RELATÓRIO TÉCNICO MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS

Disciplina:	Métodos Numéricos
Projeto:	Análise de Cabo Suspenso
Alunos:	Pedro Druck Montalvão Reis - 241040332, Lucas Andrade Zanetti - 241039645, Tiago Santos Bittencourt - 241011653, Angel Daniel Grau Barreto - 241025158
Data:	19/07/2025 19:31
Equação:	$d^2y/dx^2 = C^* sqrt(1 + (dy/dx)^2)$
Constante C:	0.041
Condições:	y(0) = 15, y(20) = 10

1. OBSERVAÇÃO 1: MÉTODO DO TIRO COM RUNGE-KUTTA 4º ORDEM

O método do tiro transforma o problema de valor de contorno (PVC) em um problema de valor inicial (PVI). Utilizamos o método de Runge-Kutta de 4^a ordem para resolver o sistema de EDOs de primeira ordem equivalente. O processo iterativo ajusta o chute inicial para y'(0) até satisfazer a condição de contorno y(20) = 10.

Parâmetro	Valor
Número de pontos calculados	2002
Passo de integração (h)	0.01
Valor inicial y(0)	15.000000
Valor final y(20)	10.000001
Erro na condição de contorno	1.25e-06
Derivada inicial estimada y'(0)	-0.697817
Derivada final y'(20)	0.170346
Valor mínimo de y(x)	9.6487
Valor máximo de y(x)	15.0000

Valores da solução em pontos específicos:

x y(x) y'(x)

0.0	15.0000	-0.6978
5.0	12.1136	-0.4608
10.0	10.3572	-0.2428
15.0	9.6640	-0.0355
20.0	10.0000	0.1703

2. OBSERVAÇÃO 2: DIFERENCIAÇÃO NUMÉRICA

Aplicamos métodos de diferenciação numérica com erro de ordem O(h^2) para calcular as derivadas primeira e segunda da solução obtida na Obs.1. Utilizamos diferenças centrais para pontos internos e diferenças avançadas/atrasadas para os extremos. Em seguida, verificamos se a solução satisfaz a equação diferencial original.

Análise de Erro	Valor
Erro médio y'_RK4 - y'_numérica	8.00e-09
Erro máximo y'_RK4 - y'_numérica	3.91e-08
Erro médio na EDO	4.88e-10
Erro máximo na EDO	6.83e-09
Erro RMS na EDO	5.34e-10
Método utilizado	Diferenças finitas O(h^2)
Pontos analisados	2002

Verificação da EDO em pontos específicos:

x	y(x)	y'(x)	y"(x)	C*sqrt(1+y'^2	Erro EDO
0.0	15.0000	-0.6978	0.0500	0.0500	6.83e-09
5.0	12.1136	-0.4608	0.0451	0.0451	3.99e-10
10.0	10.3572	-0.2428	0.0422	0.0422	5.22e-10
15.0	9.6640	-0.0355	0.0410	0.0410	5.82e-10
20.0	10.0000	0.1703	0.0416	0.0416	6.30e-09

3. OBSERVAÇÃO 3: REGRESSÃO POLINOMIAL DE GRAU 4

Realizamos um ajuste polinomial de quarto grau aos pontos da solução numérica obtida na Obs.1. O objetivo é verificar se um polinômio de grau 4 pode representar adequadamente a solução e satisfazer a equação diferencial original através de suas derivadas analíticas.

Coeficientes do polinômio $P(x) = a0 + a1*x + a2*x^2 + a3*x^3 + a4*x^4$:

Coeficiente	Valor	Termo
a_0	1.499992e+01	a0 (constante)
a_1	-6.976828e-01	a1 x
a_2	2.494705e-02	a2 x^2
a_3	-1.878995e-04	a3 x^3
a_4	2.977979e-06	a4 x^4

Análise da qualidade do ajuste:

Métrica de Qualidade	Valor	Interpretação	
Coeficiente R^2	1.000000	Qualidade do ajuste	
Erro médio na EDO	1.60e-05	Precisão da verificação	
Erro máximo na EDO	9.84e-05	Pior caso	
Número de pontos	2002	Base de dados	
Grau do polinômio	4	Complexidade do modelo	

CONCLUSÕES DA REGRESSÃO POLINOMIAL:

- O polinômio de grau 4 apresenta excelente qualidade de ajuste (R^2 = 1.000000)
- A verificação da EDO mostra erro médio de 1.60e-05, indicando alta precisão
- O modelo polinomial consegue representar adequadamente a física do problema
- As derivadas analíticas do polinômio satisfazem a equação diferencial original

4. CONCLUSÕES GERAIS E ANÁLISE COMPARATIVA

Este estudo demonstrou a eficácia de diferentes métodos numéricos para resolver equações diferenciais não-lineares. Os principais resultados incluem: **Método do Tiro com RK4 (Obs.1):** • Convergência rápida para a solução do problema de valor de contorno • Erro na condição de contorno da ordem de 10^(-6), demonstrando alta precisão • Método robusto para EDOs não-lineares com condições de contorno **Diferenciação Numérica (Obs.2):** • Derivadas numéricas com precisão excepcional (erro ~ 10^(-9)) • Verificação independente da validade da solução através da EDO original • Demonstração da consistência entre métodos analíticos e numéricos **Regressão Polinomial (Obs.3):** • Representação analítica da solução com R^2 = 1.000000 • Polinômio de grau 4 suficiente para capturar a física do problema • Derivadas analíticas satisfazem a EDO com erro médio ~ 10^(-5) **Validação Cruzada:** Todos os métodos convergiram para soluções consistentes, validando mutuamente os resultados. A precisão obtida (erros da ordem de 10^(-6) a 10^(-9)) é adequada para aplicações de engenharia. **Aplicabilidade:** Os métodos implementados são aplicáveis a uma ampla classe de problemas de EDOs não-lineares em engenharia estrutural, especialmente para análise de cabos e estruturas flexíveis.

5. METODOLOGIA E IMPLEMENTAÇÃO

Linguagem e Bibliotecas: • Python 3.13.3 com NumPy 2.3.1 para computação numérica • Matplotlib 3.10.3 para visualização de resultados • Implementação orientada a objetos para reutilização de código **Estrutura do Código:** • Classe SolverEDO: métodos RK1, RK2, RK4 e método do tiro • Classe NumericalDifferentiator: diferenciação numérica com O(h²) • Função regressao_polinomial: ajuste polinomial e verificação **Parâmetros de Simulação:** • Passo de integração: h = 0.01 • Intervalo de análise: [0, 20] • Tolerância no método do tiro: 10^(-5) • Máximo de iterações: 100 **Critérios de Validação:** • Verificação das condições de contorno • Análise de convergência dos métodos iterativos • Comparação entre derivadas analíticas e numéricas • Avaliação da qualidade do ajuste (R^2)