

- Last lesson, reviewed basic HPPC method for computing estimates of power-limits
- lacktriangle Can quite easily extend method to include SOC-based limits with a time horizon ΔT
- For constant current i_n , SOC recursion is: $z_n(t + \Delta T) = z_n(t) (\eta_n \Delta T/Q)i_n$ \square Assume $\eta_n = 1$ for discharge, and $\eta_n = \eta \le 1$ for charge currents
- If we have design limits such that $z_{\min} \le z_n(t) \le z_{\max}$ for all cells in the pack, we can compute current i_n to enforce these limits
- Simple algebra gives current limits based on the SOC of each cell

$$i_{\mathrm{max},n}^{\mathrm{dis,soc}} = rac{z_n(t) - z_{\mathrm{min}}}{\Delta T/Q}$$
 and $i_{\mathrm{min},n}^{\mathrm{chg,soc}} = rac{z_n(t) - z_{\mathrm{max}}}{\eta \Delta T/Q}$

Battery Pack Balancing and Power Estimation | How to find available battery power using a simplified cell model

Using confidence bounds

- Side information on SOC-estimate uncertainty (*e.g.*, from xKF) can be used to make power estimates more conservative
- This is done as (assuming here that we desire to use a $3\sigma_z$ confidence interval)

$$i_{\max,n}^{\text{dis,soc}} = \frac{(z_n(t) - 3\sigma_{z,n}) - z_{\min}}{\Delta T/Q}$$

$$i_{\min,n}^{\text{chg,soc}} = \frac{(z_n(t) + 3\sigma_{z,n}) - z_{\max}}{\eta \Delta T/Q}$$

■ So, even if estimate of z_n is inaccurate, future SOC will not violate limits if estimate is within $\pm 3\sigma$ bounds

Dr. Gregory L. Plett University of Colorado Colorado Springs

Battery Pack Balancing and Power Estimation | How to find available battery power using a simplified cell model

5.3.3: How to consider other performance limits when computing available battery power

Combining limits

 Once all cell current limits have been calculated, pack discharge currents with all limits enforced are computed as

$$i_{\max}^{\text{dis}} = N_p \min \left(i_{\max}, \min_n i_{\max,n}^{\text{dis}, \text{soc}}, \min_n i_{\max,n}^{\text{dis}, \text{volt}} \right)$$

- We are finding the value of current closest to zero among all of the limiting currents based on electronics, future SOCs, future voltages
- Recall that charge current has negative sign, so must use "max" to compute value of current closest to zero

$$i_{\min}^{\text{chg}} = N_p \max \left(i_{\min}, \max_n i_{\min,n}^{\text{chg,soc}}, \max_n i_{\min,n}^{\text{chg,volt}} \right)$$

Computing power

Pack power is sum of all cell powers, using maximum allowed current and predicted future voltage

$$\begin{split} P_{\min}^{\text{chg}} &= \max \left(N_s \, p_{\min}, \sum_{n=1}^{N_s} i_{\min}^{\text{chg}} v_n(t + \Delta T) \right) \\ &\approx \max \left(N_s \, p_{\min}, \sum_{n=1}^{N_s} i_{\min}^{\text{chg}} \left(\text{OCV} \left(z_n(t) - i_{\min}^{\text{chg}} \frac{\eta \Delta T}{N_p Q} \right) - i_{\min}^{\text{chg}} \frac{R_{\text{chg}}, \Delta T}{N_p} \right) \right); \\ P_{\max}^{\text{dis}} &= \min \left(N_s \, p_{\max}, \sum_{n=1}^{N_s} i_{\max}^{\text{dis}} v_n(t + \Delta T) \right) \\ &\approx \min \left(N_s \, p_{\max}, \sum_{n=1}^{N_s} i_{\max}^{\text{dis}} \left(\text{OCV} \left(z_n(t) - i_{\max}^{\text{dis}} \frac{\Delta T}{N_p Q} \right) - i_{\max}^{\text{dis}} \frac{R_{\text{dis}}, \Delta T}{N_p} \right) \right) \end{split}$$

Dr. Gregory L. Plett University of Colorado Colorado Springs

Battery Pack Balancing and Power Estimation | How to find available battery power using a simplified cell model | 4 of 5

5.3.3: How to consider other performance limits when computing available battery power

Summary

- Previously, computed power based on voltage limits only
- Now, can compute power additionally based on future SOC limits, electronics current limits, load power limits
 - Additionally, can use confidence interval on SOC from xKF to produce conservative estimate of available power
- This completes discussion of the simple HPPC method
- Will next learn how to implement in Octave code

Dr. Gregory L. Plett University of Colorado Colorado Springs