CALCOLO SCIENTIFICO

Proff. Dajana Conte e Gianluca Frasca Caccia

Esercitazione

PARTE A

Considera il problema a valori iniziali:

$$\begin{cases} y' = 4ty^{\frac{1}{2}} \\ y(0) = 1 \end{cases} \quad t \in [0, 1]$$

avente come soluzione $y(t) = (1 + t^2)^2$.

Calcola la soluzione numerica di tale problema utilizzando i seguenti metodi lineari multistep:

- 1) Metodo di Eulero esplicito;
- 2) $y_{n+2} (1+a)y_{n+1} + ay_n = \frac{h}{2}[(3-a)f(t_{n+1},y_{n+1}) (1+a)f(t_n,y_n)], n = 0,...,N-2$ Considera i due metodi che si ottengono in corrispondenza dei seguenti valori per il parametro a: a=0 e a=-5;

3)
$$y_{n+2} - y_{n+1} = \frac{h}{3} [3f(t_{n+1}, y_{n+1}) - 2f(t_n, y_n)], n = 0, ..., N-2$$

Per ognuno dei metodi proposti:

- ✓ Progetta ed implementa una funzione in ambiente MATLAB oppure in linguaggio C (per i metodi a due passi calcola y₁ a utilizzando la soluzione esatta fornita).
- ✓ Applica i metodi con passi h=0.1, h=0.05 ed h=0.025, effettuando il grafico della soluzione esatta e della soluzione approssimata con i tre passi assegnati
- ✓ Per ciascun metodo completa le seguenti tabelle:

t	Yvera	yapprox (h=0.1)	yapprox (h=0.05)	yapprox (h=0.025)
0				
0.1				
0.2				
0.3				
0.4				
0.5				
0.6				
0.7				
0.8				
0.9				
1				

t	err (h=0.1)	err (h=0.05)	err (h=0.025)
0	(H=0.1)	(n-0.03)	(H=0.023)
0.1			
0.2			
0.3			
0.4			
0.5			
0.6			
0.7			
0.8			
0.9			
1			

- ✓ Traccia il grafico della soluzione vera e di quella numerica contemporaneamente utilizzando colori differenti. Traccia il grafico dell'errore.
- ✓ Osservando i risultati in tabella ed i grafici, puoi ipotizzare la convergenza dei metodi?
- ✓ Verifica che se condizioni teoriche di consistenza e zero-stabilità sono soddisfatte.
- ✓ Utilizzando le seguenti definizioni:

cd=-log10(ERR_T),
$$p_{est}(h) = \frac{cd(h)-cd(2h)}{\log_{10}(2)}$$
,

dove ERR_T è l'errore commesso nel punto finale dell'intervallo di integrazione, per ciascuno dei metodi completa la seguente tabella:

h	cd	p_est
0,1		
0,05		
0,025		
0,0125		
0,00625		
0,003125		

PARTE B

Considera il modello di cinetica delle reazioni chimiche di Brussellator
$$\begin{cases} {y'}_1 = A + {y_1}^2 y_2 - (B+1)y_1 \\ {y'}_2 = By_1 - {y_1}^2 y_2 \end{cases}$$

 $t \in [0, 20]$, con condizione iniziale $y(0) = \begin{bmatrix} 1.5 & 3 \end{bmatrix}^T$, al variare dei parametri con A = 1 e B = 3.

Soluzione di riferimento: $y(20) = [0.4986370713, 4.596780349]^T$

✓ Per ciascuno dei metodi precedenti completa la tabella:

h	cd	p_est
0,1		
0,05		
0,025		
0,0125		
0,00625		
0,003125		