

Anna Lorenc (Ania) al16@sanger.ac.uk

Aims for this lecture

- Recap of the technology
- Understand challenges & ways to solve them
- Steps from sequenced reads to cell-level data
- From cell-level data to better cell level data

Principles

From FASTQ to expression matrices

Better expression data

3 parts – questions after each

We want to know expression of all-many genes in all-many cells

...to understand how cells and tissues differ between each other

...to understand how cells and tissues change in a perturbation (experiment, disease, development)

We want to know expression of many genes in many cells

@A00815:607:H5V32DRX3:1:2101:1108:1000 2:N:0:ACAATGTGAA+TAACGGTACG GAACCACTGAGCACAAGTTTCTTCATCGTTCCTCAGATTCAGTAACATTATTATATTTTAGACAATCCCCGTGAAGGCCAATTCATCAGTG ÄTGTGACTATAGGCTCATAGCCATCTCATTATGCAAAATGTATTCATACTGTCTTTGTATGTCTCAATAGTCCTCCAGATATACGGCGGT

Challenges

- very little RNA in each cell
- PCR steps amplification bias
- separate cells so we can measure each cell separately
 - → cells difficult to separate, fragile
 - → empty droplets/multiplets
- cells dying/bursting during the procedure
- very wide dynamic range of expression of genes
- not enough of cells of a specific type

- Gentle dissociation protocols
- Use nuclei instead of cells
- Assess viability/sort
- Use only viable cells

And presence of debris is a challenge because...

each cell

dissolve, sort

- wells
- microwells (BDRhapsody, Hive)
- droplets (10x)
- combinatorial tags (PARSE, Scala)

tissue

Prepare: dissolve, sort

Put cells in isolation Add a unique tag to each cell

- wells
- microwells (BDRhapsody, Hive)
- droplets (10x)
- combinatorial tags (PARSE, Scala)

tissue

Prepare: dissolve, sort

Put cells in isolation Add a unique tag to each cell Cell barcodes are included in cDNA during reverse transcription

- Each cell has very little mRNA → amplification
- PCR bias → UMI included when cDNA constructed

- Each cell has very little mRNA → amplification
- PCR bias → UMI included when cDNA constructed

Drop outs → sparsity of the data

Many platforms

AB1_DNA_tag

AB1_DNA_tag

AB1_DNA_tag

Example of specific platform

principles 10x

UMI234

5'GEX

principles 10x

Inside individual GEMs

GEX library

principles 10x

Inside individual GEMs

Read 1 10x UMI TSO Read 1 10x UMI TSO Capture Feature Seq Barcode Capture Transcript Extension

Read 1 10x UMI Capture Feature Read 2N BC Seq Barcode

DNA from cell surface protein Feature Barcode

Pooled cDNA processed in bulk

How deep to sequence? ← Depends on the technology & biological questions

scRNAseq

CITEseq cell hashtags

- 10-15K reads per cell
- 50K reads per cell
- Saturation: the bottleneck is the amount of starting RNA
- Trade offs: more transcripts, more cells, more biological replicates?
- Less complexity
- Small pool of possible sequences
- Few types of reads per cell (depends on the number of Abs)

questions

Pool as much as possible, as soon as possible

- Reduce batch effect
- Identify multiplets
- Pool samples to reach minimal cell numbers

Use samples' genotypes

Fixed cells

PARSE SCALE Bio

FASTQ files

- Done by proprietary software/free alternatives available
- Basis for any downstream analysis
- Some steps might be improved with additional communitydeveloped software

	cell1	cell2	cell3
gene1			
gene2			
gene3			

	cell1	cell2	cell3
abs1			
abs2			
abs3			

	cell1	cell2	cell3
#1			
#2			
#3			

10 X Cell Ranger A set of analysis pipelines that perform sample demultiplexing, barcode processing, single cell 3' and 5' gene counting, V(D)J transcript sequence assembly and annotation, and Feature Barcode analysis from single cell data.

- Reads with valid barcodes
- Map to a genome
- Exclude/annotate intergenic reads
- Align to a transcriptome
- Transcriptomic reads
- UMI correction
- exclude low support molecules/resolve duplicated molecules (barcode+UMI+gene)

	barc1	barc2	barc3
gene1			
gene2			
gene3			

Cell Ranger

Is barcode a cell or an empty droplet?

- → Order barcodes by UMI counts
- → Barcode rank plot identify the cutoff

	barc1	barc2	barc3
gene1			
gene2			
gene3			
Total			

Ambient RNA

Cell Ranger

Summary of reads/transcripts/cells...

Expression matrices

	cell1	cell2	cell3
gene1			
gene2			
gene3			

	cell1	cell2	cell3
#1			
#2			
#3			

	cell1	cell2	cell3
abs1			
abs2			
abs3			

Not ready for comparing gene expression etc. yet!

Demultiplexing – if cell hashtags Demultiplexing by genotypes

Cell-level QC and removal of bad quality cells

Additional cleanup – removal of ambient RNA Alternative cell calling Additional cleanup of abs-based data

questions

Collab notebooks

Better expression data

Demultiplexing of cell hashing

- Within Cell Ranger
- Might be done also from Seurat/scanpy environment
- Per barcode signal from all possible hashtags
- Winning hashtag per cell/if too mixed → a multiplet

	#tag1	#tag2	#tag3	#tag4
Cell1	4071	4	5	1
Cell2	3	2380	16	2
Cell3	1341	5	21	7
Cell4	5	4	5434	8
Cell5	4	2	6	1474
Cell6	4	1203	3	1020

Seurat
Scanpy
CellRanger

Demultiplexing by genotypes

If genotypes available +++

For each barcode: SNP calling from BAM files Minimal input: a reference list of SNPs (eg 1KG data), expected number of individuals

Demuxafy

Neavin, D., Senabouth, A., Arora, H. et al. Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and doublet detection methods. *Genome Biol* **25**, 94 (2024)

Better expression data

Multiplets

← Homotypic and heterotypic →

How to identify

- Genotypes
- Hashtags
- Extremely high number of expressed genes/UMI count
- Impossible biology
 - TCRs
 - Mutually exclusive proteins/genes CD3, CD19, CD14, CD16

Modelling artificial doublets from the actual experiment data, using this to define doublets

Demuxafy

Method I recommend: scdblFinder Germain P, Lun A, Garcia Meixide C, Macnair W, Robinson M (2022). "Doublet identification in single-cell sequencing data using scDblFinder."

f1000research. doi:10.12688/f1000research.73600.2.

Seurat Scanpy Standalone software

Damaged, early burst cells

Relatively

- More of mt transcripts
- Less of cytoplasmic transcripts (ribosomal RNA)
- More of nuclear transcripts (PBMCs: IncRNA MALAT)
- Lower number of detected genes
- Lower total number of transcripts

Better expression data

plots: Ziying Ke

questions

Batch effects

Seurat/Scanpy/etc, many methods

QC and filtering → post-CellRanger

Goals:

Exclusion of non-cells
Exclusion of dying cells
Exclusion of doublets

Debris - high background VIABILITY!

Iterative process: QC filter \rightarrow normalise \rightarrow UMAP, annotate \rightarrow redo QC filter \rightarrow normalise \rightarrow UMAP, annotate

Seurat/Scanpy/etc, software for doublet detection

UMAP, cell annotation, DGE

Goals:

Representation of relationships between cells in 2D Identification of similar cells
Cell annotation
Downstream analysis

DimRed and clustering are dominated by the genes which vary most between cells \rightarrow one can use just these genes

Genes to exclude from the analysis: TCRs, BCRs

Seurat/Scanpy/etc