### PROCESAMIENTO DE CONTRATOS SOCIETARIOS

## TRABAJO FINAL DE LA CARRERA DE ESPECIALIZACIÓN EN INTELIGENCIA ARTIFICIAL



AUTOR: Mg. Ing. Ezequiel Guinsburg

DIRECTOR:
Dr. Luciano Del Corro (Microsoft Research)

JURADOS:
Dr. Ing. María De Los Milagros Gutiérrez (UTN-FRSF)
Dr. Ing. Lucila Romero (UNL)
Ing. Juan Esteban Carrique (UNL)

CLIENTE:
Mg. Lic. Diego González (MERCADOLIBRE)

### **AGENDA**

INTRODUCCIÓN

Contexto y motivación

02

VALIDACIÓN DE USUARIOS

Objetivos, desafíos y planteo general del sistema

03

PROCESAMIENTO DE IMÁGENES Preprocesamiento, Bounding Box, OCR

04

PROC. DE LENGUAJE NATURAL NER (Named Entity Recognition)

05

CLASIFICACIÓN BINARIA

Algoritmo y diagrama de flujo

06

**IMPLEMENTACIÓN** 

Arquitectura, video y resultados

07

FPÍL OGO

Conclusiones y trabajos futuros

## INTRODUCCIÓN

Contexto y motivación

## SITUACIÓN ACTUAL

## SITUACIÓN OBJETIVO

## **RESULTADOS**







## VALIDACIÓN DE USUARIOS

Objetivos, desafíos y planteo general del sistema

### PROCESAMIENTO DE CONTRATOS





### ESQUEMA GENERAL DEL SISTEMA

(A) Entidades

A1: Razón Social

A2: Integrantes

A3: DNI/CUIT

A4: Nacionalidad

A5: Representante legal

A6: Fecha de registro

A7: Nro. de registro

## PROCESAMIENTO DE IMAGENES

Preprocesamiento, Bounding Box y OCR

## **PREPROCESAMIENTO**













## **BOUNDING BOX**



operations. Barrantes. Melle como elerir cuertas contentas. CONSTANCIAS.

NOTARRALIDES de la atticicada la reserva de la deminiscito "TALACIO SELL" com
fluida 16 de detembro de 2514, Sajo si alcinea 3,075.467 - LIBO e los oppresendarles
por su opolito apuesa satillare el contendo y de conformisada lo elegana firmando Jede
nió, des fir. Meris Solatad SECANDOR-. Osebro Cabbac CODICATIO-. AVET 18.

CHRISTIAN III. ALL'ANTERIAS CANTONI-. BETA MI SELLO-. ES COPIA, FIEL de la
escritara matita de las referencia que pasó ante nú al tiulo 2006 del Protocolo "X"
contentes en el Registro (779 de Capatal Pederal a mi casgo. PARA LA SOCIEDAD
esgolo PRAMIDA COPIA no se sista de Astanole Forenzal números NOTESTORRE,
NOTESTORTE y PROSSORIA, que entre y Ermo on la Cultad Astánome de Deuroo. Aloss
en el signi y Notas de se otroperation.

### **BOUNDING BOX**



MODELO VGG16 CON FINETUNING

**ENTRENAMIENTO** 

## OCR TESSERACT



## PROCESAMIENTO DE LENGUAJE NATURAL

NER (Named Entity Recognition)

## DEFINICIÓN DE ENTIDADES Y ETIQUETADO

- Razón social.
- Integrantes de la sociedad.
- DNI/CUIT de los integrantes.
- Nacionalidad de los integrantes.
- Representante legal.
- Fecha de registro de la sociedad.
- Número de registro de la sociedad.

**ENTIDADES** 



ETIQUETADO CON PRODIGY

### PIPELINE DEL MODELO DE SPA.CY



## CLASIFICACIÓN BINARIA

Algoritmo y diagrama de flujo

### **CLASIFICADOR BINARIO**

DIAGRAMA DE FLUJO



## ALGORITMO DE CLASIFICACIÓN

#### **DISTANCIA LEVENSHTEIN**

#### Computa:

- Sustitución
- Inserción

#### Ejemplo:

- 1. Casa > cala (sustitución de "s" por "l")
- 2. Cala > calla (inserción de "1")
- 3. Calla > calle (sustitución de "a" por "e")

<u>Distancia entre casa y calle = 3</u>

#### IMPLEMENTACIÓN UTILIZADA

Python Weighted-levenshtein

#### **VARIANTE CON PESOS**

Tiene en cuenta la similitud de caracteres.

```
Ejemplo:
dist(0 , 0) < dist(0 , F)</pre>
```

pip install weighted-levenshtein

# **IMPLEMENTACIÓN**

Arquitectura, video y resultados

## ARQUITECTURA DE LA SOLUCIÓN



## VIDEO DE DEMOSTRACIÓN

https://youtu.be/LPmeurBBOHQ

### RESULTADOS DE MODELO VGG16



#### Capas entrenables:

- Últimas tres convolucionales

- Última flatten (1,25.088)

LR: 0.0004 Épocas: 25 Lote: 32



#### Capas entrenables:

- Últimas tres convolucionales

Última flatten (1,25.088)

- 4 capas densas adicionales

LR: 0.0004 Épocas: 25 Lote: 32

### RESULTADOS DE MODELO VGG16



#### Capas entrenables:

Últimas tres convolucionales

Última flatten (1,25.088)

4 capas densas adicionales

Capa de dropout de 0.2

**LR:** 0.0004

Epocas: 25 Lote: 6



#### Capas entrenables:

- Últimas tres convolucionales
- Ultima flatten (1,25.088)
- 4 capas densas adicionales
- Capa de dropout de 0.2

LR: 0.0004 variable "ReduceLROPlateau"

Epocas: 25 Lote: 6

## RESULTADOS DE MODELO NLP

|      |          |                                       | - Traini   | ng pipel | ine    |        |       |
|------|----------|---------------------------------------|------------|----------|--------|--------|-------|
| Comp | ponents: | ner                                   |            |          |        |        |       |
| _    | [ner] Tr | ning and evaluation:<br>  Evaluation: | valuation: |          |        | .5     |       |
|      | els: ner |                                       |            |          |        |        | • 1   |
|      |          | ('tokevec' 'n                         | er")       |          |        |        |       |
|      |          |                                       |            |          |        |        |       |
| E    |          | LOSS TOK2VEC                          | LOSS NER   | ENTS_F   | ENTS_P | ENTS_R | SCORE |
|      |          |                                       |            |          |        |        |       |
| 0    | 0        | 0.00                                  | 1448.63    | 0.23     | 0.12   | 1.62   | 0.00  |
| 2    | 200      | 15991.61                              | 34462.76   | 53.61    | 73.86  | 42.07  | 0.54  |
| 5    | 400      | 2392.57                               | 4632.48    | 56.16    | 74.73  | 44.98  | 0.56  |
| 8    | 600      | 22250.09                              | 4087.05    | 49.22    | 78.17  | 35.92  | 0.49  |
| 11   | 800      | 998.98                                | 2618.62    | 63.22    | 73.71  | 55.34  | 0.63  |
| 14   | 1000     | 1441.97                               | 1690.21    | 62.12    | 74.89  | 53.07  | 0.62  |
| 17   | 1200     | 1339.32                               | 1375.62    | 52.94    | 75.45  | 40.78  | 0.53  |
| 20   | 1400     | 889.96                                | 1068.16    | 54.33    | 71.81  | 43.69  | 0.54  |
| 23   | 1600     | 3262.87                               | 896.95     | 61.26    | 78.68  | 50.16  | 0.61  |
| 26   | 1800     | 3906.34                               | 834.77     | 61.93    | 70.83  | 55.02  | 0.62  |
| 29   | 2000     | 856.94                                | 678.83     | 60.69    | 81.87  | 48.22  | 0.61  |
| 32   | 2200     | 1087.92                               | 680.12     | 57.20    | 74.87  | 46.28  | 0.57  |
| 35   | 2400     | 960.35                                | 518.07     | 62.26    | 67.29  | 57.93  | 0.62  |

**06** IMPLEMENTACIÓN

## **EPÍLOGO**

Conclusiones y trabajos futuros

## CONCLUSIONES







### TRABAJOS FUTUROS



AMPLIACIÓN DEL DATASET



OPTIMIZACIÓN DEL RENDIMIENTO DE LOS MODELOS



EXPLORACIÓN DE TÉCNICAS AVANZADAS DE PROCESAMIENTO DE LENGUAJE NATURAL



EVALUACIÓN CONTINUA DE RESULTADOS

# GRACIAS!

PREGUNTAS?