XGT Cnet I/F 모듈 프로토콜

작성일: 2005.3.30

1. 개 요

XGT Cnet 전용통신은 Cnet I/F 모듈 자체로 전용통신을 수행하는 기능입니다. Cnet I/F 모듈만으로 전용 통신기능을 수행 함으로서 CPU 모듈의 내부 디바이스 영역의 데이터 읽기/쓰기 기능 및 모니터링기능 등을 활용하여 사용자가 의도하는 통신시스템을 용이하게 구축할 수 있습니다. 내부 디바이스 영역 쓰기/읽기, 모니터 등록 및 실행과 같은 기본적인 통신기능만을 사용하려는 사용자에게는 별도의 비용 추가 없이, Cnet I/F 모듈만으로 Cnet 통신을 적용할 수 있는 매우 유용한 기능입니다.

Cnet I/F 모듈에서 제공하는 기능은 다음과 같습니다.

- 디바이스 개별 / 연속 읽기
- 디바이스 개별 / 연속 쓰기
- 모니터 변수등록
- 모니터 실행

2. 프레임 구조

1) 기본 구조

(1) Request 프레임(외부 통신 기기 → Cnet I/F 모듈)

헤더	명 명 타	 테일	프레임 체크
(ENQ)	당 어	(EOT)	(BCC)

(2) Response 프레임

가) ACK Response 프레임(Cnet I/F 모듈 → 외부 통신 기기, 데이터 정상 수신 시)

헤더 (ACK)

나) NAK Response 프레임(Cnet I/F 모듈 \rightarrow 외부 통신 기기, 데이터 비정상 수신 시)

헤더 (NAK)	국 명 명 명 당 타입	에러 코드(ASCII 4 Byte)	테일 (ETX)	프레임 체크 (BCC)
-------------	-----------------------------	-----------------------	-------------	-----------------

알아두기

- 1) 모든 프레임의 숫자 데이터는 별도로 명시하지 않는 한 16 진수 값에 대한 ASCII 코드로 표시됩니다. 16 진수로 표시 되는 항목은 다음과 같습니다.
 - ●국번
 - ●주 명령어가 R(r)및 W(w)일 때 명령어 타입이 숫자(데이터 타입을 의미)로 되어 있는 경우의 명령어 타입
 - •구조화 된 데이터 영역의 모든 데이터 크기를 표시 하는 항목 전부
 - •모니터 등록 및 실행 명령에 대한 명령어 등록 번호
 - •데이터의 모든 내용
- 2) 16 진수 데이터인 경우는 프레임 내의 숫자 앞에 H01, H12345, H34, H12, H89AB 등과 같이 'H'를 붙여 이 데이터 가 16 진수임을 표시합니다.
- 3) 사용 가능한 프레임의 길이는 최대 256Byte 입니다.
- 4) 사용되는 제어 코드의 내용은 다음과 같습니다.

코드	Hex 값	명 칭	제어 내용			
ENQ	H05	Enquire	Request 프레임의 시작 코드			
ACK	H06	Acknowledge	ACK 응답 프레임의 시작 코드			
NAK	H15	Not Acknowledge	NAK 응답 프레임의 시작 코드			
EOT	H04	End of Text	요구용 프레임 마감 ASCII 코드			
ETX	H03	End Text	응답용 프레임 마감 ASCII 코드			

5) 명령어가 소문자(r)로 된 경우 프레임 체크에 BCC 값이 첨가되며, 대문자(R)일 경우 BCC 값이 첨가되지 않습니다.

2) 명령어 프레임 순서

요구 명령어에 대한 응답 프레임은 ACK 와 NAK로 나뉘어 다음과 같은 순서로 송신합니다.

3. 명령어 일람

전용통신에서 사용되는 명령어의 종류는 다음과 같습니다.

구분 항목			명	령어		
		주 명령어		명령어 타입		처리 내용
		기호	ASCII 코드	기호	ASCII 코드	
디바이스	개별읽기	r(R)	H72(H52)	SS 5353		Bit, Word 형의 직접 변수 읽기
읽기	연속읽기	r(R) H72(H52) SB 5342		5342	Word 형의 직접 변수를 블록 단위로 읽기 (Bit 연속 읽기는 허용되지 않습니다)	
디바이스	개별쓰기	w(W)	H77(H57)	SS	5353	Bit, Word 형의 직접 변수에 데이터를 쓰기
쓰기	연속쓰기	w(W)	H77(H57)	SB	5342	Word 형의 직접 변수에 블록 단위 쓰기 (Bit 연속 쓰기는 허용되지 않습니다)

구분			명령어			
	주 명령어		등록	루 번호	처리 내용	
항목	기호	ASCII 코드	등록 번호	ASCII 코드		
모니터변수등록	x(X)	H78(H58)	H00 ~ H09	3030 ~ 3039	모니터 할 변수 등록	
모니터실행	y(Y)	H79(H59)	H79(H59) H00 ~ H09 3030 ~ 3039		등록된 변수를 모니터 하기 위해 실행	

-데이터 타입별 사용예

데이터 타입	표시 문자.	사 용 예
Bit	X(58H)	%PX000,%MX000,%LX000,%KX000,%CX000,%TX000,%FX000 등
Byte	B(42H)	%PB000,%MB000,%LB000,%KB000,%CB000,%TB000,%FB000 등
Word	V///5/H1	%PW000,%MW000,%LW000,%KW000,%CW000,%TW000,%FW000, %DW000,%SW000 등
Dword	13(44H)	%PD000,%MD000,%LD000,%KD000,%CD000,%TD000, %FD000,%DD000,%SD000
Lword	1 (ACH)	%PL000,%ML000,%LL000,%KL000,%CL000,%TL000, %FL000,%DL000,%SL000

-사용 가능한 Device

영 역	범 위	크 기(Word)	비고
Р	P0 – P2047	2048	읽기/쓰기/모니터 가능
М	M0 – M2047	2048	읽기/쓰기/모니터 가능
K	K0 – K2047	2048	읽기/쓰기/모니터 가능
F	F0 – F2047	2048	읽기/모니터 가능
Т	T0 – T2047	2048	읽기/쓰기/모니터 가능
С	C C0-C2047 2048 읽기/쓰기		읽기/쓰기/모니터 가능
Z	Z0 – Z127	128	읽기/쓰기/모니터 가능
S	S0 – S127	128	읽기/쓰기/모니터 가능
L	L0 – L11263	11264	읽기/쓰기/모니터 가능
N	N0 - N21503	21504	읽기/쓰기/모니터 가능
D	D0 - D32767	32768	읽기/쓰기/모니터 가능, XGK-CPUH
	D0 - D19999	20000	읽기/쓰기/모니터 가능, XGK-CPUS
R	R R0 – R32767 32768		읽기/쓰기/모니터 가능
ZR	ZR0 – ZR65535	65536	읽기/쓰기/모니터 가능, XGK-CPUH 에서만
211	2110 21100000	00000	사용가능

알아두기

- 1) ZR 디바이스은 XGK-CPUH에서만 제공됩니다.
- 2) ZR 디바이스는 "W"를 사용하여 요구해야 합니다. 예) ZRO 부터 Word사이즈를 요구할 때 "%WW000"으로 요구해야 합니다.

4. 명령어 상세

1) 직접 변수 개별 읽기(R(r)SS)

(1) 용도

PLC 디바이스를 데이터 타입에 맞게 직접 지정하여 읽는 기능입니다. 한번에 16개의 독립된 디바이스 메모리를 읽을 수 있습니다.

(2) 외부 통신 기기 요구 포맷

포맷 이름	헤더	국번	명령어	명령어 타입	블록수	변수 길이	변수 이름	• • •	테일	프레임 체크
프레임(예)	ENQ	H20	R(r)	SS	H01	H06	%MW100		EOT	BCC
ASCII 값	H05	H3230	H52(72)	H5353	H3031	H3036	H254D57313030		H04	

1블록 최대 16 블록까지 반복 설정

구 분	설 명
블록수	([변수 길이][변수 이름]'으로 구성된 블록의 개수를 지정 최대 설정 : 16 블록 설정 범위 : H01(ASCII 값:3031) ~ H10(ASCII 값:3130)
변수 길이	변수 이름의 글자 수 최대 설정 : 16 설정 범위 : H01(ASCII 값:3031) ~ H10(ASCII 값:3130) 예) 변수 이름이 %MW0이면 글자수가 4 자이므로 변수 길이는 H04 이며 변수 이름이 %MW000이면 글자수가 6 자이므로 변수 길이는 H06 입니다.
변수 이름	위기 디바이스의 어드레스 설정 범위 : 8 자 이내 입력(ASCII 값은 16 자 이내) 주의 사항 : 숫자, 대소문자 , '%' 이외에는 허용되지 않음
프레임 체크	명령어가 소문자(r)로 된 경우 BCC 값이 첨가되며, 대문자(R)일 경우 BCC 값이 첨가되지 않습니다. 명령어가 소문자(r)임으로 ENQ 에서 EOT 까지 값을 ASCII 값으로 변환 한 뒤 한 바이트 (Byte)씩 더해 나온 값의 마지막 하위 한 Byte 만 BCC 에 첨가합니다. 예) 위 프레임(예)의 BCC 를 구하면 H05 + H32+H30 + H72 + H53+H53 + H30+H31 + H30+H36 + H25+H4D+H57+H31+H30+H30 + H04 = H03A4 그러므로 BCC 는 A4 입니다.

(3) Cnet I/F 모듈 응답 포맷

가) ACK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	블록수	데이터 개수	데이터	 테일	프레임 체크
프레임(예)	ACK	H20	R(r)	SS	H01	H02	HA9F3	ETX	BCC
ASCII 값	H06	H3230	H52(72)	H5353	H3031	H3032	H41394633	H04	

1 블록 최대 16 블록까지 응답 가능

¬ H										
구 분	설 명									
	Hex 형의 Byte 개수를 의미하며 ASCII로 변환 되어 있습니다. 이 개수는 외부 통신기기 요구 포맷의 직접변수 이름에 포함되어 있는 데이터 타입(X,B,W,D,L)에 따라 결정됩니다 • 변수의 종류에 따른 데이터 개수는 다음과 같습니다.									
데이터 개수	데이터 타입	가능한 직접 변수	데이터 개수							
	Bit(X)	%(P,M,L,K,F,T,C)X	1							
	Byte(B)	%(P,M,L,K,F,T,C,D,S)B	1							
	Word(W)	%(P,M,L,K,F,T,C,D,S)W	2							
	Dword(D)	%(P,M,L,K,)D	4							
	Lword(L)	%(P,M,L,K,)L	8							
데이터										

알아두기

1) 데이터 타입이 Bit 인 경우 읽은 데이터는 Byte 형태로 표시됩니다. 즉 Bit 값이 0 이면 H00 으로, 1 이면 H01 로 표시됩니다.

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드 (Hex 2 Byte)	테일	프레임 체크
프레임(예)	NAK	H20	R(r)	SS	H1132	ETX	BCC
ACSII 값	H15	H3230	H52(72)	H5353	H31313332	H03	

(4) 사용 예

1 번 국번의 M020 의 1 워드, P001 의 1 워드를 읽는 경우를 예로 하여 설명합니다. (이때, M020 에는 H1234 가 들어 있고 P001 에는 H5678 의 데이터가 들어 있다고 가정합니다.)

가) 외부 통신기기 요구 포맷

포맷 이름	헤더	국번	명령어	명령어 타입	블록수	변수 길이	변수 이름	변수 길이	변수 이름	테일	프레임 체크
프레임(예)	ENQ	H01	R(r)	SS	H02	H06	%MW020	H06	%PW001	EOT	BCC
ACSII 값	H05	H3031	H52(72)	H5353	H3032	H3036	H254D57 303230	H3036	H25505730 303031	H04	

나) Cnet I/F 모듈 응답 포맷

① ACK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	블록수	데이터 개수	데이터	데이터 개수	데이터	테일	프레임 체크
프레임(예)	ACK	H01	R(r)	SS	H02	H02	H1234	H02	H5678	ETX	BCC
ACSII 값	H06	H3031	H52(72)	H5353	H3032	H3032	H31323334	H3032	H35363738	H03	

ĺ	포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드	테일	프레임 체크
	프레임(예)	NAK	H01	R(r)	SS	에러 코드 (2 Byte)	ETX	BCC
	ACSII 값	H15	H3031	H52(72)	H5353	에러 코드 (4 Byte)	H03	

2) 직접 변수 연속 읽기(R(r)SB)

(1) 용도

PLC 디바이스를 지정된 번지부터 지정된 양 만큼의 데이터를 연속으로 읽는 기능입니다.

(2) 외부 통신 기기 요구 포맷

포맷 이름	헤더	국번	명령어	명령어 타입	변수 길이	변수 이름	데이터 개수 (최대 240Byte)	테일	프레임 체크
프레임 (예)	ENQ	H10	R(r)	SB	H06	%MW100	H05	EOT	BCC
ASCII값	H05	H3130	H52(72)	H5342	H3036	H254D57313030	H3035	H04	

알아두기

- 1) 데이터 개수는 읽을 디바이스 개수를 지정합니다. 즉 디바이스의 데이터 타입이 Word 이고 데이터 개수가 5 이면 5 개의 Word 를 읽으라는 의미
- 2) 데이터 개수에서 워드는 최대 60개 까지만 사용할 수 있습니다
- 3) 직접 변수의 연속 읽기 기능은 프로토콜에 『 블록 수 』 가 없습니다.
- 4) Bit 디바이스 연속 읽기는 지원되지 않습니다.

(3) Cnet I/F 모듈 응답 포맷

__가) ACK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	블록수	데이터 개수	데이터	테일	프레임 체크
프레임(예)	ACK	H10	R(r)	SB	H01	H02	H1122	EOT	BCC
ASCII값	H06	H3130	H52(72)	H5342	H3031	H3134	H31313232	H03	

구 분		설 명	
	Hex형의 Byte 개수를 이 개수는 Byte수를	의미 하며 ASCII로 변환 되0 의미합니다.	게 있습니다.
	데이터 타입	가능한 직접 변수	데이터 크기(Byte)
데이터 개수	BYTE(B)	%(P,M,L,K,F,T,C,D,S)B	1
	WORD(W)	%(P,M,L,K,F,T,C,D,S)W	2
	DWord(D)	4	
	LWord(L)	%(P,M,L,K,F,T,C,D,S)L	8
			_
데이터	사용 예 1 PC 요구 포맷의 직접 PC 요구 포맷의 데이터 개수는 H06(2*03 = 06 어 있게 됩니다. 사용 예 2 상기 예에서 3 WORD	: 데이터를 ASCII코드로 변환된 변수 이름에 포함되어 있는 메모 개수가 03인 경우 명령 실행 후 Byte)Byte이 표시되고 이 값은 AS 데이터 내용이 차례대로 1234,56 31323334 35363738 39414243 (리 타입이 W(WORD)이고 PLC ACK 응답의 데이터 SCII 코드 값 3036으로 들 S78,9ABC 라고 하면 실제

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드 (Hex 2 Byte)	테일	프레임 체크
프레임(예)	NAK	H10	R(r)	SB	H1132	ETX	BCC
ASCII값	H15	H3130	H52(72)	H5342	H31313332	H03	

(4) 사용 예

국번 10의 M000 번지로부터 2 개의 WORD를 읽을 경우의 예를 들어 설명 합니다.

(M000 와 M001 에는 다음과 같은 데이터가 들어 있다고 가정 합니다.)

M000 = H1234 M001 = H5678

가) 외부 통신기기 요구 포맷 (PC \rightarrow XGT Cnet 모듈)

포맷 이름	헤더	국번	명령어	명령어 타입	변수 길이	변수 이름	데이터 개수	테일	프레임 체크
프레임(예)	ENQ	H0A	R(r)	SB	H06	%MW000	H02	EOT	BCC
ASCII값	H05	H3041	H52(72)	H5342	H3036	H254D30 3030	H3032	H04	

나) Cnet I/F 모듈 응답 포맷

① ACK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	데이터 개수	데이터	테일	프레임 체크
프레임(예)	ACK	H0A	R(r)	SB	H04	12345678	ETX	BCC
ASCII값	H06	H3041	H52(72)	H5342	H3034	H3132333435363738	03	

포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드	테일	BCC
프레임(예)	NAK	H0A	R(r)	SB	에러 코드(2 Byte)	ETX	BCC
ASCII값	H15	H3041	H52(72)	H5342	에러 코드(4 Byte)	H03	

- 3) 직접 변수 개별 쓰기(W(w)SS)
 - (1) 용도

사용할 PLC 디바이스 메모리를 직접 지정하여 메모리 데이터 타입에 맞게 쓰는 기능입니다.

(2) 외부 통신기기 요구 포맷

포맷 이름	헤더	국번	명령어	명령어 타입	블록수	변수 길이	변수 이름	데이터	테일	프레임 체크
프레임 (예)	ENQ	H20	W(w)	SS	H01	H06	%MW100	H00E2	 EOT	всс
ASCII 값	H05	H3230	H57(77)	H5353	H3031	H3036	H254D57 313030	H30304 532	H04	

1 블록(최대 16 블록 까지 반복 설정 가능)

구 분	설 명
	%MW100 영역에 쓰고 자 하는 값이 HA인 경우 데이터의 포맷은 H000A 이어야 합니다.
데이터	사용 예 현재 쓰고자 하는 데이터 타입이 Word 이고 그 쓸 데이터가 H1234 이라면 이것의 ASCII 코 드 변환 값은 31323334 이며 이 내용이 데이터 영역에 들어 있어야 합니다. 즉 최상위 값이 먼저 전송하고 최하위 값이 제일 나중에 전송 되어야 합니다.

알아두기

- 1) 각 블록의 디바이스 데이터 타입은 반드시 동일하여야 합니다.
- 2) 데이터 타입이 Bit 인 경우 쓸 데이터는 Hex 1 Byte 으로 표시합니다. 즉 Bit 값이 0 이면 H00(3030)으로, 1 이면 H01(3031)로 해야 합니다.

(3) Cnet I/F 모듈 응답 포맷

가) ACK 응답 시

	포맷 이름	헤더	국번	명령어	명령어 타입	테일	프레임 체크
	프레임(예)	ACK	H20	W(w)	SS	ETX	BCC
ĺ	ASCII 값	H06	H3230	H57(77)	H5353	H03	

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타 입	에러 코드 (Hex 2 Byte)	테일	프레임 체크
프레임(예)	NAK	H20	W(w)	SS	H4252	ETX	BCC
ACSII 값	H15	H3230	H57(77)	H5353	H34323532	H03	

(4) 사용 예

국번 1 의 M230 번지에 "HFF"를 쓰려고 하는 경우를 예로 설명합니다.

가) 외부 통신기기 요구 포맷

포맷이름	헤더	국번	명령어	명령어 타입	블록수	변수 길이	변수 이름	데이터	테일	프레임 체크
프레임 (예)	ENQ	H01	W(w)	SS	H01	H06	%MW230	H00FF	EOT	всс
ASCII값	H05	H3031	H57(77)	H5353	H3031	H3036	H254D573233 30	H30304646	H04	

나) Cnet I /F 모듈 응답 포맷

① ACK 응답 시

	포맷 이름	헤더	국번	명령어	명령어 타입	테일	프레임 체크
Ī	프레임(예)	ACK	H01	W(w)	SS	ETX	BCC
Ī	ASCII값	H06	H3031	H57(77)	H5353	H03	

포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드	테일	프레임 체크
프레임(예)	NAK	H01	W(w)	SS	에러 코드(2 Byte)	ETX	BCC
ASCII값	H15	H3031	H57(77)	H5353	에러 코드(4 Byte)	H03	

4) 직접 변수 연속 쓰기(W(w)SB)

(1) 용도

디바이스의 지정된 번지부터 지정된 길이만큼의 데이터를 연속으로 쓰는 기능 입니다.

(2) 외부 통신기기 요구 포맷

포맷 이름	헤더	국번	명령어	명령어 타입	변수 길이	변수 이름	데이터 개수 (최대240 Byte)	데이터	테일	프레임 체크
프레임 (예)	ENQ	H10	W(w)	SB	H06	%MW100	H02	H11112222	EOT	всс
ASCII값	H05	H3130	H57(77)	H5342	H3036	H254D573130 30	H3034	H313131313 2323232	H04	

알아두기

- 1) 데이터 개수는 직접 변수의 타입에 따른 개수를 지정합니다. 즉 디바이스 데이터 타입이 WORD 이고 데이터 개수가 5 이면, 5 개의 Word 를 쓰라는 의미
- 2) 최대 데이터 개수는 120Byte 입니다.(60 워드)

(3) Cnet I/F 모듈 응답 포맷

가) ACK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	테일	프레임 체크
프레임(예)	ACK	H10	W(w)	SB	ETX	BCC
ASCII값	H06	H3130	H57(77)	H5342	H03	

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드 (Hex 2 Byte)	테일	프레임체크
프레임(예)	ENQ	H10	W(w)	SB	H1132	EOT	BCC
ASCII값	H05	H3130	H57(77)	H5342	H31313332	H03	

(4) 사용 예

1 번 국번의 D000 에 2 Byte HAA15 를 쓰려고 하는 경우를 예로 설명합니다.

가) 외부 통신기기 요구 포맷

- ' /		1 -	. — . —	- / -						
포맷 이름	헤더	국번	명령어	명령어 타입	변수 길이	변수 이름	데이터 개수	데이터	테일	프레임 체크
프레임 (예)	ENQ	H01	W(w)	SB	H06	%DW000	H01	HAA15	EOT	всс
ASCII값	H05	H3031	H57(77)	H5342	H3036	H254457303030	H3031	H41413135	H04	

나) Cnet I/F 모듈

① ACK 응답 시

포맷 이름	헤더	국번	명령어	명령어 타입	테일	프레임 체크
프레임(예)	ACK	H01	W(w)	SB	ETX	BCC
ASCII값	H06	H3031	H57(77)	H5342	H03	

포맷 이름	헤더	국번	명령어	명령어 타입	에러 코드	테일	프레임 체크
프레임(예)	NAK	01	W(w)	SB	에러 코드(2)	ETX	BCC
ASCII값	H15	H3031	H57(77)	H5342	에러 코드(4)	H03	

- 5) 모니터 변수 등록(X##)
- (1) 용도

모니터 변수등록은 실제 변수 읽기 명령과 결합 하여 최대 32 개(0 번부터 31 번) 까지 개별 등록시킬 수 있으며 등록 후 모니터 명령에 의해 등록된 것을 실행 시킵니다.

(2) 외부 통신기기 요구 포맷

포맷 이름	헤더	국번	명령어	등록 번호	등록 포맷	테일	프레임 체크
프레임(예)	ENQ	H10	X(x)	H09	등록 포맷 참조	EOT	BCC
ASCII값	H05	H3130	H58(78)	H3039	[*]	H04	

구 분	설 명
BCC	명령어가 소문자(x)로 된 경우 ENQ 에서 EOT 까지 ASCII 값을 한 Byte 씩을 더하여 나온 값의 하위 한 Byte 만 ASCII로 변환하여 BCC 에 첨가합니다.
등록 번호	최대 32 개까지 등록(0~31 , H00~H1F)할 수 있으며 이미 등록된 번호로 다시 등록 하면 현재 실행되는 것이 등록 됩니다.
등록 포맷	디바이스 개별 읽기, 연속 읽기 포맷 중 명령어에서 EOT 전까지 사용합니다.

※표시: 요구 포맷중의 등록 포맷은 아래 2가지 중 반드시 한 개만 선택하여 사용하여 주십시오.

① 디바이스 개별 읽기

RSS 블록 수(2 Byte)	변수 길이(2 Byte)	변수 이름(16 Byte)							
	1 블록(최대 16 블록)								

② 디바이스 연속 읽기

RSB	변수 길이 (2 Byte)	변수 이름 (16 Byte)	데이터 개수

(3) Cnet I/F 모듈 응답 포맷

가) ACK 응답 시

포맷 이름	헤더	국번	명령어	등록 번호	테일	프레임 체크
프레임(예)	ACK	H10	X(x)	H09	ETX	BCC
ASCII값	H06	H3130	H58(78)	H3039	H03	

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	등록 번호	에러 코드 (Hex 2Byte)	테일	프레임 체크
프레임(예)	ACK	H10	X(x)	H09	H1132	ETX	BCC
ASCII값	H06	H3130	H58(78)	H3039	H31313332	H03	

(4) 사용 예

1 번 국번의 디바이스 M000을 번호 01로 모니터 등록 할 경우를 예로 들어 설명 합니다.

가) 외부 통신기기 요구 포맷

	포맷 이름	헤더 물	국번	명령어	등 번호		등		테일	프레임	
			7.2			R##	블록수	변수길이	변수이름	내리	체크
	프레임(예)	ENQ	H01	X(x)	H01	RSS	H01	H06	%MW000	EOT	BCC
	ASCII값	H05	H3031	H58(78)	H3031	H525353	H3031	H3036	H25545730 3030	H04	

다) Cnet I/F 모듈 응답 포맷

라)

① ACK 응답 시

포맷 0	름	헤더	국번	명령어	등록 번호	테일	프레임 체크
프레임((예)	ACK	H01	X(x)	H01	ETX	BCC
ASCII	값	H06	H3031	H58(78)	H3031	H03	

③ NAK 응답 시

포맷 이름	헤더	국번	명령어	등록 번호	에러 코드	테일	프레임 체크
프레임(예)	NAK	H01	X(x)	H01	에러 코드(2)	ETX	BCC
ASCII값	H15	H3031	H58(78)	H3031	에러 코드(4)	H03	

6) 모니터 실행(Y##)

(1) 용도

모니터 실행은 모니터 등록으로 등록된 디바이스 읽기를 실행 시키는 기능 입니다. 모니터 실행은 등록된 번호를 지정 하여 그 번호로 등록된 디바이스 읽기를 실행 시킵니다.

(2) 외부 통신기기 요구 포맷

포맷 이름	헤더	국번	명령어	등록 번호	테일	프레임 체크
프레임(예)	ENQ	H10	Y(y)	H09	EOT	BCC
ASCII값	H05	H3130	H59(79)	H3039	H03	

(3) Cnet I/F 모듈 응답 포맷

가) ACK 응답 시

① 등록 번호의 등록 포맷이 디바이스 개별 읽기 인 경우

포맷 이름	헤더	국번	명령어	등록 번호	블록수	데이터 개수	데이터	테일	프레임 체크
프레임(예)	ACK	H10	Y(y)	H09	H01	H02	H9183	ETX	BCC
ASCII값	H06	H3130	H59(79)	H3039	H3031	H3032	H39313833	H03	

② 등록 번호의 등록 포맷이 직접 변수 연속 읽기 인 경우

포맷 이름	헤더	국번	명령어	등록 번호	데이터 개수	데이터	테일	프레임 체크
프레임(예)	ACK	H10	Y(y)	H09	H04	H9183AABB	ETX	BCC
ASCII값	H06	H3130	H59(79)	H3039	H3034	H393138334141424 2	H03	

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	등록 번호	에러 코드 (Hex 2Byte)	테일	프레임 체크
프레임(예)	NAK	H10	Y(y)	H09	H1132	ETX	BCC
ASCII값	H15	H3130	H59(79)	H3039	H31313332	H03	

(4) 사용 예

1 번 국번에 등록 번호 1 로 등록된 디바이스 읽기를 실행하는 것을 예로 설명합니다. 등록된 것은 디바이스 M000 로 블록 수 1 개라고 가정 합니다.

① 외부 통신기기 요구 포맷 (PC → XGT Cnet 모듈)

포맷 이름	헤더	국번	명령어	등록 번호	테일	프레임 체크
프레임(예)	ENQ	H01	Y(y)	H01	EOT	BCC
ASCII값	H05	H3031	H59(79)	H3031	H04	

② Cnet I/F 모듈 응답 포맷

가) ACK 응답 시

포맷 이름	헤더	국번	명령어	등록번호	블록수	데이터 개수	데이터	테일	프레임 체크
프레임(예)	ACK	H01	Y(y)	H01	H01	H02	H2342	ETX	BCC
ASCII값	H06	H3031	H59(79)	H3031	H3031	H3032	H32333432	H03	

나) NAK 응답 시

포맷 이름	헤더	국번	명령어	등록 번호	에러 코드	테일	프레임 체크
프레임(예)) NAK	H01	Y(y)	H01	에러 코드(2)	ETX	BCC
ASCII값	H15	H3031	H59(79)	H3031	에러 코드(4)	H03	

5. 에러코드

에러 코드는 다음과 같습니다.

에러 코드 16 진수의 2 Byte(ASCII 코드로 4Byte)의 내용으로 에러의 종류를 표시 합니다.

에러 코드	에러 종류	에러 내용 및 원인	Й
0003	블록수 초과 에러	개별 읽기/쓰기 요청시 블록 수가 16 보다 큼	01rSS1105%MW10
0004	변수 길이 에러	변수 길이가 최대 크기인 16 보다 큼	01rSS0113%MW1000000000000000000000000000000000000
0007	데이터 타입 에러	X,B,W,D,L 이 아닌 데이터 타입을 수신했음	01rSS0105%MK10
		데이터 길이 영역 정보가 잘못된 경우	01rSB05%MW10%4
		%로 시작해야 하지 않은 경우	01rSS0105\$MW10
0011	데이터 에러	변수의 영역 값이 잘못된 경우	01rSS0105%MW^&
		Bit 쓰기인 경우, 반드시 00 또는 01 로 써야 하는데 다른 값으로 쓴 경우	01wSS0105%MX1011
0090	모니터 실행 에러	등록 안된 모니터 실행을 요구한 경우	
0190	모니터 실행 에러	등록 번호 범위를 초과한 경우	
0290	모니터 등록 에러	등록 번호 범위를 초과한 경우	
1232	데이터 크기 에러	한번에 최대 60Word까지 읽거나 쓸 수 있는데 초과해서 요청한 경우	01wSB05%MW1040AA5512,
1234	여유 프레임 에러	필요 없는 내용이 추가로 존재하는 경우	01rSS0105%MW10000
1332	데이터 타입 불일치 에러	개별 읽기/쓰기인 경우, 모든 블록은 동일한 데이터 타입에 대해 요구해야 함.	01rSS0205%MW1005%MB10
1432	데이터 값 에러	데이터 값이 Hex 변환 불가능한 경우	01wSS0105%MW10AA%5
7132	변수 요구 영역 초과 에러	각 디바이스별 지원하는 영역을 초과해서 요구한 경우	01rSS0108%MWFFFFF