Nichtlineare Optimierung - 4. Hausaufgabe

 $\begin{array}{ll} {\rm Claudia\ Wohlgemuth} & 366323 \\ {\rm Thorsten\ Lucke} & 363089 \\ {\rm Felix\ Thoma} & 358638 \end{array}$

Tutor: Mathieu Rosière

16. Juni 2017

4.1	4.2	4.3	4.4	4.5	\sum

Anmerkungen:

Es sei $K \subset \mathbb{R}^d$ ein konvexer Kegel mit $0 \in K$.

(i) Wir zeigen, dass K^* abgschlossen ist. Sei dazu $(x_n)_n \subset K^*$ eine in \mathbb{R}^d konvergente Folge mit Grezwert $x \in \mathbb{R}^d$. Sei $y \in K$ beliebig. Nach Definition des Dualkegels gilt

$$\langle x_n, y \rangle \leq 0$$

und mit der Stetigkeit der dualen Paarung folgt

$$\langle x, y \rangle = \lim_{n \to \infty} \langle x_n, y \rangle \le 0.$$

Weil y beliebig war, ist $x \in K^*$.

- (ii) Wir zeigen, dass K genau dann abgeschlossen ist, wenn $K = K^{**}$ ist.
 - \Leftarrow Wegen $K^{**} = (K^*)^*$ folgt mit (i) die Abgeschlossenheit von $K^{**} = K$.
 - \Rightarrow Für jeden Kegel gilt $K\subset K^{**},$ denn ist $x\in K$ beliebig, so gilt für alle $s\in K^*$

$$\langle x, s \rangle \le 0,$$

d.h. $x \in K^{**}$. Bleibt noch die zweite Inklusion $K \supset K^{**}$ zu zeigen.

(iii) Es sei $f \in K^*$ und es gelte $\langle f, x_0 \rangle \leq 0$ für einen einen inneren Punkt $x_0 \in K$. Wir zeigen mittels Widerspruchsbeweis, dass f = 0 ist. Sei also $f \neq 0$. Da x_0 ein innerer Punkt von K ist, gibt es ein $\varepsilon > 0$ mit $U_{\varepsilon}(x_0) \subset K$. Damit ist insbesondere $x_0 + \frac{\varepsilon}{\|f\|} f \in K$ und es gilt

$$0 \ge \langle f, x_0 + \frac{\varepsilon}{\|f\|} f \rangle = \langle f, x_0 \rangle + \langle f, \frac{\varepsilon}{\|f\|} f \rangle = 0 + \varepsilon \|f\|.$$

Dies kann aber nur gelten, wenn $\|f\|=0$ ist, was im Widerspruch zur Annahme $f\neq 0$ steht.

(iv) Diese Aussage ist falsch. Dazu betrachten wir für d=2 den Kegel

$$K \coloneqq \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : 0 < x_1 \land 0 < x_2 \right\} \cup \{0\}$$

und

$$K^* = \left\{ \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} : 0 \ge s_1 \land 0 \ge s_2 \right\}.$$

Dass K und K^* Kegel sind, ist offensichtlich. Außerdem gilt für jedes $s \in K^*$

$$\langle s, x \rangle = s_1 x_1 + s_2 x_2 \le 0$$

für alle $x \in K$. Andererseits ist für $y \in \mathbb{R}^2 \backslash K^*$ entweder $y_1 > 0$ oder $y_2 > 0$; sei o.B.d.A. $y_1 > 0$. Dann gilt für $x := (y_1 + |y_2|, \frac{y_1}{2})^T \in K$

$$\langle x, y \rangle \ge y_1^2 + \frac{|y_2|y_1}{2} > 0.$$

Damit ist gezeigt, dass K^* tatsächlich der Dualkegel von K ist. Offensichtlich ist

2

der erste Einheitsvektor nicht in K enthalten, dennoch gilt

$$\langle e_1, x \rangle \le 0$$

für alle $s \in K^*$.