Online simulations via nanoHUB: Glass transition temperature of an amorphous polymer

In this tutorial:

- Build and atomic structure of an amorphous polymer
- Perform a cooling simulation using MD
- Characterize its glass transition temperature

David Lowing, Ben Haley, Ale Strachan

strachan@purdue.edu

School of Materials Engineering & Birck Nanotechnology Center Purdue University

West Lafayette, Indiana USA

STEP 1: Launch PolymerModeler

- Launch PolymerModeler, and you will see the image below
- •Make sure PMMA (isotactic) is selected as the polymer to be used

STEP 2: Polymer Chain Construction

- •With the "Monomer structures" tab selected scroll down to the bottom
- Set "Monomers per chain" and "Number of chains" as desired; for this example we will use 40 chains with 90 monomers each

STEP 3: Density Selection

- Select the "Simulation cell" tab
- Under "System volume" select "Specify polymer density" and then choose 0.7 g/cm³

 Now click on the simulation button at the bottom right hand corner of the tool to proceed and select simulation parameters

STEP 4: Simulation Parameters Part 1

- In the "Simulation" phase choose the "Drivers" tab
- Here you design the test that will be run on your polymer by adjusting many different conditions

STEP 4: Simulation Parameters Part 2

- For this example we will use the following conditions:
 - Temperature 600K and temperature increment -0.1 K/ps (cool your system to 300K over a 3000 ps)
 - Ensemble NPT and keep the minimization steps at 5,000
 - Set the number of MD steps to 750,000
 - The outputs that you receive and how frequent you receive them are set in the periodic task section

STEP 5: Thermalization

- Scroll down to the bottom of the "Drivers" tab.
- For this example we want to thermalize the polymer before cooling the system.
- Set the thermalization ensemble to NPT and the number of steps to 25,000.

	Thermalization		
	Thermalize system before MD run?: ☑ yes		
ı	Ensemble: NPT		
	Number of thermalization steps: 25000		

STEP 6: nanoHUB Computing Power

- Now select the "Advanced options" tab
- Here you can select how much computing power nanoHUB will use to run the simulation
- For this calculation, due to its size, you want to run parallel LAMMPS
- Select 24 cores and set the time at 400 hours; this will be more than enough processing power and time for the simulation to be completed
- Finally press the "Simulate" button in the bottom right hand corner to run the simulation

STEP 7: Building The Polymer

- When the simulation runs you will first see this screen, indicating that PolymerModeler is building the polymer chains.
- Once the chains are built,
 PolymerModeler will automatically run LAMMPS.

STEP 8: Running the Simulation

- You won't see any new output while parallel LAMMPS is running.
 LAMMPS runs on a cluster machine outside nanoHUB.
- This stage will take some time to complete

STEP 9: Outputs

- When the simulation is complete you will see a screen with the outputs
- You will need to download the Output Log at the bottom of the drop down list
- This file will contain all the data required to calculate the Tg of the polymer
- To download the file select it and then click on the green arrow shown below

STEP 10: Data Extraction

- To find the Tg we need to plot the density as a function of temperature so we need to extract the temperature and volume data from the output log.
- The output log is very large, but the data is split into sections based on the stage of the simulation (minimization, thermalization, cooling).
- Scroll down though the output log until you reach the cooling stage section
 - The third section is easy to find; just scroll down until you reach a step number greater than 50,000 (for this example).
 - Scroll up until the step number is 0 and that will be beginning of the cooling section
 - There will be data above it as it is not the top of the output log
- The temperature data is the 4th column and the x, y, z volume components are the last 3 columns respectively (example values are shown below)
- You need to extract these four (entire) columns.

Temperature

598.45079 598.4652 595.91793 598.07177 598.97102 599.05297 601.86532 601.2352 603.36396 603.96311 602.60066

x, y, z components

_			
ſ	91.097052	91.097052	91.097052
_	91.091029	91.091029	91.091029
	91.076681	91.076681	91.076681
	91.053639	91.053639	91.053639
	91.025385	91.025385	91.025385
	90.990958	90.990958	90.990958
	90.953234	90.953234	90.953234
	90.911455	90.911455	90.911455
	90.866827	90.866827	90.866827
	90.825324	90.825324	90.825324

STEP 11: Mass and Density Calculations

- The next step is to calculate the mass of the polymer
 - Take the initial x, y, z volume components and multiply them together to get the initial volume.
 - We set the initial volume to be 0.7 g/cm³ but the data is in terms of amu/angstrom^3 so we divide 0.7 by a conversion factor of 1.66053886.
 - We then multiply our initial density by the initial volume to get the mass.
- The mass of the sample is constant, but the density and volume will change throughout the simulation; we need to apply this procedure to each step of the simulation.
 - For each step you divide the mass that you calculated above by the volume at each step (V = Vx*Vy*Vz)
 - As a result, you have a new column of density values.

STEP 12: Plotting Density vs. Temperature

- Before making the plot you need to reduce the number of data values you have for density and temperature.
- Do this by breaking your data up into 50 different sections and taking an average density and temperature value for each.
- Plot the 50 average densities vs. temperatures; the glass transition temperature (Tg) should be visible as the relative point where the slope of the density vs. T curve changes.
- To computationally find the temperature where the slope changes on your graph you must perform a double linear regression on your plot of density as a function of temperature. This process fits two straight lines to the parts of the curve above and below Tg; the point at which the lines cross is Tg.
- This can be carried out in different computational packages such as MATLAB or MATHCAD, as shown on the next slide.

STEP 13: Results Part 1

- The plot below shows the results of the double linear regression with Tg = 374K.
- The error graph shows the error of the different sets of line combinations that the regression program calculated; the lowest error is used to determine the final Tg value.

STEP 14: Results Part 2

- Now we have results for one simulation, but to confirm our results we should run the simulation again to confirm no errors occurred.
- Shown below are the results of running the same simulation again.
- The resulting Tg = 380.6K.
- Results reported in literature include 388K [1] and 381K [2]

[1] T. G. Fox, B. S. Garrett, W. E. Goode, Serge Gratch, J. F. Kincaid, Aldenlee Spell, and J. D. Stroupe *Journal of the American Chemical Society* 1958

[2] Chengzhi, C.; Kristoffer, A.; Jørgen, L. J. J. Appl. Polym. Sci. 2004

