Chapter 4

Ordinary Differential Equations

4.1 Introduction

A differential equation is an equation involving derivatives of one or more functions. If there are some partial derivatives in the equation we call the equation a **partial differential equation** (PDE), and if there are no partial derivatives we say it is an **ordinary differential equation** (ODE). The **order** of a differential equation is the largest integer n for which the equation involves the n-th derivative of one of the functions we are solving for.

Example 4.1. Determine if each of the following is an ODE or a PDE. Find the order of each equation.

(a)
$$\left(\frac{dx}{dt}\right)^2 + x\sin t = \cos x$$
.

(b)
$$\frac{\partial y}{\partial t} \frac{\partial y}{\partial s} + y \frac{\partial z}{\partial t} = \sin(st)$$
.

(c)
$$y'' + ty' + y = \cos t$$
.

In this class we will only focus on ordinary differential equations. Note that the domain and range of all solutions to differential equations are assumed to be subsets \mathbb{R} .

The main questions that we are trying to answer are the following:

- What is the general solution of an ODE?
- Can we find solutions satisfying certain initial values?
- How many solutions are there satisfying given initial values?
- If finding an explicit formula for a solution is not possible, can we approximate the solution?
- What are all solutions that are constant?
- Are all solutions bounded? Are there any bounded solutions?

- Are all solutions periodic? Are there any periodic solutions?
- What is the long term behavior of solutions?
- How do solutions change when we change their initial values?

4.2 Explicit First Order Equations

An equation of the form $\frac{dy}{dt} = f(t)$ is called a (first order) **explicit differential equation.**

Example 4.2. Find all solutions of the differential equation $\frac{dy}{dt} = \frac{1}{t^2 - t}$.

Theorem 4.1 (Existence and Uniqueness Theorem for Explicit Equations). Suppose f(t) is continuous over an open interval (a,b). Then, for every $t_0 \in (a,b)$ and every real number y_0 , there is a unique solution to the initial value problem

$$\frac{dy}{dt} = f(t), \ y(t_0) = y_0.$$

This solution is given by

$$y(t) = y_0 + \int_{t_0}^t f(s) \, ds.$$

4.3 First Order Linear Equations

An *n*-th order linear differential equation in **normal form** (i.e. with the leading coefficient of 1) is an equation of the form:

$$y^{(n)} + a_n(t)y^{(n-1)} + \dots + a_2(t)y' + a_1(t)y = f(t).$$

f(t) is called **forcing** and $a_i(t)$'s are called **coefficients**. This equation is often written as L[y] = f(t), where L is the **differential operator** given by

$$L = D^{n} + a_{n}(t)D^{n-1} + \dots + a_{2}(t)D + a_{1}(t).$$

Here, we write D instead of $\frac{\mathrm{d}}{\mathrm{d}t}$.

We would also like to explore **initial value problems** (i.e. equations along with initial values in a specific format) or IVP's of the form:

$$\begin{cases} y^{(n)} + a_n(t)y^{(n-1)} + \dots + a_2(t)y' + a_1(t)y = f(t). \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \\ \vdots \\ y^{(n-1)}(t_0) = y_{n-1} \end{cases}$$

Example 4.3. Solve the equation: $y' + y = e^t$.

To solve an equation of the form $\frac{dy}{dt} + a(t)y = f(t)$, we find a function A(t) for which A'(t) = a(t). Multiplying both sides by $e^{A(t)}$ we can rewrite the equation as

$$\frac{d}{dt}(e^{A(t)}y) = e^{A(t)}f(t).$$

Theorem 4.2 (Existence and Uniqueness Theorem for First Order Linear Equations). Suppose a(t) and f(t) are continuous over an open interval (a,b). Let $t_0 \in (a,b)$ and y_0 be a real number. Then, the initial value problem given below has a unique solution defined over (a,b).

$$\frac{dy}{dt} + a(t)y = f(t), \quad y(t_0) = y_0.$$

4.4 Separable Equations

A first order equation is called **separable** if it can be written in the form

$$\frac{dy}{dt} = f(t)g(y).$$

The name "separable" refers to the fact that we can separate the variables and write the differential equation in the form

$$\frac{dy}{g(y)} = f(t) dt.$$

Solutions can then be obtained by simply integrating both sides.

Example 4.4. Solve the equation $\frac{dy}{dt} = 2ty^2 + 3t^2y^2$. Can you find a solution that satisfies y(1) = 0?

Definition 4.1. A solution to a differential equation is called **stationary** or **equilibrium** or a **fixed point** or a **critical point** if it is constant.

All stationary solutions of the separable equation $\frac{dy}{dt} = f(t)g(y)$ are found by solving g(y) = 0 for y.

Example 4.5. Find all solutions of $\frac{dy}{dt} = ty^2 - ty$, y(1) = 2.

4.5 Change of Variables

Example 4.6. Solve the equation $y' = \frac{e^{y+t} - y - t}{y+t}$.

An equation of the form $\frac{dy}{dt} = f(at + by + c)$ can be transformed into a separable equation by substituting u = at + by + c.

Example 4.7. Solve the equation $\frac{dy}{dt} = \frac{y-t}{y+t}$.

To solve an equation of the form y' = f(y/t) we use the substitution u = y/t. This yields y = ut, which implies

$$y' = u't + u \Rightarrow u't + u = f(u) \Rightarrow u' = \frac{f(u) - u}{t}.$$

This equation is separable that can be solved using the method discussed earlier.

One common example is equations of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{ay + bt}{cy + dt} \tag{*}$$

for constants a, b, c, d. For these we can use the substitution u = y/t.

Example 4.8. Solve the equation $\frac{dy}{dt} = \frac{y-t+1}{y+t-3}$.

To solve equations of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{ay + bt + m}{cy + dt + n}$$

for constants a, b, c, d, m, n first choose T = t + r, Y = y + s for constants r, s. Find r, s in such a way that the equation turns into one of the form (*). Then, use the substitution u = Y/T.

4.6 Exact Equations and Integrating Factors

Suppose the solution to a differential equation is given by an implicit equation $\phi(t,y) = \text{constant}$. This is equivalent to $\frac{d\phi(t,y)}{dt} = 0$. Using the chain rule we obtain $\phi_t + \phi_y \frac{dy}{dt} = 0$.

Definition 4.2. An equation of the form M(t,y) + N(t,y)y' = 0 is called **exact** over an open rectangle $R = (a,b) \times (c,d)$ in the ty-plane, if there is a function $\phi(t,y)$ for which $\phi_t = M$ and $\phi_y = N$ over R.

All solutions of an exact equation are of the form $\phi(t,y) = c$. The name exact refers to the fact that the left hand side is exactly the derivative of one function.

Example 4.9. Solve the equation $e^x y + 2x + (2y + e^x) \frac{dy}{dx} = 0$.

Remark. Sometimes equations of the form $M(t,y)+N(t,y)\frac{\mathrm{d}y}{\mathrm{d}t}=0$ are written as M(t,y) dt+N(t,y) dy=0.

Theorem 4.3. Suppose M(t,y) and N(t,y) are continuous over the rectangle $R=(a,b)\times(c,d)$ in the ty-plane. If $\phi(t,y)$ is a function satisfying $\phi_t=M$ and $\phi_y=N$ over R, then the general solution to the differential equation M(t,y)+N(t,y)y'=0 over R is given by $\phi(t,y)=C$, where C is a constant.

Question. How do we know which equations are exact?

From multivariable calculus we know $\phi_{ty} = \phi_{yt}$, assuming second partials of ϕ are continuous. Therefore, in order for an equation $M + N \frac{dy}{dt} = 0$ to be exact we need to make sure $M_y = N_t$. The following theorem shows that under certain conditions, the converse is also true.

Theorem 4.4. Let M(t,y), N(t,y) be continuous and have continuous first partials over an open rectangle $R = (a,b) \times (c,d)$. Then, there is a function $\phi(t,y)$ defined over R for which $\phi_t = M$ and $\phi_y = N$ if and only if $M_y = N_t$.

Example 4.10. Solve $(xy^2 + y + e^x) + (x^2y + x)\frac{dy}{dx} = 0$.

Example 4.11. Solve the initial value problem $3t^2y + 8ty^2 + (t^3 + 8t^2y + 12y^2)\frac{dy}{dt} = 0$, y(2) = 1.

Example 4.12. Solve the equation $2ty + (2t^2 - e^y)\frac{dy}{dt} = 0$.

When the equation is not exact one possible remedy is to multiply both sides by a factor $\mu(t, y)$ in such a way that the equation becomes exact. Such a factor μ is called an **integrating factor**.

Example 4.13. Solve the equation: $4xy + 3y^3 + (x^2 + 3xy^2)\frac{dy}{dx} = 0$.

Example 4.14. Find all functions M(t, y) with continuous first partials for which t is an integrating factor of the equation

$$M(t,y) + t\frac{dy}{dt} = 0.$$

4.7 More Examples

Example 4.15. Consider the differential equation y' = f(t), where $f(t) = \begin{cases} 2t - 1 & \text{if } t > 0 \\ 1 & \text{if } t < 0 \end{cases}$ Find all continuous solutions y to this differential equation.

Solution. Integrating we obtain $y = t^2 - t + C_1$ for t > 0, and $y = t + C_2$ for t < 0. Since this function is continuous, we must have

$$\lim_{t \to 0^+} t^2 - t + C_1 = \lim_{t \to 0^-} t + C_2 = y(0).$$

Therefore, $C_1 = C_2 = y(0)$. This means all solutions are of the following form:

$$f(t) = \begin{cases} t^2 - t + C & \text{if } t > 0 \\ t + C & \text{if } t \le 0 \end{cases}$$

where C is a constant.

Example 4.16. Consider the linear transformation $T: C^1(\mathbb{R}) \to C(\mathbb{R})$ given by T(f)(t) = f'(t). Find all eigenpairs of this transformation.

Solution. $(\lambda, f(t))$ is an eigenpair iff $T(f)(t) = \lambda f(t)$, which means $f'(t) = \lambda f(t)$. Note that since f and f' are real valued functions and $f(t) \neq 0$, the scalar λ must be real. The equation $f'(t) - \lambda f(t) = 0$ is a first order differential equation with integrating factor $e^{-\lambda t}$. This yields $e^{-\lambda t} f(t) = c$ is a constant. Therefore, $f(t) = ce^{-\lambda t}$ yields all eigenvector of T, where $c \neq 0$ is a constant. This means all eigenpairs of T are of the form

$$(\lambda, ce^{\lambda t}),$$

Example 4.17. Solve each of the following differential equations.

- (a) y' + 2ty = 0.
- (b) $ty' + y = \sin t$.
- (c) $\frac{y'}{\cos t} + y = 1$.
- (d) y'' + y' = 0

Solution. (a) Integrating 2t we obtain t^2 . Thus, one integrating factor is e^{t^2} . This yields

$$\frac{d}{dt}\left(e^{t^2}y\right) = 0 \Rightarrow e^{t^2}y = C \Rightarrow y = Ce^{-t^2}.$$

(b) The left hand side is already the derivative of ty, so we can rewrite the equation as

$$\frac{d(yt)}{dt} = \sin t \Rightarrow yt = -\cos t + C \Rightarrow y = -\frac{\cos t - C}{t}.$$

(c) Multiplying by $\cos t$ we obtain $y' + y \cos t = \cos t$. An integrating factor is $e^{\sin t}$. This yields the equation

$$\frac{d}{dt}\left(e^{\sin t}y\right) = e^{\sin t}\cos t \Rightarrow e^{\sin t}y = e^{\sin t} + C \Rightarrow y = 1 + Ce^{-\sin t}.$$

(d) This is not a first order equation, but if you think of z = y' as a new function, then it becomes a first order linear equation. An integrating factor is e^t . This yields

$$\frac{d}{dt}\left(e^{t}y'\right) = 0 \Rightarrow e^{t}y' = C \Rightarrow y' = Ce^{-t} \Rightarrow y = -Ce^{-t} + D,$$

where C, D are two constants.

Example 4.18. Discuss the long term behavior of solutions, i.e. the limit of each solution as $t \to \infty$.

- (a) $y' + \alpha y = \alpha$, where α is a constant.
- (b) y' + 2ty = 1.

Solution. (a) The integrating factor is $e^{\alpha t}$. Therefore, we can rewrite the equation as

$$\frac{d}{dt}(e^{\alpha t}y) = \alpha e^{\alpha t} \Rightarrow e^{\alpha t}y = e^{\alpha t} + C \Rightarrow y = 1 + Ce^{-\alpha t},$$

where C = y(0) - 1.

When $\alpha = 0$, we have y = 1 + C is a constant.

When $\alpha > 0$, we see that $e^{-\alpha t} \to 0$ as $t \to \infty$. Therefore, $y \to 1$.

When $\alpha < 0$, $e^{-\alpha t} \to \infty$ as $t \to \infty$. Therefore, depending on if C = 0, C < 0 or C > 0, the solution stays at 1, tends to $-\infty$, or tends to ∞ as $t \to \infty$.

(b) The integrating factor is e^{t^2} . The equation then becomes

$$\frac{d}{dt} \left(e^{t^2} y \right) = e^{t^2} \Rightarrow e^{t^2} y = C + \int_0^t e^{s^2} ds \Rightarrow y = C e^{-t^2} + \int_0^t e^{s^2 - t^2} ds.$$

As $t \to \infty$, we have $t^2 \to -\infty$ and thus $e^{-t^2} \to 0$. The integral above cannot be evaluated, but we can estimate this integral. Note that since we are looking for the limit of y as $t \to \infty$ we may assume $0 \le s \le t$. Note also that when $x \ge 0$, the Taylor series for e^x yields

$$e^x = 1 + x + \dots \ge 1 + x \Rightarrow e^{-x} \le \frac{1}{1+x} \Rightarrow e^{s^2 - t^2} \le \frac{1}{1+t^2 - s^2} \Rightarrow \int_0^t e^{s^2 - t^2} ds \le \int_0^t \frac{1}{1+t^2 - s^2} ds.$$

The integral can now be evaluated using the method of partial fractions. For simplicity set $a = \sqrt{1+t^2}$. Note that $a > t \ge s \ge 0$.

$$\int_0^t \frac{1}{a^2 - s^2} \, \mathrm{d}s = \frac{1}{2a} \int_0^t \frac{1}{a + s} + \frac{1}{a - s} \, \mathrm{d}s = \frac{1}{2a} \ln \left(\frac{a + s}{a - s} \right) \Big|_{s = 0}^{s = t} = \frac{1}{2a} \left(\ln \left(\frac{a + t}{a - t} \right) - \ln 1 \right) = \frac{1}{2a} \ln \left(\frac{a + t}{a - t} \right).$$

Substituting $a = \sqrt{1 + t^2}$ we see the following:

$$\frac{a+t}{a-t} = \frac{(a+t)^2}{a^2 - t^2} = (a+t)^2 \Rightarrow \ln\left(\frac{a+t}{a-t}\right) = 2\ln(a+t) \le 2\ln(2a).$$

Therefore,

$$\int_0^t \frac{1}{a^2 - s^2} \, \mathrm{d}s \le \frac{2 \ln(2\sqrt{1 + t^2})}{2\sqrt{1 + t^2}} = \frac{\ln(2\sqrt{1 + t^2})}{\sqrt{1 + t^2}}.$$

As $t \to \infty$, so does $\sqrt{1+t^2}$. Since $\ln x$ grows slower than x, we have $\frac{\ln(2\sqrt{1+t^2})}{\sqrt{1+t^2}} \to 0$ as $t \to \infty$. Therefore, by the squeeze theorem applies to

$$0 \le \int_0^t e^{s^2 - t^2} ds \le \frac{\ln(2\sqrt{1 + t^2})}{\sqrt{1 + t^2}},$$

we conclude that $y \to 0$ as $t \to \infty$.

Example 4.19. Consider the differential equation $y' + \alpha y = t$. For which constants α does this equation have at least one periodic solution?

Solution. Suppose y is a periodic solution. This means there is a positive constant p for which y(t+p) = y(t) for all $t \in \mathbb{R}$. This means y'(t+p) = y'(t). Therefore,

$$y'(t+p) + \alpha y(t+p) = y'(t) + \alpha y(t).$$

Since y(t) is a solution to the given differential equation, the left hand side is t + p, while the right hand side is t. Therefore, p = 0, which implies no such constant α exists.

Example 4.20. Prove that the equation $y' + y = 2 \sin t$ has a unique periodic solution.

Solution. The integrating factor is e^t . This yields the equation

$$\frac{d}{dt}(e^ty) = 2e^t\sin t \Rightarrow e^ty = e^t(\sin t - \cos t) + C \Rightarrow y = \sin t - \cos t + Ce^{-t}.$$

Note that by the Extreme Value Theorem, a periodic continuous function must also be bounded. As $t \to -\infty$, e^{-t} approaches infinity. Therefore, if C is nonzero, the function would be unbounded and thus not periodic. Therefore, the only solution where y is periodic is $y = \sin t - \cos t$, which is clearly periodic with period 2π . \square

Example 4.21. Solve each differential equation.

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{te^y}{1+t^2}.$$

(b)
$$\frac{dy}{dt} = \cos(y + 2t) - 2$$
.

(c)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{ty+t}{y^2+ty^2}.$$

(d)
$$\frac{dy}{dt} = ty^2 - t + 2y^2 - 2$$
.

(e)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{y+2t}{2y+t}.$$

(f)
$$\frac{dy}{dt} = \frac{y+2t+1}{2y+t-1}$$
.

Solution. (a) This is a separable equation. First, note that e^y cannot be zero and thus, there are no stationary solutions.

Rearranging we have

$$\int e^{-y} dy = \int \frac{t}{1+t^2} dt \Rightarrow -e^{-y} = \frac{1}{2} \ln(1+t^2) + C \Rightarrow -2e^{-y} = \ln(1+t^2) + C.$$

(b) We will use the change of variable u = y + 2t. This yields

$$u' = y' + 2 = \cos u \Rightarrow \sec u \, du = dt \Rightarrow \ln|\sec u + \tan u| = t + C \Rightarrow |\sec u + \tan u| = e^C e^t$$
.

Since e^C can be any positive constant we can drop the absolute value and write $\sec(y+2t) + \tan(y+2t) = Ce^t$ with $C \neq 0$.

The stationary solutions of the equation $u' = \cos u$ are those satisfying $\cos u = 0$ or $u = \pi k + \frac{\pi}{2}$. Therefore, the solutions are

$$\sec(y+2t) + \tan(y+2t) = Ce^t$$
 with $C \neq 0$, and $y+2t = \pi k + \frac{\pi}{2}$, with $k \in \mathbb{Z}$.

(c) The equation is separable and can be written as $\frac{dy}{dt} = \frac{t}{1+t} \frac{y+1}{y^2}$. This means the only stationary solution is y = -1.

Rearranging and using long division we obtain:

$$\frac{y^2 \, \mathrm{d}y}{y+1} = \frac{t}{1+t} \, \mathrm{d}t \Rightarrow \int \left(y-1+\frac{1}{y+1}\right) \, \mathrm{d}y = \int \left(1-\frac{1}{1+t}\right) \, \mathrm{d}t \Rightarrow \frac{y^2}{2} - y + \ln|y+1| = t - \ln|1+t| + C.$$

Therefore, the solutions are

$$y = -1$$
, and $y + t + C = \frac{y^2}{2} + \ln \left| \frac{y+1}{1+t} \right|$.

(d) The equation can be written as $\frac{dy}{dt} = (t+2)(y^2-1)$. This means it is a separable equation. The stationary solutions must satisfy $y^2 = 1$. Thus, there are two stationary solutions $y = \pm 1$.

Separating the variables we find the rest of the solutions:

$$\frac{\mathrm{d}y}{y^2 - 1} = (t + 2) \ \mathrm{d}t \Rightarrow \frac{1}{2} \int \left(\frac{1}{y - 1} - \frac{1}{y + 1} \right) \ \mathrm{d}y = \frac{t^2}{2} + 2t \Rightarrow \frac{1}{2} \ln \left| \frac{y - 1}{y + 1} \right| = \frac{t^2}{2} + 2t + C.$$

Here, we used partial fractions to integrate $\frac{1}{y^2-1}$.

(e) This is a function of y/t since

$$\frac{y+2t}{2y+t} = \frac{y/t+2}{2y/t+1}.$$

Setting u = y/t we obtain ut = y. Differentiating we have

$$u + u't = y' = \frac{u+2}{2u+1} \Rightarrow u' = \frac{2-2u^2}{t(2u+1)}.$$

This is a separable equation. Its stationary solutions are obtained by solving $2 - 2u^2 = 0$, which yields $u = \pm 1$. The nonstationary solutions are obtained as follows:

$$\frac{(2u+1)\,\mathrm{d}u}{1-u^2} = \frac{2\,\mathrm{d}t}{t} \Rightarrow -\frac{3}{2}\ln|1-u| - \frac{1}{2}\ln|1+u| = 2\ln|t| + C.$$

The integration on the left is obtained using partial fractions.

(f) Setting Y = y + r, T = t + s we have $\frac{dY}{dT} = \frac{dy}{dt}$, y = Y - r, t = T - s. Substituting we obtain the following:

$$\frac{dY}{dT} = \frac{Y - r + 2T - 2s + 1}{2Y - 2r + T - s - 1}.$$

In order to homogenize this we need r + 2s = 1 and 2r + s = -1. This yields r = -1, s = 1. This yields the equation

$$\frac{\mathrm{d}Y}{\mathrm{d}T} = \frac{Y + 2T}{2Y + T}.$$

By the previous part its solutions are

$$-\frac{3}{2}\ln|1-Y/T|-\frac{1}{2}\ln|1+Y/T|=2\ln|T|+C$$
, and $Y/T=\pm 1$.

Substituting back Y, T in terms of y, t we obtain the solutions.

Example 4.22. Solve each of the following equations:

(a) $(t^2 + y^2 + 2t) dt + 2ty dy = 0$.

(b)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{y\sin(ty)}{t\sin(ty) + y}.$$

(c) $\sin^2 y \cos y \, dy + \tan^2 x \, dx = 0.$

Solution. (a) $(t^2 + y^2 + 2t)_y = 2y$, and $(2ty)_t = 2y$. Since these are the same, the equation is exact. We can find the solutions by solving the system

$$\begin{cases} \phi_t = t^2 + y^2 + 2t \\ \phi_y = 2ty \end{cases}$$

The first equation yields $\phi = \frac{t^3}{3} + ty^2 + t^2 + f(y)$. Substituting this into the second equation we obtain 2ty + f'(y) = 2ty. Thus f(y) = 0 works. Therefore, the general solution is

$$\frac{t^3}{3} + ty^2 + t^2 = C.$$

(b) This equation can be written as

$$(t\sin(ty) + y)\frac{\mathrm{d}y}{\mathrm{d}t} + y\sin(ty) = 0 \tag{*}$$

We see $(t\sin(ty) + y)_t = \sin(ty) + ty\cos(ty)$ and $(y\sin(ty))_y = \sin(ty) + yt\cos(ty)$. Therefore, the equation (*) is exact. Its general solution may be obtained by solving the system:

$$\begin{cases} \phi_y = t\sin(ty) + y \\ \phi_t = y\sin(ty) \end{cases}$$

The first equation yields $\phi = -\cos(ty) + y^2/2 + f(t)$. Substituting into the second equation we obtain $y\sin(ty) + f'(t) = y\sin(ty)$. Thus, f(t) = 0 is a solution. The general solution is:

$$-\cos(ty) + \frac{y^2}{2} = C.$$

(c) This equation is both exact and separable and can be solved using either method.

Example 4.23. Show the following equations are not exact. In each case find an integrating factor and solve. When necessary, the form of an integrating factor is given.

- (a) $(1 + 3t^2 \sin y) dt t \cot y dy = 0$.
- (b) $(y + ty^2) dt t dy = 0$.
- (c) $(t^3y^2 + y) dt + (t^2y^3 + t) dy = 0; \mu = \omega(ty).$
- (d) $(2\sin t + (t+y)\cos t) dt + 2\sin t dy = 0$; $\mu = \omega(t+y)$.

Solution. (a) $(1+3t^2\sin y)_y=3t^2\cos y\neq (-t\cot y)_t=-\cot y$. Thus, the equation is not exact.

Let μ be an integrating factor. We must have

$$(\mu + 3\mu t^2 \sin y)_y = (-\mu t \cot y)_t \Rightarrow \mu_y + 3\mu_y t^2 \sin y + 3\mu t^2 \cos y = -\mu_t t \cot y - \mu \cot y.$$

Setting $\mu_y = 0$ we obtain the following:

$$3\mu t^2 \cos y = -\mu' t \cot y - \mu \cot y \Rightarrow \mu(3t^2 \cos y + \cot y) = -\mu' t \cot y$$

This implies

$$\frac{\mu}{\mu'} = \frac{-t \cot y}{3t^2 \cos y + \cot y}.$$

This is impossible since the right hand side is a function of both t and y but the left hand side is a function of t, only.

Setting $\mu_t = 0$, thus assuming μ is a function of y, only, we obtain the following:

$$\mu'(1+3t^2\sin y) = -\mu(\cot y + 3t^2\cos y) \Rightarrow \frac{\mu'}{\mu} = -\frac{\cot y + 3t^2\cos y}{1+3t^2\sin y} = -\frac{\cos y + 3t^2\cos y\sin y}{\sin y(1+3t^2\sin y)} = \frac{-\cos y}{\sin y}.$$

Integrating we obtain $\ln |\mu| = -\ln |\sin y| = \ln |\csc y|$. Therefore, $\mu = \csc y$ is one integrating factor.

(b) $(y+ty^2)_y=1+2ty\neq (-t)_t=-1$. Thus, the equation is not exact.

Let μ be an integrating factor. We must have

$$(y\mu + ty^2\mu)_y = (-t\mu)_t \Rightarrow \mu + y\mu_y + 2ty\mu + ty^2\mu_y = -\mu - t\mu_t.$$

Setting $\mu_y = 0$ we obtain the following:

$$\mu + 2ty\mu = -\mu - t\mu' \Rightarrow \mu(2 + 2ty) = -t\mu'.$$

The left is a function of both t and y, while the right side is a function of t, only. So, this is impossible. We will now try setting $\mu_t = 0$. This yields:

$$\mu + y\mu_y + 2ty\mu + ty^2\mu_y = -\mu \Rightarrow \mu(2+2ty) + y\mu'(1+ty) = 0 \Rightarrow 2\mu + y\mu' = 0.$$

This equation is separable and yields $\ln |\mu| = -2 \ln |y| = \ln |y|^2$. Therefore, $\mu = 1/y^2$ is one integrating factor. Therefore, the following equation is exact.

$$\left(\frac{1}{y} + t\right) dt - \frac{t}{y^2} dy = 0.$$

The general solution is obtained by solving the system:

$$\begin{cases} \phi_t = \frac{1}{y} + t \Rightarrow \phi = \frac{t}{y} + \frac{t^2}{2} + f(y) \\ \phi_y = -\frac{t}{y^2} \end{cases}$$

Substituting into the second equation we obtain:

$$-\frac{t}{y^2} + f'(y) = -\frac{t}{y^2} \Rightarrow f(y) = 0 \text{ works}$$

The general solution, therefore, is

$$\frac{t}{y} + \frac{t^2}{2} = C.$$

(c) $(t^3y^2 + y)_y = 2t^3y \neq (t^2y^3 + t)_t = -2ty^3 - 1$. Thus, the equation is not exact.

Let $\mu = \omega(ty)$ be an integrating factor. By the Chain Rule, we have $\mu_t = y\omega'(ty)$ and $\mu_y = t\omega'(ty)$. We also have

$$(t^3y^2\mu + y\mu)_y = (t^2y^3\mu + t\mu)_t \Rightarrow 2t^3y\mu + t^3y^2\mu_y + \mu + y\mu_y = 2ty^3\mu + t^2y^3\mu_t + \mu + t\mu_t.$$

Substituting what we found above, we obtain the following:

$$(2t^3y - 2ty^3)\omega = (-t^4y^2 - ty + t^2y^4 + ty)\omega' \Rightarrow 2ty(t^2 - y^2)\omega = -t^2y^2(t^2 - y^2)\omega' \Rightarrow 2\omega(ty) = -ty\omega'(ty).$$

This means we need to solve $2\omega(x) = -x\omega'(x)$. This separable equation has a solution $\omega(x) = x^{-2}$. Therefore, an integrating factor is $\mu = (ty)^{-2}$. Therefore, the equation below is exact:

$$\left(t + \frac{1}{t^2 y}\right) dt + \left(y + \frac{1}{t y^2}\right) dy = 0.$$

The solution satisfies

$$\begin{cases} \phi_t = t + \frac{1}{t^2 y} \Rightarrow \phi = \frac{t^2}{2} - \frac{1}{ty} + f(y) \\ \phi_y = y + \frac{1}{ty^2} \end{cases}$$

Substituting into the second equation we obtain

$$\frac{1}{ty^2} + f'(y) = y + \frac{1}{ty^2} \Rightarrow f(y) = \frac{y^2}{2}$$
 is one solution.

The general solution is, therefore,

$$\frac{t^2}{2} - \frac{1}{ty} + \frac{y^2}{2} = C.$$

(d) $(2\sin t + (t+y)\cos t)_y = \cos t \neq (2\sin t)_t = 2\cos t$. Thus, the equation is not exact.

Let $\mu = \omega(t+y)$ be an integrating factor. By the Chain Rule we have $\mu_t = \omega'(t+y)$ and $\mu_y = \omega'(t+y)$. We have the following:

$$(2\mu \sin t + (t+y)\mu \cos t)_y = (2\mu \sin t)_t \Rightarrow 2\mu_y \sin t + \mu \cos t + (t+y)\mu_y \cos t = 2\mu_t \sin t + 2\mu \cos t.$$

Using $\mu_t = \mu_y = \omega'$ we will obtain the following:

$$(t+y)\omega'\cos t = \omega\cos t \Rightarrow (t+y)\omega' = \omega \Rightarrow x\omega'(x) = \omega(x) \Rightarrow \omega(x) = x \text{ works.}$$

Therefore, t + y is an integrating factor, which means the following equation is exact:

$$(2(t+y)\sin t + (t+y)^2\cos t) dt + 2(t+y)\sin t dy = 0$$

The solution can be obtained by solving the system below:

$$\begin{cases} \phi_t = 2(t+y)\sin t + (t+y)^2\cos t \\ \phi_y = 2(t+y)\sin t \Rightarrow \phi = \frac{(t+y)^2\sin t}{2} + f(t) \end{cases}$$

Substituting in the first equation we obtain

$$2(t+y)\sin t + (t+y)^2\cos t + f'(t) = 2(t+y)\sin t + (t+y)^2\cos t \Rightarrow f(t) = 0$$
 works.

Therefore, the solution is given by
$$\frac{(t+y)^2 \sin t}{2} = C$$
 or $(t+y)^2 \sin t = C$.

Example 4.24. Suppose $\phi(t,y)$ has first partial derivatives over a rectangle $(a,b) \times (c,d)$ in the ty-plane. Prove that $\phi(t,y) = f(t) + g(y)$ for two differential functions f and g if and only if $\phi_{ty} = 0$.

Solution. First, assume $\phi(t,y) = f(t) + g(y)$. We have $\phi_t = f'(t)$, and thus $\phi_{ty} = 0$.

Now, assume $\phi_{ty} = 0$. The equality $\phi_{ty} = 0$ implies $\phi_t = f(t)$ is independent of y for all $y \in (c, d)$, and hence a function of t, only. By integrating again we obtain $\phi(t, y) = \int f(t) dt + g(y)$ for some function g for all $t \in (c, d)$, as desired.

Example 4.25. Show that every equation of the form $f(t) + g(y) \frac{dy}{dt} = 0$ is exact.

Note: This means all separable equations can be written in the form of an exact equation.

Solution. We note that
$$\frac{\partial f(t)}{\partial y} = \frac{\partial g(y)}{\partial t} = 0$$
, and thus this equation is exact.

Example 4.26. Show that a first order linear equation $\frac{dy}{dt} + a(t)y - f(t) = 0$, where a(t), f(t) are continuous, is exact if and only if a(t) = 0. Show that there is always an integrating factor that turns this equation into an exact equation.

Solution. Suppose $\frac{dy}{dt} + a(t)y - f(t) = 0$ is exact. We need to have

$$\frac{\partial 1}{\partial t} = 0 = \frac{\partial (a(t)y - f(t))}{\partial y} = a(t).$$

Now, suppose μ is an integrating factor. We need to have $\mu_t = a(t)\mu + a(t)y\mu_y - f(t)\mu_y$. Taking $\mu_y = 0$ we obtain $\mu_t = a(t)\mu$. We realize that $\mu = e^{A(t)}$ is a solution if A'(t) = a(t).

Example 4.27. Find all constants c for which the equation

$$2t dt + (t + cy) dy = 0$$

has an integrating factor of the form $\mu = \omega'(t+y)$. For each of these constants solve the equation.

Solution. Suppose $\mu = \mu(t+y)$ is an integrating factor. We must have the following:

$$(2t\mu)_y = (t\mu + cy\mu)_t \Rightarrow 2t\mu_y = \mu + t\mu_t + cy\mu_t.$$

By the chain rule, we have $\mu_t = \mu_y = \omega'(t+y)$. This yields the following:

$$2t\omega' = \omega + t\omega' + cy\omega' \Rightarrow (t - cy)\omega' = \omega.$$

Since ω and thus ω' are functions of t+y, the function t-cy must also be a function of t+y. This function can be written as t-cy=t+y-(1+c)y. It is a function of t+y if and only if c=-1. When c=-1 we have $(t+y)\omega'=\omega$. One solution is $\mu=t+y$. This yields

$$\begin{cases} 2t(t+y) = \phi_t \\ (t-y)(t+y) = \phi_y \end{cases}$$

The first equation yields $\phi = \frac{2t^3}{3} + t^2y + f(y)$. Substituting this into the second equation we obtain

$$t^{2} - y^{2} = t^{2} + f'(y) \Rightarrow f(y) = -\frac{y^{3}}{3}$$
 is one solution.

Therefore, the general solution is $\frac{2t^3 - y^3}{3} + t^2y = c$.

Example 4.28. Suppose M(t,y) and N(t,y) are continuous over a rectangle $R=(a,b)\times(c,d)$ and they have continuous partials over R. Assume, further that $M^2+N^2\neq 0$ over R. Prove $1/(M^2+N^2)$ is an integrating factor of M dt+N dy=0 if $M_t=N_y$ and $M_y=-N_t$.

Solution. By definition, for $1/(M^2 + N^2)$ to be an integrating factor the equation

$$\frac{M}{M^2 + N^2} \, \, \mathrm{d}t + \frac{N}{M^2 + N^2} \, \, \mathrm{d}y = 0$$

must be exact. By Theorem 4.4 this equation is exact if and only if

$$\left(\frac{M}{M^2 + N^2}\right)_y = \left(\frac{N}{M^2 + N^2}\right)_t.$$

By the quotient rule this is equivalent to

$$\frac{M_y(M^2+N^2)-(2MM_y+2NN_y)M}{(M^2+N^2)^2} = \frac{N_t(M^2+N^2)-(2MM_t+2NN_t)N}{(M^2+N^2)^2}.$$

4.8. EXERCISES

Eliminating the denominator and combining like terms, this equality is equivalent to

$$M_y(N^2 - M^2) - 2MNN_y = N_t(M^2 - N^2) - 2MNM_t.$$

75

Since by assumption $M_y = -N_t$ and $N_y = M_t$ the result follows.

4.8 Exercises

Solutions to some differential equations may be implicit.

Exercise 4.1. Draw a Venn Diagram for the following "sets":

- 1. All ODE's.
- 2. Separable Equations.
- 3. Linear Equations.
- 4. Explicit Equations.
- 5. Autonomous Equations.
- 6. Exact Equations.
- 7. Equations with Integrating Factors.

Exercise 4.2. Prove each function is a solution to the corresponding differential equation:

(a)
$$y = 2t^{3/2}$$
 with $t > 0$; $2t^{1/2}y'' + t^{-1/2}y' - 6 = 0$.

(b)
$$y = \sin(t^2)$$
; $ty'' - y' + 4t^3y = 0$.

(c)
$$y = t^4 + 17t^3 + 14t$$
; $y^{(5)} = 0$.

Exercise 4.3. Find all solutions of the following differential equations:

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}t} = \cos^3 t \sin t.$$

$$(b) \frac{\mathrm{d}y}{\mathrm{d}t} = \tan^2 t.$$

$$(c) \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2}{t^2 - 1}.$$

$$(d) \ \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2t}{t^4 + 1}.$$

$$(e) \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{\sqrt{1-t^2}}.$$

$$(f) \frac{\mathrm{d}y}{\mathrm{d}t} = e^{2t - e^t}.$$

Exercise 4.4. Find a continuous solution $y : \mathbb{R} \to \mathbb{R}$ to the initial value problem and prove this solution is unique.

$$y' = \begin{cases} (t-1)y & \text{if } t > 0\\ (1-t)y & \text{if } t < 0 \end{cases}$$
 $y(0) = 2.$

Exercise 4.5. Let $p, f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions. Prove that for every $y_0 \in \mathbb{R}$ there is a unique continuous solution $y : \mathbb{R} \to \mathbb{R}$ to the initial value problem

$$y' + p(t)y = \begin{cases} f(t) & \text{if } t > 0\\ g(t) & \text{if } t < 0 \end{cases}$$
 $y(0) = y_0$

Exercise 4.6. Solve each of the following initial value problems:

(a)
$$\frac{dy}{dt} = \frac{t^2 + 1}{t^3 - t}, y(2) = 1.$$

(b)
$$\frac{dy}{dt} = \sin^4 t, y(0) = 1.$$

(c)
$$\frac{dy}{dt} = \tan t, y(\pi) = 1.$$

(d)
$$\frac{dy}{dt} = \sqrt{3t-1}, y(1) = 2, t > 1/3.$$

(e)
$$\frac{dy}{dt} = te^t, y(0) = 1.$$

Exercise 4.7. Let y be the solution to the initial value problem $\frac{dy}{dt} = \sin(t^3) + 2$, y(-1) = 5. Evaluate y(1).

Exercise 4.8. Solve each differential equation:

(a)
$$ty' - 2y = 1/t$$
, with $t < 0$.

(b)
$$y' \cos t + y = \sin t$$
, with $t \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

Exercise 4.9. Find all real constants c or show no such constant c exists, for which the differential equation y' + cy = t has at least one solution that satisfies y(0) = 1, y(1) = -1.

Exercise 4.10. Find all bounded solutions of each equation:

(a)
$$(t+1)y' - y + 1 = 0$$
.

(b)
$$y' = 2t + 2ty$$
.

Exercise 4.11. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ satisfying $f(x) = 2 + \int_2^x (t - tf(t)) dt$, for all $x \in \mathbb{R}$.

Exercise 4.12. Find the general solution of each equation:

(a)
$$ty' + \sec y = 0$$
.

(b)
$$(1+t^2)y' + (1-y^2)t = 0$$
.

(c)
$$y' = \cos y \sin^2 t$$
.

4.8. EXERCISES 77

(d) $y' = y^2 - (a+b)y + ab$, where $a, b \in \mathbb{R}$ are constants.

Exercise 4.13. Solve each of the following equations:

(a)
$$\frac{dy}{dt} = (y-t)^2$$

$$(b) \frac{dy}{dt} = \frac{e^{t+y}}{t+y} - 1.$$

(c)
$$y' - 4t^2 = 4yt + y^2$$
.

(d)
$$y' = \frac{y+t}{y+t+1}$$
.

Exercise 4.14. Find an integrating factor for the following equation, given the integrating factor is of the form $\mu = t^m y^n$.

$$(y - y^2) + ty' = 0.$$

Exercise 4.15. Find all stationary and nonstationary solutions of the equation $\frac{dy}{dt} = yt - y - t + 1$.

Exercise 4.16. Solve the initial value problem $(t^2 + 1)y' + y^2 + 1 = 0$, y(3) = 2. Your final answer must be explicit and simplified.

Exercise 4.17. Prove that if y_1, y_2 are solutions to y' + a(t)y = f(t), then $y_1 - y_2$ is a solution to y' + a(t)y = 0.

Exercise 4.18. Find all solutions to each equation satisfying the given condition:

- (a) $t^2 y' \sin y = 1$, $\lim_{t \to \infty} y(t) = \pi$.
- (b) $y' + 2y = 5\cos t$, and y is periodic.
- (c) y' 2ty = 0, and y is bounded.

(d)
$$y' = \frac{y+t}{y+t+1}$$
, and $y(0) = 1$.

Exercise 4.19. Determine $\lim_{t\to\infty} y(t)$, for all solutions of the differential equation $y'+y\cos t=\cos t$. Find your answer in terms of y(0).

Exercise 4.20. Solve the initial value problem $(t^2 + y^2) \frac{dy}{dt} + (3t^2y + 2ty + y^3) = 0, y(0) = 1.$

Exercise 4.21. Find the general solution to each equation:

- (a) $(3ty^2 + 2y) dt + (2t^2y + t) dy = 0$.
- (b) $y \cos t \, dt + (y \sin t + \sin t + 1) \, dy = 0$.
- (c) $(y\cos t + y^2) dt + (3\sin t + 4yt) dy = 0$.
- (d) $(7y + 8ty^3) dt + (t + 3t^2y^2) dy = 0.$
- (e) $(t^2y + y + 1) dt + (t + t^3) dy = 0$.

Exercise 4.22. Let f(t) and g(y) be continuous functions. Show that the equation

$$\frac{f(t)}{y} + 1 + (g(y) + t/y)\frac{dy}{dt} = 0$$

is not generally exact. Find an integrating factor and use that to find a general solution for this equation.

Exercise 4.23. Determine all constants c, for which the differential equation $(t^2 + y^2) + \frac{ct^3 + t^2}{y} \frac{dy}{dt} = 0$ has an integrating factor $\mu = \frac{1}{t^2 u^2}$. For all such constants c, solve the resulting equation.

Exercise 4.24. Find all curves of the form y = f(x) on the xy-plane that intersect the x-axis at an angle of $\frac{\pi}{4}$ and satisfy the differential equation xy' + y = 2.

Exercise 4.25. Prove that the IVP

$$y'' = e^{t^2}, y(0) = 1, y'(1) = -1$$

has a unique solution.

Exercise 4.26. Let $f: I \to \mathbb{R}$ be a continuous function, where I is an open interval, $t_0, t_1 \in I$, and $y_0, y_1 \in \mathbb{R}$. Prove that there is a unique function y defined over I for which

$$y'' = f(t), y(t_0) = y_0, y'(t_1) = y_1.$$

Exercise 4.27. Let $f: I \to \mathbb{R}$ be a continuous function, where I is an open interval, $t_0, t_1 \in I$ be distinct real numbers, and y_0, y_1 be two real numbers. Prove that there is a unique function y defined over I for which

$$y'' = f(t), y(t_0) = y_0, y(t_1) = y_1.$$

Exercise 4.28. Solve each second order IVP.

- (a) $y'' = t^2 + \sin t$, y(0) = 1, y'(0) = 0.
- (b) y'' = y', y(0) = y'(0) = 2.
- (c) $y'' + 1 = (y' + t)^2$, y(0) = 1, y'(0) = 2.
- (d) $y'' = (y')^2, y(0) = y'(0) = 1.$

Hint: Substitute z = y'.

Exercise 4.29. Find all real constants y_0, y_1 for which the equation

$$y'' = e^{t^2}, y(0) = y_0, y(1) = y_1$$

has a unique solution defined over \mathbb{R} .

Exercise 4.30. Suppose M(t,y) and N(t,y) have continuous first partials over a rectangle R. Prove that the equation M(t,y) dt + N(t,y) dy = 0 has a C^1 integrating factor of the form $\mu(y)$ if and only if $\frac{N_t - M_y}{M}$ only depends on y.

Exercise 4.31. Suppose M(t,y) and N(t,y) have continuous first partials over a rectangle R. Prove that the function $\mu(t,y)$ with continuous first partials is an integrating factor for the equation M(t,y) dt+N(t,y) dy=0 if and only if

$$\mu \left(M_y - N_t \right) = N\mu_t - M\mu_y$$

on R.

In the next exercise we will prove that each first order IVP can be turned into one with initial time $t_0 = 0$.

Exercise 4.32. Consider the IVP

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y), \ y(t_0) = y_0.$$

Set $z(s) = y(s + t_0)$. Prove that the above IVP is equivalent to the following IVP

$$\frac{\mathrm{d}z}{\mathrm{d}s} = f(s+t_0, z), \ z(0) = y_0.$$

Exercise 4.33. Suppose M(t, y) and N(t, y) are continuous and have continuous first partials on the rectangle R given by $|t - t_0| < a, |y - y_0| < b$. Assume $M_y = N_t$ on R. Prove that the solution to the equation

$$M(t,y) + N(t,y)y' = 0$$

is given by

$$\int_{y_0}^y N(t, u) \, du + \int_{t_0}^t M(u, y_0) \, du = C,$$

where C is a constant.

Exercise 4.34. Suppose the differential equation

$$M(t,y) dt + N(t,y) dy = 0 \qquad (*)$$

is exact and has a nonconstant integrating factor $\mu(t,y)$. Prove that $\mu(t,y) = C$ is a solution to (*).

4.9 Challenge Problems

Exercise 4.35. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function. Prove that all solutions of the differential equation y' = f(t) are periodic with period L > 0 if and only if f is periodic with period L and $\int_0^L f(t) dt = 0$.

Exercise 4.36. Solve the initial value problem $y^2 + 2yy' + 2t + 2 = 2e^t$, y(0) = 2.

Exercise 4.37. Suppose $a, f : \mathbb{R} \to \mathbb{R}$ are continuous functions and c is a positive constant for which

$$\lim_{t\to\infty} f(t) = 0, \ and \ \forall \ t\in \mathbb{R} \ a(t) \ge c.$$

Let y(t) be a solution to the differential equation y' + a(t)y = f(t). Prove that

$$\lim_{t \to \infty} y(t) = 0.$$

Exercise 4.38. Let $a : \mathbb{R} \to \mathbb{R}$ be a continuous function. prove that all solutions of the equation y' + a(t)y = 0 are periodic with period L if and only if a(t) is periodic with period L and that $\int_{0}^{L} a(t) dt = 0$.

Exercise 4.39. Solve the equation $\frac{dy}{dt} = -\frac{2y + 3ty^2}{2t + 4t^2y^2}$.

Definition 4.3. Let k be a positive integer. A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be **homogeneous** of degree k, if

$$f(tx_1, tx_2, \dots, tx_n) = t^k f(x_1, x_2, \dots, x_n),$$

for all $t, x_1, \ldots, x_n \in \mathbb{R}$.

Exercise 4.40. Suppose P(x,y) and Q(x,y) are homogeneous functions of the same degree with continuous partial derivatives. Prove that $\frac{1}{xP+yQ}$ is an integrating factor for the equation

$$P(x,y) dx + Q(x,y) dy = 0.$$

Exercise 4.41. Solve each of the following:

- (a) $(t ty) dt + (t^2 + y) dy = 0$.
- (b) $(t^2 + y^2 + 1) dt 2ty dy = 0$.
- (c) $t^2y'y + ty' + ty^2 + y ty = 0$.

Exercise 4.42. Suppose M(t,y) and N(t,y) have continuous partials over a rectangle R. Assume both t and y are integrating factors for the equation

$$M(t,y) dt + N(t,y) dy = 0.$$

Prove that all solutions of this equation are either lines of the form y = Ct for a constant C, or satisfy tN(t,y) = 0.

Exercise 4.43. Consider the differential equation

$$y' = f(t, y) \tag{*}$$

over a rectangle $R = (a, b) \times (c, d)$ in the ty-plane, where $f, f_t, f_y, f_{ty} = f_{yt}$ are all continuous. Assume $f \neq 0$ on R. Prove that the equation (*) is separable if and only if $ff_{ty} = f_t f_y$.

Exercise 4.44. Solve the initial value problem

$$y'' + (\cos t)y' - (\sin t)y = -\sin t, \ y(0) = 1, \ y'(0) = 1.$$

4.10 Summary

• An explicit IVP $\frac{dy}{dt} = f(t)$, $y(t_0) = y_0$ has a unique solution as long as f(t) is continuous. The solution can be found by integrating both sides from t_0 to t and using the initial condition y_0 as the constant.

4.10. SUMMARY 81

- To solve a linear equation $\frac{dy}{dt} + a(t)y = f(t)$:
 - Keep in mind that the goal is to write the left hand side as the derivative of one function.
 - Find A(t) for which A'(t) = a(t).
 - Rewrite the equation as $\frac{d}{dt} \left(e^{A(t)} y \right) = e^{A(t)} f(t)$. Then integrate both sides.
- Existence and Uniqueness Theorem for linear first order equations requires the coefficient a(t) and the forcing f(t) to be continuous.
- To solve a separable equation of the form $\frac{dy}{dt} = f(t)g(y)$:
 - Find all stationary solutions by solving g(y) = 0.
 - For nonstationary solutions: separate the variables and rewrite the equation as $\frac{dy}{g(y)} = f(t)dt$. Then integrate both sides.
- There are three common types of equations that require change of variables:
 - 1. Equations of the form y' = f(ay + bt + c) can be solved by the change of variable u = ay + bt + c.
 - 2. Equations of the form y' = (ay + bt)/(cy + dt) can be solved by the change of variable u = y/t.
 - 3. For equations of the form y' = (ay+bt+m)/(cy+dt+n) we first do a translation Y = y+r, T = t+s to determine which constants r, s change this equation into one of the form #2 above. After finding r, s we proceed with the change of variable u = y/t. Note that some problems that might look like #3 are actually instances of #1. So make sure you check for #1 first.
- An equation $M + N \frac{dy}{dt} = 0$ is exact if $M_y = N_t$.
- To solve an exact equation $M + N \frac{dy}{dt} = 0$ we will find $\phi(t, y)$ for which $\phi_t = M$, and $\phi_y = N$. The solutions then are given by $\phi(t, y) = c$.
- To solve equations using the integrating factor method:
 - First check if the equation is exact.
 - If it is not, multiply both sides by μ and set up the equation $(\mu M)_{\nu} = (\mu N)_{t}$.
 - Find an appropriate μ . Generally, finding μ is not easy and there is no method that always works. Test if $\mu_y = 0$ would yield a function of t for μ , or if $\mu_t = 0$ would yield a function of y for μ .
 - Multiply both sides of the equation by μ , and solve the resulting equation using the method for exact equations.