FOCT 2.730-73

Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ

Приборы полупроводниковые

Unified system for design documentation. Graphical symbols in diagrams. Semiconductor devices

MKC 01.080.40 31.080

Дата введения 1974-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом стандартов Совета Министров СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 16.08.73 N 2002
 - 3. Соответствует СТ СЭВ 661-88
 - 4. B3AMEH <u>ГОСТ 2.730-68</u>, <u>ГОСТ 2.747-68</u> в части пп.33 и 34 таблицы
- 5. ИЗДАНИЕ (апрель 2010 г.) с Изменениями N 1, 2, 3, 4, утвержденными в июле 1980 г., апреле 1987 г., марте 1989 г., июле 1991 г. (ИУС 10-80, 7-87, 6-89, 10-91), Поправкой (ИУС 3-91)

1. Настоящий стандарт устанавливает правила построения условных графических обозначений полупроводниковых приборов на схемах, выполняемых вручную или автоматическим способом во всех отраслях промышленности.

(Измененная редакция, Изм. N 3).

2. Обозначения элементов полупроводниковых приборов приведены в табл.1.

Наименование	Обозначение
1. (Исключен, Изм. N 2).	
2. Электроды:	
база с одним выводом	Τ
база с двумя выводами	TT """ , """ —
<i>P</i> -эмиттер с <i>N-</i> областью	
<i>N</i> -эмиттер с <i>P</i> -областью	
несколько <i>Р-</i> эмиттеров с <i>N-</i> областью	
несколько <i>N-</i> эмиттеров с <i>P-</i> областью	/ \
коллектор с базой	
несколько коллекторов, например, четыре коллектора на базе	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

3. Области:	
область между проводниковыми с различной электропроводностью	
Переход от <i>Р</i> -области к <i>N</i> -области и наоборот	
область собственной электропроводности (<i>I</i> -область):	
1) между областями с электропроводностью разного типа PIN или NIP	
2) между областями с электропроводностью одного типа <i>PIP</i> или <i>NIN</i>	_/7
3) между коллектором и областью с противоположной электропроводностью <i>PIN</i> или <i>NIP</i>	
4) между коллектором и областью с электропроводностью того же типа <i>PIP</i> или <i>NIN</i>	_/1
4. Канал проводимости для полевых транзисторов:	
обогащенного типа	T ⁻ T

(Измененная редакция, Изм. N 2, 3). 3, 4. (Исключены, Изм. N 1).

5. Знаки, характеризующие физические свойства полупроводниковых приборов, приведены в табл.4.

Знаки, характеризующие физические свойства полупроводниковых приборов

^{*} Таблицы 2, 3. (Исключены, Изм. N 1).

Наименование	Обозначение
1. Эффект туннельный	
а) прямой	_
б) обращенный	I
2. Эффект лавинного пробоя:	
а) односторонний	J
б) двухсторонний	7
3-8. (Исключены, Изм. N 2).	
9. Эффект Шоттки	s

6. Примеры построения обозначений полупроводниковых диодов приведены в табл.5.

Примеры построения обозначений полупроводниковых диодов

Обозначение

-DI4-

→ υлυ →
→ → →

7. Обозначения тиристоров приведены в табл.6.

Обозначения тиристоров

Обозначение Наименование Тиристор диодный, 1. обратном запираемый В направлении 2. Тиристор диодный, обратном проводящий В направлении 3. Тиристор диодный симметричный Тиристор триодный. 4. Общее обозначение Тиристор 5. триодный, обратном запираемый В направлении с управлением: по аноду по катоду

Тиристор

6.

выключаемый:

триодный

общее обозначение	7
запираемый в обратном направлении, с управлением по аноду	
запираемый в обратном направлении, с управлением по катоду	₩,
7. Тиристор триодный, проводящий в обратном направлении:	
общее обозначение	
с управлением по аноду	
с управлением по катоду	
8. Тиристор триодный симметричный (двунаправленный) - триак	₩ wnw
9. Тиристор тетроидный, запираемый в обратном направлении	-N-unu -N-unu -N-

направлении

Примечание. Допускается обозначение тиристора с управлением по аноду изображать в виде продолжения соответствующей стороны треугольника.

8. Примеры построения обозначений транзисторов с *P-N*-переходами приведены в табл.7.

Примеры построения обозначений транзисторов

Наименование	Обозначение
1. Транзистор	
а) типа <i>PNP</i>	\
б) типа <i>NPN</i> с выводом от внутреннего экрана	
2. Транзистор типа <i>NPN</i> , коллектор соединен с корпусом	Θ
3. Транзистор лавинный типа <i>NPN</i>	\
4. Транзистор однопереходный с <i>N</i> -базой	1
5. Транзистор однопереходный с <i>Р-</i> базой	*
6. Транзистор двухбазовый типа <i>NPN</i>	\

7. Транзистор двухбазовый типа PNIP с выводом от i -области

8. Транзистор двухбазовый типа PNIP овыводом от i -области

9. Транзистор многоэмиттерный типа *NPN*

Примечание. При выполнении схем допускается:

а) выполнять обозначения транзисторов в зеркальном изображении, например,

- б) изображать корпус транзистора.
- 9. Примеры построения обозначений полевых транзисторов приведены в табл.8.

Примеры построения обозначений полевых транзисторов

Наименование	Обозначение
1. Транзистор полевой с каналом типа <i>N</i>	1
2. Транзистор полевой с каналом типа <i>Р</i>	1
3. Транзистор полевой с изолированным затвором без вывода от подложки:	
а) обогащенного типа с <i>Р-</i> каналом	T₹T
б) обогащенного типа с <i>N</i> -каналом	L T₹T
в) обедненного типа с <i>Р-</i> каналом	_
г) обедненного типа с <i>N-</i> каналом	<u>L</u>
4. Транзистор полевой с изолированным затвором обогащенного типа с <i>N</i> -каналом, с внутренним соединением истока и подложки	TAT

Примечание. Допускается изображать корпус транзисторов.

10. Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов приведены в табл.9.

Примеры построений обозначений фоточувствительных и излучающих полупроводниковых приборов

Наименование	Обозначение
1. Фоторезистор:	
а) общее обозначение	<u></u>
б) дифференциальный	-
2. Фотодиод	**
3. Фоторезистор	*************************************
4. Фототранзистор:	
а) типа <i>PNP</i>	*K
б) типа <i>NPN</i>	≫K
5. Фотоэлемент	+
6. Фотобатарея	<u>~</u> + +-

11. Примеры построения обозначений оптоэлектронных приборов приведены в табл.10

Примеры построения обозначений оптоэлектронных приборов

Обозначение Наименование 1. Оптрон диодный 2. Оптрон тиристорный 3. Оптрон резисторный 4. Прибор оптоэлектронный фотодиодом и усилителем: а) совмещенно

б) разнесенно

5. Прибор оптоэлектронный с фототранзистором:

а) с выводом от базы

б) без вывода от базы

Примечания:

1. Допускается изображать оптоэлектронные приборы разнесенным способом. При этом знак оптического взаимодействия должен быть заменен знаками оптического излучения и поглощения по <u>ГОСТ 2.721-74</u>, например:

2. Взаимная ориентация обозначений источника и приемника не устанавливается, а определяется удобством вычерчивания схемы, например:

12. Примеры построения обозначений прочих полупроводниковых приборов приведены в табл.11.

Примеры построения обозначений прочих полупроводниковых приборов

Таблица 11

Наименование	Обозначение
1. Датчик Холла	—————————————————————————————————————
Токовые выводы датчика изображены линиями, отходящими от коротких сторон прямоугольника	
2. Резистор магниточувствительный	_ ×
3. Магнитный разветвитель	* * * * * * * * * * * * * * * * * * *

13. Примеры изображения типовых схем на полупроводниковых диодах приведены в табл.12.

Примеры изображения типовых схем на полупроводниковых диодах

Наименование

Обозначение

- 1. Однофазная мостовая выпрямительная схема:
 - а) развернутое изображение

б) упрощенное изображение (условное графическое обозначение)

Примечание. К выводам 1-2 подключается напряжение переменного тока; выводы 3-4 - выпрямленное напряжение; вывод 3 имеет положительную полярность.

Цифры 1, 2, 3 и 4 указаны для пояснения.

Пример применения условного графического обозначения на схеме

2. Трехфазная мостовая выпрямительная схема

3. Диодная матрица (фрагмент)

Примечание. Если все диоды в узлах матрицы включены идентично, то допускается применять упрощенный способ изображения. При этом на схеме должны быть приведены пояснения о способе включения диодов

14. Условные графические обозначения полупроводниковых приборов для схем, выполнение которых при помощи печатающих устройств ЭВМ предусмотрено стандартами Единой системы конструкторской документации, приведены в табл.13.

Условные графические обозначения полупроводниковых приборов для схем

Наименование	Обозначение	Отпечатанное обозначение
1. Диод	Д	+> <+
2. Транзистор типа <i>PNP</i>		==== : p: : p< ====
3. Транзистор типа NPN		==== : N: : N>
4. Транзистор типа PNIP с выводом от <i>I-</i> области		==== :1: ** : \$\rho < ====
5. Многоэмиттерный транзистор типа <i>NPN</i>		==== :N: <n: <n: <n: ====</n: </n: </n:
		==== : n: : n> : n> : n>

Примечание к пп.2-5. Звездочкой отмечают вывод базы, знаком "больше" или "меньше" - вывод эмиттера.

15. Размеры (в модульной сетке) основных условных графических обозначений даны в приложении 2.

(Измененная редакция, Изм. N 4). ПРИЛОЖЕНИЕ 1. (Исключено, Изм. N 4).

Приложение 2 (справочное). Размеры (в модульной сетке) основных условных графических обозначений

ПРИЛОЖЕНИЕ 2 Справочное

Обозначение Наименование 1. Диод 2. Тиристор диодный 3. Тиристор триодный 4. Транзистор 5. Транзистор полевой 6. Транзистор полевой с изолированным затвором

ПРИЛОЖЕНИЕ 2. (Введено дополнительно, Изм. N 3). Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание Единая система конструкторской документации. Обозначения условные графические в схемах: Сб. ГОСТов. - М.: Стандартинформ, 2010