Chapter 3 Part I Linear Regression (Problems_8)

Kartheek Raj 12/21/2019

Problem 8: This question involves the use of simple linear regression on the Auto data set

Required Packages :ISLR

Answer

Loading the Auto data from ISLR package

```
require(ISLR)
```

```
## Loading required package: ISLR
```

```
library(ISLR)
auto<-data.frame(Auto)
head(auto)</pre>
```

```
mpg cylinders displacement horsepower weight acceleration year origin
##
## 1
                             307
                                               3504
                                                             12.0
                                                                     70
## 2
     15
                  8
                             350
                                         165
                                               3693
                                                             11.5
                                                                     70
                                                                             1
                                                                     70
## 3
     18
                  8
                             318
                                         150
                                               3436
                                                             11.0
                                                                             1
## 4
     16
                  8
                             304
                                         150
                                               3433
                                                             12.0
                                                                     70
                                                                             1
## 5
     17
                  8
                             302
                                         140
                                               3449
                                                             10.5
                                                                     70
                                                                             1
## 6 15
                  8
                             429
                                         198
                                               4341
                                                             10.0
                                                                     70
                                                                             1
##
## 1 chevrolet chevelle malibu
             buick skylark 320
## 3
            plymouth satellite
                  amc rebel sst
## 4
## 5
                    ford torino
              ford galaxie 500
```

(a) Use the lm() function to perform a simple linear regression with mpg as the response and horsepower as the predictor. Use the summary() function to print the results. Comment on the output.

Answer

```
autolm<-lm(mpg~horsepower,data=auto)
summary(autolm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ horsepower, data = auto)
## Residuals:
##
       Min
                  1Q
                       Median
                                     30
                                             Max
                                2.7630 16.9240
## -13.5710 -3.2592 -0.3435
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 39.935861  0.717499  55.66  <2e-16 ***
## horsepower -0.157845  0.006446 -24.49  <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16</pre>
```

(i) Is there a relationship between the predictor and the response?

Answer: There is relationship between the predictor and the response as evidence poised to P-value.

(ii) How strong is the relationship between the predictor and the response?

Answer: Adjusted R-squared value is 0.60 means 60% can explain variance in mpg by horsepower.

(iii) Is the relationship between the predictor and the response positive or negative?

Answer: Negative correlation indicated by horsepower coefficient is -0.157845 i.e m=negative slope.

(iv) What is the predicted mpg associated with a horsepower of 98? What are the associated 95% confidence and prediction intervals?

Answer

```
predict(autolm,data.frame(horsepower=98),interval="confidence")

## fit lwr upr
## 1 24.46708 23.97308 24.96108

predict(autolm,data.frame(horsepower=98),interval="prediction")

## fit lwr upr
## 1 24.46708 14.8094 34.12476
```

(b) Plot the response and the predictor. Use the abline() function to display the least squares regression line.

Answer

```
plot(auto$horsepower,auto$mpg,main="Plot using adbline() display the least squares regression line",xla
abline(autolm,col="darkblue")
```

Plot using adbline() display the least squares regression line

(c) Use the plot() function to produce diagnostic plots of the least squares regression fit. Comment on any problems you see with the fit.

Answer

plot(autolm,col="darkgreen")

