Name: Hongda Li

HW: AMATH 515 HW2 Theory

Problem 1

(1) Let $x, y \in \mathbb{R}^n$, and consider a function $f: \mathbb{R}^n \to \mathbb{R}$. We make the following definitions:

$$\operatorname{prox}_{tf}(y) := \arg\min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$
$$f_t(y) := \min_{x} \frac{1}{2t} ||x - y||^2 + f(x)$$

Notice that $\operatorname{prox}_{tf}(y)$ is the minimizer of an optimization problem; in particular it is a vector in \mathbb{R}^n , On the other hand $f_t(y)$ is a function from $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, just as f. Suppose f is convex.

(a)

Objective: Show that f_t is convex.

Claim 1a1: Sum of 2 convex functions is convex. This is proved in HW1.

Claim 1a2: $||\cdot||$ is convex. This is proved in HW1.

Therefore, $\frac{1}{2t}||x-y||^2$ is a convex function and by hypothesis from the statement, f(x) is also convex. By 1a1, the sum of the 2 function is convex.

Define a bi-variable convex function:

$$F(x,y) := \frac{1}{2t} ||x - y||^2 + f(x)$$

Then it can be said that:

$$f_t(y) = \min_{x} F(x, y)$$

Notice that, the minimizing along one of the dimension preserves convexity of the function.

Proof: The function $\min_x F(x,y)$ is convex wrt to variable y. And this means that:

$$\min_{u}(F(u,x+\lambda(y-x))) \le \min_{u}(F(u,x)+\lambda F(u,y-x)) \le \min_{u}(F(u,x)) + \lambda \min_{u}(F(u,y-x))$$

The first \leq is justified by the fact that F(x,y) is convex wrt both x,y, and the second \leq is justified by the properties of the minimizing operator.

The convexity is preserved, therefore $f_t(y)$ is a convex function.

(b)

Objective: Show that $prox_{t,f}(y)$ produces a unique result.

Claim 1b1: A strictly convex function that is level bounded and proper has a unique minimizer.

Proof: If a function is level bounded and proper then there exists some minimizers, choose any of them, name it x^+ , then using strict convexity we have:

$$f(y) > f(x^+) + \nabla f(x^+)(y - x^+)$$

Which is true for all $y \neq x^+$, therefore x^+ is a uniquer global minimizer.

Claim 1b2: $||\cdot||^2$ is strictly convex. This is not hard to convince. Using the differential characteristic of convexity and $y \neq x \neq 0$, which makes the triangular inequality strict, and then it will show that 2-norm squared is a strictly convex function. Or, we can use the fact that the function is smooth and the second derivative is non-zero.

Claim 1b3: The following function is level bounded:

$$g(x) := \frac{1}{2t} ||x - y||^2 + f(x)$$

Proof: By convexity of the function f(x):

$$f(y) \ge f(x) + \partial f(x)(y - x) \implies f(x) \le f(y) - \partial f(x)^T (y - x)$$

Then we can say that:

$$g(x) \le \frac{1}{2t} ||x - y||^2 + f(y) - \partial f(x)^T (y - x)$$

Notice that:

$$g(x) \le \underbrace{\frac{1}{2t} \|x - y\|^2 + f(y) - \partial f(x)^T (y - x)}_{(1)} \le \alpha$$

The middle expression (1) is level bounded because it's a quadratic function that is convex, with all leading coefficients on quadratic term to be positive, therefore:

$$\underset{\alpha}{\text{lev}}(g(x)) \subseteq \left\{ x : \frac{1}{2t} \|x - y\|^2 + f(y) - \partial f(x)^T (y - x) \le \alpha \right\}$$

The subset of a bounded set is bounded. Therefore g(x) is level bounded.

Claim 1b4: g(x) defined in previous claim is strictly convex. This is true because buy Claim 1b2 2-norm squared is strictly convex, in addition f(x) is convex. The sum of a strict convex function and a convex function is strictly convex (Showed in HW1).

By Claim 1b3, Claim 1b4 the function g(x) is level bounded and strictly convex, therefore, a unique minimizer exists for g(x), and g(x) is the definition of the proximity operation on function f with t. Therefore, the proximity operator a unique result for all y.

(c)

Objective: Compute $\underset{t,f}{\text{prox}}(y)$ and f_t when $f(x) = ||x||_1$.

Proof:

By definition of the proximity operator, we have:

$$\operatorname{prox}_{t,f}(y) = \underset{x}{\operatorname{argmin}} \left(\frac{1}{2t} \|x - y\|^2 + \|x\|_1 \right) = \underset{x_1, x_2 \dots x_n}{\operatorname{argmin}} \left(\sum_{i=1}^n \left(\frac{1}{2t} (x_i - y_i)^2 + |x_i| \right) \right)$$
(1c1)

Observe that x_i is independent to each other and that means:

$$\forall 1 \le i \le n \underset{x_i}{\operatorname{argmin}} \left(\frac{1}{2t} (x_i - y_i)^2 + |x_i| \right)$$
 (1c2)

Let's consider the scalar optimization problem by cases:

1. x > 0:

$$\frac{d}{dx}\left(\frac{1}{2t}(x_i - y_i)^2 + |x_i|\right) = \frac{1}{t}(x_i - y_i) + 1$$

Setting the derivative to zero we have:

$$\frac{1}{t}(x_i - y_i) + 1 = 0 \implies x_i - y_i + t = 0 \implies x_i = y_i - t$$

Notice that, it assert constraint on y_i for which: $y_i - t > 0 \implies y > t$. Subtitutes it back we can get the objective value to as:

$$\frac{1}{2t}(y_i - t - y_i)^2 + y_i - t$$

$$= \frac{t^2}{2t} + y_i - t$$

$$= \frac{t}{2} + y_i - t$$

$$= y_i - \frac{t}{2}$$

2. x = 0:

$$\frac{d}{dx} \left(\frac{1}{2t} (x_i - y_i)^2 + |x_i| \right) = \frac{1}{t} (x_i - y_i) + \partial |x_i|$$

Using sub-differential, and setting $x_i = 0$, we know that:

$$0 \in \frac{-y_i}{t} + [-1, 1] \implies 0 \in -y_i + [-t, t] \implies -y_i - t \le 0 \le -y_i + t \implies y_i \in [-t, t]$$

Substituting $x_i = 0$ beck and we have: $\frac{y_i^2}{2t}$.

3. x < 0:

$$\frac{d}{dx}\left(\frac{1}{2t}(x_i - y_i)^2 + |x_i|\right) = \frac{1}{t}(x_i - y_i) - 1$$

Setting the derivative to zero:

$$x_i - y_i - t = 0 \implies 0 \ge x_i = y_i + t$$

And it means that: $y_i \leq -t$ Substituting $x_i = y_i + t$:

$$\frac{1}{2t}(y_i + t - y_i)^2 - (y_i + t)$$

$$= \frac{t}{2} - y_i - t$$

$$= -y_i - \frac{t}{2}$$

Notice that, by assuming cases for x and solve for the optimal x^* under each cases, we got the optimal solution for x^* given different y values, and it can be summarized as:

$$\left(\underset{t,\|\cdot\|_1}{\text{prox}}(y) \right)_i = \underset{x_i}{\text{argmin}} \left(\frac{1}{2t} (x_i - y_i)^2 + |x_i| \right) = \begin{cases} 0 & y \in [-t, t] \\ y_i + t & y_i < -t \\ y_i - t & y_i > t \end{cases} \tag{1c3}$$

In addition, we also have a way of computing the envelope for the function for each value x_i . Which means that:

$$\begin{cases} \frac{y_i^2}{2t} & y_i \in [-t, t] \\ y_i - \frac{t}{2} & y > t \\ -y_i - \frac{t}{2} & y < -t \end{cases}$$
 (1c4)

And, using some element wise operations on vector y, we can get the expression for the envelope of the function like:

$$f_t(y) = \frac{y^2}{2t} \operatorname{sign}(\max(0, t - abs(y))) + \operatorname{sign}(\max(0, abs(y) - t)))(\operatorname{sign}(y - t)y - \frac{t}{2})$$
 (1c4.1)

(d)

Objective: Compute the envelope and proximity when non-smooth convex function is a infinity norm ball. **Claim 1d1:** The proximity operator on the ∞ norm ball can be reduced to projection and easily evaluated by the following expression (Mentioned as an example from the lecture):

$$\operatorname{prox}_{t,f}(y) = \operatorname*{argmin}_{x} \left(\frac{1}{2t} \|x - y\|^2 + \delta_{\mathbb{B}_{\infty}}(x) \right) = \operatorname{proj}_{\mathbb{B}_{\infty}}(y) = \min(1, \max(-1, y))$$

Next, consider the following quantity: $\|\min(1, \max(-1, y)) - y\|^2$ is essentially:

$$|||y| - J||^2$$

Where \mathbb{J} is a vector full of 1s, and it has the same length as vector y. Combining it with the definition for $f_t(y)$ we have:

$$f_t(y) = \frac{1}{2t} |||y| - \mathbb{J}||^2 + ||x||_{\infty}$$

And this is how I would Compute the f_t and Prox for infinity norm.

Problem (2)

(a)

Objective: Figure out:

In terms of prox, envelope wrt to function f.

Strategies: There are 2 ways to do it, completing the square, or by the optimality conditions on the prox and use template matching.

Expanding using definition of $g_s(x)$ we have:

$$\underset{t, q_s}{\text{prox}}(y) := \underset{x}{\text{argmin}} \left(\frac{1}{2t} \|x - y\|^2 + \frac{1}{2s} \|x - x_0\|^2 + f(x) \right)$$
 (2a1)

Using the optimality condition on the prox operator using sub-differential, we have:

$$0 \in \frac{1}{t}(x^{+} - y) + \frac{1}{s}(x^{+} - x_{0}) + \partial f(x^{+})$$

$$0 \in \left(\frac{1}{t} + \frac{1}{s}\right)x^{+} - \left(\frac{y}{t} + \frac{x_{0}}{s}\right) + \partial f(x^{+})$$

$$0 \in \left(\frac{1}{t} + \frac{1}{s}\right)\left(x^{+} - \left(\frac{y}{t} + \frac{x_{0}}{x}\right)\left(\frac{1}{t} + \frac{1}{s}\right)^{-1}\right) + \partial f(x^{+})$$

$$0 \in \left(\frac{1}{t} + \frac{1}{s}\right)\left(x^{+} - (ys + tx_{0})(t + s)^{-1}\right) + \partial f(x^{+})$$

$$0 \in \left(\frac{1}{t} + \frac{1}{s}\right)\left(x^{+} - \frac{ys + tx_{0}}{t + s}\right) + \partial f(x^{+})$$

And notice that, this is the optimality conditions of:

$$\underset{x}{\operatorname{argmin}} \left(\frac{1}{2} \left(\frac{1}{t} + \frac{1}{s} \right) \left\| x - \left(\frac{ys + tx_0}{t + s} \right) \right\|^2 + f(x) \right) \tag{2a3}$$

And observe that, the corresponding proximal operator will be:

$$\operatorname{prox}_{t,g_s}(y) = \operatorname{prox}_{f,h}\left(\frac{ys + tx_0}{t+s}\right) = \operatorname{argmin}_{x}\left(\frac{1}{2h}\left\|x - \left(\frac{ys + tx_0}{t+s}\right)\right\|^2 + f(x)\right) \quad h = \frac{st}{s+t}$$
 (2a4)

And this is the answer we want. Once the prox is defined, then we can get the envelop by just switching the argmin into min, giving us that:

$$g_t(y) = \min_{x} \left(\frac{1}{2h} \left\| x - \left(\frac{ys + tx_0}{t+s} \right) \right\|^2 + f(x) \right) = f_h \left(\frac{ys + tx_0}{t+s} \right) \quad h = \frac{st}{s+t}$$
 (2a5)

(b)

Objective: Find $\operatorname{prox}_{t,f}$ when $f(x) = ||x||_2$. Notice that, we can take the derivative on the norm Here is the quick justification:

$$\nabla \|x\|_2 = \nabla \sqrt{\|x\|^2} = \frac{1}{2\sqrt{\|x\|^2}} 2x = \frac{x}{\|x\|}$$
 (2b1)

And it leaves with the edge case when x = 0 to be handled by the sub-differential. And then we will have:

$$\partial(\|x\|) = \begin{cases} \frac{x}{\|x\|} & x \neq \mathbf{0} \\ \{x : \|x\| \le 1\} & x = \mathbf{0} \end{cases}$$
 (2b1.1)

And here is the justification for the sub-differential at x = 0:

$$||y|| \ge x + v^{T}(y - x)$$

$$||y|| \ge v^{T}y \quad \text{set: } x = \mathbf{0}$$

$$c \ge \underbrace{cv^{T}\widehat{y}}_{y = c\widehat{y}}$$

$$(2b1.2)$$

And it's not hard to see that the only v that makes 2b1.2 true for all y is when $||v|| \le 1$. Therefore, the sub-differential for ||x|| at x = 0 is $\{x : ||x|| \le 1\}$.

By the optimality of the proximal operator, we should be investigating that:

$$\mathbf{0} \in \frac{1}{t}(x-y) + \partial(\|x\|)$$

Which is harder, but we can make it easier by noticing the fact that \hat{x} is $x/\|x\|$, and this means that, we can write everything in terms of unit vector \hat{x} , hence assume that $x = c\hat{x}$, where c > 0:

1. $x \neq 0$:

$$\mathbf{0} = \frac{1}{t}(cx - y) + \hat{x}$$

$$\mathbf{0} = (c\hat{x} - y) + t\hat{x}$$

$$\mathbf{0} = (c + t)\hat{x} - y$$

$$y = (c + t)\hat{x}$$

$$c + t = ||y||$$

$$c = ||y|| - t$$
(2b2.1)

Notice that 2b2.1 implies that x must point to the same direction as y. Which means that the optimal x^+ is:

$$x^{+} = cx = (\|y\| - t)\hat{y}$$

But does this means for the threshold of y? Notice that assumption that c > 0, which will mean that:

$$||y|| - t > 0 \implies ||y|| > t$$

2. $x = \mathbf{0}$ Substituting we have:

$$\mathbf{0} \in \frac{1}{t}(-y) + \partial(\|x\|)|_{x=\mathbf{0}}$$

$$\mathbf{0} \in -y + t \, \partial(\|x\|)|_{x=\mathbf{0}}$$

$$y \in t \, \partial(\|x\|)|_{x=\mathbf{0}}$$

$$\|y\| \le t$$
(2b3)

And, the optimal $x^+ = 0$, because that is the only value that triggers the sub-differential.

Summarizing it we have the following cases for the proximal operator:

$$\operatorname{prox}_{t,\|\cdot\|}(y) = \begin{cases} (\|y\| - t)\widehat{y} & \|y\| > t \\ \mathbf{0} & \|y\| \leq t \end{cases}$$

(c)

Objective: Figure out:

Notice that the function are all smooth, so we don't need the sub-differential anymore, by just taking the derivative and setting it to zero, we will get our optimal solution, and this is given by:

$$\mathbf{0} = \frac{1}{t}(x - y) + x$$

$$\mathbf{0} = \frac{1+t}{t}x - \frac{y}{t}$$

$$\frac{y}{t} = \frac{1+t}{t}x$$

$$\underbrace{x}_{t} = \frac{y}{1+t}$$

$$(2c1)$$

(d)

Objective: Figure out:

$$\underset{t, \frac{1}{2\|C\cdot\|^2}}{\text{prox}}(y) = \underset{x}{\operatorname{argmin}} \left(\frac{1}{2t} \|x - y\|^2 + \frac{1}{2} \|Cx\|^2 \right)$$

Because this is smooth, therefore we can just take the gradient of it can set it equal to zero to obtain the optimal x^+ and it will be the output for the proximal operator.

$$\mathbf{0} = \frac{1}{t}(x - y) + \frac{1}{2}(C^T 2(Cx))$$

$$\mathbf{0} = \frac{1}{t}(x - y) + C^T Cx$$

$$\mathbf{0} = x - y + tCC^T$$

$$y = (I + tC^T C)x$$

$$\underbrace{x}_{x^+} = (I + tC^T C)^{-1} y$$
(2d1)

And that is the optimal, and using 2a4 we have:

$$prox_{t,g_s}(y) = prox_{f,\frac{st}{s+t}} \left(\frac{sy + tx_0}{s+t} \right)$$