Austin P. Spencer

Northwestern University Department of Chemistry Evanston, IL 60208 (336) 302 7712 austin.spencer@northwestern.edu austinpspencer.github.io Google Scholar: goo.gl/KXHsAU linkedin.com/in/austinpspencer

Physical chemist with more than a decade of research experience in ultrafast spectroscopy and materials characterization. Investigated photophysics in chemical systems ranging from nanomaterials and proteins to organic polymers and small molecules.

- Experienced *team project manager* with proven mentoring and leadership skills.
- Strong record of *effective communication* through research presentations and scientific writing, with *16 peer-reviewed publications* (and counting).
- *Adaptable* to varying projects, mastering new skills as needed to complete an assignment.
- Extensive experience in *instrument design and development*, including optics, software, and electronics.

Education

Ph.D., Chemistry

August 2014

University of Colorado Boulder

B.S., Chemistry with Honors and Distinction; minor in Computer Science May 2009 University of North Carolina at Chapel Hill

Experience

Postdoctoral Researcher

February 2018–present

Northwestern University, Department of Chemistry; Advisor: Lin X. Chen

- Led graduate students in the development and execution of collaborative research projects.
- Spearheaded a new project to study energy transfer in solar energy harvesting materials.
- Designed and built a time-resolved spectroscopy instrument and trained students in its use.

Postdoctoral Researcher

August 2014-February 2018

Northwestern University, Department of Chemistry; Advisor: Elad Harel

- Advised graduate and undergraduate students on project development and publication of results, and trained them on experimental techniques.
- Designed and built highly-cited time-resolved spectroscopies, including 4D electronic–Raman spectroscopy, single-shot 2D spectroscopy, and compressive sensing detection.
- Probed electronic-vibrational coupling in CdSe quantum dots and photosynthetic proteins, demonstrating the strong interactions between excitons and phonons.

Research Assistant August 2009–August 2014

University of Colorado Boulder, Department of Chemistry and Biochemistry; Advisor: David M. Jonas

- Studied charge carrier dynamics in colloidal InAs and PbS quantum dots, exposing interactions between excitons within the same nanoparticle.
- Developed computational simulations for the modeling of multidimensional spectra.

Undergraduate Researcher

December 2007-May 2009

University of North Carolina at Chapel Hill, Department of Chemistry; Advisor: Tomas Baer Eötvös Loránd University (Budapest, Hungary); Advisor: Bálint Sztáray

• Investigated UV photodissociation and thermochemistry of halo-alkanes and halo-silanes.

Technical skills

- **Spectroscopy** two-dimensional electronic transient absorption UV-Vis photoelectron
- **Optics and Lasers** ultrafast optics interferometry laser pulse characterization (spatial, temporal, and spectral) pulse shaping
- **Materials** semiconductor nanomaterials (quantum dots) organic photovoltaic polymers and small molecules photosynthetic protein complexes
- **Experiment/instrument development** robust optical design high-speed data acquisition technique characterization, calibration, and documentation
- **Software development** instrument control and real-time synchronization data acquisition modular, object-oriented design
- Analytical methods mass spectrometry NMR chromatography (HPLC, GC)
- **Data analysis and modeling** signal and image processing global analysis methods linear and nonlinear optimization
- **Programming** MATLAB LabVIEW C Linux/Bash Python Mathematica Fortran Java
- Electronic engineering analog digital microcontrollers PCB design test & measurement

Awards and Recognitions

Cover & Feature article in The Journal of Physical Chemistry C⁴

November 2018

"Four-Dimensional Coherent Spectroscopy of Complex Molecular Systems in Solution"

Featured in *Science*: 4D electronic-Raman spectroscopy⁹

June 2017

J. Goodknight, A. Aspuru-Guzik. Taking six-dimensional spectra in finite time. *Science* **2017**, *356*, 1333–1333; DOI: 10.1126/science.aan2842

Summer Undergraduate Research Fellowship

Summer 2008

University of North Carolina at Chapel Hill

Eagle Scout

Publications

- 1. M. S. Kirschner, Y. Jeong, A. P. Spencer, N. E. Watkins, X.-M. Lin, G. C. Schatz, L. X. Chen, R. D. Schaller. Phonon-induced plasmon-exciton coupling changes probed via oscillation-associated spectra. *Appl. Phys. Lett.* **2019**, *115*, 111903; DOI: 10.1063/1.5116836
- 2. P. E. Ohno, H. Chang, A. P. Spencer, Y. Liu, M. D. Boamah, H.-f. Wang, F. M. Geiger. Beyond the Gouy–Chapman Model with Heterodyne-Detected Second Harmonic Generation. *J. Phys. Chem. Lett.* **2019**, *10*, 2328–2334; DOI: 10.1021/acs.jpclett.9b00727
- 3. A. P. Spencer, W. K. Peters, N. R. Neale, D. M. Jonas. Carrier Dynamics and Interactions for Bulk-Like Photoexcitation of Colloidal Indium Arsenide Quantum Dots. *J. Phys. Chem. C* **2018**; DOI: 10.1021/acs.jpcc.8b09671

- 4. A. P. Spencer, W. O. Hutson, E. Harel. Four-Dimensional Coherent Spectroscopy of Complex Molecular Systems in Solution. *J. Phys. Chem. C* **2018**; DOI: 10.1021/acs.jpcc.8b09184
- 5. S. Irgen-Gioro, A. P. Spencer, W. O. Hutson, E. Harel. Coherences of Bacteriochlorophyll a Uncovered Using 3D-Electronic Spectroscopy. *J. Phys. Chem. Lett.* **2018**, *9*, 6077–6081; DOI: 10.1021/acs.jpclett.8b02217
- 6. A. P. Spencer, W. O. Hutson, S. Irgen-Gioro, E. Harel. Exciton-Phonon Spectroscopy of Quantum Dots Below the Single-Particle Homogeneous Line Width. *J. Phys. Chem. Lett.* **2018**, 1503–1508; DOI: 10.1021/acs.jpclett.8b00065
- 7. W. O. Hutson, A. P. Spencer, E. Harel. Ultrafast Four-Dimensional Coherent Spectroscopy by Projection Reconstruction. *J. Phys. Chem. Lett.* **2018**, 1034–1040; DOI: 10.1021/acs.jpclett.8b00122
- 8. <u>A. P. Spencer</u>, R. J. Hill, W. K. Peters, D. Baranov, B. Cho, A. Huerta-Viga, A. R. Carollo, A. C. Curtis, D. M. Jonas. Sample exchange by beam scanning with applications to noncollinear pump-probe spectroscopy at kilohertz repetition rates. *Rev. Sci. Instrum.* **2017**, *88*, 064101; DOI: 10.1063/1.4986628
- 9. A. P. Spencer, W. O. Hutson, E. Harel. Quantum coherence selective 2D Raman–2D electronic spectroscopy. *Nat. Commun.* **2017**, *8*, 14732; DOI: 10.1038/ncomms14732
- 10. W. O. Hutson, A. P. Spencer, E. Harel. Isolated Ground-State Vibrational Coherence Measured by Fifth-Order Single-Shot Two-Dimensional Electronic Spectroscopy. *J. Phys. Chem. Lett.* **2016**, 3636–3640; DOI: 10.1021/acs.jpclett.6b01733
- 11. A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, E. Harel. Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing. *Nat. Commun.* **2016**, *7*, 10434; DOI: 10.1038/ncomms10434
- 12. A. P. Spencer, B. Spokoyny, E. Harel. Enhanced-Resolution Single-Shot 2DFT Spectroscopy by Spatial Spectral Interferometry. *J. Phys. Chem. Lett.* **2015**, 945–950; DOI: 10.1021/acs.jpclett.5b00273
- 13. A. P. Spencer, H. Li, S. T. Cundiff, D. M. Jonas. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory. *J. Phys. Chem. A* **2015**, *119*, 3936–3960; DOI: 10.1021/acs.jpca.5b00001
- 14. B. Cho, V. Tiwari, R. J. Hill, W. K. Peters, T. L. Courtney, A. P. Spencer, D. M. Jonas. Absolute Measurement of Femtosecond Pump–Probe Signal Strength. *J. Phys. Chem. A* **2013**, *117*, 6332–6345; DOI: 10.1021/jp4019662
- 15. H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, S. T. Cundiff. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Experiment. *J. Phys. Chem. A* **2013**, *117*, 6279–6287; DOI: 10.1021/jp4007872
- 16. N. S. Shuman, A. P. Spencer, T. Baer. Experimental Thermochemistry of SiCl3R (R = Cl, H, CH3, C2H5, C2H3, CH2Cl, SiCl3), SiCl3+, and SiCl3•. *J. Phys. Chem. A* **2009**, *113*, 9458–9466; DOI: 10.1021/jp9054186
- 17. A. P. Spencer, *TPEPICO Spectroscopy of SiCl4, SiCl3CH3, SiCl3CH2Cl, SiCl3C2H3, and SiCl3C2H5: Thermochemistry of Trichlorosilane Derivatives, Honors Thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC,* **2009**. URL