

Statistical Methods in AI (CSE/ECE 471)

Representation Learning (Siamese Network, Autoencoders)

Ravi Kiran (ravi.kiran@iiit.ac.in)

Vineet Gandhi (v.gandhi@iiit.ac.in)

Center for Visual Information Technology (CVIT)
IIIT Hyderabad

Transfer Learning: Approach-1

- Learn only weights for newly added layers.
- Ideal when 'new domain' data is small in quantity

Transfer Learning: Approach-2

- LR for new layer weights = 10 * source_Ir (for bias, 20 * source_Ir)
- Ideal when 'new domain' data is reasonably large or domain shift is significant

Classification

Face Identification/Recognition (1:N matching)

How to reuse DeepFace (trained on celebrities) for another face dataset?

Classification

Classification

Face Identification/Recognition (1:N matching)

How to reuse DeepFace (trained on celebrities) for another face dataset? Ans: Fine-tuning

No-finetuning Classification

Classification

Face Identification/Recognition (1:N matching)

How to reuse DeepFace (trained on celebrities) for another face dataset (without any training)? Ans: Use CNN as feature extractor. k-NN on feature representations

Verification

Face Authentication/Verification (1:1 matching)

Feature Extraction

Feature Extraction

Verification: Approach - 1

[MATCH]

MLP

DB image

DB image

Verification: Approach - 1

DB image

DB image

Verification: Approach – 1B

Verification: Approach – 1C

DB-image

DB image

Contrastive Loss:

Learn f_Q , f such that:

- $dist(f_O, f)$ is large when ids mismatch
- $dist(f_Q, f)$ is small when ids match

Contrastive

Verification: Approach – 1C

Contrastive Loss

DB image

Contrastive Loss: $yd^2 + (1-y) \max(margin - d, 0)^2$

Learn f_Q , f such that:

- $d = dist(f_Q, f)$ is large when ids mismatch (y=0)
- $d = dist(f_O, f)$ is small when ids match (y=1)

Verification: Approach – 1C

Learning a similarity function

DB image

 f_B

CNN Vector Space

Vector Space

Contrastive Loss: $yd^2 + (1 - y) \max(margin - d, 0)^2$

Learn f_Q , f such that:

- $d = dist(f_Q, f)$ is large when ids mismatch (y=0)
- $d = dist(f_O, f)$ is small when ids match (y=1)

Verification Approach 2

Popular Architecture Varieties

- No one "architecture" fits all!
- Design largely governed by what performs well empirically on the task at hand.

merged.

Zagoruyko, S. and Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4353-4361).

Siamese Network

Application in Signature Verification

- The input is 8(feature) x 200(time) units.
- The cosine distance was used, (1 for genuine pairs, -1 for forgery pairs)

Bromley J, Guyon I, Lecun Y, et al. Signature Verification using a" Siamese" Time Delay Neural Network, NIPS Proc. 1994

Siamese Network (Person re-id)

http://www.fubin.org/research/Person_ReID/Person_ReID.html

Siamese CNN – Training

 Update each of the two streams independently and then average the weights.

Applications

Retrieval

https://github.com/paucarre/tiefvision

Street-View to Overhead-View Image Matching

Many variants exist

Popular Loss Function – Triplet Loss

https://medium.com/@prabhnoor0212/siamese-network-keras-31a3a8f37d04

Unsupervised Learning: Deep Auto-encoder

Unsupervised Learning

"We expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object."

- LeCun, Bengio, Hinton, Nature 2015

Auto-encoder

Compact representation of the input object

Can reconstruct the original object

Auto-encoder

De-noising auto-encoder

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

Auto-encoder – Text Retrieval

Vector Space Model

query document

Bag-of-word

Semantics are not considered.

Auto-encoder – Text Retrieval

The documents talking about the same thing will have close code.

Auto-encoder – Similar Image Search

Retrieved using Euclidean distance in pixel intensity space

(Images from Hinton's slides on Coursera)

Reference: Krizhevsky, Alex, and Geoffrey E. Hinton. "Using very deep autoencoders for content-based image retrieval." *ESANN*. 2011.

Auto-encoder – Similar Image Search

(crawl millions of images from the Internet)

Retrieved using Euclidean distance in pixel intensity space

retrieved using 256 codes

Auto-encoder

for CNN As close as possible

CNN -Unpooling

Alternative: simply repeat the values

Source of image:

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Deconvolution

Actually, deconvolution is convolution.

Pokémon

http://140.112.21.35:2880/~tlkagk/pokemon/pca.html http://140.112.21.35:2880/~tlkagk/pokemon/auto.html

The code is modified from

http://jkunst.com/r/pokemon-visualize-em-all/

PCA ~ Autoencoder with linear layers

Output of the hidden layer is the code

Code Reference

https://blog.keras.io/building-autoencoders-in-keras.html