

PNP SILICON TRANSISTOR 2SA1153

DESCRIPTION

The 2SA1153 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.
- Low Collector Saturation Voltage.
- Complementary to the NEC 2SC2720 NPN transistor.

ABSOLUTE MAXIMUM RATINGS (T $_a$ = 25 $^{\circ}$ C)

Maximum Temperatures		
Storage Temperature	55 to +1	50 °C
Junction Temperature 150	°C Max	imum
Maximum Power Dissipation (T _a = 25 °C)		
Total Power Dissipation	600	mW
Maximum Voltages and Current (T _a = 25 °C)		
V _{CBO} Collector to Base Voltage	-60	V
V _{CEO} Collector to Emitter Voltage	-40	V
V _{EBO} Emitter to Base Voltage	-5.0	V
I _C Collector Current (DC)	-500	mΑ

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
t _{on}	Turn-on Time			35	ns	See Test Circuit.
^t off	Turn off Time			255	ns	See Test Circuit.
tstg	Storage Time			225	ns	See Test Circuit.
f _T	Gain Bandwidth Product	150	400		MHz	V _{CF} = -10 V, I _F = 20 mA
Cob	Output Capacitance		5.0	8.0	pΕ	V _{CB} = −10 V, I _F = 0, f = 1 MHz
hFE1*	DC Current Gain	50	140	300	_	V _{CE} = -2.0 V, I _C = -150 mA
hFE2*	DC Current Gain	20	50		-	V _{CE} = -2.0 V, I _C = -500 mA
VCE(sat)*	Collector Saturation Voltage		-0.45	-0.75	V	IC =500 mA, IB = -50 mA
VBE(sat)*	Base Saturation Voltage		-1.0	-1.3	V	I _C = -500 mA, I _B = -50 mA
¹ СВО	Collector Cutoff Current			-0.1	μΑ	V _{CB} = -40 V, I _F = 0
I _{EBO}	Emitter Cutoff Current			-0.1	μΑ	VEB = -4.0 V, IC = 0

'Pulsed PW $\leq 350~\mu s,$ Duty Cycle $\leq 2~\%$