

Naive Search Methods and Less Naive Methods

October 21st, 2014

1,125,899,907,000,000

Compare CV across all subsets

Could we have found the best model quicker?

Derivative models that start with good features do well

Pseudo Code: Naive Model Search Algorithm

- 1. Start with a list of features
- 2. Use itertools to find all combinations (2ⁿ!)
- 3. For each subset fit a linear regression model
- 4. Calculate cross-validated MSE with a test set
- 5. Choose the model with the lowest mean squared error

Pseudo Code: Iterative Search Algorithm

- 1. Start with a list of features (n)
- 2. Run n simple linear regression models
- 3. Calculate cross-validated MSE for each model
- 4. Save the best feature

It will be in every subsequent model!

- 5. Consider only two feature models that contain the first (n-1)
- 6. For each new model fit a linear regression model
- 7. Calculate cross-validated MSE
- 8. Save the best features
- 9. Consider only three feature models that contain the best two!

Repeat!

Stop when the MSE gets worse with any added feature

Performs almost as well as naive method!

Appendix

Example Data Slide

Revenue

Description of data description of data description of data description of data description of data
description of data description of data

Example Standard Slide

- "Abstraction: the process of determining the important characteristics and ignoring other details"
- "Plan to throw away the first version"
- "There is surely nothing quite so useless as doing with great efficiency what should not be done at all"

