Assignment 1

Deadline: Thursday March 25,-2021

- No Assignment will be accepted after the deadline.
- You need to submit the assignment in Hard-form (your own hand-written on paper) over the slate.
- CALCULATOR IS NOT ALLOWED
- Best of Luck.

Question # 1: Complete the table. (4 bits: -8,4,2,1)

Decimal	Signed Magnitude Form	1's Complment	2's Compment
7			
6			
5			
4			
3			
2			
1			
0	0000	0000	0000
-0			NA
-1			1111
-2			
-3			
-4			
-5			
-6			
-7			
-8	NA	NA	1000

Question # 2: Convert 110111101.1011 binary number to decimal using sum of weight and repeated division/multiplication method.

Question # 3: Convert 86235.876 decimal numbers to binary using sum of weight and repeated division/multiplication method.

Question # 4: Convert the decimal number -412.390625 to a single-precision floating-point in IEEE-754 standard binary number.

Question # 5: Determine the binary value of the following floating-point binary number:

11011011011000101100111010110111