Brief correction of midterm n°1 in Physics

Exercise I

Part A

1) You had to derive with respect to time the functions $\begin{cases} x(t) = A(\omega t - \sin(\omega t)) \\ y(t) = A(1 - \cos(\omega t)) \end{cases}$

Just few comments about notations for velocity and acceleration components. \vec{v} is a vector which in Cartesian basis can be written as $\vec{v} = v_x \overrightarrow{u_x} + v_y \overrightarrow{u_y}$ where (v_x, v_y) are the components.

Another notation is the system $\begin{cases} v_\chi = \dot{x}(t) = A\omega(1-\cos(\omega t)) \\ v_y = \dot{y}(t) = A\omega\sin(\omega t) \end{cases} .$ Note that there no arrow on vector components!

The acceleration reads $\begin{cases} a_x = \ddot{x}(t) = A\omega^2 \sin(\omega t) \\ a_y = \ddot{y}(t) = A\omega^2 \cos(\omega t) \end{cases}$

2) The norm of velocity vector reads $\|\vec{v}\| = \sqrt{v_x^2 + v_y^2} = \sqrt{A^2 \omega^2 (1 - \cos(\omega t))^2 + A^2 \omega^2 \sin^2(\omega t)}$

Then after simplification $\|\vec{v}\| = A\omega\sqrt{1 - 2\cos(\omega t) + \cos^2(\omega t) + \sin^2(\omega t)} = A\omega\sqrt{4\sin^2(\frac{\omega t}{2})}$ $\|\vec{v}\| = 2A\omega\sin(\frac{\omega t}{2})$

For acceleration, it's easier $\|\vec{a}\| = A\omega^2$.

3) Here pay attention on variables. We were looking for graph (y = f(x)), the so-called cycloid. Just brief notation: $t_k = k \cdot \frac{T}{4} = \frac{2\pi k}{\omega} \frac{1}{4}$ and for the question $k \in [0,8]$.

Part B

- 1) We were studying the polar coordinates $\begin{cases} \rho(t) = \rho_0 e^{\omega t} \\ \theta(t) = \omega t \end{cases}$. The velocity vector can be written as $\vec{v} = \dot{\rho} \overrightarrow{u_{\rho}} + \rho \dot{\theta} \overrightarrow{u_{\theta}} = \rho_0 \omega e^{\omega t} \overrightarrow{u_{\rho}} + \rho_0 \omega e^{\omega t} \overrightarrow{u_{\theta}} = \rho(t) \omega (\overrightarrow{u_{\rho}} + \overrightarrow{u_{\theta}}).$
- 2) By definition the norm of \vec{v} is $\|\vec{v}\| = \sqrt{v_{\rho}^2 + v_{\theta}^2} = \rho(t)\omega \|\vec{u_{\rho}} + \vec{u_{\theta}}\| = \rho(t)\omega\sqrt{2} = v$.
- 3) We recall that $\vec{v} = v \overrightarrow{u_T} = R(t) \dot{\theta} \overrightarrow{u_T} = R(t) \omega \overrightarrow{u_T}$ where $(\overrightarrow{u_T}, \overrightarrow{u_N})$ is the Frenet's basis. Please here do NOT divide by unitary vector $\overrightarrow{u_T}$! It doesn't exist, no meaning! Then one deduces $R(t) = \frac{v}{\omega} = \rho(t)\sqrt{2}$.
- 4) In Frenet's basis acceleration components reads $\begin{cases} a_T = \frac{av}{dt} = \rho(t)\omega^2\sqrt{2} \\ a_N = \frac{v^2}{D} = \rho(t)\omega^2\sqrt{2} \end{cases}$ by using expression of vfound in question 2.

Exercise II

- 1) First we define the studied system, namely here the beam. Four forces are acting on beam:
 - 1° wall reaction \vec{R} at point O
 - 2° weight of beam $m\vec{g}$ acting at center-of-mass G
 - 3° weight \vec{P} of mass M acting at point A
 - 4° cable stress \vec{S} pointing from A to B
- 2) a) The rotation equilibrium with respect to O reads

$$\vec{0} = \sum_{\vec{M}_O(\vec{F}_{ext})} \vec{\mathcal{M}}_O(\vec{F}) + \vec{\mathcal{M}}_O(\vec{S}) + \vec{\mathcal{M}}_O(\vec{R}) + \vec{\mathcal{M}}_O(m\vec{g})$$
By definition $\vec{\mathcal{M}}_O(\vec{R}) = \vec{OO} \land \vec{R} = \vec{0}$ and using same formula one gets

$$\vec{0} = OG.mg.\sin\left(-\frac{\pi}{2}\right)\vec{u_z} + OA.Mg.\sin\left(-\frac{\pi}{2}\right)\vec{u_z} + OA.S.\sin\left(\pi - \frac{\pi}{6}\right)\vec{u_z}$$
Beware that this is a vector equality! After projection on $\vec{u_z}$ and simplification $(OA = L)$

$$0 = -\frac{L}{2}.mg - MgL + L.S.\sin\left(\frac{\pi}{6}\right)$$
$$S = mg + 2Mg = 3400 N$$

b) The translation equilibrium is the usual Newton's second law $\vec{0} = \sum \vec{F}_{ext}$.

After projecting on x- and y-axes

$$\begin{cases} 0 = R_x - S \cdot \cos(\frac{\pi}{6}) \\ 0 = R_y + S \cdot \sin(\frac{\pi}{6}) - mg - Mg \end{cases} \Leftrightarrow \begin{cases} R_x = S \cdot \frac{\sqrt{3}}{2} = 1700\sqrt{3} N \\ R_y = -\frac{S}{2} + mg + Mg = 200 N \end{cases}$$

c) Finally the norm is equal to
$$\|\overrightarrow{R_{wall}}\| = \sqrt{R_x^2 + R_y^2} = \sqrt{8710000} \ N$$

Exercise III

1) a) Please do not consider the velocity vector $\overrightarrow{v_A}$ sketch above as a force! The only forces are the weight \vec{P} , the ground reaction \vec{R} and the friction force \vec{f} .

b) The kinetic energy theorem reads for path $AB \Delta_{A \to B} E_k = W_{A \to B} (\vec{R} + \vec{P} + \vec{f}) (E)$. Then using definition of work: $\mathcal{W}_{A\to B}(\vec{R}+\vec{P}+\vec{f})=\int_A^B (\vec{R}+\vec{P}+\vec{f}). \ \vec{dl}$ where \vec{dl} is an infinitesimal shift along the trajectory.

This means that $d\dot{l}$ is a length element tangent to the local point where we are integrating. Between A and B, the mass has a circular motion which can be described by polar coordinates and basis $(\overrightarrow{u_{\rho}}, \overrightarrow{u_{\theta}})$, thus $\overrightarrow{dl} = Rd\theta \overrightarrow{u_{\theta}}$ here.

What's more \vec{R} is orthogonal to motion (we consider this force as the normal ground reaction, the total reaction is given in last question) which implies that \vec{R} . $\vec{dl} = 0$ at any point of the trajectory.

For friction force \vec{f} we have claimed that \vec{f} is collinear to $\vec{v} = R\dot{\omega} \overrightarrow{u_{\theta}}$ but with opposite orientation. So $\vec{f} \cdot \vec{dl} = -f \cdot R \cdot d\theta$ and $\int_A^B d\theta = \theta_B - \theta_A = \theta$.

Last force \vec{P} : conservative force so use the property $\mathcal{W}_{A\to B}(\vec{P}) = -\Delta_{A\to B} E_p(\vec{P}) = mg(z_A - z_B)$ Finally, the first equation (E) reads $\frac{1}{2}m(v_B^2-v_A^2)=mg(z_A-z_B)-fR\theta$

Reference frame is chosen such that $z_B = 0$.

Reference frame is chosen such that
$$z_B = 0$$
.
So $\mathbf{f} = \frac{1}{R\theta} \left(\mathbf{mgR} (\mathbf{1} - \mathbf{cos}(\theta)) - \frac{1}{2} \mathbf{m} (\mathbf{v}_B^2 - \mathbf{v}_A^2) \right) = \frac{1}{\frac{3}{2}} \left(\left(\mathbf{1} - \frac{1}{2} \right) \cdot \frac{3}{2} - \frac{1}{2} \cdot \mathbf{0}, \mathbf{1} \cdot (\mathbf{4} - \mathbf{9}) \right) = \mathbf{0}, \mathbf{34} \, \mathbf{N}$

2) a) Between B and C weight is not working because z is constant. Kinetic energy theorem reads now $\Delta_{B\to C} E_k = \mathcal{W}_{B\to C}(\vec{f})$. Please read question before solving any exercise! Here frictions \vec{f} are known and $\overrightarrow{v_C}$ must be expressed as function of f.

Writing explicitly the previous equation gives the answer: $\frac{1}{2}m(v_C^2-v_B^2)=-f.BC$ and numerically $v_C = \sqrt{5} \ m. \ s^{-1}$

b) The total reaction \overrightarrow{R}_{tot} takes both normal reaction \overrightarrow{R} and frictions \overrightarrow{f} into account: $\overrightarrow{R}_{tot} = \overrightarrow{R} + \overrightarrow{f}$. These two forces are orthogonal so the norm is simply given by $\|\overline{R_{tot}}\| = \sqrt{R^2 + f^2} = \sqrt{1,01} \approx 1 N$