Importing Libraries

```
In [2]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
```

Loading The Dataset

```
In [6]: df = pd.read_csv(r"C:\Users\AKSHAY\OneDrive\Desktop\Code\Projects\Project Codes\
In [8]: df
```

Out[8]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annu
	0	5000	8000	3	2000	
	1	6000	7000	2	3000	
	2	10000	4500	2	0	
	3	10000	2000	1	0	
	4	12500	12000	2	3000	
	5	14000	8000	2	0	
	6	15000	16000	3	35000	
	7	18000	20000	5	8000	
	8	19000	9000	2	0	
	9	20000	9000	4	0	
	10	20000	18000	4	8000	
	11	22000	25000	6	12000	
	12	23400	5000	3	0	
	13	24000	10500	6	0	
	14	24000	10000	4	0	
	15	25000	12300	3	0	
	16	25000	20000	3	3500	
	17	25000	10000	6	0	
	18	29000	6600	2	2000	
	19	30000	13000	4	0	
	20	30500	25000	5	5000	
	21	32000	15000	4	0	
	22	34000	19000	6	0	
	23	34000	25000	3	4000	
	24	35000	12000	3	0	
	25	35000	25000	4	0	
	26	39000	8000	4	0	
	27	40000	10000	4	0	
	28	42000	15000	4	0	
	29	43000	12000	4	0	
	30	45000	25000	6	0	
	31	45000	40000	6	3500	
	32	45000	10000	2	1000	

	Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annu
33	45000	22000	4	2500	
34	46000	25000	5	3500	
35	47000	15000	7	0	
36	50000	20000	4	0	
37	50500	20000	3	0	
38	55000	45000	6	12000	
39	60000	10000	3	0	
40	60000	50000	6	10000	
41	65000	20000	4	5000	
42	70000	9000	2	0	
43	80000	20000	4	0	
44	85000	25000	5	0	
45	90000	48000	7	0	
46	98000	25000	5	0	
47	100000	30000	6	0	
48	100000	50000	4	20000	
49	100000	40000	6	10000	

Analyze The Dataset

```
In [18]: # We are checing if there are any missing values, the data type for each column
In [12]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 50 entries, 0 to 49
       Data columns (total 7 columns):
                                    Non-Null Count Dtype
        # Column
       ---
                                    -----
        0 Mthly_HH_Income
                                    50 non-null
                                                   int64
        1 Mthly_HH_Expense
                                    50 non-null
                                                  int64
        2 No_of_Fly_Members
                                    50 non-null
                                                  int64
           Emi_or_Rent_Amt
                                    50 non-null
                                                   int64
            Annual_HH_Income
                                    50 non-null
                                                   int64
            Highest_Qualified_Member 50 non-null
                                                  object
            No_of_Earning_Members
                                    50 non-null
                                                   int64
       dtypes: int64(6), object(1)
       memory usage: 2.9+ KB
In [20]: # We are checking the no. of rows and columns ( Dimensions )
```

In [16]: df.shape Out[16]: (50, 7) # We are finding the descriptive statistics of the dataset In [26]: In [24]: df.describe() Out[24]: Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt Mthly_HH_Income 50.000000 50.000000 50.000000 count 50.000000 18818.000000 3060.000000 mean 41558.000000 4.060000 26097.908979 12090.216824 6241.434948 std 1.517382 2000.000000 0.000000 min 5000.000000 1.000000 25% 23550.000000 10000.000000 3.000000 0.000000 50% 35000.000000 15500.000000 4.000000 0.000000 5.000000 3500.000000 **75%** 50375.000000 25000.000000 max 100000.000000 50000.000000 7.000000 35000.000000 # We are interchanging the rows and columns of the above output In [28]: In [32]: df.describe().transpose() Out[32]: count std min 25% 50% mean Mthly_HH_Income 50.0 41558.00 26097.908979 5000.0 23550.0 35000.0 Mthly_HH_Expense 50.0 18818.00 12090.216824 2000.0 10000.0 15500.0 No_of_Fly_Members 50.0 4.06 1.517382 1.0 3.0 4.0 Emi_or_Rent_Amt 50.0 3060.00 6241.434948 0.0 0.0 0.0 Annual_HH_Income 50.0 490019.04 320135.792123 64200.0 258750.0 447420.0 No_of_Earning_Members 50.0 1.46 0.734291 1.0 1.0 1.0 In [34]: # We are checking if there are any null values in the dataset In [36]: df.isna().any() False Out[36]: Mthly_HH_Income Mthly_HH_Expense False No_of_Fly_Members False Emi_or_Rent_Amt False Annual_HH_Income False Highest_Qualified_Member False No of Earning Members False dtype: bool

Mean Household Expense

```
In [45]: df['Mthly_HH_Expense'].mean()
Out[45]: 18818.0
```

Median Household Expense

```
In [53]: df['Mthly_HH_Expense'].median()
Out[53]: 15500.0
```

Maximum Monthly Household Expense

- -> We are first creating a frequency table, where we are grouping the unique values in the "Mthly_HH_Expense" column,
- -> Then we are creating another column called 'count', in this we are storing how many times the values are repeating in the above column
- -> Then we are checking the maximum number of times a value has repeated, and we are priniting that value

Minimum Monthly Household Expense

- -> We are first creating a frequency table, where we are grouping the unique values in the "Mthly_HH_Expense" column,
- -> Then we are creating another column called 'count', in this we are storing how many times the values are repeating in the above column
- -> Then we are checking the minimum number of times a value has repeated, and we are priniting that value

```
In [72]: mth_exp_min = pd.crosstab(index = df['Mthly_HH_Expense'], columns = 'count')
    mth_exp_min.reset_index(inplace = True)
    mth_exp_min[mth_exp_min['count'] == df.Mthly_HH_Expense.value_counts().min()]
```

Out[72]:	col_0	Mthly_HH_Expense	count
	0	2000	1
	1	4500	1
	2	5000	1
	3	6600	1
	4	7000	1
	8	10500	1
	10	12300	1
	11	13000	1
	13	16000	1
	14	18000	1
	15	19000	1
	17	22000	1
	19	30000	1
	21	45000	1
	22	48000	1

Histogram Plot to Count the Highest Qualified Employee

```
In [78]: # we are going to count the number of times a value has repeated, and according
In [81]: df['Highest_Qualified_Member'].value_counts().plot(kind = 'bar')
Out[81]: <Axes: xlabel='Highest_Qualified_Member'>
```


Calculating the IQR

```
In [98]: df.plot(x = 'Mthly_HH_Income', y = 'Mthly_HH_Expense')
    IQR = df['Mthly_HH_Expense'].quantile(0.75) - df['Mthly_HH_Expense'].quantile(0.75)
    print("The 50% IQR is:",IQR)
```

The 50% IQR is: 15000.0

Calculating the Standard Deviation (for first 4 columns)

- -> We are first creating a data frame
- -> We are then indexing the values using iloc[] function, this is used for integer-based indexing
- -> Then we are finding the Standard Deviation of the columns

```
pd.DataFrame(df.iloc[:,0:5].std().to_frame())
In [151...
Out[151...
                                           0
            Mthly_HH_Income
                                26097.908979
            Mthly_HH_Expense
                                12090.216824
           No_of_Fly_Members
                                    1.517382
             Emi_or_Rent_Amt
                                 6241.434948
           Annual_HH_Income
                              320135.792123
           # Transposing the above output
In [111...
           pd.DataFrame(df.iloc[:,0:5].std().to_frame()).transpose()
In [113...
```

Out[113		$Mthly_HH_Income$	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annua
	0	26097.908979	12090.216824	1.517382	6241.434948	3;
	4					•

Calculating the Variance (for first 3 columns)

- -> We are first creating a data frame
- -> We are then indexing the values using iloc[] function, this is used for integer-based indexing
- -> Then we are finding the Variance of the columns

[122	<pre>pd.DataFrame(df.iloc[:, 0:4].var().to_frame())</pre>					
t[122		0				
	Mthly_HH_Incom	e 6.811009e+08				
	Mthly_HH_Expense	e 1.461733e+08				
	No_of_Fly_Member	s 2.302449e+00				
	Emi_or_Rent_Am	t 3.895551e+07				
[124	# Transposing the	above output				
[126	pd.DataFrame(df.i	.loc[:, 0:4].var	().to_frame()).transpose	()		
t[126	Mthly_HH_Inco	ne Mthly_HH_Exp	pense No_of_Fly_Members	Emi_or_Rent_Amt		
	o 6.811009e+	08 1.461733	Se+08 2.302449	3.895551e+07		

Calculating the Count of Highest Qualified Member (column)

	count	19	10	10	6	5		
Out[154	Highest_Qualified_Member	Graduate	Under- Graduate	Professional	Post- Graduate	Illiterate		
In [154	<pre>df['Highest_Qualified_Member'].value_counts().to_frame().transpose()</pre>							
In [139	<pre># We are using the value_counts() function, but just using the to_frame() functi # to add it to a dataset form</pre>							

Histogram Plot to Count the No_of_Earnings_Members (column)

```
In [148... # we are going to count the number of times a value has repeated, and accordning

In [145... df['No_of_Earning_Members'].value_counts().plot(kind = 'bar')
```

Out[145... <Axes: xlabel='No_of_Earning_Members'>

