

Università "Sapienza" di Roma Facoltà di Informatica

Calcolo Differenziale

Definizioni e Teoremi principali nell'ambito dello studio del Calcolo Differenziale o Analisi I

> Author Simone Bianco

Indice

1	Definizioni		
	1.1	Definizione di limite	1
	1.2	Definizione di Continuità	3
	1.3	Definizione di Derivata	3
	1.4	Definizione di Punto di Massimo e Minimo	4
	1.5	Definizione di Punto Critico	4
	1.6	Definizione di Concavità e Convessità	5
	1.7	Definizione di Polinomio di Taylor	5
2	Teo	remi	6
	2.1	Teorema di Weierstrass	6
	2.2	Teorema della Permanenza del Segno	6
	2.3		7
	2.4	,	7
	2.5	•	8
	2.6		8
	2.7	· · · · · · · · · · · · · · · · · · ·	8
	2.8		9
	2.9		9
	2.10	Teorema di Rolle	0
		Teorema di Lagrange	0
		Teorema del Criterio differenziale di Monotonia	
		Resto di Lagrange	

Capitolo 1

Definizioni

1.1 Definizione di limite

Limite destro

Sia $f:(x_0,b)$. Si dice che f ha limite destro l in x_0 (o che f tende ad l da destra in x_0) se

 $\forall \varepsilon > 0, \exists \delta > 0$ tale che $\forall x \in D, x_0 < x < x_0 + \delta \Rightarrow |f(x) - l| < \varepsilon$

e si scrive: $\lim_{x \to x_0^+} = l$

Limite sinistro

Sia $f:(a,x_0)$. Si dice che f ha limite sinistro l in x_0 (o che f tende ad l da sinistra in x_0) se

 $\forall \varepsilon > 0, \exists \delta > 0$ tale che $\forall x \in D, x_0 - \delta < x < x_0 \Rightarrow |f(x) - l| < \varepsilon$

e si scrive:
$$\lim_{x\to x_0^-} = l$$

Limite (da entrambi i lati)

Si dice che f ha limite l in x_0 (o che f tende ad l in x_0) se

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ tale che } \forall x \in D, 0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon$

e si scrive: $\lim_{x\to x_0} = l$

Elenco delle definizioni matematiche dei limiti

• Limiti per $x \to x_0$

$$\lim_{x \to x_0} f(x) = l$$

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ tale che } \forall x \in D, 0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon$

$$\lim_{x \to x_0} f(x) = +\infty$$

 $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ tale che } \forall x \in D, 0 < |x - x_0| < \delta \Rightarrow f(x) > M$

$$\lim_{x \to x_0} f(x) = -\infty$$

 $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ tale che } \forall x \in D, 0 < |x - x_0| < \delta \Rightarrow f(x) < M$

• Limiti per $x \to +\infty$

$$\lim_{x \to +\infty} f(x) = l$$

 $\forall \varepsilon > 0, \exists N \in \mathbb{R}$ tale che $\forall x \in D, x > N \Rightarrow |f(x) - l| < \varepsilon$

$$\lim_{x \to +\infty} f(x) = +\infty$$

 $\forall M > 0, \exists N \in \mathbb{R} \text{ tale che } \forall x \in D, x > N \Rightarrow f(x) > M$

$$\lim_{x \to +\infty} f(x) = -\infty$$

 $\forall M>0, \exists N\in\mathbb{R}$ tale che $\forall x\in D, x>N\Rightarrow f(x)< M$

• Limiti per $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = l$$

 $\forall \varepsilon > 0, \exists N \in \mathbb{R}$ tale che $\forall x \in D, x < N \Rightarrow |f(x) - l| < \varepsilon$

$$\lim_{x \to -\infty} f(x) = +\infty$$

 $\forall M > 0, \exists N \in \mathbb{R} \text{ tale che } \forall x \in D, x < N \Rightarrow f(x) > M$

$$\lim_{x \to -\infty} f(x) = -\infty$$

 $\forall M > 0, \exists N \in \mathbb{R}$ tale che $\forall x \in D, x < N \Rightarrow f(x) < M$

1.2 Definizione di Continuità

Sia $f: I \to \mathbb{R}$ e sia x_0 un punto di accumulazione in I. Diciamo che f è una **funzione** continua in $\mathbf{x_0}$ se

$$\lim_{x \to x_0} f(x) = l = f(x_0)$$

La funzione si dice **continua nell'intervallo** I se

$$\forall x_0 \in I \text{ si verifica che } \lim_{x \to x_0} f(x) = l = f(x_0)$$

1.3 Definizione di Derivata

Sia $f: I \to \mathbb{R}$ una funzione sull'intervallo aperto I e sia x_0 un punto di I. Per ogni $h = x - x_0$ abbastanza piccolo, il **rapporto incrementale** di f in x_0 è $f(x_0 + h) - f(x_0)$.

Il rapporto incrementale ha un senso geometrico preciso, esprimendo il **coefficiente** angolare della retta passante per i punti $A = (x_0, f(x_0))$ e $B = (x_0 + h, f(x_0 + h))$.

Riducendo la distanza $h = x - x_0$ ad una quantità infinitesimale (dunque applicando la definizione di **limite**), è facilmente intuibile che la retta AB si avvicini sempre di più all'approssimare la **retta perfettamente tangente** alla funzione nel punto A, ossia la **miglior approssimazione lineare** di f in x_0 .

La derivata equivale dunque al limite del rapporto incrementale di f in un punto e viene riformulata matematicamente come:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

1.4 Definizione di Punto di Massimo e Minimo

Sia [a, b] un intervallo chiuso.

- x_0 si dice **punto di massimo relativo** dell'intervallo [a,b] se esiste un intorno $I = (x_0 \delta, x_0 + \delta) \cap [a,b]$ in cui $\forall x \in I$ vale che $f(x_0) \geq f(x)$
- x_0 si dice **punto di minimo relativo** dell'intervallo [a, b] se esiste un intorno $I = (x_0 \delta, x_0 + \delta) \cap [a, b]$ in cui $\forall x \in I$ vale che $f(x_0) \leq f(x)$
- x_0 si dice **punto di massimo assoluto** dell'intervallo [a,b] se $\forall x \in [a,b]$ vale che $f(x_0) \geq f(x)$
- x_0 si dice **punto di minimo assoluto** dell'intervallo [a,b] se $\forall x \in [a,b]$ vale che $f(x_0) \leq f(x)$

1.5 Definizione di Punto Critico

Un punto x_0 si dice **punto critico** o **punto stazionario** se $f'(x_0) = 0$.

1.6 Definizione di Concavità e Convessità

Una funzione $f: I \to \mathbb{R}$ si dice **concava** nell'intervallo [a, b] se $\forall x_1, x_2 \in [a, b]$ il **segmento** passante per x_1 e x_2 non ha punti **sopra** il grafico della funzione, dunque f''(x) < 0.

Analogamente, una funzione $f: I \to \mathbb{R}$ si dice **convessa** nell'intervallo [a, b] se $\forall x_1, x_2 \in [a, b]$ il **segmento** passante per x_1 e x_2 non ha punti **sotto** il grafico della funzione, dunque f''(x) > 0.

1.7 Definizione di Polinomio di Taylor

Il polinomio di Taylor di una funzione in un punto è la rappresentazione della funzione come **serie di termini** calcolati a partire dalle derivate della funzione stessa nel punto. Esso ci permette di **approssimare funzioni complesse** con funzioni estremamente più semplici.

Più alto è il **grado del polinomio**, maggiore sarà l'approssimazione. La formula generica per un qualsiasi grado n del polinomio di Taylor equivale a

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

che può essere contratta nella forma

$$\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

e dove $o((x-x_0)^n)$ rappresenta l'errore minimale nell'approssimazione tra $f(x_0)$ e $P_n(x_0)$

$$f(x_0) - P_n(x_0) = o((x - x_0)^n)$$

Capitolo 2

Teoremi

2.1 Teorema di Weierstrass

Sia $f:[a,b] \to \mathbb{R}$ una funzione continua. Esistono due punti $x_1,x_2 \in [a,b]$ tali che

$$f(x_1) \le f(x) \le f(x_2), \ \forall x \in [a, b]$$

dove $f(x_1)$ è un **punto di minimo** di f mentre $f(x_2)$ è un **punto di massimo** di f.

2.2 Teorema della Permanenza del Segno

Sia $f: I \to R$ una funzione sull'intervallo aperto I e sia $x_0 \in I$. Se f è continua nel punto x_0 , allora vale che

se
$$f(x) > 0 \Rightarrow \lim_{x \to x_0} f(x) > 0$$

se
$$f(x) < 0 \Rightarrow \lim_{x \to x_0} f(x) < 0$$

Dimostrazione del caso f(x) > 0

Siccome f è **continua**, allora abbiamo che

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Dalla **definizione di limite** sappiamo che

$$\forall \varepsilon > 0, \exists \delta > 0$$
 tale che $\forall x \in D, 0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \varepsilon$

quindi possiamo dire che

$$f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$$
, per $0 < |x - x_0| < \delta$

Ponendo $\varepsilon = \frac{f(x_0)}{2}$, ricordando che $\varepsilon > 0$, otteniamo che

$$\frac{f(x_0)}{2} < f(x) < f(x_0) + \frac{f(x_0)}{2}$$

dunque che f(x) si trova comunque tra due numeri positivi

2.3 Teorema del Confronto (o dei due Carabinieri)

Siano $f, g, h : X \to \mathbb{R}$ e x_0 un punto di accumulazione. Se esiste un intorno $(x_0 - \delta, x_0 + \delta)$ in cui vale

$$g(x) \le f(x) \le h(x)$$

e se

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l$$

allora vale anche che

$$\lim_{x \to x_0} f(x) = l$$

Dimostrazione

Poiché dalla **definizione di limite** sappiamo che per g ed h vale che

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ tale che } \forall x \in D, 0 < |x - x_0| < \delta \Rightarrow |g(x) - l| < \varepsilon$$

$$\forall \varepsilon > 0, \exists \delta > 0$$
 tale che $\forall x \in D, 0 < |x - x_0| < \delta \Rightarrow |h(x) - l| < \varepsilon$

possiamo dedurre che

$$l - \varepsilon < g(x) < l + \varepsilon$$
 $l - \varepsilon < h(x) < l + \varepsilon$

Unendo tale deduzione all'ipotesi iniziale, otteniamo che

$$l - \varepsilon < g(x) \le f(x) \le h(x) < l + \varepsilon$$

da cui ricaviamo che

$$l - \varepsilon < f(x) < l + \varepsilon$$

che coincide esattamente con la definizione stessa di limite di una funzione.

2.4 Teorema di Derivabilità implicante Continuità

Se f è una funzione derivabile nel punto x_0 , allora f è continua nel punto x_0 . Tuttavia, non è sempre vero il contrario.

Dimostrazione

Partiamo dalla seguente identità

$$f(x_0 + h) = h \cdot \frac{f(x_0 + h) - f(x_0)}{h} + f(x_0)$$

Effettuando il limite per $h \to 0$ otteniamo

$$\lim_{h \to 0} f(x_0 + h) = \lim_{h \to 0} h \cdot \frac{f(x_0 + h) - f(x_0)}{h} + f(x_0)$$
$$\lim_{h \to 0} f(x_0 + h) = 0 \cdot f'(x_0) + f(x_0)$$

$$\lim_{h \to 0} f(x_0 + h) = f(x_0)$$

Da $h = x - x_0$ ricaviamo che $x = x_0 + h$ da cui otteniamo, una volta sostituito $x_0 + h$ nell'equazione, la **definizione di continuità in un punto**:

$$\lim_{h \to 0} f(x) = f(x_0)$$

2.5 Teorema di Unicità del limite

Sia $f:[a,b]\to\mathbb{R}$, con x_0 come punto di accumulazione.

Se
$$\lim_{x \to x_0} f(x) = l$$
 e $\lim_{x \to x_0} f(x) = m$
allora $l = m$

Dimostrazione per assurdo

Considerando il limite
$$\lim_{x\to x_0} f(x)=l$$
 con $\forall \varepsilon>0, \exists \delta>0$ tale che $\forall x\in D, 0<|x-x_0|<\delta\Rightarrow |f(x)-l|<\varepsilon$

e il limite
$$\lim_{x\to x_0}f(x)=m$$
 con $\forall \varepsilon>0, \exists \delta>0$ tale che $\forall x\in D, 0<|x-x_0|<\delta\Rightarrow |f(x)-m|<\varepsilon$

dove
$$l \neq m$$
 e $I_{\varepsilon}(l) \cap I_{\varepsilon}(m) = \emptyset$

da ciò si può notare che, poiché x_0 è **punto di accumulazione** per i due limiti, l'intersezione dei due insiemi sull'asse delle ascisse (x) è **diversa da zero**. Poiché i due intorni l ed m sull'asse delle ordinate (y) **dipendono** dai due intorni sull'asse delle ascisse (x), anche questi intorni devono avere un'intersezione diversa da zero, contraddicendo l'ipotesi.

L'unico caso in cui ciò sia possibile, dunque, è se l=m e di conseguenza $I_{\varepsilon}(l)=I_{\varepsilon}(m)$

2.6 Teorema dell'Esistenza degli Zeri

Sia f una funzione continua in un intervallo chiuso [a,b]. Se $f(a) \cdot f(b) \leq 0$, dunque con f(a) > 0 e f(b) < 0 oppure f(a) < 0 e f(b) > 0 (ossia con f(a) e f(b) che assumono segno opposto), allora f ammette almeno uno zero nell'intervallo [a,b], ossia un punto $c \in [a,b]$ tale che f(c) = 0.

2.7 Teorema dei Valori intermedi

Sia $f: I \to \mathbb{R}$ una funzione continua. Se f(x) assume due valori $y_1, y_2 \in I$ dove $y_1 \neq y_2$, allora f assume anche **tutti** i valori tra y_1 e y_2 .

2.8 Dim. della Regola di Derivazione del Prodotto

Regola di derivazione

$$(f \cdot g)'(x) = (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Dimostrazione

Applicando la **definizione di derivata** sulla funzione prodotto $(f \cdot g)(x)$ otteniamo

$$\lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

Sommando e sottraendo $g(x+h) \cdot f(x)$, otteniamo

$$\lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) + g(x+h) \cdot f(x) - g(x+h) \cdot f(x) - f(x) \cdot g(x)}{h}$$

Mettendo in **evidenza** g(x + h) e f(x) e **scomponendo** la frazione otteniamo

$$\lim_{h \to 0} g(x+h) \cdot \frac{f(x+h) - f(x)}{h} + f(x) \cdot \frac{g(x+h) - g(x)}{h}$$

Valutando il **limite** per $h \to 0$ otteniamo che le due frazioni equivalgono rispettivamente alle derivate di f e g

$$g(x) \cdot f'(x) + f(x) \cdot g'(x)$$

2.9 Teorema di Fermat

Sia $f:[a,b] \to \mathbb{R}$ e sia x_0 un **punto di massimo o di minimo relativo**. Se f è derivabile in x_0 , allora f'(x) = 0. Non è tuttavia sempre vero il contrario.

Dimostrazione

Se x_0 è un **punto di massimo relativo**, esiste un intorno $(x_0 - \delta, x_0 + \delta)$ in cui $f(x_0) = f(x)$, $\forall x \in (x_0 - \delta, x_0 + \delta)$. Se f è derivabile, sappiamo che

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$$

• Se h > 0 e $f(x_0 + h) - f(x_0) \le 0$ poiché x_0 è un massimo relativo, allora

$$\frac{f(x_0+h)-f(x_0)}{h} \le 0$$

per cui vale che

$$f'(x) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

• Se h < 0 e $f(x_0 + h) - f(x_0) \le 0$ poiché x_0 è un massimo relativo, allora

$$\frac{f(x_0+h)-f(x_0)}{h} \ge 0$$

per cui vale che

$$f'(x) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

Unendo i due casi otteniamo che

$$\lim_{h \to 0^+} f'(x) \le 0 \lim_{h \to 0^-} f'(x) \ge 0$$
 $f'(x_0) = 0$

<u>Omissione</u>: la dimostrazione del caso in cui x_0 sia punto di minimo relativo è stata omessa, poiché in tal caso vale che $f(x_0 + h) - f(x_0) > 0$, dunque sarebbe necessario invertire i segni di comparazione tra le due derivate calcolate e 0, ottenendo una dimostrazione estremamente simile.

2.10 Teorema di Rolle

Sia f una funzione continua in [a, b], derivabile in (a, b) e dove f(a) = f(b). In tal caso, esiste un punto $c \in (a, b)$ in cui f'(c) = 0

Dimostrazione

Tramite il **teorema di Weierstrass**, sappiamo che nell'intervallo [a, b] esiste un **massimo** ed un minimo relativo. Se $x_{max}, x_{min} \in (a, b)$ allora l'ipotesi è verificata, altrimenti essi coincidono con i due estremi dell'intervallo, dunque abbiamo che $f(a) = f(b) = f(x_{max}) = f(x_{min})$, indicando quindi che la funzione è **costante**, dunque ogni valore nell'intervallo (a, b) ha derivata nulla.

2.11 Teorema di Lagrange

Sia $f:[a,b]\to\mathbb{R}$ una funzione **continua** in [a,b] e **derivabile** in (a,b). In tal caso, esiste un punto $c\in(a,b)$ tale che

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Graficamente, ciò può essere interpretato come un punto in cui la **retta tangente** al grafico della funzione nel punto stesso è parallela alla **retta secante** passante per a e b

Dimostrazione

Definiamo la funzione differenza F(x) tra f(x) e la retta secante passante per a e b, ossia r(x)

$$r(x): y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
$$F(x) = f(x) - r(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

F(x) è continua e derivabile perché è la differenza di due funzioni continue e derivabili. Sostituendo x con a e b otteniamo

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (a - a) = 0 - \frac{f(b) - f(a)}{b - a} \cdot 0 = 0$$
$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = f(b) - f(a) - (f(b) - f(a)) = 0$$

$$b-a \qquad \qquad b-a$$

Tutte le condizioni richieste dal **Teorema del Rolle** sono soddisfatte, dunque esiste un punto $c \in (a, b)$ in cui F'(c) = 0

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

2.12 Teorema del Criterio differenziale di Monotonia

Sia $f:I\to\mathbb{R}$ una funzione **continua** e **derivabile** nell'intervallo I. In tal caso, vale che:

- 1. $f'(x) \ge 0$, $\forall x \in I \Leftrightarrow f$ è monotona crescente in I:
 - Se f(x) è **crescente**, allora $f(x_2) \ge f(x_1)$ se $x_2 \ge x_1$, dunque abbiamo che $f(x_2) f(x_1) \ge 0$ e che $x_2 x_1 \ge 0$. Da ciò, ne consegue che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0 \longrightarrow \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0$$
$$f'(x_1) \ge 0 \ \forall x_1 \in I$$

- 2. $f'(x) \leq 0$, $\forall x \in I \Leftrightarrow f$ è monotona decrescente in I:
 - Se f(x) è **decrescente**, allora $f(x_2) \le f(x_1)$ se $x_2 \ge x_1$, dunque abbiamo che $f(x_2) f(x_1) \le 0$ e che $x_2 x_1 \ge 0$. Da ciò, ne consegue che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0 \longrightarrow \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0$$
$$f'(x_1) \le 0 \ \forall x_1 \in I$$

Dimostrazione

1. Assumiamo che $f'(x) \ge 0$, $\forall x \in I$. Per il **Teorema di Lagrange** possiamo dire che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$

Tuttavia, come da **ipotesi**, sappiamo che $f'(c) \geq 0$, dunque

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge 0$$

Inoltre, sappiamo che $x_2 - x_1 \ge 0$, da cui, per mantenere vera la **precedente** disequazione, ne consegue che

$$f(x_2) - f(x_1) \ge 0$$

e dunque che

$$f(x_2) \ge f(x_1) \ \forall x_2 \ge x_1$$

2. Assumiamo che $f'(x) \leq 0$, $\forall x \in I$. Per il **Teorema di Lagrange** possiamo dire che

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$

Tuttavia, come da **ipotesi**, sappiamo che $f'(c) \leq 0$, dunque

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0$$

Inoltre, sappiamo che $x_2 - x_1 \ge 0$, da cui, per mantenere vera la **precedente** disequazione, ne consegue che

$$f(x_2) - f(x_1) \le 0$$

e dunque che

$$f(x_2) \le f(x_1) \ \forall x_2 \ge x_1$$

2.13 Resto di Lagrange

L'enunciato del Resto di Lagrange afferma che:

$$E_n = f(x) - P(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$$