

1 Умови

- $\bullet \ \varepsilon = 1$
- $\rho(r) = \rho_0 \left(\frac{R_2}{r}\right)$
- $\rho_0 = 50 \cdot 10^{-9} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{M}^3}$
- $R_1 = 0.05$ M
- $R_2 = 0.1$ M
- $\sigma = 0$

2 Рисунок

Рис. 1: Кульовий шар із зовнішнім та внутрішнім радіусами

3 Вирази для $E_r(r)$

$$\oint E \ \mathbf{d}S = \frac{Q}{\varepsilon_0}, \qquad Q = \int_{R_1}^{R_2} \rho \ \mathbf{d}V + \sigma \cdot S$$

Поле відсутнє. Зарядів у поверхні немає. E=0

$$E_1 = 0 (1)$$

$$R_1 \le r \le R_2$$

$$\rho = \frac{\mathbf{d}Q_2}{\mathbf{d}V}, \qquad \mathbf{d}Q_2 = \rho \cdot \mathbf{d}V, \qquad \mathbf{d}V = S \mathbf{d}r = 4\bar{n}r^{@} \mathbf{d}r, \qquad Q_2 = \int \rho \cdot S \mathbf{d}r,
Q_2 = \int_{R_1}^{r} \rho \cdot 4\bar{n}r^2 \mathbf{d}r = \int_{R_1}^{r} \rho_0 \cdot 4\bar{n}r^2 \frac{R_2}{r} \mathbf{d}r = \int_{R_1}^{r} \rho_0 \cdot 4\bar{n} \cdot R_2 \cdot r \mathbf{d}r = \rho_0 \cdot 4\bar{n} \cdot R_2 \int_{R_1}^{r} r \mathbf{d}r =
= \rho_0 \cdot 4\bar{n} \cdot R_2 \cdot \frac{r^2}{2} \Big|_{R_1}^{r} = 2\rho_0 \cdot \bar{n} \cdot R_2
E = \frac{Q_2}{S \cdot \varepsilon_0} = \frac{2\rho_0 \cdot \bar{n} \cdot R_2 \cdot (r^2 - R_1^2)}{4\bar{n} \cdot r^2 \cdot \varepsilon_0} = \frac{\rho_0 \cdot R_2 \cdot (r^2 - R_1^2)}{2r^2 \cdot \varepsilon_0}
E_2 = \frac{\rho_0 \cdot R_2 \cdot (r^2 - R_1^2)}{2r^2 \cdot \varepsilon_0} \tag{2}$$

 $r > R_2$

$$Q_{3} = \int \rho \cdot D \, d\mathbf{r} = \int_{R_{1}}^{R_{2}} \rho_{0} \cdot 4\bar{n} \cdot r^{2} \frac{R_{2}}{r} \, d\mathbf{r} = \rho_{0} \cdot 4\bar{n} \cdot R_{2} \frac{r^{2}}{2} \Big|_{R_{1}}^{R_{2}} = 2\rho_{0} \cdot \bar{n} \cdot R_{2} \cdot (R_{1}^{2} - R_{2}^{2})$$

$$E = \frac{Q_{3}}{S \cdot \varepsilon_{0}} = \frac{2\rho_{0} \cdot \bar{n} \cdot R_{2} \cdot (R_{2}^{2} - R_{1}^{2})}{4\bar{n} \cdot r^{2} \cdot \varepsilon_{0}} = \frac{\rho_{0} \cdot R_{2} \cdot (R_{2}^{2} - R_{1}^{2})}{2r^{2} \cdot \varepsilon_{0}}$$

$$E_{3} = \frac{\rho_{0} \cdot R_{2} \cdot (R_{2}^{2} - R_{1}^{2})}{2r^{2} \cdot \varepsilon_{0}}$$
(3)

4 Вирази для $\varphi(r)$

 $r < R_1$

$$\varphi = \mathbf{const} = -\int E \, \mathbf{d}r + C$$

$$\varphi_1 = \frac{\rho_0 R_2 \cdot (R_2 - R_1)}{\varepsilon_0} \tag{4}$$

 $R_1 \le r \le R_2$

$$\varphi = -\frac{\rho_0 R_2}{2\varepsilon_0} \int \frac{(r^2 - R_1^2)}{r^2} dr = -\frac{\rho_0 R_2}{2\varepsilon_0} \left(r - \frac{R_1^2}{r}\right) + C$$

$$\varphi_2 = -\frac{\rho_0 R_2}{2\varepsilon_0} \left(r - \frac{R_1^2}{r}\right) + C$$

$$(5)$$

 $r > R_2$

$$\varphi = -\int \frac{\rho_0 R_2 \cdot (R_2^2 - R_1^2)}{2r^2 \varepsilon_0} = \frac{\rho_0 R_2 \cdot (R_2^2 - R_1^2)}{2r \varepsilon_0} + c$$

$$\varphi(r \to \infty) = 0 \Rightarrow C = 0$$

$$\varphi_3 = \frac{\rho_0 R_2 \cdot (R_2^2 - R_1^2)}{2r \varepsilon_0}$$
(6)

5 Числові формули

$$\varphi_{2}(R_{2}) = \varphi_{3}(R_{2}) \Rightarrow C = \frac{\rho_{0}R_{2}^{2}}{\varepsilon_{0}}$$

$$\varphi_{2} = -\frac{\rho_{0}R_{2}}{2\varepsilon_{0}} \left(r - \frac{R_{1}^{2}}{r}\right) + \frac{\rho_{0}R_{2}^{2}}{\varepsilon_{0}} = \frac{-\rho_{0}R_{2}(r^{2} - R_{1}^{2}) + 2\rho_{0}R_{2}^{2}}{2\varepsilon_{0}} = \frac{\rho_{0}R_{2}(2R_{2} - r^{2} + R_{1}^{2})}{2\varepsilon_{0}}$$
(7)

6 Розрахунок

	r	ρ	E	φ
0	0.0	∞	0.0	28.25
1	0.01	10.0	0.0	28.25
2	0.02	5.0	0.0	28.25
3	0.03	3.33	0.0	28.25
4	0.04	2.5	0.0	28.25
5	0.05	2.0	0.0	28.25
6	0.06	1.67	86.32	27.78
7	0.07	1.43	138.36	26.63
8	0.08	1.25	172.14	25.07
9	0.09	1.11	195.3	23.23
10	0.1	1.0	211.86	21.19
11	0.11	0.91	175.09	19.26
12	0.12	0.83	147.13	17.66
13	0.13	0.77	125.36	16.3
14	0.14	0.71	108.09	15.13
15	0.15	0.67	94.16	14.12
16	0.16	0.62	82.76	13.24
17	0.17	0.59	73.31	12.46
18	0.18	0.56	65.39	11.77
19	0.19	0.53	58.69	11.15
20	0.2	0.5	52.97	10.59

7 Графіки

(а) Залежність густини від r

(b) Залежність напруженості від r

(c) Залежність потенціалу від r

Рис. 2: Графіки залежностей