УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники
Направление подготовки 09.03.04 Программная инженерия
Дисциплина «Моделирование»

Курсовая работа

Вариант 54/15

Выполнили Крюков А. Ю. Патутин В. М. Митрофанов Е. Ю. Р34101

> Преподаватель Алиев Т. И.

Санкт-Петербург 2022 г.

Этап 1	4
Цель работы	4
Порядок выполнения работы	4
Содержание отчета	5
Выполнение	6
	ерсии,
	иации
заданной числовой последовательности доверительные интер для оценки математического ожидания с доверитель	-
вероятностями 0,9; 0,95 и 0,99.	6
Графики заданной числовой последовательности	8
Первые 10 значений	8
Первые 50 значений	9
Первые 100 значений	10
Первые 200 значений	11
Первые 300 значений	12
Результаты автокорреляционного анализа.	13
Плотность распределения для заданной чис	ловой
последовательности	14
Параметры, рассчитанные по двум начальным моментам,	
аппроксимирующего закона распределения данной случ	
последовательности.	17
Числовые характеристики сгенерированной случайной чис последовательности	:ловои 19
Автокорреляционный анализ сгенерированной чис последовательности.	ловой 21
Анализ распределения числовой последователь	ности
сгенерированных чисел	22
Корреляционный анализ двух числовых последовательностей.	24
Вывод	25
Этап 2	26
Цель работы	26
Порядок выполнения работы	26
Исходные данные	26
Выполнение	27
Система 1	27
Описание системы	27
Перечень состояний	28

Граф переходов системы	30
Характеристики системы	33
Система 2	34
Описание системы	34
Перечень состояний	35
Граф переходом системы	36
Характеристики системы	39
Сравнение	40
Сравнительная диаграмма рассчитанных характеристик систем	40
Сравнение характеристик	40
Вывод	41
Этап 3	42
Цель работы	42
Задание	42
Исходная модель	44
Выполнение	45
Результаты имитационного моделирования	45
Сравнение результатов имитационного и аналитич моделирования	еского 45
Исследование влияния коэффициента загрузки на длител переходного режима	ьность 47
Изменение средней длительности обслуживания	47
Изменение среднего интервала между заявками	49
Итоги исследования	51
Исследование влияния законов распределения интервалов заявками в потоке на среднее время ожидания, среднее пребывания заявок в системе и вероятность потерь	
Простейший поток	53
Заданная трасса	54
Заданная трасса	56
Итоги исследования	57
Исследование влияния емкости накопителя на систему	60
Установившейся режим при нагрузке 0.5	60
Установившейся режим при нагрузке 0.9	62
Выводы	65

Этап 1

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной исходной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности (случайности и периодичности на основе корреляционного анализа), а также аппроксимация закона распределения исходной последовательности по двум числовым моментам случайной величины.

Порядок выполнения работы

В процессе исследований необходимо выполнить обработку заданной числовой последовательности для случаев, когда путем измерений получено 10, 50, 100, 200 и 300 значений случайной величины, а именно:

- оценить числовые моменты заданной числовой последовательности:
 - математическое ожидание;
 - дисперсию;
 - среднеквадратическое отклонение;
 - коэффициент вариации;
- рассчитать доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99;
- построить график значений для заданной числовой последовательности и определить ее характер, а именно: является эта последовательность возрастающей/убывающей, периодической (при наличии периодичности оценить по графику длину периода);
- выполнить автокорреляционный анализ и оценить, можно ли заданную числовую последовательность считать случайной;
- построить гистограмму распределения частот для заданной числовой последовательности;
- выполнить аппроксимацию закона распределения данной случайной последовательности по двум начальным моментам, используя одно из следующих распределений в зависимости от значения коэффициента вариации:
 - равномерный;
 - экспоненциальный;
- нормированный Эрланга k-го порядка или гипоэкспоненциальный с заданным коэффициентом вариации;

- сгенерировать последовательность случайных величин в соответствии с полученным законом распределения, сравнить на графике с заданной последовательностью и оценить корреляционную зависимость сгенерированной и заданной последовательности случайных величин.

Результаты проводимых исследований рекомендуется представлять в виде таблиц, графиков (гистограмм).

На основе полученных промежуточных и конечных результатов следует сделать обоснованные выводы об исследуемой числовой последовательности, предложить закон распределения для ее описания и оценить качество аппроксимации этим законом.

Содержание отчета

- 1. оценки математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации заданной числовой последовательности (результаты в табл.1);
- 2. доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99 (результаты в табл.1);
- 3. график (график 1) значений заданной числовой последовательности с результатами анализа характера числовой последовательности (возрастающая, убывающая, периодическая и т.п.);
- 4. результаты автокорреляционного анализа (значения коэффициентов автокорреляции со сдвигом 1, 2, 3, ...), представленные как в числовом (таблица 2), так и графическом виде, и сформулировать обоснованный вывод о характере заданной числовой последовательности (можно ли ее считать случайной);
- 5. гистограмма распределения частот для заданной числовой последовательности (график 2);
- 6. параметры, рассчитанные по двум начальным моментам, и вид аппроксимирующего закона распределения данной случайной последовательности (равномерный; экспоненциальный; нормированный Эрланга; гипоэкспоненциальный; гиперэкспоненциальный);
- 7. результаты сравнения сгенерированной в соответствии с полученным аппроксимирующим законом распределения последовательности случайных величин и заданной числовой последовательности путем:
- 1. сравнения плотности распределения аппроксимирующего закона с гистограммой распределения частот для исходной числовой последовательности (график 3);
- 2. расчета числовых характеристик сгенерированной в соответствии с аппроксимирующим законом распределения случайной

последовательности: математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации (результаты в табл.3) и коэффициентов автокорреляции при разных значениях сдвигов (результаты в табл.4) и сравнения полученных значений со значениями, представленными в табл.1 и табл.2; проведения корреляционного анализа сгенерированной в соответствии с аппроксимирующим законом распределения последовательности случайных величин и исходной числовой последовательности (табл.4).

Выполнение

3.

Оценки математического ожидания, дисперсии, среднеквадратического отклонения, коэффициента вариации заданной числовой последовательности доверительные интервалы для оценки математического ожидания с доверительными вероятностями 0,9; 0,95 и 0,99.

В качестве оценки математического ожидания возьмем среднее арифметическое ряда.

Дисперсию рассчитываем по этой формуле:

$$\widetilde{D} = \frac{\sum_{i=1}^{n} (X_i - \widetilde{m})^2}{n-1}.$$

Оценка среднеквадратичного отклонения - корень из дисперсии.

Доверительный интервал:

$$\widetilde{\sigma}_{m} = \sqrt{\frac{\widetilde{D}}{n}} \quad \varepsilon_{p} = t_{p} \widetilde{\sigma}_{m}$$

Таблица 1 - Характеристики исходной числовой последовательности

Количество случайных величин	
------------------------------	--

	10,00	50,00	100,00	200,00	300,00
Мат. ож.	137,21	181,70	171,32	163,41	169,57
Дов. инт(0.9)	42,41	28,38	19,13	12,96	11,00
Дов. инт(0.95)	50,60	33,86	22,82	15,46	13,13
Дов. инт(0.99)	66,50	44,50	29,99	20,31	17,25
Дисперсия	6663,73	14921,52	13552,11	12436,55	13457,97
С.К.О	81,63	122,15	116,41	111,52	116,01
Коэф. вариации	0,59	0,67	0,68	0,68	0,68

По таблице видим, что с увеличением количества случайных величин доверительный интервал уменьшается, что логично — чем больше выборка, тем меньше математическое ожидание отличается от истинного. Также видим, что с увеличением доверительной вероятности доверительный интервал увеличивается, что тоже логично — чем надежнее мы хотим получить оценку математического ожидания, тем шире нам нужен интервал, в котором эта оценка должна быть.

Графики заданной числовой последовательности

Первые 10 значений

Первые 50 значений

Из графика видно, что ничего пока нельзя сказать о характере числовой последовательности.

Первые 100 значений

Первые 200 значений

Первые 300 значений

Результаты автокорреляционного анализа.

Рассчитаем коэффициенты автокорреляции

$$r_{Xk} \approx \frac{\text{cov}_{Xk}}{\sigma_X^2} \approx \frac{\sum_{i=1}^{n} (x_i - M[X])(x_{i+k} - M[X])}{\sum_{i=1}^{n} (x_i - M[X])^2}$$

Таблица 2. – Коэффициенты автокорреляции исходной числовой последовательности

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	0,090	0,032	0,082	0,015	-0,086	-0,036	-0,038	-0,122	0,162	0,018

К-т АК относительно параметра "Сдвиг ЧП"

Как видно из результатов, показанных в виде таблицы и графика, числовые последовательности слабо коррелируют, что говорит о случайности исходной числовой последовательности.

Плотность распределения для заданной числовой последовательности

Гистограмма распределения частот

Гистограмма частотного распределения с накоплением, отражающая функцию распределения случайных величин (Ось X - промежутки, ось Y - накопленная частота)

Плотность распределения

Из гистограммы можно лишь сказать, что в исходной последовательности, состоящей из чисел в интервале (7;651) преобладают числа в интервале (93;137) и что с ростом величины случайной величины ее частота уменьшается.

Параметры, рассчитанные по двум начальным моментам, и вид аппроксимирующего закона распределения данной случайной последовательности.

Т.к. коэффициент вариации 0 < v < 1, то используем используем для аппроксимации закона распределения данной случайной величины распределение Эрланга.

v = 0,68 - коэффициент вариации

М = 169,57 - математическое ожидание

k =]1/v^2 [= 3 - первый параметр распределения Эрланга

а =1/М= 0,006119696577 - второй параметр распределения Эрланга

Построим график плотности нормированного распределения Эрланга:

$$f_{k}(x) = \frac{ka(kax)^{k-1}e^{-kax}}{(k-1)!}$$

При таких параметрах график плотности распределения Эрланга выглядит так:

Построим график плотности вероятностей для исходного ряда (поделим интервальные частоты на количество чисел в ряду), и сравним с графиком плотности вероятностей аппроксимирующего распределения Эрланга:

Как можно видеть, графики практически совпадают, что означает верно проведенную аппроксимацию.

Числовые характеристики сгенерированной случайной числовой последовательности

Сгенерируем случайные числа с помощью excel(функция RAND). На основе выше полученных параметров нормированного распределения Эрланга получим случайную числовую последовательность, сгенерированную по аппроксимирующему исходную последовательность закону.

Получим формулу для генерации случайных чисел по нашему аппроксимирующему закону(нормированное распределение Эрланга).

Как входное значение возьмем ряд - случайных чисел, полученных при помощи функции RAND, то есть равномерно-распределенных в диапазоне [0; 1).

Нормированное распределение Эрланга представляет собой распределение суммы к независимых случайных величин, каждая из которых распределена по экспоненциальному закону с параметром kλ.

Известно, что из случайного числа с равномерным распределением в диапазоне [0; 1) можно генерировать числа, распределенные экспоненциально с параметром λ по формуле:

Тогда формула суммы к независимых случайных величин, каждая из которых распределена по экспоненциальному закону с параметром kλ, то есть формула для генерации случайных чисел, распределенных по нормированному закону Эрланга, может быть записана таким образом:

По этой формуле, используя полученные ранее параметры k и и сгенерированный ряд равномерно-распределенных чисел, получим ряд чисел, распределенных по нормированному закону Эрланга, аппроксимирующему исходный ряд.

Таблица 3. - Характеристики сгенерированной случайной числовой последовательности

	Количество случайных величин					
Характеристика	10,00	50,00	100,00	200,00	300,00	
Мат. ож.	176,56	173,91	168,51	168,69	167,98	
Дов. инт(0.9)	48,72	17,79	14,34	11,80	9,39	
Дов. инт(0.95)	58,13	21,23	17,11	14,08	11,20	
Дов. инт(0.99)	76,39	27,90	22,49	18,50	14,72	
Дисперсия	8794,57	5865,06	7620,43	10319,12	9798,98	
С.К.О	93,78	76,58	87,30	101,58	98,99	
Коэф. вариации	0,53	0,44	0,52	0,60	0,59	

Видим, что характеристики сгенерированной последовательности приближены к характеристикам исходной последовательности.

Автокорреляционный анализ сгенерированной числовой последовательности.

Таблица 4. - Коэффициенты автокорреляции сгенерированной числовой последовательности

Сдвиг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК	-0,09	-0,14	0,11	-0,01	0,00	-0,02	-0,02	-0,02	0,01	-0,01

К-т АК относительно параметра "Сдвиг ЧП"

Коэффициенты автокорреляции при разных значениях сдвигов аналогично таблице 2 лишь незначительно отличаются от 0.

Анализ распределения числовой последовательности сгенерированных чисел

Гистограмма частотного распределения с накоплением, отражающая функцию распределения случайных величин (Ось X - промежутки, ось Y - накопленная частота)

Плотность распределения

80

Гистограммы показывают схожесть плотности распределения функций (исходя из похожести гистограмм распределения частот), что говорит и схожести функций распределения последовательностей.

Корреляционный анализ двух числовых последовательностей.

Исследуем взаимосвязь исходного ряда и ряда случайных чисел, сгенерированных по аппроксимирующему исходный ряд закону.

Сравним коэффициенты автокорреляции двух последовательностей

К-т АК относительно параметра "Сдвиг ЧП"

Сравним частотное распределение рядов, отражающее плотность распределения

Плотность распределения

Исходя из приведенных выше графиков плотности распределения, гистограммы распределения частот и графиков коэффициентов автокорреляции, а также коэффициента корреляции данного и сгенерированного числовых рядов можем сделать вывод, что аппроксимирование было проведено успешно - ряды коррелируют.

Вывод

В ходе выполнения первого этапа были изучены методы оценки числовой последовательности и способы аппроксимации закона распределения по заданному набору данных.

В данном варианте был использован нормированный закон распределения Эрланга, по которому была сгенерирована числовая последовательность.

При сравнении последовательности набора данных и сгенерированных чисел, было выявлено небольшое отличие в распределении. Полученный коэф корреляции равен 0,075.

Этап 2

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Порядок выполнения работы

- Получить вариант работы.
- Построить графы переходов для заданных СИСТЕМЫ_1 и СИСТЕМЫ_2
- С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ_1 и СИСТЕМЫ_2
- Проанализировать характеристики функционирования системы
- Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

Исходные данные

- СИСТЕМА_1: 2 прибора, длительность обслуживания в одном из них распределена по закону Эрланга 2 порядка. Вероятности попадания заявки в 1 и 2 прибор равны 0.5. Очередь объемом 2 перед первым прибором, перед вторым накопителей нет.
- СИСТЕМА_2: 3 прибора. Вероятности попадания заявки в 1, 2 и 3 прибор: 0.5, 0.4 и 0.1 соотв. Очередь объемом 2 перед первым прибором, перед вторым и третьим накопителей нет
- Критерий эффективности: минимальное время пребывания в системе заявок
- Интенсивность входного потока: $0.6\ c^{-1}$
- Средняя длительность обслуживания: 10 сек

Таблица 1

Вариант	СИСТІ	EMA_1	сист	Критерий	
	П	EH	П	EH	эффект.
4	2 (E ₂)	2/0	3	2/0/0	(г)

Таблица 2

Номер варианта	Интенс. потока	Ср. длит. обслуж.	Вероятно	сти занятия п	рибора
	λ, 1/c	<i>b</i> , c	П1	П2	Пз
8	0,5	10	0,5	0,4	0,1

Выполнение

Система 1

Описание системы

Интенсивность обслуживания прибора: $\mu=\frac{1}{10c}=0.1~c^{-1}$ Интенсивность входного потока: $\lambda=0.6~c^{-1}$

Прибор 1, среднее время обслуживания в котором равно μ и распределено по закону Эрланга 2 порядка, представим в виде двух последовательных приборов с временем обслуживания 2μ . Граф переходов составим с учетом того, что в прибор 1.1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на приборе 1.2

Классификация каждого из приборов по Кендаллу:

- 1. $M/E_2/1/2$
- 2. M/M/1/0

Обозначим состояние системы как n1/n2/q/m, где n1 - число заявок на первом этапе первого прибора, где n2 - число заявок на втором этапе первого прибора, q - число заявок в очереди первого прибора, а m - число заявок на втором приборе.

Перечень состояний

Номер состояния	Обозначени е	Описание
S0	0/0/0/0	В системе нет заявок
S1	0/0/0/1	В системе только одна заявка, обрабатывается прибором 2
S2	1/0/0/0	В системе только одна заявка, идет первый этап обработки на приборе 1
S3	1/0/0/1	В системе две заявки, идет первый этап обработки на приборе 1, а также идет обработка на приборе 2
S4	0/1/0/0	В системе только одна заявка, идет второй этап обработки на приборе 1
S5	0/1/0/1	В системе две заявки, идет второй этап обработки на приборе 1, а также идет обработка на приборе 2
S6	1/0/1/1	В системе три заявки, идет первый этап обработки на приборе 1, идет обработка на приборе 2, а также одна заявка в очереди прибора 1
S7	0/1/1/1	В системе три заявки, идет второй этап обработки на приборе 1, идет обработка на приборе 2, а также одна заявка в очереди прибора 1
S8	1/0/2/1	В системе четыре заявки, идет первый этап обработки на приборе 1, идет обработка на приборе 2, а также две заявки в очереди прибора 1
S9	0/1/2/1	В системе четыре заявки, идет второй этап обработки на приборе 1, идет обработка на приборе 2, а также две заявки в очереди прибора 1
S10	1/0/1/0	В системе две заявки, идет первый этап обработки на приборе 1, а также одна заявка в очереди прибора 1
S11	0/1/1/0	В системе две заявки, идет второй этап обработки на приборе 1, а также одна заявка в очереди прибора 1
S12	1/0/2/0	В системе три заявки, идет первый этап обработки на приборе 1, а также две заявки в очереди прибора 1

S13

Граф переходов системы

Построим систему уравнений Колмогорова:

$$\begin{aligned} 2p_0\lambda &= \mu(2p_4+p_1) \\ p_1(\mu+\lambda) &= p_0\lambda + 2p_5\mu \\ 2p_2(\lambda+\mu) &= \lambda p_0 + 2\mu p_{11} + \mu p_3 \\ p_3(3\mu+\lambda) &= (p_1+p_2)\lambda + 2\mu p_7 \\ p_4(2\mu+2\lambda) &= \mu(2p_2+p_5) \\ p_5(3\mu+\lambda) &= 2\mu p_3 + p_4\lambda \\ p_6(3\mu+\lambda) &= p_3\lambda + p_{10}\lambda + 2\mu p_8 \\ p_7(3\mu+\lambda) &= p_62\mu + (p_5+p_{11})\lambda \\ p_8(3\mu) &= \lambda(p_7+p_{13}) + p_92\mu \\ p_9(3\mu) &= (p_6+p_{12})\lambda \\ 2p_{10}(\mu+\lambda) &= p_6\mu + (p_2+p_{13})\lambda \\ 2p_{11}(\mu+\lambda) &= p_4\lambda + \mu(p_7+2p_{10}) \\ p_{12}(2\mu+\lambda) &= p_9\mu + p_{10}\lambda \\ p_{13}(2\mu+\lambda) &= \mu(2p_{12}+p_8) + p_{11}\lambda \\ p_0+p_1+p_2+p_3+p_4+p_5+p_6+p_7+p_8+p_9+p_{10}+p_{11}+p_{12}+p_{13}=1 \end{aligned}$$

Матрица интенсивностей переходов системы 1

λ	0,3
μ	0,1
2μ	0,2

System _1	S0	S1	S2	S 3	S4	S 5	S6	S 7	S8	S9	S10	S11	S12	S13
S0			λ											
S1	μ	1		λ										
S2			2	λ	2μ						λ			
S3			μ	3		2μ	λ							
S4	2μ				4	λ						λ		
S5		2μ			μ	5		λ						
S6							6	2μ		λ	μ			
S7				2μ				7	λ			μ		
S8							2μ		8					μ
S9									2μ	9			μ	
S10							λ				10	2μ	λ	
S11			2μ					λ				11		λ
S12										λ			12	2μ
S13									λ		2μ			13

Значения стационарных вероятностей системы 1

Обозначение	Вероятность
S0	0,0026
S1	0,0078
S2	0,0098
S3	0,0294
S4	0,0039
S5	0,0118
S6	0,1367
S7	0,0617
S8	0,2976
S9	0,205
S10	0,0456
S11	0,0206
S12	0,0683
S13	0,0992

Характеристики системы

Хар-ка	Прибор	Расчетная формула	СИСТ.1		
	П1	y1=λ1*b1	3		
Нагрузка	П2	y2=λ2*b2	3		
	Сумм.	Y=y1+y2	6		
	Π1	ρ1 = 1 - (p0 + p1)	0,9896		
Загрузка	П2	ρ2 = 1 - (p0 +p2+p4+s10+s11+s12+s13)	0,75		
	Сумм.	R = 1-p0	0,9974		
	Π1	π1 = (p8+p9 +p12+p13) *0,5	0,33505		
Вероятность потери	П2	π2 = (1 - (p0 +p2+p4+s10+s11+s12+s13))*0.5	0,375		
	Сумм.	π = π1 + π2	0,71005		
	П1	l1 = (p6+p7+p10+p11)*1 + (p8+p9+p12+p13)*2	1,6048		
Длина очереди	П2	12 = 0	0		
	Сумм.	I = I1 + I2	1,6048		
Число заявок	П1	m1 = (p2+p3+p4+p5)*1+(p6+p7+p10+p11)*2+(p 8+p9+p12+p13)*3	2,5944		
находящихся в	П2	m2 = p3 + p5 + p6 + p7 + p8 + p9	0,7422		
системе	Сумм.	m = (p1+p2+p4)*1+(p3+p5+p10+p11)*2+(p6+p 7+p12+p13)*3+(p8+p9)*4	3,3444		
_	Π1	λ1' = (1-π1)*λ1	0,199485		
Производительнос ть	П2	λ2' = (1-π2)*λ2	0,1875		
	Сумм.	$\lambda' = \lambda 1' + \lambda 2'$	0,386985		
Коэффициент	Π1	η =1 – ρ1	0,0104		
простоя системы	Π2	η =1 – ρ2	0,25		
	Сумм.	η =1 - ρ	0,0026		
	Π1	w1 = l1 / λ1'	8,044715141		
Время ожидания	Π2	w2 = I2 / λ2'	0		
	Сумм.	w = I / λ'	4,14693076		
_	П1	u1 = w1+b1	18,04471514		
Время пребывания	П2	u2 = w2+b2	10		
,	Сумм.	u=w+b	14,14693076		

Система 2

Описание системы

Интенсивность обслуживания прибора: $\mu = \frac{1}{10c} = 0.1 c^{-1}$

Интенсивность входного потока: $\lambda = 0.6 \ c^{-1}$

Прибор 1, среднее время обслуживания в котором равно μ и распределено по закону Эрланга 2 порядка, представим в виде двух последовательных приборов с временем обслуживания 2μ . Граф переходов составим с учетом того, что в прибор 1.1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на приборе 1.2 Классификация каждого из приборов по Кендаллу:

- 1. M/M/1/2
- 2. M/M/1/0
- 3. M/M/1/0

Обозначим состояние системы как n2/n3/n1/q, где n1 - число заявок на первом приборе, q - число заявок в очереди первого прибора, n2 - число заявок на втором приборе, а n3 - число заявок на третьем приборе.

Перечень состояний

Номер состояния	Обозначен ие	Описание
S0	0/0/0/0	В системе нет заявок
S1	1/0/0/0	В системе 1 заявка. Она обрабатывается вторым прибором
S2	0/1/0/0	В системе 1 заявка. Она обрабатывается третьим прибором
S3	1/1/0/0	В системе 2 заявки. Они обрабатываются вторым и третьим приборами
S4	0/1/1/0	В системе 2 заявки. Они обрабатываются вторым и первым приборами
S5	0/0/1/0	В системе 1 заявка. Она обрабатывается третьим прибором
S6	1/0/1/0	В системе 2 заявки. Они обрабатываются первым и третьим приборами
S7	1/1/1/0	В системе 3 заявки. Они обрабатываются первым, вторым и третьим приборами
S8	0/0/1/1	В системе 2 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора
S9	0/1/1/1	В системе 3 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора, а третья обрабатывается третьим прибором
S10	0/0/1/2	В системе 3 заявки. Одна обрабатывается первым прибором, а еще две стоят в очереди первого прибора
S11	1/1/1/1	В системе 4 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора, третья обрабатывается вторым прибором, а четвертая обрабатывается третьим прибором
S12	1/0/1/1	В системе 3 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора, а третья обрабатывается вторым прибором
S13	1/0/1/2	В системе 4 заявки. Одна обрабатывается первым прибором, две стоят в очереди первого прибора, и еще одна обрабатывается вторым прибором
S14	1/1/1/2	В системе 5 заявок. Одна обрабатывается первым прибором, две стоят в очереди первого прибора, четвертая обрабатывается

		вторым прибором, а пятая обрабатывается третьим прибором
S15	0/1/1/2	В системе 4 заявки. Одна обрабатывается первым прибором, две стоят в очереди первого прибора, и еще одна обрабатывается третьим прибором

Граф переходом системы

Матрица интенсивностей переходов системы 2

λ1	0,3
λ2	0,24
λ3	0,06
μ	0,1

Syste m_2	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
S0	0	λ2	λ3			λ1										
S1	μ	1		λ3			λ1									
S2	μ		2	λ2	λ1											
S3		μ	μ	3				λ1								
S4			μ		4	μ		λ2		λ1						
S5	μ				μ	5	μ		λ1							
S6		μ				μ	6	λ3					λ1			
S7				μ	μ		μ	7				λ1				
S8						μ			8	μ	λ1		λ2			
S9					μ				μ	9		λ2				λ1
S10									μ		10			λ2		λ3
S11								μ		μ		11	μ		λ1	
S12							μ		μ			λ3	12	λ1		
S13											μ		μ	13	λ3	
S14												μ		μ	14	μ
S15										μ	μ				λ2	15

Значения стационарных вероятностей системы 2

Обозначение	Вероятность
S0	0,0048
S1	0,0103
S2	0,0031
S3	0,0068
S4	0,0099
S5	0,0155
S6	0,0291
S7	0,0205
S8	0,0396
S9	0,0281
S10	0,1224
S11	0,0614
S12	0,0959
S13	0,2936
S14	0,1818
S15	0,0772

Характеристики системы

Хар-ка	Прибор	Расчетная формула	СИСТ.2
	П1	y1=λ1*b1	3
Нагрузка	П2	y2=λ2*b2	2,4
пагрузка	Пз	y3=λ3*b3	0,6
	Сумм.	Y=y1 + y2 + y3	6
	П1	$\rho 1 = 1 - (p0 + p1 + p2 + p3 + p4 + p5)$	0,9496
Загрузка	Π2	ρ2 = p1 + p3 + p4 + p7 + p11 + p12 + p13 + p14	0,6802
	П3	ρ3 = 1 - (p0 + p1 +p4 +p8 + p10 + p12 + p13)	0,4235
	Сумм.	R = 1 - p0	0,9952
	Π1	π1 = (p10 + p13 + p14 + p15) * 0,5	0,3375
Вероятность	Π2	$\pi 2 = (p1 + p3 + p6 + p7 + p11 + p12 + p13 + p14) * 0,4$	0,27976
потери	Пз	π3 = (p2 +p3 +p4 +p7 + p9+ p11 + p14+ p15)* 0,1	0,03888
	Сумм.	π = π1 + π2 + π3	0,65614
	П1	I1 = (p8 + p9 + p11+ p12)*1 + (p10+ p13 + p14 + p15)*2	1,575
Длина очереди	П2	12 = 0	0
	П3	I3 = 0	0
	Сумм.	I = I1 + I2 + I3	1,575
	П1	m1 = (p4+p6+p7)*1 + (p8+p9+p11+p12)*2 + (p10+p13+p14+p15)*3	2,5345
Число заявок	П2	m2 = p1+p3+p4+p7+p11+p12+p13+p14	0,6802
находящихся в	П3	m3 = p2+p3+p5+p6+p7+p9+p11+p14+p15	0,4235
системе	Сумм.	m = (p1+p2+p5)*1 + (p3+p4+p6+p8)*2 + (p7+p9+p10+p12)*3 + (p11+p13+p15)*4 + p14*5	3,6382
	П1	λ1' = (1-π1)*λ1	0,19875
Производительнос	П2	λ2' = (1-π2)*λ2	0,1728576
ть	Пз	λ3' = (1-π3)*λ3	0,0576672
	Сумм.	$\lambda' = \lambda 1' + \lambda 2' + \lambda 3'$	0,4292748
Koodhdh	Π1	η =1 – ρ1	0,0504
Коэффициент простоя системы	Π2	η =1 – ρ2	0,3198
	П3	η =1 - ρ3	0,5765

Сравнение

Сравнительная диаграмма рассчитанных характеристик систем

Сравнение характеристик

Хар-ка	СИСТ.1	СИСТ.2	Разница, %
Нагрузка	6	6	0
Загрузка	0,9974	0,9952	-0,2205734911
Вероятность потери	0,71005	0,65614	-7,592423069
Длина очереди	0,8024	1,575	96,28614158
	3,3444	3,6382	8,78483435
Производительность	0,386985	0,4292748	10,92802047
Коэффициент простоя системы	0,0026	0,0048	84,61538462
Время ожидания	2,07346538	3,668978473	76,94910696
Время пребывания	12,0735	13,66897847	13,21471379

При сравнительном анализе двух систем можно сказать, что система 1 немного превосходит систему 2, в том числе и по критерию эффективности - времени пребывания в системе заявок. Кроме того, стоит отметить существенную разницу в длине очереди, что можно объяснить разным количеством приборов в системах.

Разность времени пребывания и времени ожидания равна исходному значению средней длительности обслуживания - 10 сек.

Вывод

В процессе выполнения данной работы мы изучили метод марковских процессов для случайных процессов, разработали и рассчитали марковские модели одно- и многоканальных СМО с однородным потоком заявок, а также сравнили полученные результаты. По итогам сравнения пришли к выводу, что первая система превосходит вторую по всем показателям, при том что является более простой в построении.

Этап 3

Цель работы

Исследование свойств простейших одно - и многоканальных СМО типа G/G/K/L с однородным потоком заявок с использованием системы имитационного моделирования GPSS при различных предположениях о параметрах структурно-функциональной организации и нагрузки в соответствии с заданной программой исследований.

Задание

В качестве исходной модели можно воспользоваться простейшей базовой моделью одноканальной СМО или моделью системы, выбранной в качестве наилучшей в УИР 2 (на усмотрение исследователя), задав в качестве параметров входящего потока заявок (среднее значение и коэффициент вариации интервалов между поступающими в систему заявками) значения, полученные в процессе обработки случайной последовательности в УИР1.

При этом необходимо скорректировать предлагаемую имитационную GPSS-модель CMO типа G/G/K/L (файл smo.gps).

В процессе исследований необходимо оценить влияние на такие характеристики системы, как:

- длительность переходного процесса в системе;
- среднее время ожидания (пребывания) заявок в системе;
- вероятность потери заявок следующих параметров нагрузки и структуры:
- о загрузки системы (в интервале от 0,1 до 0,9);
- характера потока поступающих в систему заявок (заданная трасса; аппроксимирующий поток; простейший поток);
- о законов распределения длительности обслуживания;
- о количества приборов в системе (от 1 до 3);
- о ёмкости накопителя.

Результаты исследований рекомендуется представлять в форме таблиц, примерная форма которых приведена ниже, и графиков, отражающих зависимости указанных характеристик от варьируемых параметров. Указание: длительность переходного процесса измеряется в количестве заявок, прошедших через систему.

Исходная модель

- 3 прибора. Вероятности попадания заявки в 1, 2 и 3 прибор: 0.5, 0.4 и 0.1 соотв. Очередь объемом 2 перед первым прибором, перед вторым и третьим накопителей нет
- Критерий эффективности: минимальное время пребывания в системе заявок
- Интенсивность входного потока: $0.6\,c^{-1}$
- Средняя длительность обслуживания: 10 сек

Выполнение

Сравнение результатов имитационного моделирования и метода марковских процессов для выбранной в качестве наилучшей в УИР 2 СМО

Результаты имитационного моделирования

Распределение времени ожидания заявок в очереди

Сравнение результатов имитационного и аналитического моделирования

Хар-ка	Прибор	Имитационное моделирование	Метод марковских процессов	Степень различия, %
	П1	0,994	0,9896	0,44%
Загрузка	П2	0,777	0,75	3,60%
	Сумм.	0,995	0,9974	-0,22%
	П1	0,6801	0,6701	1,49%
Вероятность потери	П2	0,777	0,75	3,60%
	Сумм.	0,72855	0,71005	2,61%
	П1	1,663	1,6048	3,63%
Длина очереди	П2	0	0	0,00%
	Сумм.	1,663	1,6048	3,63%
Число заявок	П1	2,657	2,5944	2,41%
находящихся в системе	П2	0,777	0,7422	4,69%

	Сумм.	3,434	3,3444	2,68%
	П1	0,09597	0,09897	-3,03%
Производительность	П2	0,0669	0,075	-10,80%
	Сумм.	0,16287	0,17397	-6,38%
	П1	0,006	0,0104	-42,31%
Коэффициент простоя системы	П2	0,223	0,25	-10,80%
	Сумм.	0,005	0,0026	84,62%
	П1	16,738	16,21501465	3,23%
Время ожидания	П2	0	0	0,00%
	Сумм.	10,21059741	9,22457895	10,69%
	П1	27,68573513	26,21400424	5,61%
Время пребывания	П2	11,61434978	9,896	17,36%
	Сумм.	21,08430036	19,22400414	9,68%

Как мы видим из сравнительного анализа характеристик, полученных методом имитационного моделирования и методом марковских процессов, различия достигают максимум 10%. Стоит отметить, что различия в 42% или 84% имеют такие большие значения из-за того, что степень загрузки системы близка к 1.

Исследование влияния коэффициента загрузки на длительность переходного режима

Изменение средней длительности обслуживания

Исследование простейшего потока при средней длительности обслуживания 100

Исх.дан	ные	К	E	поток	а	b	КВ			
(вариан		2	2;0	прост.	169,57	100	1;1			
Заявок	Поте ри	Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	0	0,0000	0,0%	0	0,3595	0	0,0%	0	0	0
21	1	0,0476	0,0%	0,116	28,43	22,646	0,0%	36,939	8,061	35,6%
50	2	0,0400	-16,0%	0,067	28,25	30,589	35,1%	24,735	3,498	11,4%
100	6	0,0600	50,0%	0,021	25,11	22,627	-26,0%	25,624	2,562	11,3%
200	23	0,1150	91,7%	0,074	27,66	24,035	6,2%	51,33	3,630	15,1%
300	14	0,0467	-59,4%	0,058	28,24	18,152	-24,5%	48,33	2,790	15,4%
600	55	0,0917	96,4%	0,043	28,76	14,586	-19,6%	42,24	1,724	11,8%
1000	82	0,0820	-10,5%	0,036	26,66	13,136	-9,9%	38,24	1,209	9,2%
1500	128	0,0853	4,1%	0,048	27,84	15,9	21,0%	44,185	1,141	7,2%
2000	152	0,0760	-10,9%	0,044	29,66	15,216	-4,3%	42,44	0,949	6,2%
5000	426	0,0852	12,1%	0,056	27,24	18,94	24,5%	50,762	0,718	3,8%
10000	858	0,0858	0,7%	0,047	22,86	15,35	-19,0%	48,48	0,485	3,2%
20000	1814	0,0907	5,7%	0,046	24,85	15,91	3,6%	45,43	0,321	2,0%
35000	3136	0,0896	-1,2%	0,053	23,33	17,934	12,7%	49,906	0,267	1,5%
50000	4370	0,0874	-2,5%	0,052	28,63	17,732	-1,1%	48,909	0,219	1,2%

Исследование простейшего потока при средней длительности обслуживания 250

Исх.да	анны	К	E	поток	а	b	КВ			
е (вар _2)		2	2;0	прост.	169,57	250	1;1			
Заяво к	Пот ери	Вер-ть потери	П(%)	Длина очер.	Загру зка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	2	0,2000	0	0,289	0,435	108,05	0	135,883	0	0
21	6	0,2857	0	1,224	78,55	298,245	0	264,971	57,821	19,4%
50	13	0,2600	-9,0%	1,003	77,3	283,35	-5,0%	244,849	34,627	12,2%
100	19	0,1900	-26,9%	0,535	78,14	179,706	-36,6%	185,604	18,560	10,3%
200	48	0,2400	26,3%	0,405	71,49	138,372	-23,0%	183,1	12,947	9,4%
300	60	0,2000	-16,7%	0,438	75,28	152,596	10,3%	197,393	11,396	7,5%
600	146	0,2433	21,7%	0,517	72,91	191,82	25,7%	223,578	9,128	4,8%
1000	225	0,2250	-7,5%	0,432	76,04	168,327	-12,2%	245,926	7,777	4,6%
1500	319	0,2127	-5,5%	0,382	73,14	144,78	-14,0%	223,307	5,766	4,0%
2000	486	0,2430	14,3%	0,442	76,15	167,728	15,9%	227,178	5,080	3,0%
5000	1135	0,2270	-6,6%	0,457	76,85	172,814	3,0%	239,12	3,382	2,0%
10000	2412	0,2412	6,3%	0,442	76,38	168,607	-2,4%	232,086	2,321	1,4%
20000	4735	0,2368	-1,8%	0,425	75,68	159,511	-5,4%	219,724	1,554	1,0%
35000	8343	0,2384	0,7%	0,439	75,76	162,99	2,2%	219,674	1,174	0,7%
50000	1193 2	0,2386	0,1%	0,445	75,842 4	167,318	2,7%	227,541	1,018	0,6%

Изменение среднего интервала между заявками

Исследование простейшего потока при среднем интервале между заявками 50

Исх.да	нные	К	E	поток	a	b	КВ			
	(вариант _5):		2;0	прост.	50	100	1;1			
Заявок	Потер и	Вер-т ь потер и	П(%)	Длин а очер.	Загрузка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	3	0,3000	0	0,749	0,575	92,256	0	76,479	0	0
21	9	0,4286	42,9%	1,275	83,065	104,007	12,7%	106,909	23,329	22,4%
50	15	0,3000	-30,0%	0,804	86,49	82,315	-20,9%	100,771	14,251	17,3%
100	34	0,3400	13,3%	0,895	86,39	104,751	27,3%	108,289	10,829	10,3%
200	76	0,3800	11,8%	0,661	88,24	80,964	-22,7%	92,763	6,559	8,1%
300	109	0,3633	-4,4%	0,853	80,439	104,846	29,5%	89,181	5,149	4,9%
600	191	0,3183	-12,4%	0,82	84,94	97,367	-7,1%	105,675	4,314	4,4%
1000	332	0,3320	4,3%	0,762	87,3429	94,445	-3,0%	99,186	3,137	3,3%
1500	479	0,3193	-3,8%	0,746	87,439	92,77	-1,8%	102,164	2,638	2,8%
2000	631	0,3155	-1,2%	0,674	83,82	83,406	-10,1%	92,814	2,075	2,5%
5000	1570	0,3140	-0,5%	0,705	80,39	87,503	4,9%	97,245	1,375	1,6%
10000	3354	0,3354	6,8%	0,724	82,45	91,552	4,6%	100,909	1,009	1,1%
20000	6517	0,3259	-2,8%	0,728	84,86	90,049	-1,6%	97,412	0,689	0,8%
35000	11697	0,3342	2,6%	0,751	84,33	93,327	3,6%	100,246	0,536	0,6%
50000	16541	0,3308	-1,0%	0,745	83,49	92,907	-0,5%	100,464	0,449	0,5%

Исследование простейшего потока при среднем интервале между заявками 150

Исх л	анные	К	E	поток	а	b	КВ			
	ант _6):	2	2;0	прост.	150	100	1;1			
Заяво		Вер-ть		Длина	Загру	Ср.вр.		СКО	Дов.	
К	Потери	потери	П(%)	очер.	зка	ож.	O(%)	вр.ож.	инт.	Д(%)
10	0	0,0000	0	0	0,406	0	0	0	0	0
21	1	0,0476	0	0,155	30	29,469	0	59,98	13,089	44,4%
50	1	0,0200	-58,0%	0,014	21,74	3,931	-86,7%	61,129	8,645	219,9%
100	11	0,1100	450,0%	0,104	37,78	28,98	637,2%	61,755	6,176	21,3%
200	23	0,1150	4,5%	0,09	33,52	26,77	-7,6%	58,757	4,155	15,5%
300	16	0,0533	-53,6%	0,069	35,21	19,35	-27,7%	51,782	2,990	15,5%
600	54	0,0900	68,8%	0,06	36,75	17,575	-9,2%	40,233	1,643	9,3%
1000	91	0,0910	1,1%	0,06	31,61	19,471	10,8%	62,543	1,978	10,2%
1500	142	0,0947	4,0%	0,069	34,02	20,884	7,3%	50,53	1,305	6,2%
2000	210	0,1050	10,9%	0,063	32,77	19,389	-7,2%	47,884	1,071	5,5%
5000	453	0,0906	-13,7%	0,073	34,67	22,337	15,2%	56,819	0,804	3,6%
10000	994	0,0994	9,7%	0,065	32,07	20,01	-10,4%	52,843	0,528	2,6%
20000	2000	0,1000	0,6%	0,066	33,07	20,249	1,2%	51,945	0,367	1,8%
35000	3491	0,0997	-0,3%	0,075	33,95	22,422	10,7%	55,787	0,298	1,3%
50000	4987	0,0997	0,0%	0,072	33,91	21,93	-2,2%	54,272	0,243	1,1%

Итоги исследования

В результате исследования влияния коэффициента загрузки на длительность переходного режима были получены данные представленные ниже:

Итоги изменения времени обработки:

Ср. инт. между заявками	Ср. дл. обсл.	Кол-во заявок	Загрузка
169,57	100	10000	22,86
169,57	250	50000	75,8424

Итоги изменения среднего интервала между заявками:

Ср. инт. между заявками	Ср. дл. обсл.	Кол-во заявок	Загрузка
50	100	50000	83,49
150	100	50000	33,91

В результате исследования была выявлена прямая зависимость между средним интервалом между заявками и длительностью перехода системы в установившийся режим.

Исследование влияния законов распределения интервалов между заявками в потоке на среднее время ожидания, среднее время пребывания заявок в системе и вероятность потерь

Варианты параметров системы

Номер вар	рианта	1	2	3	4	5	6	7	8	9
Количество приборов		2	2	2	2	2	2	2	2	2
Емкость накопителя		2/0	2/0	2/0	2/0	2/0	2/0	2/0	2/0	2/0
Интервалы между	Ср. значение	169,57	169,57	169,57	169,57	169,57	169,57	169,57	169,57	169,57
заявками входящего потока	Вид потока	П		П	Т	Т	Т	А	A	Α
Длительност	Ср. значение	80	180	450	140	210	380	80	100	310
обслуживани я заявок	Коэф-т вариации	1;1	1;1	1;1	0,5;1	0,5;1	0,5;1	0,5;1	0,5;1	0,5;1

Простейший поток

Исследование простейшего потока при загрузке 0.3

Исх.дан	іные	К	E	поток	а	b	КВ			
(вариан		2	2/0	прост	169,57	80	1;1			
	Поте	Вер-ть		Длина		Ср.вр.		СКО		
Заявок	ри	потери	П(%)	очер.	Загрузка	ож.	O(%)	вр.ож.	Дов. инт.	Д(%)
10	0	0,0000	0,00%	0	0,125	0	0,00%	0	0	0,0%
									10,574812	
20	1	0,0500	0,00%	0,033	0,2	15,764	0,00%	47,292	68	67,1%
			180,0						3,7383321	
50	7	0,1400	%	0,023	0,32	11,042	-30,0%	26,434	31	33,9%
100	8	0,0800	-42,9%	0,045	0,3011	14,268	29,2%	39,107	3,9107	27,4%
									2,2568727	
200	19	0,0950	18,8%	0,042	0,3591	14,252	-0,1%	31,917	14	15,8%
			·						2,6230177	
300	32	0,1067	12,3%	0,055	0,347	20,057	40,7%	45,432	43	13,1%

Исх.дан	ные	К	E	поток	a	b	КВ			
(вариан	т _2):	2	2/0	прост	169,57	180	1;1			
Заявок	Поте ри	Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	1	0,1000	0,00%	0,015	0,6	8,765	0,00%	17,53	5,543472 738	63,2%
20	3	0,1500	50,0%	0,058	0,5294	25,452	190,4%	56,468	12,62662 866	49,6%
50	8	0,1600	6,7%	0,05	0,5	18,752	-26,3%	43,334	6,128353 051	32,7%
100	21	0,2100	31,3%	0,357	0,5926	112,67	500,8%	159,845	15,9845	14,2%
200	45	0,2250	7,1%	0,297	0,6178	104,438	-7,3%	150,129	10,61572 34	10,2%
300	63	0,2100	-6,7%	0,296	0,6245	101,2	-3,1%	145,491	8,399926	8,3%

Исследование простейшего потока при загрузке 0.9

Исх.дан	ные	К	E	поток	a	b	КВ			
(вариан	т _3):	2	2/0	прост	169,57	450	1;1			
Заявок	Поте ри	Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	2	0,2000	0,00%	0,085	0,6	34,45	0,00%	17,701	5,5975476 86	16,2%
20	7	0,3500	75,0%	0,887	0,8	509,781	1379,8%	381,387	85,280725 77	16,7%
50	20	0,4000	14,3%	0,85	0,8125	387,216	-24,0%	324,985	45,959819 46	11,9%
100	35	0,3500	-12,5%	0,78	0,8382	345,991	-10,6%	367,637	36,7637	10,6%
200	79	0,3950	12,9%	1,032	0,879	463,966	34,1%	425,058	30,056139 42	6,5%
300	127	0,4233	7,2%	1,034	0,029	457,005	-1,5%	396,973	22,919246 84	5,0%

Заданная трасса

Исх.данные (вариант _4):		К	E	пото к	а	b	КВ			
(вариа	інт _4):	2	2/0	трас са	169,57	140	0,5;1			
Заяво к	Потер и	Вер-т ь потер и	П(%)	Дли на очер	Загру зка	Ср.вр.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	1	0,1000	0,00%	0,063	0,4444	22,935	0,00%	51,285	16,21774098	70,7%
20	1	0,0500	-50,0%	0,264	0,65	78,48	242,2%	103,221	23,08091727	29,4%
50	4	0,0800	60,0%	0,112	0,3191	37,176	-52,6%	78,941	11,16394328	30,0%
100	6	0,0600	-25,0%	0,028	0,266	8,918	-76,0%	28,955	2,8955	32,5%
200	18	0,0900	50,0%	0,02	0,2926	6,307	-29,3%	22,915	1,620335189	25,7%
300	21	0,0700	-22,2%	0,058	0,2989	18,709	196,6%	73,482	4,242485248	22,7%

Исследование простейшего потока при загрузке 0.6

Mov E		К	Е	поток	а	b	КВ			
	анные ант _5):	2	2/0	трасс а	169,57	210	0,5;1			
Заяво к	Потер и	Вер-т ь потер и	П(%)	Длин а очер.	Загру зка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	0	0,0000	0,00%	0,347	0,6	105,152	0,00%	99,995	31,62119546	30,1%
20	1	0,0500	0,00%	0,192	0,5	53,088	-49,5%	83,27	18,61973805	35,1%
50	9	0,1800	260,0%	0,083	0,4762	32,788	-38,2%	67,965	9,611702477	29,3%
100	18	0,1800	0,0%	0,284	0,5783	106,567	225,0%	159,631	15,9631	15,0%
200	30	0,1500	-16,7%	0,221	0,5965	73,918	-30,6%	125,976	8,907848387	12,1%
300	44	0,1467	-2,2%	0,27	0,6381	90,11	21,9%	133,926	7,732221215	8,6%

Исх.да	анные	К	E	поток	а	b	КВ			
(вариа	ант _6):	2	2/0	трасса	169,57	380	0,5;1			
Заяво к	Потер	Вер-т ь потер и	П(%)	Длина очер.	Загруз ка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	4	0,4000	0,00%	0,856	0,7778	338,045	0,00%	347,65	109,9365829	32,5%
20	10	0,5000	25,0%	1,259	0,8462	614,01	81,6%	458,863	102,604886	16,7%
50	22	0,4400	-12,0%	1,215	0,8966	701,745	14,3%	614,474	86,89974645	12,4%
100	34	0,3400	-22,7%	0,927	0,8358	408,842	-41,7%	490,22	49,022	12,0%
200	67	0,3350	-1,5%	0,979	0,8582	417,698	2,2%	430,436	30,43642145	7,3%
300	99	0,3300	-1,5%	0,959	0,8812	402,269	-3,7%	396,106	22,86919057	5,7%

Заданная трасса

Исследование простейшего потока при загрузке 0.3

Исх.да	анные	К	П	поток	а	b	КВ			
(вариа	ант _7):	2	2/0	аппр	169,57	80	0,5;1			
Заяво к	Потер и	Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	0	0,0000	0,00%	0,211	0,3	40,076	0,00%	49,931	15,78956858	39,4%
20	0	0,0000	0,0%	0,109	0,25	21,859	-45,5%	41,044	9,177717407	42,0%
50	3	0,0600	0,0%	0,052	0,2553	12,479	-42,9%	28,549	4,037438299	32,4%
100	7	0,0700	16,7%	0,054	0,2979	13,687	9,7%	35,718	3,5718	26,1%
200	14	0,0700	0,0%	0,046	0,2796	11,479	-16,1%	31,119	2,200445592	19,2%
300	27	0,0900	28,6%	0,045	0,293	11,332	-1,3%	30,535	1,762939047	15,6%

	_									
Исх.да	анные	К	E	поток	а	b	КВ			
(вариа	ант _8):	2	2/0	аппр	169,57	100	0,5;1			
Заяво	Потер	Вер-ть	П(%)	Длина	Загрузк	Ср.вр.	O(%)	СКО	Дов. инт.	Д(%)
K	И	потери		очер.	a	ож.		вр.ож.		
10	0	0,0000	0,0%	0,091	0,8182	25,179	0,0%	23,155	7,322253922	29,1%
20	2	0,1000	0,00%	0,356	0,8421	76,981	205,7%	103,438	23,12943995	30,0%
50	7	0,1400	40,0%	0,333	0,7045	81,241	5,5%	105,507	14,92094303	18,4%
100	14	0,1400	0,0%	0,321	0,7241	78,79	-3,0%	94,18	9,418	12,0%
200	37	0,1850	32,1%	0,255	0,638	68,215	-13,4%	105,292	7,44526872	10,9%
300	63	0,2100	13,5%	0,291	0,6432	75,909	11,3%	114,164	6,591261613	8,7%

Исследование простейшего потока при загрузке 0.9

Исх.да	анные	К	E	поток	а	b	КВ			
(вариа	ант _9):	2	2/0	аппр	169,57	310	0,5;1			
Заяво к	Потер и	Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
10	4	0,4000	0,00%	0,295	0,9	89,15	0,0%	59,153	18,705821 04	21,0%
20	7	0,3500	-12,5%	0,653	0,286	217,91	144,4%	285,084	63,746720 33	29,3%
50	19	0,3800	8,6%	0,921	0,375	301,102	38,2%	278,233	39,348088 21	13,1%
100	39	0,3900	2,6%	0,943	0,531	294,008	-2,4%	251,437	25,1437	8,6%
200	75	0,3750	-3,8%	0,923	0,206	307,229	4,5%	299,547	21,181171 5	6,9%
300	106	0,3533	-5,8%	0,859	0,898	269,815	-12,2%	287,843	16,618623 35	6,2%

Итоги исследования

Итоги исследования влияния законов распределения на время ожидания, время пребывания и вероятность потери

Загрузка	Поток	Время ожидания	Время пребывания	
0,3	Простейший	20,06	100,06	0,1067
0,3	Трасса	18,71	158,71	0,0700
0,3	AP	11,33	91,33	0,09
0,6	Простейший	101,2	281,20	0,2100
0,6	Трасса	90,11	300,11	0,15
0,6	AP	75,909	175,91	0,21
0,9	Простейший	457,005	907,01	0,42
0,9	Трасса	396,106	776,11	0,33
0,9	AP	269,815	579,82	0,3533

Время ожидания

Время пребывания

Вероятность потери

Заданная трасса из УИР 1 дала лучший результат по вероятности потери заявок во всех случаях. В случае высокой загрузки системы аппроксимирующее распределение дает наименьшее время ожидания и время пребывания, но незначительно уступает по вероятности потери. Таким образом, при высоких показателях нагрузки системы более выгодно будет взять аппроксимирующее распределение.

Исследование влияния емкости накопителя на систему

Варианты параметров системы

Номер	варианта	1	2	3	4	5	6
Количест	во приборов	1	1	1	1	1	1
Емкость	накопителя	5	10	20	5	10	20
Интервалы между	Ср. значение	169,57	169,57	169,57	169,57	169,57	169,57
заявками входящего потока	Вид потока	П	П	П	П	П	П
Длительнос	Ср. значение	90	90	90	180	160	90
обслуживан ия заявок	Коэф-т вариации	1	1	1	1	1	1

Установившейся режим при нагрузке 0.5

Исследование простейшего потока при емкости 5

Исх.дан	ные	К	E	поток	а	b	КВ			
(вариант _1):		1	5	прост	169,57	90	1			
Заявок	Поте ри	Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
20	0	0	0,00%	0,701	0,7	93,1	0,00%	94,285	21,0827669 3	22,6%
50	0	0	0,00%	0,506	0,4	74,025	-20,5%	97,637	13,8079569 6	18,7%
100	0	0	0,00%	0,366	0,55	56,895	-23,1%	80,747	8,0747	14,2%
300	0	0	0,00%	0,293	0,47	48,067	-15,5%	78,85	4,55240687 3	9,5%
1000	0	0	0,00%	0,385	0,51	63,906	33,0%	95,637	3,02430748 6	4,7%
5000	8	0,0016	0,00%	0,397	0,52	68,841	7,7%	105,536	1,49250442 5	2,2%

Исследование простейшего потока при емкости 10

Исх.дан	іные	К	E	поток	а	b	КВ			
(вариант _2):		1	10	прост	169,57	90	1			
Заявок ри		Вер-ть потери	П(%)	Длина очер.	Загрузка	Ср.вр.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
20	0	0	0,00%	0,701	0,7	93,1	0,00%	94,285	21,08276693	22,6%
50	0	0	0,00%	0,506	0,61	74,025	-20,5%	97,637	13,80795696	18,7%
100	0	0	0,00%	0,366	0,55	56,895	-23,1%	80,747	8,0747	14,2%
300	0	0	0,00%	0,293	0,47	48,241	-15,2%	78,85	4,552406873	9,4%
1000	0	0	0,00%	0,385	0,52	63,906	32,5%	95,637	3,024307486	4,7%
5000	0	0	0,00%	0,414	0,52	71,42	11,8%	119,968	1,696603727	2,4%

Исследование простейшего потока при емкости 20

Исх.дан	іные	К	E	поток	а	b	КВ			
(вариант _3):		1	20	прост	169,57	90	1			
Заявок	Поте Вер-ть Длина вок ри потери П(%) очер. Загрузка		Ср.вр. ож.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)			
20	0	0	0,00%	0,701	0,7	93,1	0,00%	94,285	21,08276693	22,6%
50	0	0	0,00%	0,506	0,61	74,025	-20,5%	97,637	13,80795696	18,7%
100	0	0	0,00%	0,366	0,55	56,895	-23,1%	80,747	8,0747	14,2%
300	0	0	0,00%	0,293	0,47	48,241	-15,2%	78,85	4,552406873	9,4%
1000	0	0	0,00%	0,385	0,52	63,906	32,5%	95,637	3,024307486	4,7%
5000	0	0	0,00%	0,414	0,52	77,42	21,1%	119,968	1,696603727	2,2%

Установившейся режим при нагрузке 0.9

Исследование простейшего потока при емкости 5

Исх.д		К	E	пото к	а	b	КВ			
(вари _4		1	5	прост	169,57	180	1			
Заяв	Пот ери	Вер-ть потери	П(%)	Длин а очер.	Загрузк а	Ср.вр.	O(%)	СКО вр.ож.	Дов. инт.	Д(%)
20	6	0,3	0,0%	3,183	0,85	734,93	0,00%	455,091	101,7614412	13,8%
50	9	0,18	-40,0%	2,263	0,9	482,043	-34,4%	371,01	52,46873738	10,9%
100	11	0,11	-38,9%	1,59	0,81	335,573	-30,4%	350,984	35,0984	10,5%
300	31	0,1033333333	-6,1%	1,703	0,8	336,398	0,2%	326,145	18,82999035	5,6%
1000	122	0,122	18,1%	2,115	0,86	422,302	25,5%	352,899	11,15964624	2,6%
5000	704	0,1408	15,4%	2,365	0,89	470,935	11,5%	355,763	5,031248596	1,1%

Исследование простейшего потока при емкости 10

				пото						
Исх.д	анные	К	Е	К	а	b	КВ			
	ант _5):	1	10	прост	169,57	160	1			
				Длин						
Заяв		Вер-ть		а	Загруз	Ср.вр.		СКО		
ОК	Потери	потери	П(%)	очер.	ка	ож.	O(%)	вр.ож.	Дов. инт.	Д(%)
20	4	0,2	0,00%	5.524	0,91	972,149	0,00%	594,171	132,8606746	13,7%
50	4	0,08	-60,0%	3,291	0,85	648,405	-33,3%	514,562	72,77005591	11,2%
100	4	0,04	-50,0%	2,584	0,83	464,354	-28,4%	453,198	45,3198	9,8%
300	5	0,01666666667	-58,3%	2,862	0,89	476,904	2,7%	414,214	23,91465644	5,0%
1000	44	0,044	164,0%	3,588	0,89	632,432	32,6%	529,633	16,74846604	2,6%
5000	247	0,0494	12,3%	3,914	0,9	696,147	10,1%	550,984	7,792090455	1,1%

Исследование простейшего потока при емкости 20

Исх.	данн	К	Е	поток	а	b	КВ			
	IE									
	иант 5):	1	20	прост	169,57	90	1			
Заяв	Поте	Вер-ть		Длина	Загруз	Ср.вр.		СКО		
ок	ри	потери	П(%)	очер.	ка	ож.	O(%)	вр.ож.	Дов. инт.	Д(%)
20	0	0	0,00%	7,144	0,9	1031,268	0,00%	581.312	0	0,0%
50	0	0	0,00%	6,235	0,96	1073,611	4,1%	443,573	62,73069525	5,8%
100	0	0	0,00%	4,498	0,93	765,998	-28,7%	498,548	49,8548	6,5%
300	0	0	0,00%	3,589	0,89	619,854	-19,1%	501,859	28,97484287	4,7%

1000	17	0,017	0,00%	6,587	0,93	1121,168	80,9%	891,432	28,18955499	2,5%
5000	92	0,0184	108,24%	6,258	0,92	1089,67	-2,8%	949,814	13,43239841	1,2%

График времени ожидания от емкости при загрузке = 0.5

Загрузка 0.5

График времени ожидания от емкости при загрузке = 0.9

Загрузка 0.9

График времени пребывания от емкости при загрузке = 0.5

Загрузка 0.5

График времени пребывания от емкости при загрузке = 0.9

Загрузка 0.9

График вероятности потери от емкости при загрузке = 0.9

С увеличением емкости накопителя время ожидания и пребывания в системе увеличивается. Что касается вероятности потери заявки, то она уменьшается, что говорит о приближение к накопителю бесконечной емкости.

Выводы

В результате исследований мы пришли к следующим заключениям:

- Увеличение загрузки привело к уменьшению необходимого числа заявок для приведения системы в установившийся режим
- Из 3-х исследуемых потоков (простейший, заданная трасса и аппроксимирующее распределение) лучший результат показал поток, сформированный из аппроксимирующего распределения
- Увеличение емкости накопителя позволило уменьшить процент потери заявок, но при этом существенно увеличилось время ожидания.