Primeira lista de exercícios

"Na Europa está circulando um fantasma - o fantasma do comunismo."

(Karl Marx, filósofo alemão, 1818 - 1883)

1. Sejam A, B, C, D e E, pontos. Prove que:

(a)
$$\overrightarrow{AB} = \overrightarrow{CD} \implies \overrightarrow{AC} = \overrightarrow{BD}$$

(b)
$$\overrightarrow{BC} = \overrightarrow{AE} \implies \overrightarrow{EC} = \overrightarrow{AB}$$

2. Prove, usando as propriedades da soma entre vetores, que, para todos vetores \vec{u} , \vec{v} e \vec{w} no espaço, as seguintes propriedades são verdadeiras:

(a)
$$\vec{u} + \vec{v} = \vec{w} + \vec{v} \implies \vec{u} = \vec{w}$$
,

(b)
$$\vec{u} + \vec{v} = \vec{w} \implies \vec{u} = \vec{w} - \vec{v}$$
.

3. Dados representantes de vetores \overrightarrow{u} e \overrightarrow{v} conforme a figura:

Ache um representante de \vec{x} tal que $\vec{u} + \vec{v} + \vec{x} = \vec{0}$.

- 4. Justifique a seguinte regra. Para calcular $\vec{x} = \vec{u} + \vec{v} + \vec{w}$ tome um representante (A, B) de \vec{u} , um representante (B, C) de \vec{v} , um representante (C, D) de \vec{w} . Então \vec{x} tem como representante (A, D).
- 5. Ache a soma dos vetores indicados na figura nos casos:

(c) Quadrado:

(b) Cubo:

(d) Cubo:

¹Original: Ein Gespenst geht um in Europa - das Gespenst des Kommunismus, em Manifest der Kommunistischen Partei, 1872, Karl Marx e Friedrich Engels.

- 6. Prove que, para todos vetores \vec{u} e \vec{v} no espaço e para todo escalar $k, m \in \mathbb{R}$, as seguintes propriedades são verdadeiras:
 - (a) $-(\vec{u} + \vec{v}) = -\vec{u} \vec{v}$,
 - (b) $k(\vec{u} \vec{v}) = k\vec{u} k\vec{v}$,
 - (c) $(k-m)\vec{u} = k\vec{u} m\vec{u}$,
 - (d) $k\vec{v} = \vec{0} \implies k = 0$ ou $\vec{v} = \vec{0}$
 - (e) $k\vec{u} = k\vec{v}$ e $k \neq 0 \implies \vec{u} = \vec{v}$,
 - (f) $(-1)\vec{v} = -\vec{v}$,
 - (g) $2\vec{v} = \vec{v} + \vec{v}$,
- 7. Resolva a equação na incognita \vec{x} :

$$2\vec{x} - 3\vec{u} = 10(\vec{x} + \vec{v})$$

- 8. Sejam A e B pontos, e \overrightarrow{u} e \overrightarrow{v} vetores. Prove que, se $A + \overrightarrow{u} = B + \overrightarrow{v}$, então $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{v}$.
- 9. Determine \overrightarrow{AB} em função de \overrightarrow{u} , sabendo que $A + (-\overrightarrow{u}) = B + \overrightarrow{u}$.
- 10. Determine a relação entre \vec{u} e \vec{v} , sabendo que, para um dado ponto A, $(A + \vec{u}) + \vec{v} = A$.
- 11. Dados os pontos $A, B \in C$, determine X, sabendo que $(A + \overrightarrow{AB}) + \overrightarrow{CX} = C + \overrightarrow{CB}$.
- 12. Prove que, se $B=A+\overrightarrow{DC}$, então $B=C+\overrightarrow{DA}$.
- 13. Prove que $\overrightarrow{BC} \overrightarrow{BA} = \overrightarrow{AC}$.
- 14. Prove que, se $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$, então A = B.
- 15. Seja ABCDEFGH o cubo:

Determine:

- (a) $A + \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$
- (b) $\overrightarrow{CD} \overrightarrow{DH} \overrightarrow{GH} + \overrightarrow{AH} + \overrightarrow{AB}$
- (c) $\overrightarrow{AB} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{FG} + \overrightarrow{EH} + \overrightarrow{BF}$
- (d) $\overrightarrow{DF} \overrightarrow{EG} + \overrightarrow{FC} + \overrightarrow{BE} + \overrightarrow{AG} \overrightarrow{BH}$
- 16. (a) Seja \overrightarrow{ABC} um triângulo e $\overrightarrow{AX} = \lambda \overrightarrow{XB}$. Exprima \overrightarrow{CX} em função de \overrightarrow{CA} , \overrightarrow{CB} e λ .
 - (b) Seja \overrightarrow{ABC} um triângulo e $\overrightarrow{AX} = \lambda \overrightarrow{XB}$, $\overrightarrow{BY} = \mu \overrightarrow{YC}$ e $\overrightarrow{CZ} = \rho \overrightarrow{ZA}$. Exprima \overrightarrow{CX} , \overrightarrow{AY} e \overrightarrow{BZ} em função de \overrightarrow{CA} , \overrightarrow{CB} .

17. Sejam M, N e P os pontos médios respetivamente dos lados AB, BC e AC de um triângulo ABC. Mostre que

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}$$

- 18. Seja \overrightarrow{OABC} um tetraedro e X o ponto da reta \overrightarrow{BC} definido por $\overrightarrow{BX} = m\overrightarrow{BC}$ por um $m \in \mathbb{R}$. Exprima \overrightarrow{OX} e \overrightarrow{AX} em função de \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .
- 19. Seja \overrightarrow{ABC} um triângulo, X um ponto na reta \overrightarrow{AB} tal que $\overrightarrow{AX} = 2\overrightarrow{XB}$ e Y um ponto na reta \overrightarrow{BC} tal que $\overrightarrow{BY} = 3\overrightarrow{YC}$. Prove que as retas CX e AY se cortam num ponto.
- 20. Sejam A, B, C e D pontos quaisquer no espaço, M o ponto médio de AC e N o de BD. Exprima $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ em função de \overrightarrow{MN} .
- 21. Seja ABCD um quadrilátero e O um ponto qualquer no espaço. Seja P o ponto médio do segmento que une os pontos médios das diagonais AC e BD. Prove que

$$P = O + \frac{1}{4} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \right)$$

22. Sejam A, B e C e D três pontos quaisquer com $A \neq B$. Prove que:

$$X$$
é um ponto do segmento $AB \iff \overrightarrow{CX} = \overrightarrow{aC}A + \overrightarrow{bC}B$
$$\text{com } a \geq 0, \ b \geq 0, \ \text{e} \ a+b=1.$$

- 23. Prove que, o conjunto $\{\vec{v}\}$ é LD, se e somente se a equação $x\vec{v}=\vec{0}$ admite solução não trivial.
- 24. Prove que, se o conjunto $\{\vec{u}, \vec{v}, \vec{w}\}$ é LI, então os conjuntos $\{\vec{u} + \vec{v} + \vec{w}, \vec{u} \vec{v}, 3\vec{v}\}$ e $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ também são LI.
- 25. Seja $\{\vec{u}, \vec{v}, \vec{w}\}$ um conjunto LI. Dado um vetor \vec{t} qualquer, sabemos que existem escalares $a, b, c \in \mathbb{R}$ tais que $\vec{t} = a\vec{u} + b\vec{v} + c\vec{w}$. Prove que:

$$\{\overrightarrow{u}+\overrightarrow{t},\overrightarrow{v}+\overrightarrow{t},\overrightarrow{w}+\overrightarrow{t}\} \text{ \'e LD } \iff a+b+c+1=0$$

26. Prove que, se o conjunto $\{\vec{u} + \vec{v}, \vec{u} - \vec{v}\}$ é LI, então o conjunto $\{\vec{u}, \vec{v}\}$ é LI.