```
%%% Q.5: Is any graph-node's presence in a path steering the path to end with a
specific FP, always?
%%% In other words, are there any graph-nodes that are biased towards a specific
FP?
% See if any path node's presence is directing the path towards a specific FP
FPs = [20, 45, 54]; % All fixed points row vector
% Extract all paths ending in FPs 20, 45, and 54
pathCell20 = {}; % Initialize cell to store all paths ending in FP 20
pathCell45 = {}; % Initialize cell to store all paths ending in FP 45
pathCell54 = {}; % Initialize cell to store all paths ending in FP 54
numStates = 64; % Number of possible initial states
for inAllPaths = 1:numStates % Iterate through each first node
    if inAllPaths ~= 1 % For all first nodes except node 1
        forNode = inAllPaths - 1; % Term in product to reach current node's
paths in all paths cell
        pathCell20{inAllPaths, 1} = allPaths{1, (forNode*64) + 20}; % Extract
current node's paths which end in FP node 20
        pathCell45{inAllPaths, 1} = allPaths{1, (forNode*64) + 45}; % Extract
current node's paths which end in FP node 45
        pathCell54{inAllPaths, 1} = allPaths{1, (forNode*64) + 54}; % Extract
current node's paths which end in FP node 54
    else % For first node = node 1
        pathCell20{1, 1} = allPaths{1, 20}; % Extract paths which end in FP node
20
        pathCell45{1, 1} = allPaths{1, 45}; % Extract paths which end in FP node
45
        pathCell54{1, 1} = allPaths{1, 54}; % Extract paths which end in FP node
54
    end
end
% Get frequency of nodes in paths ending in FPs 20, 45, & 54, respectively
nodeFrequencyWFP20 = zeros(1, 64); % Initialize row vector to store frequency of
all nodes of occuring before FP 20
```

```
nodeFrequencyWFP45 = zeros(1, 64); % Initialize row vector to store frequency of
all nodes of occuring before FP 45
nodeFrequencyWFP54 = zeros(1, 64); % Initialize row vector to store frequency of
all nodes of occuring before FP 54
for inList = 1:length(FPs) % Iterate through all FPs
    if FPs(inList) == 20 % For current FP is 20
        for inPathCell = 1:length(pathCell20) % Iterate through all cells
storing paths ending in FP 20
            if ~isempty(pathCell20{inPathCell}) % For cells that are not empty
                for amongPaths = 1:length(pathCell20{inPathCell}) % Iterate
through all paths within current cell
                    currentPath = pathCell20{inPathCell}(amongPaths); % Extract
current path cell
                    lengthCurrentPath = length(currentPath{1}); % Extract
current path length
                    for inInnerPath = 1:lengthCurrentPath % Iterate through all
nodes in current path
                        nodeInPath = currentPath{1}(inInnerPath); % Extract
current node
                        nodeFrequencyWFP20(nodeInPath) =
nodeFrequencyWFP20(nodeInPath) + 1; % Update frequency of current node in
frequencies vector
                    end
                end
            end
        end
    elseif FPs(inList) == 45 % For current FP is 45
        for inPathCell = 1:length(pathCell45) % Iterate through all cells
storing paths ending in FP 45
            if ~isempty(pathCell45{inPathCell}) % For cells that are not empty
                for amongPaths = 1:length(pathCell45{inPathCell}) % Iterate
through all paths within current cell
                    currentPath = pathCell45{inPathCell}(amongPaths); % Extract
current path cell
```

```
lengthCurrentPath = length(currentPath{1}); % Extract
current path length
                    for inInnerPath = 1:lengthCurrentPath % Iterate through all
nodes in current path
                        nodeInPath = currentPath{1}(inInnerPath); % Extract
current node
                        nodeFrequencyWFP45(nodeInPath) =
nodeFrequencyWFP45(nodeInPath) + 1; % Update frequency of current node in
frequencies vector
                    end
                end
            end
        end
    elseif FPs(inList) == 54 % For current FP is 54
        for inPathCell = 1:length(pathCell54) % Iterate through all cells
storing paths ending in FP 54
            if ~isempty(pathCell54{inPathCell}) % For cells that are not empty
                for amongPaths = 1:length(pathCell54{inPathCell}) % Iterate
through all paths within current cell
                    currentPath = pathCell54{inPathCell}(amongPaths); % Extract
current path cell
                    lengthCurrentPath = length(currentPath{1}); % Extract
current path length
                    for inInnerPath = 1:lengthCurrentPath % Iterate through all
nodes in current path
                        nodeInPath = currentPath{1}(inInnerPath); % Extract
current node
                        nodeFrequencyWFP54(nodeInPath) =
nodeFrequencyWFP54(nodeInPath) + 1; % Update frequency of current node in
frequencies vector
                    end
                end
            end
```

```
end
    end
end
% Create table using frequencies of path ending in respective FPs
Node = indices'; % Column vector of graph-nodes
FP20 = nodeFrequencyWFP20'; % Column vector of graph-nodes corresponding
frequencies for path ending in FP 20
FP45 = nodeFrequencyWFP45'; % Column vector of graph-nodes corresponding
frequencies for path ending in FP 45
FP54 = nodeFrequencyWFP54'; % Column vector of graph-nodes corresponding
frequencies for path ending in FP 54
nodeFrequencyTable = table(Node, FP20, FP45, FP54); % Create table
% Display table
disp('Node and the number of times it ends in FPs 20, 45, & 54, respectively:')
disp(nodeFrequencyTable);
%
% Create matrix containing rows from node frequencies table which are biased
towards a specific FP
biasedNodeMatrix = []; % Initialize matrix
for inNodeFrequencyTable = 1:height(nodeFrequencyTable) % Iterate through each
row in frequencies table
    currentNodeFreqArray = nodeFrequencyTable{inNodeFrequencyTable, 2:end}; %
Extract frequencies of current node appearing in paths ending in FPs 20, 45,
& 54, respectively
    presenceNon0 = currentNodeFreqArray(currentNodeFreqArray ~= 0); % Extract
frequency if it's not 0
    if length(presenceNon0) == 1 % For two out of three frequencies is 0
        biasedNodeMatrix(end + 1, :) =
nodeFrequencyTable{inNodeFrequencyTable, :}; % Add row to matrix
    end
end
% Create table of nodes, their network-states, and the FP they are biased to end
```

biasedNodes = zeros(1, size(biasedNodeMatrix, 1)); % Initialize vector to store

biased nodes

```
store biased node network-states
FPbias = zeros(1, size(biasedNodeMatrix, 1)); % Initialize vector to store FPs
nodes are biased towards
for inBiasedNodeMatrix = 1:size(biasedNodeMatrix, 1) % Iterate through all rows
of frequencies matrix
    frequencyData = biasedNodeMatrix(inBiasedNodeMatrix, :); % Extract
frequencies data for current row
    biasedNodes(inBiasedNodeMatrix) = frequencyData(1); % Store current biased
node
    biasedNodeStates(inBiasedNodeMatrix) =
binaryStatesChar(frequencyData(1), :); % Store current biased node network-state
    for inFreqData = 2:length(frequencyData(:)) % Iterate through frequencies of
biased node-including path ending in FPs
        if frequencyData(inFreqData) ~= 0 % For frequency is greater than 0
            if inFreqData == 2 % For frequency is non-zero for ending in FP 20
                FPbias(inBiasedNodeMatrix) = 20; % Store FP in which path
carrying current biased node ends
            elseif inFreqData == 3 % For frequency is non-zero for ending in FP
45
                FPbias(inBiasedNodeMatrix) = 45; % Store FP in which path
carrying current biased node ends
            elseif inFreqData == 4 % For frequency is non-zero for ending in FP
54
                FPbias(inBiasedNodeMatrix) = 54; % Store FP in which path
carrying current biased node ends
            end
        end
    end
end
biasedNodes = biasedNodes'; % Row vector transpose for table
biasedNodeStates = biasedNodeStates'; % Row vector transpose for table
FPbias = FPbias'; % Row vector transpose for table
```

biasedNodeStates = strings(1, size(biasedNodeMatrix, 1)); % Initialize matrix to

```
biasedNodesTable = table(biasedNodes, biasedNodeStates, FPbias); % Create table
% Display table
disp('All biased nodes and their FB biases:')
disp(biasedNodesTable);
%
% FP 20 is desirable (TGFb node is inactivated); finding biased nodes leading
invariably to FP 20
FP20bias = biasedNodesTable(biasedNodesTable.FPbias == 20, :); % Extract rows
where FPbias is 20
disp('Nodes biased towards FP 20:'); % Display table label
disp(FP20bias); % Display table
disp('Number of nodes biased towards FP 20:'); % Display number of nodes biased
towards FP 20
disp(height(FP20bias));
%
% In other cases, FP 45 is desirable (TGFb node is activated); finding biased
nodes leading invariably to FP 45
FP45bias = biasedNodesTable(biasedNodesTable.FPbias == 45, :); % Extract rows
where FPbias is 45
disp('Nodes biased towards FP 45:'); % Display table label
disp(FP45bias); % Display table
disp('Number of nodes biased towards FP 45:'); % Display number of nodes biased
towards FP 20
disp(height(FP45bias));
```

Output:

Node and the number of times it ends in FPs 20, 45, & 54, respectively:

Node	FP20	FP45	FP54
1	7	6	8
2	2	0	1
3	35	20	25
4	10	0	0
5	0	10	5

6	0	0	5
7	5	2	2
8	2	0	2
9	22	31	35
10	17	28	28
11	22	31	35
12	17	29	30
13	0	40	32
14	0	5	4
15	15	11	11
16	15	11	11
17	3	4	5
18	2	0	1
19	7	0	0
20	309	0	0
21	0	18	9
22	0	0	72
23	5	10	10
24	9	0	18
25	3	8	8
26	2	6	4
27	13	0	0
28	32	0	0
29	0	55	44
30	0	5	4
31	21	17	18
32	21	17	18
33	8	6	8
34	2	0	1
35	40	20	25
36	46	0	0
37	0	64	32

38	0	0	86
39	35	35	30
40	18	0	18
41	12	6	15
42	6	3	8
43	12	4	14
44	6	2	9
45	0	323	0
46	0	21	42
47	0	21	0
48	68	17	51
49	4	4	5
50	2	0	1
51	6	0	0
52	94	0	0
53	0	64	32
54	0	0	379
55	15	60	50
56	9	0	18
57	4	4	6
58	2	2	2
59	14	0	0
60	27	0	0
61	0	107	0
62	0	9	18
63	13	14	13
64	14	14	15

All biased nodes and their FB biases:

biasedNodes	biasedNodeStates	FPbias

4	"000011"	20
6	"000101"	54
19	"010010"	20
20	"010011"	20
22	"010101"	54
27	"011010"	20
28	"011011"	20
36	"100011"	20
38	"100101"	54
45	"101100"	45
47	"101110"	45
51	"110010"	20
52	"110011"	20
54	"110101"	54
59	"111010"	20
60	"111011"	20
61	"111100"	45

Nodes biased towards FP 20:

biasedNodes	biasedNodeStates	FPbias
4	"000011"	20
19	"010010"	20
20	"010011"	20
27	"011010"	20
28	"011011"	20
36	"100011"	20
51	"110010"	20
52	"110011"	20
59	"111010"	20
60	"111011"	20

Number of nodes biased towards FP 20:

10

Nodes biased towards FP 45:

biasedNodes	biasedNodeStates	FPbias
45	"101100"	45
47	"101110"	45
61	"111100"	45

Number of nodes biased towards FP 45:

3