Novelty Detection Review

novelty = unknown

Outline

Probabilistic Approach

Basic Statistical Tests

Grubb's test — simple mean & above a threshold
Dox plot rule → IQR
Q3+1.5IQR

Parametric

Mixture models

state-based models

assume structure of model features

require priori knowledge

Mixture Model

Applications

- Disease Outbreak Detection
 - hierarchical Bayesian & two GMMs
- label songs
 - ratio-reject: GMM
- real time machine status
 - k-means + GMM + greedy EM
- Pattern Recognition
 - use heuristic to adjust threshold
- online document clustering
- convert one-class classification to binary

State-based

Kalman Filter Information Flow

Application

- sound recognition
- unusual activity detection

Parametric Approach Feature

minimal infomation to represent

poor scability —— when dimensionality increase, data points spread

Non-Parametric Approach

Kernel Density Estimator

- place isotropic Gaussian kernel centered at each training point, with a single shared variance hyperparameter
- sum local contribution

Distance based

nearest neighbor

k-NN

density-based

clustering

Applications

- sensor network
 - aggregation tree
 - not stable
- video scene classification & feature extraction
 - block co-occurrence matrix space
- simulation mesh data
 - distribute to every cluster, collect outlier and rebuild
 - good for local & global

Comparison Between Probabilistic and Distance-based Approach

- Assumption
 - assume occupied by normal data and assign based on distance metric
- Difference
 - Distance: assume distance can discriminate points
 - Probabilistic: whether data comes from a same data model

Domain-based

Information theorem based

Reconstruction-based

Neural Network

neural network based feature

require pre-defined parameters sensitive to parameters — problem with high dimensional data constructive —— can grow in size require good training method and stopping criterion

Applications

- outdoor scene classification: rejecter
- robot: growing neural gas
- real-time application: SOM

subspace based approach

