

3. a) Vi rahnar ut eigenvardena genon att that på nobstablena till dut
$$(A - \lambda I) = 0$$
.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$.

Litter på nobstablena till dut $(A - \lambda I) = 0$

V; han valja 1/3 = [1].

(a)
$$\int_{0}^{1} A = PDP^{-1} da = PDP^{-1} d$$

Allha ar arbildningsmatrizen (b.) Detta ges av |det(A)|. $det(A) = \begin{vmatrix} 7 & 1 & 2 \\ -4 & -1 & 0 \end{vmatrix} = 2 \cdot \begin{vmatrix} -4 & -1 \\ 4 & 2 & -1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 4 & 2 \\ -1 & -1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix} = 2 \cdot \begin{vmatrix} 4 & 2 \\ -1 & -1 \end{vmatrix} =$ $= 2 \cdot (-8 + 4) - (-7 + 4) = -8 + 3 = -5$ Så parallellepipedens volyn blir 8 gyr oborne. (c) Nej. Alla lujan arbildningar arbildar D på D, vilket denna inte ger. standard è Vasen (5) Koordinatera L'W P,, P2, P3 $e_1 = 1$, $e_2 = t$, $e_3 = t^2$ ar $V_1 = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 1 \\ 2 \\ 8 \end{bmatrix}, V_3 = \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}.$ Vi testar om dessa ar ligart oberoende. $\begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & -1 \\ 8 & 5 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -9 \\ 0 & 5 & -32 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -9 \\ 0 & 0 & 13 \end{bmatrix}$ Så veldomena for linj, ob. och $\{p_1, p_2, p_3\}$ av en bas, etterson din $(P^2) = 3$. (b.) Vi måste ta fram $T(p_1)$, $T(p_2)$, $T(p_3)$. $T(p_1) = -1 + 4 - (1 - t) = t + 2$ $T(p_2) = 2 + 16t + 1 + 2(1-t) + 8(1-t)^2 = 8t^2 - 2t + 13$

T(P3)=1+10++(1-+)+5(1-+)=52-++7 Nu mørte i hitta dessa rehtorers hoordinater i basen i a), hala den B. Detta får vi genom att losa $c_1 \begin{bmatrix} 4 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 8 \end{bmatrix} + c_3 \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ Vi løser alle dersa på en gårg. Lar E ar Standardbasen $\begin{bmatrix} 4 & 1 & 0 & 1 & 2 & 13 & 7 & 9 \\ -1 & 2 & 1 & 1 & -2 & -1 & 9 \\ 0 & 8 & 5 & 0 & 8 & 5 \end{bmatrix}$ $\begin{bmatrix} 0 & 9 & 4 & 5 & 5 & 3 \\ -1 & 2 & 1 & | & 1 & -2 & -1 & | & -1 & 2 & | \\ 0 & 8 & 5 & | & 0 & 8 & 5 \end{bmatrix} \bigcirc \begin{bmatrix} 1 & -2 & -1 & | & -1 & 2 & | \\ 0 & 9 & 4 & | & 5 & 5 & 3 & | & 9 \\ 0 & 8 & 5 & | & 0 & 8 & 5 & | & 0 & 8 & 5 & | & 0 \\ 0 & 8 & 5 & | & 0 & 8 & 5 & | & 0 & 8 & 5 & | & 0 \\ \end{bmatrix} \bigcirc \sim$ $\begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 1 & -1 & 5 & -3 & -2 \\ 0 & 8 & 5 & 0 & 8 & 5 \end{bmatrix} \in \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 1 & -1 & 5 & -3 & -2 & 2 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 1 & -1 & 5 & -3 & -2 & 2 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 1 & -1 & 5 & -3 & -2 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 1 & -1 & 5 & -3 & -2 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 & 13 & | -40 & 32 & 21 \end{bmatrix} \oplus \mathbb{R} \times \begin{bmatrix} 1 & -2 & -1 & -1 & 2 & 1 \\ 0 & 0 &$ $\frac{1}{13} \begin{bmatrix} 37 & 12 & 2 \\ 25 & -7 & -5 \\ -40 & 32 & 21 \end{bmatrix}$ Allbå är arbildningsmahrzen i baren B. 6. a Nej, det är falskt. Om A = [1], B = [1] $S_{\alpha}^{\circ} = (A_{B})^{T} = ([I_{1} I_{1}])^{\prime} = [I_{1}]^{\prime} = [I_{1}]^{\prime}$, men $A^{T}B^{T} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ (b.) Sant. Vi vet att dim (NM(A)) + dim (Col (A)) = 7, och esterson de båda ar heltal han de intervara liker.

(c) Falsht. Tex A=[0] ar diagonaliserbar.

med $\lambda_1 = 0$, $\lambda_2 = 1$ och $\nu_1 = (0)$, $\nu_2 = (0)$; men

den är inde inverterbar etherson det (A) = 0.

(F)a) Se sid 148 ; bohen.

(F.)a.) Se sid 140 i bohen. (b.) Se sid 338 i bohen.

	Апопут код	MVE275 Linjär algebra AT 150824 s	L .nummer	Poang
]	(endast lösnings	le uppgifter skall korta lösningar redovisas, samt svar anges, på anvisad plats r och svar på detta blad, och på anvisad plats, beaktas).		
	(a) Är vektor	1 $(4,-1,-5)$ en linjärkombination av vektorerna $(3,1,-2)$ och $(-1,2,4)$? I så tall ar $W = aV_1 + bV_2$. V_1 ill hita	a N	(2p)
	-1:4 2:-1 4:-5]	~ [3 - 1 - 5] @ ~ [0 - 7 - 7] @ ~ [0]	2 -1 8	₹ ~.
	0 0 1 1	Sista raden säger att 0 = 1 ehrationisystemet ille torbart.	allbå	ar
	Svar: (b) Ge ett exe vara diago	mpel på en 3 × 3-matris vers kolumner bildar-en ortogonal möngd. Matrisen ska	inte	(2p)
	Lösning:	Tex [100] Kolomena. Lange 1, men mahisen ar	ar or	rgonala
	och ha	langed I, men matrisen as	WEL	
	diago	_		
	Svar: (c) Låt	······································	· · ·	(2p)
		$A=\left[egin{array}{cc} 1 & -2 \ -3 & 6 \end{array} ight]$		
	respektive	(2, a). För vilka värden på a har systemet $A\mathbf{x} = \mathbf{b}$ unik lösning, inga lösnin oändligt många lösningar? Kan alla de fallen inträffa?	gar,	
- -	$-2 \cdot 2$]] ~ [\(\frac{1}{0} - \frac{2}{0} \) \(\arphi + 6 \) \(\frac{1}{0} - \frac{2}{0} \) \(\arphi + 6 \) \(\frac{1}{0} - \frac{2}{0} - \frac{2}{0} \) \(\frac{1}{0} - \frac{2}{0} - \frac{2}{0} \) \(\frac{1}{0} - \frac{2}{0} - \frac{2}{0} - \frac{2}{0} \) \(\frac{1}{0} - \frac{2}{0} - 2		, c
)v	n atb	=0, dus $a=-6$, har systemet or 0 and $a+-6$ har systemet ing	· rough	t manga
a,	oningar.	On a + - 6 har systemet ing	en lo	Eine.
2	ysteme	- han the ha will tooning.		
	Sware			

Var god vänd!

$$A = \left[egin{array}{ccc} 0 & 1 & -4 \ 1 & -3 & 2 \end{array}
ight].$$

[0] Lösning:
$$\begin{bmatrix} 0 & 1 & -3 & 2 \end{bmatrix}$$
 $\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & -3 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -10 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -10$

(3p)

(2p)

Svar: (e) Bestäm koordinaterna för vektorn (2,-1) i basen $\mathbf{b_1}=(1,-2),\ \mathbf{b_2}=(0,-1).$

(e) Bestan Roordinaterna for Vertorin
$$(2,-1)$$
 I basen $\mathbf{B_1} = (1,-2)$, $\mathbf{B_2} = (0,-1)$.

Lösning:

$$\begin{bmatrix}
1 & 0 & 1 & 2 \\
-2 & -1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 \\
-2 & -1 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 \\
0 & -1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 \\
0 & 1 & -3
\end{bmatrix}$$

Alltra ar hoordinatera C,=2, Cz=-3.

(f) En 2×2-matris A har egenvärdena –1 och 2 med egenvektorer (1,3) respektive (–1,1). Räkna

(3p)

ut 35. A¹⁰⁸

Lösning: Vi diagonali surar A och fill

$$A = PDP$$
 $A = PDP$
 $A = PDP$

Svar: