Assignment 4 solutions. (Chapter 2 of Pitman.)

Exercises 2.2.

- 1. 400(1/2) = 200 and $\sqrt{400(1/2)(1/2)} = 10$.
- (a) $\Phi((210 + 1/2 200)/10) \Phi((190 1/2 200)/10) = \Phi(1.05) \Phi(-1.05) = 2\Phi(1.05) 1 = 2(0.8531) 1 = 0.7062.$
- (b) $\Phi((220 + 1/2 200)/10) \Phi((210 1/2 200)/10) = \Phi(2.05) \Phi(0.95) = 0.9798 0.8289 = 0.1509.$
- (c) $\Phi((200 + 1/2 200)/10) \Phi((200 1/2 200)/10) = \Phi(0.05) \Phi(-0.05) = 2\Phi(0.05) 1 = 2(0.5199) 1 = 0.0398.$
- (d) $\Phi((210 + 1/2 200)/10) \Phi((210 1/2 200)/10) = \Phi(1.05) \Phi(0.95) = 0.8531 0.8289 = 0.0242.$
- 4. 300(1/3) = 100 and $\sqrt{300(1/3)(2/3)} = 10\sqrt{2/3}$. $1 \Phi((121 1/2 100)/(10\sqrt{2/3})) = 1 \Phi(2.5107) = 1 0.9940 = 0.0060$.
- 5. It is the probability of 13 or more wins, which is $1 \Phi((13 1/2 25(18/38))/\sqrt{25(18/38)(20/38)}) = 1 \Phi(0.2635) = 1 0.6039 = 0.3961$.
- 9. (a) n = 324, p = 9/10. We want probability of 301 or more successes. That probability is $1 \Phi((301 1/2 324(9/10))/\sqrt{324(9/10)(1/10)}) = 1 \Phi(1.6481) = 1 0.9539 = 0.0461$.
 - (b) Overbooking becomes more likely.
- (c) If people travel in pairs, with each pair have a 90% chance of showing up, then the probability in (a) becomes $1-\Phi((151-1/2-162(9/10))/\sqrt{162(9/10)(1/10)}) = 1-\Phi(1.2309) = 1-0.8909 = 0.1091$.
- 10. 200(1/2) = 100 and $\sqrt{200(1/2)(1/2)} = 10\sqrt{2}/2$. $\Phi((100 + 1/2 100)/(10\sqrt{2}/2)) \Phi((100 1/2 100)/(10\sqrt{2}/2)) = 2\Phi(1/(10\sqrt{2})) 1 = 2\Phi(0.07071) 1 = 2(0.5282) 1 = 0.0564$. This is the probability for one specified student getting exactly 100 heads. For none to get exactly 100 heads, the probability is $(1 0.0564)^{30} = 0.1752$.
- 12. 10000(1/2) = 5000 and $\sqrt{10000(1/2)(1/2)} = 50$. $2/3 = \Phi((5000 + m+1/2-5000)/50) \Phi((5000-m-1/2-5000)/50) = 2\Phi((m+1/2)/50) 1$. Solving, we get $\Phi((m+1/2)/50) = 5/6$. Reading the normal table backwards gives (m+1/2)/50 = 0.967 or m = 47.85. But m is an integer, so m = 48.
- 13. We want $P(|\hat{p}-p|<0.01)\geq 0.95$. We know $\Phi(-z,z)=0.95$ if z=1.96. \hat{p} will belong to the interval $p\pm 1.96\sqrt{p(1-p)/n}$ with probability about 0.95. Hence it will belong to $p\pm 0.98\sqrt{1/n}$ with probability at least 0.95. We want $0.98/\sqrt{n}$ to be about 0.01. So $n=(0.98/0.01)^2=98^2=9604$. Exercises 2.4.
- 5. n = 52 and p = 1/100 so $\mu = 0.52$. Chance of k wins is approximately Poisson(μ). k = 0: $e^{-0.52} = 0.5945$. k = 1: $0.52e^{-0.52} = 0.3092$. k = 2: $(0.52)^2e^{-0.52}/2 = 0.0804$.

- 7. (a) $m = \lfloor (25+1)(1/10) \rfloor = 2$.
- (b) $P(S=2) = {25 \choose 2} (1/10)^2 (9/10)^{23} = 0.2659.$ (c) 25(1/10) = 2.5 and $\sqrt{25(1/10)(9/10)} = 1.5.$ $\Phi((2+1/2-2.5)/1.5) \Phi((2-1/2-2.5)/1.5) = \Phi(0) - \Phi(-0.6667) = 0.5 - (1-0.7465) = 0.2465.$
 - (d) $\mu = 2.5$. $(2.5)^2 e^{-2.5}/2 = 0.2565$.
- (e) n = 2500 and p = 1/10. $m = \lfloor (2500 + 1)(1/10) \rfloor = 250$. The normal approximation is better suited to this case. np = 250 and $\sqrt{np(1-p)} = 15$. $\Phi((250 + 1/2 - 250)/15) - \Phi((250 - 1/2 - 250)/15) = 2\Phi(1/30) - 1 =$ 2(0.5133) - 1 = 0.0266.
- (f) n = 2500 and p = 1/1000. $m = \lfloor (2500 + 1)(1/1000) \rfloor = 2$. The Poisson approximation is better suited to this case. $\mu = 2.5$. Same answer as in (d).