Mahn-Soo Choi (Korea University)

Errata: A Quantum Computation Workbook

September 20, 2022

Contents

1	Postulates of Quantum Mechanics	2
4	Quantum Algorithms	3
5	Quantum Decoherence	4
6	Quantum Error-Correction Codes	6
A	Linear Algebra	7
В	Superoperators	8
\mathbf{C}	Group Theory	9
\mathbf{F}	Solutions	10

Postulates of Quantum Mechanics

Problem 1.10 (a), p. 30 The words "first" and "second" in the statements must be exchanged (p_2 should also be replaced with p_1 to be consistent with the rest subquestions). The correct statement should read as

What is the probability p_0 to find the *second* qubit in $|0\rangle$ (regardless of the *first* qubit)? Similarly, what is the probability p_1 to find the *second* qubit in the state $|1\rangle$?

Quantum Algorithms

Fig. 4.4b, p. 179 "... with respect to ω ..." \rightarrow "... with respect to $|v\rangle$..."

Fig. 4.5a, p. 182 $\theta, \theta/2 \rightarrow 2\theta, \theta$, respectively. Here is the correct figure for Fig. 4.5a:

Section 4.4, p. 161, below Eq. (4.64) "... performing the transformation \hat{U} repeatedly depending on the value y on the native register." \rightarrow "... performing the transformation \hat{U} repeatedly depending on value x on the native register."

Problem 4.1 (a) "Classically (...), ..." \rightarrow "Show that classically (...), ...".

Quantum Decoherence

- Section 5.1 In several places, "Zender" must be corrected to "Zehnder".
- Section 5.1, p. 191, the last line "In the blue arm, photon passes through ..." \rightarrow "In the red arm, photon passes through ...".
- Section 5.1, p. 194, below Eq. (5.6) "Whence the photon detection probabilities ..." \rightarrow "Hence the photon detection probabilities...".
- Fig. 5.4, p. 208, line 3 of the caption "... the success probability is 1/4 ..." \rightarrow "... the success probability is $1/d^2$ for $d = \dim \mathcal{V}$...".
- **Section 5.2, p. 209, line 1** "... a success probability of 1/4 ..." \rightarrow "... a success probability of $1/d^2$ for $d = \dim \mathcal{V}$...".
- Section 5.2, p. 209, line 10 from top "... a success probability of 1/4 ..." \rightarrow "... a success probability of $1/d^2$...".
- Section 5.3, p. 216, line 8 "...probabilities $\mathcal{F}_m(\hat{\rho})$ " must reads as "...probabilities $\text{Tr}\left[\mathcal{F}_m(\hat{\rho})\right]$ ".
- Section 5.4, Eq. (5.99) It should read as

$$\hat{G} = \frac{1}{2} \sum_{\mu > 0} \hat{L}_{\mu}^{\dagger} \hat{L}_{\mu} \,.$$

Section 5.4, Eq. (5.147) It should read as

$$\frac{d\hat{\rho}}{dt} = \cdots.$$

- Section 5.5, the first sentence, p. 234 "..., who close (or different) ..." \rightarrow "..., how close (or different) ...".
- Section 5.5, p. 236, just below Eq. (5.164) "... the canonical norm associate with ..." \rightarrow "... the canonical norm associated with ...".

- Section 5.5, p. 237, just below Eq. (5.177) "... traceless Hermitian operators (a_0) ..." \rightarrow "... traceless Hermitian operators $(a_0 = 0)$...".
- Section 5.5, p. 244, the first line "associate with a POVM ..." \rightarrow "associated with a POVM ...".
- Section 5.5, p. 247, below Eq. (5.209) "... of two vectors normalized vectors ..." \rightarrow "... of two normalized vectors ...".
- Section 5.5, p. 248, below Eq. (5.215) "... to note that $\hat{\rho}$ as two eigenvalues ..." \rightarrow "... to note that $\hat{\rho}$ has two eigenvalues ...".
- Sectoin 5.5, p. 249, Eq. (5.224) It should reads

$$\cdots \geq \left| \left(\left\langle \Psi \right| \otimes \left\langle \epsilon_0 \right| \right) \hat{U} \hat{U}^\dagger \left(\left| \Phi \right\rangle \otimes \left| \epsilon_0 \right\rangle \right) \right| = \cdots.$$

Problem 5.4, p. 252, Eq.(5.234) $\gamma_1 \rightarrow \gamma_{\phi}$

Quantum Error-Correction Codes

Section 6.3, p. 288. Eq. (6.75)

$$\hat{U}(|0\rangle \otimes |\alpha\rangle) = |0\rangle \otimes |\alpha_0\rangle + |1\rangle \otimes \hat{A} |\alpha_1\rangle = \cdots$$

must be changed to

$$\hat{U}(|0\rangle \otimes |\alpha\rangle) = |0\rangle \otimes |\alpha_0\rangle + |1\rangle \otimes \hat{A} |\alpha_0\rangle = \cdots.$$

Section 6.4, p. 298, above Eq. (6.101) "whence" \rightarrow "hence".

Appendix A

Linear Algebra

- **Appendix A.1, p. 350, Definition A.3** "... there exists a solution ..." \rightarrow "... there exists a non-trivial solution ..."
- **Appendix A.1, p. 351, above Eq. (A.5)** "Whence u is orthogonal ..." \rightarrow "Hence u is orthogonal ...".
- Appendix A.4, p. 364, above Eq. (A.55) "Whence, $\hat{A} \geq 0$." \rightarrow "Hence, $\hat{A} \geq 0$."
- Appendix A.4, p. 363, below Eq. (A.59) "... eigenvalues ± 1 " \rightarrow "... eigenvalues $e^{\mp i\phi}$ ".
- Appendix A.6, p. 369, below Eq. (A.79) $N := W \rightarrow N := \dim W$.

Appendix B

Superoperators

Appendix B.1, p. 377, Eq. (B.6) $\hat{S}^x \rightarrow \hat{S}^{\mu}$.

Appendix B.2, below Exercise B.4

- "The following theorem confirms that any supermap ..." to "The following theorem confirms that any completely positive supermap ...".
- "... find a more compact ..." \rightarrow "... find more compact ...".

Appendix B.2, between Eqs. (B.30) and (B.31)

- $\{v_i\} \rightarrow \{|v_i\rangle\}$
- $|w_k\rangle \to \{|w_k\rangle\}$

Appendix B.4, p. 391, just below Eq. (B.53) "we have" \rightarrow "We have".

Appendix B.4, p. 392, Eq. (B.56) $|\Psi\rangle\langle\Psi|$ should be replaced by $|\Phi\rangle\langle\Phi|$.

Appendix B.4, p. 393, the second last line "Whence, transposition ..." \rightarrow "Hence, transposition ...".

Appendix C

Group Theory

Appendix C.1, p. 396, Definition C.1 (c) "... identity element $e \in \mathcal{G}$..." \rightarrow "... identity element $E \in \mathcal{G}$...".

Appendix C.2, p. 399, Theorem C.8 (b) "... $\mathcal G$ an be ..." \to "... $\mathcal G$ can be ...".

Appendix F

Solutions

Problem 6.7, p. 422, the display equation between (F.58) and (F.59) \hat{W} must be replaced with \hat{P}''' , i.e.,

$$\cdots (\hat{Z} \otimes \hat{W}) \cdots \rightarrow \cdots (\hat{Z} \otimes \hat{P}''') \cdots$$