非负可测函数的 Lebesgue 积分的等价性

吴天阳 强基数学 002 学号: 2204210460

定义 1. 设 $E \in \mathbb{R}^q$ 中的可测集, $f(x) \in E$ 上的非负可测函数.

(1) 若 E 为有界集, 对 $[0, \infty)$ 上任一分割

$$H: 0 = y_0 < y_1 < \dots < y_i < \dots, (y_i \to \infty),$$

$$H_1 \leqslant H_2 \leqslant \cdots \leqslant H_n \leqslant \cdots, \quad (\lambda(H_n) \to 0)$$

其中 $H_{n-1} \leq H_n$ 表示 H_n 为 H_{n-1} 的加细.

定义 Lebesgue 积分 $\int_E f(x) dx$ 为当 $\lambda(H_n) \to 0$ 时, $\overline{\sigma}(H_n, f)$ 与 $\underline{\sigma}(H_n, f)$ 的共同极限 $a \ (0 \le a \le \infty)$.

(2) 若 E 为无界集, 则定义 Lebesgue 积分为 $\int_E f(x) dx = \lim_{n \to \infty} \int_{E_n} f(x) dx$, 其中 E_n 与定义 1(2) 相同.

定义 2. 设 E 为 \mathbb{R}^q 中的可测集.

交的可测集, $\chi_{E_i}(x)$ 为 E_i 的特征函数, 则定义 Lebesgue 积分为 $\int_E \varphi(x) dx = \sum_{i=1}^n c_i m(E_i)$.

(2) 设 f(x) 为 E 上的非负可测函数,则定义 Lebesgue 积分为

$$\int_{E} f(x) \, \mathrm{d}x = \sup \left\{ \int_{E} \varphi(x) \, \mathrm{d}x : \varphi \, \mathcal{A}E \bot \, \text{的简单函数, } \, \mathbf{L}0 \leqslant \varphi \leqslant f \right\}.$$

上述定义中, 当 $\int_E f(x) \, \mathrm{d}x < \infty$ 时, 称 f(x) 在 E 上 Lebesgue 可积.

引理 1. 设 $\{E_n\}$ 为 \mathbb{R}^q 中递增的可测集列, 且 $E = \bigcup_{n=1}^{\infty} E_n$, $\varphi(x)$ 为 E 上非负简单函数,则在定义 2(1) 意义下, 有 $\int_E \varphi(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{E_n} \varphi(x) \, \mathrm{d}x$.

证明. (参考 [2]) 由于 $\{|\varphi(x)|\chi_{E_k}(x)\}$ 是非负渐升列,且有

$$\lim_{k \to \infty} |\varphi(x)| \chi_{E_k}(x) = |\varphi(x)|, \quad (x \in E),$$

由 Beppo Levi 非负渐升列积分定理可知

$$\int_{E} |\varphi(x)| \, \mathrm{d}x = \lim_{k \to \infty} \int_{E} |\varphi(x)| \chi_{E_k}(x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{E_k} |\varphi(x)| \, \mathrm{d}x < \infty,$$

即 $\varphi \in L(E)$. 又由于在 E 上有 $(k = 1, 2, \dots)$, 则

$$\lim_{k \to \infty} \varphi(x) \chi_{E_k}(x) = \varphi(x), \quad |\varphi(x) \chi_{E_k}(x)| \leq |\varphi(x)|,$$

故根据控制收敛定理可得

$$\int_{E} \varphi(x) \, \mathrm{d}x = \lim_{k \to \infty} \varphi(x) \, \mathrm{d}x.$$

引理 2. 设 E 为 \mathbb{R}^q 中的可测集, f(x) 是 E 上的非负可测函数.

 $(1) 对 E 上任意简单函数 <math>\varphi(x): 0 \leqslant \varphi(x) \leqslant f(x), \ \text{恒有} \ \int_E \varphi(x) \, \mathrm{d}x \leqslant \int_E f(x) \, \mathrm{d}x;$

(2) f(x) 在 E 上 Lebesgue 可积,则任意的 $\varepsilon>0$,存在 E 上的简单函数 $\varphi(x):0\leqslant \varphi(x)\leqslant f(x)$,使 $\int_E \varphi(x)\,\mathrm{d}x>\int_E f(x)\,\mathrm{d}x-\varepsilon$. 其中 $\int_E f(x)\,\mathrm{d}x$ 与定义 1 相同, $\int_E \varphi(x)\,\mathrm{d}x$ 与定义 1 目同.

证明. 当 E 为有界集时, 由定义 1(1) 与定义 2(1) 得证 (见 [1]). 以下证明 E 为无界的情形. 设 E 是 \mathbb{R}^q 中的可测集, f(x) 是 E 上的非负可测函数, 记

$$K_n = \{(x_1, x_2, \dots, x_q)\} : |x_i| \le n, \ i = 1, 2, \dots, q\}, \ E_n = E \cap K_n.$$

(1) 对任意的 $n \in \mathbb{N}$, 在 E_n 上有 $0 \leqslant \varphi(x) \leqslant f(x)$, 而 E_n 有界, 且定理对有界集成立. 故

$$\int_{E_n} \varphi(x) \, \mathrm{d}x \leqslant \int_{E_n} f(x) \, \mathrm{d}x.$$

又由于 $\{E_n\}$ 递增, 且 $E = \bigcup_{n=1}^{\infty} E_n$, 由引理 1 与定义 1(2) 的知, 当 $n \to \infty$ 时

$$\int_{E} \varphi(x) \, \mathrm{d}x \leqslant \int_{E} f(x) \, \mathrm{d}x.$$

(2) 记 $a=\int_E f(x)\,\mathrm{d}x<\infty$, 由定义 1(2) 知 $a=\lim_{n\to\infty}\int_{E_n}f(x)\,\mathrm{d}x$, 故对任意的 $\varphi>0$, 取 N 使得 $a\geqslant\int_{E_N}f(x)\,\mathrm{d}x>a-\frac{\varphi}{2}$. 由于 E_N 有界, 故存在 E_N 上的简单函数 $\varphi_N(x):0\leqslant\varphi_N(x)\leqslant f(x)$, 使得

$$\int_{E_N} \varphi_N(x) \, \mathrm{d}x > \int_{E_N} f(x) \, \mathrm{d}x - \frac{\varepsilon}{2}.$$

令

$$\varphi(x) = \begin{cases} \varphi_N(x), & x \in E_N, \\ 0, & x \in E - E_N, \end{cases}$$

则 $\varphi(x)$ 为 E 上简单函数, 且 $0 \leqslant \varphi(x) \leqslant f(x)$, 而

$$\int_{E} \varphi(x) \, \mathrm{d}x = \int_{E_{N}} \varphi_{N}(x) \, \mathrm{d}x > \int_{E_{N}} f(x) \, \mathrm{d}x - \frac{\varepsilon}{2} > a - \varepsilon.$$

设 E 为 \mathbb{R}^q 中测度有限的可测集, f(x) 是 E 上的有界可测函数, 且 $f(E) \subset (\alpha, \beta)$, 对 $[\alpha, \beta]$ 上任一分隔

$$D: \alpha = y_0 < y_1 < \cdots < y_n = \beta.$$

 $\Rightarrow \lambda(D) = \max_i (y_i - y_{i-1}), E_i = E(y_{i-1} \leqslant f < y_i),$ 引人 Lebesgue 大和 S 和小和 s

$$S(D, f) = \sum_{i=1}^{n} y_i m(E_i), \quad s(D, f) = \sum_{i=1}^{n} y_{i-1} m(E_i).$$

记集类 $\mathcal{D} := \{D : \lambda(D) < \infty\}$, 对于 $D_1, D_2 \in \mathcal{D}$, 若 $D_1 \subset D_2$, 则称 D_2 为 D_1 的加细, 记 为 $D_1 \leqslant D_2$, 此时有 $\lambda(D_2) \leqslant \lambda(D_1)$. 于是有如下性质

引理 3. 设有分划列 $D_1 \leqslant D_2 \leqslant \cdots \leqslant D_n \leqslant \cdots$, $\lambda(D_n) \to 0$. 则 $s(D_n), S(D_n)$ 趋于同一极限 a, a 为有限数或 ∞ .

证明. 由于 $S(D_n) - s(D_n) \leqslant \sum_n (y_{n+1} - y_n) m(E_n) \leqslant \lambda(D_n) m(E)$,而 $m(E) < \infty$,所以当 $\lambda(D_n) \to 0$ 时, $S(D_n) - s(D_n) \to 0$.

若 $S(D_1) = \infty$, 则 $S(D_1) = \infty$, 从而一切 $s(D_n)$ 与 $S(D_n)$ 均为 ∞ , 此时 $a = \infty$. 事实上, 若设 $S(D_1) < \infty$, 则由于 $S(D_1) - s(D_1) \leqslant \lambda(D_1) m(E) < \infty$, 故当 $s(D_1) < \infty$ 时, 必有 $S(D_1) < \infty$, 这与 $S(D_1) = \infty$ 矛盾.

若
$$S(D_1) < \infty$$
, 则

$$s(D_1) \leqslant s(D_2) \leqslant \cdots \leqslant s(D_n) \leqslant \cdots \leqslant S(D_1) < \infty$$

可见, 此时 $\{s(D_n)\}$ 为单调上升有界数列, 故必然有有限极限, 记为 a, 同理 $\{S(D_n)\}$ 为单调下降有界数列, 必有极限, 记为 c. 易得 a=c, 否则, 若 a<c, 则

$$S(D_n) - s(D_n) \geqslant c - a > 0$$

这与
$$S(D_n) - s(D_n) \to 0$$
 矛盾.

引理 4. 若引理 $3 \mapsto a = \infty$, 则任意的 M > 0, 存在简单函数 $\varphi : 0 \leq \varphi \leq f$, 且使

$$\int_{E} \varphi(x) \, \mathrm{d}m \geqslant M$$

成立.

证明. 根据引理3证明,存在分划

$$D: 0 \leq y_0 < y_1 < \cdots < y_n < \cdots$$

使得 $s(D) = \infty$, 即 $s(D) = \sum_{n=0}^{\infty} y_n m(E_n) = \infty$. 因此可取充分大的 N 使得

$$\sum_{n \le N} y_n m(E_n) > M.$$

定义简单函数 φ 为

$$\varphi(x) = \begin{cases} y_n, & x \in E_n, n \leqslant N, \\ 0, & \text{otherwise.} \end{cases}$$

則
$$0 \leqslant \varphi \leqslant f$$
 且 $\int_{E} \varphi(x) \, \mathrm{d}m = \sum_{n \leqslant N} y_n m(E_n) > M.$

引理 5. 对于简单函数 $\varphi: 0 \leq \varphi \leq f$, 恒有 $\int_E \varphi(x) \, dm \leq a$, 其中 a 为引理 3 中所述.

证明. 由引理 3 证明, 任意的 $\varphi > 0$, 存在 $D \in \mathcal{D}$, 使得 $S(D) < a + \varepsilon$.

设 $S(D)=\sum_{n=0}^{\infty}y_{n+1}m(E_n)$,由于简单函数 φ 只取有限个值,于是有 N,使得 $\varphi\leqslant y_{N+1}$. 若定义另一简单函数 ψ 为

$$\psi(x) = \begin{cases} y_{n+1}, & x \in E_n (n \leqslant N), \\ y_{N+1}, & \text{otherwise}. \end{cases}$$

那么有

$$\int_{E} \varphi(x) \, \mathrm{d} m \leqslant \int_{E} \psi(x) \, \mathrm{d} m.$$

而

$$\int_{E} \psi(x) dm = \sum_{n \leq N} y_{n+1} m(E_n) + y_{N+1} m(E - \bigcup_{n \leq N} E_n) \leq S(D) < a + \varepsilon.$$

则
$$\int_E \varphi(x) \, \mathrm{d}m < a + \varepsilon$$
.

由
$$\varepsilon$$
 的任意性可知, $\int_E \varphi(x) \, dm \leqslant a$.

引理 6. 若上述极限 $a<\infty$, 则任意的 $\varepsilon>0$, 存在简单函数 $\varphi:0\leqslant\varphi\leqslant f$, 使得 $\int_{E}\varphi(x)\,\mathrm{d}m>a-\varepsilon.$

证明. 由引理 3 证明, 必存在分划 D, 使得 $s(D) > a - \frac{\varepsilon}{2}$. 设 $s(D) = \sum_n y_n m(E_n)$, 有可取充分大的 N, 使得 $\sum_{n > N} y_n m(E_n) < \frac{\varepsilon}{2}$, 则 $\sum_{n \le N} y_n m(E_n) > a - \varepsilon$.

定义简单函数 φ 为

$$arphi(x) = egin{cases} y_n, & x \in E_n (n \leqslant N), \\ 0, & ext{otherwise}. \end{cases}$$

那么有
$$0 \leqslant \varphi \leqslant f$$
, 且 $\int_{E} \varphi(x) \, dm = \sum_{n \leqslant N} y_n m(E_n) > a - \varepsilon$.

Lebesgue 积分的等价性证明

证明. 设 $\int_E f(x) dx$ 在定义 1 与定义 2 下的值分别为 b 和 c, 即

其中 $E_n = E \cap K_n$ 的定义与引理 2 中一致,则两个定义等价只需证明 b = c,以下分为两种情况:

- (1) 当 E 为有界集时,(证明参考[1])
- (i) 若 $m(E(f=\infty))>0$, 则 $b=\infty$, 另一方面, 若记 $\delta=m(E(f=\infty))$, 则对任何一正数 M>0, 可定义一简单函数为:

$$\varphi(x) = \begin{cases} \frac{M}{\delta}, & x \in E(f = \infty), \\ 0, & x \in E - E(f = \infty). \end{cases}$$

于是对于此 φ 有 $0 \leqslant \varphi \leqslant f$, 而且 $\int_E \varphi(x) \, \mathrm{d} m = M$. 这说明 $c = \infty$, 所以 b = c 成立.

(ii) 若 f 是几乎处处有限时, 此时 b 有两种可能.

当 $b = \infty$ 时, 由引理 4 可得 $c = b = \infty$;

当 $b<\infty$ 时, 由引理 5 可知, 任意的 $\varepsilon>0,$ $c< b+\varepsilon$, 又由引理 6 可知 $c> b-\varepsilon$. 所以 $|b-c|<\varepsilon$, 因此由 ε 的任意性可知 b=c.

(2) 当 E 为无界集时,(证明参考 [3])

参考文献

(i) $b=\infty$, 则任意的 M>0, 存在 $N\in\mathbb{N}$, 使得在定义 1 下 $\int_{E_N}f(x)\,\mathrm{d}x>M$, 因为 $E_N=E\cap K_n$ 有界, 故由 (1) 可知 $\int_{E_N}f(x)\,\mathrm{d}x$ 在两个定义下相等, 于是存在 E_N 上的简单函数 $\varphi_N(x):0\leqslant \varphi_N(x)\leqslant f(x)$ 使得 $\int_{E_N}\varphi_N(x)\,\mathrm{d}x>M$.

$$\varphi(x) = \begin{cases} \varphi_N(x), & x \in E_N, \\ 0, & x \in E - E_N, \end{cases}$$

则 $\varphi(x)$ 为 E 上的简单函数, $0 \leqslant \varphi(x) \leqslant f(x)$, 且 $\int_E \varphi(x) \, \mathrm{d}x = \int_{E_N} \varphi_N(x) \, \mathrm{d}x > M$. 于是 c > M, 所以 $c = \infty$.

(ii) $b<\infty$, 由引理 2(1) 可知 $c\leqslant b$, 又由引理 2(2) 可知, 任意的 $\varepsilon>0$, 存在 E 上简单函数 $\varphi(x):0\leqslant \varphi(x)\leqslant f(x)$, 使得 $\int_E \varphi(x)\,\mathrm{d}x>b-\varepsilon$, 于是 $c>b-\varepsilon$, 从而 $c\geqslant b$, 所以 b=c.

参考文献

- [1] 王戍堂, 温作吉. 实变函数论 [M]. 西安: 西北大学出版社, 2001.
- [2] 周民强. 实变函数论 [M]. 北京: 北京大学出版社, 1985.
- [3] 张永峰. 非负可测函数 L 积分的定义及其等价性 [J]. 纺织高校基础科学学报, 2007.9.