计算机组成原理实验 2023

同济大学 软件学院

黄杰; 张晶

济事楼 514; 456

<u>huangjie@tongji.edu.cn</u>

jzhang@tongji.edu.cn

实验3: 数码显示管和加法器实验

- 实验目的
 - 掌握数码显示管的工作方式
 - 学习使用门电路组成半加器和全加器
 - 掌握集成全加器的逻辑功能
- 主要实验设备
 - TD-DS实验系统
 - 74LSoo 2输入端四与非门
 - 74LS86 2输入端四异或门
 - 74LS47 BCD 7段译码器/驱动器
 - 74LS83 4位二进制全加器

译码器的分类

- 上节课所学的译码器一般被称为变量译码
- 还有一种显示译码,用来将一组二进制编码转换成对应的七段码。
- 此类译码器型号有74LS47(共阳),74LS48(共阴),
 CC4511(共阴)等,本实验箱采用74LS47芯片
 - 共阴极:是把所有led的阴极连接到共同接点COM,而每个led的阳极分别为a、b、c、d、e、f、g及dp(小数点)显示亮度低,能耗低。
 - 共阳极:将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮,当某一字段的阴极为高电平时,相应字段就不亮。显示亮度高,耗电高,耐用性较差。

二进制编码 BCD码(Binary-Coded Decimal)

- 把十进制数的每一位分别写成二进制形式的编码
- 在计算机中使用BCD格式可以保存数值的精确度,又可免去使计算机 作浮点运算时所耗费的时间,也用于简化对使用十进制数字的设备 (比如时钟和计时器)的处理。
- 8421编码是最常用的一种BCD码,是一种有权码
- 使用四位二进制数表示一位十进制数,从左到右每一位对应的权分别是2³、2²、2¹、2^o(8421)
- 例: 1975 (D) =0001 1001 0111 0101 (BCD)
- 用四位二进制表示一位十进制,会多出6种状态(1010~1111),一般被称为非法码

数码显示管 (7段码)

- 7段数码管是通过对其不同的管脚输入相应的电平,使其发光亮显,从而显示出数字的器件。
- 除常见的7段数码管外,还有其他具有斜向笔划的更多段的显示器。如:15段码米字管

• 由于点阵显示器(Dot-matrix)的普及,这些"多划管"已基本上被后者取代。(成本、制造工艺、性价比等因素)

实验内容1: 74LS47 BCD 码-七段译码器功能验证

- A3、A2、A1、Ao BCD 码输入端
- a、b、c、d、e、f、g 译码输出端,输出"o"有效, 用来驱动共阳极LED 数码管(本实验箱已内部接好)

74LS47 控制引脚说明

- 3号引脚 LT 试灯输入
 - 是为了检查数码管各段是否能正常发光而设置的。当LT = o 时,无论输入A3, A2, A1, Ao 为何种状态,译码器输出均为低电平,若驱动的数码管正常则显示8;
- 5号引脚 RBI 灭零输入
 - 是为使不希望显示的o 熄灭而设定的。当A₃= A₂ =A₁ =A₀=o时,本应显示o,但是在RBI =o 作用下,使译码器输出全1。其结果和加入灭灯信号的结果一样,将o 熄灭;
- 4号引脚 BI 灭灯输入
 - 是为控制多位数码显示的灭灯所设置的。BI = o 时。不论LT 和输入 A3, A2, A1, Ao 为何种状态,译码器输出均为高电平,使共阳极7 段数码管熄灭。
- 4号引脚 RBO 灭零输出
 - 和灭灯输入BI 共用一端,两者配合使用,可以实现多位数码显示的 灭零控制。

74LS47逻辑功能表和显示图形

or Function	Inputs						Outputs					Note			
	LT	RBI	A3	A2	A1	A0	BI/RBO	а	ь	c	d	e	f	g	
0	Н	H	L	L	L	L	Н	L	L	L	L	L	L	Н	(Note 2)
1	н	×	L	L	L	н	н	Н	L	L	н	H	н	Н	(Note 2)
2	Н	×	L	L	Н	L	н	L	L	H	L	L	н	L	
3	Н	х	L	L	н	Н	н	L	L	L	L	H	Н	L	
4	н	x	L	н	L	L	н	Н	L	L	н	н	L	L	
5	н	×	L	Н	L	н	н	L	н	L	L	H	L	L	
6	н	×	L	н	н	L	н	Н	н	L	L	L	L	L	
7	H	×	L	Н	H	н	н	L	L	L	H	H	Н	н	
6 7 8	Н	X	Н	L	L	L	н	L	L	L	L	L	L	L	
9	н	x	н	L	L	н	н	L	L	L	Н	н	L	L	
10	н	X	н	L	н	L	н	H	н	Н	L	L	н	L	
11	н	×	H	L	н	H	н	Н	н	L	L	H	Н	L	
12	H	×	н	Н	L	L	н	Н	L	H	н	H	L	L	
13	Н	x	Н	Н	L	Н	н	L	Н	Н	L	H	L	L	
14	н	x	Н	н	н	L	н	Н	н	н	L	L	L	L	
15	н	х	Н	Н	н	н	н	Н	н	Н	н	H	Н	Н	
BI	X	х	X	X	X	X	L	Н	н	Н	н	H	Н	Н	(Note 3)
RBI	H	L	L	L	L	L	L	Н	н	Н	H	H	Н	Н	(Note 4)
LT	L	X	X	X	X	X	н	L	L	L	L	L	L	L	(Note 5)

0	11	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	1	כ	כ	u	$\boldsymbol{\mathcal{L}}$	L	7	0	0			U	\boldsymbol{c}	L	
O	•		J	7	J	0	1	0	7	C	J		_	C	

半加器

- •两个1位二进制数相加,求和及进位的逻辑电路
 - 不考虑来自低位的进位
- 半加器逻辑功能表及逻辑表达式

		· · · · · · · · · · · · · · · · · · ·	
A	В	\mathcal{S}	C O
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{cases} \mathbf{S} = \overline{\mathbf{A}}\mathbf{B} + \mathbf{A}\overline{\mathbf{B}} & \mathbf{异或} \\ \mathbf{C} = \mathbf{A}\mathbf{B} & \mathbf{与} \end{cases}$$

用门电路实现半加器

• 异或门 / 与非门

全加器

- 两个1位二进制数进行相加,并考虑来自低位的进位,求和及进位的逻辑电路
 - 相当于三个1位二进制数相加
- 全加器逻辑表达式

$$s_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = (A_{i} \oplus B_{i}) C_{i-1} + A_{i}B_{i}$$

• 反演律(德·摩根定律)

非(P 且 Q)=(非 P)或(非 Q) 非(P 或 Q)=(非 P)且(非 Q)

用门电路实现全加器

• 异或门 / 与非门

=1

=1

全加器逻辑功能表

箱	Ì	入	输	出
C_{i-1}	A	В	\mathcal{S}	C_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

74LS83

74LS83

• 实验引脚接线 示意图

• 设定 A=1001, 验证运算结果, 自行设计逻辑功能

表

用74LS83实现

十六进制到BCD码的转换

• 加法器 / 与非门

分别接右边数码管 A~D孔, 注意高位在左边

14脚接左边数码管A孔, 另外B~D孔接地

数码显示管和加法器实验

- 实验报告要点
 - 数码显示管(七段码)示意图
 - 74LS47 芯片逻辑功能表及输出显示图形
 - 门电路构成半加器的逻辑原理图、表达式和功能表
 - 门电路构成全加器的逻辑原理图、表达式和功能表
 - 74LS83芯片的逻辑功能验证(设定A输入为1001,B任取5组)
 - 用74LS83芯片实现十六进制到BCD码转换的逻辑原理图,并阐述电路原理
 - 实验小结
 - 注意: 画图时采用国际标准符号
 - 本次实验报告提交时间: 10月18日23点59分之前,提交Canvas作业。