

Chapter 99 Review of Software Testing

School of Data & Computer Science
Sun Yat-sen University

Chapter 1. Overview of Software Engineering

- 1.1 软件与软件危机
 - 计算机硬件体系结构
 - 计算机软件体系结构
 - 软件的概念
 - 软件危机
- 1.2 软件开发与软件工程
 - 软件开发过程
 - 软件开发方法
 - 软件工程
- 1.3 软件生命周期模型
 - 软件生命周期的六个阶段
 - 软件生命周期模型:瀑布模型; V-W 模型; RAD 模型;原型模型;增量/演化/迭代模型;螺旋模型;喷泉模型;基于构件的开发模型;Rational 统一过程模型;敏捷开发。

Chapter 1. Overview of Software Engineering

■ 1.4 软件质量标准

- 软件质量的概念
- 软件产品质量标准
- 软件质量特性
- 软件质量的分层模型
 - ISO/IEC 9126-1/25010, GB/T 16260.1-2006

■ 1.5 敏捷开发

- 敏捷宣言
- 敏捷开发方法概述
- Scrum & Sprint
- 极限编程的核心实践
- 1.6 软件生命周期过程
 - ISO/IEC/IEEE 12207 Systems and software engineering Software life cycle processes

Chapter 2. Basic Concepts of Software Testing

■ 2.1 软件缺陷

- 软件缺陷的概念
- 软件缺陷的基本术语
- 软件缺陷的来源和起源

■ 2.2 软件测试概述

- 软件测试的发展历程
- 软件测试的目的和意义
- 软件测试的原则和公理
- 软件测试的质量度量
- 国内外软件测试行业现状

Chapter 2. Basic Concepts of Software Testing

- 2.3 软件测试的过程和方法
 - 软件测试的对象
 - 软件验证与确认 (Verification & Validation)
 - IEEE Std 1012-2016
 - 软件测试的生命周期
 - SDLC测试阶段的分级测试
 - 软件测试信息流
 - 软件测试的基本方法
 - 软件测试工具
 - 软件测试和软件开发过程的关系

Chapter 2. Basic Concepts of Software Testing

- 2.4 基于软件生命周期的软件测试方法
 - 软件生命周期测试概述
 - 测试要素和测试计划
 - IEEE 829, superseded by IEEE 29119-3:2013
 - 基于风险的软件测试
 - 软件生命周期的阶段测试
 - 软件生命周期测试工具平台
- 2.5 软件测试的分类与分级
 - 软件测试的分类方法
 - 计算机软件配置项 CSCI
 - 计算机软件测试规范 (GB/T 15532-2008)
 - 基于 CSCI 的软件测试 (GB/T 15532-2008)
 - 软件测试的分级体系 (GB/T 15532-2008)
 - 软件测试中的错误分级及实例化

Chapter 3. Software Static Testing

■ 3.1 软件静态测试概述

- 测试技术分布树
- 静态测试的概念
- 软件评审的概念
- 同行评审的分级
 - 技术审查; 小组评审; 走查; 同级桌查
- 需求评审和设计审查

■ 3.2 软件代码检查

- 代码检查的内容
- 代码检查的基本方法
- 软件编程规范检查
- MISRA C 编程规范
- 代码的自动分析和结构分析
- 代码安全性检查

Chapter 3. Software Static Testing

- 3.4 软件复杂性分析
 - 软件复杂性概述
 - 软件的结构复杂性
 - 软件复杂性控制
 - 软件复杂性的度量元分类
 - 规模复杂度及计算
 - Halstead 难度复杂度及计算
 - McCabe 结构复杂度及计算
 - 面向对象软件的复杂性度量
- 3.5 软件质量度量
 - 软件质量度量概述
 - IEEE Std 1061-1998(R2009) 软件质量度量方法学
 - 软件质量评价指标/软件项目评价指标
- 3.6 软件静态分析工具

Chapter 4. White Box Testing

- 4.1 动态测试的概念
 - 动态测试及白盒测试概述
- 4.2 逻辑覆盖
 - 逻辑覆盖的概念
 - 语句覆盖
 - 判定覆盖
 - 条件覆盖
 - 判定-条件覆盖
 - 条件组合覆盖
 - 路径覆盖
- 4.3 路径测试
 - DD-路径测试
 - 基本路径测试
 - 循环路径测试覆盖

Chapter 4. White Box Testing

- 4.4 数据流测试
- 4.5 信息流分析
- 4.6 覆盖率分析
 - 代码覆盖率
 - 覆盖率的计算
- 4.7 覆盖测试准则
 - ESTCA 准则
 - **LCSAJ 覆盖准则
- 4.8 基本路径测试
 - 路径测试与基本路径测试
 - 基本路径测试的设计步骤
 - 程序控制流图 CFG
 - 实例:基于 McCabe 环路复杂性的基本路径测试

Chapter 5. Black Box and Gray Box Testing

■ 5.1 黑盒测试

- 黑盒测试的概念
- 黑盒测试的局限
- 等价类划分法
 - 划分等价类的原则
 - 基于等价类划分的测试用例设计
 - 弱/强、一般/健壮的等价类测试分类
 - 实例:三角形问题的等价类划分法测试用例设计
- 边界值分析法
 - 边界值的概念
 - 边界值测试用例设计
- 错误推测法
- 随机测试法

Chapter 5. Black Box and Gray Box Testing

■ 5.1 黑盒测试

- 判定表法
 - 判定表的结构
 - 基于判定表的测试用例设计
 - 实例:三角形问题的判定表法测试用例设计
 - 实例: NextDate 问题的判定表法测试用例设计
- 因果图法
 - 因果图的定义
 - 实例:基于因果图生成判定表的自动售货机测试用例设计
- 黑盒测试方法的比较和选择
- 5.2 灰盒测试

Chapter 6. Unit and Integration Testing

- 6.1 测试用例设计
 - 测试用例设计概述
 - 测试用例设计原则
 - 测试用例编写内容
 - 测试用例编写模版
 - ISO/IEC/IEEE 29119-3:2013
 - 测试用例的设计步骤
 - 测试用例的重要程度分级
 - 测试用例的优先级设计

Chapter 6. Unit and Integration Testing

■ 6.2 单元测试

- 单元测试概述
- 单元测试的的技术要求 (GB/T 15532-2008)
- 单元测试的主要内容
 - 驱动模块和桩模块的设计
 - 模块接口测试
 - 局部数据结构测试
 - 路径测试
 - 错误接口测试
 - 边界测试
- 单元测试的基本流程
- 单元测试用例设计
- 单元测试报告

Chapter 6. Unit and Integration Testing

■ 6.3 集成测试

- 集成测试概述
- 集成测试的技术要求 (GB/T 15532-2008)
- 集成测试内容
- 集成测试步骤
- 集成测试方法
 - 一次组装式
 - 自顶向下递增式
 - 深度优先
 - 广度优先
 - 自底向上递增式
 - 混合渐增式
- 集成测试阶段性过程
- 集成测试的完成标志

Chapter 7. System Testing

■ 7.1 系统测试概述

- 系统测试概述
- 系统测试的需求分析
- 系统测试策略
- 系统测试环境
- 系统测试的技术要求 (GB/T 15532-2008)
- 系统测试设计
- 7.2 系统测试内容分类
 - 按传统分类的18项系统测试内容
- 7.3 系统测试步骤
- 7.4 系统测试的测试用例分类设计
 - 系统测试用例分类设计的基本思想
 - 按传统分类的系统测试用例设计

Chapter 7. System Testing

- 7.5 软件故障模型与攻击测试
 - 软件故障模型的概念
 - 21种软件故障模型
 - 软件攻击测试的概念
 - 典型软件攻击测试方法分类
- 7.6 软件攻击突破口测试
 - 软件攻击突破口的概念
 - 软件攻击突破口的分类测试
- 7.7 软件故障注入测试
 - 软件故障注入的概念
 - 静态注入与动态注入
- 7.8 系统可用性测试和完整性测试
- 7.9 动态测试工具

Chapter 8. Software Defect Management

■ 8.1 概述

- 软件缺陷的概念 (风险分析、原因分析)
- 软件缺陷的管理流程

■ 8.2 软件缺陷描述与分类

- 软件缺陷的描述内容
- 软件缺陷属性
- 软件缺陷的分类方法
 - *Thayer* 方法; IEEE Std 1044-2009;ODC 方法。
- ODC 分析法
- 软件缺陷分类方法的应用

■ 8.3 软件缺陷的处理与跟踪

- 软件缺陷的生命周期
- 软件缺陷的处理阶段
- 软件缺陷跟踪系统

Chapter 8. Software Defect Management

- 8.4 软件缺陷报告
 - 软件缺陷报告的 "5C" 准则
 - 软件缺陷报告的组织结构
- 8.5 软件缺陷的度量与分析
 - 软件缺陷的主要度量元
 - 软件缺陷分析的概念
 - 软件缺陷分析的主要方法
 - 缺陷统计分布/趋势图
 - Rayleigh 软件缺陷模型及应用
 - 缺陷打开/关闭累积追赶图分析
- 8.6 软件缺陷管理工具

Chapter 9. Software Safety and Security Testing

- 9.1 软件的可靠安全性和保密安全性
- 9.2 软件安全性及测试
 - 软件安全性概述
 - 软件安全性工作
 - 安全性关键模块/安全性关键软件
 - 软件安全性分析
 - 软件安全性分析的内容和方法
 - 软件安全性分析常用技术
 - FHA; PHA; SFMEA; SFTA
 - 软件安全性测试
 - 软件安全性测试的内容和流程
 - 软件安全性测试方法
 - 基于可靠性分析法;基于软件测试方法;基于形式化模型

Chapter 9. Software Safety and Security Testing

- 9.3 软件安全及测试
 - 软件安全的概念
 - 软件安全的层次
 - 应用级别安全
 - 。 软件安全: 数据安全
 - 系统级别安全: 操作系统安全
 - 软件安全漏洞
 - 概念、原因、危害、分类
 - 软件安全技术
 - 密码技术、认证技术、漏洞扫描、防火墙、IDS、Anti-V、VPN
 - 软件安全测试
 - 代码扫描、渗透测试和内存测试方法
 - 软件安全测试的内容分类
 - 功能验证、漏洞扫描、模拟攻击、侦听

Chapter 10. Software Reliability Testing

- 10.1 概述
 - 软件危机与软件可靠性
 - 软件可靠性工程 (SRE)
- 10.2 软件可靠性分析与设计
 - 软件可靠性的影响因素分析
 - 软件可靠性的失效机理分析
 - 软件可靠性设计技术
- 10.3 软件可靠性评估
 - 软件可靠性评估的概念
 - 软件可靠性评估方法
 - 软件测试与软件可靠性评估

Chapter 10. Software Reliability Testing

- 10.4 软件可靠性测试
 - 软件可靠性测试的概念
 - 软件可靠性测试流程
 - 软件可靠性测试的基本方法
 - 基于运行剖面的描述方法
 - 基于使用模型的统计方法
 - 基于操作剖面的统计方法
 - 软件可靠性测试的功能识别
 - 所有被测功能以及执行这些功能所需的相关输入的识别
 - 每一个使用需求及其相关输入的概率分布的识别
 - 软件可靠性测试的失效等级
 - 软件可靠性测试的覆盖
 - 输入覆盖
 - 环境覆盖

■ 国际标准

- IEEE Std 610.12-1990 *IEEE Standard Glossary of Software Engineering Terminology* (Revision and Redesignation of IEEE Std 792-1983)
- ISO/IEC/IEEE 12207-2017 Systems and software engineering Software life cycle processes
- ISO/IEC 9126-1:2001 (Revised by ISO/IEC 25010-2011): Systems and software engineering Systems and software Quality Requirements and Evaluation (SQuaRE) System and software quality models.
 - Quality Management Division (ISO/IEC 2500n),
 - Quality Model Division (ISO/IEC 2501n),
 - Quality Measurement Division (ISO/IEC 2502n),
 - Quality Requirements Division (ISO/IEC 2503n),
 - Quality Evaluation Division (ISO/IEC 2504n),
 - SQuaRE Extension Division (ISO/IEC 25050 ISO/IEC 25099).
- IEEE Std 1061-1998 (R2009) *IEEE Standard for a Software Quality Metrics Methodology*

■ 国际标准

- IEEE Std 1012-2016 *IEEE Standard for System, Software and Hardware Verification and Validation*
- ISO/IEC/IEEE 29119 Software Testing
 - ISO/IEC 29119-1:2013 Concepts & Definitions
 - ISO/IEC 29119-2:2013 *Test Processes*
 - ISO/IEC 29119-3:2013 Test Documentation
 - ISO/IEC 29119-4:2015 *Test Techniques*
 - ISO/IEC 29119-5:2016 Keyword Driven Testing
- ISO/IEC 20246-2017 Work Product Reviews (for Static Testing)
- ISO/IEC 33063-2015 *Process Assessment Model for Software Testing*
- Quality Standards Defect Measurement Manual United Kingdom Software Metrics Association (UKSMA), 2000
- IEEE Std 1044-2009 *IEEE Standard Classification for Software Anomalies*
- IEEE 1633-2008 *IEEE Recommend Practice on Software Reliability*

引用标准

■ 国家标准

- GB/T 16260-2006 软件工程 产品质量
 - GB/T 16260.1-2006 ISO/IEC 9126-1:2001: 质量模型
 - GB/T 16260.2-2006:外部度量
 - GB/T 16260.3-2006:内部度量
 - GB/T 16260.4-2006: 使用质量的度量
- GB/T 15532-2008 计算机软件测试规范
- GB/T 14394-2008 计算机软件可靠性和可维护性管理
- GB/T 28171-2011 嵌入式软件可靠性测试方法
- GB/T 29832.1-2013 系统与软件可靠性
 - GB/T 29832.1-2013 系统与软件可靠性 第1部分: 指标体系
 - GB/T 29832.2-2013 系统与软件可靠性 第2部分: 度量方法
 - GB/T 29832.3-2013 系统与软件可靠性 第3部分:测试方法

