Доказать, что если f(a) < 0, то уравнение f(x) = 0 имеет один и только один действительный корень в интервале $\left(a, a - \frac{f(a)}{k}\right)$.

1286. Функция f(x) называется возрастающей в точке x_0 , если в некоторой окрестности $|x-x_0| < \delta$ знак приращения функции $\Delta f(x_0) = f(x) - f(x_0)$ совпадает со знаком приращения аргумента $\Delta x_0 = x-x_0$.

Доказать, что если функция f(x) (a < x < b) возрастает в каждой точке некоторого конечного или бесконечного интервала (a, b), то она является возрастающей на этом интервале.

1287. Показать, что функция

$$f(x) = x + x^2 \sin{\frac{2}{x}}$$
, если $x \neq 0$ и $f(0) = 0$,

возрастает в точке x=0, но не является возрастающей ни в каком интервале (— ε , ε), окружающем эту точку, где $\varepsilon > 0$ произвольно мало.

Построить эскиз графика функции.

1288. Доказать теорему: если 1) функции $\varphi(x)$ и $\psi(x)$ *п*-кратно дифференцируемы; 2) $\varphi^{(k)}(x_0) = \psi^{(k)}(x_0)$ ($k=0,1,\ldots,n-1$); 3) $\varphi^{(m)}(x) > \psi^{(n)}(x)$ при $x>x_0$, то имеет место неравенство

$$\varphi(x) > \psi(x)$$
 при $x > x_0$.

1289. Доказать следующие неравенства:

a)
$$e^x > 1+x$$
 при $x \neq 0$;

6)
$$x - \frac{x^2}{2} < \ln(1+x) < x$$
 при $x > 0$;

r)
$$\lg x > x + \frac{x^3}{3}$$
 при $0 < x < \frac{\pi}{2}$;

д)
$$(x^{\alpha} + y^{\alpha})^{1/\alpha} > (x^{\beta} + y^{\beta})^{1/\beta}$$
 при $x > 0$, $y > 0$ и $0 < \alpha < \beta$.

Дать геометрическую иллюстрацию неравенств (a) - r).

1290. Доказать иеравенство

$$\frac{2}{\pi}x < \sin x < x \quad \text{при } 0 < x < \frac{\pi}{2}.$$