Causal Networks

Giuseppe Magazzù

2021 - 2022

Contents

1	The Potential Outcome Framework	1
	1.1 Potential Outcome	1
2	Flow of Associations and Causal Graphs	3
	2.1 Bayesian Networks	4
	2.2 Causal Networks	4
	2.3 D-Separation	5
3	Causal Models	6
4	Structural Causal Models	7
5	Randomized Experiments	8
6	Nonparametric Identification	9
7	Estimation	10
8	Unobserved Confounding	11
9	Instrumental Variables	12
10	Causal Discovery from Observational Data	13
11	Transfer Learning and Transportability	14
12	Counterfactuals	15

The Potential Outcome Framework

Fundamental Problem of Causal Inference:

- Average Treatment Effects and Missing Data Interpretation
- Ignorability Exchangeability
- Conditional Exchangeability Uncounfoundedness
- Positivity Overlap Common Support and Extrapolation
- No interference, Consistency, SUTVA

1.1 Potential Outcome

- X Treatment variabile aleatoria
- Y **Outcome** variabile aleatoria
- Z Covariate insieme di variabili aleatorie

Il **potential outcome** Y(x) denota quale sarebbe l'**outcome** quando X = x, ovvero se il treatment che è stato scelto è x. Una volta che viene osservato il **potential outcome** Y(x) questo assume valore Y(x) chiamato **outcome**.

Una **popolazione** consiste di molti individui o unità. Ogni individuo (unità) è associato a uno o più variabili Z **covariate**.

Denotiamo X, Y, Z dell'individuo i-esimo come X_i , Y_i , Z_i .

Y(x) è una variabile aleatoria

 $Y_i(x)$ non è trattata come una variabile aleatoria poiché specifica per l'individuo

Individual Treatment Effect (ITE)

Per verificare se c'è una relazione causale tra X e Y si può calcolare la seguente differenza $\tau_i \triangleq Y_i(1) - Y_i(0)$.

Se il potential outcome è uguale in entrambi i casi ($\tau_i = 0$) allora non c'è relazione causale. Nel caso contrario si può notare che diversi treatment portano a diversi outcome e quindi c'è una relazione causale.

Non possiamo osservare tutti i **potential outcome** poiché l'osservarne uno influenzerebbe gli altri. I **potential outcome** che non possono essere osservati vengono chiamati **counterfactual**, mentre quello che osserviamo è il **factual**.

$$Y(1) = ?$$
 \Rightarrow $Y = 0, X = 1$ \Rightarrow $Y(1) = ?$ counterfactual $Y(0) = ?$ \Rightarrow $Y = 0, X = 0$ \Rightarrow $Y(0) = 1$ factual

Average Treatment Effect (ATE)

$$\tau \triangleq \mathbb{E}[Y_i(1) - Y_i(0)]$$

Flow of Associations and Causal Graphs

In un grafo diretto indichiamo con pa(X) i **genitori** del nodo X e ch(Y) i **figli** del nodo Y.

Un **cammino** è una qualsiasi sequenza di nodi adiacenti, indipendentemente dalla direzione degli archi che li collega.

Un **cammino diretto** è un qualsiasi **cammino** tra due nodi in cui tutti gli archi che li collega hanno la stessa direzione.

de(Y) è l'insieme dei nodi **discendenti** del nodo Y, ovvero tutti i nodi che possono essere raggiunti da Y.

an(Z) è l'insieme dei nodi **antenati** del nodo Z, ovvero tutti i nodi che da Z possono essere raggiunti.

$$an(Z) = \{X, Y\}$$

$$an(Y) = \emptyset$$

$$de(Y) = \{X, Z, W\}$$

$$de(W) = \emptyset$$

2.1 Bayesian Networks

In una rete bayesiana vogliamo modellare la distribuzione di probabilità $P(X_1, ..., X_n)$. Tramite la **Chain Rule** possiamo riscriverla nel seguente modo:

$$P(X_1,...,X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)\cdots P(X_n|X_1,...,X_{n-1})$$

$$= P(X_1)\prod_{i=2}^n P(X_i|X_1,...,X_{i-1})$$

Local Markov Assumption: Un nodo X è indipendente da tutti i suoi non-discendenti date l'evidenze di tutti i nodi genitori pa(X).

Data questa assunzione possiamo applicare la fattorizzazione della probabilità P.

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i|pa(X_i))$$

In questo modo possiamo ridurre il numero di parametri della rete.

Una distribuzione di probabilità P si dice che sia Markov se ogni nodo X rispetta la Local Markov Assumption.

L'assunzione di Markov non ci da informazioni riguardo relazioni di dipendenza tra i nodi. Quindi estendiamo quest'assunzione.

Minimality Assumption

- Dato pa(X), un nodo X è indipendente da tutti i suoi non-discendenti.
- I nodi adiacenti sono dipendenti.

Dato un DAG G, se P è Markov allora sappiamo:

- P soddisfa un insieme di indipendenze specificate dalla struttura di G.
- se *P* soddisfa pure la Minimality Assumption, allora l'insieme di indipendenze è minimale, ovvero *P* non soddisfa altre indipendenze in *G*. Questo equivale a dire che tutti i nodi adiacenti sono dipendenti.

2.2 Causal Networks

Una variabile X si dice **causa** di una variabile Y se Y può cambiare in risposta a un cambiamento di X.

Causal Edge Assumption: Ogni variabile associata a un nodo è causata dalle variabili dei nodi genitori.

Un **Grafo Causale** è un DAG in cui è soddisfatta la proprietà **Causal Edge Assumption**.

 X_1 causa direttamente X_2 e X_3 X_2 causa direttamente X_3 X_3 causa direttamente X_4

 X_1 causa indirettamente X_4

Association Flow

Chain, Fork, Collider, ...

2.3 **D-Separation**

Causal Models

Structural Causal Models

Randomized Experiments

Nonparametric Identification

Estimation

Unobserved Confounding

Instrumental Variables

Causal Discovery from Observational Data

Transfer Learning and Transportability

Counterfactuals