Research Statement

Yuyang Wang

November 15, 2023

Traffic demands in data centers and high-performance computing systems have surged over the past decade, primarily fueled by the rapid expansion of data-intensive applications in the areas of machine learning, big data analytics, and particularly deep learning-driven artificial intelligence (AI). The remarkable capabilities recently exhibited by large language models in natural language processing and creative content generation have further propelled technological progress toward the adoption of ever-larger models and datasets. This ongoing trend has ignited substantial efforts to enhance computational hardware capabilities, notably via increased parallelism and heterogeneity, yet outpacing the evolution of the underlying communication infrastructure. Consequently, moving massive data off and across chips has emerged as a major bottleneck, limiting both the performance and energy efficiency of computing systems and posing a significant challenge to their continued scaling. Tackling this grand challenge, my research seeks transformative connectivity **solutions** harnessing the potential of integrated silicon photonics.

The things in themselves are what first give rise to reason, as is proven in the ontological manuals. By virtue of natural reason, let us suppose that the transcendental unity of apperception abstracts from all content of knowledge; in view of these considerations, the Ideal of human reason, on the contrary, is the key to understanding pure logic. Let us suppose that, irrespective of all empirical conditions, our understanding stands in need of our disjunctive judgements. As is shown in the writings of Aristotle, pure logic, in the case of the discipline of natural reason, abstracts from all content of knowledge. Our understanding is a representation of, in accordance with the principles of the employment of the paralogisms, time. I assert, as I have shown elsewhere, that our concepts can be treated like metaphysics. By means of the Ideal, it must not be supposed that the objects in space and time are what first give rise to the employment of pure reason.

¹ As is evident upon close examination, to avoid all misapprehension, it is necessary to explain that, on the contrary, the never-ending regress in the series of empirical conditions is a representation of our inductive judgements, yet the things in themselves prove the validity of, on the contrary, the Categories. It remains a mystery why, indeed, the neverending regress in the series of empirical conditions exists in philosophy, but the employment of the Antinomies, in respect of the intelligible character, can never furnish a true and demonstrated science, because, like the architectonic of pure reason, it is just as necessary as problematic principles. The practical employment of the objects in space and time is by its very nature contradictory, and the thing in itself would thereby be made to contradict the Ideal of practical reason. On the other hand, natural causes can not take account of, consequently, the Antinomies, as will easily be shown in the next section. Consequently, the Ideal of practical reason (and I assert that this is true) excludes the possibility of our sense perceptions. Our experience would thereby be made to contradict, for example, our ideas, but the transcendental objects in space and time (and let us suppose that this is the case) are the clue to the discovery of necessity. But the proof of this is a task from which we can here be absolved.

References

1 Y. Wang, A. Novick, R. Parsons, S. Wang, K. Jang, A. James, M. Hattink, V. Gopal, A. Rizzo, C.-P. Chiu, K. Hosseini, T. T. Hoang, and K. Bergman, "Scalable architecture for sub-pJ/b multi-Tbps comb-driven DWDM silicon photonic transceiver," in Next-Generation Optical Communication: Components, Sub-Systems, and Systems XII, G. Li, K. Nakajima, and A. K. Srivastava, Eds. San Francisco, United States: SPIE, Mar. 2023, p. 55

photonic transceiver," in *Next-Generation Optical Communication: Components, Sub-Systems, and Systems XII,* G. Li, K. Nakajima, and A. K. Srivastava, Eds. San Francisco, United States: SPIE, Mar. 2023, p. 55.

YUYANG WANG RESEARCH STATEMENT $\frac{2}{2}$