Morgan Blein

Forecasting housing prices in San Francisco

Objective: building an objective forecasting model for the San Francisco SP-Case-Shiller home prices index using publicly available data (see part III for more details about these variables).

Tools: STATA/ excel

Stata do file: a script file containing all the information to run the desired analysis in Stata.

Here is a link to the Do file for this project.

Here is a link to the data compiled for this project.

Method: Regression

OUTLINE:

- I) <u>Introduction</u>
- II) Seasonality
- III) explanatory variables
- IV) Causal regressions:
- V) <u>forecasting model</u>

I) Introduction

Standard and Poor's is rating agency, mostly famed by the stock trading index S&P 500. However, stock markets is not the only thing they monitor. Starting in the 1970s, they developed a housing prices index, for major metropolitan areas. Today, they generate these indexes for the 20 largest cities in the United States. Today, we are going to focus on the San Francisco home prices index. This index starts in January of 1980.

Here are facts about our data:

- Number of observation: 431.
- Each observation corresponds to a value for a given month.
- Time period range: from January 1980, until November 2015.
- Index Jan 2000=100

The main area of focus of this study will be first seasonality. Do any seasonal pattern exist? Do they have an impact on the home index values? Then, we will choose several external variables in order to run a causal regression on the SF home price index. In other words, what are the driving forces behind the value of this index? In order to do so, we are going to carefully choose variables and discuss their consistency and unbiaisness. The final step of our analysis will consist of a forecasting model, in order to generate potential values for February 2016 and October 2016.

II) Seasonality:

A section of seasonality that includes a regression table, any F-statistic calculation, and a written narrative description of the seasonality patterns

1) Plot home price index/t (period unit in month)

We can see from the graph that the values of all 3 indexes (San Francisco home index, U.S National home index, 20-city composite home index) all follow the same trend. There are obvious variations, but as a whole, the curves tend to behave in the same way.

Over time, the indexes for home prices grows. This intuitively makes sense: it is common knowledge that a house today is worth a lot more than in the 1980. I suspect the value of t (time unit in month over the whole period) to be heavily correlated to the San Francisco home price index (and other indexes). The relationship seems pretty linear in nature (or maybe exponential, more calculation will be done in the next section) especially up to period T equals to about 300. After, this we can notice a severe decrease in the price index. That period corresponds to May 2007 or the US housing bubble burst. This trend drove prices down until March 2012, when index values start rising again.

1) Linear seasonality trend:

SS

df

$$yt = \alpha 0 + \alpha 1t + et$$
, $t = 1, 2, etc.$

Source

We can infer from the graph the influence of time over the price indexes. However, we still do not know if any other seasonality during the year from month to month occurs. I order to confirm those assumption and get answer, we regress the variable **SanFranciscoHomePriceIndex** on a linear time trend and 11 monthly dummy variables, using January as the base month.

. regress SanFranciscoHomePriceIndex t Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Number of obs =

431

MS

Model	1139863.59	12 9498	8.6324		F(12, 418) Prob > F	= 134.14 = 0.0000
Residual	295990.703	418 708	.11173		R-squared	
Total	1435854.29	430 3339	.19603		Adj R-squared Root MSE	= 0.7879 = 26.61
SanFrancis~x	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t	.413051	.0103052	40.08	0.000	.3927946	.4333075
Feb	3766621	6.272133	-0.06	0.952	-12.70551	11.95219
Mar	.1447313	6.272158	0.02	0.982	-12.18417	12.47363
Apr	1.229458	6.2722	0.20	0.845	-11.09953	13.55844
May	2.268074	6.27226	0.36	0.718	-10.06103	14.59717
Jun	2.883912	6.272336	0.46	0.646	-9.445339	15.21316
Jul	3.147805	6.272429	0.50	0.616	-9.181629	15.47724
Aug	2.947254	6.272539	0.47	0.639	-9.382396	15.2769
Sep	2.665314	6.272666	0.42	0.671	-9.664586	14.99521
Oct	2.211985	6.27281	0.35	0.725	-10.1182	14.54217
Nov	1.634212	6.272971	0.26	0.795	-10.69629	13.96471
Dec	.216356	6.316976	0.03	0.973	-12.20064	12.63335
_cons	13.53262	4.939409	2.74	0.006	3.823446	23.2418

- Number of observations: 431
- Adjusted R-squared: 0.79
- Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.

The regression equation sums up to:

• SanFranciscoHomePriceIndex = 13.53 + .413 t - 0.376 feb - .1447 mar + 1.22 apr + 2.26 may + 2.88 jun + 3.14 jul + 2.95 aug + 2.66 sep + 2.21 oct + 1.63 nov + 0.21 dec

It feel when looking at the coefficients that months would have a great influence on the San Francisco home index price. However, I think these variables are not statistically significant. Their P values are very much over 5% ranging from 0.616 to 0.982). Their "t" values are very low and the standard error much too high.

T however has a P-value of 0. We can assume the high R squared comes from this time over period's trend (since all other variables are non-significant)

Key findings: seasonality over t exists, however no seasonal trend for months seem to exist.

2) Exponential trend

$$log(yt) = \alpha 0 + \alpha 1t + et, t = 1, 2$$

To decide whether to follow a linear or exponential trend model, we need to create a log variable based on SanFranciscoHomePriceIndex. We call this variable SanFranciscoHomePriceIndex_log and it follows this equation:

 $SanFranciscoHomePriceIndex_log = log(SanFranciscoHomePriceIndex)$

We now run a regression trend model based on this new variable:

. regress SanFranciscoHomePriceIndex log t Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Source	SS	df	MS		Number of obs F(12, 418)	
Model Residual	132.498837 17.3248223		1.0415697 041446943		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8844
Total	149.823659	430 .:	348427114		Root MSE	= .20359
SanFrancis~g	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
t	.0044543	.000078	8 56.50	0.000	.0042993	.0046092
Feb	003265	.047985	6 -0.07	0.946	0975881	.0910581
Mar	0000613	.047985	-0.00	0.999	0943848	.0942621
Apr	.0082015	.047986	0.17	0.864	0861226	.1025256
May	.0173105	.047986	0.36	0.718	0770145	.1116355
Jun	.0230017	.047987	0.48	0.632	0713244	.1173278
Jul	.0258816	.047987	0.54	0.590	068446	.1202091
Aug	.0246674	.047988	7 0.51	0.608	0696618	.1189966
Sep	.022332	.047989	6 0.47	0.642	0719991	.1166631
Oct	.0180217	.047990	7 0.38	0.707	0763116	.112355
Nov	.0125977	.04799	2 0.26	0.793	081738	.1069334
Dec	.0079835	.048328	6 0.17	0.869	087014	.102981
_cons	3.507485	.037789	92.82	0.000	3.433204	3.581766

- Number of observations: 431
- Adjusted R-squared: 0.88
- Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.

The R squared went up from 79% to 88%. All variables other than t seem statically irrelevant, same as before. However this seems to give a better base for the analysis.

This will have to be kept in mind when doing the causal analysis. There are 2 approaches I took to deal with this time trend:

Method 1:

• Keep the t variable in the regression model, use the variables SanFranciscoHomePriceIndex or SanFranciscoHomePriceIndex_log to run the regression

Method 2:

 Use STATA tools to detrend SanFranciscoHomePriceIndex or SanFranciscoHomePriceIndex_log. New variables named SFHomePriceIndex _detrended and SFHomePriceIndex_log_detrended will be created. Alos use stata to detrend the independent variables.

We can make sure these variables are de-trended by running a new regression on one of them:

regress SFHomePriceIndex detrended t

Source	SS	df		MS		Number of obs	= 431
						F(1, 429)	
Model	5.8208e-11	1	5.82	208e-11		Prob > F	= 1.0000
Residual	296652.806	429	691.	498382		R-squared	= 0.0000
						Adj R-squared	= -0.0023
Total	296652.806	430	689.	890246		Root MSE	= 26.296
x_detrended	Coef.	Std.	Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
t	-4.67e-11	.0101	806	-0.00	1.000	02001	.02001
_cons	2.62e-08	2.537	717	0.00	1.000	-4.987905	4.987905

The model has no statistical significance. Time therefore has no influence on the new variable anymore.

III) explanatory variables

In this section, I will list the explanatory variables I included, their sources, as well as providing a justification for their use.

1) 30 years Mortgage rates

30-Year Fixed Rate Mortgage Average in the United States© (MORTGAGE30US)

Download Data	
Source(s):	Freddie Mac
Release:	Primary Mortgage Market Survey
Units:	Percent Description of growth rate formulas
Frequency:	Monthly v Aggregation Method: Average v
Date Range:	1971-04-02 to 2016-01-21
File Format:	Excel
Seasonal Adjustment:	Not Seasonally Adjusted
Notes:	Data is provided "as is," by Freddie Mac@ with no warranties of any kind, express or implied, including, but not limited to, warranties of accuracy or implied warranties of merchantability or fitness for a particular purpose. Use of the data is at the user's sole risk. In no event will Freddie Mac be liable for any damages arising out of or related to the data, including, but not limited to direct, indirect, incidental, special, consequential, or punitive damages, whether under a contract, tort, or any other theory of liability, even if Freddie Mac is aware of the possibility of such damages. Copyright, 2014, Freddie Mac. Reprinted with permission.
Updated:	2016-01-21 10:54 AM CST
Download Data	

Freddie Mac, 30-Year Fixed Rate Mortgage Average in the United States© [MORTGAGE30US], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/MORTGAGE30US, January 26, 2016.

Mortgage rates could have an impact on house prices index, as they are directly to take into account. Most people resort to mortgages when buying a house. The 30 year mortgage is the most popular. Moreover the data given covers the whole period I am interested in. As seen in the screen shot above, the data is sourced monthly (using the average aggregation method) and covers our whole time period range (January 1980 to November 2015)

The data is not seasonally adjusted. When regressing with t (time unit) we get:

. regress MORTGAGE30US t

Source	SS	df	MS			Number			431
Model Residual	4289.8952 686.368727	1 429	4289.89 1.59999			F(1, Prob > R-squar Adi R-s	F	=	2681.31 0.0000 0.8621 0.8617
Total	4976.26393	430	11.5727	068		Root MS	•	=	1.2649
MORTGAGE30US	Coef.	Std.	Err.	t	P> t	[95%	Conf.	In	terval]
t _cons	0253571 13.70885	.0004		1.78 2.31	0.000	026 13.4	3196 6892		0243946

The R squared is 86%. We need to detrend this variable.

2) <u>15 years Mortgage rates:</u>

15-Year Fixed Rate Mortgage Average in the United States© (MORTGAGE15US)

Download Data	
Source(s):	Freddie Mac
Release:	Primary Mortgage Market Survey
Units:	Percent Description of growth rate formulas
Frequency:	Monthly Aggregation Method: Average
Date Range:	1991-08-30 to 2016-01-21
File Format:	Excel
Seasonal Adjustment:	Not Seasonally Adjusted
Notes:	Data is provided "as is," with no warranties of any kind, express or implied, including, but not limited to, warranties of accuracy or implied warranties of merchantability or fitness for a particular purpose. Use of the data is at the user's sole risk. In no event will Freddie Mac be liable for any damages arising out of or related to the data, including, but not limited text, indirect, inclidental, special, consequential, or punitive damages, whether under a contract, tort, or any other theory of liability, even if Freddie Mac is aware of the possibility of such damages. Copyright, 2014, Freddie Mac. Reprinted with permission.
Updated:	2016-01-21 10:56 AM CST
Download Data	

Freddie Mac, 15-Year Fixed Rate Mortgage Average in the United States© [MORTGAGE15US], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/MORTGAGE15US, January 25, 2016.

Same explanation as for the 30 year mortgage. I thought it was worth including as some people may choose this option instead of the 30 year mortgage.

The data is not seasonally adjusted. When regressing with t (time unit) we get:

regress MORTGAGE15US t

Source	SS	df		MS		Number of obs	= 291
Model Residual	672.091006 126.773958	1 289		091006 8664215		F(1, 289) Prob > F R-squared	= 0.0000 = 0.8413
Total	798.864964	290	2.75	470677		Adj R-squared Root MSE	= 0.8408 = .66232
4ORTGAGE15US	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
t _cons	0180912 10.91732	.0004		-39.14 79.24	0.000	0190009 10.64616	0171815 11.18848

The R squared is 84%. Therefore we need to create a detrended series of values for this variable.

3) <u>Unemployment rates:</u>

Civilian Unemployment Rate (UNRATE)

US. Bureau of Labor Statistics, Civilian Unemployment Rate [UNRATE], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/UNRATE, January 27, 2016.

This is needed as it can also have an impact on home prices. It is a reflation on the general economic wellbeing of a state or area. As mentioned in Moody's case-shiller-methodology: "The unemployment rate is relevant since the buyers of lower-cost homes tend to be lower income and are thus more sensitive to the local business cycle and job prospects than higher-income households."

The data is already seasonally adjusted. We do not need to detrend this variable further.

4) Consumer price index:

Consumer Price Index for All Urban Consumers: All Items (CPIAUCNS)

Download Data	
Source(s):	US. Bureau of Labor Statistics
Release:	Consumer Price Index
Units:	Index 1982-1984=100 Description of growth rate formulas
Frequency:	Monthly
Date Range:	1913-01-01 to 2015-12-01
File Format:	Excel
Seasonal Adjustment:	Not Seasonally Adjusted
Notes:	$Handbook of Methods - (http://www.bls.gov/opub/hom/pdf/homch17.pdf) \ Understanding the CPI: Frequently Asked Questions - (http://stats.bls.gov:80/cpi/cpifaq.htm)$
Updated:	2016-01-20 9:21 AM CST
Download Data	

US. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items [CPIAUCSL], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/CPIAUCSL, January 27, 2016.

The Consumer Price Index (CPI) is a defined as: "measure of the average change over time in the prices of consumer items—goods and services that people buy for day-to-day living." (http://www.bls.gov/opub/hom/pdf/homch17.pdf)

It gives a good estimate of how daily products varies in price over time. It will be interesting to compare against as purchase such as a home.

The data is not seasonally adjusted. When regressing with t (time unit) we get:

. regress CPIA	AUCNS t							
Source	SS	df		MS		Number of obs		431
Model Residual	919753.767 2310.21822	1 429		753.767 3512406		F(1, 429) Prob > F R-squared	=	0.0000 0.9975
Total	922063.985	430	214	4.33485		Adj R-squared Root MSE	=	0.9975 2.3206
CPIAUCNS	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
t _cons	.3712887 82.43261	.0008		413.27 368.09	0.000	.3695228 81.99244		3730545 2.87278

The R squared is 99%. Therefore we will also create a detrended version of this variable.

5) SP500 stock index:

https://finance.yahoo.com/g/hp?s=%5EGSPC&a=00&b=3&c=1950&d=00&e=26&f=2016&g=m

Note: the opening price was the index selected.

According to: http://us.spindices.com/, The S&P 500 is: "widely regarded as the best single gauge of large-cap U.S. equities[...] The index includes 500 leading companies and captures approximately 80% coverage of available market capitalization." This indicator covers a very wide range to address stock trading overall health and trends. In the United States, it can severely impact the overall economic standing of the nation. Trying to find a correlation with home prices will tell us more about the relationship between the 2 indexes.

The data is not seasonally adjusted. When regressing with t (time unit) we get:

. regress SP50	00 t							
Source	SS	df		MS		Number of obs		431
Model Residual	112567941 17765385.1	1 429		2567941 11.1541		F(1, 429) Prob > F R-squared	=	0.8637
Total	130333326	430	303	100.759		Adj R-squared Root MSE	=	0.8634 203.5
SP500	Coef.	Std.	Err.	t	P> t	[95% Conf.	Iı	nterval]
t _cons	4.107554 -64.82661	.0787		52.14 -3.30	0.000 0.001	3.952704 -103.4261		4.262403

The R squared is 86%. Therefore we will also create a detrended version of this variable.

6) Treasury Average Yield:

Treasury Inflation-Indexed Long-Term Average Yield (DLTIIT)

Download Data	
Source(s):	Board of Governors of the Federal Reserve System (US)
Release:	H.15 Selected Interest Rates
Units:	Percent Description of growth rate formulas
Frequency:	Monthly × Aggregation Method: Average ×
Date Range:	2003-01-02 to 2016-01-20
File Format:	Excel
Seasonal Adjustment:	Not Seasonally Adjusted

Board of Governors of the Federal Reserve System (US), *Treasury Inflation-Indexed Long-Term Average Yield* [DLTIIT], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/DLTIIT, January 27, 2016.

Treasury yield is the interest rate the U.S. government pays to borrow money for different lengths of time. It is considered one of the safest investment due to the stability of the US government. Usually, their yield is very low. The influence of their rates however extends to more than just the US government: "they also influence the interest rates individuals and businesses pay to borrow money to buy real estate, vehicles and equipment." (http://www.investopedia.com/terms/t/treasury-yield.asp)

The data is not seasonally adjusted. When regressing with t (time unit) we get:

. regress DLTIIT t

Source	ss	df	MS		MS			Number of obs	=	155
Model Residual	65.0078442 35.8552435	1 153		0078442 1347997		F(1, 153) Prob > F R-squared	=	277.40 0.0000 0.6445		
Total	100.863088	154	. 654	1955115		Adj R-squared Root MSE	=	.4841		
DLTIIT	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]		
t _cons	0144739 6.752335	.000		-16.66 21.78	0.000	0161907 6.139738		.012757		

The R squared is 64%. This is still high enough to justify detrending the values of this series.

7) Consumer opinion confidence indicators

Consumer Opinion Surveys: Confidence Indicators: Composite Indicators: OECD Indicator for the United States (CSCICP03USM665S)

Download Data	
Source(s):	Organization for Economic Co-operation and Development
Release:	Main Economic Indicators (Not a Press Release)
Units:	Normalised (Normal=100) Description of growth rate formulas
Frequency:	Monthly
Date Range:	1960-01-01 to 2015-03-01
File Format:	Excel
Seasonal Adjustment:	Seasonally Adjusted
Notes:	OECD descriptor ID: CSCICP03 OECD unit ID: XINSA OECD country ID: USA All OECD data should be cited as follows: OECD, "Main Economic Indicators - complete database", Main Economic Indicators (database), http://dx.doi.org/10.1787/data-00052-en (Accessed on date) Copyright, 2014, OECD. Reprinted with permission.
Updated:	2015-06-08 2:13 PM CDT

Organization for Economic Co-operation and Development, Consumer Opinion Surveys: Confidence Indicators: Composite Indicators: OECD Indicator for the United States© [CSCICP03USM665S], retrieved from FRED, Federal Reserve Bank of St. Louis https://research.stlouisfed.org/fred2/series/CSCICP03USM665S, January 27, 2016.

This index is very interesting. It is a behavioral index, relying on the psychology of purchase. It shows to confidence level of consumers to make a purchase in the United States. The format is monthly as usual, and the data ranges from the 1960s to early 2015.

The data is seasonally adjusted. When regressing with t (time unit) we get:

. regress CSCICPO3USM665S t

Source	SS	df		MS		Number of obs		423
Model Residual	9.39253789 923.927326	1 421)253789)460173		F(1, 421) Prob > F R-squared	=	4.28 0.0392 0.0101
Total	933.319864	422	2.21	165845		Adj R-squared Root MSE	=	0.0077 1.4814
CSCICP0~665S	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
t _cons	0012203 100.229	.0005		-2.07 694.52	0.039 0.000	0023798 99.94535		0000609 00.5127

The R squared is around 1%. Therefore, no need to create a detrended value. We can see the website did a good job detrending time out of this variable.

8) SP-Case-Shiller home prices indexes:

S&P created home price indexes for the 20 largest metropolitan areas in the United States. We collected data for each of these cities (Atlanta, Boston, Chicago, Cleveland, Dallas, Denver, Detroit, Las Vegas, Los Angeles, Miami, Minneapolis, New York phoenix Portland, San Diego, san Francisco, Seattle, Tampa, Washington DC). We also collected the National US average home price index, as well as a composite index for all top 20 cities.

http://us.spindices.com/indices/real-estate/sp-case-shiller-ca-san-francisco-home-price-index

This concludes our variables selection section. In short:

- 22 variables for home price indexes
- 7 external econometric variables

IV) <u>Causal regressions:</u>

1) First set of regressions

Section describing your causal regressions, describing its results in both a table and written narrative, and discussing its consistency and unbiasedness

We will run for sets of regression. All explanatory variables (described in the previous section) are the same for these regression, except for the time period (t) that will be added as an explanatory variable for the non-de-trended Y-variables (see end of section II) Seasonality)

Method 1:

- a) Using Y= SanFranciscoHomePriceIndex, t included, X variables as they are.
- b) Using Y= SanFranciscoHomePriceIndex_log, t included, X variables as they are.

Method 2:

- c) Using Y= SFHomePriceIndex_detrended, X variables detrended
- d) Using Y= SFHomePriceIndex_log_detrended, X variables detrended
- a) Using Y= SanFranciscoHomePriceIndex, t included

. regress SanFranciscoHomePriceIndex t CPIAUCNS CSCICP03USM665S MORTGAGE15US MORTGAGE30US SP500 DLTIIT Unemp

	+					F (8, 13	88) =	126.90
Model	1	128896.839	8	16112.1	049	Prob	> F	=	0.0000
Residual	1	17522.0952	138	126.971	705	R-sc	quared	=	0.8803
	+					Adj	R-squar	red =	0.8734
Total	1	146418.934	146	1002.86	941	Root	MSE	=	11.268
SanFranciscoH	~x	Coef.	St	d. Err.	t	P> t	[95%	Conf.	Interval
	t	1.231491	.3	259778	3.78	0.000	.5869	344	1.87604
CPIAUC	NS	-2.33618	.7	819566	-2.99	0.003	-3.882	2346	790014

SanFranciscoH~x	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
t	1.231491	.3259778	3.78	0.000	.5869344	1.876049
CPIAUCNS	-2.33618	.7819566	-2.99	0.003	-3.882346	7900148
CSCICP03USM665S	6.97218	2.097486	3.32	0.001	2.824813	11.11955
MORTGAGE15US	35.4995	8.489016	4.18	0.000	18.71414	52.28486
MORTGAGE30US	-1.72116	11.7231	-0.15	0.883	-24.90129	21.45897
SP500	.0288105	.0162533	1.77	0.079	0033273	.0609483
DLTIIT	-20.87479	4.765712	-4.38	0.000	-30.29805	-11.45153
Unemp	-4.41948	1.77325	-2.49	0.014	-7.925732	9132268
_cons	-584.6029	264.6347	-2.21	0.029	-1107.866	-61.33985

- Adjusted R-squared: 0.88
- Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.

b) Using Y= SanFranciscoHomePriceIndex_log, t included

. regress SanFranciscoHomePriceIndex_log t CPIAUCNS CSCICP03USM665S MORTGAGE15US MORTGAGE30US SP500 DLTIIT Unemp

Source	l	SS	df	MS	3		Num	ber of obs =		147
	_						F(8, 138) =	-	135.16
Model		4.6264368	8	.5783	3046		Pro	b > F =	-	0.0000
Residual	Ι.	590461955	138	.00427	7871		R-s	quared =	=	0.8868
							Adj	R-squared =	=	0.8803
Total		.21689875	146	.035732	2183		Roo	t MSE =	-	.06541
SanFranciscoH~	g	Coef.	St	d. Err.		t	P> t	[95% Conf		Interval]
	t	.0065244	.0	018923	3	. 45	0.001	.0027827		.010266
CPIAUCN	IS	013186	.0	045393	-2	. 90	0.004	0221615		0042105
CSCICP03USM665	S	.0379934	.0	121759	3	.12	0.002	.0139179		.0620689
MORTGAGE15U	JS	.1707353	.0	492788	3	.46	0.001	.0732961		.2681745
MORTGAGE30U	JS	.0203534	.0	680527	0	.30	0.765	1142075		.1549143
SP50	00	.0002213	.0	000944	2	. 35	0.020	.0000347		.0004079
DLTII	T	1198626		027665	-4	.33	0.000	1745647		0651605
Uner	αp	0251029	.0	102937	-2	. 44	0.016	0454567		0047491
cor	18	1.049918	1.	536207	0	. 68	0.495	-1.98763		4.087465
_										

- Adjusted R-squared: 0.88
- Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.
- c) Using Y= SFHomePriceIndex_detrended

. regress SFHomePriceIndex_detrended CPIAUCNS_detrended CSCICF03USM665S MORTGAGE30US_detrended MORTGAGE15US_detrended SP500_detr > ended Unemp DLTIIT_detrended

	Source	SS	df	MS	Number of obs = 1	47
-					F(7, 139) = 224.	35
	Model	205865.502	7	29409.3574	Prob > F = 0.00	00
	Residual	18220.934	139	131.085856	R-squared = 0.91	87
-					Adj R-squared = 0.91	46
	Total	224086.436	146	1534.8386	Root MSE = 11.4	49

SFHomePriceIndex_det~d	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
CPIAUCNS_detrended	-1.73482	.7506227	-2.31	0.022	-3.218934	2507051
CSCICP03USM665S	8.144688	2.069813	3.93	0.000	4.052301	12.23708
MORTGAGE30US_detrended	-24.95997	6.370618	-3.92	0.000	-37.55582	-12.36413
MORTGAGE15US_detrended	50.3977	5.724034	8.80	0.000	39.08026	61.71513
SP500_detrended	.0308778	.0164903	1.87	0.063	0017264	.063482
Unemp	-5.01018	1.783494	-2.81	0.006	-8.536464	-1.483896
DLTIIT_detrended	-15.50108	4.246333	-3.65	0.000	-23.89684	-7.105329
_cons	-755.2191	205.1821	-3.68	0.000	-1160.901	-349.5377

- Adjusted R-squared: 0.918
- Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.

d) Using Y= SFHomePriceIndex_log_detrended

. regress SFHomePriceIndex_log_detrended CPIAUCNS_detrended CSCICP03USM665S MORTGAGE30US_detrended MORTGAGE15US_detrended SP500_ > detrended Unemp DLTIIT detrended

Source	SS	df	MS	Number of obs = 14
Model	11.74713	7	1.67816142	F(7, 139) = 297.2 Prob > F = 0.000
Residual	.784692955	139	.005645273	R-squared = 0.937 Adj R-squared = 0.934
Total	12.5318229	146	.085834404	Root MSE = .0751

SFHomePriceIndex_log~d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CPIAUCNS_detrended	0031605	.0049259	-0.64	0.522	0128999	.0065789
CSCICP03USM665S	.0575407	.013583	4.24	0.000	.0306847	.0843967
MORTGAGE30US_detrended	3670691	.0418067	-8.78	0.000	4497284	2844098
MORTGAGE15US_detrended	.4191084	.0375636	11.16	0.000	.3448386	.4933782
SP500_detrended	.0002558	.0001082	2.36	0.019	.0000418	.0004697
Unemp	0349507	.011704	-2.99	0.003	0580916	0118097
DLTIIT_detrended	0302758	.0278663	-1.09	0.279	0853723	.0248208
_cons	-5.307202	1.346493	-3.94	0.000	-7.969457	-2.644947

- Adjusted R-squared: 0.937
- Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.

The R squared of each model from a-d is very good: ranging from 88% to 93%. All the models are statistically sound. They best way to choose one here is to look at the endogenous variables. As mentioned in the data collection and sources, two of my variables came seasonally adjusted. They are:

- Consumer opinion confidence indicators (CSCICP03USM665S)
- Unemployment rate.

In my opinion, this creates an issue. In model a) and b), the inclusion of t should take care of the seasonality. Since those are already detrended from source, we are facing an issue. Therefore for consistency, I want to focus on models c) and d).

Out of these 2, I want to take a closer look at model c). In model d), two of my variables may not be statistically significant:

- CPIAUCNS_detrended, P-value of 0.522
- DLTIIT_detrended, P-value of 0.279

2) <u>Discussion of assumptions:</u>

Model C equation:

SanFranciscoHomePriceIndex_log_detrended t = -755.21 -1.735 CPIAUCNS_detrended +8.14
 CSCICP03USM665S - 24.9 MORTGAGE30US_detrended + 50.39 MORTGAGE15US_detrended + 0.031 SP500_detrended -5.01 Unemp -15.50 DLTIIT_detrended

The classical assumptions for unbiased OLS are:

- a) TS1: Linear in parameters: given the equation above, we can say that SanFranciscoHomePriceIndex_log_detrended t is a linear function of the 7 endogenous variables adjusted with their respective coefficients, as well as an intercept of -755.21.
- b) **TS2: No perfect collinearity**: This assumption is worrisome. I suspect the variables MORTGAGE30US MORTGAGE15US to be collinear. I ran a regression on them:

. regress MORTGAGE30US_detrended MORTGAGE15US_detrended

Source	SS	df		MS		Number of obs	= 291
Model Residual	95.3563388 150.560166	1 289		563388 969433		Prob > F	= 183.04 = 0.0000 = 0.3878 = 0.3856
Total	245.916505	290	.8479	987948			= .72178
MORTGAGE30U~d	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
MORTGAGE15U~d _cons	.8672809 1824946		1049 3116	13.53 -4.31	0.000	.7411092 2657726	.9934525 0992166

This R squared of almost 40% show that they are related in some way. I will have to consider dropping on of them. Given that the 30 mortgage rate variable was non-significant in my models a) and b), I decided to drop that one.

c) TS3: strict Exogeneity: $E(\varepsilon \mid X) = 0$. The mean of the error term is unrelated to the values of the explanatory variable for all period.

This assumption could potentially fail. Indeed a value such as the index of the SP500 error term could be related to the value of that explanatory variable for the previous periods.

If a), b) and c) are respected, then the theorem for unbiasiness of OLS stands true.

The classical assumptions for Consistent OLS are:

- a) **TS1: Linear in parameters:** already taken care of in the unbiased section above.
- b) **TS2: No perfect collinearity**: already taken care of in the unbiased section above.
- c) Contemporaneous exogeneity:

This follow the same concept as strict exogeneity but is not as demanding. This could still be violated.

Note: Consistency matters more for very large datasets. Here, I do not believe we have enough observations for it to be relevant.

3) Final model:

. regress SFHor	mePriceIndex_c	detrend	ded CP	IAUCNS_d	etrended	CSCICPO3USM66	5S MORTG
> AGE15US_detre	ended SP500_de	etrende	ed Une	mp DLTII	T_detren	ded	
Source	SS	df	1	MS		Number of obs	
Model	203853.256	6	33975	.5427			= 0.0000
Residual	20233.1796	140	144.5			R-squared	= 0.9097
						Adj R-squared	= 0.9058
Total	224086.436	146	1534	.8386		Root MSE	= 12.022
S~x_detrended	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
CPIAUCNS_de~d	-1.928433	.786	4455	-2.45	0.015	-3.483278	3735885
CSCICP03~665S	11.68586	1.95	5155	5.98	0.000	7.820409	15.5513
MORTGAGE15U~d	34.13585	4.13	8844	8.25	0.000	25.95314	42.31857
SP500_detre~d	026464	.00	7978	-3.32	0.001	0422368	0106911
Unemp	-10.16944	1.26	2994	-8.05	0.000	-12.66645	-7.672434
DLTIIT_detr~d	-18.27029	4.39	6461	-4.16	0.000	-26.96233	-9.578246
_cons	-1083.821	196.	6211	-5.51	0.000	-1472.551	-695.0905

Final equation of causal regression:

 $\hbox{\tt SanFranciscoHomePriceIndex_log_detrended} \ {\tt t=-1083.8-1.92\ CPIAUCNS_detrended} + 11.64 \\ \hbox{\tt CSCICP03USM665S} \ + \ 34.13\ \hbox{\tt MORTGAGE15US_detrended} \ - \ 0.026\ \hbox{\tt SP500_detrended} \ - 10.16 \\ \hbox{\tt Unemp-18.27\ DLTIIT} \ \ detrended$

Adjusted R squared: 90%.

We removed the variable MORTGAGE30US_detrended due to a collinearity issue.

Prob > F = 0.0000. The model is statically significant: null hypothesis is rejected.

V) forecasting model

1) For February 2016:

In order to forecast future unobserved values, I will use the regression I found in part IV) as it is the best indicator for the given SF home price index given the period t. For forecasting, we will also include lagged variables in the model.

Source	SS	df	MS		Number of		147		
Model	146261.132	7	20894.4474		F(7, :	139) =	507.21 0.0000		
Residual	5726.07982	139	41.1948188		R-squared	=	0.9623		
					Adj R-squ	ared =	0.9604		
Total	151987.211	146	1041.0083		Root MSE	=	6.4183		
	scoHomePriceInd		Coef.	Std. Err.		P> t	-		
120401	PIAUCNS detrend	had	.4154079	.4382582	0.95	0.345	4511065	1.281922	
	4CSCICP03USM66	- 1	5.368582	1.056936	5.08	0.000		7.458334	
-	GE15US detrend		-11.66538	2.73509	-4.27	0.000		-6.257625	
_	4SP500 detrend		0123924	.005278	-2.35	0.020	0228279	0019569	
	lag4une	emp	1.469612	.674511	2.18	0.031	.1359843	2.803241	
lag4	DLTIIT_detrend	led	4.290186	2.587413	1.66	0.100	825589	9.405961	
lag4SanFrancis	scoHomePriceInd	iex	1.090402	.0466162	23.39	0.000	.9982333	1.18257	
	_cc	ns	-557.0177	105.3003	-5.29	0.000	-765.2151	-348.8203	

This regression is calculated using lagged variables: the prefix lag4 corresponds to the variable lagged 4 time units (here months) this will be useful to calculate the February 2016 value given we have observations until November 2015. The adjusted R squared is very high, meaning the regression should be solid (96%)

The forecasting equation is:

SanFranciscoHomePriceIndex t = -557 +0.415 lag4CPIAUCNS_detrended + 5.37 lag4CSCICP03USM665S -11.66 lag4MORTGAGE15US_detrended - 0.0124 lag4SP500_detrended +1.47 lag4Unemp +4.29 lag4DLTIIT_detrended + 1.09 SanFranciscoHomePriceIndex t-4

SanFranciscoHomePriceIndex _{t-4} is included to give a recursion to the curve and bring the r squared very high. The prediction will be more accurate.

Using this equation, we can plug in the real observed values for each variable:

SanFranciscoHomePriceIndex t where t equates to Feb 2016:

```
= -557 + -5.1220207 *0.415 + 5.37*101.95 - 11.66* 0.039996 - 0.0124*375.23099 + 1.47*5 + 4.29*0.53590816 + 1.09*218.4
```

=230.9317

Using this model, I predict the Sf home index to be around 230. Given that the index has a value of 218.4 as of November, this value seems realistic.

2) For October 2016:

Here, I will have to lag the variables 11 months in order to be able to predict the value of the SF home price index in October 2016.

regress SanFranciscoHomePriceIndex lag11CPIAUCNS_detrended lag11CSCICP03USM665S lag11MORTGAGE15US_detrended lag11SP500_detrended lag11unemp lag11DLTIIT_detrended lag11SanFranciscoHomePriceIndex

	Source	SS	df	MS	Number of obs =	144
-					F(7, 136) =	98.05
	Model	131307.405	7	18758.2007	Prob > F =	0.0000
	Residual	26017.2131			R-squared =	0.8346
_					Adj R-squared =	0.8261
	Total	157324.618			Root MSE =	13.831

SanFranciscoHomePriceIndex	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lag11CPIAUCNS detrended	1.151147	1.009731	1.14	0.256	8456586	3.147952
lag11CSCICP03USM665S	5.775127	2.321563	2.49	0.014	1.184095	10.36616
lag11MORTGAGE15US_detrended	-40.25463	6.000848	-6.71	0.000	-52.12168	-28.38759
lag11SP500 detrended	0357265	.0125208	-2.85	0.005	0604871	0109659
lag11unemp	-2.053444	1.471771	-1.40	0.165	-4.96396	.8570719
lag11DLTIIT detrended	15.46879	5.650077	2.74	0.007	4.295419	26.64216
ag11SanFranciscoHomePriceIndex	1.159941	.1015957	11.42	0.000	.959029	1.360852
_cons	-584.2536	231.5602	-2.52	0.013	-1042.178	-126.3291

This regression is also calculated using lagged variables: the prefix lag11 corresponds to the variable lagged 11 time units. The adjusted R squared is not quite as high as in the 4 months lagged example but still high (82%) I think we can still use this to get an idea of the prediction.

SanFranciscoHomePriceIndex t = -584.25 +1.15 lag11CPIAUCNS_detrended + 5.77 lag11CSCICP03USM665S -40.25 lag11MORTGAGE15US_detrended - 0.0357

 $lag11SP500_detrended~-2.05~lag11Unemp~+15.46~lag11DLTIIT_detrended~+~1.16~SanFranciscoHomePriceIndex~_{t-11}$

Using this equation, we can plug in the real observed values for each variable:

SanFranciscoHomePriceIndex t where t equates to October 2016:

```
= -584.25 + 1.15 * -5.1220207 + 5.77 * 100.9513413687 - 40.25 * 0.039996 - 0.0357 * 375.23099 - 2.05 * 5 + 15.46 * 0.5359082 + 1.16 * 218.4
```

=228.7225

Again, the value of the estimate is in appearance consistent with a possible index value. We notice a slight decrease from February to October.

Additional sources

Moody's case Shiller methodology: http://www.moodysanalytics.com/~/media/Brochures/Economic-Consumer-Credit-Analytics/Examples/case-shiller-methodology.pdf

Consumer price index handbook: http://www.bls.gov/opub/hom/pdf/homch17.pdf

S&P indices: http://us.spindices.com/indices/

Treasury yield information: http://www.investopedia.com/terms/t/treasury-yield.asp