

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID
100V	95 mΩ	5.0 A

Description SOT23-3L Pin Configuration

The XR1005L is the high cell density trenched N-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications.

The XR1005L meet the RoHS and Green Product requirement with full function reliability approved.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	5.0	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	3.2	А
I _{DM}	Pulsed Drain Current ²	12	Α
P _D @T _A =25°C	Total Power Dissipation ³	2.5	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	Ĉ

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-ambient ¹		74	°C/W
R _{0JC}	Thermal Resistance Junction-Case ¹		80	°C/W

Electrical Characteristics (TJ=25 °C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	cteristic		1		•	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	100	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V, V _{GS} =0V,	-	-	1.0	μA
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA
On Charac	cteristics					
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250µA	1.0	1.5	2.5	V
	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =3A	-	95	120	mΩ
$R_{DS(on)}$	Note2	V _{GS} =4.5V, I _D =2A	-	98	137	mΩ
Dynamic (Characteristics					
C _{iss}	Input Capacitance	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	765	-	pF
Coss	Output Capacitance	V _{DS} =25V, V _{GS} =0V,	-	38	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	33	-	pF
Qg	Total Gate Charge	\/ _E0\/ _2A	-	18	-	nC
Q _{gs}	Gate-Source Charge	V _{DS} =50V, I _D =2A,	-	2.5	-	nC
Q_{gd}	Gate-Drain("Miller") Charge	V _{GS} =10V	-	4	-	nC
Switching	Characteristics					
t _{d(on)}	Turn-on Delay Time		_	7.5	-	ns
t _r	Turn-on Rise Time	V _{DS} =50V, I _D =3A,	-	6	-	ns
t _{d(off)}	Turn-off Delay Time	R _G =1.8Ω, V _{GS} =10V	-	21	-	ns
t _f	Turn-off Fall Time		-	9	-	ns
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings				
	Maximum Continuous Drain to Source	Diode Forward		-	5	А
Is	Current		-			
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	12	Α
V_{SD}	Drain to Source Diode Forward	V _{GS} =0V, I _S =3A	-	_	1.2	V
trr	Voltage Body Diode Reverse Recovery Time		_	21	_	ns
u i	Body Diode Reverse Recovery	I⊧=3A, dI/dt=100A/µs				110
Qrr	Charge	., σ, α, α, α τοσ, γμο	-	22	-	nC

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

SOT-23-3L Package Information

Cumb a I	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(E	BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°