AMSC 714

NUMERICAL METHODS FOR STATIONARY PDES

HW6: FINAL PROJECT (due Friday 05/16/25)

This **final project** involves 7 problems about a posteriori error control and adaptivity. You have to solve 1 practical problem (Pbs 1-4) using the adaptive MATLAB code **afem.m** and 1 theoretical problem (Pbs 5-7).

The first set of problems Pbs 1-2 is about point singularities whereas the second set Pbs 3-4 is about line singularities. The code afem.m performs one bisection per adaptive iteration. The exact solution u and domain Ω are given so as to be able to compute the H^1 and L^2 errors; this is done by $\mathtt{H1_err.m}$ and $\mathtt{L2_err.m}$. The file adaptive_mesh.zip contains 3 subdirectories with samples of squares and L-shape domains. The information about vertices coordinates, elements, adjacency, and boundary conditions for the initial mesh is contained within the subdirectories in the files $\mathtt{vertex_coordinates.txt}$, $\mathtt{elem_vertices.txt}$, $\mathtt{elem_neighbours.txt}$, $\mathtt{elem_boundaries.txt}$.

The files LecturesFEM-3.pdf and LecturesFEM-4.pdf in Canvas contain a *tutorial* about the structure of the code afem.m and its relation with theory.

- (a) Find the corresponding right-hand side f and boundary conditions by direct differentiation of the given function u. Update the file init_data.m: change the information about f in prob_data.f, about the Dirichlet data in prob_data.gD, and about the Neumann data in prob_data.gN, as well as about the diffusion coefficient in prob_data.a. Write MATLAB functions u_ex*.m, grdu_ex*.m for each problem * containing the exact function and its gradient.
- (b) Select the marking strategy in afem.m to be either global refinement (GR), maximum strategy (MS), or Dörfler strategy (or bulk-chasing), also called Guaranteed error reduction strategy (GERS). Present a set of relevant pictures for various adaptive cycles showing the solution and mesh, and the error and estimators. Perform these experiments with threshold $\theta = 0.5$ for element marking. Stop either when the number of adaptive iterations is max_iter=34 or the energy error is smaller than tol=3 × 10⁻². The residual estimators are computed in estimate.m with interpolation constants C_1, C_2 that you have to provide in adapt.C; these constants should be about 0.2 and are set in the file init_data.m.
- (c) Experiment with the threshold $\theta = 0.2, 0.8$ and draw conclusions about its effect in the adaptive procedure.
- (d) Discuss the regularity of the continuous solution in intermediate Sobolev spaces $H^s(\Omega)$, and the expected rate of convergence for piecewise linear FEM with uniform and adaptive refinements. Compare with the computed results and draw conclusions.

1 (60 pts). Corner singularity: Let $\Omega = (-1,1) \times (-1,1) \setminus (0,1) \times (-1,0)$ be an L-shaped domain. Let u be the exact solution

$$u(r,\theta) = r^{\frac{2}{3}} \sin(\frac{2}{3}\theta)$$

for the Poisson equation with Dirichlet boundary condition. The information about the domain and initial triangulation is in the subdirectory L-shape-dirichlet.

2 (60 pts). Mixed boundary conditions: Let $\Omega = (-1,1) \times (0,1)$. Let the exact solution be

$$u(r,\theta) = r^{1/2}\sin(\theta/2)$$

for the Poisson equation with Dirichlet boundary condition everywhere except on $\{(x,y):y=0,-1< x<0\}$, where a vanishing Neumann condition is imposed. Verify that u is in fact a solution. The information about the domain and initial triangulation is in the subdirectory square_mixed, but the

1

files vertex_coordinates.txt, elem_vertices.txt, elem_neighbours.txt, elem_boundaries.txt must be suitably modified.

3 (60 pts). Discontinuous coefficients: Let Ω and the initial mesh be as in Pb1. Consider the following PDE

$$-\text{div } (a\nabla u) = f,$$

with diffusion coefficient a(r) and exact solution u(r) given in polar coordinates by

$$a(r) = \begin{cases} 5 & r^2 < \frac{1}{3} \\ 1 & r^2 \ge \frac{1}{3} \end{cases} \qquad u(r) = \begin{cases} r^2 & r^2 < \frac{1}{3} \\ 5r^2 - \frac{4}{3} & r^2 \ge \frac{1}{3}; \end{cases}$$

assume Dirichlet boundary condition. Verify the jump condition $[a\nabla u]=0$ across the discontinuity curve $\{r=\sqrt{\frac{1}{3}}\}$, and find $f\in L^2(\Omega)$. Evaluate a at the barycenter of each triangle and pretend that a is constant in each triangle for error estimation. Examine how the interior and jump (edge) residual estimators change. The information about the domain and initial triangulation is in the subdirectory L-shape-dirichlet.

4 (60 pts). Internal layer: Let $\Omega = (0,1) \times (0,1)$ be the domain of Poisson equation $-\Delta u = f$, and let the exact solution u be given in terms of the radius $r^2 = (x+0.1)^2 + (y+0.1)^2$ by

$$u(r) = \exp\Big(-\Big(\frac{r-0.6}{\varepsilon}\Big)^2\Big) + 0.5r^2,$$

with $\varepsilon = 10^{-2}$; the shift in the definition of r is to avoid a singularity at the origin. Let the boundary condition be of Dirichlet type. The information about the domain and initial triangulation is in the subdirectory square_all_dirichlet.

5 (40 pts). Dominance of the jump residual. Consider the model problem $-\Delta u = f$ with zero Dirichlet condition, and polynomial degree k = 1. Show that, up to higher order terms, the jump residual

$$\eta_{\mathcal{T}}(U) = \left(\sum_{S \in S} \|h^{1/2}j\|_{L^{2}(S)}^{2}\right)^{1/2}$$

bound $\|\mathcal{R}\|_{H^{-1}(\Omega)}$. This entails that the residual estimator $\mathcal{E}_{\mathcal{T}}(U)$ is dominated by $\eta_{\mathcal{T}}(U)$. Hint: to estimate $\|\mathcal{R}\|_{H^{-1}(\Omega)}$ start with $\mathcal{R}(v)$ for any $v \in H^1_0(\Omega)$ and proceed as follows. First, use the partition of unity property $1 = \sum_{z \in \mathcal{N}} \phi_z$ in the error-residual relation, where $\{\phi_z\}_{z \in \mathcal{N}}$ is the set of hat functions. Second, employ Galerkin orthogonality $\mathcal{R}(\phi_z) = 0$ to substract the constant

$$v_z = \frac{1}{\int_{\omega_z} \phi_z} \int_{\omega_z} v \phi_z$$

from v, where ω_z is the support of ϕ_z . Finally, rewrite $\int_{\omega_z} f(v-v_z)\phi_z$ exploiting the built-in weighted L^2 -orthogonality.

6 (40 pts). A Posteriori upper bound for the L^2 -error. Let Ω be convex. Establish a relation between the L^2 -error $||u-U||_{L^2(\Omega)}$ and a suitable dual norm of the residual \mathcal{R} . Use this to derive the a posteriori upper bound

$$||u - U||_{L^2(\Omega)} \le C_{\Omega} \Big(\sum_{T \in \mathcal{T}} h_T^2 \mathcal{E}_{\mathcal{T}}(U, T)^2 \Big)^{1/2},$$

where $\mathcal{E}_{\mathcal{T}}(U,T)$ is the local H^1 -error indicator, and the constant C_{Ω} depends in addition on Ω .

7 (40 pts). Upper bound for singular loads. Revise the proof of the upper a posteriori error estimate in the case of right-hand side $f \in H^{-1}(\Omega)$ is of the form

$$\langle f, v \rangle = \int_{\Omega} g_0 v + \int_{\Gamma} g_1 v \quad \forall v \in \mathbb{V} = H_0^1(\Omega),$$

where $g_0 \in L^2(\Omega), g_1 \in L^2(\Gamma)$, and Γ stands for the skeleton of the shape-regular mesh \mathcal{T} .