VANCOUVER, BC 2025

RENTAL PRICE PREDICTION

Leveraging <u>machine learning</u> to analyze Vancouver's rental market.

Hi, I'm Pam!

- Business Engineering > Data Science Co-Op
- 5 year Experience in Digital Marketing & Analysis for Startups, SaaS, Service, Retail Industries.
 - Tech Stack: Python, SQL, PostgreSQL, BigQuery
 - Project: Python for ML, Looker

WHY?

RENTING A PLACE IN VANCOUVER IS A CHALLENGE

- Landlords are increasing rents by 23.5% when apartments become vacant.
- Vancouver's rental market has a **0.8% vacancy rate** in purpose-built rentals.
- CMHC's Fall 2024 Rental Market Report shows that rising rents and low vacancy rates discourage tenant mobility in Vancouver.

^{1 -} CBC | https://www.cbc.ca/news/canada/british-columbia/rent-hike-23-per-cent-1.7295152

^{2 -} CMHC | 2024-02-12-memo-updated-rental-market-data-from-cmhc-for-2024 3 - Fall 2024 Rental Market Report | CMHC - Fall 2024 Rental Market Report | CMHC

Where are you looking for rentals?

GOAL

Predict rent prices in Vancouver using Machine Learning.

HOW?

dZP 0CI0pO 600x45 /d/port-coquitlam-house-

https://images.craig

rent/7815177258.html

HOUSE RENT

9 mins ago4br1250ft2Port

1250ft2

Coquitlam

Data


```
# Lower case the "location" column to clean it.
df['location'] = df['location'].str.lower()
# Replace al strings that have a "Vancouver" with just "Vancouver"
df['location'] = df['location'].str.replace(r'.*surrey.*', 'surrey', regex=True)
df['location'] = df['location'].str.replace(r'.*\b(burnaby|brentwood|metrotown)\b.*', 'burnaby', regex=True)
df['location'] = df['location'].str.replace(r'.*richmond.*', 'richmond', regex=True)
df['location'] = df['location'].str.replace(r'.*delta.*', 'delta', regex=True)
df['location'] = df['location'].str.replace(r'.*maple ridge.*', 'maple ridge', regex=True)
df['location'] = df['location'].str.replace(r'.*pitt meadows.*', 'pitt meadows', regex=True)
df['location'] = df['location'].str.replace(r'.*white rock.*', 'white rock', regex=True)
df['location'] = df['location'].str.replace(r'.*langley.*', 'langley', regex=True)
df['location'] = df['location'].str.replace(r'.*coquitlam.*', 'coquitlam', regex=True)
df['location'] = df['location'].str.replace(r'.*tsawwassen.*', 'tsawwassen', regex=True)
df['location'] = df['location'].str.replace(r'.*port moody.*', 'port moody', regex=True)
df['location'] = df['location'].str.replace(r'.*new westminster.*', 'port moody', regex=True)
df['location'] = df['location'].str.replace(
   r'.*\b(north|west) vancouver\b.*', r'\1 vancouver', regex=True # Preserve special cases
# Replace remaining patterns containing "Vancouver" with "Vancouver"
df['location'] = df['location'].str.replace(
   r'.*vancouver.*', 'vancouver', regex=True)
# If the value is not then turn into vancouver
df['location'] = df['location'].apply(lambda x: x if x in [
    'surrey', 'burnaby', 'richmond', 'delta', 'maple ridge', 'pitt meadows', 'white rock', 'langley', 'coquitlam'
    , 'tsawwassen', 'port moody', 'vancouver'] else 'vancouver')
df['location'].unique()
```

2. Data Cleanup

Image object object Title URL Label object meta object postbedrooms object object postsqft Price object object zone name dtype: object

2. Data Cleanup

```
# find empty values
df.isnull().sum()

Image 333
Title_URL 0
Label 0
meta 0
postbedrooms 391
postsqft 971
Price 1
dtype: int64
```

The <u>null values</u> appear because the user left these sections of the ad on Craigslist unfilled.

EDA Exploratory Data Analysis

Price 3.3K postbedrooms 2.06

Price Distribution Histogram

Price vs. Square Footage Scatter Plot

Price by Location Bar Chart:

Listings by Location Pie Chart

Let's go to:

4. Encoding

Vancouver is priority.

Label Encoding

5. Feature Scaling

Test_size = 0.2 means 80% of the data will be used for training and 20% for testing.

5. Feature Scaling

```
# Initialize StandardScaler
scaler = StandardScaler()

scaler = StandardScaler()

X_train[["postbedrooms", "postsqft"]] = scaler.fit_transform(X_train[["postbedrooms", "postsqft"]])

X_test[["postbedrooms", "postsqft"]] = scaler.transform(X_test[["postbedrooms", "postsqft"]])
```

Scaling ensures all the features contribute equally to the model.

MODEL

6. Machine Learning

RandomForestRegressor model

```
# Train a Random Forest Regressor
rf model = RandomForestRegressor(random state=42, n estimators=100)
rf_model.fit(X_train, y_train)
v pred rf = rf model.predict(X test)
# Fualuate the model
mse rf = mean_squared_error(y_test, y_pred_rf)
r2 rf = r2 score(y test, y pred rf)
print(f'Mean Squared Error (Random Forest): {mse_rf}')
print(f'R-squared (Random Forest): {r2_rf}')
Mean Squared Error (Random Forest): 998824.9979292797
R-squared (Random Forest): 0.7226820599458545
```

MSE = 998824

 $R^2 = 0.72$

RESULTS

```
# Create new data for prediction
new_data = pd.DataFrame({
    "postbedrooms": [2, 2, 2],
    "postsqft": [800, 800, 800],
    "location": ["vancouver", "burnaby", "coquitlam"]
})
```

evaluation_results

```
{'Random Forest MSE': 998824.9979292797,
'Random Forest R<sup>2</sup>': 0.7226820599458545,
'Predicted Rental Prices (Random Forest)': [2751, 2173, 2032]}
```

Predicted Rental Prices (RandomForest)

Vancouver: \$ 2751

Burnaby: \$ 2173

Coquitlam: \$ 2032

CONCLUSIONS

HOT RENTALS

1 - 3 bedroom houses / apartments.

VANCOUVER

Can have the <u>lowest price</u>
but also the <u>highest price</u>
for the same amount of
bedrooms.

OPTIONS

Affordable rents in cities nearby.

TO LOOK FORWARD

2025 New research(CIBC): Growth in Unit compilations well outpaced **population growth.**

- International student permits cap (newcomers)
- 45% less (fall of 2024) University in-person enrollments.

2025 might be a good year to look around for rents.

Further Projects:

More data

Effect of new regulations

Github repository

pamkmoll@gmail.com +1 7782513491

