Problem 1

If A has row 1 + row 2 = row 3, show that A is not invertible:

- 1. Explain why Ax = (1,0,0) cannot have a solution.
- 2. Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b?
- 3. What happens to row 3 in elimination?

Problem 2

Change I into A⁻¹ as you reduce A to I (by row operations).

$$[A \ I] = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 1 & 0 \end{bmatrix} \text{ and } [A \ I] = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 3 & 9 & 1 & 0 \end{bmatrix}$$

Problem 3

Find A^{-1} and B^{-1} (if they exist) by elimination on [$A\ I$] and [$B\ I$]:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 2 \\ -1 & -1 & 2 \end{bmatrix}$$

Problem 4

For which three numbers C is this matrix not invertible, and why not?

$$\begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}$$

Problem 5

Suppose the matrices P and Q have the same rows as I but in any order. They are "permutation matrices". Show that P - Q is singular by solving (P - Q)x = 0.

Problem 6

A is a 4 by 4 matrix with 1's on the diagonal and -a, -b, -c on the diagonal above. Find A⁻¹ for this bidiagonal matrix.

Problem 7

What three elimination matrices E_{21} , E_{31} , E_{32} put A into its upper triangular form $E_{32}E_{31}E_{21}A$ = U? Multiply by E_{32}^{-1} , E_{31}^{-1} , E_{21}^{-1} to factor A into L times U:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$

Problem 8

What are L and D (the diagonal pivot matrix) for this matrix A? What is U in A = LU and what is the new U in A = LDU?

Already Triangular,
$$A = \begin{bmatrix} 2 & 4 & 8 \\ 0 & 3 & 9 \\ 0 & 0 & 7 \end{bmatrix}$$

Problem 9

Compute L and U for the symmetric matrix A:

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

Find four conditions on a, b, c, d to get A = LU with four pivots.

Problem 10

Factor these symmetric, matrices into $A = LDL^{T}$. The pivot matrix D is diagonal:

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$
 and
$$A = \begin{bmatrix} 1 & b \\ b & c \end{bmatrix}$$
 and
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Problem 11

Find a 4 by 4 permutation matrix (call it A) that needs 3 row exchanges to reach the end of elimination. For this matrix, what are its factors P, L, and U?