

학습목차

- 01 머신러닝의 개념
- 02 머신러닝의 처리 과정
- 03 머신러닝의 기본 요소
- 04 머신러닝에서의 주제
- 05 학습 시스템 관련 개념

교재 및 강의 구성

1장	머신러닝 소개			
2장	데이터 표현: 벡터와 행렬			
3장	데이터 분포: 확률과 통계			
4장	지도학습: 분류			
5장	지도학습: 회귀			
6장	비지도학습: 군집화			
7장	데이터 표현: 특징추출			
8장	앙상블 학습			
9장	결정 트리와 랜덤 포레스트			
10장	SVM과 커널법			
11장	신경망			
12장	딥러닝			
13장	딥러닝 응용			
14장	강화학습			

→ 정규 강의에서는 제외 → 개인적인 학습은 필수

1 머신러닝의 개념

인공지능, 머신러닝, 딥러닝

○ 인공지능 ⊃ 머신러닝 ⊃ 딥러닝

인공지능이란?

- O 인공지능 Artificial Intelligence: Al
 - □ 인간 지능을 모방하여 문제해결을 위해 사람처럼 학습/이해하는 기계를 만듦
 - 약 인공지능 weak Al
 - ✓ 실제 지능의 소유 여부와 상관없이 지능적인 것처럼 행동하는 기계
 - ✓ 단지 정의된 특정 목적을 달성하고 문제를 해결하는 능력
 - U공지능 strong Al
 - ✓ 지능의 모방이 아닌 실제로 인간처럼 생각하는 기계
 - ✓ 스스로 문제 정의 및 해결, 지속적인 학습, 자아, 감정 등의 광범위한 지적 능력을 포함
 - ✓ Artificial General Intelligence (AGI), Human-Level AI

머신러닝이란?

머신러닝이란?

- 기계학습
- 인간이 갖고 있는 고유의 지능적 기능인 학습 능력을 기계를 통해 구현하기 위한 접근 방법
- 주어진 데이터를 분석하여 그로부터 일반적인 규칙이나 새로운 지식을 기계 스스로가 자동으로 추출하기 위한 접근 방법

머신러닝이란?

머신러닝

○ 왜 필요한가?

데이터의 다양한 변형을 다루기 위해서

variation, transformation

딥러닝?

- 심층 학습 deep learning
- 심층 신경망 기반의 머신러닝 분야

2 머신러닝의 처리 과정

머신러닝의 처리 과정

머신러닝 시스템 개발 과정

3 머신러닝의 기본 요소

데이터와 데이터 분포

□ n차원의 벡터 → 열벡터

n차원 공간상의 한 점

1	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
0	0	0	0	1
1	0	0	0	1
1	1	1	1	1

35차원 벡터

$$\mathbf{x}^T = [1,1,1,1,0,\dots,1,1,1,1,1]^T$$

데이터와 데이터 분포

- 데이터 집합의 분포 특성
 - □ 해당 공간상에서 점들이 분포된 모양
 - □ 2차원 데이터 집합의 산점도 scatter plot
 - ✓ 가우시안 분포
 - ✓ 평균 (3,3)
 - \checkmark 공분산 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - ✓ 데이터 개수 N = 50

특징추출

- 주어진 데이터를 처리하는 데 핵심이 되는 정보를 추출하는 것
 - □ 목적 → 비용(계산량, 메모리) 절약, 데이터에 포함된 불필요한 정보의 제거

특징추출

○ 사영 projection에 의한 특징추출

어떤 방향으로 사영하는 것이 좋은가?

- 단순히 차원의 축소가 아닌 데이터 처리를 위한 핵심 정보를 추출하는 것이 더 중요
- 주어진 데이터의 분포 특성을 가장 잘 나타낼 수 있는 방향

성능 평가

- 학습 시스템
 - □ 데이터로부터 학습을 통해 추출하고자 하는 정보를 표현하는 시스템

- □ 입·출력 매핑 형태의 함수로 정의
- □ 학습 \rightarrow 데이터를 이용하여 함수 f를 찾는 것 \rightarrow 학습 시스템의 매개변수 θ 를 찾는 것
- □ 학습의 궁극적 목표
 - ✓ 앞으로 주어질 새로운 데이터에 대한 성능을 최대화하는 것

성능 평가

- 목적함수 objective function
 - □ 주어진 데이터 집합을 이용하여 학습 시스템이 달성해야 하는 목표를 기계가 알 수 있는 수학적 함수로 정의한 것
- 오차함수 error function
 - □ 대표적인 목적함수
 - □ 학습 시스템의 출력값과 원하는 출력값의 차이('오차')로 정의
 - □ 학습의 목적 → 오차를 최소화는 것

성능 평가

- 오차함수를 이용한 성능 평가 기준
 - 학습 오차 training error

$$E_{train} = \frac{1}{|X_{train}|} \sum_{\mathbf{x}_i \in X_{train}} [y_i - f(\mathbf{x}_i; \boldsymbol{\theta})]^2$$

- ✓ 학습에 사용된 데이터('학습 데이터') 집합에 대해 계산된 오차
- 테스트 오차 test error

$$E_{test} = \frac{1}{|X_{test}|} \sum_{\mathbf{x}_i \in X_{test}} [y_i - f(\mathbf{x}_i; \boldsymbol{\theta})]^2$$

- ✓ 학습에 사용되지 않은 새로운 데이터('테스트 데이터') 집합에 대해 계산된 오차 (= 경험 오차 empirical error)

일반화 오차 generalization error
$$E_{gen} = \int_{-\infty}^{\infty} [y_i - f(x_i; \theta)]^2 p(x) dx$$

- ✓ 관찰될 수 있는 모든 데이터 분포 전체에 대해 정의되는 오차
- ✓ 실제 계산이 불가해서 테스트 오차로 대신하여 평가

일반화 오차의 추정

- 교차검증법 cross validation method
 - □ 제한된 데이터 집합을 이용하여 일반화 오차에 좀 더 근접한 오차값을 얻어 내기 위한 방법
 - □ K-분절 교차검증법 K-fold cross validation

5-분절 교차검증법의 처리 과정의 예

4 머신러닝에서의 주제

머신러닝에서의 주제

- 데이터 분석
 - □ 분류 classification
 - 회귀 regression
 - □ 군집화 clustering
- 데이터 표현
 - □ 특징추출 feature extraction

- 입력 데이터가 어떤 부류에 속하는지를 자동으로 판단하는 문제
 - □ 예: '~인식' → 숫자인식, 얼굴인식, 생체인식 등
 - □ 베이즈 분류기, K-최근접이웃 분류기, 결정 트리, 랜덤 포레스트, SVM, 신경망(MLP, CNN, LSTM 등)

[FERET database]

http://biometrics.cse.msu.edu

○ 분류 시스템의 입·출력의 관계

학습 데이터 집합

○ 학습 결과 → 결정경계와 결정함수

decision boundary decision function

- 학습 목표
 - \Box 분류 오차를 최소화하는 최적의 결정경계 $g(x; \theta) = 0$ 를 찾는 것
- 성능 평가 척도

$$E(D; \boldsymbol{\theta}) = \frac{1}{N} \sum_{(\boldsymbol{x}_i, y_i) \in D} \delta[y_i - y(\boldsymbol{x}_i)]$$

○ 2차원 분류 문제의 예

결정경계

$$g(\mathbf{x}) = g(x_1, x_2) = x_2 - x_1 = 0$$

판별함수/결정함수

$$E(D; \boldsymbol{\theta}) = \frac{1}{N} \sum_{(\boldsymbol{x}_i, y_i) \in D} \delta[y_i - y(\boldsymbol{x}_i)]$$
$$y(\boldsymbol{x}) = \begin{cases} 1 & \text{if } g(\boldsymbol{x}) \ge 0 \ (\boldsymbol{x} \in C_1) \\ 0 & \text{if } g(\boldsymbol{x}) < 0 \ (\boldsymbol{x} \in C_2) \end{cases}$$

데이터 분석: 회귀

- 입력변수와 출력변수 사이의 매핑 관계를 분석
 - □ 예: 시계열 예측: 시간에 따른 데이터의 변화를 분석
 - ✓ 시장 예측, 환율 예측, 주가 예측 등
 - □ 선형회귀, 비선형회귀, 로지스틱 회귀, SVM, 신경망(MLP, RBF, CNN, LSTM)

데이터 분석: 회귀

○ 회귀 시스템의 입·출력의 관계

학습 데이터 집합

○ 학습 결과 → 회귀함수 regression function

데이터 분석: 회귀

- 학습 목표
 - \Box 회귀 오차를 최소화하는 최적의 회귀함수 $y = f(x; \theta)$ 를 찾는 것
 - □ 제곱 오차 squared error

$$E(D; \boldsymbol{\theta}) = \frac{1}{N} \sum_{(\boldsymbol{x}_i, \boldsymbol{y}_i) \in D} \{ y_i - f(\boldsymbol{x}_i; \boldsymbol{\theta}) \}^2$$

데이터 분석: 군집화

- 데이터 집합을 서로 비슷한 몇 개의 그룹(군집 cluster)으로 묶는 문제
 - □ 분류 문제에 달리 클래스 정보가 주어지지 않음
 - □ 예: 데이터 그룹화, 영상 분할
 - □ K-평균 군집화, 계층적 군집화, 가우시안 혼합 모델, 신경망(SOM)

https://www.flickr.com/

http://cs.brown.edu/people/pfelzens/segment/

데이터 분석: 군집화

○ 군집화 시스템의 입·출력의 관계

○ 학습 결과 → K개의 서로소disjoint인 부분집합(클러스터)

데이터 분석: 군집화

- 학습 목표
 - □ 최적의 클러스터의 집합을 찾는 것
 - → 클러스터 내의 분산은 최소화, 클러스터 간의 분산은 최대화

데이터 표현: 특징추출

- 원래 데이터로부터 데이터 분석에 적용하기 좋은 특징을 찾아내는 문제
 - □ 예: 영상 데이터의 차원 축소, 데이터 시각화
 - □ 주성분분석(PCA), 선형판별분석(LDA), MDS, t-SNE

데이터 표현: 특징추출

○ 특징추출 시스템의 입·출력의 관계

학습 데이터 집합

○ 학습 결과 → 변환함수 embedding function

데이터 표현: 특징추출

- 학습 목표
 - □ 분석 목적에 따라 달라짐
 - ✓ 예: 차원 축소 → 원래 데이터가 가지는 정보로부터의 손실량 최소화

학습 시스템 관련 개념

머신러닝의 유형

○ 지도학습 교사학습 supervised learning

- → 분류, 회귀
- □ 학습할 때 시스템이 출력해야 할 목표 출력값('교사')을 함께 제공
- 비지도학습 비교사학습 unsupervised learning

- □ 학습할 때 목표 출력값에 대한 정보가 없음
- 준지도학습 반지도학습 semi-supervised learning
 - □ 지도학습+비지도학습 → 클래스 레이블링 비용을 줄이려는 목적
- 강화학습 reinforcement learning
 - □ 출력값에 대한 교사 신호가 '보상 reward' 형태로 제공
 - □ 교사 신호는 정확한 값이 아니고, 즉시 주어지지 않음

학습 시스템의 복잡도

과다적합 overfitting

- 학습 시스템이 학습 데이터에 대해서만 지나치게 적합한 형태로 결정경계가 형성되는 현상
 - □ 원인 → 학습 데이터의 확률적 잡음과 학습 데이터 개수의 부족
 - □ 영향 → 일반화 성능 저하 초래
 - □ 학습 시스템의 복잡도를 조정하는 방법
 - ✓ 다양한 변형을 가진 충분한 학습 데이터 사용
 - ✓ 조기 종료 방법
 - ✓ 정규항을 가진 오차함수 사용
 - ✓ 모델 선택 방법

다음시간안내

제2강

지도학습: 분류