

**(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)**

**(19) Organisation Mondiale de la Propriété
Intellectuelle**
Bureau international

(43) Date de la publication internationale
7 juillet 2005 (07.07.2005)

PCT

(10) Numéro de publication internationale
WO 2005/061209 A1

(51) Classification internationale des brevets⁷ :
B29C 70/50, 70/46, B29B 15/10, C08J 5/04

(81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) Numéro de la demande internationale :
PCT/FR2004/003310

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) Date de dépôt international :
20 décembre 2004 (20.12.2004)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
0314994 19 décembre 2003 (19.12.2003) FR

(71) Déposant (pour tous les États désignés sauf US) :
RHODIA INDUSTRIAL YARNS AG [CH/CH];
Gerliswilstrasse 17, CH-6021 Emmenbrucke (CH).

Publiée :

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont requises

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(72) Inventeurs; et
(75) Inventeurs/Déposants (pour US seulement) : BOU-
QUEREL, Franck [FR/FR]; 93, rue du Dauphiné,
F-69003 Lyon (FR). PHILIPPON, Frédéric [FR/FR];
Résidence Chalin, 8, Chemin Louis Chirpaz, F-69130
Ecully (FR).

(74) Mandataire : ESSON, Jean-Pierre; Rhodia Services, Di-
rection de la Propriété Industrielle, Centre de Recherches
de Lyon B.P. 62, F-69192 Saint-Fons Cedex (FR).

(54) Title: COMPOSITE MATERIALS COMPRISING A REINFORCING MATERIAL AND A THERMOPLASTIC MATRIX, PRECURSOR COMPOUND ARTICLE OF SAID MATERIALS AND PRODUCTS OBTAINED USING SAME

(54) Titre : MATÉRIAUX COMPOSITES COMPRENANT UN MATÉRIAUX DE RENFORT ET UNE MATRICE THERMO-PLASTIQUE, ARTICLE COMPOSÉ PRECURSEUR DE CES MATÉRIAUX ET PRODUITS OBTENUS A PARTIR DE CES MATÉRIAUX.

(57) Abstract: The invention relates to a precursor article of a composite material comprising a polymer matrix and at least one reinforcing wire and/or fibres, said article comprising at least one reinforcing wire and/or fibres and at least one polymer matrix wire and/or fibres. The invention also relates to composite materials comprising a reinforcing material and a thermoplastic matrix and to the articles obtained using said materials.

(57) Abrégé : La présente invention concerne un article précurseur d'un matériau composite comprenant une matrice polymérique et au moins un fil et/ou fibres de renfort, ledit article comprenant au moins un fil et/ou des fibres de renfort et au moins un fil et/ou des fibres de matrice polymérique. L'invention concerne également des matériaux composites comprenant un matériau de renfort et une matrice thermoplastique, ainsi que des articles obtenus ˆ partir de ces matériaux.

WO 2005/061209 A1

**MATÉRIAUX COMPOSITES COMPRENANT UN MATÉRIAU DE RENFORT ET
UNE MATRICE THERMOPLASTIQUE, ARTICLE COMPOSÉ PRECURSEUR
DE CES MATÉRIAUX ET PRODUITS OBTENUS A PARTIR DE CES
MATÉRIAUX**

5

Le domaine de l'invention est celui des matériaux composites et de leurs procédés de fabrication.

De façon plus précise, l'invention se rapporte à l'utilisation de certains polycondensats servant à l'imprégnation de matériaux de renfort, notamment sous la forme de fils et/ou de fibres, destinés à jouer le rôle de matrice thermoplastique, dans des matériaux composites.

Par fil, on entend un monofilament, un fil multifilamentaire continu, un filé de fibres, obtenu à partir d'un unique type de fibres ou de plusieurs types de fibres en mélange intime. Le fil continu peut être également obtenu par assemblage de plusieurs fils multifilamentaires.

Par fibre, on entend un filament ou un ensemble de filaments coupés, craqués ou convertis.

Dans le domaine des matériaux haute-performances, les composites ont pris une place prépondérante, de par leurs performances et les gains de poids qu'ils autorisent. Les composites hautes performances les plus connus à ce jour, sont obtenus à partir de résines thermodurcissables, dont l'utilisation est limitée aux applications de faibles séries, principalement dans l'aéronautique, le sport automobile, et dans les meilleurs cas, présentant des temps de fabrication voisins d'une quinzaine de minutes, comme par exemple, lors de la fabrication de skis. Le coût de ces matériaux, et/ou les temps de fabrication, les rendent incompatibles avec un usage en grande série.

Une réponse, en regard des temps de fabrication, est donnée par les composites à matrice thermoplastique. Les résines thermoplastiques sont en général connues pour leur viscosité élevée, ce qui constitue un frein en ce qui concerne l'imprégnation des matériaux de renfort, composés en général de faisceaux de filaments très denses. Il résulte de l'emploi des matrices thermoplastiques disponibles sur le marché, notamment des matrices polyamide, une difficulté d'imprégnation imposant soit des temps d'imprégnation prolongés, soit des pressions de mise en oeuvre importantes. Dans la majeure partie des cas, les matériaux composites obtenus à partir de ces matrices peuvent présenter des microvides et des zones non imprégnées. Ces microvides causent des chutes

de propriétés mécaniques, un vieillissement prématué du matériau ainsi que des problèmes de délaminage lorsque le matériau est stratifié.

Pour améliorer l'imprégnation des fils de renfort par la matrice et l'adhésion entre les fils de renfort et la matrice, plusieurs voies ont été explorées.

5 La première de ces voies a consisté à utiliser des polyamides linéaires à poids moléculaire abaissé, comme matrice.

Ainsi, le document FR-2 158 422 décrit une feuille composite constituée d'une matrice polyamide et de fibres de renfort de type fibres de verre. Le polyamide est obtenu par polycondensation d' ϵ -caprolactame, dont le poids 10 moléculaire est compris entre 3000 et 25000 g/mol, ayant la capacité, grâce à sa faible viscosité, d'imprégnier convenablement les fibres de renfort et ainsi de limiter l'apparition de microvides, dans le produit fini. Ce document décrit également un procédé de formage de cette feuille composite.

De façon générale, l'utilisation de polyamides de poids moléculaires 15 faibles dans la matrice présente comme inconvénient majeur d'altérer les propriétés mécaniques du composite, notamment en ce qui concerne la résistance à la rupture, la résistance à l'allongement et le comportement en fatigue. En effet, lors de la mise en œuvre de composites hautes performances, renforcés de fibres longues, les propriétés mécaniques de ces composites sont 20 fonction de la plasticité de la matrice, qui transmet les contraintes au niveau du renfort, et des propriétés mécaniques de celle-ci.

Une autre voie permettant d'améliorer l'imprégnation des fibres de renforts par la matrice, consiste à employer une matrice se présentant sous la 25 forme d'un oligomère ou d'un prépolymère de bas poids moléculaire, polymérisable par polycondensation, *in situ*.

Ainsi, le document FR-A-2 603 891 concerne un procédé de fabrication d'un matériau composite, constitué d'une matrice en polyamide renforcée par des 30 fibres de renfort longues. Ces fibres sont imprégnées d'un prépolymère ou d'un oligomère de polyamide qui comporte à chaque extrémité de la chaîne moléculaire une fonction réactive susceptible de réagir avec une autre molécule d'oligomère ou de prépolymère sous l'effet d'un chauffage, entraînant l'allongement de la chaîne polymérique, pour obtenir un polyamide de poids moléculaire élevé. L'oligomère ou le prépolymère, de faible masse moléculaire, a 35 comme caractéristique d'être fluide à l'état fondu. Les polyamides utilisés sont préférentiellement des polyamides 6, 6.6, 6.10, 6.12, 11 et 12. Les fibres

imprégnées sont ensuite pultrudées à travers une filière conformatrice, à température élevée, afin de former des profilés.

Ce procédé reste voisin des procédés classiques de polymérisation, donc présente des temps de cycle incompatibles avec une cadence de production rapide. Si l'on adapte les temps de cycle de façon à les rendre compatibles avec la grande série, le poids moléculaire du polyamide obtenu et constituant la matrice est trop faible pour conférer à cette dernière un bon niveau de propriétés mécaniques.

Le document EP-B-0 133 825 décrit un matériau composite souple principalement constitué d'un matériau de renfort sous forme d'une mèche de fibres continues parallèles, imprégnées de poudre thermoplastique, préférentiellement de la poudre de polyamide, et d'une matrice thermoplastique sous forme de gaine autour de la mèche de fibres continues, cette gaine pouvant être également en polyamide. Ce matériau se caractérise par le fait que le polymère constituant la matrice thermoplastique possède un point de fusion inférieur ou égal à celui du polymère constituant la poudre thermoplastique, de telle sorte que le gainage des fibres recouvertes de poudre est réalisé par fusion de la matrice thermoplastique, mais sans fusion de la poudre, de telle sorte que cette dernière isole les fibres de la gaine.

Un inconvénient de l'utilisation d'un polymère thermoplastique sous forme de poudre est la nécessité d'utiliser un appareillage complexe qui limite la quantité de composite obtenue. Il apparaît donc clairement que ce procédé est peu compatible avec une production de grande série.

Le document US-B-5 464 684 décrit un fil hybride comprenant un cœur de mélange intime de filaments de renfort et de filaments de polyamide de basse viscosité, formant la matrice. Ce noyau est recouvert par un fil continu de polyamide, préférentiellement du même type que celui utilisé pour le noyau. Le polyamide utilisé est du type nylon 6 ou nylon 6.6, mais peut également être constitué par le nylon 6.6 T, le nylon 6.10, le nylon 10 ou un polyamide d'acide adipique et de 1,3-xylylénediamine. Les fibres de renfort sont des fibres de carbone ou des fibres de verre.

La technique utilisée pour fabriquer un tel fil hybride est certes adaptée à des applications de petites séries, telles que la fabrication de raquettes de tennis. Toutefois, il est difficile de concevoir l'utilisation d'une telle méthode à plus grande échelle.

Le document WO 03/029350 décrit l'utilisation d'un polyamide étoile comme matrice, un tel polyamide présentant une bonne fluidité à l'état fondu, ce qui permet une bonne imprégnation des matériaux de renfort.

5 L'objectif de la présente invention est donc de remédier aux inconvénients décrits ci-dessus en proposant un article précurseur d'un matériau composite, comprenant des types différents de fils et/ou de fibres, et notamment au moins un fil et/ou des fibres de renfort, et au moins un fil et/ou des fibres générateur d'une matrice thermoplastique présentant une haute fluidité à l'état 10 fondu, permettant une très bonne imprégnation des fils et/ou des fibres de renfort, lors de la formation du matériau composite. Un tel article permet d'obtenir un matériau composite par une technique simple et rapide de thermocompression.

Un autre objectif de l'invention est de proposer un matériau composite, obtenu à partir de cet article et présentant de bonnes propriétés mécaniques.

15 Enfin, un dernier objectif de l'invention est de fournir un matériau composite présentant un avantage de réduction de coûts de fabrication, par l'emploi d'un outillage mettant en oeuvre des basses pressions et des temps de cycle raccourcis.

20 A cette fin, l'invention concerne un article précurseur d'un matériau composite comprenant une matrice polymérique et au moins un fil et/ou des fibres de renfort, ledit article comprenant au moins un fil et/ou des fibres de renfort et au moins un fil et/ou des fibres de matrice polymérique caractérisé en ce que :

25 - ledit fil et/ou lesdites fibres de renfort sont en matériau de renfort et comprennent éventuellement une partie en polymère thermoplastique
- ledit fil et/ou lesdites fibres de matrice polymérique sont en polymère thermoplastique, et en ce que,
- ledit polymère thermoplastique dudit fil et/ou desdites fibres de renfort et/ou dudit fil et/ou desdites fibres de matrice polymérique comprend au 30 moins un polycondensat constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

35 • 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

dans lesquelles

-X-Y- est un radical issu de la condensation de deux fonctions réactives F₁ et F₂ telles que

- 5 - F₁ est le précurseur du radical -X- et F₂ le précurseur du radical -Y- ou inversement,
- les fonctions F₁ ne peuvent réagir entre elles par condensation
- les fonctions F₂ ne peuvent réagir entre elles par condensation
- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.
- 10 - R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
- R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné
- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone,
- 15 linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
- n, m et p représentent chacun un nombre compris entre 30 et 200

Toutes les fonctions de polycondensation connues peuvent être utilisées dans le cadre de l'invention pour F₁ et F₂.

20 Dans le polycondensat, les radicaux R₂ peuvent être de nature identique ou différente entre eux.

Selon un mode de réalisation particulier de l'invention ;la matrice polymérique est un polyamide A1 constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires 25 répondant à la formule (I) suivante :

$$R_3-(X-R_2-Y)_n-X-A-R_1-A-X-(Y-R_2-X)_m-R_3 \quad (\text{I})$$
- 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4-[Y-R_2-X]_p-R_3 \quad (\text{II})$$

30 dans lesquelles :

- Y est le radical $\begin{array}{c} \text{---N---} \\ | \\ \text{R}_5 \end{array}$ quand X représente le radical $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$,
- Y est le radical $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$ quand X représente le radical $\begin{array}{c} \text{---N---} \\ | \\ \text{R}_5 \end{array}$,

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.
- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
- 5 - R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné comprenant un groupement $\begin{array}{c} \text{C} \\ \parallel \\ \text{O} \end{array}$ ou $\begin{array}{c} \text{N} \\ | \\ \text{R}_5 \end{array}$
- R₅ représente l'hydrogène ou un radical hydrocarboné comprenant de 1 à 6 atomes de carbone
- 10 - R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
- n, m et p représentent chacun un nombre compris entre 30 et 200

15 Selon un autre mode de réalisation particulier de l'invention, la matrice polymérique de l'invention consiste en un polyester A2 constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

20 • 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

dans lesquelles :

- Y est le radical $\begin{array}{c} \text{O} \\ || \\ \text{O} \end{array}$ quand X représente le radical $\begin{array}{c} \text{C} \\ \parallel \\ \text{O} \end{array}$

25 - Y est le radical $\begin{array}{c} \text{C} \\ \parallel \\ \text{O} \end{array}$ quand X représente le radical $\begin{array}{c} \text{O} \\ || \\ \text{O} \end{array}$

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.

- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.

30 - R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

comprenant un groupement $\begin{array}{c} \text{C} \\ \parallel \\ \text{O} \end{array}$ ou $\begin{array}{c} \text{O} \\ || \\ \text{O} \end{array}$

- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.

-n, m et p représentent chacun un nombre compris entre 30 et 200

5 La matrice polymérique de l'invention peut également être un copolyesteramide.

Avantageusement m, n et p sont compris entre 30 et 250.

Avantageusement, R₂ est un radical pentaméthylénique.

10 Le polyamide A1 ou le polyester A2 de l'invention comprend avantageusement au moins 45%, de préférence au moins 60%, encore plus préférentiellement au moins 80% molaire de chaînes macromoléculaires répondant à la formule (I).

15 Le polyamide A1 ou le polyester A2 de l'invention présente avantageusement une masse moléculaire en nombre supérieure ou égale à 5000, et inférieure ou égale à 25000 g/mol.

Le fil et/ou les fibres de polymère thermoplastique destinés à jouer le rôle de matrice seront dénommés ci-après "fil- et/ou fibres-matrice".

Par masse moléculaire en nombre du polyamide A1 ou du polyester A2, on entend la masse moléculaire en nombre pondérée par les fractions 20 molaires des deux types de chaînes macromoléculaires des formules (I) et (II).

Selon un mode de réalisation particulier de l'invention, le polyamide A1 ou le polyester A2 est obtenu par copolymérisation à partir d'un mélange de monomères comprenant :

- 25 a) un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les acides carboxyliques, les alcools, et leurs dérivés, les fonctions réactives étant identiques,
- b) des monomères de formules générales (IIIa) et (IIIb) suivantes dans le cas du polyamide A1

30

b') des monomères de formules générales (IIIa') et (IIIb') suivantes dans le cas du polyester A2

dans lesquelles

- R'_2 représente un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes,
- Y' est un radical amine quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical amine, dans le cas du polyamide A1
- Y' est un radical hydroxyle quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical hydroxyle, dans le cas du polyester A2

Par acide carboxylique ou radical carboxylique dans la présente invention, on entend les acides carboxyliques et leurs dérivés, tels que les anhydrides d'acide, les chlorures d'acide, les esters, les nitriles etc. Par amine, on entend les amines et leurs dérivés.

Les monomères de formule (III_a) ou (III_b) sont de préférence les monomères de polyamides du type polyamide 6, polyamide 11, polyamide 12 etc. On peut citer à titre d'exemple de monomères de formule (III_a) ou (III_b) pouvant convenir dans le cadre de l'invention le caprolactame, l'acide 6-aminocaproïque, le lauryllactame etc. Il peut s'agir d'un mélange de monomères différents.

Comme exemples de monomères de formule (III_a') ou (III_b') pouvant convenir dans le cadre de l'invention, on peut citer la caprolactone, la δ-valerolactone, l'acide 4-hydroxybenzoïque etc.

Le mélange de monomères peut également comprendre un monomère monofonctionnel utilisé classiquement dans la production des polymères comme limiteur de chaînes.

Le mélange de monomères peut également comprendre des catalyseurs.

Avantageusement le composé a) représente entre 0,1 et 2% molaire par rapport au nombre de moles de monomères de type b) ou b').

Dans le cas du polyamide A1, la copolymérisation des monomères est réalisée dans des conditions classiques de polymérisation de polyamides obtenus à partir de lactames ou d'aminoacides.

5 Dans le cas du polyester A2, la copolymérisation des monomères est réalisée dans des conditions classiques de polymérisation de polyesters obtenus à partir de lactones ou d'hydroxy-acides

La polymérisation peut comprendre une étape de finition afin d'obtenir le degré de polymérisation souhaité.

10 Selon un autre mode de réalisation particulier de l'invention, le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu, par exemple à l'aide d'un dispositif d'extrusion, d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides et d'un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les alcools, les acides 15 carboxyliques et leurs dérivés, les fonctions réactives étant identiques. Le polyamide est par exemple du polyamide 6, du polyamide 11, du polyamide 12 etc.. Le polyester est par exemple le polycaprolactone, la poly(pivalolactone) etc..

Le composé difonctionnel est ajouté directement dans le polyamide ou le polyester en milieu fondu.

20 Avantageusement le composé difonctionnel représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester.

Le composé difonctionnel de l'invention est de préférence représenté par la formule (IV) :

25 dans laquelle X'' représente un radical amine, un radical hydroxyle ou un groupement carboxylique ou leurs dérivés

R1 et A sont tels que décrits ci-dessus.

A titre d'exemple de radical X'', on peut citer un radical amine primaire, amine secondaire etc.

30 Le composé difonctionnel peut être un diacide carboxylique. A titre d'exemples de diacides, on peut citer l'acide adipique qui est l'acide préféré, l'acide décanoïque ou sébacique, l'acide dodécanoïque, les acides phtaliques tels

que l'acide téréphthalique, l'acide isophthalique. Il peut s'agir d'un mélange comprenant des sous-produits issus de la fabrication d'acide adipique, par exemple un mélange d'acide adipique, d'acide glutarique et d'acide succinique.

Le composé difonctionnel peut être une diamine. A titre d'exemples de 5 diamines, on peut citer l'hexaméthylène diamine, la méthyl pentaméthylènediamine, la 4,4'-diaminodicyclohexylméthane, la butane diamine, la métaxylylène diamine.

Le composé difonctionnel peut être un dialcool. A titre d'exemples de dialcools, on peut citer le 1,3-propanediol, le 1,2-éthanediol, le 1,4-butanediol, le 10 1,5-pantanediol, le 1,6-hexanediol et polytetrahydrofurane.

Le composé fonctionnel peut être un mélange d'une diamine et d'un dialcool.

Dans le cas du polyamide A1, les fonctions réactives du composé difonctionnel sont généralement des amines ou des acides carboxyliques ou 15 dérivés.

Dans le cas du polyester A2, les fonctions réactives du composé difonctionnel sont généralement des alcools ou des acides carboxyliques ou dérivés.

De préférence le composé difonctionnel est choisi parmi l'acide adipique, 20 l'acide décanoïque ou sébacique, l'acide dodécanoïque, l'acide téréphthalique, l'acide isophthalique, l'hexaméthylène diamine, la méthyl pentaméthylènediamine, la 4,4'-diaminodicyclohexylméthane, la butane diamine, la métaxylylène diamine, le 1,3-propanediol, le 1,2-éthanediol, le 1,4-butanediol, le 1,5-pantanediol, le 1,6-hexanediol et le polytetrahydrofurane

Selon un autre mode de réalisation particulier de l'invention, le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu, par exemple à l'aide d'un dispositif d'extrusion, d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides, avec un composé de formule 30 (V) :

dans laquelle

R est un radical hydrocarboné, linéaire ou cyclique, aromatique ou aliphatique, substitué ou non, et pouvant comprendre des hétéroatomes,

G est une fonction ou un radical pouvant réagir sélectivement soit avec les fonctions réactives amine, soit avec les fonctions réactives alcool, soit avec les 5 fonctions réactives acide carboxylique du polyamide ou du polyester, pour former des liaisons covalentes. Le polyamide est par exemple du polyamide 6, du polyamide 11, du polyamide 12. Le polyester est par exemple le polycaprolactone ou le poly(pivalolactone).

Le composé de formule (V) est ajouté directement dans le polyamide ou le 10 polyester en milieu fondu.

Avantageusement le composé de formule (V) représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester.

Tous les coupleurs de chaînes polymériques ou les agents d'extension de chaînes polymériques connus de l'homme du métier, comprenant généralement 15 deux fonctions identiques ou deux radicaux identiques, et réagissant sélectivement soit avec les fonctions réactives amine, soit avec les fonctions réactives alcool, soit avec les fonctions réactives acide carboxylique du polyamide ou du polyester, pour former des liaisons covalentes, peuvent être utilisés comme composé de formule (V).

20 Dans le cas de l'obtention de polyamide A1, le composé (V) peut par exemple réagir sélectivement avec les fonctions amine du polyamide dans lequel il est introduit. Ce composé ne réagira pas avec les fonctions acide du polyamide dans ce cas.

De façon avantageuse, lorsque le fil et/ou les fibres de renfort 25 comprennent un polymère thermoplastique, celui-ci se présente préférentiellement sous la forme d'une gaine de polymère qui recouvre le fil et/ou les fibres de renfort.

Selon une variante de l'invention, l'article précurseur du matériau composite comporte également au moins un fil- et/ou des fibres-matrice en 30 polymère thermoplastique linéaire.

Selon une caractéristique préférée, ce polymère linéaire est un polyamide ou copolyamide aliphatique et/ou semicristallin choisi dans le groupe comprenant le PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11,

PA 12 ou un polyamide ou copolyamide semi-aromatique semicristallin choisi dans le groupe comprenant les polyphthalimides, et les mélanges de ces polymères et de leurs copolymères.

Le fil- et/ou les fibres-matrice peuvent comprendre également tous les 5 additifs usuels tels que des ignifugeants, des fluidifiants, des stabilisants chaleur et lumière, des cires, des pigments, des nucléants, des antioxydants, des modificateurs de la résistance aux chocs ou analogues et connus de l'homme de l'art.

Avantageusement, le fil et/ou les fibres de renfort sont choisis parmi 10 les fils et/ou les fibres de carbone, de verre, d'aramides et de polyimides.

Selon une variante de cette caractéristique, le fil et/ou les fibres de renfort sont un fil et/ou des fibres naturels, choisis parmi les fils et/ou les fibres de sisal, de chanvre, de lin.

De façon avantageuse, l'article selon l'invention comporte également 15 un matériau en poudre, précurseur de matrice, qui peut être par exemple un polyamide.

De préférence, on utilisera une poudre présentant une granulométrie comprise entre 1 et 100 microns.

Préférentiellement, l'article selon l'invention est sous forme de fils 20 continus ou coupés, de rubans, de mats, de tresses, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées. A titre d'exemples, une forme complexe peut être une nappe associée à un non-tissé ou à des fils continus.

Un autre objet de l'invention est un matériau composite obtenu à partir 25 d'un article tel que défini ci-dessus, par fusion au moins partielle du fil- et/ou des fibres-matrice. Ce matériau composite comprend une matrice polymérique et des fils et/ou des fibres de renfort.

Par fusion partielle, on entend la fusion d'au moins une partie d'au moins un fil et/ou une fibre-matrice.

Cette fusion peut être réalisée par thermocompression à une 30 température supérieure à la température de fusion de la matrice polymérique et sous pression. Cette fusion permet d'obtenir une imprégnation homogène des fils et/ou des fibres de renfort par la matrice.

Selon une caractéristique préférentielle, le matériau composite ainsi 35 obtenu, présente un taux de renfort massique compris entre 25 et 80 %.

Encore un autre objet de l'invention est un produit semi-fini obtenu par un procédé de thermocompression ou de calandrage de l'article précédent, au cours

duquel on fond au moins partiellement le fil- et/ou les fibres-matrice afin d'imprégnier le fil et/ou les fibres de renfort.

Avantageusement encore, ce produit semi-fini se présente sous forme de plaques ou de bandes.

5 Le produit semi-fini consiste en un produit intermédiaire, dans lequel les fils et/ou les fibres de renfort ont été imprégnés par la matrice polymérique qui se trouve sous la forme d'une phase continue. Ce produit n'est pas encore sous sa forme définitive.

10 Le produit semi-fini doit subir une ultime étape de mise en forme, par un procédé de formage ou thermocompression connus de l'homme de l'art, à des températures supérieures à leur point de transition vitreuse et inférieures à son point de fusion, permettant d'obtenir un produit fini.

15 Encore un autre objet de l'invention est un produit fini obtenu par un procédé de thermocompression à la forme définitive de l'article précité, au cours duquel on fond au moins partiellement le fil- ou/et les fibres-matrice afin d'imprégnier le fil et/ou les fibres de renfort.

De façon générale, les procédés de thermocompression utilisés mettent en œuvre des basses pressions (inférieures à 20 bars), des températures inférieures à 290°C, et des temps courts (inférieurs à 5 minutes).

20 D'autres détails et avantages de l'invention apparaîtront plus clairement à la lumière des exemples donnés ci-dessous, uniquement à titre indicatif et à fin d'illustration.

25 Matrice utilisée : polyamide A1 selon l'invention, obtenu par polycondensation de caprolactame en présence de 0.6% molaire d'acide adipique, dans des conditions classiques de polymérisation de polyamide à partir de caprolactame

Exemple 1- Plaque semi-finie réalisée à partir de polyamide selon l'invention et de fils de renfort

30 Une série d'essais à été réalisée à partir d'un fil multifilaments de polyamide A1 décrit ci-dessus, présentant un titre par brin compris entre 21 et 22 dtex et une ténacité voisine de 23 cN/Tex. Un tel multifilament est assemblé, lors d'une opération de tissage multiaxial, avec un fil de renfort continu de verre, 35 présentant un titre de 600 Tex. Afin de valider la haute fluidité de la matrice à

l'état fondu, des tissus multiaxiaux sont réalisés à partir de couches élémentaires, définies comme suit:

Couche élémentaire

5

- Pli n°1 : fil de renfort – orientation : - 45°
- Pli n°2 : fil de renfort – orientation : +45°
- Pli n°3 : fil Polyamide A1 (matrice) – orientation : 90°

10 Un composite stratifié est ensuite réalisé en plaçant plusieurs couches élémentaires (entre 2 et 10) du tissu obtenu dans un moule présentant une forme de plaque, sous une presse à plateaux chauffants, pendant une durée de 1 à 3 minutes, sous une pression comprise entre 1 et 20 Bars et une température comprise entre 250 et 260 °C (supérieure à la température de fusion du
 15 Polyamide A1). Après refroidissement jusqu'à une température de 50-60°C, le composite est démoulé. Le taux massique de renfort est alors compris entre 60 et 70%.

La haute fluidité du polyamide A1 permet d'obtenir une bonne
 20 imprégnation du renfort par la matrice sans engendrer ni les pertes de propriétés mécaniques, ni les problèmes de résistance à la fatigue constatés avec des polymères à bas poids moléculaire. Les propriétés mécaniques en flexion sont comparées à celles d'un composite thermodurcissable obtenu à partir du même matériau de renfort et d'une résine époxy dans le tableau 1.

25

Fibres de verre	Contrainte de rupture (MPa)	Module de flexion (MPa)	Allongement à la rupture (%)
Matrice Epoxy	630,0	21000	3,53
Matrice PA1	517	21000	3,26

Tableau 1 : Plaque composite polyamide/fibres de verre

L'utilisation d'un renfort sous forme de fil continu permet de conserver
 30 des propriétés mécaniques élevées dans des directions privilégiées. Le fait d'utiliser la matrice sous la forme d'un fil permet, outre un avantage économique

par rapport aux solutions de poudrage ou de pré-imprégnation classiques, une manipulation aisée ainsi qu'une bonne maîtrise du taux de renforcement du matériau composite final.

Le tableau n°2 donne une synthèse des propriétés mécaniques
5 obtenues.

	Unités	Norme	Tissu Multiaxial PA A1 / Verre
Taux d'imprégnation (p/p)	%		65
Densité			1.8
<i>Traction Simple</i>			
Contrainte rupture	MPa	ISO 527	545
Module d'Young	GPa	ISO 527	21.3
Allongement	%	ISO 527	2.76
<i>Flexion 3 points</i>			
Contrainte rupture	MPa	ISO 14125	517
Module de flexion	GPa	ISO 14125	21
<i>Choc multiaxial</i>			
Force maximale	DaN	ISO 6603-2	650

Tableau 2: Synthèse des propriétés mécaniques obtenues.

REVENDICATIONS

1. Article précurseur d'un matériau composite comprenant une matrice polymérique et au moins un fil et/ou des fibres de renfort, ledit article comprenant au moins un fil et/ou des fibres de renfort et au moins un fil et/ou des fibres de matrice polymérique caractérisé en ce que :

- ledit fil et/ou lesdites fibres de renfort sont en matériau de renfort et comprennent éventuellement une partie en polymère thermoplastique
- ledit fil et/ou lesdites fibres de matrice polymérique sont en polymère thermoplastique, et en ce que,
- ledit polymère thermoplastique dudit fil et/ou desdites fibres de renfort et/ou dudit fil et/ou desdites fibres de matrice polymérique comprend au moins un polycondensat constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

- 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

20 dans lesquelles

—X-Y- est un radical issu de la condensation de deux fonctions réactives F₁ et F₂ telles que

- F₁ est le précurseur du radical —X- et F₂ le précurseur du radical —Y- ou inversement,

25 - les fonctions F₁ ne peuvent réagir entre elles par condensation

- les fonctions F₂ ne peuvent réagir entre elles par condensation

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.

- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non

30 comprenant de 2 à 20 atomes de carbone.

- R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
- n, m et p représentent chacun un nombre compris entre 30 et 200

5

2. Article selon la revendication 1, caractérisé en ce que le polymère thermoplastique comprend au moins un polyamide A1 constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

10

- 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

dans lesquelles :

15

- Y est le radical $\begin{array}{c} N \\ | \\ R_5 \end{array}$ quand X représente le radical $\begin{array}{c} C \\ || \\ O \end{array}$

- Y est le radical $\begin{array}{c} C \\ || \\ O \end{array}$ quand X représente le radical $\begin{array}{c} N \\ | \\ R_5 \end{array}$

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.

- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.

- R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

comprenant un groupement $\begin{array}{c} C \\ || \\ O \end{array}$ ou $\begin{array}{c} N \\ | \\ R_5 \end{array}$

- R₅ représente l'hydrogène ou un radical hydrocarboné comprenant de 1 à 6 atomes de carbone

- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.

-n, m et p représentent chacun un nombre compris entre 30 et 200

3. Article selon la revendication 1, caractérisé en ce que le polymère thermoplastique comprend au moins un polyester A2 constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

- 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

10 dans lesquelles :

- Y est le radical ---O--- quand X représente le radical $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$

- Y est le radical $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$ quand X représente le radical ---O---

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.

15 - R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.

- R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

comprenant un groupement $\begin{array}{c} \text{---C---} \\ || \\ \text{O} \end{array}$ ou ---O---

20 - R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.

-n, m et p représentent chacun un nombre compris entre 30 et 200

25 4. Article selon l'une des revendications précédentes, caractérisé en ce que n, m et p sont compris entre 30 et 150

5. Article selon l'une des revendications 2 à 4, caractérisé en ce que le polyamide A1 ou le polyester A2 comprend au moins 45%, de préférence au moins 60% molaire de chaînes macromoléculaires répondant à la formule (I)
- 5 6. Article selon l'une des revendications précédentes, caractérisé en ce que R2 est un radical pentaméthylénique
7. Article selon l'une des revendications 2 à 6, caractérisé en ce que le polyamide A1 ou le polyester A2 est obtenu par copolymérisation à partir d'un
10 mélange de monomères comprenant :
- a) un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les acides carboxyliques, les alcools, et leurs dérivés, les fonctions réactives étant identiques,
- b) des monomères de formules générales (IIIa) et (IIIb) suivantes dans le
15 cas du polyamide A1

- 20 b') des monomères de formules générales (IIIa') et (IIIb') suivantes dans le cas du polyester A2

dans lesquelles

- R'2 représente un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes,
- Y' est un radical amine quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical amine, dans le cas du polyamide A1

- Y' est un radical hydroxyle quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical hydroxyle, dans le cas du polyester A2

- 5 8. Article selon la revendication 7, caractérisé en ce que le composé a) représente entre 0,1 et 2% molaire par rapport au nombre de moles de monomères de type b) ou b')
- 10 9. Article selon l'une des revendications 2 à 6, caractérisé en ce que le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides avec un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les alcools, les acides carboxyliques et leurs dérivés, les fonctions réactives étant identiques.
- 15 10. Article selon la revendication 9, caractérisé en ce que le composé difonctionnel représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester

20

11. Article selon l'une des revendications 7 à 10, caractérisé en ce que le composé difonctionnel est représenté par la formule (IV) :

25

dans laquelle X'' représente un radical amine , un radical hydroxyle, un groupement carboxylique ou leurs dérivés

- 30 12. Article selon l'une des revendications 7 à 11, caractérisé en ce que le composé difonctionnel est choisi parmi l'acide adipique, l'acide décanoïque ou sébacique, l'acide dodécanoïque, l'acide téraphthalique, l'acide isophthalique,

l'hexaméthylène diamine, la méthyl pentaméthylénediamine, la 4,4'-diaminodicyclohexylméthane, la butane diamine, la métaxylylène diamine, le 1,3-propanediol, le 1,2-éthanediol, le 1,4-butanediol, le 1,5-pantanediol, le 1,6-hexanediol et le polytetrahydrofurane

5

13. Article selon l'une des revendications 2 à 6, caractérisé en ce que le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu, d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides, avec un composé de formule (V) :

dans laquelle

- R est un radical hydrocarboné, linéaire ou cyclique, aromatique ou aliphatique, substitué ou non, et pouvant comprendre des hétéroatomes,
- G étant une fonction ou un radical pouvant réagir sélectivement soit avec les fonctions réactives amine, soit avec les fonctions réactives alcool, soit avec les fonctions réactives acide carboxylique du polyamide ou du polyester, pour former des liaisons covalentes

14. Article selon la revendication 13, caractérisé en ce que le composé de formule (V) représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester.

15. Article selon l'une des revendications précédentes, caractérisé en ce qu'il comporte également au moins un fil- et/ou des fibres-matrice en polymère thermoplastique linéaire

16. Article selon la revendication 15, caractérisé en ce que le polymère linéaire est un polyamide ou copolyamide aliphatique et/ou semicristallin choisi dans le groupe comprenant le PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11, PA 12 ou un polyamide ou copolyamide semi-aromatique

semicristallin choisi dans le groupe comprenant les polyphthalamides, et les mélanges de ces polymères et de leurs copolymères.

- 5 17. Article selon l'une des revendications précédentes, caractérisé en ce que le fil et/ou les fibres-matrice comprennent également des additifs, tels que des ignifugeants, des fluidifiants, des stabilisants chaleur et lumière, des cires, des pigments, des nucléants, des antioxydants, des modificateurs de la résistance aux chocs ou analogues.
- 10 18. Article selon l'une des revendications précédentes, caractérisé en ce que le fil et/ou les fibres de renfort sont choisis parmi les fils et/ou les fibres de carbone, de verre, d'aramides et de polyimides.
- 15 19. Article selon l'une des revendications précédentes, caractérisé en ce que le fil et/ou les fibres de renfort sont un fil et/ou des fibres naturels, choisis parmi les fils et/ou les fibres de sisal, de chanvre, de lin.
- 20 20. Article selon l'une des revendications précédentes, caractérisé en ce qu'il comporte également un matériau en poudre précurseur de matrice.
- 25 21. Article selon la revendication précédente, caractérisé en ce que ledit matériau en poudre précurseur de matrice est un polyamide.
- 30 22. Article selon l'une des revendications précédentes, caractérisé en ce qu'il est sous forme de fils continus ou coupés, de rubans, de mats, de tressés, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées.
- 35 23. Matériau composite caractérisé en ce qu'il est obtenu à partir d'un article selon l'une des revendications précédentes, par fusion au moins partielle du fil- et/ou des fibres-matrice.

24. Matériau composite selon la revendication précédente, caractérisé en ce qu'il présente un taux de renfort massique compris entre 25 et 80 %.

25. Produit semi-fini caractérisé en ce qu'il est obtenu par un procédé de
5 thermoformage ou de calandrage de l'article selon l'une des revendications 1 à 22, au cours duquel on fond au moins partiellement le fil- ou/et les fibres-matrice afin d'imprégnier le fil et/ou les fibres de renfort.

26. Produit semi-fini selon la revendication 25, caractérisé en ce qu'il se présente
10 sous forme de plaques ou de bandes.

27. Produit fini caractérisé en ce qu'il est obtenu par un procédé de
thermoformage à la forme finale de l'article selon l'une des revendications 1 à
15 22, au cours duquel on fond au moins partiellement le fil- ou/et les fibres-
matrice afin d'imprégnier le fil et/ou les fibres de renfort.

28. Produit fini caractérisé en ce qu'il est obtenu par un procédé de formage ou de
thermocompression à la forme finale du produit semi-fini selon l'une des
revendications 25 ou 26.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/003310

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	B29C70/50	B29C70/46	B29B15/10	C08J5/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B29C B29B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 03/029350 A (RHODIA IND YARNS AG ; PHILIPPON FREDERIC (CH); MYARD PHILIPPE (FR)) 10 April 2003 (2003-04-10) cited in the application	1,2,4-28
Y	the whole document	3
Y	----- WO 02/062563 A (QUADRANT PLASTIC COMPOSITES AG ; DITTMAR HARRI (DE)) 15 August 2002 (2002-08-15) page 3, line 12 - line 23 claims	3
A	EP 0 743 165 A (BUDD CO) 20 November 1996 (1996-11-20)	----- -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

27 May 2005

Date of mailing of the international search report

06/06/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Mazet, J-F

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/FR2004/003310

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	FR 2 158 422 A (ALLIED CHEM) 15 June 1973 (1973-06-15) cited in the application page 9, line 13 – page 10, line 12 examples -----	1,2,4-6, 9-28
A	FR 2 603 891 A (ATOCHEM) 18 March 1988 (1988-03-18) cited in the application the whole document -----	1-28
A	EP 0 216 109 A (SUMITOMO CHEMICAL COMPANY, LIMITED; JAPAN EXLAN COMPANY, LTD) 1 April 1987 (1987-04-01) abstract claims column 2, line 38 – column 3, line 20 claims -----	1,3-8, 11,12
A	WO 93/25736 A (BASF AKTIENGESELLSCHAFT) 23 December 1993 (1993-12-23) abstract; claims -----	1,2,4-8, 11,12

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR2004/003310

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 03029350	A 10-04-2003	FR 2830255 A1 CA 2462395 A1 EP 1432763 A1 WO 03029350 A1 JP 2005504162 T			04-04-2003 10-04-2003 30-06-2004 10-04-2003 10-02-2005
WO 02062563	A 15-08-2002	DE 10105813 A1 WO 02062563 A1 EP 1358060 A1 US 2004177911 A1			14-08-2002 15-08-2002 05-11-2003 16-09-2004
EP 0743165	A 20-11-1996	BR 9602341 A CA 2176416 A1 DE 69610357 D1 DE 69610357 T2 EP 0743165 A2 ES 2151637 T3 US 5820801 A			01-09-1998 19-11-1996 26-10-2000 22-02-2001 20-11-1996 01-01-2001 13-10-1998
FR 2158422	A 15-06-1973	CA 1015121 A1 DE 2253048 A1 FR 2158422 A1 IT 975423 B JP 48052844 A JP 56033428 B US 3920879 A			09-08-1977 03-05-1973 15-06-1973 20-07-1974 25-07-1973 04-08-1981 18-11-1975
FR 2603891	A 18-03-1988	FR 2603891 A1 AT 59055 T CA 1323161 C CN 87106424 A ,C DE 3766678 D1 DK 485187 A EP 0261020 A1 ES 2005311 A6 FI 874046 A ,B , JP 2083353 C JP 7115413 B JP 63082731 A KR 9302462 B1 PT 85731 A ,B US 4927583 A			18-03-1988 15-12-1990 19-10-1993 30-03-1988 24-01-1991 18-03-1988 23-03-1988 01-03-1989 18-03-1988 23-08-1996 13-12-1995 13-04-1988 02-04-1993 01-10-1987 22-05-1990
EP 0216109	A 01-04-1987	JP 62045718 A EP 0216109 A2			27-02-1987 01-04-1987
WO 9325736	A 23-12-1993	DE 4218719 A1 AU 4317093 A BR 9306503 A CA 2137375 A1 CN 1089670 A ,C DE 59301269 D1 EE 3196 B1 WO 9325736 A1 EP 0644959 A1 ES 2081217 T3 JP 3179105 B2 JP 7506639 T			09-12-1993 04-01-1994 15-09-1998 23-12-1993 20-07-1994 08-02-1996 15-06-1999 23-12-1993 29-03-1995 16-02-1996 25-06-2001 20-07-1995

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCI/FR2004/003310

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9325736	A	KR 264615 B1	01-09-2000
		LT 3089 B	25-11-1994
		LV 10794 A ,B	20-08-1995
		RU 2114939 C1	10-07-1998
		SK 150994 A3	10-05-1995

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PC19FR2004/003310

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 B29C70/50 B29C70/46 B29B15/10 C08J5/04

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 B29C B29B

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	WO 03/029350 A (RHODIA IND YARNS AG ; PHILIPPON FREDERIC (CH); MYARD PHILIPPE (FR)) 10 avril 2003 (2003-04-10) cité dans la demande Le document en entier	1,2,4-28
Y	-----	3
Y	WO 02/062563 A (QUADRANT PLASTIC COMPOSITES AG ; DITTMAR HARRI (DE)) 15 août 2002 (2002-08-15) page 3, ligne 12 - ligne 23 revendications	3
A	EP 0 743 165 A (BUDD CO) 20 novembre 1996 (1996-11-20) -----	-/-

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

° Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

27 mai 2005

Date d'expédition du présent rapport de recherche internationale

06/06/2005

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Mazet, J-F

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCV/FR2004/003310

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS		
Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	FR 2 158 422 A (ALLIED CHEM) 15 juin 1973 (1973-06-15) cité dans la demande page 9, ligne 13 – page 10, ligne 12 exemples -----	1,2,4-6, 9-28
A	FR 2 603 891 A (ATOCHEM) 18 mars 1988 (1988-03-18) cité dans la demande le document en entier -----	1-28
A	EP 0 216 109 A (SUMITOMO CHEMICAL COMPANY, LIMITED; JAPAN EXLAN COMPANY, LTD) 1 avril 1987 (1987-04-01) abrégé revendications colonne 2, ligne 38 – colonne 3, ligne 20 revendications -----	1,3-8, 11,12
A	WO 93/25736 A (BASF AKTIENGESELLSCHAFT) 23 décembre 1993 (1993-12-23) abrégé; revendications -----	1,2,4-8, 11,12

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs

Membres de familles de brevets

 Demande Internationale No
 PCT/FR2004/003310

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
WO 03029350	A	10-04-2003	FR CA EP WO JP	2830255 A1 2462395 A1 1432763 A1 03029350 A1 2005504162 T	04-04-2003 10-04-2003 30-06-2004 10-04-2003 10-02-2005
WO 02062563	A	15-08-2002	DE WO EP US	10105813 A1 02062563 A1 1358060 A1 2004177911 A1	14-08-2002 15-08-2002 05-11-2003 16-09-2004
EP 0743165	A	20-11-1996	BR CA DE DE EP ES US	9602341 A 2176416 A1 69610357 D1 69610357 T2 0743165 A2 2151637 T3 5820801 A	01-09-1998 19-11-1996 26-10-2000 22-02-2001 20-11-1996 01-01-2001 13-10-1998
FR 2158422	A	15-06-1973	CA DE FR IT JP JP US	1015121 A1 2253048 A1 2158422 A1 975423 B 48052844 A 56033428 B 3920879 A	09-08-1977 03-05-1973 15-06-1973 20-07-1974 25-07-1973 04-08-1981 18-11-1975
FR 2603891	A	18-03-1988	FR AT CA CN DE DK EP ES FI JP JP JP KR PT US	2603891 A1 59055 T 1323161 C 87106424 A ,C 3766678 D1 485187 A 0261020 A1 2005311 A6 874046 A ,B , 2083353 C 7115413 B 63082731 A 9302462 B1 85731 A ,B 4927583 A	18-03-1988 15-12-1990 19-10-1993 30-03-1988 24-01-1991 18-03-1988 23-03-1988 01-03-1989 18-03-1988 23-08-1996 13-12-1995 13-04-1988 02-04-1993 01-10-1987 22-05-1990
EP 0216109	A	01-04-1987	JP EP	62045718 A 0216109 A2	27-02-1987 01-04-1987
WO 9325736	A	23-12-1993	DE AU BR CA CN DE EE WO EP ES JP JP	4218719 A1 4317093 A 9306503 A 2137375 A1 1089670 A ,C 59301269 D1 3196 B1 9325736 A1 0644959 A1 2081217 T3 3179105 B2 7506639 T	09-12-1993 04-01-1994 15-09-1998 23-12-1993 20-07-1994 08-02-1996 15-06-1999 23-12-1993 29-03-1995 16-02-1996 25-06-2001 20-07-1995

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs

Membres de familles de brevets

Demande Internationale No

PCT/FR2004/003310

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9325736	A	KR 264615 B1	01-09-2000
		LT 3089 B	25-11-1994
		LV 10794 A ,B	20-08-1995
		RU 2114939 C1	10-07-1998
		SK 150994 A3	10-05-1995