נוסחאות עזר – מבוא להסתברות

$$;A\cup(B\cap C)=(A\cup B)\cap(A\cup C) \hspace{0.2cm};A\cap(B\cup C)=(A\cap B)\cup(A\cap C) \hspace{0.2cm};A\cap(B\cup C)=(A\cap B)\cup(A\cap C) \hspace{0.2cm}$$
 חוקי דה מורגן
$$(\bigcap_i \overline{A_i})=\overline{(\bigcup_i A_i)} \hspace{0.2cm} (\bigcup_i \overline{A_i})=\overline{(\bigcap_i A_i)} \hspace{0.2cm} (\bigcup_i \overline{A_i})=\overline{(\bigcap_i A_i)} \hspace{0.2cm}$$

 $A \cap B = \emptyset$ מאורעות זרים אם B.A

סדרת מאורעות תקרא זרים בזוגות אם כל זוג מאורעות מתוכה הם זרים.

$$P\{A\cup B\}=P\{A\}+P\{B\}-P\{A\cap B\}$$
 ; $P\{\overline{A}\}=1-P\{A\}$: חוקי ההסתברות אם: $P\{\bigcup_{i=1}^n Ai\}=\sum_{i=1}^n P\{Ai\}$: אם: $\{A_i\}_{i=1}^n$ סדרת מאורעות זרים בזוגות אז

נוסחת ההכלה וההוצאה (inclusion exclusion):

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D) - P(A \cap B) - P(A \cap C) - P(A \cap D) - P(B \cap C) - P(B \cap D) - P(C \cap D) + P(A \cap B \cap C) + P(A \cap B \cap C) + P(A \cap B \cap C) - P(A \cap B \cap C \cap D) + P(B \cap C \cap D) - P(A \cap B \cap C \cap D)$$

כללים קומבינטוריים:

, תוצאות אפשריות וסימטריות n_k שי k שלבים, ובשלב n_k אם ניסוי ניתן להצגה כמתבצע ב n_k שלבים, ובשלב ואם מרחב המדגם מוגדר כוקטורים באורך n כאשר הרכיב ה k שלו הוא תוצאת השלב ה k , אז . במרחב המדגם ש $n_1 \cdot n_2 \cdot ... \cdot n_k$ שי המדגם במרחב במרחב

מספר האפשרויות לדגימה של k מתוד n איברים:

ללא התחשבות בסדר	התחשבות בסדר הדגימה	
(מרחב מדגם לא סימטרי)	n^k	עם החזרה
$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$	$\frac{n!}{(n-k)!}$	ללא החזרה

$$P\{A\cap B\} = P\{A\}P\{B\,/\,A\}$$
 : נוסחת הכפל: $P\{A\,/\,B\} = \frac{P\{A\cap B\}}{P\{B\}}$: הסתברות מותנית:

נוסחת ההסתברות השלמה:

$$P\{A\} = \sum_{i=1}^n P\{A \, | \, Bi\} P\{Bi\}$$
 אם: $\left\{ \mathbf{B_i} \right\}_{i=1}^n$ חלוקה של מרחב המדגם, אז או $\left\{ \mathbf{B_i} \right\}_{i=1}^n$

$$P(A) = \sum_{i=1}^n P\{A/B_i\}P\{B_i\} \quad \text{chart} \quad P\{B_k/A\} = \frac{P\{A/B_k\}P\{B_k\}}{P\{A\}} \quad \text{:}$$
 נוסחת בייס

 $P\{A\cap B\}=P(A)P(B)$ אי $P\{A/B\}=P(A)$ אי מתקיים B ו A : אי תלות: A ו B אי תלות: קבוצת מאורעות הם בלתי תלויים אם כל קבוצה חלקית שלהם מקיימת שהסתברות החיתוך שלהם שווה למכפלת ההסתברויות.

סדרת ניסויי ברנולי: סדרת ניסויים זהים ובלתי תלויים, כשבכל ניסוי שתי תוצאות אפשריות: הצלחה וכשלון, וכאשר ההסתברות להצלחה בניסוי בודד היא D.

משתנים מקריים:

 $F(k)=P(X\leq k)$: פונקצית המעטברת פונקצית ההסתברות: P(X=k) פונקצית ההתפלגות מקרי בדיד: פונקצית ההסתברות: P(X=k) : פונקציה של P(X=k) : התוחלת של P(X=k) : אוחלת של פונקציה של P(X=k) : אוחלת של P(X=k) : אוחלת של P(X=k) : אוחלת של P(X=k) : התוחלת של P(X=k) : אוחלת החשנית הוא הערך בעל ההסתברות הגבוהה ביותר, החציון הוא הערך בו

משתנים (בדידים) מיוחדים:

. שוות שוות בדיד): $X \sim U(N)$, מתאר משתנה המקבל את הערכים: $X \sim U(N)$ בהסתברויות שוות.

$$P\{X=k\}=rac{1}{N}$$
 $k=1,2,...,N$; $E[X]=rac{N+1}{2}$; $V[X]=rac{N^2-1}{12}$: אבור משתנה זה:

בינומי: $X \sim B(n,p)$ ניסויי ברנולי. מתאר את מספר האצלחות ב- מ

$$P\{X=k\}=inom{n}{k}p^kq^{n-k}$$
 $k=0,1,...,n$; $E[X]=np$; $V[X]=npq$: ועבור משתנה זה:

. גיאומטרי (כולל) בסדרת ניסויי ברנולי. את מספר הניסויים עד להצלחה (כולל) בסדרת ניסויי ברנולי. עבור משתנה זה את מספר הניסויים עד להצלחה (כולל) בסדרת ניסויי ברנולי.

$$P(X=k) = pq^{k-1} \quad k = 1, 2, \dots \; ; \quad P(X \le k) = 1 - q^k \quad k = 1, 2, \dots \; ; \quad E[X] = \frac{1}{p}; \quad V[X] = \frac{q}{p^2}$$

היברים שיתקבלו בבחירת איברים לאא מספר איברים מתאר את מספר איברים איברים שיתקבלו איברים $X \sim H(N,R,n)$: היפרגיאומטריR שבה איברים מיוחדים.

צבור משתנה זה:

$$P\{X = k\} = \frac{\binom{R}{k} \binom{N - R}{n - k}}{\binom{N}{n}} \qquad k = 0, 1, 2, \dots n \; ; \qquad E(X) = n \frac{R}{N} \; ; \qquad V(X) = n \frac{R}{N} \frac{(N - R)}{N} \frac{(N - R)}{(N - 1)}$$

בואדוני: $X \sim Pois(\lambda)$, משמש בדרך כלל לתיאור מספר אירועים ביחידת זמן.

$$P(X=k)=rac{\lambda^k}{k!}e^{-\lambda}$$
 $k=0,1,2,...$; $\mathrm{E}(\mathrm{X})=\mathrm{V}(\mathrm{X})=\lambda$: אעבור משתנה זה:

: משתנה מקרי רציף פונקצית הצפיפות , f(x) הצפיפות פונקצית החתפלגות משתנה מקרי המצטברת

$$F(t) = P\{X \le t\} = \int_{x=-\infty}^{t} f(x)dx$$

 $E[g(X)] = \int g(x)f(x)dx$: איא g(X), איא g(X) התוחלת של פונקציה של g(X), התוחלת של פונקציה של g(X) התוחלת של g(X) : $E[X] = \int xf(x)dx$: E[X] =

משתנים (רציפים) מיוחדים:

אחיד (רציף): אחיד משתנה לערך בקטע פרופורציונית משתנה משתנה אחיד מתאר משתנה אחיד (רציף): אחיד מתאר משתנה המקבל ערכים בין אחיד לאורך בקטע פרופורציונית אחיד משתנה המקבל ערכים בין אחיד משתנה המקבל ערכים בין אחיד משתנה משתנה

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{elsewhere} \end{cases}; \quad F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}; \quad \mathrm{E}(X) = \frac{a+b}{2}; \quad \mathrm{V}(X) = \frac{(b-a)^2}{12} : \mathrm{E}(X) = \frac{a+b}{2};$$

. משמש בדרך ומערכות אורך אורך אורך אורך משמש בדרך משמש , $X \sim \exp(\lambda)$ משמייריכי (אקספוננציאלי): אורך אלקטרוניות.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases}; \quad F(x) = \begin{cases} 0 & x \leq 0 \\ 1 - e^{-\lambda x} & 0 \leq x \end{cases}; \quad \mathrm{E}(X) = \frac{1}{\lambda}; \quad \mathrm{V}(X) = \frac{1}{\lambda^2} \ : \text{ in a multiple of the proof of t$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty \le x \le \infty$$
 ; $E(X) = \mu$; $V(X) = \sigma^2$: מבור משתנה זה:

חישוב הסתברויות עבור משתנה זה בעזרת טבלת ההתפלגות המצטברת של המשתנה הסטנדרטי

,
$$P\{X \leq t\} = P\{Z \leq \frac{t-\mu}{\sigma}\} = \Phi(\frac{t-\mu}{\sigma})$$
 : והחישוב מתבצע על ידי , $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$ את הערך $\Phi(-a) = 1 - \Phi(a)$: את הערך $\Phi(t)$ קוראים בטבלה, הוא מקיים

 $P(X=x_i,Y=y_j)=P_{X,Y}(x_i,y_j)$: משתנה דו ממדי בדיד פונקצית ההסתברות המשותפת $P_{X}(k)=P\{X=k\}=\sum_i P\{X=k,Y=j\}$: X פונקצית ההסתברות השולית של

 $P_{X/Y}(k/j) = P\{X = k/Y = j\} = \frac{P\{X = k, Y = j\}}{P\{Y = j\}}$: Y=j בהינתן אל X בהינתן אל האפשריים ווי- I בהינתן אל אליים אם I בהינתן לויים אם I לכל הערכים האפשריים I לכל הערכים האפשריים I שני משתנים : Y , X יקראו בלתי תלויים אם I אם I אם I בלתי תלויים אם I אם אם I בלתי משתנים : Y , X יקראו בלתי תלויים אם I אם אם I בלתי משתנים : Y , X יקראו בלתי תלויים אם I אם אם I בלתי תלויים אם בלתי תלויים אם בל

 $f_{X,Y}(x,y)$: משתנה דו ממדי רציף: פונקצית פונקצית פונקצית משתנה דו ממדי רציף

x,y שני משתנים: Y ,X יקראו בלתי תלויים אם $f_{X,Y}(x,y)=f_X(x)f_Y(y)$ שני אם אם אפשריים אם יקראו בלתי אינים

$$E[aX+b] = aE[X]+b \quad ; \quad V[aX+b] = a^2V[X] \quad : \text{ In the model in the model of the model}$$

$$E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] \quad ; \quad V[\sum_{i=1}^n X_i] = \sum_{i=1}^n V[X_i] + \sum_{i\neq j}^{n^2-n^n} Cov(X_{i,}X_j) = \sum_{i=1}^n V(X_i) + 2\sum_{i>j} Cov(X_i,X_j)$$

$$Cov(X,Y) = E[(X-E(X))(Y-E(Y))] = E(XY) - E(X)E(Y) \quad ; \quad \rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

$$Cov(aX+b,Y) = aCov(X,Y) \; ; \quad Cov(X,Y+Z) = Cov(X,Y) + Cov(X,Z)$$

$$S_N = \sum_{i=1}^N X_i \quad ; \quad E[S_N] = E[N]E[X] \quad ; \quad V[S_N] = E[N]V[X] + V[N]E^2[X] \quad ; \quad v(X,Y) = v(X,Y)$$

נוסחאות התוחלת והשונות בתנאי:

$$E(X \mid A) = \sum_{i=1}^{n} x_{i} P(X = x_{i} \mid A)$$

$$E(X \mid Y = y_{j}) = \sum_{i=1}^{n} x_{i} P(X = x_{i} \mid Y = y_{j})$$

$$V(X \mid Y = y_{i}) = E(X^{2} \mid Y = y_{j}) - E^{2}(X \mid Y = y_{j})$$

$$E(X^{2} \mid Y = y_{j}) = \sum_{i=1}^{n} x_{i} P(X = x_{i} \mid Y = y_{j})$$

$$E(X^{2} \mid Y = y_{j}) = \sum_{i=1}^{n} x_{i}^{2} P(X = x_{i} \mid Y = y_{j})$$

נוסחאות התוחלת והשונות השלמה:

$$E(X) = \sum_{i=1}^{n} E(X \mid A_i) P(A_i)$$

$$E(X) = \sum_{j=1}^{n} E(X \mid Y = y_j) P(Y = y_j) = E(E(X \mid Y))$$

$$V(X) = E(X^2) - E^2(X)$$

$$E(X^2) = \sum_{i=1}^{n} E(X^2 \mid A_i) P(A_i) = \sum_{i=1}^{n} (V(X \mid A_i) + E^2(X \mid A_i)) P(A_i)$$

מדגם מקרי פשוט הוא אוסף של מ"מ בלתי תלויים, לכולם אותה התפלגות.

$$E[\overline{X_n}] = E[X]$$
 ; $V[\overline{X_n}] = \frac{V[X]}{n}$: והוא מקיים , $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$: ממוצע המדגם הוא

אי שויונים וחוקי גבול:

 $\{E[X]\}$ אז קיים: X משתנה מקרי אי שלילי ולו תוחלת E[X] אז קיים: X משתנה מקרי אי שלילי ולו תוחלת $P\{|X-E[X]| \geq t\} \leq rac{V[X]}{t^2}$: אז קיים אין אז איז פיים בישב אם X אי שויון צ'בישב אם X אי שויון צ'בישב אם (ה) הוק (החלש של) המספרים הגדולים: כאשר n שואף לאינסוף, ממוצע המדגם שואף לתוחלת המשתנה.

> $(n \ge 30)$ אבול המרכזי: עבור מדגם מקרי פשוט קיים, עבור מספיק גדול (עבור מדגם משפט הגבול המרכזי: . אוי: $V(X) = \sigma^2$ ושונות $E(X) = \mu$ אויי מקרי עם מקרי עם מחלת X אם

$$\overline{X_n} \sim N(\mu, \frac{\sigma^2}{n})$$

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

 $X \sim B(n,p)$ בינומי: עבור X משתנה בינומי: למשתנה בינומי

 $X \sim N(np, npq)$: מתקיים מספיק גדול, כך שnp > 5 וגם מספיק גדול, כך ש

$$P\{X \leq k\} = \Phi\!\!\left(\frac{k+0.5-np}{\sqrt{npq}}\right) \quad ; \qquad P\{X < k\} = \Phi\!\!\left(\frac{k-0.5-np}{\sqrt{npq}}\right) \quad :$$

סטר הנדטי (גיאומטרי):
$$a_n = a \cdot q^{n-1} \qquad ; \qquad \sum_{i=1}^n a_i = a \frac{(1-q^n)}{1-q} \qquad ; \qquad \sum_{i=1}^n a_i = \frac{(a_1+a_n) \cdot n}{2} \\ \sum_{i=1}^n a_i = a \frac{1}{1-q} \qquad \qquad \sum_{i=1}^n a_i = \frac{(1+n) \cdot n}{2} \qquad :$$
 ובפרט כאשר $0 \le q < 1$ אשר $0 \le q < 1$ ובפרט כאשר $0 \le q < 1$ ובפרט כאים ובפרט כאי

Table of Normal Commulative Distribion Function

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998

φ(Z)	0.75	0.8	0.85	0.9	0.95	0.975	0.98	0.99	0.995	0.999
Z	0.674	0.842	1.036	1.282	1.645	1.960	2.054	2.326	2.576	3.090