Mathe LK Rh

Tim D.

MSS 2017-20

Inhaltsverzeichnis

I	11	/1	6		
1	Terme, Gleichungen, Ungleichungen				
	1.1	Pascalsches Dreieck	7		
	1.2	pq-Formel	7		
	1.3	abc-Formel	8		
	1.4	Satz von Vieta	8		
	1.5	Binomischer Lehrsatz	9		
	1.6	Gleichungen und Ungleichungen	9		
		1.6.1 Gleichung lösen durch Substitution	9		
	1.7	Potenzen, Wurzeln und Logarithmen	10		
		1.7.1 Potenz- und Wurzelgesetze	10		
		1.7.2 Logarithmengesetze	11		
2	Funktion - Relation - Zahlenfolge 12				
_	2.1	Zahlenfolgen	12		
	2.2	Monotonie, Beschränktheit	14		
	2.3	Grenzwert einer Zahlenfolge/Funktion	16		
		2.3.1 Grenzwerte	18		
		2.3.2 Grenzwerte von Funktionen: $\lim_{x\to\infty}$; $\lim_{x\to a}$	21		
3	Ana	llysis	24		
	3.1	Abschnittsweise definierte Funktionen - Stetigkeit	24		
	3.2	Stetigkeit einer Funktion an der Stelle x_0	26		
	3.3	Polynomdivision	28		
	3.4	Punktprobe	28		
	3.5	Mittlere Änderungsrate	29		
	3.6	Tangentensteigung, Ableitung	31		
		3.6.1 Vom Differenzenquotienten zum Differentialquotienten	31		
		3.6.2 Ableitung	32		
	3.7	Sekanten-, Tangenten-, Normalengleichung	33		
	3.8	Ableitungsfunktion	36		

	3.9	
		3.9.1 Mehrfache Nullstellen 4
		Hoch-, Tief- und Sattelpunkte
		2. Ableitungsfunktion
		Wendepunkte
		Nullstellen: Polynomdivision
	3.14	Verhalten für $x \to \pm \infty$ 6
		Symmetrie
	3.16	Kurvendiskussion
	3.17	Tangente und Anwendungen 6
		3.17.1 Allgemeine Tangentengleichung - Herleitung 6
	11	/2 73
Ш		,
		Optimieren unter Nebenbedingungen
	3.19	Numerisches Verfahren zur Nullstellenbestimmung
	2 20	3.19.1 Anwendungen des Newton-Verfahrens
	3.20	8.
	2 01	3.20.1 Ortslinie
		Wiederholung
	3.22	
		3.22.1 Vielfachheit der Lösungen von (geniometrischen) Gleichungen
		<u> </u>
		3.22.2 Die allgemeine Sinusfunktion
		Graphen
		3.22.4 Ableitung der Sinusfunktion
	3 23	Neue Funktionen aus alten Funktionen
	3.23	3.23.1 Ableitungsregeln
	3 2/	Exponentialfunktionen - Ableitung
	J.27	$3.24.1$ Basis $\neq e \dots $
	3 25	Wiederholung
	3.23	3.25.1 Sinusfunktionen und Newton-Verfahren
		3.25.2 Produktregel
		3.25.3 Quotientenregel
		3.25.4 Kurvendiskussion
	3 26	Lineare Gleichungssysteme (LGS)
	J.∠U	3.26.1 Gauß-Verfahren
		3.26.2 Matrix-Schreibweise
		3.26.3 Steckbriefaufgaben

4	Integ	gralrechnung	133
	4.1	Untersumme - Obersumme	. 134
		4.1.1 Obersumme/Untersumme $\rightarrow lim \rightarrow Integral \dots$	
	4.2	Das bestimmte Integral	
	4.3	Berechnung von Integralen, Hauptsatz	
	т.5	4.3.1 Verallgemeinerung (Hauptsatz der Differenzial- und Inte-	
		- · · · · · · · · · · · · · · · · · · ·	
	1 1	gralrechnung)	
	4.4	Integrale lösen - Anwendung	. 139
111	11	2/1	142
• • •	4.5	-/-	
	4.6	bestimmtes Integral, Integralfunktion, unbestimmtes Integral	
	4.0	4.6.1 Integralfunktion	
	4.7	· · · · · · · · · · · · · · · · · · ·	
		Rechenregeln für Integrale	
	4.8	Ableitung der Umkehrfunktion	
	4.9	Integral und Flächeninhalt	
		4.9.1 Flächeninhalt, uneigentliche Integrale	
		Integration von Produkten: partielle Integration	
	4.11	Integration durch Substitution	
		4.11.1 Wiederholung	. 163
	4.12	Rotationskörper	
		4.12.1 Bestimmung des Volumens von Rotationskörpern	. 165
5	Ana	lytische Geometrie	169
	5.1	Punkte und Vektoren	. 169
		5.1.1 Darstellung im 3-dimensionalen Koordinatensystem	. 169
	5.2	Ortsvektoren und Verschiebungsvektoren	. 171
		5.2.1 Addition, Subtraktion und Multiplikation mit einer Zahl	. 171
		5.2.2 Vektorzüge und Linearkombinationen	. 176
	5.3	Geraden in \mathbb{R}^3	. 179
		5.3.1 Kollinearität	
		5.3.2 Lage zweier Geraden	. 184
		5.3.3 Parameterpunkte und -geraden	
	5.4	Abstand zweier Punkte, Vektorlänge, Streckenlänge	
	• • •	5.4.1 Einheitsvektor	
	5.5	Produkte zweier Vektoren	
	5.5	5.5.1 Skalarprodukt	
	5.6	Vektorräume	
	5.0	5.6.1 Basis	
	5.7	Lineare Abhängigkeit Unabhängigkeit	. 200 208

	5.9 5.10 5.11	Wiederholung: Geometrie, Geraden Parametergleichung einer Ebene Sonderfälle Kreuzprodukt Spatprodukt	. 213 . 215 . 216
IV	1	2/2	220
		Abstand eines Punktes von einer Geraden	. 221
		Ebenendarstellung	
	0.1.	5.14.1 Normalenform	
		5.14.2 Koordinatenform	
		5.14.3 Ebenen zeichnen	
	5 15	Lage Ebene ↔ Gerade	
	5.15	5.15.1 Schnittwinkel	
	5 16	Wiederholung	
		Lage Ebene ↔ Ebene	
		Abstand Ebene ↔ Punkt	
	5.10	5.18.1 HNF - Koordinatenform	
	5 10	Abstand Gerade ↔ Punkt	
	3.19	5.19.1 Abstandsbestimmung als Optimierungsaufgabe	
	5 20	Abstand windschiefer Geraden	
		Kreise und Kugeln	
	J.Z.1	5.21.1 Kugeln, Geraden, Ebenen, Abstände	
		5.21.1 Rugell, Geradell, Ebellell, Abstallde	
		J.21.2 Nuger ↔ Nuger, Tangentialebelle	. 201
6	Stoc	chastik	263
	6.1	Begriffe	. 263
	6.2	Mehrstufige Zufallsversuche - Baumdiagramme	
		6.2.1 Baumdiagramme - Wahrscheinlichkeiten	
١,	10	. /1	260
V		3/1	269
		•	. 270
	6.4	Abzählverfahren	
	6.5	Bedingte Wahrscheinlichkeit	
		6.5.1 Statistische Unabhängigkeit	
		6.5.2 Der Satz von Bayes	
	6.6	Zufallsgrößen - Erwartungswert, Standardabweichung	
	6.7	Bernoulli-Experiment, Binomialverteilung	
		6.7.1 Anwendungen der Binomialverteilung	. 291

	6.7.2	Erwartungswert μ , Standardabweichung σ	. 293
	6.7.3	σ -Umgebung	. 295
	6.7.4	Sigma-Regeln	. 304
	6.7.5	Signifikanztest (einseitig)	. 304
	6.7.6	Näherung durch die Normalverteilung	. 308
7	Rationale	Funktionen	310

Teil I

11/1

Kapitel 1

Terme, Gleichungen, Ungleichungen

1.1 Pascalsches Dreieck

```
n = 0:
                                   1
n = 1:
                                            1
                                       2
                               1
                                                1
n = 2:
                                   3
                                                     1
n = 3:
                           1
                                            3
n = 4:
                      1
n = 5:
                  1
                           5
                                   10
                                           10
                                                     5
                                                             1
n = 6:
                      6
                              15
                                       20
                                                                1
               1
                                                15
                                                    21
                                                             7
n = 7:
            1
                  7
                          21
                                   35
                                           35
                                                                   1
n = 8:
       1
               8
                      28
                              56
                                       70
                                                56
                                                         28
                                                                8
                                                                       1
```

1.2 pq-Formel

$$x^{2} + px + q = 0$$
$$x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^{2} - q}$$

1.3 abc-Formel

$$ax^{2} + bx + c = 0$$

$$x_{1/2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

1.4 Satz von Vieta

$$0 = x^2 + px + q$$

pq-Formel:

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$

*Diskriminante:

Diskriminante*

> 0 \Rightarrow zwei Lösungen

=0 \Rightarrow eine Lösung

 $< 0 \Rightarrow \text{keine L\"osung}$

$$x_1 + x_2 = -\frac{p}{2} + \sqrt{\cdots} - \frac{p}{2} - \sqrt{\cdots} = -p$$
$$x_1 \cdot x_2 = (-\frac{p}{2} + \sqrt{\cdots})(-\frac{p}{2} - \sqrt{\cdots}) = \frac{p^2}{4} - \frac{p^2}{4} + q = q$$

$$\Rightarrow x_1 + x_2 = -p \quad x_1 \cdot x_2 = q$$

$$0 = x^{2} + px + q = (x - x_{1})(x - x_{2})$$
$$= x^{2} + (-x_{1} - x_{2})x + x_{1} \cdot x_{2}$$

Beispiel

$$\frac{1}{9}x^2 - \frac{2}{3}x - 8 = \frac{1}{9}(x^2 \underbrace{-6}_{x_1 + x_2} x \underbrace{-72}_{x_1 \cdot x_2})$$

$$x_1 = 12; \ x_2 = -6$$

$$0 = \frac{1}{9} \underbrace{(x - 12)(x + 6)}_{\text{Linearfaktoren}}$$

1.5 Binomischer Lehrsatz

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

Beispiele

$$n = 2$$

$$(a+b)^2 = \underbrace{\sum_{k=0}^{2}}_{k} \binom{2}{k} \cdot a^{2-k} \cdot b^k$$

Drei Summanden: k = 0: k = 1: k = 2

$$= \underbrace{\binom{5}{0}} a^2 + \underbrace{\binom{5}{1}} ab + \underbrace{\binom{5}{2}} b^2$$

$$= 1 \cdot a^2 + 2 \cdot ab + 1 \cdot b^2 = a^2 + 2ab + b^2$$

$$n = 5$$

$$(a+b)^2 = \sum_{k=0}^{5} {5 \choose k} \cdot a^{5-k} \cdot b^k$$

$$= {5 \choose 0} a^5 + {5 \choose 1} a^4 b^1 + {5 \choose 2} a^3 b^2 + {5 \choose 3} a^2 b^3 + {5 \choose 4} a^1 b^4 + {5 \choose 5} b^5$$

$$= a^5 + 5a^4 b + 10a^3 b^2 + 10a^2 b^3 + 5ab^4 + b^5$$

Binominialkoeffizienten

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

1.6 Gleichungen und Ungleichungen

1.6.1 Gleichung lösen durch Substitution

Beispiel
$$0 = 2x^4 - 3x^2 - 5$$

Lösungsmenge der Gleichung = Menge der Nullstellen (Schnitte mit der x-Achse) der Funktion mit gleichem Funktionsterm

substituiere
$$x^2=t$$
 $0=2t^2-3t-5$ $t_{1/2}=\frac{3\pm\sqrt{9+40}}{4}=\frac{3\pm7}{4}$ $t_1=2.5,\quad t_2=-1$

resubstituiere

$$t_1 = x^2 = 2.5 \qquad | \sqrt{ } \\ x_1 = \sqrt{2.5}; \; x_2 = -\sqrt{2.5} \\ t_2 = x^2 = -1 \qquad | \sqrt{ } \\ \text{keine L\"osung} \\ L = \{ \sqrt{2.5}; -\sqrt{2.5} \}$$

1.7 Potenzen, Wurzeln und Logarithmen

1.7.1 Potenz- und Wurzelgesetze

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$a^{x} : a^{y} = a^{x-y}$$

$$a^{x} \cdot b^{x} = (ab)^{x}$$

$$a^{x} : b^{x} = (\frac{a}{b})^{x}$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$\sqrt[x]{a^{y}} = a^{\frac{y}{x}}$$

$$\sqrt[x]{a^{y}} = \sqrt[x]{a^{y}}$$

$$\sqrt[x]{a^{y}} = \sqrt[x]{a^{y}}$$

$$\sqrt[x]{a^{y}} = \sqrt[x]{a^{y}}$$

1.7.2 Logarithmengesetze

$$\log_a(xy) = \log_a(x) + \log_a(y)$$
$$\log_a(x^y) = \log_a(x) \cdot y$$
$$a^x = 10^{\log(a) \cdot x}$$
$$\log_a(x) = \frac{\log(x)}{\log(a)}$$

Kapitel 2

Funktion - Relation - Zahlenfolge

Eine Funktion ist eine Zuordnung (Zahlen $x \to Z$ ahlen y), die jeder Zahl x der Definitionsmenge genau eine Zahl y der Wertemenge zuordnet.

Darstellung:

- Funktionsgleichung, z. B. $f(x) = y = \underbrace{2x^2 + 5}_{\text{Funktionsterm}}$
- Graph
- Wertetabelle

Eine Relation ist eine allgemeine Zuordnung von x zu y, z. B. x=3 (senkrechte Gerade), $x^2y=y^2+x^3$

Eine Zahlenfolge ist eine Funktion mit $x \in \mathbb{N}$

2.1 Zahlenfolgen

Definitionsmenge $D = \mathbb{N}_0$ Wertemenge $W = \mathbb{R}$

 $a_n = y = \dots \leftarrow Funktionsterm$

Angabe eines Funktionsterms für alle Zahlen nennt man explizite Darstellung der Zahlenfolge.

$$a_n = (\frac{1}{2})^n$$

 $a_1 = \frac{1}{2}; \quad a_2 = \frac{1}{4}; \quad a_3 = \frac{1}{8}; \quad \dots; \quad a_{100} = 2^{-100}$

Berechnung der Folgezahlen Schritt für Schritt nennt man implizite Darsteluung der Zahlenfolge. (Rekursion)

$$\begin{aligned} a_n &= 2 \cdot a_{n-1} + 3 \cdot a_{n-2} \\ a_1 &= 1; \quad a_2 &= 1 \\ a_3 &= 2 \cdot a_2 + 3 \cdot a_1 = 2 \cdot 1 + 3 \cdot 1 = 5a_4 = 2 \cdot a_3 + 3 \cdot a_2 = 2 \cdot 5 + 3 \cdot 1 = 13 \end{aligned}$$

16/1

а

$$a_n = \frac{2n}{5}$$

$$a_1 = \frac{2}{5}; \ a_2 = \frac{4}{5}; \ a_3 = 1\frac{1}{5}; \ a_4 = 1\frac{2}{5}; \ a_5 = 2;$$

$$a_6 = 2\frac{2}{5}; \ a_7 = 2\frac{4}{5}; \ a_8 = 3\frac{1}{5}; \ a_9 = 3\frac{3}{5}; \ a_{10} = 4$$

d

$$a_{n} = (\frac{1}{2})^{n}$$

$$a_{1} = \frac{1}{2}; \ a_{2} = \frac{1}{4}; \ a_{3} = 1\frac{1}{8}; \ a_{4} = \frac{1}{16}; \ a_{5} = \frac{1}{32};$$

$$a_{6} = \frac{1}{64}; \ a_{7} = \frac{1}{128}; \ a_{8} = \frac{1}{256}; \ a_{9} = \frac{1}{512}; \ a_{10} = \frac{1}{1024}$$

f

$$a_n = \sin(\frac{\pi}{2}n)$$

 $a_1 = 1$; $a_2 = 0$; $a_3 = -1$; $a_4 = 0$; $a_5 = 1$;
 $a_6 = 0$; $a_7 = -1$; $a_8 = 0$; $a_9 = 1$; $a_{10} = 0$

16/2

a

$$a_1 = 1$$
; $a_{n+1} = 2 + a_n$
 $a_1 = 1$; $a_2 = 3$; $a_3 = 5$; $a_4 = 7$; $a_5 = 9$;
 $a_6 = 11$; $a_7 = 13$; $a_8 = 15$; $a_9 = 17$; $a_{10} = 19$
 $a_n = 2n - 1$

b

$$a_1 = 1$$
; $a_{n+1} = 2 \cdot a_n$
 $a_1 = 1$; $a_2 = 3$; $a_3 = 4$; $a_4 = 8$; $a_5 = 16$;
 $a_6 = 32$; $a_7 = 64$; $a_8 = 128$; $a_9 = 512$; $a_{10} = 1024$
 $a_n = 2^{n-1}$

d

$$a_1 = 0; \ a_2 = 1; \ a_{n+2} = a_n + a_{n+1} \quad \text{(Fibonacci)}$$

$$a_1 = 0; \ a_2 = 1; \ a_3 = 1; \ a_4 = 2; \ a_5 = 3;$$

$$a_6 = 5; \ a_7 = 8; \ a_8 = 13; \ a_9 = 21; \ a_{10} = 34$$

$$a_n = \frac{\varphi^n - \psi^n}{\varphi - \psi}$$

2.2 Monotonie, Beschränktheit

16/5

$$a_n = 200000 \in 0.98^n$$

16/7

а

$$V_0 = 1^3 = 1$$

$$V_1 = V_0 + \frac{1}{8}V_0 = 1 + \frac{1}{8} = \frac{9}{8}$$

$$V_2 = V_1 + \frac{1}{8}(\frac{1}{8}V_0) = \frac{9}{8} + \frac{1}{64} = \frac{73}{64}$$

$$V_3 = V_2 + \frac{1}{8}(\frac{1}{8}(\frac{1}{8}V_0)) = \frac{73}{64} + \frac{1}{512} = \frac{585}{512}$$

b

$$V_n = \sum_{k=0}^n 8^{-k}$$

Streng monoton fallende Zahlenfolge

- z. B. a_n von 16/5 ist eine Folge mit der Eigenschaft $a_n < a_{n-1}$ Streng monoton steigende Zahlenfolge
- z. B. V_n von 16/7 ist eine Folge mit der Eigenschaft $a_n > a_{n-1}$ Ohne "streng"entsprechend \leq bzw. \geq

18/1

а

$$a_n = 1 + \frac{1}{n}$$

 $a_1 = 2; \ a_2 = 1\frac{1}{2}; \ a_3 = 1\frac{1}{3}; \ a_4 = 1\frac{1}{4}; \ a_5 = 1\frac{1}{5}$

streng monoton fallend nach oben beschränkt (2); nach unten beschränkt (1)

b

$$a_n = (\frac{3}{4})^n$$

 $a_1 = \frac{3}{4}; \ a_2 = \frac{9}{16}; \ a_3 = \frac{27}{64}; \ a_4 = \frac{81}{256}; \ a_5 = \frac{243}{1024}$

streng monoton fallend

nach oben beschränkt $(\frac{3}{4})$; nach unten beschränkt (0)

С

$$a_n = (-1)^n$$

 $a_1 = -1$; $a_2 = 1$; $a_3 = -1$; $a_4 = 1$; $a_5 = -1$

nicht monoton

nach oben beschränkt (1); nach unten beschränkt (-1)

d

$$a_n = 1 + \frac{(-1)^n}{n}$$

 $a_1 = 0; \ a_2 = \frac{3}{2}; \ a_3 = \frac{2}{3}; \ a_4 = \frac{5}{4}; \ a_5 = \frac{4}{5}$

nicht monoton

nach oben beschränkt $(\frac{3}{2})$; nach unten beschränkt (0)

е

$$a_n = \frac{8n}{n^2 + 1}$$

 $a_1 = 4; \ a_2 = \frac{16}{5}; \ a_3 = \frac{12}{5}; \ a_4 = \frac{32}{17}; \ a_5 = \frac{20}{13}$

streng monoton fallend nach oben beschränkt (4); nach unten beschränkt (0)

2.3 Grenzwert einer Zahlenfolge/Funktion

Der Grenzwert g ist eine reelle Zahl, der sich die Folgenwerte (Funktionswerte) annähern, sodass die Folgenwerte (Funktionswerte) vom Grenzwert praktisch nicht mehr unterschieden werden können. z. B.

$$a_n = n^{-1}$$

 $a_n = \frac{1}{1}; \frac{1}{2}; \frac{1}{3}; \frac{1}{4}; \frac{1}{5}; \dots; \frac{1}{n}$

 a_n hat den Grenzwert g=0, da a_n auch streng monoton fallend ist, ist s=0 die größte untere Schranke (=,,Infimum").

Vorgehen

Ich gebe eine Genauigkeitsschranke, z. B. $\epsilon=10^{-3}$ vor (kleine positive Zahl). Zu ϵ finde ich ein $n_{\epsilon}=1001$. Alle Folgenwerte mit $n\geqslant n_{\epsilon}=1001$ (also $a_{1001},\ a_{1002},\ \ldots$) liegen näher beim Grenzwert g=0 als $\epsilon=10^{-3}$ angibt. Finde ich zu jeder möglichen Genauigkeitsschranke ϵ solch ein n_{ϵ} , so ist g der Grenzwert. Ist diese Bedingung erfüllt, so notiert man

$$\lim_{n \to \infty} a_n = g \qquad \text{hier: } \lim_{n \to \infty} n^{-1} = 0$$

22/2 (Abweichung
$$< \epsilon = 0.1$$
)

а

$$a_n = \frac{1+n}{n}$$
$$\left|\frac{1+n}{n} - 1\right| < 0.1$$
$$n_{\epsilon} > 10$$

b

$$a_n = \frac{n^2 - 1}{n^2}$$

$$|\frac{n^2 - 1}{n^2} - 1| < 0.1$$

$$\epsilon > \sqrt{10} \approx 3.162 \quad \text{(ab 4)}$$

С

$$a_n = 1 - \frac{100}{n}$$

$$|1 - \frac{100}{n} - 1| < 0.1$$

$$n_{\epsilon} > 1000$$

d

$$a_n = \frac{n-1}{n+2}$$

$$|\frac{n-1}{n+2} - 1| < 0.1$$
 $n_{\epsilon} > 28$

е

$$\begin{split} a_n &= \frac{2n^2-3}{3n^2} \\ |\frac{2n^2-3}{3n^2}-1| &< 0.1 \\ &\rightarrow \text{keine L\"osung} \end{split}$$

zu e

$$\begin{split} &|\frac{2n^2-3}{3n^2}-1|<0.1\\ &1-\frac{2n^2-3}{3n^2}<0.1 \qquad |-0.1+\frac{2n^2-3}{3n^2}\\ &0.9<\frac{2n^2-3}{3n^2} \quad |\cdot 3n^2\\ &2.7n^2<2n^2-3 \quad |-2n^2\\ &0.7n^2<-3 \quad |\div 0.7\\ &n^2<-\frac{30}{7} \quad |\surd\\ &n<\sqrt{-\frac{30}{7}} \quad \text{und} \quad n<-\sqrt{-\frac{30}{7}}\\ &\Rightarrow \text{nicht lösbar} \end{split}$$

2.3.1 Grenzwerte

Eine Zahlenfolge mit Grenzwert ist eine konvergente Folge. Die Folge konvergiert gegen den Grenzwert. Eine Zahlenfolge ohne Grenzwert ist eine divergente Folge. Eine Nullfolge hat den Grenzwert q=0.

Eine Nullfolge hat den Grenzwert
$$g=0$$
. $a_n=\frac{n}{n+1}\quad g=1\quad \rightarrow\quad a_n^*=\frac{n}{n+1}-1\quad g=0$ (Nullfolge)

22/4

а

$$\left| \left(\frac{3n-2}{n+2} \right) - 3 \right| < \epsilon$$

$$\left| \frac{-8}{n+2} \right| < \epsilon \qquad \left| x^{-1} \right|$$

$$\frac{n+2}{8} > \frac{1}{\epsilon} \qquad \left| \cdot 8 \right|$$

$$n+2 > \frac{8}{\epsilon} \qquad \left| -2 \right|$$

$$n > \frac{8}{\epsilon} - 2$$

b

$$\left| \left(\frac{n^2 + n}{5n^2} \right) - 0.2 \right| < \epsilon$$

$$\frac{n}{5n^2} < \epsilon \qquad | \cdot 5$$

$$n^{-1} < 5\epsilon \qquad | x^{-1}$$

$$n > \frac{1}{5\epsilon}$$

С

$$|(\frac{2^{n+1}}{2^n+1}) - 2| < \epsilon$$

$$|\frac{-2}{2^n+1}| < \epsilon \qquad | \div 2; \ x^{-1}$$

$$2^n + 1 > \frac{2}{\epsilon} \qquad | -1$$

$$2^n > \frac{2}{\epsilon} - 1 \qquad |\log; \div \log(2)$$

$$n > \frac{\log(\frac{2}{\epsilon} - 1)}{\log(2)}$$

d

$$\left| \left(\frac{3 \cdot 2^n + 2}{2^{n+1}} \right) - \frac{3}{2} \right| < \epsilon$$

$$\left| \frac{3 \cdot 2^n + 2 - 3 \cdot 2^n}{2^{n+1}} \right| < \epsilon$$

$$\frac{2}{2^{[n+1]}} < \epsilon$$

$$\frac{1}{2^n} < \epsilon \qquad |x^{-1}|$$

$$2^n > \frac{1}{\epsilon} \qquad |\log \div \log(2)$$

$$n > \frac{-\log(\epsilon)}{\log(2)}$$

24/2

a

$$a_n = \frac{1+2n}{1+n} = \frac{\frac{1}{n}+2}{\frac{1}{n}+n}$$

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 2}{\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} n} = \frac{0+2}{0+1} = 2$$

b

$$a_n = \frac{7n^3 + 1}{n^3 - 10} = \frac{7 + \frac{1}{n^3}}{1 - \frac{10}{n^3}}$$

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} 7 + \lim_{n \to \infty} \frac{1}{n^3}}{\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{10}{n^3}} = \frac{7 + 0}{1 - 0} = 7$$

f

$$a_n = \frac{\sqrt{n+1}}{\sqrt{n+1}+2} = \left(\frac{\sqrt{n+1}}{\sqrt{n+1}}\right) \div \left(\frac{\sqrt{n+1}}{\sqrt{n+1}} + \frac{2}{\sqrt{n+1}}\right) = \frac{1}{1 + \frac{2}{\sqrt{n+1}}}$$

$$\lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{2}{\sqrt{n+1}}} = \frac{1}{1+0} = 1$$

g

$$a_n = \frac{(5-n)^4}{(5+n)^4} = \left(\frac{\frac{5}{n}-1}{\frac{5}{n}+1}\right)^4$$

$$\lim_{n \to \infty} a_n = \left(\lim_{n \to \infty} \left(\frac{\frac{5}{n}-1}{\frac{5}{n}+1}\right)\right)^4 = \left(\frac{\lim_{n \to \infty} \frac{5}{n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{5}{n} + \lim_{n \to \infty} 1}\right)^4 = \left(\frac{0-1}{0+1}\right)^4 = 1$$

24/3

а

$$\lim_{n \to \infty} \left(\frac{2^n - 1}{2^n}\right) = \lim_{n \to \infty} \left(\frac{1 - \frac{1}{2^n}}{1}\right) = \frac{\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n}}{\lim_{n \to \infty} 1} = \frac{1 - 0}{1} = 1$$

b

$$\lim_{n \to \infty} \left(\frac{2^n - 1}{2^{n-1}}\right) = \lim_{n \to \infty} \left(\frac{1 - \frac{1}{2^n}}{0.5}\right) = \frac{\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n}}{\lim_{n \to \infty} 0.5} = \frac{1 - 0}{0.5} = 2$$

С

$$\lim_{n \to \infty} \left(\frac{2^n}{1 + 4^n} \right) = \lim_{n \to \infty} \left(\frac{\frac{1}{2^n}}{1 + \frac{1}{4^n}} \right) = \frac{\lim_{n \to \infty} \frac{1}{2^n}}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{4^n}} = \frac{0}{1 + 0} = 0$$

d

$$\lim_{n \to \infty} \left(\frac{2^n + 3^{n+1}}{2^n + 3^n} \right) = \lim_{n \to \infty} \left(\frac{\frac{1}{(\frac{3}{2})^n} - 1}{\frac{1}{(\frac{3}{2})^n} + 1} \right) = \frac{\lim_{n \to \infty} \frac{1}{(\frac{3}{2})^n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{1}{(\frac{3}{2})^n} + \lim_{n \to \infty} 1} = \frac{0 - 1}{0 + 1} = -1$$

е

$$\lim_{n \to \infty} \left(\frac{2^n + 3^{n+1}}{2 \cdot 3^n} \right) = \lim_{n \to \infty} \left(\frac{\left(\frac{2}{3}\right)^n + 3}{2} \right) = \frac{\lim_{n \to \infty} \left(\frac{2}{3}\right)^n + \lim_{n \to \infty} 3}{\lim_{n \to \infty} 2} = \frac{0 + 3}{2} = \frac{3}{2}$$

2.3.2 Grenzwerte von Funktionen: $\lim_{x\to\infty}$; $\lim_{x\to a}$

$$f(x) = y = \frac{3x^2 - 3}{(x+1)(x-4)}$$
 $D = \mathbb{R} \setminus \{\underbrace{-1; 4}\}$

Nullstellen des Nenners

 $x = -1 \rightarrow \text{Nullstelle des Z\"{a}hlers und Nenners}$

 $x = 4 \rightarrow \text{Nullstelle des Nenners}$

$$f(x) = y = \frac{3(x^2 - 1)}{(x + 1)(x - 4)} = \frac{3(x + 1)(x - 1)}{(x + 1)(x - 4)} = \frac{3x - 3}{x - 4}$$

$$\lim_{x \to \infty} \frac{3x - 3}{x - 4} = \lim_{x \to \infty} \frac{\frac{3x}{x} - \frac{3}{x}}{\frac{x}{x} - \frac{4}{x}} = \lim_{x \to \infty} \frac{3 - \frac{3}{x}}{1 - \frac{4}{x}} = 3$$

$$\lim_{x \to -\infty} \dots = \lim_{x \to -\infty} \dots = \lim_{x \to -\infty} \dots = 3$$

$$\Rightarrow \lim_{x \to +\infty} f(x) = 3$$

$$\lim_{x \to \infty} \neq \lim_{x \to -\infty}$$

Beispiel
$$f(x) = 2^x$$

$$\lim_{x \to \infty} 2^x = \infty; \ \lim_{x \to -\infty} 2^x = 0$$

$$\lim_{x \to -1} \frac{3x - 3}{x - 4} = \frac{3(-1) - 3}{-1 - 4} = \frac{-6}{-5} = 1.2$$

$$\lim_{x \to 4} \frac{3x - 3}{x - 4} = ?$$

$$\lim_{x \nearrow 4} f(x) = -\infty \qquad \lim_{x \searrow 4} f(x) = +\infty$$

 $x=4 o ext{Unendlichkeitsstelle}$, ein Pol mit Vorzeichenwechsel Der Punkt (-1|1.2) gehört nicht zum Graphen. Es ergibt sich ein Loch im Graphen.

28/6

а

$$f(x) = \frac{x}{x}$$

$$\lim_{x \to 0} f(x) = 1$$

$$x \mid -0.1 \quad -0.01 \quad 0.01 \quad 0.1$$

$$y \mid 1 \quad 1 \quad 1 \quad 1$$

b

$$\begin{split} f(x) &= \frac{x^3}{x} \\ \lim_{x \to 0} f(x) &= 0 \\ \times & \begin{vmatrix} -0.1 & -0.01 & 0.01 & 0.1 \\ y & -0.01 & -0.0001 & 0.0001 & 0.01 \end{vmatrix} \end{split}$$

С

$$\begin{split} f(x) &= \frac{x}{x^3} \\ \lim_{x \to 0} f(x) &= \infty \\ \mathbf{x} & \begin{vmatrix} -0.1 & -0.01 & 0.01 & 0.1 \\ \mathbf{y} & 100 & 10000 & 10000 & 100 \end{vmatrix} \end{split}$$

d

$$f(x) = \frac{2^x}{3^x}$$

$$\lim_{x \to 0} f(x) = \frac{2^0}{3^0} = 1$$

е

$$f(x) = \frac{2^x - 1}{3^x}$$
$$\lim_{x \to 0} f(x) = \frac{2^0 - 1}{3^0} = 0$$

Kapitel 3

Analysis

3.1 Abschnittsweise definierte Funktionen - Stetigkeit

$$D = \mathbb{R}$$

$$f(x) = \begin{cases} 2x & \text{für } x < -5 \\ x^2 + 10 & \text{für } -5 \leqslant x < 1 \\ -x & \text{für } x \geqslant 1 \end{cases}$$

Abschnittsweise definierte Funktionen \to Für verschiedene Abschnitte der Zahlengeraden von $\mathbb R$ sollen unterschiedliche Funktionsterme gelten.

Einschub: Ganzrationale Funktionen

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
z. B. $f(x) = 3x^4 + 5x - 7$
 $n = 4$ (Grad $n \in \mathbb{N}$)
 $a_4 = 4$
 $a_3 = a_2 = 0$
 $a_1 = 5$
 $a_0 = -7$

Grad der ganzrationalen Funktion ist die höchste Potenz, bspw. 4 Funktionsterm = Polynom Die Stetigkeit einer Funktion beschreibt die Tatsache, ob man den Graph der Funktion ohne abzusetzen zeichnen kann.

f(x) ist überall stetig

Allgemein gilt:

Ganzrationale Funktionen sind überall, d. h. $-\infty < x < \infty$, stetig.

Untersuche $f(x) = \begin{cases} \cdots \\ \cdots \\ \cdots \end{cases}$ auf Stetigkeit an den Übergangsstellen:

$$x_1 = -5; \ x_2 = 1$$

$$\lim_{x \nearrow -5} f(x) = -10$$

$$\lim_{x \searrow -5} f(x) = -35$$

 \Rightarrow unterschiedliche Grenzwerte bedeuten f(x) ist bei x=-5 unstetig

$$\lim_{x \nearrow 1} f(x) = 11$$

$$\lim_{x \searrow 1} f(x) = -1$$

 \Rightarrow unstetig bei x = 11

28/9

а

$$f(x) = \begin{cases} x^2 & \text{für } x \leqslant 3\\ 12 - x & \text{für } x > 3 \end{cases}$$

$$\lim_{x \nearrow 3} f(x) = 3^2 = 9$$

$$\lim_{x \searrow 3} f(x) = 12 - 3 = 9$$

$$\Rightarrow \text{stetig}$$

b

$$f(x) = \begin{cases} x^2 + 4x & \text{für } x \leqslant -1 \\ 2^x - 3 & \text{für } x > -1 \end{cases}$$

$$\lim_{x \nearrow -1} f(x) = (-1)^2 + 4(-1) = -3$$

$$\lim_{x \searrow -1} f(x) = 2^{-1} - 3 = -2.5$$

$$\Rightarrow \text{unstetig}$$

28/11

•

$$f(x) = \sin(\frac{1}{x}) \qquad D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0} f(x) = \sin(\infty) = -1 \text{ bis } +1 \quad \Rightarrow \text{ kein Grenzwert}$$

$$\lim_{x \to \infty} f(x) = \sin(0) = 0$$

3.2 Stetigkeit einer Funktion an der Stelle x_0

Eine Funktion ist stetig bei $x = x_0$, wenn Folgendes gilt:

$$\lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} f(x) = f(x_0)$$

29/4

a
$$a_n = \frac{n^2 - 7n - 1}{10n^2 - 7n}$$
 $\lim_{n \to \infty} a_n = \frac{1}{10}$

b
$$a_n = \frac{n^3 - 3n^2 + 3n - 1}{5n^3 - 8n + 5}$$
 $\lim_{n \to \infty} a_n = \frac{1}{5}$

$$f \ a_n = \frac{2^{n+1}}{2^n+1} \quad \lim_{n \to \infty} a_n = 2$$

$$g a_n = \frac{3^n + 1}{5^n} \quad \lim_{n \to \infty} a_n = 0$$

29/5

$$\lim_{n\to\infty} \left(\sqrt{n+100} - \sqrt{n}\right) = 0$$

$$\mathsf{b} \lim_{n \to \infty} (\sqrt{n} \cdot (\sqrt{n+10} - \sqrt{n})) = 5$$

$$\lim_{n\to\infty} (\sqrt{4n^2 + 3n} - 2n) = \frac{3}{4}$$

30/10

a
$$\lim_{x \to 2} \frac{(x-2)^2}{x-2} = \lim_{x \to 2} (x-2) = 0$$

b
$$\lim_{x\to 2} \frac{x^2-4}{x^4-16} = \lim_{x\to 2} \frac{1}{x^2+4} = \frac{1}{8}$$

30/11

а

$$f(x) = \frac{x^2 - 2x + 1}{x - 1} = \frac{(x - 1)^2}{x - 1} = x - 1 \qquad D = \mathbb{R} \setminus \{1\}$$

$$\lim_{x \to 1} f(x) = x - 1 = 0$$

С

$$f(x) = \frac{x^4 - 1}{x^2 - 1} = x^1 + 1 \qquad D = \mathbb{R} \setminus \{1; -1\}$$

$$\lim_{x \to 1} f(x) = 1^2 + 1 = 2$$

$$\lim_{x \to -1} f(x) = (-1)^2 + 1 = 2$$

29/6
$$a_n = 0.95^n$$

a
$$a_5 = 0.95^5 = 0.77$$

b
$$0.5 = 0.95^n \Rightarrow n = \frac{\log(0.5)}{\log(0.95)} \approx 13.5$$
 $n = 13$

c

$$s(n) = 1 + \sum_{k=1}^{n-1} 2a_k$$

$$s(5) = 1 + 2a_1 + 2a_2 + 2a_3 + 2a_4$$

$$= 1 + 1.9 + 1.805 + 1.71475 + 1.6290125 = 8.0487625$$

3.3 Polynomdivision

30/11

d

$$f(x) = \frac{x^6 - 1}{x^2 - 1}$$

$$(x^6 - 1) \div (x^2 - 1)$$

$$(x^6 - 1) \div (x^2 - 1) = x^4 + x^2 + 1$$

$$\frac{-x^6 + x^4}{x^4}$$

$$\frac{-x^4 + x^2}{x^2 - 1}$$

$$\frac{-x^2 + 1}{0}$$

$$\Rightarrow x^6 - 1 = (x^2 - 1)(x^4 + x^2 + 1)$$

$$f(x) = x^4 + x^2 + 1$$

$$\lim_{x \to 1} f(x) = 1^4 + 1^2 + 1 = 3$$

3.4 Punktprobe

(erfüllt ein Punkt eine Gleichung)

z. B. P(2|3)

$$f(x) = y = 2x^2 - 5x + 3$$

Setze für x die Zahl 2 ein

$$f(x) = 8 - 10 + 3 = 1 \neq 3$$

 $\Rightarrow P$ gehört nicht zum Graphen von f

38/4

a Höhenmeter: 250m Streckenkilometer: 10km

b Gesamtanstieg: 750m

c Bei Streckenkilometer 25: Achsensymmetrie zur y-Achse

39/7

- a 1.8m
- b $D = \{x \in \mathbb{R} | 0 \le x \le 7.42 \}$
- f(2.5) = 2.425

39/11

a
$$f(x) = 1.9879 \cdot 10^{-4} + 86$$

b
$$f(-995.5) = f(995.5) = 283$$

 $f(0) = 86$

c
$$D = \{x \in \mathbb{R} | -995.5 \leqslant x \leqslant 995.5 \}$$

3.5 Mittlere Änderungsrate

Eine **Sekante** s ist eine Gerade, die eine Kurve in 2 (oder mehr) Punkten schneidet.

Eine **Sehne** s*, Teil einer Sekante, ist eine Strecke, die zwei Kurvenpunkte verbindet.

Eine Tangente t ist eine Gerade, die die Kurve in einem Punkt berührt.

Eine **Passante p** ist eine Gerade, die die Kurve nicht schneidet.

$$P(1|3) \qquad Q(10|8)$$

$$m = \frac{\Delta y}{\Delta x} = \frac{5}{9} \text{ (Steigung der Sekante durch } P \text{ und } Q\text{)}$$

Die Sekantensteigung m heißt mittlere Änderungsrate der Funktion f zwischen den Punkten P und Q.

$$\begin{split} &P(1|3)\;f(1)=3\\ &Q(10|8)\;f(10)=8\\ &x_1=1;\;x_2=10\quad \Delta x=x_2-x_1=h=9\\ &\frac{\Delta y}{\Delta x}=\underbrace{\frac{y_2-y_1}{x_2-x_1}}_{\text{Differenzenquotient}}=\frac{f(x_1+h)-f(x_1)}{h} \end{split}$$

Beispielrechnung $f(x) = 2x^2 - 3x + 5$

$$x_1 = 2; \ x_2 = 10$$

 $h = x_2 - x_1 = 8$
 $m = \frac{f(10) - f(2)}{8} = \frac{175 - 7}{8} = 21$

a
$$m = \frac{h(9) - h(1)}{8} = \frac{7}{8}$$

b
$$m = \frac{h(3) - h(1)}{2} = 0$$

d
$$m = \frac{h(6)-h(4)}{2} = 1$$

c
$$m = \frac{h(9) - h(7)}{2} = \frac{3}{2}$$

41/1
$$f(x) = \frac{1}{x} + 2$$

a
$$m = \frac{f(1) - f(0.1)}{0.9} = -10$$

b
$$m = \frac{f(12) - f(2)}{10} = -\frac{1}{24}$$

c
$$m = \frac{f(0.02) - f(0.01)}{0.01} = -5000$$

d
$$m = \frac{f(1000) - f(100)}{900} = -100000^{-1}$$

3.6 Tangentensteigung, Ableitung

- H Hochpunkt (waagerechte Tangente)
- W Wendepunkt (maximale/minimale Steigung)
- T Tiefpunkt (waagerechte Tangente)
- **U** Unstetigkeit (keine Tangentensteigung)
- K Knickstelle (keine Tangentensteigung)
- S Sattelpunkt (Wendepunkt mit waagerechter Tangente)

3.6.1 Vom Differenzenquotienten zum Differentialquotienten

$$f(x) = y = x^2 \quad x_0 = 2$$

$$m = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{(2 + h)^2 - 2^2}{h} = 4 + h \quad \text{(Sekante)}$$

$$m = \lim_{h \to 0} (4 + h) = 4 \quad \text{(Tangente)}$$

3.6.2 Ableitung

$$f(x) = 2x^{3} x_{0} = 4$$

$$m_{\text{Sekante}} = \frac{f(x_{0} + h) - f(x_{0})}{h}$$

$$= \frac{2(4 + h)^{3} - 2 \cdot 4^{3}}{h}$$

$$= \frac{128 + 96h + 24h^{2} + 2h^{3} - 128}{h}$$

$$= 96 + 24h + 2h^{2}$$

Sekante durch
$$P(4|f(4))$$
, $Q(6|f(6)) \Rightarrow h=2$ $m=96+24\cdot 2+2\cdot 2^2=152$ Sekante durch $P(4|f(4))$, $Q(-1|f(-1)) \Rightarrow h=-5$ $m=96+24\cdot (-5)+2\cdot (-5)^2=26$

Die Tangentensteigung ist der Grenzwert der Sekantensteigung für $h \to 0$.

$$m_{\text{Tangente}} = \lim_{h \to 0} m_{\text{Sekante}} = \lim_{h \to 0} 96 + 24h + 2h^2 = 96$$

Die Ableitung der Funktion $f(x) = 2x^3$ bei x = 4 ist 96.

$$f'(4) = 96$$
 (Tangentensteigung)

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

46/6

a 10.15 Uhr:
$$m=\frac{500m}{15min}=33.\overline{3}\frac{m}{min}$$

10.45 Uhr:
$$m = \frac{-500m}{15min} = -33.\overline{3} \frac{m}{min}$$

11.15 Uhr:
$$m=\frac{-1000m}{15min}=-66.\overline{6}\frac{m}{min}$$

b am größten: ~ 10.05 Uhr am kleinsten: ~ 11.20 Uhr

48/3

a
$$x_0 = 4$$

$$\lim_{h \to 0} \frac{(4+h)^2 - 4^2}{h} = 8$$

b
$$x_0 = 3$$

$$\lim_{h \to 0} \frac{-2(3+h)^2 - (-2) \cdot 3^2}{h} = -12$$

e
$$x_0 = -1$$

$$\lim_{h \to 0} \frac{(-1+h)^{-1} - (-1)^{-1}}{h} = -1$$

h
$$x_0 = 3$$

$$\lim_{h \to 0} \frac{(-3+h+2)-(-3+2)}{h} = -1$$

$$i x_0 = 7
\lim_{h \to 0} \frac{4-4}{h} = 0$$

3.7 Sekanten-, Tangenten-, Normalengleichung

$$f(x) = 5x^3$$
 $P_1(2|f(2))$ $P_2(4|f(4))$

Sekantengleichung

$$y = m \cdot x + b$$

$$m_s = \frac{\Delta y}{\Delta x} = \frac{f(4) - f(2)}{4 - 2} = \frac{320 - 40}{2} = 140$$

$$b = -m \cdot x + y = -140 \cdot 2 + 40 = -240$$

$$s(x) = 140x - 240$$

Tangentengleichung im Punkt $P_1(2|40)$

$$y = m \cdot x + b$$

$$m_t = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{5(2+h)^3 - 40}{h} = 60$$

$$b = -m \cdot x + y = -60 \cdot 2 + 40 = -80$$

$$t(x) = 60x - 80$$

Normalengleichung im Punkt $P_1(2|40)$

$$y = m \cdot x + b$$

$$m_n = -\frac{\Delta x}{\Delta y} = -(\frac{\Delta y}{\Delta x})^{-1} = \frac{-1}{m_t}$$

$$m_n \cdot m_t = -1$$

$$m_t = 60$$

$$m_n = -\frac{1}{60}$$

$$b = -m \cdot x + y = 40\frac{1}{30}$$

$$n(x) = -\frac{1}{60}x + 40\frac{1}{30}$$

Zwei Geraden mit m_1 und m_2 sind orthogonal, wenn gilt $m_1 \cdot m_2 = -1$

49/14

а

$$f(x) = 0.5x^{2} P(1|f(1) = 0.5)$$

$$m_{t} = \lim_{h \to 0} \frac{\frac{1}{2}(1+h)^{2} - \frac{1}{2}}{h} = \lim_{h \to 0} (1+\frac{1}{2}h) = 1$$

$$b_{t} = -m_{t} \cdot x + y = -\frac{1}{2}$$

$$y_{t} = x - \frac{1}{2}$$

$$m_{n} = -\frac{1}{m_{t}} = -1$$

$$b_{n} = -m_{n} \cdot x + y = 1.5$$

$$y_{n} = -x + 1.5$$

b

$$f(x) = 2x^{2} - 4 P(-2|f(-2) = 4)$$

$$m_{t} = \lim_{h \to 0} \frac{2(-2+h)^{2} - 4 - 4}{h} = -8$$

$$b_{t} = -m_{t} \cdot x + y = -12$$

$$y_{t} = -8x - 12$$

$$m_{n} = -\frac{1}{m_{t}} = \frac{1}{8}$$

$$b_{n} = -m_{n} \cdot x + y = 4\frac{1}{4}$$

$$y_{n} = \frac{1}{8}x + 4\frac{1}{4}$$

С

$$f(x) = \sqrt{x} \qquad P(0.5|f(0.5) = \sqrt{0.5})$$

$$m_t = \lim_{h \to 0} \frac{\sqrt{0.5 + h} - \sqrt{0.5}}{h} = \frac{\sqrt{2}}{2}$$

$$b_t = -m_t \cdot x + y = \frac{\sqrt{2}}{4}$$

$$y_t = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{4}$$

$$m_n = -\frac{1}{m_t} = -\frac{2}{\sqrt{2}}$$

$$b_n = -m_n \cdot x + y = \sqrt{2}$$

$$y_n = -\frac{2}{\sqrt{2}} \cdot x + \sqrt{2}$$

d

$$f(x) = -x^{3} + 2 P(2|f(2) = -6)$$

$$m_{t} = \lim_{h \to 0} \frac{-(2+h)^{3} + 2 + 6}{h} = -12$$

$$b_{t} = -m_{t} \cdot x + y = 18$$

$$y_{t} = -12x + 18$$

$$m_{n} = -\frac{1}{m_{t}} = \frac{1}{12}$$

$$b_{n} = -m_{n} \cdot x + y = -6\frac{1}{6}$$

$$y_{n} = \frac{1}{12}x - 6\frac{1}{6}$$

49/13
$$f(x) = -\frac{1}{x}$$

а

$$P(-1|f(-1) = 1)$$

$$m_t = \lim_{h \to 0} \frac{-\frac{1}{-1+h} - 1}{h} = \lim_{h \to 0} \frac{h}{h + h^2} = 1$$

$$\alpha = atan(m_t) = 45^{\circ}$$

b

$$P(2|f(2) = -\frac{1}{2})$$

$$m_t = \lim_{h \to 0} \frac{-\frac{1}{2+h} + \frac{1}{2}}{h} = \lim_{h \to 0} \frac{\frac{h}{2}}{2h + h^2} = \frac{1}{4}$$

$$\alpha = atan(m_t) = 14.04^{\circ}$$

С

$$P(0.1|f(0.1) = -10)$$

$$m_t = \lim_{h \to 0} \frac{-\frac{1}{0.1+h} + 10}{h} = 100$$

$$\alpha = atan(m_t) = 89.43^{\circ}$$

49/12c

$$f(x) = -3\sqrt{x} \qquad x_0 = 8$$

$$f'(x_0) = \lim_{h \to 0} \frac{-3\sqrt{8+h} - (-3\sqrt{8})}{h}$$

$$= \lim_{h \to 0} \frac{(-\sqrt{72+9h} + \sqrt{72})(-\sqrt{72+9h} - \sqrt{72})}{h(-\sqrt{72+9h} - \sqrt{72})}$$

$$= \lim_{h \to 0} \frac{9}{-\sqrt{72+9h} - \sqrt{72}}$$

$$= \frac{9}{-2\sqrt{72}} = \frac{3}{-4\sqrt{2}} = -\frac{3}{\sqrt{32}}$$

3.8 Ableitungsfunktion

Die Ableitung von f(x) bei x_0 ist eine lokale Eigenschaft der Funktion f(x), also einer Stelle x_0 . Allerdings sind unsere Funktionen fast überall differenzierbar. Ausnahmen sind Unstetigkeitsstellen und Knickstellen. Es gibt eine Funktion $f'(x) = m_t(x)$ für alle Stellen x. Sie heißt Ableitungsfunktion.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

z. B.
$$f(x) = x^4$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - x^4}{h}$$

$$= \lim_{h \to 0} 4x^3 + 6x^2h + 4x^2 + h^3$$

$$= 4x^3$$

z. B.
$$f'(5) = 500$$

$$g(x) = x^{2}$$

$$g'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h} = \lim_{h \to 0} \frac{x^{2} + xh + h^{2} - x^{2}}{h} = 2x$$

$$h(x) = x^{3}$$

$$h'(x) = \lim_{h \to 0} \frac{(x+h)^{3} - x^{3}}{h} = \lim_{h \to 0} \frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}}{h} = 3x^{2}$$

$$i(x) = a \cdot x^{2}$$

$$i'(x) = \lim_{h \to 0} \frac{a(x+h)^{2} - a \cdot x^{2}}{h} = \lim_{h \to 0} \frac{ax^{2} + 2xh + ah^{2} - ax^{2}}{h} = 2ax$$

$$j(x) = \sqrt{x}$$

$$j'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}$$

$$k(x) = \frac{1}{x^{2}}$$

$$k'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{-2}}{h} = \lim_{h \to 0} \frac{(x^{2} + 2xh + h^{2})^{-1} - x^{-1}}{h} = -2x^{-3}$$

$$f(x) = ax^n$$
 $f'(x) = n \cdot ax^{n-1}$

а

$$f(x) = ax^{2} + bx + c$$

$$f'(x) = 2ax + b$$

b

$$f(x) = \frac{a}{x} + c$$
$$f'(x) = -ax^{-2}$$

С

$$f(x) = x^{c+1}$$
$$f'(x) = (c+1)x^{c}$$

d

$$f(x) = t^2 + 3t$$
$$f'(x) = 2t + 3$$

е

$$f(x) = x - t$$
$$f'(x) = 1$$

f

$$f(t) = x - t$$
$$f'(t) = -1$$

55/7

С

$$f(x) = 3x^{2} + 3$$

$$f'(x) = 6x$$

$$P(0.5|f(0.5) = 3.75)$$

$$m = f'(0.5) = 3$$

$$b = -m \cdot x + y = 2.25$$

$$y = 3x + 2.25$$

d

$$f(x) = -x^{3} + 2$$

$$f'(x) = -3x^{2}$$

$$P(2|f(2) = -6)$$

$$m = f'(2) = -12$$

$$b = -m \cdot x + y = 18$$

$$y = -12x + 18$$

59/6
$$g(x) = 10 - 3x \Rightarrow m = -3$$

С

$$f(x) = -\frac{1}{100}x^3$$

$$f'(x) = -\frac{3}{100}x^2$$

$$-3 = -\frac{3}{100}x^2$$

$$x = 10$$

$$P(10|f(10) = -20)$$

d

$$f(x) = bx^{3} + c$$

$$f'(x) = 3bx^{2}$$

$$-3 = 3bx^{2}$$

$$x = \pm (-b)^{-\frac{1}{2}}$$

$$P(\pm (-b)^{-\frac{1}{2}} | f(\pm (-b)^{-\frac{1}{2}}) = \pm (-b)^{-\frac{1}{2}} + c) \qquad b < 0$$

60/12

$$H(t) = \begin{cases} 3.2 & \text{für } 0 \leqslant t \leqslant 1 \\ 3.2 - 5(t-1)^2 & \text{für } 1 \leqslant t \leqslant 1.8 \\ 0 & \text{für } 1.8 \leqslant t \leqslant 3 \end{cases}$$

а

$$H'(0.5) = 0$$

 $H'(1.5) = -10t + 10 = -5$
 $H'(2.5) = 0$

b

$$H'(1) = 0 = -10t + 10$$

 $H'(1.8) = -10t + 10 = -8 \neq H'(1.8) = 0$

67/3

a

$$\begin{array}{lll} x^5 - 20x^3 + 64x = 0 & | \div x \Rightarrow x = 0 \\ x^4 - 20x^2 + 64 = 0 & | t = x^2 \\ t^2 - 20t + 64 = 0 & | pq \\ t_{1/2} = 10 \pm \sqrt{100 - 64} = 10 \pm 6 & | \text{resubst} \\ x_{1/2/3/4} = \pm \sqrt{t_{1/2}} \\ L = \{0; \pm 2; \pm 4\} \end{array}$$

b

$$\begin{array}{lll} x^5 - 17x^3 + 16x = 0 & | \div x \Rightarrow x = 0 \\ x^4 - 17x^2 + 16 = 0 & | t = x^2 \\ t^2 - 17t + 16 = 0 & | pq \\ t_{1/2} = 8.5 \pm \sqrt{72.25 - 16} = 8.5 \pm 7.5 & | \text{resubst.} \\ x_{1/2/3/4} = \pm \sqrt{t_{1/2}} \\ L = \{0; \pm 1; \pm 4\} \end{array}$$

С

$$(x - \frac{2}{3})(x^4 - \frac{13}{6}x^2 + 1) = 0$$

$$x - \frac{2}{3} = 0 \Rightarrow x = \frac{2}{3}$$

$$x^4 - \frac{13}{6}x^2 + 1 = 0 \qquad |t = x^2|$$

$$t^2 - \frac{13}{6}t + 1 = 0 \qquad |pq|$$

$$t_{1/2} = \frac{13}{12} \pm \sqrt{\frac{169}{144} - 1} = \frac{13}{12} \pm \frac{5}{12}$$

$$x_{1/2/3/4} = \pm \sqrt{t_{1/2}}$$

$$L = \{\frac{2}{3}; \pm \sqrt{\frac{2}{3}}; \pm \sqrt{\frac{3}{2}}\}$$

d

$$(x^{3} - 8)(x^{4} - \frac{14}{3}x^{2} + 5) = 0$$

$$x^{3} - 8 = 0 \Rightarrow x = \sqrt[3]{8} = 2$$

$$x^{4} - \frac{14}{3}x^{2} + 5 = 0 \qquad |t = x^{2}|$$

$$t^{2} - \frac{14}{3}t + 5 = 0 \qquad |pq|$$

$$t_{1/2} = \frac{7}{3} \pm \sqrt{\frac{49}{9} - 5} = \frac{7}{3} \pm \frac{2}{3} \qquad |\text{resubst.}$$

$$x_{1/2/3/4} = \pm \sqrt{t_{1}1/2}$$

$$L = \{2; \pm \sqrt{\frac{5}{3}}; \pm \sqrt{3}\}$$

3.9 Nullstellen

Annahme: f(x) = 0 habe $x_1 = 2$; $x_2 = -3$; $x_3 = 1$ als Lösungen, f(x) hat Grad 3.

$$f(x) = x(x-2)(x+3)(x-1)$$

= $x^3 - 7x + 6$ für $c = 1$

Würde ich die zusätzliche Nullstelle $x_4=4$ als Linearfaktor in die Funktionsgleichung einfügen, so hätte ich eine Funktion 4. Grades. Allgemein gilt: Eine ganzrationale Funktion mit Grad n hat maximal n Nullstellen. Funktionen mit ungeradzahligen Graden $n=1,3,5,7\dots$ haben mindestens eine Nullstelle. Solche mit geradzahligen Graden $n=2,4,6,8\dots$ haben keine Mindestzahl an Nullstellen

3.9.1 Mehrfache Nullstellen

Beispiel f(x) habe $x_1=x_2=2$ und $x_3=1$ als Nullstellen (Grad 3).

Berührpunkt bei x=2, außerdem Extrempunkt.

Finde ich eine doppelte Nullstelle, so liegt gleichzeitig an der Stelle ein Extrempunkt vor. Eine dreifache Nullstelle ist zusätzlich ein Sattelpunkt mit waagerechter Tangente.

a

$$f(x) = x^{2} - 2x$$
$$f(0) = 0$$
$$f(x) = 0$$
$$L = \{0; 2\}$$

С

$$f(x) = x(x^2 - 9)$$

 $f(0) = 0$
 $f(x) = 0$
 $L = \{0; \pm 3\}$

f

$$f(x) = x^{4} - 13x^{2} + 36$$

$$f(0) = 36$$

$$f(x) = 0$$

$$L = \{\pm 2; \pm 3\}$$

68/13
$$f(x) = ax^3 + bx^2 + cx + d$$

а

NS: 0; -4;
$$\frac{4}{5}$$

 $a = 5$
 $f(x) = a(x - 0)(x + 4)(x - \frac{4}{5}) = a(x^3 + 3\frac{1}{5}x^2 - 3\frac{1}{5}x)$
 $= 5x^3 + 16x^2 - 16x$

b

NS:
$$-\frac{1}{3}$$
; 3; $\frac{10}{3}$
 $a = 9$
 $f(x) = a(x + \frac{1}{3})(x - 3)(x - \frac{10}{3}) = a(x^3 - 6x^2 - \frac{1}{9}x + 3\frac{1}{3})$
 $= 9x^3 - 72x^2 - x + 30$

$$\begin{aligned} & \text{NS} \colon 0; -\sqrt{2}; \sqrt{2} \\ & a = 1 \\ & f(x) = a(x-0)(x+\sqrt{2})(x-\sqrt{2}) = a(x^3-2x) \\ & = x^3-2x \end{aligned}$$

d

$$\begin{aligned} &\mathsf{NS} \colon 0; -\frac{1}{\sqrt{5}}; \frac{1}{\sqrt{5}} \\ &a = 5 \\ &f(x) = a(x-0)(x+\frac{1}{\sqrt{5}})(x-\frac{1}{\sqrt{5}}) = a(x^3-\frac{1}{5}x) \\ &= 5x^3 - x \end{aligned}$$

68/12 $f(x) = -0.08x^2 + 0.56x + 1.44$

a

$$0 = -0.08x^{2} + 0.56x + 1.44$$

$$x_{1/2} = \frac{-0.56 \pm \sqrt{0.56^{2} - 4(-0.08) \cdot 1.44}}{2(-0.08)} = \frac{-0.56 \pm 0.88}{-0.16}$$

$$(x_{1} = -2) \quad x_{2} = 9$$

b

$$1.44 = -0.08x^{2} + 0.56x + 1.44$$

$$0 = -0.08x^{2} + 0.56x$$

$$x_{1/2} = \frac{-0.56 \pm \sqrt{0.56^{2}}}{2(-0.08)} = \frac{-0.56 \pm 0.56}{-0.16}$$

$$(x_{1} = 0) \quad x_{2} = 7$$

68/11

$$f(x) = ax^{2} + c$$

$$f(0) = 2 \Rightarrow c = 2$$

$$f(5) = f(-5) = 1$$

$$f(x) = -\frac{1}{25}x^{2} + 2$$

$$f(x) = 0 \quad x = \pm\sqrt{50}$$
Breite: $2\sqrt{50} = 10\sqrt{2} \approx 14.14$

$$s = 1000m$$

 $s(t) = 30t - 0.4t^2$
 $v(t) = 30 - 0.8t$

a

$$v(t) = 0 = 30 - 0.8t \Rightarrow t = 37.5$$

 $s(37.5) = 30(37.5) - 0.4(37.5)^2 = 565.5$

b

$$s(t) = v_0 \cdot t - 0.4t^2 < 1000$$

$$v(t) = v_0 - 0.8t \Rightarrow t = \frac{v_0}{0.8}$$

$$s(t) = \frac{v_0^2}{0.8} - 0.4(\frac{v_o}{0.8})^2 = \frac{5}{8}v_0^2 < 1000$$

$$v_0 < \sqrt{1600} = 40$$

3.10 Hoch-, Tief- und Sattelpunkte

Hochpunkt: $f(x_H) \ge f(x)$ in der Nähe Tiefpunkt: $f(x_T) \le f(x)$ in der Nähe

$$f'(x_H) = f'(x_T) = f'(x_S) = 0$$

Daraus folgt ein Rechenverfahren zur Bestimmung der Stellen x mit f'(x) = 0.

z. B.
$$f(x) = x^3 - 2x^2$$

 $f'(x) = 3x^2 - 4x = 0$
 $\Rightarrow x_1 = 0$ $x_2 = \frac{4}{3}$

 x_1 und x_2 sind Kandidaten für Extrema.

Umgebungsuntersuchung

für Hochpunkte gilt: $f'(x_l) > 0$ f'(x) = 0 $f'(x_r) < 0$ für Tiefpunkte gilt: $f'(x_l) < 0$ f'(x) = 0 $f'(x_r) > 0$

$$\begin{aligned} & \text{zu: } x_1 = 0 & x_l = -1 & x_r = 1 \\ & f'(x_l) = f'(-1) = 7 \\ & f'(x_1) = f'(0) = 0 \\ & f'(x_r) = f'(1) = -1 \\ & \Rightarrow H(0|0) \end{aligned}$$

$$\begin{aligned} & \text{zu} \colon x_2 = \frac{4}{3} & x_l = 1 & x_r = 2 \\ & f'(x_l) = f'(1) = -1 \\ & f'(x_1) = f'(0) = 0 \\ & f'(x_r) = f'(2) = 4 \\ & \Rightarrow T(\frac{4}{3}|-1.2) \end{aligned}$$

Sonderfall Sattelpunkt (Wendepunkt mit waagerechter Tangente)

$$f'(x_l) < 0$$
 $f'(x) = 0$ $f'(x_r) < 0$ oder $f'(x_l) > 0$ $f'(x) = 0$ $f'(x_r) > 0$

73/2

е

$$\begin{split} f(x) &= -\frac{1}{4}x^4 + x^3 - 4 \\ f'(x) &= -x^3 + 3x^2 = 0 \qquad | \div x \Rightarrow x_1 = 0 \\ 0 &= -x^2 + 3x \qquad | \div x \Rightarrow x_2 = 0 \\ 0 &= -x + 3 \qquad | -3; \cdot (-1) \\ 3 &= x \\ L &= \{0; 3\} \end{split}$$

$$f'(-1) = 4 \quad f'(0) = 0 \quad f'(1) = 2 \quad \Rightarrow \mathsf{Sattelpunkt} \ S(0|f(0) = -4)$$

$$f'(2) = 4 \quad f'(3) = 0 \quad f'(4) = -16 \quad \Rightarrow \text{Satterpunkt } S(0|f(0) = -4)$$

$$f'(2) = 4 \quad f'(3) = 0 \quad f'(4) = -16 \quad \Rightarrow \text{Hochpunkt } H(3|f(3) = 2\frac{3}{4})$$

b

$$f(x) = x^{4} - 4x^{3} + 4x^{2}$$

$$f'(x) = 4x^{3} - 12x^{2} + 8x$$

$$0 = 4x^{3} - 12x^{2} + 8x \qquad | \div x \Rightarrow x_{1} = 0$$

$$0 = 4x^{2} - 12x + 8 \qquad |abc|$$

$$x_{2/3} = \frac{12 \pm 4}{8}$$

$$x_{2} = 1 \quad x_{3} = 2$$

$$f'(-1) = -24 f'(x_1) = 0 f'(\frac{1}{2}) = 1.5 \Rightarrow T(0|0)$$

$$f'(\frac{1}{2}) = 1.5 f'(x_2) = 0 f'(\frac{3}{2}) = -1.5 \Rightarrow H(1|1)$$

$$f'(\frac{3}{2}) = -1.5 f'(x_3) = 0 f'(3) = 24 \Rightarrow T(2|0)$$

3.11 2. Ableitungsfunktion

$$f''(x) = (f'(x))'$$

Die 2. Ableitungsfunktion f''(x) beschreibt das Krümmungsverhalten der Ursprungsfunktion f(x).

f''(x) > 0 links gekrümmt

f''(x) < 0 rechts gekrümmt

f''(x) = 0 Wendepunkt

80/1

b

$$f(x) = 2x - 3x^{2}$$

$$f'(x) = 2 - 6x$$

$$f''(x) = -6$$

$$f'(x) = 0 \quad L = \{\frac{1}{3}\}$$

$$f''(\frac{1}{3}) = -6 < 0 \quad H(\frac{1}{3}|\frac{1}{3})$$

d

$$f(x) = x^4 - 4x^2 + 3$$

$$f'(x) = 2 - 6x$$

$$f''(x) = 12x^2 - 8$$

$$f'(x) = 0 \quad L = \{\pm\sqrt{2}; 0\}$$

$$f''(\pm\sqrt{2}) = 16 > 0 \quad T(\pm\sqrt{2}|-1)$$

$$f''(0) = -8 < 0 \quad H(0|3)$$

е

$$f(x) = \frac{4}{5}x^5 - \frac{10}{3}x^3 + \frac{9}{4}x$$

$$f'(x) = 4x^4 - 10x^2 + \frac{9}{4}$$

$$f''(x) = 16x^3 - 20x$$

$$f'(x) = 0 \quad L = \{\pm \frac{1}{2}; \pm \frac{3}{2}\}$$

$$f''(\frac{1}{2}) = -8 < 0 \quad H(\frac{1}{2}|\frac{11}{15})$$

$$f''(-\frac{1}{2}) = 8 > 0 \quad H(-\frac{1}{2}|-\frac{11}{15})$$

$$f''(\frac{3}{2}) = 24 > 0 \quad T(\frac{3}{2}|-\frac{9}{5})$$

$$f''(-\frac{3}{2}) = -24 < 0 \quad T(-\frac{3}{2}|\frac{9}{5})$$

3.12 Wendepunkte

Wendepunkte eines Graphen sind Punkte, an denen die Krümmung wendet. Am Wendepunkt selbst ist das Krümmungsverhalten gleich 0. Außerdem sind Wendepunkte Punkte mit maximaler bzw. minimaler Steigung.

Notwendige Bedingung: f''(x) = 0

Hinreichende Bedingung (I): Umgebungsuntersuchung $f''(x_l) > 0$ $f''(x_r) < 0$ Wechsel im Krümmungsverhalten \Rightarrow Wendepunkt WP(x|f(x)) (links-rechts)

Hinreichende Bedingung (II): $f'''(x) \neq 0$ für f'''(x) < 0 LRWP für f'''(x) > 0 RLWP für f'''(x) = 0 keine Entscheidung

a

$$f(x) = x^3 + 2$$

 $f''(x) = 6x = 0$ $L = \{0\}$
 $f'''(x) = 6 \Rightarrow RLWP(0|2)$

 $\begin{aligned} & \mathsf{rechts} \colon x \in \left] - \infty; 0 \right] \\ & \mathsf{links} \colon x \in \left[0; \infty\right[\end{aligned}$

b

$$\begin{split} f(x) &= 4 + 2x - x^2 \\ f''(x) &= -2 = 0 \quad L = \{\} \\ \text{rechts: } x \in \left] -\infty; \infty \right[\end{split}$$

d

$$\begin{split} f(x) &= x^5 - x^4 + x^3 \\ f''(x) &= 20x^3 - 12x^2 + 6x = 0 \quad L = \{0\} \\ f'''(x) &= 60x^2 - 24x + 6 \\ f'''(0) &= 6 \Rightarrow RLWP(0|0) \\ \text{rechts: } x \in]-\infty; 0] \end{split}$$

recnts: $x \in]-\infty;$ links: $x \in [0; \infty[$

84/2b

$$f(x) = x^{3} + 3x^{2} + 3x$$

$$f'(x) = 3x^{2} + 6x + 3$$

$$f''(x) = 6x + 6$$

$$f'''(x) = 6$$

$$f'''(x) = 0 \quad L = \{-1\}$$

$$f'''(-1) = 6 \Rightarrow RLWP(-1|f(-1) = -1)$$

$$f'(-1) = 0 \Rightarrow Sattelpunkt$$

85/12

$$f(x) = x^{3} + bx^{2} + cx + d$$

$$f'(x) = 3x^{2} + 2bx + c = 0$$

$$f''(x) = 6x + 2b = 0 \Rightarrow x = -\frac{1}{3}b$$

$$f'(x) = 3(-\frac{1}{3}b)^{2} + 2b(-\frac{1}{3}b) + c = -\frac{1}{3}b^{2} + c = 0$$

$$\Rightarrow c = \frac{b^{2}}{3}$$

a

$$f_a(x) = x^3 - ax^2$$

$$f''_a(x) = 6x - 2a = 0 \quad L = \{\frac{a}{3}\}$$

$$f'''_a(x) = 6 \quad f'''_a(\frac{a}{3}) = 6 \Rightarrow RLWP(\frac{a}{3}|f_a(\frac{a}{3}))$$

b

$$f_a(x) = x^4 - 2ax^2 + 1$$

$$f_a''(x) = 12x^2 - 4a = 0 \quad L = \{\pm \sqrt{\frac{a}{3}}\}$$

$$f_a'''(x) = 24x$$

$$f_a'''(\sqrt{\frac{a}{3}}) = 24(\sqrt{\frac{a}{3}}) > 0 \Rightarrow RLWP(\sqrt{\frac{a}{3}}|f_a(\sqrt{\frac{a}{3}}))$$

$$f_a'''(-\sqrt{\frac{a}{3}}) = 24(-\sqrt{\frac{a}{3}}) < 0 \Rightarrow LRWP(-\sqrt{\frac{a}{3}}|f_a(-\sqrt{\frac{a}{3}}))$$

89/2

A wahr, die Steigung ist negativ, d. h. die Werte werden kleiner

B falsch, die Funktion hat bei x=-1 einen Sattelpunkt, die Steigung ist davor und danach positiv

C wahr, einen Tiefpunkt bei x=2 und einen Hochpunkt bei x=0

D ?, die Funktionswerte sind an der Ableitungsfunktion nicht erkennbar

С

$$\begin{split} f(x) &= -\frac{1}{18} x^4 + x^2 \\ f(0) &= 0 \Rightarrow S(0|0) \\ f(x) &= 0 \quad L = \{0; \pm \sqrt{18}\} \Rightarrow S(0|0), S(\sqrt{18}|0), S(-\sqrt{18}|0) \\ f'(x) &= -\frac{2}{9} x^3 + 2x = 0 \quad L = \{0; \pm 3\} \\ f''(x) &= -\frac{2}{3} x^2 + 2 \\ f''(0) &= 2 \Rightarrow T(0|f(0) = 0) \\ f''(3) &= 4 \Rightarrow T(3|f(3) = \frac{9}{2}) \\ f''(-3) &= -4 \Rightarrow T(-3|f(-3) = \frac{9}{2}) \\ \text{monoton steigend } f'(x) \geqslant 0 \colon]-\infty; -3] \,, [0; 3] \end{split}$$

monoton fallend $f'(x) \leq 0$: $[3;0], [3;\infty[$

d

$$\begin{split} f(x) &= \frac{1}{6}x^3 - x^2 + 1.5x \\ f(0) &= 0 \Rightarrow S(0|0) \\ f(x) &= \frac{1}{6}x^3 - x^2 + 1.5x = 0 \quad L = \{0;3\} \Rightarrow S(0|0), S(3|0) \\ f'(x) &= \frac{1}{2}x^2 - 2x + 1.5 = 0 \quad L = \{1;3\} \\ f''(x) &= x - 2 \\ f''(1) &= -1 \Rightarrow H(1|f(1) = 0.\overline{6}) \\ f''(3) &= 1 \Rightarrow T(3|f(3) = 0) \\ \text{monoton steigend } f'(x) &\geqslant 0 \colon \left[-\infty;1\right], \left[3;\infty\right] \\ \text{monoton fallend } f'(x) &\leqslant 0 \colon \left[1;3\right] \end{split}$$

$$\begin{split} f(x) &= x + \frac{5}{x} \quad D = \mathbb{R} \backslash \{0\} \quad \text{(kein Schnittpunkt mit y-Achse)} \\ f(x) &= 0 \quad L = \{\} \quad \text{(kein Schnittpunkt mit x-Achse)} \\ f'(x) &= 1 - \frac{5}{x^2} = 0 \quad L = \{\pm \sqrt{5}\} \\ f''(x) &= \frac{10}{x^3} \\ f''(\sqrt{5}) &= \frac{2}{\sqrt{5}} \Rightarrow T(\sqrt{5}|f(\sqrt{5}) = \sqrt{20}) \\ f''(-\sqrt{5}) &= -\frac{2}{\sqrt{5}} \Rightarrow T(-\sqrt{5}|f(-\sqrt{5}) = -\sqrt{20}) \\ \text{monoton steigend } f'(x) &\geqslant 0 \colon \left[-\infty; -\sqrt{5}\right], \left[\sqrt{5}; \infty\right] \\ \text{monoton fallend } f'(x) &\leqslant 0 \colon \left[-\sqrt{5}; 0\right[, \left]0; \sqrt{5}\right] \end{split}$$

3.13 Nullstellen: Polynomdivision

97/2

b
$$\left(\begin{array}{c} 2x^3 + 2x^2 - 21x + 12 \right) \div \left(x + 4\right) = 2x^2 - 6x + 3$$

$$-2x^3 - 8x^2$$

$$-6x^2 - 21x$$

$$-6x^2 + 24x$$

$$3x + 12$$

$$-3x - 12$$

c
$$\left(\begin{array}{cc} 2x^3 - 7x^2 & -x + 2 \\ \underline{-2x^3 + x^2} \\ -6x^2 & -x \\ \underline{-6x^2 - 3x} \\ \underline{-4x + 2} \\ \underline{4x - 2} \\ 0 \end{array}\right)$$

d
$$\left(\begin{array}{c} x^4 + 2x^3 - 4x^2 - 9x - 2 \\ \underline{-x^4 - 2x^3} \\ -4x^2 - 9x \\ \underline{4x^2 + 8x} \\ -x - 2 \\ \underline{x + 2} \\ 0 \end{array}\right)$$

a
$$x_1 = 1$$

$$\left(\begin{array}{c} x^3 - 6x^2 + 11x - 6 \right) \div \left(x - 1 \right) = x^2 - 5x + 6 \\ \underline{-x^3 + x^2} \\ -5x^2 + 11x \\ \underline{-5x^2 - 5x} \\ 6x - 6 \\ \underline{-6x + 6} \\ 0 \end{array} \right)$$

$$x_{2/3} = \frac{5 \pm 1}{2}$$

$$x_2 = 2$$

$$x_3 = 3$$

$$f(x) = (x - 1)(x - 2)(x - 3)$$

b
$$x_1 = 2$$

 $\left(\begin{array}{c} x^3 + x^2 - 4x - 4\right) \div \left(x - 2\right) = x^2 + 3x + 2$
 $-x^3 + 2x^2$
 $3x^2 - 4x$
 $-3x^2 + 6x$
 $2x - 4$
 $-2x + 4$
 0

$$x_{2/3} = \frac{-3 \pm 1}{2}$$

$$x_2 = -2$$

$$x_3 = -1$$

$$f(x) = (x - 2)(x + 2)(x + 1)$$
c $x_1 = -2$
 $\left(\begin{array}{c} 4x^3 - 8x^2 \\ -8x^2 - 13x \\ \hline -4x^3 - 8x^2 \\ \hline -8x^2 - 13x \\ \hline & 3x + 6 \\ \hline & -3x - 6 \\ \hline & 0 \\ \end{array}\right)$

$$x_{2/3} = \frac{8 \pm 4}{8}$$

$$x_2 = \frac{1}{2}$$

$$x_3 = \frac{3}{2}$$

$$f(x) = (x + 2)(x - \frac{1}{2})(x - \frac{3}{2})$$

d
$$x_1 = 3$$

$$(4x^3 - 8x^2 - 11x - 3) \div (x - 3) = 4x^2 + 4x + 1$$

$$-4x^3 + 12x^2$$

$$-4x^2 + 12x$$

$$x - 3$$

$$-x + 3$$

$$0$$

$$x_{2/3} = \frac{-4 \pm 0}{8}$$

$$x_{2/3} = -\frac{1}{2}$$

$$f(x) = (x - 3)(x + \frac{1}{2})$$

$$98/11 \ f(x) = x^3 - 2x^2 - 3x + 10 \qquad S(-2|0) \Rightarrow x_1 = -2$$

$$a \ (x^3 - 2x^2 - 3x + 10) \div (x + 2) = x^2 - 4x + 5$$

$$-x^3 - 2x^2$$

$$-4x^2 - 3x$$

$$-4x^2 + 8x$$

$$-5x + 10$$

$$-5x - 10$$

 $x_{2/3} = \frac{4 \pm \sqrt{-4}}{2}$ \Rightarrow keine Lösung

→ Keine Losung

b

$$g(x) = mx + b \quad m = 2 \quad S(-2|0)$$

$$0 = 2 \cdot (-2) + b \Rightarrow b = 4$$

$$\Rightarrow g(x) = 2x + 4$$

$$f(x) = g(x)x^3 - 2x^2 - 3x + 10 = 2x + 4$$

$$0 = x^3 - 2x^2 - 5x + 6 \quad x_1 = -2$$

$$(x^{3} - 2x^{2} - 5x + 6) \div (x + 2) = x^{2} - 4x + 3$$

$$- x^{3} - 2x^{2}$$

$$- 4x^{2} - 5x$$

$$- 4x^{2} - 5x$$

$$- 4x^{2} + 8x$$

$$- 3x + 6$$

$$- 3x - 6$$

$$0$$

$$x_{2/3} = \frac{4 \pm 2}{2}$$

$$x_2 = 1 \quad S(1|6)$$

$$x_3 = 3 \quad S(3|10)$$

98/12
$$f_t(x) = 2x^3 - tx^2 + 8x$$

а

$$f_2(x) = 2x^3 - 2x^2 + 8x \qquad | \div x$$

$$0 = 2x^2 - 2x + 8$$

$$x_{2/3} = \frac{2 \pm \sqrt{-60}}{4} \quad \text{keine L\"osung}$$

$$L = \{0\}$$

$$f_{10}(x) = 2x^3 - 10x^2 + 8x \qquad | \div x$$

$$0 = 2x^2 - 10x + 8$$

$$x_{2/3} = \frac{10 \pm 6}{4}$$

$$L = \{0; 1; 4\}$$

$$f_{-10}(x) = 2x^{3} + 10x^{2} + 8x \qquad | \div x$$

$$0 = 2x^{2} + 10x + 8$$

$$x_{2/3} = \frac{-10 \pm 6}{4}$$

$$L = \{0; -1; -4\}$$

b

 ${\sf Diskriminante}\ > 0$

С

$$t = 8$$

 $f_8(x) = 2x^3 - 8x^2 + 8x$
Nullstellen: $\{0; 2\}$

3.14 Verhalten für $x \to \pm \infty$

z. B.
$$f(x) = -2x^3 + 5x^2 - 7x + 2$$

$$\lim_{x \to \infty} f(x) \approx \lim_{x \to \infty} (-2x^3) = -\infty$$

$$\lim_{x \to -\infty} f(x) \approx \lim_{x \to -\infty} (-2x^3) = +\infty$$

⇒ unterschiedlich für ungeradzahligen Grad

z. B.
$$g(x) = 2x^4 - 5x$$

$$\lim_{x \to \infty} g(x) \approx \lim_{x \to \infty} (2x^4) = +\infty$$

$$\lim_{x \to -\infty} g(x) \approx \lim_{x \to -\infty} (2x^4) = +\infty$$
 \Rightarrow gleich für geradzahligen Grad

3.15 Symmetrie

Bsp. $f(x) = x^4 + 5x^2 - 7$

f(x) ist achsensymmetrisch zur y-Achse, weil nur geradzahlige Exponenten vorkommen.

Bsp. $g(x) = x^5 - 7x^3 + x$

g(x) ist punktsymmetrisch zum Ursprung, weil nur ungeradzahlige Exponenten vorkommen.

allgemein:

achsensymmetrisch zur y-Achse: f(x)=f(-x) punktsymmetrisch zum Ursprung: f(x)=-f(-x) ansonsten: Symmetrie nicht erkennbar

Anwendung:

Anwendung:
Bsp.
$$h(x) = \frac{3x^2 + 2x}{x^2 + 5}$$

 $h(-x) = \frac{3(-x)^2 + 2(-x)}{(-x)^2 + 5} = -\frac{3x^2 + 2x}{x^2 + 5} = -h(x)$
 \Rightarrow punktsymmetrisch

100/2

a
$$f(x) = -3x^4 - 0.2x^2 + 10$$

b
$$f(x) = 3x + 4x^3 - x^2 = 4x^3 - x^2 + 3x$$

$$f(x) = 2(x-1) \cdot x^2 = 2x^3 - 2x^2$$

d
$$f(x) = (x+1)(x^3+1) = x^4 + x^3 + x + 1$$

e
$$f(x) = -2(x^4 - x^3 - x^2) = -2x^4 + 2x^3 + 2x^2$$

$$f f(x) = x^2 \cdot (-6x - x^2) = -x^4 - 6x^3$$

102/1

d
$$f(x) = x(x^2 - 5) = x^3 - 5x \Rightarrow \text{punktsymmetrisch}$$

e
$$f(x) = (x-2)^2 + 1 = x^2 - 4x + 5 \Rightarrow$$
 nicht erkennbar

f
$$f(x) = x(x-1)(x+1) = x^3 - x \Rightarrow \text{punktsymmetrisch}$$

3.16 Kurvendiskussion

105/1

С

$$f(x) = \frac{1}{2}x^3 - 4x^2 + 8x$$

Ableitungen

$$f'(x) = \frac{3}{2}x^2 - 8x + 8$$

$$f''(x) = 3x - 8$$

$$f'''(x) = 3$$

Symmetrie

$$f(-x) \neq f(x)$$

$$-\frac{1}{2}x^3 - 4x^2 - 8x \neq \frac{1}{2}x^3 - 4x^2 + 8x$$

$$f(-x) \neq -f(x)$$

$$-\frac{1}{2}x^3 - 4x^2 - 8x \neq -\frac{1}{2}x^3 + 4x^2 - 8x$$

Nullstellen

$$f(x) = 0 = \frac{1}{2}x^3 - 4x^2 + 8x \qquad | \div x \Rightarrow x_1 = 0$$
$$x_{2/3} = \frac{4 \pm \sqrt{16 - 4 \cdot \frac{1}{2} \cdot 8}}{2 \cdot \frac{1}{2}} = 4$$

$$L = \{0; 4\}$$

Grenzverhalten

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{2}x^3 = \infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} x^3 = -\infty$$

Extremstellen

$$f'(x) = 0 = \frac{3}{2}x^2 - 8x + 8$$

$$x_{1/2} = \frac{8 \pm \sqrt{64 - 4 \cdot \frac{3}{2} \cdot 8}}{2 \cdot \frac{3}{2}} = \frac{8 \pm 4}{3}$$

$$L = \{\frac{4}{3}; 4\}$$

$$f''(x_1) = f''(\frac{4}{3}) = -4 < 0 \quad HP(\frac{4}{3}|f(\frac{4}{3}))$$

$$f''(x_2) = f''(4) = 4 > 0 \quad TP(4|f(4))$$
 Wendestellen
$$f''(x) = 0 = 3x - 8$$

$$L = \{\frac{8}{3}\}$$

$$f'''(x_1) = f'''(\frac{8}{3}) = 3 > 0 \quad RLWP(\frac{8}{3}|f(\frac{8}{3}))$$

d

$$f(x) = \frac{1}{2}x^3 + 3x^2 - 8 = x^3 + 6x^2 - 16$$

Ableitungen

$$f'(x) = 3x^2 + 12x$$

$$f''(x) = 6x + 12$$

$$f'''(x) = 6$$

Symmetrie

$$f(-x) \neq f(x)$$

$$-x^3 + 6x^2 + 16 \neq x^3 + 6x^2 - 16$$

$$f(-x) \neq -f(x)$$

$$-x^3 + 6x^2 + 16 \neq -x^3 - 6x^2 + 16$$

Nullstellen

$$f(x) = 0 = x^3 + 6x^2 - 16$$

$$x_1 = -2$$

$$(x^{3} + 6x^{2} - 16) \div (x + 2) = x^{2} + 4x - 8$$

$$- x^{3} - 2x^{2}$$

$$- 4x^{2}$$

$$- 4x^{2} - 8x$$

$$- 8x - 16$$

$$- 8x + 16$$

$$0$$

$$x_{2/3} = \frac{-4 \pm \sqrt{16 - 4(-8)}}{2} = \frac{-4 \pm \sqrt{48}}{2}$$

$$L = \{-2; -5.46; 1.46\}$$

Grenzverhalten

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x^3 = \infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

Extremstellen

$$f'(x) = 0 = 3x^2 + 12x \qquad | \div x \Rightarrow x_1 = 0$$

$$3x + 12 = 0$$

$$L = \{0; -4\}$$

$$f''(x_1) = f''(0) = 12 > 0 \quad TP(0|f(0))$$

$$f''(x_2) = f''(-4) = -12 < 0 \quad HP(-4|f(-4))$$
 Wendestellen
$$f''(x) = 0 = 6x + 12$$

$$f(x) = 187.5 - 1.579 \cdot 10^{-2} \cdot x^2 - 1.988 \cdot 190^{-6} \cdot x^4$$

a

Höhe

$$f(0) = 187.5$$

Breite

$$f(x) = 0$$

subst. $t = x^2$

$$0 = 187.5 - 1.579 \cdot 10^{-2} \cdot t - 1.988 \cdot 10^{-6} \cdot t^2$$

$$t_{1/2} = \frac{1.579 \cdot 10^{-2} \pm \sqrt{(1.579 \cdot 10^{-2})^2 - 4 \cdot (-1.988 \cdot 10^{-6}) \cdot 187.5}}{2 \cdot (-1.988 \cdot 10^{-6})}$$

$$t_1 < 0$$
 $t_2 = 6520.923541$

$$x_{1/2} = \pm \sqrt{t_2} \approx \pm 80$$

$$2 \cdot 80 = 160$$

b

$$f'(x) = -3.158 \cdot 10^{-2} \cdot x - 7.952 \cdot 10^{-6} \cdot x^{3}$$

$$f'(80) = -2.5264 - 4.071424 \approx -6.6$$

$$atan(-6.6) \approx -81^{\circ}$$

С

$$f(19) = 187.5 - 5.70019 - 0.259078148 \approx 181$$

vertikaler Abstand: $187.5 - 181 = 6.5 < 10$
 $f(9) - 10 = 177.5 - 1.579 - 0.01988 \approx 176.2$

3.17 Tangente und Anwendungen

3.17.1 Allgemeine Tangentengleichung - Herleitung

$$f(x) = y = m \cdot x + b$$

$$Stelle \ u \qquad f'(u) = m \qquad f(u) = y$$

$$f(u) = f'(u) \cdot u + b \quad \Rightarrow \quad b = f(u) - f'(u) \cdot u$$

$$t(x) = f'(u) \cdot x + f(u) - f'(u) \cdot u$$

$$= f'(u) \cdot (x - u) + f(u)$$

$$n(x) = -\frac{1}{f'(u)} \cdot (x - u) + f(u)$$

108/5

a

$$f(x) = x^{2} - x; \quad B(-2|6) \quad u = -2$$

$$f'(x) = 2x - 1 \quad f'(u) = -5$$

$$t(x) = -5 \cdot (x+2) + 6 = -5x - 4$$

$$n(x) = \frac{1}{5} \cdot (x+2) + 6 = \frac{1}{5}x + 6\frac{2}{5}$$

b

$$f(x) = \frac{4}{x} + 2; \quad B(4|3) \quad u = 4$$

$$f'(x) = -4x^{-2} \quad f'(u) = -\frac{1}{4}$$

$$t(x) = -\frac{1}{4} \cdot (x - 4) + 3 = -\frac{1}{4}x + 4$$

$$n(x) = 4 \cdot (x - 4) + 3 = 4x - 13$$

Exkurs: Quadratische Ergänzung

führt auf die Scheitelpunktform einer quadratischen Gleichung

z. B.
$$f(x) = x^2 - x$$

 $= x^2 - x + 0.25 - 0.25$
 $= (x - 0.5)^2 - 0.25$
Scheitelpunkt $S(0.5|-0.25)$

z. B.
$$g(x) = 4x^2 - 3x + 8$$

 $= 4(x^2 - \frac{3}{4}x) + 8$
 $= 4(x^2 - \frac{3}{4}x + \frac{9}{64} - \frac{9}{64}) + 8$
 $= 4(x - \frac{3}{8})^2 - 4(\frac{9}{64}) + 8$
 $= 4(x - \frac{3}{8})^2 + \frac{137}{16}$
Scheitelpunkt $S(\frac{3}{8}|\frac{137}{16})$

nimm den Koeffizienten (-1), halbiere ihn (-0.5) und quadriere anschließend (0.25).

109/10

$$f(x) = y = 4 - \frac{1}{2}x^{2}$$

$$Y(0|6)$$

$$f'(x) = -x$$

$$t(x) = f'(x_{0}) \cdot (x - x_{0}) + f(x_{0}) = \frac{x_{0}^{2}}{2} - x \cdot x_{0} + 4$$

$$0 = \frac{1}{2}x_{0}^{2} - 2 \qquad x_{0} = \pm 2$$

109/11

$$\begin{split} f(x) &= -0.002x^4 + 0.122x^2 - 1.8 \\ \text{Tiefster Punkt: } T(0|-1.8) \\ \text{Augen: } P(x_0|1.6) \\ f'(x) &= -0.008x^3 + 0.244x \\ t(x) &= 0.006u^4 - 0.122u^3 - 0.008u^3x + 0.224ux - 1.8 \\ t(0) &= -1.8 = 0.006u^4 - 0.122u^3 - 1.8 \qquad L = \{0; \pm \sqrt{\frac{61}{3}}\} \\ t(x) &= 0.366752x - 1.8 \quad fuer \ u = \sqrt{\frac{61}{3}} \\ 1.6 &= 0.366752x_0 - 1.8 \\ x_0 &= 9.2706 \end{split}$$

$$S(t) = -0.08t^3 + 3.5t^2 + 10.6t + 237$$

a

$$S'(t) = -0.24t^2 + 7t + 10.6$$

Die Ableitung gibt an, wie stark die Schulden ansteigen, also die Neuverschuldung pro Jahr.

b

$$S''(t) = -0.48t + 7$$

$$S''(t_0) = 0$$

$$t_0 = 14.58\overline{3} \quad (um \ 1994)$$

С

$$S'(t_0) = 0 = -0.24t^2 + 7t + 10.6$$

 $t_0 = \frac{1}{12}(175 + \sqrt{36985}) \approx 30.6 \quad (um\ 2010)$
 $S''(t_0) \approx -7.69 < 0 \implies Hochpunkt$

d Nicht die Staatsschulden, sondern die Neuverschuldung, nahm ab.

111/3

$$f(t) = 0.25t^3 - 12t^2 + 144t$$

a

$$f(t) = 0 = 0.25t^{3} - 12t^{2} + 144t \qquad L = \{0; 24\}$$

$$f'(t) = 0 = 0.75t^{2} - 24t + 144 \qquad L = \{8; 24\}$$

$$f''(t) = 1.5t - 24$$

$$f''(8) = -12 < 0 \quad \Rightarrow \quad HP$$

$$f''(24) = 12 > 0 \quad \Rightarrow \quad TP$$

$$f''(t) = 0 = 1.5t - 24 \qquad L = \{16\}$$

$$f'''(t) = 1.5 > 0 \quad \Rightarrow \quad RLWP$$

b

Hälfte d. Maximalwerts
$$= \frac{f(8)}{2} = \frac{512}{2} = 256$$

$$f(t) = 256 = 0.25t^3 - 12t^2 + 144t$$

$$0 = 0.25t^3 - 12t^2 + 144t - 256$$

$$\left(\frac{\frac{1}{4}t^3 - 12t^2 + 144t - 256}{-\frac{1}{4}t^3 + 4t^2} - 8t^2 + 144t - 256 \right) \div \left(t - 16 \right) = \frac{1}{4}t^2 - 8t + 16$$

$$-\frac{8t^2 - 128t}{16t - 256}$$

$$-\frac{16t + 256}{0}$$

$$L = \{2.1436; 16; (29.856)\}$$

$$f_2(t) = 0.25t^3 - 12t^2 + 144t - 256$$

$$f'_2(t) = f'(t) = 0.75t^2 - 24t + 144$$

$$f'_2(2.1436) \approx 96 > 0$$

$$f'_2(16) = -48 < 0$$

$$(f'_2(29.856) \approx 96 > 0)$$

Zeitraum: 2.1436 bis 16

Teil II

11/2

$$O(t) = -\frac{1}{300}(t^3 - 36t^2 + 324t - 5700) \qquad t \in [0; 24]$$

a

$$O'(t) = \frac{1}{100}(-t^2 + 24t - 108) = 0$$

$$t_{1/2} = \frac{-24 \pm \sqrt{24^2 - 4 \cdot 108}}{-2} = \frac{-24 \pm 12}{-2} = 12 \pm 6$$

$$t_1 = 6 \qquad t_2 = 18$$

$$O''(t) = \frac{12 - t}{50}$$

$$O''(t_1) = \frac{6}{50} > 0 \quad \Rightarrow \quad TP(6|O(6) = 16.12)$$

$$O''(t_2) = \frac{-6}{50} < 0 \quad \Rightarrow \quad HP(18|O(18) = 19)$$

b Die Steigung der Wendetangente gibt an, wie sich die Temperaturänderung ändert (Beschleunigung).

3.18 Optimieren unter Nebenbedingungen

Tunnelquerschnitt:

Länge der Randlinie (Umfang) ist 5m; A ist maximal

Hauptbedingung HB

$$A(r,h) = 2rh + \frac{1}{2}\pi r^2$$
 ($A(r)$ heißt Zielfunktion ZF)

Nebenbedingung NB

$$U = 5 = 2h + 2r + \pi r \qquad |-2r - \pi r$$

$$h = \frac{5}{2} - r - \frac{1}{2}\pi r$$

setze h in A(r,h) ein

$$A(r) = 2r(\frac{5}{2} - r - \frac{1}{2}\pi r) + \frac{1}{2}\pi r^{2}$$
$$= 5r - 2r^{2} - \pi r^{2} + \frac{1}{2}\pi r^{2}$$
$$= (-\frac{1}{2}\pi - 2) \cdot r^{2} + 5r$$

$$A'(r) = 5 - 7.14159r$$

 $A'(r) = 0$ $L = \{0.7\}$
 $h = 0.7$ fuer $r = 0.7$
 $A(r) = 1.75m^2$

114/3

$$A(l,b) = l \cdot b$$

$$U = 50 = 2(l+b) \Rightarrow b = 25 - l$$

$$A(l) = 2l \cdot (25 - l) = -2l^2 + 50l$$

$$A'(l) = -4l + 50$$

$$A'(l) = 0 \qquad L = \{12.5\}$$

$$l = b = 12.5cm$$

$$U(l,b) = 2(l+b)$$

$$A = 400 = l \cdot b \Rightarrow b = \frac{400}{l}$$

$$U(l) = 2l + \frac{800}{l}$$

$$U'(l) = 2 - 800l^{-2}$$

$$U'(l) = 0 \qquad L = \{\pm 20\}$$

$$l = b = 20cm$$

115/7

а

$$V(x) = (16 - 2x) \cdot (10 - 2x) \cdot x = 4x^3 - 52x^2 + 160x$$

$$V'(x) = 12x^2 - 104x + 160$$

$$V'(x) = 0 \qquad L = \{2; (\frac{20}{3})\}$$

$$V(2cm) = 144cm^3$$

115/8

$$U(r,h) = \pi r + 2r + 2h$$

$$A = 45 = \frac{1}{2}\pi r^2 + 2rh \Rightarrow h = \frac{45 - \frac{1}{2}\pi r^2}{2r}$$

$$U(r) = \frac{1}{2}\pi r + 2r + \frac{45}{r}$$

$$U'(r) = -45r^{-2} + \frac{1}{2}\pi + 2$$

$$U'(r) = 0 \qquad L = \{\pm 3.55\}$$

$$r = 3.55m$$

$$h = 3.55m \quad fuer \ r = 3.55m$$

$$V(r,h) = \pi r^2 h$$

$$12^2 = (2r)^2 + h^2 \Rightarrow r = \sqrt{36 - \frac{h^2}{4}}$$

$$V(h) = \pi \cdot (36 - \frac{h^2}{4}) \cdot h = 36h\pi - \frac{h^3\pi}{4}$$

$$V'(h) = -\frac{3}{4}\pi h^2 + 36\pi$$

$$V'(h) = 0 \qquad L = \{\pm 6.93\}$$

$$h = 6.93cm$$

$$r = 4.9cm \quad fuer \ h = 6.93cm$$

115/14

 $a\ \dots$ Kantenlänge der Grundfläche

$$V(a,h) = \frac{1}{3} \cdot a^2 \cdot h$$

$$2.4^{2} = 5.76 = h_{s}^{2} + (\frac{a}{2})^{2}$$

$$h_{s}^{2} = h^{2} + (\frac{a}{2})^{2}$$

$$\Rightarrow h = \sqrt{5.76 - \frac{a^{2}}{2}}$$

$$V(a) = \frac{1}{3} \cdot a^2 \cdot \sqrt{5.76 - \frac{a^2}{2}}$$

$$V_2(a) = V(a)^2 = \frac{1}{9} \cdot a^4 \cdot (5.76 - \frac{a^2}{2}) = -\frac{1}{18}a^6 + 0.64a^4$$

$$V_2'(a) = -\frac{1}{3}a^5 + 2.56a^3$$

$$V_2'(a) = 0 \qquad L = \{0; \pm 2.771\}$$

$$V(2.771m) \approx 3.55m^3$$

Tragfähigkeit
$$T \sim b$$

Tragfähigkeit $T \sim h^2$

а

$$\begin{split} r &= 50cm \\ T(b,h) &= b \cdot h^2 \\ h^2 + b^2 &= (2r)^2 \Rightarrow h^2 = 10000 - b^2 \Rightarrow h = \sqrt{10000 - b^2} \\ T(b) &= b \cdot (10000 - b^2) = -b^3 + 10000b \\ T'(b) &= -3b^2 + 10000 \\ T'(b) &= 0 \qquad L = \{\pm \frac{100}{\sqrt{3}}\} \\ T(\frac{100}{\sqrt{3}}) &\approx 384900 \end{split}$$

$$b \approx 57.74cm$$

$$h = \sqrt{10000 - (\frac{100}{\sqrt{3}})^2} \approx 81.65cm$$

3.19 Numerisches Verfahren zur Nullstellenbestimmung

z. B.
$$f(x) = x^3 + 5x - 10$$

probeweise:
 $f(1) = -4$
 $f(2) = 8$
 \Rightarrow Nullstelle zwischen 1 und 2

Vermutung $x_0 = 1.5$

Zum Rechenverfahren

Tangentengleichung $t(x) = f'(x_0)(x - x_0) + f(x_0)$

$$t(x_1) = 0 x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$\to x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

allgemeine Näherungsformel nach Newton (und Raphson)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

n beginnend bei 0

Abbruchbedingung: Nullstelle auf 3 Dezimalen genau. Das bedeutet, dass beim nächsten Schritt sich die 3. Dezimale nicht mehr ändern darf

Beispiel
$$f(x) = x^3 + 5x - 10$$

 $f'(x) = 3x^2 + 5$
 $x_0 = 1.5$
 $x_1 = 1.5 - \frac{1.5^3 + 5 \cdot 1.5 - 10}{3 \cdot 1.5^2 + 5} \approx 1.4255$
 $x_2 = \dots \approx 1.4233$
 $x_3 = \dots \approx 1.42331$

Nullstelle auf 3 Dezimalen genau: x=1.423

118/1

a

$$x^{3} + 2x - 1 = 0$$

$$f'(x) = 3x^{2} + 2$$

$$x_{0} = 0$$

$$x_{1} = 0 - \frac{-1}{2} = 0.5$$

$$x_{2} = \frac{5}{11} = 0.\overline{45}$$

$$x_{3} = \frac{1581}{3487} \approx 0.453398...$$

$$x_{4} = \frac{50302634185}{110945952227} \approx 0.453397...$$

$$x^{*} = 0.453$$

3.19.1 Anwendungen des Newton-Verfahrens

Mögliche Fragestellungen:

- Nullstellen eines Funktionsgraphen f(x) = 0, auch f(x) = a
- Nullstellen der Ableitungsfunktion f'(x) = 0, auch f'(x) = m
- ullet Schnittstellen zweier Funktionsgraphen f(x) = g(x)
- zu Zielfunktion Lösungen finden

а

$$f(x) = x^{3} - 3x - 1$$

$$f'(x) = 3x^{2} - 3$$

$$x_{0} = 2$$

$$x_{1} = 1.8889$$

$$x_{2} = 1.8795$$

$$x_{3} = 1.8794$$

$$x_{4} = 1.8794$$

$$x_{1}^{*} = 1.879$$
...
$$x_{2}^{*} = -1.532$$

$$x_{3}^{*} = -0.347$$

b

$$f(x) = x^{3} + 3x^{2} - 3$$

$$f'(x) = 3x^{2} + 6x$$

$$x_{0} = 1$$

$$x_{1} = 0.8889$$

$$x_{2} = 0.8795$$

$$x_{3} = 0.8794$$

$$x_{4} = 0.8794$$

$$x_{1}^{*} = 0.879$$
...
$$x_{2}^{*} = -2.532$$

$$x_{3}^{*} = -1.347$$

С

$$f(x) = x^{4} - 2x^{3} - 5x^{2} + 1$$

$$f'(x) = 4x^{3} - 6x^{2} - 10x$$

$$x_{0} = 0.5$$

$$x_{1} = 0.4271$$

$$x_{2} = 0.4203$$

$$x_{3} = 0.4204$$

$$x_{4} = 0.4204$$

$$x_{1}^{*} = 0.420$$
...
$$x_{2}^{*} = -1.332$$

$$x_{3}^{*} = -0.521$$

$$x_{4}^{*} = 3.432$$

d

$$f(x) = x^{4} + x^{3} - 4x^{2} + x + 0.5$$

$$f'(x) = 4x^{3} + 3x^{2} - 8x + 1$$

$$x_{0} = 0.5$$

$$x_{1} = 0.6071$$

$$x_{2} = 0.6030$$

$$x_{3} = 0.6030$$

$$x_{1}^{*} = 0.603$$
...
$$x_{2}^{*} = -2.635$$

$$x_{3}^{*} = -0.246$$

$$x_{4}^{*} = 1.278$$

$$f(x) = x^{5} + x^{3} + 1$$

$$f'(x) = 5x^{4} + 3x^{2}$$

$$x_{0} = -1$$

$$x_{1} = -0.8750$$

$$x_{2} = -0.8400$$

$$x_{3} = -0.8376$$

$$x_{4} = -0.8376$$

$$x^{*} = -0.838$$

118/4

а

$$g(x) = x^2;$$
 $h(x) = x^3 - 1$
 $f(x) = g(x) - h(x) = -x^3 + x^2 + 1$
 $f'(x) = -3x^2 + 2x$
 $x_0 = 1.5$
...
 $x^* = 1.466$

b

$$g(x) = x^{3}; \quad h(x) = \frac{1}{2}x^{3} - 2x + 2$$

$$f(x) = g(x) - h(x) = \frac{1}{2}x^{3} + 2x - 2$$

$$f'(x) = \frac{3}{2}x^{2} + 2$$

$$x_{0} = 1$$
...
$$x^{*} = 0.848$$

a

$$f(x) = 0.1x^{4} - x^{2} - x + 1; \quad m = 1$$

$$f'(x) = 0.4x^{3} - 2x - 1 = 1$$

$$0.4x^{3} - 2x - 2 = 0$$

$$x_{0} = 2.5$$
...
$$x^{*} = 2.627$$

b

$$f(x) = -0.1x^4 - x^3 + x^2 + 3; \quad m = -18$$

$$f'(x) = -0.4x^3 - 3x^2 + 2x = -18$$

$$-0.4x^3 - 3x^2 + 2x + 18 = 0$$

$$x_0 = 2.5$$
...
$$x^* = 2.400$$

С

$$f(x) = \frac{1}{10}x^3 + \frac{1}{2}x^2 - 1 + \frac{1}{x}; \quad m = 4$$

$$f'(x) = \frac{3}{10}x^2 + x - \frac{1}{x^2} = 4$$

$$\frac{3}{10}x^2 + x - \frac{1}{x^2} - 4 = 0$$

$$x_0 = 2.5$$
...
$$x^* = 2.418$$

d

$$f(x) = \sqrt{x} - \frac{1}{2}x^3 + 3; \quad m = -10$$

$$f'(x) = \frac{1}{2\sqrt{x}} - \frac{3}{2}x^2 = -10$$

$$\frac{1}{2\sqrt{x}} - \frac{3}{2}x^2 + 10 = 0$$

$$x_0 = 2.5$$
...
$$x^* = 2.622$$

118/6

а

$$f(x) = x^5 + x + 1$$
$$f'(x) = 5x^4 + 1 > 0$$

Die Funktion ist streng monoton steigend, d. h. sie hat genau eine Nullstelle.

b

$$x_0 = -1$$

• • •

$$x^* \approx -0.755$$

$$r = 9cm$$

$$V_K = \frac{4}{3}\pi r^3$$

$$V_Z = h\pi R^2 = \frac{1}{4}V_K = \frac{1}{3}\pi r^3$$

$$hR^2 = \frac{1}{3}r^3$$

$$R^2 + (\frac{h}{2})^2 = r^2 \Rightarrow R^2 = r^2 - \frac{h^2}{4}$$

$$h(r^2 - \frac{h^2}{4}) = hr^2 - \frac{h^3}{4} = \frac{1}{3}r^3$$

$$81h - \frac{h^3}{4} = 243$$

$$-\frac{1}{4}h^3 + 81h - 243 = 0$$

$$(-\frac{1}{4}h^3 + 81h - 243)' = -\frac{3}{4}h^2 + 81$$
...
$$(h_1 \approx -19.345)$$

$$h_2 \approx 3.091$$

$$h_3 \approx 16.25$$

$$R_2 = \sqrt{r^2 - \frac{h_2^2}{4}} \approx 8.87$$

$$R_3 = \sqrt{r^2 - \frac{h_3^2}{4}} \approx 3.87$$

3.20 AB Kurvenuntersuchungen

AB/1

а

$$f_a(x) = x^2 - 2ax + 1$$
$$a \in \mathbb{R}, a > 0$$

Symmetrie

$$f_a(-x) = x^2 + 2ax + 1 \neq f_a(x)$$

-f_a(x) = -x^2 + 2ax - 1 \neq f_a(-x)

$\Rightarrow \mathsf{keine} \; \mathsf{Symmetrie} \; \mathsf{erkennbar}$

Nullstellen

$$x^{2} - 2ax + 1 = 0$$

$$x_{1/2} = \frac{2a \pm \sqrt{(-2a)^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = a \pm \sqrt{a^{2} - 1}$$

Extrema

$$f'_a(x) = 2x - 2a = 0$$
 $L = \{a\}$
 $f''_a(x) = 2 > 0$ $\Rightarrow TP(a|f_a(a) = -a^2 + 1)$

Wendepunkte

$$f_a''(x) = 0$$
 $L = \{\}$

b

С

$$f_a'(4) = 2 \cdot 4 - 2a = 1 \implies a = 3.5$$

d

$$\begin{array}{l} x_{1/2}=a\pm\sqrt{a^2-1}\\ a^2-1<0 \quad fuer \ a<1 \quad \Rightarrow \text{ keine Nullstelle}\\ a^2-1=0 \quad fuer \ a=1 \quad \Rightarrow \text{ 1 Nullstelle}\\ a^2-1>0 \quad fuer \ a>1 \quad \Rightarrow \text{ 2 Nullstellen} \end{array}$$

3.20.1 Ortslinie

Der Graph, auf dem alle Tiefpunkte zu unterschiedlichen a liegen, heißt Ortslinie der Tiefpunkte:

$$T(a|-a^2+1)$$

$$x = a$$

$$y = -a^2 + 1$$

 $\mathsf{setze}\ a\ \mathsf{aus}\ x\mathsf{-}\mathsf{Koordinate}\ \mathsf{in}\ y\ \mathsf{ein}$

$$f(x) = y = -x^2 + 1$$

Funktionsgleichung der Ortskurve der Tiefpunkte

AB/5

a

$$f_a(x) = \frac{1}{2}x^4 - ax^2$$
$$a > 0$$

Symmetrie

$$f_a(-x) = \frac{1}{2}x^4 - ax^2 = f_a(x)$$

⇒ Achsensymmetrie

$$-f_a(x) = -\frac{1}{2}x^4 + ax^2 \neq f_a(-x)$$

⇒ keine Punktsymmetrie erkennbar

Nullstellen

$$\frac{1}{2}x^4 - ax^2 = 0 \qquad | \div x^2$$

$$\frac{1}{2}x^2 - a = 0$$

$$L = \{0; \pm \sqrt{2a}\}$$

Extrema

$$f'_a(x) = 2x^3 - 2ax = 0 \qquad | \div x$$

$$2x^2 - 2a = 0$$

$$x = \pm \sqrt{a}$$

$$f''_a(x) = 6x^2 - 2a$$

$$f''_a(\pm \sqrt{a}) = 4a > 0 \Rightarrow TP$$

$$f''_a(0) = -2a < 0 \Rightarrow HP$$

Wendepunkte

$$f_a''(x) = 0 \quad L = \{\pm \sqrt{\frac{a}{3}}\}$$

$$f_a'''(x) = 12x$$

$$f_a'''(\sqrt{\frac{a}{3}}) = 12\sqrt{\frac{a}{3}} > 0 \Rightarrow RLWP$$

$$f_a'''(-\sqrt{\frac{a}{3}}) = -12\sqrt{\frac{a}{3}} < 0 \Rightarrow LRWP$$

b

$$T(\pm\sqrt{a}| - \frac{1}{2}a^2)$$
$$f_T(x) = -\frac{1}{2}x^4$$

$$W(\pm \sqrt{\frac{a}{3}}| - \frac{5a^2}{18})$$
$$f_W(x) = -\frac{5}{2}x^4$$

AB/4

a

$$\begin{split} f_a(x) &= \frac{1}{4}(x^4 - ax^2) \qquad WP(1|f_a(1)) \\ f_a(-x) &= \frac{1}{4}(x^4 - ax^2) = f_a(x) \\ \Rightarrow \text{Achsensymmetrie} \Rightarrow \text{zweiter Wendepunkt bei } x = -1 \\ f_a''(\pm 1) &= 3 \cdot 1^2 - \frac{1}{2}a = 0 \quad \Rightarrow a = 6 \\ f_6(\pm 1) &= \frac{1}{4}(1^4 - 6 \cdot 1^2) = -\frac{5}{4} \end{split}$$

b

$$f_a''(x) = 3x^2 - \frac{1}{2}a = 0 \quad L = \{\pm\sqrt{\frac{a}{6}}\}$$

$$t_1(x) = -\frac{a}{3}\sqrt{\frac{a}{6}}x + \frac{a^2}{48}$$

$$t_2(x) = \frac{a}{3}\sqrt{\frac{a}{6}}x + \frac{a^2}{48}$$

3.21 Wiederholung

115/9

$$\begin{split} O(a,h) &= a^2 + 4ah \\ V(a,h) &= a^2 \cdot h = 40dm^3 \quad \Rightarrow h = \frac{40dm^3}{a^2} \\ O(a) &= a^2 + 160dm^3 \cdot a^{-1} \\ O'(a) &= 2a - 160dcm^3 \cdot a^{-2} \\ a &= \sqrt[3]{80dm^3} \approx 4.309dm \\ h &= \frac{40dm^3}{\sqrt[3]{80dm^3}^2} = \sqrt[3]{10} \approx 2.154dm \end{split}$$

119/8

$$h(0) = 400m$$
$$h(370) = 0$$

- a h' beschreibt das Gefälle des Flusses und gibt den Höhenverlust des Wassers pro Kilometer an
- b ein Stausee hat einen waagerechten Abschnitt des Graphen zur Folge, ein Wasserfall eine Sprungstelle
- c h' ist nicht positiv, da das Wasser ausschließlich nach unten fließt; die Einheit ist $\frac{m}{km}$

3.22 Sinus- und Kosinusfunktion

$$f(\alpha) = \sin(\alpha)$$

$$f(x) = \sin(x)$$

$$\frac{\alpha}{360^{\circ}} = \frac{x}{U} \qquad U = 2\pi r$$

$$x = \frac{\alpha \cdot 2\pi}{360^{\circ}} \qquad \alpha = \frac{x \cdot 360^{\circ}}{2\pi}$$

wichtige x-Koordinaten

$$x = 3.14... = \pi$$
 $x = 6.28... = 2\pi$
 $x = 1.57... = \frac{\pi}{2}$ $x = 4.71... = \frac{3\pi}{2}$
 $sin(x + \frac{\pi}{2}) = cos(x)$ $sin(x) = cos(x - \frac{\pi}{2})$

3.22.1 Vielfachheit der Lösungen von (geniometrischen) Gleichungen

$$sin(x) = 0.7$$

 $x = asin(0.7) \approx 0.775$
 $x_n \approx 0.775 + n \cdot 2\pi$
 $x_m \approx \pi - 0.775 + m \cdot 2\pi$
 $n, m \in \mathbb{Z}$
 $cos(x) = 0.3$
 $x = acos(0.3) \approx 1.266$
 $x_n \approx 1.266 + n \cdot 2\pi$
 $x_m \approx -1.266 + n \cdot 2\pi$
 $x_m \approx -1.266 + n \cdot 2\pi$
 $x_m \approx -1.266 + n \cdot 2\pi$

a

$$sin(x) = 0.9396$$

 $x = asin(0.9396) \approx 1.221$
 $x_n \approx 1.221 + n \cdot 2\pi$
 $x_m \approx \pi - 1.221 + m \cdot 2\pi$

b

$$sin(x) = 0.5519$$

 $x = asin(0.5519) \approx 0.585$
 $x_n \approx 0.585 + n \cdot 2\pi$
 $x_m \approx \pi - 0.585 + m \cdot 2\pi$

С

$$cos(x) = 0.6294$$

 $x = asin(0.6294) \approx 0.890$
 $x_n \approx 0.890 + n \cdot 2\pi$
 $x_m \approx -0.890 + m \cdot 2\pi$

d

$$cos(x) = -0.8870$$

 $x = asin(-0.8870) \approx 2.662$
 $x_n \approx 2.662 + n \cdot 2\pi$
 $x_m \approx -2.662 + m \cdot 2\pi$

128/7

а

$$sin(x) = 0.63$$

$$x = asin(0.63) \approx 0.682$$

$$x_n \approx 0.682 + n \cdot 2\pi$$

$$x_m \approx \pi - 0.682 + m \cdot 2\pi$$

b

$$cos(x) = -0.55$$

$$x = asin(-0.55) \approx 2.153$$

$$x_n \approx 2.153 + n \cdot 2\pi$$

$$x_m \approx -2.153 + m \cdot 2\pi$$

С

$$sin(x) = -\frac{1}{2}$$

$$x = asin(-\frac{1}{2}) \approx -0.524$$

$$x_n \approx -0.524 + n \cdot 2\pi$$

$$x_m \approx \pi + 0.524 + m \cdot 2\pi$$

d

$$cos(x) = -\frac{1}{2}\sqrt{2}$$

$$x = asin(-\frac{1}{2}\sqrt{2}) \approx 2.356$$

$$x_n \approx 2.356 + n \cdot 2\pi$$

$$x_m \approx -2.356 + m \cdot 2\pi$$

3.22.2 Die allgemeine Sinusfunktion

$$f(x) = y = a \cdot \sin(b(x - c)) + d$$

- a Streckung entlang der y-Achse (Amplitude)
- b Streckung entlang der x-Achse (Perioden pro 2π , Periodenlänge $p=\frac{2\pi}{b})$
- c Verschiebung in x-Richtung (für c > 0 nach rechts)
- d Verschiebung in y-Richtung

3.22.3 AB Die Funktionen $f \colon x \mapsto a \cdot sin(b(x-c))$ und ihre Graphen

AB/3

а

$$f(x) = 3 \cdot \sin(\frac{1}{2}(x - \pi))$$

$$p = 4\pi$$

$$3 \cdot \sin(\frac{1}{2}(x - \pi))$$

$$x_H = 2\pi + n \cdot p$$

$$x_T = n \cdot p$$

$$x_W = \pi + \frac{n}{2} \cdot p$$

b

$$f(x) = 2 \cdot \sin(\frac{2}{3}x)$$

$$p = 3\pi$$

$$x_H = \frac{3}{4}\pi + n \cdot p$$

$$x_T = 2\frac{1}{4}\pi + n \cdot p$$

$$x_W = \frac{n}{2} \cdot p$$

С

$$f(x) = 4 \cdot \sin(x - \frac{\pi}{6})$$

$$p = 2\pi$$

$$x_H = \frac{2}{3}\pi + n \cdot p$$

$$x_T = \frac{5}{3}\pi + n \cdot p$$

$$x_W = \frac{\pi}{6} + \frac{p}{2}$$

$$f(x) = a \cdot \sin(b \cdot x + e)$$

а

$$f(x) = 20 \cdot \sin(\frac{\pi}{20} \cdot x - \frac{\pi}{2})$$

b

$$f(x) = 6 \cdot \sin(\frac{\pi}{12} \cdot x + \frac{\pi}{4})$$

С

$$f(x) = 4 \cdot \sin(\frac{\pi}{4} \cdot x - \frac{\pi}{2})$$

AB/6

$$f(t) = a \cdot sin(b(t-c))$$
 $-2 \le t \le 13$

a Die Sonne bewegt sich aus Sicht der Aufnahmen periodisch auf und ab. Ihr Höhenverlauf lässt sich daher über eine Sinuskurve modellieren.

b

$$f(x) = a \cdot \sin(\frac{\pi}{12} \cdot (x - 6))$$

3.22.4 Ableitung der Sinusfunktion

sin(x), cos(x)

Annäherung mit Taylorreihe

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a)^{1} + \frac{f''(a)}{2!}(x - a)^{2} + \frac{f'''(a)}{3!}(x - a)^{3} + \dots$$

$$a = x_{0} = 0$$

$$f(x_{0}) = f(0) + \frac{f'(0)}{1!}x^{1} + \frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3} + \dots$$

$$sin(x) = 0 + x^{1} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots$$

$$(sin(x))' = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} = \dots = cos(x)$$

$$f(x) = sin(x)$$

$$f'(x) = cos(x)$$

$$f''(x) = -sin(x)$$

$$f'''(x) = -cos(x)$$

$$f''''(x) = sin(x)$$

. . .

130/1

a

$$f(x) = 12 \cdot sin(x)$$

$$f'(x) = 12 \cdot cos(x)$$

b

$$f(x) = -2 \cdot cos(x)$$

$$f'(x) = -2 \cdot (-sin(x))$$

С

$$f(x) = \sqrt{5} \cdot \cos(x)$$

$$f'(x) = \sqrt{5} \cdot (-\sin(x))$$

d

$$f(x) = \frac{1}{\pi} \cdot \sin(x)$$
$$f'(x) = \frac{1}{\pi} \cdot \cos(x)$$

e

$$f(x) = 5x^3 - \sin(x)$$

$$f'(x) = 15x^2 - \cos(x)$$

f

$$f(x) = 2 \cdot cos(x) - sin(x)$$

$$f'(x) = 2 \cdot (-sin(x)) - cos(x)$$

130/3

b

$$f(x) = 3 \cdot \sin(x)$$

$$P(\frac{5\pi}{3}|?)$$

$$y = f(\frac{5\pi}{3}) \approx -2.598$$

$$f'(x) = 3 \cdot \cos(x)$$

$$m_t = f'(\frac{5\pi}{3}) = 1.5$$

$$b_t = -2.598 - 1.5 \cdot \frac{5\pi}{3} \approx -10.452$$

$$t(x) = 1.5x - 10.452$$

С

$$f(x) = 2 \cdot \sin(x) - \cos(x); \quad x \in [0; 2\pi]$$

$$f'(x) = 2 \cdot \cos(x) + \sin(x)$$

$$f'(x) = 0 = 2 \cdot \cos(x) + \sin(x)$$

$$2 = -\frac{\sin(x)}{\cos(x)} = -\tan(x) \quad \Rightarrow \quad x = a\tan(-2)$$

$$L = \{a\tan(-2) + n\pi\} \quad n \in \{1; 2\}$$

$$f''(x) = \cos(x) - 2 \cdot \sin(x)$$

$$f''(a\tan(-2) + \pi) \approx -2.23 < 0$$

$$HP(a\tan(-2) + \pi|f(a\tan(-2) + \pi)) = HP(2.034|2.236)$$

$$f''(a\tan(-2) + 2\pi|f(a\tan(-2) + 2\pi)) = TP(5.176| - 2.236)$$

$$d$$

$$f(x) = 4 \cdot \cos(x) + 2x; \quad x \in [0; 2\pi]$$

$$f'(x) = -4 \cdot \sin(x) + 2$$

$$0.5 = \sin(x) \quad \Rightarrow \quad x = a\sin(0.5)$$

$$L = \{a\sin(0.5); \pi - a\sin(0.5)\}$$

$$f''(x) = -4 \cdot \cos(x)$$

$$f''(a\sin(0.5)) \approx -3.46 < 0$$

$$HP(a\sin(0.5)|f(a\sin(0.5))) = HP(0.524|4.51)$$

$$f''(\pi - a\sin(0.5)) \approx 3.46 > 0$$

$$TP(\pi - a\sin(0.5)|f(\pi - a\sin(0.5))) = TP(2.618|1.772)$$

3.23 Neue Funktionen aus alten Funktionen

gegeben sind

$$f(x) = \sin(x)$$

$$g(x) = \sqrt{x}$$

$$h(x) = x^2 + 5$$

Produkt

$$i(x) = f(x) \cdot g(x) = \sin(x) \cdot \sqrt{x}$$
$$j(x) = h(x) \cdot f(x) = (x^2 + 5) \cdot \sin(x)$$

Quotient

$$k(x) = \frac{g(x)}{f(x)} = \frac{\sqrt{x}}{\sin(x)}$$
$$l(x) = \frac{h(x)}{g(x)} = \frac{x^2 + 5}{\sqrt{x}}$$

Verkettung

$$m(x) = f(g(x)) = \sin(\sqrt{x})$$

$$n(x) = g(f(x)) = \sqrt{\sin(x)}$$

$$o(x) = f(g(h(x))) = \sin(\sqrt{x^2 + 5})$$

3.23.1 Ableitungsregeln

Produktregel

$$k(x) = f(x) \cdot g(x)$$

$$k'(x) = \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x+h) + f(x) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{[f(x+h) - f(x)] \cdot g(x+h) + f(x) \cdot [g(x+h) - g(x)]}{h}$$

$$= f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Kettenregel

$$k(x) = f(g(x))$$

$$k'(x) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \cdot \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(z+i) - f(z)}{i} \cdot g'(x)$$

$$= f'(z) \cdot g'(x)$$

$$= f'(g(x)) \cdot g'(x)$$

$$g(x) = z \qquad g(x+h) = z+i$$

Beispiele

$$k(x) = (x^2 + 2x - 7) \cdot \sin(x)$$

$$k'(x) = (2x + 2) \cdot \sin(x) + (x^2 + 2x - 7) \cdot \cos(x)$$

$$k(x) = \sin(x^3 - 5x)$$

$$k'(x) = \cos(x^3 - 5x) \cdot (3x^2 - 5)$$

135/1

а

$$f(x) = (x+2)^4$$

$$f'(x) = 4(x+2)^3$$

b

$$f(x) = (8x + 2)^3$$

$$f'(x) = 3(8x + 2)^2 \cdot 8 = 24(8x + 2)^2$$

С

$$f(x) = (\frac{1}{2} - 5x)^3$$
$$f'(x) = 3(\frac{1}{2} - 5x)^2 \cdot (-5) = -15(\frac{1}{2} - 5x)^2$$

d

$$f(x) = \frac{1}{4}(x^2 - 5)^2$$
$$f'(x) = \frac{1}{2}(x^2 - 5) \cdot 2x = x^3 - 5x$$

135/2

а

$$f(x) = \frac{1}{(x-1)^2}$$
$$f'(x) = -2(x-1)^{-3}$$

b

$$f(x) = \frac{1}{(3x-1)^2}$$
$$f'(x) = -2(3x-1)^{-3} \cdot 3 = -6(3x-1)^{-3}$$

е

$$f(x) = sin(2x)$$

$$f'(x) = cos(2x) \cdot 2 = 2cos(2x)$$

f

$$f(x) = \sin(2x + \pi)$$

$$f'(x) = \cos(2x + \pi) \cdot 2 = 2\cos(2x + \pi) = -2\cos(2x)$$

138/1

g

$$f(x) = \frac{2}{x} \cdot \cos(x)$$

$$f'(x) = -2x^{-2} \cdot \cos(x) - \frac{2}{x} \cdot \sin(x)$$

h

$$f(x) = sin(x) \cdot cos(x)$$

$$f'(x) = (cos(x))^2 - (sin(x))^2 = cos(2x)$$

i

$$f(x) = x^{2} \cdot sin(x)$$

$$f'(x) = 2x \cdot sin(x) + x^{2} \cdot cos(x)$$

j

$$f(x) = \frac{1}{\sqrt{x}} \cdot \cos(x)$$
$$f'(x) = -\frac{\cos(x)}{2\sqrt{x^3}} - \frac{\sin(x)}{\sqrt{x}}$$

k

$$f(x) = \frac{\pi}{4} \cdot \sin(x) \cdot (2 - x)$$

$$f'(x) = \frac{\pi}{4} \cdot \cos(x) \cdot (2 - x) - \frac{\pi}{4} \cdot \sin(x)$$

١

$$f(x) = \sqrt{3} \cdot \sqrt{x}$$
$$f'(x) = \frac{\sqrt{3}}{2\sqrt{x}}$$

135/4

a

$$f(x) = 0.25 \cdot \sin(2x + \pi)$$

$$f'(x) = 0.25 \cdot \cos(2x + \pi) \cdot 2 = -0.5 \cdot \cos(2x)$$

b

$$f(x) = \frac{2}{3} \cdot \sin(\pi - 3x)$$

$$f'(x) = \frac{2}{3} \cdot \cos(\pi - 3x) \cdot (-3) = 2 \cdot \cos(3x)$$

С

$$f(x) = -\cos(x^2 + 1)$$

$$f'(x) = \sin(x^2 + 1) \cdot 2x$$

d

$$f(x) = \frac{1}{3} \cdot (\cos(x))^2$$

$$f'(x) = \frac{1}{3} \cdot 2 \cdot \cos(x) \cdot (-\sin(x)) = -\frac{2}{3} \cdot \cos(x) \cdot \sin(x)$$

е

$$f(x) = \sqrt{3x}$$
$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{3x}} \cdot 3 = \frac{3}{2\sqrt{3x}}$$

f

$$f(x) = \sqrt{3+x}$$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{3+x}} \cdot 1 = \frac{1}{2\sqrt{3+x}}$$

g

$$f(x) = \sqrt{7x - 5}$$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{7x - 5}} \cdot 7 = \frac{7}{2 \cdot \sqrt{7x - 5}}$$

h

$$f(x) = \sqrt{7x^2 - 5}$$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{7x^2 - 5}} \cdot 14x = \frac{7x}{\sqrt{7x^2 - 5}}$$

i

$$f(x) = \frac{1}{\sin(x)}$$
$$f'(x) = -\frac{1}{(\sin(x))^2} \cdot \cos(x) = -\frac{\cos(x)}{(\sin(x))^2}$$

Ableitungen mit mehr als zwei Funktionen

$$l = g \cdot [h \cdot k]$$

$$l' = g' \cdot h \cdot k + g \cdot [h' \cdot k + h \cdot k']$$

$$= g' \cdot h \cdot k + g \cdot h' \cdot k + g \cdot h \cdot k'$$

$$l = g(h(k))$$

$$l' = g'(h(k)) \cdot h'(k) \cdot k'$$

$$l = g \cdot h(k)$$

$$l' = g' \cdot h(k) + g \cdot h'(k) \cdot k'$$

$$l = g(h \cdot k)$$

$$l' = g'(h \cdot k) \cdot [h' \cdot k + h \cdot k']$$

Quotientenregel

$$\begin{split} l &= \frac{g}{h} = g \cdot h^{-1} \\ l' &= g' \cdot h^{-1} + g \cdot \left[-h^{-2} \cdot h' \right] \\ &= g' \cdot h^{-1} - g \cdot h^{-2} \cdot h' \\ &= \frac{g'}{h} - \frac{g \cdot h'}{h^2} = \frac{g' \cdot h}{h \cdot h} - \frac{g \cdot h'}{h^2} \\ &= \frac{g' \cdot h - g \cdot h'}{h^2} \end{split}$$

138/2

е

$$f(x) = (5 - 4x)^3 \cdot x^{-2}$$

$$f'(x) = 3(5 - 4x)^2 \cdot (-4) \cdot x^{-2} + (5 - 4x)^3 \cdot (-2x^{-3})$$

$$= -\frac{2 \cdot (5 - 4x)^2 \cdot (2x + 5)}{x^3}$$

f

$$f(x) = 3x \cdot cos(2x)$$

$$f'(x) = 3 \cdot cos(2x) + 3x \cdot (-sin(2x)) \cdot 2$$

$$= 3 \cdot (cos(2x) - 2x \cdot sin(2x))$$

$$f(x) = 3x \cdot (\sin(x))^2$$

$$f'(x) = 3 \cdot (\sin(x))^2 + 3x \cdot 2 \cdot \sin(x) \cdot \cos(x)$$

$$= 3 \cdot \sin(x) \cdot (\sin(x) + 2x \cdot \cos(x))$$

h

$$f(x) = (2x - 1)^{2} \cdot \sqrt{x}$$

$$f'(x) = 2(2x - 1) \cdot 2 \cdot \sqrt{x} + (2x - 1)^{2} \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{(2x - 1) \cdot (10x - 1)}{2\sqrt{x}}$$

i

$$f(x) = 0.5x^{2} \cdot \sqrt{4 - x}$$

$$f'(x) = x \cdot \sqrt{4 - x} + 0.5x^{2} \cdot \frac{1}{2\sqrt{4 - x}} \cdot (-1)$$

$$= \frac{(4 - 1.25x) \cdot x}{\sqrt{4 - x}}$$

140/2

a

$$f(x) = \frac{1 - x^2}{3x + 5}$$

$$f'(x) = \frac{-2x \cdot (3x + 5) - (1 - x^2) \cdot 3}{(3x + 5)^2}$$

$$= -\frac{(3x + 1) \cdot (x + 3)}{(3x + 5)^2}$$

b

$$g(x) = \frac{\sqrt{x}}{x+2}$$

$$g'(x) = \frac{\frac{1}{2\sqrt{x}} \cdot (x+2) - \sqrt{x} \cdot 1}{(x+2)^2}$$

$$= \frac{2-x}{2\sqrt{x} \cdot (x+2)^2}$$

$$h(x) = \frac{3 \cdot \sin(x)}{6x - 1}$$
$$h'(x) = \frac{3 \cdot \cos(x) \cdot (6x - 1) - 3 \cdot \sin(x) \cdot 6}{(6x - 1)^2}$$

d

$$k(x) = \frac{\sin(x)}{\cos(x)}$$

$$k'(x) = \frac{\cos(x) \cdot \cos(x) - \sin(x) \cdot (-\sin(x))}{(\cos(x))^2}$$

$$= 1 + (\tan(x))^2$$

3.24 Exponentialfunktionen - Ableitung

$$f(x) = 2^x$$
 $f'(x)$ $g(x) = 4^x$ $g'(x)$

Zwischen 2^x und 4^x liegt eine Exponentialfunktion, deren Ableitungsfunktion genau der Ursprungsfunktion entspricht. Sie wird natürliche Exponentialfunktion genannt.

$$f(x) = e^x$$
 Eulersche Zahl $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.71828$

$$f(x) = e^{x}$$

$$f'(x) = e^{x}$$

$$f''(x) = e^{x}$$

. . .

$$e^x \leftrightarrow log_e(x) = ln(x)$$

 $\Rightarrow e^{ln(x)} = ln(e^x) = x$

$$2^{x} = 5^{x \cdot \frac{\log(2)}{\log(5)}} = 5^{x \cdot \log_{5}(2)}$$
$$2^{x} = e^{x \cdot \ln(2)}$$
$$10^{x} = e^{x \cdot \ln(10)}$$

$$f(x) = e^{x \cdot ln(2)} = 2^x$$

$$f'(x) = e^{x \cdot ln(2)} \cdot ln(2) = 2^x \cdot ln(2) \approx 2^x \cdot 0.7$$

$$f(x) = e^{x \cdot ln(4)} = 4^x$$

$$f'(x) = e^{x \cdot ln(4)} \cdot ln(4) = 4^x \cdot ln(4) \approx 4^x \cdot 1.4$$

142/3

а

$$f(x) = x \cdot e^x$$

$$f'(x) = 1 \cdot e^x + xe^x = e^x \cdot (x+1)$$

b

$$f(x) = \frac{e^x}{x}$$

$$f'(x) = \frac{e^x \cdot x - e^x \cdot 1}{x^2} = \frac{e^x \cdot (x - 1)}{x^2}$$

С

$$f(x) = \frac{x}{e^x}$$

$$f'(x) = \frac{1 \cdot e^x - x \cdot e^x}{(e^x)^2} = \frac{1 - x}{e^x}$$

$$f(x) = (x+1) \cdot e^x$$

$$f'(x) = 1 \cdot e^x + (x+1) \cdot e^x = e^x \cdot (x+2)$$

е

$$f(x) = \frac{x}{e^{-0.5x}}$$

$$f(x) = \frac{1 \cdot e^{-0.5x} - x \cdot (-0.5) \cdot e^{-0.5x}}{(e^{-0.5x})^2} = e^{0.5x} \cdot (1 + 0.5x)$$

f

$$f(x) = \frac{e^x + 1}{x}$$
$$f'(x) = \frac{e^x \cdot x - (e^x + 1) \cdot 1}{x^2} = \frac{e^x \cdot (x - 1) - 1}{x^2}$$

g

$$f(x) = \frac{e^x}{x - 1}$$
$$f'(x) = \frac{e^x \cdot (x - 1) - e^x \cdot 1}{(x - 1)^2} = \frac{e^x \cdot (x - 2)}{(x - 1)^2}$$

h

$$f(x) = \frac{e^{3x}}{x+2}$$
$$f'(x) = \frac{3 \cdot e^{3x} \cdot (x+2) - e^{3x} \cdot 1}{(x+2)^2} = \frac{e^{3x} \cdot (3x+5)}{(x+2)^2}$$

i

$$f(x) = x^{2} + x \cdot e^{0.1x} = x^{2} \cdot \left(1 + \frac{e^{0.1x}}{x}\right)$$
$$f'(x) = 2x \cdot \left(1 + \frac{e^{0.1x}}{x}\right) + x^{2} \cdot \frac{e^{0.1x} \cdot \left(0.1x - 1\right)}{x^{2}} = e^{0.1x} \cdot \left(0.1x + 1\right) + 2x$$

j

$$f(x) = x \cdot e^{-2x+1}$$

$$f'(x) = 1 \cdot e^{-2x+1} + x \cdot (-2e^{-2x+1}) = e^{1-2x} \cdot (1-2x)$$

k

$$f(x) = x^2 \cdot e^{ax}$$

$$f'(x) = 2x \cdot e^{ax} + x^2 \cdot a \cdot e^{ax} = x \cdot e^{ax} \cdot (2 + ax)$$

١

$$f(x) = x \cdot e^{2x^2 + 1}$$

$$f'(x) = 1 \cdot e^{2x^2 + 1} + x \cdot e^{2x^2 + 1} \cdot 4x = e^{2x^2 + 1} \cdot (4x^2 + 1)$$

3.24.1 Basis $\neq e$

$$f(x) = 10^{x} = (e^{z})^{x} = e^{\ln(10) \cdot x}$$

$$e^{z} = 10 \implies z = \ln(10)$$

$$\implies b^{x} = e^{\ln(b) \cdot x}$$

$$f'(x) = e^{\ln(10) \cdot x} \cdot \ln(10)$$
$$= 10^{x} \cdot \ln(10)$$
$$\Rightarrow b^{x} \cdot \ln(b)$$

145/8

f

$$\begin{array}{ll} e^{2x}+10=6.5\cdot e^x & | \text{subst. } e^x=z\\ z^2+10=6.5z & |-6.5z\\ z^2-6.5z+10=0\\ \\ z_{1/2}=\frac{6.5\pm\sqrt{42.25-40}}{2}\\ z_1=4 & z_2=2.5 & | \text{resubst.} \end{array}$$

$$z_1 = 4 = e^x \qquad |ln$$

$$x_1 = ln(4) \approx 1.386$$

$$z_2 = 2.5 = e^x$$
 | ln
 $x_2 = ln(2.5) \approx 0.916$

a

$$\begin{array}{ll} e^{2x} - 6 \cdot e^x + 8 = 0 & | \text{subst. } e^x = z \\ z^2 - 6z + 8 = 0 \\ \\ z_{1/2} = \frac{6 \pm \sqrt{36 - 32}}{2} \\ z_1 = 4 \quad z_2 = 2 & | \text{resubst.} \\ \\ z_1 = 4 = e^x \quad | \ln x_1 = \ln(4) \approx 1.386 \end{array}$$

$$z_2 = 2 \qquad |ln$$

$$x_2 = ln(2) \approx 0.693$$

b

$$e^{x}-2-\frac{15}{e^{x}}=0$$
 |subst. $e^{x}=z$
 $z-2-\frac{15}{z}=0$ | $\cdot z$
 $z^{2}-2z-15=0$
 $z_{1/2}=\frac{2\pm\sqrt{4+60}}{2}$
 $z_{1}=5$ ($z_{2}=-3$) |resubst.

$$z_1 = 5 = e^x \qquad |ln$$

$$x_1 = ln(5) \approx 1.609$$

g

$$(e^{2x} - 6) \cdot (5 - e^{3x}) = 0$$
 |subst. $e^x = z$
 $(z^2 - 6) \cdot (5 - z^3) = 0$

$$z^2 - 6 = 0$$
 $|\sqrt{z_1} = \sqrt{6} \approx 2.449$ |resubst.
 $z_1 = \sqrt{6} = e^x$ $|ln|$
 $x_1 = ln(\sqrt{6}) \approx 0.896$

$$5 - z^3 = 0 \qquad |\sqrt[3]{}$$

$$z_2 = \sqrt[3]{5} \approx 1.710 \qquad |\text{resubst.}$$

$$z_2 = \sqrt[3]{5} = e^x \qquad |ln|$$

$$x_2 = ln(\sqrt[3]{5}) \approx 0.536$$

h

$$2 \cdot e^{x} + 15 = 8 \cdot e^{-x} \qquad | \text{subst. } e^{x} = z$$

$$2z + 15 = \frac{8}{z} \qquad | -\frac{8}{z}$$

$$2z + 15 - \frac{8}{z} = 0 \qquad | \cdot z$$

$$2z^{2} + 15z - 8 = 0$$

$$z_{1/2} = \frac{-15 \pm \sqrt{225 + 64}}{4}$$

$$z_{1} = 0.5 \quad (z_{2} = -8) \qquad | \text{resubst.}$$

$$z_1 = 0.5 = e^x$$
 | ln
 $x = ln(0.5) \approx -0.693$

146/9

$$h(t) = 0.02 \cdot e^{kt}$$

а

$$h(0) = 0.02$$

$$h(6) = 0.02 \cdot e^{6k} = 0.4$$

$$e^{6k} = 20$$

$$6k = \ln(20)$$

$$k = \frac{\ln(20)}{6} \approx 0.499$$

С

$$h(9) = 0.02 \cdot e^{0.499 \cdot 9} \approx 1.784$$

d

$$h(t) = 0.02 \cdot e^{0.499t} = 3$$

$$e^{0.499t} = 150$$

$$0.499t = \ln(150)$$

$$t = \frac{\ln(150)}{0.499} \approx 10.041$$

е

$$h(t+1) - h(t) = 1.5$$

$$0.02 \cdot e^{k \cdot (t+1)} - 0.02 \cdot e^{k \cdot t} = 1.5$$

$$0.02e^{kt} \cdot (e^k - 1) = 1.5$$

$$e^{kt} \cdot (e^k - 1) = 75$$

$$0.647e^{0.499t} = 75$$

$$e^{0.499t} = 115.92$$

$$0.499t = \ln(115.92)$$

$$t = \frac{\ln(115.92)}{0.499} \approx 9.525$$

f

$$h'(t) = 0.02k \cdot e^{kt} = 1$$

$$0.02 \cdot 0.499 \cdot e^{0.499t} = 1$$

$$e^{0.499t} = 100.2$$

$$0.499t = \ln(100.2)$$

$$t = \frac{\ln(100.2)}{0.499} \approx 9.233$$

g

$$t \geqslant 9$$

$$k(t) = 3.5 - 8.2 \cdot e^{-0.175t}$$

$$k(t) = 3.5 - 8.2 \cdot e^{-0.175t} = 3$$

$$e^{-0.175t} \approx 0.061$$

$$-0.175t \approx \ln(0.061)$$

$$t \approx \frac{\ln(0.061)}{-0.175} \approx 15.982$$

$$k(t+1) - k(t) = 0.2$$

$$3.5 - 8.2 \cdot e^{-0.175 \cdot (t+1)} - 3.5 + 8.2 \cdot e^{-0.175t} = 0.2$$

$$-8.2 \cdot e^{-0.175 \cdot (t+1)} + 8.2 \cdot e^{-0.175t} = 0.2$$

$$-8.2 \cdot e^{-0.175t} \cdot (e^{-0.175} - 1) = 0.2$$

$$1.316 \cdot e^{-0.175t} \approx 0.2$$

$$e^{-0.175t} \approx 0.152$$

$$-0.175t \approx \ln(0.152)$$

$$t \approx \frac{\ln(0.152)}{-0.175} \approx 10.765$$

3.25 Wiederholung

3.25.1 Sinusfunktionen und Newton-Verfahren

130/8

$$P(x_0|f(x_0)) \qquad Q(x_0|g(x_0)) \qquad 0 \leqslant x \leqslant 2\pi$$

a

$$f(x) = 2 \cdot \sin(x) \qquad g(x) = x^{2}$$

$$f'(x) = 2 \cdot \cos(x) \qquad g'(x) = 2x$$

$$h(x) = f'(x) - g'(x) = 2 \cdot \cos(x) - 2x = 0$$

$$h'(x) = -2 \cdot \sin(x) - 2$$

$$x_0 = 0$$

$$x_1 = x_0 - \frac{h(x_0)}{h'(x_0)} = 1$$

$$x_2 = x_1 - \frac{h(x_1)}{h'(x_1)} \approx 0.75036$$

$$x_3 = x_2 - \frac{h(x_2)}{h'(x_2)} \approx 0.73911$$

$$x_4 = x_3 - \frac{h(x_3)}{h'(x_3)} \approx 0.73908$$

$$x_5 = x_4 - \frac{h(x_4)}{h'(x_4)} \approx 0.73909$$

$$x^* \approx 0.7391$$

$$P(x^*|f(x^*)) \approx P(0.7391|1.3472)$$

 $Q(x^*|g(x^*)) \approx Q(0.7391|0.5463)$

b

$$f(x) = \sin(x) + 2 \cdot \cos(x) \qquad g(x) = x^{3}$$

$$f'(x) = \cos(x) - 2 \cdot \sin(x) \qquad g'(x) = 3x^{2}$$

$$h(x) = f'(x) - g'(x) = \cos(x) - 2 \cdot \sin(x) - 3x^{2} = 0$$

$$h'(x) = -\sin(x) - 2 \cdot \cos(x) - 6x$$

$$x_{0} = 0$$

$$x_{1} = x_{0} - \frac{h(x_{0})}{h'(x_{0})} = 0.5$$

$$x_{2} = x_{1} - \frac{h(x_{1})}{h'(x_{1})} \approx 0.34120$$

$$x_{3} = x_{2} - \frac{h(x_{2})}{h'(x_{2})} \approx 0.32336$$

$$x_{4} = x_{3} - \frac{h(x_{3})}{h'(x_{3})} \approx 0.32311$$

$$x_{5} = x_{4} - \frac{h(x_{4})}{h'(x_{4})} \approx 0.32311$$

$$x^{*} \approx 0.3231$$

$$P(x^*|f(x^*)) \approx P(0.3231|2.2140)$$

 $Q(x^*|g(x^*)) \approx Q(0.3231|0.0337)$

3.25.2 Produktregel

138/3

а

$$f(x) = (2x - 8) \cdot \sin(x) \qquad f'(x) = 2 \cdot \cos(x)$$

$$f(x) = a \cdot b \qquad f'(x) = a' \cdot b + a \cdot b' \neq a' \cdot b'$$

$$\Rightarrow \qquad f'(x) = 2 \cdot \sin(x) + (2x - 8) \cdot \cos(x)$$

b

$$g(x) = (2x - 3) \cdot (8 - x)^{2}$$

$$g'(x) = 2 \cdot (8 - x)^{2} + (2x - 3) \cdot (16 - 2x)$$

3.25.3 Quotientenregel

140/11

а

$$f(x) = \sin(x) + \tan(x) = \sin(x) + \frac{\sin(x)}{\cos(x)}$$
$$f'(x) = \cos(x) + (\cos(x))^{-2}$$

b

$$f(x) = \sin(x) \cdot \tan(x) = \frac{(\sin(x))^2}{\cos(x)}$$
$$f'(x) = \sin(x) + \frac{\sin(x)}{(\cos(x))^2}$$

С

$$f(x) = \frac{\cos(x)}{\tan(x)} = \frac{(\cos(x))^2}{\sin(x)}$$
$$f'(x) = -2 \cdot \cos(x) - \frac{(\cos(x))^3}{(\sin(x))^2}$$

d

$$f(x) = \frac{tan(x)}{2} = \frac{sin(x)}{2 \cdot cos(x)}$$
$$f'(x) = \frac{1}{2 \cdot (cos(x))^2}$$

е

$$f(x) = tan(2x) = \frac{sin(2x)}{cos(2x)}$$
$$f'(x) = \frac{2}{(cos(2x))^2}$$

f

$$f(x) = tan(x^2) = \frac{sin(x^2)}{cos(x^2)}$$
$$f'(x) = \frac{2x}{(cos(x^2))^2}$$

g

$$f(x) = (tan(x))^{2} = \frac{(sin(x))^{2}}{(cos(x))^{2}}$$
$$f'(x) = \frac{2 \cdot sin(x)}{(cos(x))^{3}}$$

h

$$f(x) = \frac{2}{\tan(x)} = \frac{2 \cdot \cos(x)}{\sin(x)}$$
$$f'(x) = -\frac{2}{(\sin(x))^2}$$

3.25.4 Kurvendiskussion

146/13

$$f(x) = 80000 \cdot e^{0.002x}$$
$$0 = 01.10.2002$$

a

$$92 = 01.01.2003$$

 $f(92) = 80000 \cdot e^{0.002 \cdot 92} \approx 96161.27$
 $457 = 01.01.2004$
 $f(457) = 80000 \cdot e^{0.002 \cdot 457} \approx 199542.38$

b

$$f(x) = 80000 \cdot e^{0.002x} = 1000000$$

$$e^{0.002x} = 12.5$$

$$x = \frac{\ln(12.5)}{0.002} \approx 1262.86 \stackrel{?}{=} 17.03.2006$$

$$f(x) = 80000 \cdot e^{0.002x} = 1000000000$$

$$e^{0.002x} = 12500$$

$$x = \frac{\ln(12500)}{0.002} \approx 4716.74 \stackrel{?}{=} 31.08.2015$$

С

$$2 \cdot f(x_1) = f(x_2)$$

$$2 \cdot 80000 \cdot e^{0.002x_1} = 80000 \cdot e^{0.002x_2}$$

$$2 \cdot e^{0.002x_1} = e^{0.002x_2}$$

$$ln(2) + 0.002x_1 = 0.002x_2$$

$$x_2 - x_1 = \frac{ln(2)}{0.002} \approx 346.57$$

d

$$p \cdot f(x_1) = f(x_1 + 365)$$

$$p \cdot 80000 \cdot e^{0.002x_1} = 80000 \cdot e^{0.002 \cdot (x_1 + 365)}$$

$$p \cdot e^{0.002x_1} = e^{0.002x_1} \cdot e^{0.002 \cdot 365}$$

$$p = e^{0.002 \cdot 365} \approx 2.08 = 208\%$$

е

$$365 \stackrel{?}{=} 01.10.2003$$

$$f(365) - f(364) = 80000 \cdot e^{0.002 \cdot 365} - 80000 \cdot e^{0.002 \cdot 364} \approx 331.68$$

$$f'(x) = 80000 \cdot 0.002 \cdot e^{0.002x} = 160 \cdot e^{0.002x}$$

$$f(364.5) \approx 331.68$$

f

$$f(x+1) - f(x) = 400$$

$$80000 \cdot e^{0.002 \cdot (x+1)} - 80000 \cdot e^{0.002x} = 400$$

$$80000 \cdot e^{0.002x} \cdot (e^{0.002} - 1) = 400$$

$$x = ln(\frac{400}{80000 \cdot (e^{0.002} - 1)}) \cdot \frac{1}{0.002} \approx 457.65 \stackrel{?}{=} 02.01.2004$$

$$f'(x) = 160 \cdot e^{0.002x} = 400$$

 $x = ln(\frac{400}{160}) \cdot \frac{1}{0.002} \approx 458.15 = 03.01.2004$

146/10

$$v(t) = 2.5 \cdot (1 - e^{-0.1t})$$

а

$$v(0) = 0$$
$$v(10) \approx 1.58$$

b

С

$$v(t) = 2$$

 $t = -\frac{ln(0.2)}{0.1} \approx 16.09$

d

$$\lim_{t \to \infty} v(t) = 2.5$$

е

f

g

$$v(t) = 2.5 \cdot (1 - e^{-0.1t})$$

$$v(t+1) = 2.5 \cdot (1 - e^{-0.1 \cdot (t+1)})$$

$$v(t) < v(t+1)$$

$$2.5 \cdot (1 - e^{-0.1t}) < 2.5 \cdot (1 - e^{-0.1 \cdot (t+1)}) \qquad | \div 2.5|$$

$$1 - e^{-0.1t} < 1 - e^{-0.1 \cdot (t+1)} \qquad | -1; \cdot (-1)|$$

$$e^{-0.1t} > e^{-0.1 \cdot (t+1)} \qquad | ln()|$$

$$-0.1t > -0.1 \cdot (t+1) \qquad | \cdot (-10)|$$

$$t < t+1$$

$$\Delta v = v(t_2) - v(t_1)$$

$$= v(5) - v(2) \approx 0.98 - 0.45 = 0.53$$

h Die Beschleunigung ist bei t=0 am größten, da sie ständig kleiner wird.

3.26 Lineare Gleichungssysteme (LGS)

z. B.
$$\begin{vmatrix} 3x_1 & + & 2x_2 & - & 3x_3 & = & 5 \\ -x_1 & - & x_2 & + & 5x_3 & = & 15 \end{vmatrix}$$
 2x3 LGS

 $v'(t) = 0.25 \cdot e^{-0.1t}$

v'(2) = 0.20

LGS in Stufenform

$$\begin{vmatrix} -x_2 & + & 4x_1 & + & 3x_3 & = 2 \\ 3x_2 & + & x_1 & = 5 \\ 4x_2 & = & 8 \end{vmatrix}$$
 \Rightarrow einfach zu lösen
$$\begin{aligned} & \text{III} \quad 4x_2 = 8 \to x_2 = 2 \\ & \text{eingesetzt in II} \\ & x_1 + 3 \cdot 2 = 5 \to x_1 = -1 \\ & \text{eingesetzt in I} \end{aligned}$$

$$4 \cdot (-1) - 2 + 3x_3 = 2 \to x_3 = \frac{8}{3}$$

$$L = \{(-1|2|\frac{8}{3})\}$$

3.26.1 Gauß-Verfahren

Das Gauß-Verfahren dient dazu, ein LGS in Stufenform zu überführen und dann zu lösen.

256/4

a

$$\begin{vmatrix} 2x_1 & - & 4x_2 & + & 5x_3 & = & 3 \\ 3x_1 & + & 3x_2 & + & 7x_3 & = & 13 \\ 4x_1 & - & 2x_2 & - & 3x_3 & = & -1 \end{vmatrix}$$

Eliminiere x_1 aus 2 der 3 Gleichungen

$$\begin{vmatrix} 2x_1 & -4x_2 & +5x_3 & =3\\ 3x_1 & +3x_2 & +7x_3 & =13\\ 0x_1 & +6x_2 & -13x_3 & =-7 \end{vmatrix} III - 2 \cdot I$$

$$\begin{vmatrix} 2x_1 & -4x_2 & +5x_3 & =3\\ 0x_1 & +18x_2 & -1x_3 & =17\\ 0x_1 & +6x_2 & -13x_3 & =-7 \end{vmatrix}$$

$$2 \cdot II - 3 \cdot I$$

Eliminiere x_2 aus 1 der 2 Gleichungen

$$\begin{vmatrix} 2x_1 & - & 4x_2 & + & 5x_3 & = & 3 \\ \mathbf{0}x_1 & + & \mathbf{0}x_2 & + & 38x_3 & = & 38 \\ \mathbf{0}x_1 & + & 6x_2 & - & 13x_3 & = & -7 \end{vmatrix} II - 3 \cdot III$$

Löse LGS in Stufenform

$$\begin{vmatrix} 2x_1 & -4x_2 & +5x_3 & = & 3 \\ & & 38x_3 & = & 38 \\ & 6x_2 & -13x_3 & = & -7 \end{vmatrix}$$

$$II \quad 38x_3 = 38 \rightarrow x_3 = 1$$
eingesetzt in III
$$6x_2 - 13 \cdot 1 = -7 \rightarrow x_2 = 1$$
eingesetzt in I
$$2x_1 - 4 \cdot 1 + 5 \cdot 1 = 3 \rightarrow x_1 = 1$$

$$L = \{(1|1|1)\}$$

3.26.2 Matrix-Schreibweise

256/4

b

$$\begin{vmatrix} -x_1 & + & 7x_2 & - & x_3 & = & 5 \\ 4x_1 & - & x_2 & + & x_3 & = & 1 \\ 5x_1 & - & 3x_2 & + & x_3 & = & -1 \end{vmatrix} \longrightarrow \begin{vmatrix} -1 & 7 & -1 & \vdots & 5 \\ 4 & -1 & 1 & \vdots & 1 \\ 5 & -3 & 1 & \vdots & -1 \end{vmatrix}$$

$$\begin{vmatrix}
-1 & 7 & -1 & \vdots & 5 \\
3 & 6 & 0 & \vdots & 6 \\
1 & -2 & 0 & \vdots & -2
\end{vmatrix} II + I; III - II$$

$$\begin{vmatrix}
-1 & 7 & -1 & \vdots & 5 \\
3 & 6 & 0 & \vdots & 6 \\
0 & 12 & 0 & \vdots & 12
\end{vmatrix} II - 3 \cdot III$$

 $L = \{0|1|2\}$

С

$$\begin{vmatrix} 0 & 0.6 & 1.8 & 3 \\ 0.3 & 1.2 & 0 & 0 \\ 0.5 & 0 & 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 0 & 0.6 & 1.8 & 3 \\ 0.3 & 0 & -3.6 & -6 \\ 0.5 & 0 & 1 & 1 \end{vmatrix} II - 2 \cdot I$$

$$\begin{vmatrix} 0 & 0.6 & 1.8 & 3 \\ 2.1 & 0 & 0 & -2.4 \\ 0.5 & 0 & 1 & 1 \end{vmatrix} II + 3.6 \cdot III$$

$$2.1x_1 = -2.4 \rightarrow x_1 = -\frac{8}{7}$$

$$0.5 \cdot (-\frac{8}{7}) + x_3 = 1 \rightarrow x_3 = \frac{11}{7}$$

$$0.6x_2 + 1.8 \cdot \frac{11}{7} = 3 \rightarrow x_2 = \frac{2}{7}$$

$$L = \{-\frac{8}{7}|\frac{2}{7}|\frac{11}{7}\}$$

Beispiel einer Sonderfall-Lösung

$$\begin{vmatrix} 3x_1 & + & 2x_2 & - & 3x_3 & = & 5 \\ -x_1 & - & x_2 & + & 5x_3 & = & 15 \end{vmatrix}$$
$$\begin{vmatrix} 3x_1 & + & 2x_2 & - & 3x_3 & = 5 \\ - & x_2 & + & 12x_3 & = 50 \end{vmatrix} I + 3 \cdot II$$

Eine Variable ist frei wählbar und wird a bezeichnet

$$\begin{array}{ll} x_3 = a \\ II & -x_2 + 12a = 50 \to x_2 = 12a - 50 \\ I & 3x_1 + 2(12a - 50) - 3a = 5 \to x_1 = -7a + 35 \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -7a + 35 \\ 12a - 50 \\ a \end{pmatrix} = \begin{pmatrix} -7a \\ 12a \\ a \end{pmatrix} + \begin{pmatrix} 35 \\ -50 \\ 0 \end{pmatrix} = \begin{pmatrix} 35 \\ -50 \\ 0 \end{pmatrix} + a \cdot \begin{pmatrix} 7 \\ 12 \\ 1 \end{pmatrix} \\ \text{Geradengleichung im } \mathbb{R}^3 \end{array}$$

Steckbriefaufgaben

Beispiel Gesucht ist die Funktionsgleichung einer Funktion zweiten Grades $y=ax^2+bx+c$

Merkmale:

3.26.3

1. verläuft durch P(2|5)

$$f(2) = 5$$

5 = $a \cdot 2^2 + b \cdot 2 + c5 = 4a + 2b + c$

2. hat bei x=3 die Steigung 10

$$f'(x) = 2ax + b = 10$$
$$10 = 6a + b$$

3. schneidet die y-Achse bei 5

$$f(0) = 5$$

$$5 = a \cdot 0^2 + b \cdot 0 + c$$

$$5 = c$$

$$c = 5$$

 $10 = 6a + b \implies b = 10 - 6a$
 $5 = 4a + 2(10 - 6a) + 5 \implies a = 2.5$
 $b = 10 - 6 \cdot 2.5 = -5$

Die gesuchte Funktion heißt $f(x) = 2.5x^2 - 5x + 5$

Beispiele für Bedingungen

• hat bei P(1|3) einen Wendepunkt

$$f(1) = 3$$
$$f''(1) = 0$$

ullet verläuft bei P(-2|3) parallel zur Geraden g(x)=4x-1

$$f'(-2) = 4$$

• hat an der Stelle x = 3 einen Sattelpunkt

$$f'(3) = 0$$
$$f''(3) = 0$$

• ist eine achsensymmetrische Funktion 4. Grades / punktsymmetrische Funktion 5. Grades

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$\Rightarrow b = d = 0$$

$$g(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$$

$$\Rightarrow b = d = f = 0$$

262/1

С

$$A(1|3) B(-1|2) C(3|2)$$

$$y = ax^{2} + bx + c$$

$$3 = a + b + c$$

$$2 = a - b + c$$

$$2 = 9a + 3b + c$$

$$a - b + c = 9a + 3b + c \implies a = -\frac{1}{2}b$$

$$\frac{1}{2}b + c = -\frac{3}{2} + c + 1 \implies b = \frac{1}{2} \implies a = -\frac{1}{4}$$

$$3 = -\frac{1}{4} + \frac{1}{2} + c \implies c = 2\frac{3}{4}$$

$$y = -\frac{x}{4} + \frac{x}{2} + 2\frac{3}{4}x$$

262/4

a

$$A(0|1) \quad B(1|0) \quad C(-1|4) \quad D(2|-5)$$

$$y = ax^{3} + bx^{2} + cx + d$$

$$1 = d$$

$$0 = a + b + c + d$$

$$4 = -a + b - c + d$$

$$-5 = 8a + 4b + 2c + d$$

$$a + b + c = a + b - c + d + 8a + 4b + 2c + d \implies c = 2a + b$$

$$4 = -a + b - 2a - b + d \implies a = -1 \implies b + c = 0$$

$$c = 2a + b \implies c = -1 \implies b = 1$$

$$y = -x^{3} + x^{2} - x + 1$$

3.26.4 Funktionenschar

262/3

b

$$f(x) = ax^2 + bx + c$$

$$A(2|0) \quad B(-2|0)$$

$$\begin{vmatrix} 4a + 2b + c &= 0 \\ 4a - 2b + c &= 0 \end{vmatrix}$$

$$2x3 \text{ LGS unterbestimmt} \Rightarrow \text{ eine Variable ist frei w\"{a}hlbar}$$

$$\begin{vmatrix} 4a + 2b + c &= 0 \\ 4b &= 0 \end{vmatrix} \qquad I - II$$

$$\Rightarrow \quad b = 0$$

$$4a + c = 0$$

$$\sec a = k$$

$$4k + c = 0 \Rightarrow \quad c = -4k$$

$$f_k(x) = kx^2 - 4k \qquad \text{Funktionenschar, Parameterfunktion}$$

С

$$f(x) = ax^{2} + bx + c$$

$$A(-4|0) \quad B(0|-4)$$

$$\begin{vmatrix} 16a - 4b + c &= 0 \\ c &= -4 \end{vmatrix}$$

$$\Rightarrow c = -4$$

$$16a - 4b - 4 = 0$$

$$a = k$$

$$16k - 4b = 4 \quad \Rightarrow \quad b = 4k - 1$$

$$f_{k}(x) = kx^{2} + 4kx - x - 4$$

262/8

$$f(x) = ax^{4} + bx^{3} + cx^{2} + dx + e$$

$$f(x) = -f(x) \Rightarrow b = d = 0$$

$$f(0) = -1 \Rightarrow e = -1$$

$$f(1) = -3 \qquad f'(1) = 0 \qquad f''(1) < 0$$

$$f(x) = ax^{4} + bx^{2} - 1$$

$$f(1) = a + b - 1 = -3 \Rightarrow a + b = -2$$

$$f'(x) = 4ax^{3} + 2bx$$

$$f'(1) = 4a + 2b = 2a - 4 = 0 \Rightarrow a = 2 \Rightarrow b = -4$$

$$f(x) = 2x^{4} - 4x^{2} - 1$$

$$f''(x) = 24x^{2} - 8$$

$$f''(1) = 16 > 0$$

 \Rightarrow keine Lösung

263/10

С

$$f(x) = a_2 x^2 + a_1 x + a_0$$

$$P(-3|3) Q(3|0)$$

$$f(-3) = 9a_2 - 3a_1 + a_0 = 3$$

$$f(3) = 9a_2 + 3a_1 + a_0 = 0$$

$$9a_2 - 3a_1 + a_0 = 9a_2 + 3a_1 + a_0 + 3$$

$$-a_1 = a_1 + 1 \implies a_1 = -\frac{1}{2}$$

$$9a_2 + 1.5 + a_0 = 3 \implies a_0 = 1.5 - 9a_2$$

$$a_2 = k$$

 $f_k(x) = kx^2 - 0.5x + 1.5 - 9k$

schwarz

$$f_k(1) = k - 0.5 + 1.5 - 9k = 2 \implies k = -\frac{1}{8}$$

 $f(x) = -\frac{1}{8}x^2 - \frac{1}{2}x^2 + 2.625$

rot

$$f_k(1) = k - 0.5 + 1.5 - 9k = 3 \implies k = -\frac{1}{4}$$

 $f(x) = -\frac{1}{4}x^2 - \frac{1}{2}x + 3.75$

blau

$$f_k(1) = k - 0.5 + 1.5 - 9k = -1 \implies k = \frac{1}{4}$$

 $f(x) = \frac{1}{4}x^2 - \frac{1}{2}x - 0.75$

263/11

$$f(\pm \frac{1624}{2}) = f(\pm 812) = 254 - 65 = 189$$

$$f(x) = ax^{2} + bx + c$$

$$f(x) = -f(x) \implies b = 0$$

$$f(0) = 0 \implies c = 0$$

$$f(812) = ax^{2} = 659344a = 189 \implies a \approx 2.8665 \cdot 10^{-4}$$

$$f(x) = 2.8665 \cdot 10^{-4} \cdot x^{2}$$

263/12

$$SP(-1|-1)$$
 $SP(1|1)$ \Rightarrow $f'(\pm 1) = f''(\pm 1) = 0$
 $WP(0|0)$ \Rightarrow $f''(0) = 0$
 $f(x) = ax^5 + bx^3 + cx$

$$f(1) = a + b + c = 1$$

$$f'(1) = 5a + 3b + c = 0$$

$$f''(1) = 20a + 6b = 0$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 5 & 3 & 1 & 0 \\ 20 & 6 & 0 & 0 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 2 & 0 & -1 \\ 20 & 6 & 0 & 0 \end{vmatrix} III - I$$

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 4 & 2 & 0 & -1 \\ 8 & 0 & 0 & 3 \end{vmatrix} III - 3 \cdot II$$

$$8a = 3 \implies a = \frac{3}{8}$$

$$\frac{3}{2} + 2b = -1 \implies b = -\frac{5}{4}$$

$$\frac{3}{8} - \frac{5}{4} + c = 1 \implies \frac{15}{8}$$

$$f(x) = \frac{3}{8}x^5 - \frac{5}{4}x^3 + \frac{15}{8}x$$

Kapitel 4 Integralrechnung

 $s=v\cdot t \qquad \text{fuer } v=const.$ Rechtecksfläche $A=5s\cdot 15\frac{m}{s}=75m$ Es gilt A=s= zurückgelegter Weg

$$s(t) = v(t) \cdot t$$

 $s=\,$ Summe von Rechtecksstreifen als Näherung für den Flächeninhalt

Durch Grenzwertbildung erhält man

$$s = \int_0^5 v(t) \cdot dt$$

4.1 Untersumme - Obersumme

Beispiel
$$f(x) = y = x^2$$
 $x \in [0; 1]$

Untersumme

$$U_5 = 0.2 \cdot (0 + 0.04 + 0.16 + 0.36 + 0.64) = 0.24FE$$

Der wahre Flächeninhalt ist sicher größer als $0.24FE$

Obersumme

$$O_5 = 0.2 \cdot (0.04 + 0.16 + 0.36 + 0.64 + 1) = 0.44FE$$

Der wahre Flächeninhalt ist sicher kleiner als $0.44FE$

$$5 \rightarrow$$
 Intervall in 5 gleiche Abschnitte:
$$I = \begin{bmatrix} 0;1 \end{bmatrix} \Rightarrow \text{ Intervallbreite } 0.2 \rightarrow \text{ Breite der Rechtecke}$$

$$(0+\ldots+0.64) \text{ bzw. } (0.04+\ldots+1) \rightarrow \text{ H\"{o}hen der Rechtecke}$$

$$FE \rightarrow \text{ Fl\"{a}cheneinheiten}$$

$$U_{10} = 0.1 \cdot (0 + 0.01 + 0.04 + 0.09 + 0.16 + 0.25 + 0.36 + 0.49 + 0.64 + 0.81)$$

= $0.285FE$
$$O_{10} = 0.1 \cdot (0.01 + 0.04 + 0.09 + 0.16 + 0.25 + 0.36 + 0.49 + 0.64 + 0.81 + 1)$$

= $0.385FE$

4.1.1 Obersumme/Untersumme $\rightarrow lim \rightarrow$ Integral

$$f(x) = x^2$$

Teile das Intervall in n Teile

 \rightarrow Jeder Teil ist $\frac{b}{n}$ (da $b=1\rightarrow\frac{1}{n}$) Längeneinheiten breit

$$U_n = \frac{1}{n} \cdot \left(0 + \left(\frac{1}{n}\right)^2 + \left(\frac{2}{n}\right)^2 + \left(\frac{3}{n}\right)^2 + \dots + \left(\frac{n-1}{n}\right)^2\right)$$

$$= \frac{1}{n^3} \cdot \left(0 + 1^2 + 2^2 + 3^2 + \dots + (n-1)^2\right)$$

$$= \frac{1}{n^3} \cdot \frac{1}{6} \cdot (n-1) \cdot n \cdot (2n-1)$$

$$= \frac{1}{6} \cdot \frac{n-1}{n} \cdot \frac{n}{n} \cdot \frac{2n-1}{n}$$

$$\lim_{n \to \infty} U_n = \lim_{n \to \infty} \left(\frac{1}{6} \cdot \frac{n-1}{n} \cdot \frac{n}{n} \cdot \frac{2n-1}{n}\right) = \frac{1}{6} \cdot 1 \cdot 1 \cdot 2 = \frac{1}{3}$$

$$O_n = \frac{1}{n} \cdot \left(\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \left(\frac{3}{n} \right)^2 + \dots + \left(\frac{n-1}{n} \right)^2 + \left(\frac{n}{n} \right)^2 \right)$$

$$= \frac{1}{n^3} \cdot \left(1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 \right)$$

$$= \frac{1}{n^3} \cdot \frac{1}{6} \cdot n \cdot (n+1) \cdot \left(2(n+1) - 1 \right)$$

$$= \frac{1}{6} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{2(n+1) - 1}{n}$$

$$\lim_{n \to \infty} O_n = \lim_{n \to \infty} \left(\frac{1}{6} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{2(n+1) - 1}{n} \right) = \frac{1}{6} \cdot 1 \cdot 1 \cdot 2 = \frac{1}{3}$$

$$\lim_{n \to \infty} U_n = \lim_{n \to \infty} O_n = \frac{1}{3}$$

Der wahre Flächeninhalt ist $A = \frac{1}{3}FE$

Wenn gilt, dass
$$\lim_{n\to\infty} U_n = \lim_{n\to\infty} O_n = \mathsf{Zahl} = \int_a^b f(x) \cdot dx$$

Existiert ein gemeinsamer Grenzwert $(n \to \infty)$ von Untersumme und Obersumme, so nennt man den Grenzwert Integralwert des bestimmten Integrals.

160/3

a $1FE = 1000000m^3$ Wasser

b Am schnellsten zwischen 2h und 4h. Am langsamsten zwischen 8h und 10h. Nach 12h wiederholt sich der Graph periodisch.

c Der Graph wird um 25% gestreckt, die Fläche wächst also um 25%.

4.2 Das bestimmte Integral

$$\int_{a}^{b} f(x) \cdot dx$$

 $a, b \dots$ linke bzw. rechte Intervallgrenze

f(x) ... Integrand, zu integrierende Funktion

x ... Integrations variable

dx ... Differenzial $\lim_{x\to 0} \Delta x = dx$ $f(x)\cdot dx$... Fläche eines infinitesimal schmalen Rechteckstreifens mit Breite dxund Höhe f(x)

∫ ... Integralzeichen meint eine Summation

liegt f(x) unterhalb der x-Achse (< 0) im Intervall [a;b], so gilt $\int_a^b f(x) \cdot dx < 0$

Das Integral ist die Differenz oberhalb der x-Achse und unterhalb der x-Achse liegender Flächenstücke

4.3 Berechnung von Integralen, Hauptsatz

Gesucht: Flächeninhalt unter dem Graphen von $f(x)=y=\frac{2}{5}x^3$ im Intervall [0;b]

$$\int_0^b \frac{1}{5} x^3 \cdot dx$$

$$O_n = \frac{b}{n} \cdot \left(\frac{1}{5} \left(\frac{b}{n}\right)^3 + \frac{1}{5} \left(\frac{2b}{n}\right)^3 + \dots + \frac{1}{5} \left(\frac{(n-1) \cdot b}{n}\right)^3 + \frac{1}{5} b^3\right)$$

$$= \frac{1}{5} \cdot \frac{b^4}{n^4} \cdot \left(1^3 + 2^3 + \dots + (n-1)^3 + n^3\right)$$

$$= \frac{1}{5} \cdot \frac{b^4}{n^4} \cdot \frac{1}{4} n^2 \cdot (n+1)^2$$

$$= \frac{1}{4} \cdot \frac{1}{5} \cdot b^4 \cdot \frac{n}{n} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{n+1}{n}$$

$$\int_{0}^{b} \frac{1}{5} x^{3} \cdot dx = \lim_{n \to \infty} O_{n} = \lim_{n \to \infty} \left(\frac{1}{4} \cdot \frac{1}{5} \cdot b^{4} \cdot \frac{n}{n} \cdot \frac{n}{n} \cdot \frac{n+1}{n} \cdot \frac{n+1}{n} \right) = \frac{1}{20} b^{4}$$

Betrachte den Flächeninhalt zu linker Grenze a und rechter Grenze b.

$$\lim_{n \to \infty} O_n = \frac{1}{20} a^4 \qquad fuer \quad [0; a]$$

$$\lim_{n \to \infty} O_n = \frac{1}{20} b^4 \qquad fuer \quad [0; b]$$

$$A = \frac{1}{20} b^4 - \frac{1}{20} a^4 \qquad fuer \quad [a; b]$$

$$A = \frac{1}{20}b^4 - \frac{1}{20}a^4 = \int_a^b \frac{1}{5}x^3 \cdot dx = \left[\frac{1}{20}x^4\right]_a^b$$

4.3.1 Verallgemeinerung (Hauptsatz der Differenzial- und Integralrechnung)

$$A = \int_{a}^{b} f(x) \cdot dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

dabei gilt F'(x) = f(x)

F(x) heißt Aufleitungsfunktion oder Stammfunktion von f(x).

im Beispiel:
$$F(x) = \frac{1}{20}x^4 \rightarrow (\frac{1}{20}x^4)' = \frac{d}{dx}(\frac{1}{20}x^4) = \frac{1}{5}x^3$$

167/3

а

$$f(x) = x^{2} F(x) = \frac{1}{3}x^{3}$$
$$\int_{0}^{4} x^{2} \cdot dx = F(4) - F(0) = \frac{64}{3}$$

i

$$f(x) = \frac{1}{8}x^4 \qquad F(x) = \frac{1}{40}x^5$$
$$\int_{-2}^{-1} \frac{1}{8}x^4 \cdot dx = F(-1) - F(-2) = 0.775$$

j

$$f(x) = 0.5x^{2} F(x) = \frac{1}{6}x^{3}$$
$$\int_{-4}^{4} 0.5x^{2} \cdot dx = F(4) - F(-4) = \frac{64}{3}$$

k

$$f(x) = x^5 F(x) = \frac{1}{6}x^6$$
$$\int_{-1}^{1} x^5 \cdot dx = F(1) - F(-1) = 0$$

4.4 Integrale lösen - Anwendung

168/11

$$v(t) = 9.81 \cdot t \qquad V(t) = s(t) = 4.905 \cdot t^{2}$$
$$\int_{0}^{3} v(t) \cdot dt = V(3) - V(0) = 44.145$$

168/13

a

$$f(x) = x$$
 $F(x) = 0.5x^2$

$$\int_0^z x \cdot dx = 18 = F(z) - F(0) = F(z) - 0$$
 $F(z) = 18 \implies z = 6$

b

$$f(x) = 4x$$
 $F(x) = 2x^2$

$$\int_1^z 4x \cdot dx = 30 = F(z) - F(1) = F(z) - 2$$

$$F(z) = 32 \implies z = 4$$

С

$$f(x) = 2x$$
 $F(x) = x^2$

$$\int_{z}^{10} 2x \cdot dx = 19 = F(10) - F(z) = 100 - F(z)$$
 $F(z) = 81 \implies z = 9$

d

$$f(x) = 0.4 F(x) = 0.4x$$

$$\int_0^{2z} 0.4 \cdot dx = 8 = F(2z) - F(0) = F(2z) - 0$$

$$F(2z) = 8 \Rightarrow 2z = 20 \Rightarrow z = 10$$

168/15

а

$$f(x) = -2x^{2} + 8x + 1 = 0$$

$$x_{1/2} = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot (-2) \cdot 1}}{2 \cdot (-2)} = \frac{-8 \pm \sqrt{72}}{-4}$$

$$x_{1} \approx -0.1213 \qquad x_{2} \approx 4.1213$$

b

$$f(x) = (x+3)^2 \cdot (x+1) = 0$$

 $(x+3)^2 = 0 \implies x_1 = -3$
 $(x+1) = 0 \implies x_2 = -1$

С

$$f(x) = 4x^{2} \cdot (x^{2} - 10) + 4x^{2} = 8x^{4} - 40x^{2} = 0$$

$$x_{1} = 0$$

$$(x^{2} - 10) = -1 \implies x_{2/3} = \pm 3$$

d

$$f(x) = 4 \cdot (x - 0.5)^4 - 4 = 0$$

 $(x - 0.5)^4 = 1 \implies x_1 = 1.5 \qquad x_2 = -0.5$

е

$$f(x) = e^x - e^2 = 0$$
$$x = 2$$

f

$$f(x) = 0.2e^{2x} - 1 = 0$$

 $e^{2x} = 5 \implies x = \frac{\log(5)}{2} \approx 0.8047$

Teil III

12/1

4.5 Stammfunktion bilden, integrieren

$$\int_{a}^{b} x^{7} \cdot dx = \left[\frac{1}{8}x^{8}\right]_{a}^{b}$$

$$\int \frac{1}{(x+4)^{3}} \cdot dx = -\frac{1}{2} \cdot (x+4)^{-2} + c$$

$$\int \frac{5}{(3x-2)^{5}} \cdot dx = -\frac{5}{4 \cdot 3} \cdot (3x-2)^{-4} + c$$

$$\int \frac{1}{5} \cdot e^{2x} \cdot dx = \frac{1}{5 \cdot 2} \cdot e^{2x} + c$$

4.6 bestimmtes Integral, Integralfunktion, unbestimmtes Integral

$$\int_{a}^{b} \frac{1}{x} \cdot dx = \left[ln(|x|) \right]_{a}^{b}$$

sofern a,b>0 oder a,b<0 kein Problem

wenn eines größer und eines kleiner 0 ist, dann muss man genauer untersuchen (Polstelle!)

$$a = -1 \qquad b = 2$$

$$\int_a^b \frac{1}{2x - 5} \cdot dx = \left[\frac{1}{2} \cdot \ln(|2x - 5|) \right]_a^b$$

171/3

a

$$\int_0^2 (2+x)^3 \cdot dx = \left[\frac{1}{4} \cdot (2+x)^4\right]_0^2 = \frac{1}{4} \cdot ((2+2)^4 - (2+0)^4) = 60$$

b

$$\int_{2}^{3} \left(1 + \frac{1}{x^{2}}\right) \cdot dx = \left[x - \frac{1}{x}\right]_{2}^{3} = \left(3 - \frac{1}{3}\right) - \left(2 - \frac{1}{2}\right) = \frac{7}{6}$$

С

$$\int_0^2 \frac{1}{(x+1)^2} \cdot dx = \left[-(x+1)^{-1} \right]_0^2 = -(2+1)^{-1} + (0+1)^{-1} = \frac{2}{3}$$

d

$$\int_0^9 \frac{2}{5} \cdot \sqrt{x} \cdot dx = \left[\frac{4}{15} \cdot x^{\frac{3}{2}} \right]_0^9 = \frac{4}{15} \cdot 9^{\frac{3}{2}} - \frac{4}{15} \cdot 0^{\frac{3}{2}} = 7.2$$

е

$$\int_{-0.5}^{0} e^{2x+1} \cdot dx = \left[\frac{1}{2}e^{2x+1}\right]_{-0.5}^{0} = \frac{1}{2}e^{2\cdot 0+1} - \frac{1}{2}e^{2\cdot (-0.5)+1} \approx 0.8591$$

f

$$\int_0^{\pi} \sin(3x - \pi) \cdot dx = \left[-\frac{1}{3} \cdot \cos(3x - \pi) \right]_0^{\pi} = -\frac{1}{3} \cdot \cos(3\pi - \pi) + \frac{1}{3} \cdot \cos(3 \cdot 0 - \pi) = -\frac{2}{3}$$

g

$$\int_{-1}^{1} \frac{1}{5} \cdot e^{\frac{1}{2}x} \cdot dx = \left[\frac{2}{5}e^{\frac{1}{2}x}\right]_{-1}^{1} = \frac{2}{5}e^{\frac{1}{2}\cdot 1} - \frac{2}{5}e^{\frac{1}{2}\cdot (-1)} = \frac{2e-2}{5\cdot \sqrt{e}} \approx 0.4169$$

h

$$\int_{-\pi}^{\pi} \cos(3x) \cdot dx = \left[\frac{1}{3} \cdot \sin(3x) \right]_{-\pi}^{\pi} = \frac{1}{3} \cdot \sin(3\pi) - \frac{1}{3} \cdot \sin(3 \cdot (-\pi)) = 0$$

171/4

С

$$\int_{3}^{4} \frac{1}{2(x+1)} \cdot dx = \left[\frac{\ln(x+1)}{2} \right]_{3}^{4} = \frac{\ln(4+1)}{2} - \frac{\ln(3+1)}{2} \approx 0.1116$$

4.6.1 Integralfunktion

$$\int_{a}^{b} f(x) \cdot dx = [F(x)]_{a}^{b} = F(b) - F(a) = J$$
$$J_{a}(x) = \int_{a}^{x} f(x) \cdot dx = [F(x)]_{a}^{x} = F(x) - F(a)$$

Integralfunktion zur unteren (linken) Grenze a. Sie gibt zu jedem später eingesetzten Wert x (= b) den bestimmten Integralwert an.

$$\int f(x) \cdot dx = [F(x)]^x = F(x) + c$$

unbestimmtes Integral

175/2

4.7 Rechenregeln für Integrale

$$\int_{a}^{a} f(x) \cdot dx = 0$$

$$\int_{a}^{b} c \cdot f(x) \cdot dx = c \cdot \int_{a}^{b} f(x) \cdot dx$$

$$\int_{a}^{b} f(x) \cdot dx + \int_{b}^{c} f(x) \cdot dx = \int_{a}^{c} f(x) \cdot dx$$

$$\int_{a}^{b} f(x) \cdot dx = -\int_{b}^{a} f(x) \cdot dx$$

$$\int_{a}^{b} f(x) \cdot dx \pm \int_{a}^{b} g(x) \cdot dx = \int_{a}^{b} (f(x) \pm g(x)) \cdot dx$$

a

$$\int_{1}^{3.3} 5x^2 \cdot dx - 10 \cdot \int_{1}^{3.3} \frac{1}{2} x^2 \cdot dx = 0$$

b

$$\int_0^1 (x - 2\sqrt{x^2 + 4}) \cdot dx + 2 \cdot \int_0^1 \sqrt{x^2 + 4} \cdot dx = \int_0^1 x \cdot dx = 0.5$$

С

$$\int_{3}^{3.7} \frac{1}{x} \cdot dx + \int_{3.7}^{4} \frac{1}{x} \cdot dx = \int_{3}^{4} \frac{1}{x} \cdot dx = \ln(4) - \ln(3) \approx 0.2877$$

176/10

$$f(t) = 50t^4 \cdot e^{-t}$$

a Die Integralfunktion gibt die Anzahl der Telefonanrufe bis zum Zeitpunkt x an

$$J_0(x) = \int_0^x f(t) \cdot dt$$
$$J_0(4) = \int_0^4 f(t) \approx 445$$

b

$$J_4(8) = J_0(8) - J_0(4) \approx 1080 - 445 = 635$$

Die Anzahl der Anrufer in der Warteschleife ist zu dem Zeitpunkt am höchsten, an dem die Anrufer pro Minute wieder unter 200 sinken (bei $t \approx 5$).

176/9

$$f(t) = \cos(\frac{2\pi}{24}(t - 12))$$
$$g(t) = \cos(\frac{2\pi}{24}(t - 6))$$

- a Zunahme (f(t) > 0) zwischen 6 und 18 Uhr Abnahme (f(t) < 0) zwischen 18 und 6 Uhr
 - Zunahme (g(t) > 0) zwischen 0 und 12 Uhr Abnahme (g(t) < 0) zwischen 12 und 24 Uhr
- b Am schnellsten um 12 Uhr (Hochpunkt) Am langsamsten um 0/24 Uhr (Tiefpunkt)

Am schnellsten um 6 Uhr (Hochpunkt) Am langsamsten um 18 Uhr (Tiefpunkt)

c Maximal um 18 Uhr (Rechts-Links-Wendepunkt) Minimal um 6 Uhr (Links-Rechts-Wendepunkt)

Maximal um 12 Uhr (Rechts-Links-Wendepunkt) Minimal um 0/24 Uhr (Links-Rechts-Wendepunkt)

d

$$F(t) = -\frac{12}{\pi} \cdot \sin(\frac{\pi}{12}t) + c$$

$$c = 20 - F_{c=0}(12) = 20$$

$$F(18) \approx 23.82 \qquad F(6) \approx 16.18$$

$$G(t) = -\frac{12}{\pi} \cdot \cos(\frac{\pi}{12}t) + c$$

$$c = 20 - G_{c=0}(12) \approx 16.1803$$

$$G(12) = 20 \qquad G(0) = G(24) \approx 12.36$$

4.8 Ableitung der Umkehrfunktion

$$f(x) = y = x^2 \Leftrightarrow \overline{f(y)} = x = \sqrt{y}$$
$$\overline{f'(y)} = \frac{1}{f'(x)}$$

Beispiele

$$f(x) = y = x^{2} \Leftrightarrow \overline{f(y)} = x = y^{\frac{1}{3}}$$
$$\overline{f'(y)} = \frac{1}{3x^{2}} = \frac{1}{3(y^{\frac{1}{3}})^{2}} = \frac{1}{3}y^{-\frac{1}{3}}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{3}x^{-\frac{1}{3}}$$

$$f(x) = y = e^x \Leftrightarrow \overline{f(y)} = x = \ln(y)$$
$$\overline{f'(y)} = \frac{1}{e^x} = \frac{1}{e^{\ln(x)}} = \frac{1}{y}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{x}$$

$$\begin{split} f(x) &= y = sin(x) \Leftrightarrow \overline{f(y)} = x = asin(y) \\ \overline{f'(y)} &= \frac{1}{cos(x)} = \frac{1}{cos(asin(y))} \\ &= \frac{1}{\sqrt{1 - sin^2(x)}} = \frac{1}{\sqrt{1 - sin^2(asin(y))}} = \frac{1}{\sqrt{1 - y^2}} \end{split}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{\sqrt{1 - x^2}}$$

$$\begin{split} f(x) &= y = cos(x) \Leftrightarrow f(y) = x = acos(y) \\ \overline{f'(y)} &= \frac{1}{-sin(x)} = \frac{1}{-sin(acos(y))} \\ &= -\frac{1}{\sqrt{1 - cos^2(x)}} = -\frac{1}{\sqrt{1 - cos^2(acos(y))}} = -\frac{1}{\sqrt{1 - y^2}} \end{split}$$

umbenennen

$$\overline{f'(x)} = -\frac{1}{\sqrt{1-x^2}}$$

$$f(x) = y = tan(x) \Leftrightarrow f(y) = x = atan(y)$$

$$\overline{f'(y)} = cos^{2}(x) = cos^{2}(atan(y))$$

$$= 1 - sin^{2}(x) = 1 - sin^{2}(atan(y)) = 1 - \frac{y^{2}}{y^{2} + 1} = \frac{1}{y^{2} + 1}$$

umbenennen

$$\overline{f'(x)} = \frac{1}{x^2 + 1}$$

4.9 Integral und Flächeninhalt

$$A = A_1 + A_2$$

$$A \neq \int_a^b f(x) \cdot dx = I$$

$$A = \left| \int_a^c f(x) \cdot dx \right| + \left| \int_c^b f(x) \cdot dx \right|$$

$$A = A_1 + A_2$$

1. Berechne die Schnittstellen a, b, c

2.
$$A = \left| \int_{a}^{b} (g(x) - f(x)) \cdot dx \right| + \left| \int_{b}^{c} (g(x) - f(x)) \cdot dx \right|$$

Wie die Flächen zur x-Achse liegen ist unwichtig, weil ich gedanklich beide Graphen gemeinsam soweit nach oben schieben kann dass die Flächen komplett oberhalb der x-Achse liegen.

$$f(x) \longrightarrow f(x) + d$$

 $g(x) \longrightarrow g(x) + d$

Durch Differenzialbildung fallen die gedanklich eingeführten Verschiebungen wieder weg.

$$\int_{a}^{b} ((f(x) + d) - (g(x) + d)) \cdot dx = \int_{a}^{b} (f(x) - g(x)) \cdot dx$$

179/2

а

$$f(x) = -0.5x^{2} + 0.5 g(x) = -1.5$$
$$F(x) = -\frac{1}{6}x^{3} + 0.5x G(x) = -1.5x$$

$$1 A_2 + A_3$$

$$A = \left| \int_{-1}^{1} f(x) \cdot dx \right|$$
$$= |F(1) - F(-1)| = \frac{2}{3}FE$$

$$II \ A_2 + A_3 + A_4 + A_5$$

$$A = \left| \int_{-2}^{2} (f(x) - g(x)) \cdot dx \right|$$
$$= \left| (F(2) - F(-2)) - (G(2) - G(-2)) \right| = 5\frac{1}{3}FE$$

III A_3

$$A = \left| \int_0^1 f(x) \cdot dx \right|$$
$$= |F(1) - F(0)| = \frac{1}{3}FE$$

 $\mathsf{IV}\ A_1$

$$A = \left| \int_{-2}^{-1} f(x) \cdot dx \right|$$
$$= \left| F(-1) - F(-2) \right| = \frac{2}{3} FE$$

а

$$f(x) = x^{2} g(x) = -x^{2} + 4x$$

$$f(x) = g(x) L = \{0; 2\}$$

$$f(x) - g(x) = 2x^{2} - 4x$$

$$A = \left| \int_{0}^{2} (2x^{2} - 4x) \cdot dx \right| = \left| \left[\frac{2}{3}x^{3} - 2x^{2} \right]_{0}^{2} \right| = 2\frac{2}{3}FE$$

b

$$f(x) = -\frac{1}{x^2} \qquad g(x) = 2.5x - 5.25$$

$$f(x) = g(x) \qquad L = \{2; \sim -0.4; \sim 0.5\}$$

$$f(x) - g(x) = -2.5x + 5.25 - \frac{1}{x^2}$$

$$A \approx \left| \int_{0.5}^{2} (-2.5x + 5.25 - \frac{1}{x^2}) \cdot dx \right|$$

$$= \left| [-1.25x^2 + 5.25x + \frac{1}{x}]_{0.5}^{2} \right| \approx 1.7FE$$

4.9.1 Flächeninhalt, uneigentliche Integrale

180/8

$$f_t(x) = \frac{t}{x^2} \qquad [1; 2]$$

$$F_t(x) = -\frac{t}{x}$$

$$A(t) = \int_1^2 -\frac{t}{x} \cdot dx = \frac{t}{2}$$

$$A(16) = 8$$

$$f_{a}(x) = a \cdot \sin(x) \qquad g_{a}(x) = -\frac{1}{a} \cdot \sin(x) \qquad x \in [0; \pi]$$

$$f_{a}(x) - g_{a}(x) = \sin(x) \cdot (a + \frac{1}{a})$$

$$A(a) = \int_{0}^{\pi} \sin(x) \cdot (a + \frac{1}{a}) \cdot dx = (a + \frac{1}{a}) \cdot [-\cos(x)]_{0}^{\pi} = (a + \frac{1}{a}) \cdot 2$$

$$A'(a) = -\frac{2}{a^{2}} + 2$$

$$A''(a) = \frac{4}{a^{3}}$$

$$A'(a) = 0 \qquad L = \{\pm 1\}$$

$$A''(1) = 4 > 0 \Rightarrow TP$$

Minimaler Flächeninhalt: A(1) = 4FE

Beispiel
$$f(x) = \frac{1}{x^2}$$
 [3; ∞ [
$$A = \lim_{z \to \infty} \int_3^z \frac{1}{x^2} \cdot dx = \lim_{z \to \infty} \left[-x^{-1} \right]_3^z$$

$$= \lim_{z \to \infty} \left(-\frac{1}{z} + \frac{1}{3} \right) = \frac{1}{3} FE$$

183/1

Fig. 1

$$\begin{split} y &= \frac{1}{(x+1)^2} \qquad \left[1; z\right] \\ A(z) &= \int_1^z \frac{1}{(x+1)^2} \cdot dx = \left[-\frac{1}{x+1} \right]_1^z = -\frac{1}{z+1} + \frac{1}{2} \\ A &= \lim_{z \to \infty} A(z) = \frac{1}{2} \end{split}$$

Fig. 2

$$y = e^{-\frac{1}{2}x}$$
 [2; z]

$$A(z) = \int_{2}^{z} e^{-\frac{1}{2}x} \cdot dx = \left[-2 \cdot e^{-\frac{1}{2}x} \right]_{2}^{z} = -2 \cdot e^{-\frac{1}{2}z} + \frac{2}{e}$$

$$A = \lim_{z \to \infty} A(z) = \frac{2}{e} \approx 0.736$$

Fig. 3

$$y = \frac{2}{x^3} \qquad [z;1]$$

$$A(z) = \int_z^1 \frac{2}{x^3} \cdot dx = \left[-\frac{1}{x^2} \right] = -1 + \frac{1}{z^2}$$

$$A = \lim_{z \to 0} A(z) = \infty$$

Fig. 4

$$y = \frac{4}{\sqrt{x}} \qquad [z; 4]$$

$$A(z) = \int_{z}^{4} \frac{4}{\sqrt{x}} \cdot dx = \left[8 \cdot \sqrt{x}\right] = 16 - 8 \cdot \sqrt{z}$$

$$A = \lim_{z \to 0} A(z) = 16$$

183/7

$$W = \int_{h_1}^{h_2} F(s) \cdot ds$$

$$F(s) = \gamma \frac{m \cdot M}{s^2}$$

$$c = \gamma \cdot m \cdot M \approx 3.982 \cdot 10^{17} \cdot \frac{m \cdot kg}{s^2}$$

$$F(s) = c \cdot s^{-2}$$

$$W = \int_{h_1}^{h_2} c \cdot s^{-2} \cdot ds = \left[-c \cdot s^{-1} \right]_{h_1}^{h_2}$$

a

$$h_1 = 6.37 \cdot 10^6 m$$
 $h_2 = 4.22 \cdot 10^7 m$
 $W = \left[-c \cdot s^{-1} \right]_{6.37 \cdot 10^6 m}^{4.22 \cdot 10^7 m} \approx 1.333 \cdot 10^{-7} \cdot c \approx 5.308 \cdot 10^{10} Nm$

b

$$h_1 = 6.37 \cdot 10^6 m \qquad h_2 \to \infty$$

$$W = \lim_{h_2 \to \infty} \left[-c \cdot s^{-1} \right]_{6.37 \cdot 10^6 m}^{h_2} \approx 1.570 \cdot 10^{-7} \cdot c \approx 6.252 \cdot 10^{10} Nm$$

183/5 I
$$f(x) = \frac{1}{x^3}$$
 $F(x) = -\frac{1}{2 \cdot x^2}$ II $f(x) = \frac{1}{x^2}$ $F(x) = -\frac{1}{x}$ III $f(x) = \frac{1}{\sqrt{x}}$ $F(x) = 2 \cdot \sqrt{x}$

а

$$\lim_{z \to \infty} \int_{1}^{z} f(x) \cdot dx = [F(x)]_{1}^{z}$$

$$I = \frac{1}{2}$$

$$II = 1$$

b

 $| | | = \infty$

$$\lim_{z \to 1} \int_z^0 f(x) \cdot dx = \left[F(x) \right]_z^1$$

$$I = \infty$$

$$II = \infty$$

$$III = 2$$

180/11

$$f(x) = x^{2}$$

$$t(x) = m \cdot x + b$$

$$f'(x) = 2x \implies m = f'(a) = 2a$$

$$f(a) = a^{2} \implies b = a^{2} - 2a \cdot a = -a^{2}$$

$$\Rightarrow t(x) = 2a \cdot x - a^{2}$$

$$\int_0^a (f(x) - t(x)) \cdot dx = \int_0^a (x^2 - 2ax + a^2) \cdot dx = \left[\frac{1}{3}x^3 - ax^2 + a^2x \right]_0^a$$
$$= \frac{1}{3}a^3$$

4.10 Integration von Produkten: partielle Integration

Ableitungs-Produktregel: $(u \cdot v)' = u' \cdot v + u \cdot v'$

$$(u \cdot v)' = u' \cdot v + u \cdot v' \qquad | -u \cdot v'$$

$$u' \cdot v = (u \cdot v)' - u \cdot v' \qquad | \int$$

$$\int u' \cdot v = \int (u \cdot v)' - \int u \cdot v'$$

$$\int u' \cdot v = u \cdot v - \int u \cdot v'$$

Beispiel

$$\int \sin(x) \cdot x \cdot dx = -\cos(x) \cdot x - \int -\cos(x) \cdot 1 \cdot dx$$
$$= -\cos(x) \cdot x + \sin(x) + c$$
$$(-\cos(x)) \cdot x + \sin(x)' = \sin(x) \cdot x$$

$$\begin{split} & \int e^{2x} \cdot x^2 \cdot dx = \frac{1}{2} e^{2x} \cdot x^2 - \int \frac{1}{2} e^{2x} \cdot 2x \cdot dx \\ & = \frac{1}{2} e^{2x} \cdot x^2 - (\frac{1}{2} e^{2x} \cdot x - \int \frac{1}{2} e^{2x} \cdot 1 \cdot dx) \\ & = \frac{1}{2} e^{2x} \cdot x^2 - \frac{1}{2} e^{2x} \cdot x + \int \frac{1}{2} e^{2x} \cdot dx \\ & = \frac{1}{2} e^{2x} \cdot x^2 - \frac{1}{2} e^{2x} \cdot x + \frac{1}{4} e^{2x} \\ & = e^{2x} \cdot (\frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{4}) \end{split}$$

Spezialfälle

$$\int 1 \cdot ln(x) \cdot dx = x \cdot ln(x) - \int x \cdot \frac{1}{x} \cdot dx$$

$$= x \cdot ln(x) - x$$
(Stammfunktion von $ln(x)$)

$$\begin{split} &\int \sin(x) \cdot \cos(x) \cdot dx = -\cos(x) \cdot \cos(x) - \int \cos(x) \cdot (-\sin(x)) \cdot dx \\ &= -\cos^2(x) - \int \sin(x) \cdot \cos(x) \cdot dx \qquad | + \int \sin(x) \cdot \cos(x) \cdot dx \\ &2 \cdot \int \sin(x) \cdot \cos(x) \cdot dx = -\cos^2(x) \qquad | \div 2 \\ &\int \sin(x) \cdot \cos(x) \cdot dx = -\frac{\cos^2(x)}{2} \end{split}$$

a

$$\int_{-1}^{1} e^{x} \cdot x \cdot dx = \left[e^{x} \cdot x\right]_{-1}^{1} - \int e^{x} \cdot 1 \cdot dx = \left[e^{x} \cdot x - e^{x}\right]_{-1}^{1} = \frac{2}{e}$$

d

$$\int_0^{0.5} e^{2x+2} \cdot 4x \cdot dx = \left[\frac{1}{2} e^{2x+2} \cdot 4x \right]_0^{0.5} - \int \frac{1}{2} e^{2x+2} \cdot 4 \cdot dx$$
$$= \left[2e^{2x+2} \cdot x - e^{2x+2} \right]_0^{0.5} = e^2$$

188/2

b

$$\int_0^{\pi} \cos(x) \cdot x \cdot dx = [\sin(x) \cdot x]_0^{\pi} - \int \sin(x) \cdot 1 \cdot dx$$
$$= [\sin(x) \cdot x + \cos(x)]_0^{\pi} = -2$$

d

$$\int_0^{2\pi} \sin(0.5x) \cdot 2x \cdot dx = [-2\cos(0.5x) \cdot 2x]_0^{2\pi} - \int -2\cos(0.5x) \cdot 2 \cdot dx$$
$$= [-2\cos(0.5x) \cdot 2x + 8\sin(0.5x)]_0^{2\pi} = 8\pi$$

a

$$\begin{split} & \int_0^\pi (\sin(x))^2 \cdot dx = [-\cos(x) \cdot \sin(x)]_0^\pi - \int -\cos(x) \cdot \cos(x) \cdot dx \\ & = [-\cos(x) \cdot \sin(x)]_0^\pi - \int (-\sin^2(x) - 1) \cdot dx \\ & = [-\cos(x) \cdot \sin(x) + x]_0^\pi - \int \sin^2(x) \cdot dx \qquad | + \int_0^\pi \sin^2(x) \cdot dx; \quad \div 2 \\ & = \left[\frac{-\cos(x) \cdot \sin(x) + x}{2} \right]_0^\pi = \frac{\pi}{2} \end{split}$$

С

$$\int_{-2}^{2} e^{x} \cdot \cos(x) \cdot dx = \left[\sin(x) \cdot e^{x} \right]_{-2}^{2} - \int \sin(x) \cdot e^{x} \cdot dx$$

$$= \left[\sin(x) \cdot e^{x} \right]_{-2}^{2} - \left(\left[-\cos(x) \cdot e^{x} \right]_{-2}^{2} - \int -\cos(x) \cdot e^{x} \cdot dx \right)$$

$$= \left[\sin(x) \cdot e^{x} + \cos(x) \cdot e^{x} \right]_{-2}^{2} - \int \cos(x) \cdot e^{x} \cdot dx$$

$$= \left[\frac{(\sin(x) + \cos(x)) \cdot e^{x}}{2} \right]_{-2}^{2} \approx 1.912$$

d

$$\int_{0}^{2} \sin(\pi x) \cdot e^{2x} \cdot dx = \left[\frac{1}{2}e^{2x} \cdot \sin(\pi x)\right]_{0}^{2} - \int \frac{1}{2}e^{2x} \cdot \pi \cdot \cos(\pi x) \cdot dx$$

$$= \left[\frac{1}{2}e^{2x} \cdot \sin(\pi x)\right]_{0}^{2} - \left(\left[\frac{1}{4}e^{2x} \cdot \pi \cdot \cos(\pi x)\right]_{0}^{2} - \int -\frac{1}{4}e^{2x} \cdot \pi^{2} \cdot \sin(\pi x) \cdot dx\right)$$

$$= \left[\frac{1}{2}e^{2x} \cdot \sin(\pi x)\right]_{0}^{2} - \left(\left[\frac{1}{4}e^{2x} \cdot \pi \cdot \cos(\pi x) + \frac{1}{4}\pi^{2}\right]_{0}^{2} - \int e^{2x} \cdot \sin(\pi x) \cdot dx\right)$$

$$= \left[\frac{2e^{2x} \cdot \sin(\pi x) - \pi \cdot e^{2x} \cdot \cos(\pi x)}{\pi^{2} + 4}\right]_{0}^{2} = \frac{\pi}{\pi^{2} + 4} - \frac{e^{4} \cdot \pi}{\pi^{2} + 4} \approx -12.140$$

4.11 Integration durch Substitution

Kettenregel: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$

$$\begin{split} &\int f'(g(x))\cdot g'(x)\cdot dx = \int (f(g(x)))'\cdot dx \\ &= f(g(x)) \qquad \text{Dabei ist } f \text{ die Stammfunktion von } f' \\ \Rightarrow \text{ Benenne um } f' \to f \qquad f \to F \end{split}$$

$$\int f(g(x)) \cdot g'(x) \cdot dx = F(g(x))$$

Substitution 1

$$\int_a^b f(g(x)) \cdot g'(x) \cdot dx \qquad \text{ersetze } z = g(x) \qquad \frac{dz}{dx} = g'(x) \Rightarrow dz = g'(x) \cdot dx$$

$$= \int_{g(a)}^{g(b)} f(z) \cdot dz = [F(z)]_{g(a)}^{g(b)}$$

Resubstitution

$$= [F(g(x))]_a^b$$

Beispiel

$$\int_{1}^{2} \frac{5x}{\sqrt{1+3x^2}} \cdot dx$$

subst.
$$z = 1 + 3x^2$$

$$\frac{dz}{dx} = (1 + 3x^2)' = 6x \qquad dz = 6x \cdot dx$$
$$= \frac{5}{6} \int_{1}^{2} \frac{6x}{\sqrt{1 + 3x^2}} \cdot dx = \frac{5}{6} \int_{4}^{13} z^{-\frac{1}{2}} \cdot dz$$
$$= \frac{5}{6} \left[2z^{\frac{1}{2}} \right]_{4}^{13} = \frac{5}{6} \left[2 \cdot (1 + 3x^2)^{\frac{1}{2}} \right]_{1}^{2} \approx 2.676$$

a

$$\begin{split} & \int_0^2 \frac{4x}{\sqrt{1+2x^2}} \cdot dx; \qquad g(x) = 1 + 2x^2 \\ \text{subst. } z = g(x) \qquad dz = g'(x) \cdot dx \\ & = \int_{g(0)}^{g(2)} \frac{1}{\sqrt{z}} \cdot dz = \left[2 \cdot \sqrt{z} \right]_1^9 = 4 \end{split}$$

b

$$\begin{split} &\int_{-1}^{1} \frac{-2x}{(4-3x^2)^2} \cdot dx; \qquad g(x) = 4-3x^2 \\ \text{subst. } &z = g(x) \qquad dz = g'(x) \cdot dx \\ &= \int_{g(-1)}^{g(1)} \frac{1}{3z^2} \cdot dz = \left[-\frac{1}{3z} \right]_{1}^{1} = 0 \end{split}$$

191/3

е

$$\int_0^3 \frac{2x}{1+x^2} \cdot dx$$
subst. $z = 1+x^2$ $dz = 2x \cdot dx$

$$= \int_1^{10} \frac{1}{z} \cdot dz = [ln(z)]_1^{10}$$
resubst.

 $= \left[ln(1+x^2) \right]_0^3 = ln(10) \approx 2.3026$

f

$$\begin{split} & \int_{-1}^{2} \frac{e^{x}}{2 + e^{x}} \cdot dx \\ \text{subst. } z = 2 + e^{x} \qquad dz = e^{x} \cdot dx \\ & = \int_{2 + e^{-1}}^{2 + e^{2}} \frac{1}{z} \cdot dz = [ln(z)]_{2 + e^{-1}}^{2 + e^{2}} \\ \text{resubst.} \end{split}$$

$$= [ln(2 + e^x)]_{-1}^2 \approx 1.3775$$

$$\int_{e}^{e^{2}} \frac{4}{x \cdot ln(x)} \cdot dx$$
subst. $z = ln(x)$ $dz = \frac{1}{x} \cdot dx$

$$= \int_{1}^{2} \frac{4}{z} \cdot dz = [4 \cdot ln(z)]_{1}^{2}$$

resubst.

$$= [4 \cdot ln(ln(x))]_e^{e^2} = 4 \cdot ln(2) \approx 2.7726$$

h

$$\int_{\frac{1}{3}}^{\frac{1}{2}} \frac{\pi \cdot \cos(\pi x)}{\sin(\pi x)} \cdot dx$$

$$\text{subst. } z = \sin(\pi x) \qquad dz = \pi \cdot \cos(\pi x) \cdot dx$$

$$= \int_{\sin(\frac{\pi}{3})}^{\sin(\frac{\pi}{2})} \frac{1}{z} \cdot dz = \left[\ln(z)\right]_{\sin(\frac{\pi}{3})}^{\sin(\frac{\pi}{3})}$$

resubst.

$$= [ln(sin(\pi x))]_{\frac{1}{3}}^{\frac{1}{2}} \approx 0.1438$$

191/8

a

$$\int_{0}^{\ln(2)} \frac{e^{2x}}{e^{2x} + 3} \cdot dx \qquad t = e^{2x} + 3 \qquad t' = \frac{dt}{dx} = 2e^{2x} \qquad dx = \frac{1}{2 \cdot e^{2x}} \cdot dt$$

$$= \int_{t(0)}^{t(\ln(2))} \frac{e^{4x}}{t} \cdot \frac{1}{2 \cdot e^{2x}} \cdot dt = \int_{t(0)}^{t(\ln(2))} \frac{e^{2x}}{2t} \cdot dt = \int_{t(0)}^{t(\ln(2))} \frac{t - 3}{2t} \cdot dt$$

$$= \left[\frac{t}{2} - \frac{3}{2} \cdot \ln(t) \right]_{4}^{7} \approx 0.6606$$

b

$$\int_{1}^{2} \frac{2x+3}{(x+2)^{2}} \cdot dx \qquad t = x+2 \qquad t' = \frac{dt}{dx} = 1 \qquad dx = dt$$

$$= \int_{t(1)}^{t(2)} \frac{2x+3}{t^{2}} \cdot dt = \int_{t(1)}^{t(2)} \frac{2t-1}{t^{2}} \cdot dt = \int_{t(1)}^{t(2)} (\frac{2}{t} - \frac{1}{t^{2}}) \cdot dt$$

$$= \left[2 \cdot \ln(t) + \frac{1}{t} \right]_{3}^{4} \approx 0.4920$$

$$\int_{0.5}^{7} \frac{x}{\sqrt{4x - 1}} \cdot dx \qquad t = 4x - 1 \qquad t' = \frac{dt}{dx} = 4 \qquad dx = \frac{dt}{4}$$

$$= \int_{t(0.5)}^{t(7)} \frac{x}{\sqrt{t}} \cdot \frac{1}{4} \cdot dt = \int_{t(0.5)}^{t(7)} \frac{\frac{1}{4}t + \frac{1}{4}}{4 \cdot \sqrt{t}} \cdot dt = \int_{t(0.5)}^{t(7)} \frac{t + 1}{16 \cdot \sqrt{t}} \cdot dt$$

$$= \left[\left(\frac{1}{16}t + \frac{1}{16} \right) \cdot 2 \cdot \sqrt{t} \right]_{t(0.5)}^{t(7)} - \int_{t(0.5)}^{t(7)} \frac{1}{8} \cdot \sqrt{t} \cdot dt$$

$$= \left[\left(\frac{1}{8}t + \frac{1}{8} \right) \cdot \sqrt{t} \right]_{t(0.5)}^{t(7)} - \left[\frac{1}{8} \cdot \frac{2}{3} \cdot \sqrt{t^3} \right]_{t(0.5)}^{t(7)}$$

$$= \left[\frac{1}{8} \cdot \left(t \cdot \sqrt{t} + \sqrt{t} - \frac{2}{3} \cdot \sqrt{t^3} \right) \right]_{1}^{27} \approx 6.3285$$

d

$$\int_{0}^{4} \frac{4}{1+2\cdot\sqrt{x}} \cdot dx \qquad t = 1+2\cdot\sqrt{x} \qquad t' = \frac{dt}{dx} = \frac{1}{\sqrt{x}} \qquad dx = \sqrt{x} \cdot dt$$

$$= \int_{t(0)}^{t(4)} \frac{4}{t} \cdot \sqrt{x} \cdot dt = \int_{t(0)}^{t(4)} \frac{4}{t} \cdot \frac{t-1}{2} \cdot dt = \int_{t(0)}^{t(4)} \frac{4t-4}{2t} \cdot dt$$

$$= \left[\frac{1}{2t} \cdot (2t^{2} - 4t)\right]_{t(0)}^{t(4)} - \int_{t(0)}^{t(4)} -\frac{1}{2t^{2}} \cdot (2t^{2} - 4t) \cdot dt$$

$$= \left[t-2\right]_{t(0)}^{t(4)} - \int_{t(0)}^{t(4)} \left(\frac{2}{t} - 1\right) \cdot dt$$

$$= \left[t-2 - (2 \cdot \ln(t) - t)\right]_{t(0)}^{t(4)} = \left[2 \cdot (t-1 - \ln(t))\right]_{1}^{5} \approx 4.7811$$

Substitution 2

$$\begin{split} & \int_a^b f(x) \cdot dx \qquad \text{ersetze } x = g(z) \\ & = \int_a^b f(g(z)) \cdot dx = \int_{\overline{g}(a)}^{\overline{g}(b)} f(g(z)) \cdot g'(z) \cdot dz \\ & \qquad x = g(z) \qquad z = \overline{g}(x) \\ & \qquad \frac{dx}{dz} = g'(z) \qquad dx = g'(z) \cdot dz \\ & = [F(g(z))]_{\overline{g}(a)}^{\overline{g}(b)} = [F(x)]_a^b \end{split}$$

Beispiel

$$\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} \cdot dx \qquad x = \sin(z) \qquad dx = \cos(z) \cdot dz$$

$$= \int_{0}^{\frac{\pi}{6}} \frac{\cos(z)}{\sqrt{1-\sin^{2}(z)}} \cdot dz = \int_{0}^{\frac{\pi}{6}} 1 \cdot dz = [z]_{0}^{\frac{\pi}{6}} = \frac{\pi}{6} \approx 0.524$$

AB/23

а

$$\int_0^1 e^x \cdot \sqrt{e^x + 1} \cdot dx$$

$$x(t) = \ln(t) \qquad t = e^x \qquad dx = \frac{1}{t} \cdot dt$$

$$= \int_{e^0}^{e^1} e^{\ln(t)} \cdot \sqrt{e^{\ln(t)} + 1} \cdot \frac{1}{t} \cdot dz = \int_1^e \sqrt{t + 1} \cdot dz$$

$$= \left[\frac{2}{3} \cdot \sqrt{(t + 1)^3} \right]_1^e \approx 2.8943$$

С

$$\int_{1}^{3} \frac{1}{x} \cdot \ln(x^{2}) \cdot dx$$

$$x(t) = e^{t} \qquad t = \ln(x) \qquad dx = e^{t} \cdot dt$$

$$= \int_{\ln(1)}^{\ln(3)} \frac{1}{e^{t}} \cdot \ln(e^{t^{2}}) \cdot e^{t} \cdot dt = \int_{0}^{\ln(3)} \ln(e^{2t}) \cdot dt = \int_{0}^{\ln(3)} 2t \cdot dt$$

$$= \left[t^{2}\right]_{0}^{\ln(3)} = (\ln(3))^{2} \approx 1.2069$$

4.11.1 Wiederholung

1. Ersetze g(x) durch z

$$\int_{a}^{b} = f(g(x)) \cdot g'(x) \cdot dx = \int_{g(a)}^{g(b)} f(z) \cdot dz$$
$$= [F(z)]_{g(a)}^{g(b)} = [F(g(x))]_{a}^{b}$$
$$z = g(x)$$

$$\frac{dz}{dx} = g'(x)$$
$$dz = g'(x) \cdot dx$$

2. Ersetze x durch g(z)

$$\int_{a}^{b} f(x) \cdot dx = \int_{\overline{g}(a)}^{\overline{g}(b)} f(g(z)) \cdot g'(z) \cdot dz$$
$$= [F(g(z))]_{\overline{g}(a)}^{\overline{g}(b)} = [F(x)]_{a}^{b}$$

$$x = g(z) \Leftrightarrow z = \overline{g}(x)$$
 dx

$$\frac{dx}{dz} = g'(z)$$

$$dx = g'(z) \cdot dz$$

AB/23

d

$$\int_{1}^{2} \frac{1 + \ln(x)}{x \cdot (1 - \ln(x))} \cdot dx$$
$$x(t) = e^{t} \qquad t = \ln(x) \qquad dx = e^{t} \cdot dt$$

$$= \int_{ln(1)}^{ln(2)} \frac{1 + ln(e^t)}{e^t \cdot (1 - ln(e^t))} \cdot e^t \cdot dt = \int_0^{ln(2)} \frac{1 + t}{1 - t} \cdot dt$$
$$z = 1 - t \qquad \frac{dz}{dt} = -1 \qquad dz = -dt$$

$$= -\int_{1-0}^{1-\ln(2)} \frac{2-z}{z} \cdot dz = -\int_{1-0}^{1-\ln(2)} (\frac{2}{z} - 1) \cdot dz$$
$$= -\left[2 \cdot \ln(z) - z\right]_{1}^{1-\ln(2)} \approx 1.6696$$

g

$$\int_0^1 \frac{1}{\sqrt{4 - x^2}} \cdot dx$$

$$x(t) = 2 \cdot \sin(t) \qquad t = a\sin(\frac{x}{2}) \qquad dx = 2 \cdot \cos(t) \cdot dt$$

$$= \int_{asin(\frac{1}{2})}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{\sqrt{4 - (2 \cdot sin(t))^2}} \cdot dt = \int_{0}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{2 \cdot \sqrt{1 - (sin(t))^2}} \cdot dt$$
$$= \int_{0}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{2 \cdot \sqrt{(cos(t))^2}} \cdot dt = \int_{0}^{asin(\frac{1}{2})} 1 \cdot dt = [t]_{0}^{asin(\frac{1}{2})} = \frac{\pi}{6}$$

4.12 Rotationskörper

Rotationssymetrische Körper, die man sich dadurch entstanden vorstellen kann, dass eine Fläche um eine Achse (x-Achse) rotiert.

4.12.1 Bestimmung des Volumens von Rotationskörpern

$$f(x) = \frac{1}{2}x^2 + 1$$

$$A = \int_{a}^{b} f(x) \cdot dx$$

$$= \int_{1}^{2} (\frac{1}{2}x^{2} + 1) \cdot dx = \left[\frac{1}{6}x^{3} + x\right]_{1}^{2} = \frac{13}{6}FE \approx 2.17FE$$

$$V = \int_{a}^{b} \pi \cdot (f(x))^{2} \cdot dx$$

$$= \pi \cdot \int_{1}^{2} (\frac{1}{2}x^{2} + 1)^{2} \cdot dx = \pi \cdot \left[\frac{1}{20}x^{5} + \frac{1}{3}x^{3} + x\right]_{1}^{2} = \frac{293\pi}{60}VE \approx 15.34VE$$

a

$$y = \sqrt{x+1}$$

$$V = \pi \cdot \int_{-1}^{2} (\sqrt{x+1})^2 \cdot dx = \pi \cdot \int_{-1}^{2} (x+1) \cdot dx$$

$$= \pi \cdot \left[\frac{1}{2} x^2 + x \right]_{-1}^{2} = \pi \cdot 4.5VE \approx 14.1372VE$$

b

$$y = \frac{1}{x}$$

$$V = \pi \cdot \int_{1}^{3} (\frac{1}{x})^{2} \cdot dx = \pi \cdot \int_{1}^{3} x^{-2} \cdot dx$$

$$= \pi \cdot \left[-x^{-1} \right]_{1}^{3} = \pi \cdot \frac{2}{3} VE \approx 2.0944 VE$$

С

$$y = x^{2} - 6x + 8$$

$$y = 0 L = \{2; 4\}$$

$$V = \pi \cdot \int_{2}^{4} (x^{2} - 6x + 8)^{2} \cdot dx = \pi \cdot \int_{2}^{4} (x^{4} - 12x^{3} + 52x^{2} - 96x + 64) \cdot dx$$

$$= \pi \cdot \left[\frac{1}{5}x^{5} - 3x^{4} + \frac{52}{3}x^{3} - 48x^{2} + 64x \right]_{2}^{4} = \pi \cdot \frac{16}{15}VE \approx 3.3510VE$$

197/8

$$f(x) = 0.5x + 1$$
 $g(x) = 1.5 \cdot \sqrt{x - 1}$ [0; 4]

а

$$V_W = \pi \cdot \int_1^4 (1.5 \cdot \sqrt{x - 1})^2 \cdot dx = \pi \cdot \int_1^4 (2.25x - 2.25) \cdot dx$$
$$= \pi \cdot \left[1.125x^2 - 2.25x \right]_1^4 = 10.125\pi \approx 31.8086$$
$$[V_W] = cm^3$$

b

$$V = \pi \cdot \int_0^4 (0.5x + 1)^2 \cdot dx = \pi \cdot \int_0^4 (0.25x^2 + x + 1) \cdot dx$$

$$= \pi \cdot \left[\frac{1}{12} x^3 + \frac{1}{2} x^2 + x \right]_0^4 = \frac{52\pi}{3} \approx 54.4543$$

$$V_G = V - V_W = 10.125\pi - \frac{52\pi}{3} = 22.6456$$

$$[V] = [V_G] = cm^3$$

197/9

b

$$f(x) = 3x^{2} - x^{3} g(x) = x^{2}$$

$$f(x) = g(x) L = \{0; 2\}$$

$$V = \pi \cdot ((3x^{2} - x^{3})^{2} - (x^{2})^{2}) \cdot dx = \pi \cdot (9x^{4} - 6x^{5} + x^{6} - x^{4}) \cdot dx$$

$$= \pi \left[\frac{8}{5}x^{5} - x^{6} + \frac{1}{7}x^{7} \right]_{0}^{2} = \frac{192\pi}{35} \approx 17.2339$$

188/4

b

$$f(x) = 2x \cdot \sin(x)$$

$$\int f(x) \cdot dx = -\cos(x) \cdot 2x - \int -\cos(x) \cdot 2 \cdot dx = -\cos(x) \cdot 2x + \sin(x) \cdot 2$$

188/9

b

$$\int_{1}^{e} x \cdot \ln(2x) \cdot dx$$

$$= \left[\frac{1}{2} x^{2} \cdot \ln(2x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{2} x^{2} \cdot \frac{1}{x} \cdot dx = \left[\frac{1}{2} x^{2} \cdot \ln(2x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{2} x \cdot dx$$

$$= \left[\frac{1}{2} x^{2} \cdot \ln(2x) - \frac{1}{4} x^{2} \right]_{1}^{e} \approx 4.3115$$

С

$$\int_{1}^{e^{2}} x^{2} \cdot \ln(x) \cdot dx$$

$$= \left[\frac{1}{3} x^{3} \cdot \ln(x) \right]_{1}^{e^{2}} - \int_{1}^{e^{2}} \frac{1}{3} x^{3} \cdot \frac{1}{x} \cdot dx$$

$$= \left[\frac{1}{3} x^{3} \cdot \ln(x) - \frac{1}{9} x^{3} \right]_{1}^{e^{2}} \approx 224.2382$$

Kapitel 5

Analytische Geometrie

5.1 Punkte und Vektoren

Jeder Punkt im Raum \mathbb{R}^3 ist durch 3 Koordinaten (x|y|z) oder $(x_1|x_2|x_3)$ festgelegt, sofern zuvor der Ursprung O des Koordinatensystems festgelegt wird. Den Vektor, der vom Ursprung O zum Punkt A(x|y|z) führt, nennt man Ortsvektor von A und notiert man

$$\overrightarrow{OA} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Ein Vektor ist eine Stecke (mit Länge) mit Orientierung (Pfeil).

5.1.1 Darstellung im 3-dimensionalen Koordinatensystem

A(2|3|4) B(-3|1|-2) C(3|0|2)

Alle Punkte mit (-2|1|z) liegen auf einer Geraden parallel zur z-Achse.

a+c

b

$$D(-2|-1|0)$$
 $E(-2|0|3)$ $F(1|0|3)$ $H(-2|-1|3)$

276/3

$$P(2|3|0)$$
 $Q(4|4|0)$
 $R(0|3|1)$ $S(0|-2|-1)$
 $T(2|0|2)$ $U(3|0|-1)$

276/10

$$A(2|0|0)$$
 $B(-1|2|-1)$ $C(-2|3|4)$ $D(3|4|-2)$

a

$$A'(2|0|0)$$
 $B'(-1|2|1)$ $C'(-2|3|-4)$ $D'(3|4|2)$

$$A'(-2|0|0)$$
 $B'(1|2|-1)$ $C'(2|3|4)$ $D'(-3|4|-2)$

С

$$A'(2|0|0)$$
 $B'(-1|-2|-1)$ $C'(-2|-3|4)$ $D'(3|-4|-2)$

5.2 Ortsvektoren und Verschiebungsvektoren

 \overrightarrow{OA} ist der Ortsvektor des Punktes A. Der Vektor führt vom Ursprung O zum Punkt A. \overrightarrow{BC} ist ein Verschiebungsvektor, der Punkt B auf Punkt C verschiebt, bzw. B mit C verbindet und auf C zeigt. Mit Hilfe des Vektors \overrightarrow{BC} lassen sich auch andere Punkte in gleicher Weise verschieben wie Punkt B auf Punkt C.

$$\overrightarrow{BC} = \begin{pmatrix} 3\\2 \end{pmatrix} \qquad P(0|1) \quad Q(4|3) \quad R(1.5|0.5)$$

$$\overrightarrow{OP} + \overrightarrow{BC} = \overrightarrow{OP'} \qquad \begin{pmatrix} 0\\1 \end{pmatrix} + \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 3\\3 \end{pmatrix}$$

5.2.1 Addition, Subtraktion und Multiplikation mit einer Zahl

$$\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 4 \\ 0 \\ -1 \end{pmatrix}$$

$$\overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\overrightarrow{d} = \begin{pmatrix} 1\\0\\5 \end{pmatrix} + \begin{pmatrix} 2\\-3\\1 \end{pmatrix} + \begin{pmatrix} 4\\0\\-1 \end{pmatrix} = \begin{pmatrix} 7\\-3\\5 \end{pmatrix}$$

•

$$\overrightarrow{e} = \overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b})$$
 (Gegenvektor von \overrightarrow{b})
$$\overrightarrow{e} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$$

•

$$\overrightarrow{f} = 3 \cdot \overrightarrow{a}$$

$$\overrightarrow{f} = 3 \cdot \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 15 \end{pmatrix}$$

Darstellung eines Vektors durch andere Vektoren (Bsp. Verbindungsvektor)

$$\overrightarrow{a} = \overrightarrow{OA} = \begin{pmatrix} 4\\4\\1 \end{pmatrix} \qquad \overrightarrow{b} = \overrightarrow{OB} = \begin{pmatrix} -1\\0\\3 \end{pmatrix}$$

$$\overrightarrow{AB} = -\overrightarrow{a} + \overrightarrow{b} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} -1\\0\\3 \end{pmatrix} - \begin{pmatrix} 4\\4\\1 \end{pmatrix} = \begin{pmatrix} -5\\-4\\2 \end{pmatrix}$$

a

$$A(-2|2|3) \qquad B(5|5|5) \qquad C(9|6|5) \qquad D(2|3|3)$$

$$\overrightarrow{AB} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix} \qquad \overrightarrow{DC} = \begin{pmatrix} 7 \\ 3 \\ 2 \end{pmatrix}$$

$$\overrightarrow{AB} = \overrightarrow{DC} \quad \Rightarrow \quad \text{Parallelogramm}$$

b

$$A(2|0|3) \quad B(4|4|4) \quad C(11|7|9) \quad D(9|3|8)$$

$$\overrightarrow{AB} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} \quad \overrightarrow{DC} = \begin{pmatrix} 2\\4\\1 \end{pmatrix}$$

$$\overrightarrow{AB} = \overrightarrow{DC} \quad \Rightarrow \quad \text{Parallelogramm}$$

С

$$A(2|-2|7) \qquad B(6|5|1) \qquad C(1|-1|1) \qquad D(8|0|8)$$

$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 7 \\ -6 \end{pmatrix} \qquad \overrightarrow{DC} = \begin{pmatrix} -7 \\ -1 \\ -7 \end{pmatrix}$$

$$\overrightarrow{AB} \neq \overrightarrow{DC} \implies \text{ kein Parallelogramm}$$

a

$$A(21|-11|43) B(3|7|-8) C(0|4|5)$$

$$\overrightarrow{AB} = \begin{pmatrix} -18\\18\\-51 \end{pmatrix} \overrightarrow{BC} = \begin{pmatrix} -3\\-3\\13 \end{pmatrix}$$

$$\overrightarrow{OD_1} = \overrightarrow{OA} + \overrightarrow{BC} = \begin{pmatrix} 18\\-14\\56 \end{pmatrix}$$

$$\overrightarrow{OD_2} = \overrightarrow{OC} + \overrightarrow{AB} = \begin{pmatrix} -18\\22\\-46 \end{pmatrix}$$

$$\overrightarrow{OD_3} = \overrightarrow{OA} - \overrightarrow{BC} = \begin{pmatrix} 24\\-8\\30 \end{pmatrix}$$

b

$$A(-75|199|-67) \qquad B(35|0|-81) \qquad C(1|2|3)$$

$$\overrightarrow{AB} = \begin{pmatrix} 110 \\ -199 \\ 14 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} -34 \\ 2 \\ 84 \end{pmatrix}$$

$$\overrightarrow{OD_1} = \overrightarrow{OA} + \overrightarrow{BC} = \begin{pmatrix} -109 \\ 201 \\ 17 \end{pmatrix}$$

$$\overrightarrow{OD_2} = \overrightarrow{OC} + \overrightarrow{AB} = \begin{pmatrix} 111 \\ -197 \\ 17 \end{pmatrix}$$

$$\overrightarrow{OD_3} = \overrightarrow{OA} - \overrightarrow{BC} = \begin{pmatrix} -41 \\ 197 \\ -151 \end{pmatrix}$$

5.2.2 Vektorzüge und Linearkombinationen

(zu 279/6)

 M_1 ... Mittelpunkt von \overline{AB}

 M_2 ... Mittelpunkt des Parallelogramms (mit D_1)

$$\overrightarrow{OM_1} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AB} = \overrightarrow{OB} - \frac{1}{2} \overrightarrow{AB}$$

$$\overrightarrow{OM_2} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AC} = \overrightarrow{OC} - \frac{1}{2} \overrightarrow{AC}$$

zu 6a

$$\overrightarrow{OM}_{1} = \begin{pmatrix} -2\\2\\3 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} 5\\5\\5 \end{pmatrix} \qquad \overrightarrow{OC} = \begin{pmatrix} 9\\6\\5 \end{pmatrix}$$

$$\overrightarrow{OM}_{1} = \begin{pmatrix} -2\\2\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 7\\3\\2 \end{pmatrix} = \begin{pmatrix} 1.5\\3.5\\4 \end{pmatrix}$$

$$\overrightarrow{OM}_{2} = \begin{pmatrix} -2\\2\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 11\\4\\2 \end{pmatrix} = \begin{pmatrix} 3.5\\4\\4 \end{pmatrix}$$

zu 6b

$$\overrightarrow{OM}_{1} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} 4\\4\\4 \end{pmatrix} \qquad \overrightarrow{OC} = \begin{pmatrix} 11\\7\\9 \end{pmatrix}$$

$$\overrightarrow{OM}_{1} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 2\\4\\1 \end{pmatrix} = \begin{pmatrix} 3\\2\\3.5 \end{pmatrix}$$

$$\overrightarrow{OM}_{2} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 9\\7\\6 \end{pmatrix} = \begin{pmatrix} 6.5\\3.5\\6 \end{pmatrix}$$

Setze ich mehrere Vektorpfeile, mit Koeffizienten multipliziert, aneinander, so nennt man das einen Vektorzug. Die rechnerische Summe solcher Vektoren heißt Linearkombination.

a

$$2 \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 3 \cdot \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

b

$$4 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

С

$$3 \cdot \begin{pmatrix} -1 \\ -2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ -12 \end{pmatrix}$$

283/7

d

$$\begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix} + (-1) \cdot \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix}$$

е

$$3 \cdot \begin{pmatrix} -1\\4\\2 \end{pmatrix} - 2 \cdot \begin{pmatrix} -2\\4\\1 \end{pmatrix} + 3 \cdot \begin{pmatrix} -1\\4\\2 \end{pmatrix} = \begin{pmatrix} -2\\16\\10 \end{pmatrix}$$

$$4 \cdot \begin{pmatrix} 0.5 \\ 3 \\ 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0.8 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 6.4 \\ 30 \\ 17 \end{pmatrix}$$

$$f - (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{v} - \overrightarrow{u}$$

$$g(2(\overrightarrow{a} + 4\overrightarrow{b}) = 4\overrightarrow{a} + 8\overrightarrow{b}$$

$$h -4(\overrightarrow{a} - \overrightarrow{b}) - \overrightarrow{b} + \overrightarrow{a} = 3\overrightarrow{a} - 3\overrightarrow{b}$$

$$i \ 3(\overrightarrow{a} + 2(\overrightarrow{a} + \overrightarrow{b})) = 9\overrightarrow{a} + 6\overrightarrow{b}$$

$$i 6(\overrightarrow{a} - \overrightarrow{b}) + 4(\overrightarrow{a} + \overrightarrow{b}) = 10\overrightarrow{a} - 2\overrightarrow{b}$$

$$\mathsf{k} \ 7\vec{u} + 5(\vec{u} - 2(\vec{u} + \vec{v})) = 2\vec{u} - 10\vec{v}$$

284/12

a
$$\overrightarrow{AG} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\overrightarrow{BH} = -\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\overrightarrow{EC} = \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$$

$$\overrightarrow{ME} = -\frac{1}{2}\overrightarrow{a} - \frac{1}{2}\overrightarrow{b} + \overrightarrow{c}$$

5.3 Geraden in \mathbb{R}^3

C

$$S_{5} \xrightarrow{A} S_{2} \xrightarrow{S_{1}} S_{3} \xrightarrow{B} S_{4}$$

$$\overrightarrow{OS_{1}} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OS_{2}} = \overrightarrow{OA} + \frac{1}{4}\overrightarrow{AB}$$

$$\overrightarrow{OS_{3}} = \overrightarrow{OA} + \frac{3}{4}\overrightarrow{AB}$$

$$\overrightarrow{OS_{4}} = \overrightarrow{OA} + \frac{3}{2}\overrightarrow{AB} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{AB}$$

$$\overrightarrow{OS_{5}} = \overrightarrow{OA} - \frac{1}{4}\overrightarrow{AB}$$

Gerade durch die Punkte A und B:

$$q: \overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB}$$
 $s \in \mathbb{R}$

Parametergleichung einer Geraden g:

- g Name der Geraden
- \overrightarrow{x} Ortsvektor eines unbestimmten Punktes
- \overrightarrow{OA} Ortsvektor eines bestimmten Punktes A (heißt auch Stützvektor)
 - s Parameter $s \in \mathbb{R}$ Beim Durchlaufen aller Zahlen von \mathbb{R} werden nacheinander alle Punkte der Geraden g dargestellt
- \overrightarrow{AB} Richtungsvektor von g gibt die Richtung von g an

$$h \colon \overrightarrow{x} = \overrightarrow{a} + r \cdot \overrightarrow{b}$$

$$h \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$$

Beispiele für Punkte auf $\,h\,$

$$\overrightarrow{OP_1} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} \qquad r = 0$$

$$\overrightarrow{OP_2} = \begin{pmatrix} -2\\5\\4 \end{pmatrix} \qquad r = 1$$

$$\overrightarrow{OP_3} = \begin{pmatrix} -5\\10\\6 \end{pmatrix} \qquad r = 2$$

$$\overrightarrow{OP_4} = \begin{pmatrix} 4 \\ -5 \\ 0 \end{pmatrix} \qquad r = -1$$

$$\overrightarrow{OQ} = \begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix} \in h$$

$$\begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$$

gibt es ein r, das alle 3 Gleichungen löst?

$$3 = 1 - 3r \implies r = -\frac{2}{3}$$

$$7 = 5r \implies r = \frac{7}{5}$$

$$-1 = 2 + 2r \implies r = -\frac{3}{2}$$

$$\Rightarrow Q \notin h$$

287/2

а

$$A(1|2|2) B(5|-4|7)$$

$$g: \vec{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 1\\2\\2 \end{pmatrix} + s \cdot \begin{pmatrix} 4\\-6\\5 \end{pmatrix}$$

$$g: \vec{x} = \overrightarrow{OB} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 5\\-4\\7 \end{pmatrix} + s \cdot \begin{pmatrix} 4\\-6\\5 \end{pmatrix}$$

$$A(-3|-2|9) \qquad B(0|0|3)$$

$$g: \overrightarrow{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} -3 \\ -2 \\ 9 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$

$$g: \overrightarrow{x} = \overrightarrow{OB} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$

С

$$A(7|-2|7) \qquad B(1|1|1)$$

$$g: \vec{x} = \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 7 \\ -2 \\ 7 \end{pmatrix} + s \cdot \begin{pmatrix} -6 \\ 3 \\ -6 \end{pmatrix}$$

$$g: \vec{x} = \overrightarrow{OB} + s \cdot \overrightarrow{AB} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} -6 \\ 3 \\ -6 \end{pmatrix}$$

287/3

С

$$X(2|3|-1) \qquad g \colon \overrightarrow{x} = \begin{pmatrix} 7 \\ 0 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 5 \\ -3 \\ 5 \end{pmatrix}$$
$$2 = 7 + t \cdot 5 \quad \Rightarrow \quad t = -1$$
$$3 = t \cdot -3 \quad \Rightarrow \quad t = -1$$
$$-1 = 4 + t \cdot 5 \quad \Rightarrow \quad t = -1$$
$$\Rightarrow \quad X \in q$$

d

$$X(2|-1|-1) g: \overrightarrow{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$$
$$2 = 1 + t \Rightarrow t = 1$$
$$-1 = t \cdot 3 \Rightarrow t = -\frac{1}{3}$$
$$\Rightarrow X \notin g$$

288/12

a g

$$P_1(2|9|0)$$
 $P_2(-4|1|0)$ $g: \vec{x} = \begin{pmatrix} 2\\9\\0 \end{pmatrix} + t \cdot \begin{pmatrix} 3\\4\\0 \end{pmatrix}$

h

$$H(-4|1|3)$$
 $P(2|5|-3)$ $h: \vec{x} = \begin{pmatrix} -4\\1\\3 \end{pmatrix} + t \cdot \begin{pmatrix} 3\\2\\-3 \end{pmatrix}$

i

$$P_1(-4|5|3)$$
 $P_2(-4|9|0)$ $i: \vec{x} = \begin{pmatrix} -4\\5\\3 \end{pmatrix} + t \cdot \begin{pmatrix} 0\\4\\-3 \end{pmatrix}$

j

$$P_1(-1|1|0)$$
 $P_2(-1|5|3)$ $j \colon \vec{x} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} + t \cdot \begin{pmatrix} 0\\4\\3 \end{pmatrix}$

b g

$$C(-8|11|0)$$
 $P(-2|5|3)$ $g: \vec{x} = \begin{pmatrix} -8\\11\\0 \end{pmatrix} + t \cdot \begin{pmatrix} 2\\-2\\1 \end{pmatrix}$

h

$$P_1(-2|5|3)$$
 $P_2(-6|9|3)$ $h: \vec{x} = \begin{pmatrix} -2\\5\\3 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\2\\0 \end{pmatrix}$

i

$$B(0|11|0)$$
 $P(-6|5|3)$ $i: \vec{x} = \begin{pmatrix} 0\\11\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\-2\\1 \end{pmatrix}$

j

$$M(-4|7|0)$$
 $P(-6|5|3)$ $j \colon \overrightarrow{x} = \begin{pmatrix} -4\\7\\0 \end{pmatrix} + t \cdot \begin{pmatrix} -2\\-2\\3 \end{pmatrix}$

5.3.1 Kollinearität

$$\begin{array}{ll} g\colon \overrightarrow{x}=\overrightarrow{a}+t\cdot\overrightarrow{b} & t\in\mathbb{R} \\ \text{für } \overrightarrow{b} \text{ gilt: } \overrightarrow{b} \text{ kann durch } \overrightarrow{b}'=s\cdot\overrightarrow{b} \text{ ersetzt werden } s\in\mathbb{R} \quad s\neq 0 \\ \overrightarrow{b}'\parallel\overrightarrow{b} & \overrightarrow{b}' \text{ und } \overrightarrow{b} \text{ sind kollinear} \end{array}$$

Sonderfall: Gerade durch O

z. B.
$$g \colon \overrightarrow{x} = t \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} -2 \\ -6 \\ -10 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$
 hier ist $\overrightarrow{a} \parallel \overrightarrow{b}$, d. h. \overrightarrow{a} und \overrightarrow{b} sind kollinear $(\overrightarrow{a} = -2 \cdot \overrightarrow{b})$

5.3.2 Lage zweier Geraden

4 Möglichkeiten unterschiedlicher Lage:

- Schnitt (Schnittpunkt)
- parallel
- identisch
- windschief

Verfahren um festzustellen, welche Lage zwei Geraden g und h haben

$$g: \vec{x} = \vec{a} + s \cdot \vec{b}$$

 $h: \vec{x} = \vec{c} + t \cdot \vec{d}$

$$\overrightarrow{b} \stackrel{?}{=} r \cdot \overrightarrow{d}$$

• wahr:

$$\vec{a} \stackrel{?}{=} \vec{c} + t \cdot \vec{d}$$
 oder $\vec{c} \stackrel{?}{=} \vec{a} + s \cdot \vec{b}$

- $\boldsymbol{-}$ wenn wahr, dann sind g und h identisch
- wenn nicht wahr, dann sind g und h parallel

• nicht wahr:

$$\vec{a} + s \cdot \vec{b} = \vec{c} + t \cdot \vec{d}$$

- finde ich ein s und ein t, sodass das LGS gelöst wird, so schneiden sich g und h in einem Punkt S
- ansonsten sind g und h windschief

292/1

a

$$g \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$
$$h \colon \overrightarrow{x} = \begin{pmatrix} 3 \\ 6 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2\\4\\1 \end{pmatrix} = r \cdot \begin{pmatrix} 4\\8\\2 \end{pmatrix}$$

r = 2

 \Rightarrow identisch oder parallel

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix}$$
$$t = -\frac{1}{2}$$

 \Rightarrow identisch

a

$$g \colon \overrightarrow{x} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
$$h \colon \overrightarrow{x} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$9 + 3r = 7 + s$$

$$2r = -2 + s$$

$$6 + r = 2 + 2s$$

$$\Rightarrow r = 0 \qquad s = 2$$

$$\overrightarrow{OS} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix} + 0 \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 0 \\ 6 \end{pmatrix}$$

S(9|0|6)

a

$$g \colon \overrightarrow{x} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
$$h \colon \overrightarrow{x} = \begin{pmatrix} 7 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} -6 \\ -3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2\\1\\-1 \end{pmatrix} = r \cdot \begin{pmatrix} -6\\-3\\3 \end{pmatrix}$$

r = -3

 \Rightarrow identisch oder parallel

$$\begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} -6 \\ -3 \\ 3 \end{pmatrix}$$

$$5 = 7 + t \cdot (-6) \quad \Rightarrow \quad t = \frac{1}{3}$$

$$0 = 1 + t \cdot (-3) \quad \Rightarrow \quad t = \frac{1}{3}$$

$$1 = 2 + t \cdot 3 \quad \Rightarrow \quad t = -\frac{1}{3}$$

$$\Rightarrow \text{ parallel}$$

b

$$g \colon \overrightarrow{x} = t \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
$$h \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \neq r \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

 $\Rightarrow \mathsf{nicht} \; \mathsf{parallel}$

$$\begin{split} t_g \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t_h \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \\ t_g \cdot 2 &= 2 + t_h \cdot 0 \quad \Rightarrow \quad t_g = 1 \\ t_g \cdot 0 &= 3 + t_h \cdot 1 \quad \Rightarrow \quad t_h = -1 \\ t_g \cdot 1 &\neq 4 + t_h \cdot (-1) \\ \Rightarrow \text{ windschief} \end{split}$$

293/8

$$g \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
$$h \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
$$i \colon \overrightarrow{x} = t \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
$$j \colon \overrightarrow{x} = t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

5.3.3 Parameterpunkte und -geraden

$$\overrightarrow{OA_b} = \begin{pmatrix} 1\\5\\b \end{pmatrix} = \begin{pmatrix} 1+b\cdot0\\5+b\cdot0\\0+b\cdot1 \end{pmatrix} = \begin{pmatrix} 1\\5\\0 \end{pmatrix} + b\cdot\begin{pmatrix}0\\0\\1 \end{pmatrix}$$

$$\overrightarrow{OC_d} = \begin{pmatrix} 2d\\1-5d\\7 \end{pmatrix} = \begin{pmatrix} 0+d\cdot2\\1+d\cdot(-5)\\7+d\cdot0 \end{pmatrix} = \begin{pmatrix} 0\\1\\7 \end{pmatrix} + d\cdot\begin{pmatrix}2\\-5\\0 \end{pmatrix}$$

$$g_a \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ a \\ 5 \end{pmatrix} + r \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} + a \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

293/10

a

$$g_a : \vec{x} = \begin{pmatrix} 3 \\ a \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 5 \\ 7 \end{pmatrix} \qquad h_a : \vec{x} = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -22 \\ -29 \end{pmatrix}$$

$$\begin{pmatrix} -1\\5\\7 \end{pmatrix} \neq t \cdot \begin{pmatrix} 2\\-22\\-29 \end{pmatrix}$$

 \Rightarrow nicht parallel

$$\begin{pmatrix} 3 \\ a \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 5 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -22 \\ -29 \end{pmatrix}$$

$$3 - r = 1 + 2s$$

$$a + 5r = -22s$$

$$3 + 7r = a - 29s$$

$$a=2$$
 $r=4$ $s=-1$

$$\overrightarrow{OS} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + 4 \cdot \begin{pmatrix} -1 \\ 5 \\ 7 \end{pmatrix} = \begin{pmatrix} -1 \\ 22 \\ 31 \end{pmatrix}$$

b

$$g_a : \overrightarrow{x} = \begin{pmatrix} 3 \\ 2 \\ a \end{pmatrix} + r \cdot \begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} \qquad h_a : \overrightarrow{x} = \begin{pmatrix} a \\ -1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} \neq t \cdot \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$$

⇒ nicht parallel

$$\begin{pmatrix} 3 \\ 2 \\ a \end{pmatrix} + r \cdot \begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ -1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$$

$$3 + 10r = a + 6s$$

$$2 + 7r = -1 + 2s$$

$$a = 3 - s$$

$$a = 5 \qquad r = -1 \qquad s = -2$$

$$\overrightarrow{OS} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} - \begin{pmatrix} 10 \\ 7 \\ 0 \end{pmatrix} = \begin{pmatrix} -7 \\ -5 \\ 5 \end{pmatrix}$$

293/16

$$G = 10cm^{2} h = 15cm$$

$$V_{Z} = G \cdot h = 150cm^{3}$$

$$V_{K} = \frac{1}{3} \cdot G \cdot h = 50cm^{3}$$

$$V_{Z} - V_{K} = 100cm^{3} = 0.1L$$

5.4 Abstand zweier Punkte, Vektorlänge, Streckenlänge

$$\mathsf{Bsp.}\ g\colon \overrightarrow{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\-1\\0 \end{pmatrix} \qquad r \in \mathbb{R}\colon \left[2;5\right]$$

$$\overrightarrow{OC} = \begin{pmatrix} 5 \\ 0 \\ 3 \end{pmatrix} \qquad \overrightarrow{OD} = \begin{pmatrix} 11 \\ -3 \\ 3 \end{pmatrix}$$
$$|\overrightarrow{CD}| = |\overrightarrow{CD}| = \text{Abstand } C \leftrightarrow D$$
$$\overrightarrow{CD} = \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}$$

Seitenlängen des Segels (Bsp. S. 294)

unten: 4m

links: $\sqrt{(5m)^2 + (3m)^2}$ (Satz des Pythagoras)

rechts: $\sqrt{(\sqrt{34}m)^2 + (4m)^2} = \sqrt{(5m)^2 + (3m)^2 + (4m)^2}$

$$|\overrightarrow{CD}| = \sqrt{6^2 + (-3)^2 + 0^2} = \sqrt{45} \approx 6.71 LE$$

Die Länge eines Vektors $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ ist $\begin{vmatrix} a \\ b \\ c \end{vmatrix} = \sqrt{a^2 + b^2 + c^2}$

297/2

а

$$A(0|0|0)$$
 $B(2|3|-1)$

$$\overrightarrow{AB} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix}$$

$$|\overrightarrow{AB}| = \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{14} \approx 3.74LE$$

$$\overrightarrow{A(2|2|-2)} \qquad B(0|-1|5)
\overrightarrow{AB} = \begin{pmatrix} -2\\ -3\\ 7 \end{pmatrix}
|\overrightarrow{AB}| = \sqrt{(-2)^2 + (-3)^2 + 7^2} = \sqrt{62} \approx 7.87LE$$

С

$$A(1|5|6) \qquad B(1|6|7)$$

$$\overrightarrow{AB} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

$$|\overrightarrow{AB}| = \sqrt{0^2 + 1^2 + 1^2} = \sqrt{2} \approx 1.41LE$$

5.4.1 Einheitsvektor

Ein Einheitsvektor hat die Länge 1LE

Einheitsvektor zu z. B.
$$\vec{a} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$$
 $|\vec{a}| = \sqrt{30}$

$$\vec{a_0} = \frac{1}{\sqrt{30}} \cdot \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$$

297/8

a

$$\begin{split} A(1|-2|2) & B(3|2|1) \quad C(3|0|3) \\ \overrightarrow{AB} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} & |\overrightarrow{AB}| = \sqrt{2^2 + 4^2 + (-1)^2} = \sqrt{21} \\ \overrightarrow{AC} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} & |\overrightarrow{AC}| = \sqrt{2^2 + 2^2 + 1^2} = \sqrt{9} \\ \overrightarrow{BC} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix} & |\overrightarrow{BC}| = \sqrt{0^2 + (-2)^2 + 2^2} = \sqrt{8} \\ |\overrightarrow{AB}| \neq |\overrightarrow{AC}| \neq |\overrightarrow{BC}| \quad \Rightarrow \text{nicht gleichschenklig} \end{split}$$

b

$$A(7|0|-1) \qquad B(5|-3|-1) \qquad C(4|0|1)$$

$$\overrightarrow{AB} = \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix} \qquad |\overrightarrow{AB}| = \sqrt{(-2)^2 + (-3)^2 + 0^2} = \sqrt{13}$$

$$\overrightarrow{AC} = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix} \qquad |\overrightarrow{AC}| = \sqrt{(-3)^2 + 0^2 + 2^2} = \sqrt{13}$$

$$\overrightarrow{BC} = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \qquad |\overrightarrow{BC}| = \sqrt{(-1)^2 + 3^2 + 2^2} = \sqrt{14}$$

$$|\overrightarrow{AB}| = |\overrightarrow{AC}| \qquad \Rightarrow \text{gleichschenklig}$$

297/9

а

$$A(4|2|-1) \quad B(10|-8|9) \quad C(4|0|1)$$

$$\overrightarrow{OM_a} = \overrightarrow{OB} + \frac{1}{2} \cdot \overrightarrow{BC} = \begin{pmatrix} 10 \\ -8 \\ 9 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} -6 \\ 8 \\ -8 \end{pmatrix} = \begin{pmatrix} 7 \\ -4 \\ 5 \end{pmatrix}$$

$$\overrightarrow{OM_b} = \overrightarrow{OC} + \frac{1}{2} \cdot \overrightarrow{CA} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{OM_c} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 6 \\ -10 \\ 10 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \\ 4 \end{pmatrix}$$

$$|\overrightarrow{AM_a}| = \begin{vmatrix} 3 \\ -6 \\ 6 \end{vmatrix} = \sqrt{3^2 + (-6)^2 + 6^2} = \sqrt{81} = 9$$

$$|\overrightarrow{BM_b}| = \begin{vmatrix} -6 \\ 9 \\ -9 \end{vmatrix} = \sqrt{(-6)^2 + 9^2 + (-9)^2} = \sqrt{198} \approx 14.07$$

$$|\overrightarrow{CM_c}| = \begin{vmatrix} 3 \\ -3 \\ 3 \end{vmatrix} = \sqrt{3^2 + (-3)^2 + 3^2} = \sqrt{27} \approx 5.20$$

b

$$\overrightarrow{OM_a} = \overrightarrow{OB} + \frac{1}{2} \cdot \overrightarrow{BC} = \begin{pmatrix} -1\\10\\15 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} 10\\-4\\-20 \end{pmatrix} = \begin{pmatrix} 4\\8\\5 \end{pmatrix}
\overrightarrow{OM_b} = \overrightarrow{OC} + \frac{1}{2} \cdot \overrightarrow{CA} = \begin{pmatrix} 9\\6\\-5 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} -8\\-4\\4 \end{pmatrix} = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}
\overrightarrow{OM_c} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AB} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} -2\\8\\16 \end{pmatrix} = \begin{pmatrix} 0\\6\\7 \end{pmatrix}
|\overrightarrow{AM_a}| = \begin{vmatrix} 3\\6\\6 \end{vmatrix} = \sqrt{3^2 + 6^2 + 6^2} = \sqrt{81} = 9
|\overrightarrow{BM_b}| = \begin{vmatrix} 6\\-6\\-18 \end{vmatrix} = \sqrt{6^2 + (-6)^2 + (-18)^2} = \sqrt{396} \approx 19.90
|\overrightarrow{CM_c}| = \begin{vmatrix} -9\\0\\12 \end{vmatrix} = \sqrt{(-9)^2 + 0^2 + 12^2} = \sqrt{225} = 15$$

С

zu a
$$|\overrightarrow{AS}| = \frac{2}{3} \cdot |\overrightarrow{AM_a}| = 6$$
$$|\overrightarrow{BS}| = \frac{2}{3} \cdot |\overrightarrow{BM_b}| \approx 9.38$$
$$|\overrightarrow{CS}| = \frac{2}{3} \cdot |\overrightarrow{CM_c}| \approx 3.46$$

zu b
$$|\overrightarrow{AS}| = \frac{2}{3} \cdot |\overrightarrow{AM_a}| = 6$$
$$|\overrightarrow{BS}| = \frac{2}{3} \cdot |\overrightarrow{BM_b}| \approx 13.27$$
$$|\overrightarrow{CS}| = \frac{2}{3} \cdot |\overrightarrow{CM_c}| = 10$$

5.5 Produkte zweier Vektoren

5.5.1 Skalarprodukt

Beispiel aus der Physik:

$$\begin{split} W &= \overrightarrow{F} \cdot \overrightarrow{s} \\ \cos(\alpha) &= \frac{|\overrightarrow{F_s}|}{|\overrightarrow{F}|} \quad \Rightarrow \quad |\overrightarrow{F_s}| = |\overrightarrow{F}| \cdot \cos(\alpha) \qquad \overrightarrow{F_s} \dots \overrightarrow{F} \text{ in Richtung } \overrightarrow{s} \\ W &= \overrightarrow{F} \cdot \overrightarrow{s} = |\overrightarrow{F}| \cdot \cos(\alpha) \cdot |\overrightarrow{s}| \\ \overrightarrow{a} \cdot \overrightarrow{b} &= |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos(\alpha) = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3 \end{split}$$

Beispiel:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix}$$
$$\vec{a} \cdot \vec{b} = 1 \cdot (-2) + 2 \cdot 0 + 3 \cdot 3 = 7$$

Winkel zwischen \vec{a} und \vec{b} :

$$7 = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} \cdot \begin{vmatrix} -2 \\ 0 \\ 3 \end{vmatrix} \cdot cos(\alpha) = \sqrt{14} \cdot \sqrt{13} \cdot cos(\alpha)$$
$$\alpha = acos(\frac{7}{\sqrt{14} \cdot \sqrt{13}}) \approx 1.025 \approx 58.73^{\circ}$$

Spezialfall:

$$\alpha = 90^{\circ}$$

$$\Rightarrow \cos(\alpha) = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 0$$

$$\vec{a} \perp \vec{b}$$

z. B.
$$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$ $\vec{a} \cdot \vec{b} = 1 \cdot 3 + (-1) \cdot 3 + 0 \cdot 5 = 0$ $\Rightarrow \vec{a} \perp \vec{b}$

321/1

а

$$g \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix} \qquad h \colon \overrightarrow{x} = \begin{pmatrix} 5 \\ -1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} = 12$$
$$\Rightarrow g \not\perp h$$

$$g \colon \overrightarrow{x} = \begin{pmatrix} 8 \\ 6 \\ -9 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -9 \\ -4 \end{pmatrix} \qquad h \colon \overrightarrow{x} = \begin{pmatrix} 0 \\ 0 \\ 7 \end{pmatrix} + s \cdot \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix}$$
$$\begin{pmatrix} 2 \\ -9 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix} = 0$$
$$\Rightarrow g \perp h$$

zu 297/8

a

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{pmatrix} 2\\4\\-1 \end{pmatrix} \cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix} = 11 \qquad |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = \sqrt{21} \cdot \sqrt{9}$$

$$\alpha = a\cos\left(\frac{11}{3\sqrt{21}}\right) \approx 0.64 \approx 36.86^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \begin{pmatrix} -2\\-4\\1 \end{pmatrix} \cdot \begin{pmatrix} 0\\-2\\2 \end{pmatrix} = 10 \qquad |\overrightarrow{BA}| \cdot |\overrightarrow{BC}| = \sqrt{21} \cdot \sqrt{8}$$

$$\beta = a\cos\left(\frac{10}{\sqrt{21} \cdot \sqrt{8}}\right) \approx 0.69 \approx 39.51^{\circ}$$

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = \begin{pmatrix} -2\\-2\\-1 \end{pmatrix} \cdot \begin{pmatrix} 0\\2\\-2 \end{pmatrix} = -2 \qquad |\overrightarrow{CA}| \cdot |\overrightarrow{CB}| = \sqrt{9} \cdot \sqrt{8}$$

$$\gamma = a\cos\left(\frac{-2}{3\sqrt{8}}\right) \approx 1.81 \approx 103.63^{\circ}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix} = 6 \qquad |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = \sqrt{13} \cdot \sqrt{13}$$

$$\alpha = a\cos(\frac{6}{13}) \approx 1.09 \approx 62.51^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \overrightarrow{CA} \cdot \overrightarrow{CB} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} = 7$$

$$|\overrightarrow{BA}| \cdot |\overrightarrow{BC}| = |\overrightarrow{CA}| \cdot |\overrightarrow{CB}| = \sqrt{13} \cdot \sqrt{14}$$

$$\beta = \gamma = a\cos(\frac{7}{\sqrt{13} \cdot \sqrt{14}}) \approx 1.03 \approx 58.74^{\circ}$$

zu 297/9

a

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{pmatrix} 6 \\ -10 \\ 10 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix} = 40 \qquad |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = \sqrt{236} \cdot \sqrt{8}$$

$$\alpha = acos(\frac{40}{\sqrt{236} \cdot \sqrt{8}}) \approx 0.40 \approx 22.99^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \begin{pmatrix} -6 \\ 10 \\ -10 \end{pmatrix} \cdot \begin{pmatrix} -6 \\ 8 \\ -8 \end{pmatrix} = 196 \qquad |\overrightarrow{BA}| \cdot |\overrightarrow{BC}| = \sqrt{236} \cdot \sqrt{164}$$

$$\beta = acos(\frac{196}{\sqrt{236} \cdot \sqrt{164}}) \approx 0.09 \approx 4.95^{\circ}$$

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ -8 \\ 8 \end{pmatrix} = -32 \qquad |\overrightarrow{CA}| \cdot |\overrightarrow{CB}| = \sqrt{8} \cdot \sqrt{164}$$

$$\gamma = acos(\frac{-32}{\sqrt{8} \cdot \sqrt{164}}) \approx 2.65 \approx 152.06^{\circ}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \begin{pmatrix} -2 \\ 8 \\ 16 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 4 \\ -4 \end{pmatrix} = -48 \qquad |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = \sqrt{324} \cdot \sqrt{96}$$

$$\alpha = acos(\frac{-48}{\sqrt{324} \cdot \sqrt{96}}) \approx 1.85 \approx 105.79^{\circ}$$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \begin{pmatrix} 2 \\ -8 \\ -16 \end{pmatrix} \cdot \begin{pmatrix} 10 \\ -4 \\ -20 \end{pmatrix} = 372 \qquad |\overrightarrow{BA}| \cdot |\overrightarrow{BC}| = \sqrt{324} \cdot \sqrt{516}$$

$$\beta = acos(\frac{372}{\sqrt{324} \cdot \sqrt{516}}) \approx 0.43 \approx 24.52^{\circ}$$

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -10 \\ 4 \\ 20 \end{pmatrix} = 144 \qquad |\overrightarrow{CA}| \cdot |\overrightarrow{CB}| = \sqrt{96} \cdot \sqrt{516}$$

$$\gamma = acos(\frac{144}{\sqrt{96} \cdot \sqrt{516}}) \approx 0.87 \approx 49.68^{\circ}$$

а

$$\vec{a} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} b_1 \\ -4 \\ 3 \end{pmatrix}$$

$$\vec{a} \cdot \vec{b} = 0$$

$$2b_1 - 12 + 0 = 0 \implies b_1 = 6$$

b

$$\vec{a} = \begin{pmatrix} 1 \\ a_2 \\ 3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\vec{a} \cdot \vec{b} = 0$$

$$2 - a_2 + 3 = 0 \quad \Rightarrow \quad a_2 = 5$$

С

$$\vec{a} = \begin{pmatrix} -1\\4\\2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 3\\0\\b_3 \end{pmatrix}$$
$$\vec{a} \cdot \vec{b} = 0$$
$$-3 + 0 + 2b_3 = 0 \implies b_3 = 1.5$$

321/3

а

$$g \colon \overrightarrow{x} = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 7 \\ 17 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 7 \\ 17 \\ 2 \end{pmatrix} \cdot \overrightarrow{a} = 0$$

$$7a_1 + 17a_2 + 2a_3 = 0$$

$$z. \text{ B. } \overrightarrow{a} = \begin{pmatrix} 2 \\ 0 \\ -7 \end{pmatrix}$$

$$h \colon \overrightarrow{x} = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 0 \\ -7 \end{pmatrix}$$

a

$$\overrightarrow{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad \overrightarrow{b} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} \qquad \overrightarrow{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$| \overrightarrow{a} \cdot \overrightarrow{c}| = 1c_1 + 2c_2 + 3c_3 = 0$$

$$| | \overrightarrow{b} \cdot \overrightarrow{c}| = 2c_1 + 0c_2 + 3c_3 = 0 \Rightarrow c_1 = -\frac{3}{2}c_3$$
 wähle willkürlich $c_3 = 2 \Rightarrow c_1 = -3$ setze c_1 und c_3 in I ein
$$-3 + 2c_2 + 6 = 0 \Rightarrow c_2 = -\frac{3}{2}$$

$$\overrightarrow{c} = r \cdot \begin{pmatrix} -3 \\ -\frac{3}{2} \\ 2 \end{pmatrix} \qquad r \in \mathbb{R} \setminus \{0\}$$

$$\overrightarrow{a} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \qquad \overrightarrow{b} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} \qquad \overrightarrow{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$| \overrightarrow{a} \cdot \overrightarrow{c}| = 2c_1 + 3c_2 - c_3 = 0$$

$$| | \overrightarrow{b} \cdot \overrightarrow{c}| = 5c_1 - c_2 - 2c_3 = 0$$

$$| | = \frac{1}{2} \cdot | | \Rightarrow c_1 = 7c_2$$
 wähle willkürlich $c_2 = 1 \Rightarrow c_1 = 7$ setze c_1 und c_2 in I ein
$$| 14 + 3 - c_3 = 0 \Rightarrow c_3 = 17$$

$$\overrightarrow{c} = r \cdot \begin{pmatrix} 7\\1\\17 \end{pmatrix} \qquad r \in \mathbb{R} \setminus \{0\}$$

С

$$\overrightarrow{a} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \qquad \overrightarrow{b} = \begin{pmatrix} 4 \\ -1 \\ 5 \end{pmatrix} \qquad \overrightarrow{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$| \overrightarrow{a} \cdot \overrightarrow{c}| = c_1 + 2c_2 + 5c_3 = 0$$

$$| \overrightarrow{b} \cdot \overrightarrow{c}| = 4c_1 - c_2 + 5c_3 = 0$$

$$| = | | \Rightarrow c_1 = c_2$$
wähle willkürlich $c_1 = 5 \Rightarrow c_2 = 5$
setze c_1 und c_2 in l ein
$$| 5 + 10 + 5c_3 = 0 \Rightarrow c_3 = -3$$

$$\vec{c} = r \cdot \begin{pmatrix} 5 \\ 5 \\ -3 \end{pmatrix} \qquad r \in \mathbb{R} \setminus \{0\}$$

322/9

а

$$\vec{a} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 3\\b_2\\b_3 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} c_1\\1\\4 \end{pmatrix}$$

$$\vec{a} \cdot \vec{c} = c_1 + 0 + 8 = 0 \quad \Rightarrow \quad c_1 = -8$$

$$\vec{a} \cdot \vec{b} = 3 + 0 + 2b_3 = 0 \quad \Rightarrow \quad b_3 = -1.5$$

$$\vec{b} \cdot \vec{c} = -24 + b_2 - 6 = 0 \quad \Rightarrow \quad b_2 = 30$$

$$\vec{a} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 3\\30\\-1.5 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -8\\1\\4 \end{pmatrix}$$

b

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} c_1 \\ 2 \\ -5 \end{pmatrix}$$

$$\vec{a} \cdot \vec{c} = c_1 + 2 - 5 = 0 \quad \Rightarrow \quad c_1 = 3$$

$$| \vec{a} \cdot \vec{b} = b_1 + b_2 + 1 = 0$$

$$|| \vec{b} \cdot \vec{c} = 3b_1 + 2b_2 - 5 = 0$$

$$\Rightarrow b_1 = 7 \qquad b_2 = -8 \qquad \text{(Einsetzungsverfahren)}$$

$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 7 \\ -8 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$$

366/7

a

$$A(2|-2|-2)$$
 $B(-2|5.5|-2)$ $C(-6|2|4)$ $D(1|-2|1)$

$$\overrightarrow{AB} = \begin{pmatrix} -4 \\ 7.5 \\ 0 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} -4 \\ -3.5 \\ 6 \end{pmatrix} \qquad \overrightarrow{CD} = \begin{pmatrix} 7 \\ -4 \\ -3 \end{pmatrix} \qquad \overrightarrow{DA} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

$$\alpha = acos(\frac{\overrightarrow{AB} \cdot \overrightarrow{AD}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AD}|}) = acos(\frac{4}{\sqrt{72.25} \cdot \sqrt{10}}) \approx 1.42 \approx 81.44^{\circ}$$

$$\beta = acos(\frac{\overrightarrow{BC} \cdot \overrightarrow{BA}}{|\overrightarrow{BC}| \cdot |\overrightarrow{BA}|}) = acos(\frac{10.25}{\sqrt{64.25} \cdot \sqrt{72.25}}) \approx 1.42 \approx 81.35^{\circ}$$

$$\gamma = acos(\frac{\overrightarrow{CD} \cdot \overrightarrow{CB}}{|\overrightarrow{CD}| \cdot |\overrightarrow{CB}|}) = acos(\frac{32}{\sqrt{74} \cdot \sqrt{64.25}}) \approx 1.09 \approx 62.35^{\circ}$$

$$\delta = acos(\frac{\overrightarrow{DA} \cdot \overrightarrow{DC}}{|\overrightarrow{DA}| \cdot |\overrightarrow{DC}|}) = acos(\frac{-16}{\sqrt{10} \cdot \sqrt{74}}) \approx 2.20 \approx 126.03^{\circ}$$

b

$$\alpha + \beta + \gamma + \delta \approx 351^{\circ}$$

Die Summe der Innenwinkel ist nicht 360° , da das Viereck nicht auf einer Ebene liegt.

366/3

а

$$\vec{a} = \begin{pmatrix} 3 \\ 2 \\ a \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \qquad \alpha = 90^{\circ}$$

$$\alpha = 90^{\circ} \quad \Rightarrow \quad \vec{a} \cdot \vec{b} = 0 = 2a - 1 \quad \Rightarrow \quad a = \frac{1}{2}$$

b

$$\vec{a} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} \sqrt{3} \\ b \\ 0 \end{pmatrix} \qquad \alpha = 30^{\circ}$$

$$\vec{a} \cdot \vec{b} = b \qquad |\vec{a}| \cdot |\vec{b}| = \sqrt{3 + b^2}$$

$$\alpha = 30^{\circ} = a\cos(\frac{\sqrt{3}}{2}) \quad \Rightarrow \quad \frac{b}{\sqrt{3 + b^2}} = \frac{\sqrt{3}}{2} \quad \Rightarrow \quad b = 3$$

С

$$\vec{a} = \begin{pmatrix} 0 \\ 0.5 \\ 0.5 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix} \qquad \alpha = 60^{\circ}$$

$$\vec{a} \cdot \vec{b} = \frac{c}{2} \qquad |\vec{a}| \cdot |\vec{b}| = \sqrt{0.5} \cdot \sqrt{1 + c^2}$$

$$\alpha = 30^{\circ} = a\cos(\frac{1}{2}) \quad \Rightarrow \quad \frac{c}{2 \cdot \sqrt{0.5} \cdot \sqrt{1 + c^2}} = \frac{1}{2} \quad \Rightarrow \quad c = 1$$

$$\vec{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

$$\vec{a} \cdot \vec{b} = 13 \qquad |\vec{a}| \cdot |\vec{b}| = \sqrt{13} \cdot \sqrt{26}$$

$$\alpha_{a,b} = \alpha_{-a,-b} = a\cos(\frac{13}{\sqrt{13} \cdot \sqrt{26}}) = 45^{\circ}$$

$$\alpha_{-a,b} = \alpha_{a,-b} = 180^{\circ} - 45^{\circ} = 135^{\circ}$$

5.6 Vektorräume

Beispiel

$$\begin{aligned} & \text{Vektorraum } V_1 = \left\{ \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \middle| \ a \in \mathbb{R} \right\} \subset \mathbb{R}^3 \\ & \text{Prüfe} \quad \overrightarrow{a} + \overrightarrow{b} \in V_1 \colon \quad \begin{pmatrix} a_1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} a_2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 \\ 0 \\ 0 \end{pmatrix} \\ & \text{Nullvektor} \quad \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \\ & 0 \end{pmatrix} \\ & \text{Gegenvektor} \quad \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -a \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ & 0 \end{pmatrix} \\ & \text{Kommutativgesetz} \quad \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} b \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} b \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \\ & 0 \end{pmatrix} \\ & \text{Assoziativgesetz} \quad \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} b \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} c \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} c \\ 0 \\ 0 \end{pmatrix} \\ & 0 \end{pmatrix} \end{aligned}$$

$$V_2 = \left\{ \begin{pmatrix} a^2 \\ a \\ 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \subset \mathbb{R}^3$$

Abgeschlossenheit:

$$\begin{pmatrix} a^{2} \\ a \\ 0 \end{pmatrix} + \begin{pmatrix} b^{2} \\ b \\ 0 \end{pmatrix} = \begin{pmatrix} c^{2} \\ c \\ 0 \end{pmatrix} \qquad \begin{pmatrix} a^{2} \\ a \\ 0 \end{pmatrix} + \begin{pmatrix} b^{2} \\ b \\ 0 \end{pmatrix} = \begin{pmatrix} a^{2} + b^{2} \\ a + b \\ 0 \end{pmatrix} \notin V_{2}$$

$$\mathbf{z. \ B.} \quad a = 3, b = 5 \qquad \begin{pmatrix} 9 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 25 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 34 \\ 8 \\ 0 \end{pmatrix} \notin V_{2}$$

$$\left[\begin{pmatrix} (a+b)^2 \\ a+b \\ c \end{pmatrix} \right] \in V_2$$

 $\Rightarrow V_2$ ist kein Vektorraum, da er nicht abgeschlossen ist

300/1

b

$$V = \left\{ \begin{pmatrix} a \\ 2a \\ 3a \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$

$$\begin{pmatrix} a \\ 2a \\ 3a \end{pmatrix} + \begin{pmatrix} b \\ 2b \\ 3b \end{pmatrix} = \begin{pmatrix} a+b \\ 2(a+b) \\ 3(a+b) \end{pmatrix} \in V \qquad k \cdot \begin{pmatrix} a \\ 2a \\ 3a \end{pmatrix} = \begin{pmatrix} ak \\ 2ak \\ 3ak \end{pmatrix} \in V$$

$$\Rightarrow V \text{ ist ein Vektorraum}$$

С

$$V = \left\{ \begin{pmatrix} a \\ a^2 \\ a^3 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$
$$\begin{pmatrix} a \\ a^2 \\ a^3 \end{pmatrix} + \begin{pmatrix} b \\ b^2 \\ b^3 \end{pmatrix} = \begin{pmatrix} a+b \\ a^2+b^2 \\ a^3+b^3 \end{pmatrix} \notin V$$

 $\Rightarrow V$ ist kein Vektorraum

5.6.1 Basis

Die Basis eines Vektorraums ist ein Satz von Vektoren mit den Eigenschaften:

- Jeder Vektor muss als Linearkombination der Vektoren der Basis darstellbar sein
- Die Anzahl der Basisvektoren muss minimal sein

Beispiel

$$V = \mathbb{R}^3 \qquad Basis_1 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

z. B.
$$\begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (-3) \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$Basis_2 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}; \begin{pmatrix} 0\\1\\1 \end{pmatrix}; \begin{pmatrix} 0\\-1\\1 \end{pmatrix} \right\}$$

$$M = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\} \qquad M \text{ ist keine Basis}$$

Die Mindestzahl von Vektoren der Basis heißt Dimension des Vektorraums. \mathbb{R}^3 ist ein 3-dimensionaler Vektorraum.

$$V_{1} = \left\{ \begin{pmatrix} 1a \\ 2a \\ 3a \end{pmatrix} \middle| a \in \mathbb{R} \right\} \qquad Basis = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\} \quad \text{(1-dim.)}$$

$$V_{2}s = \left\{ \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\} \qquad Basis = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\} \quad \text{(1-dim.)}$$

а

$$N = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ -(b_1 + b_2) & a_1 + a_2 \end{pmatrix}$$

$$r \cdot \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} ar & br \\ -br & ar \end{pmatrix}$$

 $\Rightarrow N$ ist ein Vektorraum

$$Basis = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

b

$$N = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a + b + c = 0 \right\}$$

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} + \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & c_1 + c_2 \end{pmatrix}$$

$$(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2) = (a_1 + b_1 + c_1) + (a_2 + b_2 + c_2) = 0$$

$$r \cdot \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} ar & br \\ 0 & cr \end{pmatrix}$$

$$ar + br + cr = r(a + b + c) = 0$$

 $\Rightarrow N$ ist ein Vektorraum

$$Basis = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

С

$$N = \left\{ \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

$$\begin{pmatrix} 1 & a_1 \\ a_1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & a_2 \\ a_2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & a_1 + a_2 \\ a_1 + a_2 & 2 \end{pmatrix}$$

 $\Rightarrow N$ ist kein Vektorraum

5.7 Lineare Abhängigkeit, Unabhängigkeit

Beispiele

$$\vec{a} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -4 \\ 12 \\ -8 \end{pmatrix}$$

$$-4\vec{a} = \vec{b} \quad \text{oder} \quad 4\vec{a} + \vec{b} = 0$$

 \overrightarrow{a} , \overrightarrow{b} sind linear abhängig; geometrisch formuliert: \overrightarrow{a} , \overrightarrow{b} sind kollinear

$$\vec{a} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 1 \\ 2 \\ 9 \end{pmatrix}$$

 (\vec{a}, \vec{b}) , (\vec{a}, \vec{c}) , (\vec{b}, \vec{c}) sind jeweils linear unabhängig

 $(\vec{a}, \vec{b}, \vec{c})$ sind linear abhängig, denn $2\vec{a} + 3\vec{b} = \vec{c}$ oder $2\vec{a} + 3\vec{b} - \vec{c} = \vec{0}$

Allgemein gilt für 3 Vektoren \vec{a} , \vec{b} , \vec{c}

gilt mindestens eine der Gleichungen

$$r \cdot \overrightarrow{a} + s \cdot \overrightarrow{b} = \overrightarrow{c}$$
 oder

$$r \cdot \overrightarrow{a} + s \cdot \overrightarrow{c} = \overrightarrow{b}$$
 oder

$$r \cdot \overrightarrow{b} + s \cdot \overrightarrow{c} = \overrightarrow{a}$$

dann heißt die Vektormenge $\left\{ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}\right\}$ linear abhängig

einfachere Prüfung:

gilt

$$r \cdot \overrightarrow{a} + s \cdot \overrightarrow{b} + t \cdot \overrightarrow{c} = \overrightarrow{0}$$
 $r \neq 0 \lor s \neq 0 \lor t \neq 0$

dann sind $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ linear abhängig, andernfalls linear unabhängig

Prüfe auf lineare Abhängigkeit

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$
$$r \cdot \vec{a} + s \cdot \vec{b} + t \cdot \vec{c} = \vec{0}$$

$$1 \quad r - 2s + 3t = 0$$

$$11 2r + 2s - t = 0$$

$$III \quad 3r + s + t = 0$$

$$L = \{(0,0,0)\} \quad \Rightarrow \quad \left\{ \overrightarrow{a}; \overrightarrow{b}; \overrightarrow{c} \right\} \text{ ist linear unabhängig}$$

Ist $\left\{ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}\right\}$ eine Basis des \mathbb{R}^3 ?

Das meint:

Lässt sich jeder Vektor des \mathbb{R}^3 durch eine Linearkombination von \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} darstellen?

Löse dazu:

$$r \cdot \vec{a} + s \cdot \vec{b} + t \cdot \vec{c} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

304/2

b

$$\begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix}; \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}; \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$$

$$7r + s + 3t = 0$$

$$-r - 2s - 6t = 0$$

$$3r + s + 3t = 0$$

$$L = \{(0,0,0); (0,k,-\frac{k}{3})\} \quad \Rightarrow \quad \text{linear abhängig}$$

Die letzten beiden Vektoren sind kollinear. Der erste Vektor, der nicht kollinear zu den anderen beiden ist, lässt sich daher nicht durch eine Linearkombination der anderen beiden darstellen.

Prüfe auf lineare Abhängigkeit

$$r \cdot \overrightarrow{a} + s \cdot \overrightarrow{b} + t \cdot \overrightarrow{c} = \overrightarrow{0}$$

 $r = s = t = 0$ ist immer eine Lösung (triviale Lösung)

Findet man weitere Lösungen, so sind $\{\vec{a}; \vec{b}; \vec{c}\}$ linear abhängig und komplanar. Andernfalls (nur triviale Lösung) sind sie linear unabhängig und bilden eine Basis des \mathbb{R}^3 .

Da $\left|\left\{\overrightarrow{a};\overrightarrow{b};\overrightarrow{c}\right\}\right|=3$ ist der \mathbb{R}^3 dreidimensional.

304/4

С

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}; \begin{pmatrix} -4\\-2\\2 \end{pmatrix}; \begin{pmatrix} -7\\-2\\8 \end{pmatrix}$$

$$r - 4s - 7t = 0$$

$$r - 2s - 2t = 0$$

$$r + 2s + 8t = 0$$

$$L = \{(0,0,0); (-6k,-5k,2k)\} \quad \Rightarrow \quad \text{linear abhängig}$$

d

$$\begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}; \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}; \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$$

$$4r + s - 2t = 0$$

$$-r + 4s + 3t = 0$$

$$2r + s - t = 0$$

$$L = \{(0,0,0)\} \quad \Rightarrow \quad \text{linear unabhängig}$$

$$r \cdot \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} a \\ 2 \\ -8 \end{pmatrix}$$

$$2r - s = a$$

$$3r + s = 2$$

$$-2r + 2s = -8$$

$$a = 5.5$$

$$r = 1.5$$
 $s = -2.5$

5.8 Wiederholung: Geometrie, Geraden

307/10 1

$$r = 1.5cm$$

$$A_{Kreis} = \pi \cdot r^2 = 7.069cm^2$$

$$A_{Dreieck} = \frac{1}{2} \cdot r^2 = 1.125cm^2$$

$$A = A_{Kreis} - A_{Dreieck} = 5.944cm^2$$

2

$$A_{Parall.} = 4cm \cdot 2cm = 8cm^2$$

$$A_{Trapez} = \frac{1}{2} \cdot (1cm + 2.5cm) \cdot 2cm = 3.5cm^2$$

$$A = A_{Parall.} - A_{Trapez} = 4.5cm^2$$

307/11

- a Parallelogramme
- b Dreiecke

а

$$x_3 = 0$$

b

$$\vec{x} = \begin{pmatrix} 2\\3\\7 \end{pmatrix} + r \cdot \begin{pmatrix} -2\\5\\-1 \end{pmatrix}$$

 x_1 - x_2 -Ebene

$$x_3 = 0 \implies r = 7$$

$$R(-12|38|0)$$

$$x_2$$
- x_3 -Ebene

$$x_1 = 0 \implies r = 1$$

$$x_1$$
- x_3 -Ebene

$$x_2 = 0 \quad \Rightarrow \quad r = -\frac{3}{5}$$

С

$$i \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

d

$$j \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

5.9 Parametergleichung einer Ebene

$$E \colon \overrightarrow{x} = \overrightarrow{a} + r \cdot \overrightarrow{b} + s \cdot \overrightarrow{c}$$

 $E \dots$ Name der Ebene

 \overrightarrow{a} ... Stützvektor, Ortsvektor eines bestimmtes Punktes A

 \vec{b} , \vec{c} ... Spannvektoren

r,s ... Parameter, die durchlaufen gedanklich alle Werte von $\mathbb R$

 \overrightarrow{x} ... allgemeiner, unbestimmter Ortsvektor aller Punkte X der Ebene E

Ich erhalte eine Ebenengleichung, wenn

- Stütz- und 2 Spannvektoren
- 3 Punkte (nicht auf einer Geraden)
- 1 Gerade und 1 Punkt
- 2 sich schneidende Geraden
- 2 echt parallele Geraden

Punktprobe:

 $P \in E$?

 \overrightarrow{p} ist Orstvektor von P

$$\overrightarrow{p} = \overrightarrow{a} + r \cdot \overrightarrow{b} + s \cdot \overrightarrow{c} \implies 3x2 \text{ LGS}$$

wenn eindeutig lösbar, dann $P \in E$

318/5

a

$$A(0|1|-1) \qquad B(2|3|5) \qquad C(-1|3|-1) \qquad D(2|2|2)$$

$$E: \overrightarrow{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC} = \begin{pmatrix} 0\\1\\-1 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\2\\6 \end{pmatrix} + s \cdot \begin{pmatrix} -1\\2\\0 \end{pmatrix}$$

 $D \in E$?

$$1 \quad 2 = 2r - s$$

$$11 \quad 2 = 1 + 2r + 2s$$

III
$$2 = -1 + 6r$$

$$L = \{\} \Rightarrow \text{keine Ebene}$$

$$\begin{array}{ll} A(3|0|2) & B(5|1|9) & C(6|2|7) & D(8|3|14) \\ E:\overrightarrow{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \\ D \in E ? \\ \mathbb{I} \quad 8 = 3 + 2r + 3s \\ \mathbb{II} \quad 3 = r + 2s \\ \mathbb{III} \quad 14 = 2 + 7r + 5s \\ L = \{(1,1)\} \quad \Rightarrow \quad \mathsf{Ebene} \end{array}$$

а

$$E \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix}$$

b

$$E \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 7 \\ 10 \end{pmatrix}$$

319/12

a

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$1 + 2t = 3 + s$$

$$1 + 3t = 4$$

$$2 + t = 3 + s$$

$$L = \{(0, 1)\}$$

$$E \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

5.10 Sonderfälle

$$E : \overrightarrow{x} = \overrightarrow{a} + r \cdot \overrightarrow{b} + s \cdot \overrightarrow{c}$$
 $r, s \in \mathbb{R}$

 $\{\vec{a}; \vec{b}; \vec{c}\}$ sind in der Regel linear unabhängig, d. h. nicht komplanar. Im Sonderfall sind $\{\vec{a}; \vec{b}; \vec{c}\}$ komplanar. Das bedeutet, dass E durch den Ursprung O verläuft. Im Sonderfall darf ich E so schreiben:

$$E: \overrightarrow{x} = r \cdot \overrightarrow{b} + s \cdot \overrightarrow{c}$$

$$q: \vec{x} = \vec{d} + r \cdot \vec{e} \qquad r \in \mathbb{R}$$

 $\{\overrightarrow{d}; \overrightarrow{e}\}$ sind normalerweise nicht kollinear. Im Sonderfall, g verläuft durch O, sind sie kollinear:

$$g \colon \overrightarrow{x} = r \cdot \overrightarrow{e}$$

322/14

а

$$E \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} \qquad g \colon \overrightarrow{x} = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 0$$

$$\Rightarrow \quad \text{orthogonal}$$

$$E \colon \overrightarrow{x} = r \cdot \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ 3 \\ 3 \end{pmatrix} \qquad g \colon \overrightarrow{x} = t \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 0 \qquad \begin{pmatrix} 4 \\ 3 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = 4$$
$$\Rightarrow \text{ nicht orthogonal}$$

$$E: \overrightarrow{x} = \begin{pmatrix} 3\\1\\4 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\-1\\5 \end{pmatrix} + s \cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

$$\begin{pmatrix} 2\\-1\\5 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} \cdot \begin{pmatrix} x\\y\\z \end{pmatrix} = 0$$

$$2x - y + 5z = x + z = 0 \qquad L = \{(k; -3k; -k)\}$$

$$g: \overrightarrow{x} = \begin{pmatrix} 3\\1\\4 \end{pmatrix} + t \cdot \begin{pmatrix} k\\-3k\\-k \end{pmatrix}$$

$$g: \overrightarrow{x} = \begin{pmatrix} 3\\1\\4 \end{pmatrix} + t \cdot \begin{pmatrix} 1\\-3\\-1 \end{pmatrix} \qquad \text{für } k = 1$$

5.11 Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

$$\vec{a} \cdot \vec{x} = 0 \qquad | \quad a_1x_1 + a_2x_2 + a_3x_3 = 0$$

$$\vec{b} \cdot \vec{x} = 0 \qquad | \quad b_1x_1 + b_2x_2 + b_3x_3 = 0$$

$$b_1 \cdot I - a_1 \cdot II$$

$$Ia_1x_1 + a_2x_2 + a_3x_3 = 0$$

$$II0 + (b_1a_2 - a_1b_2)x_2 + (b_1a_3 - a_1b_3)x_3 = 0$$

willkürlich
$$x_2 = a_3b_1 - a_1b_3$$

 $\Rightarrow x_3 = -(a_2b_1 - a_1b_2) = a_1b_2 - a_2b_1$
 $\Rightarrow x_1 = a_2b_3 - a_3b_2$

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot sin(\alpha)$$

$$sin(\alpha) = \frac{h}{\overrightarrow{b}}$$

$$h = |\overrightarrow{b}| \cdot sin(\alpha)$$

$$A_P = |\overrightarrow{a}| \cdot h = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot sin(\alpha) = |\overrightarrow{a} \times \overrightarrow{b}|$$

Das Kreuzprodukt $\overrightarrow{a} \times \overrightarrow{b}$ ergibt einen Vektor als Ergebnis. Die Länge des Vektors \overrightarrow{c} ist $|\overrightarrow{c}|$ und entspricht dem Flächeninhalt A_P des von den Vektoren \overrightarrow{a} und \overrightarrow{b} aufgespannten Parallelogramms.

373/1

a

$$\vec{a} = \begin{pmatrix} 2\\1\\5 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -1\\5\\0 \end{pmatrix}$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} 1 \cdot 1 - 5 \cdot 2\\5 \cdot 3 - 2 \cdot 1\\2 \cdot 2 - 1 \cdot 3 \end{pmatrix} = \begin{pmatrix} -9\\13\\1 \end{pmatrix}$$

$$\vec{b} \times \vec{c} = \begin{pmatrix} 2 \cdot 0 - 1 \cdot 5\\1 \cdot (-1) - 3 \cdot 0\\3 \cdot 5 - 2 \cdot (-1) \end{pmatrix} = \begin{pmatrix} -5\\-1\\17 \end{pmatrix}$$

$$\vec{c} \times \vec{a} = \begin{pmatrix} 5 \cdot 5 - 0 \cdot 1\\0 \cdot 2 - (-1) \cdot 5\\-1 \cdot 1 - 5 \cdot 2 \end{pmatrix} = \begin{pmatrix} 25\\5\\-11 \end{pmatrix}$$

$$\vec{a} \times \vec{b} = \vec{c}$$
 $\vec{b} \times \vec{a} = -\vec{c}$

 \vec{a} , \vec{b} , \vec{c} bilden ein Rechtssystem (rechte Hand)

373/3

а

$$\vec{a} = \begin{pmatrix} 3\\2\\-1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} 2 \cdot 0 - (-1) \cdot 1\\-1 \cdot 1 - 3 \cdot 0\\3 \cdot 1 - 2 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$

$$\begin{vmatrix} 1\\-1\\1 \end{vmatrix} = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}$$

$$A_P = \sqrt{3}FE \approx 1.732FE$$

b

$$\vec{a} = \begin{pmatrix} 5 \\ -2 \\ 2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 8 \\ 9 \\ -2 \end{pmatrix}$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} -2 \cdot (-2) - 2 \cdot 9 \\ 2 \cdot 8 - 5 \cdot (-2) \\ 5 \cdot 9 - (-2) \cdot 8 \end{pmatrix} = \begin{pmatrix} -14 \\ 26 \\ 61 \end{pmatrix}$$

$$\begin{vmatrix} -14 \\ 26 \\ 61 \end{vmatrix} = \sqrt{(-14)^2 + 26^2 + 61^2} = \sqrt{4593}$$

$$A_P = \sqrt{4593}FE \approx 67.772FE$$

Wenn $\overrightarrow{a} \parallel \overrightarrow{b}$, also kollinear, dann gilt $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot sin(\alpha)$

5.12 Spatprodukt

$$\begin{split} V_{Spat} &= G \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot h \\ &= |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{c}| \cdot cos(\alpha) \\ &= |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| \qquad \text{(Spatprodukt)} \end{split}$$

Anwendung: Berechne das Volumen von Spat und Pyramiden

$$\begin{split} V_{Spat} &= |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| \\ V_{Pyramide} &= \frac{1}{3} \cdot |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| \qquad \text{(Grundseite: Parallelogramm des Spats)} \\ V_{Pyramide,dreiseitig} &= \frac{1}{6} \cdot |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| \end{split}$$

374/6

а

$$\vec{a} = \begin{pmatrix} -1\\5\\6 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 8\\2\\1 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -2\\0\\5 \end{pmatrix}$$

$$V_S = \begin{vmatrix} -1\\5\\6 \end{pmatrix} \times \begin{pmatrix} 8\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} -2\\0\\5 \end{vmatrix} = \begin{vmatrix} -7\\49\\-42 \end{pmatrix} \cdot \begin{pmatrix} -2\\0\\5 \end{vmatrix} = 196$$

$$V_P = \frac{1}{6} \cdot 196 = 32.\overline{6}$$

b

$$\vec{a} = \begin{pmatrix} 1\\7\\1 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -8\\8\\18 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 7\\2\\2 \end{pmatrix}$$

$$V_S = \begin{vmatrix} 1\\7\\1 \end{pmatrix} \times \begin{pmatrix} -8\\8\\18 \end{pmatrix} \cdot \begin{pmatrix} 7\\2\\2 \end{vmatrix} = \begin{vmatrix} 118\\-26\\64 \end{pmatrix} \cdot \begin{pmatrix} 7\\2\\2 \end{vmatrix} = 902$$

$$V_P = \frac{1}{6} \cdot 902 = 150.\overline{3}$$

Teil IV 12/2

5.13 Abstand eines Punktes von einer Geraden

gegeben:

$$g \colon \overrightarrow{x} = \overrightarrow{a} + r \cdot \overrightarrow{b}$$
$$P \colon \overrightarrow{p}$$

$$\begin{split} & \text{Bilde } |\overrightarrow{b} \times \overrightarrow{AP}| = A_{Parallelogramm} \\ |\overrightarrow{b}| \cdot |\overrightarrow{h}| = A_{Parallelogramm} \end{split}$$

$$|\overrightarrow{b} \times \overrightarrow{AP}| = |\overrightarrow{b}| \cdot |\overrightarrow{h}|$$

$$\Rightarrow \frac{|\overrightarrow{b} \times \overrightarrow{AP}|}{|\overrightarrow{b}|} = |\overrightarrow{h}|$$

 $|\overrightarrow{h}|$ ist der gesuchte Abstand von Punkt P zur Geraden g.

С

$$g \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \qquad R(-2|-1|1)$$

$$\overrightarrow{PR} = \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} \qquad \overrightarrow{u} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$|\vec{h}| = \frac{|\vec{u} \times \overrightarrow{PR}|}{|\vec{u}|} = \frac{\begin{vmatrix} -1 \\ 1 \\ -1 \end{vmatrix}}{\begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}} = \frac{\sqrt{3}}{\sqrt{6}} = \sqrt{\frac{1}{2}} \approx 0.7071$$

$$g \colon \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -3 \\ -6 \end{pmatrix} \qquad R(1|2|-3)$$

$$\overrightarrow{PR} = \begin{pmatrix} -1 \\ -1 \\ -5 \end{pmatrix} \qquad \overrightarrow{u} = \begin{pmatrix} 2 \\ -3 \\ -6 \end{pmatrix}$$

$$|\vec{h}| = \frac{|\vec{u} \times \overrightarrow{PR}|}{|\vec{u}|} = \frac{\begin{vmatrix} -9 \\ -16 \\ -5 \end{vmatrix}}{\begin{vmatrix} 2 \\ -3 \end{vmatrix}} = \frac{\sqrt{362}}{\sqrt{49}} \approx 2.7180$$

5.14 Ebenendarstellung

5.14.1 Normalenform

$$E : \overrightarrow{x} = \overrightarrow{a} + r \cdot \overrightarrow{b} + s \cdot \overrightarrow{c}$$

$$E: (\overrightarrow{x} - \overrightarrow{a}) \cdot \overrightarrow{n} = 0$$

$$\overrightarrow{AX} \cdot \overrightarrow{n} = 0$$

 \overrightarrow{n} ... Normalenvektor der Ebene

 \overrightarrow{a} ... Stützvektor, Ortsvektor eines bestimmten Punktes

 \overrightarrow{x} ... allgemeiner Ortsvektor aller Punkte der Ebene

 \overrightarrow{AX} ... Verbindungsvektor, der in der Ebene liegt

Punkte X der Ebene sind diejenigen, deren Verbindungsvektoren \overrightarrow{AX} orthogonal zu \overrightarrow{h} stehen.

z.B.

$$\left(\overrightarrow{x} - \begin{pmatrix} 1\\2\\3 \end{pmatrix}\right) \cdot \begin{pmatrix} -1\\0\\4 \end{pmatrix} = 0$$

Beispiellösung
$$x_1 = \begin{pmatrix} 5 \\ 0 \\ 4 \end{pmatrix}$$

Punktprobe P(2|1|1) $P \in E$?

$$\begin{pmatrix} 2-1\\1-2\\1-3 \end{pmatrix} \cdot \begin{pmatrix} -1\\0\\4 \end{pmatrix} = 0 \qquad -1+0-8 = -9 \neq 0 \quad \Rightarrow \quad P \notin E$$

Normalengleichung aus A(1|0|5), B(0|2|1), C(4|5|6)

$$E \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix}$$

$$\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix} \times \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 22 \\ -11 \\ -11 \end{pmatrix}$$

$$E \colon \left(\overrightarrow{x} - \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix} \right) \cdot \begin{pmatrix} 22 \\ -11 \\ -11 \end{pmatrix} = 0$$

5.14.2 Koordinatenform

Berechne das Skalarprodukt in der Normalengleichung mit $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

$$E: \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = 0$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} - \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = 0$$

$$(n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3) - (a_1 \cdot n_1 + a_2 \cdot n_2 + a_3 \cdot n_3) = 0$$

z. B.
$$22x_1 - 11x_2 - 11x_3 = -33$$

Beispiellösungen
$$\vec{x} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}, \dots$$

$$E : ax_1 + bx_2 + cx_3 = d$$

Betrache die Koordinatenform als eine Gleichung für drei Variablen x_1, x_2, x_3 . Die Lösungen der Gleichung sind Dreiertupel $L = \{(..., ..., ...), ...\}$. Notiere ich die Dreiertupel als Spaltenvektoren, so stellen sie die Ortsvektoren der Punkte der Ebene E dar. Die Koeffizienten a, b, c der Koordinatenform sind die Koordinaten von \overrightarrow{n} , des Normalenvektors.

Koordinatenform → Normalenform

z. B.
$$5x_1 - x_2 + 3x_3 = 9$$

1. Lies ab
$$\vec{n} = \begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix}$$

2. Finde eine Lösung
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, z. B. $\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}\right) \cdot \begin{pmatrix} 5 \\ -1 \\ 3 \end{pmatrix} = 0$$

Sonderfälle

•

$$E \colon x_3 = 5 \longrightarrow \vec{n} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Punkte der Ebene haben $x_3 = 5$; x_1 , x_2 sind beliebige Koordinaten.

z. B.
$$\begin{pmatrix} 1\\1\\5 \end{pmatrix}$$
, $\begin{pmatrix} -2\\3\\5 \end{pmatrix}$, $\begin{pmatrix} 0\\7\\5 \end{pmatrix}$, ...

 x_1 und x_2 sind nicht erwähnt, also frei wählbar.

•

$$E : 2x_1 - 4x_2 = 0$$

Der Ursprung O ist Teil der Ebene E. Der Verbindungsvektor $\overrightarrow{O} - \overrightarrow{a}$, also der Ortsvektor \overrightarrow{a} liegt in der Ebene E und steht orthogonal zu \overrightarrow{n} . Daher sind $\overrightarrow{a} \cdot \overrightarrow{n} = 0$ und damit d = 0.

325/3

$$D(-7|1|3)$$

а

$$A(1|1|1) \quad B(1|0|1) \quad C(0|1|1)$$

$$\overrightarrow{AB} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \quad \overrightarrow{AC} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$$

$$\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

$$E \colon \left(\overrightarrow{x} - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right) \cdot \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = 0$$

$$E: -x_3 = 0 + 0 - 1 = -1$$

$$D \in E$$
? $-x_3 = -3 \neq -1$ \Rightarrow $D \notin E$

b

$$A(-1|2|0) \quad B(-3|1|1) \quad C(1|-1|-1)$$

$$\overrightarrow{AB} = \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$$

$$\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 4 \\ 0 \\ 8 \end{pmatrix}$$

$$E: \left(\overrightarrow{x} - \begin{pmatrix} -1\\2\\0 \end{pmatrix}\right) \cdot \begin{pmatrix} 4\\0\\8 \end{pmatrix} = 0$$

$$E: 4x_1 + 8x_3 = -4 + 0 + 0 = -4$$

$$D \in E$$
? $4x_1 + 8x_3 = -28 + 24 = -4 \implies D \in E$

5.14.3 Ebenen zeichnen

Zeichne Ebene $E: 2x_1 - 3x_2 + 5x_3 = 12$

Schnitt mit der ...

 x_1 -Achse:

$$x_2 = x_3 = 0 \implies 2x_1 = 12 \quad x_1 = 6 \quad P(6|0|0)$$

 x_2 -Achse:

$$x_1 = x_3 = 0 \implies -3x_2 = 12 \quad x_2 = -4 \quad Q(0|-4|0)$$

 x_3 -Achse:

$$x_1 = x_2 = 0 \implies 5x_3 = 12 \quad x_3 = 2.4 \quad R(0|0|2.4)$$

P, Q, R heißen Spurpunkte.

Gerade durch P und Q (bzw. Q und R, P und R) heißt Spurgerade.

Spurgerade (PQ):

$$g \colon \overrightarrow{x} = \begin{pmatrix} 0 \\ -4 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 6 \\ 4 \\ 0 \end{pmatrix}$$

Spezialfälle

•

$$3x_1 + 6x_3 = 18$$
 $P(6|0|0)$ $R(0|0|3)$ $Q(0|\infty|0)$

Kein Schnitt mit der x_2 -Achse, verläuft parallel zur x_2 -Achse.

 $2x_1 = 5$ P(2.5|0|0)

Kein Schnitt mit der x_2 - und x_3 -Achse, verläuft parallel zur x_2x_3 -Ebene.

328/3 Fig. 1

$$P(2|0|0)$$
 $Q(0|5|0)$ $R(0|0|3)$
 $15x_1 = 30$ $6x_2 = 30$ $10x_3 = 30$
 $E: 15x_1 + 6x_2 + 10x_3 = 30$

Fig. 2

$$P(1|0|0)$$
 $Q(0|4|0)$ $R(0|0|-1.5)$
 $12x_1 = 12$ $3x_2 = 12$ $-8x_3 = 12$
 $E: 12x_1 + 3x_2 - 8x_3 = 12$

а

$$E \colon \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$

$$\vec{n} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ -2 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \vec{n} = 6$$

$$E \colon 6x_1 + 3x_2 - 2x_3 = 6$$

$$P(1|0|0) \qquad Q(0|2|0) \qquad R(0|0|-3)$$

b

$$E \colon \vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$$

$$\vec{n} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -5 \\ -20 \\ 5 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \vec{n} = -20$$

$$E \colon -5x_1 - 20x_2 + 5x_3 = -20$$

$$P(4|0|0) \quad Q(0|1|0) \quad R(0|0|-4)$$

328/6 Fig. 3

$$\begin{split} &P(0|3|0)\\ &E\colon x_2=3\\ &\text{parallel zur } x_1x_3\text{-Ebene} \end{split}$$

Fig. 4

$$P(1|0|0)$$
 $Q(0|5|0)$ $5x_1 = 5$ $x_2 = 5$ $E \colon 5x_1 + x_2 = 5$ parallel zur x_3 -Ebene

5.15 Lage Ebene ↔ Gerade

- schneiden sich
- verlaufen parallel
- Gerade ist Teil der Ebene

Beispiel:

$$E: 2x_1 - x_2 + 3x_3 = 16$$

$$g: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + 2r \\ 2 - r \\ 3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

g in E eingesetzt

$$2 \cdot (1 + 2r) - (2 - r) + 3 \cdot 3 = 16$$

 $\Rightarrow r = \frac{7}{5}$

Schnittpunkt
$$\overrightarrow{OS} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{7}{5} \cdot \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.8 \\ 0.6 \\ 3 \end{pmatrix}$$

- eindeutige Lösung für $r \Rightarrow$ schneiden sich
- kein r erfüllt die Gleichung \Rightarrow kein Schnittpunkt, parallele Lage
- für jedes r ein möglicher gemeinsamer Punkt \Rightarrow Gerade liegt in der Ebene

330/1

$$g \colon \overrightarrow{x} = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

a

$$E : 2x_1 + 4x_2 + 6x_3 = 16$$

$$2 \cdot (4+t) + 4 \cdot (6+2t) + 6 \cdot (2+3t) = 16$$

$$\Rightarrow t = -1$$

$$\begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix} - 1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$$

$$S(3|4|-1)$$

b

$$E: 5x_2 - 7x_3 = 13$$

$$5 \cdot (6+2t) - 7 \cdot (2+3t) = 13$$
$$t = \frac{3}{11}$$

$$\begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix} + \frac{3}{11} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4.\overline{27} \\ 6.\overline{54} \\ 2.\overline{81} \end{pmatrix}$$

$$S(4.\overline{27}|6.\overline{54}|2.\overline{81})$$

330/2

а

$$g \colon \overrightarrow{x} = \begin{pmatrix} -2\\1\\4 \end{pmatrix} + t \cdot \begin{pmatrix} 7\\8\\6 \end{pmatrix} \qquad E \colon \overrightarrow{x} = \begin{pmatrix} 1\\4\\3 \end{pmatrix} + r \cdot \begin{pmatrix} 0\\-1\\1 \end{pmatrix} + s \cdot \begin{pmatrix} 1\\0\\3 \end{pmatrix}$$

$$-2 + 7t = 1 + s$$

$$1 + 8t = 4 - r$$

$$4 + 6t = 3 + r + 3s$$

$$t = 1 \qquad r = -5 \qquad s = 4$$

$$\begin{pmatrix} -2\\1\\4 \end{pmatrix} + 1 \cdot \begin{pmatrix} 7\\8\\6 \end{pmatrix} = \begin{pmatrix} 5\\9\\10 \end{pmatrix}$$

S(5|9|10)

b

$$g \colon \overrightarrow{x} = \begin{pmatrix} 22 \\ -18 \\ -7 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ 1 \\ -5 \end{pmatrix} \qquad E \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ -7 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix}$$

$$22 + 4t = 2 + 4r$$

$$-18 + t = 1 - 7r + 4s$$

$$-7 - 5t = r - 3s$$

$$t = r - 5 \qquad s = 2r - 6$$

$$g \in E$$

С

$$g \colon \overrightarrow{x} = t \cdot \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \qquad E \colon \overrightarrow{x} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$

$$-t = 2r$$

$$-t = 2s$$
$$-t = 2$$

$$t = -2 \qquad r = 1 \qquad s = 1$$

$$-2 \cdot \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

5.15.1 Schnittwinkel

$$g: \overrightarrow{x} = \overrightarrow{a} + r \cdot \overrightarrow{b} \qquad h: \overrightarrow{x} = \overrightarrow{c} + s \cdot \overrightarrow{d}$$

$$\overrightarrow{b} \cdot \overrightarrow{d} = |\overrightarrow{b}| \cdot |\overrightarrow{d}| \cdot \cos(\alpha)$$

$$\alpha = a\cos\left(\frac{\overrightarrow{b} \cdot \overrightarrow{d}}{|\overrightarrow{b}| \cdot |\overrightarrow{d}|}\right) \qquad \alpha < 90^{\circ}$$

$$\alpha = a\cos\left(\frac{\overrightarrow{n} \cdot \overrightarrow{b}}{|\overrightarrow{n}| \cdot |\overrightarrow{b}|}\right) \qquad \beta = a\sin\left(\frac{\overrightarrow{n} \cdot \overrightarrow{b}}{|\overrightarrow{n}| \cdot |\overrightarrow{b}|}\right) \qquad \beta = 90^{\circ} - \alpha$$

5.16 Wiederholung

344/7

$$g_a \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 4 + 2a \\ -1 + 5a \\ 1 + 3a \end{pmatrix} \qquad a \in \mathbb{R}$$
$$P(1|0|2), \ Q(2|0|3), \ R(0|2|2) \in E$$

а

$$\overrightarrow{PQ} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad \overrightarrow{PR} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$$

$$\overrightarrow{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \qquad \overrightarrow{OP} \cdot \overrightarrow{n} = 2$$

$$E \colon -2x_1 - x_2 + 2x_3 = 2$$

$$g_0 : \overrightarrow{x} = \begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} \qquad g_1 : \overrightarrow{x} = \begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix}$$

$$g_0 = E$$
 $-2(2+4t) - (7-t) + 2(3+t) = 2$ $\Rightarrow t = -\frac{7}{5}$
 $g_1 = E$ $-2(2+6t) - (7+4t) + 2(3+4t) = 2$ $\Rightarrow t = \frac{-7}{8}$

$$\overrightarrow{OS_0} = \begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix} - \frac{7}{5} \cdot \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3.6 \\ 8.4 \\ 1.6 \end{pmatrix} \qquad \overrightarrow{OS_1} = \begin{pmatrix} 2 \\ 7 \\ 3 \end{pmatrix} - \frac{7}{8} \cdot \begin{pmatrix} 6 \\ 4 \\ 4 \end{pmatrix} = \begin{pmatrix} -3.25 \\ 3.5 \\ -0.5 \end{pmatrix}$$

$$\overrightarrow{S_0S_1} = \begin{pmatrix} 0.35 \\ -4.9 \\ -2.1 \end{pmatrix}$$

$$h: \vec{x} = \begin{pmatrix} -3.6 \\ 8.4 \\ 1.6 \end{pmatrix} + t \cdot \begin{pmatrix} 0.35 \\ -4.9 \\ -2.1 \end{pmatrix}$$

b

$$t \cdot \begin{pmatrix} 0.35 \\ -4.9 \\ -2.1 \end{pmatrix} = \begin{pmatrix} 4+2a \\ -1+5a \\ 1+3a \end{pmatrix}$$

$$0.35t = 4 + 2a$$
$$-4.9t = -1 + 5a$$
$$-2.1t = 1 + 3a$$

$$\Rightarrow \quad a = -\frac{5}{3} \qquad (t \approx 1.905)$$

326/15

а

$$2t = 0 \Rightarrow t = 0$$

 $4 = 0 \Rightarrow$ keine Lösung
 $t = 0 \Rightarrow t = 0$

$$\Rightarrow t = 0$$

b

$$\begin{array}{lll} t-1=0 & \Rightarrow & t=1 \\ t^2-1=0 & \Rightarrow & t=\pm 1 \\ t+1=0 & \Rightarrow & t=-1 \end{array}$$

$$\Rightarrow$$
 $t = \pm 1$

b

$$A(1|-2|12) \quad B(11|3|5) \quad C(3|5|8) \quad D(19|4|4)$$

$$\overrightarrow{AB} = \begin{pmatrix} 10 \\ 5 \\ -7 \end{pmatrix} \quad \overrightarrow{AC} = \begin{pmatrix} 2 \\ 7 \\ -4 \end{pmatrix} \quad \overrightarrow{AD} = \begin{pmatrix} 18 \\ 6 \\ -8 \end{pmatrix}$$

$$V = \frac{1}{6} \cdot |\overrightarrow{AB} \times \overrightarrow{AC} \cdot \overrightarrow{AD}| = \frac{1}{6} \cdot \left| \begin{pmatrix} 10 \\ 5 \\ -7 \end{pmatrix} \times \begin{pmatrix} 2 \\ 7 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 18 \\ 6 \\ -8 \end{pmatrix} \right|$$

$$= \frac{1}{6} \cdot \left| \begin{pmatrix} 29 \\ 26 \\ 60 \end{pmatrix} \cdot \begin{pmatrix} 18 \\ 6 \\ -8 \end{pmatrix} \right| = \frac{1}{6} \cdot |198| = 33$$

5.17 Lage Ebene ↔ Ebene

3 Fälle sind möglich:

• 2 Ebenen schneiden sich in einer Geraden (Normalenvektoren sind nicht kollinear)

$$2x_1 - x_2 = 7 \qquad \overrightarrow{n} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$
$$5x_2 + x_3 = 5 \qquad \overrightarrow{n} = \begin{pmatrix} 0 \\ 5 \\ 1 \end{pmatrix}$$

• 2 Ebenen sind parallel (kollineare Normalenvektoren)

$$2x_1 - x_2 = 7 \qquad \overrightarrow{n} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$
$$10x_1 - 5x_2 = 1 \qquad \overrightarrow{n} = \begin{pmatrix} 10 \\ -5 \\ 0 \end{pmatrix}$$

• 2 Ebenen sind identisch (Koordinatengleichungen lassen sich ineinander umformen)

$$2x_1 - x_2 = 7 \qquad | \cdot 5$$
$$10x_1 - 5x_2 = 35$$

$$E \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 - s \\ 2 + r \\ 3 + 3r + 5s \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$F \colon \overrightarrow{x} = x_1 - x_2 + 3x_3 = 5$$

setze E in F ein

$$1 - s - (2 + r) + 3 \cdot (3 + 3r + 5s) = 5$$
$$8r + 14s = -3$$

$$r = -\frac{3}{8} - \frac{14}{8}s$$

$$g \colon \overrightarrow{x} = \begin{pmatrix} 1 - s \\ 2 - \frac{3}{8} - \frac{14}{8}s \\ 3 + 3 \cdot \left(-\frac{3}{8} - \frac{14}{8}s\right) + 5s \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{13}{8} \\ \frac{15}{8} \end{pmatrix} + s \cdot \begin{pmatrix} -1 \\ -\frac{7}{4} \\ -\frac{1}{4} \end{pmatrix}$$

333/2

а

$$E_1$$
: $x_1 - x_2 + 2x_3 = 7$ E_2 : $6x_1 + x_2 - x_3 = -7$

$$x_3 = 3.5 - 0.5x_1 + 0.5x_3$$

$$E_1: \vec{x} = \begin{pmatrix} 0 \\ 0 \\ 3.5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ -0.5 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 1 \\ 0.5 \end{pmatrix} = \begin{pmatrix} r \\ s \\ 3.5 - 0.5r + 0.5s \end{pmatrix}$$

 E_1 in E_2 einsetzen:

$$6r + s - (3.5 - 0.5r + 0.5s) = -7$$

$$s = -7 - 13r$$

$$g \colon \overrightarrow{x} = \begin{pmatrix} r \\ -7 - 13r \\ -7r \end{pmatrix} = \begin{pmatrix} 0 \\ -7 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -13 \\ -7 \end{pmatrix}$$

a

$$E_1 \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad E_2 \colon \overrightarrow{x} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

$$E_2$$
: $x_1 + 2x_2 - 2x_3 = 4$

 E_1 in E_2 einsetzen:

$$1 + r + s + 2s - 2 \cdot 3 = 4$$

$$r = 9 - 3s$$

$$g \colon \overrightarrow{x} = \begin{pmatrix} 10 - 2s \\ s \\ 3 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 3 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

5.18 Abstand Ebene ↔ Punkt

Fußlotpunkt-Methode

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 1\\2\\3 \end{pmatrix}\right) \cdot \begin{pmatrix} 1\\0\\4 \end{pmatrix} = 0 \qquad P(8|-3|0)$$

orthogonale Gerade durch Punkt P

$$g \colon \overrightarrow{x} = \begin{pmatrix} 8 \\ -3 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$$

Schnittpunkt $g \leftrightarrow E$

$$g \text{ in } E \quad \begin{pmatrix} 8+r-1\\ -3-2\\ 0+4r-3 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 0\\ 4 \end{pmatrix} = 0$$

$$\overrightarrow{OS} = \begin{pmatrix} \frac{141}{17}\\ -3\\ \frac{20}{17} \end{pmatrix} \qquad r = \frac{5}{17}$$

Abstand
$$P \leftrightarrow E$$
 ist $|\overrightarrow{PS}|$
$$d(P,E) = 1.21 LE$$

Hessesche Normalenform (HNF)

$$E_0 \colon \left(\overrightarrow{x} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right) \cdot \underbrace{\frac{1}{\sqrt{17}} \cdot \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}}_{\text{Normaleneinheitsvektor } \overrightarrow{n_0}} = 0$$

setze P für \overrightarrow{x} in E_0 ein

$$\left| \left(\begin{pmatrix} 8 \\ -3 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right) \cdot \frac{1}{\sqrt{17}} \cdot \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} \right| = d$$

$$d(P, E) = 1.21LE$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot cos(\alpha)$$

= $|\overrightarrow{a_b}| \cdot |\overrightarrow{b}|$

$$\overrightarrow{AP} \cdot \overrightarrow{n_0} = |\overrightarrow{AP_{\overrightarrow{n}}}| \cdot |\overrightarrow{n_0}|$$
$$= |\overrightarrow{AP_{\overrightarrow{n}}}| \cdot 1$$
$$= d$$

a

$$E: 3x_{2} + 4x_{3} = 0 \qquad A(3|-1|7) \qquad B(6|8|19) \qquad C(-3|-3|-4)$$

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right) \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = 0$$

$$g_{A}: \overrightarrow{x} = \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ -1 + 3r \\ 7 + 4r \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = 0$$

$$\overrightarrow{OS} = \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix} \qquad r = -1 \qquad |\overrightarrow{AS}| = \begin{vmatrix} 3 - 3 \\ -4 + 1 \\ -3 + 7 \end{vmatrix} = 5$$

$$g_{B}: \overrightarrow{x} = \begin{pmatrix} 6 \\ 8 \\ 19 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 8 + 3r \\ 19 + 4r \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = 0$$

$$\overrightarrow{OS} = \begin{pmatrix} 6 \\ -4 \\ 3 \end{pmatrix} \qquad r = -4 \qquad |\overrightarrow{AS}| = \begin{vmatrix} 6 - 6 \\ -4 - 8 \\ 3 - 19 \end{vmatrix} = 20$$

$$g_{C}: \overrightarrow{x} = \begin{pmatrix} -3 \\ -3 \\ -4 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} -3 \\ -3 + 3r \\ -4 + 4r \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = 0$$

$$\overrightarrow{OS} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} \qquad r = 1 \qquad |\overrightarrow{AS}| = \begin{vmatrix} \begin{pmatrix} -3 + 3 \\ 0 + 4 \end{pmatrix} = 5$$

b

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 1\\2.5\\3.5 \end{pmatrix}\right) \cdot \begin{pmatrix} 12\\6\\-4 \end{pmatrix} = 0$$

$$A(-2|0|3) \quad B(13|8.5| - 0.5) \quad C(-33| - 20|14.25)$$

$$\overrightarrow{n_0} = \frac{1}{14} \cdot \begin{pmatrix} 12\\6\\-4 \end{pmatrix} \quad E_0: \left(\overrightarrow{x} - \begin{pmatrix} 1\\2.5\\3.5 \end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix} 12\\6\\-4 \end{pmatrix} = 0$$

$$\left| \begin{pmatrix} \begin{pmatrix} -2\\0\\3 \end{pmatrix} - \begin{pmatrix} 1\\2.5\\3.5 \end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix} 12\\6\\-4 \end{pmatrix} \right| = 3.5$$

$$\left| \begin{pmatrix} \begin{pmatrix} 13\\8.5\\-0.5 \end{pmatrix} - \begin{pmatrix} 1\\2.5\\3.5 \end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix} 12\\6\\-4 \end{pmatrix} \right| = 14$$

$$\left| \begin{pmatrix} \begin{pmatrix} -33\\-20\\14.25 \end{pmatrix} - \begin{pmatrix} 1\\2.5\\3.5 \end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix} 12\\6\\-4 \end{pmatrix} \right| \approx 41.857$$

С

$$E: \overrightarrow{x} = \begin{pmatrix} 2\\1\\-2 \end{pmatrix} + r \cdot \begin{pmatrix} 5\\5\\-1 \end{pmatrix} + s \cdot \begin{pmatrix} -1\\0\\0 \end{pmatrix} \qquad E: \begin{pmatrix} \overrightarrow{x} - \begin{pmatrix} 2\\1\\-2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 0\\1\\5 \end{pmatrix} = 0$$

$$A(2|4|13) \qquad B(8|-6|-11) \qquad C(3|-2|9)$$

$$\overrightarrow{n_0} = \sqrt{26} \qquad E_0: \begin{pmatrix} \overrightarrow{x} - \begin{pmatrix} 2\\1\\-2 \end{pmatrix} \end{pmatrix} \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix} 0\\1\\5 \end{pmatrix} = 0$$

$$\left| \begin{pmatrix} 2 \\ 4 \\ 13 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right| \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix} \right| \approx 15.297$$

$$\left| \begin{pmatrix} 8 \\ -6 \\ -11 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right| \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix} \right| \approx 10.198$$

$$\left| \begin{pmatrix} 3 \\ -2 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right| \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix} \right| \approx 10.198$$

5.18.1 HNF - Koordinatenform

$$E: n_1x_1 + n_2x_2 + n_3x_3 - \underbrace{(n_1a_1 + n_2a_2 + n_3a_3)}_{b} = 0$$
$$n_1x_1 + n_2x_2 + n_3x_3 = b$$

HNF:

$$E: \frac{1}{|\vec{n}|} \cdot (n_1 x_1 + n_2 x_2 + n_3 x_3 - b) = 0 \qquad d(P, E) = \left| (\vec{p} - \vec{a}) \cdot \frac{\vec{n}}{|\vec{n}|} \right| = d$$

$$\left| \frac{1}{|\vec{n}|} \cdot (n_1 p_1 + n_2 p_2 + n_3 p_3 - b) \right| = d$$

Beispiel

$$E: 3x_1 + 4x_3 = 15$$

$$\vec{n} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} \qquad |\vec{n}| = 5$$

$$E : \frac{1}{5} \cdot (3x_1 + 4x_3) = \frac{1}{5} \cdot 15$$

$$\frac{3}{5}x_1 + \frac{4}{5}x_3 = 3$$

Abstand von E zum Ursprung O

$$d(O, E) = \left| \frac{3}{5} \cdot 0 + \frac{4}{5} \cdot 0 - 3 \right| = |-3| = 3$$

Sind \overrightarrow{n} und \overrightarrow{p} im gleichen Halbraum, so gilt $\overrightarrow{n}\cdot\overrightarrow{p}>0$, sonst $\overrightarrow{n}\cdot\overrightarrow{p}<0$ Ausnahme: $\overrightarrow{p}\in E\Rightarrow\overrightarrow{n}\cdot\overrightarrow{p}=0$

Parallele Ebenen zu E im Abstand 5LE

$$F \colon \frac{3}{5}x_1 + \frac{4}{5}x_2 = -2$$

$$G \colon \frac{3}{5}x_1 + \frac{4}{5}x_2 = 8$$

$$A(3|2|-1)$$
 $B(4|4|0)$ $C(7|3|2)$

а

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 1\\2\\4 \end{pmatrix}\right) \cdot \begin{pmatrix} 10\\-11\\2 \end{pmatrix} = 0 \qquad E_0: \left(\overrightarrow{x} - \begin{pmatrix} 1\\2\\4 \end{pmatrix}\right) \cdot \frac{1}{15} \cdot \begin{pmatrix} 10\\-11\\2 \end{pmatrix} = 0$$

$$d(A, E) = \left| \left(\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \right) \cdot \frac{1}{15} \cdot \begin{pmatrix} 10 \\ -11 \\ 2 \end{pmatrix} \right| = \frac{2}{3}$$

$$d(B, E) = \left| \left(\begin{pmatrix} 4\\4\\0 \end{pmatrix} - \begin{pmatrix} 1\\2\\4 \end{pmatrix} \right) \cdot \frac{1}{15} \cdot \begin{pmatrix} 10\\-11\\2 \end{pmatrix} \right| = 0$$

$$d(C, E) = \left| \begin{pmatrix} 7\\3\\2 \end{pmatrix} - \begin{pmatrix} 1\\2\\4 \end{pmatrix} \right) \cdot \frac{1}{15} \cdot \begin{pmatrix} 10\\-11\\2 \end{pmatrix} \right| = 3$$

b

$$E \colon 3x_1 + 5x_2 - x_3 = 20 \qquad |\vec{n}| = \sqrt{35}$$

$$d(A, E) = \left| \frac{1}{\sqrt{35}} \cdot (3 \cdot 3 + 5 \cdot 2 - 1 \cdot (-1) - 20) \right| = 0$$

$$d(B, E) = \left| \frac{1}{\sqrt{35}} \cdot (3 \cdot 4 + 5 \cdot 4 - 1 \cdot 0 - 20) \right| \approx 2.0284$$

$$d(C, E) = \left| \frac{1}{\sqrt{35}} \cdot (3 \cdot 7 + 5 \cdot 3 - 1 \cdot 2 - 20) \right| \approx 2.3664$$

С

$$E : x_1 = 4$$

$$d(A, E) = |a_1 - x_1| = |3 - 4| = 1$$

$$d(B, E) = |b_1 - x_1| = |4 - 4| = 0$$

$$d(C, E) = |c_1 - x_1| = |7 - 4| = 3$$

E:
$$10x_1 + 2x_2 - 11x_3 = 30$$

$$d(P, E) = \left| \frac{1}{15} \cdot (10p_1 + 2p_2 - 11p_3 - 30) \right| = 5$$

 x_1 -Achse:

$$p_2 = p_3 = 0$$

$$d(P, E) = \left| \frac{1}{15} \cdot (10p_1 - 30) \right| = 5$$

$$p_{1,1} = 10.5 \qquad p_{1,2} = -4.5$$

$$P_1(10.5|0|0) \qquad P_2(-4.5|0|0)$$

 x_2 -Achse:

$$p_1 = p_3 = 0$$

$$d(P, E) = \left| \frac{1}{15} \cdot (2p_2 - 30) \right| = 5$$

$$p_{2,1} = 52.5 \qquad p_{2,2} = -22.5$$

$$P_3(0|52.5|0) \qquad P_4(0| - 22.5|0)$$

 x_3 -Achse:

$$\begin{aligned} p_1 &= p_2 = 0 \\ d(P, E) &= \left| \frac{1}{15} \cdot (-11p_3 - 30) \right| = 5 \\ p_{3,1} &= \frac{45}{11} = 4.\overline{09} \qquad p_{3,2} = -\frac{105}{11} = -9.\overline{54} \\ P_5(0|0|4.\overline{09}) \qquad P_6(0|0| - 9.\overline{54}) \end{aligned}$$

$$A(2|0|0)$$
 $B(0|2|0)$ $C(-2|0|0)$ $D(0|-2|0)$ $S(0|0|6)$ $M(0|0|d)$

$$E_{ABCD} : \vec{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \qquad E_{ABCD} : x_3 = 0$$

$$E_{ABS} : \vec{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ -2 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 0 \\ -6 \end{pmatrix} \qquad E_{ABS} : 3x_1 + 3x_2 + x_3 = 6$$

$$d(M, E_{ABCD}) = |m_3| \qquad d(M, E_{ABS}) = \left| \frac{1}{\sqrt{19}} \cdot (m_3 - 6) \right|$$
$$|m_3| = \left| \frac{1}{\sqrt{19}} \cdot (m_3 - 6) \right|$$
$$m_{3,1} \approx 1.1196 \qquad (m_{3,2} \approx -1.7863)$$

M(0|0|1.1196)

5.19 Abstand Gerade ↔ Punkt

$$g \colon \overrightarrow{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \qquad P(0|1|4) \qquad P \notin g$$

 ${\it Hilfsebene}\,\,E\,\,{\it orthogonal}\,\,{\it zu}\,\,g\,\,{\it durch}\,\,P$

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 0\\1\\4 \end{pmatrix}\right) \cdot \begin{pmatrix} 1\\-1\\0 \end{pmatrix} = 0 \qquad x_1 - x_2 = -1$$

Suche Schnittpunkt S von E und g S ist der nächstliegende Punkt auf g, von P aus gesehen

$$g$$
 in E eingesetzt
$$1+r-2+r=-1 \quad \Rightarrow \quad r=0$$

$$S(1|2|3)$$

$$|\overrightarrow{SP}|$$
 ist der gesuchte Abstand d zwischen P und g $d=\sqrt{3}$

5.19.1 Abstandsbestimmung als Optimierungsaufgabe

$$\begin{split} \text{HB: } f &= \overrightarrow{XP} = min. \qquad \text{(Koordinante von P, Parameter r, ...)} \\ \text{NB: } g \colon \overrightarrow{x} &= \begin{pmatrix} 1+r\\2-r\\3 \end{pmatrix} \qquad P(0|1|4) \\ \text{ZF: } f(r) &= |\overrightarrow{XP}| = (-1-r)^2 + (-1+r)^2 + 1^2 = 2r^2 + 3 \\ f'(r) &= 4r \qquad f''(r) = 4 \end{split}$$

n. B.:
$$f'(r) = 0 \implies r = 0$$

h. B.: $f''(0) = 4 > 0 \implies TP$

setze
$$r=0$$
 in g ein $S(1|2|3)$

b

$$R(-2|-6|1) g: \vec{x} = \begin{pmatrix} 5\\9\\1 \end{pmatrix} + t \cdot \begin{pmatrix} 3\\2\\2 \end{pmatrix}$$

$$E: \left(\vec{x} - \begin{pmatrix} -2\\-6\\1 \end{pmatrix}\right) \cdot \begin{pmatrix} 3\\2\\2 \end{pmatrix} = 0 3x_1 + 2x_2 + 2x_3 = -16$$

$$3(5+3t) + 2(9+2t) + 2(1+2t) = -16 \Rightarrow t = -3$$

$$S(-4|3|-5)$$

$$|\vec{SR}| = \begin{vmatrix} 2\\-9\\6 \end{vmatrix} = 11$$

359/2

а

$$A(1|1|1) \quad B(7|4|7) \quad C(5|6|-1)$$

$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ 3 \\ 6 \end{pmatrix} \quad \overrightarrow{AC} = \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix}$$

$$A = \frac{1}{2} \cdot |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \cdot \begin{vmatrix} -36 \\ 36 \\ 18 \end{vmatrix} = 27$$

a

$$\vec{x} = \begin{pmatrix} -5 \\ 6 \\ 8 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \qquad \vec{x} = \begin{pmatrix} 6 \\ 4 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

$$E: \begin{pmatrix} \vec{x} - \begin{pmatrix} -5 \\ 6 \\ 8 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = 0 \qquad -x_1 + 2x_3 = 21$$

$$-(6-t) + 2(1+2t) = 21 \quad \Rightarrow \quad t = 5$$

$$S(1|4|11)$$

$$P(-5|6|8) \qquad |\vec{SP}| = \begin{vmatrix} -6 \\ 2 \\ -3 \end{vmatrix} \approx 7$$

zu 359/1 Spiegelpunkt R' bei Spiegelung an der Geraden g

b

$$\overrightarrow{OS} = \begin{pmatrix} -4\\3\\-5 \end{pmatrix} \qquad \overrightarrow{SR} = \begin{pmatrix} 2\\-9\\6 \end{pmatrix}$$

$$\overrightarrow{OR'} = \overrightarrow{OS} - \overrightarrow{SR} = \begin{pmatrix} -4-2\\3-(-9)\\-5-6 \end{pmatrix} = \begin{pmatrix} -6\\12\\-11 \end{pmatrix}$$

$$R'(-6|12|-11)$$

zu 356/1 Spiegelpunkt A' bei Spiegelung an der Ebene E

a

$$E: 2x_{1} - 10x_{2} + 11x_{3} = 0 \qquad A(1|1| - 2)$$

$$\overrightarrow{n} = \begin{pmatrix} 2 \\ -10 \\ 11 \end{pmatrix} \qquad |\overrightarrow{n}| = 15 \qquad \overrightarrow{n_{0}} = \frac{1}{15} \cdot \begin{pmatrix} 2 \\ -10 \\ 11 \end{pmatrix}$$

$$d(A, E) = \left| \frac{1}{15} \cdot (2 \cdot 1 + (-10) \cdot 1 + 11 \cdot (-2)) \right| = \left| \frac{1}{15} \cdot (-30) \right| = 2$$

$$\overrightarrow{OA'} = \overrightarrow{OA} + 2 \cdot 2 \cdot \overrightarrow{n_{0}} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + \frac{4}{15} \cdot \begin{pmatrix} 2 \\ -10 \\ 11 \end{pmatrix} = \begin{pmatrix} 1.5\overline{3} \\ -1.\overline{6} \\ 0.9\overline{3} \end{pmatrix}$$

$$A'(1.5\overline{3}| - 1.\overline{6}|0.9\overline{3})$$

а

$$A(2|11|-5)$$

$$d(A, x_1\text{-Achse}) = \sqrt{11^2 + (-5)^2} = 12.0830$$

$$d(A, x_2\text{-Achse}) = \sqrt{2^2 + (-5)^2} = 5.3852$$

$$d(A, x_3\text{-Achse}) = \sqrt{2^2 + 11^2} = 11.1803$$

b

$$d(P, x_1$$
-Achse) = $\sqrt{x_2^2 + x_3^2}$ (andere Achsen analog)

360/12

$$A(5|7|9) \qquad \overrightarrow{u} = \begin{pmatrix} 12\\4\\3 \end{pmatrix}$$

a

$$\overrightarrow{AF} = r \cdot \overrightarrow{u} = \begin{pmatrix} 12r \\ 4r \\ 3r \end{pmatrix} \qquad \overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \begin{pmatrix} 5 + 12r \\ 7 + 4r \\ 9 + 3r \end{pmatrix}$$

$$\overrightarrow{FR} = \begin{pmatrix} -7 - (5 + 12r) \\ -3 - (7 + 4r) \\ 14 - (9 + 3r) \end{pmatrix} = \begin{pmatrix} -12 + 12r \\ -10 + 4r \\ 5 + 3r \end{pmatrix}$$

$$\overrightarrow{AF} \cdot \overrightarrow{FR} = 0$$

 $12r \cdot (-12 + 12r) + 4r \cdot (-10 + 4r) + 3r \cdot (5 + 3r) = 169r^2 - 169r = 0$
 $(r_0 = 0)$ $r_1 = 1$

$$\overrightarrow{OF} = \begin{pmatrix} 5+12\\7+4\\9+3 \end{pmatrix} = \begin{pmatrix} 17\\11\\12 \end{pmatrix} \qquad F(17|11|12)$$

$$A_{Dreieck} = \frac{1}{2} \cdot |\overrightarrow{AF}| \cdot |\overrightarrow{FR}| = \frac{1}{2} \cdot \left| \begin{pmatrix} 12\\4\\3 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0\\-6\\8 \end{pmatrix} \right| = 65$$

b

$$V_{Kegel} = \frac{1}{3} \cdot \pi \cdot |\overrightarrow{FR}|^2 \cdot |\overrightarrow{AF}| = \frac{1}{3} \cdot \pi \cdot 10^2 \cdot 13 = 1361.3568$$

360/9

$$A(1.5|-1.5|0)$$
 $B(1.5|1.5|0)$ $C(-1.5|1.5|0)$ $D(-1.5|-1.5|0)$ $S(0|0|4)$

P(1.5|0.5|0) (Schnittpunkt von g mit Kante \overline{AB})

$$g \colon \overrightarrow{x} = \begin{pmatrix} 1.5 \\ 0.5 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$E: \left(\overrightarrow{x} - \begin{pmatrix} 0\\0\\4 \end{pmatrix}\right) \cdot \begin{pmatrix} -1\\1\\0 \end{pmatrix} = 0 \qquad -x_1 + x_2 = 0$$
$$-(1.5 - r) + (0.5 + r) = 0 \quad \Rightarrow \quad r = 0.5$$

$$d(P,g) = \begin{vmatrix} 0 \\ 0 \\ 4 \end{vmatrix} - \begin{pmatrix} 1 \\ 1 \\ 0 \end{vmatrix} = \sqrt{18} \approx 4.2426 \qquad [d] = cm$$

5.20 Abstand windschiefer Geraden

Beispiel

$$g \colon \overrightarrow{x} = \begin{pmatrix} 7 \\ 7 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ 6 \end{pmatrix} \qquad h \colon \overrightarrow{x} = \begin{pmatrix} -3 \\ 0 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} \qquad g \leftrightarrow h \text{ windschief}$$

Hilfsebene
$$E \colon \overrightarrow{x} = \begin{pmatrix} 7 \\ 7 \\ 4 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ -2 \\ 6 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

Der gesuchte Abstand d(g,h) ist der Abstand d((-3|0|5),E)

$$E: 6x_1 + 9x_2 + 2x_3 = 113 |\vec{n}| = \begin{vmatrix} 6\\9\\2 \end{vmatrix} = 11$$
$$d((-3|0|5), E) = \left| \frac{1}{11} \cdot (6 \cdot (-3) + 9 \cdot 0 + 2 \cdot 5 - 113) \right| = 11$$

363/6

$$A(-9|3|-3) \quad B(-3|-6|0) \quad C(-7|5|5) \quad D(4|8|0)$$

$$g_{AC} \colon \overrightarrow{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AC} = \begin{pmatrix} -9\\3\\-3 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\2\\8 \end{pmatrix}$$

$$g_{BD} \colon \overrightarrow{x} = \overrightarrow{OB} + s \cdot \overrightarrow{BD} = \begin{pmatrix} -3\\-6\\0 \end{pmatrix} + s \cdot \begin{pmatrix} 7\\14\\0 \end{pmatrix}$$

$$E \colon \overrightarrow{x} = \begin{pmatrix} -9\\3\\-3 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\2\\8 \end{pmatrix} + s \cdot \begin{pmatrix} 7\\14\\0 \end{pmatrix} \qquad -8x_1 + 4x_2 + x_3 = 81 \qquad |\overrightarrow{n}| = 9$$

$$d(g_{AC}, g_{BD}) = d(B, E) = \left| \frac{1}{9} \cdot (-8 \cdot (-3) + 4 \cdot (-6) + 1 \cdot 0 - 81) \right| = 9$$

$$\overrightarrow{OT} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AD} = \begin{pmatrix} -2.5 \\ 5.5 \\ -1.5 \end{pmatrix} \qquad \overrightarrow{OU} = \overrightarrow{OA} + \frac{1}{2} \cdot \overrightarrow{AC} = \begin{pmatrix} -8 \\ 4 \\ 1 \end{pmatrix}$$

$$g_{TU} : \overrightarrow{x} = \overrightarrow{OU} + r \cdot \overrightarrow{TU} = \begin{pmatrix} -8 \\ 4 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -5.5 \\ -1.5 \\ 2.5 \end{pmatrix}$$

$$\overrightarrow{OR} = \overrightarrow{OC} + \frac{1}{2} \cdot \overrightarrow{CD} = \begin{pmatrix} -1.5 \\ 6.5 \\ 2.5 \end{pmatrix} \qquad \overrightarrow{OS} = \overrightarrow{OB} + \frac{1}{2} \cdot \overrightarrow{BD} = \begin{pmatrix} 0.5 \\ 1 \\ 0 \end{pmatrix}$$

$$g_{RS} : \overrightarrow{x} = \overrightarrow{OS} + s \cdot \overrightarrow{RS} = \begin{pmatrix} 0.5 \\ 1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -5.5 \\ -2.5 \end{pmatrix}$$

$$E : \overrightarrow{x} = \begin{pmatrix} -8 \\ 4 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -5.5 \\ -1.5 \\ 2.5 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ -5.5 \\ -2.5 \end{pmatrix}$$

$$E : 17.5x_1 - 8.75x_2 + 33.25x_3 = -141.75 \qquad |\overrightarrow{n}| = \sqrt{1488.375}$$

$$d(g_{TU}, g_{RS}) = d(R, E) = \left| \frac{1}{\sqrt{1488.375}} \cdot (17.5 \cdot 0.5 - 8.75 + 141.75) \right|$$

$$\overrightarrow{OA} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} \qquad g \colon \overrightarrow{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} \qquad G_s(5s|0|0)$$

$$\overrightarrow{BD} = \begin{pmatrix} -5 \\ -3 \\ 6 \end{pmatrix} \qquad h \colon \overrightarrow{x} = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -5 \\ -3 \\ 6 \end{pmatrix} \qquad H_t(5 - 5t|6 - 3t|6t)$$

$$\overrightarrow{G_sH_t} = \begin{pmatrix} 5 - 5t - 5s \\ 6 - 3t \\ 6t \end{pmatrix} \qquad \overrightarrow{G_sH_t} \cdot \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} = 0 \qquad \overrightarrow{G_sH_t} \cdot \begin{pmatrix} -5 \\ -3 \\ 6 \end{pmatrix} = 0$$

$$5 \cdot (5 - 5t - 5s) = 25 - 25t - 25s = 0$$

$$-5 \cdot (5 - 5t - 5s) - 3 \cdot (6 - 3t) + 6 \cdot 6t = -43 + 70t + 25s = 0$$

$$\Rightarrow \quad s = 0.6 \quad t = 0.4$$

$$G_3(3|0|0) \qquad H_{-2}(3|4.8|2.4) \qquad |\overrightarrow{G_3H_{-2}}| = \begin{vmatrix} 0 \\ 4.8 \\ 2.4 \end{vmatrix} = \sqrt{28.8} \approx 5.3666$$

$$A(1|-2|-7)$$
 $B(-8|-2|5)$ $C(17|-2|5)$ $D(1|6|-7)$

a

$$\overrightarrow{AB} = \begin{pmatrix} -9\\0\\12 \end{pmatrix} \qquad \overrightarrow{AC} = \begin{pmatrix} 16\\0\\12 \end{pmatrix} \qquad \overrightarrow{AD} = \begin{pmatrix} 0\\8\\0 \end{pmatrix}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \qquad \overrightarrow{AB} \cdot \overrightarrow{AD} = 0 \qquad \overrightarrow{AC} \cdot \overrightarrow{AD} = 0$$

⇒ alle rechtwinklig zueinander

b

$$E_{ABC} \colon \overrightarrow{x} = \overrightarrow{OA} + r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC} = \begin{pmatrix} 1 \\ -2 \\ -7 \end{pmatrix} + r \cdot \begin{pmatrix} -9 \\ 0 \\ 12 \end{pmatrix} + s \cdot \begin{pmatrix} 16 \\ 0 \\ 12 \end{pmatrix}$$
$$d(D, E_{ABC}) = |\overrightarrow{AD}| = \sqrt{64} = 8$$

С

$$G = \frac{1}{2} \cdot |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = \frac{1}{2} \cdot 15 \cdot 20 = 150$$

$$V = \frac{1}{3} \cdot G \cdot |\overrightarrow{AD}| = \frac{1}{3} \cdot 150 \cdot 8 = 400$$

d

$$P(-3.5|-2|-1) Q(4.5|-2|5) S(-3.5|2|-1) T(1|2|-7)$$

$$\overrightarrow{PQ} = \begin{pmatrix} 8 \\ 0 \\ 6 \end{pmatrix} \overrightarrow{ST} = \begin{pmatrix} 4.5 \\ 0 \\ -6 \end{pmatrix}$$

$$g: \overrightarrow{x} = \begin{pmatrix} -3.5 \\ -2 \\ -1 \end{pmatrix} + s \cdot \begin{pmatrix} 8 \\ 0 \\ 6 \end{pmatrix} G_s(-3.5+8s|-2|-1+6s)$$

$$h: \overrightarrow{x} = \begin{pmatrix} -3.5 \\ 2 \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} 4.5 \\ 0 \\ -6 \end{pmatrix} H_t(-3.5+4.5t|2|-1-6t)$$

$$\overrightarrow{G_sH_t} = \begin{pmatrix} -3.5 + 4.5t + 3.5 - 8s \\ 2 + 2 \\ -1 - 6t + 1 - 6s \end{pmatrix} = \begin{pmatrix} 4.5t - 8s \\ 4 \\ -6t - 6s \end{pmatrix}$$

$$\overrightarrow{G_sH_t} \cdot \begin{pmatrix} 8 \\ 0 \\ 6 \end{pmatrix} = 0 \qquad \overrightarrow{G_sH_t} \cdot \begin{pmatrix} 4.5 \\ 0 \\ -6 \end{pmatrix} = 0$$

$$8 \cdot (4.5t - 8s) + 6 \cdot (-6t - 6s) = -100s = 0$$

$$4.5 \cdot (4.5t - 8s) - 6 \cdot (-6t - 6s) = 56.25t = 0$$

$$\Rightarrow s = 0 \quad t = 0$$

$$G_0(-3.5|-2|-1)$$
 $H_0(-3.5|2|-1)$ $|\overrightarrow{G_0H_0}|=4$ $(=\frac{1}{2}\cdot|\overrightarrow{AD}|)$

Kreise und Kugeln 5.21

$$f(x) = y = \sqrt{16 - x^2}$$

Definitionsbereich: D = [-4; 4]

Ableitung: $f'(x) = \frac{1}{2} \cdot (16 - x^2)^{-\frac{1}{2}} \cdot (-2x) = -\frac{x}{\sqrt{16 - x^2}}$

Extrema: f'(x)=0 $L=\{0\}$ P(0|4) Steigung am Rand von D: $\lim_{x\to -4}f'(x)=\infty$ $\lim_{x\to 4}f'(x)=-\infty$

$$y = \sqrt{16 - (x - 2)} + 1 \qquad |-1|$$

$$y - 1 = \sqrt{16 - (x - 2)^2} \qquad |()^2|$$

$$(y - 1)^2 = 16 - (x - 2)^2 \qquad |+ (x - 2)^2|$$

$$(x - 2)^2 + (y - 1)^2 = 16$$

$$\left(\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} mx \\ my \end{pmatrix} \right)^2 = r^2 \qquad \text{(Kreisgleichung in } \mathbb{R}^2\text{)}$$

$$\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} mx \\ my \\ mz \end{pmatrix} \right)^2 = r^2 \qquad \text{(Kugelgleichung in } \mathbb{R}^3\text{)}$$

$$(\overrightarrow{x} - \overrightarrow{m})^2 = r^2$$

z. B.
$$\left(\overrightarrow{x} - \begin{pmatrix} 1\\2\\3 \end{pmatrix}\right)^2 = 25$$

Kugel mit Mittelpunkt M(1|2|3) und Radius r=5

376/3

а

$$A(4|1|3) \qquad B(3|0|10) \qquad C(-1|1|1) \qquad M(1|1|7) \qquad r=5$$

$$|\overrightarrow{AM}| = \begin{vmatrix} -3 \\ 0 \\ 4 \end{vmatrix} = 5 = r \quad \Rightarrow \quad \text{auf der Kugel}$$

$$|\overrightarrow{BM}| = \begin{vmatrix} -2 \\ 1 \\ -3 \end{vmatrix} = \sqrt{14} < r \quad \Rightarrow \quad \text{innerhalb der Kugel}$$

$$|\overrightarrow{CM}| = \begin{vmatrix} 2 \\ 0 \\ 6 \end{vmatrix} = \sqrt{40} > r \quad \Rightarrow \quad \text{außerhalb der Kugel}$$

a

$$x_1^2 + x_2^2 + x_3^2 + 4x_1 - 8x_2 + 6x_3 + 4 = 0$$

$$x_1^2 + 4x_1 + 4 + x_2^2 - 8x_2 + 16 + x_3^2 + 6x_3 + 9 = -4 + 4 + 16 + 9$$

$$(x_1 + 2)^2 + (x_2 - 4)^2 + (x_3 + 3)^2 = 25$$

$$M(-2|4|-3) \qquad r = 5$$

b

$$\begin{aligned} x_1^2 + x_2^2 + x_3^2 - 2x_1 + 10x_3 + 31 &= 0 \\ x_1^2 - 2x_1 + 1 + x_2^2 + x_3^2 + 10x_3 + 25 &= -31 + 1 + 25 \\ (x_1 - 1)^2 + x_2^2 + (x_3^2 + 5)^2 &= -5 \\ \Rightarrow \text{ keine Kugel} \end{aligned}$$

5.21.1 Kugeln, Geraden, Ebenen, Abstände

$$K_a$$
: $(\overrightarrow{x} - \overrightarrow{m_a})^2 = r_a^2$
 K_b : $(\overrightarrow{x} - \overrightarrow{m_b})^2 = r_b^2$

Berührpunkt:

$$|\overrightarrow{m_a} - \overrightarrow{m_b}| = r_a + r_b$$

Schnitt:

$$|\overrightarrow{m_a} - \overrightarrow{m_b}| < r_a + r_b$$
 wenn $|\overrightarrow{m_a} - \overrightarrow{m_b}| > r_a$ und $> r_b$ (Mittelpunkte liegen außerhalb der jeweils anderen Kugel)

 $|\overrightarrow{m_a} - \overrightarrow{m_b}| > |r_a - r_b|$ wenn $|\overrightarrow{m_a} - \overrightarrow{m_b}| < r_a$ oder $< r_b$

(mindestens ein Mittelpunkt liegt innerhalb der anderen Kugel)

377/7

а

$$K_1\colon x_1^2+x_2^2+6x_1-4x_2=12 \qquad K_2\colon x_1^2+x_2^2+6x_1-18x_2+86=0$$

$$K_1\colon (x_1+3)^2+(x_2-2)^2=25 \qquad M_1(-3|2) \quad r_1=5$$

$$K_2\colon (x_1+3)^2+(x_2-9)^2=4 \qquad M_2(-3|9) \quad r_2=2$$

$$|\overrightarrow{M_1M_2}|=r_1+r_2=7$$

$$\Rightarrow \quad \text{Ber\"uhrpunkt bei } (-3|7)$$

b

$$K_1: x_1^2 + x_2^2 - 6x_1 + 8x_2 = 0$$
 $K_2: x_1^2 + x_2^2 - 4x_1 + 6x_2 = -9$
 $K_1: (x_1 - 3)^2 + (x_2 + 4)^2 = 25$ $M_1(3|-4)$ $r_1 = 5$

$$K_1: (x_1 - 3)^2 + (x_2 + 4)^2 = 25$$
 $M_1(3|-4)$ $r_1 = 5$
 $K_2: (x_1 - 2)^2 + (x_2 + 3)^2 = 4$ $M_2(2|-3)$ $r_2 = 2$
 $|\overrightarrow{M_1 M_2}| = \sqrt{2} < r_1 \text{ und } < r_2$

$$|M_1M_2| = \sqrt{2} < r_1 \text{ und } < r_2$$

 $|\overrightarrow{M_1M_2}| = \sqrt{2} < |r_1 - r_2| = 3$

 \Rightarrow K_2 liegt vollständig innerhalb von K_1

С

$$K_1: x_1^2 + x_2^2 + 2x_1 = 19$$
 $K_2: x_1^2 - 6x_1 + x_2^2 - 8x_2 = -21$

$$K_1 \colon (x_1+1)^2 + x_2^2 = 20 \qquad M_1(-1|0) \quad r_1 = \sqrt{20}$$

$$K_2 \colon (x_1-3)^2 + (x_2-4)^2 = 4 \qquad M_2(3|4) \quad r_2 = 2$$

$$|\overrightarrow{M_1M_2}| = \sqrt{32} > r_1 \text{ und } > r_2$$

$$|\overrightarrow{M_1M_2}| = \sqrt{32} < r_1 + r_2 = \sqrt{20} + 2$$

$$\Rightarrow \text{ Schnitt}$$

377/10

a

$$M(0|8|4) E: \begin{pmatrix} 6 \\ -3 \\ 2 \end{pmatrix} \cdot \vec{x} - 5 = 0 |\vec{n}| = 7$$
$$r = d(M, E) = \left| \frac{1}{7} \cdot (6 \cdot 0 - 3 \cdot 8 + 2 \cdot 4 - 5) \right| = 3$$

377/11

$$A(-8|5|7) \qquad B(-12|8|10)$$

$$g_{AB} \colon \overrightarrow{OA} + s \cdot \overrightarrow{AB} = \begin{pmatrix} -8\\5\\7 \end{pmatrix} + s \cdot \begin{pmatrix} -4\\3\\3 \end{pmatrix}$$

a

$$K : \left(\overrightarrow{x} - \begin{pmatrix} -8\\5\\7 \end{pmatrix} + s \cdot \begin{pmatrix} -4\\3\\3 \end{pmatrix} \right)^2 - r^2 = 0$$

b

$$K \colon \left(- \begin{pmatrix} -8\\5\\7 \end{pmatrix} + s \cdot \begin{pmatrix} -4\\3\\3 \end{pmatrix} \right)^2 - 36 = 0$$

$$(8-4s)^2 + (-5+3s)^2 + (-7+3s)^2 - 36 = 34s^2 - 136s + 102 = 0$$

$$s_{1/2} = \frac{136 \pm \sqrt{(-136)^2 - 4 \cdot 34 \cdot 102}}{2 \cdot 34} \qquad s_1 = 1 \quad s_2 = 3$$

$$K_1$$
: $\left(\vec{x} - \begin{pmatrix} -4\\2\\4 \end{pmatrix}\right)^2 - 36 = 0$ K_2 : $\left(\vec{x} - \begin{pmatrix} 4\\-4\\-2 \end{pmatrix}\right)^2 - 36 = 0$

$$\overrightarrow{m_1} = \begin{pmatrix} -4\\2\\4 \end{pmatrix} \qquad \overrightarrow{m_2} = \begin{pmatrix} 4\\-4\\-2 \end{pmatrix}$$

$$|\overrightarrow{m_1} - \overrightarrow{m_2}| = 2 \cdot \sqrt{34} > r_1 = r_2 = 6$$

$$|\overrightarrow{m_1} - \overrightarrow{m_2}| = 2 \cdot \sqrt{34} < r_1 + r_2 = 12$$

Kugel ↔ Gerade

$$K \colon \left(\overrightarrow{x} - \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} \right)^2 = 36 \qquad g \colon \overrightarrow{x} = \begin{pmatrix} 3 \\ -9 \\ 10 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$$

setze g in K ein

$$\begin{pmatrix} 3+r-2\\ -9+4r+1\\ 10-r-5 \end{pmatrix}^2 = 36$$

$$(r+1)^2 + (4r-8)^2 + (-r+5)^2 - 36 = 0$$

$$r^2 - 4r + 3 = 0$$

$$r_{1/2} = \frac{4 \pm \sqrt{16-12}}{2} \qquad r_1 = 3 \quad r_2 = 1$$

$$Q(6|3|7) \qquad R(4|-1|9) \quad \Rightarrow 2 \text{ Schnittpunkte}$$

Kugel ↔ Ebene

$$K: \left(\overrightarrow{x} - \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}\right)^2 = 64 \qquad E: -2x_1 + x_2 + 2x_3 = 19$$

Abstand $M \leftrightarrow E$

$$|\overrightarrow{n}| = \sqrt{(-2)^2 + 1^2 + 2^2} = 3$$

$$d(M, E) = \frac{1}{3} \cdot |(-2 \cdot 2 - 1 + 2 \cdot 3 - 19)| = 6$$

$$d = 6 < r = 8 \implies \mathsf{Schnittkreis}$$

Radius des Schnittkreises r'

$$r' = \sqrt{r^2 - d^2} = \sqrt{8^2 - 6^2} = \sqrt{28} \approx 5.2915$$

Mittelpunkt des Schnittkreises M'

= Fußlotpunkt des Mittelpunkts M auf der Ebene E

5.21.2 Kugel ↔ Kugel, Tangentialebene

$$K_1 \colon \left(\overrightarrow{x} - \begin{pmatrix} 1\\3\\9 \end{pmatrix}\right)^2 = 49 \qquad K_2 \colon \left(\overrightarrow{x} - \begin{pmatrix} 2\\-1\\5 \end{pmatrix}\right)$$
$$|r_1 - r_2| = |7 - 4| < |\overrightarrow{M_1 M_2}| = \sqrt{33} < r_1 + r_2 = 7 + 4 \quad \Rightarrow \mathsf{Schnitt}$$

$$K_1: x_1^2 - 2x_1 + 1 + x_2^2 - 6x_2 + 9 + x_3^2 - 18x_3 + 81 = 49$$

$$K_2: x_1^2 - 4x_1 + 4 + x_2^2 + 2x_2 + 1 + x_3^2 - 10x_3 + 25 = 16$$

$$K_1 - K_2: 2x_1 - 3 - 8x_2 + 8 - 8x_3 + 56 = 33$$

Schnittebene $E : 2x_1 - 8x_2 - 8x_3 = -28$

Schnittkreismittelpunkt $M^*(2|-1|5)$

Schnittkreisradius $r^* = 4$

spezielle Darstellung einer Tangentialebene an die Kugel K im Berührpunkt B

$$\begin{split} K\colon (\overrightarrow{x}-\overrightarrow{m})^2 &= (\overrightarrow{x}-\overrightarrow{m})\cdot (\overrightarrow{x}-\overrightarrow{m}) = r^2 \\ \text{Tangentialebene in } B\colon (\overrightarrow{x}-\overrightarrow{m})\cdot (\overrightarrow{b}-\overrightarrow{m}) = r^2 \end{split}$$

386/22

a

$$P(5|2|1) Q(6|2|-1) K: \left(\overrightarrow{x} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right)^2 = 9$$

$$\left(\begin{pmatrix} 5\\2\\1 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right) \cdot \left(\begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right) = 4b_1 - 4 + b_3 = 9$$

$$\left(\begin{pmatrix} 6\\2\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right) \cdot \left(\begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right) = 5b_1 - 5 - b_3 = 9$$

$$\left(\begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix} - \begin{pmatrix} 1\\2\\0 \end{pmatrix}\right)^2 = b_1^2 - 2b_1 + 1 + b_2^2 - 4b_2 + 4 + b_3^2 = 9$$

$$L = \{(3,0,1), (3,4,1)\}$$
 $B_1(3|0|1)$ $B_2(3|4|1)$

$$E_1: \left(\overrightarrow{x} - \overrightarrow{OP}\right) \cdot \overrightarrow{MB_1} = \left(\overrightarrow{x} - \begin{pmatrix} 5\\2\\1 \end{pmatrix}\right) \cdot \begin{pmatrix} 2\\-2\\1 \end{pmatrix} = 0$$

$$E_2: \left(\overrightarrow{x} - \overrightarrow{OP}\right) \cdot \overrightarrow{MB_2} = \left(\overrightarrow{x} - \begin{pmatrix} 5\\2\\1 \end{pmatrix}\right) \cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix} = 0$$

b

$$K_1$$
: $\left(\overrightarrow{x} - \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix}\right)^2 = 625$ K_2 : $\left(\overrightarrow{x} - \begin{pmatrix} -5 \\ 4 \\ -2 \end{pmatrix}\right)^2 = 625$

$$K_1: x_1^2 - 14x_1 + 49 + x_2^2 + 4x_2 + 4 + x_3^2 - 4x_3 + 4 = 625$$

$$K_2: x_1^2 + 10x_1 + 25 + x_2^2 - 8x_2 + 16 + x_3^2 + 4x_3 + 4 = 625$$

$$K_1 - K_2: -24x_1 + 12x_2 - 8x_3 + 12 = 0$$

$$E: -6x_1 + 3x_2 - 2x_3 + 3 = 0$$

$$g: \vec{x} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} -6 \\ 3 \\ -2 \end{pmatrix}$$
$$-6 \cdot (7 - 6r) + 3 \cdot (-2 + 3r) - 2 \cdot (2 - 2r) + 3 = 49r - 49 = 0$$
$$\Rightarrow r = 1$$

$$\overrightarrow{OM'} = \begin{pmatrix} 7 \\ -2 \\ 2 \end{pmatrix} + \begin{pmatrix} -6 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$|\overrightarrow{n}| = \sqrt{(-6)^2 + 3^2 + (-2)^2} = \sqrt{49} = 7$$

$$d(M_1, E) = \frac{1}{7} \cdot |-6 \cdot 7 + 3 \cdot (-2) - 2 \cdot 2 + 3| = 7$$

$$r' = \sqrt{625 - 7^2} = 24$$

Kapitel 6

Stochastik

6.1 Begriffe

- ullet Zufallsversuche haben eine Ergebnis e
- ullet alle möglichen Ergebnisse bilden die Ergebnismenge $S=\{e_1,e_2,...,e_n\}$
- Anzahl der Elemente |S| = n

Beispiel: Würfeln mit einem Würfel 600 Versuche, 104 Sechsen

- absolute Häufigkeit h = 104
- ullet relative Häufigkeit $h_{rel}=rac{104}{600}$ Treffer Versuche
- Wahrscheinlichkeit $P(Sechs) = \frac{1}{6}$
 - → Aussage über die zu erwartende relative Häufigkeit. Meist werden hierbei Modellannahmen zu Hilfe genommen (z. B. idealer Würfel).
- Ereignisse fassen ein oder mehrere Ergebnisse zusammen
 - E_1 Würfle eine Primzahl $\left(e_2,\,e_3,\,e_5
 ight)$ $P(E_1)=rac{3}{6}=rac{1}{2}$
 - E_2 Augenzahl $\leqslant 2$ (e_1 , e_2) $P(E_2) = \frac{2}{6} = \frac{1}{3}$
 - E_3 gerade Augenzahl $\left(e_2,\,e_4,\,e_6\right)$ $P(E_3)=\frac{3}{6}=\frac{1}{2}$
 - $E_4 \text{ Augenzahl} > 7 \text{ ()} \quad P(E_4) = 0$
 - : Die Anzahl möglicher Ereignisse ist unbegrenzt

Beispiel: Würfeln mit zwei Würfeln

$$S = \{(1, 1), (1, 2), (1, 3), ..., (2, 1), (2, 2), ..., (6, 6)\}$$

 $|S| = 36$

E: Augensumme (2,3,4,...)

$$P(\mathsf{Summe} = 2) = \frac{1}{36}$$

$$P(\mathsf{Summe} = 3) = \frac{2}{36} = \frac{1}{18}$$

$$P(\mathsf{Summe} = 4) = \frac{3}{36} = \frac{1}{12}$$

$$P(\mathsf{Summe} = 5) = \frac{4}{36} = \frac{1}{9}$$

$$P(\mathsf{Summe} = 6) = \frac{5}{36}$$

$$P(\mathsf{Summe} = 7) = \frac{6}{36} = \frac{1}{6}$$

$$P(\mathsf{Summe} = 8) = \frac{5}{36}$$

$$P(\mathsf{Summe} = 9) = \frac{4}{36} = \frac{1}{9}$$

$$P(\mathsf{Summe} = 10) = \frac{3}{36} = \frac{1}{12}$$

$$P(\mathsf{Summe} = 11) = \frac{2}{36} = \frac{1}{18}$$

$$P(\mathsf{Summe} = 12) = \frac{1}{36}$$

- $\bullet \ \ {\sf Wahrscheinlichkeitsverteilung} \ P({\sf Summe}=1) + P({\sf Summe}=2) + \ldots = 1 \\$
 - ightarrow Die Wahrscheinlichkeit W=1 ist verteilt auf die einzelnen Ereignisse.

6.2 Mehrstufige Zufallsversuche - Baumdiagramme

Beispiel: "Mensch ärgere dich nicht", ich sitze im Haus (mit Zurücklegen)

$$S = \{(6,6,6),(6,6,\overline{6}),\ldots\} \quad \text{(Ergebnismenge)}$$

$$|S| = 2^3 = 8$$

Jeder Pfad führt zu einem Ergebnis e Jeder Pfad besteht hier aus 3 Zweigen (dreistufig)

Die Pfadwahrscheinlichkeit ist das Produkt der Zweige w entlang des Pfades, z. B. $P((6,\overline{6},\overline{6}))=\frac{1}{6}\cdot\frac{5}{6}\cdot\frac{5}{6}=\frac{25}{216}$

 E_1 : genau zwei Sechsen bei drei Würfen Ereignis E_1 besteht aus drei Ergebnissen ((6,6, $\overline{6}$), (6, $\overline{6}$,6), ($\overline{6}$,6)) Die Wahrscheinlichkeit von E_1 ist die Summe der Wahrscheinlichkeiten der Ergebnisse $P(E_1)=\frac{1}{6}\cdot\frac{1}{6}\cdot\frac{5}{6}+\frac{1}{6}\cdot\frac{5}{6}\cdot\frac{1}{6}+\frac{5}{6}\cdot\frac{1}{6}\cdot\frac{1}{6}=\frac{15}{216}=\frac{5}{72}$

Beispiel: 3 Züge ohne Zurücklegen (anfangs 2 rote, 3 gelbe Kugeln)

а

m. Z.
$$P((r,r)) = \frac{4}{7} \cdot \frac{4}{7} = \frac{16}{49}$$

o. Z.
$$P((r,r)) = \frac{4}{7} \cdot \frac{3}{6} = \frac{2}{7}$$

b

m. Z.
$$P((r,b)) = 2 \cdot \frac{4}{7} \cdot \frac{3}{7} = \frac{24}{49}$$

o. Z.
$$P((r,b)) = \frac{4}{7} \cdot \frac{3}{6} + \frac{3}{7} \cdot \frac{4}{6} = \frac{4}{7}$$

С

m. Z.
$$P((r,r),(r,b)) = \frac{16}{49} + \frac{24}{49} = \frac{40}{49}$$

o. Z.
$$P((r,r),(r,b)) = \frac{2}{7} + \frac{4}{7} = \frac{6}{7}$$

d

m. Z.
$$P((r,r),(r,b)) = \frac{40}{49}$$

o. Z.
$$P((r,r),(r,b)) = \frac{6}{7}$$

6.2.1 Baumdiagramme - Wahrscheinlichkeiten

(Würfeln)

$$p(1) = p(2) = \frac{1}{6}$$
 Einzel-/Zweigwahrscheinlichkeit

$$P(1,1,2) = P((1\ 1\ 2), (1\ 2\ 1), (2\ 1\ 1)) = 3 \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{72}$$

455/3

$$p(0) = \frac{1}{4} \qquad p(1) = \frac{3}{4}$$

а

$$P(0,0,0) = (\frac{1}{4})^3 = \frac{1}{64} \approx 0.02$$

⇔ mindestens ein Patient wird geheilt

b

$$P(1,0,0) = P((1\ 0\ 0),(0\ 1\ 0),(0\ 0\ 1)) = 3\cdot(\frac{1}{4})^2\cdot\frac{3}{4} = \frac{9}{64} \approx 0.14$$

⇔ kein Patient oder mehr als ein Patient werden geheilt

С

$$P(1,1,0) = P((1\ 1\ 0),(1\ 0\ 1),(0\ 1\ 1)) = 3 \cdot \frac{1}{4} \cdot (\frac{3}{4})^2 = \frac{27}{64} \approx 0.42$$

⇔ alle Patienten oder weniger als zwei Patienten werden geheilt

d

$$P((0,0,0),(1,0,0),(1,1,0)) = \frac{1}{64} + \frac{9}{64} + \frac{27}{64} = \frac{37}{64} \approx 0.58$$

⇔ alle Patienten werden geheilt

$$P(1) = P((1,1), (1,2), (1,3), (1,4), (1,5), (1,6)) = \frac{11}{36}$$

$$P(2) = P((2,2), (2,3), (2,4), (2,5), (2,6)) = \frac{9}{36} = \frac{1}{4}$$

$$P(3) = P((3,3), (3,4), (3,5), (3,6)) = \frac{7}{36}$$

$$P(4) = P((4,4), (4,5), (4,6)) = \frac{5}{36}$$

$$P(5) = P((5,5), (5,6)) = \frac{3}{36} = \frac{1}{12}$$

$$P(6) = P((6,6)) = \frac{1}{36}$$

Teil V 13/1

6.3 Wiederholung

- relative Häufigkeit: Aussage über ein schon durchgeführtes Zufallsexperiment
- Wahrscheinlichkeit: Aussage über zukünftige Zufallsversuche

456/5

$$F = \{(1,1), (2,1), (3,1), (4,1)\}$$

a

$$E = \{(1,1), (1,2), (2,1)\}$$

F: Die zweite Kugel trägt eine 1

 $E\Leftrightarrow {\sf Die\ Summe\ der\ Zahlen\ ist\ gr\"{o}\&er\ als\ }3$

$$P(E) = (\frac{2}{6} \cdot \frac{2}{6}) + (\frac{2}{6} \cdot \frac{1}{6}) + (\frac{1}{6} \cdot \frac{2}{6}) = \frac{2}{9} = 0.\overline{2}$$

$$P(F) = (\frac{2}{6} \cdot \frac{2}{6}) + (\frac{1}{6} \cdot \frac{2}{6}) + (\frac{2}{6} \cdot \frac{2}{6}) + (\frac{1}{6} \cdot \frac{2}{6}) = P(1) = \frac{2}{6} = \frac{1}{3} = 0.\overline{3}$$

b

$$E \cap F = \{(1,1), (2,1)\}$$
$$P(E \cap F) = (\frac{2}{6} \cdot \frac{2}{6}) + (\frac{1}{6} \cdot \frac{2}{6}) = \frac{1}{6} = 0.1\overline{6}$$

С

$$E \cup F = \{(1,1), (1,2), (2,1), (3,1), (4,1)\}$$

$$P(E \cup F) = (\frac{2}{6} \cdot \frac{2}{6}) + (\frac{2}{6} \cdot \frac{1}{6}) + (\frac{1}{6} \cdot \frac{2}{6}) + (\frac{2}{6} \cdot \frac{2}{6}) + (\frac{1}{6} \cdot \frac{2}{6}) = \frac{7}{18} = 0.3\overline{8}$$

456/7

a

Gegenwahrscheinlichkeit (keine Sechs werfen): $P(\neg E) = (\frac{5}{6})^5 \approx 0.40$ $P(E) = 1 - P(\neg E) = 1 - (\frac{5}{6})^5 \approx 0.60$

$$P = \frac{6}{6} \cdot \frac{5}{6} \cdot \frac{4}{6} \cdot \frac{3}{6} \cdot \frac{2}{6} \approx 0.09$$

С

$$P = (\frac{5}{6})^4 \cdot \frac{1}{6} \approx 0.08$$

456/9

а

$$P = \frac{1}{13983816} \approx 7.15 \cdot 10^{-8}$$

Bemerkung: Ein Zufallsversuch heißt Laplace-Versuch, wenn alle Ergebnisse gleich wahrscheinlich sind.

$$S = \{e_1, e_2, ..., e_n\}$$
 $|S| = n$ $P(e_i) = \frac{1}{n}$
 $E = \{e_1, ...\}$ $|E| = k$ $P(E) = \frac{k}{n}$

⇒ Gleichverteilung

b

$$E = \{(1, 2, 3, 4, 5, 6), (2, 3, 4, 5, 6, 7), \dots, (44, 45, 46, 47, 48, 49)\}$$

$$|E| = 44$$

$$P(E) = \frac{|E|}{|S|} = \frac{44}{13983816} \approx 3.15 \cdot 10^{-6}$$

С

$$P = \frac{43}{49} \cdot \frac{42}{48} \cdot \frac{41}{47} \cdot \frac{40}{46} \cdot \frac{39}{45} \cdot \frac{38}{44} \approx 0.436$$

456/10

a

Anteil nach 10 Tagen:
$$0.85^{10} \approx 0.197$$

 $0.85^t = 0.5 \implies t = log_{0.85}(0.5) \approx 4.265$

b

$$(1-p)^8 = 0.5 \implies p = 1 - \sqrt[8]{(0.5)} \approx 0.083$$

6.4 Abzählverfahren

Bis auf Weiteres gilt: Die Zufallsversuche sind Laplace-Versuche. Anzahl der Ergebnisse $N \Rightarrow P = \frac{1}{N}$ (Ergebniswahrscheinlichkeit)

Ziehe k mal aus einer Urne mit n unterscheidbaren Kugeln:

• mit Zurücklegen, unter Beachtung der Reihenfolge

$$N = n^k$$

• ohne Zurücklegen, unter Beachtung der Reihenfolge

$$N = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot \underbrace{(n-k+1)}_{\text{ "brige Kugeln vor dem k-ten Zug}} = \frac{n!}{(n-k)!}$$

• ohne Zurücklegen, ohne Beachtung der Reihenfolge

Es werden jeweils k! (Permutationen) Ergebnisse zu einem Ereignis zusammengefasst:

$$N = \frac{n!}{(n-k)! \cdot k!} = \binom{n}{k}$$
 (Binomialkoeffizient)

Die Wahrscheinlichkeit für einen 6er im Lotto:

$$p = \frac{1}{\binom{49}{6}} \approx \frac{1}{14000000}$$

Die Wahrscheinlichkeit für einen 4er im Lotto ("Lottoproblem"):

$$p = \frac{\binom{6}{4} \cdot \binom{43}{2}}{\binom{49}{6}} = \frac{13545}{\binom{49}{6}} \approx \frac{1}{1000}$$

(Wähle 4 aus den 6 Richtigen und 2 aus den 43 Falschen)

460/1

а

$$n = 2$$
 $k = 6$ $N = 2^6 = 64$

b

$$n = 4$$
 $k = 4$ $N = \frac{4!}{(4-4)!} = 4! = 24$

С

$$n = 3$$
 $k = 5$ $N = 3^5 = 243$

d

$$n = 10$$
 $k = 2$ $N = {10 \choose 2} = 45$

460/2

а

$$n = 4$$
 $k = 4$ $N = 4^4 = 256$

b

$$p_1 = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{8} \cdot \frac{1}{8} = \frac{1}{512}$$

$$p_2 = \frac{4!}{p_1} = \frac{3}{64}$$

$$p_3 = 1 - (\frac{1}{2})^4 = \frac{15}{16}$$

460/3

a Die Reihenfolge der Ziffern entspricht der Reihenfolge der Spiele.

b

$$p = (\frac{1}{3})^{11} = \frac{1}{177147} \approx 5.65 \cdot 10^{-6}$$

Annahme: Heimsieg, Gastsieg und Unentschieden sind jeweils gleich wahrscheinlich.

С

$$N = (\frac{2}{3})^{11} \cdot 3^{11} = 2^{11} = 2048$$

$$N = \frac{12!}{(12-3)!} = 1320$$

а

$$N = 5! = 120$$

b

$$p = \frac{1}{5}$$

С

$$\frac{1}{5} \cdot \frac{1}{4} = \frac{1}{20}$$

461/11

a

$$p = \frac{6}{49} \cdot \frac{5}{48} \cdot \frac{4}{47} \cdot \frac{3}{46} \cdot \frac{43}{45} \cdot \frac{42}{44} \approx 6.46 \cdot 10^{-5}$$

b

 $rrrrff, rrrfrf, rrfrrf, rfrrrf, frrrrf, \\ rrrffr, rrfrfr, rfrrfr, frrrfr, \\ rrffrr, rfrfrr, frrfrr, \\ rffrrr, frfrrr, \\ ffrrr, \\ ffrrrr$

С

$$p_4 \approx 15 \cdot 6.46 \cdot 10^{-5} \approx 9.69 \cdot 10^{-4}$$

d

$$p_2 = \binom{6}{2} \cdot \left(\frac{6}{49} \cdot \frac{5}{48} \cdot \frac{43}{47} \cdot \frac{42}{46} \cdot \frac{41}{45} \cdot \frac{40}{44} \right) \approx 0.13$$

e

$$p_0 = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \cdot \left(\frac{43}{49} \cdot \frac{42}{48} \cdot \frac{41}{47} \cdot \frac{40}{46} \cdot \frac{39}{45} \cdot \frac{38}{44} \right) \approx 0.44$$

$$p_1 = \begin{pmatrix} 6 \\ 1 \end{pmatrix} \cdot \left(\frac{6}{49} \cdot \frac{43}{48} \cdot \frac{42}{47} \cdot \frac{41}{46} \cdot \frac{40}{45} \cdot \frac{39}{44} \right) \approx 0.41$$

$$p_{\geqslant 3} = 1 - (p_0 + p_1 + p_2) \approx 1.86 \cdot 10^{-2}$$

$$p_{50Sp.} = 1 - (p_0 + p_1 + p_2)^{50} \approx 0.61$$

 $p_{100Sp.} = 1 - (p_0 + p_1 + p_2)^{100} \approx 0.85$
 $p_{1000Sp.} = 1 - (p_0 + p_1 + p_2)^{1000} \approx 1.00$

461/10

a

$$p = \begin{pmatrix} 6 \\ 6 \end{pmatrix} \cdot \left(\frac{6}{45} \cdot \frac{5}{44} \cdot \frac{4}{43} \cdot \frac{4}{42} \cdot \frac{3}{42} \cdot \frac{2}{41} \cdot \frac{1}{40} \right) = \frac{1}{\begin{pmatrix} 45 \\ 6 \end{pmatrix}} \approx 1.23 \cdot 10^{-7}$$

b

$$N = \binom{5}{2} = 10$$

С

$$N = \binom{1000}{2} = 4.995 \cdot 10^5$$

AB Grundbegriffe der Wahrscheinlichkeitsrechnung

AB/12

$$p = \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \approx 0.46$$

AB/17

а

$$N = \begin{pmatrix} 16\\3 \end{pmatrix} \cdot \begin{pmatrix} 8\\2 \end{pmatrix} = 15680$$

b

$$N = \binom{24}{5} - \binom{16}{5} = 38136$$

AB/20

$$p_{3r} = \frac{\binom{5}{3} \cdot \binom{15}{5}}{\binom{20}{8}} \approx 0.2384$$

$$p_{\geqslant 4r} = \frac{\binom{5}{4} \cdot \binom{15}{4}}{\binom{20}{8}} + \frac{\binom{5}{5} \cdot \binom{15}{3}}{\binom{20}{8}} \approx 0.0578$$

AB/21

$$p_2 = \frac{\binom{10}{2} \cdot \binom{90}{3}}{\binom{100}{5}} \approx 0.0702$$

$$p_{\geqslant 3} = p_3 + p_4 + p_5$$

$$= \frac{\binom{10}{3} \cdot \binom{90}{2} + \binom{10}{4} \cdot \binom{90}{1} + \binom{10}{5} \cdot \binom{90}{0}}{\binom{100}{5}} \approx 0.0066$$

AB/11

а

$$N = (4 + 5 + 3)! = 479001600$$

b

$$N = 3! \cdot 4! \cdot 5! \cdot 3! = 103680$$

AB/13

$$t = \frac{26!}{10^6} \approx 4.0329 \cdot 10^{20} ms \approx 1.2780 \cdot 10^{10} y \approx 0.93 \cdot \text{Alter des Universums}$$

AB/23

$$p_{3} = \frac{\binom{4}{3} \cdot \binom{12}{1}}{\binom{16}{4}} \approx 2.6374 \cdot 10^{-2}$$

$$p_{4} = \frac{\binom{4}{4} \cdot \binom{12}{0}}{\binom{16}{4}} \approx 5.4945 \cdot 10^{-4}$$

$$Erw = 1 - (10 \cdot p_{3} + 1000 \cdot p_{4}) \approx 0.19$$

6.5 Bedingte Wahrscheinlichkeit

Aus einer Urne mit 6 roten und 4 blauen Kugeln werden 2 Kugeln ohne Zurücklegen gezogen.

$$E\colon \text{rot im ersten Zug} \qquad P(E)=\frac{6}{10}$$

$$F\colon \text{rot im zweiten Zug} \qquad P(F)=\frac{4}{10}\cdot\frac{6}{9}+\frac{6}{10}\cdot\frac{5}{9}=\frac{3}{5}$$

 $P_E(F) = \frac{5}{9} \qquad \text{Wahrscheinlichkeit für Ereignis F, unter der Voraussetzung,} \\ \qquad \text{dass Ereignis E zurvor eingetreten ist}$

6.5.1Statistische Unabhängigkeit

Wenn gilt, dass $P_E(F) = P(F)$, dann sagt man die Ereignisse E und F sind statistisch unabhängig.

$$E$$
: rot im ersten Zug $P(E) = \frac{6}{10}$

$$P(E) = \frac{6}{10}$$

$$F$$
: rot im zweiten Zug $P(F) = \frac{3}{5}$

$$P(F) = \frac{3}{5}$$

$$P_E(F) = \frac{5}{9} \neq P(F) = \frac{3}{5}$$

Die Wahrscheinlichkeit, dass rot im zweiten Zug gezogen wird unter der Bedingung, dass rot schon im ersten Zug gezogen wurde, ist ungleich der Wahrscheinlichkeit, dass allgemein rot im zweiten Zug gezogen wird.

E und F sind statistisch abhängig.

$$\overline{E}\colon \mathsf{blau}\ \mathsf{im}\ \mathsf{ersten}\ \mathsf{Zug}$$

$$\overline{F}$$
: blau im zweiten Zug

$$P_{\overline{E}}(F) = \frac{6}{9} \neq P(F) = \frac{3}{5}$$

$$P_E(\overline{F}) = \frac{4}{9} \neq P(\overline{F}) = \frac{2}{5}$$

$$P_{E}(\overline{F}) = \frac{4}{9} \neq P(\overline{F}) = \frac{2}{5}$$

$$P_{\overline{E}}(\overline{F}) = \frac{3}{9} \neq P(\overline{F}) = \frac{2}{5}$$

475/1

a

$$P = 0.98^4 \approx 0.9224$$

b Wenn bei einem Fahrzeug eine Panne auftritt, besteht die Möglichkeit, dass dies auf ein besonders anfälliges Fahrzeugteil oder einen Produktionsfehler zurückzuführen ist, welches/r sich auch in den anderen drei Fahrzeugen befindet.

a

$$P(E) = \frac{3}{5} \qquad P(F) = \frac{2}{5}$$

$$E \cap F = \{(a_1, h_1), (a_1, h_2), (a_2, h_1), ..., (a_3, h_2)\} \qquad |E \cap F| = 6$$

$$P(E \cap F) = \frac{|E \cap F|}{5^2} = P(E) \cdot P(F) = \frac{6}{25}$$

b

$$P(E) = \frac{3}{5} \qquad P(F) = \frac{3}{5} \cdot \frac{2}{4} + \frac{2}{5} \cdot \frac{1}{4} = 0.4$$

$$P(E \cap F) = \frac{3}{5} \cdot \frac{2}{4} = 0.3 \neq P(E) \cdot P(F) = 0.204$$

$$P_E(F) = \frac{2}{4} = \frac{1}{2}$$

Vierfelder-Tafel

E: Raucher \overline{E} : Nichtraucher

F: mit Gewicht zufrieden \overline{F} : mit Gewicht unzufrieden

$$\begin{array}{c|cccc} & F & \overline{F} & \\ \hline E & P(E \cap F) & P(E \cap \overline{F}) & P(E) \\ \hline \overline{E} & P(\overline{E} \cap F) & P(\overline{E} \cap \overline{F}) & P(\overline{E}) \\ \hline & P(F) & P(\overline{F}) & 100\% \\ \end{array}$$

$$P_E(F) = \frac{P(E \cap F)}{P(E)}$$

476/11

$$\begin{split} P(\text{V. h.} \cap \text{S. h.}) &= \frac{471}{1000} = 47.1\% \\ P(\text{V. h}) \cdot P(\text{S. h.}) &= \frac{622}{1000} \cdot \frac{619}{1000} \approx 38.5\% \end{split}$$

 $P(\mathsf{V.\ h.} \cap \mathsf{S.\ h.}) \neq P(\mathsf{V.\ h}) \cdot P(\mathsf{S.\ h.}) \quad \Rightarrow \quad \mathsf{statistisch\ abh\"{a}ngig}$

6.5.2 Der Satz von Bayes

 $P_K(T) = 0.90$: Sensitivität des Tests

 $P_{\overline{K}}(\overline{T}) = 0.98\colon \mathsf{Spezifit\"{a}t}$ des Tests

K: krank T: positiver Test

 $P_T(K)$: Wahrscheinlichkeit, krank zu sein, wenn der Test positiv ausfällt

$$P_T(K) = \frac{P(K \cap T)}{P(T)} = \frac{P(K) \cdot P_K(T)}{P(K) \cdot P_K(T) + P(\overline{K}) \cdot P_{\overline{K}}(T)}$$

$$P(K) \cdot P_K(T) = P(T) \cdot P_T(K)$$

$$P(T) = P(K) \cdot P_K(T) + P(\overline{K}) \cdot P_{\overline{K}}(T)$$

$$= 0.0001 \cdot 0.9 + 0.9999 \cdot 0.02$$

$$= 0.00009 + 0.02$$

= 0.02009

479/2

b

$$P_{+}(krank) = \frac{0.09}{0.1} = 90\%$$

С

$$P_{-}({\rm gesund}) = \frac{0.89}{0.9} = 98.\overline{8}\%$$

$$P(A) = 0.4$$
 $P(\text{einwandfrei}) = 0.95$ $P(A \cap \text{einwandfrei}) = 0.4 \cdot 0.9 = 0.36$

	A	\overline{A}	
einwandfrei	0.36	0.95 - 0.36 = 0.59	0.95
defekt	0.4 - 0.36 = 0.04	0.05 - 0.04 = 0.01	1 - 0.95 = 0.05
	0.4	1 - 0.4 = 0.6	100%

$$P_{\rm defekt}(A) = \frac{0.04}{0.05} = 80\%$$

479/4

$$\begin{split} P(\mathsf{Bahn}) &= 0.8 \quad P(\mathsf{p\"{u}nktlich}) = 0.6 \\ P_{\mathsf{Bahn}}(\mathsf{p\"{u}nktlich}) &= 0.\overline{6} \end{split}$$

	Bahn	nicht Bahn	
pünktlich	$0.\overline{6} \cdot 0.8 = 0.5\overline{3}$	$0.6 - 0.5\overline{3} = 0.0\overline{6}$	0.6
unpünktlich	$0.8 - 0.5\overline{3} = 0.2\overline{6}$	$0.2 - 0.0\overline{6} = 0.1\overline{3}$	1 - 0.6 = 0.4
	0.8	1 - 0.8 = 0.2	100%

$$P_{\rm p\"{u}nktlich}({\sf Bahn}) = \frac{0.5\overline{3}}{0.6} = 88.\overline{8}\%$$

479/5

$$\begin{split} P_{\rm krank}({\rm negativ}) &= 0.0001 \quad P_{\rm gesund}({\rm positiv}) = 0.001 \\ P({\rm krank}) &= \frac{100}{1100000} = 0.000\overline{09} \end{split}$$

		krank	gesund	
	positiv	$9.09 \cdot 10^{-5}$	$9.99\overline{90} \cdot 10^{-4}$	$0.0010908\overline{09}$
	negativ	$9.\overline{09} \cdot 10^{-9}$	$0.998909\overline{18}$	$0.989091\overline{09}$
		$0.000\overline{09}$	$0.999\overline{90}$	100%

$$P_{\rm positiv}({\rm krank}) = \frac{P({\rm krank} \cap {\rm positiv})}{P({\rm positiv})} = \frac{9.09 \cdot 10^{-5}}{0.0010908\overline{09}} \approx 8.33\%$$

а

$$B_{1} = \{w_{1}, w_{2}, s_{1}, \dots s_{5}\} \qquad B_{2} = \{w_{1}, \dots, w_{4}, s_{1}, \dots, s_{4}\}$$

$$P(B_{1}) = P(B_{2}) = \frac{1}{2}$$

$$P_{B_{1}}(w) = \frac{2}{7} \qquad P_{B_{1}}(s) = \frac{5}{7} \qquad P_{B_{2}}(w) = P_{B_{2}}(s) = \frac{1}{2}$$

$$P(s) = P(B_{1}) \cdot P_{B_{1}}(s) + P(B_{2}) \cdot P_{B_{2}}(s) = \frac{17}{28}$$

$$P_{s}(B_{1}) = \frac{P(B_{1}) \cdot P_{B_{1}}(s)}{P(s)} \approx 58.82\%$$

$$P_{s}(B_{2}) = \frac{P(B_{2}) \cdot P_{B_{2}}(s)}{P(s)} \approx 41.18\%$$

b

$$P_{B_1}((s,s)) = \frac{5}{7} \cdot \frac{4}{6} = \frac{10}{21} \qquad P_{B_2}((s,s)) = \frac{1}{2} \cdot \frac{3}{7} = \frac{3}{14}$$

$$P((s,s)) = P(B_1) \cdot P_{B_1}((s,s)) + P(B_2) \cdot P_{B_2}((s,s)) = \frac{29}{84}$$

$$P_{(s,s)}(B_1) = \frac{P(B_1) \cdot P_{B_1}(s,s)}{P(s,s)} \approx 68.97\%$$

$$P_{(s,s)}(B_2) = \frac{P(B_2) \cdot P_{B_2}(s,s)}{P(s,s)} \approx 31.03\%$$

6.6 Zufallsgrößen - Erwartungswert, Standardabweichung

Eine Zufallsgröße (eigentlich eine Funktion) weist jedem Element (Ergebnis) der Ergebnismenge S eine Zahl oder einen Wert zu.

Beispiel: Losbude. Die Urne enthält 1000 Lose, darunter 50 Trostpreise (Wert $1.50 \in$), 5 größere Preise (Wert $4 \in$) und 1 Hauptgewinn (Wert $10 \in$). Jedes Los kostet $1 \in$.

Die Zufallsgröße X hat vier Werte (Niete, Trostpreis, größerer Preis, Hauptgewinn) also x_1 , x_2 , x_3 , x_4 . Die Zufallsgröße zerlegt die Ergebnismenge vollständig und ohne Überlappung in Ereignisse.

Wahrscheinlichkeitsverteilung: Notiere zu jedem Wert, den eine Zufallsgröße annehmen kann, die Wahrscheinlichkeit

$$P(X = x_1) = \frac{944}{1000} \qquad P(X = x_2) = \frac{50}{1000}$$
$$P(X = x_3) = \frac{5}{1000} \qquad P(X = x_4) = \frac{1}{1000}$$

Erwartungswert

durchschnittlicher Bruttogewinn ohne Lospreis (Sicht des Spielers):

$$\mu = 0 \in \frac{944}{1000} + 1.50 \in \frac{50}{1000} + 4 \in \frac{5}{1000} + 10 \in \frac{1}{1000} = 0.105 \in$$

durchschnittlicher Erlös, Nettogewinn inkl. Lospreis (Sicht der Losbude):

$$\mu = 1 \in \cdot 1 - 0 \in \cdot \frac{944}{1000} - 1.50 \in \cdot \frac{50}{1000} - 4 \in \cdot \frac{5}{1000} - 10 \in \cdot \frac{1}{1000} = 0.895 \in$$

allgemein:

$$\mu = P(X = x_1) \cdot x_1 + P(X = x_2) \cdot x_2 + \dots = \sum_{i=1}^{n} P(X = x_i) \cdot x_i$$

Standardabweichung (mittl. Schwankungsbreite um den Erwartungswert herum)

$$\sigma = \sqrt{P(X = x_1) \cdot (x_1 - \mu)^2 + P(X = x_2) \cdot (x_2 - \mu)^2 + \dots}$$

$$= \sqrt{\sum_{i=1}^n P(X = x_2) \cdot (x_i - \mu)^2}$$

$$= \sqrt{\frac{944}{1000} \cdot (-0.105 \textcircled{-})^2 + \frac{50}{1000} \cdot (1.395 \textcircled{-})^2 + \frac{5}{1000} \cdot (3.895 \textcircled{-})^2 + \frac{1}{1000} \cdot (9.895 \textcircled{-})^2}$$

$$\approx 0.5305 \textcircled{-}$$

488/1

$$\mu = \frac{1}{4} \cdot (-10) + \frac{1}{2} \cdot 5 + \frac{1}{12} \cdot 10 = \frac{5}{6}$$

$$\sigma = \sqrt{\frac{1}{4} \cdot (-\frac{65}{6})^2 + \frac{1}{6} \cdot (-\frac{5}{6})^2 + \frac{1}{2} \cdot (\frac{25}{6})^2 + \frac{1}{12} \cdot (\frac{55}{6})^2} \approx 6.7185$$

$$P(X = 0) \approx 0.1176$$
 $P(X = 1) \approx 0.3674$
 $P(X = 2) \approx 0.3823$ $P(X = 3) \approx 0.1327$

$$\mu \approx 0.3674 \cdot 1 + 0.3823 \cdot 2 + 0.1327 \cdot 3 \approx 1.53 = 3 \cdot 0.51$$

$$\sigma \approx \sqrt{\frac{0.1176 \cdot (-1.53)^2 + 0.3674 \cdot (-0.53)^2}{+0.3823 \cdot (0.47)^2 + 0.1327 \cdot (1.47)^2}} \approx 0.87$$

488/3

$$\mu = 0 \cdot 0.436 + 1 \cdot 0.413 + 2 \cdot 0.132 + 3 \cdot 0.0177 + 4 \cdot 0.000969 + 5 \cdot 1.85 \cdot 10^{-5} + 6 \cdot 7.15 \cdot 10^{-8} \approx 0.7341$$

$$\sigma = \sqrt{(-0.7341)^2 \cdot 0.436 + \dots + (5.2659)^2 \cdot 7.15 \cdot 10^{-8}} \approx 0.7598$$

488/4

$$P(X = 0.5 + 0.5 = 1) = \frac{12}{25} \cdot \frac{11}{24} = 0.22$$

$$P(X = 1 + 0.5 = 1.5) = \frac{5}{25} \cdot \frac{12}{24} + \frac{12}{25} \cdot \frac{5}{24} = 0.2$$

$$P(X = 1 + 1 = 2) = \frac{5}{25} \cdot \frac{4}{24} = 0.0\overline{3}$$

$$P(X = 2 + 0.5 = 2.5) = \frac{8}{25} \cdot \frac{12}{24} + \frac{12}{25} \cdot \frac{8}{24} = 0.32$$

$$P(X = 2 + 1 = 3) = \frac{8}{25} \cdot \frac{5}{24} + \frac{5}{25} \cdot \frac{8}{24} = 0.1\overline{3}$$

$$P(X = 2 + 2 = 4) = \frac{8}{25} \cdot \frac{7}{24} = 0.09\overline{3}$$

$$m = \mu = 0.22 \cdot 1 + 0.2 \cdot 1.5 + 0.0\overline{3} \cdot 2 + 0.32 \cdot 2.5 + 0.1\overline{3} \cdot 3 + 0.09\overline{3} \cdot 4$$

= 2.16

$$\sigma = \sqrt{\frac{0.22 \cdot (-1.16)^2 + 0.2 \cdot (-0.66)^2 + 0.0\overline{3} \cdot (-0.16)^2}{+0.32 \cdot (0.34)^2 + 0.1\overline{3} \cdot (0.84)^2 + 0.09\overline{3} \cdot (1.84)^2}} \approx 0.9116$$

489/10

$$P(X = 0) = 0.2^3 = 0.008$$
 $P(X = 1) = 3 \cdot 0.8 \cdot 0.2^2 = 0.096$
 $P(X = 2) = 3 \cdot 0.8^2 \cdot 0.2 = 0.384$ $P(X = 3) = 0.8^3 = 0.512$

$$\mu = 0 \cdot 0.008 + 1 \cdot 0.096 + 2 \cdot 0.384 + 3 \cdot 0.512 = 2.4 = 3 \cdot 0.8$$

$$P(X = 3) = \frac{1}{4} \qquad P(X = 4) = \frac{3}{8} \qquad P(X = 5) = \frac{3}{8}$$

$$\mu = 3 \cdot \frac{1}{4} + 4 \cdot \frac{3}{8} + 5 \cdot \frac{3}{8} = 4.125$$

$$\sigma = \sqrt{(3 - 4.125)^2 \cdot \frac{1}{4} + (4 - 4.125)^2 \cdot \frac{3}{8} + (5 - 4.125)^2 \cdot \frac{3}{8}} \approx 0.781$$

6.7 Bernoulli-Experiment, Binomialverteilung

Ein Bernoulli-Experiment hat 2 Versuchsausgänge (Treffer, Niete).

$$P(\mathsf{Treffer}) = p$$
 $P(\mathsf{Niete}) = q = 1 - p$

Eine Folge von Bernoulli-Experimenten heißt Bernoulli-Kette.

Frage: Wie viele Treffer k kommen bei einer Bernoulli-Kette der Länge n vor?

Beispiel: Würfle 10 mal; wie wahrscheinlich sind 3 Sechser?

$$n=10 \qquad p=\frac{1}{6} \qquad k=3$$

$$P(\text{ein Pfad})=(\frac{1}{6})^3\cdot(\frac{5}{6})^7 \qquad \text{Anzahl der Pfade mit 3 Treffern: } \binom{10}{3}$$

$$P(3 \text{ Sechser, } 10 \text{ Würfe})=(\frac{1}{6})^3\cdot(\frac{5}{6})^7\cdot\binom{10}{3}\approx 0.1550$$

Allgemein gilt:

$$P(k, n, p) = p^{k} \cdot (1 - p)^{n - k} \cdot \binom{n}{k}$$

Schreibweise:

$$P(k, n, p) \Rightarrow B(n, p, k) \text{ oder } B_{n:n}(k)$$

Notiere ich zu unserem Beispiel die Wahrscheinlichkeiten für k=0 Treffer, k=1 Treffer, ..., k=10 Treffer, so ist das die Wahrscheinlichkeitsverteilung einer Bernoulli-Kette mit n=10 Versuchen. Man nennt diese Wahrscheinlichkeitsverteilung Binomialverteilung.

$$\begin{split} B(0,10,\frac{1}{6}) &\approx 0.16151 \qquad B(1,10,\frac{1}{6}) \approx 0.32301 \\ B(2,10,\frac{1}{6}) &\approx 0.29071 \qquad B(3,10,\frac{1}{6}) \approx 0.15504 \\ B(4,10,\frac{1}{6}) &\approx 5.4265 \cdot 10^{-2} \qquad B(5,10,\frac{1}{6}) \approx 1.3024 \cdot 10^{-2} \\ B(6,10,\frac{1}{6}) &\approx 2.1706 \cdot 10^{-3} \qquad B(7,10,\frac{1}{6}) \approx 2.4807 \cdot 10^{-4} \\ B(8,10,\frac{1}{6}) &\approx 1.8605 \cdot 10^{-5} \qquad B(9,10,\frac{1}{6}) \approx 8.2691 \cdot 10^{-7} \\ B(10,10,\frac{1}{6}) &\approx 1.6538 \cdot 10^{-8} \end{split}$$

$$n = 8$$
 $p = \frac{1}{3}$ $B(8, \frac{1}{3}, k) = (\frac{1}{3})^k \cdot (\frac{2}{3})^{8-k} \cdot {8 \choose k}$

а

$$k = 4$$
 $B(8, \frac{1}{3}, 4) \approx 17.07\%$

b

$$k \geqslant 4$$
 $\sum_{k=4}^{8} B(8, \frac{1}{3}, k) \approx 25.86\%$

$$k \le 3$$
 $\sum_{k=0}^{3} B(8, \frac{1}{3}, k) \approx 74.14\%$

d

$$k > 4$$

$$\sum_{k=5}^{8} B(8, \frac{1}{3}, k) \approx 8.79\%$$

500/6

$$n = 6 \qquad p_G = \frac{3}{4} \qquad p_R = \frac{1}{4}$$

a

$$k = 2, p_G \qquad B(6, \frac{3}{4}, 2) \approx 3.30\%$$

b

$$k = 2, \ p_R \qquad B(6, \frac{1}{4}, 2) \approx 29.66\%$$

С

$$k \le 2, \ p_G \qquad \sum_{k=0}^{2} B(6, \frac{3}{4}, k) \approx 3.76\%$$

d

$$k \ge 2, \ p_R \qquad \sum_{k=2}^{6} B(6, \frac{1}{4}, k) \approx 46.61\%$$

500/7

а

$$n = 10$$
 $p = 0.8$ $k \ge 8$
$$P = \sum_{k=0}^{10} B(10, 0.8, k) \approx 67.78\%$$

b

$$n=7$$
 $p=0.75$ $k=5 \text{ oder } 6$ $P=B(7,0.75,5)+B(7,0.75,6)\approx 62.29\%$

Arbeiten mit Tabellen

503/1

$$n = 15$$
 $p = 0.2$

а

$$P(X = 4) = 18.76\%$$
 $P(X \le 4) = 83.58\%$

b $P(X\geqslant 3)$ ist die Wahrscheinlichkeit für alle k von 3 bis n=15. $P(X\leqslant 2)$ ist die Wahrscheinlichkeit für die restlichen k von 0 bis 2. $P(X\geqslant 3)$ und $P(X\leqslant 2)$ sind daher die jeweiligen Gegenwahrscheinlichkeiten voneinander.

С

$$P(1 \le X \le 5) = P(X \le 5) - P(X = 0) = 93.89\% - 3.52\% = 90.37\%$$

$$P(X \le 1 \land X \ge 5) = P(X \le 1) + 1 - P(X \le 4)$$

= 16.71% + 100% - 83.58% = 33.13%

503/2

a

$$n = 20 p = \frac{1}{3}$$

$$P(X = 4) \approx 0.09106$$

$$P(X \le 4) \approx 0.15151$$

$$P(X \ge 3) = 1 - P(X \le 2) \approx 0.98241$$

$$P(1 \le X \le 5) = P(X \le 5) - P(X = 0) \approx 0.29691$$

$$P(X \le 1 \land X \ge 5) = P(X \le 1) + 1 - P(X \le 4) \approx 0.85180$$

$$n = 100$$
 $p = 0.03$
 $P(X = 4) \approx 0.17061$
 $P(X \le 4) \approx 0.81785$
 $P(X \ge 3) = 1 - P(X \le 2) \approx 0.58022$
 $P(1 \le X \le 5) = P(X \le 5) - P(X = 0) \approx 0.87161$
 $P(X \le 1 \land X \ge 5) = P(X \le 1) + 1 - P(X \le 4) \approx 0.37677$

$$p = 0.9$$
 $n = 16$

а

$$B_{16;0.9}(k) = 0.9^k \cdot 0.1^{16-k} \cdot \binom{16}{k}$$

b

I: $B_{16:0.9}(X=16) \approx 0.18530$

II: $B_{16:0.9}(X=14) \approx 0.27452$

III: $B_{16;0.9}(X \ge 14) \approx 0.78924$

IV: $B_{16;0.9}(X \le 13) \approx 0.21075$

V: $B_{16;0.9}(12 \le X \le 15) \approx 0.79769$

504/5

$$p = 0.03$$

A:
$$n = 10$$
 $k = 0$

$$B_{10:0.03}(X=0) \approx 0.73742$$

B:
$$n = 20$$
 $k \ge 1$

$$B_{20:0.03}(X \ge 1) = 1 - B_{20:0.03}(X = 0) \approx 0.45621$$

C:
$$n = 50$$
 $k > 1$

$$B_{50;0.03}(X > 1) = 1 - (B_{50;0.03}(X = 0) + B_{50;0.03}(X = 1)) \approx 0.44472$$

504/6

$$n = 10$$
 $p = 0.7$

$$B_{10;0.7}(k) = 0.7^k \cdot 0.3^{10-k} \cdot \binom{10}{k}$$

$$P(X = 4) \approx 0.03676$$

$$P(X \le 9) \approx 0.97175$$

$$P(X < 8) = P(X \le 7) \approx 0.61722$$

$$P(X \ge 9) = 1 - P(X \le 8) \approx 0.14931$$

С

$$P(X \ge 8) = 1 - P(X \le 7) \approx 0.38278$$

 $P(6 \le X \le 9) = P(X \le 9) - P(X \le 5) = 0.82148$

508/6

$$n = 100 p = \frac{1}{6}$$

$$B_{100;\frac{1}{6}}(k) = (\frac{1}{6})^k \cdot (\frac{5}{6})^{100-k} \cdot {100 \choose k}$$

а

$$B_{100;\frac{1}{6}}(X=15) \approx 0.10024$$

b

$$B_{100;\frac{1}{6}}(X > 25) \approx 0.01188$$

С

$$B_{100;\frac{1}{6}}(15 \leqslant X \leqslant 25) \approx 0.70070$$

508/7

$$p = 0.05$$
 $n = 20$ $k \ge 2$
 $B_{20:0.05}(X \ge 2) \approx 0.26416$

508/8

$$p = \frac{1}{3} \qquad n = 100 \qquad k > 33$$

$$B_{100; \frac{1}{3}}(X > 33) \approx 0.48120$$

6.7.1 Anwendungen der Binomialverteilung

S. 509, Bsp. 2

$$\begin{split} &P(k\geqslant 1)\geqslant 0.90\\ &P(k=0)<0.10\\ &0.96^n<0.10 \qquad |log\\ &n\cdot log(0.96)< log(0.10) \qquad |:log(0.96)<0\\ &n>\frac{log(0.10)}{log(0.96)}\\ &n>56.4... \qquad \text{also } n=57 \end{split}$$

510/3

$$n = 50$$
 $p = 0.9$

а

$$P(X > 48) \approx 0.03379$$

b

$$P(X \le 46) \approx 0.74971$$

С

$$n = 51$$
 $P(X > 48) \approx 0.10393$

 \Rightarrow auch bei 51 Buchungen ist eine Überbuchung unwahrscheinlich

511/5

$$p = \frac{1}{6}$$

$$P(X \ge 1) \ge 0.99$$

$$P(X = 0) < 0.01$$

$$(\frac{5}{6})^n < 0.01 \quad |log; : log(\frac{5}{6}) < 0$$

$$n > \frac{log(0.01)}{log(\frac{5}{6})} \approx 25.3$$

$$\Rightarrow n = 26$$

$$p = \frac{3}{6} = \frac{1}{2}$$

$$P(X \ge 1) \ge 0.99$$

$$P(X = 0) < 0.01$$

$$(\frac{1}{2})^n < 0.01 \quad |log; : log(\frac{1}{2}) < 0$$

$$n > \frac{log(0.01)}{log(\frac{1}{2})} \approx 6.6$$

$$\Rightarrow n = 7$$

511/6

a

$$n = 5 r = 1$$

$$P(X \ge 1) \ge 0.75$$

$$P(X = 0) < 0.25$$

$$(1 - p)^5 < 0.25 |()^{\frac{1}{5}}$$

$$1 - p < 0.25^{\frac{1}{5}} | -1; \cdot (-1)$$

$$p > -(0.25^{\frac{1}{5}} - 1) \approx 0.24214$$

b

$$n = 100 r = 1$$

$$P(X \ge 1) \ge 0.75$$

$$P(X = 0) < 0.25$$

$$(1 - p)^{1}00 < 0.25 |()^{\frac{1}{100}}$$

$$1 - p < 0.25^{\frac{1}{100}} | -1; \cdot (-1)$$

$$p > -(0.25^{\frac{1}{100}} - 1) \approx 0.01377$$

511/7

$$p = 0.05$$

$$n = 50 k \le 2$$
$$P(X \le 2) \approx 0.54053$$

genau 2 von 50 Fahrgästen unzufrieden

С

$$P(X \ge 1) \ge 0.9$$

 $P(X = 0) < 0.1$
 $0.95^n < 0.1 \quad |log; : log(0.95)$
 $n > \frac{log(0.1)}{log(0.95)} \approx 44.89057$
 $\Rightarrow n = 45$

6.7.2 Erwartungswert μ , Standardabweichung σ

Für alle Binomialverteilungen gilt:

$$\mu = n \cdot p$$
 $\sigma = \sqrt{n \cdot p \cdot (1 - p)}$

515/6

$$n = 3$$
 p beliebig

$$\mu = P(X = x_0) \cdot x_0 + P(X = x_1) \cdot x_1 + \cdots$$

$$\sigma = \sqrt{P(X = x_1) \cdot (x_0 - \mu)^2 + P(X = x_1) \cdot (x_1 - \mu)^2 + \cdots}$$

$$P(X = k) = p^{k} \cdot (1 - p)^{n - k} \cdot \binom{n}{k}$$

$$\mu = P(X = 0) \cdot 0 + P(X = 1) \cdot 1 + P(X = 2) \cdot 2 + P(X = 3) \cdot 3$$

$$= 0 + p \cdot (1 - p)^2 \cdot 3 + p^2 \cdot (1 - p) \cdot 6 + p^3 \cdot 3$$

$$= 3 \cdot p \cdot ((1 - p)^2 + p \cdot (1 - p) \cdot 2 + p^2)$$

$$= 3 \cdot p \cdot (p^2 - 2p + 1 + 2p - 2p^2 + p^2)$$

$$= 3 \cdot p = n \cdot p$$

$$\begin{split} \sigma &= \sqrt{\frac{P(X=0)\cdot(0-3p)^2 + P(X=1)\cdot(1-3p)^2}{+P(X=2)\cdot(2-3p)^2 + P(X=3)\cdot(3-3p)^2}} \\ &= \sqrt{\frac{(1-p)^3\cdot 9p^2 + 3p\cdot(1-p)^2\cdot(1-3p)^2}{+3p^2\cdot(1-p)\cdot(2-3p)^2 + p^3\cdot(3-3p)^2}} \\ &= \sqrt{\frac{9p^2\cdot(1-p)^3 + 27p^3\cdot(1-p)^2 - 18p^2\cdot(1-p)^2 + 3p\cdot(1-p)^2}{+27p^4\cdot(1-p) - 36p^3\cdot(1-p) + 12p^2\cdot(1-p) + 9p^5 - 18p^4 + 9p^3}} \\ &= \sqrt{\frac{3\cdot p\cdot(3p\cdot(1-p)^3 + 9p^2\cdot(1-p)^2 - 6p\cdot(1-p)^2 + (1-p)^2}{9p^3\cdot(1-p) - 12p^2\cdot(1-p) + 4p\cdot(1-p) + 3p^4 - 6p^3 + 3p^2)}} \\ &= \sqrt{\frac{3\cdot p\cdot(3p\cdot(1-p)^3 + 9p^2\cdot(1-p)^2 - 6p\cdot(1-p)^2 + (1-p)^2}{9p^3\cdot(1-p) - 12p^2\cdot(1-p) + 4p\cdot(1-p) + 3p^4 - 6p^3 + 3p^2)}} \\ &= \sqrt{\frac{3\cdot p\cdot(3p^4 + 9p^3 - 9p^2 + 3p + 9p^4 - 18p^3 + 9p^2}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 + 12p^3 - 12p^2 + 4p - 4p^2}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 9p^4 - 12p^4 - 4p^4 - 4p^4}} \\ &= \sqrt{\frac{3\cdot p\cdot(1-p)}{4p^3 - 12p^4 - 4p^4 - 4p$$

514/2

a

$$n = 25$$
 $p = 0.3$
 $\mu = 25 \cdot 0.3 = 7.5$ $\sigma = \sqrt{25 \cdot 0.3 \cdot (1 - 0.3)} \approx 2.29129$
 $P(X = 7) \approx 0.17119$ $(P(X = 8) \approx 0.16508)$
 $[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma] \approx [1; 14]$
 $P(1 \le X \le 14) = P(X \le 14) - P(X = 0) \approx 0.99809$

$$n = 15$$
 $p = 0.3$
 $\mu = 15 \cdot 0.3 = 4.5$ $\sigma = \sqrt{15 \cdot 0.3 \cdot (1 - 0.3)} \approx 1.77482$
 $P(X = 4) \approx 0.21862$ $(P(X = 5) \approx 0.20613)$
 $[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma] \approx [0; 9]$
 $P(0 \le X \le 9) = P(X \le 9) \approx 0.99634$

$$n = 70$$
 $p = 0.9$
 $\mu = 70 \cdot 0.9 = 63$ $\sigma = \sqrt{70 \cdot 0.9 \cdot (1 - 0.9)} \approx 2.50998$

$$P(X = 63) \approx 0.15704$$

$$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma] \approx [56; 70]$$

 $P(56 \le X \le 70) = 1 - P(X \le 55) \approx 0.99653$

d

$$n = 100$$
 $p = 0.9$
 $\mu = 100 \cdot 0.9 = 90$ $\sigma = \sqrt{100 \cdot 0.9 \cdot (1 - 0.9)} = 3$

$$P(X = 90) \approx 0.13187$$

$$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma] \approx [81; 99]$$

 $P(81 \le X \le 99) = P(X \le 99) - P(X \le 80) \approx 0.99799$

514/3

$$n = 100$$
 $p = \frac{1}{6}$

а

$$\mu = 100 \cdot \frac{1}{6} = 16.\overline{6}$$
 $\sigma = \sqrt{100 \cdot \frac{1}{6} \cdot \frac{5}{6}} \approx 3.72678$

b

[10; 24]
$$P_{2\sigma} = P(10 \leqslant X \leqslant 24) = P(X \leqslant 24) - P(X \leqslant 9) \approx 0.95700$$

6.7.3 σ -Umgebung

Alle Binomialverteilungen sind ähnlich in dem Sinne:

• Der Erwartungswert μ wird mit größter Wahrscheinlichkeit getroffen.

• Die Wahrscheinlichkeit verteilt sich in der Nähe des Erwartungswerts μ in gleicher Weise.

Es gilt:
$$P(\mu - \sigma \leqslant X \leqslant \mu + \sigma) \approx 68.3\%$$
 (1 σ -Umgebung um μ)

Beispiel $n=100 \quad p=0.5$ $\mu=50 \quad \sigma=5$

$$P_{\sigma} = P(\mu - \sigma \leqslant X \leqslant \mu + \sigma) \approx 68.3\% \quad \text{(1}\sigma\text{-Umgebung)}$$

$$= P(45 \leqslant X \leqslant 55) \approx 72.87\%$$

$$P_{2\sigma} = P(\mu - 2\sigma \leqslant X \leqslant \mu + 2\sigma) \approx 95.4\% \quad \text{(2}\sigma\text{-Umgebung)}$$

$$= P(40 \leqslant X \leqslant 60) \approx 96.8\%$$

$$P_{3\sigma} = P(\mu - 3\sigma \leqslant X \leqslant \mu + 3\sigma) \approx 99.7\% \quad \text{(3}\sigma\text{-Umgebung)}$$

 $= P(35 \le X \le 65) \approx 99.8\%$

Einschub: Analysis (Wiederholung)

Ableitungen

$$\begin{split} f(x) &= g \cdot h \qquad f'(x) = g' \cdot h + g \cdot h' \qquad \text{Produktregel} \\ f(x) &= g(h(x)) \qquad f'(x) = g'(h(x)) \cdot h'(x) \qquad \text{Kettenregel} \\ f(x) &= \frac{g}{h} \qquad f'(x) = \frac{g' \cdot h - g \cdot h'}{h^2} \qquad \text{Quotientenregel} \end{split}$$

135/4

а

$$f(x) = 0.25 \cdot \sin(2x + \pi)$$

$$f'(x) = 0.25 \cdot \cos(2x + \pi) \cdot 2 = -0.5 \cdot \cos(2x)$$

b

$$f(x) = \frac{2}{3} \cdot \sin(\pi - 3x)$$

$$f'(x) = \frac{2}{3} \cdot \cos(\pi - 3x) \cdot (-3) = 2 \cdot \cos(3x)$$

е

$$f(x) = \sqrt{3x} = \sqrt{3} \cdot \sqrt{x}$$
$$f'(x) = \frac{1}{2 \cdot \sqrt{3x}} \cdot 3 = \frac{3}{2 \cdot \sqrt{3x}}$$

h

$$f(x) = \sqrt{7x^2 - 5}$$
$$f'(x) = 0.5 \cdot \frac{1}{\sqrt{7x^2 - 5}} \cdot 14x = \frac{7x}{\sqrt{7x^2 - 5}}$$

138/1

$$f(x) = x \cdot sin(x)$$

$$f'(x) = sin(x) + x \cdot cos(x)$$

d

$$f(x) = (2x - 3) \cdot \sqrt{x}$$
$$f'(x) = 2 \cdot \sqrt{x} + (2x - 3) \cdot \frac{1}{2 \cdot \sqrt{x}} = \frac{3 \cdot (2x - 1)}{2 \cdot \sqrt{x}}$$

g

$$f(x) = \frac{2}{x} \cdot \cos(x)$$

$$f'(x) = -\frac{2}{x^2} \cdot \cos(x) + \frac{2}{x} \cdot (-\sin(x)) = \frac{-2 \cdot (\cos(x) + \sin(x) \cdot x)}{x^2}$$

j

$$f(x) = \frac{1}{\sqrt{x}} \cdot \cos(x)$$

$$f'(x) = -\frac{1}{2 \cdot \sqrt{x^3}} \cdot \cos(x) + \frac{1}{\sqrt{x}} \cdot (-\sin(x)) = \frac{-\cos(x) - 2x \cdot \sin(x)}{2 \cdot \sqrt{x^3}}$$

140/3

а

$$l(x) = \frac{x^2 - 1}{(x+4)^2} \qquad ((x+4)^2)' = 2 \cdot (x+4)$$

$$l'(x) = \frac{2x \cdot (x+4)^2 - (x^2 - 1) \cdot 2 \cdot (x+4)}{((x+4)^2)^2}$$

$$= \frac{2x \cdot (x+4) - 2 \cdot (x^2 - 1)}{(x+4)^3} = \frac{2x^2 + 8x - 2x^2 - 2}{(x+4)^3}$$

$$= \frac{8x - 2}{(x+4)^3}$$

$$m(x) = \frac{\sin(3x)}{x - 1} \qquad (\sin(3x))' = 3 \cdot \cos(3x)$$

$$m'(x) = \frac{3 \cdot \cos(3x) \cdot (x - 1) - \sin(3x) \cdot 1}{(x - 1)^2}$$

$$= \frac{3 \cdot \cos(3x) \cdot (x - 1) - \sin(3x)}{(x - 1)^2}$$

Exponentialfunktionen

232/3

$$\frac{f(1) - f(0)}{f(0)} = \frac{20}{236} \approx 0.08475 \qquad 2002 \longrightarrow 2003$$

$$\frac{f(2) - f(1)}{f(1)} = \frac{35}{256} \approx 0.13672 \qquad 2003 \longrightarrow 2004$$

$$\frac{f(3) - f(2)}{f(2)} = \frac{81}{291} \approx 0.27835 \qquad 2004 \longrightarrow 2005$$

$$\frac{f(4) - f(3)}{f(3)} = \frac{82}{372} \approx 0.22043 \qquad 2005 \longrightarrow 2006$$

$$\frac{f(5) - f(4)}{f(4)} = \frac{106}{454} \approx 0.23348 \qquad 2006 \longrightarrow 2007$$

$$a \approx \frac{0.08475 + 0.13672 + 0.27835 + 0.22043 + 0.23348}{5} \approx 0.19075$$

$$f(x) = 236 \cdot 1.19075^x = 236 \cdot e^{x \cdot \ln(1.19075)} \approx 236 \cdot e^{0.17457x}$$

$$f(13) = 236 \cdot 1.19075^{13} \approx 2283 \tag{2015}$$

Besprechung

$$(x_{1}|y_{1}) (x_{2}|y_{2})$$

$$y = c \cdot a^{x}$$

$$y_{1} = c \cdot a^{x_{1}} y_{2} = c \cdot a^{x_{2}}$$

$$c = y_{1} \cdot a^{-x_{1}} c = y_{2} \cdot a^{-x_{2}}$$

$$y_{1} \cdot a^{-x_{1}} = y_{2} \cdot a^{-x_{2}} |: y_{1}; : a^{-x_{2}}$$

$$a^{-x_{1}} \cdot a^{-x_{2}} = \frac{y_{2}}{y_{1}}$$

$$a^{x_{2}-x_{1}} = \frac{y_{2}}{y_{1}} |()^{\frac{1}{x_{2}-x_{1}}}$$

$$a = (\frac{y_{2}}{y_{1}})^{\frac{1}{x_{2}-x_{1}}}$$

Kurvendiskussion: Extrema

$$f(x) = x^8$$
 $f'(x) = 8x^7$ $f''(x) = 56x^6$
 $f'(0) = 0$ $f''(0) = 0$

Umgebungsuntersuchung: Untersuche x links und rechts des gefundenen Kandidaten $x_0 = 0 \Rightarrow x_1 = -1$; $x_2 = 1$ mit Hilfe von f'(x):

$$f'(-1) = -8 \qquad f'(0) = 0 \qquad f'(1) = 8 \qquad \text{also } TP(0|0)$$

AB Exponentialfunktionen

AB/3

$$f_a(x) = \frac{1}{2}x + ae^{-x}$$
 $a > 0$

a

$$f'_a(x) = \frac{1}{2} - ae^{-x} = 0 \implies x = -\ln(\frac{1}{2a})$$

$$f_a''(x) = ae^{-x}$$
 $f_a''(-ln(\frac{1}{2a})) = ae^{ln(\frac{1}{2a})} = \frac{1}{2} > 0$

$$TP(-ln(\frac{1}{2a})|f_a(-ln(\frac{1}{2a})) = \frac{ln(2a) + 1}{2})$$

$$\frac{ln(2a)+1}{2} = 0 \implies a = e^{-1-ln(2)} = \frac{1}{2e} \implies TP(-1|0)$$

$$\frac{ln(2a)+1}{2} = \frac{1}{2} \quad \Rightarrow \quad a = e^{-ln(2)} = \frac{1}{2} \quad \Rightarrow \quad TP(0|\frac{1}{2})$$

С

d

$$f_a(0) = \frac{1}{2} \cdot 0 + ae^{-0} = a \implies P_a(0|a)$$

е

$$f_a(0) = a$$
 $f'_a(0) = \frac{1}{2} - ae^{-0} = \frac{1}{2} - a$
 $t_a(x) = f'_a(0) \cdot x + f_a(0) = (\frac{1}{2} - a) \cdot x + a$

$$\begin{split} t_{a_1}(x_Q) &= t_{a_2}(x_Q) \\ (\frac{1}{2} - a_1) \cdot x_Q + a_1 &= (\frac{1}{2} - a_2) \cdot x_Q + a_2 \\ \frac{1}{2} - a_1 + a_1 &= \frac{1}{2} - a_2 + a_2 \qquad \text{für } x_Q = 1 \\ \frac{1}{2} &= \frac{1}{2} \qquad \Rightarrow \qquad Q(1|\frac{1}{2}) \end{split}$$

AB/32

$$f_{a}(x) = e^{2x} - a \cdot e^{x}$$

$$f'_{a}(x) = 2 \cdot e^{2x} - a \cdot e^{x}$$

$$f''_{a}(x) = 4 \cdot e^{2x} - a \cdot e^{x} = 0 \quad \Rightarrow \quad x = \ln(\frac{a}{4})$$

$$f'''_{a}(x) = 8 \cdot e^{2x} - a \cdot e^{x}$$

$$f'''_{a}(\ln(\frac{a}{4})) = \frac{a^{2}}{4} > 0 \quad \Rightarrow \quad RLWP(\ln(\frac{a}{4})|f_{a}(\ln(\frac{a}{4})) = -\frac{3a^{2}}{16})$$

$$x = \ln(\frac{a}{4}) \quad \Rightarrow \quad a = 4e^{x}$$

$$y = -\frac{3 \cdot (4e^{x})^{2}}{16} = -3e^{2x}$$

AB/6

$$f(x) = (3 - x) \cdot e^x$$

$$f(x) = (3 - x) \cdot e^x = 0 \qquad \Rightarrow \qquad x = 3$$

$$f'(x) = (2 - x) \cdot e^x = 0 \qquad \Rightarrow \qquad x = 2$$

$$f''(x) = (1 - x) \cdot e^x \qquad f''(2) = -\frac{1}{e} < 0$$

$$\Rightarrow \qquad HP(2|f(2) = e^2)$$

$$f''(x) = (1 - x) \cdot e^x = 0 \qquad \Rightarrow \qquad x = 1$$

$$f'''(x) = -x \cdot e^x \qquad f'''(1) = -e < 0$$

$$\Rightarrow \qquad LRWP(1|f(1) = 2e)$$

$$A(x) = \frac{1}{2} \cdot x \cdot f(x) = \frac{1}{2} \cdot x \cdot (3 - x) \cdot e^{x} = \frac{3x - x^{2}}{2}$$

$$A'(x) = \frac{1}{2} \cdot e^{x} \cdot (-x^{2} + x + 3) = 0$$

$$-x^{2} + x + 3 = 0 \implies x_{1/2} = \frac{1}{2} \cdot (1 \pm \sqrt{13})$$

$$x_{1} \approx 2.30278 \qquad (x_{2} \approx -1.30278)$$

 $P(2.30278|f(2.30278) \approx 6.97357)$

С

$$f(x) = (3-x) \cdot e^x$$
 $f'(x) = (2-x) \cdot e^x$ $f''(x) = (1-x) \cdot e^x$
 $F(x) = (4-x) \cdot e^x$

d

$$A_{ges} = \int_{0}^{3} f(x) \cdot dx = F(3) - F(0) = e^{3} - 4 \approx 16.08554$$

$$A_{Teil} = \frac{1}{2} \cdot 3 \cdot 3 = 4.5$$

$$\frac{A_{ges} - A_{Teil}}{A_{ges}} \approx 0.72025 \approx 72\%$$

6.7.4 Sigma-Regeln

Alle Binomialverteilungen sind ähnlich:

 $\mu = n \cdot p$ $\sigma = \sqrt{n \cdot p \cdot (1-p)}$

$$P(\mu - \sigma; \mu + \sigma) \approx 68\%$$
 $P(\mu - 1.64\sigma; \mu + 1.64\sigma) \approx 90\%$ $P(\mu - 2\sigma; \mu + 2\sigma) \approx 95.4\%$ $P(\mu - 1.96\sigma; \mu + 1.96\sigma) \approx 95\%$

 $P(\mu - 3\sigma; \mu + 3\sigma) \approx 99.7\%$ $P(\mu - 2.58\sigma; \mu + 2.58\sigma) \approx 99\%$

514/5

$$n = 25$$
 $p = 0.1$

a

$$\mu = n \cdot p = 25 \cdot 0.1 = 2.5$$

 $P(X = 2) \approx 0.26589$ $(P(X = 3) \approx 0.22650)$

b

$$\sigma = \sqrt{n \cdot p \cdot (1 - p)} = \sqrt{25 \cdot 0.1 \cdot (1 - 0.1)} = 1.5$$
$$[\mu - \sigma; \mu + \sigma] = [1; 4]$$
$$P(1 \le X \le 4) = P(4) - P(0) \approx 0.83022$$

6.7.5 Signifikanztest (einseitig)

Beispiel: Eine verbeulte Münze wird wiederholt geworfen. Dabei kommt der Verdacht auf, dass "Zahl" häufiger als "Kopf" fällt. Um den Verdacht zu erhärten, mache ich einen Signifikanztest:

100 Würfe: n = 100

Null-Hypothese: H_0 : p = 0.5 P("Zahl")

Alternative: H_1 : p > 0.5Signifikanzniveau: 5%

Mache den Zufallsversuch: k = 73

$$\mu = 100 \cdot 0.5 = 50$$
 $\sigma = \sqrt{100 \cdot 0.5 \cdot (1 - 0.5)} = 5$

Signifikanzniveau 5% \Rightarrow $1.64 \cdot \sigma = 8.2$

Annahmebereich für H_0 ist [0; 59]

Annahmebereich für H_1 ist [60; 100]

Ich nehme die Alternative H_1 als wahr an, da sie im Annahmebereich von H_1 (Ablehnungsbereich von H_0) liegt. Der mögliche Fehler dieser Entscheidung ist höchstens 5% (Signifikanzniveau). Genauer ist der mögliche Fehler (Fehler 1. Art) die Wahrscheinlichkeit $P(k \ge 60) \approx 2.84\%$.

Rechtsseitiger Signifikanztest, da der Annahmebereich von H_1 rechts liegt (große k).

522/1

a

r-T:
$$p_0=0.5$$
 $n=50$ $\alpha=5\%$ $H_0\colon p=p_0$ $H_1\colon p>p_0$
$$\mu=50\cdot 0.5=25$$
 $\sigma=\sqrt{50\cdot 0.5\cdot (1-0.5)}\approx 3.53553$
$$\mu+1.64\cdot \sigma\approx 30.79828\approx 31$$
 Annahmebereiche: $H_0\colon [0;31]$ $H_1\colon [32;50]$
$$P(X\geqslant 32)\approx 3.25\%$$

b

I-T:
$$p_0 = 0.5$$
 $n = 50$ $\alpha = 5\%$ H_0 : $p = p_0$ H_1 : $p < p_0$
$$\mu = 50 \cdot 0.5 = 25$$
 $\sigma = \sqrt{50 \cdot 0.5 \cdot (1 - 0.5)} \approx 3.53553$
$$\mu - 1.64 \cdot \sigma \approx 19.20172 \approx 19$$
 Annahmebereiche: H_0 : $[19; 50]$ H_1 : $[0; 18]$
$$P(X \leqslant 18) \approx 3.25\%$$

522/2

r-T:
$$p_0 = \frac{2}{3}$$
 $\alpha = 5\%$ $n = 25$ $k = 20$
 $H_0 \colon p \leqslant p_0$ $H_1 \colon p > p_0$
 $\mu = 25 \cdot \frac{2}{3} = 16\frac{2}{3}$ $\sigma = \sqrt{25 \cdot \frac{2}{3} \cdot (1 - \frac{2}{3})} \approx 2.35702$
 $\mu + 1.64 \cdot \sigma \approx 20.53218 \approx 21$
Annahmebereich: $[0; 21] \implies H_0$ angenommen

I-T:
$$p_0 = 0.5$$
 $\alpha = 1\%$ $n = 25$ $k = 10$
$$H_0 \colon p \geqslant p_0 \qquad H_1 \colon p < p_0$$

$$\mu = 25 \cdot 0.5 = 12.5 \qquad \sigma = \sqrt{25 \cdot 0.5 \cdot (1 - 0.5)} = 2.5$$

$$\mu - 2.33 \cdot \sigma = 6.675 \approx 6$$
 Annahmebereich: $[6; 25] \quad \Rightarrow \quad H_0$ angenommen

Mögliche Fehler beim Testen

- Annahme $H_0 \to H_0$ ist wahr
- Annahme $H_0 \to H_0$ ist unwahr (Was ist aber wahr?)

Aufgrund des Testergebnisses nehme ich einen neuen "vernünftigen" Wert für p an.

Beispiel (verbeulte Münze):

$$H_0\colon p=0.5 \qquad H_1\colon p>0.5 \qquad \alpha=5\%$$

$$n=100 \qquad \mu=50 \qquad \sigma=5$$
 Annahmebereich für $H_0\colon [0;59]$ Test ergibt $k=59$, also nehme ich H_0 an. "vernünftige" Annahme, z. B. $p=0.65$

möglicher Fehler: $P_{0.65}(X \in [0; 59]) \approx 12.50\%$

Fehler 2. Art

- ullet Annahme $H_1 o H_1$ ist wahr
- Annahme $H_1 \to H_1$ ist unwahr

möglicher Fehler höchstens das Signifikanzniveau \rightarrow genauer: $P(\text{Annahmebereich von } H_1)$

Fehler 1. Art

525/1

r-T:
$$H_0$$
: $p = 0.5$ $n = 25$ $\alpha = 5\%$

a

$$\begin{split} H_1\colon p > 0.5 \\ \mu = 25\cdot 0.5 &= 12.5 \qquad \sigma = \sqrt{25\cdot 0.5\cdot (1-0.5)} = 2.5 \\ \mu + 1.64\cdot \sigma &= 16.6 \approx 17 \\ \text{Annahmebereich: } [0;17] \\ P(X > 17) \approx 2.16\% \end{split}$$

b

$$p = 0.6$$
 $P_{0.6}(X \le 17) \approx 84.64\%$
 $p = 0.75$ $P_{0.75}(X \le 17) \approx 27.35\%$
 $p = 0.9$ $P_{0.9}(X \le 17) \approx 0.23\%$

С

$$\alpha = 1\%$$
 $\mu + 2.33 \cdot \sigma = 18.325 \approx 19$
 $P(X > 19) \approx 0.20\%$
 $p = 0.6$
 $P_{0.6}(X \le 19) \approx 97.06\%$
 $p = 0.75$
 $P_{0.75}(X \le 19) \approx 62.17\%$
 $p = 0.9$
 $P_{0.9}(X \le 19) \approx 3.34\%$

d

$$\begin{split} n &= 100 \\ \mu &= 100 \cdot 0.5 = 50 \qquad \sigma = \sqrt{100 \cdot 0.5 \cdot (1 - 0.5)} = 5 \\ \mu &+ 1.64 \cdot \sigma = 58.2 \approx 59 \\ P(X > 59) \approx 2.84\% \\ p &= 0.6 \qquad P_{0.6}(X \leqslant 59) \approx 45.67\% \\ p &= 0.75 \qquad P_{0.75}(X \leqslant 59) \approx 0.03\% \\ p &= 0.9 \qquad P_{0.9}(X \leqslant 59) \approx 0.00\% \end{split}$$

6.7.6 Näherung durch die Normalverteilung

ab $\sigma = 3$ darf man nähern

$$P(x = k) = B_{n;p}(k) \approx \varphi_{\mu;\sigma}(x)$$

$$P(a \leqslant k \leqslant b) = F_{n;p}(b) - F_{n;p}(a-1) \approx \int_{x_1}^{x_2} \varphi(x) \cdot dx$$

$$= \Phi(b + \frac{1}{2}) - \Phi(a - \frac{1}{2}) = \Phi(\underbrace{\frac{b + \frac{1}{2} - \mu}{\sigma}}_{x_2}) - \Phi(\underbrace{\frac{a - \frac{1}{2} - \mu}{\sigma}}_{x_1})$$

Beispiel:

$$n = 460$$
 $p = 0.35$
 $\mu = 460 \cdot 0.35 = 161$ $\sigma \approx 10.22986$

$$a = 150$$
 $b = 180$
$$x_1 \approx \frac{150 - \frac{1}{2} - 161}{10.22986} \approx -1.12416$$
 $x_2 \approx \frac{180 + \frac{1}{2} - 161}{10.22986} \approx 1.90618$

$$P(150 \le k \le 180) \approx \Phi(1.91) - \Phi(-1.03) = 97.19\% - 13.14\% = 84.05\%$$
 (wahrer Wert: 84.07%)

545/9

$$n = 100$$
 $p = 0.7$
 $\mu = 100 \cdot 0.7 = 70$ $\sigma = \sqrt{100 \cdot 0.7 \cdot (1 - 0.7)} \approx 4.58258$

$$\begin{split} &P(X>75)\\ a=76 \qquad b=100\\ &x_1\approx\frac{76-\frac{1}{2}-\mu}{\sigma}\approx 1.20020\\ &P(76\leqslant k\leqslant 100)\approx 1-\Phi(1.20)\approx 1-88.49\%=11.51\%\\ &\text{(wahrer Wert: }11.36\%) \end{split}$$

$$\begin{split} P(X\geqslant 40) \\ a &= 40 \qquad b = 100 \\ x_1 \approx \frac{40 - \frac{1}{2} - \mu}{\sigma} \approx -6.65565 \\ P(40 \leqslant k \leqslant 100) \approx 1 - \Phi(-6.65565) \approx 1 - 0 = 100.00\% \\ \text{(wahrer Wert: } 100.00\%) \end{split}$$

С

$$\begin{split} &P(65 < X < 85) \\ &a = 66 \qquad b = 84 \\ &x_1 \approx \frac{66 - \frac{1}{2} - \mu}{\sigma} \approx -0.98198 \qquad x_2 \approx \frac{84 + \frac{1}{2} - \mu}{\sigma} \approx 3.16416 \\ &P(66 \leqslant k \leqslant 84) \approx \Phi(3.16) - \Phi(-0.98) \approx 99.92\% - 16.35\% = 83.57\% \\ &\text{(wahrer Wert: } 83.67\%) \end{split}$$

d

$$\begin{split} &P(X\geqslant 80)\\ &a=80 \qquad b=100\\ &x_1\approx \frac{80-\frac{1}{2}-\mu}{\sigma}\approx 2.07307\\ &P(80\leqslant k\leqslant 100)\approx 1-\Phi(2.07)\approx 1-98.08\%=1.92\%\\ &\text{(wahrer Wert: }1.65\%) \end{split}$$

Kapitel 7

Rationale Funktionen

$$rationale \ Funktionen \begin{cases} ganzrationale \ Funktionen \\ gebrochenrationale \ Funktionen \end{cases}$$

Beispiel:

$$f(x) = \frac{x-1}{x-2}$$
 $D = \mathbb{R}\backslash 2$

Bei x=2 liegt ein Pol mit Vorzeichenwechsel (VZW $-\to +$) vor. Ein Pol ist eine Unendlichkeitsstelle. Der Graph hat eine waagerechte Asymptote y=1, d. h. eine Gerade, an die sich der Funktionsgraph anschmiegt. Zu jedem Pol gibt es eine senkrechte Asymptote, hier mit der Gleichung x=2.

209/3

а

$$f(x) = \frac{1}{x-3}$$
 $D = \mathbb{R} \setminus \{3\}$

$$f(x) = \frac{2}{x+3} \qquad D = \mathbb{R} \setminus \{-3\}$$

С

$$f(x) = \frac{1}{2x - 3} \qquad D = \mathbb{R} \setminus \{1.5\}$$

d

$$f(x) = \frac{x}{1+x}$$
 $D = \mathbb{R} \setminus \{-1\}$

