Fiche

Charles Vin

Date

1 Formule et définition

- Produit scalaire : $\langle x, y \rangle = x^T y = \sum x_i y_i$
- Norme: $||x|| = \sqrt{\langle x, x \rangle}$
- Identité remarquable : $||a+b|| = ||a|| + ||b|| + 2\langle a, b\rangle$
- Inégalité de Cauchy : $|\langle x, y \rangle| \le ||x|| \, ||y||$
- k-lipschitzienne : $|f(x) f(y)| \le k |x y|$ Bouger dans l'espace d'arriver fait bouger k fois plus dans l'espace de départ.
- L-Smooth : = gradient Lipschitz $\forall \theta, \theta', \|\nabla F(\theta) \nabla F(\theta')\| \le L \|\theta \theta'\|$
- Bilinéarité du produit scalaire :
 - $-k\langle x,y\rangle = \langle kx,y\rangle = \langle x,ky\rangle$
 - $\langle z, x + y \rangle = \langle z, x \rangle + \langle x, y \rangle$
- Co-coercivity: $\frac{1}{L} \|\nabla F(\theta) \nabla F(\theta')\|_2^2 \le \langle \nabla F(\theta) \nabla F(\theta'), \theta \theta' \rangle$
- Inégalité triangulaire : $||x + y|| \le ||x|| + ||y||$
- GD: $\theta_{t+1} = \theta_t \gamma \nabla F(\theta_t)$
- Polyak-Ruppert averaging : $\bar{\theta}_T = \frac{1}{T} \sum_{t=1}^{T} \theta_t$
- Sub gradient : $f(x) f(x_0) \ge \langle v, (x x_0) \rangle$
- $\begin{array}{l} \text{-- Dérivé norme : } \frac{d}{dt} \left\| f(t) \right\| = \frac{\left\langle f(t), f'(t) \right\rangle}{\left\| f(t) \right\|} \\ \text{-- Dérivé norme au carré : } \frac{d}{dt} \left\| f(t) \right\|^2 = 2 \left\langle f(t), f'(t) \right\rangle \end{array}$
- Convexity props
 - Convexity: under chords: $F(\eta\theta + (1-\eta)\theta') \le \eta F(\theta) + (1-\eta)F(\theta'), \forall \theta, \theta', \forall \eta \in [0,1]$
 - Convexity + diff (tangent lie below) $F(\theta') \geq F(\theta) + \langle \nabla F(\theta), \theta' \theta \rangle, \forall \theta, \theta'$
 - Convexity: increasing slopes $\langle \nabla F(\theta) \nabla F(\theta'), \theta \theta' \rangle \geq 0$ (∇F is said to be a monotone operator)
 - Convexity + C^2 : curves upwards $\forall \theta, Hess_F(\theta) \succeq 0$ (SDP)
- μ -strongly convex, $\mu > 0$.
 - $\mu\text{-convexity (**well** under chords): } F(\eta\theta + (1-\eta)\theta') \leq \eta F(\theta) + (1-\eta)F(\theta') \frac{\eta(1-\eta)\mu}{2} \left\|\theta \theta'\right\|_2^2, \forall \theta, \theta', \forall \eta \in \mathbb{R}^2, \forall \theta, \theta', \theta' \in \mathbb{R}^2, \forall \theta, \theta' \in \mathbb{R}^2, \forall \theta' \in \mathbb{R}^2, \forall$
 - $\mu\text{-convexity + diff (tangent lie **well** below): } F(\theta') \geq F(\theta) + <\nabla F(\theta), \theta' \theta > + \frac{\mu}{2} \left\|\theta \theta'\right\|_2^2, \forall \theta, \theta' > + \frac{\mu}{2} \left\|\theta \theta'\right\|_2^2 + \frac{\mu}{2} \left\|\theta \theta'\right\|$
 - μ -convexity: **well** increasing slopes): $\langle \nabla F(\theta) \nabla F(\theta'), \theta \theta' \rangle > 0 + \mu \|\theta \theta'\|_2^2$
 - μ -convexity + C^2 (curves upwards): $\forall \theta, Hess_F(\theta) \succ \mu Id$ (SDP)

2 Technique de preuve

- Penser au \pm pour faire apparaître un terme voulu
- $\nabla F(\theta^{\infty}) \approx \nabla F(\theta^{\star}) = 0$
- Trick de l'intégrale

$$F(x - \gamma y) - F(x) = F(x - \gamma y) - F(\theta - 0 \times y)$$
$$= [F(x - \tau y)]_0^{\gamma}$$
$$= \int_0^{\gamma} \dots$$

— Si on a des inéagalités avec du θ_1 et des sommes, potentiel somme d'inégalités

— On utilise souvent la cocoercivity du gradient avec $\nabla F(\theta^{\star}) = 0$

$$\|\nabla F(\theta_t)\| \le L \langle \nabla F(\theta_t), \theta_t - \theta^* \rangle$$
.

3 Théorèmes importants

Lemme 3.1 (Descent lemma). Assume that F is L-Smooth. Therefore $\forall \theta, \theta' \in domain of F$

$$F(\theta') \le F(\theta) + \langle \nabla F(\theta), \theta' - \theta \rangle + \frac{L}{2} \|\theta' - \theta\|.$$

HEAVYBALL [Polyak, 64]

$$\beta_k = \theta_k + (1 - \alpha_k)(\theta_k - \theta_{k-1})$$

$$\theta_{k+1} = \beta_k - \gamma \nabla F(\theta_k)$$

NESTEROV ALGO [83]

$$\beta_k = \theta_k + (1 - \alpha_k)(\theta_k - \theta_{k-1})$$

$$\theta_{k+1} = \beta_k - \gamma \nabla F(\beta_k)$$

4 Gros gros plan du cours

- Basic of deterministic optim
 - GD when L-Smooth
 - GD when not L-Smooth
- SGD
 - Tourne autour de la solution ($Var(\nabla F_i(\theta^\star))=1/3$)
 - Polyak averaging fix ça
 - Vanishing step size