

- Logic is the science of formal principles of reasoning or correct inference.
- Historically, logic originated with the ancient Greek philosopher Aristotle.

Example:

- □ All men are mortal
- □ All Greeks are men.
 - Hence (implication) all Greeks are mortal.
- We don't need to understand what are "men", "mortal", "Greeks" to identify the validity of this inference.
- We can use symbols:
 - ☐ All **A** are **B**
 - ☐ All C are A. Hence all C are B

Logic...

- Axioms of Aristotelean Logic*:
 - □ **Identity**. Everything is what it **is** and acts accordingly.
 - Symbolically: A is A.
 - □ Contradictions do not exist.
 - Symbolically: A and non-A cannot both be the case.
 - □ **Either-or**. Everything must either be or not be.
 - Symbolically: Either A or non-A.

*Aristotle's Logical Works: The **Organon** (384–322 B.C.)

3

Why study Logic in Computer Science?

- Logic has a deep impact on Computer Science.
- Some examples:
 - □ **Propositional logic** the foundation of computers and circuitry
 - □ **Databases query** languages (Ex. **SQL**)
 - □ Programming languages (e.g. PROLOG)
 - □ Design, Validation and Verification
 - □ **Artificial Intelligence** (e.g. inference systems)

□ ...

Propositional Logic. Foundations

- Propositional logic explores simple grammatical connections, like and, or and not, between the simplest "atomic sentences".
- Examples:
 - □ A = "Paris is the capital of France"
 - □ B = "Mice chase elephants"
- Such atomic components can be either true or false. In our understanding of the world, A is true but B is false.
- More Examples:
 - □ Seinfeld was the best TV comedy of all time. (Not a Statement opinion)
 - □ Did you watch *The Godfather?* (Not a statement a question)
 - ☐ Mice chase elephants. (statement false)
 - □ I am lying. (If he *is* lying, then he is telling the truth, and vice versa **liar's paradox**)

5

Propositional Logic. Foundations

■ The subject of **propositional logic** is to declare formally how such "truth values" of the atomic components extend to a truth value of a more complex structure.

- We are interested in <u>how the notion of a truth value</u> <u>extends from simple objects to more complex objects</u>.
- Our interest is concentrated on the truth value of the sentence.

Propositional Logic. Foundations

- Note that in propositional logic we ignore what the underlying meaning of an atomic sentence is.
- For example. If
 - A: "Charlie is getting sick"
 - B: "Charlie is consulting a doctor"

then there is a big difference in "language" whether we say "A and B" or "B and A".

 All atomic sentences (now called atomic formulas) are enumerated as A₁, A₂, A₃,... ignoring the possible "meanings" of such formulas.

7

Propositional Logic. Syntax

- <u>Definition</u> (syntax of propositional logic)
 - \square An **atomic formula** has the form A_i where i = 1, 2, 3, defined by the following inductive process:
 - □ Formulas are
 - All atomic formulas are formulas.
 - For every formula **F**, ¬**F** is a formula.
 - For all formulas F and G, also (F ∨ G) and (F ∧ G) are formulas.
- A formula of the form:
 - □ ¬**F** is called **negation** of **F**.
 - \Box (F \lor G) is called **disjunction** of F and G.
 - \Box (F \wedge G) is the conjunction of F and G.
- Any formula F which occurs in another formula G is called a subformula of G.

Propositional Logic. Syntax

Examples:

 $F = \neg((A_5 \land A_6) \lor \neg A_3)$ is a formula, and all subformulas of F are: $\neg((A_5 \land A_6) \lor \neg A_3)$, $((A_5 \land A_6) \lor \neg A_3)$, $(A_5 \land A_6)$,

A₅,

A₆,

 $\neg A_3$,

 A_3

Propositional Logic. Syntax

• Examples:

• $F = \neg ((\neg A_4 \lor A_1) \land A_3)$ is a formula. Subformulas of F are the subtrees of the syntax tree. $A_4 \qquad A_1 \qquad A_1 \qquad A_3 \qquad A_4 \qquad A_5 \qquad A_6 \qquad A_6$

ы

Propositional Logic. Semantics

- <u>Definition</u> (semantic of propositional logic):
 - \Box The elements of the set $\{0, 1\}$ are called **truth values**.
 - \square An **assignment** is a function $\mathcal{A} \colon \mathsf{D} \to \{0, 1\}$, where D is any subset of the atomic formulas.
 - \square Given an assignment \mathcal{A} , we extend it to a function $\mathcal{A}'\colon \mathsf{E}\to\{0,\,1\}$, where $\mathsf{D}\subseteq\mathsf{E}$ is the set of formulas that can be built up using only the atomic formulas from D.
 - 1. For every atomic formula $A_i \in \mathbf{D}$, $\mathcal{A}'(A_i) = \mathcal{A}(A_i)$.

2.
$$\mathcal{A}'((F \wedge G)) = \begin{cases} 1, & \text{if } \mathcal{A}'(F) = 1 \text{ and } \mathcal{A}'(G) = 1 \\ 0, & \text{otherwise} \end{cases}$$

- 3. $\mathcal{A}'((F \vee G)) = \begin{cases} 1, & \text{if } \mathcal{A}'(F) = 1 \text{ or } \mathcal{A}'(G) = 1 \\ 0, & \text{otherwise} \end{cases}$
- 4. $\mathcal{A}'(\neg F) = \begin{cases} 1, & \text{if } \mathcal{A}'(F) = 0 \\ 0, & \text{otherwise} \end{cases}$

11

Propositional Logic. Semantics

Example: Let $\mathcal{A}(A) = 1$, $\mathcal{A}(B) = 1$ and $\mathcal{A}(C) = 0$. Then we obtain:

$$\mathcal{A}(\neg((A \land B) \lor C)) = \begin{cases} 1, & \text{if } \mathcal{A}(((A \land B) \lor C)) = 0 \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0, & \text{if } \mathcal{A}(((A \land B) \lor C)) = 1 \\ 1, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0, & \text{if } \mathcal{A}((A \land B)) = 1 \text{ or } \mathcal{A}(C) = 1 \\ 1, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0, & \text{if } \mathcal{A}((A \land B)) = 1 \text{ (because } \mathcal{A}(C) = 0 \text{)} \\ 1, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0, & \text{if } \mathcal{A}(A) = 1 \text{ and } \mathcal{A}(B) = 1 \\ 1, & \text{otherwise} \end{cases}$$

$$= 0$$

N

Propositional Logic. Semantics

- **Truth tables** define the semantics (=meaning) of the operators
- By convention: **0** = **(F)alse**, **1** = **(T)rue**

CONJUNCTION

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \wedge G))$
0	0	0
0	1	0
1	0	0
1	1	1

13

Propositional Logic. Semantics

- **Truth tables** define the semantics (=meaning) of the operators
- By convention: **0** = **(F)alse**, **1** = **(T)rue**

DISJUNCTION

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \lor G))$
0	0	0
0	1	1
1	0	1
1	1	1

- **Truth tables** define the semantics (=meaning) of the operators
- By convention: **0** = **(F)alse**, **1** = **(T)rue**

NEGATION

$\mathcal{A}(F)$	$\mathcal{A}(\neg F)$
0	1
1	0

15

Propositional Logic. Semantics

- Using these tables, we can determine the truth value of a formula F
- For example for **F** = ¬((**A** ∧ **B**) ∨ **C**), we have the **syntax tree**:

- The **truth value** of F is obtained:
 - by marking all leaves of this tree with the truth values given by the assignment A,
 - by determining the values of the inner nodes according to the above tables.
- The mark at the root gives the truth value of F under the given assignment \mathcal{A}

Let $\mathcal{A}(A)=1,\,\mathcal{A}(B)=1$ and $\mathcal{A}(C)=0.$ Then we obtain:

B 1

A 1

Propositional Logic. Semantics

17

- From the definition of \mathcal{A} (F) it can be seen that:
 - the symbol "∧" is intended to model the spoken word "and",
 - the symbol "v" is intended to model the spoken word "or",
 - the symbol "¬" models "**not**"

- For propositions F and G, the **implication** $F \rightarrow G$ is false when F is true and G is false, and is true otherwise. F is called the premise or hypothesis, and G is called the conclusion.
- Ways to read F → G: If F then G; F is sufficient for G; F implies G; and G follows from F

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \to G))$
0	0	1
0	1	1
1	0	0
1	1	1

■ Exercise: Verify the table's values for "→" using the fact that:

 $(F_1 \rightarrow F_2)$ in place of $(\neg F_1 \lor F_2)$ (implication law)

 $(F_1 \rightarrow F_2)$ in place of $(\neg F_1 \rightarrow \neg F_2)$ (inverse statement)

 $(F_1 \rightarrow F_2)$ in place of $(\neg F_2 \rightarrow \neg F_1)$ (contrapositive statement)

Propositional Logic. Semantics

Implication Example

- If you earn more than 89% of the possible points in the COT-3541 course, **then** you will get an A in COT-3541.
- Rewritten in logical notation:
 - $F \rightarrow G$, where
 - F: You earn more than 89% of the possible points in COT-3541.
 - G: You will get an A in COT-3541.

A(F)	$\mathcal{A}(G)$	$\mathcal{A}((F o G))$
0	0	1
0	1	1
1	0	0
1	1	1

Interpretation of $F \rightarrow G$:

Think of $\mathbf{F} \to \mathbf{G}$ being true as long as I do what I promised:

- If **F** is **false**, you should not expect an A, so I have honored the commitment ($\mathbf{F} \rightarrow \mathbf{G}$ is true).
- If \mathbf{F} is \mathbf{true} , $\mathbf{F} \to \mathbf{G}$ is true only if \mathbf{G} is also true, i.e. if I give you an A.

- The biconditional of statements F and G, denoted F

 G, is read "F if and only if G" (or "F is necessary and sufficient for G"), and is true if F and G have the same truth values, and false otherwise.
- Note: If $P \leftrightarrow Q$ is true, then $P \to Q$ and $Q \to P$ are true. Conversely if both $P \to Q$ and $Q \to P$ are true, then $P \leftrightarrow Q$ is true.

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \leftrightarrow G))$
0	0	1
0	1	0
1	0	0
1	1	1

Exercise: Verify that we can write:

$$(F_1 \leftrightarrow F_2)$$
 in place of $((F_1 \land F_2) \lor (\neg F_1 \land \neg F_2))$

21

Propositional Logic.

- Using the following symbolic representations
 - A: I am innocent.
 - B: I have an alibi.

express the following in words.

- 1. **A** ∧ **B**
 - Answer: "I am innocent and I have an alibi."
- 2. $\mathbf{A} \rightarrow \mathbf{B}$
 - Answer: "If I am innocent, then I have an alibi."
- 3. $\neg \mathbf{B} \rightarrow \neg \mathbf{A}$
 - Answer: "If I do not have an alibi, then I am not innocent."
- 4. **B** ∨ ¬**A**
 - Answer: "I have an alibi or I am not innocent."

Propositional Logic.

- Using the following symbolic representations
 - A: I am innocent.
 - B: I have an alibi.
 - C: I go to jail.

express the following in words.

- 1. $(A \lor B) \rightarrow \neg C$
- 2. $(A \land \neg B) \rightarrow C$
- 3. $(\neg A \land B) \lor C$
- 4. (A \wedge C) $\rightarrow \neg B$

23

Propositional Logic.

- A: I am innocent.
- B: I have an alibi.
- C: I go to jail.

express the following in words.

1. (A
$$\vee$$
 B) $\rightarrow \neg$ C

If I am innocent or have an alibi, then I do not go to jail.

Propositional Logic.

- Using the following symbolic representations
 - A: I am innocent.
 - B: I have an alibi.
 - C: I go to jail.

express the following in words.

2. (A
$$\wedge \neg B$$
) $\rightarrow C$

If I am innocent and do not have an alibi, then I go to jail.

25

Propositional Logic.

- Using the following symbolic representations
 - A: I am innocent.
 - B: I have an alibi.
 - C: I go to jail.

express the following in words.

3. (¬**A** ∧ **B**) ∨ **C**

I am not innocent and I have an alibi or I go to jail.

ч

Propositional Logic.

- Using the following symbolic representations
 - A: I am innocent.
 - B: I have an alibi.
 - C: I go to jail.

express the following in words.

4. (A
$$\wedge$$
 C) $\rightarrow \neg$ B

If I am innocent and go to jail, then I do not have an alibi.

27

Propositional Logic.

- Translate the sentence to symbolic form.
 - If you drink and drive, you are fined or you go to jail.
- Atomic sentences:
 - A: You drink.
 - B: You drive.
 - C: You are fined.
 - D: You are jailed.

Answer: $(A \land B) \rightarrow (C \lor D)$.

Propositional Logic.

- Translate the sentence to symbolic form.
 - No integer number is greater than 3 and less than 4.
- Atomic sentences:
 - A: An integer number.
 - B: A number greater than 3.
 - C: A number less than 4.

Answer:
$$\neg A \rightarrow (B \land C)$$
.

29

Н

Propositional Logic. Semantics

- Construct a truth tables for:
 - $F_1 = \neg(A \land B)$ and $F_2 = \neg A \lor \neg B$
 - $F_3 = \neg (A \lor B)$ and $F_4 = \neg A \land \neg B$
- DeMorgan's Laws

$$\neg(A \land B) \equiv \neg A \lor \neg B$$

$$\neg(A \lor B) \equiv \neg A \land \neg B$$

General Negations:

$$\neg(\neg A) \equiv A$$

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

$$\neg(A \rightarrow B) \equiv A \land \neg B$$

31

Propositional Logic. Application

Combinatorial Logic Circuit:

http://www.cs.duke.edu/courses/summer13/compsci230/restricted/lectures/L03.pdf