PUIS-JE UTILISER DES DONNÉES SYNTHÉTIQUES POUR MES ÉTUDES STATISTIQUES ?

DELMARE BASTIEN & COTTET CORALIE

ALGORITHME À CONFIDENTIALITÉ DIFFÉRENTIELLE :

LE MST (MAX SPANNING TREE)

3 GRANDES ETAPES:

QU'EST CE QU'UNE MARGINALE?

Sexe	Travaille	Heures travaillées
Homme	Oui	35
Femme	emme Oui 4	
Femme	Oui	40
Homme	Non	20
Homme	Oui	33

Marginales à deux dimensions :

- Homme qui travaille = 2
- Homme qui ne travaille pas = 1
- Femme qui travaille = 2
- Femme qui ne travaille pas = 0

Soit $f: \mathcal{D} \to \mathbb{R}^p$ une fonction vectorielle de l'ensemble de données D. Le mécanisme Gaussien ajoute du bruit Gaussien indépendant et identiquement distribué (i.i.d.)

$$\mathcal{M}(D) = f(D) + \mathcal{N}(0, \sigma^2 \mathbf{I})$$

LE MÉCANISME GAUSSIEN

LE MÉCANISME EXPONENTIEL

Soit $q: \mathcal{D} \times \mathcal{R} \to \mathbb{R}$ une fonction de score de qualité et epsilon un paramètre. Le mécanisme exponentiel génère une sortie candidate $r \in \mathbb{R}$ selon la distribution suivante :

$$\Pr[\mathcal{M}(D) = r] \propto \exp\left(\epsilon \cdot q(D, r)\right)$$

1ER ÉTAPE : SELECTION DES MARGINALES

Soient i et j deux variables de notre base de données.

Soit p le modèle indépendant obtenu à l'aide des marginales bruitées de dimension 1.

L'algorithme initialise un graphe, et ajoute à ce graphe au fur et à mesure les arêtes qui ont la valeur donné par le mecanisme exponentielle avec le score de qualité le plus élevé : $q_{ij}(D) = \|\mu_{ij}(D) - \mu_{ij}(p)\|_1$

1ER ÉTAPE : SELECTION DES MARGINALES

(Similaire à l'algorithme de Kruskal's)

2ÈME ÉTAPE : CALCULE DES MARGINALES

Mesure avec un mécanisme gaussien :

Normalisation des poids

$$w_C \leftarrow w_C / \sqrt{\sum_C w_C^2}$$

Calcule des marginales bruitées

$$\tilde{\mu} = w_C M_C(D) + \mathcal{N}(0, \sigma^2 I)$$

Collecte du 4-uplet

$$(w_C I, \ \tilde{\mu}, \ \sigma, \ C)$$

3ÈME ÉTAPE : GENERATION DES DONNÉES SYNTHÉTIQUES

Private-PGM

Private-PGM est un outil de post-traitement polyvalent permettant d'inférer une distribution de données à partir de mesures bruitées.

Il permet de résoudre un problème d'optimisation pour trouver une distribution de données qui produirait des mesures proches de celles observées

PRIUATE-PGM

Un peu de formalisme

Supposons que les mesures soient de la forme : $y_C = Q_C M_C(D) + \xi$

Private-PGM infère une distribution de données P qui explique le mieux les mesures en résolvant le problème d'optimisation suivant :

$$\underset{P}{\operatorname{argmin}} \sum_{C \in \mathcal{C}} \|Q_C M_C(P) - y_C\|_2^2$$

1 - Capable de s'adapter à des domaines de très haute dimension.

2 -produit des réponses aux requêtes qui sont cohérentes entre elles

3 - Permet d'estimer des marginales non mesurées

4 - Génère des données synthétiques à partir des marginales biaisées

PRIUATE-PGM

Avantages

Problème:

Quel est le lien entre sexe et nombre d'heures travaillées ?

SUR LES DONNÉES non BRUITÉES

Moyenne du nombre d'heures travaillées par semaine en fonction de l'âge et du genre

Moyenne du nombre d'heures travaillées (hommes): 40.11

Moyenne du nombre d'heures travaillées (femmes) : 37.30

P-valeur du test de Kolgomorov-smirnov : 4.83e-16

P-valeur du test de Student : 1.40e-06

ORIGINALES US SYNTHÉTIQUES (HOMMES)

Mesures	Originales	Synthétiques (epsilon = 100)	Synthétiques (epsilon = 1)
Moyennes	42.41	41.44	41.94
Ecarts-types	4.94	0.75	0.83
Médiane	44.28	41.35	42.02
1er quartile	42.51	41.00	41.45
3ème quartile	44.91	41.83	42.45

Mesures	Originales	Synthétiques (epsilon = 100)	Synthétiques (epsilon = 1)	
Moyennes	37.30	40.29	40.71	
Ecarts-types	4.26	0.97	0.80	
Médiane	38.81	40.08	40.71	
1er quartile	37.79	39.73	40.23	
3ème quartile	39.61	40.83	41.11	

ORIGINALES US SYNTHÉTIQUES (FEMMES)

DONNÉES CLAIRES US DONNÉES BRUITÉES

Evolution de la moyenne du nombre d'heures travaillées par semaine des Hommes en fonction de l'âge

DONNÉES CLAIRES US DONNÉES BRUITÉES

Evolution de la moyenne du nombre d'heures travaillées par semaine des Femmes en fonction de l'âge

DES RÉSULTATS SIMILAIRES

P-valeur du test de Kolmogorov-Smirnov:

- 1 Pour les données claires : 4.84e-16
- 2 Pour les données modérément bruités : 2.42e-09
- 3 Pour les données fortement bruités : 2.31e-05

P-valeur du test de Student :

- 1 Pour les données claires : 1.41e-6
- 2 Pour les données modérément bruités : 2.44e-10
- 3 Pour les données fortement bruités : 2.64e-06

COMMENT LA RELATION ENTRE LE REVENU ET DES VARIABLES TELLES QUE L'ÂGE, LE NIVEAU D'ÉDUCATION, LE NOMBRE D'HEURES TRAVAILLÉES PAR SEMAINE ET LE SEXE INFLUENCE-T-ELLE LA PROBABILITÉ D'OBTENIR UN REVENU SUPÉRIEUR À 50K ?

income ~ age + education_num + hours_per_week + sex

Non-private results:

Test du chi-deux validé, significatif au niveau de 5%

	========				========	=====	
Dep. Variable:	income		No. Observations:		32561		
Model:		Logit	Df Residuals:		32556		
Method:		MLE	Df Model:	Df Model:		4	
Date:	Thu, 0	Thu, 03 Oct 2024 Pseudo R-squ.:			0.2234		
Time:		13:11:29	Log-Likeli	.hood:	-13959.		
converged:		True	LL-Null:		-17974.		
Covariance Type:		nonrobust	LLR p-value:		0.000		
=========	coef	std err	z	P> z	[0.025	0.975]	
Intercept	-9.1334	0.116	 -78 . 934	0.000	-9.360	 -8.907	
sex[T. Male]	1.1612	0.038	30.804	0.000	1.087	1.235	
age	0.0456	0.001	38.464	0.000	0.043	0.048	
education_num	0.3551	0.007	53.666	0.000	0.342	0.368	
age	0.0214	0.001	22.241	0.000	0.019	0.023	
education_num	-0.0054	0.005	-1.035	0.301	-0.016	0.005	
hours_per_week	0.0044	0.001	4.031	0.000	0.002	0.006	

COMMENT LA RELATION ENTRE LE REVENU ET DES VARIABLES TELLES QUE L'ÂGE , LE NIVEAU D'ÉDUCATION, LE NOMBRE D'HEURES TRAVAILLÉES PAR SEMAINE ET LE SEXE INFLUENCE-T-ELLE LA PROBABILITÉ D'OBTENIR UN REVENU SUPÉRIEUR À 50K ?

Epsilon = 100:

Logit Regression Results								
Dep. Variable:		income	income No. Observations:			32561		
Model:		Logit	Df Residua	Df Residuals:		32556		
Method:		MLE	Df Model:		4			
Date:	Thu, 03 Oct 2024		Pseudo R-squ.:		0.05147			
Time:		13:15:59 Log-Likelihood:			-16995.			
converged:		True LL-Null: -17918.		7918.				
Covariance Type:	nonrobust		LLR p-value:			0.000		
	coef	std err	z	P> z	[0.025	0.975]		
Intercept	-3.0147	0.081	-37 . 209	0.000	-3.174	-2.856		
sex[T.male]	1.0823	0.033	32.326	0.000	1.017	1.148		
age	0.0200	0.001	21.834	0.000	0.018	0.022		
education_num	0.0154	0.005	2.925	0.003	0.005	0.026		
age	0.0214	0.001	22.241	0.000	0.019	0.023		
education_num	-0.0054	0.005	-1.035	0.301	-0.016	0.005		
hours_per_week 	0.0044 	0.001 	4.031 	0.000 	0.002 	0.006 		

Test du chideux validé

COMMENT LA RELATION ENTRE LE REVENU ET DES VARIABLES TELLES QUE L'ÂGE , LE NIVEAU D'ÉDUCATION, LE NOMBRE D'HEURES TRAVAILLÉES PAR SEMAINE ET LE SEXE INFLUENCE-T-ELLE LA PROBABILITÉ D'OBTENIR UN REVENU SUPÉRIEUR À 50K ?

Epsilon = 1:

Logit Regression Results							
Dep. Variable:		income	No. Observ	 32561			
Model:		Logit	Df Residua	ls:	32556		
Method:		MLE	Df Model:		4		
Date:	Thu, (03 Oct 2024	Pseudo R-s	qu.:	0.05147		
Time:		13:13:54	Log-Likeli	Log-Likelihood:		-16995.	
converged:		True	LL-Null:		-1	-17918.	
Covariance Type:		nonrobust	LLR p-value:		0.000		
=========	coef	std err	======== Z	======= P> z	======== [0.025	====== 0.975]	
Intercept	-3.0147	0.081	-37 . 209	0.000	-3.174	 -2 . 856	
sex[T.male]	1.0823	0.033	32.326	0.000	1.017	1.148	
age	0.0200	0.001	21.834	0.000	0.018	0.022	
education_num	0.0154	0.005	2.925	0.003	0.005	0.026	
hours_per_week	0.0025	0.001	2.374	0.018	0.000	0.005	
				=========		=======	

Test du chideux validé

BIBLIOGRAPHIE

WINNING THE NIST CONTEST: A SCALABLE AND GENERAL APPROACH TO DIFFERENTIALLY PRIVATE SYNTHETIC DATA:

(AUG 2021) RYAN MCKENNA, GEROME MIKLAU, AND DANIEL SHELDON

Marginal-based Methods for Differentially Private Synthetic Data
<u>Google TechTalks</u>

W. Qardaji, W. Yang, and N. Li. Priview: practical differentially private release of marginal contingency tables. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pages 1435–1446. ACM, 2014.