IP CORE MANUAL

Vector Concatenation IP

px_vctr_concat

Pentek, Inc.
One Park Way
Upper Saddle River, NJ 07458
(201) 818-5900
http://www.pentek.com/

Copyright © 2016

Manual Part Number: 807.48350 Rev: 1.0 - December 09, 2016

Manual Revision History

Date	Version		Comments
12/09/16	1.0	Initial Release	

Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Pentek products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Pentek hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Pentek shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in conjunction with, the Materials (including your use of Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage and loss was reasonably foreseeable or Pentek had been advised of the possibility of the same. Pentek assumes no obligation to correct any error contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the materials without prior written consent. Certain products are subject to the terms and conditions of Pentek's limited warranty, please refer to Pentek's Ordering and Warranty information which can be viewed at http://www.pentek.com/contact/customerinfo.cfm; IP cores may be subject to warranty and support terms contained in a license issued to you by Pentek. Pentek products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for the use of Pentek products in such critical applications.

Copyright

Copyright © 2016, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, Jade, and Navigator are trademarks or registered trademarks of Pentek, Inc.

ARM and AMBA are registered trademarks of ARM Limited. PCI, PCI Express, PCIe, and PCI-SIG are trademarks or registered trademarks of PCI-SIG. Xilinx, Kintex UltraScale, Vivado, and Platform Cable USB are registered trademarks of Xilinx Inc., of San Jose, CA.

Table of Contents

	Page
IP Facts	
Description	5
Features	5
Table 1-1: IP Facts Table	5
Chapter 1: Overview	
Functional Description	7
Figure 1-1: Vector Concatenation Core Block Diagram	
Applications	7
System Requirements	7
Licensing and Ordering Information	7
Contacting Technical Support	8
Documentation	8
Chapter 2: General Product Specifications	
Standards	9
Performance	
Resource Utilization	
Limitations and Unsupported Features	
Generic Parameters	
Table 2-1: Generic Parameters	
Chapter 3: Port Descriptions	
I/O Signals	11
Table 3-1: I/O Signals	
Chapter 4: Designing with the Core	
General Design Guidelines	13
Clocking	
Resets	
Interrupts	
Interface Operation	
Programming Sequence	
Timing Diagrams	

Table of Contents

Page

Chapter 5: Design Flow Steps

	Figure 5-1: Vector Concatenation Core in Pentek IP Catalog	
	Figure 5-2: Vector Concatenation Core IP Symbol	10
5.2	User Parameters	16
5.3	Generating Output	16
5.4	Constraining the Core	17
5.5	Simulation	17
5.6	Synthesis and Implementation	17

IP Facts

Description

Pentek's NavigatorTM Vector Concatenation Core performs simple concatenation of two input vectors of user-defined widths to generate a single vector output.

This user manual defines the hardware interface, software interface, and parameterization options for the Vector Concatenation Core.

Features

- Generates up to 2048-bit wide vector output
- Supports each input vector up to 1024 bits wide
- User-programmable widths of input vectors

Table 1-1: IP Facts Table			
Core Specifics			
Supported Design Family ^a	Kintex [®] Ultrascale		
Supported User Interfaces	N/A		
Resources	N/A		
Provided with the Core			
Design Files	VHDL		
Example Design	Not Provided		
Test Bench	Not Provided		
Constraints File	Not Provided ^b		
Simulation Model	N/A		
Supported S/W Driver	N/A		
Tested Design Flows			
Design Entry	Vivado [®] Design Suite 2016.3 or later		
Simulation	Vivado VSim		
Synthesis	Vivado Synthesis		
Support			
Provided by Pentek fpgasupport@pentek.com			

a.For a complete list of supported devices, see the *Vivado Design Suite Release Notes*.

b.Clock constraints can be applied at the top level module of the user design.

Chapter 1: Overview

1.1 Functional Description

The Vector Concatenation Core generates a single vector output by concatenating two inputs vectors whose widths are defined by the user based on the application requirement. The output vector generated has the input Vector B in the most significant position followed by the input Vector A. The widths of the input vectors are defined using generic parameters as described in Section 2.5. Figure 1-1 is a top-level block diagram of the Pentek Vector Concatenation Core with input Vector A having a width of M bits and input Vector B having a width N bits.

Figure 1-1: Vector Concatenation Core Block Diagram

1.2 Applications

The Vector Concatenation Core can be incorporated into any Kintex Ultrascale FPGA to generate a single vector output by concatenating two input vectors.

1.3 System Requirements

For a list of system requirements, see the Vivado Design Suite Release Notes.

1.4 Licensing and Ordering Information

This core is included with all Pentek Navigator FPGA Design Kits for Pentek Jade series board products. Contact Pentek for Licensing and Ordering Information (www.pentek.com).

1.5 Contacting Technical Support

Technical Support for Pentek's Navigator FPGA Design Kits is available via e-mail (fpgasupport@pentek.com) or by phone (201-818-5900 ext. 238, 9 am to 5 pm EST).

1.6 **Documentation**

This user manual is the main document for this IP core. The following documents provide supplemental material:

- 1) Vivado Design Suite User Guide: Designing with IP
- 2) Vivado Design Suite User Guide: Programming and Debugging

Chapter 2: General Product Specifications

2.1 Standards

This section is not applicable to this IP core.

2.2 Performance

This section is not applicable to this IP core.

2.3 Resource Utilization

This IP core utilizes only the I/O resources of the FPGA it is incorporated into.

2.4 Limitations and Unsupported Features

This section is not applicable to this IP core.

2.5 Generic Parameters

The generic parameters of the Vector Concatenation Core are described in Table 2-1. These parameters can be set as required by the user application while customizing the core.

Table 2-1: Generic Parameters				
Port/Signal Name	Туре	Description		
input_a_width	Integer	Input A Width: This parameter indicates the width of the input vector A. This can range from 1 to 1024.		
input_b_width		Input B Width: This parameter indicates the width of the input vector B. This can range from 1 to 1024.		

Chapter 3: Port Descriptions

This chapter provides details about the port descriptions for the following interface types:

• I/O Signals

3.1 I/O Signals

The I/O port/signal descriptions of the top level module of the Vector Concatenation Core are discussed in Table 3-1.

Table 3-1: I/O Signals				
Port/ Signal Name	Туре	Direction	Description	
input_a [input_a_width-1:0]	std_logic _vector	Input	Input A Vector: This is the input vector A of width equivalent to the generic parameter input_a_width.	
input_b [input_b_width-1:0]			Input B Vector: This is the input vector B of width equivalent to the generic parameter input_b_width.	
output_concat [(input_a_width + input_b_width)-1 : 0]		Output	Output Vector: This is the concatenated output vector of the core.	

Chapter 4: Designing with the Core

This chapter includes guidelines and additional information to facilitate designing with the Vector Concatenation Core.

4.1 General Design Guidelines

The Vector Concatenation Core can generate an output vector by concatenating the input vectors of variable widths.

4.2 Clocking

This section is not applicable to this IP core.

4.3 Resets

This section is not applicable to this IP core.

4.4 Interrupts

This section is not applicable to this IP core.

4.5 Interface Operation

This section is not applicable to this IP core.

4.6 Programming Sequence

This section is not applicable to this IP core.

4.7 Timing Diagrams

This section is not applicable to this IP core.

Chapter 5: Design Flow Steps

5.1 Pentek IP Catalog

This chapter describes customization and generation of the Pentek Vector Concatenation Core. It also includes simulation, synthesis, and implementation steps that are specific to this IP core. This core can be generated from the Vivado IP Catalog when the Pentek IP Repository has been installed. It will appear in the IP Catalog list as **px vctr concat v1 0** as shown in Figure 5-1.

IP Catalog ? _ _ _ Z X Search: Q-Cores Interfaces **→** ^1 AXI4 Name Status License Z Include ^ AXI4, AXI4-Stream Production px_test_sig_gen_v1_0 px_timestamp_gen_v1_0 AXI4, AXI4-Stream Production Include px_vctr2scalar_v1_0 Production Include 7 Production Include px_vctr_2to1mux_v1_0 px_vctr_concat_v1_0 Production Indude px vctr dly v1 0 Production Include User Repository (c:/Xilinx/Vivado/2016.2/data/ip/pentek/interface) - Wiyado Renository > Details Name: px_vctr_concat_v1_0 1.0 (Rev. 8) Version: Simple concatenation of two vectors Description: Status: Production License: Included Change Log: View Change Log Pentek, Inc. Vendor:

Figure 5-1: Vector Concatenation Core in Pentek IP Catalog

5.1 Pentek IP Catalog (continued)

When you select the **px_vctr_concat_v1_0** core, a screen appears that shows the core's symbol and the core's parameters (see Figure 5-2). The core's symbol is the box on the left side.

Figure 5-2: Vector Concatenation Core IP Symbol

5.2 User Parameters

The user parameters of this core are described in Section 2.5 of this user manual.

5.3 Generating Output

For more details about generating and using IP in the Vivado Design Suite, refer to the *Vivado Design Suite User Guide - Designing with IP*.

5.4 Constraining the Core

This section contains information about constraining the Vector Concatenation Core in Vivado Design Suite.

Required Constraints

This section is not applicable to this IP core.

Device, Package, and Speed Grade Selections

This IP works for the Kintex Ultrascale FPGAs.

Clock Frequencies

This section is not applicable to this IP core.

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking and Placement

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

I/O Standard and Placement

This section is not applicable for this IP core.

5.5 Simulation

This section is not applicable to this IP core.

5.6 Synthesis and Implementation

For details about synthesis and implementation see the *Vivado Design Suite User Guide - Designing with IP*.