B.C.S.E. 2nd year 2nd Semester Examination 2011

NUMERICAL METHODS

Time: 3 hours. Full Marks: 100

Answer question no.1 and any 4 from the rest.

1. a) What is the maximum absolute error when an approximate number p 3 is divided by another approximate number q. b) Draw a comparison between regula falsi method and secant method. 3 c) Derive the modifier formula for Adams-Bashforth method. 5 d) Write down the expressions for truncation errors for Trapezoidal method, Simpson's \(\frac{1}{3} \) rule and Simpson's \(\frac{3}{8} \) rule. 3 e) Define ∆, ♥ and E. Hence prove that $\Delta - \nabla = \Delta \nabla$ 3 f) State the condition of convergence for Gauss-Seidel iterative method for solution of linear simultaneous equations. 1 g) Derive the iteration formula for finding (1/N) using Newton -2 Raphson method. 2. a) Describe Newton-Raphson method for solution of non-linear equations. 4 Derive the condition of convergence and the order of convergence for 5+5 the above method. 6 Solve the following equation using secant method. $3x + \sin x - e^x = 0$ Take $\mathbf{r}_0 = 1$ and $\mathbf{r}_1 = 0$. 3. a) Describe the iterative method for finding the inverse of a matrix. What is 8 its order of convergence. b) Given the following set of linear simultaneous equations: x - y + 2z = -8x + y + z = -22x - 2y + 3z = -20Find the inverse of the above co-efficient matrix by Gauss – Jordan

Find the inverse of the above co-efficient matrix by Gauss – Jordan elimination method. Hence find the solution of this set of equations.

	,	c) Derive the Chebyshev iteration formula for solution of non-linear equations.							
4.		Derive divided difference formula for interpolation. How is it different from Newton's interpolation formula. Given the following table of values:							
	b)	Given the following table of values.							
		X	- 5	-3	-1	1	3	5	
		y	5.5	9.1	14.9	22.8	33.3	46	
	Obtain a least squares fit of the following form to the tabular values. Show each step clearly. $y = a + bx + cx^2$								10
5.	a)	a) Find all the eigenvalues and corresponding eigenvectors of a 2 x 2 symmetric matrix as given below using Jacobi's method.							8
$\begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{c} \end{bmatrix}$									
	b)	Describe Lin's method for finding the complex roots of a polynomial equation.							
6.	a)	a) Prove by the method induction $\Delta^{m} y_{r} = \nabla^{m} y_{r+m}$							5
	b)	b) If $y = U(x).V(x)$ then $y[x_0, x_1] = U(x_0).V[x_0, x_1] + V(x_1).U[x_0, x_1]$							
	c)	Use Newton's formula to find the area of a circle of diameter 98 cm from the following area (A) vs. diameter (D) table:							
		D (cm) . 80	85	5 9	90	95	100	
		A (cm		567	4 6.	362	7088	7854	
	Derive the necessary formula.								12
_									6
7.		n) Derive numerical integration formula using Simpson's \(\frac{1}{3} \) rule. b) Derive the expression for total truncation error associated with this method.							
	c) Evaluate the integral $\int_{0}^{2} (1/(x^2+4)) dx$ using Trapezoidal method. Take $h = 0.25$. Hence obtain the value of π .								6

2 of 3

[Turn over]

- a) Discuss Modified Euler's method for solution of ordinary first order differential equations.
- 6 4
- b) Derive the expression for truncation error associated with this method.
- c) Solve the following initial value problem using Euler's method.

$$\frac{dy}{dx} = x^2 + y$$
 with $y(0) = 1$

Compute the first 5 steps of the solution with h = 0.1. Compare the results (% relative error) with those obtained from the exact solution

$$y = 3e^{x} - x^{2} - 2x - 2$$
