Project 1 Report

Group member

Trang Ngo trangn0102@csu.fullerton.edu

This is my submission for Project 1: Alternating Disks

Tuffix Screenshot:

Pseudocode

Psudocode	
Lawnmower algorithms	
def lawn mower (disk) disk= total length of disk // 1 Swap-count = 0 for i from 0 to \(\frac{n+1}{2} \) do // \(\frac{n+1}{2} - 0 \) + 1 = for a from 0 to \(2n - 2 \) do // \(2n - 2 - 0 + 1 = 2n - 1 \) if (disk at index a == light and disk at index a+1 ==dark) // \(\frac{n}{2} - 0 + 1 = 2n - 1 \) increment of swap-count by 1 // 1 endfor // 0 for b from 2n-1 down to 1 do // \(\frac{(1-(2n-1)+1)}{2} + 1 \) = \(-1(1-(2n-1)+1) = 2n-2 + 1 = 2n - 1 \) if (disk at index b == dark and disk at index b-1 == light) // 3	}
swap (disk at index b, disk at index b-1) // 1 increment of swap-count by 1 //1	
endif // o endfor // o	
endfor //o	
return lawn mower of the disk and swap-count 10	

Step count
$$SC = |+| + \left(\frac{n+1}{2} + 1\right) \times \left[(2n-1) \times (3 + \max(1,1)] + \left[(2n-1) \times 3 + \max(1,1)\right] + \left[(2n-1) \times 4\right] + \left[(2n-1) \times 4\right]$$

$$= 2 + \left(\frac{n+1}{2} + \frac{2}{2}\right) \times \left[(2n-1) \times 4\right] + \left[(2n-1) \times 4\right]$$

$$= 2 + \frac{n+3}{2} \times \left[8n-4 + 8n-4\right]$$

$$= 2 + \frac{n+3}{2} \times \left[16n - 8\right]$$

$$= 2 + \frac{(16n^2 - 8n + 48n - 24)}{2}$$

$$= 2 + \frac{(16n^2 + 40n - 24)}{2}$$

$$= 2 + \frac{8n^2 + 20n - 12}{2}$$

$$= 8n^2 + 20n - 10$$
Time complexity = 0 (n²)

	$Proof 1 : 8n^2 + 20n - 10 \in O(n^2)$
	By definition, you need to find $c>0$ and $n_0 \ge 0$ such that $8n^2 + 20n - 10 \le c * n^2$
	Choose $c = 8 + 20 + -10 = 38$ So $8n^2 + 20n - 10 \le 38n^2 + 4n > n_6$ and $n_0 = 0$
	Proof 2: $8n^2 + 20n - 10 \in O(n^2)$ by limit theorem
	$\lim_{n \to \infty} \frac{8n^2 + 20n - 10}{n^2}$
-	$\lim_{N\to\infty} \frac{(8n^2 + 20n - 10)^r}{(n^2)^r}$
-	lim 16n + 20 n-2
-	$\lim_{n\to\infty} \frac{(16n+20)'}{(2n)'}$
	lim 16 \alpha en
_	8 > 0 and a constant
	(onclude $8n^2 + 20n - 10 \in O(n^2)$

```
Alternate algorithm
def alterate (disk)
 disk = total length of disk // 1
Swap _ count = 0 // 1
for 1 = 0 to n // (n-0)+1 = n+1
   if (i / 2 == 0) do // 2
   11 Stort with leftmost disk
     for a from 0 to 2n-1 skip 2 do /((2n-1-0)+1)= 2n-1+1
         if (disk at index a == light and disk at index a+1 == dark) //3
swap(disk at index a, disk at index a+1) //1
           increment of swap count by 1
        endif 10
     endfor 10
   2/56
     Il start with second left most disk for b from 1 to 2n-2 skip 2 do \sqrt{(\frac{2n-2-1}{2}+1)} = \frac{2n-3}{2}+1
        if (disk at index b == light and disk at index b+1==dark) 1/3
           Swap ( disk at index b, disk at index 6+1) //1
           increment of swap-count by 1 // 1
         endif 110
     end-for 110
endfor 10
 return afternate of the disk and Swap-Count //o
```

Step Count

S.C = 1+1 + (n+1)*[2 + max
$$\left(\frac{2n-1}{2} + 1\right)^* (3+ max(1,1))$$
,

$$\left(\frac{2n-3}{2} + 1\right)^* (3+ max(1,1))$$

$$= 2 + (n+1)^* [2 + max $\left(\frac{2n-1}{2} + \frac{2}{2}\right)^* + \frac{2n-3}{2} + \frac{2}{2}^* + \frac{2$$$

	$4n^2 + 8n + 6 \in O(n^2)$ 1, you need to find $c > 0$ and $n_0 \ge 0$ such that
4n2 +	$8n + 6 \leq C * n^2$
Choose c	$= [41 + 181 + [6] = 18 + 8n + 6 < 18n2 \forall n \geq n6$
P1007 2 : 1	$4n^2 + 8n + 6 \in O(n^2)$ by $limit$ theorem
lim	4n2 +8n+b
V-300	n²
mil = ∞en	$\frac{(4n^2+8n+b)}{(2n)}$
ηJω	
_ lim	8n + 8
_ <i>U→∞</i>	2n
- lim	(8n + 8)
η → 200	(2n)
lim	2
V → ∞	
_ 4 %	0 and a constant
Conclud	$a + 4n^2 + 8n + 6 \in O(n^2)$