Коллоквиум по Математическому анализу-2, семестр 2

Виноградова Дарья, Залялов Александр, Миронов Алексей, Стрельцов Артём, Т

Содержание

14	Дайте определение гладкого k -мерного подмногообразия в \mathbb{R}^n и сопутствующее определение гладких координат. Приведите пример параметрической кривой, которая параметрически задана дифференцируемыми функциями, но не является гладким 1-мерным многообразием в какой-нибудь точке	3
15	Сформулируйте теорему о неявной функции. Допустим кривая $X\subseteq \mathbb{R}^2$ задана уравнением $f(x,y)=0,$ и известно, что $\mathrm{grad}f(x_0,y_0)=(2;0).$ Какую из координат x,y можно использовать в качестве локальной координаты на X в окрестности точки (x_0,y_0) ?	3
16	Сформулируйте общую теорему о неявном отображении. Допустим, кривая $X\subseteq\mathbb{R}^3$ задана уравнениями $f(x,y,z)=0,\ g(x,y,z)=0,$ и известно, что $\mathrm{grad}f(x_0,y_0,z_0)=(2;0;0),\ \mathrm{grad}f(x_0,y_0,z_0)=(0;1;3).$ Какие из координат x,y,z можно использовать в качестве локальных координат на X в окрестности точки (x_0,y_0,z_0) ?	4
17	Дайте определение касательного вектора к подмножеству $X\subseteq \mathbb{R}^n$ в точке $A\in X$. Как устроено множество всех касательных векторов к гладкому подмногообразию в фиксированной точке?	5
18	Допустим, что все точки множества $X\subset\mathbb{R}^n$ удовлетворяют уравнению $f(x)=0$. Докажите, что в любой точке $x^{(0)}\in X$ любой касательный вектор к X перпендикулярен градиенту $\operatorname{grad} f(x^{(0)})$. Опишите касательное пространство к k -мерному подмногообразию \mathbb{R}^n , заданному системой неявных уравнений (без доказательства).	5
19	Необходимое и достаточное условия локального экстремума для функции нескольких переменных (без доказательства).	5
20	Дайте определение точки условного минимума	6
21	Сформулируйте теорему о множителях Лагранжа. Объясните идею доказательства в случае, если подмножество $X\subset \mathbb{R}^n$ является гладким многообразием.	6
2 8	Дайте определение элемента площади 2 -мерной поверхности в \mathbb{R}^3 и поверхностного интеграла 1 -го рода	7
29	Дайте определение элемента k -мерного объёма k -мерного многообразия в \mathbb{R}^n и интеграла 1-го рода по k -мерному многообразию	8
30	Объясните, что такое грассманово умножение, грассмановы переменные, грассмановы мономы	8
31	Объясните, что такое дифференциальная форма ранга k , и как вычисляется интеграл (2-го рода) от k -формы ω по k -мерному многообразию $\Omega\subseteq\mathbb{R}^n$. Запишите вычислительную формулу для поверхностного интеграла 2-го рода	g
32	Что такое ориентация k -мерного многообразия? Как изменится интеграл 2 -го рода от дифференциальной формы при смене ориентации многообразия (б. д.)?	9
33	Дайте определение согласованных ориентаций многообразия и его границы. Дайте определе-	

10

ние дифференциала от k-формы. Запишите общую формулу Стокса.

34 Выведите из общей формулы Стокса частные случаи: формулу Ньютона-Лейбница, формулу Грина, формулу Гаусса-Остроградского. 10

Реклама

@applied_memes @fcs_channels

14 Дайте определение гладкого k-мерного подмногообразия в \mathbb{R}^n и сопутствующее определение гладких координат. Приведите пример параметрической кривой, которая параметрически задана дифференцируемыми функциями, но не является гладким 1-мерным многообразием в какой-нибудь точке

Определение. Подмножество $M \subseteq \mathbb{R}^n$ называется гладким k-мерным (nod)многообразием в \mathbb{R}^n , если $\forall x \in M$ существует окрестность $U, x \in U$, такая что на $M \cap U$ можно задать гладкие координаты.

Определение. Гладкие координаты — отображение $\Phi: V \to M$, где $V \subseteq \mathbb{R}^k$, задаваемое уравнениями

$$\begin{cases} x_1 = \phi_1(t_1, \dots, t_k) \\ \vdots \\ x_n = \phi_n(t_1, \dots, t_k) \end{cases}$$

где (x_1,\ldots,x_n) — координаты в \mathbb{R}^n , (t_1,\ldots,t_k) — координаты в \mathbb{R}^k , при этом $(t_1,\ldots,t_k)\in V$ тогда и только тогда, когда $(x_1,\ldots,x_n)\in M$. При этом ϕ_1,\ldots,ϕ_n дифференцируемы по каждой переменной и матрица частных производных невырождена.

$$\begin{pmatrix} \frac{\partial \phi_1}{\partial t_1} & \frac{\partial \phi_2}{\partial t_1} & \cdots & \frac{\partial \phi_n}{\partial t_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \phi_1}{\partial t_k} & \frac{\partial \phi_2}{\partial t_k} & \cdots & \frac{\partial \phi_n}{\partial t_k} \end{pmatrix}$$

Ранг этой матрицы должен быть k в любой точке $t \in V$ (то есть все строки должны быть линейно независимы).

Пример:

$$\begin{cases} x = t^2 \\ y = t^3 \end{cases}$$

Обе функции дифференцируемые, но в точке t=0 обе производные обращаются в ноль. Поэтому кривая не гладкая.

15 Сформулируйте теорему о неявной функции. Допустим кривая $X \subseteq \mathbb{R}^2$ задана уравнением f(x,y) = 0, и известно, что $\operatorname{grad} f(x_0,y_0) = (2;0)$. Какую из координат x,y можно использовать в качестве локальной координаты на X в окрестности точки (x_0,y_0) ?

Теорема. Пусть есть функция $F: \mathbb{R}^2 \to \mathbb{R}$, для которой выполнены условия:

- 1. F определена и непрерывна в окрестности (x_0, y_0)
- 2. $F'_{u}(x_{0},y_{0}) \neq 0$ и F'_{u} непрерывна в (x_{0},y_{0})
- 3. $F(x_0, y_0) = 0$.

Тогда найдётся окрестность $U_{\delta,\epsilon}(x_0,y_0)=\left\{(x,y)\left|\begin{array}{c}x\in(x_0-\delta,x_0+\delta)\\y\in(y_0-\epsilon,y_0+\epsilon)\end{array}\right\}$ и непрерывная функция f такая, что в $U_{\delta,\epsilon}(x_0,y_0)$ $F(x,y)=0\Leftrightarrow y=f(x)$ (то есть можно выразить y от x в данной окрестности при выполненных выше условиях).

Если кроме всех условий выше F дифференцируема в $U_{\delta,\epsilon}(x_0,y_0)$, то f дифференцируема в $U_{\delta}(x_0)$ и

$$f'(x_0) = -\frac{F_x'(x_0, y_0)}{F_y'(x_0, y_0)}$$

Задача: проверяем условия теоремы, производная по x не равна нулю, а производная по y равна. Значит в качестве координаты можно взять y, а x — нельзя. Обратите внимание, координата — эта не та переменная, по которой дифференцируем.

16 Сформулируйте общую теорему о неявном отображении. Допустим, кривая $X \subseteq \mathbb{R}^3$ задана уравнениями f(x,y,z) = 0, g(x,y,z) = 0, и известно, что $\operatorname{grad} f(x_0,y_0,z_0) = (2;0;0)$, $\operatorname{grad} f(x_0,y_0,z_0) = (0;1;3)$. Какие из координат x,y,z можно использовать в качестве локальных координат на X в окрестности точки (x_0,y_0,z_0) ?

Обозначения: $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots y_m),\ (x,y)=(x_1,\ldots,x_n,y_1,\ldots y_m).$ Ещё обозначения: если функции g_1,\ldots,g_s зависят от t_1,\ldots,t_r , то

$$\frac{D(g_1, \dots, g_s)}{D(t_1, \dots, t_r)} = \begin{pmatrix} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} & \dots & \frac{\partial g_1}{\partial t_r} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_s}{\partial t_1} & \frac{\partial g_s}{\partial t_2} & \dots & \frac{\partial g_s}{\partial t_r} \end{pmatrix}$$

(по строкам матрицы записаны градиенты (да, в 14 билете градиенты были записаны по столбцам, но так Айз давал на той лекции)).

Разрешим теперь m уравнений относительно m неизвестных.

Теорема. Пусть

- 1. $F_1(x,y), \dots, F_m(x,y)$ непрерывно дифференцируемы в окрестности точки $(x^{(0)},y^{(0)})$ (здесь верхние индексы, чтобы не путать с координатами)
- 2. $F_i(x^{(0)}, y^{(0)}) = 0 \quad \forall j = 1, \dots, m$
- 3. $\det \frac{D(F_1,\dots,F_m)}{D(y_1,\dots,y_m)}|_{(x^{(0)},y^{(0)})} \neq 0$

Тогда существует окрестность $U_{\delta}(x^{(0)}) \times U_{\epsilon}(y^{(0)})$ и набор дифференцируемых функций $f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_m),$ таких что в этой окрестности

$$\{F_j(x,y) = 0\}_{j=1}^m \Leftrightarrow \{y_j = f_j(x)\}_{j=1}^m$$

при этом $f_j(x^{(0)}) = y_j^{(0)}$. Более того,

$$\frac{D(f_1,\ldots,f_m)}{D(x_1,\ldots,x_n)}\Big|_{x^{(0)}} = -\Big(\frac{D(F_1,\ldots,F_m)}{D(y_1,\ldots,y_m)}\Big)^{-1}\Big|_{(x^{(0)},y^{(0)})} \cdot \frac{D(F_1,\ldots,F_m)}{D(x_1,\ldots,x_n)}\Big|_{x^{(0)}}$$

Задача: Запишем матрицу

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

Видим, что линейно независимы первый и второй столбец, и первый и третьей. Значит координатой может быть z или y. Обратите внимание, если матрица производных по x и y невырождена, то подходит как координата z.

17 Дайте определение касательного вектора к подмножеству $X \subseteq \mathbb{R}^n$ в точке $A \in X$. Как устроено множество всех касательных векторов к гладкому подмногообразию в фиксированной точке?

Определение. Пусть $x^{(0)} \in X \subseteq \mathbb{R}^n$. Построим какую-нибудь кривую, которая целиком лежит в X и проходит через $x^{(0)}$. Пусть эта кривая задаётся параметрически $x_i = \psi_i(s), s \in (-\epsilon, \epsilon)$, и $(\psi_1(s), \dots, \psi_n(s)) \in X \ \forall s \in (-\epsilon, \epsilon)$, и $(\psi_1(0), \dots, \psi_n(0)) = x^{(0)}$. Тогда вектор $(\frac{d\psi_1}{ds}(0), \dots, \frac{d\psi_n}{ds}(0))$ называется *касательным* к X в точке $x^{(0)}$ (если такой вектор определён, конечно).

Замечание. Касательных векторов может быть бесконечно много, т. к. бесконечно много таких кривых.

Пусть X теперь — гладкое k-мерное многообразие и $x_i = \phi_i(t_1, \dots, t_k)$ — гладкие координаты в окрестности точки $x^{(0)} = \Phi(t^{(0)})$. Тогда множество касательных векторов в точке $x^{(0)}$ образует k-мерное векторное пространство (обозначается $T_{x^{(0)}}X$), линейно порождённое следующими векторами

$$\left(\frac{\partial \phi_1}{\partial t_1}(t^{(0)}), \dots, \frac{\partial \phi_n}{\partial t_1}(t^{(0)})\right) \\
\vdots \\
\left(\frac{\partial \phi_1}{\partial t_k}(t^{(0)}), \dots, \frac{\partial \phi_n}{\partial t_k}(t^{(0)})\right)$$

Замечание. Эти векторы задают аффинное пространство, чтобы получить геометрическое касательное пространство, нужно сдвинуть $T_{x^{(0)}}X$ в точку $x^{(0)}$.

18 Допустим, что все точки множества $X \subset \mathbb{R}^n$ удовлетворяют уравнению f(x) = 0. Докажите, что в любой точке $x^{(0)} \in X$ любой касательный вектор к X перпендикулярен градиенту $\operatorname{grad} f(x^{(0)})$. Опишите касательное пространство к k-мерному подмногообразию \mathbb{R}^n , заданному системой неявных уравнений (без доказательства).

Имеем $\forall x \in X \ f(x) = 0$. Тогда для любой кривой $\{x_i = \phi_i(s)\} \subset X$ имеем $f(\phi_1(s), \dots, \phi_n(s)) = 0$. продифференцируем это по s, получаем

$$\frac{\partial f}{\partial x_1}\cdot\frac{f\phi_1}{ds}+\ldots+\frac{\partial f}{\partial x_n}\cdot\frac{f\phi_n}{ds}=0$$
 < grad $f(x^{(0)})$, касательный вектор к X в точке $x^{(0)}>=0$

Из того, что скалярное произведении равно нулю, следует, что градиент f перпендикулярен касательному вектору к множеству X.

Касательное пространство — ортогональное дополнение к линейной комбинации градиентов неявных уравнений.

19 Необходимое и достаточное условия локального экстремума для функции нескольких переменных (без доказательства).

Определение. Точка $x^{(0)}$ функции f называется cmauuonapnoŭ, когда $\frac{\partial f}{\partial x_i}(x^{(0)}) = 0 \quad \forall x \in [1;n]$. Необходимое условие:

Теорема. Если $f(x^{(0)})$ - локальный экстремум, то $x^{(0)}$ — стационарная.

Определение. Матрицей Гессе называется симметричная квадратичная форма

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Определение. *Положительно определённой* квадратичной формой называется такая, что все собственные значения положительны.

Определение. *Отрицательно определённой* квадратичной формой называется такая, что все собственные значения отрицательны.

Теорема. Теперь, пусть дана дважды дифференцируемая функция $f(x_1,...,x_n)$, пусть $x^{(0)}$ — стационарная точка. Тогда:

- Если матрица Гессе положительна определена, то $x^{(0)}$ локальный минимум.
- Если матрица Гессе отрицательна определена, то $x^{(0)}$ локальный максимум.
- Если матрица Гессе имеет и положительные и отрицательные собственные значения, но при этом не вырождена, то $x^{(0)}$ не локальный экстремум.
- \bullet В остальных случаях $x^{(0)}$ может как являться локальным экстремумом, так u не являться.

20 Дайте определение точки условного минимума

Определение. Точка $x^{(0)}$ называется *строгим условным минимумом* функции f подмножества $X \subset \mathbb{R}^n$, если $\forall x \in X \quad f(x) > f(x^{(0)})$.

Определение. Точка $x^{(0)}$ называется *условным локальным минимумом* функции f подмножества $X \subset \mathbb{R}^n$, если существует окрестность $U(x^{(0)})$, такая что $\forall x \in U(x^{(0)}) \cap X$ $f(x) > f(x^{(0)})$.

Замечание. Далее будем считать, что такое множество задаётся набором уравнений вида $\phi(x) = 0$.

21 Сформулируйте теорему о множителях Лагранжа. Объясните идею доказательства в случае, если подмножество $X \subset \mathbb{R}^n$ является гладким многообразием.

Пусть у нас есть задача вида

$$\begin{cases} f(x) \to \text{extr} \\ \phi_1(x) = 0 \\ \vdots \\ \phi_m(x) = 0 \\ x \in \mathbb{R}^n \\ m < n \end{cases}$$

Определение. Функцией Лагранжа называется

$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i g_i(x)$$
$$x \in \mathbb{R}^n$$
$$\lambda \in \mathbb{R}^m$$

 λ называют множителями Лагранжа.

Теорема. Пусть $x^{(0)}$ — точка условного локального экстремума в задаче выше, и пусть в окрестности точки $x^{(0)}$ X — гладкое многообразие. Тогда существуют такие $\lambda^{(0)}$, что точка $(x^{(0)},\lambda^{(0)})=(x_1^{(0)},\dots,x_n^{(0)},\lambda_1^{(0)},\dots,\lambda_m^{(0)})\in\mathbb{R}^{m+n}$ является стационарной для $L(x,\lambda)$.

То есть

$$\frac{\partial L}{\partial x_i}(x^{(0)}, \lambda^{(0)}) = 0 \quad \forall i \in [1; n]$$

$$\frac{\partial L}{\partial \lambda_i}(x^{(0)}, \lambda^{(0)}) = 0 \quad \forall i \in [1; m]$$

Второе в силу линейности по λ эквивалентно $g_i(x^{(0)}) = 0$, что означает, что $x^{(0)} \in X$. Посмотрим теперь на первое

$$\frac{\partial L}{\partial x_j} = \frac{\partial}{\partial x_j} (f(x) - \sum_{i=1}^m \lambda_i g_i(x)) = \frac{\partial f}{\partial x_j} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0$$

$$\begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} - \lambda_1 \begin{pmatrix} \frac{\partial g_1}{\partial x_1} \\ \vdots \\ \frac{\partial g_1}{\partial x_n} \end{pmatrix} - \dots - \lambda_m \begin{pmatrix} \frac{\partial g_m}{\partial x_1} \\ \vdots \\ \frac{\partial g_m}{\partial x_n} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Это значит, что

$$\operatorname{grad} f = \sum_{i=1}^{m} \lambda_i \operatorname{grad} g_i$$

Так как, все наши переходы были равносильными, нам осталось доказать, что найдутся такие λ , то есть, что grad f является линейной комбинацией grad g_i в данной точке.

Поскольку X гладкая в точке $x^{(\bar{0})}$, будем предполагать, что X удовлетворяет условию теоремы о неявном отображении, то есть градиенты $\operatorname{grad} g_i$ линейно независимы. Без ограничения общности будем считать $x^{(0)} \in X \subset \mathbb{R}^n$ — точка условного локального минимума. Тогда, если возьмём какую-нибудь кривую $\{x_i = \phi(t)\} \subseteq X$, такую, что $\phi_i(0) = x_i^{(0)}$, то на ней это также будет точка локального минимума, запишем касательный вектор

$$u = (\frac{d\phi_1}{dt}(0), \dots, \frac{d\phi_n}{dt}(0)) \in T_{x^{(0)}}X$$

Функция $\alpha(t)=f(\phi_1(t),\dots,\phi_n(t))$ имеет в t=0 локальный минимум. По теореме Ферма $\frac{d\alpha}{dt}(0)=0.$ А это

$$\frac{\partial f}{\partial x_1}(x^{(0)}) \cdot \frac{d\phi_1}{dt}(0) + \ldots + \frac{\partial f}{\partial x_n}(x^{(0)}) \cdot \frac{d\phi_n}{dt}(0) = \langle \operatorname{grad} f(x^0), u \rangle = 0$$

Таким образом, градиент целевой функции в точки экстремума перпендикулярен любому касательному вектору $u \in T_{x^{(0)}}X$, то есть $\operatorname{grad} f(x^{(0)}) \perp T_{x^{(0)}}X$. А это значит, что этот градиент лежит в ортогональном дополнении

$$\operatorname{grad} f(x^{(0)}) \in (T_{x^{(0)}}X)^{\perp} = \operatorname{grad} g_1(x^{(0)}), \dots, \operatorname{grad} g_m(x^{(0)}) >$$

А раз $\operatorname{grad} f(x^{(0)})$ лежит в линейной оболочке $\operatorname{grad} g_i(x^{(0)})$, то он является их линейной комбинацией.

28 Дайте определение элемента площади 2-мерной поверхности в \mathbb{R}^3 и поверхностного интеграла 1-го рода

Пусть имеется двумерная поверхность $\Omega\subseteq\mathbb{R}^3$ и у неё зафиксирована параметризация $\varphi:M\to\Omega,M\subseteq\mathbb{R}^2$. Будем обозначать координаты в \mathbb{R}^3 как (x,y,z), а в \mathbb{R}^2 — как (u,v). Неформально говоря, элементом площади в точке поверхности называется площадь бесконечно малого параллелограмма со сторонами, направленными параллельно касательным векторам в этой точке. Можно провести аналогию с одномерными интегралами, где мы приближаем функцию с помощью ломаной с маленькими звеньями, и сказать, что мы приближаем поверхность маленькими чешуйками в форме параллелограммов. Запишем теперь формулу для элемента площади в точке (u,v)

$$dS = S(P(\varphi'_u(u, v), \varphi'_v(u, v))) dudv;$$

Здесь φ_u', φ_v' — трёхмерные векторы (так как φ имеет три координаты), именно они являются касательными в данной точке; P — параллелограмм, натянутый на векторы; S — площадь. Из линейной алгебры мы знаем, что

площадь параллелограмма можно считать как корень из определителя матрицы Грама его сторон. Это даёт нам новую формулу для элемента площади.

$$dS = \sqrt{EG - F^2} du dv;$$

Здесь $E = \langle \varphi_u', \varphi_u' \rangle = \|\varphi_u'\|^2, G = \langle \varphi_v', \varphi_v' \rangle = \|\varphi_v'\|^2, F = \langle \varphi_u', \varphi_v' \rangle.$

Теперь мы можем естественным образом определить поверхностный интеграл 1-го рода от функции $f: \mathbb{R}^3 \to \mathbb{R}$ по Ω .

$$\iint\limits_{\Omega} f(x,y,z) dS := \iint\limits_{M} f(\varphi(u,v)) \sqrt{E(u,v)G(u,v) - F^{2}(u,v)} du dv;$$

Здесь мы опираемся на параметризацию при определении интеграла. Можно проверить, что при смене параметризации значение интеграла 1-го рода не изменится.

29 Дайте определение элемента k-мерного объёма k-мерного многообразия в \mathbb{R}^n и интеграла 1-го рода по k-мерному многообразию

Пусть имеется k-мерное многообразие $\Omega \subseteq \mathbb{R}^n$ и у него зафиксирована параметризация $\varphi: M \to \Omega, M \subseteq \mathbb{R}^k$. Будем обозаначать координаты в \mathbb{R}^n как $x = (x_1, \dots, x_n)$, а в \mathbb{R}^k — как $t = (t_1, \dots, t_k)$. Аналогично предыдущему билету, определим элемент k-мерного объёма в точке t.

$$dVol_k = S(P(\varphi'_{t_1}(t), \dots, \varphi'_{t_k}(t)))dt_1 \dots dt_k;$$

Запишем теперь формулу для интеграла 1-го рода от функции $f: \mathbb{R}^n \to \mathbb{R}$ по Ω .

$$\int_{\Omega} f(x) dVol_k := \int_{M} f(\varphi(t)) S(P(\varphi'_{t_1}(t), \dots, \varphi'_{t_k}(t))) dt_1 \dots dt_k;$$

Опять же, можно проверить, что интеграл 1-го рода не зависит от параметризации.

30 Объясните, что такое грассманово умножение, грассмановы переменные, грассмановы мономы

Пусть у нас имеется набор символов a_1, \ldots, a_n — грассмановых переменных и мы умеем брать их линейные комбинации. То есть, например, у нас есть отдельные элементы $a_2-a_1, 0, -5a_3$ и т. п. Теперь мы хотим ввести новую операцию — научиться умножать наши элементы друг на друга. Наше умножение будет обозначаться символом \wedge и называться грассмановым умножением. Умножение будет удовлетворять всем стандартным требованиям, кроме коммутативности, которую мы заменим на более странное свойство 4:

- 1. $(x \wedge y) \wedge z = x \wedge (y \wedge z)$;
- 2. $(x+y) \wedge z = x \wedge z + y \wedge z$;
- 3. $z \wedge (x + y) = z \wedge x + z \wedge y$;
- 4. $a_i \wedge a_j = -a_j \wedge a_i$;

Обратите внимание, пункты 1-3 относятся к любым элементам, а пункт 4 только к исходным a_1, \ldots, a_n . Простые следствия из свойств: $0 \wedge x = 0, a_i \wedge a_i = 0$. Для примера посчитаем «квадрат» элемента $a_1 \wedge a_2 + a_3$.

$$(a_1 \wedge a_2 + a_3) \wedge (a_1 \wedge a_2 + a_3) = a_1 \wedge a_2 \wedge (a_1 \wedge a_2 + a_3) + a_3 \wedge (a_1 \wedge a_2 + a_3) = 0 + a_1 \wedge a_2 \wedge a_3 + a_3 \wedge a_1 \wedge a_2 + 0 = a_1 \wedge a_2 \wedge a_3 - a_1 \wedge a_3 \wedge a_2 = a_1 \wedge a_2 \wedge a_3 + a_1 \wedge a_2 \wedge a_3 = 2a_1 \wedge a_2 \wedge a_3;$$

Определение. Грассмановым мономом степени k называется элемент вида $\alpha a_{i_1} \wedge \ldots \wedge a_{i_k}$, где $i_1, \ldots i_k \in \{0, \ldots, n\}$, α — некоторый коэффициент.

Заметим, что если среди $i_1, \dots i_k$ есть повторения, то моном равен нулю. Переменные в грассмановом мономе можно отсортировать, возможно, поменяв при этом знак. Точнее, при сортировке моном домножится на -1 в степени равной числу инверсий, то есть на знак перестановки.

31 Объясните, что такое дифференциальная форма ранга k, и как вычисляется интеграл (2-го рода) от k-формы ω по k-мерному многообразию $\Omega \subseteq \mathbb{R}^n$. Запишите вычислительную формулу для поверхностного интеграла 2-го рода

Определение. Дифференциальной формой ранга k (или дифференциальной k-формой) на $M \subseteq \mathbb{R}^n$ называется выражение вида $\sum_{\{i_1,...,i_k\}\subseteq\{1,...,n\}} f_{i_1...i_k}(x) \mathrm{d} x_{i_1} \wedge \ldots \wedge \mathrm{d} x_{i_k}$, где $f_{i_1...i_k}$ — некоторые дифференцируемые функции $f_{i_1...i_k}: M \to \mathbb{R}$.

Если вам очень понравился предыдущий билет, можно сказать, что это сумма грассмановых мономов степени k от переменных $\mathrm{d}x_1,\ldots\mathrm{d}x_n$ с дифференцируемыми функциями в качестве коэффициентов. Можно считать, что среди чисел i_1,\ldots,i_k нет повторений, так как мономы с повторениями всё равно зануляются.

Пусть имеются k-мерное многообразие $\Omega \subseteq \mathbb{R}^n$ с параметризацией $\varphi: M \to \Omega, M \subseteq \mathbb{R}^k$ и дифференциальная k-форма $\omega = \sum_{\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}} f_{i_1 \dots i_k}(x) \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$ на Ω . Определим интеграл (2-го рода) ω по Ω .

$$\int_{\Omega} \omega := \int_{M} \sum_{\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}} f_{i_1 \dots i_k}(\varphi(t)) d\varphi_{i_1} \wedge \dots \wedge d\varphi_{i_k};$$

Поясним, что творится в этой формуле. Во-первых, $\varphi_i: M \to \mathbb{R}$ — это функция, соответствующая i-й координате φ . Во-вторых, $\mathrm{d}\varphi_i$ — это привычный дифференциал функции нескольких переменных, но теперь мы говорим, что это линейная комбинация грассмановых переменных $\mathrm{d}t_1,\ldots,\mathrm{d}t_k$. Когда мы грассманово перемножим эти дифференциалы, у нас останется выражение вида $f(t)\mathrm{d}t_1\wedge\ldots\wedge\mathrm{d}t_k$. Это так, ведь в любом слагаемом результата будут перемножаться k переменных, одинаковые занулятся, останутся только слагаемые с различными, возможно, не в том порядке. Но мы можем привести порядок к правильному. После этих преобразований мы считаем интеграл как обычный кратный интеграл.

$$\int_{M} f dt_1 \wedge \ldots \wedge dt_k = \int_{M} f dt_1 \ldots dt_k;$$

Для случая k=2 это всё можно записать в следующую формулу.

$$\iint_{\Omega} P \, \mathrm{d}y \wedge \, \mathrm{d}z + Q \, \mathrm{d}z \wedge \, \mathrm{d}x + R \, \mathrm{d}x \wedge \, \mathrm{d}y = \iint_{M} \begin{vmatrix} P & Q & R \\ \frac{\partial \varphi_1}{\partial u} & \frac{\partial \varphi_2}{\partial u} & \frac{\partial \varphi_3}{\partial u} \\ \frac{\partial \varphi_1}{\partial v} & \frac{\partial \varphi_2}{\partial v} & \frac{\partial \varphi_3}{\partial v} \end{vmatrix} \mathrm{d}u \, \mathrm{d}v;$$

Обратите внимание, при Q стоит $dz \wedge dx$, а не $dx \wedge dz$.

32 Что такое ориентация k-мерного многообразия? Как изменится интеграл 2-го рода от дифференциальной формы при смене ориентации многообразия (б. д.)?

Пусть $\Omega \subseteq \mathbb{R}^n - k$ -мерное связное многообразие, и у него имеются две параметризации $\varphi: M \to \Omega, \psi: N \to \Omega; M, N \subseteq \mathbb{R}^k$. Предположим, что функция замены координат $c = \varphi^{-1} \circ \psi$ биективна и непрерывно дифференцируема.

$$M \stackrel{c}{\longleftarrow} N$$

Посмотрим на якобиан J(c). Если бы где-то он был равен нулю, в окрестности этой точки c была бы необратима. Значит он не равен нулю нигде. Поскольку J(c) непрерывен и Ω связно, из этого следует, что он имеет постоянный знак. Тогда если он положителен, будем говорить, что φ и ψ задают одну и ту же ориентацию, а если отрицателен

¹Часто ограничиваются гладкими функциями.

²Напомним, многообразие называется гладким, если любые две его точки можно соединить проходяще по нему непрерывной кривой.

— то разные. Таким образом мы определяем ориентацию как отношение эквивалентности с двумя классами на параметризациях многообразия.

Ориентация задаёт ориентацию на любом касательном пространстве $T_x\Omega$ как на векторном пространстве. Если мы назвали ориентацию некоторой параметризации положительной, то назовём положительным базис $T_x\Omega$, полученный из её производных.

При смене параметризации на имеющую противоположную ориентацию интеграл 2-го рода меняет знак.

33 Дайте определение согласованных ориентаций многообразия и его границы. Дайте определение дифференциала от k-формы. Запишите общую формулу Стокса.

Будем обозначать границу многообразия Ω как $\partial\Omega$. Заметим, что если у k-мерного многообразия есть граница, то она имеет размерность k-1.

Определение. Будем говорить, что ориентации Ω и $\partial\Omega$ согласованы, если для любой точки $x \in \partial\Omega$ для любого положительного базиса $v_1, \dots v_{k-1}$ в $T_x\partial\Omega$, базис $v_1, \dots, v_{k-1}, \vec{n}$ положителен в $T_x\Omega$, где \vec{n} — это вектор в $T_x\Omega$, перпендикулярный $T_x\partial\Omega$ и смотрящий наружу³ Ω .

Мы привыкли, что дифференциал суммы равен сумме дифференциалов. Поэтому для определения дифференциала от дифференциальной формы достаточно определить дифференциал от грассманова монома.

$$d(f dx_{i_1} \wedge \ldots \wedge dx_{i_k}) := df \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k};$$

3амечание. Дифференциал k-формы является (k+1)-формой.

Для примера посчитаем дифференциал от дифференциала некоторой функции $f: \mathbb{R}^n \to \mathbb{R}$.

$$d(df) = d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} dx_j \wedge dx_i;$$

При этом слагаемые вида $\frac{\partial^2 f}{\partial x_i \partial x_i} dx_i \wedge dx_i$ сразу зануляются, а слагаемые вида $\frac{\partial^2 f}{\partial x_i \partial x_j} dx_j \wedge dx_i$ сократятся с $\frac{\partial^2 f}{\partial x_j \partial x_i} dx_i \wedge dx_j$. Значит d(df) = 0.

Пусть теперь $\Omega \subseteq \mathbb{R}^n - k$ -мерное многообразие с согласованными ориентациями на самом многообразии и на границе, а $\omega - \mu$ дифференциальная (k-1)-форма на Ω . Тогда верна (общая) формула Стокса:

$$\int_{\partial\Omega}\omega=\int_{\Omega}\mathrm{d}\omega;$$

34 Выведите из общей формулы Стокса частные случаи: формулу Ньютона-Лейбница, формулу Грина, формулу Гаусса-Остроградского.

Формула Ньютона-Лейбница, n = k = 1

Пусть наше многообразие это отрезок на прямой [a;b]. Его границей будет множество из двух точек $\{a,b\}$. Заметим, что точка — это нульмерное многообразие и по нему можно интегрировать 0-формы (то есть просто функции). При чём этот интеграл будет с точностью до знака (знак как всегда определяется ориентацией) равен значению функции в точке. Если на отрезке мы берём стандартную ориентацию «слева направо», то для границы это будет означать взятие b с плюсом и a с минусом. Итак, формула Стокса принимает следующий вид:

$$F(b) - F(a) = \int_{a}^{b} dF;$$

Перепишем в более привычную запись.

³Это можно формализовать, например, как отрицательное скалярное произведение с любым вектором, соединяющим x и точку из окрестности x из Ω . Но лектор это никак не формализовал.

$$\int_{a}^{b} F'(x) \mathrm{d}x = F(b) - F(a);$$

Формула Грина, n=k=2

Дифференциальная 1-форма в \mathbb{R}^2 имеет вид P dx + Q dy. Посчитаем её дифференциал

$$d(Pdx + Qdy) = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy = \frac{\partial P}{\partial y}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy =$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dx \wedge dy;$$

Формула Стокса принимает следующий вид:

$$\int_{\partial U} P dx + Q dy = \iint_{U} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy;$$

Здесь условие согласованности ориентации можно сформулировать как «при обходе ∂U по заданной параметризации U всегда находится слева».

Формула Гаусса-Остроградского, n=k=3

Дифференциальная 2-форма в \mathbb{R}^3 имеет вид $P dy \wedge dx + Q dz \wedge dx + R dx \wedge dy$. Посчитаем её дифференциал.

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy) = \frac{\partial P}{\partial x} dx \wedge dy \wedge dz + \frac{\partial Q}{\partial y} dy \wedge dz \wedge dx + \frac{\partial R}{\partial z} dz \wedge dx \wedge dy =$$

$$= \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx \wedge dy \wedge dz;$$

Формула Стокса принимает следующий вид:

$$\iint\limits_{\partial V} P \mathrm{d}y \wedge \mathrm{d}x + Q \mathrm{d}z \wedge \mathrm{d}x + R \mathrm{d}x \wedge \mathrm{d}y = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z;$$