Рынок заведений общественного питания Москвы

Описание проекта

Мы решили открыть небольшое кафе в Москве. Оно оригинальное — гостей должны обслуживать роботы. Проект многообещающий, но дорогой. Вместе с партнёрами мы решились обратиться к инвесторам. Их интересует текущее положение дел на рынке — сможем ли мы снискать популярность на долгое время, когда все зеваки насмотрятся на роботов-официантов?

Мы — гуру аналитики, и партнёры просят нас подготовить исследование рынка. У нас есть открытые данные о заведениях общественного питания в Москве.

Оглавление

- 0. Описание данных и задачи
- 1. Загрузка данных и подготовка их к анализу
- 2. Анализ данных
 - 2.1. Соотношение видов объектов общественного питания по количеству
 - 2.2. Соотношение сетевых и несетевых заведений по количеству.
 - <u>2.3. Для какого вида объекта общественного питания характерно сетевое</u> распространение?
 - <u>2.4. Что характерно для сетевых заведений: много заведений с небольшим числом посадочных мест в каждом или мало заведений с большим количеством посадочных мест?</u>
 - <u>2.5. Среднее количество посадочных мест. Какой вид предоставляет в среднем самое</u> большое количество посадочных мест?
 - 2.6. Выделим в отдельный столбец информацию об улице из столбца address
 - <u>2.7. Топ-10 улиц по количеству объектов общественного питания. В каких районах Москвы находятся эти улицы?</u>
 - <u>2.8. Количество улиц с одним объектом общественного питания.В каких районах Москвы находятся эти улицы?</u>
 - <u>2.9. Распределение количества посадочных мест для улиц с большим количеством объектов общественного питания.</u>
- 3. Общий вывод
- 4. Презентация

Описание данных и задачи

Таблица rest_data:

- id идентификатор объекта
- object_name название объекта общественного питания
- chain сетевой ресторан
- object_type тип объекта общественного питания
- address адрес
- number количество посадочных мест

Задачи

Шаг 1. Загрузить данные и подготовить их к анализу

• Убедиться, что тип данных в каждой колонке — правильный, а также отсутствуют пропущенные значения и дубликаты. При необходимости обработать их.

Шаг 2. Анализ данных

- Исследуем соотношение видов объектов общественного питания по количеству. Построим график.
- Исследуем соотношение сетевых и несетевых заведений по количеству. Построим график.
- Для какого вида объекта общественного питания характерно сетевое распространение?
- Что характерно для сетевых заведений: много заведений с небольшим числом посадочных мест в каждом или мало заведений с большим количеством посадочных мест?
- Для каждого вида объекта общественного питания опишем среднее количество посадочных мест. Какой вид предоставляет в среднем самое большое количество посадочных мест? Построим графики.
- Выделим в отдельный столбец информацию об улице из столбца address.
- Построим график топ-10 улиц по количеству объектов общественного питания. Воспользуемся внешней информацией и ответьтим на вопрос в каких районах Москвы находятся эти улицы?
- Найдем число улиц с одним объектом общественного питания. Воспользуемся внешней информацией и ответим на вопрос в каких районах Москвы находятся эти улицы?
- Посмотрим на распределение количества посадочных мест для улиц с большим количеством объектов общественного питания. Узнаем какие закономерности можно выявить?

Шаг 3. Общий вывод

• Сделаем общий вывод и дадим рекомендации о виде заведения, количестве посадочных мест, а также районе расположения. Прокомментируем возможность развития сети.

Шаг 4. Подготовка презентации

• Подготовим презентацию исследования для инвесторов. Для создания презентации используем любой удобный инструмент и отправим презентацию обязательно в формате pdf.

• Приложим ссылку на презентацию в markdown-ячейке в формате: Презентация: <ссылка на облачное хранилище с презентацией>

1. Загрузка данных и подготовка их к анализу

[к Оглавлению](#0.0)

import pandas as pd

import matplotlib.pyplot as plt

```
In [1]:
```

```
import seaborn as sns
from IPython.display import display
import numpy as np
import plotly.express as px
from plotly import graph_objects as go
from plotly.offline import plot, iplot
#!pip install psutil
#!conda install -c plotly plotly-orca
import plotly.graph objects as go
from io import BytesIO
import requests
from bs4 import BeautifulSoup
import re
In [2]:
!pip install plotly==4.10.0
Requirement already satisfied: plotly==4.10.0 in c:\users\use
r\appdata\local\programs\python\python38\lib\site-packages
(4.10.0)
Requirement already satisfied: six in c:\users\user\appdata\l
ocal\programs\python\python38\lib\site-packages (from plotly=
=4.10.0) (1.15.0)
Requirement already satisfied: retrying>=1.3.3 in c:\users\us
er\appdata\local\programs\python\python38\lib\site-packages
(from plotly==4.10.0) (1.3.3)
In [3]:
API key = 'c5320408-6d41-4fbe-a245-9edd413765b8'
In [4]:
df = pd.read csv('rest data.csv')
In [5]:
#df = pd.read csv('/datasets/rest data.csv')
```

Изучим общую информацию о данных. Посмотрим таблицу. Изучим описание данных для

числовых колонок.

Убедимся, что тип данных в каждой колонке — правильный, а также отсутствуют пропущенные значения и дубликаты. При необходимости обработем их.

In [6]:

```
display(df.head(), df.info(), df.describe())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15366 entries, 0 to 15365
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	id	15366 non-null	int64
1	object_name	15366 non-null	object
2	chain	15366 non-null	object
3	object_type	15366 non-null	object
4	address	15366 non-null	object
5	number	15366 non-null	int64
_			

dtypes: int64(2), object(4)
memory usage: 720.4+ KB

	id	object_name	chain	object_type	address	number
0	151635	СМЕТАНА	нет	кафе	город Москва, улица Егора Абакумова, дом 9	48
1	77874	Родник	нет	кафе	город Москва, улица Талалихина, дом 2/1, корпус 1	35
2	24309	Кафе «Академия»	нет	кафе	город Москва, Абельмановская улица, дом 6	95
3	21894	ПИЦЦЕТОРИЯ	да	кафе	город Москва, Абрамцевская улица, дом 1	40
4	119365	Кафе «Вишневая метель»	нет	кафе	город Москва, Абрамцевская улица, дом 9, корпус 1	50

None

	id	number
count	15366.000000	15366.000000
mean	119720.066901	59.547182
std	73036.130732	74.736833
min	838.000000	0.000000
25%	28524.000000	12.000000
50%	144974.500000	40.000000
75%	184262.250000	80.000000
max	223439.000000	1700.000000

```
In [7]:
df.isnull().sum()
Out[7]:
               0
id
object_name
               0
               0
chain
object type 0
address
               0
               0
number
dtype: int64
Посмотри наличие дубликатов
In [8]:
df['object name'].duplicated().sum()
Out[8]:
4973
Изучим названия заведений общественного питания и посчитаем количество
названий
In [9]:
df['object_name'].value_counts()
Out[9]:
Столовая
                                       267
                                       236
Кафе
Шаурма
                                       234
KFC
                                       155
Шоколадница
                                       142
Консерватория им. П.И. Чайковского
                                         1
ФИЛИАЛ ШБС ЛЮБЛИНО ШК. 1146
                                         1
ЗАКРЫТЫЙ КЛУБ «ГАРАЖ»
                                         1
СТОЛОВАЯ ПРИ ГОУ ЭШВСМ «СЕВЕРНЫЙ»
                                         1
Буфет при ГОУ СОШ №1114
Name: object_name, Length: 10393, dtype: int64
Изучим тип заведений общественного питания и посчитаем количество названий
In [10]:
df['object type'].value counts()
Out[10]:
                                      6099
кафе
                                      2587
столовая
                                      2285
ресторан
```

1923

предприятие быстрого обслуживания

```
бар856буфет585кафетерий398закусочная360магазин (отдел кулинарии)273Name: object_type, dtype: int64
```

Посчитаем количество сетевых заведений общественного питания

```
In [11]:

df['chain'].value_counts()

Out[11]:

нет 12398
да 2968
Name: chain, dtype: int64
```

Посчитаем количество посадочных мест в заведениях общественного питания

In [12]:

```
df['number'].value counts()
Out[12]:
0
      1621
40
       835
20
       727
30
      685
10
      644
      . . .
491
         1
         1
675
455
         1
167
         1
495
Name: number, Length: 315, dtype: int64
```

Очень много заведений, в которых не указано количество мест, надо узнать, что это за заведения и где находятся.

```
In [13]:
```

```
df['address'].value_counts()Out[13]:город Москва, Ходынский бульвар, дом 495город Москва, Пресненская набережная, дом 263город Москва, проспект Мира, дом 211, корпус 260город Москва, Кировоградская улица, дом 13A53город Москва, площадь Киевского Вокзала, дом 248город Москва, улица Гарибальди, дом 27, корпус 41город Москва, Клинская улица, дом 201
```

```
город Москва, улица Солянка, дом 11/6, строение 1 1 город Москва, улица Островитянова, дом 16, корпус 5 1 город Москва, улица Дмитриевского, дом 23 1
```

Интересно, почему аж 95 заведений расположены по одному адресу. Разберемся.

2. Анализ данных

2.1. Соотношение видов объектов общественного питания по количеству

[к Оглавлению](#0.0)

Сгруппируем данные о видах обектов общественного питания и посчитаем их количество. Построим график.

In [14]:

```
object_type_count = df.groupby('object_type').agg({'id': ['count']}).reset
_index()
object_type_count.columns = ['object_type','count']
object_type_count['percent'] = round((object_type_count['count']/object_ty
pe_count['count'].sum())*100,1)
object_type_count = object_type_count.sort_values(by='count', ascending=Fa
lse)
object_type_count
```

Out[14]:

	object_type	count	percent
3	кафе	6099	39.7
8	столовая	2587	16.8
7	ресторан	2285	14.9
6	предприятие быстрого обслуживания	1923	12.5
0	бар	856	5.6
1	буфет	585	3.8
4	кафетерий	398	2.6
2	закусочная	360	2.3
5	магазин (отдел кулинарии)	273	1.8

In [15]:

```
fig = go.Figure(data=[go.Bar(x=object_type_count['object_type'], y=object_type_count['count'])])
fig.update layout(barmode='group', title text='График количества видов объ
```

```
ектов общественного питания (ООП)',

хахіs_title="Вид объекта общественного питания", yaxis_t

itle="Количество ООП, ед.",)

fig.show()
```

Кафе являются лидерами по количеству открытых заведений - 6099 из 15366 или 40% рынка. Столовая, ресторан и предприятие быстрого обслуживания составляют после кафе тройку лидеров по популярности.

Аутсайдеры - магазины (отдел кулинарии) - и это логично, ведь чашка кофе и круассан, предлагаемые посетителям, - не могут составить конкуренцию меню кафе или ресторана. Впрочем, для магазинов эта статья доходов не является ключевой

2.2. Соотношение сетевых и несетевых заведений по количеству

[к Оглавлению](#0.0)

Сгруппируем данные о количестве сетевых и несетевых обектах общественного питания. Построим круговой график.

```
In [16]:
```

```
df['chain'] = df['chain'].replace('да', "сетевое заведение").replace('нет', "несетевое заведение")
chain_count = df.groupby('chain').agg({'id': ['count']}).reset_index()
chain_count.columns = ['chain', 'count']
chain_count['percent'] = round((chain_count['count']/chain_count['count'].
sum())*100,1)
chain_count = chain_count.sort_values(by='count', ascending=False)
chain_count
```

Out[16]:

	chain	count	percent
0	несетевое заведение	12398	80.7
1	сетевое заведение	2968	19.3

In [17]:

Большинство заведений общественного питания - несетевые, 12398 заведений, их доля составляет 80.7%.

Сетевые кафе и рестораны, 2968 предприятий, занимают оставшиеся 19.3% рынка

2.3. Для какого вида объекта общественного питания характерно сетевое распространение?

[к Оглавлению](#0.0)

Сгруппируем данные о количестве сетевых и несетевых обектах общественного питания по типу ООП. Построим гистограмму график.

In [18]:

```
type_chain = df.pivot_table(index='object_type',columns='chain', values='i d', aggfunc='count').reset_index()
type_chain['percent'] = (type_chain['ceтeвое заведение'] / type_chain['ceтeвое заведение'] / type_chain['ceтeвое заведение'].sum() * 100).round(1)
type_chain['chain_ratio'] = (type_chain['ceтeвое заведение'] / type_chain['несетевое заведение'] * 100).round(1)
type_chain = type_chain.sort_values(by='ceтeвое заведение', ascending=False)
type_chain
```

Out[18]:

chain	object_type	несетевое заведение	сетевое заведение	percent	chain_ratio
3	кафе	4703	1396	47.0	29.7
6	предприятие быстрого обслуживания	1132	791	26.7	69.9
7	ресторан	1741	544	18.3	31.2
5	магазин (отдел кулинарии)	195	78	2.6	40.0
2	закусочная	304	56	1.9	18.4
4	кафетерий	346	52	1.8	15.0
0	бар	819	37	1.2	4.5
1	буфет	574	11	0.4	1.9
8	столовая	2584	3	0.1	0.1

In [19]:

```
"Количество ООП, ед.",)
fig.show()
```

По абсолютному количеству сетевых заведений лидируют **Кафе** - 1396 заведение **Предприятия быстрого обслуживания** - 791 заведение **Рестораны** - 544 заведения

In [20]:

Если посмотреть на относительную величину сетевого распространения среди заведений общепита, то на первом месте предприятия быстрого обслуживания - 70% среди них сетевые. На втором месте отделы кулинарии в магазинах - 40% сетевых заведений. Третье место разделили между собой рестораны и кафе - 31% и 30% соответственно

2.4. Что характерно для сетевых заведений: много заведений с небольшим числом посадочных мест в каждом или мало заведений с большим количеством посадочных мест?

[к Оглавлению](#0.0)

Сделаем срез по сетевым заведениям общественного питания.

```
In [21]:

df_chain_yes = df.query('chain == "сетевое заведение"')
```

Изучим данные по названиям заведений и посмотрим распределение мест и количество заведений

```
In [22]:
```

```
df_name_mean = (df_chain_yes.groupby('object_name').agg({'number':['mean'],'id': ['count']}).reset_index())
df_name_mean.columns = ['object_name', 'number', 'count']
df_name_mean['number'] = df_name_mean['number'].astype('int')
df_name_mean = df_name_mean.sort_values(by='count', ascending=False)
df_name_mean = df_name_mean.query('count>1') # Заведение будем считать сет
```

```
евым, когда их более 1.
df name mean.tail(10)
```

Out[22]:

	object_name	number	count
213	Зодиак	72	2
114	Барбекю	22	2
216	ИЛЬ ПАТИО	56	2
207	Закусочная «Бургер Кинг»	20	2
218	Изба	17	2
13	Correas	50	2
444	AMRNH	69	2
88	Азбука вкуса	19	2
116	Бенто WOK	18	2
652	Темпл бар	147	2

Посмотрим распределение количества сетевых заведений

In [23]:

```
display(df_name_mean['count'].reset_index().describe(percentiles=[0.1, 0.2
5, 0.36, 0.4, 0.50, 0.6, 0.75, 0.8, 0.9, 0.99]).T[1:])
```

	count	mean	std	min	10%	25%	36%	40%	50%	60%	75%	
count	274.0	9.189781	19.502431	2.0	2.0	2.0	2.28	3.0	3.0	4.0	7.0	

Узнаем нормальное распределение количества заведений в сети

In [24]:

```
sns.boxplot(y=df_name_mean['count'])
plt.ylim(0,15)
plt.show()
```


Посмотрим распределение количества мест в сетевых заведениях

In [25]:

```
display(df_name_mean['number'].reset_index().describe(percentiles=[0.1, 0.
25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 0.99]).T[1:])
```

	count	mean	std	min	10%	25%	30%	40%	50%	60%	75
number	274.0	57.437956	48.487355	0.0	9.3	20.0	22.0	32.2	44.5	56.0	82.

Узнаем нормальное распределение количества посадочных мест в сети заведений

In [26]:

```
sns.boxplot(y=df_name_mean['number'])
plt.ylim(0,174)
plt.show()
```


Нормальное распределение количества заведении в сети - от 0 до 174

Медиана количества заведений в каждой сети - три заведения. Медиана количества мест в заведении - 44,5. 75% сетей имеет не более 7 заведений с 174 посадочными местами

In [27]:

Отсортируем даные по количеству посадочных мест в сетевых заведениях

In [28]:

```
df_name_mean_c = df_name_mean.sort_values(by='number', ascending=False)
df_name_mean_c.head(10)
```

Out[28]:

	object_name	number	count
458	ПИЛ3НЕР	245	2
332	Кафе Пронто	222	2
597	СТАРИНА МЮЛЛЕР Старина Миллер	215	2
105	Бакинский бульвар	213	2
295	Кафе «Му-Му»	203	3
287	Кафе «Кружка»	194	4
708	якитория	185	5
214	Золотая вобла	173	3
161	Грабли	166	8
410	MY-MY	164	8

In [29]:

Построим график количества заведений к чису посадочных мест, ограничив данные верхним усом графиков боксплот

```
In [30]:

df_name_mean = df_name_mean.query('number < 174 & count < 14')

In [31]:

p = sns.jointplot(x=df_name_mean["count"], y=df_name_mean["number"], kind= 'kde')

p.fig.suptitle('Количество заведений и число посадочных мест по каждой из сетей', y=1.02)
p.set_axis_labels("Количество заведений сети", "Число посадочных мест в за ведении, ед.", fontsize=12)
plt.show()
```


In [32]:

```
print('Cpeднee количество сетевых заведений - ', df_name_mean_c['count'].m
edian(), 'eд.')
print('Cpeднee количество посадочных мест в сетевых заведениях - ', df_nam
e_mean_c['number'].median(), 'eд.')
```

Среднее количество сетевых заведений - 3.0 ед. Среднее количество посадочных мест в сетевых заведениях - 4.5 ед.

Вывод:

- Большинство сетей имеет не более 7 и заведений и в них до 174 посадочных мест.
- Первая четверка сетевых заведений по количеству заведений, имеет в среднем 50 посадочных мест.
- Первая пятерка сетевых заведений по количеству посадочных мест, имеет в среднем 2 сетевых заведения.
- Для сетевых заведений характерно три заведения с количеством посадочных мест 40-50. На графике это область самая темная.

2.5. Среднее количество посадочных мест. Какой вид предоставляет в среднем самое большое количество посадочных мест?

[к Оглавлению](#0.0)

Сделаем табличку с типами заведений и посмотрим распределение мест и количество заведений, такую же сделаем и для названий объектов

In [33]:

```
df_type_mean = (df_chain_yes.groupby('object_type').agg({'number':['mean'
],'id': ['count']}).reset_index())
df_type_mean.columns = ['object_type', 'number', 'count']
df_type_mean['number'] = df_type_mean['number'].astype('int')
df_type_mean = df_type_mean.sort_values(by='number', ascending=False)
df_type_mean['percent'] = (df_type_mean['number'] / df_type_mean['number']
.sum() * 100).round(1)
df_type_mean
```

Out[33]:

	object_type	number	count	percent
8	столовая	112	3	28.1
7	ресторан	100	544	25.1
0	бар	53	37	13.3
3	кафе	47	1396	11.8
6	предприятие быстрого обслуживания	40	791	10.1
2	закусочная	14	56	3.5
1	буфет	12	11	3.0
4	кафетерий	12	52	3.0
5	магазин (отдел кулинарии)	8	78	2.0

In [34]:

Вывод:

- Наибольшее количество посадочных мест в среднем у объекта общественного питания **столовая**, 112 мест или 28%. В столовых низкие цены, но большая проходимость за счет нее формируется выручка. Для большого количества посетителей нужно много мест.
- На втором месте **ресторан**, 100 мест или 25%. Здесь средний чек гораздо выше столовой, поэтому выручка не страдает от меньшего количества мест. Тем более, что чем меньше мест в ресторане тем предполагается выше сервис, а следовательно и выше цена.
- Третье, четвертое и пятое место у объектов общественного питания **бар** (53 места, 13%), **кафе** (47 мест, 12%) и **предприятие быстрого обслуживания** (40 мест, 10%) самые демократичные и по ценам, и по качеству заведения.
- Меньше всего посадочных мест в закусочных, буфетах и кафетериях не более 15 мест и менее 3%. Как правило эти типы заведений располагаются они обычно в аэропортах или вокзалах. Для них эта статья доходов не является основной, а закусочные и кафетерии расчитаны на другой формат обслуживания посетителей. Он подразумевает не посадочные места, а высокие стойки без стульев.
- Замыкает рейтинг видов общественного питания **отдел кулинарии в магазинах** не более 9 мест и 2%. Смылс такой же как и объктов описанных выше, для магазинов эта статья доходов не является основной.

2.6. Выделим в отдельный столбец информацию об улице из столбца address Нам нужно создать новый столбец с названием улиц. Применим к строкам столбца address метод split и сохраним в новом столбце.

In [35]:

```
df['street_1'] = df['address'].str.split(', ')
df.head()
```

Out[35]:

	id	object_name	chain	object_type	address	number	
0	151635	СМЕТАНА	несетевое заведение	кафе	город Москва, улица Егора Абакумова, дом 9	48	[гор ул Абак
1	77874	Родник	несетевое заведение	кафе	город Москва, улица Талалихина, дом 2/1, корпус 1	35	[гор Та дом
2	24309	Кафе «Академия»	несетевое заведение	кафе	город Москва, Абельмановская улица, дом 6	95	[гор Абель улі
3	21894	ПИЦЦЕТОРИЯ	сетевое заведение	кафе	город Москва, Абрамцевская улица, дом 1	40	[гор Абр улі
4	119365	Кафе «Вишневая метель»	несетевое заведение	кафе	город Москва, Абрамцевская улица, дом 9, корпус 1	50	[гор Абр улі

Изучим какие есть характеристики улиц, для подбора нужных слов.

In [36]:

```
df['address'] = df.address.apply(lambda x: x[0:-1].split(',')[0]) # Переве дем столбец из строк в списки в 0 элементе

street_names = pd.DataFrame(df['address']) # создадим DF
street_names = street_names.explode('address') # Разобъем наши строки на с лова

street_names_count = street_names['address'].value_counts() # Посчтитаем к оличество уникальных слов
street_names_count = pd.DataFrame(list(street_names_count.items()), column s=['name', 'count']) # создадим DF и посмотрим какие есть улицы street_names_count.head(5)
```

Out[36]:

	name	count
0	город Москва	15295
1	улица Ленинская Слобода	4
2	Николоямская улица	4
3	город Московский	3

Применим функцию, которая ищет нужные нам слова с названием улиц и записывает их в столбец street

```
In [37]:
```

```
street variant = ['улица', 'переулок', 'площадь', 'проезд', 'проспект', 'н
абережная', 'шоссе', 'бульвар', 'аллея']
def get street(row):
    for i in street variant:
        if i in row['street 1'][0]:
            return row['street 1'][0]
        elif i in row['street 1'][1]:
            return row['street 1'][1]
        try:
            if i in row['street 1'][2]:
                return row['street 1'][2]
        except: pass
        try:
            if i in row['street_1'][3]:
                return row['street_1'][3]
        except: pass
df['street'] = df.apply(get street, axis = 1)
df = df.drop(['street 1'], axis=1) # удалим не нужный столбец
df.head()
```

Out[37]:

	id	object_name	chain	object_type	address	number	stre
	0 151635	СМЕТАНА	несетевое заведение	кафе	город Москва	48	улица Его Абакумо
,	1 77874	Родник	несетевое заведение	кафе	город Москва	35	ули Талалихи
:	2 24309	Кафе «Академия»	несетевое заведение	кафе	город Москва	95	Абельмановск ули
;	3 21894	пиццетория	сетевое заведение	кафе	город Москва	40	Абрамцевск ули
	4 119365	Кафе «Вишневая метель»	несетевое заведение	кафе	город Москва	50	Абрамцевск ули

Посмотрим сколько заведений не имеют свого адреса.

```
In [38]:
```

```
df['street'].isnull().sum()
Out[38]:
421
In [39]:
df.query('street.isnull()')['address'].value counts()
```

Out[39]:

город Москва	413				
Солянский тупик	3				
поселение "Мосрентген"	1				
поселение Михайлово-Ярцевское	1				
Нижний Таганский тупик	1				
поселение Сосенское	1				
поселение Марушкинское	1				
Name: address, dtype: int64					

Мы не смогли заполнить 421 строчку адресами. В адресе указан только город или поселение без уточнения адреса.

In [40]:

```
df_name_street = (df.groupby('street').agg({'id': ['count']}).reset_index
())
df_name_street.columns = ['street', 'count']
df_name_street['percent'] = (df_name_street['count'] / df_name_street['count'].sum() * 100).round(2)
df_name_street = df_name_street.sort_values(by='count', ascending=False)
df_name_street.head(10)
```

Out[40]:

	street	count	percent
1405	проспект Мира	204	1.37
1002	Профсоюзная улица	183	1.22
676	Ленинградский проспект	173	1.16
986	Пресненская набережная	167	1.12
390	Варшавское шоссе	165	1.10
679	Ленинский проспект	148	0.99
1401	проспект Вернадского	132	0.88
666	Кутузовский проспект	114	0.76
590	Каширское шоссе	112	0.75
597	Кировоградская улица	110	0.74

In [41]:

```
print('Топ 10 улиц с наибольшим количеством заведений, занимают всего - ', df_name_street['percent'].head(10).sum(), '% от всех заведений Москвы') print('Количество уникальных названий улиц с наибольшим количеством заведе ний - ', len(df_name_street['percent']), 'ед.')
```

```
Топ 10 улиц с наибольшим количеством заведений, занимают всег о - 10.09 % от всех заведений Москвы Количество уникальных названий улиц с наибольшим количеством заведений - 1884 ед.
```

2.7. Топ-10 улиц по количеству объектов общественного питания. В каких районах Москвы находятся эти улицы?

[к Оглавлению](#0.0)

Узнаем в каких районах Москвы находятся эти улицы, а потом посчитаем топ 10 этих улиц

Создадим отдельную табличку, где разместим улицы и их id . К ним применим функцию для поиска районов

Для уменьшения времени обработки данных при запрос, сделаем срез на топ 10 улиц по количеству заведений и улицы с 1 заведением

In [42]:

```
df_streets = (df.groupby('street').agg({'id': ['count']}).reset_index())
df_streets.columns = ['street', 'count']
df_streets = df_streets.query('count == 1 | count > 100').sort_values(by=
'count', ascending=False)
df_streets.head(15)
```

Out[42]:

	street	count
1405	проспект Мира	204
1002	Профсоюзная улица	183
676	Ленинградский проспект	173
986	Пресненская набережная	167
390	Варшавское шоссе	165
679	Ленинский проспект	148
1401	проспект Вернадского	132
666	Кутузовский проспект	114
590	Каширское шоссе	112
597	Кировоградская улица	110
1268	Ходынский бульвар	102
1160	Стройковская улица	1
1156	Стрельбищенский переулок	1
1143	Старомарьинское шоссе	1
1169	Сумская улица	1

Сделаем запрос через к Сервис Яндекс. Карты к HTTP API Геокодер с поиском по адресу. Геокодер API позволяет определять координаты топонима по его адресу, или адрес точки по её координатам.

Найдем координаты по адресу и подставим в таблицу

```
In [43]:
```

Проверим на отсутствующие значения.

```
In [44]:
```

```
# df_streets.isnull().sum()
```

```
In [45]:
```

```
# df_streets = df_streets.dropna()
# df_streets.info()
```

По полученым координатам найдем район, в котором находится улица.

```
In [46]:
```

```
# def get raion(coords):
     r = requests.get("https://geocode-maps.yandex.ru/1.x/?apikey=" + API
key + "&format=xml&geocode=" + coords + "&kind=district")
   soup=BeautifulSoup(r.text, 'lxml')
    geo = soup.find all('name')
     wrong_lines content = []
#
#
    try:
#
        for row in geo[5]:
#
             return row
#
    except:
#
        for row in geo:
             return wrong lines content.append(row)
# df streets['area'] = df streets['coords'].apply(get raion)
```

```
In [47]:
```

```
# df_streets = df_streets.fillna(0)
# df_streets.info()
```

Сохраним полученную табличку в файл csv и будем пользоваться им.

```
In [48]:
```

```
# df_streets.to_csv('df_streets_srez.csv', sep = ';', index= False)
```

https://docs.google.com/spreadsheets/d/1qAyK_elQ_RQ8i5aXgxqx66UxjBRSaTeKdVmGksMqsU4/ediusp=sharing

Мы загрузили таблицу с данными на Google Sheets, откуда и будем ее считывать.

In [49]:

```
from io import BytesIO
import requests
spreadsheet_id = 'lqAyK_elQ_RQ8i5aXgxqx66UxjBRSaTeKdVmGksMqsU4'
file_name = 'https://docs.google.com/spreadsheets/d/{}/export?format=csv'.
format(spreadsheet_id)
r = requests.get(file_name)
df_area = pd.read_csv(BytesIO(r.content), sep = ',')
df_area.head()
```

Out[49]:

area	coords	count	street	
Алексеевский район	37.637937 55.812368	204	проспект Мира	0
район Коньково	37.532511 55.649525	183	Профсоюзная улица	1
Хорошёвский район	37.545626 55.794285	173	Ленинградский проспект	2
Пресненский район	37.540982 55.746791	167	Пресненская набережная	3
район Чертаново Южное	37.603954 55.599799	165	Варшавское шоссе	4

Построим таблицу и посчитаем топ-10 улиц по количеству объектов общественного питания

In [50]:

```
df_street_top = df_area.sort_values(by='count', ascending=False).head(10)
df_street_top
```

Out[50]:

	street	count	coords	area
0	проспект Мира	204	37.637937 55.812368	Алексеевский район
1	Профсоюзная улица	183	37.532511 55.649525	район Коньково
2	Ленинградский проспект	173	37.545626 55.794285	Хорошёвский район
3	Пресненская набережная	167	37.540982 55.746791	Пресненский район
4	Варшавское шоссе	165	37.603954 55.599799	район Чертаново Южное
5	Ленинский проспект	148	37.537137 55.68263	Ломоносовский район
6	проспект Вернадского	132	37.515335 55.681656	Ломоносовский район
7	Кутузовский проспект	114	37.50911 55.735013	район Дорогомилово
8	Каширское шоссе	112	37.683194 55.641244	район Москворечье- Сабурово
9	Кировоградская улица	110	37.605023 55.614455	район Чертаново Центральное

```
In [51]:
```

Вывод:

- На первом месте по количеству заведений проспект Мира с 204 заведениями.
- Если смотреть по районам, то в Ломоносовский район входит две улицы и их суммарное количество заведений 280 ед.

2.8. Количество улиц с одним объектом общественного питания. В каких районах Москвы находятся эти улицы?

[к Оглавлению](#0.0)

Соберем таблицу по улице и сделаем срез по количеству ООП равным одному и посмотрим на

каких улицах они расположены. Посчитаем их количество.

In [52]:

```
df_one_street = df_area.query('count == 1')
df_one_street.head()
```

Out[52]:

	street	count	coords	area
11	Стройковская улица	1	37.674382 55.73371	Таганский район
12	Стрельбищенский переулок	1	37.539464 55.761001	Пресненский район
13	Старомарьинское шоссе	1	37.611994 55.803717	район Марьина Роща
14	Сумская улица	1	37.605607 55.623651	район Чертаново Северное
15	Стромынский переулок	1	37.694738 55.792245	район Сокольники

In [53]:

```
print('Количество улиц с одним объектом общественного питания - ', len(df_one_street), 'ед. или', round(len(df_one_street)/len(df_name_street)*100,1), '%')
```

Количество улиц с одним объектом общественного питания - 537 ед. или 28.5 $\mbox{\$}$

Посмотрим какие районы преобладают в количестве улиц с одним заведением ООП

In [54]:

```
df_area_pivot = df_area.pivot_table(index='area', values='count', aggfunc=
'count').sort_values(by='count', ascending=False).reset_index()
df_area_pivot['percent'] = ((df_area_pivot['count']/df_area_pivot['count']
.sum())*100).round(1)
df_area_pivot.head(10)
```

Out[54]:

	area	count	percent
0	Таганский район	26	4.7
1	район Хамовники	23	4.2
2	Басманный район	23	4.2
3	Тверской район	21	3.8
4	Пресненский район	20	3.6
5	район Марьина Роща	17	3.1
6	район Замоскворечье	15	2.7
7	Мещанский район	15	2.7

```
8 район Арбат 12 2.29 район Сокольники 11 2.0
```

График распределений районов по количеству улиц с одним ООП

In [55]:

In [56]:

```
display(df_area_pivot['count'].reset_index().describe(percentiles=[0.1, 0.
27, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 0.99]).T[1:])
```

	count	mean	std	min	10%	27%	30%	40%	50%	60%	75%	8
count	116.0	4.724138	5.050331	1.0	1.0	1.0	2.0	2.0	3.0	4.0	6.0	

In [57]:

```
print('Количество районов с одним объектом общественного питания -', len(d f_area_pivot), 'ед.')
Количество районов с одним объектом общественного питания - 1
16 ел.
```

Вывод:

- Количество улиц с одним объектом общественного питания 537 ед.
- Количество районов 116 ед.
- Наибольшее количество улиц с одним заведением находится в Таганском районе 26 ед.
- Топ 5 Районов с количестовом заведений Таганский район 26, район Хамовники 23, Басманный район 23, Тверской район 21, Пресненский район 20
- По распределению видно, что районы с одной улицей составляют 27%. Районы с 10 и более улиц составляют 10%.

2.9. Распределение количества посадочных мест для улиц с большим количеством объектов общественного питания.

[к Оглавлению](#0.0)

Найдем улицы с большим количеством заведений ООП и посмотрим количество посадочных мест в них.

In [58]:

```
df_number_street = (df.groupby('street').agg({'id': ['count'], 'number':[
'mean']}).reset_index())
df_number_street.columns = ['street', 'count', 'number']
```

In [59]:

```
display(df_number_street['count'].reset_index().describe(percentiles=[0.1,
0.5, 0.6, 0.75, 0.8, 0.9, 0.95, 0.99]).T[1:])
```

		count	mean	std	min	10%	50%	60%	75%	80%	90%	95%	
C	ount	1884.0	7.93259	15.939351	1.0	1.0	3.0	4.0	7.0	9.0	18.0	29.85	Ī

За большое количество заведений возьмем количество более 30 заведений.

In [60]:

```
df_number_street = df_number_street.query('count >=30').round().sort_value
s(by='count', ascending=False)
df_number_street.head(10)
```

Out[60]:

street	count	number

1002	Профсоюзная улица	183	47.0
676	Ленинградский проспект	173	52.0
986	Пресненская набережная	167	46.0
390	Варшавское шоссе	165	52.0
679	Ленинский проспект	148	63.0
1401	проспект Вернадского	132	67.0
666	Кутузовский проспект	114	85.0
590	Каширское шоссе	112	55.0
597	Кировоградская улица	110	60.0

In [61]:

```
print('Количество посадочных мест для улиц с большим количеством ООП по ме
диане -', df_number_street['number'].median(), 'eg.')
```

Количество посадочных мест для улиц с большим количеством ООП по медиане - 50.0 ед.

Посмотрим как наши данные выглядят на гистограмме

In [62]:

Посмотрим на то, как связаны между собой количество заведений на улице и количество мест на этих улицах.

In [63]:

```
p = sns.jointplot(x=df_number_street["count"], y=df_number_street["number"], kind='kde')

p.fig.suptitle('Количество посадочных мест для улиц с большим кол-вом ООП', y = 1.0)
p.set_axis_labels("Количество заведений сети", "Количество посадочных мест, ед.", fontsize=12)
plt.show()
```


In [64]:

мест, ед.",)
fig.show()

Вывод:

- Улицы с наибольшим количеством заведений имеют от 40 до 70 посадочных мест.
- Показатели количества мест в заведениях нормально распределены вокруг медианного значения 50 посадочных мест.

3. Общий вывод

[к Оглавлению](#0.0)

- Количество всех заведений общественного питания в Москве 15 366 ед. из них Кафе 40% , Столовые 17%, Рестораны 15%, Предприятия быстрого обслуживани 12,5%, Бары 6%.
- Из всех заведений ОП только 2968 ед. являются сетевыми или 19%.
- Сетевое распределение характерно для Кафе 1396 ед. 47%, Предприятий быстрого питания 791 ед. 26%, ресторанов и отделов кулинарии 544 ед. 18%.
- Для ресторанов характерно больше мест (в среднем 97), но меньше заведений. В кафе и предприятиях быстрого обслуживания (40 и 20 мест в среденем) все наоборот: меньше мест, но больше точек.

- Самое большое среднее число мест в столовых 112
- Топ 10 улиц с наибольшим количеством заведений, занимают всего 10 % от количества всех заведений Москвы.
- Количество уникальных названий улиц с наибольшим количеством заведений 1884 ед.
- Среднее число посадочных мест в заведениях общественного питания на улицах Москвы с высокой плотностью кафе и ресторанов составляет от 40 до 70 посадочных мест.

Подавляющее большинство улиц с одним кафе или рестораном - небольшие переулки Москвы или один из километров МКАД, проходящие вдоль одного района. Проходимость и/или популярность этих улиц у гурманов минимальны, поэтому открывать там новое кафе нерентабельно.

Можно рекомендовать к открытию кафе с количеством 40-50 посадочных мест вдоль одного из шоссе или проспекта Москвы с высокой проходимостью и транспортной доступностью. Возможность развития сети кофеен пока не рекомендуется. Если и рассматривать сетевое развитие - то в долгосрочной перспективе, после выхода кафе на плато по прибыли.

Дополнительно необходимо было бы провести анализ по расположению мест скопления большого количества людей, кто регулярно покупает бизнес-ланчи - ВУЗы, крупные предприятия, бизнес-центры. Желательно учитывать по текущим объектам расстояния до метро, какое метро, средние чеки в заведениях. (посмотреть зависимость среднего чека от типов объекта, расстояния от метро, расположениях в топовых районах). Желательно выделить наиболеее интересные здания для размещения заведений - высотки, исторические здания, топовые отели и гостиницы. Плюс желательно подумать об иностранных туристах заранее, ведь можно примерно сказать, где они проводят большую часть времени в Москве.

4. Презентация

[к Оглавлению](#0.0)

Презентация - https://yadi.sk/i/Oi3NUmBFByuMaw