

Z-transform of peak current control Recall H(2)/ws = H(-1) = 2-d Then perfect cancellation of peaking occurs at point $\frac{H(-1)}{H(0)} = 1$; or $\frac{H(-1)}{H(0)} = H(0)$ 2-d = 1-(1-d) e-J27.075 2-d = - 1 d=1, d=2-d 20=2 2=1 Recall di- mc+map A) MIN STABILITY @ d=2, me+Menp =2, ma+md = 2(mc+ memp) = Men mc + = md = memp mcmp 2 md-mc (B) No Peaking d=1, mc+md = mc+mcmp mcmp = md/

	Compare Stability Criteria to MIDDLE BROOK, TAN
	MidDLEBROK 2 TAN present peak current control stability in terms of duty cycle in following terms.
	· Condition for stability $D'_{mn} = \frac{0.5}{1 + \frac{M_c}{M_i}} \left\{ \begin{array}{l} M_c = M_{cmp} \\ M_i = M_c \end{array} \right\} \begin{array}{l} Translating \\ N_b + \alpha & 600 \end{array} $ $[1]$
	Pos. 400, Eq. (11) IEEE TRANSACTIONS ON POWER ELECTRONICS, VOLIO, NO. 4 me md July 1995
	VSAJE CONSTRUCTS
	When system is stable and reaches steady state the following is true OTs mc - D Ts md = 0
	D(mc = (1-0) md, Dmc = md-0 md D(mc+ md) = md
	D= me+mel, D= 1- me+me - me+med From [1],
	me+ma = 0.5 = 0.5 mc zme = mc me+ma = 1+ memp = mc+memp , me+memp
9	Met Memp = Met md 2 met 2 memp = met med
©TOPS	= memp= mc-2mc + md= md-mc = memp= md-me, MATCHES (1), SHEET (2)

Appendix: Support Assertion B(2) = I(2)

$$U(\overline{z}) = \frac{1}{1-2^{-1}}$$
 By Time Reversal property,
 $U(\overline{z}') = \frac{1}{1-2^{-1}} = \frac{2^{-1}}{2^{-1}} = \frac{2^{-1}}{1-2^{-1}}$

$$V(2^{-1}) = \frac{1-2}{1-2} = \frac{2^{-1}}{2^{-1}} = \frac{-2^{-1}}{1-2^{-1}}$$

=
$$T_{S} m_{d} \left(\frac{2}{1-2-1} + \frac{-2}{1-2-1} \right) = T_{S} m_{d} (O)$$