CS544: Named Entity Discrimination

March 30, 2010

Zornitsa Kozareva USC/ISI Marina del Rey, CA kozareva@isi.edu www.isi.edu/~kozareva

NE Recognition vs. NE Discrimination

- NE Recognition = detection & classification of entity mentiones into a predefined set of categories.
 - ⇒ achieves only a partial disambiguation of names
- NE Discrimination = finding the actual entity denoted by a particula name occurrence in text.

? ?

Problem Formulation

 A text snippet is a small fragment of text that contains from one to three sentences

• Input:

 N text snippets that mention a particular proper name (it can be person, organization or location)

• Output:

 K clusters, where each cluster has text snippets that are similar to each other and different from the snippets in the rest of the clusters

4

Input

- Dr. Jerry R. Hobbs (born 25 January 1942) is a prominent researcher in the fields of computational linguistics, discourse analysis, and artificial
- **Jerry Hobbs** is the rage-filled, domestic-abusing career criminal who killed his 8-year-old daughter and her 9-year-old friend, with scarcely ...
- Jerry Hobbs, Author. A fifth generation farmer, Wayne Cryts finished harvesting his crop in the fall of 1980 and hauled more than 32000 bushels of soybeans ...
- Jerry Hobbs, who is accused of killing his 8-year-old daughter and her best ...
 On Wednesday, a judge denied bail for Jerry Hobbs, 34, ...
- Fugitives | Jerry Hobbs Brief Father Denied Bail Awaits Trial For Children s Murders Jerry Branton Hobbs accused of the stabbing deaths ...
- Jerry R. Hobbs. Address: USC/ISI 4676 Admiralty Way ... Jerry R. Hobbs hobbs@isi.edu. USC/ISI, 4676 Admiralty Way, Marina del Rey, CA 90292

Output

Cluster 1:

- Dr. Jerry R. Hobbs (born 25 January 1942) is a prominent researcher in the fields of computational linguistics, discourse analysis, and artificial
- Jerry R. Hobbs. Address: USC/ISI 4676 Admiralty Way ... Jerry R. Hobbs hobbs@isi.edu. USC/ISI, 4676 Admiralty Way, Marina del Rey, CA 90292

Cluster 2:

- Jerry Hobbs is the rage-filled, domestic-abusing career criminal who killed his 8-year-old daughter and her 9-year-old friend, with scarcely ...
- Jerry Hobbs, who is accused of killing his 8-year-old daughter and her best ...
 On Wednesday, a judge denied bail for Jerry Hobbs, 34, ...
- Fugitives | Jerry Hobbs Brief Father Denied Bail Awaits Trial For Children s Murders Jerry Branton Hobbs accused of the stabbing deaths ...

Cluster 3:

 Fugitives | Jerry Hobbs - Brief - Father Denied Bail Awaits Trial For Children s Murders Jerry Branton Hobbs accused of the stabbing deaths ...

6

Disambiguation vs. Discrimination

Disambiguation - the total number of senses is known - the meaning of each sense is known - the order is based on the frequency bank meaning 1: the slope beside a body of water meaning 2: depository financial institution ...

- the total number of senses is <u>unknown</u> - the meaning of each sense is <u>unknown</u> - no specific mapping of cluster& sense bank group 1 group 3

On the Web ...

- Nobody knows how many senses (meanings) are there for a given person name
- It is impossible to estimate and trace the most frequent sense
 - the task is time consuming and tedious for humans
 - new Web pages constantly appear
 - old Web pages might be deleted over time

8

Importance of NE Discrimination

- Queries about NEs constitute significant portion of Web queries:
 - 11-17% contain person name*
 - 4% are about a person name*
- Ideally, search results should be clustered such that each cluster corresponds to the same individual
 - faster fact extraction
 - more accurate information retrieval

* study by Javier Artiles, 2009

Text Snippet Representation

- The context of each snippet is represented by a vector with k dimensions
- Each dimension indicates whether a particular feature occurred in the context
 - the value can be binary, a frequency count etc.
- The features capture the characteristics of the context to be clustered
- Intuitively, vectors/contexts that share the same features will be similar to each other

Contexts (input text snippets)

- <u>Cnt1</u>: Dr. *Jerry R. Hobbs* (born 25 January 1942) is a prominent researcher in the fields of computational linguistics, discourse analysis, and artificial
- <u>Cnt2</u>: *Jerry Hobbs* is the rage-filled, domestic-abusing career criminal who killed his 8-year-old daughter and her 9-year-old friend, with scarcely ...
- <u>Cnt3</u>: *Jerry Hobbs*, Author. A fifth generation farmer, Wayne Cryts finished harvesting his crop in the fall of 1980 and hauled more than 32000 bushels of soybeans ...
- <u>Cnt4</u>: *Jerry Hobbs*, who is accused of killing his 9-year-old daughter and her best ... On Wednesday, a judge denied bail for *Jerry Hobbs*, 34, ...

16

Text Snippet Features (1)

 Unigram – a single word that occurs more than a given number of times

binary values

	kill	artificial	researcher	 daughter
Cnt1:	0	1	1	0
Cnt2:	1	0	0	1
Cnt3:	0	0	0	0
Cnt4:	1	0	0	1

Text Snippet Features (1)

 Unigram – a single word that occurs more than a given number of times

		frequency values			
	kill	artificial	researcher		daughter
Cnt1:	0	500	200		0
Cnt2:	1000	0	0		100
Cnt3:	0	0	0		0
Cnt4:	1000	0	0		100

18

Text Snippet Features (2)

• Bigram— an ordered pair of words that occur together more often than expected by chance

binary values

	kill his	prominent researcher	criminal who	 8-year-old daughter
Cnt1:	0	1	0	0
Cnt2:	1	0	1	1
Cnt3:	0	0	0	0
Cnt4:	1	0	0	1

Text Snippet Features (2)

 Bigram— an ordered pair of words that occur together more often than expected by chance

kill his
prominent researcher
criminal who
8-year-old daughter
35.9

 $-{\log P(w_1 \,|\, w_0)}$, log-likelihood scores based on frequency estimated from corpus

frequency weights

	kill his	prominent researcher	criminal who	 8-year-old daughter
Cnt1:	0	102.9	0	0
Cnt2:	21.2	0	68.5	35.9
Cnt3:	0	0	0	0
Cnt4:	21.2	0	0	35.9

Underlying Premise*

- You shall know a word by the company it keeps
 - Firth, 1957 (Studies in Linguistic Analysis)
- Meanings of words are determined by their distributional patterns (Distributional Hypothesis)
 - Harris, 1968 (Mathematical Structures of Language)
- Words that occur in similar contexts will have similar meanings (Strong Contextual Hypothesis)
 - Miller and Charles, 1991 (Language and Cognitive Processes)

^{*} This slide is adapted from a tutorial of Ted Pedersen

Clustering

 Clustering is the process of grouping a set of objects into classes of similar objects

Text Snippet Clustering

- · group text snippets by similar meaning
- snippet similarity is calculated as $sim(Cnt_1,Cnt_2) = \sum_{i=1}^{n} w_{1i} * w_{2i}$

	kill	artificial	researcher	daughter
Cnt1:	0	1	1	0
Cnt2:	1	0	0	1
Cnt3:	0	0	0	0
Cnt4:	1	0	0	1

 $\begin{aligned} & sim(Cnt1,Cnt2) = (0*1) + (1*0) + (1*0) + (0*1) = 0 \\ & sim(Cnt1,Cnt3) = (0*0) + (1*0) + (1*0) + (0*0) = 0 \\ & sim(Cnt1,Cnt4) = (0*1) + (1*0) + (1*0) + (0*1) = 0 \\ & sim(Cnt2,Cnt3) = (1*0) + (0*0) + (0*0) + (0*0) = 0 \\ & sim(Cnt2,Cnt4) = (1*1) + (0*0) + (0*0) + (1*1) = 2 \\ & sim(Cnt3,Cnt4) = (0*1) + (0*0) + (0*0) + (0*1) = 0 \end{aligned}$

Hierarchical Clustering

Agglomerative or bottom-up

- begin with each element as a separate cluster
- merge clusters into successively large cluster
- repeat until one cluster is left

Divisive or top-down

- begin with all elements in a whole cluster
- divide clusters into successively smaller cluster
- repeat until all elements are in singleton clusters

24

Cluster Proximity Estimate

- Single-Link
 - Nearest Neighbor: the closest members
- Complete-Link
 - Furthest Neighbor: the furthest members
- Average-Link
 - Average of all cross cluster pairs
- Centroid
 - Centers of gravity

Partitioning Clustering

- Constructs a partition of *n* objects into a set of K clusters
- K-means algorithm:

Input: Desired number of clusters, k

Initialize: the k cluster centers (random if necessary)

Iterate:

- 1. Decide the class memberships of the N objects by assigning them to the nearest cluster centroids (mean)
- 2. Re-estimate the *k* clusters, by assuming the membership found above are correct

 $\vec{\mu}_k = \frac{1}{c_k} \sum_{i \in C_k} \vec{x}_i$

Terminate:

If none of the N objects changed membership in the last iteration, exit

26

Final Output

- A set of clusters containing a certain number of *text snippets, i.e.* small text fragments
- For each cluster assign cluster labels:
 - top 10 most significant unigrams/bigrams of each cluster act as a descriptive label
 - top 10 most unique unigrams/bigrams for each cluster act as discriminating label

Cluster Evaluation

- Internal criterion
 - intra-class high similarity
 - inter-class low similarity
 - the quality depends on the object representation and the similarity measure used
- External criterion (clustering quality)
 - measure the ability to discover the named entity groups in the gold standard data
 - asses the clustering with respect to ground truth

28

Web People Search Challenge

- The first challenge was organized in 2007
- WePS focuses on person and organization name disambiguation of Web pages
- For each ambiguous name, the system must return the documents and the attributes which are relevant for the different senses of the name
- There is an upcoming challenge on 1st of July 2010
- More information at: http://nlp.uned.es/weps/

Name Discrimination Demo

SenseClusters by Ted Pedersen
 http://marimba.d.umn.edu/cgi-bin/SC-cgi/index.cgi

- The software can be used for:
 - proper name discrimination
 - word sense discrimination
 - e-mail clustering
 - synonym finding

30

Thoughts on

- What else we can use machine learning
 - e-mail classification (spam vs. non-spam)
 - product reviews (useful vs. non-useful)
 - emotion classification of text (anger vs. happiness vs. joy vs. disgust)

– ...

- What else we can use clustering for
 - e-mail, document organization by similar topics
 - grouping flickr images based on similar label tags
 - generating adds for similar documents

– ..