Relation Extraction I

Bill MacCartney CS224U 29 January 2013

[with slides adapted from many people, including Dan Jurafsky, Rion Snow, Jim Martin, Chris Manning, William Cohen, and others]

Goal: "machine reading"

- DARPA Machine Reading program started in 2009
- Goal: acquire structured knowledge from unstructured text

illustration from DARPA

Information extraction

- IE = extracting information from text
- Sometimes called text analytics commercially
- Extract entities
 - People, organizations, locations, times, dates, prices, ...
 - Or sometimes: genes, proteins, diseases, medicines, ...
- Extract the relations between entities
 - Located in, employed by, part of, married to, ...
- Figure out the larger events that are taking place

Machine-readable summaries

Involvement of Tumor Necrosis Factor Receptor associated Protein

Involvement of Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1) in Apoptosis Induced by β -Hydroxyisovalerylshikonin*

> Received for politication, Agent 14, 2004, and in serviced them, Auly 11, 200 Published, ANY Pagest in Prints, July 18, 1984, 500 10 10 10 and description

Yutuka Masudat, Granyu Shima, Yushihire-Kiuchi, Masayu Hario, Keulehi Eisri, Shigeo Nahajo, Surhiko Kajimoto, Tushiko Shibayamo-bancu, and Kasuyusu Nahaya

A Higher price relay rightments in 18 HTVs. as recognised and makes the test to a millional form the Asthogorous reads, is not 18 He was competitive included by the Asthogorous reads, is not 18 He was competitive includes. See the of priced in price in States and the restriction Bases of the states of the asthogorous reads and the states of the asthogorous reads and the states of the asthogorous reads and the states are represented for the grant for the states are considered and the states are read to the asthogorous reads and the states are read to the asthogorous reads and the states are read to the asthogorous reads and the states are read to the asthogorous reads and the states are read to the asthogorous reads and the states are read to the asthogorous reads and the states are read to the states as the states are read to the states are ready as the states are ready as

Promote types of signs confidence on the second of signs confidence on the second of signs confidence on the second of signs of the second of signs of signs

"The work we apported to part to the High Technology Research (states Propert a granes on set from the Hearing of Manusco articles were finding of Apports, Research (apports of one of the states are the set of the second of th

off, 14-8 More at the property Days 143-801, Pages De 15 in 1684 and in 16 in

a souther at the st http://www.do.org

and melid minimumer drops resoluble to date one PEERS Showers, which is used in the treatment of guidant with means required to behavior. It is, and GERS Showers which are man required to behavior. It is, and GERS Showers which was not required to behavior. It is, and GERS Showers which was not offer the desired of the desired of the state of TFE. But distant denotes the followers with AST of the state of the state of TFE of the state of the state of the state of TFE of the state of the state of TFE of the state of the state

Subject	Relation	Object
p53	is_a	protein
Bax	is_a	protein
p53	has_function	apoptosis
Bax	has_function	induction
apoptosis	involved_in	cell_death
Bax	is_in	mitochondrial outer membrane
Bax	is_in	cytoplasm
apoptosis	related_to	caspase activation
•••	•••	

textual abstract: summary for human

structured knowledge extraction: summary for machine

More applications of IE

- Building & extending knowledge bases and ontologies
- Scholarly literature databases: Google Scholar, CiteSeerX
- People directories: Rapleaf, Spoke, Naymz
- Shopping engines & product search
- Bioinformatics: clinical outcomes, gene interactions, ...
- Patent analysis
- Stock analysis: deals, acquisitions, earnings, hirings & firings
- SEC filings
- Intelligence analysis for business & government

Named Entity Recognition (NER)

The task:

- 1. find names in text
- 2. classify them by type

```
The [European Commission ORG] said on Thursday it disagreed with [German MISC] advice.
Only [France LOC] and [Britain LOC] backed [Fischler PER] 's proposal .

"What we have to be extremely careful of is how other countries are going to take [Germany LOC] 's lead", [Welsh National Farmers ' Union ORG] ( [NFU ORG] ) chairman [John Lloyd Jones PER] said on [BBC ORG] radio .
```

Named Entity Recognition (NER)

- It's a tagging task, similar to part-of speech (POS) tagging
- So, systems use sequence classifiers: HMMs, MEMMs, CRFs
- Features usually include words, POS tags, word shapes, orthographic features, gazetteers, etc.
- Accuracies of >90% are typical but depends on genre!
- NER is commonly thought of as a "solved problem"
- A building block technology for relation extraction
- E.g., http://nlp.stanford.edu/software/CRF-NER.shtml

Orthographic features for NER

slide adapted from Chris Manning

Orthographic features for NER

slide adapted from Chris Manning

9

Relation extraction example

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Subject	Relation	Object
American Airlines	subsidiary	AMR
Tim Wagner	employee	American Airlines
United Airlines	subsidiary	UAL

example from Jim Martin

Relation types

For generic news texts ...

Relations		Examples	Types
Affiliations			
	Personal	married to, mother of	$PER \rightarrow PER$
	Organizational	spokesman for, president of	$PER \rightarrow ORG$
	Artifactual	owns, invented, produces	$(PER \mid ORG) \rightarrow ART$
Geospatial			·
	Proximity	near, on outskirts	$LOC \to LOC$
	Directional	southeast of	$LOC \to LOC$
Part-Of			
	Organizational	a unit of, parent of	$ORG \to ORG$
	Political	annexed, acquired	$\mathtt{GPE} \to \mathtt{GPE}$

slide adapted from Jim Martin

ROLE: relates a person to an organization or a geopolitical entity subtypes: member, owner, affiliate, client, citizen

PART: generalized containment subtypes: subsidiary, physical part-of, set membership

AT: permanent and transient locations subtypes: located, based-in, residence

SOCIAL: social relations among persons subtypes: parent, sibling, spouse, grandparent, associate

slide adapted from Doug Appelt

Relation types: Freebase

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

slide adapted from Paul Buitelaar

More relations: disease outbreaks

May 19 1995. Atlanta -- The Centers for Disease Control and Prevention, which is in the front line of the world's response to the deadly **Ebola** epidemic in **Zaire**, is finding itself hard pressed to cope with the crisis...

Disease Outbreaks in The New York Times

Date	Disease Name	Location
Jan. 1995	Malaria	Ethiopia
July 1995	Mad Cow Disease	U.K.
Feb. 1995	Pneumonia	U.S.

More relations: protein interactions


```
"We show that CBF-A and CBF-C interact
with each other to form a CBF-A-CBF-C complex
and that CBF-B does not interact with CBF-A or
CBF-C individually but that it associates with the
CBF-A-CBF-C complex."
         interact
                   CBF-A-CBF-C complex
 CBF-B
         associates
```

Relations between word senses

- NLU applications need word meaning!
 - Question answering
 - Conversational agents
 - Summarization
- One key meaning component: word relations
 - Hyponymy: San Francisco is an instance of a city
 - Antonymy: acidic is the opposite of basic
 - Meronymy: an alternator is a part of a car

Ontological relations are missing for many words:

In WordNet 3.1	Not in WordNet 3.1
insulin progesterone	leptin pregnenolone
combustibility navigability	affordability reusability
HTML	XML
Google, Yahoo	Microsoft, IBM

Esp. for specific domains: restaurants, auto parts, finance

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- Unsupervised methods

Relation extraction: 5 easy methods

- Hand-built patterns
- Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- Unsupervised methods

A hand-built extraction rule

```
;;; For <company> appoints <person> <position>
(defpattern appoint
   "np-sem(C-company)? rn? sa? vg(C-appoint) np-sem(C-person) ','?
    to-be? np(C-position) to-succeed?:
    company-at=1.attributes, sa=3.span, lv=4.span, person-at=5.attributes
    position-at=8.attributes |
(defun when-appoint (phrase-type)
    (let ((person-at (binding 'person-at))
       (company-entity (entity-bound 'company-at))
       (person-entity (essential-entity-bound 'person-at 'C-person))
       (position-entity (entity-bound 'position-at))
       (predecessor-entity (entity-bound 'predecessor-at))
       new-event)
    (not-an-antecedent position-entity)
    ;; if no company is specified for position, use agent
```

NYU Proteus system (1997)

Patterns for learning hyponyms

- Intuition from Hearst (1992)
 Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.
- What does Gelidium mean?
- How do you know?

Patterns for learning hyponyms

- Intuition from Hearst (1992)
 Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.
- What does Gelidium mean?
- How do you know?


```
Y such as X ((, X)* (, and/or) X) such Y as X...
```

X... or other Y

X... and other Y

Y including X...

Y, especially X...

Hearst, 1992. Automatic Acquisition of Hyponyms.

Examples of the Hearst patterns

Hearst pattern	Example occurrences
X and other Y	temples, treasuries, and other important civic buildings.
X or other Y	bruises, wounds, broken bones or other injuries
Y such as X	The bow lute, such as the Bambara ndang
such Y as X	such authors as Herrick, Goldsmith, and Shakespeare.
Y including X	common-law countries, including Canada and England
Y, especially X	European countries, especially France, England, and Spain

Patterns for learning meronyms

- Berland & Charniak (1999) tried it
- Selected initial patterns by finding all sentences in a corpus containing basement and building


```
whole NN[-PL] 's POS part NN[-PL]
part NN[-PL] of PREP {the | a} DET mods [JJ | NN]* whole NN
part NN in PREP {the | a} DET mods [JJ | NN]* whole NN
parts NN-PL of PREP wholes NN-PL
parts NN-PL in PREP wholes NN-PL
```

... building's basement ...
... basement of a building ...
... basement in a building ...
... basements of buildings ...
... basements in buildings ...

- Then, for each pattern:
 - 1. found occurrences of the pattern
 - 2. filtered those ending with -ing, -ness, -ity
 - 3. applied a likelihood metric poorly explained
- Only the first two patterns gave decent (though not great!) results

Problems with hand-built patterns

- Requires hand-building patterns for each relation!
 - hard to write; hard to maintain
 - there are zillions of them
 - domain-dependent
- Don't want to do this for all possible relations!
- Plus, we'd like better accuracy
 - Hearst: 66% accuracy on hyponym extraction
 - Berland & Charniak: 55% accuracy on meronyms

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- Unsupervised methods

Bootstrapping approaches

- If you don't have enough annotated text to train on ...
- But you do have:
 - some seed instances of the relation
 - (or some patterns that work pretty well)
 - and lots & lots of unannotated text (e.g., the web)
- ... can you use those seeds to do something useful?
- Bootstrapping can be considered semi-supervised

Bootstrapping example

- Target relation: burial place
- Seed tuple: [Mark Twain, Elmira]
- Grep/Google for "Mark Twain" and "Elmira"

"Mark Twain is buried in Elmira, NY."

→ X is buried in Y

"The grave of Mark Twain is in Elmira"

 \rightarrow The grave of X is in Y

"Elmira is Mark Twain's final resting place"

- → Y is X's final resting place
- Use those patterns to search for new tuples

slide adapted from Jim Martin

slide adapted from Jim Martin

Extract (author, book) pairs Start with these 5 seeds:

Author	Book
Isaac Asimov	The Robots of Dawn
David Brin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickens	Great Expectations
William Shakespeare	The Comedy of Errors

Learn these patterns:

URL Prefix	Text Pattern
www.sff.net/locus/c.*	<LI $><$ B $>titleB> by author ($
dns.city-net.com/~lmann/awards/hugos/1984.html	<i $>titlei> by author ($
dolphin.upenn.edu/~dcummins/texts/sf-award.htm	$author \mid \mid title \mid \mid ($

Iterate: use these patterns to get more instances & patterns...

New idea: require that X and Y be named entities of particular types

Organization	Location of Headquarters
Microsoft	Redmond
Exxon	Irving
IBM	Armonk
Boeing	Seattle
Intel	Santa Clara

- Requires that we have seeds for each relation
 - Sensitive to original set of seeds
- Big problem of semantic drift at each iteration
- Precision tends to be not that high
- Generally have lots of parameters to be tuned
- No probabilistic interpretation
 - Hard to know how confident to be in each result

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- Unsupervised methods

The supervised approach requires:

- Defining an inventory of output labels
 - Relation detection: true/false
 - Relation classification: located-in, employee-of, inventor-of, ...
- Collecting labeled training data: MUC, ACE, ...
- Defining a feature representation: words, entity types, ...
- Choosing a classifier: Naïve Bayes, MaxEnt, SVM, ...
- Evaluating the results

ACE 2008: relation types

Туре	Subtype
ART (artifact)	User-Owner-Inventor-Manufacturer
GEN-AFF (General affiliation)	Citizen-Resident-Religion-Ethnicity, Org-Location
METONYMY*	None
ORG-AFF (Org-affiliation)	Employment, Founder, Ownership, Student-Alum, Sports-Affiliation, Investor-Shareholder, Membership
PART-WHOLE (part-to-whole)	Artifact, Geographical, Subsidiary
PER-SOC* (person-social)	Business, Family, Lasting-Personal
PHYS* (physical)	Located, Near

ACE 2008: training data

Source	Training epoch	Approximate size			
	English Resource	ces			
Broadcast News	3/03 - 6/03	55,000 words			
Broadcast Conversations	3/03 - 6/03	40,000 words			
Newswire	3/03 - 6/03	50,000 words			
Weblog	11/04 - 2/05	40,000 words			
Usenet	11/04 - 2/05	40,000 words			
Conversational Telephone Speech	11/04-12/04 (differentiated by topic vs. eval)	40,000 words			
	Arabic Resourc	es			
Broadcast News	10/00 - 12/00	30,000+ words			
Newswire	10/00 - 12/00	55,000+ words			
Weblog	11/04 - 2/05	20,000+ words			

Features

Features commonly used in relation classification:

- Lightweight features require little pre-processing
 - Bags of words & bigrams between, before, and after the entities
 - Stemmed versions of the same
 - The types of the entities
 - The distance (number of words) between the entities
- Medium-weight features require base phrase chunking
 - Base-phrase chunk paths
 - Bags of chunk heads
- Heavyweight features require full syntactic parsing
 - Dependency-tree paths
 - Constituent-tree paths
 - Tree distance between the entities
 - Presence of particular constructions in a constituent structure

Let's take a closer look at features used in Zhou et al. 2005

Features: words

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Bag-of-words features

WM1 = {American, Airlines}, WM2 = {Tim, Wagner}

Head-word features

HM1 = Airlines, HM2 = Wagner, HM12 = Airlines+Wagner

Words in between

WBNULL = false, WBFL = NULL, WBF = a, WBL = spokesman, WBO = {unit, of, AMR, immediately, matched, the, move}

Words before and after

BM1F = NULL, BM1L = NULL, AM2F = said, AM2L = NULL

Word features yield good precision (69%), but poor recall (24%)

Features: NE type & mention level

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Named entity types (ORG, LOC, PER, etc.) ET1 = ORG, ET2 = PER, ET12 = ORG-PER Mention levels (NAME, NOMINAL, or PRONOUN) ML1 = NAME, ML2 = NAME, ML12 = NAME+NAME

Named entity type features help recall a lot (+8%) Mention level features have little impact

Features: overlap

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Number of mentions and words in between

$$\#MB = 1, \#WB = 9$$

Does one mention include in the other?

M1>M2 = false, M1<M2 = false

Conjunctive features

ET12+M1>M2 = ORG-PER+false

ET12+M1<M2 = ORG-PER+false

HM12+M1>M2 = Airlines+Wagner+false

HM12+M1<M2 = Airlines+Wagner+false

These features hurt precision a lot (-10%), but also help recall a lot (+8%)

Features: base phrase chunking

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Parse using the <u>Stanford Parser</u>, then apply Sabine Buchholz's <u>chunklink.pl</u>:

```
Airlines
 0 B-NP
          NNP
                 American
                                 NOFUNC
                                                           1 B-S/B-S/B-NP/B-NP
          NNPS Airlines
                                             matched
                                                           9 T-S/T-S/T-NP/T-NP
          COMMA COMMA
                                             Airlines
                                 NOFUNC
                                                           1 I-S/I-S/I-NP
                                 NOFUNC
                                                           4 I-S/I-S/I-NP/B-NP/B-NP
                                             unit
                unit
                                             Airlines
                                                           1 I-S/I-S/I-NP/I-NP/I-NP
                 οf
                                             unit.
                                                           4 I-S/I-S/I-NP/I-NP/B-PP
 6 B-NP
                AMR
                                                           5 I-S/I-S/I-NP/I-NP/I-PP/B-NP
          COMMA COMMA
                                 NOFUNC
                                             Airlines
                                                           1 T-S/T-S/T-NP
 8 B-ADVP RB
                immediately
                                             matched
                                                           9 I-S/I-S/B-ADVP
                                 ADVP
 9 B-VP
          VBD matched
                                 VP/S
                                                           9 I-S/I-S/B-VP
                                             matched
10 B-NP
                                 NOFUNC
                                                          11 I-S/I-S/I-VP/B-NP
11 T-NP
                                             matched
                                                           9 T-S/T-S/T-VP/T-NP
                 move
12 0
          COMMA COMMA
                                 NOFUNC
                                             matched
                                                           9 I-S
13 B-NP
                 spokesman
                                 NOFUNC
                                             Wagner
                                                          15 I-S/B-NP
14 I-NP
                                 NOFUNC
                                             Wagner
                                                          15 I-S/I-NP
15 I-NP
                                             matched
                Wagner
                                                           9 I-S/I-NP
16 B-VP
           VBD
                 said
                                                           9 I-S/B-VP
                                             matched
                                 NOFUNC
                                             matched
```

 $[N_{\rm NP}]$ American Airlines], $[N_{\rm NP}]$ a unit] $[N_{\rm PP}]$ of] $[N_{\rm NP}]$ AMR], $[N_{\rm ADVP}]$ immediately] $[N_{\rm NP}]$ matched] $[N_{\rm NP}]$ the move], $[N_{\rm NP}]$ spokesman Tim Wagner] $[N_{\rm NP}]$ said].

Features: base phrase chunking

 $[N_{\rm NP}]$ American Airlines], $[N_{\rm PP}]$ a unit] $[N_{\rm PP}]$ of] $[N_{\rm PP}]$ AMR], $[N_{\rm ADVP}]$ immediately] $[N_{\rm PP}]$ matched] $[N_{\rm PP}]$ the move], $[N_{\rm PP}]$ spokesman Tim Wagner] $[N_{\rm PP}]$ said].

Phrase heads before and after

CPHBM1F = NULL, CPHBM1L = NULL, CPHAM2F = said, CPHAM2L = NULL

Phrase heads in between

CPHBNULL = false, CPHBFL = NULL, CPHBF = unit, CPHBL = move CPHBO = {of, AMR, immediately, matched}

Phrase label paths

CPP = [NP, PP, NP, ADVP, VP, NP] CPPH = NULL

These features increased both precision & recall by 4-6%

Features of mention dependencies

ET1DW1 = ORG:Airlines

H1DW1 = matched:Airlines

ET2DW2 = PER:Wagner

H2DW2 = said:Wagner

Features describing entity types and dependency tree

ET12SameNP = ORG-PER-false

ET12SamePP = ORG-PER-false

ET12SameVP = ORG-PER-false

These features had disappointingly little impact!

Phrase label paths

PTP = [NP, S, NP]

PTPH = [NP:Airlines, S:matched, NP:Wagner]

These features had disappointingly little impact!

Now use any (multiclass) classifier you like:

- SVM
- MaxEnt (aka multiclass logistic regression)
- Naïve Bayes
- etc.

[Zhou et al. 2005 used a one-vs-many SVM]

Zhou et al. 2005 results

Features	P	R	F
Words	69.2	23.7	35.3
+Entity Type	67.1	32.1	43.4
+Mention Level	67.1	33.0	44.2
+Overlap	57.4	40.9	47.8
+Chunking	61.5	46.5	53.0
+Dependency Tree	62.1	47.2	53.6
+Parse Tree	62.3	47.6	54.0
+Semantic Resources	63.1	49.5	55.5

Table 2: Contribution of different features over 43 relation subtypes in the test data

Zhou et al. 2005 results

Туре	Subtype	#Testing Instances	#Correct	#Error	P	R	F
AT	392	224	105	68.1	57.1	62.1	
	Based-In	85	39	10	79.6	45.9	58.2
	Located	241	132	120	52.4	54.8	53.5
	Residence	66	19	9	67.9	28.8	40.4
NEAR	201100200000000000000000000000000000000	35	8	1	88.9	22.9	36.4
	Relative-Location	35	8	1	88.9	22.9	36.4
PART	2020	164	106	39	73.1	64.6	68.6
	Part-Of	136	76	32	70.4	55.9	62.3
	Subsidiary	27	14	23	37.8	51.9	43.8
ROLE		699	443	82	84.4	63.4	72.4
	Citizen-Of	36	25	8	75.8	69.4	72.6
	General-Staff	201	108	46	71.1	53.7	62.3
	Management	165	106	72	59.6	64.2	61.8
	Member	224	104	36	74.3	46.4	57.1
SOCIAL	2000 Marin Marin Const.	95	60	21	74.1	63.2	68.5
	Other-Professional	29	16	32	33.3	55.2	41.6
	Parent	25	17	0	100	68.0	81.0

50

	Count				Cost (%)						
	Ent	Dete	ection	Rec	Detection		Rec	Value Va		alue-based	
	Tot	FA	Miss	Err	FA	Miss	Err	(%)	Pre	Rec	F
ART	261	38	157	84	9.1	63.9	2.5	24.5	74.2	33.6	46.2
GEN-AFF	235	28	120	92	9.1	51.5	5.0	34.5	75.6	43.6	55.3
ORG-AFF	503	71	216	237	9.6	45.4	4.0	41.0	78.9	50.6	61.6
PART-WHOLE	354	57	182	110	12.1	48.9	2.2	36.8	77.4	48.9	59.9
PER-SOC	213	24	90	116	5.6	38.5	2.4	53.5	88.0	59.1	70.7
PHYS	428	76	298	113	8.7	69.1	6.2	16.0	62.3	24.7	35.4
total	1994	294	1063	752	9.4	53.5	4.0	33.1	76.1	42.5	54.5

Table 4: RMD scores in the ACE evaluation for the six relation types.

Surdeanu & Ciaramita 2007

	Count				Cost (%)						
	Ent Detection Rec			Dete	ction	Rec	Value	Value Value-based			
	Tot	FA	Miss	Err	FA	Miss	Err	(%)	Pre	Rec	F
Artifact	14	0	13	1	0.0	92.0	2.4	5.6	70.0	5.6	10.4
Business	63	4	39	24	2.2	63.8	3.4	30.7	85.6	32.8	47.5
Citizen	171	23	83	73	10.5	49.6	5.7	34.1	73.3	44.6	55.5
Employment	344	61	113	189	12.1	34.8	4.0	49.1	79.1	61.2	69.0
Family	118	19	32	79	8.6	20.9	0.4	70.1	89.7	78.7	83.8
Founder	6	0	5	1	0.0	88.8	3.4	7.8	70.0	7.8	14.1
Geographical	223	33	102	71	10.4	42.0	1.9	45.7	82.1	56.1	66.7
Investor	8	0	5	3	0.0	57.1	2.9	40.0	93.3	40.0	56.0
Lasting-Personal	32	1	19	13	1.9	50.6	7.8	39.8	81.2	41.6	55.0
Located	382	72	263	102	9.2	68.3	6.6	15.9	61.4	25.1	35.6
Membership	96	8	55	33	6.0	61.3	4.2	28.5	77.2	34.5	47.7
Near	46	4	35	11	4.9	75.2	3.2	16.7	72.8	21.6	33.3
Org-Location	64	5	37	19	5.9	55.6	3.2	35.3	82.0	41.2	54.8
Ownership	15	2	13	2	5.0	87.5	0.0	7.5	71.4	12.5	21.3
Sports-Affiliation	17	0	15	2	0.0	88.4	3.5	8.1	70.0	8.1	14.6
Student-Alum	17	0	10	7	0.0	60.0	7.5	32.5	81.2	32.5	46.4
Subsidiary	117	24	67	38	16.1	58.8	2.9	22.2	66.8	38.3	48.7
User-Owner	261	38	157	84	9.1	63.9	2.5	24.5	74.2	33.6	46.2
total	1994	294	1063	752	9.4	53.5	4.0	33.1	76.1	42.5	54.5

Table 5: RMD scores in the ACE evaluation for the 18 relation subtypes.

- Supervised approach can achieve high accuracy
 - At least, for some relations
 - If we have lots of hand-labeled training data
- But has significant limitations!
 - Labeling 5,000 relations (+ named entities) is expensive
 - Doesn't generalize to different relations
- Next time: beyond supervised relation extraction
 - Distantly supervised relation extraction
 - Unsupervised relation extraction