Componentes de um Algoritmo Genético

- 1. Problema
- 2. Representação
- 3. Decodificação
- 4. Avaliação
- 5. Operadores
- 6. Técnicas
- 7. Parâmetros

1. PROBLEMA

GAs são indicados em problemas complexos de otimização- onde se busca uma solução melhor:

- muitos parâmetros e variáveis;
- mal estruturados: com condições e restrições, difíceis de serem modeladas matematicamente;
- grandes espaços de busca onde não é possível a busca exaustiva.

2. REPRESENTAÇÃO

Representação é fundamental na modelagem de um GA e deve:

- descrever o espaço de busca relevante ao problema;
- codificar geneticamente a "essência" do problema:
 evolução do "código" evolução da solução
- ser compatível com os operadores (crossover e mutação)
 representação adequada sucesso, evolução

2. REPRESENTAÇÃO

Método de Solução ↔ Representação

- Numérico
- Ordem
- Grupo
- Inteiro
- Misto

- Binário, Real
- Lista
- Vetor
- Inteiro
- Ex: Real eLista

BINÁRIO CODIFICANDO REAL

O binário é um contador de unidades de precisão

Aspectos importantes:

- **★variáveis** do problema (x₁, x₂, ..., x₁)
- ***domínio** de valores: x_i ∈ (mín_i, máx_i) em R
- **★precisão**: p casas decimais

(máx_i-mín_i)x10^p diferentes soluções

Representação:

$$k_1$$
 bits k_2 bits ... k_t bits k_2 k_3 k_4 bits

onde.

$$2^{k_i} \ge (m\acute{a}x_i - m\acute{n}_i)x10^p$$
 Precisão = $\frac{(m\acute{a}x_i - m\acute{n}_i)}{2^{k_i} - 1}$

Decodificação para Real:

$$x_{i \text{ real}} = x_{i \text{ bin}} \cdot \frac{(m + x_i - m + m)}{2^{k_i} - 1} + m \cdot m_i$$

se
$$x_{ibin} = (0 \ 0 \ ... \ 0)$$

se $x_{ibin} = (1 \ 1 \ ... \ 1)$
 $x_{i \ real} = min_i$
 $x_{i \ real} = max_i$

<u>ICN</u>

REPRESENTAÇÃO BINÁRIA

- simples de criar e manipular
- produz bons resultados
- facilita aplicações de operadores
- fácil decodificação numérica (inteiro,real)
- facilita a demonstração de teoremas
- porém, nem sempre é adequada

3. DECODIFICAÇÃO

Construir a solução para o problema a partir de um cromossoma:

Cromossomas "representam" soluções.

Cromossoma	Transformação	<u>Solução</u>
0011011	bin → inteiro	x=27
0011011	x=27 x 10/2 ⁷ -1	$x=2,1$ $x \in [0,10]$
ADBCE	D SKM B E SKM	$A \rightarrow D \rightarrow B \rightarrow C \rightarrow E$ (Σ dist.=18)
	С	ICA.

4. AVALIAÇÃO

Elo entre o algoritmo genético e o problema.

f(cromossoma) = medida numérica de aptidão

Chances de seleção são proporcionais à aptidão.

5. OPERADORES

Atuam no processo de criação de novos indivíduos (descendentes):

- 1. Crossover
- 2. Mutação
- 3. Inversão
- 4. Operadores específicos ao problema

6. TÉCNICAS

- Técnicas de Representação
- Técnicas de Inicialização da População
- Técnicas de Eliminação da População Antiga
- Técnicas de Reprodução
- Técnicas de Seleção de Genitores
- Técnicas de Aptidão
- Técnicas de Parametrização
- Técnicas de Elitismo
- Técnicas de Seleção de Operadores

7. PARÂMETROS

- TAMANHO_POPULAÇÃO
- TOTAL_INDIVÍDUOS
- NÚMERO_GERAÇÕES
- TAXA_CROSSOVER
- TAXA_MUTAÇÃO
- APTIDÃO_OPERADORES
- ETC.

Desenvolvimento de um Algoritmo Genético

```
procedure algoritmo_genético
begin
       t = 0
                                    ; primeira geração
       inicializa P(t)
                                    ; população inicial aleatória
       avalia P(t)
                                    ; calcula f(i) p/ cada indivíduo
       while (not condição_parada) do
       begin
              t = t + 1
                                    ; próxima geração
              seleciona P(t) de P(t-1)
                             ; crossover e mutação
              altera P(t)
              avalia P(t) ; calcula f(i) p/ cada indivíduo
       end
                                                               <u>ICN</u>
end
```

Sistemas de Desenvolvimento

- ICADEMO
 - Genesis, Genesys
- WinGenesis
 - GENOCOP
 - GeneHunter
 - Evolver 4.0
 - Escapade
 - Sugal
- Bibliotecas específicas (C, Pascal, etc)

- TNA/C++,

Algoritmos Genéticos

- Exemplos GA1-1 a GA6-1
- Especificação de técnicas e parâmetros por módulos:
 - Módulo de Avaliação
 - Módulo de População
 - Módulo de Representação

GA1-1

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População: Técnica Eliminação da População:

Técnica de Reprodução:

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

Técnica de Elitismo:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

Técnica de Seleção de Operadores:

Operadores:

Taxa Mutação: Taxa Crossover:

Técnica de Parametrização:

Função binária F₆

Binária 44 bits

Aleatória

Elimina todos

Troca da geração

Roleta

Aptidão é a avaliação

Nenhuma

Nenhuma

100

4000

Use todos

Crossover 1 ponto & Mutação

0,008

0,65

nenhuma

Características da F6

$$F6(x,y) = 0.5 - (\underline{\text{sen } \ddot{0} \ x^2 + y^2})^2 - 0.5$$
$$(1.0 + 0.001 (x^2 + y^2))^2$$

- Objetivo: Maximizar F6
- Uma única solução ótima: F6(0,0)=1
- Difícil de otimizar: vários mínimos locais

Representação

- Binária codificando real
- 2 Variáveis: x, y
- Domínio: x,y Î [-100, +100]
- Precisão: 4 a 5 casas decimais
- $log_2 2x10^6 \le K_i \le log_2 2x10^7$
- K_i=22 → total de 44 bits

Exemplo

Cromossoma:

00001010000110000000011000101010001110111011

Dividido em x e y:

0000101000011000000001 1000101010001110111011

Convertidos para base 10:

165377 e 2270139

Multiplicados por: 200/2²²-1
 7,885791751335085 e 108,24868875710696

Subtraídos de mín:

x=-92,11420824866492 e y=8,248688757106959

Aplicados a F6(x,y):

F6(x,y)=0,5050708

Módulo de População

- Técnica Inicialização da População: Aleatória
 - → Geração aleatória de palavras de 44 bits
- Técnica Eliminação da População: Elimina todos
 - → Elimina pop_size indivíduos da população anterior
- Técnica de Reprodução: Troca da geração
 - → Reproduz pop_size indivíduos para a nova população
- Técnica de Aptidão:
 Aptidão é a avaliação
 - → Aptidão é numericamente igual à avaliação
- Técnica de Seleção de Genitores: Roleta

Parâmetros

Tamanho da População:
Exemplo

pop_size 100

Número de Gerações:

num_ger 40

Total de Indivíduos:

total_ind = pop_size x num_ger 4000

Parâmetros

Tamanho da População:
Exemplo

pop_size 1000

Número de Gerações:

num_ger 4

Total de Indivíduos:

total_ind = pop_size x num_ger 4000

Parâmetros

Tamanho da População: Exemplo

pop_size 10

Número de Gerações:

num_ger 400

Total de Indivíduos:

total_ind = pop_size x num_ger 4000

Seleção pela Roleta

Objetivo: Selecionar indivíduos aleatoriamente, proporcionando maiores chances de reprodução aos mais aptos.

Método por Computador

- Encontre a soma da aptidão de todos os membros da população A_T= à A_i (0 ≤ i ≤ pop_size-1)
- Gere um número aleatório 0 ≤ rand ≤ A_T
- Pegue o primeiro membro da população I_k cuja aptidão somada às aptidões dos membros precedentes é maior ou igual a rand.

$$\dot{a} A_i \ge rand (i < k)$$

Exemplo da Roleta

Cromossoma	1	2	3	4	5	6	7	8	9	10
Aptidão	8	2	17	7	2	12	11	7	3	7
а́ A i	8	10	27	34	36	48	59	66	69	76

Número Aleatório	23	49	76	13	1	27	57
Selecionado	3	7	10	3	1	3	7
1 2	3	4 5	6	7	8	3 9	10

Módulo de Reprodução

- Técnica de Seleção de Operadores: Use todos
 - → Use o primeiro operador da lista de operadores
- Operadores: Crossover & Mutação

Taxa Mutação: 0,008Taxa Crossover: 0,65

 Valores ideais das taxas são obtidos experimentalmente

Mutação

- Troca cada gene de um cromossoma se o teste de probabilidade for verdadeiro
- Taxa Mutação: 0,8% (0,008)
 - Teste Verdadeiro → troca bit
 - − Teste Falso → mantém

(Cromossoma Número Aleatório Novo Cromos						Número Aleatório				
1	0	1	0	0,801	0,102	0,266	0,373	1	0	1	0
1	1	0	0	0,128	0,96	0,005	0,84	1	1	1	0
0	0	1	0	0,768	0,473	0,894	0,001	0	0	1	

Crossover

- Partes de dois cromossomas genitores são trocadas a partir de uma posição escolhida aleatoriamente
- Taxa de Crossover : 65%
 - Teste Verdadeiro → Efetua Cruzamento
 - − Teste Falso→ Copia os Genitores

	1			1		
Pa	0	0	1	1	0	0
_						
F_1	1	0	1	1	0	0
	0		1	1	0	1

ponto de corte aleatório

Evolução X Convergência

- Crossover:
 - acelerador do processo de busca
 - tira proveito das soluções mais promissoras
- Mutação
 - operador exploratório
 - dispersa a população pelo espaço de busca
- Convergência (causas):
 - população com indivíduos muito similares
 - não há mais evolução:
 - ótimo encontrado ou convergência prematura (mínimo local)
 - para continuar a evoluir é preciso introduzir mais diversidade na população

Análise de Desempenho

- Melhor de um Experimento (valor)
- Curva dos Melhores por Geração
- Curva da Média de Melhores de Vários Experimentos

Média de Experimentos

- Calcula a média dos melhores indivíduos por geração em vários experimentos.
- Mede o desempenho do GA em encontrar uma solução melhor na geração seguinte
- GAs são estocásticos: desempenho varia a cada experimento
- São necessários muitos experimentos para se conhecer o desempenho médio do modelo de GA.

t: geração

 $A_e(t)$: aptidão do melhor indivíduo em \emph{t} no experimento \emph{e}

A(t): média em #_Experimentos das aptidões dos melhores indivíduos a cada geração t

Média de Experimentos

		Expe			
	Melh	ores	nas g		
	1a.	2a.	3a.	4a.	Média
ger 1	0,6	0,5	0,8	0,5	0,60
ger 2	0,7	0,5	0,8	0,7	0,68
ger 3	0,7	0,6	0,9	0,7	0,73
ger 4	0,8	0,6	0,9	0,8	0,78

Média de Experimentos

Característica da Curva de Desempenho

- •bom desempenho no início da evolução
- •pouco ou nenhum desempenho no final

Curva da Média de Experimentos

Curva Média de Experimentos para F6(x,y)

- Usamos o número de dígitos 9 após o ponto decimal para distinguir avaliações muito próximas de 1,00.
- Exemplo:

Avaliação	dígitos 9
0,99873578	2
0,82435787	0
0.99995432	4

Novas Técnicas e Parâmetros

- Técnicas de Aptidão
- Elitismo
- Reprodução Steady State
- Ajuste dos Parâmetros

GA2-1 a

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

→ Técnica Eliminação da População:

→ Técnica de Reprodução:

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

Técnica de Elitismo:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

Técnica de Seleção de Operadores:

Operadores:

Taxa Mutação:

Taxa Crossover.

Técnica de Parametrização:

Função binária F₆

Binária 44 bits

Aleatória

Elimina o último

Steady State s/ duplicados

Roleta

Normalização Linear (100 a 1)

Nenhuma

Nenhuma

100

4000

Use todos

Crossover 1 ponto & Mutação

0,04

0,8

nenhuma

Medida de Aptidão

O que ocorre se alterarmos a F6 para:

F6 (x,y) =
$$\frac{0.5}{(1.0 + 0.001)(x^2 + y^2)^2 - 0.5}$$

Medida de Aptidão

O que ocorre se alterarmos a F6 para:

$$F6_{Elevada}(x,y) = 999,5 - \underbrace{(sen \ddot{0} x^2 + y^2)^2 - 0,5}_{(1,0+0,001 (x^2 + y^2))^2}$$

- Formato F6 = formato F6 elevada
- Melhor cromossoma para F6 = melhor para F6 elevada
- Avaliação de F6 elevada = avaliação F6 + 999
- → Todavia, GA 1-1 para F6_{Elevada} não apresenta desempenho algum.
- → PORQUE?

Aptidão = Avaliação

 $A_i = f_i$: aptidão do indivíduo i

 $p_i = A/A_T = f_i/\dot{a} f_J$: chances de seleção de I

há pop_size sorteios, então

 $D_i = p_i x pop_size = (f_i x pop_size) / a f_J =$

 $D_i = f_i / f_{AV}$: número provável de sorteios de i, ou

número de descendentes na próxima

geração

- F6 avaliaçãobest 0,979worst 0,066average 0,514
- $D_{\text{best}} = 1,905$
- $D_{worst} = 0.128$
- forte pressão seletiva em favor do melhor
- F6_{Elevada} avaliação
 best 999,979
 worst 999,066
 average 999,514
- $D_{\text{best}} = 1,0005$
- $D_{worst} = 0.9996$
- melhor e pior cromossomas vão gerar o mesmo número de descendentes

O efeito da seleção é quase nulo porque as avaliações estão relativamente muito próximas.

Técnicas de Aptidão

Aptidão é a Avaliação

$$A_{i} = f_{i}$$
 Exemplo: $A_{i} = 999,979$

- Windowing
 - subtrair uma constante dos valores de fi
- Normalização Linear
 - atribuir valores a A_i baseados no rank do cromossoma

Windowing

- Obtenha a avaliação mínima na população.
- Atribua a cada cromossoma I uma aptidão igual a:

$$A_i = (f_i - A_{min})$$

- Opcionalmente, atribua uma aptidão mínima de "sobrevivência", maior que a aptidão mínima calculada, como garantia de reprodução para os cromossomas menos aptos.
- Exemplo:

$$A_i = (999,979 - 999,066) = 0,913$$

Normalização Linear

- Coloque os pop_size cromossomas em ordem decrescente de avaliação (i=1 é o menos apto).
- Crie aptidões, partindo de um valor mín e crescendo linearmente até o valor máx.
- Os valores de máx e mín (ou a constante de incremento) são parâmetros da técnica.

$$A_{i} = min + \underbrace{(máx - min)}_{pop_size - 1} x (i - 1)$$

 Quanto maior a constante de incremento, maior a pressão seletiva sobre os melhores.

Exemplo Comparativo

Rank dos cromossomas Avaliação original Aptidão é avaliação Normalização Linear, taxa=10 Normalização Linear, taxa=20 Windowing

6	5	4	3	2	1
200	9	8	7	4	1
200	9	8	7	4	1
60	50	40	30	20	10
101	81	61	41	21	1
199	8	7	6	3	0

SUPER INDIVÍDUO: cromossoma 6

•poucas chance de recombinação com outros indivíduos; elimina competidores em poucas gerações; rápida convergência.

COMPETIÇÃO PRÓXIMA: entre cromossomas 3, 4 e 5

•é preciso aumentar a pressão seletiva sobre os melhores

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

Técnica Eliminação da População:

Técnica de Reprodução:

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

Técnica de Elitismo:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

Técnica de Seleção de Operadores:

Operadores:

Taxa Mutação: Taxa Crossover:

Técnica de Parametrização:

Função binária F

Binária 44 bits

Aleatória

Elimina todos

Troca da geração

Roleta

Normalização Linear (100 a 1)

Nenhuma

Nenhuma

100

4000

Use todos

Crossover 1 ponto & Mutação

0,008

0,65

nenhuma

GA2-1

ICADEMO

Elitismo

- Melhor cromossoma de P(t) é copiado em P(t+1), após o mutação e crossover.
- Reduz o efeito aleatório do processo seletivo.
- Garante que o melhor indivíduo da próxima geração é melhor ou igual ao da geração anterior.

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

Técnica Eliminação da População:

Técnica de Reprodução:

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

→ Técnica de Elitismo:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

Técnica de Seleção de Operadores:

Operadores:

Taxa Mutação: Taxa Crossover:

Técnica de Parametrização:

Função binária F₆

Binária 44 bits

Aleatória

Elimina todos

Troca da geração

Roleta

Normalização Linear (100 a 1)

Nenhuma

Copia o melhor

100

4000

Use todos

Crossover 1 ponto & Mutação

0,008

0,65

nenhuma

GA2-2

ICADEMO

Algoritmo Genético Tradicional

- Representação Binária
- Reprodução com substituição da população
- Elitismo
- Normalização Linear
- Crossover de 1 ponto e Mutação
 - Algoritmo de partida em aplicações
 - Apresenta bom desempenho em vários problemas

Reprodução Steady State

- Substituição parcial de indivíduos a cada geração (mais elitista)
- Bons indivíduos (material genético) são preservados, garantindo mais chances de reprodução
- Método:
 - Crie n filhos (seleção+crossover+mutação)
 - Elimine os n piores membros da população
 - Avalie e introduza os filhos na população
- GAP = fração da população que é trocada
- valor de GAP determina relação entre exploitation e exploration

Exemplo de Steady State

C13	76		76	88
C12	67		67	81
C11	58		58	76
C10	44		44	67
C9	42		42	58
C8	36		36	58
C7	22	38 6	22	44
C6	20		38	42
C5	19		6	38
C4	17	121	121	36
C3	10	88	88	22
C2	8	58	58	17
C1	5	17	17	6

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

→ Técnica de Reprodução:

Gap

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

Técnica de Seleção de Operadores:

Operadores:

Taxa Mutação: Taxa Crossover:

Técnica de Parametrização:

Função binária F

Binária 44 bits

Aleatória

Elimina o último

Steady State

Testar de 5 em 5

Roleta

Normalização Linear (100 a 1)

Nenhuma

100

4000

Use todos

Crossover 1 ponto & Mutação

0,008

0,65

nenhuma

GA2-3

ICADEMO

Steady State sem Duplicados

- Substituição parcial de indivíduos com exclusão de duplicados
- Evita os duplicados que são mais frequentes com steady state (populações mais estáticas)
- Maior eficiência do paralelismo de busca, garantindo pop_size indivíduos diferentes
- Descendentes duplicados s\u00e3o desprezados
- Maior overhead para teste de igualdade

Novos Técnicas, Parâmetros e Operadores

- Crossover de 2 pontos
- Crossover Uniforme
- Operadores Independentes e Seleção de Operadores
- Interpolação dos Parâmetros

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

Técnica Eliminação da População:

Técnica de Reprodução:

Gap

Técnica de Seleção de Genitores:

Técnica de Aptidão:

→ Técnica de Parametrização:

Population Size:

Total de Indivíduos: Módulo de Reprodução

→ Técnica de Seleção de Operadores:

Operadores:

=)

=)

Taxa Mutação: Taxa Crossover:

→ Técnica de Parametrização:

4000 Roleta

100

Crossover Uniforme

Função binária F₆

Binária 44 bits

Elimina o último

Testar de 5 em 5

Steady State s/ duplicados

Normalização Linear (100 a 1)

Interpolar taxa de incremento (de 0,2 a 1,2)

Aleatória

Roleta

Mutação 0,04

0,8

Interpolar Pesos dos Operadores

de (70 30) a (50 50)

Crossover de 2 Pontos

- Semelhante ao crossover de 1 ponto
- 2 pontos são escolhidos aleatoriamente
- Crossover de 1 ponto n\u00e3o consegue combinar todos os padr\u00f3es de dois genitores

		de do	is ger	nitore	S									
$P_{\scriptscriptstyle 1}$	1	1	0	1	1	0	0	1	0	1	1	0	1	1
P_2	0	0	0	1	0	1	1	0	1	1	1	1	0	0
		4		4			1	de co	T	,			4	
P_1	1	1	0	1	1	0	0	1	0	1	1	0	1	1
P_2	0	0	0	1	0	1	1	0	1	1	1	1	0	0
F ₁ F ₂	1	1 0	0	1	<u>0</u>	1 0	1 0	0	1 0	1	1	0	1 0 _{IC}	1

Crossover Uniforme

- A contribuição de cada genitor é decidida aleatoriamente por um padrão
- Capacidade de combinar quaisquer padrões

P1	1	0	0	1	0	1	1
P2	0	1	0	1	1	0	1
Padrão	1	1	0	1	0	0	1
F1	0	4	9	4	9	4	4
F2	4	9	0	4	4	0	4

Operadores Independentes

- Determinados GAs podem incorporar diversos operadores genéticos.
- Operadores não devem ser usados todos, com a mesma intensidade, a cada fase da evolução (por ex: mais crossover no início e mais mutação no final da evolução).
- Uma roleta sorteia um operador a cada reprodução.
- Pesos (chances) dos operadores, iniciais e finais, e taxa de interpolação são parâmetros do algoritmo.

GA3-1

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

Técnica Eliminação da População:

Técnica de Reprodução:

Gap

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

→ Técnica de Seleção de Operadores:

Operadores:

<>>

Taxa Mutação: Taxa Crossover:

Técnica de Parametrização:

Pesos

Função binária F₆

Binária 44 bits

Aleatória

Elimina o último

Steady State s/ duplicados

Testar de 5 em 5

Roleta

Normalização Linear (100 a 1)

Nenhuma

100

4000

Roleta

Crossover 2 pontos

Mutação

0,01 0,7

Nenhuma

(5050)

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

roomoa miolanzagao aa r opalagao.

Técnica Eliminação da População:

Técnica de Reprodução:

Gap

Técnica de Seleção de Genitores:

Técnica de Aptidão:

Técnica de Parametrização:

Population Size:

Total de Indivíduos:

Módulo de Reprodução

→ Técnica de Seleção de Operadores:

Operadores:

<>>

Taxa Mutação: Taxa Crossover:

Técnica de Parametrização:

Pesos

Função binária F₆

Binária 44 bits

Aleatória

Elimina o último

Steady State s/ duplicados

Testar de 5 em 5

Roleta

Normalização Linear (100 a 1)

Nenhuma

100

4000

Roleta

Crossover Uniforme

Mutação

0,01

0,7

Nenhuma

(5050)

GA3-2

Desempenho

- Aspectos importantes:
 - convergência do GA
 - proximidade dos melhores cromossomas a um mínimo local
 - diversidade da população
 - valores dos parâmetros do GA
- Exemplo: variação da aptidão dos operadores durante evolução.

o: Crossover Mutação

io: Crossover Mutação

Crossover Mutação

Interpolação de Parâmetros

- Consiste na variação dos valores dos parâmetros do GA durante a execução, de modo a alcançar maior desempenho.
- Parâmetros:
 - taxa de crossover
 - taxa de mutação
 - taxa incremento da normalização da aptidão
 - aptidão dos operadores
- Interpolação define:
 - valores inicial e final do parâmetro e frequência de ajuste.

GA3-3

ICADEMO

Módulo de Avaliação

Função de Avaliação:

Módulo de População

Técnica de Representação:

Técnica Inicialização da População:

Técnica Eliminação da População:

Técnica de Reprodução:

Gap

Técnica de Seleção de Genitores:

Técnica de Aptidão:

→ Técnica de Parametrização:

Population Size:

Total de Indivíduos:

- Módulo de Reprodução
 - → Técnica de Seleção de Operadores:
 - Operadores:

<>>

Taxa Mutação: Taxa Crossover:

→ Técnica de Parametrização:

<>>

Função binária F₆

Binária 44 bits

Aleatória

Elimina o último

Steady State s/ duplicados

Testar de 5 em 5

Roleta

Normalização Linear (100 a 1)

Interpolar taxa de incremento (de 0,2 a 1,2)

100

4000

Roleta

Crossover Uniforme

Mutação

0,01 0,7

Interpolar Pesos dos Operadores

de (70 30) a (50 50)

