

Aerospace Robotics Competition

Kickoff and Meet-Your-Mentor Event!

September 21, 2021

LOCKHEED MARTIN

Agenda

- About Us
- Competition
- Logistics
- Resources
- Q&A

ARC: About Us

Who Are We?

ARC California Directors:

Beldon Lin: ARC COO/CTO, Lockheed Martin Operations Analysis

Nikola Atanackovic: ARC California Director, Lockheed Martin Airframe Design

Rayon Harris: ARC Event Coordinator, Lockheed Martin Airframe Design

Fiorella Tello: ARC Communications Lead, Lockheed Martin Airframe Design

Kelsey Hite: ARC Mentor Lead, Lockheed Martin Airframe Design

Marcus Jackson: ARC Technical Support, Lockheed Martin Airframe Design

ARC

ARC:

- Demonstrate exciting, hands-on building and <u>flying</u> of the UAV
- Develop knowledge of unmanned, autonomous systems
- Develop an understanding of basic aerospace principles

Focus on the aerospace engineering while providing strong introduction to autonomy - a very modern STEM topic

This competition is **relevant**, **challenging**, and **exciting** for high school students

Communication

Mentors:

- LM mentors
 - Teams' go-to for technical issues
 - Resource for educational/professional routes within the aerospace industry

Student Captains:

- One student per team the primary technical point of contact
- Interface with university and professional mentors

ARC Directors:

- Support logistical and rule book related concerns
- Support minimal technical questions if university mentor is unable to help

This Year

2021/2022: Three Regional Competitions

- Florida
- New England
- Palmdale, California
 - In partnership with Lockheed Martin
 - 10 Antelope Valley Teams!

Recommended Schedule

- Participate in virtual engagement through DroneBlocks tutorials
- Achieve human-piloted flight
 - Expect reasonable difficulty
 - Focus on vehicle build and wiring troubleshooting
 - Recommended Date: mid January
- Create and built mechanism(s)
 - Test engineering problem solving skills and creativity
 - Recommended Date: early February
- Achieve successful autonomous flight
 - Expect this to be the biggest challenge for teams
 - ARC: provide programming resources and training
 - Focus on learning to program autonomous flight then optimizing program for the flight challenge
 - Recommended Date: mid March

2021-2022 Competition

Competition Overview

- Combination of exciting hands-on flying and autonomous flight
 - Autonomous Flight (up to 300 pts)
 - Students program vehicle to navigate between waypoints and complete tasks
 - Semi-Autonomous Flight (up to 150 pts)
 - Students fly, retrieve and deliver tennis balls within time requirement
 - Presentation (up to 150 pts)
 - Students provide insight for their vehicle and mechanism details and testing process
 - Technical Inspection
 - Students provide insight on their vehicle and design process

Technical Presentation

- Teams demonstrate understanding of their UAV and discuss details of their design process
 - Opportunity to show-off team creativity!
- Presentations <u>must</u> be submitted at least 7 days prior to competition
- Presentations are graded based on required content prior to competition day
- Presentations graded day-of competition based on presentation style of speakers and slide legibility

Time	Description	
3 minutes	Set up presentation and visual aide (if applicable)	
10 minutes	Presentation	
5 minutes	Questions	
2 minutes	Clean up presentation 11	

Drone Specifications

- ARC
- Vehicle must be a quadcopter (4 motors with one propeller each)
- Flight computer must be an ArduPilot capable system
- Propellers may not exceed 12 inches
- The entire system (quadrotor + mechanism + any associated systems) must fit in a 36 inch by 36 inch by 36 inch box
- Battery must be a lithium polymer (LiPo) battery with no more than 4 cells
- For safety purposes, the vehicle must have a secure location for attaching a tether

Drone Specifications, cont

- UAV must be registered with FAA
- Technical Inspection will check for FAA Registration Number
- FAA Website: https://registermyuas.faa.gov/
 - Must be 13 years or older to register
 - Make an account with the FAA
 - Select "Model Aircraft"
 - Pay \$5 registration fee
 - Receive UAS registration number
 - Label your UAS with the registration number
- How-To:

http://diydrones.com/profiles/blogs/how-to-register-your-drone-with-the-faa

Mechanism Design

- Teams design and build their own mechanisms for the autonomous and semi-autonomous flight portions
 - The same mechanism may be used for both flight portions or two separate mechanisms
 - If two mechanisms are designed, both will be tested during the Technical Inspection
- Requirements:
 - Must fit within the area under UAV
 - Must stay within 4 feet of the UAV at all times
 - Must remain attached to the vehicle at all times
 - Must not go above the arms during flight / operation

Tech Inspection

- Teams must pass a Technical Inspection on the day of competition in order to fly
- The Rule Book Appendix E (pg 30) includes the checklist to be used by judges at the competition day
- Teams <u>will not</u> be permitted to fly if their UAV does not pass the Technical Inspection
- Teams must be prepared for Technical Inspection at their assigned time slot
 - Time slots for Technical Inspection will be sent 7 days prior to the competition date

Logistics

Competition Day Details - April, 2022

- A detailed schedule will be sent to teams 7 days prior to the competition
 - Teams not prepared for their scheduled time-slot forfeit that <u>round</u>
 - Flight order as well as order for Presentations and Technical inspection will be randomized
- Flight order may change day-of competition based on:
 - Vehicle damage preventing a team from competing
 - Inclement weather delaying the competition schedule
 - A team's vehicle design not complying with technical requirements and therefore not permitted to compete
- 4 hours will be allotted for autonomous flight
- 2 hours will be allotted for semi-autonomous flight
- Note: Allotment for flight portions may be updated on day-of competition based on number of teams prepared to fly
- Official rule book will be available to the teams for reference

Mentors

- Teams will be connected with Lockheed Martin professional mentors to support them technically
 - Note: In some cases, Lockheed Martin mentors are not experts on the competition logistics or rules. Contact the ARC Staff with any ARC logistical questions.
 - ARC Staff is still able to support technical questions if the mentor is unable, but mentor should be the first point of contact.
- Remainder of today's meeting is to meet your mentor!

Cost

Cost to compete is the price of the drone (depends on your choice of drone):

Drone	Cost (\$)
DJI Tello	-130 FREE
Kit Drone	600
Own-drone that meets specifications	500+

LM ADP Sponsored!

2021-2022 Competition Overview

This year's mission...

Mission Details

The year is 2022, and your local government has tasked your team with responding to a natural disaster. You are required to perform the following tasks:

- Surveillance Waypoint 1: Count the number of people in need of assistance / rescue
- Surveillance Waypoint 2: Assess building for structural damage
- Loiter at 3 Specific Waypoints

Competition Overview

- ARC
- Combination of exciting hands-on flying and autonomous flight
 - Autonomous Flight (up to 300 pts)
 - Students program vehicle to navigate between waypoints and complete tasks
 - Split between a virtual component and the competition day
 - Semi-Autonomous Flight (up to 150 pts)
 - Students fly, retrieve and deliver tennis balls within time requirement
 - Presentation (up to 150 pts)
 - Students provide insight for their vehicle and mechanism details and testing process
 - Technical Inspection
 - Students provide insight on their vehicle and design process as well as ensure vehicle airworthiness

Drone Options

Teams have 3 options: DJI Tello drone, Kit drone, or Personal drone

Drone	Autonomous Portion, max points	Semi-Autonomous Portion, max points	Presentation, max points
DJI Tello	240	0	150
Kit Drone	300	150	150
Own-drone that meets specifications	300	150	150
Own-drone that does not meet specifications	0	0	150

Autonomous Portion - Waypoint Mission

Autonomous = No human control

1. **Virtual Competition** - provides students with a structured set of tasks that gradually build up to the fly-off competition

- a. Teams <u>must record the drone</u> or any needed equipment in order to demonstrate that the task has been accomplished.
- b. Teams that complete all tasks would be considered in "good shape" for the Fly-Off Competition

Task Number	Task Name	Description	Points (Kit Drone / Tello Drone)
1	Learn to Fly	Fly semi-autonomously (student-piloted) for 1 minute. No requirements for flight beyond successful takeoff and landing; flight time may be spent hovering or maneuvering. Provide a video to ARC to show completion.	25 / 15
2	Takeoff	Autonomously have the drone take off. Provide a video to ARC to show completion.	25 / 15
3	Hover	Hover the drone without pilot intervention (autonomously) for 30 seconds. Provide a video to ARC to show completion.	25 / 15
4	Mechanism Test	Hover the drone and drop a golf ball. Provide a video to ARC to show completion.	25 / 15
5	Autonomous Flight	Code your drone to fly in a pattern defined by your team for at least 1 minute. The drone must travel in the X, Y, and Z directions. Provide a video to ARC to show completion.	25 / 15
6	Waypoint Flight	Plug in waypoints to your drone and fly autonomously. Provide a map of the waypoints and a video of your drone flying to the waypoints.	25 / 15

Autonomous Portion - Waypoint Mission

2. Fly-Off Competition

- a. Teams receive a file with waypoint coordinates
 - i. 2 types of waypoint missions: visual surveillance or loiter
- b. Teams use waypoint file to calculate UAV route
- c. UAV will autonomously complete the mission per the calculated route.

Autonomous Portion, cont

Semi-Autonomous Portion - Payload Delivery

ARC

Semi-Autonomous: Human assisted flight, human in-control

Sequence

- 1. Pilots use mechanism on UAV to retrieve a tennis ball from a staging area
- 2. Tennis balls are released through hoops in the flight arena
 - a. Note: Hoop diameter varies with increased point value for smaller hoops
- 3. Pilots may drop up to 5 tennis balls within the flight round (5 minutes)
 - a. Note: Pilots must only retrieve and drop 1 tennis ball at a time

Semi-Autonomous Portion, cont

Scoring:

- S = avg(F)
- $\bullet \qquad F = 150 * \frac{RoundScore}{BestRoundScore}$
- $RoundScore = (B_1 + B_2 + B_3 + B_4 + B_5) * \frac{RoundFlightTime(120sec)}{TeamFlightTime(s)}$
 - Bx=score of tennis ball number x
 - Large hoop, Bx = 20
 - Med. hoop, Bx = 35
 - Small hop, Bx = 50

Penalties

- Team will receive a score of 0 if they collide with another team
- Teams will lose 50% of their total score if their mechanism falls off during flight

Semi-Autonomous Portion, cont

Semi-Autonomous Portion, cont

Technical Presentation

- Teams demonstrate understanding of their UAV and discuss details of their design process
 - Opportunity to show-off team creativity!
- Presentations <u>must</u> be submitted at least 7 days prior to competition
- Presentations are graded based on required content (refer to Rule Book, pg
 17) prior to competition day
- Presentations graded day-of competition based on presentation style of speakers and slide legibility

Description	
Set up presentation and visual aide (if applicable)	
Presentation	
Questions	
Clean up presentation	

Resources

Kit: Hardware

Category	Part	# of parts
Drone/Quadcopter Hardware	Servo	1
	Motor	6
	Arms	4
	Legs	2
	Propellers	6
Accessories	Zip ties	8
	Dual sided tape	2 or 3

Kit: Electronics

Category	Part	# of parts
Drone Electronics	Autopilot: APM 2.8	1
	Autopilot: Pixhawk	1
	Electronic Speed Controller	4
	Power Cord	2
	GPS: for APM	1
	GPS: for Pixhawk	1

Autopilot: APM 2.8

Autopilot: Pixhawk

Kit: Radios and Batteries

Category	Part	# of parts
Radios	Telemetry 900MHz	1 set
	Transmitter	1
	Receiver	1
Batteries	Lithium Polymer (LiPo) Battery	2
	Battery Charger	1
	LiPo Bag	1

LiPo Battery

Transmitter/Receiver

LiPo Bag

Kit: Needed supplies that are NOT included

- Ground station computer
- Tools
- Additional accessories (tape, glue, etc.)
- Software
- Supplies for mechanism design
- Pilot

Tutorials Website

Tutorials Saved Here

- Drones 101
- Fundamentals (Competition, Kit, Financial Plan)
- Aerospace Sciences (Forces, Propulsion)
- Software (Onboard vs Offboard)
- Programing
- Hardware
- Autonomy
- System Integration
- Team Dynamics
- Safety
- Flying/Testing

DroneBlocks

DroneBlocks is an online drone programming curriculum based around the DJI Tello Drone

Online simulation environment
developed such that most of relevant
curriculum can be used done in-browser
FREE access for students through ARC

A fun and accessible curriculum for students of all ages/education

Questions?

Email: nikola.atanackovic@lmco.com