Министерство науки и высшего образования Российской Федерации Сибирский федеральный университет

Сборник задач по комплексному анализу

(краткий курс) Учебно-методическое пособие Составители: Н.А. Бушуева, В.М. Трутнев.

Сборник задач по комплексному анализу (краткий курс): учеб.-метод. пособие / сост.: Н.А. Бушуева, В.М. Трутнев. – Красноярск : Сиб. федер. ун-т, 2020. 28 с.

ξ 1. Комплексные числа

1. (1) Выполнить указанные действия:

1) $\frac{1}{i}$; 2) $\frac{1-i}{1+i}$; 3) $\frac{2}{1-3i}$; 4) $(1+i\sqrt{3})^3$.

2.~(2) Найти модули и аргументы комплексных чисел (a и b – действительные числа):

1) 3i; 2) -2; 3) 1 + i; 4) -1 - i; 5) 2 + 5i; 6) 2 - 5i; 7) -2 + 5i; 8) -2 - 5i; 9) bi ($b \neq 0$); 10) a + bi ($a \neq 0$).

- **3.** (3) Решить уравнение $\overline{z} = z^{n-1}$ (*n* натуральное число).
- 4. (4) Найти все значения следующих корней и построить их:

1) $\sqrt[3]{1}$; 2) $\sqrt[3]{i}$; 3) $\sqrt[4]{-1}$; 4) $\sqrt[6]{-8}$; 5) $\sqrt[8]{1}$; 6) $\sqrt{1-i}$; 7) $\sqrt{3+4i}$; 8) $\sqrt[3]{-2+2i}$; 9) $\sqrt[5]{-4+3i}$.

- 5. (5) Доказать, что оба значения $\sqrt{z^2-1}$ лежат на прямой, проходящей через начало координат и параллельной биссектрисе внутреннего угла треугольника с вершинами в точках -1, 1 и z, проведенной из вершины z.
- 6. (6) Пусть m и n целые числа. Показать, что ($\sqrt[n]{z}$) m имеет $\frac{n}{(n,m)}$ различных значений, где (n,m) – наибольший общий делитель чисел m и n. Убедиться, что множества значений ($\sqrt[n]{z}$) m и $\sqrt[n]{z^m}$ совпадают тогда и только тогда, когда (n,m)=1, т.е. n и m взаимно просты.
 - 7. (8) Исходя из геометрических рассуждений, доказать неравенства

1) $\left| \frac{z}{|z|} - 1 \right| \le |\arg z|$; 2) $|z - 1| \le ||z| - 1| + |z| \cdot |\arg z|$.

- 8. (14) Доказать, что если $z_1+z_2+z_3=0$ и $|z_1|=|z_2|=|z_3|=1$, то точки z_1, z_2, z_3 являются вершинами правильного треугольника, вписанного в единичную окружность.
- 9. (15) Найти вершины правильного n-угольника, если его центр находится в точке z=0, а одна из вершин z_1 известна.
- **10.** (16) Точки z_1 и z_2 смежные вершины правильного n-угольника. Найти вершину z_3 , смежную с z_2 ($z_3 \neq z_1$).
- **11.** (17) Даны три вершины параллелограмма z_1, z_2, z_3 . Найти четвертую вершину z_4 , противоположную вершине z_2 .

В задачах 12-20 требуется выяснить геометрический смысл указанных соотношений.

12. (23) $|z-z_0| < R$; $|z-z_0| > R$; $|z-z_0| = R$.

13. (24) |z-2| + |z+2| = 5. 14. (25) |z-2| - |z+2| > 3.

15. (26) $|z-z_1| = |z-z_2|$.

16. (27) 1) $\Re e z \geqslant C$; 2) $\Im m z < C$.

17. (28) $0 < \Re e(iz) < 1$.

18. (29)
$$\alpha < \arg z < \beta$$
; $\alpha < \arg(z - z_0) < \beta$ $(-\pi < \alpha < \beta \le \pi)$.

19.
$$(30) |z| = \Re e z + 1$$
.

20. (31)
$$\Re e z + \Im m z < 1$$
.

В задачах 21-22 требуется определить семейства линий в z-плоскости, заданных соответствующими уравнениями.

21. (35) 1)
$$\Re e^{\frac{1}{z}} = C$$
; 2) $\Im m^{\frac{1}{z}} = C \ (-\infty < C < \infty)$.

22. (36) 1)
$$\Re e z^2 = C$$
; 2) $\Im m z^2 = C (-\infty < C < \infty)$.

Стереографическая проекция

- **23.** (44) Вывести формулы стереографической проекции, выражающие координаты (ξ, η, ζ) точки P сферы диаметром 1, касающейся z-плоскости в начале координат, через координаты (x, y) соответствующей точки z. Выразить также x и y через ξ , η , ζ (оси ξ и η предполагаются совпадающими соответственно с осями x и y).
 - **24.** (45) Каковы на сфере образы точек **1**, -1, i, $\frac{1-i}{\sqrt{2}}$?
- **25.** (46) Каков на плоскости образ параллели с широтой β $\left(-\frac{\pi}{2} < \beta < \frac{\pi}{2}\right)$? Чему соответствуют "южный" и "северный" полюсы?
 - **26.** (47) Найти на сфере образы:
 - 1) лучей $\arg z = \alpha$; 2) окружностей |z| = r.
- **27.** (48) Каково на сфере взаимное расположение пары точек, взаимно симметричных:
 - 1) относительно точки z = 0; 2) относительно действительной оси;
 - 3) относительно единичной окружности.
- **28.** (49) При каком условии точки z_1 и z_2 являются стереографическими проекциями двух диаметрально противоположных точек сферы?
 - 29. (51) Найти на сфере образы областей, определенных неравенствами
 - 1) $\Im m z > 0$:
- 2) $\Im m z < 0$;
- 3) $\Re e z > 0$;

4) $\Re e z < 0$;

5) |z| < 1:

6) |z| > 1.

§ 2. Элементарные трансцендентные функции

- **30.** (59) Представить в показательной форме числа $\mathbf{1}, -\mathbf{1}, \mathbf{i}, -\mathbf{i}, \mathbf{1}+\mathbf{i}, \mathbf{1}-\mathbf{i}, -\mathbf{1}+\mathbf{i}, -\mathbf{1}-\mathbf{i}$.
 - **31.** (60) Найти $e^{\pm \frac{\pi i}{2}}$; $e^{k\pi i}$ ($k=0,\pm 1,\pm 2,\ldots$).
- 32. (61) Найти модули и главные значения аргументов комплексных чисел e^{2+i} , $e^{2-3i},\,e^{3+4i},\,e^{-3-4i},\,-ae^{i\varphi}\;(a>0,\,|\varphi|\leqslant\pi);\,e^{i\alpha}-e^{i\beta}\;(0\leqslant\beta<\alpha\leqslant2\pi).$
 - **33.** (62) Найти суммы
 - 1) $1 + \cos x + \cos 2x + \cdots + \cos nx$;

- 2) $\sin x + \sin 2x + \cdots + \sin nx$;
- 3) $\cos x + \cos 3x + \cdots + \cos(2n-1)x$;
- 4) $\sin x + \sin 3x + \cdots + \sin(2n-1)x$;
- 5) $\sin x \sin 2x + \cdots + (-1)^{n-1} \sin nx$
- **34.** (63) Найти суммы
- 1) $\cos \alpha + \cos(\alpha + \beta) + \cdots + \cos(\alpha + n\beta)$:
- 2) $\sin \alpha + \sin(\alpha + \beta) + \cdots + \sin(\alpha + n\beta)$.
- 35. (64) Исходя из определения соответствующих функций, доказать:

1)
$$\sin^2 z + \cos^2 z = 1$$
; 2) $\sin z = \cos \left(\frac{\pi}{2} - z\right)$;

- 3) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$;
- 4) $\cos(z_1 + z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2$.
- **36.** (66) Доказать, что:
- 1) $\sin iz = i \sinh z$; 2) $\cos iz = \cosh z$;
- 3) $\operatorname{tg} iz = i \operatorname{th} z$; 4) $\operatorname{ctg} iz = -i \operatorname{cth} z$.
- **37.** (71) Вычислить
- 1) $\operatorname{Ln} 4$, $\operatorname{Ln}(-1)$, $\operatorname{ln}(-1)$; 3) $\operatorname{Ln} \frac{1 \pm i}{\sqrt{2}}$;
- $2) \mathbf{Ln} \, \boldsymbol{i}, \, \mathbf{ln} \, \boldsymbol{i};$

3) Ln
$$\frac{1 \pm i}{\sqrt{2}}$$
;

- 4) Ln(2-3i), Ln(-2+3i).
- 38. (74) Найти все значения следующих степеней:

1)
$$\mathbf{1}^{\sqrt{2}}$$
; 2) $(-2)^{\sqrt{2}}$; 3) $\mathbf{2}^{i}$; 4) $\mathbf{1}^{-i}$; 5) \mathbf{i}^{i} ; 6) $\left(\frac{1-i}{\sqrt{2}}\right)^{1+i}$; 7) $(3-4i)^{1+i}$; 8) $(-3+4i)^{1+i}$.

- **39.** (75) Показать, что в случае рационального показателя $(\alpha = \frac{m}{n})$ общее определение степени z^{α} совпадает с обычным определением $z^{\frac{m}{n}} = \left(\sqrt[n]{z}\right)^{m}$.

$$z^{\frac{m}{n}} = (\sqrt[n]{z})^m$$

- **40.** (76) Совпадают ли множества значений $a^{2\alpha}$, $(a^{\alpha})^2$, $(a^2)^{\alpha}$?
- 41. (77) Доказать следующие равенства (для корней берутся все их значения):
- 1) Arccos $z = -i \operatorname{Ln}(z + \sqrt{z^2 1});$
- 2) Arcsin $z = -i \operatorname{Ln} i(z + \sqrt{z^2 1});$
- 3) Arctg $z = \frac{i}{2} \operatorname{Ln} \frac{i+z}{i-z} = \frac{1}{2i} \operatorname{Ln} \frac{1+iz}{1-iz}$
- 4) Arcctg $z = \frac{i}{2} \operatorname{Ln} \frac{z i}{z + i}$.
- 42. (81) Найти все значения следующих функций:
- 1) $\operatorname{Arcsin} \frac{1}{2}$; 2) $\operatorname{Arccos} \frac{1}{2}$; 3) $\operatorname{Arccos} 2$; 4) $\operatorname{Arcsin} i$; 5) $\operatorname{Arctg}(1+2i)$; 6) $\operatorname{Arch} 2i$; 7) $\operatorname{Arth}(1-i)$.
- 43. (82) Найти все корни следующих уравнений:

 $1) \sin z + \cos z = 2;$

 $2) \sin z - \cos z = 3;$

3) $\sin z - \cos z = i$;

4) ch z - sh z = 1;

5) $\operatorname{sh} z - \operatorname{ch} z = 2i$;

6) $2 \cosh z + \sinh z = i$.

44. (83) Найти все корни следующих уравнений:

1) $\cos z = \operatorname{ch} z$;

 $2) \sin z = i \sinh z;$

3) $\cos z = i \sinh 2z$.

§ 3. Функции комплексного переменного

Комплексные функции действительного переменного

В задачах 45-49 определить линии, заданные указанными уравнениями.

45. (109)
$$z = 1 - it$$
; $0 \le t \le 2$.

46. (110)
$$z = t + it^2$$
; $-\infty < t < \infty$.

47. (111)
$$z = t^2 + it^4$$
; $-\infty < t < \infty$.

48. (112)
$$z = a(\cos t + i \sin t); \quad \frac{\pi}{2} \leqslant t \leqslant \frac{3\pi}{2}; a > 0.$$

49. (113)
$$z = t + \frac{i}{t}$$
; $-\infty < t < 0$.

Функции комплексного переменного

- **50.** (116) Для отображения $w = z^2$ требуется:
- 1) найти образы линий $x=C,\,y=C,\,x=y,\,|z|=R,\,\arg z=\alpha$ и выяснить, какие из них преобразуются взаимно-однозначно;
- 2) найти прообразы (на z-плоскости) линий $u=C,\,v=C$ (w=u+iv).
 - **51.** (117) Для отображения $w = \frac{1}{z}$ найти
 - 1) образы линий $\pmb{x} = \pmb{C},\, \pmb{y} = \pmb{C},\, |\stackrel{\pmb{z}}{\pmb{z}}| = \pmb{R},\, \arg \pmb{z} = \pmb{\alpha},\, |\pmb{z} \pmb{1}| = \pmb{1};$
 - 2) прообразы линий $\boldsymbol{u} = \boldsymbol{C}, \, \boldsymbol{v} = \boldsymbol{C}.$
- ${f 52.}\ (\,118\,)$ Для отображений ${m w}={m z}+rac{1}{{m z}}$ и ${m w}={m z}-rac{1}{{m z}}$ найти образы окружностей $|{m z}|={m R}.$
- **53.** (119) Для преобразования $w=z+\frac{1}{z}$ найти на z-плоскости прообраз прямоугольной сетки ($u=C,\,v=C$) плоскости w.
 - **54.** (120) Во что преобразуется окружность |z|=1 при отображении $w=rac{z}{(1-z)^2}$?
 - **55.** (121) Для отображения ${m w} = {m e}^{{m z}}$ найти
 - 1) образы линий ${\boldsymbol x}={\boldsymbol C},\,{\boldsymbol y}={\boldsymbol C},\,{\boldsymbol x}={\boldsymbol y};$
 - 2) прообразы линий $\rho = \theta \ (0 \leqslant \theta < \infty)$.

§ 4. Аналитические функции

Условия Коши-Римана

56. (131) Проверить выполнение условий Коши-Римана для функций z^n , e^z , $\cos z$, $\operatorname{Ln} z$ и доказать, что

$$(z^n)' = nz^{n-1}, \ (e^z)' = e^z, \ (\cos z)' = -\sin z, \ (\operatorname{Ln} z)' = \frac{1}{z}.$$

57. (132) Найти постоянные $\boldsymbol{a},\,\boldsymbol{b},\,\boldsymbol{c}$, при которых функция $\boldsymbol{\tilde{f}(z)}$ будет аналитической:

- 1) f(z) = x + ay + i(bx + cy);
- 2) $f(z) = \cos x(\operatorname{ch} y + a \operatorname{sh} y) + i \sin x(\operatorname{ch} y + b \operatorname{sh} y).$
- 58. (133) Найти области, в которых функция

$$f(z) = |x^2 - y^2| + 2i|xy|$$

будет аналитической.

59. (134) $f(z) = u + iv = \rho e^{i\theta}$ – аналитическая функция. Доказать, что если одна из функций u, v, ρ, θ тождественно равна постоянной, то и функция f(z) постоянна.

60. (135) Пусть $z = re^{i\varphi}$ и $f(z) = u(r,\varphi) + iv(r,\varphi)$. Записать уравнения Коши-Римана в полярных координатах.

61. (137) Доказать, что функция $f(z) = \overline{z}$ нигде не дифференцируема.

62. (138) Доказать, что функция $w = z\Re e\,z$ дифференцируема только в точке z = 0; найти w'(0).

63. (139) Доказать, что для функции $f(z) = \sqrt{|xy|}$ в точке z = 0 выполняются условия Коши-Римана, но производная не существует.

64. (143) Пусть w = f(x) = u + iv и u(x,y) и v(x,y) дифференцируемы в точке z. Доказать, что множество всевозможных предельных значений отношения $\frac{\triangle w}{\triangle z}$ при $\triangle z \to 0$ – есть либо точка, либо окружность.

Гармонические функции

В задачах 65-67 найти функции, сопряженные с данными гармоническими функциями в указанных областях.

65. (159)
$$u(x,y) = x^2 - y^2 + x$$
, $0 \le |z| < \infty$.

66. (160)
$$u(x,y) = \frac{x}{x^2 + y^2}$$
, $0 < |z| < \infty$.

67. (161)
$$u(x,y) = \frac{1}{2} \ln(x^2 + y^2)$$

а) в области, полученной из плоскости удалением полуоси y=0, $-\infty < x \leqslant 0;$

б) в плоскости с выколотым началом координат $(0 < |z| < \infty)$.

В задачах 68-71 найти аналитические функции f(z)=u+iv, по заданной действительной или мнимой части.

68. (165)
$$u = x^2 - y^2 + 5x + y - \frac{y}{x^2 + y^2}$$
.

69.
$$(166) u = e^x(x\cos y - y\sin y) + 2\sin x \sin y + x^3 - 3xy^2 + y$$

70. (167)
$$v = 3 + x^2 - y^2 - \frac{y}{2(x^2 + y^2)}$$
.

71. (168)
$$v = \ln(x^2 + y^2) + x - 2y$$
.

В задачах 72-75 доказать существование и найти аналитические функции f(z) по заданному модулю или аргументу.

72. (177)
$$\rho = (x^2 + y^2)e^x$$
. 73. (178) $\rho = e^{r^2\cos 2\varphi}$.

74. (179)
$$\theta = xy$$
. 75. (180) $\theta = \varphi + r \sin \varphi$.

Геометрический смысл модуля и аргумента производной

76. (187) Отображение совершается с помощью функции $w=z^2$ и $w=z^3$. Найти угол поворота (ϑ) и коэффициент растяжения (k) в следующих точках:

1)
$$z_0 = 1$$
; 2) $z_0 = -\frac{1}{4}$; 3) $z_0 = 1 + i$; 4) $z_0 = -3 + 4i$.

77. (188) Какая часть плоскости сжимается, а какая растягивается, если отображение осуществляется функцией

1)
$$w = z^2$$
; 2) $w = z^2 + 2z$; 3) $w = \frac{1}{z}$;

4)
$$w = e^z$$
; 5) $w = \ln(z - 1)$.

78. (189) Область G отображается с помощью функции f(z) конформно и взаимно однозначно на область G'. Указать формулы для вычисления площади S и области G' и длины L дуги, на которую отображается некоторая дуга l, принадлежащая области G.

79. (190) Найти длину \boldsymbol{L} спирали, на которую с помощью функции $\boldsymbol{e^z}$ отображается отрезок $\boldsymbol{y}=\boldsymbol{x},\,0\leqslant\boldsymbol{x}\leqslant2\pi$.

80. (191) Найти площадь области, на которую с помощью функции e^z отображается прямоугольник $1\leqslant x\leqslant 2,\, 0\leqslant y\leqslant 4.$

81. (192) Найти область D на которую функция e^z отображает прямоугольник $1 \leqslant x \leqslant 2$, $0 \leqslant y \leqslant 8$. Вычислить площадь области D с помощью формулы, полученной при решении задачи 78, и объяснить, почему эта формула дает неправильный результат.

§ 5. Интегрирование функций комплексного переменного

82. (388) Вычислить интегралы $I_1 = \int x \, dz$, $I_2 = \int y \, dz$ по следующим путям:

- 1) по радиусу-вектору точки z = 2 + i;
- 2) по полуокружности $|z|=1,\, 0\leqslant \arg z\leqslant \pi$ (начало пути в точке z=1);
- 3) по окружности |z a| = R.
- 83. (389) Вычислить интеграл $\int |z| \, dz$ по следующим путям:
- 1) по радиусу-вектору точки z=2-i;
- 2) по полуокружности $|z|=1,\, 0\leqslant \arg z\leqslant \pi$ (начало пути в точке z=1);
- 3) по полуокружности $|z|=1, -\frac{\pi}{2}\leqslant \arg z\leqslant \frac{\pi}{2}$ (начало пути в точке z=-i);
- 4) по окружности |z| = R.
- 84. (390) Вычислить интеграл $\int_C |z| \overline{z} \, dz$, где C замкнутый контур, состоящий из верхней полуокружности |z|=1 и отрезка $-1\leqslant x\leqslant 1,\,y=0$.

- 85. (391) Вычислить интеграл $\int_C \frac{z}{\overline{z}} dz$, где C граница полукольца, изображенного на рис. 1.
 - Рис. 1
 - 86. (392) Вычислить интеграл $\int (z-a)^n dz$ (n целое число):
- 1) по полуокружности $|z-a| \stackrel{\prime}{=} R$, $0 \leqslant \arg(z-a) \leqslant \pi$ (начало пути в точке z=a+R);
 - 2) по окружности |z a| = R;
- 3) по периметру квадрата с центром в точке \boldsymbol{a} и сторонами, параллельными осям координат.

§ 6. Интегральная формула Коши

Всюду в задачах этого параграфа $oldsymbol{C}$ означает простой замкнутый спрямляемый контур.

- 87. (412) Вычислить интеграл $\int_C \frac{dz}{z^2 + 9}$, если:
- 1) точка 3i лежит внутри контура C, а точка -3i вне его;
- 2) точка -3i лежит внутри контура C, а точка 3i вне его;
- 3) точки $\pm 3i$ лежат внутри контура C.
- 88. (413) Вычислить все возможные значения интеграла $\int_C \frac{dz}{z(z^2-1)}$ при различных положениях контура C. Предполагается, что контур C не проходит ни через одну из точек 0, 1 и -1.
- 89. (414) Какое число различных значений может принимать интеграл $\int_C \frac{dz}{\omega_n(z)}$, где $\omega_n(z)=(z-z_1)(z-z_2)\dots(z-z_n),\,(z_i\neq z_j)$ и контур C не проходит ни через одну из точек z_i .
 - 90. (415) Вычислить интеграл $\int_{|z-a|=a} rac{z\,dz}{(z^4-1)},\,a>1.$

- 91. (416) Вычислить интеграл $\frac{1}{2\pi i}\int_C \frac{e^z\,dz}{(z^2+a^2)}$, если контур C содержит внутри себя круг $|z|\leqslant a$.
- 92. (417) Вычислить интеграл $\frac{1}{2\pi i}\int_C \frac{ze^z\,dz}{(z-a)^3}$, если точка a лежит внутри контура C.

Указание. Воспользоваться формулами для производных интеграла Коши.

- 93. (418) Вычислить интеграл $\frac{1}{2\pi i}\int_C \frac{e^z\,dz}{z(1-z)^3}$, если:
- 1) точка $\mathbf{0}$ лежит внутри, а точка $\mathbf{1}$ вне контура C;
- 2) точка ${\bf 1}$ лежит внутри, а точка ${\bf 0}$ вне контура ${\bf C}$;
- 3) точки ${\bf 0}$ и ${\bf 1}$ обе лежат внутри контура ${\bf C}$.
- 94. (421) Согласно теореме Лиувилля, функция f(z), аналитическая и ограниченная во всей плоскости, является постоянной. Доказать эту теорему, вычислив интеграл $\int_{|z|=R} \frac{f(z)\,dz}{(z-a)(z-b)} \; (|a| < R,\, |b| < R) \; \text{и произведя его оценку при } R \to \infty.$
- 95. (422) Пусть f(z) аналитична в замкнутой области, ограниченной контуром C, z_1, z_2, \ldots, z_n различные произвольные точки внутри C и $\omega_n(z) = (z-z_1)(z-z_2)\ldots(z-z_n)$. Показать, что интеграл

$$P(z) = rac{1}{2\pi i} \int_C rac{f(\zeta)}{\omega_n(\zeta)} rac{\omega_n(\zeta) - \omega_n(z)}{\zeta - z} d\zeta$$

есть многочлен (n-1)-й степени, совпадающий с f(z) в точках z_1, z_2, \ldots, z_n (многочлен P(z) называется интерполяционным многочленом Лагранжа).

§ 7. Степенные ряды

В задачах 96–106 определить радиусы сходимости рядов.

96. (425)
$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$
. 97. (426) $\sum_{n=1}^{\infty} \frac{z^n}{n!}$. 98. (427) $\sum_{n=1}^{\infty} n^n z^n$.

99. (428)
$$\sum_{n=1}^{\infty} \frac{n}{2^n} z^n$$
. 100. (429) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$. 101. (430) $\sum_{n=1}^{\infty} z^{n!}$.

102. (431)
$$\sum_{n=1}^{\infty} 2^n z^{n!}$$
. **103.** (432) $\sum_{n=1}^{\infty} z^{2^n}$.

104. (433)
$$\sum_{n=1}^{\infty} [3 + (-1)^n]^n z^n$$
. 105. (434) $\sum_{n=1}^{\infty} \cos in \cdot z^n$.

106. (435)
$$\sum_{n=1}^{\infty} (n+a^n)z^n$$
.

ξ 8. Ряд Тейлора

В задачах 107–115 указанные функции разложить в степенной ряд вида $\sum_{n=1}^{\infty} c_n z^n$ и найти радиус сходимости.

107. (452) ch z. **108.** (453) sh z. **109.** (454)
$$\sin^2 z$$
.

110. (455)
$$ch^2 z$$
. 111. (458) $\frac{1}{az+b}$, $(b \neq 0)$.

112. (459)
$$\frac{z}{z^2 - 4z + 13}$$
. 113. (460) $\frac{z^2}{(z+1)^2}$.

114. (465)
$$\int_0^z e^{z^2} dz$$
. 115. (466) $\int_0^z \frac{\sin z}{z} dz$.

В задачах 116-119 указанные функции разложить в ряд по степеням (z-1) и найти радиус сходимости.

116. (467)
$$\frac{z}{z+2}$$
. 117. (468) $\frac{z}{z^2-2z+5}$.

118. (469)
$$\frac{z^2}{(z+1)^2}$$
. 119. (472) $\sin(2z-z^2)$.

120. (473) Найти первые 5 членов разложения в ряд по степеням z функции $e^{z \sin z}$.

Нули аналитических функций

121. (504) Доказать, что точка z_0 тогда и только тогда является нулем порядка $m{k}$ аналитической функции $m{f}(m{z})$, когда в некоторой окрестности точки $m{z_0}$ имеет место равенство $f(z)=(z-z_0)^k arphi(z)$, где функция arphi(z) аналитична в точке z_0 и $arphi(z_0)
eq 0$.

122. (505) Найти порядок нуля
$$z = 0$$
 для функций

1)
$$z^2(e^{z^2}-1)$$
; 2) $6\sin z^3+z^3(z^6-6)$; 3) $e^{\sin z}-e^{\tan z}$.

123. (506) Точка z_0 является нулем порядка k функции f(z) и нулем порядка lдля функции $\varphi(z)$. Чем является точка z_0 для следующих функций:

1)
$$f(z)\varphi(z)$$
; 2) $f(x) + \varphi(z)$; 3) $\frac{f(z)}{\varphi(z)}$?

В задачах 124-136 найти порядки всех нулей данных функций.

124.
$$(507) z^2 + 9$$
.
125. $(508) \frac{z^2 + 9}{z^4}$.
126. $(509) z \sin z$.
127. $(510) (1 - e^z)(z^2 - 4)^3$.

126.
$$(509) z \sin z$$
. 127. $(510) (1 - e^z)(z^2 - 4)^3$.

128. (511) 1 -
$$\cos z$$
. 129. (512) $\frac{(z^2 - \pi^2)^2 \sin z}{z^7}$.

130. (513)
$$\frac{1 - \cot z}{z}$$
. 131. (514) $e^{\tan z}$.

132. (515)
$$\sin^3 z$$
. **133.** (516) $\frac{\sin^3 z}{z}$.

134. (517) $\sin z^3$. 135. (518) $\cos^3 z$.

136. (519) $\cos z^3$.

§ 10. Ряд Лорана

В задачах 137–148 данную функцию разложить в ряд Лорана либо в указанном кольце, либо в окрестности указанной точки. В последнем случае надлежит определить область, в которой разложение имеет место.

137. (543)
$$\frac{1}{z-2}$$
 в окрестности точек $z=0$ и $z=\infty$.

138. (544)
$$\frac{1}{(z-a)^k}$$
 $(a \neq 0,\, k$ – натуральное число) в окрестности точек $z=0$ и $z=\infty$.

139. (545)
$$\frac{1}{z(1-z)}$$
 в окрестности точек $z=0, z=1, z=\infty$.

140. (546)
$$\frac{1}{(z-a)(z-b)}$$
 (0 < $|a|$ < $|b|$) в окрестности точек $z=0,\,z=a,$ $z=\infty$ и в кольце $|a|<|z|<|b|$.

141. (547)
$$\frac{z^2-2z+5}{(z-2)(z^2+1)}$$
 в окрестности точки $z\!=\!2$ и в кольце $1\!<\!|z|\!<\!2$.

142. (548)
$$\frac{1}{(z^2+1)^2}$$
 в окрестности точек $z=i$ и $z=\infty$.

143. (551)
$$z^2 e^{\frac{1}{z}}$$
 в окрестности точек $z = 0$ и $z = \infty$.

144. (552)
$$e^{\frac{1}{1-z}}$$
 в окрестности точек $z=1$ и $z=\infty$.

145. (553)
$$\cos \frac{z^2 - 4z}{(z-2)^2}$$
 в окрестности точки $z=2$.

146. (554)
$$z^2 \sin \frac{1}{z-1}$$
 в окрестности точки $z=1$.

147. (555)
$$e^{z+\frac{1}{z}}$$
 в области $0<|z|<\infty$.

148. (556)
$$\sin z \sin \frac{1}{z}$$
 в области $0 < |z| < \infty$.

149. (557)
$$\sin\frac{z}{1-z}$$
 в окрестности точек $z=1$ и $z=\infty$ (в последнем случае ограничиться четырьмя первыми членами ряда).

150. (561) Выяснить, допускают ли указанные функции разложение в ряд Лорана в окрестности данной точки:

1)
$$\cos\frac{1}{z}$$
, $z=0$;

2)
$$\cos \frac{1}{z}$$
, $z = \infty$;

1)
$$\cos \frac{1}{z}$$
, $z = 0$; 2) $\cos \frac{1}{z}$, $z = \infty$; 3) $\sec \frac{1}{z - 1}$, $z = 1$; 4) $\cot z$, $z = \infty$; 5) $\cot \frac{1}{z}$, $z = 0$; 6) $\frac{z^2}{\sin \frac{1}{z}}$, $z = 0$.

4)
$$\operatorname{ctg} z, \ z = \infty;$$

6)
$$\frac{z^2}{\sin\frac{1}{z}}$$
, $z=0$

§ 11. Особые точки однозначных аналитических функций

В задачах 151–186 найти особые точки функций, выяснить их характер и исследовать поведение функции на бесконечности.

151. (565)
$$\frac{1}{z-z^3}$$
.

152. (566)
$$\frac{z^4}{1+z^4}$$
.

153.
$$(567) \frac{z^5}{(1-z)^2}$$
.

154. (568)
$$\frac{1}{z(z^2+4)^2}$$
.

155. (569)
$$\frac{e^z}{1+z^2}$$
.

156. (570)
$$\frac{z^2+1}{e^z}$$
.

157. (571)
$$ze^{-z}$$
.

158.
$$(572) \frac{1}{e^z - 1} - \frac{1}{z}$$
.

159. (573)
$$\frac{e^z}{z(1-e^{-z})}$$
.

160. (574)
$$\frac{1-e^z}{2+e^z}$$
.

161.
$$(575)$$
 $\frac{1}{z^3(2-\cos z)}$.

163. (577)
$$e^{-\frac{1}{z^2}}$$
.

164. (578)
$$ze^{\frac{1}{z}}$$
.

165. (579)
$$e^{\frac{z}{1-z}}$$
.

166. (580)
$$e^{z-\frac{1}{z}}$$
.

167. (581)
$$\frac{e^{\frac{1}{z-1}}}{e^z-1}$$
.

168. (582)
$$\frac{1}{\sin z}$$
.

169. (583)
$$\frac{\cos z}{z^2}$$
.

171. (585)
$$tg^2 z$$
.

172. (586)
$$\frac{\text{ctg } z}{z^2}$$
.

13

173. (587)
$$\operatorname{ctg} z - \frac{1}{z}$$
.

174. (588)
$$\operatorname{ctg} z - \frac{2}{z}$$
.

175. (589)
$$\frac{1}{\sin z - \sin a}$$
.

176. (590)
$$\frac{1}{\cos z + \cos a}$$
.

177. (591)
$$\sin \frac{1}{1-z}$$
.

178.
$$(592) \frac{z^7}{(z^2-4)^2 \cos \frac{1}{z-2}}$$

179. (593) ctg
$$\frac{1}{z}$$
.

180. (594)
$$\operatorname{ctg} \frac{1}{z} - \frac{1}{z}$$
.

181. (595)
$$\sin \frac{1}{z} + \frac{1}{z^2}$$
.

182. (596)
$$e^{-z}\cos\frac{1}{z}$$
.

183. (597)
$$e^{\operatorname{ctg} \frac{1}{z}}$$
.

184. (598)
$$e^{\operatorname{tg} \frac{1}{z}}$$
.

185. (599)
$$\sin\left(\frac{1}{\sin\frac{1}{z}}\right)$$
.

186. (600)
$$\sin\left(\frac{1}{\cos\frac{1}{z}}\right)$$
.

§ 12. Вычисление вычетов

В задачах 187–205 требуется найти вычеты указанных функций относительно всех изолированных особых точек и относительно бесконечно удаленной точки (если она не является предельной точкой для особых точек).

187. (621)
$$\frac{1}{z^3 - z^5}$$
.

188. (622)
$$\frac{z^2}{(z^2+1)^2}$$
.

189. (623)
$$\frac{z^{2n}}{(1+z)^n}$$
 (*n* – натуральное число).

190. (624)
$$\frac{1}{z(1-z^2)}$$
.

191. (625)
$$\frac{z^2+z-1}{z^2(z-1)}$$
.

192. (626)
$$\frac{\sin 2z}{(z+1)^3}$$
.

193. (627)
$$\frac{e^z}{z^2(z^2+9)}$$
.

195. (629)
$$\frac{1}{\sin z}$$
.

198. (632) 1)
$$\cos \frac{1}{z-2}$$
; 2) $z^3 \cos \frac{1}{z-2}$.

199.
$$(633)$$
 $e^{z+\frac{1}{z}}$.

200. (634) $\sin z \sin \frac{1}{z}$.

201. (635) $\sin \frac{z}{z+1}$.

202. (636) $\cos \frac{z^2+4z-1}{z+3}$.

203. (637) $\frac{1}{z(1-e^{-hz})}$ $(h \neq 0)$.

204. (638) $z^n \sin \frac{1}{z}$ $(n$ – целое число).

205. (639) $\frac{1}{\sin \frac{1}{z}}$.

§ 13. Вычисление интегралов

Непосредственное применение теоремы о вычетах

В задачах 149–152 вычислить интегралы, считая, что обход замкнутых контуров происходит в положительном направлении.

206. (657)
$$\int_C \frac{dz}{z^4+1}$$
, где C – окружность $x^2+y^2=2x$.

207. (658) $\int_C \frac{z\,dz}{(z-1)(z-2)^2}$, где C – окружность $|z-2|=\frac{1}{2}$.

208. (659) $\int_C \frac{dz}{(z-3)(z^5-1)}$, где C – окружность $|z|=2$.

Указание. Воспользоваться тем, что сумма вычетов относительно всех особых точек (включая бесконечно удаленную) равна нулю.

209. (660)
$$\int_C \frac{z^3 dz}{2z^4 + 1}$$
, где C – окружность $|z| = 1$.
210. (661) $\int_C \frac{e^z}{z^2(z^2 - 9)} dz$, где C – окружность $|z| = 1$.
211. (662) $\frac{1}{2\pi i} \int_C \sin\frac{1}{z} dz$, где C – окружность $|z| = r$.
212. (663) $\frac{1}{2\pi i} \int_C \sin^2\frac{1}{z} dz$, где C – окружность $|z| = r$.
213. (664) $\frac{1}{2\pi i} \int_C z^n e^{\frac{2}{z}} dz$, где n – целое число, а C – окружность $|z| = r$.
214. (665) $\int_{|z|=3} (1+z+z^2) \left(e^{\frac{1}{z}}+e^{\frac{1}{z-1}}+e^{\frac{1}{z-2}}\right) dz$.
215. (666) $\int_{|z|=5} \frac{z dz}{\sin z(1-\cos z)}$.

216. (673)
$$\int_0^{2\pi} \frac{d\varphi}{a + \cos \varphi}$$
 $(a > 1)$.

Указание. Положить $e^{i \varphi} = z$

217. (674)
$$\int_{0}^{2\pi} \frac{d\varphi}{(a+b\cos\varphi)^{2}} \ (a>b>0).$$

218. (675)
$$\int_{0}^{2\pi} \frac{d\varphi}{(a+b\cos^{2}\varphi)^{2}} \ (a>0, b>0).$$

219. (676)
$$\int_0^{2\pi} \frac{d\varphi}{1 - 2a\cos\varphi + a^2}$$
 (a – комплексное число и $a \neq \pm 1$).

220. (677)
$$\int_0^{2\pi} \frac{\cos^2 3\varphi \, d\varphi}{1 - 2a\cos \varphi + a^2}$$
 (a – комплексное число и $a \neq \pm 1$).

221. (678)
$$\int_0^{2\pi} e^{\cos \varphi} \cos(n\varphi - \sin \varphi) \, d\varphi$$
 (n – целое число).

222. (679)
$$\int_0^{\pi} \mathbf{tg}(x+ia) dx$$
 (*a* – действительное число).

223. (680)
$$\int_0^{2\pi} \operatorname{ctg}(x+a) \, dx \ (a$$
 – комплексное число и $\Im m \, a \neq 0$).

В задачах 224-230 вычислить интегралы с бесконечными пределами.

224. (682)
$$\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 4x + 13)^2}.$$

225. (683)
$$\int_0^\infty \frac{x^2 dx}{(x^2 + a^2)^2} (a > 0).$$

226. (684)
$$\int_0^\infty \frac{dx}{(x^2+1)^n}$$
 (*n* – натуральное число).

227. (685)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+a^2)(x^2+b^2)} \ (a>0, b>0).$$

228. (686)
$$\int_0^\infty \frac{x^2+1}{x^4+1} dx$$
.

229. (687)
$$\int_0^\infty \frac{dx}{1+x^n}$$
 ($n \ge 2$ – натуральное число).

yказание. Рассмотреть интеграл $\int_C rac{dz}{1+z^n}$, где C — контур, состоящий из лучей $rg z = rac{2\pi}{n}$ и соединяющей их дуги окружности.

230. (688)
$$\int_0^\infty \frac{x^n}{1+x^{2n}} dx \ (n \ge 2).$$

Примечание. Метод вычисления интегралов из задач 229 и 230 переносится на интегралы от рациональных функций вида $R(x^n)$.

В задачах 231–234, пользуясь леммой Жордана, вычислить указанные интегралы. **231.** (691) 1)
$$\int_{-\infty}^{\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10}; \quad 2) \int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 - 2x + 10}.$$

232. (692)
$$\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 + 4x + 20}.$$

233. (693)
$$\int_0^\infty \frac{\cos ax}{x^2 + b^2} dx$$
 (**a** и **b** – положительные числа).

234. (694)
$$\int_0^\infty \frac{x \sin ax}{x^2 + b^2} \, dx$$
 (**a** и **b** – положительные числа).

Ответы и решения

1. 1) -i; 2) -i; 3) $\frac{1}{5}(1+3i)$; 4) -8. 2. 1) 3, $\frac{\pi}{2}$ (здесь и дальше указаны только значения $\arg z$); 2) 2, π ; 3) $\sqrt{2}$, $\frac{\pi}{4}$; 4) $\sqrt{2}$, $-\frac{3\pi}{4}$; 5) $\sqrt{29}$, $\arctan \frac{5}{2}$; 6) $\sqrt{29}$, $-\arctan \frac{5}{2}$; 7) $\sqrt{29}$, $\pi - \arctan \frac{5}{2}$; 8) $\sqrt{29}$, $\arctan \frac{5}{2} - \pi$; 9) |b|, $\frac{\pi}{2} \frac{|b|}{b} = \frac{\pi}{2} \operatorname{sgn} b$; 10) $\sqrt{a^2 + b^2}$, $rctg \frac{b}{a}$ при a>0, $rctg \frac{b}{a}+\pi$ при a<0 и $b\geqslant 0$, $rctg \frac{b}{a}-\pi$ при a<0 и b<0. $3.\ z=\cosarphi_k+i\sinarphi_k$, где $arphi_k=rac{2\pi k}{n},\,k=0,\,1,\,\ldots,\,n-1;\,z=0.\,4.\,1)\,1,\,-rac{1}{2}\pmrac{i\sqrt{3}}{2};$ 2) $\pm \frac{\sqrt{3}}{2} + \frac{i}{2}$, -i; 3) $\pm \frac{\sqrt{2}}{2} (1+i)$, $\pm \frac{\sqrt{2}}{2} (1-i)$; 4) $\pm \frac{\sqrt{2}}{2} (\sqrt{3}+i)$, $\pm \frac{\sqrt{2}}{2} (\sqrt{3}-i)$, $\pm \sqrt{2}i$; 5) $\pm 1 \pm i$, $\pm \frac{\sqrt{2}}{2}(1+i)$, $\pm \frac{\sqrt{2}}{2}(1-i)$; 6) $\pm \frac{\sqrt{2}}{2}(\sqrt{\sqrt{2}+1}-i\sqrt{\sqrt{2}-1})$; 7) $\pm (2+i)$; $\sqrt{2} \left[\cos \frac{(2k + \frac{3}{4})\pi}{3} + i \sin \frac{(2k + \frac{3}{4})\pi}{3} \right] \qquad (k = 0, 1, 2).9) \sqrt[5]{5} \times$ $\left\lceil \cos \frac{(2k+1)\pi - \operatorname{arctg} \frac{3}{4}}{5} + i \sin \frac{(2k+1)\pi - \operatorname{arctg} \frac{3}{4}}{5} \right\rceil \qquad (k)$ 9. $z_k = z_1 \left(\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}\right) (k = 0, 1, 2, ..., n-1)$. 10. $z_3 = z_2 + (z_2 - 1)$ $(z_1)\left(\cos{rac{2\pi}{n}}\pm i\sin{rac{2\pi}{n}}
ight)$. 11. $z_4=z_1+z_3-z_2$. 12. Внутренность круга радиуса ${m R}$ с центром в точке ${m z}={m z_0}$; внешность этого же круга; окружность того же круга. **13.** Эллипс с фокусами в точках $z=\pm 2$ и большой полуосью $\frac{5}{2}$. **14.** Внутренность левой ветви гиперболы с фокусами в точках $z=\pm 2$ и действительной полуосью $\frac{3}{2}$. **15.** Прямая, перпендикулярная к отрезку, соединяющему точки z_1 и z_2 , и проходящая через середину этого отрезка. **16.** 1) Прямая x = C и полуплоскость, расположенная справа от нее; 2) полуплоскость, расположенная снизу от прямой y = C. 17. Полоса -1 < y < 0. 18. Внутренность угла (содержащая положительную часть действительной оси) с вершиной в начале координат и сторонами, образующими с действительной осью углы, равные соответственно α и β ; внутренность такого же угла с вершиной в точке z_0 . 19. Парабола $y^2 = 2x + 1$. 20. Полуплоскость, ограниченная прямой x + y = 1 и содержащая начало координат. 21. 1) Семейство окружностей, касающихся в начале координат мнимой оси, и сама мнимая ось (уравнение семейства: $C(x^2+y^2)=x$); 2) семейство окружностей, касающихся в начале координат действительной оси, и сама действительная ось. **22.** 1) Семейство гипербол $x^2 - y^2 = C$; 2) семейство гипербол $xy=rac{C}{2}$. 23. $\xi=rac{x}{x^2+y^2+1},\,\eta=rac{y}{x^2+y^2+1},\,\zeta=rac{x^2+y^2}{x^2+y^2+1},$ $z=x+iy=rac{\xi+i\eta}{1-\zeta}$. 24. $\left(rac{1}{2},0,rac{1}{2}
ight),\left(-rac{1}{2},0,rac{1}{2}
ight),\left(0,rac{1}{2},rac{1}{2}
ight),\left(rac{\sqrt{2}}{4},-rac{\sqrt{2}}{4},rac{1}{2}
ight)$. Все четыре точки лежат на экваторе, долготы их соответственно равны $0, \pi, \frac{\pi}{2}, -\frac{\pi}{4}$ (долгота отсчитывается от начального меридиана, лежащего в плоскости ξ, η). 25. Окружность радиуса $\operatorname{tg}\left(\frac{\beta}{2}+\frac{\pi}{4}\right)$ с центром в точке z=0. "Южному" полюсу соответствует начало координат, "северному" – бесконечно удаленная точка. 26. 1) Полумеридианы с долготой α ; 2) параллели с широтой $\beta=2\arctan r-\frac{\pi}{2}$. 27. 1) Диаметрально противоположные точки на одной параллели; 2) точки, взаимно симметричные относительно начального меридиана (т.е. с отличающимися по знаку долготами); 3) точки, взаимно симметричные относительно плоскости экватора (т.е. с одинаковой долготой и с широтами, отличающимися знаком). 28. $z_1 \cdot \overline{z}_2 = -1$. 29. 1) Восточное полушарие; 2) западное полушарие; 3) полушарие $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ (α – долгота); 4) полушарие $\frac{\pi}{2} < |\alpha| < \pi$; 5) южное полушарие; 6) северное полушарие.

30. 1, $e^{\pi i}$, $e^{\frac{\pi}{2}i}$, $e^{-\frac{\pi}{2}i}$, $\sqrt{2}e^{\frac{\pi}{4}i}$, $\sqrt{2}e^{-\frac{\pi}{4}i}$, $\sqrt{2}e^{\frac{3\pi}{4}i}$, $\sqrt{2}e^{-\frac{3\pi}{4}i}$. 31. $\pm i$; $(-1)^k$. 32. e^2 , 1; e^2 , -3; e^3 , $4-2\pi$; e^{-3} , $2\pi-4$; a, $\varphi-\pi$, если $\varphi\leqslant 0$; 1, $-\varphi$, если $|\varphi|<\pi$, и π , если $|\varphi|=\pi$; $2\sin\frac{\alpha-\beta}{2}$; $\frac{\alpha+\beta+\pi}{2}$, если $\alpha+\beta\leqslant\pi$ и $\frac{\alpha+\beta-3\pi}{2}$, если $\alpha + \beta > \pi$. 33. 1) $\frac{\sin\frac{(n+1)x}{2}\cos\frac{nx}{2}}{\sin\frac{x}{2}}$; 2) $\frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}$; 3) $\frac{\sin 2nx}{2\sin x}$; 4) $\frac{\sin^2 nx}{\sin x}$; $\frac{\sin \frac{(n+1)x}{2}\cos \frac{nx}{2}}{\cos \frac{x}{2}}$, если n – нечетное число, $-\frac{\cos \frac{(n+1)x}{2}\sin \frac{nx}{2}}{\cos \frac{x}{2}}$, если n – четное число. 34. 1) $\frac{\sin\frac{n+1}{2}\beta}{\sin\frac{\beta}{2}} \times \cos\left(\alpha + \frac{n\beta}{2}\right)$; 2) $\frac{\sin\frac{n+1}{2}\beta}{\sin\frac{\beta}{2}}\sin\left(\alpha + \frac{n\beta}{2}\right)$. 37. 1) $\ln 4 + 2k\pi i$, $(2k+1)\pi i, \pi i; 2) \left(2k+\frac{1}{2}\right)\pi i; \frac{\pi i}{2}; 3) \left(2k\pm\frac{1}{4}\right)\pi i; 4) \frac{1}{2}\ln 13 + \left(2k\pi - \operatorname{arctg}\frac{3}{2}\right)i,$ $\left| rac{1}{2} \ln 13 \right| + \left| (2k+1)\pi - \operatorname{arctg} rac{3}{2} \right| i$. 38. 1) $\cos(2k\sqrt{2}\pi) + i\sin(2k\sqrt{2}\pi)$; 2) $2^{\sqrt{2}} [\cos(2k+1)\pi\sqrt{2} + i\sin(2k+1)\pi\sqrt{2}];$ 3) $e^{2k\pi} (\cos\ln 2 + i\sin\ln 2);$ 4) $e^{2k\pi};$ 5) $e^{\left(2k-\frac{1}{2}\right)\pi};$ 6) $\frac{1-i}{\sqrt{2}} e^{\left(2k+\frac{1}{4}\right)\pi};$ 7) $5e^{\arctan\frac{3}{4}+2k\pi} [\cos(\ln 5 - \arctan\frac{4}{3})]$ $+ i \sin(\ln 5 - \arctan \frac{4}{3})]; 8) -5e^{\arctan \frac{3}{4} + (2k+1)\pi} [\cos(\ln 5 - \arctan \frac{4}{3}) + i \sin(\ln 5 - \arctan \frac{4}{3})]$ $-rctgrac{4}{3}$)]. Везде k – целое число ($k=0,\,\pm 1,\,\pm 2,\,\ldots$). 40. Множества значений a^{2lpha} и $(a^{\checklpha})^2$ совпадают между собой, но не совпадают, вообще говоря, с множеством значений $(a^2)^{\alpha}$. 42. 1) $\frac{\pi}{6} + 2k\pi$, $\frac{5\pi}{6} + 2k\pi$; 2) $2k\pi \pm \frac{\pi}{3}$; 3) $2k\pi \pm i \ln(2+\sqrt{3})$; 4) $2k\pi - 2k\pi$ $i\ln(\sqrt{2}-1), (2k+1)\pi - i\ln(\sqrt{2}+1); 5)\frac{1}{2}\left[\arctan\frac{1}{2} + (2k+1)\pi\right] + \frac{i}{4}\ln 5; 6)\ln(\sqrt{5}\pm i)$ $(2) + \left(2k \pm \frac{1}{2}\right)\pi i; 7) \frac{1}{4}\ln 5 + \left[\frac{1}{2}\arctan 2 + (k + \frac{1}{2})\pi\right] i$. Всюду k – целое число (k = 0, 1)

$$\pm 1, \pm 2, \dots$$
). 43. 1) $z = \frac{\pi}{4} + 2k\pi - i \ln(\sqrt{2} \pm 1);$ 2) $z = \frac{3\pi}{4} + 2k\pi - i \ln\left(\frac{3 \pm \sqrt{7}}{\sqrt{2}}\right);$ 3) $z = \frac{\pi}{4} + 2k\pi - i \ln\left(\frac{\sqrt{3} - 1}{\sqrt{2}}\right)$ и $z = -\frac{3\pi}{4} + 2k\pi - i \ln\left(\frac{\sqrt{3} + 1}{\sqrt{2}}\right);$ 4) $z = 2k\pi i;$ 5) $z = -\ln 2 + (2k + 1)\pi i;$ 6) $z = \left(2k + \frac{1}{2}\right)\pi i$ и $z = -\ln 3 + \left(2k - \frac{1}{2}\right)\pi i.$ Всюду k – целое число. 44. 1) $z = k\pi (1 \pm i);$ 2) $z = k\pi (1 + i)$ и $z = \frac{(2k + 1)\pi}{1 + i};$ 3) $z = \frac{(4k + 1)\pi}{2(1 + 2i)}$ и $z = \frac{(4k - 1)\pi}{2(1 - 2i)}$. Всюду k – целое число. 45. Отрезок прямой : $x = 1, -2 \le y \le 0$. 46. Парабола $y = x^2$. 47. Дважды пробегаемая правая половина параболы $y = x^2$. 48. Левая полуокружность радиуса a c пентром b точке $z = 0$. 49. Ветвь гиперболы $y = \frac{1}{x}$, лежащая b третьем квадранте. 50. 1) Образами прямых $x = C$ являются при $C \ne 0$ параболы $u = C^2 - \frac{v^2}{4C^2}$, при $C = 0$ полуось $v = 0$, $u \le 0$; образами прямых $y = C$ являются при $C \ne 0$ параболы $u = \frac{v^2}{4C^2} - C^2$, при $C = 0$ полуось $v = 0$, $u \ge 0$; образами окружностей $|z| = R$ являются окружности $|w| = R^2$; образами лучей атд $z = \alpha$ – лучи атд $w = 2\alpha$; взаимно однозначно отображаются прямых $u = C$ являются при $c \ne 0$ и лучи атд $v = 2\alpha$; $v = 0$ проберазами прямых $v = 0$ гиперболы $v = 0$ при $v = 0$ и при $v = 0$ при

при C=0 — ось x=0, прообразами прямых v=C — окружности $x^2+y^2+\frac{\bar{y}}{C}=0$, при C=0 — ось y=0. 52. Функция $w=z+\frac{1}{z}$ отображает окружности $|z|=R\neq 1$ на эллипсы $\frac{u^2}{\left(R+\frac{1}{R}\right)^2}+\frac{v^2}{\left(R-\frac{1}{R}\right)^2}=1$, а окружность |z|=1 на отрезок v=0, $-2\leqslant u\leqslant 2$; функция $w=z-\frac{1}{z}$ отображает окружности $|z|=R\neq 1$ на эллипсы $\frac{u^2}{\left(R-\frac{1}{R}\right)^2}+\frac{v^2}{\left(R+\frac{1}{R}\right)^2}=1$, а окружность |z|=1 на отрезок u=0, $-2\leqslant v\leqslant 2$. 53. Прообразом семейства u=C является семейство $x(x^2+y^2+1)=C(x^2+y^2)$;

прообразом семейства $\boldsymbol{v}=C$ – семейство $\boldsymbol{y}(\boldsymbol{x}^2+\boldsymbol{y}^2-1)=C(\boldsymbol{x}^2+\boldsymbol{y}^2)$. 54. В луч, идущий по отрицательной части действительной оси из точки $\boldsymbol{w}=-\frac{1}{4}$ в точку $\boldsymbol{w}=\infty$. 55. 1) Окружности $\boldsymbol{\rho}=\boldsymbol{e}^C$, лучи $\boldsymbol{\theta}=C$, спираль $\boldsymbol{\rho}=\boldsymbol{e}^\theta$; 2) линии $\boldsymbol{y}=\boldsymbol{e}^x+2k\pi$. ??. Только $\boldsymbol{f}(\boldsymbol{z})=\frac{2\Re e\ z}{|\boldsymbol{z}|}\ \boldsymbol{f}(0)=0$. ??. 1) и 2) Непрерывны, но не равномерно. ??. 2) Нет; 3) да.

57. 1) c=1, b=-a; f(z)=(1-ai)z; 2) a=b=-1; $f(z)=e^{iz}$. 58. Функция аналитическая при $0<\arg z<\frac{\pi}{4},\ \pi<\arg z<\frac{5\pi}{4}\ (f(z)=z^2)$ и при $\frac{\pi}{2}$ < rg z < $\frac{3\pi}{4}$, $\frac{3\pi}{2}$ < rg z < $\frac{7\pi}{4}$ $(f(z)=-z^2)$. 60. $r\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}$ $\frac{\partial u}{\partial \omega} = -r \frac{\partial v}{\partial r}$. 62. 0. Всюду в номерах 65–71 C — произвольная действительная постоянная. 65. v(x,y)=2xy+y+C. 66. $v(x,y)=-rac{y}{x^2+y^2}+C$. 67. a) v(x,y)=rg z + C; 6) $v(x,y) = rg z + 2m\pi + C$. 68. $f(z) = z^2 + (5-i)z - \frac{i}{z} + Ci$. 69. $f(z) = ze^z + 2i\cos z + z^3 - iz + Ci$. 70. $f(z) = \frac{1}{2z} + iz^2 + 3i + C$. 71. f(z) = $2i\ln z-(2-i)z+C$. 72. $f(z)=e^{i\alpha}z^2e^z$. 73. $f(z)=e^{i\alpha}e^{z^2}$. 74. $f(z)=Ae^{\frac{z^2}{2}}$. 75. $f(z)=Aze^z$. (α — произвольная действительная постоянная, A — произвольная положительная постоянная). 76. Для $w=z^2$: 1) $\vartheta=0,\,k=2;\,2)$ $\vartheta=\pi,\,k=\frac{1}{2};$ 3) $\vartheta = \frac{\pi}{4}$, $k = 2\sqrt{2}$; 4) $\vartheta = \pi - \operatorname{arctg} \frac{4}{3}$, k = 10. Для $w = z^3$: 1) $\vartheta = 0$, k = 3; (2) $\vartheta=0,$ $k=rac{3}{16};$ (3) $\vartheta=rac{\pi}{2},$ k=6; (4) $\vartheta=-2\arctanrac{4}{3},$ k=75. 77. 1) Сжатие при $|z| < \frac{1}{2}$, растяжение при $|z| > \frac{1}{2}$; 2) сжатие при $|z+1| < \frac{1}{2}$, растяжение при $|z+1| > \frac{1}{2};$ 3) сжатие при |z| > 1, растяжение при |z| < 1; 4) сжатие при $\Re e \, z < 0,$ растяжение при $\Re e\,z>0$; 5) сжатие при |z-1|>1, растяжение при |z-1|<1. 78. $S \ = \ \iint_C |f'(z)|^2 \, dx dy, \ L \ = \ \int_I |f'(z)| \, ds.$ 79. $\sqrt{2}(e^{2\pi} - 1)$. 81. Областью Dявляется кольцо $e\leqslant |w|\leqslant e^2$. Формулу из задачи 78 применять нельзя, так как отображение не является взаимно однозначным.

82. 1) $I_1=2+i$, $I_2=1+\frac{i}{2}$; 2) $I_1=\frac{i\pi}{2}$, $I_2=-\frac{\pi}{2}$; 3) $I_1=i\pi R^2$, $I_2=-\pi R^2$. 83. 1) $\sqrt{5}\left(1-\frac{i}{2}\right)$; 2) -2; 3) 2i; 4) 0. 84. πi . 85. $\frac{3}{4}$. 86. 1) $\frac{R^{n+1}}{n+1}[(-1)^{n+1}-1]$, если $n\neq -1$; πi , если n=-1; 2) и 3) 0, если $n\neq -1$; $2\pi i$, если n=-1.

87. 1) $\frac{\pi}{3}$; 2) $-\frac{\pi}{3}$; 3) 0. 88. Если контур C содержит внутри себя точку 0 и не содержит 1 и -1, то $I=-2\pi i$; если содержит только одну из точек -1 или 1 и не содержит точку 0, то $I=\pi i$. Отсюда ясно, что интеграл может принимать пять

различных значений $(-2\pi i; -\pi i; 0; \pi i; 2\pi i)$. 89. 2^n-1 , если n>1; 2, если n=1. 90. $\frac{\pi i}{2}$. 91. $\frac{\sin a}{a}$. 92. $e^a \left(1 + \frac{a}{2}\right)$. 93. 1) 1; 2) $-\frac{e}{2}$; 3) $1 - \frac{e}{2}$.

96. $R = 1. 97. \infty. 98. 0. 99. 2. 100. e. 101. 1. 102. 1. 103. 1. 104. <math>\frac{1}{4}$. 105. $\frac{1}{6}$. **106.** 1, если $|a| \leqslant 1$; $\frac{1}{|a|}$, если |a| > 1.

107.
$$\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$
, $R = \infty$. 108. $\sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$, $R = \infty$.

109.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}z^{2n}}{(2n)!}$$
, $R = \infty$.

$$109. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}z^{2n}}{(2n)!}, R = \infty.$$

$$110. \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2^{2n-1}z^{2n}}{(2n)!}, R = \infty. 111. \sum_{n=0}^{\infty} (-1)^{n} \frac{a^{n}z^{n}}{b^{n+1}}, R = \left| \frac{b}{a} \right|.$$

$$112. \frac{i}{6} \sum_{n=1}^{\infty} \frac{(2-3i)^{n} - (2+3i)^{n}}{13^{n}} z^{n}, R = \sqrt{13}.$$

112.
$$\frac{i}{6} \sum_{n=1}^{\infty} \frac{(2-3i)^n - (2+3i)^n}{13^n} z^n$$
, $R = \sqrt{13}$.

$$6^{\frac{2n-1}{n}} \frac{13^n}{113. \sum_{n=2}^{\infty} (-1)^n (n-1) z^n}, R = 1. 114. \sum_{n=0}^{\infty} \frac{z^{2n+1}}{n! (2n+1)}, R = \infty.$$

$$115. \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)! (2n+1)}, R = \infty.$$

$$1 = \sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{(2n+1)! (z-1)^n} = \infty.$$

115.
$$\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!(2n+1)}, R = \infty$$

116.
$$\frac{1}{3} + 2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(z-1)^n}{3^{n+1}}, R = 3.$$

117.
$$\frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n}} [(z-1)^{2n} + (z-1)^{2n+1}], R = 2.$$

118.
$$\frac{1}{4} + \sum_{n=1}^{\infty} (-1)^n \frac{(n-3)(z-1)^n}{2^{n+2}}, R = 2$$

$$118. \ \, rac{1}{4} + \sum_{n=1}^{\infty} (-1)^n rac{(n-3)(z-1)^n}{2^{n+2}}, \, R = 2.$$
 $119. \ \, \sum_{n=0}^{\infty} rac{\sin\left(1 + rac{n\pi}{2}
ight)}{n!} \, (z-1)^{2n}, \, R = \infty.$

120.
$$1+z^2+\frac{z^4}{3}+\dots$$

122. 1) **4**; 2) **15**; 3) **3**. **123.** 1) Нулем порядка k + l; 2) нулем, порядок которого не ниже, чем $\min(k,l)$; 3) нулем порядка k-l, если k>l; правильной точкой, не являющейся нулем, если k=l, и особой точкой, если k< l. 124. Точки $z=\pm 3i$ – нули 1-го порядка. **125.** Точки $z=\pm 3i$ – нули 1-го порядка; бесконечно удаленная точка – нуль 2-го порядка. **126.** z=0 – нуль 2-го порядка; $z=k\pi$ ($k=\pm 1,\pm 2,$ \ldots) – нули 1-го порядка. **127.** $z=\pm 2$ – нули 3-го порядка; $z=2k\pi i$ $(k=0,\,\pm 1,$ $\pm 2,\ldots$) – нули 1-го порядка. **128.** $z=2k\pi$ ($k=0,\pm 1,\pm 2,\ldots$) – нули 2-го порядка. 129. $z=\pm\pi$ — нули 3-го порядка; все остальные точки вида $z=k\pi$ ($k=0,\pm 2,\ldots$) — нули 1-го порядка. 130. $z=\frac{\pi}{4}+k\pi$ ($k=0,\pm 1,\pm 2,\ldots$) — нули 1-го порядка. **131.** Нулей нет. **132.** $z=k\pi$ $(k=0,\pm 1,\pm 2,\dots)$ – нули 3-го порядка. **133.** z=0 – нуль 2-го порядка; $oldsymbol{z}=oldsymbol{k}\pi$ ($oldsymbol{k}=\pm 1,\pm 2,\ldots$) – нули 3-го порядка. $oldsymbol{134.}$ $oldsymbol{z}=oldsymbol{0}$ – нуль 3го порядка; $z=\sqrt[3]{k\pi}$ и $z=rac{1}{2}\sqrt[3]{k\pi}(-1\pm\sqrt{3})\;(k=\pm1,\pm2,\dots)$ – нули 1-го порядка.

$$\begin{array}{l} 135.\ z=(2k+1)\frac{\pi}{2}\ (k=0,\pm 1,\pm 2,\ldots) - \text{ нули 3-го порадка. } 136.\ z=\sqrt[3]{(2k+1)\frac{\pi}{2}}\\ \text{и }z=\frac{1}{2}\sqrt[3]{(2k+1)\frac{\pi}{2}}(-1\pm i\sqrt{3})\ (k=0,\pm 1,\pm 2,\ldots) - \text{ пули 1-го порадка.} \\ 137.\ -\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^n \text{ при }|z|<2:\sum_{n=0}^{\infty}\frac{2^n}{z^{n+1}} \text{ при }|z|>2.\ 138.\ \frac{(-1)^k}{a^k}\sum_{n=0}^{\infty}\binom{n+k-1}{k-1}\times \left(\frac{z}{a}\right)^n \text{ при }|z|<4i;\ \frac{1}{z^k}\sum_{n=0}^{\infty}\binom{n+k-1}{k-1}\left(\frac{a}{z}\right)^n \text{ при }|z|>2.\ 138.\ \frac{(-1)^k}{a^k}\sum_{n=0}^{\infty}\binom{n+k-1}{k-1}\times \left(\frac{z}{a}\right)^n \text{ при }|z|>4i.\ 139.\ \frac{1}{z}+\sum_{n=0}^{\infty}z^n \text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{b^{n+1}-a^{n+1}}{a^{n+1}b^{n+1}}z^n \text{ при }|z|<|a|;\ \frac{1}{a-b}\times \left[\frac{1}{z-a}+\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}\right] \text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{b^{n+1}-a^{n+1}}{a^{n+1}b^{n+1}}z^n \text{ при }|z|<|a|;\ \frac{1}{a-b}\times \left[\frac{1}{z-a}+\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}\right] \text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{b^{n-1}-a^{n-1}}{a^{n+1}b^{n+1}}z^n \text{ при }|z|>|b|;\ \frac{1}{a-b}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}} \text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{b^{n-1}-a^{n-1}}{a^{n+1}b^{n+1}}z^n \text{ при }|z|>|b|;\ \frac{1}{a-b}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}} \text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}z^n \text{ при }|z|<|a|;\ \frac{1}{a-b}\times \left[\frac{1}{a-b}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}\right]\text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}z^n \text{ при }|z|<|a|;\ \frac{1}{a-b}\times \left[\frac{1}{a-b}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}\right]\text{ при }|z|>1.\\ 140.\ \frac{1}{b-a}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(z-a)^n} \text{ при }|z|>1.\\ 12-a+\sum_{n=0}^{\infty}\frac{(z-a)^n}{(b-a)^{n+1}}z^n \text{ при }|z|>1.\\ 12-a+\sum_{n=0}^{\infty}\frac{(z-a)^n}{(a-a)^n}\frac{(z-a)^n}{(a-a)^n} \text{ при }|z|>1.\\ 12-a+\sum_{n=0}^{\infty}\frac{(z-a)^n}{(a-a)^n}\frac{(z-a)^n}{(a-a)^n} \text{ при }|z|>1.\\ 141.\ \frac{1}{a-b}\sum_{n=0}^{\infty}\frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n} \text{ при }0<|z-a|<2n,\ \frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n} \text{ при }0<|z-a|<2n,\ \frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n} \text{ при }0<|z-a|<2n,\ \frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n}\frac{(z-a)^n}{(z-a)^n}\frac{(z-$$

порядка). **152.** $z=rac{1\pm i}{\sqrt{2}},\,z=rac{-1\pm i}{\sqrt{2}}$ – полюсы **1**-го порядка, $z=\infty$ – правильная

точка. **153.** z=1 – полюс **2**-го порядка; $z=\infty$ – полюс **3**-го порядка. **154.** z=0 – полюс **1**-го порядка; $z=\pm 2i$ – полюсы **2**-го порядка; $z=\infty$ – правильная точка (нуль 5-го порядка). **155.** $z=\pm i$ – полюсы **1**-го порядка; $z=\infty$ – существенно особая точка. **156.** $z = \infty$ – существенно особая точка. **157.** $z = \infty$ – существенно особая точка. 158. $z=2k\pi i\;(k=\pm 1,\,2,\,\dots)$ – полюсы 1-го порядка; $z=\infty$ – точка, предельная для полюсов. **159**. z=0 – полюс **2**-го порядка; $z=2k\pi i~(k=\pm 1,2,\dots)$ – полюсы **1**го порядка; $z=\infty$ – точка, предельная для полюсов. $160.\ z=(2k+1)\pi i\ (k=0,\pm 1,$ $(2,\dots)$ – полюсы **1**-го порядка; $z=\infty$ – точка, предельная для полюсов. **161.** z=0 – полюс **3**-го порядка, $z=2k\pi i\pm i\ln(2+\sqrt{3})$ ($k=0,\pm 1,2,\ldots$) – полюсы **1**-го порядка; $z=\infty$ – точка, предельная для полюсов. **162**. $z=k\pi i\,(k=0,\pm 1,2,\dots)$ – полюсы **1**го порядка; $z=\infty$ – точка, предельная для полюсов. 163.~z=0 – существенно особая точка; $z=\infty$ – правильная точка. 164.~z=0 – существенно особая точка: $z=\infty$ – полюс 1-го порядка. 165. z=1 – существенно особая точка; $z=\infty$ – правильная точка. **166.** z=0 - существенно особая точка; $z=\infty$ - существенно особая точка. 167. z=1 – существенно особая точка; $z=2k\pi i\;(k=0,\pm 1,2,\dots)$ – полюсы 1-го порядка; $z=\infty$ – точка, предельная для полюсов. $168.\ z=k\pi\ (k=0,\pm 1,\,2,\,\dots)$ – полюсы **1**-го порядка; $z=\infty$ – точка, предельная для полюсов. **169.** z=0 – полюс **2**-го порядка; $z=\infty$ – существенно особая точка. 170. $z=(2k+1)\frac{\pi}{2}~(k=0,\,\pm 1,\,2,\,\dots)$ – полюсы **1**-го порядка; $z=\infty$ – точка, предельная для полюсов. **171.** $z=(2k+1)\frac{\pi}{2}$ $(k=0,\pm 1,2,\dots)$ – полюсы **2**-го порядка; $z=\infty$ – точка, предельная для полюсов. 172. z=0 – полюс 3-го порядка; $z=k\pi\;(k=\pm 1,\,2,\,\dots)$ – полюсы 1-го порядка; $z=\infty$ – точка, предельная для полюсов. **173.** $z=k\pi$ $(k=\pm 1,\, 2,\, \dots)$ – полюсы 1-го порядка; $z=\infty$ – точка, предельная для полюсов. 174. $z=k\pi$ ($k=0,\pm 1,$ $(2,\ldots)$ – полюсы (1-r) порядка; $(z=\infty)$ – точка, предельная для полюсов. (175). Если $a
eq m\pi+rac{\pi}{2}\ (m=0,\pm 1,\pm 2,\ldots)$, то $z=2k\pi+a$ и $z=(2k+1)\pi-a\ (k=0,\pm 1,\pm 2,\ldots)$ $\pm 2,\ldots$) – простые полюсы; если $a=m\pi+rac{\pi}{2}$, то при m четном $z=2k\pi+rac{\pi}{2}$ и при m нечетном $z=(2k+1)\pi+rac{\pi}{2}$ являются полюсами **2**-го порядка; $z=\infty$ – во всех случаях точка, предельная для полюсов. 176. Если $a \neq m\pi$ $(m = 0, \pm 1, \pm 2, \ldots)$, то $z=(2k+1)\pi\pm a\;(k=0,\pm 1,\pm 2,\dots)$ – полюсы **1**-го порядка; если $a=m\pi,$ то при m нечетном $z=2k\pi$, а при m четном $z=(2k+2)\pi$ – полюсы **2**-го порядка, $z=\infty$ во всех случаях точка, предельная для полюсов. 177. z=1 – существенно особая точка; $z=\infty$ -правильная точка (нуль 1-го порядка). 178. z=-2 - полюс **2**-го порядка; z=2 – существенно особая точка; $z=\infty$ – полюс **3**-го порядка. **179.** и $m{180.} \; m{z} = rac{1}{k\pi} \; (k=\pm 1,\, 2,\, \dots)$ – полюсы **1**-го порядка; $m{z} = m{0}$ – точка, предельная для полюсов, $z=\infty$ — полюс **1**-го порядка. **181.** z=0 — существенно особая точка; $z=\infty$ – правильная точка (нуль 1-го порядка). 182. z=0 – существенно особая точка; $z=\infty$ — существенно особая точка. 183. $z=rac{1}{k\pi}~(k=\pm 1,\,2,\,\dots)$ — существенно особые точки; z=0— точка, предельная для существенно особых точек, $z=\infty$ — существенно особая точка. 184. $z=rac{2}{(2k+1)\pi}~(k=0,\,\pm 1,\,2,\,\dots)$ — существенно особые точки; z=0 – точка, предельная для существенно особых точек, $z=\infty$ – правильная точка. 185. $z=\frac{1}{k\pi}$ $(k=\pm 1,2,\dots)$ – существенно особые точки; z=0 – точка, предельная для существенно особых точек, $z=\infty$ – существенно особая точка. 186. $z=\frac{2}{(2k+1)\pi}$ $(k=0,\pm 1,2,\dots)$ – существенно особые точки; z=0 – точка, предельная для существенно особых точек, $z=\infty$ – правильная точка.

187.
$$\underset{z=\pm 1}{\operatorname{res}} f(z) = -\frac{1}{2}; \underset{z=0}{\operatorname{res}} f(z) = 1; \underset{z=-\infty}{\operatorname{res}} f(z) = 0.$$
 188. $\underset{z=i}{\operatorname{res}} f(z) = \frac{i}{4}; \underset{z=-i}{\operatorname{res}} f(z) = \frac{i}{4}; \underset{z=-\infty}{\operatorname{res}} f(z) = 0.$ 189. $\underset{z=-i}{\operatorname{res}} f(z) = (-1)^{n+1} \frac{(2n)!}{(n-1)!(n+1)!}; \underset{z=-\infty}{\operatorname{res}} f(z) = 0.$ 191. $\underset{z=0}{\operatorname{res}} f(z) = 0; \underset{z=1}{\operatorname{res}} f(z) = 1; \underset{z=-\infty}{\operatorname{res}} f(z) = -1.$ 191. $\underset{z=-1}{\operatorname{res}} f(z) = 0; \underset{z=-i}{\operatorname{res}} f(z) = 1; \underset{z=-i}{\operatorname{res}} f(z) = -1.$ 191. $\underset{z=-i}{\operatorname{res}} f(z) = 2 \sin z; \underset{z=-\infty}{\operatorname{res}} f(z) = 0.$ 191. $\underset{z=0}{\operatorname{res}} f(z) = 0; \underset{z=-i}{\operatorname{res}} f(z) = 1; \underset{z=-i}{\operatorname{res}} f(z) = -1.$ 191. $\underset{z=-i}{\operatorname{res}} f(z) = 2 \sin z; \underset{z=-\infty}{\operatorname{res}} f(z) = -2 \sin 2.$ 193. $\underset{z=0}{\operatorname{res}} f(z) = \frac{1}{9}; \underset{z=3i}{\operatorname{res}} f(z) = -\frac{1}{54} (\sin 3 - i \cos 3); \underset{z=-3i}{\operatorname{res}} f(z) = -\frac{1}{54} (\sin 3 + i \cos 3); \underset{z=-\infty}{\operatorname{res}} f(z) = \frac{1}{27} \times (\sin 3 - 3).$ 194. $\underset{z=-2i+1}{\operatorname{res}} f(z) = -1 (k = 0, \pm 1, \pm 2, \dots).$ 195. $\underset{z=-k}{\operatorname{res}} f(z) = (-1)^k (k = 0, \pm 1, \pm 2, \dots).$ 196. $\underset{z=-k}{\operatorname{res}} f(z) = 0 (k = 0, \pm 1, \pm 2, \dots).$ 197. $\underset{z=-k}{\operatorname{res}} f(z) = -1 (k = 0, \pm 1, \pm 2, \dots).$ 198. $\underset{z=-2}{\operatorname{res}} f(z) = 0 (k = 0, \pm 1, \pm 2, \dots).$ 199. $\underset{z=-2}{\operatorname{res}} f(z) = -\frac{1}{\operatorname{res}} f(z) = -1 (k = 0, \pm 1, \pm 2, \dots).$ 198. $\underset{z=-2}{\operatorname{res}} f(z) = -\frac{\operatorname{res}}{\operatorname{res}} f(z) = 0.$ 200. $\underset{z=0}{\operatorname{res}} f(z) = -\frac{\operatorname{res}}{\operatorname{res}} f(z) = 0.$ 201. $\underset{z=0}{\operatorname{res}} f(z) = -\frac{\operatorname{res}}{\operatorname{res}} f(z) = 0.$ 202. $\underset{z=-3}{\operatorname{res}} f(z) = -\frac{\operatorname{res}}{\operatorname{res}} f(z) = 0.$ 201. $\underset{z=-3}{\operatorname{res}} f(z) = -\operatorname{res} f(z) = -\operatorname{res} f(z).$ 202. $\underset{z=-3}{\operatorname{res}} f(z) = -\operatorname{res} f(z) = -\operatorname{sin} 2 \left[\sum_{n=1}^{\infty} \frac{4^{2n}}{(2n-1)!(2n)!} + \sum_{n=1}^{\infty} \frac{4^{2n+1}}{(2n)!(2n+1)!} \right].$ 203. $\underset{z=-3}{\operatorname{res}} f(z) = \frac{1}{\operatorname{res}} f(z) = \frac{1}{2k\pi i} (k = 0, \pm 1, \pm 2, \dots).$ 204. $\underset{r=0}{\operatorname{res}} f(z) = 0.$ 205. $\underset{z=-3}{\operatorname{res}} f(z) = \frac{(-1)^{\frac{1}{2}}}{(n+1)!},$ 207. $\underset{z=-3}{\operatorname{res}} f(z) = -\operatorname{res} f(z).$ 208. $\underset{z=-3}{\operatorname{res}} f(z) = (-1)^{k+1} \frac{1}{k^2\pi^2} (k = 0, \pm 1, \pm 2, \dots);$ 213. $\underset{z=-3}{\operatorname{res}} f(z) = -\operatorname{res} f(z).$ 209. $\underset{z=-3}{\operatorname{res}} f(z) = -\operatorname{res} f(z).$ 211. 1. 212. 0. 213. $\underset{z=-3}{\operatorname{$

ет). 220. $\frac{\pi(a^6+1)}{1-a^2}$, если |a|<1; $\frac{\pi(a^6+1)}{a^6(a^2-1)}$, если |a|>1; $\frac{\pi}{2}\frac{(1-a^{12})}{a^6(a^2-1)}$ (главное значение), если |a|=1, $a\neq\pm1$ (при $a=\pm1$ главное значение не существует). 221. $\frac{2\pi}{n!}$, если $n\geq0$; 0, если n<0. 222. $\pi i \operatorname{sign} a$ (при a=0 главное значение интеграла равно 0). 223. $-2\pi i \operatorname{sign} \Im a$. 224. $\frac{-\pi}{27}$. 225. $\frac{\pi}{4a}$. 226. $\frac{1\cdot 3\cdot 5\ldots (2n-3)}{2\cdot 4\cdot 6\ldots (2n-2)}\frac{\pi}{2}$, если n>1; $\frac{\pi}{2}$, если n=1. 227. $\frac{\pi}{ab(a+b)}$. 228. $\frac{\pi\sqrt{2}}{2}$. 229. $\frac{\pi}{n\sin\frac{\pi}{n}}$. 230. $\frac{\pi}{n\sin\frac{\pi}{n}}$. 231. 1) $\frac{\pi}{3e^3}(\cos 1-3\sin 1)$; 2) $\frac{\pi}{3e^3}(3\cos 1+\sin 1)$. 232. $\frac{\pi}{2e^4}(2\cos 2+\sin 2)$. 233. $\frac{\pi e^{-ab}}{2b}$. 234. $\frac{\pi}{2}e^{-ab}$.

Список литературы

- 1. Бицадзе А.В. Основы теории аналитических функций. М.: Наука, 1984.
- 2. Волковыский Л.И., Лунц Г.Л., Араманович И.Г. Сборник задач по теории функций комплексного переменного. М.: Наука, 1988.
 - 3. Евграфов М.А. Аналитические функции. М.: Наука, 1968.
- 4. Маркушевич А.И. *Теория аналитических функций.* М.: Наука, 1967. Т. 1; 1968. Т. 2.
- 5. Маркушевич А.И., Маркушевич Л.А. Введение в теорию аналитических функций. М.: Просвещение, 1977.
- 6. Сидоров Ю.В., Федорюк М.В., Шабунин М.И. Лекции по теории функций комплексного переменного. – М.: Наука, 1989.
 - 7. Шабат Б.В. Введение в комплексный анализ. М.: Наука. Ч. 1, 1985.

Содержание

§ 1. Комплексные числа	3
§ 2. Элементарные трансцендентные функции	4
§ 4. Функции комплексного переменного	6
§ 5. Аналитические функции	7
§ 6. Интегрирование функций комплексного переменного	8
§ 7. Интегральная формула Коши	9
§ 8. Степенные ряды	10
§ 9. Ряд Тейлора	11
§ 10. Нули аналитических функций	11
§ 11. Ряд Лорана	12
§ 12. Особые точки однозначных аналитических функций	13
§ 13. Вычисление вычетов	14
§ 14. Вычисление интегралов	15
Ответы и решения	18
Список литературы	27