1. THREE WAYS OF TRANSPORTING CARBON DIOXIDE TO THE LUNGS

- 1. A small amount is carried in **solution**, dissolved in blood **plasma**.
- 2. More is carried attached to haemoglobin. This is known as carbaminohemoglobin.
- 3. More still is transformed into hydrogencarbonate ions (HCO₃-) in red blood cells.

This is how the last of these occurs at **respiring tissues**:

- CO₂ diffuses into red blood cells and combines with water to form carbonic acid (H₂CO₃).
- This reaction is catalysed by the enzyme carbonic anhydrase.
- Carbonic acid quickly dissociates into hydrogencarbonate ions and hydrogen ions.
- The hydrogencarbonate ions move out of red blood cells by facilitated diffusion.
- A carrier protein is used that simultaneously moves a chloride ion into the red blood cell.
- This is called the chloride shift and it prevents the balance of charges across the membrane from changing – it maintains electroneutrality.
- When red blood cells reach the lungs, the same enzyme helps to convert the hydrogencarbonate back to carbon dioxide (which we breathe out) and water.

2. CONTROLLING THE VENTILATION RATE

CHEMORECEPTORS

- in walls of aorta and carotid arteries
- detect changes in blood pH
- normal range is 7.35 7.45

During vigorous exercise:

Increase in CO₂ entering blood from respiring cells

Electrical **impulses** are sent to the:

RESPIRATORY CONTROL CENTRE

(IN MEDULLA OBLANGATA)

DIAPHRAGM MUSCLE

INTERCOSTAL MUSCLES

- Increased rate of contraction and relaxation
- Increased ventilation rate
- (So) CO₂ is removed faster from blood by the lungs
- (So) blood pH rises and remains in the normal range
- (So) aerobic respiration continues
- (For) increased **energy demand** of **muscles**
- (So) helps to **repay** the **O**₂ **debt** after **anaerobic** respiration

DURING VIGOROUS EXERCISE	AFTER EXERCISE
Increased energy demand of the body	Decreased energy demand of the body
Increased rate of aerobic respiration	Decreased rate of aerobic respiration
by muscles	by muscles
Increased CO₂ enters the blood	Decreased CO₂ in the blood
Decreased blood pH but still remains in the	Increased blood pH but still remains in the
normal range	normal range
Due to increased ventilation rate	Due to decreased ventilation rate

3. TREATMENTS FOR EMPHYSEMA

The causes and consequences of this lung disease are in the Topic 6 revision notes.

Alveoli walls break down

Reduces the surface area of the lungs

Loss of elasticity of lung tissue

More difficult to exhale air

- Treatments for emphysema are:
 - providing a supply of oxygen-enriched air, to increase the oxygen concentration gradient between mouth and lungs
 - training in breathing techniques to reduce breathlessness
 - surgery to remove damaged lung tissue
 - bronchodilators and inhaled steroids
 - lung transplants

4. PUBLIC ATTITUDES TO SMOKING

Due to a wealth of scientific and statistical evidence, linking smoking to lung diseases, politicians have had enough evidence to allow them to:

RAISE TAXES ON TOBACCO

BAN SMOKING IN PUBLIC PLACES, WITH FINES

This evidence has included:

- Incidence of many different lung diseases is higher in smokers than non-smokers
- Physical appearance and impaired function in lungs of smokers compared to non-smokers
- Tobacco is known to contain several different carcinogens that can cause mutations
- Mutations in certain genes can cause cancer

5. LUNG TISSUE IN MICROGRAPHS

- The structure of alveoli is discussed in the Topic 6 revision notes.
- Alveoli walls consist of one layer of pneumocytes:
 - Type I pneumocytes are **very thin** in order to allow **gas exchange** with the bloodstream (via diffusion)
 - Type II pneumocytes secrete a pulmonary surfactant in order to reduce the surface tension within the alveoli to prevent their walls from sticking together
- Capillaries between the walls of pairs of alveoli are only wide enough for red blood cells to pass in single file.
- You need to be able to identify pneumocytes, capillary endothelium cells and blood cells in light micrographs and electron micrographs of lung tissue

Light micrograph of lung tissue

Electron micrograph of lung tissue

Just for comparison:

Diagrammatic representation of lung tissue

- Separating the air in the alveoli from haemoglobin in the red blood cells are just two layers:
 - the **epithelium** (epithelial cells = on walls of the alveolus)
 - the **endothelium** (endothelial cells = on walls of the capillary)