SEQUENTIAL

R TYPE - > instructions_test_1.hex

Dont change

0x00418133

0x004202b3

0x40d605b3

0x005261b3

0x01e370b3

0x40b58533

0x00f6f533

0x009403b3

0x01498933

0x00e6e633

0x413908b3

0x01eeee33

0x01eefe33

0x00c5f533

0x000000b3

0x00000133

add x2, x3, x4 x2=7 add x5, x4, x4 x5=8 sub x11, x12, x13 x11=-1 or x3, x4, x5 x3=5 and x1, x6, x30 x1=36 sub x10, x11, x11 x10=22 and x10, x13, x15 x10=27....

add x7, x8, x9

add x18, x19, x20

or x12, x13, x14

sub x17, x18, x19

or x28, x29, x30

and x28, x29, x30

and x10, x11, x12

add x1, x0, x0

Sequential_Design_TestCase_1

Instruction	Opcode	Destination Register	Computation	Result
add x2, x3, x4	0x00418133	x2	x3 + x4 = 3 + 4	7
add x5, x4, x4	0x004202b3	x5	x4 + x4 = 4 + 4	8
sub x11, x12, x13	0x40d605b3	x11	x12 - x13 = 12 - 13	-1
or x3, x4, x5	0x005261b3	х3	x4 OR x5 = 4 OR 8 = 12	12
and x1, x6, x30	0x01e370b3	x1	x6 AND x30 = 6 AND 30	6
sub x10, x11, x11	0x40b58533	x10	x11 - x11 = -1 - (-1)	0
and x10, x13, x15	0x00f6f533	x10	x13 AND x15 = 13 AND 15	13
add x7, x8, x9	0x009403b3	x7	x8 + x9 = 8 + 9	17
add x18, x19, x20	0x01498933	x18	x19 + x20 = 19 + 20	39
ог x12, x13, x14	0x00e6e633	x12	x13 OR x14 = 13 OR 14	15
sub x17, x18, x19	0x413908b3	x17	x18 - x19 = 39 - 19	20
ог x28, x29, x30	0x01eeee33	x28	x29 OR x30 = 29 OR 30	31
and x28, x29, x30	0x01eefe33	x28	x29 AND x30 = 29 AND 30	28
and x10, x11, x12	0x00c5f533	x10	x11 AND x12 = (-1) AND 15	15
add x1, x0, x0	0x000000b3	x1	x0 + x0 = 0 + 0	0

BRANCH -> test_2.hex

Dont change

- 1. 0x00418133
- 2. 0x004202b3
- 3. 0x00a00513
- 4. 0x00a00593
- 5. 0x40310233
- 6. 0x00b50463
- 7. 0x01e370b3
- 8. 0x40b58533
- 9. 0x00f6f533
- 10. 0x009403b3
- 11. 0x01498933
- 12. 0x00e6e633
- 13. 0x00418133
- 14. 0x004202b3
- 15. 0x00a00513
- 16. 0x00a00593
- 1. add x2, x3, x4
- 2. add x5,x4,x4
- 3. addi x10, x0, 10
- 4. addi x11, x0, 10
- 5. sub x4, x2, x3
- 6. beq x10, x11, 16(12 pc)
- 7. and x1, x6, x30
- 8. sub x10, x11, x11
- 9. and x10, x13, x15
- 10. add x7, x8, x9
- 11. add x18, x19, x20
- 12. or x12, x13, x14
- 13. add x2, x3, x4
- 14. add x5,x4,x4
- 15. addi x10, x0, 10
- 16. addi x11, x0, 10

Sequential_Design_TestCase_2

PC	Instruction	Computation	Result	New PC
0×00	add x2, x3, x4	x2 = x3 + x4 = 3 + 4	x2 = 7	0x04
0x04	add x5, x4, x4	x5 = x4 + x4 = 4 + 4	x5 = 8	0x08
0x08	addi x10, x0, 10	x10 = x0 + 10 = 10	x10 = 10	0x0C
0×0C	addi x11, x0, 10	x11 = x0 + 10 = 10	x11 = 10	0x10
0x10	sub x4, x2, x3	x4 = x2 - x3 = 7 - 3	x4 = 4	0x14
0x14	beq x10, x11, 8	x10 == x11 (10 == 10) → BRANCH	PC = 0x14 + 16	0x24
Skipped	and x1, x6, x30	Skipped due to branch	-	-
Skipped	sub x10, x11, x11	Skipped due to branch	-	-
Skipped	and x10, x13, x15	Skipped due to branch	-	-
Skipped	add x7, x8, x9	Skipped due to branch	-	-
0×24	add x18, x19, x20	x18 = x19 + x20 = 19 + 20	x18 = 39	0x28
0x28	or x12, x13, x14	x12 = x13 OR x14 = 13 OR 14	x12 = 15	0x2C
0x2C	add x2, x3, x4	x2 = x3 + x4 = 3 + 4	x2 = 7	0x30
0x30	add x5, x4, x4	x5 = x4 + x4 = 4 + 4	x5 = 8	0x34
0x34	addi x10, x0, 10	x10 = x0 + 10 = 10	x10 = 10	0x38
0x38	addi x11, x0, 10	x11 = x0 + 10 = 10	x11 = 10	0x3C

LOAD / STORE /ARITHMETIC -> instructions_test_3.hex

- Dont change
- 0x00803283
- 0x01003303
- 0x006283b3
- 0x00743423
- 0x00843583
- 0x00418133
- 0x004202b3
- 0x40d605b3
- 0x005261b3
- 0x01e370b3
- 0x40b58533
- 0x00f6f533
- 0x009403b3
- 0x01498933
- 0x00e6e633
- 0x413908b3
 - 1. Id x5, 8(x0)->0
 - 2. ld x6, 16(x0)->1
 - 3. add x7, x5, x6
 - 4. sd x7, 8(x8)
 - 5. Ld x11,8(x8)
 - 6. add x2, x3, x4
 - 7. add x5, x4, x4
 - 8. sub x11, x12, x13
 - 9. or x3, x4, x5
 - 10. and x1, x6, x30
 - 11. sub x10, x11, x11
 - 12. and x10, x13, x15
 - 13. add x7, x8, x9
 - 14. add x18, x19, x20
 - 15. or x12, x13, x14
 - 16. sub x17, x18, x19

Sequential_Design_TestCase_3

PC	Instruction	Computation	Result
0×00	ld x5, 8(x0)	x5 = MEM[8/8] = MEM[1] = 1	x5 = 1
0×04	ld x6, 16(x0)	x6 = MEM[16/8] = MEM[2] = 2	x6 = 2
0×08	add x7, x5, x6	x7 = x5 + x6 = 1 + 2	x7 = 3
0×0C	sd x7, 8(x8)	MEM[8 + x8] = x7	MEM updated
0×10	ld x11, 8(x8)	x11 = MEM[8 + x8]	x11 = 3
0×14	add x2, x3, x4	x2 = x3 + x4 = 3 + 4	x2 = 7
0x18	add x5, x4, x4	x5 = x4 + x4 = 4 + 4	x5 = 8
0x1C	sub x11, x12, x13	x11 = x12 - x13 = 12 - 13	x11 = -1
0×20	or x3, x4, x5	x3 = x4 OR x5 = 4 OR 8	x3 = 12
0×24	and x1, x6, x30	x1 = x6 AND x30 = 2 AND 30	x1 = 2
0x28	sub x10, x11, x11	x10 = x11 - x11 = -1 - (-1)	x10 = 0
0×2C	and x10, x13, x15	x10 = x13 AND x15 = 13 AND 15	x10 = 13
0x30	add x7, x8, x9	x7 = x8 + x9 = 8 + 9	x7 = 17
0x34	add x18, x19, x20	x18 = x19 + x20 = 19 + 20	x18 = 39
0x38	or x12, x13, x14	x12 = x13 OR x14 = 13 OR 14	x12 = 15
0x3C	sub x17, x18, x19	x17 = x1 + x19 = 39 - 19	x17 = 20

PIPELINING NO HAZARD(ENUF INSTRUCTIONS IN BETWEEN)

- 0x003100b3
- 0x40310233
- 0x003172b3
- 0x00316333
- 0x009403b3
- 0x409403b3
- 0x00a40513
- 0x009465b3
- 0x00946633
- 0x010786b3
- 0x41078733
- 0x00a00013
- 0x0020e8b3
- 0x00000e93
- 0x00000f13
- 0x00000513
 - 1. add x1, x2, x3
 - 2. sub x4, x2, x3
 - 3. and x5, x2, x3
 - 4. or x6, x2, x3
 - 5. add x7, x8, x9
 - 6. Sub x7,x8,x9
 - 7. addi x10, x8, 10
 - 8. or x11, x8, x9
 - 9. or x12, x8, x9
 - 10. add x13, x15, x16
 - 11. sub x14, x15, x16
 - 12. addi x0, x0, 10//NOTE
 - 13. or x17, x1, x2
 - 14. addi x29, x0, 0
 - 15. addi x30, x0, 0
 - 16. addi x10, x0, 0

Pipeline Execution Table

Cycle	IF	ID	EX	MEM	WB
CC0	add x1, x2,	-	-	-	-
CC1	sub x4, x2,	add x1, x2, x3	-	-	-
CC2	and x5, x2,	sub x4, x2, x3	add x1, x2,	-	-
ССЗ	or x6, x2, x3	and x5, x2,	sub x4, x2,	add x1, x2,	-
CC4	add x7, x8,	or x6, x2, x3	and x5, x2,	sub x4, x2,	add x1, x2,
CC5	sub x7, x8, x9	add x7, x8,	or x6, x2, x3	and x5, x2,	sub x4, x2,
CC6	addi x10, x8,	sub x7, x8,	add x7, x8,	or x6, x2, x3	and x5, x2,
CC7	or x11, x8,	addi x10, x8,	sub x7, x8,	add x7, x8,	or x6, x2, x3
CC8	or x12, x8,	or x11, x8,	addi x10, x8,	sub x7, x8,	add x7, x8,
CC9	add x13, x15, x16	or x12, x8,	or x11, x8,	addi x10, x8,	sub x7, x8,
CC10	sub x14, x15, x16	add x13, x15, x16	or x12, x8,	or x11, x8,	addi x10, x8,
CC11	addi x0, x0, 10	sub x14, x15, x16	add x13, x15, x16	or x12, x8,	or x11, x8,
CC12	or x17, x1,	addi x0, x0, 10	sub x14, x15, x16	add x13, x15, x16	or x12, x8,
CC13	addi x29, x0,	or x17, x1,	addi x0, x0, 10	sub x14, x15, x16	add x13, x15, x16
CC14	addi x30, x0,	addi x29, x0,	or x17, x1,	addi x0, x0, 10	sub x14, x15, x16
CC15	addi x31, x0,	addi x30, x0,	addi x29, x0,	or x17, x1,	addi x0, x0,
CC16	addi x10, x0,	addi x31, x0,	addi x30, x0,	addi x29, x0,	or x17, x1,
CC17	-	addi x10, x0,	addi x31, x0,	addi x30, x0,	addi x29, x0,
CC18	-	-	addi x10, x0,	addi x31, x0,	addi x30, x0,
CC19	-	-	-	addi x10, x0,	addi x31, x0,
CC20	-	-	-	-	addi x10, x0,

LOAD/USE INSTRUCTIONS WITHOUT HAZARDS

- 00843183
- 00883203
- 00000513
- 00000593
- 00000613
- 00000693
- 00000713
- 00443023
- 00000513
- 00000593
- 00000613
- 00000693
- 00000713
 - 1. ld x3, 8(x8)
 - 2. ld x4, 8(x16)
 - 3. addi x10, x0, 0
 - 4. addi x11, x0, 0
 - 5. addi x12, x0, 0
 - 6. addi x13, x0, 0
 - 7. addi x14, x0, 0
 - 8. sd x4, 0(x8)
 - 9. addi x10, x0, 0
 - 10. addi x11, x0, 0
 - 11. addi x12, x0, 0
 - 12. addi x13, x0, 0
 - 13. addi x14, x0, 0

FORWARDING UNIT WITH DOUBLE AND SINGLE FORWARDING WITHOUT LD/USE (NTNG BUT NO HAZARD DETECTION)

SINGLE DATA HAZARD:

0x00308133

0x00510633

0x002306b3

0x00210733

add x2, x1,x3 //x2=4 Add x12,x2,x5 //x12=9 add x13,x6,x2 //x13=10 add x14,x2,x2//x14=8

DOUBLE DATA HAZARD:

0x002080b3

0x003080b3

0x004080b3

add x1,x1,x2

add x1,x1,x3

add x1,x1,x4

HAZARD UNIT(ALMOST PEAK LIFE)

0x01043103

0x00228233

0x40610433

0x002204b3

Ld x2,16(x8)

Add x4,x5,x2

Sub x8,x2,x6

Add x9,x4,x2

For control hazard Same as seq_branch check

1.0x00418133

- 2. 0x004202b3
- 3. 0x00a00513
- 4. 0x00a00593
- 5. 0x40310233
- 6. 0x00b50463
- 7. 0x01e370b3
- 8. 0x40b58533
- 9. 0x00f6f533
- 10. 0x00940 3b3
- 11. 0x01498933
- 12. 0x00e6e633
- 13. 0x00418133
- 14. 0x004202b3
- 15. 0x00a00513
- 16. 0x00a00593
- 1.add x2, x3, x4
- 2. add x5,x4,x4
- 3. addi x10, x0, 10
- 4. addi x11, x0, 10
- 5. sub x4, x2, x3
- 6. beq x10, x11, 8 (9th pc)
- 7. and x1, x6, x30
- 8. sub x10, x11, x11
- 9. and x10, x13, x15
- 10. add x7, x8, x9
- 11. add x18, x19, x20
- 12. or x12, x13, x14
- 13. add x2, x3, x4
- 14. add x5,x4,x4
- 15. addi x10, x0, 10
- 16. addi x11, x0, 10

Including load store beq

- 1. 0x00803103
- 2. 0x00803203
- 3. 0x00410463
- 4. 0x00418133
- 5. 0x004202b3
- 6. 0x40d605b3
- 7. 0x005261b3
- 8. 0x01e370b3
- 9. 0x40b58533
- 10. 0x00f6f533
- 11. 0x009403b3
- 1.

Ld x2,8(x0)

- 2. Ld x4,8(x0)
- 3. Beq x2,x4,8 //jump to 6th instruction
- 4. add x2, x3, x4 x2=7
- 5. add x5, x4, x4 x5=8
- 6. sub x11, x12, x13 x11=-1
- 7. or x3, x4, x5 x3=5
- 8. and x1, x6, x30 x1=36
- 9. sub x10, x11, x11 x10=22
- 10. and x10, x13, x15 x10=27....
- 11. add x7, x8, x9