Question 1: Trace the Dijkstra's weighted shortest path algorithm on the graph given in Figure 1. Use vertex E as your start vertex.

Distance values of vertices adjacent to starting vertex E are placed.

Vertex	Shortest distance from E	Previous Vertex	F(\omega, ?) 4
Е	0		7 (C(∞, ?)
А	∞		(E(0, E)) 6
В	∞		2 2
С	∞		$G(\infty, ?)$ 5
D	∞		(D(\omega, ?))
G	∞		3 4
Н	∞		(H(∞, ?)) 2 (B(∞, ?))
F	∞		

Vertex	Shortest distance from E	Previous Vertex	(F(7, E) 4
Е	0		7 (C(8, E))
А	∞		8
В	∞		(E(0, E)) 6
С	∞		2 1
D	∞		G(2, E) 5 (A(2, E))
G	∞		D(1, E)
Н	∞		3 4
F	∞		(H(∞, ?)) 2 (B(∞, ?))

The vertex with the minimum distance value is picked, which is vertex D and then the distance value(s) of the adjacent vertices to vertex D is/are placed.

- 1. Vertex G: (2, E) < 1+5 = (6, G). Since 6 = 6 vertex 6 stays the same
- 2. Vertex B: $1+4 = (5, D) < (\infty,?)$, B changes to 5,D

Vertex	Shortest distance from E	Previous Vertex	(F(7, E) 4
E	0		7 (C(8, E))
А	2	Е	(E(0, E)
В	∞		2 6
С	8	Е	G(2, E) 5 (A(2, E)) 3
D	1	E	
G	2	E	3 4
Н	∞		(H(ω, ?))
F	7	Е	
\/:=:t==l _ [[]		Calaatad saisai	

Visited = [E]

Selected minimum = [D]

Vertex	Shortest distance from E	Previous Vertex	F(7, E) 4
E	0		7 (C(8, E)
A	2	E	8 E(0, E)
В	5	D	2 6
С	8	E	1 (A(2, E))
D	1	E	G(2, E) 5 D(1, E)
G	2	E	3 4
Н	∞		2 B(5, D)
F	7	Е	(H(∞, ?)

Visited = [E, D]

Selected minimum = [A]

All operations related to vertex D are finished, the remaining vertices are painted back to gray. Since vertex A has the minimum distance value it is painted white and A's adjacent vertices B and C are painted purple.

- 1. Vertex B: 2 + 3 = (5, A) = (5, D) Since 5 = 5 vertex B remains the same
- 2. Vertex C: 2 + 6 = (8, A)= (8, E) Since 8 = 8 vertex C remains the same

Visited = [E, D, A]

Selected minimum = [G]

All operations related to vertex A are finished, the remaining vertices are painted back to gray. Since vertex G has the minimum distance value it is painted white and G's adjacent vertex H is painted purple. Since Vertex H: $2+3 = 5 < \infty$, H changes to (5,G)

Vertex	Shortest distance from E	Previous Vertex	F(7, E) 4
E	0		7 (C(8, E)
A	2	E	(E(0, E))
В	<mark>5</mark>	D	2 2
С	8	E	G(2, E) 5
D	1	E	D(1, E) 3
G	2	E	3 4
Н	5	G	H(5, G) 2 B(5, D)
F	7	E	

Visited = [E, D, A, G]

Selected minimum = [B]

All operations related to vertex G are finished, the remaining vertices are painted back to gray. Since vertex B has the minimum distance value it is painted white and B's adjacent vertex H is painted purple. Vertex H: Since 5+2 > 5, H remains unchanged.

Vertex	Shortest distance from E	Previous Vertex	F(7, E) 4
E	0		7 (C(8, E)
Α	2	E	8 E(0, E)
В	5	D	2 6
С	8	E	1 (A(2, F))
D	1	E	G(2, E) 5 D(1, E) 3
G	2	E	
H	<mark>5</mark>	G	2 (B(5, D)
F	7	E	(H(5, G))

Visited = [E, D, A, G, B]

Selected minimum = [H]

All operations related to vertex B are finished, the remaining vertices are painted back to gray.

Since vertex H has the minimum distance value it is painted white and H's adjacent vertices are G and B which are already traces, so nothing happens.

Vertex	Shortest distance from E	Previous Vertex	F(7, E) 4
E	0		7 (C(8, E)
A	2	E	8
В	5	D	E(0, E) 6
С	8	E	2 1
D	1	E	(A(2, E))
G	2	E	D(1, E) 3
Н	5	G	3 4
F	<mark>7</mark>	E	(H(5, G))
\".'' FE E			

Visited = [E, D, A, G, B, H] Selected minimum = [F]

All operations related to vertex H are finished. Since vertex F has the minimum distance value it is painted white and F's adjacent vertex C is painted purple. Vertex H: Since 7+4 > 8, C remains unchanged.

Vertex	Shortest distance from E	Previous Vertex	F(7, E) 4
E	0		7 C(8, E)
A	2	E	(E(0, E))
В	5	D	2 2
C	8	E	G(2, E) 5
D	1	E	D(1, E) 3
G	2	E	3 4
Н	5	G	H(5, G) 2 B(5, D)
F	7	E	

Visited = [E, D, A, G, B, H, F] Selected minimum = [C]

All operations related to vertex F are finished. Since vertex C has the minimum distance value it is painted white since all the other vertices are traced. The algorithm is over.

Vertex	Shortest distance from E	Previous Vertex	
E	0		
A	2	E	
В	5	D	2/
С	8	E	
D	1	E	(G(2, E)) 5
G	2	E	3
н	5	G	
F	7	E	(H(5, G)

Visited = [E, D, A, G, B, H, F, C]

All vertices are traced.

Question 2: Trace the Prim's minimum spanning tree algorithm on the graph in Figure 1. Use vertex E as your start vertex.

We chose the minimum distance edge which is connected to E, D, or G and also which would not make a loop. A (AE) is chosen and painted purple together with the connecting edge.

MST = E, D, G, A

We chose the minimum distance edge which is connected to E, D, G, or A and also which would not make a loop. B (BA) is chosen and painted purple together with the connecting edge.

MST = E, D, G, A, B

We chose the minimum distance edge which is connected to E, D, G, A or B and also which would not make a loop. H (HB) is chosen and painted purple together with the connecting edge.

MST = E, D, G, A, B, H

We chose the minimum distance edge which is connected to E, D, G, A, B or H and also which would not make a loop. C (CA) is chosen and painted purple together with the connecting edge.

MST = E, D, G, A, B, H, C

We chose the minimum distance edge which is connected to E, D, G, A, B, H or C and also which would not make a loop. F (FC) is chosen and painted purple together with the connecting edge.

MST = E, D, G, A, B, H, C, F

The final version is as such:

MST = E, D, G, A, B, H, C, F

Question 3: Trace the Kruskal's minimum spanning tree algorithm.

We start the algorithm by choosing the edge with the minimum distance value which is the edge between E and D. (If the distance values are the same either one can be picked) Path: E-D

We start the algorithm by choosing the edge with the minimum distance value which is the edge between H and B. (If the distance values are the same either one can be picked)

Path: E-D, H-B

We start the algorithm by choosing the edge with the minimum distance value which is the edge between E and A. (If the distance values are the same either one can be picked)

Path: E-D, H-B, E-A

We start the algorithm by choosing the edge with the minimum distance value which is the edge between E and G. (If the distance values are the same either one can be picked)

Path: E-D, H-B, E-A, E-G

We start the algorithm by choosing the edge with the minimum distance value which is the edge between A and B. (If the distance values are the same either one can be picked)

Path: E-D, H-B, E-A, E-G, A-B

We start the algorithm by choosing the edge with the minimum distance value which is the edge between F and C. (If the distance values are the same either one can be picked)

Path: E-D, H-B, E-A, E-G, A-B, F-C

We start the algorithm by choosing the edge with the minimum distance value which is the edge between C and A. (If the distance values are the same either one can be picked)

Path: E-D, H-B, E-A, E-G, A-B, F-C, C-A

The final version is as such:

Path: E-D, H-B, E-A, E-G, A-B, F-C, C-A

Question 4: Trace the breadth-first search traversal algorithm.

QUEUE	CURRENT ENQUEUED DEQUEUED
	F 4 7 8 C 6 4 A A A A A A A A A A A A A A A A A A

QUEUE	CURRENT ENQUEUED DEQUEUED
	F 4
G	7 C
D	8
А	2 6
С	
F	G 5
E	3 3 4 A
	2 B
	Н

QUEUE	CURRENT ENQUEUED DEQUEUED
	F 4
G	7 C
D	8
А	E 2 6
С	2 1
F	G 5 A
E	D 3
	3 4
	2 B
	Н

QUEUE	CURRENT ENQUEUED DEQUEUED
В	F 4
G	7 C
D	8
А	E 2 6
С	
F	G 5
E	D 3 4 4 B

QUEUE	CURRENT ENQUEUED DEQUEUED
Н	
В	F 4
G	7
D	
А	
С	
F	
Е	3 4
	2 B
	Н

Question 5: Find a topological ordering of the graph in Figure 2.

Select vertex with in-degree 0, which is vertex s.

Print it out.

Remove it.

Repeat.

Result = [s]

Select vertex with in-degree 0, which is

vertex A.

Print it out.

Remove it.

Repeat.

Result = [s, A]

Select vertex with in-degree 0, which is

vertex B.

Print it out.

Remove it.

Repeat.

Result = [s, A, B]

Select vertex with in-degree 0, which is

vertex D.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D]

Select vertex with in-degree 0, which is

vertex G.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G]

Select vertex with in-degree 0, which is

vertex F.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G, F]

Select vertex with in-degree 0, which is

vertex E.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G, F, E]

Select vertex with in-degree 0, which is

vertex C.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G, F, E, C]

Select vertex with in-degree 0, which is

vertex H.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G, F, E, C, H]

Select vertex with in-degree 0, which is

vertex I.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G, F, E, C, H, I]

Select vertex with in-degree 0, which is

vertex t.

Print it out.

Remove it.

Repeat.

Result = [s, A, B, D, G, F, E, C, H, I, t]