Q:1

A)
$$f(n) = 4n \log n$$
 $g(n) = n \log n + 5$

$$\lim_{n \to \infty} \frac{4n \log n}{n \log n + 5} = 1 + \infty$$

$$f(n) = O(g(n)) \leftarrow 4 + \infty$$

$$f(n) = \Omega(g(n)) \stackrel{\text{f.}}{=} n = 0, c = \frac{1}{\log n} |f(n)| \ge c |g(n)|$$

$$f(n) = \Theta(g(n)) \leftarrow f(n) = O(g(n)), f(n) = \Omega(g(n))$$

b)

$$f(n) = 2 \log n$$

$$g(n) = (\log n)^{2}$$
Note:
$$f(n) = \omega(g(n))$$

$$Im \frac{2}{\log n} = \omega$$

$$f(n) = \omega(g(n))$$

$$f(n) = \omega(g(n))$$

$$f(n) = \beta(g(n))$$

$$f(n) = \beta(g(n))$$

$$f(n) = 4,000,000^{2000}$$

 $g(n) = Log_{58}(n)$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 < \infty$$
So
$$f(n) = 0(g(n))$$

$$f(n) = 0(g(n))$$

f(n) = 100000 = constant
g(n) =
$$\frac{30}{150} = \frac{30}{5^2} = \frac{30}{150} = \frac{150}{5^2} = \frac{150}{4} = \frac{$$

$$g(n) = \sum_{i=0}^{n} \frac{2\infty}{n} = Constant \rightarrow Harmonic series$$
 $g(n) = \sqrt{n} = Not a constant$

So
$$f(n) = O(g(n))$$
 Constant will always be lower $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \rightarrow f(n) = o(g(n))$

A	В	О	0	Θ	ω	Ω
4n log n	$n \log n + 5$	Yes	20	1/e/s	2	Xes
2 ^{log n}	$(\log n)^2$	No	70	Ź	yes	Yes
4,000,000 ²⁰⁰⁰	$Log_{58}(n)$	Yes	Yes	70	No	No
100,000	$\sum_{i=0}^{\infty} \frac{30}{5^i}$	Yes	20	Yes	70	Xes
$\sum_{i=0}^{n} \frac{200}{n}$	\sqrt{n}	Yes	Yes	No	N ₉	No

Q:2
$$\int_{n=1}^{n} \left(1 - \frac{1}{k^{3}}\right) = 0$$

$$\left(1 + \frac{1}{n}\right)^{n} = e$$

$$\frac{\log(n)}{3^{k}} \frac{n}{3^{k}} \mathcal{E} \Theta(n - n(\frac{1}{3}\log n)) = \Theta(n) \text{ because } \frac{n}{3}\log n < n \text{ for } n > 1$$

$$(n+1)^{n} \to \text{ Dominant } \text{ term } = n^{n}$$

$$0 = \int_{1-\frac{1}{k^3}}^{n} \left(1 - \frac{1}{k^3}\right) < 1 = \left(1 + \frac{1}{n}\right)^n < \ln(n) < \sqrt[3]{n}$$

$$< \sum_{k=1}^{n} \frac{n}{3^k} = \frac{n}{4} < n^3 < n^4 + n + 2 < (n+1) < n^n$$