

The worldwide cost of credit card fraud...

\$24 BILLION

...in 2018₁

kaggle

LOOKING INTO THE DATA:2

Transactions

189,217

Product Code

Matched information

Debit vs. Credit Card

Features	
Timedelta	Transaction Amount

Card Information

Logistic Regression is out of the Picture

ENSEMBLE METHODS DOMINATE

XG Boost w/ Hyperparameter Tuning

XG BOOST IMPROVED WITH TUNING

Predicting Fraud for Mastercard

Model: XG Boost

The model behind the scenes consists of Mastercard transaction data. Move the 'Probability Threshold' slider to tailor the model and see how it performs. This app will help it's user decide how the model works and find the perfect threshold for it's final purpose.

Total observed transactions: 56,766

AN IDEAL XG BOOST MODEL (56,776 OBSERVATIONS)

Threshold

• 0.25

Recall

• 90.20%

False Positives

• 13.75%

Savings

• \$227,573.27

296 MILLION NASTERCARD TRANSACTIONS PER DAY 1

Savings of...

\$1.18 BILLION

...per day

- Joe Cowell
- Github: github.com/josephpcowell/

WORKS CITED

- Letić, Jovana. "Credit card fraud statistics: What are the odds?". December 10, 2019. *DataProt*. October 27, 2020. https://dataprot.net/statistics/credit-card-fraud-statistics/.
- 2. Vesta. "IEEE-CIS Fraud Detection". September 24, 2019. *Kaggle.* October 27, 2020. https://www.kaggle.com/c/ieee-fraud-detection.
- 3. Cover Photo by <u>Kay</u> on <u>Unsplash</u> https://unsplash.com/photos/PbZ79P_M4IA.

APPENDIX: CALCULATIONS

Calculation for the last slide:

$$\frac{295,000,000\ mc\ transactions}{day} \times \frac{\$227,573.27\ saved}{56,766\ transactions} = \frac{\$1,182,470,000\ saved}{day} /_{day}$$

APPENDIX: OVERSAMPLING METHODS

APPENDIX: SQL QUERY