

SC1015 Data Science & Artificial Intelligence Mini-Project

Group Members: Teng Song Heng (U2122030K) Priscilla Celine Setiawan (U2123732G) Sim Shi Jie, Keith (U2121044B)

Practical Motivation

Happiness Index

"Singapore is ranked 27th"

Factors

What factors affect a country's happiness?

Improvements

What can countries do to increase happiness?

Problem Definition ...

"To predict the happiness score of a country"

Chosen Dataset

2017 World Happiness Dataset

Usage:

Predict the happiness score of a country based on several predictors

E.g., GDP, Social Support, etc.

Source:

World Happiness Report (Kaggle)

https://www.kaggle.com/datasets/unsdsn/world-happiness

Creation of Dataset

country_profile_variables.csv (70.18 kB)

2017 World Happiness Dataset

2017 UN Country Statistic Dataset

Problem:

Country data contained within are very generalised and lack specificity.

Solution:

Introduce detailed country data for data analysis and happiness score prediction

E.g., Employment rate, Mortality rate, etc.

Dataset Creation

Problem:

Sample size too small (less than 200 countries)

Solution:

Add more samples from other years

E.g., Adding merged data of 2015 world happiness with 2015 statistics

2017 World Happiness Dataset

2015 World Happiness Dataset

Dataset Creation

Problem:

No readily available country statistics dataset as each variable is separated into multiple CSV files.

Manually download the CSV files on UN website and reformat it to fit usages.

E.g., Filter by 2015 data, etc.

UN website with CSV

Reformatting data from UN CSV

Dataset Cleaning

- 2017 UN Country Statistic Dataset:
- o Replace '-99', '...', '.../...' With NaN
- o Replace '~0', '~0.0', '-~0.0' with 0
- Split columns with combined data into two columns.
- Fill in NA values with <u>kNN Imputation</u>
- Replace missing values with mean value of the nearest neighbours using the Euclidean distance metric
- Merging UN Data with Happiness Report
- Based on country name
- Ensure both dataframes use the same country name
- E.g., 'United States' vs 'United States of America'
- Adding extra columns
- Longitude and Latitude for EDA
- Export final dataset.csv file
- For ease of use in EDA and ML

Final Cleaned dataset

Correlation of Internet Usage and Employment

Employment:	Agriculture (% of employed)	-0.8247
Employment:	Industry (% of employed)	0.4637
Employment:	Services (% of employed)	0.8212
Individuals	using the Internet (per 100 inhabitants)	1.0000

Internet Usage and Employment

Internet Usage and Employment Trend line

Education: Primary (Female) to Fertility Rate

Education: Secondary (Female) to Fertility Rate

Education: Tertiary (Female) to Fertility Rate

No Correlation between Primary Education and Happiness Score

Education:	Primary gross	enrol. ratio	(male per 100 pop	.) -0.14
Education: 1	Primary gross	enrol. ratio	(female per 100 pe	op.) 0.01
Education: '	Tertiary gross	enrol. ratio	o (male per 100 po	p.) 0.59
Education: '	Tertiary gross	enrol. ratio	o (female per 100 p	pop.) 0.68
Education:	Secondary gros	s enrol. rat	io (male per 100 p	op.) 0.76
Education:	Secondary gros	s enrol. rat	io (female per 100	pop.) 0.78

1.00	0.85	-0.09	-0.09	-0.14	-0.15	×
0.85	1.00	0.10	0.14	0.00	0.02	×
-0.09	0.10	1.00	0.98	0.75	0.83	0.77
-0.09	0.14	0.98	1.00	0.72	0.83	0.78
-0.14	0.00	0.75	0.72	1.00	0.96	0.59
-0.15	0.02	0.83	0.83	0.96	1.00	0.69
*	*	0.77	0.78	0.59	0.69	1.00

Education: Secondary (Male) To Happiness Score

Education: Tertiary (Male) To Happiness Score

Education: Secondary (Female) To Happiness Score

Education: Tertiary (Female) To Happiness Score

Correlation of **Life Expectancy** and **Happiness Score**

Life expectancy at birth (females, years) 0.75 Life expectancy at birth (males, years) 0.76

Life Expectancy at Birth (Female) to Happiness Score

Life Expectancy at Birth (Male) to Happiness Score

Life Expectancy at Birth (Males) to Region

Life Expectancy at Birth (Female) to Region

Choosing Machine Learning Model

	diffusing Machine Learning Model				
		DESCRIPTION	REASON		
	K Means Clustering	A form of clustering that aims to partition the samples into K number of clusters with the nearest mean from the chosen centroid	Clustering gives the user the ability to understand how happy a country is at a simple glance of their group category		
	ElasticNet Linear Regression	Combination of Least Squares and the regression penalty of both Lasso and Ridge Regression	 A small sample size of ~300. Only a few features that are highly correlated were chosen as predictors. 		
	Random Forest Regression	Supervised learning algorithm that uses ensemble learning method for regression	Robust to outliers.Lower risk of overfitting.		

K Means Clustering

Techniques / What is it for?

- MinMax scaling, this is required as K Means clustering clusters samples into group based on the distance from the chosen centroid.
- Elbow method is used to determine the number of clusters, K.
 - Distortion method
 - Inertia method

How does it work:

- . Find number of K centroids
- 2. Group samples based on K distance.

K Means Clustering

ElasticNet Linear Regression

Techniques:

- 1. Combine the strengths of **lasso** and **ridge regression** into one.
- 2. **Cross validation** is used to tune the hyperparameters to make more accurate predictions.

How it works:

- Least Squares is the basic linear regression model.
- 2. **Lasso** (L1 Regularization) and **Ridge Regression** (L2 Regularization) are very similar as they both introduces a small amount of bias to reduce the variance.
- 3. The only difference is that **Lasso Regression** can shrink less important features coefficient all the way to zero, which helps with feature selection.
- 4. Minimizes the objective function:

```
1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2
```


Random Forest Regression

Techniques:

- 1. Ensemble learning method : combine prediction from multiple ML algorithms to make more accurate prediction than a single model.
- 2. Bootstrap (bagging): random sampling with replacement of a small subset of data from data set

How does it work:

- 1. Construct many decision trees
- 2. Each tree is created from a different sample of data and features.
- 3. Each tree makes its own individual prediction.
- 4. Averaged the predictions to produce a single result.

Variable Importance

- 1. GDP per capita (current US\$): 0.61
- 2. Life expectancy at birth (males, years): 0.1
- 3. Life expectancy at birth (females, years):0.08
- 4. Education: Secondary gross enrol. ratio (female per 100 pop.):0.06
- 5. Population age distribution (0-14 years, %):0.02
- 6. Infant mortality rate (per 1000 live births: 0.02
- 7. Urban population (% of total population):0.02

Comparison of Accuracy and RMSE

Accuracy (R ²)	Train	Test
ElasticNet	71.4%	59.3%
Random Forest (max depth =20)	97.5%	80.0%
Random Forest (max depth = 3)	84.8%	76.2%
Random Forest (with most important variables)	97.4%	80.8%
Random Forest (variables with high coefficient)	96.9%	67.4%

Root Mean Squared Error (RMSE)	Train	Test
ElasticNet	0.6244	0.6434
Random Forest (max depth =20)	0.1820	0.4780
Random Forest (max depth = 3)	0.4523	0.5221
Random Forest (with most important variables)	0.1886	0.4688
Random Forest (variables with high coefficient)	0.2049	0.6112

OUTCOME

K Means Clustering

- Easy to implement and visualize
 - Data is labelled and unnecessary for unsupervised learning
 - Accuracy is low

Elastic Net Regression

- Combine the strengths of lasso and ridge regression into one.
 - Low Accuracy and High RMSE value
 - Computationally more expensive than Lasso or Ridge regression.

Random Forest

- Highest Accuracy and lowest RMSE value
- Able to find variables that are significant
- Reduce overfitting
 - Slow training time

Insights and Recommendation

Insights

- Through EDA and correlation matrix, we found out that these variables are important in determining happiness scores of countries.
 - Employment: Services (% of employed) 0.744378
 - Life expectancy at birth (females, years) 0.754074
 - Life expectancy at birth (males, years) 0.763078
 - Education: Secondary gross enrol. ratio (male per 100 pop.) 0.768661
 - Education: Secondary gross enrol. ratio (female per 100 pop.) 0.782680
 - Individuals using the Internet (per 100 inhabitants) 0.789634
- 2. Exploration of other machine learning techniques compared to those learnt in class
- 3. Choosing the right machine learning technique for a specific use case.
- 4. New methods to cleaning and processing data
- 5. Importance of normalizing data before machine learning

Recommendations

- 1. Import other years to increase the sample size
- 2. Tuning of hyperparameters to improve accuracy in machine learning (e.g., GridSearchCV)

References

- . Htoon, K. S. (2020, July 3). A guide to KNN imputation. Retrieved April 22, 2022, from https://medium.com/@kyawsawhtoon/a-guide-to-knn-imputation-95e2dc496e
- 2. Nagpal, A. (2017, October 14). *L1 and L2 regularization methods*. L1 and L2 Regularization Methods. Retrieved April 22, 2022, from https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
- 3. StatQuest with Josh Starmer. (2018, September 25). Regularization Part 1: Ridge (L2) Regression [Video]. Youtube. Retrieved April 22, 2022, from https://www.youtube.com/watch?v=081RR3vKn30
- 4. StatQuest with Josh Starmer. (2018, October 1). Regularization Part 2: Lasso (L1) Regression [Video]. Youtube. Retrieved April 22, 2022, from https://www.youtube.com/watch?v=NGf0voTMlcs
- 5. StatQuest with Josh Starmer. (2018, October 8). Regularization Part 3: Elastic Net Regression [Video]. Youtube. Retrieved April 22, 2022, from https://www.youtube.com/watch?v=1dKRdX9bflo
- 6. Koehrsen, W. (2017, December 27). *Random Forest in Python*. Medium; Towards Data Science. https://towardsdatascience.com/random-forest-in-python-24d0893d51c0
- 7. Random Forest Regression: When Does It Fail and Why? (2020, May 22). Neptune.ai. https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
- 8. k-Means Advantages and Disadvantages | Clustering in Machine Learning | Google Developers. (2019, May 6). Google Developers. https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages
- 9. codebasics.(2019, February 4). Machine Learning Tutorial Python 13: K Means Clustering Algorithm [Video]. Youtube. Retrieved April 8, 2022, from https://www.youtube.com/watch?v=EltlUEPClzM&t=1229s&ab_channel=codebasics
- IO. "K-Means Pros & Cons." HolyPython.com. (29, June 2021). https://holypython.com/k-means/k-means-pros-cons/.

References

- 1. "Elbow Method for Optimal Value of K in Kmeans." *GeeksforGeeks*, 9 Feb. 2021, https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/.
- 2. "K-Means Clustering with Scikit-Learn." *DataCamp Community*, https://www.datacamp.com/community/tutorials/k-means-clustering-python.

