Ranking via Robust Binary Classification

What is RoBiRank?

A Robust and Scalable Ranking algorithm:

- Optimizes for quality on top of the ranking list
- Directly bounds NDCG (popular evaluation metric for ranking)
- Can be efficiently parallelized and scales to very large datasets
- Demonstrates competitive results on both small-medium and large datasets

Robust Classification

Setup: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, +1\}$.

• Binary Classification aims to minimize the number of mistakes in the dataset:

$$L(\omega) = \sum_{i=1}^{n} I(y_i \cdot \langle x_i, \omega \rangle < 0).$$
 $L(\omega) = \sum_{i=1}^{n} \sigma(y_i \cdot \langle x_i, \omega \rangle).$ (Non-robust)

When $\sigma(t) = \log_2(1 + 2^{-t})$, we get logistic regression. When $\sigma(t) = \max(1 - t, 0)$, we get SVM.

However, Convex objective functions are sensitive to outliers.

• Using following transformations,

$$\rho_1(t) = \log_2(t+1), \quad \rho_2(t) := 1 - \frac{1}{\log_2(t+2)},$$

we can **bend** the loss functions to get:

$$L_1(\omega) = \sum_{i=1}^n \rho_1 \left(\sigma(y_i \cdot \langle x_i, \omega \rangle) \right), \quad \text{(Robust Type I)}$$

$$L_2(\omega) = \sum_{i=1}^n \rho_2 \left(\sigma(y_i \cdot \langle x_i, \omega \rangle) \right). \quad \text{(Robust Type II)}$$

- $-\mathrm{As}\ t \to \infty$, Type I loss function goes to ∞ at a much slower rate
- -Even if $t \to \infty$, Type II loss function does not go to ∞ .
- -Type II loss function has stronger statistical guarantees.
- -Type I loss function is easier to optimize, since its gradient does not vanish.

Learning to Rank

Notations:

- $\mathcal{X} = \text{set of users}$, $\mathcal{Y} = \text{set of items}$, $r_{xy} = \text{rating user } x$ gave to item y
- $\phi(x,y) \in \mathbb{R}^d$: extracted feature between x and y, $\omega \in \mathbb{R}^d$: model parameter
- $f_{\omega}(x,y) := \langle \phi(x,y), \omega \rangle$: the score model assigns to item y for user x

Documents

Rank of an item y for user x can be defined as:

$$\operatorname{rank}_{\omega}(x,y) = \sum_{y' \in \mathcal{Y}_x, y' \neq y} I(f_{\omega}(x,y) - f_{\omega}(x,y') < 0).$$

Using this, **objective function for ranking** can be expressed as:

$$L(\omega) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}_x} r_{xy} \sum_{y' \in \mathcal{Y}_x, y' \neq y} \sigma \left(f_{\omega}(x, y) - f_{\omega}(x, y') \right).$$

Discounted Cumulative Gain (DCG):

$$DCG(\omega) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}_x} \frac{r_{xy}}{\log_2 (\operatorname{rank}_{\omega}(x, y) + 2)},$$

Gain of an item degrades logarithmically based on its rank

It turns out, Maximizing DCG \Leftrightarrow Minimizing Robust version of $L(\omega)$

$$L_2(\omega) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}_x} r_{xy} \cdot \rho_2 \left(\sum_{y' \in \mathcal{Y}_x, y' \neq y} \sigma \left(f_{\omega}(x, y) - f_{\omega}(x, y') \right) \right). \quad \text{(Robust Type II)}$$

To avoid the vanishing gradient problem, our proposed method - RoBiRank, optimizes:

$$L_1(\omega) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}_x} r_{xy} \cdot \rho_1 \left(\sum_{y' \in \mathcal{Y}_x, y' \neq y} \sigma \left(f_{\omega}(x, y) - f_{\omega}(x, y') \right) \right). \quad \text{(Robust Type I)}$$

• Results on small-medium datasets:

RoBiRank shows better performance at the top as expected

Latent Collaborative Retrieval

- When the size of the data, especially \mathcal{Y} is large,
 - -Generating features $\phi(x,y)$ for all x and y is challenging
- -Computing $\sum_{y' \in \mathcal{Y}_x, y' \neq y} \sigma \left(f_{\omega}(x, y) f_{\omega}(x, y') \right)$ is expensive
- The data usually consists of implicit feedback: $r_{xy} = 0$ for most (x, y).
- To avoid the feature engineering burden, let
- -user parameter: $U_1, U_2, \ldots, U_n \in \mathbb{R}^d$
- -item parameter: $V_1, V_2, \dots, V_m \in \mathbb{R}^d$
- -score: $f_{\omega}(x,y) := \langle U_x, V_y \rangle$,
- as in matrix factorization. The objective function becomes

$$\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}_x} r_{xy} \cdot \rho_1 \left(\sum_{y' \in \mathcal{Y}_x, y' \neq y} \sigma \left(\langle U_x, V_y \rangle - \langle U_x, V_{y'} \rangle \right) \right).$$

• To avoid calculating the summation over \mathcal{Y} , using the following property of $\rho_1(\cdot)$,

$$\rho_1(t) = \log_2(t+1) \le -\log_2 \xi + \frac{\xi \cdot (t+1) - 1}{\log 2}, \quad \text{(for any } \xi > 0)$$

we **linearize** the objective function:

$$\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}_x} r_{xy} \cdot \left[-\log_2 \xi_{xy} + \frac{\xi_{xy} \cdot \left(\sum_{y' \neq y} \sigma \left(\langle U_x, V_y \rangle - \langle U_x, V_{y'} \rangle \right) + 1 \right) - 1}{\log 2} \right],$$

by introducing ξ_{xy} for each x, y with $r_{xy} \neq 0$.

• If we uniformly sample (x, y, y') from $\{(x, y, y') : r_{xy} \neq 0\}$, we obtain an **unbiased** estimator, which allows us to take stochastic gradient with convergence guarantees.

Parallelization

- User parameters and item parameters are partitioned into multiple machines
- User parameters always stay, item parameters are exchanged after each epoch
- Within each epoch, SGD updates are taken within accessible region (Stratified SGD of Gemula et al)

• RoBiRank scales nicely up to 32 machines (16 cores each)

Paper

Ranking via Robust Binary Classification, Hyokun Yun, Parameswaran Raman, S.V.N.Vishwanathan, (NIPS 2014)