ЛАБОРАТОРНАЯ РАБОТА 29

ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ЗАТУХАЮЩИХ КОЛЕБАНИЙ С ПОМОЩЬЮ ОСЦИЛЛОГРАФА

Выполнил студент гр	Ф.И.О
Подпись преподавателя	дата
(обязательна после окончания эксперимента)	, , , , , , , , , , , , , , , , , , , ,

<u>Цель работы</u>: получение затухающих электрических колебаний и определение параметров колебательного контура с помощью осциллографа.

Порядок выполнения работы

- 1. Ознакомиться со схемой установки.
- 2. Записать в таблицу 1 величины ёмкостей конденсаторов C_1 и C_2 , резисторов R_1 и R_2 , индуктивности L, приведенных на установке.

	Таблица 1					ща 1
C , мк Φ	<i>R</i> , Ом	<i>L</i> , Гн	$\beta_{\text{Teop}}, c^{-1}$	T_{reop} , c	$\theta_{ ext{reop}}$	$Q_{ m Teop}$
C_1 =	$R_1=$					
$C_2=$	$R_2=$					

3. Включить установку в сеть. Включить осциллограф. Подождать, пока. Подключить в контур конденсатор с ёмкостью $C = C_1$ и резистор с сопро-

тивлением $R = R_1$. Добиться на экране осциллографа изображения затухающих колебаний падения напряжения на конденсаторе.

4. Измерить не менее трёх последовательных величин периода колебаний T в делениях, нанесенных на экране осциллографа вдоль горизонтальной оси (это расстояние или между соседними максимумами, или между соседними минимумами графика $U_C = f(t)$). На панели осциллографа найти регулятор горизонталь-

ной (временной) развертки, указывающий цену одного деления в единицах времени (ms или μ s). Умножая величины T в делениях на цену одного деления, получить три экспериментально определенные величины периода $T_{\text{эксп}}$. Занести их в таблицу 2, вычислив среднюю величину $\langle T_{\text{эксп}} \rangle$.

¬ ~	_
 аблиц	9 7
 аолиц	.a _

<i>С</i> , мкФ	<i>R</i> , Ом	<i>L</i> , Гн	$T_{ m 9KC\Pi}$,	$\langle T_{\mathfrak{KC\Pi}} \rangle$,	U_1 , MM	U_n , mm	$\theta_{_{\mathfrak{I}KC\Pi}}$	$\langle \theta_{\scriptscriptstyle \mathfrak{I} KCH} \rangle$	$\beta_{\mathfrak{S}KC\Pi}$, c^{-1}	$Q_{ m эксп}$
			MKC	МКС	IVIIVI				C	
C_1 =	$R_1=$					$U_2=$				
						$U_3=$				
						$U_4=$				
$C_2=$	$R_2=$					$U_2=$				
						$U_3=$				
						$U_4=$				

5. Перерисовать кривую изображения затухающих колебаний с экрана осциллографа на лист миллиметровой бумаге в масштабе 1:1, <u>тщательно соблюдая все размеры</u> (или сфотографировать кривую на экране, распечатать полученную фотографию на компьютере и приложить к отчету).

- 6. Подключить в контур конденсатор с ёмкостью $C = C_2$ и резистор с сопротивлением $R = R_2$. Добиться на экране осциллографа нового изображения затухающих колебаний.
 - 7. Повторить выполнение пунктов 4 и 5, получая новый график и новое значение $\langle T_{\text{эксп}} \rangle$.
 - 8. Выключить питание осциллографа и выключить установку.
- 9. По нарисованным или сфотографированным на двух графиках кривым измерить линейкой амплитудные значения $U_1, U_2, U_3, U_4, \dots$ в миллиметрах (эти значения отсчитываются от горизонтальной оси, соответствующей значению U=0, к которой будут сходиться колебания, и которую надо нанести на графике). Занести их в таблицу 2.
 - 10. По формуле $\theta = \frac{1}{n-1} \ln \left(\frac{U_1}{U_n} \right)$, где n=2,3,4 вычислить логарифмический декремент затуха-

ния θ и рассчитать его среднее значение $\langle \theta \rangle = \theta_{\text{эксп}}$ для каждого из двух графиков. Затем по формулам $\beta_{\text{эксп}} = \langle \theta_{\text{эксп}} \rangle / T_{\text{эксп}}$ и $Q_{\text{эксп}} = \pi / \langle \theta_{\text{эксп}} \rangle$ рассчитать экспериментальные значения коэффициента затухания β и добротности Q контура. Результаты вычислений занести в таблицу 2.

11. По формулам
$$\beta_{\text{теор}} = \frac{R}{2L}$$
, $T_{\text{теор}} = 2\pi / \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$, $\theta_{\text{теор}} = \beta_{\text{теор}} \cdot T_{\text{теор}}$, $Q_{\text{теор}} = \frac{\pi}{\theta_{\text{теор}}}$

вычислить соответствующие теоретические характеристики контура. Результаты вычислений занести в таблицу 1 и сравнить с экспериментальными величинами из таблицы 2.

Контрольные вопросы к лабораторной работе № 29

- 1. Какая цепь называется электрическим колебательным контуром?
- 2. Запишите правило Кирхгофа для замкнутой цепи, содержащей конденсатор с ёмкостью C, катушку с индуктивностью L и резистор R и приведите его к дифференциальному уравнению собственных затухающих колебаний заряда на конденсаторе. Запишите его решение для зависимости колебаний заряда q на конденсаторе и падения напряжения U_C на его обкладках от времени.
- 3. Как частота и период собственных электрических колебаний зависят от параметров C, L и R?
- 4. Что происходит с величиной периода (частоты) собственных колебаний при увеличении сопротивления R? при увеличении ёмкости C?
- 5. Чему равно критическое сопротивление контура $R_{\rm kp}$? Что происходит с колебаниями при $R \ge R_{\rm kp}$?
- 6. Получите зависимость величины тока I в контуре от времени.
- 7. Как изменяются со временем амплитуды колебаний U_C и I? Чему равен сдвиг фаз между ними?
- 8. Какая величина называется логарифмическим декрементом затухания колебаний θ ? Выразите величину θ через параметры C, L и R.
- 9. В электрическом колебательном контуре сопротивление R и индуктивность L увеличили в два раза. Во сколько раз надо изменить ёмкость C, чтобы логарифмический декремент затухания колебаний не изменился?
- 10. Как вычислить добротность колебательного контура? Что характеризует величина добротности?
- 11. Как определяется величина ЭДС взаимной индукции и какова роль в данной работе? По электрической схеме объясните, как возникает картина затухающих колебаний на экране осциллографа.
- 12. Объясните, как определить величину логарифмического декремента затухания θ по картине, наблюдаемой на экране?
- 13. Период собственных затухающих колебаний в электрическом колебательном контуре T=2 мс. За время $\Delta t=10$ мс амплитуда таких колебаний уменьшается в e=2,71828 раз. Чему равен логарифмический декремент затухания колебаний?
- 14. В контуре с заданными параметрами C и R изменяют индуктивность L. При каком значении L циклическая частота собственных колебаний имеет максимальную величину? Чему равна ω_{\max} ?

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс физики в 3-х тт.: Т. 2: Электричество М.: Наука, 1970. §§ 59, 62, 99, 100.
- 2. Колмаков, Ю.Н. Кажарская С.Е. Физика. Электромагнетизм: руководство к проведению самостоятельной работы студентов. Изд-во ТулГУ, 2017, стр. 100-103..