

Vibration Data collection

(การเก็บข้อมูลการสั่นสะเทือน)

SCHOOL OF MECHANICAL ENGINEERING SURANAREE UNIVERSITY OF TECHNOLOGY

Mr. Autsadayut Rodpai

What do you want to measure?

- Machine vibration
- Structural vibration
- Building or Ambient vibration
- Human vibration

Frequency CPM Average Vibration Level Vitoring Narys Vitoring Marys

What do you want to measure?

- Machine vibration
- Structural vibration

• Building or Ambient vibration

Human vibration

Blower structure

Bridge

What do you want to measure? Machine vibration Structural vibration Building or Ambient vibration Human vibration The effect of low frequency detains on building conductors are industed in the dagsin

Vibration Transducers

Definition, by Vibration Institute, USA

Any device that translates the magnitude of one quantity into another quantity.

Three of the most common measure in vibration measurements are

- 1) Displacement
- 2) Velocity
- 3) Acceleration

ที่มา www.Vibinst.org

Transducers

Proximity / Eddy Current Sensors

Proximity Probe

Advantages

- Measures Displacement Directly
- Best for Low Speed Equipment
- Best for Journal Type Bearings
- Good Signal Strength at Low Frequencies
- Can Measure Vibration
- Can Measure Distance Thrust Position
- Excellent for Turbo Machinery

9

Proximity Probe Disadvantages

- Expensive to Install
- Expensive to Purchase
- Requires fixed Cable Length from Proximity Probe to Proximiter
- Mostly Limited to Applications Measuring a Gap
- Poor High Frequency Signal Strength
- Not Good at Measuring Rolling Element Bearings
- Very Sensitive to Surface Material
- Only Good for Ferrous Materials

Velocity Sensor

Advantages

- Easy to Install Case Mount
- Not Sensitive to Mounting Surface
- Large Signal Output
 - > 1000 mV per Inch / Sec.
- Rugged Design Can be Dropped
- Self Generates Signal Requiring No Power Supply
- Good for General Vibration Measurement
- Good Temperature Range
 - ➤ Up to 600 Degrees F

Velocity Sensor

Disadvantages

- Limited Life Spring Design will Wear Out
- Limited Frequency Range Due to Resonance of Spring
 - ➤ Low Frequency 600 CPM
 - ➤ High Frequency 60,000 CPM
- More Expensive than Most Accelerometers
- Sensitive to Magnetic Fields
- Large Cross Axis Vibration Can Destroy
- Spring Develops Frequency Memory
- Not Good for Early Bearing Detection
- Slightly Large in Size

13

Accelerometer types

Shear mode Accelerometer

- □ Good stiffness
- □ Good durability
- □ Reasonable resonant frequency
- □ Less susceptible to inputs from base strain by thermal transient

Connector

Retaining Ring

Piezotronic Element

Base

Accelerometer

Advantages

- Large Frequency Range
 - Low Frequency 10 CPM
 - ➤ High Frequency 600,000 CPM +
- High Temperature Units Available
 - Natural Crystal 1,200 Degrees F \$\$\$\$\$\$\$
- > Small Design
- Not Sensitive to Magnetic Fields
- Long Life Expectancy 10+ Years
- Excellent for Bearing and Gear Detection as well as General Vibration

Accelerometer

Disadvantages

- Low Voltage Signal !!!
- Sensitive to Mounting Surface
 - Perpendicular to 2%
 - > Base Strain and Mounted Resonance Frequency Limits
- Do Not Drop!
- Requires External Power
- Signal Sensitive to:
 - Cable in Magnetic Fields
 - Variable Frequency Drives
 - > Improper Cable Shield Grounding
- Requires Twisted Shielded Pair Wiring
- Requires Military Type Connectors

17

Other Transducers

Modified Accelerometer Outputs

- Acceleration Integrated to Velocity
 - Good Velocity Signal
 - Bad High Frequency Roll Off
 - No Shock Pulse
- Acceleration Modified to 4-20 mA
 - Good for PLC / DCS Direct Connection
 - No Dynamic Data to Analyze
 - No Shock Pulse

Accelerometer Selection Guidelines

1.Measurement Range/Sensitivity

Determine the maximum peak vibration amplitude that will be measured and select a sensor with an appropriate measurement range.

The maximum measurement range=+/- 5V divided by the sensitivity

Accelerometer Selection Guidelines

Sensitivity	± 5 VDC output range
1 mV/g	± 5000 g
10 mV/g	± 500 g
100 mV/g	± 50 g
1000 mV/g	± 5 g
10,000 mV/g	± 0.5 g

Accelerometer Selection Guidelines

2.Frequency Range

Determine the lowest and highest frequency to be analyzed.

Accelerometer Selection Guidelines

Recommended Frequency Spans for rotating machines (Lower to Upper Frequency), speed up to 600 rpm

Fault	Lower frequency	Upper frequecy
Shaft Vibration	Up to 2 Hz	10 x RPM
Rolling Element Bearings	Up to 2 Hz	40-50 x RPM

Accelerometer Selection Guidelines

Recommended Frequency Spans for Structural, Building and Ambient vibration (Lower to Upper Frequency)

Fault	Lower frequency	Upper frequency	
Structural vibration	Up to 0.5 Hz	4-5 kHz	
Building and Ambient	Up to 1 Hz	80 Hz (ref. ISO 2631)	
Human vibration	Up to 0.1 Hz	45 Hz	

Accelerometer Selection Guidelines

3.Temperature Range

Determine the highest and lowest temperatures that the sensor will be subjected to and verify that they are within the specified range for the sensor.

Accelerometer Type	Temperature Range
Normal temperature	90 – 140 C
High Temperature	Up to 140 C

Accelerometer Selection Guidelines 4.Size Two parameters to be considered, footprint and clearance. Footprint – area covered by the base of sensor Clearance – the height above the surface required to fit the sensor and cable. Side Exit:

Accelerometer Selection Guidelines 5. Cable Silicon Cable Braided Screened & Drain Wire Cable Finished Cable Finished Cable Flame retardant IEC 60332-3-24 TRA TRA IEC 60332-3-24 IEC 60332-1 IEC 60332-1 Acid resistance Good Good Excellent Acid resistance Excellent Good Good Base resistance Excellent Good Good Base resistance Excellent Fair Fair Т Fuel resistance Excellent Good Good Fuel resistance Excellent Good Good Oil resistance Excellent Good Good Oil resistance Excellent Excellent Excellent Water resistance Excellent Good Good Water resistance Excellent Excellent Excellent Halogen free Halogen free IEC 60754-2 IEC 61034-2 IEC 61034-2 IEC 61034-2 IEC 61034-2 Low smoke Low smoke 2x 10^5 Gy Radiation tolerance 2x 10^5 Gy 6x 10^5 Gy П 2x 10^5 Gy 2x 10^5 Gy Radiation tolerance 10^6 Gy 46 g/m Weight Weight 28 g/m -40°C +100°C Temperature Temperature 1

Sensor Mounting Techniques

4. Hand-held Probe Tip ช้อดี เป็นวิธีการที่ง่าย สามารถวัดในที่แคบๆได้ดี ช้อเสีย 1 มีข้อจำกัดด้านความถี่มาก โดยใช้งานได้ที่ ความเถิ่มเกิน 1 kHz 2 การอ่านค่าไม่ค่อยมีเสถียรภาพ เนื่องมาจาก ความแข็งแรงโดยรวมมีค่าต่ำ

Vibration Instrumentation

There are different types of instruments for collecting data.

Meters

Oscilloscopes

FFT Analyzers

Data collectors

Virtual instruments

- The oscilloscope analog or digital shows the time waveform only and is used for screening and analysis of waveform shape and frequencies.
- The oscilloscope can be used to evaluate phase and orbits.
- The FFT and electronic data collector are used for time waveform and spectrum analysis is used to track rapidly occurring transient events.
- Computer based virtual instruments provide an opportunity for the analyst to create an instrument for almost any task.

33

Vibration Instrumentation

Meters

- Vibration meters that measure voltage serve to make direct overall readings from the output of
- a transducer.
- In many cases the meter will read out volts directly.
- By dividing the measured voltage (peak or rms) by the transducer scale value in millivolts
- per engineering unit, the overall peak or rms value of the signal can be found.

• 34

Vibration Instrumentation

Oscilloscope

Digital Oscilloscope

35

Vibration Instrumentation

Oscilloscope

- Orbit plot
- Good for viewing time waveforms and orbits
- Can display markers for phase
- Triggers can be used for initiating data acquisition
- Horizontal (time) and vertical (amplitude) scales are adjusted to show desired range of data
- May be digital (discrete values) or analog (continuous values)

Vibration Instrumentation

FFT Analyzers

- Digital device that samples value to make a digitized block of waveforms data from which A spectrum can be calculate
- Ability to see spectrum key advantage over an oscilloscope
- These days, often PC card or USB based for use with laptop

Vibration Instrumentation

Electronic Data Collectors

DLI

LUCEDA

MaintTech(CXM)

CSI

- Acquires and stores a range of vibration data types
- Interact with a database to allow trending of vibration
- May use a route to allow simple data collection
- May perform many of the functions of an FFT analyzer

Common Instrument Systems			
Description	Component	Capabilities	
Simple Meter	Transducer and Meter	Overall vibration amplitude peak, average or rms	
Oscilloscope	Transducer and Oscilloscope	Overall vibration, amplitude and frequency, pulse shape, and frequency	
Single and Dual Channel FFT Analyzer	Transducer, Reference Signal, FFT Analyzer, Plotter	average or instantaneous spectrum and time waveform for selected frequency span, phase, orbit, transfer function and coherence, real and imaginary plots.	
Virtual Instrument	Transducers, Laptop computer, Data Acquisition Box, Printer, Reference Signal	simulated instruments of any type	
Electronic Data Logger	Transducer, Reference Signal, FFT Analyzer, Computer, Printer	data acquisition, limited spectrum analysis, data storage, trending, and display	

39

Measurement points

การกำหนดจุดวัดสำหรับวัดการสั่นสะเทือนนั้น พิจารณาดังนี้

- 1. วัดใกล้แหล่งกำเนิดการสั่นสะเทือน
- 2. ถ้าต้องวัดค่าแบบ Route ต้องทำการวัดค่าการสั่นสะเทือนที่ตำแหน่งเดิมทุกครั้ง

Rotating Machines : ISO 10816

Measurement points

Structural vibration

- 1. Reference point : At High vibration or source of vibration
- 2. Response point :

Vibration excitation:

<u>Impulse Hammer</u>: Impulse hammer system may be used in conjunction with a spectrum analyzer

	Sensitivity (±15%)	Measurement Range	Resonant Frequency
Printed Circuit Boards & Hard Drives	100 mV/lbf(±20%)	50 lbf pk	≥100 kHz
Lightly Damped Panels & Frames	50 mV/lbf	±100 lbf pk	>=15 kHz
Medium sized structures such as Car Frames, Engines, & Machined Parts	50 mV/lbf	±100 lbf pk	
	10 mV/lbf	±500 lbf pk	>=22 kHz
	5 mV/lbf	±1000 lbf pk	
Heavier sized components such as Pumps & Compressors	1 mV/lbf	±5000 lbf pk	>=22 kHz
Heavy Structures such as Tool Foundations & Storage Tanks	1 mV/lbf	±5000 lbf pk	>=12 kHz
Large Structures such as Buildings, Bridges, & Ships	1 mV/lbf	±5000 lbf pk	>=5 kHz

Vibration excitation:

Impulse Hammer: Application

- Structure Health Testing
- Resonance Determination
- Modal Analysis

Structure Health Testing:

- Crack
- Porosity
- Nodularity
- Hardness/ Density
- Etc.

Vibration excitation:

Impulse Hammer: Application

- Structure Health Testing
- Resonance Determination
- Modal Analysis

- Frequency (Natural frequency)
- Damping
- % Damping
- Animation (Mode shape)

Measurement points

Human vibration

- Whole-body vibration is transmitted to the body as a whole, mainly through
 the supporting surface (that is, feet, buttocks, back, etc.). Prolonged exposure to
 whole-body vibration can either cause permanent physical damage or disturb
 the nervous system
- 2. Hand-arm vibration is experienced through the hand and arm. Daily exposure to hand-arm vibration over a number of years can cause permanent physical damage, usually resulting in what is commonly known as "white-finger syndrome", or it can damage the joints and muscles of the wrist and/or elbow.

Recommended Frequency span setting

Component	Frequency Span
shaft vibration	10x RPM
gear box	3x, 3.5x GMF (Gear Mesh Frequency)
rolling element bearings	10x BPFI (Ball Pass Frequency, Inner race)
pumps	3x VP (Vane Pass frequency)
Motors/generators	3x 2LF (2 Lines Frequency)
fans	3x BP (Blade Pass frequency)
sleeve bearings	10x – 16x RPM

E1

Line of Resolution

The FFT always has a defined number of lines of resolution. 100, 200, 400, 800, 1600 and 3200 lines are common choices.

This spectrum has 800 lines, or the X scale is broken down into 800 points.

Data Sampling

Nyquist theorem for Sampling

The Nyquest rate is the minimum sampling rate required to avoid aliasing, equals to twice the highest frequency contained within the signal

$$f_s > 2 f_{\text{max}}$$

Window	Purpose	Amplitude Uncertainty	Window Factor(WF)
Uniform	Impact test	56.5%	1
Hanning	Fault analysis	16%	1.5
Flat top	Condition evaluation	1%	3.8

- Use the Uniform Window for impact tests and resonance checks(No Window).
- Use the Hanning Window for normal vibration monitoring (Frequency).
- Use the Flat Top Window for calibration and accuracy (Amplitude).

Averaging

The FFT analyzer can be used in a number of averaging modes other than instantaneous display of the FFT after the data are acquired. These averaging modes include Linear, Exponential, Peak Hold, etc.. Noise is smoothed, but not eliminated, and discrete signals are reinforced in the display.

Averaging

Linear: All blocks of data are treated equally in terms of their effect on the averaged result.

Exponential: Similar to linear averaging, Exponential requires a weighting factor that either increases or decreases the effect of each new data block on the resultant average.

Peak Hold: The resultant block of data is a collection of points that represent the peak amplitude for each point in the block. The highest amplitude for each point in the block is retained. Therefore, it does not actually do any averaging.

Thank you for your attention

Mr.Autsadayut Rodpai, M.E.(ME), Vibration Analyst III

E-mail: <u>autsadayut.r@gmail.com</u>

Mobile: 081-684-0572