Instrumentos de Medição – Laboratório 1

João Paulo Santos Sena

Engenharia de Computação – Universidade Estadual de Feira de Santana joaopaulo761@gmail.com

1- Introdução

Os instrumentos de medição estão com a humanidade já faz um bom tempo, contudo esses instrumentos não são perfeitos, eles possuem limitações. Essas limitações geralmente nos impedem de obter o valor correto dos objetos que queremos medir, gerando assim uma incerteza sobre o valor medido que também pode ser interpretado como um erro.

Durante este laboratório de física nós utilizamos alguns instrumentos de medição para verificar a diferença de precisão entre cada um deles.

2- Experimento

Os materiais escolhidos para a medição foram:

- Cubo
- Esfera
- Cilindro
- Cilindro Oco

Estes materiais foram medidos utilizando uma régua e um paquímetro e em seguida foram pesados utilizando uma balança de pratos, balança de torque e balança digital. Todos os valores medidos foram anotados e são mostrados na seção de resultados.

3- Resultados

Cada instrumento usa uma maneira diferente para efetuar a medição e isso implica em um determinado valor de incerteza associado a ele, as tabelas abaixo mostram os erros correspondentes a cada um dos objetos utilizados.

Peso		
Margem de Erro		
Balança de Dois Pratos	5g	
Balança Mecânica de		
Precisão 0,05 g		
Balança digital	0,001 g	

Tamanho		
Margem de Erro		
Régua	0,025 cm	
Paquímetro 0,005 cm		

Tanto nas medidas de tamanho como nas medidas de peso os valores obtidos eram diferentes dos objetos que eram medidos no instrumento com precisão menor. Podemos ver a comparação entre as medidas nas seções logo abaixo.

Apesar dos valores serem diferentes, a maioria dos erros são explicáveis a partir da margem de erro de cada um dos instrumentos. E para os outros elementos, nos quais a margem de erro não cobre a diferença, o erro pode ser atribuído aos erros humanos durante a medição.

3.1- Medição de Tamanho

A régua utiliza marcas feitas no material a cada 1 mm para indicar o tamanho do objeto. O paquímetro também usa marcas como a régua, só que possui uma medição mais precisa por que ele possui uma espécie de pinça onde o objeto é colocado para medir os valores, e então é utilizada uma peça menor do paquímetro para obter mais casas decimais da medida.

Cubo			
	Régua Paquímetro		
Largura	2,35 cm	2,325 cm	
Comprimento	2,35 cm 2,35 cm		
Altura	2,35 cm	2,31 cm	

Esfera		
Régua Paquímetro		Paquímetro
Medida 1	2,55 cm	2,63 cm
Medida 2	2,65 cm	2,735 cm

Cilindro		
	Régua Paquímetro	
Altura	8,3 cm	8,29 cm
Diâmetro	1,9 cm	2,0 cm

Cilindro oco			
Régua Paquímetro			
Altura	2 cm	2,01 cm	
Diâmetro Interno	o 4,45 cm 4,44 cm		
Diâmetro Externo 5 cm 5,185 cm		5,185 cm	

3.2- Medição do Peso

A balança de 2 pratos faz as medidas através da comparação entre 2 pesos, quando ocorre o equilíbrio entre os 2 pratos tem-se o peso do material. O equilíbrio é encontrado justamente quando os 2 pesos são iguais porque a força aplicada pela massa de um dos objetos é igual a massa do outro, então, como as 2 forças estão em lados opostos, elas se anulam e isso faz com que os pratos se alinhem em equilíbrio.

A balança mecânica de precisão funciona de maneira parecida que a balança de dois pratos, a medida do objeto também é obtida através de equilíbrio da haste. Como na balança de 2 pratos é necessário um peso igual para equilibrar a balança, na balança de torque a isso não é verdade. A partir da movimentação de alguns pesos ao longo de uma barra, é possível aplicar a força necessária para anular a força que a massa do objeto está aplicando na balança.

A balança digital por outro lado usa recursos computacionais para efetuar a medida. Abaixo da bandeja existe uma célula de carga que transforma a energia mecânica de compressão, que é recebida quando um objeto está na bandeja, em energia elétrica. Esse valor elétrico é enviado para o processador da balança e então o resultado é mostrado. Este processo que não depende de medição humana já deixa o resultado muito mais confiável.

	Balança de dois Pratos	Balança Mecânica de Precisão	Balança digital
Cilindro	64g	65,1g	63,871g
Cilindro oco	25g	25,1g	25,542g
Cubo	12,5g	13,5g	12,633g
Esfera	28g	28,9g	28,418g

4- Conclusão

Este experimento serviu para mostrar o quão importante é a medição correta de um determinado objeto. Mesmo a maioria dos valores medidos estando dentro da margem de erro nem sempre o pequeno erro em uma casa decimal é admissível para um material pequeno ou para medidas mais críticas.