SURE Project

September 24, 2022

Objective

Compare spatial predictions of kelp to "in situ" survey data. Compare each year and location for 150, 300, 600, 900 resolutions.

Extraction

Extract the predicted log kelps density of every year (2004 - 2021) for each site in the North Coast.

```
# set a directory
w.dir <- here()</pre>
d.dir <- here('data')</pre>
r.dir <- '/Volumes/Chunting HD/Git_Repositories/Chunting_Spatial_Analyses/spatial_data'
r1.dir <- paste(r.dir, 'sp_predictions_300m', sep ='/')
r2.dir <- paste(r.dir, 'sp_predictions_1500m', sep ='/')
r3.dir <- paste(r.dir, 'sp_predictions_600m', sep ='/')
r4.dir <- paste(r.dir, 'sp_predictions_900m', sep ='/')
r5.dir <- paste(r.dir, 'sp_predictions_150m', sep ='/')
r6.dir <- paste(r.dir, 'sp_predictions_120m', sep ='/')
# read and transform the observed data to the log scale
df <- read.csv(paste(d.dir,</pre>
                     'RCCA_kelp_inverts_NC_depth-zones_wave_clim_temp_nit_subs_orbvel_npp.csv',
                     sep = '/')) %>%
  dplyr::select(site_name, year, transect, zone, latitude, longitude, den_NERLUE) %>%
  mutate_at(vars(year, transect, zone, site_name), list(as.factor)) %>%
  mutate(log_den_NERLUE = log(den_NERLUE))
head(df)
     site name year transect zone latitude longitude den NERLUE log den NERLUE
##
## 1
       Caspar 2018
                       1 INNER 39.36173 -123.822
                                                                            -Inf
## 2
       Caspar 2018
                           2 INNER 39.36173 -123.822
                                                               0
                                                                            -Inf
## 3
       Caspar 2018
                          3 INNER 39.36173 -123.822
                                                               0
                                                                            -Inf
       Caspar 2018
                          4 OUTER 39.36173 -123.822
                                                                            -Inf
## 5
                                                                            -Inf
       Caspar 2018
                         5 OUTER 39.36173 -123.822
                                                               0
```

```
6 OUTER 39.36173 -123.822
                                                                  -Inf
Caspar 2018
```

Note that $\log(0)$ returns -Inf. How to deal with $\log(0)$?

```
df$log_den_NERLUE <- replace(df$log_den_NERLUE, df$log_den_NERLUE == -Inf, 0)</pre>
```

Calculate the mean and standard error of kelps density of every year for each site by zone (INNER/OUTER).

```
obs <- df %>%
  group_by(site_name, year, zone) %>%
  summarise_at(vars(log_den_NERLUE), list(mean = mean, se = std.error), na.rm = TRUE) %>%
  pivot_wider(names_from = zone, values_from = c(mean, se))
head(obs)
## # A tibble: 6 x 6
## # Groups:
               site_name, year [6]
     site_name year mean_INNER mean_OUTER se_INNER se_OUTER
     <fct>
               <fct>
                          <dbl>
                                     <dbl>
                                               <dbl>
                                                        <dbl>
                          4.38
## 1 Caspar
               2008
                                      3.03
                                              0.150
                                                        0.996
## 2 Caspar
               2010
                          4.37
                                      4.17
                                             0.0664
                                                        0.586
                          0.799
                                             0.799
## 3 Caspar
               2014
                                      0
                                                        0
## 4 Caspar
               2015
                          0
                                      0
                                              0
                                                        0
## 5 Caspar
               2016
                          0
                                      0
                                             0
                                                        0
## 6 Caspar
               2017
                          0
                                              0
```

Extract the predicted log kelps density of every year for each site at different resolutions.

```
# kelp density predictions at different resolutions ----
# # read the .csv file
# site <- read.csv(paste(d.dir, 'RCCA_North_Coast_sites.csv', sep = '/'))
# # convert from .csv to .shp
# site_shp <- st_as_sf(site, coords = c('longitude', 'latitude'), crs = 'EPSG:4326')
# # declaring an empty data frame
# pred <- data.frame(site_name = character(),</pre>
                     year = numeric(),
#
                     fit = numeric())
#
# for (i in c(2006:2021)) {
  rast <- rast(pasteO(r6.dir, pasteO('/', i, '_Log_Nereo_NC.tif')))
   ext <- terra::extract(rast, vect(site shp$qeometry)) %>%
#
     mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
#
      dplyr::select(-ID)
#
    pred <- rbind(pred, ext)</pre>
# }
#
# head(pred)
#
# # write to cus
# merge_df <- left_join(pred,</pre>
#
                         site %>% dplyr::select(c(site_name, longitude, latitude)),
#
                         by = 'site_name')
\# write.csv(merge_df, file.path(d.dir, 'NC_kelp_density_predictions_120m.csv'), row.names = FALSE)
```

Comparison

```
# kelp density predictions at 300m resolution
pred_300m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_300m.csv', sep ='/')) %>%
  mutate at(vars(year, site name), list(as.factor))
kelp_data_300m <- left_join(pred_300m, obs, by = c('site_name', 'year')) %>%
  group by(site name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last col())
head(kelp_data_300m)
## # A tibble: 6 x 9
## # Groups:
               site name [1]
     site_name year longitude latitude mean_INNER mean_OUTER se_IN~1 se_OU~2
                                                                          <dbl> <dbl>
##
     <fct>
               <fct>
                         <dbl>
                                                         <dbl>
                                   <dbl>
                                              <dbl>
                                                                  <dbl>
                                    39.4
## 1 Caspar
               2006
                         -124.
                                              NA
                                                         NA
                                                                NA
                                                                         NA
                                                                                0.115
## 2 Caspar
               2007
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                                NA
                                                                         ΝA
                                                                                2.16
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                          3.03 0.150
                                                                          0.996 3.29
               2009
## 4 Caspar
                         -124.
                                    39.4
                                                         NA
                                                                NA
                                                                         NA
                                                                                7.83
               2010
                         -124.
                                    39.4
                                                                          0.586 0.563
## 5 Caspar
                                               4.37
                                                          4.17 0.0664
## 6 Caspar
               2011
                         -124.
                                    39.4
                                              NA
                                                                NA
                                                                         NA
                                                                                2.14
## # ... with abbreviated variable names 1: se_INNER, 2: se_OUTER
# kelp density predictions at 600m resolution
pred_600m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_600m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp data 600m <- left join(pred 600m, obs, by = c('site name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_600m)
## # A tibble: 6 x 9
## # Groups:
               site name [1]
     site_name year longitude latitude mean_INNER mean_OU~1 se_IN~2 se_OU~3
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                        <dbl>
                                                                 <dbl>
                                                                         <dbl>
                                                                               <dbl>
                                                                               0.0858
## 1 Caspar
               2006
                         -124.
                                    39.4
                                              NΑ
                                                        NA
                                                               NA
                                                                        NA
## 2 Caspar
               2007
                         -124.
                                    39.4
                                                        NA
                                                              NA
                                                                               1.12
                                              NΑ
                                                                        NΑ
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                         3.03 0.150
                                                                         0.996 4.00
## 4 Caspar
               2009
                         -124.
                                    39.4
                                              NA
                                                        NA
                                                              NA
                                                                        NA
                                                                               7.98
## 5 Caspar
               2010
                         -124.
                                    39.4
                                               4.37
                                                         4.17 0.0664
                                                                         0.586 0.229
## 6 Caspar
               2011
                         -124.
                                    39.4
                                              NA
                                                        NA
                                                                        NA
                                                                               0.999
                                                               NΑ
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 900m resolution
pred_900m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_900m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_900m <- left_join(pred_900m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
```

```
relocate(fit, .after = last_col())
head(kelp_data_900m)
## # A tibble: 6 x 9
## # Groups:
               site name [1]
     site_name year longitude latitude mean_INNER mean_OU~1 se_IN~2 se_OU~3
                                                                 <dbl>
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                         <dbl>
                                                                         <dbl> <dbl>
## 1 Caspar
               2006
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                               0.0758
## 2 Caspar
               2007
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                1.50
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                         3.03 0.150
                                                                         0.996 3.58
## 4 Caspar
               2009
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                5.57
## 5 Caspar
               2010
                         -124.
                                    39.4
                                               4.37
                                                          4.17 0.0664
                                                                         0.586 0.339
## 6 Caspar
                                    39.4
               2011
                         -124.
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                1.44
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 1500m resolution
pred_1500m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_1500m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_1500m <- left_join(pred_1500m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_1500m)
## # A tibble: 6 x 9
## # Groups:
               site_name [1]
     site_name year longitude latitude mean_INNER mean_OU~1 se_IN~2 se_OU~3
##
##
                                              <dbl>
                                                         <dbl>
                                                                 <dbl>
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                                                         <dbl>
                                                                                <dbl>
## 1 Caspar
               2006
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                0.120
## 2 Caspar
               2007
                                    39.4
                         -124.
                                                                        NA
                                                                                1.27
                                              NA
                                                         NA
                                                               NA
                                               4.38
## 3 Caspar
               2008
                         -124.
                                    39.4
                                                          3.03 0.150
                                                                         0.996 6.19
## 4 Caspar
               2009
                                    39.4
                                                                               11.2
                         -124.
                                              NA
                                                         NA
                                                               NA
                                                                        NA
## 5 Caspar
               2010
                         -124.
                                    39.4
                                                          4.17 0.0664
                                                                         0.586
                                               4.37
## 6 Caspar
               2011
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
# kelp density predictions at 120m resolution
pred_120m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_120m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_120m <- left_join(pred_120m, obs, by = c('site_name', 'year')) %>%
  group by(site name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_120m)
## # A tibble: 6 x 9
               site_name [1]
## # Groups:
##
     site_name year longitude latitude mean_INNER mean_0U~1 se_IN~2 se_0U~3
                                                                                   fit
                                                         <dbl>
                                                                 <dbl>
                                                                                <dbl>
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                                         <dbl>
                          -124.
                                    39.4
                                                                                0.226
## 1 Caspar
               2006
                                              NΑ
                                                         NA
                                                                        NA
                                                               NA
```

```
## 2 Caspar
               2007
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                3.13
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                         3.03 0.150
                                                                         0.996 4.35
                                                                               18.8
## 4 Caspar
               2009
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
## 5 Caspar
               2010
                          -124.
                                    39.4
                                               4.37
                                                         4.17 0.0664
                                                                         0.586
                                                                                0.865
## 6 Caspar
               2011
                          -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
## # ... with abbreviated variable names 1: mean OUTER, 2: se INNER, 3: se OUTER
# kelp density predictions at 150m resolution
pred_150m <- read.csv(paste(d.dir, 'NC_kelp_density_predictions_150m.csv', sep ='/')) %>%
  mutate_at(vars(year, site_name), list(as.factor))
kelp_data_150m <- left_join(pred_150m, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data_150m)
## # A tibble: 6 x 9
## # Groups:
               site name [1]
     site_name year longitude latitude mean_INNER mean_OU~1 se_IN~2 se_OU~3
##
                                                                                  fit
##
     <fct>
               <fct>
                         <dbl>
                                   <dbl>
                                              <dbl>
                                                         <dbl>
                                                                 <dbl>
                                                                         <dbl>
                                                                                <dbl>
                         -124.
                                    39.4
## 1 Caspar
               2006
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                0.228
## 2 Caspar
               2007
                         -124.
                                    39.4
                                              NA
                                                         NA
                                                               NA
                                                                        NA
                                                                                3.16
## 3 Caspar
               2008
                         -124.
                                    39.4
                                               4.38
                                                         3.03 0.150
                                                                         0.996 4.40
               2009
## 4 Caspar
                         -124.
                                    39.4
                                                         NA
                                                                        NA
                                                                               19.0
                                              NA
                                                               NA
## 5 Caspar
               2010
                         -124.
                                    39.4
                                                         4.17 0.0664
                                                                         0.586
                                                                               0.871
                                               4.37
               2011
                         -124.
## 6 Caspar
                                    39.4
                                              NA
                                                        NA
                                                               NA
                                                                        NA
                                                                                3.06
## # ... with abbreviated variable names 1: mean_OUTER, 2: se_INNER, 3: se_OUTER
```

Plotting

Plot log of kelps density vs year for each site at different resolutions.

```
sites <- unique(kelp_data_300m$site_name)</pre>
sites \leftarrow sites[-c(5, 7, 12, 20, 24)]
res <- c(120, 150, 300, 600, 900, 1500)
kelp_longer_300m <- kelp_data_300m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
    names_to = c('.value', 'zone'),
    names sep = ' '
    ) %>%
  mutate(resolution = as.factor(300))
kelp_longer_600m <- kelp_data_600m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
    names_to = c('.value', 'zone'),
    names_sep = '_'
```

```
) %>%
  mutate(resolution = as.factor(600))
kelp_longer_900m <- kelp_data_900m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
   -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names_sep = '_'
    ) %>%
  mutate(resolution = as.factor(900))
kelp_longer_1500m <- kelp_data_1500m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
    -c('site_name', 'year', 'fit'),
    names_to = c('.value', 'zone'),
   names_sep = '_'
    ) %>%
  mutate(resolution = as.factor(1500))
kelp_longer_120m <- kelp_data_120m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
   -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names sep = ' '
    ) %>%
  mutate(resolution = as.factor(120))
kelp_longer_150m <- kelp_data_150m %>%
  dplyr::select(-c(longitude, latitude)) %>%
  pivot_longer(
   -c('site_name', 'year', 'fit'),
   names_to = c('.value', 'zone'),
   names_sep = '_'
   ) %>%
  mutate(resolution = as.factor(150))
kelp_longer <- rbind(kelp_longer_120m, kelp_longer_150m,</pre>
                     kelp_longer_300m, kelp_longer_600m,
                     kelp_longer_900m, kelp_longer_1500m)
for (i in sites) {
  plot <- kelp_longer %>%
   filter(site_name == i) %>%
   ggplot() +
   geom_pointrange(aes(
      x = year, y = mean, group = zone, color = zone,
      ymin = mean - se, ymax = mean + se
      ), alpha = 0.5, size = 0.3) +
    geom_bar(aes(x = year, y = fit,
                 fill = ifelse(!is.na(fit) & fit >= 6.6, 'YES', 'NO')),
```


