QUICK CHECK EXERCISES 7.8

- 1. In each part, determine whether the integral is improper, and if so, explain why. Do not evaluate the integrals.
 - (a) $\int_{-\pi}^{3\pi/4} \cot x \, dx$ (b) $\int_{\pi/4}^{\pi} \cot x \, dx$
 - (c) $\int_{-\infty}^{+\infty} \frac{1}{x^2 + 1} dx$
- (d) $\int_{1}^{+\infty} \frac{1}{x^2 1} dx$
- 2. Express each improper integral in Quick Check Exercise 1 in terms of one or more appropriate limits. Do not evaluate the limits.

3. The improper integral

$$\int_{1}^{+\infty} x^{-p} \, dx$$

converges to ____ __ provided _

- 4. Evaluate the integrals that converge
 - (a) $\int_0^{+\infty} e^{-x} dx$ (b) $\int_0^{+\infty} e^x dx$
 - (c) $\int_{0}^{1} \frac{1}{x^3} dx$
- (d) $\int_{0}^{1} \frac{1}{\sqrt[3]{v^2}} dx$

EXERCISE SET 7.8

Graphing Utility

1. In each part, determine whether the integral is improper, and

(a)
$$\int_{1}^{5} \frac{dx}{x-3}$$

(a)
$$\int_{1}^{5} \frac{dx}{x-3}$$
 (b) $\int_{1}^{5} \frac{dx}{x+3}$ (c) $\int_{0}^{1} \ln x \, dx$

(c)
$$\int_0^1 \ln x \, dx$$

(d)
$$\int_{1}^{+\infty} e^{-x} dx$$

(d)
$$\int_{1}^{+\infty} e^{-x} dx$$
 (e) $\int_{-\infty}^{+\infty} \frac{dx}{\sqrt[3]{x-1}}$ (f) $\int_{0}^{\pi/4} \tan x dx$

2. In each part, determine all values of p for which the integral

(a)
$$\int_0^1 \frac{dx}{x^p}$$

(b)
$$\int_{1}^{2} \frac{dx}{x-n}$$

(b)
$$\int_{1}^{2} \frac{dx}{x-p}$$
 (c) $\int_{0}^{1} e^{-px} dx$

3–32 Evaluate the integrals that converge.

3.
$$\int_{0}^{+\infty} e^{-2x} dx$$

4.
$$\int_{-1}^{+\infty} \frac{x}{1+x^2} dx$$

5.
$$\int_{3}^{+\infty} \frac{2}{x^2 - 1} dx$$
 6. $\int_{0}^{+\infty} x e^{-x^2} dx$

6.
$$\int_0^{+\infty} xe^{-x^2} dx$$

$$7. \int_{e}^{+\infty} \frac{1}{x \ln^3 x} \, dx$$

7.
$$\int_{e}^{+\infty} \frac{1}{x \ln^{3} x} dx$$
 8.
$$\int_{2}^{+\infty} \frac{1}{x \sqrt{\ln x}} dx$$

$$9. \int_{-\infty}^{0} \frac{dx}{(2x-1)^3}$$

$$10. \int_{-\infty}^{3} \frac{dx}{x^2 + 9}$$

$$11. \int_{-\infty}^{0} e^{3x} dx$$

12.
$$\int_{-\infty}^{0} \frac{e^x dx}{3 - 2e^x}$$

$$13. \int_{-\infty}^{+\infty} x \, dx$$

$$14. \int_{-\infty}^{+\infty} \frac{x}{\sqrt{x^2 + 2}} \, dx$$

$$15. \int_{-\infty}^{+\infty} \frac{x}{(x^2+3)^2} \, dx$$

$$16. \int_{-\infty}^{+\infty} \frac{e^{-t}}{1 + e^{-2t}} \, dt$$

17.
$$\int_0^4 \frac{dx}{(x-4)^2}$$

18.
$$\int_0^8 \frac{dx}{\sqrt[3]{x}}$$

$$19. \int_0^{\pi/2} \tan x \, dx$$

20.
$$\int_0^4 \frac{dx}{\sqrt{4-x}}$$

21.
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

22.
$$\int_{-3}^{1} \frac{x \, dx}{\sqrt{9 - x^2}}$$

23. $\int_{\pi/3}^{\pi/2} \frac{\sin x}{\sqrt{1 - 2\cos x}} dx$ 24. $\int_{0}^{\pi/4} \frac{\sec^2 x}{1 - \tan x} dx$

25.
$$\int_{0}^{3} \frac{dx}{x-2}$$

26.
$$\int_{-2}^{2} \frac{dx}{x^2}$$

27.
$$\int_{-1}^{8} x^{-1/3} dx$$

28.
$$\int_0^1 \frac{dx}{(x-1)^{2/3}}$$

29.
$$\int_0^{+\infty} \frac{1}{x^2} dx$$

30.
$$\int_{1}^{+\infty} \frac{dx}{x\sqrt{x^2-1}}$$

31.
$$\int_0^1 \frac{dx}{\sqrt{x}(x+1)}$$

$$32. \int_0^{+\infty} \frac{dx}{\sqrt{x}(x+1)}$$

33–36 True–False Determine whether the statement is true or false. Explain your answer.

33.
$$\int_{1}^{+\infty} x^{-4/3} dx$$
 converges to 3.

34. If
$$f$$
 is continuous on $[a, +\infty)$ and $\lim_{x \to +\infty} f(x) = 1$, then $\int_a^{+\infty} f(x) \, dx$ converges.

35.
$$\int_{1}^{2} \frac{1}{x(x-3)} dx$$
 is an improper integral.

$$36. \int_{-1}^{1} \frac{1}{x^3} \, dx = 0$$

37–40 Make the *u*-substitution and evaluate the resulting defi-

37.
$$\int_0^{+\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx; \ u = \sqrt{x} \quad [Note: u \to +\infty \text{ as } x \to +\infty.]$$

38.
$$\int_{12}^{+\infty} \frac{dx}{\sqrt{x}(x+4)}; \ u = \sqrt{x} \quad [Note: u \to +\infty \text{ as } x \to +\infty.]$$

39.
$$\int_0^{+\infty} \frac{e^{-x}}{\sqrt{1 - e^{-x}}} dx; \ u = 1 - e^{-x}$$
[Note: $u \to 1$ as $x \to +\infty$]