Haoming Yang

haoming.yang@duke.edu | imkeithyang.github.io | (423) 991-3369 | North Carolina, USA

EDUCATION

Duke University Durham, North Carolina

PhD in Electric and Computer Engineering Expected Graduation: Spring 2027

Master of Science in Statistical Science Graduation: Dec 2022

University of Illinois at Urbana-Champaign | Highest Honor

Urbana, Illinois

Bachelor of Science in Engineering Physics & **Bachelor of Science** in Statistics Graduation: May 2021

CURRENT RESEARCH

Mean-field Stochastic Differential Equation

Advised by Prof. Vahid Tarokh

- Studied complex Mckean-Vlasov Stochastic Differential Equation (MV-SDE) through mean-field approximation. Leveraging the richer gradient flow, developed three deep learning architectures to estimate complex mean-field stochastic processes. (Set to appear in AISTATS 2024)
- Applying MV-SDE in machine learning application beyond parameter estimation such as parameter estimation, image diffusion generation, and trajectory predictions.
- Extending stochastic-partial differential equation connection to applications in deep learning. Offering new insights in generalizability of DL architectures to spurious correlation and out-of-distribution data through a PDE perspective.
- Theoretical analysis of stochastic differential equations and the related applications in machine learning. Deriving architecture optimization properties, convergence, and error bounds.

Interdisciplinary ML Applications in Insect Neuroscience

Multi-domain Research Collaboration

- Developed novel cross-subject transfer learning technique through Fisher-Restricted Boltzmann Machine for moth motor-program decoding. The Fisher-RBM improves the state-of-the-art by 300%. (Under review)
- Designing semi-interpretable machine learning framework through a novel spatial-temporal attention mechanism to analyze synchronized spiking activities in moth sensory system.
- Establishing Lexicographic machine learning architecture to connect moth's sensory and motor system, furthering the simulation of a fast and agile moth in an interactive environment.
- Analyzing insect free flight behavior and trajectories' connection with biological and environmental features.

Brain Connectome Inference with Deep Learning

Advised by Prof. David Dunson

Design the Structural and Functional Graph Auto-Encoder (Staf-GATE), a latent graph based deep learning architecture for generating structural (physical neuron connections) and functional brain network (correlation of neuron activations) jointly. Achieved state-of-the-art result. Propose a perturbation-based interpretation algorithm to leverage Staf-GATE for interpretable inference. (*Under review*)

WORK EXPERIENCE

Tencent Shenzhen, China

Data Science Intern

June 2020 - Sept. 2020

Led the design and implementation of data analysis tool to capture product demographic similarity. Conducted multiple A/B tests and market analysis on behavioral data. Improved user stickiness by 30%.

UNDERGRADUATE RESEARCH

- IRisk Lab, NLP Risk Management Group: Developed Multiple Natural Language Processing Tools for Actuarial Science Application including an unsupervised natural language method to identify businesses' related industry. (Appeared in the 56th Actuarial Research Conference)
- High Energy Physics Group: Designed a Convolution Neural Network (CNN) to differentiate particle decays with similar single-sited event trajectory (Mainly Gamma rays and Double Beta Decay) using TensorFlow.

- Coding Languages: Proficient with Python, R, SQL; Familiar with C++, Java.
- Techniques: Familiar with Pytorch, Tensor-Flow, Sklearn, Pandas. Familiar with statistical/deep learning algorithm.
- Languages: Chinese (Native), English (Fluent), French (Intermediate)