MSP430F5xx Family USB Module

User's Guide

Literature Number: SLAU284 May 2009

2

Contents

1	USB	Module	. 5
1.1	USB I	ntroduction	. 6
1.2	USB (Operation	. 8
	1.2.1	USB Transceiver (PHY)	. 8
	1.2.2	USB Power System	. 9
		USB Phase-Locked Loop (PLL)	
	1.2.4	USB Controller Engine	14
	1.2.5	USB Vector Interrupts	17
	1.2.6	Power Consumption	17
	1.2.7	Entering Suspend Mode	18
1.3		ers	
	1.3.1	USB Configuration Registers	19
	1.3.2	USB Control Registers	26
	1.3.3	USB Buffer Registers and Memory	35

List of Figures

1-1	USB Block Diagram	. 7
1-2	USB Power System	. 9
1-3	USB Power Up/Down Profile	
1-4	Powering Entire MSP430 From VBUS	10
1-5	USB-PLL Analog Block Diagram	11
1-6	Data Buffers and Descriptors	14
1-7	USB Timer and Time Stamp Generation	16
	List of Tables	
1-1	USB-PLL Pre-Scale Divider	12
1-2	Register Settings to Generate 48 MHz Using Common Crystals	12
1-3	USB Buffer Memory Map	
1-4	USB Interrupt Vector Generation	17
1-5	USB Configuration Registers	19
1-6	USB Control Registers	
1-7	USB Buffer Memory	
1-8	USB Ruffer Descriptor Registers	35

USB Module

This chapter describes the USB module that is available in some devices.

	Page
USB Introduction	. 6
USB Operation	. 8
Registers	19
	USB Introduction USB Operation Registers

USB Introduction www.ti.com

1.1 USB Introduction

The features of the USB module include:

- Fully compliant with the USB 2.0 specification
 - Full-speed device (12 Mbps) with integrated USB transceiver (PHY)
 - Up to eight input and eight output endpoints
 - Supports control, interrupt, and bulk transfers
 - Supports USB suspend, resume, and remote wakeup
- A power supply system independent from the PMM system
 - Integrated 3.3-V LDO regulator with sufficient output to power entire MSP430 and system circuitry from 5-V VBUS
 - Integrated 1.8-V LDO regulator for PHY and PLL
 - Easily used in either bus-powered or self-powered operation
 - Current-limiting capability on 3.3-V LDO output
 - Autonomous power-up of MSP430 upon arrival of USB power possible (low/no battery condition)
- Internal 48-MHz USB clock
 - Integrated programmable PLL
 - Highly-flexible input clock frequencies for use with lowest-cost crystals
- 1904 bytes of dedicated USB buffer space for endpoints, with fully configurable size to a granularity of eight bytes
- Timestamp generator with 62.5-ns resolution
- · When USB is disabled
 - Buffer space is mapped into general RAM, providing additional 2 KB to the system
 - USB interface pins become high-current general purpose I/O pins

Note: Use of the word device

The word *device* is used throughout the chapter. This word can mean one of two things, depending on the context. In a USB context, it means what the USB specification refers to as a device, function, or peripheral; that is, a piece of equipment that can be attached to a USB host or hub. In a semiconductor context, it refers to an integrated circuit such as the MSP430.

To avoid confusion, the term *USB device* in this document refers to the USB-context meaning of the word. The word *device* by itself refers to silicon devices such as the MSP430.

Figure 1-1 shows a block diagram of the USB module.

www.ti.com USB Introduction

Figure 1-1. USB Block Diagram

USB Operation www.ti.com

1.2 **USB Operation**

The USB module is a comprehensive, full-speed USB device compliant with the USB 2.0 specification.

The USB engine coordinates all USB-related traffic. It consists of the USB SIE (serial interface engine) and USB Buffer Manager (UBM). All traffic received on the USB receive path is de-serialized and placed into receive buffers in the USB buffer RAM. Data in the buffer RAM marked 'ready to be sent' are serialized into packets and sent to the USB host.

The USB engine requires an accurate 48-MHz clock to sample the incoming data stream. This is generated by a PLL that is fed from one of the system oscillators (XT1/XT2). A crystal greater than 1.5 MHz is required. However, the PLL is very flexible and can adapt to a wide range of frequencies, allowing design to the most cost-effective crystal frequency.

Note: Some devices only support XT1 in low frequency (LF) mode of operation. The PLL can only support inputs from the high frequency source i.e. XT1 in high frequency mode (HF) or XT2. For these devices, only XT2 can be used as the input into the PLL for USB operation. XT1 (HF mode) and XT2 bypass modes are also supported. Please refer to the device specific datasheet for clock sources available.

The USB buffer memory is where data is exchanged between the USB interface and the application software. It is also where the usage of endpoints 1 to 7 are defined. This buffer memory is implemented such that it can be easily accessed like RAM by the CPU and/or DMA.

1.2.1 USB Transceiver (PHY)

The physical layer interface (USB transceiver) is a differential line driver directly powered from VUSB (3.3 V). The line driver is connected to the DP/DM pins, which form the signaling mechanism of the USB interface.

When the PUSEL bit is set, DP/DM are configured to function as USB drivers controlled by the USB core logic. When the bit is cleared, these two pins become "Port U", which is a pair of high-current general purpose I/O pins. In this case, the pins are controlled by the UPCR register. Port U is powered from the VUSB rail, separate from the main device DVCC. If these pins are to be used, whether for USB or general purpose use, it is necessary that VUSB be properly powered – either from the internal regulators or an external source.

D+ Pullup Via PUR Pin

When a full-speed USB device is attached to a USB host, it must pull up the D+ line (DP pin) in order for the host to recognize its presence. The MSP430 USB module implements this with a software-controlled pin that activates a pullup resistor. The bit that controls this function is PUR_EN. If software control is not desired, the pullup can be connected directly to VUSB.

Shorts on Damaged Cables and Clamping

USB devices must tolerate connection to a cable that is damaged, such that it has developed shorts on either ground or VBUS. The device should not become damaged by this event, either electrically or physically. To this end, the MSP430 USB power system features a current limitation mechanism that limits the available transceiver current in the event of a short to ground. The transceiver interface itself therefore does not need a current limiting function.

Note that if VUSB is to be powered from a source other than the integrated regulator, the absence of current-limiting in the transceiver means that the external power source must itself be tolerant of this same shorting event, through its own means of current limiting.

www.ti.com USB Operation

Port U Control

When PUSEL is cleared, the Port U pins (PU0/PU1, corresponding with DP/DM, respectively) function as general-purpose, high-current I/O pins. PUDIR controls the enable of both outputs residing on the Port U pins. The Port U pins are either both driving out, or both acting as inputs. When configured as inputs, the PUIN0/1 pins can be read to determine the input values. When Port U outputs are enabled, the PUIN0/1 will mirror what is present on the outputs.

When PUDIR is set, both Port U pins function as outputs, controlled by PUOUT0/PUOUT1. When driven high, they use the VUSB rail, and they are capable of a drive current higher than other I/O pins on the device. See the device-specific datasheet for parameters.

By default, PUDIR is cleared. PU0/PU1 therefore become high-impedance when the USB module is disabled.

1.2.2 USB Power System

The USB power system incorporates dual LDO regulators (3.3 V and 1.8 V) that allow the entire MSP430 device to be powered from 5-V VBUS when it is made available from the USB host. Alternatively, the power system can supply power only to the USB module, or it can be unused altogether, as in a fully self-powered device. The block diagram is shown in Figure 1-2.

Figure 1-2. USB Power System

The 3.3-V LDO receives 5 V from VBUS and provides power to the transceiver, as well as the VUSB pin. Using this setup prevents the relatively high load of the transceiver and PLL from loading a local system power supply, if used. Thus it is very useful in battery-powered devices.

The 1.8-V LDO receives power from the VUSB pin – which is to be sourced either from the internal 3.3-V LDO or externally – and provides power to the USB PLL and transceiver. The 1.8-V LDO in the USB module is not related to the LDO that resides in the MSP430 Power Management Module (PMM).

The inputs and outputs of the LDOs are shown in Figure 1-2. VBUS, VUSB, and V18 need to be connected to external capacitors. The V18 pin is not intended to source other components in the system, rather it exists solely for the attachment of a load capacitor.

Enabling/Disabling

The 3.3-V LDO is enabled/disabled by setting/clearing VUSBEN. Even if enabled, if the voltage on VBUS is detected to be low or nonexistent, the LDO is suspended. When VBUS rises above the USB power brownout level, the LDO reference and low voltage detection become enabled. When VBUS rises further above the launch voltage V_{LAUNCH} , the LDO module becomes enabled (see Figure 1-3).

USB Operation www.ti.com

Figure 1-3. USB Power Up/Down Profile

The 1.8-V LDO can be enabled/disabled by setting SLDOEN accordingly. By default, SLDOEN is controlled automatically according to whether power is available on VBUS. This auto-enable feature is controlled by SLDOAON. If providing VUSB from an external source, rather than through the integrated 3.3-V LDO, keep in mind that if 5 V is not present on VBUS, the 1.8-V LDO is not automatically enabled. In this situation, either VBUS much be attached to USB bus power, or the SLDOAON bit must be cleared and SLDOEN set.

It is required that power from the USB cable's VBUS be directed through a Schottky diode prior to entering the VBUS terminal. This prevents current from draining into the cable's VBUS from the LDO input, allowing the MSP430 to tolerate a suspended/unpowered USB cable that remains electrically connected.

Powering the Rest of the MSP430 From USB Bus Power via VUSB

The output of the 3.3-V LDO can be used to power the entire MSP430 device, sourcing the DVCC rail. If this is desired, the VUSB and DVCC should be connected externally. Power from the 3.3-V LDO is sourced into DVCC (see Figure 1-4).

Figure 1-4. Powering Entire MSP430 From VBUS

www.ti.com USB Operation

With this connection made, the MSP430 allows for autonomous power up of the device when VBUS rises above V_{LAUNCH} . If no voltage is present on V_{CORE} – meaning the device is unpowered (or, in LPM5 mode) – then both the 3.3-V and 1.8-V LDOs automatically turn on when VBUS rises above V_{LAUNCH} .

Note that if DVCC is being driven from VUSB in this manner, and if power is available from VUSB, attempting to place the device into LPM5 results in the device immediately re-powering. This is because it re-creates the conditions of the autonomous feature described above (no V_{CORE} but power available on VBUS). The resulting drop of V_{CORE} would cause the system to immediately power up again.

When DVCC is being powered from VUSB, it is up to the user to ensure that the total current being drawn from VBUS stays below I_{DET}.

Powering Other Components in the System from VUSB

There is sufficient current capacity available from the 3.3-V LDO to power not only the entire MSP430 but also other components in the system, via the VUSB pin.

If the device is to always be connected to USB, then perhaps no other power system is needed. If it only occasionally connects to USB and is battery-powered otherwise, then sourcing system power via the 3.3-V LDO takes power burden away from the battery. Alternatively, if the battery is rechargeable, the recharging can be driven from VUSB.

Current Limitation / Overload Protection

The 3.3-V LDO features current limitation to protect the transceiver during shorted-cable conditions. A short/overload condition – that is, when the output of the LDO becomes current-limited to I_{DET} – is reported to software via the VUOVLIFG flag.

If this event occurs, it means USB operation may become unreliable, due to insufficient power supply. As a result, software may wish to cease USB operation. If the OVLAOFF bit is set, USB operation is automatically terminated by clearing VUSBEN.

During overload conditions, VUSB and V18 drop below their nominal output voltage. In power scenarios where DVCC is exclusively supplied from VUSB, repetitive system restarts may be triggered as long the short/overload condition exists. For this reason, firmware should avoid re-enabling USB after detection of an overload on the previous power session, until the cause of failure can be identified.

The USB power system brownout circuit is supplied from VBUS or DVCC, whichever carries the higher voltage.

Ultimately, it is the user's responsibility to ensure that the current drawn from VBUS does not exceed I_{DET}.

1.2.3 USB Phase-Locked Loop (PLL)

The PLL provides the low-jitter high-accuracy clock needed for USB operation (see Figure 1-5).

Figure 1-5. USB-PLL Analog Block Diagram

USB Operation www.ti.com

The selection of a reference clock is made via the UPCS bit. This allows selection of one of the two system crystal clock sources as a reference clock. A four-bit prescale counter controlled by the UPQB bits allows division of the reference to generate the PLL update clock. The UPMB bits control the divider in the feedback path and define the multiplication rate of the PLL (see Equation 1-1).

$$f_{OUT} = CLK_{SEL} \times \frac{DIVM}{DIVQ}$$
 with $\frac{CLK_{SEL}}{DIVQ} = f_{UPD} \ge 1.5 \text{ MHz}$ (1-1)

Where

CLK_{SEL} is the selected reference frequency (XT1CLK or XT2CLK)

DIVQ is derived from Table 1-1

DIVM represents the value of UPMB field

If USB operation is used in a bus-powered configuration, disabling the PLL is necessary in order to pass the USB requirement of not consuming more than 500 μ A. The UPLLEN bit enables/disables the PLL. The PFDEN bit must be set in order to enable the phase/frequency discriminator. Out-of-lock, loss-of-signal, and out-of-range are indicated and flagged in the interrupt flags OOLIFG, LOSIFG, OORIFG, respectively.

Note: UCLKSEL should always bits should always be cleared, which is the default operation. All other combinations are reserved for future usages.

Table 1-1. USB-PLL Pre-Scale Divider

UPQB	DIVQ
000	1
001	2
010	3
011	4
100	6
101	8
110	12
111	16

Table 1-2. Register Settings to Generate 48 MHz Using Common Crystals

CLKSEL (MHz)	UPQB	UPMB	DIVQ	DIVM	CLKLOOP (MHz)	UPLLCLK (MHz)	ACCURACY (ppm)
1.5	000	011111	1	32	1.5	48	0
1.6	000	011101	1	30	1.6	48	0
1.7778	000	011010	1	27	1.7778	48	0
1.8432	000	011001	1	26	1.8432	47.92	-1570
1.8461	000	011001	1	26	1.8461	48	0
1.92	000	011000	1	25	1.92	48	0
2	000	010111	1	24	2	48	0
2.4	000	010011	1	20	2.4	48	0
2.6667	000	010001	1	18	2.6667	48	0
3	000	001111	1	16	3	48	0
3.2	001	011110	2	30	1.6	48	0
3.5556	001	011010	2	27	1.7778	48	0
3.579545	001	011010	2	27	1.79	48.32	6666
3.84	001	011001	2	25	1.92	48	0
4 ⁽¹⁾	001	010111	2	24	2	48	0
4.1739	001	010110	2	23	2.086	48	0

⁽¹⁾ This frequency is supported by the factory-supplied BSL.

www.ti.com USB Operation

4.1943	001	010110	2	23	2.097	48.23	4884
4.332	001	010101	2	22	2.166	47.652	-7250
4.3636	001	010101	2	22	2.1818	48	0
4.5	010	011111	3	32	1.5	48	0
4.8	001	010011	2	20	2.4	48	0
5.33 ≈ (16/3)	001	010001	2	18	2.6667	48	0
5.76	010	011000	3	25	1.92	48	0
6	010	010111	3	24	2	48	0
6.4	011	011101	4	30	1.6	48	0
7.2	010	010011	3	20	2.4	48	0
7.68	011	011000	4	25	1.92	48	0
8	010	010001	3	18	2.6667	48	0
9	010	001111	3	16	3	48	0
9.6	011	010011	4	20	2.4	48	0
10.66 ≈ (32/3)	011	010001	4	18	2.6667	48	0
12	011	001111	4	16	3	48	0
12.8	101	011101	8	30	1.6	48	0
14.4	100	010011	6	20	2.4	48	0
16	100	010001	6	18	2.6667	48	0
16.9344	100	010000	6	17	2.8224	47.98	-400
16.94118	100	010000	6	17	2.8235	48	0
18	100	001111	6	16	3	48	0
19.2	101	010011	8	20	2.4	48	0
24	101	001111	8	16	3	48	0
25.6	111	011101	16	30	1.6	48	0
32	111	010111	16	24	2.6667	48	0

Modifying the Divider Values

Updating the values of UPQB (DIVQ) and UPMB (DIVM) to select the desired PLL frequency must occur simultaneously to avoid spurious frequency artifacts. The values of UPQB and UPMB can be calculated and written to their buffer registers; the final update of UPQB and UPMB occurs when the upper byte of UPLLDIVB (UPQB) is written.

PLL Error Indicators

The PLL can detect three kinds of errors. Out-of-lock (OOL) is indicated if a frequency correction is performed in the same direction (i.e., up/down) for four consecutive update periods. Loss-of-signal (LOS) is indicated if a frequency correction is performed in the same direction (i.e., up/down) for 16 consecutive update periods. Out-of-range (OOR) is indicated if PLL was unable to lock for more than 32 update periods.

OOL, LOS, and OOR trigger their respective interrupt flags (USBOOLIFG, USBLOSIFG, USBOORIFG) if errors occur, and interrupts are generated if enabled by their enable bits (USBOOLIE, USBLOSIE, USBOORIE).

PLL Startup Sequence

To achieve the fastest startup of the PLL, the following sequence is recommended.

- 1. Enable VUSB and V18.
- 2. Wait 2 ms for external capacitors to charge, so that proper VUSB is in place. (During this time, the USB registers and buffers can be initialized.)
- 3. Activate the PLL, using the required divider values.

USB Operation www.ti.com

4. Wait 2 ms and check PLL. If it stays locked, it is ready to be used.

1.2.4 USB Controller Engine

The USB controller engine transfers data packets arriving from the USB host into the USB buffers, and also transmits valid data from the buffers to the USB host. The controller engine has dedicated, fixed buffer space for input endpoint 0 and output endpoint 0, which are the default USB endpoints for control transfers.

The 14 remaining endpoints (seven input and seven output) may have one or more USB buffers assigned to them. All the buffers are located in the USB buffer memory. This memory is implemented as "multiport" memory, in that it can be accessed both by the USB buffer manager and also by the CPU and DMA.

Each endpoint has a dedicated set of descriptor registers that describe the use of that endpoint (see Figure 1-6). Configuration of each endpoint is performed by setting its descriptor registers. These data structures are located in the USB buffer memory and contain address pointers to the next memory buffer for receive/transmit.

Assigning one or two data buffers to an endpoint, of up to 64 bytes, requires no further software involvement after configuration. If more than three buffers per endpoint are desired, however, software must change the address pointers on the fly during a receive/transmit process.

Synchronization of empty and full buffers is done using validation flags. All events are indicated by flags and fire a vector interrupt when enabled. Transfer event indication can be enabled separately.

Figure 1-6. Data Buffers and Descriptors

USB Serial Interface Engine (SIE)

The SIE logic manages the USB packet protocol requirements for the packets being received and transmitted on the bus. For packets being received, the SIE decodes the packet identifier field (PID) to determine the type of packet being received and to ensure the PID is valid. For token and data packets being received, the SIE calculates the packet cycle redundancy check (CRC) and compares the value to the CRC contained in the packet to verify that the packet was not corrupted during transmission.

For token and data packets being transmitted, the SIE generates the CRC that is transmitted with the packet. For packets being transmitted, the SIE also generates the synchronization field (SYNC), which is an eight-bit field at the beginning of each packet. In addition, the SIE generates the correct PID for all packets being transmitted.

Another major function of the SIE is the overall serial-to-parallel conversion of the data packets being received/transmitted.

www.ti.com USB Operation

USB Buffer Manager (UBM)

The USB buffer manager provides the control logic that interfaces the SIE to the USB endpoint buffers.

One of the major functions of the UBM is to decode the USB function address to determine if the USB host is addressing this particular USB device. In addition, the endpoint address field and direction signal are decoded to determine which particular USB endpoint is being addressed. Based on the direction of the USB transaction and the endpoint number, the UBM either writes or reads the data packet to/from the appropriate USB endpoint data buffer.

USB Buffer Memory

The USB buffer memory contains the data buffers for all endpoints and for SETUP packets. In that the buffers for endpoints 1 to 7 are flexible, there are USB buffer configuration registers that define them, and these too are in the USB buffer memory. (Endpoint 0 is defined with a set of registers in the USB control register space.) Storing these in open memory allows for efficient, flexible use, which is advantageous because use of these endpoints is very application-specific.

This memory is implemented as "multiport" memory, in that it can be accessed both by the USB buffer manager and also by the CPU and DMA. The SIE allows CPU/DMA access, but reserves priority. As a result, CPU/DMA access is delayed using wait states if a conflict arises with an SIE access.

When the USB module is disabled (USBEN = 0), the buffer memory behaves like regular RAM. When changing the state of the USBEN bit (enabling or disabling the USB module), the USB buffer memory should not be accessed within four clocks before and eight clocks after changing this bit, as doing so reconfigures the access method to the USB memory.

Each endpoint is defined by a block of six configuration "registers" (based in RAM, they are not true registers in the strict sense of the word). These registers specify the endpoint type, buffer address, buffer size and data packet byte count. They define an endpoint buffer space that is 1904 bytes in size. An additional 24 bytes are allotted to three remaining blocks – the EPO_IN buffer, the EPO_OUT buffer, and the SETUP packet buffer (see Table 1-3).

Memory	Short Form	Access Type	Address Offset
Start of buffer space	STABUFF	Read/Write	0000h
1904 bytes of configurable buffer space	USBIEPCNT_0	Read/Write	:
End of buffer space	TOPBUFF	Read/Write	076Fh
		Read/Write	0770h
Output endpoint_0 buffer	USBOEP0BUF	Read/Write	
		Read/Write	0777h
		Read/Write	0778h
Input endpoint_0 buffer	USBIEP0BUF	Read/Write	:
		Read/Write	077Fh
		Read/Write	0780h
Setup Packet Block	USBSUBLK	Read/Write	:
		Read/Write	0787h

Table 1-3. USB Buffer Memory Map

Software can configure each buffer according to the total number of endpoints needed. Single or double buffering of each endpoint is possible.

Unlike the descriptor registers for endpoints 1 to 7, which are defined as memory entries in USB RAM, endpoint 0 is described by a set of four registers (two for output and two for input) in the USB control register set. Endpoint 0 has no base-address register, since these addresses are hardwired. The bit positions have been preserved to provide consistency with endpoint n = 1 to 7).

USB Operation www.ti.com

USB Fine Timestamp

The USB module is capable of saving a timestamp associated with particular USB events (see Figure 1-7). This can be useful in compensating for delays in software response. The timestamp values are based on the USB module's internal timer, driven by USBCLK.

Up to four events can be selected to generate the timestamp, selected with the TSESEL bits. When they occur, the value of the USB timer is transferred to the timestamp register USBTSREG, and thus the exact moment of the event is recorded. The trigger options include one of three DMA channels, or a software-driven event. The USB timer cannot be directly accessed by reading.

Furthermore, the value of the USB timer can be used to generate periodic interrupts. Since the USBCLK can have a frequency different from the other system clocks, this gives another option for periodic system interrupts. The UTSEL bits select the divider from the USB clock. UTIE must be set for an interrupt vector to get triggered.

The timestamp register is set to zero on a frame-number-receive event and pseudo-start-of-frame.

TSGEN enables/disables the time stamp generator.

Figure 1-7. USB Timer and Time Stamp Generation

Suspend/Resume Logic

The USB suspend/resume logic detects suspend and resume conditions on the USB bus. These events are flagged in SUSRIFG and RESRIFG, respectively, and they fire dedicated interrupts, if the interrupts are enabled (SUSRIE and RESRIE).

The remote wakeup mechanism, in which a USB device can cause the USB host to awaken and resume the device, is triggered by setting the RWUP bit of the USBCTL register.

The USB specification requires that a suspended bus-powered USB device not draw in excess of 500 μA from the bus. To meet this goal in a bus-powered device, it is generally necessary to disable the PLL. Disabling the PLL eliminates the extra power consumption. During suspend, the USBCLK is automatically sourced by the VLO (VLOCLK), allowing the USB module to detect resume when it occurs. See Section 1.2.6 for more information.

Reset Logic

A PUC resets the USB module logic. The logic is also reset when a USB reset event occurs on the bus, triggered from the USB host. (A USB reset also sets the RSTRIFG flag.) USB buffer memory is not reset by a USB reset.

www.ti.com USB Operation

1.2.5 USB Vector Interrupts

The USB module uses a single interrupt vector generator register to handle multiple USB interrupts. All USB-related interrupt sources trigger the USBVECINT vector, which then contains a 6-bit vector value that identifies the interrupt source. Each of the interrupt sources results in a different offset value read. The interrupt vector returns zero when no interrupt is pending.

Reading the interrupt vector register clears the corresponding interrupt flag and updates its value. The interrupt with highest priority returns the value 0002h; the interrupt with lowest priority returns the value 003Eh when reading the interrupt vector register. Writing to this register clears all interrupt flags.

For each input and output endpoints resides an USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt enable and flag must be set.

USBVECINT Value	Interrupt Source	Interrupt Flag Bit	Interrupt Enable Bit	Indication Enable Bit
0000h	no interrupt	-	_	_
0002h	USB-PWR drop ind.	USBPWRCTL.VUOVLIFG	USBPWRCTL.VUOVLIE	-
0004h	USB-PLL lock error	USBPLLIR.USBPLLOOLIFG	USBPLLIR.USBPLLOOLIE	-
0006h	USB-PLL signal error	USBPLLIR.USBPLLOSIFG	USBPLLIR.USBPLLLOSIE	-
0008h	USB-PLL range error	USBPLLIR.USBPLLOORIFG	USBPLLIR.USBPLLOORIE	-
000Ah	USB-PWR VBUS-on	USBPWRCTL.VBONIFG	USBPWRCTL.VBONIE	-
000Ch	USB-PWR VBUS-off	USBPWRCTL.VBOFFIFG	USBPWRCTL.VBOFFIE	-
000Eh	reserved	-	_	-
0010h	USB timestamp event	USBMAINTL.UTIFG	USBMAINTL.UTIE	-
0012h	Input Endpoint-0	USBIEPIFG.EP0	USBIEPIE.EP0	USBIEPCNFG_0.USBIIE
0014h	Output Endpoint-0	USBOEPIFG.EP0	USBOEPIE.EP0	USBOEPCNFG_0.USBIIE
0016h	RSTR interrupt	USBIFG.RSTRIFG	USBIE.RSTRIE	_
0018h	SUSR interrupt	USBIFG.SUSRIFG	USBIE.SUSRIE	-
001Ah	RESR interrupt	USBIFG.RESRIFG	USBIE.RESRIE	_
001Ch	reserved	-	_	_
001Eh	reserved	-	_	_
0024h	Input Endpoint-1	USBIEPIFG.EP1	USBIEPIE.EP1	USBIEPCNF_1.USBIIE
0026h	Input Endpoint-2	USBIEPIFG.EP2	USBIEPIE.EP2	USBIEPCNF_2.USBIIE
0028h	Input Endpoint-3	USBIEPIFG.EP3	USBIEPIE.EP3	USBIEPCNF_3.USBIIE
002Ah	Input Endpoint-4	USBIEPIFG.EP4	USBIEPIE.EP4	USBIEPCNF_4.USBIIE
002Ch	Input Endpoint-5	USBIEPIFG.EP5	USBIEPIE.EP5	USBIEPCNF_5.USBIIE
002Eh	Input Endpoint-6	USBIEPIFG.EP6	USBIEPIE.EP6	USBIEPCNF_6.USBIIE
0030h	Input Endpoint-7	USBIEPIFG.EP7	USBIEPIE.EP7	USBIEPCNF_7.USBIIE
0032h	Output Endpoint-1	USBOEPIFG.EP1	USBOEPIE.EP1	USBOEPCNF_1.USBIIE
0034h	Output Endpoint-2	USBOEPIFG.EP2	USBOEPIE.EP2	USBOEPCNF_2.USBIIE
0036h	Output Endpoint-3	USBOEPIFG.EP3	USBOEPIE.EP3	USBOEPCNF_3.USBIIE
0038h	Output Endpoint-4	USBOEPIFG.EP4	USBOEPIE.EP4	USBOEPCNF_4.USBIIE
003Ah	Output Endpoint-5	USBOEPIFG.EP5	USBOEPIE.EP5	USBOEPCNF_5.USBIIE
003Ch	Output Endpoint-6	USBOEPIFG.EP6	USBOEPIE.EP6	USBOEPCNF_6.USBIIE
003Eh	Output Endpoint-7	USBOEPIFG.EP7	USBOEPIE.EP7	USBOEPCNF_7.USBIIE

Table 1-4. USB Interrupt Vector Generation

1.2.6 Power Consumption

USB functionality consumes more power than is typically drawn in the MSP430. Since most MSP430 applications are power sensitive, the MSP430 USB module has been designed to protect the battery by ensuring that significant power load only occurs when attached to the bus, allowing power to be drawn from VBUS.

The two components of the USB module that draw the most current are the transceiver and the PLL. The

USB Operation www.ti.com

transceiver can consume large amounts of power while transmitting, but in its quiescent state – that is, when not transmitting data – the transceiver actually consumes very little power. This is the amount specified as I_{IDLE}. This amount is so little that the transceiver can be kept active during suspend mode without presenting a problem for bus-powered applications. Fortunately the transceiver always has access to VBUS power when drawing the level of current required for transmitting.

The PLL consumes a larger amount of current. However, it need only be active while connected to the host, and the host can supply the power. When the PLL is disabled (for example, during USB suspend), USBCLK automatically is sourced from the VLO.

1.2.7 Entering Suspend Mode

When the host suspends the USB device, a suspend interrupt is generated (SUSRIFG). From this point, the software has 10 ms to ensure that no more than 500uA is being drawn from the host via VBUS. To accomplish this, the following actions usually must take place:

- Disable the PLL by clearing UPLLEN
- Disable the high-frequency crystal oscillator that sources the PLL

It is a good idea to also then ensure that the RESRIE bit is also set, so that an interrupt will be generated when the host resumes the device.

1.3 Registers

The USB register space is subdivided into configuration registers, control registers, and USB buffer memory.

The configuration and control registers are physical registers located in peripheral memory, while the buffer memory is implemented in RAM. See the device-specific datasheet for base addresses of these register groupings.

The USB control registers may only be written while the USB module is enabled.

When the USB module is disabled, it no longer uses the RAM buffer memory. This memory then behaves as a 2 KB RAM block, and can be used by the CPU or DMA without any limitation.

1.3.1 USB Configuration Registers

The configuration registers control the hardware functions needed to make a USB connection, including the PHY, PLL, and LDOs.

Access to the configuration registers is allowed or disallowed using the USBKEYPID register. This register serves as a password. Writing the proper value – 9628h – unlocks the configuration registers and enables access. Writing any other value disables access while leaving the values of the registers intact. Locking should be done intentionally after the configuration is finished.

The configuration registers are listed in Table 1-5. All addresses are expressed as offsets; the base address can be found in the device-specific datasheet.

All registers are byte and word accessible.

Table 1-5. USB Configuration Registers

Register	Short Form	Register Type	Address Offset	Initial State
USB controller key and ID register	USBKEYPID	Read/Write	00h	0000h
USB controller configuration register	USBCNF	Read/Write	02h	0000h
USB-PHY control register	USBPHYCTL	Read/Write	04h	0000h
USB-PWR control register	USBPWRCTL	Read/Write	08h	1850h
USB-PLL control register	USBPLLCTL	Read/Write	10h	0000h
USB-PLL divider buffer register	USBPLLDIVB	Read/Write	12h	0000h
USB-PLL interrupt register	USBPLLIR	Read/Write	14h	0000h

USBKEYPID, USB Key Register

Key register. Must be written with a value of 9628h in order to be recognized as a valid key. This "unlocks" the configuration registers. If written with any other value, the registers become "locked". Reads back as A528h if the registers are unlocked.

	USBCNF, USB Module Configuration Register									
15	14	13	12	11	10	9	8			
	Reserved									
r0	r0	r0	rO	r0	rO	rO	r0			
7	6	5	4	3	2	1	0			
	Reserved		FNTEN	BLKRDY	PUR_IN	PUR_EN	USB_EN			
rO	r0	r0	rw-0	rw-0	r	rw-0	rw-0			

Can be modified only when USBKEYPID is unlocked

Reserved	Bits 15-5	Reserved. Read back as 0.
FNTEN	Bit 4	Frame number receive trigger enable for DMA transfers
		0 Frame number receive trigger is blocked.
		1 Frame number receive trigger is gated through to DMA.
BLKRDY	Bit 3	Block transfer ready signaling for DMA transfers
		0 DMA triggering is disabled.
		1 DMA is triggered whenever the USB bus interface can accept new write transfers.
PUR_IN	Bit 2	PUR input value. This bit reflects the input value present on PUR. This bit may be used as an indication to start a USB based boot loading program (USB-BSL). The PUR input logic is powered by VBUS. PUR_IN returns zero when VBUS is zero
PUR_EN	Bit 1	PUR pin enable
		0 PUR pin is in high-impedance state
		1 PUR pin is driven high
USB_EN	Bit 0	USB module enable
		0 USB module is disabled
		1 USB module is enabled

USBPHYCTL, USB-PHY Control Register								
15	14	13	12	11	10	9	8	
	Reserved							
rO	r0	rO	r0	rO	r0	rw-0	rw-0	
7	6	5	4	3	2	1	0	
PUSEL	Reserved	PUDIR	Reserved	PUIN1	PUIN0	PUOUT1	PUOUT0	
rw-0	r	rw-0	rw-0	r	r	rw-0	rw-0	

Can be modified only when USBKEYPID is unlocked

Reserved	Bits 15-10	Reserved. Reads back as 0.
Reserved	Bits 9-8	Reserved. Must always be written with 0.
PUSEL	Bit 7	USB port function select. This bit selects the function of the PU0/DP and PU1/DM pins.
		0 PU0 and PU1 function selected (general purpose I/O)
		1 DP and DM function selected (USB terminals)
Reserved	Bit 6	Reserved.
PUDIR	Bit 5	USB port direction. This bit controls the direction of both PU0 and PU1. It is only valid when PUSEL = 0.
		0 PU0 and PU1 output drivers are disabled.
		1 PU0 and PU1 output drivers are enabled.
Reserved	Bit 4	Reserved. Must always be written with 0.
PUIN1	Bit 3	PU1 input data, This bit reflects the logic value on the PU1 terminal.
PUIN0	Bit 2	PU0 input data, This bit reflects the logic value on the PU0 terminal.
PUOUT1	Bit 1	PU1 output data. This bits defines the value of the PU1 pin when configured as port function and PUDIR = 1.
PUOUT0	Bit 0	PU0 output data. This bits defines the value of the PU0 pin when configured as port function and PUDIR = 1.

USBPWRCTL, USB-Power Control Register								
15	14	13	12	11	10	9	8	
	Reserved		SLDOEN	VUSBEN	VBOFFIE	VBONIE	VUOVLIE	
rO	r0	r0	rw-1	rw-1	rw-0	rw-0	rw-0	
7	6	5	4	3	2	1	0	
Reserved	SLDOAON	OVLAOFF	USBDETEN	USBBGVBV	VBOFFIFG	VBONIFG	VUOVLIFG	
rO	rw-1	rw-0	rw-1	r	rw-0	rw-0	rw-0	
	Can be modified	d only when USBK	EYPID is unlocked	d				
Reserved	Bits 15-13	Reserved, Read	Reserved. Reads back as 0.					
SLDOEN	Bit 12			hen set, the LDO i	is enabled.			
VUSBEN	Bit 11		e. When set, the					
VBOFFIE	Bit 10		F" interrupt enabl					
	2	0 Interrupt of						
		1 Interrupt						
VBONIE	Bit 9	•	N" interrupt enab	le				
	2.00	0 Interrupt						
		1 Interrupt						
VUOVLIE	Bit 8	•	ndication interrupt	t enable				
	2 0	0 Interrupt of	•	. 0.1.40.10				
		1 Interrupt						
Reserved	Bit 7	Reserved. Read						
SLDOAON	Bit 6	1.8-V LDO auto-						
025071011	Dit 0			manually via SLD	OOEN			
				tion sets SLDOEN				
OVLAOFF	Bit 5	LDO overload au	· ·		•			
		0 During an	overload on the		OO automatically e	nters current-limit	ing mode and	
		•	e until the condition	•				
	D': 4			rs the VUSBEN bi	t.			
USBDETEN	Bit 4		SUS-on/off events.					
				USB-PWR VBUS				
	Div o		ule will detect US	B-PWR VBUS-on/	off events			
USBBGVBV	Bit 3	VBUS valid						
			not valid yet					
\/D055150	D'' 0		alid and within bo				10.1	
VBOFFIFG	Bit 2	automatically cle		rresponding vecto	hat VBUS fell belo r of the USB interr			
		0 No interru	pt pending					
		1 Interrupt	pending					
VBONIFG	Bit 1	automatically cle	VBUS "coming ON" interrupt flag. This bit indicates that VBUS rose above the launch voltage. This bit is automatically cleared when the corresponding vector of the USB interrupt vector register is read, or if a value is written to the interrupt vector register.					
			pt pending	-				
		1 Interrupt						
VUOVLIFG	Bit 0		•	bit indicates that	the 3.3-V LDO ent	ered an overload	situation.	
			pt pending					
		1 Interrupt						
			3					

USBPLLCTL, **USB-PLL** Control Register

15	14	13 12 11 10 9					
	Reserved			Rese	erved	UPFDEN	UPLLEN
rO	r0	r0	rw-0	r0	r0	rw-0	rw-0
7	6	5	4	3	2	1	0
UCL	KSEL			Rese	erved		
rw-0	rw-0	r0	r0	r0	r0	r0	r0

Can be modified only when USBKEYPID is unlocked

Reserved Bits 15-13 Reserved. Reads back as 0.

UPCS Bit 12 PLL clock select

XT1CLK is selected as the reference clock
 XT2CLK is selected as the reference clock

Reserved Bits 11-10 Reserved. Reads back as 0.

UPFDEN Bit 9 Phase frequency discriminator (PFD) enable

0 PFD is disabled1 PFD is enabled

UPLLEN Bit 8 PLL enable

0 PLL is disabled1 PLL is enabled

UCLKSEL Bits 7-6 USB module clock select. Must always be written with 00.

UCLKSEL value	Selected Clock for USB Module
00	PLLCLK (default)
01	Reserved
10	Reserved
11	Reserved

Reserved Bits 5-0 Reserved. Reads back as 0.

		USBPLLD	VB, USB-PLL	Clock Divide	r Buffer Regi	ster	
15	14	13	12	11	10	9	8
		Reserved				UPQB	
rO	rO	r0	r0	r0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
Rese	erved			UP	MB		
r0	r0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Can be modified only when USBKEYPID is unlocked

Reserved UPQB Bits 15-11 Bits 10-8 Reserved. Reads back as 0.

PLL pre-scale divider buffer register. These bits select the pre-scale division value. The value of this register is transferred to UPQB as soon it is written.

UPQB value	Pre-Scaling Ratio	
000	$f_{UPD} = f_{REF}$	
001	$f_{UPD} = f_{REF} / 2$	
010	$f_{UPD} = f_{REF} / 3$	
011	$f_{UPD} = f_{REF} / 4$	
100	$f_{UPD} = f_{REF} / 6$	
101	$f_{UPD} = f_{REF} / 8$	
110	$f_{UPD} = f_{REF} / 12$	
111	$f_{UPD} = f_{REF} / 16$	

Reserved UPMB Bits 7-6 Bits 5-0 Reserved. Reads back as 0.

USB PLL feedback divider buffer register. These bits select the value of the feedback divider. The value of this register is transferred to UPMB automatically when UPQB is written.

UPMB value	Multiplying Factor
000000	Feedback division rate: 1
000001	Feedback division rate: 2
:	:
111111	Feedback division rate: 64

		USI	BPLLIR, USB	-PLL Interru	pt Register		
15	14	13	12	11	10	9	8
	Reserved			USBOORIE	USBLOSIE	USBOOLIE	
r0	r0	r0	r0	r0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
		Reserved			USBOORIFG	USBLOSIFG	USBOOLIFG
r0	r0	r0	r0	r0	rw-0	rw-0	rw-0

Can be modified only when USBKEYPID is unlocked

Reserved	Bits 15-11	Reserv	ved. Reads back as 0.		
USBOORIE	Bit 10	PLL out-of-range interrupt enable			
00200	2	0	Interrupt disabled		
		1	Interrupt enabled		
USBLOSIE	Bit 9	•	ss-of-signal interrupt enable		
OODLOOIL	Dit 3	0	Interrupt disabled		
		1	•		
		ı	Interrupt enabled		
USBOOLIE	Bit 8	PLL o	ut-of-lock interrupt enable		
		0	Interrupt disabled		
		1	Interrupt enabled		
Reserved	Bits 7-3	Reserv	ved. Reads back as 0.		
USBOORIFG	Bit 2	PLL o	ut-of-range interrupt flag		
		0	No interrupt pending		
		1	Interrupt pending		
USBLOSIFG	Bit 1	PLL lo	ss-of-signal interrupt flag		
		0	No interrupt pending		
		1	Interrupt pending		
USBOOLIFG	Bit 0	PLL o	ut-of-lock interrupt flag		
		0	No interrupt pending		
		1	Interrupt pending		

1.3.2 USB Control Registers

The control registers affect core USB operations that are fundamental for any USB connection. This includes control endpoint 0, interrupts, bus address and frame, and timestamps. Control of endpoints other than zero are found in the operation registers. Unlike the operation registers, the control registers are actual physical registers, whereas the operation registers exist in RAM, which can be re-allocated to general-purpose use.

The control registers are listed in Table 1-6. All addresses are expressed as offsets; the base address can be found in the device-specific datasheet.

All registers are byte and word accessible.

Table 1-6. USB Control Registers

	Register	Short Form	Register Type	Address Offset	Initial State
	Input endpoint_0: Configuration	USBIEPCNF_0	Read/Write	00h	00h
	Input endpoint_0: Byte Count	USBIEPCNT_0	Read/Write	01h	80h
Endpoint 0 configuration	Output endpoint_0: Configuration	USBOEPCNF_ 0	Read/Write	02h	00h
	Output endpoint_0: Byte count	USBOEPCNT_ 0	Read/Write	03h	00h
	Input endpoint interrupt enables	USBIEPIE	Read/Write	0Eh	00h
	Output endpoint interrupt enables	USBOEPIE	Read/Write	0Fh	00h
Interrupts	Input endpoint interrupt flags	USBIEPIFG	Read/Write	10h	00h
	Output endpoint interrupt flags	USBOEPIFG	Read/Write	11h	00h
	Vector interrupt register	USBVECINT	Read/Write	12h	0000h
Timestamna	Timestamp maintenance register	USBMAINT	Read/Write	16h	0000h
Timestamps	Timestamp register	USBTSREG	Read/Write	18h	0000h
	USB frame number	USBFN	Read only	1Ah	0000h
	USB control register	USBCTL	Read/Write	1Ch	00h
Basic USB control	USB interrupt enable register	USBIE	Read/Write	1Dh	00h
	USB interrupt flag register	USBIFG	Read/Write	1Eh	00h
	Function address register	USBFUNADR	Read/Write	1Fh	00h

Reserved

CNT

Bits 1-0

Bits 3-0

www.ti.com Registers

USBIEPCNF_0 USB Input Endpoint-0 Configuration Register

7	6	5	4	3	2	1	0
UBME	Reserved	TOGGLE	Reserved	STALL	USBIIE	Rese	erved
rw-0	r0	r-0	r0	rw-0	rw-0	rO	r0

Can be modified only when USBEN = 1

UBME	Bit 7	UBM in endpoint-0 enable				
		0 UBM cannot use this endpoint				
		1 UBM can use this endpoint				
Reserved	Bit 6	Reserved. Reads back as 0.				
TOGGLE	Bit 5	Toggle bit. Reads back 0, since the configuration endpoint does not need to toggle.				
Reserved	Bit 4	Reserved				
STALL	Bit 3	USB stall condition. When set, hardware automatically returns a stall handshake to the USB host for any transaction transmitted from endpoint-0. The stall bit is cleared automatically by the next setup transaction.				
		0 Indicates no stall				
		1 Indicates stall				
USBIIE	Bit 2	USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt flag must be set (IEPIE).				
		O Corresponding interrupt flag is not set				
		1 Corresponding interrupt flag is set				

USBIEPBCNT_0 USB Input Endpoint-0 Byte Count Register

7	6	5	4	3	2	1	0
NAK		Reserved			CI	NT .	
rw-0	rO	r0	rO	rw-0	rw-0	rw-0	rw-0
	Can be modified	only when USBE	N = 1				

NAK

Bit 7

No acknowledge status bit. This bit is set by the UBM at the end of a successful USB IN transaction from endpoint-0, to indicate that the EP-0 IN buffer is empty. When this bit is set, all subsequent transactions from endpoint-0 result in a NAK handshake response to the USB host. To re-enable this endpoint to transmit another data packet to the host, this bit must be cleared by software.

0

Buffer contains a valid data packet for host device

Buffer contains a valid data packet for host device

Buffer is empty (Host-In request receives a NAK)

Reserved

Bits 6-4

Reserved. Reads back as 0.

Reserved. Reads back as 0.

Byte count. The In_EP-0 buffer data count value should be set by software when a new data packet is written to the buffer. This four-bit value contains the number of bytes in the data packet.

0000b to 1000b are valid numbers for 0 to 8 bytes to be sent 1001b to 1111b are reserved values (if used, defaults to 8)

USBOEPCNFG_0 USB Output Endpoint-0 Configuration Register

7	6	5	4	3	2	1	0
UBME	Reserved	TOGGLE	Reserved	STALL	USBIIE	Rese	erved
rw-0	r0	r-0	r0	rw-0	rw-0	rO	r0

Can be modified only when USBEN = 1

	Can be incam	on only mon costin - 1
UBME	Bit 7	UBM out Endpoint-0 enable
		0 UBM cannot use this endpoint
		1 UBM can use this endpoint
Reserved	Bit 6	Reserved. Reads back as 0.
TOGGLE	Bit 5	Toggle bit. Reads back 0, since the configuration endpoint does not need to toggle.
Reserved	Bit 4	Reserved. Reads back as 0.
STALL	Bit 3	USB stall condition. When set, hardware automatically returns a stall handshake to the USB host for any transaction transmitted from endpoint-0. The stall bit is cleared automatically by the next setup transaction.
		0 Indicates no stall
		1 Indicates stall
USBIIE	Bit 2	USB transaction interrupt indication enable. Software may set this bit to define if interrupts are to be flagged in general. To generate an interrupt the corresponding interrupt flag must be set (OEPIE).
		O Corresponding interrupt flag will not be set
		1 Corresponding interrupt flag will be set
Reserved	Bits 1-0	Reserved. Reads back as 0.

USBOEPBCNT_0 USB Output Endpoint-0 Byte Count Register

7	6	5	4	3	2	1	0
NAK		Reserved			CI	NT	
rw-0	r0	r0	r0	rw-0	rw-0	rw-0	rw-0

Can be modified only when USBEN = 1

NAK

Bit 7

No acknowledge status bit. This bit is set by the UBM at the end of a successful USB out transaction into endpoint-0, in order to indicate that the EP-0 buffer contains a valid data packet and that the buffer data count value is valid. When this bit is set, all subsequent transactions to endpoint-0 will result in a NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet from the host, this bit must be cleared by software.

- No valid data in the buffer. The buffer is ready to receive a host OUT transaction
- 1 The buffer contains a valid packet from the host that has not been picked up. (Any subsequent Host-Out requests receive a NAK.)

Reserved Bits 6-4 Reserved. Reads back as 0.

CNT Bits 3-0 Byte count. This data count y

Byte count. This data count value is set by the UBM when a new data packet is received by the buffer for the out endpoint-0. The four-bit value contains the number of bytes received in the data buffer.

0000b to 1000b are valid numbers for 0 to 8 received bytes

1001b to 1111b are reserved values

USBIEPIE, USB Input Endpoint Interrupt Enable Register

7	6	5	4	3	2	1	0
IEPIE7	IEPIE6	IEPIE5	IEPIE4	IEPIE3	IEPIE2	IEPIE1	IEPIE0
rw-0							

Can be modified only when USBEN = 1

Bits 7-0

Bits 7-0

IEPIEn

Input endpoint interrupt enable. These bits enable/disable whether an event can trigger an interrupt; they do not influence whether the event gets flagged. This is enabled/disabled with the interrupt indication enable bit in the Endpoint descriptors.

- 0 Event does not generate an interrupt
- 1 Event does generate an interrupt

USBOEPIE, USB Output Endpoint Interrupt Enable Register

7	6	5	4	3	2	1	0
OEPIE7	OEPIE6	OEPIE5	OEPIE4	OEPIE3	OEPIE2	OEPIE1	OEPIE0
rw-0							

Can be modified only when USBEN = 1

IEPIEn

Output endpoint interrupt enable. These bits enable/disable whether an event can trigger an interrupt; they do not influence whether the event gets flagged. This is enabled/disabled with the interrupt indication enable bit in the Endpoint descriptors.

- 0 Event does not generate an interrupt
- 1 Event does generate an interrupt

USBIEPIFG, USB Input Endpoint Interrupt Flag Register

7	6	5	4	3	2	1	0
IEPIFG7	IEPIFG6	IEPIFG5	IEPIFG4	IEPIFG3	IEPIFG2	IEPIFG1	IEPIFG0
rw-0							

Can be modified only when USBEN = 1

OEPIFGn

Bits 7-0 Input Endpoint Interrupt Flag. These bits are set by the UBM when a successful completion of a transaction occurs for this endpoint. When set, a USB interrupt will be generated. The interrupt flag will be cleared when the MCU reads the value from the USBVECINT register corresponding with this

interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing zero to that bit location.

USBOEPIFG, USB Output Endpoint Interrupt Flag Register

7	6	5	4	3	2	1	0
OEPIFG7	OEPIFG6	OEPIFG5	OEPIFG4	OEPIFG3	OEPIFG2	OEPIFG1	OEPIFG0
rw-0							

Can be modified only when USBEN = 1

OEPIFGn Bits 7-0

Output Endpoint Interrupt Flag. The output endpoint interrupt flag bits for a particular USB output endpoint are set to a "1" by the UBM when a successful completion of a transaction occurs to that out endpoint. When a bit is set, a USB interrupt will be generated. The interrupt flag will be cleared when the MCU reads the value from the USBVECINT register corresponding with this interrupt, or when it writes any value to the interrupt vector register. An interrupt flag can also be cleared by writing a zero to that bit location.

		USB	VECINT, USB	Interrupt Vec	tor Register		
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
rO	rO	r0	r0	r0	rO	rO	rO
7	6	5	4	3	2	1	0
0	0			USBIV			0
r0	r0	r-0	r-0	r-0	r-0	r-0	r0

USBIV Bits 15-0

USB interrupt vector value. This register is to be accessed as a whole word only. When an interrupt is pending, reading this register results in a value that can be added to the program counter to handle the corresponding event. Writing to this register will clear all pending USB interrupt flags independent of the status of USBEN.

USBIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending	_	_
02h	See Section 1.2.5		Highest
3Eh			Lowest

USBMAINT, Timestamp Maintenance Register 12 11 15 13 9 8 14 UTSEL TSE3 **TSGEN** Reserved **TSESEL** rw-0 rw-0 rw-0 r0 rw-0 rw-0 rw-0 rw-0 7 6 5 4 3 2 0 1 UTIE **UTIFG** Reserved r0 r0 r0 r0 r0 r0 rw-0 rw-0

Can be modified only when USBEN = 1

UTSEL

Bits 15-13 USB timer selection

UTSEL	USB Timer Period	Approximate Frequency
000	4096 μs	~250 Hz (244 Hz)
001	2048 μs	~ 500 Hz (488 Hz)
010	1024 μs	~ 1 kHz (977 Hz)
011	512 μs	~ 2 kHz (1953 Hz)
100	256 μs	~ 4 kHz (3906 Hz)
101	128 μs	~ 8 kHz (7812 Hz)
110	64 μs	~ 16 kHz (15625 Hz)
111	32 μs	~ 31 kHz (31250 Hz)

Reserved

Bit 12

Reserved. Read back as 0

TSE3 Bit 11

Timestamp Event #3 bit. This bit allows the triggering of a software-driven timestamp event (when TSESEL=11).

0 no TSE3 event signaled

1 TSE3 event signaled

TSESEL Bits 10-9

Timestamp Event Selection. TSE[2:0] are connected to the event multiplexer of the three DMA channels of the DMA controller if not otherwise noted in datasheet

TSESEL	Source of Timestamp Event
00	TSE0 (DMA0) signal is qualified timestamp event
01	TSE1 (DMA1) signal is qualified timestamp event
10	TSE2 (DMA2) signal is qualified timestamp event
11	Software-driven timestamp event

TSGEN Bit 8 Timestamp Generator Enable

0 Timestamp mechanism disabled

1 Timestamp mechanism enabled

Reserved Bits 7-2

UTIE

Bit 1

Reserved. Read back as 0

USB timer interrupt enable bit

USB timer interrupt disabledUSB timer interrupt enabled

UTIFG Bit 0 USB timer interrupt flag

0 No interrupt pending

1 Interrupt pending

r-0

Registers www.ti.com **USBTSREG, USB Timestamp Register** 12 15 13 9 14 8 TVAL r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 7 6 5 4 3 2 0 1 TVAL

Can be modified only when USBEN = 1

r-0

r-0

r-0

TVAL Bits 15-0 Timestamp high register. The timestamp value is updated by hardware from the USB timer. A qualified timestamp trigger signal causes the current timer value to be latched into this register.

r-0

USBFN, USB Frame Number Register

r-0

r-0

r-0

15	14	13	12	11	10	9	8	
Reserved						USBFN		
r0	r0	r0	r0	r0	r-0	r-0	r-0	
7	6	5	4	3	2	1	0	
USBFN								
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0	

Reserved Bits 15-11 Reserved. Read back as 0
USBFN Bits 10-0 USB Frame Number regist

USB Frame Number register. The frame number bit values are updated by hardware; each USB frame with the frame number field value received in the USB start-of-frame packet. The frame number can be used as a timestamp. If the local (MSP430's) frame timer is not locked to the USB host's frame timer, then the frame number is automatically incremented from the previous value when a pseudo start-of-frame occurs.

USBCTL, USB Control Register

7	6	5	4	3	2	1	0
Reserved	FEN	RWUP	FRSTE	Reserved			DIR
r0	rw-0	rw-0	rw-0	r0	r0	rO	rw-0

Can be modified only when USBEN = 1

Reserved Bit 7 Reserved. Read back as 0.

FEN Bit 6 Function Enable Bit. This bit needs to be set to enable the USB device to respond to USB transactions.

If this bit is not set, the UBM will ignore all USB transactions. It is cleared by a USB reset. (This bit is

primarily intended for debugging.)

Function is enabled

0 Function is disabled

RWUP Bit 5 Device Remote Wakeup request. The remote wake-up bit is set by software to request the

suspend/resume logic to generate resume signaling upstream on the USB. This bit is used to exit a USB

low-power suspend state when a remote wake-up event occurs. The bit is self-clearing.

0 Writing 0 has no effect

1 A Remote-Wakeup pulse will be generated

FRSTE Bit 4 Function Reset Connection Enable. This bit selects whether a bus reset on the USB causes an internal

reset of the USB module.

0 Bus reset does not cause a reset of the module

Bus reset does cause a reset of the module

Reserved Bits 3-1 Reserved. Read back as 0.

DIR Bit 0 Data response to setup packet interrupt status bit. Software must decode the request and set/clear this

bit to reflect the data transfer direction.

0 USB data-OUT transaction (from host to device)

1 USB data-IN transaction (from device to host)

USBIE, USB Interrupt Enable Register

7	6	5	4	3	2	1	0
RSTRIE	SUSRIE	RESRIE	Reserved		SETUPIE	Reserved	STPOWIE
rw-0	rw-0	rw-0	r0 r0		rw-0	r0	rw-0

Can be modified only when USBEN = 1

RSTRIE Bit 7 USB reset interrupt enable. Causes an interrupt to be generated if the RSTRIFG bit is set.

0 Function Reset interrupt disabled

1 Function Reset interrupt enabled

SUSRIE Bit 6 Suspend interrupt enable. Causes an interrupt to be generated if the SUSRIFG bit is set.

0 Suspend interrupt disabled

1 Suspend interrupt enabled

RESRIE Bit 5 Resume interrupt enable. Causes an interrupt to be generated if the RESRIFG bit is set.

0 Resume interrupt disabled

Resume interrupt enabled

Reserved Bits 4-3 Reserved. Read back as 0.

Bit 1

SETUPIE Bit 2 Setup interrupt enable. Causes an interrupt to be generated if the SETUPIFG bit is set.

0 Setup interrupt disabled

1 Setup interrupt enabled Reserved. Read back as 0.

STPOWIE Bit 0 Setup Overwrite interrupt enable. Causes an interrupt to be generated if the STPOWIFG bit is set.

0 Setup Overwrite interrupt disabled

1 Setup Overwrite interrupt enabled

Reserved

USBIFG, USB Interrupt Flag Register

7	6	5	4	3	2	1	0		
RSTRIFG	SUSRIFG	RESRIFG	Reserved		SETUPIFG	Reserved	STPOWIFG		
rw-0	rw-0	rw-0	rO	r0	rw-0	rO	rw-0		
Can be modified only when USBEN = 1									
POTDIFO PART HOD and the most bit. This bit is not to see he hardway is assessed to the heat in the he									
RSTRIFG	Bit 7	USB reset request bit. This bit is set to one by hardware in response to the host initiating a USB port reset. A USB reset causes a reset of the USB module logic, but this bit will not be affected.							
SUSRIFG	Bit 6	Suspend request bit. This bit is set by hardware in response to the host/hub causing a global or selective suspend condition.							
RESRIFG	Bit 5	Resume request	bit. This bit is set	by hardware in re	esponse to the hos	t/hub causing a re	esume event.		
Reserved	Bits 4-3	Reserved. Read	back as 0.						
SETUPIFG	Bit 2	Setup transaction received bit. This bit is set by hardware when a SETUP transaction is received. As long as this bit is set, transactions on IN and OUT on endpoint-0 receive a NAK, regardless of their corresponding NAK bit value.							
Reserved	Bit 1	Reserved. Read	back as 0.						
STPOWIFG	Bit 0		Setup overwrite bit. This bit is set by hardware when a setup packet is received while there is already a packet in the setup buffer.						

USBFUNADR, USB Function Address Register

7	6	5	4	3	2	1	0
Reserved	FA6	FA5	FA4	FA3	FA2	FA1	FA0
rO	rw-0						
Can be modified only when USBEN = 1							

Reserved Bit 7 Reserved. Read back as 0.

FA[6:0] Bits 6-0 Function address (USB address 0 to 127). These bits define the current device address assigned to this USB device. Software must write a value from 0 to 127 when a Set-Address command is received from

the host.

1.3.3 USB Buffer Registers and Memory

The data buffers for all endpoints, as well as the registers that define endpoints 1-7, are stored in the USB RAM buffer memory. Doing so allows for efficient, flexible use of this memory. The memory area is known as the USB buffer memory), and the registers that define its use are the buffer descriptor registers.

The buffer memory blocks are listed in Table 1-7. The registers are listed in Table 1-8. All addresses are expressed as offsets; the base address can be found in the device-specific datasheet.

All memory is byte and word accessible.

Table 1-7. USB Buffer Memory

Memory	Short Form	Access Type	Address Offset
Start of buffer space	USBSTABUFF	Read/Write	0000h
1904 bytes of configurable buffer space	USBIEPCNT_0	Read/Write	:
End of buffer space	USBTOPBUFF	Read/Write	076Fh
		Read/Write	0770h
Output endpoint_0 buffer	USBOEP0BUF	Read/Write	:
		Read/Write	0777h
		Read/Write	0778h
Input endpoint_0 buffer	USBIEP0BUF	Read/Write	:
		Read/Write	077Fh
		Read/Write	0780h
Setup Packet Block	USBSUBLK	Read/Write	:
		Read/Write	0787h

Table 1-8. USB Buffer Descriptor Registers

	Register	Short Form	Access Type	Address Offset
	Configuration Register	USBOEPCNF_1	Read/Write	0788h
	X-buffer base address Register	USBOEPBBAX_1	Read/Write	0789h
Output Fadaciat 4	X-byte count Register	USBOEPBCTX_1	Read/Write	078Ah
Output Endpoint_1	Y-buffer base address Register	USBOEPBBAY_1	Read/Write	078Dh
	Y-byte count Register	USBOEPBCTY_1	Read/Write	078Eh
	X/Y-buffer size Register	USBOEPSIZXY_1	Read/Write	078Fh
	Configuration Register	USBOEPCNF_2	Read/Write	0790h
	X-buffer base address Register	USBOEPBBAX_2	Read/Write	0791h
Output Endnoint 2	X-byte count Register	USBOEPBCTX_2	Read/Write	0792h
Output Endpoint_2	Y-buffer base address Register	USBOEPBBAY_2	Read/Write	0795h
	Y-byte count Register	USBOEPBCTY_2	Read/Write	0796h
	X/Y-buffer size Register	USBOEPSIZXY_2	Read/Write	0797h
	Configuration Register	USBOEPCNF_3	Read/Write	0798h
	X-buffer base address Register	USBOEPBBAX_3	Read/Write	0799h
Output Endnoint 2	X-byte count Register	USBOEPBCTX_3	Read/Write	079Ah
Output Endpoint_3	Y-buffer base address Register	USBOEPBBAY_3	Read/Write	079Dh
	Y-byte count Register	USBOEPBCTY_3	Read/Write	079Eh
	X/Y-buffer size Register	USBOEPSIZXY_3	Read/Write	079Fh

Table 1-8. USB Buffer Descriptor Registers (continued)

	Register	Short Form	Access Type	Address Offset
	Configuration Register	USBOEPCNF_4	Read/Write	07A0h
	X-buffer base address Register	USBOEPBBAX_4	Read/Write	07A1h
Output Fadaciat 4	X-byte count Register	USBOEPBCTX_4	Read/Write	07A2h
Output Endpoint_4	Y-buffer base address Register	USBOEPBBAY_4	Read/Write	07A5h
	Y-byte count Register	USBOEPBCTY_4	Read/Write	07A6h
	X/Y-buffer size Register	USBOEPSIZXY_4	Read/Write	07A7h
	Configuration Register	USBOEPCNF_5	Read/Write	07A8h
	X-buffer base address Register	USBOEPBBAX_5	Read/Write	07A9h
Output Endnoint E	X-byte count Register	USBOEPBCTX_5	Read/Write	07AAh
Output Endpoint_5	Y-buffer base address Register	USBOEPBBAY_5	Read/Write	07ADh
	Y-byte count Register	USBOEPBCTY_5	Read/Write	07AEh
	X/Y-buffer size Register	USBOEPSIZXY_5	Read/Write	07AFh
	Configuration Register	USBOEPCNF_6	Read/Write	07B0h
	X-buffer base address Register	USBOEPBBAX_6	Read/Write	07B1h
Output Fadaaiat C	X-byte count Register	USBOEPBCTX_6	Read/Write	07B2h
Output Endpoint_6	Y-buffer base address Register	USBOEPBBAY_6	Read/Write	07B5h
	Y-byte count Register	USBOEPBCTY_6	Read/Write	07B6h
	X/Y-buffer size Register	USBOEPSIZXY_6	Read/Write	07B7h
	Configuration Register	USBOEPCNF_7	Read/Write	07B8h
	X-buffer base address Register	USBOEPBBAX_7	Read/Write	07B9h
Output Fada dat 7	X-byte count Register	USBOEPBCTX_7	Read/Write	07BAh
Output Endpoint_7	Y-buffer base address Register	USBOEPBBAY_7	Read/Write	07BDh
	Y-byte count Register	USBOEPBCTY_7	Read/Write	07BEh
	X/Y-buffer size Register	USBOEPSIZXY_7	Read/Write	07BFh
	Configuration Register	USBIEPCNF_1	Read/Write	07C8h
	X-buffer base address Register	USBIEPBBAX_1	Read/Write	07C9h
lance Englaciat 4	X-byte count Register	USBIEPBCTX_1	Read/Write	07CAh
Input Endpoint_1	Y-buffer base address Register	USBIEPBBAY_1	Read/Write	07CDh
	Y-byte count Register	USBIEPBCTY_1	Read/Write	07CEh
	X/Y-buffer size Register	USBIEPSIZXY_1	Read/Write	07CFh
	Configuration Register	USBIEPCNF_2	Read/Write	07D0h
	X-buffer base address Register	USBIEPBBAX_2	Read/Write	07D1h
lanut Endociat O	X-byte count Register	USBIEPBCTX_2	Read/Write	07D2h
Input Endpoint_2	Y-buffer base address Register	USBIEPBBAY_2	Read/Write	07D5h
	Y-byte count Register	USBIEPBCTY_2	Read/Write	07D6h
	X/Y-buffer size Register	USBIEPSIZXY_2	Read/Write	07D7h
	Configuration Register	USBIEPCNF_3	Read/Write	07D8h
	X-buffer base address Register	USBIEPBBAX_3	Read/Write	07D9h
Innuit Endo-i-t 0	X-byte count Register	USBIEPBCTX_3	Read/Write	07DAh
Input Endpoint_3	Y-buffer base address Register	USBIEPBBAY_3	Read/Write	07DDh
	Y-byte count Register	USBIEPBCTY_3	Read/Write	07DEh
	X/Y-buffer size Register	USBIEPSIZXY_3	Read/Write	07DFh

Table 1-8. USB Buffer Descriptor Registers (continued)

	Register	Short Form	Access Type	Address Offset
	Configuration Register	USBIEPCNF_4	Read/Write	07E0h
	X-buffer base address Register	USBIEPBBAX_4	Read/Write	07E1h
Innut Endociat 4	X-byte count Register	USBIEPBCTX_4	Read/Write	07E2h
Input Endpoint_4	Y-buffer base address Register	USBIEPBBAY_4	Read/Write	07E5h
	Y-byte count Register	USBIEPBCTY_4	Read/Write	07E6h
	X/Y-buffer size Register	USBIEPSIZXY_4	Read/Write	07E7h
	Configuration Register	USBIEPCNF_5	Read/Write	07E8h
	X-buffer base address Register	USBIEPBBAX_5	Read/Write	07E9h
lanut Fadaniat F	X-byte count Register	USBIEPBCTX_5	Read/Write	07EAh
Input Endpoint_5	Y-buffer base address Register	USBIEPBBAY_5	Read/Write	07EDh
	Y-byte count Register	USBIEPBCTY_5	Read/Write	07EEh
	X/Y-buffer size Register	USBIEPSIZXY_5	Read/Write	07EFh
	Configuration Register	USBIEPCNF_6	Read/Write	07F0h
	X-buffer base address Register	USBIEPBBAX_6	Read/Write	07F1h
Lancet Foodmarket O	X-byte count Register	USBIEPBCTX_6	Read/Write	07F2h
Input Endpoint_6	Y-buffer base address Register	USBIEPBBAY_6	Read/Write	07F5h
	Y-byte count Register	USBIEPBCTY_6	Read/Write	07F6h
	X/Y-buffer size Register	USBIEPSIZXY_6	Read/Write	07F7h
	Configuration Register	USBIEPCNF_7	Read/Write	07F8h
	X-buffer base address Register	USBIEPBBAX_7	Read/Write	07F9h
lanut Fadaniat 3	X-byte count Register	USBIEPBCTX_7	Read/Write	07FAh
Input Endpoint_7	Y-buffer base address Register	USBIEPBBAY_7	Read/Write	07FDh
	Y-byte count Register	USBIEPBCTY_7	Read/Write	07FEh
	X/Y-buffer size Register	USBIEPSIZXY_7	Read/Write	07FFh

USBOEPCNF_n, Output Endpoint-n Configuration Register

	7	6	5	4	3	2	1	0
U	ВМЕ	Reserved	TOGGLE	DBUF	STALL	USBIIE	Reserved	
	rw	r0	rw	rw	rw	rw	r0	r0

Can be modified only when USBEN = 1

UBME Bit 7 UBM out endpoint-n enable. This bit is to be set/cleared by software.

0 UBM cannot use this endpoint

1 UBM can use this endpoint

Reserved. Read back as 0.

TOGGLE Bit 5 Toggle bit. The toggle bit is controlled by the UBM and is toggled at the end of a successful out data stage transaction, if a valid data packet is received and the data packet's PID matches the expected

PID.

DBUF Bit 4 Double buffer enable. This bit can be set to enable the use of both the X and Y data packet buffers for

USB transactions, for a particular out endpoint. Clearing it results in the use of single buffer mode. In this mode, only the X buffer is used

this mode, only the X buffer is used.

Primary buffer only (X-buffer only)

1 Toggle bit selects buffer

STALL Bit 3

USB stall condition. This bit can be set to cause endpoint transactions to be stalled. When set, the hardware will automatically return a stall handshake to the host for any transaction received on endpoint-0. The stall bit is cleared automatically by the next setup transaction.

0 Indicates no stall

1 Indicates stall

USBIIE Bit 2

USB transaction interrupt indication enable. Can be set/cleared to define if interrupts are to be flagged in general. To generate an interrupt, the corresponding interrupt flag must be set (OEPIE).

O Corresponding interrupt flag will not be set

1 Corresponding interrupt flag will be set

Reserved Bits 1-0

1-0 Reserved. Read back as 0.

USBOEPBBAX n, Output Endpoint-n X-buffer Base Address Register

ADR Bits 7-0

X-buffer base address. These are the upper seven bits of the X-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a

transaction.

ISTRUMENTS www.ti.com Registers USBOEPBCTX n, Output Endpoint-n X-byte Count Register 7 6 0 CNT NAK rw rw rw rw rw rw rw rw Can be modified only when USBEN = 1 No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB out NAK Bit 7 transaction to that endpoint, in order to indicate that the USB endpoint-"n" buffer contains a valid data packet, and that the buffer data count value is valid. When this bit is set, all subsequent transactions to that endpoint will result in a NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet from the host, this bit must be cleared. No valid data in buffer. The buffer is ready to receive OUT packets from the host. 1 The buffer contains a valid packet from the host, and it has not been picked up (subsequent host-out requests receive a NAK) **CNT** Bits 6-0 X-buffer data count. The Out_EP-n data count value is set by the UBM when a new data packet is written to the X-buffer for that out endpoint. It is set to the number of bytes received in the data buffer. 000:0000b to 100:0000b are valid numbers for 0 to 64 bytes. Any value ≥ 100:0001b results in unpredictable results. USBOEPBBAY_n, Output Endpoint-n Y-buffer Base Address Register 7 6 0 **ADR** rw rw rw rw rw rw rw Can be modified only when USBEN = 1 ADR Bits 7-0 Y-buffer base address. These are the upper seven bits of the Y-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction. USBOEPBCTY_n, Output Endpoint-n X-byte Count Register 6 3 0 NAK CNT rw rw rw Can be modified only when USBEN = 1 NAK Bit 7 No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB out transaction to that endpoint, in order to indicate that the USB endpoint-"n" buffer contains a valid data packet, and that the buffer data count value is valid. When this bit is set, all subsequent transactions to that endpoint will result in a NAK handshake response to the USB host. To re-enable this endpoint to receive another data packet from the host, this bit must be cleared. 0 No valid data in buffer. The buffer is ready to receive OUT packets from the host. The buffer contains a valid packet from the host, and it has not been picked up (subsequent

CNT Bits 6-0

Y-buffer data count. The Out_EP-n data count value is set by the UBM when a new data packet is written to the X-buffer for that out endpoint. It is set to the number of bytes received in the data buffer.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

host-out requests receive a NAK)

SLAU284-May 2009 Submit Documentation Feedback

USBOEPSIZXY n, Output Endpoint-n X/Y-buffer Size Register

7	6	5	4	3	2	1	0
Reserved				SIZx			
rO	rw	rw	rw	rw	rw	rw	rw

Can be modified only when USBEN = 1

Reserved Rit 7 Reserved. Read back as 0.

SIZx Bits 6-0 Buffer size count. This value needs to be set by software to configure the size of the X and Y data

packet buffers. Both buffers are set to the same size, based on this value.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

USBIEPCNF_n, Input Endpoint-n Configuration Register

7	6	5	4	3	2	1	0
UBME	Reserved	TOGGLE	DBUF	STALL	USBIIE	Reserved	
rw	rO	rw	rw	rw	rw	rO	rO
	Can be modified	only when USBE					

UBME Rit 7 UBM in endpoint-n enable. This value needs to be set/cleared by software.

UBM cannot use this endpoint

UBM can use this endpoint

Reserved Bit 6 Reserved. Read back as 0.

Bit 4

TOGGLE Bit 5 Toggle bit. The toggle bit is controlled by the UBM and is toggled at the end of a successful in data stage transaction, if a valid data packet is transmitted. If this bit is cleared, a DATA0 PID is transmitted

in the data packet to the host. If this bit is set, a DATA1 PID is transmitted in the data packet.

Double buffer enable. This bit can be set to enable the use of both the X and Y data packet buffers for USB transactions, for a particular out endpoint. Clearing it results in the use of single buffer mode. In this mode, only the X buffer is used.

Primary buffer only (X-buffer only)

Toggle bit selects buffer

STALL Bit 3 USB stall condition. This bit can be set to cause endpoint transactions to be stalled. When set, the

hardware will automatically return a stall handshake to the host for any transaction received on

endpoint-0. The stall bit is cleared automatically by the next setup transaction.

0 Indicates no stall

Indicates stall

USBIIE Bit 2 USB transaction interrupt indication enable. Can be set/cleared to define if interrupts are to be flagged in

general. To generate an interrupt the corresponding interrupt flag must be set (OEPIE).

0 Corresponding interrupt flag will not be set

Corresponding interrupt flag will be set

Reserved Bits 1-0 Reserved. Read back as 0.

USBIEPBBAX_n, Input Endpoint-n X-buffer Base Address Register

 7	6	5	4	3	2	1	0		
ADR									
rw	rw	rw	rw	rw	rw	rw	rw		
Can be modified only when USBEN = 1									

ADR Bits 7-0

X-buffer base address. These are the upper seven bits of the X-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction.

DBUF

USBIEPBCTX_n, Input Endpoint-n X-byte Count Register

7	6	5	4	3	2	1	0
NAK				CNT			
rw	rw	rw	rw	rw	rw	rw	rw

Can be modified only when USBEN = 1

NAK Bit 7

No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB in transaction from that endpoint, in order to indicate that the EP-n in buffer is empty. For interrupt or bulk endpoints, when this bit is set, all subsequent transactions from that endpoint result in a NAK handshake response to the USB host. To re-enable this endpoint to transmit another data packet to the host, this bit must be cleared.

0 Buffer contains a valid data packet for the host

Buffer is empty (any host-In requests receive a NAK)

CNT Bits 6-0

X-buffer data count. The In_EP-n X-buffer data count value must be set by software when a new data packet is written to the buffer. It should be the number of bytes in the data packet for interrupt, or bulk endpoint transfers.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

USBIEPBBAY_n, Input Endpoint-n Y-buffer Base Address Register

7	6	5	4	3	2	1	0		
	ADR								
rw	rw	rw	rw	rw	rw	rw	rw		

Can be modified only when USBEN = 1

ADR Bits 7-0

Y-buffer base address. These are the upper seven bits of the Y-buffer's base address. The three LSBs are assumed to be zero, for a total of 11 bits. This value needs to be set by software. The UBM uses this value as the start address of a given transaction. It does not change this value at the end of a transaction.

USBIEPBCTY_n, Input Endpoint-n Y-byte Count Register

7	6	5	4	3	2	1	0
NAK				CNT			
rw	rw	rw	rw	rw	rw	rw	rw

Can be modified only when USBEN = 1

NAK Bit 7

No-acknowledge status bit. The NAK status bit is set by the UBM at the end of a successful USB in transaction from that endpoint, in order to indicate that the EP-n in buffer is empty. For interrupt or bulk endpoints, when this bit is set, all subsequent transactions from that endpoint result in a NAK handshake response to the host. To re-enable this endpoint to transmit another data packet to the host, this bit must be cleared. This bit is set by USB SW-init.

0 Buffer contains a valid data packet for host device

Buffer is empty (any host-in requests receive a NAK)

CNT Bits 6-0

Y-Buffer data count. The In EP-n Y-buffer data count value needs to be set by software when a new data packet is written to the buffer. It should be the number of bytes in the data packet for interrupt, or bulk endpoint transfers.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

USBIEPSIZXY n	Input Endpoint-r	n X/Y-buffer Size Register

			_ · •			•	
7	6	5	4	3	2	1	0
Reserved				SIZ			
r0	rw	rw	rw	rw	rw	rw	rw

Can be modified only when USBEN = 1

Reserved Bit 7 Reserved. Read back as 0.

SIZ

Bits 6-0 Buffer size count. This value needs to be set by software to configure the size of the X and Y data

packet buffers. Both buffers are set to the same size, based on this value.

000:0000b to 100:0000b are valid numbers for 0 to 64 bytes.

Any value ≥ 100:0001b results in unpredictable results.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com **DLP® Products** Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated