

ACCELERATING DATA ENGINEERING PIPELINES

Part 1: Data Storage









### THE GOALS OF THIS COURSE

- Get used to many different data types / frameworks and how they operate on GPU vs CPU.
- Understand how DAG based frameworks can speed up ETL
- Learn how to visualize data to
  - Assess data quality
  - Allow users to make their own decisions through interactivity

Part I: Data Formats

Part 2: ETL with NVTabular

Part 3: Data Visualization

AGENDA



- Systems Engineering
- File Formats
- Data Frameworks
- Lab



### SYSTEM EXAMPLE

Modeling a Car





### SYSTEM EXAMPLE

Modeling a Car





### SYSTEM EXAMPLE

### Modeling a Car





## SYSTEMS BIG AND SMALL







### SYSTEM ENGINEERING FOR DATA









**Enhanced Entity Relationship Diagram** 



### From Design to Practice

Cars.csv

VIN, Model, Year 1a2b3c, Sedan, 1986 4d5e6g, Convertible, 2011 7h8i9j, Sedan, 1997

Parts.csv

VIN, UPC, Brand, Quantity 1a2b3c, 8675309, Generic Lights, 2 1a2b3c, 8675310, Generic Tires, 4 4d5e6g, 8675309, Awesome Lights, 2 4d5e6g, 8675310, Awesome Tires, 4

```
Cars.json
\{[
  {"VIN": 1a3b3c,
   "Model": "Sedan",
   "Year": 1986,
   "Parts": [
       {"UPC": 8675309,
        "Brand": "Generic Lights",
        "Quantity": 2
       }, {
        {"UPC": 8675310,
        "Brand": "Generic Lights",
```

**Directed Acyclic Graphs** 



**Data Quality** 



**Directed Acyclic Graphs** 





### DATA FORMATS

Pick 1 - 2



These definitions vary based on context:

- Scalable to read or to write?
- Scalable with speed or cost?
- Flexible in the data store or flexible in the application?
- Functional for the server or functional for the client?

### PICKING THE BEST FORMAT

### CRUD

- Create
  - Add a record
- Read
  - Get record
- Update
  - Change a record
- Delete
  - Remove a record



### ROW VS COLUMNAR STORAGE

- Row -

Efficient for

Adding a new record

- Formats
  - CSV (Comma-Separated Values)
  - TSV (Tab-Separated Values)
  - Apache AVRO
- Engines
  - MySQL
  - PostgreSQL

| Columnar |

Efficient for

Data Aggregation

- Formats
  - Apache Parquet
- Engines
  - BigQuery
  - Snowflake
  - Redshift

### **WRITING**

### Adding a New Entry

### **Row Formatted Data**

Grace | Hopper | 1906

Blaise | Pascal | 1623

Katherine | Johnson | 1918

Alan | Turing | 1912

Can concatenate to end, or inserted by row number

| First     | Last    | Born |
|-----------|---------|------|
| Grace     | Hopper  | 1906 |
| Blaise    | Pascal  | 1623 |
| Katherine | Johnson | 1918 |

+

| Alan | Turing | 1912 |
|------|--------|------|
|      | 9      |      |

### **Column Formatted Data**

Grace | Blaise | Katherine Hopper | Pascal | Johnson 1906 | 1623 | 1918 Alan

Turing

1912

Broken up and inserted at the end of each block

### **ANALYSIS**

### A.K.A Feature Engineering

### **Row Formatted Data**

Grace | Hopper |

Blaise | Pascal |

Katherine | Johnson |

GH

BP

KJ

| First     | Last    |   | ln. |
|-----------|---------|---|-----|
| Grace     | Hopper  |   | GH  |
| Blaise    | Pascal  | > | BP  |
| Katherine | Johnson |   | KJ  |
| Alan      | Turing  |   | AT  |

### **Column Formatted Data**

Grace | Blaise | Katherine |

Hopper | Pascal | Johnson |

GH | BP | KJ

Broken up and inserted at the end of each block

Can be concatenated to end or inserted by column number

### **BINARY**

Ex: Multimedia File



- Compact
  - Faster to send and process
- Flexible
  - Many datatypes can easily be converted to binary
    - Great for images



- Hard to visualize without decoding software
  - Difficult to debug data integrity

# 0

## **ASCII**

Ex: CSV



- Simple structure
  - No file metadata
- File is human readable
- Average scalability
  - Easy to join and split multiple CSV files
  - Easy to append a new entry



## Simple structureNo file metadata

- Average scalability
  - Data is not compressed as much as other file types

# 000

### **PARQUET**

Ex: Hadoop



- Good compression if many repeated values
- Efficient to read a subset of columns
- Support for complex datatypes like arrays



- Immutable
  - Query results are typically saved in a new file
- Querying for all the attributes of an entity is an expensive operation
- Files are not human readable without a tool

## DATA FORMATS COMPARISON

### **Summary**

| Properties                  | CSV      | JSON     | Parquet  | Avro     |
|-----------------------------|----------|----------|----------|----------|
| Columnar                    |          |          | <b>⊘</b> |          |
| Compressible                | <b>⊘</b> | <b>Ø</b> | <b>⊘</b> | <b>Ø</b> |
| Splittable                  | <b>⊘</b> | <b>⊘</b> | <b>⊘</b> | <b>Ø</b> |
| Human readable              | <b>⊘</b> | <b>Ø</b> |          |          |
| Complex data structure      |          | <b>Ø</b> |          |          |
| Schema evolution/validation |          | <b>⊘</b> | <b>⊘</b> | <b>Ø</b> |
| Binary                      |          |          | <b>Ø</b> | ♦        |



### VERTICAL VS HORIZONTAL SCALING

↑ Vertical ↑

Scales to higher quality hardware

- SQL
- CuPy
- NumPy
- cuDF
- pandas

 $\leftarrow$  Horizontal  $\rightarrow$ 

Scales to more partitions / machines

- Dask
- NoSQL
- Spark
- Hadoop

## SQL

Structured Query Language

### Query

SELECT first, last

FROM awesome.people

WHERE born > 1900

| first     | last    | born |
|-----------|---------|------|
| Grace     | Hopper  | 1906 |
| Blaise    | Pascal  | 1623 |
| Katherine | Johnson | 1918 |
| Alan      | Turing  | 1912 |



| first     | last    | Dogult |
|-----------|---------|--------|
| Grace     | Hopper  | Result |
| Katherine | Johnson |        |
| Alan      | Turing  |        |



**Table** 

(awesome.people)

### **DATAFRAMES**



### Query



df = df[df["born"] > 1900]

df = df["first", "last"]

| first     | last    | born |
|-----------|---------|------|
| Grace     | Hopper  | 1906 |
| Blaise    | Pascal  | 1623 |
| Katherine | Johnson | 1918 |
| Alan      | Turing  | 1912 |



| first     | last    | Dogult |
|-----------|---------|--------|
| Grace     | Hopper  | Result |
| Katherine | Johnson |        |
| Alan      | Turing  |        |



**Table** 

df

### MATRICES AND NUMBER ARRAYS



### DASK SCALES PYTHON ANALYTICS

### SCALE FROM A LAPTOP TO LARGE-SCALE CLUSTERS WITH EASE

- Dask enables data scientists to scale out analytics workloads in native Python. With an optimized scheduler, Dask makes it easy to schedule and execute tasks on distributed computation.
- PyData ecosystem to provide a familiar, comfortable user experience at scale. When paired with NVTABULAR/RAPIDS, data scientists can leverage the processing power of NVIDIA accelerated compute and distribute across clusters to improve cycle time-reducing time to insights drastically.



### **MAPREDUCE**

Map to each thread, Reduce all threads to one



### LAZY EXECUTION

**Building a Factory** 





### RELATIONAL DATABASES

Ex: SQL



## • Well known

- Concise Language
- Relatively fast querying
  - Foreign keys
- Blazing SQL



- Inflexible data structure
  - Some objects do not convert well to table format
- Typically, single server
  - More expensive hardware needed to scale

# 000

### **DATAFRAME**

Ex: cuDF, Pandas, R



### Python and R APIs

- cuDF, Pandas
- Compared to SQL, more flexible operations
  - Easier to make user-defined functions and integrate third party libraries



- Single server, not meant for large-scale data manipulation
  - Consider Spark instead
- Compared to SQL, not as scalable

## · L a

### **DASK**

Ex: Dask DataFrame, Dask-cuDF



- Large computation can receive a significant speed increase
- Can read large data sources due to partitioning



- Large overhead to set up not worth it for small files or limited computation
- Lazy execution can make it tricky to debug



### WEATHER SYSTEMS



Credit: Ralph F. Kresge, Submitted to NOAA

### INVESTIGATING WATER LEVEL







