Name:	• • • •	 • •	•	 •	 •	 •	٠.	•	•	 •	•	 •	•	•	•	•	• •	•
Student [Number [
Teacher:.		 		 														

Mathematics Extension 1 HSC Trial Examination Term 3 2024

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks

Total marks SECTION 1 – 10 marks (pages 1-4)

- Attempt Questions 1-10
- Allow about 15 minutes for this section
- Answer each question on the multiple-choice answer sheet provided in the answer booklet.

SECTION II – 60 marks (pages 5-11)

- Attempt Questions 11-14
- Allow about 1 hours and 45 minutes for this section
- Answer each question in the appropriate space in the Answer Booklet. Extra writing pages are included at the end of each question.

SECTION I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1. The grid shown is made up of identical parallelograms.

Let $a = \overrightarrow{AB}$ and $c = \overrightarrow{CD}$. What is the vector \overrightarrow{EF} is equal to?

(B)
$$-3a+c$$

(C)
$$-3a-c$$

(D)
$$3a-c$$

2. Four female and four male students are to be seated around a circular table. In how many ways can this be done if the males and females must alternate?

1

(A)
$$4! \times 4!$$

(B)
$$3! \times 4!$$

(C)
$$3! \times 3!$$

(D)
$$2 \times 3! \times 3!$$

3. Which of the following is equivalent to $\frac{d}{dx} \left(2 \sin^{-1} \frac{x}{2} \right)$?

$$(A) \quad \frac{1}{\sqrt{1-x^2}}$$

(B)
$$\frac{2}{\sqrt{1-x^2}}$$

(C)
$$\frac{2}{\sqrt{4-x^2}}$$

(D)
$$\frac{1}{2\sqrt{4-x^2}}$$

- **4.** Which expression is identical to $2\sin 3x \sin 5x$?
 - (A) $-\cos 2x \cos 8x$
 - (B) $\cos 8x \cos 2x$
 - (C) $\cos 2x \cos 8x$
 - (D) $\cos 2x + \cos 8x$
- 5. If $\sin A = t$ and $\cos B = t$, where $\frac{\pi}{2} < A < \pi$ and $0 < B < \frac{\pi}{2}$, then what is $\cos(B + A)$ equal to?
 - $(A) \quad 0$
 - (B) $\sqrt{1-t^2}$
 - (C) $1-2t^2$
 - (D) $-2t\sqrt{1-t^2}$
- 6. Let R be the region between the graphs of y = 1 and $y = \sin x$ from x = 0 to $x = \frac{\pi}{2}$. Which expression gives the volume of the solid obtained by revolving R about the x-axis?
 - $(A) \quad 2\pi \int_0^{\frac{\pi}{2}} x \sin x \, dx$
 - (B) $\pi \int_0^{\frac{\pi}{2}} \left(1 \sin x\right)^2 dx$
 - (C) $\pi \int_0^{\frac{\pi}{2}} \sin^2 x \ dx$
 - $(D) \quad \pi \int_0^{\frac{\pi}{2}} \cos^2 x \ dx$

- 7. A spherical balloon is being inflated at a constant rate of 200π cm³s⁻¹. At what rate is the radius of the balloon increasing when the radius is 10 cm?
 - (A) 0.25 cm s⁻¹
 - (B) 0.5 cm s^{-1}
 - (C) 1 cm s⁻¹
 - (D) 2 cm s⁻¹
- 8. Which of the following is the domain of $y = 5\cos^{-1}\left(\frac{2-x}{3}\right)$?
 - $(A) \quad x \in [1, 5]$
 - (B) $x \in [-1,5]$
 - (C) $x \in [-5,1]$
 - (D) $x \in [-5, -1]$
- 9. PQR is a straight line and PQ = 2QR. If $O\vec{Q} = 3i - 2j$ and $O\vec{R} = i + 3j$, where O is the origin, then what is $O\vec{P}$?

- (B) 7i 12j
- (C) 4i 10j
- (D) -4i + 10j

- 10. The inverse function of $f(x) = \ln(x-1)$ is g(x). Which one of these statements must be true for all x in the domain of g(x)?
 - $(A) \quad g(x) < 0$
 - (B) g'(x) < 0
 - (C) g''(x) > 0
 - (D) g''(x) < 0

SECTION II

60 marks

Attempt Questions 11-14

Allow about 1 hour and 45 minutes for this section.

Answer these questions in the Answer Book provided.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

2

(a) Find the term independent of x in the expansion of $\left(3x^2 + \frac{2}{x}\right)^{12}$.

2

(b) Mrs Munro needs to decide the order in which to schedule 8 exams. Two of these exams are Mathematics Extension 1 and Mathematics Extension 2. Find the number of different ways that Mrs Munro can schedule the 8 exams so that Mathematics Extension 1 and Mathematics Extension 2 are NOT consecutive.

(c) Solve $\frac{x^2 + 10}{x} \le 7$.

3

(d) The polynomial $P(x) = 8x^4 - 38x^3 + 9x^2 + ax + b$ has a double root at x = 3. Find the values of a and b, where a and b are real numbers.

3

(e) Evaluate $\int_0^2 \frac{dx}{\sqrt{16-x^2}}.$

2

(f) Use mathematical induction to prove that $8n^3 - 2n$ is divisible by 3 for all integers $n \ge 1$.

End of Question 11

Question 12 (14 marks)

Marks

(a) By using the substitution $t = \tan \frac{x}{2}$, solve

3

- $\cos x \sqrt{3}\sin x + 1 = 0 \quad \text{for } 0 \le x \le 2\pi.$
- (b) Use the substitution u = x 4 to find the following integral:

3

$$\int x\sqrt{x-4} \ dx$$

(c) When the polynomial P(x) is divided by $9x^2 - 1$ the remainder is 3x + 7.

2

What is the remainder when P(x) is divided by 3x+1?

Question 12 continues on page 7

(d) Julie kicks a soccer ball from the origin O, which is on level ground, with velocity $V \, \text{ms}^{-1}$, at an angle of α to the horizontal. The ball rises to a maximum height h and lands on a hill at distance d metres from the origin, with a height of $\frac{h}{4}$ metres, making an angle of β with the horizontal as shown.

Use the axes as shown and assume there is no air resistance.

The position vector of the ball, t seconds after being kicked, where g is acceleration due to gravity, is given by

$$\underline{r}(t) = (Vt\cos\alpha)\underline{i} + \left(Vt\sin\alpha - \frac{g}{2}t^2\right)\underline{j}$$
DO NOT prove this

(i) Show that the maximum height h reached by the ball is

$$h=\frac{V^2\sin^2\alpha}{2g}.$$

(ii) Show that the time taken for the ball to land on the hill is

$$t = \frac{\left(2 + \sqrt{3}\right)V\sin\alpha}{2g}$$
 seconds.

(iii) Calculate the horizontal distance *d* travelled by the ball.

2

3

1

End of Question 12

- (a) Given the equation $f(x) = x \sin^{-1} \left(\frac{x}{2}\right)$, $-2 \le x \le 2$
 - (i) show that f(x) is an even function

1

(ii) sketch the graph of y = f(x) showing all features including intercept(s) and endpoints.

2

(b) After t minutes the temperature $T^{\circ}C$ of water in a jug is given by $T = 20 + 80e^{-0.2t}$. What is the rate at which the water is cooling when its temperature has fallen to half its initial value?

2

(c) Part of the graph of $y = \sqrt{\cos(3x)\sin(2x)}$ is shown in the diagram.

- 2
- (i) By solving $\cos(3x)\sin(2x) = 0$, show that the smallest positive solution is $x = \frac{\pi}{6}$.
- 3
- (ii) Hence, find the volume of the solid of revolution formed when the shaded region is rotated around the *x*-axis.

Question 13 continues on page 9

Question 13 continued.						
(d)	(i)	Sketch the curve $y = -\tan^{-1} x$ and label the point where $x = 1$.	2			
	(ii)	Find the area bounded by the curve, the <i>x</i> -axis and the line $x = 1$.	3			

Marks

End of Question 13

Question 14 (16 marks)

Marks

- (a) A bug moves such that its acceleration is given by $\frac{dv}{dt} = \sqrt{v+1} \ ms^{-2}$. Initially the bug is at rest. Find its velocity after 1 second.
- 3

- (b) A population of penguins on an island satisfies $\frac{dP}{dt} = 0.001P(400 P)$ where *P* is the number of penguins and *t* is measured in years. Initially there are 50 penguins.
 - (i) What is the carrying capacity of the island?

- 1
- (ii) Given that $\frac{1}{P(400-P)} = \frac{1}{400} \left(\frac{1}{P} + \frac{1}{400-P} \right)$, calculate when the population of penguins will reach 50% of the carrying capacity.
- (c) In the figure, the circle has centre O and radius r. The circle is inscribed in a square ABCD, and P is any point on the circle.

(i) Show that $\overrightarrow{AP} \cdot \overrightarrow{AP} = 3r^2 - 2\overrightarrow{OP} \cdot \overrightarrow{OA}$.

2

(ii) Hence find $AP^2 + BP^2 + CP^2 + DP^2$ in terms of r.

2

Question 14 continues on page 11

(d) A is the point on the circumference of a circle with centre O and radius a. With A as the centre, an arc of radius r is drawn which meets the circle at two points B and C, and r < 2a. Arc length $BC = \ell$ and $\angle BAC = 2\theta$.

(i) Show that $r = 2a\cos\theta$ and $\ell = 4a\theta\cos\theta$.

2

(ii) Hence, show that ℓ is a maximum when $\theta = \cot \theta$.

3

END OF PAPER