Signaux et Systèmes Linéaires

TP No. 1 : Transformations élémentaires des signaux

Préparation

3 ETI – CPE Lyon

2021-2022

Noms, Prénoms:	
Groupe:	
Date:	

Objectifs du TP

- Synthèse numérique de signaux en temps
- Transformations élémentaires de signaux
- Transformée de Fourier de signaux.

Consignes:

- Le répertoire de travail sera exclusivement sur le compte d'un des membres du binôme (changer le répertoire courant de Matlab®). Mais pour certains traitements, on fera appel à des fonctions pré-programmées. Les fonctions utiles sont accessibles sur CPe-campus dans le cours Signaux et Systèmes Linéaires, rubrique Travaux Pratiques. Récupérer les fichiers .m.
- Utiliser la trame de compte-rendu (.doc) fournie en répondant directement aux questions dans les espaces ménagés à cet effet. Insérer dans ce même fichier les courbes obtenues et codes développés. Veiller à associer systématiquement une légende explicite à chaque Figure ou Tableau.
- Exporter le fichier final au format .pdf, unique fichier à déposer sur le dépôt Moodle de CPe-campus.
- **Préparation obligatoire** (une seule par binôme) à rédiger directement sur le compte-rendu et à fournir en début de séance

Réponse:				
	ue vaut la puissance m	oyenne de $s(t)$:		
	urée T est finie?			
lorsque T -	$\rightarrow +\infty$?			
Réponse:				

Signaux et Systèmes Linéaires

TP : Transformations élémentaires des signaux

Manipulation

3 ETI – CPE Lyon

2020-2021

2020-2021
Noms, Prénoms :
Groupe:
Date:
1 Synthèse et transformations du signal porte
On souhaite générer le signal porte suivant :
$p(t) = \sqcap_T(t) = \begin{cases} 1, & -T/2 \le t \le T/2 \\ 0, & t > T/2 \end{cases}$
 Générer un vecteur temps t de N points régulièrement espacés entre −D (inclus) et +D (exclu) A.N. : N = 2000, D = 5 sec. Synthétiser le signal (vecteur) p correspondant à ¬T(t). Fournir le code et représenter p en fonction
$\det t$.
 A.N.: T = 2 sec. 3. En utilisant la fonction TransFourier.m récupérée sur CPe-campus, calculer la transformée de Fourier P(f) de p(t). Représenter sur deux subplot séparés, les parties réelle et imaginaire de P(f en fonction du vecteur fréquence f rendu en sortie de la fonction TransFourier.m.
- $P(f)$ est il complexe? Pourquoi?
Réponse:
- Mesurer l'amplitude à l'origine de $P(f)$ et la comparer à celle de T .
Réponse:
Teeponse.

- Mesurer la période des oscillations (secondaires) de P(f) et comparer à la valeur de T. Caractériser la vitesse de décroissance de l'amplitude de P(f) sur ses maxima locaux. Le signal p(t)

	Réponse:
_	Tracer $\Gamma_p(f)$ la densité spectrale d'énergie de la fonction porte $p(t)$. Mesurer la largeur des lobe primaire et secondaires. Comparer aux valeurs théoriques.
	Réponse:
[Synthétiser le signal $p(t-t_0)$, version translatée de $p(t)$ d'un retard t_0 . A.N. : $t_0 = 2$. Représenter sur une même figure les signaux $p(t)$ et $p(t-t_0)$ en fonction du temps t . Calculer $P_{t_0}(f)$, la transformée de Fourier de $p(t-t_0)$. Représenter dans deux $subplots$ distinct les parties réelles de $P(f)$ et de $P_{t_0}(f)$ superposées, et les parties imaginaires de $P(f)$ et de $P_{t_0}(f)$ superposées.
	Pourquoi le signal $P_{t_0}(f)$ n'est-il pas réel?
	Réponse:
1	Synthétiser le signal $p_a(t)$ correspondant au changement d'échelle de $p(t)$ d'un facteur $a:p_a(t)$ $p(at)$. A.N.: $a=2$.
	Représenter dans deux subplots distincts, $p_a(t)$ superposée à $p(t)$ et $\Gamma_{p_a}(f)$ superposée à $\Gamma_p(f)$.

Que peut on dire des produits $dur\acute{e} \times bande \ \acute{e}quivalente$ des fonctions p(t) et $p_a(t)$ (on assimilera la bande $\acute{e}quivalente$ de p(t) (resp. $p_a(t)$) à la largeur du lobe principal de $\Gamma_p(f)$ (resp. $\Gamma_{p_a}(f)$)? Quel principe ce produit illustre-t-il?

Réponse:			

6. Synthétiser le signal $s(t)=p(t)\times [A\cos(2\pi f_0t)]$. A.N. : $A=3,\ f_0=20$. Afficher s(t) en fonction du temps t.

Réponse:	
à partir de sa	ériquement l'énergie du signal s à partir de sa représentation temporelle $s(t)$, représentations fréquentielle $S(f)$. Comparer les deux valeurs obtenues. Quel at illustre-t-il?
Réponse:	
)'un point d	e vue très général , quel est l'intérêt pour l'analyse des signaux physiques, d'
	e vue très général, quel est l'intérêt pour l'analyse des signaux physiques, d'rectangulaire $\sqcap_T(t)$?
tudié la porte	
tudié la porte	

- Calculer S(f), la transformée de Fourier de s(t). Afficher sur le même diagramme les parties réelle et imaginaire de S(f).