Metrics Pset 9

Guy Aridor and Xiao Xu

- 1. Let the AR(1) process be $X_t = \phi X_{t-1} + \epsilon_t$ and $|\phi| < 1$. Therefore, $(1 \phi L)X_t = \epsilon_t$. $X_t = \frac{1}{1-\phi L}\epsilon_t = \sum_{j=0}^{\infty} \phi^j \epsilon_{t-j}$, which is $MA(\infty)$. Let the MA(1) process be $X_t = \epsilon_t + \theta \epsilon_{t-1}$ and $|\theta| < 1$. $X_t = (1 + \theta L)\epsilon_t$. Then $\epsilon_t = \frac{1}{1+\theta L}X_t$. $\epsilon_t = \sum_{j=0}^{\infty} (-\theta)^j X_{t-j}$.
- 2. Autocovariance of MA(q)

$$MA(q) = \sum_{i=0}^{q} \theta_i \epsilon_i$$
. The ACF function of the process $ACF(X_t, X_{t-s}) = E[(\sum_{i=0}^{q} \theta_i \epsilon_{t-i})(\sum_{i=s}^{s+q} \theta_{i-s} \epsilon_{t-j})] = \sum_{i=s}^{q} \theta_i \theta_{i-s} \sigma^2$

3. Auto-covariance of AR(2)

Let the AR(2) process be $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \epsilon_t$. Multiplying the equation on both sides with y_{t-s} and taking expectations we have $\gamma(s) = E(y_t y_{t-s}) = \phi_1 E(y_{t-1} y_{t-s}) + \phi_2 E(y_{t-2} y_{t-s}) = \phi_1 \gamma(s-1) + \phi_2 \gamma(s-2)$. By definition, the auto-correlation function is $\rho(0) = 1$ and $\rho = \frac{\gamma(s)}{\gamma(0)}$ for $s \ge 1$. So for $s \ge 1$, we have $\rho(s) = \phi_1 \rho(s-1) + \phi_2 \rho(s-2)$. For s = 1, this becomes $\rho(1) = \phi_1 \rho(0) + \phi_2 \rho(1) = \phi_1 + \phi_2 \rho(1) = \frac{\phi_1}{1-\phi_2}$ and recursively $\rho(2) = \phi_1 \rho(1) + \phi_2 \rho(0) = \frac{\phi_2 + \phi_2(1-\phi_2)}{1-\phi_2}$. With this recursive relation, we can find $\gamma(0) = \phi_1 \gamma(1) + \phi_2 \gamma(2) + \sigma^2 = \phi_1 \rho(1) \gamma(0) + \phi_2 \rho(2) \gamma(0) + \sigma^2$. Thus, $\gamma(0) = \frac{1}{1-\phi_1 \rho(1)-\phi_2 \rho(2)} \sigma^2 = \frac{(1-\phi_2)}{\Phi} \sigma^2$. Using the recursive relation $\gamma(s) = \phi_1 \gamma(s-1) + \phi_2 \gamma(s-2)$ we can find $\gamma(2), \gamma(3), \ldots$, which completely describes the evolution of auto-covariance.

4. aggregation

(a) Let $X_t = \epsilon_t + \theta \epsilon_{t-1}$ and $Y_t = e_t + \phi e_{t-1}$ be two MA(1) independent stationary processes. Let $Z_t = X_t + Y_t$. Then $EZ_t = EX_t + EY_t = 0$. $Var(Z_t) = Var(X_t + Y_t) = Var(X_t) + Var(Y_t) = (1 + \theta^2)\sigma_X^2 + (1 + \phi^2)\sigma_Y^2$ because of independence. $E(Z_t Z_{t-k}) = E[(X_t + Y_t)(X_{t-k} + Y_{t-k})] = E(X_t X_{t-k} + X_t Y_{t-k} + Y_t X_{t-k} + Y_t Y_{t-k})$. $E(X_t Y_{t-k}) = 0$ and $E(Y_t X_{t-k}) = 0$ because of independence and $E(X_t X_{t-k}) = 0$ and $E(Y_t Y_{t-k}) = 0$ for k > 1. For k = 1, $E(X_t X_{t-k}) = \theta \sigma_X^2$ and $E(Y_t Y_{t-k}) = \phi \sigma_Y^2$. Therefore, $E(Z_t Z_{t-k}) = \begin{cases} 0 & k > 1 \\ \theta \sigma_X^2 + \phi \sigma_Y^2 & k = 1 \end{cases}$. Hence, Z_t is MA(1).

- (b) We can rearrange and express our two AR(1) processes as $X_t = \frac{1}{1-\phi_1 L} \epsilon_t$ and $Y_t = \frac{1}{1-\phi_2 L} \eta_t$. Let $Z_t = X_t + Y_t$. Then if $\phi_1 = \phi_2$, we have $(1 \phi_1 L) Z_t = \epsilon_t + \eta_t$. Then we have $Z_t = \phi_1 Z_{t-1} + u_t$, where $u_t = \epsilon_t + \eta_t$. We need to show u_t is white noise. First, $E(u_t) = E(\epsilon_t + \eta_t) = 0$. Second, $E(u_t^2) = E(\epsilon_t^2 + \eta_t^2 + 2\epsilon_t \eta_t) = E(\epsilon_t^2) + E(\eta_t^2) = \sigma_\epsilon^2 + \sigma_\eta^2$ since $E(\epsilon_t \eta_t) = 0$ by independence. Third, $E(u_t u_{t-s}) = E(\epsilon_t \epsilon_{t-s} + \epsilon_t \eta_{t-s} + \eta_t \epsilon_{t-s} + \eta_t \eta_{t-s}) = 0$ because of independence and both η_t and ϵ_t are white noises. Therefore, u_t is white noise and Z_t is AR(1).
- (c) Now, following the same definition of Z_t in (b), we have the following $(1 (\phi_1 + \phi_2)L + \phi_1\phi_2L^2)Z_t = (1 \phi_2L)\epsilon_t + (1 \phi_1L)\eta_t$. The LHS is AR(2) and the RHS is the sum of two independent stationary MA(1) processes which by (a) is an MA(1) process. Since $\phi_1, \phi_2 < 1$, we have a stationary ARMA(2, 1).
- 5. By the definition of long run variance, $\lim_{T\to\infty} T \cdot var(\bar{X}_T) = \gamma_0 + 2\sum_{j=1}^{\infty} \gamma_j$, $\gamma_0 = \frac{\sigma^2}{1-\rho^2}$ and $\gamma_j = \rho^j \frac{\sigma^2}{1-\rho^2}$. Then $\lim_{T\to\infty} T \cdot var(\bar{X}_T) = \frac{\sigma^2}{1-\rho^2} + \frac{2\sigma^2}{(1-\rho^2)(1-\rho)} = \frac{\sigma^2}{(1-\rho)^2}$.
- 6. We have two equations about γ_0 and γ_1 . $(1+\tau^2)\sigma_e^2=10$. $\tau\sigma_e^2=3$. So plug $\sigma_e^2=\frac{3}{\tau}$ into the first equation. Then we have $3\tau^2-10\tau+3=0$. And the two roots are $\tau_1=\frac{1}{3}$ and $\tau_2=3$. We pick the τ_1 so that the Wold decomposition is invertible and $\sigma_e^2=9$ as result. So the Wold decomposition is $X_t=e_t+\frac{1}{3}e_{t-1}$ with $\sigma_e^2=9$.
- 7. simulation

```
ar1.sim<-arima.sim(model=list(ar=c(.7)),n=200)
ts.plot(ar1.sim)</pre>
```


ar.acf<-acf(ar1.sim,20,type="correlation",plot=T)</pre>

Series ar1.sim


```
arma.sim<-arima.sim(model=list(ar=c(.7,-.3),ma=c(.8,.4)),n=200)
ts.plot(arma.sim)</pre>
```


arma.acf<-acf(arma.sim,20,type="correlation",plot=T)</pre>

Series arma.sim

