P1 de Álgebra Linear I – 2003.1

Questão	Valor	Nota	Revis.
1	3.0		
2a	0.5		
2b	0.5		
2c	0.5		
2d	0.5		
2e	0.5		
3a	0.5		
3b	0.5		
3c	0.5		
3d	0.5		
3e	0.5		
3f	0.5		
4a	0.5		_
4b	1.0		
Total	10.0		

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use "N= não sei" caso você não saiba a resposta. Cada resposta certa

vale 0.3, cada resposta errada vale -0.2, cada resposta ${\bf N}$ vale 0. Respostas confusas e ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			
1.j			

- **1.a)** Existem vetores não nulos \bar{u} e \bar{w} de \mathbb{R}^3 tais que $\bar{u} \cdot \bar{w} = 0$ e $\bar{u} \times \bar{w} = \bar{0}$.
- **1.b)** Existe $a \in \mathbb{R}$ tal que $(1, 2, 2) \times (a, 1, a) = (0, 0, 0)$.
- **1.c)** Considere os vetores \bar{u} e \bar{w} na Figura 1. Então $\bar{u} \cdot \bar{w} < 0$.
- 1.d) A distância entre duas retas contidas no mesmo plano é zero.
- 1.e) Considere dois vetores \bar{w} e \bar{v} de \mathbb{R}^3 tais que $w \times v = \bar{0}$. Então

Figura 1: Questão 1.c

 $w \cdot v = |w| |v|.$

1.f) Considere os planos de equações cartesianas

$$\pi_1$$
: $a_1x + b_1y + c_1z = d_1$,
 π_2 : $a_2x + b_2y + c_2z = d_2$,
 π_3 : $a_3x + b_3y + c_3z = d_3$.

Suponha que

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0.$$

Então os planos $\pi_1,\,\pi_2$ e π_3 se interceptam ao longo de uma reta.

1.g) Considere vetores \bar{v} e \bar{w} de \mathbb{R}^3 . Então

$$\bar{v} \times (\bar{v} \times \bar{w}) = (\bar{v} \times \bar{v}) \times \bar{w} = \bar{0} \times \bar{w} = \bar{0}.$$

- **1.h)** Os pontos $A=(2,2,2),\,B=(0,4,2)$ e C=(1,2,1) formam um triângulo retângulo.
 - **1.i)** Os pontos A = (1,1,1), B = (2,3,2) e C = (3,2,2) formam um

triângulo equilátero.

1.j) Considere o plano ρ de equações paramétricas

$$x = 1 + t - s$$
, $y = 1 - t + s$, $z = -1 + 2t + s$,

Então x - y - 2z = 2 é uma equação cartesiana de ρ .

- **2)** Considere os pontos A = (1,0,1), B = (0,2,2) e C = (2,1,2).
- a) Determine a área do triângulo T de vértices $A, B \in C$.
- b) Determine um vetor normal ao plano π que contém os pontos $A, B \in C$.
- c) Determine equações paramétricas do plano π .
- d) Determine uma equação cartesiana do plano π .
- e) Determine um ponto D tal que os pontos A, B, C e D formem um paralelogramo P.
 - 3) Considere as retas r_1 de equações paramétricas

$$x=1+t, \quad y=1+2t, \quad z=1+2t, \quad t\in \mathbb{R}$$

e r_2 cujas equações cartesianas são

$$y-z=0, 2x-y=2.$$

- a) Determine equações cartesianas da reta r_1 .
- **b)** Determine as equações paramétricas de r_2 .
- c) Determine a equação cartesiana do plano ρ que contém o ponto Q=(1,0,0) e é ortogonal à reta r_1 .
- d) Calcule a distância entre as retas r_1 e r_2 .

- e) Determine, se possível, um ponto P da reta r_2 tal que a distância entre P e r_1 seja 1/3.
- f) Considere os pontos $A=(1,1,1)\in r_1$ e $B=(2,2,2)\in r_2$. Determine um ponto C de r_1 tal que o triângulo de vértices A,B,C seja retângulo.
 - 4) Considere as retas r_1 e r_2 de equações paramétricas

$$r_1 = (1+t, 1+t, 1+t), \quad t \in \mathbb{R}, \qquad r_2 = (1-t, 2t, 1+2t), \quad t \in \mathbb{R}.$$

- a) Determine a posição relativa das retas r_1 e r_2 (paralelas, concorrentes, reversas).
- b) Caso as retas sejam reversas calcule sua distância. Se são concorrentes seu ponto de interseção, e se são paralelas o plano que contém as duas retas.

(Atenção: não deixe de justificar sua escolha!)