ASSIGNMENT-2 REPORT

Q1.A) PCA

We have got the following results and observations after applying PCA, that is selecting the number of components by preserving 95% of the total variance.

a) Percentage of variance explained by each of the selected components=
[15.93408197 11.5545204 8.37241357 7.9973064 7.48752279 6.02951663
5.77545494 4.70180486 4.37853618 3.29522026 2.848653 2.6709441
2.36439057 2.27978334 2.07310441 1.94444377 1.70558373 1.35482229
1.21711803 1.1130487]

- b) Variance explained by first principal component 15.934081970326952 Variance explained by first 2 principal components 27.488602369276926 Variance explained by first 5 principal components 51.345845130185836 Variance explained by first 10 principal components 75.52637800096525 Variance explained by first 15 principal components 87.76325340996782 Variance explained by first 19 principal components 93.98522122443343 Variance explained by first 20 principal components 95.09826992145959
- c) Variance explained by all the principal components = 95.09826992145962
- d) The cumulative sum of the variance explained by the selected components = [15.93408197 27.48860237 35.86101594 43.85832234 51.34584513 57.37536176 63.1508167 67.85262156 72.23115774 75.526378 78.375031 81.0459751 83.41036567 85.690149 87.76325341 89.70769718 91.4132809 92.76810319 93.98522122 95.09826992]

e) Following is the graph of Eigenvalues vs Number of Components

f) So after PCA the total number of principal components selected to preserve 95% total variance is 20.

And following is the table showing the values of selected components

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
0	-1.0	2.2	-1.9	-0.0	-0.7	-0.6	0.1	-0.9	0.0	0.9	-0.5	-0.9	-0.8	-0.2	0.0	-0.8	0.0	0.2	-0.1	-0.6
	576	604	857	231	716	958	251	054	477	171	853	846	473	105	063	756	405	316	503	182
	46	22	13	84	33	36	12	45	16	33	01	61	60	77	00	49	78	76	53	24
1	-2.0	1.2	1.5	-1.6	0.7	0.4	0.8	0.9	-0.7	0.9	-0.3	-0.6	-0.1	-0.0	-1.0	-0.1	-0.0	-0.4	-0.4	0.4
	318	819	975	881	540	119	742	785	351	223	271	177	106	199	232	163	104	733	844	254
	24	74	89	71	78	62	24	29	73	56	43	48	52	20	59	89	00	39	61	73
2	-1.6	-1.5	0.9	0.4	-0.2	-1.0	-1.9	0.8	-0.8	-0.4	0.1	-0.3	0.4	-1.0	-0.3	-0.1	-0.4	-0.6	0.3	0.1
	010	221	047	902	375	950	154	107	813	020	027	128	048	885	653	400	291	248	328	431
	70	87	81	03	50	35	12	70	91	55	92	00	37	65	47	85	82	60	80	09

3	-0.8	-1.7	0.4	2.0	1.2	-1.0	-1.5	0.4	0.1	-0.0	-0.5	0.4	-0.6	1.2	-0.5	0.8	0.4	-0.0	0.4	-0.0
	415	380	843	970	554	881	472	597	861	142	928	051	008	055	912	377	635	283	911	729
	56	84	09	76	59	26	77	30	26	96	63	57	63	21	62	80	42	03	20	75
4	-1.4	0.9	1.0	0.7	1.2	1.8	0.6	-0.3	0.0	0.6	-0.5	-0.7	-0.3	0.3	0.3	0.6	-0.0	-0.6	-0.5	0.6
	648	010	886	453	868	485	121	598	149	014	166	096	373	970	876	347	271	886	289	539
	77	17	15	50	15	24	84	38	06	46	62	63	12	16	51	06	48	12	90	30
5	-1.0	-2.7	1.0	0.8	1.5	-0.0	-0.0	0.1	-1.2	-0.1	0.4	-0.9	0.3	-0.7	0.3	0.4	0.2	0.4	-0.6	0.3
	383	133	326	750	169	987	382	556	412	313	214	978	240	207	940	267	173	363	111	951
	37	45	84	25	34	59	12	79	96	95	81	59	59	67	11	86	36	76	89	48
6	-1.6	-2.6	-0.1	1.0	0.3	0.5	0.0	-1.5	-1.2	0.0	-0.3	0.8	-0.3	0.0	-0.1	-0.9	-0.1	1.3	-0.0	0.2
	809	644	859	169	132	162	864	631	273	566	260	968	040	571	293	386	337	171	271	887
	44	65	08	89	60	09	83	86	33	27	55	61	80	71	39	79	65	80	16	57
7	-1.8	-1.0	1.4	-1.1	-1.4	1.5	2.2	0.6	1.5	-1.2	0.2	0.1	0.0	0.3	0.8	0.7	0.6	0.5	0.5	-0.1
	839	124	349	251	858	461	902	757	659	945	607	404	934	070	475	974	449	153	088	284
	41	22	32	91	13	39	91	52	02	90	72	71	95	52	64	75	09	94	92	48
8	-2.1	-0.5	-0.6	-1.3	-2.1	0.6	1.4	-0.3	-0.6	0.3	0.5	0.8	0.1	-0.7	-1.4	0.4	-0.6	-0.2	0.5	-0.4
	537	733	500	521	023	362	184	559	689	954	291	558	130	184	870	039	700	396	967	118
	90	95	55	13	94	90	26	34	19	82	80	60	61	91	86	40	49	18	25	30
9	1.3	-1.9	-0.7	-1.6	1.5	-1.0	-0.3	-0.4	2.2	0.7	-0.4	0.4	-0.8	-0.0	-0.2	-0.1	0.7	-0.3	-0.2	-0.2
	743	422	994	033	112	763	121	597	389	351	020	150	397	631	119	883	737	091	538	774
	54	24	12	84	03	86	18	21	96	22	54	40	71	28	59	83	84	47	36	11
1	0.5	-0.7	-0.4	1.0	-1.6	0.9	-1.0	-0.6	1.0	-0.5	1.7	-1.5	-0.4	0.8	-0.5	0.1	0.1	0.5	-0.2	0.0
	251	597	690	555	940	076	235	713	284	030	200	929	020	347	472	730	498	050	650	988
	13	09	75	93	57	83	97	57	36	63	51	56	16	67	53	71	97	50	78	03
1	1.6	0.3	-0.0	-0.1	-0.2	-0.3	-1.3	2.8	0.1	0.5	-0.4	0.5	0.2	-0.5	0.5	0.3	-0.0	0.9	0.2	-0.5
	456	790	142	317	370	482	465	689	011	352	377	236	708	074	514	616	082	190	535	789
	46	62	62	67	59	77	42	93	14	82	86	49	51	86	06	80	02	15	37	08
1 2	-0.2	2.8	-1.1	-0.2	-0.3	0.3	-0.8	-0.1	0.5	-0.7	-0.2	0.5	0.7	-0.6	-0.0	-0.0	0.9	0.4	-0.3	0.8
	363	721	316	854	961	434	024	673	559	889	241	314	463	312	057	387	046	347	276	499
	52	40	95	00	10	44	12	03	86	55	65	63	34	42	01	38	01	14	31	24
1	-1.1	2.1	0.1	0.4	1.1	0.3	0.2	0.4	0.2	0.8	-0.0	-0.1	-0.0	1.0	-0.3	-0.0	-1.0	0.5	0.0	-0.4
	670	581	600	661	586	929	630	896	698	912	132	950	847	176	226	676	864	851	787	340
	78	87	62	75	51	07	49	07	60	87	86	51	12	68	09	92	49	44	03	00
1 4	1.3 945 03	0.3 381 25	-2.2 931 93	1.0 826 98	-0.9 652 36	-0.4 229 07	0.2 845 19	-0.3 671 65	0.7 292 65	1.9 408 49	-0.3 698 43	0.1 887 79	1.1 132 67	-0.1 776 10	0.3 261 94	1.5 098 03	-0.5 934 49	0.1 921 46	-0.0 278 89	0.8 724 87
1 5	-0.8 585 81	-0.3 721 64	-0.9 397 46	-0.8 597 95	-0.4 898 31	0.1 279 70	-1.0 358 78	-0.6 417 26	-1.1 539 76	-0.4 858 66	0.2 487 79	0.0 534 48	0.1 982 64	-0.1 572 56	1.6 638 69	0.7 802 88	-0.3 799 88	-1.0 651 23	-0.1 621 54	-0.6 825 56

1 6	-0.0 289 80	-0.1 068 65	-0.4 266 93	-1.3 819 74	-1.6 767 38	-0.8 589 42	0.5 488 23	1.1 373 92	-1.8 282 64	-0.6 125 25	-1.5 863 55	-0.2 876 59	-0.4 593 35	0.6 646 38	-0.0 373 02	0.3 147 15	0.3 455 77	0.6 322 96	-0.7 972 51	-0.2 403 39
1 7	-0.8 553 22	-0.6 665 37	-1.4 554 18	1.5 169 35	0.4 697 96	-2.0 458 61	1.8 456 65	1.3 459 01	0.2 473 70	0.0 094 07	2.0 974 19	0.1 698 00	0.6 731 68	0.4 499 51	0.0 491 89	-0.4 892 80	-0.2 699 70	-0.2 289 49	-0.6 235 82	-0.3 733 69
1 8	-0.2 854 23	-0.5 052 51	0.2 177 17	3.1 932 57	-0.8 380 76	-0.5 481 00	1.5 408 98	-0.1 164 13	1.0 769 99	-0.9 759 04	-2.0 416 95	-0.5 624 29	0.4 744 34	-0.2 370 20	-0.0 794 63	-0.6 383 32	-0.3 502 75	-0.6 202 83	0.7 322 80	-0.0 414 40
1 9	-1.6 655 74	1.4 775 21	1.7 631 09	0.5 086 52	1.4 302 48	1.0 836 02	-0.1 466 45	1.2 369 30	0.9 723 30	0.8 455 88	0.5 169 57	0.3 911 18	-0.1 393 07	-0.9 167 56	0.5 565 75	-0.7 795 66	0.3 191 40	0.0 293 21	0.2 139 44	-0.2 510 09
2	-3.1 776 39	1.7 449 61	-0.1 499 58	1.1 440 88	-0.7 839 10	-0.5 156 85	-0.6 825 20	-1.2 632 42	-0.0 801 44	-0.1 735 78	0.3 412 89	1.6 458 97	-1.2 644 95	0.0 229 03	0.9 586 61	-0.0 125 63	0.1 413 76	-0.2 256 61	-0.2 320 30	0.0 496 91
2 1	-1.5 445 72	-2.6 815 20	0.1 889 78	-2.4 948 78	-0.8 076 15	-0.2 405 81	-0.9 254 86	-0.8 116 36	1.0 000 08	0.9 750 78	-0.3 429 40	-0.0 402 59	1.5 554 64	0.2 429 06	0.1 628 29	-1.0 547 18	0.3 708 68	-0.1 553 43	-0.1 257 65	0.1 498 31
2 2	3.7 877 57	0.5 586 68	3.5 431 09	0.4 059 55	-0.8 026 90	-0.7 299 08	0.4 548 10	-0.9 298 41	-0.5 375 38	0.4 788 45	0.3 832 06	1.6 936 31	0.2 532 93	0.5 709 32	-0.6 235 06	0.2 709 79	0.1 760 52	-0.2 467 73	-0.2 750 60	0.0 012 64
2	3.1 435 99	-0.4 682 19	-0.1 536 96	-0.7 436 89	-0.6 776 08	1.0 106 43	-0.0 504 24	0.9 480 26	-0.7 552 09	0.0 482 48	0.1 987 43	0.1 805 07	-0.2 706 91	1.2 422 15	1.1 430 23	-1.4 825 30	-0.9 074 77	-0.2 757 78	0.5 008 71	0.8 416 42
2 4	2.7 241 72	-1.4 026 89	0.7 172 69	-0.7 189 01	0.4 996 51	1.0 082 78	-0.0 787 78	-1.0 997 05	0.1 123 90	0.7 065 33	0.1 460 36	-0.7 063 14	-1.1 277 97	-1.0 296 80	0.2 509 63	0.5 219 19	-0.7 401 12	0.3 531 36	0.5 294 79	-0.4 168 35
2 5	1.7 882 70	-0.7 963 97	-2.1 082 89	-0.2 164 76	2.3 687 07	2.3 765 79	0.0 475 76	0.1 116 34	0.4 997 44	-1.6 289 20	-0.5 616 05	1.0 034 71	0.3 924 81	-0.0 427 21	-0.6 781 60	0.0 139 57	-0.7 050 64	-0.2 877 74	-0.9 062 03	-0.4 489 87
2 6	0.9 671 29	0.1 489 07	-2.0 415 89	-1.4 232 12	2.1 719 51	-1.5 119 49	1.7 851 49	0.1 886 22	-0.8 732 11	-0.5 586 90	0.5 239 53	0.0 234 53	-0.8 667 59	-0.3 418 42	-0.0 546 89	0.1 926 65	0.6 142 81	-0.1 210 86	0.9 997 59	0.8 379 52
2 7	1.7 762 36	0.8 355 27	1.6 924 11	-0.7 816 17	-1.2 253 67	-2.0 700 38	-0.1 412 12	-0.0 076 86	1.3 694 64	-1.2 718 54	0.0 091 38	-0.4 785 10	-0.8 549 33	-0.8 292 03	-0.0 965 72	-0.1 035 82	-0.9 192 76	-0.0 302 14	-0.7 584 42	0.4 100 26
2	1.5 676 53	2.1 473 76	1.2 631 31	-0.4 121 98	1.8 514 36	-1.1 794 53	0.7 888 09	-2.0 226 19	-0.7 546 64	-0.5 122 76	0.0 002 83	-0.7 405 58	1.5 287 52	0.2 283 02	0.5 020 50	-0.0 266 62	0.2 651 81	0.4 253 58	0.3 080 45	-0.7 280 99

```
0.2
                                                  0.3
                                                                              -0.2
                                                                                    -0.0
                                                                                           -0.8
                                                                                                  -0.3
                                                                                                                             -0.1
                                                                                                                                    -0.3
   3.3
          0.1
                 -0.6
                       2.0
                              -1.4
                                     1.6
                                                         -1.1
                                                                0.4
                                                                       0.2
                                                                                                         -0.5
                                                                                                                1.4
                                                                                                                      -0.4
2
   751
          874
                 983
                        708
                              477
                                     886
                                            795
                                                  494
                                                         005
                                                                987
                                                                       995
                                                                              770
                                                                                    889
                                                                                           515
                                                                                                  439
                                                                                                         376
                                                                                                                799
                                                                                                                      978
                                                                                                                             376
                                                                                                                                    172
          58
                 14
                        29
                              74
                                     02
                                            07
                                                  80
                                                         44
                                                                76
                                                                       56
                                                                              30
                                                                                    32
                                                                                           61
                                                                                                  90
                                                                                                         24
                                                                                                                91
                                                                                                                      64
                                                                                                                             01
                                                                                                                                    93
   -0.0
                 -0.3
                        -0.9
                              -0.3
                                     0.0
                                            -1.0
                                                          -0.1
                                                                       0.0
                                                                              -0.5
                                                                                    -0.0
                                                                                           1.3
                                                                                                  -0.3
                                                                                                         0.3
                                                                                                                       -0.7
                                                                                                                             0.4
                                                                                                                                    -0.2
3
   276
                                     918
          140
                 512
                       876
                              315
                                                                080
                                                                       011
                                                                             755
                                                                                    588
                                                                                           720
                                                                                                  602
                                                                                                        052
                                                                                                                699
                                                                                                                             519
                                                                                                                                    881
                                            694
                                                  864
                                                         182
                                                                                                                      164
0
          74
                 75
                        09
                              72
                                     07
                                            83
                                                  81
                                                         56
                                                                52
                                                                       82
                                                                              80
                                                                                    38
                                                                                           62
                                                                                                  02
                                                                                                         61
                                                                                                                70
                                                                                                                      39
                                                                                                                             80
                                                                                                                                    48
   -0.4
                 -0.2
                                            -2.1
                                                   -0.2
                                                         -0.0
                                                                              -0.0
                                                                                    0.5
                                                                                           -0.0
                                                                                                  -0.8
                                                                                                         -0.0
                                                                                                                             0.6
                                                                                                                                    0.2
          2.2
                        -0.4
                              0.3
                                     0.5
                                                                       0.5
                                                                                                                -0.2
                                                                                                                      0.2
                                                                -1.1
   684
          200
                 344
                        392
                              828
                                     352
                                           295
                                                  006
                                                         606
                                                                960
                                                                       269
                                                                              395
                                                                                    160
                                                                                           692
                                                                                                  425
                                                                                                         545
                                                                                                                462
                                                                                                                      583
                                                                                                                             964
                                                                                                                                    918
   46
          55
                 03
                        65
                              44
                                     04
                                            31
                                                  35
                                                         93
                                                                41
                                                                       36
                                                                              28
                                                                                    92
                                                                                           77
                                                                                                  87
                                                                                                         51
                                                                                                                79
                                                                                                                      61
                                                                                                                             85
                                                                                                                                    34
```

As the total number of selected components is 20, so it is not possible to plot and show them on a graph. (Above table is also provided in output_1.txt file and also in form of markdown table in pca_md.md file in the submitted directory)

Q1. B) K-Means Clustering

a) K vs normalised mutual information (k, nmi)

К	NMI
2	0.8537795818679155
3	0.8315056247904322
4	0.7627109912103283
5	0.50133084219317
6	0.4513535767499529
7	0.4513535767499529
8	0.38687185625050424

b) Following is the polt of K vs NMI

- c) Maximum NMI is 0.8537795818679155 and corresponding value k is = 2
- d) Following shows the clusters and the data elements present in it for k=2 and in this case the NMI is = 0.8646810327000422

Cluster 1

[[1.0, -1.06, 2.26, -1.99, -0.02, -0.77, -0.7, 0.13, -0.91, 0.05, 0.92, -0.59, -0.98, -0.85, -0.21, 0.01, -0.88, 0.04, 0.23, -0.15, -0.62], [2.0, 1.37, -1.94, -0.8, -1.6, 1.51, -1.08, -0.31, -0.46, 2.24, 0.74, -0.4, 0.42, -0.84, -0.06, -0.21, -0.19, 0.77, -0.31, -0.25, -0.28], [2.0, 0.53, -0.76, -0.47, 1.06, -1.69, 0.91, -1.02, -0.67, 1.03, -0.5, 1.72, -1.59, -0.4, 0.83, -0.55, 0.17, 0.15, 0.51, -0.27, 0.1], [2.0, 1.65, 0.38, -0.01, -0.13, -0.24, -0.35, -1.35, 2.87, 0.1, 0.54, -0.44, 0.52, 0.27, -0.51, 0.55, 0.36, -0.01, 0.92, 0.25, -0.58], [2.0, -0.24, 2.87, -1.13, -0.29, -0.4, 0.34, -0.8, -0.17, 0.56, -0.79, -0.22, 0.53, 0.75, -0.63, -0.01, -0.04, 0.9, 0.43, -0.33, 0.85], [2.0, 1.39, 0.34, -2.29, 1.08, -0.97, -0.42, 0.28, -0.37, 0.73, 1.94,

-0.37, 0.19, 1.11, -0.18, 0.33, 1.51, -0.59, 0.19, -0.03, 0.871, [2.0, -0.03, -0.11, -0.43, -1.38, -1.68, -0.86, 0.55, 1.14, -1.83, -0.61, -1.59, -0.29, -0.46, 0.66, -0.04, 0.31, 0.35, 0.63, -0.8, -0.24], [2.0, -0.86, -0.67, -1.46, 1.52, 0.47, -2.05, 1.85, 1.35, 0.25, 0.01, 2.1, 0.17, 0.67, 0.45, 0.05, -0.49, -0.27, -0.23, -0.62, -0.37], [2.0, -0.29, -0.51, 0.22, 3.19, -0.84, -0.55, 1.54, -0.12, 1.08, -0.98, -2.04, -0.56, 0.47, -0.24, -0.08, -0.64, -0.35, -0.62, 0.73, -0.04], [3.0, 3.79, 0.56, 3.54, 0.41, -0.8, -0.73, 0.45, -0.93, -0.54, 0.48, 0.38, 1.69, 0.25, 0.57, -0.62, 0.27, 0.18, -0.25, -0.28, 0.0], [3.0, 3.14, -0.47, -0.15, -0.74, -0.68, 1.01, -0.05, 0.95, -0.76, 0.05, 0.2, 0.18, -0.27, 1.24, 1.14, -1.48, -0.91, -0.28, 0.5, 0.84], [3.0, 2.72, -1.4, 0.72, -0.72, 0.5, 1.01, -0.08, -1.1, 0.11, 0.71, 0.15, -0.71, -1.13, -1.03, 0.25, 0.52,-0.74, 0.35, 0.53, -0.42], [3.0, 1.79, -0.8, -2.11, -0.22, 2.37, 2.38, 0.05, 0.11, 0.5, -1.63, -0.56, 1.0, 0.39, -0.04, -0.68, 0.01, -0.71, -0.29, -0.91, -0.45], [3.0, 0.97, 0.15, -2.04, -1.42, 2.17, -1.51, 1.79, 0.19, -0.87, -0.56, 0.52, 0.02, -0.87, -0.34, -0.05, 0.19, 0.61, -0.12, 1.0, 0.84], [3.0, 1.78, 0.84, 1.69, -0.78, -1.23, -2.07, -0.14, -0.01, 1.37, -1.27, 0.01, -0.48, -0.85, -0.83, -0.1, -0.1, -0.92, -0.03, -0.76, 0.41], [3.0, 1.57, 2.15, 1.26, -0.41, 1.85, -1.18, 0.79, -2.02, -0.75, -0.51, 0.0, -0.74, 1.53, 0.23, 0.5, -0.03, 0.27, 0.43, 0.31, -0.73], [3.0, 3.38, 0.19, -0.7, 2.07, -1.45, 1.69, 0.28, 0.35, -1.1, 0.5, 0.3, -0.28, -0.09, -0.85, -0.34, -0.54, 1.48, -0.5, -0.14, -0.32], [3.0, -0.03, 0.41, -0.35, -0.99, -0.33, 0.09, -1.07, 0.19, -0.12, -0.01, 0.0, -0.58, -0.06, 1.37, -0.36, 0.31, 0.57, -0.72, 0.45, -0.29], [3.0, -0.47, 2.22, -0.23, -0.44, 0.38, 0.54, -2.13, -0.2, -0.06, -1.2, 0.53, -0.04, 0.52, -0.07, -0.84, -0.05, -0.25, 0.26, 0.7, 0.2911

Cluster 2

[[1.0, -2.03, 1.28, 1.6, -1.69, 0.75, 0.41, 0.87, 0.98, -0.74, 0.92, -0.33, -0.62, -0.11, -0.02, -1.02, -0.12, -0.01, -0.47, -0.48, 0.43], [1.0, -1.6, -1.52, 0.9, 0.49, -0.24, -1.1, -1.92, 0.81, -0.88, -0.4, 0.1, -0.31, 0.4, -1.09, -0.37, -0.14, -0.43, -0.62, 0.33, 0.14], [1.0, -0.84, -1.74, 0.48, 2.1, 1.26, -1.09, -1.55, 0.46, 0.19, -0.01, -0.59, 0.41, -0.6, 1.21, -0.59, 0.84, 0.46, -0.03, 0.49, -0.07], [1.0, -1.46, 0.9, 1.09, 0.75, 1.29, 1.85, 0.61, -0.36, 0.01, 0.6, -0.52, -0.71, -0.34, 0.4, 0.39, 0.63, -0.03, -0.69, -0.53, 0.65], [1.0, -1.04, -2.71, 1.03, 0.88, 1.52, -0.1, -0.04, 0.16, -1.24, -0.13, 0.42, -1.0, 0.32, -0.72, 0.39, 0.43, 0.22, 0.44, -0.61, 0.4], [1.0, -1.68, -2.66, -0.19, 1.02, 0.31, 0.52, 0.09, -1.56, -1.23, 0.06, -0.33, 0.9, -0.3, 0.06, -0.13, -0.94, -0.13, 1.32, -0.03, 0.29], [1.0, -1.88, -1.01, 1.43, -1.13, -1.49, 1.55, 2.29, 0.68, 1.57, -1.29, 0.26, 0.14, 0.09, 0.31, 0.85, 0.8, 0.64, 0.52, 0.51, -0.13], [1.0, -2.15, -0.57, -0.65, -1.35, -2.1, 0.64, 1.42, -0.36, -0.67, 0.4, 0.53, 0.86, 0.11, -0.72, -1.49, 0.4, -0.67, -0.24, 0.6, -0.41], [2.0, -1.17, 2.16, 0.16, 0.47, 1.16, 0.39, 0.26, 0.49, 0.27, 0.89, -0.01, -0.2, -0.08, 1.02, -0.32, -0.07, -1.09, 0.59, 0.08, -0.43], [2.0, -0.86, -0.37, -0.94, -0.86, -0.49, 0.13, -1.04, -0.64, -1.15, -0.49, 0.25, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08, -0.15, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08, -0.15, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08, -0.15, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08, -0.15, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08, -0.15, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08, -0.15, 0.05, 0.2, -0.16, 1.66, 0.78, -0.38, -1.07, -0.16, -0.68], [2.0, -1.67, 1.48, 1.76, 0.51, 1.43, 1.08,

1.24, 0.97, 0.85, 0.52, 0.39, -0.14, -0.92, 0.56, -0.78, 0.32, 0.03, 0.21, -0.25], [2.0, -3.18, 1.74, -0.15, 1.14, -0.78, -0.52, -0.68, -1.26, -0.08, -0.17, 0.34, 1.65, -1.26, 0.02, 0.96, -0.01, 0.14, -0.23, -0.23, 0.05], [2.0, -1.54, -2.68, 0.19, -2.49, -0.81, -0.24, -0.93, -0.81, 1.0, 0.98, -0.34, -0.04, 1.56, 0.24, 0.16, -1.05, 0.37, -0.16, -0.13, 0.15]]

Q2. SVM and MLP classifier

Some observations made during different phases of the task are

- Dataset analysis and normalisation: Given dataset (link) has the following features:
 - a) Number of Instances: 32
 - b) Number of Attributes: 57 (1 class attribute[0], 56 predictive[1:56])
 - c) Attribute Information:
 - i) Attribute 1 is the class label.
 - ii) All predictive attributes have values 0-3
 - d) Missing Attribute Values: Attributes 5 and 39 (*)
 - e) Class distribution: {1->9, 2->13, 3->10}
 - f) Normalisation is not necessary since the spread in predictive attributes takes values(0-3), and the spread is nominal. However, Standard Scalar Normalisation is applied according to assignment instructions:

$$x_i=(x_i-mean())/var(x)$$

- g) Test-train split resulted in a (6-26) division of instances.
- 2) **Support Vector Machine Classifier:** Implemented the required SVM classifiers using the ScikitLearn Library and trained them over the train set (26 instances). The resulting accuracies are:

a) Linear Kernel SVM: 0.83

b) Quadratic Kernel SVM: 0.50

c) Radial Kernel SVM: 0.50

^{**}From the results, the training set seems to be linearly separable (higher accuracy for linear kernel)

- 3) **Multilayer Perceptron Classifier**: Implemented the required MLP classifiers using the ScikitLearn Library and trained them over the train set (26 instances). The resulting accuracies (for learning rate=0.001) are:
 - a) MLP with one hidden layer [16]: 0.67
 - b) MLP with two hidden layers[256, 16]: 0.83

Since the MLP with two hidden layers gives better accuracy, so it is selected for as best accuracy model for further steps

4) **Learning rate vs accuracy:** Using the best accuracy MLP classifier from previous part (dual layer [256, 16]), varied the accuracies as required and obtained following accuracies:

a) Learning rate 0.1:0.83

b) Learning rate 0.01 : 0.83

c) Learning rate 0.001: 0.83

d) Learning rate 0.0001: 0.83

e) Learning rate 0.00001: 0.33

Model with the highest accuracy is again selected for the following steps (in this case learning rate of 0.1 is chosen).

**Batch size of 32 is not possible since there are only 26 training samples, so take min(32, sizeof(train_set)) as batch_size.

- 5) **Forward Selection Method**: Implemented the 'SequentialForwardSelector' class to collect features which produce the maximum accuracy gain iteratively. Stop when adding any feature results in accuracy loss. On applying this to the best accuracy model, the Features are selected through the following steps:
 - a) 1 best features give a score of 0.83
 - b) 2 best features give a score of 0.83
 - c) 3 best features give a score of 1.00
 - d) 4 best features give a score of 1.00
 - e) 5 best features give a score of 1.00
 - f) 6 best features give a score of 1.00

- g) 7 best features give a score of 1.00
- h) 8 best features give a score of 1.00
- i) 9 best features give a score of 1.00
- j) 10 best features give a score of 1.00
- k) 11 best features give a score of 1.00
- 1) 12 best features give a score of 1.00
- m) 13 best features give a score of 1.00
- n) 14 best features give a score of 1.00
- o) 15 best features give a score of 1.00
- p) 16 best features give a score of 1.00

The final features obtained are(indices of columns):

Selected features: [16, 38, 8, 1, 9, 22, 20, 2, 10, 5, 4, 7, 11, 13, 3, 14]

6) **Ensemble Learning (max voting technique):** Implemented 'EnsembleLearner' class initialised with models (SVM with quadratic, SVM with radial basis function and the best accuracy model from part 3). Employed maximum Voting technique(mode of predicted labels) to decide among classes output by different models. Got an accuracy of **0.50%** (lower than MLP and Linear kernel SVM).

Observations:

The Multilayer Perceptron (having two layers) performs better than both single layer perceptron and Support Vector Machine. However, due to the nature of the dataset (almost linearly separable) Linear kernel for SVM performs better (on par with MLP classifier) than both Quadratic and Radial Basis kernels.

Due to the large size of feature space, the forward selection method gives a huge boost to accuracy by discarding less useful features.

Interestingly, the Ensemble learner gives worse accuracy than component models in this case!