

FIT2107-Software Quality & Testing

Lecture 6 – Whitebox Testing II

8th September 2020

Dr Najam Nazar

Outline

- Some concepts -> Truth table
- Condition + Branch Coverage (C/DC)
- Path Coverage
- Modified Coverage/ Decision Coverage (MC/DC)

Announcement

- Assignment 2 is released
 - Whitebox testing
 - Unit Testing
 - CI/CD
 - Justification using the blackbox testing.

Truth Table

- A mathematical table.
- Show whether a propositional expression is true for all legitimate input.
- Used in:
 - Algebra
 - Computer science
 - Philosophy
 - •

P	Q	P^Q
Т	Т	Т
Т	F	F
Т	F	F
F	F	F

Condition + Branch Coverage (C/DC)

```
def hello (a,b):
    if (a>10 and b>20):
        print("Hello")
    else:
        print("Hi")
```

- T1 = (20,10) a >10 is true and b >20 is false
- T2 = (5, 30) a > 10 is false and b > 20 is true
- Both T1 & T2 together achieve 100% coverage.
 - the final outcome of whole condition is false.
- 100% condition coverage but 50 % branch condition.
- In practice, when we use condition coverage, we actually do branch + condition coverage.

Path Coverage

- With condition we looked at each criterion (conditions and branch) individually.
- This gives us even more tests to generate (as seen in line coverage).
- Path coverage does not consider the conditions individually.
 - Rather it considers the (full) combination of the conditions in a decision
 - linearly independent paths in the program are executed at least once (all paths through CFG).

$$pathcoverage = \frac{paths\ covered}{Total\ paths} * 100$$

Example – Path Coverage

```
if (!Character.isLetter(str.charAt(i))
    & (last == 's' | last == 'r')) {
    words++;
}
• A = !Character.isLetter(str.charAt(i))
• B = last == 's'
• C = last == 'r'
```

8 Tests to cover the full path for if condition

Outcome: (A && (B || C))

only

Tests	A	В	С	Outcome
1	Т	T	T	Т
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

Path coverage using CFG

```
ticketprice(age, pensionstatus, seniorscard):
if age <= 18:
    concession = True
elif age <= 55:</pre>
    if pensionstatus:
        concession = True
    else:
        concession = False
else:
    if pensionstatus:
        concession=True
    elif seniorscard:
        concession=True
    else:
        concession=False
if concession:
    return 5.00
else:
    return 10.00
```


- Let's consider the branch 16->18, the potential paths are:
 - 1,2,3,16

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - 1, 2, 4, 5, 6, 16

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - 1, 2, 4, 5, 6, 16
 - 1, 2, 4, 5, 7, 8, 16

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - 1, 2, 4, 5, 6, 16
 - 1, 2, 4, 5, 7, 8, 16
 - 1, 2, 4, 9, 10, 11, 16

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - 1, 2, 4, 5, 6, 16
 - 1, 2, 4, 5, 7, 8, 16
 - 1, 2, 4, 9, 10, 11, 16
 - 1, 2, 4, 9, 10, 12, 13, 16

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - 1, 2, 4, 5, 6, 16
 - 1, 2, 4, 5, 7, 8, 16
 - 1, 2, 4, 9, 10, 11, 16
 - 1, 2, 4, 9, 10, 12, 13, 16
 - 1, 2, 4, 9, 10, 12, 14, 15, 16

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - (age \leq 18) \land (pension= T)

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - (age \leq 18) \land (pension= T)
 - 1, 2, 4, 5, 6, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= T)

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - (age \leq 18) \land (pension= T)
 - 1, 2, 4, 5, 6, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= T)
 - 1, 2, 4, 5, 7, 8, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= F)

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - (age \leq 18) \land (pension= T)
 - 1, 2, 4, 5, 6, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= T)
 - 1, 2, 4, 5, 7, 8, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= F)
 - 1, 2, 4, 9, 10, 11, 16
 - $\neg(age \le 18) \land \neg(age \le 55) \land (pension = T)$

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - (age ≤ 18) \(\Lambda\) (pension= T)
 - 1, 2, 4, 5, 6, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= T)
 - 1, 2, 4, 5, 7, 8, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= F)
 - 1, 2, 4, 9, 10, 11, 16
 - $\neg(age \le 18) \land \neg(age \le 55) \land (pension = T)$
 - 1, 2, 4, 9, 10, 12, 13, 16
 - $\neg(age \le 18) \land \neg(age \le 55) \land (pension = F) \land (seniors = T)$

- Let's consider the branch 16->18, the potential paths are:
 - 1, 2, 3, 16
 - (age \leq 18) \land (pension= T)
 - 1, 2, 4, 5, 6, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= T)
 - 1, 2, 4, 5, 7, 8, 16
 - \neg (age \leq 18) \land (age \leq 55) \land (pension= F)
 - 1, 2, 4, 9, 10, 11, 16
 - $\neg(age \le 18) \land \neg(age \le 55) \land (pension = T)$
 - 1, 2, 4, 9, 10, 12, 13, 16
 - $\neg(age \le 18) \land \neg(age \le 55) \land (pension = F) \land (seniors = T)$
 - 1, 2, 4, 9, 10, 12, 14, 15, 16
 - $\neg(age \le 18) \land \neg(age \le 55) \land (pension = F) \land (seniors = F)$

MC/DC

- exercise each condition in a way that it can, independently of the other conditions, affect the outcome of the entire decision.
- every possible condition of each parameter must have influenced the outcome at least once.

```
def admission (degree, experience, character):
    if character and (degree or experience):
        print("Admitted")
    else:
        print("Rejected")
```

- Whether the applicant has a good character (true or false),
- Whether the applicant has a degree (true or false),
- Whether the applicant has experience in a field of work (true or false)

MC/DC will give?

• Character = {1, 5}

Tests	Character	Degree	Experience	Decision?
1	T	T	T	Т
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

MC/DC will give?

• Character = $\{1, 5\} \{2, 6\}$

Tests	Character	Degree	Experience	Decision?
1	Т	T	T	Т
2	T	T	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	T	F
8	F	F	F	F

MC/DC will give?

Character = {1, 5} {2,6}{3,7}

Tests	Character	Degree	Experience	Decision?
1	Т	T	T	T
2	T	T	F	T
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	T	F
8	F	F	F	F

MC/DC will give?

Character = {1, 5} {2,6}{3,7}

Tests	Character	Degree	Experience	Decision?
1	T	Т	Т	Т
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

MC/DC will give?

Degree = {}

- MC/DC will give?
 - Degree = $\{2,4\}$

Tests	Character	Degree	Experience	Decision?
1	Т	Т	Т	T
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F
6 7	F F	T F	T	F

MC/DC will give?

• Degree = {2,4}

• 55

Tests	Character	Degree	Experience	Decision?
1	T	T	T	T
2	T	T	F	Т
3	T	F	T	Т
4	T	F	F	F
5	F	T	Т	F
6	F	T	F	F
7	F	F	T	F
8	F	F	F	F

- MC/DC will give?
 - Experience = {3,4}

Tests	Character	Degree	Experience	Decision?
1	Т	T	Т	Т
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

- MC/DC will give?
 - Experience = {3,4}
 - 55

Tests	Character	Degree	Experience	Decision?
1	Т	Т	Т	Т
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

MC/DC will give?

Character = {1, 5} {2,6} 1
 {3,7} 2

- MC/DC will give?
 - Character = {1, 5} {2,6}{3,7}
 - Degree = $\{2,4\}$

- MC/DC will give?
 - Character = {1, 5} {2,6} {3,7}
 - Degree = {2,4}
 - Experience = {3,4}

Tests	Character	Degree	Experience	Decision?
1	T	T	T	Т
2	Т	Т	F	Т
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	F
6	F	T	F	F
7	F	F	T /	F
8	F	F	F	F

- So how many test?
 - Character = {1, 5} {2,6}{3,7}
 - Degree = $\{2,4\}$
 - Experience = {3,4}
- So $T = \{2,3,4,6\} => 100\% MC/DC$
- N+1 tests = 4 Tests
- Which is better than $2^3 = 8$
- Created at Boeing and is required for aviation software.

Tests	Character	Degree	Experience	Decision?
1	Т	Т	Т	Т
2	Т	Т	F	Т
3	T	F	T	Т
4	Т	F	F	F
5	F	Т	T	F
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

Summary

- Condition coverage reports the true or false outcome of each condition and measure them independently of each other.
- Condition + Branch are done together.
- Every Path should be executed at least one.
- MC/DC
 - every condition shown to independently affect a decision outcome (by varying that condition only)
 - a condition independently affects a decision when, by flipping that condition and holding all the others fixed, the decision changes

QUESTIONS???

