Indian Institute of Technology Guwahati Department of Mathematics

MA 101 - MATHEMATICS-I

Date: 14-SEP-2015 Tutorial Sheet-6 **Time:** 08:00 - 09:00

Linear Algebra

Topics Covered:

Vector spaces, subspace, basis, change-of-basis, linear transformations, matrix of linear transformation, kernel and range of a linear transformation

- 1. In the following examples,
 - (i) find the co-ordinate vectors $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{C}}$ with respect to the given bases \mathcal{B} and \mathcal{C}
 - (ii) Find the change-of-basis matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}$ from \mathcal{B} to \mathcal{C} , and then find $P_{\mathcal{B}\leftarrow\mathcal{C}}$.
 - (iii) Use the answer in (ii) to compute $[v]_{\mathcal{C}}$ from $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{B}}$ from $[v]_{\mathcal{C}}$. Compare with answer in (i):

$$\text{(a)} \ \ v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \right\}, \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\} \text{ in } \mathbb{R}^3.$$

- (b) $v = 1 + x^2$, $\mathcal{B} = \{1, x, x^2\}$, $\mathcal{C} = \{1 + x + x^2, x + x^2, x^2\}$ in $\mathcal{P}_2(R)$.
- 2. In each of the following, find the matrix of T with respect to the standard bases. Is the matrix invertible? If so, find the inverse matrix and hence the inverse linear map of T.
 - (i) $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_1$, $\begin{bmatrix} a \\ b \end{bmatrix} \mapsto a + (a b)x$.
 - (ii) $D: \operatorname{Span}(e^x, xe^x, x^2e^x) \longrightarrow \mathcal{F}$ where D is the differential operator and \mathcal{F} is the space of all real valued functions from \mathbb{R} to \mathbb{R} .
- 3. Let V be a vector space and $T:V\to V$ be a linear transformation such that $T\circ T=I$ and let $v\in V$ be a non-zero vector. Then show that the set $\{v, T(v)\}$ is linearly dependent if and only if $T(v) = \pm v$.
- 4. Let V, W be two vector spaces over \mathbb{R} , and $T: V \longrightarrow W$ be a linear map. Let w_1, \ldots, w_n be linearly independent vectors in W, and let v_1, \ldots, v_n be vectors in V such that $T(v_i) = w_i$. Show that v_1, \ldots, v_n are linearly independent.
- 5. Let V, W be finite dimensional vector spaces over the field \mathbb{F} and $T: V \to W$ be a linear map.
 - (a) Show that

$$rank(T) + nullity(T) = dim(V).$$

- (b) Assume that $\dim V = \dim W$, then show that T is injective if and only if T is surjective.
- (c) If $\dim(V) < \dim(W)$ then show that T is not surjective.
- (d) If $\dim(V) > \dim(W)$ then show that T is not injective.
- 6. Let V be a vector space over a field \mathbb{F} and $T:V\longrightarrow V$ be a linear map such that $T^n=0$ for some $n\in\mathbb{N}$. Show that the linear map $(ID_V - T)$ is one-one and onto, where ID_V is the identity map on V.
- 7. Show that there is no linear transformation $T: \mathbb{R}^3 \longrightarrow \mathcal{P}_2$ for which

$$T\left(\begin{bmatrix}2\\-1\\0\end{bmatrix}\right) = 1 + 2x + x^2, \qquad T\left(\begin{bmatrix}3\\0\\-2\end{bmatrix}\right) = 1 - x^2, \qquad T\left(\begin{bmatrix}0\\3\\-4\end{bmatrix}\right) = 2x + 3x^2.$$

- 8. For each of the maps given below, show that T is a linear transformation. Describe $\ker(T)$ and $\operatorname{range}(T)$ of the following. Hence find the rank or the nullity of the following
 - (a) $T: M_{2\times 2} \longrightarrow \mathbb{R}$ defined by $T(A) = \operatorname{tr}(A)$.

(b)
$$T: \mathcal{P}_3 \longrightarrow \mathbb{R}^2$$
, $T(a+bx+cx^2+dx^3) = \begin{bmatrix} a \\ b-a \\ c-a+b \end{bmatrix}$

(c)
$$T: M_{2\times 2} \longrightarrow M_{2\times 2}$$
 defined by $T\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$.

(d)
$$T: M_{2\times 2} \longrightarrow \mathbb{R}^2$$
 defined by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-b \\ c-d \end{bmatrix}$.

(e)
$$T: \mathcal{P}_2 \longrightarrow \mathbb{R}^2$$
 defined by $T(p(x)) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}$.

9. Let V be vector space and $T: V \to V$ be a linear transformation. Suppose dim V = n. If there exists a vector $x \in V$ such that $T^n(x) = 0$ but $T^{n-1}(x) \neq 0$, then show that the set $\{x, T(x), \ldots, T^{n-1}(x)\}$ is a basis for V. Also, find the matrix representation of T with respect to this basis.

Practice Problems

1. If \mathcal{B} and \mathcal{C} are bases for \mathbb{R}^3 such that the change-of-basis matrix from \mathcal{B} to \mathcal{C} is given by $P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$.

If
$$C = \left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \begin{bmatrix} 1\\2\\0 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
, find \mathcal{B} .

- 2. Let $T: \mathbb{R}^2 \longrightarrow \mathcal{P}_2(\mathbb{R})$ be a linear map for which $T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = 1 + 2x + x^2$ and $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 3 + 4x^2$. Find $T\left(\begin{bmatrix}3\\2\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}a\\b\end{bmatrix}\right)$.
- 3. Find the matrix [S], [T] and $[S \circ T]$ with respect to the standard bases and then verify that $[S \circ T] = [S][T]$, where

$$T: \mathbb{R}^2 \longrightarrow \mathcal{P}_2, \qquad \begin{bmatrix} a \\ b \end{bmatrix} \mapsto a + (a - b)x + bx^2,$$

 $S: \mathcal{P}_2 \longrightarrow \mathcal{P}_1, \qquad a + bx + cx^2 \mapsto (3a + 2b + c) + (a + b)x.$

- 4. Show that a linear map $T: V \longrightarrow W$ is uniquely determined by its values on the elements of a basis of V.
- 5. Let W be a subspace of a finite dimensional vector space V. Show that W is a finite dimensional vector space and dim $W \leq \dim V$.
- 6. Let \mathcal{B} be a set of vectors in a vector space V with the property that every vector in V is a unique linear combination of vectors in \mathcal{B} . Prove that \mathcal{B} is a basis for V.
- 7. Let V and W be vector spaces over \mathbb{R} . Prove that the set $\mathscr{L}(V,W)$ of all linear transformations forms a vector space over \mathbb{R} , with the vector addition and scalar multiplication as defined over \mathscr{F} , the space of functions from \mathbb{R} to \mathbb{R} .
- 8. Let W_1 and W_2 be two subspaces of a finite dimensional vector space V. Show that

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$