

Today's Agenda

Last time:

- Illustration of sample mean in R
- Variance of a discrete random variable

Today (Lec 21, 06/20):

- More on variance
- Continuous random variables

Recap

■ If X is a discrete rv with pf f, then

$$E(X) = \sum_{x \in X(S)} x \ f(x).$$

is the expected value of X and

$$Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$

is the variance of X.

Recap

■ If X is a discrete rv with pf f, then

$$E(X) = \sum_{x \in X(S)} x \ f(x).$$

is the expected value of X and

$$Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$$

is the variance of X.

• For constants $a, b \in \mathbb{R}$,

$$E(aX + b) = aE(X) + b$$

and

$$Var(aX + b) = a^2 Var(X).$$

The standard deviation is defined by

$$SD(X) = \sqrt{Var(X)}$$

Two important results

Theorem (Variance of linear combination) For any random variable X and $a, b \in \mathbb{R}$,

$$Var(aX + b) = a^2 Var(X).$$

Two important results

Theorem (Variance of linear combination)

For any random variable X and $a, b \in \mathbb{R}$,

$$Var(aX + b) = a^2 Var(X).$$

Theorem

$$Var(X) = 0$$
 if and only if $P(X = E(X)) = 1$.

Proof of Theorem 2

Some formulas

■ If $X \sim Binomial(n, p)$, then

$$E(X) = np$$
, $Var(X) = np(1-p)$.

■ If $X \sim Poi(\lambda)$ for $\lambda > 0$ then

$$E(X) = Var(X) = \lambda.$$

■ If $X \sim hyp(N, r, n)$, then

$$Var(X) = n \frac{r}{N} \left(1 - \frac{r}{N} \right) \left(\frac{N-n}{N-1} \right)$$

■ If $X \sim NegBin(k, p)$, then

$$Var(X) = \frac{k(1-p)}{p^2}.$$

Example

Suppose that X_n is binomial with with parameters n and p_n so that $np_n \to \lambda$ as $n \to \infty$. If $Y \sim Poi(\lambda)$ show that

$$\lim_{n\to\infty} Var(X_n) = Var(Y).$$

Why do we care about the variance?

 The expectation and the variance give a simple summary of the distribution

Why do we care about the variance?

- The expectation and the variance give a simple summary of the distribution
- Other summaries include: (more later)
 - Skewness:

$$E\left(\frac{(X-E(X))}{\sqrt{Var(X)}}\right)^3$$

Kurtosis:

$$\frac{E(X - E(X))^4}{(E(X - E(X))^2)^2}$$

:

Random variables whose mean does not exist

There exist distributions without expectation: Suppose X is a random variable with probability function

$$f_X(x) = \frac{6}{\pi^2} \frac{1}{x^2}, \quad x = 1, 2, ...$$

Then $E(X) = +\infty$ and Var(X) is not defined.

Question

A person plays a game in which a fair coin is tossed until the first tail occurs. The person wins 2^x if x tosses are needed for x = 1, 2, 3, 4, 5, but loses 5256 if x > 5.

- a) Determine the expected winnings.
- b) Determine the variance of the winnings.

Chapter 8: Continuous Random Variables

Recall...

- a random variable is a function $X : S \to \mathbb{R}$.
- If the range X(S) is...
 - ▶ countable or finite, X is called a discrete random variable
 - ▶ an interval $(a, b) \subseteq \mathbb{R}$, X is called a continuous random variable

Cutting a stick of length 2

- Suppose you cut a stick of length 2 at random and denote by X the cutting point.
- Then X can take values in (0, 2).
- What is the probability that the cut *X* is
 - ▶ ... between 0 and 1?
 - ▶ ... between 1 and 2?
 - ▶ ... between 0 and 1/2?
- The cdf $F(x) = P(X \le x)$ is then
- And for any $x \in (0, 2)$,

$$P(X = x) =$$

So it seems that, for a continuous random variable, assigning probabilities to **intervals** is more "natural" than assigning probabilities to specific values.

So it seems that, for a continuous random variable, assigning probabilities to **intervals** is more "natural" than assigning probabilities to specific values.

We shall do exactly that by defining the cumulative distribution function for a continuous random variable.

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$, is a function such that

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$, is a function such that

1. F(x) is defined for all $x \in \mathbb{R}$,

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$, is a function such that

- 1. F(x) is defined for all $x \in \mathbb{R}$,
- 2. F(x) is a non-decreasing function of x for all $x \in \mathbb{R}$,

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$, is a function such that

- 1. F(x) is defined for all $x \in \mathbb{R}$,
- 2. F(x) is a non-decreasing function of x for all $x \in \mathbb{R}$,
- 3. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$,

The cumulative distribution function of a continuous random variable X, $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$, is a function such that

- 1. F(x) is defined for all $x \in \mathbb{R}$,
- 2. F(x) is a non-decreasing function of x for all $x \in \mathbb{R}$,
- 3. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$,
- 4. $P(a < X \le b) = F(b) F(a)$,

Note: P(X = x) = 0 for all $x \in \mathbb{R}$!

Strict inequalities don't matter...

If X is a continuous random variable, then

$$P(a < X \le b) = F(b) - F(a)$$

$$P(a \le X \le b) = P(a < X \le b) + P(X = a) = F(b) - F(a) + 0$$

$$P(a < X < b) = P(a < X \le b) - P(X = b) = F(b) - F(a) - 0$$

$$P(a \le X < b) = P(a < X \le b) + P(X = a) - P(X = b) = F(b) - F(a)$$
so if X is continuous, all these probabilities coincide!

If X was discrete, these 4 probabilities could all be different.

To find that out, let's see how the CDF changes as the value of x changes over a small interval $[x, x + \Delta x]$.

We have

$$P(x \le X \le x + \Delta x) = F(x + \Delta x) - F(x).$$

To find that out, let's see how the CDF changes as the value of x changes over a small interval $[x, x + \Delta x]$.

We have

$$P(x \le X \le x + \Delta x) = F(x + \Delta x) - F(x).$$

To study how CDF changes, we want to look at its rate of change as Δx becomes really small. That is,

To find that out, let's see how the CDF changes as the value of x changes over a small interval $[x, x + \Delta x]$.

We have

$$P(x \le X \le x + \Delta x) = F(x + \Delta x) - F(x).$$

To study how CDF changes, we want to look at its rate of change as Δx becomes really small. That is,

$$\lim_{\Delta x \to 0} \frac{P(x \le X \le x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}.$$

To find that out, let's see how the CDF changes as the value of x changes over a small interval $[x, x + \Delta x]$.

We have

$$P(x \le X \le x + \Delta x) = F(x + \Delta x) - F(x).$$

To study how CDF changes, we want to look at its rate of change as Δx becomes really small. That is,

$$\lim_{\Delta x \to 0} \frac{P(x \le X \le x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}.$$

Looks familiar? That's the derivative!

Definition (Probability density function)

The probability density function (pdf) of a continuous random variable X is the derivative of the cdf

$$f(x) = \frac{d}{dx}F(x),$$

where f(x) is continuous.

Definition (Probability density function)

The probability density function (pdf) of a continuous random variable X is the derivative of the cdf

$$f(x) = \frac{d}{dx}F(x),$$

where f(x) is continuous.

Definition (Support of pdf)

The support of a pdf f(x) is defined as

$$supp(f) = \{x \in \mathbb{R} : f(x) \neq 0\}.$$

Integrals of a pdf f over a domain D may be computed on $D \cap supp(f)$.

Properties of the pdf

Properties of the pdf

a)
$$f(x) \geq 0 \quad \forall x \in \mathbb{R}$$
 b)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$
 c)
$$P(a \leq X \leq b) = \int_{a}^{b} f(x) dx \quad \text{for } a < b \in \mathbb{R}$$

Example

Suppose that X is a continuous random variable with probability density function

$$f(x) = \begin{cases} cx(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

Example

Suppose that X is a continuous random variable with probability density function

$$f(x) = \begin{cases} cx(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

- a) Compute c so that this is a valid pdf
- b) Graph f(x)
- c) Compute $P(X \ge 1/2)$
- d) Compute $P(1/4 \le X \le 3/4)$
- e) Compute P(X = 1/2)