Machine Learning Theory II

Maria-Florina (Nina) Balcan

February 11th, 2015

Today's focus

- 1. SLT for infinite H
- 2. Model selection

What if H is infinite?

E.g., linear separators in R^d

h(x)= sign (WTx)

h(x) = sign(x-w)

E.g., thresholds on the real line

E.g., intervals on the real line

 $h(x) = \begin{cases} 1, & x \in [a, b] \\ 0, & \text{otherwise} \end{cases}$

An Effective Number of Hypotheses

|H| only measures the maximum possible diversity of H

 ${\mathcal H}$ through the eyes of the ${\mathcal D}$

 \mathcal{H}

An Effective Number of Hypotheses

|H| only measures the maximum possible diversity of H

From the viewpoint of S, the entire H is just one dichotomy

An Effective Number of Hypotheses

|H| only measures the maximum possible diversity of H

Given a dataset
$$S=\{x_1,...,x_m\}$$
,
 $(h(x_1),...,h(x_m))$ $h: \times \rightarrow ?-1,+1?$
A dichotomy of S

- 1. If H is diverse, we get many different dichotomies.
- 2. If H contains many similar function, we only get a few dichotomies.

dichotomy

The shattering coefficient quantifies this.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - maximum number of ways to split m points using concepts

in H; i.e.
$$H[m] = \max_{|S|=m} |H[S]|$$

$$(\stackrel{*}{\in} H)$$

$$m \ge \frac{1}{2} \left(\ln|H| + \ln \frac{1}{2} \right)$$

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[\underline{VCdim}(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

$$S = \{x_i\}_{i=1}^m$$

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]|$$

$$|H(S)| = \left\{ \left(\underbrace{h(x_1), \dots, h(x_m)} \right) \middle| h \in H \right\}, |H(S)| \leq 2^m < |H(S)|$$

$$dichotomy$$

$$|H(m)| = \max_{S} \left\{ |H(S)| \middle| |S| = m, \forall S \leq X \right\} \leq 2^m$$

H: linear separator

$$1 + \frac{1}{2} \times \frac{1}{2} = 8$$

H(s) = $1 + \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 8$

H(s) = $1 + \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 8$

H(3) = $1 + \frac{1}{2} \times \frac{1}{2} = 8$

H(3) = $1 + \frac{1}{2} \times \frac{1}{2} = 8$

$$2^{4} = 16$$

$$x_{1} = \frac{1}{4}$$

$$x_{2} = \frac{1}{4}$$

$$x_{3} = \frac{1}{4}$$

$$x_{4} = \frac{1}{4}$$

$$x_{1} = \frac{1}{4}$$

$$x_{2} = \frac{1}{4}$$

$$x_{3} = \frac{1}{4}$$

$$x_{4} = \frac{1}{4}$$

$$x_{5} = \frac{1}{4}$$

$$x_{5} = \frac{1}{4}$$

$$x_{5} = \frac{1}{4}$$

$$x_{7} = \frac{1}{4}$$

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

In general, if |S|=m (all distinct), $|H[S]|=m+1\ll 2^m$

- H[5] the set of splittings of dataset 5 using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \leq 2^{m}$$

$$E.g., H= \text{Intervals on the real line}$$

$$- \qquad + \qquad - \qquad (5)+1 = 5 \times 4 \text{ bit}$$

In general,
$$|S| = m$$
 (all distinct), $H[m] = \frac{m(m+1)}{2} + 1 = O(m^2) \ll 2^m$

There are m+1 possible options for the first part, m left for the second part, the order does not matter, so (m choose 2) + 1 (for empty interval).

- H[S] the set of splittings of dataset S using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \le 2^m$$

$$\forall S \le X$$

Definition: H shatters \underline{S} if $|H[S]| = 2^{|S|} = 2^{m}$

Sample Complexity: Infinite Hypothesis Spaces

$$C^* \in H$$
, $m \ge \frac{1}{5} \left(|n|H + |n\frac{1}{5} \right)$ Realizable Case approximately $\frac{1-\delta}{1-\delta}$, $\frac{err_0(h)}{1-\delta} \le \frac{1}{5}$

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies H

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right] \Longrightarrow \mathcal{B}$$
 then with probab. $1 - \delta$, all $h \in H$ with $\underbrace{err_D(h) \geq \varepsilon}_{\text{7.6}}$ have $\underbrace{err_S(h) > 0}_{\text{8.0}}$.

 Not too easy to interpret sometimes hard to calculate exactly, but can get a good bound using "VC-dimension

If
$$H[m] = 2^m$$
, then $m \ge \frac{m}{\epsilon} (....) \otimes$

• VC-dimension is roughly the point at which H stops looking like it contains all functions, so hope for solving for m.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies $M \ge \frac{1}{2} \left(\frac{\ln |L_1| + \ln 2}{8} \right)$ $|L_1| \longrightarrow L_2[m] \longrightarrow \mathcal{W}$

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$ $H[m] = O(m^d)$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[\underbrace{VCdim(H)}_{\varepsilon} \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Definition: H shatters S if $|H[S]| = 2^{|S|} = 2^{m}$

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways, all possible ways of classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

$$|S| = m$$

The VC-dimension of a hypothesis space H is the cardinality of the largest set 5 that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$ H: convex set

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

To show that VC-dimension is d:

- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then $VCdim(H) \leq log(|H|)$.

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

If the VC-dimension is d, that means there exists a set of d points that can be shattered, but there is no set of d+1 points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k

 \bigcirc VCdim(H) \geq 2k

A sample of size 2k shatters (treat each pair of points as a separate case of intervals)

 \bigcirc VCdim(H) < 2k + 1

E.g., H= linear separators in R^2

- \bigcirc VCdim(H) \geq 3
- 2 V(dim (L1) < 4
- \Rightarrow Vc dim (H)=3

E.g., H= linear separators in R^2

VCdim(H) < 4

Case 1: one point inside the triangle formed by the others. Cannot label inside point as positive and outside points as negative.

Case 2: all points on the boundary (convex hull). Cannot label two diagonally as positive and other two as negative.

Fact: VCdim of linear separators in Rd is d+1

Today's Quiz

Sauer's Lemma

Sauer's Lemma:

```
Let d = VCdim(H)
```

- $m \le d$, then $H[m] = 2^m$
- m>d, then $H[m] = O(m^d)$

Proof: induction on m and d. Cool combinatorial argument!

Hint: try proving it for intervals...

Sample Complexity: Infinite Hypothesis Spaces Realizable Case C 6H

Theorem For any class H, distrib. D, if the number of labeled exam $m \geq \frac{1}{5} \left(|n| + |n| \frac{1}{5} \right)$ ples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1-\delta$, all $h\in H$ with $err_D(h)\geq \varepsilon$ have $err_S(h)>0$. $evr_D(h)<\xi$

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Sample Complexity for Supervised Learning Realizable Case

Consistent Learner

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H consistent with 5 (if one exits).

Theorem

 $m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$ samples of m training examples

Prob. over different

labeled examples are sufficient so that with prob. $1-\delta$) all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Linear in $1/\epsilon$

Theorem

$$m = O\left(\frac{1}{\varepsilon} VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $err_D(h) \geq \varepsilon$ have $err_S(h) > 0$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

E.g., H= linear separators in R⁽ⁿ⁾
$$m = O\left(\frac{1}{\varepsilon}\left[d\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

$$VCdim(H) = |q| + 1$$

$$\int_{-\infty}^{\infty} |q| d\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) |q| d\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) |q| d\log\left(\frac{1}{\delta}\right)$$

$$\int_{-\infty}^{\infty} |q| d\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) |q| d\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right) |q| d\log\left(\frac{1}{\delta}\right) + \log\left(\frac{1}{\delta}\right) |q| d\log\left(\frac{1}$$

So, if double the number of features, then I only need roughly twice the number of samples to do well.

Practical rule of thumb: VCdim(H) ~ #free parameters of H

Sample Complexity: Uniform Convergence

Agnostic Case

Empirical Risk Minimization (ERM)

- Input: S: $(x_1,c^*(x_1)),...,(x_m,c^*(x_m))$
- Output: Find h in H with smallest err_s(h)

(LII -> LIEM) -> V& dim(H)

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

labeled examples are sufficient s.t. with probab. $\geq 1-\delta$, all $h\in H$ have $|err_D(h)-err_S(h)|<\varepsilon$.

 $1/\epsilon^2$ dependence [as opposed to $1/\epsilon$ for realizable]

Theorem

$$m = O\left(\frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right] \right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $|err_D(h) - err_S(h)| \le \epsilon$.

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$
 something stronger.

 $1/\epsilon^2$ dependence [as opposed to $1/\epsilon$ for realizable], but get for something stronger.

labeled examples are sufficient s.t. with probab. $\geq 1-\delta$, all $h\in H$ have $|err_D(h)-err_S(h)|<\varepsilon$. $\leq err_S(h)+\leq err_S(h)+err_S(h)+\leq err_S(h)$

2) Statistical Learning Theory style:

With prob. at least $1 - \delta$, for all $h \in H$:

$$\sqrt{\frac{1}{m}}$$
 as opposed to $\frac{1}{m}$ for realizable

$$\operatorname{err}_{\operatorname{D}}(h) \leq \operatorname{err}_{\operatorname{S}}(h) + \sqrt{\frac{1}{2m} \left(\ln \left(2|H| \right) + \ln \left(\frac{1}{\delta} \right) \right)}.$$

Sample Complexity: Infinite Hypothesis Spaces Agnostic Case H: Wh

1) How many examples suffice to get UC whp (so success for ERM).

Theorem

$$m = O\left(\frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right] \right) + \frac{1}{\varepsilon^2} \left[VCdim(H) + \log\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with probab. $1-\delta$, all $h\in H$ with $|err_D(h)-err_S(h)|\leq \epsilon$.

2) Statistical Learning Theory style:

$$N=2: h=2000$$
 $M \approx 30 \quad \text{Max} \quad 20000$
 $VC \dim (1-1)= A$

With prob. at least $1 - \delta$, for all $h \in H$:

$$\mathrm{err}_{D}(h) \leq \mathrm{err}_{S}(h) + 0 \underbrace{\left(\frac{1}{2m} \left(\mathrm{VCdim}(H) \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \left(\mathrm{VCdim}(H) \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \left(\mathrm{VCdim}(H) \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \left(\mathrm{VCdim}(H) \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \left(\mathrm{VCdim}(H) \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right)}_{Q} \underbrace{\left(\frac{1}{2m} \ln \left(\frac{\mathrm{em}}{\mathrm{VCdim}(H)} \right) + \ln \left(\frac{1}{\delta} \right) \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right) + \ln \left(\frac{1}{\delta} \right) \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right) + \ln \left(\frac{1}{\delta} \right) \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right) + \ln \left(\frac{1}{\delta} \right) \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}} \right)}_{Q} \underbrace{\left(\frac{\mathrm{em}}{\mathrm{em}}$$

VCdimension Generalization Bounds

$$\mathsf{E.g.,} \quad \mathrm{err}_{\mathrm{D}}(\mathsf{h}) \leq \mathrm{err}_{\mathrm{S}}(\mathsf{h}) + O\left(\sqrt{\frac{1}{2\mathsf{m}}}\left(\mathrm{VCdim}(\mathsf{H})\ln\left(\frac{\mathsf{em}}{\mathrm{VCdim}(\mathsf{H})}\right) + \ln\left(\frac{1}{\delta}\right)\right)\right).$$

VC bounds: distribution independent bounds

Generic: hold for any concept class and any distribution.
 [nearly tight in the WC over choice of D]

- Might be very loose specific distr. that are more benign than the worst case....
- Hold only for binary classification; we want bounds for fns approximation in general (e.g., multiclass classification and regression).

True Error, Training Error, Overfitting

Model selection: trade-off between decreasing training error and

model keeping H simple. $\operatorname{err}_{D}(h) \leq \operatorname{err}_{S}(h) + R_{m}(H) + \dots$ $e^{\gamma v_b(h)} \leq e^{\gamma v_s(h)} + O\left(\int \frac{d}{m} \ln \frac{m}{d} + \frac{1}{h} \ln \frac{l}{s}\right)$ train error evisible Complexity
dominates dominates generalization error complexity

Structural Risk Minimization (SRM)

 $J_1 < J_2 < J_3 < \dots < J_i < \dots$ $H_1 \subseteq H_2 \subseteq H_3 \subseteq \dots \subseteq H_i \subseteq \dots$

C* \$H

dd: eryp (n = englh)

error rate

What happens if we increase m?

Black curve will stay close to the red curve for longer, everything shifts to the right...

Structural Risk Minimization (SRM)

$$H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots \subseteq H_i \subseteq \dots$$

$$evv_p(h) \leq evv_s(h) + O \sqrt{\frac{d}{m} \ln \frac{m}{d} + \frac{1}{m} \ln s}$$

Structural Risk Minimization (SRM)

```
\begin{array}{l} \text{In } \lambda \in \mathcal{O}_{\mathcal{L}} < \lambda \in \mathcal{O}_{\mathcal{L}}
```

```
Claim: W.h.p., \operatorname{err}_{D}(\hat{h}) \leq \min_{k^* \min_{h^* \in H_{k^*}}} [\operatorname{err}_{D}(h^*) + 2\operatorname{complexity}(H_{k^*})]
```

Proof:

- We chose \hat{h} s.t. $err_s(\hat{h}) + complexity(H_{\hat{k}}) \le err_S(h^*) + complexity(H_{k^*})$.
- Whp, $\operatorname{err}_D(\widehat{h}) \leq \operatorname{err}_s(\widehat{h}) + \operatorname{complexity}(H_{\widehat{k}}).$ $\left| \operatorname{evv}_D(h) \operatorname{evv}_S(h) \right| < 5$
- $\bullet \quad \text{Whp, } \operatorname{err}_S(h^*) \leq \operatorname{err}_D(h^*) + \operatorname{complexity}(H_{k^*})_{\text{PMS}(h)-\mathcal{L}} < \text{evg}(h) < \text{evg}(h) + \text{graph}(h) + \text$

Techniques to Handle Overfitting

- Structural Risk Minimization (SRM). $H_1 \subseteq H_2 \subseteq \cdots \subseteq H_i \subseteq \cdots$ Minimize gener. bound: $\hat{h} = \operatorname{argmin}_{k \geq 1} \{ \operatorname{err}_{S}(\hat{h}_k) + \operatorname{complexity}(H_k) \}$
 - Often computationally hard....
 - Nice case where it is possible: M. Kearns, Y. Mansour, ICML'98, "A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization"
- Regularization: general family closely related to SRM
 - E.g., SVM, regularized logistic regression, etc.,
 - minimizes expressions of the form: $err_S(h) \neq \lambda ||h||^2$

Some norm when H is a vector space; e.g., L_2 norm

Cross Validation:

Picked through cross validation

- Hold out part of the training data and use it as a proxy for the generalization error
- · Feuture selection.

What you should know

- Notion of sample complexity.
- Understand reasoning behind the simple sample complexity bound for finite H.
- Shattering, VC dimension as measure of complexity,
 Sauer's lemma, form of the VC bounds.

Model Selection, Structural Risk Minimization.