History matching of complex infectious disease models using emulation

Ioannis Andrianakis

London School of Hygiene and Tropical Medicine

LSHTM, 10 July 2014

1 / 39

Joint work with: I. Vernon, N.McCreesh, TJ McKinley, J.Oakley, R.Nsubuga, M.Goldstein and R.White

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

- What is calibration?
- The challenge.
- History matching.
- Emulation.
- Sources of uncertainty.
- Implausibility.
- Case study.
- Conclusion.

Simulator

A simulator is a computer model that describes a physical process.

It has a number of inputs...

...and a number of outputs.

Observations

Some observations of the physical process are often available...

... which are measurements of the same physical process the simulator tries to describe.

Calibration objective:

To find a set of input values so that the simulator represents best the physical process as this is described by observations.

Why Calibrate?

- Learn model parameters:
 - e.g. the decay rate of a birth-death process.

Why Calibrate?

- Learn model parameters:
 - e.g. the decay rate of a birth-death process.

- Make predictions:
 - e.g. calibrate a climate model with observations to predict temperatures in the future.

20 Runs of Birth-Death Process

- A dynamic, stochastic, individual based model that simulates heterosexual sexual partnerships and HIV transmission.
- 22 inputs inc. contact rates, concurrency parameters, relationship duration, 2 sexual activity groups (high/low), 2 concurrency groups (high/low), 3 discrete behaviour periods.
- 18 outputs inc. population size, HIV prevalence, prevalence of men and women in long/short duration partnerships with one or more partners.
- Run time varied from 10 mins to >3 hours for 1 simulator run.
- Scenarios investigated were based on McCreesh 2012¹.

¹McCreesh et al. 'Exploring the potential impact of a reduction in partnership concurrency on HIV incidence in rural Uganda: a modelling study.

Sex.Transmitted diseases, 39(6):407-413.2012

- A dynamic, stochastic, individual based model that simulates heterosexual sexual partnerships and HIV transmission.
- 22 inputs inc. contact rates, concurrency parameters, relationship duration, 2 sexual activity groups (high/low), 2 concurrency groups (high/low), 3 discrete behaviour periods.
- 18 outputs inc. population size, HIV prevalence, prevalence of men and women in long/short duration partnerships with one or more partners.
- Run time varied from 10 mins to >3 hours for 1 simulator run.
- Scenarios investigated were based on McCreesh 2012¹.

¹McCreesh et al. 'Exploring the potential impact of a reduction in partnership concurrency on HIV incidence in rural Uganda: a modelling study.

Sex.Transmitted diseases. 39(6):407-413.2012

- A dynamic, stochastic, individual based model that simulates heterosexual sexual partnerships and HIV transmission.
- 22 inputs inc. contact rates, concurrency parameters, relationship duration, 2 sexual activity groups (high/low), 2 concurrency groups (high/low), 3 discrete behaviour periods.
- 18 outputs inc. population size, HIV prevalence, prevalence of men and women in long/short duration partnerships with one or more partners.
- Run time varied from 10 mins to >3 hours for 1 simulator run.
- Scenarios investigated were based on McCreesh 2012¹.

¹McCreesh et al. 'Exploring the potential impact of a reduction in partnership concurrency on HIV incidence in rural Uganda: a modelling study.

Sex.Transmitted diseases. 39(6):407-413.2012

- A dynamic, stochastic, individual based model that simulates heterosexual sexual partnerships and HIV transmission.
- 22 inputs inc. contact rates, concurrency parameters, relationship duration, 2 sexual activity groups (high/low), 2 concurrency groups (high/low), 3 discrete behaviour periods.
- 18 outputs inc. population size, HIV prevalence, prevalence of men and women in long/short duration partnerships with one or more partners.
- Run time varied from 10 mins to >3 hours for 1 simulator run.
- Scenarios investigated were based on McCreesh 2012¹.

¹McCreesh et al. 'Exploring the potential impact of a reduction in partnership concurrency on HIV incidence in rural Uganda: a modelling study. Sex.Transmitted diseases, 39(6):407-413.2012

Suppose we want to match male HIV prevalences at 3 points in time.

We choose a set of inputs run the model and...

...we try again...

...after 10 runs...

...after 250 runs.

- Advanced statistical methodologies, such as MCMC and ABC, have been applied to the model calibration problem.
- Some of them require the model likelihood, which is unavailable for this
 model.
- Some require a large number of simulator evaluations.
- Most of them would struggle with the input/output dimensionality of this model.

- Advanced statistical methodologies, such as MCMC and ABC, have been applied to the model calibration problem.
- Some of them require the model likelihood, which is unavailable for this model.
- Some require a large number of simulator evaluations.
- Most of them would struggle with the input/output dimensionality of this model.

- Advanced statistical methodologies, such as MCMC and ABC, have been applied to the model calibration problem.
- Some of them require the model likelihood, which is unavailable for this
 model.
- Some require a large number of simulator evaluations.
- Most of them would struggle with the input/output dimensionality of this model.

- Advanced statistical methodologies, such as MCMC and ABC, have been applied to the model calibration problem.
- Some of them require the model likelihood, which is unavailable for this
 model.
- Some require a large number of simulator evaluations.
- Most of them would struggle with the input/output dimensionality of this model.

- Instead of looking for the best input values, history matching identifies and discards those unlikely to provide a match to the empirical data.
- The *implausible* input space is discarded in iterations known as waves.
- Not all inputs/outputs need to be considered at once.
- The simulator is often 'better behaved' in smaller areas of input space.
- History matching relies on *emulators* for computational efficiency.

- Instead of looking for the best input values, history matching identifies and discards those unlikely to provide a match to the empirical data.
- The *implausible* input space is discarded in iterations known as waves.
- Not all inputs/outputs need to be considered at once.
- The simulator is often 'better behaved' in smaller areas of input space.
- History matching relies on *emulators* for computational efficiency.

- Instead of looking for the best input values, history matching identifies and discards those unlikely to provide a match to the empirical data.
- \bullet The implausible input space is discarded in iterations known as waves.
- Not all inputs/outputs need to be considered at once.
- The simulator is often 'better behaved' in smaller areas of input space.
- History matching relies on *emulators* for computational efficiency.

- Instead of looking for the best input values, history matching identifies and discards those unlikely to provide a match to the empirical data.
- The *implausible* input space is discarded in iterations known as waves.
- Not all inputs/outputs need to be considered at once.
- The simulator is often 'better behaved' in smaller areas of input space.
- History matching relies on *emulators* for computational efficiency.

- Instead of looking for the best input values, history matching identifies and discards those unlikely to provide a match to the empirical data.
- The *implausible* input space is discarded in iterations known as waves.
- Not all inputs/outputs need to be considered at once.
- The simulator is often 'better behaved' in smaller areas of input space.
- History matching relies on *emulators* for computational efficiency.

Emulation

- \bullet An emulator is a statistical representation of the simulator (meta-model).
- It does not substitute the simulator, but rather complements it.
- Once trained, emulators can predict the behaviour of the simulator, for any input parameters, almost instantaneously.
- They can simplify the calibration, uncertainty and sensitivity analysis of very complex models.
- Emulators can be built using Gaussian Processes (GP).
- The MUCM Toolkit is a good reference point for the emulation technology.

Suppose we want to emulate the function $f(x) = \sin(x)$

The emulator gives a posterior distribution for the model output, conditioned on the model runs we have seen so far.

Workflow

The above schematic describes a history matching workflow.

Uncertainty structure

z: Observations

y: Physical process

 $f(\mathbf{x})$: Simulator's output

 \mathbf{x} : Simulator's input

OU: Observation Uncertainty

MD: Model Discrepancy

EV: Ensemble Variability

CU: Code Uncertainty

$$I(\mathbf{x}) = \frac{|z - \mathbf{E}^*[g(\mathbf{x})]|}{(V_o + V_c(\mathbf{x}) + V_s + V_m)^{1/2}}$$

- A large value of $I(\mathbf{x})$, indicates that \mathbf{x} is unlikely to result in a good match between the model and the data.
- A small value of x does **not** imply that x is good! We do not know yet.
- The magnitude of $I(\mathbf{x})$ is often judged based on Pukelsheim's 3σ rule.
- The key point is that the emulator posterior mean $E^*[g(\mathbf{x})]$ and variance $V_c(\mathbf{x})$ can be evaluated instantaneously.

$$I(\mathbf{x}) = \frac{|z - \mathbf{E}^*[g(\mathbf{x})]|}{(V_o + V_c(\mathbf{x}) + V_s + V_m)^{1/2}}$$

- A large value of $I(\mathbf{x})$, indicates that \mathbf{x} is unlikely to result in a good match between the model and the data.
- ullet A small value of ${\bf x}$ does **not** imply that ${\bf x}$ is good! We do not know yet.
- The magnitude of $I(\mathbf{x})$ is often judged based on Pukelsheim's 3σ rule.
- The key point is that the emulator posterior mean $E^*[g(\mathbf{x})]$ and variance $V_c(\mathbf{x})$ can be evaluated instantaneously.

$$I(\mathbf{x}) = \frac{|z - \mathbf{E}^*[g(\mathbf{x})]|}{(V_o + V_c(\mathbf{x}) + V_s + V_m)^{1/2}}$$

- A large value of $I(\mathbf{x})$, indicates that \mathbf{x} is unlikely to result in a good match between the model and the data.
- A small value of x does **not** imply that x is good! We do not know yet.
- The magnitude of $I(\mathbf{x})$ is often judged based on Pukelsheim's 3σ rule.
- The key point is that the emulator posterior mean $E^*[g(\mathbf{x})]$ and variance $V_c(\mathbf{x})$ can be evaluated instantaneously.

$$I(\mathbf{x}) = \frac{|z - \mathbf{E}^*[g(\mathbf{x})]|}{(V_o + V_c(\mathbf{x}) + V_s + V_m)^{1/2}}$$

- A large value of $I(\mathbf{x})$, indicates that \mathbf{x} is unlikely to result in a good match between the model and the data.
- ullet A small value of ${\bf x}$ does **not** imply that ${\bf x}$ is good! We do not know yet.
- The magnitude of $I(\mathbf{x})$ is often judged based on Pukelsheim's 3σ rule.
- The key point is that the emulator posterior mean $E^*[g(\mathbf{x})]$ and variance $V_c(\mathbf{x})$ can be evaluated instantaneously.

$$I(\mathbf{x}) = \frac{|z - \mathbf{E}^*[g(\mathbf{x})]|}{(V_o + V_c(\mathbf{x}) + V_s + V_m)^{1/2}}$$

- A large value of $I(\mathbf{x})$, indicates that \mathbf{x} is unlikely to result in a good match between the model and the data.
- ullet A small value of ${\bf x}$ does **not** imply that ${\bf x}$ is good! We do not know yet.
- The magnitude of $I(\mathbf{x})$ is often judged based on Pukelsheim's 3σ rule.
- The key point is that the emulator posterior mean $E^*[g(\mathbf{x})]$ and variance $V_c(\mathbf{x})$ can be evaluated instantaneously.

$$I(\mathbf{x}) = \frac{|z - \mathbf{E}^*[g(\mathbf{x})]|}{(V_o + V_c(\mathbf{x}) + V_s + V_m)^{1/2}}$$

- A large value of $I(\mathbf{x})$, indicates that \mathbf{x} is unlikely to result in a good match between the model and the data.
- ullet A small value of ${\bf x}$ does **not** imply that ${\bf x}$ is good! We do not know yet.
- The magnitude of $I(\mathbf{x})$ is often judged based on Pukelsheim's 3σ rule.
- The key point is that the emulator posterior mean $E^*[g(\mathbf{x})]$ and variance $V_c(\mathbf{x})$ can be evaluated instantaneously.

An example

Iterative refocussing

The strength of history matching lies in that it can iteratively reduce the input space:

- Design a set of runs over the non-implausible region \mathcal{X}_i .
- Construct new emulators for g(x) only over this region \mathcal{X}_{j} .
- Evaluate the new implausibility function $I_j(x)$ over \mathcal{X}_j .
- Define a new (reduced) non-implausible region \mathcal{X}_{j+1} which should satisfy $\mathcal{X}_{j+1} \in \mathcal{X}_j$.
- Continue until a) we run out of computational resources or b) the emulators are sufficiently accurate compared with the other uncertainties present (model and observation errors).

Calibration of the Mukwano simulator

- We will now present results from applying the history matching methodology to the Mukwano simulator.
- The empirical data were provided from a rural general population cohort in south west Uganda.
- We calibrate 22 inputs using 18 outputs.
- We start by running the simulator 100 times at each of the 220 input combinations (22000 runs in total).
- The exact input locations were selected using a (space filling) Latin hypercube design.
- The input ranges were suggested by our model experts.

List of inputs (1)

	Min.	Max.
Proportion of men in the high sexual activity group	0.01	0.5
Proportion of women in the high sexual activity group	0.01	0.5
Mixing by activity group $[\epsilon]$	0	1
High activity contact rate (risk behaviour 1) [partners/yr]	0	10
Low activity contact rate (risk behaviour 1) [partners/yr]	0	2
Start year for risk behaviour 2	1986	1992
High activity contact rate (risk behaviour 2) [partners/yr]	0	10
Low activity contact rate (risk behaviour 2) [partners/yr]	0	2
Start year for risk behaviour 3	1998	2002
High activity contact rate (risk behaviour 3) [partners/yr]	0	10
Low activity contact rate (risk behaviour 3) [partners/yr]	0	2
Mean HIV transmission probability per sex act during	0	1
primary stage of infection (mean of male to female and		
female to male transmission probabilities)		
Ratio of male to female/female to male transmission	1	3
probabilities		

List of inputs (2)

	Min.	Max.
Proportion of low activity men in high concurrency group	0	1
Proportion of low activity women in high concurrency group	0	1
Male concurrency parameter in high concurrency group	0	1
(risk behaviour 1)		
Female concurrency parameter in high concurrency group	0	1
(risk behaviour 1)		
Male concurrency parameter in high concurrency group	0	1
(risk behaviour 2)		
Female concurrency parameter in high concurrency group	0	1
(risk behaviour 2)		
Male concurrency parameter in high concurrency group	0	1
(risk behaviour 3)		
Female concurrency parameter in high concurrency group	0	1
(risk behaviour 3)		
Duration of long-duration partnerships [years]	5	20

List of outputs (1)

	Min.	Max.
Population size in 2008 (male)	2986	3650
Population size in 2008 (female)	3374	4124
Average male partnership	0.4	0.489
incidence in 2008 (partners/year)		
HIV prevalence in 1992 (male)	0.084	0.112
HIV prevalence in 1992 (female)	0.096	0.124
HIV prevalence in 2001 (male)	0.07	0.09
HIV prevalence in 2001 (female)	0.083	0.107
HIV prevalence in 2007 (male)	0.06	0.084
HIV prevalence in 2007 (female)	0.093	0.119

List of outputs (2)

	Min.	Max.
Point prevalence of men with 1	34.62	42.31
long duration partnership in 2008 (%)		
Point prevalence of men with 1	10.86	13.27
short duration partnership in 2008 (%)		
Point prevalence of men with 1	37.83	46.24
partnership (either type) in 2008 (%)		
Point prevalence of men with 2+	3.38	4.13
long duration partnerships in 2008 (%)		
Point prevalence of men with 2+	1.69	2.07
short duration partnerships in 2008 (%)		
Point prevalence of men with 2+ 8.6		10.59
partnerships (any combination) in 2008 (%)		
Point prevalence of women with 2+ 0		1.03
long duration partnerships in 2008 (%)		
Point prevalence of women with 2+		0.52
short duration partnerships in 2008 (%)		
Point prevalence of women with 2+ 2.		2.65
partnerships (any combination) in 2008 (%)		

Results: male and female HIV prevalence in wave 1

Results: best runs per scenario in wave 1

Visualising the implausible space

The implausible space can be visualised with minimum implausibility and optical depth plots.

Visualising the implausible space

Visualising the implausible space

Optical depth plot

No.	Input description
01	Proportion of men in high
	sexual activity group
02	Proportion of women in high
	sexual activity group
04	High activity contact rate
	(period 1) [partners/yr]
05	Low activity contact rate
	(period 1) [partners/yr]
07	High activity contact rate
	(period 2) [partners/yr]
08	Low activity contact rate
	(period 2) [partners/yr]
10	High activity contact rate
	(period 3) [partners/yr]
11	Low activity contact rate
	(period 3) [partners/yr]
20	Male concurrency parameter in
	high conc. group (period 3)
21	Female concurrency parameter in
	high concurrency group (period 3)

No. Input description 1 Proportion of men in high sexual activity group 2 Proportion of women in high sexual activity group 4 High activity contact rate (period 1) [partners/yr] 5 Low activity contact rate (period 1) [partners/yr] 7 High activity contact rate (period 2) [partners/yr] 8 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 2) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 12 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in high concurrency proup (period 3)		
sexual activity group 02 Proportion of women in high sexual activity group 04 High activity contact rate (period 1) [partners/yr] 05 Low activity contact rate (period 1) [partners/yr] 07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 2) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high cone. group (period 3) 21 Female concurrency parameter in	No.	Input description
02 Proportion of women in high sexual activity group 04 High activity contact rate (period 1) [partners/yr] 05 Low activity contact rate (period 1) [partners/yr] 07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 2) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 12 Low activity contact rate (period 3) [partners/yr] 13 Low activity contact rate (period 3) [partners/yr] 14 Low activity contact rate (period 3) [partners/yr] 15 Period concurrency parameter in high conc. group (period 3)	01	Proportion of men in high
sexual activity group 04 High activity contact rate (period 1) [partners/yr] 05 Low activity contact rate (period 1) [partners/yr] 07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 22 Male concurrency parameter in high cone. group (period 3) 12 Female concurrency parameter in		sexual activity group
04 High activity contact rate (period 1) [partners/yr] 05 Low activity contact rate (period 1) [partners/yr] 07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 12 Low activity contact rate (period 3) [partners/yr] 13 Low activity contact rate (period 3) [partners/yr] 14 Low activity contact rate (period 3) [partners/yr] 15 Period Concurrency parameter in 16 Period Concurrency parameter in 17 Period Concurrency parameter in	02	Proportion of women in high
(period 1) [partners/yr] 55 Low activity contact rate (period 1) [partners/yr] 67 High activity contact rate (period 2) [partners/yr] 68 Low activity contact rate (period 2) [partners/yr] 69 High activity contact rate (period 3) [partners/yr] 60 Low activity contact rate (period 3) [partners/yr] 60 Low activity contact rate (period 3) [partners/yr] 70 Male concurrency parameter in 60 high conc. group (period 3) 71 Female concurrency parameter in		sexual activity group
05 Low activity contact rate (period 1) [partners/yr] 07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high cone. group (period 3) 21 Female concurrency parameter in	04	High activity contact rate
(period 1) [partners/yr] 07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in		(period 1) [partners/yr]
07 High activity contact rate (period 2) [partners/yr] 08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high cone. group (period 3) 12 Female concurrency parameter in	05	Low activity contact rate
(period 2) [partners/yr] Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high cone. group (period 3) 21 Female concurrency parameter in		(period 1) [partners/yr]
08 Low activity contact rate (period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in	07	High activity contact rate
(period 2) [partners/yr] 10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high cone. group (period 3) 21 Female concurrency parameter in		(period 2) [partners/yr]
10 High activity contact rate (period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in	08	Low activity contact rate
(period 3) [partners/yr] 11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in		(period 2) [partners/yr]
11 Low activity contact rate (period 3) [partners/yr] 20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in	10	
(period 3) [partners/yr] 20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in		(period 3) [partners/yr]
20 Male concurrency parameter in high conc. group (period 3) 21 Female concurrency parameter in	11	
high conc. group (period 3) 21 Female concurrency parameter in		
21 Female concurrency parameter in	20	
high concurrency group (period 3)	21	
		high concurrency group (period 3)

No.	Input description
01	Proportion of men in high
	sexual activity group
02	Proportion of women in high
	sexual activity group
04	High activity contact rate
	(period 1) [partners/yr]
05	Low activity contact rate
	(period 1) [partners/yr]
07	High activity contact rate
	(period 2) [partners/yr]
08	Low activity contact rate
	(period 2) [partners/yr]
10	High activity contact rate
	(period 3) [partners/yr]
11	Low activity contact rate
	(period 3) [partners/yr]
20	Male concurrency parameter in
	high conc. group (period 3)
21	Female concurrency parameter in
	high concurrency group (period 3)

No.	Input description
01	Proportion of men in high
	sexual activity group
02	Proportion of women in high
	sexual activity group
04	High activity contact rate
	(period 1) [partners/yr]
05	Low activity contact rate
	(period 1) [partners/yr]
07	High activity contact rate
	(period 2) [partners/yr]
08	Low activity contact rate
	(period 2) [partners/yr]
10	High activity contact rate
	(period 3) [partners/yr]
11	Low activity contact rate
	(period 3) [partners/yr]
20	Male concurrency parameter in
	high conc. group (period 3)
21	Female concurrency parameter in
	high concurrency group (period 3)

Overall space reduction

- Table shows the reduction of the non-implausible space in consecutive waves
- 'Uniform' sampling
- 'Rejection' sampling
- MCMC based sampling*

Wave 1	$4.0 \cdot 10^{-05}$
Wave 2	$1.5 \cdot 10^{-06}$
Wave 3	$4.1 \cdot 10^{-08}$
Wave 4	$2.2 \cdot 10^{-09}$
Wave 5	$2.5 \cdot 10^{-10}$
Wave 6	$8.6 \cdot 10^{-11}$
Wave 7	$5.2 \cdot 10^{-11}$
Wave 8	$2.0 \cdot 10^{-11}$
Wave 9	$1.3\cdot10^{-11}$

^{*}Williamson, D and Vernon, I, Efficient uniform designs for multi-wave computer experiments, submitted 2013.

Results: male and female HIV prevalence in waves 1, 4, 7 and 10

Results: best runs per scenario in waves 1, 4, 7 and 10

34 / 39

Results: Implausibility of model runs

The diagram shows the implausibility of the *actual* simulator runs (no emulation involved)

$$I(\mathbf{x}) = \frac{|z - g(\mathbf{x})|}{(V_o + V_m + V_s)^{1/2}}$$

• Let $\{x_{ni}\}$ be the non-implausible samples from the last wave of history matching. We formulate the following proposal distribution:

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathrm{E}[\mathbf{x}_{\mathrm{ni}}], \kappa \mathrm{Var}[\mathbf{x}_{\mathrm{ni}}])$$

$$L(\mathbf{x}) = \mathcal{N}(z; \mathbf{E}^*[g(\mathbf{x})], V)$$

with
$$V = V_o + V_c(\mathbf{x}) + V_s + V_m$$

- We first use the distribution $P(\mathbf{x})$ to propose a number of samples $\{\tilde{\mathbf{x}}\}$
- We then calculate a weight for each sample as $w(\tilde{\mathbf{x}}) = L(\tilde{\mathbf{x}})/P(\tilde{\mathbf{x}})$
- Finally, we draw the desired number of posterior samples $\mathbf{x}_{\mathbf{p}}$ from the set of $\{\tilde{\mathbf{x}}\}$, with a probability defined by the weights $w(\tilde{\mathbf{x}})$

 \bullet Let $\{x_{ni}\}$ be the non-implausible samples from the last wave of history matching. We formulate the following proposal distribution:

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathrm{E}[\mathbf{x}_{\mathrm{ni}}], \kappa \mathrm{Var}[\mathbf{x}_{\mathrm{ni}}])$$

$$L(\mathbf{x}) = \mathcal{N}(z; \mathrm{E}^*[g(\mathbf{x})], V)$$

with
$$V = V_o + V_c(\mathbf{x}) + V_s + V_m$$

- We first use the distribution $P(\mathbf{x})$ to propose a number of samples $\{\tilde{\mathbf{x}}\}$
- We then calculate a weight for each sample as $w(\tilde{\mathbf{x}}) = L(\tilde{\mathbf{x}})/P(\tilde{\mathbf{x}})$
- Finally, we draw the desired number of posterior samples $\mathbf{x}_{\mathbf{p}}$ from the set of $\{\tilde{\mathbf{x}}\}$, with a probability defined by the weights $w(\tilde{\mathbf{x}})$

• Let $\{x_{ni}\}$ be the non-implausible samples from the last wave of history matching. We formulate the following proposal distribution:

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mathrm{E}[\mathbf{x}_{\mathrm{ni}}], \kappa \mathrm{Var}[\mathbf{x}_{\mathrm{ni}}])$$

$$L(\mathbf{x}) = \mathcal{N}(z; \mathrm{E}^*[g(\mathbf{x})], V)$$

with
$$V = V_o + V_c(\mathbf{x}) + V_s + V_m$$

- We first use the distribution $P(\mathbf{x})$ to propose a number of samples $\{\tilde{\mathbf{x}}\}$
- We then calculate a weight for each sample as $w(\tilde{\mathbf{x}}) = L(\tilde{\mathbf{x}})/P(\tilde{\mathbf{x}})$
- Finally, we draw the desired number of posterior samples $\mathbf{x}_{\mathbf{p}}$ from the set of $\{\tilde{\mathbf{x}}\}$, with a probability defined by the weights $w(\tilde{\mathbf{x}})$

• Let $\{x_{ni}\}$ be the non-implausible samples from the last wave of history matching. We formulate the following proposal distribution:

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}; E[\mathbf{x}_{ni}], \kappa Var[\mathbf{x}_{ni}])$$

$$L(\mathbf{x}) = \mathcal{N}(z; \mathrm{E}^*[g(\mathbf{x})], V)$$

with
$$V = V_o + V_c(\mathbf{x}) + V_s + V_m$$

- We first use the distribution $P(\mathbf{x})$ to propose a number of samples $\{\tilde{\mathbf{x}}\}$
- We then calculate a weight for each sample as $w(\tilde{\mathbf{x}}) = L(\tilde{\mathbf{x}})/P(\tilde{\mathbf{x}})$
- Finally, we draw the desired number of posterior samples $\mathbf{x}_{\mathbf{p}}$ from the set of $\{\tilde{\mathbf{x}}\}$, with a probability defined by the weights $w(\tilde{\mathbf{x}})$

• Let $\{x_{ni}\}$ be the non-implausible samples from the last wave of history matching. We formulate the following proposal distribution:

$$P(\mathbf{x}) = \mathcal{N}(\mathbf{x}; E[\mathbf{x}_{ni}], \kappa Var[\mathbf{x}_{ni}])$$

$$L(\mathbf{x}) = \mathcal{N}(z; \mathrm{E}^*[g(\mathbf{x})], V)$$

with
$$V = V_o + V_c(\mathbf{x}) + V_s + V_m$$

- We first use the distribution $P(\mathbf{x})$ to propose a number of samples $\{\tilde{\mathbf{x}}\}$
- We then calculate a weight for each sample as $w(\tilde{\mathbf{x}}) = L(\tilde{\mathbf{x}})/P(\tilde{\mathbf{x}})$
- Finally, we draw the desired number of posterior samples $\mathbf{x}_{\mathbf{p}}$ from the set of $\{\tilde{\mathbf{x}}\}$, with a probability defined by the weights $w(\tilde{\mathbf{x}})$

Results: approximate posterior sampling

- We presented an iterative method for the calibration of complex simulation models, based on emulators.
- We calibrated a dynamic, event-driven, individual-based stochastic HIV model, with 22 inputs and 18 outputs.
- The final system had a 65% probability of selecting a parameter set that fitted all 18 outputs and reduced the input space by a factor of 10^{-11} .
- Very effective in reducing the input space of slow and high dimensional models.
- Can be combined with other methods to produce posterior distributions.

- We presented an iterative method for the calibration of complex simulation models, based on emulators.
- We calibrated a dynamic, event-driven, individual-based stochastic HIV model, with 22 inputs and 18 outputs.
- The final system had a 65% probability of selecting a parameter set that fitted all 18 outputs and reduced the input space by a factor of 10^{-11} .
- Very effective in reducing the input space of slow and high dimensional models.
- Can be combined with other methods to produce posterior distributions.

- We presented an iterative method for the calibration of complex simulation models, based on emulators.
- We calibrated a dynamic, event-driven, individual-based stochastic HIV model, with 22 inputs and 18 outputs.
- The final system had a 65% probability of selecting a parameter set that fitted all 18 outputs and reduced the input space by a factor of 10^{-11} .
- Very effective in reducing the input space of slow and high dimensional models.
- Can be combined with other methods to produce posterior distributions.

- We presented an iterative method for the calibration of complex simulation models, based on emulators.
- We calibrated a dynamic, event-driven, individual-based stochastic HIV model, with 22 inputs and 18 outputs.
- The final system had a 65% probability of selecting a parameter set that fitted all 18 outputs and reduced the input space by a factor of 10^{-11} .
- Very effective in reducing the input space of slow and high dimensional models.
- Can be combined with other methods to produce posterior distributions.

- We presented an iterative method for the calibration of complex simulation models, based on emulators.
- We calibrated a dynamic, event-driven, individual-based stochastic HIV model, with 22 inputs and 18 outputs.
- The final system had a 65% probability of selecting a parameter set that fitted all 18 outputs and reduced the input space by a factor of 10^{-11} .
- Very effective in reducing the input space of slow and high dimensional models.
- Can be combined with other methods to produce posterior distributions.

Thank you!