en.

the optical unit, and each partial medium acts as an optically transparent solid body of the unit.

REMARKS

Submitted Herewith is an English translation of the originally-filed specification and claims. Entry of this preliminary amendment prior to initial examination of the application is respectfully requested.

Should there be any outstanding matters that need to be resolved in the present application, the Examiner is respectfully requested to contact the undersigned at the telephone number of (703) 205-8000, to conduct an interview in an effort to expedite prosecution in connection with the present application.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. § 1.16 or under 37 C.F.R. § 1.17; particularly, extension of time fees.

Respectfully Submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By:

Charles Gorenstein

Reg. No. 29,271

P.O. Box 747

Falls Church, VA 22040-0747

(703) 205-8000

CG/sjl

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE ABSTRACT

The Abstract has been amended as follows:

Abstract

[The] A method for compensating thermal optical effects in the beam path of an arrangement containing optical components uses, for the purpose of optical compensation in the beam path, optical elements [(30a-30d, 41a-41c)] which have different material properties in cooperation. For the purpose of compensation, heating by means of radiation absorption, radial thermal conduction for generating a power-dependent temperature distribution, and/or thermal dispersion for generating a thermal lens are distributed over the different elements.

IN THE CLAIMS

The claims have been amended as follows:

1. (Amended) Method for compensating thermal optical effects in the beam path of an arrangement containing optical components, [characterized in that] wherein optical elements [(13a, 13b, 16; 30a-30d, 41a-41c/39; 50a, 50b, 51; 67a-d, 72)] having at least two different material properties are used in cooperation in the beam path for the purpose of optical compensation, and heating by means of radiation absorption, thermal conduction in order to generate a power-dependent temperature distribution, and thermal dispersion in order to generate a thermal lens are distributed for the purpose of

compensation over the different elements [(13a, 13b, 16; 30a-30d, 41a-41c/39; 50a, 50b, 51; 67a-d, 72)].

- wherein one of the optical elements [(13a, 13b, 16; 30a-30d, 41a-41c/39; 50a, 50b, 51; 67a-d, 72)] is brought as optically transparent compensation medium [(16; 39; 51; 72)] in the beam path [(14; 43; 61, 69)] on both sides into mechanical contact with a likewise optically transparent solid body [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)] as a further element, and the further element [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)] has a prescribed radiation absorption, the radial heating pattern being imprinted by the mechanical contact with the compensation medium [(16; 39; 51; 72)] for compensating thermal optical effects in the other optical components [(5, 7a, 7b; 30a-30d; 50a, 50b; 67a-d)] and/or the adjacent solid bodies [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)].
- 3. (Amended) Method according to Claim 2, in particular for compensating thermal optical effects in a laser resonator, [characterized in that] wherein the further element has a prescribed absorption for the laser radiation in the beam path, preferably for the pumping optical radiation, and in a preferred way the compensation medium [(16; 39; 51; 72)] and the adjacent solid bodies [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)] are cooled to the same temperature at their periphery, preferably in an encompassing fashion, in particular at the same radial distance from the axis [(14; 43; 61, 69)] of the beam path.

- 4. (Amended) Optical unit [(9; 34a-34c; 49; 71a-c),] which can be brought into the beam path [(14; 43; 61; 69)] of an optical arrangement [(1; 29; 47, 70),] for compensating thermal optical effects of optical components [(5, 7a, 7b; 30a-30d; 50a, 50b; 67a-d),] present in the beam path of the arrangement[,] for carrying out the method according to [one of] Claim[s] 1 [to 3], [characterized by] comprising optical elements [(13a, 13b, 16; 30a-30d, 41a-41c; 50a, 50b, 51; 72),] which have at least two different material properties and cooperate effectively for the compensation, in the beam path, and over which elements there can be distributed, preferably with a different effect [(13a, 13b, 16; 30a-30d, 39; 50a, 50b, 51; 72),] for the purpose of compensation, heating by means of radiation absorption, thermal conduction for generating a power-dependent temperature distribution, and thermal dispersion for generating a thermal lens.
- 5. (Amended) Optical unit according to Claim 4, [characterized in that] wherein one of the elements has an optical compensation space [(15; 41a-41c; 49; 71a-c)] which is filled, in particular completely filled, with an optically transparent compensation medium [(16; 39; 51; 72),] and optically transparent solid bodies, [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)] arranged on both sides of the compensation space [(15, 41a-41c),] as further element with radiation absorption, with which solid bodies the compensation medium [(16; 39; 51, 72)] has such a close thermal contact that good heat transfer from the solid bodies [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)] to the compensation medium [(16; 39; 51; 72)] is ensured.

- 6. (Amended) Optical unit [(9; 34a-34c; 49; 71a-c)] according to Claim 5, [characterized in that] wherein the compensation space [(15; 41a-41c)] extends perpendicular to the optical axis [(14; 43)] of the beam path, in particular in a formation which is radially symmetric relative to the axis of the beam path.
- 7. (Amended) Optical unit [(9; 34a-34c; 49; 71a-c)] according to Claim 5 [or 6], [characterized in that] wherein the radial extent of the compensation space [(15; 41a-c)] relative to the optical axis [(14; 43; 61, 69)] of the beam path is adapted to, preferably being selected to be identical to, that of the neighboring solid bodies [(13a, 13b; 30a-30d; 50a, 50b; 67a-d)].
- 8. (Amended) Optical unit [(9; 34a-34c)] according to [one of] Claim[s] 5 [to 7], [characterized in that] wherein the solid bodies [(13a, 13b; 30a-30d)] immediately neighboring the compensation medium [(16; 39)] are held with the aid of a cooling holder [(17; 35)] which preferably completely encompasses the entire envelope of the solid body [(13a, 13b; 30a-30d)] in intimate thermal contact.
- 9. (Amended) Optical unit [(9; 34a-34c)] according to [one of]

 Claim[s] 5 [to 8], [characterized by] wherein a material, which transmits no mechanical shear forces, as compensation medium and an expansion space [(19)] which is connected to the compensation space [(15; 41a-41c)] into which the compensation medium [(16; 39)] can undertake volumetric equalization in the event of thermal loading.

10. (Amended) Optical arrangement [(29; 47; 70)] with an optical unit [(9; 34a-34c; 49; 71a-c)] according to [one of] Claim[s] 3 [to 9] for generating or amplifying radiation, having at least one optically active medium [(30a-30d; 50a, 50b; 67a-d), characterized in that] wherein the active medium is subdivided into partial media [(30a-d; 50a, 50b; 67a-d)], a compensation space [(41a-41c)] filled with a compensation medium [(39; 51, 72)] is arranged as an optical element between the partial media [(30a-30d; 50a, 50b; 67a-d)] and as a further optical element of the optical unit [(34a-34c; 49; 71a-c)], and each partial medium [(30a-30d; 50a, 50b; 67a-d)] acts as an optically transparent solid body of the unit [(34a-34c, 49; 71a-c)].