1) Egy 20 MB (megabájtos) fájl letöltése 16 másodpercbe telik. A letöltési adatráta ez esetben ___ Mbps, ahol Mbps a megabit perc secundum rövidítése

10

2) Az ISO/OSI modell mely rétege biztosítja a csomagküldést egy adott végpont felé?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

3) Az ISO/OSI modell mely rétegéhez tartozik az UDP protokoll?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

4) Az ISO/OSI modell mely rétege definiálja a közeghozzáférés vezérlését?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

5) Rendezze sorba az ISO/OSI modell 7 rétegét! Kisebb sorszám kerüljön az alsóbb rétegekhez!

- 1. Fizikai réteg/Physical
- 2. Adatkapcsolati réteg/Data link
- 3. Hállózati Réteg/Network
- 4. Szállítói réteg/Transport
- 5. Munkamenet (Ülés) réteg/Session
- 6. Megjelenítési réteg/Presentation
- 7. Alkalmazási réteg/Application

6) Az ISO/OSI modell mely rétegéhez sorolhatók a következő fogalmak: BitTorrent, HTTP, BitCoin kliens?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link

- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

7) Az ISO/OSI modell mely rétegéhez tartozik a TCP protokoll?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

8) Válassza ki az áramkörkapcsolt hálózat jellemzőit!

- Garantált erőforrást kapnak a résztvevők
- Túlterhelés esetén új résztvevőknek már nem jut erőforrás
- Az információ csomagokban kerül leszállításra
- Túlterhelés esetén csomagok vesznek el
- Kapcsolat felépítési és bontási fázis felel az erőforrás lefoglalásáért és felszabadításáért
- Minden csomag egyedileg kerül továbbításra
- Dedikált erőforrás allokálódik minden kapcsolathoz

9) Az ISO/OSI modell mely rétege felel az üzenetek adott állomáson belüli multiplexálásáért/demultiplexálásáért?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

10) Az ISO/OSI modell mely rétege definiálja az átvitelre szánt adatok keretekre tördelését?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

11) Az ISO/OSI modell mely rétege felel az útvonal választásáért?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link

- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

1) A 100 Mbps Ethernetnél alkalmazott 4/5 kódolással __%-ot veszítünk a hatékonyságból!

Karesz tipp: 20

- 2) Mely állítások igazak az alapsávú átvitelre?
 - a jel minden frekvencián átvitelre kerül
 - egy széles frekvencia tartományban történik az átvitel, nem minden frekvencián kerül átvitelre a jel
 - a jelet modulálással ülteti egy vivőhullámra
 - a digitális jel direkt árammá vagy feszültséggé alakul

Jelölje be, hogy az állítások mely multiplexálási technikákra igazak!

	Egyik sem	Frekvencia multiplexálás	Térbeli multiplexálás
A teljes frekvencia tartományt szűkebb sávokra bontja			
Diszkrét időszeletek használata. Minden állomás saját időszeletet kap.			
Minden állomás saját frekvenica tartományt kap			
Tipikusan analóg vonalon használják			
Vezetékes kommunikáció esetén minden egyes csatornához külön pont-pont vezeték tartozik			0
Vezeték nélküli kommunikáció esetén minden egyes csatornához külön antenna rendelődik			

(azt mondta előadáson, hogy a nagyon bonyolultakat kiveszi)

- 3) Egy s(t) függvényt a sin(t) vivőhullámra a következőképp kódolunk: sin(t*s(t)). Melvik modulációs technikát alkalmaztuk?
 - Amplitúdó moduláció
 - Frekvencia moduláció
 - QAM technika
 - Fázis moduláció
- 4) Egy s(t) függvényt a sin(t) vivőhullámra a következőképp kódolunk: s(t)*sin(t). Melyik modulációs technikát alkalmaztuk?
 - Amplitúdó moduláció
 - Frekvencia moduláció
 - QAM technika
 - Fázis moduláció
- 5) Négy szimbólum használata esetén hány bitet tudunk egy szimbólumba kódolni?
- 6) Mit nevezünk elnyelődésnek?
 - A vételi és a küldési energiák különbségét.

- A vételi és küldési energiák különbségének négyzetgyökét.
- A küldési és vételi energiát hányadosát.
- A vételi és a küldési energiák különbségének logaritmusát.
- 7) Mely modulációs technikára használja a vivőhullám több jellemzőjét is a szimbólumok kifejezésére? Melyik modulációs technikát alkalmaztuk?
 - Amplitúdó moduláció
 - Frekvencia moduláció
 - QAM-16 technika
 - Fázis moduláció

- 1) Mekkora a következő két bitsorozat Hamming-távolsága? d(11111,01011) = 2
- 2) Mekkora a következő két bitsorozat Hamming-távolsága? d(1001,1011) = 1
- 3) Mely állítások igazak a Hamming-kódra?
 - Mindegyik ellenőrző bit a bitek valamilyen csoportjának a paritását állítja be párosra (vagy páratlanra)
 - A polinóm aritmetika mod...
 - A generátor polinómot a pr...
 - Minden bitet kétszer küld...
 - Polinóm osztáson alapuló...
 - Nem használ redudanciát ...
 - Paritást használó technika
 - 2 egészhatvány sorszámú pozíciói lesznek az ellenőrző bitek, azaz 1,2,4,8,16,..., a maradék helyeket az üzenet bitjeivel töltjük fel
- 4) Egy kód Hamming-távolsága 13. Hány egyszerű bithibát tudunk javítani ezzel a kóddal?

6

- 5) Legyen d(x,y) két kódszó Hamming-távolsága. Hogyan definiálja egy S kód Hamming-távolságát?
 - Az S-beli kódszavak Hamming távolságának maximuma.
 - Az S-beli kódszavak Hamming távolságának minimuma.
 - Nem definiáljuk.
 - Az S-beli kódszavak Hamming távolságának átlaga.
- 6) Mely szolgáltatásokért felel az adatkapcsolati réteg?
 - Domain név feloldás
 - Per-hop hibakezelés
 - Alkalmazási tűzfal szolgáltatás
 - Bitek átvitele a médiumon
 - Útvonal kiválasztás, routing
 - Alkalmazások közötti (végpont-végpont) hibakezelés
 - Alkalmazások közötti (végpont-végpont) megbízhatóság
 - Adatok keretekre tördelése
 - Közeghozzáférés vezérlése (MAC)
 - Per-hop megbízhatóság
- 7) Egy kód Hamming-távolsága 15. Hány egyszerű bithibát tudunk detektálni ezzel a kóddal?

8) Egy kód Hamming-távolsága 25. Hány egyszerű bithibát tudunk javítani ezzel a kóddal?

12

9) Egy kód Hamming-távolsága 5. Hány egyszerű bithibát tudunk javítani ezzel a kóddal?

2

10) Egy kód Hamming-távolsága 8. Hány egyszerű bithibát tudunk detektálni ezzel a kóddal?

11) Egy kód Hamming-távolsága 2. Hány egyszerű bithibát tudunk detektálni ezzel a kóddal?

- 12) Rendelje össze a fogalmakat! A bal oldalon egy keretezési technika, a jobb oldalon annak egy jellemzője álljon!
 - Báit beszúrás ⇔ Egy speciális ESC (escape) báitot szúr be az "adat" ESC báitok
 - Bit beszúrás ⇔ A Fogadó az adatban előforduló minden 11111 részsorozat után ellenőrzi a következő bitet, majd ez alapján tovább.

 - \Leftrightarrow

SONET hálózatoknál alkalmazzák Óra alapú keretezés Nagyon érzékeny a bithibákra (pl. fejléc meghibásodása) Karakterszámlálás

- 13) Rendelje össze a fogalmakat! A bal oldalon egy keretezési technika, a jobb oldalon annak egy jellemzője álljon!
 - bitet szúr be
 - Karakterszámlálás

 A keretben lávő karakterek számának megadása a keret fejlécében lévő mezőben
 - Báit beszúrás ⇔ Egy speciális ESC (escape) báitot szúr be az "adat" ESC báitok
 - Óra alapú keretezés ⇔ A keretek rögzített mérettel rendelkeznek, aminek (pl. STS-1 esetén) elküldése 125 us ideig tart.
- 14) Az alábbi három kódolás közül melyiket érdemes használni, ha tudjuk, hogy a csatorna nem megbízható. R(S) jelöli a kód rátáját, q(S) pedig a kód távolságát!

```
R(S) = 0.5 \text{ és } q(S) = 0.2
R(S) = 0.5 \text{ és } q(S) = 0.1
```

R(S) = 0.7 és q(S) = 0.7

R(S) = 0.9 és q(S) = 0.3

15) Adott három állomás (A,B,C), melyek CDMA módszert használnak. Jelölje be, hogy mely chip vektorok lennének helyesek?

```
A: (1,1,0); B:(1,-1,0); C:(0,0,-1)
```

A: (0,1,0); B:(1,0,0); C:(1,1,0) A: (1,0,0); B:(0,1,0); C:(0,0,1) A: (1,1,1); B:(-1,-1,0); C:(0,0,-1)

?

Dimenzió számuk maximum kettő lehet a bitek kódolása miatt.

Elégséges a lineáris függetlenség megkövetelése.

Egységvektoroknak kell lenniük.

Páronként ortogonális vektoroknak kell lenniük.

4. ELŐADÁS

- 1) Mi történik a visszalépés n-nel stratégia esetén hibás átvitel után?
 - Mikor az adónak lejár az időzítője, akkor újraküldi az összes nyugtázatlan keretet, kezdve a sérült vagy elveszett kerettel.
 - Az összes hibás keret utáni keretet eldobja és nyugtát sem küld róluk
 - Negatív nyugtát küld vissza.
 - A hibás keret előtti n keretet újraküldi.
- 2) Melyik csatornára igaz az alábbi állítás? Mindkét irányba folyhat kommunikáció, de egyszerre csak egy irány lehet aktív.
 - Fél-duplex csatorna
 - Szimplex csatorna
 - Duplex csatorna
 - Mi az a csatorna?
- 3) Mely állítások igazak a csúszóablak protokollra? M
 - Nyugta elvesztése esetén duplikátumok adódhatnak át a felsőbb rétegnek a fogadó oldalon.
 - Csak duplex csatorna esetén alkalmazható. Adat és nyugta csomagok egyszerre utazhatnak.
 - A nem megengedett sorozatszámmal érkező kereteket el kell dobni.
 - A keret nyugtázója tartalmazza a következőnek várt keret sorozatszámát.
- 4) Melyik csatornára igaz az alábbi állítás? Mindkét irányba folyhat kommunikáció szimultán módon.
 - Fél-duplex csatorna
 - Szimplex csatorna
 - Duplex csatorna
 - Mi az a csatorna?
- 5) Melyik csatornára igaz az alábbi állítás? A kommunikáció pusztán az egyik irányba folyhat.
 - Fél-duplex csatorna
 - Szimplex csatorna
 - Duplex csatorna
 - Mi az a csatorna?
- 6) Egy protokoll CRC-t használ hiba felismeréséhez. Az alkalmazott generátor polinom fokszáma 4. Hány biten ábrázolható a CRC kontrollösszeg (a maradék polinom)?
 - 4
 - 2
 - Nincs összefüggés a fokszám és a CRC kontrollösszeg bitszélessége között.
 - 3
- 7) Mely állítások igazak az alternáló bit protokollra (ABP)?

- Nyugta elvesztése esetén duplikátumok adódhatnak át a felsőbb rétegnek a fogadó oldalon.
- Küldő egyesével küldi a sorszámmal ellátott kereteket (kezdetben 0-s sorszámmal) és addig nem küld újat, még nem kap nyugtát a vevőtől egy megadott határidőn belül.
- Csak duplex csatorna esetén alkalmazható.
- Vevő oldalon, ha nincs hiba, az adatrészt továbbküldi a hálózati rétegnek, végül nyugtázza a keretet és lépteti a sorszámát mod 2.
- 8) Mely bithibát nem képes felismerni a CRC módszer, ha a generátor polinom $x^9 + x^2 + x + 1$, ahol pl. x^4 jelöli az "x a negyediken" hatványt?
 - ahol a hiba polinom $E(x) = x^11 + x^4 + x^3 + x^2$
 - ahol a hiba polinom $E(x) = x^9 + x + 1$
 - ahol a hiba polinom E(x) = x + 1
 - Minden hibát felismer a módszer.
- 9) Melyik állítás igaz? M
 - A csúszóablak protokoll csatorna kihasználása rosszabb, mint az Alternáló Bit Protokollé
 - A csatorna kihasználtság megadja egy csomag elküldésének idejét.
 - A pipelineing technika nem segít a csatornakihasználtság javításában.
 - Az Alternáló Bit Protokoll csatorna kihasználtsága azonos a szimplex megáll és vár protokoll esetén látottal.
- 10) Mely bithibát nem képes felismerni a CRC módszer, ha a generátor polinom $x^3 + x + 1$, ahol pl. x^4 jelöli az "x a negyediken" hatványt? M
 - ahol a hiba polinom $E(x) = x^2 + x + 1$
 - ahol a hiba polinom $E(x) = x^4 + x^2 + x$
 - Minden hibát felismer a módszer.
 - ahol a hiba polinom E(x) = x + 1
- 11) Egy protokoll CRC-t használ hiba felismeréséhez. Az alkalmazott generátor polinom fokszáma 10. Hány biten ábrázolható a CRC kontrollösszeg (a maradék polinom)?
 - 10
 - 11
 - Nincs összefüggés a fokszám és a CRC kontrollösszeg bitszélessége között.
 - . 9
- 12) Egy protokoll CRC-t használ hiba felismeréséhez. Az alkalmazott generátor polinom fokszáma 12. Hány biten ábrázolható a CRC kontrollösszeg (a maradék polinom)?
 - 11
 - 10
 - Nincs összefüggés a fokszám és a CRC kontrollösszeg bitszélessége között.
 - 12
- 13) Egy protokoll CRC-t használ hiba felismeréséhez. Az alkalmazott generátor polinom fokszáma 32. Hány biten ábrázolható a CRC kontrollösszeg (a maradék polinom)?
 - 30
 - 31
 - Nincs összefüggés a fokszám és a CRC kontrollösszeg bitszélessége között.
 - 32

14) Mely bithibát nem képes felismerni a CRC módszer, ha a generátor polinom $x^11 + x^9 + x + 1$, ahol pl. x^4 jelöli az "x a negyediken" hatványt? M

- ahol a hiba polinom $E(x) = x^12 + x^10 + x^2 + x$
- ahol a hiba polinom $E(x) = x^9 + x + 1$
- ahol a hiba polinom E(x) = x + 1
- Minden hibát felismer a módszer.

15) Melyik állítások igazak a szimplex megáll és vár protokollra?

- Nyugta elvesztése esetén duplikátumok adódhatnak át a felsőbb rétegnek a fogadó oldalon.
- Pipeline technikával küldi a kereteket.
- Csak duplex csatorna esetén alkalmazható.
- Csomagvesztés esetén az időzítő lejárta után (timeout) újraküldi a keretet.

7. ELŐADÁS

Melyik állítások igazak a távolságvektor (distance vector) alapú routing protokollra? Minden router csak a szomszédos..

Aszinkron működés

lényegében elosztott Bellman...

Mit jelent a CIDR?

Osztályok nélküli környezetek közötti forgalomirányítás

... Mi lesz E költsége A állomás routing táblájában? 10 v. 14

Hány biten ábrázolják az IPv4 címeket? 32

... Mi lesz C költsége A állomás routing táblájában?

Mit nevezünk végtelenig számlálás problémájának?

Egyik sem helyes válasz

Mit jelent az IPv4 TTL mezője?

Time to live mező, a csomag élettartamára ad korlátot

Melyik címosztály esetén osztható ki IP cím a legtöbb hosztnak egy adott hálozat (aki rendelkezik címtartománnyal) esetén?

A osztály

Mi az ún. loopback interfész címe (localhost) IPv4 hálozatokban? 127.0.0.1

Melyik állítások igazak a kapcsolatállapotú (linkstate) alapú routing protokollra? Megméri a szomszédokhoz vezető költséget, majd ezt elküldi minden routernek. Dijkstra algoritmust alkalmaz

... Mi lesz D költsége A állomás routing táblájában?

Mit nevezünk többes-küldéses-forgalomirányításnak?

Egy csomag meghatározottcsoporthoz történő egyidejű küldése

Melyik protokollhoz kapcsolódik a végtelenig számlálás problémája? Távolságvektor (distance vector) protokoll

8. ELŐADÁS

Adott az alábbi AS gráf részlet:

, azaz AS1 és AS2, továbbá AS2 és AS3 peerek, míg AS4 előfizetője AS1-nek, AS5 előfizetője AS2-nek és AS6 előfizetője AS3-nak.

Az alábbiak közül mely útvonalak mentén történhet forgalmazás a fenti hálózatban?

1) Gráf forgalmazás

- AS1 \rightarrow AS2 \rightarrow AS3
- AS5 \rightarrow AS2 \rightarrow AS1 \rightarrow AS4
- $\bullet \quad \mathsf{AS4} \to \ \mathsf{AS1} \to \mathsf{AS2} \to \mathsf{AS3} \to \mathsf{AS6}$
- AS3 \rightarrow AS2 \rightarrow AS1 \rightarrow AS4
- AS1 \rightarrow AS2 \rightarrow AS5

2) Milyen lehetőségekkel rendelkezik egy BGP router az útvonal politikák alkalmazására?

- Megváltoztathatja a használt intradomain routing protokollt.
- Dönthet, hogy mely útvonalat használja a rendelkezésre állók közül.
- Eldöntheti, hogy melyik útvonalakat exportálja a szomszédainak.
- Meghamisítja az útvonalakat, így okozva piaci kárt a szomszédainak.

3) Az alábbiak közül melyik protokollt használjuk az ún. váratlan események jelzésére?

- UDP
- RARP
- ARP
- ICMP

4) Az alábbiak közül melyik protokollt használjuk az IP címhez tartozó MAC cím feloldására?

- UDP
- RARP

- ARP
- ICMP

5) Mely állítások igazak a BGP protokollra?

- A politikai jellegű szabályokat kézzel konfigurálják a BGP-routeren.
- A BGP router-ek páronként UDP-összeköttetést létrehozva kommunikálnak egymással.
- A BGP alapvetően link state protokoll, viszont a router követi a használt útvonalakat, és az útvonalat mondja meg a szomszédjainak.
- A BGP router-ek páronként TCP-összeköttetést létrehozva kommunikálnak egymással.
- Megadható olyan szabály. hogy ne legyen átmenő forgalom bizonyos AS-eken keresztül.

6) Az alábbi IPv4 címek közül melyek NEM használhatók globális forgalomirányításra az interneten? Azaz melyek ún. privát IP címek?

- 192.168.0.3
- 10.0.234.254
- 88.55.45.34
- 157.181.33.2

7) Mely állítások igazak az AS-ek közötti ún. inter-domain routingra?

- BGP-t használ
- Útvonal vektor protokolit használ
- Link state routing protokollt használ
- Hálózat operátor dönti el, hogy többi válasz közül melyik legyen alkalmazva.
- Távolság vektor protokollt használ

8) Az alábbiak közül mi az, ami biztosan NEM szerepel egy L3 router routing táblájában?

- TCP port
- UDP port
- cél MAC cím
- forrás MAC cím
- interface/kimenő port
- Netmask
- Network destination (IP cím)
- Gateway (next hop)

9) Mit használ az ún. NAT doboz bejövő csomagok esetén a cél IP címek fordításához?

- Az IP fejléc proto mezőjét
- UDP/TCP fejléc cél port mező
- Az IP fejléc forrás IP cím mezőjét
- Az UDP/TCP fejléc checksum mezőjét

10) Az alábbiak közül melyik helyes IPv6 címek?

- 2001:0db8:ff00:ff00:ff00:0042:8329
- 2001:0db8::ff00:0042:8329
- 2001:0db8:ff00:ff00:ff00:ff00:1234
- 2001:0db8:ff00:ff00:ff00:ff00:5463

11) Az alábbiak közül melyik állítás igaz a IPv4 csomagok fragmentációjára?

• Memória kezelési problémák a cél állomásnál

- Memória kezelési problémák a forrás állomásnál
- A csomagok helyreállítása a cél állomás előtti routereken memória kezelés problémát okoz.
- Nem okoz problémát a forrás és a cél állomásoknál

1) Hány bájtos egy UDL fejléc?

- 12
- 8
- 16
- 20

2) Adjuk meg helyes sorrendben a három-utas kézfogás üzenetváltásait!

- 1. SYN a klienstől a szerverhez
- 2. SYN/ACK a szervertől a klienshez
- 3. ACK a klienstől a szervezhez

3) Hogyan állítjuk be az újraküldéshez használt időkorlátot (RTO) a TCP esetén?

- 2 * RTT
- 2
- alfa * RTO_old + (1-alfa)*RTT
- RTT

4) Mit csinál Nagle algoritmusa a TCP esetén, ha van nem nyugtázott adat és az elérhető adat < MSS?

- Elküldi az adatot.
- Várakoztatja az adatot egy pufferben, amíg nyugtát nem kap.
- Eldobja az adatot.
- Vár egy időegységet és elküldi az adatot.

5) Mire szolgál a meghirdetett ablak (advertised window) TCP esetén?

A fogadó pufferének méretét mutatja

6) Mivel arányos az átvitel TCP esetén?

- Küldési ablakméret/Meghirdetett ablakméret
- Meghirdetett ablakméret/RTT
- Küldési ablakméret/RTT
- (Küldési ablakméret + Meghirdetett ablakméret)/RTT

7) Miért van szükség kapcsolat felépítésére TCP esetén?

- Állapot kialakítása mindkét végponton (sorszámok)
- Garantált erőforrások allokálása a végpontok közötti útvonal routereiben.
- A végpontok authentikálása történik ekkor
- Dedikált vonal kiépítése a végpontok között.

8) Mi az a torlódás?

- A vevő kapacitása nagyobb, mint amennyivel küldő adni képes
- Nem emlékszem, de Trónok harca
- A gyors küldő túlterheli a lassú vevőt.
- A fogadó terhelése nagyobb, mint a kapacitása.
- A hálózat terhelése nagyobb, mint a kapacitása.

9) Mit old meg Karn algoritmusa a TCP RTO beállítása esetén?

- Ha van nyugtázatlan csomag, akkor várakoztatja az adatot.
- Az újraküldésből keletkező hibás RTT mintákat kiszűri.
- Megakadályozza, hogy kis csomagokat küldjünk.
- Nincs ilyen algoritmus a TCP esetén.

10) Az alábbiak közül mi az, ami a TCP fejlécben szerepel, de az UDP fejlécben nem?

- Nyugta szám (Acknowledgement number)
- Sorszám (sequence number)
- Forrás port
- Checksum

11) Mely réteghez tartozik a VPN alapját adó IPSec?

- Alkalmazási réteg/Application
- Hálózati Réteg/Network
- Szállítói réteg/Transport
- Adatkapcsolati réteg/Data link
- Megjelenítési réteg/Presentation
- Munkamenet (Ülés) réteg/Session
- Fizikai réteg/Physical

RANDOM

Mekkora a következő két bitsorozat Hamming-távolsága? d(11111, 11000) = 3

Az előadáson látott naiv hibadetektáló megoldás minden keretet kétszer küld el. Ezt követően a két kópia egyezését használja a hibamentes átvitel eldöntésére. Mely állítások igazak erre a módszerre?

- Túl nagy a költsége
- Gyenge hibavédelemmel rendelkezik

Mely bithibát nem képes felismerni a CRC módszer, ha a generátor polinom $x^32 + x^31 + x + 1$, ahol pl. x^4 jelöli az "x a negyediken" hatványt?

ahol a hiba a polinom $E(x) = x^3 + x^3 + x^2 + x$

- 1. Melyik állítás igaz a bridge-eknél (hidaknál) látott feszítőfa protokollra(STP)?
 - ✓ A fa gyökere a legkisebb ID-val rendelkező bridge, melyet a szomszédoktól kapott üzenetek alapján frissít egy bridge.
- 2. Adott N állomás, melyek bináris visszaszámlálás protokollt(Mok és Ward féle javítás nélkül) használnak a közeghozzáféréshez. A versengési időérés 1 időegység. Egy adatkeret küldése szintén egységesen 1 időegységig tart. Legrosszabb esetben hány időegységet kell egy állomásnak várnia a saját kerete átvitelének megkezdése előtt?
 - ✓ Soha nem került átvitelre az állomás kerete, mivel lesz nála nagyobb prioritású/sorszámú állomás, aki küld.
- 3. Melyik állítás igaz a bridge-eknél (hidaknál) látott feszítőfa protokollra(STP)?
- 4. Adott N állomás, melyek Alapvető bittérkép protokollt használnak a közeghozzáféréshez. A versengési időérés 1 időegység. Egy adatkeret küldése szintén egységesen 1 időegységig tart. Legjobb esetben hány időegységet kell egy állomásnak várnia a saját kerete átvitelének megkezdése előtt?

√ 1

- 5. Adott 8 állomás, melyek adaptív fabejárás protokollt használnak a közeghozzáféréshez. Az állomások sorszámai 1-8, melyek a fa levél szintjén helyezkednek el balról jobbra. A 3. és 4. állomások akarnak keretet átvinni a csatornán. A lent látható időérés sorozatok közül melyik tartozik a fenti ütközéshez?
 - √ ütközés(3 és 4 küld) | üres | ütközés(3 és 4 küld) | 3 küld | 4 küld | üres
- 6. Mit jelent az optimális elv útvonalkiválasztás esetén?
 - ✓ Legyen P az i-ből K állomásba vezető optimális útvonal. Ekkor bármely J állomást véve a P útvonal mentén, a J-ből K-ba vezető optimális útvonal P-re esik.
- 7. Adott N állomás, melyek Alapvető bittérkép protokollt használnak a közeghozzáféréshez. A versengési időérés 1 időegység. Egy adatkeret küldése szintén egységesen 1 időegységig tart. Legrosszabb esetben hány időegységet kell egy állomásnak várnia a saját kerete átvitelének megkezdése előtt?

✓ N

- 8. Melyik állítás igaz? [min 1, max 2 jelölhető]
 - ✓ Minden switch egyben bridge is
- 9. Adott N állomás, melyek bináris visszaszámlálás protokollt(Mok és Ward féle javítás nélkül) használnak a közeghozzáféréshez. 4 állomás áll készen a keret küldésére. A versengési időérés 1 időegység. Egy adatkeret küldése szintén egységesen 1 időegységig tart. Legrosszabb esetben hány időegységet kell egy állomásnak várnia a saját kerete átvitelének megkezdése előtt?

√ 7

- 10. Adott 2^N állomás, melyek adaptív fabejárás protokollt használnak a közeghozzáféréshez. 2 állomás áll készen keret küldésére, melyek ütközést okoznak. Egy adatkeret küldése egységesen 1 időegységig tart. Legrosszabb esetben hány időegység szükséges z ütközés feloldásához?
 - ✓ 2N
- 11. Melyik állítás igaz? [min 1, max 2 jelölhető] [2 helyes válasz is van]
 - ✓ Switchek esetén nincs szükség CSMA/CD-re
 - ✓ Switchek esetén full duplex linkek kötik be az állomásokat
- 12. Az alábbi IPv4 címek közül melyek NEM használhatók globális forgalomirányításra az interneten? Azaz melyek ún. privát IP címek?
 - √ 192.168.0.0/16
- 13. Melyik állítás igaz a BGP protokollra? [az alábbiak közül mindegyik helyes válasz]
 - ✓ A politikai jellegű szabályokat kézzel konfigurálják a BGP-routeren.
 - ✓ A BGP router-ek páronként TCP-összeköttetést létrehozva kommunikálnak egymással.
 - ✓ Megadható olyan szabály, hogy ne legyen átmenő forgalom bizonyos AS-eken keresztül.

- 14. Mely állítások igazak az AS-ek közötti ún. inter-domain routingra?
 - √ Útvonal vektor protokollt használ
 - ✓ BGP-t használ
- 15. Az alábbiak közül melyik állítás igaz a IPv4 csomagok fragmentációjára?
 - ✓ Memória kezelési problémák a cél állomásnál
- 16. Az alábbiak közül mi az, ami biztosan NEM szerepel egy L3 router routing táblájában?
 - ✓ UDP port TCP port forrás Mac címe cél Mac címe
- 17. Milyen lehetőségekkel rendelkezik egy BGP router az útvonal politikák alkalmazására?
 - ✓ Dönthet a használt útvonalról és exportált utakról
- 18. Az alábbiak közül melyik protokollt használjuk az IP címhez tartozó MAC cím feloldására?
 - ✓ ARP
- 19. Az alábbiak közül melyek helyes IPv6 címek?
 - ✓ 2001:0db8:ff00:ff00:ff00:0042:8329 és 2001:08db8::ff00:0042:8329
- 20. Az alábbiak közül melyik protokollt használjuk ún. váratlan események jelzésére?
 - ✓ ICMP
- 21. Miért van szükség kapcsolat felépítésére TCP esetén?
 - √ Állapot kialakítása mindkét végponton (sorszámok)
- 22. Mivel arányos az átvitel TCP esetén?
 - ✓ Küldési ablakméret/RTT
- 23. Az alábbiak közül mi az, ami a TCP fejlécében szerepel, de az UDP fejlécében nem?
 - √ sorszám és nyugta szám
- 24. Mivel egészíti ki az UDP a hálózati rétegettől kapott szolgáltatást?
 - ✓ demultiplexálás + hibaellenőrzés
- 25. Hogyan állítjuk be az újraküldéshez használt időkorlátot(RTO) a TCP esetén?
 - ✓ 2*RTT
- 26. Mire szolgál a meghirdetett ablak TCP esetén?
 - ✓ A fogadó pufferének méretét mutatja
- 27. Mely réteghez tartozik a VPN alapját adó IPsec?
 - √ Hálózati rétea
- 28. Mit old meg a Karn algoritmus a TCP RTO beállítás esetén?
 - ✓ Az újraküldésből keletkező hibás RTT mintákat kiszűri
- 29. Hány bájtos egy UDP fejléc?
 - √ 8
- 30. Mit csinál Nagle aloritmusa a TCP esetén, ha van nem nyugtázott adat és az elérhető adat < MSS?
 - ✓ Várakoztatja az adatot egy pufferben, amíg nyugtát nem kap.
- 31. Mit jelent a vivőjel érzékelési képesség?
- 32. A terhelés (G) a protokoll által kezelendő csomagok száma egy csomag kiszolgálásnak ideje alatt. Optimális esetben G > 1 esetén az átvitel S(G) =.... ?
- 33. Hogyan befolyásolja a minimális keretméret egy CSMA/CD alapú Ethernet hálózatban, ha a két legtávolabbi hoszt távolsága 25%-kal megnő?
- 34. Mit használ az ún. NAT doboz bejövő csomagok esetén a cél IP címek fordításához?
- 35. Mit jelent a CIDR?
- 36. Melyik állítások igazak a kapcsolatállapot alapú routing protokollra?
 - ✓ A lokális információt minden routernek elküldi, ahol Dijkstra segítségével kiszámolja a routing táblát
- 37. Mi az ún. loopback interfész címe IPv4 hálózatokban?
- 38. Melyik címosztály esetén osztható ki IP cím a legtöbb hosztnak egy adott hálózat esetén?
 - ✓ A osztály

- 39. Melyik állítások igazak a távolságvektor alapú routing protokollra?
 - ✓ Minden router csak a szomszédjával kommunikál, Bellman-Ford alapú és aszinkron működés jellemzi
- 40. Mit jelent az IPv4 fejléc TTL mezője?
 - ✓ Time to live mező, a csomag élettartamára ad korlátot
- 41. Mit nevezünk többes-küldéses forgalomirányításnak IP hálózatokban?
 - ✓ Meghatározott csoportnak történő küldés
- 42. Melyik protokollhoz kapcsolódik a végtelenig számlálás problémája?
- 43. Mit nevezünk végtelenig számlálás problémájának?
 - ✓ Távolságvektor esetén a rossz hírek lassan terjednek.