Guía 2: Flujos Rotantes y Estratificados

1) Rotación y helicidad cinética

Considere un fluido incompresible en un sistema rotante con velocidad angular constante Ω ,

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \left(\frac{p}{\rho}\right) + 2\mathbf{u} \times \Omega + \nu \nabla^2 \mathbf{u},\tag{1}$$

donde ν es la disipación cinemática y $p = p' - (\mathbf{\Omega} \times \mathbf{x})^2/2$ es la presión reducida.

a) Muestre que para condiciones de contorno periódicas, la helicidad cinética,

$$H \equiv \int_{V} \mathbf{u} \cdot \boldsymbol{\omega} dV, \tag{2}$$

satisface una ecuación de balance y se conserva cuando $\nu=0$ (ayuda: halle la ecuación de evolución para la vorticidad $\boldsymbol{\omega}=\boldsymbol{\nabla}\times\mathbf{u}$, y utilice notación de índices para transformar los términos no lineales y de presión).

b) Para el caso en que $\nu \neq 0$, muestre que la tasa de disipación de helicidad cinética esta controlada por,

$$S \equiv \int_{V} \boldsymbol{\omega} \times (\boldsymbol{\nabla} \times \boldsymbol{\omega}) dV. \tag{3}$$

(Ayuda: utilice la identidad vectorial de Green).

- c) La helicidad cinética es una forma de cuantificar si un flujo posee (o no) simetría de reflexión. Que ocurre con el signo de H ante reflexiones?
- 2) Haciendo uso del solver ROTH en GHOST, resuelva numéricamente la ecuación para un flujo rotante incompresible con densidad uniforme $\rho_0=1$ y $\nu=3\times 10^{-3}$ en un recinto cubico de longitud lineal 2π y resolución espacial $N_x=N_y=N_z=128$. Hacer uso del Material Adicional. Construya una perturbación inicial aleatoria $\delta {\bf u}$ (incompresible) concentrada en una banda horizontal con altura $2\pi/3$ en el centro de la caja y nula en el resto del recinto, con número de onda k=5, energía cinética inicial $E=\langle u^2/2\rangle=1$ (donde $\langle \cdot \rangle$ indica el valor medio espacial) y sin forzado. La resolución espacial de todas las simulaciones será $N_x=N_y=N_z=128$.
 - (a) Estime en base a estos datos qué paso temporal debería utilizar según la condición CFL estudiada en la Guía 1. Estime el número de Rossby para la condición inicial.
 - (b) Para $\Omega=10$, integre el sistema hasta t=1, guardando la velocidad y la vorticidad cada $\Delta t=0.05$ pasos. Visualice la densidad de helicidad,

$$h(\mathbf{r}) = \mathbf{u}(\mathbf{r}) \cdot \boldsymbol{\omega}(\mathbf{r}),\tag{4}$$

en un corte bidimensional en el plano $\hat{x}-\hat{z}$. Que ocurre con dicha cantidad a medida que el sistema evoluciona?

- (c) Estime a qué velocidad media se propagan los paquetes con h>0 y con h<0. Qué velocidad espera obtener? Compare estos resultados con una simulación no rotante, es decir, $\Omega=0$.
- (d) Realice simulaciones variando Ω entre 0 y 20 (con pasos de 5). Grafique la velocidad media de propagación de los paquetes en función de Ω .
- (e) Para este conjunto de simulaciones, calcule $\langle |\frac{\partial u}{\partial z}| \rangle$ en función del tiempo (utilice diferencias finitas para estimar la derivada espacial). Que ocurre al aumentar Ω ?

3) Estratificación y energía total

Considere un fluido estratificado e incompresible de densidad media $\bar{\rho}$, bajo la aproximación de Boussinesq. El fluido satisface las siguientes ecuaciones,

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \left(\frac{p}{\bar{\rho}}\right) - N\theta \hat{\mathbf{z}} + \nu \nabla^2 \mathbf{u},\tag{5}$$

$$\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = N u_z + \kappa \nabla^2 \theta, \tag{6}$$

donde N es la frecuencia de Brunt-Väisälä uniforme, θ es el potencial de las fluctuaciones de temperatura, ν es la viscosidad cinemática y κ es la difusividad térmica.

- a) Muestre que la energía cinética $E_c=\frac{\rho_0}{2}\int_V u^2 dV$ no se conserva en el caso ideal ($\nu=\kappa=0$). Asuma condiciones de contorno periódicas. Se le ocurren otras?
- b) Obtenga una ecuación de balance para la energía total (cinética más potencial),

$$E \equiv \frac{\rho_0}{2} \int_V u^2 dV + \frac{1}{2} \int_V \theta^2 dV. \tag{7}$$

- c) Que cantidades controlan la tasa de disipación total? Físicamente a que corresponden?
- 4) Haciendo uso del solver BOUSS en GHOST, resuelva numéricamente las ecuaciones para un flujo incompresible con $\rho_0=1, \nu=\kappa=3\times 10^{-3}$ en un recinto cubico de longitud lineal 2π y resolución espacial $N_x=N_y=N_z=128$. Hacer uso del Material Adicional. Imponga un viento horizontal uniforme $\mathbf{u}=U\hat{x}$ (U=1), y perturbe este viento con una fuerza $\mathbf{f}=f_0\hat{z}$ confinada a una banda vertical con $x\in[0,\pi/10]$. Observe que este es un modelo simplificado para el estudio de ondas de sotavento.
 - (a) Para $f_0=0.1$, integre el sistema hasta t=5 con una frecuencia de Brunt-Väisälä N=10. Verifique que se genera una onda estacionaria (ayuda: puede guardar los campos cada $\Delta t=0.5$, y observar cortes de la temperatura en le plano $\hat{x}-\hat{z}$).
 - (b) Estudie la longitud de onda de la onda estacionaria en función de la frecuencia de Brunt-Väisälä N, variándola entre 1 y 15 (pasos de a 3).