Liste des Tests du cours

Charles Vin

2022

Table des matières

1	Template	1
2	Test d'ajustement de Kolmogorov-Smirnov	1
3	Le test du \mathcal{X}^2 d'ajustement 3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi	2 4
4	Le test d'homogénéité de Kolmogorov-Smirnov	4
5	Test du \mathcal{X}^2 d'indépendance	5
6	Test du \mathcal{X}^2 d'homogénéité	6
7		6 6
8	Test de la somme des rangs aka MWW	6
9	Test du signe	7

1 Template

Donnée

Conditions

Hypothèse

Statistique de test

Zone de Rejet

Méthode

2 Test d'ajustement de Kolmogorov-Smirnov

Conditions

- 1. Les X_i semblent provenir d'une loi à fonction de répartition continue. \Rightarrow on n'a pas plusieurs fois la même valeur (sauf si celle-ci on était arrondi).
- 2. Fonctionne $\forall n$: même si n est petit, ce test est pertinent
- 3. Si $n \ge 100$, on fait un test asymptotique.

Hypothèse

$$\begin{split} & - \ H_0 = \text{les } X_i \text{ ont pour fdr. } F_X \\ & - \ H_1 = \text{les } X_i \text{ n'ont pas pour fdr. } F_X \end{split}$$

Statistique de test

$$\begin{split} h(F_n, F) &= \sup_{t \in \mathbb{R}} |F_n(t) - F(t)| \\ &= \max_{1 \le i \le n} (\max(\left| \frac{i}{n} - F(X_{(i)}) \right|, \left| \frac{i-1}{n} - F(X_{(i)}) \right|)) \end{split}$$

Zone de Rejet

Si n est petit

La loi de $h(F_n, F)$ est tabulé alors :

$$\mathcal{R} = \{ h(F_n, F_X) \ge h_{1-\alpha} \}.$$

avec F_n fonction de réparation empirique, $h_{1-\alpha}$ le quantile à aller chercher dans la table

Si n est grand $n \geq 30$

Attention pas souvenir de l'avoir fait en TD. On a pas la table de $h(F_n, F)$ mais on sait que

$$\sqrt{n}h_n \to_{n\to\infty}^{\mathcal{L}} W_{\infty}.$$

Donc on pose la zone de rejet

$$\mathcal{R} = \{h(F_n, F_X) \ge \frac{k_\alpha}{\sqrt{n}}\}.$$

avec F_n fonction de réparation empirique, k_{lpha} le quantile de W_{∞} à aller chercher dans sa table

Méthode

Pour trouver la valeur de $h(F_n, F_X)$: Faire le grand tableau puis trouver le max. Exemple :

i	1	2	3	4	5
$X_{(i)}$	0.3	0.7	0.9	1.2	1.4
$X_{(i)} - 2$	-1.70	-1.30	-1.10	-0.80	-0.60
$F_0(X_{(i)})$	0.04	0.10	0.14	0.21	0.27
$\frac{i}{n}$	0.05	0.1	0.15	0.2	0.25
$\frac{ i-F_0(X_{(i)}) }{ i-F_0(X_{(i)}) }$	0.01	0.00	0.01	0.01	0.02
$ \frac{i-1}{n} - F_0(X_{(i)}) $	0.04	0.05	0.04	0.06	0.07

Table 1 – Ici le max c'est 0.07 à la dernière case

Le test du \mathcal{X}^2 d'ajustement

Conditions

- 1. Les X_i sont à valeur dans un ensemble fini (loi discrète). Si a valeur dans $\mathbb N$, on fusionne les classes à partir d'un certain rang choisis
- 2. Test asymptotique : $\forall k \in \{1, \dots, d\}, np_k^{ref}(1 p_k^{ref}) \geq 5 \Leftrightarrow n \geq 20$

Si on ne remplis pas les conditions, on peut fusionner les classes

Hypothèse

$$H_0=p=p^{ref}$$
 i.e. $\forall k\in\{1,\ldots,d\}, p_k=p_k^{ref}$ $H_1=p\neq p^{ref}$ i.e. $\exists k\in\{1,\ldots,d\}: p_k\neq p_k^{ref}$

Avec p^{ref} un vecteur fixé à tester (par exemple pour un lancé de dé $(\frac{1}{6}, \dots, \frac{1}{6})$)

Statistique de test

$$D(\bar{p_n}, p^{ref}) = n \sum_{k=1}^{d} \frac{(p_{k,n} - p_k^{ref})^2}{p_k^{ref}} \to_{n \to \infty}^{\mathcal{L}} \mathcal{X}^2(d-1)$$
$$= \sum_{k=1}^{d} \frac{(N_{k,n} - np_k^{ref})^2}{np_k^{ref}}$$

— $N_{k,n}=\sum_{i=1}^n\mathbbm{1}_{X_ix_k}$ (ce qu'il y a dans le tableau de la consigne) — $p_{k,n}^-=\frac{N_{k,n}}{n}$ les proportions observés

Zone de Rejet

$$\mathcal{R} = \{ D(\bar{p_n}, p^{ref}) \ge h_{\alpha} \}.$$

avec h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d-1)$

Méthode

1. Etape 0 : On vérifie les conditions

$$\forall k \in \{1, \dots, d\}, n * p_k > 5.$$

C'est la condition de Cochran (1954), il avait testé cas possible en observant l'approximation faites.

- 2. Etape 1 : On calcule les effectifs et proportions observées : $N_{k,n}$ et $\hat{p}_{k,n}$
- 3. Etape 2 : Calcul de la statistique de test

$$D = n \sum_{d}^{k=1} \frac{(\hat{p}_{k,n} - p_k)^2}{p_k}.$$

- 4. Etape 3 : Détermination de la zone de rejet au niveau lpha. On lit h_lpha le quantile d'ordre 1-lpha de la loi $\mathcal{X}^2(d_1)$
- 5. Etape 4: Décisions
 - si $D>h_{lpha}$, on rejette H_0 (au niveau lpha).
 - Si $D \leq h_{\alpha}$ on conserve H_0

Bilan de la méthode

Aspects positifs:

- Fonctionne pour toutes les lois
- Facile à faire

Aspects négatifs:

- Problème de consistance. Regrouper les variables par intervalle ruiner l'erreur de seconde espèce.
- Asymptotique
- Dépendant du choix des intervalles. Ce qui n'est pas canonique.

$Z_{(i)}$	F_n	G_n	h_{n_1,n_2}

3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi

Pratiquement comme avant, pas encore fait en TD, mais copier collé du cours quand même

- 1. Etape 1 : Soit $\hat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ (pour P_{θ}). On estime **tous** les paramètres de la loi $(p_1^{\hat{\theta}_n}, \dots, p_d^{\hat{\theta}_n})$
- 2. Etape 2 : On vas tester l'ajustement de X_1,\ldots,X_n à $P_{\hat{\theta}_n}$ On calcule les fréquences observées $\hat{p}_{k,n}$.
- 3. Etape 3 : Vérification des conditions $np_k^{\hat{ heta}_n}$ et possible regroupement en classes
- 4. Etape 4 : Calcul de la stat de test D
- 5. Etape 5 : Zone de rejet : lecture de H_{α} le quantile d'ordre $1-\alpha$ d'une $\mathcal{X}^2(d-1-M)$ avec M nombre de paramètre.
- 6. Etape 6: Décision
 - $-\stackrel{\cdot}{D}>h_{\alpha}$ on rejette H_{0}
 - $D \leq h_{\alpha}$ on conserve H_0

4 Le test d'homogénéité de Kolmogorov-Smirnov

Conditions

- Deux échantillons indépendants de variable iid.
- De fdr. continue F_X, F_Y

Hypothèse

- H_0 : les X_i et Y_i ont la même loi, c'est à dire $F_{X_1} = F_{V_1}$ où F_{X_1}, F_{Y_1} sont continues.
- H_1 les lois sont différentes

Statistique de test

$$\sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \le t} - \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{Y_j \le t} \right|.$$

Zone de Rejet

- Ce test est de taille α , si on utilise la table de $h_{n,m} = \sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{U_i \leq s} \frac{1}{n} \sum_{j=1}^n \mathbbm{1}_{V_j \leq s} \right|$.
- Si n et m sont trop grands, on utilise le résultat suivant : Sous H_0

$$h_{n_1,n_2} = \sqrt{\frac{nm}{n+m}} h(F_n,G_n) \to_{n,m\to+\infty}^\alpha W_\infty \text{ voir KS asymptotique}.$$

On utilise alors comme zone de rejet $\sqrt{\frac{n+m}{nm}}W_{\infty}$ avec W_{∞} le quantile d'ordre $1-\alpha$ de W_{∞} .

4

Méthode

Même qu'un khi deux classique!

$$Z_{(i)} = (X_i, Y_i)$$

Test du \mathcal{X}^2 d'indépendance

Donnée

 $(X_1,Y_1),\ldots,(X_T,Y_T)$ iid appariés.

 $-X_1$ à valeur dans A_1, \ldots, A_M $-Y_1$ à valeur dans B_1, \ldots, B_N

Conditions

Loi discrète

— n ou T plutôt grand

— $\forall i < M, j < N : T * \hat{p}_m \hat{q}_m \geq 5$ ou avec la notation en TD : $E_{i,j} \geq 5$

Hypothèse

 $- H_0: X_1 \perp Y_1$ $- H_1: X_1 \perp Y_1$

Statistique de test

$$D = T * \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(\hat{p}_{m,n} - \hat{p}_{m}\hat{q}_{n})^{2}}{\hat{p}_{m}\hat{q}_{n}}$$
$$= \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{(N_{m,n} - \frac{N_{m,n}N_{n,n}}{T})^{2}}{\frac{N_{m,n}N_{n,n}}{T}}$$

On utilise la deuxième en TD, la fraction est équivalent à $E_{i,j}$ aka le produit en croix à l'intérieur du tableau durant les TD (groupe 2)

Zone de Rejet

- Sous
$$H_0$$
, $D \to \mathcal{X}^2((M-1)(N-1))$
- Sous H_1 , $D \to +\infty$

$$\mathcal{R} = \{D \geq h_{\alpha}\}.$$

Méthode

Puis calculer la stat de test

$$D = \sum_{\text{chaque case du tableau}} \frac{N_{1,1} - E_{1,1}}{E_{1,1}}. \label{eq:defDef}$$

5

6 Test du \mathcal{X}^2 d'homogénéité

Donnée

- X_1, \ldots, X_{n_1} échantillons iid
- Y_1, \ldots, Y_{n_2} échantillons iid
- Échantillons indépendant entre eux

Les variables sont toutes à valeurs dans les mêmes classes A_1, \ldots, A_M .

Conditions

Hypothèse

On veut tester l'homogénéité

- $\begin{array}{l} \boldsymbol{-} \ \, H_0 = X_1 \text{ et } Y_1 \text{ ont la même loi} \Leftrightarrow \forall m \in \{1,\ldots,M\}, P(X_1 \in A_m) = P(Y_1 \in A_m) \\ \boldsymbol{-} \ \, H_1 = X_1 \text{ et } Y_1 \text{ n'ont pas la même loi} \Leftrightarrow \exists m \in \{1,\ldots,M\} \text{ tel que } P(X_1 \in A_m) \neq P(Y_1 \in A_m) \end{array}$

Statistique de test

Zone de Rejet

Méthode

7 Test sur les Gaussiennes

7.1 Sur la moyenne

- Test sur 1 échantillon : Loi de Student
 - Variance connu : on l'utilise à la place de V_n
 - Variance inconnu : On utilise \bar{X}_n dans V_n
- Test sur 2 échantillons indépendants :
 - Variances connus :
 - $\text{ Wême variance inconnu}: \bar{X}_{n_1} \bar{Y}_{n_2} \sim \mathcal{N}(m_1 m_2, \sigma^2(\frac{1}{n_1} + \frac{1}{n_2})) \text{ Same stat de test sauf qu'on estime la variance avec } W = \frac{(n_1 1)V_{n_1}^X + (n_2 1)V_{n_2}^Y}{n_1 + n_2 2} \text{Variance inconnu}: \text{ Test de welch}: D = \frac{\bar{X}_{n_1} \bar{Y}_{n_2}}{\sqrt{\frac{V_{n_1}^X}{n_1} + \frac{V_{n_2}^Y}{n_2}}} \sim_{H_0} \mathcal{T}(\mu) \text{ avec } \mu \text{ Formule horrible}$
- Test sur 2 échantillons apparié : Z_n into student (pas trouvé de raison yet)

7.2 Sur la variance

- Test sur 1 échantillon : Comme le semestre d'avant
 - Moyenne connu : On l'utilise dans le calcul de ${\cal V}_n$
 - Moyenne inconnu : On utilise \bar{X}_n dans le calcul de V_n
- Test sur 2 échantillons indépendants :
 - Moyennes connus : L'utiliser dans les calcul des ${\it V}_n$
 - Même Moyenne inconnu : X Pas de solution so do same as before
- Moyenne inconnu : $D=\frac{X_{n_1}^X}{V_{n_2}^Y}$ qui suit $\mathcal{F}(n_1-1,n_2-1)$ sans besoin de transformation. Test sur 2 échantillons apparié : X

8 Test de la somme des rangs aka MWW

C'est le test de sur l'ordre stochastique.

Donnée

 $- X_1, \ldots, X_{n_1}$ iid.

 $- Y_1, \ldots, Y_{n_2}$ iid.

Échantillons indépendants

— On suppose que F_X et F_Y sont **continues**.

Conditions

- On suppose que F_X et F_Y sont **continues**.
- Mieux qu'un KS à deux échantillons!

Hypothèse

— $H_0=X_1$ et Y_1 ont la même loi. $F_{X_1}=F_{Y_1}$

— $H_0=X_1$ et Y_1 n'ont pas la même loi. $F_{X_1}neqF_{Y_1}$

— Ou $X_1 \succ Y_1$ C'est à dire $F_{X_1} \neq F_{Y_1}$ et $\forall t \in \mathbb{R}, F_{Y_1}(t) \leq F_{X_1}(t)$ — Ou $Y_1 \succ X_1$ C'est à dire $F_{X_1} \neq F_{Y_1}$ et $\forall t \in \mathbb{R}, F_{X_1}(t) \leq F_{Y_1}(t)$

Statistique de test

$$U = \sum_{i=1}^{n_1} R(i) = \sum_{i=1}^{n_1} \sum_{j=1}^{n} \mathbb{1}_{X_i \le Z_j}.$$

Remarque. En cas d'ex-æquo, on leur attribue le rang moyen des rangs. Voir exemple.

Zone de Rejet

La loi est symétrique. On a uniquement la table d'un côté, il faut calculer l'autre coté $h_{1-\alpha}=h_{\alpha}+$ $2(\frac{n_1n+1}{2} - h_\alpha) = .$

Sin n est grand, on utilise le TCL suivant

$$\frac{U - E(U)}{\sqrt{Var(U)}} = \frac{U - n\frac{n_1 + 1}{2}}{\sqrt{\frac{n_1 n_2 (n+1)}{12}}} \to Z \sim \mathcal{N}(0, 1).$$

Méthode

On trie les données : On calcule

Obs	5.6	7.4	9.6	11	12.6	12.6	12.8	13	
Rang	1	2	3	4	5.5	5.5	7	8	
Obs	14.8	15	15.2	15.4	15.6	15.6	16.4	16.4	18.8
Rang	9	10	11	12	13.5	13.5	15.5	15.5	17

$$U = 1 + 7 + 10 + 11 + 13.5 + 15.5 + 15.5 + 17$$

= Somme des rangs de $X_i = 90.5$

Test du signe

Donnée

 $\begin{array}{ll} & -X_1,\ldots,X_{n_1} \text{ iid.} \\ & -Y_1,\ldots,Y_{n_2} \text{ iid.} \\ & -\text{ Échantillon } \mathbf{appariées} \; (X_1,Y_1),\ldots,(X_n,Y_n) \text{ sont iid } X_1 \not\perp Y_1 \end{array}$

On note $Z_i=Y_i-X_i$. On suppose que Z_i a une fonction de répartition continue donc aucun des Z_i ne vaut 0.

Conditions

Fonction de répartition continue.

Hypothèse

- H_0 La médiane de Z vaut 0. $m_Z=0$. C'est à dire que $P(Y_1 < X_1)=1/2$
- $\ \ H_1 = m_Z \neq 0 \ \text{ou} \ m_Z > 0 \Leftrightarrow P(Z \leq 0) > 1/2 \Leftrightarrow P(Y_1 > X_1) > 1/2 \ \text{ou} \ m_Z < 0$

Statistique de test

$$S_n = \sum_{i=1}^n \mathbb{1}_{Z_i \leq 0}$$
 = Nombre de $Y_i > X_i$

Zone de Rejet

- Sous $H_0: P(Z_i > 0) = P(Y_i > X_i) = \frac{1}{2}$

$$\mathbb{1}_{Z_i>0} \sim Ber(\frac{1}{2}).$$

donc

$$S_n \sim Bin(n, \frac{1}{2}).$$

- Sous H_1
 - Si $m_z>0, P(Y_i>X_i)>\frac{1}{2}, S_n\sim Bin(n,p), p>\frac{1}{2}$ donc S_n est "grand" Si $m_z<0, P(Y_i< X_i)>\frac{1}{2}$ donc S_n est petit. Si $m_z\neq 0, S_n$ a un comportement proche des extremes (petit/grand).
- On utilise donc une table de la loi binomiale. Si n est grand, on utilise le TCL.

Méthode