Graphics Pipeline & Rasterization

Calvin and HODDES

How Do We Render Interactively?

- Use graphics hardware, via OpenGL or DirectX
 - OpenGL is multi-platform, DirectX is MS only

OpenGL rendering

Our ray tracer

How Do We Render Interactively?

- Use graphics hardware, via OpenGL or DirectX
 - OpenGL is multi-platform, DirectX is MS only

OpenGL rendering

Our ray tracer

 Most global effects available in ray tracing will be sacrificed for speed, but some can be approximated

Ray Casting vs. GPUs for Triangles

```
Ray Casting

For each pixel (ray)

For each triangle

Does ray hit triangle?

Keep closest hit
```


Ray Casting vs. GPUs for Triangles

Ray Casting For each pixel (ray) For each triangle Does ray hit triangle? Keep closest hit

GPU

For each triangle
For each pixel
Does triangle cover pixel?
Keep closest hit

Ray Casting vs. GPUs for Triangles

```
Ray Casting

For each pixel (ray)

For each triangle

For each triangle

Does ray hit triangle?

Keep closest hit

FOU

For each triangle

Does triangle cover pixel?

Keep closest hit
```

It's just a different order of the loops!

GPUs do Rasterization

• The process of taking a triangle and figuring out which pixels it covers is called **rasterization**

GPUs do Rasterization

- The process of taking a triangle and figuring out which pixels it covers is called **rasterization**
- We've seen acceleration structures for ray tracing; rasterization is not stupid either
 - We're not actually going to test *all* pixels for each triangle

Rasterization ("Scan Conversion")

- Given a triangle's vertices & extra info for shading, figure out which pixels to "turn on" to render the primitive
- Compute illumination values to "fill in" the pixels within the primitive
- At each pixel, keep track of the closest primitive (z-buffer)
 - Only overwrite if triangle being drawn is closer than the previous triangle in that pixel

```
glBegin(GL_TRIANGLES)
glNormal3f(...)
glVertex3f(...)
glVertex3f(...)
glVertex3f(...)
glVertex3f(...)
```


What are the Main Differences?

• What needs to be stored in memory in each case?

What are the Main Differences?

- In this basic form, ray tracing needs the entire scene description in memory at once
 - Then, can sample the image completely freely
- The rasterizer only needs one triangle at a time, *plus* the entire image and associated depth information for all pixels

Rasterization Advantages

- Modern scenes are more complicated than images
 - A 1920x1080 frame at 64-bit color and 32-bit depth per pixel is 24MB (not that much)
 - Of course, if we have more than one sample per pixel this gets larger, but e.g. 4x supersampling is still a relatively comfortable ~100MB
 - Our scenes are routinely larger than this
 - This wasn't always true

Rasterization Advantages

Rasterization Advantages

- Modern scenes are more complicated than images
 - A 1920x1080 frame (1080p) at 64-bit color and 32-bit depth per pixel is 24MB (not that much)
 - Of course, if we have more than one sample per pixel (later) this gets larger, but e.g. 4x supersampling is still a relatively comfortable ~100MB
 - Our scenes are routinely larger than this
 - This wasn't always true
- A rasterization-based renderer can *stream* over the triangles, no need to keep entire dataset around
 - Allows parallelism and optimization of memory systems

Rasterization Limitations

- Restricted to scan-convertible primitives
 - Pretty much: triangles
- Faceting, shading artifacts
 - This is largely going away with programmable per-pixel shading, though
- No unified handling of shadows, reflection, transparency
- Potential problem of overdraw (high depth complexity)
 - Each pixel touched many times

Ray Casting / Tracing

Advantages

- Generality: can render anything that can be intersected with a ray
- Easily allows recursion (shadows, reflections, etc.)

Disadvantages

- Hard to implement in hardware (lacks computation coherence, must fit entire scene in memory, bad memory behavior)
 - Not such a big point any more given general purpose GPUs
- Has traditionally been too slow for interactive applications
- Both of the above are changing rather rapidly right now!

• Input

- Geometric model
 - Triangle vertices, vertex normals, texture coordinates
- Lighting/material model (shader)
 - Light source positions, colors, intensities, etc.
 - Texture maps, specular/diffuse coefficients, etc.
- Viewpoint + projection plane

Output

Color (+depth) per pixel

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Test visibility (Z-buffer), update frame buffer color
- Compute per-pixel color

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
 - For each pixel,
 test 3 edge equations
 - if all pass, draw pixel
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer color

- Perform projection of vertices
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer color
 - Store minimum distance to camera for each pixel in "Z-buffer"
 - ~same as t_{min} in ray casting!
 - if newz < zbuffer[x,y]
 zbuffer[x,y]=new_z
 framebuffer[x,y]=new_color</pre>


```
For each triangle
  transform into eye space
  (perform projection)
  setup 3 edge equations
  for each pixel x,y
    if passes all edge equations
      compute z
      if z<zbuffer[x,y]</pre>
        zbuffer[x,y]=z
        framebuffer[x,y]=shade()
```



```
For each triangle
  transform into eye space
  (perform projection)
  setup 3 edge equations
  for each pixel x,y
    if passes all edge equations
      compute z
      if z<zbuffer[x,y]</pre>
        zbuffer[x,y]=z
        framebuffer[x,y]=shade()
```


Questions?

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

Projection

- Project vertices to 2D (image)
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

Orthographic vs. Perspective

Orthographic

Perspective

Extension to 3D

- Trivial: Just ass another dimension y and treat it like x
- Different fields of view and non-square image aspect ratios can be accomplished by simple scaling of the *x* and *y* axes.

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Caveat

- These projections matrices work perfectly in the sense that you get the proper 2D projections of 3D points.
- However, since we are flattening the scene onto the *z*=1 plane, we've lost all information about the distance to camera.
 - We need the distance for Z buffering, i.e., figuring out what is in front of what!

Basic Idea: store 1/z

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Basic Idea: store 1/z

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \\ z \end{pmatrix}$$

- z' = 1 before homogenization
- z'=1/z after homogenization

Full Idea: Remap the View Frustum

• We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by w'.

The View Frustum in 2D

We can transform the frustum by a modified projection in a way that makes it a square (cube in 3D) after division by w'.

The final image is obtained by merely dropping the z coordinate after projection (orthogonal projection)

The View Frustum in 2D

• (In 3D this is a truncated pyramid.)

The View Frustum in 2D

• Far and near are kind of arbitrary

The Canonical View Volume

- Point of the exercise: This gives screen coordinates and depth values for Z-buffering with unified math
 - Caveat: OpenGL and DirectX define Z differently [0,1] vs.[-1,1]

OpenGL Form of the Projection

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{\text{far+near}}{\text{far-near}} & -\frac{2*\text{far*near}}{\text{far-near}} \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Homogeneous coordinates within canonical view volume

Input point in view coordinates

OpenGL Form of the Projection

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{\text{far+near}}{\text{far-near}} & -\frac{2*\text{far*near}}{\text{far-near}} \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

- z'=(az+b)/z=a+b/z
 - where a & b depend on near & far
- Similar enough to our basic idea:

$$\begin{pmatrix} z' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

OpenGL Form of the Projection

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{\text{far+near}}{\text{far-near}} & -\frac{2*\text{far*near}}{\text{far-near}} \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

- Details/more intuition in handout in Stellar
 - "Understanding Projections and Homogenous Coordinates"

Recap: Projection

- Perform rotation/translation/other transforms to put viewpoint at origin and view direction along z axis
 - This is the OpenGL "modelview" matrix
- Combine with projection matrix (perspective or orthographic)
 - Homogenization achieves foreshortening
 - This is the OpenGL "projection" matrix
- **Corollary**: The entire transform from object space to canonical view volume [-1,1]³ is a single matrix

Recap: Projection

Questions?

- Perform rotation/translation/other transforms to put viewpoint at origin and view direction along z axis
 - This is the OpenGL "modelview" matrix
- Combine with projection matrix (perspective or orthographic)
 - Homogenization achieves foreshortening
 - This is the OpenGL "projection" matrix
- **Corollary**: The entire transform from object space to canonical view volume [-1,1]³ is a single matrix

Modern Graphics Pipeline

- Project vertices to 2D (image)
 - We now have screen coordinates
- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility (Z-buffer), update frame buffer

2D Scan Conversion

• Primitives are "continuous" geometric objects; screen is discrete (pixels)

2D Scan Conversion

- Primitives are "continuous" geometric objects; screen is discrete (pixels)
- Rasterization computes a discrete approximation in terms of pixels (how?)

+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
 - Lines map to lines, not curves

Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines

Edge Functions

- The triangle's 3D edges project to line segments in the image (thanks to planar perspective)
- The interior of the triangle is the set of points that is inside all three halfspaces defined by these lines

$$E_i(x,y) = a_i x + b_i y + c_i$$

(x, y) within triangle \Leftrightarrow $E_i(x, y) \geq 0,$ $\forall i = 1, 2, 3$

Brute Force Rasterizer

- Compute E₁, E₂, E₃ coefficients from projected vertices
 - Called "triangle setup", yields a_i , b_i , c_i for i=1,2,3

Brute Force Rasterizer

- Compute E₁, E₂, E₃ coefficients from projected vertices
- For each pixel (x, y)
 - Evaluate edge functions at pixel center
 - If all non-negative, pixel is in!

Problem?

Brute Force Rasterizer

- Compute E₁, E₂, E₃ coefficients from projected vertices
- For each pixel (x, y)
 - Evaluate edge functions at pixel center
 - If all non-negative, pixel is in!

If the triangle is small, lots of useless computation if we really test all pixels

Easy Optimization

- Improvement: Scan over only the pixels that overlap the *screen bounding box* of the triangle
- How do we get such a bounding box?
 - $-X_{min}, X_{max}, Y_{min}, Y_{max}$ of the projected triangle vertices

Rasterization Pseudocode

Bounding box clipping is easy, just clamp the coordinates to the screen rectangle

Rasterization Pseudocode

Note: No visibility

```
For every triangle
   Compute projection for vertices, compute the Ei
   Compute bbox, clip bbox to screen limits
   For all pixels in bbox
        Evaluate edge functions Ei
        If all > 0
        Framebuffer[x,y] = triangleColor
```


Bounding box clipping is easy, just clamp the coordinates to the screen rectangle

Questions?

Can We Do Better?

```
For every triangle
  Compute projection for vertices, compute the Ei
  Compute bbox, clip bbox to screen limits
  For all pixels in bbox
     Evaluate edge functions a_ix + b_iy + c_i
     If all > 0
         Framebuffer[x,y] = triangleColor
```

Can We Do Better?

```
For every triangle
```

Compute projection for vertices, compute the E_i Compute bbox, clip bbox to screen limits For all pixels in bbox

Evaluate edge functions $a_ix + b_iy + c_i$

If all > 0

Framebuffer[x,y] = triangleColor

These are linear functions of the pixel coordinates (x,y), i.e., they only change by a constant amount when we step from x to x+1 (resp. y to y+1)

Incremental Edge Functions

```
For every triangle
   ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
        Evaluate all E<sub>i</sub>'s at (x0,y): E<sub>i</sub> = a<sub>i</sub>x0 + b<sub>i</sub>y + c<sub>i</sub>
        For all pixels x in bbox
        If all E<sub>i</sub>>0
            Framebuffer[x,y] = triangleColor
        Increment line equations: E<sub>i</sub> += a<sub>i</sub>
```

 We save ~two multiplications and two additions per pixel when the triangle is large

Incremental Edge Functions

```
For every triangle
   ComputeProjection
Compute bbox, clip bbox to screen limits
For all scanlines y in bbox
        Evaluate all E<sub>i</sub>'s at (x0,y): E<sub>i</sub> = a<sub>i</sub>x0 + b<sub>i</sub>y + c<sub>i</sub>
        For all pixels x in bbox
        If all E<sub>i</sub>>0
            Framebuffer[x,y] = triangleColor
        Increment line equations: E<sub>i</sub> += a<sub>i</sub>
```

 We save ~two multiplications and two additions per pixel when the triangle is large

Can also zig-zag to avoid reinitialization per scanline, just initialize once at x0, y0

Questions?

- For a really HC piece of rasterizer engineering, see the hierarchical Hilbert curve rasterizer by McCool, Wales and Moule.
 - (Hierarchical? We'll look at that next..)

Can We Do Even Better?

- We compute the line equation for many useless pixels
- What could we do?

Indeed, We Can Be Smarter

Indeed, We Can Be Smarter

- Hierarchical rasterization!
 - Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)

Usually two levels

Conservative tests of axis-aligned blocks vs. edge functions are not very hard, thanks to linearity. See <u>Akenine-Möller and Aila</u>, Journal of Graphics Tools 10(3), 2005.

Indeed, We Can Be Smarter

- Hierarchical rasterization!
 - Conservatively test blocks of pixels before going to per-pixel level (can skip large blocks at once)

Usually two levels

Can also test if an entire block is **inside** the triangle; then, can skip edge functions tests for all pixels for even further speedups. (Must still test Z, because they might still be occluded.)

Further References

- Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John Austin, Frederick Brooks, Jr., John Eyles and John Poulton, "Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes", Proceedings of SIGGRAPH '85 (San Francisco, CA, July 22–26, 1985). In *Computer Graphics*, v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.
- Juan Pineda, "A Parallel Algorithm for Polygon Rasterization", Proceedings of SIGGRAPH '88 (Atlanta, GA, August 1–5, 1988). In *Computer Graphics*, v22n4 (August 1988), ACM SIGGRAPH, New York, NY, 1988. Figure 7: Image from the spinning teapot performance test.
- Marc Olano Trey Greer, "Triangle Scan Conversion using 2D Homogeneous Coordinates", Graphics Hardware 97 http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

Oldschool Rasterization

Compute the boundary pixels using line rasterization

Oldschool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans

Oldschool Rasterization

- Compute the boundary pixels using line rasterization
- Fill the spans

More annoying to implement than edge functions

Not faster unless triangles are huge

Oldschool Rasterization Questions?

- Compute the boundary pixels using line rasterization
- Fill the spans

More annoying to implement than edge functions

Not faster unless triangles are huge

What if the p_z is $> eye_z$?

What if the p_z is $< eye_z$?

What if the $p_z = eye_z$?

When w' = 0, point projects to infinity (homogenization is division by w')

A Solution: Clipping

Clipping

• Eliminate portions of objects outside the viewing frustum

View Frustum

boundaries of the image plane projected in 3D

a near & far clipping plane

 User may define additional clipping planes

Why Clip?

- Avoid degeneracies
 - Don't draw stuff behind the eye
 - Avoid divisionby 0 and overflow

Related Idea

- "View Frustum Culling"
 - Use bounding volumes/hierarchies to test whether any part of an object is within the view frustum
 - Need "frustum vs. bounding volume" intersection test
 - Crucial to do hierarchically when scene has *lots* of objects!
 - Early rejection (different from clipping)

See e.g. Optimized view frustum culling algorithms for bounding boxes, Ulf Assarsson and Tomas Möller, journal of graphics tools, 2000.

Related Idea

Questions?

- "View Frustum Culling"
 - Use bounding volumes/hierarchies to test whether any part of an object is within the view frustum
 - Need "frustum vs. bounding volume" intersection test
 - Crucial to do hierarchically when scene has *lots* of objects!
 - Early rejection (different from clipping)

See e.g. Optimized view frustum culling algorithms for bounding boxes, Ulf Assarsson and Tomas Möller, journal of graphics tools, 2000.

- Idea: avoid projection (and division by zero) by performing rasterization in 3D
 - Or equivalently, use 2D homogenous coordinates (w'=z) after the projection matrix, remember)
- Motivation: clipping is annoying

 Marc Olano, Trey Greer: Triangle scan conversion using 2D homogeneous coordinates, Proc. ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware 1997

- Replace 2D edge equation by 3D plane equation
 - Plane going through 3D edge and viewpoint
 - Still a halfspace, just 3D

- Replace 2D edge equation by 3D plane equation
 - Treat pixels as 3D points (x, y, 1) on image plane, test for containment in 3 halfspaces just like edge functions


```
Given 3D triangle
  setup plane equations
  (plane through viewpoint & triangle edge)
  For each pixel x,y
    compute plane equations for (x,y,1)
    if all pass, draw pixel
                                          plane equation
```


Works for triangles behind eye

• Still linear, can evaluate incrementally/hierarchically

Homogeneous Rasterization Recap

- Rasterizes with plane tests instead of edge tests
- Removes the need for clipping!

Homogeneous Rasterization Recap

- Rasterizes with plane tests instead of edge tests
- Removes the need for clipping!

Modern Graphics Pipeline

Perform projection of vertices

- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer

Pixel Shaders

 Modern graphics hardware enables the execution of rather complex programs to compute the color of every

88

Modern Graphics Pipeline

Perform projection of vertices

- Rasterize triangle: find which pixels should be lit
- Compute per-pixel color
- Test visibility, update frame buffer

Visibility

• How do we know which parts are visible/in front?

Ray Casting

• Maintain intersection with closest object

Visibility

- In ray casting, use intersection with closest t
- Now we have swapped the loops (pixel, object)
- What do we do?

Z buffer

- In addition to frame buffer (R, G, B)
- Store distance to camera (*z*-buffer)
- Pixel is updated only if *newz* is closer than *z*-buffer value

Z-buffer pseudo code

```
For every triangle
   Compute Projection, color at vertices
   Setup line equations
  Compute bbox, clip bbox to screen limits
   For all pixels in bbox
      Increment line equations
     Compute curentZ
      Compute currentColor
      If all line equations>0 //pixel [x,y] in triangle
         If currentZ<zBuffer[x,y] //pixel is visible</pre>
           Framebuffer[x,y]=currentColor
            zBuffer[x,y]=currentZ
```

Works for hard cases!

More questions for next time

- How do we get Z?
- Texture Mapping?

