Probability

Sean Hellingman ©

Introduction to Statistical Data Analysis (ADSC1000) shellingman@tru.ca

Fall 2024

Topics

- Introduction
- 3 Basic Concepts of Probability
- Conditional Probability

5 Exercises and References

Introduction

- Probability quantifies the uncertainty that we encounter all around us.
- It is an important element of analytical modelling and decision-making.
- We use probability everywhere:
 - Predicting weather conditions.
 - Modelling the outcomes of medical trials.
 - Strategic business decisions (product launches).
 - Probabilities of winning hands in card games.
 - Determining staffing levels.

Assigning Probability

- In order to assign probability to these events we need a fundamental understanding of probability concepts and probability distributions.
- Basic concepts of probability.
- Random variables and their probability distributions.
- Discrete & Continuous probability distributions.

Basic Concepts & Definitions

- Probabilities are expressed as values between 0 and 1.
 - Often they are converted to percentages.
- An **experiment** is a process that results in some outcome.
 - Examples: rolling dice, observing the weather, or market research study.
- The collection of all possible outcomes of an experiment is called a sample space.

- Identify the sample spaces for the following experiments:
 - Flipping two fair coins
 - Rolling a six sided die.
 - Flipping one fair coin and rolling one six sided die.

Defining probability

- We can define the probability in three ways:
 - The outcomes are known and we can use theory to determine probability. (Classical definition)
 - Theoretical outcomes of rolling dice or flipping coins.
 - Relative frequency definition based on empirical data.
 - Probabilities may change with more data or changing conditions.
 - 3 Subjective definition is based on personal judgement.
 - I give Manchester City an 80% chance of winning the Premier League this season.

- Use the *classical definition* to determine the probabilities of the following events:
 - Flipping two fair coins and both resulting in heads.
 - Landing on a 5 when rolling a six sided die.
 - flipping one fair coin and rolling one six sided die and landing on a heads and five.

• Without giving consideration to other potentially important information, estimate the probability that Real Madrid (RMA) will win (W) their next match using *relative frequency*.

Match	Score	Result
RMA V SEV	3:1	W
RMA V GIR	1:1	D
RAY V RMA	3:2	L
RMA V CAD	2:1	W
VLL V RMA	0:2	W

Rules and Formulas

- The probability associated with any outcome O_i must be between 0 and 1.
- The sum of the probabilities of all possible outcomes must be 1.
- More formally: Assume a sample space with m elements $O_1, O_2, ..., O_m$, then:

$$0 \le P(O_i) \le 1 \tag{1}$$

$$P(O_1) + P(O_2) + ... + P(O_m) = 1$$
 (2)

• where $P(O_i)$ is the probability of event O_i .

Rule I

 The probability of any event is the sum of the probabilities of the outcomes that compose that event.

- Example:
 - What is the probability that throwing two dice will result in a total score of 10 or 5?
 - 3/36 + 4/36 = 7/36.

Rule II

- The **compliment** of an event A, denoted as A^c is all the outcomes in the sample space that are not in A.
- The probability of the complement of any event A is $P(A^c) = 1 P(A)$.
- Example:
 - What is the probability that throwing two dice will not result in a total score of 10 or 5?
 - 1 7/36 = 29/36.

Rule III

- If two events are mutually exclusive they have no outcomes in common.
- If events A and B are mutually exclusive then $P(A \cup B) = P(A) + P(B)$.
 - May also be written as P(A or B).
- The events in the dice example are mutually exclusive.

Rule IV

- If two events are **not** mutually exclusive then adding their probabilities would lead to double counting.
- If events A and B are not mutually exclusive then $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

- Let $A = \{2, 11\}$ and $B = \{\text{Even number}\}\$ for the sum when throwing two dice.
 - Are A and B mutually exclusive. Why or why not?
 - Calculate $P(A \cup B)$.

Conditional Probability

- **Conditional Probability** is the probability of event *A*, given that another event *B* is known to be true.
- The probability of A given B: P(A|B)
- More formally, the conditional probability of an event A given that event B is known to have occurred is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$
 (3)

Suppose n=100 dogs were given three types of dog food, the first food they ate was recorded. The dogs were categorised in two ways, *large* or *small*. The following cross-tabulation was created:

Dog Size	Food 1	Food 2	Food 3	Total
Small Dog	25	17	21	63
Large Dog	9	6	22	37
Total	34	23	43	100

- What is the probability that a Small Dog ate Food 2 first?
- What is the probability that a Large Dog ate Food 3 first?

Conditional Probability

• The conditional probability equation can be rearranged:

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A). \tag{4}$$

- What is the probability of ending up with *pocket aces* in a game of Texas Hold 'Em poker?
- Hint: $P(A \cap B) = P(B|A)P(A)$

Independence

- Two events are said to be **independent** if the occurrence of one does not affect the probability of the occurrence of the other.
- Formally:

$$P(A|B) = P(A) \tag{5}$$

and

$$P(A \cap B) = P(A)P(B) = P(B)P(A). \tag{6}$$

• Given you have rolled a 5 on one die, what is the probability that you roll a 4 on the second die?

- Identify the sample spaces for the following experiments:
 - Flipping a fair coin and rolling an eight sided die.
 - Flipping two fair coins and rolling one six sided die.

- Calculate the probabilities for the following events:
 - Flipping a heads on a fair coin and rolling a 6 or a 2 on an eight sided die.
 - Flipping two heads on two fair coins and rolling a 3 or a 4 on one six sided die.

• From example 3, use *Rule II* to determine the probability that Real Madrid (RMA) does **not** win their next match $P(W^c)$.

- Let $A = \{ \text{Red Cards} \}$ and $B = \{ \text{Face Cards} \}$ when drawing cards from a standard 52 card deck.
 - Are A and B mutually exclusive? Why?
 - Calculate $P(A \cup B)$.
- Let $A = \{ \text{Clubs } \clubsuit \}$ and $B = \{ \text{Red Cards} \}$ when drawing cards from a standard 52 card deck.
 - Are A and B mutually exclusive? Why?
 - Calculate $P(A \cup B)$.

Suppose n = 50 cats were given three toys, the first toy they played with was recorded. The cats were categorised in two ways, *long haired* or *short haired*. The following cross-tabulation was created:

Cat	Ball	Bell	Mouse	Total
Long Haired	5	7	10	22
Short Haired	9	6	13	26
Total	14	13	23	100

- What is the probability that any cat chose the mouse?
- What is the probability that a cat has long hair?
- What is the probability that a Long Haired cat choose the mouse?
- What is the probability that a Short Haired cat did not choose the mouse?

 What is the probability of drawing two Clubs ♣ in a row from a well shuffled standard 52 card deck (without replacement)?

- Are the following events independent? (Why or why not?)
 - Probability of rolling a 6 on a die and drawing a 7 from a deck of cards.
 - The probability that the second card drawn (without replacement) from a deck of cards is red.
 - The probability of a Long haired Cat and the probability of a mouse being selected.

References & Resources

- Evans, J. R., Olson, D. L., & Olson, D. L. (2007). Statistics, data analysis, and decision modeling. Upper Saddle River, NJ: Pearson/Prentice Hall.
- ② Devore, J. L., Berk, K. N., & Carlton, M. A. (2012). *Modern mathematical statistics with applications (Second Edition)*. New York: Springer.