2. Double Integrals

If a segron R es bounded by the curves

$$x=a$$
, $x=b$, $y=c+y=d$ then $\int_{R}^{4} f(x,y) dA = \frac{1}{2} \int_{0}^{4} f(x,y) dx dy$

I. Evaluate the double entegrals

Exist: $\int_{0}^{3} \int_{0}^{4} (1+4xy) dx dy$
 $I = \int_{0}^{3} \left[x + 4y \frac{x^{2}}{2} \right] dy$
 $I = \int_{0}^{3} \left[x + 2y \frac{x^{2}}{2} \right] dy$
 $I = \left[y + 2y \frac{x^{2}}{2} \right] dy = \int_{0}^{3} \left[(1+2y) - 0 \right] dy$
 $I = \left[y + 2y \frac{x^{2}}{2} \right] dy = \left[(3+9) - (1+1) \right]$
 $I = \left[y + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$
 $I = \left[x + 2y \frac{x^{2}}{2} \right] dx$

$$I = \int_{3}^{3} y^{2} \left[\frac{\ln(x^{2}+1)}{x^{2}} \right]^{1} dy = \frac{1}{x^{2}} \int_{3}^{3} y^{2} [\ln 2 - \ln 1] dy$$

$$I = \frac{\ln 2}{x^{2}} \int_{-3}^{3} y^{2} dy = \frac{\ln 2}{x^{2}} \left[\frac{y^{3}}{x^{2}} \right]_{-3}^{3}$$

$$I = \frac{\ln 2}{6} \left[3^{3} - (-3)^{3} \right] = \frac{\ln 2}{6} \left[3^{2} + 2^{2} \right]$$

$$I = \frac{\ln 2}{6} \left[3^{2} - (-3)^{3} \right] = \frac{\ln 2}{6} \left[3^{2} + 2^{2} \right]$$

$$I = \frac{\ln 2}{6} \left[3^{2} (x^{2} - y) dx dy \right] dx$$

$$I = \int_{0}^{1} \left[x^{2} (2 - x) - (2 - x)^{2} \right] - \left[x^{3} - \frac{x^{2}}{x^{2}} \right] dx$$

$$I = \int_{0}^{1} \left[x^{2} (2 - x) - (2 - x)^{2} - x^{3} + \frac{x^{2}}{x^{2}} \right] dx$$

$$I = \int_{0}^{1} \left[\frac{5x^{2}}{2} - 2x^{3} - (2 - x)^{2} - x^{3} + \frac{x^{2}}{x^{2}} \right] dx$$

$$I = \int_{0}^{1} \left[\frac{5x^{2}}{2} - 2x^{3} - (2 - x)^{2} \right] dx$$

$$I = \left[\frac{5}{6} \frac{x^{3}}{3} - 2x^{4} - \frac{1}{2} \frac{(2 - x)^{3}}{-3} \right] = \frac{(a - x)^{3}}{-3}$$

$$I = \left[\frac{5}{6} x^{3} - \frac{x^{4}}{2} + \frac{1}{6} (2 - x)^{3} \right]^{1}$$

$$I = \left[\frac{5}{6} x^{3} - \frac{x^{4}}{2} + \frac{1}{6} (2 - x)^{3} \right]^{1}$$

$$I = \left[\frac{5}{6} x^{3} - \frac{x^{4}}{2} + \frac{1}{6} (2 - x)^{3} \right]^{1}$$

$$I = \left[\frac{5}{6} x^{3} - \frac{x^{4}}{2} + \frac{1}{6} (2 - x)^{3} \right]^{1}$$

$$I = \left[\frac{5}{6} x^{3} - \frac{x^{4}}{2} + \frac{1}{6} (2 - x)^{3} \right]^{1}$$

$$I = \frac{1}{3} - \frac{1}{2} = -\frac{5}{6}$$

$$\Re \left\{ \int_{0}^{\pi} \int_{0}^{2} r \operatorname{sen0} \, dr \, d\theta \right\}$$

$$\operatorname{Sol}_{2}: I = \int_{0}^{\pi} \left[\int_{0}^{2} r \operatorname{sen0} \, dr \, d\theta \right] d\theta$$

$$I = \int_{0}^{\pi} \operatorname{sen0} \left[\int_{0}^{2} r \, dr \, d\theta \right] d\theta = \int_{0}^{\pi} \operatorname{sen0} \left[\frac{r^{2}}{2} \right]_{0}^{2} d\theta$$

$$I = \int_{0}^{\pi} \operatorname{sen0} \left[A_{Z_{1}}^{2} \right] d\theta = \int_{0}^{\pi} \operatorname{alsen0} \, d\theta$$

$$I = -a \left[\cos \pi - \cos \theta \right] = -a \left[\cos \pi - \cos \theta \right] = -a \left[-1 - 1 \right]$$

$$I = 4$$

$$29 \text{ Evaluate the double entegrals}$$

$$99 \text{ Fixed the double entered the double entegrals}$$

$$99 \text{ Fixed the double entegrals}$$

$$99 \text{ Fixed the double entegrals}$$

70/34=x2 7(1,1) y=vx 1) x (0,0)