UNICESUMAR ENGENHARIA CIVIL PROGRAMAÇÃO PARA ENGENHARIA (NGER80_271) ANDRÉ MARTINS OTOMURA

Zeros de equações algébricas e transcendentes* Interpolações e aproximações de funções Integração numérica

ÚLTIMA AULA

a)
$$\ln(x) + 2x = 0$$

b)
$$e^x - sen(x) = 0$$

a)
$$\ln(x) + 2x = 0$$
 b) $e^x - sen(x) = 0$
d) $2\cos(x) - \frac{e^x}{2} = 0$ e) $3\ln(x) - \frac{x^2}{2}$

e)
$$3\ln(x) - \frac{x^2}{2}$$

•••

INTERPOLATION

d (mm)								
σ _y (MPa)	205	150	135	97	89	80	70	67

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - x_0}{x_1 - x_0}$$

d (mm)	0,005	0,009	0,016	0,025	0,040	0,062	0,085	0,110
σ _y (MPa)	205	150	135	97	89	80	70	67

(a)
$$x = 0.0065 -> y = ?$$

(b)
$$x = 0.0190 \rightarrow y = ?$$

(c)
$$x = 0.0495 -> y = ?$$

(d)
$$x = 0.0920 \rightarrow y = ?$$

INTERPOLATION

A interpolação é outra forma de encontrar uma função que represente um conjunto de dados tabelados. Interpolar um conjunto de dados (x_k, f_k) , $k = 0, 1, \dots, n$, consiste em encontrar uma função $p_n(x)$, escolhida numa classe de funções, tal que esta satisfaça certas propriedades. Neste capítulo vamos considerar o caso onde $p_n(x)$ é um polinômio de tal forma que

$$f_k = p(x_k), \quad k = 0, 1, 2, \dots, n.$$

Esta condição é chamada de condição de interpolação e o polinômio que satisfaz esta condição é chamado de polinômio interpolador.

Teorema 5.0.1 (Existência e Unicidade) Dado o conjunto de n+1 pontos distintos $(x_k, f_k), k = 0, 1, \dots, I$ sto é, $x_k \neq x_j$ para $k \neq j$. Existe um único polinômio p(x) de grau menor ou igual a n, tal que $p(x_k) = f_k$ para $k = 0, 1, 2, \dots, n$.

<u>Prova:</u> Seja $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$. Para obter os a_i usamos a condição de interpolação $f_k = p(x_k)$ para $k = 0, 1, 2, \cdots, n$. Logo, segue que:

$$f_0 = p(x_0) = a_0 + a_1x_0 + a_2x_0^2 + \dots + a_nx_0^n$$

Tensão σ (MPa)

Realiza-se um teste de tensão para determinar o comportamento tensão-deformação da borracha. Os dados coletados no teste são mostrados na figura e seus valores são fornecidos a seguir. Determine o polinômio de quarta ordem que faça o melhor ajuste dos pontos. Trace um gráfico que inclua esses pontos e a curva correspondente ao polinômio.

Deformação ε Tensão σ (MPa)			,		,			
Deformação ε	2,8	3,2	3,6	4,0	4,4	4,8	5,2	

15,6

20,7

26,7

31,1

35,6

9,6

7,4

- 1- CRIAR UMA COLUNA PARA AS ENTRADAS (X);
- 2- CRIAR UMA COLUNA PARA AS SAÍDAS (Y);
- 3- PLOTAR O GRÁFICO COM OS DADOS DAS COLUNAS X E Y;
- (O GRÁFICO DEVE SER DISPERSÃO E FORMATO DE PONTOS);
- 4- CLICAR NA CURVA FORMADA PELOS PONTOS;
- 5- ESCOLHER ENTRE AS OPÇÕES DE "LINHAS DE TENDÊNCIA";
- 6- MARCAR A OPÇÃO "EXIBIR EQUAÇÃO NO GRÁFICO";
- 7- MARCAR A OPÇÃO "EXIBIR VALOR DE R^2";

•••

A necessidade de se calcular uma integral numericamente

O integrando pode ser uma função analítica ou um conjunto de pontos discretos (dados tabulados). Quando o integrando é uma expressão matemática cuja integral pode ser facilmente calculada, pode-se obter analiticamente o valor da integral definida. A integração numérica é necessária quando a integração analítica é difícil, ou mesmo impossível, e quando o integrando é fornecido como um conjunto discreto de pontos.

MÉTODO DO RETÂNGULO COMPOSTO

$$I(f) = \int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{N} f(x_{i})$$

MÉTODO TRAPEZOIDAL COMPOSTO

$$A = \frac{(Base_{maior} + base_{menor}) * h}{2}$$

$$I(f) = \int_{a}^{b} f(x)dx \approx \frac{1}{2} \sum_{i=1}^{N} [f(x_i) + f(x_{i+1})](x_{i+1} - x_i)$$

1) Calcule as integrais definidas abaixo:

a)
$$\int_{-1}^{2} 6x^4 dx$$

b)
$$\int_{1}^{2} (5x^{-4} - 8x^{-3}) dx$$

d)
$$\int_{-2}^{2} \left(\frac{x^3}{3} - 2x^2 + 7x + 1 \right) dx$$

e)
$$\int_0^4 (\sqrt{2x+1}) dx$$

$$f) \qquad \int_1^2 (6x - 1) \, dx$$

$$g) = \int_{-1}^{2} x(1+x^{3}) dx$$