

外置 MOS 升压型、降压型大功率LED恒流驱动器

概述

TX6211是一款外置 MOS 高效率、高精度的升压型、降压型大功率LED恒流驱动控制芯片。芯片内置高精度误差放大器,固定关断时间控制电路,恒流驱动电路等,特别适合大功率、多个高亮度 LED 灯串恒流驱动。芯片采用固定关断时间的控制方式,关断时间可通过外部电容进行调节,工作频率可根据用户要求而改变。芯片通过调节外置的电流采样电阻,能控制高亮度 LED 灯的驱动电流,使 LED 灯亮度达到预期恒定亮度。在EN端加 PWM 信号,还可以进行 LED 灯调光。芯片内部集成了VDD 稳压管和软启动以及过温保护电路,减少外围元件并提高系统可靠性。芯片采用SOP8封装。

产品特点

- □ 输入电压: 3.6-100V
- □ 输出电压可调: <120V
- □ 输出电流可调: 高达3A
- □ 工作频率可调: 高达1MHz
- □ 转换效率: 高达95%
- □ 外置MOS管
- □ 内置VDD稳压管
- □ 芯片过温保护
- □ 芯片供电欠压保护: 3.2V
- □ 软启动

应用领域

- 网络系统
- 医疗设备
- 航天工业
- 消费类电子产品
- LED 灯杯
- 电池供电的 LED 灯串
- 平板显示 LED 背光
- 大功率 LED 照明

管脚定义

TX6211-V1.0

功能说明

管脚号	字符	管脚描述		
1	GND	电源地		
2	EN	使能端,高电平有效,可做PWM调光		
3	COMP	频率补偿		
4	IFB	输出电流反馈		
5	DRV	外置MOS管栅极(G极)		
6	ICS	输入限流检测		
7	TOFF	关断时间设置		
8	VDD	电源输入		

典型应用

升压模式时,输出电流设置: R1

升压模式时,输入电流的设置: R2

降压模式时,输出电流设置: R3 R4 , 且 R3 = R4

TOFF关断时间设置: C1电容的取值,一般22-47PF

电感的取值:一般是

电路框图

极限参数

符号	描述	参数范围	单位
VDD	电源最大输入电压	5.5	V
DRV	DRV驱动端最大电压	VDD+0.3	V
Psop8	SOP8封装最大功耗	0.8	W
VMAX	EN、COMP、IFB、ICS、TOFF 脚	VDD+0.3	V
Ta	工作温度范围	-20~85	${\mathbb C}$
Tstg	存储温度范围	-40~120	${\mathbb C}$
Tsd	焊接温度(时间少于30秒)	240	V
Vesd	静电耐压值 (人体模型)	2000	V

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

电气特性 测试条件: VDD=5.5V, TA=25℃

符号	参数	条件	最小值	典型值	最大值	单位
电源						
VDD	VDD钳位电压	IVDD<10mA		5. 5		V
UVLO	欠压保护电压	VDD上升		3. 2		V
HYS	欠压保护迟滞			0.5		V
电源电流						
IOP	工作电流	Fop=200kHz		1.3		mA
IINQ	待机输入电流	无负载,EN为低电平		200		uA
输出电流	采样					
IFB	VFB脚电压		240	250	260	mV
关断时间						
TOFF_MIX	最小关断时间	T0FF无外接电容		620		ns
EN使能					ı	
Hen	高电平		0.4*VDD			V
Len	低电平				0.8	V
输入峰值	电流采样				г г	
Vcs_th	过流阀值		240	250	260	mV
外置MOS管	管,DRV驱动					
Trise	DRV上升时间	│ │ DRV脚接500P电容			50	ns
TFALL	DRV下降时间	21(1) [1] 12(0001 - [1-1]			50	ns
过温保护		,			, , , , , , , , , , , , , , , , , , , 	
TOP-TH	过温调节			135		$^{\circ}\! \mathbb{C}$

应用指南

功能介绍

通过IFB管脚采样LED输出电流。系统处于稳态时FB管脚电压VFB恒定在约250mV。

通过 ICS 管脚采样电感电流,实现峰值电流控制。此外, ICS 脚还用来限制最大输入电流,实现过流保护功能。

通过 TOFF 管脚的电容来设置系统关断时间。通过设定关断时间,可设置系统的工作频率。

通过TOFF管脚的电容来设置系统关断时间。通过设定关断时间,可设置系统的工作频率。

内部集成了 VDD 稳压管,以及软启动和过温保护电路。

输出电流设置

输出电流,通过连接在IFB脚的反馈电阻R2设置: $V_{IFB} = 0.25 V$ $R2 = \frac{V_{IFB}}{I_{OUT}}$

Toff的设定

关断时间可以由连接到TOFF脚的电容C1设定,TD=61ns。C1取值范围: 22-47PF

$$T_{OFF} = 0.51*150K\Omega(C_1 + 7.3pF) + T_D$$

系统工作频率

升压模式__Fs: VIN、VOUT 是输入输出电压

$$Fs = \frac{V_{IN}}{V_{OUT} * T_{OFF}}$$

降压模式__FS: VIN、VOUT 是输入输出电压

$$F_S = \frac{V_{IN} - V_{OUT}}{V_{IN} * T_{OFF}} * T_{OFF}$$

电感取值

升压模式:

流过电感的纹波跟电流的大小有关,工作于连续模式时,由以下确定:

$$\Delta IL = \frac{V_{OUT} - V_{IN}}{L} * T_{OFF}$$

增大电感值, 纹波电流会变小。

连续模式下电感的峰值电流:

$$\Delta I_{PK} = \frac{Vo*I_{LED}}{V_{IN}*\eta} + \frac{1}{2}\Delta I_{L}$$

电感电流工作在,连续模式和非连续模式下:

$$\Delta Icri = \frac{V_{IN} * (V_{OUT} - V_{IN}) * T_{OFF}}{2V_{OUT} * I_{LED}}$$

电感值大于Icri是连续模式,小于是非连续模式。

在电感选择时,通常要求电感的饱和电流要大于电感峰值电流的1.5倍以上。同时应选择ESR值小的功率电感,在大电流下,电感的ESR值会影响效率。

降压模式:

流过电感的纹波跟电流的大小有关,工作于连续模式时,由以下确定:

$$I_{PK} = I_{LED} + \frac{1}{2} \Delta I_L$$

RCS设置

需合理设置RCS电阻阻值,以防止在正常负载下因为输入限流而限制输出功率 02

$$R_{CS} \leq \frac{0.2}{\frac{V_{OUT} * I_{LED}}{\eta * V_{IN}} + \frac{V_{OUT} - V_{IN}}{2L} * T_{OFF}}$$

n 典型值: 90%, 应在最低输入电压下计算得到 RCS 值。系统最大峰值电流由RCS限定:

$$I_{PK} \le \frac{0.25V}{R_{CS}}$$

降压模式时: 通过 电阻RCS1,、RCS2 设定输出电流,一般RCS1 = RCS2

MOS管选择

MOS管的耐压,一般要求耐压高过最大输出电压的1.5倍以上。其次,根据驱动LED电流的大小以及电感最大峰值电流来选择MOS管的IDS电流。一般MOS管的IDS最大电流应是电感最大峰值电流的2倍以上。此外,MOS管的导通电阻RDSON要小,RDSON越小,损耗在MOS管上的功率也越小,系统转换效率就越高。另外,高压应用时应注意选择阈值电压在2.5V以内的MOS管。芯片的电源电压决定DRV的驱动电压。通常芯片的电压为5.5V,所以应保证MOS管在VGS电压等于5.5V时导通内阻足够低。

供电电阻取值

VDD的取值为5.5V, IVDD取值为2mA, VIN为输入电压, 当开关频率设置得比较高时, 芯片工作电流会加大, 需适当减小RVDD的取值。芯片内部的稳压管, 最大钳位电流不超过 10mA, 应注意RVDD的取值不能过小, 以免流入VDD的电流超过允许值, 否则需外接稳压管钳位。

$$R_{VDD} = \frac{V_{IN} - VDD}{I_{VDD}}$$

降压模式时:

电阻RVDD提供启动电流,稳态下主要通过输出辅助供电,辅助电阻的取值计算为:

$$R_{AUX} = \frac{V_{LED} - 6}{I_{VDD}} * \frac{V_{IN} - V_{LED}}{V_{LED}}$$

IVDD典型值取值为3mA。当开关频率设置的较高或者MOS管的输入电容较大时,芯片工作电流会增大,要相应减小供电电阻取值。芯片内的稳压管最大电流不超过10mA,否则需要外接稳压管钳位

过温保护

当芯片温度过高时,系统会限制输入电流峰值,典型情况下当芯片内部温度超过 135 度以上时,过温调节开始起作用:随温度升高输入峰值电流逐渐减小,从而限制输入功率,增强系统可靠性。

封装信息 ESOP8

字符	公制		英制	
	最小	最大	最小	最大
А	1.35	1.75	0.053	0.069
A1	0.05	0.25	0.004	0.01
A2	1.35	1.55	0.053	0.061
b	0.33	0.51	0.013	0.02
С	0.17	0.25	0.006	0.01
D	4.7	5.1	0.185	0.2
D1	3.202	3.402	0.126	0.134
E	3.8	4	0.15	0.157
E1	5.8	6.2	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	1.27		0.05	
L	0.4	1.27	0.016	0.05
θ	0°	8°	0°	8°

