Problema 1 - seminar 9

Enunțul: Să se reprezinte cu porți XOR circuitul de conversie pe 3 biți din cod Gray în cod binar.

Informații necesare:

Poarta XOR:

Tabelul de valorile al porții XOR:

	0	1
0	0	1
1	1	0

Desenul porții XOR:

Codul Gray pe 3 biți:

Cod Gray	Număr
000	0
001	1
011	2
010	3
110	4
111	5
101	6
100	7

Sunt așezați astfel încât au un bit diferență.

Mai multe informații despre codul Gray: https://www.infoarena.ro/coduri-gray **Pașii:**

- 1. Identificarea funcției logice și expresiilor logice ale funcției.
- 2. Completarea tabelului de valori.
- $3. \ \ Reprezentarea$ circuitului logic.

Rezolvare:

Funcțiile logice:

Avem de găsit 3 funcții, fiecare pentru aflarea unei cifre a numărului în cod

binar.

Vom nota cu:

- a prima cifră a numărului în cod Gray
- b a doua cifră a numărului în cod Gray
- \bullet c a treia cifră a numărului în cod Gray

Avem următorul tabel:

Cod Gray	Cod Binar
000	000
001	001
011	010
010	011
110	100
111	101
101	110
100	111

Funcția 1: Putem observa cum prima cifră este aceeași la ambele coduri.

Cod Gray	Cod Binar
000	000
0 01	0 01
0 11	0 10
0 10	0 11
1 10	1 00
1 11	1 01
1 01	1 10
1 00	1 11

Rezultă $\mathbf{f1}(\mathbf{a}) = \mathbf{a}$, unde f1 este funcția pentru determinarea primei cifre a numărului în cod binar.

Funcția 2:

Putem observa că, dacă facem XOR dintre prima cifră (a) și a doua cifră (b) a numărului în cod Gray, obținem a doua cifră a numărului în cod binar.

a	b	$a \oplus b$	Numărul în cod binar
0	0	0	0 0 0
0	0	0	001
0	1	1	010
0	1	1	0 1 1
1	1	0	1 0 0
1	1	0	101
1	0	1	1 1 0
1	0	1	1 1 1

Rezultă $\mathbf{f2(a,b)} = \mathbf{a} \oplus \mathbf{b}$, unde f2 este funcția pentru determinarea cifrei a doua a numărului în cod binar.

Functia 3:

Observăm că obținem a treia cifră a numărului în cod binar, dacă luăm XOR-ul făcut anterior dintre prima cifră (a) și a doua cifră (b) a numărului în cod Gray și îl folosim într-un XOR cu a treia cifră (c) a numărului în cod Gray obținem a treia cifră a numărului în cod binar.

$a\oplus b$	c	$(a\oplus b)\oplus c$	Numărul în cod binar
0	0	0	000
0	1	1	001
1	1	0	01 0
1	0	1	011
0	0	0	10 0
0	1	1	101
1	1	0	110
1	0	1	11 1

Rezultă $f3(a,b,c)=(a \oplus b) \oplus c$, unde f3 este funcția pentru determinarea cifrei a treia a numărului în cod binar.

Tabelul de valori:

Avem cele trei funcții obținute:

- f1(a)=a
- $f2(a,b)=a \oplus b$
- $f3(a,b,c)=(a \oplus b) \oplus c$

a	b	c	f1	f2	f3
0	0	0	0	0	0
0	0	1	0	0	1
0	1	1	0	1	0
0	1	0	0	1	1
1	1	0	1	0	0
1	1	1	1	0	1
1	0	1	1	1	0
1	0	0	1	1	1

Circuitul:

