EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR

Vadas Norbert ÉLSZÍNEZÉSEK

alkalmazott matematikus MSc szakdolgozat operációkutatás szakirány

Témavezető:

Bérczi Kristóf Operációkutatási Tanszék

Budapest, 2015

Tartalomjegyzék

1	Bevezetés		
	1.1	Fogalmak és jelölések	1
	1.2	Az 1, 2, 3 - sejtés	1
2	Az eddigi eredmények		
	2.1	Csúcs-színező 6-élsúlyozás	3
	2.2	Csúcs-színező 5-élsúlyozás	5

1. Bevezetés

1.1 Fogalmak és jelölések

A továbbiakban, hacsak nincs másképp jelezve, minden gráf egyszerű, véges és irányítatlan. Egy G = (V, E) gráfon értelmezett $w : E \to [k] = \{1, \dots, k\}$ függvényt k-élsúlyozásnak nevezünk. Amennyiben a csúcsokhoz is rendelünk súlyokat, azaz $w : V \cup E \to [k]$, akkor k-teljes-súlyozásról beszélünk. Egy csúcs értékén a rá illeszkedő élek súlyainak, és amennyiben van, a saját súlyának összegét értjük. Azt mondjuk, hogy egy súlyozás csúcs-megkülönböztető, ha bármely két csúcsnak különböző az értéke. Abban az esetben, ha ezt csak szomszédos csúcspárokra követeljük meg, akkor a csúcsok értékei egy színezését adják a gráfnak. Az ilyen súlyozást csúcs-színezőnek hívjuk. Adott G gráfra a legkisebb olyan k számot, melyre létezik G-nek csúcs-színező k-élsúlyozása $\chi_e(G)$ -vel jelöljük. Végezetül egy gráfra azt mondjuk, hogy rendes, ha egyetlen komponense sem izomorf K_2 -vel.

1.2 Az 1, 2, 3 - sejtés

Az 1, 2, 3 - sejtés vizsgálatát a gráfok irregularitásának vizsgálata motiválta. Egy gráf éleinek súlyozását irregulárisnak nevezzük, ha bármely két csúcsra a rájuk illeszkedő éleken vett összeg különböző. Egy gráf irregularitásának erősségén azt a legkisebb k számot értjük, amelyre létezik irreguláris súlyozás az $\{1, \ldots, k\}$ halmazból vett súlyokkal. Ennek a feladatnak egy természetesen adódó egyszerűsítése, ha csak szomszédos csúcsokra követeljük meg azt, hogy különböző legyen az értékük.

A sejtést először Karoński, Łuczak, és Thomason [7] fogalmazta meg 2002-ben, és a következőképpen hangzik:

1.2.1 Sejtés (Az 1, 2, 3 - sejtés). Minden rendes gráf élei megcímkézhetőek az 1, 2, 3 számokkal oly módon, hogy tetszőleges két szomszédos csúcsra a rájuk illeszkedő éleken lévő számok összege különböző legyen.

A sejtést megfogalmazása óta sokat vizsgálták. Az eddigi legjobb korlátot Kalkowski, Karoński, és Pfender [6] bizonyította be 2010-ben, mely szerint a helyes színezéshez 5 élsúly elegendő. Könnyen látható, hogy léteznek olyan rendes gráfok, amelyekre nem elég

2 élsúly. Azonban egy aszimptotikus eredmény szerint egy G(p,n) véletlen gráf majdnem biztosan megszínezhető csak az 1, 2 élsúlyok segítségével [1]. Bizonyos gráfosztályokra már sikerült igazolni a sejtést. Eszerint 3-színezhető [7], illetve teljes gráfok [2] esetén $\chi_e(G)=3$. Az előbbi eredmény nyomán feltehető az a kérdés, hogy mely páros gráfok esetében elegendő csak az 1, 2 súlyok közül választani. Lu, Yu, és Zhang [9] cikke szerint a 3-összefüggő, valamint bizonyos fokszám-megkötéseknek eleget tevő páros gráfok ilyenek.

A csúcs-színező élsúlyozásoknak számos változatát vizsgálták már az elmúlt évtizedben. Az irányított esetben egy digráf éleit súlyozzuk, a csúcsok értékét pedig csak a kifelé vezető éleken vett összeg határozza meg. Ez a probléma lényegesen egyszerűbb, mint az irányítatlan változat, ugyanis itt könnyedén belátható az 1, 2, 3 - sejtéssel analóg állítás [4].

1.2.2 Állítás. Minden D digráfra $\chi_e(D) = 3$.

Más változatokban az élsúlyok összege helyett azok szorzata, halmaza, multihalmaza vagy sorozata határozza meg a csúcsok színeit. Emellett élsúlyozás helyett tekinthetünk csúcs-, illetve teljes-súlyozást is. Érdekes kérdés az is, hogy mit mondhatunk abban az esetben, ha a súlyokat nem az $\{1, \ldots, k\}$ halmazból, hanem tetszőleges k-elemű listából választhatjuk ki. A különféle változatok eddigi eredményeiről Seamone [11] cikkében olvashatunk bővebben.

Természetesen adódik az a kérdés is, hogy vajon NP-nehéz-e annak eldöntése, hogy egy gráf színezéséhez 2 élsúly elegendő. Irányított gráfokra a válasz igen, egyéb esetben ez egy nyitott probléma.

2. A fontosabb eredmények

A sejtéssel kapcsolatban a legfontosabb előrehaladást a $\chi_e(G)$ -re vonatkozó konstans korlátok bevezetése és javítása jelenti. A sejtést először felvető cikkben még csak azt bizonyították, hogy véges sok valós élsúly elegendő, később viszont egész számokra vonatkozó korlátokat is adtak. A jelenleg ismert legjobb eredmény Kalkowski, Karoński, és Pfender nevéhez fűződik, akik a $\chi_e(G) \leq 6$ [5], kicsivel később pedig a $\chi_e(G) \leq 5$ [6] korlátot adták a problémára. A két bizonyítás merőben más eszközöket használ, amelyek önmagukban is említésre érdemesek, ezért a következőkben mindkettőre kitérünk.

2.1 Csúcs-színező 6-élsúlyozás

Először vizsgáljuk a gyengébb korlátot. Az erre vonatkozó tétel bizonyítása előtt tekintsük a következő lemmát, mely az [5] cikk első szerzőjének egy korábbi eredménye:

2.1.1 Lemma. Minden összefüggő, rendes G gráfra létezik olyan $f: E(G) \to \{1,2,3\}$ élsúlyozás és $f': V(G) \to \{0,1\}$ csúcs-súlyozás, melyre a csúcsok $w(v) = f'(v) + \sum_{w \in N(v)} f(vw)$ értéke egy helyes színezés.

Ennek segítségével egy $\chi_e(G) \leq 10$ korlát adható az élsúlyok megháromszorozásával, majd bizonyos élek 1-gyel történő módosításával. Jelen esetben is egy hasonló eljárást követünk majd, amelyhez szükségünk lesz a lemma egy általánosabb alakjára. Előtte azonban érdemes megjegyezni egy egyszerű következményt. A sejtés vizsgálatánál érdekes kérdés lehet, hogy mit tudunk mondani a rossz élek részgráfjáról, vagyis azon élekről, melyek végpontjai azonos értékűek. A fenti lemma erre is ad egyfajta választ, ugyanis az általa biztosított teljes súlyozásban minden csúcsra 0-t írva olyan élsúlyozást kapunk, ahol a rossz élek egy páros gráfot alkotnak. Ez a megfigyelés segíthet abban, hogy közelebb jussunk a sejtés bizonyításához vagy cáfolatához. Visszatérve a tételünkhöz, a lemma általánosítása a következőképpen hangzik:

2.1.2 Lemma. Legyen $\alpha \in \mathbb{R}$ és $\beta \in \mathbb{R} \setminus \{0\}$. Ekkor minden összefüggő, rendes G gráfra, és tetszőleges T feszítőfájára létezik olyan $f: E(G) \to \{\alpha - \beta, \alpha, \alpha + \beta\}$ élsúlyozás és $f': V(G) \to \{0, \beta\}$ csúcs-súlyozás, melyre a csúcsok $w(v) = f'(v) + \sum_{w \in N(v)} f(vw)$ értéke egy helyes színezés. Továbbá f megválasztható úgy, hogy $f(e) = \alpha$ minden $e \in E(T)$ -re.

Bizonyítás. Legyen v_1, v_2, \ldots, v_n a csúcsoknak egy olyan sorrendje, melyre minden $k \geq 2$ -re v_k -ból pontosan egy T-beli él vezet $\{v_1, v_2, \ldots, v_{k-1}\}$ -be. Kezdetben minden élhez az α súlyt rendeljük, amelyet legfeljebb egyszer módosítunk, hogy sorban minden v_k csúcs értékét véglegesítsük.

Legyen $w(v_1)=\alpha d(v_1)$, és tegyük fel, hogy valamely $k\geq 2$ -re már meghatároztuk az f élsúlyokat az $E(G[\{v_1,v_2,\ldots,v_{k-1}\}])\setminus E(T)$ halmazon és az f' csúcs-súlyokat $\{v_1,v_2,\ldots,v_{k-1}\}$ -en úgy, hogy az első k-1 csúcs $w(v_i)$ értéke már végleges.

A v_k csúcs esetén minden $E(v_k,\{v_1,v_2,\ldots,v_{k-1}\})\setminus E(T)$ -beli él súlyát módosíthatjuk β -val. Amennyiben $v_kv_i\in E(G)\setminus E(T)$ és $f'(v_i)=0$, akkor választhatunk $(f(v_kv_i)=\alpha,f'(v_i)=0)$ és $(f(v_kv_i)=\alpha-\beta,f'(v_i)=\beta)$ között anélkül, hogy megváltoztatnánk $w(v_i)$ -t. Hasonlóan, ha $v_kv_i\in E(G)\setminus E(T)$ és $f'(v_i)=\beta$, akkor választhatunk $(f(v_kv_i)=\alpha,f'(v_i)=\beta)$ és $(f(v_kv_i)=\alpha+\beta,f'(v_i)=0)$ között anélkül, hogy megváltoztatnánk $w(v_i)$ -t. Végezetül megválaszthatjuk $f'(v_k)$ értékét is. Ez összesen $|E(v_k,\{v_1,v_2,\ldots,v_{k-1}\})\setminus E(T)|+2=|E(v_k,\{v_1,v_2,\ldots,v_{k-1}\})|+1$ különböző lehetőség $w(v_k)$ értékének, melyek közül kiválaszthatjuk azt, amely minden $N(v_k)\cap\{v_1,v_2,\ldots,v_{k-1}\}$ -beli csúcs értékétől különbözik.

Ezt az eljárást folytatva megkaphatjuk a kívánt súlyozást.

Ezen lemma birtokában most már készen állunk a tétel bizonyítására.

2.1.3 Tétel (Kalkowski, Karoński, és Pfender [5]). Minden G rendes gráfra $\chi_e(G) \leq 6$.

Bizonyítás. Feltehető, hogy G összefüggő, különben a komponenseket külön-külön vizsgálhatjuk. Induljunk ki egy tetszőleges T feszítőfából, és vegyünk egy (f,f',w) súlyozást a lemma alapján, $\alpha=4$ és $\beta=-2$ paraméterekkel. Ekkor minden csúcs és él súlya páros. A bizonyítás hátralévő részében módosítani fogjuk f-et és f'-t, de w(v) változatlan marad minden $v\in V(G)$ csúcsra.

Legyen $H=G[\{v\in v(G)\mid f'(v)=-2\}]$, és ebben H_1 egy maximális feszítő részgráf, melyben a legnagyobb fokszám legfeljebb 2. Adjunk hozzá -1-et f(e)-hez a H_1 minden e élére, és módosítsuk $V(H_1)$ minden e0 csúcsán az e1 értéket ennek megfelelően, hogy e2 változatlan maradjon. Így minden e3 csúcsra e4 csúcsra e5 (e7) elre e6 elre e6 elre e7, továbbá minden e6 elre e8 elre e8.

Legyen $i\in\{0,1,2\}$ esetén $S_i=\{v\in v(G)\mid f'(v)=-i\}$ és $s_i=|S_i|$. Figyeljük meg, hogy minden $v\in S_0\cup S_2$ csúcs w(v)-f'(v) súlya páros, az S_1 -beli csúcsoké pedig páratlan. H_1 maximalitása miatt minden uv élre, ahol $u,v\in S_1\cup S_2$, teljesül, hogy $u,v\in S_1$ és $uv\in E(H_1)$, hiszen ha nem így lenne, akkor az előző lépésben a H_1 részgráfot tudtuk volna még bővíteni. Részletesebben, ezen élek végpontjaira $w(u)-f'(u)\neq w(v)-f'(v)$. Az ilyen élek halmazát jelölje E^* .

Ha $s_2=0$, akkor készen vagyunk, hiszen f jó színezést ad. Amennyiben $s_2=1$ és $s_1=0$, legyen $u\in S_2$. Figyeljük meg, hogy minden u-ra illeszkedő e él súlya $f(e)\in\{2,4,6\}$. Ha u-nak van egy olyan v szomszédja, melyre $w(u)+2\neq w(v)$, akkor az uv és súlyát

1-gyel csökkentve szintén helyes színezéshez jutunk. (Figyeljük meg, hogy csak u és v súlya páratlan.) Ha u minden $v \in N(u)$ szomszédjára w(u) + 2 = w(v) és $|N(u)| \geq 2$, akkor két különböző, u-ra illeszkedő élen is csökkentsük a súlyt 1-gyel. Ez ismét a kívánt súlyozáshoz vezet. Végül, ha az u csúcs egyetlen v szomszédjára w(u) + 2 = w(v), akkor vegyünk egy $x \in N_T(v) \setminus \{u\}$ csúcsot, csökkentsük f(uv)-t 1-gyel, f(vx)-et pedig növeljük 1-gyel. Így ismét megfelelő súlyozást kapunk.

Ha $s_2=1$ és $s_1\geq 1$, akkor vegyünk egy T-beli utat $u\in S_2$ és egy $v\in S_1$ között, majd felváltva csökkentsük és növeljük az élek súlyát 1-gyel, ügyelve arra, hogy a v-re illeszkedő él súlyát csökkentsük. Ezzel a keresett súlyozáshoz jutunk.

Ha $s_2 \geq 2$, akkor indukcióval beláthatjuk, hogy tudunk találni $\lceil \frac{s_2}{2} \rceil$ olyan T-beli utat, melyek végpontjai pontosan az S_2 -beli csúcsok, és amelyek T minden élét legfeljebb kétszer használják. Ilyen utakat $2 \leq s_2 \leq 3$ esetén könnyen találhatunk. Amennyiben $s_2 \geq 4$, úgy keressünk egy olyan $e \in E(T)$ élt, melyre T-e mindkét komponense legalább 2 S_2 -beli csúcsot tartalmaz, és legalább az egyikben páros számú ilyen csúcs van. A két komponensre indukciót alkalmazva megtalálhatjuk a keresett utakat.

Felváltva csökkentsük és növeljük ezen utak mentén az élek súlyait úgy, hogy csak a végpontok súlya változzon, és módosítsuk ennek megfelelően az f' értékeket ezeken a csúcsokon. Ha egy $u \in S_2$ csúcs két útnak is végpontja (például, ha s_2 páratlan), akkor ügyeljünk arra, hogy az u-ra illeszkedő mindkét élen csökkentsük a súlyt, hogy f'(u)=0 adódjon. Figyeljük meg, hogy csak E(T)-beli éleket használunk, így nem kapunk 1-nél kisebb vagy 6-nál nagyobb élsúlyokat. Ezek után minden csúcsra, amely korábban S_2 -ben volt, $f'(v) \in \{-3, -1, 0\}$. Könnyen látható, hogy így az f súlyozást tekintve minden v csúcs értéke w(v), amennyiben w(v) páros. A páratlan értékű csúcsok között futó élek mind E^* -ban vannak, tehát a végpontjaik w súlya különböző, ahogyan azt korábban már láttuk. Így f egy csúcs-színező 6-élsúlyozás.

2.2 Csúcs-színező 5-élsúlyozás

2.2.1 Tétel (Kalkowski, Karoński, és Pfender [6]). Minden G rendes gráfra $\chi_e(G) \leq 5$.

Bizonyítás. Feltehető, hogy G összefüggő, különben komponensenként érvelhetünk. Feltehető még továbbá az is, hogy $|V| \geq 3$, és létezik olyan v csúcs, melyre $d(v) \geq 2$. Legyen v_1, v_2, \ldots, v_n a csúcsoknak egy olyan sorrendje, melyre $d(v_n) \geq 2$, és minden $1 \leq i \leq n-1$ -re v_i -nek van szomszédja $\{v_{i+1}, v_{i+2}, \ldots, v_n\}$ -ben.

Kezdetben minden e élhez az f(e)=3 élsúlyt rendeljük, majd legfeljebb kétszer módosítjuk, miközben sorban végighaladunk a csúcsokon. Minden i< n-re a v_i csúcshoz hozzárendelünk két színt, $W_(v_i)=\{w(v_i),w(v_i)+2\}$, ahol $w(v_i)\in\{0,1\}$ mod 4, oly módon, hogy minden $v_jv_i\in E$ élre, ahol $1\leq j< i$, $W(v_j)\cap W(v_i)=\emptyset$, és biztosítani fogjuk, hogy $f(v_i)=\sum_{u\in N(v_i)}f(uv_i)\in W(v_i)$. Végül beállítjuk a v_n -re illeszkedő élek súlyát úgy, hogy $f(v_n)$ különbözzön $f(v_i)$ -től minden $v_i\in N(v_n)$ -re.

Ezt szem előtt tartva legyen $f(v_1) = 3d(v_1)$, és válasszuk meg a $W(v_1)$ halmazt úgy, hogy $f(v_1) \in W(v_1)$, valamint $w(v_1) \in \{0,1\}$ mod 4 teljesüljön. Legyen $2 \le k \le n-1$, és tegyük fel, hogy már minden i < k-ra meghatároztuk $W(v_i)$ -t, valamint

- $f(v_i) \in W(v_i)$, ahol i < k
- $f(v_k v_j) = 3$ minden élre, ahol j > k
- ha $f(v_i v_k) \neq 3$ valamely élre i < k esetén, akkor vagy $f(v_i v_k) = 2$ és $f(v_i) = w(v_i)$, vagy $f(v_i v_k) = 4$ és $f(v_i) = w(v_i) + 2$.

Ha $v_iv_k\in E$ valamely i< k-ra, akkor $f(v_iv_k)$ -t 2-vel növelhetjük vagy csökkenthetjük úgy, hogy $f(v_i)\in W(v_i)$ maradjon. Amennyiben v_k -nak d ilyen szomszédja van, úgy ez d+1 lehetséges értéket jelent $f(v_k)$ számára, melyek mind azonos paritásúak. Ezen felül megengedjük még, hogy az $f(v_kv_j)$ súlyt 1-gyel módosítsuk, ahol j>k a legkisebb index, melyre $v_kv_j\in E$. Ezáltal $f(v_k)$ egy [a,a+2d+2] intervallum minden értékét felveheti. Úgy szeretnénk módosítani a súlyokat és meghatározni $w(v_k)$ -t, hogy

- 1. $f(v_i) \in W(v_i)$, ahol $1 \le i \le k$
- 2. $v_i v_k \in E$ esetén $w(v_i) \neq w(v_k)$, ahol i < k
- 3. vagy $f(v_k) = w(v_k)$ és $f(v_k v_j) \in \{2,3\}$ vagy $f(v_k) = w(v_k) + 2$ és $f(v_k v_j) \in \{3,4\}$ teljesüljön. A második feltétel legfeljebb 2d értéket zárhat ki az [a,a+2d+2] intervallumból, míg a harmadik feltétel csak az a és a+2d+2 értékeket, hiszen minden más $f(v_k)$ értékre $f(v_k v_j) \neq 3$ esetén lehetőségünk van választani $f(v_k v_j) = 2$ és $f(v_k v_j) = 4$ között. Így legalább egy érték szabadon marad $f(v_k)$ számára.

Ilyen módon lépésről lépésre, konfliktus nélkül meghatározhatjuk a $W(v_k)$ halmazokat minden $k \leq n-1$ -re. Vegyük észre, hogy amikor az $f(v_k)$ érték először változik meg egy $v_k v_i$, i > k él módosítása miatt, akkor i = j, vagyis nem okoznak problémát a 2 vagy 4 súlyú élek.

Utolsó lépésként találnunk kell egy szabad értéket v_n -nek. Ez alkalommal nem áll rendelkezésünkre egy v_nv_j segédél, de nem is kell későbbi csúcsok miatt aggódnunk. Az előzőekhez hasonlóan, ha $v_iv_n \in E$ valamely i < n-re, akkor $f(v_iv_n)$ -t 2-vel növelhetjük vagy csökkenthetjük úgy, hogy $f(v_i) \in W(v_i)$ maradjon. Ezek a módosítások összesen $d(v_n)+1 \geq 3$, azonos paritású lehetőséget jelentenek $f(v_n)$ értékének. Így, ha a legkisebb ilyen lehetséges a értékre $a \in \{2,3\}$ mod 4, akkor minden v_n -re illeszkedő élen a kisebb értéket választva a csúcsok egy helyes színezését kapjuk. Ha $a \in \{0,1\}$ mod 4, és létezik olyan $v_i \in N(v_n)$ csúcs, melyre $w(v_i) \neq a$, akkor a v_iv_n élen a nagyobb, minden más élen pedig a kisebb súlyt választva $f(v_n) = a + 2$, ami szintén helyes színezéshez vezet. Végezetül, amennyiben $a \in \{0,1\}$ mod 4 és $w(v_i) = a$ minden $v_i \in N(v_n)$ -re, akkor legalább két élen a nagyobb súlyt választva kapunk helyes színezést. Ezzel a tétel állítását beláttuk.

Irodalomjegyzék

- [1] L. Addario-Berry, K. Dalal, és B.A. Reed. "Degree constrained subgraphs". In: *Discrete Applied Mathematics* 156.7 (2008), pp. 1168–1174.
- [2] Mohammad hadi Alaeiyan. "The edge-labeling and vertex-colors of K_n ". In: *Mathematical Sciences* 6.1 (2012), p. 45.
- [3] Tomasz Bartnicki, Jarosław Grytczuk, és Stanisław Niwczyk. "Weight choosability of graphs". In: *Journal of Graph Theory* 60.3 (2009), pp. 242–256.
- [4] Olivier Baudon, Julien Bensmail, és Eric Sopena. "An oriented version of the 1-2-3 Conjecture". In: *Discussiones Mathematicae Graph Theory* (2014).
- [5] Maciej Kalkowski, Michał Karoński, és Florian Pfender. "Vertex coloring edge weightings with integer weights at most 6". In: Rostocker Mathematisches Kolloquium 64 (2009), pp. 39–43.
- [6] Maciej Kalkowski, Michał Karoński, és Florian Pfender. "Vertex-coloring edgeweightings: Towards the 1-2-3-conjecture". In: *Journal of Combinatorial Theory, Series B* 100.3 (2010), pp. 347–349.
- [7] Michał Karoński, Tomasz Łuczak, és Andrew Thomason. "Edge weights and vertex colours". In: *Journal of Combinatorial Theory, Series B* 91.1 (2004), pp. 151–157.
- [8] Mahdad Khatirinejad et al. "Vertex-colouring edge-weightings with two edge weights". In: Discrete Mathematics & Theoretical Computer Science 14.1 (2012).
- [9] Hongliang Lu, Qinglin Yu, és Cun-Quan Zhang. "Vertex-coloring 2-edge-weighting of graphs". In: European Journal of Combinatorics 32.1 (2011), pp. 21–27.
- [10] Jakub Przybylo és Mariusz Wozniak. "On a 1, 2 Conjecture". In: *Discrete Mathematics* & *Theoretical Computer Science* 12.1 (2010), pp. 101–108.
- [11] B. Seamone. "The 1-2-3 Conjecture and related problems: a survey". In: ArXiv e-prints (Nov. 2012). arXiv: 1211.5122.
- [12] Joanna Skowronek-Kaziów. "1,2 Conjecture—the multiplicative version". In: *Information Processing Letters* 107.3–4 (2008), pp. 93–95.
- [13] Tsai-Lien Wong és Xuding Zhu. "Every graph is (2,3)-choosable". In: *Combinatorica* (2014), pp. 1–7.