Progress Report

 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár and Christoph Feichtenhofer. SAM 2: Segment Anything in Images, Videos. arXiv:2408.00714, Aug 2024.

Introduction

- A foundation model for segmentation in both images and videos
- Expand the capabilities of the original Segment Anything Model (SAM)
- Designed to handle the dynamic challenges of object segmentation in videos
- Goal: To create a unified model capable of processing both images and videos

Related Work

Segment Anything:

 Laid the groundwork for promptable image segmentation, allowing users to input bounding boxes, points, or masks to identify objects in static images

Interactive Video Object Segmentation (iVOS):

- Focused on obtaining segmentation through interactive inputs like scribbles and clicks, with approaches that optimize the segmentation based on these user inputs
- Limitations:
 - Tracker may not work for all objects
 - There is no mechanism to interactively refine a model's mistake

Related Work

Semi-supervised Video Object Segmentation (VOS):

- Used a mask on the first frame to track objects through the remaining frames
- Limitations:
 - Time-consuming in annotating the required high-quality object mask in the first frame
 - Lack sufficient coverage to achieve the capability of segmenting anything in video

Promptable Visual Segmentation (PVS)

- The PVS task allows providing prompts to the model on any frame of a video
- Upon receiving a prompt on a specific frame, the model should immediately respond with a valid segmentation mask of the object on this frame
- After receiving initial prompts, the model should propagate these prompts to obtain the masklet of the object across the entire video

Promptable Visual Segmentation (PVS)

Model Architecture

- Image Encoder
- Memory Attention
- Prompt Encoder
- Mask Decoder
- Memory Encoder
- Memory Bank

Data Engine

 Data engine went through three phases, each categorized based on the level of model assistance provided to annotators

• Phase 1: SAM per frame

- Annotators a re tasked with annotating the mask of a target object in every frame of the video at 6 frames per second (FPS) using SAM
- Pixel-precise manual editing tools such as a brush and eraser
- Collected 16K masklets across 1.4K videos in phase 1

Phase 2: SAM+SAM2 Mask

- Annotators used SAM and other tools as in Phase 1 to generate spatial masks in the first frame
- Then use SAM 2 Mask to temporally propagate the annotated mask to other frames to get the full spatio-temporal masklets
- Collected 63.5K masklets
- Annotation time went down to 7.4 s/frame, a \sim 5.1x speed up over Phase 1

Data Engine

 Data engine went through three phases, each categorized based on the level of model assistance provided to annotators

• Phase 1: SAM per frame

- Annotators are tasked with annotating the mask of a target object in every frame of the video at 6 frames per second (FPS) using SAM
- Pixel-precise manual editing tools such as a brush and eraser
- Collected 16K masklets across 1.4K videos in phase 1

Phase 2: SAM+SAM2 Mask

- Annotators used SAM and other tools as in Phase 1 to generate spatial masks in the first frame
- Then use SAM 2 Mask to temporally propagate the annotated mask to other frames to get the full spatio-temporal masklets
- Collected 63.5K masklets
- Annotation time went down to 7.4 s/frame, a \sim 5.1x speed up over Phase 1

Data Engine

- Phase 3: SAM 2
 - Utilize the fully-featured SAM 2
 - Accepts various types of prompts
 - Annotators only need to provide occasional refinement clicks to SAM 2 to edit the predicted masklets in intermediate frames
 - Collected 197.0K masklets
 - Annotation time per frame went down to 4.5 seconds, a ~8.4x speed up over Phase 1

	Model in the Loop	Time per	Edited	Clicks per Clicked	Phase 1 Mask Alignment Score (IoU>0.75)				
	Model in the Loop	Frame	Frames	Frame	All	Small	Medium	Large	
Phase 1	SAM only	$37.8 \mathrm{\ s}$	100.00~%	4.80	-	-	-	-	
Phase 2	SAM + SAM 2 Mask	$7.4 \mathrm{\ s}$	23.25~%	3.61	86.4~%	71.3~%	80.4~%	97.9~%	
Phase 3	SAM 2	$4.5 \mathrm{s}$	19.04~%	2.68	89.1 $\%$	72.8~%	81.8~%	100.0 %	

Dataset

 Collected with dsta engine comprises 50.9K videos with 642.6K masklets

Videos

 Comprise 54% indoor and 46% outdoor scenes with an average duration of 14 seconds, spanning 47 countries and were capture by diverse participant

Dataset

- Masklets
 - The annotations comprise 190.9K manual masklet annotations and 451.7K automatic masklets collected using the data engine
 - SA-V has 53x (15x without auto annotations) more masks than the largest VOS dataset

Zero-Shot Experiment

- Compare SAM 2 with previous work on zero-shot video tasks and image tasks
- Evaluate promptable video segmentation with two baseline
 - SAM+XMem++
 - SAM+Cutie

- (a) offline average $\mathcal{J}\&\mathcal{F}$ across datasets (3-click)
- (b) online average $\mathcal{J}\&\mathcal{F}$ across datasets (3-click)

Zero-Shot Experiment

 Evaluate the VOS setting with click, box, or mask prompts only on the first frame of the video in semi-supervised video object segmentation

Method	1-click	3-click	5-click	bounding box	ground-truth mask [‡]
SAM+XMem++	56.9	68.4	70.6	67.6	72.7
SAM+Cutie	56.7	70.1	72.2	69.4	74.1
SAM 2	64.3	73.2	75.4	72.9	77.6

Zero-Shot Experiment

 Evaluate SAM 2 on the Segment Anything task across 37 zero-shot datasets, including 23 datasets previously used by SAM for evaluation

1 (5) click mIoU

Model	Data	SA-23 All	SA-23 Image	SA-23 Video	14 new Video	FPS
SAM SAM 2	SA-1B SA-1B	58.1 (81.3) 58.9 (81.7)	60.8 (82.1) 60.8 (82.1)	54.5 (80.3) 56.4 (81.2)	59.1 (83.4) 56.6 (83.7)	21.7 130.1
SAM 2	our mix	61.4 (83.7)	63.1 (83.9)	59.1 (83.3)	69.6 (86.0)	130.1

The average mIoU of 1-click and 5-click by dataset domain and model speed in frames per second (FPS) on a single A100 GPU.

Data Ablations

- Data mix ablation
 - Compare the accuracy of SAM-2 when trained on different data mixtures
 - Best result when mixing all datasets

		Trainin	g data				mIoU		
	VOS	Internal	SA-V	SA-1B	SA-V val	Internal-test	MOSE dev	9 zero-shot	SA-23
1	✓				48.1	60.2	76.9	59.7	45.4
2		\checkmark			57.0	72.2	70.6	70.0	54.4
3			\checkmark		63.0	72.6	72.8	69.7	53.0
4			\checkmark	✓	62.9	73.2	73.6	69.7	<u>58.6</u>
5		\checkmark	\checkmark		63.0	73.2	73.3	70.9	55.8
6		\checkmark	\checkmark	✓	63.6	75.0	74.4	<u>71.6</u>	<u>58.6</u>
7	\checkmark			✓	50.0	63.2	77.6	62.5	54.8
8	\checkmark	\checkmark			54.9	71.5	77.9	70.6	55.1
9	\checkmark		\checkmark		61.6	72.8	78.3	69.9	51.0
10	\checkmark		\checkmark	✓	62.2	74.1	<u>78.5</u>	70.3	57.3
11	✓	✓	\checkmark		61.8	74.4	78.5	71.8	55.7
12	✓	✓	✓	✓	63.1	73.7	79.0	71.6	58.9

Data Ablations

- Data quantity ablation
 - Report J&F accuracy for 3-click prompts in the first frame on SA-V val,
 9 zero-shot datasets, and MOSE dev
 - Shows a consistent power law relationship between the quantity of training data and the video segmentation accuracy on all benchmarks

Data Ablations

- Data quality ablation
 - Experiment with filtering strategies for quality
 - However, it is worse than using all 190k SA-V masklets

	$\mathcal{J}\&\mathcal{F}$						
Setting	SA-V val	Intern-test	MOSE dev	9 zero-shot	SA-23		
SA-1B + SA-V 50k random	63.7	70.3	72.3	68.7	59.1		
SA-1B + SA-V 50k most edited	66.2	<u>73.0</u>	72.5	69.2	58.6		
SA-1B + SA-V	69.9	73.8	73.9	70.8	59.8		

- Input size
 - Sample sequences of frames of fixed resolution and fixed length
 - A higher resolution leads to significant improvements across image and video tasks
 - Use an input resolution of 1024 in final model
 - Increasing the number of frames brings notable gains on video benchmarks
 - Use a default of 8 to balance speed and accuracy

		$\mathcal{J}\&\mathcal{F}$				mIoU						mIoU
	res.	MOSE dev	SA-V val	9 zero-shot	$_{ m speed}$	SA-23	$\# {\rm frames}$	MOSE dev	SA-V val	9 zero-shot	speed	SA-23
Ī	512	73.0	68.3	70.7	1.00×	59.7	4	71.1	60.0	67.7	1.00×	60.1
	768	76.1	71.1	72.5	$0.43 \times$	61.0	8	73.0	68.3	70.7	$1.00 \times$	59.7
	1024	77.0	70.1	72.3	$0.22\times$	61.5	10	74.5	68.1	71.1	$1.00 \times$	59.9

(a) Resolution.

(b) #Frames

- Memory size
 - Increasing the (maximum) number of memories, N, generally helps the performance
 - Use a default value of 6 past frames to strike a balance between temporal context length and computational cost
 - Using fewer channels for memories does not cause much performance regression

	$\mathcal{J}\&\mathcal{F}$				mIoU				mIoU		
$\#\mathrm{mem}.$	MOSE dev	SA-V val	9 zero-shot	speed	SA-23	chan. dim.	MOSE dev	SA-V val	9 zero-shot	speed	SA-23
4	73.5	68.6	70.5	1.01×	59.9	64	73.0	68.3	70.7	1.00×	59.7
6	73.0	68.3	70.7	$1.00 \times$	59.7	256	73.4	66.4	70.0	$0.92 \times$	60.0
8	73.2	69.0	70.7	$0.93 \times$	59.9						

(c) #Memories.

(d) Memory channels.

- Model size
 - More capacity in the image encoder or memory-attention (#self-/#cross-attention blocks) generally leads to improved results
 - Scaling the image encoder brings gains on both image and video metrics
 - Scaling the memory-attention only improves video metrics
 - Using a B+ image encoder → balance between speed and accuracy

	$\mathcal{J}\&\mathcal{F}$				mIoU $\mathcal{J}\&\mathcal{F}$				mIoU		
(#sa, #ca)	MOSE dev	SA-V val	9 zero-shot	speed	SA-23	img. enc.	MOSE dev	SA-V val	9 zero-shot	$_{ m speed}$	SA-23
(2, 2)	73.3	67.3	70.2	1.13×	59.9	S	70.9	65.5	69.4	1.33×	57.8
(3, 2)	72.7	64.1	69.5	$1.08 \times$	60.0	$\mathrm{B}+$	73.0	68.3	70.7	$1.00 \times$	59.7
(4, 4)	73.0	68.3	70.7	$1.00\times$	59.7	L	75.0	66.3	71.9	$0.60 \times$	61.1

⁽e) Memory attention.

⁽f) Image encoder size.

- Relative positional encoding
 - Use 2d-RoPE in memory attention while removing RPB from the image encoder
 - Removing RPB also allows us to enable FlashAttention-2
 - Gives a significant speed boost at 1024 resolution
 - The higher resolution of 1024, the speed gap between 2d-RoPE (1st row) and the no RoPE baseline (3rd row) becomes much smaller.

- Relative positional encoding
 - Removing all RPB from the image encoder, with no performance regression on SA-23 and minimal regression on video benchmarks while giving a significant speed boost at 1024 resolution.
 - Find it is beneficial to use 2d-RoPE in the memory attention.

				mIoU			
RPB in img. enc.	$2\mbox{d-RoPE}$ in mem. attn.	MOSE dev	SA-V val	LVOSv2 val	9 zero-shot	speed	
	✓	73.0	68.3	71.6	70.7	$1.00 \times$	59.7
✓	✓	73.6	67.9	71.0	71.5	$0.93 \times$	60.0
		72.8	67.1	70.3	70.3	1.04×	59.9

Conclusion

- Three key aspects
 - Extending the promptable segmentation task to video
 - Equipping the SAM architecture to use memory when applied to video
 - The diverse SA-V dataset for training and benchmarking video segmentation

Planned Tasks for This Week

- Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár and Christoph Feichtenhofer. SAM 2: Segment Anything in Images, Videos. arXiv:2408.00714, Aug 2024.
- Read paper about Video Grounding DINO.