Прогнозирование временных рядов

K.B. Воронцов, A.B. Зухба vokov@forecsys.ru a__1@mail.ru

май 2016

Содержание

- Задачи прогнозирования
 - Понятие временного ряда
 - Примеры прикладных задач
 - Обзор методов прогнозирования

- 2 Адаптивные методы краткосрочного прогнозирования
 - Экспоненциальное скользящее среднее
 - Модели с трендом и сезонностью
 - Анализ адекватности адаптивных моделей

 $y_0, y_1, \dots, y_t, \dots$ — временной ряд, $y_i \in \mathbb{R}$ $\hat{y}_{t+d}(w) = f_t(y_1, \dots, y_t; w)$ — модель временного ряда, где $d=1,\ldots,D,\ D$ — горизонт прогнозирования, w — вектор параметров модели

Метод наименьших квадратов:

$$Q_t(w) = \sum_{i=t_0}^t (\hat{y}_i(w) - y_i)^2 \rightarrow \min_{w}$$

Проблемы:

- рядов может быть очень много
- решение задачи регрессии это долго
- поведение рядов может не описываться одной моделью
- функция потерь может быть неквадратичной

Эконометрика — основной источник задач прогнозирования

Примеры эконометрических временных рядов:

- рыночные цены
- объёмы продаж в торговых сетях
- объёмы потребления и цены электроэнергии
- объёмы грузовых и пассажирских перевозок
- дорожный трафик (прогнозирование пробок)

Основные явления в эконометрических временных рядах:

- тренды
- сезонности
- разладки (смены модели ряда)

Марно Вербик. Путеводитель по современной эконометрике, 2008.

Пример. Задача прогнозирования объёмов продаж

Ежедневные объёмы продаж товара

Особенности задачи: огромное число рядов, продажи зависят от типа товара, тренды, сезонность, пропуски, праздники, промоакции, скачки, плохо работают сложные модели

Пример. Задача прогнозирования цен электроэнергии

Почасовые цены электроэнергии на бирже NordPool, 2000г.

Особенности задачи: три вложенные сезонности, скачки

Линейная модель авторегрессии

В роли признаков — п предыдущих наблюдений ряда:

$$\hat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

В роли объектов $\ell = t - n + 1$ моментов в истории ряда:

$$F_{\ell \times n} = \begin{pmatrix} y_{t-1} & y_{t-2} & y_{t-3} & \cdots & y_{t-n} \\ y_{t-2} & y_{t-3} & y_{t-4} & \cdots & y_{t-n-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ y_n & y_{n-1} & y_{n-2} & \cdots & y_1 \\ y_{n-1} & y_{n-2} & y_{n-3} & \cdots & y_0 \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_t \\ y_{t-1} \\ \vdots \\ y_{n+1} \\ y_n \end{pmatrix}$$

Функционал квадрата ошибки:

$$Q_t(w, X^{\ell}) = \sum_{i=n}^t (\hat{y}_i(w) - y_i)^2 = \|Fw - y\|^2 \to \min_w$$

Беглый обзор методов прогнозирования

- Авторегрессионные модели
- ARMA, ARIMA, GARCH,...
- Нейросетевые модели
- Гусеница [Голяндина, 2003]
- Адаптивные методы краткосрочного прогнозирования
- Адаптивная авторегрессия
- Адаптивная селекция моделей
- Адаптивная композиция моделей
- Прогнозирование плотности распределения
- Квантильная регрессия

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. Финансы и статистика, 2003.

Экспоненциальное скользящее среднее (ЭСС)

Простейшая регрессионная модель — константа $\hat{y}_{t+1} = c$, наблюдения учитываются с весами, убывающими в прошлое:

$$\sum_{i=0}^{t} \beta^{t-i} (y_i - c)^2 \to \min_{c}, \quad \beta \in (0,1)$$

Аналитическое решение — формула Надарая-Ватсона:

$$c \equiv \hat{y}_{t+1} = \frac{\sum_{i=0}^{t} \beta^{i} y_{t-i}}{\sum_{i=0}^{t} \beta^{i}}$$

Запишем аналогично \hat{y}_t , оценим $\sum\limits_{i=0}^t \beta^i pprox \sum\limits_{i=0}^\infty \beta^i = rac{1}{1-eta}$,

получим
$$\hat{y}_{t+1} = \hat{y}_t \beta + (1 - \beta) y_t$$
, заменим $\alpha = 1 - \beta$:

$$\hat{y}_{t+1} := \hat{y}_t + \alpha(y_t - \hat{y}_t) = \alpha y_t + (1 - \alpha)\hat{y}_t,$$

 $\alpha \in (0,1)$ называется параметром сглаживания.

Рекуррентная формула для среднего арифметического

Экспоненциальное скользящее среднее (ЭСС):

$$\hat{y}_{t+1} := \hat{y}_t + \frac{\alpha}{\alpha} (y_t - \hat{y}_t)$$

Среднее арифметическое:

$$\hat{y}_{t+1} := \frac{1}{t+1} \sum_{i=0}^{t} y_i = \hat{y}_t + \frac{1}{t+1} (y_t - \hat{y}_t)$$

При $\alpha_t = \frac{1}{t+1}$ имеем среднее арифметическое

При $lpha_t=$ const имеем экспоненциальное скользящее среднее

Условие сходимости к среднему (для стационарных задач):

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

ЭСС подходит также и для нестационарных задач

Подбор параметра сглаживания

Чем больше lpha, тем больше вес последних точек, при lpha o 1 тривиальный прогноз $\hat{y}_{t+1} = y_t$.

Чем меньше lpha, тем сильнее сглаживание, при lpha o 0 тривиальный прогноз $\hat{y}_{t+1} = ar{y}$.

Оптимальное α^* находим по скользящему контролю:

$$Q(\alpha) = \sum_{t=T_0}^{T_1} (\hat{y}_t(\alpha) - y_t)^2 \to \min_{\alpha}$$

Эмпирические правила:

если $\alpha^*\in(0,0.3)$, то ряд стационарен, ЭСС работает; если $\alpha^*\in(0.3,1)$, то ряд нестационарен, нужна модель тренда.

Модели с трендом и сезонностью

Пример. Сочетания тренда и сезонности (модельные данные)

- Ряд 1 сезонность без тренда
- Ряд 2 линейный тренд, аддитивная сезонность
- Ряд 3 линейный тренд, мультипликативная сезонность
- Ряд 4 экспоненциальный тренд, мультипликативная сезонность

Модель Хольта

Линейный тренд без сезонных эффектов:

$$\hat{y}_{t+d} = a_t + b_t d,$$

где a_t , b_t — адаптивные коэффициенты линейного тренда

Рекуррентная формула:

$$a_t := \alpha_1 y_t + (1 - \alpha_1)(a_{t-1} + b_{t-1});$$

 $b_t := \alpha_2(a_t - a_{t-1}) + (1 - \alpha_2)b_{t-1}.$

Частный случай — модель линейного роста Брауна:

$$\alpha_1 = 1 - \beta^2, \quad \alpha_2 = 1.$$

Модель Тейла-Вейджа

Линейный тренд с аддитивной сезонностью периода s:

$$\hat{y}_{t+d} = (a_t + b_t d) + \theta_{t+(d \bmod s)-s}.$$

 $a_t + b_t d$ — тренд, очищенный от сезонных колебаний, $\theta_0, \dots, \theta_{s-1}$ — сезонный профиль периода s.

$$a_t := \alpha_1 (y_t - \theta_{t-s}) + (1 - \alpha_1)(a_{t-1} + b_{t-1});$$

$$b_t := \alpha_2 (a_t - a_{t-1}) + (1 - \alpha_2)b_{t-1};$$

$$\theta_t := \alpha_3 (y_t - a_t) + (1 - \alpha_3)\theta_{t-s}.$$

Модель Уинтерса

Мультипликативная сезонность периода s:

$$\hat{y}_{t+d} = a_t \cdot \theta_{t+(d \bmod s)-s},$$

 $heta_0,\dots, heta_{s-1}$ — сезонный профиль периода s.

$$\begin{aligned} & a_t := \alpha_1 (y_t / \theta_{t-s}) + (1 - \alpha_1) a_{t-1}; \\ & \theta_t := \alpha_2 (y_t / a_t) + (1 - \alpha_2) \theta_{t-s}. \end{aligned}$$

Модель Уинтерса с линейным трендом

Мультипликативная сезонность периода s с линейным трендом:

$$\hat{y}_{t+d} = (a_t + b_t d) \cdot \theta_{t+(d \bmod s)-s},$$

 $a_t + b_t d$ — тренд, очищенный от сезонных колебаний, $\theta_0, \dots, \theta_{s-1}$ — сезонный профиль периода s.

$$a_{t} := \alpha_{1}(y_{t}/\theta_{t-s}) + (1 - \alpha_{1})(a_{t-1} + b_{t-1});$$

$$b_{t} := \alpha_{2}(a_{t} - a_{t-1}) + (1 - \alpha_{2})b_{t-1};$$

$$\theta_{t} := \alpha_{3}(y_{t}/a_{t}) + (1 - \alpha_{3})\theta_{t-s}.$$

Модель Уинтерса с экспоненциальным трендом

Мультипликативная сезонность с экспоненциальным трендом:

$$\hat{y}_{t+d} = a_t(r_t)^d \cdot \theta_{t+(d \bmod s)-s},$$

 $a_t(r_t)^d$ — экспоненциальный тренд, очищенный от сезонности, $\theta_0,\dots,\theta_{s-1}$ — сезонный профиль периода s.

$$\begin{aligned} \mathbf{a}_t &:= \alpha_1 (\mathbf{y}_t / \theta_{t-s}) + (1 - \alpha_1) \mathbf{a}_{t-1} r_{t-1}; \\ r_t &:= \alpha_2 (\mathbf{a}_t / \mathbf{a}_{t-1}) + (1 - \alpha_2) r_{t-1}; \\ \theta_t &:= \alpha_3 (\mathbf{y}_t / \mathbf{a}_t) + (1 - \alpha_3) \theta_{t-s}. \end{aligned}$$

Адаптивная авторегрессионная модель

Линейная модель авторегрессии (линейный фильтр):

$$\hat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

 $arepsilon_t = y_t - \hat{y}_t$ — ошибка прогноза \hat{y}_t , сделанного на шаге t-1

Метод наименьших квадратов: $arepsilon_t^2
ightarrow \min_w$

Один шаг градиентного спуска в каждый момент t:

$$w_j := w_j + h_t \varepsilon_t y_{t-j+1}.$$

Градиентный шаг в методе скорейшего спуска:

$$h_t = \frac{\alpha}{\sum_{j=1}^n y_{t-j+1}^2},$$

где α — аналог параметра сглаживания.

Следящий контрольный сигнал

 $arepsilon_t = y_t - \hat{y}_t$ — ошибка прогноза \hat{y}_t , сделанного на шаге t-1 Следящий контрольный сигнал (tracking signal [Trigg, 1964])

$$K_{t} = \frac{\hat{\varepsilon}_{t}}{\tilde{\varepsilon}_{t}} \qquad \qquad \hat{\varepsilon}_{t+1} := \gamma \varepsilon_{t} + (1 - \gamma)\hat{\varepsilon}_{t}; \\ \tilde{\varepsilon}_{t+1} := \gamma |\varepsilon_{t}| + (1 - \gamma)\tilde{\varepsilon}_{t}.$$

Рекомендация: $\gamma = 0.05 \dots 0.1$

Статистический тест адекватности (при $\gamma\leqslant 0.1,\ t\to\infty$): гипотеза H_0 : Е $\varepsilon_t=0,\ E\varepsilon_t\varepsilon_{t+d}=0$ принимается на уровне значимости α , если

$$|K_t| \leqslant 1.2\Phi_{1-\alpha/2}\sqrt{\gamma/(2-\gamma)},$$

 $\Phi_{1-lpha/2}$ — квантиль нормального распределения, $\Phi_{1-lpha/2}=\Phi_{0.975}=1.96$ при lpha=0.05

Модель Тригга-Лича [Trigg, Leach, 1967]

Проблема: адаптивные модели плохо приспосабливаются к резким структурным изменениям

Решение: $\alpha = |K_t|$

Недостатки:

- 1) плохо реагирует на одиночные выбросы;
- 2) требует подбора γ , при рекомендации $\gamma = 0.05...0.1$.