duantifative Managnent N	loodeling T	Rohith chandra Koyyala.	
Assignment of the second	ent - Modu	de	
1) Day & denote collegiode	backpacks	and y is mini backpacks	5
a) The decision Variables	ave		
of the sales the dashed the	y	Total available 17m	
unit profit	\$ 24	1 / 10	
Nylon [39.ft]		5406	
Labor [hrs] 0.75 Sales forecast 1000	0.667	8 / 1003	
	V	Zalik / D. X.1	
b) The goal is to produce	e backpai	cks and maximize profit	b
Total profit z=\$	32 2 + 24	ry is the object fondio)r,
Soy is 10 onits are produc	ed /		
\$ 32 (10) + \$ 24(10) =			
:) Constraints are the limit	ed resou	ones avoilable for tabri	c
El labor hours		ρ,	
Total fabric F= 32	(10) + 0 (10)	5400 39. 1t	
Total hours $L=0.75x+0.667y \leq 1400 \text{ hours}$ L=0.75(10)+0.667(10)=14.17			
L= 0.	75 (10) + c	0.667(10)=14.17	
Now, units produced			
2 ≤ 1000			
2 70 and	420	and the house	

2) Say there are 3 plants: P1, P2, P3

The Sizes of onlts are S, M, L a) The decision Variables are the can Say the beats oquality constraint is Ps, Ps2 Ps3 PLI PLZ PL3 Z is the total net profit per day Maximize 2 = 420PL, +360PM, +300Ps, +420PL2+360PM2-300Pg + 420PL3 + 360PM3 + 300Pg3 Constraints PL, +PM, +Ps, <750 FL2+PM2+Ps, < 900 PL,+PM2+P32 = 450 20 PL, + 15 PM, + 12 Ps, < 13000 20PL2 + 15PM2 + 12Ps2 5 12000 20PL3 + 1591A3 + 12PS3 < 5000 PL, +PL2+PL3 < 900 PM, +PM2 +PM3 = 1200 Ps, + Ps2+Ps3 < 450 1/750 [PL, + PM, +Ps] - 1/9,00 [PL2+PM2+Ps2]=0

1/ 750 [PLI+PM, +PS,] - 1/450 [PL3+PM3+PS]=0

and IL, 20 PL2 20 PL2 70 PM, 20 PM2 7/0 PM3 70 Ps, = 0 Ps, 70 Ps, 70 We can Say the best equality constraint is redudant 1/900 [PL, +PM2+P32] - 1/450 [PL3+PM3+P3]= is the total net profit per deal 20 2 = 420PL, +360PM, +300 B, +9-1 = 3 = 360P 9 + PM1 + 13, E750 FL2+PM2+B2 = 100 531 20 21 Mit 1 2072 + LEPM, 1 218, 5 13000 16 x 16 1 16 0 100 11 1 1 00 1 - [1 1 - 1 1 - 1] Derl The Mount of John Committee of the Commi