Discrete Mathematics Chapters 8.1,8.2,8.3 & 8.4 Homework

November 14, 2024 Mustafa Rashid Fall 2024

Exercise Set 8.1

20. Let $A = \{-1, 1, 2, 4\}$ and $B = \{1, 2\}$ and define relations R and S from A to B as follows: For all $(x, y) \in A \times B$,

$$x R y \Leftrightarrow |x| = |y|$$
 and $x S y \Leftrightarrow x - y$ is even

State explicitly which ordered pairs are in $A \times B$, R, S, $R \cup S$, and $R \cap S$.

Ans:

$$A \times B = \{(-1,1), (-1,2), (1,1), (1,2), (2,1), (2,2), (4,1), (4,2)\}$$

$$R = \{(-1,1), (1,1), (2,2)\}$$

$$S = \{(-1,1), (1,1), (2,2), (4,2)\}$$

$$R \cup S = \{(-1,1), (1,1), (2,2), (4,2)\}$$

$$R \cap S = \{(-1,1), (1,1), (2,2)\}$$

Exercise Set 8.2

14. O is the relation defined on \mathbb{Z} as follows: For all $m, n \in \mathbb{Z}$, $m \ O \ n \Leftrightarrow m-n$ is odd. Determine whether this relation is reflexive, symmetric, transitive, or none of these. Justify your answer.

Ans:

O is not reflexive: Suppose m is a particular but arbitrarily chosen integer. Now m-m=0. But this is not odd. Hence m-m is not odd and O is not reflexive

O is symmetric: Suppose m and n are particular but arbitrarily chosen integers

that satisfy the condition $m \ O \ n$. By definition of O, since $m \ O \ n$ then m-n is odd. By definition of odd, this means that m-n=2k+1 for some integer k. Multiplying both sides by -1 gives n-m=2(-k-1)+1 since -k-1 is an integer, this equation shows that n-m is odd. Hence, by defintion of O, $n \ O \ m$. O is not transitive: Suppose m, n and p are particular but arbitrarily chosen integers that satisfy condition $m \ O \ n$ and $n \ O \ p$. By definition of O, since $m \ O \ n$ and $n \ O \ p$, then m-n is odd and n-p is also odd. By definition of odd, this means that m-n=2k+1 and n-p=2q+1 for some integers k and q. Adding the two equations gives (m-n)+(n-p)=2k+1+2q+1 and simplifying this gives m-p=2(k+q+1). Since k+q+1 this equation shows that m-p is even and not odd. Hence, by defintion of O, $m \ O \ p$.

36. If R is transitive, then R^{-1} is transitive. (Prove or disprove this statement.)

Ans: Suppose R is any relation on a set A that is transitive. By defintion of transitive, this means that for all x, y, and z in A, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$. Suppose that x R y and y R z. Because R is transitive, then x R z. The inverse relation by definition would contain the relations $y R^{-1} x$, $z R^{-1} y$, and $z R^{-1} x$. This means that for any x, y, and $z R^{-1} y$ and $z R^{-1} x$. Hence, $z R^{-1} x$ is also transitive.

40. If R and S are reflexive, is $R \cup S$ reflexive? Why? (Assume R and S are relations on a set A. Prove or disprove the statement.)

Ans: Suppose not, suppose that R and S are reflexive and that $R \cup S$ is not reflexive. This means that there is an element x in $R \cup S$ such that $(x,x) \notin R$ or $(x,x) \notin S$. But we know that R and S are reflexive so it is not true that that there is an element x in R such that $(x,x) \notin R$ and it is not true that here is an element x in S such that $(x,x) \notin R$. This means that $R \cup S$ also has to be reflexive because all ordered pairs (x,x) in $R \cup S$ come are in R or S and so they are also reflexive.

Exercise Set 8.3

In 9 and 10 the relation R is an equivalence relation on the set A. Find the distinct equivalence classes of R.

9. $X = \{-1, 0, 1\}$ and $A = \mathcal{P}(X)$. R is defined on $\mathcal{P}(X)$ as follows: For all sets s and T in $\mathcal{P}(X)$,

 $s R T \Leftrightarrow$ the sum of elements in s equals the sum of the elements in T

Ans:

$$\begin{cases} \{\phi\} \\ \{\{-1\}, \{-1, 0\}\} \\ \{\{0\}, \{-1, 1\}, \{-1, 0, 1\}\} \\ \{\{1\}, \{0, 1\}\} \end{cases}$$

- 10. $A = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$. R is defined on A as follows: For all $m, n \in \mathbb{Z}$, $m R n \Leftrightarrow 3 \mid (m^2 n^2).$
- 39. The following argument claims to prove that the requirement that an equivalence relation be reflexive is redundant. In other words, it claims to show that if a relation is symmetric and transitive, then it is reflexive. Find the mistake in the argument. "**Proof:** Let R be a relation on a set A and suppose R is symmetric and transitive. For any two elements x and y in A, if x R y then y R x since R is symmetric. But then it follows by transitivity that x R x. Hence R is reflexive."

Exercise Set 8.4 Exercise Set 8.5 Extra-credit