Nom :	Prénom :	CIN :	Salle :

Année universitaire 2019-2020

Correction Examen Vérification et Spécification Formelles - Final

Enseignantes : E. Menif & M. Fourati Filière / Classe : 3 ème Ing. Inf.

Date : 04/01/2020 | Nbre. de pages : 9 | Calculatrices | et documents | con autorisés | Durée | con autorisés | con a

Vérification formelle : (10 points)

Exercice 1 : Question de cours (1 point)

1. Les deux formules AFEGp et FGp sont-elles équivalentes? Justifiez.

Correction

Non elles ne sont pas équivalentes puisqu'il existe un modèle M tel que $M \models AFEGp$ et $M \not\models FGp$

2. Définir la sémantique formelle de *GXp*.

Correction

$$\sigma, i \models GXp \ ssi \ \forall j | i \le j \le |\sigma| : \ \sigma, j + 1 \models p \ (0.5)$$
.

Exercice 2 : (Traduction en CTL et LTL : 2 points)

Exprimez, <u>lorsque c'est possible</u>, les propriétés suivantes en CTL et LTL. Lorsque la traduction n'est pas possible, dites qu'elle n'est pas exprimable.

Correction

1. Il existe un chemin où p est faux et ce jusqu'à ce que q devienne vrai.

LTL : Non exprimable (0,25 point)

CTL: $\neg pEUq$ (0,25 point)

2. Si p est infiniment souvent vrai, alors q reste toujours faux

LTL: $GFp \Rightarrow G \neg q$ (ou $GFp \Rightarrow \neg Fq$) (0,25 point)

CTL : $AGAFp \Rightarrow AG \neg q$ (ou $AGAFp \Rightarrow \neg EFq$) (0,25 point)

3. q et r ne peuvent pas devenir vrai avant que p devienne faux

LTL : $((\neg q \land \neg r)\mathbf{U} \neg p)$ (0,25 point)

CTL : $(\neg q \land \neg r)$ **AU** $\neg p$ (0,25 point)

4. L'une des variables p ou q deviendra toujours vrai tout au long de l'exécution.

LTL : $\mathbf{FG}(p \lor q)$ (0,25 point)

CTL: Non exprimable (0,25 point)

Exercice 3 Model Checking LTL et Automate de Büchi (2.25 points):

(Réellement sur 2,75 points donc +0.5 bonus)

Correction

1. Transformez la propriété de chemin $\varphi = \mathbf{GF} \neg p$ en automates de Büchi <u>minimal</u>. Rappelons qu'on dispose des règles d'expansions : $\varphi \mathbf{U} \psi = \psi \vee (\varphi \wedge \mathbf{X}(\varphi \mathbf{U} \psi))$, $\mathbf{G} \varphi = \varphi \wedge \mathbf{X}(\mathbf{G} \varphi)$, $\mathbf{F} \varphi = \varphi \vee \mathbf{X}(\mathbf{F} \varphi)$.

(0,25 point)

$$GF \neg p = F \neg p \land X\varphi = (\neg p \lor XF \neg p) \land X\varphi = (\neg p \land X\varphi) \lor (XF \neg p \land X\varphi)$$
$$= (\neg p \land X\varphi) \lor (T \land X(F \neg p \land \varphi))$$

Pour $F \neg p \land \varphi$ (0,25 point)

$$F \neg p \land \varphi = (\neg p \lor XF \neg p) \land GF \neg p = (\neg p \lor XF \neg p) \land (\neg p \lor XF \neg p) \land X\varphi) \land ((\neg p \lor XF \neg p) \land X\varphi))$$

$$= (\neg p \lor XF \neg p) \land (\neg p \lor XF \neg p) \land X\varphi) = (\neg p \lor XF \neg p) \land X\varphi) =$$

$$= (\neg p \land X\varphi) \lor (XF \neg p \land X\varphi) = (\neg p \land X\varphi) \lor (T \land X(F \neg p \land \varphi))$$

Automate (2 point)

Chaque état final : (0,25 point)
Toute transition : (0,25 point)

Automate minimal: (0,25 point)

Exercice 4 : (Model-Checking CTL 4.75 points)

1. Normalisez la formule $\varphi = AG(AFq)$ (l'écrire en terme de AU, EU, EX, \wedge , \neg et T). Rappelons que $AX\phi = \neg EX \neg \phi$, $AF\phi = TAU\phi$, $AG\phi = \neg EF \neg \phi$, $EF\phi = TEU\phi$, $EG\phi = \neg AF \neg \phi$.

Correction

$$AG(AFq) = \neg EF \neg (AFq) = \neg TEU \neg (TAUq)$$
 (0.5 point)

2. Soit la structure de Kripke K suivante :

A l'aide de l'algorithme de marquage vu en cours (<u>et présenté ci-bas</u>), vérifiez la validité de la formule φ pour chaque état du modèle. Détaillez les itérations (précisez les valeurs de L,nb (degré de chaque état) et déjà vu pour toutes les variables s_i ainsi que les valeurs des sous formules φ_i pour chaque état). Toutes les itérations doivent être détaillées. Ensuite, remplissez la table ci-dessous (par les valeurs de vérité adéquates) pour chaque sous formule de φ . Le tableau ne sera pas noté si l'itération correspondante n'est pas explicitée.

Correction

$$\varphi = \mathbf{AG}(\mathbf{AF} q) = \neg \mathbf{EF} \neg (T\mathbf{AUq}) = \neg T\mathbf{EU} \neg (T\mathbf{AUq})$$

Voici le tableau à remplir :

	S _O	S1	S2	<i>S</i> 3
T				
$\frac{q}{q}$				
$\phi = TAUq$				
$\psi = \neg \phi$				
$\psi' = T\mathbf{E}\mathbf{U}\psi$ $\varphi = \neg \psi'$				
$\varphi = \neg \psi'$				

Pour **TAU**q,

Marquage de T et q, initialisation de ϕ à faux et initialisation de nb. (Initialisation 0.25)

	So	S1	<i>S</i> 2	S3
T	Vrai	vrai	vrai	vrai
Q	Faux	faux	vrai	vrai
$\phi = TAUq$	Faux	faux	faux	faux
Nb	3	1	1	1

Initialisation de L= \emptyset .

$$L=\{s_{2}, s_{3}\}\ (s_{2}.q=vrai\ et\ s_{3}.q=vrai)$$

1) Traitement de s_2 , $L=\{s_3\}$ 1 point

$$s_2.\phi := vrai$$

a.
$$S_1 \rightarrow S_2$$

$$s_1.nb := s_1.nb - 1 = 0$$
, avec $s_1.T = vrai$ et $s_1.\phi = faux$ donc $L = L \cup \{s_1\} = \{s_1, s_3\}$

b.
$$S_3 \rightarrow S_2$$

$$s_3.nb := s_3.nb - 1 = 0$$
, avec $s_3.T = vrai$ et $s_3.\phi = faux$ donc $L = L \cup \{s_3\} = \{s_1, s_3\}$

Après mise à jour de nb et de ϕ .

	s_0	S ₁	<i>S</i> ₂	S3
Nb	3	0	1	0
$\phi = TAUq$	Faux	faux	vrai	faux

2) Traitement de $s_1, L=\{s_3\}$ 0.5 point

$$s_1.\phi := vrai$$

a.
$$s_0 \rightarrow s_1$$

 $s_0.nb := s_0.nb - 1 = 2 \neq 0$ rien à faire

b.
$$s_2 \rightarrow s_1$$

 $s_2.nb := s_2.nb - 1 = 0$, avec $s_2.T = vrai\ mais\ s_2.\phi = vrai\ donc\ rien\ à faire$.

Après mise à jour de nb et de ϕ .

	S _O	S ₁	S2	S 3
nb	2	0	0	0
$\phi = TAUq$	Faux	vrai	Vrai	faux

3) Traitement de s_3 , $L=\{\}$ 0.25 point

 $s_3.\phi := vrai$

C. $S0 \rightarrow S3$

 $s_0.nb := s_0.nb - l = 1 \neq 0$ rien à faire

Après mise à jour de nb et de ϕ .

	s_0	s_1	s_2	S3	
Nb	1	0	0	0	
$\phi = TAUq$	Faux	vrai	vrai	vrai	

 $L=\{ \}$ arrêt

D'où après le marquage de ϕ et de $\psi = \neg \phi$:

	S ₀	S1	S2	<i>S</i> 3
T	Vrai	Vrai	vrai	vrai
Q	Faux	Faux	vrai	vrai
$\phi = T\mathbf{A}\mathbf{U}q$	Faux	Vrai	vrai	vrai
$\psi = \neg \phi$	Vrai	Faux	faux	Faux
$\psi' = T\mathbf{E}\mathbf{U}\psi$				
$\varphi = \neg \psi'$				

$\psi' = T\mathbf{E}\mathbf{U}\psi$

Marquage de T, initialisation de ψ' à faux et initialisation de $d\acute{e}j\grave{a}$ vu (dv) à faux. (0.25 point)

	S ₀	S_1	<i>S</i> ₂	S3
T	Vrai	Vrai	vrai	vrai
Q	Faux	Faux	vrai	vrai
$\phi = TAUq$	Faux	Vrai	vrai	vrai
$\psi = \neg \phi$	Vrai	Faux	faux	faux
$\psi' = T\mathbf{E}\mathbf{U}\psi$	Faux	Faux	faux	faux
Dv	Faux	faux	faux	faux

Initialisation de L= \emptyset .

 $L = \{s_0\} \ (s_0, \psi = vrai)$

1) Traitement de $s_0, L=\{\}$ 0.5 point

 $s_0. \psi' := vrai$

a. $s_0 \rightarrow s_0$

 $s_0.dv = faux$, $donc \ \underline{s_0.dv} = vrai \ avec \ s_0.T = vrai \ donc \ L = L \cup \{s_0\} = \{s_0\}$

Mise à jour de dv et de ψ' .

whise a jour de av et de φ .					
	S _O	S1	<i>S</i> 2	S3	
T	vrai	vrai	vrai	vrai	
Q	faux	faux	vrai	vrai	
TAUq	faux	Vrai	vrai	vrai	
$\psi = \neg TAUq$	vrai	Faux	faux	faux	
$\psi' = T\mathbf{E}\mathbf{U}\psi$	vrai	Faux	faux	faux	
$\varphi = \neg \psi'$					
dv	vrai	Faux	faux	faux	

2) Traitement de $s_0, L=\{ \}$ $s_0, \psi' := vrai$ a. $s_0 \rightarrow s_0$ $s_0. dv = vrai, donc rien à faire. 0.25 point$

Arrêt de l'algorithme puisque L est vide. Mise à jour de ψ' et calcul de $\varphi = \neg \psi'$.

	s_0	s_1	<i>S</i> ₂	S 3	
T	Vrai	Vrai	vrai	vrai	0.25
q	Faux	Faux	vrai	vrai	0.25
TAUq	Faux	Vrai	vrai	vrai	
$\psi = \neg TAUq$	Vrai	Faux	faux	faux	0.25
$\psi' = T\mathbf{E}\mathbf{U}\psi$	Vrai	Faux	faux	faux	
$\varphi = \neg \psi'$	faux	Vrai	vrai	vrai	0.25

3. Dites si $K \models \varphi$ en justifiant votre réponse.

Comme K, $s_0 \not\models \phi$ donc K $\not\models \phi$ (0.25 point)

```
Entrées : formule CTL \phi, M= (Q,q_0,E,T,Prop,l)
                                                                   Entrées : formule CTL \phi, M= (Q,q_0,E,T,Prop,l)
Cas 5 : \phi = \psi_1 \mathbf{E} \mathbf{U} \psi_2
                                                                   Cas 6: \phi = \psi_1 \mathbf{A} \mathbf{U} \psi_2
faire marquage(\psi_1,M); marquage(\psi_2,M);
                                                                   faire marquage(\psi_1,M); marquage(\psi_2,M);
pour tout q \in Q faire
                                                                   L:=\emptyset
          q.φ:=faux;
                                                                   pour tout q \in Q faire
          q.dejavu:=faux;
                                                                             q.nb:=degre(q); q.\phi:=faux;
fin pour tout
                                                                              si q.\psi_2=vrai alors L:=L\cup{q} fin si
L:=\emptyset
                                                                   fin pour tout
pour tout q∈Q faire
                                                                   tant que L≠Ø faire
   si q.\psi_2=vrai alors L:=L\cup{q} fin si
                                                                             prendre un q \in L;
fin pour tout
                                                                              L:=L\setminus\{q\};
tant que L≠Ø faire
                                                                              q.φ:=vrai;
          prendre un q \in L;
                                                                              pour tout (q',q) \in T faire
          L:=L\setminus\{q\};
                                                                                        q'.nb:=q'.nb-1
          q.\psi:=vrai;
                                                                                        si (q'.nb=0) et (q'.\psi_1=vrai) et
          pour tout (q',q) \in T faire
                                                                                           (q'. \phi = faux) alors L:=L \cup \{q'\}
                    si q'.dejavu=faux alors
                                                                                        fin si
                       q'.dejavu := vrai;
                                                                              fin pour tout
                       si q'.\psi_1=vrai alors L:=L\cup{q'}
                                                                   fin tant que
                    fin si
          fin pour tout
fin tant que
```