Measureplan for the experiment EFNMR 1 Remote

Experiment planned on July 9th 2020 at 18 o'clock

executor: Marc Neumann and Philipp Gebauer and Simon Keegan
1. login & get used to the program; making the data file with the names (until 18:30) \square
2. everything is connected and aligned in the earth magnetic Field \checkmark
3. EFNMR \longrightarrow MonitorNoise (dependent of the location and the orientation of the probe); ask tutor if the program changes C automatically; $gamma_{H1} = 42{,}577 \frac{\text{MHz}}{\text{T}} \cdot 2\pi$
noise level less than $10\frac{\mu V}{Hz}$ is okay; less than $5\frac{\mu V}{Hz}$ is good and fewer than $3\frac{\mu V}{Hz}$ is great (about $30\mathrm{min})$ \square
4. To investigate the B_1 transmit/receive coil; EFNMR \longrightarrow AnalyseCoil \longrightarrow click Analyse (note the values from the CLI);
measure the resonance frequency dependent from the Capacity; In the figure of the script from 0 nF to 20 nF in 1/2 nF steps? (about 60 min)
5. detect the hydrogen-signal in the water probe EFNMR \longrightarrow PulsAndCollect \longrightarrow measure the spektrum and change the values from B_1, C and the "shimming" to get an better Signal; B_1 minimum and step size should be the half of the Lamor frequence (60 min) every change and step should be noted, so you can reproduce the simulation every time
6. measure the longitudinal spin relaxation in the polarised magnetic field and in the earth magnetic field measure once τ_p in the polarized field and then t the time between the polarisation and the pulse in the magnetic field (repeat a few times to get a good signal; $60 \mathrm{min}$)
7. measure the amplitude and the integral of the spectral peak by different shimming; measure T_2, T_2^* (30 min) \square
8. measure the puls from many spin-echos try to change the the time between the pulses (45 min) \Box

- 1. Einloggen und einrichten des Dateipfades (18:20)
- 2. EFNMR Werte von dem ersten Versuchstag wiederholen oder als gelich angenommen werden (Teil 6.4.1 im Usermanual) (Am ersten Versuchstag ca. 3 Stunden eingeplant)
- 3. T_1 und T_2 werden jeweils in Abhängigkeit von der Konzentration der Lösung bestimmt(Welche Auswirkung das $CUSO_4$ (paramagnetisches Salz?) auf das H^1 Spektrum vom Wasser hat; Proben enthalten Konzentratrionen zwischen $250 \,\mu\text{M}$ bis $5000 \,\mu\text{M} \Longrightarrow \text{Auftragen}$ der Relaxationszeiten über die Konzentration um Relaxitivität r_1 bzw. r_2 erhalten; (2 Stunden)
- 4. 1-D Bild erstellen mit Gradient echo imaging; (30 min)
- 5. Untersuchung der Kopplungskonstante (J-Kopplung) von 2,2,2 Flurethanol; Signalaufnahme mit veränderten anregungsfrequenzen und veränderter Resonanzbedingung im Schwingkreis (1 Stunde)
- 6. 2-D nD Gradient-Echo; veränderung des Gradientens entlang der x,y-Achse und zusätzlich die Gewichtung der Relaxationszeit, sodass man die Röhren einzelnd sehen kann (30 min)
- 7. PGSE-Experiment; nach dem 90° und 180° Puls werden jeweils kurze Gradientenfelder angelegt um auf die Selbstdiffusion im Wasser zu untersuchen (30 min)