PD1

March 30, 2021

Dominik Pawlak Wstęp do Uczenia Maszynowego Praca Domowa 1

1 Wczytanie bibliotek, zbioru danych i ich opisu

```
[1]: import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     import matplotlib
[2]: data = pd.read_csv('forest_fires_dataset.csv')
     data.head()
[2]:
        X
                          FFMC
                                 DMC
                                          DC
                                              ISI
                                                            RH
                                                                wind
                                                                      rain
           Y month
                     day
                                                   temp
                                                                             area
        7
           5
                          86.2
                                26.2
                                        94.3
                                              5.1
                                                     8.2
                                                          51.0
                                                                 6.7
                                                                        0.0
                                                                              0.0
     0
               mar
                     fri
        7
                                                    18.0
     1
           4
               oct
                     tue
                          90.6
                                35.4
                                       669.1
                                              6.7
                                                          33.0
                                                                 0.9
                                                                        0.0
                                                                              0.0
        7
                                              6.7
     2
               oct
                     sat
                          90.6
                                43.7
                                       686.9
                                                    14.6
                                                          33.0
                                                                 1.3
                                                                        0.0
                                                                              0.0
     3
        8
           6
                     fri
                          91.7
                                33.3
                                        77.5
                                              9.0
                                                     8.3
                                                          97.0
                                                                 4.0
                                                                        0.2
                                                                              0.0
               mar
                         89.3 51.3 102.2 9.6
                                                  11.4
                                                          99.0
                                                                 1.8
                                                                        0.0
                                                                              0.0
               mar
                     sun
[3]: desc = pd.read_csv('attributes_forest_fires.csv')
     desc
[3]:
          name
                                                                  description
                    type
                          x-axis spatial coordinate within the Montesinh...
     0
             Х
                integer
     1
             Y
                integer
                          y-axis spatial coordinate within the Montesinh...
     2
                                           month of the year: 'jan' to 'dec'
         month
                  string
                                             day of the week: 'mon' to 'sun'
     3
           day
                  string
     4
                   float
                              FFMC index from the FWI system: 18.7 to 96.20
          FFMC
     5
                  float
                                DMC index from the FWI system: 1.1 to 291.3
           DMC
                                 DC index from the FWI system: 7.9 to 860.6
     6
            DC
                  float
     7
           ISI
                  float
                                ISI index from the FWI system: 0.0 to 56.10
     8
                  float
                               temperature in Celsius degrees: 2.2 to 33.30
          temp
     9
            RH
                  float
                                         relative humidity in %: 15.0 to 100
     10
                  float
                                            wind speed in km/h: 0.40 to 9.40
          wind
     11
          rain
                  float
                                          outside rain in mm/m2 : 0.0 to 6.4
                          the burned area of the forest (in ha): 0.00 to...
     12
                   float
          area
```

2 Wstępna eksploracja zbioru danych

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 517 entries, 0 to 516
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	X	517 non-null	int64
1	Y	517 non-null	int64
2	month	517 non-null	object
3	day	517 non-null	object
4	FFMC	517 non-null	float64
5	DMC	517 non-null	float64
6	DC	517 non-null	float64
7	ISI	517 non-null	float64
8	temp	517 non-null	float64
9	RH	517 non-null	float64
10	wind	517 non-null	float64
11	rain	517 non-null	float64
12	area	517 non-null	float64
_			

dtypes: float64(9), int64(2), object(2)

memory usage: 52.6+ KB

[5]: data.describe()

[5]:		Х	Y	FFMC	DMC	DC	ISI	\
	count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	
	mean	4.669246	4.299807	90.644681	110.872340	547.940039	9.021663	
	std	2.313778	1.229900	5.520111	64.046482	248.066192	4.559477	
	min	1.000000	2.000000	18.700000	1.100000	7.900000	0.000000	
	25%	3.000000	4.000000	90.200000	68.600000	437.700000	6.500000	
	50%	4.000000	4.000000	91.600000	108.300000	664.200000	8.400000	
	75%	7.000000	5.000000	92.900000	142.400000	713.900000	10.800000	
	max	9.000000	9.000000	96.200000	291.300000	860.600000	56.100000	
		temp	RH	wind	rain	area		
	count	517.000000	517.000000	517.000000	517.000000	517.000000		
	mean	18.889168	44.288201	4.017602	0.021663	12.847292		
	std	5.806625	16.317469	1.791653	0.295959	63.655818		
	min	2.200000	15.000000	0.400000	0.000000	0.000000		
	25%	15.500000	33.000000	2.700000	0.000000	0.000000		
	50%	19.300000	42.000000	4.000000	0.000000	0.520000		
	75%	22.800000	53.000000	4.900000	0.000000	6.570000		
	max	33.300000	100.000000	9.400000	6.400000	1090.840000		

Wniosek: mamy dane kompletne, bez żadnych braków. W dwóch kolumnach mamy dane kat-

egoryczne, oznaczające miesiące i dni tygodnia. Zamieńmy je na numer miesiąca / tygodnia, a następnie stwórzmy macierz korelacji dla zadanej ramki danych.

```
[6]: days = data['day']
     mon = data['month']
     for i in range(len(data)):
         if data.iloc[i, 3] == 'mon': data.iloc[i, 3] =1;
         elif data.iloc[i, 3] == 'tue': data.iloc[i, 3] =2;
         elif data.iloc[i, 3] == 'wed': data.iloc[i, 3] = 3;
         elif data.iloc[i, 3] == 'thu': data.iloc[i, 3] =4;
         elif data.iloc[i, 3] == 'fri': data.iloc[i, 3] =5;
         elif data.iloc[i, 3] == 'sat': data.iloc[i, 3] =6;
         elif data.iloc[i, 3] == 'sun': data.iloc[i, 3] = 7;
         if data.iloc[i, 2] == 'jan': data.iloc[i, 2] =1;
         elif data.iloc[i, 2] == 'feb': data.iloc[i, 2] =2;
         elif data.iloc[i, 2] == 'mar': data.iloc[i, 2] =3;
         elif data.iloc[i, 2] == 'apr': data.iloc[i, 2] =4;
         elif data.iloc[i, 2] == 'may': data.iloc[i, 2] =5;
         elif data.iloc[i, 2] == 'jun': data.iloc[i, 2] =6;
         elif data.iloc[i, 2] == 'jul': data.iloc[i, 2] =7;
         elif data.iloc[i, 2] == 'aug': data.iloc[i, 2] =8;
         elif data.iloc[i, 2] == 'sep': data.iloc[i, 2] =9;
         elif data.iloc[i, 2] == 'oct': data.iloc[i, 2] =10;
         elif data.iloc[i, 2] == 'nov': data.iloc[i, 2] =11;
         elif data.iloc[i, 2] == 'dec': data.iloc[i, 2] = 12;
[7]: corr = data.corr()
     f, ax = plt.subplots(figsize=(10, 8))
     ax = sns.heatmap(corr,
                  xticklabels=corr.columns.values,
```

```
yticklabels=corr.columns.values,
annot = True)
```


Widzimy, że poszczególne kolumny danych są ze sobą słabo skorelowane, bowiem największy współczynnik korelacji między dwiema kolumnami wynosi tylko 0.68.

Sprawdźmy jak poszczególne zmienne są skorelowane ze zmienną wynikową. W analizie zdecydowałem się pominąć kolumny położenia i daty.

```
[8]: sns.pairplot(data, y_vars="area", x_vars=data.columns.values[4:9])
      sns.pairplot(data, y_vars="area", x_vars=data.columns.values[9:])
      plt.show()
            1000
             800
            600
          area
             400
             200
                                                    200 400 600 800
DC
                     60
FFMC
                          80
                             100
                                         200
                                              300
                                                 Ó
```


Dla kolumn z datą stwórzmy histogramy.

```
[9]: data['month'].hist(bins = 40, figsize=(9, 6))
plt.ylabel('Number of fires')
plt.xlabel('Month');
plt.xticks(range(1, 13))
plt.show()

data['day'].hist(bins = 40, figsize=(9, 6))
plt.ylabel('Number of fires')
plt.xlabel('Day of week');
plt.xticks(range(1, 8))
plt.show()
```


Widzimy, że najwięcej pożarów występuje w sierpniu i wrześniu. Natomiast wśród dni tygodnia, żaden dzień się nie wyróżnia.

```
[10]: df_months = data.loc[:, ['month', 'area']].groupby('month').mean()

plt.bar(range(1, 13), df_months['area'])
plt.xticks(range(1,13))
plt.ylabel('Average area of fire')
plt.xlabel('Month');
plt.show()
```


Wykres średniego rozmiaru pożaru w poszczególnych miesiącach pokazuje, że największe pożary są maju, na tym wykresie nie jest zauważalny żaden znany rozkład. Ciekawe również są "0" w styczniu i listopadzie.

3 Zmienna area

Przyjrzyjmy się bliżej najważniejszej zmiennej w naszej ramce

```
[11]: print(data['area'].describe())

plot_dens=sns.distplot(np.log1p(data['area']))
plot_dens.set_title('Rozkład zmiennej area')
plt.show()

count 517.000000
mean 12.847292
```

mean 12.847292 std 63.655818 min 0.000000 25% 0.000000 50% 0.520000 75% 6.570000 max 1090.840000

Name: area, dtype: float64

c:\users\domin\appdata\local\programs\python\python37\lib\sitepackages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a

deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Przedstawiony histogram jest"mało przyjemny". Zgodnie z radą autorów ramki, zlogarytmujmy jego osie.

```
[12]: area = data['area']
    arealog = np.log(area+1)
    data['arealog'] = arealog

plot_dens=sns.distplot(data['arealog'])
    plot_dens.set_title('Rozkład zmiennej area')
    plt.show()
```

c:\users\domin\appdata\local\programs\python\python37\lib\sitepackages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a
deprecated function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar flexibility)
or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

4 Korelacje poszczególnych zmiennych ze zmienną area

W poniższych testach wykorzystamy jedynie rekordy, w których zmienna area jest różna od 0

```
[13]: data0 = data.query("area != 0")
  var = 'FFMC'
  plot_1 = pd.concat([data0['area'], data0[var]], axis=1)
  data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```



```
[14]: var = 'DMC'
plot_1 = pd.concat([data0['area'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```



```
[15]: var = 'DC'
plot_1 = pd.concat([data0['DC'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```



```
[16]: var = 'ISI'
plot_1 = pd.concat([data0['ISI'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```


Niestety na powyższych wykresach nie widać na pierwszy rzut oka żadnej korelacji ani znanego rozkładu statystycznego. Sprawdźmy jeszcze czynniki atmosferyczne.

```
[17]: var = 'temp'
plot_1 = pd.concat([data0['temp'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```



```
[18]: var = 'RH'
plot_1 = pd.concat([data0['RH'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```



```
[19]: var = 'wind'
plot_1 = pd.concat([data0['wind'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```



```
[20]: var = 'rain'
plot_1 = pd.concat([data0['rain'], data0[var]], axis=1)
data0.plot.scatter(x=var, y='area', ylim=(0,1100));
```


Wnioski z powyższych wykresów. Czynniki sprzyjające dużym pożarom: -wysoka temperatura -niska wilgotność -średni wiatr, o wartości około 4-6 km/h -brak opadów

Poniżej uproszczona mapka parku pokazująca rozmieszczenie i rozmiar pożaru

```
[21]: df_map = data0.loc[:, ['X', 'Y', 'area']].groupby(by = ['X', 'Y']).count().

→reset_index()

plot_1 = plt.scatter(x = df_map['X'], y = df_map['Y'], s = df_map['area'])

plt.show()
```


Na "mapce" widzimy, że najwięcej pożarów wybuchło w środkowej części parku.