Computational Linguistics

Computational Semantics: Syntax-Semantics Interface

Chapter 18 J&M'09

How can we automate the process of associating semantic representations with natural language expressions?

Is this process systematic?

We'll extend FOL with λ -calculus :

- If ϕ is a formula and v is a variable, then $\lambda v.\phi$ is a formula
- If $\lambda v.\phi$ is a formula, then $(\lambda v.\phi)(\psi)$ is a formula.

Examples of well-formed expressions:

```
\lambda x.sneeze(x) \ (\lambda x.sneeze(x)(sue))
```

In general, $\lambda v.\phi$ is a function. It takes some argument ψ , and outputs ϕ after replacing all occurrences of v in ϕ by ψ .

Formally, this is written: $(\lambda v.\phi)(\psi) = \phi[v/\psi]$

This $\phi[v/\psi]$ operation is called β -reduction. Example:

$$(\lambda x.sneeze(x))(sue) = sneeze(sue)$$

via [x/sue]

Our λ -terms will employ two kinds of variable:

- Variables over individuals: $x_1..., x_n, y_1,y_n, ...$
- Variable over other λ -terms: P, Q, R, T, K, ...

Examples:

- $(\lambda x.sneeze(x))(sue) = sneeze(sue)$
- $(\lambda x.sneeze(x))(\lambda y.sigh(y)) \neq sneeze(\lambda y.sigh(y))$ Because $(\lambda x.sneeze(x))(\lambda y.sigh(y))$ is not well-formed.
- $(\lambda P.P(x) \land house(x))(\lambda y.yellow(y)) = (\lambda y.yellow(y))(x) \land house(x) = yellow(x) \land house(x)$

Extending a grammar with semantic representations:

CFG nodes are now of the form: (Category ; FOL)

```
    Proper names: (not final version)
    (PN: tom) → tom
```

 $(PN ; mia) \rightarrow tom$

Intransitive verbs:

(IV;
$$\lambda x.sneeze(x)$$
) \rightarrow sneezed
(IV; $\lambda x.snore(x)$) \rightarrow snores

transitive verbs:

$$(\mathsf{TV} \; ; \; \lambda y. \lambda x. like(x,y)) \to \mathit{likes} \qquad \qquad (\mathsf{not} \; \mathsf{final} \; \mathsf{version})$$

. .

Phrasal rules:

```
(NP; \phi) \rightarrow (PN; \phi)
(VP; \phi) \rightarrow (IV; \phi)
(VP; (\phi)(\psi)) \rightarrow (TV; \phi) (NP; \psi)
(S; (\psi)(\phi)) \rightarrow (NP; \phi) (VP; \psi)
```

(not final version)

This grammar fragment licenses the following:

Complex NPs:

Determiners:

```
\begin{array}{l} (\mathsf{DT} \; ; \; \lambda P.\lambda Q. \forall x((P)(x) \Rightarrow (Q)(x)) \to \mathsf{every} \; | \; \mathsf{each} \; | \; \mathsf{all} \; \\ (\mathsf{DT} \; ; \; \lambda P.\lambda Q. \exists x((P)(x) \land (Q)(x)) \to \mathsf{a} \; | \; \mathsf{an} \; | \; \mathsf{some} \; \\ (\mathsf{DT} \; ; \; \lambda P.\lambda Q. \neg \exists x((P)(x) \land (Q)(x)) \to \mathsf{no} \end{array}
```

Common nouns:

$$(N ; \lambda x.cat(x)) \rightarrow cat$$

 $(N ; \lambda x.dog(x)) \rightarrow dog$

More phrasal rules:

$$(NP; (\phi)(\psi)) \rightarrow (DT; \phi) (N; \psi)$$

To model complex NP subjects, we need to revise the S rule: $(S; (\phi)(\psi)) \rightarrow (NP; \phi)$ (VP; ψ)

Revising PN and TV representations accordingly:

• **Proper names:** (final version) (PN; $\lambda P.(P)(tom)$) \rightarrow tom

(PN ; $\lambda P.(P)(mia)$) \rightarrow mia

. . .

Verbs:

(IV ;
$$\lambda x.sneeze(x)$$
) \rightarrow sneezed
(TV ; $\lambda R.\lambda x.(R)(\lambda y.like(x,y))$) \rightarrow likes

. . .

Phrasal rules:

$$(\mathsf{VP}; (\phi)(\psi)) \to (\mathsf{TV}; \phi) (\mathsf{NP}; \psi)$$
$$(\mathsf{S}; (\phi)(\psi)) \to (\mathsf{NP}; \phi) (\mathsf{VP}; \psi)$$

Lexicon sample:

- (PN; $\lambda P.(P)(tom)$) $\rightarrow tom$
- (N; $\lambda y.cat(y)$) $\rightarrow cat$
- (DT; $\lambda P.\lambda Q. \forall x ((P)(x) \Rightarrow (Q)(x)) \rightarrow every \mid each \mid all$
- (DT; $\lambda P.\lambda Q.\exists x((P)(x) \land (Q)(x)) \rightarrow a \mid an \mid some$
- (DT; $\lambda P.\lambda Q. \neg \exists x ((P)(x) \land (Q)(x)) \rightarrow no$
- (IV; $\lambda x.sneeze(x)$) \rightarrow sneezed
- (TV; $\lambda R.\lambda x.(R)(\lambda y.like(x,y))$) \rightarrow likes

Grammar rules, so far:

- (NP; ϕ) \rightarrow (PN; ϕ)
- (VP; ϕ) \rightarrow (IV; ϕ)
- (NP; $(\phi)(\psi)$) \rightarrow (DT; ϕ) (N; ψ)
- (VP; $(\phi)(\psi)$) \rightarrow (TV; ϕ) (NP; ψ)
- (S; $(\phi)(\psi)$) \rightarrow (NP; ϕ) (VP; ψ)

Adnominal modifiers

Adjectives

$$\begin{array}{l} \text{(ADJ ; } \lambda P.\lambda x.((P)(x) \land yellow(x))) \rightarrow yellow \\ \text{(ADJ ; } \lambda P.\lambda x.((P)(x) \land black(x))) \rightarrow black \\ \text{(ADJ ; } \lambda P.\lambda x.((P)(x) \land happy(x))) \rightarrow happy \end{array}$$

 $(N : (\phi)(\psi)) \rightarrow (ADJ ; \phi) (N ; \psi)$

vellow

Phrasal Rule:

$$\begin{array}{c} & \mathsf{N} \\ (\lambda P.\lambda x.((P)(x) \wedge yellow(x)))(\lambda y.cat(y)) = \\ \lambda x.((\lambda y.cat(y))(x) \wedge yellow(x)) = \\ & \lambda x.(cat(x) \wedge yellow(x)) \\ & \mathsf{ADJ} \qquad \mathsf{N} \\ \lambda P.\lambda x.((P)(x) \wedge yellow(x)) \quad \lambda y.cat(y) \\ & | & | & | & | \end{array}$$

cat

Adnominal modifiers (continued)

Prepositions

```
\begin{array}{l} (\mathsf{P}\;;\;\lambda P.\lambda Q.\lambda x.((Q)(x)\;\wedge\;(P)(\lambda y.in(x,y)))\to \mathsf{in}\\ (\mathsf{P}\;;\;\lambda P.\lambda Q.\lambda x.((Q)(x)\;\wedge\;(P)(\lambda y.on(x,y)))\to \mathsf{on}\\ (\mathsf{P}\;;\;\lambda P.\lambda Q.\lambda x.((Q)(x)\;\wedge\;(P)(\lambda y.near(x,y)))\to \mathsf{near}\\ (\mathsf{P}\;;\;\lambda P.\lambda Q.\lambda x.((Q)(x)\;\wedge\;(P)(\lambda y.under(x,y)))\to \mathsf{under}\\ (\mathsf{P}\;;\;\lambda P.\lambda Q.\lambda x.((Q)(x)\;\wedge\;(P)(\lambda y.over(x,y)))\to \mathsf{over} \end{array}
```

Phrasal rules:

$$(PP; (\phi)(\psi)) \rightarrow (P; \phi) (NP; \psi)$$
$$(N; (\psi)(\phi)) \rightarrow (N; \phi) (PP; \psi)$$

Example:

$$\begin{array}{l} \left(\lambda P.\lambda Q.\lambda x.((Q)(x) \wedge (P)(\lambda y.in(x,y)))\right) \left(\lambda W.(W)(paris)\right) = \\ \left(\lambda Q.\lambda x.((Q)(x) \wedge (\lambda W.(W)(paris))(\lambda y.in(x,y)))\right) = \\ \left(\lambda Q.\lambda x.((Q)(x) \wedge (\lambda y.in(x,y))(paris))\right) = \\ \lambda Q.\lambda x.((Q)(x) \wedge in(x,paris)) \end{array}$$

Big picture

- The meaning of an expression is a function of the meanings of its parts and the way they are syntactically combined.
- The order of functional composition is dictated by the information contained in lexical representations and by language-specific phrasal rules.
- λ-terms can be used to formalize a very wide range of linguistic patterns, following the same rationale.