Data Science in Sustainable Energy Systems

Ricardo Bessa, rbessa@inesctec.pt

Porto, Portugal

4th March 2020

INSTITUTE FOR SYSTEMS
AND COMPUTER ENGINEERING,
TECHNOLOGY AND SCIENCE

Use Cases for this Talk

Renewable Energy Forecasting

- ☐ Uncertainty forecasting
- □ Collaborative forecasting
- ☐ Data markets

Energy Optimization

Data-driven predictive modelling of energy-intensive processes

kWh

Market Curves Forecasting

Deep learning to forecast electricity market curves

Renewable Energy Forecasting

Renewable Energy Forecasting in a Glance

Short-term power forecasting (from 48hrs to 1 week ahead)

Very short-term power forecasting (~6 hrs ahead)

NWP: Numerical Weather Predictions (e.g. IPMA)

Reference: Bessa, R. J., Möhrlen, C., Fundel, V., Siefert, M., Browell, J., Haglund El Gaidi, S., Kariniotakis, G. (2017). Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry. Energies, 10(9), 1402.

Renewable Energy Forecast Uncertainty

Misleading information to a decision-maker, e.g. interpret the quantiles as a possible temporal evolution in time

Forecasting Framework for Marginal Distributions

Renewable Energy Forecast Uncertainty

Generation of Temporal Trajectories (Uncertainty)

Renewable Energy Forecast Uncertainty

Collaborative Forecasting

Using Geographically Distributed Time Series

Example: matrix format for 2 PV sites

$$[Y_{1,t} \quad Y_{2,t}] = [c_1 \quad c_2] + \begin{bmatrix} B_{1,1}^1 & B_{1,2}^1 & B_{1,1}^2 & B_{1,2}^2 \\ B_{2,1}^1 & B_{2,2}^1 & B_{2,1}^2 & B_{2,2}^2 \end{bmatrix} \cdot \begin{bmatrix} Y_{1,t-1} \\ Y_{2,t-1} \\ Y_{1,t-2} \\ Y_{2,t-2} \end{bmatrix} + [E_{1,t} \quad E_{2,t}]$$

Collaborative Forecasting LASSO Sparse Structure

$$\frac{1}{2}||Y - BZ||_2^2 + \lambda ||B||_1$$

- ☐ Improves forecast accuracy
- Automatic finding of spatial-temporal dependencies

LASSO-VAR Structures	Illustration			
sLV				
rLV				
lLV				
lsLV				
ooLV				
cLV				

Collaborative Forecasting Distributed Learning

Does not guarantee data privacy

→ Algebraic cryptography is one solution

ADMM - alternating direction method of multipliers
Break up large datasets into blocks and carry out
the VAR fitting over each block

Data Market for Renewable Energy Forecasting

- Forecasts Power WF1.t+h
 defines a market price
 - 2. allocates the features according to the market and bid prices

 $\widehat{Power}_{WF1,t} = \widehat{f}_{WF1}$ (data from WF1, allocated data from WF2, allocated data from WF3) $\widehat{Power}_{local\ WF1,t} = \widehat{f}_{WF1}$ (data from WF1)

Error improvement? Yes

How much do WF2/WF3 contribute for this improvement?

Data Market: Results with Nord Pool Data

— Cumulative Data Market Revenue — Cumulative Extra Revenue from Electricity Market — Cumulative Payment

Energy Optimization

Energy Optimization in Wastewater Station

Minimize electrical energy consumption

- ☐ Avoid modelling the wastewater system
- ☐ Use data already available from the SCADA

Reinforcement Learning Framework

Results for Alcântara Wastewater Station

Forecasting Electricity Market Curves

Forecast Electricity Market Curves

Predict residual demand curves

- Day-ahead forecast of residual demand curves
- Exploit the capacity of deep learning in handling frames/images

Deep Learning Forecasting Framework

Wrap-up

Concluding Remarks

Model interpretability (explainability)

Hybridization between data and physical models

Attractive business cases in the energy sector

Paradigm shift towards distributed learning

Keep humans as a core building block @energy sector

Broader adoption by decision-makers and industry

Fast deployment and embedded expert knowledge

De-risk investment in data science and R&D from academia

Reduce big data requirements & New business models

Improved human decisions & reduce stress levels

from knowledge production to science-based innovation

Acknowledgements

- O Ricardo Andrade
- O Carla Gonçalves
- O Jorge Filipe
- O Alex Coronati

Backup Slides

Improving Uncertainty Forecasting with Feature Engineering

Raw weather forecasts dataset: 2704 variables for the wind power plant and 1014 variables for the PV site

Clear case for feature engineering: how much information can be extracted from this raw data?

NWP Grid Description				
	Shortwave flux			
NWP variables	Temperature at 2m			
	Cloud cover at low/mid/high leve			
Number of geographical points	169			
Area coverage	Aprox. 2400 km ²			
Distance between points	Aprox. 4km ²			
NWP grid resolution	4km			

Feature Engineering from Temporal and Spatial Data

Forecast Example

Probabilistic forecasts

- Uncertainty better modeled around the observed values
- Some of the abnormal high uncertainty verified for clear-sky days is removed

Point forecasts

- Some of the over/underestimation situations are resolved
- Improvements on the power peak forecasts for some clear-sky days

Numerical Results: Solar Energy Forecasting

$$Improvement = \left(1 - \frac{metric_{model}}{metric_{base}}\right) \cdot 100\%$$

FEATURES CONSIDERED IN EVERY FORECASTING MODEL

Base Model Inputs			
Chronological	Month		
	Hour		
NWP forecasts for the location of interest (INESC-TEC)	Surface downwelling shortwave flux [W/m ²		
	Temperature at 2m [K]		
	Cloud cover at low levels [0, 1]		
	Cloud cover at medium levels [0, 1]		
	Cloud cover at high levels [0, 1]		
	Cloud cover at low and medium levels [0, 1]		

Domain	ID	Features	
	T1	Lags and leads	
Temporal	T2	σ_{time}^2 and different NWP runs	
	Т	Combination of models T1 and T2 inputs	
	S1	$\sigma_{spatial}$ and $ar{x}_{spatial}$	
Spatial	S2	Principal components	
	S	Combination of models S1 and S2 inputs	
Temporal & Spatial	F	Combination of both domain features	

VAR: Results for a Smart Grid Pilot

RMSE improvement (%) over an autoregressive model

Results for Alcântara Wastewater Station

Predictive approach

("imagining" and acting based on future states)

Energy Savings with Al

Reduce energy consumption by 15 - 30%

Market Curve Forecasting: Results for the Iberian Electricity Market

Model	RMSE	1D Imp.	Hybrid Imp.
Naïve 1	2.91%	40.1%	44.4%
Naïve 2	3.2%	45.5%	49.4%
ANN	2.75%	36.2%	40.1%
PCA + ANN	2.84%	38.7%	43.1%
PCA + GBTR	2,78%	37.4%	41.9%

Model	Frèchet	1D Imp.	Hybrid Imp.
Naïve 1	3.64%	53.7%	54.8%
Naïve 2	4.15%	59.4%	60.3%
ANN	3.92%	56.9%	58%
PCA + ANN	3.53%	52.2%	53.3%
PCA + GBTR	3.22%	47.5%	48.8%