Diffusion Improves Graph Learning

Type 1

Assem Zhunis 20170906

Problem Statement

Graph convolution is usually done by passing message between direct neighbors.

Limitations:

- Only 1-hop neighbors. Severe limitation, real graphs are noisy.
- Real graphs are usually homophilic: neighbors are similar.

$$\begin{split} \boldsymbol{m}_v^{(t+1)} &= \sum_{w \in \mathcal{N}(v)} f_{\text{message}}^{(t)}(\boldsymbol{h}_v^{(t)}, \boldsymbol{h}_w^{(t)}, \boldsymbol{e}_{vw}) \\ \boldsymbol{h}_v^{(t+1)} &= f_{\text{update}}^{(t)}(\boldsymbol{h}_v^{(t)}, \boldsymbol{m}_v^{(t+1)}) \end{split}$$

Problem Statement

Graph convolution is usually done by passing message between direct neighbors.

Limitations:

- Only 1-hop neighbors. Severe limitation, real graphs are noisy.
- Real graphs are usually homophilic: neighbors are similar.

Your friends are likely to have similar interests.

Proposed method

This restriction can be removed by the **GDC** (Graph diffusion convolution) method proposed by J Klicpera et al.

• Generate more informative neighborhood by graph diffusion.

Why does GDC work?

GDC = Denoising filter

1. Graph diffusion

Low-pass filter

Index

3. Transition matrix Weak high-pass filter

High-level Idea

Conducting multiple experiments on GDC with different diffusion coefficients.

Paper used:

- $\begin{array}{ll} \bullet & \mathrm{PPR} \to \theta_k^{\mathrm{PPR}} = \alpha (1-\alpha)^k \\ \bullet & \mathrm{Heat \ kernel} \to \theta_k^{\mathrm{HK}} = e^{-t} \frac{t^k}{k!} \end{array}$

Kernels for experiments

- Adjacency matrix based kernels:
 - Katz: Katz kernel (a.k.a. Walk, Von Neumann diffusion kernel)
 - Comm: Communicability kernel (a.k.a. Exponential diffusion kernel)
 - DFS: Double Factorial similarity
- Laplacian based kernels:
 - For: Forest kernel (a.k.a. Regularized Laplacian kernel)
 - Heat: Heat kernel (a.k.a. Laplacian exponential diffusion kernel)
 - NHeat: Normalized Heat kernel
 - Abs: Absorption kernel

- Markov matrix based kernels and measures:
 - PPR: Personalized PageRank
 - MPPR: Modified Personalized PageRank
 - HPR: PageRank heat similarity measure
- Sigmoid Commute Time:
 - SCT: Sigmoid Commute Time
 - CCT: Corrected Commute Time
 - SCCT: Sigmoid Corrected Commute Time

Datasets:

1. Cora

CORA

The Cora dataset consists of 2708 scientific publications classified into one of seven classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.

Original source: <u>linqs.cs.umd.edu</u>

Versions

CORA (by Arnaud Barragao)

Datasets:

2. Citeseer

CiteSeer for Document Classification

- The CiteSeer dataset consists of 3312 scientific publications classified into one of six classes. The citation network consists of 4732 links. Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 3703 unique words. The README file in the dataset provides more details.
- Download link:
 - https://lings-data.soe.ucsc.edu/public/lbc/citeseer.tgz
- Related papers:
 - Qing Lu, and Lise Getoor. "Link-based classification." ICML, 2003.
 - Prithviraj Sen, et al. "Collective classification in network data." Al Magazine, 2008.

Method:

- Preprocess 2 datasets with 13 kernels
- Use GCN model for classification
- 3. For each kernel run with 20 different seeds

```
elif kernel == 'katz':
    return np.linalg.pinv(np.eye(num nodes) - t * adj matrix) #katz
elif kernel == 'Comm':
    return expm(t * adj matrix) #Comm
elif kernel == 'CT H':
    return np.linalg.pinv(L) # CT H
elif kernel == 'For H':
    return np.linalg.inv(np.eye(num nodes) + t * L) #For H
elif kernel == 'NHeat H':
    D 12 = np.linalg.inv(np.sqrt(D))
    nL = D 12.dot(L).dot(D 12)
    return expm(-t * nL) #NHeat H
elif kernel == "SCT H":
    K CT = np.linalg.pinv(L)
    sigma = K CT.std()
    EPS = 10 ** -10
    Kds = K CT / (sigma + EPS) #EPS 10 ** -10
    return 1. / (1. + np.exp(-0.05 * Kds)) # SCT H
elif kernel == 'ModifPPR H':
    D = np.diag(np.sum(adj matrix, axis=0)) # degree matrix
    return np.linalg.inv(D - 0.05 * adj matrix) #ModifPPR H
elif kernel == 'HeatPR':
    D = np.diag(np.sum(adj_matrix, axis=0)) # degree matrix
    P = np.linalg.inv(D).dot(adj matrix)
    return expm(-t * (I - P)) # HeatPR
elif kernel == 'Abs':
    return np.linalg.pinv(t * adj matrix + L) #Abs
```

Results: Cora

Result: Citeseer

Future improvements

- Use different sparsification techniques
- Try clustering instead of sparsification

Conclusion

- Message passing in the GNN can be enhanced by Graph Diffusion Convolution (GDC).
- Diffusion kernels used by GDC can be chosen depending on the dataset
 - For Cora: heat and PPR are the best
 - For Citeseer: heatPR overperformed authors' results
- Results are available:
 - https://github.com/assemzh/Graphs_diffusion

