particularización universal cuando se concluye de la sentencia «Todas las mujeres son sabias» que «Lisa es sabia», donde Lisa es un miembro del dominio de todas las mujeres.

Generalización universal es la regla de inferencia que declara que $\forall x P(x)$ es verdadera, dada la premisa de que P(c) es verdadera para todos los elementos c del dominio. Utilizamos la generalización universal cuando mostramos que $\forall x P(x)$ es verdadera tomando un elemento arbitrario c del dominio y mostrando que P(c) es verdadera. El elemento c seleccionado debe ser un elemento arbitrario del dominio y no uno específico. La generalización universal se usa implícitamente en muchas demostraciones matemáticas; rara vez se menciona explícitamente.

Particularización existencial es la regla que nos permite concluir que hay un elemento c en el dominio para el cual P(c) es verdadera si sabemos que $\exists x P(x)$ es verdadera. Aquí no podemos seleccionar un valor arbitrario de c, sino que deber ser un c para el cual sea verdadera. Generalmente, no tenemos conocimiento de qué c es, sólo de que éste existe. Como existe, le podemos dar un nombre y continuar nuestro argumento.

Generalización existencial es la regla de inferencia que se utiliza para concluir que $\exists x$ P(x) es verdadera cuando se conoce un elemento particular c con P(c) verdadera. Esto es, si conocemos un elemento c del dominio para el cual P(c) es verdadera, sabemos que $\exists x P(x)$ es verdadera.

Resumimos estas reglas de inferencia en la Tabla 2. Ilustraremos cómo se utiliza una de estas reglas de inferencia para sentencias cuantificadas en el Ejemplo 12.

Muestra que las premisas «Todo el mundo en la clase de matemática discreta está matriculado en **EJEMPLO 12** ingeniería informática» y «María es una estudiante de esta clase» implican la conclusión «María está matriculada en ingeniería informática».

Ejemplos

Solución: Sean D(x) «x está en la clase de matemática discreta» y C(x) «x está matriculado en ingeniería informática». Entonces, las premisas son $\forall x (D(x) \to C(x))$ y D(María). La conclusión es C(María).

Se pueden usar los siguientes pasos para establecer la conclusión a partir de las premisas:

Paso	Razonamiento
1. $\forall x (D(x) \rightarrow C(x))$	Premisa
2. $D(María) \rightarrow C(María)$	Particularización universal de (1)
3. <i>D</i> (María)	Premisa
4. C(María)	Modus ponens usando (2) y (3)

EJEMPLO 13 Muestra que las premisas «Un estudiante de esta clase no ha leído el libro» y «Todo el mundo en esta clase aprobó el primer examen» implican la conclusión «Alguien que aprobó el primer examen no ha leído el libro».

Tabla 2. Reglas de inferencia para sentencias cuantificadas.		
Regla de inferencia	Nombre	
$\therefore \frac{\forall x \ P(x)}{P(c)}$	Particularización universal	
$P(c) \text{ para un } c \text{ arbitrario}$ $\therefore \forall x P(x)$	Generalización universal	
$∴ \frac{\exists x \ P(x)}{P(c) \text{ para algún elemento } c}$	Particularización existencial	
$P(c) \text{ para algún elemento } c$ $\therefore \exists x P(x)$	Generalización existencial	