

STPS2L60

Power Schottky rectifier

Features

- Negligible switching losses
- Low forward voltage drop
- Surface mount miniature package
- Avalanche capability specified
- ECOPACK2[®] compliant component (SMB flat)

Description

Axial and surface mount power Schottky rectifiers suited to switched mode power supplies and high frequency DC to DC converters.

Packaged in SMA, DO-41 and SMB flat this device is especially intended for use in low voltage, high frequency inverters and small battery chargers.

Table 1. Device summary

Symbol	Value
I _{F(AV)}	2 A
V _{RRM}	60 V
T _j (max)	150 °C
V _F (max)	0.55 V

STPS2L60 **Characteristics**

Characteristics 1

Table 2. Absolute ratings (limiting values)

Symbol	Para	Value	Unit		
V_{RRM}	Repetitive peak reverse voltage			60	V
I _{F(RMS)}	Forward rms voltage			10	Α
			T _L = 130 °C δ = 0.5		А
I _{F(AV)}			$T_L = 115 {}^{\circ}\text{C} \delta = 0.5$	2	
		DO-41	T _L = 110 °C δ = 0.5		1
I _{FSM}	Surge non repetitive forward cur	75	Α		
P _{ARM}	Repetitive peak avalanche powe	1600	W		
T _{stg}	Storage temperature range	-65 to + 150	°C		
T _j	Maximum operating junction temperature (1)			150	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/µs

 $[\]frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance

Symbol	Test conditions			Value	Unit
			SMB flat	15	
R _{th(j-l)}	Junction-lead		SMA	25	°C/W
		Lead length = 10 mm	DO-41	30	

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage	T _j = 25 °C	$V_R = V_{RRM}$			100	μΑ
'R'	current	T _j = 100 °C	$\neg \neg \lor_{R} = \lor_{RRM}$		2	10	mA
	$V_F^{(1)}$ Forward voltage drop $T_j = 125 ^{\circ}\text{C}$	T _j = 25 °C	I - 2 A			0.60	
V (1)		I _F = 2 A		0.51	0.55	V	
VF`		T _j = 25 °C	I⊏ = 4 A			0.77	V
		T _j = 125 °C			0.62	0.67	

^{1.} Pulse test: $t_p = 380 \mu s$, $\delta < 2\%$

To evaluate the conduction losses use the following equation: P = 0.43 x $I_{F(AV)}$ + 0.06 $I_{F}^{2}_{(RMS)}$

$$P = 0.43 \times I_{F(AV)} + 0.06 I_{F^2(RMS)}$$

STPS2L60 Characteristics

Figure 1. Average forward power dissipation Figure 2. Average forward current versus awerage forward current ambient temperature (δ = 0.5)

Figure 3. Average forward current versus ambient temperature (δ = 0.5) SMB flat

Figure 4. Normalized avalanche power derating versus pulse duration

Figure 5. Normalized avalanche power derating versus junction temperature

Figure 6. Non repetitive surge peak forward current versus overload duration (maximum values) (SMA)

Characteristics STPS2L60

Figure 8.

Figure 7. Non repetitive surge peak forward current versus overload duration (maximum values) (DO-41)

I_M(A)

9

7

3

Non repetitive surge peak forward current versus overload duration (maximum values) (SMB flat)

Figure 9. Relative variation of thermal impedance junction to ambient versus pulse duration (SMA)

t(s)

Figure 10. Relative variation of thermal impedance junction to ambient versus pulse duration (DO-41)

Zth(j-a)/Rth(j-a)

Zth(j-a)/Rth(j-a)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

Figure 11. Relative variation of thermal impedance junction to lead versus pulse duration (SMB flat)

Figure 12. Reverse leakage current versus reverse voltage applied (typical values)

STPS2L60 Characteristics

Figure 13. Junction capacitance versus reverse voltage applied (typical values)

Figure 14. Forward voltage drop versus forward current (maximum values, low level)

Figure 15. Thermal resistance junction to ambient versus copper surface under each lead (SMA and SMB flat)

Figure 16. Thermal resistance versus lead length (DO-41)

Package information STPS2L60

2 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 5. SMB flat dimensions

Figure 17. SMB flat footprint dimensions

The footprint in *Figure 17* has been optimized for the SMB flat package. The footprint of the SMB package can be used instead.

Table 6. SMA dimensions

	Dimensions			
Ref.	Millimeters		Inc	hes
	Min.	Max.	Min.	Max.
A1	1.90	2.45	0.075	0.094
A2	0.05	0.20	0.002	0.008
b	1.25	1.65	0.049	0.065
С	0.15	0.40	0.006	0.016
D	2.25	2.90	0.089	0.114
Е	4.80	5.35	0.189	0.211
E1	3.95	4.60	0.156	0.181
L	0.75	1.50	0.030	0.059

Figure 18. Footprint, dimensions in mm (inches)

Table 7. DO-41 package dimensions

	Dimensions			
Ref	Millimeters		Inc	hes
	Min.	Max.	Min.	Max.
Α	4.07	5.20	0.160	0.205
В	2.04	2.71	0.080	0.107
С	25.4		1	
D	0.71	0.86	0.028	0.034

Ordering information STPS2L60

3 Ordering information

Table 8. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS2L60A	S26	SMA	0.068 g	5000	Tape and reel
STPS2L60	STPS2L60	DO-41	0.34 g	2000	Ammopack
STPS2L60RL	STPS2L60	DO-41	0.34 g	5000	Tape and reel
STPS2L60UF	FG26	SMB flat	0.050 g	5000	Tape and reel

4 Revision history

Table 9. Document revision history

<u>, </u>				
Date	Revision	Changes		
Jul-2003	2A	Last update.		
Aug-2004	3	SMA package dimensions update. Reference A1 max changed from 2.70 mm (0.106 inch) to 2.03 mm (0.080 inch).		
18-Sep-2008	4	Reformatted to current standards. Added SMB flat package.		
30-Sep-2009	5	Updated table 7 package dimensions.		
23-Sep-2011	6	Updated SMA package information.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

