Introduction to H₂O

Jakub Háva jakub@h2o.ai

Thanks for the slides to:

Jo-fai (Joe) Chow

Data Scientist

joe@h2o.ai

@matlabulous

The Amsterdam Pipeline Factory of Data Science, Amsterdam 6th December, 2016

About H₂O.ai

What exactly is H₂O?

Company Overview

Founded	2011 Venture-backed, debuted in 2012
Products	 H2O Open Source In-Memory AI Prediction Engine Sparkling Water Steam
Mission	Operationalize Data Science, and provide a platform for users to build beautiful data products
Team	70 employeesDistributed Systems Engineers doing Machine LearningWorld-class visualization designers
Headquarters	Mountain View, CA

 $\mathbf{H_2O}$.ai

Bring AI To Business Empower Transformation

Financial Services, Insurance and Healthcare as Our Vertical Focus

Community as Our Foundation

Users In Various Verticals Adore H₂O

H20 In Action

www.h2o.ai/customers

Capital One

Capital One uses H2O open source machine learning for various use cases.

MarketShare

H20 predictive analytics helps boost the impact and results of digital marketing.

Kaiser

Kaiser uses H20 machine learning to save lives.

Zurich Insurance

Zurich turned to H2O as a strategic differentiator for commercial insurance.

Progressive

Progressive uses H2O predictive analytics for user-based insurance.

Comcast

Comcast uses H20 to improve customer experience.

Hospital Corporation of America

HCA uses H20 to predict patient outcomes in real-time.

McKesson

McKesson discusses the adoption of artificial intelligence in healthcare.

Macy's

Macy's uses H20 for personalized site recommendations.

Transamerica

Transamerica turns to H2O to develop a product recommendation platform for insurance.

Paypal

Paypal turned to H20 Deep Learning for fraud detection and customer churn.

eBay

eBay chose H20 for open source machine learning.

H₂O.ai Makes A Difference as an Al Platform

H₂O Community Growth

Tremendous Momentum Globally

Large User Circle

• 65,000+ users from ~8,000 companies in 140 countries. Top 5

H₂O Community Support

Please try

Google forum - h2ostream

community.h2o.ai

H₂O for Kaggle Competitions

CIFAR-10 Competition Winners: Interviews with Dr. Ben Graham, Phil Culliton, & Zygmunt Zając

Triskellon | 01.02.2015

"I did really like H2O's deep learning implementation in R, though - the interface was great, the back end extremely easy to understand, and it was scalable and flexible. Definitely a tool I'll be going back to."

READ MORE

Kaggle challenge 2nd place winner Colin Priest

Completed · Knowledge • 161 teams

Denoising Dirty Documents

Mon 1 Jun 2015 - Mon 5 Oct 2015 (3 months ago)

"For my final competition submission I used an ensemble of models, including 3 deep learning models built with R and h2o."

H₂O for Academic Research

http://www.sciencedirect.com/science/article/pii/S0377221716308657

https://arxiv.org/abs/1509.01199

H₂O democratizes artificial intelligence & big data science

Our Open Source Products

100% Open Source. Big Data Science for Everyone!

H₂O.ai Offers Al Open Source Platform

Product Suite to Operationalize Data Science with Visual Intelligence

Visual Intelligence and UX Framework For Data Interpretation and Story Telling on top of Beautiful Data Products

100% Open Source

In-Memory, Distributed
Machine Learning
Algorithms with Speed and
Accuracy

State-of-the-art
Deep Learning on GPUs
with TensorFlow, MXNet or
Caffe with the ease of use
of H2O

H2O Integration with Spark. Best Machine Learning on Spark.

Steam

Operationalize and Streamline Model Building, Training and Deployment Automatically and Elastically

H₂O.ai Offers Al Open Source Platform

Product Suite to Operationalize Data Science with Visual Intelligence

Visual Intelligence and UX Framework For Data Interpretation and Story Telling on top of Beautiful Data Products

100% Open Source

In-Memory, Distributed
Machine Learning
Algorithms with Speed and
Accuracy

State-of-the-art
Deep Learning on GPUs
with TensorFlow, MXNet or
Caffe with the ease of use
of H2O

H2O Integration with Spark. Best Machine Learning on Spark.

Operationalize and
Streamline Model Building,
Training and Deployment
Automatically and
Elastically

H₂O.ai

High Level Architecture

Algorithms Overview

Supervised Learning

Statistical Analysis

- Generalized Linear Models: Binomial, Gaussian, Gamma, Poisson and Tweedie
- Naïve Bayes

Ensembles

Deep Neural Networks

- Distributed Random Forest:
 Classification or regression models
- **Gradient Boosting Machine**: Produces an ensemble of decision trees with increasing refined approximations
- Deep learning: Create multi-layer feed forward neural networks starting with an input layer followed by multiple layers of nonlinear transformations

Unsupervised Learning

Clustering

Dimensionality Reduction

Anomaly Detection

- K-means: Partitions observations into k clusters/groups of the same spatial size. Automatically detect optimal k
- Principal Component Analysis: Linearly transforms correlated variables to independent components
- Generalized Low Rank Models: extend the idea of PCA to handle arbitrary data consisting of numerical, Boolean, categorical, and missing data
- Autoencoders: Find outliers using a nonlinear dimensionality reduction using deep learning

Distributed Algorithms

Algorithms Distributed for Foundation

Parallel Parse into Distributed Rows

Fine Grain Map Reduce Illustration:
Scalable Distributed Histogram Calculation
for GBM

Advantageous Foundation

- Foundation for In-Memory Distributed Algorithm
 Calculation Distributed Data Frames and columnar compression
- All algorithms are distributed in H₂O: GBM, GLM, DRF,
 Deep Learning and more. Fine-grained map-reduce iterations.
- Only enterprise-grade, open-source distributed algorithms in the market

User Benefits

- "Out-of-box" functionalities for all algorithms (NO MORE SCRIPTING) and uniform interface across all languages: R, Python, Java
- Designed for all sizes of data sets, especially large data
- Highly optimized Java code for model exports
- In-house expertise for all algorithms

H₂O Deep Learning in Action

116M rows, 6GB CSV file 800+ predictors (numeric + categorical)

real-time, interactive model inspection in Flow

$H_2O + R$

```
👫 n2o_tris_demo.8 🧃
🌣 🖒 | 🚮 | 🔒 [ ] Source on Save | 🔍 🔑 🕶 [ ] ]
    Build a simple classification model using iris dataset
 5 # Start and connect to a local H2O cluster
 6 library(h2o)
 7 h2o.init(nthreads = -1)
 9 # Import data from a R data frame
10 data(iris)
11 d_iris <- as.h2o(iris)</pre>
12
13 # Define Targets and Features
14 target <- "Species"
15 features <- setdiff(colnames(d_iris), c('Species"))</pre>
16
18 # Train a HZO Model
21 # Train three basic H2O models
y = target,
    26
27 nodel_gbm <- h2o.gbm(x = features,</pre>
    y = target,
    model_id = "iris_gbn",
    training_frame = d_iris)
31
y = target,
                         nodel_id = "iris_deep_learning",
                        training_frame = d_iris)
```

Please try

H₂O Flow (Web)

Ready

Connections 0 H₂O

H₂O Flow

Key Learning Resources

- Help Documentations
 - docs.h2o.ai
- Meetups
 - bit.ly/h2o_meetups
- YouTube Channel
 - bit.ly/h2o_youtube

H₂O.ai Offers Al Open Source Platform

Product Suite to Operationalize Data Science with Visual Intelligence

Visual Intelligence and UX Framework For Data Interpretation and Story Telling on top of Beautiful Data Products

100% Open Source

In-Memory, Distributed
Machine Learning
Algorithms with Speed and
Accuracy

State-of-the-art
Deep Learning on GPUs
with TensorFlow, MXNet or
Caffe with the ease of use
of H2O

H2O Integration with Spark. Best Machine Learning on Spark.

Operationalize and
Streamline Model Building,
Training and Deployment
Automatically and
Elastically

Both TensorFlow and H₂O are widely used

The usage of Hadoop/Big Data tools grew to 39%, up from 29% in 2015 (and 17% in 2014), driven by Apache Spark, MLlib (Spark Machine Learning Library) and H2O.

See also

KDnuggets interview with Spark Creator Matei Zaharia

 KDnuggets interview with Arno Candel, H2O.ai on How to Quick Start Deep Learning with H2O http://www.kdnuggets.com

TensorFlow democratizes the power of deep learning.

H₂O democratizes artificial intelligence & big data science.

There are other open source libraries like MXNet and Caffe too. Let's have a party, this will be fun!

Deep Water Next-Gen Distributed Deep Learning with H₂O

One Interface - GPU Enabled - Significant Performance Gains

Inherits All H₂O Properties in Scalability, Ease of Use and Deployment

H₂O integrates with existing GPU backends for significant performance gains

Convolutional Neural Networks enabling Image, video, speech recognition

Hybrid Neural Network Architectures enabling speech to text translation, image captioning, scene parsing and more

Recurrent Neural Networks enabling natural language processing, sequences, time series, and more

Deep Water Architecture

Same H2O R/Python Interface

```
To build a LeNet image classification model in H2O, simply specify network - "lenet":
model <- h2o.deepwater(x=path, y=response,
                       training frame-df, epochs-50,
                       learning rate=1e-3, network = "lenet")
mode1
Model Details:
_____
H2DMultinomialModel: deepwater
Model ID: DeepWater model R 1477378862430 2
Status of Deep Learning Model: lenet, 1.6 MB, predicting C2, 3-class classification, 14,336 training sampl
es, mini-batch size 32
 input neurons rate momentum
           2352 0.000986 0.990000
H2OMultinomialMetrics: deepwater
** Reported on training data. **
** Metrics reported on full training frame **
Training Set Metrics:
-----
Extract training frame with `hZo.getFrame("cat_dog_mouse.hex_sid_95f8_1")`
MSE: (Extract with 'h2o.mse') 0.131972
RMSE: (Extract with 'h2o.rmse') 0.3520386
Logloss: (Extract with `h2o.logloss`) 0.4176429
```


Available Networks in Deep Water

- <u>LeNet</u> (This Demo)
- AlexNet
- VGGNet
- Inception (GoogLeNet)
- ResNet (Deep Residual Learning)
- Build Your Own

CNN called LeNet by Yann LeCun (1998)

AlexNet (Krizhevsky et al. 2012)

Classical CNN topology - VGCNet (2013)

GoogLeNet

ResNet

Want to try Deep Water?

- Build it
 - github.com/h2oai/deepwater
 - Ubuntu 16.04
 - CUDA 8
 - cuDNN 5
 - •
- Pre-built Amazon Machine Images (AMIs)
 - Info to be confirmed

Python/R Jupyter Notebooks

Check out a sample of cool Deep Learning Jupyter notebooks!

PreRelease Downloads

For the following system dependencies, we provide recent builds for your convenience.

- Ubuntu 16.04 LTS.
- Latest NVIDIA Display driver
- CUDA 8 (latest available) in /usz/local/cuda.
- CUDNN'S (inside of lib and include directories in /usr/local/cuda/)

In the future, we'll have more pre-built jars for more OS/CUDA combinations.

- Required to run Jupyter notebook: H2O Deep Water enabled Python module -- install via pap install <+slav
- To build custom networks: Matching MXNot Python egg -- install via #asy_install <files
- To run from Flow only: H2O Standalone h2o.jar -- launch via java -- jar h2o.jar

If you are interested in running H2O Deep Water on a different infrastructure, see the DIY build instructions below

H₂O's Mission

Making Machine Learning Accessible to Everyone

Photo credit: Virgin Media

