Permit Number 3505

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2) Air Contaminant Name (3)	Emission R	ates (6)	
			lbs/hour	TPY (4)
1	Grinding Plant Baghouse Stack	PM	3.23	14.15
	Bagnouse Stack	PM ₁₀	3.23	14.15
		PM _{2.5}	3.23	14.15
2	Rotary Calciner Wet Scrubber Stack	PM	1.30	3.80
	Scrubber Stack	PM ₁₀	1.30	3.80
		PM _{2.5}	1.30	3.80
		SO ₂	2.71	7.89
		NO _x	3.49	10.20
		VOC	0.10	0.30
		со	5.70	16.30
		HCI	< 0.01	< 0.01
		HF	0.04	0.13
4	Lingl Dryer Waste Heat Dump Stack	PM	17.40	0.44
	neat Dump Stack	PM ₁₀	17.40	0.44
		PM _{2.5}	17.40	0.44
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01
		со	< 0.01	< 0.01
5	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01

I				<u> </u>
		VOC	< 0.01	< 0.01
		со	< 0.01	< 0.01
6	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01
		со	< 0.01	< 0.01
7	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01
		со	< 0.01	< 0.01
8	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01
		со	< 0.01	< 0.01
9	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01

		СО	< 0.01	< 0.01
10	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		voc	< 0.01	< 0.01
		со	< 0.01	< 0.01
11	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01
		со	< 0.01	< 0.01
12	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		voc	< 0.01	< 0.01
		со	< 0.01	< 0.01
13	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		VOC	< 0.01	< 0.01
		СО	< 0.01	< 0.01

14	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		voc	< 0.01	< 0.01
		со	< 0.01	< 0.01
15	Lingl Dryer Stack	PM	0.45	1.97
		PM ₁₀	0.45	1.97
		PM _{2.5}	0.45	1.97
		SO ₂	< 0.01	< 0.01
		NO _x	< 0.01	< 0.01
		voc	< 0.01	< 0.01
		со	< 0.01	< 0.01
16	ENP Plant Kiln DIFF Stack	PM	2.74	12.01
	Stack	PM ₁₀	2.74	12.01
		PM _{2.5}	2.74	12.01
		SO ₂	23.84	104.40
		NO _x	7.67	33.60
		voc	0.16	0.69
		со	9.86	43.20
		HCI	1.48	6.47
		HF	1.32	5.78
16A	ENP Plant Kiln Bypass Stack	PM	2.74	0.03
	Siden	PM ₁₀	2.74	0.03
		PM _{2.5}	2.74	0.03
		SO ₂	31.78	0.38
		NO _x	7.67	0.09
		voc	0.16	<0.01

		со	9.86	0.12
		HCI	24.60	0.30
		HF	21.98	0.26
16 & 16A	Combined ENP Plant	PM		12.01
	Kiln DIFF and Bypass Stack	PM ₁₀		12.01
		PM _{2.5}		12.01
		SO ₂		104.50
		NO _x		33.60
		VOC		0.69
		со		43.20
		HCI		6.74
		HF		6.02
17	ENP Plant Pre-Heat Burner Stack	PM	0.15	0.68
	Burner Stack	PM ₁₀	0.15	0.68
		PM _{2.5}	0.15	0.67
		SO ₂	0.32	1.41
		NO _x	0.06	0.24
		VOC	< 0.01	0.01
		со	0.07	0.32
18	Rotary Calciner Bypass	РМ	< 0.01	< 0.01
	Буризз	PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
		SO ₂	1.96	0.02
		NO _x	1.99	0.02
		VOC	< 0.01	< 0.01
		СО	0.70	0.01
		HCI	< 0.01	< 0.01
		HF	< 0.01	< 0.01
23	Shapes Dryer Stack	PM	0.02	0.09

1	ı			
		PM ₁₀	0.02	0.09
		PM _{2.5}	0.02	0.09
		SO ₂	0.08	0.34
		NO _x	0.01	0.05
		VOC	< 0.01	< 0.01
		со	0.04	0.16
24	Smog Hog	PM	0.13	1.00
		PM ₁₀	0.13	1.00
		PM _{2.5}	0.13	1.00
		VOC	0.01	0.01
25	Surge Bin Dust Collector	PM	2.40	11.00
	Collector	PM ₁₀	2.40	11.00
		PM _{2.5}	2.40	11.00
26	Extrusion Plant Transfer Point	PM	0.03	0.01
	Transier Foint	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
27	Sand Hopper	РМ	< 0.01	< 0.01
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
28	Sand Screen No. 1	PM	0.13	0.07
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
29	Sand Screen No. 2	PM	0.13	0.07
		PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
30	Calcine Drop Point	PM	0.18	0.70
		PM ₁₀	0.01	0.03
		PM _{2.5}	0.01	0.03
31	Conveyor Pile Drop Point No. 1	РМ	< 0.01	< 0.01

I	1			
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
32	Conveyor Pile Drop Point No. 2	РМ	< 0.01	< 0.01
	T OTHE TWO. 2	PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
33	Screening Transfer Point No. 1	РМ	< 0.01	< 0.01
	Foliit No. 1	PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
34	Screening Transfer Point No. 2	PM	< 0.01	< 0.01
	FOIRT NO. 2	PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
35	Grandslam Transfer Point No. 1	РМ	0.05	0.02
	Polit No. 1	PM ₁₀	0.02	0.01
		PM _{2.5}	0.02	0.01
36	Grandslam Transfer Point No. 2	PM	0.05	0.02
	FOIRT NO. 2	PM ₁₀	0.02	0.01
		PM _{2.5}	0.02	0.01
37	Diesel Tank – 10,000 gallon	voc	< 0.01	< 0.01
38	Gasoline Tank – 1000 gallon	VOC	< 0.01	< 0.01
39	Swindell Kiln DIFF Stack	РМ	9.93	43.50
	Stack	PM ₁₀	9.93	43.50
		PM _{2.5}	9.93	43.50
		SO ₂	26.55	116.29
		NO _x	4.00	17.50
		voc	0.27	1.20
		со	7.32	32.06
		HCI	0.64	2.78
		HF	0.79	3.45

39A	Swindell Kiln Bypass Stack	РМ	9.93	0.12
	Stack	PM ₁₀	9.93	0.12
		PM _{2.5}	9.93	0.12
		SO ₂	35.40	0.42
		NO _x	4.00	0.05
		VOC	0.27	< 0.01
		СО	7.32	0.09
		HCI	6.36	0.08
		HF	7.87	0.09
39 & 39A	Combined Swindell Kiln DIFF and Bypass	РМ		43.50
	Stack	PM ₁₀		43.50
		PM _{2.5}		43.50
		SO ₂		116.29
		NO _x		17.50
		VOC		1.20
		СО		32.06
		HCI		2.85
		HF		3.53
40	ELP Plant Transfer Point	РМ	0.02	0.01
	Folit	PM ₁₀	0.01	< 0.01
		PM _{2.5}	0.01	< 0.01
41	ENP Plant Transfer Point No. 1	РМ	0.02	0.01
	FOIR NO. 1	PM ₁₀	0.01	< 0.01
		PM _{2.5}	0.01	< 0.01
42	ENP Plant Transfer	РМ	0.02	0.01
	Point No. 2	PM ₁₀	0.01	< 0.01
		PM _{2.5}	0.01	< 0.01
43	Diesel Tank – 500 gallon	voc	< 0.01	< 0.01
56	Farr Dust Collector –	PM	0.86	1.29

		PM ₁₀	0.86	1.29
		PM _{2.5}	0.86	1.29
FUG1	Rotary Calciner	РМ	0.01	0.01
	Building (5)	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
FUG2	Grandslam Crusher	РМ	0.06	0.02
	Building (5)	PM ₁₀	0.02	0.01
		PM _{2.5}	0.02	0.01
FUG3	Calcine Clay Storage	РМ	0.02	0.01
	Building (5)	PM ₁₀	0.01	0.01
		PM _{2.5}	0.01	0.01
FUG4	Raw Material Clay	РМ	0.08	0.04
	Storage (5)	PM ₁₀	0.02	0.01
		PM _{2.5}	0.02	0.01
FUG5	Shapes Operation Building (5)	PM	0.10	0.03
	Building (5)	PM ₁₀	0.04	0.01
		PM _{2.5}	0.04	0.01
FUG6	ENP Manufacturing Building (5)	PM	1.05	0.50
	Building (5)	PM ₁₀	0.80	0.40
		PM _{2.5}	0.80	0.40
FUG7	Swindell Coatings Storage Building (5)	PM	0.16	0.10
	Storage Building (3)	PM ₁₀	0.13	0.10
		PM _{2.5}	0.13	0.10
FUG8	Harrop Building (5)	PM	< 0.01	< 0.01
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01
FUG10	Grinding Plant Building	РМ	1.42	0.45
	(5)	PM ₁₀	0.14	0.04
		PM _{2.5}	0.14	0.04

FUG11	Stockpile (5)	РМ	 7.23
		PM ₁₀	 3.61
		PM _{2.5}	 3.61
	Site-Wide	Individual HAP	 < 10
		Combined HAPs	 < 25

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide
HCl - hydrogen chloride
HF - hydrogen fluoride

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of

Federal Regulations Part 63, Subpart C

(4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

(6) Planned startup and shutdown emissions are included. Maintenance activities are not authorized by this permit.

Date:	January 15, 2019
-------	------------------