Tentamen EE1P21

Elektriciteit en Magnetisme

- Dit tentamen bestaat uit 3 bladzijden met 4 opgaven.
- Het totaal te behalen aantal punten bedraagt 90.
- Bij iedere opgave is het aantal voor die opgave te behalen punten vermeld.
- Begin iedere opgave op een <u>nieuw</u> vel en vermeld op ieder vel van uw uitwerkingen zowel <u>naam</u> als studienummer.

Veel succes!

20 punten

Opgave 1

Bepaal de volgende grootheden door gebruik te maken van de Coulomb constante $k=9\cdot 10^9\,\mathrm{Nm^2/C^2}.$

We be schouwen een puntlading Q = 3q gelegen in (x, y, 0).

- a.) Geef een uitdrukking voor de kracht \vec{F} die de puntlading Q uitoefent op een puntlading Q_0 gelegen in de oorsprong (0,0,0).
- **b.**) Geef een uitdrukking voor het elektrisch veld \vec{E} in de oorsprong (0,0,0) ten gevolge van de puntlading Q.

We be schouwen nu drie puntladingen $Q_1 = 3q$ gelegen in (a, a, 0), $Q_2 = q$ gelegen in (-a, a, 0) en $Q_3 = q$ gelegen in (-a, -a, 0).

- c.) Geef een uitdrukking voor het elektrisch veld \vec{E}_0 ten gevolge van de drie puntladingen in de oorsprong (0,0,0).
- **d.**) Geef een uitdrukking voor de waarde van een puntlading Q_4 die toegevoegd moet worden in (a, -a, 0) in de configuratie zodat het elektrisch veld $\vec{E}_1 = E_1 \hat{y}$ wordt in de oorsprong (0, 0, 0). Geef een uitdrukking voor E_1 .

Opgave 2

25 punten

Gegeven is een lange, rechte coaxiale kabel met een perfect geleidende massieve kern met straal $r = R_0$ (r gemeten loodrecht vanaf de hartlijn van de massieve kern), een perfect geleidende dunne mantel M_1 met straal $r = R_1 > R_0$ (waarbij we de dikte van de mantel verwaarlozen) en

een tweede perfect geleidende dunne mantel M_2 met straal $r = R_2 > R_1$ (waarbij we de dikte van de mantel verwaarlozen). In de ruimte tussen de massieve kern en de mantel M_1 bevindt zich een medium met permittiviteit $\epsilon_1 = 2\epsilon_0$. De ruimte tussen de mantel M_1 en de mantel M_2 bevindt zich een medium met permitiviteit $\epsilon_2 = 3\epsilon_0$. De massieve kern bevat op de buitenkant een lading Q per meter lengte van de kabel. De mantel M_1 bevat op de buitenkant een lading 2Q per meter lengte van de kabel en de mantel M_2 bevat geen lading op de buitenkant. We veronderstellen dat de concentrische media geen vrije ladingdragers bevatten, dat "fringing effects" kunnen worden verwaarloosd en dat de potentiaal op oneindig gelijk aan 0 volt is.

- a.) Maak een duidelijke schets van de situatie.
- **b.**) Geef uitdrukkingen voor het elektrisch veld $\vec{E}(r)$ in het gebied $r < R_0$ en in het gebied $r > R_2$.
- c.) Geef uitdrukkingen voor het elektrisch veld $\vec{E}(r)$ in het gebied $R_0 < r < R_1$ en in het gebied $R_1 < r < R_2$.
- **d.**) Geef een uitdrukking voor de oppervlakte-ladingsdichtheid σ in C/m² aan de binnenkant van de mantel M_1 .
- e.) Geef een uitdrukking voor het elektrische potentiaal $V(R_1)$ op de mantel M_1 .
- f.) Geef een uitdrukking voor de capaciteit C tussen de mantel M_1 en de mantel M_2 .

Opgave 3

20 punten

Gegeven de schakeling in de figuur hiernaast, bestaande uit twee condensatoren met parallelle platen en een ideale gelijkspanningsbron met bronspanning V. De condensator C_1 heeft platen met oppervlak A, afstand tussen de platen d_1 ($d_1 \ll A$) en relatieve permittiviteit $\varepsilon_{\rm r,1}$. De condensator C_2 heeft platen met hetzelfde oppervlak A, afstand tussen de platen d_2 ($d_2 \ll A$) en relatieve permittiviteit $\varepsilon_{\rm r,2}$. "Fringing effects" worden verwaarloosd.

- a.) Geef een uitdrukking voor de totale capaciteit C van de twee condensatoren in serie.
- **b.**) Geef een uitdrukkingen voor de lading Q opgeslagen op de positieve plaat van C_1 en voor de lading opgeslagen op de positieve plaat van C_2 .
- c.) Geef een uidrukking voor de grootte van de elektrische velden E_1 en E_2 in de twee condensatoren C_1 en C_2 .

d.) Neem nu aan dat de diëlektrische sterkte van medium 1 een maximaal elektrisch veld $E_{1,b}$ (V/m) toelaat en dat de diëlektrische sterkte van medium 2 oneindig groot is. Bepaal de minimum afstand $d_{1,\min}$ waarbij er geen doorslag plaatsvindt in de condensator bij een bronspanning V.

Opgave 4

25 punten

We beschouwen een niet-uniforme ladingsverdeling langs een oneindig dunne ring C met straal R en middelpunt (0,0,0), gelegen in de het vlak z=0 (zie de figuur hiernaast). De niet-uniforme ladingsverdeling heeft de verdeling

$$\lambda(\varphi) = \lambda_0 \sin(\varphi) (C/m)$$

met λ_0 een constante en de hoek φ gedefinieerd zoals in de figuur hiernaast. De ringvormige ladingsverdeling is gelegen in de vrije ruimte, met permittiviteit ε_0 .

- a.) Geef een uitdrukking voor de elementaire lading dq langs C en bereken de totale lading Q_{tot} van deze cirkelvormige ladingsverdeling.
- **b.**) Geef een uitdrukking voor de potentiaal V(0,0,z), met $z \ge 0$ aannemend dat $V_{\infty} = 0$ V.
- c.) Geef een uitdrukking voor de $E_z(0,0,z)$ -component van het elektrisch veld \vec{E} voor $z \ge 0$.
- **d.**) Geef een uitdrukking voor het elektrisch veld $\vec{E}(0,0,0)$ in het middelpunt van de ring. Hint: $\sin(2u) = 2\sin(u)\cos(u)$ en $\cos(2u) = 1 - 2\sin^2(u)$.

Einde Tentamen