Lebesgue Integral

Quader und lineare Abbildungen

Seien U und V offene Teilmengen des \mathbb{R}^n , $T':U\to V$ ein lineare Abbildung und $Q\in\mathbb{I}(n)$ ein Quader. Dann gilt:

$$\operatorname{vol}(T'(Q)) = \det(T') \cdot \operatorname{vol}(Q)$$
.

Beweis

Für Vektoren $a_1, \dots a_n$ im \mathbb{R}^n heißt die Menge

$$P(a_1, \dots, a_n) := \left\{ x = \sum_{k=1}^n t_k a_k \mid t_1, \dots, t_n \in [0, 1] \right\}$$

Parallelotop.

Beweis

Es gilt

$$\operatorname{vol}(P(a_1,\cdots,a_n)) = |\det(a_1,\cdots,a_n)|$$
.

Ausfürlicher Beweis

Lebesgue Integral

Diffeomorphismus

Seien U und V offene Teilmengen des \mathbb{R}^n . Eine Abbildung $T:U\to V$ heißt Diffeomorphismus, wenn eine Umkehrfunktion $T^{-1}:V\to U$ existiert, also $T^{-1}(T(u))=u$ gilt für alle $u\in U$, die ebenfalls differenzierbar ist.

Für eine invertierbare Matrix A ist T(x) := Ax ein Diffeomorphismus.

Lebesgue Integral

Transformationssatz

Seien U und V offene Teilmengen des \mathbb{R}^n , $T:U\to V$ ein Diffeomorphismus und $f:V\to\mathbb{R}$ eine integrierbare Funktion. Dann gilt:

$$\int_V f(y)d\mu = \int_U f(T(x)) \cdot |\det(T'(x))| d\mu .$$

Beweis

Seien $I_k \in \mathbb{I}(n)$ Quader, $J_k := T(I_k)$ und $b_k = T(c_k)$. Dann ist

$$\sum_{k=1}^n b_k \operatorname{vol}(J_k) pprox \sum_{k=1}^n T(c_k) \cdot |\det T'(c_k)| \operatorname{vol}(I_k)$$
 .

Die Behauptung folgt dann (nicht trivial) durch den Übergang zu Grenzwerten mit entsprechenden Konvergenzsätzen.

Lebesgue Integral

Beispiel

Wir betrachten den Ball $B_r^3(0):=\{x\in\mathbb{R}^3\mid ||x||\leq r\}$, den Quader $I:=[0,r]\times[-\pi,\pi]\times[-\frac{\pi}{2},\frac{\pi}{2}]$ und die Abbildung

$$T:I o B_1^3(0)$$
 $T(r,arphi,\psi):=egin{pmatrix} r\cos(arphi)\cos(\psi)\ r\sin(\psi)\cos(\psi)\ r\sin(\psi) \end{pmatrix}$

Beispiel

 $\det T'(r, \varphi, \psi) = r^2 \cos(\psi)$

Lebesgue Integral

$$\int_{B_r^3(0)} 1 d\mu = \int_{[0,r]} \int_{[-\pi,\pi]} \int_{[-\frac{\pi}{2},\frac{\pi}{2}]} r^2 \cos(\psi) d\psi \ d\varphi \ dr = \frac{4}{3} \pi r^3$$

Zufallsvariablen

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und (Ω', \mathcal{A}') ein Messraum. Eine Zufallsvariable ist eine messbare Abbildung

$$X:\Omega \to \Omega'$$

D.h. für alle Ereignisse $A' \in \mathcal{A}'$ ist

$$X^{-1}(A') \in \mathcal{A}$$

ein Ereignis in A. Urbilder von Ereignissen sind also Ereignisse.

Beispiel (Münzwurf)

 $\Omega = \{ \mathsf{Kopf}, \mathsf{ZahI} \}, \; \Omega' = \{0,1\}$ mit jeweils Potenzmenge als Sigma-Algebra und

$$X(Kopf) = 0$$

 $X(Zahl) = 1$

Beispiel (Summe zweier Würfel)

 $\Omega = \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\} \text{,}$

 $\Omega' = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ mit jeweils Potenzmenge als

Sigma-Algebra und $X : \Omega \to \Omega'$; X(a, b) := a + b.

Bildmaß

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, (Ω', \mathcal{A}') ein Messraum und $X: \Omega \to \Omega'$ Eine Zufallsvariable. Durch

$$P_X(A') := P(X^{-1}(A'))$$

für $A' \in \mathcal{A}'$ wird ein Wahrscheinlichkeitsmaß auf (Ω', \mathcal{A}') definiert. Es wird Bildmaß genannt. Anstelle von $P_X(A')$ wird auch die Schreibweise $P(X \in A') := P_X(A')$ verwendet.

Beispiel (Summe zweier Würfel)

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\},\$$
 $\Omega' = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ und
 $X : \Omega \to \Omega'; X(a, b) := a + b$. Dann ist
 $P_X(3) = P(\{(1, 2), (2, 1)\}) = \frac{2}{36} = \frac{1}{18}$

Verteilungsfunktion

Für eine reelle Zufallsvariable heißt

$$F_X : \mathbb{R}^n \to [0, 1]$$

 $F_X(x) := P(X \le x) := P_X((-\infty, x)) = P(X^{-1}(-\infty, x))$

Verteilungsfunktion von X.

Dichte

Eine Funktion $f:\mathbb{R}^n \to \mathbb{R}$ heißt Dichte, falls für ihr Lebesgue-Integral $\int_{\mathbb{Q}} f d\mu = 1$ gilt.

Dichte

Eine Funktion $f:\Omega\to\mathbb{R}$ heißt Dichte der Verteilungsfunktio $F_X:\Omega\to[0,1]$ falls für ihr Lebesgue-Integral $\int_\Omega fd\mu=1$ ist und $F_X(x)=\int_{\{X< x\}}fd\mu$

Beispiel

Die Funktion $f(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}$ ist eine Dichte auf \mathbb{R} .

$$I := \int_0^\infty e^{-x^2} dx$$

$$I^2 = \int_0^\infty e^{-x^2} dx \cdot \int_0^\infty e^{-y^2} dy = \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dx dy$$

$$x = r \cos \varphi, y = r \sin \varphi, r^2 = x^2 + y^2 \text{ (da } \cos^2 + \sin^2 = 1\text{)}$$

LINK: Polarkoordinatentransformation

$$= \int_0^{\frac{\pi}{2}} \int_0^{\infty} r \cdot e^{-r^2} dr d\varphi$$

$$= \frac{\pi}{2} \int_0^{\infty} r \cdot e^{-r^2} dr$$

$$= -\frac{\pi}{4} [e^{-r^2}]_0^{\infty} = \frac{\pi}{4} \Rightarrow I = \frac{\sqrt{\pi}}{2}$$

Beispiel

Analog beweist man, dass für alle $\mu \in \mathbb{R}, \sigma > 0$ die Funktion $f(x) := \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ eine Dichte auf \mathbb{R} ist.

Figure: Quelle: Wikipedia

Normalverteilung

Eine reelle Zufallsvariable $X:\Omega\to\mathbb{R}$ heißt normalverteilt, wenn $F_X(x)=\int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}dx$ mit $\mu\in\mathbb{R},\sigma>0$ gilt. Man schreibt auch $X\sim\mathcal{N}(\mu,\sigma^2)$.

Figure: Quelle: Wikipedia

Verteilung und Unabhängigkeit

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum, (R, \mathcal{B}) ein Messraum und $\{X_i\}_{i=1}^n$ ein Folge von Zufallsvariablen $X_i: \Omega \to R$. Die Zufallsvariablen heißen identisch verteilt, falls $P_{X_i} = P_{X_j}$ für alle i, j und stochastisch unabhängig, falls $P_{(X_1, \cdots, X_n)} = \prod_{i=1}^n P_{X_i}$ gilt.

Erwartungswert

Für eine reelle integrierbare Zufallsvariableist ihr Erwartungswert definiert durch

$$\mathbb{E}(X) := \int_{\Omega} X \ dP \ .$$

Erwartungswert

Ist (Ω, \mathcal{A}, P) ein diskreter Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine reelle Zufallsvariable, so ist

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

Eigenschaften

Sind $X,Y:\Omega\to\mathbb{R}^n$ reelle, integrierbare Zufallsvariablen und $a,b\in\mathbb{R}$ konstant, so gilt:

$$\begin{split} \mathbb{E}(a\cdot X + b\cdot Y) &= a\cdot \mathbb{E}(X) + b\cdot \mathbb{E}(Y) \\ X(x) &\leq Y(x) \ \forall x \in \Omega \Rightarrow \mathbb{E}(X) \leq \mathbb{E}(Y) \\ X, Y \text{ stoch. unabhängig} &\Rightarrow \mathbb{E}(X\cdot Y) = \mathbb{E}(X)\cdot \mathbb{E}(Y) \\ \mathbb{E}(1_A) &= P(A) \end{split}$$

Varianz

Für eine reelle Zufallsvariable ist die Varianz definiert durch

$$\mathbb{V}(X) := \mathbb{E}((X - \mathbb{E}(X))^2)$$
.

Verschiebungssatz

$$V(X) = \mathbb{E}(X^2 - 2X\mathbb{E}(X) + \mathbb{E}(X)^2) = \mathbb{E}(X^2) - 2\mathbb{E}(X)^2 + \mathbb{E}(X)^2$$

= $\mathbb{E}(X^2) - \mathbb{E}(X)^2$

Kovarianz

Für reelle Zufallsvariable X, Y ist die Kovarianz definiert durch

$$\mathcal{C}(X, Y) := \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$
.

Kovarianz

Per Definition ist

$$C(X,X) := V(X).$$

Transformationsformel

Für eine reelle Zufallsvariablen $X:\mathbb{R}^n \to \mathbb{R}^m$ und eine integrierbare Funktion $g:\mathbb{R}^m \to \mathbb{R}$ gilt

$$\mathbb{E}(g\circ X):=\int_{\mathbb{R}^n}g\circ X\ dP=\int_{\mathbb{R}^m}g\ dP_X\ .$$

Ist $f(x):\mathbb{R}^m o \mathbb{R}$ eine Dichte für P_X , so ist

$$\mathbb{E}(g \circ X) = \int_{\mathbb{R}^m} g(x) \cdot f(x) \ d\mu$$

Transformationsformel

Für $g=1_A$ mit $A\in \mathcal{B}(\mathbb{R}^n)$ ist

$$\int 1_A dP_X = P_X(A) = P(X^{-1}(A)) = \int 1_{X^{-1}(A)} dP$$
$$= \int 1_A \circ X dP$$

Für eine Treppenfunktion $g=\sum_{i=1}^n c_i 1_{A_i}$ folgt das Ergebnis aus der Linearität des Integrals für Treppenfunktionen. Für integrierbares g folgt das Resultat mit Hilfe von Konvergenzsätzen für das Integral.

Beispiel

$$\begin{split} \Omega &= \{\mathsf{Kopf}, \mathsf{Zahl}\}, \ P(\mathsf{Kopf}) = P(\mathsf{Zahl}) = \frac{1}{2}, \\ X(\mathsf{Kopf}) &= 0, X(\mathsf{Zahl}) = 1 \\ \mathbb{E}(X) &= 0 \cdot P(X^{-1}(0)) + 1 \cdot P(X^{-1}(1)) \\ &= 0 \cdot P(\mathsf{Kopf}) + 1 \cdot P(\mathsf{Zahl}) = \frac{1}{2} \end{split}$$

Beispiel

Sei $X \sim \mathcal{N}(\mu, \sigma^2)$.

$$\begin{split} \mathbb{E}(X) &:= \int_{\mathbb{R}} x \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx \\ &= \int_{\mathbb{R}} (y+\mu) \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} y^2} dy \\ &= \mu \int_{\mathbb{R}} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} y^2} dy + \int_{\mathbb{R}} y \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2\sigma^2} y^2} dy = \mu \end{split}$$

Figure: Quelle: Wikipedia

Beispiel

Sei $X \sim \mathcal{N}(\mu, \sigma^2)$.

$$\mathbb{V}(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(xe^{-\frac{x^2}{2}}) dx$$
$$= \frac{1}{\sqrt{2\pi}} \left(\left[x(e^{-\frac{x^2}{2}}) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} -e^{-\frac{x^2}{2}} dx \right) = 0 + 1 = 1$$

LINK: Partielle Integration. Mit "Verschiebungstrick" $\Rightarrow \mathbb{V}(X) = \sigma^2$.

Markov Ungleichung

Sei $Y:\Omega\to\mathbb{R}$ eine reelle, integrierbare Zufallsvariable und $f:[0,\infty)\to[0,\infty)$ monoton wachsend. Dann gilt für alle $\epsilon>0$ mit $f(\epsilon)>0$

$$P(|Y| \ge \epsilon) \le \frac{\mathbb{E}(f \circ |Y|)}{f(\epsilon)}$$

Beweis

Da $f(\epsilon)1_{\{|Y| \geq \epsilon\}} \leq f \circ |Y|$ folgt

$$f(\epsilon)P(|Y| \ge \epsilon) = f(\epsilon)\mathbb{E}(1_{\{|Y| \ge \epsilon\}}) = \mathbb{E}(f(\epsilon)1_{\{|Y| \ge \epsilon\}})$$

$$\leq \mathbb{E}(f \circ |Y|)$$

Tschebyscheff-Ungleichung

Für eine reelle, integrierbare und quadratintegrierbare Zufallsvariable $Y:\Omega\to\mathbb{R}$ gilt:

$$P(|Y - \mathbb{E}(Y)| \ge \epsilon) \le \frac{\mathbb{V}(Y)}{\epsilon^2}$$

Beweis

Folgt direkt aus der Markov-Ungleichung mit $Y'=Y-\mathbb{E}(Y)$ und $f(x)=x^2$

Highlight

Schwaches Gesetz der großen Zahlen

Seien $X_i:\Omega\to\mathbb{R}$ unabhängige, reelle Zufallsvariablen (uiv, iid(englisch)) mit $\mathbb{E}(X_i)=\mu<\infty$ und $\mathbb{V}(X_i)=\sigma<\infty$, dann gilt

$$P(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq\epsilon)\leq\frac{\sigma}{n\cdot\epsilon^{2}}\quad\underset{n\to\infty}{\longrightarrow}0$$

(stochastische Konvergenz).

Beweis

Mit $Y_n = \frac{1}{n} \sum_{i=1}^n X_i - \mu$ ist $\mathbb{E}(Y_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i - \mu) = 0$ und $\mathbb{V}(Y_n) = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}(X_i) = \frac{\sigma}{n}$. Aus der Tschebyscheff-Ungleichung folgt die Behauptung.

