MT 4113: Computing in Statistics

Computer intensive statistics
Lecture 6: Permutation, randomization, and Monte-Carlo tests

Len Thomas

Oct 10 2018

Outline

- Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

Outline

- Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

Problem statement – inference from one sample

- We have a sample of data $x = x_1, ..., x_n$ that are realizations of iid random variables $X = X_1, ..., X_n$ with pdf f().
- We wish to make inferences about some population characteristic say the mean μ of f().

Problem statement – inference from one sample

- We have a sample of data $x = x_1, ..., x_n$ that are realizations of iid random variables $X = X_1, ..., X_n$ with pdf f().
- We wish to make inferences about some population characteristic say the mean μ of f().

Parametric methods

Introduction

00000000000

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2).$
- For a (two-sided) hypothesis test

$$T(x) = \frac{x - \mu_0}{s / \sqrt{n}}$$

Parametric methods

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2)$.
- For a (two-sided) hypothesis test
 - Specify the null hypothesis, H_0 e.g., $\mu = \mu_0$
 - Construct a test statistic T(X) that has a known distribution under H₀
 - e.g.,

$$T(x) = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- Calculate $P(|T(X)| \ge |T(x)|; \mu_0)$ the *p*-value.
- If *p*-value $\leq \alpha$ the result is statistically significant.

Parametric methods

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2)$.
- For a (two-sided) hypothesis test
 - Specify the null hypothesis, H_0 e.g., $\mu = \mu_0$
 - Construct a test statistic T(X) that has a known distribution under H_0
 - e.g.,

$$T(x) = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- Calculate $P(|T(X)| \ge |T(x)|; \mu_0)$ the *p*-value.
- If *p*-value $\leq \alpha$ the result is statistically significant.

Parametric methods

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2)$.
- For a (two-sided) hypothesis test
 - Specify the null hypothesis, H_0 e.g., $\mu = \mu_0$
 - Construct a test statistic T(X) that has a known distribution under H₀
 - e.g.,

$$T(x) = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- Calculate $P(|T(X)| \ge |T(x)|; \mu_0)$ the *p*-value.
- If *p*-value $\leq \alpha$ the result is statistically significant.

Parametric methods

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2)$.
- For a (two-sided) hypothesis test
 - Specify the null hypothesis, H_0 e.g., $\mu = \mu_0$
 - Construct a test statistic T(X) that has a known distribution under H₀
 - e.g.,

$$T(x) = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- Calculate $P(|T(X)| \ge |T(x)|; \mu_0)$ the *p*-value.
- If *p*-value $\leq \alpha$ the result is statistically significant.

Parametric methods

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2)$.
- For a (two-sided) hypothesis test
 - Specify the null hypothesis, H_0 e.g., $\mu = \mu_0$
 - Construct a test statistic T(X) that has a known distribution under H₀
 - e.g.,

$$T(x) = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

- Calculate $P(|T(X)| \ge |T(x)|; \mu_0)$ the *p*-value.
- If *p*-value $\leq \alpha$ the result is statistically significant.

Parametric methods

- Assume f() is a known function with parameters θ e.g., $f(\theta) = N(\mu, \sigma^2)$.
- For a (two-sided) hypothesis test
 - Specify the null hypothesis, H_0 e.g., $\mu = \mu_0$
 - Construct a test statistic T(X) that has a known distribution under H₀
 - e.g.,

$$T(x) = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

- Calculate $P(|T(X)| \ge |T(x)|; \mu_0)$ the *p*-value.
- If *p*-value $\leq \alpha$ the result is statistically significant.

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)\%$ limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., t-based intervals $\bar{x} \pm t_{\alpha/2} = 1s/\sqrt{t}$
- So, for parametric methods, you need to specify two distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)$ % limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., *t*-based intervals $\bar{x} \pm t_{\alpha/2} = s/\sqrt{r}$
- So, for parametric methods, you need to specify two distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)$ % limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$ • Fig. thased intervals $\bar{y} + t$ $\bar{y} = \sqrt{p}$
- So, for parametric methods, you need to specify two
 - distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

000000000000

- For (two-sided) confidence intervals on μ
 - For $((1-\alpha)\times 100)\%$ limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not
 - E.g., t-based intervals $\bar{x} \pm t_{\alpha/2} = 1s/\sqrt{n}$
- So, for parametric methods, you need to specify two

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)\%$ limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., *t*-based intervals $\bar{x} \pm t_{\alpha/2,n-1} s/\sqrt{n}$
- So, for parametric methods, you need to specify two distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

- For (two-sided) confidence intervals on μ
 - For $((1-\alpha)\times 100)\%$ limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., t-based intervals $\bar{x} \pm t_{\alpha/2,n-1} s/\sqrt{n}$
- So, for parametric methods, you need to specify two

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)$ % limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., *t*-based intervals $\bar{x} \pm t_{\alpha/2,n-1} s/\sqrt{n}$
- So, for parametric methods, you need to specify two distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)$ % limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., *t*-based intervals $\bar{x} \pm t_{\alpha/2,n-1} s/\sqrt{n}$
- So, for parametric methods, you need to specify two distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

- ullet For (two-sided) confidence intervals on μ
 - For $((1 \alpha) \times 100)$ % limits, find the scalar values L(X) and U(X) such that

$$P(L(X) < \mu \text{ and } U(X) > \mu) = 1 - \alpha$$

- Many methods for finding the limits
- E.g., inverting the test statistic
 - limits are the smallest and largest values of μ_0 that are not rejected under $H_0: \mu = \mu_0$
 - E.g., *t*-based intervals $\bar{x} \pm t_{\alpha/2,n-1} s/\sqrt{n}$
- So, for parametric methods, you need to specify two distributions:
 - The pdf generating the data: $f(\theta)$
 - The distribution of the test statistic: T(X)

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - lest statistic

$$T(x) = \sum_{i: x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

- where rank(x) denotes the rank order of x (smallest has value 1, next smallest 2, etc.) and sign(x y) is a sign function, having value 1 if x > y and -1 if x < y.
- Under H₀, T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

Introduction

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - Test statistic

$$T(x) = \sum_{i:x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

- Under H_0 , T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - Test statistic

$$T(x) = \sum_{i:x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

- Under H_0 , T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

Introduction

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - Test statistic

$$T(x) = \sum_{i:x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

- Under H_0 , T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

Traditional nonparametric methods

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - Test statistic

$$T(x) = \sum_{i: x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

where $\operatorname{rank}(x)$ denotes the rank order of x (smallest has value 1, next smallest 2, etc.) and $\operatorname{sign}(x-y)$ is a sign function, having value 1 if x > y and -1 if x < y.

- Under H_0 , T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

Traditional nonparametric methods

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - Test statistic

$$T(x) = \sum_{i: x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

where $\operatorname{rank}(x)$ denotes the rank order of x (smallest has value 1, next smallest 2, etc.) and $\operatorname{sign}(x-y)$ is a sign function, having value 1 if x>y and -1 if x<y.

- Under H_0 , T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

Traditional nonparametric methods

- Avoid fully specifying the distribution of f().
- E.g., Wilcoxon signed ranks test
 - f() is symmetric about some median m
 - $H_0: m = m_0$
 - Test statistic

$$T(x) = \sum_{i: x_i \neq m_0} \operatorname{rank}(|x_i - m_0|) \operatorname{sign}(x_i - m_0)$$

where $\operatorname{rank}(x)$ denotes the rank order of x (smallest has value 1, next smallest 2, etc.) and $\operatorname{sign}(x-y)$ is a sign function, having value 1 if x>y and -1 if x<y.

- Under H_0 , T(X) has (approximately) a normal distribution
- For confidence limits on m, can invert the test statistic

- With computer intensive methods, you can avoid the need to fully specify either the distribution of f() and/or T(X)
- Examples:
 - Permutation-based approach to Wilcoxon test (avoids the need to specify distribution for T(X); Wilcoxon already avoids f())
 - Monte-Carlo-based version of the *t*-test (avoids specification of T(X)), but not $f(\theta)$)
 - Parametric and non-parametric bootstrap confidence intervals
 - (again avoids T(X): either specify or not $f(\theta)$)

- With computer intensive methods, you can avoid the need to fully specify either the distribution of f() and/or T(X)
- Examples:
 - Permutation-based approach to Wilcoxon test (avoids the need to specify distribution for T(X); Wilcoxon already avoids f())
 - Monte-Carlo-based version of the *t*-test (avoids specification of T(X), but not $f(\theta)$)
 - Parametric and non-parametric bootstrap confidence intervals

- With computer intensive methods, you can avoid the need to fully specify either the distribution of f() and/or T(X)
- Examples:
 - Permutation-based approach to Wilcoxon test (avoids the need to specify distribution for T(X); Wilcoxon already avoids f())
 - Monte-Carlo-based version of the *t*-test (avoids specification of T(X), but not $f(\theta)$)
 - Parametric and non-parametric bootstrap confidence intervals

Computer-intensive statistical methods

- With computer intensive methods, you can avoid the need to fully specify either the distribution of f() and/or T(X)
- Examples:

Introduction

000000000000

- Permutation-based approach to Wilcoxon test (avoids the need to specify distribution for T(X); Wilcoxon already avoids f()
- Monte-Carlo-based version of the t-test (avoids specification of T(X), but not $f(\theta)$)
- Parametric and non-parametric bootstrap confidence

- With computer intensive methods, you can avoid the need to fully specify either the distribution of f() and/or T(X)
- Examples:
 - Permutation-based approach to Wilcoxon test (avoids the need to specify distribution for T(X); Wilcoxon already avoids f())
 - Monte-Carlo-based version of the *t*-test (avoids specification of T(X), but not $f(\theta)$)
 - Parametric and non-parametric bootstrap confidence intervals
 (again avoids T(X); either specify or not f(θ))

Outline

Introduction

- Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

Pine martin habitat preference data

- 0.13, -0.01, -0.01, 0.42, -0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
- Shapiro-Wilk test for normality W = 0.70, p<0.001

Pine martin habitat preference data

- 0.13, -0.01, -0.01, 0.42, -0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
- Shapiro-Wilk test for normality W = 0.70, p<0.001

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - t-test: t = 2.147, d.f.=11, p = 0.055
 - $\bar{x} = 0.074$, 95% t-based CI: (-0.002, 0.150)
- Could try transforming e.g., $log(x_i + 0.03)$:

Introduction

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - t-test: t = 2.147, d.f.=11, p = 0.055
 - $\bar{x} = 0.074$, 95% t-based CI: (-0.002, 0.150)
- Could try transforming e.g., $log(x_i + 0.03)$:

Introduction

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - t-test: t = 2.147, d.f.=11, p = 0.055
 - $\bar{x} = 0.074$, 95% t-based CI: (-0.002, 0.150)
- Could try transforming e.g., $\log(x_i + 0.03)$:

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - t-test: t = 2.147, d.f.=11, p = 0.055
 - $\bar{x} = 0.074$, 95% t-based CI: (-0.002, 0.150)
- Could try transforming e.g., $\log(x_i + 0.03)$:

Introduction

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - t-test: t = 2.147, d.f.=11, p = 0.055
 - $\bar{x} = 0.074$, 95% t-based CI: (-0.002, 0.150)
- Could try transforming e.g., $log(x_i + 0.03)$:

- H_0 : $\log(\mu + 0.03) = \log(0.03)$
- t-test: t = 2.484, d.f.=11, p = 0.030
- 95% t-based CI (back-transformed): (0.003, 0.095)

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - *t*-test: *t* = 2.147, d.f.=11, *p* = 0.055
 - $\bar{x} = 0.074$, 95% *t*-based CI: (-0.002, 0.150)
- Could try transforming e.g., $log(x_i + 0.03)$:

- H_0 : $\log(\mu + 0.03) = \log(0.03)$
- t-test: t = 2.484, d.f.=11, p = 0.030
- 95% *t*-based CI (back-transformed): (0.003, 0.095)

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - *t*-test: *t* = 2.147, d.f.=11, *p* = 0.055
 - $\bar{x} = 0.074$, 95% *t*-based CI: (-0.002, 0.150)
- Could try transforming e.g., $log(x_i + 0.03)$:

- $H_0: \log(\mu + 0.03) = \log(0.03)$
- t-test: t = 2.484, d.f.=11, p = 0.030
- 95% *t*-based CI (back-transformed): (0.003, 0.095)

- Assume data come from a normal distribution
 - $H_0: \mu = 0$
 - t-test: t = 2.147, d.f.=11, p = 0.055
 - $\bar{x} = 0.074$, 95% t-based CI: (-0.002, 0.150)
- Could try transforming e.g., $log(x_i + 0.03)$:

- H_0 : $\log(\mu + 0.03) = \log(0.03)$
- t-test: t = 2.484, d.f.=11, p = 0.030
- 95% t-based CI (back-transformed): (0.003, 0.095)

Pine martin example: parametric test (contd.)

Problems:

- Result not invariant to transformation: what transformation to use?
- If we use log, then what about bias correction?

Pine martin example: parametric test (contd.)

- Problems:
 - Result not invariant to transformation: what transformation to use?
 - If we use log, then what about bias correction?

Pine martin example: parametric test (contd.)

- Problems:
 - Result not invariant to transformation: what transformation to use?
 - If we use log, then what about bias correction?

Pine martin example: traditional nonparametric test

Wilcoxon signed-ranks test:

- $H_0: m=0$
- p = 0.012
- 95% Cl on m: (0.010, 0.120)
- Disadvantages:

Pine martin example: traditional nonparametric test

Randomization methods

- Wilcoxon signed-ranks test:
 - $H_0: m=0$
 - p = 0.012
 - 95% Cl on m: (0.010, 0.120)
- Disadvantages:

- Wilcoxon signed-ranks test:
 - $H_0: m=0$
 - p = 0.012
 - 95% Cl on m: (0.010, 0.120)
- Disadvantages:

- Wilcoxon signed-ranks test:
 - $H_0: m = 0$
 - p = 0.012
 - 95% CI on m: (0.010, 0.120)
- Disadvantages:
 - ullet Requires us to formulate H_0 in terms of the median
 - Less powerful than a t-test when parametric assumptions met

- Wilcoxon signed-ranks test:
 - $H_0: m=0$
 - p = 0.012
 - 95% CI on m: (0.010, 0.120)
- Disadvantages:
 - Requires us to formulate H_0 in terms of the median
 - Less powerful than a t-test when parametric assumptions met

- Wilcoxon signed-ranks test:
 - $H_0: m=0$
 - p = 0.012
 - 95% CI on m: (0.010, 0.120)
- Disadvantages:
 - Requires us to formulate H₀ in terms of the median
 - Less powerful than a t-test when parametric assumptions met

- Wilcoxon signed-ranks test:
 - $H_0: m=0$
 - p = 0.012
 - 95% CI on m: (0.010, 0.120)
- Disadvantages:
 - Requires us to formulate H₀ in terms of the median
 - Less powerful than a t-test when parametric assumptions met

Outline

- 1 Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

- Under H_0 : $\mu = \mu_0$, and assuming the distribution of x_i is symmetric about μ_0 , then
- $+(x_i \mu_0)$ is just as likely to occur in the data as $-(x_i \mu_0)$
- For $\mu_0 = 0$ then $+x_i$ is just as likely as $-x_i$
- So, can produce alternative equally likely realizations of

- Under H_0 : $\mu = \mu_0$, and assuming the distribution of x_i is symmetric about μ_0 , then
- $+(x_i \mu_0)$ is just as likely to occur in the data as $-(x_i \mu_0)$
- For $\mu_0 = 0$ then $+x_i$ is just as likely as $-x_i$
- So, can produce alternative equally likely realizations of

- Under H_0 : $\mu = \mu_0$, and assuming the distribution of x_i is symmetric about μ_0 , then
- $+(x_i \mu_0)$ is just as likely to occur in the data as $-(x_i \mu_0)$
- For $\mu_0 = 0$ then $+x_i$ is just as likely as $-x_i$
- So, can produce alternative equally likely realizations of

- Under H_0 : $\mu = \mu_0$, and assuming the distribution of x_i is symmetric about μ_0 , then
- $+(x_i \mu_0)$ is just as likely to occur in the data as $-(x_i \mu_0)$
- For $\mu_0 = 0$ then $+x_i$ is just as likely as $-x_i$
- So, can produce alternative equally likely realizations of the data by swapping any x_i for $-x_i$

Permutations

• Given 12 data points, there are $2^{12} = 4096$ ways to do this:

```
• 0.13, 0.01, 0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
```

- -0.13, 0.01, 0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
- 0.13, -0.01, 0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
- 0.13, 0.01, -0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
- -0.13, -0.01, -0.01, -0.42, -0.02, -0.01, -0.09, -0.03, -0.04, -0.06, -0.12, -0.03

Permutations

- Given 12 data points, there are $2^{12} = 4096$ ways to do this:
 - 0.13, 0.01, 0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
 - -0.13, 0.01, 0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
 - 0.13, -0.01, 0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
 - 0.13, 0.01, -0.01, 0.42, 0.02, 0.01, 0.09, 0.03, 0.04, 0.06, 0.12, 0.03
 - •
 - -0.13, -0.01, -0.01, -0.42, -0.02, -0.01, -0.09, -0.03, -0.04, -0.06, -0.12, -0.03

Permutation test

• Find what proportion of the permutations have $|\bar{X}|$ greater than the observed $|\bar{x}|$.

• Find what proportion of the permutations have $|\bar{X}|$ greater than the observed $|\bar{x}|$.

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H_0 , all possible appropriate data permutations
- So, calculate T(X) for each permutation and see how

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H₀, all possible appropriate data permutations (re-orderings) are equally likely
- So, calculate T(X) for each permutation and see how extreme T(x) is compared with these

```
• If T(x) is extreme, reject H_0
```

• If T(x) is not extreme, don't reject H_0

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H₀, all possible appropriate data permutations (re-orderings) are equally likely
- So, calculate T(X) for each permutation and see how extreme T(x) is compared with these
 - If T(x) is extreme, reject H_0
 - If T(x) is not extreme, don't reject H_0

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H₀, all possible appropriate data permutations (re-orderings) are equally likely
- So, calculate T(X) for each permutation and see how extreme T(x) is compared with these
 - If T(x) is extreme, reject H_0
 - If T(x) is not extreme, don't reject H_0

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H₀, all possible appropriate data permutations (re-orderings) are equally likely
- So, calculate T(X) for each permutation and see how extreme T(x) is compared with these
 - If T(x) is extreme, reject H_0
 - If T(x) is not extreme, don't reject H_0

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H₀, all possible appropriate data permutations (re-orderings) are equally likely
- So, calculate T(X) for each permutation and see how extreme T(x) is compared with these
 - If T(x) is extreme, reject H_0
 - If T(x) is not extreme, don't reject H_0

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Permuatation tests - the basic idea

- Pick a null hypothesis H_0 and test statistic T(X)
- Under H₀, all possible appropriate data permutations (re-orderings) are equally likely
- So, calculate T(X) for each permutation and see how extreme T(x) is compared with these
 - If T(x) is extreme, reject H_0
 - If T(x) is not extreme, don't reject H_0

- f() no parametric definition needed
- T(X) obtain this via the randomization procedure

Choice of test statistic

- With permutation-based methods (and many other computer-intensive methods) you are free to choose whatever test statistic you like
- For example, we could use the median, trimmed mean, t-statistic, etc., etc.
- The method readily extends to other situations e.g., two sample tests, ANOVA, etc., etc.

Choice of test statistic

- With permutation-based methods (and many other computer-intensive methods) you are free to choose whatever test statistic you like
- For example, we could use the median, trimmed mean, t-statistic, etc., etc.
- The method readily extends to other situations e.g., two sample tests, ANOVA, etc., etc.

Permutation test

Choice of test statistic

- With permutation-based methods (and many other computer-intensive methods) you are free to choose whatever test statistic you like
- For example, we could use the median, trimmed mean, t-statistic, etc., etc.
- The method readily extends to other situations e.g., two sample tests, ANOVA, etc., etc.

Outline

- 1 Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

- Invert the test statistic: Find the set of values of μ_0 such that $H_0: \mu = \mu_0$ is not rejected
- For each potential value of μ_0 , follow the same procedure
- Can use stochastic search methods¹ to find the confidence
- In our example, 95% CI is (0.013, 0.150) (c.f., t-based CI

- Invert the test statistic: Find the set of values of μ_0 such that $H_0: \mu = \mu_0$ is not rejected
- For each potential value of μ_0 , follow the same procedure as before
 - calculating all permutations of $\pm (x_i \mu_0)$
- In our example, 95% CI is (0.013, 0.150) (c.f., t-based CI

¹e.g., Robbins-Monroe search - see accompanying-note₃ > ∢ ≥ > ∢ ≥ >

- Invert the test statistic: Find the set of values of μ_0 such that $H_0: \mu = \mu_0$ is not rejected
- For each potential value of μ_0 , follow the same procedure as before
 - calculating all permutations of $\pm (x_i \mu_0)$
- In our example, 95% CI is (0.013, 0.150) (c.f., t-based CI

¹e.g., Robbins-Monroe search - see accompanying-note₃ > ∢ ≥ > ∢ ≥ >

- Invert the test statistic: Find the set of values of μ_0 such that $H_0: \mu = \mu_0$ is not rejected
- For each potential value of μ_0 , follow the same procedure as before
 - calculating all permutations of $\pm (x_i \mu_0)$
 - then seeing how extreme the observed \bar{x} is among the permutations
- Can use stochastic search methods¹ to find the confidence
- In our example, 95% CI is (0.013, 0.150) (c.f., t-based CI

¹e.g., Robbins-Monroe search - see accompanying-note₃ > ∢ ≥ > ∢ ≥ >

- Invert the test statistic: Find the set of values of μ_0 such that $H_0: \mu = \mu_0$ is not rejected
- For each potential value of μ_0 , follow the same procedure as before
 - calculating all permutations of $\pm (x_i \mu_0)$
 - then seeing how extreme the observed \bar{x} is among the permutations
- Can use stochastic search methods¹ to find the confidence limits
- In our example, 95% CI is (0.013, 0.150) (c.f., t-based CI

¹e.g., Robbins-Monroe search - see accompanying notes - < = > < = >

- Invert the test statistic: Find the set of values of μ_0 such that $H_0: \mu = \mu_0$ is not rejected
- For each potential value of μ_0 , follow the same procedure as before
 - calculating all permutations of $\pm (x_i \mu_0)$
 - then seeing how extreme the observed \bar{x} is among the permutations
- Can use stochastic search methods¹ to find the confidence limits
- In our example, 95% CI is (0.013, 0.150) (c.f., t-based CI of (-0.002, 0.150)).

¹e.g., Robbins-Monroe search - see accompanying notes - < = > < = >

Outline

- 1 Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

- Widely applicable
- Produces exact results
- No specific distribution assumed for the data
- Does not require analytic distribution of test statistic

- Widely applicable
- Produces exact results
- Does not require analytic distribution of test statistic

- Widely applicable
- Produces exact results
- No specific distribution assumed for the data
- Does not require analytic distribution of test statistic

- Widely applicable
- Produces exact results
- No specific distribution assumed for the data
- Does not require analytic distribution of test statistic

Cons

- Each permutation of the data must be equally likely (or probability of occurrence is known)
- To be generally applicable, requires thought, and ability to program a computer (permutation algorithms can be non-trivial)
- Can be prohibitively computer (and programmer) intensive in complex situations or for large sample sizes

Cons

- Each permutation of the data must be equally likely (or probability of occurrence is known)
- To be generally applicable, requires thought, and ability to program a computer (permutation algorithms can be non-trivial)
- Can be prohibitively computer (and programmer) intensive in complex situations or for large sample sizes

Cons

- Each permutation of the data must be equally likely (or probability of occurrence is known)
- To be generally applicable, requires thought, and ability to program a computer (permutation algorithms can be non-trivial)
- Can be prohibitively computer (and programmer) intensive in complex situations or for large sample sizes

Outline

- Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

- Randomization methods are like permutation methods, except that a only random subset of all the possible permutations are generated
- E.g., pine martin example:
 - · To generate one randomization, list the set of values $|x_i \mu_0|$ and randomly assign a sign to each value
 - From one run of 999 randomizations plus the original data value, I obtained p = 0.015, very similar to the p = 0.012 of the permutation method.
- Confidence intervals can be obtained in a similar way to permutation intervals

- Randomization methods are like permutation methods, except that a only random subset of all the possible permutations are generated
- E.g., pine martin example:
 - To generate one randomization, list the set of values $|x_i \mu_0|$ and randomly assign a sign to each value
 - From one run of 999 randomizations plus the original data value, I obtained p = 0.015, very similar to the p = 0.012 of the permutation method.
- Confidence intervals can be obtained in a similar way to permutation intervals

- Randomization methods are like permutation methods, except that a only random subset of all the possible permutations are generated
- E.g., pine martin example:
 - To generate one randomization, list the set of values $|x_i - \mu_0|$ and randomly assign a sign to each value
 - From one run of 999 randomizations plus the original data
- Confidence intervals can be obtained in a similar way to

- Randomization methods are like permutation methods, except that a only random subset of all the possible permutations are generated
- E.g., pine martin example:
 - To generate one randomization, list the set of values $|x_i \mu_0|$ and randomly assign a sign to each value
 - From one run of 999 randomizations plus the original data value, I obtained p = 0.015, very similar to the p = 0.012 of the permutation method.
- Confidence intervals can be obtained in a similar way to permutation intervals

Overview

- Randomization methods are like permutation methods, except that a only random subset of all the possible permutations are generated
- E.g., pine martin example:
 - To generate one randomization, list the set of values $|x_i \mu_0|$ and randomly assign a sign to each value
 - From one run of 999 randomizations plus the original data value, I obtained p=0.015, very similar to the p=0.012 of the permutation method.
- Confidence intervals can be obtained in a similar way to permutation intervals

Outline

- 1 Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

Pros, compared with permutation methods

- All of the same advantages as permutation, plus
- Much easier to code
- Number of randomizations is fixed, rather than being a function of sample size

Pros, compared with permutation methods

- All of the same advantages as permutation, plus
- Much easier to code
- Number of randomizations is fixed, rather than being a function of sample size

Pros, compared with permutation methods

- All of the same advantages as permutation, plus
- Much easier to code
- Number of randomizations is fixed, rather than being a function of sample size

Cons, compared with permutation methods

- As with permutation tests, each randomization of the data must be equally likely (or probability of occurrence is known)
- Results will vary from run to run
 - Size of this "Monte-Carlo variation" depends on the number of randomizations

Cons, compared with permutation methods

- As with permutation tests, each randomization of the data must be equally likely (or probability of occurrence is known)
- Results will vary from run to run
 - Size of this "Monte-Carlo variation" depends on the number of randomizations

Cons, compared with permutation methods

- As with permutation tests, each randomization of the data must be equally likely (or probability of occurrence is known)
- Results will vary from run to run
 - Size of this "Monte-Carlo variation" depends on the number of randomizations

Outline

- 1 Introduction
 - Revision Traditional parametric and nonparametric methods
 - Motivating example
- Permutation methods
 - Permutation test
 - Permutation interval
 - Summary
- Randomization methods
 - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:

Randomization methods

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - Set up some distribution for the data, f() or $f(\theta)$, and some H_0
 - Repeat the following two steps many times:
 - Simulate a data set according to H₀
 Calculate T(X) using the simulated data
 - 3 Add T(x) evaluated from the sample data
 - \bigcirc Order all of the T(X)s
 - p-value is the proportion of the T(X)s as extreme or more extreme than the one from the sample data

² If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - **1** Set up some distribution for the data, f() or $f(\theta)$, and some H_0
 - Repeat the following two steps many times:

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - **1** Set up some distribution for the data, f() or $f(\theta)$, and some H_0
 - Repeat the following two steps many times:
 - Simulate a data set according to H₀

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - Set up some distribution for the data, f() or $f(\theta)$, and some H_0

Randomization methods

- 2 Repeat the following two steps many times:
 - **1** Simulate a data set according to H_0
 - 2 Calculate T(X) using the simulated data
- Add T(x) evaluated from the sample data
- 4 Order all of the T(X)s

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - **1** Set up some distribution for the data, f() or $f(\theta)$, and some H_0
 - Repeat the following two steps many times:
 - Simulate a data set according to H₀
 - 2 Calculate T(X) using the simulated data
 - 3 Add T(x) evaluated from the sample data

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Overview

Introduction

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - **1** Set up some distribution for the data, f() or $f(\theta)$, and some H_0
 - Repeat the following two steps many times:
 - Simulate a data set according to H₀
 - 2 Calculate T(X) using the simulated data
 - 3 Add T(x) evaluated from the sample data
 - Order all of the T(X)s

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Introduction

A generalization² of randomization tests to include parametric distributions for the data.

- Algorithm:
 - **1** Set up some distribution for the data, f() or $f(\theta)$, and some H_0

Randomization methods

- Repeat the following two steps many times:
 - Simulate a data set according to H₀
 - 2 Calculate T(X) using the simulated data
- 3 Add T(x) evaluated from the sample data
- Order all of the T(X)s
- **5** p-value is the proportion of the T(X)s as extreme or more extreme than the one from the sample data

²If the assumed model for f() implies that all data orderings are equally likely then you get back to a randomization test

Overview

- Assume observations are iid N(μ , σ^2), that $H_0: \mu=0$, and that $\sigma^2=s^2$
- Simulate 999 data sets of 12 observations from $N(0, s^2)$.
- Calculate \bar{x} for each of these, and add in the mean from the sample data, to give 1000 values of \bar{x} .
- p-value is the proportion of these values that are more extreme (e.g., p = 0.029)

- Assume observations are iid N(μ , σ^2), that $H_0: \mu = 0$, and that $\sigma^2 = s^2$
- Simulate 999 data sets of 12 observations from N(0, s²).
- Calculate \bar{x} for each of these, and add in the mean from the sample data, to give 1000 values of \bar{x} .
- p-value is the proportion of these values that are more extreme (e.g., p = 0.029)

Overview

- Assume observations are iid N(μ , σ^2), that $H_0: \mu = 0$, and that $\sigma^2 = s^2$
- Simulate 999 data sets of 12 observations from N(0, s²).
- Calculate x̄ for each of these, and add in the mean from the sample data, to give 1000 values of x̄.
- p-value is the proportion of these values that are more extreme (e.g., p = 0.029)

- Assume observations are iid N(μ , σ^2), that H_0 : $\mu=0$, and that $\sigma^2=s^2$
- Simulate 999 data sets of 12 observations from $N(0, s^2)$.
- Calculate x̄ for each of these, and add in the mean from the sample data, to give 1000 values of x̄.
- p-value is the proportion of these values that are more extreme (e.g., p = 0.029)

Outline

- - Revision Traditional parametric and nonparametric
 - Motivating example
- - Permutation test
 - Permutation interval
 - Summary
- - Overview
 - Summary
- Monte-Carlo tests
 - Overview
 - Summary

Introduction

Pros

- Data can be assumed to follow any distribution parametric or non-parametric (Randomization tests are a special case)
- The analytic distribution of the test statistic is not required

Summary

Pros

- Data can be assumed to follow any distribution parametric or non-parametric (Randomization tests are a special case)
- The analytic distribution of the test statistic is not required

Cons, compared with permutation methods

- For parametric simulations, need to estimate nuisance parameters (e.g., σ^2 in the pine martin example)
- Results will vary from run to run

Introduction

Cons, compared with permutation methods

- For parametric simulations, need to estimate nuisance parameters (e.g., σ^2 in the pine martin example)
- Results will vary from run to run

Monte Carlo confidence intervals

Confidence intervals can be constructed using similar methods to randomization intervals – but there is a better way – see next lecture...

