recherché n'est autre que $pq\mathbb{Z}$.

L'application quotient $\overline{f}: \mathbb{Z}/pq\mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ est donc injective, et les deux ensembles ont même cardinal, donc \overline{f} est bijective, d'où $\mathbb{Z}/pq\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.

$$g: \mathbb{Z}/pq\mathbb{Z} \longrightarrow \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$$
$$\widehat{x} \longmapsto (\overline{x}, \widetilde{x}).$$

Supposons $p \land q = d \neq 1$. Alors il existe p', q' tels que p = p'd et q = q'd. Puisque $g(\widehat{1}) = (\overline{1}, \widetilde{1})$ et $\widehat{1}$ est d'ordre pq pour l'addition, il doit en être de même pour $(\overline{1}, \widetilde{1})$.

Or $dp'q'(\overline{1},\widetilde{1}) = (q'(p\overline{1}), p'(q\widetilde{1}) = (\overline{0},\widetilde{0}), donc (\overline{1},\widetilde{1})$ est d'ordre inférieur ou égal à dp'q' < pq. On aboutit à une contradiction qui prouve bien que $p \land q = 1$.

14.4.2 Petit théorème de Fermat

Théorème 6 (de Fermat) : Si p est premier, alors pour tout $a \in \mathbb{Z}$, $a^p \equiv a$ [p].

démonstration: Puisque p est premier, alors pour tout $k \in \{1, \ldots, p-1\}$, p divise $\binom{p}{k}$. En effet, $\binom{p}{k} = p(p-1)\cdots(p-k+1)/k! \Leftrightarrow k! \binom{p}{k} = p(p-1)\cdots(p-k+1)$. Comme p est premier, il est premier avec tout entier le précédent, donc $p \land k = 1$, et il vient que p ne divise pas k!. Par le théorème de Gauss, il s'ensuit que p divise $\binom{p}{k}$.

Procédons ensuite par récurrence sur l'entier $a \in \mathbb{N}$.

- Initialisation : Si a = 0, le résultat est évident.
- Hérédité : Supposons que $(a-1)^p \equiv a-1$ [p].

$$a^{p} = (a-1+1)^{p} = \sum_{k=0}^{p} {p \choose k} (a-1)^{k} \equiv (a-1)^{p} + 1 [p] \stackrel{H.R.}{\equiv} a - 1 + 1 [p] \equiv a [p].$$

Si $a \in (-\mathbb{N})^*$, alors $-a \in \mathbb{N} \Rightarrow (-a)^p \equiv -a$ [p]. Supposons alors un instant $p \neq 2$ de sorte que la condition p premier soit équivalente à dire que p est impair. La relation de congruence précédente devient alors $-a^p \equiv -a$ [p] $\Leftrightarrow a^p \equiv a$ [p]. Enfin, si p = 2, alors quelque soit a, l'entier $a^p - a$ est pair, et donc divisible par p.

14.4.3 Théorème de Wilson

Théorème 7 (de Wilson) : Soit $p \ge 2$ un entier naturel. Alors p est premier si et seulement si $(p-1)! \equiv -1$ [p].

démonstration :

- " \Longrightarrow ": Supposons p non premier, de sorte qu'il existe d, p' tel que p = dp'. d est strictement compris entre 1 et p, et puisque p divise (p-1)! + 1 par hypothèse, d le divise aussi. Or d est l'un des facteurs de (p-1)! donc d divise (p-1)!, et on arrive ainsi à la contradiction que d divise d. Finalement, d est premier.
- ": Puisque p est premier, a ne le divise par. D'après le petit théorème de Fermat, $a^p \Leftrightarrow a \ [p] \Leftrightarrow a(a^{p-1}-1) \equiv 0 \ [p] \Rightarrow a^{p-1} \equiv 1 \ [p] \Leftrightarrow \overline{a}^{p-1} = \overline{1}$. Par suite, le polynôme $X^{p-1} \overline{1}$ admet pour racines tous les éléments de $(\mathbb{Z}/p\mathbb{Z})^*$ et, le produit des racines valant $-\overline{1}$, il vient que $\overline{(p-1)!} + \overline{1} = \overline{0}$, c'est-à-dire $(p-1)! \equiv -1 \ [p]$.

14.4.4 Critères de divisibilité

En base 10, tout entier naturel N s'écrit sous la forme $N = a_0 + 10a_1 + \cdots + 10^n a_n$.

Puisque $10 \equiv 1 \ [3/9]$, $10^n \equiv 1 \ [3/9]$ pour tout n, donc $N \equiv a_0 + a_1 + \cdots + a_n \ [3/9]$. On en tire le critère suivant : « Un nombre est divisible par 3 (ou 9) si la somme de ses chiffres l'est ».

De même, $10 \equiv -1$ $[11] \Rightarrow \forall n \in \mathbb{N}, 10^n \equiv (-1)^n$ $[11] \Rightarrow N \equiv a_0 - a_1 + a_2 + \cdots + (-1)^n a_n$ [11]. D'où le critère suivant : « Un nombre est divisible par 11 si la différence de la somme de ses chiffres de rang pairs par celle de ses chiffres de rang impairs l'est ».

Exercice: Dire si les nombres suivants sont multiples de 3, 9 et/ou 11:

324, 1948617, 18690045, 2310905821257, 1073741824.

<u>Solution</u>: On récapitule ceci selon le tableau suivant (Σ_p désigne la somme des chiffres de rang pairs et Σ_i celle des chiffres de rangs impairs):

Nombre	324	1948617	18690045	2310905821257	1073741824
Sommes des chiffres	9	36	33	45	37
Divisible par 3?	oui	oui	oui	oui	non
Divisible par 9?	oui	oui	non	oui	non
Σ_p	2	18	22	17	19
Σ_i	7	18	11	28	18
Différence	5	0	11	11	1
Divisible par 11?	non	oui	oui	oui	non

Ces critères permettent aussi de commencer la décomposition d'un nombre en produit de facteurs premiers, mais ceci sera l'objet de la leçon n° 13... \diamondsuit