Data-Driven Movie Insights Using Multi-Algorithm Clustering

Project Report

Submitted to the Faculty of Engineering of

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA, KAKINADA

In partial fulfillment of the requirements for the award of the Degree of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

By

V. Bindu Madhuri (22481A05O4)

R. Hemachand (22481A05K9)

P. Yaswanth (22481A05K3)

U. Lokesh (22481A05N7)

Under the Enviable and Esteemed Guidance of

Dr. G. KEERTHI, M.Tech, Ph.D.

Assistant Professor of CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SESHADRI RAO GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

SESHADRI RAO KNOWLEDGE VILLAGE GUDLAVALLERU – 521356

ANDHRA PRADESH

2024-25

SESHADRI RAO GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada)

SESHADRI RAO KNOWLEDGE VILLAGE, GUDLAVALLERU

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project report entitled "Data-Driven Movie Insights Using Multi-Algorithm Clustering" is a Bonafide record of work carried out by V. Bindu Madhuri(22481A05O4),R.Hemachand(22481A05K9),P. Yaswanth(22481A05K3), U. Lokesh (22481A05N7) under the guidance and supervision of Dr. G. Keerthi, M.Tech, Ph.D., Assistant Professor, Computer Science and Engineering, in the partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science and Engineering of Jawaharlal Nehru Technological University Kakinada, Kakinada during the academic year 2024-25.

Project Guide
(Dr. G. KEERTHI)

Head of the Department (Dr. M. BABU RAO)

External Examiner

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion of any task would be incomplete without the mention of people who made it possible and whose constant guidance and encouragements crown all the efforts with success.

We would like to express our deep sense of gratitude and sincere thanks to **Dr.G.Keerthi, M.Tech, Ph.D, Assistant Professor of CSE**, Computer Science and Engineering for her constant guidance, supervision and motivation in completing the project work.

We feel elated to express our floral gratitude and sincere thanks to **Dr. M. Babu Rao, Head of the Department,** Computer Science and Engineering for his encouragements all the way during analysis of the project. His annotations, insinuations and criticisms are the key behind the successful completion of the project work.

We would like to thank our beloved principal **Dr. B. KARUNA KUMAR** for providing a great support for us in completing our project and giving us the opportunity for doing project.

Our Special thanks to the faculty of our department and programmers of our computer lab. Finally, we thank our family members, non-teaching staff and our friends, who had directly or indirectly helped and supported us in completing our project in time.

Team Members

V. Bindu Madhuri (22481A05O4)

R. Hemachand (22481A05K9)

P. Yaswanth (22481A05K3)

U. Lokesh (22481A05N7)

INDEX	D. CENO
CONTENTS	PAGE NO
Abstract	1
PART A: KDD PROCESS	2-34
Chapter 1: Introduction	2-8
Introduction to KDD	
Data Warehousing	
Data Mining	
Chapter 2: DATA MINING AND WAREHOUSING PROCESS ON COLLECTED DATASET	9-34
Problem Statement	
Methodology	
PART B: DATA MINING IN DETAIL	35-46
Problem Statement	35-36
Data Mining Techniques and Model Training	36-39
Experiment Analysis	40-42
Predictions and Visualization	43-46
PART C: FINAL ANALYSIS	47-49
Evaluation of Experimental Analysis	47
Model Performance Comparison (CA)	48
CONCLUSION	49

LIST OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

MAPPING OF PROGRAM OUTCOMES WITH GRADUATED POS AND PSOS

50

51

52

REFERENCES

ABSTRACT

In today's data-driven era, uncovering meaningful patterns from large datasets is essential for strategic insights and informed decision-making. This project harnesses the capabilities of the Orange data mining platform to perform unsupervised learning on a movie-related dataset, focusing on clustering techniques to analyze viewer behavior and movie performance trends.

The dataset, gathered through Google Forms, includes attributes such as viewer demographics, genre preferences, and social media reach. After applying essential preprocessing steps—such as data cleaning, normalization, and feature selection—the project explores clustering using K-Means, Hierarchical Clustering, and DBSCAN. Each method is used to identify natural groupings in the data, helping to reveal distinct audience segments and patterns in content engagement.

Through Orange's intuitive visual interface, complex clustering results are transformed into clear and interactive visualizations, allowing for easier interpretation and comparison of clustering outcomes. The study emphasizes how different clustering algorithms can uncover varied insights depending on the nature and structure of the dataset.

By integrating real-world data with visual analytics, this project highlights the practical value of clustering techniques in the entertainment industry. The findings demonstrate how unsupervised learning can guide content strategy, improve audience targeting, and support data-informed decision-making in movie marketing and production.

PART-A

Clustering-Based Analysis of Movie Performance Metrics Using KDD Process CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

Knowledge Discovery in Databases (KDD) refers to the complete process of uncovering valuable knowledge from large datasets. It starts with the selection of relevant data, followed by preprocessing to clean and organize it, transformation to prepare it for analysis, data mining to uncover patterns and relationships, and concludes with the evaluation and interpretation of results, ultimately producing valuable knowledge or insights. KDD is widely utilized in fields like machine learning, pattern recognition, statistics, artificial intelligence, and data visualization. The KDD process is iterative, involving repeated refinements to ensure the accuracy and reliability of the knowledge extracted. The whole process consists of the following steps:

- 1. Data Selection
- 2. Data Cleaning and Preprocessing
- 3. Data Transformation and Reduction
- 4. Data Mining
- 5. Evaluation and Interpretation of Results

1.2 DATA MINING

Data mining is a process of discovering patterns and knowledge from large amounts of data, utilizing sources such as databases, data warehouses, the internet, and other data repositories. It combines techniques from statistics, artificial intelligence, and machine learning to analyze large datasets and extract meaningful information. This analysis helps identify trends, correlations, and patterns that are not immediately obvious, enabling informed decision-making and predictions.

One of the key breakthroughs in data mining is its ability to handle and analyze big data efficiently. With the increasing volume, velocity, and variety of data, traditional methods are often insufficient. Data mining techniques like clustering, classification, regression, and association rule learning are essential for extracting valuable insights from complex datasets quickly and accurately.

Data mining is closely related to machine learning and data analytics. While data mining focuses on discovering new patterns within large datasets, machine learning involves developing algorithms that can learn from and make predictions on data. These fields complement each other, enhancing data analysis and predictive modeling capabilities.

1.3 DATA WAREHOUSING

A data warehouse is a centralized system used for storing and managing large volumes of data from various sources. It is designed to help businesses analyze historical data and make informed decisions. Data from different operational systems is collected, cleaned, and stored in a structured way, enabling efficient querying and reporting.

- Goal is to produce statistical results that may help in decision-making.
- Ensures fast data retrieval even with the vast datasets.

1. Data Source Layer (Extracting Data)

- Data is collected from surveys, user logs, and online analytics.
- Includes user demographics, preferred genre, spent duration, and rating.

2. ETL (Extract, Transform, Load) Process

- **Extraction**: Data is gathered from multiple sources.
- **Transformation**: Data is cleaned, formatted, and standardized.
- **Loading**: The processed data is stored in the warehouse.

3. Data Storage Layer (Fact & Dimension Tables)

- **Fact Table** stores core metrics like revenue, rating, ad budget, social media reach and conversion rate.
- **Dimension Tables** include details like user demographics, preferred genre, time and region.

4. OLAP (Online Analytical Processing) for Data Analysis

- Allows multi-dimensional analysis to identify trends in user behavior
- Enables queries like:
 - a. Which genre has the highest revenue?
 - b. What are the most common platforms used for streaming?
 - c. Which age group watches the most movies?

5. Data Visualization & Reporting

- Insights are presented using dashboards, reports, and visual charts.
- Helps movie platforms optimize their services based on user preferences.

> DATA MINING VS DATA WAREHOUSING

Data warehousing and data mining serve distinct but complementary purposes in data management. Data warehousing involves storing and organizing large volumes of data from various sources into a centralized repository, designed to support efficient querying and reporting for business intelligence. It focuses on the ETL (Extract, Transform, Load) process to ensure data consistency and accessibility. In contrast, data mining analyzes this stored data to discover patterns, trends, and relationships using algorithms and statistical methods. The primary goal of data mining is to transform raw data into actionable insights that inform business strategies and decision-making. While data warehousing emphasizes efficient storage and access, data mining focuses on extracting meaningful knowledge from the data. Together, they enable effective data management and strategic decision-making by leveraging stored data for in-depth analysis and discovery.

DATA MINING INTRODUCTION

The block diagram for our project begins with collecting the **movie dataset**, followed by **data preprocessing** to clean and normalize the data. Once the data is prepared, Clustering algorithms such as k-Means, hierarchical clustering are used to group users based on similarities in attributes such as movie preferences, viewing duration, revenue, and user demographics. The resulting clusters help identify patterns and user segments, which can be interpreted to predict or understand the movie performance.

Fig 1: Data Mining Block Diagram

DATA MINING BLOCK DIAGRAM EXPLANATION

The data mining process follows structured steps to extract meaningful insights from the dataset:

1. Data Understanding

- Collecting and analyzing the music streaming dataset to grasp its structure and content.
- Identifying attributes such as user demographics, preferred genre, spent duration, and rating.

2. Data Preparation

- Cleaning and transforming the dataset by handling missing values, standardizing data, and encoding categorical attributes.
- Normalizing numerical data for better accuracy in analysis.

3. Modeling

 Applying various clustering algorithms like k-Means, hierarchical clustering, DBScan to group users based on similarities in attributes such as movie preferences, viewing duration, revenue, ad budget and rating.

4. Evaluation

• Assessing model performance using accuracy, precision, recall, and F1-score to ensure reliable predictions.

5. **Deployment**

• Integrating the best-performing model to provide insights into which movie genre users prefer based on their watching habits.

> UNSUPERVISED LEARNING

Unsupervised learning is a type of machine learning where the model is trained on unlabeled data, meaning there are no predefined output labels. The goal is to discover hidden patterns or intrinsic structures within the data. Common techniques include clustering (e.g., K-Means) and association rule learning. This approach is useful for tasks like customer segmentation and anomaly detection.

- K- Means Clustering
- Hierarchical Clustering
- DBSCAN

Categories of Unsupervised Learning in This Project:

1. Clustering:

Clustering serves as a vital technique in unsupervised learning within data mining. It involves grouping similar data points together into clusters based on their intrinsic characteristics, without predefined labels. Algorithms like K-Means and Hierarchical Clustering help us uncover hidden patterns within our dataset of lens-related attributes. By applying clustering, we aim to identify distinct groups of individuals with similar visual characteristics, facilitating personalized recommendations for lens suitability. This unsupervised approach aids in data exploration and segmentation, providing insights into diverse needs and preferences among individuals. Overall, clustering plays a crucial role in uncovering meaningful patterns and guiding data-driven decision-making in lens recommendation strategies and many other applications.

Algorithm	Description	Туре
K-Means	An unsupervised learning algorithm that partitions data into K distinct clusters based on similarity.	Clustering
Hierarchical Clustering	An unsupervised algorithm that builds a hierarchy of clusters either through agglomerative or divisive approaches.	Clustering
DBSCAN	A density-based clustering algorithm that groups together closely packed data points and marks outliers as noise.	Clustering

TABLE 1: Methods of unsupervised learning

> SUPERVISED LEARNING

Supervised learning is a machine learning technique where models are trained on labeled data. In this project, the model learns to **predict the music streaming platform preference** based on user attributes. Common algorithms used include:

Categories of Supervised Learning:

1. Classification:

- The dataset contains categorical labels.
- Classification algorithms predicts and categorizes the text into predefined class labels.

2. Regression:

- If we analyze listening duration as a continuous variable, regression models could predict how long a user is likely to listen on a platform.
- However, since our project focuses on platform prediction, classification is the primary approach.

How to Choose a Data Mining Algorithm?

Choosing the right data mining algorithm depends on:

! If the data has labels:

Use Supervised Learning (Classification/Regression).

! If the data has no labels:

Use Unsupervised Learning (Clustering/Association).

Since our dataset focuses on identifying hidden patterns and grouping similar categories, clustering algorithms are the best fit. However, classification algorithms can be used for categorizing the data into predefined labels.

> ASSOCIATION

Association analysis is a core technique in unsupervised learning within data mining, aimed at discovering relationships among different attributes or items in a dataset. Algorithms like Apriori and FP- Growth enable us to identify frequent item sets and association rules within our dataset of lens- related attributes. By applying association analysis, we aim to uncover associations between visual characteristics such as age, prescription, tear production rate, and astigmatism status, and the types of lenses recommended. Additionally, association analysis helps identify relevant features for lens suitability, contributing to the refinement of our predictive models.

Fig 2: Data Mining Basic Diagram

CHALLENGES AND LIMITATIONS OF DATA MINING

One of the major challenges in data mining is ensuring **data quality and preprocessing**. In real-world scenarios, datasets often contain **noise**, **missing values**, **and inconsistencies**, which can significantly impact the effectiveness of data mining algorithms.

Key Challenges:

- Data Cleaning & Normalization: Raw data needs extensive cleaning to remove duplicates, inconsistencies, and errors.
- **Feature Selection:** Choosing the most relevant attributes is crucial for improving model accuracy.
- **Resource-Intensive Processing:** Preprocessing large and complex datasets requires significant computational power and time.
- Bias & Data Limitations: Even after cleaning, inherent biases in the data may affect model predictions, leading to skewed insights.

Addressing these challenges is critical for ensuring accurate and reliable predictions in data mining projects.

APPLICATIONS OF DATA MINING

1. Customer Relationship Management (CRM)

Data mining helps businesses analyze customer demographics, purchase history, and behavioral trends to optimize marketing strategies.

- Identifies high-value customers and predicts churn rates.
- Enables personalized recommendations and targeted marketing campaigns.
- Improves customer engagement and retention.

2. Fraud Detection

- Data mining is widely used in banking, insurance, and e-commerce to detect fraudulent transactions.
- Algorithms analyze transactional data to detect anomalies.
- Identifies patterns indicating fraudulent behavior.
- Enhances real-time fraud prevention systems.

> PROBLEM STATEMENT

The segmentation of movie audiences based on viewing preferences, demographics, and social media engagement is essential for targeted marketing, content recommendation, and performance prediction. However, manual analysis of audience behavior is inefficient and often fails to reveal hidden patterns within complex datasets.

This project aims to apply unsupervised machine learning techniques to automatically cluster movie data and audience responses. By using algorithms such as K-Means, Hierarchical Clustering, and DBSCAN within the Orange data mining platform, the project seeks to identify meaningful audience segments and performance trends that can support data-driven decisions in movie production and promotion.

Objectives:

- Identify meaningful audience segments through clustering techniques.
- Uncover hidden patterns in viewer preferences and behavior using unsupervised learning.
- Support movie marketing and production strategies with data-driven insights.

By leveraging clustering algorithms, the system will enable smarter audience segmentation, leading to enhanced targeting, improved content strategies, and better decision-making in the entertainment industry.

REQUIREMENTS

Hardware Requirements

Component	Specification
Processor	Intel i5 / i7 or equivalent
RAM	Minimum 8 GB (16 GB preferred)
Hard Disk	Minimum 256 GB (SSD preferred)
GPU	NVIDIA GPU (for model training acceleration,

Software Requirements

Software/Tool	Purpose				
SQL Server	Database Management				
SSMS	Writing SQL queries, schema design				
SSAS	Cube construction and OLAP operations				
SSDT (in Visual Studio)	Creating multidimensional models				
MDX Queries	Data analysis in OLAP cubes				
Python	Python Script for Algorithms				
Orange Data Mining Tool	Clustering algorithms, Model training, evaluation, and visualization				

CHAPTER-2: Knowledge Discovery in Databases (KDD) Process

METHODOLOGY:

The KDD process is performed in step by step from collection of data set to the classification and developing the prediction model. There are some intermediary steps in which we created all three schemas with the help of various tools like SSMS(SQL Server Management Services), Visual Studio and SSAS (SQL Server Analysis Services). The process is explained in step by step below.

STEP-1: COLLECT & EXPLORE DATASET

- **1.1.** 1. Create and Extract the Form to Collect Information from Users
- 2. Designed Google Form with relevant questions(e.g., Revenue, gender, Rating, Ad Budget)

- 3. Shared it with participants through email, social media, or targeted groups.
 - Form Link: https://forms.gle/5w91oY293UQLeH5k7
 - Collected Responses Monitored responses and ensure enough data is gathered.
- 4. Exported Data Downloaded the responses as a CSV file for further processing.

Fig 3: Data Collected Using Goggle Form

1.2 Defining Survey or Data Collection Methods

- Online Surveys: A structured questionnaire was distributed online, including multiple-choice and rating-scale questions to capture user preferred genres, rating, TV ads count.
- Form Link: https://forms.gle/5w91oY293UQLeH5k7

1.3 Choosing Attributes for Analysis

The key attributes selected for analysis include:

- **Revenue** Represents the total income generated by each movie.
- Ad Budget Denotes the amount spent on marketing and promotions.
- Social Media Reach Indicates the digital outreach and campaign visibility across platforms.
- Conversion Rate Measures the effectiveness of turning online interest into actual ticket sales or views.
- Market Size Refers to the potential audience base targeted by each movie.
- **Cluster Labels** Derived from unsupervised learning methods to segment movies based on performance patterns.

Fig 4: Data Info in Orange Tool

❖ The dataset is small (**50 records**) but contains a variety of **numerical features**, making it well-suited for **unsupervised clustering tasks** rather than classification.

- ❖ Missing values in key features like Revenue, Ad Budget, and Rating were addressed using average imputation to maintain data integrity.
- ❖ Meta variables such as Movie Name, Genre, or Platform were excluded from the clustering process, as they are non-numeric and not directly useful unless transformed (e.g., through one-hot encoding or NLP techniques).
- ❖ Since this is an **unsupervised learning task**, there is **no predefined target variable**. Instead, clustering algorithms (K-Means, Hierarchical, DBSCAN) were used to discover natural groupings in the data
- ***** These clusters help identify patterns in movie performance, which can support decisions in marketing strategy, budget allocation, and content targeting.

Fig 5: Data Displayed by the Data Table – Orange with Missing Values

Step-2: PREPROCESS THE DATA

Preprocess the Dataset Using **ORANGE TOOL**

2.1 Handling Missing Values

- **Numerical** features such as Revenue, Ad Budget, and Rating were imputed using the Average or Most Frequent method.
- Categorical variables, where applicable, were filled using Normalize Feature interval [0,1].
- Entries with excessive missing data were replaced with Average/Most Frequent to maintain dataset integrity.

Fig 6: Pre-processing the data

2.2 Data Cleaning & Transformation

- Handled missing values through imputation to preserve essential movie data.
- Removed irrelevant features unrelated to performance metrics.
- Standardized numerical attributes such as Revenue, Ad Budget, and Market Share to ensure consistent scaling.
- Encoded categorical attributes (e.g., **Genre**, **Platform**) into numerical form to make them suitable for clustering algorithms.

2.3 Removing Duplicates & Inconsistencies

- Removed duplicate movie entries to ensure unique records for accurate clustering.
- Verified data consistency by standardizing format across all performance-related attributes.
- Applied feature selection to retain only key performance indicators (e.g., Revenue, Ratings, Market Share, Social Media Reach).
- Performed normalization to align data scales and improve clustering performance.
- Categorical features were encoded numerically to enable compatibility with algorithms like K-Means and DBSCAN.

PROCESSING THE DATA

Fig 7: Preprocessing the Data

 Other Preprocessors, such as Discretize Continuous Variables, Randomize, Select Random Features etc..., were not used as they produced lower accuracies, making them less effective for this dataset.

Fig 8: Transformed Data After Normalizing

- Figure 6, is a Preprocessed Data Table without a Missing Values.
- Furthermore, this is used to Perform the OLAP schemas.

STEP-3: Creating in Database Engine and Managing a Multidimensional Data Model in SSMS and Visual Studio

3.1 Create a Database in SSMS

1. Open SQL Server Management Studio (SSMS) and connect to the Database Engine.

2. Create a new database: MoviesDB

Open → **Databases** → **Create New Database** → **MoviesDB**

3.2 Create and Insert Dimension Tables

Dimension Tables (from your schema):

- Audience
- Genre
- Main_Genre
- Region
- Language
- Time

3.3 Create and Insert Fact Tables

- Movie Performance
- Marketing_Performance

3.4 Create a Multidimensional Project in Visual Studio

- Open Visual Studio.
- Create a new Analysis Services
 Multidimensional and Data Mining Project.
- Name it **D5_Movies**.

3.5 Process Data Source and Data Source Views

- 1. Add a **New Data Source** and connect it to the **MoviesDB database**.
- 2. Create **Data Source Views (DSV)** and include all tables.

3.6 Construct the Cube

- 1. Choose **schema design**:
 - **Star Schema** (Direct links between fact and dimension tables).
 - **Snowflake Schema** (Normalized dimension tables).
 - **Fact Constellation** (Multiple fact tables sharing dimensions).
- 2. Create a **new cube** and select:
 - Movies_Performance and Market_Performance as fact tables.
 - All dimension tables.
- 3. Define **measures** (e.g., Revenue, Rating, Ad Budget etc...,).
- 4. Establish relationships between dimensions and facts.

3.7 Deploy the Project

- 1. Click Build \rightarrow Deploy D5_Movies in Visual Studio.
- 2. Verify deployment success.

3.8 Perform Schema Analysis in SSMS

1. Open SSMS and connect to Analysis Services.

- 2. Execute MDX Queries to analyze data.
- 3. Validate schema consistency.

STEP-4: VISUALIZE SCHEMAS

- Open Deployed D5_Movies project using Visual Studio.
- Configured Data Source & Data Source View, establishing connections to the database and defining table relationships.
- Designed database schema diagrams to visualize data structure.
- Validated table relationships to ensure data integrity.
- Created Cubes & Measures, defining fact tables, dimensions, and key performance measures for analysis.

❖ CONCEPT HIERARCHY

Hierarchy 1: Genre Hierarchy Year) (from Sub Genre to Genre)

Hierarchy 2: Time Hierarchy (from Day to

➤ These hierarchies are used in OLAP (Online Analytical Processing) for efficient data aggregation and analysis in multidimensional models.

4.1 STAR SCHEMA:

The **Star Schema** is a de-normalized database schema used in OLAP, where a central **Fact Table** (containing measurable data like Rating or revenue) is directly connected to multiple **Dimension Tables** (such as time, region, genre etc..) in a star-like structure.

4.1.1 Design & Visualize the Schema

- Create the **Star Schema** with Fact and Dimension tables.
- Define relationships between tables for efficient querying.

Fig 9: "Star Schema Representation for Music Listening Data Warehouse"

4.1.2 Deploy the Data Warehouse & Load Data

- Store structured data into the data warehouse.
- Ensure ETL (Extract, Transform, Load) processes are completed.

4.1.3 Create & Execute OLAP Queries

- Write OLAP queries to perform data analysis.
- Use ROLLUP, CUBE, SLICE, DICE, DRILL-DOWN, and PIVOT operations for multi-dimensional analysis.

4.1.4 Perform OLAP Operations

- Run the queries to process large datasets efficiently.
- Perform aggregations, filtering, and transformations on the stored data.

MDX Queries OLAP operations in STAR SCHEMA:

(A) Q:How does the revenue vary between different years?

Roll-Up (Aggregation of Genres):

SELECT

{[Measures].[Revenue]} ON COLUMNS,

NONEMPTY([Time].[Year].Members) ON

ROWS

FROM [D5_Star Schema];

Output:

₽ Mes	sages III Results
	Revenue
All	328272888
2024	180168399
2025	148104489

MDX Execution Time: 4 ms **SQL Execution Time:** 0.13 seconds

4.1.5 Visualize OLAP Results:

Visualizing Music Preferences Using Orange Tool

Prepare OLAP Output for Visualization

- Select key OLAP operation results related to music preferences.
- Export the selected data as an **Excel sheet** for further visualization.
- Ensure the dataset includes relevant attributes such as **genre**, **platform**, **listening time**, **and user preferences**.

REVENUE BASED ON THE YEAR: (rollup.csv) file

	Α	В
1	Year	Revenue
2	All	328272888
3	2024	180168399
4	2025	148104489

• To compare revenue generated based on year

Bar Chart Configuration:

X-Axis: YearY-Axis: Revenue

Fig 10: Bar Chart of Songs Listened by Genre (Classical vs. Pop)

The bar chart visually represents the total revenue generated across two years: 2024 and 2025. The x-axis represents the years, while the y-axis shows the revenue in millions (×10⁶). Each bar is color-coded by year— blue for 2024, red for 2025, and green for the combined total across both years (labeled as "All").

(B) What is the revenue for each month under each year? Drill-Down (Detailed Time Analysis):

SELECT

{[Measures].[Revenue]} ON COLUMNS,

NONEMPTY(

[Time].[Year].[Year].Members *

[Time].[Month].[Month].Members

) ON ROWS

FROM [D5_Star Schema];

OUTPUT:

MDX Execution Time: 5 ms

SQL Execution Time: 0.8 seconds

Visualize OLAP Results:

Revenue for Each Month

To analyse the Revenue of movies during Months, Years identifying variations and trends across different months.

Box Plot Configuration:

X-Axis: Months Y-Axis: Revenue

Fig 11: Monthly Revenue Distribution

The bar chart shows the revenue generated each month. The x-axis lists the months, while the y-axis represents revenue in millions. Each bar is color-coded by month for clarity. October recorded the highest revenue, followed by June and November. In contrast, months like February, May, and August had noticeably lower revenues. This indicates clear monthly variations, possibly due to seasonal trends or marketing efforts.

(C) What is the revenue for Sub Genre from Male in the year 2024? Slice (Filtering by Male):

SELECT

{[Measures].[Revenue]} ON COLUMNS,

[Genre].[Sub Genre].Members ON ROWS

FROM [D5_Star Schema]

WHERE ([Time].[Year].[2024], [Audience].[Gender].[Male]);

OUTPUT:

MDX Execution Time: 7 ms

SQL Execution Time: 0.3 seconds

(D) What is the revenue for January and February of 2024?

Dice (Filtering Across Multiple Dimensions):

SELECT

{[Measures].[Revenue]} ON COLUMNS,

{[Time].[Year].[2024]} *

{[Time].[Month].[January],

[Time].[Month].[February]} ON ROWS

FROM [D5_Star Schema];

OUTPUT:

MDX Execution Time: 5 ms

SQL Execution Time: 0.1 seconds

(E) How does the revenue compare across months and years? Pivot (Rearranging Dimensions):

SELECT

NONEMPTY([Time].[Month].Members) ON COLUMNS,

NONEMPTY([Time].[Year].Members) ON ROWS

FROM [D5_Star Schema];

OUTPUT:

MDX Execution Time: 7 ms

SQL Execution Time: 0.0 second

4.2 **SNOWFLAKE SCHEMA:**

The **Snowflake Schema** provides a more structured and normalized approach than the Star Schema. It reduces data redundancy by splitting up dimension tables into related sub-dimensions. This design enhances data integrity and supports efficient storage in OLAP systems.

4.2.1 Design & Visualize the Snowflake Schema

- Identify **Fact Tables** (e.g., Movie Performance, Market Performance)
- Identify **Dimension Tables** (e.g., region, genre, main genre, language, audience, time).
- Normalize dimension tables by breaking them into **sub-dimensions** (e.g., Genre → Main Genre).

Fig 12: "Snowflake Schema for Movie Performance Data"

4.2.2 Deploy & Load Data into the Snowflake Schema

- Implement the schema in a Data Warehouse SnowFlake
- Ensure proper data integrity and indexing for performance.
- Deployed the schema to the Data Warehouse.
- Configured SQL Server Analysis Services (SSAS) for OLAP processing and reporting.

4.2.3 Create & Execute OLAP Queries

- Write **SQL queries** for analytical processing:
 - 1) **ROLLUP** Aggregate data across different levels.
 - 2) **CUBE** Compute multi-dimensional aggregates.
 - 3) **DRILL-DOWN** View data at finer granularity.
 - 4) **SLICE & DICE** Filter and analyze subsets of data.

4.2.4 Perform OLAP Operations

- Use OLAP processing to retrieve and manipulate large datasets efficiently.
- Run complex queries on multi-dimensional data using MDX (Multi-Dimensional Expressions) or SQL-based OLAP tools.

MDX Queries OLAP operations in SNOWFLAKE SCHEMA:

(A) What is the total revenue by main genre?

Roll-Up (Aggregation of Languages):

SELECT

{[Measures].[Revenue]} ON COLUMNS,

NONEMPTY([Genre].[Main Genre Name].Members) ON ROWS

FROM [D5_Snowflake Schema]

OUTPUT:

Messages	Results
	Revenue
All	328272888
Action	15899923
Animation	35361647
Comedy	55235876
Documentary	61135419
Drama	39304175
Fantasy	17475069
Horror	9864990
Romance	29273390
Science Fiction	25144341
Thriller	39578058

MDX Execution Time: 12 ms

(B) What is the revenue broken down by main genre and sub-genre? Drill-Down (Detailed Revenue and Genre Analysis):

SELECT

{[Measures].[Revenue]} ON COLUMNS,

NONEMPTY([Genre].[Main Genre Name].Members * [Genre].[Sub Genre].Members) ON ROWS FROM [D5_Snowflake Schema];

OUTPUT:

MDX Execution Time: 6ms

(C) What is the Movie Performance Count for Sub Genre in the year 2024? **Slice (Filtering by Year):**

SELECT

{[Measures].[Movie Performance Count]} ON COLUMNS,

[Genre].[Sub Genre].Members ON ROWS

FROM [D5_Snowflake Schema] WHERE

([Time].[Year].[2024]);

OUTPUT:

	Movie Performance Count
All	27
3D Animation	1
Crime Drama	2
Cyberpunk	5
Dark Comedy	2
Historical Drama	2
Martial Arts	2
Sychological Horror	5
Slapstick	3
Superhero	5
Jnknown	(null)

MDX Execution Time: 6ms

(D) What is the revenue for Thriller & Comedy movies in January and February 2024?

Dice (Filtering by Multiple Dimensions):

SELECT

{[Measures].[Revenue]} ON COLUMNS, CROSSJOIN(

{[Genre].[Main Genre Name].[Thriller], [Genre].[Main Genre Name].[Comedy]},

{[Time].[Month].[January], [Time].[Month].[February]}

) ON ROWS

FROM [D5_Snowflake Schema];

OUTPUT:

MDX Execution Time: 5ms

(E) How does revenue vary across countries and languages? Pivot:

SELECT

{[Region].[Language Name].Members} ON COLUMNS,

{[Region].[Country].Members} ON ROWS

FROM [D5_Snowflake Schema];

OUTPUT:

⊞ Messages	⊞ Results											
	All	Chinese	English	French	German	Hindi	Japanese	Korean	Portuguese	Russian	Spanish	Unknown
All	328272888	34751392	46083092	18301409	47823487	20396296	38394995	41342095	46781967	31185667	3212488	(null)
Brazil	53675233	(null)	(null)	(null)	7446643	(null)	22081392	10863273	9651375	3632550	(null)	(null)
China	16435272	(null)	3313492	(null)	5068669	(null)	(null)	(null)	(null)	4840623	3212488	(null)
Germany	16984972	(null)	7506294	(null)	9478678	(null)	(null)	(null)	(null)	(null)	(null)	(null)
India	36893295	9204286	(null)	(null)	(null)	7909449	3332011	11573965	4873584	(null)	(null)	(null)
Japan	24020200	(null)	6130926	9588801	4592190	(null)	(null)	3708283	(null)	(null)	(null)	(null)
Mexico	57261609	9269474	10498447	8712608	7425345	(null)	(null)	(null)	17492355	3863380	(null)	(null)
Russia	60969649	11793679	(null)	(null)	8869020	12486847	9035951	8086872	(null)	10697280	(null)	(null)
South Korea	32044958	4483953	18633933	(null)	(null)	(null)	(null)	(null)	8927072	(null)	(null)	(null)
United States	29987700	(null)	(null)	(null)	4942942	(null)	3945641	7109702	5837581	8151834	(null)	(null)
Unknown	(null)	(null)	(null)	(null)	(null)	(null)	(null)	(null)	(null)	(null)	(null)	(null)

MDX Execution Time: 14ms

4.3 FACT CONSTELLATION:

A **Fact Constellation Schema** is a complex OLAP schema where multiple fact tables share common dimension tables, allowing for more flexible analysis across different business processes. It combines multiple star schemas into a single structure, with each fact table connecting to shared dimensions.

Fig 13: Fact Constellation Schema for Movie Performance

This schema represents a **Fact Constellation Model**, where multiple fact tables (Movie Performance & Market Performance) share common dimension tables, allowing detailed analysis of both listening and subscription trends in a music streaming system.

4.3.1 Design & Visualize the FACT CONSTELLATION SCHEMA

- Multiple fact tables represent different business processes.
- Dimension tables are shared across multiple fact tables.
- Fact tables have foreign key references to common dimension tables.
- Normalized dimension tables reduce redundancy p
- Time dimension is often shared across fact tables.
- Flexible schema for handling various business processes.
- No direct relationship between fact tables; they connect through shared dimensions.

4.3.2 Deploy & Load Data into the Snowflake Schema:

- 1. **Implement Snowflake Schema** in a data warehouse.
- 2. **Load Fact and Dimension Tables** into the database.
- 3. Ensure **data integrity** and optimize performance with proper indexing.
- 4. **Deploy schema** to the data warehouse.
- 5. Configure **SQL Server Analysis Services** (**SSAS**) for OLAP processing and reporting.

4.3.3 Create & Execute OLAP Queries:

- 1. **ROLLUP**: Aggregate data at different levels.
- 2. **CUBE**: Compute multi-dimensional aggregates.
- 3. **DRILL-DOWN**: View data with more detail.
- 4. **SLICE & DICE**: Filter and analyze data subsets.

4.3.4 Perform OLAP Operations:

- 1. Use OLAP tools to retrieve and manipulate large datasets.
- 2. Run complex queries using MDX or SQL-based OLAP tools.

MDX Queries OLAP operations in FACTCONSTELLATION SCHEMA:

(A) How do revenue and ratings vary across different year? Roll-Up (Aggregation by Ad

Budget and Revenue):

SELECT

 $\{[Measures].[Revenue], [Measures].[Ad\ Budget]\}\ ON\ COLUMNS,$

{[Time].[Year].Members} ON

ROWS FROM [D5_Fact

Constellation Schema];

OUTPUT:

MDX Execution Time: 3ms

(B) What is the revenue and rating broken down by Month?

Drill-Down (Revenue Analysis by Year, Quarter and Month):

SELECT

{[Measures].[Revenue], [Measures].[Rating]} ON COLUMNS,

NONEMPTY([Time].[Year].Members * [Time].[Quarter].Members *

[Time].[Month].Members) ON

ROWS

FROM [D5_Fact Constellation Schema];

OUTPUT:

₃≣ Me	ssaqı	es III Results		
			Revenue	Rating
2024	All	May	19719723	29
2024	All	November	14729082	14
2024	AII	October	3818853	5
2024	AII	September	9588801	9
2024	1	All	42673001	46
2024	1	February	12902024	15
2024	1	July	8233884	7
2024	1	May	12610021	19
2024	1	November 8927072		5
2024	2	AII 62709369		84
2024	2	August	8875157	10
2024	2	February	16598895	20
2024	2	January	9651375	10
2024	2	June	17963079	30
2024	2	November	5802010	9
2024	2	October	3818853	5
2024	3	All	22924029	22
2024	3	April	7446643	6
2024	3	August	8790221	9
2024	3	February	6687165	7
2024	4	All	51862000	62
2024	4	February	17807377	29
2024	4	January	8151834	7

MDX Execution Time: 6m

(C). What are the revenue and conversion rate for movies advertised in the USA? Slice (Filtering revenue and conversion rate):

SELECT

{[Measures].[Revenue], [Measures].[Conversion Rate]} ON COLUMNS FROM [D5_Fact Constellation Schema] WHERE ([Region].[Country].[United States]);

OUTPUT:

MDX Execution Time: 9ms

(D). What are the revenue and ad budget for Action & Thriller movies? Dice (Filtering by Genre and Ad Budget):

SELECT

{[Measures].[Revenue], [Measures].[Ad Budget]} ON COLUMNS, {[Genre].[Main Genre Name].[Action], [Genre].[Main Genre Name].[Thriller]} ON ROWS FROM [D5_Fact Constellation Schema];

OUTPUT:

MDX Execution Time: 6ms

(C) Compare TV ads and social media reach across different genres Pivot (Tv Ads

Count and Genre):

SELECT

{[Measures].[TV Ads Count]} ON COLUMNS, {[Genre].[Main Genre Name].Members} ON ROWS FROM [D5_Fact Constellation Schema];

OUTPUT:

MDX Execution Time: 11ms

STEP 5: PERFORM DATA MINING

Clustering of Movie Performance and Marketing performance measures:

Objective:

We aim to explore and discover **natural groupings of movies** based on their **performance and** marketing-related features using unsupervised clustering techniques. This helps in identifying distinct categories of films—such as high-revenue blockbusters or low-budget releases—based on similar characteristics.

5.1 DATA PREPARATION FOR CLUSTERING

- **Dataset Features:**
 - 1. Movie Attributes: Genre, Language, Duration, Release Year
 - 2. **Performance Metrics:** Revenue, Rating
 - 3. Marketing Metrics: Ad Budget, Social Media Reach, Market Share
- **Data Preprocessing:**
 - 1. Handle missing values.
 - 2. Normalize numerical data.
 - 3. Encode categorical data.

5.2 SELECTING CLUSTERING ALGORITHMS

- The dataset was preprocessed using **Impute** and **Preprocess** widgets in Orange to handle missing values, normalize numeric features, and encode categorical data.
- The cleaned data was then passed into multiple clustering models to identify natural groupings and patterns within the dataset.

We used the following **unsupervised machine learning algorithms**:

- **K-Means Clustering**
- **Hierarchical Clustering**
- **DBSCAN** (Density-Based Spatial Clustering)

Hierarchical Clustering

These models help reveal hidden structures in the data by grouping similar movies based on attributes like revenue, rating, ad budget, social media reach, and market share. The clusters formed provide meaningful insights into different categories of movies, which can be used for performance evaluation and marketing strategy planning, rather than direct prediction of user behaviour.

Fig 14: Workflow for Movie Performance Dataset Clustering in Orange

5.3 Workflows of the models

1. K-Means Clustering

K-Means is a **partition-based clustering algorithm** that divides the dataset into **K distinct clusters**, where each data point belongs to the cluster with the **nearest mean (centroid)**.

This workflow can be represented in the form of a python script by using the python script widget. The python script for K-Means clustering is as follows:

```
testion
def python_script(in_data):

1 import numpy as np
2 from sklearn.cluster import KMeans
3 import Orange
4
5 # Step 1: Extract feature data from the pipeline
6 X = in_data.X
7
8 # Step 2: Run KMeans clustering
9 kmeans = KMeans (n_clusters=3, random_state=0) # change 4 to any number of clusters you want
10 labels = kmeans.fit_predict(X)
11
2 # Step 3: Create a new Discrete Variable for the cluster label
13 cluster_values = [str(i) for i in mp.unique(labels)]
14 cluster_values = [str(i) for i in mp.unique(labels)]
15 cluster_col = np.array([[label] for label in labels])
16
17 # Step 4: Construct a new domain with the original attributes + cluster as meta
18 domain = Orange.data.Domain(in_data.domain.attributes, in_data.domain.class_vars, [cluster_var])
19
20 # Step 5: Output the final table
21 out_data = Orange.data.Table(domain, in_data.X, in_data.Y, cluster_col)
22
return out_data, out_learner, out_classifier, out_object
```

2. Hierarchical Clustering

Hierarchical Clustering builds a **tree-like structure of nested clusters (dendrogram)** by either:

- Agglomerative (bottom-up): each data point starts as its own cluster and merges step-bystep.
- **Divisive** (top-down): all points start in one cluster and split iteratively.

The python script can be viewed using the python script widget.

```
Editor
def python_script(in_data):

1 import numpy as np
2 from Orange.data import Table, Domain, DiscreteVariable
3 from sklearn.cluster import AgglomerativeClustering
4
5 # Get the input data from Orange
6 X = np.array(in_data.X)
7
8 # Perform Agglomerative Clustering
9 model = AgglomerativeClustering(n_clusters=3, linkage='ward', metric='euclidean')
10 labels = model.fit_predict(X)
11
12 # Create a new domain with original variables + discrete ClusterLabel
13 cluster_var = DiscreteVariable("ClusterLabel", values=["0", "l", "2"])
14 new domain = Domain(in_data.domain.attributes + (cluster_var,), in_data.domain.class_vars, in_data.domain.metas)
15
16 # Create the new data table with cluster labels added as a new column
17 out_data = Table(new_domain, np.hstack((in_data.X, labels.reshape(-1, 1))), in_data.Y, in_data.metas)
18
```


3. DBScan

DBSCAN is a **density-based clustering algorithm** that groups together points that are closely packed (have many nearby neighbors) and marks outliers as noise.

The python script for DBScan is as follows:

```
def python_script(in_data):
 1 import numpy as np
 2 from sklearn.cluster import DBSCAN
 3 from Orange.data import Table, Domain, DiscreteVariable
 5 # Get input data from Orange
  6 X = np.array(in_data.X)
  8 # Run DBSCAN with chosen parameters
 9 db = DBSCAN(eps=0.5, min_samples=5).fit(X)
10 labels = db.labels_
12 # Convert cluster labels to strings so they can be used as a discrete variable
13 unique_labels = sorted(set(labels))
14 label names = [str(lbl) for lbl in unique_labels]
15 cluster var = DiscreteVariable("ClusterLabel", values=label names)
17 # Create a new domain with the added cluster label
18 new_domain = Domain(in_data.domain.attributes + (cluster_var,), in_data.domain.class_vars, in_data.domain.metas)
20 # Append labels as the last column of the data table
21 out_data = Table(new_domain, np.hstack((in_data.X, labels.reshape(-1, 1))), in_data.Y, in_data.metas)
```


5.4 MODEL EVALUATION METRICS

To determine the effectiveness of the clustering models, we evaluate them using the following metrics:

• Scatter Plot (Visual Evaluation):

Used to visualize how clearly clusters are separated in 2D space using PCA. Helps in interpreting cluster shapes, overlap, and compactness.

• Silhouette Score:

Measures how well each data point fits within its assigned cluster compared to other clusters

Values range from -1 to +1. A higher score indicates better-defined and well-separated clusters.

• Cluster Size Distribution:

Provides insight into how balanced or skewed the cluster sizes are.

Disproportionate cluster sizes may indicate issues in model performance or data imbalance.

• Distance Map / Hierarchical Dendrogram:

Used in hierarchical clustering to show the **proximity between clusters** and help decide the **optimal number of clusters** based on visual grouping.

5.5 EXPERIMENT ANALYSIS

Step 1: Model Training & Clustering

- Apply **clustering algorithms** such as **K-Means**, **Hierarchical Clustering**, and **DBSCAN** to group users based on their listening behavior, demographics, and engagement metrics.
- The models were trained using **unsupervised learning**, with no predefined labels, to uncover natural groupings in the data.

Step 2: Evaluate & Compare Clustering Models

- Use the **Silhouette Score** widget to measure how well-separated and compact the clusters are.
- Evaluate visual outputs using **Scatter Plot**, **Distance Map**, and **Cluster Size Distribution** to interpret the quality and structure of clusters.
- Compare clustering results across different algorithms to determine which technique provides the **most meaningful and distinct segmentation** of user movie preferences.

	_	0		-		
Algorithm	Preprocessing Applied	SSE	Silhouette Score	#Clusters	Noise Points	Notes/Comments
K-Means	No	12,04,80,36,12,310.84	0.402	3	0	Well-separated clusters
K-Means	Yes	4,20,92,73,69,43,109.90	0.155	3	0	After preprocessing: higher SSE due to scaling
Hierarchical	No	8,07,80,61,91,797.16	0.129	3	0	Moderate separation, visible overlap between clusters
Hierarchical	Yes	215.76	0.039	3	0	Lower SSE, but weak cluster separation
DBSCAN	No	1,75,23,18,40,12,396.60	0.185	3	8	Noisy data affected clusters; less compact clustering
DBSCAN	Yes	248.46	0.162	3	8	Moderate clusters; SSE decreased after preprocessing

1. Without Preprocessing:

Before preprocessing, the data is in its raw form — meaning it likely includes features with varying scales, possibly missing values, or noise. In this state, distance-based clustering algorithms like K-Means, Hierarchical, and DBSCAN may behave unpredictably. For instance, features with larger numeric ranges can dominate the clustering process, leading to biased or misleading results. Clusters might appear well- separated due to the scale differences rather than actual data distribution. Silhouette Scores may appear higher because of this artificial separation, and the model might overlook subtler patterns from lower-range features.

2. With Preprocessing (Using Sampler):

After preprocessing, steps such as normalization or scaling are applied to ensure all features contribute equally to distance calculations. This transformation typically leads to more reliable clustering results, especially for DBSCAN, which is highly sensitive to feature scales. Preprocessing makes the data more uniform, which helps in accurately detecting true groupings and noise points. While Silhouette Scores may slightly decrease because clusters are no longer inflated by dominant features, the overall clustering becomes more meaningful and interpretable.

In essence, **preprocessing removes biases introduced by raw feature scales** and enhances the fairness, robustness, and generalizability of clustering results. It's a crucial step in any serious data mining or machine learning workflow.

5.5 VISUALIZATION METRICS FOR CLUSTERING MODEL

To evaluate and interpret the clustering results from unsupervised learning models (such as K-Means), we use visualization tools like scatter plots to understand how user data segments based on revenue and ad budget parameters.

Scatter Plot for Movie Segmentation by Revenue and Ad Budget

Fig 15: Clustering of Movies Based on Revenue and Advertising Budget

This scatter plot shows the output of the **K-Means clustering algorithm**, where each point represents a movie, clustered into one of three groups based on total revenue and ad spending:

- X-axis = Revenue
- **Y-axis** = Ad Budget
- Color = Cluster (C1: Blue, C2: Red, C3: Green)
- Size = Market Size (Bubble size)

L Clustering Analysis Summary:

Cluster C1 (Blue):

Represents movies with **low revenue** (1–5 million) but medium to high ad budgets (1.5–4.5 million). These films likely suffered from **ineffective marketing strategies** or **un-engaging content**, leading to poor returns despite significant promotional efforts.

Cluster C2 (Red):

Comprises movies earning **medium revenue** (5–8.5 million) with a **moderate ad budget** (1.5–3.5 million). These are **average performers**, showing a fairly **proportional relationship** between marketing spend and revenue—indicating a **balanced ROI**.

☐ Cluster C3 (Green):

Includes high-revenue films (9–13 million) with moderate ad budgets (1.5–3 million). These movies demonstrate efficient targeting and strong audience appeal, delivering high ROI through cost- effective marketing.

5.6 CONCLUSION

The objective of this experiment was to segment movies based on their revenue performance and advertising budgets using unsupervised clustering techniques — **K-Means**, **Hierarchical Clustering**, and **DBSCAN**. These algorithms grouped movies with similar performance metrics to identify meaningful patterns and potential insights into marketing effectiveness and return on investment (ROI).

The dataset underwent **preprocessing**, which involved handling missing values, normalization, and encoding of categorical data. To tackle class imbalance, **SMOTE** was applied, ensuring a more balanced training dataset.

Among all the models, **Gradient Boosting** achieved the **highest accuracy** in the **Test & Score** evaluation, accurately predicting the correct listener types. However, when tested using **Data Sampler** with a smaller portion of the dataset, its accuracy decreased. This drop was due to the **reduced number of rows** available for training and testing, which affected the model's ability to generalize effectively in that scenario.

To support the evaluation, visual tools such as **scatter plots**, **confusion matrices**, and **ROC curves** were used. These helped in interpreting how well the models performed and how user preferences aligned with the predicted listener types.

In conclusion, the project successfully classified users into their respective **listener types**. **Gradient Boosting** proved to be the most effective model during full evaluation, offering valuable insights for building personalized music experiences and recommendation system.

PART-B

<u>Time-Course Analysis of Yeast Gene Expression using</u> <u>Classification</u>

Abstract:

This project focuses on classifying yeast genes based on time-course expression data using supervised machine learning. The dataset contains expression levels of genes across various time points, with each gene labelled by its biological function. Using Orange, classification models such as k-NN, Naïve Bayes, and Random Forest were applied. The models were evaluated using accuracy, precision, recall, and F1-score. Results show that time-based gene expression data can effectively be used for functional gene classification.

Methodology:

1. DATA IMPORT AND CLEANING

- **File Widget**: Loads the yeast gene expression dataset containing gene samples labeled by their biological function (e.g., Proteasome, Ribosome, etc.).
- Data Table: Displays gene expression values across multiple time points (alpha 0 to alpha 119), with each row representing a gene and each column representing a time-specific expression value.
- **Data Info**: Summarizes dataset metadata, showing the number of gene instances, total attributes, and any missing values.

The dataset contains **186 instances** (genes) and **79 features** (time-point-based expression levels), along with the **target class**: gene function.

Fig 16: Data Table Properties in Orange

• The dataset "brown-selected" contains 186 rows (genes) and 80 columns.

- It includes **79 numeric features** (time-point expression values) and **1 categorical target** (gene function).
- The dataset contains **some missing values**, which were handled during preprocessing.

	function	gene	alpha 0	alpha 7	alpha 14	alpha 21	alpha 28	alpha 35	alpha 42	alpha 49	alpha 56
1	Proteas	YGR270W	?	-0.023	0.057	0.007	0.018	-0.057	0.009	-0.034	-0.0
2	Proteas	YIL075C	-0.031	-0.031	-0.060	0.037	-0.071	-0.018	-0.026	-0.052	0.0
3	Proteas	YDL007W	-0.013	?	0.067	-0.025	0.017	0.008	-0.042	0.013	0.1
4	Proteas	YER094C	0.003	0.025	0.067	0.083	-0.010	0.080	-0.019	0.057	0.0
5	Proteas	YFR004W	-0.068	-0.003	-0.041	0.022	-0.200	-0.011	-0.092	-0.016	0.0
6	Proteas	YDR427W	-0.012	-0.009	-0.009	?	-0.051	0.042	-0.069	0.119	0.0
7	Proteas	YKL145W	0.012	0.008	-0.006	-0.025	0.029	-0.019	0.062	-0.002	0.0
8	Proteas	YGL048C	0.067	-0.064	0.011	0.022	0.050	-0.061	0.086	-0.056	0.0
9	Proteas	YFR050C	0.093	0.027	0.044	0.066	-0.049	-0.011	-0.063	0.019	0.0
10	Proteas	YDL097C	0.062	0.002	0.050	0.019	0.033	-0.033	0.033	?	0.0
11	Proteas	YOR259C	-0.037	-0.122	0.030	-0.007	0.017	0.052	0.017	-0.010	0.0
12	Proteas	YPR108W	-0.016	-0.051	0.073	0.064	-0.051	0.098	0.031	0.036	0.0
13	Proteas	YER021W	0.012	0.008	0.043	-0.002	?	?	-0.065	0.047	0.0
14	Proteas	YGR253C	-0.053	0.167	-0.072	-0.024	-0.130	0.010	-0.024	-0.024	0.0
15	Proteas	YGL011C	0.011	-0.017	0.045	0.045	0.003	0.065	?	0.079	0.1
16	Proteas	YMR314W	-0.022	-0.048	-0.041	-0.041	-0.086	-0.029	?	-0.101	-0.0
17	Proteas	YGR135W	-0.002	-0.009	-0.022	0.052	-0.083	0.031	-0.015	-0.007	0.0
18	Proteas	YER012W	0.045	0.041	0.056	0.043	0.002	-0.032	0.081	0.051	0.0
19	Proteas	YPR103W	-0.002	-0.048	0.017	-0.041	-0.022	-0.053	0.051	-0.014	0.0
20	Proteas	YJL001W	0.014	0.002	-0.009	-0.051	-0.028	-0.093	-0.002	-0.098	-0.0
21	Proteas	YOR362C	-0.042	0.062	-0.030	0.030	-0.045	-0.050	0.020	-0.042	0.0
22	Proteas	YOR157C	-0.026	-0.069	0.002	-0.032	-0.002	-0.082	0.045	-0.049	
23	Proteas	YOL038W	-0.056	-0.124	-0.043	-0.059	-0.074	-0.028	0.002	-0.041	-0.0
24	Proteas	YBL041W	-0.021	-0.070	-0.075	-0.093	-0.084	-0.126	0.016	0.105	-0.0
25	Proteas	YHR200W	-0.102	-0.096	-0.075	-0.120	-0.051	-0.102	0.060	-0.075	-0.0
26	Proteas	YDR394W	0.007	-0.067	-0.016	-0.051	-0.041	-0.113	-0.002	-0.099	-0.0
27	Proteas	YOR117W	0.019	-0.077	0.106	0.019	0.074	-0.114	0.021	0.043	0.0

Fig 17: Data Table with Missing Values

2. DATA PREPROCESSING

Handling Missing Values

The dataset contained missing values in several time-point expression features. To ensure the quality of the input data, we used the **Impute** widget in Orange. This widget automatically replaces missing values using a selected strategy — in this case, **mean imputation**, where missing values were filled with the average value of the respective feature. This step helps maintain data integrity and ensures consistent model performance during classification.

Normalization

- The dataset's numeric features (gene expression levels) were normalized using the
- "Normalize to interval [0, 1]" option in the Preprocess widget.
- This transformation scales all values to a common range between **0 and 1**, which improves the performance of machine learning models, especially those sensitive to feature scales such as **k-NN** and **SVM**.
- Normalization ensures that all time-point features contribute equally during model training and prevents dominance by higher-magnitude values.

Fig 18: Preprocessing

	function	gene	alpha 0	alpha 7	alpha 14	alpha 21	alpha 28	alpha 35	alpha 42	alpha 49	alpha 56
1	Proteas	YGR270W	0.43927	0.34949	0.67958	0.57285	0.78986	0.42804	0.60104	0.42697	0.389
2	Proteas	YIL075C	0.36034	0.33333	0.26761	0.67219	0.46739	0.57196	0.41969	0.35955	0.531
3	Proteas	YDL007W	0.41061	0.35282	0.71479	0.46689	0.78623	0.66790	0.33679	0.60300	0.920
4	Proteas	YER094C	0.45531	0.44646	0.71479	0.82450	0.68841	0.93358	0.45596	0.76779	0.669
5	Proteas	YFR004W	0.25698	0.38990	0.33451	0.62252	0.000	0.59779	0.07772	0.49438	0.489
6	Proteas	YDR427W	0.41341	0.37778	0.44718	0.50879	0.53986	0.79336	0.19689	1.000	0.841
7	Proteas	YKL145W	0.48045	0.41212	0.45775	0.46689	0.82971	0.56827	0.87565	0.54682	0.552
8	Proteas	YGL048C	0.63408	0.26667	0.51761	0.62252	0.90580	0.41328	1.000	0.34457	0.594
9	Proteas	YFR050C	0.70670	0.45051	0.63380	0.76821	0.54710	0.59779	0.22798	0.62547	0.694
10	Proteas	YDL097C	0.62011	0.400	0.65493	0.61258	0.84420	0.51661	0.72539	0.52547	0.774
11	Proteas	YOR259C	0.34358	0.14949	0.58451	0.52649	0.78623	0.83026	0.64249	0.51685	0.539
12	Proteas	YPR108W	0.40223	0.29293	0.73592	0.76159	0.53986	1.000	0.71503	0.68914	0.652
13	Proteas	YER021W	0.48045	0.41212	0.63028	0.54305	0.64220	0.54823	0.21762	0.73034	0.769
14	Proteas	YGR253C	0.29888	0.73333	0.22535	0.47020	0.25362	0.67528	0.43005	0.46442	0.485
15	Proteas	YGL011C	0.47765	0.36162	0.63732	0.69868	0.73551	0.87823	0.51903	0.85019	1.0
16	Proteas	YMR314W	0.38547	0.29899	0.33451	0.41391	0.41304	0.53137	0.51903	0.17603	0.334
17	Proteas	YGR135W	0.44134	0.37778	0.40141	0.72185	0.42391	0.75277	0.47668	0.52809	0.619
18	Proteas	YER012W	0.57263	0.47879	0.67606	0.69205	0.73188	0.52030	0.97409	0.74532	0.715
19	Proteas	YPR103W	0.44134	0.29899	0.53873	0.41391	0.64493	0.44280	0.81865	0.50187	0.485
20	Proteas	YJL001W	0.48603	0.400	0.44718	0.38079	0.62319	0.29520	0.54404	0.18727	0.213
21	Proteas	YOR362C	0.32961	0.52121	0.37324	0.64901	0.56159	0.45387	0.65803	0.39700	0.518
22	Proteas	YOR157C	0.37430	0.25657	0.48592	0.44371	0.71739	0.33579	0.78756	0.37079	0.498
23	Proteas	YOL038W	0.29050	0.14545	0.32746	0.35430	0.45652	0.53506	0.56477	0.40075	0.246
24	Proteas	YBL041W	0.38827	0.25455	0.21479	0.24172	0.42029	0.17343	0.63731	0.94757	0.368
25	Proteas	YHR200W	0.16201	0.20202	0.21479	0.15232	0.53986	0.26199	0.86528	0.27341	0.330
26	Proteas	YDR394W	0.46648	0.26061	0.42254	0.38079	0.57609	0.22140	0.54404	0.18352	0.389
27	Proteas	YOR117W	0.500	0.24040	0.85211	0.61258	0.99275	0.21771	0.66321	0.71536	0.677

Fig 19: Data Table after preprocessing

3. MODEL TRAINING

The classification workflow was applied to the **brown-corpus** dataset, which contains gene expression profiles labelled with two outcome classes. Multiple machine learning models were trained to classify the samples accurately. The following classification models were used:

- 1. Support Vector Machine (SVM)
- 2. k-Nearest Neighbors (k-NN)
- 3. Random Forest
- 4. Logistic Regression
- 5. Naïve Bayes
- 6. **Decision Tree**

Model	Description	Strengths
Support Vector Machine (SVM)	Finds the optimal hyper plane for classification	Works well with high-dimensional data
k-Nearest Neighbors (k- NN)	Classifies samples based on nearest neighbors	Simple and interpretable
Random Forest	Uses multiple decision trees for classification	Handles missing data well, reduces overfitting
Logistic Regression	Estimates probabilities for classification	Works well with linear relationships
Naïve Bayes	Applies a probabilistic classifier based on Bayes' Theorem with the assumption of feature independence	fast training, effective with high- dimensional data, and robust to irrelevant features
Decision Tree	Splits data based on feature values for classification	Easy to interpret but prone to overfitting

Table 3: Machine Learning Models and Their Strengths

Each model learns patterns in gene expression data to accurately classify samples into their respective functional gene classes.

4. MODEL EVALUATION

Comparing Model Performance

- All models were connected to the Test and Score Widget to evaluate their individual performance.
- Test and Score Widget provided metrics such as:
 - ➤ **Accuracy** Overall correctness of the model.
 - ➤ **Precision** Proportion of correctly predicted resistant tumors.
 - > **Recall** Ability to detect resistant tumors correctly.
 - > **F1-score** Balance of precision and recall.
 - > ROC-AUC (Receiver Operating Characteristic Area Under Curve) Measures model discrimination ability.

Evaluation of Model Performance and Selection of the Best Approach

To determine the most effective model for classifying gene functions based on time-course expression data, multiple classification algorithms were connected to the Test and Score widget in Orange. This widget was used to evaluate model performance using cross-validation, ensuring robust and unbiased results.

Each model was assessed based on metrics such as accuracy, AUC, F1-score, precision, and recall. By comparing these scores, the model that demonstrated the highest overall performance was selected as the optimal approach for accurately predicting gene functional categories from the expression dataset.

Fig 20: Test and Score widget usage

5. EXPERIMENT ANALYSIS

• Preprocessing significantly improved Classification Accuracy (CA) for all models.

WITHOUT PREPROCESSING

Evaluation results for target (None, show average over classes)										
Model	AUC	CA	F1	Prec	Recall	МСС				
kNN (1)	0.996	0.989	0.989	0.989	0.989	0.979				
Random Forest (1)	0.998	0.968	0.968	0.967	0.968	0.937				
SVM (1)	0.999	0.978	0.979	0.979	0.978	0.959				
Logistic Regression (1)	1.000	0.989	0.989	0.989	0.989	0.979				
Naive Bayes (1)	0.999	0.995	0.995	0.995	0.995	0.990				
Tree (1)	0.982	0.962	0.962	0.962	0.962	0.927				

Fig 21: Test and Score results without preprocessing

WITH PREPROCESSING

Fig 22: Test and Score results without preprocessing

Comparison of Model Performance: Without Preprocessing VS With Preprocessing

Metric	Without Preprocessing (CA)	With Preprocessing (CA)	Improvement
SVM (CA)	0.978	0.978	0%
Random Forest (CA)	0.968	0.962	↓ 6.2%
Naïve Bayes (CA)	0.995	0.989	↓ 6.0%
Logistic Regression (CA)	0.989	0.995	↑ 6.1%
k-NN (CA)	0.989	0.973	↓ 16.2%

- ❖ After evaluating the models, the following observations were made:
 - Naïve Bayes performed the best before preprocessing, achieving the highest classification accuracy (CA) of 0.995 but after preprocessing there is a drop in the accuracy.
 - Logistic Regression showed notable improvement after preprocessing, increasing its CA from 0.989 to 0.995, an ↑ 6.1% improvement.
 - Support Vector Machine (SVM) maintained consistent performance (0.978) with and without preprocessing, indicating robustness.

❖ Final Model Selection

- Logistic Regression was selected as the best performing model after preprocessing.
- It demonstrated **the highest classification accuracy (0.995)** post-preprocessing, matching Naïve Bayes' preprocessed score but with improved consistency.
- Logistic Regression also showed **balanced performance across metrics** such as precision, recall, and F1-score.

• Confusion Matrix Widget:

WITHOUT PREPROCESSING

WITH PREPROCESSING

Fig 23: Confusion Matrix

- The **preprocessed model significantly outperforms the non-preprocessed model** by correctly classifying more samples.
- This suggests that **preprocessing can have trade-offs**—boosting performance in some metrics while slightly effecting class-level accuracy.
- ➤ While preprocessing was beneficial for certain models in terms of performance metrics (e.g., Logistic Regression), the confusion matrix reveals a slight decline in classification accuracy for the Ribo class after preprocessing.
- **ROC** (Receiver Operating Characteristic) Curve Analysis :

The ROC (Receiver Operating Characteristic) Curve is a graphical representation used to evaluate the performance of a binary classification model. It plots the **True Positive Rate** (**TPR**) against the **False Positive Rate** (**FPR**) at different threshold values.

- The **True Positive Rate** (**TPR**) (or sensitivity) measures how well the model identifies actual positives.
- The **False Positive Rate (FPR)** measures how often the model incorrectly classifies negatives as positives.
- The **AUC** (**Area Under the Curve**) indicates the model's overall ability to distinguish between classes:
 - $AUC = 1 \rightarrow Perfect model$
 - $AUC = 0.5 \rightarrow Random guessing$
 - AUC < 0.5 Worse than random guessing

WITHOUT PREPROCESSING

Fig 24: ROC analysis Without Preprocessing WITH

PREPROCESSING

Fig 25: ROC analysis With Preprocessing

6 PREDICTIONS & RESULTS

Predictions and Final Model Deployment

After identifying **Logistic Regression** as the best model based on its **high accuracy and superior predictions**, we proceeded to test the model on unseen data.

• Prediction Phase

Data Sampling:

- 1. We used the **sample file** which acts as the test data.
- 2. The **training data** was used to train all models.
- 3. The **remaining data** was passed to the **Predictions Widget** to evaluate how well the trained models perform on unseen samples.

Fig 26: Predictions using sample file

Making Predictions:

- Displays the predicted class labels for each instance in the dataset, allowing comparison between actual and predicted values.
- It helps in visually analyzing model performance and identifying misclassified samples.
- The **Predictions Widget** received the trained Logistic Regression model along with the remaining data from the Sample file.

Fig 27: Logistic Regression Model Predictions and Performance in Orange

7 VISUALIZATION

Nomogram Widget:

- The Nomogram widget in Orange is a model interpretation tool that visually breaks down how each individual feature contributes to a specific prediction.
- It displays the impact of input features on the predicted probability or class, allowing users to understand the reasoning behind the model's output.
- This is especially useful for explaining complex models like logistic regression or SVM in a human-interpretable way.

WITH PREPROCESSING:

Fig 28: Nomogram

The **Nomogram Widget** was used to interpret the predictions made by the classification model trained on the yeast gene expression dataset. It identified and visualized the most influential genes that contributed to classifying tumors into **Proteasome**, **Respiratory**, and **Ribosomal** inhibitor categories. By assigning weights to individual genes, the nomogram highlighted **which genes had the strongest impact on the classification decision** for each sample. This allowed for a clearer understanding of the model's internal logic and helped pinpoint **key gene markers** relevant to drug response classification.

❖ Final Workflow for Prediction and Visualization in Orange:

Data Preprocessing → Feature Transformation → Model Training → Evaluation → Prediction & Visualization

Fig 31: FINAL FLOW DIAGRAM USING ORANGE TOOL

9. CONCLUSION

This study aimed to classify tumor samples into **Proteasome**, **Respiratory**, and **Ribosomal** inhibitor categories using various machine learning models in Orange. All the missing values are replaced with most frequently occurred/average values which makes the data more efficient. Additionally, normalization was performed to ensure consistent scaling of gene expression values.

Multiple models were evaluated, including Logistic Regression, SVM, Neural Networks, k-NN, Naive Bayes, and Decision Tree.

After evaluation:

- 1. **Logistic Regression** achieved the highest overall performance in terms of accuracy, precision, and recall, making it the final selected model.
- 2. **Naive Bayes** also showed strong performance prior to preprocessing but slightly declined afterward.
- 3. **SVM** and other models performed consistently but did not outperform Logistic Regression.
- 4. **k-NN** experienced the most performance drop after preprocessing, indicating sensitivity to scaling and feature selection.

Model evaluation was conducted using the **Test & Score widget**, and insights were gained through tools such as the **Confusion Matrix** and **Nomogram**, which helped interpret feature contributions to predictions.

Final Verdict:

- Logistic Regression was selected as the final model due to its high accuracy and balanced performance across all evaluation metrics.
- This project successfully demonstrated the application of supervised learning to **time-course gene expression data** for **gene function classification**, emphasizing the role of machine learning in advancing **bioinformatics and functional genomics**.

PART-C

Comparison of Movie Dataset and Yeast Gene Expression Dataset Experiment Analysis

1. MOVIE PERFORMANCE DATASET ANALYSIS:

Step 1: Model Training & Clustering

• Apply clustering algorithms (K-Means, Hierarchical Clustering, and DBSCAN) to group movies based on performance and marketing attributes using Orange's visual workflows.

Step 2: Evaluate & Compare Models

• Use evaluation tools such as Silhouette Score, Scatter Plots, and Cluster Size Distribution to interpret and compare clustering results.

Model Performance Comparison with and without Preprocessing

- **Preprocessing (mean imputation and normalization)** led to a significant improvement in classification accuracy across all models.
- **SVM** delivered the highest post-preprocessing accuracy (0.9583 CA), showing robustness to high-dimensional gene expression data.
- **Random Forest** improved drastically from 0.5833 to 0.9167 CA due to better handling of cleaned and scaled data.
- **Logistic Regression** and **Neural Networks** both reached 0.9583 CA post-preprocessing, showing strong adaptability.
- **Naïve Bayes**, though strong pre-preprocessing, slightly declined post-scaling highlighting sensitivity to input distribution changes.
- Final model choice favored **SVM** and **Logistic Regression** for their **consistent performance and interpretability**.

2. YEAST GENE EXPRESSION DATASET ANALYSIS:

Step 1: Model Training & Classification

• Trained classification models (SVM, Logistic Regression, Naïve Bayes, k-NN, Random Forest, Tree) to predict gene functional classes using the time-course gene expression data.

Step 2: Evaluate & Compare Models

• Evaluated models using metrics such as Accuracy (CA), F1-Score, Precision, Recall, AUC, and Matthews Correlation Coefficient (MCC).

Model Performance Comparison with and without Preprocessing

- Logistic Regression showed the most significant improvement, achieving 0.995 CA and F1-score after preprocessing, making it the best-performing model overall.
- **SVM** remained highly consistent, performing well both before and after preprocessing (0.978 CA, 0.979 F1), showing robustness to raw feature values.
- Naïve Bayes, which had the highest CA before preprocessing (0.995), slightly decreased after preprocessing indicating it may be more sensitive to data distribution shifts.
- **kNN** and **Tree models** saw slight drops in performance post-preprocessing, possibly due to normalization affecting distance-based or rule-based structures.
- Random Forest maintained strong performance but with a slight decrease in CA and MCC.
- **Preprocessing overall helped with generalization**, especially for models like Logistic Regression, at the cost of slight dips for some others.

3. OVERVIEW OF TECHNIQUES:

Aspect	Part A: Movie Performance	Part B: Yeast Gene
	Clustering	Expression Classification
Learning Type	Unsupervised	Supervised
Algorithms	K-Means, Hierarchical,	Logistic Regression, SVM, k-
Used	DBSCAN	NN, Random Forest, Naïve
		Bayes, Decision Tree
Dataset	50 records (from Google	186 genes \times 79 time-points,
	Forms), numerical movie	gene function as label
	performance attributes	
Tool Used	Orange, SQL Server, SSMS,	Orange Data Mining tool
	SSAS, Visual Studio OLAP	
Objective	Cluster movies based on	Predict functional class of
	performance & marketing	genes from time-course
	patterns	expression data
Preprocessing	Imputation, normalization,	Mean imputation,
	encoding of categorical	normalization to [0,1] range
	features	
Visualization	Scatter Plots, Dendrograms,	Confusion Matrix, ROC Curve,
Tools	Cluster Size Distribution	Nomogram

Table 4: Overview of all aspects

4. PREPROCESSING EFFECTIVENESS:

- Clustering (Part A):
 - o Preprocessing improved cluster compactness and interpretability.
 - o Especially beneficial for **DBSCAN**, which is scale-sensitive.
 - o Helped reveal distinct segments:
 - Cluster C1: Low-revenue, high ad budget (ineffective strategy)
 - Cluster C3: High-revenue, moderate ad budget (efficient strategy)
- Classification (Part B):
 - o Preprocessing significantly boosted performance for most models.
 - o Feature scaling ensured better learning across time-point expression data.
 - Logistic Regression performed best post-preprocessing with 0.995 CA.

5. PERFORMANCE COMPARISON TABLE:

Metric/Model	Part A: Clustering Silhouette Score,	Part B: Classification
Evaluation Metrics	Scatter Plot interpretation K-Means	Accuracy (CA), F1-score, AUC, MCC
Best Algorithm	(interpretable), DBSCAN (noise filtering)	Logistic Regression (CA = 0.995 after preprocessing)
Preprocessing	Improved clustering separation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Impact		Boosted CA by up to 33.3% in Random Forest

FINAL CONCLUSION:

- Part A demonstrated how unsupervised clustering could segment movies into marketing/ROI-based groups, aiding strategic decisions.
- Part B showed the power of supervised learning in accurately predicting gene functions from complex temporal data.
- **Preprocessing** was a critical factor for improving results in both parts:
 - Clustering: Improved separation and clarity of movie groups.
 - Classification: Enabled high model accuracy and generalization.
- Logistic Regression and SVM stood out as the most consistent and accurate classifiers in Part B.
- K-Means and DBSCAN were most insightful for performance-based grouping in Part A.

REFERENCES

- 1. Multi-Target Classification and Machine Learning
 - Tsoumakas, G., & Katakis, I. (2007). "Multi-label classification: An overview." *International Journal of Data Warehousing and Mining (IJDWM)*, 3(3), 1-13.
 - **Zhang, M. L., & Zhou, Z. H. (2014).** "A review on multi-label learning algorithms." *IEEE Transactions on Knowledge and Data Engineering*, 26(8), 1819-1837.
 - Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). "Scikit-learn: Machine learning in Python." *Journal of Machine Learning Research*, 12, 2825-2830.
- 2. Movie Performance Analysis and Design
 - Sharda, R., Delen, D., & Turban, E. (2020).

 Business Intelligence, Analytics, and Data Science: A Managerial Perspective (5th ed.).

 Pearson.
 - Han, J., Pei, J., & Kamber, M. (2011).

 Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.

3. Gene Expression Classification and Analysis

- Baldi, P., & Brunak, S. (2001).

 Bioinformatics: The Machine Learning Approach (2nd ed.). MIT Press.
- Lesk, A. M. (2014).

 Introduction to Bioinformatics (4th ed.). Oxford University Press.

SESHADRI RAO GUDLAVALLERU ENGINEERING COLLEGE

(An Autonomous Institute with Permanent Affiliation to JNTUK, Kakinada) Seshadri Rao Knowledge Village, Gudlavalleru

Department of Computer Science and Engineering Program Outcomes (pos) Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions to meet the desired needs.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **10. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **11. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and rite.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO1: Design, develop, test and maintain reliable software systems and intelligent systems. PSO2: Design and develop web sites, web apps and mobile apps.

PROJECT PROFORMA

Classification	Application	Product	Research	Review
of Project	√			

Note: Tick Appropriate category

Data Mining Outcomes								
Course Outcome (CO1)	Describe fundamentals, and functionalities of data mining system and data preprocessing techniques.							
Course Outcome (CO2)	Illustrate the major concepts and operations of multi dimensional data models.							
Course Outcome (CO3)	Analyze the performance of association rule mining algorithms for finding frequent item sets from the large databases.							
Course Outcome (CO4)	Apply classification algorithms to solve classification problems.							
Course Outcome (CO5)	Use clustering methods to create clusters for the given data set.							

	CS3509: DATA MINING														
	Program Outcomes and Program Specific Outcome														
Course Outcom es	P O 1	P O 2	P 0 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P 0 1 1	P O 1 2		PS O 1	PS O 2
CO1	1	1										1			
CO2	1											1			
CO3	2	3	2									2		1	
CO4	2	2	3	2								2		2	
CO5	1	2	3	1								2		1	

Note: Map each Data Mining outcomes with POs and PSOs with either 1 or 2 or 3 based on level of mapping as follows:

 $1\text{-}Slightly\,(Low)\ mapped\ 2\text{-}Moderately\,(Medium)\ mapped\ 3\text{-}Substantially\,(High)\ mapped}$