

FRING ORDINE CINEARS

EQUATIONS OF C. THIS PORTO

7.
$$\partial_{\xi} u + \partial_{\chi} u = 0$$
 $\Omega = \mathbb{R}$
 $(x, \xi) \rightarrow (x, \eta)$
 $(x, \xi) \rightarrow (x, \eta)$
 $(x, \xi) \rightarrow (x, \eta)$
 $(x, \xi) = x + \xi$
 $(x, \xi) =$

$$\begin{array}{c} (C_{t}+U_{x}-\omega) \rightarrow V_{\xi} = 0 \\ a(t,x) u_{t} + b(t,x) u_{x} + c(xt) u = g(t,x) \\ (f,x) \rightarrow (f,\eta) \\ | (f,x) \rightarrow (f,\eta) \\ | \frac{\partial(f,\eta)}{\partial(f,x)}| = |f+f_{x}| = f_{t}/x - f_{x}/t \neq 0 \\ | u_{t} = V_{\xi} f_{t} + V_{\eta} \eta_{t} ; u_{x} = V_{\xi} f_{x} + V_{\eta} \eta_{x} \\ | u_{t} = V_{\xi} f_{t} + V_{\eta} \eta_{t} ; u_{x} = V_{\xi} f_{x} + V_{\eta} \eta_{x} \\ | + c(t,x) \cdot V = g(t,x) \\ | a(t,x) V_{\eta} \eta_{t} + b(bx) V_{\eta} \eta_{x} = 0 \\ | V_{\eta} (u_{t} + b f_{x}) + c(v_{t} + u_{t}) \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(bx) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{t} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} = 0 \\ | + c(t,x) \cdot V_{\eta} \eta_{x} + b(t,x) V_{\eta} \eta_{x} +$$

$$\begin{cases} x = \frac{1}{x^{2}+\xi^{2}} \\ (x = \frac{1}{x^{2}+\xi^{2}}) \\ (x = \frac{1}{x^{2}+$$

• FQUA FIONE DER CAGNE

$$U_t - c_{0xx} = 0 \qquad C > 0$$

$$\Delta = 0 + 0 = 0 \qquad \Rightarrow PANABOLICA$$
• POLSSON = $-c_0 > 0 = 0$
• POLSSON = $-c_0 > 0 = 0 = 0$
• PALACHANO
$$\Delta = 0 - 4c^2 = -4c^2 \neq 0 \Rightarrow 0 = 0 = 0$$
• TRICON I

• TRI

$$+ (u_{xy})_{x} + u_{xx}(x)_{x} + \dots + e^{2n \log n \log n \log n}$$

$$= u_{xy}(x_{x}) + 2u_{xx}((x_{x})_{x}) + u_{xx}x_{x}^{2}$$

$$u_{xy} = x_{x} v_{xx} + (x_{x}) + x_{x}^{2} u_{xx} + x_{x}^{2} u_{xx}^{2}$$

$$v_{yy} = y^{2} v_{xx}^{2} + (x_{x}) + x_{x}^{2} u_{xx}^{2} + x_{x}^{2} u_$$

$$-44Bp \times y - 960 \times 8P8 - 4D6 \times y 5^{2}$$

$$-44Cp y^{2} - 8BCp8y^{2} - 465 y^{2}$$

$$-5Cipg 25 Correct 1 - 70$$

$$= (B^{2} - 44C)(x8 - P8)^{2}$$

$$\Delta det(x(2)) = (7x5y - 7y5x) \times 0$$

$$\Delta > 0 - 21 > 0$$

$$\Delta = 0 \rightarrow \Delta = 0$$

$$= \int_{0}^{5} f(w) dw = f(s) + G(s)$$

$$d = f(s) +$$

PROBLEM OF CALCETY

PROBLEM U: STOR STEPP STICHE

POST U: STOR STEPP STICHE

$$A = A(x)$$
 $A = A(x)$
 $A = A(x)$

$$\begin{cases} v_{(+)}v_{(x)} = 0 & \forall (x,t) \in \mathbb{R}^{L} \\ u_{(0,x)} = \sin(x) & \forall x \in \mathbb{R} \\ S = f(t,x) \text{ if } t = 0 \end{cases}$$

$$u(t,x) = R(x-t) & u_{(0,x)} = f(x) = \sin(x) \\ = \sin(x-t) & u_{(0,x)} = f(x) = \sin(x) \\ = \sin(x-t) & \forall t \in \mathbb{R} \end{cases}$$

$$= \sin(x-t) & \forall t \in \mathbb{R}$$

$$= \sin(x-t) & \Rightarrow \text{ if } t = -1 \text{ if } t = -1$$

