Pattern Classification and Recognition:

Feature Extraction/Generation

ECE 681

Spring 2016

Stacy Tantum, Ph.D.

T06: Feature Generation ECE 681 (Tantum, Spring 2016)

Occam's Razor

Classifiers should be no more complicated than necessary

Reducing Complexity

Select Data/Features

Transform Data/Features

Incorporate Problem Domain Knowledge

ECE 681 (Tantum, Spring 2016)

From Knowledge comes Creative Features

Possible Features

ECE 681 (Tantum, Spring 2016)

From Knowledge comes Model-Based Features

Possible Features

$$s(t) = \left(\sum_{n=1}^{N} A_n e^{-r_n t}\right) + n(t)$$

T06: Feature Generation ECE 681 (Tantum, Spring 2016)

Data-Based Dimensionality Reduction

Most often relies on projecting the data to a lower-dimensional orthogonal space

Principal Components Analysis (Karhunen-Loève Transform)

Linear transformation of a high-dimensional input vector to a lower-dimensional vector with *uncorrelated* components

PCA: Maximum Total Variance

- Find a projection that explains as much variance in the data as possible
- Find a projection (orthogonal to those already found) that explains as much of the remaining variance in the data as possible

Repeat

PCA: Minimum MSE Approximation

PCA: Dimensionality Reduction

PCA: Limitations

PCA may perform poorly (or fail) if the input isn't Gaussian

PCA seeks only to find projections that maximize the variance of the data, nothing about it is optimized for *classification*

Transformed Variable: $y=A^T x$ $(A = eigenvectors of R_x)$

PCA Big Picture

Linear projection (transformation) of original data (x) such that components of new data (y) are uncorrelated

T06: Feature Generation ECE 681 (Tantum, Spring 2016)

PCA Coding Tips

What do we need for input?

Transformed Variable: $y=A^T x$ $(A = eigenvectors of <math>R_x)$

See Matlab functions corr and eig, also pca

What do we want from output?