```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

df = pd.read_csv('Heart.csv')
df.head()
```

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	S]
0	1	63	1	typical	145	233	1	2	150	0	2.3	
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	
4												•

df.shape

(303, 15)

```
df.isnull().sum()
```

Unnamed: 0 0 Age Sex 0 ChestPain 0 RestBP Chol 0 Fbs 0 RestECG MaxHR 0 ExAng 0 Oldpeak Slope 0 4 Ca Thal 2 dtype: int64

df.count()

Unnamed: 0 303 Age 303 303 Sex ChestPain 303 RestBP Chol 303 303 Fbs RestECG 303 MaxHR 303 ExAng 303 Oldpeak 303 Slope 303 299 Ca Thal 301 AHD 303 dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 15 columns): # Column Non-Null Count Dtype --------0 Unnamed: 0 303 non-null int64 303 non-null int64 1 Age int64 2 Sex 303 non-null ChestPain 303 non-null object

4	RestBP	303	non-null	int64				
5	Chol	303	non-null	int64				
6	Fbs	303	non-null	int64				
7	RestECG	303	non-null	int64				
8	MaxHR	303	non-null	int64				
9	ExAng	303	non-null	int64				
10	01dpeak	303	non-null	float64				
11	Slope	303	non-null	int64				
12	Ca	299	non-null	float64				
13	Thal	301	non-null	object				
14	AHD	303	non-null	object				
<pre>dtypes: float64(2), int64(10), object(3)</pre>								
memory usage: 35.6+ KB								

df.dtypes

Unnamed: 0	int64
Age	int64
Sex	int64
ChestPain	object
RestBP	int64
Chol	int64
Fbs	int64
RestECG	int64
MaxHR	int64
ExAng	int64
Oldpeak	float64
Slope	int64
Ca	float64
Thal	object
AHD	object
dtype: object	

df==0

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpea
0	False	False	False	False	False	False	False	False	False	True	Fals
1	False	False	False	False	False	False	True	False	False	False	Fals
2	False	False	False	False	False	False	True	False	False	False	Fals
3	False	False	False	False	False	False	True	True	False	True	Fals
4	False	False	True	False	False	False	True	False	False	True	Fals
298	False	False	False	False	False	False	True	True	False	True	Fals
299	False	False	False	False	False	False	False	True	False	True	Fals
300	False	False	False	False	False	False	True	True	False	False	Fals
301	False	False	True	False	False	False	True	False	False	True	Tru
302	False	False	False	False	False	False	True	True	False	True	Tru
4											-

df[df==0]

```
Unnamed:
       Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak
     Age
    Naki Naki Naki
          NaN
            Naki Naki Naki
                  NaN
                    NaN
                      \cap
                        MaN
(df == 0).sum()
 Unnamed: 0
     0
     0
 Age
     97
 Sex
 ChestPain
     0
 RestBP
     0
 Cho1
     0
 Fbs
     258
 RestECG
     151
 MaxHR
     0
 ExAng
     204
 01dpeak
     99
 Slope
     0
     176
 Ca
 Thal
     0
 AHD
 dtype: int64
 4
np.mean(df['Age'])
 54.43894389438944
df.Age.mean()
 54.43894389438944
df.columns
 dtype='object')
data = df[['Age', 'Sex', 'ChestPain', 'RestBP', 'Chol']]
train,test = train_test_split(data,test_size=0.25,random_state=1)
train.shape
 (227, 5)
test.shape
 (76, 5)
actual = np.concatenate((np.ones(45),np.zeros(450),np.ones(5)))
actual
```

predicted = np.concatenate((np.ones(100),np.zeros(400)))
predicted

```
0., 0., 0., 0., 0., 0., 0.])
```

type(predicted)

numpy.ndarray

from sklearn.metrics import ConfusionMatrixDisplay

ConfusionMatrixDisplay.from_predictions(actual,predicted)

from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score

print(classification_report(actual,predicted))

	precision	recall	f1-score	support
0.0	0.99	0.88	0.93	450
1.0	0.45	0.90	0.60	50
accuracy			0.88	500
macro avg	0.72	0.89	0.76	500
weighted avg	0.93	0.88	0.90	500

accuracy_score(actual,predicted)

0.88