Методы кодирования позиционной информации в Transformer

Мурат Апишев (mel-lain@yandex.ru)

Декабрь, 2023

Позиционное кодирование

- В общем случае Transformer обрабатывает векторы последовательности одновременно, нужно встраивать информацию о позиции каждого токена
- Важные аспекты:
 - уникальность представления для каждой позиции
 - независимость расстояний между парами токенов от длины входа
 - детерминированность представления
 - адаптация метода к расширению контекста модели
- Существует много подходов, рассмотрим нижеследующие:
 - Sinusoidal / Trainable Absolute
 - Relative
 - Transformer-XL
 - ► T5
 - DeBERTa
 - RoPE

- ► ALiBi
- xPos
- NTK-Aware Scaled RoPE
- Positional Interpolation RoPE
- NoPE
- YaRN

Основные обозначения и формулы

- $x = (x_1, ..., x_n)$ векторы токенов входной последовательности
- $ightharpoonup z = (z_1, \dots, z_n)$ векторы выходов головы self-attention
- $ightharpoonup d_x$, d_z размерности векторов x и z соответственно
- ▶ Q, K, V векторы запросов, ключей и значений для слоя-головы
- W^Q , W^K , W^V весовые матрицы для получения векторов запросов, ключей и значений для слоя-головы
- Формулы подсчёта self-attention:

$$e_{ij} = \frac{\left(x_i W^Q\right) \left(x_j W^K\right)^T}{\sqrt{d_z}}, \qquad \alpha_{ij} = \operatorname{softmax}(e)_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^n \exp(e_{ik})}$$

$$z_i = \sum_{j=1}^n \alpha_{ij} (x_{ij} W^V)$$

Sinusoidal и Trainable Absolute ¹

- Первый, самый простой, но достаточно эффективный подход:
 - lacktriangle каждая абсолютная позиция кодируется вектором $\hat{p}_t \in \mathbb{R}^{d_{\!\scriptscriptstyle X}}$
 - **>** элементы \hat{p}_t^i вектора определяются формулой:

$$\hat{p}_t^i = \begin{cases} \sin(w_k t), & i = 2k \\ \cos(w_k t), & i = 2k + 1 \end{cases}, \qquad w_k = \frac{1}{10000^{2k/d_x}}$$
 (1)

- вектор позиции прибавляется к вектору токена на входе модели
- Синусоидальные векторы можно заменить на случайные векторы, обучаемые с нуля вместе с моделью
- ▶ Это увеличивает число параметров, но лишает возможности экстраполяции при росте длины контекста

¹Attention Is All You Need, 2017

Relative ²

- Большинство популярных методов работы с позициями относительные
- Кодируется не одиночный индекс, а пара позиций на разных расстояниях друг от друга
- Обычно относительное кодирование производится не путём сложения векторов на входе, а через модификацию подсчёта внимания
- ▶ В этой работе (одной из первых)
 - lacktriangle для каждого расстояния i-j обучаются два вектора $a_{ij}^K, a_{ij}^V \in \mathbb{R}^{d_z}$
 - изменение формул self-attention:

$$e_{ij} = \frac{\left(x_i W^Q\right) \left(x_j W^K + a_{ij}^K\right)^T}{\sqrt{d_z}}, \qquad z_i = \sum_{j=1}^n \alpha_{ij} \left(x_{ij} W^V + a_{ij}^V\right)$$

- Вычисления можно ускорить, раскрыв скобки перед подсчётом
- ▶ Обученные векторы общие для всех голов внимания и слоёв

²Self-Attention with Relative Position Representations, 2018

Transformer-XI ³

- ▶ Вход модели делится на сегменты, обрабатываемые последовательно
- ightharpoonup При обработке i-го сегмента используются выходы для i+1-го
- Абсолютное позиционное кодирование работать не будет: у обоих сегментов оно одинаковое
- Предлагается относительная схема:
 - как и в Relative, позиционная информация переходит в self-attention
 - ightharpoonup расчёт e_{ij} в абсолютном кодировании $(x_i = x_i^{\mathbf{e}mb} + x_i^{\mathbf{p}os})$:

$$e_{ij} \propto ((x_{i}^{e} + x_{i}^{p})W^{Q})((x_{j}^{e} + x_{j}^{p})W^{K})^{T} =$$

$$= x_{i}^{e}W^{Q}(W^{K})^{T}(x_{j}^{e})^{T} + x_{i}^{e}W^{Q}(W^{K})^{T}(x_{j}^{p})^{T} +$$

$$+ x_{i}^{p}W^{Q}(W^{K})^{T}(x_{j}^{e})^{T} + x_{i}^{p}W^{Q}(W^{K})^{T}(x_{j}^{p})^{T}$$

³Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, 2019

Transformer-XL

- Предлагается относительная схема:
 - репараметризация в относительном кодировании:

$$e_{ij} \propto \underbrace{x_{i}^{e}W^{Q}(W^{K,E})^{T}(x_{j}^{e})^{T}}_{(1)} + \underbrace{x_{i}^{e}W^{Q}(W^{K,R})^{T}(R_{i-j})^{T}}_{(2)} + \underbrace{u(W^{K,E})^{T}(x_{j}^{e})^{T}}_{(3)} + \underbrace{v(W^{K,R})^{T}(R_{i-j})^{T}}_{(4)}$$

- ightharpoonup абсолютные позиционные эмбеддинги заменяются на фиксированную синусоидальную матрицу относительных R
- векторы запросов для позиционной предлагается брать одинаковыми и моделировать обучаемыми векторами u и v
- выделяются две весовые матрицы для получения векторов ключей эмбеддингов и позиций соответственно

Transformer-XL

- Предлагается относительная схема:
 - репараметризация в относительном кодировании:

$$e_{ij} \propto \underbrace{x_{i}^{e}W^{Q}(W^{K,E})^{T}(x_{j}^{e})^{T}}_{(1)} + \underbrace{x_{i}^{e}W^{Q}(W^{K,R})^{T}(R_{i-j})^{T}}_{(2)} + \underbrace{u(W^{K,E})^{T}(x_{j}^{e})^{T}}_{(3)} + \underbrace{v(W^{K,R})^{T}(R_{i-j})^{T}}_{(4)}$$

- Интуитивный смысл каждого слагаемого:
 - 1. содержательная смысловая связь
 - 2. связь смысла и позиционной информации
 - 3. глобальное смысловое смещение
 - 4. глобальное позиционное смещение
- ▶ В Relative есть только (1) и (2), смещения отбрасываются
- ► Также $(W^{K,R})^T (R_{i-j})^T$ заменено одной обучаемой матрицей \Rightarrow отказ от синусоидальных векторов и ухудшение обобщения на длинный контекст

T5 ⁴

- Позиционная информация кодируется скаляром, который прибавляется к e_{ij} перед softmax
- lacktriangle Скаляры соответствуют различным расстояниям-отступам (i-j)
- Всего в модели 32 скаляра, которые в логарифмической шкале покрывают 128 отступов
- Близкие к 0 соседние отступы кодируются разными скалярами, а далёкие могут кодироваться одним

⁴Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, 2020

T5

- ▶ Всем расстояниям, большим 128, соответствует один и тот же скаляр
- Общий скаляр для больших расстояний способствует обобщению модели на длинный контекст

- ▶ Позиционные скаляры обучаемые и настраиваются вместе с моделью
- Каждый следующий слой расширяет окно улавливаемой позиционной информации (идейно схоже с CNN или окном внимания в Longformer⁵)
- ▶ Обученные скаляры свои для каждой головы self-attention, но общие для всех слоёв модели

⁵Longformer: The Long-Document Transformer, 2020

DeBFRTa 6

 Формула подсчёта логитов в self-attention раскладывается (как в Transformer-XL), предлагается использовать первые 3 слагаемых:

$$e_{ij} \propto \underbrace{x_{i}^{e} W^{Q} (W^{K})^{T} (x_{j}^{e})^{T}}_{(1)} + \underbrace{x_{i}^{e} W^{Q} (W^{K})^{T} (x_{j}^{p})^{T}}_{(2)} + \underbrace{x_{i}^{p} W^{Q} (W^{K})^{T} (x_{j}^{p})^{T}}_{(3)} + \underbrace{x_{i}^{p} W^{Q} (W^{K})^{T} (x_{j}^{p})^{T}}_{(4)}$$

- Мотивация в работе:
 - ▶ (1) и (2) важны, они используются и в Relative
 - ▶ (3) тоже важно для более полного моделирования информации об отступе
 - ► (4) position-to-position term для относительного кодирования несёт мало дополнительной информации

⁶DeBERTa: Decoding-enhanced BERT with Disentangled Attention, 2021

DeBERTa

Репараметризация очень похожа на Transformer-XL:

$$e_{ij} \propto \underbrace{x_i^e W^Q (W^K)^T (x_j^e)^T}_{(1)} + \underbrace{x_i^e W^Q (W^{K,R})^T (R_{i-j})^T}_{(2)} + \underbrace{R_{i-j} W^{Q,R} (W^K)^T (x_j^e)^T}_{(3)}$$

- Новые весовые матрицы свои у каждой пары голова-слой
- ightharpoonup Матрица расстояний R_{i-j} обучаемая и общая для всех слоёв и своя у каждой головы
- ightharpoonup Для всех отступов, не попадающих в размер R_{i-j} , берутся векторы ближайшего с соответствующего конца отступа
- Перед последним слоем в модели используются обучаемые абсолютные позиционные эмбеддинги

RoPF 7

Если исключить позиционные эмбеддинги, то в обобщенном варианте

$$e_{ij} \propto \langle f_q(x_i, i), f_k(x_j, j) \rangle$$

т.е. зависит от функций от эмбеддингов и абсолютных позиций

lacktriangle Предлагается подобрать функции g, f_q, f_k , такие, что

$$\langle f_q(x_i,i), f_k(x_j,j) = g(x_i,x_j,i-j) \rangle$$

lacktriangle Можно доказать, что для случая $d_z=2$ подойдёт преобразование

$$f_q(x_i, i) = \begin{pmatrix} \cos i\theta & -\sin i\theta \\ \sin i\theta & \cos i\theta \end{pmatrix} \begin{pmatrix} W_{11}^Q & W_{12}^Q \\ W_{21}^Q & W_{22}^Q \end{pmatrix} \begin{pmatrix} x_i^1 \\ x_i^2 \end{pmatrix}$$

где $heta \in \mathbb{R}, heta
eq 0$ – заданная константа, формула для f_k аналогична

⁷RoFormer: Enhanced Transformer with Rotary Position Embedding, 2021

lacktriangle Можно доказать, что для случая $d_z=2$ подойдёт преобразование

$$f_q(x_i, i) = \begin{pmatrix} \cos i\theta & -\sin i\theta \\ \sin i\theta & \cos i\theta \end{pmatrix} \begin{pmatrix} W_{11}^Q & W_{12}^Q \\ W_{21}^Q & W_{22}^Q \end{pmatrix} \begin{pmatrix} x_i^1 \\ x_i^2 \end{pmatrix}$$

ightharpoonup Подходящая функция g при этом определяется так:

$$g(x_i, x_j, i-j) = \operatorname{Re}[(W^Q x_i)(W^K x_j)^* e^{\mathbf{i}(i-j)\theta}]$$

где

- $ightharpoonup \operatorname{Re}[\mathrm{X}]$ вещественная часть $X \in \mathbb{C}$
- ▶ A^* сопряжённая матрица к A
- i мнимая единица
- Применение RoPE заключается в повороте вектора запроса/ключа на угол, зависящий от индекса его позиции
- ▶ Поворот обоих векторов на один угол (т.е. смещение позиций без изменения расстояния) сохранит значение скалярного произведения

- ightharpoonup Полученное преобразование обобщается на любую чётную d_z
- ightharpoonup Для этого d_z делится на $d_z/2$ двумерных подпространств, к каждому из которых применяется свой матрица поворота
- lacktriangle Итоговое выражение для f_q (f_k аналогично): $f_q(x_i,i) = R_{\Theta,i}^{d_z} \ W^Q \ x_i$, где

$$R_{\Theta,i}^{d_{\mathsf{x}}} = \begin{pmatrix} \cos i\theta_1 & -\sin i\theta_1 & 0 & 0 & \cdots & 0 & 0\\ \sin i\theta_1 & \cos i\theta_1 & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos i\theta_2 & -\sin i\theta_2 & \cdots & 0 & 0\\ 0 & 0 & \sin i\theta_2 & \cos i\theta_2 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 0 & 0 & \cos i\theta_{d_{\mathsf{z}}/2} & -\sin i\theta_{d_{\mathsf{z}}/2}\\ 0 & 0 & \cdots & 0 & 0 & \sin i\theta_{d_{\mathsf{z}}/2} & \cos i\theta_{d_{\mathsf{z}}/2} \end{pmatrix},$$

$$\Theta = \{\theta_k = 10000^{-2(k-1)/d_z}, k \in [1, \dots, d_z/2]\}$$

- Один из самых популярных подходов к позиционному кодированию, применяется в LLaMA, Qwen, Mistral
- ▶ В отличие от Absolute применяется не отдельным координатам, а к парам, и использует умножение на sin / соѕ вместо суммы
- ▶ В разных экспериментах показывает себя лучше, чем Absolute и Relative
- ▶ Теоретически должен помогать модели обобщаться на более длинный контекст, чем при обучении, но по факту это не работает
- Используется в качестве основы для более продвинутых методов

Al iBi 8

- ▶ Метод идейно схож с Т5: вместо добавления позиционных эмбеддингов или репараметризации подсчёта внимания к еіі добавляется скаляр
- В отличии от Т5 скаляры не обучаемые и представляют собой произведение m(i-j), где m заданное на старте число, своё для каждой головы (и общее для слоёв)
- ▶ Например, для 8 голов это $\frac{1}{2^1}, \frac{1}{2^2}, \dots, \frac{1}{2^8}$

⁸Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation, 2022

ALiBi

- В сравнении Absolute vs. RoPE vs T5 только T5 показал хорошую способность к обобщению на последовательностях с большей длиной, чем на обучении (до 600 токенов сверх исходных 512)
- ▶ Но его преимущество перекрывается возрастающими вычислительными затратами, проще обучить модель с Absolute с большим контекстом
- AliBi оказывается достаточно эффективным с т.з. скорости и памяти

ALiBi

- AliBi оказывается достаточно эффективным с т.з. скорости и памяти
- AliBi обеспечивает большую степень обобщения, позволяя модели работать с контекстом, в разы более длинным, чем на обучении (по крайней мере с т.з. перплексии)

xPos⁹

- Предлагается подход, основанный на доработке RoPE
- ▶ Вводится понятие «ожидаемого значения внимания» для пары токенов на заданном расстоянии
- Показывается, что в обычном RoPE при существенном росте расстояния эта величина начинает осциллировать, это портит качество модели
- Проблема объясняется тем, что значения косинуса не являются монотонными при угле поворота, большем π
- Решение: добавить задаваемые априорно дополнительные множители для каждой пары компонентов векторов Q и K
- Они масштабируют компоненты векторов и стабилизируют график ожидаемого значения внимания

⁹A Length-Extrapolatable Transformer, 2023

xPos

Algorithm 1: Attention with XPOS **def** rot(x): **return** $[-x_1, x_0, -x_3, x_2, ...]$ **Initialization:** $\theta_i = 1/10000^{2i/d}, \, \theta \in \mathbb{R}^{d/2}$ $\hat{\zeta}_i = (i/(d/2) + \gamma)/(1+\gamma), \ \hat{\zeta} \in \mathbb{R}^{d/2}$ **Input:** $Q, K, V \in \mathbb{R}^{h \times l \times d}, M \in \mathbb{R}^{d \times d}$ $C_{mn} = \cos m\theta_n, C \in \mathbb{R}^{l \times d/2}$ $S_{mn} = \sin m\theta_n, S \in \mathbb{R}^{l \times d/2}$ $T_{mn} = \hat{\zeta}_n^m, T \in \mathbb{R}^{l \times d/2}$ $Q = (Q \times C + rot(Q) \times S) \times T$ $K = (K \times C + \text{rot}(K) \times S) \times T^{-1}$ $output = \operatorname{softmax}(\overset{QK^T}{\sqrt{d}} \cdot M)V$

return output

NoPE 10

- Кодировщик Transformer не может работать без позиционного кодирования – получится мешок слов
- ▶ Декодировщик теоретически может если работает авторегрессионно
- Формулируются теоремы о том, что такая модель может выделять
 - на первом слое абсолютную позиционую информацию.
 - на всех последующих относительную
- ightharpoonup Эксперимент: модель 100M, контекст 20 (на тесте до 40), обучение на задачу (3 группы из 10 задач)

¹⁰The Impact of Positional Encoding on Length Generalization in Transformers, 2023

NoPE

lacktriangle Близость между моделями A и B на слое ℓ можно определить как

$$D^{\ell}(A,B) = \min_{(P,Q) \in A_{\ell} \times B_{\ell}} D(P,Q), \quad D(P,Q) = \frac{1}{n} \sum_{i=1}^{n} D_{JSD}(P_{i} || Q_{i})$$

где D_{JSD} – дивергенция Йенсена-Шеннона по выходам двух голов

Ближе всего NoPE к позиционному кодированию из Т5

NoPE

- ightharpoonup Эксперимент: модель 1.3B, контекст 1024 (на тесте до 2560), обучение авторегрессионное на данных из StarCoder
- ▶ Перплексия на 200 последних токенах (сверху длина исходных текстов)

Positional Interpolation RoPE¹¹ (SuperHOT RoPE)¹²

- Все описанные подходы делают экстраполяцию: обучение на одном диапазоне, работа на другом
- Вместо этого можно вложить увеличенный контекст в тот же диапазон с минимальным дообучением (интерполяция)

¹¹Extending Context Window of Large Language Models via Positional Interpolation, 2023

¹²https://kaiokendev.github.io/til#extending-context-to-8k, 2023

Positional Interpolation RoPE

▶ Вспомним функцию g для получения e_{ij} из RoPE:

$$g(x_i, x_j, i - j) = \operatorname{Re}[(W^Q x_i)(W^K x_j)^* e^{\mathbf{i}(i - j)\theta}]$$

▶ Можно определить вместо неё новую функцию g':

$$g'(x_i, x_j, i-j) = g\left(x_i, x_j, \frac{(i-j)L}{L'}\right)$$

где L и L' – исходная и увеличенная длины контекста

- ightharpoonup Показано, что для адаптации к новому контексту достаточно дообучения на $\sim 10^4-10^5$ последовательностях
- ▶ Замеры перплексии и качества на части бенчмарков LLaMA и суммаризации показывают преимущество 1К шагов дообучения с PI над 10К шагами обычного FT

NTK-Aware Scaled RoPE ¹³

- ▶ В PI RoPE по сути предлагается делать линейную интерполяцию, что не является оптимальным вариантом
- ► Альтернатива: вместо масштаба изменять основание (которое 10000), и, как следствие, «скорость вращения» векторов:

$$b_{new} = b \cdot \left(\frac{L'}{L}\right)^{\frac{d_z}{d_z - 2}}$$

где b и b_{new} – основания, $\frac{L'}{L}$ – фактор масштаба

- ▶ Может работать адекватно даже без дообучения
- Оба интерполяционных метода реализованы в transformers (формулы немного отличаются от оригинальных, обсудим далее), классы:
 - LlamaLinearScalingRotaryEmbedding
 - ► LlamaDynamicNTKScalingRotaryEmbedding

¹³https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_ rope_allows_llama_models_to_have, 2023

- Развитие идеи позиционной интерполяции в RoPE, замечания авторов на основе теории Neural Tangent Kernel $(NTK)^{14}$:
 - для DL-моделей задача выучить многомерный комплексный вектор для кодирования одномерной позиционной информации является проблемной
 - ▶ RoPE похож на специальный одномерный вид Fourier Features из NTK
 - равномерное растяжение векторов RoPE (как в PI) приводит к потере высокочастотных деталей, необходимых для различения очень похожих и близких в тексте токенов
 - т.е. минимальный поворот, отличающий позиции, не должен быть слишком маленьким
 - ▶ это может быть причиной некоторого падения качества PI RoPE на не-длинных сэмплах после дообучения (чего быть не должно)

¹⁴Fourier features let networks learn high frequency functions in low dimensional domains, 2020

¹⁵YaRN: Efficient Context Window Extension of Large Language Models, 2023

- ▶ Замечания авторов на основе теории Neural Tangent Kernel (NTK):
 - один из способов борьбы с проблемой (простой, но не единственный) уже описанный выше NTK-Aware Scaled RoPE
 - ▶ при сравнении без дообучения этот метод показывает себя лучше PI RoPE
 - но получается не совсем интерполяция, некоторые измерения экстраполируются слишком большими значениями
 - ▶ как следствие, при дообучении NTK-Aware уступает обычному PI RoPE
- Введем определение длины волны числа токенов, необходимого для полного прохода RoPE круга 2π в измерении d:

$$\lambda_d = \frac{2\pi}{\theta_d}$$

 RoPE PI и NTK-Aware не учитывают длину волны и считают все измерения RoPE одинаково важными для модели

- Наблюдения показывают, что у части измерений $\lambda_d > L$, у части наоборот, дисбаланс может быть сильным
- С каждым измерением можно работать по-своему в заивимости от его длины волны
- ightharpoonup В методе NTK-by-parts RoPE¹⁶ предлагается:
 - ightharpoonup если $\lambda_d \ll L$ не интерполировать
 - ightharpoonup если $\lambda_d\geqslant L$ интерполировать без экстраполяции (как в PI RoPE)
 - для прочих делать обычную NTK-Aware интерполяцию
- ▶ Работает лучше PI RoPE и NTK-Aware и с дообучением, и без

¹⁶https://github.com/jquesnelle/scaled-rope/pull/1, 2023

- ► Следующий шаг Dynamic NTK¹⁷:
 - ▶ при обучении используются последовательности разной длины
 - ightharpoonup можно фиксировать масштаб L'/L для всех сэмплов
 - ightharpoonup а можно опираться на длину сэмпла ℓ' : max $(1,\ell'/L)$
 - этот подход повышает устойчивость модели к изменению контекста в обе стороны
- ightharpoonup Утверждается, что добавление температуры t в знаменатель формулы для e_{ij} хорошо влияет на перплексию при расширении контекста
- ➤ YaRN = NTK-by-parts RoPE + температура при подсчёте логитов (совместим с оптимизациями внимания типа Flash Attention)
- ightharpoonup Для моделей LLaMA и LLaMA 2 рекомендуется брать t по формуле:

$$\sqrt{\frac{1}{t}} = 0.1 \ln\left(\frac{L'}{L}\right) + 1$$

¹⁷https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_ rope_further_increases, 2023

Extension	Trained	Context	Evaluation Context Window Size							
Method	Tokens	Window	2048	4096	6144	8192	10240			
PI (s = 2)	1B	8k	3.92	3.51	3.51	3.34	8.07			
NTK ($\theta = 20$ k)	1B	8k	4.20	3.75	3.74	3.59	6.24			
YaRN $(s=2)$	400M	8k	3.91	3.50	3.51	3.35	6.04			

Table 1: Sliding window perplexity (S=256) of ten 128k Proof-pile documents over Llama-2 extended via PI, NTK and YaRN

Model Size	Model Name	Context Window	Extension Method	ARC-c	Hellaswag	MMLU	TruthfulQA
7B	Llama 2	4k	None	53.1	77.8	43.8	39.0
7B 7B 7B 7B	Together Code Llama YaRN $(s = 16)$ YaRN $(s = 32)$	32k 100k 64k 128k	PI NTK YaRN YaRN	47.6 39.9 52.3 52.1	76.1 60.8 78.8 78.4	43.3 31.1 42.5 41.7	39.2 37.8 38.2 37.3
13B	Llama 2	4k	None	59.4	82.1	55.8	37.4
13B 13B 13B	Code Llama YaRN ($s = 16$) YaRN ($s = 32$)	100k 64k 128k	NTK YaRN YaRN	40.9 58.1 58.0	63.4 82.3 82.2	32.8 52.8 51.9	43.8 37.8 37.3

Table 3: Performance of context window extensions methods on the Hugging Face Open LLM benchmark suite compared with original Llama 2 baselines

Спасибо за внимание!