Relatório Trabalho de Implementação 2 - Heurísticas e Metaheurísticas

Aluno: Vitor Rodarte Ricoy

Matrícula: 2019007112

Foi implementado um Algoritmo Genético. A população inicial foi construída usando uma heurística NN com o vértice de início aleatório, seguida de uma busca local, utilizando 2-Opt, para cada indivíduo. Já a seleção foi por torneio, com dois candidatos. A recombinação foi feita pelo algoritmo Order Crossover, escolhendo três vértices consecutivos de cada pai, alternadamente, em conjunto de uma busca local, utilizando o 2-Opt. A mutação foi feita com uma operação do 2-Opt em duas arestas aleatórias da solução, sendo que a mutação pode não ocorrer. Por fim, o algoritmo de substituição usado foi a estratégia estável, em que o filho substitui o pior dos dois pais.

Foram usadas 1000 iterações do algoritmo, ou seja, o resultado é coletado após 1000 gerações. Ao fim, o melhor indivíduo da última geração é escolhido como solução. Como o algoritmo envolve aleatoriedade, ele foi executado cinco vezes para cada arquivo de teste e os resultados de tempo e solução apresentados são a média dessas cinco execuções. Como o algoritmo é caro, ele pôde ser executado apenas cinco vezes por teste. Por fim, foi usado o interpretador de Python PyPy, para reduzir o tempo de execução de ambas as soluções.

Instância	Solução Ótima	VND			Algoritmo Genético		
		Tempo (s)	Solução	Razão da Solução Ótima	Tempo (s)	Solução	Razão da Solução Ótima
att48	10628	0.612	10954.0	1.031	21.859	11323.0	1.065
berlin52	7542	0.192	7995.0	1.060	37.816	12580.8	1.668
kroA100	21282	1.555	22689.0	1.066	125.487	36501.4	1.715
kroA150	26524	2.279	27765.0	1.047	363.610	29269.8	1.104
kroA200	29368	20.998	31003.0	1.056	617.534	45040.4	1.534
kroB100	22141	0.670	23208.0	1.048	177.949	39338.8	1.777
kroB150	26130	5.066	27400.0	1.049	427.847	29172.2	1.116
kroB200	29437	11.677	30642.0	1.041	706.053	46906.0	1.593
kroC100	20749	0.554	21478.0	1.035	220.943	37146.2	1.790
kroD100	21294	1.084	22124.0	1.039	281.772	34068.8	1.600
kroE100	22068	0.494	22656.0	1.027	335.880	37682.6	1.708
lin105	14379	0.661	15434.0	1.073	366.899	15767.2	1.097
pr76	108159	0.193	112124.0	1.037	316.396	160677.2	1.486
pr107	44303	1.079	45609.0	1.029	334.925	88901.4	2.007
pr124	59030	0.915	59798.0	1.013	353.838	107953.6	1.829
pr136	96772	1.318	100868.0	1.042	589.729	160112.4	1.655
pr144	58537	1.675	63388.0	1.083	491.978	66014.2	1.128
pr152	73682	7.070	75862.0	1.029	537.137	144518.4	1.961
rat99	1211	0.463	1271.0	1.049	546.008	1381.8	1.141
rat195	2323	5.463	2472.0	1.064	1129.308	2571.4	1.107
st70	675	0.210	708.0	1.049	321.433	1063.2	1.575