E208 – Eletrônica Digital II

4º Período / 1º Semestre de 2021

Professores: Bruno de Oliveira Monteiro bruno@inatel.br

Monitores: Felipe Pereira Silveira felipepereira@gea.inatel.br

Carlos Daniel Borges Vilela Marques carlos.marques@gea.inatel.br

Gualter Machado Mesquita machadomgualter@gmail.com

Maíra Alves Chagas mairaalves@gec.inatel.br

Pedro Henrique Praxedes dos Reis pedro.reis@gea.inatel.br

Thalita Fortes Domingos thalita.fortes@gec.inatel.br

Maria Luiza Rosestolato Araújo maria.luiza@gec.inatel.br

Marcos Henrique Rodrigues Lopes marcos.lopes@gea.inatel.br

Thiago da Rocha Miguel thiago.miguel@gec.inatel.br

Aluno: _____ Matrícula: ____ Período: __ Data: __ / __ / ___

Assunto da semana: Flip Flop D e T

Relatório 3

Teoria

Flip-Flop D

Apesar do flip-flop tipo JK possuir várias configurações uteis para nós, em certos casos utilizamos apenas algumas de suas funções. Na figura 1 mostramos o diagrama lógico de um flip-flop D (*Data* - Dados), implementado com uma porta Inversora:

Figura 1

O flip-flop tipo D herda apenas as configurações de quando J e K são diferentes (J=0, logo K=1 ou J=1, logo K=0), desse modo ele funciona como um carregador de Dado, ou seja o valor

lógico da entrada de dados D é transferido para a saída Q quando ocorre uma transição na entrada de CLOCK.

A Figura 2 mostra o diagrama em bloco do flipo flop D e a Tabela 1 mostra a tabela da verdade.

Figura 2

CL	PR	СК	D	Q
0	0	X	X	*
0	1	X	X	0
1	0	X	X	1
1	1	\	X	Qa
1	1	†	0	0
1	1	↑	1	1

Tabela 1

Flip-Flop T

O flip-flop tipo T herda apenas as configurações as quais o J e K são iguais (J = K = 0 ou J = K = 1), pois existe um curto nos terminas de J para K. Assim, ele guarda o valor de dado da saída ou inverte o valor anterior da mesma quando ocorre uma transição na entrada de CLK. Dessa forma, o Flip-Flop T (Toggle - Alternar) age como um "alternador", que inverte o estado da saída quando é ativado e o mantém constante quando é desativado. A figura 3 mostra a implementação:

Figura 3

CLR	PR	CK	T	Q
0	0	X	X	*
0	1	X	X	0
1	0	X	X	1
1	1	\	X	Qa

^{*} Condição não permitida (sem sentido físico).

A Figura 4 mostra o diagrama em flipo flop T e a Tabela 2 mostra a tabela do flip-flop T.

1	1	†	0	Qa
1	1	†	1	Qa

bloco do da verdade

Figura 3

Tabela 2

* Condição não permitida (sem sentido físico).

Exercício Teórico

Questão 1. Configure cada flip flop dos itens abaixo. Desenhe cada um dos flip flops com entradas PRESET e CLEAR e desenhe o ajuste necessário.

a. F.F. D para operar somente na função Toggle.

b. F.F. JK para operar como um F.F. T.

c. F.F. JK para operar como um F.F. D.

Questão 2. Desenhe a forma de onda na saída de cada flip flop.

Exercício Prático

Questão 1. Configure cada circuito abaixo e faça a simulação no Proteus ISIS e no módulo digital:

Obs: Todas as atividades que solicitarem montagem no módulo digital devem ser realizadas no TinkerCad enquanto as aulas não retornarem de forma presencial.

a. Configurar o F. F. J K para operar como um F. F. D (utilizar o CI para aplicar a lógica INVERSORA).

b. Configurar o F. F. D para operar somente na função Toggle.

Questão 2. Realize a simulação de um flip-flop D no software ISE.

Código de VHDL

```
ENTITY FF D is
    PORT( d: in STD LOGIC;
           clk : in STD LOGIC;
           q : out STD LOGIC;
            q_bar : out STD_LOGIC);
END FF D;
ARCHITECTURE Behavioral OF FF_D IS
signal sinal_q: STD_LOGIC;
BEGIN
  process(clk)
BEGIN
   sinal q <= '0';
   IF rising edge(clk) THEN
       IF (d = '0') THEN
           sinal_q <= '0';
       ELSIF (d = '1') THEN
           sinal_q <= 'l';
       END IF;
   ELSIF falling edge(clk) THEN
       sinal_q <= sinal_q;
   END IF;
   END PROCESS;
   q <= sinal q;
    q_bar <= not sinal_q;
END Behavioral;
```

Código de teste

```
d <= '0';
wait for 50 ns;
clk <= '0';
wait for 50 ns;
clk <= '1';
wait for 50 ns;
clk <= '0';
wait for 50 ns;
d <= '1';
wait for 50 ns;
clk <= '0';
wait for 50 ns;
clk <= '1';
wait for 50 ns;
clk <= '0';
wait for 50 ns;
```

Questão 3 (Proposto). Realize a simulação de um flip-flop T no software ISE.

Transistor BC 548

BC 548 Transistor

CI 7476

Connection Diagram

Function Table

Inputs					Outputs	
PR	CLR	CLK	J	K	Q	Q
L	Н	X	X	X	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	X	H (Note 1)	H (Note 1)
Н	Н	~	L	L	Q_0	\overline{Q}_0
Н	Н		Н	L	Н	L
Н	Н	~	L	Н	L	Н
Н	Н		Н	Н	Toggle	

- H H J H IOggle

 H = HIGH Logic Level

 L = LOW Logic Level

 X = Either LOW or HIGH Logic Level

 ¬ = Positive pulse data. The J and K inputs must be held constant while the clock is HIGH. Data is transferred to the outputs on the falling edge of the clock pulse.

 Q₀ = The output logic level before the indicated input conditions were established.
- established.

established.

Toggle = Each output changes to the complement of its previous level on each complete active HIGH level clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when the preset and/or clear inputs return to their inactive (HIGH) level.

CI 7474

Connection Diagram

Function Table

	Inp	Outputs			
PR	CLR	CLK	D	Q	Q
L	Н	X	X	Н	L
Н	L	X	X	L	Н
L	L	X	X	H (Note 1)	H (Note 1)
Н	Н	\uparrow	Н	Н	L
Н	Н	1	L	L	Н
Н	Н	L	X	Q_0	\overline{Q}_0

H = HIGH Logic Level

X = Either LOW or HIGH Logic Level

L = LOW Logic Level

 \uparrow = Positive-going transition of the clock.

 $\mathbf{Q}_0 = \mathsf{The}$ output logic level of \mathbf{Q} before the indicated input conditions were established.

Note 1: This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (HIGH) level.

Itens que devem conter no quite:

- Um protoboard;
- Um CI 7476;
- Um CI 7474;
- Um transistor BC 548;

- Um resistor de cada: 1kR, 10kR, 330R
- Um LED 5m.