## РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>3</u>

дисциплина: Архитектура компьютера

Студент: Ибатулина Д.Э.

Группа: НКАбд-01-22

МОСКВА

2022 г.

## Оглавление

| Цель работы                                                  | 3 |
|--------------------------------------------------------------|---|
| Теоретическое введение                                       |   |
| Ход работы                                                   | 7 |
| Итоги и выводы по результатам выполнения лабораторной работы |   |

## Цель работы

Целью работы является изучение идеологии и применения средств контроля версий, приобретение практических навыков работы с системой git.

## Задачи:

- Ознакомиться с теоретическим введением к лабораторной работе №3;
- Создать учётную запись в системе контроля версий GitHub;
- Произвести базовую настройку Git;
- Сгенерировать ключи для дальнейшей идентификации пользователя на сервере;
- Создать репозиторий и каталоги курса;
- Сделать выводы по данной работе;
- Оформить отчёт по данной работе;
- Загрузить файлы этой и предыдущих лабораторных работ на GitHub, а также ссылку на собственный Github.

#### Теоретическое введение

Система контроля версий (также носит название Version Control System, VCS) — система, записывающая изменения в файл или набор файлов в течение всего времени работы над проектом. Применяется для групповой разработки приложений, файлов, программ, позволяет ограничивать и разрешать доступ определённой группе пользователей. Также система позволяет возвращаться к более ранней версии проекта, если это необходимо. Можно даже увидеть, кто именно вносил изменения, и ограничить доступ к журналу изменений. Примеры систем контроля весрий: CVS, Subversion, Git, Bazaar, Mercurial. В данной работе мы будем использовать систему GitHub.

Система контроля версий Git представляет собой набор программ командной строки. Доступ к ним можно получить из терминала посредством ввода команды git с различными опциями. Ниже в таблице приведены основные команды для работы с системой контроля версий Git:

Таблица 1. Основные команды Git

| Команда Т. Основные команды | Описание                              |
|-----------------------------|---------------------------------------|
| git init                    | Создание основного дерева             |
| 8.4                         | репозитория                           |
| git pull                    | Получение обновлений (изменений)      |
| Sit pair                    | текущего дерева из                    |
|                             | центрального репозитория              |
| git push                    | Отправка всех произведённых           |
| git pusii                   | изменений локального                  |
|                             | дерева в центральный репозиторий      |
| git status                  | Просмотр списка изменённых файлов в   |
| git status                  | текущей                               |
|                             | •                                     |
| git diff                    | Директории                            |
| git diff                    | Просмотр текущих изменений            |
| git add.                    | Добавить все изменённые и/или         |
|                             | созданные файлы и/или                 |
| . 11                        | каталоги                              |
| git add                     | Добавить конкретные изменённые и/или  |
| имена_файлов                | созданные файлы                       |
|                             | и/или каталоги                        |
| git rm                      | Удалить файл и/или каталог из индекса |
| имена_файлов                | репозитория (при                      |
|                             | этом файл и/или каталог остаётся в    |
|                             | локальной директории)                 |
| git commit                  | Сохранить все добавленные изменения и |
| -ат 'Описание               | все изменённые                        |
| коммита'                    | файлы                                 |
| git checkout                | Создание новой ветки, базирующейся на |
| -ь имя ветки                | текущей                               |
| git checkout                | Переключение на некоторую ветку (при  |
| имя_ветки                   | переключении на                       |
|                             | ветку, которой ещё нет в локальном    |
|                             | репозитории, она будет                |
|                             | создана и связана с удалённой)        |
| git push                    | Отправка изменений конкретной ветки в |
| origin                      | центральный                           |
| имя ветки                   | репозиторий                           |
| git merge                   | Слияние ветки с текущим деревом       |
| no-ff                       | J , , , , 1                           |
| имя ветки                   |                                       |
| git branch -d               | Удаление локальной уже слитой с       |
| имя ветки                   | основным деревом ветки                |
| git branch -D               | Принудительное удаление локальной     |
| имя ветки                   | ветки                                 |
| git push                    | Удаление ветки с центрального         |
| origin                      | репозитория                           |
| імя ветки                   | репозитория                           |
| .YIIVIA_DCINII              |                                       |

## Ход работы

Для начала необходимо зарегистрироваться на сайте <a href="https://git-scm.com/">https://git-scm.com/</a>, создать учётную запись.

Рис.1. Открытие стартовой страницы GitHub



Рис. 2. Регистрация и ввод основных данных



Рис. 3. Вход в свой аккаунт на гитхабе



Рис. 4. Стартовая страница GitHub



Сначала сделаем предварительную конфигурацию Git. Для этого введём в терминал следующие комнады:

### Рис. 5. Предварительная настройка GitHub:

a) Ввод имени и фамилии

deibatulina@fedora:~

Q ≡ ×

[deibatulina@fedora ~]\$ git config --global user.name "<Darya Ibatulina>"

■

б) Ввод электронного адреса пользователя [deibatulina@fedora ~]\$ git config --global user.email "<fdarisha@yandex.ru>" [deibatulina@fedora ~]\$

#### Рис. 6. Задание кодировки utf-8

```
[deibatulina@fedora ~]$ git config --global core.quotepath false
[deibatulina@fedora ~]$
```

#### Рис. 7. Задание имени начальной ветки

```
[deibatulina@fedora ~]$ git config --global init.defaultBranch master
```

#### Рис. 8. Параметр autocrlf

```
[deibatulina@fedora ~]$ git config --global core.autocrlf input
[deibatulina@fedora ~]$
```

#### Рис. 9. Параметр safecrlf

```
[deibatulina@fedora ~]$ git config --global core.safecrlf warn
[deibatulina@fedora ~]$
```

#### Рис. 10. Генерация SSH-ключа

```
[deibatulina@fedora ~]$ ssh-keygen -С "Дарья Ибатулина <fdarisha@yandex.ru>"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/deibatulina/.ssh/id_rsa):
Created directory '/home/deibatulina/.ssh'.
Enter passphrase (empty for no passphrase):
```

Мы видим, что система ждёт от пользователя ввода сгенерённого открытого ключа. Далее с помощью команды саt копируем ключ (предварительно установив пакет xclip)

#### Рис. 11. Установка пакета хсlір

```
[deibatulina@fedora ~]$ cat ~/.ssh/id_rsa.pub | xclip -sel clip
bash: xclip: команда не найдена...
Установить пакет «xclip», предоставляющий команду «xclip»? [N/y] у
* Ожидание в очереди...
* Загрузка списка пакетов....
Следующие пакеты должны быть установлены:
xclip-0.13-16.gitllcba61.fc36.x86_64 Command line clipboard grabber
Продолжить с этими изменениями? [N/y] у
 * Ожидание в очереди...
 + Ожидание аутентификации...
 * Ожидание в очереди...
 загрузка пакетов...
* Запрос данных...
 Проверка изменений...
 Установка пакетов...
[deibatulina@fedora ~]$ cat ~/.ssh/id_rsa.pub | xclip -sel clip
```

Переходим на сайт <a href="http://github.org/">http://github.org/</a> и вставляем скопированный ключ.

Рис. 12. Ввод скопированного ключа на GitHub



Ключ создан.

Рис. 13. Окно созданного ключа



Создаем директорию для предмета «Архитектуры компьютеров»

Рис. 14. Создание директории предмета

[deibatulina@fedora ~]\$ mkdir -p ~/work/study/2022-2023/"Архитектура компьютера" [deibatulina@fedora ~]\$ Переходим на веб-сайт https://github.com/yamadharma/course-directory-student-template и нажимаем «Use this template».

Рис. 15. Выбор шаблона репозитория



Далее вводим имя репозитория, как приведено в указаниях, и нажимаем «Create repository from template».

Рис. 16. Задание имени репозитория



Открываем терминал и переходим в каталог «Архитектура компьютера».

#### Рис. 17. Переход в созданный каталог «Архитектура компьютера»

[deibatulina@fedora ~]\$ cd ~/work/study/2022-2023/"Архитектура компьютера" [deibatulina@fedora Архитектура компьютера]\$

Выполняем клонирование в каталог arch-pc, предварительно скопировав ссылку на репозиторий на гитхаб.

#### Рис. 18. Клонирование репозитория в каталог arch-pc

[deibatulina@fedora Архитектура компьютера]\$ git clone --recursive git@github.co m:deibatulina/study\_2022-2023\_arh-pc.git arch-pc Клонирование в «arch-pc»…

Клонирование выполнилось, как мы видим по выводу терминала.

#### Рис. 19. Выполнение клонирования

```
H)
       deibatulina@fedora:~/work/study/2022-2023/Архитектура ко...
                                                                   Q
Are you sure you want to continue connecting (yes/no/[fingerprint])? y
Please type 'yes', 'no' or the fingerprint: yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
remote: Enumerating objects: 26, done.
remote: Counting objects: 100% (26/26), done.
remote: Compressing objects: 100% (25/25), done.
remote: Total 26 (delta 0), reused 17 (delta 0), pack-reused 0
Получение объектов: 100% (26/26), 16.03 КиБ | 149.00 КиБ/с, готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presen
tation-markdown-template.git) зарегистрирован по пути «template/presentation»
Подмодуль «template/report» (https://github.com/yamadharma/academic-laboratory-r
eport-template.git) зарегистрирован по пути «template/report»
Клонирование в «/home/deibatulina/work/study/2022-2023/Архитектура компьютера/ar
ch-pc/template/presentation»...
remote: Enumerating objects: 71, done.
remote: Counting objects: 100% (71/71), done.
remote: Compressing objects: 100% (49/49), done.
remote: Total 71 (delta 23), reused 68 (delta 20), pack-reused 0
Получение объектов: 100% (71/71), 88.89 КиБ | 181.00 КиБ/с, готово.
Определение изменений: 100% (23/23), готово.
Клонирование в «/home/deibatulina/work/study/2022-2023/Архитектура компьютера/ar
ch-pc/template/report»...
remote: Enumerating objects: 78, done.
remote: Counting objects: 100% (78/78), done.
```

Далее мы переходим в каталог курса с помощью команды cd.

#### Рис. 20. Переход в каталог курса

```
[deibatulina@fedora Архитектура компьютера]$ cd ~
[deibatulina@fedora ~]$ cd ~/work/study/2022-2023/"Архитектура компьютера"/arch-
pc
[deibatulina@fedora arch-pc]$
```

Удаляем лишние файлы посредством команды rm, изученной на прошлой лабораторной работе.

#### Рис. 21. Удаление лишних файлов

```
[deibatulina@fedora arch-pc]$ rm package.json
[deibatulina@fedora arch-pc]$
```

Вводим команды для создания каталога (используя команды echo >).

Рис. 22. Создание курса «Архитектура компьютера», его структуры

```
[deibatulina@fedora arch-pc]$ echo arch-pc > COURSE
[deibatulina@fedora arch-pc]$ git add .
[deibatulina@fedora arch-pc]$ git commit -am 'feat(main): make course structure'
[master cc93661] feat(main): make course structure
91 files changed, 8229 insertions(+), 14 deletions(-)
create mode 100644 labs/lab01/presentation/Makefile
create mode 100644 labs/lab01/presentation/image/kulyabov.jpg
create mode 100644 labs/lab01/presentation/presentation.md
create mode 100644 labs/lab01/report/Makefile
create mode 100644 labs/lab01/report/bib/cite.bib
create mode 100644 labs/lab01/report/image/placeimg_800_600_tech.jpg
create mode 100644 labs/lab01/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
create mode 100644 labs/lab01/report/report.md
create mode 100644 labs/lab02/presentation/Makefile
create mode 100644 labs/lab02/presentation/image/kulyabov.jpg
create mode 100644 labs/lab02/presentation/presentation.md
create mode 100644 labs/lab02/report/Makefile
create mode 100644 labs/lab02/report/bib/cite.bib
create mode 100644 labs/lab02/report/image/placeimg_800_600_tech.jpg
create mode 100644 labs/lab02/report/pandoc/csl/gost-r-7-0-5-2008-numeric.csl
create mode 100644 labs/lab02/report/report.md
```

Отправляем файлы на сервер:

Рис. 23. Отправка файлов на сервер, используя команду git push

```
[deibatulina@fedora arch-pc]$ git push
Перечисление объектов: 22, готово.
Подсчет объектов: 100% (22/22), готово.
Сжатие объектов: 100% (16/16), готово.
Запись объектов: 100% (20/20), 310.95 КиБ | 1.05 МиБ/с, готово.
Всего 20 (изменений 1), повторно использовано 0 (изменений 0), повторно использовано пакетов 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:deibatulina/study_2022-2023_arh-pc.git
    cb03f28..cc93661 master -> master
[deibatulina@fedora arch-pc]$
```

Рис. 24. Проверка правильности создания каталогов рабочего пространства в



Рис. 25. Проверка правильности создания каталогов рабочего пространства на странице GitHub



Рис. 26. Переход в подкаталог labs

| ••    |                                   |              |
|-------|-----------------------------------|--------------|
| lab01 | feat(main): make course structure | 13 hours ago |
| lab02 | feat(main): make course structure | 13 hours ago |
| lab03 | feat(main): make course structure | 13 hours ago |
| lab04 | feat(main): make course structure | 13 hours ago |
| lab05 | feat(main): make course structure | 13 hours ago |
| lab06 | feat(main): make course structure | 13 hours ago |
| lab07 | feat(main): make course structure | 13 hours ago |
| lab08 | feat(main): make course structure | 13 hours ago |
| lab09 | feat(main): make course structure | 13 hours ago |
| lab10 | feat(main): make course structure | 13 hours ago |
| lab11 | feat(main): make course structure | 13 hours ago |

Вывод: все каталоги созданы верно, иерархия соблюдена.

Далее мы переходим в подкаталог lab0/report, согласно практическому заданию, требуется загрузить отчёт на лабораторную работу №1. Лабораторная работа №2 загружается в соответствующий подкаталог lab02.

Рис. 27. Переход в подкаталог lab01/report



Для выполнения практического задания требуется загрузить отчёты этой и предыдущих лабораторных работ на GitHub. В текстовом поле ввода ответа на задание я прикреплю ссылку на свой GitHub.

## **Итоги и выводы по результатам выполнения лабораторной работы**

В результате выполнения лабораторной работы я научилась работать с системой контроля версий Git через командную строку и непосредственно на самом сайте GitHub. Узнала об идеологии системы контроля версий, как и для чего она используется.