BIOS 662 Fall 2018 Clustered Data

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Correlated Data

- To this point, all methods have assumed data are iid
- What do we do if dependencies exist between observations?
- Typically, correlated data occur in clusters/groups
- Examples:
 - Repeated measures on individuals over time
 - Natural groupings of individuals (e.g., litters, schools)
- Can occur in observational or randomized studies; an example of the latter is a cluster randomized study

Cluster Randomized Studies

- Also known as group allocation designs
- Section 18.4 of the text (deals with correlation structures)
- Suppose we want to compare two school-based methods of smoking prevention in teenagers
- We may randomly assign interventions to schools, but measure smoking in children

Central Issue

• How do we do testing, estimation, sample size calculations, etc., taking into account that responses within a cluster/group (e.g., school) may not be independent?

• Use methods allowing for dependency (correlation) within groups but assuming independence (no correlation) between groups

Continuous Response Model

• Let Y_{ijk} = response of the k^{th} person in the j^{th} cluster at the i^{th} treatment level,

$$i = 1, 2, \dots, I; \quad j = 1, 2, \dots, J; \quad k = 1, 2, \dots, K$$

• Let

$$\bar{Y}_{ij} = \frac{1}{K} \sum_{k=1}^{K} Y_{ijk}$$

• Assume:

$$E(Y_{ijk}) = \mu_i; \quad Var(Y_{ijk}) = \sigma^2$$

$$Cov(Y_{ijk}, Y_{ijk'}) = \rho \sigma^2; \quad Cov(Y_{ijk}, Y_{ij'k'}) = 0$$

Continuous Response Model

• Then

$$Var(\bar{Y}_{ij}) = E(\bar{Y}_{ij}^{2}) - \mu_{i}^{2}$$

$$= K^{-2}E\left(\sum_{k=1}^{K} Y_{ijk}\right)^{2} - \mu_{i}^{2}$$

$$= K^{-2}E\left(\sum_{k=1}^{K} Y_{ijk}^{2} + \sum_{k \neq k'} Y_{ijk}Y_{ijk'}\right) - \mu_{i}^{2}$$

$$= K^{-2}\left(K\sigma^{2} + K(K-1)\rho\sigma^{2}\right)$$

$$= \frac{\sigma^{2}}{K}\left(1 + (K-1)\rho\right)$$

Variance Inflation Factor (VIF)

- $(1 + (K 1)\rho)$ is the variance inflation factor (VIF)
- It measures the increase in the variance of the mean due to the within-subject correlation of measurements (ρ)
- VIF > 1 for $\rho > 0$ and K > 1
- Let

$$\bar{Y}_i = \frac{\sum_j \bar{Y}_{ij}}{J} = \frac{\sum_{j,k} Y_{ijk}}{JK}$$

• Then

$$\operatorname{Var}(\bar{Y}_i) = \frac{\sigma^2}{JK} \operatorname{VIF}$$

Continuous Response Model

- Suppose I=2 and $n_1=n_2=JK$
- If we ignore the correlation within cluster

$$z_{\text{ignore}} = \frac{\bar{Y}_1 - \bar{Y}_2}{\sigma \sqrt{1/n_1 + 1/n_2}},$$

• Should instead use

$$z_{\text{true}} = \frac{\bar{Y}_1 - \bar{Y}_2}{\sigma \sqrt{(1/n_1 + 1/n_2) \cdot \text{VIF}}}$$
$$= \frac{z_{\text{ignore}}}{\sqrt{\text{VIF}}}$$

Effect of Correlation

- $|z_{\text{true}}| < |z_{\text{ignore}}|$ for $\rho > 0$ and K > 1
- Thus ignoring correlation will lead to inflated type I error
- Intuition: Naïve approach acts as if we have more information than we do

Sample Size When I=2

• Sample size per arm

$$n = 2\left(\frac{z_{1-\alpha/2} + z_{1-\beta}}{\Delta}\right)^2 \text{VIF}$$

where $\Delta = |\mu_1 - \mu_2|/\sigma$

• If $\rho = 0$, then VIF = 1 and

$$n = 2\left(\frac{z_{1-\alpha/2} + z_{1-\beta}}{\Delta}\right)^2$$

• If $\rho = 1$, then VIF = K

$$n = 2\left(\frac{z_{1-\alpha/2} + z_{1-\beta}}{\Delta}\right)^2 \cdot K$$

• Typically $0.1 \le \rho \le 0.4$

Variance Inflation Factors

• Table 18.4 in the text:

,			ho		
K	0.001	0.01	0.02	0.05	0.1
2	1.001	1.01	1.02	1.05	1.10
5	1.004	1.04	1.09	1.20	1.40
10	1.009	1.09	1.18	1.45	1.90
100	1.099	1.99	2.98	5.95	10.90
1000	1.999	10.99	20.98	50.95	100.90

BIOS 662 Fall 2018 11 Clustered Data

Concluding Remarks

- What if cluster/group sizes vary? Say $k = 1, ..., K_j$
- Use expected cluster size; cf. Manatunga, Hudgens, Chen (Biometrical Journal, 2001)
- Methods for analyzing clustered data include mixed models and generalized estimating equations (BIOS 762/3/7)

BIOS 662 Fall 2018 12 Clustered Data