Práctica 2: Lógica Digital - Combinatorios

Gustavo Hurovich

Organización del Computador I DC - UBA

2017 - Segundo Cuatrimestre

Menú de hoy

Para hoy tenemos...

- Compuertas
- Tablas de Verdad
- Álgebra de Boole + Propiedades
- Ejercicios
- ¡Más ejercicios!

Notación

$$A + B \equiv A \ OR \ B$$

 $AB \equiv A.B \equiv A \ AND \ B$
 $\overline{A} \equiv NOT \ A$

Propiedades

Identidad	1.A = A	0+A=A	
Nulo	0.A = 0	1 + A = 1	
Idempotencia	A.A = A	A + A = A	
Inverso	$A.\overline{A}=0$	$A + \overline{A} = 1$	
Conmutatividad	A.B = B.A	A+B=B+A	
Asociatividad	(A.B).C = A.(B.C)	(A + B) + C = A + (B + C)	
Distributividad	A + (B.C) = (A + B).(A + C)	A.(B+C) = A.B + A.C	
Absorción	A.(A+B)=A	A + A.B = A	
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$	

Tarea: ¡Demostrarlas!

Ejercicio I

Dada la siguiente tabla de verdad:

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 1 Escribir una función booleana a la que representa.
- ② Implementar dicha función usando a lo sumo una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT

Ejercicio I

Solución:

Como suma de productos:

$$(\overline{A}.\overline{B}.C) + (\overline{A}.B.C) + (A.B.C)$$

Ejercicio I

Solución:

$$(\overline{A}.\overline{B}.C)+(\overline{A}.B.C)+(A.B.C)\longrightarrow \text{Aplicamos la prop. distributiva}$$
 $((\overline{A}.\overline{B})+(\overline{A}.B)+(A.B)).C\longrightarrow \text{Distributiva}$ $((\overline{A}.\overline{B})+(\overline{A}+A).B).C\longrightarrow \text{Inverso}$ $((\overline{A}.\overline{B})+1.B).C\longrightarrow \text{Identidad}$ $((\overline{A}.\overline{B})+B).C\longrightarrow \text{Distributiva}$ $((\overline{A}+B).(\overline{B}+B)).C\longrightarrow \text{Inverso}$ $((\overline{A}+B).C).C\longrightarrow \text{Inverso}$ $((\overline{A}+B).C).C\longrightarrow \text{Inverso}$ $((\overline{A}+B).C).C\longrightarrow \text{Identidad}$ $(\overline{A}+B).C$

La implementación sería:

Ejercicio II - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o a derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. En otras palabras, un shift izq-der de k-bits es un circuito de k+1 entradas $(e_k,...,e_0)$ y k salidas $(s_{k-1},...,s_0)$ que funciona del siguiente modo:

- Si $e_k = 1$, entonces $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
- Si $e_k = 0$, entonces $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Ejemplos:

Ejercicio II - Solución

Solución:

Ejercicio III - Sumador Simple

Armar un **sumador de 1 bit**. Tiene que tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución:

Ejercicio III - Sumador Simple - Segunda parte

En un **sumador de 1 bit** se observa inicialmente que la entrada A vale 0 y la B vale 1. En el tiempo cero, ambas pasan a valer 0; a los 20 ns ambas pasan a valer 1; 20 ns más tarde vuelven ambas a cero y así sucesivamente.

Sabiendo que las compuertas AND y XOR tienen un retardo de 15 ns, realizar un diagrama de tiempos del circuito.

Moraleja: NO podemos considerar válido el output de un componente antes de que se cumpla su tiempo de propagación.

Ejercicio IV - Sumador Completo

Teniendo dos sumadores simples (de 1 bit) y sólo una compuerta a elección, arme un **sumador completo**. Tiene 2 entradas de 1 bit y una tercer entrada interpretada como C_{In} , tiene como salida C_{Out} y S.

Solución:

Ejercicio V - Sumador Completo de 3 bits

Armar un sumador completo de 3 bits. Solución:

¡Tarea!

Más circuitos combinatorios!

<u>Decodificador de n bits:</u> Tiene n entradas y 2^n salidas. Sea k el número representado en binario en la entrada del decodificador, la salida e_k tendrá un uno lógico, mientras que para todas las demás señales de salida habrá un cero lógico.

<u>Codificador de n bits</u>: Tiene n entradas y $log_2(n)$ salidas. En la salida muestra en binario el número de la entrada que está levantada. De haber más de una o ninguna, el comportamiento del circuito dependerá de la implementación del fabricante.

Multiplexor de n entradas: Tienen n entradas, una salida y $log_2(n)$ señales de control. Mediante las señales de control se indica cuál entrada es requerida en la salida.

Demultiplexor de n salidas: Tienen n salidas, una entrada y $log_2(n)$ señales de control. Igual que el multiplexor, pero elijo mediante las señales de control por cuál señal de salida muestro la entrada.

La práctica...

- Con lo visto hoy pueden realizar toda la parte A de la práctica 2.
- Pueden usar el Logisim para probar sus circuitos.

Bibliografía^l

- Linda Null & Julia Lobur: The Essentials of Computer Organization and Architecture, Chapter 3
- Andrew S. Tanenbaum & Todd Austin: Structured Computer Organization, Chapter 3
- Curiosidad para chusmear: Charles Petzold: Code: The Hidden Language of Computer Hardware

¿Y ahora?

Lo que viene: Martes 28 de agosto a las 17hs tendremos el primer taller de la materia. ¡Es obligatorio! (Y re divertido)

¡Eso es todo amigos!

¿Preguntas?

