Probabilistic Robotics

Bayes Filter Implementations

Particle filters

Sample-based Localization (sonar)

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest,
 Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]d

Importance Sampling

Weight samples: w = f/g

Importance Sampling with Resampling: Landmark Detection Example

Distributions

Distributions

Wanted: samples distributed according to $p(x | z_1, z_2, z_3)$

This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.

Importance Sampling with Resampling

Target distributi on f :
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_{k} p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

Sampling distributi on
$$g: p(x | z_l) = \frac{p(z_l | x) p(x)}{p(z_l)}$$

Importance weights
$$w: \frac{f}{g} = \frac{p(x | z_1, z_2, ..., z_n)}{p(x | z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k | x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_{t-1} z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- 3. For i = 1...n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

7. $\eta = \eta + w_t^i$

Update normalization factor

8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

- 9. **For** i = 1...n
- 10. $w_t^i = w_t^i / \eta$

Normalize weights

Particle Filter Algorithm

Bel
$$(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1}) \ dx_{t-1}$$

$$\rightarrow \text{draw } x^i_{t-1} \text{ from } Bel(\mathbf{x}_{t-1})$$

$$\rightarrow \text{draw } x^i_{t} \text{ from } p(x_t \mid x^i_{t-1}, u_{t-1})$$

$$\Rightarrow \text{Importance factor for } x^i_{t}:$$

$$w^i_t = \frac{\text{target distributi on}}{\text{proposal distributi on}}$$

$$= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}$$

$$\propto p(z_t \mid x_t)$$

Resampling

Given: Set S of weighted samples.

• Wanted : Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

1. Algorithm **systematic_resampling**(*S*,*n*):

2.
$$S' = \emptyset, c_1 = w^1$$

3. For
$$i = 2...n$$
 Generate cdf

4.
$$c_i = c_{i-1} + w^i$$

5.
$$u_1 \sim U[0, n^{-1}], i = 1$$
 Initialize threshold

6. For
$$j = 1...n$$

7. While
$$(u_i > c_i)$$

Skip until next threshold reached

8.
$$i = i + 1$$

9.
$$S' = S' \cup \{ \langle x^i, n^{-1} \rangle \}$$
 Insert

10.
$$u_{j+1} = u_j + n^{-1}$$

Increment threshold

11. Return S'

Motion Model Reminder

Proximity Sensor Model Reminder

Laser sensor

Sonar sensor

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

Under a Light

Measurement z:

P(z/x):

Next to a Light

Measurement z:

Elsewhere

Measurement z: P(z|x):

Global Localization Using Vision

Robots in Action: Albert

Application: Rhino and Albert Synchronized in Munich and Bonn

[Robotics And Automation Magazine, to appear]

Localization for AIBO robots

Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.

 How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Random Samples Vision-Based Localization

936 Images, 4MB, .6secs/image Trajectory of the robot:

Odometry Information

Image Sequence

Resulting Trajectories

Position tracking:

Resulting Trajectories

Global localization:

Global Localization

Kidnapping the Robot

Summary

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples.
- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.