

Theory of Computation TY BTech

CONTEXT FREE GRAMMAR(CFG)

PUSH DOWN AUTOMATA(PDA)

Course Objectives & Course Outcomes

Course Objectives:

- To understand the basics of automata theory and its operations.
- To understand problem classification and problem solving by machines.
- To study computing machines by describing, classifying and comparing different types of computational models.
- To understand the fundamentals of decidability and computational complexity.

Course Outcomes:

- After completion of this course students will be able:
- To construct finite state machines to solve problems in computing.
- To write mathematical expressions and syntax verification for the formal languages.
- To construct and analyze Push Down Automata and Turing Machine for formal languages.
- To express the understanding of decidability and complexity.

Text Books & Reference Books

Text Books

- John C. Martin, Introduction to Language and Theory of Computation, TMH, 3rdEdition, ISBN: 978-0-07-066048-9.
- Vivek Kulkarni, Theory of Computation, Oxford University Press, ISBN-13: 978-0-19-808458-7.

Reference Books

- K.L.P Mishra, N. Chandrasekaran, Theory of Computer Science (Automata, Languages and Computation), Prentice Hall India, 2nd Edition.
- Michael Sipser, Introduction to the Theory of Computation, CENGAGE Learning, 3rd Edition, ISBN:13:978-81-315-2529-6.
- Daniel Cohen, Introduction to Computer Theory, Wiley India, 2nd Edition, ISBN: 9788126513345.
- Kavi Mahesh, Theory of Computation: A Problem Solving Approach, 1st Edition, Wiley-India, ISBN: 978-81-265-3311-4.

Unit III – CFG & PDA

CFG

Formal definition of Grammar, Chomsky Hierarchy, **CFG**: Formal definition of CFG, Derivations, Parse Tree, Ambiguity in grammars and languages, Language Specification using CFG, Normal Forms: Chomsky Normal Form and Greibach Normal Form. Closure properties of CFL.

Pushdown automata : Description and Definition, language of of PDA , Acceptance of PDA by final State and Empty Stack, Designing PDA, Equivalence of Pushdown automata and CFG, Deterministic Pushdown Automata, Nondeterministic Pushdown Automata. Intersection of CFLs and Regular Language , Introduction to context sensitive languages and context sensitive grammar (CSG)

Planner - Lectures

Lecture No	Topics Covered
1	Chomsky Hierarchy, CFG-Formal Definition, CFL
2	CFG <-> CFL, Derivation, Parse Tree
3	Ambiguity, CNF
4	Conversion of CFG to CNF, Closure Properties
5	GNF, PDA, Formal Definition, ID
6	Acceptance of a string, Designing PDA
7	PDA and NPDA Examples
8	Converting PDA to CFG

Lecture No	Topics Covered
9	Intersection of CFLs and Regular Language, Introduction to context sensitive languages and context sensitive grammar (CSG)

Introduction

- Finite Automata accept all regular languages and only regular languages
- Many simple languages are non regular:

```
- {a<sup>n</sup>b<sup>n</sup> : n = 0, 1, 2, ...}
- {w : w a is palindrome}
```

and there is no finite automata that accepts them.

• Context-Free Languages are a larger class of languages that encompasses all regular languages and many others, including the two above.

Context-Free Languages and Regular Languages

Context-Free Languages

$$\{a^nb^n: n \ge 0\}$$

$$\{ww^R\}$$

Regular Languages

$$(a+b)*$$

Formal Definition of a Grammar

Language for the Grammar

Grammar:

Language of the grammar:

$$L = \{a^n b^n : n \ge 0\}$$

A Convenient Notation

K

We write:

$$S \Rightarrow aaabbb$$

for zero or more derivation steps

Instead of:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$ Generalizing:

$$w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow \cdots \Rightarrow w_n$$

Trivially:

*

$$w \Rightarrow w$$

Formal Definition-CFG

Definition: A context-free grammar is a 4-tuple (V, T, P, S), where:

- V is a set (each element in V is called **nonterminal**)
- T is an alphabet (each character in T is called **terminal**)
- P, the set of rules, is a subset of $V \times (T \cup V)^*$ If $(\alpha,\beta) \in P$, we write production $\alpha \longrightarrow \beta$

β is called a **sentential form**

• S, the **start symbol**, is one of the symbols in V

Example of Context-Free Grammar

Context-Free Language

A language L is context-free if there is a context-free grammar Gwith L = L(G)

Context-Free Language-Example 1

$$L = \{a^n b^n : n \ge 0\}$$

is a context-free language

since context-free grammar : G

$$\{S \rightarrow aSb \mid \epsilon\}$$

generates
$$L(G) = L$$

Context-Free Language – Example 2

Context-free grammar :

G

$$\{S \rightarrow aSa \mid bSb \mid \epsilon\}$$

Example derivations:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$$

$$L(G) = \{ww^R : w \in \{a, b\}^*\}$$

Palindromes of even length

Derivation and Parse Trees

Consider the following example grammar with 5 productions:

$$S \rightarrow AB$$
 $A \rightarrow aaA | \epsilon$ $B \rightarrow Bb | \epsilon$

Leftmost and Rightmost Derivation

Consider the following example grammar with 5 productions:

$$S \rightarrow AB$$
 $A \rightarrow aaA | \epsilon$ $B \rightarrow Bb | \epsilon$

Leftmost derivation: for the string aab

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost derivation: for the string aab

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Leftmost and Rightmost Derivation

$$S \longrightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA | \epsilon$

Leftmost derivation:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost derivation:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Give same derivation tree

Context Free Language for a CFG

Find the CFL generated for the given CFG.

1.
$$S \longrightarrow aSb \mid ab$$

$$L(G) = \{a^nb^n \mid n > = 1\}$$

2.
$$S \longrightarrow aB|bA$$

 $A \longrightarrow a|aS|bAA$
 $B \longrightarrow b|bS|aBB$

 $L(G)=\{x|x \text{ containing equal no of a's and b's}\}$

CFG for a CFL

- Write the grammar for generating strings over Σ={a}, containing any(zero or more) number of a's.
 S → a | aS | ε
- 2. Find the CFG represented by the RE $(a+b)^*$ S \longrightarrow aS | bS | ϵ
- 3. Write the grammar for all strings consisting of a's and b's with atleast 2 a's.

$$S \longrightarrow AaAaA$$

$$A \longrightarrow aA \mid bA \mid \epsilon$$

Ambiguous Grammar

A context-free grammar G is ambiguous if there is a string $w \in L(G)$ which has:

two different derivation trees or two leftmost derivations

(Two different derivation trees give two different leftmost derivations and vice-versa)

Ambiguous Grammar – An Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

string a + a * a has two derivation trees

Ambiguous Grammar – An Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Removing Ambiguity

Ambiguous Grammar

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow a$$

Equivalent
Non-Ambiguous
Grammar

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

generates the same language

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \rightarrow (E) \mid a$$

Unique derivation tree and leftmost derivation For the string a+a*a

Simplification of Context Free Grammar

A CFG G can be simplified as:

- 1. Each variable and terminal of the CFG should appear in the derivation if at least one word in the L(G).
- 2. There should not be any production of the form $A \square B$ where A and B are both non-terminals.

Simplification techniques are:

- 1.Removal of Useless Symbols
- 2. Removal of Unit Productions
- 3. Elimination of \in production

Removal of Useless symbol

Ex.1 Consider the following grammar:

$$G=\{(S,A),(1,0),P,S\}$$

Where P consists of the following productions:

$$S \square 10|0S1|1S0|A|SS$$

Simplify the grammar by removing the useless symbols if any.

Remove $S \square$ A, as A is useless symbol.

 $S \square 10|0 S1|1 S0|S S$

Removal of Useless symbol

Ex.2 Consider the following grammar:

$$G = \{ (S,A,B),(a),P,S \}$$

Where P consists of the following productions:

 $S \square AB \mid a$

 $A \square a$

Simplify the grammar by removing the useless symbols if any.

B is useless, Remove B

 $S \square A \mid a$

 $A \square$ a

Removal of Unit Production

- A production rule of the form $A \square B$ where A and B are both non-terminals is called a unit production.
- All the other productions (including ∈ productions) are non-unit productions.

Ex.1 Consider the following grammar:

$$G = \{ (A,B),(a,b),P,A \}$$

Where P consists of:

 $A \square B, B \square a \mid b$

Simplify the grammar by removing the unit productions if any.

On eliminating unit production $A \square B$

 $A \square a | b$

Removal of Unit Production

Ex.2Consider the following grammar:

$$S \square$$
 a | X b | a Y a | b | a a

$$X \square Y$$

$$Y \square b \mid X$$

Simplify the grammar by removing the unit productions if any.

Simplified grammar is:

$$S \square$$
 a | Yb | aYa | b | aa

$$Y \square b$$

Removal of \in - Production

A production of the form $A \square \in W$ where A is non-terminal is known as $\in -$ Production.

Ex.1 Consider the following grammar,

 $S \square \quad a S a | b S b | \in$

Simplify the grammar by eliminating \in - Productions if any.

Simplified grammar is G':

S

aSa | bSb | aa | bb

G'=G- ϵ rules.

 $L(G')=L(G)-\{\epsilon\}$

Removal of \in - Production

Ex.2 Consider the following grammar,

$$S \square a \mid X b \mid a Y a$$

$$X \square Y \mid \in$$

$$Y \square b \mid X$$

Simplify the grammar by eliminating \in - Productions if any.

Simplified grammar is:

$$S \square a \mid X b \mid a Y a \mid b \mid aa$$

$$X \square Y$$

$$Y \square b \mid X$$

- 1. Type 0 grammar (Unrestricted Grammar)
- 2. Type 1 grammar (Context Sensitive Grammar)
- 3. Type 2 grammar (Context Free Grammar)
- 4. Type 3 grammar (Regular Grammar)

Type 3 grammar:

It is also called as regular grammar.

$$A \rightarrow \alpha$$

Recognized by **FSM**.

Two types of Regular Grammar are:

- 1. Left Linear Grammar 2. Right Linear Grammar
 - Type 2 grammar:

It is also called as context free grammar.

 $A \rightarrow \alpha$ where A is NT and α is sentential form.

Start symbol of the Grammar can also appear on RHS.

Recognized by PDA(Pushdown Automata)

• Type 1 grammar:

It is **context sensitive grammar** or context dependent.

- 1. $\alpha \rightarrow \beta$ where length of β is at least as much as the length of α except $S \rightarrow \in$.
- The rule $S \rightarrow \in$ is allowed only if start symbol S does not appear on RHS.
- 3. Productions are of the form

$$\alpha_1 A \alpha_2 \rightarrow \alpha 1 \beta \alpha_2 (\beta \neq \epsilon)$$

Recognized by TM(Turing Machine).

• Type 0 grammar:

It is unrestricted grammar that is no restriction on production.

$$\alpha \rightarrow \beta \quad (\alpha \neq \in)$$

Recognized by TM(Turing machines)

These languages are known as **Recursively Enumerable Languages.**

Normal Forms

There are certain standard ways of writing CFG.

They satisfy certain restrictions on the productions in the CFG.

Then the G is said to be in **Normal forms.**

- 1. Chomsky Normal Form (CNF)
- 2. Greibach Normal Form (GNF)

Chomsky Normal Form(CNF)

A CFG is in CNF if every production is of the form

```
A\rightarrow a, where A is NT and a is T
A\rightarrow BC where A,B and C are NTs
S\rightarrow \in is in G if \in belongs to L(G).
```

```
When \in is in L(G),
we assume that S does not appear on the RHS of any production.
e.g. G is:
S \rightarrow AB \mid \in
A \rightarrow a
B \rightarrow b
```


Construction of G in CNF

Step 1. Elimination of null productions and unit productions using previous method.

Let the G is (V,T,P,S)

- Step 2. Elimination of terminals on RHS.
- Step 3. Restricting the number of variables on RHS.

Reduce to CNF

[.	Convert to	CNF, $S \square$	aSa	bSb	a	b	aa	bb
		· - , ·				_		

Adding
$$A \square$$
 a and $B \square$ b we can rewrite the grammar as

$$S \square ASA|BSB|a|b|AA|BB$$

$$A \square a, B \square b$$

Only
$$S \square$$
 ASA and $S \square$ BSB are not in CNF

For
$$S \square$$
 ASA we can write

$$S \square AR_1, R_1 \square SA$$

For
$$S \square$$
 BSB we can write

$$S \square BR_2, R_2 \square SB$$

$$S \square AR_1 |BR_2| a |b| AA |BB$$

$$A \square a, B \square b$$

$$R_1 \square SA, R_2 \square SB$$

Reduce to CNF

7,

 $S \square bA|aB, A \square bAA|aS|a, B \square aBB|bS|b$

Add $R_1 \square$ a, $R_2 \square$ b

Rewriting the grammar,

 $S \square R_2 A R_1 B$

 $A \square R_2 AA | R_1 S | a$

 $B \square R_1 BB | R_2 S|b$

 $R_1 \square$ a, $R_2 \square$ b

 $A \square R_2 AA$ and $B \square R_1 BB$ are not in CNF

Converted grammar in CNF is

 $S \square R_2 A R_1 B$

 $A \square R_2 R_3 R_1 S | a, R_3 \square AA$

 $B \square R_1 R_4 R_2 S|b, R_4 \square BB$

 $R_1 \square a, R_2 \square b$

Reduce to CNF

1.
$$S \rightarrow aAD$$

A \rightarrow aB | bAB

B \rightarrow b

D \rightarrow d

3. S
$$\rightarrow$$
ABA
A \rightarrow aA | ϵ
B \rightarrow bB | ϵ

2.
$$S \rightarrow aAbB$$

 $A \rightarrow aA \mid a$
 $B \rightarrow bB \mid b$

Greibach Normal Form

A context free grammar is said to be in Greibach Normal Form if all productions are in the following form:

$$A \rightarrow \alpha X$$

- A is a non terminal symbols
- α is a terminal symbol
- X is a sequence of non terminal symbols.

It may be empty.

Closure properties of CFL

CFLs are closed under:

Union

Concatenation

Kleene closure operator

Substitution

Homomorphism, inverse homomorphism

Reversal

CFLs are *not* closed under:

Intersection

Difference

Complementation

Push Down Automata

Context-Free Languages

Pushdown Automaton - PDA

Input String

Initial Stack Symbol

bottom special symbol Appears at time 0

Formal definition of PDA

The PDA is as:

 $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

Where

Q : A finite set of states

 Σ : A finite set of input symbols

Γ: A finite stack alphabet or pushdown symbols

 δ : the transition function Q X(Σ U { ϵ }) X Γ to the set of finite subsets of Q X Γ*

 q_0 . the start state

Z₀: the start symbol(pushdown symbol)

F: the set of accepting state or final states

Transition Function

- δ : The transition function is a triple $\delta(q,a,x)$ where
 - 1. q is a state in Q
 - 2. a is either an input symbol in Σ or a = ϵ , the empty string,
 - 3. \times is a stack symbol, that is a member of Γ .

The output of δ is a finite set of pairs (p, γ)

Where

- p is the new state and
- Y is the string of stack symbols that replaces x at the top of the stack.

Instantaneous Description of a PDA

The configuration of a PDA by a **triple (q,w,x)** where

- 1. **q** is the state
- 2. w is the remaining input
- 3. **Y** is the stack contents

we show the top of the stack at the left end of x and the bottom at the right end.

Such a triple is called an **Instantaneous Description** or **ID** of a PDA.

$$\delta(q, a, b) = (q, c)$$

stack

$\delta(q, a, b) = (q, cb)$

$$\delta(q, a, b) = (q, \epsilon)$$

stack

$$\delta(q, a, b) = (q, b)$$

stack

A PDA Example

 $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

 $Q=\{q_0, q_1, q_2\}, \Sigma=\{a,b\}, \Gamma=\{Z_0, a\}, F=\{q_2\}, \delta \text{ as below }$

Move no	<u>State</u>	<u>input</u>	<u>stack</u> <u>symbol</u>	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	$ q_0 $	a	a	(q ₀ ,aa)
3	$ q_0 $	b	a	(q ₁ , ∈)
4	q_1	b	a	(q _{1,} ∈)
5	q_1	€	Z_0	$(\mathbf{q}_2, \mathbf{Z}_0)$

Acceptance by PDA using final state

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	$ q_0 $	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	$ q_0 $	b	a	(q_1, \in)
4	q_1	b	a	(q _{1,} ∈)
5	q_1	€	Z_0	$(\mathbf{q}_2, \mathbf{Z}_0)$

For the string aabb

 $(q_0, aabb, Z_0)$ String aabb is

 $\mathbf{F}(\mathbf{q}_0, \mathbf{abb}, \mathbf{aZ_0})$ accepted, as final

 $\mathbf{F}(\mathbf{q}_0, \mathbf{bb}, \mathbf{aa}\mathbf{Z}_0)$ state q2 is

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{a}\mathbf{Z}_0)$ reached on

 $\mathbf{F}(\mathbf{q}_1 \in \mathbf{Z}_0)$ reading string

 $F(q_2 \in Z_0)$ aabb completely

Rejection by PDA

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	$ q_0 $	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	(q _{1,} €)
5	q_1	€	Z_0	$(\mathbf{q}_2, \mathbf{Z}_0)$

For the string aabbb

 $(q_0, aabbb, Z_0)$ $\mathbf{F}(\mathbf{q}_0, \mathbf{bbb}, \mathbf{aa}\mathbf{Z}_0)$ read completely.

 $\mathbf{F}(\mathbf{q}_1, \mathbf{bb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{Z}_0)$

String **aabbb** is rejected as q₁ is not $\mathbf{F}(\mathbf{q}_0, \mathbf{abbb}, \mathbf{aZ_0})$ final state and string \mathbf{aabbb} is not

Acceptance by PDA using null store or empty store or empty stack

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q ₁ , ∈)
4	q_1	b	a	(q _{1,} ∈)
5	q_1	€	Z_0	(q ₁ , €)

For the string aabb

 $(q_0, aabb, Z_0)$ String aabb is

 $\mathbf{F}(\mathbf{q}_0, \mathbf{abb}, \mathbf{aZ_0})$ accepted, as

 $\mathbf{F}(\mathbf{q}_0, \mathbf{bb}, \mathbf{aa}\mathbf{Z}_0)$ stack is empty on

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{a}\mathbf{Z}_0)$ reading string

 $\mathbf{F}(\mathbf{q}_1 \in \mathbf{Z}_0)$ aabb completely

 $\mathbf{F}(q_1 \in \mathbf{E})$

Rejection by PDA

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	$ q_0 $	a	Z_0	(q_0,aZ_0)
2	$ q_0 $	a	a	(q ₀ ,aa)
3	q_0	b	a	(q ₁ , ∈)
4	q_1	b	a	(q _{1,} ∈)
5	q_1	€	Z_0	(q_1, \in)

For the string aabbb

 $(q_0, aabbb, Z_0)$ $\mathbf{F}(\mathbf{q}_0, \mathbf{abbb}, \mathbf{aZ_0})$ $\mathbf{F}(\mathbf{q}_0, \mathbf{bbb}, \mathbf{aa}\mathbf{Z}_0)$ stack is not empty.

 $\mathbf{F}(\mathbf{q}_1, \mathbf{bb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{Z}_0)$

String aabbb is rejected as string aabbb is not read completely and

Acceptance by PDA

Acceptance of input strings by PDA can be defined in terms of **final** states or in terms of **PDS**(pushdown store).

Let $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA.

The set accepted by final state is defined by

$$T(A) = \{ w \in \Sigma^* \mid (q_{0,} w, Z_0) \vdash * (q_{f,} \Lambda, \alpha) \text{ for some } q_f \in F \text{ and } \alpha \in \Gamma^* \}$$

The set accepted by null store(or empty store)is defined by

$$N(A) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash * (q, \Lambda, \Lambda) \text{ for some } q \in Q \}$$

PDA for $L=\{a^nb^n \mid n>0\}$

Logic:

W

```
Let A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{a, Z_0\}, F = \{q_1\} is a PDA.
```


δ (Transition Function) by **Final State** is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	(q _{1,} ∈)
5	q_1	€	Z_0	$(\mathbf{q}_1, \mathbf{Z}_0)$

Acceptance of a string aabb

 $\begin{array}{c} (q_{0,} \ aabb, Z_{0}) \\ F(q_{0,} \ abb, aZ_{0}) \\ F(q_{0,} \ bb, aaZ_{0}) \\ F(q_{1,} \ b, aZ_{0}) \\ F(q_{1,} \ e, Z_{0}) \end{array}$

δ (Transition Function) by Empty stack or Empty store or Null stack is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	$ q_0 $	a	Z_0	(q_0,aZ_0)
2	$ q_0 $	a	a	(q ₀ ,aa)
3	$ q_0 $	b	a	(q ₁ , ∈)
4	q_1	b	a	(q₁€)
5	q_1	€	Z_0	(q₁, ∈)

Acceptance of a string aabb

 (q_{0}, abb, Z_{0}) $F(q_{0}, abb, aZ_{0})$ $F(q_{0}, bb, aaZ_{0})$ $F(q_{1}, b, aZ_{0})$ $F(q_{1}, \in Z_{0})$ $F(q_{1}, \in Z_{0})$

Ex: PDA to accept language of palindromes with the marker. i.e. $L=\{xcx^r \mid x \in \{a,b\}^*\}$

```
Let A=(Q,\Sigma,\ \Gamma\ ,\delta,q_0,Z_0,F) \ is \ a\ PDA. where Q=\{q_0,q_1,q_f\}, \Sigma=\{a,b,c\}, \Gamma=\{a,b,Z_0\}, F=\{q_f\}
```


δ (Transition Function) by $Final\ State$ is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	b	Z_0	(q_0,bZ_0)
3	q_0	a	a	(q ₀ ,aa)
4	q_0	b	b	(q ₀ ,bb)
5	q_0	a	b	(q ₀ , ab)
6	q_0	b	a	(q ₀ , ba)
7	q_0	c	Z_0	(q_1,Z_0)
8	q_0	c	a	(q ₁ ,a)
9	q_0	c	b	(q ₁ ,b)
10	q_1	a	a	(q ₁ , ∈)
11	q_1	b	b	(q ₁ , ∈)
12	q_1	€	Z_0	$(\mathbf{q_f}, \mathbf{Z_0})$

δ (Transition Function) by Empty stack or Empty store or Null stack is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	b	Z_0	(q_0,bZ_0)
3	q_0	a	a	(q ₀ ,aa)
4	q_0	b	b	(q ₀ ,bb)
5	q_0	a	b	(q ₀ , ab)
6	q_0	b	a	(q ₀ , ba)
7	$ q_0 $	c	Z_0	(q_1,Z_0)
8	q_0	С	a	(q ₁ ,a)
9	$ q_0 $	c	b	(q ₁ ,b)
10	q_1	a	a	(q_1, \in)
11	q_1	b	b	(q_1, \in)
12	q_1	€	Z_0	$(\mathbf{q_1}, \in)$

Examples for practice

- 1. PDA for $L = \{a^nb^{2n} | n > 0\}$
- 2. PDA for L= $\{a^nb^nc^md^m \mid n, m>0\}$
- 3. PDA for $L=\{a^mb^n | m>n>=1\}$

Deterministic and non-deterministic PDA

DPDA:

transition function is:

$$Q X \Sigma X \Gamma \square Q X \Gamma^*$$

e.g. $\delta(q,a,Z)$ is either empty or a singleton.

$$\delta(q,a,Z) \neq \emptyset$$

NPDA:

 $Q X \Sigma U \{\epsilon\} X \Gamma \square$ finite subsets of $Q X \Gamma^*$

e.g.
$$\delta(q,a,Z) = \{(p1,x1),(p2,x2)....(pm,xm)\}$$

DPDA and NPDA

NPDA and DPDA

- For every NPDA, there may not exist an equivalent DPDA.
- The NPDA can accept any CFL, while DPDA is a special case of NPDA that accepts only a subset of the CFLs accepted by the NPDA.
- Thus, DPDA is less powerful than NPDA.

NPDA to accept language of palindromes without the marker.

Let $A=(Q,\Sigma,\ \Gamma\ ,\delta,\,q_0,\,Z_0,\,F) \ is\ a\ PDA.$ where $Q=\{q_0,q_1,q_f\},$ $\Sigma=\{a,b\},$ $\Gamma=\{a,b,Z_0\},$ $F=\{q_f\}$

NPDA to accept language of all palindrome strings

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	$\{(q_0,aZ_0), (q_1,Z_0)\}$
2	q_0	b	Z_0	$\{(q_0,bZ_0), (q_1,Z_0)\}$
3	q_0	a	a	$\{(q_0,aa),(q_1,a)\}$
4	q_0	b	a	$\{(q_0,ba), (q_1,a)\}$
5	q_0	a	b	$\{(q_0, ab), (q_1,b)\}$
6	q_0	b	b	$\{(q_0, bb), (q_1,b)\}$
7	q_0	€	Z_0	$\{(q_1,Z_0)\}$
8	q_0	€	a	$\{(q_1,a)\}$
9	q_0	€	b	$\{(q_1,b)\}$
10	q_1	a	a	$\{(q_1,\in)\}$
11	q_1	b	b	$\{(q_1,\in)\}$
12	q_1	E	Z_0	$\{(\mathbf{q_f}, Z_0)\}$

CFG to PDA

Theorem: If L is a CFL then we can construct a PDA A accepting L by empty store ie. L=N(A).

Proof: We construct A by making use of productions in G.

Let L=L(G) where G=(V, T, P, S) is a CFG.

We construct PDA A as

$$A=(Q, \Sigma, \Gamma, \delta, q, Z_0,F)$$

where $\Sigma = T$

 Γ is (V U T)

$$Z_0 = S$$

$$F = \Phi$$

 δ is defined as

 $R_1: \delta(q, \in, A) = \{(q, \alpha) \mid A \square \quad \alpha \text{ is in } P\}$

 R_2 : $\delta(q, a, a) = {(q, ∈)}$ for every a in Σ.

CFG to PDA

1 .Construct a PDA for the CFG

 $S \square OBB$

 $B \square OS \mid 1S \mid 0$

Test whether 010^4 is in N(A).

We construct PDA A as

$$A = (Q, \Sigma, \Gamma, \delta, q, Z_0, F)$$

$$Q = \{q\}$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \{S, B, 0, 1\}$$

$$Z_0 = S$$

$$F = \Phi$$

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q	€	S	{(q,0BB)}
2	q	€	В	$\{(q,0S), (q,1S), (q,0)\}$
3	q	0	0	{(q, ∈)}
4	q	1	1	{(q,€)}

CFG to PDA

1 .Construct a PDA for the CFG

 $S \square OBB$

 $B \square OS \mid 1S \mid 0$

Test whether 010^4 is in N(A).

2. Convert the grammar

 $S \square aSb \mid A$

 $A \square bSa |S| \in$

To a PDA that accepts the same language by empty stack.

Thank You..!!!