Лабораторная работа 3 Векторизация кода (code vectorization: SSE, AVX)

Курносов Михаил Георгиевич

E-mail: mkurnosov@gmail.com WWW: www.mkurnosov.net

Курс «Высокопроизводительные вычислительные системы» Сибирский государственный университет телекоммуникаций и информатики (Новосибирск) Осенний семестр, 2015

- В программе vec1 реализованы функции fun_def и fun_sse
- Обе функции принимают на вход три массива a, b, c, с элементами типа float и заполняют вектор c по формуле

$$c_i = \sqrt{a_i^2 + b_i^2 + \frac{1}{2}}, \quad i = 0, 1, ..., n-1$$

 Функция fun_def реализована стандартными средствами библиотеки libm, а функция fun_sse с использованием инструкций SSE

Требуется занести в таблицу время выполнения функций fun_def, fun_sse и оценить достигнутое ускорение за счет использования инструкций SSE

n	Время fun_def, c	Время fun_sse, c	Ускорение (Speedup)
2 ²⁰			
2 ²²			

- Объяснить причину достигнутого ускорения
- Как изменится ускорение если SSE-версию реализовать для обработки массивов с элементами типа double?

 В программе vec2 имеется функция fun_def, которая принимают на вход два массива a, b и заполняет вектор b по формуле

$$b_i = \sqrt{a_i^2 + 2.8}, \quad i = 0, 1, ..., n-1$$

- Требуется создать функцию fun_sse SSE/AVX-версию функции fun_def
- Занести в таблицу время выполнения функций fun_def,
 fun_sse и оценить достигнутое ускорение

N	Время fun_def, сек.	Время fun_sse, сек	Ускорение (Speedup)
2 ²⁰			
2 ²²			

- В программе vmin имеется функция vmin поиска минимального значения в массиве вещественных чисел типа float
- Требуется создать функцию vmin_sse SSE/AVX-версию функции vmin
- Оценить ускорение функции vmin_sse

- В программе reduction имеется функция reduction_sum вычисления суммы элементов массива вещественных чисел типа float
- Используя инструкции SSE3/AVX реализовать функцию reduction_sum_sse
- Оценить ускорение функции reduction_sum_sse

Дополнительные задания (факультативные)

Задание 5*

- Реализовать функцию fun_def из программы vec2
 с использованием инструкций AVX
- Оценить достигнутое ускорение

Задание 6*

- В блочном алгоритме умножения матриц (лекция 3) реализовать умножение подматриц средствами SSE/AVX (три внутренних цикла по параметру BS)
- Сравнить результаты с реализацией в работе
 Drepper U. What Every Programmer Should Know About Memory (с. 97)