Ejercicio 1h Relación 6

Alejandro Manzanares Lemus

Conjunto dominante(CD): Dado un grafo G=(V,E) y un entero positivo $K \leq |V|$, ¿existe un subconjunto $V' \subseteq V$ tal que $|V'| \leq K$ y tal que todo vértice $v \in V \setminus V'$ está conectado con al menos un vértice de V'?

Para demostrar que el problema CD es NP-Completo debemos demostrar que: CD está en NP y establecer una reducción de un problema NP-Completo.

1 CD está en NP

Para demostrar que CD está en NP daremos una máquina de turing no determinista que utiliza tiempo polinomico:

1.1 Máquina de turing

```
Entrada: Conjunto de (V,E) con n vertices:

Repetir k veces:
Seleccionamos un vertice v de manera no determinista
Lo agregamos a CD

Para cada vertice en V:
Comprobar si v esta en el conjunto dominante:
Si no:
Comprobar si existe algun elemento de E que
conecte a v con un vertice de CD:
Si no:
Rechazamos
```

Si no hemos rechazado: Aceptamos Esta máquina utiliza tiempo polinómico porque el proceso de elegir k veces un vértice de V tarda un total de $k \cdot log(n)$ pasos y comprobar si un vertice esta en el conjunto dominante o al menos esta conectado con otro vertice que si pertenece al conjunto tardará como maximo $k \cdot n^3$ pasos.

Por tanto queda demostrado que el problema CD está en NP.

2 Reducción de un problema NP-Completo

Ahora para demostrar que CD estableceremos una reducción de un problema NP-Completo, en este caso utilizaremos el problema 3-SAT:

3-SAT: Dado un conjunto de variables U y un conjunto de cláusulas C de longitud exactamente igual a 3, determinar si se le puede asignar un valor de verdad a cada variable, de tal forma que en cada cláusula haya un literal que es cierto.

Primero daremos un procedimiento algorítmico que transformará un ejemplo de 3-SAT en un ejemplo de CD:

Para un conjunto de variables $\{X_1, X_2, ..., X_n\}$ y un conjunto de clausulas $\{C_1, C_2, ..., C_m\}$ generaremos un grafo con G = (V, E) tal que |V| = 3n + m y |E| = 3n + 3m.

Para cada variable X_i crearemos tres vértices: $x_i, \bar{x_i}, y_i$ y tres aristas que unan los tres vértices entre si. Por cada clausula C_j crearemos un vértice c_j y crearemos una arista entre el vértice c_j y los vértices de las variables x_i o $\bar{x_i}$ tal que $X_i \in C_j$.

Podemos decir que existe un conjunto dominante de tamaño n o menor si y solo si 3-SAT acepta.

Entonces un caso positivo para 3-SAT: Existe una asignación verdadero-falso que hace ciertas todas las clausulas. Crearemos el conjunto S que incluya todos los vértices x_i de todas las variables X_i que sean verdaderas y los vértices \bar{x}_i de todas las variables X_i que sean falsas. Este conjunto tiene exactamente n elementos. Todos los vértices creados a partir de variables estarán cubiertas por el conjunto S. Como la asignación hace a todas las clausulas ciertas, al menos una de las variables de cada clausula es cierta y por tanto esta en S. Esto quiere decir que todos los vértices c_i son adyacentes a un vértice de S. Por tanto S es un conjunto dominante de n elementos y CD lo acepta.

Por otro lado un caso positivo para CD: Existe un conjunto dominante de tamaño $\leq n$. Llamemos S a este conjunto dominante. Entonces y_i esta en S o es adyacente a este, lo que nos lleva a que como y_i esta conectado con x_i y $\bar{x_i}$, entonces o $y_i \in S$ o $x_i, \bar{x_i} \in S$. Esto quiere decir que exactamente un vértice de cada variable pertenece a S, por lo tanto S tiene tamaño n. Creamos entonces una asignación verdadero-falso de la siguiente manera: X_i es verdadera si $x_i \in S$, si no, es falsa. Cojamos la clausula C_j , el vértice c_j no esta en S, por lo que c_j es adyacente a alguna x_i o $\bar{x_i}$ que están en S. Si c_j es adyacente a x_i como x_i esta en S, entonces x_i es cierta y C_j también. Si c_j es adyacente a $\bar{x_i}$ que esta en S, entonces x_i no esta en S (porque solo hay un vértice por variable) y por tanto X_i es falsa y C_j es verdadera. Lo que significa que esta asignación es una solución a 3-SAT.

Por lo tanto vemos que la reducción establecida es correcta y por ello, queda demostrado que CD es un problema NP-Completo.