

JP2001072876

NEW ION CONDUCTING POLYMER, POLYMER ELECTROLYTE AND ELECTROCHEMICAL DEVICE USING THE SAME

Patent Number:

JP2001072876

Publication date:

2001-03-21

Inventor(s):

NISHIURA MASAHITO;; KONO MICHIYUKI;; WATANABE MASAYOSHI

Applicant(s):

DAI ICHI KOGYO SEIYAKU CO LTD

Application

Number:

JP19990248888 19990902

Priority Number(s):

IPC Classification: C08L101/12; C08G65/328; C08G81/00; C08K3/10; C08L71/02; H01B1/06;

H01M10/40

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To obtain a new ion conducting polymer increasing the dissociation ratio of an electrolytic salt, enabling the transference number of a charge carrier ion to be increased, useful for a polymer electrolyte and an electrochemical device by making boron atoms to exist in the polymer skeleton.

SOLUTION: This polymer includes at least one boron atoms existing in the polymer skeleton. The polymer is preferably obtained by cross-linking a compound of formula (X is a hetero atom; R is a divalent group of molecular weight >=150; Y is a polymerizable functional group). The compound of the formula is obtained, for example, reacting with ethylene oxide in toluene in the presence of potassium hydroxide in nitrogen atmosphere under reduced pressure in heating, adding methanol solution of sodium methylate to the reactant, reacting the reactant with acrylic chloride after removal of methanol and then reacting the product monool having a polymerizable functional group with borane in dichloromethane at room temperature.

Data supplied from the esp@cenet database - I2

(19) 日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開2001-72876

(P2001 - 72876A)

(43)公開日 平成13年3月21日(2001.3.21)

(51) Int.Cl. ⁷	識別記号	FΙ	テーマコート*(参考)
C 0 8 L 101/12		C 0 8 L 101/12	4 J O O 2
C 0 8 G 65/328		C 0 8 G 65/328	4 J O O 5
81/00		81/00	4 J 0 3 1
C 0 8 K 3/10		C 0 8 K 3/10	5 G 3 0 1
C 0 8 L 71/02		C 0 8 L 71/02	5 H 0 2 9
	審査請求	未請求 請求項の数15 OL	(全 9 頁) 最終頁に続く
(21)出願番号	特願平11-248888	(71)出顧人 000003506	
		第一工業製薬	株式会社
(22)出顧日	平成11年9月2日(1999.9.2)	京都府京都市	下京区西七条東久保町55番地
		(72)発明者 西浦 聖人	
		神奈川県横浜	市旭区都岡町3-1 ふじビ
		ル3階301号	
		(72)発明者 河野 通之	
		大阪府寝屋川	市香里本通町14-1
		(72)発明者 渡辺 正義	
		神奈川県横浜	市西区老松町30-3-401
•		(74)代理人 100059225	
		弁理士 蔦田	璋子 (外1名)
•			最終頁に続く

(54) 【発明の名称】 新規イオン伝導性高分子、これを用いてなる高分子電解質及び電気化学デバイス

(57)【要約】

【課題】 電荷キャリアイオンの輸率向上が可能なイオ ン伝導性高分子、これを用いた高分子電解質及び電気化 学デバイスを提供する。

【解決手段】 イオン伝導性高分子を、高分子骨格中に 少なくとも1つ以上のホウ素原子が存在するものとし、 具体的には、次の一般式(1)で表される化合物を架橋 することにより得られるものとする。

【化1】

$$B - \left[X - R - Y \right]_3 \qquad (1)$$

【特許請求の範囲】

【請求項1】 高分子骨格中に少なくとも1つ以上のホウ素原子が存在することを特徴とするイオン伝導性高分子。

【請求項2】 次の一般式(1)で表される化合物を架橋することにより得られることを特徴とする、請求項1に記載のイオン伝導性高分子。

【化1】

2 価の基を示し、Yは重合性官能基を示す。 【請求項3】 前記一般式 (1) 中のRが次式で

【請求項3】 前記一般式(1)中のRが次式で表される下記化合物(A)及び/又は化合物(B)の重合体であることを特徴とする、請求項2に記載のイオン伝導性高分子。

式中、Xはヘテロ原子を示し、Rは分子量150以上の

【化2】

$$B = \left[X - R - Y \right]_3 \tag{1}$$

【請求項4】 前記一般式(1)で表される化合物が次の一般式(2)で表されることを特徴とする、請求項2

又は3に記載のイオン伝導性高分子。

【化3】

$$B = \begin{bmatrix} O - R - Y \end{bmatrix}_3 \qquad (2)$$

式中、Rは次式で表される分子量150以上の2価の基を示し、 Yは重合性官能基を示す。

rはO又は1以上の整数を示し、Raは、メチル基、エチル基、

プロピル基、又はブチル基を示す。

pは0~38,000の整数、qは0~28,000の整数をそれぞれ示し、

かつp及びqが同時にOになる場合を除く。

【請求項5】 前記 Y で示される重合性官能基が、アクリル酸残基、メタクリル酸残基、アリル基、ビニル基からなる群より選ばれた 1 種又は 2 種以上であることを特徴とする、請求項 $2\sim4$ のいずれか 1 項に記載のイオン伝導性高分子。

【請求項6】 請求項1~5のいずれか1項に記載のイ

オン伝導性高分子を1種又は2種以上用いてなる高分子 電解質。

【請求項7】 請求項1~5のいずれか1項に記載のイオン伝導性高分子1種又は2種以上と電解質塩とを含有してなる高分子電解質。

【請求項8】 非水溶媒をさらに含有してなる、請求項

7に記載の高分子電解質。

【請求項9】 前記電解質塩がリチウム塩であることを 特徴とする、請求項7又は8に記載の高分子電解質。

【請求項10】 前記リチウム塩が、LiBF $_4$ 、LiPF $_6$ 、LiClO $_4$ 、LiAsF $_6$ 、LiCF $_3$ SO $_3$ 、LiN (CF $_3$ SO $_2$) $_2$ 、LiN (C $_2$ F $_5$ SO $_2$) $_2$ 、LiC (CF $_3$ SO $_3$) $_3$ 、LiCl、LiF、LiBr、LiI、およびこれらの誘導体等からなる群より選ばれた1種または2種以上であることを特徴とする、請求項9に記載の高分子電解質。

【請求項11】 前記非水溶媒が非プロトン性溶媒であることを特徴とする、請求項8~10のいずれか1項に記載の高分子電解質。

【請求項12】 前記非プロトン性溶媒が、カーボネート類、ラクトン類、エーテル類、スルホラン類、およびジオキソラン類からなる群から選ばれた1種又は2種以上であることを特徴とする、請求項11に記載の高分子電解質。

【請求項13】 請求項6~12のいずれか1項に記載の高分子電解質を用いてなる電気化学デバイス。

【請求項14】 正極と負極が、請求項6~12のいずれか1項に記載の高分子電解質を介して接合されてなる電池。

【請求項15】 前記正極がリチウムイオンを吸蔵及び 放出することが可能な複合金属酸化物からなり、負極が リチウム金属、リチウム合金、もしくはリチウムイオン を可逆的に吸蔵及び放出することが可能な化合物からな ることを特徴とする、請求項14に記載の電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電荷キャリアイオンの輸率向上を可能にしたイオン伝導性高分子、これを用いた高分子電解質及び電気化学デバイスに関するものである。

[0002]

【従来の技術】高電圧・高容量の電池の開発に伴い、様々な系の高分子電解質が数多く提案されている。しか

し、高分子電解質は、水系電解質と比較して、イオン伝 導度が一桁以上低く、また、例えばポリエチレングリコ ールを用いた高分子電解質は、電荷キャリアイオンの移 動及び輸率が低いといった欠点があり、種々の手法を用 いて改善の試みが為されている。

[0003]

【発明が解決しようとする課題】本発明は、上記に鑑みてなされたもので、電解質塩の解離度を高め、かつ電荷キャリアイオンの輸率向上を可能にしたイオン伝導性高分子、これを用いた高分子電解質及び電気化学デバイスを提供することを課題とする。

[0004]

【課題を解決するための手段】本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、電解質塩の解離を促進し、かつ電荷キャリアイオンの対イオンを高分子鎖中に補足することで電荷キャリアイオンの輸率をコントロールすることに想到し、ルイス酸である三価のホウ素原子を高分子骨格中に有するイオン伝導性高分子を用いることが、上記課題を解決するための有効な手段であることを見出し、本発明を完成するに至った。

【0005】すなわち、本発明のイオン伝導性高分子は、高分子骨格中に少なくとも1つ以上のホウ素原子が存在するものとし(請求項1)、具体的には、次の一般式(1)で表される化合物を架橋することにより得られるものとする(請求項2)。

[0006]

【化4】

$$B = \begin{bmatrix} X - R - Y \end{bmatrix}_3 \tag{1}$$

式中、Xはヘテロ原子を示し、Rは分子量150以上の 2価の基を示し、Yは重合性官能基を示す。

【0007】上記一般式(1)中のRは、好ましくは、 次式で表される化合物(A)及び/又は化合物(B)の 重合体又は共重合体とする(請求項3)。

[0008]

【化5】

【0009】上記一般式(1)で表される化合物は、次の一般式(2)で表されるものであることが特に好ましい(請求項4)。

【0010】 【化6】

$$B = \begin{bmatrix} O - R - Y \end{bmatrix}_3 \tag{2}$$

式中、Rは次式で表される分子量150以上の2価の基を示し、 Yは重合性官能基を示す。

【0011】上記一般式(1)及び(2)のYで示される重合性官能基は、好ましくは、アクリル酸残基、メタクリル酸残基、アリル基、ビニル基からなる群より選ばれた1種又は2種以上とする(請求項5)。

【0012】次に、本発明の高分子電解質は、上記のうちいずれかのイオン伝導性高分子を1種又は2種以上用いてなるものとする(請求項6)。

【0013】具体的には、上記イオン伝導性高分子1種 又は2種以上と電解質塩とを含有し(請求項7)、必要 に応じて非水溶媒をさらに含有してなるものとする(請 求項8)。

【0014】上記電解質塩としては、好ましくはリチウム塩を用い(請求項9)、具体的には、LiBF $_4$ 、LiPF $_6$ 、LiClO $_4$ 、LiAsF $_6$ 、LiCF $_3$ SO $_3$ 、LiN(CF $_3$ SO $_2$) $_2$ 、LiN(C $_2$ F $_5$ SO $_2$) $_2$ 、LiC(CF $_3$ S

 O_2) $_3$ 、LiCl、LiF、LiBr、LiI、およびこれらの誘導体等からなる群より選ばれた1 種または2 種以上を用いることができる(請求項10)。

【0015】上記非水溶媒としては、好ましくは非プロトン性溶媒を用い(請求項11)、具体的には、カーボネート類、ラクトン類、エーテル類、スルホラン類、およびジオキソラン類からなる群から選ばれた1種又は2種以上を用いることができる(請求項12)。

【0016】次に、本発明の電気化学デバイスは、上記のうちいずれかの高分子電解質を用いてなるものとする (請求項13)。

【0017】電気化学デバイスが電池であれば、正極と 負極が、上記のうちいずれかの高分子電解質を介して接 合されたものとする(請求項14)。その場合、正極は リチウムイオンを吸蔵及び放出することが可能な複合金 属酸化物からなり、負極はリチウム金属、リチウム合金、もしくはリチウムイオンを可逆的に吸蔵及び放出することが可能な化合物からなるものとするのが好ましい (請求項15)。

[0018]

【発明の実施の形態】本発明の好ましい形態を以下に挙 げるが、本発明はこれらに限定されるものではない。

【0019】1. イオン導電性高分子

本発明の高分子骨格中に少なくとも1つ以上のホウ素原子が存在するイオン導電性高分子は、次の一般式(1)で表される化合物を架橋することにより得られる。

【0020】 【化7】

$$B - \left[X - R - Y \right]_3 \tag{1}$$

式中、Xはヘテロ原子を示し、Rは分子量150以上の 2価の基を示し、Yは重合性官能基を示す。

【0021】上記一般式(1)中のRは特に限定されないが、次式で表される化合物(A)及び/または化合物

(B) の重合体又は共重合体であることが好ましい。

[0022]

【化8】

式中、R'はメチル基、エチル基、プロビル基、ブチル基、又は ---CH₂O--ECH₂CH₂O--FRa を示す。
rは 0又は 1以上の整数を示し、Raは、メチル基、エチル基、プロビル基、又はブチル基を示す。

【0023】Rの分子量は150以上であり、好ましくは150以上170万以下である。

【0024】上記一般式(1)で表される化合物は、次の一般式(2)で表わされるものであることが特に好ま

しい。 【0025】 【化9】

$$B \left[O - R - Y \right]_3 \tag{2}$$

式中、Rは次式で表される分子量 1 5 0以上の 2 価の基を示し、 Yは重合性官能基を示す。

$$\begin{array}{c} - \left\{ CH_2CH_2O \right\}_{p} \left\{ CH_2CHO \right\}_{q} \\ R^1 \end{array} \right]_{q}$$

R 'はメチル基、エチル基、プロピル基、ブチル基、又は —— $C H_2 O - C H_2 C H_2 O - C H$

rはO又は1以上の整数を示し、Raは、メチル基、エチル基、

プロピル基、又はブチル基を示す。

pは $0 \sim 38,000$ の整数、qは $0 \sim 28,000$ の整数をそれぞれ示し、かつ p及び q が同時に 0 になる場合を除く。

【0026】Rの分子量は、式(1)と同様、好ましくは150以上170万以下である。

【0027】上記式(1)及び(2)における重合性官

能基Yは特に限定されないが、好ましい例としては、アクリル酸残基、メタクリル酸残基、アリル基、ビニル基が挙げられる。

【0028】2. 高分子電解質

本発明の高分子電解質は、上記のうちいずれかのイオン 伝導性高分子1種又は2種以上に、電解質塩及び必要に 応じて非水溶媒を含有させることにより得られる。

【0029】電解質塩は特に限定されないが、リチウム塩が好適に用いられ、その例としては、 $LiBF_4$ 、 $LiPF_6$ 、 $LiClO_4$ 、 $LiAsF_6$ 、 $LiCF_3SO_3$ 、 $LiN(CF_3SO_2)_2$ 、 $LiN(C_2F_5SO_2)_2$ 、 $LiC(CF_3SO_2)_3$ 、LiCl、LiF、LiBr、LiI、およびこれらの誘導体が挙げられる。これらリチウム塩は1 種を単独で用いてもよく、2 種以上を組み合わせて用いてもよい。

【 O O 3 O 】電解質塩の濃度は、0.01mol/kg~10mol/kg であり、好ましくは0.2mol/kg~6.0mol/kgである。

【0031】非水溶媒は非プロトン性溶媒であることが好ましく、その例としては、カーボネート類、ラクトン類、エーテル類、スルホラン類、およびジオキソラン類が挙げられる。これら非水溶媒は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。

【0032】イオン伝導性高分子と非水溶媒の混合比は、重量比で1/99~99/1であり、好ましくは1/99~50/50であり、より好ましくは1/99~30/70である。

【0033】3. 電池

本発明の電池は、正極と負極が上記のいずれかの高分子電解質を介して接合されてなるものである。

【0034】ここで正極には、リチウムイオンを吸蔵及び放出することが可能な複合金属酸化物が用いられ、その例としてはニッケル酸リチウム、マンガン酸リチウム、五酸化バナジウム等が挙げられる。

【0035】また負極には、リチウム金属、リチウム合金、もしくはリチウムイオンを可逆的に吸蔵及び放出することが可能な物質が用いられ、そのような化合物の例としてはカーボン等が挙げられる。

[0036]

【実施例】以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。

【0037】<u>モノマー(化合物(B))の製造</u> モノマーA

出発物質エチレングリコールモノブチルエーテル1mo1に水酸化カリウム0.01mo1を加え、攪拌しながら窒素置換を行った後、真空ポンプを用いて系内を減圧にした。次いで120℃に昇温し、モノマーとしてエチレンオキサイド1mo1を用いて反応させた。反応終了後、系内の温度が窒温になるまで冷却し、ナトリウムメチラート1.1mo1のメタノール溶液を添加し、減圧しながら50℃までゆっくり昇温した。メタノールを完全に除去した後、エピクロロヒドリン1.2mo1を加え、4時間反応させた。反応終了後、吸着処理を行い、減圧脱水後濾過することにより目的物を得た。

【0038】モノマーB

出発物質としてエチレングリコールモノメチルエーテルを用い、モノマーとしてエチレンオキサイド9molを用いた以外はモノマーAと同様にして目的物を得た。

【0039】モノマーC

出発物質としてエチレングリコールモノプロピルエーテルを用い、モノマーとしてエチレンオキサイド2molを用いた以外はモノマーAと同様にして目的物を得た。

【0040】モノマーD

出発物質としてエチレングリコールモノエチルエーテルを用い、モノマーとしてエチレンオキサイド49molを用いた以外はモノマーAと同様にして目的物を得た。

【0041】モノマーE

出発物質としてエチレングリコールモノメチルエーテルを用い、モノマーとしてエチレンオキサイド9molを用いた以外はモノマーAと同様にして目的物を得た。

【0042】<u>一般式(2)で表わされる化合物の製造</u> 化合物 A-1

トルエン500gに水酸化カリウム1molを加え、攪拌しながら窒素置換し、真空ポンプを用いて系内を減圧にした。120℃に昇温し、モノマーとしてエチレンオキサイド380 00molを用いて反応させた。反応終了後、系内の温度が室温になるまで冷却し、ナトリウムメチラート1.1molのメタノール溶液を添加し、減圧しながら50℃までゆっくり昇温した。メタノールを完全に除去して放冷した後、トルエン1kgを添加し、アクリル酸クロライド1molを加えて4時間反応させた。酸・アルカリ吸着処理を行った後濾過し、減圧下トルエンを除去することで重合性官能基を持つモノオールを得た。得られたモノオール3molとボラン1molをジクロロメタン中室温で反応させることにより目的物を得た。

【0043】化合物A-2

プロピレンオキサイド28000mo1をモノマーとして用い、アクリル酸クロライドの代わりにメタクリル酸クロライドを用いた以外は化合物 A-1と同様にして目的物を得た。

【0044】化合物A-3

エチレンオキサイド1500molと1,2-エポキシヘキサン600 molをモノマーとして用い、アクリル酸クロライドの代わりに塩化アリルを用いた以外は化合物 A-1と同様にして目的物を得た。

【0045】化合物A-4

エチレンオキサイド2mo1とブチレンオキサイド1mo1をモノマーとして用い、アクリル酸クロライドの代わりに塩化ビニルを用いた以外は化合物 A-1と同様にして目的物を得た。

【0046】化合物A-5

エチレンオキサイド300molと1,2-エポキシペンタン20molをモノマーとして用いた以外は化合物A-1と同様にして目的物を得た。

【0047】化合物B-1

モノマー Λ 600molをモノマーとして用いた以外は化合物 Λ -1と同様にして目的物を得た。

【0048】化合物B-2

エチレンオキサイド50molとモノマーB 15molをモノマーとして用いた以外は化合物 A-2と同様にして目的物を得た。

【0049】化合物B-3

エチレンオキサイド1molとモノマーC 1molをモノマーとして用いた以外は化合物A-3と同様にして目的物を得た。

【0050】化合物B-4

エチレンオキサイド1600molとモノマーD 400molをモノマーとして用いた以外は化合物 A-4と同様にして目的物を得た。

【0051】化合物B-5

エチレンオキサイド10molとモノマーE 10molをモノマーとして用いた以外は化合物 A-5と同様にして目的物を得た。

【 0 0 5 2 】上記により得られた化合物 A-1~ A-5、 B-1~ B-5の構造は次の化学式及び表に示す通りである。

【0053】 【化10】

【化11】

$$G = \left\{ \begin{array}{c} CH_2CH_2O \\ P \end{array} \right\} \left\{ \begin{array}{c} CH_2CHO \\ (CH_2)_m \end{array} \right\}$$

	化合物	p1	q1	m	Y
•	A-1	38000	0	0	アクリロイル基
	A-2	0	28000	0	メタクロイル基
	E-A	1500	600	3	アリル基
	A-4	2	1	1	ピニル基
	A-5 ·	300	20	2	アクリロイル基

[0054]

$$B \leftarrow O \leftarrow CH_{2}CH_{2}O \Big|_{p2} \Big[CH_{2}CHO \Big]_{q2} Y$$

$$CH_{2}$$

$$O \leftarrow CH_{2}CH_{2}O \Big]_{T} (CH_{2})_{\overline{n}} CH_{3}$$

化合物	p2	q2	r	n	Y
8-1	0	600	2	3	アクリロイル基
B-2.	50	15	10	0	メタクロイル基
B-3	1 .	1	3	2	アリル基・
B-4	1600	400	50	1	ピニル基
B-5	10	10	10	0	アクリロイル基

【0055】<u>高分子電解質の製造</u>

実施例1

化合物 A-1 1g、LiBF₄1mol/kg、及びアゾイソブチロニトリル(AIBN)0.01gを γ ープチロラクトン(GBL)2.3g に40 $^{\circ}$ で容解させ、ガラス板間に流し込んだ後、80 $^{\circ}$ で 2時間放置して、厚さ500 μ mの高分子電解質を得た。

【0056】実施例2

化合物 A-2 1g、LiPF₆0.01mol/kg、及びAIBNO.01gをア

セトニトリル0.2gに40℃で溶解させ、ガラス板間に流し込んだ後、80℃で2時間放置後、アセトニトリルを減圧留去することにより、厚さ500μmの高分子電解質を得た。

【0057】実施例3~9

一般式(2)で表される化合物、塩の種類及び量として下表1に示したものをそれぞれ用いた以外は、実施例2と同様にして高分子電解質を得た。

【0058】実施例10~12

一般式(2)で表される化合物、塩、非プロトン性溶媒の種類及び量として下表1に示したものをそれぞれ用いた以外は、実施例1と同様にして高分子電解質を得た。

【0059】比較例1,2

一般式(2)で表される化合物、塩の種類及び量として下表1に示したものをそれぞれ用いた以外は、実施例2と同様にして高分子電解質を得た。

【0060】比較例3

分子量が100万のポリエチレンオキシド (PEO) 1g、LiBF

4lmol/kgをアセトニトリル0.2gに40℃で溶解させ、ガラス板間に流し込んだ後、アセトニトリルを減圧留去することで、厚さ500μmの高分子電解質を得た。

【0061】 リチウムイオン輸率の測定

上記実施例及び比較例により得られた高分子電解質を直径13mmの円形に打ち抜き、同径のリチウム金属電極で挟み、直流分極法によりリチウムイオン輸率を測定した。結果を表1に併せ示す。

[0062]

【表1】

米特金	化合物	電路質塩濃度(mol/kg)	E(mol/kg)	非プロトン件溶媒	リチウムイオン館車
-	A-1 1g	LiBF4	-	GBL 2.3g	0.84
2	A-2 1g	LiPF	0.01	ł	0.82
က	A-3 1g	LiClO ₄	0.1	ı	. 0.82
4	A-4 1g	LiAsF ₆	10	ı	0.76
ເກ	A-5 1g	LicF ₃ SO ₃	2	Ţ.	0.83
ဖ	B-1 1g	LiN(CF3SO2)2	0.05	1	0.84
	B-2 1g	LiN(C2F5SO2)2	2	1	0.85
œ	B-3 1g	$LiC(CF_3SO_2)_3$	8	ı	0.77
6	B-4 1g	Lici	6.0	I	0.81
01	B-5 1g	LiF	က	EC 0.5g. DO 0.5g	0.83
=	A-3 1g	LiBr	0.3	EC 0.5g , SL 0.5g	0.79
12	B-2 1g	Ē	9	EC 0.5g, DME 0.5g	0.82
比較例					
-	A-1 1g	$LiN(CF_3SO_2)_2$	0.001		0.59
2	B-1 1g	Lici	15		測定不能
°	PEO 1g	LiBF ₄	-		0.08
※EC:エチレ	ンカーボネート・ロ	※EC:エチレンカーボネート. GBL: r ーブチロラクトン , DO:1, 3ージオキソラン	. DO:1. 3-3	ソオキソラン	
DME:1,2-	DME:1,2-ジメトキシエタン , SL:スルホラン	SL:スルホラン			

[0063]

【発明の効果】本発明のイオン導電性高分子を用いた高 分子電解質によれば、ルイス酸である三価のホウ素原子 を高分子骨格中に有することで電解質塩の解離が促進され、その結果電荷キャリアイオン輸率が大幅に向上する。

【0064】従って、これを用いることにより、例え ば、従来のものよりさらに高電圧・高容量の電池を得る ことが可能になる。

7 17	 トペー	320	(de 3)
7 1.1	 h /	・・ノロ	1 40.00

(51) Int. Cl. 7

FI

テーマコート'(参考)

H 0 1 B 1/06

H01B

H 0 1 M 10/40

H 0 1 M 10/40

1/06

В

Fターム(参考) 4J002 BG071 CH051 CQ021 DD036

DD086 DE196 DH006 DK006

EV216 FD206

4J005 AA04 BD04

4J031 AA53 AB04 AC15 AD03 AF30

5G301 CA16 CA30 CD01

5H029 AJ02 AK03 AL12 AM03 AM04

AM07 AM16 EJ12