

Dimension Reduction & Introduction to Neural Networks

LIAD MAGEN

Review – Approaching ML Project

- > Explore the data (always look at the data)
 - > Formulate questions and find their answers
 - > Plot the data
- > Plan experiments
 - > Decide which features should be used
 - > Decide on the models
- > Perform Experiments
- > Optimize Hyperparameters
- > Use the test set to choose the best model

Agenda

- > Dimension Reduction:
 - > Principle Component Analysis (PCA)
 - > T-SNE
 - > U-MAP
 - > pyMDE
- > Introduction to Neural Networks
- > Word2Vec

The Big Picture

Supervised

- Decision Tree
- Random Forest
- Logistic Regression
- Naïve Bayes
- K-Nearest Neighbor
- Support Vector Machine
- Neural Networks

Unsupervised

- Latent Dirichlet Allocation
- K-Means
- Dimension Reduction
- PCA

Reinforcement Learning

The Big Picture

Supervised

- Decision Tree
- Random Forest
- Logistic Regression
- Naïve Bayes
- K-Nearest Neighbor
- Support Vector Machine
- Neural Networks

Unsupervised

- Latent Dirichlet Allocation
- K-Means
- Dimension Reduction
- PCA (Principal Component Analysis)

Reinforcement Learning

Dimension Reduction

- > We're given a dataset (e.g., documents)
 How can we visualize them (e.g., plot items by their label) in a single, 2-D chart?
- > Method #1: Common words
- > Method #2: One-hot-encoding bag-of-words ... ?

Dimension Reduction

- > A one-hot-vector / CountVector has the size of the vocabulary. E.g., 20,000
- > The dimension of a chart is 2 to 3.

- > Can we squeeze a 20,000 vector into 2?
- > Can we squeeze m documents 20,000 × m into a 2 × m matrix for visualization?

Principal Component Analysis (PCA)

The result of the PCA on the data from the cells found in breast growths.

30 features reduces to 2

Principal Component Analysis (PCA)

How does it work?

With a lot of math!

Main idea:

Detect and return the eigenvectors of the covariance matrix.

Principal Component Analysis – Example: 2-D to 1-D

Height vs Weight of 50 People

Principal Component Analysis – Example: 2-D to 1-D

Best fitted line (the axis of greatest variation).

Principal Component Analysis – Example: 2-D to 1-D

"Projecting" the points onto the line (aka first principal component).

Every point is mapped into a single number:

its *distance* from the line.

Principal Component Analysis – Covariance Matrix

>
$$cov(x,y) = \frac{\sum_{i=0}^{N} (x_i - \bar{x})(y_i - \bar{y})}{N-1}$$
 (subtract the mean from each value)

> Covariance matrix for 3 values: A, B, C

$$cov(A,A)$$
 $cov(A,B)$ $cov(A,C)$
 $cov(B,A)$ $cov(B,B)$ $cov(B,C)$
 $cov(C,A)$ $cov(C,B)$ $cov(C,C)$

Notes:

- > Covariance measures the directional relationship between two variables.
- > Along the diagonal is the *variance*

Additional Read (For deeper understanding)

- https://royalsocietypublishing.org/doi/10.1098/rsta.2015.020
 2
- Principal Component Analysis (PCA) For Dummies | Bill Connelly

Additional Dimension Reduction Methods

- SVD (Singular Value Decomposition)
 Breaking a matrix into factors
 (12 → 3 × 4 // 3 × 2 × 2 // 2.4 × 5)
- T-SNE T-distributed Stochastic Neighbor Embedding
- > U-MAP Uniform Manifold Approximation and Projection for Dimension Reduction python package: umap-learn
- > Phate (more for biological data)
- > PyMDE Minimum-Distortion Embedding

Resources

- > <u>sklearn.decomposition.PCA scikit-learn 1.2.0</u> <u>documentation</u>
- > sklearn.manifold.TSNE scikit-learn 1.2.0 documentation
- > <u>UMAP</u>: <u>Uniform Manifold Approximation and Projection for Dimension Reduction umap 0.5 documentation (umap-learn.readthedocs.io)</u>
- > <u>PyMDE: Minimum-Distortion Embedding pymde 0.1.15</u> <u>documentation</u>

Take-Aways

- > There are methods to reduce the dimensionality of the data which can be used to:
 - > Visualize the data and plot it
 - > Clustering
 - > Preprocessing step before a ML Classifier
- > These methods are based on a mathematical representation of the data
- > The representation is relatively faithful to the original data
- > But... may suffer from missing information

Basic Machine Learning for NLP

- > N-Grams
- > Bag-of-Words
- > Word-Classes (WordNet, Stemming, Lemmas)
- > Unsupervised Dimensionality Reduction (PCA)
- > Unsupervised Clustering (K-Means, LDA)
- > Supervised classification (Logistic Reg, SVM, Naïve Bayes,...)

Issues with ML for NLP

- > Bag-of-words:
 - > Sum of one-hot codes
 - > Ignore the word order
- > N-gram Language Models
 - > Probabilities are estimated from counting on large corpus
 - > Smoothing is used to prevent unseen events (OOV) \rightarrow Zero probabilities.
- > Word Classes
 - > Similar words should share parameter estimation
 - > Require an external, labeled, dataset (hard to obtain, single-lingual).

Neural Networks: NLP Motivation

> We would like to have better techniques than plain wordcounting.

> A method that can learn on its own, without too much need of a specialized person.

> (Are we there yet?)

Biological Motivation

- > There are ~86B neurons in our brain
- > Neurons are connected to other neurons through an axon
- > The structure resemble to a network, where information is passed from one neuron to another

From Biology to Computation

- > 1943 McCulloch-Pitts neuron A linear threshold gate
- > 1958 The Perceptron
 The weights were learned
 through data-examples
- > Only capable of simple linear decision boundaries

FH Campus Wien | 24

Input synapses

Input synapses

/ FH Campus Wien |

Input synapses

Activation function: Sigmoid // max(0, value)

/ FH Campus Wien | 27

Input synapses

 $Output = \max(0, I \cdot W)$

Perceptron vs Artificial Neuron

/ FH Campus Wien |

29

- > The perceptron model is quite different from the biological neurons:
 - > Those communicate by sending spike signals at various frequencies
 - > The learning in brains seems also quite different
- > It would be better to think of artificial neural networks as nonlinear projections of data (and not as a model of brain)

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Output layer size

For classification: Number of the classes

Output layer size

For classification: Number of the classes

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

> During the training, the network computes the values for a certain input through the network and compares the result to the given output.

> The gradient of the error is used to correct the neuron weights.

The Inference Part – Feed Forward

Given an input, predicting the output by calculating the values through the network

Backpropagation - Training Networks to Learn

Backpropagation occurs only during the training.

The network calculates the error (**loss function**) and gently updates the network weights, so next time when they "see" this sample, the prediction is closer to the desired result.

For a Deeper Dive

- The Building Blocks of Deep Learning | by Tyron Jung | The Feynman Journal | Medium
- What Makes Backpropagation So Elegant? | by Tyron Jung | The Feynman Journal | Medium

Training Does Not Include:

- > Hyper-parameters setting must be done manually
 - > Choice of activation function (sigmoid, RELU)
 - > Number of layers / number of neurons per layer (network architecture)
 - > Learning rate
 - > Number of epochs (training cycles)
 - > Regularization

Complicated?

- > Many existing frameworks do half of the job for you:
 - > Fast.AI
 - > Tensorflow + Keras
 - > PyTorch + PyTorch-lightning // HuggingFace // spaCy // flair
- > Best to start by re-using an existing model and modifying it if needed.

Neural Network - Demo

> https://playground.tensorflow.org/

Deep Learning

- > Deep Learning means more hidden layers → More computational steps, more degree of freedom
- > It can learn patterns that cannot be learned efficiently with shallow models.

Deep Learning

- > Many architectures are researched daily.
- > Still an open and (very) active research problem

Deep Learning

- > For NLP, a common architecture is called RNN or LSTM
- > In every step, the network output is re-used as an additional input for the next step.

Basic Neural Network applied to NLP

- > Bi-gram neural language model: predicts the next word
- > The input is encoded as a one-hot-encoder
- > The model will learn compressed (dense), continuous representations of words (usually the matrix of weights between the input and hidden layers)

Word Vectors (Mikolov et. al 2013)

- > We call the vectors in the matrix between the input and hidden layer word vectors (also known as word embeddings)
- > The word vectors have similar properties to word classes (similar words have similar vector representations)

Word Vectors

- > The word vectors can be used as feature-inputs for many NLP tasks.
- > Word vectors are trained in a **semi-supervised** way

Word Vectors – Semantic Properties

Word Vectors

- > This is only the beginning.
- > Other frameworks for Word Vectors:
 - > FastText character based
 - > BytePair Embedding (BPE) frequent sub-words (letters that often appear together)
- > Contextual Embedding:
 - > ELMo
 - > ULMFiT
 - > BERT
 - > RoBERTa
 - > GPT

Additional Resources

- > https://lena-voita.github.io/nlp course.html
- > Animated Explanation of Feed Forward Neural Network Architecture - MLK - Machine Learning Knowledge
- > Word Embedding Demo: Tutorial (cmu.edu)
- > WebVectors: distributional semantic models online (nlpl.eu)
- > Embedding projector visualization of high-dimensional data (tensorflow.org)

Final Presentations

Choice between analyzing an NLP task or reviewing an academic paper

Verbal presentation - ~10-15min + 5min Q&A

ML/NLP Task

- > Describe the problem you want to solve.
- > Which dataset(s) will you use?
 - > Create your own? Find somewhere? Annotate yourself?
- > Which features would you use?
 - > What is your expectation from each one?
- > Which ML Methods would you think to be the most efficient for this problem?
 - > What is their loss function? Which hyperparameters would you aim for tuning?

Academic Paper

- > What is the problem the researchers are trying to solve?
- > What other solutions already exist? How well do they work?
- > How do the researches solve the problem?
- > How well did they solve it?
- > What is the novelty in their method?
- > What is still open regarding this problem?
- > What could still be improved with the researches approach?
- > What methods would YOU use to tackle it?

Presentation

- $> \sim 10-15$ minutes.
- > 5 minutes Q&A

- > Communication is an important aspect for researchers and data-scientists as one.
- > Construct your presentation in a clever way, tell a story, lead the audience across the plot.
 - > Use visuals
 - > Don't go crazy with the text
- > Some helpful resources:
 - > How to Speak YouTube
 - How to Tell a Story With Data: Steps, Tips and Examples for Leaders | ThoughtSpot