The Inverter

Pravin Zode

Outline

- Inverter Basics
- Transient Response
- DC Characteristics
- Beta Ratio Effect
- Noise Margin

Inverter Basics

- PMOS on top (connected to VDD)
- NMOS on bottom (connected to GND)
- Both gates connected to input Vin
- Drains connected together to form output Vout

Inverter DC Analysis

$$V_{OL} = 0$$

$$V_{OH} = V_{DD}$$

$$V_{M} = f(R_{n}, R_{p})$$

Inverter Transient Response

(a) Low-to-high

(b) High-to-low

CMOS Inverter Load Characteristics

6

Inverter DC Characteristics

Inverter DC Characteristics

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\text{out}} = V_{DD}$
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \leq V_{DD} - \left V_{tp} \right $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\text{out}} = 0$

8

Inverter Threshold

- Inverter threshold is the input voltage at which the output voltage = input voltage for an inverter
- Ideal condition: Vdd /2
- Why it is desirable
 - Maximum noise margin
 - Equal rise and fall times for charging/discharging capacitive loads
 - Balanced PMOS (pull-up) and NMOS (pull-down) strengths

Beta Ratio Effect

- Inverters with different beta ratios
 r = βp /βn are called skewed
 inverters
 - > r > 1: HI-skewed stronger
 pMOS → higher threshold
 - > r<1: LO-skewed weaker pMOS \rightarrow lower threshold
 - > r=1: Unskewed inverter balanced

Impact of Skewing:

- Alters switching threshold in DC transfer characteristics
- Sharp transitions maintained despite skewing

Noise Margin

- Noise margin quantifies the tolerance to unwanted voltage fluctuations (noise) on the input without corrupting the output
- Closely related to the DC voltage transfer characteristics
- Characterized by two parameters:
 - LOW Noise Margin (NML)→ Tolerance for noise in logic
 '0' region
 - → HIGH Noise Margin (NMH) → Tolerance for noise in logic
 '1' region

Noise Margin

where

 V_{IH} = minimum HIGH input voltage

 V_{IL} = maximum LOW input voltage

 V_{OH} = minimum HIGH output voltage

 V_{OL} = maximum LOW output voltage

$$NM_L = V_{IL} - V_{OL}$$

$$NM_H = V_{OH} - V_{IH}$$

Noise Margin

- Let's say a gate outputs a logical HIGH as VOH = 4.8V, and the next gate requires at least VIH = 3.5V to reliably detect a HIGH:
 NMH = VOH VIH = 4.8V 3.5V = 1.3V
- This means: Up to 1.3V of noise can interfere, and the signal will still be understood as HIGH
- Similarly, for LOW:
- Suppose VOL = 0.2V, and the input accepts LOWs up to VIL
 = 1V: NML = VIL VOL = 1V 0.2V = 0.8V
- So, up to 0.8V of noise can be tolerated while still being recognized as LOW.

Inverter Noise Margin

- If NML or NMH is small, gate is more susceptible to input noise
- Unskewed gates have balanced noise margins, improving resistance to random noise
- Skewed gates can favor NMH or NML depending on the dominant input noise condition
- Speed vs. noise margin is a common trade-off; higher speed often reduces noise margins
- Noise margins are relative to VDD, 0.4 V margin is good in 1.8 V process but poor in 5 V.

Summary

- Beta ratio determines the inverter's switching threshold
 - \rightarrow r = 1 \rightarrow Balanced inverter \rightarrow Vdd /2
 - \rightarrow r > 1 \rightarrow HI-skewed (stronger pMOS) \rightarrow Higher threshold
 - \rightarrow r < 1 \rightarrow LO-skewed (stronger nMOS) \rightarrow Lower threshold
- Skewing affects rise/fall times, noise margins, and power
- Adjusted by changing transistor widths
- Noise Margin defines tolerance to unwanted input voltage noise
- Larger noise margins → More reliable operation
- Unity gain point (slope = -1) defines logic levels
- Expressed relative to V_{DD} for process scaling

Thank you!

Happy Learning