Q

Search

ISO 17458-1:2013(en) ×

ISO 17458-1:2013(en) Road vehicles — FlexRay communications system — Part 1: General information and use case definition

BUY

≡ Table of contents

Foreword

Introduction

- 1 Scope
- ▼ 2 Terms, definitions, symbols and abbrev

2.1 Terms and definitions

- 2.2 Abbreviated terms
- 3 Conventions
- ▼ 4 Document overview
 - 4.1 General
 - 4.2 Document overview and structure
 - 4.3 Open Systems Interconnection (OS
 - 4.4 Document reference according to 0

5.1 Basic principles for use case defini

- ▼ 5 Use case overview and principles
 - 5.2 Use case clusters
- ▼ 6 FlexRay communications system use ca
- ▶ 6.1 UC 1 FlexRay processes
- ▶ 6.2 UC 2 TT modes in clusters
- ▶ 6.3 UC 3 Communication protocol
- ▶ 6.4 UC 4 Electrical physical layer Bibliography

Note 1 to entry: An A5 retresnes the bus signal slopes and levels; an A5 does not retresh the bit-timing.

Note 2 to entry: An AS may be implemented in a monolithic way or a non-monolithic way.

Note 3 to entry: Optionally an AS may have a CC interface included.

2.1.2

branch

component within active star topologies

Note 1 to entry: A branch can be built from a point-to-point connection, a linear bus or a passive star.

2.1.3

bus driver

BD

physical interface between the CC and the wiring harness

Note 1 to entry: A BD is a mandatory FlexRay component that converts the data stream of the physical interface and supports the node with a power mode controlling optionally.

2.1.4

cable

FlexRay transmission line.

2.1.5

cluster

communication system of multiple nodes connected via at least one communication channel directly (bus topology), by active stars (star topology) or by a combination of bus and star connections (hybrid topologies)

Note 1 to entry: Clusters can be coupled by gateways.

2.1.6

communication channel

Figures

Tables

H Parts