Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(50, 1):-!. f(I,Y):-J is I+1, \underline{f(J,S)}, S<1, !, K is I-2, Y is K. f(I,Y):-J is I+1, \underline{f(J,Y)}.
```

Rewrite the definition in order to avoid the recursive call $\underline{\mathbf{f(J,V)}}$ in both clauses. Do NOT redefine the predicate. Justify your answer.

B. Given a nonlinear list containing both numerical and nonnumerical atoms, write a LISP program that builds a list containing as sublists non-numerical atoms on each level of the initial list (the first sublist of the result contains non-numerical atoms on the first level, the second sublist the non-numerical atoms from the second level etc.). For example, for the list (A B 12 (5 D (A F (10 B) D (5 F) 1)) C 9 (F 4 (D) 9 (F (H 7) K) (P 4)) X) the result will be ((A B C X) (D F) (A F D D F K P) (B F H)).

C. Write a PROLOG program that generates the list of permutations of the set 1..N, having the property that the absolute value of the difference between 2 consecutive values from the permutation is >=2. Write the mathematical models and flow models for the predicates used. For example, for $N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]]$ (not necessarily in this order).

D. Given a nonlinear list, write a Lisp function to return the list with all atoms on the level **k** replaced by 0. The superficial level is assumed 1. A MAP function shall be used.

Example for the list (a (1 (2 b)) (c (d))) **a)** k=2 => (a (0 (2 b)) (0 (d)))

- **b)** k=1 => (0 (1 (2 b)) (c (d)))
- c) k=4 => the list does not change