Math 201B, Homework 3 (Integration, Differentiation, Density)

Problem1. Let $f: [0,1] \to \mathbb{R}$ be continuous. Prove that for any $\epsilon > 0$ there exists a continuous function $g_{\epsilon}: [0,1] \to \mathbb{R}$ such that $g'_{\epsilon}(x)$ exists and equals zero a.e. (w.r.t. Lebesgue measure) in [0,1] and

$$\max_{x \in [0,1]} |f(x) - g_{\epsilon}(x)| < \epsilon.$$

Problem2. Let $A \subset [0,1]$ be a null set (a set that has zero Lebesgue measure). Find an increasing and absolutely continuous function $f: [0,1] \to \mathbb{R}$ such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = +\infty$$

for all $x \in A$.

Problem3. Let μ be a Borel measure on [0,1] such that for any $f \in C^1([0,1],\mathbb{R})$ one has the inequality

$$\left| \int_0^1 f'(x) d\mu \right| \le \left(\int_0^1 f^2(x) dx \right)^{1/2}.$$

- 1. Prove that μ is in fact a Radon measure that is absolutely continuous with respect to Lebesgue measure on [0,1].
- 2. If g is the Radon-Nikodym derivative of μ w.r.t. Lebesgue measure, then there exists a constant C > 0 such that

$$|g(x) - g(y)| \le C\sqrt{|x - y|}$$

for a.e. $x, y \in [0, 1]$.

Problem4. Let $p \geq 1$ and let $f, g \in L^p(\mathbb{R})$. Prove that the function

$$\varphi(t) = \int_{\mathbb{R}} |f(x) + tg(x)|^p dx$$

is differentiable a.e. in \mathbb{R} .

Hint: Use Young's inequality: If p,q>0 such that 1/p+1/q=1, then for all $a,b\geq 0$ one has the estimate

$$ab \le \frac{a^p}{p} + \frac{a^q}{q}.$$