软件的功能介绍

YS_USB2IIC&SPI能够提供包括USB转I2C接口、SPI接口,实现了常用的EEPROM器件的读取与烧写,以及其他的基于I2C总线,SPI总线的数据流的传输,同时,YS_USB2IIC&SPI可以通过CH341A自带的I/O口的锁存器来实现GPIO,可以作为位控制的I/O使用,实现数据的输入输出控制,并可以实现基于MEM,EEP协议的并口扩展(需要在端口配置数据及地址锁存器)。

YS_USB2IIC&SPI提供了基于动态链接库的程序合法性验证,如果对于非法的动态链接库,程序的功能将自动被屏蔽掉。

YS_USB2IIC&SPI还直接集成了现今电子产品开发中经常使用的一些存储器件的操作,只要按要求搭建好硬件电路便可以轻松完成存储器的读写,如ATMEL公司的 IIC接口的 EEPROM的 AT24XX系列的读写, SPI总线接口的EEPROM如 AT93C46、AT25C010、X5045的读写操作。

与此同时,YS_USB2IIC&SPI支持多种型号的ADC的操作,支持8位的ADC8031,以及可以直接与MSP430F2013所带的16位ADC进行通信,利用YS_USB2IIC&SPI的相应模块可以方便的完成数据的读取操作,并以波形图的形式进行实时数据显示。

在其他器件方面,YS_USB2IIC&SPI还集成了常用的温度传感器 DS1602,实现温度的实时读取。

软件的模块及使用方法介绍

YS_USB2IIC&SPI以菜单形式组织软件结构,其菜单项如下图所示,这里先给出整个软件的框架,然后分别对各个模块的功能和使用方法进行介绍,注意在拔出硬件前,务必关闭软件否则将造成硬件损坏。

图 1. 主界面及菜单

1 I2C 接口

按照实际使用需求, I2C接口模块分为2部分: I2C测试和 I2C通信, 分别完成协议测试和数据通信的功能。

图 2. I2C 接口菜单选项

1.1 I2C 测试模块

图 3.I2C 协议测试模块界面

模块功能 I2C测试模块用于测试少量数据的,其特点是使用简单方便,结果显示明了,提供了最多32个字节的读出和写入功能,能够完成基于I2C总线的器件的

读写操作。

使用方法 在使用I2C测试模块的使用需要注意一下几点:

- (1)写入和读出的方式由<mark>读出长度</mark>来控制,当读出长度设置为0的时候,为写方式; 当读出的长度设置为非0的时候为读方式。
- (2) I2C协议测试模块的读写完成按照I2C时序执行,即第一个字节为器件地址,但是其读写位由读出长度来指示,因此通常设置为0,然后是欲写入的地址,即从地址,这里按照具体器件的从地址格式,可以为1个字节或者2个字节,然后是写入数据的长度;读出的时候,就只有器件地址和器件从地址。
- (3)上面的列表框为写入窗口,通过双击每个单元格,完成数据的输入,这里对数据的输入做了合法性的验证,要求输入的数据为最长为两位的十六进制数据,即 0~255,如输入的数据为ER,则会出现如下的提示窗体:

图 4. 不合法输入界面

使用例程 这里主要介绍 I2C测试模块的使用,使用了三种不同 I2C总线格式的器件,包括不带设备从地址的 MSP430F2013的 IIC总线数据读取,带一个字节

设备从地址的 AT24C02数据读写以及带二个字节设备从地址的 AT24C256器件数据读写。

AT24C02的读写

打开 I2C接口-I2C测试模块, 我们要从 AT24C08的 00地址开始依次写入 1、 2、3、4、5、6、7、8设置好的数据如下所示:

图5. AT24C08的数据写入设置

其中 A0为设备地址,0为设备从地址,即开始写入的地址,后面为要写入的数据。读出长度设置为 0,时钟频率设置为 100khz,单击读写按钮即可完成写入。通过打开器件菜单下的 AT24C08的读写界面,读出里面的值,可以验证写入结果(如图6)。

图6. AT24C02的数据读取结果

同样,我们可以采用 I2C测试模块来读取数据,仍然从地址0读取8位数据,设置及其结果如下:

图7. AT24C08的数据读取结果

AT24C256的读写 这里我们在 AT24C256的 0000地址写入 11,22,33,44,55,66,77,设置好的界面如下所示:

图8. AT24C256写入界面设置

其中第0字节A0为设备地址,第1和第2字节为设备从地址0000,即要写入的初始地址,紧接着为要写入的数据,读出长度为0,单击读写按钮即可以完成写入操作。

读取数据时,读出数据长度为7,同时设置写入长度为3(一定只能包含器件地址以及从地址地址的长度,否则会出错),单击读/写,得到的输出界面如下:

12C协议测试	
写入数据内容USBIO_StreamI2C() 建键 0 1 2 3 4 5 6 7 8 9 10 11 0x A0 00 00	写入数据长度 3 缓冲区清空 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
读取数据内容USBIO_StreamI2C()	数据读出长度: 7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
状态显示 当前位置: 9	回数使用说明 USBIO_StreamI2C(IIndex,ñWrLen,ñWrBuf,iRdLen,oRdBuf); ñWrLen%准备写出的数据字节数; ñWrBuf%指向一个缓冲区,放置准备写出的数据,首字节通常是I2C设备地址及读写方向位; iRdLen%准备说取的数据字节数; oRdBuf%指向一个缓冲区,返回后是读入的数据

图9. AT24C256读出界面设置

MSP430F2013的I2C总线通信

当YS_USB2IIC&SPI读取MSP430F2013的ADC采集的数据的时候,不需要从地址,只要知道设备地址即可,I2C测试模块设置和读取的数据结果如下所示:

图10. MSP430F2013采样数据读出界面

如图10所示,器件地址为90,读出的数据长度为32个字节,得到的数据如列表框所示。

模块界面

图11. I2C通信界面

模块功能

I2C通信模块是基于大量数据的数据通信来设计的,其最大的读写长度为4096, 能够完成基于I2C总线的器件的读写操作。

使用说明

类似于 I2C测试模块,按照相同的格式我们进行了写入前的设置,在 AT24C256的00 08地址写入AA,BB,CC,DD,EE,FF。

图12. I2C通信模块的写入操作界面

读取的时候,我们从AT24C256的00 00位置开始,读取14个数据,得到的数据如下:

图13. I2C通信模块的读取操作界面 从读取的列表框中可以看到,读出的数据包括 I2C测试模块和 I2C通信模块 2部分写入的数据。

2 SPI 接口

按照实际使用需求 , SPI接口模块分为2部分: SPI测试模块和SPI通信模块 , 分别完成协议测试和数据通信的功能。这里采样的方式均为4线制的SPI的字节写入模式 , SPI的位读取模式请参考 ADC0831范例。

图14. SPI接口菜单选项

2.1 SPI 测试模块

图15. SPI测试模块界面

模块功能

SPI测试模块界面类似于 I2C测试模块,同样也是基于 SPI少量数据传输的需要设计的,其区别在于总线协议的不同,增加了包括片选控制,使能,以及字节的传输顺序等选项,该模块可以完成最大为 32个字节的 SPI数据读写操作,采用了4线制的SPI的字节读写模式。

使用介绍

SPI协议测试模块提供了进行SPI协议进行通信的窗口,首先连接好硬件线路:对于片选口的连接应该与软件设置的片选端口一致;对于带WP写保护的芯片器件,在写入的时候应该将其置为可写状态。

SPI通信模块的使用完全类似于SPI协议测试模块的使用,只是其可以用于更多数据的通信(<4096)。

这里我们以SPI接口的 EEPROM X5045为例来说明 , X5045和 AT25010引脚兼容且指令集基本相同 , 因此 , 这里给出了X5045的读写操作。

写数据时,按照X5045的操作,需要首先设置写入使能,指令为06, SPI测试模块设置为:

图16. X5045写入使能

单击读写按钮后,我们可以通过读取X5045的状态寄存器查看写入使能的结果,指令为 05,第2个字节设置为00是为了返回2个字节,如下所示:

图17. X5045读取状态寄存器

此时返回值为0x32(默认的状态寄存器的值为0x30),此时的写使能位WEL为1,可以开始写入数据,设置如下所示:

图18. X5045写入数据

我们从00位置开始,依次写入AA BB CC DD 11 22, 33 44 55 66,

第一个字节的02为写入指令,单击读写按钮即可完成写入操作。

通过 03指令可以读出指定地址的数据,这里我们从03读取8个数据,设置和读取后的结果如下所示:

SPI协议测试		X
放置准备从MOSI写出的数据	SPI数据流长度 10 缓冲区清空	
建値 0 1 2 3 4 5 6 7 8 9 10 11 0X 03 03 03	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	31
调用USBIO_StreamSPI4()后,显示从MISO读入的数据	12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	31
0X FF FF 00 11 22 33 44 55 66 0		
	回数使用说明 USBIO_StreamSPI4(Index,iAddr,iLen,ioBuf); iAddr%片选 位7为0则忽略片选控制,位7为1则参数有效:位1位0为00/01/10分 读/写 选择D0/D1/D2引脚作为低电平有效片选: iLen%准备传输的数据:	别
・ 高位在前 ○ 低位在前 ○ CSO ○ CS1 ○ CS2	数; ioBuf%指向同一个缓冲区,首先放置准备从MOSI管脚写出的影调用本API后,更新为从MISO管脚读入的数据	

图19. X5045读取数据

读取的结果为 DD、11、22、33、44、55、66、0,和我们写入的结果一致。

程序设置

读写的方式类似于 I2C模块的使用方式,区别是按照SPI的时序,设置好写入指令,如对SPI接口的EEPROM AT25010,片选地址为CS0,高位在前,进行数据的读取,其写入列表框依次填入0300,03H为读取指令,00H为读取的起始,写入的长度为22,注意,此时的读取长度代表读出列表框中显示的数据长度,也可以设置为22。利用器件菜单中的AT25010读写模块,在0~20字节地址中写入1~14H,可得读取的结果如图19所示。

图20. SPI测试模块的读取操作界面

在进行写入的方式时,可按照器件的SPI时序在写缓冲区依次填入需要写入的字节即可。

2.2 SPI 通信模块

模块界面

图21 SPI通信模块界面

模块功能

SPI通信模块是基于大量数据的数据通信来设计的,其最大的读写长度为4096,能够完成基于SPI协议的器件的数据传输。使用的是4线制的SPI的字节读写模式。

使用范例 SPI的器件我们选取了 AT93C46来说明,对于 AT93C46我们有必要进行说明一下,AT93C46的时序要求每一次读写时序要以CS从低到高的跳变来启动,而其CS的片选电平为高电平,同时该芯片只支持单字节写入和全局写入,不支持连续写入模式。下面我们给出了 AT93C46的单字节读写过程。

我们要向AT93C46的00地址写入CC,03地址写入BB,首先应设置写入使能,指令为02,60,注意片选端要与实际的电路连接不一样,如实际电路连接CS1为片选,则这可以选择CS0或CS2,这是由于AT93C46片选为高电平,而YS_USB2IIC&SPI在SPI操作时自动将程序选定的片选置低电平,而其他片选为高电平,设置和结果如下:

图22. AT93C46的写入使能

在00位置写入CC,写入指令为02,80H+地址,地址为00,

设置如下:

图23. AT93C46的写入数据

在03位置写入BB,则地址为80+03 = 83H,写入设置如下所示:

图24. AT93C46的写入数据 2

结果读取,读取的指令为03、地址,首先读取00地址的数据

图25. AT93C46的读取数据

读取地址 03的数据,如下所示:

图26. AT93C46的读取数据 2

向器件所有地址写入05,指令为02,20,如下所示:

图27. AT93C46的全局写入数据

在器件菜单下找到 AT93C46读写模块读取全部数据,结果如下所示:

图28. AT93C46的读取数据

3 器件模块

器件模块集成了包括 I/O口控制 , MEM并口输入输出 , 常用的 I2C器件 , 常用的SPI器件的读写操作。

图29. 器件菜单信息

3.1 GPIO 读写

模块界面

图30. GPIO操作界面

模块功能

GPIO读写模块提供了USB转通用的IO功能,利用芯片CH341A的D0-D5口(自带锁存器)可以完成IO的读写操作操作。

使用方法

GPIO的时,将各个需要使用的端口直接与硬件相连,同时设置好输入输出方向,以及端口输出的电平值(当端口为输入方式时,端口电平设置无效),然后单击运行,即可以将输出端口电平值输出,同时输入端口的电压被采样显示。下面图标所代表的意义:

图标代表:

输出

输入

高电平

低电平

注意:为了避免输入输出短路引起电路的损坏,请在设置输出电平时务必小心。如 D0口外部连接高电平时,如果 D0设置为输出,而且输出为低电平的时候就会导致 短路而损坏电路。

3.2 MEM 并口扩展

模块界面

图31. EEP并口扩展操作界面

模块功能

YS_USB2IIC&SPI提供了基于MEM协议的并口扩展,利用CH341A的D0~D7来完成并口的扩展,可以实现8位和16位的并口输入输出功能,并提供了单次输入输出和连续输入输出的读写方式。值得注意的是,由于在做并口扩展的时候,D0~D7不带锁存器,因此需要在外面扩展锁存器。

使用方法

MEM并口提供了2种并口输入输出方式,通过模式切换按钮进行方式切换,如图31所示为单次输入输出方式

(1) 可以选择输入输出方向,8位/16位。

- (2)当设置输出时,端口设置项需要设置输出的数据,其中选中代表高电平,不选代表低电平。当输入的时候,端口设置选项不可用,设置完毕单击开始按钮即可完成输出;
- (3)当设置为输入的时候,可以以并口的形式从8位或者16位端口一次读取数据,数据以 16进制形式,显示为当前值。

连续输入输出模式

图32. 连续输入输出模式下的MEM并口扩展界面

- (1)连续输入输出模式时,通过一个软件定时器来完成输入采样间隔设置,或者数据输出频率的设置,数据长度可以设置。
- (2) 当为输出方式时, 单击开始按钮的时候, 程序出现打开对话框, 需要选择输出

的数据源(txt格式数据文档)。

(3)当为输入方式时,单击开始按钮的时候,程序出现保存对话框,需要设置输出数据源的保存文件名(txt格式数据文档)。

3.3 EEPROM 模块

EEPROM模块主要包括基于SPI协议的存储器的读写模块以及基于I2C协议的读写器存储模块。由于对于具体的器件的指令输入均内部集成,因此界面十分简单,使用十分方便。

图33. EERPOM模块界面

模块功能

YS_USB2IIC&SPI集成了基于SPI协议和I2C协议的常用的EEPROM器件的读写操作,可以快捷方便地完成产品开发中数据的读写,程序的验证工作。集成的SPI

协议的器件有AT93C46、AT25010、X5045, I2C总线的EEPROM 24xxEEPROM 读写模块提供了从AT24C01到 AT24C512的全系列的 EEPROM的读写操作,读写长度从1Kbit到512Kbit,提供了包括读取,写入,保存数据,导入数据等功能,可以完成数据的写入EERPOM器件和将EEPROM器件中指定位置和指定长度的数据读出显示在模块右侧的列表中。

使用方法

由于 SPI和 I2C接口的 EEPROM器件的读写时序和指令已经完全集成在软件之中,因为这里只需要设置数据就可以了,包括读写起始地址和读写长度即可。通过单击 可以将 TXT格式的文档数据依次填入到列表框中,可以完成数据的批

量读写。通过单击 , 可以将列表框中的数据保存到指定的 TXT文档, 这样可以方便的完成器件内部数据的批量备份。

3.4 ADC 模块

ADC模块界面

图34. ADC模块界面

模块功能

ADC模块提供了基于SPI协议的ADC器件的数据读取操作,包括8位的ADC0831以及12位的ADC MAX1203,以及基于I2C总线的ADC数据读取以及基于I2C总线的温度传感器DS1621的实时温度读取。

本模块提供一种实时数据读取的方案,以SPI总线或者I2C总线从器件读取实时 采集的数据并以波形曲线的形式显示出来。提供了包括瞬时输出值显示,当前时间 显示,采样间隔设置,量程显示范围设置等功能。

使用说明

ADC模块可以完成实时温度采集,I2C接口的ADC数据采集,SPI接口的数据采集,其使用界面十分简洁。如下所示:

图35 ADC的16位ADC数据采集界面

流程: 启动软件—器件—找到相应的ADC模块—启动—结束

在设置好量程范围和采样间隔后单击开始按钮即可启动该模块功能。对于实际数据相对于硬件内部的参考电压比较小的时候,可以通过减小量程范围来使得采样的数据显示更加精确;采样间隔是指程序本身定时器的定时间隔,而不是硬件电路本身的采样速率。

注意,设置的量程范围的最大值应该为 ADC硬件的参考电压值;由于时间关系,当采样间隔小于 200ms的时候,波形数据采集会出现紊乱,所以采样间隔时间设置应该大于等于 200ms。

1-wire器件模块(略)

帮助文档提供了 I2C总线规范,总线说明, SPI协议, SPI总线原理, SMbus协议, EEP并口说明的 PDF文档链接,同时提供了软件中设计的到芯片资料。