Lecture 2

Cooling Problem

Hai-Qing Lin

Beijing Computational Science Research Center

This PowerPoint Notes Is Based on the Textbook 'An Introduction to Computer Simulation Methods: Applications to Physical Systems', 2nd Edition, Harvey Gould and Jan Tobochnik, Addison-Wesley(1996);

"A First Course in Computational Physics"; "Numerical Recipes";

"Elementary Numerical Analysis"; "Computational Methods in Physics and Engigering".

Chapter 2: Coffee Cooling

- Heat transfer phenomena => solving first order ordinary differential/difference equation.
- The Euler algorithm and related computer program.
- Modular programming.
- Errors and Stability.
- Seemingly unrelated physical systems can have the same formulation in terms of a computer algorithm.

Coffee Cooling?

- This is a very easy problem, yet some of you may not know (or forget) how to deal with it
- We take this as a warm up exercise for follow up computer simulation methods
- * Students should take this opportunity to recall previous learned knowledge of physics, mathematics, and computer programming techniques

Question and Objective

- If we want to drink a cup of coffee in a hurry so we want the coffee to cool as soon as possible, is it better to add the cream immediately after the coffee is made, or should we wait for a while before we add the cream?
- This is a problem of heat transfer.
- Mathematically, this is a first order ordinary differential equation (ODE).

Background

Newton's law of cooling $\frac{dT}{dt} = -r(T - T_s)$

T: temperature

 $T_{\rm s}$: temperature of its surrounding

t: time

r: cooling constant (depend on physical system)

$$\frac{dT}{dt} = f(T)$$

$$= f(T_s) + f'(T_s)(T - T_s) + \frac{1}{2}f''(T_s)(T - T_s)^2 + \cdots$$

$$= -r(T - T_s) + \dots$$

The Euler Algorithm

Change **differential** equation into **difference** equation:

$$\frac{dy}{dx} = f(x, y) \quad \Rightarrow \frac{\Delta y}{\Delta x} = f(x, y), \quad |\Delta x| << 1.$$

Get the new x by adding Δx to the old x, and approximate the new y by the slope at the old x and old y:

$$x_1 = x_0 + \Delta x,$$

 $y_1 = y_0 + \Delta y \approx y(x_0) + f(x_0, y_0) \Delta x.$

The Euler Algorithm

$$x_1 = x_0 + \Delta x,$$

$$y_1 = y_0 + \Delta y$$

$$\approx y(x_0) + f(x_0, y_0) \Delta x.$$

 $x_{n+1} = x_n + \Delta x,$

$$y_{n+1} = y_n + f(x_n, y_n) \Delta x.$$

Since we approximate the derivative by constant slope, it also called constant-slope method.

A Simple Example

Solve the differential equation

$$\frac{dy}{dx} = 2x$$

with initial condition: $x_0 = 1.0$, $y_0 = 1.0$

- Exact solution: $y = x^2$
- Iterated solution with step size $\Delta x = 0.1$

$$\frac{dy}{dx} = 2x, \qquad \Delta x = 0. \ 1$$

. 2			Slope	y(n+1)=y(n)+slope*dx	Exact value	Error
n	x(n)	y(n)	f(x,y)=2x	y(n)+f(x,y)*0.1	$y_0(n)=x^2(n)$	$y(n)-y_0(n)$
. 0	1.00	1.00	2.00	1.00 + 2.00 * 0.10 = 1.20	1.00	0.00
1	1.10	1.20	2.20	1.10+2.20*0.10 = 1.42	1.21	0.01
2	1.20	1.42	2.40	1.42 + 2.40 * 0.10 = 1.66	1.44	0.02
3	1.30	1.66	2.60	1.66 + 2.60 * 0.10 = 1.92	1.69	0.03
4	1.40	1.92	2.80	1.92 + 2.80 * 0.10 = 2.20	1.96	0.04
5	1.50	2.20	3.00	2.20 + 3.00 * 0.10 = 2.50	2.25	0.05
6	1.60	2.50	3.20	2.50 + 3.20 * 0.10 = 2.82	2.56	0.06
7	1.70	2.82	3.40	2.80 + 3.40 * 0.10 = 3.16	2.89	0.07
8	1.80	3.16	3.60	3.16+3.60*0.10 = 3.52	3.24	0.08
9	1.90	3.52	3.80	3.52 + 3.80 * 0.10 = 3.90	3.61	0.09
10	2.00	3.90			4.00	0.10

20:14:46

9

Errors

- \bullet For each step, it is about $(\Delta x)^2$.
- \bullet For final result, it is about Δx .
- More error analysis later.

20:14:46

10

Computer Program for the Euler method

- Computer Algorithm:
 - > a finite sequence of precise steps or rules that solve a problem, and then develop a computer program to implement the algorithm.

The Algorithm of the Euler Method:

- 1. Choose the initial condition, the step size, and the maximum value of x. Set x_0 , y_0 , x, x_{max} .
- 2. Determine y and the slope at the beginning of the interval. Get y(x) and dy/dx from the differential equation.
- 3. Calculate y at the end of the interval by adding the change, the slope times the step size, to the value of y at the beginning of the interval and print the result.

 Obtain and print out new x and y.
- 4. Repeat steps 2 and 3 until the desired value of x is reached. Continue until $x = x_{max}$.

Example: Solving

$$\frac{dy}{dx} = 2x.$$

PROGRAM example

IMPLICIT NONE

REAL :: x,y,xmax,delta_x

CALL **initial**(y,x,delta_x,xmax)! Specify initial values and parameters

write(6,1001)

1001 format(/3x, 'X',5x,'Y')

write(6,1002) x,y

1002 format(2f6.3)

DO WHILE ($x \le x$ xmax)

CALL **Euler**(y,x,delta_x) ! use simple Euler algorithm

write(6,1002) x,y

ENDDO

END PROGRAM example

SUBROUTINE initial(y,x,delta_x,xmax)

IMPLICIT NONE

REAL :: x,y,xmax,delta x

write(6,*) 'Enter x_0, y_0, x_max, delta_x' read(5,*) x,y,xmax,delta_x

END SUBROUTINE initial

SUBROUTINE Euler(y,x,delta_x)

IMPLICIT NONE

REAL :: x,y,delta_x

REAL :: slope,two

DATA two/2.0/

slope=two*x

! depend on function form

x = x + delta_x y = y + delta_x*slope END SUBROUTINE Euler

The Coffee Cooling Problem

```
program cool! numerical solution of Newton's law of cooling
 use common
 real (selected real kind(15,307)) :: T coffee,T room,delta t,tmax
 integer :: nshow,counter
 call initial(T coffee,T room,delta t,tmax,nshow)
 counter = 0
 do
   if (t \ge tmax) then
     exit
   end if
   call Euler(T coffee,T room,delta_t)
   counter = counter + 1! number of iterations
   if (modulo(counter,nshow) == 0) then
     call output(T coffee,T room)
   end if
 end do
end program cool
                                                                15
```

module common

public :: initial, Euler, output
integer, parameter, public :: double = 2
real (selected_real_kind(15,307)), public :: r,t

contains

subroutine initial(T_init,T_room,delta_t,tmax,nshow) end subroutine initial

subroutine Euler(T_coffee,T_room,delta_t) end subroutine Euler

subroutine output(T_coffee,T_room) end subroutine output

end module common

```
subroutine initial(T init,T room,delta t,tmax,nshow)
 real (selected real kind(15,307)), intent (out) ::
  T init,T room,delta t,tmax
 integer, intent (out) :: nshow
 real (selected_real_kind(15,307)) :: tshow
                        ! Time; could be read in
 t = 0.0
 T init = 82.3
                        ! initial coffee temperature (C)
                        ! room temperature (C)
 T room = 17.0
 print *, "cooling constant r ="
 read *, r
 print *, "time step dt ="
 read *, delta t
 print *, "duration of run ="
 read *, tmax
                         ! minutes
 print *, "time between output of data ="
 read *, tshow
 nshow = int(tshow/delta t)
 call output(T init,T room)
end subroutine initial
```

```
subroutine Euler(T coffee,T room,delta t)
 real (selected real kind(15,307)), intent (in) :: T room, delta t
 real (selected real kind(15,307)), intent (in out) :: T coffee
 real (selected real kind(15,307)) :: change
 change = -r*(T \text{ coffee - } T \text{ room})*delta t
 T coffee = T coffee + change
 t = t + delta t
end subroutine Euler
subroutine output(T coffee,T_room)
 real (selected real kind(15,307)), intent (in) :: T coffee,T room
 if (t == 0) then
   print *, ""
   print "(t7,a,t16,a,t28,a)", "time","T_coffee","T_coffee - T_room"
   print *, ""
 end if
 print "(f10.2,2f13.4)",t,T coffee,T coffee - T room
end subroutine output
```

Accuracy and Stability

Error sources:

Round-off error:
 finite number of digits for floating point numbers.

 $(e.g. 3.21 \times 1.28 = 4.1088)$

Truncation error:
 choice of algorithm. Programmer controllable,
 but no general prescription.

20

Why Error Analysis?

- Know how accurate results we will get
- Estimate computer resource needed
- Determine whether new algorithm must be introduced
- Extrapolation to "correct" answer: linear combination? Upper/lower bounds?

Accuracy and Stability

Questions to ask:

- > How accurate?
- > How large an interval to be used?
- > What kind of computer?
- > How much computer time?
- > How much personal time?
- Try and error:
 practical way to determine accuracy
- Stability of an algorithm:
 small errors ⇒ diverge.

Simple Plots

- Plot a set of data, e.g., 2D (x-y) plot.
 "Quick and dirty" mode: for debugging, understanding, etc.
- "Presentation" mode: for other people.
- Use any software you like.

Visualisation

- Visualise a physical system changing with time.
- Software:
 - > Excel
 - Sigma plot
 - > Others

Lecture 2 Review

- First-order differential equation.
- Difference equation.
- Euler algorithm (and modifications?).
- Modular programming.
- Program examples.
- Cooling program.
- Accuracy and stability.
- Data plotting.

Lecture 2 Review

We have seen that:

- Program statements are simple.
 Simple algorithm can yield complex behavior.
- Seemingly unrelated physical systems can have the same formulation in terms of a computer algorithm, e.g., nuclear decay, dN/

$$dt = -\alpha N$$

Required for Lecture 2

- Heat transfer phenomena => solving first order ordinary differential/difference equation.
- The Euler algorithm and related computer program.
- Modular programming.
- Errors and Stability.
- Seemingly unrelated physical systems can have the same formulation in terms of a computer algorithm.