A Quick Summary: Compositional Morphology for Word Representations and Language Modelling

Original Paper: http://proceedings.mlr.press/v32/botha14.pdf

9 March 2019

1 Ideas:

- (a) Seek a compromise: Retain the unsupervised nature of CSLM (Continuous space language models) and incorporate a priori linguistic knowledge. Specifically, morphologically related words should share statistical strength in spite of differences in surface form
- (b) The model introduced here is the Additive Log-Bilinear Model.

2 Explanations:

(a) Each word should be thought of as a sum of its constituent morphemes, eg:

$$\overrightarrow{\text{imperfection}} = \overrightarrow{in} + \overrightarrow{perfect} + \overrightarrow{ion}$$

The surface form of a word is also registered as a factor to account for noncompositional constructions and ordering of words (hangover \neq overhang), so the above example becomes

$$\overrightarrow{\text{imperfection}} = \overrightarrow{in} + \overrightarrow{perfect} + \overrightarrow{ion} + \overrightarrow{imperfection}$$

(b) The (traditional) Log-Bilinear Language model is formulated in the following way:

The vector for the next word \mathbf{p} is a function of the context vectors $\mathbf{q_i} \in \mathbb{R}^d$ of the preceding words:

$$\mathbf{p} = \sum_{j=1}^{n-1} \mathbf{q}_j C_j$$

Where $C_j \in \mathbb{R}^{d \times d}$, j = 1, ..., n - 1.

v(w) indicates how well the observed word w fits the prediction \mathbf{p} and is defined as $v(w) = \mathbf{p} \cdot \mathbf{r}_w + b_w$. Then, taking a softmax gives individual word probabilities as:

$$P(w_i|w_{i-n+1}^{i-1}) = \frac{exp(v(w_i))}{\sum_{v \in \mathcal{V}} exp(\mathcal{V}(v))}$$

Thus, the model is subsequently denoted as **LBL** with parameters $\Theta_{LBL} = (C_j, Q, R, \mathbf{b})$, where we have $Q, R \in \mathbb{R}^{|\mathcal{V}| \times d}$ and $\mathbf{b} \in \mathbb{R}^{|\mathcal{V}|}$

Now, we see how the additive Log-Bilinear Model differs.

- i $\tilde{\mathbf{r}}$ and $\tilde{\mathbf{q}}_i$ are now the composed word vectors.
- ii Representation matrices are now $Q^{(f)}, R^{(f)} \in \mathbb{R}^{|\mathcal{F}| \times d}$, so that we have some $M \in \mathbb{Z}_+^{\mathcal{V} \times |\mathcal{F}|}$ such that $R = MR^{(f)}$ and $Q = MQ^{(f)}$
- iii There are two obvious variations of the LBL_{++} , which apply the factorisation on either the simple word vectors or the context word vectors.

3 Results:

(a) Better performance for CSLM and n-gram MKN models.

4 Notes:

- (a) I think this is quite interesting. Although this seems to be language specific and thus lacking generality, it may be a key to further understanding language modeling in English.
- (b) What if instead of predicting words we focus on predicting morphemes? This decreases the vocabulary, while not necessarily decreasing the representational capacity of the model.