Wind-Driven Upwelling/Downwelling over a Periodic Channel Test Case

1 Physical & Computational domains

- The physical domain size is $L_x = 20 \text{ km}$ in the east-west direction and $L_y = 80 \text{ km}$ in the north-south direction.
- The number of grid points for the computational domain is $(n_x, n_y, n_z) = (16, 64, 16)$; the grid resolution in the horizontal is

$$(\Delta x, \Delta y) = (L_x/n_x, L_y/n_y) = (1.25, 1.25) \text{ km}$$

• In the vertical the grid is stretched with a resolution of $1.6~\mathrm{m}$ for the top-most grid box and $46~\mathrm{m}$ for the bottom-most grid box. The vertical grid for at rest (i.e. for a zero free-surface) and for a total depth of $D_{\mathrm{max}} = 150~\mathrm{m}$ is

level	z	Δz
16	0.000	
15	-1.621	1.621
14	-3.263	1.642
13	-4.948	1.685
12	-6.711	1.763
11	-8.598	1.887
10	-10.681	2.083
9	-13.070	2.389
8	-15.935	2.865
7	-19.537	3.602
6	-24.283	4.746
5	-30.799	6.516
4	-40.059	9.26
3	-53.566	13.507
2	-73.655	20.055
1	-103.935	30.28
0	-150.000	46.065

• Bathymetry definition for $x \in [0, L_x]$ and $y \in [0, L_y]$:

$$h(x,y) = \min \{ D_{\max}, 84.5 + 66.526 \tanh(0.00015(f(y) - 0.125L_y)) \}$$

with $D_{\max}=150~\mathrm{m}$ and f(y)=y for $y\leq L_y/2$ and $f(y)=L_y-y+\Delta y$ otherwise.

2 Boundary conditions

East-west periodic

- North-South closed (no-slip or free-slip conditions)
- Linear bottom drag

$$K_m \partial_z \mathbf{u}_h |_{z=-h} = r_D \mathbf{u}_h (z = z_{\text{bot}})$$

with $r_D = 3 \times 10^{-4} \text{ m s}^{-1}$ and $\mathbf{u}_h(z=z_{\text{bot}})$ the velocity in the bottom-most grid box.

• Surface wind-stress

$$K_m \partial_z \mathbf{u}_h|_{z=\eta} = \frac{\boldsymbol{\tau}}{\rho_0}$$

with $\boldsymbol{\tau} = (\tau_x, 0)$ and

$$\tau_x = \begin{cases} -0.1 \sin\left(\frac{\pi}{4}t_{\text{days}}\right), & \text{for } t_{\text{days}} \le 2 \text{ days} \\ -0.1, & \text{for } t_{\text{days}} > 2 \text{ days} \end{cases}$$

with $t_{\rm days}$ the time in days since the beginning of the simulation.

• No surface heat flux

3 Physical & computational parameters

- f-plane approximation: $f(x,y) = -8.26 \times 10^{-5} \text{ s}^{-1}$
- Linear equation of state

$$\rho(x, y, z) = \rho_0 (1 - \beta (T(x, y, z) - T_0))$$

with $\rho_0 = 1027 \text{ kg m}^3$, $\beta = 0.28 \, {}^{0}C^{-1}$, and $T_0 = 14 \, {}^{0}C$.

• Vertical eddy-viscosity (K_m) and eddy-diffusivity (K_s) :

$$K_m = 0.002 + 0.008 \exp\left(\frac{(z-\eta)}{D_{\text{max}}}\right), \qquad K_t = 10^{-6} \text{m}^2 \text{ s}^{-1}$$

- Total integration time: 5 days.
- FYI: for Croco we have a baroclinic time-step of $\Delta t_{3d} = 960$ sec and a barotropic time-step of $\Delta t_{2d} = 20$ sec

4 Initialization

• Initial conditions:

$$u(x, y, z) = v(x, y, z) = 0 \text{ m s}^{-1}, \qquad \eta(x, y) = 0 \text{ m}$$

and for temperature $(z \in [-h, 0])$:

$$T(x, y, z) = T_0 + 4 \tanh\left(\frac{(z - z_0)}{\text{hz}}\right) + \frac{(z - z_1)}{\text{strat}}$$

with $z_0 = -35$ m, hz = 6.5m, $z_1 = -75$ m, and strat = 150 m C⁻¹.