Separating attacker skills from TTCs

Pontus Johnson

January 2025

Mathematical Model

Let

 $A = \{\text{attackers}\}, \quad T = \{\text{attack steps}\}, \quad \mathcal{S} = \{s_1, s_2, \dots, s_m\} \quad (\text{set of skill categories}).$

Each attacker $a \in A$ has a skill profile

$$\boldsymbol{\alpha}(a) = (\alpha_1(a), \alpha_2(a), \dots, \alpha_m(a)) \in \mathbb{R}^m,$$

where $\alpha_i(a)$ is attacker a's proficiency in skill s_i .

For each attack step $t \in T$, define a function

$$g_t: \mathbb{R}^m \to \Theta,$$

where Θ is a set of parameters for a family of distributions (for example, the rate parameter of an exponential distribution). Then the time to compromise $X_{a,t}$, when attacker a carries out attack step t, follows the distribution

$$X_{a,t} \sim F(\cdot \mid g_t(\boldsymbol{\alpha}(a))),$$

where $F(\cdot \mid \theta)$ is the cumulative distribution function (CDF) parameterized by $\theta \in \Theta$.

Equivalently, if $F_{a,t}$ denotes the CDF of $X_{a,t}$, then

$$F_{a,t}(\tau) = \Pr(X_{a,t} \le \tau) = F(\tau \mid g_t(\boldsymbol{\alpha}(a))).$$

Example

Suppose we have two skills:

$$S = \{binary_exploitation, social_engineering\},\$$

and we denote

$$\alpha(a) = (\alpha_{\text{bin}}(a), \ \alpha_{\text{soc}}(a)).$$

Consider an attack step

$$t = {\tt CVE-2020-1057.exploit_vulnerability}.$$

We might assume that only the $binary_exploitation$ proficiency influences this step. Concretely, define

$$g_t(\alpha_{\rm bin}, \alpha_{\rm soc}) = \theta_0 + \theta_1 \alpha_{\rm bin},$$

where θ_0 and θ_1 are constants, and $\alpha_{\rm soc}$ does not appear.

If F is, for instance, an exponential distribution CDF with rate parameter $\lambda,$ then

$$X_{a,t} \sim \text{Exponential}(\lambda = \exp(g_t(\boldsymbol{\alpha}(a)))).$$

Hence, higher $\alpha_{\text{bin}}(a)$ (i.e., higher binary_exploitation proficiency) reduces the expected time to compromise, while social_engineering proficiency is irrelevant for this particular step.