Niveau: Première année de PCSI

COLLE 22 = VARIABLES ALÉATOIRES ET CALCULS DIFFÉRENTIELS

Variables aléatoires :

Exercice 1.

On dispose de n urnes numérotées de 1 à n, l'urne numérotée k comprenant k boules numérotées de 1 à k. On choisit d'abord une urne, puis une boule dans cette urne, et on note Y la variable aléatoire du numéro obtenu. Quelle est la loi de Y? Son espérance?

Exercice 2.

On jette 3600 fois un dé équilibré. Minorer la probabilité que le nombre d'apparitions du numéro 1 soit compris entre 480 et 720.

Exercice 3.

Soit X une variable aléatoire réelle définie sur un espace probabilisé fini. Démontrer que

$$E(X)^2 \le E(X^2)$$

Exercice 4.

Soit X une variable aléatoire prenant ses valeurs dans $\{0,1,...,N\}$. Démontrer que

$$E(X) = \sum_{n=0}^{N-1} P(X > n)$$

Exercice 5.

Soit X, Y deux variables aléatoires indépendantes suivant la loi uniforme sur $\{1, ..., n\}$.

- 1. Déterminer P(X = Y).
- 2. Déterminer $P(X \ge Y)$.
- 3. Déterminer la loi de X + Y.

Exercice 6.

Une entreprise souhaite recrute un cadre. n personnes se présentent pour le poste. Chacun d'entre eux passe à tour de rôle un test, et le premier qui réussit le test est engagé. La probabilité de réussir le test est $p \in]0,1[$. On pose également q=1-p. On définit la variable aléatoire X par X = k si le k-ième candidat qui réussit le test est engagé, et X = n + 1 si personne n'est engagé.

- 1. Déterminer la loi de X.
- 2. En dérivant la fonction $x \mapsto \sum_{k=0}^{n} x^{k}$. En déduire l'espérance de X.
- 3. Quelle est la valeur minimale de p pour avoir plus d'une chance sur deux de recruter l'un des candidats?

Fonctions à plusieurs variables :

Exercice 7.

Etudier l'existence et la valeur éventuelle des limites suivantes:

1.
$$\frac{xy}{x^2+y^2}$$
 en $(0,0)$

4.
$$\frac{x^2y^2}{x^2+y^2}$$
 en $(0,0)$

2.
$$\frac{x^3+y^3}{x^2+y^4}$$
 en $(0,0)$

2.
$$\frac{x^3+y^3}{x^2+y^4}$$
 en $(0,0)$ 5. $\frac{1-\cos\sqrt{|xy|}}{|y|}$ en $(0,0)$

3.
$$\frac{\sqrt{x^2+y^2}}{|x|\sqrt{|y|}+|y|\sqrt{|x|}}$$
 en $(0,0)$

Exercice 8.

 $\begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & \left\{ \begin{array}{l} 0 \text{ si } y = 0 \\ y^2 \sin \left(\frac{x}{y}\right) \text{ si } y \neq 0 \end{array} \right.$ Soit f:

- 1. Etudier la continuité de f.
- 2. Etudier l'existence et la valeur éventuelle de dérivées partielles d'ordre $1 \text{ sur } \mathbb{R}^2$.
- 3. Étudier $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ en (0,0).

Exercice 9.

Pour $(x,y) \in \mathbb{R}^2$, on pose

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}.$$

Montrer que f est de classe C^1 (au moins) sur \mathbb{R}^2 .

Exercice 10.

Soit a un réel strictement positif donné. Trouver le minimum de

$$f(x,y) = \sqrt{x^2 + (y-a)^2} + \sqrt{y^2 + (x-a)^2}.$$

Exercice 11.

Trouver les extrema locaux de

1.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x^2 + xy + y^2 + 2x + 3y$
2. $f: \mathbb{R}^2 \to \mathbb{R}$
 $(x,y) \mapsto x^4 + y^4 - 4xy$

2.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x^4 + y^4 - 4xy$