2.10 Logické Obvody

2.10.1 Úkol měření:

- 1. Na hradle NAND změřte tyto charakteristiky:
 - Převodní charakteristiku
 - Vstupní charakteristiku
 - Výstupní charakteristiku
 - Jednotlivá zapojení nakreslete do protokolu a vyneste k nim naměřené závislosti
- 2. Ověřte typ logické funkce zobrazené v zadání na Obr.7 a v katalogu najděte její integrovanou verzi.
- 3. Navrhněte a realizujte hradlové obvody podle zadání
- 4. Vypracujte protokol o měření

2.10.2 Použité přístroje:

Stejnosměrný zdroj: Programmable DC suplly RC

Zdroj vstupních hodnot: Log selektor RC

Zobrazovač hodnot: Log probe RC

Hradla: 7400 (4x NAND)

Proměnný rezistor: dekáda Ω RC

dekáda kΩ RC

Multimetr: METEX M386OD (použití jako voltmetr V)

METEX M389OD (použití jako voltmetr V nebo ampérmetr A)

2.10.3 Teorie:

Integrované logické systémy TTL (Transistor-Transistor-Logic) jsou v dnešní době nahrazovány systémy STTL, MOS a CMOS, které mají nižší spotřebu a srovnatelnou rychlost. Zachovala se však definice logických úrovní. Pokud má moderní logický systém stejně definované napěťové úrovně logické nuly a jedničky, nazývá se kompatibilní s TTL na logických úrovních (logic level TTL compatible). V TTL obvodech je nejpoužívanější řada 74xx a její teplotní verze 84xx a 54xx. Základním hradlem je NAND.

Obr. 1. Zapojení hradla NAND

Pokud na jednom, či více vstupech bude logická 0, tak se vytvoří malý potenciál na přechodu báze – emitor $(0,75\mathrm{V})$ několikaemitorového tranzistoru. Tento potenciál není dostatečně velký, aby otevřel přechod báze – emitor tranzistoru T1 a přechody emitor báze u následujících tranzistorů T2 aT4. Napájecí napětí U_{CC} otevře přes rezistor (o hodnotě 1k5) tranzistor T3, přes který svede U_{CC} na výstup zapojeného obvodu. Proto naměříme na výstupu Y napájecí napětí U_{CC} . Toto napětí se rovná úrovni logické 1.

Pokud však na všech vstupech bude logická 1, v bodě přechodu báze – emitor tranzistoru T1 naměříme potenciál 2,25V, což postačuje na otevření tranzistoru T1, T2. Po otevření T2 se následně otevřou T3 a T4, které svedou napájecí napětí U_{CC} na svorku záporného pólu. V tomto případě naměříme na výstupu maximálně saturační napětí, které odpovídá logické úrovni 0.

Tyto logické systémy jsou vyráběny s různým počtem vstupů a na jednom čipu bývá umístěno více hradel. Tak například obvod 7400 je čtveřice dvojvstupových hradel NAND systému TTL jak ukazuje Obr. 2.

Obr. 2. Hradlo NAND 7400

2.10.4 Zadání:

1) Změřte převodní charakteristiku hradla NAND

- a) Poznamenejte si používané součástky a přístroje.
- b) Na základě schématu (Obr.3.) zapojte obvod a změřte převodní charakteristiku hradla NAND.

POSTUP:

- na zdroji stejnosměrného napětí DC zvyšujte hodnotu napětí od 0V do 5V. Na voltmetru V_1 odečítejte a zapisujte hodnoty vstupního napětí a na voltmetru V_2 hodnoty výstupního napětí. Grafickým zobrazením těchto napětí dostanete převodovou charakteristiku.
- měření provádějte s menším krokem v rozmezí vstupního napětí 0 až 2V.
- pro přístroje RC použijte napájení 5V ze základní desky sestavy RC2000 (module board)

Obr. 3. Měření převodní charakter. NAND

2) Změřte vstupní charakteristiku hradla NAND

- a) Poznamenejte si používané součástky a přístroje.
- b) Na základě schématu (Obr.4.) zapojte obvod a změřte vstupní charakteristiku hradla NAND.

POSTUP:

- na zdroji stejnosměrného napětí DC zvyšujte hodnotu napětí od -1 do +5V. Na voltmetru V odečítejte a zapisujte hodnoty vstupního napětí a na ampérmetru A hodnoty vstupního proudu.
 Grafickým zobrazením těchto hodnot dostanete vstupní charakteristiku.
- měření provádějte s menším krokem v rozmezí vstupního napětí -1 až 0V.
- pro přístroje RC použijte napájení 5V ze základní desky sestavy RC2000 (module board)

Obr 4. Měření vstupní charakter. NAND

3) Změřte výstupní charakteristiku hradla NAND

- a) Poznamenejte si používané součástky a přístroje.
- b) Na základě schématu (Obr.5.) zapojte obvod a změřte výstupní charakteristiku hradla NAND pro logickou 0 na vstupu.
- c) Na základě schématu (Obr.6.) zapojte obvod a změřte výstupní charakteristiku hradla NAND pro logickou 1 na vstupu.

POSTUP:

ad b) Změnou zátěže R_p měňte hodnoty proudu a napětí na výstupu hradla NAND. Na voltmetru V odečítejte a zapisujte hodnoty výstupního napětí a na ampérmetru A hodnoty výstupního proudu. *Měření provádějte do maximální hodnoty proudu 20mA!* Grafickým zobrazením těchto hodnot dostanete výstupní charakteristiku pro logickou 0 na vstupu.

- pro použité přístroje RC použijte napájení 5V ze základní desky sestavy RC2000 (module board)

Obr. 5. Měření výstupní charakteristiky NAND pro logickou 0 na vstupu.

ad c) - na zdroji stejnosměrného napětí DC (Z1) nastavte hodnotu napětí 5V (logická jednička) a na zdroji Z2 taktéž 5V, případně použijte napájení 5V ze základní desky RC (module board). Změnou zátěže R_p měňte hodnoty proudu a napětí na výstupu hradla NAND. Na voltmetru V odečítejte a zapisujte hodnoty výstupního napětí a na ampérmetru A hodnoty výstupního proudu. *Měření provádějte do maximální hodnoty proudu 20mA!* Grafickým zobrazením těchto hodnot dostanete výstupní charakteristiku pro logickou 1 na vstupu.

- pro použité přístroje RC použijte napájení 5V ze základní desky sestavy RC2000 (module board)

Obr. 6. Měření výstupní charakter. NAND pro logickou 1 na vstupu.

4) Ověřte typ logické funkce

- a) Poznamenejte si používané součástky a přístroje.
- b) Na základě schématu (Obr. 7.) zapojte obvod a zjistěte jeho funkci

POSTUP:

- jako zdroj logických hodnot A, B použijte výstupy Log selektoru A_0 , A_1 . Výstup Y připojte na vstup zobrazovače (Log probe A_0).
- pro použité součástky použijte napájení 5V ze základní desky sestavy RC2000 (module board)
- volbu vstupních hodnot A, B provádějte pomocí tlačítek Log selektoru. V závislosti na jejich kombinaci se bude měnit hodnota výstupu Y zobrazená na zobrazovači "Log probe".
- kombinace vstupů a výstupu si poznamenávejte do tabulky, podle které najdete jí odpovídající logickou funkci.

Obr. 7. Schéma neznáme logické funkce

5) Navrhněte a realizujte hradlové obvody podle zadání

Obvod 1. má:

2 vstupy pro dvojkové údaje (A_0, A_1) , dva řídicí vstupy (C_0, C_1) a výstup Y . Výstup bude nabývat těchto hodnot:

- C₀, C₁ rovny 0, je výstup 0
- $C_0=1$ a $C_1=0$, je výstup roven A_0
- $C_0=0$ a $C_1=1$, je výstup roven A_1
- $C_0=1$ a $C_1=1$, je výstup roven negaci A_0

Obvod 2. má:

2 vstupy pro dvojkové údaje (A_0, A_1) a dva řídicí vstupy (C_0, C_1) a výstup Y. Výstup bude nabývat těchto hodnot:

- $C_0 = 1$ a $C_1 = 1$ je výstup roven negaci A_1
- $C_0 = 0$ a $C_1 = 1$ je výstup 1
- $C_{.0} = 1$ a $C_{.1} = 0$ je výstup 0
- oba řídicí vstupy 0 je výstup 0
- a) Poznamenejte si používané součástky a přístroje.
- b) Na základě zadání obvodu 1 a 2 navrhněte a realizujte tyto obvody

POSTUP:

- nejprve si podle zadaných údajů sestrojte pravdivostní tabulku. Na základě pravdivostní tabulky sestrojte Karnaughovu mapu a z ní vytvořte logickou rovnici pro výstupní funkci Y.
- Získanou log. rovnici pak dále zjednodušte pomocí Logické algebry nebo De Morganových zákonů. Na základě takto získané rovnice navrhněte schéma zapojení, zapojte jej a ověřte jeho funkčnost.

- jako zdroj logických hodnot A_0 , A_1 a C_0 , C_1 použijte výstupy Log selektoru A_0 A_3 . Výstup Y připojte na vstup zobrazovače (Log probe A_0).
- pro použité přístroje RC použijte napájení 5V ze základní desky sestavy RC2000 (module board)
- volbu vstupních hodnot A_0 , A_1 a C_0 , C_1 provádějte pomocí tlačítek Log selektoru na základě pravdivostní tabulky a výstup Y zobrazený na zobrazovači "Log probe" porovnávejte s výstupem v pravdivostní tabulce.