Integration of SAW and BAW Technologies for Oscillator Applications

International Workshop on SiP/Soc Integration of MEMS and Passive Components with RF ICs

March 2, 2004

Chiba University, Japan

C.S. Lam
TXC Corporation
cslam@txc.com.tw

Contents

BAW* or SAW

BAW Development

SAW Development

BAW and SAW

Some Interesting Thoughts

* Conventional Crystal Technology and not FBAR as in-

	Ceramic	SAW	BAW
Size	Large	Small	Small
Selectivity	Worst	Best	Good
Power handling	Best	Fair	Good
Integration potential	No	Multi-Chip modules	System on chip-full integration possible
Manufacturability	Mature	Mature	In progress

Unaxis

BAW or SAW

- BAW or SAW: Two "schools" of trainings, two types of companies, ...

General Understanding

BAW: quartz exclusively, temperature stable and low frequency.

SAW: quartz, LiNbO3, LiTaO3, ... high frequency and temperature not as stable

- In general, BAW folks don't know SAW, SAW folks don't know BAW, ...
- In general, IC folks else don't know much about BAW and SAW, ...
- TriQuint's acquisition of SAWTEK (SAW)

ICS's acquisition of MicroNetwork/Andersen Labs (SAW)

Pericom's acquisition of SaRonix (BAW)

BAW or SAW

$$f_n = \frac{n}{2t} \sqrt{\frac{c}{\rho}}$$

$$f_n \quad resonance freq$$

$$n \quad odd integers$$

$$c \quad stiffness coefficient$$

$$\rho \quad density$$

$$t \quad thickness$$

Frequency (f) = Velocity (V) * Wavelength (λ)

BAW and SAW Cuts

BAW Angles (, ,)

AT-cut is typically with of ~35.25° SC-cut is typically with of 33.93° and of 21.93°

SAW Euler Angles (, µ,)

ST-cut quartz has Euler Angles (0°, 132.75°, 0°) XY112 LiTaO3 has Euler Angles (90°, 90°, 112°)

Frequency Control Products

SAW-based (<50 MHz ~ 5 GHz)	
SAWR	
SAWF	
CSO	
VCSO	
TCSO?	
OCSO?	
Meet to Provide the Performance	
Clock Data Recovery (CDR)	
Clock Smoother (CS)	
Frequency Translator (FX)	
. ,	

BAW Development- Smaller

Smallest Crystal- 2.5x2mm² (2x1.6mm² is coming?)

Smallest CXO- 2.5x2mm² Under Development

BAW Development- Higher Frequency

60 to 200 MHz Inverted Mesa Quartz Resonators

No.	Parameters	Requirements
1	Nominal frequency	60 to 200 MHz
2	Mode of vibration	AT-Cut fundamental
3	Package type	SMD package (3.8x3.8x1.0mm ³)
4	Load capacitance	Series
5	Drive level	100 μW max
6	Frequency tolerance	±30.0 ppm (at 25±3 °C)
7	Operating Temp. range	0 to 85 °C
8	Resonance resistance	30 Ohms max
9	Motional capacitance(C1)	TBD (4 to 7 fF)
10	Re-flow soldering	±5 ppm max (260 °C peak)
11	Frequency stability	±15 ppm (Operating Temp. Range, Ref. 25 °C)
12	Frequency Discontinuities	±2 ppm/°C max (Frequency Perturbation)
13	Aging	±10 ppm/20years (25±3 °C)

Toyocom 2002

BAW Development- More Stable

Smaller- 2.5x2 mm² (TEW)

Smaller- 20.8x13.2x7.6 mm³ (VI's EMXO) Evacuated.

Evacuated Miniature SAW (EMSO)

Preliminary

ES-380 Series

- Frequency: 600 MHz to 1 GHz
- Supply: +3.3, or +5Vdc
- . Outputs: Sine
- Temp Stability: ±5 ppm -40° to +85°
- Package: 13.2 x 20.8 x 7.6 mm
- Screening: Up to Class B

SAW Development- History

	Segments	Frequency Range	ASP (US\$)	Leaders
60's on	Conventional high-loss TV-IF SAWFs incl. 480 MHz for digital satellite broadcast, etc 1st Wave	30 to 50 MHz	0.2~0.5	MuRata, Hitachi, Epcos, et al.
70's on	SAWRs for remote control, keyless entry, etc 1.5 Wave	300 MHz to 1 GHz	0.3~0.8	RFM, Epcos, et al.
70's on	Medium to high-loss IF SAWFs for general IF filtering, VSAT, basestations, repeaters, routers, GPS, etc.	100 to 600 MHz	1.5~50	Epcos, SAWTEK, VI, ICS, Temex, et al.
70's on	SAW oscillators for frequency sources, computer servers, IFF, telecom equipment, etc.	100 MHz to 1.1 GHz	3~300	ICS, SAWTEK, Epson, et al.
80's on	SAWFs for clock and data recovery applications, etc.	100 MHz to 2.5 GHz	5~100	Hitachi, VI, et al.
90's on	Low-loss IF and RF SAWFs for mobile phones, cordless phones, WLAN cards, handheld GPS Rx, etc 2nd Wave	50 MHz to 5 GHz	0.2~1.0	Epcos, Fujitsu, SAWTEK, MuRata, Temex, VI, et al.
Mid 90's on	VCSOs for telecom equipment, etc.	150 MHz to 2.5 GHz	20~300	VI, ICS, Epson, SAWTEK, et al.
Y2K on	3rd Wave? Application will have to be closely related	l to daily living like TVs ((1st Wave) and	cell phones (2 nd Wave).

SAW Development- Selecting SAW Substrates

 $V_f(m/s)$

SAW Velocity

 k^2

Electromechanical Coupling Constant $(k^2 = -(\Delta v/v))$

TCD (ppm/°C)

Temp. Coefficient of Delay (TCF = 1/TCD)

PFA (°)

Power Flow Angle

Leakage (dB/λ)

For LSAW and HVPSAW

Penetration Depth $(x\lambda)$

SAW Development- SAW Substrates

Established (3"~4")

Quartz (SiO₂) Lithium Niobate (LiNbO₃) Lithium Tantalate (LiTaO₃) Lithium Tetraborate (Li₂B₄O₇) ZnO/Glass

Available but either Limited Supply or Not Widely Used (2~4")

Bismuth Germanium Oxide $(Bi_{12}GeO_{20})$ Langasite $(La_3Ga_5SiO_{14})$ ZnO/Diamond Gallium Phosphate $(GaPO_4)$

At R&D Stage

Potassium Niobate (KNbO₃) ZnO/Sapphire AlN/Sapphire SiO₂/LiNbO₃ Others

SAW Development- Smaller

World's Smallest CSP RF SAW Filter 1.6 x 1.4 x 0.6 mm³

Kyocera 9/2003

=	PCS Rx	Cellular Rx	GPS Rx	
Туре	SF16-1960M5UB01	SF16-0881M5UB01	SF16-1575M5UB01	
Center Frequency (MHz)	1960	881.5	1575.42	
Insertion Loss (dB)	4.1	3.0	1.8	
Ripple (dB)	2.0	1.5	0.7	
VSWR	2.5	2.5	2.5	
	DC-1850MHz 30	DC-824MHz 30	DC-1475MHz 30	
	1850-1910MHz 15	824-849MHz 30	1475-1525MHz 10	
Rejection (dB)	2040-2200MHz 25	915-960MHz 23	1625-1675MHz 10	
nejection (ub)	2200-2800MHz 30	960-3000MHz 40	1675-3155MHz 30	
	2800-3400MHz 30	10	3155-6000MHz 20	
	3400-6000MHz 20			
Amplitude Imbalance (dB)	+/- 1.0	+/- 1.85	+/- 2.0	
Phase Imbalance (deg)	+/- 15	+/- 10	+/- 20	
Impedance (ohms)	50 Unbalance Input // 100 Balance Output			

SAW Development- More Stable Cut

	ST-Cut	LST-Cut
Rotated Y-Cut (°)	42.75	~ -75
Velocity (m/s)	3158	3960
Coupling Constant (k ²)	0.0016	0.0011
Attenuation (dB/λ)	0	0.0026

Bell Labs 1989

SAW Development- CSO to Compete with CXO

SAW Oscillator with K-Cut of Quartz with Euler Angles (0°, 96.5°, 33.8°)

Epson's EG2001 (106~170 MHz).

5x7mm² ceramic package.

CMOS output.

106.25 to 170 MHz.

3ps period jitter.

±100 ppm stability including 10 years aging.

Applications- Gigabit Ethernet, Fiber Channel, SONET/SDH.

NPC CXO IC

SAW Development- CSO Compared with CXO

SAW Development- CSO to Compete with CXO

May, 2003

KSS's TSO-1 (LVPECL $50\sim300$ MHz) and FSO-2 (CMOS $100\sim170$ MHz).

5x7mm² ceramic package.

 ± 100 ppm total stability (0 to 70 °C).

SAW Development- More Stable CSO

Size: $7x5x1.4 \text{ mm}^3$

EG-2102CA

Low Jitter High Frequency SAW Oscillator

- Low jitter oscillator which adopted the direct oscillation
- Ceramic package with 1.4mm thickness
- Excellent shock resistance and environmental capability
- LVPECL output
- Provided with output enable function (OE)
- Frequency Range: 100.0000 to 700.0000 MHz
- APR: $\pm 100 \times 10^{-6}$
- Power: 3.3±0.3 V

VI (**Up** to 800 MHz)

1993- 18.5x10.5 mm²

2000- 14x9x4.5 mm³

2003- 7x5x2 mm³

To Compete with VCXO

622 MHz VCXO with SAW Content

11.4x9.6x6.9 mm³ (NDK)

Item	Spec.
Nominal Frequency	622.08MHz
Supply Voltage	+3.3V
Control Voltage	+1.65±1.5V
Load	50ohm
Operating. Temp. Range	-10 to +70deg.C
Freq. Stability	±50ppm max.
Freq. Trim Range	±100ppm min.
Output Level	1mW min.
(Sub-) Harmonics	-20dB
Dimension	11.4x9.6x4.5mm
Jitter	16ps rms max.

Yamada et al. 2002

SAW Development- Diamond SAW based VCSO

Synergy 2001

622.08 & 2488.32 MHz

 $0.625 \times 0.625 \times 0.25 \text{ in}^3$

Tuning range ±100 ppm

Power 5V

- @ 100 Hz offset
- -80 dBc/Hz
 - -70 dBc/Hz

- @ 1 kHz offset
- -110 dBc/Hz -100 dBc/Hz
- @ 10 kHz offset
- -135 dBc/Hz -122 dBc/Hz @ 100 kHz offset
 - -155 dBc/Hz -142 dBc/Hz
- @ 300 kHz offset -162 dBc/Hz -155 dBc/Hz

Epson 2004

2~3 GHz (2488.32 MHz)

 $10.0x10.0x3.8 \text{ mm}^3$

 $APR \sim \pm 50 \text{ ppm}$

Power 3V

What the Market wants w.r.t. Oscillators?

What?	Level?	BAW	SAW	
Frequency	Higher	Overtones, analog multiplier, inverted-mesa (HFF), FBAR,	STW, LSAW, HVPSAW,	
Activity Dip/Spurious	Absence	Better crystal design tools,	N/A	
Drive Level Dependence	Low	Cleaner process,	N/A	
Short Term Stability	Better	Inverted-mesa, less components, cleaner process,	Less components, cleaner process,	
Long Term Stability	Better	TCXO, OCXO,	TCSO? OCSO?	
Functions and Integration	More	Synthesizing, programmable, multi-output,		
Output and Power	Lower	CMOS, LVPECL, LVDS, 3.3V, 2.5V, 1.8V,		
Cost	Lower	Lower materials/labor cost, plastic package, better yield,		
Size	Smaller	IC-based, novel packaging, LTCC, CSP, flipchip,		

Packaging

VI's VS-700 VCSO w/ Bare SAW Delay Line

TXC's FX61 Frequency Translator 8 KHz In 77.76 MHz Out w/ UM1 77.76 MHz Crystal

VI's TRU-050 CDR/FX/CS w/ Bare Crystal Resonator

Pericom's SCR-050 CDR/FX/CS w/ VCXO

The Basis of Most Clock Data Recovery (CDR)units, Clock Smoother (CS), Frequency Translator (FX), Timing Modules (TM), ...

Clock Jitter Filter

Frequency Translator

Clock Data Recovery using Retiming filter

DATA Decision IC Timing Extraction IC DATA

Clock Data Recovery using PLL circuit

Clock Spurious cut

SMI

BAW and **SAW** Components in the Same Package

Possible application in frequency synthesizer-

BAW to provide the frequency source and SAW to provide the frequency output.

BAW and SAW components can be put in the same package and frequency trimmed with Au addition.*

* "In-Situ Frequency Trimming of SAW Resonator Using Conventional Crystal Resonator Fine Tuning Method with Gold Thin film Addition," 2003 Proc. IEEE Int'l Ultrasonics Symposium.

Interesting Thoughts

Many inventions/discoveries happened by accident.

What was bad then may be very useful now.

What was impractical then may become very useful now.

Did we miss anything? May be it's time to slow down and look back.

Many Types of SAW- Some with BAW Content

Many inventions/discoveries happened by accident.

SAW

Rayleigh Wave

Lamb Wave

Love Wave

SSBW

STW

LSAW

PSAW

HVPSAW

BGS Wave

Stoneley Wave

Sezawa Wave

• • • • •

AT-Cut and BT-Cut Crystal Resonators

Did we miss anything? May be it's time to slow down and look back.

Typical Frequency vs Temperature Curves for various angles of AT-cut crystals

Typical Frequency vs Temperature Curves for various angles of BT-cut crystals

STW and BT-Cut Quartz Resonator

Did we miss anything? May be it's time to slow down and look back.

Both STW and BT-Cut have~Z' direction wave propagations.

X direction particle motions.

Quadratic df/f vs T.

AT-cut has Y' direction wave propagation, X direction particle motion, and cubic df/f vs T.

Is there a ~Y' direction propagating

SAW with predominating X direction
particle motion and cubic df/f vs T?

If not, why not?

SAW/SSBW/Plate Modes

What was bad then may be very useful now.

Reduced thru Backside Roughening

SSBW and "Plate Modes" of ST- and LST-Cuts of Quartz

What was bad then may be very useful now.

Bell Labs 1989

More Usable Waves Out There (Faster, Zero TCD,)?

What was bad then may be very useful now.

Extended Investigation on High Velocity Pseudo Surface Waves

Maurício Pereira da Cunha, Member, IEEE

IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 45, NO. 3, MAY 1998

Why sometimes HVPSAW has higher velocity than quasi-longitudinal bulk wave?

Material and orientation (Euler angles $[^{\circ}]$) $v_{ m BULK}$ [Km/s]	$v_p \ m short/$ open $(v_{ m SAW}^{ m FREE}) \ m [Km/s]$	$lpha$ short/open [dB/ λ]	$egin{aligned} ext{Fields} @ z &= 0 \ u_x, u_y, u_z, \ ext{short/open} \end{aligned} \ (ext{magnitude} \ [ext{Km}]) \ ext{Symmetry type} \end{aligned}$	$PFA[^{\circ}]$ $short/$ $open$ $2 \Delta v_p /v_p$ [%]
LiTaO ₃ [90° 90° 31°] [3.336 3.365 6.316] 36° YX-LiTaO ₃ [0° -54° 0°] [3.351 4.227 5.589] quartz AT-X [0° -54.7° 0°] [3.298 5.100 5.744] quartz ST-X [0° 132.75° 0°] [3.298 5.100 5.744] quartz ST-25° [0° 132.75° 25°] [3.365 4.032 6.604]	6.2442 6.3179 (3.1420) 6.9049 6.9779 (3.1252) 5.7447 5.7454 (3.1510) 5.7446 5.7449 (3.1576) 6.5262	0.56 8.0e-3 0.80 0.12 1.0e-2 2.5e-3 6.0e-3 1.2e-3	1 0.19 0.25 1 0.09 0.13 TYPE 1 1 0.11 0.60 1 0.13 0.58 TYPE 1 1 0.12 0.077 1 0.12 0.080 TYPE 1 1 0.066 0.081 1 0.056 0.084 TYPE 1 1 0.35 0.090	1.3 3.5 2.3 -14.8 -12.0 2.09 -0.2 -0.1 0.023 -0.5 -0.7 0.011 14.1 $ -$
GaAs $[45^{\circ} -90^{\circ} 25^{\circ}]$ $[2.654 \ 2.990 \ 5.376]$	5.3987 5.3986 (2.5339)	$1.9\mathrm{e}{-2} \ 1.6\mathrm{e}{-3}$	1 0.04 0.234 1 0.04 0.233 TYPE 1	2.8 2.9 0.004

BAW and **SAW**

What was bad then may be very useful now.

4-Finger/Period to Suppress Finger Mechanical Reflections

$$f_{n} = \frac{n}{2t} \sqrt{\frac{c}{\rho}}$$

$$f_{n}$$

$$resonance freq$$

$$n$$

$$odd integers$$

$$c$$

$$stiffness coefficient$$

$$\rho$$

$$density$$

$$t$$

$$t$$

$$thickness$$

Frequency (f) = Velocity (V) * Wavelength (λ)

Low-Loss SAW Filters

What was bad then may be very useful now.

SPUDT

NSPUDT

RSPUDT

TCRF

LCRF

IEF

FEUDT

IIDT

••••

Can we have low-loss SAW filters without using reflections?

Answer is simply "No".

Figure 1. Two-Focus SFIT

Film Bulk Acoustic Resonator (FBAR) Technology by Agilent

What was impractical then may be very useful now.

Roughly Speaking-

1980 to 1990 Hot 1990 to 1995 Quiet 1995 to Now Very Hot

Issues-

1.5 ~ 5 GHz.

A threat to SAW.

Processing yield is still low.

Integration is still far way.

	Ceramic	SAW	FBAR
size	675 mm ³	140 mm ³	98 mm³;
(PCS duplexer)		(cellular band)	going to 46 mm ³
electrical	excellent	good	excellent
(I.L., roll-off)			
power handling	best (>35 dBm	fair (31 dBm @	good (>32 dBm @
	@ 2 GHz)	900 MHz)	2 GHz)
temperature	0 to -5 ppm/C	-23 to -94 ppm/C	-20 to -30 ppm/C
coefficient			
frequency range			
filters:	cellular/PCS	IF-cellular-PCS	cellular-PCS-mw
duplexers:	cellular/PCS	cellular/PCS?	cellular-PCS-mw
integration	no	Multi-Chip Module	MCM; future full
		(MCM)	integration

From 36° to 42° LiTaO3- Fujitsu in 1997

What was bad then may be very useful now.

Interesting Thoughts

Many inventions/discoveries happened by accident.

What was bad then may be very useful now.

What was impractical then may become very useful now.

Did we miss anything? May be it's time to slow down and look back.

BAW and SAW are not totally non-related. They are contributing and will continue to contribute to the development of high performance frequency control devices and modules.