Chapter 7 Statistical Estimation and Sampling Distributions

- 7.1 Point Estimates
- 7.2 Properties of Point Estimates
- 7.3 Sampling Distributions
- 7.4 Constructing Parameter Estimates

7.1 Point Estimates

7.1.1 Parameters

- Parameters
 - In statistical inference, the term **parameter** is used to denote a quantity θ , say, that determines the shape of an unknown probability distribution.
 - For example, mean, variance, or a particular quantile of the probability distribution
 - When parameters are unknown, one of the goals of statistical inference is to estimate them.

7.1.2 Statistics

- Statistics
 - Is a function of a random sample. For example, sample mean, sample variance, or a particular sample quantile.
 - Statistics are random variables whose observed values can be calculated from a set of observed data.

7.1.3 Estimation

- Estimation
 - A procedure of "guessing" properties of the population from which data are collected.
 - A point estimate of an unknown parameter is a statistic $\hat{\theta}$ that represents a "best guess" at the value of θ .

- **Example 1** (Machine breakdowns)
 - How to estimate
 P(machine breakdown due to operator misuse) ?
- Example 43 (Rolling mill scrap)
 - How to estimate the mean and variance of the probability distribution of % scrap?

7.2 Properties of Point Estimates

7.2.1. Unbiased Estimates

- Definitions
 - A point estimate $\hat{\theta}$ for a parameter θ is said to be unbiased if

$$E(\hat{\theta}) = \theta.$$

- If a point estimate is not unbiased, then its bias is defined to be

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta.$$

7.2.1. Unbiased Estimates

- Point estimate of a population mean
- Let X_1, \dots, X_n be a random sample from a distribution with mean μ . Then the sample mean \overline{X} is an unbiased estimate of μ .

_

• Point estimate of a population variance Let X_1, \dots, X_n be a random sample from a distribution with variance σ^2 . Then the sample variance S^2 is an unbiased estimate of σ^2 .

Proof of $E(S^2) = \sigma^2$

$$\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{n} ((X_{i} - \mu) - (\overline{X} - \mu))^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2(\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu) + n(\overline{X} - \mu)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}$$

$$note \ E(X_{i}) = \mu, \ E((X_{i} - \mu)^{2}) = Var(X_{i}) = \sigma^{2}$$

$$E(\overline{X}) = \mu, \ E((\overline{X} - \mu)^{2}) = Var(\overline{X}) = \frac{\sigma^{2}}{n}$$

$$E(S^{2}) = \frac{1}{n-1} E\left(\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right) = \frac{1}{n-1} E\left(\sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}\right)$$
$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \sigma^{2} - n\left(\frac{\sigma^{2}}{n}\right)\right) = \sigma^{2}$$

7.2.2. Minimum Variance Estimates

- An unbiased point estimate whose variance is smaller than any other unbiased point estimate: minimum variance unbiased estimate (MVUE)
- Relative efficiency The relative efficiency of an unbiased point estimate $\hat{\theta}_1$ to another unbiased estimate $\hat{\theta}_2$ is $\frac{\mathrm{Var}(\hat{\theta}_2)}{\mathrm{Var}(\hat{\theta}_1)}$.
- Mean squared error (MSE)

•
$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2$$
.

•
$$MSE(\hat{\theta}) = Var(\hat{\theta}) + bias^2(\hat{\theta}).$$

7.3 Sampling Distribution

7.3.1 Sample Proportion

- If $X \sim B(n, p)$, then the sample proportion $\hat{p} = \frac{X}{n}$ has approximately the distribution $N(p, \frac{p(1-p)}{n})$.
- The standard error of \hat{p} is defined as

s. e.
$$(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$$
.

When n is large, s.e. (\hat{p}) is approximated by $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

7.3.2 Sample Mean

• Distribution of Sample Mean Let X_1, \dots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then the Central Limit Theorem says that $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ for large n.

- Standard error of the sample mean
 - The standard error of the sample mean is defined as s. e. $(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.
 - When σ is not known and n is large, the standard error is replaced with $\frac{s}{\sqrt{n}}$ as an approximate value.

7.3.3 Sample Variance

- Distribution of Sample Variance
- Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$. Then $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$.

• Fact 7.3.3a Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$. Then, \bar{X} and S^2 are independent.

• t-statistic

Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$. Then

$$T = \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}$$

7.4 Constructing Parameter Estimates

7.4.1 The Method of Moments

 Method of moments point estimate(MME) for One Parameter

If a data set of observations x_1, \dots, x_n from a probability distribution that depends on one parameter θ , then the MME $\hat{\theta}$ of θ is found by solving the equation

$$\overline{x} = E(X).$$

Method of moments point estimates for Two Parameters

The method of moments point estimates (MME) of the two unknown parameters are found by solving

$$\overline{x} = E(X)$$
 and $s^2 = Var(X)$

Examples

- (1) Given a random sample of size n from $Exp'l(\lambda)$, find the MME of λ .
- (2) Given a random sample of size n from $N(\mu, \sigma^2)$, find the MME's of μ and σ^2 .
- (3) Suppose that the data values, 2.0, 2.4, 3.1, 3.9, 4.5, 4.8, 5.7, 9.9, are obtained from $U(0,\theta)$. Find the MME $\hat{\theta}$ of θ .

$$\bar{x} = 4.5375$$
 and $E(X) = \frac{\theta}{2}$. So, $\hat{\theta} = 9.075$.

7.4.2 Maximum Likelihood Estimates

Maximum Likelihood Estimate for One Parameter

Let x_1, \dots, x_n be a data set observed from a distribution $f(x; \theta)$ depending upon one unknown parameter θ .

Then the maximum likelihood estimate(MLE) $\hat{\theta}$ of the parameter is the value of θ at which the likelihood function below is maximized:

$$L(\theta) = f(x_1; \theta) \times \cdots \times f(x_n; \theta).$$

Example

Let x_1, \dots, x_n be Bernoulli observations with parameter p.

Then the MLE of p is
$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{n}$$
.

Maximum Likelihood Estimate for Two Parameters

For two unknown parameters, θ_1 and θ_2 , the MLE's of them are the values of the parameters at which the likelihood function is maximized.

Example

Suppose we have a data set of size n from $N(\mu, \sigma^2)$. Then the MLE's of μ and σ^2 are obtained as

$$\hat{\mu} = \overline{x}$$
 and $\widehat{\sigma^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$.

7.4.3 Examples

Example 27. Glass Sheet Flaws

- At a glass manufacturing company, 30 randomly selected sheets of glass are inspected. If the distribution of the number of flaws per sheet is Poisson with parameter λ , how should λ be estimated?
- MME

$$E(X) = \lambda$$
. So $\hat{\lambda}_{MM} = \overline{x}$.

• MLE

$$\hat{\lambda}_{ML} = \overline{x}.$$

Example 26: Fish Tagging and Recapture

Suppose a fisherman wants to estimate the fish stock N of a lake and that 34 fish have been tagged and released back into the lake.

If, over a period of time, the fisherman catches 50 fish and 9 of them are tagged, then an intuitive estimate of the total number of fish is

$$\widehat{N} = 34 \times \frac{50}{9} \approx 189.$$

This is under the assumption that the proportion of the tagged fish is roughly equal to the proportion of the fisherman's catch that is tagged. • Under the assumption that all the fish are equally likely to be caught, the distribution of the number of the tagged fish X in the fisherman's catch of 50 fish is Hypergeometric with r = 34, n = 50 and N unknown.

• To find the MME of N:

$$E(X) = n \frac{r}{N} = 9$$
. So $\hat{N}_{MM} = 50 \times \frac{34}{9} = 188.89$.

MME is computationally easy to obtain for this distribution.

• Example 36: Bee Colonies

The data of size 13 on the proportion of worker bees that leave a colony with a queen bee is the set of 0.28, 0.32, 0.09, 0.35, 0.45, 0.41, 0.06, 0.16, 0.16, 0.46, 0.35, 0.29, 0.31.

If the entomologist wishes to model this proportion with a Beta distribution, how should the parameters be estimated?

• The Beta pdf:

$$f(x; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, \ 0 \le x \le 1, \ a, b > 0.$$

$$E(X) = \frac{a}{a+b}. \quad Var(X) = \frac{ab}{(a+b+1)(a+b)^2}.$$

- $\overline{x} = 0.3007$. $s^2 = 0.01966$.
- The MME's are obtained by solving

$$\frac{a}{a+b} = \overline{x} \quad \text{and} \quad \frac{ab}{(a+b+1)(a+b)^2} = s^2.$$

- $\hat{a} = 2.92$, $\hat{b} = 6.78$.
- The MME's are computationally easier to obtain than the MLE's.

MLE for $U(0, \Theta)$

 For some distribution, the MLE may not be found by differentiation. You have to look at the curve of the likelihood function itself.

• The MLE of $\theta = max\{X_1, \dots, X_n\}$.

Chapter Summary

- 7.1 Point Estimates
- 7.2 Properties of Point Estimates
 Mean squared error
- 7.3 Sampling Distributions
- 7.4 Constructing Parameter Estimates
 Method of Moments
 Method of Maximum Likelihood