On se propose de démontrer que dans un triangle rectangle, la médiane isse de l'angle droit est de longueur égale à la moitié de l'hypoténuse. Considérons un triangle ABCrectangle en C et soit O le milieu de [AB].

a. Montrez que $\overrightarrow{CO}=\dfrac{\overrightarrow{CA}+\overrightarrow{CB}}{\dfrac{2}{2}}.$ b. En déduire que $CO=\dfrac{AB}{2}.$

Soit ABC un triangle tel que AB=5 , AC=8 et BC=6.

a. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

b. Soit I le milieu de [BC]. Montrez que $2\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{AC}$.

 ${f c.}$ En déduire AI.

d. Soit J le milieu de [AC]. Calculez de même

e. Soit K le milieu de $\lceil AB \rceil$. Calculez de même

Bans chacun des cas suivants, calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

a.
$$AB=4$$
, $AC=5$, $\widehat{BAC}=30^{\circ}$

b.
$$AB = 4$$
, $AC = 6$, $\widehat{BAC} = \frac{\pi}{3}$

c.
$$AB = 6$$
, $AC = 7$, $\widehat{BAC} = \frac{3\pi}{4}$

b.
$$AB = 4$$
, $AC = 6$, $\widehat{BAC} = \frac{\pi}{3}$
c. $AB = 6$, $AC = 7$, $\widehat{BAC} = \frac{3\pi}{4}$
d. $AB = 9$, $AC = 12$, $\widehat{BAC} = \frac{143\pi}{3}$

Dans chacun des cas suivants, déterminez une mesure de l'angle $\widehat{B}A\widehat{C}$ comprise entre 0 et

a.
$$AB=3$$
 , $AC=2$, $\overrightarrow{AB}\cdot\overrightarrow{AC}=3\sqrt{2}$

b.
$$AB=3$$
, $AC=5$, $\overrightarrow{AB}\cdot\overrightarrow{AC}=-7.5$

c.
$$AB=3$$
, $AC=9$, $\overrightarrow{AB}\cdot\overrightarrow{AC}=-rac{27\sqrt{3}}{2}$

ullet Soit ABC un trangle équilatéral tel que AB=5. Calculez $\overrightarrow{AB}\cdot\overrightarrow{AC}$.

Soit ABC un trangle isocèle en A tel que AB=5 et $\widehat{BAC}=120^\circ$.

a. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

b. Calculez $\overrightarrow{BA}\cdot\overrightarrow{BC}$ en utilisant $\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}$. **c.** Montrez que $BC=5\sqrt{3}$.

 $lacksymbol{arepsilon}$ Soit ABCD un carré de côté $4\,\mathrm{cm}$ et de centre O. Soit I le milieu de [AB].

a. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$ de deux façons.

b. Calculez $\overrightarrow{OI} \cdot \overrightarrow{OC}$.

lacksquare Soit ABCD un losange de côté $6\,\mathrm{cm}$ et de centre O tel que $\widehat{ABC}=30^\circ$.

a. Calculez $\overrightarrow{BA} \cdot \overrightarrow{BC}$.

b. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AD}$.

c. Montrez que $AC=6\sqrt{2-\sqrt{3}}$.

d. En déduire $\overrightarrow{AB} \cdot \overrightarrow{AC} = 18(2 - \sqrt{3})$.

e. Déterminez une mesure de l'angle \widehat{BAC} en

f. Montrez que $cos\left(rac{5\pi}{12}
ight)=rac{\sqrt{2-\sqrt{3}}}{2}$.

Soit ABC un triangle tel que AB=4, BC=8 et $\widehat{ABC}=60^\circ$. Démontrez que ABC est un triangle rectangle.

E10 Soit ABC un triangle tel que AB=7, $AC=7\sqrt{3}$ et $\widehat{BAC}=30\degree$. Démontrez que ABC est un triangle isocèle.

E11 Soit ABC un triangle tel que $AB=\sqrt{2}$, $AC=\sqrt{10}$ et BC=2. Déterminez une mesure de l'angle $\widehat{A}B\widehat{C}$.

lacksquare Soit ABC un triangle tel que $a=BC=\sqrt(3)$, $\widehat{ABC}=rac{\pi}{6}$ et $\widehat{ACB}=rac{\pi}{4}$.

a. Montrez que $b^2-c^2= ilde{3}-3c$.

b. Montrez que $b^2-c^2=\sqrt{6}b-3$.

c. En déduire $b=\frac{6-3c}{\sqrt{6}}$.

d. Remplacez b dans l'équation $b^2-c^2=3-3c$ et résoudre l'équation obtenue en $c.\,$

e. Montrez que $b=rac{3-\sqrt{3}}{\sqrt{2}}$. f. En déduire $\cos\left(rac{7\pi}{12}
ight)=rac{1-\sqrt{3}}{2\sqrt{2}}$.