

Inferential Statistics – Samples and Random Sampling

Inferential Statistics: The part of statistics that deals with the ability to extend findings from a sample to make inferences about a population

Representativeness: A sample needs to be representative of the population it is drawn from in order for findings in the sample to be applicable as inferences about the population. A sample is representative if the attributes of the sample in terms of summary statistics are very close to the population summary statistics of attributes (where population is available).

Representative samples are selected using **Random Sampling** methods, including **Simple Random Sampling** (every member of the population has an equal chance of being selected), and **Stratified Random Sampling** (The population is subdivided into different strata depending on important attributes, and then Simple Random Sampling is applied to each strata or group to select the sample)

Inferential Statistics - Random Variables, Probability Distributions, and p-values

Random Variables: Variables whose outcomes cannot be predicted with 100% certainty until the event is completed. Examples include # of customers at an ATM on any given day, # of accident cases brought to the Emergency section of a particular hospital in one week, # of insurance claims filed per month

Probability Distributions: The range of possible outcomes of a random variable (on the X-Axis) and the associated probability of each outcome, based on historical data (frequency counts) on the Y-Axis, is a Probability Distribution.

Commonly used distributions

Distribution	Туре	Description	Excel Formula to calculate p-value	Parameters in the formula
		Random variable can have only two	Usually sum of Bernoulli used via	$\Lambda \sqcup \Lambda \sqcup$
Bernoulli	Discrete	outcomes (Ex: Yes/No, Default/No Default)	Binomial - see below	Usually sum of Bernoulli used via Binomial - see below
				x = # of successes
				n = total number of trials/events
		Sum of outcomes of a Bernoulli distribution		p = probability of success (based on historical data)
		(Ex: # of defaults in 200 policies, # of wins in		True - use if you need cumulative probability (p < = x)
Binomial	Discrete	20 matches)	BINOM.DIST(x,n,p,True/False)	False - use if you need point probability (p = x)
		Random variable can have an infinite		
		number of possible outcomes, but only		x = outcome of interest
		discrete - that is, from 0 to ∞ (Ex: # of		mean = observed average of outcome in historical data
		customers walking into a store in a day, # of		True - use if you need cumulative probability (p < = x)
Poisson	Discrete	hospital admissions in a day etc)	POISSON.DIST(x,mean,True/False)	False - use if you need point probability (p = x)
				x = outcome of interest
				mean = average in historical data
		Random variable can have an infine number		std dev = std deviation in historical data
		of outcomes - that are continuous (Ex: Time	NORMAL.DIST(x,mean, std dev,	TRUE - Always use TRUE for continuous distributions to get
Normal	Continuous	spent on a website, spend in a store)	TRUE)	cumulative probability (p < = x)