Sistemas Operativos

Algo de Sistemas Operativos, Arquitecturas y Paralelismo

¿Qué es un Sistema Operativo?

- Administra recursos
- Arma de una máquina virtual
- Comunicación con el usuario
- Facilita el uso (herramientas, bibliotecas, etc.)

Funciones de un Sistema Operativo

Secuenciar las tareas

Interpretar un lenguaje de control y

comandos

Administrar errores

Administrar las interrupciones

Scheduling

Proteger (administrar recursos)

Comunicación con el usuario

Características de un Sistema Operativo

- Concurrencia
- Uso compartido de recursos
- Almacenamiento a largo plazo
- Determinismo VS Indeterminismo
- Eficiente Fiable
- Facilidad de corrección
- Tamaño Pequeño

Monoprocesador
 Monoprogramación o Monotarea
 (DOS – [trick TSR])

Multiprogramación o Multitarea Batch - Time-Sharing Interactivo (Terminales Bobas o Inteligentes)

```
Multiprogramación o Multitarea
UNIX (en todos sus sabores)
Linux – IRIX – AIX – BSD – Solaris – etc.
Windows (en casi todos sus sabores)
(Terminal Service)
zVM zOS
VMS
```

Hyper Threading (HT) ¿?

Hyper Threading

Multiprocesador Varios Procesadores Independientes o Independientes con Cores (Dual Quad Octo etc.) Multiprogramación SMP vs MP

Cores

Cores

Quad-Core or Dual-Core

PCIs

Today's PC has multiple local buses with different requirements

PCIs

Multiple concurrent data transfers.

Mejora de Comunicación (Switch)

A switch is added to the system topology

PCI Express

PCI Express-based Networking Communications System

PCI Express Layers

The PCI Express Architecture is specified in layers

PCI Express

PCI Express link uses transmit and receive signal pairs

Usa más caminos

Figure 9. A PCI Express Link consists of one or more lanes

PCI Express Link Layer

The Link Layer adds data integrity features

INTEL S5000PAL

Multiprocesador
 Memoria Única
 (Fuertemente Acoplado)

Memoria Distribuida (Debilmente Acoplado) (en Red)

Sistemas Distribuidos o Multicomputadoras

Memorias

UMA
NUMA
NORMA
COMA
cc-NUMA o SMP2

UMA

NUMA/NORMA/ccNUMA

CACHE (bus compartido)

Snoopy - Write-through

Consistencia

00 Limpia

01 Compartida

10 Sucia por este procesador

11 Inválida en este procesador

¿Qué pasa sino se comparte bus?

Repaso Vocabulario: Memoria Cache (TLB)

Sistemas Distribuidos (sirven para ...)

```
Cooperar (MPI, PVM, DSM, etc.)
Compartir (archivos, directorios, etc.)
Servidores (Modelo Cliente/Servidor RPC,)
Clusters → GRID
```

Cluster

Sheldon

Cluster

Nodo

Cluster

GRID

GRID


```
... Y que pasa con Sistemas Operativos?
Monolíticos – Modular
Centralizados – en Red – de Red
Microkernels - Exokernels
Centralizados (UNIX)
en Red (NFS - Novell)
de RED (SOD – basados en Microkernel)
Microkernel (mach – chorus – ameoba)
 (WNT - AIX - IRIX basados en mach)
```

Microkernel

Comparación Paradigmas SO

	Sistemas Operativos Mltiprocesador	Sistemas Operativos en Red	Sistemas Operativos de Red (Distribuido)
Se ve como Uniprocesador Virtual	Si	NO	Si
Igual SO	Si	No	Si
# Copias	1	n	1/n
Comunicación	Memoria	Archivos Compartido	os Mensajes
Protocolos de Red	No	Si	Si
Única cola de Ejecución	Si	No	Si/No

Introducción Arquitectura

- Estructura abstracta con un set fijo de instrucciones
- Determinar componentes, funciones de los componentes y reglas de interacción entre ellos (N. Prasad – 1981)
- Otras ...
- Nos quedamos con una mezcla ...

Introducción Arquitectura

Definimos una Arquitectura por:

- Componentes
- Interconexión entre componentes
- Interacción entre componentes
- Implementación (materiales, con o sin pipeline, etc.)
- Set de instrucciones

Introducción Arquitectura

Interconexión

Procesador de un Bus

Introducción Arquitectura

- Interconexión
 - Procesador MultiBus

Introducción Arquitectura

Unidad de Control

- La unidad de control deberá no sólo decodificar un código de operación, sino también emitir señales (códigos de condición) según se vayan ejecutando las instrucciones (overflow, carry -acarreo-, cero, negativo,etc).
- Es decir la Unidad de Control recibe de la Unidad Aritmético-Lógica señales que indican el estado que ha resultado de la ejecución de la operación indicada.

Arquitectura

 Tomando en cuenta lo anterior se puede hablar de niveles de arquitectura:

- Exoarquitectura: Es la estructura y capacidad funcional de la arquitectura visible al programador
- Endoarquitectura: Las capacidades funcionales de los componentes físicos, las estructuras lógicas de sus interconexiones, las interacciones, los flujos de información, sus controles e implementación.
- Microarquitectura: Que componentes se abran o cierran durante la ejecución de una instrucción.

- Von Neuman (1946/1947)
- Programa Almacenado (Control Flow)
- Datos Alamcenados
- Representación binaria
- Flujo interno paralelo (byte o palabra)
- No paralelismo de operaciones
- Unidades Funcionales

- Unidades Funcionales
 - En el computador se encuentran Unidades Funcionales interrelacionadas que interactúan.
 - Unidades Funcionales:
 - CPU
 - Memoria
 - Sistema E/S

Estructura Bus

La distancia física que separa los componentes puede ser grande de manera tal que sea imposible lograr una transmisión sincrónica de la información entre ambos. La transmisión asincrónica se implementa muy frecuentemente con un mecanismo que se denomina "handshaking" (acuerdo).

Un Bus

Una Transferencia x vez

2 Buses Bus de Bus de Memoria Por Procesador Procesador Bus de Bus de E/S Memoria Canales Colisiones Unica Entrada • (Robo Ciclos al Proc.) MMU Arbitro MMU

Unidades Funcionales

Etapas de una Instrucción

- Generar Dir. Próxima Instrucción
- Buscar Instrucción
- Decodificar Instrucción (genera DPI)
- Generar Dir. Operandos
- Buscar Operandos
- Ejecutar Instrucción
- Almacenar Resultados

Clasificación de Arquitecturas

- Genericamente todos los computadores tendran los componentes funcionales mencionados (CPU, Memoria y E/S) interconectados de alguna forma y la cantidad necesaria.
- Clasificación de Flynn
 - Forma de mostrar la interconexión de los componentes y sus cantidades

Clasificación de Flynn

Computador SISD.

Clasificación de Flynn

- Flujos de Datos e Instrucciones
 - Son los parámetros básicos para la clasificación
- Clasificación
 - SISD (Single Instruction Single Data)
 [Paradigma von Newman o Harvard]
 - SIMD (Single Instruction Multiple Data)
 - MISD (Multiple Instruction Single Data)
 - MIMD (Multiple Instruction Multiple Data)[Paradigma Paralelo]

Clasificación Flynn (Gráficos)

SISD

SIMD

Clasificación Flynn (Gráficos)

MISD

MIMD

Memoria para accesos múltiples

Intercalación de Direcciones

La Memoria Principal se agrupa

Paradigmas

- Control Flow
 - de Von Newman

de Hardvard

- MEMORIA DE INSTRUCCIONES CPU MEMORIA DE DATOS
- Data Flow
 - Dinámica

Introducción Paralelo

- La concurrencia implica paralelismo, simultaneidad y pipelining
- Sucesos Paralelos ocurren en múltiples recursos durante el mismo intervalo de tiempo.
- Sucesos Simultáneos ocurren en el mismo instante.
- Sucesos Pipeline ocurren en lapsos superpuestos.

Niveles de Paralelismo

Multiprogramación, Multiprocesamiento: Estas acciones se toman a nivel de Programa o Trabajo.

Tarea o Procedimientos: Acciones que se toman dentro de un mismo programa, ejecutándose procesos independientes en forma simultánea.

Interinstrucciones: Acciones a nivel de instrucción, o sea, dentro de un mismo proceso o tarea se pueden ejecutar instrucciones independientes en forma simultánea.

Intrainstrucciones: Acciones simultáneas que se pueden realizar para una misma instrucción, por ejemplo vectorización de operaciones escalares dentro de una instrucción compleja tipo DO, FOR, etc.

¿Cuándo se puede ejecutar paralelo?

- Condiciones de Bernstein
- Dada Si Sj instrucciones o conjunto de intrucciones
- 1. R (Si) \cap W (Sj) = (Ø).
- 2. W (Si) \cap R (Sj) = (Ø).
- 3. W (Si) \cap W (Sj) = (Ø).

¿Alcanza?

- \bullet A = a
- B = b
- C = A + B
- D = C

Falta determinar dependencias transitivas Grafos de Presedencia, los veremos en Concurrencia