Table of Laplace Transforms

f(t)	$\mathscr{L}\{f(t)\} = F(s)$	f(t)	$\mathscr{L}{f(t)} = F(s)$
1	$\frac{1}{s}$	$t\sin kt$	$\frac{2ks}{(s^2+k^2)^2}$
t	$\frac{1}{s^2}$	$t\cos kt$	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$
t^n	$\frac{n!}{s^{n+1}}, n \in \mathbb{N}$	$\sin kt + kt \cos kt$	$\frac{2ks^2}{(s^2+k^2)^2}$
$\sin kt$	$\frac{k}{s^2 + k^2}$	$\sin kt - kt\cos kt$	$\frac{2k^3}{(s^2+k^2)^2}$
$\cos kt$	$\frac{s}{s^2 + k^2}$	$\frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{(s-a)(s-b)}$
$\sin^2 kt$	$\frac{2k^2}{s(s^2+4k^2)}$	$\frac{ae^{at} - be^{bt}}{a - b}$	$\frac{s}{(s-a)(s-b)}$
$\cos^2 kt$	$\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$	$1-\cos kt$	$\frac{k^2}{s(s^2+k^2)}$
$\sinh kt$	$\frac{k}{s^2 - k^2}$	$kt - \sin kt$	$\frac{k^3}{s^2(s^2+k^2)}$
$\cosh kt$	$\frac{s}{s^2 - k^2}$	$e^{at}f(t)$	F(s-a)
e^{at}	$\frac{1}{s-a}$	$\mathscr{U}(t-a)$	$\frac{e^{-as}}{s}$
te^{at}	$\frac{1}{(s-a)^2}$	$f(t-a)\mathcal{U}(t-a)$	$e^{-as}F(s)$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}, n \in \mathbb{N}$	$g(t)\mathcal{U}(t-a)$	$e^{-as}\mathcal{L}\{g(t+a)\}$
$e^{at}\sin kt$	$\frac{k}{(s-a)^2 + k^2}$	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
$e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
$e^{at} \sinh kt$	$\frac{k}{(s-a)^2 - k^2}$	$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)
$e^{at}\cosh kt$	$\frac{s-a}{(s-a)^2 - k^2}$	$\delta(t)$	1
		$\delta(t-t_0)$	e^{-st_0}