A Streaming Algorithm for the Convex Hull

Raimi Rufai*

Dana Richards[†]

Abstract

Given a continous stream of data points S and a memory budget for O(k) points. We present an algorithm that maintains an approximate convex hull at a cost of $O(\log k)$ time per input point. We discuss changes to the algorithm to support the sliding window model.

1 Introduction

Figure 1: Convex Hull

A streaming algorithm essentially has three parts: an initialization part, a processing part and a query answering part.

Initilization In this part, counters and data structures are initialized.

Process This part computes an intermediate structure that can be easily updated with a new input as well as easily queried to obtain an answer based on the inputs seen so far.

Query This part responds to queries using the latest state of the intermediate structure built in the process step above.

A streaming algorithm is typically limited in the amount of resources it is allowed.

In this paper, we present a simple streaming algorithm for the convex hull problem. Section 2 relates relevant

literature. Section 3.1.1 presents our proposed algorithm. Section 4 concludes the paper and speculates on future work.

2 Related Work

We review the the priority search trees of McCreight [1].

describe priority search trees – may not be needed anymore with the idea of using parallel structures with pointers back and forth

3 Contributions

3.1 Streaming Algorithm

3.1.1 Description of Algorithm

L = {heap, rbt, centroid}. heap uses the dogears as its key. rbt uses the polar angle as its key.

Given an input stream of points and a memory limit of O(k)

Input: The first k input points S_k and parameter k **Output:** The sequence of points L forming the convex hull of S_k and their centroid c

```
INITIALIZE(S_k, k)
1 L \leftarrow \operatorname{conv}(S_k)
2
    L.c \leftarrow \text{CENTROID}(L)
3
     for each p in L
4
     do
 5
          p.\Theta \leftarrow POLAR(p, L.c)
 6
          p.dogear \leftarrow AREA(L.pred(p), p, L.succ(p))
 7
          L.rbt.insert(p)
 8
          L.heap.insert(p)
 9
     return L
```

Figure 2: Algorithm Initialize

The call UPDATEHULL(L, p) in line 3.1.1 takes an existing approximate hull, with no more than k vertices and updates it with a new point p. If p falls within the interior of conv(L) or on its boundary, it is discarded.

^{*}Department of Computer Science, George Mason University, rrufai@gmu.edu

 $^{^\}dagger Department$ of Computer Science, George Mason University, <code>richards@gmu.edu</code>

```
Input: Current set of hull vertices L, the next streaming input point p and a parameter k
Output: A subset of S
PROCESS(L, p, k)
1 p.\Theta \leftarrow \text{POLAR}(L.c, p)
2 L = \text{UPDATEHULL}(L, p)
3 if |L| > k
4 then L \leftarrow \text{SHRINKHULL}(L)
5 return L
```

Figure 3: Algorithm Process

```
Input: The hull structure L, the new point q.
Output: The hull structure L updated with point q.
UPDATEHULL(L,q)
1
    (p,r) \leftarrow L.rbt.FIND(q)
2
    if q \notin \Delta(p,q,r)
3
       then (p', r') \leftarrow \text{FINDTANGENTIALNEIGHBORS}(L, q)
4
             L.rbt.delete(q)
5
             L.heap.delete(q)
6
             L.heap.refresh(p')
7
             L.heap.refresh(r')
8
9
   return L
```

Figure 4: Algorithm UPDATEHULL

Input: The hull structure L, the hull size limit k. **Output:** The hull structure L that respects the k limit. ShrinkHull(L, k)1 $a \leftarrow L.heap.findMax()$

```
\begin{array}{ll} 1 & q \leftarrow L.heap.findMax() \\ 2 & (p,r) \leftarrow (L.rbt.pred(q), L.rbt.succ(q)) \\ 3 & L.rbt.discardChain(p',r') \\ 4 & L.heap.discarChain(p',r') \\ 5 & L.heap.refresh(p) \\ 6 & L.heap.refresh(r) \\ 7 & \mathbf{return} \ L \end{array}
```

Figure 5: Algorithm UPDATEHULL

This test can be done in O(k) time using one of these simple algorithms:

The procedure REFRESH does three things: recomputes the dogear of its argument, removes it from and inserts it back into the heap.

the procedure DISCARDCHAIN removes a whole chain of contiguous points between (but not including) its arguments from the RBT or the Heap.

Edge Intersection Tests Let c be an interior point of conv(L). Let e be the segment connecting the

points c and p. Test for intersection of e with each each edge of $\operatorname{conv}(L)$. If it intersects none of them, then it is an interior point. If the intersection point is the point p itself, then p lies on the boundary of $\operatorname{conv}(L)$. Otherwise, p is an exterior point.

Triangle Inclusion Tests Let c be defined as above. Test for p's inclusion in each triangle formed by c and an edge of conv(L). If p lies within one of them then it is an interior point. Otherwise, it is an exterior point.

Binary search

incorporate ideas from [?]

```
Input:
Output: A subset of S
QUERY()
1 return L.rbt
```

Figure 6: Algorithm QUERY

- 3.1.2 Complexity Analysis
- 3.1.3 Error Analysis
- 3.1.4 Emplirical Results
- 3.1.5 Open Issues
- 3.2 Sliding Window Algorithm
- 3.2.1 Description of Algorithm
- 3.2.2 Complexity Analysis
- 3.2.3 Error Analysis
- 3.2.4 Emplirical Results

3.2.5 Open Issues

Underlying Convex Hull Definition.

Hull Approximation Type.

Analogous Sorting Algorithm.

Generalization to d-space.

Complexity.

Accuracy Measures.

Input Space.

Parallelizability.

Streaming model.

Miscellaneous Issues.

4 Conclusion

[1] E. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276, 1985.