Brevet blanc 1

/5 Exercice 1 : QCM

Cet exercice est un questionnaire à choix multiples.

Pour chaque question, quatre réponses sont proposées mais une seule est exacte. Pour chacune des questions, entourer la bonne réponse, aucune justification n'est demandée.

N	${f Question}$	Réponse A	Réponse B	Réponse C	Réponse D	
1	$2 + \frac{2}{3} imes \frac{1}{4}$ est égal à	$\frac{13}{6}$	$\frac{4}{12}$	$\frac{5}{14}$	$\frac{5}{7}$	
2	$\frac{(10^{-3})^2 \times 10^4}{10^{-5}} \text{ est \'egal \'a} :$	10^{3}	10^{-15}	10^{-7}	10^{4}	
3	L'écriture scientifique de 65 100 000 est	$6,51\times10^7$	651×10^5	$6,51 \times 10^{-7}$	$65, 1 \times 10^6$	
4	Soit $g(x) = x^2 - 5$. L'image de -1 par g est :	-4	-6	4	5	
5	Soit $f(x) = (x-2)(3-2x)$. L'image de 1 par g est :	-1	1	11	0	

/6 Exercice 2 : Soit, ci-dessous la représentation graphique d'une fonction f.

R'epondre aux questions en faisant appara $\^{t}$ tre sur le graphique les trac\'es n\'ecessaires.

- 1. Donner l'image de 0 puis celle de 1 par la fonction f.
- 2. Lire les antécédents de 1 par la fonction f.
- 3. Citer un nombre qui n'a pas d'antécédent par la fonction f.
- 4. Donner un nombre qui a trois antécédents pour la fonction f et citer ces 3 antécédents.

/8 Exercice 3 : Jean-Baptiste, élève de troisième, se promène sur l'île de Manhattan à New-York.

On lui a demander de vérifier que les 14ème et 42ème rues sont bien parallèles et que la 6ème avenue est bien perpendiculaires à ces deux rues.

Jean-Baptiste part du point C, remonte la 6ème avenue jusqu'à Bryant Park, tourne à gauche jusqu'à Times Square, puis descend Broadway jusqu'à Union Square Park.

Jean-Baptiste a mesuré les longueurs suivantes : CE = 1400 m, EB = 560 m, BT = 192 m, TE = 592 m et EU = 1480 m

- 1. (a) Montrer que les droites (BT) et (CU) sont parallèles.
- (b) En déduire la distance entre le point de départ C de Jean-Baptiste et Union Square Park.
 - 2. Montrer que la 14ème rue et la 6ème avenue forment un angle droit.

/9 Exercice 4:

Document nº 1

Le surpoids est devenu un problème majeur de santé, celui-ci prédispose à beaucoup de maladies et diminue l'espérance de vie.

L' indice le plus couramment utilisé est celui de masse corporelle (IMC).

Document nº 2

L'IMC est une grandeur internationale permettant de déterminer la corpulence d'une personne adulte entre 18 ans et 65 ans.

Il se calcule avec la formule suivante : IMC = $\frac{\text{masse}}{\text{taille}^2}$ avec « masse » en kg et « taille » en m.

Normes: 18,5 ≤ IMC < 25 corpulence normale

 $25 \leq IMC < 30$ surpoids

IMC > 30 obésité

1. Dans une entreprise, lors d'une visite médicale, un médecin calcule l'IMC de six des employés. Il utilise pour cela une feuille de tableur dont voici un extrait :

	A	В	С	D	Е	F	G	
1	Taille (en m)	1,69	1,72	1,75	1,78	1,86	1,88	
2	Masse (en kg)	72	85	74	70	115	85	
3	IMC (*)	25,2	28,7	24,2	22,1	33,2	24,0	
4	(*) valeur approchée au dixième							

- (a) Combien d'employés sont en situation de surpoids ou d'obésité dans cette entreprise?
- (b) Laquelle de ces formules a-t-on écrite dans la cellule B3, puis recopiée à droite, pour calculer l'IMC? Recopier la formule correcte sur la copie.

$$=72/1,69^2$$
 $= B1/(B2*B2)$ $= B2/(B1*B1)$ $= $B2/($B1*$B1)$

2. Le médecin a fait le bilan de l'IMC de chacun des 41 employés de cette entreprise. Il a reporté les informations recueillies dans le tableau suivant dans lequel les IMC ont été arrondis à l'unité près.

IMC	20	22	23	24	25	29	30	33	Total
Effectif	9	12	6	8	2	1	1	2	41

- (a) Calculer une valeur approchée, arrondie à l'entier près, de l'IMC moyen des employés de cette entreprise.
- (b) On lit sur certains magazines : « On estime qu'au moins 5 en surpoids ou est obèse ». Est-ce le cas pour les employés de cette entreprise ?

/12 Exercice 5:

Programme A	Programme B
 Choisir un nombre 	Choisir un nombre
Soustraire 3	 Calculer le carré de ce nombre
 Calculer le carre du résultat obtenu 	 Ajouter le triple du nombre de départ
	Ajouter 7

- 1. Corinne choisit le nombre 1 et applique le programme A. Expliquer en détaillant les calculs que le résultat du programme de calcul est 4.
 - 2. Tidjane choisit le nombre -5 et applique le programme B. Quel résultat obtient-il?
- 3. Lina souhaite regrouper le résultat de chaque programme à l'aide d'un tableur. Elle crée la feuille de calcul ci-dessous. Quelle formule, copiée ensuite à droite dans les cellules C3 à H3, a-t-elle saisie dans la cellule B3?

B2 \checkmark : $X \checkmark f_x = (B1-3)^2$									
4	Α	В	С	D	Е	F	G	Н	
1	Nombre de départ	-3	-2	-1	0	1	2	3	
2	Résultat du programme A	36	25	16	9	4	1	0	
3	Résultat du programme B	7	5	5	7	11	17	25	

- 4. Zoé cherche à trouver un nombre de départ pour lequel les deux programmes de calcul donnent le même résultat. Pour cela, elle appelle x le nombre choisi au départ et exprime le résultat de chaque programme de calcul en fonction de x.
- (a) Montrer que le résultat du programme A en fonction de x peut s'écrire sous forme développée et réduite : $x^2 6x + 9$.
- (b) Écrire le résultat du programme B en fonction de x.
- (c) Existe-t-il un nombre de départ pour lequel les deux programmes donnent le même résultat? Si oui, lequel?

/10 Exercice 6 : (Les transformations)

- 1. On considère l'hexagone ABCDEF de centre O représenté ci-contre.
- (a) Quelle est l'image du quadrilatère CDEO par la symétrie de centre O?
- (b) Quelle est l'image du segment [AO] par la symétrie d'axe (CF)?
- (c) On considère la rotation de centre O qui transforme le triangle OAB en le triangle OCD. Quelle est l'image du triangle BOC par cette rotation?

- 2. La figure ci-contre représente un pavage dont le motif de base a la même forme que l'hexagone cidessus. On a numéroté certains de ces hexagones.
- \rightarrow Quelle est l'image de l'hexagone 14 par la translation qui transforme l'hexagone 2 en l'hexagone 12 ?

