Capa de Transporte

Redes de Computadores FIEC04705 Sesión 18

Agenda

- Terminología
- Process-to-process delivery
- Sockets
- Servicios orientados a conexión versus no orientados a conexión
- Confiable versus no confiable
- UDP

Terminología

Terminología

- Stream Control Transmission Protocol (SCTP):
 Es un protocolo confiable y orientado a mensajes en la capa de transporte, que combina las mejores características de UDP y TCP.
- IANA: Internet Assigned Number Authority

Process-to-process delivery

Process-to-process delivery

- La capa de enlace de datos es responsable de la entrega de frames entre dos nodos vecinos dentro del enlace: node-to-node delivery
- La capa de red es responsable de la entrega de datagramas entre dos hosts: host-to-host delivery
- La comunicación real se realiza entre dos procesos (aplicaciones, programas). La capa de transporte proveee process-to-process delivery en una relación cliente / servidor.

Process-to-process delivery

- Un proceso en el local host, llamado cliente, necesita servicios de un proceso usualmente en un host remoto, llamado servidor.
- En vista que el servidor tiene múltiples programas corriendo al mismo tiempo, al igual que el cliente, se requiere definir:
 - Local host
 - Local process
 - Remote host
 - Remote process

- En la capa de enlace se necesita una dirección MAC para acceder a un nodo entre varios de ellos.
- En la capa de red, se requiere una dirección IP para escoger entre millones de ellas.
- En la capa de transporte, la dirección se denomina port number, a fin de escoger un proceso dentro de los múltiples corriendo en el host de destino.

• Los números de puerto son 16 bits enteros que van desde 0 hasta 65535.

Sockets

Sockets

- Process-to-process delivery necesita dos identificadores: una dirección IP y un número de puerto en cada extremo, a fin de crear la conexión.
- La combinación de una dirección IP y un número de puerto se denomina **socket**.
- La capa de transporte requiere un par de direcciones sockets: la dirección socket en el cliente y en el servidor.

Sockets

 La dirección socket del cliente define al proceso en el cliente como único; al igual que el socket en el lado servidor define al proceso servidor como único.

Servicios orientados a conexión Versus no orientados a conexión

Servicios no orientados a conexión

- Los paquetes son enviados de una parte a la otra sin necesidad del establecer o liberar una conexión
- Los paquetes no son numerados; podrían demorarse, perderse o arribar fuera de secuencia.
- UDP es un protocolo no orientado a conexión.

Servicios orientados a conexión

- Primero se establece la conexión entre el transmisor y receptor.
- Luego los datos son transferidos
- Al final, la conexión es liberada.
- TCP y SCTP son protocolos orientados a conexión.

Confiable versus no confiable

Confiable versus no Confiable

- El servicio de la capa de transporte puede ser confiable o no confiable.
- Si el programa de la capa de aplicación requiere confiabilidad, entonces se implementa un protocolo con control de flujo y errores en la capa de transporte.
- En caso de no requerirlo, ya que el programa implementa su propio mecanismo de control de flujo y errores o programas que requieren un servicio rápido tales como las aplicaciones en tiempo real, entonces se implementa un protocolo no confiable.

Confiable versus no Confiable

- UDP es no orientado a conexión y no confiable.
- TCP y SCTP son orientados a conexión y confiables.

Confiabilidad y control de errores

User datagram protocol - UDP

UDP

Figure 23.8 Position of UDP, TCP, and SCTP in TCP/IP suite

UDP

- User Datagram Protocol (UDP) es denominado como un protocolo de transporte no confiable y no orientado a conexión.
- UDP es un protocolo sencillo que realiza un muy limitado chequeo de errores.
- Comúnmente utilizado para multimedia y servicios basados en un esquema request/reply. Por ejemplo: DNS, RPC, NFS.
- RFC 768

UDP encapsulation

Formato del mensaje UDP

0	4	8	12	16	20	24	28	31	
UDP source port					UDP dest port				
UDP message length					Checksum				
Data									

Colas en UDP

Figure 23.12 Queues in UDP Daytime Daytime client server Outgoing Incoming Outgoing Incoming queue queue queue queue Port 52000 UDP Port 13 UDP

Uso de UDP

- UDP es conveniente para una comunicación simple de request/response con muy poco interés en control de flujo y errores.
- UDP es conveniente para procesos con mecanismos de control internos de flujo y errores.
- UDP es útil para multicasting
- UDP es utilizado por algunos protocolos de actualización de ruta tales como RIP (Routing Information Protocol)

Puntos para recordar

- Process-to-process delivery
- Servicio orientado a conexión versus no orientado a conexión
- Servicio confiable versus no confiable
- Sockets
- UDP

Próxima Sesión

- TCP
- Principios de control de congestión

