Types of Functions

Piecewise Functions

Notation

$$f(x) = \begin{cases} \text{function, condition} \\ \vdots \\ \text{function, condition} \end{cases}$$

$$f(x) = \begin{cases} x, & [0,2) \\ \frac{1}{2}x, & (2,6] \\ \frac{3}{5}x, & (6,9] \\ -x, & (9,15] \end{cases}$$

Absolute Value

Even and Odd

A function f(x) is called:

Even: If $\forall x \in D$ we have f(-x) = f(x)

Odd: If $\forall x \in D$ we have f(-x) = -f(x)

Neither:

Symmetries:

Even:

Odd:

Neither:

Increasing Decreasing

Definition:

A function f(x) on an inteval I is called:

Increasing: $\forall a, b \in I \text{ if } a < b \text{ then } f(a) < f(b)$

Decreasing: $\forall a, b \in I \text{ if } a < b \text{ then } f(a) > f(b)$

"Parent" Functions

Translation of functions

Shifts:

$$\underline{\qquad}: f(x) \to f(x+c)$$

 $: f(x) \to f(x) + c$

Stretching and reflection:

For 1 < c

 $\underline{\qquad}: f(x) \to f(\frac{1}{c}x)$

 $\underline{\qquad} : f(x) \to f(-x)$

Function Arithmetic

$$(f+g)(x) = f(x) + g(x)$$

$$(f - g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

If we let
$$f(x) = x^2$$
 and $g(x) = 4x^3$

$$(f+g)(x) = \underline{\hspace{1cm}}$$

$$(f-g)(x) = \underline{\hspace{1cm}}$$

$$(f \cdot g)(x) = \underline{\hspace{1cm}}$$

$$\left(\frac{f}{g}\right)(x) = \underline{\qquad}$$

Domain

Addition, multiplication $+ - \cdot$

The domain of f+g, f-g, and $f\cdot g$ is the intersection of the domains of f and g. In other words, f+g, f-g, and $f\cdot g$ are defined wherever both f and g are defined.

Division

For $\frac{f}{g}$, the domain is the intersection of the domains of f and g excluding x where g(x) is 0.

Function Composition

We let f(x) and g(x) be two functions with "compatable" domain and codomain

the compostion of f(x) and g(x) written

$$(f \circ g)(x)$$

is defined to be

$$f\left(g\left(x\right)\right)$$

Let
$$f(x) = x^2$$
 and $g(x) = \sqrt{x} = \underline{\hspace{1cm}}$

$$(f \circ g)(x) =$$

$$(g \circ f)(x) =$$

Let
$$f(x) = x^2$$
 and $g(x) = x + 1$

$$(f \circ g)(x) =$$

$$\left(g\circ f\right)\left(x\right)=$$

Domain

The domain of $f \circ g$ is all x in the domain of g so that g(x) is in the domain of f.

Note:

The easiest way to find the domain is usually to write an expression for $(f \circ g)(x)$ and find its domain without simplifying.

Let $f: \mathbb{R} \to \mathbb{R}$ where $f: x \mapsto \frac{1}{x}$, and $g: (0, \infty) \to \mathbb{R}$ where $g: x \mapsto x^2$.

Find the domain of $(f \circ g)(x)$: