

This lecture

- Approaches to tune system properties
- · Creating diverse libraries
- · Library screening

How do we tune the biochemical properties of a protein? How do we change β , or K?

1. Change expression circuit design

E.g. a gene cascade amplifies (multiplies) β , plasmid copy number

2. Rational engineering of the protein/part itself

e.g. promoter expression strength controlled by the -10 and -35 regions

How do we create variants?

- 1. Point mutations
 - Can be targeted to key spots (e.g. -10 region, catalytic residues of an enzyme).

How would you generate and assemble these mutants?

Can use site-directed mutagenesis to create specific mutations

Will frequently iterate through all possible amino acids → saturation mutagenesis

How many mutants would you need to make to mutate every amino acid position in a given protein (~ 100 aas)?

How do we create variants?

- 2. Random mutagenesis
 - Create untargeted random mutations to quickly iterate through sequence space

Methods

- A. Error-prone PCR (ep PCR)
 - run PCR under more permissive conditions to accumulate
 - Use non-proof reading enzymes (e.g Taq)

 - ↑ MgCl₂ Use MnCl₂ rather than MgCl₂
 - Unbalanced nucleotide concentrations

Each method will bias the library in some way (e.g. A \rightarrow G, rather than A \rightarrow G, C, or T)

The sky is the limit for screening...

Next time:

- Directed evolution journal club
- Sequencing crash course

15