ENGINEERING PHYSICS

Hitendra K Malik A K Singh

Copyrighted materia

Engineering Physics

HITENDRA K MALIK

Associate Professor Department of Physics Indian Institute of Technology Delhi

AJAY KUMAR SINGH

Assistant Professor
Department of Applied Sciences and Humanities
Dronacharya College of Engineering
Haryana

Tata McGraw Hill Education Private Limited

NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto

Tata McGraw Hill

Published by Tata McGraw Hill Education Private Limited, 7 West Patel Nagar, New Delhi 110 008.

Engineering Physics

Copyright © 2010 by the Tata McGraw Hill Education Private Limited

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publisher. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN (13): 978-0-07-067153-9 ISBN (10): 0-07-067153-2

Managing Director: Ajay Shukla

Head—Higher Education Publishing: Vibha Mahajan

Manager—Sponsoring: Shalini Jha Editorial Executive: Tina Jajoriya

Jr. Manager—Production: Priyanka Negl

Jr. Executive—Editorial Services: Dipika Dey

General Manager: Marketing-Higher Education: Michael J Cruz

Sr. Product Manager: SEM & Tech Ed: Biju Ganesan

Asst. Product Manager: Amit Paranjpe

General Manager—Production: Rajender P Ghansela

Asst. General Manager-Production: B.L. Dogra

Information contained in this work has been obtained by Tata McGraw Hill, from sources believed to be reliable. However, neither Tata McGraw Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither Tata McGraw Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that Tata McGraw Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Tulyasys Technologies, No. 1 Arulananthammal Nagar, Thanjavur 613 007, and printed at AVON PRINTERS, Plot No. 16, Main Loni Road, Jawahar Nagar, Industrial Area, Shahdara, Delhi - 110 094.

Cover Design: Pixel View

Cover Printer: SDR Printers

Print Code: RQXLCRQFDDRDR

CONTENTS

Foreword			xiii		2.6	Zone Plate	2.6
Preface			xv		2.7	Fresnel's Diffraction by a	
Walkthrough			xvii			Circular Aperture	2.10
Roadmap to the Model Syllabus			xxi		2.8	Fraunhofer Diffraction by a	
						Single Slit	2.14
1.	INTE	INTERFERENCE			2.9	Fraunhofer Diffraction by	
	1.1	Introduction	1.1			Double Slits	2.19
	1.2	Young's Double Slit Experiment	1.1		2.10	Fraunhofer Diffraction by N slits:	
	1.3	Concept of Waves and Huygens'				Diffraction Grating	2.22
		Principle	1.2		2.11	Application of Diffraction	
	1.4	Phase Difference and Path				Grating	2.29
		Difference	1.3		2.12	Resolving Power of an Optical	
	1.5	Coherence	1.4			Instrument	2.30
	1.6	Coherent Sources	1.6		2.13	Resolving Power of a Plane	
	1.7	Analytical Treatment of				Diffraction Grating	2.32
		Interference	1.7		2.14	Dispersive Power of a Plane	
	1.8	Conditions for Sustained				Diffraction Grating	2.33
		Interference	1.9		2.15	Resolving Power of a Telescope	2.34
	1.9	Multiple Beam Superposition	1.10		2.16	Resolving Power of a	
	1.10	Interference by Division of	*****			Microscope	2.35
	1.10	Wavefront	1.11		2.17	Summary	2.37
	1.11	Interference by Division of				Solved Examples	2.38
		Amplitude	1.17			Objective-type questions	2.55
	1.12	Applications of Interference in				Short-answer questions	2.56
		the Field of Engineering	1.34			Practice Problems	2.57
	1.13	Scientific Applications of					
		Interference	1.37	3.	3. POLARISATION		3.1
	1.14	Homodyne and Heterodyne			3.1	Introduction	3.1
		Detection	1.37		3.2	Mechanical Experiment Showing	
	1.15	Summary	1.39			Polarisation of Transverse Wave	3.2
		Solved Examples	1.40		3.3	Difference between Unpolarised	37.44
		Objective-type questions	1.59			Light and Polarised Light	3.2
		Short-answer questions	1.60		3.4	Means of Production of Plane	.,,,_
		Practice Problems	1.60		5.4	Polarised Light	3.3
					3.5	Theory of Production of Plane,	3,2
2.	DIFF	RACTION	2.1		3.0	Circularly and Elliptically	
	2.1	Introduction	2.1			Polarised Light	3.15
	2.1		2.1		3.6	Optical Activity	3.18
	2,2	Young's Double Slit Experiment: Diffraction or Interference?	2.1		3.7	Specific Rotation	3.18
	2.2		2.1		3.8	Laurents Half-shade Polarimeter	3.19
	2.3	Difference between Diffraction and Interference	2.2		3.9	Biquartz Polarimeter	3.19
	2.4		2.2		3.10	Saccharimeter	3.20
		Types of Diffraction			3.11		
	2.5	Fresnel's Half Period Zones	2.4		5.11	Photoelasticity	3.21

viii Contents

	3.12	Summary	3.22	6.	ELE	CTRON OPTICS	6.1
		Solved Examples	3.23		6.1	Introduction	6.1
		Objective-type questions	3.31		6.2	Specific Charge of an Electron	6.1
		Short-answer questions	3.32		6.3	Determination of Specific	
		Practice Problems	3.33			Charge of an Electron:	
						Thomson's Method	6.1
4.	LASI	ERS AND HOLOGRAPHY	4.1		6.4	Motion of an Electron in Uniform	
	4.1	Introduction	4.1		0. 1	Electric and Magnetic Fields	6.3
	4.2	Absorption and Emission of			6.5	Electrostatic and Magnetostatic	47127
		Radiation	4.2			Focusing	6.12
	4.3	Characteristic of Laser Light	4.5		6.6	Scanning Electron	0111
	4.4	Main Components of Laser	4.6		0.0	Microscope (SEM)	6.14
	4.5	Types of Laser	4.7		6.7	Scanning Tunneling	
	4.6	Applications of Lasers	4.13			Microscope (STM)	6.18
	4.7	Laser Cooling	4.14		6.8	Summary	6.19
	4.8	Holography	4.15		0.0	Solved Examples	6.20
	4.9	Holography Versus				Objective-type questions	6.25
		Conventional Photography	4.15			Practice Problems	6.26
	4.10	Recording and Reconstruction					
		of Image on Holograph	4.16	7.	WAV	ES AND OSCILLATIONS	7.1
	4.11	Types of Holograms	4.18		7.1	Introduction	7.1
	4.12	Applications of Holography	4.21		7.2	Translational Motion	7.1
	4.13	Summary	4.23		7.3	Vibrational or Oscillatory	
		Solved Examples	4.23			Motion	7.1
		Objective-type questions	4.28		7.4	Simple Harmonic Motion	
		Practice Problems	4.29			(S.H.M.)	7.2
					7.5	Differential Equation of	
5.	FIBRE OPTICS		5.1			S.H.M. and its Solution	7.3
	5.1	Introduction	5.1		7.6	Simple Pendulum	7.8
	5.2	Fundamental Ideas about	5.1		7.7	Mass-String System	7.9
	5.2	Optical Fibre	5.2		7.8	Damped Harmonic Oscillator	7.11
	5.3	Types of Optical Fibres	5.3		7.9	Attenuation Coefficients of a	
	5.4	Acceptance Angle and	610			Vibrating System	7.14
	0.4	Numerical Aperture	5.5		7.10	Forced Vibrations	7.16
	5.5	Fibre Optics Communication	5.8		7.11	Resonance	7.19
	5.6	Optical Fibre Sensors	5.11		7.12	Summary	7.20
	5.7	Optical Fibre Connector	5.12			Solved Examples	7.22
	5.8	Optical Fibre Couplers	5.13			Objective-type questions	7.27
	5.9	Applications of Optical	0110			Short-answer questions	7.28
	5.5	Fibre Couplers	5.13			Practice Problems	7.29
	5.10	Summary	5.14				
	0.10	Solved Examples	5.15	8.	SOU	ND WAVES AND ACOUSTICS	OF
		Objective-type questions	5.21		BUII	DINGS	8.1
		Short-answer questions	5.22		8.1	Introduction	8.1
		Practice Problems	5.22		8.2	Types of Acoustics	8.2
					0.0	- / Pen or recommen	47.46

					Contents	ix
	8.3	Audible, Ultrasonic and		10.9	Gauss's or Green's Theorem	10.6
		Infrasonic waves	8.3	10.10	Stokes' Theorem	10.7
	8.4	Piezoelectric Effect	8.5	10.11	Electric Field and Electric	2011
	8.5	Principle of Ultrasonic			Potential	10.7
		Transducers	8.5	10.12	Poisson's and Laplace's	
	8.6	Production and Applications			Equations	10.8
		of Ultrasonic Waves	8.6	10.13	Capacitor	10.9
	8.7	Recording and Reproduction		10.14	Gauss's Theorem	10.10
		of Sound	8.7	10.15	Magnetic Flux Density (B)	10.11
	8.8	Acoustics of Buildings	8.10	10.16	Magnetic Field Strength (H)	10.11
	8.9	Factors Affecting the		10.17	Ampere's Circuital Law	10.11
		Architectural Acoustics	8.14	10.18	Electrostatic Boundary	
	8.10	Summary	8.16		Conditions	10.12
		Solved Examples	8.17	10.19	Scalar and Vector Potentials	10.14
		Objective-type questions	8.22	10.20	Continuity Equation	10.14
		True or False	8.26	10.21	Maxwell's Equations:	
		Practice Problems	8.27		Differential Form	10.15
9.	DIEL	ECTRICS	9.1	10.22	Maxwell's Equations:	
					Integral Form	10.18
	9.1	Introduction	9.1	10.23	Significance of Maxwell's	
	9.2	Dielectric Constant	9.1		Equations	10.20
	9.3	Types of Dielectrics	9.2	10.24	Maxwell's Displacement Current	
	9.4	Polarisation of Dielectrics	9.2		and Correction in Ampere's Law	10.21
	9.5	Types of Polarisation	9.4	10.25	Eletromagnetic Wave	
	9.6	Gauss's Law in Dielectrics	9.5		Propagation	10.22
	9.7	Energy Stored in an	0.6	10.26	Transverse Nature of	
	0.0	Electrostatic Field	9.6		Electromegnetic Waves	10.25
	9.8	Dielectric Loss	9.8	10.27	Maxwell's Equations in	
	9.9	Clausius-Mosotti Equation	9.9		Isotropic Dielectric Medium	10.25
	9.10	Summary Solved Exercises	9.10	10.28	Maxwell's Equations in	
		Solved Examples	9.11		Conducting Medium	10.27
		Objective-type questions	9.13 9.14	10.29	Electromagnetic Energy Density	10.29
		Short-answer questions Practice Problems	9.14	10.30	Poynting Vector and Poynting	
					Theorem	10.29
10.	ELEC	CTROMAGNETISM	10.1	10.31	Wave Propagation in Bounded	
	10.1	Introduction	10.1	10.22	System: Waveguide	10.31
	10.2	Charge Density	10.1	10.32	Coaxial Cable	10.33
	10.3	Del Operator	10.2	10.33	Summary	10.34
	10.4	Gradient	10.3		Solved Examples	10.37
	10.5	Divergence	10.4		Objective-type questions	10.49
	10.6	Curl	10.5		Short-answer questions	10.51
	10.7	Fundamental Theorem of			Practice Problems	10.51
		Calculus	10.6			
	10.8	Fundamental Theorem for		11. THE	ORY OF RELATIVITY	11.1
		Gradient	10.6	11.1	Introduction	11.1

x Contents

	11.2	Frame of Reference	11.1	13.10	Interplanar Spacing	13.8
	11.3	Galilean Transformation	11.2	13.11	Nearest Neighbour Distance	
	11.4	Michelson-Morley Experiment	11.3		and Atomic Radius	13.9
	11.5	Postulates of Special		13.12	Packing Fraction	13.10
		Theory of Relativity	11.7	13.13	Potential Energy Curve and	
	11.6	Lorentz Transformation	11.7		Nature of Interatomic Forces	13.12
	11.7	Length Contraction	11.9	13.14	Different Types of Bonding	
	11.8	Time Dilation	11.10		Forces	13.13
	11.9	Addition of Velocities	11.10	13.15	Crystal Structure Analysis	13.16
1	11.10	Variation of Mass with		13.16	Point Defects in Solids	13.18
		Velocity	11.12	13.17	Summary	13.22
1	11.11	Einstein's Mass Energy			Solved Examples	13.24
		Relation	11.14		Objective-type questions	13.33
1	11.12	Summary	11.15		Short-answer questions	13.35
		Solved Examples	11.17		Practice Problems	13.35
		Objective-type questions	11.33	14 DEV	ELOBMENT OF OUTDING	
		Short-answer questions	11.35		ELOPMENT OF QUANTUM	141
		Practice Problems	11.35		HANICS	14.1
				14.1	Introduction	14.1
12.	APPI	LIED NUCLEAR PHYSICS	12.1	14.2	Blackbody Radiation:	
	12.1	Introduction	12.1		Spectral Distribution	14.2
	12.2	Radioactivity	12.1	14.3	Planck's Quantum Hypothesis	14.3
	12.3	Discovery of Neutron	12.11	14.4	Simple Concept of	
	12.4	Nuclear Reactions:			Quantum Theory	14.5
		Conservation Laws	12.12	14.5	Wave Particle Duality	14.6
	12.5	Nuclear Fission	12.14	14.6	Photoelectric Effect	14.7
	12.6	Nuclear Fusion	12.18	14.7	deBroglie Waves:	
	12.7	Controlled Fusion	12.18		Matter Waves	14.9
	12.8	Particle Accelerators	12.22	14.8	Compton Effect:	
	12.9	Summary	12.28		Compton Scattering	14.11
		Solved Examples	12.31	14.9	Phase and Group Velocities:	
		Objective-type questions	12.48		deBroglie Waves	14.14
		Short-answer questions	12.51	14.10	Summary	14.18
		Practice Problems	12.52		Solved Examples	14.20
		1 1401100 1 100101110	10.00		Objective-type questions	14.41
13.	CRYS	STAL STRUCTURE	13.1		Short-answer questions	14.42
	13.1	Introduction	13.1		Practice Problems	14,42
	13.2	Types of Solids	13.1	15. QUAI	NTUM MECHANICS	15.1
	13.3	Unit Cell	13.2			
	13.4	Types of Crystals	13.2	15.1 15.2	Introduction	15.1
	13.5	Translation Vectors	13.4	15.2	Heisenberg Uncertainty	16 1
	13.6	Lattice Planes	13.4	16.2	Principle	15.1
	13.7	Miller Indices	13.4	15.3	Wave Function and its Physical	15.7
	13.8	Simple Crystal Structures	13.4	15.4	Significance Time Independent	15.
				15.4	Time Independent	15 9
	13.9	Coordination Number	13.7		Schroedinger Equation	15.8

Contents	xi
----------	----

	15.5	Time-dependent		18. MAG	NETIC PROPERTIES OF	
		Schroedinger Equation	15.9	SOLI	DS	18.
	15.6	Operators	15.10	18.1	Introduction	18.
	15.7	Applications of		18.2	Magnetic Moment of an	
		Schroedinger Equation	15.11		Electron	18.3
	15.8	Quantum Statistics	15.21	18.3	Classification of Magnetic	
	15.9	Summary	15.23		Materials	18.3
		Solved Examples	15.24	18.4	Comparison of Properties of	
		Objective-type questions	15.34		Paramagnetic, Diamagnetic and	
		Short-answer questions	15.35		Ferromagnetic Materials	18.4
		Practice Problems	15.36	18.5	Classical Theory of	
16.	FREE	ELECTRON THEORY	16.1		Diamagnetism	
	16.1	Introduction	16.1		(Langevin's Theory)	18.5
	16.2	Lorentz – Drude Theory:	10.1	18.6	Classical Theory of	
	10.2	Classical Free Electron			Paramagnetism	
		Theory of Metals	16.2		(Langevin's Theory)	18.8
	16.3	Applications of	10.2	18.7	Classical Theory of	
	10.5	Lorentz – Drude Theory	16.2		Ferromagnetism	18.12
	16.4	Limitations of Lorentz – Drude	10.2	18.8	Hysteresis: Nonlinear	
	10.4	or Free Electron Theory	16.5		Relationship between B and H	18.13
	16.5	Quantum Theory of	10.5	18.9	Energy Loss Due to	
	10.5	Free Electrons	16.5		Hysteresis	18.14
	16.6	Thermionic Emission	16.10	18.10	Importance of Hysteresis	
	16.7	Summary	16.13		Curve	18.13
	10.7	Solved Examples	16.14	18.11	Magnetic Circuits	18.13
		Objective-type questions	16.19	18.12	Forces on Magnetic Materials	18.16
		Short-answer questions	16.20	18.13	Magnetic Materials and their	
		Practice Problems	16.20		Applications	18.10
		Practice Problems	10.20	18.14	Summary	18.18
17.	BANI	THEORY OF SOLIDS	17.1		Solved Examples	18.2
	17.1	Introduction	17.1		Objective-type questions	18.29
			17.1		Short-answer questions	18.30
	17.2 17.3	Kronig – Penney Model One- and Two-Dimensional	17.2		Practice Problems	18.30
	17.3	Brillouin Zones	17.5	19. SUPE	CRCONDUCTIVITY	19.
	17.4	Effective Mass of an Electron	17.6	19.1	Introduction	19.1
	17.5	Distinction between Insulators,	17.0	19.2	Electrical Resistivity of	12.
		Semi conductors and		15.2	Solids and Phonons	19.1
		Conductors (Metals)	17.8	19.3	Properties of Superconductors	19.2
	17.6	Intrinsic Semiconductor	17.10	19.4	Classification of	.,,,
	17.7	Extrinsic Semiconductor	17.13	15.4	Superconductors	19.3
	17.8	Half Effect	17.15	19.5	London Equation	19.4
	17.9	Summary	17.17	19.6	Isotope Effect	19.5
	17.5	Solved Examples	17.18	19.7	Effect of Magnetic Field	19.0
		Objective-type questions	17.21	19.7	Penetration Depth	19.6
		Practice Problems	17.22	19.9	Cooper Pairs	19.8
		I ractice I rootems	17.66	19.9	Cooper rans	13.0

xii Contents

	19.10	Bose Einstein Condensation	19.8			Short-answer questions	20.14
	19.11	BCS Theory: Qualitative				Practice Problems	20.15
		Explanation	19.8			OCONDUCTORES AND	
	19.12	Coherence Length	19.9			TOCONDUCTIVITY AND	
	19.13	High Temperature (H1-Tc)		1	HOI	TOVOLTAICS	21.1
		Superconductivity	19.10	2	1.1	Introduction	21,1
	19.14	Application of		2	1.2	Simple Model of Photoconductor	21.1
		Superconductivity	19.10	2	1.3	Effect of Traps	21.3
	19.15	Summary	19.11	2	1.4	Applications of Photoconductivity	21.4
		Solved Examples	19.13	2	1.5	Photoelectric Cell	21.5
		Objective-type questions	19.17	2	1.6	Summary	21.6
		Short-answer questions	19.18			Objective-type questions	21.7
		Practice Problems	19.18			Practice Problems	21.8
20.	X-RA	YS	20.1	22. N	IAN	OPHYSICS	22.1
	20.1	Introduction	20.1	2	2.1	Introduction	22.1
	20.1	Origin of X-rays	20.1	2	2.2	Properties of Nanoparticles	22.2
	20.3	Properties of X-rays	20.2	2	2.3	Carbon Nanotubes	22.6
	20.4	X-ray Spectra	20.2	2	2.4	Synthesis of Nanoparticles	22.7
	20.5	Moseley's Law	20.4	2	2.5	Applications of Nanotechnology	22.11
	20.6	Practical Applications of	20.4	2	2.6	Summary	22.13
	20.0	X-rays	20.6			Solved Examples	22.13
	20.7	Summary	20.6			Objective-type questions	22.14
	20.7	Solved Examples	20.7			Practice Problems	22.15
		Objective-type questions	20.13	INDE	·v		1
		Cojecuve-type questions	20.13	114101	44.0		

FOREWORD

It gives me immense pleasure to see the present textbook on "Engineering Physics" which covers almost the entire syllabus taught at undergraduate level at different engineering colleges and institutions throughout India. I complement the authors and appreciate their efforts in bringing out this book written in a very simple language. The text is comprehensive and the explanation of topics is commendable. I understand that this book carries all the elements required for a good presentation.

I have been a student of IIT Kharagpur and later on taught at IIT Delhi. Being a part of the IIT system, I recognise that the rigorous and enriching teaching experience at

IITs originating from the interaction with the best engineering students and their strong feedback results in continuous evolution and refinement of the teachers. This spirit is reflected in the comprehensive and in-depth handling of important topics in a very simple manner in this book. I am happy to note that this textbook has been penned down by IITian and hope that it would serve to be a good textbook on the subject. Since this book also covers advanced topics, it will be an important learning resource for the teachers, and those students who wish to develop research skills and pursue higher studies. I hope that the book is well received in the academic world.

Vice-Chancellor, U.P. Technical University, Lucknow Founder Director, IIT Roorkee

PREFACE

Physics is a mandatory subject for all engineering students, where almost all the important elements of the subject are covered. Finally, these evolve as different branches of the engineering course. The book entitled Engineering Physics has been written keeping in mind the need of undergraduate students from various engineering and science colleges of all Indian universities. It caters to the complete syllabus for both—Physics-I and Physics-II papers in the first year Engineering Physics course.

The aim of writing this book has been to present the material in a concise and very simple way so that even weak students can grasp the fundamentals. In view of this, every chapter starts with a simple introduction and then related topics are covered with a detailed description along with the help of figures. Particularly the solved problems (compiled from University Question Papers) are at the end of each chapter. These problems are not merely numerical; many of them focus on reasoning and require thoughtful analysis. Finally, the chapters carry unsolved questions based on which the students would be able to test their knowledge as to what they have acquired after going through various chapters. A chapter-end summary and list of important formulae will be helpful to students for a quick review during examinations. The rich pedagogy consists of solved examples (450), objective-type questions (230), short-answer questions (224) and practice problems (617). The manuscript has been formulated in such a way that students shall grasp the subject easily and save their time as well. Since the complete syllabus is covered in a single book, it would be highly convenient to both.

The manuscript contains 22 chapters which have been prepared as per the syllabus taught in various colleges and institutions. In particular, the manuscript discusses optics, lasers, holography, fibre optics, waves, acoustics of buildings, electromagnetism, theory of relativity, nuclear physics, solid state physics, quantum physics, magnetic properties of solids, superconductivity, photoconductivity and photovoltaic, X-rays and nanophysics in a systematic manner. We have discussed advanced topics such as laser cooling, Bose-Einstein condensation, scanning electron microscope (SEM), scanning tunnelling microscope (STM), controlled fusion including plasma, Lawson criterion, inertial confinement fusion (ICF), plasma based accelerators, namely, plasma wake field accelerator, plasma beat wave accelerator, laser wake field accelerator and self-modulated laser wake field accelerator, and nanophysics with special emphasis on properties of nanoparticles, carbon nanotubes, synthesis of nanoparticles and applications of nanotechnology. These will be of interest to the teachers who are involved in teaching postgraduate courses at the universities and the students who opt for higher studies and research as their career. Moreover, a series of review questions and problems at the end of each chapter together with the solved questions would serve as a question bank for the students preparing for various competitive examinations. They will get an opportunity to learn the subject and test their knowledge on the same platform.

The structuring of the book provides in-depth coverage of all topics. Chapter 1 discusses Interference. Chapter 2 is on Diffraction. Chapter 3 is devoted to Polarization. Coherence and Lasers are described in Chapter 4. Chapter 5 discusses Fibre Optics and its Applications, while Electron Optics is dealt with in Chapter 6. Chapter 7 describes Waves and Oscillations. Chapter 8 is on Sound Waves and Acoustics. Chapter 9 is on Dielectrics. Electromagnetic Wave Propagation is described in Chapter 10. Chapter 11 discusses the Theory of Relativity.

Chapter 12 is devoted to Nuclear Physics. Crystal Structure is described in Chapter 13. Chapter 14 deals with the Development of Quantum Physics, while Chapter 15 is on Quantum Mechanics. Chapter 16 discusses Free Electron Theory. Band Theory of Solids is explained in Chapter 17. Chapter 18 describes

the Magnetic Properties of Solids. Chapter 19 is on Superconductivity. Chapter 20 explains X-rays in detail while Chapter 21 is on Photoconductivity and Photovoltaics. Finally, Chapter 22 discusses Nanophysics in great detail. The manuscript has been organised such that it provides a link between different topics of a chapter. In order to make it simpler, all the necessary mathematical steps have been given and the physical feature of the mathematical expressions is discussed as and when required.

The exhaustive OLC supplements of the book can be accessed at http://www.mhhe.com/malik/ep and contain the following:

For Instructors

- Solution Manual
- Chapter-wise PowerPoint slides with diagrams and notes for effective lecture presentations

For Students

- A sample chapter
- Link to reference material
- Solved Model Question Paper
- Answers to objective type questions given in the book.

We would like to thank the entire team of Tata McGrawHill Education specifically Vibha Mahajan, Shalini Jha, Tina Jajoriya, Dipika Dey, Sohini Mukherji, Priyanka Negi and Baldev Raj for bringing out this book in a very short time span. The reviewers of the book also deserve a special mention for taking out time to review the book. Their names are given below.

A K Jain IIT Roorkee

Dhirendra Kumar Meerut Institute of Engineering and Technology, Uttar Pradesh

Vinay Kumar SRMS CET, Bareilly

Prerna Garg Meerut Institute of Technology, Uttar Pradesh

Amit Kumar Srivastava Aryavrat Institute of Technology and Management, Lucknow
Shyam Singh Aryavart Institute of Technology and Management, Lucknow

R S Tiwari Apollo Institute of Engineering, Kanpur

Kamlesh Pathak SVNIT, Surat, Gujarat

Kanti Jotania M S University, Baroda, Gujarat

Vijayalakshmi Sanyal Bharathiyar College of Engineering and Technology, Karaikal, Tamil Nadu

A K Meikap NIT, Durgapur, West Bengal K Sivakumar Anna University, Chennai

> H K Malik Ajay K Singh

Publisher's Note:

Tata McGraw Hill Education looks forward to receiving from teachers and students their valuable views, comments and suggestions for improvement, all of which may be sent to tmh.corefeedback@gmail.com, mentioning the title and author's name in the subject line. Any piracy related issues can also be reported to this email.

WALKTHROUGH

Interference

F 11 INTRODUCTION

The states there are breather orders to sout these or people of all human, at its confere of every black orders, the states are obtained with a state of the stat

F 12 YOUNG'S DOUBLE SLIT EXPERIMENT

The elementation of attribution data in Neutral indicates the taking two quantity and come [1], and 5, which produce attribute even (Fig. 4.1). Let the natures 6, and 5, and copial distances beam for more and with the produce attribute. When there is the nature is not very a similar threatment is the first threatment and the nature of the describes, the copial streams the product of the sign for the 5, and 5, plantly three was a regard less the species. The consistent even that pain through 6 are that 5, and 5, plantly three was as regard less the species. The consistent even the consistent even the sign of the copies of the consistent even of the copies of the consistent even of the copies of

Introduction

Each chapter begins with an Introduction that gives a brief summary of the background and contents of the chapter.

Sections and Sub-sections

Each chapter has been neatly divided into relevant sections and sub-sections so that the text material is presented in a logical progression of concepts and ideas.

Engineering Physics

int and plant within on the committed in point Figure of the state of the committed terms (or of the committed complete template templates to the property of the committed committed of the committed committ

₹ 2.3 DIFFERENCE BETWEEN DIFFRACTION AND INTERFERENCE

In simple which, the office that is a first of the simple of pipe contents in manufactures that the other pipe of the cut was a first place according to the cut was a first place according to the cut was a content of the pipe of the cut was a content of the cut was a con

24 TYPES OF DIFFRACTION

Its pales in others the difficulties gamma on a cover, a proof a sum of Fight, inhappines, agents, and the determination (from the pales). Description and the district of the innear and the sixter from the agents, which districts the districts of pales in the districts of the indirect of the section from the injection, the agents are districted and the section from the injection, the section and the injection of the injection o

2.4.1 Enumbofor Diffraction

2.4.1 Emission's Distriction:

This operation is not under a risk of principle growth of the post of the principle of the second control of the principle growth of the grow

Illustrations

Illustrations are an important tool in the presentation of text material. The reader of the text would come across ample number of diagrams/illustrations provided in each chapter to effectively discuss the concepts of engineering physics.

Solved Examples

Solved Examples (450) are provided in sufficient number in each chapter and at appropriate locations, to aid in understanding of the text material.

Nanophysics

22,1 INTHODUCTION

Hammelandage or Namesterne i has been intermited per one of the exact virtual technologies that would shape the determ of the houses must in the 24° censory. Both the correct applications of determite even it below protections are determined to the contract of the contract contract of the contract c

Applications

Applications like Controlled Fusion Reaction, Particle Accelerators (Basics of Plasma) are explained in detail with relevant topics.

Advanced Topics

Advanced Topics like Nanophysics, an essential part of the syllabus, are covered extensively.

Applied Nuclear Physics

F 12.1 INTRODUCTION

For many absention, the assessment makes in mobiling lead is good of any of the content of the mean of the annual property of processory of projection—in different text if it has been the field of content by these to intendigate from the process and patterns of the market byte opportunit texts in the following of the content of the market process and the content of the market process and the following of the content of the market process of the content of the content of the market process and the following of the content of the market process and the content of the cont

23.8.4. Planes Assed Fartide Academius

DAA Flaters haved Fartisfe Acceleration.

Rapins problems is a statistical for evolution through judgited bits that there are problems, most judgites problems in a statistical for a statistic problem. The problems is a statistic problem of the statistic problems are problems, most judgites to problems of the problems

Common Chargospha

F SUMMARY

The same report discussed on this chapter and incrementant below.

(1) Law was remaintain in a spain bit year of device day respillar lapst, and presiden is hapful insense and lattice devices the passion of hapful insense and lattice devices the passion bits and the law passion between the passion of the law (1) for a definer passion of the passion of the law (1) for a definer passion of the passion of the law (1) for a definer passion of the law (1) for a definition of the law (1) for the passion of the lattice (1) for the passion of the lattice (1) for the lattice

(7) Kaly Jose, NAYNG Law, Etc. In Law, 20, Law yell introducts have you through to deal

one of course program per over. (OH) in an amount that the hours have device approximate an officers that of process and supposing. These approximation and reflectables in the P. (T) A Code posings of four-suring and advanted in density in was almost from a lightly feature and collected from off these are less that include process in 1/2 F.

Summary

A bulleted summary gives the essence of each important topic discussed in the chapter for a quick recap.

Objective-type questions

Objective-type questions enable the user to have a clear comprehension of the subject matter. Answers to all the objective questions are provided in the online learning centre of the book.

18.4 Acres States made (Schools Survivered pare) \$15.5 161.76

F ORECTIVE TYPE QUESTIONS

- 0.5
- The photon of challes of discharge behavior the energy range E and E + 4C is proportional to let E^+ . If E^- is E^- in E^- in E^-
- (8.4 The plane species) to the elementarial species to the elementary species (C) on determined ways
- 64 Allen reservoire, for exercise of an
- mather improvement 80 10 mg MY MA
- (8) White in other between values a complete conductor of made.
- 加一等 $\max_{j=1}^{J_{i}}$ MARKET
- salting productions tree (Torotta in Torota I makes the The polar of Perts discharge to

Ouestions

A set of (850) questions are given as exercise to the students. Further divided into Short-answer Questions and Long-Answer Questions and are very helpful to teachers in setting class work, assignments, quizzes and examinations. In some chapters, numerical problems with answers, under the heading 'Unsolved Questions', are also given. Readers can assess their knowledge by answering the objective-type questions and short-answer questions given at the end of the book.

Practice Problems

Practice problems, in the category of general and unsolved questions provide an opportunity to students to reinforce his or her learning and gain confidence.

F PRACTICE PROBLEMS Cannal Chambers

- (C.) District Street in these of their product
- Denote Trans to two of two periodics and property.

 Decrete the contribution and recting of a Constignt tole. Now the pay intensity if the intensity of a Constignt tole. The contribution of Constignt and Constignt tolerands which have high most quarter and high recting point.
- Q.4. What are continuous and Planufations X-raw and how are the produced. What is the nominous associated from and both it in closed with the voltage agelf-of arrow the X-ray rate.
- Giff yas District the copy of techniques of production of the replacement. Step opening. When is the more of copying of physics of consistent. Versal Chart flat the local verificipits find of consistent Versal Chart flat the local verificipits find of consistent Versal Chart flat the local verificipits for the physical properties in accordingly produced of the settlem.

 But there for graph of finding a secretary of pronocours grown course provinging it if the expenditure.
- The process of the second Q3 his Discont Mode's well in Costs that and replace the day have then a purhash.
- (9) Chaire Montal a law on Europe of Mell's Base).

 (a) Decrea for importance of Decelor's inhumination of Brick species of different element, When continuous area define by load.

Designed Durelland

- QX Wise to the absence exceeding that X-day produced to a below when the applical trade

Roadmap to the Model Syllabus

Interference, Diffraction, Polarisation

Chapter 1: Interference Chapter 2: Diffraction Chapter 3: Polarisation Chapter 20: X-Rays

Superconductivity

Chapter 19: Superconductivity

Super Conducting Materials

Chapter 21: Photoconductivity and Photovoltaics

Relativistic Mechanics

Chapter 11: Theory of Relativity

Solid State Physics

Chapter 17: Band theory of Solids

Chapter 18: Magnetic Properties of Solids

Sound Waves

Chapter 7: Waves and Oscillations

Electricity and Magnetism

Chapter 10: Electromagnetic Wave Propagation

Dielectric and Magnetic Properties of Materials

Chapter 9: Dielectrics

xxii Roadmap to the Model Syllabus

Electromagnetics, Electrostatics & Electrodynamics

Chapter 10: Electromagnetic Wave Propagation

Quantum Physics

Chapter 14: Development of Quantum Mechanics

Chapter 15: Quantum Mechanics

Chapter 16: Free Electron Theory

Acoustics

Chapter 8: Sound Waves and Acoustics

Oscillations

Chapter 7: Waves and Oscillations

Ultrasonic

Chapter 8: Sound Waves and Acoustics

Crystal Physics

Chapter 13: Crystal Structure

Lasers

Chapter 4: Coherence and Lasers

Optical, Wave Optics, Geometrical Optics, Electron Optics, Fibre Optics

Chapter 5: Fibre Optics and its Applications

Chapter 6: Electron Optics

Nuclear Physics

Chapter 12: Nuclear Physics

Nano Physics

Chapter 22: Nano Physics