$! g down " \verb|https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv?1639992749" - 0 aer.csv?1639992749 - 0 aer.csv?163992749 - 0 aer.csv?1639992749 - 0 aer.csv?163992749 - 0$

From: https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv?1639992749

To: /content/aer.csv

100% 7.28k/7.28k [00:00<00:00, 24.5MB/s]

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd
import seaborn as sns

df=pd.read_csv('aer.csv')

df.head()

		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47

df.describe()

_		Age	Education	Usage	Fitness	Income	Miles
	count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
	mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
	std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
	min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
	50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000

7.000000

From the above description, it can be inferred that the variables Income and Miles might have outliers.

5.000000 104581.000000 360.000000

color=['#00688B','#48D1CC','#AFEEEE']

50.000000 21.000000

Null Value Detection

max

df.isnull().values.any()

→ False

There's no null value in the dataset.

```
plt.figure(figsize=(7,2))
sns.set_style("white")
plt.xticks(np.arange(0,110,step=10))
sns.countplot(data=df, y='Gender',hue='Gender',palette=color[0:3:2], width=0.4)
plt.show()
```


Contigency Tables and Probability of buying a product given Marital Status and Gender

```
cont_gen=pd.crosstab(index=df['Gender'],columns=df['Product'],margins=True)
cont_gen
₹
     Product KP281 KP481 KP781 All
      Gender
      Female
                 40
                        29
                                7
                                    76
       Male
                 40
                        31
                               33 104
        AII
                 80
                        60
                               40 180
cont_mar=pd.crosstab(index=df['MaritalStatus'],columns=df['Product'],margins=True)
cont_mar
<del>_</del>
            Product KP281 KP481 KP781 All
      MaritalStatus
        Partnered
                        48
                              36
                                     23 107
         Single
                        32
                              24
                                     17
                                          73
           AII
                        80
                              60
                                      40 180
cont_mar=pd.crosstab(index=df['MaritalStatus'],columns=df['Product'],margins=True,normalize=True)
cont_mar*100
<del>-</del>-
            Product
                        KP281
                                   KP481
                                              KP781
                                                           A11
      MaritalStatus
                    26.666667 20.000000 12.777778 59.444444
        Partnered
         Single
                     17.777778 13.333333 9.444444
                                                     40.555556
           ΑII
                     44.44444 33.33333 22.22222 100.000000
```

Purchase Distribution of Products

```
df_new=cont_mar.drop('All',axis=1)
plt.figure(figsize=(4,4))
plt.pie(
    df_new.iloc[len(cont_mar.index)-1],
    labels=df_new.columns,
    autopct='%1.1f%%',
    startangle=140,
    explode=(0.05, 0.05, 0.05),
    shadow=True
)

plt.title('Purchase Percentage of Aerofit Treadmill Products')
plt.axis('equal')
plt.show()
```

Purchase Percentage of Aerofit Treadmill Products KP781

Probabilty of one being Partenered or Single given their preference of Product

```
#P(Product|MaritalStat)
cont_mar*100
<del>_</del>
           Product KP281 KP481 KP781
                                             Δ11
     MaritalStatus
       Partnered
                     60.0
                            60.0
                                  57.5 59.444444
         Single
                     40.0
                            40.0
                                  42.5 40.555556
# CONDITIONAL PROBABILTY(P(Product|Gender))
def calculate_conditional_probability(variable_a, variable_b):
   contingency_table_ab = pd.crosstab(index=df[variable_b], columns=df[variable_a], margins=True)
   \verb|p_a_b| = \texttt|d.crosstab(index=df[variable_b], columns=df[variable_a], margins=True, normalize='index')|
   p_b_a=pd.crosstab(index=df[variable_b],columns=df[variable_a],margins=True,normalize='columns')
   return contingency_table_ab, p_a_b*100, p_b_a*100
variable_pairs = [
   ('Product', 'Gender'),
('Product', 'MaritalStatus'),
for variable_a, variable_b in variable_pairs:
   contingency\_tab, p\_a\_b, p\_b\_a = calculate\_conditional\_probability(variable\_a, variable\_b)
   fig,ax=plt.subplots(figsize=(4,2))
   sns.heatmap(p_a_b, annot=True, cmap="YlGnBu", fmt=".1f")
   plt.title(f"\nProbability of buying a {variable_a} given {variable_b}")
   plt.xlabel(variable a)
   plt.ylabel(variable_b)
plt.show()
```


Probability of buying a Product given Gender

import warnings warnings.filterwarnings('ignore')

plt.figure(figsize=(10,6)) sns.pairplot(df, palette=color) plt.show()

₹ <Figure size 1000x600 with 0 Axes>

From the above plots, we can infer that,

- There might me direct correlation between Age and Income, and Age and Miles.
- The distribution of Income, Age and Miles are right skewed.
- There are several datapoints which lie significantly away from the main cluster in the scatterplots of Miles vs Income, Age vs Income, and Miles vs Age. Those distant points might be potential outliers.

Age Education Usage Fitness Income Miles

Box Plot for Outlier Detection

```
plt.figure(figsize=(8,5))
sns.set_palette(color)
sns.boxplot(x=df['Gender'], y=df['Income'], hue=df['Product'])
plt.legend(loc=(-0.5,0.5), ncol=1)
plt.show()
100000
                                       90000
                                       80000
            KP281
            KP481
           KP781
                                       70000
                                       60000
                                       50000
                                       40000
                                                                                                        0
```

→ Displaying The Outlier Rows

OUTLIERS DETECTION

```
for (gender, product), group in df.groupby(['Gender', 'Product']):
    Q1 = df['Income'].quantile(0.25)
    Q3 = df['Income'].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    outliers = df[(df['Income'] < lower_bound) | (df['Income'] > upper_bound)]
outliers
```

30000

→

,		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	159	KP781	27	Male	16	Partnered	4	5	83416	160
	160	KP781	27	Male	18	Single	4	3	88396	100
	161	KP781	27	Male	21	Partnered	4	4	90886	100
	162	KP781	28	Female	18	Partnered	6	5	92131	180
	164	KP781	28	Male	18	Single	6	5	88396	150
	166	KP781	29	Male	14	Partnered	7	5	85906	300
	167	KP781	30	Female	16	Partnered	6	5	90886	280
	168	KP781	30	Male	18	Partnered	5	4	103336	160
	169	KP781	30	Male	18	Partnered	5	5	99601	150
	170	KP781	31	Male	16	Partnered	6	5	89641	260
	171	KP781	33	Female	18	Partnered	4	5	95866	200
	172	KP781	34	Male	16	Single	5	5	92131	150
	173	KP781	35	Male	16	Partnered	4	5	92131	360
	174	KP781	38	Male	18	Partnered	5	5	104581	150
	175	KP781	40	Male	21	Single	6	5	83416	200
	176	KP781	42	Male	18	Single	5	4	89641	200
	177	KP781	45	Male	16	Single	5	5	90886	160
	178	KP781	47	Male	18	Partnered	4	5	104581	120
	179	KP781	48	Male	18	Partnered	4	5	95508	180

from scipy.stats import spearmanr

Correlation Heatmap among Different Variables

df_new=df.drop(['Gender','MaritalStatus','Product'],axis=1)

sns.heatmap(df_new.corr(method='spearman'), annot=True, cmap='Y1GnBu')
plt.show()

• The heatmap indicates strong positive correlation among the following pairs suggesting that as one variable increases, other tends to increase as well:

Education and Income, Usage and Fitness, Usage and Miles, and Fitness and Miles.

• The correlation coefficient for the following pairs indicate moderate positive correlations:

Age and Income, Education and Fitness, Usage and Income, Fitness and Income, Miles and Income.

These relationships suggest that while there is some association among these variables, further analysis is needed to explore their implications.

10

5

0

50

100

150

Variation of Miles Run per Week Across Different Age Groups

```
bins = [18, 26, 34, 42, 50]
labels = ['18-26', '27-34', '35-42', '43-50']
age_groups = pd.cut(df['Age'], bins=bins, labels=labels, right=True)
<ipython-input-89-3c7c8acd4fd1>:4: FutureWarning: The default of observed=False is deprecated and will be changed to True in a futur
      miles_by_age_group=df.groupby([age_groups, 'Gender'])['Miles'].mean().unstack(fill_value=0)
plt.figure(figsize=(10,5))
sns.set_palette(color)
sns.histplot(data=df, x='Miles',hue='Product',kde=True)
plt.show()
→
                                                                                            Product
        25
                                                                                           KP281
                                                                                               KP481
                                                                                               KP781
        20
        15
      Count
```

Although sale of KP281 is more than KP781 but most of KP781 users are logging more miles. This could indicate that KP781 is preferred by more serious runners.

Miles

200

250

300

350

```
# Question: How do average miles walked or run per week vary across different age groups?
bins = [18, 26, 34, 42, 50]
labels = ['18-26', '27-34', '35-42', '43-50']
age_groups = pd.cut(df['Age'], bins=bins, labels=labels, right=True)
miles_by_age_group=df.groupby([age_groups, 'Gender'])['Miles'].mean().unstack(fill_value=0)
plt.figure(figsize=(8, 5))
sns.set_palette(color[-1:-4:-2])
miles_by_age_group.plot(kind= 'bar', stacked=True, width=0.3, edgecolor='Black')
plt.title('Average Miles vs Age Bins')
plt.xlabel('Age Bins')
plt.ylabel('Average Miles')
plt.xticks(rotation=45)
plt.show()
```

→ <Figure size 800x500 with 0 Axes>

Men of the age group 27-34 run the more miles than the other age groups.

```
plt.figure(figsize=(10,6))
sns.set_palette(color)
sns.jointplot(x='Education', y='Income', hue='Product', data=df,space=0)
plt.grid(True)
plt.show()
```


From the above plot we can infer that :

Consumers who are highly educated and have better income are more likely to buy KP781.

Consumers with 18 years of education are the most potential customers of KP781. Futher investigation is needed to understand the trend of purchasing KP281 and KP481.

```
plt.figure(figsize=(7,3))
sns.set_palette(color)
sns.histplot(x='Age',data=df,kde=True, bins=15)
plt.xticks(np.arange(18,52,2))
plt.show()
```



```
plt.figure(figsize=(7,3))
sns.set_palette(color)
sns.histplot(x='Income',data=df,kde=True)
plt.show()
```


Since the bar graphs indicate a higher frequency of customers in the age group of 20 to 30 and an income range of \$40,000 to \$60,000, we will conduct a further analysis of this demographic segment before exploring additional consumer groups.

bracket=df.loc[(df['Income']>40000)&(df['Income']<60000)&(df['Age']>20)&(df['Age']<30)]
bracket.head()</pre>

_										
		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	15	KP281	23	Male	16	Partnered	3	3	40932	75
	21	KP281	23	Male	16	Single	4	3	40932	94
	22	KP281	24	Female	16	Single	4	3	42069	94
	23	KP281	24	Female	16	Partnered	5	5	44343	188
	24	KP281	24	Male	14	Single	2	3	45480	113

```
arr=[len(bracket),(len(df)-len(bracket))] print(f"There are {arr[0]} consumers who lie within the age group 20 to 30 and income group $40,000 to $60,000 out of 180 consumers.")
```

There are 65 consumers who lie within the age group 20 to 30 and income group \$40,000 to \$60,000 out of 180 consumers.

```
plt.figure(figsize=(4,2))
sns.set_palette(color)
sns.displot(data=bracket, x='Miles',hue='Gender', kde=True)
plt.show()
```


Most of the men in this group run approximately 100 to 120 miles, while most of the women run around 80 miles.

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(11,3.5))
sns.set_palette(color)
ax1.pie(
   bracket['MaritalStatus'].value_counts(),
   labels=bracket['MaritalStatus'].value_counts().index,
    autopct='%1.1f%%',
   startangle=140,
    wedgeprops={'edgecolor':'black','linewidth':1}
ax1.axis('equal')
ax2.pie(
   bracket['Gender'].value_counts(),
   labels=bracket['Gender'].value_counts().index,
    autopct='%1.1f%%',
   startangle=140,
    wedgeprops={'edgecolor':'black','linewidth':1}
ax2.axis('equal')
fig.suptitle('Marital Status and Gender Distribution acorss The Specific Demographic Segment',color=color[0])
plt.tight_layout()
plt.show()
```

→*

Marital Status and Gender Distribution acorss The Specific Demographic Segment


```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,5))
sns.set_palette('YlGnBu')
ax1.pie(
    bracket.groupby('MaritalStatus')['Product'].value_counts(),
    labels=bracket.groupby('MaritalStatus')['Product'].value_counts().index,
    autopct='%1.1f%%',
    startangle=140,
    explode=(0.05, 0.05, 0.05, 0.05, 0.05),
    shadow=True
)
ax1.axis('equal')
ax2.pie(
    bracket.groupby('Gender')['Product'].value_counts(),
    labels=bracket.groupby('Gender')['Product'].value_counts().index,
```

```
autopct='%1.1f%%',
    startangle=140,
    explode=(0.05, 0.05, 0.05, 0.05, 0.05),
    shadow=True
)
ax2.axis('equal')
fig.suptitle('Product Preference of most consumers by Marital Status and Gender across The Demographic Segment',color=color[0])
plt.tight_layout()
plt.show()
```

→

Product Preference of most consumers by Marital Status and Gender across The Demographic Segment

These charts show that majority of married consumer and women within the particular demographic segment prefer the treadmill model 'KP281', and they are less likely to buy 'KP781'. On the contrary, single men buy the most of 'KP781'.

Usage distribution of different products among women and men in this demographic segment

```
b female=bracket.loc[(bracket['Gender']=='Female')]
plt.figure(figsize=(8,5))
sns.set_palette(color)
sns.boxplot(x=b_female['MaritalStatus'], y=df['Usage'], hue=df['Product'])
plt.legend(loc=(-0.5,0.5), ncol=1)
plt.show()
∓
                                            5.0
                                                                                                   0
                                            4.5
            KP281
                                            4.0
            KP481
          ■ KP781
                                         Jsage
c.v
                                            3.0
                                            2.5
                                            2.0 -
```

- KP481 is primarily preferred by single women of this particular bracket with a consistent usage pattern.
- KP281 seems to be a popular choice for both the married and single women. But single women exhibits higher usage index on average even though, there their subset is very small.
- KP781 is purchased by very few single women only with higher usage habits.

```
for (marital, product), group in b_female.groupby(['MaritalStatus', 'Product']):
    b=b_female.loc[(b_female['MaritalStatus']==marital)&(b_female['Product']==product)
    Q1 = b['Usage'].quantile(0.25)
    Q2 = b['Usage'].quantile(0.5)
    Q3 = b['Usage'].quantile(0.75)
    IQR = Q3 - Q1
```

```
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
print(f"Marital Status: {marital}, Product: {product}")
print(f"Lower Bound: {lower_bound}, Median: {Q2}, Upper Bound: {upper_bound}")
print("\n")

→ Marital Status: Partnered, Product: KP281
   Lower Bound: 0.5, Median: 3.0, Upper Bound: 4.5

Marital Status: Partnered, Product: KP481
   Lower Bound: 1.5, Median: 3.0, Upper Bound: 5.5

Marital Status: Single, Product: KP281
   Lower Bound: 4.0, Median: 4.0, Upper Bound: 4.0

Marital Status: Single, Product: KP281
   Lower Bound: 2.375, Median: 3.0, Upper Bound: 3.375

Marital Status: Single, Product: KP481
   Lower Bound: 5.0, Median: 5.0, Upper Bound: 3.375
```

b_female.loc[((b_female['Product']=='KP781')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['MaritalStatus']=='Single'))|((b_female['Product']=='KP281')& (b_female['Product']=='KP281')& (b_femal

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	22	KP281	24	Female	16	Single	4	3	42069	94
	26	KP281	24	Female	16	Single	4	3	46617	75
	144	KP781	23	Female	18	Single	5	4	53536	100
	148	KP781	24	Female	16	Single	5	5	52291	200

b_male=bracket.loc[(bracket['Gender']=='Male')]

```
plt.figure(figsize=(8,5))
sns.set_palette(color)
sns.boxplot(x=b_male['MaritalStatus'], y=df['Usage'], hue=df['Product'])
plt.legend(loc=(-0.5,0.5), ncol=1)
plt.show()
```


₹

