Redes de Computadores Trabalho Prático 3: Nível de Ligação Lógica: Ethernet e Protocolo ARP

Ana Rita Peixoto, Sara Queirós, and Sofia Santos

University of Minho, Department of Informatics, 4710-057 Braga, Portugal e-mail: {a89612,a89491,a89615}@alunos.uminho.pt

Captura e análise de Tramas Ethernet

A captura de tráfego deverá ser efetuada usando a aplicação Wireshark instalada na máquina nativa. Uma vez que as salas de aula atuais não disponibilizam uma ligação com fios a uma rede Ethernet, a captura será realizada na rede Eduroam. Este facto não impacta na realização do trabalho porque, por defeito, o Wireshark disponilibiliza o tráfego capturado ao utilizador como sendo (pseudo) Ethernet.

Assegure-se que a cache do seu browser está vazia.

Ative o Wireshark na sua máquina nativa.

No seu browser, aceda ao URL http://elearning.uminho.pt.

Pare a captura do Wireshark.

Obtenha o número de ordem da sequência de bytes capturada (coluna da esquerda na janela do Wireshark) correspondente à mensagem HTTP GET enviada pelo seu computador para o servidor Web, bem como o começo da respectiva mensagem HTTP RESPONSE proveniente do servidor.

No sentido de proceder à análise do tráfego, selecione a trama Ethernet que contém a mensagem HTTP GET. Recorde-se que a mensagem GET do HTTP está no interior de um segmento TCP que é transportado num datagrama IP que, por sua vez, está encapsulado no campo de dados de uma trama Ethernet. Expanda a informação do nível da ligação de dados e observe o conteúdo da trama Ethernet (cabeçalho e dados (payload)).

Responda às perguntas seguintes com base no conteúdo da trama Ethernet que contém a mensagem HTTP GET.

Sempre que aplicável, deve incluir a impressão dos dados relativa ao pacote capturado (ou parte dele) necessária para fundamentar a resposta à questão colocada. Para imprimir um pacote, use File->Print, escolha Selected packet only e Packet summary line, ou use qualquer outro método que lhe pareça adequado para a captura desses dados. Selecione o mínimo detalhe necessário para responder à pergunta.

Exercício 1. Anote os endereços MAC de origem e de destino da trama capturada.

Endereço MAC da origem: fc:01:7c:9b:c3:4b Endereço MAC do destino: 00:d0:03:ff:94:00

2 Ana Rita Peixoto, Sara Queirós, Sofia Santos

Fig. 1. Endereços MAC da mensagem HTTP GET.

Exercício 2. Identifique a que sistemas se referem. Justifique.

A origem refere-se ao nosso computador e o destino refere-se ao servidor do *elearn-ing.uminho.pt*. Podemos verificar isto através do comando *ip link*, que nos permite consultar o endereço MAC do nosso computador.

Fig. 2. Endereço MAC do computador, obtido através do comando ip link

Exercício 3. Qual o valor hexadecimal do campo Type da trama Ethernet? O que significa?

O valor do campo Type é 0x0800, tal como podemos observar na fig. 1, e representa o protocolo de camada superior utilizado, neste caso IPv4.

Exercício 4. Quantos bytes são usados desde o início da trama até ao caractere ASCII "G" do método HTTP GET? Calcule e indique, em percentagem, a sobrecarga (overhead) introduzida pela pilha protocolar no envio do HTTP GET.

66 bytes.

66/487 = 13.55% de overhead

```
7c 9b c3 4b 08 00 45 00
      01 e2 14 78 40 00 40 06
                                     56 10 ac 1a 57 54 c1 89
                                                                       x@ · @
      09 96 9f 64 00 50 42 c8
                                     90 1d 5b b8 c7 40 80 18

    · · · d · PB

      01 f6 35 ed 00 00 01 01
95 82 47 45 54 20 2f 20
                                    08 0a f0 be 1c ea b3 16
48 54 54 50 2f 31 2e 31
0040
                                                                      GET /
Host:
                                                                              HTTP/1.1
      95 82 47 45
0d 0a 48 6f
                        74 3a 20
                                     65 6c 65 61
                                                      6e 69 6e
                                                                              elearnin
              75 6d 69 6e
                            68 6f
                                                                              .pt · · Con
                                     2e 70
                                                                    g.uminho
       6e 65 63 74 69 6f 6e 3a
                                     20 6b 65 65 70 2d 61 6c
                                                                    nection:
       69 76 65 0d 0a 55 70 67
                                    72 61 64 65 2d 49 6e 73
                                                                    ive Upg rade-Ins
       65 63 75 72 65 2d 52 65
                                     71 75 65 73
                                                                    ecure-Re quests:
         Bytes 66-68: Request Method (http.request.method)
```

Fig. 3. O caractere ASCII "G" corresponde ao byte 66. Como a contagem começa a partir do 0 este é o 67° byte.

Exercício 5. Através de visualização direta ou construindo um filtro específico, verifique se foram detetadas tramas com erros (por verificação do campo FCS (Frame Check Sequence)).

Através do uso de um *display filter*, podemos ver que não foi detetada nenhuma trama com erros, isto é, nenhuma trama contém o campo FCS.

Fig. 4. Resultado de aplicar o display filter "fcs" (o filtro é case insensitive).

A seguir responda às seguintes perguntas, baseado no conteúdo da trama Ethernet que contém o primeiro byte da resposta HTTP.

Fig. 5. Trama que contém o primeiro byte da resposta HTTP.

Exercício 6. Qual é o endereço Ethernet da fonte? A que sistema de rede corresponde? Justifique.

O endereço Ethernet da fonte é 00:d0:03:ff:94:00 e corresponde ao *default gateway* da rede local. Como o servidor não se encontra na rede local, não é diretamente alcancável por nós, logo as tramas serão trocadas entre o nosso computador e o *default gateway*, ao invés de ser diretamente com o servidor.

Exercício 7. Qual é o endereço MAC do destino? A que sistema corresponde?

O endereço MAC do destino é fc:01:7c:9b:c3:4b e corresponde à interface ethernet do nosso computador.

4 Ana Rita Peixoto, Sara Queirós, Sofia Santos

Exercício 8. Atendendo ao conceito de desencapsulamento protocolar, identifique os vários protocolos contidos na trama recebida.

Ethernet, IPv4 e TCP.

Exercício 9. Observe o conteúdo da tabela ARP. Diga o que significa cada uma das colunas.

Fig. 6. Tabela ARP do nosso computador.

A coluna *Address* corresponde ao endereço, neste caso apenas temos o *gateway* da rede local. A coluna *HWtype* diz-nos o tipo de protocolo de camada física usado, e a coluna *HWaddress* o endereço MAC, neste caso endereço Ethernet visto que o protocolo de camada física também é do tipo Ethernet. A coluna *Flags* mostra-nos o tipo de registo que está a ser colocado em memória. Na nossa tabela este valor é C, o que significa que este registo foi obtido dinamicamente pelo protocolo ARP, e não introduzido manualmente. A coluna *Mask* corresponde à máscara de subrede. Por último, a coluna *Iface* dá-nos a interface de rede, no nosso caso wlo1.

Exercício 10. Qual é o valor hexadecimal dos endereços origem e destino na trama Ethernet que contém a mensagem com o pedido ARP (ARP Request)? Como interpreta e justifica o endereço destino usado?

O endereço MAC origem é 74:70:fd:b4:83:45 e o endereço destino é ff:ff:ff:ff:ff:ff:ff:(endereço de *broadcast*). O endereço destino utilizado é o de *broadcast* porque a máquina que envia o *ARP request* necessita de saber qual o endereço MAC destino. Assim, envia a mensagem para o endereço de *broadcast* (o que significa que envia para todas as interfaces) e espera uma resposta da máquina destino com o seu endereço MAC. Assim que receber a resposta, adiciona o seu valor à tabela ARP.

```
Fithernet II, Src: IntelCor_b4:83:45 (74:70:fd:b4:83:45), Dst: Broadcast (ff:ff:ff:ff:ff)

Destination: Broadcast (ff:ff:ff:ff:ff)

Source: IntelCor_b4:83:45 (74:70:fd:b4:83:45)

Type: ARP (0x0806)

Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (1)

Sender MAC address: IntelCor_b4:83:45 (74:70:fd:b4:83:45)

Sender IP address: 172.26.53.225

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 172.26.254.254

Target IP address: 172.26.254

Target IP address: 172.2
```

Fig. 7. Pedido ARP.

Exercício 11. Qual o valor hexadecimal do campo tipo da trama Ethernet? O que indica?

O valor é 0x0806. Indica que se trata do protocolo ARP.

Exercício 12. Como pode confirmar que se trata efetivamente de um pedido ARP? Identifique que tipo de endereços estão contidos na mensagem ARP? Que conclui? (Se necessário, consulte a RFC do protocolo ARP http://tools.ietf.org/html/rfc826.html.).

O campo opcode contém "request" e código 1, logo indica que se trata de uma mensagem ARP request. Os endereços contidos na mensagem ARP são os endereços IP origem e destino, e endereço MAC origem (porque a origem ainda não sabe o endereço MAC do destino, dado que foram todos anteriormente apagados da tabela ARP).

Exercício 13. Explicite que tipo de pedido ou pergunta é feita pelo host de origem?

"Who has 172.26.254.254? Tell 172.26.53.225" A máquina origem pertende saber quem tem o endereço IP 172.26.254.254, então pergunta a todos os hosts qual deles tem esse endereço, e pede para enviar a resposta (com o respetivo endereço MAC) para o endereço IP 172.26.53.225.

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	0.0.0.0	255.255.255.255	DHCP	364 DHCP Request - Transaction ID 0xd0ccb958
	2 0.030829	IntelCor_b4:83:45	Broadcast	ARP	42 Who has 172.26.254.254? Tell 172.26.53.225
	3 0.545070	IntelCor_b4:83:45	Broadcast	ARP	42 ARP Announcement for 172.26.53.225
	4 1.040068	IntelCor_b4:83:45	Broadcast	ARP	42 Who has 172.26.254.254? Tell 172.26.53.225
	5 1.539545	fe80::fc62:7cfd:fb4	ff02::2	ICMPv6	70 Router Solicitation from 74:70:fd:b4:83:45
	6 1.786725	ComdaEnt ff:94:00	IntelCor b4:83:45	ARP	60 172.26.254.254 is at 00:d0:03:ff:94:00

Fig. 8. Pergunta feita pelo host de origem.

Exercício 14. Localize a mensagem ARP que é a resposta ao pedido ARP efetuado.

Fig. 9. ARP Reply.

Alínea a) Qual o valor do campo ARP opcode? O que especifica?

O valor do campo opcode é "reply (2)", que especifica que se trata de uma mensagem ARP reply. O código 2 significa que a mensagem é do tipo ARP reply.

6

Está presente no campo Sender MAC address.

Exercício 15. Identifique um pacote de pedido ARP gratuito originado pelo seu sistema. Analise o conteúdo de um pedido ARP gratuito e identifique em que se distingue dos restantes pedidos ARP. Registe a trama Ethernet correspondente. Qual o resultado esperado face ao pedido ARP gratuito enviado?

Alínea b) Em que posição da mensagem ARP está a resposta ao pedido ARP?

É possível identificar que o pedido ARP é gratuito através da flag "Is gratuitous", que está assinalada a true. No caso do pedido ARP gratuito, os campos "Sender IP address" e "Target IP address" são iguais.

```
Ethernet II, Src: IntelCor_b4:83:45 (74:70:fd:b4:83:45), Dst: Broadcast (ff:ff:ff:ff:ff)
   Destination: Broadcast (ff:ff:ff:ff:ff)
   > Source: IntelCor_b4:83:45 (74:70:fd:b4:83:45)
     Type: ARP (0x0806)

    Address Resolution Protocol (ARP Announcement)

     Hardware type: Ethernet (1)
     Protocol type: IPv4 (0x0800)
     Hardware size: 6
     Protocol size: 4
     Opcode: request (1)
     [Is gratuitous: True]
     [Is announcement: True]
     Sender MAC address: IntelCor_b4:83:45 (74:70:fd:b4:83:45)
     Sender IP address: 172.26.53.225
     Target MAC address: 00:00:00 00:00:00 (00:00:00:00:00:00)
     Target IP address: 172.26.53.225
```

Fig. 10. Pedido ARP gratuito.

Exercício 16. Através da opção tepdump verifique e compare como flui o tráfego nas diversas interfaces dos vários dispositivos no departamento A (LAN comutada) e no departamento B (LAN partilhada) quando gera tráfego intra-departamento (por exemplo, através do comando ping). Que conclui? Comente os resultados obtidos quanto à utilização de hubs e switches no contexto de controlar ou dividir domínios de colisão. Documente as suas observações e conclusões com base no tráfego observado/capturado.

Como é possível ver na figura abaixo, no departamento B, onde a rede é partilhada, devido ao uso de um repetidor, o computador n13 (130.56.104.3) consegue ver as tramas enviadas pelo computador n14 (130.56.104.2), nomeadamente o echo request e o echo reply entre este e o computador com endereço 130.56.104.4, resultado do comando ping 130.56.104.4 executado por n14. Por outro lado, no departamento A, onde a rede é comutada, devido ao uso de um switch, o computador n10 (130.56.96.3) não captura as tramas enviadas pelo computador n9 (130.56.96.2) ao servidor s1 (130.56.96.4). São capturadas outras tramas, mas não têm nada a ver com o comando ping 130.56.96.4 executado por n9.

Fig. 11. Comandos *tcpdump* e *ping* executados no departamento A (em cima) e no departamento B (em baixo).

1 Conclusão

Com este trabalho prático conseguimos consolidar os temas abordados nas aulas teóricas relativos à camada de ligação lógica, mais especificamente o uso da tecnologia Ethernet e do protocolo ARP. Desta forma é possível verificar que estas temáticas têm aplicações práticas úteis e importantes, e não são apenas matéria para memorizar. Podemos ver também a importância destas tecnologias na nossa sociedade atual, devido à quantidade enorme de dispositivos que as utilizam para o seu correto funcionamento.