188P tut 1

March 10th 2025

·			
	3.2	[d]	n(n) = Aws (nwo) + Berinluwo)
	bet n(n) be a wahonary roundom provers w ll=0	1.3	A, Bare un correlated, zew mean, s2
	Authory: rack)		77 10000 = 30000000 = 30000000000000000000
	y(n) = a(n) + f(n)		mx(n) = E (Ausnwo) + E (Brinwo)
	my (n), my (k, 1 km)		m.(n)
	E(y(n)) = E(n(n)) + E(f(n))		Tx (K, L) = F [(Acos (Kwo) + Bsin(Kwo)) [Acos (Lwo) + Bsin(A
	P. determindstri		goliu -
	$E[y(n)] = f(n) \rightarrow my(n)$		
		ام	Bernaulli prous
	γy (K, Kz) = F(Y(K)) y(Kz)) = { { [α(K)+}(K)][α(K)+f(K)]}	<u>e</u>	Pr sn(n) 2 1 g ⇒ p
	$F(n(14)n(K_2)) + f(K)f(K_2)$		Pr x n(n) = -13 => 1-p.
			E(n(n)) = p + p - 1 = 2p - 1 constant
	Tn (は, と) + f(ら) f(な)		$(x, y, y) = S F(x^2(k)) k=1$
	216 (17)		$(Y \times LK, L) = \begin{cases} E(n^2(K)) & K=L \\ E(n(K)n(L)) & K \neq L \end{cases}$
	3-14 (v)		
	Determine whether of not random provides 1's WSS		5 p+1-p: 1 K=L 2p-1)(2p-1) K+L genwordated k+L gence 1:1.d.
(.	WSS: first & second order		(2p-1)(2p-1) K + L I grue i.i.d.
1	M(n) is constant for any n . $Y_{XX}(n_1,n_2) = Y_{XX}(n_1+1,n_2+1) = Y_{XX}(n_1-n_2, D)$,
3)	1 X X CM3 (5) - 1 X X CM (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		ny (k, l) wes
<i>(</i> 1)	orln)- A ndhla\- e l-r\		
vi.)	$9U^n$: A $pdf(A) = f_A(x)$ $m_X(n) = ffn(n) = ffA = \rightarrow wontant$		y(n) = n(n) - n(n-1)
	$m_X(n) = E\{n(x)n(x)\} = E\{A \cdot A\} \rightarrow \text{constant}$	(B)	V .
			n(n) is bernauth proces
	wss W		linear shift promient of of n(n).
ಏ	N(n): Acos(nwo) A-> transsian rv ma, 6		[calculate the other way too],
	$m_X(n) = E\{A \cos(n \log)\} = m_A \cos n\omega_0$		P(y(n)) = P(y(n) - y(n-1))
	mot was XX		2(2p-1) => //
	100 t 00 00 XX		$\gamma_{\chi}(k,l) = \mathcal{E}[\hat{n}(k) - n(k-1)][n(l) - n(l-1)]$
[(]	$n(n) = A \cos (n w_b + \phi)$ $\phi \sim V[-\pi, \pi]$		[n(k)n(l)] - [(n(k-1)n(l))
2 3	$m_{x}(n) = F A w (nw_{0} + \phi)^{2}$		= E(n(k-1)) + E(n(k-1))
	A F { LOS (nwo+ φ) }		Cale from before .
	A (601 AW. + 10) db -> 0		
	$\frac{A}{2\pi} \int_{-\pi}^{\pi} (\omega_{1}(h\omega_{1} + \phi)) d\phi \rightarrow 0$		
	$r_{\chi}(k, \ell)$		3 8
	- E) Num (ru + A \ 2hm B., + B \ 4		remember: noise is uncorrelated -
	1 x2 E 3 cos [x-l] wo + cox([x+e] wo +20)?		$n(n) = A \cos (n \omega_0 + \phi) + \omega(n)$
	1 x2 E 3 cos [x-l] wo + cox[x+e] wo + 20)3 2 1 x2 cos [x-l] wo 2 1 x2 cos [x-l] wo		W(n) -> \$0, 6w]
	a h jn g k-l.		find autocorrelation seg when.
	7. 9	a'i	
	wss 🗸		Tx(K, L) = E[(Aws(Kwo+tb) +w[K)](Aws(lwo+tp)+w(l))
			$E \left[A^{2} \cos (K k \omega_{0} + \phi) \cos (k \omega_{0} + \phi) \right] + E \left[k \omega_{K} \right] E \left[i e m \right]$
			$F(\omega(k)) \in \text{term} \rightarrow F(\omega(k) \omega(k))$
			wox(1Kwo+q) wx(lwo+q) 6 x2 + 6 w28(k-1)

Caladation for tutorial Demo		
$n(n) = A sin(wn + \phi)$ $\phi \sim V[-\pi,\pi]$		
$E[nln] = A \int_{-\pi}^{\pi} an[w_{0}n + \phi] d\phi \cdot \frac{1}{2\pi}$ $- [\omega_{0}(w_{0}n + \phi)] - \frac{A}{2\pi}$		
$\frac{O}{Y_{\times}(K,L)} = \left[\int A^{2} K W \left(w_{0} k + \Phi \right) K \ln \left(w_{0} l + \Phi \right) \right]$	1	
$-\frac{A^{2}}{2}E\left[\cos(w_{0}(K+2)+2\phi)-\cos(w_{0}(K-2))\right]$ grom earlier call here		
$\frac{-A^2 \cdot (- \log w_1(k-1))}{a} = \frac{A^2 \log (\omega_2(k-1))}{a}$		
THATS IT "		