

Introduction to Gene Expression

Bayer Russia Biotechnology Conference

July 2023

My background in gene expression research

- // I have been active in gene expression research for 20 years:
 - // In Drosophila, mammalian, and plant systems
 - Co-author on 10 publications in the scientific literature, including a commentary in Cell
 - // Inventor on 2 awarded patents and 3 additional published patent applications
- // I currently lead a molecular biology team and am a "go-to" person for gene expression troubleshooting at Bayer Crop Science

Introduction to Gene Expression

// Questions:

- // Why do we need to learn from plant cells for gene expression?
- // What is our current understanding of gene expression in plant cells?
- # How do we make use of this understanding to regulate transgene expression?

// Topics:

- // Chromatin, enhancers, and promoters
- // Co-transcriptional: splicing, polyadenylation and cleavage
- // Translation, codon optimization, and RNA stability
- Vector Stacking

// Themes:

- // Genes are expressed via structured complexes of nucleic acids and proteins
- # Gene expression processes are coupled

We often use bacterial genes to confer biotech traits, such as insect control

Diverged more than 2 billion years ago

There are important biological differences between bacterial and eukaryotic gene expression

(Libretexts.org)

Let's use models to learn, but keep in mind their limitations

 Genes are expressed via nucleoprotein complexes

(Murakami et al, 2015. PNAS.)

Chromatin, enhancers, and promoters

Genes are made of DNA, and nuclear DNA is organized in chromatin

Transcription factors lead to chromatin remodeling and RNA polymerase II recruitment

(Vernimmen and Bickmore, 2015. Trends Genet.)

There is genetic and molecular evidence for important enhancers in corn

"Whereas levels of diversity in the coding portion are roughly comparable to those found in teosinte, diversity in the upstream noncoding region is significantly depleted... Thus, the coding region of tb1 evolved neutrally during the domestication process of maize, whereas its upstream region was subjected to strong selection."

(de Meaux, 2006. Nature Genetics.)

There is genetic and molecular evidence for important enhancers in corn

(Ricci et al, 2019. Nature Plants.)

Distal and core promoters are sequences upstream of genes bound by proteins to recruit RNA polymerase II

(Hernandez-Garcia and Finer, 2014. Plant Science)

Promoters used in transgenic corn events submitted for deregulation in USA

Trade name	Developer	Promoters	Trade name	Developer	Promoters
Enogen™ Maize	Syngenta	Zm27kDa γ-zein, CaMV 35S	InVigor™ Maize	Bayer Crop Science	P-CA55, CaMV 35S
*****			InVigor™ Maize	Bayer Crop Science	pTA29, CaMV 35S, pTAC
32138 SPT maintainer	DuPont Pioneer	5126, ZmPg47, HvLTP2			
Agrisure™ CB/LL	Syngenta	2X CaMV 35S	YieldGard™ VT Pro™	Monsanto	CaMV 35S, FMV 35S
Roundup Ready™ Maize, Agrisure™GT	Monsanto	OsActin	YieldGard™ VT™ Rootworm™ RR2	Monsanto	OsActin1, CaMV 35S
Agrisure™ RW	Syngenta	ZmMTL, ZmUbil	Genuity® DroughtGard™	Monsanto	OsActin1, CaMV 35S
Agrisure [®] Duracade™	Syngenta	CMP, ZmUbil	Roundup Ready™ Maize	Monsanto	CaMV 35S
Herculex™ I, Herculex™ CB	Dow & DuPont	ZmUbil, CaMV 35S		Monsanto	PCISV, AgUBQ
	Pioneer			Monsanto	CaMV 35S
	Dow & DuPont Pioneer	CYMV, BSV, 2X ZmUbi1		Monsanto	CaMV 35S
	Dow & DuPont Pioneer	2X ZmUbi1, TaPOX, CaMV 35S	YieldGard™ Rootworm RW, MaxGard™	Monsanto	2X CaMV 35S
Agrisure™ Viptera	Syngenta	2X ZmUbi1, CaMV 35S	Roundup Ready™ Maize	Monsanto	2X CaMV 35S
	Genective S.A.	ScUbi4	YieldGard™, MaizeGard™	Monsanto	CaMV 35S
	Dow	ZmUbil, CaMV 35S	ricidoard , maizeoard	Monsanto	Calvi v 555
Liberty Link™ Maize	Bayer Crop Science	CaMV 35S		Monsanto	3X CaMV 35S
Liberty Link™ maize	Bayer Crop Science	CaMV 35S			
Roundup Ready™ 2 Maize	Monsanto	OsActin, CaMV 35S		Monsanto	3X CaMV 35S
	Syngenta	CMP, ZmUbil, CaMV 35S		Monsanto	3X CaMV 35S
	Syngenta	ZmUbi158, CaMV 35S			

Computational design of promoters and other expression elements

Computational design of promoters and other expression elements

Co-transcriptional regulation

RNA Processing, including splicing, is co-transcriptional

Pol II initiation.

RNA

(Neugebauer, 2002. J Cell Sci.)

RNA Processing, including splicing, is co-transcriptional

Exon definition model

Introns > 250 bp

(De Conti, 2013. WIREs RNA.)

Intron-mediated enhancement

Distance from start of transcription (nt)

T/BS

Polyadenylation clusters in plants have core regulatory elements in 3' untranslated regions

Translation and RNA stability

mRNA is translated by ribosomes

- The mRNA cap and polyA tail are both important for initial ribosome occupancy.
- Once loaded onto the 5' end of the mRNA, the 40S ribosome scans from the 5' end for the first ATG start codong.
 - This is why upstream ATGs
 (uORFs) downregulate expression,
 and also why upstream ATGs can
 be a risk factor for unexpected
 peptides.
- During translocation, the mRNA moves through the ribosome in codon triplets.

80S translation-competent ribosome

Adapting bacterial genes to plant codon usage increases gene expression

Table I. Summary of differences between the wild-type and synthetic B.t.-toxin genes

Segment	Length	Nucleotides Changed	Codons Changed	Initial G/C Content	Final G/C Content
	bp	no.		%	
1	274	82	75/91	38	66
2	375	106	96/125	38	65
3	531	167	146/177	37	64
4	653	190	179/217	38	63
Total	1833	548	496/610	38	64

(De Rocher, et al., 1998)

Ribo-seq lets us visualize ribosome occupancy on mRNA

RNA degradation pathways

RNA degradation

- Balanced mRNA decay prevents posttranscriptional gene silencing.
- If the decay mechanisms are not in balance with transcript generation, RNA-dependent RNA polymerases can kick off a silencing pathway.
- Design and testing of 3' untranslated regions, aka "terminators," is important for predictable gene expression. Motifs in these designs may increase or decrease RNA stability.

Small RNA pathways in plants

(Borges and Martienssen, 2015. Nat Rev Mol Cell Biol.)

Transgenes that are stacked on the same vector may affect each other's expression

(a) Enhancer-blocking insulation

(b) Barrier insulation

(Singer et al., 2012 Plant Cell Rep.)

Gene expression: overall themes

- Genes are expressed via structured complexes of nucleic acids and proteins
- Gene expression processes are coupled and highly regulated
- We can use expression regulatory elements, such as promoters, to recapitulate some gene expression patterns with transgenes in plants

DISCLAIMER

THE INFORMATION CONTAINED HEREIN IS EXPERIMENTAL IN NATURE AND IS PROVIDED "AS IS". BAYER MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO THE MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE INFORMATION WILL NOT INFRINGE ANY THIRD-PARTY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS.

Thank you!

_

Any questions?

