Preliminary look at HH $\rightarrow \gamma\gamma\tau\tau$ in nanoAOD

HH Meeting, 30th of March 2021

Matthew Knight, Edward Scott – Imperial College Claudio Campagnari, Hualin Mei, <u>Francesco Setti</u> - UCSB

Overview

- Di-Higgs production at the LHC
- Inputs & event categorisation
- Multivariate classifier (BDT)
- Signal Region (SR) optimisation
- Extract signal sensitivity

SM HH Production

- Cross section for di-Higgs production from ggF is $\sigma(HH) \sim 33$ fb at 13 TeV $(\sigma(H) \sim 15$ pb)
 - di-Higgs production sensitive to BSM effects
- Higgs pair production probes Higgs trilinear self-coupling

Production mode	Cross section (13 TeV)	
ggF	~33 fb	
VBF	~1.7 fb	
VHH	~0.9 fb	
ttHH	~0.8 fb	

SM HH Production

- Cross section for di-Higgs production from ggF is $\sigma(HH) \sim 33$ fb at 13 TeV $(\sigma(H) \sim 15$ pb)
 - di-Higgs production sensitive to BSM effects
- Higgs pair production probes Higgs trilinear self-coupling

- HH $\rightarrow \gamma \gamma \tau \tau$ final state has not been studied yet
- Higgs branching ratios

-
$$\mathcal{B}r(H \to b\bar{b}) = 58\%$$

-
$$\mathcal{B}r(H \to \tau\tau) = 6\%$$

-
$$\mathcal{B}r(HH \rightarrow \gamma\gamma\tau\tau) = 0.027\%$$

-
$$\mathcal{B}r(HH \to \gamma \gamma b \bar{b}) = 0.26\%$$

-
$$\mathcal{B}r(HH \to b\bar{b}\tau\tau) = 7\%$$

Production mode	Cross section (13 TeV)
ggF	~33 fb
VBF	~1.7 fb
VHH	~0.9 fb
ttHH	~0.8 fb

τ Decays

- Dominant decay modes:
 - $\tau \rightarrow e \overline{\nu_e} \nu_\tau \ (\mathcal{BR} = 17.8\%)$
 - $\tau \to \mu \overline{\nu_{\mu}} \nu_{\tau} (\mathcal{BR} = 17.4\%)$
 - $\tau \to h^- \nu_{\tau} + \ge 0 \ h^0 \ (\mathcal{BR} = 49.5\%)$
 - $\tau \to h^- h^- h^+ \nu_{\tau} + \ge 0 \ h^0 (\mathcal{BR} = 15.2\%)$

- $\tau \tau \rightarrow$ both taus decay hadronically
- $\tau l \rightarrow$ one hadronic τ , one leptonic $(l = e, \mu)$
- exclude events without τ (e.g. $e\mu$) due to conflicts with other analyses

Analysis Flow

Preselection based on $\tau/\mu/e$ multiplicity

BDT training & event categorisation

Signal Region optimisation

Signal extraction

Inputs

- Use of private production of nanoAOD samples for Run II
 - HH $\rightarrow \gamma \gamma \tau \tau$ sample made from modifying Pythia configuration of official HH $\rightarrow \gamma \gamma b \bar{b}$ sample
- Currently not using ultra-legacy (to be implemented)

Data

- DoubleEG 2016 & 2017
- EGamma 2018

Total Luminosity $35.9 + 41.5 + 59.8 = 137.2 \text{ fb}^{-1}$

Signal

GluGluToHHTo2TAU2G_* (LO)

Background				
Non resonant	Resonant			
 Diphoton + Jets W/Z + Gamma Gamma + Jets DY + Jets QCD TT + Jets/γ/γγ 	• VH			

Physics Objects & Diphoton Selection

- T
- $p_T > 20 \text{ GeV}$, $|\eta| < 2.3$
- DecayModeNewDMs
- $|d_z| < 0.2 \text{ cm}$
- deepTauID: vs jet(Loose), vs e(VVLoose), vs μ: VLoose
- μ
 - $p_T > 10 \text{ GeV}$, $|\eta| < 2.4$
 - $|d_{xy}| < 0.045 \text{ cm}$, $|d_z| < 0.2 \text{ cm}$
 - PFRelIso03 < 0.3
- e
 - $p_T > 10 \text{ GeV}$, $|\eta| < 2.5$
 - $|d_{xy}| < 0.045 \text{ cm}$, $|d_z| < 0.2 \text{ cm}$
 - (PFRelIso03 < 0.3 and mvaFall17V2noIso_WP90) or (mvaFall17V2Iso_WP90)
- Overlap removal:
 - $\Delta R > 0.2$ between $\tau/\mu/e$ and selected γ s
 - $\Delta R > 0.2$ between pairs of $\tau/\mu/e$
- $\tau/\mu/e$ selection based on loose selection from HH $\rightarrow bb\tau\tau$ analysis

- Standard diphoton preselection plus:
 - $\frac{p_T}{m_{\gamma\gamma}} > 0.33 \ (0.25)$
 - photon ID > 0.7

Event Categorisation

Yields for Run II

Preliminary yield table at preselection level

			Inclusive	1tau_0lep	1tau_1lep	2tau_0lep
	- (GJet	10937±921	10934±921	3.11±2.53	0.0 ± 0.0
		ttbar+ttG/GG	247 <u>+</u> 19	220 <u>±</u> 18	25.5 ± 5.57	2.1 ±1.2
	Non res.	ZG	329±10	291±10	27.0±3.0	11.3±1.8
Bkg.≺		WG	314±19	309±19	5.42 ± 2.54	0.32 ± 1.26
		Diphoton	6837 <u>±</u> 35	6801±35	7.77 ± 1.02	27.3±2.22
	Res.	VH	8.96± 0.12	8.34 ± 0.11	0.40 ± 0.03	0.21 ± 0.02
	Inclusive	Bkg	18675 <u>+</u> 922	18564±922	69.3±7.3	41.2±3.4
		Data	21338±146	21245±145	50.0 ± 7.1	38.0 ± 6.2
		$\mathrm{HH} \to \gamma \gamma \tau \tau$	0.298 ± 0.001	0.169 ± 0.000	0.074 ± 0.000	0.054 ± 0.000

Work in progress – improve data/MC agreement by exploring missing backgrounds
 & apply relevant SFs

Preliminary BDT

- Explored two distinct scenarios:
 - Train a **single BDT** inclusive of **all categories** with at least one τ
 - Train **two BDTs**, one for 1τ **0lep** events and one for 1τ **1lep & 2\tau 0lep** events

- BDTs from XGBoost (python) and trained with:
 - Signal: HH $\rightarrow \gamma \gamma \tau \tau$
 - Background: Diphoton $Z\gamma$ VH $W\gamma$ $tt\gamma$ $tt\gamma\gamma$ tt

BDT Training Variables

n_taus	sublead. photon $\frac{p_T}{m_{\gamma\gamma}}$	tau_2 pt	jet1_bTagDeepFlavB	ττ pt (SVFit)
n_electrons	sublead. photon η	tau_2 η	jet2 pt	$\tau\tau$ η (SVFit)
n_muons	sublead. photon ID_mva	tau1_id_vs_electron	jet2 η	ττ mass (SVFit)
n_Jets	electron pt	tau1_id_vs_muon	jet2 ID	$\tau\tau$ ϕ (SVFit)
MET pt	electron η	tau1_id_vs_jet	jet2_bTagDeepFlavB	
diphoton $\frac{p_T}{m_{\gamma\gamma}}$	electron tight_ID	tau2_id_vs_electron	$\tau\tau \Delta R$ (visible)	
diphoton η	muon pt	tau2_id_vs_muon	$\tau\tau \Delta R$ (SVFit)	
diphoton ΔR	muon η	tau2_id_vs_jet	ΔR between $\tau\tau$ (vis) and $\gamma\gamma$	
lead. photon $\frac{p_T}{m_{\gamma\gamma}}$	muon tight_ID	jet1 pt	ΔR between $\tau\tau$ (SVFit) and $\gamma\gamma$	
lead. photon η	tau_1 pt	jet1 η	$\Delta \phi$ between $\tau \tau$ (vis) and $\gamma \gamma$	
lead. photon ID_mva	tau_1 η	jet1 ID	$\Delta \phi$ between $\tau \tau$ (SVFit) and $\gamma \gamma$	

• Link to configuration BDT <u>file</u> (full list of training variables and hyperparameters)

SVFit Tools

Use of di-tau <u>SVFit</u> invariant mass in BDT

- SVFit tools use Likelihood method to reconstruct di-tau invariant mass from:
 - MET & MET covariant matrix
 - $\tau/e/\mu$ visible Lorentz vectors

• Widely used in CMS analyses, like $\underline{HH} \rightarrow bb\tau\tau$

• Powerful variable to separate signal from background (requires both τ / e / μ reconstructed)

diTauSVfit_mass {diTauSVfit_mass<300}

SVFit invariant mass for a system of two hadronic taus.

SVFit Tools

Invariant mass for the $\tau/\mu/e$ candidates from Higgs computed from their **visible** Lorentz vectors. Since we require both Higgs candidates to be reconstructed, only 1τ 1lep & 2τ 0lep events are shown.

Invariant mass for the $\tau/\mu/e$ candidates from Higgs computed according to the **SVFit** algorithm. Since we require both Higgs candidates to be reconstructed, only 1τ 1lep & 2τ 0lep events are shown.

Data/MC plots of BDT variables

Plot of $\frac{p_T}{m_{\gamma\gamma}}$ for the leading γ (highest pT) from diphoton selection.

Plot of τ pT for the hadronic tau with largest transverse momentum.

Data/MC plots of BDT variables

CMS Preliminary 137.2 **fb⁻¹** (13 TeV) dR tautauLoose 40 1τ 1lep & 2τ 0lep WGamma DiPhoton **ZGamma** 30 signal x 1000 Data 20 10 dR_tautauLoose ratio

 ΔR between $\tau/\mu/e$ candidates from Higgs.

BDT Performance

- BDT scores for the two scenarios explored
 - **Inclusive** BDT trained on 1τ 0lep, 1τ 1lep, 2τ 0lep events
 - One BDT dedicated to 1τ 0lep events and one dedicated to 1τ 1lep & 2τ 0lep events

BDT Performance

• Both BDT approaches show similar discrimination power

Signal Region Optimisation

- Adapted SR optimisation tool from <u>ttH</u> analysis:
 - define two bins for each BDT output
 - fit to $m_{\gamma\gamma}$ distribution
 - model signal with Double Crystal-Ball function
 - model background with exponential function
 - figure of merit: Upper Limit on HH cross section
 - during optimisation all signal & background are modelled from MC

Expected Sensitivity

- Based on optimised SR from last slide, we performed 1D fit to $m_{\gamma\gamma}$ to extract the upper limits on HH cross section
- We evaluated two methods to extract limits:
 - Use MC in signal & background fits
 - Use **data** for **non-res. background** and MC for resonant background and signal

Standard Model Upper Limits

non-res. bkg from →	MC	data
Inclusive BDT	31 x SM	29 x SM
Two BDTs	35 x SM	28 x SM

• Preliminary SM limits within a factor of 6 from $\underline{HH} \rightarrow b\bar{b}\gamma\gamma$ (5.2 x SM)

Summary

• Plan to deliver the results of the HH $\rightarrow \gamma \gamma \tau \tau$ analysis using an intermediate version of the nanoAOD framework proposed <u>last week</u> at the H $\gamma \gamma$ meeting

- Our current nanoAOD tools take $\sim 20/30$ mins to run full analysis from skimmed nanoAOD (diphoton selection)
 - SFs and systematics yet to be applied
- Upper limit of $\sim 30 \times SM$ for Higgs pair production

Future Steps

- Synchronise diphoton preselection with respect to Flashgg
- Include processes HH $\rightarrow \gamma\gamma WW$ & HH $\rightarrow \gamma\gamma ZZ$ to increase signal yields
- Request official signal MC samples (in progress)
- Include VBF production, potentially also VHH, ttHH
- Dedicated BDT to separate VH (V \rightarrow $\tau\tau$) from HH
- Explore BDT/DNN regression to further improve $\tau\tau$ resolution
- Extract signal by fitting 2D distribution $(m_{\gamma\gamma} \& m_{\tau\tau})$, if $\tau\tau$ present

Yields for Run II + HH $\rightarrow \gamma \gamma WW$

• Yields after di-photon preselection + 1 hadronic τ including $HH \rightarrow \gamma\gamma WW$

	Inclusive	1tau_0lep	1tau_1lep	2tau_0lep
Inclusive bkg	18675 <u>+</u> 922	18564 <u>+</u> 922	69.3±7.3	41.2±3.4
Data	21338±146	21245±145	50.0±7.1	38.0±6.2
$HH \rightarrow \gamma \gamma \tau \tau$	0.298	0.169	0.074	0.054
HH $\rightarrow \gamma \gamma WW$ (semi-leptonic)	0.046	0.041	0.005	0.0004
HH $\rightarrow \gamma \gamma WW$ (di-leptonic)	0.021	0.009	0.011	0.0005

• Signal yields increase by $\sim 20\%$

γγττ/γγWW Comparison

- Compare profiles between HH $\rightarrow \gamma \gamma \tau \tau$ and HH $\rightarrow \gamma \gamma WW$ (semi-leptonic & di-leptonic)
 - HH $\rightarrow \gamma \gamma \tau \tau$ (signal) has been scaled by 0.2 to ease the comparison
 - full set of plots <u>here</u>

• Same inclusive BDT as slides 10-11, now trained on HH $\rightarrow \gamma\gamma\tau\tau$ and HH $\rightarrow \gamma\gamma WW$ (semi-leptonic & di-leptonic) as signal

γγττ/γγWW Comparison

• No neat separation between HH $\rightarrow \gamma \gamma \tau \tau$ and HH $\rightarrow \gamma \gamma WW$

Expected Sensitivity w/ HH $\rightarrow \gamma \gamma WW$

- Perform SR optimisation on new BDT including HH $\rightarrow \gamma \gamma WW$ samples
- Extract limits fitting signal & background to MC

Standard Model Upper Limits

non-res. bkg from →	MC	data
Inclusive BDT	31 x SM	29 x SM
Inclusive BDT + HH $\rightarrow \gamma \gamma WW$	27 x SM	-

• Adding HH $\rightarrow \gamma \gamma WW$ lowers the UL from 31 to 27 x SM, within a factor of 5 from HH $\rightarrow h\bar{h}\gamma\gamma$

Backup