Измерение модуля Юнга стержней методом акустического резонанса. (1.4.8)

Балдин Виктор Б01-303

20 ноября 2023

1 Введение

Цель работы: исследовать явление акустического резонанса в тонком стержне; из-мерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга раз-личных материалов.

В работе используются: генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

2 Теоретическая часть

Основной характеристикой упругих свойств твёрдого тела является его модуль Юнга E. Согласно закону Гука, если к элементу среды приложено некоторое механическое напряжение σ , действующее вдоль некоторой оси x (напряжения по другим осям при этом отсутствуют), то в этом эле- менте возникнет относительная деформацию вдоль этой же оси $\varepsilon = \Delta x/x_0$, определяемая соотношением

$$\sigma = \varepsilon E$$

Если с помощью кратковременного воздействия в некотором элементе твёрдого тела создать малую деформацию, она будет далее распростра- няться в среде в форме волны, которую называют акустической или звуко- вой. Распространение акустических волн обеспечивается за счёт упругости и инерции среды. Волны сжатия/растяжения, распространяющиеся вдоль оси, по которой происходит деформация, называются продольными. Как будет строго показано далее, скорость u распространения продольной аку- стической волны в простейшем случае длинного тонкого стержня опреде- ляется соотношением

$$u = \sqrt{\frac{E}{\rho}}$$

где ρ — плотность среды. Заметим, что размерность модуля Юнга E равна [H/м²] и совпадает с размерностью механического напряжения (или давления). Характерные значения модуля Юнга металлов лежат в диапазоне $E \sim 1010 \div 1012$ Па, так что при плотности $\rho \sim 104$ кг/м3 характерные значения скорости звука в твёрдых телах составляют $u \sim 103$ - 104 м/с. В общем случае звуковые волны в твёрдых телах могут быть не только продольными, но и поперечными — при этом возникает деформация сдвига перпендикулярно распространению волны. Кроме того, описание распространения волн в неограниченных средах осложняется тем обстоятельством, что при отличном от нуля коэффициенте Пуассона 1 напряжение вдоль одной из осей вызывает деформацию не только в про- дольном, но и в поперечном направлении к этой оси. Таким образом, общее описание звуковых волн в твёрдых телах — относительно непростая задача. В данной работе мы ограничимся исследованием наиболее простого случая упругих волн,

распространяющихся в длинных тонких стержнях. Рассмотрим стержень постоянного круглого сечения, радиус R которого много меньше его длины L. С точки зрения распространения волн стержень можно считать тонким, если длина λ звуковых волн в нём велика по срав- нению с его радиусом: λR . Такая волна может свободно распростра- няться только вдоль стержня, поэтому можно считать, что стержень испы- тывает деформации растяжения и сжатия только вдоль своей оси (заметим, что в обратном пределе коротких волн λR стержень следует рассматривать как безграничную сплошную среду). Если боковые стенки тонкого стержня свободны (т.е. стержень не сжат с боков), то его деформации опи- сывается законом Гука в форме (1), и, следовательно, его упругие свойства определяются исключительно модулем Юнга среды. Акустическая волна, распространяющаяся в стержне конечной длины L, испытает отражение от торцов стержня. Если при этом на длине стержня укладывается целое число полуволн, то отражённые волны будут склады- ваться в фазе с падающими, что приведёт к резкому усилению амплитуды их колебаний и возникновению акустического резонанса в стержне. Изме- ряя соответствующие резонансные частоты, можно определить скорость звуковой волны в стержне и, таким образом, измерить модуль Юнга материала стержня. Акустический метод является одним из наиболее точных методов определения упругих характеристик твёрдых тел. Получим дифференциальное уравнение, описывающее распростране- ние упругих волн в тонком стержне. Направим ось х вдоль геометрической оси стержня (рис. 1). Разобьём исходно недеформированный стержень на тонкие слои толщиной Δx . При продольной деформации среды границы слоёв сместятся в некоторые но- вые положения. Пусть плоскость среды, находящаяся исходно в точке x

Рис. 1:

сместилась к моменту t на расстояние $\xi(x,t)$. Тогда слой, занимавший исходно отрезок $[x,x+\Delta x]$, изменил свой продольный размер на величину

$$\Delta \xi = \frac{\partial \xi}{\partial x} \Delta x$$

3 Методика измерений

Экспериментальная установка

Рис. 3. Схема установки: 1 – генератор звуковой частоты, 2 – частотомер, 3 – осциллограф, 4 – электромагнит-возбудитель, 5 – образец, 6 – электромагнит-приёмник, 7 – усилитель звуковой частоты, 8 – блок питания усилителя, 9, 11 – стойки крепления электромагнитов, 10 – стойка крепления образца, 12 – направляющая

Схема экспериментальной установки приведена на рис. 3. Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электромагнитов дают возможность регулировать их расположение по высоте, а также перемещать вправо-влево по столу 12.

Электромагнит 4 служит для возбуждения упругих механических про- дольных колебаний в стержне. На него с генератора звуковой частоты 1 по- даётся сигнал синусоидальной формы: протекающий в катушке электро- магнита ток создаёт пропорциональное ему магнитное поле, вызывающее периодическое воздействие заданной частоты на торец стержня (к торцам стержней из немагнитных материалов прикреплены тонкие стальные шайбы). Рядом с другим торцом стержня находится аналогичный электро- магнитный датчик 6, который служит для преобразования механических колебаний в электрические. Принцип работы электромагнитных датчиков описан подробнее ниже. Сигнал с выхода генератора поступает на частотомер 2 и на вход канала X осциллографа 3. ЭДС, возбуждаемая в регистрирующем электро- магните 6, пропорциональная амплитуде колебаний торца стержня, усили- вается усилителем 7 и подаётся на вход канала Y осциллографа. Изменяя частоту генератора и наблюдая за амплитудой сигнала с реги- стрирующего датчика, можно определить частоту акустического резонанса в стержне. Наблюдения в режиме X—Y позволяют сравнить сигналы гене- ратора и датчика, а также облегчает поиск резонанса при слабом сигнале.

Как следует из формулы (2), модуль Юнга материала E может быть найден по скорости распространения акустических волн в стержне u и его плотности ρ . Для определения скорости u в данной работе используется метод акустического резонанса. Это явление состоит в том, что при часто- тах гармонического возбуждения, совпадающих с собственными частотами колебаний стержня $f \approx f_{\rm pes}/Q$, резко увеличивается амплитуда колебаний, при этом в стержне образуется стоячая волна. Возбуждение продольных колебаний в стержне происходит посредством воздействия на торец стержня периодической силой, направленной вдоль его оси. Зная

номер гармоники n и соответствующую резонансную частоту f_n , на которой наблюдается усиление амплитуды колебаний, можно вычислить скорость распространения продольных волн в стержне:

$$u = 2L \frac{f_n}{n}$$

Таким образом, для измерения скорости u необходимо измерить длину стержня L и получить зависимость резонансной частоты от номера резо- нанса n. Если все теоретические предположения справедливы, эта за- висимость будет прямой пропорциональностью. Следует отметить, что в реальном металлическом стержне могут воз- буждаться не только продольные, но и поперечные (в частности, изгибные) колебания стержня. При этом каждому типу колебаний соответствует не одна, а целый спектр частот. Таким образом, стержень «резонирует» не только на частотах, определяемых формулой (15), но и на множестве дру- гих частот. Для того чтобы отличить нужные нам резонансные частоты от «паразитных», следует провести предварительные расчёты и не принимать во внимание резонансы, не описываемые зависимостью (15). Скажем также несколько слов о точности измерения резонансной ча- стоты. В первую очередь отметим, что в идеальном случае резонанс дости- гался бы при строгом совпадении частот $f = f_n$ (а амплитуда в резонансе стремилась бы к бесконечности). Однако в реальности возбуждение стоя- чей волны возможно при относительно малом отклонении частоты от резо- нансной — амплитуда колебаний как функция частоты A(f) имеет резкий максимум при $f = f_n$.

Именно конечная ширина резонанса Δf определяет в основном погреш- ность измерения частоты в нашем опыте. Используемые в работе металлические стержни являются весьма высокодобротными системами: их добротность оказывается порядка $Q \sim 102 \div \div 103$. Поэтому ширина резонанса оказывается довольно малой, что приво- дит к необходимости тонкой настройки частоты генератора (при $f \sim 5$ к Γ ц ширина резонанса Δf оказывается порядка нескольких герц) Кроме того, время установления резонансных колебаний, которое можно оценить как

$$au_{
m ycr} \sim rac{1}{\Delta f} \sim rac{Q}{f},$$

оказывается весьма велико, из-за чего поиск резонанса нужно проводить, меняя частоту генератора очень медленно.

4 Оборудование

Генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

5 Измерения и обработка результатов

1. Измерим плотность всех предоставленных нам материалов:

- 2. Включим генератор.
- 3. Длина всех исследуемых стержней дана: $L = (600 \pm 0.5)$ мм.

4. Исследуем по порядку медный, дюралюминиевый и стальной стержни на резонанс.

Таблица 2: Найденные частоты резонансов в зависимости от номера резонанса

	n	1	2	3	4	5
Медь	f , к Γ ц	3.25329	6.49893	9.6742	12.8739	16.0952
Дюраллюминий	f , к Γ ц	4.23494	8.46810	12.7060	16.0010	20.4800
Сталь	f, Кгц	4.13418	8.42034	12.5202	16.7948	20.9340

5. Приведем графики зависимости частоты от номера резонанса:

Рис. 2: Резонансы медного стержня

Рис. 3: Резонансы дюралюминиевого стержня

Рис. 4: Резонансы стального стержня

6. По полученным угловым коэффициентам вычислим скорость распространения звуковой волны в стержнях, по которой найдем модуль Юнга.

Таблица 3: Рассчитанные угловые коэффициенты

		v	
	Медь	Дюралюминий	Сталь
k , к Γ ц	3.20588	4.00230	4.19741
<i>v</i> , м/с	3847	4803	5037
E, Гпа	128	63	196
ϵ_k	0.0010	0.0008	0.0005
ϵ_v	0.0011	0.0009	0.0006
ϵ_E	0.02	0.02	0.02

Таким образом, получаем итоговый результат:

$$E_{ ext{меди}} = (128 \pm 3) \ \Gamma \Pi ext{a},$$
 $E_{ ext{дюр}} = (63 \pm 2) \ \Gamma \Pi ext{a},$ $E_{ ext{cr}} = (196 \pm 4) \ \Gamma \Pi ext{a}$

7. Проведем дополнительные измерения в окрестности 1-го резонанса для меди, чтобы получить добротность:

$$f_1=(3.25178\pm0.00003)\ \mbox{к}\mbox{Гц},\ f_2=(3.26688\pm0.00003)\ \mbox{к}\mbox{Гц},$$

$$\Delta f=10.01\pm0.06\ \mbox{Гц},$$

$$Q=\frac{f}{\Delta f}=325\pm3$$

6 Обсуждение результатов

В результате работы мы:

- 1. Нашли добротность медного стержня как колебательной системы.
- 2. Получили зависимость f(n). Как нетрудно убедиться по рис. 2-4, во всех случаях аппроксимация прямой действительно применима, причем с очень хорошей точностью.
- 3. Так как наше теоретическое предположение выполнилось, на его основе вычислили скорость звуковой волны во всех данных материалах.
- 4. Нашли модули Юнга для меди, дюралюминия и стали.
- 5. Если сравнить результаты с работой 1.3.1, где проводилось измерения методом прогиба, окажется, что точность опыта в данной работе существенно выше (в 1.3.1 мы получали погрешность порядка 10%, тут около 2%, причем наиболее существенный вклад в погрешность внесло измерение плотности). Такое расхождение можно объяснить высокой точностью измерения частоты по сравнению с точностью измерения деформаций в 1.3.1.

7 Вывод

Таким образом, их всего вышесказанного можно заключить, что использованный метод акустического резонанса куда лучше подходит для определения модуля Юнга, нежели метод прямых макродеформаций, использованный в работе 1.3.1. Точность получилось существенно выше. Кроме того, достаточно сделать точнее измерение плотности, чтобы снизить погрешность еще на несколько порядков.