QUEEN MARY, UNIVERSITY OF LONDON

SCHOOL OF ELECTRONIC ENGINEERING AND COMPUTER SCIENCE

ECS708U: Machine Learning

Assignment 1 (Part 2) - Logistic Regression & Neural Network

Mughees Asif | 180288337

Due: 12 October 2021

1 Logistic Regression

sigmoid.py:

```
# Sigmoid function
output = 1 / (1 + np.exp(-z))
3
```


Figure 1: Sigmoid function

Normalized data:

Cost function and gradient for logistic regression:

```
# Hypothesis calculation
hypothesis = np.dot(X[i], theta)
result = sigmoid(hypothesis)

# Cost formula
cost = (-output * np.log(hypothesis)) - (1 - output) * np.log(1 -
hypothesis)

# Hypothesis calculation
hypothesis = np.dot(X[i], theta)
result = sigmoid(hypothesis)

# Cost formula
cost = (-output * np.log(hypothesis)) - (1 - output) * np.log(1 -
hypothesis)
```

Minimum cost: 0.40545. on iteration #100

Figure 3: Cost against no. of iterations

Minimum cost: 0.40545, on iteration #100

alpha = 1

Final training cost: 0.12380

Minimum training cost: 0.12380, on iteration #100

Final test cost: 0.75521

(a) Logistic regression

(b) Cost against no. of iterations

Non-linear features and overfitting:

Sample #1:

Final training cost: 0.38781

Minimum training cost: 0.38781, on iteration #100

Final test cost: 0.42052

Sample #2:

Final training cost: 0.48428

Minimum training cost: 0.48428, on iteration #100

Final test cost: 0.41373

Sample #3:

Final training cost: 0.22024

Minimum training cost: 0.22024, on iteration #100

Final test cost: 0.58369

Sample #4:

Final training cost: 0.46901

Minimum training cost: 0.46901, on iteration #100

Final test cost: 0.43196

Sample #5:

Final training cost: 0.15906

Minimum training cost: 0.15906, on iteration #100

Final test cost: 0.74446

The training cost is generally similar to the test cost. However, for some instances, both values do diverge significantly indicating a poor fit due to the random shuffling.

Bad generalization:

Final training cost: 0.15906

Minimum training cost: 0.15906, on iteration #100

Final test cost: 0.74446

(c) Cost against no. of iterations

Figure 5: Bad generalisation

Good generalization:

Final training cost: 0.46901

Minimum training cost: 0.46901, on iteration #100

Final test cost: 0.43196

Figure 6: Good generalisation

Random shuffling improves the generalisation capabilities of the model. Fig. 5 displays bad generalisation as the training and test cost values are hugely divergent which indicates a poor fit. Comparatively, Fig. 6 shows good generalisation reinforced by a similar training and test cost.

5D input vector per data point:

```
# Insert extra singleton dimension, to obtain Nx1 shape
           x1 = X[:, 0, None]
2
           x2 = X[:, 1, None]
           # Create the features x1*x2, x1^2 and x2^2
           features = [x1*x2, x1**2, x2**2]
           # Append columns of the new features to the dataset, to the

    dimension of columns (i.e., 1)

           for i in range(len(features)):
               X = np.append(X, features[i], axis=1)
10
11
           # Initialise trainable parameters theta
12
           theta = np.zeros(6)
13
14
```

Final cost: 0.40261

Minimum cost: 0.40261, on iteration #100

Figure 7: New cost against no. of iterations

The error is slightly (0.7%) less when using more features. There are *more* labels while the number of samples has remained *constant* which results in overfitting and poor generalization.

Various train: test splits:

Evidently, the best split is around the 50:30 ratio as the train:test is closer together and the test cost is also low.

Effect of second-order and third-order polynomials:

```
# Insert extra singleton dimension, to obtain Nx1 shape
           x1 = X[:, 0, None]
2
           x2 = X[:, 1, None]
           \# Create the features x1*x2, x1^2, x2^2 and x2^3
           features = [x1*x2, x1**2, x2**2, x2**3]
           # Append columns of the new features to the dataset, to the
6

    dimension of columns (i.e., 1)

           for i in range(len(features)):
               X = np.append(X, features[i], axis=1)
10
11
           # Initialise trainable parameters theta
12
           theta = np.zeros(8)
13
14
```

Increasing the features without changing the data size increases the test cost resulting in overfitting.

XOR problem:

Figure 9: Linear separability¹

The premise of the problem lies in predicting the output of XOR logic when given non-linearly separable inputs for classification in a single perceptron. Logistic regression can not be used on a XOR problem as it is a binary classification method capable of differentiating between one class e.g., sun/rain, pass/fail, and life/death. This would not be suitable to differentiate between two different classes that are present within a XOR decision space as seen in Fig. 9.

¹Chandradevan, R., 2017. Radial Basis Functions Neural Networks — All we need to know. [online] Towards Data Science. Available at: <Link> [Accessed 26 October 2021].

2 Neural Network

Backpropagation:

```
# Step 1. Output deltas are used to update the weights of the output layer
1
       for i in range(self.n_out):
2
           # compute output_deltas : delta_k = (y_k - t_k) * g'(x_k)
3
           output_deltas[i] = (outputs - targets) * sigmoid_derivative(outputs)
      # Step 2. Hidden deltas are used to update the weights of the hidden layer
       for i in range(len(hidden_deltas)):
           # compute hidden_deltas
           delta_weight = 0
           for j in range(len(output_deltas)):
10
               delta_weight = delta_weight + self.w_out[i, j] * output_deltas[j]
11
12
          hidden_deltas[i] = sigmoid_derivative(self.y_hidden[i]) * delta_weight
13
14
       # Step 3. update the weights of the output layer
15
       for i in range(len(self.y_hidden)):
16
           for j in range(len(output_deltas)):
17
               # update the weights of the output layer
               self.w_out[i, j] = self.w_out[i, j] - learning_rate *
19
               → (output_deltas[j] * sigmoid(self.y_hidden[i]))
20
       # Step 4. update the weights of the hidden layer
21
       for i in range(len(inputs)):
22
           for j in range(len(hidden_deltas)):
               # update the weights of the hidden layer
24
               self.w_hidden[i, j] = self.w_hidden[i, j] - learning_rate *
25
               → hidden_deltas[j] * inputs[i]
26
```

Effect of learning rate α :

Figure 10: Cost vs. iterations for various α

An optimum learning rate exists between the interval [0, 1] as the search for the global optima continues within the bounds (highlighted in Fig. 10 by the fluctuating functions above).

Local optima problem:

```
Sample #01 | Target value: 0.00 | Predicted value: 0.48530
Sample #02 | Target value: 1.00 | Predicted value: 0.50067
Sample #03 | Target value: 1.00 | Predicted value: 0.50420
Sample #04 | Target value: 0.00 | Predicted value: 0.51470
```

When the learning rate is low, the predicted value for each target value is $\approx 50\%$ less accurate as the gradient descent does not converge to the global optima fast enough.

Figure 11: Graphical representation of local optima

AND gate:

```
Sample #01 | Target value: 0.00 | Predicted value: 0.00741
Sample #02 | Target value: 0.00 | Predicted value: 0.03110
Sample #03 | Target value: 0.00 | Predicted value: 0.03125
Sample #04 | Target value: 1.00 | Predicted value: 0.95437
Minimum cost: 0.00204, on iteration #10000
```


Figure 12: Cost graph for the AND gate

Logistic regression unit for three classes:

Logistic regression is a generalized linear model which can not capture complex features of the dataset. For multi-class problems, multinomial logistic regression can be used to discern which category the dependent variable belongs to. Since, this problem requires classifying between three species of flowers, a probability distribution generated by executing logistic regression on each class can be obtained. This distribution can then be used to choose the desired class.

Effect of changing the number of hidden neurons:

Figure 13: Changing the number of indicated hidden layers

From Fig. 13, the training and test cost diverge around the 2 neuron mark. The minimum cost reduces as the number of neurons is increased.