PROCESSAMENTO DE LINGUAGEM NATURAL

TÓPICOS

- 1. Introdução
- 2. Word2Vec
- 3. Doc2Vec

INTRODUÇÃO

- O conceito de embeddings se refere a uma representação em um espaço vetorial contínuo, de menor dimensionalidade aprendida, ou gerada a partir de uma representação de maior dimensionalidade
- As embeddings podem ser aprendidas/geradas para variáveis discretas (ex.: documentos, sentenças e palavras)
- Ao gerar uma representação de menor dimensionalidade, deve-se tentar preservar as características do espaço de maior dimensionalidade
- Ao gerar um espaço de menor dimensionalidade, o processamento por parte dos algoritmos de aprendizado de máquina torna-se mais rápido e consome menos espaço

INTRODUÇÃO

Espaço Original

	Att.	1	Att.	2	Att.	3	Att.	4	Att.	5	Att.	6
0		1		1		1		0		0		0
1		1		1		1		0		0		0
2		1		1		1		0		0		0
3		0		0		0		1		1		1
4		0		0		0		1		1		1
5		0		0		0		1		1		1

Espaço Embedding

	Att.	A	Att.	В
0		1		0
1		1		0
2		1		0
3		0		1
4		0		1
5		0		1

Matriz de Similaridade

INTRODUÇÃO

Espaço Original

	Att.	1	Att.	2	Att.	3	Att.	4	Att.	5	Att.	6
0		3		2		1		0		1		0
1		1		3		4		0		0		1
2		3		1		2		1		0		0
3		0		1		0		4		1		3
4		1		0		0		1		2		3
5		0		0		1		5		4		1

Espaço Embedding

تعصر		
	Att. A	Att. B
0	-2.419284	0.824008
1	-3.188673	-1.697054
2	-2.209397	0.077006
3	2.705855	0.294023
4	1.105915	2.087878
5	4.005585	-1.585861

Matriz de Similaridade

Correlação de Pearson entre as duas matrizes é 0,9575.

- O uso de embeddings, além de ser particularmente útil para reduzir o número de dimensões, também possui uma série de outros efeitos interessantes, de acordo com o tipo do dado que estão representando
 - ➤ Representar grafos no espaço-vetorial → permite utilizar qualquer algoritmo baseado no modelo espaço vetorial

- O uso de embeddings, além de ser particularmente útil para reduzir o número de dimensões, também possui uma série de outros efeitos interessantes, de acordo com o tipo do dado que estão representando
 - ➤ Representar palavras (word embeddings) →
 - > Permite capturar a semântica das palavras
 - Operações entre os vetores de palavras são significativas

ı	
	Royal
	Male
	Female
	Age

King	Queen	Princess	Boy				
0,99	0,99	0,99	0,01				
0,99	0,02	0,01	0,98				
0,02	0,99	0,99	0,01				
0,70	0,60	0,10	0,20				

 $f(king) - f(queen) \approx f(man) - f(woman)$

- O uso de embeddings, além de ser particularmente útil para reduzir o número de dimensões, também possui uma série de outros efeitos interessantes, de acordo com o tipo do dado que estão representando
 - ➤ Representar palavras (word embeddings) →
 - > Permite capturar a semântica das palavras
 - Operações entre os vetores de palavras são significativas

WORD EMBEDDINGS

Representações vetoriais densas (valores diferentes de zero)

A dimensão é fixa (p. ex. 300)

WORD EMBEDDINGS

- v(king) + v(woman) v(man) ~ v(queen)
- v(king) v(royal) ~ v(man)
- v(queen) v(royal) ~ v(woman)

Word2Vec

- A abordagem Word2Vec é uma das mais populares para geração de word-embeddings utilizando redes neurais
- Há duas variações da abordagem Word2Vec:
 - Continuous Bag-Of-Words (CBOW)
 - Skip-Gram

CBOW vs Skip-Gram

QUESTÕES IMPORTANTES

- Número de dimensões
 - Aumentar a dimensionalidade da embedding geralmente aumenta o poder discriminativo, porém, requer mais dados para obter melhores resultados
 - Em geral, o número de dimensões varia em algumas centenas
- Tamanho do contexto: tipicamente varia entre 5 e 10
- Efeito de palavras frequentes e pouco discriminativas (ex.: "the"):
 - Podem interferir nos resultados
 - Pode-se removê-las ou adotar um esquema de amostragem inversamente proporcional à frequência
- Também é interessante a identificação de frases para a geração de embeddings, por exemplo, "Apple Store"

FastText

- Extensão da abordagem Skip-Gram
- Ao invés de palavras como entrada, são consideradas sequências de n caracteres ($3 \le n \le 6$)
- Permite aprender uma estrutura interna das palavras
- Tende a obter melhores resultados em línguas morfologicamente ricas
- Uma vez obtida a embedding das sequências de ncaracteres, a embedding da palavra é obtida por meio da soma das embeddings das sequências de caracteres

Document Embeddings

- Tudo o que foi visto é útil, pois:
 - Podemos gerar as representações dos documentos a partir das word embeddings
 - Utilizar abordagens parecidas à da geração das word embeddings, porém, para a geração das embeddings dos documentos
- As abordagens apresentadas na seção anterior, apesar dos diversos aspectos interessantes que elas apresentam, para um dos propósitos dessa aula, é necessária a representação dos documentos, e não das palavras

Doc2Vec

- A partir das word embeddings, pode-se obter os vetores das palavras do documento e fazer operações sobre esses vetores, tais como: Soma, Média, Soma ponderada, Valores mínimos ou máximos de cada dimensão
- Conhecida como Paragraph Vectors ou Doc2Vec
- Le e Mikolov (2014) propõem duas abordagens para gerar embeddings de trechos de texto, como parágrafos, ou documento, baseadas no Word2Vec
- As duas abordagens são:
 - Distributed Memory (PV-DM)
 - Distributed Bag-of-Words (PV-DBOW)

PV-DM

- São consideradas como entradas os vetores one-hot de cada parágrafo e das palavras do contexto
- Portanto, a entrada do PV-DM é similar a do CBOW com a adição dos vetores one-hot dos parágrafos
- Uma outra diferença em relação ao CBOW é que o objetivo é prever a próxima palavra do contexto

PV-DBOW

- No modelo PV-DBOW, o objetivo é prever as palavras do contexto dado o parágrafo como entrada
- Esse modelo é análogo ao modelo Skip-Gram utilizado na geração das word embeddings

PRÁTICA

- Nas implementações para a geração das word e document embeddings, vamos utilizar:
 - a biblioteca Gensim: https://radimrehurek.com/gensim/
 - bibliotecas auxiliares para a manipulação de dados e pré-processamento dos textos
- Vamos aprender:
 - a geração de word embeddings para uma base
 - a utilização de word embeddings já treinadas

O QUE VIMOS?

- Introdução
- Word2Vec
- Doc2Vec

PRÓXIMA VIDEOAULA

> Prática: Embeddings

REFERÊNCIAS

- Curso de Tópicos em Inteligência Artificial
 - Prof. Rafael G. Rossi (UFMS)
 - https://www.youtube.com/@RafaelRossiTech/playlists
- Curso de Processamento de Linguagem Natural
 - Profa. Helena Caseli (UFSCar)