

Interpolation on the manifold of fixed-rank PSD matrices for Parametric Model Order Reduction: preliminary results

E. Massart, P.-Y. Gousenbourger, N.T. Son, T. Stykel, P.-A. Absil

Find the low rank solutions $P_i = X_i X_i^{\top}, \quad Q_i = Y_i Y_i^{\top}$

of the Lyapunov equations:

$$\begin{cases} EP_{i}A^{T} + AP_{i}E^{T} = -BB^{T} \\ E^{T}Q_{i}A + A^{T}Q_{i}E = -CC^{T} \end{cases}$$

$$X_{i} \in \mathbb{R}^{n \times k_{X_{i}}}$$

$$Y_{i} \in \mathbb{R}^{n \times k_{Y_{i}}}$$

$$Q_{i} \in \mathcal{S}_{+}(q, n), \quad q = \min_{i}(k_{X_{i}})$$

PMOR (balanced truncation) —

2. Find projectors V_{Proj} and W_{Proj} with an SVD

2.1. SVD step: $Y_i^{\top} E X_i = U_i \Sigma_i V_i^{\top}$ 2.2. Σ_i truncated as $\tilde{\Sigma}_i$ to r largest values. V_i and U_i truncated to r first columns \tilde{V}_i and \tilde{U}_i .

2.3. $V_{\text{Proj}} = X_i \tilde{V}_i \tilde{\Sigma}_i^{-\frac{1}{2}}$ and $W_{\text{Proj}} = Y_i \tilde{U}_i \tilde{\Sigma}_i^{-\frac{1}{2}}$ 3. The end-goal: reduce the model $\tilde{E} = W_{\text{Proj}}^{\top} A V_{\text{Proj}} V_{\text{Proj}} A V_{\text$

- ✓ Evaluate matrices $\{P_0, \ldots, P_i, \ldots, P_m\} \in \mathcal{S}_+(p, n)$ and $\{Q_0, \ldots, Q_i, \ldots, Q_m\} \in \mathcal{S}_+(q, n)$ for a few values of the parameter $\mu_0, \ldots, \mu_i, \ldots, \mu_m \in \mathbb{R}$
- ✓ Recover matrices P and Q at a new value μ with interpolation on $S_+(\cdot, n)$.

1e-3

 $\tilde{B} = W_{\mathsf{Proj}}^{\mathsf{T}} B$

Interpolation error

 $\tilde{C} = CV_{\mathsf{Proj}}$

