Universidade Estadual da Paraíba Centro de Ciências e Tecnologia Curso de Bacharelado em Estatística/ESA

8 Métodos Numéricos – Interpolação

<u>Introdução</u>

- O dicionário reza que "interpolar" significa intercalar, introduzir, preencher, etc.
- Em Métodos Numéricos "interpolar" significa colocar sobre um conjunto de pontos uma função em lugar de outra que deveria estar ali, mas você não sabe qual é.
- Interpolação de um conjunto de m pontos é um processo em que uma função "inventada" passa exatamente por cada um dos m pontos gerados pela função "original".
- O conjunto de pontos pode ter sido gerado por uma função desconhecida ou, sendo conhecida, é muito complicada para se trabalhar com ela.

• Se $g^*(x)$ é a função que interpola os m pontos (x_i, y_i) do conjunto de pontos, então a condição de interpolação para erro zero sobre cada um dos pontos é estabelecida como segue:

$$g^*(x_i) = y_i, \ 1 \le i \le m.$$

- Note que no parágrafo acima nada é dito sobre os arredores dos pontos.
- Ou seja, na técnica de interpolação o que interessa é que o gráfico da função "inventada" passe em cima de cada um dos pontos que se tem em mãos e que, muitas vezes, não se sabe qual a função que está por trás da geração desses pontos.

Interpolação Polinomial

- Interpolação Polinomial ocorre quando a interpolação é feita por uma função polinomial.
- A escolha da classe de funções polinomiais se deve ao fato de que toda operação (adição, subtração, multiplicação, divisão, diferenciação, integração, etc.) que se faz sobre um polinômio resulta em polinômio.
- Chamaremos de P_n ao conjunto de todos os polinômios de grau menor ou igual a n.
- Se a função interpoladora $g^*(x) \in P_n$, então $g^*(x)$ tem a forma

$$g^*(x) = p_n(x) = a_n x^n + ... + a_2 x^2 + a_1 x + a_0$$

Interpolação Polinomial

• Qual a importância do grau n do polinômio interpolador $ho_{_{\! n}}$?

- O gráfico ao lado mostra três polinômios que interpolam três pontos: um de 2º. grau, um de 3º. grau, e outro de 4º. grau.
- Pelo gráfico, um polinômio do 2º. grau é suficiente para interpolar os três pontos.

Interpolação Polinomial

• Qual a importância do grau n do polinômio interpolador $ho_{_{\! n}}$?

- Se n é a quantidade de pontos a serem interpolados, é garantido matematicamente que o polinômio interpolador mais fácil de ser obtido é aquele de grau n – 1, e ainda melhor, tal polinômio é único. (Teorema de Stone-Weiertrass).
- Em outras, palavras: só
 existe um único polinômio
 interpolador de grau n 1 que
 interpola n pontos.

Interpolação Polinomial

- Método de Newton
- O Método de Newton usa uma aproximação das derivadas da função interpoladora em função dos parâmetros dos pontos a serem interpolados. Estas aproximações são chamadas de "diferenças divididas".
- O conceito de derivada de 1ª. ordem no ponto x_o , formalmente definido no Cálculo Infinitesimal, é dado por

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Interpolação Polinomial - Método de Newton

 A diferença dividida de ordem 1 é a aproximação da derivada de 1ª. ordem, ou seja

$$[x,x_0] = \frac{f(x)-f(x_0)}{x-x_0} = \Lambda$$

• Fazendo $x = x_1$, a diferença dividida de ordem 1 com relação a x_1 e x_0 , é

$$[x_1, x_0] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = [x_0, x_1] = \Lambda y_0$$

 Assim, podemos definir uma série de diferenças divididas com relação aos parâmetros do ponto considerado. As de ordem imediatamente seguinte sempre são definidas em função das de ordem imediatamente anterior:

Interpolação Polinomial – Método de Newton

• A diferença dividida de ordem 0 é dada por

$$\Lambda^0 y_i = [\hat{x}_i^e] igyal_{\hat{x}_i^e} função no ponto)$$

• Assim, a de ordem 1 em função da de ordem 0, é

$$\Delta \mathbf{y}_0 = \frac{[\mathbf{x}_1] - [\mathbf{x}_0]}{\mathbf{x}_1 - \mathbf{x}_0} = \frac{\Delta^0 \mathbf{y}_1 - \Delta^0 \mathbf{y}_0}{\mathbf{x}_1 - \mathbf{x}_0}$$

temos

$$\Delta y_{i} = \frac{\Delta^{0} y_{i+1} - \Delta^{0} y_{i}}{x_{i+1} - x_{i}} = [x_{i}, x_{i+1}]$$

Interpolação Polinomial - Método de Newton

E, finalmente, generalizando para qualquer ordem em qualquer ponto

$$\Delta^{n} y_{i} = \frac{\Delta^{n-1} y_{i+n} - \Delta^{n-1} y_{i}}{x_{i+n} - x_{i}} = [x_{i}, x_{i+1}, \dots, x_{i+n-1}, x_{i+n}] = \frac{[x_{i+1}, x_{i+2}, \dots, x_{i+n}] - [x_{i}, x_{i+1}, \dots, x_{i+n-1}]}{x_{i+n} - x_{i}}$$

Interpolação Polinomial – Método de Newton

Tabela Prática para a Determinação de Diferenças Divididas

x_i	y_i	$\Lambda^{\rm o}$	Δ	Λ^2	Λ^3
x_{θ}	yθ	$[x_{\theta}]$			
			$[x_{\theta}, x_{I}]$		
x_I	y_1	$[x_I]$		$[x_{\theta}, x_1, x_2]$	
	100 1000		$[x_1, x_2]$		$[x_{\theta}, x_1, x_2, x_3]$
x_2	y_2	$[x_2]$		$[x_1, x_2, x_3]$	
	56.254	25 59	$[x_2, x_3]$		
x_3	<i>y</i> ₃	$[x_3]$			

Interpolação Polinomial – Método de Newton

 Ex.: Dada a tabela de pontos a seguir, determine todas as diferenças divididas possíveis

i	x_i	y_i
0	0,3	3,09
1	1,5	17,25
2	2,1	25,41
3	3,1	36,92

Interpolação Polinomial – Método de Newton

Todas as Diferenças Divididas para a Tabela anterior

x_i	y_i	Λ_0	Δ	∆ ²	Λ^3
0,3	3,09	3,09			
	15.05	10000	$\frac{17,25-3,09}{1,5-0,3} = 11,80$	12 4 11 90	
1,5	17,25	17,25		$\frac{13,6-11,80}{2,1-0,3} = 1,00$	
	467,000,00 (6,000,00		$\frac{25,41-17,25}{2,1-1,5} = 13,60$		$\frac{-1,31-1,00}{3,1-0,3} = -0,82$
2,1	25,41	25,41		$\frac{11,51-13,60}{3,1-1,5} = -1,31$	
	in showing		$\frac{36,92-25,41}{3,1-2,1} = 11,51$		
3,1	36,92	36,92			

Interpolação Polinomial – Método de Newton

O polinômio interpolador de Newton é dado por

$$P_n(x) = y_0 + \sum_{i=1}^n \Delta^i y_0 \prod_{j=0}^{i-1} (x - x_j)$$

x_i	y_i	$\Lambda^{\rm o}$	Δ	Λ^2	Λ^3
x_{θ}	Уø	$[x_{\theta}]$	20-22 20-22		
			$[x_{\theta}, x_I]$	r 1	
x_I	<i>y</i> ₁	$[x_I]$	[]	$[x_{\theta}, x_1, x_2]$	[
v.	11.	$[x_2]$	$[x_1, x_2]$	lv. v. v.l	$[x_{\theta}, x_1, x_2, x_3]$
x_2	<i>y</i> ₂	[32]	$[x_2, x_3]$	$[x_1, x_2, x_3]$	
x_3	<i>y</i> ₃	$[x_3]$	[**2,**3]		

Interpolação Polinomial – Método de Newton

- Ex.: Com o resultado das diferenças divididas para a última tabela de pontos, pede-se:
- a) O grau do polinômio interpolador de Newton;
- b) A tabela de todas as diferenças divididas possíveis;
- c) O polinômio interpolador;
- d) Use o Winplot para traçar os pontos da referida tabela e verificar a validade do polinômio interpolador;
- e) Encontre $P_n(0,9)$.

Interpolação Polinomial – Método de Newton

- Respostas:
- a) O grau do polinômio é a quantidade de pontos menos um:

$$4 - 1 = 3 \Rightarrow P_3(x)$$

- b) A tabela de todas as diferenças divididas possíveis; (slide 13)
- c) O polinômio interpolador;

$$P_3(x) = 3.09 + \sum_{i=1}^{3} \Delta^i y_0 \prod_{i=0}^{i-1} (x - xj)$$

Interpolação Polinomial – Método de Newton

Respostas:

c) O polinômio interpolador;

$$P_3(x) = 3.09 + 11.8 \times (x - 0.3) + 1.0 \times (x - 0.3)(x - 1.5)$$

$$-0.82 \times (x - 0.3)(x - 1.5)(x - 2.1) \quad \therefore$$

$$P_3(x) = 3.09 + 11.8x - 3.54 + x^2 - 1.8x + 0.45$$

$$-0.82x^3 + 3.198x^2 - 3.4686x + 0.7749 \quad \therefore$$

 $P_3(x) = 0.7749 + 6.5314x + 4.198x^2 - 0.82x^3$

Interpolação Polinomial – Método de Newton

- f) Acrescente o ponto (3,9, 15,7) à tabela e encontre o novo polinômio interpolador de Newton.
- Como agora temos 5 pontos, então o grau do polinômio interpolador será 4, e as diferenças divididas irão até a 4ª. ordem.
- Mas a grande vantagem desse método é que todas as diferenças divididas até a 3^a . ordem no ponto x_o serão reaproveitadas, não sendo necessário recalcular tudo novamente, mas só a partir do ponto que foi acrescentado.

Interpolação Polinomial – Método de Newton

x_i	y_i	$\Lambda^{\rm o}$	Δ	Λ^2	Λ^3	Λ^4
0,3	3,09	3,09				
			11,8			
1,5	17,25	17,25		1,0		
	27		13,6		-0,82	
2,1	25,41	25,41		-1,31		-2,07
			11,51		-8,26	
3,1	36,92	36,92		-21,1		
	175727721		-26,53			
3,9	15,7	15,7				

$$P3(x) = 3,09+11,8(x-0,3)+(x-0,3)(x-1,5)$$
$$-0,82(x-0,3)(x-1,5)(x-2,1)-2,07(x-0,3)(x-1,5)(x-2,1)(x-3,1)$$

$$P_3(x) = -2.07x^4 + 13.67x^3 - 29.58x^2 + 35.63x - 5.29$$

Erro em Interpolação

• Suponha que m pontos de uma função f(x) qualquer sejam interpolados por um polinômio $P_{m-1}(x)$.

Erro em Interpolação

• A função Erro Total de Interpolação $E_T(x)$, para qualquer x no intervalo $[x_0, x_{m-1}]$, é dada por

$$\boldsymbol{E}_{T}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{P}_{m-1}(\boldsymbol{x}) \qquad \therefore$$

$$\boldsymbol{E}_{\boldsymbol{T}}(\boldsymbol{x}) = (\boldsymbol{x} - \boldsymbol{x}_0)(\boldsymbol{x} - \boldsymbol{x}_1) \boldsymbol{\mathbb{Z}} \quad (\boldsymbol{x} - \boldsymbol{x}_{m-1}) \frac{\boldsymbol{f}^{m}(\boldsymbol{\varepsilon})}{\boldsymbol{m}!}$$

Para $\mathcal{E} \in (x_0, x_n)$, tal que \mathcal{E} maximize o valor de $f^m(\mathcal{E})$.

• f^m é a derivada de ordem m da função f(x).

Por enquanto é só...

Estão abençoados!