3. Stetigkeit, Zusammenhang, Gebiete

In diesem Paragraphen seien $D, E \subseteq \mathbb{C}, D \neq \emptyset \neq E$ und $f: D \to \mathbb{C}$ eine Funktion. Die Funktionen Re f, Im f, $|f|:D\to\mathbb{R}$ sind definiert durch:

$$(\text{Re } f)(z) := \text{Re } f(z), (\text{Im } f)(z) := \text{Im } f(z), |f|(z) := |f(z)|.$$

Definition

Sei z_0 ein HP von D und $a \in \mathbb{C}$.

 $\lim_{z\to z_0} f(z) = a : \iff \forall \varepsilon > 0 \exists \delta > 0 : |f(z) - a| < \varepsilon \ \forall z \in U_{\delta}(z_0) \cap D$

In diesem Fall schreibt man $f(z) \to a \ (z \to z_0)$

 $\lim_{z\to z_0} f(z)$ existiert : $\iff \exists a\in\mathbb{C}: \lim_{z\to z_0} f(z)=a$. Es gelten die üblichen Rechenregeln.

Definition

- (1) Sei $z_0 \in D$. f heißt stetig in $z_0 : \iff \forall \varepsilon > 0 \exists \delta > 0 : |f(z) f(z_0)| < \varepsilon \ \forall z \in \dot{U}_{\delta}(z_0) \cap D$
- (2) f heißt stetig auf D: \iff f ist in jedem $z \in D$ stetig. In diesem Fall schreiben wir $f \in C(D)$.

Beispiel

- (1) $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ $(a_0, ..., a_n \in \mathbb{C})$. Klar: $p \in C(\mathbb{C})$ (Linearkombination stetiger
- (2) $f(z) = \begin{cases} \frac{\text{Re } z}{z} & \text{, falls } z \neq 0 \\ 0 & \text{, falls } z = 0. \end{cases}$

Klar: $f \in C(\mathbb{C}\setminus\{0\})$. Für $z \in \mathbb{R}\setminus\{0\}$ ist $f(z) = 1 \not\to f(0) = 0$ $(z \to 0)$. f ist in $z_0 = 0$ nicht stetig.

(3)
$$f(z) = \begin{cases} \frac{(\text{Re } z)^2}{z} & , \text{falls } z \neq 0 \\ 0 & , \text{falls } z = 0. \end{cases}$$

 $\begin{aligned} (3) \ \ f(z) &= \begin{cases} \frac{(\operatorname{Re} z)^2}{z} &, \text{falls } z \neq 0 \\ 0 &, \text{falls } z = 0. \end{cases} \\ \text{Für } z &\neq 0 : |f(z)| = \frac{|\operatorname{Re} z|^2}{|z|} \leq \frac{|z|^2}{|z|} \leq |z| \Rightarrow f \text{ ist in } z_0 = 0 \text{ stetig. Insgesamt: } f \in C(\mathbb{C}). \end{aligned}$

Beispiel

 $D = \mathbb{C}\setminus\{0\}$; für $z = |z|(\cos\varphi + i\sin\varphi) \in D$ mit $\varphi \in (-\pi, \pi]$ sei $f(z) := \varphi = Arg\ z$. Behauptung: Ist $z_0 \in \mathbb{R}$ und $z_0 < 0 \Rightarrow f$ ist in z_0 nicht stetig. Denn:

Sei
$$z_n := |z_0|(\cos(\pi - \frac{1}{n}) + i\sin(\pi - \frac{1}{n})), w_n := |z_0|(\cos(-\pi + \frac{1}{n}) + i\sin(-\pi + \frac{1}{n})) \Rightarrow z_n \to -|z_0| = z_0, w_n \to -|z_0| = z_0 \text{ und } f(z_n) = Arg \ z_n = \pi - \frac{1}{n} \to \pi, f(w_n) = Arg \ w_n = -\pi + \frac{1}{n} \to -\pi$$

Wie im \mathbb{R}^n beweist man die folgenden Sätze 3.1,3.2 und 3.3

Satz 3.1

Sei $z_0 \in D$.

(1) f ist stetig in $z_0 \Leftrightarrow \text{Re} f$ und Im f sind stetig in $z_0 \Leftrightarrow \text{für jede Folge } (z_n)$ in D mit $z_n \to z_0 : f(z_n) \to f(z_0).$

- (2) Ist z_0 ein HP von D, so gilt: f ist in z_0 stetig $\Leftrightarrow \lim_{z\to z_0} f(z) = f(z_0)$
- (3) Sei $g: D \to \mathbb{C}$ eine weitere Funktion und f und g seien stetig in z_0 . Dann sind f+g, fg, |f| stetig in z_0 ; ist $f(z) \neq 0 \,\forall z \in D \Rightarrow \frac{1}{f}$ ist stetig in z_0 .

Satz 3.2

Sei $\emptyset \neq E \subseteq \mathbb{C}, g : E \to \mathbb{C}$ eine Funktion und $f(D) \subseteq E$. Ist f stetig in z_0 und g stetig in $f(z_0)$, so ist $g \circ f : D \to \mathbb{C}$ stetig in z_0 .

Satz 3.3

D sei **kompakt** und $f \in C(D)$

- (1) f(D) ist kompakt
- (2) $\exists \max |f|(D), \exists \min |f|(D)$

Definition

Sei $[a,b] \subseteq \mathbb{R}$ (a < b). Eine stetige Funktion $\gamma : [a,b] \to \mathbb{C}$ heißt ein **Weg** (in \mathbb{C}). $\gamma(a)$ heißt **Anfangspunkt** von γ , $\gamma(b)$ heißt **Endpunkt** von γ . $\gamma([a,b])$ heißt der **Träger** von γ . 3.3 $\Rightarrow \gamma([a,b])$ ist kompakt. ("**Rektifizierbarkeit**" und "**Länge**"von γ : siehe Analysis II)

Beispiele:

- (1) Seien $z_0, z_1 \in \mathbb{C}$; $\gamma(t) := z_0 + t(z_1 z_0), t \in [0, 1].$ $S[z_0, z_1] := \gamma([0, 1])$ heißt die **Verbindungsstrecke** von z_0 und z_1 .
- (2) Sei $z_0 \in \mathbb{C}$, r > 0; $\gamma(t) := z_0 + r(\cos t + i\sin t)$, $t \in [0, 2\pi]$. $\gamma(0) = z_0 + r = \gamma(2\pi)$, $\gamma([0, 2\pi]) = \partial \overline{U_r(z_0)}$

Für den Rest des §en sei $\emptyset \neq M \subseteq \mathbb{C}$

Definition

M heißt **konvex** : \Leftrightarrow aus $z_0, z_1 \in M$ folgt stets: $S[z_0, z_1] \subseteq M$.

Definition

- (1) Eine Funktion $\varphi: M \to \mathbb{C}$ heißt auf M lokalkonstant : $\Leftrightarrow \forall a \in M \exists \delta = \delta(a) > 0 : \varphi$ ist auf $U_{\delta}(a) \cap M$ konstant. Beachte: i.d.Fall: $\varphi \in C(M)$.
- (2) M heißt **zusammenhängend** (zsh) : \Leftrightarrow jede auf M lokalkonstante Funktion ist auf M konstant.
- (3) M heißt **wegzusammenhängend** (wegzsh) : \Leftrightarrow zu je zwei Punkten $z, w \in M$ existiert ein Weg $\gamma[a,b] \to \mathbb{C} : \gamma([a,b]) \subseteq M, \gamma(a) = z$ und $\gamma(b) = w$.

(4) M heißt ein **Gebiet** : $\Leftrightarrow M$ ist offen und wegzsh.

Bemerkung:

- (1) Mengen die offen und konvex sind, sind Gebiete.
- (2) wegzsh \Rightarrow zsh (" \Leftarrow " ist i.a. falsch)

Satz 3.4

M sei offen, dann sind äquivalent:

- (1) M ist ein Gebiet
- (2) M ist wegzsh
- (3) M ist zsh
- (4) Aus $M = A \cup B$, $A \cap B = \emptyset$, A, B offen folgt stets: $A = \emptyset$ oder $B = \emptyset$.

Beweis

- $(1) \Leftrightarrow (2)$: klar, $(2) \Leftrightarrow (3)$: ohne Beweis.
- $(3) \Rightarrow (4) \text{: Sei } M = A \cup B, A \cap B = \emptyset, A, B \text{ offen. Annahme: } A \neq \emptyset \text{ und } B \neq \emptyset. \text{ Definiere } \varphi : M \to \mathbb{C} \text{ durch } \varphi(z) := \begin{cases} 1, z \in A \\ 0, z \in B \end{cases}.$

Sei $z_0 \in M$. 1. Fall (2. Fall): $z_0 \in A(B), A(B)$ offen $\Rightarrow \exists \delta > 0 : U_{\delta}(z_0) \subseteq A(B) \Rightarrow \varphi$ ist auf $U_{\delta}(z_0)$ konstant. φ ist also auf M lokalkonstant. Vor $\Rightarrow \varphi$ ist auf M konstant $\Rightarrow 1 = 0$, Wid! (4) \Rightarrow (3): Sei $\varphi : M \to \mathbb{C}$ lokalkonstant. Annahme: φ ist nicht konstant auf M. $\exists z_0, w_0 \in M$: $\varphi(z_0) \neq \varphi(w_0).A := \{z \in M : \varphi(z) = \varphi(z_0)\}; z_0 \in A$, also $A \neq \emptyset.B := M \setminus A, w_0 \in B$, also $B \neq \emptyset$. Klar: $M = A \cup B, A \cap B = \emptyset$.

Sei $z_1 \in A.\varphi$ ist lokalkonstant $\Rightarrow \exists \delta > 0 : U_\delta(z_1) \subseteq M$ und φ ist auf $U_\delta(z_1)$ konstant. Sei $z \in U_\delta(z_1).\varphi(z) = \varphi(z_1) \stackrel{z_1 \in A}{=} \varphi(z_0) \Rightarrow z \in A$. Also: $U_\delta(z_1) \subseteq A.A$ ist also offen. Ähnlich: B ist offen. Fazit: $M = A \cup B$, $A \cap B = \emptyset$, A, B offen, $A \neq \emptyset$, $B \neq \emptyset$. Wid zur Vor.

Folgerung 3.5

Sei $A \subseteq \mathbb{C}$, A sei offen und abgeschlossen. Dann: $A = \emptyset$ oder $A = \mathbb{C}$.

Beweis

 $B:=\mathbb{C}\backslash A$; dann A,B offen, $A\cap B=\emptyset$ und $\mathbb{C}=A\cup B.\mathbb{C}$ ist ein Gebiet $\overset{3.4}{\Rightarrow}A=\emptyset$ oder $B=\emptyset\Rightarrow A=\emptyset$ oder $A=\mathbb{C}$.

Satz 3.6

Sei M zsh und $g \in C(M)$. Dann ist g(M) zsh.

Beweis

Sei $\varphi: g(M) \to \mathbb{C}$ auf g(M) lokalkonstant. Zu zeigen: φ ist auf g(M) konstant. $\psi:=\varphi \circ g: M \to \mathbb{C}$. Sei $z_0 \in M \Rightarrow g(z_0) \in g(M) \Rightarrow \exists \varepsilon > 0$ und $c \in \mathbb{C}: (*) \varphi(w) = c \ \forall w \in U_{\varepsilon}(g(z_0)) \cap g(M).g$

stetig in $z_0 \Rightarrow \exists \delta > 0$: $|g(z) - g(z_0)| < \varepsilon \ \forall z \in U_\delta(z_0) \cap M$. Sei $z \in U_\delta(z_0) \cap M$. Dann: $g(z) \in U_\varepsilon(g(z_0)) \cap g(M) \stackrel{(*)}{\Rightarrow} \varphi(g(z)) = c \Rightarrow \psi(z) = c$. Also ist ψ auf M lokalkonstant. M zsh $\Rightarrow \psi(z) = c \ \forall z \in M$. Sei $w \in g(M) \Rightarrow \exists z \in M : w = g(z) \Rightarrow \varphi(w) = \varphi(g(z)) = \psi(z) = c$. φ ist also auf g(M) konstant.

Beispiele:

- (1) $[a,b] \subseteq \mathbb{R}$ ist zsh.
- (2) Ist $\gamma : [a, b] \to \mathbb{C}$ ein Weg, so ist $\gamma([a, b])$ zsh.

Beweis

- (2) folgt aus (1) und 3.6
- (1) Sei $\varphi: [a,b] \to \mathbb{C}$ lokalkonstant. Also: $\forall t \in [a,b] \exists \delta(t) > 0 : \varphi$ ist auf $U_{\delta(t)}(t) \cap [a,b]$ konstant. $[a,b] \subseteq \bigcup_{t \in [a,b]} U_{\delta(t)}(t) \stackrel{2.3}{\Rightarrow} \exists t_1, \ldots, t_n \in [a,b] : [a,b] \subseteq \bigcup_{j=1}^n U_{\delta(t_j)}(t_j) . \exists c_1, \ldots, c_n \in \mathbb{C} : \varphi(t) = c_j \, \forall t \in U_{\delta(t_j)}(t_j) \cap [a,b] \Rightarrow \varphi([a,b]) = \{c_1,\ldots,c_n\}. \text{ O.B.d.A: } c_1,\ldots,c_n \in \mathbb{R}. \text{ Annahme: } c_1 \neq c_2 \text{ etwa } c_1 < c_2. \varphi \in C[a,b]. \text{ ZWS} \Rightarrow [c_1,c_2] \subseteq \varphi([a,b]) \text{ Wid! Also: } c_1 = c_2. \text{ Analog: } c_2 = c_3 = \cdots = c_n. \varphi \text{ ist also konstant.}$