## Solution of Midtern question

$$9x^2 - 164^2 - 36x + 324 = 124$$

=) 
$$9(x^2-4n)-16(y^2-2y)=124$$

$$\Rightarrow 9(\chi-2)^2 - 16(\gamma-1)^2 = 144$$

$$=) \frac{(\chi-2)^2}{16} - \frac{(\chi-1)^2}{9} = 1$$



Centre is 
$$(2,1)$$
 and  $C = \sqrt{a^2 + b^2} = 5$   
Foci  $(2 \pm 5, 1) = (7,1)$  and  $(-3,1)$   
Ventices  $(6,1)$ ,  $(-2,1)$   
asymptotes,  $Y-1 = \pm \frac{3}{4}(x-2)$ 

Solution 2:-

i) 
$$f(x) = \log_2(4-x^2)$$

ii)  $g(x) = \log_2(8-x^3)$ 

D:  $(-2,2)$ 

R:  $(-\infty,2]$ 

Solution 3:-

 $-7x+29$ 
 $(x+4)(x^2-4x+13) = A + \frac{Bx+C}{x^2-4x+13} + (x+4)(Bx+C)$ 

After solving,  $A = 2$ ,  $B = -2$ ,  $C = 3$ 

Then,

 $-7x+29$ 
 $(x+1)(x^2-4x+13) = \frac{2}{(x+1)} + \frac{-2x+3}{x^2-4x+13}$ 

Solution 4:-

 $Cos(sin^1(-\frac{3}{5}) + tan^1(-\frac{5}{12}))$ 
 $A = sin^1(-\frac{3}{5})$ ,  $A \in (-\frac{5}{2},0)$ 
 $A = sin^1(-\frac{3}{5})$ ,  $A \in (-\frac{5}{2},0)$ 
 $A = sin^1(-\frac{5}{12})$ ,  $A \in (-\frac{5}{2},0)$ 

tan B = 5

Now,  

$$Cos A = \frac{4}{5}$$
,  
 $Cos B = \frac{12}{13}$   
 $Sin B = -\frac{5}{13}$   
Now,  
 $Cos(A+B) = Cos A Cos B - Sin A Sin B$   
 $= \frac{4}{5}(\frac{12}{13}) - (-\frac{3}{5})(-\frac{5}{13})$   
 $= \frac{33}{65}$   
Solution 5!-  
 $Sin(2x+A) = \frac{1}{2} = Sin(6)$   
 $=) 2x + 3/3 = n\pi + (-1)^n f$   
 $=) 2x + 3/3 = n\pi + (-1)^n f$   
 $=) 2x + f = 2n\pi + f$  or  $2x + f = 2n\pi + f$   
 $=) x = n\pi - f = 2n\pi + f$