# Identifying Drivers Signatures Through Unlabeled Telematic Data

Su-Young Hong, Mayank Kedia, Harry O'Reilly

#### **Driver Trips**



#### **The Data**

- 2,736 Drivers
- 200 trips per driver (547,200 total)

• Time series of (x,y) coordinates

#### **The Data**

- 2,736 Drivers
- 200 trips per driver (547,200 total)

- Time series of (x,y) coordinates
- False trips randomly inserted into each driver set

## Challenge 1:

**Unlabeled Data** 

```
Driver Trip Label

(Driver 1, Trip 001) ?

(Driver 1, Trip 002) ?

(Driver 1, Trip 003) ?

(...)
```

| <u>Driver</u> | <u>Trip</u> | <u>Label</u> |
|---------------|-------------|--------------|
| (Driver 1     | , Trip 001) | 1            |
| (Driver 1     | Trip 002)   | 1            |
| (Driver 1     | , Trip 003) | 1            |
| ()            |             |              |

| <u>Driver</u> <u>Trip</u>                    | <u>Label</u> | Driver 2   |
|----------------------------------------------|--------------|------------|
| (Driver 1, Trip 001)<br>(Driver 1, Trip 002) | 1<br>1       | Driver 54  |
| (Driver 1, Trip 003)<br>()                   | 1            | Driver 432 |



## Challenge 2:

**Feature Engineering** 

#### **Step Level Features**

- Start with time series of Cartesian Coordinates
- Generate velocity, acceleration, jerk

#### **Step Level Features**

- Start with time series of Cartesian Coordinates
- Generate velocity, acceleration, jerk
- Convert to polar, generate centripetal acceleration, angular velocity, tangential acceleration
- Smooth

#### Acceleration: Driver 1, Trip 1



#### **Step Level Features**

- Start with time series of Cartesian Coordinates
- Generate velocity, acceleration, jerk
- Convert to polar, generate centripetal acceleration, angular velocity, tangential acceleration
- Smooth

#### **Trip Level Features**

- Aggregate step level features
- Max and min
- Mean and Standard Deviation
- Quantiles

## Challenge 3:

**Model Building** 

#### Models

- Logistic Regression
- Random Forest
- Gradient Boosted Decision Trees

#### Models

- Logistic Regression
- Random Forest
- Gradient Boosted Decision Trees

#### Models

• Logistic Regression

• Random Forest

 Gradient Boosted Decision Trees Hyper-parameter: Number of iterations

Best Feature Subset

### Results:

#### **Test Accuracy: GBT With 4 Feature Sets**



## GBT Version 2 Performance Metrics

| Accuracy | Precision | Sensitivity | Specificity | Miss Rate |
|----------|-----------|-------------|-------------|-----------|
| 0.72     | 0.68      | 0.68        | 0.71        | 0.32      |

**Version 2: All features without smoothing.** 

## GBT Version 2 Performance Metrics

| Accuracy | Precision | Sensitivity | Specificity / | Miss Rate |  |
|----------|-----------|-------------|---------------|-----------|--|
| 0.72     | 0.68      | 0.68        | 0.71          | 0.32      |  |
|          |           |             |               |           |  |
|          |           |             |               |           |  |

**Version 2: All features without smoothing.** 

### Fin

suyoung.hong@gmail.com

horeilly2@dons.usfca.edu

mkkedia@dons.usfca.edu