Parametric matrix models

Morten Hjorth-Jensen

Department of Physics and Center for Computing in Science Education, University of Oslo, Norway

qGap Octover 7, 2025

Quantum control

The three steps of quantum control

- Quantum correlations: Understanding and preparing an initial state
- Quantum dynamics: Controlled evolution towards a desired final state
- Quantum measurements: Measuring and characterizing the final state

Quantum control and this talk

Last week we discussed the so-called Rodeo algorithm as a way to prepare an initial state and/or find the eigenpairs of a system. This week we will look at how to control the time-evolution of a system. In so doing, we will study

- Quantum dynamics: Controlled evolution towards a desired final state
 - The Baker–Campbell–Hausdorff (BCH) formula
 - Combining Exponentials of Non-commuting Operators and the Lie-Trotter formula (Trotterization)
 - Parametric matrix models as a way to compute the Lie-Trotter formula, see https:
 - //www.nature.com/articles/s41467-025-61362-4, Cook, Jammooa, MHJ, Lee and Lee. See also https://journals.aps.org/prxquantum/pdf/10.1103/1nqt-x5xh

Motivation: Non-commuting Exponentials

- In quantum mechanics and Lie theory, we often encounter operators X and Y that do not commute ($[X, Y] \neq 0$). Classic example is kinetic energy K and potential energy V. Just think of the harmonic oscillator.
- We want to find an effective operator Z such that: $e^X e^Y = e^Z$, for X, Y in a Lie algebra . If X and Y commute, then simply Z = X + Y. If not, Z includes additional correction terms.
- BCH Formula: $Z = \log(e^X e^Y)$ is given by an infinite series in X, Y and their commutators. It provides a systematic expansion to combine exponentials of non-commuting operators .
- Use Cases: Combines two small transformations into one.
 Fundamental in connecting Lie group multiplication with Lie algebra addition, time-evolution with split Hamiltonians, etc.

Commutators and Lie Algebra

- The **commutator** of two operators is [X, Y] = XY YX.
- For a Lie algebra (common for operators in quantum mechanics), commutators of algebra elements remain in the algebra.
- The BCH formula asserts Z can be expressed entirely in terms of X, Y, and nested commutators like [X,[X,Y]], [Y,[X,Y]], etc. no other independent products appear .
- Notation: It's useful to denote $\operatorname{ad}_X(Y) := [X, Y]$. Then nested commutators are iterated adjoint actions (e.g. $\operatorname{ad}_X^2(Y) = [X, [X, Y]]$, etc.).
- Here we will assume some familiarity with basic identities such as the Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0, which will simplify nested commutators.

BCH Expansion: First Terms

For $Z = \log(e^X e^Y)$, the expansion begins:

$$Z = X + Y$$
+ $\frac{1}{2}[X, Y]$
+ $\frac{1}{12}([X, [X, Y]] + [Y, [Y, X]])$
- $\frac{1}{24}[Y, [X, [X, Y]]] + \cdots$

 The series alternates between symmetric and antisymmetric nested commutators at higher orders.

BCH Expansion: First Terms, part 2

- All higher-order terms involve nested commutators of X and Y only. No ordinary products without commutators appear (ensuring Z lies in the same Lie algebra).
- The coefficients 1/2, 1/12, 1/24,... are fixed numerical values (involving Bernoulli numbers for higher terms). These were first worked out explicitly by Dynkin (1947) in general.

Series Characteristics

- The BCH series is generally infinite. In most cases, there is no closed-form finite expression for Z in terms of a finite number of terms.
- Each increasing order introduces more deeply nested commutators. For example:
 - 1st order: X + Y
 2nd order: [X, Y]
 - 3rd order: [X, [X, Y]], [Y, [X, Y]]
 - 4th order: [*Y*, [*X*, [*X*, *Y*]]], [*X*, [*Y*, [*Y*, *X*]]], etc.
- The number of independent commutator terms grows rapidly with order. (All such terms up to 6th order are listed in the literature, but it becomes cumbersome beyond a few orders.)
- Fortunately, many practical scenarios require only the first few terms for approximation.
- If X and Y are "small" (e.g. small matrices or small time-step in evolution), the series converges and truncating after a few terms can give a good approximation.

Derivation: to first order)

- **Method:** Compare power series of $e^X e^Y$ and e^Z and solve for Z order-by-order.
- Expand both sides:

$$e^X e^Y = I + X + Y + \frac{1}{2}(X^2 + XY + YX + Y^2) + \frac{1}{6}(X^3 + \cdots) + \cdots$$

$$e^Z = I + Z + \frac{1}{2}Z^2 + \frac{1}{6}Z^3 + \cdots$$

where $Z = X + Y + A_2 + A_3 + \cdots$ (with A_n = terms of order n in X, Y).

• First order: Match linear terms: $Z^{(1)} = X + Y$. So far Z = X + Y.

Derivation: second order

The $e^X e^Y$ expansion has $\frac{1}{2}(XY+YX)$ at order 2. Meanwhile e^Z gives $\frac{1}{2}(X+Y)^2 = \frac{1}{2}(X^2+XY+YX+Y^2)$. The extra X^2 and Y^2 terms match on both sides, but XY+YX vs XY+YX is already present. However, note that XY+YX cannot simplify to 2XY unless XY=YX. The discrepancy appears at this order.

Thus, we postulate *Z* has a second-order correction $A_2 = \frac{1}{2}[X, Y]$ to account for the difference:

$$XY + YX = (X + Y)^2 - X^2 - Y^2 = XY + YX,$$

but including A_2 in Z yields new cross terms when squaring Z:

$$\frac{1}{2}(X+Y+A_2)^2=\frac{1}{2}(X^2+XY+YX+Y^2+[X,Y]).$$

which adds the [X, Y] term we need. We have thus $A_2 = \frac{1}{2}[X, Y]$.

Derivation: third order

Third order: Now include A_2 and match cubic terms. There will be terms involving X^2Y , XY^2 , etc. The mismatch yields terms [X, [X, Y]] and [Y, [X, Y]]. By similar (though more involved) analysis or using the Jacobi identity, one finds

$$A_3 = \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]],$$

which is equivalent to

$$\frac{1}{12}([X,[X,Y]]+[Y,[Y,X]]).$$

This procedure can continue to higher orders (though it becomes increasingly complex).

Special case: scalar multiple

- If [X, Y] = c, I, a scalar multiple of the identity, all higher-order commutators vanish. In this case the BCH series terminates after the second term.
- Then the exact result is:

$$Z=X+Y+\frac{1}{2}[X,Y],$$

and no further corrections are needed.

 This scenario occurs often in quantum mechanics when [X, Y] is a c-number (for example, if X and Y are operators proportional to canonical variables p and q).

Special case: scalar multiple

• **Example:** Position and momentum operators satisfy $[x, p] = i\hbar I$. Thus,

$$e^{\frac{i}{\hbar}ax}\,e^{\frac{i}{\hbar}bp}=\exp\Bigl(\frac{i}{\hbar}(ax+bp)+\frac{i}{2\hbar}ab[x,p]\Bigr)=e^{\frac{i}{\hbar}(ax+bp+\frac{1}{2}ab\,i\hbar)},$$

yielding a phase factor $e^{-iab/2}$ times $e^{\frac{i}{\hbar}(ax+bp)}$. (This is the basis of the Weyl representation in quantum mechanics.)

• Another example: For harmonic oscillator ladder operators $[a, a^{\dagger}] = 1$, the displacement operator factorization $e^{\alpha a}e^{-\alpha^* a^{\dagger}} = e^{-|\alpha|^2/2}e^{-\alpha^* a^{\dagger} + \alpha a}$ follows from BCH truncation.

October 7, 2025

Application: Lie groups and Lie algebras

- The BCH formula formalizes how group multiplication near the identity corresponds to addition in the Lie algebra plus commutator corrections.
- If X and Y are infinitesimal generators (Lie algebra elements), e^X and e^Y are group elements. Their product $e^X e^Y$ can be expressed as e^Z with Z in the Lie algebra, ensuring closure of the group-law in algebra terms.
- This underpins the Lie group—Lie algebra correspondence: the complicated group law (when the group is nonabelian) is captured by a formal power series in the algebra.

Application: Lie groups and Lie algebras, example

- Example: In SO(3) (rotations), let X and Y be two small rotation generators (non-commuting). e^Xe^Y is a rotation whose generator Z is given by BCH. Thus, the axis and angle of the combined rotation can be found by computing Z. (In practice, one can compute up to a certain order if X, Y are small.)
- The BCH formula is used to prove properties like $\operatorname{tr}(\log(e^Xe^Y)) = \operatorname{tr}(X) + \operatorname{tr}(Y)$ (since commutator contributions have zero trace), and other structural results in Lie theory.

Application: quantum time evolution, dynamics part in quantum control

- In quantum mechanics, if the Hamiltonian $H = H_1 + H_2$ (two parts that do not commute, like kinetic and potential energy), the time-evolution operator is $U(t) = e^{-iHt}$. Directly computing $e^{-i(H_1+H_2)t}$ is hard if H_1 and H_2 don't commute.
- Using BCH, we can approximate:

$$e^{-i(H_1+H_2)\Delta t} = \exp\Big(-iH_1\Delta t - iH_2\Delta t - \frac{1}{2}[H_1, H_2](\Delta t)^2 + \cdots\Big),$$

so to first order in Δt ,

$$e^{-i(H_1+H_2)\Delta t} \approx e^{-iH_1\Delta t}e^{-iH_2\Delta t}$$

with an error of order $(\Delta t)^2$ governed by $\frac{-i}{2}[H_1, H_2](\Delta t)^2$.

Application: quantum time evolution, Trotterization

Lie-Trotter Product Formula: By taking n small time steps,

$$\left(e^{-iH_1t/n}e^{-iH_2t/n}\right)^n = e^{-i(H_1+H_2)t+O(t^2/n)} \to e^{-i(H_1+H_2)t} \text{ as } n \to \infty.$$

In practice, even modest n yields a good approximation.

 Higher-order splitting schemes (e.g. Suzuki-Trotter decompositions) use BCH terms cleverly to cancel lower-order errors. For example:

$$e^{-i(H_1+H_2)\Delta t} = e^{-iH_1\Delta t/2}e^{-iH_2\Delta t}e^{-iH_1\Delta t/2} + O((\Delta t)^3),$$

which eliminates the $O((\Delta t)^2)$ error by symmetry. BCH provides the systematic way to analyze these errors (they come from commutators $[H_1, H_2]$, $[H_1, [H_1, H_2]]$, etc.).

• These formulas are widely used to simulate time evolution when H_1 and H_2 represent different parts (e.g. kinetic and potential energy in the quantum Hamiltonian).

Application: Quantum Computing (Hamiltonian Simulation)

- In quantum algorithms, especially for Hamiltonian simulation such as diffusion Monte Carlo, we need to implement $U(t) = e^{-i(H_1 + H_2 + \cdots)t}$ via a sequence of quantum gates.
- The BCH formula underlies the Trotter-Suzuki product formula approach:

$$e^{-i(H_1+H_2)t}\approx \left(e^{-iH_1t/n}e^{-iH_2t/n}\right)^n,$$

which becomes exact as $n \to \infty$. For finite n, one incurs a small error.

• The leading error term is $\sim \frac{t^2}{2n}[H_1, H_2]$ from the BCH expansion. By increasing n (more, smaller time slices), the error can be made arbitrarily small, at the cost of more gates.

◄□▶
◄□▶
4□>
4□>
4□>
4□
5
4□
6
6
6
7
8
9
8

Application: Quantum Computing (Hamiltonian Simulation)

- Quantum computing implementations often use higher-order BCH-based formulas to reduce error. For instance, the second-order formula above, or higher-order Suzuki expansions, include additional exponentials to cancel out commutator errors up to higher orders.
- **Example:** To simulate $H = H_x + H_y + H_z$ (say parts of a Hamiltonian along x, y, z axes), one can use:

$$U(t) \approx \left(e^{-iH_x t/m} e^{-iH_y t/m} e^{-iH_z t/m}\right)^m,$$

and choose m large. BCH tells us the error scales with nested commutators like $[H_x, [H_y, H_z]]$ and so on, often suppressed by $(t/m)^2$ or higher.

 The BCH formula thus provides a quantitative handle on the gate complexity vs. accuracy trade-off in digital quantum simulations (a current research topic).

Symbolic Computation with Sympy

Using Sympy, we can manipulate non-commuting symbols and verify the BCH expansion:

```
from sympy.physics.quantum import Commutator, Operator
from sympy import Rational, expand
X, Y = Operator('X'), Operator('Y')
# BCH series up to third order:
Z = X+Y+Rational(1,2)*Commutator(X, Y)+Rational(1,12)*
print(Z.expand(commutator=True))
```

This code constructs $Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] + [Y, [Y, X]])$ and then expands commutators. The output confirms:

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}([X, [X, Y]] - [B, [A, B]]),$$

which, noting [Y, [Y, X]] = -[Y, [X, Y]], matches the expected formula.

Numerical Vvrification with Numpy

We can also numerically test how including commutator terms improves the approximation. Consider two small 2×2 matrices A and B:

```
import numpy as np
from numpy.linalg import norm
from scipy.linalg import expm # matrix exponential
A = np.array([[0, 0.1], [0, 0]])
B = np.array([[0, 0], [0.1, 0]])
#Compute exponentials:
U = expm(A) @ expm(B)
                             # e^A e^B
U direct = expm(A + B) # e^{A+B}
U_BCH = expm(A + B + 0.5*(A@B - B@A)) # e^{A+B+0.5[A, B+B+0.5]}
print('(e^A e^B - e^{A+B}))', norm(U - U direct))
print('(e^A e^B - e^{A+B+0.5[A,B]} =)', norm(U - U_BCH)
```

Numerical Verification with Numpy

Output: $||e^Ae^B - e^{A+B}|| = 7.07 \times 10^{-3}$, $||e^Ae^B - e^{A+B+0.5[A,B]}|| = 2.38 \times 10^{-4}$. Including the [A,B] term in the exponent dramatically reduces the error (by about one order of magnitude in this example). This illustrates how the BCH correction $\frac{1}{2}[A,B]$ captures the leading non-commutativity error.

More on Quantum Hamiltonian evolution and Trotter-Suzuki

The time evolution operator for a quantum system is $U(t)=e^{-iHt}$ Solving the Schrödinger equation $i,\frac{d}{dt}|\psi(t)\rangle=H|\psi(t)\rangle$. Simulating U(t) is essential in physics and chemistry.

More on Quantum Hamiltonian evolution and Trotter-Suzuki

Many Hamiltonians are a sum of terms, $H = \sum_j H_j$. If all terms commute, time evolution factorizes exactly: e.g. for $H = H_1 + H_2$ with $[H_1, H_2] = 0$, we have

$$e^{-i(H_1+H_2)t}=e^{-iH_1t}e^{-iH_2t}.$$

In general H_i do not commute, so

$$e^{-i(H_1+H_2)t} \neq e^{-iH_1t}e^{-iH_2t}$$
.

We need to approximate the evolution by alternating the non-commuting pieces in small time slices.

October 7, 2025

Trotter Product Formula

The standard Trotter-Suzuki decomposition (first-order splitting)

$$e^{-i(H_1+H_2)t} = \lim_{N\to\infty} \left(e^{-iH_1\frac{t}{N}} e^{-iH_2\frac{t}{N}}\right)^N.$$

In the infinite step limit, it becomes exact (also known as the Lie product formula or Trotter formula). For finite N,

$$(e^{-iH_1t/N}e^{-iH_2t/N})^N$$
,

approximates $e^{-i(H_1+H_2)t}$ with some error. Using a finite N steps is called Trotterization, and the approximation error can be bounded by a desired ϵ .

October 7, 2025

Higher-order Trotter-Suzuki decompositions

By symmetrizing the sequence, we can cancel lower-order errors. For example, a second-order formula uses half-step kicks of H_1 :

$$S_2(\Delta) = e^{-iH_1\Delta/2} e^{-iH_2\Delta} e^{-iH_1\Delta/2},$$

which yields

$$e^{-i(H_1+H_2)\Delta}$$
,

up to $O(\Delta^3)$ error. This symmetric Trotter-Suzuki formula eliminates the $O(\Delta^2)$ term. In general, there are higher even-order formulas (4th, 6th, ...) that achieve errors $O(\Delta^{p+1})$ for any desired order p. These higher-order decompositions (derived recursively by Suzuki) require more instances of the exponential operators (and sometimes negative-time coefficients) to cancel lower-order commutator errors.

First-Order Trotter Expansion (Derivation)

Using the Baker–Campbell–Hausdorff (BCH) formula, one finds:

$$e^A e^B = \exp\left(A + B + \frac{1}{2}[A, B] + \frac{1}{12}[A, [A, B]] - \frac{1}{12}[B, [A, B]] + \cdots\right).$$

For $A = -iH_1\Delta$, ; $B = -iH_2\Delta$:

$$e^{-iH_1\Delta}e^{-iH_2\Delta} = \exp\Big(-i(H_1+H_2)\Delta - \frac{1}{2}[H_1,H_2]\Delta^2 + O(\Delta^3)\Big).$$

Thus, a single Trotter step incurs a local error term $-\frac{1}{2}[H_1, H_2]\Delta^2$. The leading error scales as $O(\Delta^2)$, so after $N=t/\Delta$ steps the total error is $O(t,\Delta)$ (first order in Δ).

October 7, 2025

Second-order Trotter expansion (Insight)

In the symmetric product

$$S_2(\Delta) = e^{-iH_1\Delta/2}e^{-iH_2\Delta}e^{-iH_1\Delta/2},$$

the first-order commutator terms cancel out. Intuitively, the $[H_1, H_2]$ error from the first half-step is negated by the second half-step. The leading error in S_2 involves double commutators like $[H_1, [H_1, H_2]]$ (and $[H_2, [H_1, H_2]]$), which enter at order $O(\Delta^3)$. Thus the second-order scheme has local error $O(\Delta^3)$ (global error $O(\Delta^2)$), a significant improvement over first order.

October 7, 2025

Example: Single-Qubit H = X + Z

Consider a single qubit with Hamiltonian with Pauli X and Z

$$H = \sigma_X + \sigma_Z.$$

Here $[X, Z] = 2iY \neq 0$.

We cannot implement $e^{-i(X+Z)t}$ as one gate, but must Trotterize.

Trotter strategy: alternate short rotations about the X-axis and Z-axis. For small Δt , $e^{-iX\Delta t}$ and $e^{-iZ\Delta t}$ are simpler rotations. Repeating them approximates the full evolution $e^{-i(X+Z)t}$. In this case, $e^{-iX\theta}=R_X(2\theta)$ and $e^{-iZ\theta}=R_Z(2\theta)$, standard single-qubit rotations . Thus each Trotter step can be directly realized as two orthogonal axis rotations on the qubit.

Trotterization in Python (First-Order)

```
import numpy as np
from numpy.linalg import norm
from scipy.linalq import expm
#Define Pauli matrices
X = np.array([[0, 1], [1, 0]])
Z = np.array([[1, 0], [0, -1]])
H = X + Z
t = 1.0
N = 4
dt = t/N
#First-order Trotter approximation
U_{trot} = np.eye(2)
for k in range(N):
    U_{trot} = expm(-1j * X * dt) @ expm(-1j * Z * dt) @
#Exact evolution
                                  U = exact = expm(-1i * H * t)
```

30/1

October 7, 2025

Results: Trotter approximation error

With N = 4 time steps, the first-order Trotter approximation gives

$$|U_{\text{trot}} - U_{\text{exact}}| \approx 2.5 \times 10^{-1}$$
.

Increasing to N=16 steps reduces the error to $\sim 6\times 10^{-2}$. Doubling N roughly halves the error, consistent with O(1/N) convergence (global error $\sim O(t/N)$ for first order).

Results: Trotter Approximation Error to 2nd order

A second-order Trotter scheme yields far smaller error for the same N. For example, at N=4 steps, the symmetric formula gives error $\sim 2.4 \times 10^{-2}$ (about $10 \times$ smaller than first order). This faster convergence (error $\sim O(1/N^2)$) is evident in practice. In general, each $e^{-iH_j\Delta t}$ corresponds to a quantum gate implementing that term. In this 1-qubit example, $e^{-iX\Delta t}$ and $e^{-iZ\Delta t}$ are rotations about X and Z axes. Thus the Trotterized $e^{-i(X+Z)t}$ can be realized as a sequence of short rotations, which becomes exact in the limit of fine steps .

Scaling of Trotter Steps with Accuracy

The number of Trotter steps required grows as a function of the simulation time t and desired accuracy ϵ :

- ① First order: global error $\sim O(t^2/N)$, so to achieve error ϵ one needs $N = O(t^2/\epsilon)$ steps (gate operations).
- ② Second order: global error $\sim O(t^3/N^2)$, so one needs $N = O!((t^3/\epsilon)^{1/2}) = O(t^{3/2}/\sqrt{\epsilon})$ steps for error ϵ .

Higher-order Suzuki formulas further reduce the scaling. In practice, there is a trade-off: higher order means more gates per step. One chooses an order that minimizes total error (Trotter error + hardware errors) for a given quantum hardware .