Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 - Recuperação 01

Tema: Sistemas de Numeração e circuitos combinatórios

Exercícios:

01.) Dado o mapa de Veitch-Karnaugh:

n	m	М	f(a,b,c,d)				
0	a'b'c'd'	A+B+C+D	0				
1	a'b'c'd	A+B+C+D'	0				
2	a'b'c d'	A+B+C'+D	0				
3	a'b'c d	A+B+C'+D'	0				
4	a'b c'd'	A+B'+C+D	1				
5	a'b c'd	A+B'+C+D'	0				
6	a'b c d'	A+B'+C'+D	0				
7	a'b c d	A+B'+C'+D'	0				
8	a b'c'd'	A'+B+C+D	1				
9	a b'c'd	A'+B+C+D'	1				
Α	a b'c d'	A'+B+C'+D	0				
В	a b'c d	A'+B+C'+D'	0				
С	a b c'd'	A'+B'+C+D	1				
D	a b c'd	A'+B'+C+D'	1				
Е	a b c d'	A'+B'+C'+D	1				
F	abcd	A'+B'+C'+D'	0				

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
mintermos																
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
MAXTERMOS																

Determinar e implementar os circuitos equivalentes em Verilog e no Logisim:

- a.) expressão canônica para SoP(a,b,c,d)
- b.) expressão canônica para PoS(A,B,C,D)
- c.) simplificação de mintermos por mapa de Veitch-Karnaugh
- d.) simplificação de MAXTERMOS por mapa de Veitch-Karnaugh
- e.) expressão SoP equivalente com portas NAND de 2 entradas (usar dupla negação)
- f .) expressão PoS equivalente com portas NOR de 2 entradas (usar dupla negação)

- 02. Implementar no Verilog e no Logisim as expressões abaixo para obter as tabelas verdade:
 - a.) mux (a, not(a), c)
 - b.) mux (c, not(c), mux(a,not(a),b))
- 03.) Implementar em Verilog e em Logisim as expressões abaixo para obter as tabelas verdade:
 - a.) (~a|b) & (b|~c)
 - b.) **(x'.y)'.(x'.y')'**
- 04.) Dado o valor +374.5(8), considerar a representação
 - a.) com a menor quantidade de bits para sinal, expoente e mantissa
 - b.) IEEE-754 para 1 bit para sinal, 8 bits para expoente (com corte = 127) e 23 bits de mantissa
- 05.) Calcular:
 - a.) o valor binário igual a NOT (174(8)) C_{2,8}(F8(16))
 - b.) a tabela verdade para NOT(NAND (XOR(a,b), NOR(a, NOT(b)))