Hongchang Gao Spring 2024

- Components of a Graph
 - Nodes/vertices
 - Edges/links
 - Graph/Network

- Types of Graphs
 - Undirected Graph: links are undirected
 - Friendship on Facebook
 - Directed Graph: links are directed
 - Following on Twitter

Undirected graph

Directed graph

Adjacency matrix

$$A_{ij} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$A_{ij} = A_{ji}$$

$$A_{ii} = 0$$

Directed

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

- Node degrees of undirected graph
 - The number of edges adjacent to a node

Node 2: d = 3

- Node degrees of directed graph
 - In-degree: the number of head ends adjacent to a node
 - Out-degree: the number of tail ends adjacent to a node

Node A: d_{in}=1, d_{out}=2

Node degrees

$$A = egin{pmatrix} 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \end{pmatrix} \ A_{ij} = A_{ji} \ A_{ii} = 0$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \end{pmatrix}$$

$$A_{ij} \neq A_{ji}$$
$$A_{ii} = 0$$

Node 4:

Indegree (column sum): 1+0+0+0=1 Outdegree (row sum): 0+1+1+0=2

- The web is a graph
 - Nodes: web pages
 - Edges: hyperlinks

All web pages are not equally "important"

• Some webpages should be assigned more priority than others, for being more

important

Which node (webpage) is important?

scdhec.gov > covid19 > covid-19-vaccine-appointments

COVID-19 Vaccine Appointments | SCDHEC

Make an appointment with a **vaccine** provider to guarantee you'll receive your shot. If you're receiving the Pfizer-BioNTech or Moderna **vaccines**, you need to make ...

COVID-19 Vaccine Provider · Understanding the Vaccination... · Herd Immunity

www.cdc.gov > vaccines

Vaccines and Immunizations | CDC

COVID-19 Vaccination · Immunization Schedules · The Basics · Adults

www.cdc.gov > coronavirus > 2019-ncov > vaccines

When You've Been Fully Vaccinated | CDC

6 days ago — Recommendations on what activities people can do after they have been fully **vaccinated**, including how to gather safely with **vaccinated** and ...

vaccinefinder.org

VaccineFinder - Find COVID-19 vaccine locations near you

VaccineFinder helps you find clinics, pharmacies, and other locations that offer COVID-19 vaccines in the United States. In some states, information may be ...

- Compute the importance of nodes in a graph
 - Idea: Links as votes
 - Page is more important if it has more links
- Use in-links as votes
 - How to use votes to compute the importance score???
 - Q: E and C may be different. C may be more important.
 - How to differentiate their importance when they vote for A?

- A vote from an important page is worth more:
 - Each link's vote is proportional to the importance of its source page
 - If page i with importance r_i has d_i out-links, each link gets r_i / d_i votes
 - Page j's own importance r_j is the sum of the votes on its inlinks

• Formally, the importance score of each node is

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

A page is important if it is pointed by other important pages

Example

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

$$r_{j} = \sum_{i \to j} \frac{r_{i}}{d_{i}}$$

$$r_{a} = r_{y}/2 + r_{m}$$

$$r_{m} = r_{a}/2$$

- Property of the transition matrix M
 - Column sum is 1
- Property of the rank vector r
 - r_i is the importance score of page i

$$\sum_i r_i = 1$$

- Interpretation
 - At time t, the user is on page i
 - At time t+1, the user follows an out-link from i uniformly at random
 - Ends up on some page j linked from i

- Interpretation (continue):
 - Define p(t) is a probability distribution over pages
 - At time t+1, we have

$$p(t+1) = M \cdot p(t)$$
 Random walk

Solution of the importance score r:

p(t) is stationary distribution of a random walk

r is the stationary distribution of the random walk r is the eigenvector of the transition matrix M (with eigenvalue 1)

- Solution of the importance score r:
 - Compute the eigenvector of the transition matrix M with eigenvalue 1
 - Use power iteration to compute the eigenvector efficiently
- Assign each node an initial page rank
- Repeat until convergence $(\sum_{i} |r_{i}^{t+1} r_{i}^{t}| < \epsilon)$
 - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Initialize:
$$\mathbf{r}^0 = [1/N, \dots, 1/N]^T$$
Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^t$

Iterate:
$$r^{(t+1)} = M \cdot r^t$$

• Stop when
$$|m{r}^{(t+1)} - m{r}^t|_1 < \epsilon$$

Example

	у	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$\begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$$