

NORMALIZATION ISSUES

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

WHY?

loffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML 2015.

Why normalizing?

- Maintaining proper statistics of the activations and derivatives was a critical issue to allow the training of deep architectures.
- Batch normalization: the activation statistics during the forward pass by re-normalization.

Batch normalization can be done anywhere in a deep architecture.

During the training: shifts and rescales activations according to the mean and variance estimated on the current batch.

When testing: shifts and rescales according to the empirical moments estimated during training.

How?

Batch
$$\mathcal{B} = \{ \boldsymbol{x}_i \in \mathbb{R}^d \ i \in \llbracket 1 \cdots B \rrbracket \}$$

Mean:
$$\hat{m}_{\mathcal{B}} = \frac{1}{B} \sum_{i=1}^{B} \boldsymbol{x_i}$$
 Variance: $\sigma_{\mathcal{B}}^2 = \frac{1}{B} \sum_{i=1}^{B} \|\boldsymbol{x_i} - \hat{m}_{\mathcal{B}}\|^2$

From this

$$oldsymbol{z}_i = rac{oldsymbol{x}_i - \hat{m}_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad ext{and} \quad y_{\mathcal{B}} = \gamma \odot z_{\mathcal{B}} + \beta \quad \in \llbracket 1 \cdots B
rbracket$$

 \odot : Hadamard component-wise product $\gamma, \beta \in \mathbb{R}^d$ parameters to optimize

How?

During inference: shift and rescale each component of $m{x}$ according to statistics estimated during training.

$$y = \gamma \odot \frac{\boldsymbol{x} - \hat{m}}{\sqrt{\sigma^2 + \epsilon}} + \beta$$

 \Rightarrow component-wise affine transformation.

$$\gamma,\beta\in\mathbb{R}^d$$
 need to be learned $\Rightarrow\frac{\partial\ell}{\partial\gamma}$ and $\frac{\partial\ell}{\partial\beta}$?

In the following d=1 (nevermind since components are processed independently).

How?

$$\frac{\partial \ell}{\partial \gamma} = \sum_{b \in \mathcal{B}} \frac{\partial \ell}{\partial y_b} \frac{\partial y_b}{\partial \gamma} = \sum_{b \in \mathcal{B}} \frac{\partial \ell}{\partial y_b} z_b$$
$$\frac{\partial \ell}{\partial \beta} = \sum_{b \in \mathcal{B}} \frac{\partial \ell}{\partial y_b} \frac{\partial y_b}{\partial \beta} = \sum_{b \in \mathcal{B}} \frac{\partial \ell}{\partial y_b}$$

Each input in the batch impacts all the outputs in the batch $\Rightarrow rac{\partial \ell}{\partial x_h}$ not so easy.

$$\frac{\partial \ell}{\partial x_b} = \frac{\partial \ell}{\partial z_b} \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{2}{B} \frac{\partial \ell}{\partial \sigma_B^2} (x_b - \hat{m}_B) + \frac{1}{B} \frac{\partial \ell}{\partial \hat{m}_B}$$

Usually, $\hat{m}_{\mathcal{B}}$ and $\sigma_{\mathcal{B}}^2$ for test are estimated with a moving average during training.

ANOTHER WAY TO NORMALIZE

L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

Normalizing activations accross a layer instead of across the batch. For $oldsymbol{x} \in \mathbb{R}^d$,

 (\bar{x}, σ) = (mean, standard deviation of the components of \boldsymbol{x})

for
$$i \in [1 \cdots d]$$
 $y_i = \frac{x_i - \bar{x}}{\sigma}$

