Modular Forms

Lei Bichang

1. It is equivalent to $[\Gamma_{\infty}:\Gamma_{\infty}^{+}] \leq 2$. Let

$$L_1 := \begin{pmatrix} 1 & \mathbb{Z} \\ 0 & 1 \end{pmatrix}, L_2 = \left\{ \pm \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \middle| t \in \mathbb{Z} \right\} = L_1 \cup (-1) \cdot L_1,$$

then both L_1 and L_2 are subgroups of $SL_2(\mathbb{Z})$, and thus

$$[\Gamma_{\infty} : \Gamma_{\infty}^{+}] = [\Gamma \cap L_{2} : \Gamma \cap L_{1}] \leq [L_{2} : L_{1}] = 2.$$

- 2. Let N > 2. Then $-1 \not\equiv 1 \pmod{N}$, so $\Gamma_1(N) \cap (-1) \cdot L_1 = \emptyset$ and thus $\Gamma_1(N)_{\infty} = \Gamma_1(N)_{\infty}^+$. Since $-1 \in \Gamma_0(N)_{\infty}$ and $-1 \not\in \Gamma_0(N)_{\infty}^+$, we know $[\Gamma_0(N)_{\infty} : \Gamma_0(N)_{\infty}^+] \not= 1$, so it equals 2.
- 3. If $[\Gamma_{\infty} : \Gamma_{\infty}^{+}] = 2$, then there exists a $t \in \mathbb{Z}$ s.t.

$$g := \begin{pmatrix} -1 & t \\ & -1 \end{pmatrix} \in \Gamma.$$

Let $f \in M_k(\Gamma)$, then

$$f(z) = f|_k g(z) = (-1)^{-k} f(z-t) = -f(z-t).$$

If $f = \sum_{n>0} a_n q_N^n$ is the Fourier expansion of f at infinity, then

$$\sum_{n\geq 0} a_n e^{\frac{2\pi i n}{N}z} = -\sum_{n\geq 0} a_n e^{-\frac{2\pi i n t}{N}} e^{\frac{2\pi i n}{N}z}.$$

Comparing the terms gives

$$f(\infty) = a_0 = 0.$$

4. Let

$$\mathbb{Z}^2_{\mathrm{prim}} := \left\{ (c, d) \in \mathbb{Z}^2 \setminus \{(0, 0)\} | \gcd(c, d) = 1 \right\}$$

Take $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. Since det g = ad - bc = 1, the integers c and d are coprime. Then because

$$\begin{pmatrix} 1 & t \\ & 1 \end{pmatrix} g = \begin{pmatrix} a+tc & b+td \\ c & d \end{pmatrix},$$

the map $\Gamma_{\infty}^+ \backslash \Gamma \to \mathbb{Z}_{\text{prim}}^2$ is well-defined.

If
$$g' = \begin{pmatrix} a' & b' \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
, then $a'd - b'c = 1$, so

$$(a'-a)d = (b'-b)c.$$

Since c, d are coprime, we have $c \mid (a' - a)$ and $d \mid (b' - b)$. Hence,

$$t' := \frac{a' - a}{c} = \frac{b' - b}{d} \in \mathbb{Z}.$$

If $g' \in \Gamma$, then

$$\begin{pmatrix} 1 & t' \\ & 1 \end{pmatrix} = g'g^{-1} \in \Gamma_{\infty}^+,$$

1

i.e., $g'\in\Gamma_\infty^+g.$ So the map $\Gamma_\infty^+\backslash\Gamma\to\mathbb{Z}^2_{\rm prim}$ is injective.

5. Let $G = G_{k,\Gamma,\infty}$. For all $g \in \Gamma$ and $z \in \mathcal{H}$,

$$(G|_k g)(z) = j(g, z)^{-k} G(gz)$$

$$= \sum_{h \in \Gamma_{\infty}^+ \backslash \Gamma} j(g, z)^{-k} j(h, gz)^{-k}$$

$$= \sum_{h \in \Gamma_{\infty}^+ \backslash \Gamma} j(hg, z)^{-k} = G(z).$$

6. Let $G = G_{k,\Gamma,\infty}$. If $[\Gamma_{\infty} : \Gamma_{\infty}^+] = 2$, then we can write $\Gamma_{\infty} = \Gamma_{\infty}^+ \sqcup \Gamma_{\infty}^+ \gamma$ with

$$\gamma = \begin{pmatrix} -1 & t \\ & -1 \end{pmatrix}$$

for some $t \in \mathbb{Z}$. Hence

$$\Gamma = \bigsqcup_{h} \Gamma_{\infty} h = \bigsqcup_{h} \left(\Gamma_{\infty}^{+} h \sqcup \Gamma_{\infty}^{+} \gamma h \right),$$

and

$$\begin{split} G(z) &= \sum_{g \in \Gamma_{\infty}^{+} \backslash \Gamma} j(g,z)^{-k} \\ &= \sum_{h \in \Gamma_{\infty} \backslash \Gamma} \left(j(h,z)^{-k} + j(\gamma h,z)^{-k} \right) \\ &= \sum_{h \in \Gamma_{\infty} \backslash \Gamma} (1 + j(\gamma,hz)^{-k}) j(h,z)^{-k}. \end{split}$$

Since $j(\gamma, \tau) = -1$ for all $\tau \in \mathcal{H}$, we get G(z) = 0 for all $z \in \mathcal{H}$ once k were odd.

7. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, as $z \to i\infty$, $j(g,z) \to \infty$ if $c \neq 0$ and $j(g,z) = d = \pm 1$ if c = 0. If $g \in \Gamma$, then c = 0 if and only if $g \in \Gamma_{\infty}$. Hence

$$\lim_{z \to i\infty} G_{k,\Gamma,\infty}(z) = \sum_{g \in \Gamma_{\infty}^{+} \setminus \Gamma} \lim_{z \to i\infty} j(g,z)^{-k} = \sum_{g \in \Gamma_{\infty}^{+} \setminus \Gamma_{\infty}} \lim_{z \to i\infty} j(g,z)^{-k}$$

$$= \begin{cases} 1, & [\Gamma_{\infty} : \Gamma_{\infty}^{+}] = 1, \\ 0, & [\Gamma_{\infty} : \Gamma_{\infty}^{+}] = 2 \text{ and } k \text{ is odd;} \\ 2, & [\Gamma_{\infty} : \Gamma_{\infty}^{+}] = 2 \text{ and } k \text{ is even.} \end{cases}$$

So $G_{k,\Gamma,\infty}$ is bounded at infinity.

8. We have

$$G_{k,\Gamma,\infty}|_k g(z) = \sum_{h \in \Gamma_\infty^+ \setminus \Gamma} j(hg,z)^{-k}.$$

As we see in 7., $\lim_{z\to i\infty} j(hg,z)^{-k} = 0$ if and only if the matrix hg has nonzero bottom-left term. For each $h \in \Gamma$, since $hg\infty \in c = \Gamma \cdot g\infty$ and the cusp $c \neq \infty$, we know that $hg\infty \neq \infty$. Therefore hg has nonzero bottom-left term, and thus

$$G_{k,\Gamma,\infty}|_k g(\infty) = \sum_{h \in \Gamma_{\infty}^+ \setminus \Gamma} \lim_{z \to i\infty} j(hg,z)^{-k} = 0.$$

9. This follows from 5. $(G_{k,\gamma,\infty})$ is a weak modular form of weight k), 7. $(G_{k,\gamma,\infty})$ is bounded at infinity) and 8. $(G_{k,\gamma,\infty})$ is bounded at all the cusps different from infinity).

10. To begin with, we note that:

Lemma 1. If $f \in M_k(\Gamma)$ and $g \in SL_2(\mathbb{Z})$, then $f|_k g \in M_k(g^{-1}\Gamma g)$.

Proof. • For all $\gamma \in \Gamma$, $(f|_k g)|_k (g^{-1} \gamma g) = f|_k (\gamma g) = (f|_k \gamma)|_k g = f|_k g$.

• For all $h \in \mathrm{SL}_2(\mathbb{Z}), (f|_k g)|_k h = f|_k (gh)$ is bounded at infinity.

Hence
$$f|_k g \in M_k(g^{-1}\Gamma g)$$
.

For simplicity, we use the following notation.

Definition 1. For every $f \in M_k(\Gamma)$ and $g \in SL_2(\mathbb{Z})$, define

$$f(g\infty) := (f|_k g)(\infty) = \lim_{z \to i\infty} f|_k g(z).$$

We can verify some basic properties.

Lemma 2. Let $f \in M_k(\Gamma)$ and $g, h \in SL_2(\mathbb{Z})$.

- (a) $(f|_k g)(h\infty) = f(gh\infty)$.
- (b) If $g\infty$ and $h\infty$ represent the same cusp of Γ , then $f(g\infty)$ and $f(h\infty)$ only differ by a sign, which is independent of f. In particular, if $\{g_1\infty,\ldots,g_r\infty\}$ is a set of representatives of the cusps of Γ , then $f \in S_k(\Gamma)$ if and only if $f(g_1\infty) = \cdots = f(g_r\infty) = 0$.

Proof. Property (a) is straightforward. For (b), suppose that $g\infty = \gamma h\infty$ for some $\gamma \in \Gamma$. Then $g^{-1}\gamma h \in \mathrm{SL}_2(\mathbb{Z})_{\infty}$, so there is a $t \in \mathbb{Z}$ s.t.

$$T := g^{-1}\gamma h = \begin{pmatrix} \pm 1 & t \\ & \pm 1 \end{pmatrix}.$$

Now

$$(f|_k h)(z) = (f|_k (\gamma^{-1} gT))(z) = ((f|_k g)|_k T)(z)$$

= $(\pm 1)^{-k} (f|_k g(z \pm t)).$

So $f(g\infty) = \pm f(h\infty)$, and the sign is determined by g and h.

Now let $\{g_1 \infty, \ldots, g_r \infty\}$ be fixed representatives of all the different cusps of Γ , where $g_1, \ldots, g_r \in \mathrm{SL}_2(\mathbb{Z})$. For each $i \in \{1, \ldots, r\}$, the function $G_{k, g_i^{-1} \Gamma g_i, \infty} \in M_k(g_i^{-1} \Gamma g_i)$, so

$$G_i := G_{k,g_i^{-1}\Gamma g_i,\infty}|_k g_i^{-1} \in M_k(\Gamma).$$

If $j \neq i$, then the cusp represented by $g_i^{-1}g_j \infty$ is not infinity, and thus

$$G_i(g_j \infty) = \left(G_{k, g_i^{-1} \Gamma g_i, \infty} | k(g_i^{-1} g_j)\right)(\infty) = 0 \tag{1}$$

by 8.

Now take $f \in M_k(\Gamma)$. We claim that

$$f_0 := f - \sum_{\substack{1 \le i \le r \\ G_i(g_i \infty) \ne 0}} \frac{f(g_i \infty)}{G_i(g_i \infty)} G_i \in S_k(\Gamma), \tag{2}$$

and thereby proving that $S_k(\Gamma)$ together with G_1, \ldots, G_r generates $M_k(\Gamma)$. By Lemma 2, it suffices to show for $1 \leq i \leq r$,

$$f_0(g_i \infty) = f(g_i \infty) - \sum_{\substack{1 \le j \le r \\ G_j(g_j \infty) \ne 0}} \frac{f(g_j \infty)}{G_j(g_j \infty)} G_j(g_i \infty) = 0.$$

By Eq. (1), this is true if

$$f(g_i \infty) \neq 0 \implies G_i(g_i \infty) \neq 0.$$

Since $f|_k g_i \in M_k(g_i^{-1}\Gamma g_i)$, then by **3.** and **7.**,

$$G_i(g_i \infty) = \left(G_{k, g_i^{-1} \Gamma g_i, \infty}\right)(\infty) = 0 \iff k \text{ is odd and } \left[(g_i^{-1} \Gamma g_i)_{\infty} : (g_i^{-1} \Gamma g_i)_{\infty}^+\right] = 2$$
$$\implies f(g_i \infty) = (f|_k g_i)(\infty) = 0,$$

which completes the proof.

11. Keep our notations in 10. Consider the C-linear map

$$\iota: M_k(\Gamma) \to \mathbb{C}^{|C_{\Gamma}|}$$

given by

$$f \mapsto (f(g_1 \infty), \dots, f(g_r \infty)).$$
 (3)

From Eq. (2), we deduce that $\ker \iota = S_k(\Gamma)$ and $\operatorname{im} \iota$ is generated by $\iota(G_1), \ldots, \iota(G_r)$ because $M_k(\Gamma)$ is generated by $S_k(\Gamma)$ and G_1, \ldots, G_r .

If k is even, then $G_i(g_i\infty) \neq 0$ for all $i \in \{1, \ldots, r\}$, and thus $\iota(G_i)$ is the vector in $\mathbb{C}^{|C_{\Gamma}|}$ whose i-th element is nonzero and other elements are zero. Therefore, $\iota(G_1), \ldots, \iota(G_r)$ form a basis of $\mathbb{C}^{|C_{\Gamma}|}$. Hence $\dim M_k(\Gamma) = \dim S_k(\Gamma) + |C_{\Gamma}|$.

12. Keep the notations in 11. When k is odd, the image of ι is still generated by $\iota(G_i)$'s, but

$$\iota(G_i) \neq 0 \iff [(g_i^{-1} \Gamma g_i)_{\infty} : (g_i^{-1} \Gamma g_i)_{\infty}^+] = 1,$$

and those nonzero $\iota(G_i)$'s are linearly-independent. Therefore $\dim(\operatorname{im}\iota) = |C'_{\Gamma}|$, and $\dim M_k(\Gamma) = \dim S_k(\Gamma) + |C'_{\Gamma}|$.

13. Since the series $G_{k,\Gamma,\infty}$ is normally convergent on any $X_{A,B}$,

$$\operatorname{vol}(\Gamma \backslash \mathcal{H}) \langle f, G_{k, \Gamma, \infty} \rangle = \int_{\Gamma \backslash \mathcal{H}} f(z) \sum_{g \in \Gamma_{\infty}^{+} \backslash \Gamma} \overline{j(g, z)^{-k}} y^{k-2} dx dy$$
$$= \sum_{g \in \Gamma_{\infty}^{+} \backslash \Gamma} \int_{\Gamma \backslash \mathcal{H}} f(z) \overline{j(g, z)^{-k}} y^{k-2} dx dy,$$

where we write z = x + iy. Take a fundamental domain D_{Γ} for Γ . For each $g \in \Gamma$, since the volume form

$$d\mu(z) := \frac{dxdy}{y^2}$$

is $SL_2(\mathbb{R})$ -invariant, so under the change of variable $z \mapsto g^{-1}\tau$,

$$\begin{split} \int_{\Gamma\backslash\mathcal{H}} f(z)\overline{j(g,z)^{-k}}y^{k-2}dxdy &= \int_{D_{\Gamma}} f(z)\overline{j(g,z)^{-k}}(\operatorname{Im}z)^k d\mu(z) \\ &= \int_{gD_{\Gamma}} f(g^{-1}\tau)\overline{j(g,g^{-1}\tau)^{-k}}(\operatorname{Im}g^{-1}z)^k d\mu(\tau) \\ &= \int_{gD_{\Gamma}} f(\tau)j(g^{-1},\tau)^k \overline{j(g^{-1},\tau)^k}|j(g^{-1},\tau)|^{-2k}(\operatorname{Im}\tau)^k d\mu(\tau) \\ &= \int_{gD_{\Gamma}} f(\tau)(\operatorname{Im}\tau)^k d\mu(\tau), \end{split}$$

where we used $1 = j(1,\tau) = j(g,g^{-1}\tau)j(g^{-1},\tau)$. Because $\bigcup_{g \in \Gamma_{\infty}^+ \setminus \Gamma} gD_{\Gamma}$ is a fundamental domain for Γ_{∞}^+ ,

$$\langle f, G_{k,\Gamma,\infty} \rangle = \frac{1}{\operatorname{vol}(\Gamma \backslash \mathcal{H})} \sum_{g \in \Gamma_{\infty}^{+} \backslash \Gamma} \int_{gD_{\Gamma}} f(\tau) (\operatorname{Im} \tau)^{k} d\mu(\tau)$$
$$= \frac{1}{\operatorname{vol}(\Gamma \backslash \mathcal{H})} \int_{\Gamma_{\infty}^{+} \backslash \mathcal{H}} f(z) y^{k-2} dx dy.$$

The group Γ_{∞}^+ is a subgroup of $\begin{pmatrix} 1 & \mathbb{Z} \\ 1 \end{pmatrix}$, so it is generated by $\begin{pmatrix} 1 & t \\ 1 \end{pmatrix}$ for some $t \in \mathbb{Z}$, and therefore $\{z \in \mathcal{H} | 0 \leq \operatorname{Re}(z) \leq t\}$ is a fundamental domain for Γ_{∞}^+ . So

$$\int_{\Gamma_{\infty}^{+}\backslash\mathcal{H}} f(z)y^{k-2}dxdy = \int_{0}^{\infty} y^{k-2}dy \int_{0}^{N} f(z)dx$$
$$= \int_{0}^{\infty} y^{k-2}a_{0} = 0,$$

where $a_0 = 0$ is the constant term of the q-expansion of $f \in S_k(\Gamma)$. Hence $\langle f, G_{k,\Gamma,\infty} \rangle = 0$.

14. The injective map

$$\operatorname{SL}_2(\mathbb{Z})^+_{\infty} \backslash \operatorname{SL}_2(\mathbb{Z}) \to \mathbb{Z}^2_{\operatorname{prim}}$$

is surjective, because for each $(c,d) \in \mathbb{Z}_{prim}$, we can find $a,b \in \mathbb{Z}$ s.t. ac-bd=1, which gives a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$. Therefore,

$$G_{k,\operatorname{SL}_2(\mathbb{Z}),\infty} = \sum_{g \in \operatorname{SL}_2(\mathbb{Z})^+_\infty \backslash \operatorname{SL}_2(\mathbb{Z})} j(g,z)^{-k} = \sum_{(c,d) \in \mathbb{Z}^2_{\operatorname{prim}}} (cz+d)^{-k}.$$

Note that the map

$$\mathbb{Z}^2_{\mathrm{prim}} \times \mathbb{Z}_{\geq 1} \to \mathbb{Z}^2 \setminus \{0, 0\} \quad ((c, d), u) \mapsto (cu, du)$$

is bijective, whose inverse is given by $(c, d) \mapsto ((c/\gcd(c, d), d/\gcd(c, d)), \gcd(c, d))$. Hence, the Eisenstein series

$$G_k(z) = \sum_{(c,d) \in \mathbb{Z}^2 \setminus \{0,0\}} (cz+d)^{-k} = \sum_{n \ge 1} n^{-k} \sum_{(c,d) \in \mathbb{Z}^2_{\text{prim}}} (cz+d)^{-k}$$
$$= \zeta(k) G_{k,\text{SL}_2(\mathbb{Z}),\infty}.$$

So $G_{k,\mathrm{SL}_2(\mathbb{Z}),\infty} = 2E_k(z)$.