Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science End Sem (Odd) Examination Dec-2019

BC3CO12 Physics-III Programme: B.Sc. (CS) Branch/Specialisation: Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

		should be written in full instea	ŕ	•	15 01	
Q.1	i.	Haidinge's fringes are-			1	
		(a) Newton's ring	(b) Michelson	fringes		
		(c) Both (a) and (b)	(c) None of the	hese		
	ii.	In Newton's ring experiment	are formed by-	1		
		(a) Diffraction	(b) Polarisatio	on		
		(c) Division of Amplitude	` '			
	iii.	1 1 1			1	
		(a) $n^{3/2}$ (b) n	(c) $n^{1/2}$	(d) $n^{5/2}$		
	iv.	Diffraction is possible –			1	
		(a) Only in mechanical waves(b) Only in electromagnetic waves				
		(c) Only in visible waves				
		(d) Both (a) and (b)				
	v.	For calcite crystal –			1	
		(a) $v_0 < v_e$ (b) $v_0 = v_e$		_		
	vi.	The sunlight is incident on a	a glass plate of	refractive index $\mu = \sqrt{3}$,	1	
		the reflected wave is completely plane polarized for the angle of				
		incidence is				
		(a) 45° (b) 57°	` '	(d) 68°		
	vii.	The specific rotation of subst	tance –		1	
		(a) Depends on wavelength	(b) Does not d	lepend on wavelength		
		(c) Depends on the intensity	(d) Is always	equal to critical angle		
				Р.Т	.O.	

Can interference be seen in the transmitted white light from the air 3

Describe Michelson's interferometer. How will you use it to 7

Explain the theory and condition of interference and derive the 7

Distinguish between the Fresnel and Fraunhofer types of diffraction 7 patterns. Investigate theoretically the Fraunhofer diffraction pattern

Described the construction and principle of a plane transmission 7

Explain polarization of electromagnetic waves. What conclusion is 3

Describe the phenomenon of double refraction in uniaxial crystals. 7

Calculate the least width that the grating must have to resolve two 4

components of sodium D₁ (5890 Å) and D₂ (5896 Å) lines in the

grating and explain the formation of spectrum by it. How will you

film formed between the two glass plates? Explain your answer with

demonstrate that the sodium D line is really double?

Explain the Fresnel half period zone in brief.

determine the wave length of light using it?

obtained about the nature of light by this phenomenon?

How is double refraction explained by Huygen's theory?

second order, the grating having 800 lines per cm.

Q.2 i.

OR

Q.3

OR

Q.4 i.

Q.5 i.

OR

iii.

i.

iii.

ii.

iii.

the reason.

expression of fringe width.

State and prove Malus law.

due to double slit.

3

5

5

Marking Scheme BC3CO12 Physics-III

Q.1	i.	Haidinge's fringes are-		1	
		(b) Michelson fringes			
	ii. In Newton's ring experiment, circular rings are formed			1	
	:::	(c) Division of Amplitude			
	iii. The Radii of n th half period zones are proportional to- (c) n ^{1/2}			1	
	iv.				
(d) Both (a) and (b)				1	
	v.	For calcite crystal –			
		(a) $v_0 < v_e$			
	vi.	The sunlight is incident on a glass plate of refractive index $\mu = \sqrt{3}$,			
		the reflected wave is completely plane polarized for the angle of			
		incidence is	C		
		(c) 60°			
	vii.	The specific rotation of substance –			
(a) Depends on wavelength					
	viii. Resolving power of a prism is-			1	
(c) $t(d\mu/d\lambda)$ ix. The true relation between the coherence length L and cohe time τ is-					
			h L and coherence	1	
		(b) $L = \tau C$			
	х.	1 1		1	
		(a) Third power of frequency			
Q.2	i.	Diagram	1 mark	3	
V		Reason	2 marks		
	ii.	Description of Michelson's interferometer	3 marks	7	
		Diagram	2 marks		
		Application to determine the sodium D lines	2 marks		
OR	iii.	Theory of interference	2 marks	7	
		Condition of interference	1 mark		
		Derivation of the expression of fringe width	4 marks		
Q.3	i.	Fresnel half period zone		3	

	ii. Difference b/w the Fresnel and Fraunhofer diffraction		ion	7	
			3 marks		
		Theory of Fraunhofer diffraction pattern due to do	uble slit		
			4 marks		
OR	iii.	Construction of a plane transmission grating	2 marks	7	
		Principle of a plane transmission grating	2 marks		
		Formation of spectrum by grating	1 mark		
		Determine the wave length of light using grating	2 marks		
Q.4	i.	Definition of polarization	1 mark	3	
		Explanation of the nature of light	2 marks		
	ii.	Statement of Malus law	2 marks	7	
		Proof of law	5 marks		
OR	iii.	Description of double refraction in uniaxial crystal	s 3 marks	7	
		Explanation by Huygen's theory	4 marks		
Q.5 i.	i.	Calculate the least width that the grating		4	
		Stepwise marking			
	ii.	Construction of high power microscope	3 marks	6	
		Relation between its magnifying and resolving pov			
			3 marks	6	
OR	iii.	Difference b/w the resolving power telescope, grating and prism			
		1 mark for each difference	(1 mark * 6)		
Q.6		Attempt any two:			
	i.	Characteristics of Laser light	2.5 marks	5	
		Applications of Laser light	2.5 marks		
	ii.	Einstein prediction	2.5 marks	5	
		Einstein coefficients	2.5 marks		
	iii.	Construction of He-Ne Laser	2.5 marks	5	
		Working of He-Ne Laser	2.5 marks		
