Université de Savoie Licence 2^eannée

MATH326: Mathématique pour les sciences 3

Fiche nº 1 — Suites Numériques

Exercice 1. On considère la suite réelle $(u_n)_{n\geq 1}$ définie par $u_n=\left(1+\frac{1}{n}\right)^n$ pour tout entier $n\geq 1$.

- 1) Montrer que $(u_n)_{n\geq 1}$ converge et déterminer sa limite.
- 2) Établir que pour tout réel x > -1 on a $\frac{x}{x+1} \le \ln(1+x) \le x$.
- 3) En déduire que la suite $(u_n)_{n\geq 1}$ est croissante.

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par $u_0=2$ et $u_{n+1}=\frac{1}{2}\left(u_n+\frac{2}{u_n}\right)$ pour tout $n\in\mathbb{N}$.

- 1) Montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie et qu'elle est décroissante. Indication : on montrera au préalable que $\sqrt{2} \leq u_n$ pour tout $n \in \mathbb{N}$.
- 2) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\sqrt{2}$.
- 3) Calculer $\frac{u_{n+1} \sqrt{2}}{u_{n+1} + \sqrt{2}}$ en fonction de u_n pour tout $n \in \mathbb{N}$, puis retrouver le résultat précédent.

Exercice 3 (Moyenne arithmético-géométrique). Étant donné des réels $0 < a \le b$, on considère les suites réelles $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ définies par $a_0 = a$, $b_0 = b$ ainsi que $a_{n+1} = \sqrt{a_n b_n}$ et $b_{n+1} = \frac{1}{2}(a_n + b_n)$ pour tout $n \in \mathbb{N}$.

- 1) Montrer que pour tout $n \in \mathbf{N}$ on a $0 < a_n \le b_n$. Indication: on pourra regarder $b_{n+1}^2 - a_{n+1}^2$ pour tout $n \in \mathbf{N}$.
- 2) Établir que $(a_n)_{n\in\mathbb{N}}$ est croissante et que $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- 3) En déduire que ces deux suites sont convergentes.
- 4) Prouver enfin que les limites de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont égales. Indication : on pourra comparer $|b_{n+1} - a_{n+1}|$ à $|b_n - a_n|$ pour tout $n \in \mathbb{N}$.

Exercice 4. Soit (u_n) une suite et (v_n) la suite définie par $v_n = u_{n+1} - u_n$. Vérifier que si (u_n) converge, alors (v_n) converge vers 0. Montrer que la réciproque est fausse en considérant la suite définie par $u_n = \sum_{k=1}^n 1/k$ pour $n \ge 1$.

Exercice 5 (Fondamental). 1) Calculer

$$\sum_{k=0}^{10} \frac{1}{2^k} = 1 + \frac{1}{2} + \dots + \frac{1}{1024}, \quad \text{et}, \quad \sum_{k=3}^{10} 3^k = 3^3 + \dots + 3^{10}.$$

2) Soient x et a deux complexes, $a \neq 0$ et $n \in \mathbb{N}$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = a$ et, pour $n \in \mathbb{N}$, $u_{n+1} = x u_n$.

1

2012/2013

- a) Exprimer u_n en fonction de n.
- b) Calculer $S_n = \sum_{k=0}^n u_k$ et, si $n_0 \le n$, $V_n = \sum_{k=n_0}^n u_k$.
- c) En déduire l'expression de $1 + 2x + 3x^2 + ... + n x^{n-1}$.
- 3) En déduire que $(S_n)_{n\geq 0}$ et $(V_n)_{n\geq 0}$ convergent si et seulement si |x|<1 et préciser la limite dans ce cas.

Exercice 6 (CC1 2011/2012). Soit la suite u_n définie par $u_0 = 2$, $u_1 = 1$ et, pour $n \ge 2$, $u_n = \frac{3u_{n-1} + u_{n-2}}{4}$. On pose, pour tout $n \in \mathbb{N}$, $v_n = u_{n+1} - u_n$.

- 1) Exprimer v_n en fonction de u_n et u_{n-1} . En déduire que la suite $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique dont on précisera la raison.
- 2) Calculer $\sum_{k=0}^{n} v_k$; en déduire que la suite $(u_n)_{n \in \mathbb{N}}$ converge et préciser sa limite.

Exercice 7. On emprunte S euros au taux annuel de t_a ; on rembourse chaque mois x euros pendant N mois.

- 1) Quelle relation y-a-t-il entre le taux mensuel t_m et le taux annuel t_a ?
- 2) On note, pour $n = 0, ..., N, d_n$ la somme due après n remboursements.
 - a) Exprimer d_{n+1} en fonction de t_m et x et d_n .
 - b) Déterminer le montant des échéances x en fonction de t_m , N et S.
- 3) On emprunte 200.000 euros à une banque, sur 20 ans à un taux de 5%. Quelles seront les mensualités, combien aura-t-on payé au total? Vérifier à l'aide d'un site internet.

Exercice 8 (Intégrales de Wallis). On note, pour $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1) Calculer I_0 , I_1 , I_2 .
- 2) Montrer que $I_{n+2} = \frac{n+1}{n+2}I_n$ (on pourra utiliser une intégration par partie), en déduire que

 $I_n \sim I_{n+1}$ quand n tend vers l'infini.

2

- 3) Montrer que (I_n) est une suite convergente.
- 4) Montrer que la suite définie par $U_n=(n+1).I_n.I_{n+1}$ est constante.
- 5) En déduire que $I_n \sim \sqrt{\frac{\pi}{2n}}$.