

Testy χ^2

Statystyka i analiza danych 2017/2018

Jurek Błaszczyński, na podstawie slajdów Wojtka Kotłowskiego 27 maja 2018

Testy χ^2

- Dotyczą zmiennej/zmiennych dyskretnych, ze skończoną liczbą możliwych wartości:
 - uporządkowane kategorie, płeć, kolor, narodowość, wynik rzutu kostką, itp.
- Nie dotyczą jednego parametru rozkładu, ale całego rozkładu prawdopodobieństwa.
- Będziemy zajmować się dwoma rodzajami (wersjami) testów: test rozkładu jednej zmiennej oraz test rozkładu dwóch zmiennych.

Test dla jednej zmiennej

Dyskretna zmienna X przyjmująca jedną z wartości $\{x_1, \ldots, x_k\}$.

• Układ hipotez:

 H_0 : Zmienna X ma rozkład P

 H_1 : Zmienna X ma rozkład różny od P

Tabela wartości obserwowanych (observed):

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	 X _k	Σ
O_1				

• Tabela wartości oczekiwanych (expected) z H₀:

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	 X _k	Σ
E_1	E_2	E_3	 E_k	n

$$E_i = P(X = x_i) \cdot n$$

• Statystyka testowa:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi^2(k-1)$$

Jeśli $\chi^2 > \chi^2_{\rm kr}$, odrzucamy H_0 .

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

• Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

• **Tabela wartości obserwowanych** przy n = 30 rzutach:

X = 1	X=2	<i>X</i> = 3	<i>X</i> = 4	<i>X</i> = 5	<i>X</i> = 6	Σ
4	6	3	6	8	3	30

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

• **Tabela wartości obserwowanych** przy n = 30 rzutach:

X = 1	X = 2	X = 3	X = 4	<i>X</i> = 5	X = 6	Σ
4	6	3	6	8	3	30

• Tabela wartości oczekiwanych z H₀:

X = 1	<i>X</i> = 2	<i>X</i> = 3	X = 4	<i>X</i> = 5	<i>X</i> = 6	Σ
						30

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

• **Tabela wartości obserwowanych** przy n = 30 rzutach:

X = 1	X = 2	X = 3	X = 4	X = 5	X = 6	Σ
4	6	3	6	8	3	30

• Tabela wartości oczekiwanych z H₀:

X = 1	<i>X</i> = 2	<i>X</i> = 3	X = 4	<i>X</i> = 5	X = 6	Σ
5	5	5	5	5	5	30

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

• **Tabela wartości obserwowanych** przy n = 30 rzutach:

X = 1	X = 2	X = 3	X = 4	<i>X</i> = 5	X = 6	Σ
4	6	3	6	8	3	30

• Tabela wartości oczekiwanych z H₀:

X = 1	<i>X</i> = 2	<i>X</i> = 3	<i>X</i> = 4	<i>X</i> = 5	<i>X</i> = 6	Σ
5	5	5	5	5	5	30

• Statystyka testowa:

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

• **Tabela wartości obserwowanych** przy n = 30 rzutach:

X = 1	X = 2	X = 3	X = 4	X = 5	X = 6	Σ
4	6	3	6	8	3	30

• Tabela wartości oczekiwanych z H₀:

			-	•		
X = 1	X=2	<i>X</i> = 3	X = 4	X = 5	X = 6	Σ
5	5	5	5	5	5	30

• Statystyka testowa:

$$\chi^{2} = \frac{(4-5)^{2}}{5} + \frac{(6-5)^{2}}{5} + \frac{(3-5)^{2}}{5} + \frac{(6-5)^{2}}{5} + \frac{(8-5)^{2}}{5} + \frac{(3-5)^{2}}{5}$$
$$= \frac{1}{5} + \frac{1}{5} + \frac{4}{5} + \frac{1}{5} + \frac{9}{5} + \frac{4}{5} = \frac{20}{5} = 4$$

X – wynik rzutu kostką. Testujemy, czy kostka jest uczciwa

Układ hipotez:

 H_0 : Zmienna X ma rozkład jednostajny na $\{1, 2, 3, 4, 5, 6\}$

 H_1 : Zmienna X nie ma rozkładu jednostajnego

• **Tabela wartości obserwowanych** przy n = 30 rzutach:

X = 1	X = 2	<i>X</i> = 3	X = 4	<i>X</i> = 5	X = 6	Σ
4	6	3	6	8	3	30

• Tabela wartości oczekiwanych z H_0 :

X = 1	X = 2	<i>X</i> = 3	X = 4	<i>X</i> = 5	<i>X</i> = 6	Σ
5	5	5	5	5	5	30

• Statystyka testowa:

• Wartość statystyki: $\chi^2 = 4$

• Stopnie swobody: k - 1 = 5

• Dla lpha= 0.01, $\chi^2_{
m kr}=$ 15.08 (z tablic)

• Wniosek: $\chi^2 < \chi^2_{kr}$, więc brak podstaw do odrzucenia H_0 .

Rozkład $\chi^2(k)$

Rozkład $\chi^2(4)$

Obszar krytyczny zawsze z prawej strony: $C_{\rm kr}=(\chi^2_{\rm kr},\infty).$

Test dla dwóch zmiennych $X \in \{x_1, \dots, x_w\}$ i $Y \in \{y_1, \dots, y_k\}$

Układ hipotez:

 H_0 : Zmienne X i Y są **niezależne**

 H_1 : Zmienne X i Y są zależne

Tabela w. obserwowanych

	y_1	<i>y</i> ₂		Уk	Σ	
<i>x</i> ₁	$O_{1,1}$	$O_{1,2}$		$O_{1,k}$	R_1	
<i>X</i> ₂	O _{2,1}	O _{2,2}		$O_{2,k}$	R_2	
X _w	$O_{w,1}$	$O_{w,2}$		$O_{w,k}$	R_w	
Σ	C_1	C_2		C_k	n	

labela w. oczekiwanych							
	<i>y</i> ₁	<i>y</i> ₂		Уk	Σ		
<i>X</i> ₁	$E_{1,1}$	$E_{1,2}$		$E_{1,k}$	R_1		
<i>X</i> ₂	E _{2,1}	E _{2,2}		$E_{2,k}$	R_2		
X _w	$E_{w,1}$	$E_{w,2}$		$E_{w,k}$	R_w		
Σ	C_1	<i>C</i> ₂		C_k	n		

Wartości oczekiwane: $E_{ij} = \frac{R_i C_j}{n} \left(\frac{\text{suma wiersza} \times \text{suma kolumny}}{\text{podsumowanie tabeli}} \right)$

Statystyka testowa:

$$\chi^2 = \sum_{i=1}^{w} \sum_{j=1}^{k} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2((w-1) \cdot (k-1))$$

Wartości oczekiwane

Skąd wzór
$$E_{ij} = \frac{R_i \ C_j}{n}$$
?

Wartości oczekiwane

Skąd wzór
$$E_{ij} = \frac{R_i C_j}{n}$$
?

Spodziewamy się wystąpienia:

$$n \cdot P(X = x_i, Y = y_j)$$

obserwacji dla których $X = x_i$ i $Y = y_j$.

Wartości oczekiwane

Skąd wzór
$$E_{ij} = \frac{R_i C_j}{n}$$
?

Spodziewamy się wystąpienia:

$$n \cdot P(X = x_i, Y = y_j)$$

obserwacji dla których $X = x_i$ i $Y = y_i$.

Przy założeniu H_0 zmienne są **niezależne**, a więc:

$$P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$$
$$= \frac{R_i}{n} \cdot \frac{C_j}{n}$$

Pomnożenie przez n to właśnie ten wzór.

W USA przeprowadzono sondaż opinii na 1000 losowo wybranych osób. Sprawdź, czy istnieje zależność między płcią odpytanych osób a ich preferencjami politycznymi.

	republican	democrat	independent	Σ
male	200	150	50	400
female	250	300	50	600
Σ	450	450	100	1000

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ		
М	200	150	50	400		
F	250	300	50	600		
Σ	450	450	100	1000		

rabeia w. oczekiwanych					••
		rep	dem	ind	Σ
	М				400
	F				600
	Σ	450	450	100	1000

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ		
М	200	150	50	400		
F	250	300	50	600		
Σ	450	450	100	1000		

rabeia w. oczekiwanych				
	rep	dem	ind	Σ
М	180			400
F				600
Σ	450	450	100	1000

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ
М	200	150	50	400
F	250	300	50	600
Σ	450	450	100	1000

rabeia W. Oczekiwanych					
		rep	dem	ind	Σ
	М	180	180		400
	F				600
	Σ	450	450	100	1000

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ
М	200	150	50	400
F	250	300	50	600
Σ	450	450	100	1000

rabeia W. Oczekiwanych					
		rep	dem	ind	Σ
	М	180	180	40	400
	F				600
	Σ	450	450	100	1000

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ
М	200	150	50	400
F	250	300	50	600
Σ	450	450	100	1000

rabcia w. oczekiwanych				
	rep	dem	ind	Σ
М	180	180	40	400
F	270	270	60	600
Σ	450	450	100	1000

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

 H_1 : Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ
М	200	150	50	400
F	250	300	50	600
Σ	450	450	100	1000

Tabela w. oczekiwanych

rabcia w. oczekiwanych				
	rep	dem	ind	Σ
М	180	180	40	400
F	270	270	60	600
Σ	450	450	100	1000

Statystyka testowa:

$$\chi^2 = \frac{(200 - 180)^2}{180} + \frac{(150 - 180)^2}{180} + \frac{(50 - 40)^2}{40} + \frac{(250 - 270)^2}{270} + \frac{(300 - 270)^2}{270} + \frac{(50 - 60)^2}{60} = \frac{20}{9} + 5 + \frac{5}{2} + \frac{40}{27} + \frac{10}{3} + \frac{5}{3} = 16.2$$

X – płeć, Y – preferencje wyborcze.

Układ hipotez:

H₀: Brak zależności między płcią a pref. wyborczymi

H₁: Istnieje zależność

Tabela w. obserwowanych

	rep	dem	ind	Σ
М	200	150	50	400
F	250	300	50	600
Σ	450	450	100	1000

Tabela w. oczekiwanych

rabeia W. Oczekiwanych				
	rep	dem	ind	Σ
М	180	180	40	400
F	270	270	60	600
Σ	450	450	100	1000

Statystyka testowa:

• Wartość statystyki: $\chi^2 = 16.2$

• Stopnie swobody: $(w-1)(k-1) = 1 \cdot 2 = 2$

• Dla $\alpha = 0.01$, $\chi^2_{\rm kr} = 9.21$ (z tablic)

• Wniosek: $\chi^2 > \chi^2_{kr}$, więc odrzucamy H_0 .