

Association Rule Mining

Fernando Calderon

Department of Computer Science and Information Engineering Fu Jen Catholic University fhcalderon87@gmail.com

Association Rule Mining

- Basic concept
 - **Given** a set of transactions
 - Find rules that will predict the occurrence of an item
 - Based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer}
{Milk, Bread} \rightarrow {Eggs, Coke}
{Beer, Bread} \rightarrow {Milk}
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

- Itemset: A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example

Market-Basket transactions

TID	Items
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Minimum Support = 0.5

■ Frequent Itemsets:

- {A} (2/4), {B} (3/4), {C} (3/4), {E}(3/4)
- {A,C}(2/4), {B,C}(2/4), {B,E}(3/4), {C,E}(2/4)
- {B,C,E}(2/4)

Definition: Association Rule

Association Rule

- $X \to Y$
 - X and Y are itemsets
- E.g., $\{Milk, Diaper\} \rightarrow \{Beer\}$

■ Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions containing both X and Y
- Confidence (c)
 - How often items in Y contain X

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

{Milk, Diaper} ⇒ Beer

$$s = \frac{\sigma(\text{Milk, Diaper,Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- ■Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Example

Market-Basket transactions

TID	Items
1	A, C, D
2	B, C, E
3	A, B, C, E
4	B, E

Minimum Support = 0.5 Minimum Confidence = 2/3

■ Frequent Itemsets:

■ {A} (2/4), {B} (3/4), {C} (3/4), {E}(3/4), {A,C}(2/4), {B,C}(2/4), {B,E}(3/4), {C,E}(2/4), {B,C,E}(2/4)

■ Rules:

- $\{A\} \rightarrow \{C\} (2/2), \{B\} \rightarrow \{C\} (2/3), \{B\} \rightarrow \{E\} (2/3), \{B\} \rightarrow \{C,E\} (2/3)$
- \blacksquare {C} \to {E} (2/3), {E} \to {C} (2/3), {E} \to {B} (3/3)
- $\{B,C\} \rightarrow \{E\}$ (2/2), $\{B,E\} \rightarrow \{C\}$ (2/3), $\{C,E\} \rightarrow \{B\}$ (2/2)

Mining Association Rules

Observations:

- All the above rules are binary partitions of the same itemset
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements
- ■Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation (Contd.)

- ■Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d!!!

Apriori Principle

- If an itemset is frequent
 - Then all of its subsets must also be frequent
- Apriori principle holds:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle null С Ε В D AC AD ΑE BC BD ΒE CD CE DE Found to be Infrequent ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE) ABCD ABCE ABDE ACDE BCDE Pruned ABCDE supersets

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
(Bread,Beer)	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support Count= 3

Triplets (3-itemsets)

If every	subset	is co	nsid	ered,
C_{1}^{6}	$+C_{2}^{6}$	$+C_2^6$	= 4	1

With support-based pruning,

$$C_1^6 + C_2^4 + 1 = 13$$

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Algorithm

- ■Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate candidate (k+1)-itemsets from frequent k-itemsets
 - Prune candidate k-itemsets that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent

Count Supports of Candidates

- ■Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- ■Possible methods:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table

Generate Hash Tree

- ■Suppose you have 15 candidate itemsets of length 3:
 - {1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
- ■You need:
 - Hash function
 - Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Hash function: h(p)=p mod 3

Redundant Rules

- ■For the same support and confidence, if we have a rule {a,d}=>{c,e,f,g}, we have
 - $= \{a,d\} = > \{c,e,f\}$
 - {a}=>{c,e,f,g}
 - {a,d,c}=>{e,f,g}

Improvement of Apriori Algorithm

- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- ■A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In *VLDB'95*
- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns

DHP(Direct Hashing & Pruning)

- ■J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. In *SIGMOD'95*
- ■Reduce the Number of Candidates
- A *k*-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries: {ab, ad, ae} {bd, be, de} ...
 - Frequent 1-itemset: a, b, d, e
 - ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold

Sampling for Frequent Patterns

- ■H. Toivonen. Sampling large databases for association rules. In *VLDB*'96
- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked
 - Example: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns

Dynamic Itemset Counting

- Reduce Number of Scans
- S. Brin R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In SIGMOD'97
- The counting of $\{x_1, x_2, x_3, ... x_k\}$ only begins, once all length- $\{k-1\}$ subsets of are determined frequent

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- •Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100} + \dots + \binom{1}{1000} = 2^{100} 1 = 1.27*10^{30}!$
- ■Bottleneck: candidate-generation-and-test
- ■Can we avoid candidate generation?

Compact Representation of Frequent Itemsets

Some itemsets are redundant because they have identical support as their supersets

TID	A 1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B3	B 4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

■ Number of frequent itemsets =
$$3 \times \sum_{k=1}^{10} {10 \choose k}$$

■ Need a compact representation

Maximal Frequent Itemset

■ An itemset is maximal frequent if none of its immediate

Closed Itemset

- An itemset is closed if none of its immediate supersets has the same support as the itemset
 - It provides a minimal representation of itemsets without losing their support information

Closed Association Rules

- Association rule on frequent closed itemsets:
- Rule $X \Rightarrow Y$ is an association rule on frequent closed itemsets if
 - (1) both X and $X \cup Y$ are frequent closed itemsets.
 - (2) there does not exist frequent closed itemset Z such that $X \subset Z \subset (X \cup Y)$.
 - (3) the confidence of the rule passes the given min. conf

Maximal vs Closed Itemsets

FP-Growth (Frequent Pattern Growth)

■ J. Han, J. Pei, and Y. Yin: "Mining frequent patterns without candidate generation". In Proc. ACM-SIGMOD'2000, pp. 1-12, Dallas, TX, May 2000.

Motivation

- Mining in main memory to reduce #(DB scans)
- Without candidate generation
- More frequently occurring items will have better chances of sharing item than less frequently occurring items

FP-Growth (Contd)

- ■Divide-and-conquer strategy
- Algorithm
 - Phase 1: Construct FP-Tree (frequent-pattern tree)
 - Phase 2: FP-Growth (frequent pattern growth)
 - Divide FP-tree into conditional FP-tree (conditional DB), each associated with one frequent item
 - Mine each such DB separately

FP-Trees Construction

Step 1: Find frequent 1-item, sorted items in frequency descending order by scanning DB

TID	Items bought
100	{a, c, d, f, g, i, m, p}
200	{a, b, c, f, i, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, c, e, f, l, m, n, p}

 $min_support = 3$

а	3		f	4
b	3		С	4
С	4		а	3
f	4		b	3
m	3	ŕ	m	3
р	3		р	3

FP-Trees Construction (Contd.)

Step 2: Scan DB and construct the FP-tree

f	4
С	4
a	3
b	3
m	3
р	3

Item	Frequency	Head
f	4	
С	4	
а	3	
b	3	
m	3	
р	3	

TID	Items bought	Order
100	{a, c, d, f, g, i, m, p}	{f,c,a,m,p}
200	{a, b, c, f, i, m, o}	{f,c,a,b,m}
300	{b, f, h, j, o}	{f,b}
400	{b, c, k, s, p}	$\{c,b,p\}$
500	{a, c, e, f, l, m, n, p}	{f,c,a,m,p}

b:1 →

p:1

a:3

†b:1

FP-Trees Construction (Contd.)

TID	Items bought	Order
100	{a, c, d, f, g, i, m, p}	{f,c,a,m,p}
200	{a, b, c, f, i, m, o}	{f,c,a,b,m}
300	{b, f, h, j, o}	{f,b}
400	{b, c, k, s, p}	{c,b,p}
500	{a, c, e, f, l, m, n, p}	{f,c,a,m,p}

TID:200 TID:300 TID:100 *c:1 f*:3 *f*:2 *f*:1 *c*:2 *b:1 b:1 c*:2 *b:1 c*:2 *c:1 a*:2 *p:1 a*:2 *a*:2 a:1 *b:1* m:1 *b:1* m:1b:1 m:1m:1 *p:1* m:1*p:1* m:I*p:1 p:1* m:1

TID:400

Another FP-Tree Construction Example

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{A}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Transaction Database

Header table

Item	Pointer
Α	
В	
С	
D	
E	

frequent itemset generation

Frequent Itemset Generation in FP-Growth Algorithm

- FP-growth generates frequent itemsets by
 - Exploring the FP-Tree in a bottom-up fashion

■Find the prefix paths ending in e first

 \blacksquare {e} support count=3 \rightarrow {e} is declared as frequent itemset

■ Solve the suproblems of finding frequent itemsets ending in {de},{ce},{be}, and {ae}

■ Update the support counts along the prefix path

■ Truncate the prefix paths by removing the nodes for "e"

■ Safely remove the infrequent item

- Recursively using the same approach to find frequent itemsets ending in {de},{ce}, and {ae}
- Continually generating conditional FP-Trees for other item

Principles of Frequent Pattern Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B.
 - Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

Why Is FP-Growth the Winner?

■Divide-and-conquer:

- Decompose both the mining task and DB according to the frequent patterns obtained
- Leads to focused search of smaller databases

Other factors

- No candidate generation, no candidate test
- Compressed database: FP-tree structure
- No repeated scan of entire database
- Basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - Many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- ■In the original formulation of association rules, support & confidence are the only measures used
- Interestingness measures can be used to prune/rank the derived patterns

Application of Interestingness Measure

Computing Interestingness Measure

Obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	$ar{Y}$	
X	f ₁₁	f ₁₀	f ₁₊
\bar{X}	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

 f_{11} : support of X and Y f_{01} : support of \overline{X} and Y f_{10} : support of X and \overline{Y} f_{00} : support of \overline{X} and \overline{Y}

Used to define various measures

E.g., support, confidence, lift, Gini, J-measure

Drawback of Confidence

	Coffee	\overline{Coffee}	
Теа	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence: P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒ Although confidence is high, rule is misleading

 $\Rightarrow P(Coffee|\overline{Tea}) = 0.9375$

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - $P(S \land B) = P(S) \times P(B) => Statistical independence$
 - $P(S \land B) > P(S) \times P(B) => Positively correlated$
 - P(S∧B) < P(S) × P(B) => Negatively correlated

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y|X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\varphi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Interest Factor

	Coffee	\overline{Coffee}	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence: P(Coffee|Tea) = 0.75

$$P(Coffee) = 0.9, P(Tea) = 0.2$$

$$\Rightarrow$$
 Interest = $\frac{0.15}{(0.9 \times 0.2)} = 0.83$

< 1, therefore is negatively associated

Different Propose Measures

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{P(A)P(B)(1-P(A))(1-P(B))}$
2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(B))}}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$ $\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$ $\frac{P(A, B)P(\overline{A}, \overline{B})}{2}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{A},B)}{P(A,B)P(\overline{A}B)+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
6	Kappa (κ)	$ \sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)} \qquad \sqrt{\alpha+1} \\ \underline{P(A,B)} + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})} \\ 1 - P(A)P(B) - P(\overline{A})P(\overline{B}) \qquad \qquad$
7	Mutual Information (M)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}$ $\frac{\sum_{i}\sum_{j}P(A_{i})\log P(A_{i},B_{j})\log P(B_{j})}{\min(-\sum_{i}P(A_{i})\log P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
8	J-Measure (J)	$\max\left(P(A,B)\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}), ight.$
		$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
		$-P(B)^2-P(\overline{B})^2$,
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2-P(\overline{A})^2\Big)$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Some measures are good for certain applications, but not for others

Comparing Different Measures

10 examples of contingency tables:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

Rankings of contingency tables using various measures:

						-		-	-		-			_							
#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	\boldsymbol{F}	AV	\boldsymbol{s}	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Properties of A Good Measure

- ■Piatetsky-Shapiro:
 - 3 properties a good measure M must satisfy:
 - \blacksquare M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Property under Variable Permutation

	В	$ar{B}$		A	$ar{A}$
A	р	q	В	р	q
$ar{A}$	r	S	$ar{B}$	r	S

- ■Does M(A,B) = M(B,A)?
- ■Symmetric measures:
 - Support, lift, collective strength, cosine, Jaccard
- Asymmetric measures:
 - Confidence, conviction, Laplace, J-measure

Subjective Interestingness Measure

■Objective measure:

- Rank patterns based on statistics computed from data
- e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).

■Subjective measure:

- Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Interestingness via Unexpectedness

■ Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- **Expected Patterns**
- Unexpected Patterns

■ Need to combine expectation of users with evidence from data (i.e., extracted patterns)

Multiple-Level Association Rules

- Items often form hierarchy
- Items at the lower level are expected to have lower support
- Rules regarding itemsets at appropriate levels could be useful
- Transaction database can be encoded based on dimensions and levels

Mining Multi-Level Associations

- ■A top down, progressive deepening approach:
 - First find high-level strong rules:
 - milk → bread [20%, 60%]
 - Then find their lower-level "weaker" rules:
 - \blacksquare 2% milk \rightarrow wheat bread [6%, 50%]
- Variations at mining multiple-level association rules
 - Level-crossed association rules:
 - 2% milk → wheat bread
 - Association rules with multiple, alternative hierarchies:
 - 2% milk → bread

Uniform Support

Multi-level mining with uniform support: the same minimum

- No need to examine itemsets containing any item whose ancestors do not have minimum support
- - too high ⇒ miss low level associations
 - too low ⇒ generate too many high level associations

Reduced Support

Reduce minimum support at lower levels

- 4 search strategies:
 - Level-by-level independent
 - Level-cross filtering by single item
 - Level-cross filtering by k-itemset
 - Controlled level-cross filtering by single item

Level by Level Independent

- Full breadth search
- No background knowledge of frequent itemsets is used to pruning
- Each node is examined, regardless of whether or not its parent node is found to be frequent.

Level-cross Filtering by Single Item

■ An item at the i-th level is examined iff its parent node at the (i-1)-th level is frequent

Level-cross Filtering by K-itemset

- ■A k-itemset at the i-th level is examined iff its corresponding parent k-itemset at the (i-1)-th level is frequent
 - Prune a k-pattern if the corresponding k-pattern at the upper level is infrequent

Controlled Level-cross Filtering by Single Item

Consider subfrequent items passing a passage threshold

ML Associations with Flexible Support Constraints

- Why flexible support constraints?
 - Real life occurrence frequencies vary greatly
 - Diamond, watch, pens in a shopping basket
 - Uniform support may not be an interesting model
- A flexible model
 - The lower-level, the more dimension combination, and the long pattern length, usually the smaller support
 - Special items and special group of items may be specified individually and have higher priority

Multidimensional Association Rules

- Single dimensional association rule
 - E.g.: buys(bread) ∧ buys(milk) ⇒ buys(butter)
- Multidimensional association rule
 - E.g.: age(34-35) \wedge income(30K-50K) \Rightarrow buys(HDTV)
- Attributes types
 - Categorical
 - Finite number of possible values, no ordering among values
 - Numerical
 - Numeric, implicit ordering among values

Example of Quantitative Association Rules

TID	Age	Married	#Cars
100	23	No	1
200	25	Yes	1
300	29	No	0
400	34	Yes	2
500	38	yes	2

TID	Age:20- 29 (A)	Age:30- 40 (B)	Married: Yes (C)	Married: No (D)	#Cars:0 -1 (E)	#Cars: 2 (F)
100	1	0	0	1	1	0
200	1	0	1	0	1	0
300	1	0	0	1	1	0
400	0	1	1	0	0	1
500	0	1	1	0	0	1

TID	Items
100	A,D,E
200	A,C,E
300	A,D,E
400	B,C,F
500	B,C,F

Rule	Sup.	Conf.
<age:3039>and<married:yes>=><numcars:2></numcars:2></married:yes></age:3039>	40%	100%
<age:2029>=><numcars:01></numcars:01></age:2029>	60%	100%

Discretization Issues

■Size of the discretized intervals affect support & confidence

```
\{ \text{Refund} = \text{No}, (\text{Income} = \$51,250) \} \rightarrow \{ \text{Cheat} = \text{No} \}
\{ \text{Refund} = \text{No}, (60\text{K} \le \text{Income} \le 80\text{K}) \} \rightarrow \{ \text{Cheat} = \text{No} \}
\{ \text{Refund} = \text{No}, (0\text{K} \le \text{Income} \le 1\text{B}) \} \rightarrow \{ \text{Cheat} = \text{No} \}
```

- If intervals too small
 - May not have enough support
- If intervals too large
 - May not have enough confidence
- ■Potential solution: use all possible intervals

Discretization Issues (Contd.)

- Execution time
 - If intervals contain n values, there are on average O(n²) possible ranges

■ Too many rules

{Refund = No, (Income = \$51,250)} \rightarrow {Cheat = No} {Refund = No, (51K \le Income \le 52K)} \rightarrow {Cheat = No} {Refund = No, (50K \le Income \le 60K)} \rightarrow {Cheat = No}

Approach by Srikant & Agrawal

R. Srikant and R. Agrawal, "Mining Quantitative Association Rules in Large Relational Tables". ACM SIGMOD96

- Preprocess the data
 - Discretize attribute using equi-depth partitioning
 - Use partial completeness measure to determine number of partitions
 - Merge adjacent intervals as long as support is less than max-support
- Apply existing association rule mining algorithms
- ■Determine interesting rules in the output

Partial Completeness Measure

■Discretization will lose information

- ■Use partial completeness measure to determine how much information is lost
 - K-Complete to measure the lost

Partial Completeness

- R: rules obtained before partition
- R': rules obtained after partition
- Partial Completeness measures the maximum distance between a rule in R and its closest generalization in R'
- \hat{X} is a generalization of itemset X: if

$$\forall x \in attributes(X)[\langle x, l, u \rangle \in X \land \langle x, l', u' \rangle \in \hat{X} \Rightarrow l' \leq l \leq u \leq u']$$

■The distance is defined by the ratio of support

K-Complete

- *C* : the set of frequent itemsets
- For any K ≥ 1, P is K-complete with regards to C if:
 - $P \subseteq C$
 - For any itemset *X* (or its subset) in *C*, there exists a generalization whose support is no more than *K* times that of *X* (or its subset)
- ■The smaller K is, the less the information lost

K-Complete Example

Number	Itemset	Support	-
1	{ <age: 2030="">}</age:>	5%	1.2times
2	{ <age: 2040="">}</age:>	6%	1.3times
3	{ <age: 2050="">}</age:>	8%	7.0411100
4	{ <cars: 12="">}</cars:>	5%	1.2times
5	{ <cars: 12="">}</cars:>	6%	J 1.2
6	{ <age: 2030="">,<cars: 12="">}</cars:></age:>	4%	1.25times
7	{ <age: 2040="">,<cars: 13="">}</cars:></age:>	5%	

Itemsets 2,3,5, and 7 form a 1.5-complete set

Interestingness Measure

<Age: 20 .. 30> → <Cars: 1..2> (8% sup., 70% conf.) <Age: 20 .. 25> → <Cars: 1..2> (2% sup., 70% conf.)

■ Given an itemset: $Z = \{z_1, z_2, ..., z_k\}$ & its generalization $Z' = \{z_1', z_2', ..., z_k'\}$ P(Z): support of Z

 $E_{Z'}(Z)$: expected support of Z based on Z'

$$E_{Z'}(Z) = \frac{P(z_1)}{P(z_1')} \times \frac{P(z_2)}{P(z_2')} \times \dots \times \frac{P(z_k)}{P(z_k')} \times P(Z')$$

■ Z is R-interesting with regards to Z' if $P(Z) \ge R \times E_{z'}(Z)$

From Association Mining to Correlation Analysis

Strong Rules & Interesting

- \blacksquare Corr(A,B)=P(AUB)/(P(A)P(B))
 - Corr(A, B)=1, A & B are independent
 - Corr(A, B)<1, occurrence of A is negatively correlated with B
 - Corr(A, B)>1, occurrence of A is positively correlated with B
- ■E.g. Corr(games, videos)=0.4/(0.6*0.75)=0.89
 - In fact, games & videos are negatively associated
 - Purchase of one actually decrease the likelihood of purchasing the other

Association Rules with Weighted Items

code	Item	Profit	Weight
A	Apple	100	0.1
В	Orange	300	0.3
С	Banana	400	0.4
D	Milk	800	8.0
E	Coca	900	0.9

TID	Items
100	A, B, D, E
200	A, D, E
300	B, D, E
400	A, B, D, E
500	A, C, E
600	B, D, E
700	B, C, D, E

- Weighted items
- ■Weighted support
- Association rule with minimum weighted support
- ■Given minimum weighted support 0.4
 - \blacksquare => {B,E} ((0.3+0.9)*5/7=0.86)