

Recursive Definitions
Regular Expressions
RE and RL
Regular Grammars

4 Representations of RL

- FA: DFA, NFA
- TG: Transition Graph
- RE: Regular Expression
- RG: Regular Grammar

1

Recursive Definition: 3 Steps

- Rule 1. Specify basic objects in the set.
- Rule 2. Give rules for constructing more objects in the set.
- Declare that no other object in the set
- Example: EVEN in recursive definition
 - Rule 1. 2 is in EVEN
 - Rule 2. If x is in EVEN then so is x + 2.
 - Rule 3. Those are the only elements in EVEN.

Recursive definition

- Give recursive definition for the following languages
 - ODD PALINDROM
 - EVEN PALINDROM
 - PALINDROM
 - Set ODD = $\{1, 3, 5, ...\}$

3.1 Regular Expression

- A RE is a concise way of expressing a pattern in a series of characters.
- Regular Language (RL) a language that can be defined by regular expression.
- RE is one of 4 representations for RL:
 - RE Regular Expression
 - FA Finite Automata
 - TG Transition Graph
 - RG Regular Gramma

Formal Definition of RE

- Definition 3.1 (page 72)
 - Let Σ be a give alphabet, then
 - 1. \emptyset , λ , $a \in \Sigma$ are regular expressions (RE). These are called primitive RE.
 - 2. If r_1 and r_2 are RE, so are $r_1 + r_2$, r_1 . r_2 , r_1^* and (r_1) .
 - 3. A string is a RE if and only if it can be derived from rule 1 and rule 2.

Languages Associated with RE

- Definition 3.2 (page 72)
 - The language L (r) denoted by any RE r is defined by the following rules.
 - \varnothing is a regular expression denoting the empty set
 - λ is a RE denoting λ
 - For every $a \in \Sigma$, a is a RE denoting $\{a\}$
 - 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
 - 5. $L(r_1 \cdot r_2) = L(r_1) L(r_2)$
 - 6. $L((r_1)) = L(r_1)$
 - 7. $L(r_1^*) = (L(r_1))^*$

4

RE Examples - 1

Example 3.2 (page 73)

```
    L(a*.(a+b)) = L (a*)L(a+b)
    = {λ, a, aa, aaa, ...} {a, b}
    = {a, aa, aaa, ..., b, ab, aab,...}
```

- In-class exercise: try exhibit the following RL in set notation and NFA
 - L ((a+b).a*)
 - L (aa*)
 - L ((a+b)*)

- Example 3.3 r = (a+b)*(a+bb), L = ?
- Example 3.4 $r = (aa)^* (bb)^*b$, L = ?
- For $\Sigma = \{0, 1\}$, give a RE such that
 - L(r) = {w∈Σ*: w has at least one pair of consecutive zeros}
 - L(r) = {w∈Σ*: w has no pair of consecutive zeros}

- Example 3.5
 - r = (0+1)* 00(0+1)*
- Example 3.6
 - $r = (1 + 01)*(0 + \lambda)$

- Exhibit L = { ? } and nfa
 - X*
 - XX*
 - a*b*
 - (ab)*
 - X(XX)*
 - b*ab*a(a+b)*
 - (a+b)(a+b)(a+b)

- Informal notations: a+, a³
- RE with * always denoting a language that contains λ
- RE to English descriptions:
 - (a+b)*
 - (a+b)*a(a+b)*
 - (a+b)*aaa
 - a(a+b)*b

- An application of RE:
 - Letter(Letter +Digit)*
 - A set of strings that beginning with a letter
 - Letter = A+B+...+Z+a+b+...+z
 - Digit = 0+1+2+...+9

4

3.2 Connection Between Regular Expressions and Regular Languages

- RE denote Regular languages
- Kleen's Theorem:
 - L(FA) = L(TG) = L(RE)
- Theorem 3.1
 - L(RE) ⊂ L(TG)
- Theorem 3.2
 - L(FA) ⊂ L(RE)

$RE \Rightarrow FA$

- Theorem 3.1 RE \Rightarrow NFA
- Proof constructive proof based on recursive definition of RE
 - Step 1: construct nfa for each basic element defined in rule 1
 - Step 2: construct nfa for each operation defined in rule 2

RE ⇒ FA or TG proof step 1: an nfa for basic elements of RE

4

Schematic representation of an nfa accepting L(r)

RE \Rightarrow FA proof Step 2-1: nfa for L($r_1 + r_2$)

4

RE \Rightarrow FA proof Step 2-2: nfa for L(r_1 r_2)

RE \Rightarrow FA proof Step 2-3: nfa for L(r_1 *)

4

$RE \Rightarrow FA$ Example 3.7

- Find an nfa that accepts L(r), where
 - $r = (a + bb)*(ba* + \lambda)$
- We first construct nfa for
 - $r_1 = (a+bb)$ and
 - $r_2 = (ba^* + \lambda)$
- Then putting them together according to Theorem 3.1 for r
 - $r_1 * r_2$

(a+bb) and (ba* + λ)

Putting them together $(a + bb)*(ba* + \lambda)$

4

RE to TG In-class exercises

- Convert RE to TG:
 - (a+b)*
 - (a+b)*a(a+b)*
 - (a+b)*aaa
 - a(a+b)*b
 - Even-Even: even number of a's and even number of b's

$\mathsf{TG} \Rightarrow \mathsf{RE}$

- Theorem 3.2
 - Let L be a regular language. Then there exists a RE r such that L = L(r).
 - Proof: If L is regular, there exists an nfa.
 - Convert nfa to a two-state complete GTG
 - Apply the procedure nfa-to-rex ⇒ RE
 - GTG generalized transition graphs

CSC 135 26

An Example of GTG \Rightarrow RE L(a* +a*(a+b)c*)

Two-state complete GTG to $r_1* r_2(r_4 + r_3 r_1* r_2)*$

Procedure: nfa-to-rex

- Page 83-84
- Step 1 to step 6
- This is a reading assignment

Grammar

- a scheme for specifying the sentences allowed in the language, indicating the syntactic rules for combining words into well-formed phrases and clauses
- Defined by Feighenbaum et al.
- Natural language understanding has long been a goal of AI researchers
- Example: google cross-language info retrieval

- MIT linguist Noam Chomskey did the seminal work in the systematic and mathematical study of language syntax →computational linguistics
- Formal language a set of strings composed of a vocabulary of symbols according to rules of grammar

3.3 Regular Grammar

- One way of describing regular language: right- and left-linear grammar
- Definition 3.3
 - A grammar G = (V, T, S, P) is said to be rightlinear if all productions are of the form
 - $A \rightarrow xB$,
 - $A \rightarrow X$
 - where A, B \in V, and x \in T*.
- A regular grammar is one that is either rightlinear or left-linear

Example 3.13 right- and left-linear grammars

- $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as
 - $S \rightarrow abS \mid a$ is right-linear
 - A derivation with G_1 : $S \Rightarrow abS \Rightarrow ababS \Rightarrow ababa$
 - L(G₁) is L ((ab)*a)
- $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with P_2 as
 - $S \rightarrow S_1ab$,
 - $S_1 \rightarrow S_1 ab \mid S_2$,
 - $S_2 \rightarrow a$

is left-linear

- $L(G_2) = ?$
- Both G₁ and G₂ are regular grammars.

Example 3.14 a non-Regular Grammar

- $S \rightarrow A$
- A \rightarrow aB | λ
- \blacksquare B \rightarrow Ab

Right-Linear Grammars Generate RL - 1

- Theorem 3.3 RG \Rightarrow FA
 - Let G = (V, T, S, P) be a right-linear grammar. Then L(G) is a regular language.
 - Proof. Assume that $V = \{V_0, V_1, ...\}, S = V_0$
 - For each production, we convert it into a corresponding transition
 - We only have two possible forms of production in a right-linear grammar
 - Do you know which two?

Right-Linear Grammars Generate RL - 2

Represents
$$V_i \longrightarrow a_1 a_2 \dots a_m V_j$$

Represents
$$V_i \longrightarrow a_1 a_2 \dots a_m$$

Example 3.15

Construct a FA that accepts the language generated by a RG

- $V_0 \rightarrow a V_1$
- $V_1 \rightarrow ab \ V_0 | b$

Right-Linear Grammars for Regular Language

- Theorem 3.4 FA \Rightarrow RG
 - If L is a regular language on the alphabet Σ, then there exists a right-linear grammar G = (V, T, S, P) such that L = L(G).
 - Proof constructive
 - Let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L
 - Construct the right-linear grammar G with
 - $V = \{q_0, q_1, ..., q_n\}$
 - $S = q_0$
 - Construct a production for each transition

- Putting Theorems 3.4 and 3.5 together, we arrive at the equivalence of RL and RG
- Theorem 3.6:
 - A language L is regular if and only if there exists a regular grammar G such that L = L(G)

- Represent the following RL in 4 representations of RL (RE, TG, FA, RG):
 - Even number of a's followed by odd number of b's.

CSC 135 40

Summary-1

- We now have all 4 representations of RL:
 - FA, TG, RE, RG
- In some instance, one of them may be most suitable
- They are equally powerful in representing RL
- When you need all 4 representations for a given RL, you can start to work on one of the representation that is easiest to you first then

. . . .

Summary-2

42