Math 415 - Lecture 9

Vector spaces and subspaces

Monday September 14th 2015

Textbook: Chapter 2.1.

Suggested practice exercises: Chapter 2.1: 1, 2, 10, 11, 17, 18.

Khan Academy video: Linear Subspaces

We know how to find the inverse of a 2×2 matrix. What about $3\times 3,....,n\times n$? We use:

Theorem 1. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1} .

Note that this tells us a lot about Ax = b if A is invertible.

- Ax = b has how many pivots in A?
- How many free variables?
- Can Ax = b be inconsistent?

Here is the algorithm to find the inverse of a matrix A, called the Gauss-Jordan Method

- Place A and I side-by-side to form an augmented matrix $[A \mid I]$. This is an $n \times 2n$ matrix (Big Augmented Matrix), instead of $n \times (n+1)$, for the usual augmented matrix.
- Then perform row operations on this matrix (which will produce identical operations on A and I).
- So by the Theorem:

[
$$A \mid I$$
] will row reduce to [$I \mid A^{-1}$]

or A is not invertible.

Example 1. Find the inverse of $A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, if it exists.

Solution:

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

So

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & 0 & 1\\ \frac{3}{2} & 1 & 0 \end{bmatrix}$$

Example 2 (Let's do the previous example step by step.).

$$[A \mid I] = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \mid \frac{1}{2} & 0 & 0 \end{bmatrix}$$

$$\rightarrow \atop R1 \to \frac{1}{2}R1
\left[
\begin{array}{ccc|cccc}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array} \right]$$

$$\underset{R2 \to R2 + 3R1}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

$$\underset{R2 \leftrightarrow R3}{\rightarrow} \left[\begin{array}{ccc|c} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{array} \right]$$

Check at home that $AA^{-1} = I_3$.

Remark. Why does this algorithm work?

• At each step, we get

$$[A \mid I] \sim [E_1A \mid E_1] \sim [E_2E_1A \mid E_2E_1] \sim \dots$$

• So each step is of the form

$$[FA \mid F], \quad F = E_r \dots E_3 E_2 E_1$$

• If we succeed in row reducing A to I, the final step is

$$[FA \mid F] = [I \mid F]$$

• So FA = I, which means that $A^{-1} = F$.

Example 3. Use the Gauss Jordan method to compute the inverse of

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Solution.

Failure: the reduced row echelon form of A will not be I, so A has no inverse!

Practice Problems. Find the inverse of A:

$$\bullet \ \ A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

•
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$
. Hint: What is $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$?

$$\bullet \ \ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

$$\bullet \ \ A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 6 & 7 & 8 & 0 \\ 9 & 0 & 1 & 0 \end{bmatrix}.$$

$$\bullet \ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

1 Vector Spaces and Subspaces

- The most important property of column vectors in \mathbb{R}^n is that you can take linear combinations of them.
- There are many mathematical objects X, Y, ... for which a linear combination cX + dY make sense, and have the usual properties of linear combination in \mathbb{R}^n

• We are going to define a *vector space* in general as a collection of objects for which linear combinations make sense. The objects of such a set are called vectors.

Definition. A **vector space** is a non-empty set V of objects, called *vectors*, for which linear combinations make sense. More precisely: on V there are defined two operations, called *addition* and *multiplication* by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all u, v, and w in V and for all scalars c and d.

- 1. $\mathbf{u} + \mathbf{v}$ is in V. (V is "closed under addition".)
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
- 4. There is a vector (called the zero vector) $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V satisfying $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

Definition Continued

- 6. $c\mathbf{u}$ is in V. (V is "closed under scalar multiplication".)
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. (cd)**u** = c(d**u**).
- 10. $1\mathbf{u} = \mathbf{u}$.

2 Vector Space Examples

Example 4. Let $M_{2x2}=\left\{\begin{bmatrix} a & b \\ c & d\end{bmatrix}: a,b,c,d\in\mathbb{R}\right\}$. This is a vector space.

We need to say what the two operations are. Addition:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}.$$

Scalar Multiplication:

$$e \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ea & eb \\ ec & ed \end{bmatrix}.$$

Next we need to say what the zero vector is. Question: What is the matrix $\mathbf{0}$ such that $\mathbf{0} + A = A$ for any (2×2) matrix A? Answer: We see that the $\mathbf{0}$ vector is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Then we need to check all the 10 axioms. They follow from the corresponding properties of ordinary numbers.

Remarks

- We can take instead of matrices of size 2×2 matrices of any shape: you can check that the set $M_{m \times n}$ of $m \times n$ matrices is also a vector space, in the same way as we indicated above.
- Confusing: in the vector space $M_{2\times 2}$ the vectors are in fact 2×2 matrices!
- In the definition of the vector space $M_{2\times 2}$ the multiplication of matrices plays no role; matrix multiplication will show up when we study the connections *between* vector spaces.
- a "vector" $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ behaves very much like a column vector $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$. A fancy

person would say that the vector spaces $M_{2\times 2}$ and \mathbb{R}^4 are isomorphic.

Example 5. Let $n \geq 0$ be an integer and let

 \mathbf{P}_n = the set of all polynomials of degree at most n.

This is a vector space.

Members of \mathbf{P}_n have the form

$$\mathbf{p}(t) = a_0 + a_1 t + \dots + a_n t^n$$

where a_0, a_1, \ldots, a_n are real numbers and t is a variable. We will just verify 3 out of the 10 axioms here.

Vector Space Examples

Let $\mathbf{p}(t) = a_0 + a_1 t + \dots + a_n t^n$ and $\mathbf{q}(t) = b_0 + b_1 t + \dots + b_n t^n$ and let c be a scalar. The polynomial $\mathbf{p} + \mathbf{q}$ is defined as follows:

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t).$$

Therefore,

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$

= $(a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$.

which is also a polynomial of degree at most n. So $\mathbf{p} + \mathbf{q}$ is in \mathbf{P}_n (i.e. \mathbf{P}_n is closed under addition). This verifies Axiom 1.

Vector Space Examples

Next we need to find a zero vector. Question: What this is the polynomial $\mathbf{0}(t)$ such that $\mathbf{0}(t) + p(t) = p(t)$? Answer: Take $\mathbf{0}(t) = 0 + 0t + \cdots + 0t^n$ (zero vector in \mathbf{P}_n) Then

$$(\mathbf{p} + \mathbf{0})(t) = (a_0 + a_1 t + \dots + a_n t^n) + (0 + 0t + \dots + 0t^n)$$

= $(a_0 + 0) + (a_1 + 0)t + \dots + (a_n + 0)t^n$
= $a_0 + a_1 t + \dots + a_n t^n$

and so $\mathbf{p} + \mathbf{0} = \mathbf{p}$. This verifies Axiom 4. Next we define scalar multiplication.

Remember $\mathbf{p}(t) = a_0 + a_1 t + \dots + a_n t^n$. We define

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = (ca_0) + (ca_1)t + \dots + (ca_n)t^n$$

which is in \mathbf{P}_n so that Axiom 6 holds. The other 7 axioms also hold, so \mathbf{P}_n is a vector space.

3 Subspaces

New vector spaces may be formed from subsets of other vector spaces. These are called **subspaces**.

Definition. A *subspace* of a vector space V is a subset H of V that satisfies 3 properties:

- The zero vector (of V) belongs to H.
- If \mathbf{u}, \mathbf{v} both belong to H also the sum $\mathbf{u} + \mathbf{v}$ belongs to H. (H is *closed* under vector addition).
- If \mathbf{u} is in H and c is any scalar also $c\mathbf{u}$ belongs to H. (H is closed under scalar multiplication.)

Note that if the subset H satisfies these three properties, then H itself is a vector space.

Example 6. $Z = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ is a subspace of \mathbb{R}^2 . Why?

Check:

- $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is in Z.
- $\begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0+0 \\ 0+0 \end{bmatrix}$ is in Z.
- $c \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} c0 \\ c0 \end{bmatrix}$ is in Z.

Z is called the zero subspace of \mathbb{R}^2 . Every vector space has a zero subspace consisting just of the zero vector.

Example 7. $H = span \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ is a subspace of \mathbb{R}^2 . Why?

Check:

•
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 is in H .

•
$$\begin{bmatrix} a \\ a \end{bmatrix} + \begin{bmatrix} b \\ b \end{bmatrix} = \begin{bmatrix} a+b \\ a+b \end{bmatrix}$$
 is in H .

•
$$c \begin{bmatrix} a \\ a \end{bmatrix} = \begin{bmatrix} ca \\ ca \end{bmatrix}$$
 is in H .

Example 8. Let $H = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a, b \in \mathbb{R} \right\}$. Show that H is a subspace of \mathbb{R}^3 .

Verify properties 1, 2, and 3 of the definition of a subspace.

• The zero vector of \mathbb{R}^3 is in H.

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in H, \quad (a = b = 0)$$

Subspaces

• Adding two vectors in H always produces another vector whose second entry is 0 and therefore the sum of two sectors in H is also in H. (H is closed under addition.)

$$\begin{bmatrix} a \\ 0 \\ b \end{bmatrix} + \begin{bmatrix} c \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ 0 \\ b+d \end{bmatrix}.$$

• Multiplying a vector in H by a scalar produces another vector in H. (H is closed under scalar multiplication.)

$$c \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} = \begin{bmatrix} ca \\ 0 \\ cb \end{bmatrix}.$$

Since those three properties hold, H is a subspace of \mathbb{R}^3 .

Remark. Vectors (a, 0, b) look and act like the points (a, b) in \mathbb{R}^2 . But they are **not** the same!

Example 9. Is $H = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? (i.e. does H satisfy the properties of a subspace?)

H does not contain the zero vector (property 1).

$$\begin{bmatrix} x \\ x+1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

cannot be true for any value of x. Therefore, H is **not** a subspace!

Example 10. Is $H = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? (i.e. does H satisfy the properties of a subspace?)

Another way to show that H is not a subspace of \mathbb{R}^2 is to check whether H is closed under addition (property 2).

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \in H$$

but

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \notin H.$$

Problem 11. Find as many subspaces in \mathbb{R}^2 as you can.

Think of this at home.

Example 12. Is one of the following a subspace of \mathbb{R}^2 ?

Example 13. Is this a subspace of \mathbb{R}^3 ?

