Uge 13

Danny Nygård Hansen

28. november 2023

11.4 • ☜

(a) Bemærk at for $t \ge 0$ er

$$(\lambda_2 \circ \eta^{-1})((-\infty, t]) = \pi t^2 = (f \lambda)((-\infty, t]),$$

idet vi benytter at arealet af en disk med radius t er πt^2 .

(b) Bemærk at

$$\int_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} \lambda_{2}(dx, dy) = \int_{\mathbb{R}} e^{-r^{2}} (\lambda_{2} \circ \eta^{-1})(dr) = \int_{\mathbb{R}} e^{-r^{2}} (f \lambda)(dr)$$
$$= \int_{\mathbb{R}} f(r) e^{-r^{2}} \lambda(dr) = \pi.$$

- (c) Følger nærmest direkte af Tonellis sætning.
- (d) Benyt transformationssætningen (og evt. translationsinvarians).
- (e) Benyt transformationssætningen sammen med del (c), og udnyt at funktionen $x \mapsto e^{-x^2}$ er lige.

- (a) Husk at funktionen $x \mapsto e^{-x^2/2}$ er et element i $\mathcal{L}^1(\lambda)$.
- (b) Funktionen $x \mapsto x e^{-x^2/2}$ er også et element i $\mathcal{L}^1(\lambda)$.
- (c) Omskriv til Riemannintegraler og benyt partiel integration. (Første del af opgaven bruger ikke de foregående delopgaver.)
- (d) At differentialligningen y'(t) + ty(t) = 0 har en entydig løsning y der opfylder $y(0) = \sqrt{2\pi}$ bevises i kurset *Differentialligninger*, men vi kan give et elementært bevis for denne påstand: Lad y være en løsning til differentialligningen, og sæt $z(t) = e^{t^2/2}y(t)$. Det er da let at vise at z'(t) = 0 (idet vi udnytter at y er en løsning til differentialligningen), så z = C for et $C \in \mathbb{R}$, og det følger at $y(t) = C e^{-t^2/2}$. Vi ser desuden at y(0) = C, så vi må have $C = \sqrt{2\pi}$.

Vi bemærker at resultatet af denne opgave benyttes i Eksempel 12.1.5 til at beregne den Fouriertransformerede af tætheden for normalfordelingen. ■

12.4 · 🖘

- (a) Benyt f.eks. Opgave 8.2(c) og bemærk at imaginærdelen er en ulige funktion.
- (b) Sammenlign f.eks. med funktionen

$$t \mapsto \sqrt{\frac{2}{\pi}} \frac{\sigma}{t^2}$$

for $|t| \geq 1.$ Denne er punktvist større end \widehat{H}_{σ} og er som bekendt integrabel.

(c) Benyt Inversionssætningen og at imaginærdelen er en ulige funktion. ■