CSE221

Binary Trees

Fall 2021 Young-ri Choi

Outline

- Binary tree traversal
- Counting binary trees
- Threaded binary trees

Binary Tree Traversal

- Each node is <u>visited only once</u>
- When a node is visited, some operation (e.g., printout) is performed on it
- After traversal, all nodes in the tree are visited in a linear order and only once

Binary Tree Traversal

- On a node
 - –L: moving to left child node
 - –V : visiting current node
 - —R : moving to right child node
- Available traversal order
 - -LVR, LRV, VLR, VRL, RVL, RLV
- Traverse left before right
 - -LVR: inorder
 - –VLR : preorder
 - −LRV : postorder

Binary Tree Traversal

- Binary tree with arithmetic expression
 - –Internal nodes: operators
 - –Leaf nodes: operands

Inorder Traversal

A/B*C*D+E• LVR void Tree::inorder() inorder(root); void Tree::inorder(TreeNode *CurrentNode) if (CurrentNode) { inorder(CurrentNode->LeftChild); cout << CurrentNode->data; inorder(CurrentNode->RightChild); Output: A/B*C*D+E (infix notation)

Preorder Traversal

A/B*C*D+EVLR void Tree::preorder() preorder(root); void Tree::preorder(TreeNode *CurrentNode) if (CurrentNode) { cout << CurrentNode->data; preorder(CurrentNode->LeftChild); preorder(CurrentNode->RightChild); Output: +**/ABCDE (prefix notation)

Postorder Traversal

A/B*C*D+ELRV void Tree::postorder() postorder(root); void Tree::postorder(TreeNode *CurrentNode) if (CurrentNode) { postorder (CurrentNode->LeftChild); (A) postorder(CurrentNode->RightChild); cout << CurrentNode->data; Output: AB/C*D*E+ (postfix notation)

Non-recursive Inorder Traversal

Use a stack

–Recursion implicitly uses a stack!

```
void Tree::NonrecInorder()
   Stack<TreeNode *> s;
   TreeNode *CurrentNode = root;
   while(1){
         // move down left child
        while(CurrentNode) {
             s.Push(CurrentNode);
             CurrentNode = CurrentNode->LeftChild;
         }
         if (s.IsEmpty()) return;
         CurrentNode = s.Top();
         s.Pop();
        Visit(CurrentNode);
         CurrentNode = CurrentNode->RightChild;
```


Overall procedure

- Infix notation → postfix notation
 - Use a stack (see lecture note 4)
- Postfix notation → expression tree
 - Build a tree incrementally using a stack

Push nodes of operands until finding an operator

Pop two nodes and push a partial expression tree

Push nodes of operands until finding an operator

Pop two nodes and push a partial expression tree

Push nodes of operands until finding an operator

Pop two nodes and push an expression tree

• Traverse index order

• Traverse index order

Using a queue

```
-Visit current node, push two children (left, right)
     void Tree::LevelOrder()
         Queue<TreeNode*> q;
         TreeNode *CurrentNode = root;
         while(CurrentNode) {
            Visit(currentNode);
             if (CurrentNode->LeftChild)
                   q.push(CurrentNode->LeftChild);
             if (CurrentNode->RightChild)
                   q.push(CurrentNode->RightChild);
             if(q.IsEmpty()) return;
            CurrentNode = q.Front();
            q. Pop();
```

• Visit: 1

• Queue: 2, 3

• Visit: 1, 2 (pop)

• Queue: 3, 4, 5

• Visit: 1, 2, 3 (pop)

• Queue: 4, 5, 6, 7

• Visit: 1, 2, 3, 4 (pop)

• Queue: 5, 6, 7, 8, 9

Testing Equality

```
// Driver
bool operator==(const Tree& s, Tree& t)
   return equal(s.root, t.root);
// Workhorse
bool equal(TreeNode *a, TreeNode *b)
{
   if ((!a) && (!b)) return true; // both a and b are null
   if (a && b
            (a->data == b->data) // data is equal
            equal(a->LeftChild, b->LeftChild) // left subtrees equal
            equal(a->RightChild, b->RightChild)) // right subtrees equal
      return true;
   return false;
```

- Propositional calculus
 - -Formulas defined by boolean variables $x_1, x_2, ..., x_n$ and operators \land (and), \lor (or), \neg (not)
- Satisfiability problem

 $x_3 = false$

 Finding out values for the variables that result in the formula being true

-e.g.,
$$x_1 \lor (x_2 \land \neg x_3)$$
 is true if
$$x_1 = false$$
 Complexity?
$$x_2 = true$$

Propositional formula in a binary tree

Node structure

Leftchild	first	second	Rightchild
-----------	-------	--------	------------

- -first: given values for formular
 - Operators(\land , \lor , \neg), True/False values
- -second
 - True/False values after evaluation

Example

Algorithm

Evaluate propositional formula

```
void SatTree::PostOrderEval() { // Driver
          PostOrderEval(root);
}
void SatTree::PostOrderEval(SatNode *s) // Workhorse
   if (s) {
      PostOrderEval(s->LeftChild);
      PostOrderEval(s->RightChild); // postorder - left & right subtrees are evaluated
      switch(s->data.first) {
         case Not: s->data.second = !s->RightChild->data.second; break;
         case And: s->data.second =
              s->RightChild->data.second && s->LeftChild->data.second;
              break:
         case Or: s->data.second =
              s->RightChild->data.second || s->LeftChild->data.second;
              break;
         case True: s->data.second = TRUE; break;
         case False: s->data.second = FALSE;
```

