Representation Theory

Ikhan Choi

May 20, 2022

Contents

Ι	Finite group representations	3
1	Character theory 1.1 Irreducible representations	4
2	Classification of representations	6
	2.1 Symmetric groups	
	2.2 Linear groups over finite fields	
	2.3 Induced representations	6
3	Brauer theory	7
II	Lie algebras	8
4	Semisimplicity	9
	4.1 Cartan subalgebra	9
5	Root systems	10
	5.1 Dynkin diagram	10
	5.2 Real forms	10
6	Representations of Lie algebras	11
	6.1 Universal enveloping algebra	11
	6.2 Highest weight theorem	11
II	Lie groups	12
7	Lie correspondence	13
	7.1 Baker-Campbell-Hausdorff formula	13
	7.2 Fundamental groups of Lie groups	13
8	Compact Lie groups	14
	8.1 Special orthogonal groups	
	8.2 Special unitary groups	
	8.3 Symplectic groups	14

9	Rep	resentations of Lie groups	15			
	9.1	Peter-Weyl theorem	15			
	9.2	Spin representations	15			
IV	V Quantum groups					
10	0 Hopf algebras					
11			18			

Part I Finite group representations

Character theory

1.1 Irreducible representations

- 1.1 (Definition of group representations).
- 1.2 (Interwining maps).
- 1.3 (Subrepresentations). We say invariant or stable
- 1.4 (Irreducible representations). indecomposable and irreducible
- **1.5** (Maschke's theorem). Let G be a finite group and k a field of characteristic coprime to |G|. Let (ρ, V) be a finite-dimensional representation of G over k. Let W be an invariant subspace of V.
 - (a) There is an invariant subspace W^{\perp} of V that is a complement of W.
 - (b) Every finite-dimensional representation of G over k is isomorphic to the direct sum of irreducible representations of G over k.
 - (c) If $k = \mathbb{R}$ or \mathbb{C} , then there is a inner product on V such that W^{\perp} is orthogonal to W. With this innerproduct, $\rho(g)$ is orthogonal (resp. unitary) for all $g \in G$.
- **1.6** (Schur's lemma). Let G be a finite group and k a field. Let (ρ_1, V_1) and (ρ_2, V_2) be irreducible representations of G over k. Let $\psi \in \hom_G(V_1, V_2)$ be an interwining map.
 - (a) If V_1 and V_2 are not isomorphic, then $\psi = 0$.
 - (b) If V_1 and V_2 are isomorphic, then ψ is a homothety.

1.2 Group algebra

- **1.7** (Modules and representations). ring <-> group module <-> representation finitely generated <-> finite dimensional
- 1.8 (Wedderburn's theorem). central idempotents dimension computation
- **1.9** (Group algebra). regular representation k[G]-module and G-representation correspondence
 - (a) $\mathbb{C}[G]$ is the direct sum of all irreducible representations.
 - (b) $|G| = \sum_{[V] \in \widehat{G}} (\dim V)^2$.
- **1.10.** The number of irreducible representations and the number of conjugacy classes double counting on $Z(\mathbb{C}[G])$.

1.3 Characters

- 1.11 (Space of class functions). Ring and inner product structure on the space of class functions.
 - (a) $\dim \operatorname{hom}_G(V_1, V_2) = \langle \chi_{V_1}, \chi_{V_2} \rangle$.
 - (b) Irreducible characters form an orthonormal basis of the space of class functions.
- **1.12** (Characters classify representations). Let G be a finite group and let Rep(G) be the category of finite-dimensional representations of G over \mathbb{C} .

$$Tr : \mathbf{Rep}(G) \to \{\text{finite sum of irreducible characters}\}\$$

surjectivity: trivial injectivity: Suppose two characters are equal. Maschke -> all characters are sum of irreducible characters Schur -> orthogonality, so the coefficients are all equal irreducible-factor-wisely construct an isomoprhism.

1.13 (Character table). computation of matrix elements by character table abelian group, 1dim rep lifting

$$S^3$$
 | e (12) (123)
1 | 1 | 1 | 1
 ε | 1 | -1 | 1
 ρ | 2 | 0 | -1

tensoring, complex, real symmetric, exterior

the dual inner product: conjugacy check relation to normal subgroups center of rep algebraic integer dim of irrep divides group order burnside pq theorem

Classification of representations

2.1 Symmetric groups

young tableux

2.2 Linear groups over finite fields

GL2 and SL2 over finite fields

2.3 Induced representations

induction and restriction of reps (from and to subgroup) frobenius reciprocity, mackey theory

Brauer theory

Part II Lie algebras

Semisimplicity

killing forms,

4.1 Cartan subalgebra

Root systems

- 5.1 Dynkin diagram
- 5.2 Real forms

Representations of Lie algebras

6.1 Universal enveloping algebra

PBW theorem, verma module

6.2 Highest weight theorem

Part III

Lie groups

Lie correspondence

7.1 Baker-Campbell-Hausdorff formula

Lie's three theorems

7.2 Fundamental groups of Lie groups

Compact Lie groups

- 8.1 Special orthogonal groups
- 8.2 Special unitary groups
- 8.3 Symplectic groups

Representations of Lie groups

- 9.1 Peter-Weyl theorem
- 9.2 Spin representations

Clifford algebra

Part IV Quantum groups

Hopf algebras