#### Pesquisa Operacional

Método Gráfico

#### Felipe Augusto Lima Reis

felipe.reis@ifmg.edu.br



#### Sumário



- Método Gráfico
- 2 Espaço de Soluções
- 3 Solução Ótima
- 4 Casos Especiais

# MÉTODO GRÁFICO

Método Gráfico

0000

Solução Ótima

#### Método Gráfico



 Segundo [Hillier and Lieberman, 2010] apud [Belfiore and Fávero, 2013], qualquer problema de PL com duas variáveis de decisão pode ser resolvido graficamente.



- Passos para solução de um problema usando o método gráfico [Taha, 2007] [Belfiore and Fávero, 2013]
  - Determinar o espaço de soluções viáveis¹ ou região factível em um eixo cartesiano;
  - 2 Determinar a solução ótima do modelo (solução factível com melhor valor da função objetivo)
    - Problemas de maximização: maior valor possível;
    - Problemas de minimização: menor valor possível.

#### **Teoremas**



#### Teorema 1

ullet O conjunto K de soluções factíveis de um problema de programação linear é convexo [Belfiore and Fávero, 2013].



Convex set



Solução Ótima

Non-convex set

Fonte: [Hui, 2019]

#### Teorema 2

 A função objetivo atinge seu ponto máximo ou mínimo em um ponto extremo do conjunto convexo K [Belfiore and Fávero, 2013].

# DETERMINAÇÃO DO ESPAÇO DE SOLUÇÕES VIÁVEIS

Considere o seguinte modelo de programação linear [Taha, 2007]:

$$max \ z = 5x_1 + 4x_2$$

suj. a: 
$$6x_1 + 4x_2 \le 24$$
 (1)  
 $x_1 + 2x_2 \le 6$  (2)  
 $-x_1 + x_2 \le 1$  (3)

$$x_2 \le 2$$
 (4)

$$x_1 \geq 0$$
 (5)

$$x_2 \ge 0$$
 (6)

#### Método



Passos para solução de um problema usando o método gráfico:

Solução Ótima

- Determinar o espaço de soluções viáveis no eixo cartesiano;
  - Definir os eixos do gráfico como as variáveis  $x_1$  e  $x_2$ :
  - Determinar o quadrante do gráfico de modo a respeitar as restricões de não negatividade:
  - Traçar as curvas correspondentes às restrições do modelo;
  - Determinar a solução de regiões viáveis (região factível).
- 2 Determinar a solução ótima do modelo.



- Determinar o espaço de soluções viáveis no eixo cartesiano;
  - **1** Definir os eixos do gráfico como as variáveis  $x_1$  e  $x_2$ ;
  - Determinar o quadrante do gráfico de modo a respeitar as restrições de não negatividade  $(x_1, x_2 \ge 0)$ ;





- Determinar o espaço de soluções viáveis no eixo cartesiano
  - Traçar as curvas correspondentes às restrições do modelo;
    - Substitua as desigualdades por igualdades:
    - Defina dois pontos distintos no gráfico (substitua  $x_1$  por zero na equação e gere  $x_2$ ; faça o mesmo com  $x_2$  para gerar  $x_1$ );
    - Trace uma reta entre os pontos.
    - Defina a região correspondente a desigualdade.



- Determinar o espaço de soluções viáveis no eixo cartesiano;
  - Traçar as curvas correspondentes às restrições do modelo
    - Substitua as desigualdades por igualdades:

$$6x_1 + 4x_2 \le 24$$
 (1)  $\implies$   $6x_1 + 4x_2 = 24$  (1)

Defina dois pontos distintos no gráfico;

$$6x_1 + 4x_2 = 24$$
 (1)

para 
$$x_1 = 0$$
, temos  $(6 \times 0) + 4x_2 = 24 \rightarrow x_2 = 6$   
para  $x_2 = 0$ , temos  $6x_1 + (4 \times 0) = 24 \rightarrow x_1 = 4$   
pontos gerados:  $(0,6)$  e  $(4,0)$ 



- Determinar o espaço de soluções viáveis no eixo cartesiano
  - Traçar as curvas correspondentes às restrições do modelo;
    - Trace uma reta entre os pontos.

$$6x_1 + 4x_2 = 24$$
 (1)



Fonte: Próprio autor



- Determinar o espaço de soluções viáveis no eixo cartesiano
  - Traçar as curvas correspondentes às restrições do modelo
    - Defina a região correspondente a desigualdade [Taha, 2007]
      - 1. Defina o ponto (0,0) como "ponto de referência";
      - 2. Verifique se o ponto satisfaz a desigualdade;
      - Se a desigualdade for satisfeita, o lado no qual ele se encontra é a região viável;
      - 4. Caso contrário, a região viável é o outro lado.

$$6x_1 + 4x_2 \le 24 \implies (6 \times 0) + (4 \times 0) \le 24 \implies 0 \le 24$$



- Determinar o espaço de soluções viáveis no eixo cartesiano
  - Traçar as curvas correspondentes às restrições do modelo
    - Defina a região correspondente a desigualdade.

$$6x_1 + 4x_2 \le 24$$
 (1)



Fonte: Proprio autor



- Determinar o espaço de soluções viáveis no eixo cartesiano
  - Traçar as curvas correspondentes às restrições do modelo
    - Defina a região correspondente a desigualdade.

$$6x_1 + 4x_2 \leq 24$$
 (1)





- Determinar o espaço de soluções viáveis no eixo cartesiano;
  - Traçar as curvas correspondentes às restrições do modelo;

$$6x_1 + 4x_2 \le 24$$
 (1)  $-x_1 + x_2 \le 1$  (3)

$$x_1 + 2x_2 \le 6$$
 (2)  $x_2 \le 2$  (4)



Fonte: Próprio autor



- Determinar o espaço de soluções viáveis no eixo cartesiano
  - Traçar as curvas correspondentes às restrições do modelo;

$$6x_1 + 4x_2 \le 24$$
 (1)  $-x_1 + x_2 \le 1$  (3)

$$x_1 + 2x_2 \le 6$$
 (2)  $x_2 \le 2$  (4)



#### Método



- Passos para solução de um problema usando o método gráfico:
  - Determinar o espaço de soluções viáveis no eixo cartesiano;
  - Determinar a solução ótima do modelo
    - Identificar todos os vértices da região factível;
    - Resolver o sistema de equações para encontrar os pontos de interseção entre as restrições.

Solução Ótima

00000

Testar os pontos cartesianos correspondentes aos vértices na função objetivo.

Casos Especiais

# Definição do Espaço de Soluções

- Determinar a solução ótima do modelo
  - Identificar todos os vértices da região factível





- Determinar a solução ótima do modelo
  - Resolver o sistema de equações para encontrar os pontos de interseção entre as restrições.

Solução Ótima

00000

$$6x_1 + 4x_2 = 24$$
 (1)

$$x_1 + 2x_2 = 6$$
 (2)

$$x_1 = 3$$

$$x_2 = 1.5$$



- Determinar a solução ótima do modelo
  - Testar os pontos cartesianos correspondentes aos vértices na função objetivo.

$$max \ z = 5x_1 + 4x_2$$

| Ponto | $(x_1, x_2)$ | z  |
|-------|--------------|----|
| A     | (0, 0)       | 0  |
| В     | (4, 0)       | 20 |
| С     | (3, 1.5)     | 21 |
| D     | (2, 2)       | 18 |
| E     | (1, 2)       | 13 |
| F     | (0, 1)       | 4  |

Método Gráfico

0000

#### Restrições Redundantes

Espaço de Soluções



• Restrições Redundantes são aquelas que se eliminadas do modelo não alteram o espaço de soluções factíveis [Belfiore and Fávero, 2013].



# Múltiplas Soluções Ótimas



- PPLs podem apresentar mais de uma solução ótima;
- A função objetivo assume o valor ótimo em pelo menos dois pontos extremos e em todas as combinações lineares desses pontos (segmentos de reta) [Belfiore and Fávero, 2013].



#### Função Objetivo Ilimitada



 Não existe limite para o crescimento do valor de pelo menos uma variável de decisão, resultando em uma região factível e uma função objetivo ilimitada [Belfiore and Fávero, 2013].



# Não existe solução Ótima



• Em alguns PPLs, o conjunto de soluções factíveis é vazio, ou seja, não existe solução. [Belfiore and Fávero, 2013].



# Solução Ótima Degenerada



 É possível identificar uma solução degenerada "quando um dos vértices da região factível é obtido pela interseção de mais de duas retas distintas" [Belfiore and Fávero, 2013]



#### Referências I





Método Gráfico

Belfiore, P. and Fávero, L. P. (2013).

Pesquisa operacional para cursos de engenharia.

Elsevier, 1 edition.



Diego Mello da Silva (2016).

Pesquisa Operacional - Slides de Aula.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.



Goldbarg, M. C. and Luna, H. P. L. (2005).

Otimização combinatória e programação linear: modelos e algoritmos.

Elsevier, 2 edition,



Hillier, F. and Lieberman, G. (2010).

Introduction to Operations Research.

McGraw-Hill higher education, McGraw-Hill Higher Education,



Hui, J. (2019).

Machine learning â lagrange multiplier and dual decomposition.

[Online]; acessado em 27 de Agosto de 2020. Disponível em: https://medium.com/@jonathan\_hui/ machine-learning-lagrange-multiplier-dual-decomposition-4afe66158c9.



Taha, H. A. (2007).

Pesquisa Operacional.

Editora Prentice-Hall, 8 edition.