Тема I: Векторная алгебра

§1.3. Определители второго и третьего порядков

Б.М.Верников М.В.Волков

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Понятие матрицы

Определение

 $\begin{subarray}{ll} \it{Mатрицей} \ \it{has}$ ывается прямоугольная таблица, составленная из чисел. Если матрица содержит k строк и n столбцов, говорят, что она имеет $\it{pasmep}\ k \times n$. Если число строк матрицы равно числу ее столбцов, матрица называется $\it{kbadpathoй}$. Вместо «матрица размера $\it{n} \times \it{n}$ » можно говорить $\it{kbadpathag}\ \it{matpuqa}\ \it{nopsqka}\ \it{n}$.

Числа, из которых составлена матрица, называются *элементами* матрицы. Две матрицы называются *равными*, если они имеют одинаковый размер и на одинаковых местах в них стоят одни и те же элементы.

Вот матрица размера 2×3 :

$$A = \begin{pmatrix} 2 & -5 & \sqrt{2} \\ 0 & 0.5 & \pi \end{pmatrix}.$$

В записи матрицы не проводят линии, отделяющие строки и столбцы друг от друга. Слева и справа матрица ограничивается круглыми скобками.

Обозначения для матриц

Для обозначения элементов матриц применяется двойная индексация, при этом первый индекс означает номер строки, а второй — номер столбца, в которых стоит данный элемент. Например, a_{12} — элемент, стоящий в первой строке и втором столбце.

Произвольная матрица размера $k \times n$ обозначается следующим образом:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \end{pmatrix}.$$

Кратко эта матрица записывается в виде $A=(a_{ij})$, а если важно указать ее размер – то в виде $A=(a_{ij})_{k\times n}$.

В этой лекции будем рассматривать только *квадратные* матрицы. Таким образом, слово «матрица» будет означать «квадратная матрица».

Определители второго порядка

Определение

Определителем матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

второго порядка (или просто *определителем второго порядка*) называется число $a_{11}a_{22}-a_{12}a_{21}$. Это число обозначается через

$$egin{array}{c|c} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array},$$
 или $|A|,$ или $\det A.$

Примеры:

$$\begin{vmatrix} 2 & -3 \\ 1 & -7 \end{vmatrix} = 2 \cdot (-7) - (-3) \cdot 1 = -11; \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} = \cos^2 \alpha + \sin^2 \alpha = 1.$$

Определители второго порядка и системы линейных уравнений

Рассмотрим систему двух линейных уравнений с двумя неизвестными:

$$\left\{egin{aligned} a_{11}x_1+a_{12}x_2&=b_1\ a_{21}x_1+a_{22}x_2&=b_2 \end{aligned}
ight.$$
 Умножим первое уравнение на a_{22} , второе – на a_{12} ,

а затем вычтем второе из получившихся уравнений из первого. Получим

$$(a_{11}a_{22}-a_{12}a_{21})x_1=a_{22}b_1-a_{12}b_2$$
, то есть $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \cdot x_1=\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}$.

Теперь умножим первое уравнение исходной системы на a_{21} , второе – на a_{11} и вычтем второе из получившихся уравнений из первого. Получим

$$(a_{11}a_{22}-a_{12}a_{21})x_2=a_{21}b_1-a_{11}b_2$$
, то есть $\begin{vmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{vmatrix} \cdot x_2=\begin{vmatrix} a_{11} & b_1 \ a_{21} & b_2 \end{vmatrix}.$

Видно, что если $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$, то решениями системы могут быть лишь

$$x_1=egin{array}{c|cccc} |b_1&a_{12}\ |b_2&a_{22}| & \ |a_{11}&a_{12}\ |a_{21}&a_{22}| & \ |a_{11}&a_{12}\ |a_{21}&a_{22}| & \ |a_{21}&a_{22}|$$

можно проверить, что эти выражения являются решениями. Итак, если $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}
eq 0$, система $\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$ имеет единственное решение.

Формулы Крамера для систем второго порядка

Утверждение о том, что если $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$, система $\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$ имеет единственное решение, составляет содержание теоремы Крамера,

а формулы
$$x_1=\cfrac{\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}}$$
 и $x_2=\cfrac{\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}}$, по которым это единственное

решение вычисляется, называются формулами Крамера.

Определитель $\Delta := \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$, т.е. определитель основной матрицы системы, называют *определителем системы*. Заметим, что определители в числителях формул Крамера получаются из Δ по простому правилу: столбец коэффициентов при искомом неизвестном заменяется на столбец свободных членов.

Определители третьего порядка

Определение

Определителем матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

третьего порядка (или просто *определителем третьего порядка*) называется число, равное

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$
.

Это число обозначается через

Определители третьего порядка: пример

Например,

$$\begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & -2 & 1 \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$
$$= 1 \cdot 3 \cdot 1 + (-1) \cdot 5 \cdot 1 + 2 \cdot 0 \cdot (-2) - 2 \cdot 3 \cdot 1 - (-1) \cdot 0 \cdot 1 - 1 \cdot 5 \cdot (-2)$$
$$= 3 - 5 + 0 - 6 - 0 + 10 = 2.$$

Правило треугольников

Формула для вычисления определителя третьего порядка выглядит громоздко. Укажем правило, позволяющее ее запомнить.

Определитель третьего порядка является алгебраической суммой шести слагаемых, из которых три берутся со знаком плюс, а три — со знаком минус. Каждое слагаемое — это произведение трех элементов матрицы. На следующей схеме слева соединены элементы матрицы, произведение которых берется со знаком плюс, а справа — элементы, произведение которых берется со знаком минус:

Правило треугольников

Определители третьего порядка и системы линейных уравнений

Определители третьего порядка можно применять для решения систем трех линейных уравнений с тремя неизвестными подобно тому, как определители второго порядка применяются для решения систем двух линейных уравнений с двумя неизвестными. Свяжем с системой

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

четыре определителя третьего порядка:

$$\Delta := \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \ \Delta_1 := \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, \ \Delta_2 := \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \ \Delta_3 := \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

Определитель Δ называется *определителем системы*, а определители Δ_i получаются из него заменой i-го столбца на столбец свободных членов.

Теорема Крамера для систем третьего порядка

Теорема Крамера для систем третьего порядка

Если $\Delta \neq 0$, то система

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

имеет единственное решение, которое вычисляется по формулам Крамера

$$x_1 = \frac{\Delta_1}{\Delta}, \ x_2 = \frac{\Delta_2}{\Delta}, \ x_3 = \frac{\Delta_3}{\Delta}.$$

Мы не будем сейчас доказывать эту теорему, поскольку позднее докажем теорему Крамера для систем n линейных уравнений с n неизвестными. Для этого придется построить теорию определителей n-го порядка.

Разложение определителя третьего порядка по строке

Определение

Пусть $A=(a_{ij})_{3\times 3}.$ Обозначим через M_{ij} определитель матрицы второго порядка, получающейся из A при вычеркивании i-й строки и j-го столбца. $A_{ij}:=(-1)^{i+j}M_{ij}$ называют алгебраическим дополнением элемента a_{ij} .

Знаки для алгебраических дополнений:
$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$
.

Следующий факт сводит вычисление определителя третьего порядка к вычислению трех определителей второго порядка.

Разложение определителя третьего порядка по строке

Определитель матрицы третьего порядка равен сумме произведений элементов произвольной ее строки на их алгебраические дополнения.

Например, для первой строки имеем

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}.$$

Разложение определителя третьего порядка по строке (2)

Проверим равенство $|A|=a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}.$ По определению

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

Группируем слагаемые с первыми множителями a_{11} , a_{22} и a_{33} :

$$|A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) =$$

$$= a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}.$$

Пример: вычислим определитель $\begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & -2 & 1 \end{vmatrix}$ разложением по первой строке.

$$\begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & -2 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & 5 \\ -2 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 0 & 5 \\ 1 & 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 0 & 3 \\ 1 & -2 \end{vmatrix} = 13 - 5 - 6 = 2.$$

Упражнение: вычислите $\begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & -2 & 1 \end{vmatrix}$ разложением по второй строке.