2003 Winter Comp

Answers and Solutions for CIS Olympiads

1st CIS 1992

Problem 1

Show that $x^4 + y^4 + z^2 \ge xyz \sqrt{8}$ for all positive reals x, y, z.

Solution

By AM/GM $x^4 + y^4 \ge 2x^2y^2$. Then by AM/GM again $2x^2y^2 + z^2 \ge (\sqrt{8})xyz$.

1st CIS 1992

Problem 7

Find all real x, y such that $(1 + x)(1 + x^2)(1 + x^4) = 1 + y^7$, $(1 + y)(1 + y^2)(1 + y^4) = 1 + x^7$?

Answer

$$(x,y) = (0,0) \text{ or } (-1,-1)$$

Solution

If x = y, then clearly $x \ne 1$, so we have $(1-x^8) = (1-x)(1+x^7) = 1-x^8-x+x^7$, so x = 0 or $x^6 = 1$, whose only real root (apart from the x = 1 we have discarded) is x = -1. That gives the two solutions above. So assume $x \ne y$. wlog x > y.

So (1+x) > (1+y) and $(1+x^7) > (1+y^7)$. So we must have $(1+x^2)(1+x^4) < (1+y^2)(1+y^4)$ and hence y < 0. If x > 0, then $(1 + x)(1 + x^2)(1 + x^4) > 1 > 1+y^7$, so x < 0 also.

Multiplying the first equ by (1-x) and the second by (1-y) and subtracting: $y^8 - x^8 = (y-x) + (y^7 - x^7) + xy(x^6 - y^6)$. But lhs > 0 and each term on rhs < 0. Contradiction. So there are no more solutions.

1st CIS 1992

Problem 9

Show that for any real numbers x, y > 1, we have $x^2/(y-1) + y^2/(x-1) \ge 8$.

Solution

We have $(x-2)2 \ge 0$, so $x2 \ge 4(x-1)$. Hence $x/\sqrt{(x-1)} \ge 2$. Now by AM/GM, $x^2/(y-1) + y^2/(x-1) \ge 2xy/\sqrt{((x-1)(y-1))}$. But rhs $\ge 2\cdot 2\cdot 2\cdot 2$.

1st CIS 1992

Problem 23

If a > b > c > d > 0 are integers such that ad = bc, show that $(a - d)^2 \ge 4d + 8$.

Solution

We need first that a + d > b + c. Put a = m + h, d = m - h, b = m' + k, c = m' - k. Then since a - d > b - c, we have h > k. But $m^2 - h^2 = ad = bc = m'^2 - k^2$, so m > m' and hence a + d > b + c. Since a, b, c, d are integers it follows that $(a + d - b - c) \ge 1$.

Now $(a - d)^2 = (a + d)^2 - 4ad = (a + d)^2 - 4bc > (a + d)^2 - (b + c)^2$ (AM/GM) = $(a + b + c + d)(a + d - b - c) \ge (a + b + c + d)$. But $a \ge d + 3$, $b \ge d + 2$, $c \ge d + 1$, so $(a - d)^2 \ge 4d + 6$. But a square cannot = 2 or 3 mod 4, so $(a - d)^2 \ge 4d + 8$.

1st CIS 1992

Problem 1

Find all integers a, b, c, d such that ab - 2cd = 3, ac + bd = 1.

Answer

$$(a,b,c,d) = (1,3,1,0), (-1,-3,-1,0), (3,1,0,1), (-3,-1,0,-1)$$

Solution

11 = $(ab - 2cd)^2 + 2(ac + bd)^2 = (a^2 + 2d^2)(b^2 + 2c^2)$, so we must have either (1) $a^2 + 2d^2 = 1$, $b^2 + 2c^2 = 11$, or (2) $a^2 + 2d^2 = 11$, $b^2 + 2c^2 = 1$.

(1) gives $a = \pm 1$, d = 0, $b = \pm 3$, $c = \pm 1$. If a = 1 and d = 0, then ac + bd = 1 implies c = 1, and ab - 2cd = 3 implies b = 3. Similarly, if a = -1, then c = -1, and b = -3. Similarly, (2) gives (a,b,c,d) = (3,1,0,1), (-3,-1,0,-1).

Thanks to Suat Namli

25th ASU 1991

Problem 9

Show that $(x + y + z)^2/3 \ge x\sqrt{(yz)} + y\sqrt{(zx)} + z\sqrt{(xy)}$ for all non-negative reals x, y, z.

Solution

By AM/GM xy + yz $\geq 2x\sqrt{(yz)}$. Adding the similar results gives $2(xy + yz + zx) \geq 2(x\sqrt{(yz)} + y\sqrt{(zx)} + z\sqrt{(xy)})$.

By AM/GM $x^2 + x^2 + y^2 + z^2 \ge 4x\sqrt{(yz)}$. Adding the similar results gives $x^2 + y^2 + z^2 \ge x\sqrt{(yz)} + y\sqrt{(zx)} + z\sqrt{(xy)}$. Adding the first result gives $(x + y + z)^2/3 \ge x\sqrt{(yz)} + y\sqrt{(zx)} + z\sqrt{(xy)}$.

Thanks to Suat Namli

25th ASU 1991

Problem 18

p(x) is the cubic $x^3 - 3x^2 + 5x$. If h is a real root of p(x) = 1 and k is a real root of p(x) = 5, find h + k.

Solution

Put y = 2-h, where p(h) = 1, then $(2-y)^3 - 3(2-y)^2 + 5(2-y) - 1 = 0$, so $8-12y+6y^2-y^3 - 12+12y-3y^2 + 10-5y - 1 = 0$, or $y^3 - 3y^2 + 5y = 5$, or p(y) = 5. So if h is a root of p(h) = 1, then there is a root k of p(k) = 5 such that h+k = 2. To complete the proof we have to show that p(x) = 5 has only one real root.

But $x^3 - 3x^2 + 5x = (x-1)^3 + 2(x-1) + 3$ which is a strictly increasing function of x-1 and hence of x. So p(x) = k has only one real root.

Thanks to Suat Namli

25th ASU 1991

Problem 1

Show that $x^4 > x - 1/2$ for all real x.

Solution

 x^4 - x + 1/2 = $(x^2$ - 1/2)² + (x - 1/2)² \ge 0. We could only have equality if x^2 = x = 1/2, which is impossible, so the inequality is strict.

24th ASU 1990

Problem 10

Let $x_1, x_2, ..., x_n$ be positive reals with sum 1. Show that $x_1^2/(x_1 + x_2) + x_2^2/(x_2 + x_3) + ... + x_{n-1}^2/(x_{n-1} + x_n) + x_n^2/(x_n + x_1) \ge 1/2$.

Solution

$$\sum x_i^2/(x_i+x_{i+1}) - \sum x_{i+1}^2/(x_i+x_{i+1}) = \sum (x_i-x_{i+1}) = 0. \text{ Hence } \sum x_i^2/(x_i+x_{i+1}) = \frac{1}{2} \sum (x_i^2+x_{i+1}^2)/(x_i+x_{i+1}) \geq \frac{1}{4} \sum (x_i+x_{i+1}) = \frac{1}{2}.$$

Thanks to Suat Namli

24th ASU 1990

Problem 7

If rationals x, y satisfy $x^5 + y^5 = 2 x^2 y^2$ show that 1 - x y is the square of a rational.

Solution

Put y = kx, then $x^5(1 + k^5) = 2k^2x^4$, so x = $2k^2/(1 + k^5)$, y = $2k^3/(1 + k^5)$ and 1 - xy = $(1 - k^5)^2/(1 + k^5)^2$. x and y are rational, so $(1 - k^5)/(1 + k^5)$ is rational.

Problem 9

Find all positive integers n satisfying $(1 + 1/n)^{n+1} = (1 + 1/1998)^{1998}$.

Solution

Answer: no solutions.

We have $(1 + 1/n)^{n+1} > e > (1 + 1/n)^n$.

22nd ASU 1988

22nd ASU 1988

Problem 15

What is the minimal value of b/(c+d) + c/(a+b) for positive real numbers b and c and non-negative real numbers a and d such that $b+c \ge a+d$?

Solution

Answer: √2 - 1/2.

Obviously a + d = b + c at the minimum value, because increasing a or d reduces the value. So we may take d = b + c - a. We also take b >= c (interchanging b and c if necessary). Dividing through by b/2 shows that there is no loss of generality in taking b = 2, so 0 < c <= 2. Thus we have to find the minimum value of 2/(2c - a + 2) + c/(a + 2). We show that it is $\sqrt{2} - 1/2$.

This is surprisingly awkward. Note first that $(c - (h - k))^2 >= 0$, so $c^2 + c(2k - 2h) + h^2 - 2hk + k^2 >= 0$. Hence $c^2 + ck + h^2 >= (2h - k)(c + k)$. Hence $c/h^2 + 1/(c+k) >= 2/h - k/h^2$ with equality iff c = h - k. Applying this to c/(a+2) + 1/(c+1-a/2) where $h = \sqrt{(a+2)}$, k = 1-a/2, we find that $c/(a+2) + 2/(2c+2-a) >= 2/\sqrt{(a+2)} + (a-2)/(2a+4)$.

The allowed range for c is $0 \le c \le 2$ and $0 \le a \le c+2$, hence $0 \le a \le 4$. Put $x = 1/\sqrt{(a+2)}$, so $1/\sqrt{6} \le x \le 1/\sqrt{2}$. Then $2/\sqrt{(a+2)} + (a-2)/(2a+4) = 2x + 1/2 - 2x^2 = 1 - (2x-1)^2/2$. We have $-0.184 = (2/\sqrt{6} - 1) \le 2x-1 \le \sqrt{2} - 1 = 0.414$. Hence $c/(a+2) + 2/(2c+2-a) \ge 1 - (\sqrt{2} - 1)^2/2 = \sqrt{2} - 1/2$.

We can easily check that the minimum is achieved at b = 2, c = $\sqrt{2}$ - 1, a = 0, d = $\sqrt{2}$ + 1.

22nd ASU 1988

Problem 18

Find the minimum value of xy/z + yz/x + zx/y for positive reals x, y, z with $x^2 + y^2 + z^2 = 1$.

Solution

Answer: min √3 when all equal.

Let us consider z to be fixed and focus on x and y. Put f(x, y, z) = xy/z + yz/x + zx/y. We have $f(x, y, z) = p/z + z(1-z^2)/p = (p + k^2/p)/z$, where p = xy, and $k = z\sqrt{(1-z^2)}$. Now p can take any value in the range 0 . The upper limit is achieved when <math>x = y.

We have $p + k^2/p = (p - k)^2/p$. For $p \le k$, (p - k) and 1/p are both decreasing functions of p, so $p + k^2/p$ is a decreasing function of p. Thus if p is restricted to the interval (0, h], then for $k \le h$ the minimum value of $p + k^2/p$ is 2k and occurs at p = k. For $k \ge h$ the minimum is $h + k^2/h$ and occurs at p = h.

We have h = $(1-z^2)/2$, k = $z\sqrt{(1-z^2)}$. So k \le h iff z \le 1/ $\sqrt{5}$. So if z \le 1/ $\sqrt{5}$, then f(x, y, z) \ge 2k/z = $2\sqrt{(1-z^2)} \ge 27\sqrt{(1-1/5)} = 4/\sqrt{5} > \sqrt{3}$.

If $z > 1/\sqrt{5}$, then the minimum of f(x, y, z) occurs at x = y and is $x^2/z + z + z = (1-z^2)/(2z) + 2z = 3z/2 + 1/(2z) = (<math>\sqrt{3}$)/2 ($z\sqrt{3} + 1/(z\sqrt{3}) \ge \sqrt{3}$ with equality at $z = 1/\sqrt{3}$ (and hence $x = y = 1/\sqrt{3}$ also).

22nd ASU 1988

Problem 22

What is the smallest n for which there is a solution to $\sin x_1 + \sin x_2 + ... + \sin x_n = 0$, $\sin x_1 + 2 \sin x_2 + ... + n \sin x_n = 100$?

Solution

Put $x_1 = x_2 = ... = x_{10} = 3\pi/2$, $x_{11} = x_{12} = ... = x_{20} = \pi/2$. Then $\sin x_1 + \sin x_2 + ... + \sin x_{20} = (-1 - 1 - 1 - ... - 1) + (1 + 1 + ... + 1) = 0$, and $\sin x_1 + 2 \sin x_2 + ... + 20 \sin x_{20} = -(1 + 2 + ... + 10) + (11 + 12 + ... + 20) = 100$. So there is a solution with n = 20. If there is a solution with n < 20, then there must be a solution for n = 19 (put any extra $x_i = 0$). But then $100 = (\sin x_1 + 2 \sin x_2 + ... + 19 \sin x_{19}) - 10 (\sin x_1 + \sin x_2 + ... + \sin x_{19}) = -9 \sin x_1 - 8 \sin x_2 - 7 \sin x_3$

- ... - $\sin x_9 + \sin x_{11} + 2 \sin x_{12} + ... + 9 \sin x_{19}$. But | rhs | $\leq (9 + 8 + ... + 1) + (1 + 2 + ... + 9) = 90$. Contradiction. So there is no solution for n < 20.

22nd ASU 1988

Problem 1

The quadratic $x^2 + ax + b + 1$ has roots which are positive integers. Show that $(a^2 + b^2)$ is composite.

Solution

Let the roots be c, d, so c + d = -a, cd = b+1. Hence $a^2 + b^2 = (c^2 + 1)(d^2 + 1)$.

Thanks to Suat Namli

20th ASU 1986

Problem 20

x is a real number. Define $x_0 = 1 + \sqrt{(1 + x)}$, $x_1 = 2 + x/x_0$, $x_2 = 2 + x/x_1$, ..., $x_{1985} = 2 + x/x_{1984}$. Find all solutions to $x_{1985} = x$.

Answer

3

Solution

If x = 0, then $x^{1985} = 2 \neq x$. Otherwise we find $x_1 = 2 + x/(1+\sqrt{(1+x)}) = 2 + (\sqrt{(1+x)} - 1) = 1 + \sqrt{(1+x)}$. Hence $x_{1985} = 1 + \sqrt{(1+x)}$. So $x - 1 = \sqrt{(1+x)}$. Squaring, x = 0 or 3. We have already ruled out x = 0. It is easy to check that x = 3 is a solution.

Thanks to Suat Namli

19th ASU 1985

Problem 2

Show that $(a + b)^2/2 + (a + b)/4 \ge a\sqrt{b} + b \sqrt{a}$ for all positive a and b.

Answer

By AM/GM $\sqrt{(ab)} \le (a+b)/2$, so $\sqrt[4]{(a+b)} + \sqrt{(ab)} \le a+b$. Hence $\sqrt{(2a+2b)} \ge \sqrt{a} + \sqrt{b}$ (*).

By AM/GM (a + b) $\geq 2\sqrt{(ab)}$ and 2(a+b) + 1 $\geq 2\sqrt{(2a+2b)}$. Multiplying, (a+b)(2a+2b+1) $\geq 4\sqrt{(ab)}\sqrt{(2a+2b)}$. Then using (*) $\geq 4\sqrt{(ab)}(\sqrt{a} + \sqrt{b})$.

Thanks to Suat Namli

Solution

18th ASU 1984

Problem 2

The sequence a_n is defined by $a_1 = 1$, $a_2 = 2$, $a_{n+2} = a_{n+1} + a_n$. The sequence b_n is defined by $b_1 = 2$, $b_2 = 1$, $b_{n+2} = b_{n+1} + b_n$. How many integers belong to both sequences?

Answer

1,2,3 only

Solution

The first few terms are:

n 1 2 3 4 5 6 7

an 1 2 3 5 8 13 21

 $b_n \ 2 \ 1 \ 3 \ 4 \ 7 \ 11 \ 18$

Note that for n = 4, 5 we have $a_{n-1} < b_n < a_n$. So by a trivial induction, the inequality holds for all $n \ge 4$.

Thanks to Suat Namli

16th ASU 1982

Problem 15

x is a positive integer. Put a = $x^{1/12}$, b = $x^{1/4}$, c = $x^{1/6}$. Show that $2^a + 2^b \ge 2^{1+c}$.

Solution

Put $x = r^{12}$. Since x is a positive integer, we have $r \ge 1$. We have to show that $(2^r + 2^{r3})/2 \ge 2^{r2}$. But this follows immediately from AM/GM.

Thanks to Suat Namli

16th ASU 1982

Problem 13

Find all solutions (x, y) in positive integers to $x^3 - y^3 = xy + 61$.

Answer

(6,5)

Solution

Put x = y + a. Then $(3a-1)y^2 + a(3a-1)y + (a^3-61) = 0$. The first two terms are positive, so the last term must be negative, so a = 1, 2, 3. Trying each case in turn, we get (y+6)(y-5) = 0, $5y^2+10y-53 = 0$, $4y^2+12y-17 = 0$. The last two equations have no integers solutions.

Thanks to Suat Namli

15th ASU 1981

Problem 16

The positive reals x, y satisfy $x^3 + y^3 = x - y$. Show that $x^2 + y^2 < 1$.

Solution

Since x, y are positive, so is $x^3 + y^3$, and hence x > y. So $(x^2 + y^2)(x - y) = (x^3 - y^3) - xy(x - y)$ < $x^3 - y^3 = x - y$. Hence $x^2 + y^2 < 1$.

Thanks to Suat Namli

15th ASU 1981Problem 5

Are there any solutions in positive integers to $a^4 = b^3 + c^2$?

Solution

We have $b^3 = (a^2 - c)(a^2 + c)$, so one possibility is that $a2 \pm c$ are both cubes. So we want two cubes whose sum is twice a square. Looking at the small cubes, we soon find $8 + 64 = 2 \cdot 36$ giving $6^4 = 28^2 + 8^3$. Multiplying through by k^{12} gives an infinite family of solutions. Note that the question does not ask for all solutions.

14th ASU 1980

Problem 16

A rectangular box has sides x < y < z. Its perimeter is p = 4(x + y + z), its surface area is s = 2(xy + yz + zx) and its main diagonal has length $d = \sqrt{(x^2 + y^2 + z^2)}$. Show that $3x < (p/4 - \sqrt{(d^2 - s/2)})$ and $3z > (p/4 + \sqrt{(d^2 - s/2)})$.

Solution

We have 3(y-x)(z-x) > 0, so $3x^2 + 3yz > 3xy + 3xz$. Hence $y^2 + z^2 + 4x^2 + 2yz - 4xy - 4xz > x^2 + y^2 + z^2 - xy - yz - xz$ or $(y + z - 2x)^2 > (d^2 - s/2)$. Hence $(x + y + z) > 3x + \sqrt{(d^2 - s/2)}$. So $3x < p/4 - \sqrt{(d^2 - s/2)}$.

Similarly, 3(z-x)(z-y) > 0, so $x^2 + y^2 + 4z^2 > x^2 + y^2 + z^2 + 3zx + 3zy - 3xy$, so $(2z - x - y)^2 > x^2 + y^2 + z^2 - xy - yz - zx$ or $(3z - p/4)^2 > (d^2 - s/2)$. Hence $3z > p/4 + \sqrt{(d^2 - s/2)}$.

14th ASU 1980