

Autonomous detection and control of Sawtooth instability triggering ELM

Minseok Kim¹, SangKyeun Kim², Azarakhsh Jalalvand¹, Ricardo Shousha², Alvin Garcia^{1,3}, Max Curie¹, Jalal Butt¹ and Egemen Kolemen¹

> ¹Department of Mechanical & Aerospace Engineering, Princeton University ²Princeton Plasma Physics Laboratory, Princeton, NJ, US ³Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA The 5th International Conference on Data-Driven Plasma Science (ICDDPS-5)

> > E-mail: mseokim@princeton.edu

Introduction

- 1. A single burst of edge localized mode (ELM) can severely damage the plasma facing components (PFC) of ITER or any other high-performance future tokamaks.
- 2. Hence, we have developed adaptive ELM controller [1-4] using resonant magnetic perturbation (RMP) to suppress/mitigate ELMs while optimizing the performance of KSTAR and DIII-D devices.
- 3. For further optimization of performance, we need to distinguish if ELM is originated from Sawtooth or not as Sawtooth induced ELM can not be suppressed/mitigated.

Focus of the poster

- Methodology of labeling ELMs induced by Sawtooth at DIII-D tokamak
- 2. Principal component analysis (PCA) to decrease the dimensionality
- Classification of ELMs using random forest classifier

1. Labelling ELMs originated by Sawtooth

- **Core Electron Cyclotron Emission** (ECE) signals show Sawtooth oscillations and peaks in the D- α signals show ELM bursts
- If there's sudden drop of core ECE signals prior to the ELM peak within 15ms, we label the peak to be originated by Sawtooth
- Peaks in the filter scope signals are found by scipy.signal.find_peaks() [5]

time [ms]

Fig.3. Datasets

 $- @ t_0 - 15ms$

@ $t_0 - 15ms$

-dt @ t_0

< Feature vector >

Label 0 Label 1

523,012

#

2. Principal component analysis

PCA: Principal Component Analysis [6]

- Principal components explain most of the variances.
- By projecting the data on the PCs, we can reduce the dimension.

Fig.4. Example of dimensionality reduction

- Principal component analysis (PCA) is applied to decrease the dimensionality of dataset.
- 562 principal components can explain 99% of dataset's variance.
- The feature vectors are projected on the 562 -dimensional space.

Fig.5. Cumulative explained variance of the dataset

3. Random forest classifier

- Random forest classifier performs well even for the small dataset.
- The class 0 is under sampled to have same number with the class 1.
- Train and test sets are split with the ratio of 9:1.
- Cross validation with 5 folds is applied for the hyperparameter optimization.
- Weighted F1-score is set as the figure-of-merit.
- Class weights are decided by the train dataset.
- Datasets are normalized to have zero mean and unit variance.

Fig.6. Illustration of random forest classifier [7]

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Weighted F1-score	0.90	0.89	0.96	0.82	0.82

Fig.7. Weighted F1-scores of five folds

		Prediction			
		Class 0	Class 1	Class 2	
Real	Class 0	6	1	0	
	Class 1	0	7	0	
	Class 2	0	1	1	

rig.9. Confusion matrix for the test dataset

Fig.8. Best model

	Precision	Recall	F1-score
Class 0	1.00	0.86	0.92
Class 1	0.78	1.00	0.88
Class 2	1.00	0.50	0.67

Fig. 10. Figure of merits for the test dataset

4. Conclusions and Future works

Conclusions

- I could label the D-alpha peaks originated by Sawtooth using ECE30 and filterscope00.
- Classification has done using random forest classifier on the DIII-D datasets.
- We could verify possibility of real-time detection of D-alpha peaks originated by Sawtooth.

Future works

- Making larger dataset by looking into more recent shots. (Especially this year's)
- Verifying that 15ms time window is appropriate to decide if D-alpha peak is come from Sawtooth.
- Applying advanced models for the larger datasets.

Acknowledgements

- Evans, T. E., et al. (2006). "Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas." nature physics 2(6):
- Shousha, R., et al. (2022). "Design and experimental demonstration of feedback adaptive RMP ELM controller toward complete long pulse ELM suppression on KSTAR." Physics of Plasmas 29(3): 032514.

Kim, S., et al. (2022). "Nonlinear MHD modeling of n= 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR." Nuclear

- Fusion 62(10): 106021.
- Kim, S., et al. (2022). "Optimization of 3D controlled ELM-free state with recovered global confinement for KSTAR with n= 1 resonant magnetic field perturbation." Nuclear Fusion 62(2): 026043.
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
- Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems J.O'Reilly Media(2017)
 - https://medium.com/@denizgunay/random-forest-af5bde5d7e1e

Label 2