

RXファミリ

パラレルデータキャプチャユニット(PDC)モジュール

R01AN3167JJ0201 Rev.2.01 2017.10.02

Firmware Integration Technology

要旨

本アプリケーションノートでは、Firmware Integration Technology(以降 FIT と称します)を使用した Parallel Data Capture Unit (以降 PDC と称します) について説明します。本モジュールは、PDC を制御してカメラモジュールなどのイメージセンサから出力されたパラレルデータを取り込みます。以降、本モジュールをPDC FIT モジュールと称します。

本アプリケーションノートは、「RX ファミリ パラレルデータキャプチャユニット (PDC) モジュール Firmware Integration Technology (R01AN2220)」とは互換性がありませんのでご注意ください。

動作確認デバイス

以下は、この API によってサポートできるデバイスの一覧です。

RX64M

RX71M

RX651、RX65N

本アプリケーションノートを他のマイコンへ適用する場合、そのマイコンの仕様にあわせて変更し、十分評価してください。

関連ドキュメント

Firmware Integration Technology ユーザーズマニュアル(R01AN1833)

RX ファミリ ボードサポートパッケージモジュール Firmware Integration Technology (R01AN1685)

RX ファミリ e²studio に組み込む方法 Firmware Integration Technology (R01AN1723)

RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826)

Renesas e² studio スマート・コンフィグレータ ユーザーガイド (R20AN0451)

RX ファミリ DMA コントローラ DMACA 制御モジュール Firmware Integration Technology (R01AN2063)

RX Family DTC Module Using Firmware Integration Technology (R01AN1819)

(最新版をルネサス エレクトロニクスホームページから入手してください。)

目次

1.	概要	3
	PDC FIT モジュールとは	
	APIの概要	
2.	API 情報	5
	ハードウェアの要求	
	ソフトウェアの要求	
	サポートされているツールチェーン	
2.3		
2.5		
	整数型	
	コンパイル時の設定	
	コードサイズ	
	引数	
)戻り値	
	コールバック関数	
2.12	? FIT モジュールの追加方法	13
3.	API 関数	14
3.1	R_PDC_Open()	14
3.2	R_PDC_Close()	22
3.3	R_PDC_Control()	23
3.4	R_PDC_GetFifoAddr()	33
	R PDC GetVersion()	
4.	端子設定	37
٦.		01
_	法 四十分	00
5.	使用方法	
	API 使用例	
5.1.1	動作フロー例	38
6.	付録	
6.1	動作確認環境	39
6.2	L ニ ブル シュ ニ ノン ガ	20

1. 概要

PDC はイメージセンサなどの外部 IO と通信し、外部 IO から出力される画像などのパラレルデータを DTC または DMAC を介して内蔵 RAM、外部アドレス空間 (CS 領域、SDRAM 領域) へ転送する機能を備えています。図 1.1に PDC の概要を示します。

図1.1 PDC の概要

制限事項

本モジュールではrbspのハードウェアロック機能を使用します。

1.1 PDC FIT モジュールとは

本モジュールは API として、プロジェクトに組み込んで使用します。本モジュールの組み込み方については、「2.12 FIT モジュールの追加方法」を参照してください。

注意事項

PDC FIT モジュールのエンディアンは、コンパイラのエンディアン設定に合わせて、自動で切り替わります。本モジュールのみでは、イメージセンサからの画像データの取得を行うことができません。メモリへの転送は DMAC または DTC を利用するため、必要に応じてそれぞれの FIT モジュールのマニュアルを参照してプロジェクトに組み込んでください。イメージセンサの初期化プログラムと設定はご自身で用意してください。またイメージセンサの設定についてはセンサメーカにお問い合わせください。

r_bsp のハードウェアロック機能については、アプリケーションノート「RX ファミリ ボードサポートパッケージモジュール Firmware Integration Technology(R01AN1685)」の「2.17 ロック機能」を参照してください。

1.2 API の概要

表 1.1に PDC FIT モジュールに含まれる API 関数を示します。

表 1.1 API 関数一覧

関数	関数説明
R_PDC_Open	PDC FIT モジュールを初期化する関数です。
R_PDC_Close	PDC の動作を終了し、モジュールストップ状態にします。
R_PDC_Control	コントロールコードに対応した処理を行います。
R_PDC_GetFifoAddr	PDC の FIFO のアドレスを取得する関数です。
R_PDC_GetVersion	APIのバージョンを返す関数です。

2. API 情報

本 FIT モジュールの API はルネサスの API の命名基準に従っています。

2.1 ハードウェアの要求

ご使用になる MCU が以下の機能をサポートしている必要があります。

PDC

DTC

DMAC

2.2 ソフトウェアの要求

本 FIT モジュールは以下の FIT モジュールに依存しています。

Renesas Board Support Package (r_bsp)

2.3 サポートされているツールチェーン

本 FIT モジュールは「6.1 動作確認環境」に示すツールチェーンで動作確認を行っています。

2.4 使用する割り込みベクタ

R_PDC_Open 関数を実行すると、引数の値に対応した PCDFI 割り込み、PCFEI 割り込み、PCERI 割り込みが有効になります。表 2.1に本 FIT モジュールが使用する割り込みベクタを示します。

表 2.1 使用する割り込みベクター覧

デバイス	割り込みベクタ
RX64M	PCDFI割り込み(ベクタ番号: 97)
RX65N	GROUPBL0 割り込み(ベクタ番号: 110)
RX71M	● PCFEI割り込み(グループ割り込み要因番号:30)
	● PCERI割り込み (グループ割り込み要因番号:31)

2.5 ヘッダファイル

すべての API 呼び出しと使用されるインタフェース定義は r_pdc_rx_if.h に記載しています。

2.6 整数型

このプロジェクトは ANSI C99 を使用しています。これらの型は stdint.h で定義されています。

2.7 コンパイル時の設定

本 FIT モジュールのコンフィギュレーションオプションの設定は、r_pdc_rx_config.h で行います。オプション名および設定値に関する説明を下表に示します。

Configuration options in r_pdc_rx_config.h					
PDC_CFG_PCKO_DIV 【注】 デフォルト値は"2"	指定した分周比に応じて PDC 制御レジスタ 0 (PCCR0) の PCKO 分周比選択ビットを設定します。パラレルデータ転送クロック出力 (PCKO) の動作周波数はクロックソースの周辺モジュールクロック B (PCLKB) をこの設定で分周した値となります。設定値は 2, 4, 6, 8, 10, 12, 14, 16 の中から指定してください。その他の値を指定した場合は、ビルド時にエラーになります。 【注】 動作周波数の範囲は 1~30MHz ですが、ご利用のイメージセンサ(カメラモジュール)の仕様に合わせて動作可能な最適値を指定してください。				

2.8 コードサイズ

ツールチェーン(セクション2.3記載)でのコードサイズは、最適化レベル 2、およびコードサイズ重視の最適化を前提としたサイズです。ROM (コードおよび定数) と RAM (グローバルデータ) のサイズは、本モジュールのコンフィギュレーションヘッダファイルで設定される、ビルド時のコンフィギュレーションオプションによって決まります。

	ROM、RAM およびスタックのコードサイズ					
デバイス	分類	使用メモリ	備考			
RX64M	ROM	1964 バイト				
RX65N RX71M	RAM	17 バイト				
	最大使用スタックサイズ	104 バイト				

2.9 引数

API 関数の引数である構造体、列挙体を示します。これらは API 関数のプロトタイプ宣言とともに r pdc rx if.h に記載されています。

```
/* 割り込み優先レベルの制御 */
typedef struct st_pdc_int_priority_data_cfg
 uint8_t pcdfi_level; /* PCDFI割り込み優先レベル */
uint8_t groupbl0_level; /* GROUPBL0割り込み優先レベル */
} pdc_ipr_dcfg_t;
/* 割り込みコントローラ (ICUA) の PDC 割り込みの許可/禁止 */
typedef struct st_pdc_inticu_data_cfg
                      /* フレームエンド割り込み要求許可 */
  bool pcfei_ien;
 bool pceri_ien;
                      /* エラー割り込み要求許可 */
                      /* 受信データレディ割り込み要求許可 */
  bool pcdfi_ien;
} pdc_inticu_dcfg_t;
/* PDC 割り込みの許可/禁止 */
typedef struct st_pdc_intpdc_data_cfg
  bool dfie_ien;
                      /* 受信データレディ割り込み要求許可 */
  bool feie ien;
                      /* フレームエンド割り込み要求許可*/
  bool ovie ien;
                      /* オーバラン割り込み要求許可 */
  bool udrie_ien;
                       /* アンダラン割り込み要求許可 */
                       /* 垂直方向ライン数設定エラー割り込み要求許可 */
  bool verie_ien;
  bool herie_ien;
                       /* 水平方向バイト数設定エラー割り込み要求許可 */
} pdc_intpdc_dcfg_t;
/* キャプチャ位置の指定*/
typedef struct st_pdc_position_data_cfg
                          /* 垂直方向キャプチャ開始ライン位置 */
  uint16_t vst_position;
  uint16 t hst position;
                          /* 水平方向キャプチャ開始バイト位置 */
} pdc_pos_dcfg_t;
/* キャプチャサイズの指定*/
typedef struct st_pdc_size_data_cfg
  uint16_t vsz_size;
                       /* 垂直方向キャプチャサイズ */
  uint16_t hsz_size;
                       /* 水平方向キャプチャサイズ */
} pdc_size_dcfg_t;
```

```
/* PDC の設定*/
typedef struct st_pdc_data_cfg
                             /* 割り込み設定更新選択 */
  uint16 t
                iupd_select;
                priority;
  pdc_ipr_dcfg_t
                             /* 割り込み優先レベル */
  pdc_inticu_dcfg_t inticu_req;
                            /* ICU 割り込み設定 */
  pdc_intpdc_dcfg_t intpdc_req;
                             /* PDC 割り込み設定 */
  bool
                vps_select;
                            /* VSYNC 信号極性選択 */
                            /* HSYNC 信号極性選択 */
  bool
                hps_select;
  pdc_pos_dcfg_t
                capture_pos; /* キャプチャ位置設定 */
 pdc_size_dcfg_t capture_size; /* キャプチャサイズ設定 */
 pdc_cb_t
                p_callback;
                             /* コールバック関数へのポインタ */
} pdc_data_cfg_t;
/* PDC ステータスレジスタ (PCSR) のコピー */
typedef struct st_pdc_data_cfg
  bool
          frame_busy;
                         /* PDC の動作状態(FBSY フラグ) */
  bool
                         /* FIFO の状態(FEMPF フラグ) */
         fifo_empty;
                         /* フレームエンド(FEF フラグ) */
  bool
         frame_end;
  bool
         overrun;
                          /* オーバラン(OVRF フラグ) */
  bool
         underrun;
                          /* アンダラン(UDRF フラグ) */
                          /* 垂直方向ライン数設定エラー(VERF フラグ) */
  hool
         verf_error;
                          /* 水平方向バイト数設定エラー(HERF フラグ) */
  bool
         herf_error;
} pdc_pcsr_stat_t;
/* PDC 端子モニタステータスレジスタ(PCMONR)のコピー*/
typedef struct st_pdc_data_cfg
  bool
                        /* VSYNC 信号ステータス(VSYNC フラグ) */
        vsync;
                        /* HSYNC 信号ステータス(HSYNC フラグ) */
  bool
        hsync;
} pdc_pcmonr_stat_t;
/* PDC ステータス*/
typedef struct st_pdc_data_cfg
                                /* PDC ステータスレジスタ (PCSR) 情報 */
  pdc_pcsr_stat_t
                   pcsr_stat;
  pdc_pcmonr_stat_t
                   pcmonr_stat;
                                 /* PDC 端子モニタステータス(PCMONR)情報 */
} pdc_stat_t;
/* R PDC Control のコントロールコード */
typedef enum e_pdc_command
                                 /* PDC のキャプチャを開始する */
  PDC CMD CAPTURE START = 0,
                                  /* PDC キャプチャ位置&キャプチャサイズ変更 */
  PDC_CMD_CHANGE_POS_AND_SIZE,
  PDC_CMD_STATUS_GET,
                                    /* PDC ステータス取得 */
  PDC_CMD_STATUS_CLR,
                                   /* PDC ステータスクリア */
  PDC_CMD_SET_INTERRUPT,
                                   /* PDC 割り込み設定 */
  PDC_CMD_DISABLE,
                                    /* PDC 受信動作禁止 */
  PDC_CMD_ENABLE,
                                    /* PDC 受信動作許可 */
  PDC_CMD_RESET
                                    /* PDC リセット */
} pdc_command_t;
```

```
/* コールバック関数へのポインタ */
typedef struct
 void (*pcb_receive_data_ready)(void *); /* 受信データレディ割り込み発生時の
                             コールバック関数のポインタ */
                           /* フレームエンド割り込み発生後に PDC の FIFO が
 void (*pcb_frame_end)(void *);
                             エンプティになった場合のコールバック関数のポインタ */
 void (*pcb_error)(void *);
                           /* オーバランエラー、アンダランエラー、垂直方向ライン数設定エラー、
                             水平方向バイト数設定エラー発生時のコールバック関数のポインタ */
}pdc cb t;
/* コールバック関数呼び出し要因のイベントコード */
typedef enum
 PDC_EVT_ID_DATAREADY = 0, /* 受信データレディ割り込みが発生 */
 PDC_EVT_ID_FRAMEEND, /* フレームエンド割り込みが発生 */
                        /* 待機時間経過しても FIFO がエンプティにならなかった */
 PDC_EVT_ID_TIMEOUT,
 PDC_EVT_ID_ERROR,
                        /* エラー割り込みが発生 */
 PDC_EVT_ID_OVERRUN,
                        /* オーバラン割り込みが発生 */
 PDC_EVT_ID_UNDERRUN,
                        /* アンダラン割り込みが発生 */
 PDC_EVT_ID_VERTICALLINE,
                         /* 垂直方向ライン数設定エラー割り込みが発生 */
 PDC_EVT_ID_HORIZONTALBYTE /* 水平方向バイト数設定エラー割り込みが発生 */
}pdc_cb_event_t;
/* コールバック関数へ渡される引数 */
typedef struct
 pdc_cb_event_t
              event_id;
                         /* コールバック関数呼び出し要因のイベントコード */
}pdc_cb_arg_t;
```

2.10 戻り値

API 関数の戻り値を示します。この列挙型は、API 関数のプロトタイプ宣言とともに r_pdc_rx_if.h に記載されています。

```
/* 関数の戻り値 */
                               /* PDC API のエラーコード */
typedef enum e_pdc_return
 PDC_SUCCESS = 0,
                              /* 問題なく処理が完了した */
 PDC_ERR_OPENED,
                              /* PDC モジュールは初期化の状態。初期化関数の R_PDC_Open が
                                  実行済み。*/
 PDC_ERR_NOT_OPEN,
                             /* PDC モジュールは未初期化の状態。R_PDC_Open が未実行。 */
 PDC_ERR_INVALID_ARG,
                             /* 無効な引数が入力された */
 PDC_ERR_INVALID_COMMAND,
                             /* コマンドが無効 */
 PDC_ERR_NULL_PTR,
                              /* 引数のポインタ値が NULL だった */
                              /* PDC のリソースが他のプロセスで使われている。 */
 PDC_ERR_LOCK_FUNC,
 PDC_ERR_INTERNAL ,
                              /* モジュールの内部エラーを検出した。 */
 PDC_ERR_RST_TIMEOUT
                              /* 一定時間経過しても PDC のリセットが解除されなかった場合 */
} pdc_return_t;
```

2.11 コールバック関数

(1) 受信データレディ割り込み(PCDFI)、フレームエンド割り込み(PCFEI)のコールバック関数 PDC FIT モジュールでは、受信データレディ割り込み(PCDFI)が発生したとき、フレームエンド割り込 み(PCFEI)が発生して FIFO がエンプティになったときにコールバック関数を呼び出します。

コールバック関数の設定は、R PDC Open 関数を用いて設定します。詳細は「3.1 R PDC Open()」を参 照してください。

PDC FIT モジュールは受信データレディ割り込みが発生した場合、受信データレディ割り込みのコール バック関数を呼び出します。ただし、データ転送に DMAC を選択した場合は PCDFI の割り込み優先レベル を'0'に設定してコールバック関数が呼び出されないようにしてください。

PDC FIT モジュールはフレームエンド割り込みが発生した場合、DTC/DMAC が PDC の FIFO に格納され たデータの転送が完了するまで(PDC の FIFO がエンプティになるまで)待機します。PDC の FIFO がエン プティであることを確認した場合、PDCを動作停止に設定して、フレームエンドフラグを'0'クリアしてから、 PDC FIT モジュールはフレームエンド割り込みのコールバック関数を呼び出します。ただし、PDC の FIFO がエンプティになる前にアンダランが発生した場合は、フレームエンドフラグを'0'クリアしてからエラー発 生時のコールバック関数を呼び出します。 また一定時間経過しても PDC の FIFO がエンプティにならない場 合はフレームエンドフラグを'0'クリアしてからタイムアウトのコールバック関数を呼び出します。

コールバック関数が呼び出されるとき、表 2.2に示す定数を格納した変数を引数として渡します。引数の値 をコールバック関数外で使用する場合は、グローバル変数などの変数にコピーしてください。

上記のタイミングでコールバック関数を呼び出す場合は、グループ割り込み (GROUPBL0) の割り込み要 求を許可にしたうえ、R PDC Open 関数実行時に渡される引数で PCDFI 割り込み要求および PCFEI 割り込 み要求、受信データレディ割り込み要求およびフレームエンド割り込み要求を許可に設定してください。詳 細は「3.1 R_PDC_Open()」を参照してください。

表 2.2 受信データレディ割り込み、フレームエンド割り込み発生時のコールバック関数の引数一覧

変数定義	意味
PDC_EVT_ID_DATAREADY	受信データレディ割り込みが発生した
PDC_EVT_ID_FRAMEEND	フレームエンド割り込みが発生した
PDC_EVT_ID_TIMEOUT	待機時間を経過しても FIFO がエンプティにならなかった。

(2) エラー発生時のコールバック関数

PDC FIT モジュールでは、オーバラン、アンダラン、垂直方向ライン数設定エラー、水平方向バイト数設定エラーが発生したときコールバック関数を呼び出します。

コールバック関数の設定は、R_PDC_Open 関数を用いて設定します。詳細は「3.1 R_PDC_Open()」を参照してください。

PDC FIT モジュールはエラー割り込みが発生した場合、PDC の動作を停止させた後に"PDC_EVT_ID_ERROR"を引数とするコールバック関数を呼び出します。その後オーバラン、アンダラン、垂直方向ライン数設定エラー、水平方向バイト数設定エラーの順にエラー発生を確認します。エラーが発生していた場合はコールバック関数を呼び出します。コールバック関数の処理が完了すると発生していたエラーフラグを'0'クリアしてから、次のエラー発生を確認します。

"PDC_EVT_ID_ERROR"を引数とするコールバック関数が呼び出された場合は、処理の先頭で DTC/DMAC の転送処理を禁止に設定してください。

コールバック関数が呼び出されるとき、表 2.3に示す定数を格納した変数を引数として渡します。引数の値をコールバック関数外で使用する場合は、グローバル変数などの変数にコピーしてください。

上記のタイミングでコールバック関数を呼び出す場合は、グループ割り込み(GROUPBLO)の割り込み要求を許可にしたうえ、R_PDC_Open 関数実行時に渡される引数で PCERI 割り込み要求およびオーバラン割り込み要求、アンダラン割り込み要求、垂直方向ライン数設定エラー割り込み要求、水平方向バイト数設定エラー割り込み要求を許可に設定してください。詳細は「3.1 R PDC Open()」を参照してください。

表 2.3 エラー発生時のコールバック関数の引数一覧

変数定義	意味
PDC_EVT_ID_ERROR	エラー割り込みが発生した
PDC_EVT_ID_OVERRUN	オーバランエラーが発生した
PDC_EVT_ID_UNDERRUN	アンダランエラーが発生した
PDC_EVT_ID_VERTICALLINE	垂直方向ライン数設定エラーが発生した
PDC_EVT_ID_HORIZONTALBYTE	水平方向バイト数設定エラーが発生した

2.12 FIT モジュールの追加方法

本モジュールは、使用するプロジェクトごとに追加する必要があります。ルネサスでは、Smart Configurator を使用した(1)、(3)の追加方法を推奨しています。ただし、Smart Configurator は、一部の RX デバイスのみサポートしています。サポートされていない RX デバイスについては(2)、(4)の方法を使用してください。

- (1) e² studio 上で Smart Configurator を使用して FIT モジュールを追加する場合 e² studio の Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーションノート「Renesas e² studio スマート・コンフィグレータ ユーザーガイド (R20AN0451)」を参照してください。
- (2) e² studio 上で FIT Configurator を使用して FIT モジュールを追加する場合
 e² studio の FIT Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加することができます。詳細は、アプリケーションノート「RX ファミリ e² studio に組み込む方法
 Firmware Integration Technology (R01AN1723)」を参照してください。
- (3) CS+上で Smart Configurator を使用して FIT モジュールを追加する場合 CS+上で、スタンドアロン版 Smart Configurator を使用して、自動的にユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーションノート「Renesas e² studio スマート・コンフィグレータ ユーザーガイド (R20AN0451)」を参照してください。
- (4) CS+上で FIT モジュールを追加する場合 CS+上で、手動でユーザプロジェクトに FIT モジュールを追加します。詳細は、アプリケーション ノート「RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826)」を参照してください。

3. API 関数

3.1 R_PDC_Open()

この関数は PDC FIT モジュールを初期化する関数です。この関数は他の API 関数を使用する前に実行される必要があります。

Format

```
pdc_return_t R_PDC_Open (
    pdc_data_cfg_t *p_data_cfg
)
```

Parameters

*p_data_cfg PDC 設定データ構造体のポインタ

参照する pdc_data_cfg_t 構造体メンバと設定値

以下に記載したパラメータ以外は参照しませんので、API呼び出し時に設定する必要はありません。

			設定対象となる	
構造体メンバ	概略	設定値	レジスタ	設定内容
priority.pcdfi_level	PCDFI 割り込み	8bit data	ICU.IPR097.IPR	受信データレディ割り込み
	優先レベル	00h to 0Fh		(PCDFI)優先レベル設定
priority.groupbl0_level	GROUPBL0 割り	8bit data	ICU.IPR110.IPR	フレームエンド割り込みおよび
	込み優先レベル	00h to 0Fh		エラー割り込み優先レベル設定
inticu_req.pcdfi_ien	PCDFI 割り込み 許可	false	ICU.IER0C.IEN1	受信 データ レディ 割り込み (PCDFI) の割り込み要求を禁止
		true		受信 データ レディ 割り込み (PCDFI) の割り込み要求を許可
inticu_req.pcfei_ien	PCFEI 割り込み 許可	false	ICU.GRPBL0.EN30	フレームエンド割り込み (PCFEI)の割り込み要求を禁止
		true		フレームエンド割り込み (PCFEI) の割り込み要求を許可
inticu_req.pceri_ien	PCERI 割り込み 許可	false	ICU.GRPBL0.EN31	エラー割り込み(PCERI)の割り 込み要求を禁止
		true		エラー割り込み(PCERI)の割り 込み要求を許可
intpdc_req.dfie_ien	受信 データレディ割り込み要	false	PCCR0.DFIE	受信データレディ割り込み要求 の発生を禁止
	求	true		受信データレディ割り込み要求 の発生を許可
intpdc_req.feie_ien	フレームエンド 割り込み要求	false	PCCR0.FEIE	フレームエンド割り込み要求の 発生を禁止
		true		フレームエンド割り込み要求の 発生を許可
intpdc_req.ovie_ien	オーバラン割り 込み要求.	false	PCCR0.OVIE	オーバラン割り込み要求の発生 を禁止
		true		オーバラン割り込み要求の発生を許可.
intpdc_req. udrie_ien	アンダラン割り 込み要求	false	PCCR0.UDRIE	アンダラン割り込み要求の発生 を禁止
		true		アンダラン割り込み要求の発生 を許可

intodo roa verie ier	垂直方向ライン	false	DCCD0 VEDIE	垂直方向ライン数設定エラー割り込
intpdc_req. verie_ien	数設定エラー割	PCCR0.VERIE	み要求の発生を禁止	
	り込み要求.	true		垂直方向ライン数設定エラー割り込 み要求の発生を許可
intpdc_req. herie_ien	水平方向バイト 数設定エラー割	false	PCCR0.HERIE	水平方向バイト数設定エラー割り込 み要求の発生を禁止
	り込み要求	true		水平方向バイト数設定エラー割り込 み要求の発生を許可
vps_select	VSYNC 信号極性 選択	PDC_VSY NC_SIGNA L_POLARI TY_HIGH	PCCR0.VPS	VSYNC 信号は High アクティブ
		PDC_VSY NC_SIGNA L_POLARI TY_LOW		VSYNC 信号は Low アクティブ
hps_select	HSYNC 信号極性選択	PDC_HSY NC_SIGNA L_POLARI TY_HIGH	PCCR0.HPS	HSYNC 信号は High アクティブ
		PDC_HSY NC_SIGNA L_POLARI TY_LOW		HSYNC 信号は Low アクティブ
capture_pos.vst_positio n	垂直方向キャプ チャ開始ライン 位置	12bit data 0000h to 0FFEh	VCR.VST	垂直方向のキャプチャ開始ライン位 置
capture_pos.hst_positio n	水平方向キャプ チャ開始バイト 位置	12bit data 0000h to 0FFBh	HCR.HST	水平方向のキャプチャ開始バイト位 置
capture_size.vsz_size	垂直方向キャプ チャサイズ	12bit data 0001h to 0FFFh	VCR.VSZ	垂直方向のキャプチャライン数
capture_size.hsz_size	水平方向キャプ チャサイズ	12bit data 0004h to 0FFFh	HCR.HSZ	水平方向のキャプチャバイト数
p_callback.pcb_receive _data_ready	PCDFI 割り込み 発生時のコール バック関数への ポインタ	NULL / FIT_NO_F UNC 以外 NULL / FIT_NO_F UNC	なし	受信データレディ割り込み発生時にポインタが示すアドレスのコールバック関数を実行します 要因が発生してもコールバック関数は実行されません
p_callback.pcb_frame_ end	PCFEI 割り込み 発生時のコール バック関数への ポインタ	UNC 以外	なし	フレームエンド割り込み発生後に FIFO がエンプティになったときにポインタが示すアドレスのコールバック関数を実行します
		NULL / FIT_NO_F UNC		要因が発生してもコールバック関数 は実行されません

p_callback.pcb_error	PCERI 割り込み	NULL /	なし	エラー割り込み発生時およびオーバ
	発生時のコール	FIT_NO_F		ラン、アンダラン、垂直方向ライン数
	バック関数への	UNC 以外		設定エラー、水平方向バイト数設定エ
	ポインタ			ラー発生時にポインタが示すアドレ
				スのコールバック関数を実行します
		NULL /		要因が発生してもコールバック関数
		FIT_NO_F		は実行されません
		UNC		

Return Values

PDC_SUCCESS /* 問題なく処理が完了した場合 */

PDC_ERR_OPENED /* R_PDC_Open が既に実行されている場合 */
PDC_ERR_INVALID_ARG /* PDC 設定情報のパラメータの値が不正な場合 */
PDC_ERR_NULL_PTR /* 引数 p_data_cfg が NULL ポインタの場合 */

PDC_ERR_LOCK_FUNC /* PDC が既に他のプロセスにロックされている場合 */

PDC_ERR_INTERNAL /* モジュールの内部エラーが検出された場合 */

PDC_ERR_RST_TIMEOUT /* 一定時間経過しても PDC のリセットが解除されなかった場合 */

Properties

r_pdc_rx_if.h にプロトタイプ宣言されています。

Description

PDC を使用するための初期設定として、以下の処理を行います。

r_bsp のハードウェアロック機能を使用した PDC のハードウェアリソースロック

PDC のモジュールストップ解除

PDC で使用する割り込み発生時にコールバックされる関数の登録

PDC で使用する割り込み設定

受信データレディ割り込み(PCDFI)、フレームエンド割り込み(PCFEI)、エラー割り込み(PCERI)の割り込み設定を行います。

PDC 受信動作停止

PDC 制御レジスタ 1(PCCR1)PCE を"受信動作を禁止"に設定します。

パラレルデータ転送クロック出力(PCKO)のクロック設定

PDC 制御レジスタ 0 (PCCR0) PCKDIV を設定します。

パラレルデータ転送クロック出力(PCKO)の設定は、r_pdc_rx_config.h の PDC_CFG_PCKO_DIV に応じた設定値を設定します。

パラレルデータ転送クロック出力(PCKO)のクロック供給開始

PDC 制御レジスタ 0 (PCCR0) PCKOE を"PCKO 出力を許可"に設定します。

PIXCLK の入力許可 (PCCR0.PCKE)

PDC 制御レジスタ 0 (PCCR0) PCKE を"PIXCLK 入力を許可"に設定します。

PDC リセット (PCCR0.PRST)

PDC の内部状態および PDC リセット対象レジスタの初期化を開始します。

垂直及び水平方向のキャプチャ範囲設定(VCR、HCR の設定)

VSYNC、HSYNC 信号の極性設定(VPS、HPS)

割り込みの許可/禁止設定(DFIE、FEIE、OVIE、UDRIE、VERIE、HERIE)

エンディアン設定(EDS)

Reentrant

不可

Example

サンプルコードの例ではイメージセンサの出力が1ドット当たり2バイトのため、水平方向の取り込み位置とサイズに水平ドット数を2倍した値を設定しています。ご使用のイメージセンサの出力に合わせて値を見直してください。

```
Case 1: VGA (640x480) サイズで画像を取得する場合の設定
#include "platform.h"
#include "r_pdc_rx_if.h"
/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t
                      data_pdc;
 Set the value 0 to PCDFI interrupt priority when using DMAC
 Set the value 1-15 to PCDFI interrupt priority level when using DTC
data_pdc.priority.pcdfi_level = 0;
/* Set the values 1-15 to GROUPBL0 interrupt priority level */
data_pdc.priority.groupbl0_level = 2;
/* PCDFI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcdfi_ien = true;
/* PCFEI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcfei_ien = true;
/* PCERI interrupt request in ICU is enabled */
data_pdc.inticu_req.pceri_ien = true;
/* Generation of receive data ready interrupt requests is enabled */
data_pdc.intpdc_req.dfie_ien = true;
/* Generation of frame end interrupt requests is enabled */
data_pdc.intpdc_req.feie_ien = true;
/* Generation of overrun interrupt requests is enabled */
data_pdc.intpdc_req.ovie_ien = true;
/* Generation of underrun interrupt requests is enabled */
data_pdc.intpdc_req.udrie_ien = true;
/* Generation of vertical line number setting error interrupt requests is enabled */
data_pdc.intpdc_req.verie_ien = true;
/* Generation of horizontal byte number setting error interrupt requests is enabled */
data_pdc.intpdc_req.herie_ien = true;
/* VSYNC signal is active LOW */
data_pdc.vps_select = PDC_VSYNC_SIGNAL_POLARITY_LOW;
/* HSYNC signal is active HIGH */
data_pdc.hps_select = PDC_HSYNC_SIGNAL_POLARITY_HIGH;
/* Capture from 0 pixel of vertical direction */
data_pdc.capture_pos.vst_position = 0;
/* Capture from 0 pixel of horizontal direction */
data_pdc.capture_pos.hst_position = 0;
/* Capture 480 pixels in vertical direction */
data_pdc.capture_size.vsz_size = 480;
/* Capture 640 pixels in horizontal direction */
data_pdc.capture_size.hsz_size = (640 * 2);
/* Pointer to PCDFI interrupt callback function */
data_pdc.p_callback.pcb_receive_data_ready = (void (*) (void *)) pcdfi_callback;
/* Pointer to PCFEI interrupt callback function */
data_pdc.p_callback.pcb_frame_end = (void (*) (void *)) pcfei_callback;
/* Pointer to PCERI interrupt callback function */
data_pdc.p_callback.pcb_error = (void (*) (void *)) pceri_callback;
ret_pdc = R_PDC_Open(&data_pdc);
if (PDC_SUCCESS != ret_pdc)
  /* Error processing */
```

```
Case 2: VGA (640x480) の画像に対して QVGA (320x240) で中心から右下を取得する場合の設定
#include "platform.h"
#include "r_pdc_rx_if.h"
/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t
                       data_pdc;
 Set the value 0 to PCDFI interrupt priority when using DMAC
 Set the value 1-15 to PCDFI interrupt priority level when using DTC
data_pdc.priority.pcdfi_level = 0;
/* Set the values 1-15 to GROUPBL0 interrupt priority level */
data_pdc.priority.groupbl0_level = 2;
/* PCDFI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcdfi_ien = true;
/* PCFEI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcfei_ien = true;
/* PCERI interrupt request in ICU is enabled */
data_pdc.inticu_req.pceri_ien = true;
/* Generation of receive data ready interrupt requests is enabled */
data_pdc.intpdc_req.dfie_ien = true;
/* Generation of frame end interrupt requests is enabled */
data_pdc.intpdc_req.feie_ien = true;
/* Generation of overrun interrupt requests is enabled */
data_pdc.intpdc_req.ovie_ien = true;
/* Generation of underrun interrupt requests is enabled */
data_pdc.intpdc_req.udrie_ien = true;
/* Generation of vertical line number setting error interrupt requests is enabled */
data_pdc.intpdc_req.verie_ien = true;
/* Generation of horizontal byte number setting error interrupt requests is enabled */
data_pdc.intpdc_req.herie_ien = true;
/* VSYNC signal is active LOW */
data_pdc.vps_select = PDC_VSYNC_SIGNAL_POLARITY_LOW;
/* HSYNC signal is active HIGH */
data_pdc.hps_select = PDC_HSYNC_SIGNAL_POLARITY_HIGH;
/* Capture from 240 pixel of vertical direction */
data_pdc.capture_pos.vst_position = 240;
/* Capture from 320 pixel of horizontal direction */
data_pdc.capture_pos.hst_position = (320 * 2);
/* Capture 240 pixels in vertical direction */
data_pdc.capture_size.vsz_size = 240;
/* Capture 320 pixels in horizontal direction */
data_pdc.capture_size.hsz_size = (320 * 2);
/* Pointer to PCDFI interrupt callback function */
data_pdc.p_callback.pcb_receive_data_ready = (void (*) (void *)) pcdfi_callback;
/* Pointer to PCFEI interrupt callback function */
data_pdc.p_callback.pcb_frame_end = (void (*) (void *)) pcfei_callback;
/* Pointer to PCERI interrupt callback function */
data_pdc.p_callback.pcb_error = (void (*) (void *)) pceri_callback;
ret_pdc = R_PDC_Open(&data_pdc);
if (PDC_SUCCESS != ret_pdc)
  /* Error processing */
```

受信データレディ割り込みが発生したときにコールバックされる関数

フレームエンド割り込みが発生して PDC の FIFO がエンプティになったときにコールバックされる関数

エラー割り込み、オーバランエラー、アンダランエラー、垂直方向ライン数設定エラー、水平方向バイト数 設定エラーが発生したときにコールバックされる関数

```
#include "platform.h"
#include "r_pdc_rx_if.h"
void pceri_callback(void * pdata)
  /* Stores the argument for callback function */
  pdc_cb_arg_t * pdecode;
  pdecode = (pdc_cb_arg_t *)pdata;
  switch(pdecode->event_id)
    case PDC EVT ID ERROR:
       /* Disable the DTC or DMAC transfer */
       /* Error interrupt processing */
    break;
    case PDC_EVT_ID_OVERRUN:
      /* Overrun error processing */
    break;
    case PDC_EVT_ID_UNDERRUN:
       /* Underrun error processing */
    break;
    case PDC_EVT_ID_VERTICALLINE:
       /* Vertical Line Number Setting Error processing */
    break;
    case PDC_EVT_ID_HORIZONTALBYTE:
       /* Horizontal Byte Number Setting Error processing */
    break:
    default:
    break:
  }
```

Special Notes:

本 API はデバイスとカメラモジュールを接続した状態で実行してください。本 API を実行すると PIXCLK の入力許可後に PDC をリセットしますが、カメラモジュールが出力する PIXCLK がデバイスに入力されていない状態ではリセットが完了しないためです。戻り値が PDC_ERR_RST_TIMEOUT であることを確認した場合は、使用するカメラモジュールの設定およびハードウェアの構成を確認してください。

本 API 内で PDC のエンディアンを設定します。エンディアンはコンパイラの設定に合わせて選択されるようになっています。コンパイラのエンディアン設定がリトル・エンディアンであれば PDC のエンディアン設定もリトル・エンディアンとなり、コンパイラのエンディアン設定がビッグ・エンディアンであれば、PDC のエンディアン設定もビッグ・エンディアンとなります。

登録するコールバック関数は引数、戻り値のどちらも void 型にしてください。

3.2 R_PDC_Close()

PDC の動作を終了し、モジュールストップ状態にします。

Format

pdc_return_t R_PDC_Close (void)

Parameters

なし

Return Values

PDC_SUCCESS /* 問題なく処理が完了した場合 */
PDC_ERR_NOT_OPEN /* R_PDC_Open が実行されていない場合 */

Properties

r_pdc_rx_if.h にプロトタイプ宣言されています。

Description

PDC を終了するための処理を行います。

PDC で使用する割り込み (PCFEI、PCERI、PCDFI) を禁止にします。

PDC の動作禁止

PDC 制御レジスタ 1(PCCR1)PCE を"受信動作を禁止"に設定します。

パラレルデータ転送クロック出力(PCKO)のクロック供給停止

PDC 制御レジスタ 0 (PCCR0) PCKOE を"PCKO 出力を禁止"に設定します。

イメージセンサからのピクセルクロックの入力禁止

PDC 制御レジスタ 0 (PCCR0) PCKE を"PIXCLK 入力を禁止"に設定します。

PDC のモジュールストップ

r_bsp のハードウェアロック機能を使用した PDC のハードウェアリソースロックの解除

Reentrant

不可

Example

```
#include "platform.h"
#include "r_pdc_rx_if.h"

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;

ret_pdc = R_PDC_Close();

if (PDC_SUCCESS != ret_pdc)
{
    /* Error processing */
}
```

Special Notes:

本 API は、R_PDC_Open を実行して戻り値が PDC_SUCCESS であることを確認してから使用してください。

3.3 R PDC Control()

コントロールコードに対応した処理を行う関数です。

```
Format
```

```
pdc_return_t R_PDC_Control (
    pdc_command_t command,
    pdc_data_cfg_t *p_data_cfg
    pdc_stat_t *p_stat,
)
```

Parameters

command

コントロールコード

*p_data_cfg

PDC 設定データ構造体へのポインタ

*p sta

PDC ステータス構造体へのポインタ

The Command Values:

```
/* イメージセンサ(カメラモジュール)からのデータキャプチャを開始する場合 */
  PDC_CMD_CAPTURE_START
/* イメージセンサ(カメラモジュール)からのデータキャプチャ範囲を変更する場合 */
  PDC_CMD_CHANGE_POS_AND_SIZE
/* PDC のステータス情報を取得する場合 */
  PDC_CMD_STATUS_GET
/* PDC のステータス情報をクリアする場合 */
  PDC_CMD_STATUS_CLR
/* PDC の割り込み設定を再設定する場合 */
  PDC_CMD_SET_INTERRUPT
/* PDC の受信動作を禁止する場合 */
  PDC_CMD_DISABLE
/* PDC の受信動作を許可する場合 */
  PDC_CMD_ENABLE
/* PDC をリセットする場合 */
  PDC_CMD_RESET
```

指定するコマンドに応じて参照する引数が異なります。

PDC_CMD_CAPTURE_START の場合

- 参照する pdc_data_cfg_t 構造体メンバと設定値
- 参照する pdc_stat_t 構造体メンバと設定値なし

PDC_CMD_CHANGE_POS_AND_SIZE の場合

— 参照する pdc_data_cfg_t 構造体メンバと設定値 以下に記載したパラメータ以外は参照しませんので、API 呼び出し時に設定する必要はありません。

構造体メンバ	概略	設定値	設定対象となる レジスタ	設定内容
vst_position	垂直方向キャプチャ 開始ライン位置	12bit data 0000h to 0FFEh	VCR.VST	垂直方向のキャプチャ開始ライン位置
hst_position	水平方向キャプチャ 開始バイト位置	12bit data 0000h to 0FFBh	HCR.HST	水平方向のキャプチャ開始バイト位置
vsz_size	垂直方向キャプチャ サイズ	12bit data 0001h to 0FFFh	VCR.VSZ	垂直方向のキャプチャライン数
hsz_size	水平方向キャプチャ サイズ	12bit data 0004h to 0FFFh	HCR.HSZ	水平方向のキャプチャバイト数

参照する pdc_stat_t 構造体メンバと設定値 なし

PDC_CMD_STATUS_GET の場合

- 参照する pdc_data_cfg_t 構造体メンバと設定値なし
- 参照する pdc_stat_t 構造体メンバと設定値

			参照対象となる	
構造体メンバ	概略	設定値	レジスタ	設定内容
pcsr_stat.frame_busy	フレームビジーフラグ	false	PCSR.FBSY	受信動作停止
		true		受信動作中
pcsr_stat.fifo_empty	FIFO エンプティフラ	false	PCSR.FEMPF	FIFO はエンプティではない
	グ	true		FIFO はエンプティ
pcsr_stat.frame_end	フレームエンドフラグ	false	PCSR.FEF	フレームエンドなし
		true		フレームエンド発生
pcsr_stat.overrun	オーバランフラグ	false	PCSR.OVRF	FIFOオーバランなし
		true		FIOF オーバラン発生
pcsr_stat.underrun	アンダランフラグ	false	PCSR.UDRF	アンダランなし
		true		アンダラン発生
pcsr_stat.verf_error	垂直方向ライン数設定	false	PCSR.VERF	垂直方向ライン数設定エラーなし
	エラーフラグ	true		垂直方向ライン数設定エラー発生
pcsr_stat.herf_error	水平方向バイト数設定	false	PCSR.HERF	水平方向バイト数設定エラーなし
	エラーフラグ	true		水平方向バイト数設定エラー発生
pcmonr_stat.vsync	VSYNC 信号ステータ	false	PCMONR.VSYNC	VSYNC 信号は"LOW"
	スフラグ	true		VSYNC 信号は"HIGH"
pcmonr_stat.hsync	HSYNC 信号ステータ	false	PCMONR.HSYNC	HSYNC 信号は"LOW"
	スフラグ	true		HSYNC 信号は"HIGH"

PDC_CMD_STATUS_CLR の場合

- 参照する pdc_data_cfg_t 構造体メンバと設定値なし
- 参照する pdc_stat_t 構造体メンバと設定値 以下に記載したパラメータ以外は参照しませんので、API 呼び出し時に設定する必要はありません。

			設定対象となるレ	
構造体メンバ	概略	設定値	ジスタ	設定内容
pcsr_stat.frame_end	フレームエンドフラグ	false	PCSR.FEF	なにもしない
		true		フレームエンドフラグをク
				リアする
pcsr_stat.overrun	オーバランフラグ	false	PCSR.OVRF	なにもしない
		true		オーバランフラグをクリア
				する
pcsr_stat.underrun	アンダランフラグ	false	PCSR.UDRF	なにもしない
		true		アンダランフラグをクリア
				する
pcsr_stat.verf_error	垂直方向ライン数設定	false	PCSR.VERF	なにもしない
	エラーフラグ	true		垂直方向ライン数設定エ
				ラーフラグをクリアする
pcsr_stat.herf_error	水平方向バイト数設定	false	PCSR.HERF	なにもしない
	エラーフラグ			水平方向バイト数設定エ
				ラーフラグをクリアする

PDC_CMD_SET_INTERRUPT の場合

— 参照する pdc_data_cfg_t 構造体メンバと設定値 以下に記載したパラメータ以外は参照しませんので、API 呼び出し時に設定する必要はありません。

			設定対象となる	
構造体メンバ	概略	設定値	レジスタ	設定内容
iupd_select	更新対象選択	10bit data	なし	下記パラメータのどの割り込み設定を更
		0000h to		新するかを選択します。
		03FFh		Bit 0 : PCDFI 割り込み優先レベル
				Bit 1: GROUPBL0 割り込み優先レベル
				Bit 2: PCDFI 割り込み許可
				Bit 3: PCFEI 割り込み許可
				Bit 4: PCERI 割り込み許可
				Bit 5:受信データレディ割り込み要求
				Bit 6: フレームエンド割り込み要求
				Bit 7: オーバラン割り込み要求.
				Bit 8: アンダラン割り込み要求
				Bit 9: 垂直方向ライン数設定エラー割り込み要求
				Bit 10: 水平方向バイト数設定エラー割り
				込み要求
				Bit 11-15 : 使用しない
				"0"の場合、設定の更新をしません。
				"1"の場合、設定を更新します。
priority.pcdfi_level	PCDFI 割り込み	8bit data	ICU.IPR097.IPR	受信データレディ割り込み (PCDFI) 優先
	優先レベル	00h to 0Fh		レベル設定
				【注】 iupd_selectのBit0を"1"に設定して ください。

			設定対象となる	
構造体メンバ	概略	設定値	レジスタ	設定内容
priority.groupbl0_lev	GROUPBL0 割り 込み優先レベル	8bit data 00h to 0Fh	ICU.IPR110.IPR	フレームエンド割り込みおよびエラー割 り込み優先レベル設定
				【注】 iupd_select の Bit1 を"1"に設定し てください。
				現在の設定値より小さい値への変 更は無効です。
inticu_req.pcdfi_ien	PCDFI 割り込み 許可	false	ICU.IER0C.IEN1	受信データレディ割り込み(PCDFI)の割り込み要求を禁止
				【注】 iupd_selectのBit2を"1"に設定して ください。
		true		受信データレディ割り込み(PCDFI)の割 り込み要求を許可
				【注】 iupd_selectのBit2を"1"に設定して ください。
inticu_req.pcfei_ien	PCFEI割り込み 許可	false	ICU.GRPBL0.EN 30	フレームエンド割り込み(PCFEI)の割り 込み要求を禁止
				【注】 iupd_selectのBit3を"1"に設定して ください。
		true		フレームエンド割り込み (PCFEI) の割り 込み要求を許可
				【注】 iupd_selectのBit3を"1"に設定して ください。
inticu_req.pceri_ien	PCERI割り込み 許可	false	ICU.GRPBL0.EN 31	エラー割り込み(PCERI)の割り込み要求 を禁止
				【注】 iupd_selectのBit4を"1"に設定して ください。
		true		エラー割り込み(PCERI)の割り込み要求 を許可
				【注】 iupd_selectのBit4を"1"に設定して ください。
intpdc_req.dfie_ien	受信データ レディ割り込み	false	PCCR0.DFIE	受信データレディ割り込み要求の発生を 禁止
	要求			【注】 iupd_selectのBit5を"1"に設定して ください。
		true		受信データレディ割り込み要求の発生を 許可
				【注】 iupd_selectのBit5を"1"に設定して ください。
intpdc_req.feie_ien	フレームエンド 割り込み要求	false	PCCR0.FEIE	フレームエンド割り込み要求の発生を禁 止
				【注】 iupd_selectのBit6を"1"に設定して ください。
		true		フレームエンド割り込み要求の発生を許 可
				【注】 iupd_selectのBit6を"1"に設定して ください。
intpdc_req.ovie_ien	オーバラン 割り込み要求.	false	PCCR0.OVIE	オーバラン割り込み要求の発生を禁止 【注】 iupd_selectのBit7を"1"に設定して
				ください。
		true		オーバラン割り込み要求の発生を許可. 【注】 iupd_selectのBit7を"1"に設定して ください。
		j	j	\/こでい。

			設定対象となる	
構造体メンバ	概略	設定値	レジスタ	設定内容
intpdc_req. udrie_ien	アンダラン 割り込み要求	false	PCCR0.UDRIE	アンダラン割り込み要求の発生を禁止 【注】 iupd_selectのBit8を"1"に設定して ください。
		true		アンダラン割り込み要求の発生を許可 【注】 iupd_selectのBit8を"1"に設定して ください。
intpdc_req. verie_ien	垂直方向ライン 数設定エラー 割り込み要求.	false	PCCR0.VERIE	垂直方向ライン数設定エラー割り込み要求の発生を禁止 【注】 iupd_selectのBit9を"1"に設定してください。
		true		垂直方向ライン数設定エラー割り込み要求の発生を許可 【注】 iupd_selectのBit9を"1"に設定してください。
intpdc_req. herie_ien	水平方向バイト 数設定エラー 割り込み要求	false	PCCR0.HERIE	水平方向バイト数設定エラー割り込み要求の発生を禁止 【注】 iupd_select の Bit10 を"1"に設定してください。 水平方向バイト数設定エラー割り込み要求の発生を許可 【注】 iupd_select の Bit10 を"1"に設定してください。

参照する pdc_stat_t 構造体メンバと設定値なし

PDC_CMD_DISABLE/PDC_CMD_ENABLE の場合

- 参照する pdc_data_cfg_t 構造体メンバと設定値なし
- 参照する pdc_stat_t 構造体メンバと設定値なし

PDC_CMD_RESET の場合

- 参照する pdc_data_cfg_t 構造体メンバと設定値なし
- 参照する pdc_stat_t 構造体メンバと設定値なし

Return Values

PDC_SUCCESS /* 問題なく処理が完了した場合 */

PDC_ERR_NOT_OPEN /* R_PDC_Open が実行されていない場合 */
PDC_ERR_INVALID_ARG /* PDC レジスタへの設定値が不正な場合 */

PDC_ERR_INVALID_COMMAND /* 引数のコマンドが不正な場合 */

PDC_ERR_NULL_PTR /* 引数 p_data_cfg または p_stat が NULL ポインタの場合 */

PDC_ERR_RST_TIMEOUT

/* 一定時間経過しても PDC のリセットが解除されなかった場合 */

Properties

r_pdc_rx_if.h にプロトタイプ宣言されています。

Description

<PDC_CMD_ CAPTURE_START コマンド処理>

割り込みの再設定と PDC のリセットを行ってから PDC の受信動作を許可することでデータキャプチャを 開始します。

<PDC_CMD_CHANGE_POS_AND_SIZE コマンド処理>

PDC の受信動作を禁止に設定してからキャプチャ開始位置及びキャプチャサイズの再設定を行います。

- 水平方向の取り込み位置とサイズは、ご使用のイメージセンサの出力に合わせて設定してください。
- <PDC_CMD_STATUS_GET コマンド処理>

PDC のステータス情報を引数の p stat が示すポインタ位置に書き込みます。

<PDC_CMD_STATUS_CLR コマンド処理>

引数の p_stat で指定した PDC のステータス情報をクリアします。

<PDC CMD SET INTERRUPT コマンド>

PDC の受信動作を禁止に設定してから PDC の割り込みを再設定します。

<PDC_CMD_DISABLE コマンド>

PDC の受信動作を禁止します。

<PDC CMD ENABLE コマンド>

PDC の受信動作を許可します。

<PDC_CMD_RESET コマンド処理>

PDC の受信動作を禁止に設定してから PDC をリセットします。

Reentrant

可能

Example

サンプルコードの例では、イメージセンサの出力が1ドット当たり2バイトのため、水平方向の取り込み位置とサイズに水平ドット数を2倍した値を設定しています。ご使用のイメージセンサの出力に合わせて値を見直してください。

Case 1: キャプチャを開始する場合

Case 2: キャプチャ位置とサイズを再設定する場合

```
#include "platform.h"
#include "r_pdc_rx_if.h"
/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t
                    data_pdc;
/* Unused */
pdc_stat_t
                     dummy_stat;
/* Capture from 0 pixel of vertical direction */
data_pdc.capture_pos.vst_position = 0;
/* Capture from 0 pixel of horizontal direction */
data_pdc.capture_pos.hst_position = 0;
/* Capture 480 pixels in vertical direction */
data_pdc.capture_pos.vsz_size = 480;
/* Capture 640 pixels in horizontal direction */
data_pdc.capture_pos.hsz_size = (640 * 2);
ret_pdc = R_PDC_Control(PDC_CMD_CHANGE_POS_AND_SIZE, &data_pdc, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
  /* Error processing */
```

Case 3: ステータスを取得する場合

Case 4: ステータスをクリアする場合

```
#include "platform.h"
#include "r_pdc_rx_if.h"

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Status values of PDC operation */
pdc_stat_t stat_pdc;

/* Clear Frame Busy Flag */
stat_pdc.pcsr_stat.frame_busy = true;
/* Clear FIFO Empty Flag */
stat_pdc.pcsr_stat.fifo_empty = true;
```

```
/* Clear Frame End Flag */
stat_pdc.pcsr_stat.frame_end = true;
/* Clear Overrun Flag */
stat_pdc.pcsr_stat.overrun = true;
/* Clear Underrun Flag */
stat_pdc.pcsr_stat.underrun = true;
/* Clear Vertical Line Number Setting Error Flag */
stat_pdc.pcsr_stat.verf_error = true;
/* Clear Horizonal Byte Number Setting Error Flag */
stat_pdc.pcsr_stat.herf_error = true;
ret_pdc = R_PDC_Control(PDC_CMD_STATUS_CLR, &dummy_data, &stat_pdc);
if (PDC_SUCCESS != ret_pdc)
  /* Error processing */
```

Case 5: 割り込みの再設定を行う場合

```
#include "platform.h"
#include "r_pdc_rx_if.h"
/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t
                      p_data_pdc;
/* Unused */
pdc_stat_t
                      dummy_stat;
/* Update all of interrupt setting values with the contents of following */
data_pdc.iupd_select = PDC_ALL_INT_UPDATE;
/* PCDFI interrupt priority level is 8 */
data_pdc.priority.pcdfi_level = 8;
/* GROUPBL0 interrupt priority level is 2 */
data_pdc.priority.groupbl0_level = 2;
/* PCDFI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcdfi_ien = true;
/* PCFEI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcfei_ien = true;
/* PCERI interrupt request in ICU is enabled */
data_pdc.inticu_req.pceri_ien = true;
/* Generation of receive data ready interrupt requests is enabled */
data_pdc.intpdc_req.dfie_ien = true;
/* Generation of frame end interrupt requests is enabled */
data_pdc.intpdc_req.feie_ien = true;
/* Generation of overrun interrupt requests is enabled */
data_pdc.intpdc_req.ovie_ien = true;
/* Generation of underrun interrupt requests is enabled */
data_pdc.intpdc_req.udrie_ien = true;
/* Generation of vertical line number setting error interrupt requests is enabled */
data_pdc.intpdc_req.verie_ien = true;
/* Generation of horizontal byte number setting error interrupt requests is enabled */
data_pdc.intpdc_req.herie_ien = true;
ret_pdc = R_PDC_Control(PDC_CMD_SET_INTERRUPT, &data_pdc, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
  /* Error processing */
```

Case 6: PDC の受信動作のみを停止する場合

```
#include "platform.h"
#include "r_pdc_rx_if.h"

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_DISABLE, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
    /* Error processing */
}
```

Case 7: PDC の受信動作のみを許可する場合

```
#include "platform.h"
#include "r_pdc_rx_if.h"

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_ENABLE, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
    /* Error processing */
}
```

Case 8: PDC のリセットを行う場合

```
#include "platform.h"
#include "r_pdc_rx_if.h"

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_RESET, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
    /* Error processing */
}
```

Special Notes:

受信動作中に本 API を実行した場合は PDC レジスタを書き換えるため、受信動作が停止します。フレームエンド割り込みの発生前に本 API を実行すると受信動作が停止するため、画像データの取り込みが途中で停止します。画像の取り込みを再開する場合は転送先のメモリのポインタを DMAC/DTC に再設定してから、R_PDC_Control のキャプチャ開始コマンドで画像データの再取得を行ってください。

コマンド"PDC_CMD_STATUS_CLR"を引数にして R_PDC_Control を実行する場合は、クリアするステータス情報を"true"に、クリアしないステータス情報を"false"に設定してください。設定しないで R_PDC_Control を実行すると、意図しないステータス情報がクリアされる場合があります。

3.4 R_PDC_GetFifoAddr()

PDC の FIFO のアドレスを取得する関数です。

Format

Parameters

*p_fifo_addr PDC の FIFO のアドレスへのポインタ

Return Values

```
PDC_SUCCESS /* 問題なく処理が完了した場合 */
PDC_ERR_NOT_OPEN /* R_PDC_Open が実行されていない場合 */
PDC_ERR_NULL_PTR /* 引数 p_fifo_addr が NULL ポインタの場合 */
```

Properties

r_pdc_rx_if.h にプロトタイプ宣言されています。

Description

引数 p_fifo_addr に PDC 受信データレジスタ (PCDR) のアドレスを格納します。

Reentrant

可能

Example

Case 1: DMAC(RX ファミリ DMA コントローラ DMCA 制御モジュール Firmware Integration Technology)を使用している場合の設定例

```
#include "platform.h"
#include "r_pdc_rx_if.h"
#include "r_dmaca_rx_if.h"
/* Error code of PDC API */
volatile pdc_return_t
                             ret_pdc;
/* Error code of DMACA FIT API */
volatile dmaca_return_t ret_dmac;
/* Setting values of dmaca_transfer information structure */
dmaca_transfer_data_cfg_t td_cfg;
/* Pointer to FIFO address of PDC */
uint32_t
                             pdc_fifo_address;
/* Set PDC FIFO to DMACA transfer source address */
ret_pdc = R_PDC_GetFifoAddr(&pdc_fifo_address);
if (PDC_SUCCESS == ret_pdc)
     td_cfg.p_src_addr = pdc_fifo_address;
/* Set PCDFI to DMACA activation source */
td_cfg.act_source = IR_PDC_PCDFI;
ret_dmac = R_DMACA_Create (DMACA_CH0, &td_cfg);
if (DMACA_SUCCESS != ret_dmac)
  /* Error processing */
```

Case 2: DTC(RX ファミリ DTC モジュール Firmware Integration Technology)を使用している場合の設定例

```
#include "platform.h"
#include "r_pdc_rx_if.h"
#include "r_dtc_rx_if.h"
/* Error code of PDC API */
volatile pdc_return_t ret_pdc;
/* Error code of DTC FIT API */
volatile dtc err t
                         ret_dtc;
/* Activation source of DTC */
dtc_activation_source_t act_source;
/* Pointer to start address of Transfer data area on RAM */
dtc_transfer_data_t *p_transdata_dtc;
/* Pointer to setting values for transfer data */
dtc_transfer_data_cfg_t *p_data_dtc;
/* Pointer to FIFO address of PDC */
Uint32 t
                          pdc_fifo_address;
/* Number of chain transfer */
uint32_t
                          chain_trans_nr;
/* Set PCDFI to DTC Activation souce */
act_source = (dtc_activation_source_t)VECT_PDC_PCDFI;
/* Set PDC FIFO to DTC transfer source address */
ret_pdc = R_PDC_GetFifoAddr(&pdc_fifo_address);
if (PDC_SUCCESS == ret_pdc)
  p_data_dtc->source_addr = pdc_fifo_address;
/* Set 0 to number of chain transfer */
chain_trans_nr = 0;
ret_dtc = R_DTC_Create(act_source, p_transdata_dtc, p_data_dtc, chain_trans_nr);
if(DTC_SUCCESS != ret_dtc)
  /* Error processing */
```

Special Notes:

なし

3.5 R_PDC_GetVersion()

APIのバージョンを返す関数です。

Format

uint32_t R_PDC_GetVersion (void)

Parameters

なし

Return Values

バージョン番号

Properties

r_pdc_rx_if.h にプロトタイプ宣言されています。

Description

現在インストールされている PDC FIT モジュールのバージョンを返します。バージョン番号はコード化されています。最初の 2 バイトがメジャーバージョン番号で、後の 2 バイトがマイナーバージョン番号です。 例えば、バージョンが 4.25 の場合、戻り値は'0x00040019'となります。

Reentrant

可能

Example

#include "platform.h" #include "r_pdc_rx_if.h"

/* Version number */
uint32_t version;

version = R_PDC_GetVersion();

Special Notes:

なし

4. 端子設定

PDC FIT モジュールを使用するためには、マルチファンクションピンコントローラ (MPC) で周辺機能の入出力信号を端子に割り付ける(以下、端子設定と称す)必要があります。端子設定は、R_PDC_Open 関数を呼び出す前に行ってください。

 e^2 studio の場合は「FIT Configurator」または「Smart Configurator」の端子設定機能を使用することができます。FIT Configurator、Smart Configurator の端子設定機能を使用すると、端子設定画面で選択したオプションに応じて、ソースファイルが出力されます。そのソースファイルで定義された関数を呼び出すことにより端子を設定できます。詳細は表 4.1を参照してください。

表 4.1 FIT Configurator、Smart Configurator が出力する関数一覧

使用マイコン	出力される関数名	備考
RX64M	R_PDC_PinSet()	-
RX65N		
RX71M		

5. 使用方法

5.1 API 使用例

以下に API の使用例として、イメージセンサからの入力画像を DMAC 起動で SDRAM へ転送する場合の動作フロー例とサンプルコードを掲載します。

5.1.1 動作フロー例

6. 付録

6.1 動作確認環境

本 FIT モジュールの動作確認環境を以下に示します。

表 6.1 動作確認環境 (Rev.2.01)

項目	内容
統合開発環境	ルネサスエレクトロニクス製 e² studio V6.00.000
Cコンパイラ	ルネサスエレクトロニクス製 C/C++ Compiler for RX Family V2.07.00
	コンパイルオプション:統合開発環境のデフォルト設定に以下のオプションを追加
	-lang = c99
エンディアン	ビッグエンディアン/リトルエンディアン
モジュールのリビジョン	Rev2.01
使用ボード	Renesas Starter Kit+ for RX65N-2MB(型名: RTK50565N2SxxxxxBE)

6.2 トラブルシューティング

(1) Q:本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「Could not open source file "platform.h"」エラーが発生します。

A:FIT モジュールがプロジェクトに正しく追加されていない可能性があります。プロジェクトへの 追加方法をご確認ください。

- CS+を使用している場合 アプリケーションノート RX ファミリ CS+に組み込む方法 Firmware Integration Technology (R01AN1826) I
- e² studio を使用している場合 アプリケーションノート RX ファミリ e² studio に組み込む方法 Firmware Integration Technology (R01AN1723) J

また、本 FIT モジュールを使用する場合、ボードサポートパッケージ FIT モジュール(BSP モ ジュール)もプロジェクトに追加する必要があります。BSP モジュールの追加方法は、アプリ ケーションノート「ボードサポートパッケージモジュール(R01AN1685)」を参照してください。

(2) Q:本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「This MCU is not supported by the current r_pdc_rx module.」エラーが発生します。

A: 追加した FIT モジュールがユーザプロジェクトのターゲットデバイスに対応していない可能性 があります。追加した FIT モジュールの対象デバイスを確認してください。

(3) Q:本 FIT モジュールをプロジェクトに追加しましたが、ビルド実行すると「ERROR -PDC_CFG_xxx_xxx」エラーが発生します。

A:"r pdc rx config.h"ファイルの設定値が間違っている可能性があります。"r pdc rx config.h"ファ イルを確認して正しい値を設定してください。詳細は「2.7 コンパイル時の設定」を参照して ください。

(4) Q:一定時間経過しても PDC のリセットが解除されません。

A:正しく端子設定が行われていない可能性があります。本 FIT モジュールを使用する場合は端子 設定が必要です。詳細は「4端子設定」を参照してください。

RX ファミリ パラレルデータキャプチャユニット (PDC) モジュール Firmware Integration Technology

ホームページとサポート窓口

ルネサス エレクトロニクスホームページ http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/contact/

すべての商標および登録商標は、それぞれの所有者に帰属します。

改訂記録	RXファミリ パラレルデータキャプチャユニット (PDC) モジュール
以自己或	Firmware Integration Technology

Pov ASCID		改訂内容	
Rev.	Rev.	ページ	ポイント
2.00	2016.10.01	_	初版発行
2.01	2017.10.02	_	RX65N-2MB 版に対応
		5	「2.4 使用する割り込みベクタ」を追加
		13	「2.12 FIT モジュールの追加方法」の内容を変更
		21	「3.1 R_PDC_Open()」
			Special Notes の内容を変更
		37	「4. 端子設定」の内容を変更
		39	「6.1 動作確認環境」を追加
		39	「6.2 トラブルシューティング」を追加

すべての商標および登録商標は、それぞれの所有者に帰属します。

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意 事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 未使用端子の処理

【注意】未使用端子は、本文の「未使用端子の処理」に従って処理してください。

CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。未使用端子は、本文「未使用端子の処理」で説明する指示に従い処理してください。

2. 電源投入時の処置

【注意】電源投入時は、製品の状態は不定です。

電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。 外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の 状態は保証できません。

同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. リザーブアドレスのアクセス禁止

【注意】リザーブアドレスのアクセスを禁止します。

アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレスがあります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

4. クロックについて

【注意】リセット時は、クロックが安定した後、リセットを解除してください。

プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。 リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

5. 製品間の相違について

【注意】型名の異なる製品に変更する場合は、事前に問題ないことをご確認下さい。

同じグループのマイコンでも型名が違うと、内部メモリ、レイアウトパターンの相違などにより、特性 が異なる場合があります。型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実 施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の 知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を、全部または一部を問わず、改造、改変、複製、その他の不適切に使用しないでください。かかる改造、改変、複製等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、

家電、工作機械、パーソナル機器、産業用ロボット等 高品質水準: 輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、

金融端末基幹システム、各種安全制御装置等

当社製品は、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙、海底中継器、原子力制御システム、航空機制御システム、ブラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することはできません。たとえ、意図しない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。

- 6. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、 当社は、一切その責任を負いません。
- 9. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。また、当社製品および技術を、(1)核兵器、化学兵器、生物兵器等の大量破壊兵器およびこれらを運搬することができるミサイル (無人航空機を含みます。) の開発、設計、製造、使用もしくは貯蔵等の目的、(2)通常兵器の開発、設計、製造または使用の目的、または(3)その他の国際的な平和および安全の維持の妨げとなる目的で、自ら使用せず、かつ、第三者に使用、販売、譲渡、輸出、賃貸もしくは使用許諾しないでください。
 - 当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 10. お客様の転売、貸与等により、本書(本ご注意書きを含みます。)記載の諸条件に抵触して当社製品が使用され、その使用から損害が生じた場合、当社は一切その責任を負わず、お客様にかかる使用に基づく当社への請求につき当社を免責いただきます。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 12. 本資料に記載された情報または当社製品に関し、ご不明点がある場合には、当社営業にお問い合わせください。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社がその総株主の議決権の過半数を 直接または間接に保有する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.3.0-1 2016.11)

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口: https://www.renesas.com/contact/