

Undergraduate Studies

Numerical Analysis

Homework #1

Preliminaries

DATE: 26th May 2020 DUE: **31th May 2020**

1 INDICATIONS

- 1. You **must** fill this sheet with just the answer for each problem and return it to the professor. However, you have to present the process on a separate exam sheet.
- 2. Answers with no process are not valid.
- 3. Make all calculations with 5 decimal places of precision.

2 PRELIMINARIES

1. Let \hat{p} be an approximation of p, which is given by the sum of the first four terms in the series $p = \sum_{i=0}^{\infty} cr^i$.

$$\hat{p} = 2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} \tag{2.1}$$

a) Calculate the absolute and relative error between p and \hat{p} .

 $E = 2.96296296 \times 10^{-6}$ $R = 9.99999999 \times 10^{-7}$

b) Determine the number of significant digits \boldsymbol{d} in the approximation.

$$d = 6$$

c) Suppose that \hat{p} is stored in a computer of 8 bits of precision: 1 bit for sign, 3 bits for the exponent, and 4 bits for the mantissa. Determine the point float number stored.

$bias = 2^{(3-1)} - 1=3$												
Sign		Exponent			Man	tissa						
0	1	0	0	0	1	1	1					

2. Given the Taylor polynomial expansions

$$e^{h} = 1 + h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + \frac{h^{4}}{4!} + O(h^{5})$$
 (2.2)

and

$$\sin h = h - \frac{h^3}{3!} + \frac{h^5}{5!} + O(h^7)$$
 (2.3)

Determine the order of approximation of

a) $e^h + \sin h$

Order: O(h^5)

b) $e^h \times \sin h$

Order: O(h^5)

- 3. Convert the following binary numbers to decimal form
 - a) 10011001110₂

Decimal form: 1230

b) 100110101.110101101_2

Decimal form: 309.587890625

- 4. Convert the following base $10\ \mathrm{numbers}\ \mathrm{to}\ \mathrm{binary}\ \mathrm{form}$
 - a) 14573₁₀

Binary form: 11100011101101

b) 2135.7314453125₁₀

Binary form: 100001010111.1011101101

5. Suppose that a computer has 32 bits of precision: 1 bit for sign, 8 bits for the exponent, and 23 bits for the mantissa.

Determine the number \hat{p} that will be stored for the operation $p=\left(\frac{9}{5}+\frac{9}{10}\right)+\frac{1}{6}$. Take into account

the propagation of the error.

Sign	n Exponent						Mantissa																							

- 6. Convert the following decimal numbers to point float of 32 bits:
 - a) 1612.078125₁₀
 - b) -981878.78_{10}
 - c) 0.897424_{10}