CprE 281 HW02
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Design Examples, Intro to Verilog Assigned Date: Third Week Finish by Feb. 5, 2023

- P1. (10 points) Write the corresponding Verilog symbol for the following terms:
- P2. (10 points) Describe the difference between structural Verilog and behavioral Verilog
- P3. (15 points) Write both the <u>structural</u> and <u>behavioral</u> Verilog code for the circuit shown below:

ansurs Lelon

P4. (15 points) Write both the structural and behavioral Verilog code for the circuit shown below:

CprE 281 HW02 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Design Examples, Intro to Verilog Assigned Date: Third Week Finish by Feb. 5, 2023

P5. (15 points) Find the simplest SOP form of the following functions:

- A. $f(a) = \sum m(0,1)$
- B. $f(a,b) = \sum m(1,2)$
- C. $f(a,b,c) = \sum m(0,3,5,6)$
- D. $f(a,b,c) = \Sigma m(1,3,4,5,6)$
- E. $f(a,b,c,d) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13)$

P6. (15 points) A four-variable logic function that is equal to 1 if any three or all four of its variables are equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements this majority function.

P7. (20 points) Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly two or three of its variables are equal to 1. Otherwise, it is equal to 0.

(2) - in structual Verilog, functions are designed using Components, like logic getes, inverters, MUX. You will see "and" or "xor" for excepte to describe a process to carry out. - Behavioral Verilog is like the lane implies, it is wed to describe the behavior of digital processes + circuits, it also has Continuos deta Flow + procedural deta Flow. - Continuous uses terms such as "wire" and any input will affect the output immediately - Procedural are not continuous & the date flow depends on specific order of events using blacks, such as "a[ways" "sun" "carry" any variables defined as "reg" held their value until it is assigned with a new value (unlike continuous)

p3) Structural

module problem3s(x1,x2,x3, F);
input x1, x2, x3;
output F;
Wire wire1, wire2, wire3;

not ul (wirel, x3), or u2 (wire2, x1, x2), or u3 (wire3, x2, wire1); and u4 (f, wire2, wire3); and u4 (f, wire2, wire3);

ent module

Behavioral

Module problem3b(x1, x2, x3, f); input x1, x2, x3; output reof;

always C(7)begin $F := (x | x^2) & (x^2 | x^3)$ $A := (x | x^2) & (x^2 | x^3)$

end module

py) Structural

Behavioral

Module problem 45 (A,B,C,F)

input A,B,C;

output F;

wire virel, wire2, wire3, wire4, wire5;

Wire virel, wire2, wire3, wire4, wire5;

not ul (wirel, A);

Not uz (wirel, B);

and u3 (wirel, wirel, B, C);

and u4 (wirel, wirel, B, wirez);

and u5 (wires, A, C);

and u5 (wires, wirel, wires);

or u6 (f, wires, wirel, wirel);

end module

Module problem 4 b (A, B, C, f);
input A, B, C;
output f;
always (A, B, C)begin $f \leftarrow = (A \otimes B \otimes C) | (A \otimes B \otimes C) | (A \otimes C);$ end

A)
$$f(a) = \sum_{i=1}^{\infty} m(0,1)$$

$$f(a) = a = 1$$

B.
$$f(\underline{a},\underline{b}) = \sum m(1,2)$$

C.
$$f(a,b,c) = \sum m(0,3,5,6)$$

D.
$$f(\underline{a,b,c}) = \Sigma m(1,3,4,5,6)$$

E.
$$f(a,b,c,d) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13)$$

×۱	×۷	x ³	×4	f	
60000000	0000000	000000-	0-0-0-0-0-0	00000000000	X1 x2 x3 x4
	0 0 1	0	0-0-0-	0-0	x x 2 x) x y x x 2 x) x y x x 2 x) x y x x 2 x) x y

f = (x1 x2 x3 x4) +(x1 x2 x7 x4) + (x1 x2 x7 x4)

P7) 4 variables exactly 2 or 3 are equal to 1

×l	x 2	x ³	× 4	f
	0000	00000000	0-0-0-0-0-0-0-	000-00

*	3 00	01	((10
1/m	J			
0/		(1	$\overline{\mathbb{O}}$	D
//		(Î)		
10		V	1	

Question did not ask to draw circuit