UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS INSTITUTO DE INFORMÁTICA - DEPTO INFORMÁTICA TEÓRICA BIOLOGIA COMPUTACIONAL- 2018

LISTA DE EXERCÍCIO V

Instruções:

- A resolução do exercício deve ser feita **individualmente**. Cópias evidentes entre trabalhos não serão aceitas.
- A entrega deve ser online via Moodle (exclusivamente), somente até a data especificada. Não serão aceitos trabalhos atrasados.
- Para cada uma das tarefas deve-se entregar o com código fonte. O nome do aquivo deve identificar a tarefa, exemplo "e5-1a.py" referente ao item "1a" da tarefa. Arquivos corrompidos serão desconsiderados.
- Além do código fonte deve-se entregar um um único arquivo PDF com o nome "e4.pdf" apresentando o pseudocódigo do algoritmo desenvolvido e os resultados encontrados.
- Data de entrega: 04.10.2018 (quinta-feira) até as 13:00 via Moodle (https://moodle.ufrgs.br/login/index.php).

	~
NOME:	CARTÃO:

Objetivos: Construção de árvores filogenéticas, implementação do método Neighbor-Joining (NJ).

1. Dada matriz de distâncias gerada a partir da sequência de DNA mitocondrial de primatas, utilize o algoritmo de NJ para a contrução da árvore filogenética das seguintes espécies: gorila, orangotango, humano, chimpanzé e gibão. A entrada para o algoritmo é a matriz de distâncias dos 5 primatas, do qual deve ser gerada a árvore filogenética. O algoritmo deve apresentar como saída o número de nós encontrados e a distância de cada espécie ao nó interno.

	Gorila	Orangotango	Humano	$Chimpanz \acute{e}$	$Gib\~ao$
Gorila	0	0.1890	0.1100	0.1130	0.2150
Orangotango	0.1890	0	0.1790	0.1920	0.2110
Humano	0.1100	0.1790	0	0.09405	0.2050
$Chimpanz \acute{e}$	0.1130	0.1920	0.0940	0	0.2140
$Gib\~ao$	0.2150	0.2110	0.2050	0.2140	0

Informações Importantes:

- Os dados deste exercício foram obtidos do artigo J Mol Evol. 1982;18(4):225-39. Mitochondrial DNA sequences of primates: tempo and mode of evolution. Brown WM, Prager EM, Wang A, Wilson AC.
- O código fonte deve ser entregue.
- Entregar em PDF a descrição do algoritmo implementado. Sugestão: preparar a descrição do algoritmo na forma de slides. Alguns trabalhos serão selecionados para apresentação em sala de aula. O algoritmo será executado em sala de aula.
- Sugestão: para a visualização da árvores calculada pelo código implementado podem utilizar: https://biopython.org/wiki/Phylo ou http://iubio.bio.indiana.edu/treeapp/treeprint-form.html