RStanとShinyStanによる ベイズ統計モデリング入門

津駄@teuder

アウトライン

統計モデルとは ベイズ推定 MCMC法 Stanの概要 Rで Stan 正規分布へのあてはめ ShinyStanで結果を可視化 Stan文法 線形回帰モデル 階層ベイズモデル

ベイズ統計モデリング?

ベイズ統計 統計モデル

統計モデル

目的変数

統計

関心のある観測値yを生成する確率分布fを

別の観測値 x や未知の値 θ を含む数式で近似したもの定数・説明変数 パラメター モデル

$$p = f(y \mid x, \theta) \quad p = \int_{y}^{p} \int_{y}^{\infty} \int_$$

現実によくフィットした統計モデルの発見は

- →将来発生する y の値の予測、観測できない量の推定
- →現実の背景にある構造・法則性への理解につながる

統計モデル

目的変数

統計

関心のある観測値yを生成する確率分布fを

別の観測値 x や未知の値 θ を含む数式で近似したもの定数・説明変数 パラメター モデル

$$p = f(y \mid x, \theta)$$

ご注意

この発表では、あらゆる確率(密度)分布の関数を 同じ記号 *f* で表記する

統計モデル

 θ がある値の時に観測値yが得られる確率 $p^{(注1)}$ 大度が計算できる

尤度関数 $L(\theta) = p = f(y \mid \theta)$

yを定数として尤度を θ の関数とみなしたもの

尤度が大きくなる θ の値からは 観測値と同じデータが得られやすいので 尤(もっと)もらしい値である

(注1) 全ての観測値 $y = \{y_1,...,y_N\}$ が同時に得られる確率

統計モデルを観測値にあてはめる

観測値 y が生成されやすい B の値を求める

最尤推定

ベイズ推定

尤度を最大化する **θの値**を求める 尤度と事前分布から **θの事後確率分布**を求める

正しい θ の値は1つ

ある θ 値が正しい確率

Stanはどちらにも対応している

 θの
 θの
 θの

 事後分布
 比例
 尤度
 事前分布

 $f(\theta|y) \propto f(y|\theta) f(\theta)$

データに基づいた \leftarrow データに基づいた θ の確率分布 θ の重み

前知識に基づいた X θの確率分布

 θの
 θの
 θの

 事後分布
 比例
 尤度
 事前分布

 $f(\theta|y) \propto L(\theta) f(\theta)$

データに基づいた \leftarrow データに基づいた θ の確率分布 θ の重み

前知識に基づいた X θの確率分布

 $\frac{\theta}{4}$ 事後分布 $\frac{\theta}{1}$ 比例 $\frac{\theta}{1}$ 表決 $\frac{\theta}{1}$ 表 $\frac{\theta}{1}$ $\frac{\theta}{1}$

データに基づいた *θ* の確率分布 _ データに基づいた _ θの重み 前知識に基づいた θ の確率分布

X

 $\frac{\theta}{3}$ 事後分布 $\frac{\theta}{1}$ 比例 $\frac{\theta}{1}$ 大度 事前分布 $f(\theta|y)$ \propto $L(\theta)$ $f(\theta)$

尤度と事前分布の関数があれば 事後分布の核となる関数が得られる

分布の点の値はすぐに得られるが

その全体的な形はわからない場合が多い

マルコフ連鎖モンテカルロ法 Markov Chain Monte Carlo methods; MCMC

任意の分布関数の形をあぶりだすアルゴリズム

MCMC法

目標とする分布に収束する乱数系列を生成するアルゴリズム

- 異なる初期値で系列(chain)複数生成し、 全てのサンプルを集めて目標分布とする
- 隣り合った点の値は相関する傾向があるので 間をあけてサンプリングする場合もある(thinning)

Stan 記法により ユーザーが独自の統計モデルを記述できる

MCMCアルゴリズムとしてHMC⁽¹⁾, NUTS⁽²⁾を実装 **目的の分布に素早く収束しやすい**

が

実数のパラメターしか推定できない

とはいえ離散パラメターを含むモデルも 工夫(周辺化)すれば推定できないわけではない(らしい)

- (1) ハミルトニアン・モンテカルロ法
- (2) No-U-Tern Sampler

R で Stan

RStan

RからStanを利用するインターフェース

ShinyStan

RStanの推定結果をいい感じに表示してくれる (形式を合わせれば Stan 以外の MCMC ツールの結果も取り込める)

インストール

基本的なフロー

```
"model.stan"
  Stan □ — ド
C++でコンパイル
                fit <- stan( "model.stan" )</pre>
   推定実行
   収束診断
                   launch_shinystan(fit)
   推定結果
```

基本的なフロー

```
"model.stan"
  Stan ⊐ — ド
C++でコンパイル model <- stan_model( "model.stan")
               fit <- sampling(model) ベイズ推定
   推定実行
                     optimizing(model) 最尤推定
   収束診断
                 launch_shinystan(fit)
   推定結果
```

推定の並列化

```
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
```

はじめてのベイズ推定

#日本の成人男性1000人分の身長データ (cm)をシミュレーション N < -1000y <- rnorm(N, mean = 172, sd = 5.5)

Histogram of y

rug(y)

Stan

```
data { //Stanに渡すデータの宣言
 int<lower=1> N; //サンプルサイズ N (整数スカラー)
          y[N]; //データ y (長さNの実数配列)
 real
parameters { //推定するパラメターの宣言
 real mu; //平均値(実数スカラー)
 real<lower=0> sigma; //標準偏差(実数スカラー、0以上)
model { //モデルの定義
   mu ~ normal(0, 1000); // mu の事前分布(無情報)
 sigma ~ normal( 0, 1000); //sigma の事前分布(無情報)
    y ~ normal(mu, sigma); // y の分布
```

※Stanでは事前分布を指定しないと一様分布が指定される。

R

```
N < -1000
y <- rnorm(N, mean = 172, sd = 5.5)
#stanに渡すデータの作成
normal_data <- list(N = N, y = y)
#データへのモデルのあてはめ
                           //stanfit オブジェクト
fit_normal <-</pre>
 stan(file = "normal.stan" //stan 7711)
     , data = normal_data //データ
     , iter = 2000
                  //イテレーション数
                 //チェイン数
//thin=2なら1個おき
     , chains = 4
     , thin = 1
     , warm = floor(iter/2)) //warm-up期間
```

MCMCサンプル数

```
= (iter - warm)*chain*(1/thin) = 4000
```

#MCMCイテレーションの推移

traceplot(fit normal)

#パラメターの推定値の表示

plot(fit_normal)

medians and 80% intervals

標準偏差 sigma

MCMCサンプルの 中央値と80%区間

#パラメターの推定値の表示

print(fit_normal)

MCMCサンプルの

平均、平均の標準誤差、標準偏差、x%値、有効サンプル数、Â

```
Inference for Stan model: normal.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
mean se_mean sd 2.5%
                        25%
                             50%
                                  75% 97.5% n_eff Rhat
    172.39 0.00 0.17 172.05 172.28 172.39
                                172.51
                                      172.73 2496
mu
     5.44 0.00 0.12
                  5.21
                                  5.52
sigma
                       5.35
                            5.44
                                       5.67 2337
```

Samples were drawn using NUTS(diag_e) at Mon Aug 31 15:05:01 2015. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

#サンプルされたパラメター値の抽出

```
param_normal <- extract(fit_normal)</pre>
```

```
# mu のベイズ推定値
mean( param_normal$mu )
172.3935
```

```
extract( object = NULL #stanfitオブジェクト
, pars = NULL #取り出したいパラメター
, permuted = FALSE #イテレーションの順番を保持するか
, inc_warmup = FALSE) # warm-up サンプルも含めるか
```

RStan は

MCMC結果の可視化については 必要最低限なインターフェースを提供する

ShinyStan

よりリッチなインターフェース

ShinyStanの起動

library(shinystan)
sso_normal <- launch_shinystan(fit_normal)</pre>

Stanの文法

Stanコードの構成

- ◆ 必須なのは model のみ、ブロックの順番を変えてはいけない
- ◆ parameters, transformed parameters, generated quantities で定義した値が出力される
- ◆ transformed parameters 以降がイテレーション毎に実行される

基本的なデータ型

```
//スカラー
int A; //整数
real B; //実数
//ベクトル・行列(実数のみ、線形代数演算できる)
vector[10] V; //列ベクトル matrix[A,A] M; //行列
row_vector[10] V2; //行ベクトル
//値の制約(事前分布にも影響する)
int<lower=1>
real<lower=0, upper=10>
                          D;
vector<lower=min(V), upper=max(V)> E;
//配列(どんな型でも要素にできる)
int X[N]; //1次元の整数配列
real Y[2,2,2]; //3次元の実数配列
matrix[2,2] Z[3,3]; //2x2行列を要素に持つ、3x3配列
//※配列の要素へのアクセスは補足スライド参照
```

model ブロック

パラメタと観測値の分布を指定する

実際には対数確率をひたすら足し上げている

$$f(\theta|y) = C \times f(y|\theta)f(\theta)$$

$$\log(f(\theta|y)) = \log(C) + \log(f(y|\theta)) + \log(f(\theta))$$

HMCは対数事後確率関数を θ で微分した傾きを利用するので

 θ に依存しない定数項は省略されてる場合もある $(\log(C) \forall f(\theta)$ 内の正規化係数など)

model ブロック

Stanでは確率分布関数 hoge に対して 対数確率を足し上げる3つの等価な書き方がある

```
y ~ hoge(theta); //Sampling Statement increment_log_prob( hoge_log( y, theta) ); lp__ <- lp_ + hoge_log( y, theta );※
log( hoge() ) に相当する
```

Sampling Statement が使えない時は increment_log_prob(対数尤度や対数事前確率) ※Ip は将来的にはなくなるので推奨されない

モデルの記述例

線形回帰

```
data {
 int<lower=0> N; // サンプル数
 int<lower=1> K; // 説明変数の数
 matrix[N,K] x; // 説明変数の行列
 vector[N] y; // 目的変数
parameters {
     alpha; //切片
 real
 vector[K] beta; //係数ベクター
 real<lower=0> sigma; //ノイズの標準偏差
model{
 //ベクトル化された記述
 y \sim normal(alpha + x * beta, sigma);
 //明示的に書き下すと
 //for(i in 1:N)
 // y[i] \sim normal(alpha + x[i] * beta, sigma);
}
```

普通のベイズ統計モデル

階層ベイズモデル

パラメタ-数が多すぎると推定できない….

パラメターに対して、ハイパーパラメターを使って

(経験に基づいた)情報的な事前分布を設定する。

→パラメターに制約を課すことで推定が可能になる。

テストの点数の分布へのあてはめ、**各生徒の解答力**の推定

Histogram of y


```
data {
 int<lower=0> N; //生徒の人数 N
                M; //テストの点数の最大値 M
 int<lower=0>
 int<lower=0> y[N]; //各生徒のテストの点数 y
parameters {
 real<lower=0> alpha; //全生徒の解答力の平均 alpha
             beta[N]; //各生徒の解答力の個人差 beta
 real
            sigma; //beta の標準偏差 sigma
 real<lower=0>
transformed parameters {
 real z[N];
 real p[N];
 for(i in 1:N) {
   z[i] <- alpha + beta[i]; //各生徒の解答力 z
   p[i] <- inv_logit( z[i] ); //各生徒がある問に正解する確率 p
model{
 beta ~ normal(0, sigma); //解答力の個人差の事前分布(正規分布)
 for(i in 1:N) y[i] ~ binomial(M, p[i]); // y の分布(二項分布※)
}
```

```
generated quantities{
  int y_hat[N]; // yの予測値
  for(i in 1:N)
    y_hat[i] <- binomial_rng(M, p[i]);//二項分布乱数
}
```


各生徒のテストの点数

```
generated quantities{
  int y_hat[N]; // yの予測値
  for(i in 1:N)
    y_hat[i] <- binomial_rng(M, p[i]);//二項分布乱数
}
```


各生徒の解答力 z

おわりに

Stanを使うと オーソドックスなモデルにとらわれない 独自の統計モデルの構築が可能になる

とはいえ

独自のモデルを作成するのは難易度が高い

でも

ベイズ統計には様々なメリットがあるのでまずは簡単にベイズ統計ツールとして使ってみるだけでも十分オススメ

ベイズ統計モデリング入門書

これで貴方も「ベイジアン」に!

道具としてのベイズ統計(涌井良幸)

ベイズ統計、MCMC法

基礎からのベイズ統計学(豊田秀樹ら)

ベイズ統計、ハミルトニアン・モンテカルロ法

データ解析のための統計モデリング入門(久保拓弥)

統計モデリング

Stan Modeling Language Users Guide and Reference Manual

Stanの使い方、ベイズ統計モデリング

補足スライド

```
#シミュレーションデータの作成
logistic <- function(x)\{1.0/(1+exp(-x))\}
N <- 100 #生徒の人数
M <- 10 #テストの点数最大値
alpha <- 0.86 #解答力の平均
sigma <- 3.78 #解答力の標準偏差
beta <- rnorm(N, mean = 0, sd = sigma) #解答力の個人差
z <- alpha + beta #各生徒の解答力
p <- logistic(z) #各生徒の正答確率
y <- sapply(p, function(P){rbinom(1, M, P)}) #各生徒の点数
#stanに渡すデータの作成
data_hier <- list(N=length(y), M=10, y=y)</pre>
#あてはめ
fit_hier <- stan(file = "hierarchical.stan", data = data_hier)</pre>
```

```
#パラメターの抽出
param_hier <- extract(fit_hier)</pre>
#テストの点数分布の予実比較
y.obs < hist(y, breaks=seq(0,100,by=10))
y.prd <- hist(colMeans(param_hier$y_hat),</pre>
breaks=seq(0,100,by=10))
plot(y.obs$mids, y.obs$counts, col="black", pch=19
     , xlab="テストの点数", ylab="人数")
points(y.prd$mids, y.prd$counts, col="red", pch=19)
#解答力 z
z.obs \leftarrow hist(z, breaks=seq(-15,15,by=2))
z.prd <- hist(colMeans(param_hier$z), breaks=seq(-15,15,by=2))</pre>
plot( z.obs$mids, z.obs$counts, col="black", pch=19
     , xlab="生徒の解答力 z", ylab="人数")
points(z.prd$mids, z.prd$counts, col="red", pch=19)
```

配列データへのアクセス

```
//2x3行列を要素とする4x5配列へのアクセス
matrix[2,3] Z[4,5];
//代入式 代入される型
x1 \leftarrow Z[4,5,2,3]; //real
x2 \leftarrow Z[4,5,2]; //row_vector[3]
x3 <- Z[4,5]; //matrix[2,3]
x4 <- Z[4]; //matrix[2,3] を要素とする
              //長さ5の1次元配列
//x5 <- Z[4,5, ,3] //vector[2] このような書き方はダメ
//下のように書く
for(i in 1:2)
 x5[i] <- Z[4,5,i,3];
//要素の指定は下のように記述しても良い
//Z[1][2] は Z[1,2] と等価
```

ロジスティック回帰

線形回帰との違いを赤で示している

```
data {
 int<lower=1> N; // データ数
 int<lower=0> K; // 説明変数の数
 matrix[N,K] x; // 計画行列
 int<lower=0, upper=1> y[N]; // 目的変数 0 or 1 (※注)
parameters {
                   //切片
 real alpha;
 vector[K] beta;
                   //係数
}
model{
 y ~ bernoulli_logit(alpha + x*beta);
 //明示的に書き下し
 //for (n in 1:N)
     //y[n] ~ bernoulli(inv_logit(alpha + beta * x[n]));
                    //inv_logit は logistic 関数のこと
```

(※注) ハマりポイント

bernoulli (ベルヌーイ) 分布は0か1 (つまり整数) しか返さないのに y を vector (実数) で定義してしまうとコンパイルエラーになる

予測値の算出①

generated quantities で算出する方法

可能な場合はこちらのほうが良い、有効サンプル数が大きくなる

```
//線形回帰 & 予測値の算出
data {
 int<lower=0> N; // サンプル数
 int<lower=1> K; // 説明変数の数
 matrix[N,K] x; // 説明変数(学習データ)
 vector[N] y; // 目的変数 (学習データ)
 //予測用の説明変数
 int<lower=0> N_new; //予測サンプル数
 matrix[N_new, K] x_new; //説明変数(予測データ)
parameters {
 real alpha; //切片
 vector[K] beta; //係数ベクター
 real<lower=0> sigma; //ノイズ
model{
 y \sim normal(alpha + x * beta, sigma);
}
generated quantities {
 vector[N_new] y_new; //サンプルされたパラメター値と予測データを使い
 for (n in 1:N_new) //正規乱数から y の予測値を生成する
   y_new[n] <- normal_rng(x_new[n] * beta, sigma);</pre>
```

予測値の算出②

model で算出する方法

```
//線形回帰 & 予測値の算出
data {
 int<lower=0> N; // サンプル数
 int<lower=1> K; // 説明変数の数
 matrix[N,K] x; // 説明変数 (学習データ)
 vector[N] y; // 目的変数 (学習データ)
//予測用の説明変数
 int<lower=0> N_new; //予測サンプル数
 matrix[N_new, K] x_new; //説明変数(予測データ)
parameters {
     alpha; //切片
 real
 vector[K] beta; //係数ベクター real<lower=0> sigma; //ノイズ
 // y の予測値をパラメターとして宣言
 vector[N_new] y_new;
model{
 y \sim normal(alpha + x * beta, sigma);
 //予測値の生成
 y_new \sim normal(alpha + x * beta, sigma);
```