Player Behavior and Optimal Team Compositions in Online Games

Hao Yi Ong, Sunil Deolalikar, and Mark Peng CS 229: Machine Learning Class Project

Introduction

• In online role-playing games, players work in teams to accomplish a common objective (e.g., defeating an opposing team)

• In a game, given the teams' player compositions and their player statistics, we want to predict the players' play style and forecast the game outcome

Player behavior

- In-game play style; e.g., prefers
 Types of players on a team, each more offense-oriented strategies
- Also encompasses skill level
- Predict from player statistics

Team composition

- classified by their play styles
- Predict from game server database's match histories

Problem Description

- Given
- Match histories containing participant IDs and match statistics
- Player statistics containing player histories and overall game statistics
- Output
- Play style classifier that groups players by their in-game tendencies given their game histories
- Outcome predictor that guesses which team will win given the various team compositions
- In order to
- Gain insight on player behaviors and game strategies
- Maximize accuracy on predicting game outcomes

Target Game

League of Legends

- Multiplayer battle arena game with 27 million plays per day
- Free online API to retrieve deidentified game data (120,000 training and 12,000 test samples)
- Official guide provides clustering information for players based on in-game character choices (e.g., character with good defense)

Baseline Outcome Predictor

- Features are team compositions for each team in a game based on official game guide's clustering information (each character is mapped to a play style)
- Logistic regression with 10% hold-out cross validation
- Poor accuracy of 55.1% on training samples, 54.4% on test samples

Behavioral Clustering

- Features are normalized player statistics (damage dealt, money earned,...)
- Clustering algorithms
- **k-means** with 10-fold cross validation over parameter k gave 12 clusters
- **DP-means** is an expectation-maximization algorithm derived using a Dirichlet process mixture model (Kulis and Jordan, 2012) Intuitively, a new cluster is formed whenever a point is sufficiently far away from all existing centroids, as determined by some threshold distance λ We ran it with 10% hold-out cross validation with $\lambda = 3.3$, giving 8 clusters
- Implementation in MATLAB, ran on 2.7 GHz Intel Core i7, 8 GB RAM

given training set of size N, threshold distance λ repeat until clusters converge

For
$$n=1,\ldots,N$$

- 1. Assign sample n to the closest cluster if the contribution to objective from the squared distance is at most λ^2
- 2. Otherwise, form a new cluster with just sample n

Summary: Play style clustering algorithm results (10 trials average)

	cross validation method	no. of clusters	cpu time (s)
k-means	$k ext{-fold}\;(k=10)$	12	154.1
DP-means ($\lambda = 3.3$)	10% hold-out	8	65.4

Cluster Visualization

• Principal component analysis We used 3 principal components to visualize our full dataset in 3D; observe that the data is clearly clustered

Game Outcome Prediction

- **Features** are team compositions for each team in a game based on behavioral groupings generated from k-means and DP-means clustering
- Classification algorithms
- Logistic regression Lorem ipsum
- Gaussian discriminant analysis Lorem ipsum
- Support vector machine Lorem ipsum

Summary: Outcome prediction algorithm results (10 trials average)

	k-means (%)		DP-means (%)		cpu time (s)	
	train acc.	test acc.	train acc.	test acc.	k-means	DP-means
LR	72.25	68.75	69.67	67.11	7.4	7.1
GDA	74.79	70.14	70.88	68.39	7.7	7.1
SVM	74.75	70.39	71.71	69.21	91.2	41.6

Conclusion and Extensions

Lorem ipsum

Acknowledgements

We thank Professor Andrew Ng, the instructor team, and fellow students for their help with and feedback on our work.