

TP – Optimisation

1 Introduction

1.1 Objectif

L'objectif de ces 2 TP d'optimisation est de programmer les méthodes de Gauß-Newton et de Newton (resp. pages 58 et 57 du polycopié) pour un problème aux moindres carrés

$$\min_{\beta \in \mathbb{R}^p} \ f(\beta) = \frac{1}{2} ||r(\beta)||^2$$

où r est la fonction des résidus

$$r : \mathbb{R}^p \longrightarrow \mathbb{R}^n$$
 $\beta \longmapsto r(\beta)$

1.2 Exemple traité

Le carbone radioactif ^{14}C est produit dans l'atmosphère par l'effet des rayons cosmiques sur l'azote atmosphérique. Il est oxydé en $^{14}CO_2$ et absorbé sous cette forme par les organismes vivants qui, par suite, contiennent un certain pourcentage de carbone radioactif relativement aux carbones ^{12}C et ^{13}C qui sont stables. On suppose que la production de carbone ^{14}C atmosphérique est demeurée constante durant les derniers millénaires. On suppose d'autre part que, lorsqu'un organisme meurt, ses échanges avec l'atmosphère cessent et que la radioactivité due au carbone ^{14}C décroit suivant la loi exponentielle suivante :

$$A(t) = A_0 e^{-\lambda t}$$

où λ est une constante positive, t représente le temps en année, et A(t) est la radioactivité exprimée en nombre de désintégrations par minute et par gramme de carbone. On désire estimer les paramètres A_0 et λ par la méthode des moindres carrés. Pour cela on analyse les troncs (le bois est un tissu mort) de très vieux arbres Sequoia gigantea et Pinus aristaca. Par un prélèvement effectué sur le tronc, on peut obtenir :

- son age t en année, en comptant le nombre des anneaux de croissance,
- sa radioactivité A en mesurant le nombre de désintégration.

Ī	t	500	1000	2000	3000	4000	5000	6300 8.0
	A	14.5	13.5	12.0	10.8	9.9	8.9	8.0

2 Travail demandé

2.1 Introduction

- Petit complément Matlab:
 - Les fonctions: https://www.mathworks.com/help/matlab/ref/function.html;
 - Les boucles while: https://www.mathworks.com/help/matlab/ref/while.html.
- Il ne faut en aucun cas modifier les interfaces des fonctions qui sont définies dans les codes fournis. Voir les entêtes de ces fonctions dans les fichiers fournis pour connaître cette interface.
- Les résultats que vous devez obtenir sont en annexe du présent document.

2.2 Algorithme de Gauß-Newton

- Compléter, à la fin du fichier Modelisation_C14.m, les deux fonctions residu_C14 et J_residu_C14 qui codent respectivement la fonction des résidus r et la matrice jacobienne de la fonction des résidus J_r . On codera ces fonctions sans aucune boucle. Concernant la fonction J_residu_C14 , on vous demande de coder la fonction que vous aurez calculer auparavant à la main. Il ne faut en aucun cas utiliser de fonction Matlab du type jacobian ou autre.
- Compléter la fonction Algo_Gauss_Newton définie dans le fichier du même nom qui code l'algorithme de Gauß-Newton. On utilisera dans un premier temps comme seul test d'arrêt le nombre maximum d'itérations atteint.
- Exécuter le script Modelisation_C14.m afin de vérifier vos résultats (comparer avec les résultats donnés en annexe de ce document).
- Implémenter dans la fonction Algo_Gauss_Newton tous les tests d'arrêt suivants. On note $\beta^{(0)}$ le point initial et $\beta^{(k)}$ l'itéré courant. On pose aussi Tol_rel et Tol_abs= $\sqrt{\varepsilon_{mach}}$ (sqrt(eps) en Matlab). Les tests d'arrêt seront les suivants :
 - 1. $\|\nabla f(\beta^{(k+1)})\|$ petit : $\|\nabla f(\beta^{(k+1)})\| < \max(\text{Tol rel}\|\nabla f(\beta^{(0)})\|, \text{Tol abs})$;
 - 2. Évolution de $f(\beta^{(k+1)})$ petit : $|f(\beta^{(k+1)}) f(\beta^{(k)})| \le \max(\text{Tol_rel}|f(\beta^{(k)})|, \text{Tol_abs})$
 - 3. Évolution du pas $\delta^{(k)} = \beta^{(k+1)} \beta^{(k)}$ petit : $\|\beta^{(k+1)} \beta^{(k)}\| < \max(\text{Tol rel} \|\beta^{(k)}\|, \text{Tol abs})$
 - 4. Le nombre d'itération maximal est atteint.

2.3 Algorithme de Newton

- Compléter, à la fin du fichier Modelisation_C14.m, la fonction Hess_f_C14 et qui renvoie:
 - la matrice hessienne de la fonction coût f au point;
 - les résidus;
 - La matrice jacobienne des résidus.
- Compléter la fonction Algo_Newton définit dans le fichier de même nom qui code l'algorithme de Newton.
- Exécuter le script Modelisation C14.m afin de vérifier vos résultats.

3 Tests numériques

Réaliser quelques tests numériques :

- en modifiant le point de départ $\beta^{(0)}$;
- en modifient le vecteur des options.

A Résultats (Annexe)

Algorithme de Gauss-Newton

residu_C14(beta0, Donnees)

- 4.9877
- 4.4516
- 3.8127
- 3.3918
- 3.1968
- 2.8347
- 2.6741

J_residu_C14(beta0, Donnees)

-0.95123	4756.1
-0.90484	9048.4
-0.81873	16375
-0.74082	22225
-0.67032	26813
-0.60653	30327
-0.53259	33553

exitflag	delta	f(beta)	f'(beta)	lambda	AO	nb_iter
		48.07	4.6322e+05	0.0001	10	0
4	5.0219	0.10507	15913	0.00010633	15.022	1
4	0.0032964	0.088621	5.9024	0.00010433	15.025	2
4	0.00068766	0.088621	0.39911	0.00010432	15.025	3
2	4.9165e-06	0.088621	0.004769	0.00010432	15.024	4
2	4.9165e-06	0.088621	0.004769	0.00010432	15.024	4

OPTIMISATION	Numérioue
OPTIMISATION	NUMERIQUE

${\bf TP-Optimisation}$

4	15.024	0.00010432	0.004769	0.088621	4.9165e-06	2
4	15.024	0.00010432	0.004769	0.088621	4.9165e-06	2
4	15.024	0.00010432	0.004769	0.088621	4.9165e-06	2

Algorithme de Newton

Hessienne f(beta^{(0)})

4.0436 -50497

-50497 1.8899e+09

exitflag	delta	f(beta)	f'(beta)	lambda	AO	nb_iter
		48.07	4.6322e+05	0.0001	10	0
4	2.7154	159.19	3.1785e+06	-7.255e-05	12.715	1
4	0.66279	34.783	9.7291e+05	-1.8362e-05	12.053	2
4	4.4973	4.2383	2.1583e+05	0.00010635	16.55	3
4	1.7953	0.14691	9600.9	9.8263e-05	14.755	4
4	0.26754	0.088626	80.835	0.00010427	15.022	5
4	0.0023669	0.088621	0.0064489	0.00010432	15.024	6
1	1.8799e-07	0.088621	7.1168e-11	0.00010432	15.024	7
1	1.8799e-07	0.088621	7.1168e-11	0.00010432	15.024	7

Figure 1 – Algorithme de Gauß-Newton et de Newton, point de départ $\beta^{(0)} = (10, 0.0001)$.