

Stochastik

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

Übungsblatt 7

Abgabe: Keine Abgabe.

Aufgabe 1 (Binomial Modell). Sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum, sodass $\Omega = \{\omega_u, \omega_d\}$, $\mathcal{F} = 2^{\Omega}$ and $P(\{\omega_u\}) = p = 1 - P(\{\omega_d\})$ mit $p \in (0, 1)$. Sei $s_0 > 0, r > -1$ und

$$S_0^0 \equiv 1$$
, $S_1^0 \equiv 1 + r$, $S_0^1 \equiv s_0$, $S_1^1(\omega_u) = s_0(1 + u)$, $S_1^1(\omega_d) = s_0(1 + d)$. (1)

i) Sei d < r < u. Zeigen Sie, dass es ein Maß Q auf (Ω, \mathscr{F}) mit $Q(\{\omega_u\}), Q(\{\omega_d\}) \in (0, 1)$ gibt, sodass folgende Eigenschaft gilt:

$$E_O[S_1^1/S_1^0] = S_0^1/S_0^0.$$

Ein solches Maß wird äquivalentes Martingal Maß genannt. Zeigen Sie die Eindeutigkeit.

- ii) Sei p=0.7, $s_0=100$, r=0, 1+d=0.8 und 1+u=1.2. Was ist das zugehörige äquivalente Martingalmaß? Zeigen Sie, dass $E_P[(S_1-100)^+]$ kein arbitrage-freier Preis für die Option $H=(S_1^1-100)^+ := \max(0,S_1^1-100)$ (Call Option mit Strike K=100) ist.
- iii) Wie müssen Sie handeln um die Option H zu replizieren, dh. finden Sie $(\xi_0, \xi_1) \in \mathbb{R}^2$, sodass

$$\xi_0 S_1^0(\omega) + \xi_1 S_1^1(\omega) = H(\omega)$$
 für alle $\omega \in \Omega$.

Wie viel Startkapital benötigen Sie hierfür? Berechnen Sie $E_Q[H/S_1^0]$. Diskutieren Sie Ihre Ergebnisse.

Aufgabe 2. Seien X_1, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen mit $X_i \sim \text{Exp}(\lambda), \lambda > 0$. Bestimmen Sie den Maximum-Likelihood Schätzer für λ .

Aufgabe 3. Seien X_1, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen mit $X_i \sim \mathcal{N}(\mu, \sigma_0)$, $\mu \in \mathbb{R}$ und festes und bekanntes $\sigma_0 > 0$. Bestimmen Sie den Maximum-Likelihood Schätzer für μ .