U-Net: A Brief Exploration

Carl Kashuk

Machine Learning Marathon 2025

Informatics Data Scientist, Radiology

 U-Net is a convolutional neural network that was developed for image segmentation, with fewer training images needed, and more precise segmentation

 U-Net is a convolutional neural network that was developed for image segmentation, with fewer training images needed, and more precise segmentation

Convolutional Neural Network:

input layer -> hidden layers -> output layer

Some of the hidden layers are convolutions:

 U-Net is a convolutional neural network that was developed for image segmentation, with fewer training images needed, and more precise segmentation

Convolutional Neural Network:

input layer -> hidden layers -> output layer

Some of the hidden layers are convolutions:

Convolution: functions f, g -> f * g

hows how the shape of one function is

modified by the other --- a filter!

 U-Net is a convolutional neural network that was developed for image segmentation, with fewer training images needed, and more precise segmentation

Convolutional Neural Network:

input layer -> hidden layers -> output layer

Some of the hidden layers are convolutions:

Convolution: functions f, g -> f * g

hows how the shape of one function is

modified by the other --- a filter!

Compares to visual info in the brain!

 U-Net is a convolutional neural network that was developed for image segmentation

Image Segmentation: Finding regions of interest in an image:

 U-Net is a convolutional neural network that was developed for image segmentation

Image Segmentation: Finding regions of interest in an image:

 U-Net is a convolutional neural network that was developed for image segmentation

Image Segmentation: Finding regions of interest in an image:

U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany

ronneber@informatik.uni-freiburg.de,

WWW home page: http://lmb.informatik.uni-freiburg.de/

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Upsampling

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Downsampling

Downsampling

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Upsampling

U-Net Architecture

The architecture is symmetric and has three key parts:

Contracting Path (Encoder):

- Uses small filters (3×3 pixels) to scan the image and find features.
- Apply an activation function called ReLU to add non-linearity help the model to learn better.
- Uses max pooling (2×2 filters) to shrink the image size while keeping important information. This helps the network focus on bigger features.

Bottleneck:

• The middle of the "U" where the most compressed and abstract information is stored. It links the encoder and decoder.

Expansive Path (Decoder):

- Uses upsampling i.e. increasing image size to get back the original image size.
- Combines information from the encoder using "skip connections." These connections help the decoder get spatial details that might have been lost when shrinking the image.
- Uses convolution layers again to clean up and refine the output.

Modifications to U-Net

- nnU-Net easily customizable depending on data
 - TotalSegmentator: finds many anatomical structures in CT and MR images
- swinUNet convolutions replaced by transformers:
 - Transformer is an alternative scheme based on multi-head attention mechanism
 - OSCAR toolkit segments fat and other soft tissue
 - "radsurv" model segments areas of brain tumor from head MR series
- W- and V- nets should be self explanatory by now?

Good recent review of modifications: https://arxiv.org/pdf/2502.06895

Coding U-Net(s)

- Many examples all over the net
- A very good code tutorial exists at:

https://github.com/JianZhongDev/UNetPyTorchTutorial/tree/main