Ebony (I) Page 1 of 3

General information

Designation

Diospyros spp. (L)

Typical uses

Fancy articles; inlays; shuttles; turnery; piano keys; finger boards of stringed instruments; bowls.

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

-	
Material family	Natural
Base material	Wood (tropical)
Renewable content	100 %

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 3.04	-	4.88	USD/lb	
-------	--------	---	------	--------	--

Physical properties

Density	0.034	-	0.0412	lb/in^3			
---------	-------	---	--------	---------	--	--	--

Mechanical properties

Mechanical properties				
Young's modulus	1.41	-	1.73	10^6 psi
Yield strength (elastic limit)	3.77	-	4.61	ksi
Tensile strength	* 16.6	-	20.3	ksi
Elongation	* 4.77	-	5.83	% strain
Compressive strength	10.2	-	12.4	ksi
Flexural modulus	1.81	-	2.22	10^6 psi
Flexural strength (modulus of rupture)	17.9	-	21.9	ksi
Shear modulus	* 0.104	-	0.128	10^6 psi
Shear strength	1.68	-	2.06	ksi
Bulk modulus	* 0.467	-	0.526	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.5			
Hardness - Vickers	* 16.2	-	19.8	HV
Hardness - Brinell	18	-	22	ksi
Hardness - Janka	* 3.65e3	-	4.46e3	lbf
Fatigue strength at 10^7 cycles	* 5.37	-	6.56	ksi
Mechanical loss coefficient (tan delta)	* 0.0064	-	0.0078	

Ebony (I) Page 2 of 3

GEDUPICK								
Differential shrinkage (radial)	0.24	-	0.3	%				
Differential shrinkage (tangential)	* 0.44	-	0.54	%				
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%				
Tangential shrinkage (green to oven-dry)	9.6	-	11.7	%				
Volumetric shrinkage (green to oven-dry)	20.8	-	23.1	%				
Work to maximum strength	* 2.01	-	2.45	ft.lbf/in^3				
Impact & fracture properties								
Fracture toughness	* 9.46	-	11.6	ksi.in^0.5				
Thermal properties								
Glass temperature	171	-	216	°F				
Maximum service temperature	248	-	284	°F				
Minimum service temperature	* -99.4	-	-9.4	°F				
Thermal conductivity	* 0.26	-	0.324	BTU.ft/hr.ft^2.°F				
Specific heat capacity	0.396	-	0.408	BTU/lb.°F				
Thermal expansion coefficient	* 1.11	-	6.11	μstrain/°F				
Electrical properties								
Electrical resistivity	* 6e13	-	2e14	µohm.cm				
Dielectric constant (relative permittivity)	* 10.1	-	12.4					
Dissipation factor (dielectric loss tangent)	* 0.124	-	0.152					
Dielectric strength (dielectric breakdown)	* 10.2	-	15.2	V/mil				
Magnetic properties								
Magnetic type	Non-ma	gnet	ic					
Optical properties								
Transparency	Opaque							
Durability								
Water (fresh)	Limited							
Water (salt)	Limited	use						
Weak acids	Limited	use						
Strong acids	Unacce		le					
Weak alkalis	Accepta	Acceptable						

Unacceptable

Unacceptable

Highly flammable

Acceptable

Good

Strong alkalis

Flammability

Organic solvents

Oxidation at 500C

UV radiation (sunlight)

Primary production energy, CO2 and water

Embodied energy, primary production	* 4.99e3	-	5.5e3	BTU/lb
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 510	-	564	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.089	-	0.0984	lb/lb
Fine machining energy (per unit wt removed)	* 3.27e3	-	3.61e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.57	-	0.63	lb/lb
Grinding energy (per unit wt removed)	* 6.33e3	-	6.99e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.1	-	1.22	lb/lb

Recycling and end of life

rtooy oming and on mo				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	