MULTICURVE REPLICATION OF CMS COUPONS

P. CASPERS

First Version June 1, 2013 - This Version June 1, 2013

ABSTRACT. We summarize formulas for the replication and pricing of Cms coupons in a multicurve setting.

1. Notation

We assume a two curve setting consisting of a discount curve D and a forward curve F. All quantities computed on these curves are denoted with a respective subscript D or F.

A swap rate fixed on t_f may be written as

(1.1)
$$S(t_f) = \frac{\sum \tau_i L_F(t_f, t_i) P_D(t_f, s_i)}{\sum \tau_i^* P_D(t_f, s_i^*)}$$

with τ denoting year fractions, t,s fixing and payment times, L(u,v) the Libor rate fixed at v as seen from u and P a discount factor.

A swaption price p for a swaption withh expiry on t_f is given by the usual Black formula B

(1.2)
$$p = \sum_{j} \tau_{j}^{*} P_{D}(0, s_{j}^{*}) B(S(0), K, \sigma, t_{f})$$

2. Curve Scenarios

We use curve scenarios generated from a Hull White model to determine the replication basket. In a single curve setup we can write

(2.1)
$$P(t,t') = \frac{P(0,t')}{P(0,t)}e^{-hG(t,t')}$$

with $h = x + \phi$ derived from the normalized short rate x(t) = r(t) - f(0,t) by a constant ϕ which only depends on the Hull White model parameters. Here

(2.2)
$$G(t,t') = \int_{t}^{t'} e^{-(u-t)\kappa} du = \frac{1 - e^{-(t'-t)\kappa}}{\kappa}$$

and for $\kappa = 0$

$$(2.3) G(t,t') = t' - t$$

Date: June 1, 2013.

P. CASPERS

For our two curve setup we assume a static instantaneous forward spread between the curves, thus both curves have the same x(t) and therefore equation 2.1 can be used for both curves P_D and P_F .

3. Replication Basket

3.1. **CMS Caplet.** We wish to replicate a CMS caplet with fixing time t_f , payment time t_p and strike K. We assume a discretization h_i , i = 0, ..., n with $h_0 = K$.

The payoff of the caplet in scneario i=1 is $S(t_f,h_1)-K$ which discounts back to t_f by $P_D(t_f,t_p,h_1)$. The npv of a physical settled call swaption with expiry on t_f and strike K is on the other hand $\Delta_1 A(t_f,h_1)(S(t_f,h_1)-K)$ where A denotes the annuity as written out explicitly above. Here Δ_1 denotes the hedge weight. Equating the npv of the cms caplet payoff and the call swaption yields the first hedge weight

(3.1)
$$\Delta_1 = \frac{P_D(t_f, t_p, h_1)}{A(t_f, h_1)}$$

We note here that it is possible to use a swaption price w.r.t. cash settlement where the annuity is replaced by

$$(3.2) \sum_{j} \frac{\tau}{(1+\tau S(t_f))^j}$$

with a uniform τ corresponding to the frequency on the fixed leg.

For the second scenario we have to revalue the first hedge instrument as $\Delta_1 A(t_f, h_2)(S(t_f, h_2) - K)$, subtract this from the npv of a cms caplet in scenario two which is $P_D(t_f, t_p, h_2)(S(t_f, h_2) - K)$ and solve for the weight Δ_2 of the second hedge instrument which is a call swaption with strike $S(t_f, h_1)$ (therefore contributing nothing in the first scenario):

(3.3)
$$\Delta_2 = \frac{P_D(t_f, t_p, h_2)(S(t_f, h_2) - K) - \Delta_1 A(t_f, h_2)(S(t_f, h_2) - K)}{A(t_f, h_2)(S(t_f, h_2) - S(t_f, h_1))}$$

We continue until the last scenario i = n

- 3.2. **CMS Floorlet.** The case of a floorlet is handled analoguous to the caplet case.
- 3.3. CMS Swaplet. A swaplet is priced via parity. E-mail address, P. Caspers: pcaspers1973@googlemail.com