Vytěžování dat

Filip Železný

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA)

25. března 2009

Metafora pro tuto přednášku

Metafora pro tuto přednášku

- Zajímá nás, jak student umí látku.
- Chybovost: Err
 - % chybných odpovědí na všechny možné otázky z dané látky

Statistický odhad

- Chybovost Err můžeme odhadnout zkouškou
 - m vybraných otázek ze všech otázek látky

Statistický odhad

- Chybovost Err můžeme odhadnout zkouškou
 - m vybraných otázek ze všech otázek látky
- Předpokládejme, že otázky jsou vybrány náhodně
 - tzv. iid výběr: všechny z původního pr. rozdělení a na sobě nezávisle
- "Spravedlivá zkouška"

Nevychýlený odhad

- ullet Výsledek zkoušky e je náhodná veličina s rozdělením P(e)
- Střední hodnota $ar{e} = \sum_e e \cdot P(e)$

Nevychýlený odhad

- ullet Výsledek zkoušky e je náhodná veličina s rozdělením P(e)
- Střední hodnota $\bar{e} = \sum_e e \cdot P(e)$
- ullet $ar{e} = \mathit{Err}$: e je **nevychýleným** odhadem Err

Statistický odhad

• Předpokládejme, že schválně vybíráme těžké otázky.

Vychýlený odhad

- $\bar{e} \neq Err$: e je **vychýleným** odhadem Err
- "Nespravedlivá zkouška"

• Skupina studentů píše spravedlivou zkoušku

- Skupina studentů píše spravedlivou zkoušku
- ullet Vybíráme **náhodného** studenta č. i s výsledkem zkoušky e_i
- Je e; nevychýlený odhad Err;?

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

- Skupina studentů píše spravedlivou zkoušku
- ullet Vybíráme **náhodného** studenta č. i s výsledkem zkoušky e_i
- Je ei nevychýlený odhad Erri? ANO

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ● りへで

- Skupina studentů píše spravedlivou zkoušku
- ullet Vybíráme studenta č. j s **nejlepším** výsledkem zkoušky e_j
- Je e_i nevychýlený odhad Err_i?

- Skupina studentů píše spravedlivou zkoušku
- ullet Vybíráme studenta č. j s **nejlepším** výsledkem zkoušky e_j
- Je e_j nevychýlený odhad Err_j? NE!

Filip Železný (ČVUT)

Vytěžování dat

25. března 2009

7 / 34

Výchylka zavedená výběrem

- Výběrem nejlepšího e; zavádíme výchylku!
- ej již není nevychýleným odhadem Errj
- přesto, že student j psal spravedlivou zkoušku

8 / 34

• Jak získat nevychýlený odhad pro již vybraného nejlepšího studenta?

- Jak získat nevychýlený odhad pro již vybraného nejlepšího studenta?
- Napíše novou zkoušku, otázky vybrány opět iid, nezávisle na předchozí zkoušce
- ullet Její výsledek e_j' je nevychýleným odhadem E_j

Filip Železný (ČVUT) Vytěžování dat 25. března 2009 9 / 34

Student Klasifikátor

Student Klasifikátor

Chybovost studenta Err Minimalizovaná výběrem studenta nejlépe ovládajícího látku. V praxi obvykle nevíme, který to je. Skutečná chyba klasifikátoru Err Minimalizovaná výběrem klasifikátoru maximalizující aposteriorní pravděpodobnost. V praxi obvykle nevíme, který to je.

Student Klasifikátor

Chybovost studenta Err Minimalizovaná výběrem studenta nejlépe ovládajícího látku. V praxi obvykle nevíme, který to je.

Chyba u zkoušky e Podíl špatně zodpovězených otázek zkoušky. Nevychýlený odhad Err, pokud dle e nevybíráme Skutečná chyba klasifikátoru Err Minimalizovaná výběrem klasifikátoru maximalizující aposteriorní pravděpodobnost. V praxi obvykle nevíme, který to je.

Trénovací chyba e Podíl instancí chybně klasifikovaných instancí v trénovacích datech. Nevychýlený odhad Err, pokud dle e nevybíráme

Student Klasifikátor

Chybovost studenta Err Minimalizovaná výběrem studenta nejlépe ovládajícího látku. V praxi obvykle nevíme, který to je.

Chyba u zkoušky e Podíl špatně zodpovězených otázek zkoušky. Nevychýlený odhad Err, pokud dle e nevybíráme Skutečná chyba klasifikátoru Err Minimalizovaná výběrem klasifikátoru maximalizující aposteriorní pravděpodobnost. V praxi obvykle nevíme, který to je.

Trénovací chyba e Podíl instancí chybně klasifikovaných instancí v trénovacích datech. Nevychýlený odhad Err, pokud dle e nevybíráme

Výběr studenta Trénování (= výběr) klasifikátoru

Množství studentů, z nichž vybíráme

Množství klasifikátorů, z nichž vybíráme. Obykle úměrné maximální **složitosti** klasifikátorů, kterou připouštíme

12 / 34

Nová zkouška pro nevychýlený odhad Err vybraného studenta Nová data, pro nevychýlený odhad skutečné chyby Err vybraného klasifikátoru

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ からぐ

Počet otázek ve zkoušce

Množství trénovacích dat

Testovací data

- Nová data pro nevychýlený odhad (tzv. testovací data) obvykle nemáme k dipozici
- Musíme použít část původních dostupných dat (a tím přijít kus trénovacích)

- Obvykle např. 70% vs. 30%
- "Horší" odhad: stále nevychýlený, ale větší rozptyl

Rozptyl odhadu

Velký rozptyl: **horší** nevychýlený odhad

Rozptyl odhadu

Malý rozptyl: lepší nevychýlený odhad

Křivka učení

Populární pojetí

Křivka učení

ullet Skutečná přesnost 1-Err klasifikátoru v závislosti na množství trénovacích dat

◆ロ → ← 同 → ← 三 → へ ○ へ ○ へ ○

Křivka učení

- Odhadnutná přesnost 1 e klasifikátoru (e na testovacích datech)
- Čím více trénovacích, tím méně testovacích, tím vyšší rozptyl e

◆ロト ◆団ト ◆差ト ◆差ト 差 めのぐ

Filip Železný (ČVUT) Vytěžování dat 25. března 2009 16 / 34

Stratifikované dělení

Např. pro data se třemi třídami

• Stejné poměry velikostí tříd v trénovacích i testovacích datech

Souhrn

- Předpokládejme, že všechny chyby jsou stejně drahé.
- *Přednáška 2:* Optimální je klasifikace dle maximální aposteriorní pravděpodobnosti $P_{u|\vec{p}}(y|\vec{x})$.
- $(u, \vec{p} \dots n.v. třídy, resp. příznaků)$
 - Minimalizujeme tak skutečnou chybu Err

Souhrn

- Předpokládejme, že všechny chyby jsou stejně drahé.
- *Přednáška 2:* Optimální je klasifikace dle maximální aposteriorní pravděpodobnosti $P_{u|\vec{p}}(y|\vec{x})$.
- $(u, \vec{p} \dots n.v. třídy, resp. příznaků)$
 - Minimalizujeme tak skutečnou chybu Err
- ullet V praxi nedosažitelné, obvykle neznáme rozdělení $P_{u|ec{p}}$
- Přednáška 3 a 4: Vybíráme tedy z množiny klasifikátorů (např. všech lineárních) ten s nejmenší chybou e na trénovacích datech
 - Skutečnou chybu Err pak odhadneme na testovacích datech

Odhad rizika

- Předpokládejme, že chyby jsou různě drahé a máme zadánu ztrátovou funkci L.
- Přednáška 2: Optimální je klasifikace dle minimálního rizika

$$r_{u|\vec{p}} = \sum_{t} L(t, y) P_{u|\vec{p}}(t|x)$$

ullet V praxi nedosažitelné, obvykle neznáme rozdělení $P_{u|ec{p}}$

Odhad rizika

 Na trénovací množině můžeme odhadnout riziko analogicky jako odhadujeme chybu

$$\frac{1}{m}\sum_{i=1}^m L(y_i,y_i')$$

- y_i ... skutečná třída instance i,
- y_i ... třída instance i určená klasifikátorem
- ▶ *m* . . . počet trénovacích dat
- I další postup analogický
 - vybíráme z množiny klasifikátorů (např. všech lineárních) ten s nejmenším odhadnutým rizikem na trénovacích datech
 - skutečné riziko pak odhadneme na testovacích datech.

Složky chyby při binárním problému

- Předpokládejme binární klasifikační problém: právě dvě třídy: ano, ne.
- Odhad rizika je potom:

$$\frac{1}{k} \sum_{i=1}^{m} L(y_i, y_i') = \frac{1}{k} \sum_{i=1}^{k} L(\mathsf{ano}, \mathsf{ne}) + \frac{1}{m-k} \sum_{i=k+1}^{m} L(\mathsf{ne}, \mathsf{ano})$$

- kde instance 1...k jsou klasifikované jako ano, ale ve skutečnosti jsou ne
 - tzv. false positives (FP)
- \bullet a instance $k+1\dots m$ jsou klasifikované jako ne, ale ve skutečnosti jsou ano
 - tzv. false negatives (FP)
- Analogicky: **true positives** (ano, ano) a **true negatives** (ne, ne). Ty se v riziku neprojeví, neboť L(y, y) = 0.

Matice záměn

	klasifikace	
skutečnost	ano	ne
ano	TP	FN
ne	FP	TN

- TP počet true positives
- FP počet false positives
- TN počet true negatives
- FN počet false negatives

Poměrné veličiny v [0;1]

	klasifikace	
skutečnost	ano	ne
ano	TP	FN
ne	FP	TN

- TPr = TP/(TP + FN) true positive rate (recall, sensitivity)
- FPr = FP/(FP + TN) false positive rate
- TNr = TN/(TN + FP) true negative rate (specificity)
- FNr = FN/(TN + FP) false negative rate
- Pre = TP/(TP + FP) precision

Výběr klasifikátoru

- Při binárních klasifikačních problémech vybíráme model na základě kompromisu mezi dvěma veličinami z {TPr, FPr, TNr, FNr, Pre}.
 Např.
 - odhad chyby Err je FPr + FNr
 - ▶ odhad rizika r je $a \cdot FPr + b \cdot FNr$, kde a a b jsou koeficienty úměrné L(ano, ne) resp L(ne, ano).
- Proč "kompromis"?
 - Každou jednotlivou veličinu z {TPr, FPr, TNr, FNr, Pre} Ize minimalizovat triválně!
 - ► Jak?
- tzv. míra F1 (F1 measure)

$$\frac{2 \cdot Pre \cdot Tpr}{Pre + Tpr}$$

 Kompromis mezi Precision a Recall, vhodná pro data s velmi nerovnoměrným rozdělením tříd

Přizpůsobení klasifikátoru

- TPr naučeného klasifikátoru lze obvykle snadno zvýšit (snížit) na úkor (ve prospěch) FPr
- Např pro lineární klasifikátor namísto

$$ax_1 + bx_2 + c > 0$$

uvažujeme

$$ax_1 + bx_2 + c > \theta$$

- Dostaneme parametrizovaný klasifikátor $k_{ heta}(ec{x}) \mapsto \{ ext{ano,ne}\}$
- ullet Mějme dva různé parametrizované klasifikátory $k_{ heta},~k_{ heta}'$
- Který z nich je lepší?
 - Pro každé θ to může být jinak!

Analýza ROC

- "Receiver Operating Characteristics"
- Křivka složená ze všech bodů (Fpr, Tpr) pro měnící se θ
- AUC (Area Under ROC Curve) = měřítko nezávislé na θ

Analýza Precision-Recall

• Analogicky křivka Precision vs. Recall

Analýza ROC pro konečnou množinu klasifikátorů

- Kvalita množiny modelů ≈ plocha pod konvexním obalem bodů
- AUCH Area Under ROC Convex Hull

Připomínka

- Všechny dosud jmenované veličiny
 - FP, TP, TN, FN
 - ► TPr, FPr, TNr, FNr, Pre
 - ▶ e, F1
 - ▶ ROC křivka, AUC, AUCH, Precision-Recall křivka

můžeme počítat jak na trénovacích, tak na testovacích datech.

- Na trénovacích: vychýlené odhady skutečnosti!
 - Využijeme pouze pro výběr klasifikátoru
- Na testovacích: nevychýlené odhady skutečnosti!
 - Využijeme pro odhad skutečné kvality klasifikátoru

Náhodné rozdělení na trénovací a testovací data

Jiné rozdělení na trénovací a testovací data, jiný odhad

Jiné rozdělení na trénovací a testovací data, jiný odhad

Šlo by snížit rozptyl zprůměrováním odhadů z několika různých train/test rozdělení?

Křížová validace

- n-složková křížová validace
- Rozlož trénovací množinu X na n stejně velkých složek X_i (folds) náhodným výběrem

$$X = \cup_{i}^{n} X_{i}$$

$$X_i \cap X_j = \emptyset$$

- Pro i = 1 ... n
 - ▶ Sestroj klasifikátor na $X_1 \cup ... X_{i-1} \cup X_{i+1} ... X_n$
 - Spočítej veličinu na X_i
- Zprůměruj výsledky: $1/n \sum_{i} X_{i}$

Křížová validace

- Pro každé i jiný klasifikátor!
 - ▶ Neodhadujeme veličinu pro konkrétní klasifikátor, ale pro

Křížová validace

- Pro každé i jiný klasifikátor!
 - Neodhadujeme veličinu pro konkrétní klasifikátor, ale pro algoritmus, který klasifikátory konstruuje
- Stratifikovaná křížová validace
 - Rozdělení četnosti tříd totožné v každé složce
 - Viz stratifikované rozdělení na train/test
- Křížová validace leave-one-out
 - extrémní případ: počet složek = počet dat
- Otázky
 - Odhadujeme-li chybu křížovou validací, jak závisí odhad na počtu složek?
 - Je odhad chyby křížovou validací nevychýleným odhadem chybovosti klasifikátorů konstruovaných validovaným algoritmem?

Výběr a testování

K.V. můžeme použít pro výběr algoritmu resp. parametru

- např. pro stanovení nejlepšího k pro klasifikaci dle sousedů
- nebo pro stanovení stupně polynomu pro polynomiální klasifikaci
- nebo kombinace obojího atd.

Provedeme K.V. pro všechny 'soutěžící' verze a vybereme verzi s nejlepším výsledkem K.V.

Výběr a testování

Úplný postup pro výběr algoritmu křížovou validací, získání klasifikátoru a odhad jeho kvality

O Rozdělíme data na Train / Test

Křížovou validací na Train vybereme algoritmus

3 Zvoleným algoritmem sestrojíme klasifikátor na Train

Jeho kvalitu odhadneme na Test

