

UnifiedGesture: A Unified Gesture Synthesis Model for Multiple Skeletons

Sicheng Yang*,1, Zilin Wang*,1, Zhiyong Wu¹,4, Minglei Li², Zhensong Zhang³, Qiaochu Huang¹, Lei Hao³, Songcen Xu³, Xiaofei Wu³, Changpeng Yang², Zonghong Dai²

¹ Tsinghua Shenzhen International Graduate School, Tsinghua University, China ² Huawei Cloud Computing Technologies Co., Ltd, China ³ Huawei Noah's Ark Lab, China ⁴ The Chinese University of Hong Kong, Hong Kong SAR, China

1. Introduction

1.1 Motivation

- ➤ Goal:
- ✓ Develop a comprehensive gesture synthesis model that can cater to multiple skeletons, ensuring natural and appropriate gestures in sync with speech ➤ Problem:
 - Existing gesture synthesis models are limited in their adaptability to various skeletons
 - The need for a model that can generate gestures that are both semantically relevant and natural in appearance

1.2 Contribution

- ✓ Introduction of a unified model that bridges the gap between different skeletons
- ✓ Present a temporally aware attention-based diffusion model on the primal skeleton for co-speech gesture generation
- ✓ Incorporation reinforcement learning, VQVAE and IK to enhance gesture quality
- ✓ Extensive experiments show that our model can generate human-like, speech-matched, stylized, diverse, controllable, and physically plausible gestures

2. Methodology **UnifiedGesture** Section 3.1 Section 3.2 Section 3.3 Skeleton A Skeleton B Gesture ... Gesture Reinforcement Refine Learning Retargeting (Seed Gesture) Physics guidance (Style) Skeleton A -Upper Diffusion Model Skeleton B → Codebook Primal Gesture Discrete Skeleton Generated **Primal Gesture** Lower

2.1 Multiple Skeletons Retargeting Network

The adjacency lists $\mathcal{N}^d = \{\mathcal{N}_1^d, \mathcal{N}_2^d, ..., \mathcal{N}_J^d\}$

Two reference poses \mathbf{P}_A and \mathbf{P}_B can be aligned through global and local translation and rotation: $\mathbf{P}_B = \mathbf{Q}^{AB} \mathbf{P}_A (\mathbf{Q}^{AB})^{\top}$

The motion of different skeletons consists of a static component $\mathbf{S} \in \mathbb{R}^{J \times 3}$ (joint offsets) and a dynamic one $\mathbf{D} \in \mathbb{R}^{T \times (J \times 4)}$ (joint rotations).

To unify the motion of the different skeletons, we utilize a retargeting network architecture similar to [1]

2.2 Diffusion Model for Speech-driven Gesture Generation

According to a variance schedule $\beta_1, \beta_2, ..., \beta_{T_d}$ $(0 < \beta_1 < \beta_2 < \cdots < \beta_{T_d} < 1)$, T_d is the total time step), we add Gaussian noise $q(\mathbf{L}_{t_d} | \mathbf{L}_{t_{d-1}}) = \mathcal{N}(\mathbf{L}_{t_d}; \sqrt{1 - \beta_{t_d}} \mathbf{L}_{t_{d-1}}, \beta_{t_d} \mathbf{I})$ Our goal is to synthesize a gesture $\mathbf{L}^{1:N}$ of length N given noising step t_d , noisy gesture \mathbf{L}_{t_d} and conditions c (including audio a, style s, and seed

The Denoising module can be trained by optimizing the Huber loss between the generated poses ${\bf L}_0$ and the ground truth human gestures ${\bf L}_0$ on the training examples:

$\mathcal{L}_{diff} = \lambda_{diff} E_{\mathbf{L}_0 \sim q(\mathbf{L}_0|c), t_d \sim [1, T_d]} \left[\text{HuberLoss}(\mathbf{L}_0 - \mathbf{L}_0) \right]$

2.3 Gesture Generation Refinement

gesture d). That is $\mathbf{L}_0 = \text{Denoise}(\mathbf{L}_{t_d}, t_d, c)$.

2.3.1 Primal Gesture VQVAE

Each code represents a unique gesture. Discrete spaces are more conducive to reinforcement learning for exploration. The VQVAE can be trained by optimizing \mathcal{L}_{vq} :

$$\mathcal{L}_{vq} = \left\| \mathbf{L}_{0}^{\text{upper}} - \mathbf{L}_{0}^{\text{upper}} \right\|_{1} + \alpha_{1} \left\| \mathbf{L}_{0}^{\text{upper'}} - \mathbf{L}_{0}^{\text{upper'}} \right\|_{1} + \alpha_{2} \left\| \mathbf{L}_{0}^{\text{upper''}} - \mathbf{L}_{0}^{\text{upper''}} \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\| + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\| + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}_{\mathbf{q}}] \right\|_{1} + \left\| \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \operatorname{sg}[\mathbf{u}] - \mathbf{u}_{\mathbf{q}} \right\|_{1} + \beta_{vq} \left\| \mathbf{u} - \mathbf{u}_$$

2.3.2 Reinforcement Learning Finetuning

Let the reward model R_{ψ} classify these trajectories with different qualities (may come from different human demonstrations with different speech) $r = R_{\psi}(\tau)$ to determine which trajectory is better: $\mathcal{L}_{rm} = -\mathbb{E}\left[\log\left(\sigma\left((r_i - r_j) \cdot \operatorname{sgn}(j - i)\right)\right)\right]$

We adopted Inverse Reinforcement Learning (IRL) to learn a neural network model from human demonstrations. Given the reward model, we use the REINFORCE algorithm to improve the model: $\mathcal{L}_{RL} = -\mathbb{E}_{\tau \sim \pi} \left[\log p_{\pi}(\tau) r(\tau) \right]$.

2.3.3 Physics Guidance

The foot should have contact with the ground when there is a left-right acceleration or an upward acceleration of the root. We use standard Inverse Kinematics (IK) optimization for physics guidance.

3. Experiments

3.1 Experiment Preparation

- \triangleright Retargeting network. Trinity and ZEGGS datasets. d_{re} =4, then the primal gesture is 7.5 fps. Adam optimizer, batch size of 256 for 16000 epochs.
- ➤ Diffusion model. Gesture data cropped to a length of N = 30 (4 seconds). AdamW optimizer, learning rate 3×10^{-5} , batch size 256, 1000000 steps.
- > VQVAE. The size C_b of codebook \mathcal{Z}_u is set to 512 with dimension n_z is 512. Down-sampling rate d_{vq} =2. ADAM optimizer, learning rate is e^{-4} , batch size of 128 for 200 epochs.

3.2 Comparison to Existing Methods

- > Human-likeness. Our model excels beyond other top methods, matching ExampleGestures closely.
- ➤ Gesture and speech appropriateness. we surpass 3 baseline models, and are on par with DiffuseStyleGesture.

Name	Objective evaluation				Subjective evaluation	
	Global CCA	CCA for each sequence	FGD↓	Diversity ↑	Human-likeness	Appropriateness
Ground Truth	1.000	1.00 ± 0.00	0.0	10.03	4.22 ± 0.11	4.22 ± 0.11
StyleGestures [4]	0.978	$\textbf{0.98} \pm \textbf{0.01}$	15.89	13.86	3.56 ± 0.12	3.17 ± 0.13
Audio2Gesture [43]	0.969	0.97 ± 0.01	19.78	6.148	3.61 ± 0.11	3.15 ± 0.14
ExampleGestures [19]	0.914	$\textbf{0.98} \pm \textbf{0.01}$	10.49	5.418	3.77 ± 0.12	3.17 ± 0.14
DiffuseStyleGesture [85]	0.987	0.97 ± 0.01	11.98	11.22	3.66 ± 0.12	3.46 ± 0.14
Ours	0.988	0.95 ± 0.02	3.850	7.039	3.80 ± 0.11	3.42 ± 0.14

3.3 Ablation Studies

- > Human-likeness. Significantly influenced by dataset scale, highlighting the significance of unifying gesture datasets.
- ➤ Speech and gesture appropriateness. Dataset size is crucial. Without RL, appropriateness decreases, highlighting the importance of data exploration.

Name -		Objective evaluatio	Subjective evaluation			
	Global CCA	CCA for each sequence	FGD ↓	Diversity↑	Human-likeness	Appropriateness
Ground Truth	1.000	1.00 ± 0.00	0.0	10.03	4.22 ± 0.11	4.22 ± 0.11
Ours	0.988	$\boldsymbol{0.95 \pm 0.02}$	3.850	7.039	3.80 ± 0.11	3.42 ± 0.14
- RL	0.987	0.94 ± 0.03	3.132	7.008	3.82 ± 0.11	3.24 ± 0.16
- RL - VQVAE	0.987	0.94 ± 0.03	3.568	6.971	3.79 ± 0.11	3.33 ± 0.12
- Skeleton A	0.972	0.94 ± 0.03	13.76	4.882	3.54 ± 0.12	3.00 ± 0.13
- Skeleton B	0.965	0.95 ± 0.03	12.45	5 566	3.59 ± 0.13	3.09 ± 0.13

3.4 Diverse, Controllable, and Stylized Gesture Generation

The **stylization intensity** is regulated by γ value. Given the diffusion model, varying noise and seed gestures produce **distinct outcomes** for identical speech and style. The specified upper body code allows **precise control** over speech-driven gestures.

Reference

- [1] Aberman, Kfir, et al. "Skeleton-aware networks for deep motion retargeting." ACM Transactions on Graphics (TOG) 39.4: 62-1. 2020.
- [2] Yang, Sicheng, et al. "DiffuseStyleGesture: Stylized Audio-Driven Co-Speech Gesture Generation with Diffusion Models." International Joint Conference on Artificial Intelligence. 2023.
- [3] Siyao, Li, et al. "Bailando: 3d dance generation by actor-critic gpt with choreographic memory." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

Project page