

Module 12

Operating System

Module Twelve

- Operating System Part Three
- In this presentation, we are going to talk about :

Process Scheduling

I/O Supervision

Overview

Previously we talked about:

Basic Operating System Functions

Components

Interrupt Processing

Now: Process Scheduling

I/O Supervision

What is a Process

- Also called a Task, is most often simply, a program in execution.
- Some Operating Systems allow programs to create sub-programs as separate processes.
- Some programs are written to divide into Threads. The same code processing on different data sets. Each Thread is a process.

Process Management

- Process management lies at the heart of operating system services.
- The operating system
 - Creates Processes,
 - Schedules their access to resources,
 - Deletes Processes, and
 - De-allocates resources that were allocated during execution.
- The operating system monitors the activities of each **Process** to avoid synchronization problems that can occur when **Processes** use shared resources.
- If Processes need to communicate with one another, the operating system provides the services.

Process Scheduling

- The operating system schedules Process execution.
- First, the operating system determines which **Process** shall be granted access to the CPU.

This is *long-term scheduling*.

 After a number of **Processes** have been admitted, the operating system determines which one will have access to the CPU at any particular moment.

This is **short-term scheduling**.

- Context switches occur when a Process is taken from the CPU and replaced by another Process.
 - Information relating to the state of the **Process** is preserved during a *context switch*.

Process Scheduling (continued)

- Short-term scheduling can be nonpreemtive or premptive.
- In nonpreemptive scheduling, a process has use of the CPU until either it terminates, or must wait for resources that are temporarily unavailable.
- In preemptive scheduling, each process is allocated a timeslice.
 When the timeslice expires, a context switch occurs.
- A context switch can also occur when a higher priority process needs the CPU.

Processes Summary

- DISPATCHING
- Process Status Block
 - Process State: Running
 - Blocked
 - Ready
 - Register Storage
 - Resources used / held
- Select Next Process
 - Round Robin
 - Priority Scheme
 - PreEmtive

I/O Configuration

I/O Supervision

Very Simple Machine

Program controlled

one byte at a time

loop: test, read data, wait

code is part of the Operating System or user program

I/O Supervision

- Program controlled
 - Control register assigned to each device. Operating System polls, checks, for changed status.
- Interrupt Driven
 - I/O started, and an interrupt sent at completion of each step.
- DMA
 - I/O started, DMA process monitors, interrupt at completion.
- I/O Channel
 - Special dedicated hardware monitors and controls.

Direct Memory Access - DMA

- Note: the connections of DMA Processor with CPU and Main Memory
- CPU provides command information, DMA does work, sends interrupt when completed.

I/O Channel

- Used by more complex main frame machines and servers
- The I/O Processor (IOP) is a special purpose hardware processor that can manage all the details of the data movement.
 - Bus usage
 - Device protocols
 - Error recovery
 - Data buffering

I/O Channels

- User requests input or output help from the Operating System
 - Syscall , for example
- User waits for I/O to complete
- User code 'Channel Program' directives to I/O Channel Processor
- Error Recovery done by I/O Channel Processor
 - Disc errors
 - Printer alerts

I/O Summary

- Program controlled
 - Control register assigned to each device. Operating System polls, checks, for changed status.
- Interrupt Driven
 - I/O started, and an interrupt sent at completion of each step.
- DMA
 - I/O started, DMA process monitors, interrupt at completion.
- I/O Channel
 - Special dedicated hardware monitors and controls.

Summary

- Process Scheduling
- I/O Supervision

Next: Memory Management