MOSTEC Machine Learning Final Project

By: AJ Arnolie and Mohammed Islam

What is Machine Learning?

- Subset of Artificial Intelligence
- Uses statistical techniques and methods to help machines "learn"
- Doesn't need to be directly programmed
- Similar to pattern recognition and computational learning theory

Project Agenda

- Four Trends Production / Analysis
- Linear Regression / Predictor
 Explanation and Discussion
- Categorical Techniques
 - Logistic Regression / Support Vector Machines / Decision Trees
- Explanation and Discussion
- Conclusion w/ Results

BREAST CANCER DATA SET

- Study from University of Wisconsin
- Over 600 entries with data based on observations of breast cancer lesions (masses of cells)
 - Variables: Area, Compactness, Diagnosis, Etc.
- Diagnosis is the feature we will be predicting

Pre-Check/Improving Data for Analysis

- Removed unnecessary columns and in the "diagnosis" column, mapped M and B to dummy values 1 and 0
- Used the correlation heat map to select some of the variables with the highest correlation values

Interesting Trends

Concave Points vs Concavity

$$R = .92$$

*Strong Correlation between Concave Points and Concavity

*Higher R-value

Compactness vs Concave Points

$$R = .83$$

*Good Correlation between Compactness and Concave Points

**Lower R-Value

Interesting Trends Cont.

 These were both useful features for our predictors

Linear Regression of Data

Mean Absolute Error: 0.21904037862501521

- Most basic regression technique in machine learning
- Tries to find a linear relationship between the dependent and independent variables
- Considering the range of our data is 1, the error is fairly low

Linear Regression Analysis

Mean Absolute Error: 0.21904037862501521

- Concave points are the most important in the regression process
- Larger the coefficient, the greater the effect on the final results
- Concave points have the largest coefficient and therefore affect the final result the most

	Coefficient
concave points_mean	2.455707
concave points_worst	3.527108
radius_mean	0.075831
radius_worst	0.110228
perimeter_mean	-0.018038
perimeter_worst	-0.007881

Logistic Regression of Data

	precision	recall	fl-score	support
0	0.91	0.98	0.94	105
1	0.97	0.85	0.90	66
avg / total	0.93	0.93	0.93	171

- One of the most effective methods for binary classification in machine learning
- Describes relationship between one dependent binary variable and independent variables but uses logistic function
- Predictor gave consistent .93-.94 F1-Score

Support Vector Machines

support	fl-score	recall	recision	р
89	0.92	0.97	0.88	Θ
54	0.85	0.78	0.93	1
143	0.89	0.90	0.90	avg / total

- Discriminative classifier used to act as a "seperation of classes" (distinguishing specific data entries)
- Uses vectors on 2-D coordinate plane to determine a hyperplane line (line of separation) between the datasets
- Predictor resulted in F1-Score between 0.89 & 0.94

Decision Trees

	precision	recall	f1-score	support
0	0.91	0.94	0.93	89
1	0.90	0.85	0.88	54
avg / total	0.91	0.91	0.91	143

- Can be used for both classification and regression
- Tree-like decision making process
- Makes sequential, hierarchical decisions about outcomes based on predictor data until a result is reached
- F1-Scores resulted between two intervals: 0.90-0.94 (mostly) and 0.96-0.97 (occasionally)

Categorical Feature Analysis

	precision	recall	fl-score	support
0	0.91	0.98	0.94	105
1	0.97	0.85	0.90	66
avg / total	0.93	0.93	0.93	171

- Logistic Regression was most effective and consistent
- Advantages
 - Output is easier to interpret
 - Can be updated easily
- Disadvantages
 - Usually requires more data to achieve stable results
 - More dependent on the chosen independent variables
 - Can be overfitted

THANK YOU!

Any questions?

