Qualificação de Mestrado

Lucas Giraldi Almeida Coimbra

14 de fevereiro de 2024

Conteúdo

1	Álgebra Linear 1.1 Fundamentos e Dualidade	2 8 17 21
2	Grupos	21
3	Anéis	21
4	Corpos	21
5	Métricos	21
6	Análise 1	21
7	Análise 2	21
8	Análise Complexa	21
9	Medida	21
10	Funcional	21
11	EDO	21
12	EDP	21
13	Probabilidade	21
14	Topologia	21
15	Topologia Algébrica	21
16	Topologia Diferencial	21
17	Análise em Variedades	21
18	Riemanniana	21

1 Álgebra Linear

1.1 Fundamentos e Dualidade

Fundamentos

Tome $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Um **espaço vetorial** é um conjunto V munido de duas operações

$$\begin{array}{cccc} +: V \times V \to V & & : \mathbb{K} \times V \to V \\ (x,y) \mapsto x + y & e & (\lambda,x) \mapsto \lambda x \end{array} \tag{1}$$

tais que a operação + (soma) é comutativa, associativa, possui identidade e todos os inversos, e a operação de · (produto por escalar) satisfaz as relações distributivas, 1x = x e $\lambda(\mu x) = (\lambda \mu)x$.

Um subespaço vetorial de um espaço vetorial V é um subconjunto $S \subset V$ tal que para todos $x, y \in S$ e $\lambda \in \mathbb{K}$, temos $x + y \in S$ e $\lambda x \in S$. Todo espaço vetorial é um subespaço vetorial de si mesmo, assim como $\{0\}$ é sempre um subespaço vetorial. Chamamos V e $\{0\}$ de subespaços triviais. Se $U, W \subset V$ são dois subespaços, então o conjunto $U + V = \{u + w \mid u \in U, w \in W\}$ é a soma desses subespaços, e é também um subespaço. Se $U \cap W = \{0\}$, então diremos que a soma desses espaços é uma soma direta e a denotamos por $U \oplus W$. A intersecção $U \cap W$ também é sempre um subespaço vetorial.

Uma combinação linear de vetores em V é uma soma finita

$$\sum_{i=1}^{n} \lambda^i x_i = 0 \tag{2}$$

onde cada $\lambda^i \in \mathbb{K}$ e cada $x_i \in V$. Dado um conjunto $S \subset V$, o conjunto $\langle S \rangle$ de todas as combinações lineares de elementos de S é um subespaço vetorial de V, chamado de **subespaço gerado por** S. O conjunto S é **gerador** de V se $\langle S \rangle = V$.

Dizemos que $x_1, \ldots, x_n \in V$ são **linearmente independentes** se para quaisquer $\lambda^1, \ldots, \lambda^n \in \mathbb{K}$ tais que

$$\sum_{i=1}^{n} \lambda^i x_i = 0,\tag{3}$$

então $\lambda_i = 0$ para todo i. Vetores que não são linearmente independentes são **linearmente dependentes**. Fica claro da definição que um conjunto de vetores é linearmente dependente se, e somente se, um dos vetores pode ser escrito como combinação linear dos outros. Além disso, é fácil ver que se uma subcoleção de vetores é linearmente dependente, então a coleção original também é. Mais ainda, qualquer coleção de vetores que contenha o 0 é linearmente dependente.

Lema 1. Sejam $S = \{s_1, \ldots, s_n\}$ um gerador de V e v_1, \ldots, v_m vetores linearmente independentes. Então, $m \le n$.

Demonstração. Suponha que m > n. Como S gera V, então existem $\lambda^1, \ldots, \lambda^n$ tais que

$$y_1 = \sum_{i=1}^n \lambda^i s_i. \tag{4}$$

Como $y_1 \neq 0$ (pela independência linear), então algum λ_j é não nulo, ou seja, podemos substituir s_j por y_1 e o conjunto resultante ainda gera V. Pela independência linear dos y_i , podemos fazer essa operação mais n-1 vezes, garantindo que y_1, \ldots, y_n geram V. Porém, isso significa que y_{n+1}, \ldots, y_m são combinação linear de y_1, \ldots, y_n , o que contradiz a independência linear. Segue então que $m \leq n$.

Um espaço V é **finitamente gerado** se existe um conjunto gerador finito. Uma **base** de V é um conjunto gerador linearmente independente.

Lema 2. Todo espaço finitamente gerado possui uma base.

Demonstração. Se $S = \{s_1, \ldots, s_n\}$ gera V, então se S é linearmente independente o trabalho acabou. Caso contrário, algum s_i é combinação linear dos outros, e então retiramos ele e o conjunto resultante ainda gera V. Fazemos isso até que os vetores que sobram em S sejam linearmente independentes, e assim temos uma base.

A partir de agora vamos trabalhar apenas com espaços finitamente gerados e, caso queiramos falar em um contexto mais geral, iremos explicitar. A **dimensão** de um espaço V, denotada por dimV, é o número de elementos de uma base. Pelo Teorema a seguir, esse número está bem definido.

Teorema 3. Toda base possui mesmo número de elementos.

Demonstração. Como bases são linearmente independentes e geradoras, o resultado segue facilmente do Lema 1.

O Lema 2 assume implicitamente que o conjunto S que gera V é não vazio. Caso tenhamos $V = \langle \varnothing \rangle$, então $V = \{0\}$ e o chamamos de **espaço trivial**. Sua dimensão é, por definição, nula.

Teorema 4. Todo conjunto linearmente independente pode ser estendido para uma base.

Demonstração. Se S é um conjunto linearmente independente, então considere $\langle S \rangle$. Se $\langle S \rangle = V$, então o conjunto S já é uma base. Caso contrário, seja $v \in V \setminus \langle S \rangle$ e tome $S_1 = S \cup \{v\}$. Podemos agora testar se $\langle S_1 \rangle = V$ e, caso contrário, repetir o processo. Como o espaço V é finitamente gerado, esse processo obrigatoriamente acaba, que é quando adicionamos vetores o suficiente em S para que se torne uma base. \square

Note que todo subespaço de um espaço com dimensão finita, possui dimensão finita (pelo Lema 1). Se W é um subespaço de V, um subespaço U de V é um **complemento** de W se $U \oplus W = V$.

Teorema 5. Complementos sempre existem e são únicos.

Demonstração. Se W é um subespaço, seja v_1, \ldots, v_m uma base de W e a complete para uma base v_1, \ldots, v_m , w_1, \ldots, w_n de V. Defina $U = \langle w_1, \ldots, w_n \rangle$. Se $x \in U \cap W$, então existem $\lambda^1, \ldots, \lambda^m$ e μ^1, \ldots, μ^n em $\mathbb K$ tais que

$$x = \sum_{i=1}^{m} \lambda^{i} v_{i} = \sum_{j=1}^{n} \mu^{j} w_{j}, \tag{5}$$

ou seja,

$$\sum_{i=1}^{m} \lambda^{i} v_{i} + \sum_{j=1}^{n} \mu^{j} w_{j} = 0, \tag{6}$$

portanto cada λ^i e μ^j é nulo, da onde segue que x=0 e assim $U\cap W=\{0\}$. Mais ainda, se $x\in V$, então podemos escrever

$$x = \sum_{i=1}^{m} \lambda^{i} v_{i} + \sum_{j=1}^{n} \mu^{j} w_{j}$$
 (7)

e assim x = v + w com $v \in U$ e $w \in W$, da onde segue que $V = U \oplus W$.

Note que da demonstração acima tiramos um outro fato importante: se $V = U \oplus W$, então dim $V = \dim U + \dim W$. Esse fato pode ser generalizado, isso é, se $V = V_1 + \cdots + V_n$ e $V_i \cap V_j = \{0\}$ quando $i \neq j$, então escrevemos

$$V = V_1 \oplus \cdots \oplus V_n = \bigoplus_{i=1}^n V_i \tag{8}$$

e nesse caso temos

$$\dim V = \sum_{i=1}^{n} \dim V_i. \tag{9}$$

Proposição 6. Se $V = V_1 \oplus \cdots \oplus V_n$ e $x \in V$, então existem $x_i \in V_i$ únicos tais que $x = x_1 + \cdots + x_n$.

Demonstração. Considere bases v_i^j de cada V_j , e denota $m_j = \dim V_j$. Dado $x \in V$, existe uma combinação linear

$$x = \sum_{i_1=1}^{m_1} \lambda_1^{i_1} v_{i_1}^1 + \dots + \sum_{i_n=1}^{m_n} \lambda_n^{i_n} v_{i_n}^n,$$
(10)

e portanto podemos tomar

$$x_{j} = \sum_{i=1}^{m_{j}} \lambda_{j}^{i_{j}} v_{i_{j}}^{j}. \tag{11}$$

Para mostrarmos que essa é a única maneira de decompor x, suponha que $x = y_1 + \cdots + y_n$ com $y_j \in V_j$. Temos que

$$y_j = \sum_{i_j=1}^{m_j} \mu_j^{i_j} v_{i_j}^j \tag{12}$$

e assim

$$\sum_{i_1=1}^{m_1} (\lambda_1^{i_1} - \mu_1^{i_1}) v_{i_1}^1 + \dots + \sum_{i_n=1}^{m_n} (\lambda_n^{i_n} - \mu_n^{i_n}) v_{i_n}^n = 0$$
(13)

e portanto $\lambda_j^{i_j} - \mu_n^{i_j} = 0$ para todo j e todo $i_j \leq m_j$, da onde segue que $x_j = y_j$.

A **codimensão** de um subespaço S em um espaço V é definida por codim $S = \dim V - \dim S$. Um espaço de codimensão 1 é um **hiperplano** em V.

Uma transformação linear é um mapa $T\colon V\to W$ entre espaços vetoriais tal que T(x+y)=T(x)+T(y) e $T(\lambda x)=\lambda T(x)$ para todos $x,y\in V$ e $\lambda\in\mathbb{K}$. Se T for bijetora, dizemos que é um **isomorfismo linear** e que V e W são **isomorfos**. A cada transformação linear estão associados dois subespaços vetoriais: o **núcleo** e a **imagem**:

$$\ker T = \{ v \in V \mid T(v) = 0 \} \quad \text{e} \quad \text{im } T = \{ w \in W \mid w = T(v) \text{ para algum } v \in V \}. \tag{14}$$

É importante notar que uma transformação linear pode ser unicamente determinada pelo seus valores em alguma base do domínio. De fato, se e_1, \ldots, e_n é uma base de V, então dado $v \in V$ temos $v = \lambda^i e_i$ e portanto, por linearidade, $T(v) = \lambda^i T(e_i)$, assim basta sabermos as coordenadas de v e os valores de T na base para determinar T(v). A partir de agora, será comum denotarmos Tv para T(v) caso T seja linear.

Proposição 7. Uma transformação linear $T: V \to W$ é injetora se, e somente se, $\ker T = \{0\}$. Além disso, transformações lineares preservam dependência linear, e transformações lineares injetoras preservam independência linear.

Demonstração. Se T é injetora, então $\ker T=\{0\}$ pois só existe um vetor que é levado em $0\in W$, que é $0\in V$. Agora, se $\ker T=\{0\}$, então se T(v)=T(w), temos T(v)-T(w)=0 e assim T(v-w)=0, portanto v-w=0 e assim v=w.

Se v_1,\ldots,v_n são linearmente dependentes, então existem $\lambda^1,\ldots,\lambda^n$ não toodos nulos e tais que

$$\sum_{i=1}^{n} \lambda^i v_i = 0. \tag{15}$$

Dessa forma, se T é linear, como T(0) = 0 temos

$$\sum_{i=1}^{n} \lambda^i T(v_i) = 0, \tag{16}$$

assim os vetores $T(v_i)$ são linearmente dependentes.

Se v_1, \ldots, v_n são linearmente independentes e T é injetora, então considere uma combinação linear nula

$$\sum_{i=1}^{n} \lambda^i T(v_i) = 0. \tag{17}$$

Como T é linear, isso equivale a dizer que

$$T\left(\sum_{i=1}^{n} \lambda^{i} v_{i}\right) = 0 \tag{18}$$

e, como T é injetora, então

$$\sum_{i=1}^{n} \lambda^i v_i = 0, \tag{19}$$

assim cada $\lambda^i = 0$ e portanto os vetores $T(v_i)$ são linearmente independentes.

Corolário 8. Se V e W tem dimensão finita, então são isomorfos se, e somente se, tem a mesma dimensão.

Demonstração. Se $T: V \to W$ é isomorfismo, considere uma base v_1, \ldots, v_n de V. Então $T(v_1), \ldots, T(v_n)$ são linearmente independentes e geram a imagem, afinal, se $w \in \operatorname{im} T$, então existe $v \in V$ com T(v) = w, assim

$$w = T\left(\sum_{i=1}^{n} \lambda^{i} v_{i}\right) = \sum_{i=1}^{n} \lambda^{i} T(v_{i}).$$

$$(20)$$

Como T é sobrejetor, im T=W, portanto $T(v_1),\ldots,T(v_n)$ formam base de W, assim dim $V=\dim W$. Se dim $V=\dim W=n$, então sejam v_1,\ldots,v_n e w_1,\ldots,w_n bases de V e W, respectivamente. Definimos $T\colon V\to W$ por $T(v_i)=w_i$ e o estendemos por linearidade, ou seja, se

$$v = \sum_{i=1}^{n} \lambda^{i} v_{i}, \tag{21}$$

definimos

$$T(v) = \sum_{i=1}^{n} \lambda^{i} w_{i}. \tag{22}$$

Esse mapa é injetor pois se T(v) = 0, $\lambda^i = 0$ e assim v = 0. O mapa é sobrejetor pois se

$$w = \sum_{i=1}^{n} \mu^i w_i \in W, \tag{23}$$

então

$$T\left(\sum_{i=1}^{n} \mu^{i} v_{i}\right) = w. \tag{24}$$

Proposição 9. Se $T: V \to W$ é um isomorfismo, então T^{-1} também é.

Demonstração. T^{-1} é também bijetora, então basta mostrarmos sua linearidade. Se $v, w \in W$ e $\lambda \in \mathbb{K}$, então

$$T^{-1}(v+w) = T^{-1}(T(T^{-1}(v)) + T(T^{-1}(w))) = T^{-1}(T(T^{-1}(v) + T^{-1}(w))) = T^{-1}(v) + T^{-1}(w)$$
(25)

e, além disso,

$$T^{-1}(\lambda v) = T^{-1}(\lambda T(T^{-1}(v))) = T^{-1}(T(\lambda T^{-1}(v))) = \lambda T^{-1}(v).$$
(26)

Fixado W um subespaço de um espaço V, podemos definir uma relação de equivalência, denotada por

$$u \equiv v \mod W \tag{27}$$

se, e somente se, $u - v \in W$. Denotamos a classe de equivalência de $v \in V$ por [v] e o conjunto de todas as classes de equivalência por V/W, que será chamado de **quociente de V por W**. Esse conjunto possui estrutura de espaço vetorial utilizando as seguintes operações, que estão bem definidas:

$$[v] + [w] = [v + w] \quad e \quad \lambda[v] = [\lambda v].$$
 (28)

Proposição 10. Se V é um espaço vetorial e W um subespaço, então $\dim V/W = \dim V - \dim W$. Mais precisamente, se w_1, \ldots, w_n é uma base de V de maneira que $w_1, \ldots, w_n, v_1, \ldots, v_m$ é uma base de V, então $[v_1], \ldots, [v_m]$ é uma base de V/W.

Demonstração. Primeiro, vamos verificar que $[v_1], \ldots, [v_m]$ são linearmente independentes. De fato, considere uma combinação linear nula

$$\sum_{i=1}^{n} \lambda^{i} [v_{i}] = [0]. \tag{29}$$

Pela definição das operaçções no quociente, temos que

$$\left[\sum_{i=1}^{n} \lambda^{i} v_{i}\right] = [0], \tag{30}$$

ou seja,

$$\sum_{i=1}^{m} \lambda^{i} v_{i} = w \in W. \tag{31}$$

Escrevendo w na base de W, temos

$$\sum_{i=1}^{m} \lambda^{i} v_{i} = \sum_{j=1}^{n} \mu^{j} w_{j}, \tag{32}$$

portanto $\lambda^i = \mu^j = 0$, da onde segue que $[v_1], \dots, [v_m]$ são linearmente independentes. O próximo passo é mostrar que esses vetores geram V/W. Se $[v] \in V/W$, então

$$v = \sum_{i=1}^{m} \lambda^{i} v_{i} + \sum_{j=1}^{n} \mu^{j} w_{j}$$
 (33)

e assim

$$[v] = \left[\sum_{i=1}^{m} \lambda^{i} v_{i} + \sum_{j=1}^{n} \mu^{j} w_{j}\right] = \sum_{i=1}^{m} \lambda^{i} [v_{i}] + \sum_{j=1}^{n} \mu^{j} [w_{j}] = \sum_{i=1}^{m} \lambda^{i} [v_{i}] + \sum_{j=1}^{n} \mu^{j} [0] = \sum_{i=1}^{m} \lambda^{i} [v_{i}].$$
(34)

Como corolário, se dim $V = \dim W$, temos que dim V/W = 0, portanto $V/W = \{0\}$ e assim V = W. O proxímo item é o que chamamos de teorema do isomorfismo, na sua versão linear.

Teorema 11. Se $T: V \to W$ é linear, então o mapa

$$\tilde{T} : V / \ker T \to \operatorname{im} T$$

$$[v] \mapsto T(v)$$
(35)

está bem definido e é um isomorfismo linear. Como consequência, temos o teorema do núcleo e imagem:

$$\dim V = \dim \operatorname{im} T + \dim \ker T.$$

Demonstração. O mapa é sobrejetor, afinal, se $w \in \operatorname{im} T$, então existe $v \in V$ tal que T(v) = w, portanto $\tilde{T}([v]) = w$. O mapa é injetor, afinal, se $[v] \in \ker \tilde{T}$, então $\tilde{T}([v]) = 0$, assim T(v) = 0, portanto $v \in \ker T$ e assim [v] = [0]. Como dim $V/\ker T = \dim V - \dim \ker T$ e \tilde{T} é isomorfismo, então

$$\dim V - \dim \ker T = \dim \operatorname{im} T, \tag{36}$$

de onde segue o resultado.

Se V e W são espaços vetoriais, o conjunto $V \times W$ é também um espaço vetorial com as operações

$$(x,y) + (v,w) = (x+v,y+w) \quad e \quad \lambda(x,y) = (\lambda x, \lambda y). \tag{37}$$

Se V = U + W, e $I = U \cap W$, então podemos tomar $T: U \times W \to V$ dada por $(u, w) \mapsto u + w$. Como V = U + W, o mapa é sobrejetor. Além disso, seu núcleo é $\{(x, -x) \mid x \in I\}$, que é isomorfo a I, assim segue do teorema do isomorfismo que

$$\dim U \times V = \dim V + \dim U \cap W \tag{38}$$

e, como dim $U \times V = \dim U + \dim V$, segue que

$$\dim V = \dim U + \dim W - \dim U \cap W. \tag{39}$$

Proposição 12. Se V e W possuem a mesma dimensão finita, então são equivalentes as seguintes afirmações sobre uma transformação linear $T: V \to W$:

- T é injetora;
- T é sobrejetora;
- T é um isomorfismo;
- T leva bases em bases;

Demonstração. Se T é injetora, então $\ker T = \{0\}$ e assim, pelo teorema do núcleo e imagem, $\dim W = \dim V = \dim \ker T + \dim \operatorname{im} T = \dim \operatorname{im} T$, assim $\operatorname{im} T = W$ e T é sobrejetora.

Se T é sobrejetora, então $\dim \operatorname{im} T = \dim W = \dim V$, assim $\dim V = \dim \ker T + \dim V$, portanto $\dim \ker T = 0$ e portanto $\ker T = \{0\}$, da onde segue que T é injetora, e portanto um isomorfismo (pois já é sobrejetora).

Se T é isomorfismo, então se v_1, \ldots, v_n é base de V, então pela injetividade, $T(v_1), \ldots, T(v_n)$ são linearmente independentes. Mais ainda, $T(v_1), \ldots, T(v_n)$ geram a imagem de T, que é W, portanto esses vetores formam base de W.

Por fim, se T leva bases em bases, então se v_1, \ldots, v_n é base de V e T(v) = 0, então se

$$v = \sum_{i=1}^{n} \lambda^{i} v_{i}, \tag{40}$$

temos

$$0 = T(v) = \sum_{i=1}^{n} \lambda^{i} T(v_{i}), \tag{41}$$

da onde segue, pela independência linear de $T(v_1), \ldots, T(v_n)$, que $\lambda^i = 0$, assim v = 0 e portanto T é injetora.

Dualidade

A partir de agora, todo espaço será finitamente gerado, ou em outros termos, terá dimensão finita. Seja V um espaço vetorial sobre \mathbb{K} (lembrando que $\mathbb{K} = \mathbb{R}, \mathbb{C}$). Um **funcional** ou **covetor** em V é um mapa linear $\varphi \colon V \to \mathbb{K}$. Denotamos o conjunto de todos os funcionais lineares em V por V^* . Esse conjunto se torna um espaço vetorial ao definirmos

$$(\varphi + \psi)(v) = \varphi(v) + \psi(v) \quad e \quad (\lambda \varphi)(v) = \lambda \varphi(v). \tag{42}$$

Fixada uma base $e = (e_1, \dots, e_n)$ de V (aqui, e representa uma lista de n vetores), se $v[e] = (v^1, \dots, v^n)$ são as coordenadas de v na base e, isso é,

$$v = \sum_{i=1}^{n} v^i e_i \tag{43}$$

, então podemos definir os mapas

$$\varepsilon^{i} \colon V \to \mathbb{K}$$

$$v \mapsto v^{i}$$
(44)

que vamos chamar de **diferenciais** com respeito a base e. A lista de vetores $\varepsilon = (\varepsilon^1, \dots, \varepsilon^n)$ é uma base de V^* , chamada de **base dual** de e. O fato dessa lista ser uma base implica diretamente que o mapa $e_i \mapsto \varepsilon^i$ é um isomorfismo entre V e V^* . Esse isomorfismo não é natural, isso é, ele depende da escolha de base e. Uma outra base gera outro isomorfismo, e não existe uma base canônica que podemos considerar.

Para um exemplo de isomorfismo natural, podemos considerar o **espaço bidual** de V, que é simplesmente V^{**} , isso é, o conjunto de todos os funcionais em V^{*} . Se $v \in V$ e $\varphi \in V^{*}$, podemos definir $v(\varphi) = \varphi(v)$ e portanto tratar cada $v \in V$ como um elemento de V^{**} . Essa identificação gera um isomorfismo entre V e V^{**} que não depende de nenhuma escolha arbitrária.

Seja W um subespaço de V. O aniquilador de W, denotado por W^{\perp} , é o subespaço de V^* consistido de todos os covetores que se anulam em W.

Proposição 13. Se W é subespaço de V, então

$$\dim W^{\perp} + \dim W = \dim V, \tag{45}$$

ou seja, $\dim W^{\perp} = \operatorname{codim} W$.

Demonstração. Considere uma base w_1, \ldots, w_n de W e um completamento $w_1, \ldots, w_n, v_1, \ldots, v_m$ para uma base de V. Defina $T: V \to V^*$ por $T(w_i) = 0$ e $T(v_i) = v_i$, onde v_i são os elementos da base dual correspondentes a v_i . O núcleo de T é claramente W, basta most rarmos que im $T = W^{\perp}$.

Se $\varphi \in W^{\perp}$, então

$$\varphi = \sum_{i=1}^{n} \lambda^{i} \omega_{i} + \sum_{j=1}^{m} \mu^{j} \nu_{j}. \tag{46}$$

e assimm $\varphi(w_i) == \lambda^i$, mas $\varphi \in W^{\perp}$, portanto $\varphi(w_i) = 0$, assim

$$\varphi = \sum_{j=1}^{m} \mu^{j} \nu_{j} \tag{47}$$

e portanto

$$T\left(\sum_{j=1}^{m} \mu^{j} v_{j}\right) = \varphi,\tag{48}$$

assim $\varphi \in \operatorname{im} T$. Por outro lado, se $\varphi \in \operatorname{im} T$, então φ é combinação linear dos covetores ν_1, \dots, ν_m , que estão todos em W^{\perp} , portanto $\varphi \in W^{\perp}$, assim im $T = W^{\perp}$.

Proposição 14. Se W é um subespaço de V, então o isomorfismo $v \mapsto (\varphi \mapsto \varphi(v))$ identifica W com $W^{\perp \perp}$.

Demonstração. De fato, se $v \in W$, então precisamos mostrar que $v(\varphi) = 0$ para todo $\varphi \in W^{\perp}$, isso é, $w \in W^{\perp \perp}$. Isso, porém, é óbvio, já que $v(\varphi) = \varphi(v) = 0$, já que $v \in W$.

Agora, se $w \in W^{\perp \perp}$, então $w(\varphi) = 0$ para todo $\varphi \in W^{\perp}$, ou seja, $\varphi(w) = 0$ para todo $\varphi \in W^{\perp}$, assim $w \in W$.

1.2 Mapas Lineares, Matrizes, Determinante e Traço

Mapas Lineares e Matrizes

Um fato utilizando anteriormente, e que não foi provado, é que a composição de mapas lineares é linear.

Proposição 15. Composição de mapas lineares é linear e, em particular, composição de isomorfismos é isomorfismo. Mais ainda, se S e T são isomorfismos, $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$.

Demonstração. Se $T\colon V\to W$ e $S\colon W\to U$ são lineares, então dados $u,v\in V$ e $\lambda\in\mathbb{K}$, temos

$$(S \circ T)(u+v) = S(T(u+v)) = S(T(u) + T(v)) = S(T(u)) + S(T(v)) = (S \circ T)(u) + (S \circ T)(v)$$
(49)

e, além disso,

$$(S \circ T)(\lambda u) = S(T(\lambda u)) = S(\lambda T(u)) = \lambda S(T(u)) = \lambda (S \circ T)(u). \tag{50}$$

Se T e S forem isomorfismos, então

$$(S \circ T) \circ (T^{-1} \circ S^{-1}) = S \circ (T \circ T^{-1}) \circ S^{-1} = S \circ S^{-1} = \mathrm{Id}_{U}$$
 (51)

e, além disso,

$$(T^{-1} \circ S^{-1}) \circ (S \circ T) = T^{-1} \circ (S^{-1} \circ S) \circ T = T^{-1} \circ T = \mathrm{Id}_V.$$
 (52)

Além disso, a demonstração de que o núcleo de um mapa linear é um subespaço vetorial também nunca foi apresentada, mas isso é por que esse fato é um corolário de um resultado um pouco mais geral.

Proposição 16. Se $T: V \to W$ é linear e $U \subset W$ é um subespaço, então $T^{-1}(U)$ é um subesaço

Demonstração. De fato, se $u, v \in T^{-1}(U)$, então $T(u), T(v) \in W$, assim $T(u+v) = T(u) + T(v) \in W$, portanto $u+v \in T^{-1}(W)$. Mais ainda, se $\lambda \in \mathbb{K}$, então $T(\lambda u) = \lambda T(u) \in W$, assim $\lambda u \in T^{-1}(W)$.

Podemos observar que, em coordenadas, todo mapa linear possui uma forma canônica.

Proposição 17. Se dim V=n, dim W=m e $T\colon V\to W$ é linear, então fixadas e e f bases de V e W temos

$$Tv[f] = \left(\sum_{i_1=1}^n \lambda_{i_1}^1 v[e]^{i_1}, \dots, \sum_{i_m=1}^n \lambda_{i_m}^m v[e]^{i_m}\right)$$
(53)

onde Tv[f] são as coordenadas de Tv na base f e $v[e]^j$ é a j-ésima coordenada de v na base e.

Podemos organizar os números λ_i^i da Proposição 17 em um retângulo da forma

$$\begin{bmatrix} \lambda_{1}^{1} & \lambda_{2}^{1} & \cdots & \lambda_{n-1}^{1} & \lambda_{n}^{1} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{n-1}^{2} & \lambda_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \lambda_{1}^{m-1} & \lambda_{2}^{m-1} & \cdots & \lambda_{n-1}^{m-1} & \lambda_{n}^{m-1} \\ \lambda_{1}^{m} & \lambda_{2}^{m} & \cdots & \lambda_{n-1}^{m} & \lambda_{n}^{m} \end{bmatrix}$$
(54)

Uma tabela nesse estilo será chamada de **matriz**. Cada coleção de números colocados na horizontal será uma **linha** da matriz, e cada coleção de números na vertical será uma **coluna** da matriz. Perceba que toda transformação da origem a uma matriz como a descrita acima, que vamos chamar de **matriz de** T **com respeito as bases** e **e** f. Para abreviar a notação, denotamos a matriz acima por $[T]_{e,f} = [\lambda_j^i]_{m \times n}$, onde m e n são o número de linhas e colunas, respectivamente.

Agora vamos introduzir as operações em matrizes. Se $A = [a_j^i]_{n \times m}$ e $B = [b_j^i]_{n \times m}$ são matrizes, então podemos somá-las e multiplicar uma delas por um escalar da seguinte forma:

$$A + B = [a_i^i + b_i^i]_{n \times m} \quad e \quad \lambda A = [\lambda a_i^i]_{n \times m}. \tag{55}$$

Além disso, se $C = [c_j^i]_{m \times k}$ então podemos definir um produto entre A e C (note que o número de linhas de C deve ser o mesmo número de colunas de A) fazendo

$$AC = \left[\sum_{s=1}^{m} a_s^i c_j^s\right]_{n \times k}.$$
 (56)

O produto não é comutativo, afinal, se $k \neq n$ então CA pode nem estar definido. Se $k = n \neq m$, então necessariamente $AC \neq CA$, visto que AC é $n \times n$ e $CA = m \times m$. Por fim, mesmo que n = m = k, poderíamos ter $AC \neq CA$, por exemplo:

$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 7 & -1 \\ 1 & 3 \end{bmatrix} \quad e \quad \begin{bmatrix} 3 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 2 & 4 \end{bmatrix}. \tag{57}$$

Proposição 18. Toda matriz vem de um mapa linear.

Demonstração. Se $A = [a_j^i]$ é uma matriz $n \times m$, podemos enxergá-la como um mapa $\mathbb{R}^m \to \mathbb{R}^n$ que pega vetores $x = (x^1, \dots, x^n)$ e retorna Ax, onde x é visto como a matriz coluna

$$x = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix} \tag{58}$$

e Ax, que também é uma matriz coluna $n \times 1$, é identificada com um vetor de \mathbb{R}^n da mesma maneira. O mapa é linear, afinal,

$$A(x+y) = \left[\sum_{k=1}^{m} a_k^i (x^k + y^k)\right]_{n \ge 1} = \left[\sum_{k=1}^{m} a_k^i x^k + \sum_{k=1}^{m} a_k^i y^k\right]_{n \ge 1} = Ax + Ay$$
 (59)

e, além disso,

$$A(\lambda x) = \left[\sum_{k=1}^{m} a_k^i(\lambda x^k)\right]_{n \ge 1} = \left[\lambda \sum_{k=1}^{m} a_k^i x^k\right]_{n \ge 1} = \lambda A x. \tag{60}$$

É fácil notar que a matriz de A com respeito às bases canônicas de \mathbb{R}^m e \mathbb{R}^n é a própria A.

Todo sistema linear pode ser traduzido para uma equação de matrizes. De fato, considere o sistema linear

$$\begin{cases}
 a_1^1 x^1 + \dots + a_m^1 x^m = b^1 \\
 \vdots \\
 a_1^n x^1 + \dots + a_m^n x^m = b^n
\end{cases}$$
(61)

e perceba que, denotando $x=(x^1,\ldots,x^n)$ e $b=(b^1,\ldots,b^n)$, podemos escrever esse sistema simplesmente como Ax=b, onde $A=[a_i^i]_{n\times m}$.

Se n > m, o sistema é dito **sobredeterminado**, e existem mais equações do que incógnitas. Nesse caso a matriz nunca pode ser sobrejetora, e sempre vão existir infinitos vetores b tais que Ax = b não possui solução. Se $b \in \text{im } A$, note que $A^{-1}(b) = y + \ker A$ para algum y tal que Ay = b, então ou toda solução é única (se A for injetora) ou nenhuma solução é única (caso contrário).

Se m > n, isso é, existe mais incógnitas do que equações, então A nunca é injetora, e assim sempre que existe solução para Ax = b, a solução nunca é única. A justificativa é simples, afinal, dim ker A = m-dim im A e dim im $A \le n < m$, assim dim ker A > 0 e, se $b \in \text{im } A$, então $A^{-1}(b) = y + \text{ker } A$ para alguma solução y, assim $A^{-1}(b)$ é infinito.

Se n=m, então se Ax=b sempre tem solução, ela é sempre única, pois sobrejetividade e injetividade de A são equivalentes. Nesse caso, A é um isomorfismo, denotamos sua inversa por A^{-1} e a solução do sistema é $x=A^{-1}b$. Note que checar a injetividade de A é determinar se Ax=0 possui solução não nula. Assumimos que o leitor já sabe técnicas de escalonamento de sistemas e portanto achar soluções já seja uma ferramenta conhecida.

Proposição 19. Se $S,T\colon V\to U$ e $R\colon U\to W$ são lineares e e, f e g são bases de $V,\ U$ e W, respectivamente, então

$$[T+S]_{e,f} = [T]_{e,f} + [S]_{e,f}, \quad [\lambda T]_{e,f} = \lambda [T]_{e,f} \quad e \quad [R \circ T]_{e,g} = [R]_{f,g} [T]_{e,f}. \tag{62}$$

Demonstração. Note que, se $[T]_{e,f} = [\lambda_i^i]$, $[S]_{e,f} = [\mu_i^i]$ e $[R]_{f,g} = [\nu_i^i]$, então

$$Te_{j} = \sum_{i=1}^{\dim U} \lambda_{j}^{i} f_{i}, \quad Se_{j} = \sum_{i=1}^{\dim U} \mu_{j}^{i} f_{i} \quad e \quad Rf_{j} = \sum_{i=1}^{\dim W} \nu_{j}^{i} g_{i},$$
 (63)

assim

$$(T+S)e_j = Te_j + Se_j = \sum_{i=1}^{\dim U} \lambda_j^i f_i + \sum_{i=1}^{\dim U} \mu_j^i f_i = \sum_{i=1}^{\dim U} (\lambda_j^i + \mu_j^i) f_i,$$
 (64)

portanto o resultado da soma segue. Similarmente

$$(\delta T)e_j = \delta T e_j = \delta \sum_{i=1}^{\dim U} \lambda_j^i f_i = \sum_{i=1}^{\dim U} (\delta \lambda_j^i) f_i, \tag{65}$$

portanto o resultado do produto por escalar segue. Por fim,

$$(R \circ T)e_j = RTe_j = R\left(\sum_{i=1}^{\dim U} \lambda_j^i f_i\right) = \sum_{i=1}^{\dim U} \lambda_j^i Rf_i = \sum_{i=1}^{\dim U} \lambda_j^i \sum_{k=1}^{\dim W} \nu_i^k g_k = \sum_{k=1}^{\dim W} \left(\sum_{i=1}^{\dim U} \lambda_j^i \nu_i^k\right) g_k, \quad (66)$$

da onde segue o resultado da composição.

Esse resultado é tudo que precisamos para tratar matrizes e mapas lineares como as mesmas entidades. Em particular, isso garante que $(AB)^{-1} = B^{-1}A^{-1}$ para matrizes também! Mesmo que o resultado tenha sido provado apenas para mapas.

Proposição 20. Se $T, S: V \to U$ e $R: U \to W$ são lineares, então vale que $R \circ (T+S) = R \circ T + R \circ S$. Se $Q: W \to V$ é linear, então vale que $(T+S) \circ Q = T \circ Q + S \circ Q$.

Demonstração. Na primeira distributiva, basta usar que R é linear e, na segunda, basta aplicar a definição da soma de mapas.

Se $T: V \to U$ é linear, então induz um mapa $T^{\top}: U^* \to V^*$, chamado de **transposto** de T, dado por $T^{\top}(\varphi) = \varphi \circ T$. Ao mesmo tempo, dada uma matriz $A = [a_j^i]_{n \times m}$ definimos sua **matriz transposta** por $A^{\top} = [a_j^i]_{m \times n}$. Adivinhem?

Proposição 21. Se e é uma base de V, f é uma base de U e ε e δ são suas bases duais, então

$$[T']_{\delta,\varepsilon} = [T]_{e,f}^{\top} \tag{67}$$

Demonstração. Como dim $V=\dim V^*$ e dim $U=\dim U^*$, as dimensões das duas matrizes batem. Agora, note que se

$$Te_j = \sum_{i=1}^{\dim U} \lambda_j^i f_i, \tag{68}$$

então

$$(T^{\top}\delta^{j})(e_{k}) = (\delta^{j} \circ T)(e_{k}) = \delta^{j} \left(\sum_{i=1}^{\dim U} \lambda_{k}^{i} f_{i} \right) = \lambda_{k}^{j}, \tag{69}$$

assim, se $v[e] = (v^1, \dots, v^n)$ então

$$(T^{\top}\delta^j)(v) = \sum_{i=1}^n \lambda_i^j v^i = \sum_{i=1}^n \lambda_i^j \varepsilon^i(v), \tag{70}$$

portanto

$$T^{\top} \delta^j = \sum_{i=1}^n \lambda_i^j \varepsilon^i, \tag{71}$$

provando assim o resultado.

Vamos agora mostrar alguns fatos sobre a transposta de mapas lineares.

Proposição 22. Se $T, S: V \to U$ e $R: U \to W$ são lineares, então $(R \circ T)^{\top} = T^{\top} \circ R^{\top}$, $(T+S)^{\top} = T^{\top} + S^{\top}$ e, se T for um isomorfismo, então T^{\top} também é e $(T^{\top})^{-1} = (T^{-1})^{\top}$.

Demonstração. Note que

$$(R \circ T)^{\top} \varphi = \varphi \circ R \circ T = T^{\top} (\varphi \circ R) = T^{\top} (R^{\top} \varphi)$$
(72)

e, além disso,

$$(T+S)^{\top}\varphi = \varphi \circ (T+S) = \varphi \circ T + \varphi \circ S = T^{\top}\varphi + S^{\top}phi. \tag{73}$$

Por fim, se T for isomorfismo, então

$$(T^{\top} \circ (T^{-1})^{\top})\varphi = \varphi \circ T^{-1} \circ T = \varphi \quad \mathbf{e}((T^{-1})^{\top} \circ T^{\top})\varphi = \varphi \circ T \circ T^{-1} = \varphi, \tag{74}$$

portanto
$$(T^{\top})^{-1} = (T^{-1})^{\top}$$
.

Até agora, temos maquinário para provar um monte de coisas sobre matrizes, usando mapas lineares. Mas e o contrário, é possível? Podemos garantir, por exemplo, que $T^{\top\top} = T$ (usando a idenficação natural $V^{**} = V$) usando apenas que isso é óbvio para matrizes? Sim! Porém, devemos anter terminar a nossa correspondência entre mapas lineares e matrizes. Já sabemos que toda matriz é um mapa linear, e todo mapa linear pode ser representado por uma matriz. Resta mostrar que essa correspondência "vai e volta":

Se $T: V \to U$ é um mapa linear, então o mapa induzido por uma matriz $[T]_{e,f}$ corresponde a T. Se A é uma matriz, então a matriz do mapa induzido por A, em alguma base, é A.

A segunda parte já concluímos anteriormente, então basta entendermos a primeira mais precisamente, e prová-la.

Proposição 23. Se $T: V \to U$ é um mapa linear, $\dim V = n$, $\dim U = m$ e e e f são bases de V e U, então o mapa $\mathbb{R}^n \to \mathbb{R}^m$ induzido por $[T]_{e,f}$ leva v[e] em Tv[f].

Demonstração. Sejam $[T]_{e,f}=[\lambda^i_j]_{m\times n}$ e $v[e]=(v^1,\ldots,v^n)$. Então o mapa induzido por $[T]_{e,f}$ é dado por

$$[T]_{e,f}(v^1,\dots,v^n) = \left(\sum_{i=1}^n \lambda_i^1 v^i,\dots,\sum_{i=1}^n \lambda_i^m v^i\right).$$
 (75)

Agora, note que

$$Tv = T\left(\sum_{i=1}^{n} v^{i} e_{i}\right) = \sum_{i=1}^{n} v^{i} T(e_{i}) = \sum_{i=1}^{n} v^{i} \sum_{j=1}^{m} \lambda_{i}^{j} f_{j} = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \lambda_{i}^{j} v^{i}\right) f_{j}, \tag{76}$$

o que conclui que $Tv[f] = [T]_{e,f}v[e]$.

Corolário 24. Se $T, S: V \to U$ são lineares e existem bases e e f de V e U tais que $[T]_{e,f} = [S]_{e,f}$, então T = S.

Demonstração. Como $[T]_{e,f} = [S]_{e,f}$, então eles levam v[e] em Tv[f] = Sv[f], portanto Tv = Sv.

Vamos usar isso ao nosso favor! Note que, em termos de matrizes, fica bem claro que, para qualquer matriz T, $T^{\top \top} = T$, já que estamos apenas trocando linhas por colunas, duas vezes. Isso indica, claro, que o mesmo vale para mapas lineares!

Proposição 25. Fazendo as identificações naturais de $V^{**} = V$ e $U^{**} = U$, se $T: V \to U$ é linear, então $T^{\top \top} = T$.

Demonstração. Como

$$[T]_{e,f}^{\top} = [T^{\top}]_{\delta,\varepsilon} \implies [T]_{e,f}^{\top\top} = [T^{\top}]_{\delta,\varepsilon}^{\top},$$
 (77)

e também

$$[T]_{e,f}^{\top\top} = [T]_{e,f} \quad e \quad [T^{\top}]_{\delta,\varepsilon}^{\top} = [T^{\top\top}]_{e,f},$$
 (78)

então

$$[T]_{e,f} = [T^{\top\top}]_{e,f}. \tag{79}$$

Prosseguindo com matrizes, vamos agora falar de posto. Dada uma matriz A de dimensões $n \times m$, o **posto** de A, denotado rank A, e que é a dimensão da imagem de A. Também definimos o **posto de linhas** de A, que é o maior número de linhas de A linearmente independentes, quando consideradas como vetores de \mathbb{R}^m . Por fim, definimos o **posto de colunas** de A, que é o maior número de colunas de A linearmente independentes, quando consideradas como vetores de \mathbb{R}^n . A ideia é mostrarmos que todos esses são equivalentes.

Proposição 26. As colunas de $A = [a_i^i]_{n \times m}$ geram im A.

Demonstração. Se $x \in \mathbb{R}^m$, então $Ax \in \mathbb{R}^n$ e, se $x = (x^1, \dots, x^m)$, temos

$$Ax = \left(\sum_{j=1}^{m} a_j^1 x^j, \dots, \sum_{j=1}^{m} a_j^n x^j\right) = \sum_{j=1}^{m} x^j (a_j^1, \dots, a_j^n).$$
 (80)

Corolário 27. O posto de colunas de uma matriz é igual ao posto dessa mesma matriz.

A parte problemática é mostrar que o posto de linhas e colunas é o mesmo. Bom, o caminho para isso é simples: o posto de linhas de A é o posto de colunas de A^{\top} , que é o posto de A^{\top} . Se mostrarmos que rank $A^{\top} = \operatorname{rank} A$, o trabalho terminou. Para isso, vamos utilizar a noção de aniquilador que vimos anteriormente.

Teorema 28. Se $T: V \to U$ é linear, então $(\operatorname{im} T)^{\perp} = \ker T^{\top}$.

Demonstração. Se $\varphi \in (\operatorname{im} T)^{\perp}$, então dado $v \in V$, $\varphi(Tv) = 0$, isso é, $T^{\top}\varphi = 0$, ou seja, $\varphi \in \ker T^{\top}$. Por outro lado, se $\varphi \in \ker T^{\top}$, então $T^{\top}\varphi = 0$, ou seja, se $u \in \operatorname{im} T$, então existe $v \in V$ com u = Tv, assim $\varphi(u) = \varphi(Tv) = 0$ e portanto $\varphi \in (\operatorname{im} T)^{\perp}$.

Corolário 29. Se $T: V \to U$ é linear, então dim im $T = \dim \operatorname{im} T^{\top}$.

Demonstração. Pelo teorema do núcleo e imagem,

$$\dim \operatorname{im} T^{\top} + \dim \ker T^{\top} = \dim U^{*} \tag{81}$$

e, como

$$\dim(\operatorname{im} T)^{\perp} + \dim\operatorname{im} T = \dim U, \tag{82}$$

então o resultado segue, usando que $\dim U = \dim U^*$ e $\dim(\operatorname{im} T)^{\perp} = \dim \ker T^{\top}$.

Vamos agora focar a discussão em transformações lineares da forma $T\colon V\to V$, que costumamos chamar de **operadores** em V. Denotamos o conjunto dos operadores por $\mathcal{L}(V,V)$. Por consequência, nossa discussão de matrizes irá também se limitar a **matrizes quadradas**, isso é, aquelas em que o número de linhas é igual ao número de colunas. Note que a composição de mapas em $\mathcal{L}(V,V)$ sempre está definida, assim como o produto de duas matrizes quadradas de mesmas dimensões, por mais que ele não seja comutativo. O mapa identidade $\mathrm{Id}\colon V\to V$ é claramente linear e, dada e uma base de V, como $\mathrm{Id}(e)=e$, fica claro que

$$[\mathrm{Id}]_{e,e} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}, \tag{83}$$

que a partir de agora será chamada de **matriz identidade** $n \times n$, em que $n = \dim V$.

A partir de agora, iremos utilizar que a composição de mapas corresponde ao produto de matrizes e omitir o sinal de composição em mapas lineares. Dados dois mapas lineares $T, S \in \mathcal{L}(V, V)$, definimos $T_S = STS^{-1}$. O mapa $T \mapsto T_S$ é uma **conjugação**. Dizemos que T_S é **similar** ou **conjugada** a T. Esse mapa é claramente um isomorfismo linear (basta ver que a conjugação por S^{-1} é o mapa inverso da conjugação por S).

Teorema 30. Conjugação é uma relação de equivalência.

Demonstração. Se $R=T_S$ para alguma T, então $T=R_{S^{-1}}$, assim conjugação é simétrica. Mais ainda, $T=T_{\mathrm{Id}}$, então conjugação é reflexiva. Por fim, se $R=T_S$ e $T=K_L$, então $R=T_S=(K_L)_S=K_{SL}$.

Mais ainda, fica claro que se M é invertível e conjugada a T, então T é invertível. De fato, se $M = T_S$, então $T = M_{S^{-1}} = M_S^{-1}$, portantoo $T^{-1} = M_S$.

Determinantes e Traço

Para definirmos a noção de determinante, precisamos de permutações. Se $X = \{x_1, \dots, x_n\} \subset \mathbb{N}$, uma **permutação em** X é uma bijeção $\sigma: X \to X$. O **discriminante** de X é o número

$$D(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j).$$
(84)

O sinal da permutação σ é o número $(-1)^{\sigma}$ que satisfaz

$$P(x_1, \dots, x_n) = (-1)^{\sigma} P(X_{\sigma(1)}, \dots, x_{\sigma(n)}).$$
(85)

Denotamos por S_n o conjunto de todas as permutações em $[n] = \{1, \dots, n\}$. Se $A = [a_j^i]_{n \times n}$ é uma matriz, definimos o determinante

$$\det(A) = \sum_{\sigma \in S_n} (-1)^{\sigma} a_{\sigma(1)}^1 \cdots a_{\sigma(n)}^n.$$
(86)

Proposição 31. Se A é uma matriz $n \times n$, então $\det(A) = \det(A^{\top})$.

Demonstração. De fato, basta usar que $(-1)^{\sigma} = (-1)^{\sigma^{-1}}$ e temos

$$\det(A^{\top}) = \sum_{\sigma \in S_n} (-1)^{\sigma} a_1^{\sigma(1)} \cdots a_n^{\sigma(n)}$$
(87)

$$= \sum_{\sigma \in S_n} (-1)^{\sigma^{-1}} a_{\sigma^{-1}(1)}^1 \cdots a_{\sigma^{-1}(n)}^n$$
 (88)

$$= \det(A). \tag{89}$$

Teorema 32. Valem as seguintes propriedades:

1. Se $a_j = (a_j^1, \ldots, a_j^n)$ e $a^i = (a_1^i, \ldots, a_n^i)$, então podemos enxergar det como uma função das colunas a_j ou das linhas a^i . Para toda $\sigma \in S_n$,

$$\det(a_{\sigma(1)}, \dots, a_{\sigma(n)}) = (-1)^{\sigma} \det(a_1, \dots, a_n) \quad e \quad \det(a^{\sigma(1)}, \dots, a^{\sigma(n)}) = (-1)^{\sigma} \det(a^1, \dots, a^n); \tag{90}$$

- 2. Se duas colunas ou duas linhas de A forem iguais, então det(A) = 0;
- 3. O det é multilinear, isso é, para todos i, j,

$$\det(a_1, \dots, a_{j-1}, \lambda a_j + b_j, a_{j+1}, \dots, a_n) = \lambda \det(a_1, \dots, a_n) + \det(a_1, \dots, a_{j-1}, b_j, a_{j+1}, \dots, a_n)$$
 (91)

e

$$\det(a^1, \dots, a^{i-1}, \lambda a^i + b^i, a^{i+1}, \dots, a^n) = \lambda \det(a^1, \dots, a^n) + \det(a^1, \dots, a^{i-1}, b^i, a^{i+1}, \dots, a^n); \tag{92}$$

- 4. $\det(\operatorname{Id}_{n\times n})=1$;
- 5. Se a_1, \ldots, a_n ou a^1, \ldots, a^n forem linearmente dependentes, então $\det(A) = 0$.

Demonstração. 1. Se $\sigma \in S^n$, então

$$\det(a_{\sigma(1)}, \dots, a_{\sigma(n)}) = \sum_{\rho \in S_n} (-1)^{\rho} a_{\rho(\sigma(1))}^1 \cdots a_{\rho(\sigma(n))}^n$$
(93)

$$= (-1)^{\sigma} \sum_{\rho \in S_n} (-1)^{\rho} (-1)^{\sigma} a^1_{\rho(\sigma(1))} \cdots a^n_{\rho(\sigma(n))}$$
(94)

$$= (-1)^{\sigma} \sum_{\rho \in S_{\sigma}} (-1)^{\rho \circ \sigma} a^{1}_{\rho(\sigma(1))} \cdots a^{n}_{\rho(\sigma(n))}$$
(95)

$$= (-1)^{\sigma} \det(a_1, \dots, a_n). \tag{96}$$

O resultado para a permutação de linhas sai do fato de que $\det(A) = \det(A^{\top})$;

2. Se $a_i = a_j$, seja σ a permutação dada por $\sigma(i) = j$, $\sigma(j) = i$ e que fixa todo o resto. Temos

$$\det(a_1, \dots, a_i, \dots, a_j, \dots, a_n) = -\det(a_1, \dots, a_i, \dots, a_i, \dots, a_n)$$

$$\tag{97}$$

e portanto, como $a_i = a_j$, temos det $A = -\det A$, assim det A = 0. O resultado para o caso em que duas linhas são iguais sai do fato de que $\det(A) = \det(A^{\top})$;

3. De fato, temos

$$\det(a^1, \dots, \lambda a^i + b^i, \dots, a^n) = \sum_{\sigma \in S_n} (-1)^{\sigma} a^1_{\sigma(1)} \cdots (\lambda a^i_{\sigma(i)} + b^i_{\sigma(i)}) \cdots a^n_{\sigma(n)}$$

$$\tag{98}$$

$$= \lambda \sum_{\sigma \in S_n} (-1)^{\sigma} a_{\sigma(1)}^1 \cdots a_{\sigma(i)}^i \cdots a_{\sigma(n)}^n + \sum_{\sigma \in S_n} (-1)^{\sigma} a_{\sigma(1)}^1 \cdots b_{\sigma(i)}^i \cdots a_{\sigma(n)}^n$$

$$\tag{99}$$

 $= \lambda \det(a^1, \dots, a^n) + \det(a^1, \dots, b^i, \dots, a^n). \tag{100}$

O resultado análogo para o caso da multilinearidade nas colunas sai do fato de que $\det(A) = \det(A^{\top})$;

4. Temos $a_j^i=0$ se $i\neq j$, e a única pr
mutação que fixa todos os valores é a identidade, que tem sinal 1, portan
nto

$$\det(\mathrm{Id}_{n\times n}) = a_1^1 \cdots a_n^n = 1; \tag{101}$$

5. Se $a_i = \lambda^1 a_1 + \dots + \lambda^{i-1} a_{i-1} + \lambda^{i+1} a_{i+1} + \dots + \lambda^n a_n$, então

$$\det(a_1, \dots, a_i, \dots, a_n) = \det(a_1, \dots, \lambda^1 a_1 + \dots + \lambda^{i-1} a_{i-1} + \lambda^{i+1} a_{i+1} + \dots + \lambda^n a_n, \dots, a_n)$$
 (102)

$$= \sum_{j=1, j\neq i}^{n} \lambda^{j} \det(a_{1}, \dots, a_{j}, \dots, a_{n})$$

$$(103)$$

e, como cada a_j é uma cópia de outra coluna, todos os determinantes dentro do somatório são nulos, assim $\det(A) = 0$. O resultado análogo para a dependência linear das linhas sai do fato de que $\det(A) = \det(A^{\top})$.

Essas propriedades são importantes para fazer contas, porém, elas são mais importantes ainda pois podem ser utilizadas para definir o determinante!

Proposição 33. As propriedades 1, 3 e 4 definem unicamente o determinante.

Demonstração. Queremos mostrar que qualquer função $D(a_1, \ldots, a_n)$ que seja multilinear, alternada e que tenha valor 1 na base canônica de \mathbb{R}^n , é o determinante. Note que as propriedades 2 e 5 também valém para qualquer D desse tipo, já que são consequências das outras.

Como $a_j = (a_j^1, \dots, a_j^n) = a^1 e_i + \dots + a^n e_n$ onde e_i é a base canônica, então usando as propriedades 3 e 4 temos

$$D(a_1, \dots, a_n) = \sum_{i_1=1}^n a_1^{i_1} D(e_{i_1}, a_2, \dots, a_n)$$
(104)

$$= \sum_{i_1=1}^{n} \sum_{i_2=1}^{n} a_1^{i_1} a_2^{i_2} D(e_{i_1}, e_{i_2}, a_3, \dots, a_n)$$
(105)

$$= \sum_{i_1=1}^{n} \cdots \sum_{i_n=1}^{n} a_1^{i_1} \cdots a_n^{i_n} D(e_{i_1}, \dots, e_{i_n})$$
(106)

e, denotando por $\sigma_{i_1,...,i_n}$ a permutação $\sigma(j)=i_j$ temos

$$D(e_{i_1}, \dots, e_{i_n}) = (-1)^{\sigma_{i_1}, \dots, i_n} D(e_1, \dots, e_n) = (-1)^{\sigma_{i_1}, \dots, i_n}.$$
(107)

Porém, como todas as combinações de i_1, \ldots, i_n são atingidas nos somatórios, $\sigma_{i_1, \ldots, i_n}$ eventualmente se passa por todas as permutações, assim

$$D(a_1, \dots, a_n) = \sum_{\sigma \in S_n} (-1)^{\sigma} a_1^{\sigma(1)} \cdots a_n^{\sigma(n)} = \det(A^{\top}) = \det(A).$$
 (108)

O próximo passo é mostrar que o determinante é multiplicativo. Para isso introduzimos uma notação. Se A é uma matriz $n \times n$ e $t \in \mathbb{R}$, então A + t é definido como $A + t \operatorname{Id}_{n \times n}$.

Teorema 34. Se A e B são matrizes $n \times n$, então $\det(AB) = \det(A) \det(B)$.

Demonstração. Suponha que $\det(B) \neq 0$ e defina $D(A) = \det(AB)/\det(B)$. Seja e_1, \ldots, e_n é a base canônica de \mathbb{R}^n . Se $f_i \in \mathbb{R}^n$, então existe uma matriz $n \times n$ tal que $f_i = Ce_i$. Assim,

$$D(Ae_1, \dots, \lambda Ae_i + Ce_i, \dots, Ae_n) = \frac{\det(ABe_1, \dots, (\lambda A + C)Be_i, \dots, ABe_n)}{\det(B)}$$
(109)

$$= \frac{\lambda \det(ABe_1, \dots, ABe_n) + \det(ABe_1, \dots, CBe_i, \dots, ABe_n)}{\det(B)}$$
(110)

$$= \lambda D(Ae_1, \dots, Ae_n) + D(Ae_1, \dots, Ce_i, \dots, Ae_n), \tag{111}$$

da onde segue a multilinearidade. Mais ainda,

$$D(\operatorname{Id}_{n \times n}) = \det(\operatorname{Id}_{n \times n} B) / \det(B) = \det(B) / \det(B) = 1 \tag{112}$$

е

$$D(Ae_{\sigma(1)}, \dots, Ae_{\sigma(n)}) = \det(AB_{\sigma(1)}, \dots, ABe_{\sigma(n)}) / \det(B)$$
(113)

$$= (-1)^{\sigma} \det(ABe_1, \dots, ABe_n) / \det(B)$$
(114)

$$= (-1)^{\sigma} D(Ae_1, \dots, Ae_n),$$
 (115)

portanto segue que $D(A) = \det(A)$ e assim $\det(AB) = \det(A) \det(B)$. Se $\det(B) = 0$, tome B(t) = B + t. Temos que $\det(B(t))$ é um polinômio não nulo (afinal, é mônico), portanto $\det(AB(t)) = \det(A) \det(B(t))$ e, tomando $t \to 0$, o resultado segue.

Corolário 35. Uma matriz quadrada A é invertível se, e somente se, $det(A) \neq 0$.

Demonstração. Se A é invertível, então existe B com $AB = \mathrm{Id}$, assim $\det(A) \det(B) = \det(\mathrm{Id}) = 1$, portanto é impossível que $\det(A)$ seja nulo. Por outro lado, se A não é invertível, então A não é sobrejetora, portanto sua imagem, o espaço gerado pelas suas colunas, é próprio, da onde segue que suas colunas são linearmente dependentes e assim o seu determinante é nulo.

Deixo aqui mais duas fórmulas que podem ser úteis para o cálculo de determinantes e de inversas, sem as demonstrações. se A é uma matriz $n \times n$, denotamos por A_i^i a matriz $(n-1) \times (n-1)$ dada pela remoção da i-ésima linha e da j-ésima coluna de A. Valem as seguintes identidades:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_j^i \det(A_j^i) \quad e \quad A^{-1} = \left[(-1)^{i+j} \frac{\det(A_{ji})}{\det(A)} \right]_{n \times n}.$$
 (116)

Para terminarmos esse capítulo, vamos falar do traço. Se A é uma matriz $n \times n$, seu **traço** é definido por

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_i^i. \tag{117}$$

Fica claro da definição que o traço é linear.

Proposição 36. Se A e B são matrizes $n \times n$, tr(AB) = tr(BA).

Demonstração. Temos

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_k^i b_i^k = \sum_{k=1}^{n} \sum_{i=1}^{n} a_i^k b_k^i = \operatorname{tr}(BA)$$
(118)

Proposição 37. Se A é uma matriz $n \times n$, então

$$\operatorname{tr}(AA^{\top}) = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_j^i)^2$$
 (119)

Demonstração. De fato,

$$\operatorname{tr}(AA^{\top}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j}^{i} a_{j}^{i} = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{j}^{i})^{2}$$
(120)

Agora recordamos a noção de similaridade, mas para matrizes. Se M e T são matrizes $n \times n$, dizemos que M é **similar** a T se $M = STS^{-1}$ para alguma matriz S invertível.

Proposição 38. Matrizes similares possuem mesmo traço e determinante.

Demonstração. Se $M = STS^{-1}$, então

$$\det(M) = \det(STS^{-1}) = \det(S^{-1}ST) = \det(T) \quad \text{e} \quad \operatorname{tr}(M) = \operatorname{tr}(STS^{-1}) = \operatorname{tr}(S^{-1}ST) = \operatorname{tr}(T). \tag{121}$$

O próximo passo agora é falar sobre mudanças de coordenadas. Se $e = (e_1, \ldots, e_n)$ e $f = (f_1, \ldots, f_n)$ são bases de V, então podemos escrever

$$e_j = \sum_{i=1}^n a_j^i f_i. (122)$$

A matriz $A = [a_i^i]_{n \times n}$ leva a base f na base e (escrevemos e = Af). Note que A é invertível, afinal, caso seu determinante fosse nulo, os vetores e_i seriam linearmente dependentes. Agora, se $v[e] = (v^1, \dots, v^n)$ e $v[f] = (u^1, \dots, u^n)$, então

$$v = \sum_{j=1}^{n} v^{j} e_{j} = \sum_{j=1}^{n} v^{j} \sum_{i=1}^{n} a_{j}^{i} f_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{j}^{i} v^{j} \right) f_{i},$$
 (123)

portanto v[f] = Av[e] e assim $v[e] = A^{-1}v[f]$. A matriz A portanto é chamada de **matriz de mudança da base** e **para a base** f. Note que a mesma matriz que leva a base f na base e, leva as coordenadas de v na base e para as coordenadas de v na base f, isso é:

"as coordenadas de um vetor mudam contra a mudança de base".

Por esse motivo, dizemos que vetores são **quantidades contravariantes**. Por outro lado, considerando as bases duais ε e φ de e e f, se $\mu[\varepsilon] = (\mu_1, \dots, \mu_n)$ então

$$\mu(v) = \sum_{i=1}^{n} \mu_i \varphi^i(v) = \sum_{i=1}^{n} \mu_i u^i = \sum_{i=1}^{n} \mu_i \sum_{j=1}^{n} a_j^i v^j = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a_j^i \mu_i\right) \varepsilon^j(v), \tag{124}$$

da onde segue que $\mu[e] = A\mu[f]$, ou seja,

"as coordenadas de um covetor mudam a favor da mudança de base".

Por esse motivo, dizemos que vetores são **quantidades covariantes**. Índices em quantidades contravariantes sempre são colocados embaixo, e os índices em quantidades covariantes sempre são colocados em cima. Índices em coordenadas sempre são colocados ao contrário (coordenadas de vetores tem índice em cima, e coordenadas de vetores tem índice em baixo).

Se $T: V \to W$ é linear, então fixe e e f bases de V e x e y bases de W. Vamos entender como se da a transformação de $[T]_{f,y}$ em $[T]_{e,x}$. Se

$$Te_j = \sum_{i=1}^m \lambda_j^i x_i \quad \text{e} \quad Tf_j = \sum_{i=1}^m \mu_j^i y_i,$$
 (125)

então seja $A = [a_j^i]_{n \times n}$ a matriz de mudança de base de e para f e $B = [b_j^i]_{m \times m}$ a matriz de mudança de base de g para g, então

$$Tf_i = \sum_{r=1}^n \mu_i^r y_r = \sum_{k=1}^n \sum_{r=1}^n \mu_i^r b_r^k x_k$$
 (126)

e assim

$$Te_j = \sum_{i=1}^n a_j^i Tf_i = \sum_{k=1}^n \sum_{r=1}^n \sum_{i=1}^n b_r^k \mu_i^r a_j^i x_k.$$
 (127)

Isso mostra que $[T]_{e,x} = B[T]_{f,y}A$. Tomando W = V, x = e e y = f, então $B = A^{-1}$, assim $[T]_{e,e}$ é similar a $[T]_{f,f}$. Portanto, podemos definir o **determinante** de T como sendo o determinante da matriz de T em alguma base, e o conceito está bem definido, pois matrizes similares possuem o mesmo determinante. O mesmo vale para o traço.

1.3 Estrutura Euclidiana e Formas Bilineares

A partir de agora, tomamos $\mathbb{K} = \mathbb{R}$, ou seja, todo escalar é real. Uma **estrutura Euclidiana** em um espaço vetorial V é um mapa

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$$

$$(v, u) \mapsto \langle v, u \rangle \tag{128}$$

que satisfaz:

- para todo $v \in V$ com $v \neq 0$, $\langle v, v \rangle > 0$ **positividade**;
- para todos $u, v \in V$, $\langle v, u \rangle = \langle u, v \rangle$ simetria;
- para todos $u, v, w \in V$ e $\lambda \in \mathbb{R}$, $\langle \lambda v + u, w \rangle = \lambda \langle v, w \rangle + \langle u, w \rangle$ **linearidade** na primeira entrada, que junto com a simetria se torna **bilinearidade**.

Um mapa dessa forma é chamado de **produto interno**, e um espaço com uma estrutura Euclidiana é um **espaço Euclidiano**. A **norma** de um vetor v é o número $||v|| = \sqrt{\langle v, v \rangle}$. A norma representa a distância de v a 0, portanto a **distância** entre u e v é definida por ||u-v||. Os próximos dois teoremas são chamados de desigualdade de Cauchy-Schwarz e desigualdade triangular.

Teorema 39. Dados $u, v \in V$, temos $|\langle v, u \rangle| \leq ||v|| \cdot ||u||$.

Demonstração. Se u=0, então a desigualdade é trivialmente verdadeira. Considere o mapa $q(t)=||v+tu||^2$. Usando a bilinearidade, temos que

$$q(t) = ||v||^2 + 2t\langle v, u \rangle + t^2||u||^2.$$
(129)

Tome $t = -\langle v, u \rangle / ||u||^2$ e temos

$$q(t) = ||v||^2 - \frac{\langle v, u \rangle^2}{||u||^2} \ge 0, \tag{130}$$

da onde segue o resultado.

Teorema 40. Dados $u, v \in V$, $temos ||v + u|| \le ||v|| + ||u||$.

Demonstração. Temos

$$||v + u||^2 = ||v||^2 + 2\langle v, u \rangle + ||u||^2 \le ||v||^2 + 2||v|| \cdot ||u|| + ||u||^2 = (||v|| + ||u||)^2.$$
(131)

Tirando a raíz dos dois lados, a desigualdade segue.

Dois vetores u e v são **perpendiculares** ou **ortogonais** se $\langle v, u \rangle = 0$. Fica claro que, nesse caso, vale o teorema de pitágoras: $||v - u||^2 = ||v||^2 + ||u||^2$. Se e_1, \ldots, e_n é uma base de V, dizemos que ela é **ortonormmal** se

$$\langle e_i, e_j \rangle = \delta_j^i = \begin{cases} 0, & \text{se } i \neq j, \\ 1, & \text{se } i = j. \end{cases}$$
 (132)

Note que $||e_i|| = \sqrt{\langle e_i, e_i \rangle} = 1$. O principal resultado é que toda base pode ser transformada numa base ortonormal.

Teorema 41. O teorema a seguir é chamado de ortonormalização de Gram-Schmidt. Dada uma base f_1, \ldots, f_n de V, existe uma outra base e_1, \ldots, e_n com as seguintes propriedades:

- 1. e_1, \ldots, e_n é ortonormal;
- 2. e_k é uma combinação linear de f_1, \ldots, f_k para todo k.

Demonstração. Definimos $e_1 = f_1/||f_1||$. Se e_1, \ldots, e_{k-1} já estiverem definidos, definimos

$$e_k = c \left(f_k - \sum_{j=1}^{k-1} c_j e_j \right) \tag{133}$$

com $c_j = \langle f_k, e_j \rangle$ e c escolhido de tal forma que $||e_k|| = 1$. Se l < k, então

$$\langle e_k, e_l \rangle = c \langle f_k, e_l \rangle - c \sum_{j=1}^{k-1} \langle f_k, e_j \rangle \langle e_j, e_l \rangle = (c - c) \langle f_k, e_l \rangle = 0.$$
 (134)

O caso l > k é consequência do caso l < k por simetria.

Se $e = (e_1, \ldots, e_n)$ é uma base ortonormal, $x[e] = (x^1, \ldots, x^n)$ e $y[e] = (y^1, \ldots, y^n)$, então fica claro que

$$\langle x, y \rangle = \sum_{i=1}^{n} x^{i} y^{i} \quad \text{e} \quad ||x||^{2} = \sum_{i=1}^{n} (x^{i})^{2}.$$
 (135)

O resultado que segue é chamado de teorema de representação de Riesz (versão de dimensão finita).

Teorema 42. Dado $\varphi \colon V \to \mathbb{R}$ um covetor, existe um $v \in V$ tal que $\varphi(u) = \langle u, v \rangle$. A associação $\varphi \mapsto u$ é um isomorfismo linear entre V e V^* .

Demonstração. Seja $e = (e_1, \dots, e_n)$ uma base ortonormal. Se $v[e] = (v^1, \dots, v^n)$, então

$$\varphi(u) = \sum_{i=1}^{n} v^{i} \varphi(e_{i}) = \sum_{i=1}^{n} \langle v, e_{i} \rangle \varphi(e_{i}) = \left\langle v, \sum_{i=1}^{n} \varphi(e_{i}) e_{i} \right\rangle. \tag{136}$$

Como o segundo vetor não depende de v, fica provada a primeira parte do resultado. Se $\varphi(v) = \langle v, u \rangle$ e $\iota(v) = \langle v, w \rangle$, então

$$(\varphi + \iota)(v) = \langle v, u \rangle + \langle v, w \rangle = \langle v, u + w \rangle \quad \text{e} \quad (\lambda \varphi)(v) = \lambda \langle v, u \rangle = \langle v, \lambda u \rangle, \tag{137}$$

assim a associação $\varphi \mapsto u$ é linear. Se u=0, então claramente $\varphi=0$, assim o mapa é injetor e, como dim $V=\dim V^*$, é um isomorfismo.

Dado um subespaço U de V, o **complemento ortogonal** de U em V é o subespaço

$$U^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \text{ para todo } u \in U \}.$$
 (138)

Essa notação pode ser ambígua com a notação para o aniquilador de U, mas isso é por que eles são o mesmo espaço, através da representação de Riesz.

Proposição 43. Se U é um subespaço de V, então $U \oplus U^{\perp} = V$.

Demonstração. Se U' é o aniquilador, sabemos que $\dim U' = \dim U^{\perp}$, assim $\dim U^{\perp} + \dim U = \dim V$, portanto $\dim U \cap U^{\perp} = 0$, assim a soma é direta e o resultado está provado.

Pelo resultado anterior, cada $v \in V$ se quebra unicamente em v = x + y com $x \in U$ e $y \in U^{\perp}$. A **projeção** em U é o mapa Pv = x.

Proposição 44. O mapa P é linear e $P^2 = P$.

Demonstração. Se v = x + y e w = r + s com $x, r \in U$ e $y, s \in U^{\perp}$, então v + w = (x + r) + (y + s) e, pela unicidade da decomposição, P(v + w) = x + r = Pv + Pw. Além disso, $\lambda v = \lambda x + \lambda y$ e, pela unicidade da decomposição $P(\lambda v) = \lambda x = \lambda Pv$. Por fim, $P^2v = P(Pv) = Px = x$, pois $x \in U$, assim $P^2 = P$.

Teorema 45. O vetor Pv minimiza, em U, a distância até x.

Demonstração. Se v = x + y com $x \in U$ e $y \in U^{\perp}$, dado $w \in U$ temos

$$v - w = x - w + y \tag{139}$$

e, como $x-w\in U$, então $||v-w||^2=||x-w||^2+||y||^2$. Claramente o valor $||v-w||^2$ é mínimo quando w=x.

Se $T: V \to W$ é um mapa entre espaços Euclidianos, então considere o transposto $T^{\top}: W^* \to V^*$. Fazendo a identificação de W^* e V^* com W e V, temos um mapa $T^*: W \to V$, chamado de **adjunto** de T.

Proposição 46. Se $v \in V$, $w \in W$ e $T: V \to W$ é linear, então $\langle Tv, w \rangle = \langle v, T^*w \rangle$. De fato, se $S: W \to V$ é linear e satisfaz $\langle Tv, w \rangle = \langle v, Sw \rangle$, então $S = T^*$.

Demonstração. Denotamos $\varphi_x(v) = \langle v, x \rangle$. Se $u = T^*w$, então $\varphi_u = T^\top(\varphi_w)$, assim

$$\langle v, T^*w \rangle = \varphi_u(v) = T^{\top}(\varphi_w)v = (\varphi_w \circ T)v = \varphi_w(Tv) = \langle Tv, w \rangle. \tag{140}$$

Por fim, se S satisfaz a igualdade, então se u = Sw, temos $\varphi_u(v) = \varphi_w(Tv) = T^{\top}(\varphi_w)v$, assim $\varphi_u = T^{\top}(\varphi_w)$ da onde segue que $S = T^*$.

O próximo passo é demonstrar algumas propriedades sobre o adjunto.

Proposição 47. Se $T, S: V \to W$ e $R: W \to U$ são lineares, então

$$(T+S)^* = T^* + S^*, \quad (T^*)^* = T \quad e \quad (RT)^* = T^*R^*.$$
 (141)

Além disso, se T for um isomorfismo, então $(T^{-1})^* = (T^*)^{-1}$.

Demonstração. Note que

$$\langle (T+S)v, u \rangle = \langle Tv, u \rangle + \langle Sv, u \rangle = \langle v, T^*u \rangle + \langle v, S^*u \rangle = \langle v, (T^*+S^*)u \rangle. \tag{142}$$

Além disso,

$$\langle T^*u, v \rangle = \langle v, T^*u \rangle = \langle Tv, u \rangle = \langle u, Tv \rangle \tag{143}$$

e também temos

$$\langle RTv, u \rangle = \langle TvR^*u \rangle = \langle v, T^*R^*u \rangle. \tag{144}$$

Por fim,

$$TT^{-1} = \mathrm{Id}_W \implies (T^{-1})^* T^* = \mathrm{Id}_W,$$
 (145)

concluindo o resultado desejado.

Vamos agora achar a matriz da transformação de Riesz. Se e é uma base ortonormal de V e ε é sua base dual, então se R_V é a representação de Riesz, temos que

$$R_V \varepsilon^j = e_i \tag{146}$$

assim a matriz de R_V (com respeito a essas bases) é a identidade! Segue que a matriz do mapa adjunto, com respeito a duas bases ortogonais, assim como do mapa transposto, é a matriz transposta do mapa original. Se $V \in W$ são espaços Euclidianos, um mapa $T: V \to W$ preserva distâncias se

$$||Tv - Tu|| = ||v - u|| \tag{147}$$

para todos $v, u \in V$. Mapas que preserva distâncias são sempre injetores. Um mapa bijetor que preserva distâncias é uma **isometria** entre V e W, e nesse caso dizemos que V e W são **isométricos**.

- 1.4 Teoria Espectral
- 2 Grupos
- 3 Anéis
- 4 Corpos
- 5 Métricos
- 6 Análise 1
- 7 Análise 2
- 8 Análise Complexa
- 9 Medida
- 10 Funcional
- 11 EDO
- 12 EDP
- 13 Probabilidade
- 14 Topologia
- 15 Topologia Algébrica
- 16 Topologia Diferencial
- 17 Análise em Variedades
- 18 Riemanniana