

Estimating the Causal Impact of a Growth Mindset Intervention on Student Achievement

AUTHOR: RHEA GUPTA

Abstract

Can a guick online lesson reshape how students think and ultimately how they perform?

This project examines the power of a simple intervention to develop a growth mindset with the use of synthetic data inspired by the National Study of Learning Mindsets (NSLM).

We use a mixed set of causal inference methods which include linear regression but also propensity score matching plus inverse probability weighting (IPW) in order to assess academic achievement results.

Data Description

SCHOOLS

76 U.S. PUBLIC

HIGH SCHOOLS

Data Analysis

Supports Conditional Ignorability © Ensures unbiased ATE estimation

Methods

Estimated the Average Treatment Effect (ATE) using multiple casual inference methds:

OLS

Y --> Z + covariates

Adjusted for observed confounding directly through regression.

Propensity Score Matching

1:1 Nearest Neighbor selected identical untreated peers for treated students using calculated treatment (propensity scores).

used individuals' inverse probabilities of receiving their observed treatment status for creating a randomized experiment design.

Causal Validity Checks:

Inverse Probability Weighting (IPW)

Propensity Score Overlap (Positivity)

Results

Methods	ATE Estimate
Linear Regression	+0.413
Propensity Score Matching	+0.415
Inverse Probability Weighting (IPW)	+0.414

he three approaches give comparable estimates of ATE (~ •0.41) which point to the same reatment effect. It also implies that ovariates are well balanced and confounding is minimal; and herefore avoiding rival good results across methods.

Conclusion

- Growth mindset intervention has a positive significant effect in achievement.
- Consistent ATE across OLS, Matching, and IPW confirms robustness.
- Balance checks + overlap test causal assumptions.
- Scalable, low-cost interventions can boost student outcomes when backed by rigorous methods.

⚠ Limitations:

Hidden Confounders: Unmeasured variables may bias results. Model Dependence: Results rely on correct model specification.

References

- Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treatment weighting (IPTW). Statistics in Medicine, 34(28), 3661-3679.
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55.