Computer Networks COL 334/672

Application Layer: DNS

Sem 1, 2025-26

Recap: Application Layer

- HTTP
- Email
- DNS or Domain Name System
- P2P
- Video streaming

DNS: Domain Name System

DHCP: Application - layer perfocol

- Humans understand names (google.com),
- Internet hosts, routers understand IP address (12.123.12.12)
- Q: how to map between IP address and name, and vice versa?

Two questions:

- How to design the database?
- How to retrieve the IP for a given domain name?

Domain Name System (DNS):

- phone book of the Internet
- application-layer protocol: hosts, DNS servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network's "edge"

How would you design the DNS database?

Primary goal: a database of domain to IP mappings

Ca single machines

What are other design constraints/challenges?

```
Les Scalable: # of queenies to the table

8 size of the table
```

4 Fast (Performance)

L. Secure

Approach 1: Centralized DNS

- single point of failure
- traffic volume
- maintenance
- ..

Replicate the database across

(s) Dealabelity & Performance voice

(5) Expensive to maintain & update

Alleras

Spho the database and store on multiple servers

Distributed and Hierarchical System

split the database?

Q: On what basis to decentralize? Hierarchical domain name space

E.g. CBe. iit d. ac. in-19 mappy Sport it alphabetically (2) Sport based on domain name structure

lita-ac-in Jeorlaba cce.iital.ac.in on the

(Autonomy engraved into this /

Reverse DNS lookup IP -> Rolinans

root serves

Decentralized and distributed system

(WLB34-com, Paddress)

- Q: On what basis to decentralize? Hierarchical domain name space
- Partition domain name hierarchy into zones managed by some authority
 - E.g., ICANN is responsible for storing information about top-level domains
- Each zone corresponds to a name server

Name servers

 Name serversare replicated and may be geographically distributed for reliability

DNS: root name servers

- official, contact-of-last-resort by name servers that can not resolve name
- incredibly important Internet function
 - Internet couldn't function without it!
 - DNSSEC provides security (authentication, message integrity)
- ICANN (Internet Corporation for Assigned Names and Numbers) manages root DNS domain

13 logical root name "servers" worldwide each "server" replicated many times (~200 servers in US)

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain
 value is hostname of

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of SMTP mail server associated with name

AARA Wype recond - 1PV6 Example success (Top-level doman) Root Name server IN norme Sem O in, dow. xyz. in, NS, TTL 1. ernet en dus expret in ans-ernet in X.y.z.w, A @ cho. xyz. in, 112.112.112, A (3) com, drs. syz-com, MS (4) drs. syz-com, 113.113.113.113.113.1 (no doublase com) example . com ns. example com , net. com Name serve (who has authority)
where is it? 1. Roxample.com, m. ckample en (2) m-example-con, IP, A, TTL To example - com, no-claudfeare-com, NS (2) id 337, com, mo classiflano, com NS How to do name resolution?

How To Do DNS Resolution?

UDP), TOP (Top handshake)

• What is the transport protocol?

use UDP (Retrability can be implemented)

■ Does the browser directly query the root server? ↓ were neighb

DNS resolver

Browser

240

Local DNS name servers

```
Public DNE resolver: 8-8.8.8 + Google
                      1.1.1.1 - cloudflare
```

- when host makes DNS query, it is sent to its local DNS server
 - Local DNS server returns reply, answering:
 - from its local cache of recent name-to-address translation pairs (possibly out of date!)
 - forwarding request into DNS hierarchy for resolution
 - each ISP has local DNS name server; to find yours:
 - MacOS: % scutil --dns
 - Windows: >ipconfig /all
- local DNS server doesn't strictly belong to hierarchy

DNS name resolution: iterated query

Example: host at iitdad n wants IP address for google.com

Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

lita-ac-in

DNS name resolution: recursive query

Example: host at iitd.ac.in wants IP address for google.com

Recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

DNS protocol messages

DNS query and reply messages, both have same format:

DNS protocol messages

DNS query and reply messages, both have same format:

```
dig google-con
```


Caching DNS Information

- once (any) name server learns mapping, it caches mapping, and immediately returns a cached mapping in response to a query
 - caching improves response time
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
- cached entries may be out-of-date
 - if named host changes IP address, may not be known Internetwide until all TTLs expire!
 - best-effort name-to-address translation!

Getting your info into the DNS

example: new startup "Network Utopia"

- register name networkuptopia.com at <u>DNS registrar</u> (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts NS, A RRs into .com TLD server:

 (networkutopia.com, dns1.networkutopia.com, NS)

```
(dns1.networkutopia.com, 212.212.212.1, A)
```

- create authoritative server locally with IP address 212.212.212.1
 - type A record for www.networkuptopia.com
 - type MX record for networkutopia.com

xyz. gethrub. is Nameserver liking La Managed by Githrub

DNS observations

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache IPs of TLD servers, allowing root server bypass

Spoofing attacks

- intercept DNS queries, returning bogus replies
 - DNS cache poisoning
 - RFC 4033: DNSSEC authentication services

Centralization of DNS

- Name servers hosted by third-party (e.g., cloudflare, amazon)
 - Why?
 - Single point of failure?