

5

10

5

10

What is Claimed is:

- 1. Light-storage self-luminescent glass, comprising from 0.01% to 40% by weight of a light-storage self-luminescent material activated by multiple ions and from 99.99% to 60% by weight of a matrix glass; wherein the light-storage self-luminescent material has a particle size from 10 μ m to 20 mm, and the matrix glass is low melting point glass or common silicate glass, and other conventional borate glass, phosphate glass, halide glass, sulfide glass and aluminate glass.
- 2. Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 α MO • β M'O • γ SiO₂ • δ R:Eu_xLn_y

wherein M is one or more selected from the group consisting of Sr, Ca, Ba and Zn;

M' is one or more selected from the group consisting of Mg, Cd and Be;

R is B_2O_3 , P_2O_5 or mixture thereof; Ln is one or more selected from the group consisting of Nd, Dy, Ho, Tm, La, Pr, Tb, Ce, Er, Mn, Bi, Sn and Sb; and

 α , β , γ , δ , x and y are molar coefficients meeting following requirement: $0.6 \le \alpha \le 6$; $0 \le \beta \le 5$; $1 \le \gamma \le 9$; $0 \le \delta \le 0.7$; $0.00001 \le x \le 0.2$; $0 \le y \le 0.3$.

3. Light-storage self-luminescent glass according to claim 2, wherein the main chemical formula

of the light-storage self-luminescent material activated by multiple ions is:

5 $(Sr_{1-z}Ca_z)_2MgSi_2O_7:Eu_xLn_y$

Ψ.

wherein Ln is one or more selected from the group consisting of La, Ce, Dy, Tm, Ho, Nd, Er, Sb and Bi;

z is a coefficient: $0 \le z \le 1$; and x and y are molar coefficients: 0.0001 $\le x \le 0.2$; $0.0001 \le y \le 3.0$.

- 4. Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:
- $(Ca_{1-z}Sr_z)S:Eu_xLn_y$

wherein Ln is one or more selected from the group consisting of Er, Dy, La, Tm and Y;

z is a coefficient:0 \leq z \leq 1; and

- x and y are molar coefficients meeting following requirement: $0.00001 \le x \le 0.2$; $0.00001 \le y \le 0.15$.
 - 5. Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:
- 5 $R_2O_2S : Eu_xLn_y$

10

wherein R is one or more selected from the group consisting of Y, La and Gd;

Ln is one or more selected from the group consisting of Er, Cr, Bi, Dy, Tm, Ti, Mg, Sr, Ca, Ba and Mn; and

x and y are molar coefficients meeting following requirement: $0.00001 \le x \le 0.2$; $0.00001 \le y \le 0.6$.

₹.

5

10

5

5

6. Light-storage self-luminescent glass according to claim 1, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

 $\alpha MO \bullet \beta A1_2O_3 \bullet \gamma B_2O_3: Eu_xLn_y$

wherein M is one or more selected from the group consisting of Mg, Ca, Sr and Zn;

. Ln is one or more selected from the group consisting of Nd, Dy, Ho, Tm, La, Ce, Er, Pr and Bi; and

 α , β , γ , x and y are molar coefficients meeting following requirement: $0.5 \le \alpha \le 6$; $0.5 \le \beta \le 9$; $0 \le \gamma \le 0.3$; $0.00001 \le x \le 0.15$; $0.00001 \le y \le 0.2$.

7. Light-storage self-luminescent glass according to claim 6, the chemical formula of the light-storage self-luminescent material is:

 $MAl_2O_4:Eu_xLn_y$

wherein Ln is one or more selected from the group consisting of La, Ce, Dy, Ho, Nd and Er;

M is one or more selected from the group consisting of Sr, Ca, Mg and Zn; and

x and y are molar coefficients: 0.0001 $\leq x \leq 0.15$; 0.0001 $\leq y \leq 0.2$.

8. Light-storage self-luminescent glass according to claim 6, wherein the chemical formula of the light-storage self-luminescent material activated by multiple ions is:

M₄A1₁₄O₂₅: Eu_xLn_y

wherein Ln is one or more selected from the group consisting of Pr, Ce, Dy, Ho, Nd and Er;

M is one or more selected from the group consisting of Sr, Ca, Mg and Zn; and

x and y are molar coefficients: 0.0001 \leq x \leq 0.15; 0.0001 \leq y \leq 0.2.

9. Light-storage self-luminescent glass according claim 1, wherein the low melting point glass consists of following components (by weight):

 $SiO_2: 10-45\%$ MgO: 0-8%

 $A1_2O_3: 1-5%$ CaO:2-10%

 $B_2O_3: 0-50\%$ SrO: 1-10%

Li₂O: 0-6% BaO: 0-7%

 $Na_2O: 5-20\%$ ZnO: 0-10%

 $K_2O: 0-20%$ $ZrO_2: 0-1%$

 $TiO_2: 0-20%$.

10

5 10. Light-storage self-luminescent glass according claim 1, wherein the conventional silicate glass consists of following components (by weight):

 SiO_2 : 30-81% CaO: 0.5-9%

 $A1_2O_3: 0-23\%$ MgO: 1-8%

 B_2O_3 : 0-15% SrO: 1-10%

Li₂O: 0-8% BaO: 0-16%

Na₂O: 0.6-18% ZnO: 0.6-55%

K₂O: 0.4-16% PbO: 0-33%

 $As_2O_3: 0-0.5%$.

5

5

5

5

- 5 11. A process for producing the lightstorage self-luminescent glass according to claim 1, comprising formulating, mixing, melting and forming to obtain the light-storage self-luminescent glass.
 - 12. A process for producing the light-storage self-luminescent glass according to claim 11, wherein the light-storage self-luminescent material is doped into the melted matrix glass to produce a mixture and the mixture is formed at 900-1300°C during the forming process.
 - 13. A process for producing the lightstorage self-luminescent glass according to claim 11,
 wherein a glass which has been formed and cooled is reheated and melted by a glass blower, and doped with the
 light-storage self-luminescent material before
 secondary forming.
 - 14. A process for producing the lightstorage self-luminescent glass according to claim 11,
 wherein the matrix glass is melted, homogenized and
 clarified to obtain a glass metal, the resultant glass
 metal is doped with 1-45% of a light-storage selfluminescent material to produce a mixture, and the
 mixture is mixed well and then secondarily clarified
 before forming.
 - 15. A process for producing the lightstorage self-luminescent glass according to claim 11, wherein the low melting point glass is melted, cooled down and crushed to obtain glass powder; the glass powder is thoroughly mixed with a light-storage self-

luminescent material to obtain a mixture; and then the resultant mixture is heat treated at the temperature of 700-1100°C to obtain the light-storage self-luminescent glass.