Network Routing:

Link State Routing and BGP

Reading: KR 4.3, 4.5

Link-State Routing

- □ Net topology, link costs are distributed to all nodes
 - All nodes have same info
 - Thus can compute any types of routes
- ☐ Each node computes its shortest paths from itself to all other nodes
 - O E.g., use Dijkstra's algorithm

☐ Link state distribution accomplished via "link state broadcast"

Link State Broadcast

- ☐ The hard part is link state broadcast
 - Basic approach: forward a link state (link ID, link status)
 to all links except the incoming link
- □ Question: what are the problems the link state broadcast needs to handle?
 - Broadcast loop
 - Ordering of events (link up and down)
 - Network partitioning and then merge

Link State Broadcast

- □ Each link update is given a sequence number: (initiator, seq#, link, status)
 - The initiator should increase the seq# for each new update
- ☐ If the seq# of an update of a link is not higher than the highest seq# a router has seen, drop the update
- □ Otherwise, forward it to all links except the incoming link
- ☐ Each seq# has an age field (why?)
- ☐ Updates are sent periodically (why?)

OSPF (Open Shortest Path First)

- "Open": publicly available
- Uses Link State algorithm
 - Link state (LS) packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra's algorithm

http://en.wikipedia.org/wiki/Open_Shortest_Path_First

OSPF "Advanced" Features (not in RIP)

- Multiple same-cost paths allowed (only one path in RIP)
- For each link, multiple cost metrics for different Type Of Service (eg, satellite link cost set "low" for best effort; high for real time)
- Security: all OSPF messages authenticated (to prevent malicious intrusion); TCP connections used
- ☐ Hierarchical OSPF

Hierarchical OSPF

Why Hierarchy?

☐ Information hiding (filtered) => reduce computation, bandwidth, storage

Discussion: Link State Routing

□ What do you like about link state routing?

□ What do you not like about link state routing?

Question to think about: which routing protocol (DV or LS) should the Internet use?

Outline

- □ Recap
- ☐ Distance vector protocols
- ☐ Link state protocols
- > Routing in the Internet
 - > overview

Routing in the Internet

- ☐ The Global Internet consists of Autonomous Systems (AS) interconnected with each other
 - An AS is identified by an AS Number (ASN), e.g. Yale ASN is 29

Routing with AS

□ Intra-AS

- Different AS's may run different routing protocols
- A protocol running insides an AS is called an Interior Gateway Protocol (IGP)
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IS-IS: very similar to OSPF
 - E/IGRP: Interior Gateway Routing Protocol (Cisco)

■ Inter-AS

- A protocol runs among AS's is also called an Exterior Gateway Protocol (EGP)
- For global connectivity, a single inter-domain routing protocol

Routing in the Internet: Example

Intra-AS and Inter-AS Routing

border (exterior gateway) routers

interior (gateway) routers

Many Routing Processes on a Single Router

Why Partition into Intraand Inter-AS Routing?

- ☐ This partition allows ASes flexibility to choose their own intra-AS routing protocols
 - Autonomy
- By aggregating many destinations inside an AS into a single destination in inter-domain routing, it improves scalability
 - The partition is a type of *hierarchical* routing
 - Hierarchical routing improves scalability: only a small number of routers are involved with outside

Hierarchical Routing May Pay a Price for Path Quality

The Gang of Four

Recap: Routing in the Internet

- ☐ The Global Internet consists of Autonomous Systems (AS) interconnected with each other
- □ Routing is divided into intra- and inter-domain routing
 - □ Intra-AS (intradomain)
 - Different AS's can run different intra-domain routing protocols
 - ☐ Inter-AS (interdomain)
 - A single inter-AS protocol: BGP
 - BGP (Border Gateway Protocol) is a Path Vector protocol: a border gateway sends to a neighbor entire path (i.e., a sequence of ASes) to a destination

Routing in the Internet

Outline

- □ Recap
- ☐ Distance vector protocols
- ☐ Link state protocols
- □ Routing in the Internet
- > BGP

BGP Setup

Internet Interdomain Routing: BGP

- BGP (Border Gateway Protocol): *the* de facto standard
- **Path Vector** protocol:
 - Similar to Distance Vector protocol
 - A border gateway sends to a neighbor *entire path* (i.e., a sequence of ASes) to a destination, e.g.,
 - Gateway X sends to neighbor N its path to dest. Z:

path
$$(X,Z) = X,Y1,Y2,Y3,...,Z$$

○ If N selects path(X, Z) advertised by X, then: path(N,Z) = N, path(X,Z)

BGP Operations (Simplified)

BGP Messages

- ☐ Four types of messages
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Why Path Vector?

- □ Path vector prevents counting-to-infinity problem
- Path vector allows an AS to define local policies on the ASes of a given path

BGP Routing Decision Process

BGP Route Selection Policy

- ☐ Typical (Cisco) route selection policy
 - Highest local pref
 - Shortest AS path length
 - Prefer eBGP over iBGP
 - **O** ...

Policy Interactions

The BAD GADGET example:

0 is the destination

Policy interaction causes routing instability!

BGP Route Export Policies

- ☐ The export of a path to a neighbor is an indication that the AS is willing to transport traffic for the neighbor
- ☐ An AS may not export some routes to some neighbors (more later)

Understanding Instability: P-Graph

- Nodes in P-graph are feasible paths
- \square A directed edge from path N_1P_1 to P_1
 - O Intuition: to let N_1 choose N_1P_1 , P_1 must be chosen and exported to N_1
- ☐ A directed edge from a lower ranked path to a higher ranked path
 - Intuition: the higher ranked path should be considered first

P-graph

Partial Order Graph and Convergence

- ☐ If the P-graph has no loop, then BGP policy converges.
 - O Intuition: choose the node (i.e., a path) from the partial order graph with no out-going edge, choose the path, remove the path and all other lowered ranked paths of the same node; remove nodes if suffix removed; continue
- Example: suppose we swap the order of 30 and 320

Partial Order Graph and BGP Convergence

- ☐ Preview: A reason we do not often see instability in the Internet is that:
 - The current Internet ISP economy implies no loop in P-graph!

Internet Economy: Two Types of Business Relationship

Customer provider relationship

- A provider is an AS that connects the customer to the rest of the Internet
- Customer pays the provider for the transit service
- E.g., Yale is a customer of AT&T and QWEST

□ Peer-to-peer relationship

- Mutually agree to exchange traffic between their respective customers
- There is no payment between peers

Implication of Business Relationship on Policies

- □ Route selection (ranking) policy:
 - The typical route selection policy is to prefer customers over peers/providers to reach a destination, i.e., <u>Customer</u>
 - > p<u>E</u>er/<u>P</u>rovider

Typical Export Policies

Typical Export -> No-Valley Routing

Suppose P_1 and P_2 are providers of A; A is a provider of C

Typical Export Policies Imply Patterns of Routes

■ Assume a BGP path SABCD to destination AS D. Consider the business relationship between each pair:

- ☐ Three types of business relationships:
 - PC (provider-customer)
 - CP (customer-provider)
 - OPP (peer-peer)

Typical Export Policies Imply Patterns of Routes

☐ Two invariants of valid BGP routes (with labels representing business relationship)

Reason: only route learned from customer is sent to provider; thus after a PC, it is always PC to the destination

Reason: routes learned from peer or provider are sent to only customers; thus all relationship before is CP

Stability of BGP Routing

- Suppose
 - 1. There is no loop formed by provider-customer relationship in the Internet
 - Each AS uses typical route selection policy:C > E/P
 - 3. Each AS uses the typical export policies
- Then BGP policy routing always converges!

Case 1: A Link is PC

Proof by contradiction. Assume a loop in P-graph. Consider a fixed link. in the loop

Case 2: Link is CP/PP

