1 Séance 3 fév 2021

Définition 1. Une relation d'équivalence \sim sur un ensemble $E: \sim \subseteq E \times E$

- 1. reflexivité: $\forall x \in E : x \sim x$
- 2. symétrie: $\forall (x, y) \in E^2$: $(x \sim y) \Rightarrow (y \sim x)$
- 3. transitivité: $\forall (x, y, z) \in E^3$: $(x \sim y) \land (y \sim z) \Rightarrow (x \sim z)$

Exercice. (Ch1 Ex0.1) Relation d'équivalence? Si oui, déterminer les cl d'éq & quotient

- 1. (\mathbb{R}, \leq) .
- 2. (\mathbb{Z}, \sim) où $x \sim y \Leftrightarrow |x y| \leq 1$.
- 3. (\mathbb{Z}, \sim) où $x \sim y \Leftrightarrow 2 \mid x y$ (pour $a, b \in \mathbb{Z}$, $a \mid b$ si'il existe $c \in \mathbb{Z}$ t.q. b = ac)
- 4. $(\{0,1\},\neq)$.
- 5. (\mathbb{R}^2, \sim) où $(x, y) \sim (x', y') \Leftrightarrow x = x'$.

Solution.

- 1. $0 \le 1$ mais $1 \not \le 0$, donc \le n'est pas une rel d'éq.
- 2. $|0-1| \le 1$, $|1-2| \le 2$ mais $|0-2| \not \le 1$, donc $|\cdot \cdot| \le 1$ n'est pas une relation d'éq.
- 3. Oui: 0 est pair; si x-y est pair, alors y-x l'est aussi; si x-y,y-z sont pairs, alors x-z=(x-y)+(y-z) est pair. Il y a 2 cls d'éq: $\{\text{pairs}\}, \{\text{impairs}\}$. L'ensemble quotient: $\mathbb{Z}/2\mathbb{Z} = \{\{\text{pairs}\}, \{\text{impairs}\}\}$
- 4. Ce n'est pas réflexive: 0 = 0.
- 5. Oui. Les cls d'éq: $C_x := \{(x, y) \mid y \in \mathbb{R}\}$ « les droites verticales ». L'ensemble quotient: $\{C_x \mid x \in \mathbb{R}\}$. On peut identifier C_x avec $x \in \mathbb{R}$.

Pour tout $(x, y) \in \mathbb{R}^2$, les éléments $(x', y') \sim (x, y)$ ssi x = x'.

Exemple 2. Pour \mathbb{R} , la relation $x \sim y \stackrel{\triangle}{\Longleftrightarrow} x - y \in \mathbb{Q}$ est une relation d'éq. Pour tout $x \in \mathbb{R}$, $C_x := x + \mathbb{Q} = \{x + r \mid r \in \mathbb{Q}\}$. Il n'y pas de forme très simplifié pour cet ensemble quotient.

Définition 3. Un ensemble E de foncs $\mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$ est dit universellement stable ssi

- 1. (limite d'une suite) $\forall (f_n) \in E^{\mathbb{N}}: (\forall x \in \mathbb{R}^d: \lim_{n \to \infty} f_n(x) = f(x)) \Longrightarrow f \in E$
- 2. (opération d'algèbre) $\forall f \in E, \forall g \in E : f + g \in E \ et \ fg \in E$.
- 3. $\forall f \in E, \forall L \in \operatorname{Aff}(\mathbb{R}^d, \mathbb{R}^d) : f \circ L \in E \text{ où } \operatorname{Aff}(\mathbb{R}^d, \mathbb{R}^d) := \mathbb{R}^d + \mathcal{L}(\mathbb{R}^d, \mathbb{R}^d)$ (quand d = 1, $\operatorname{Aff}(\mathbb{R}, \mathbb{R}) = \{f \mid f(x) = a \mid x + b, (a, b) \in \mathbb{R}^2\}$, quand d = 2, $\operatorname{Aff}(\mathbb{R}^2, \mathbb{R}^2) = \{\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d \\ e \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \}$)
- 4. (sup et inf dénombrable) $\forall (f_n) \in E^{\mathbb{N}} : \sup_{n \in \mathbb{N}} f_n \in E$ et $\inf_{n \in \mathbb{N}} f_n \in E$.
- 5. (division) $\forall f \in E, \forall g \in E : (\forall x \in \mathbb{R}^d : g(x) \neq 0) \Longrightarrow f / g \in E.$
- Remarque 4. (sup et inf finie) Pour $(f,g) \in E^2$: $\min(f,g) \in E$ et $\max(f,g) \in E$. En effet, prendre la suite $(f_n) \in E^{\mathbb{N}}$ définie par $f_0 = f$ et $f_n = g$ pour $n \in \mathbb{N}_{>0}$, alors $\sup_{n \in \mathbb{N}} f_n = \max\{f,g\}$ et $\inf_{n \in \mathbb{N}} f_n = \min\{f,g\}$.
- **Remarque 5.** 4 implique 1: soit $(f_n) \in E^{\mathbb{N}}$ t.q. $\forall x \in \mathbb{R}^d$, la limite $f(x) := \lim_{n \to \infty} f_n(x)$ existe. Alors pour tout $k \in \mathbb{N}$, par 4, on a $E \ni g_k : \mathbb{R}^d \to \mathbb{R}, x \mapsto \sup_{n \ge k} f_k(x)$. Alors $f(x) = \inf_{k \in \mathbb{N}} g_k(x)$, donc $f \in E$ par 4. On a utilisé le lemme.
- **Lemme 6.** Soit $(a_n) \in (\overline{\mathbb{R}}_+)^{\mathbb{N}}$ t.q. $\lim_{n \to \infty} a_n$ existe (dans $\overline{\mathbb{R}}_+$). On note $a := \lim_n a_n$. Alors $a = \inf_{k \in \mathbb{N}} \sup_{n > k} a_n = \lim_{k \to \infty} \sup_{n > k} a_n$.
- **Démonstration.** Quand $a \in \mathbb{R}$, alors pour tout $\varepsilon > 0$, il existe $k \in \mathbb{N}$ t.q. pour tout $n \ge k$, on a $|a_n a| < \varepsilon$, donc pour tout $k' \ge k$: $|\sup_{n \ge k'} a_n a| \le \varepsilon$. Donc $\lim_{k \to \infty} \sup_{n \ge k} a_n = a$. Le cas $a = +\infty$ est similaire. \square
- **Définition 7.** Une tribu, ou une σ -algèbre sur un esemble X: Un ensemble $\mathcal{A} \subseteq \mathcal{P}(X)$ t.q.
 - 1. (non-vide) $A \neq \emptyset$
 - 2. (complémentaire) $\forall E \in \mathcal{A}: X \setminus E \in \mathcal{A}$.

3. (union dénombrable) $\forall (E_n) \in \mathcal{A}^{\mathbb{N}} : \bigcup_{n=0}^{\infty} E_n \in \mathcal{A}$.

Remarque 8. C'est important que l'union en question est dénombrable.

Exercice. (Ch1 Ex1.3) Soient E un ensemble et $A \subseteq \mathcal{P}(X)$ une tribu. Montrer que

- 1. $\varnothing \in \mathcal{A}$ et $X \in \mathcal{A}$.
- 2. (union finie) $\forall (E,F) \in \mathcal{A}^2 : E \cup F \in \mathcal{A}$.
- 3. (intersection dénombrable) $\forall (E_n) \in \mathcal{A}^{\mathbb{N}} : \bigcap_{n=0}^{\infty} E_n \in \mathcal{A}$.

Solution.

- 1. Comme $\mathcal{A} \neq \emptyset$, il existe $E \in \mathcal{A}$. Alors $X \setminus E \in \mathcal{A}$, donc $X = E \cup (X \setminus E) \in \mathcal{A} \Longrightarrow \emptyset = X \setminus X \in \mathcal{A}$.
- 2. On prend la suite $(E_n) \in \mathcal{A}^{\mathbb{N}}$ donné par $E_0 := E$ et $E_n := F$ pour tout $n \in \mathbb{N}_{>0}$. Alors $\mathcal{A} \ni \bigcup_{n=0}^{\infty} E_n = E_0 \cup (\bigcup_{n=1}^{\infty} E_n) = E \cup F$.
- 3. $(E_n) \in \mathcal{A}^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, $F_n := X \setminus E_n \in \mathcal{A}$, alors $\bigcup_{n=0}^{\infty} F_n \in \mathcal{A} \Longrightarrow X \setminus (\bigcup_{n=0}^{\infty} F_n) \in \mathcal{A}$. $X \setminus \bigcup_{n=0}^{\infty} F_n = \bigcap_{n=1}^{\infty} (X \setminus F_n) = \bigcap_{n=1}^{\infty} E_n$.

Remarque 9. (intersection finie) Une tribu est aussi stable par intersection finie.

Remarque 10. (complément rélatif) Pour tout $E, F \in \mathcal{A}$, on a $E \setminus F \in \mathcal{A}$. En effet, $E \setminus F = E \cap (X \setminus F)$.

Pré-définition 11. Fonctions mesurables $f \in \mathcal{M}$ ($\mathbb{R}^d \to \mathbb{R} \cup \{\pm \infty\}$), l'intégrale de Lebesgue $\int sur \mathcal{M}^+$:

- 1. $1_U \in \mathcal{M}$ pour tout ouvert $U \subseteq \mathbb{R}^d$.
- 2. $C^0(\mathbb{R}^d, \mathbb{R}) \subseteq \mathcal{M}$.
- 3. \mathcal{M} est universellement stable.

L'intégrale de Lebesgue ∫ :

- 1. $\forall (f,g) \in (\mathcal{M}^+)^2, \forall (\lambda,\mu) \in \mathbb{R}^2_{\geq 0}: \int (\lambda f + \mu g) = \lambda \int f + \mu \int g$.
- 2. Pour $a_1 \le b_1, \ldots, a_d \le b_d$, on a $\int 1_{[a_1,b_1] \times \cdots \times [a_d,b_d]} = (b_1 a_1) \cdots (b_d a_d)$.
- 3. (Beppo-Levi = convergence croissante) Soit $(f_n) \in (\mathcal{M}^+)^{\mathbb{N}}$ une suite croissante, alors

$$\int \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int f_n$$

- 4. Pour toute $f \in \mathcal{M}^+$ t.q. $\int f < +\infty$, alors pour tout $\varepsilon > 0$, il existe $\varphi \in C_c(\mathbb{R}^d, \mathbb{R}_{\geq 0})$ (C_c est l'ensemble de fonctions continues dont le support est compact, c'est-à-dire, il existe un ensemble $K \subseteq_{\operatorname{cpct}} \mathbb{R}^d$ t.q. pour tout $x \in \mathbb{R}^d \setminus K$, on a $\varphi(x) = 0$). t.q. $\int |f \varphi| < \varepsilon$.
- **Remarque 12.** $C^0(\mathbb{R}^d, \mathbb{R}) \subseteq \mathcal{M}$ est stable par somme, produit, composition à droite par des apps affines et par division, mais il n'est pas stable par limite d'une suite ou par \sup ou \inf (opération « analytique »).
- Remarque 13. (\mathcal{M} stable par -) Tout d'abord, les fonctions contantes sont continues, donc $\in \mathcal{M}$. En particulier, $-1 \in \mathcal{M}$. Donc pour tout $f \in \mathcal{M}$, on a -f = (-1) $f \in \mathcal{M}$ comme \mathcal{M} est universellement stable. Par conséquent, pour tout $(f,g) \in \mathcal{M}^2$, $f-g \in \mathcal{M}$.
- **Définition 14.** Un sous-ensemble $E \subseteq \mathbb{R}^n$ est mesurable si 1_E est mesurable.
- Remarque 15. Les sous-ensembles mesurables constituent une tribu.

Remarque 16. Les ouverts $U \subseteq \mathbb{R}^n$ sont mesurables. Les fermés les sont aussi.

Exercice. (Ch1 Ex1.4) Si $f: \mathbb{R}^d \to \mathbb{R}$ est mesurable, alors les ensembles $\{f < a\}$, $\{f = a\}$ et $\{f > a\}$ le sont aussi.

Solution. Comme $\{f < a\} = \{f - a < 0\}$, et $f \in \mathcal{M} \Leftrightarrow f - a \in \mathcal{M}$, on peut supposer que a = 0.

- $\{f>0\}$ est mesurable. $\{f>0\}=\{\max\{f,0\}>0\}$ et $\max\{f,0\}\in\mathcal{M}$. Donc en remplaçant f par $\max\{f,0\}$, on peut supposer que $f\geq 0$. On prend $g_n:\mathbb{R}^d\to\mathbb{R}, x\mapsto f(x)/(f(x)+1/n)$. Comme $f\in\mathcal{M}$, on a $f+1/n\in\mathcal{M}$. De plus, $\forall x\in\mathbb{R}^d: f(x)+1/n\geq 1/n>0$, alors $g_n\in\mathcal{M}$ (\mathcal{M} est stable par division). Pour tout $x\in\mathbb{R}^d$, $\mathcal{M}\ni\lim_{n\to\infty}g_n(x)=\left\{\begin{smallmatrix} 1&f(x)>0\\0&f(x)=0\end{smallmatrix}\right.=1_{\{f>0\}}$. Par définition, $\{f>0\}$ est mesurable.
- $\{f < 0\}$ est mesurable. Comme $-f \in \mathcal{M}$, on a $\{f < 0\} \Leftrightarrow \{-f > 0\}$ est mesurable.
- $\{f = 0\}$ est mesurable. $\{f = 0\} = \mathbb{R}^d \setminus (\{f > 0\} \cup \{f < 0\}).$

Remarque 17. $f: \mathbb{R}^d \to \mathbb{R}$ est mesurable, alors pour tout $(a,b) \in \mathbb{R}^2$, on a l'ensemble $\{a < f < b\} = \{f > a\} \cap \{f < b\}$ est mesurable. Les ensembles $\{a \le f < b\} = \{f = a\} \cup \{a < f < b\}$, $\{a < f \le b\}$ et $\{a \le f \le b\}$ le sont aussi.

Définition 18. La mesure de Lebesgue λ d'un ensemble mesurable E est $\int 1_E$.

Remarque 19.

- 1. $\int 0 = 0$: $\int 0 = \int (0.0 + 0.0) = 0 \int 0 + 0 \int 0 = 0$. Par conséquent, $\lambda(\emptyset) = 0$.
- 2. $\lambda([a_1,b_1]\times[a_2,b_2]\times\cdots\times[a_d,b_d])=(b_1-a_1)\,(b_2-a_2)\cdots(b_d-a_d)$ « le volumn ».
- 3. Soient $E \subseteq F$ deux ensembles mesurables, alors $\lambda(E) \le \lambda(F)$. En effet, $F \setminus E$ est mesurable, et $1_F = 1_E + 1_{F \setminus E}$. Donc $\lambda(F) = \lambda(E) + \lambda(F \setminus E) \ge \lambda(E)$. En particulier, si $\lambda(E) = +\infty$, alors $\lambda(F) = +\infty$.
- 4. Soit $E \subseteq \mathbb{R}^d$ un sous-ensemble. Si pour tout $n \in \mathbb{N}$, on a un sous-ensemble mesurable $E_n \subseteq E$ t.q. $\lambda(E_n) \ge n$, alors $\lambda(E) = +\infty$. En effet, $\lambda(E) \ge \lambda(E_n) \ge n$ pour tout $n \in \mathbb{N}$.

Exercice. (Ch1 Ex1.5)

- 1. Soit (A_n) une suite croissante d'ensembles mesurables de \mathbb{R}^d . Montrer que $\lim_{n\to\infty} \lambda(A_n) = \lambda(\bigcup_{n=1}^{\infty} A_n)$.
- 2. Trouver une suite (A_n) décroissante d'ensembles mesurables de \mathbb{R}^d t.q. $\lim_{n\to\infty} \lambda(A_n) \neq \lambda(\bigcap_{n=1}^\infty A_n)$ [Indication: on peut prendre une suite (A_n) d'ouverts t.q. $\lambda(A_n) = +\infty$ mais $\bigcap_{n=0}^\infty A_n = \varnothing$].
- 3. Quand $\lim_{n\to\infty} \lambda(A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n)$?

Solution.

- 1. Par hypothèse, $\lim_{n\to\infty} 1_{A_n} = 1_A$ où $A = \bigcup_{n=1}^{\infty} A_n$, (1_{A_n}) est croissante, alors par Beppo-Levi, $\lambda(A) = \int 1_A = \lim_{n\to\infty} \int 1_{A_n} = \lim_{n\to\infty} \lambda(A_n)$.
- 2. Quand d=1, on prend $A_n=]n,+\infty[$. Alors $A_n\supseteq[2\,n,k\,n]$ pour tout k>2 et $\lambda([2\,n,k\,n])=k\,n-2\,n=(k-2)\,n$. Prenons $k\to\infty$, on a $\lambda(A_n)=+\infty$. Mais $\bigcap_{n=1}^\infty A_n=\varnothing$ [pour d qqlc, similaire].
- 3. S'il existe $n \in \mathbb{N}$ t.q. $\lambda(A_n) < +\infty$, alors $\lim_{n \to \infty} \lambda(A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n)$. On peut supposer que n = 0. On prend $A := A_0$. Alors la suite $(A \setminus A_n)_{n \in \mathbb{N}}$ est croissante. Donc $\lambda(\bigcup_{n=0}^{\infty} (A \setminus A_n)) = \lim_{n \to \infty} \lambda(A \setminus A_n)$. On remarque que $\lambda(\bigcup_{n=0}^{\infty} (A \setminus A_n)) \le \lambda(A) < +\infty$ et $\bigcup_{n=0}^{\infty} (A \setminus A_n) = A \setminus \bigcap_{n=0}^{\infty} A_n$, alors $\lambda(A) = \lambda(\bigcap_{n=0}^{\infty} A_n) + \lambda(\bigcup_{n=0}^{\infty} (A \setminus A_n)) = \lambda(\bigcap_{n=0}^{\infty} A_n) + \lim_{n \to \infty} \lambda(A \setminus A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n) + \lim_{n \to \infty} (\lambda(A) \lambda(A_n))$. Donc on peut conclure que $\lim_{n \to \infty} \lambda(A_n) = \lambda(\bigcap_{n=0}^{\infty} A_n)$.

2 Séance 10 fév 2021

Rappelons que la mesure λ de Lebesgue sur \mathbb{R}^d satisfait

- 1. $\lambda(\varnothing) = 0$.
- 2. $\lambda([a_1, b_1] \times \cdots \times [a_d, b_d]) = (b_1 a_1) \cdots (b_d a_d)$ pour $a_1, \ldots, a_d, b_1, \ldots, b_d \in \mathbb{R}, a_i \leq b_i$.
- 3. Soient E, F deux ensembles mesurables disjoints, alors $\lambda(E \sqcup F) = \lambda(E) + \lambda(F)$.
- 4. **(Beppo-Levi)** Soit $(E_n)_{n\in\mathbb{N}}$ une suite croissante d'ensembles mesurables dans \mathbb{R}^d . Posons $E = \bigcup_{n=1}^{\infty} E_n$. Alors $\lambda(E) = \lim_{n\to\infty} \lambda(E_n)$.
- **Exemple 20.** Déterminer $\lambda([a,b])$, $\lambda([a,b])$ et $\lambda([a,b])$ pour $(a,b) \in \mathbb{R}^2$, a < b.
- **Solution.** Pour $\lambda([a,b[),$ on a $b-a=\lambda([a,b])=\lambda([a,b[)+\lambda(\{b\})=\lambda([a,b[).$ De la même manière, $\lambda(]a,b[)=b-a$ et $\lambda(]a,b[)=b-a$.
- Alternativement, $[a,b] = \bigcup_{n>1/(b-a),n\in\mathbb{N}} [a,b-1/n]$, donc $\lambda([a,b]) = \lim_{n\to\infty} \lambda([a,b-1/n]) = \lim_{n\to\infty} ((b-1/n)-a) = b-a$.
- **Exemple 21.** Plus généralement, déterminer $\lambda(I_1 \times \cdots \times I_d)$ où (I_1, \ldots, I_d) est une suite d'intervalles en terms de $\lambda(I_j)$. Par exemple, $\lambda([0,1] \times [0,1[\times]2,3] \times [3,4[)$.
- **Solution.** En effet, $\lambda(I_1 \times \cdots \times I_d) = \lambda(I_1) \, \lambda(I_2) \cdots \lambda(I_d)$. Pour tout intervalle I_j , il existe une suite croissante d'intervalles fermés $\left(I_j^{(n)}\right)_{j \in \mathbb{N}}$ t.q. $\bigcup_{j=0}^{\infty} I_j^{(n)} = I_j$ et $\lim_{n \to \infty} \lambda\left(I_j^{(n)}\right) = \lambda(I_j)$. Dans ce cas, on peut montrer que $\bigcup_{n=0}^{\infty} I_1^{(n)} \times \cdots \times I_d^{(n)} = I_1 \times \cdots \times I_d$.
- (« \subseteq » est évident. En revanche, pour tout $(x_1,\ldots,x_d)\in I_1\times\cdots\times I_d$, il existe $(r_1,\ldots,r_d)\in\mathbb{N}^d$ t.q. $x_j\in I_j^{(r_d)}$. Alors $(x_1,\ldots,x_d)\in I_1^{(r_1)}\times\cdots\times I_d^{(r_d)}$)
- Alors $\lambda(I_1 \times \cdots \times I_d) = \lim_{n \to \infty} \lambda(I_1^{(n)}) \cdots \lambda(I_d^{(n)}) = \lambda(I_1) \cdots \lambda(I_d)$.

En général, λ « volume »:

Subdivision Soient $U \subseteq \mathbb{R}^d$ un ouvert et $N \in \mathbb{N}$. On note $P_N(a_1, \ldots, a_d) := \left[\frac{a_1}{N}, \frac{a_1+1}{N}\right[\times \cdots \times \left[\frac{a_d}{N}, \frac{a_d+1}{N}\right]$ pour $(a_1, \ldots, a_d) \in \mathbb{Z}^d$. et $Q_N := \{P_N(a_1, \ldots, a_d) \mid (a_1, \ldots, a_d) \in \mathbb{Z}^d\}$. Remarquons que Q est dénombrable (il y a une bijection $\mathbb{Z}^d \to Q_N$). Alors

- 1. $\mathbb{R}^d = \bigsqcup_{C \in Q_N} C$ (où \sqcup est la réunion disjointe).
- 2. $\bigsqcup_{C \in Q_N, C \subseteq U} C \subseteq U$.
- 3. $U \subseteq \bigsqcup_{C \in Q_N, C \cap U \neq \emptyset} C$.

Donc $\lambda(\bigsqcup_{C\in Q_N,C\subset U}C)\subseteq \lambda(U)\subseteq \bigsqcup_{C\in Q_N,C\cap U\neq\varnothing}C$, ou équivalemment,

$$\frac{\#\{C \in Q_N \mid C \subseteq U\}}{N^d} \le \lambda(U) \le \frac{\#\{C \in Q_N \mid C \cap U \neq \varnothing\}}{N^d}$$

Figure 1. Subdivision de \mathbb{R}^2

Exemple 22. Montrer que $\lambda(T := \{(x, y) \in \mathbb{R}^2_{>0} \mid x + y < 1\}) = 1/2$. Plus généralement, on a $\lambda(\{(x_1, \dots, x_d) \in \mathbb{R}^d_{>0} \mid x_1 + \dots + x_d < 1\}) = 1/d!$.

Solution. $N \to \infty$, $\#\{C \in Q_N \mid C \subseteq T\}$ est un polynôme $N^2/2 + \cdots$ de dégré 2, $\#\{C \in Q_N \mid C \cap T \neq \varnothing\}$ l'est aussi. $\frac{\#\{C \in Q_N \mid C \subseteq T\}}{N^d} \le \lambda(T) \le \frac{\#\{C \in Q_N \mid C \cap T \neq \varnothing\}}{N^d}$. Prendre $N \to \infty$, on en déduit que $\lambda(T) = 1/2$.

Problème 1. (subdivision dyadique) Posons $Q_{(2)} := \bigcup_{k=0}^{\infty} Q_{2^k}$ « les cubes dyadiques »

- 1. Montrer que pour tout $C, D \in Q_{(2)}$, on a soit $C \subseteq D$, soit $D \subseteq C$, soit $C \cap D = \emptyset$.
- 2. Considérons l'ensemble $E = \{C \in Q_{(2)} \mid C \subseteq U\}$. On dit qu'un objet $C \in E$ est maximal s'il n'y a aucun objet $D \in E$ t.q. $D \supseteq C$. On note $F \subseteq E$ le sous-ensemble des objets maximaux. Montrer que $U = \bigsqcup_{C \in F} C$.
- 3. Montrer que F est soit fini, soit dénombrable ($Q_{(2)}$ est une réunion d'ensembles dénombrable, donc dénombrable, et $F \subseteq Q_{(2)}$). Donc $\lambda(U) = \sum_{C \in F} \lambda(C)$ (par Beppo-Levi + linéarité).

Remarque 23. $\lambda(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \lambda(E_n)$: $1_{\bigcup_{n=1}^{\infty} E_n} \leq \sum_{n=1}^{\infty} 1_{E_n}$ et on prend $\int_{\mathbb{R}^d}$.

Remarque 24. (Dénombrables)

1. \mathbb{N}, \mathbb{Z} sont dénombrable.

- 2. Soient E, F ensembles dénombrables, $E \times F$ l'est aussi.
- 3. Un sous-ensemble infini d'un ensemble dénombrable est dénombrable.
- 4. Soient F un ensemble dénombrable et E un ensemble infi. S'il existe une surjection F woheadrightarrow E, alors E est dénombrable (parce que F woheadrightarrow E admet une section $E \hookrightarrow F$ t.q. la composée $E \hookrightarrow F woheadrightarrow E$ est une injection, AC).
- 5. \mathbb{Q}^d est dénombrable.

Exercice. (Ch1 Ex1.6) Considérons (\mathbb{R}^d , λ).

- 1. Montrer que λ est σ -finie: il existe une suite croissante $(E_n)_{n\in\mathbb{N}}$ d'ensembles mesurables t.q. $\mathbb{R}^d = \bigcup_{n=1}^\infty E_n$ et $\forall n\in\mathbb{N}: \lambda(E_n) < +\infty$ [Indication: on peut prendre une suite $(E_n)_{n\in\mathbb{N}}$ de cubes fermés].
- 2. Montrer que $\forall K \subseteq_{\text{cpct}} \mathbb{R}^d : \lambda(K) < +\infty$.
- 3. Un ouvert de \mathbb{R}^d de mesure finie est-il forcément borné?
- 4. Un ouvert dense de \mathbb{R}^d peut-il être de mesure finie?

Solution.

- 1. $E_n = [-n, n] \times \cdots \times [-n, n]$.
- 2. Il existe $n \in \mathbb{N}$ t.q. $K \subseteq E_n$.
- 3. Non. $\bigcup_{n=2}^{\infty} n, n+2^{-n}$ quand d=1. Pour d>1, voir la quatrième.
- 4. Oui. Tout d'abord, \mathbb{Q}^d est dénombrable ($\mathbb{Z} \subseteq \mathbb{Q} \leftarrow \mathbb{Z} \times \mathbb{N}_{>0}$ est dénombrable): $\mathbb{Q}^d = \{p_1, p_2, \dots\}$. Alors on prend $E_n := p_n +]-2^{-n}, \, 2^{-n}[\times \cdots \times]-2^{-n}, \, 2^{-n}[$ (il s'agit un cube ouvert dont le centre est p_n et le côté est 2^{1-n} , donc $\lambda(E_n) = (2^{1-n})^d$). Alors comme \mathbb{Q}^d est dense, $\bigcup_{n=1}^{\infty} E_n \supseteq \mathbb{Q}^d$ l'est aussi. $\lambda(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \lambda(E_n) = \sum_{n=1}^{\infty} (2^{1-n})^d \leq 2$.

Remarque 25. Soient $E \subseteq \mathbb{R}^d$ et $F \subseteq \mathbb{R}^{d'}$ deux parties denses, alors $E \times F \subseteq \mathbb{R}^{d+d'}$ est dense.

Définition 26. Soit $E \subseteq \mathbb{R}^d$ une partie. L'intérieure $\operatorname{Int}(E)$ est défini par $\{x \in E \mid \exists r > 0 : B_r(x) \subseteq E\}$.

Corollaire 27. Int(E) est ouvert.

Corollaire 28. $\operatorname{Int}(E) = \bigcup_{U \subset \operatorname{ouvert} E} U$.

Définition 29. Une partie $E \subseteq \mathbb{R}^d$ est dite dense si pour tout $x \in \mathbb{R}^d$ et tout r > 0, $E \cap B_r(x) \neq \emptyset$.

Corollaire 30. $E \subseteq \mathbb{R}^d$ est dense ssi $\operatorname{Int}(\mathbb{R}^d \setminus E) = \emptyset$.

Exercice. (Ch1 Ex1.7)

- 1. Montrer qu'une réunion dénombrable d'ensembles négligeables est négligeable. Est-ce vrai sans le mot « dénombrable »?
- 2. Que vaut la mesure de Lebesgue de \mathbb{R}^d ?
- 3. Trouver un ensemble dense $E \subseteq \mathbb{R}^d$ qui est négligeable.
- 4. Montrer que le complémentaire d'un ensemble négligeable est dense.
- 5. Montrer que le plan $\{x_3=0\}$ est de mesure nulle dans \mathbb{R}^3 .

Solution.

- 1. Soit (E_n) une suite d'ensembles négligeables, alors $\lambda(\bigcup_{n=1}^{\infty}E_n)\leq\sum_{n=1}^{\infty}\lambda(E_n)=0$. On ne peut pas enlever le mot « dénombrable »: $[0,1]=\bigcup_{x\in[0,1]}\{x\}$.
- 2. $\mathbb{R}^d = \bigcup_{n=1}^{\infty} [-n, n]^d$ alors $\lambda(\mathbb{R}^d) = \lim_{n \to \infty} \lambda([-n, n]^d) = \lim_{n \to \infty} (2n)^d = +\infty$.
- 3. $E = \mathbb{Q}^d$: un ensemble dénombrable est négligeable.
- 4. Soit $E \subseteq \mathbb{R}^d$ une partie négligeable. Il suffit de montrer que $\operatorname{Int}(E) = \emptyset$. On remarque que $\operatorname{Int}(E)$ est ouvert et négligeable. Sinon, il existe un cube (non-vide) $C \subseteq \operatorname{Int}(E)$, alors $\lambda(\operatorname{Int}(E)) \ge \lambda(C) > 0$.

5. En général, $E \subseteq \mathbb{R}^d$ est négligeable ssi pour tout $N \in \mathbb{N}$, on a $E \cap [-N, N]^d$ est négligeable.

Ici,
$$\lambda(\{x_3=0\}\cap [-N,N]^3) = \lambda([-N,N]^2\times \{0\}) = 0.$$

Problème 2. Existe-il un ensemble négligeable infini non dénombrable? La réponse c'est oui. Voir les exercices supplémentaires.

Définition 31. (Intégrable) Une fonction $f: \mathbb{R}^d \to \mathbb{C}$ est dite intégrable si $\int_{\mathbb{R}^d} |f| < +\infty$. $f \in \mathcal{L}^1(\mathbb{R}^d, \lambda)$.

Définition 32. Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction intégrable. L'integrale $\int_{\mathbb{R}^d} f$:

Une fonction réelle. $\int_{\mathbb{R}^d} f := \int_{\mathbb{R}^d} f^+ - \int_{\mathbb{R}^d} f^-$ où les fonctions $f^+ = \max\{f,0\}$ et $f^- = \max\{-f,0\}$ sont intégrables.

Une fonction complexe. $\int_{\mathbb{R}^d} f := \int_{\mathbb{R}^d} \operatorname{Re}(f) + \mathrm{i} \int_{\mathbb{R}^d} \operatorname{Im}(f)$ où les fonctions $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ sont intégrables.

Proposition 33. (Linéarité) $f, g \in \mathcal{L}^1$, $\lambda, \mu \in \mathbb{C} \Rightarrow \lambda f + \mu g \in \mathcal{L}^1$ et $\int (\lambda f + \mu g) = \lambda \int f + \mu \int g$.

Proposition 34. (Inégalité triangulaire) $|\int f| \le \int |f|$.

Exercice. (Ch1 Ex1.10, Ex1.11(1)) Soit $f: \mathbb{R}^d \to [0, +\infty]$ mesurable. Montrer que

- 1. Pour tout $a \in \mathbb{R}_{>0}$, on a $\lambda(\{f > a\}) \le a^{-1} \int_{\mathbb{R}^d} f$.
- 2. Si $\int_{\mathbb{R}^d} f < +\infty$, alors f est finie p.p, c'est-à-dire, $\{f = +\infty\}$ est négligeable.
- 3. Si $\int_{\mathbb{R}^d} f = 0$, alors f = 0 p.p.

Solution.

- 1. $a 1_{\{f>a\}} \leq f$ alors $a \lambda(\{f>a\}) \leq \int f$.
- 2. Tout d'abord, $\{f=+\infty\}=\bigcap_{n=1}^\infty \{f>n\}$ est mesurable. Comme $\int_{\mathbb{R}^d} f<+\infty$, $\lambda(\{f>1\})<+\infty$. Alors $\lambda(\bigcap_{n=1}^\infty \{f>n\})=\lim_{n\to\infty} \lambda(\{f>n\})=\lim_{n\to\infty} n^{-1}\int_{\mathbb{R}^d} f=0$.
- 3. $\{f>0\} = \bigcup_{n=1}^{\infty} \{f>1/n\}$. Comme $\lambda(\{f>1/n\}) = n \int_{\mathbb{R}^d} f = 0$, on a $\{f>0\}$ est négligeable.

Exercice. (Ch1 Ex1.12) Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction intégrable. Montrer la continuité de l'intégrale: pour tout $\varepsilon > 0$, il existe $\delta > 0$ t.q. pour toute partie mésurable $A \subseteq \mathbb{R}^d$ avec $\lambda(A) < \delta$, on a $\int_A |f| := \int_{\mathbb{R}^d} 1_A |f| < \varepsilon$.

Solution. Tout d'abord, si la fonction f est borné, i.e. il existe M>0 t.q. $|f|\leq M$, alors l'énoncé est vrai: on peut prendre $\delta=\varepsilon/M$, alors pour tout A avec $\lambda(A)<\delta$, on a $\int_A |f|\leq M\,\lambda(A)<\delta\,M=\varepsilon$.

En général, on a une suite croissante $(1_{\{|f|\leq M\}}|f|)_{M\in\mathbb{N}}$ avec $\lim_{M\to\infty}1_{\{|f|\leq M\}}|f|=|f|$. Donc par Beppo-Levi, $\lim_{M\to+\infty}\int 1_{\{|f|\geq M\}}|f|=\int |f|<+\infty$, ce qui implique que $\lim_{M\to+\infty}\int (1-1_{\{|f|\leq M\}})|f|=0\Longrightarrow\lim_{M\to+\infty}\int 1_{\{|f|>M\}}|f|=0$. Donc il existe $M\in\mathbb{N}$ t.q. $\int 1_{\{|f|>M\}}|f|<\varepsilon/2$.

On note que $f=1_{\{|f|>M\}}|f|+1_{\{|f|\leq M\}}|f|$ où $\int 1_{\{|f|>M\}}|f|<\varepsilon/2$ et la fonction $1_{\{|f|\leq M\}}|f|$ est bornée. Alors par la première paragraphe, il existe $\delta>0$ t.q. pour tout A avec $\lambda(A)<\delta$, on a $\int_A 1_{\{|f|>M\}}|f|<\varepsilon/2$.

$$\operatorname{Donc}\, \int_{A} |f| = \int_{A} \mathbf{1}_{\{|f| > M\}} \, |f| + \int_{A} \mathbf{1}_{\{|f| \le M\}} \, |f| < \varepsilon/2 + \int_{\mathbb{R}^{d}} \mathbf{1}_{\{|f| \le M\}} \, |f| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Remarque 35. Quand f est bornée (le cas « bon »), l'énoncé est relativement facile à montrer. Pour le cas général, on décompose f comme une somme de deux fonctions (mesurables) dont l'une est « bonne » et l'autre « partie mauvaise » est majorée.

Une généralisation (dehors de ce cours): lemme de Calderón-Zygmund.

3 Séance

Exercice. (Ch1 Ex1.17) On dit qu'une fonction $\varphi: \mathbb{R} \to \mathbb{R}$ est *convexe* si pour tout $x, y \in \mathbb{R}$ et $\lambda \in [0, 1]$, on a $\varphi(\lambda \, x + (1 - \lambda) \, y) \leq \lambda \, \varphi(x) + (1 - \lambda) \, \varphi(y)$.

- 1. Montrer l'existence de droites d'appui pour les fonctions convexes: en tout point de leur graphe il existe une droite passant par ce point et ne dépassant jamais le graphe. [Indication: on peut supposer que $\varphi(0) = 0$ et montrer que $\varphi(x)/x \le \varphi(y)/y$ si x < 0 < y]
- 2. Montrer que soit μ une mesure de probabilité à densité, alors $\varphi(\int_{\mathbb{R}^d} g \, \mathrm{d}\mu) \leq \int_{\mathbb{R}^d} \varphi(g) \, \mathrm{d}\mu$ pour tout $g \in L^1(\mu)$. Solution.

1. Graphe de fonction convexe:

On fixe $(x_0, y_0 = \varphi(x_0))$ sur le graphe de φ . Alors la fonction $p : \mathbb{R} \setminus \{x_0\} \to \mathbb{R}$ (pour tout x, p(x) est la pente de la droite $(x, y := \varphi(x)) - (x_0, y_0)$) est croissante.

Lemme 36. La fonction φ est convexe ssi pour tout $x_1 < x_2 < x_3$, on a

$$\frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1} \le \frac{\varphi(x_3) - \varphi(x_1)}{x_3 - x_1} \le \frac{\varphi(x_3) - \varphi(x_2)}{x_3 - x_2}$$

Par conséquent, on a $p(x_0^-) := \lim_{x \to x_0^-} p(x) \le \lim_{x \to x_0^+} p(x) =: p(x_0^+)$.

Lemme 37. Une droite passant (x_0, y_0) est une droite d'appui ssi sa pente appartient à l'intervalle $[p(x_0^-), p(x_0^+)]$. Par exemple, si φ est differentiable à x_0 , alors telle droite est unique.

Exercice. (Ch1 Ex1.13) Soit $g:[a,b] \to \mathbb{R}_{\geq 0}$ intégrable et $f:[a,b] \to \mathbb{R}$ continue. Montrer qu'il existe $\theta \in [a,b]$ t.q. $\int_a^b f(x) \ g(x) \ \mathrm{d}x = f(\theta) \int_a^b g(x) \ \mathrm{d}x$.

Exercice. (Ch1 Ex1.15) Soit $f \in C^0(\mathbb{R}_{\geq 0})$ une fonction continue intégrable.

- 1. Construire une fonction continue $f \in C^0(\mathbb{R}_{\geq 0})$ intégrable t.q. $\lim_{x \to +\infty} f(x)$ n'existe pas.
- 2. Montrer que si f est uniformément continue alors $\lim_{x\to+\infty} f(x) = 0$.