

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy
Formy arkusza:	MMA-P1_1P-204, MMA-P1_2P-204, MMA-P1_3P-204, MMA-P1_4P-204 MMA-P1_6P-204, MMA-P1_7P-204, MMA-P1_QP-204,
Termin egzaminu:	Termin poprawkowy – wrzesień 2020 r.
Data publikacji dokumentu:	

	wersja A/C																								
Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odp.	С	Α	D	С	Α	С	С	В	Α	D	С	С	D	Α	D	В	В	Α	D	D	В	Α	D	D	С

Zadania otwarte

Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.

Zadanie 26. (0-2)

Przykładowe rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap rozwiązania polega na obliczeniu pierwiastków trójmianu kwadratowego: $-2x^2 + 5x + 3$.

Pierwiastki trójmianu kwadratowego: $-2x^2 + 5x + 3$

• podajemy je bezpośrednio, np. zapisując $x_1 = -\frac{1}{2}$, $x_2 = 3$ lub zaznaczając pierwiastki trójmianu na wykresie

albo

• obliczamy wyróżnik tego trójmianu, a następnie stosujemy wzory na pierwiastki: $\Delta=49$, $x_1=\frac{-5+7}{-4}=-\frac{1}{2}$, $x_2=\frac{-5-7}{-4}=3$.

Drugi etap rozwiązania polega na wyznaczeniu zbioru rozwiązań nierówności: $-2x^2 + 5x + 3 \le 0$.

Podajemy zbiór rozwiązań nierówności: $x \in \left(-\infty, -\frac{1}{2}\right) \cup \left(3, +\infty\right)$, np. odczytując go ze szkicu wykresu funkcji f określonej wzorem $f(x) = -2x^2 + 5x + 3$.

- zrealizuje pierwszy etap rozwiązania
 - obliczy pierwiastki trójmianu kwadratowego $x_1 = -\frac{1}{2}$ i $x_2 = 3$
 - zaznaczy na wykresie miejsca zerowe funkcji f określonej wzorem $f(x) = -2x^2 + 5x + 3$

i na tym zakończy lub dalej popełnia błędy.

albo

 realizując pierwszy etap błędnie wyznaczy pierwiastki (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np. popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

• poda zbiór rozwiązań nierówności: $x \in \left(-\infty, -\frac{1}{2}\right) \cup \left(3, +\infty\right)$

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

<u>Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki</u> (<u>dysleksja</u>) – <u>dot. zadania 26;</u> w pozostałych zadaniach otwartych 27-34 nie mażadnych dodatkowych kryteriów oceniania dla dyslektyków.

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy lub poda pierwiastki trójmianu $x_1=-\frac{1}{2}$, $x_2=3$ i zapisze, np. $x\in\left(-\infty,\frac{1}{2}\right)\cup\left\langle 3,+\infty\right\rangle$ lub $x\in\left(-\infty,3\right\rangle\cup\left\langle -\frac{1}{2},+\infty\right)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $x \in \langle 3, -\infty \rangle \cup \left\langle -\frac{1}{2}, +\infty \right\rangle$, to przyznajemy **2 punkty**.

Uwagi

- 1. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu i zapisze np. $x \in \left(-\infty, \frac{1}{2}\right) \cup \left(3, +\infty\right)$ popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji pierwszego etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.
- 3. Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy obliczony wyróżnik Δ jest niedodatni, to otrzymuje **0 punktów** za całe rozwiązanie.

Zadanie 27. (0-2)

Przykładowe rozwiązania

I sposób

Z własności ciągu geometrycznego otrzymujemy równanie

$$(4x+2)^{2} = (x+2)(x+11),$$

$$16x^{2} + 16x + 4 = x^{2} + 13x + 22,$$

$$15x^{2} + 3x - 18 = 0,$$

$$5x^{2} + x - 6 = 0,$$

$$(x-1)(5x+6) = 0,$$

$$x = 1 \text{ lub } x = -\frac{6}{5}.$$

Dla x = 1 otrzymujemy ciąg geometryczny (3,6,12) o ilorazie 2.

Dla $x=-\frac{6}{5}$ otrzymujemy ciąg geometryczny $\left(\frac{4}{5},-\frac{14}{5},\frac{49}{5}\right)$ o ilorazie $-\frac{7}{2}$.

<u>II sposób</u>

Niech q oznacza iloraz ciągu geometrycznego. Wtedy ze wzoru na n-ty wyraz ciągu geometrycznego otrzymujemy układ równań:

$$4x+2=(x+2)q$$
 i $x+11=(x+2)q^2$.

Zauważmy, że dla x = -2 otrzymujemy ciąg (0, -6, 9), który nie jest geometryczny. Zatem $x \neq -2$.

Wtedy mamy

 $q = \frac{4x+2}{x+2}$ i $x+11 = (x+2) \cdot \left(\frac{4x+2}{x+2}\right)^2$

Stąd

$$x+11 = \frac{(4x+2)^2}{x+2},$$

$$(x+2)(x+11) = (4x+2)^2,$$

$$16x^2 + 16x + 4 = x^2 + 13x + 22,$$

$$15x^2 + 3x - 18 = 0,$$

$$5x^2 + x - 6 = 0,$$

$$(x-1)(5x+6) = 0,$$

$$x = 1 \text{ lub } x = -\frac{6}{5}.$$

Dla x=1 otrzymujemy ciąg (3,6,12) geometryczny o ilorazie 2, zaś dla $x=-\frac{6}{5}$ otrzymujemy ciąg $\left(\frac{4}{5},-\frac{14}{5},\frac{49}{5}\right)$ geometryczny o ilorazie $-\frac{7}{2}$.

Zasady oceniania

Zdający otrzymuje1 p. gdy zapisze

• równanie z niewiadomą x wynikające z własności ciągu geometrycznego, np.: $(4x+2)^2 = (x+2)(x+11)$

albo

• układ dwóch równań z dwiema niewiadomymi, z których jedną z niewiadomych jest x, np.: 4x+2=(x+2)q i $x+11=(x+2)q^2$

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający poda x = 1 i zapisze, że ciąg (3,6,12) jest geometryczny, to otrzymuje **1 punkt**.

Zadanie 28. (0-2)

Przykładowe rozwiązania

I sposób

Przekształcamy tezę równoważnie

$$a(a+b)+b^{2} > 3ab$$

$$a^{2}+ab+b^{2} > 3ab$$

$$a^{2}-2ab+b^{2} > 0$$

$$(a-b)^{2} > 0$$

Kwadrat dowolnej liczby rzeczywistej jest nieujemny. Wyrażenie $(a-b)^2$ jest dodatnie, ponieważ z założenia $a \neq b$ i kwadrat dowolnej liczby rzeczywistej różnej od zera jest dodatni.

To kończy dowód.

II sposób

Przekształcamy równoważnie nierówność i otrzymujemy: $a^2 + ab + b^2 > 3ab$

$$a^2 - 2ab + b^2 > 0$$
.

Wyrażenie $a^2-2ab+b^2$ traktujemy jako trójmian kwadratowy jednej zmiennej np. a. Obliczamy wyróżnik trójmianu kwadratowego $a^2-2ab+b^2$:

$$\Delta = 4b^2 - 4b^2 = 0.$$

Zatem, dla każdej liczby rzeczywistej b, parabola, będąca wykresem trójmianu kwadratowego $a^2-2ab+b^2$ ma dokładnie jeden punkt wspólny z osią Ox. Jest nim punkt

o współrzędnych (b,0).

Oznacza to, że gdy a=b trójmian kwadratowy $a^2-2ab+b^2$ przyjmuje wartość równą zeru. Jeśli natomiast $a\neq b$, to, biorąc pod uwagę fakt, że ramiona paraboli będącej wykresem tego trójmianu są skierowane "do góry", oznacza to, że ten trójmian przyjmuje wartości dodatnie.

To kończy dowód.

Zasady oceniania

• przekształci podaną nierówność do postaci $(a-b)^2 > 0$

albo

• wyznaczy wyróżnik trójmianu kwadratowego $a^2-2ab+b^2>0$, np.: $\Delta=0$ i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający sprawdza prawdziwość nierówności jedynie dla wybranych wartości a i b, to otrzymuje **0 punktów** za całe rozwiązanie.

Zadanie 29. (0-2)

Przykładowe rozwiązanie

I sposób

Wprowadźmy oznaczenia jak na rysunku.

Trójkąt ASO jest podobny do trójkąta BPO na podstawie cechy podobieństwa (kąt, kąt, kąt).

Oznaczamy |SO|=x. Ponieważ okręgi o środkach S i P są styczne zewnętrznie, więc |SP|=R+r=6+2=8.

Zapisujemy proporcję wynikająca z podobieństwa trójkątów $\frac{|BP|}{|PO|} = \frac{|AS|}{|SO|}$

$$\sin \alpha = \frac{6}{8+x} = \frac{2}{x}, \text{ stad } x = 4.$$

Otrzymujemy $\sin \alpha = \frac{6}{12} = \frac{2}{4} = \frac{1}{2}$. Kąt α jest kątem ostrym, stąd $\alpha = 30^{\circ}$.

Zasady oceniania I sposobu rozwiązania

II sposób

Wprowadźmy oznaczenia jak na rysunku.

Prowadzimy odcinek SC równoległy do prostej k, stąd $\left|AS\right|=\left|BC\right|=r=2$, zaś $\left|CP\right|=R-r=6-2=4$.

Trójkąt ASO jest podobny do trójkąta CPS na podstawie cechy podobieństwa (kqt, kqt), $|\Box CSP| = |\Box AOS| = \alpha$.

Ponieważ okręgi są styczne zewnętrznie, więc|SP| = R + r = 6 + 2 = 8.

W trójkącie CPS mamy $\sin \alpha = \frac{|CP|}{|SP|} = \frac{4}{8} = \frac{1}{2}$, a stąd mamy $\alpha = 30^{\circ}$.

Zasady oceniania II sposobu rozwiązania

Zadanie 30. (0-2)

Przykładowe rozwiązanie

Iloczyn jest równy zero, jeśli przynajmniej jeden z czynników jest równy zero.

Zatem $x^3 + 8 = 0$ lub $x^2 - 9 = 0$.

Równanie $x^3 + 8 = 0$ ma jedno rozwiązanie: x = -2.

Równanie $x^2 - 9 = 0$ ma dwa rozwiązania: x = -3 lub x = 3.

Zatem rozwiązaniami równania $(x^3+8)(x^2-9)=0$ są liczby: x=-3, x=-2, x=3.

Zasady oceniania

Zdający otrzymuje1 p. gdy

• zapisze dwa równania $x^3 + 8 = 0$ i $x^2 - 9 = 0$ lub z zapisu wynika, że rozwiązuje te równania

albo

obliczy lub poda rozwiązania jednego z równań:

$$x^3 + 8 = 0$$
 ($x = -2$) lub $x^2 - 9 = 0$ ($x = -3$, $x = 3$)

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeżeli zdający poda wszystkie rozwiązania równania, bez zapisanych obliczeń lub uzasadnienia, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający poprawnie zapisze lewą stronę równania w postaci sumy jednomianów i doprowadzając ją do postaci iloczynu popełni błędy, ale skorzysta z własności iloczynu równego zero, to za całe rozwiązanie może otrzymać co najwyżej **1 punkt**.

Zadanie 31. (0-2)

Rozwiązanie

I sposób

Doświadczenie polega na losowaniu jednej kuli z pudełka.

Liczba wszystkich kul w pudełko po dołożeniu n kul białych jest równa 8+n, stąd $|\Omega|=8+n$.

Liczba wszystkich kul białych w pudełku po dołożeniu n kul białych jest równa 5+n , stąd |A|=5+n .

A – oznacza zdarzenie polegające na wylosowaniu jednej kuli białej z pudełka.

Prawdopodobieństwo zdarzenia *A*: $P(A) = \frac{|A|}{|\Omega|}$, czyli $\frac{5+n}{8+n} = \frac{11}{12}$.

Stąd 88+11n=60+12n, czyli n=28.

Do pudełka dołożono 28 białych kul.

Zasady oceniania

Zdający otrzymuje1 p.

gdy zapisze równanie z jedną niewiadomą np.: $\frac{5+n}{8+n}=\frac{11}{12}$ i na tym zakończy lub dalej popełni błędy.

II sposób

Zauważmy, że czarne kule, których jest 3, stanowią $1 - \frac{11}{12} = \frac{1}{12}$ całej puli.

Niech x – oznacza liczbę wszystkich kul w pudełku. Tym samym $\frac{1}{12}x$ = 3, czyli x = 36.

Tym samym do pudełka dołożono 36-8=28 kul białych.

Zasady oceniania

i na tym zakończy lub dalej popełni błędy.

III sposób

Prawdopodobieństwo wylosowania kuli białej jest równe $\frac{11}{12} = \frac{22}{24} = \frac{33}{36}$

Ponieważ w ułamku $\frac{33}{36}$ różnica pomiędzy licznikiem i mianownikiem jest równa 3, czyli liczbie kul czarnych, to 33 stanowi liczbę kul białych wśród 36 kul. Stąd odejmując początkową liczbę kul białych w puli otrzymujemy 33-5=28 kule dodane do pudełka.

Zasady oceniania

Zdający otrzymuje1 p.

gdy rozszerzy ułamek do postaci $\frac{11}{12} = \frac{22}{24} = \frac{33}{36}$ i ustali liczbę kul białych w pudełku: 33 i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający zapisze tylko liczbę 28 bez żadnych obliczeń albo wyjaśnień, to otrzymuje **0 punktów.**

Zadanie 32. (0-4)

Przykładowe rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Z twierdzenia Pitagorasa dla trójkąta AEC otrzymujemy

$$10^2 = 6^2 + h^2$$
,
 $h^2 = 100 - 36 = 64$.
 $h = 8$.

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} \cdot 12 \cdot 8 = 48$$
.

Trójkąt *BDF* jest podobny do trójkąta *BCE* w skali $\frac{1}{2}$, więc

$$x = \frac{1}{2} \cdot h = 4$$
 oraz $|FB| = \frac{1}{2} \cdot |EB| = 3$.

Zatem |AF| = 6 + 3 = 9.

Z twierdzenia Pitagorasa dla trójkata AFD otrzymujemy

$$d^2 = 9^2 + 4^2 = 81 + 16 = 97,$$
$$d = \sqrt{97}.$$

Środkowa dzieli trójkąt na dwa trójkąty o równych polach, więc pole trójkąta ADC jest równe

$$P_{ADC} = \frac{1}{2} \cdot P_{ABC} = \frac{1}{2} \cdot 48 = 24$$
.

Pole tego trójkąta możemy też zapisać w postaci

$$P_{ADC} = \frac{1}{2} \cdot \left| AD \right| \cdot \left| AC \right| \cdot \sin \alpha = \frac{1}{2} \cdot \sqrt{97} \cdot 10 \cdot \sin \alpha = 5\sqrt{97} \cdot \sin \alpha$$

lub

Otrzymujemy więc równanie

$$5\sqrt{97} \cdot \sin \alpha = 24,$$
$$\sin \alpha = \frac{24}{5\sqrt{97}}.$$

Uwaga

• Pole trójkąta ABC możemy obliczyć wykorzystując wzór Herona.

$$p = \frac{1}{2} \cdot (12 + 10 + 10) = 16, \ p - a = 16 - 12 = 4, \ p - b = p - c = 16 - 10 = 6,$$
$$P_{ABC} = \sqrt{p(p - a)(p - b)(p - c)} = \sqrt{16 \cdot 4 \cdot 6 \cdot 6} = 48.$$

Długość środkowej trójkąta możemy obliczyć korzystając ze wzoru

$$d_b = \frac{1}{2}\sqrt{2a^2 + 2c^2 - b^2} = \frac{1}{2}\sqrt{2\cdot 12^2 + 2\cdot 10^2 - 10^2} = \frac{1}{2}\sqrt{2\cdot 12^2 + 2\cdot 10^2 - 10^2} = \sqrt{97} \ .$$

Zasady oceniania

• wysokość trójkąta ABC opuszczoną na podstawę: h = 8

albo

• długość odcinka FB: |FB| = 3

albo

• cosinus kąta *ABC*: $\cos \Box ABC = \frac{3}{5}$ i na tym zakończy lub dalej popełni błędy.

Zdający

• obliczy wysokość trójkąta *ABC* opuszczoną na podstawę oraz długość jednego z odcinków *FB*, AF: |FB|=3, |AF|=9

albo

• pole trójkąta *ADC*: $P_{ADC} = 24$

albo

• długość środkowej AD trójkąta (lub kwadrat tej długości): $|AD| = \sqrt{97}$ i na tym zakończy lub dalej popełni błędy.

i na tym zakończy lub dalej popełni błędy.

ADC: $|AD| = \sqrt{97}$, $P_{ADC} = 24$.

Zadanie 33. (0-4)

Przykładowe rozwiązanie

Wprowadzamy oznaczenia jak na rysunku:

r – promień podstawy,

I – tworząca,

h – wysokość stożka.

Zapisujemy równanie: $\pi r l = 3\pi r^2$, z którego otrzymujemy zależność l = 3r.

Z twierdzenia Pitagorasa w trójkącie prostokątnym *BCD* zapisujemy równanie $12^2 + r^2 = (3r)^2$; $144 = 8r^2$ stąd $r^2 = 18$.

Obliczamy objętość stożka: $V = \frac{1}{3}\pi r^2 \cdot h = \frac{1}{3}\pi \cdot 18 \cdot 12 = 72\pi$.

Zasady oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania 1 p.

Zdający z równości $\pi r l = 3\pi r^2$ wyznaczy zależność pomiędzy r i l, np. l = 3r albo $\frac{l}{3} = r$ i na tym zakończy lub dalej popełni błędy.

Zdający zapisze równanie z jedną niewiadomą: $12^2 + r^2 = \left(3r\right)^2$ albo $12^2 + \left(\frac{l}{3}\right)^2 = l^2$ i na tym zakończy lub dalej popełni błędy.

• kwadrat promienia (lub promień)podstawy stożka: $r^2 = 18$ ($r = 3\sqrt{2}$)

albo

• długość tworzącej stożka: $l = 9\sqrt{2}$

i na tym zakończy lub dalej popełni błędy.

Uwagi

- Jeśli zdający popełni błędy rachunkowe, które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać za całe rozwiązanie co najwyżej 3 punkty.
- 2. Jeżeli jedynym błędem zdającego jest pominięcie współczynnika $\frac{1}{3}$ we wzorze na objętość stożka, to za całe rozwiązanie otrzymuje **3 punkty**.
- 3. Jeżeli zdający pominie współczynnik $\frac{1}{3}$ we wzorze na objętość stożka, a ponadto popełnia błędy rachunkowe, ale poprawnie realizuje strategię rozwiązania, to otrzymuje co najwyżej **2 punkty** za całe rozwiązanie.
- 4. Jeżeli zdający niepoprawnie zastosuje twierdzenie Pitagorasa, to może otrzymać za całe rozwiązanie co najwyżej **1 punkt**.
- 5. Jeżeli zdający zapisze błędną relację między polem powierzchni bocznej i polem podstawy stożka, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 34. (0-5)

Przykładowe rozwiązania

I sposób

Wyznaczamy równanie prostej prostopadłej do prostej o równaniu y = -2x + 7 i przechodzącej przez punkt $P \div$

$$y = \frac{1}{2}x + b$$
.

Punkt *P* należy do prostej $y = \frac{1}{2}x + b$, więc $5 = \frac{1}{2} \cdot 4 + b$. Stąd b = 3.

Obliczamy współrzędne punktu S przecięcia prostej y = -2x + 7 i prostej PQ:

$$\begin{cases} y = -2x + 7 \\ y = \frac{1}{2}x + 3 \end{cases}$$

Stad $-2x+7 = \frac{1}{2}x+3$, wiec

$$x = \frac{8}{5} i \quad y = \frac{19}{5},$$

$$Zatem S = \left(\frac{8}{5}, \frac{19}{5}\right).$$

Ponieważ punkt S jest środkiem odcinka PQ, więc

$$\frac{4+x_Q}{2} = \frac{8}{5} i \frac{5+y_Q}{2} = \frac{13}{5}.$$

Stąd
$$x_Q = -\frac{4}{5}$$
 i $y_Q = \frac{13}{5}$, czyli $Q = \left(-\frac{4}{5}, \frac{13}{5}\right)$.

Il sposób ("odległość punktu od prostej")

Równanie prostej prostopadłej do danej prostej i przechodzącej przez punkt P ma postać: $y = \frac{1}{2}x + b$.

Ponieważ P = (4,5), więc $5 = \frac{1}{2} \cdot 4 + b$, stąd b = 3. Zatem równanie prostej PQ ma postać: $y = \frac{1}{2}x + 3$.

Punkt Q leży na tej prostej, więc

$$Q = \left(x, \frac{1}{2}x + 3\right).$$

Obliczamy odległość punktu P od prostej o równaniu y = -2x + 7 jest równa

$$\frac{\left|-2\cdot 4-1\cdot 5+7\right|}{\sqrt{5}}=\frac{6\sqrt{5}}{5}.$$

Ponieważ prosta o równaniu y=-2x+7 jest symetralną odcinka PQ, więc odległość punktu $Q=\left(x,\frac{1}{2}x+3\right)$ od prostej o równaniu y=-2x+7 jest także równa $\frac{6\sqrt{5}}{5}$.

Otrzymujemy zatem równanie:

$$\frac{\left|-2x - \frac{x}{2} - 3 + 7\right|}{\sqrt{5}} = \frac{6\sqrt{5}}{5}, \text{ stad } \left|-\frac{5}{2}x + 4\right| = 6.$$

Równanie to jest równoważne alternatywie równań

$$-\frac{5}{2}x + 4 = 6 \text{ lub } -\frac{5}{2}x + 4 = -6.$$

Stad

$$x = -\frac{4}{5}$$
 lub $x = 4$.

Obliczamy współrzędne punktu $Q = \left(-\frac{4}{5}, \frac{13}{5}\right)$.

Jeśli
$$x = -\frac{4}{5}$$
, to $y = \frac{1}{2} \cdot \left(-\frac{4}{5}\right) + 3 = -\frac{2}{5} + 3 = \frac{13}{5}$. Zatem $Q = \left(-\frac{4}{5}, \frac{13}{5}\right)$.

Jeśli x=4, to $y=\frac{1}{2}\cdot 4+3=2+3=5$. Zatem otrzymujemy współrzędne danego punktu P.

Uwaga

Zdający może **bez wyznaczenia** równania prostej $y=\frac{1}{2}x+3$, tj. prostej prostopadłej do prostej o równaniu y=-2x+7, na której leży punkt $P=\left(4,5\right)$, obliczyć odległość $d=\frac{6\sqrt{5}}{5}$ punktu $P=\left(4,5\right)$ od prostej o równaniu y=-2x+7 i zapisać równanie z jedną niewiadomą $\sqrt{\left(x-4\right)^2+\left(-2x+7-5\right)^2}=\frac{6\sqrt{5}}{5}$, z którego wyznaczy pierwszą współrzędną środka odcinka PQ.

III sposób

Niech Q = (x, y) będzie końcem odcinka PQ. Wtedy współrzędne środka S tego odcinka są równe

$$S = \left(\frac{4+x}{2}, \frac{5+y}{2}\right).$$

Punkt S leży na symetralnej odcinka PQ, a więc na prostej o równaniu y = -2x + 7, więc

$$\frac{5+y}{2} = -2 \cdot \frac{4+x}{2} + 7,$$

$$y+5 = -8 - 2x + 14,$$

$$y = -2x + 1.$$

Prosta prostopadła do prostej o równaniu y = -2x + 7 i przechodząca przez punkt P ma równanie postaci

$$y = \frac{1}{2}(x-4)+5$$
.

Punkt P leży na tej prostej, więc pozostaje rozwiązać układ równań y=-2x+1 i $y=\frac{1}{2}(x-4)+5$. Stąd otrzymujemy

$$-2x+1 = \frac{1}{2}(x-4)+5,$$

$$-2x+1 = \frac{1}{2}x+3,$$

$$\frac{5}{2}x = -2,$$

$$x = \frac{-4}{5}.$$

Druga współrzędna punktu Q jest równa $y = -2\left(-\frac{4}{5}\right) + 1 = \frac{8}{5} + 1 = \frac{13}{5}$,

czyli
$$Q = \left(-\frac{4}{5}, \frac{13}{5}\right)$$
.

Zasady oceniania

Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do całkowitego rozwiązania zadania......1 p. Zdający:

• wyznaczy równanie prostej prostopadłej do prostej o równaniu y = -2x + 7 i przechodzącej przez punkt P = (4,5)

$$y = \frac{1}{2}x + 3$$

albo

• obliczy odległość *d* punktu P = (4,5) od prostej o równaniu y = -2x + 7

$$d = \frac{6\sqrt{5}}{5}$$

albo

• wyznaczy odległość punktu P od punktu należącego do symetralnej odcinka PQ w zależności od jednej zmiennej, np.: $\sqrt{(x-4)^2+(-2x+7-5)^2}$

albo

• wyznaczy współrzędne środka S odcinka PQ w zależności od współrzędnych końca Q odcinka PQ: $S = \left(\frac{4+x}{2}, \frac{5+y}{2}\right)$

albo

 wyznaczy równanie prostej przechodzącej przez punkt Q i równoległej do symetralnej odcinka P: y = -2x+1

i na tym zakończy lub dalej popełni błędy.

• wyznaczy równanie prostej prostopadłej do prostej o równaniu y = -2x + 7

i przechodzącej przez punkt P = (4,5)

$$y = \frac{1}{2}x + 3$$

oraz obliczy odległość d punktu P = (4,5) od prostej o równaniu y = -2x + 7

$$d = \frac{6\sqrt{5}}{5}$$

albo

• obliczy współrzędne środka odcinka *PQ*: $x = \frac{8}{5}$ i $y = \frac{19}{5}$,

albo

• wyznaczy równanie prostej prostopadłej do prostej o równaniu y = -2x + 7 i przechodzącej przez punkt P = (4,5)

$$y = \frac{1}{2}x + 3$$

oraz wyznaczy równanie prostej przechodzącej przez punkt Q i równoległej do symetralnej odcinka PQ: y = -2x + 1

i na tym zakończy lub dalej popełni błędy.

ullet zapisze obie równości pozwalające obliczyć współrzędne szukanego punktu Q, np.

$$\frac{4+x_Q}{2} = \frac{8}{5} i \frac{5+y_Q}{2} = \frac{19}{5}$$
.

albo

 zapisze równanie z jedną niewiadomą, pozwalające obliczyć współrzędną szukanego punktu Q, np.

$$\frac{\left|-2x - \frac{x}{2} - 3 + 7\right|}{\sqrt{5}} = \frac{6\sqrt{5}}{5}$$

lub

$$\frac{\left| -2(2y-6) - y + 7 \right|}{\sqrt{5}} = \frac{6\sqrt{5}}{5}$$

lub

$$-2x+1=\frac{1}{2}(x-4)+5$$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe, błędy w przepisaniu, itp.) 4p.

Zdający popełni błędy rachunkowe, błędy w przepisywaniu w którejkolwiek fazie rozwiązania i konsekwentnie rozwiąże zadanie do końca.

$$Q = \left(-\frac{4}{5}, \frac{13}{5}\right).$$

Uwagi:

- 1. Jeżeli jedynym błędem jest:
 - a) błąd przy ustalaniu współczynnika kierunkowego prostej *PQ*, to zdający może otrzymać
 - co najwyżej 3 punkty za całe rozwiązanie;
 - b) błąd przy wyznaczaniu *b*, polegający na zamianie miejscami współrzędnych punktu *P*.
 - to zdający może otrzymać co najwyżej 3 punkty za całe rozwiązanie;
 - c) błąd polegający na zamianie miejscami współrzędnych przy wyznaczaniu środka *S*, to zdający może otrzymać co najwyżej **3 punkty** za całe rozwiązanie;
 - błąd polegający na błędnym podstawieniu do wzoru na odległość punktu od prostej, to zdający może otrzymać co najwyżej 3 punkty za całe rozwiązanie;
 - e) błąd polegający na zastosowaniu niepoprawnego wzoru " $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$ ", to zdający może otrzymać co najwyżej **3punkty** za całe rozwiązanie.

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. ogólnych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych szczegółowych zasad oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią – matura z matematyki, poziom podstawowy, termin poprawkowy 2020.

I. <u>Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania,
 - przestawienia cyfr,
 - zapisania innej cyfry, ale o podobnym wyglądzie,
 - przestawienia położenia przecinka.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.
- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.

- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią</u>

Zadanie 26. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

• stosuje poprawną metodę obliczenia pierwiastków trójmianu kwadratowego $-2x^2+5x+3$, tzn. stosuje wzory na pierwiastki trójmianu kwadratowego i oblicza te pierwiastki, popełniając błędy o charakterze dyskalkulicznym

albo

• w wyniku obliczeń otrzyma wyróżnik ujemny, ale konsekwentnie narysuje parabolę lub zapisze, że $x \in \mathbb{R}$.

Zdający otrzymuje 2 pkt, jeżeli:

 w zapisie odpowiedzi pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci:

$$x \in (-\infty, 3) \cup \left(-\frac{1}{2}, \infty\right)$$

albo

 stosuje poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, poprawnie podstawia do wzorów na pierwiastki trójmianu kwadratowego, stosuje poprawny algorytm rozwiązania nierówności kwadratowej z prawidłowym określeniem krańców przedziałów, a jedynymi błędami, jakie popełnia, są błędy rachunkowe o typowym charakterze dyskalkulicznym.

Uwaga!

W ocenie rozwiązania zadania 26. (dla zdających z dyskalkulią) nie stosuje się uwagi nr 3 zasad oceniania arkusza standardowego.

Zadanie 27. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

- zastosuje wzór na n-ty wyraz ciągu geometrycznego zapisując: $a_2=a_1q$, $a_3=a_1q^2$ lub $a_2=a_1q$, $a_3=a_2q$ lub zastosuje definicję: $\frac{a_3}{a_2}=\frac{a_2}{a_1}$, bądź własność $a_2^2=a_1a_3$ ciągu geometrycznego.
- albo
- zapisze ciąg (3, 6, 12).

Zadanie 28. (0-2)

Stosują się zasady oceniania arkusza standardowego.

Zadanie 29. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

- zapisze, że trójkąty ASO i BPO są podobne albo

Zadanie 30. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

- obliczy lub poda jedno z rozwiązań równania $x^2-9=0$ albo
- rozwiązując równanie $x^3+8=0$ popełni błąd dyskalkuliczny, pisząc $x^3=8$, a następnie zapisze x=2.

Zdający otrzymuje 2 pkt, jeżeli:

• poprawnie rozwiąże równanie $x^2-9=0$ (poda oba rozwiązania x=3 oraz x=-3) oraz rozwiązując równanie $x^3+8=0$ popełni błąd dyskalkuliczny, pisząc $x^3=8$, a następnie zapisze x=2.

Zadanie 31. (0-2)

Zdający otrzymuje 1 pkt, jeżeli:

- zapisze liczbę kul białych jako n+5 oraz liczbę wszystkich kul jako n+8 albo
- zapisze, że wszystkich kul łącznie jest 36 albo
- zapisze kilka ułamków postaci $\frac{n+5}{n+8}$ np.: $\frac{6}{9}$, $\frac{8}{11}$, $\frac{10}{13}$ itd.

Zadanie 32. (0-4)

Zdający otrzymuje 1 pkt, jeżeli:

- zapisze pole trójkąta ADC używając wzoru z sinusem: $P_{ADC}=\frac{1}{2}\;|AD||AC|\cdot\sin\alpha$ albo
- zaznaczy wysokość trójkąta ABC poprowadzoną z wierzchołka C, zapisze, że |AE|=6 oraz zapisze równość wynikającą z tw. Pitagorasa dla trójkąta AEC (lub wszystkie te czynności wykona analogicznie dla trójkąta EBC)

albo

- $\bullet \quad$ zapisze, że pole trójkąta ADC (lub ABD) jest równe połowie pola trójkąta ABC albo
- zastosuje tw. Pitagorasa dla trójkata FBD oraz zapisze |BD| = 5.

Zadanie 33. (0-4)

Zdający otrzymuje 1 pkt, jeżeli:

• zapisze równanie $\pi r l = 3\pi r^2$ lub z innych jego zapisów wynika, że poprawnie stosuje wzory na pole powierzchni bocznej i pole podstawy stożka oraz poprawnie ustala relację pomiędzy tymi polami

albo

zapisze równość wynikającą z tw. Pitagorasa dla trójkąta DBC.

Zdający otrzymuje 2 pkt, jeżeli:

• zapisze równanie $\pi r l = 3\pi r^2$ (lub z innych jego zapisów wynika, że poprawnie stosuje wzory na pole powierzchni bocznej i pole podstawy stożka oraz poprawnie ustala relację pomiędzy tymi polami) oraz zapisze równość wynikającą z tw. Pitagorasa dla trójkąta DBC.

Uwagi!

1. W ocenie rozwiązania zadania 33. (dla zdających z dyskalkulią) zamiast uwagi nr 4 zasad oceniania arkusza standardowego stosuje się następującą uwagę:

Jeżeli zdający niepoprawnie stosuje tw. Pitagorasa, to może otrzymać za całe rozwiązanie co najwyżej 2 pkt.

2. W ocenie rozwiązania zadania 33. (dla zdających z dyskalkulią) zamiast uwagi nr 5 z zasad oceniania arkusza standardowego stosuje się następującą uwagę

Jeżeli zdający zapisze błędną relację pomiędzy polem powierzchni bocznej i polem podstawy stożka, to za całe rozwiązanie otrzymuje co najwyżej 1 pkt (za zastosowanie twierdzenia Pitagorasa).

Zadanie 34. (0-5)

Zdający otrzymuje 1 pkt, jeżeli:

 poprawnie ustali współczynnik kierunkowy prostej prostopadłej do symetralnej odcinka PQ.

Zdajacy otrzymuje 2 pkt, jeżeli:

• zapisze równanie pozwalające obliczyć współrzędną środka odcinka PQ:

$$-2x + 7 = \frac{1}{2}x + 3.$$

Uwaga!

W ocenie rozwiązania zadania 34. (dla zdających z dyskalkulią) zamiast uwag 1.b), c), d) zasad oceniania arkusza standardowego stosuje się następującą:

Jeżeli w rozwiązaniu zdający popełni błąd o charakterze dyskalkulicznym, polegający na zamianie miejscami współrzędnych podczas podstawienia do wzoru / równania, to może otrzymać co najwyżej 4 pkt.

