

OUTLINE

- Problem Statement
- Dataset/EDA
- Baseline and Choice Model
- Recommendation

PROBLEM STATEMENT

Predict wear on a CNC milling tool so that the milling tool can be replaced before products are ruined.

COMMON CAUSES OF MILL TOOL WEAR

- Feed Rate (low/high)
- Cutting Speed (low/high)
- Tool Grade (hard/soft)

DATASET

18 Experiments

10 Worn tools 8 unworn tools

Features

Position
Velocity
Acceleration
Feedrate

. . .

Data Cleaning

25286 Observations 52 Features

12943 Observations 43 Features

EDA

Fairly Balanced Classes

CLASSIFICATION METRICS

- Accuracy
- f_beta (beta = 2)
- AUC
- Confusion Matrix

BASELINE - LOGISTIC REGRESSION

Baseline Feature = FEED RATE

- C = 0.95
- Accuracy (Test Data)49.9 %

FEATURE ENGINEERING - CUTTING SPEED

Cutting Speed = Pi x Tool Diameter x Spindle Speed

Features = FEE DRATE, X-Acceleration, Cutting Speed

- Scaled
- C = 0.95
- Accuracy (Test Data)52.39 %

MODEL COMPARISON - ROC AUC

MODEL - XGBOOST

- Estimators = 100
- Early Stopping = 50
- Objective: Logistic
- Learning Rate: 0.05
- Sub Sampling: 0.8
- Min Child Weight: 3
- Threshold = 0.45
- Recall (0.9958 —> 0.9972)
- Accuracy (Test Data)99.42 %

XGBOOST - ACTUAL AND PREDICTED OUTPUT

RECOMMENDATIONS

- Accuracy and AUC are interpretable metrics for balanced datasets
- Reduce threshold to account for recall, ie penalize False negatives.
- Use XGBOOST for its optimal predictive ability when interpretability can be sacrificed.

APPENDIX - FLASK APP

Machine Learning Classification

Click to see plots on different pages

<u>Dataset class distribution</u>

AUC Comparison for models

APPENDIX - FLASK APP

Plotly chart

Return to index page

APPENDIX - FLASK APP

AUC comparison

Return to index page

AUC gives the probability that the random actual positive is ranked higher than random actual negative. This is the probability that the classifier assigns high score to the worn class.

APPENDIX - EDA

APPENDIX - FEEDRATE DISTRIBUTION

APPENDIX - PREDICTIVE SIGNALS

APPENDIX - XGBOOST

APPENDIX - XGBOOST

APPENDIX - ACCURACY COMPARISON

APPENDIX - AUC COMPARISON

