Aufgabe 1 Komlós Lemma für L^0 ; 6 Punkte). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge nicht-negativer Zufallsvariablen. Zeigen Sie:

- i) Es existieren $g \in \langle f_n, f_{n+1}, \dots \rangle_{\text{conv}}$, sodass $(g_n)_{n \in \mathbb{N}}$ fast sicher gegen eine Zufallsvariable mit Werten in $[0, \infty]$ konvergiert.
- ii) Es gilt $P[g < \infty] = 1$, falls $\langle f_n, f_{n+1}, \dots \rangle_{\text{conv}}$ in L^0 beschränkt ist. Hinweis: Eine Familie $F \subset L^0$ heißt beschränkt, wenn für jedes $\varepsilon > 0$ eine Konstante C > 0 existiert, sodass $P[|X| \ge C] < \varepsilon$ für alle $X \in F$.
- iii) Es gilt P[g>0]>0, falls ein $\alpha>0$ existiert, sodass $P[f_n\geq\alpha]\geq a>0$.

Hinweis:

i) Das Resultat folgt, falls es eine Folge $g_n \in \langle f_n, f_{n+1}, \dots \rangle_{\text{conv}}$ gibt, sodass e^{-g_n} in L^1 konvergiert. Definieren Sie

$$J_n := \inf\{E[g^{-g}] | g \in \langle f_n, f_{n+1}, \dots \rangle_{\text{conv}}\}.$$

Setzen Sie

$$A_{\varepsilon} = \{(x, y) \in \mathbb{R}^{2}_{+} | |x - y| \le \varepsilon \},$$

$$B_{\varepsilon} = \{(x, y) \in \mathbb{R}^{2}_{+} | x \wedge y \ge 1/\varepsilon \},$$

$$C_{\varepsilon} = \mathbb{R}^{2}_{+} \setminus (A_{\varepsilon} \cup B_{\varepsilon}).$$

Für $(x,y) \in \mathbb{R}^2_+$ existiert für jedes ε ein δ , sodass

$$e^{-(x+y)/2} \le \left(\frac{e^{-x} + e^{-y}}{2}\right) - \delta \mathbf{1}_{C_{\varepsilon}}(x,y). \tag{1}$$

iii) Zeigen Sie, dass $g_n=\sum_{n\leq k\leq N}\lambda_kf_k\in\langle f_n,f_{n+1},\dots\rangle_{\rm conv}$ die Ungleichung

$$E[e^{-g_n}] \le (1 - \alpha) + e^{-\alpha}$$

erfüllt.

Lösung: Nach [Sch18]. J_n wächst bis zu einem $J \leq 1$. Sei $(g'_n)_{n \in \mathbb{N}}$ mit $g'_n \in \langle f_n, f_{n+1}, \dots \rangle_{\text{conv}}$ und $E[e^{-g'_n}] \leq J_n + \frac{1}{n}$. Da $z \mapsto e^{-z}$ konvex ist, haben wir immer

$$e^{-(x+y)/2} \le \frac{1}{2}(e^{-x} + e^{-y}).$$

Für $(x,y) \in C_{\varepsilon}$ gilt für ein $\delta = \delta(\varepsilon) > 0$, dass

$$e^{-(x+y)/2} - \frac{1}{2}(e^{-x} + e^{-y}) \le -\delta$$
,

was noch überprüft werden sollte. Hierdurch erhalten wir Gleichung 1. Wenn wir nun $x := g'_m$ und $y := g'_n$ setzen, ergibt sich für $n \neq m$ mit der Definition von J_n , dass

$$J_m \le E \left[e^{(-g'_m + g'_n)/2} \right] .$$

Mit Gleichung 1 erhalten wir

$$\leq \frac{1}{2} \left(E[e^{-g'_m}] + E[e^{-g'_n}] \right) - \delta P[(g'_m, g'_n) \in C_{\varepsilon}].$$

Mit der Definition von g' erhalten wir

$$\leq \frac{1}{2} \left(J_m + \frac{1}{m} + J_n + \frac{1}{n} \right) - \delta P[(g'_m, g'_n) \in C_{\varepsilon}],$$

sodass $\lim_{n,m\to\infty} P[(g'_m,g'_n)\in C_{\varepsilon}]=0$, was auch nicht so ganz klar ist.

Für $(x,y) \in A_{\varepsilon}$ und $(x,y) \in B_{\varepsilon}$ erhalten wir die Abschätzung

$$|e^{-x} - e^{-y}| \le \varepsilon + 2e^{-1/\varepsilon} + 2\mathbf{1}_{C_{\varepsilon}}(x, y).$$

Eine analoge Rechnung wie oben ergibt

$$\left| E[e^{-g_m'} - e^{-g_n'}] \right| \le \varepsilon + 2e^{-1/\varepsilon} + 2P[(g_m', g_n') \in C_\varepsilon],$$

was ebenfalls überprüft werden sollte. Damit ist $(e^{-g'_n})_{n\in\mathbb{N}}$ eine Cauchyfolge in $L^1(P)$ und somit konvergiert sie in $L^1(P)$. Deswegen hat die seine Teilfolge $(e^{-g_n})_{n\in\mathbb{N}}$, die P-fast sicher konvergiert. Hierdurch konvergiert $(g_n)_{n\in\mathbb{N}}$ schon selbst und wie für g'_n gilt auch $g_n \in \langle f_n, f_{n+1}, \dots \rangle_{\text{conv}}$.

Literatur

[Sch18] Schweizer, Martin: Introduction to Mathematical finance. https://metaphor.ethz.ch/x/2018/fs/401-3888-00L/appendix/A6_Komlos.pdf, 2018. - Accessed: 2024-12-08