5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (1)

Phasengeschwindigkeit im Medium

$$C = \frac{C_0}{n} = \frac{1}{n \cdot \sqrt{\varepsilon_0 \cdot \mu_0}}$$

Dispersionsrelation

$$C = \frac{\omega}{k} = \frac{2\pi \cdot f}{2\pi / \lambda} = f \cdot \lambda$$

Modell einer elektromagnetischen Welle

[California Polytechnic State University]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (2)

Ausbreitung einer Wellenfront

$$mit c = \frac{s}{t_0}$$

⇒ Abstandsmessung

$$d=\frac{c\cdot t_0}{2}$$

Prinzip der Laufzeitmessung (<u>Time-of-flight measurement</u>)

[VEGA, D. Brumbi: Level Measurement]

Messprinzip	<i>c</i> / m/s	f _m / Hz	λ / m	Δt_{m} / s	n
Radar	$3 \cdot 10^8$	$1\cdot 10^{10}$	7	$1 \cdot 10^{-9}$	7
Laser	3 · 10 ⁸	$3 \cdot 10^{14}$		1 · 10 -9	

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (3)

Laserpuls-Laufzeitverfahren: Anwendung Lagerplatzkontrolle und Füllstandsmessung

[IBEO, LASE GmbH]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (4)

Laserpuls-Laufzeitverfahren: Anwendung 3D-Haldenprofilerfassung (Übersichtsaufnahmen)

[PWH Anlagen und System mbH]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (5)

Laserpuls-Laufzeitverfahren:
Anwendung 3D-Haldenprofilerfassung (Detailaufnahmen)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (6)

Laserpuls-Laufzeitverfahren: Anwendung 3D-Haldenprofilerfassung (Detailaufnahmen im Betrieb)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (7)

Laserpuls-Laufzeitverfahren: Anwendung 3D-Haldenprofilerfassung (Ergebnisse)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (8)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (9)

Lichtstreuung an kugelförmigem Teilchen [Sigrist] Streulichtintensitätsverteilung für polydisperse Suspensionen von SiO₂ in Wasser

[Sigrist]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (10)

Transmission elektromagnetischer Strahlung innerhalb der Atmosphäre (Höhe: 750 m)

[www.mjan.de, erstellt mit LOWTRAN]

Schwächungsgesetz (Lambertsches Gesetz)

$$I(s) = I_0 \cdot e^{-\mu(\lambda) \cdot s}$$

⇒ Schichtdickenmessung

Lambert-Beersches Gesetz

$$I(s) = I_0 \cdot e^{-\left(\sum\limits_{i} c_i \cdot \varepsilon_i(\lambda)\right) \cdot s}$$

⇒ Konzentrationsbestimmung

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (11)

Ausbreitung einer Wellenfront und Streuung an Streupartikeln

$$\Rightarrow$$
 Abstandsmessung $d = \frac{c \cdot t_0}{2}$

Photometrisches Grundgesetz

$$E_{V} = \frac{I_{V} \cdot \cos \alpha}{d^{2}}$$

LIDAR zur Atmosphärenerkundung

[University of Nova Gorica, Otlica-Observatorium, Slowenien]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (12)

Mobile LIDAR-Systeme
[www.Optics.org; E.ON Ruhrgas/DLR]

LIDAR-Messergebnisse
[University of Nova Gorica, Otlica-Observatorium, Slowenien]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (13)

NDIR-Sensor mit selektiver Filterung

[National Oceanic and Atmospheric Administration]

NDIR-Sensor mit optopneumatischem Doppelschichtdetektor

[J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (14)

Photoelektrischer Rauchmelder (Technische Ausführung)

[www.feuerschutzsho.de]

Extraktive Streulichtmessung mit Rauchgasaufheizung

[Sigrist]

- a: Steuerung
- **b: Streulichtphotometer**
- c: Ringleitung mit Heizung
- d: Abgaskamin

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (15)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (16)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (17)

Strahldichteverteilung bei Streuung an verschiedenen Oberflächen

[H.-J. Hentschel: Licht und Beleuchtung]

Material	Reflexionsgrad / %		
Weißes Papier	80		
Pappkarton	70		
Kork	35		
Ungehobeltes Tannenholz	20		
Autoreifen	1,5		
Kupfer	37-56		
Silber	77-93		
Bismut	42-52		
Chrom	63-68		
Nickel	41-62		

Ideale diffuse Reflexion (Lambert-Verteilung)

$$I_{\rm e}(\vartheta) = I_{\rm e}(0) \cdot \cos \vartheta$$

$$L_{\rm e}(\vartheta) = \frac{\mathrm{d}I_{\rm e}}{\mathrm{d}A_{\perp}} = \frac{\mathrm{d}I_{\rm e}}{\mathrm{d}A \cdot \cos\vartheta} = \mathrm{const}$$

Reflexionsgrad verschiedener Stoffe

[R. Zingg: Reflexionslichttaster mit aktiver Hintergrundausblendung; H. Lindner: Physik für Ingenieure]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (18)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (19)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (20)

Tasterapplikation Wafer-Prüfung

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (21)

Lichtvorhang nach Fahrstrahlprinzip

[G. Fetzer, H. Hippenmeyer: Optoelektronische Sensoren]

- 1: Sender (S)
- 2: Blende
- 3: Sendekondensor
- 4: Empfangskondensor
- 5: Teilerspiegel
- 6: Ablenkeinheit
- 7: Hohlspiegel
- 8: Reflektor
- 9: Empfänger (E)
- 10: Austrittsscheibe

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (22)

Applikation eines Einweg-Laserlichtschrankenvorhangs: Erfassung von Zugbeladungen (Projekt des Kombinierten Ladeverkehrs)

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (23)

Partielle Polarisation
[Brock University, John Wiley & Sons]

Einsatz von Polarisationsfiltern in Reflexionslichtschranken

[G. Fetzer, H. Hippenmeyer: Optoelektronische Sensoren]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (24)

Michelson-Interferometer
(Prinzip)
[www.chemgapedia.com]

Interferenzmaxima: $\Delta x = n \cdot \lambda_0$, $n \in \mathbb{Z}$

Interferenzminima: $\Delta x = \left(n + \frac{1}{2}\right) \cdot \lambda_0$, $n \in \mathbb{Z}$

⇒ Längen-und Winkelmessungen

Interferometerapplikation: Winkelmessung an Werkzeugmaschine

[T. Pfeiffer: Optoelektronische Verfahren zur Messung geometrischer Größen in der Fertigung]

5.2 SENSORPRINZIPIEN DER AUSBREITUNG ELEKTROMAGNETISCHER WELLEN (25)

Beugungsmaxima:

$$\Delta L = d \cdot \sin \alpha = n \cdot \lambda_0$$
, $n \in \mathbb{Z}$

Beugungsminima:

$$\Delta L = d \cdot \sin \alpha = \left(n \pm \frac{1}{N}\right) \cdot \lambda_0$$
 , $n \in \mathbb{Z}$

⇒ Längenmessungen

Interferenzielles Messsystem

[S. Hesse, G. Schnell: Sensoren für die Prozess- und Fabrikautomation]

1: Maßstab

3: Abtastplatte

5: Kondensorlinse

7: Detektoren

2: Teilungsperiode

4: Maßstab

6: Lichtquelle