Aufbau

$$SignBit \times Mantisse \times 2^{Exponent-Bias}$$
 (1)

- Feste Anzahl an signifikanten Stellen
- ► Größerer Wertebereich als Fixkomma Zahlen
- Konsequenz: Höhere Genauigkeit bei kleinen Zahlen

Aufbau

- ▶ Normalisiert: 1 < Mantisse < 2
- Führende Eins nicht abgespeichert
- Exponent(gespeichert) = Exponent(real) + Bias
 - ► Bias statt Zweierkomplement
 - Lexikografischer Vergleich statt Subtraktion und Vergleich mit 0
 - ► In der Theorie weniger Operationen

Datentypen float/double

	Größe	Dezimalziffern	Abs. Min.	Abs. Max.
float (Single Prec.)	32 Bit	≈ 7	$\approx 1.18 \cdot 10^{-38}$	$pprox 3.4 \cdot 10^{38}$
1 1000 ± Exp		1011010101010 Mantisse		
double (Double Prec.)	64 Bit	≈ 15	$pprox 10^{-308}$	$pprox 10^{308}$
1 11110001010 1101101010101010101011110110				
± Exp. (11)	Mantisse (52)			

Quiz: Zahlen zuordnen 1

$$1.3125_{10} \times 2^{132}$$

$$42.0_{10}$$

Quiz: Zahlen zuordnen 2

```
-1.0_{10}
-127.0_{10}
```

Addition und Subtraktion

- ► Kleineren Wert auf selben Exponenten bringen wie großen Wert (denormalisieren)
- ► Mantissen addieren bzw. subtrahieren
- Mantisse entsprechend der Genauigkeit runden
- Ergebnis normalisieren

Subtraktion - Beispiel

$$+$$
 2^1 1.0000 $+$ 2^0 1.5000

Gleicher Exponent

$$+$$
 2^1 1.0000 $+$ 2^1 0.7500

Mantrisse subtrahieren

$$+ 2^1 0.2500$$

Normalisieren

$$=$$
 + 2^{-1} 1.0000

Multiplikation und Division

- Exponenten addieren bzw. subtrahieren
- ► Mantissen multiplizieren bzw. dividieren (Führende 1 beachten)
- Mantisse entsprechend der Genauigkeit runden
- Ergebnis normalisieren

Probleme bei Genauigkeit

- Rundung: Ergebnis muss wieder FP-Darstellung gespeichert werden
 - ▶ Verschiedene Rundungsmodi, Standard: round to nearest, ties to even
- ► Absorption: Addition/Sub. von sehr großer und sehr kleiner Zahl
 - Keine Veränderung der großen Zahl wg. Rundung
 - ▶ Beispiel: 1000000.00f + 0.01f = 1000000.00f
- Auslöschung: Subtraktion großer ähnlicher Zahlen
 - Subtraktion verstärkt Rundungsfehler
 - ▶ Beispiel: $1000000.1f 1000000.0f = 0.125f \neq .1f$
 - ► Grund: 1000000.1f tatsächlich dargestellt als 1000000.125

Assoziativität und Distributivität

- Sowohl Addition und Multiplikation
- Nicht assoziativ
 - \triangleright $(x+y)+z\neq x+(y+z)$
 - $(x \times y) \times z \neq x \times (y \times z)$
- Nicht distributiv
 - \triangleright $x(y+z) \neq (xy) + (xz)$
- ► Achtung: -ffast-math (-Ofast) in GCC ignoriert diese zwecks Geschwindigkeit
- Weiterführend: What Every Computer Scientist Should Know About Floating-Point Arithmetic

https://www.itu.dk/~sestoft/bachelor/IEEE754_article.pdf

Denormale Zahlen / Subnormale Zahlen

- ➤ Zahlen deren Exponent kleiner ist, als eine normalisierte Darstellung zulassen würde
- ▶ Beispiel, single precision, normalisiert: $1.0_2 \times 2^{-127}$
- ▶ Denormalisiert: $0.1_2 \times 2^{-126}$
- Exponent hat speziellen Wert: alle Bits 0

Null mit Vorzeichen

- ▶ Null: Exponent und Mantisse alle Bits 0
- ▶ Sign-Bit kann gesetzt sein $\rightarrow +/-0$ möglich
- ightharpoonup Üblicherweise: x + 0 = x
- ► Sonderfall: $x = -0 \rightarrow -0 + 0 = +0$
- ► $-0 \neq +0$

Unendlich / Infinity / ∞

- ▶ Alle Bits in Exponent = 1
- ► Alle Bits in Mantisse = 0
- ightharpoonup je nach Sign-Bit: +/- Unendlich
- ightharpoonup z.B. Ergebnis bei x/0

Not a Number / NaN

- ► Alle Bits in Exponent = 1
- ightharpoonup Mantisse $\neq 0$
- ightharpoonup ightharpoonup Not a Number
- ➤ z.B. Ergebnis bei 0/0 und Unendlich Unendlich
- $\triangleright x \circ NaN = NaN 2$
- ▶ für jeden NaN Wert: NaN₁ == NaN₂ \rightarrow false

Welches Ergebnis hat NaN == NaN?

true

false

Segmentation Fault

Welches Ergebnis hat NaN != Infinity?

false

Welches Ergebnis hat -Infinity < Infinity?

true

false

Arithmetic Exception: Invalid Operation

Welches Ergebnis hat 10 != NaN?

true
false
Infinity

Welches Ergebnis hat 5.0 / 0.0?
-Infinity
NaN
Infinity
Arithmetic exception: Division by Zero

Weitere Floating Point Formate

▶ 16 Bit half precision / half

```
0 01010  1001100101
\pm  Exp.  Mantisse
(5) (10)
```

► Brain Floating Point / bfloat

```
\begin{array}{c|ccccc}
\hline{0} & 01010100 & 1100101 \\
\pm & \text{Exp.} & \text{Mantisse} \\
\hline
& (8) & (7)
\end{array}
```

Extended Formate