Assignment 3- Argument

October 10, 2023

Solution to Question 1-a

We aim to show that the premise $\neg(p \lor \neg q) \land (\neg p \land \neg q) \lor (p \land (p \lor \neg q))$ implies p using only the valid argument forms: Modus Ponens, Modus Tollens, Generalization, Conjunction, Construction, Transitivity, and Elimination.

- 1. Given Premise: $\neg(p \lor \neg q) \land (\neg p \land \neg q) \lor (p \land (p \lor \neg q))$
- 2. Elimination:
 - Consider the first part $\neg (p \lor \neg q) \land (\neg p \land \neg q)$. If this is true, then $\neg p$ is true (via Conjunction and Elimination).
 - Consider the second part $p \wedge (p \vee \neg q)$. If this is true, then p is true (via Conjunction and Elimination).
- 3. **Conjunction**: Form the conjunction of these implications:
 - If $\neg (p \lor \neg q) \land (\neg p \land \neg q)$ is true, then $\neg p$ is true.
 - If $p \wedge (p \vee \neg q)$ is true, then p is true.
- 4. Construction: Construct the following statement from step 3.
 - $(\neg(p \lor \neg q) \land (\neg p \land \neg q)) \Rightarrow \neg p$
 - $(p \land (p \lor \neg q)) \Rightarrow p$
- 5. **Transitivity**: By transitivity of implication, we can form the following:
 - If $\neg (p \lor \neg q) \land (\neg p \land \neg q) \lor (p \land (p \lor \neg q))$ is true, then $\neg p \lor p$ is true.
- 6. **Generalization and Elimination**: From step 5, generalize to say that either $\neg p$ is true or p is true. Use elimination to say that this disjunction implies p.

Solution to Question 1-b

By these steps and using only the specified argument forms, we can argue that the original premise $\neg(p \lor \neg q) \land (\neg p \land \neg q) \lor (p \land (p \lor \neg q))$ implies p.

We start with the given premise:

$$((p \land \neg q) \lor (p \land \neg q)) \lor \neg (p \land (p \lor q))$$

1. Elimination (Remove redundancy)

$$(p \land \neg q) \lor \neg (p \land (p \lor q))$$

By Elimination, we remove the duplicate $(p \land \neg q)$.

2. Conjunction (Introduce conjunction to eliminate negation of conjunction)

$$(p \land \neg q) \lor (\neg p \lor \neg (p \lor q))$$

We introduce $\neg p$ as a conjunction to the term $\neg (p \land (p \lor q))$ to get $\neg p \lor \neg (p \lor q)$.

3. Generalization (Introduce common terms)

$$(p \land \neg q) \lor \neg p \lor (\neg p \land \neg q)$$

We use Generalization to introduce common terms $\neg p$ and $\neg q$ to simplify the expression.

4. Elimination (Remove redundant terms)

$$(p \land \neg q) \lor \neg p \lor \neg q$$

By Elimination, we remove redundant terms, in this case, $\neg p \land \neg q$.

5. Construction (Combine terms into the final expression)

$$(p \land \neg q) \lor (\neg p \lor \neg q)$$

By Construction, we combine $\neg p$ and $\neg q$ to get $\neg p \lor \neg q$, and combine this with $p \land \neg q$ to arrive at $(p \land \neg q) \lor (\neg p \lor \neg q)$.

By following these steps using only the argument forms you specified, we've shown that $((p \land \neg q) \lor (p \land \neg q)) \lor \neg (p \land (p \lor q))$ can be simplified to $(p \land \neg q) \lor (\neg p \lor \neg q)$.