Cvičení 9: MOSFET jako zesilovač

C9.1 MOSFET jako řízený proudový zdroj

Náhradní lineární obvod (NLO) tranzistoru MOSFET Odečet parametrů NLO (Excel)

C9.2 Aplikace tranzistoru MOSFET v zesilovači

Analýza zapojení a význam jednotlivých obvodových prvků Příklad CP9.1: Analýza zesilovače s tranzistorem MOSFET: DC analýza (stanovení polohy pracovního bodu tranzistoru grafickopočetní metodou), odečet parametrů NLO, AC analýza (stanovení vazebních kapacit a zisku zesilovače)

M9.1 Měření zesilovače s tranzistorem MOSFET

S9.1 Simulace zesilovače s tranzistorem MOSFET

Linearizace pro okolí P₀

náhrada lineárním dvojbranem

NLO pro změny veličin

MOSFET
$$I_G = 0$$

$$\Delta i_{_G}=0 \Longrightarrow y_{_{11}},y_{_{12}}=0$$

$$\Delta i_{\text{D}} = y_{\text{21}} \Delta u_{\text{GS}} + y_{\text{22}} \Delta u_{\text{DS}}$$

$$\mathbf{y_{21}} = \left(\frac{\Delta i_{D}}{\Delta u_{GS}}\right)_{P_{0}}^{\Delta u_{DS}=0} = \mathbf{g}_{m}$$

$$y_{22} = \left(\frac{\Delta i_D}{\Delta u_{DS}}\right)_{P_0}^{\Delta u_{GS} = 0} = 1/r_0$$

 I_{D} [mA]

Δi_D-

20

15

Diferenciální strmost g_m

$$\mathbf{g_m} = \mathbf{y_{21}} = \frac{\partial \mathbf{I_D}}{\partial \mathbf{U_{GS}}} \bigg|_{\mathbf{P_0}}$$

rozměr [A/V] resp. [S] typické hodnoty 1mA/V – 1A/V

Určí se z poměru diferencí Δi_D a Δu_{GS}

$$\boldsymbol{g}_{m} = \boldsymbol{y}_{21} = \left(\frac{\Delta \boldsymbol{i}_{D}}{\Delta \boldsymbol{u}_{GS}}\right)_{P_{0}}^{\Delta \boldsymbol{u}_{DS} = 0}$$

$$g_{m} = \frac{13.7mA - 3.5mA}{3.4V - 3.0V}$$

 $g_m = 25.5 \text{ mS}$

25

20

15-

10

 I_{D} [mA]

 Δi_D

Diferenciální výstupní odpor r₀

rozměr [Ω] typické hodnoty $10k\Omega - 100k\Omega$

Lze stanovit z poměru diferencí Δu_{DS} a Δi_D

$$\mathbf{r_0} = 1/\mathbf{y}_{22} = \left(\frac{\Delta \mathbf{u}_{DS}}{\Delta \mathbf{i}_{D}}\right)_{P_0}^{\Delta \mathbf{u}_{GS} = 0}$$

$$r_0 = \frac{14V - 0V}{8mA - 7mA}$$

$$r_0 = 14 k\Omega$$

Excel:list NLO – odečet parametrů NLO

1. Vykreslení charakteristiky - zadat parametry tranzistoru a napětí U_{GS}

Zesilovače třídy A s tranzistorem MOSFET

 $\begin{array}{lll} \textbf{U}_{\text{DD}} & \text{napětí stejnosměrného napájecího zdroje} \\ \textbf{\Delta u}_1 & \text{vstupní harmonický signál} \\ \textbf{C}_1 & \text{vazební kapacita pro navázání vstupního signálu} \\ \textbf{R}_1 \ \textbf{R}_2 & \text{napěťový dělič pro nastavení napětí } \textbf{U}_{\text{GS}} \ (P_0) \\ \textbf{R}_{\text{D}} & \text{zatěžovací odpor tranzistoru} \\ \textbf{R}_{\text{S}} & \text{nastavení zpětné vazby pro stabilizaci } P_0, \, \text{příp. nastavení napěťového zisku} \\ \textbf{C}_{\text{S}} & \text{blokovací kondenzátor pro střídavé přemostění odporu } \textbf{R}_{\text{S}} \\ \textbf{C}_2 & \text{vazební kapacita pro navázání výstupního signálu do zátěže } \textbf{R}_{\text{Z}} \\ \textbf{R}_{\text{Z}} & \text{zátěž zesilovače} \\ \end{array}$

Příklad CP9.1:

Určete napěťové zesílení $A_u = \Delta u_2/\Delta u_1$ zesilovače s tranzistorem MOSFET. Zadáno: $U_{DD} = 15V$, $R_D = 680$, $R_1 = 820k$, $R_2 = 220k$, $R_Z = 1M$, $C_1 = 100n$, $C_2 = 10\mu$, f = 1kHz, tranzistor je zadán charakteristikou.

Příklad CP9.1:

Řešení: A. Stejnosměrná (DC) analýza = nalezení P_0 tranzistoru

- 1. Zjednodušení obvodu
 - odstranění střídavých zdrojů
 - odstranění obvodových prvků, které se při DC
 řešení neuplatní: kapacitory = rozpojené svorky
 induktory = zkrat

Příklad CP9.1:

1. Popsat obvod ve shodě s charakteristikou

Příklad CP9.1:

DC řešení:

$$U_{GS} = U_{DD}(R_2/(R_1+R_2))$$
 (2)+(3)

nezatížený napěťový dělič R₁ R₂

$$U_{GS0}$$
= 15V (220/(220+820)) = 3.17V

- 1. Popsat obvod ve shodě s charakteristikou
- 2. Sestavit obvodové rovnice

$$U_{DD} = R_D I_D + U_{DS}$$
 (1)

$$U_{DD} = R_1 I_1 + R_2 I_1$$
 (2)

$$U_{GS} = R_2 I_1 \tag{3}$$

Příklad CP9.1:

Pracovní bod tranzistoru P_0 je dán průsečíkem grafu rovnice (1) s vrstevnicí výstupní charakteristiky pro U_{GS0} =3.2V.

 $P_0 = [U_{GS0}, U_{DS0}, I_{D0}]$

 $P_0 = [3.2V, (9.75V, 7.5mA]$

- 1. Popsat obvod ve shodě s charakteristikou
- 2. Sestavit obvodové rovnice
- 3. Grafické řešení

vybrat nejbližší vrstevnici charakteristiky pro U_{GS0}

$$I_D = (U_{DD} - U_{DS})/R_D$$

(1)

vynést graf (1) v charakteristice

Příklad CP9.1:

B. Určení parametrů NLO pro daný P₀:

$$P_0 = [U_{GS0}, U_{DS0}, I_{D0}]$$

$$P_0 = [3.2V, (9.75V, 7.5mA]$$

$$g_m = \frac{13.7mA - 3.5mA}{3.4V - 3.0V}^{\Delta}$$

$$g_m = 25.5 \text{ mS}$$

Příklad CP9.1:

B. Určení parametrů NLO pro daný P₀:

$$P_0 = [U_{GS0}, U_{DS0}, I_{D0}]$$

$$P_0 = [3.2V, (9.75V, 7.5mA]$$

$$r_0 = \frac{14V - 0V}{8mA - 7mA}$$

$$r_0 = 14 k\Omega$$

Příklad CP9.1:

Řešení: C. AC analýza = řešení harmonického ustáleného stavu s NLO

1. Zjednodušení obvodu

Příklad CP9.1:

Řešení: C. AC analýza = řešení harmonického ustáleného stavu s NLO

2. Náhrada tranzistoru jeho NLO (pozor na správné připojení!)

Příklad CP9.1:

Řešení: C. AC analýza = řešení harmonického ustáleného stavu s NLO

3. Uvážení uplatnění vazebních kapacit

Pro optimální navázání vstupního signálu musí platit:

$$X_{c_1} = \frac{1}{2\pi f C_1} << R_1 // R_2$$
 tj. reaktance C_1 je zanedbatelná vůči $R_1 // R_2$
 $C_1 >> \frac{1}{2\pi f (R_1 // R_2)} = \frac{1}{2 \cdot 3.14 \cdot 1000 \cdot (220k // 820k)} = 0.92 \text{ nF}$

Vzhledem k tomu, že C₁= 100 nF, podmínka platí a kapacitor C₁ lze nahradit zkratem.

Příklad CP9.1:

Řešení: C. AC analýza = řešení harmonického ustáleného stavu s NLO

3. Uvážení uplatnění vazebních kapacit

Pro optimální navázání výstupního signálu musí platit:

$$X_{c2} = \frac{1}{2\pi f C_2} << (R_z + r_0 // R_D)$$
 tj. reaktance C_2 je zanedbatelná vůči R_z a $R_{výst}$

$$C_2 >> \frac{1}{2\pi f(R_z + r_0 /\!/ R_D)} = \frac{1}{2 \cdot 3.14 \cdot 1000 \cdot (1M + 14k /\!/ 680)} = 0.16 \text{ nF}$$

Vzhledem k tomu, že C_2 = 10 μ F, podmínka platí a kapacitor C_2 lze nahradit zkratem.

Příklad CP9.1:

Řešení: C. AC analýza = řešení harmonického ustáleného stavu s NLO

4. Sestavení obvodových rovnic a jejich vyřešení

$$\Delta u_2 = -g_m \cdot \Delta u_{GS} \cdot (r_0 // R_D // R_Z)$$

$$A_u = \frac{\Delta u_2}{\Delta u_1} = -g_m \cdot (r_0 //R_D //R_Z)$$

$$A_u = -25.5 \text{mS} \cdot (14 \text{k}\Omega //680\Omega //1 \text{M}\Omega) = -16.6$$

Úkol měření:

Změřte dvoukanálovým osciloskopem napěťové zesílení $A_u = \Delta u_2/\Delta u_1$ zesilovače s tranzistorem MOSFET pro uvedené kombinace hodnot prvků R_D , R_S a C_S . Experimentální výsledky porovnejte s výsledky simulací a

teoretickým odhadem.

R_{D}	1 k	1 k	10k	10k
R_{S}	100	100	1k	1k
C _s	100 u	0	100 u	0

Význam jednotlivých obvodových prvků:

Katalogový list tranzistoru BS170F

PARAMETRY@podmínky							
U _{DS}		Drain-Source Voltage	60	V			
I _D	T _{amb} = 25°C	Continuous Drain Current	0.15	Α			
I _{DM}		Pulsed Drain Current	3	Α			
U _{GS}		Gate Source Voltage	±20	V			
P _{tot}	T _{amb} = 25°C	Power Dissipation	330	mW			
BU _{DSS}	I _D =100μΑ, U _{GS} =0V	Drain-Source Breakdown Voltage	60- 90	V			
U _{GS(th)}	I _D =1mA, U _{DS} =U _{GS}	Gate-Source Threshold Voltage	0.8 - 3	V			
I _{GSS}	U _{GS} =15V, U _{DS} =0V	Gate-Body Leakage	10	nA			
R _{DS(on)}	U _{GS} =10V, I _D =200mA	Static Drain-Source On-State Resistance	5	Ω			
g _{fs}	U _{DS} =10V, I _D =200mA	Forward Transconductance	200	mS			
С	U _{DS} =10V, U _{DS} =0V, =1MHz	Input Capacitance	60	pF			
t _{d(on)}	U _{DD} =15V, I _D =600mA	Turn-On Delay Time	10	ns			
t _{d(off)}	U _{DD} =15V, I _D =600mA	Turn-Off Delay Time	10	ns			

Zpracování výsledků

- 1. Zapsat hodnoty zvolených vazebních kapacit
- **2.** Pro $R_D=1k$, $R_S=100$ nastavit P_0 tranzistoru (při simulaci i při měření) tak, aby $U_{DS}\sim U_{DD}/2=7.5$ V. Nastavenou hodnotu zaznamenejte do Tab. 2.
- 3. Zaznamenat naměřené (nasimulované) hodnoty Δu_{1šš} a Δu_{2šš} Tab. 2.

- 1) Nastavení pracovního bodu Uds=7.5V
- 2) Zesilovač SE

B2B34ELPA - cv.9 - MOSFET - invertor, zesilovač

- 1) Nastavení pracovního bodu Uds=7.5V
- 2) Zesilovač SE

Pomocí kurzoru odečtěte hodnotu R1 pro Uds=7.5V

- 1) Nastavení pracovního bodu Uds=7.5V
- 2) <mark>Zesilovač SE</mark>

- 1) Nastavení pracovního bodu Uds=7.5V
- 2) Zesilovač SE

- Nastavení pracovního bodu Uds=7.5V
- 2) Zesilovač SE

Spustte postupně simulace pro Rd=1k a 10k

Pro každou kombinaci odečtěte do Excelu

- vstupní napětí ∆u₁
- výstupní napětí ∆u₂

Výsledky simulací porovnejte s měřením.

Zpracování výsledků

- 1. Zapsat hodnoty zvolených vazebních kapacit
- 2. Pro $R_D=1k$, $R_S=100$ nastavit P_0 tranzistoru (při simulaci i při měření) tak, aby $U_{DS}\sim U_{DD}/2=7.5$ V. Nastavenou hodnotu zaznamenejte do Tab. 2.
- 3. Zaznamenat naměřené (nasimulované) hodnoty Δu_{1šš} a Δu_{2šš} Tab. 2.

