Filtros Elétricos Simulação de Sinal e Ruído

Vitor de Sousa França

Prof. Dr. Cleonísio Protásio Souza

Sumário

Introdução

Softwares de Simulação

Simulação do Sinal e do Ruído

Análise dos Sinais no Domínio da Frequência

Introdução

- Filtros elétricos são usados em diversos circuitos eletrônicos;
- Permitem ou bloqueiam faixas de frequências para garantir a operação adequada do circuito;
- Aplicações incluem comunicação, equipamentos médicos, processamento de sinais, eletrônica de potência;
- São muito utilizados para remoção de ruídos.

Softwares de Simulação

- Simuladores ajudam a planejar e testar configurações antes da construção do hardware.
- Exemplos:
 - LTSpice (função ".noise")
 - MATLAB (função "rand" e "randn")
 - Python (biblioteca NumPy, módulo "numpy.random")
- Python foi escolhido por ser código aberto, gratuito e ter bibliotecas consolidadas pela comunidade.

Simulação do Sinal e do Ruído

► Sinal escolhido foi a soma de dois senos:

$$signal = A_1 \sin(2\pi f_1 t) + A_2 \sin(2\pi f_2 t)$$

- Frequências: $f_1 = 20Hz$, $f_2 = 10Hz$.
- ▶ Amplitudes: $A_1 = 0.5$, $A_2 = 1$.

Gráficos do Sinal

Figura: Soma dos senos para gerar o sinal."

Distribuição do Ruído

▶ Ruído Aditivo Gaussiano Branco gerado com "np.random.normal($\mu = 0$, $\sigma = 1$, N = 1000)"

Figura: Distribuição da amplitude do ruído.

Gráficos do Ruído

Figura: Ruído no tempo e soma do ruído ao sinal.

Razão Sinal Ruído - SNR

$$P_{s} = \frac{1}{N} \sum_{n=0}^{N-1} Signal[n]^{2} = 0.624W$$

$$P_{n} = \frac{1}{N} \sum_{n=0}^{N-1} Noise[n]^{2} = 1.005W$$

$$SNR(dB) = 10 * \log\left(\frac{P_s}{P_n}\right) = -2.0689dB$$

Análise dos Sinais no Domínio da Frequência

- É importante fazer a análise dos sinais no domínio da frequência
- Transformada rápida de Fourier (FFT) utilizada para análise no domínio da frequência.

Gráficos da Análise de Frequência

Espectro de frequência do sinal sem ruído mostra impulsos nas frequências dos senos.

Figura: FFT do sinal sem ruído.

Gráficos da Análise de Frequência

Figura: FFT do ruído gaussiano branco.

Gráficos da Análise de Frequência

Figura: FFT do sinal com ruído.