Chemistry Basic Formulas

Normality

Formula

Molarity

Formula

Molality

Enthalpy

Formula

Enthalpy = Energy + (Pressure \times Volume)

Entropy

Entropy =
$$-\sum_{i=1}^{n} p_i (log_2p_i)$$

= $-p_1(log_2p_1) - p_2(log_2p_2) - \dots - p_n(log_2p_n)$

Entropy
$$(\Delta S_{reaction}) = \sum \Delta S_{products} - \sum \Delta S_{reactants}$$

Ionic Strength

$$I = \frac{1}{2} \sum_{i=1}^{n} c_i z_i^2$$

l → Ionic Strength

 $c_i \longrightarrow ion concentration$

 $z_i \longrightarrow ion charges$

Boyle's Law

Boyle's Law:

$$V_i \times P_i = V_f \times P_f$$

V_i → initial volume

 $V_f \longrightarrow final volume$

 $P_i \longrightarrow initial pressure$

 $P_f \longrightarrow final pressure$

Charle's (Gas) Law

Charles Law:

$$V_i \times T_i = V_f \times T_f$$

V_i → initial volume

 $V_f \longrightarrow final volume$

 $T_i \longrightarrow$ initial Kelvin temperature

 $T_f \longrightarrow final Kelvin temperature$

Ideal Gas Law

Ideal Gas Law:

PV = nRT

P ---- Pressure

V → Volume

n → number of moles

R \longrightarrow gas constant (8.314 J mol⁻¹ k⁻¹)

T ---- temperature

Nernst Equation

Nernst Equation:

$$E = \frac{RT}{zF} \ln \left(\frac{X_{out}}{X_{in}} \right)$$

E → Membrane Potential (voltage)

R → gas constant (8.314 J mol⁻¹ k⁻¹)

F \longrightarrow Faraday's constant (9.649 \times 10⁴ C. mol⁻¹)

 $X_{out} \longrightarrow$ concentration of ion outside the cell

 $X_{in} \longrightarrow$ concentration of ion inside the cell

z --- number of electrons

T → temperature in Kelvin

Gibb's Free Energy

Gibbs Free Energy:

$$\Delta G = \Delta H - (T \times \Delta S)$$

 $\Delta G \longrightarrow Gibbs$ Free Energy

 $\Delta H \longrightarrow$ change in enthalpy

 $\Delta S \longrightarrow \text{change in entropy}$

T → temperature

Equilibrium Constant

$$aA + bB \iff cC + dD$$

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

K_C → Equilibrium Constants

[A] ---- concentration of molars A

[B] → concentration of molars B

[C] → concentration of molars C

 $[D] \longrightarrow concentration of molars D$

a,b,c,d → number of moles of A,B,C,D respectively

<u>pH - pOH</u>

$$pOH = 14 - pH$$

$$pH \longrightarrow -log_{10}(H^+)$$

$$pOH \longrightarrow -log_{10}(OH^{-})$$

