Toward Tidy Principles for Matrix-Decomposed Data

New Developments in Graphing Multivariate Data Section on Statistical Graphics Joint Statistical Meetings 2022

Jason Cory Brunson

Laboratory for Systems Medicine Division of Pulmonary, Critcial Care, and Sleep Medicine University of Florida

July 28, 2022

Theory 0000	Motivation 00000	Illustration	Use cases 000	Ongoing work

Acknowledgments

Development

- ► Emily Paul (UPenn)
- ► Joyce Robbins (Columbia)

Experiment

- ► Tom Agresta (UConn)
- Ritchie Vaughan (UVA)
- ► Martinna Bertolini (UFRJ)
- Carol Mathews (UF)

Support

Ordination

"[A]ny technique that extracts artificial variables in order to reduce the dimensionality of the data is referred to as **ordination**."

model

		unsupervised	supervised
data -	discrete	clustering	classification
	continuous	dimension reduction	regression

Principal components analysis

Derivation

- $ightharpoonup X_{n\times p}$ data
- $ightharpoonup \overline{x}_{n\times 1}$ data centroid

- $ightharpoonup Y = X 1\overline{x}^{\top}$ centered data
- Y = $U_{n \times q} D_{q \times q} V_{q \times p}^{\top}$ singular value decomposition

Interpretation

- D inertia
- $ightharpoonup U_r, V_r$ standard coordinates (orthonormal)
- $ightharpoonup U_rD_r$, V_rD_r principal coordinates

- ▶ V_r variable loadings
- $ightharpoonup U_r D_r$ case scores

Application

► X' new data

 \blacktriangleright $(X'-1\bar{x}^\top)V_r$ scores (supplementary)

Linear discriminant analysis

Derivation

- $ightharpoonup G_{n \times k}$ groups
- \triangleright N = diag (n_1, \ldots, n_k) group counts
- $ightharpoonup \overline{X}_{k\times p} = N^{-1}G^{\top}X$ group centroids

- ► $C = \frac{1}{n}X^{\top}X$ covariance matrix ► $\overline{Y} = \overline{X} 1\overline{x}^{\top}$ centered group centroids
- $ightharpoonup \overline{Y}C^{-1/2} = U_{k\times a}D_{a\times a}V_{a\times p}^{\top}$

Interpretation

► V_r variable loadings

 $V_rD_r = \overline{Y}C^{-1/2}V$ group centroid scores

Application

- $ightharpoonup YC^{-1/2}V_r$ case scores (supplementary)
- X' new data
- $ightharpoonup X'C^{-1/2}V_r$ scores (supplementary)

General Multidimensional Analysis

- 1. Preprocess data $X \rightsquigarrow Y$
 - centering
 - double-centering
- 2. Generalized SVD Y = NDM^{\top} = $(A^{-1/2}U)D(B^{-1/2}V)^{\top}$, where

A, B are positive semi-definite and

 $N^{\top}AN = M^{\top}BM = I$ (orthonormalization)

- weights
- sphering

Low-rank approximation $Y \approx N_r D M_r^{\top}$

- 3. Biplot of $F = U_r D^a$ and $G = V_r D^b$, with a + b = 1
 - row-principal
 - column-principal
 - symmetric

Hise cases

Need

R is replete with ordination methods!

CRAN Task View: Multivariate Statistics

Maintainer: Paul Hewson

Contact: Paul.Hewson at plymouth.ac.uk

Version: 2014-09-19

CRAN Task View: Analysis of Ecological and Environmental Data

Maintainer: Gavin Simpson
Contact: ucfagls at gmail.com

Version: 2014-05-31

... but they are

- specialized: unweildy & uninformative inspection methods
- heterogeneous: diverse, dissimilar, domain-specific conventions
- standalone: not easily interoperable with other tools or integrable into external workflows

Design

Typical implementations:

General implementation:

Tidy management:

Inspiration

Theory

[T]he **tidyverse** is a collection of R packages that share a highlevel design philosophy and lowlevel grammar and data structures, so that learning one package makes it easier to learn the next.

The tidyverse strives to be

- **human-centered**: supports data analysis conducted by humans
- consistent: ensures learning transfers between packages
- composable: enables modular thinking and doing
- ▶ inclusive: developed and informed by a broad community

Inspiration

lazy, surly, & pithy data frames

convenient summarization of statistical models

relational algebra for data sets

grammatical production of statistical graphics

Implementation

Engine

Theory

Recovery methods for (your!) S3 model classes:

- ► left & right matrix factors (singular vectors) $U_{n \times k}$, $V_{p \times k}$
- ► transformations of coordinate spaces $A_{n\times n}$, $B_{p\times p}$
- inertia and its distribution unto the factors $D = \text{diag}(d_1, \dots, d_k), (a, b)$
- active & supplementary elements U_rD_r = XV_r, X'V_r

Dashboard

Class 'tbl_ord':

- wrapper for ordination models
- clear & consistent formatting Functions:
 - augment with model metadata
 - redistribution of inertia
 - tidily inspect & summarize
 - annotate rows and columns
 - build biplots grammatically
 - add ordination plot layers

Example workflow

Theory

```
head(iris)
#> Sepal, Length Sepal, Width Petal, Length Petal, Width Species
#> 1
                                               0.2 setosa
            4.9
                       3.0
                                   1.4
#> 2
                                              0.2 setosa
#> 3
            4.7
                       3.2
                                              0.2 setosa
            4.6
                       3.1
#> 4
                                              0.2 setosa
#> 5
            5.0
                                   1.4
                                              0.2 setosa
#> 6
            5.4
                                               0.4 setosa
summary(iris)
#> Sepal.Length
                  Sepal, Width
                                 Petal.Length
                Min. :2.000
                               Min. :1.000 Min. :0.100
#> 1st Ou.:5,100
                 1st Ou.:2,800
                                1st Ou.:1.600
                                              1st Ou.:0.300
#> Median :5.800
                 Median :3.000
                                Median :4.350
         :5.843
                 Mean :3.057
                                Mean :3.758
#> 3rd Ou.:6.400
                 3rd Ou.:3.300
                                3rd Ou.:5,100
                                               3rd Ou.:1.800
   Max. :7.900
                 Max. :4.488
                               Max. :6.900 Max. :2.500
         Species
#> setosa :50
#> versicolor:50
#> virginica :50
#>
```

```
(iris pca <- ordinate(iris, cols = 1:4, model = ~ prcomp(,, scale, = TRUE)))
#> # A tbl ord of class 'prcomp': (150 x 4) x (4 x 4)'
#> # 4 coordinates: PC1, PC2, ..., PC4
#> #
#> # Rows (principal): [ 150 x 4 | 1 ]
      PC1 PC2 PC3 ... | Species
                                <fct>
#> 1 -2.26 -0.478 0.127
                             I 1 setosa
#> 2 -2.07 0.672 0.234 ... | 2 setosa
#> 3 -2.36 0.341 -0.0441
                            1.3 setosa
#> 4 -2.29 0.595 -0.0910
                            | 4 setosa
#> 5 -2.38 -0.645 -0.0157
                            I 5 setosa
#> # ... with 145 more rows
#> # : Use `print(n = ...)` to see more rows
#> #
#> # Columns (standard): [ 4 x 4 | 3 ]
       PC1 PC2 PC3 ... I
                                              .center .scale
                                 <chr>
                                                <dbl> <dbl>
#> 1 0.521 -0.377 0.720
                             | 1 Sepal.Length
                                                5.84 0.828
#> 2 -0.269 -0.923 -0.244 ... | 2 Sepal.Width
                                                3.06 0.436
#> 3 0.580 -0.0245 -0.142
                             | 3 Petal.Length
                                                3.76 1.77
#> 4 0.565 -0.8669 -0.634
                             | 4 Petal.Width
                                                 1.20 0.762
```

Example workflow

Theory

```
iris meta <- data.frame(
 Species = c("setosa", "versicolor", "virginica"),
 Colony = c(1L, 1L, 2L).
 Cytotyne = c("diploid", "hexaploid", "tetraploid").
 Ploidy = c(2L, 6L, 4L)
(iris pca <- left join rows(iris pca, iris meta, by = "Species"))
#> # A tbl ord of class 'prcomp': (150 x 4) x (4 x 4)'
#> # 4 coordinates: PC1, PC2, ..., PC4
#> #
#> # Rows (principal): [ 150 x 4 | 4 ]
      PC1 PC2 PC3 ... | Species Colony Cytotype Ploidy
                               <chr> <int> <chr>
#> 1 -2.26 -0.478 0.127
                           I 1 setosa
#> 2 -2.07 0.672 0.234 ... | 2 setosa
                                           1 diploid
#> 3 -2.36 0.341 -0.0441
                                           1 diploid
                          | 3 setosa
#> 4 -2.29 8.595 -8.6918
                          I 4 setosa
                                           1 diploid
#> 5 -2.38 -0.645 -0.0157
                          | 5 setosa
                                           1 diploid
#> # ... with 145 more rows
#> # + Use `print(n = ...)` to see more rows
#~ #
#> # Columns (standard): [ 4 x 4 | 3 ]
       PC1 PC2 PC3 ... I
                                            .center .scale
                                              <dbl> <dbl>
#> 1 0.521 -0.377 0.720
                          #> 2 -0.269 -0.923 -0.244 ... | 2 Sepal.Width
                                              3.06 0.436
#> 3 0.580 -0.0245 -0.142
                          | 3 Petal, Length
                                             3.76 1.77
#> 4 0.565 -0.0669 -0.634
                          | 4 Petal, Width
                                              1,20 0,762
```


PCA of Anderson's iris measurements

Example workflow

PCA of Anderson's iris measurements


```
ggbiplot(iris_pca, axis.type = "predictive", axis.percents = FALSE) +
theme_biplot() +
geom_rows_point(ass(color = Species, shape = Species)) +
stat_rows_center(
ass(color = Species, shape = Species),
size = 5, alpha = -5, fun.data = mean_se
geom_cols_axis(ass(label = .name, center = .center, scale = .scale)) +
ggtitlet"Prediction biplot of Anderson's iris measurements",
project a marker onto an axis to approximate its measurement")
```

Prediction biplot of Anderson's iris measurements

PC1

Origination of home loans by program and racial-ethnic group

Associations between hoarding and other mental health disorders

Use case 3

Limitations & needs

S3 class methods

- quality measures
- interpolation
- prediction
- predictive biplot elements

Biplot functionality

- predictive biplots
- ▶ joint row-and-column layers
 - ► interpolative vector sum
 - predictive projection

Involvement

- accessibility
- issues
- contributions

Fin

This is the end Beautiful friend