Chapitre 4

Étude de fonction

Variations et extremums

Sens de variation 1)

Définitions:

f est une fonction et I un intervalle contenu dans son ensemble de définition.

f est **strictement croissante** sur l'intervalle I si, pour tous nombres u et v de l'intervalle I :

si
$$u \le v$$
 alors $f(u) \le f(v)$.

f est **strictement décroissante** sur l'intervalle I si, pour tous nombres u et v de l'intervalle I :

$$si \ u < v \ alors \ f(u) > f(v).$$

Remarques:

f est **croissante** sur l'intervalle I si pour tous nombres u et v de l'intervalle I :

si
$$u < v$$
 alors $f(u) \le f(v)$.

f est **décroissante** sur l'intervalle I si pour tous nombres u et v de l'intervalle I :

si
$$u < v$$
 alors $f(u) \ge f(v)$.

Exemples:

Courbe d'une fonction strictement croissante sur [2;8].

Courbe d'une fonction strictement décroissante sur [2;8].

Définitions:

f est une fonction et I un intervalle contenu dans son ensemble de définition.

- f est **strictement monotone** sur l'intervalle I si f est soit strictement croissante sur I, soit strictement décroissante sur I
- f est **constante** sur l'intervalle I si, pour tous nombres u et v de l'intervalle I f(u) = f(v).

2) Tableau de variation

Définition:

Un tableau de variations résume les variations d'une fonction.

Exemple:

Le tableau suivant donne les variations de la fonction f:

Remarque:

Dans le cas d'une fonction constante, on utilise une flèche horizontale.

3) Notions d'extremums

Définitions:

Soit f une fonction,

- Le **maximum** M de f sur un intervalle I est la plus grande valeur prise par f(x) lorsque x parcourt cet intervalle.
 - On a alors pour tout $x \in I$, $f(x) \le M$.
- Le **minimum** m de f sur un intervalle I est la plus petite valeur prise par f(x) lorsque x parcourt cet intervalle.
 - On a alors pour tout $x \in I, f(x) \ge m$.
- Un **extremum** est un maximum ou un minimum.

Exemple:

Les extremums de la fonction f « correspondent » aux points A et D.

Le maximum vaut 4 et est atteint lorsque x = -3.

Le minimum vaut -1 et est atteint lorsque x = 2.

Sur l'intervalle [-1; 1], le minimum vaut 1 et est atteint pour x = -1; le maximum vaut 2,5 et est atteint pour x = 0,5.

II. Résolution graphique d'inéquations

1) Inéquation de la forme f(x)>k

Définition:

Soient *k* un nombre réel et *f* une fonction de domaine de définition D.

On appelle **solution** de l'inéquation f(x) > k tout réel a de D vérifiant f(a) > k.

Résoudre l'inéquation f(x) > k consiste à déterminer l'ensemble S de ses solutions.

Propriété:

Les solutions de l'inéquation f(x) > k sont les **abscisses** des points de la courbe \mathcal{C}_f situés **audessus** de la droite d'équation y = k.

Exemple:

Soit la fonction f représentée par la courbe \mathcal{C}_f ci-dessous :

L'inéquation f(x) > k a pour solutions les réels de l'intervalle $[x_1; x_2[$.

2) Inéquation de la forme f(x) > g(x)

Définition:

Soient f et g définies sur le même domaine D.

On appelle **solution** de l'inéquation f(x) > g(x) tout réel a de D vérifiant f(a) > g(a).

Résoudre l'inéquation f(x) > g(x) consiste à déterminer l'ensemble S de ses solutions.

Propriété:

Les solutions de l'inéquation f(x) > g(x) sont les abscisses des points de la courbe \mathcal{C}_f situés audessus de la courbe \mathcal{C}_g .

Exemple:

Soit les fonctions f et g représentées par les courbes \mathscr{C}_f et \mathscr{C}_g ci-contre :

L'inéquation f(x) > g(x) a pour solutions les réels de l'intervalle $]x_1; x_2[$.