GGGGCTTCGGCGCCAGCGGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGTATG AGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAA**ATG**TGGTGGT $\tt TTCAGCAAGGCCTCAGTTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCTTTCATATTT$ TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATATCAGTGACACTGG TACAGTAGCTCCAGAAAAATGCTTATTTGGGGCCAATGCTAAATATTGCGGCAGTTTTATGCATTG CTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAAAACGTTATCATCAAA TTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGGACTTTCTATTGTGGCAAACTT $\tt CCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTGTGCTTACCTTTGGTATGGGCTCAT$ TATATATGTTTGTTCAGACCATCCTTTCCTACCAAATGCAGCCCAAAATCCATGGCAAACAAGTC TTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGGAGTAAGTGCACTTAGCATGCTGACTTGCTC ATCAGTTTTGCACAGTGGCAATTTTGGGACTGATTTAGAACAGAAACTCCATTGGAACCCCGAGG ACAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTT GGTTTTTTCCTGACTTACATTCGTGATTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACA GAGATATT**TGA**TGAAAGGATAAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGG TTCACAGAAGTTGCTTATTCTTCTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACT GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCAT CAAGAAGACTATTAAAAACACCTATGCCTATACTTTTTTATCTCAGAAAATAAAGTCAAAAGACT ATG

<subunit 1 of 1, 266 aa, 1 stop

<MW: 29766, pI: 8.39, NX(S/T): 0

 $\label{thm:colst} $$\operatorname{MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTL} $$\operatorname{MCSLYMFQKTLFAAHVSGAVLTFG}$$$\operatorname{MCSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW}$$$\operatorname{MCSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW}$$\operatorname{MCSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW}$$\operatorname{MCSLYMFVQTILSYMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYDTAPCPINNERTR}$$\operatorname{LLSRDI}$$$

Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

GTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAAGTGGAAGTGGAGGCAGGAGCCTTC $\tt CTTACACTTCGCC{\color{red} ATG} AGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATACTATTTTTTG$ GATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAG GTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTAGG AGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGAATTCTGCTGATCCTGG TTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGA $\tt CTGCTTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCC$ CATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAG TGACTCTCATGGCTCTTCTTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTC CTCAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATATGAT CATAAGCAAAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACA AACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACT ATATGCTACCAAGGAGAATAGAATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTT ${f ACTTTTTCTCTATTTACTGTTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTT$ GGGAAAACGGATCCTGTCACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGT TGCTGATCACTCTTACCAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTG CTATTAGCACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGCTGATCCGAATGAGTATGCCTTT AGAATACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTG ATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACCA GAGAAGCAAATGGCACCT**TGA**ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAATTTA ATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAG AACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTGGATATGAGGCTGG TGTAGAGGCGGAGAGGCCAAGAAACTAAAGGTGAAAAATACACTGGAACTCTGGGGCCAAGACATGT CTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTG ACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

APP_ID=10063685 Page 157 of 322

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

AGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATCTGAGGT $\tt GTTTCCCTGGCTCTGAAGGGGTAGGCACG{\color{blue} ATG} GCCAGGTGCTTCAGCCTGGTGTTGCTTCTCACT$ GTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGCAGCTGAATTTCACAG AAGCTAAGGAGGCCTGTAGGCTGCGGACTAAGTTTGGCCGGCAAGGACCAAGTTGAAACAGCC TTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGATTCGTGGTCATCTCTAG GCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGATACTTGGACTAACTCGTGCATTCCAGAA $\tt CTGCTCCAGCTTCCACTTCTATTCCACGGAGAAAAAAATTGATTTGTGTCACAGAAGTTTTTATG$ GAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGA CAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAA TGAGGAATCAAAGAAAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGC GATGCCTGGAAGCTGAAGTT**TAG**ATGAGACAGAAATGAGGGAGACACCTGAGGCTGGTTTCTTT CATGCTCCTTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCAAAGAACCAAAGAAGAAGTCCA CCCTTGGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAT TTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGAC CTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTG AAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCA GCTCTGAAAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAAAGAAT GGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAATCTCTGTAAA GCTAAAATAAGAAATAGAACAAGGCTGAGGATACGACAGTACACTGTCAGCAGGGACTGTAAAC CTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCTAGGAAATATACTTTTACAAGTAACA AAAATAAAACTCTTATAAATTTCTATTTTTATCTGAGTTACAGAAATGATTACTAAGGAAGATT AAGTGCTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTAG AACGCTATCTGGGAAGCTATTTTTTTCAGTTTTGATATTTCTAGCTTATCTACTTCCAAACTAAT TTTTATTTTTGCTGAGACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATT TATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCC ATTAACAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATT TGTGACAAAAATTAAAGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACRLLG LSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQFAAYCYN SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPPAPASTSIPR RKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAAGLGFCYVK RYVKAFPFTNKNOOKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSPSKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

CGCCGCGCTCCCGCACCCGCGGCCCCACCGCGCCGCTCCCGCATCTGCACCCGCAGCCCGGC GGCCTCCCGGCGGGGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCGGGGCGG CGGCGGTCCCCACGGCCCCGCCCCGCTCCGACGGCGACCTCGGCTCCAGTCAAGCCCGGCCCG GCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGAGGTTGAGGAACTGAT GGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGTGGAGGCAGAAGAAGCTGCTGCTA AAGCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATGAGACCAACACAGAC ACGAAGGTTGGAAATAATACCATCCATGTGCACCGAGAAATTCACAAGATAACCAACAACCAGAC TGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTGTGGGAGACGAAGAAGGCAGAAGGAGCC ACGAGTGCATCATCGACGAGGACTGTGGGCCCAGCATGTACTGCCAGTTTGCCAGCTTCCAGTAC GCTGTGTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGGGCAGCAATGGGACCATCTGTGACA ACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGC CTGGGAGCTAGAGCCTGATGGACCTTGGACCGATGCCCTTGTGCCAGTGGCCTCCTCTGCCAGC CCCACAGCCACAGCCTGGTGTATGTGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGG GAGATCCTGCTGCCCAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCG CCAGGAGCTGGAGGACCTGGAGGAGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTG CCGCCGCTGCACTGCTGGGAGGGGAAGAGATT**TAG**ATCTGGACCAGGCTGTGGGTAGATGTGCAA TAGAAATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTA CATCTTCTTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCT GGAGCAGTTTGCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCG TTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGGAGTCTCCCTC TGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAAAAATG CAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTTCAGCTGTTGC AGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCAGTGTTGCTCAGCTCC TACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGGG AGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTTGCC CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCATCTGGTTGTGACTCTAAGCTCAGTGCTCT TTTTCTTGAGGCATGCACATCTGGAATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAAA CTACTGTTAGGAACAGCAGTGTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGAT ATTGACACTGTCCCTCTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCA TACAGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGC AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATG TTTTCAGGTGTCATGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCA CATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAA

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL RSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTGQMVFSE TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCGDQLCVWGHC TKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLITWELEPDG ALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE RSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

 $\underline{\textbf{CGG}} \textbf{A} \textbf{CGCGTGGGGGGCTGTGAGAAAGTGCCAATAAATACATCATGCAACCCCAC}$ GGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCATCCAAAG GCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTCTGGACCCTT AACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTTCTACTGGGCCTT CCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCCGCACACTCCGTTACC ACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAGATAGCCCGGGTCATCTTG GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGCCCGCTGCATCATGTGCTGTTT CAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGCAATGCATACATCATGA TCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAAAATGCGTTCATGCTACTCATGCGAAAC ATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGACCTGCTGCTGTTCTTTGGGAAGCTGCTGGT GGTCGGAGGCGTGGGGGTCCTGTCCTTCTTTTTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAG ACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCCATCATGACCTCCATCCTGGGGGCCTAT GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAA CCCTGATCCAGGACTGCACCCCACCCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGT CTCCATTTTGTGGTAAAAAAGGTTTTAGGCCAGGCGCCGTGGCTCACGCCTGTAATCCAACACT TTGAGAGGCTGAGGCGGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG AAACCTCCGTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCA GCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGA AAGATTTTATTAAAGATATTTTGTTAACTC

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAFMLLMRN
IVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

 $\texttt{GCCCGCGCCCGGGCGCCCGAAGCCGGGAGCCACCGCC} \underline{\textbf{ATG}} \texttt{GGGGCCTGCCTGGGAGCCTGC}$ ${\tt TCCCTGCTCAGCTGCGGCTCCTGCGGCTCTGCCCCCTGCATCCTGTGCAGCTGCTGCCCCGC}$ CAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCCTGGGGGTGCTGGTGTCCA ${ t TCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTGCCCTGGGTGTGTGAGGAGGGGGCCC}$ GGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGGCTCCCTGCTTGGCTACCGCGCTGTCTACCG CATGTGCTTCGCCACGGCGGCCTTCTTCTTCTTCTTTTTCACCCTGCTCATGCTCTGCGTGAGCAGCA GCCGGGACCCCGGGCTGCCATCCAGAATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTC ACCGTGGGTGCCTTCTACATCCCTGACGGCTCCTTCACCAACATCTGGTTCTACTTCGGCGTCGTGGG CTCCTTCCTCTCATCCTCATCCAGCTGGTGCTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGT GGCTGGGCAAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCCTC TTCTACTTGCTGTCGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCTGCCA CGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCTGCTGTCCTGC $\verb|CCAAGGTCCAGGACGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCATCACCCTCTACACCATG|\\$ GGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAGACCCAGTGGTGGGATGCCCCGAGCATTG TGGGCCTCATCATCTTCCTCCTGTGCACCCTCTTCATCAGTCTGCGCTCCTCAGACCACCGGCAGGTG AACAGCCTGATGCAGACCGAGGAGTGCCCACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGT GGCAGCCTGTGAGGGCCGGGCCTTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTTCC ACTTCTGCCTGGTGCTGGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAG ACCCGGAAGATGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCT $\tt CCTCTACCTGTGGACCCTGGTAGCCCCACTCCTCCTGCGCAACCGCGACTTCAGC\underline{TGA}_{GGCAGCCTCA}$ CAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTCGGCTCGGTGACAGCCAACCTGCCCCCTC CCCACACCAATCAGCCAGGCTGAGCCCCCACCCTGCCCCAGGTCCCAGGACCTGCCCCTGAGCCGGGC CTTCTAGTCGTAGTGCCTTCAGGGTCCGAGGGGCATCAGGCTCCTGCAGAGCCCCATCCCCCGCCAC ACCCACACGGTGGAGCTGCCTCTTCCTTCCCTCCTCCTGTTGCCCATACTCAGCATCTCGGATGAA AGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCCACCACAG TGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGGACCCTGCCCCCTTCCTG

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRDPRAAIQ
NGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSWNQRWLGKAE
ECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPSI
VGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLYLWTLVAPLLLRNRD
FS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

GGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACG CTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAA TTTCTGTTTGTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATAGAGTTAAATG TGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATAT TTTGATATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGTGCAG ACTGCGCCATTGGTGGGCAATAGCGTTGACAACGGCAGTGACCAGTGCCTTTTTACTAGCAAAAG CTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAAA CAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTTATACCTGGTGGTCTTTCTGATG GTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT GAGAAACCACTTTTAGAACTA**TGA**GTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTC ATCGAGGCAAAAAGAGGCAGGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAAATGGTGACGTC CATATCCATGCACATTTAGTTGCCTGCCTGTGGCTGATAAGGTAATGTCATGATTCATCCTCTCT TCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAGAAAGTCTTGTGCTGTATTCCTAATC AAAAGACTTAATATATTGAAGTAACACTTTTTTAGTAAGCAAGATACCTTTTTATTTCAATTCAC TCCCTTGTTTTTTAACTCATGCACATGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTG ACATGTCAATGTGGCTAGTTTTATTTTTCTTGTTTTGCATTATGTGTATGGCCTGAAGTGTTGGA CTTGCAAAAGGGAAGAAAGGAATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTT TTATCATGAAATCATGTTTTTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGC ACAAAATGACTTAAACCATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAA CTAAATTAAAAA

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTT AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASER AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCTCGGGCCCGACCCGCCAGGAAAGACTGAGG CCGCGGCCTGCCCGGCCCGGCTCCCTGCGCCGCCGCCTCCCGGGACAGAAGATGTGCTCCAG GGTCCCTCTGCTGCCGCCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGGGCTGCCCAT CCGGCTGCCAGTGCAGCCAGCCAGACAGTCTTCTGCACTGCCCGCCAGGGGACCACGGTGCCC CGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCATCACCATGCTCGACGC AGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCACAGAACCAGATCGCCAGCC TGCCCAGCGGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTGGACCTGACGGCCAACAGGCTG CATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCTCGAGCGCCTCTACCTGGGCAAGAA CCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGCTCGACCGCCTCCTGGAGCTCAAGCTGC AGGACAACGAGCTGCGGGCACTGCCCCGCTGCGCCTGCCCGCCTGCTGCTGCTGGACCTCAGC CACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTGCCAACGTGGAGGCGCTGCGGCT GGCTGGTCTGGGGCTGCAGCAGCTGGACGAGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACC TGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACG TCTTCCCCGGCTGCGGCTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGC TGGTTTGGCCCCTGGGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCA CTTCCCGCCCAAGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAG CCACCACCACCACAGCCACAGTGCCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCT CACTGCCCCACCGACTGTAGGGCCTGTCCCCCAGGCCCCAGGACTGCCCACCGTCCACCTGCCTCA ATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACG GGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAG AGCGCTACCTCCAGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTATCGCAACCTATCG GCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCACTCCAACCACGCCCCAGTCACC CCAGGCCCGAAGGCAACAGAGGCGGTGGAGAGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGCC ACTCATGGGCTTCCCAGGGCCTGGCCTCCAGTCACCCCTCCACGCAAAGCCCTACATC<u>TAA</u>GCCA GAGAGAGACAGGCAGCTGGGGCCGGGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCC ACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCT GGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCC CTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTC CCTGGGCACGGCGGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCTGGGCTCTCCCAC TCCAGGCGGACCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGC GGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGC TTTAGGAACATGTTTTGCTTTTTTAAAATATATATATATTATAAGAGATCCTTTCCCATTTATTCT GGGAAGATGTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATGAA GGCCTTTTGTAAGAAAAATAAAAGATGAAGTGTGAAA

MCSRVPLLIPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEPGILDTANVE
ALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDL
AGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQGTRPSPTP
VTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLVTLRLPASLAEY
TVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAAV
LLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAGPLELEGVKVPLEPGPKATEGGGEALPSGSE
CEVPLMGFPGPGLQSPLHAKPYI

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354, 594-600, 640-646

 ${\tt GCAGCGGCGAGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTC{\tt ATGCGCGAGGCGAGGCGACAGCTC}}$ GGTCCGGATAGGGCTGACGCTGCTGTGTGCGGTGCTGAGCTTGGCCTCGGCGTCCTCGG ATGAAGAAGGCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTTGACATCAGATGAGTCAGTA AAGGACCATACTGCAGGCAGAGTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGA ATTAGAATCCTCTATTCAAGAAGAGGGAAGACAGCCTCAAGAGCCAAGAGGGGGAAAGTGTCACAG CGGAAACCAGCTTTGACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCT CTACAACCTATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCT AAGAGACGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAG CCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGTGATTACTTGCCACAGAATATCCAG GCAGCGAGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGCTCTTGG CTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTATATTATACAT $\tt TTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT{\color{red}{\textbf{TAG}}} TGGAAGGCT{\color{red}{\textbf{TAG}}} TGGAAGGCT{\color{red}{\textbf{TAG$ AATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTTTCAGCTTTCATGATC AACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACAATTTTTCTTTAAAATGATTAG TTTGGCTGATTGCCCCTAAAAAGAGAGATCTGATAAATGGCTCTTTTTAAATTTTCTCTGAGTTG GAATTGTCAGAATCATTTTTTACATTAGATTATCATAATTTTTAAAAAATTTTTCTTTAGTTTTTCA AAATTTTGTAAATGGTGGCTATAGAAAAACAACATGAAATATTATACAATATTTTGCAACAATGC CCTAAGAATTGTTAAAATTCATGGAGTTATTTGTGCAGAATGACTCCAGAGAGCTCTACTTTCTG $\tt TTTTTTACTTTCATGATTGGCTGTCTTCCCATTTATTCTGGTCATTTATTGCTAGTGACACTGT$ GCCTGCTTCCAGTAGTCTCATTTTCCCTATTTTGCTAATTTGTTACTTTTCTTTGCTAATTTGG

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLDSEESEL ESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHGEPCHFPFLFLDK EYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRROMQEAEMMYQTGMKILNGSNKKSQKR EAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN SSOAKALVYYTFGALGGNLIAHMVLVSRL

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTTCTT GTATTATACAAGAAAGGAGTGTACCTATCACACACGGGGGAAAAATGCTCTTTTGGGTGCTAGG CCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG ATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCCAGAACTTTTGAT AAAAAGGGATTTCATGTAATCGCTGCCTGTCTGACTGAATCAGGATCAACAGCTTTAAAGGCAGA CCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTGTT CCCGGCGTGCTGGCTCCCACTGACTGGCTGACACTAGAGGACTACAGAGAACCTATTGAAGTGAA CCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTCCTTTGGTCAAGAAAGCTCAAGGGAGAG TATGCAGTGGAAGGTTTCAATGACAGCTTAAGACGGGACATGAAAGCTTTTGGTGTGCACGTCTC TCGCCATTTGGGAGCAGCTGTCTCCAGACATCAAACAACAATATGGAGAAGGTTACATTGAAAAA AGTCTAGACAAACTGAAAGGCAATAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTG CATGGACCACGCTCTAACAAGTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAA TTTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTTTGCAAGACTTTTTATTGTTGAAACAGAAA GCAGAGCTGGCTAATCCCAAGGCAGTG**TGA**CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGA AATTGGCCGATTTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACT CATTTAGATCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGT CCCTGCTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCT GTATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATGA TCTTTACCGTGGCCTGCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTTAAGT AAAAAAAAAAA

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY REPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK AFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLDKLKGNKSYVNMD LSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

CACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAAGTAAAA GGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTATACAATTGA CATTCAGAAATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAGGCGAAGTAAATG AGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGTTGGTACAAATTCCGT CGTCATTCAGATCAGATCATGACGTTTAGAGAGAGGCTGCTTCACAAAAACTTGCAGGAGCATTT TTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAATAACAGAAAGCTGCTCTACTC ATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTTTTTCACAGGGTACCTTTAGTGGTT GCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAACTGTATCAGGTTCCTGTATGTCCACTGG TTTTAGCCGAGCAGTACAAACACACAGCTCTAAATTTTTTGAAGAAGATGGATCCTTAAAGGAGG TACATAAGATAAATGAAATGTATGCTTCATTACAAGAGGAATTAAAGAGTATATGCAAAAAAGTG GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAAACAGATTAAAACGAGAAATTGA GAAAAGGAGAGGACACAGATTCAGGCAGCAAGAGAAGAACATCCAAAAAGACCCTCAGGAGA ATGTCTTTAAAAATAGACATGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGT AGACAATCTGACCTTAATGGTAGAACACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCAC AAATCATTAAGCATAAAGCCTTAGACTTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTA GATACACAAGACAAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAGCATCCAAAAT GAGCAGCCCAGAAACAGATGAAGAAATTGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTC ATTTCTATTGTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCACC TGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAACATCA GATGCTTTATTTCCAAACCTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCTTACACAG ACACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACT TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGGCAACGTATT GAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTATTTTCAAAATATGGAAA GAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTTTAGAAGTA CATTATGGCTAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAAATTTGCAAAACATCATCT AAAATTTAAAAAAAAAAAAAAAAAAAAAAAAA

APP ID=10063685 Page 175 of 322

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEHFSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSSCNYNHHLDVVDNLTL
MVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

GCAGCGCAGCGAACGCCCGCCGCCGCCACACCCTCTGCGGTCCCCGCGGGCGCCTGCCACCCTTCCCTTCCCC GCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGGTTCGCCCCCGCGAAACCCCGAGGTCACCAGCCCGCGCCTCT GCTTCCCTGGGCCGCGCCGCCTCCACGCCCTCCTTCTCCCCTGGCCCGGCGCCCTGGCACCGGGACCGTTGCCTGA ${\tt TCCAGCTCCACTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCGCTGCCGTAGCGCCGCTTCCCGTCCGGTCCCAAA}$ AGCGCCGCGCTGCTGGCTGCCGAGCTCAAGTCGAAAAGTTGCTCGGAAGTGCGACGTCTTTACGTGTCCAAAGGCTTC AACAAGAACGATGCCCCCCTCCACGAGATCAACGGTGATCATTTGAAGATCTGTCCCCAGGGTTCTACCTGCTGCTCT CAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTG AATGATATGTTTGTGAAGACATATGGCCATTTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTG AAACGTTACTACGTGGGGAAATGTGAACCTGGAAGAAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATG TTCCGCCTGGTGAACTCCCAGTACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAG CCCTTCGGAGATGTCCCTCGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGC TTAGCGGTTGCGGGAGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAG ATGATCTACTGCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGC TGTTTGGCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTA GAGGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGGAT AATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATTTCTCGT TCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCAACCACAGCAGCTGGCACT AGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCTCCCTTCCGAGCAAC GTTTGCAACGATGAGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGGAAAGGCAAAAGCAGGTAC CTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCAGGTTGACACCAGCAAACCAGAC ATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGAAGAATGCATACAATGGGAACGACGTG AAAAAGTGTTCATCAAAAAGTTAAAAGGCACCAGTTATCACTTTTCTACCATCCTAGTGACTTTGCTTTTTAAATGAA TGGACAACAATGTACAGTTTTTACTATGTGGCCACTGGTTTAAGAAGTGCTGACTTTGTTTTCTCATTCAGTTTTGGG AGGAAAAGGGACTGTGCATTGAGTTGGTTCCTGCTCCCCAAACCATGTTAAACGTGGCTAACAGTGTAGGTACAGAA TTTTTTTCCAACTGTGATCTCGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTTCTTGGCACGTAACATGTACGTATT

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEYLECVSKYTE
QLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHALLKMIYCSHCRGL
VTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLFAVTGNGLANQGNNPEVQVDTS
KPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGEGSGSGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

Important features:

Signal peptide:

amino acids 1-22

ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

N-glycosylation site.

amino acids 514-518

Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

 ${\tt MKVLISSLLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRKFM}$$ TVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL$

Important features:
Signal peptide:
amino acids 1-22

N-myristoylation sites. amino acids 27-33, 46-52

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCTCAG ${\tt AGCTGGTCTGCC} \underline{\textbf{ATG}} \underline{\textbf{GACATCCTGGTCCCACTCCTGCAGCTGCTGGTGCTGCTTCTTACCCTGCC}$ CCTGCACCTCATGGCTCTGCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCCCCTACCTGA TGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAGCTCTTCAGCCAG ATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGGCTGCGGAACCGGAGC CAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACCCAAATCCCCACTTTGAGA AGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTTGTGGTGGCTCCT GGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGGTCTGCACTCTGGTGCTGTG CTCTGTGCAGAGCCCAAGGAAGGTCCTGCAGGAGGTCCGGAGAGTACTGAGACCGGGAGGTGTGC TCTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCTTCATGTGGCAGCAAGTTTTC GAGCCCACCTGGAAACACATTGGGGATGGCTGCTCCCCACCAGAGAGACCTGGAAGGATCTTGA GGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCC **G**CAGAATGAGAGAAGACATTCATGTACCACCTACTAGTCCCTCTCTCCCCAACCTCTGCCAGGGC AATCTCTAACTTCAATCCCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGG AAACACTAGGACCCTGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTC CCAATGTTGTCCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACAC CCATGCGTCTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCCTGAC CCTCTCTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGG ACCACG

MDILVPLLQLLVLLTLPLHIMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGL TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM RQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQVFEPTW KHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSL QLEQATHQPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

 $\verb|MLLLLLLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQPRG|\\ EGEKVGDG|$

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTT CCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCT ATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATCATGTCGG GAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCCATGATGTTTACC TTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTTGGTTATTTTGGGATTGTTGTT TGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCATAGAATTGGACA CAGAAAGGGAAAATATGAAGTGCGTGCTGGGGTTTGCTATCGTATCCACAGGCATCACGGCAGTG CTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTTCCAAATCAC AAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCCAGCCACTGTGGACATTTGCCATCCTCA ATGGAAGGCGCCAAGTGGAATATAAGCCCCTTTCGGGCATTCGGTACATGTGGTCGTACCATTT AATTGGCCTCATCTGGACTAGTGAATTCATCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAG TGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTCCTGATCATCCCATCCTTTCGTCTCTC TCCATTCTCTTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAG GATTCCGAGAATCATTGTCATGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT CCAGGTACCTGTTCCGATGCTGCTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTC AACCAGAATGCATATACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGC ATTCAAAATCTTGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTTGGAGACTTCATAA TTTTTCTAGGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTAC CCATAGTTTTTTATCTGTGTTTGAAACTGTGCTGGATGCACTTTTCCTGTGTTTTGCTGTTGATC TGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTTCGTA AAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGA GGGAACAGAACTCCAGGCCATTGTGAGA**TAG**ATACCCATTTAGGTATCTGTACCTGGAAAACATT TCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTTAGTGAATTTTTTT TTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

MSGRDTILGLCILALASLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLSIE
LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFA
ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQQMTIA
GAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMYMQNALKEQQHG
ALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKILSKNSSHFTSINCFGD
FIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFLSVFETVLDALFLCFA
VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQAIVR

Important features:

Signal peptide:

amino acids 1-20

Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTTAGA GAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATTTA**TG**AGGAC TGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTGCTGGTGACTGGAGTAC ATTCAAACAAGAAACGCCAAAGAAGATTAAAAGGCCCAAGTTCACTGTGCCTCAGATCAACTGC GATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATGTCCAGCAGGATGCCAAGA CCCCAAATACCATGTTTATGGCACTGACGTGTATGCATCCTACTCCAGTGTGTGGGGGGCTGCCG TACACAGTGGTGTGCTTGATAATTCAGGAGGGAAAATACTTGTTCGGAAGGTTGCTGGACAGTCT GGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACCACGATGGAGAAATCCTT TATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAACCTACCCATCAGCTCTTACATACTCATCAT CGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTATCAGAGGCCACCTATTCCAGGG ACAACTGCACAGCCGGTCACTCTGATGCAGCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCAC CACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGG GCCACAGGAGCCAGGAGATGGATCTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCC AGAGCTGATCCAGGTATCCAAAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGC GGATGTCAGCCTGGGACTTGTTCCAAAAGAAGAATTGAGCACACTCTTTGGAGCCAGTATCCC TGGGAGATCCAAACTGCAAAATTGACTTGTCGTTTTTTAATTGATGGGAGCACCAGCATTGGCAAA CGGCGATTCCGAATCCAGAAGCAGCTCCTGGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGC CGGTCCACTGATGGGTGTTGTCCAGTATGGAGACAACCCTGCTACTCACTTTAACCTCAAGACAC ACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGGACTTTCTAAT GGCTCCCAATGTGGTGGTGGTGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCTTCAA GACTTGCGAGAGAGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGAAAAATGAG AAGCAGTATGTGGTGGAGCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACGGCTTCTACTC GCTCCACGTGCAGAGCTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTGAAGCGGGTCTGCG ACACTGACCGCCTGCCTGCAGCAAGACCTGCTTGAACTCGGCTGACATTGGCTTCGTCATCGAC GGCTCCAGCAGTGTGGGGACGGGCAACTTCCGCACCGTCCTCCAGTTTGTGACCAACCTCACCAA AGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTGCAGTACACCTACGAACAGCGGC TGGAGTTTGGGTTCGACAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAAGAGGGTGGGC TACTGGAGTGGTGGCACCAGCACGGGGGCTGCCATCAACTTCGCCCTGGAGCAGCTCTTCAAGAA GTCCAAGCCCAACAGAGGAAGTTAATGATCCTCATCACCGACGGGAGGTCCTACGACGACGTCC GGATCCCAGCCATGGCCGCCATCTGAAGGGAGTGATCACCTATGCGATAGGCGTTGCCTGGGCT GCCCAAGAGGAGCTAGAAGTCATTGCCACTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGA GTTTGACAACCTCCATCAGTATGTCCCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCAC AGCCTCGGAAC<u>TGA</u>ATTCAGAGCAGGCAGAGCACCAGCAAGTGCTGCTTTACTAACTGACGTGTT GGACCACCCCACCGCTTAATGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCATGGAGAAAC AAATGTCTTGTTATTATTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGGAGTTACAAAGA TGATCACAAACGTATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCTGGAGATTTTACAT TTTGACAATTGTTTTCAAAATAAATGTTCGGAATACAGTGCAGCCCTTACGACAGGCTTACGTAG AGCTTTTGTGAGATTTTTAAGTTGTTATTTCTGATTTGAACTCTGTAACCCTCAGCAAGTTTCAT

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWR
ESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVA
TPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQRQDPSGAAFQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFRIQKQLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTN
LTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAAINFALEQL
FKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAWAAQEELEVIATHPARDHSFF
VDEFDNLHQYVPRIIONICTEFNSQPRN

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 181-200

N-glycosylation sites.

amino acids 390-394, 520-524

N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395, 431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

Amidation site.

amino acids 304-308

CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAAGAAATTGC ACAGAAAACAACAAAAACTTAAGCTTTAATTTCATCTGGAATTCCACAGTTTTCTTAGCTCCCTGGACCC GGTTGACCTGTTGGCTCTTCCCGCTGGCTGCTCTATCACGTGGTGCTCTCCGACTACTCACCCCGAGTGTA AAGAACCTTCGGCTCGCGTGCTTCTGAGCTGCTGTGGATGCCTCGGCTCTCTGGACTGTCCTTCCGAGTA GGATGTCACTGAGATCCCTCAAATGGAGCCTCCTGCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTAC CTCAGCCTTCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTTA CAGACAAGACTTTCACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATTC TGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAGAGGCTGAAAAGGAAGACAAAATGTTGGC ATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATAATCCGACAAGATTTTTTAGACACATATAATA ACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTAACTGAGTTTTGCCCCAATGCCAAGTACGTAATG AAGACAGACACTGATGTTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGA GAAGTTTTTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATATTT CTTACCAGGAGTATCCTTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAATGTCCAGAGAT TTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTTTATGTCGGGAT ${\tt ATTTGGATGTCTGAACTGAGACGTGTGATTGCAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTT}$ TGGCAGGTCATGCTAAGGAACACCACATGCCATTATTAACTTCACATTCTACAAAAAGCCTAGAAGGACAG GATACCTTGTGGAAAGTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTT ACACTGAACTGAAACTCATGAAAAACCCAGACTGGAGACTGGAGGGTTACACTTGTGATTTATTAGTCAGG CCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGG ACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCA CTAGGCTGTAAAAACAAACAATGTAGAGTTTTATTATTGAACAATGTAGTCACTTGAAGGTTTTGTGTA TATCTTATGTGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATA CTGAACAAAATTTTACCTGTTTTTGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATT ATTATTTAAAATTACTTCAACTTTGTGTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAG TGAATCATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCACTCCA TTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGT AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF TLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLA LSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLL NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHV KPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR NTTCHY

Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

AATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGAAGTCGTGGGTTATACCATCCCTTGCTGCAGGAATGAGGAGAA ACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAGTGCCGAGCAGGCTGGTACGGAGGAGACTGCATGCGATGTG TAAACCTGGGTTTGTCATCCAACTAAGATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAG GTTCGTGATGCACAACCGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAG GATCCTCACTCCACGTCCTCTTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGC ATGCTCCTCATCCCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTGGCAGGC TCTTAGTGGCAATGAGAAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTGCATAAAAGCCTGCCGA GAACCAAAGATTTCAGACCTGGTGAGAAGGAGAGTTCTTCCGATGCAGGTTCAGTCAAGGGAGACACCATTACACCAGCTAT ATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGGAGGACATGT $\tt CTGAGGACTGGGAGTGGAGTGGGCGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGA$ GTGGTTCCTAGTCTGCAGCGGTGCCCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGGGAAG GTCACCATGATCAAGACAGCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATGAGAAGACCATCC AGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCT TCCCACATCACTGGGCTGGCTGGAATGTCCTGGCAGACGTGAGGAGCCCTGGCTTCAAGAACGACACACTGCGCTCTGGGG CTGTGCCAGCTGGGAACCCACTGCCCCTTCTGATATCTGCACTGCAGAGACAGGAGGCATCGCGGCTGTGTCCTTCCCGGGA CTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAG ${\tt GCCCCTTTTGAGGCTCTCAAGTTCTAGAGGGCTGCCTGTGGGACAGCCCAGGGCAGAGCTGGGATGTGGTTGCCTT}$

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQII
KRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLYSAAFSKQKLQSAPTK
KPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPSCIPICGKIENITAP
KTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAHCVTDLGKVTMIKTADL
KVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASR
DLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSGVVSVVDSLLCEEQHEDHGIPVSVTDNMFCA
SWEPTAPSDICTAETGGIAAVSFPGRASPEPRWHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314, 474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

GGTTCCTACATCCTCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTAATC TGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGCTTGGCTGG $\tt TTTGGGCCCTTGTAGCTGACAGAAGGTGGCCAGGGAGAATGCAGCACACTGCTCGGAGAA\underline{TG} AAGGCGCTTCTGTTGC$ TGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATTCAGAACTCTGTA AAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTGTCCAGACGGCTGTGCGAGCC TCACAGCCACGGCTCCCCCAGAGGTTTCTGCAGCTGCCACCATCTCCTTAATGACAGACGAGCCTGGCCTAGACA ACCCTGCCTACGTGTCCTCGGCAGAGGACGGCCAGCCAATCAGCCCAGTGGACTCTGGCCGGAGCAACCGAACTA GGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGGAAAATTCTGAAAACACCACTGCCCCTGAAG TCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAA TGATCGCCAGAGACGCCGGCTACTGCCAGGAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTC ACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGGTGCTGTGGCTGATGCGTGAACAGAAGTTCCGCA $\tt GCAGGAACAATGGACAGGCCCCGGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCC$ $\tt CCGAGGAGCAGCTTGGAATAAAACTGGTGCGCAAGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCG$ GTGTGGCATATCGACATGGTCAGCTTGAGGAGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCA GCCCAGAAAGTGCGGCTCATCTGATTCAGGCCAGTGAAAGACGTGTTCACCTCGTCGTCGTCCCCAGGTTCGGCAGC ${\tt TCATAAGCAGAGATGGAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACAGAGGTCAGCC}$ GGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTC CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAATGA TTGTCAGTTTTTATATTTAAAGAAAGAATACATTGTAAAAATGTCAGGAAAAGTATGATCATCTAATGAAAGCCAGTT ACACCTCAGAAAATATGATTCCCAAAAAAATTAAAACTACTAGTTTTTTTCAGTGTGGAGGATTTCTCATTACTCTAC AACATTGTTTATATTTTTCTATTCAATAAAAAGCCCTAAAACAACTAAAATGATTGTATTACCCCACTGAATT ${\tt CAAGCTGATTTAAATTTAAAATTTGGTATATGCTGAAGTCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCATTTTTAATTTACAGCTAAGCTGCCAAGGGTACATTATGGCCAATTATGGCCAAGGCTACATTATGGCCAAGGCTACATTATGGCCAAGGCTACATTATGGCCAAGGCTACATTATGGCCAAGGCTACATTATGGCCAAGGCTACAGGCTACAGGCTACAGGCTACAGGCTACAGGCTACAGGCTACAGGCTAAGGCTACAG$

MKALLLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPS
PEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLV
GGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVFIFNVLDGGVAYRHG
QLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVISRDGR
IKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPP
SDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDG
RIRCGDILLAVNGRSTSGMIHACLARLLKELKGRITLTIVSWPGTFL

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453, 467-473, 603-609

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTT CTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAAC**ATG**GGCTTCAACCTGACT CACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAGCAAAGGAGTTCATGGCTAATTTCC ATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACTT GACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGGCCAGAGCAAGCTCATTTTCAAACCAGATCTCAC TTTGGAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAG CTTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAAACACCTGATGTACCTGCTGGAA CATCTGCATCCCTTCCTGCAGAGGCAGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGG TAAAAAGTTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGG ACTGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAG CATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTGGATATTTTGG GGGTGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGGAT GGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAGAATGAAAATTTCCCGGCCCCTG CCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACG GATGAAGCTCTTACACCAAGTGTCACGAGTCTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAAT TAGTATCTGTGGAACACAATCCTTTATATATCAACATCACAGTGGATTTCTGGTTTGGTGCA**TGA**CCC ATAGTAGCACACATTAAGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTGTATTTTCT TAGCAGAGCTCCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGAT CATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGATAA AAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAA AGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGT GAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGA GGTAGCAGGAGGTGGAGTGTCGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGC CTTCAGGGGAGGACCTGCCCAGGTATGCCTTCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGT ATTAACTAATAATATATGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTN
EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPH
RNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDCFIFHDV
DLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNGFSNNYWGWGGED
DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSRVWRTDGLSSCSYKLV
SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

 $\verb| MALSSQIWAACLLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHRSKCGMCCKT| \\$

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

 $\tt GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT \underline{\textbf{ATG}} \texttt{GCTGGTTCCCCAACATGCCTCACCC}$ TCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT TCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTG GACCTTCAACACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAA ATCGTAATAGGGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAG AAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCA GGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCA ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATT TATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTC CTGGAGATGGGGAAAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACT TCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATG GTCCTCCTGTGTCTCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTG GTTTCTGAAGAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAAGAGAGTGGACATTTGTCGGG AAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACAATCCCTCACACTAAT AGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAGAT GGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTA TCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCA

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDT
PRLFAYENVI

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 224-250

Leucine zipper pattern.

amino acids 229-251

N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208, 291-295

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA
TTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL
KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL
LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

Important features:

Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 223-227

N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

 ${\tt MERVILALLLAGLIALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKYKS} \\ {\tt SQKQHSPVPEKAIPLITPGSATTC}$

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

AGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGGCACAGAGACGCAGAGCAAGGGCGCAAGG AGGAGACCCTGGTGGGAGGAGACACTCTGGAGAGAGAGGGGGCTGGGCAGAGATCAAGTTCCAG GGGCCCTGGCCTGCTGCTGGCCCTCTGCCTGGGCAGTGGGGAGGCTGGCCCCTGCAGAG CGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCCTGGGAGACGCCCTGA GCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGCTCTAAAGTCAGTGAG AGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGA TTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCAGATGCTGTCCGCGGCTCCTGGCAGGGG GTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGG CCTTGGAGGCCAGGGCCAGGGCAATCCTGGAGGTCTGGGGACTCCGTGGGTCCACGGATACCCCG GAAACTCAGCAGGCAGCTTTGGAATGAATCCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGA GGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAG AGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCA ACTCTGGGGGAGCAGCGGCTCACAGTCGGGCAGCAGTGGCAGTGGCAGCAATGGTGACAACAAC AATGGCAGCAGCAGTGGTGGCAGCAGTGGCAGCAGTGGCAGCAGTGGCGGCAGCAG $\tt CCTCCTGGGGATCCAGCACCGGCTCCTCCTGGGAACCACGGTGGGAGCGGGGGAAATGGA$ CATAAACCCGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGG CTTCAGAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTG GAGGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGTT GGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCTGGAA GAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTC AACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTAGCTGCCCCACAAA

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80,
90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205,
                                                                        218-224,
236-242, 238-244, 239-245, 240-246, 245-251,
                                                            246-252, 249-252,
253-259, 256-262, 266-272, 270-276, 271-277,
                                                            275-281, 279-285,
283-289, 284-290, 287-293, 288-294,
                                                291-297,
                                                            292-298, 295-301,
298-304, 305-311, 311-317, 315-321, 325-331, 343-349, 354-360, 356-362,
                                                319-325,
                                                            322-328,
                                                                        323-329,
325-331, 343-349, 354-3
387-393, 389-395, 395-401
                                                374-380,
                                                            381-387,
```

Cell attachment sequence.

amino acids 301-304

APP ID=10063685

GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGG<u>ATG</u>TCGCTGCTGAGCCTGCCCTGG CTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTCCTGGCT ACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGTGTTTCC CACAGCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCTACAGAGGAGGGC TTGAAGGACTCGACCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGTATGGCTGGGTCCCAT CATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCAATGCCTCAGCTGCCA GAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGG $\tt CCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAGCACATCAGCCTCATGACCTTGGACAGTCTA$ CAGAAATGCATCTTCAGCTTTGACAGCCATTGTCAGGAGAGGCCCAGTGAATATATTGCCACCAT $\tt CTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCCAGCATATCCTCCAGCACATGGACTTTCTGT$ ATTACCTCTCCCATGACGGCGGCGCTTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGAC GCTGTCATCCGGGAGCGCGTCGCACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAA AGCCAAGTCCAAGACTTTGGATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGG CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACG GCCAGTGGCCTCTCCTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCG ACAGGAGGTGCAAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCC AGCTGCCCTTCCTGACCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATC TCCCGATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTG CCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGACC CCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTCCGCA GGGCCCAGGAACTGCATCGGGCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGGCGTTGAT GCTGCTGCACTTCCGGTTCCTGCCAGACCACTGAGCCCCGCAGGAAGCTGGAATTGATCATGC GCGCCGAGGGCGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCAG**TGA**CTTTCTGAC CCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIRFLKP
WLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSHDGRRFHRAC
RLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYDPFRFDPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPFAR} \\ {\tt DAVKKCFAVCLA}$

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

ATTTTCAAGCTCAGTGTCTTCATCCCCTCCCAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATTGTACAAGCT GGAGATAAGGACCTTGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAGAAGAAGCTGAGG GGAGTCAAGATATCTGAACAGCAGGCAGAAAAAATTCTCAAGAGCATGGATAAAAACGGCACGATGACCATCGACTGG AACGAGTGGAGAGACTACCACCTCCTCCACCCCGTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACG TCACTCTGGCGGGGCAATGGCATCAACGTCCTCAAAATTGCCCCCGAATCAGCCATCAAATTCATGGCCTATGAGCAG ATCAAGCGCCTTGTTGGTAGTGACCAGGAGACTCTGAGGATTCACGAGAGGCTTGTGGCAGGGTCCTTGGCAGGGGCC $\tt ATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCTGCGGAAGACAGGCCAGTACTCAGGA$ ATGCTGGACTGCGCCAGGAGGATCCTGGCCAGAGAGGGGGGTGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTG GGCATCATCCCCTATGCCGGCATCGACCTTGCAGTCTACGAGACGCTCAAGAATGCCTGGCTGCAGCACTATGCAGTG AACAGCGCGGACCCCGGCGTGTTTGTGCTCCTGGCCTGTGGCACCATGTCCAGTACCTGTGGCCAGCTGGCCAGCTAC CCCCTGGCCCTAGTCAGGACCCGGATGCAGGCGCAAGCCTCTATTGAGGGCGCTCCGGAGGTGACCATGAGCAGCCTC $\verb|TTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCTGTACAGGGGGGCTGGCCCCCAACTTCATGAAGGTCATCCCA|$ GTCCTGCTGACCCCAGCAGACCCTCCTGTTGGTTCCAGCGAAGACCACAGGCATTCCTTAGGGTCCAGGGTCAGCAGG TAGTTCTTCCATTTCACCCTTGCAGCCAGCTGTTGGCCACGGCCCCTGCCCTCTGGTCTGCCGTGCATCTCCCTGTGC ATAATCCATGATGAAAGGTGAGGTCACGTGGCCTCCCAGGCCTGACTTCCCAACCTACAGCATTGACGCCAACTTGGC TGTGAAGGAAGGAAAGGATCTGGCCTTGTGGTCACTGGCATCTGAGCCCTGCTGATGGCTGGGGCTCTCGGGCATG CTTGGGAGTGCAGGGGCTCGGGCTGGCCTGGCTGCACAGAAGGCAAGTGCTGGGGCTCATGGTGCTCTGAGCT GGCCTGGACCCTGTCAGGATGGGCCCCACCTCAGAACCCAAACTCACTGTCCCCACTGTGGCATGAGGGCAGTGGAGCA GAGCAGGAGCTTGGCTGACTGCTCAGAGTCTGTTCTGACGCCCTGGGGGTTCCTGTCCAACCCCAGCAGGGGGCGCAGC GATTGTACCTTCCCAAGCCCGCCCAGTGGGATGGGAGGAGGAGGAGGAGGAGGGGGGCCTTGGGCCGCTGCAGTCACATCT $\tt CTTCTGCTGCCCTTGCTTAACAATGCCGGCCCAACTGGCGACCTCACGGTTGCACTTCCATTCCACCAGAATGACCTGA$ ${\tt CAAATTAAGAAAGAATTGGACGTTAGAAGTTGTCATTTAAAGCAGCCTTCTAATAAAGTTGTTTCAAAGCTGAAAAAA}$

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKDLDG QLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG TMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRHLVAGGG AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMLDCARR ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSTC GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV VYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation sites.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

GGAAGGCAGCGGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCCATGGC CACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCT GGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTTTCTGATAT CGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAAGGCAAAGATG AGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGATCAAGTGATAGTT GGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT CATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTTCAGCATGCCGG AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTTCCCC ${\tt CAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCCAACTTCTCGGAAGTCTCCAATAC}$ CAGCTTTGAGCTGAACTCTGAGAATGTGACCATGAAGGTTGTGTCTGTGCTCTACAATGTTACGA TCAACAACACATACTCCTGTATGATTGAAAATGACATTGCCAAAGCAACAGGGGGATATCAAAGTG ACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTGCTAAACTCAAAGGCTTCTCTGTGTGT $\tt CTCTTCTTTCTTTGCCATCAGCTGGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAA\underline{TAA}{T}$ GTGCCTTGGCCACAAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCAC CACCAGATATGACCTAGTTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG AGCAAACAAGAGCAAGAAACAAAAAGAAGCCAAAAGCAGAAGGCTCCAATATGAACAAGATAAAT CTATCTTCAAAGACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGA ${\tt CACCTGGGGAGTGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATTGTGC}$ TGTAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCAC AAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGGGGCG TCTTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGT *ААААААААААААААААААААААААААА*

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS
DIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKC
YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGANFSEVS
NTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQLLNSKASL
CVSSFFAISWALLPLSPYLMLK

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 258-281

N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220, 220-224

N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

TGACGTCAGAATCACCATGGCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACAAG CACCAGGAGCCCCTCCGGGTAGCTACCCTGGACCCCCCAATAGTGGAGGGCAGTATGGTAGT GGGCTACCCCTGGTGGTGGTTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACCAGCTGG TGGAGGCCCTATGGACACCCCAATCCTGGGATGTTCCCCTCTGGAACTCCAGGAGGACCATATG GCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCCAAGTTCCTACGGTGCCCAGCAGCCT GGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA ATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTTGACAAGACCAAGTCA GGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAGAACCTCTT CCAGCAGTATGACCGGGACCGCTCGGGCTCCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCC AAATGGGCTACAACCTGAGCCCCAGTTCACCCAGCTTCTGGTCTCCCGCTACTGCCCACGCTCT GCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA GGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCTCAGCTTCGAGGACTTCGTCA CCATGACAGCTTCTCGGATGCTA**TGA**CCCAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT TCCTGGCTTCTTAGAGTGAGAAGTATGTGGACATCTCTTTTTCCTGTCCCTCTAGAAGAAC ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCA ATGTCCTGATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGG ${f AGTTAGTGTCCAGTCAGCTGAGCTCCACCCTGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACC}$ GTTAGTACCTGTGTTCCCTCACCAGGCCATCCTGTCAAACGAGCCCATTTTCTCCAAAGTGGAAT CTGACCAAGCATGAGAGAGATCTGTCTATGGGACCAGTGGCTTGGATTCTGCCACACCCATAAAT CCTTGTGTGTTAACTTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTGGGCAT ATTTGGGGCCAAAAGTCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

 $\label{thm:constraint} $$ MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYG $$ HPNPGMFPSGTPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSVDSDH $$ SGYISMKELKQALVNCNWSSFNDETCLMMINMFDKTKSGRIDVYGFSALWKFIQQWKNLFQQYDR DRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQVLTEAFREK DTAVQGNIRLSFEDFVTMTASRML$

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

CAGGATGCAGGGCCGCGTGGCAGGGAGCTGCGCTCCTCTGGGCCTGCTCCTGGTCTTCATC TCCCAGGCCTCTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAAGTTTCCCAAAACTTCGGGACC AACTTGCCTCAGCTCGGACAACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCAGCCCGC TCTGGACCCTAGGTCTAATGACTTGGCAAGGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATG GATTCCTGGCCCCTGAGGATCCTTGGCAGATGATGGCTGCTGCGGCTGAGGACCGCCTGGGGGA AGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGCTCCGGGCAGTGGCCCTT TGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGAC TCGGAGTCCAGACGACTGCCCCGTTCTAATTCACTGGGAGCCGGGGGAAAAATCCTTTCCCAACG CCCTCCCTGGTCTCTCATCCACAGGGTTCTGCCTGATCACCCCTGGGGTACCCTGAATCCCAGTG TGTCCTGGGGAGGTGGAGGCCCTGGGACTGGTTGGGGAACGAGGCCCATGCCACACCCTGAGGGA ATCTGGGGTATCAATAATCAACCCCCAGGTACCAGCTGGGGAAATATTAATCGGTATCCAGGAGG CAGCTGGGGAAATATTAATCGGTATCCAGGAGGCAGCTGGGGGAATATTAATCGGTATCCAGGAG GCAGCTGGGGGAATATTCATCTATACCCAGGTATCAATAACCCATTTCCTCCTGGAGTTCTCCGC CCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG GGGCTAGAGCACGATAGAGGGAAACCCAACATTGGGAGTTAGAGTCCTGCTCCCGCCCCTTGCTG TGTGGGCTCAATCCAGGCCCTGTTAACATGTTTCCAGCACTATCCCCACTTTTCAGTGCCTCCCC

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGGPGTGWGTRPMPHPEGIWGINNQPPGTSWGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

AAGGAGAGGCCACCGGGACTTCAGTGTCTCCTCCATCCCAGGAGCGCAGTGGCCACTATGGGGTC
TGGGCTGCCCCTTGTCCTCCTCTTGACCCTCCTTGGCAGCTCACATGGAACAGGGCCGGGTATGA
CTTTGCAACTGAAGCTGAAGGAGTCTTTTCTGACAAATTCCTCCTATGAGTCCAGCTTCCTGGAA
TTGCTTGAAAAAGCTCTGCCTCCTCCTCCATCTCCCTTCAGGGACCAGCGTCACCCTCCACCATGC
AAGATCTCAACACCATGTTGTCTGCAACACATGACAGCCATTGAAGCCTGTGTCCTTCTTGGCCC
GGGCTTTTGGGCCGGGGATGCAGGAGGCAGGCCCCGACCCTGTCTTTCAGCAGGCCCCCACCCTC
CTGAGTGGCAATAAATAAAATTCGGTATGCTG

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL}\\ {\tt HHARSQHHVVCNT}$

Important features:
Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

 ${\tt MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVVFS} \\ {\tt LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI}$

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

 ${\tt TCAAATACTTCCTTCATTAAGCTGAATAATAATGGCTTTGAAGATATTGTCATTGTTATAGATCCTAGTGTGCCAGAA$ GATGAAAAAATTGAACAAATAGAGGATATGGTGACTACAGCTTCTACGTACCTGTTTGAAGCCACAGAAAAAAGA AACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCATACACCAAGCAGTTCACA GAATGTGGAGAAAAGGCGAATACATTCACTTCACCCCTGACCTTCTACTTGGAAAAAAACAAAATGAATATGGACCA TACCGTGCTAAGTCAAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAAGTGT CAAGGAGGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATGGAAAAGATTGTCAATTCTTT CCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATGCAAAGTATTGATTCTGTTGTTGAATTTTGTAACGAA AAAACCCATAATCAAGAAGCTCCAAGCCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAAT TCTGAGGATTTTAAAAACACCATACCCATGGTGACACCACCTCCTCCACCTGTCTTCTCATTGCTGAAGATCAGTCAA AATAAGCTAATCCAAATAAAAAGCAGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGA ACTTCCATCTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGATCCGAAGTA CTGCTGCTGACTGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTGAAACAAAGTGGGGCCATTGTTCAT TTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTTTCAGATGAAGCTCAGAACAATGGCCTCATTGATGCTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAG TCCCTTCAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAATTGATAGTACA GTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTATTTCTCTCTGGGATCCCAGTGGAACA ATAATGGAAAATTTCACAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACT TGGGCATACAATCTTCAAGCCAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCT GTGCCTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATTGTTTACGCAGAA ATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCATTGAATCACAGAATGGACATACAGAAGTT TTGGAACTTTTGGATAATGGTGCAGGCGCTGATTCTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATAT ACAGAAAATGGCAGATATAGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCA CTGAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCCAAACCCGCCAAGACCTGAAATTGAT GAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTTGTGGTATCACAAGTCCCAAGC CTTCCCTTGCCTGACCAATACCCACCAAGTCAAATCACAGACCTTGATGCCACAGTTCATGAGGGATAAGATTATTCTT ACATGGACAGCACGAGGAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGAGGCCAACTCCAAGGAA AGCAATTTGACATCAAAAGTATCCAACATTGCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGAT ${\tt CCTACACCTACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTTCTACGCTGGTATTG}$ $\mathtt{TCTGTGATTGGGTCTGTTGTAATTGTTAACTTTATTTTAAGTACCACCATT\mathbf{TGA}\mathtt{ACCTTAACGAAGAAAAAATCTTC}$ ATCCTTTTTCATACTGATACCTGGTTGTATATTATTTGATGCAACAGTTTTCTGAAATGATATTTCAAATTGCATCAA

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEY
IHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSAGISGRN
RVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLVLDKSGSMGGKDRLNR
MNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMNDTVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNGA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKLRPPLNRAAYIPGWVVNGEIEANPP
RPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPDDKSHNSGVNISTLVLSVIGSVVI
VNFILSTTI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACGTCCCCGGGCAGGGGTGA CAACAGGTGTCATCTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACGCCAAGGTAATTTTGACCCA GAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTACTAGAGAGTGTCA ACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTTGGAGGAGAACCTTTGTGGGGCTGCGTTCTCTTAGCA GTGCTCAGAAGTGACTTGCCTGAGGGTGGACCAGAAGAAAGGAAAGGTCCCCTCTTGCTGTTGGCTGCACATCAGGAA CGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTGGGGGCCCCGGCTTTGAGGGATGCC $\texttt{ACCGGTTCTGGACGCTGATTCCTGA} \underline{\textbf{ATG}} \\ \texttt{ATGATGGTTCGCCGGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTG} \\$ GTTTTGCTGGTGCTCCTGTGCTATCTCTGTCCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAG CTGGCACTGCCCAGGGCCAACAGCCCCACGGGGAAGGAGGGGTACCAGGCCGTCCTTCAGGAGTGGGAGGAGCAGCAC CGCAACTACGTGAGCAGCCTGAAGCGGCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGAGGAGTGAGCAGCTCAGG AATGGGCAGTACCAAGCCAGCGATGCTGCTGGCCTGGGTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTC CTGGCCTTCCTGCACTCGCAGGTGGACAAGGCAGAGGTGAATGCTGGCGTCAAGCTGGCCACAGAGTATGCAGCAGTG CCTTTCGATAGCTTTACTCTACAGAAGGTGTACCAGCTGGAGACTGGCCTTACCCGCCACCCCGAGGAGAAGCCTGTG AGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGC CCCAATCACCGTCCTTACACGGCCTCTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTAT GAGCTCACCTTCAAAGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAA GTGAAAAATGAAAAGCTCAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTC AAAGAAGAAATAAATGAAGTĆAAAGGAATACTTGAAAACACTTCCAAAGCTGCCAACTTCAGGAACTTTACCTTCATC CAGCTGAATGGAGAATTTTCTCGGGGAAAGGGACTTGATGTTGGAGCCCGCTTCTGGAAGGGAAGCAACGTCCTTCTC TTTTTCTGTGATGTGGACATCTACTTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAG CAGCAGCTGGTCATAAAGAAGGAAACTGGATTTTGGAGAGACTTTGGATTTGGGATGACGTGTCAGTATCGGTCAGAC TTCATCAATATAGGTGGGTTTGATCTGGACATCAAAGGCTGGGGCGGAGAGGATGTGCACCTTTATCGCAAGTATCTC CACAGCAACCTCATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATGGACGAG CTGACCCCGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCATCCCACGGCCAGCTGGGCATGCTG GAAGGATTGTGGGAGACACTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGAAAAGACTTCCATAAA GGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGTTGGGCTTTTTACAACAGA AATCAAAATCTCCGCTTTGCCTGCAAAAGTAACCCAGTTGCACCCTGTGAAGTGTCTGACAAAGGCAGAATGCTTGTG AGATTATAAGCCTAATGGTGTGGAGGTTTTGATGGTGTTTACAATACACTGAGACCTGTTGTTTTGTGTGCTCATTGA AGTGAGTACATTAAGTAAAATAAAATGGACCAGAAAAGAAAAGAAACCATAAATATCGTGTCATATTTTCCCCAAGAT ATTTTTATATTTTTAAGAAGATACTTTGAGATGCATTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATAT AATACAGACGTACAGATACTTTCTCTGAAGAGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATGAC GAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTTTGCTACATGTTATCCACCCCAGGCCAGGTGGAAG TAACTGAATTATTTTTAAATTAAGCAGTTCTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTT ATGCATGAGCTAATTATCTCTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAACTCATTGTTTAAAAGCTTCAAGAAC CCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE
EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK
AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPA
ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVKNEKLNMAN
TLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF
TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLFSQY
NPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDLDIKGWGGEDVHLYR
KYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHL
RKQKQKTSSKKT

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 315-319, 324-328

N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

Amidation site.

amino acids 377-381

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGCAGCAAGAGATTTGTCCTGGGGATCCA GAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACAGCAAGA CCTCCCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCCCTGCACCCCTTC CTGGGACACTATGTTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCCTGGCTGCAGATGGGG GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCCTCTTACCCTGAGTGT TGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGACCTGCACAACAATGGCC ACACAGTGCAACTCTCTCTGCCCTCTACCCTGTATCTGGGTGGACTTCCCCGAAAATATGTAGCT GCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATCCCCAGGGGGGGTCAGAACACCAGATCAACAG TGAAGCCACATTTGCAGAGCTCCACATTGTACATTATGACTCTGATTCCTATGACAGCTTGAGTG AATATAGCTTATGAACACATTCTGAGTCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTC AGTGCCTCCCTTCAACCTAAGAGAGCTGCTCCCCAAACAGCTGGGGCAGTACTTCCGCTACAATG GCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAG ATTTCAATGGAACAGCTGGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAA GCTTCTGGTACAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTCA TGTCTCTGCCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGCTGGAAAA CCGAAAGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCATAAATTCCTTCTCAGATAC CATGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTGG CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAGGAAT GGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAA ATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGG ATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTTCCCTAGATATACTGCGGGATCT TTTCTGACTTT

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLPALQ
PHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEAT
FAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPP
FNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLV
QNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKIRKKRLENRKS
VVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCGCCTTGGGGACGGCAGTTCCCTGTGTC TCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA**ATG**TCCTACA ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC AGAGAAGTGGAAGAGAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCTGA ACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTTCGTCCC CAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCATATCTATTACCGTGTTTCTTTTT TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAACACCCAGCAAATTT GATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGAAAAAATCGTGATTA ACTITATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGATATGAGTTTACTGGGA AAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGA GGAAGAGGAGGTGAAACATTTAGGGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAG AAAACACGGAAGGTACTTCTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAA ACAGTCATTGAATATGAATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGA TCTTGGGCCCGCAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCG CAGGAGCACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACCGCCTGGTCGACTGGGA TCCCCAAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCG CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGTTATA TGTGCAGATGGAAAAC**TGA**TGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAG TCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGT GGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAA

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQA
ALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRLCIPSLSSFDQDS
EGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGCATCCTGCACTTGCTGCCCTCTGACAC CTGGGAAG**ATG**GCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACCTTGATC CAAGCCACCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGAC ACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGC GGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTCCTGAAGCACATC ATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCCCTCGGCCAATGACCA GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCCTGGTCAAGACCA TCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGC CCCACCGCCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGTA TAAGCTCTCCTGCTGAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGC CTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTA TCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAA AGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCG TTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGTGGCTGCTGTGCTCTCCCAGAAGA ATTCATGGTCCTGTTGGACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGC TGATCAATGAAAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGAC ACTCCCGAGTTTTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTT TCCCTCCAGTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGT TTTACACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTG ATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCA $\tt CTCCATCCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTGAAGG$ $\tt CCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCC$ TTGTGGAAACCCAGCTCTCCTGTCTCCCAGTGAAGACTTGGATGGCAGCCATCAGGGAAGGCTGG CCTGTGAAAAA

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREK
PAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGAGC TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATGGCCTCT CTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTTGGGCACACTGGTTGCCAT GCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGTTGGCTTCT ACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGACATCCAGTGCAAT CTCCTCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTTCTGCCAGGAATCCC GAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTCATCCTTGGAGGCCTCCTGGGATTC ATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTCACCACTGGTGCCTGACAG CATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTCTTCCCTGTTCTCCCTGATAG CTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCGCTCCAACTACTACGATGCCTAC CAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGA GTTCAATTCCTACAGCCTGACAGGGTATGTGTGAAGAACCAGGGGCCAGAGCTGGGGGGTGGCTG GGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGT GTCAGAAGGTGCTGCTGAGGATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGG GCTAGTGTAACAGCATGCAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCC TCACCTTGCTGCTCCCTGCCCTAAGTCCCCAACCCTCAACTTGAAACCCCATTCCCTTAAGCCA GGACTCAGAGGATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACA GCTGGGGATGGGAAGGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTC CCTCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCA GACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG CAGGATGGGAGGACAGGCAGCCTGGGACATTTAAAAAAATA

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

CCCGCGTTCTCTTCCACCTTTCTCTTCTCCCACCTTAGACCTCCCTTCCTGCCCTCCTTTCCT GCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGTCTGTGG ACCAGCGGCCTGACCCTGGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTCTCCTCCTTGCTGGGA CCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCACAAGGCCTGATGT ACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT GTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACAC TCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCCAGCACAACGGGACCATGTACCAACACGGAG AGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGC ACAGAGGGCCAGATCTACTGCGGCCTCACAACCTGCCCCGAACCAGGCTGCCCAGCACCCCTCCC ACTGCCAGACTCCTGCCAAGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACA GTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAG AGAGGCCCGGGCACCCCAGCCCCACTGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTT CAGACCCAAGGGAGCAGGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCT GTGTGCATGGCGGGAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGC CCCTTGCCCTGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCC CACCGAGTACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGG ACAAAGCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTC CTCGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGGC CTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG GTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAG GAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACT GGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAG

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELF
PSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYS
HGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCCKICPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT

Signal peptide:

amino acids 1-25

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAGAGCCTCTCC TCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAG GACGCAGCATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGG AAGGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTACT GTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGGAGCT ACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTTGATAGAGACATCCAGCTAC $\verb"TCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACAGGATTTGTCC"$ ACAGACTCCAGGACAAACAGAGACATGCATGGCCTGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAA CGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAG GAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTA TTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAG AGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTG CCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAGGGAAACATTA CTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGA AGGAGTACGTGACTTTGTCTCCCGATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTC ACATTAAATCCCCGTTTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTA AAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGC CCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAG $\tt TGAGTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGGGTGAAATG{\color{red}{TAG}}{TAG}{GATGAATCACATCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCCCACATTCACATTCATTCACATTCACATTCATTCACATTCATTCATTCATTCATTCACATTCACATTCAC$ TCTTCTTTAGGGATATTAAGGTCTCTCCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCA CTGACATTACATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAG ATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAA

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSVVH
LYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQ
VSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISL
TVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYWVLRLNGEHLYFT
LNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGACATGCTGCTGCTGCTGCTGCCCCT GCTCTGGGGGAGGGAGGGCGGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTTCCGTGA CGGTGCAGGAAGGCCTGTGTCCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCATGGCTGGATT TACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGACCAGGATGCTCC AGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTCCACCTCCTTG GGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGAAGTGATGCGGGGAGA TACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAAACATCACCGGCTCTCTGTGAA TGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTGGAGTCCGGCTGCCCCC AGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCCCCTATGATCTCCTGGATA GGGACCTCCGTGTCCCCCCTGGACCCCTCCACCACCCGCTCCTCGGTGCTCACCCTCATCCCACA ACAAGACCGTCCATCTCAACGTGTCCTACCCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGA GACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCT GCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGA GAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCAC $\tt CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCT$ GAACGTCTCCCTGCAGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGAGCTGGAG CCACAGCCCTGGTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAA TCGGCAAGGCCAGCAGCGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTC AGCCTCTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCAG CTTCTGCCCGCTCCTCAGTGGGGGAAGGAGGACTCCAGTATGCATCCCTCAGCTTCCAGATGGTG AAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG A**TGA**GAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAGAAGTCA GAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATG TGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCCC TCCCTTTTATTTTTTAACTAAAAGACAGACAAATTCCTA

APP ID=10063685 Page 239 of 322

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSIKWNY
KHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSL
SLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAAEFTCRAQNP
LGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMVKPWDSRGQEATDTE
YSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

 $\tt CCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA{\color{red} ATG} AACCAACTCAGCTTCCTGCTGTTTC$ TCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGTGCATTTGA TGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCTGTGACATGACCTCTG GGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGGAAGTGCACGGTG GGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGGACGGCAACTGGGC CAACTACAACACCTTTGGATCTGCAGAGGGGGCCACGAGCGATGACTACAAGAACCCTGGCTACT ACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAGTCCCCCATGCAGCACTGG AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTTCCTCCAGACACTGGGACATAATCT GTTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAGGAAAGTGTTGGACTGACAACGGCC CGGTGATCCCTGTGGTCTATGATTTTGGCGACGCCCAGAAAACAGCATCTTATTACTCACCCTAT GGCCAGCGGGATTCACTGCGGGATTTGTTCAGTTCAGGGTATTTAATAACGAGAGCAGCCAA CGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAG GATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATAT GGAACTCATGTTGGTTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCG TTGAGAGTTTTGTGGGAGGGAACCCAGACCTCTCCCCAACCATGAGATCCCAAGGATGGAGAA CAACTTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGA AAAAA

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVI
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSAEAAT
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

 ${\tt MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFA} \\ {\tt VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFV} \\ {\tt TVFGLKKKPF} \\$

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

TCGCTGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGATGATG GTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGGCCCCGGGTGCCT CGGAAGCGGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCTCCTAGGGCTGCT GGCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCCCGAACCACAGCCCCC CACCCTCAGCCAAGGTGAAGAAATCTTTGGCTGGGGCGACTTCTACTCCAACATCAAGACGGTG GCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAATGGGACCTTCAGCGTCCACTT CCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCCCCCAGTAAAGCTGTAG AGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATG GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTTGCACCCACGACCCAGCCAAGATCTG CTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTG TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTAC ${\tt CATAGTGATACCCCTACTACCCATCTGGG{\color{blue}{\textbf{TGACCCGGGGGCAGGCCAGGCCAGGCCAGGGCCAGGGCCAGGGCCAGGGCCAGGC$ $\tt TGGAAGGACAGGCCTGCCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAGGGGTTGGGCCTC$ AGGCAGGGGGGGGGGGGAGACGAGGAGATGCCAAGTGGGGCCAAGTCTCAAGTGGCAG AGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGG AGGAGGAGTGGGCTCTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGG GCCTGTCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGG GCCAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCCCCTGAGCCCCTTGTCGTGTGCTGAGCATGG CATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC CAGGCCACCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG GCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCCACAGCCCATC CGCGTGCTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCG GAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGC CGCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGGCCGGGCCGCAGAGCATGTGCTGGATCTGTTC TGTGTGTCTGTCGGGTGGGGGGGGGGGGGGAGTCTTGTGAAACCGCTGATTGCTGACTTT TGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

APP ID=10063685 Page 245 of 322

 $\label{thm:condition} $$ \mathbf{MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTL}$$ LGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGTF$$ SVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTSLCTHDP$$ AKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPYYPSG$

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase amino acids 61-71

 $\label{thmarvii} $$ $$ MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG$$ $$ PTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGV$$ FSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLT$$ $$ HLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR$$$

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTCGTG GACCCAAAGGTAGCAATCTGAAAC**ATG**AGGAGTACGATTCTACTGTTTTGTCTTCTAGGATCAAC GAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTGATACCATTAACA CAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGACACCTGGTAC CCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAACTGCACCCACATGTGTTAC CAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGGAATTGCCACAAATC TAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAGGAGCAGGTGTAAATCCTGCCACCCAGG GAACCCCAGCAGCCGCCTCCCAACTCCCAGTGGCACAGATGACGACTTTGCAGTGACCACCCCT GCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA GTAAGCTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATTTGGTGATACATGTGAATCTTTATC TACCTGAAAATATTCTTGAAATTTCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAA CAATAATTCAATGGATAAATCTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATAT

 $\label{thm:mastillecligstrslpqlkpalglpptklapdqgtlpnqqqsnqvfpslslipltqm $$ $ LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE $$ LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG $$ TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ$$

Signal peptide:

amino acids 1-16

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGCTCT AGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACCTGACCAAGTTGC CGCTGCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCAGGCAAGGCAACTGAG GGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGA GCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCAC AGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTAC AGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCCCTTCCTCTTCCTTGAGGCTTCAGACCG GGATGAGCCAGGCACAGCCAACTCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGC CTTCCCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGC ACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGA CCAGGCCTCAGGCCACCAGGCCACTGCCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGT CCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTA CACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAA TGCAGAGGGAAACCTCTACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCC AGGTGCGGGCTCAGAATTCCCATGGCGAGGACTATGCGGCCCCTCTGGAGCTGCACGTGCTGGTG ATGGATGAGAATGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCT CAGTCCACCAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCA ATTCCCACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTC CAGGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACAT TCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCCT ATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGATGCTGA GCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAAGAACCTCAGTTATGAG GCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGAAGCTGGTGGGGCCAGGCCC AGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGAGTGATGCCACCCCCAAGTTGG ACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCCAGCCGGCTCTTTCCTGCTGACCATC CTGCATTGAGAAATTCTCCGGGGAGGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGG ACACCTACACGGTGCTTGTGGAGGCCCAGGATACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAA TACCTCTGCACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCT GGCCAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGC GCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGT GAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGAT CGTGTGTCGCTGCAACGTGGAGGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCA CGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTC ATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCT TCCCCTGGGAGAGAGCCCAGCACCCAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCA TCTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTT TATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAA

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGKAT
EGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGALALSPKG
STSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKVLYPHHMAQ
VHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQNSHGEDYAAPLELHVL
VMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVVYQLLSPEPEDGVEGRA
FQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCEVEVAVTDINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTEGTFGLDWEPDSGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERVMPPPKLDQESYEASVPISAPAGSFLLT
IQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTLAPVPS
QYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEP
REHIIPVVVSHNAQMWQLLVRVIVCRCNVEGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLI
LIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCCTG AGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGCCCACGCTCCTGGAAGCACCAGCCTTTA TCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCTTGGTAC ATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAGATGCAGAAAGGAAATG TTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCCAATGAGACTAGCACC TCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACCACCCAACTCTGGGTCCAG TGTGACCTCCAGTGGGGTCAGCACAGCCATCTCAGGGTCCAGCGTGACCTCCAATGGGGTCA GCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCACAGCCACCAACTCTGAG TTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG GGCCAGCACAGCCACCAACTCTGAGTCCAGCACACCCTCCAGTGGGGCCAGCACAGTCACCAACT CTGGGTCCAGTGTGACCTCCAGTGGAGCCAGCACTGCCACCAACTCTGAGTCCAGCACAGTGTCC AGTAGGGCCAGCACTGCCACCAACTCTGAGTCTAGCACACTCTCCAGTGGGGCCAGCACACCAC CAACTCTGACTCCAGCACAACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGCCAGCACCACCCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACT GCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACACCACACTCTGAGTCCAG AACGACCTCCAATGGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACCACCTCCAGTGGGGCCA GCACAGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAG TCCAGCACGACCTCCAGTGGGGCCAGCACACCCAACTCTGAGTCCAGCACGACCTCCAGTGG GGCTAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCAACCT $\tt CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCC$ CAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCTAGCACA GCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACAGCCCAACTCTGAGTCTAG ACACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGA GCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCGGCCGTGGGGCTCTTTGCTGGGC TCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGTCTACCACCCT CATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAG GTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGA AATCTTGAAGAAGGTATTCCTCACCTTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATAT $\verb|CCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTC|\\$

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATISGS
SVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESSTPSS
GASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTSSGASTA
TNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGAGTATNSES
STTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNSDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGSLVPWEIFLITLVSVVA
AVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAPHRPRWSPNWFWRRPVSSI
AMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGACCCCTA CGGAGCCCCAGCTTGCCCACGCACCCCACTCGGCGTCGCGCGGCGTGCCCTGCTTGTCACAGGTG GGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCAACAAAT GGATGATGTGATAT<u>ATG</u>CATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCATGGTCAATT AACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCTTTGGAATCAT GGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTGGGGAAGCTTTTTTGGAAGCATTT TCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATCGCTGGATCAACAAC CGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCATGTTTGGTGTAAAAGT GATTATAACTGGGGATGCATTTGTTCCTGGAGAAAGAAGTGTCATTATCATGAACCATCGGACAA GAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATT ATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG TCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTTACATCCAAG AACTACAGGCTTTACTTTTGTGGTAGACCGTCTAAGAGAAGGTAAGAACCTTGATGCTGTCCATG ATATCACTGTGGCGTATCCTCACACATTCCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT CCCAGGGAAATCCACTTTCACGTCCACCGGTATCCAATAGACACCCTCCCCACATCCAAGGAGGA CCTTCAACTCTGGTGCCACAAACGGTGGGAAGAAGAAGAAGAGAGGGCTGCGTTCCTATCAAG GGGAGAAGATTTTTATTTTACCGGACAGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTC CTTGTGGTCAAATTGCTCTCTATACTGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCAT ATATTTGTACAGTCTTGTTAAGTGGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGA GAATATTTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACAT TTAAATTCAAAGAAAAATGAGTAAGATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTG GAAATGTTCTAAACCTTTCTAAGCTCAGATGCATTTTTTGCATGACTATGTCGAATATTTCTTACT GCCATCATTATTTGTTAAAGATATTTTGCACTTAATTTTGTGGGAAAAATATTGCTACAATTTTT TTTAATCTCTGAATGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTT GGGCCAGAATATTATTAAACAATCATCAGGCTTTTAAA

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLDAVHDITVA
YPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERLRSFYQGEKNF
YFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGACC TCCAAATCATCCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGGAATA CACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCTCCTGCTCCCTCT TTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCATGCTGTGGTC CACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCGAGGGAGAACTGA GTTTGTGAAGGACTCCATTGCAGGGGGGGCGTGTCTCTCTAAGGCTAAAAAACATCACTCCCTCGG ACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGAGGCCACCTGGGAGCTG CGGGTGGCAGCACTGGGCTCACTTCCTCTCATTTCCATCGTGGGATATGTTGACGGAGGTATCCA GTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGCCCACAGCCAAGTGGAAAGGTCCACAAGGAC AGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAGCCTGTATGATGTGGAGATCTCC GGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTA TTTTACTCGGGTTACTCTGTGGTGCCCTGTGTGGTGTTGTCATGGGGGATGATAATTGTTTTCTTC AAATCCAAAGGGAAAATCCAGGCGGAACTGGACTGGAGAAAGCACGGACAGGCAGAATTGAG AGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGCTCACCCGAAGCTCTGCG TTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGA TTTACAAGGAAGAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGGAGACATTACTGGGAGGTGGA CGTGGGACAAAATGTAGGGTGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACA ATGTGACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTC ACATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCT TGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAG GGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA<u>TGA</u>GACAGAGAAGACCCTGCTTAAAGGGC CCCACACCACAGACCCAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGCCCCAGCTTCCTCT CCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGCTGAGGTTCTTCTGCCC TGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGATTGGCCTGACCCTGTGGGAG TCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTGTGAAAA CTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGG ACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTT TGAGGGCACAGTGTTTGCTAATGATGTGTTTTTATATTATACATTTTCCCACCATAAACTCTGTT TGCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACACC TGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCAT TACCTGATACCAAAACCAGGCAAAGAAAACAGAAGAAGAAGAGGAAGGAAAACTACAGGTCCATATCC CTCATTAACACAGACACAAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATTTA AAGATGATATATAACTACTCAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAAT

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVMGMIIVFFK
SKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYWVLRLTTEHLYFT
FNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKG
TPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

TTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA CTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTACTATAGCACATTGTCATTTACAAC TGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAACAATTTTACAGAAATGAGCCAGAGACTTGAAT CAATGGTGAAAAATGCATTTTATAAATCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTC AGTCAACAGAAGCATGGAGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGA AACTGTAGATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAG ACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGAGGGTGAATG TTGTGAGTGCTGCTCACTGTTTTACAACATATAAGAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACA ATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCCATCACA TGACTATGATATTTCTCTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTC TCCCTGATGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTGTGACAGGATTTGGAGCACTGAAAAAT GATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACC ${\tt TCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGCAT}$ GCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGCTGGAATAGTG AGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTG GGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCA ATAAACTGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCA GATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTAC ATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTTGTAAT GCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCATTT TCAAGGTGCAGAACAAGGAGTGAAAGAAAATATAAGAAGAAAAAAATCCCCTACATTTTATTGGCACAGAA AAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATTATTCATTATGAAAGGTCAAGCAAAGACA TTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDKLY
AEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKRGL
RRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCCTG GCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTCTCCCTT ACGGGGCTCACA ATG GCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTCTACGCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGATGAGGGACTACCTAA GTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGGATGTTAGGATATTG TGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGTTTGCTTGTCATTTTCT GTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATGGTTCCAGTACAATGGTCA GATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCTAGATATCGGTGGCTTACTCA AAATGACAGAGATGGACTGGCCCCCAGATTCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAA CAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTT TTTGAGAGGAACCAAACACTGCAGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAA ACAGACCAAATGATGTCCTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACT $\tt TTGAGATGGAGGAGTTA{\bf TAA} AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACT$ TGTGAATTTTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAA TAACACCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTC ACCACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCC TGTGTATGACTTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCA TCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAA CTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTA CTCAGCGATCTATTCTTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACT ACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGAGCAAGCTAACACAT TGTCTTAAGCTGATCAGGGATTTTTTGTATATAAGTCTGTGTTAAATCTGTATAATTCAGTCGAT TTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATT ATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAAC TGTTATTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTC AGAATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGA AAGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAAA GCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAA TAGTGTTCTTTTTCTCCAGAAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATT CTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTTTTTACAA GAGTATAGTATATTTGAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTAT

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDRREPGTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

 ${\tt CCAAGGCCAGAGCTGTGGACACCTTATCCCACTCATCCTCATCCTCTGATAAAGCCCCTACCAGTGCT}$ $\tt CCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTCCAGAAGGATGCCTCCATTCCTGCTTCTCACCTG$ CCTCTTCATCACAGGCACCTCCGTGTCACCCGTGGCCCTAGATCCTTGTTCTGCTTACATCAGCCTGAATGAGC CCTGGAGGAACACTGACCACCAGTTGGATGAGTCTCAAGGTCCTCCTATGTGAACAACCATGTGAATGGGGAG TGGTACCACTTCACGGGCATGGCGGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAACCCA CGCACCTGTCTGGCTCAATGGCAGCCACCCCTAGAAGGCGACGGCATTGTGCAACGCCAGGCTTGTGCCAGCT TCAATGGGAACTGCTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGT CTGACCAAGCCCAGCGTCTGCTTCCACGTCTACTGTGGTCATTTTTATGACATCTGCGACGACGACTGCCATGG CAGCTGCTCAGATACCAGCGAGTGCACATGCGCTCCAGGAACTGTGCTAGGCCCTGACAGGCAGACATGCTTTG ATGAAAATGAATGTGAGCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAACTCCTACCGCTGT GAGTGTGGGGTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAATAACAA TGGTGGCTGCAGCCACTCTTGCCTTGGATCTGAGAAAGGCTACCAGTGTGAATGTCCCCGGGGCCTGGTGCTGT CTGAGGATAACCACACTTGCCAAGTCCCTGTGTTGTGCAAATCAAATGCCATTGAAGTGAACATCCCCAGGGAG CTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACACCTCCTGCCGAGGAGTGTCCAACGCCACCCATGTCAACAT CCTCTTCTCTCAAGACATGTGGTACAGTGGTCGATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGA CAGGTCTACCCAAGCAGACCCCGGGGAGCAGCGGGGACTTCATCATCCGAACCAGCAAGCTGCTGATCCCGGTG ACCTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCCACTGGAAAT CATGAGCCGAAATCATGGGATCTTCCCATTCACTCTGGAGATCTTCAAGGACAATGAGTTTGAAGAGCCTTACC GGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTTTGGCATTGAGCCCGTGGTGCACGTGAGCGGC $\tt TTGGAAAGCTTGGTGGAGAGCTGCTTTGCCACCCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCAT$ ${\tt CCGGGATGGCTGTGTTTCAGATGACTCGGTAAAGCAGTACACATCCCGGGATCACCTAGCAAAGCACTTCCAGG}$ TTGGACGAGCGTTCCCGCTGTGCCCAGGGTTGCCACCGGCGAATGCGTCGTGGGGCAGGAGGAGAGACTCAGC $\tt CGGTCTACAGGGCCAGACGCTAACAGGCGGCCCGATCCGCATCGACTGGGAGGACTAGTTCGTAGCCATACCTC$ GAGTCCCTGCATTGGACGGCTCTGCTCTTTGGAGGCTTCTCCCCCCACCGCCCTCTAAGAACATCTGCCAACAGC CAGGTCACAGCACTGCTGAACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCA CCCAGAAAGACACTCACCCCATTTCCCTCATTTCTTTCCTACACTTAAATACCTCGTGTATGGTGCAATCAGAC CACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAGTTACTGAAATTATGA CTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTTGAAATTCAATTCAAATGCAGACTAA TTATAGGGAATTTGGAAGTGTATCAATAAAACAGTATATAATTTT

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSVCFHV
YCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRGLVLSEDNHTCQVPVLCKSNAIEVNIPRELVGG
LELFLTNTSCRGVSNGTHVNILFSLKTCGTVVDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHV
SGLESLVESCFATPTSKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

GAGAGAGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGG CCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGT TACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCC ATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGT GGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGA GGAAGCAGCTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTC CCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCAC AGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGATGG GCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGATGTTGTTGAAATCACAGAAAACAGCCAG GAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTG TGGGAAGACCTGAAGACCCCCCGTGTGGTGGGTGGGGAGGACGCCTCTGTGGATTCTTGGCCTTGGCAGG GCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAG CTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACA GATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAA GATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGT ACCAGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGT GACAGTGGTGGGCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGG CTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT GGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCAT TTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAGTCA GCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCT ${\tt CAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCC}$ GCCTACTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCT AAAA

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSACFDN
FTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTCQGDSGGPLMYQS
DQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGATTA TAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAGGAGT TGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACTGTGGCTCT GGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGTCCCCTCGAAG CCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTCACCAACTGTCTCACGTCT GGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGGCTTTCAAGGTGGGC CTTGCCCTGGCCGTAGAAGGGATTGACAAGCCCGAAGATTTCATAGGCGATGGCTCCCACTGCCC AGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGGGCCGTGGACACCTGCTCA GAAGCAGTGGGTGAGACATCACGCTGCCCGCCCATCTAACCTTTTCATGTCCTGCACATCACCTG CAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGACTTGCATTCTCCTGGAACATGAGG GAACGCCGGAGGAAAGCAAAGTGGCAGGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATG GAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAGGGCTG CCACGTACCAGCTGCTGAAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAA CTCCTTCCCTCTGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGG GGCTAATGGCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCT GTGCGAACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGG $\tt CTCAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTT$ CAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAAATCTGAAACCCCAAATCCA AACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACAT TTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG TGAAACCCCTGTCTCTACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGTGTGTGCCTGTATC TGGTTATTTGTAA

 ${\tt MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC} \\ {\tt WPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD}$

Signal peptide:

amino acids 1-15

CAGCAGTGGTCTCTCAGTCCTCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACCA**TG**GCAA AGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAAGAAA ATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCTAATTGTCCT GTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACATGGAGCACACTT TCTACAGCAATGGAGAGAAGAAGAATTTACATGGAAATTGATCCTGTGACCAGAACTGAAATA TTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAACGGATACACTGG CATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTT ATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGA GATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAG AGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAG GTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTA GGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTCATCTGTCGTGTCATCATGCCTTG TGCTGGCAACATATAATAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCT GGTAGCCAGCTCTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACA TTATCACCAAAAAAAAAAAAAAAAAAA

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYDME
HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP
EFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE
LQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENGIEFDPMLD
ERGYCCIYCRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGCAGGCGGCA GGGCGGGCGGCCAGGATCATGTCCACCACCACATGCCAAGTGGTGGCGTTCCTCCTGTCCATCCTGGGGCT GGCCGCTGCATCGCGCCACCGGGATGGACATGTGGAGCACCCAGGACCTGTACGACAACCCCGTCACCT CCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCC GGGTGCCATTGGCCTCCTGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTG CCAAAGCCAACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGTG TCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTGG GATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCGCTGGAGGCC TCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGGCACCAGAAGAAACCAACTACAAA ${\tt GCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTT}$ TGGGTCCAACACCAAAAACAAGAAGATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATC $\verb|CCCAAAAAACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCT|$ CGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACA GCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTTTAAATATAACT TTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAGAAAACTTTTGAAAGGAAA GAGTAGACCCAAAGATGTTATTTTCTGCTGTTTGAATTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAA ACACTTACTGAAGAAGCAATAAGAGAAAGATATTTGTAATCTCCAGCCCATGATCTCGGTTTTCTT ACACTGTGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTG TTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGT AATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG GAAATGAAAAATAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCC ATGAAAAGCTCACACCTGTAATCCTAGCACTTTGGGAGGCTGAGGAGGAGGATCACTTGAGCCCAGAAGT TCGAGACTAGCCTGGGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCA TGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGT AATAAAAATAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTECRP
YFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFIVSGL
CAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGGVMMCIA
CRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQSYPSKHDY
V

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGGAGTCC AGCTGGCTAAAACTCATCCCAGAGGATAATGGCAACCCATGCCTTAGAAATCGCTGGGCTGTTTCTTG GTGGTGTTGGAATGGTGGCCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGAGTGTCGGCCTTCATT CATCAGGATGCAGAGCAAAATCTATGATTCCCTGCTGGCTCTTTCTCCGGACCTACAGGCAGCCAGAG GACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCTTTCATGATGGCCATCCTTGGCATGAAATGC ACCAGGTGCACGGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCAT CATCACGGGCATGGTGGTCCTCATCCCTGTGAGCTGGCTTGCCAATGCCATCATCAGAGATTTCTATA ACTCAATAGTGAATGTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCA CTGGTGCTGATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTA CAGATACTCGATACCTTCCCATCGCACAAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCG ${\tt TCTACTCCAGAAGTCAGTATGTGTATGTTTTTTTAACTTTACTATAAAGCCATGCAAATG}$ ACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGCCT AATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAATGAGATA TTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGGTTCAAGCATCTA CTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTTACTACTGTAATTTCTCC ACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCACATAGAGACATGCTTATATGGT ATCATGGATAGGGTTGAAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCA TTTATAATGAAGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATAT CTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCAAACTGCTT TTCCAGGGCTATACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAGTG TGTCTTGGTTTCATTTGCTTACCAAAAAAACAACAACAAAAAAAGTTGTCCTTTGAGAACTTCACCT CCATTTCTGTTTAGTTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAA TATACATTTATATTAATAAATTGTACATTTTTCTAATT

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQCK
IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIFIITG
MVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY
RYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

GGAGAGAGGCGCGCGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCGAG CCAGACGCTGACCACGTTCCTCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGCAGCC TGCTGCTGCAGCTGCCCGCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAAAGGCGCAG $\tt CTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGCC$ ${\tt TGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCCCAGGTCGGGATG}$ GATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCTGGACACCCAACTAC AAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAATTGCGGAGTGTACATT TACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCTCACTTCGGCTAAAATGCA GAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTGAATGTTCAGGACCTCTTCCC ATTGAAGCTATAATTTATTTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAATATTCATCG ATTATTGAAGAACTACCAAAATAAATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCC CTAAATATGTTTACAGACCAAAGTGTGATTTCACACTGTTTTTAAATCTAGCATTATTCATTTTG CTCTCAACCTATAATTTGGAATATTGTTGTGGTCTTTTGTTTTTTCTCTTAGTATAGCATTTTTA TAAATAAAAATTATTTCCAACA

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR DGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK MRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTINIHRTS SVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTGAA CTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA ACCGCCCCTCCCCACCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCATGAAGATCC TGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAGGGGTCCAATTTT TCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGGCTGTCATGCAACTG GCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAAAGGATGGGTTTCAATG CTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAAGGCAAAATGGTATATTGTGA ATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCT ATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGGCTCAACCAGCTCACCTGGCTATAC CTTGACCATAACCATATCAGCAATATTGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGA GCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATT TACGGAACTTGGATCTGTCCTATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGCTTG CGGAAGCTGCTGAGTTTACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCA AGACTGCCGCAACCTGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATG CTGGCCCTTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGT CATAGGACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGA TCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTGGATATCCCTCAATGACATCAG TCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTT TTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTG ATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGTTTGATCTGGCCAG GGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTT TGCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCT TTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTAT CTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCGCTCCCTCATGCGAA GGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCCAGGAATTTTATGTA GATTATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTA TAACAAATCGGGCTCCAGGGAGTGTGAGGTA**TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAGCT $\mathsf{GGGAAATAAGTGGTGCTTTATTGAACTCTGG}$ $\mathsf{TGA}\mathsf{CTATCAAGGGAACGCGATGCCCCCCTCCCC}$ TTCCCTCTCCCTCTCACTTTGGTGGCAAGATCCTTCCTTGTCCGTTTTAGTGCATTCATAATACT GAACTCCGGTTTAATATAATACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTT GTTTTAAGATAAAACTTCTTTCATAGGTAAAAAAAAAA

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLNNTFR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKPTFKPKLPRPKHE
SKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQR
SLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATG}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGCTTTTGCCGCTG} \\$ ACCCAGAGATGGCCCCGAGCGAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGCCGAGCT AGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAGCTCTTGCTC GGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACAGCCCTAGGGATC ATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCATTTACAGACACGTAGT GTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTTTGGCAAAAGTGAAG ATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATGGCTGGTGTTATTGGCCAGTTT AAAACCATTGCGATTTCGTGGTGTACATCATGCATTTGCAAAAATCTTAGCTGAAGGAGGAATAC GAGGGCTTTGGGCAGGCTGGGTACCCAATATACAAAGAGCAGCACTGGTGAATATGGGAGATTTA ACCACTTATGATACAGTGAAACACTACTTGGTATTGAATACACCACTTGAGGACAATATCATGAC TCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA ACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTTACC TGAGTGGAGTCAGTCCATTTTAA

MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGARES APYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS VIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGLWAGWVP NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTPADVIKSRIMNQP RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCAGGAGAGCGGCCGGGCGTCAGCTCCTCGAC $\verb|CCCCGTGTCGGGCTAGTCCAGCGAGGCGGACGGGCGTGGGCCC<math>\verb|ATG|$ GCCAGGCCCGGCATGG| AGCGGTGGCGACCGGCTGGCGCTGGTGACGGGGGCCTCGGGGGGCATCGGCGGCCGTGGCC CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAACATCGAGGA GCTGGCTGCAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGATGTGACCTAT CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGTAGACATC TGCATCAACAATGCTGGCTTGGCCCGGCCTGACACCCTGCTCTCAGGCAGCACCAGTGGTTGGAA GGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAAGCCTACCAGTCCATGA AGGAGCGGAATGTGGACGATGGCACATCATTAACATCAATAGCATGTCTGGCCACCGAGTGTTA CCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTCACTGCGCTGACAGAGGGACT GAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACGTGCATCTCTCCAGGTGTGGTGG AGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAGAAGGCAGCTGCCACCTATGAGCAA ATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTTATCTACGTCCTCAGCACCCCCGCACA CATCCAGATTGGAGACATCCAGATGAGGCCCACGGAGCAGGTGACCTAGTGACTGTGGGAGCTCC TCCTTCCCTCCCACCCTTCATGGCTTGCCTCCTGCCTCTGGATTTTAGGTGTTGATTTCTGGAT TCATCTTGTCAAATTGCTTCAGTTGTAAATGTGAAAAATGGGCTGGGGAAAGGAGGTGGTGTCCC TAATTGTTTACTTGTTAACTTGTTCTTGTGCCCCTGGGCACTTGGCCTTTGTCTGCTCTCAGTG TCTTCCCTTTGACATGGGAAAGGAGTTGTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTG TGGCTCAGGGCTGGCAGAGGGAGGCCTTCACCTTATATCTGTGTTGTTATCCAGGGCTCC AGCCCAGTCTTGGCTTCTTGTCCCCTCCTGGGGTCATCCCTCCACTCTGACTCTGACTATGGCAG CAGAACACCAGGCCCTGGCCCAGTGGATTTCATGGTGATCATTAAAAAAAGAAAAATCGCAACCAA AAAAAAAA

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGTLI
PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALSICTR
EAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQTHIRATC
ISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

AACTTCTACATGGGCCTCCTGCTGCTGGTGCTCTTCCTCAGCCTCCTGCCGGTGGCCTACACCAT CATGTCCCTCCCACCCTCCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGGGAGC ACCTCCCTCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTTTCATGC CAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCATTTAAGAGGGTTTTCTGCCA GGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAGCCACCTGTGG TTAATTTTTAACTGATAGTTGTACATATTTGGGGGTACATGTGATATTTGGATACATGTATACAA TTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCCATCTCAGCTTACTGCAAC $\tt CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCCAAGTAGCTGGGACTACAGGCAT$ GCACCACAATGCCCAACTAATTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGCCCAGG GGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTTCTTTTGTGTTGGGAACTTTGAAATTAT ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGGACTTCTTCCCTCT ATCTAACTGTATATTTGTACCAGTTAACCAACCGTACTTCATCCCCACTCCTCTATCCTTCCC AACCTCTGATCACCTCATTCTACCTCTACCTCCATGAGATCCACTTTTTTAGCTCCCACATGTG AGTAAGAAAATGCAATATTTGTCTTTCTGTGCCTGGCTTATTTCACTTAACATAATGACTTCCTG TTCCATCCATGTTGCTGCAAATGACAGGATTTCGTTCTTAATTTCAATTAAAATAACCACACATG GCAAAAA

 ${\tt MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQPV} \\ {\tt KGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK} \\$

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

 ${\tt TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACCA{\tt TG}ATCAGCGCAGCC{\tt TGGAGC}$ ATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAGTTATGGCTAAATCCTG TCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATCGCTTTCTGACATCCATTCCAACAG TTGAAAAACTTGCTGAAAGTAGAAAGAATATACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCT CCCAAAGTATGTAAAAGAGTTACATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTTCAA AAATTCCCTATCTGGAAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCA TTCCGAGACACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTTT GCCCAGGACTATAGAAGAACTACGCTTGGATGATAATCGCATATCCACTATTTCATCACCATCTCTCAAG GTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATGGTTTAGGTGACAAAGTT TTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATTCCCTGACTGCTGCACCAGTAAACCT TCCAGGCACAAACCTGAGGAAGCTTTATCTTCAAGATAACCACATCAATCGGGTGCCCCCAAATGCTTTTT CTTATCTAAGGCAGCTCTATCGACTGGATATGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTT GATGATTTGGACAATATAACACAACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATG AGGTTCGTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAAGC ACCATTCAGATAACCACTGCAATACCCAACACAGTGTATCCTGCCCAAGGACAGTGGCCAGCTCCAGTGAC CAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAGGGAGTCCCTCAAGAAAAA CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATATCTCTTGGAAACTTGCTCTACCTATG ACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATAGCCCGGCATTTGGATCTATAACAGAAACAATTGT AACAGGGGAACGCAGTGAGTACTTGGTCACAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTC CCATGGAAACCAGCAACCTCTACCTATTTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCCTT CGAATGTACAACCCTACAACCACCCTCAATCGAGAGCAAGAAAAAAACCCTTACAAAAAACCCCAATTTACC TTTGGCTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTGTTGGTATG TTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTGCATATAGCAAAGGGAGGAGAAGAAAGGATGACTAT GCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTTCTTTTCAGATGTTACCAAT ACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACTCAGATCAC

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTLYL QNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSKIPYL EELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRISTISSPSL QGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKLYLQDNHIN RVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKWVRDWLQSLPV KVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQGQWPAPVTKQPD IKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWLKLGHSPAFGSITET IVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKE PYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNS ILEIRETSFQMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGGCA TGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGAGCAGAG GCCGGCCATGGCCAGCCTGGGGCTGCTCCTGCTCTTACTGACAGCACTGCCACCGCTGTGGT CCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCTGATCCTGTCT GCGCTGGAGAGAGCCACCGTCTTCCTAGAACAGAGGCTGCCTGAAATCAACCTGGATGGCATGGT GGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGCCCAGGAGCCCCTGC TGCAGCCGCTGAGCCTGCGCGTGGGGATGCTGGGGGGAGAGCTGGAGGCTGCCATCCAGAGATCC CTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCAGCTGACCCTCCAGCCGG GTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTTGGTGTACCCCACGTTCGGGC CCCAGGACTCATTCTCAGAGGAGAGAGTGACGTGTGCCTGGTGCAGCTGCTGGGAACCGGGACG GACAGCAGCGAGCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCCGGCTGCTC AGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTGGGCCAGAATGAGGGGATGCACACAGG GACCACTCCAACAGAGCCAGGACTATATCAACCTCTTCTGCGCCAACATGATGGACTTGAACCGC AGAGCTGAGGCCATCGGATACGCCTACCCGGGACATCTTCATGGAAAACATCATGTTCTG TGGAATGGCCGCTTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA AACAGCAGGAAGGATGCTTCGGGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA TATCAGCAGCATTTTTCGAGGAGAGTGAAGAGGCGAGAAAAACAATTTCCAGATTCTCGCTCTGT TGCTCAGGCTGGAGTACAGTGGCGCAATCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGC AATTCTCTTGCCTCATCCTCCCGAGTAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAAT TTTTATATTTTTTTAGTAGAGACAGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGAT $\tt CTCAAGAGATCCGCCCACCTCAGGCTCCCAAAGTGTGGGATTA{\color{red}{T}}{\color{blue}{T}}{\color{blue}{T}}{\color{blue}{G}}{\color{blue}$ GCTGAAAAGCACTTTCAAAGAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTC ATGGGGGCTCTCTCCCCTAGATGGCTGCTCCTCCCACAACACAGCCACAGCAGTGGCCAGCCCTGG GTGGCTTCCTATACATCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACACCCATCCACACCG CCACCACGAGCAGCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAACAGACCC TTTAGTCCTCATCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGG ATAAGCAAAGCCACCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPGLD
TAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLPPGFKQFSCLILP
SSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWISAA RVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYIKTSE VVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPLLIFVLLPKVVNTSDPDMRREME QSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA $\verb|CCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGGAGGCTATATGCGTCAATTCCCCAAAACAA| \\$ GTTTTGACATTTCCCCTGAAATGTCATTCTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC CTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACGACCTGTGC CACCAACTCGCACTCAGACTCTGAACTCAGACTTGAAATCTTCTCTTCACGGGAGGCTTGGCAGT TTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGTCTTGCCTTCAGC CTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAGACACTCAATTTGGG AAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCTGAGATACGGGGCAGTG TGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACTGAGTCTTTGCAAGACACA AAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTCTATCTGGACAGGGTATTTAA AAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGCAGCCTCGCCAATTCCTTTCTTA CCATCAGAAGGACCTCCGGCTCTCATGCCCACATGACATGCCATTGTGGGGAGGAAGCAATG AAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGC $\tt TTTGGGGGAACTAGACATTCTTCTGCAATGGATGGAGGAGACAGAA\underline{TAG}{GAGGAAAGTGATGCTG}$ CTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAA CTTCCTTGCATGATTGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTT ATGTATTTATTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTG CTAGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGAT ATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCAC ATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTATCTTCCAG AAAAAAAAA

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF SSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG FSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKIS SLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEET F

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

CCTGGAGCCGGAAGCGCGCTGCAGCAGGGGGGGGTCGGGTCGGGTCCGCATCCAGCC TAGCGTGTCCACG<u>ATG</u>CGGCTGGGCTCCGGGACTTTCGCTACCTGTTGCGTAGCGATCGAGGTGC TAGGGATCGCGGTCTTCCTTCGGGGATTCTTCCCGGCTCCCGTTCCTCTCCTCTGCCAGAGCGGAA CACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTGGACCACGCTGCC ACCACCTCTCTCAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAGATGATTTTGTGTTTG GGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAAAAAGGAGCATCTCACAGT TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAATCAAGGCATTGATGACGGGGAG CCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGA TAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTTTATGGAGATGAAACCTGGGTTAAATTA TTCCCAAAGCATTTTGTGGAATATGATGGAACAACCTCATTTTTCGTGTCAGATTACACAGAGGT GGATAATAATGTCACGAGGCATTTGGATAAAGTATTAAAAAGGAGAGATTGGGACATATTAATCC TCCACTACCTGGGGCTGGACCACATTGGCCACATTTCAGGGCCCAACAGCCCCCTGATTGGGCAG GACGCCTTTACCCAATTTGCTGGTTCTTTTGTGGTGACCATGGCATGTCTGAAACAGGAAGTCACG GGGCCTCCTCCACCGAGGAGGTGAATACACCTCTGATTTTAATCAGTTCTGCGTTTGAAAGGAAA CCCGGTGATATCCGACATCCAAAGCACGTCCAATAGACGGATGTGGCTGCGACACTGGCGATAGC CAATGAGAGAGCAGTTGAGATTTTTACATTTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAG AATGTGCCGTCATATGAAAAAGATCCTGGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGG GAACTGGATCAGACTGTACTTGGAGGAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGG TTCTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAG TTCTCACCCTGCTCCTGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCA CTGTCATCTCCTGGGTTTTCTCTGCTCTTTTATTTGGTGATCCTGGTTCTTTCGGCCGTTCACGT GCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGTGCCAAGTGCTGGCAGTGCCCTGGAC AGGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCCGACACAGGTG TTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGTTCCTGCGACTGTTAC CAAGGTGATTGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCCCCCAGCTGAGGGGGTGTGTGAA TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGAGGGAAGAAGAGACAATCGGCCTGGA CACTCAGGAGGGTCAAAAGGAGACTTGGTCGCCACCACTCATCCTGCCACCCCCAGAATGCATCCT GCCTCATCAGGTCCAGATTTCTTTCCAAGGCGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCC ${\tt TCGGACACCTTCATTCGTTAGCTGGGGGGGTGGTGGTGAGGCAGTGAAGAAGAGGGGGGATGGTCACC}$ ACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGGACTGTTGGGCCCCC ACCCCAACCCTGCACAGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGT CTGACCGAGACACTCACAGCTTTGTCATCAGGGCAGGCTTCCTCGGAGCCAGGATGATCTGTG CCACGCTTGCACCTCGGGCCCATCTGGGCTCATGCTCTCTCCTGCTATTGAATTAGTACCTAG CTGCACACAGTATGTAGTTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAA

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLF SKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNV TRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP NLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

MLLLLLEYNFPIENNCQHLKTTHTFRVKNLNPKKFSIHDQDHKVLVLDSGNLIAVPDKNYIRPEI FFALASSLSSASAEKGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFI FYRAQVGSWNMLESAAHPGWFICTSCNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 33-36

N-myristoylation site.

amino acids 50-55, 87-92

Interleukin-1
amino acids 37-182

 $\label{thm:marylpatve} $$ MLGLPWKGGLSWALLLLLLGSQILLIYAWHFHEQRDCDEHNVMARYLPATVEFAVHTFNQQSKDY$$ YAYRLGHILNSWKEQVESKTVFSMELLLGRTRCGKFEDDIDNCHFQESTELNNTFTCFFTISTRP$$ WMTQFSLLNKTCLEGFH$

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

 ${\tt CACCTGAGCTGGTGGCTGGCCACTGTCTGCATGCTGCTCTTCAGCCACCTCTCTGCGGTCCA}$ GACGAGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCCAGATCA GACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCGATGGCATCCA $\tt CTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCTGCATCAATGCCA$ $\verb|CCCAGGCGGCGAACCAGGGGGGGGTTCCAGAAGCCAGAAGCTCCACCAGCAGGTGCTCTGG|\\$ ${\tt TCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGATCTGGCTCATGGTGAAAT}$ **AA**GCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCAGCGAGCAAATCCTGGCAAGTGACCCAGCT CTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGCGGCGATGCACTCGCACTGCAAA TGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCTGATAGATGGGGGGACTGTGGCTTCT ${\tt CCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGTAAATGCTTGAT}$ GAGAAGAACACTCAGGCACTGCGCCACCTGCTTCACAGTACTTCCCAACAACTCTTAGAGGTAG GTGTATTCCCGTTTTACAGATAAGGAAACTGAGGCCCAGAGAGCTGAAGTACTGCACCCAGCATC ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCTGGCTTGTCTAACCCCAGGTTTTCTGCTCT GTCCAATTCCAGAGCTGTCTGGTGATCACTTTATGTCTCACAGGGACCCACATCCAAACATGTAT

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

 ${\tt MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE} \\ {\tt GLFYEYIA}$

Important features of the protein: Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGACTTGAC TCCCGCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGCCGCCCAGTCC ACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCCGAGCGTGGAAGA**ATG**GGGTT CCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATTCAAGCTTTCCCCAAACCTGGAGGAA GCAGAAGAAGACAAGATTAAAAAAACATATCCTCCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTT TGTTGATAACTTGAACCTGCTAAAGGCAATAACAGAAAAGGAAAAAATTGAGAAAAGAAAAATCTA TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTG ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCA TCAACTAGACGGGACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAG AAAATGACAGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGC CAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAACAA TTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCAGAGAAAG TGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACAGTATCTAACACA TTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGACAACTTTGAGGAACTCCA CACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAGATGATGGTGAAATATGGAACAATATCT CCAGAAGAAGGTGTTTCCTACCTTGAAAACTTGGATGAAATGATTGCTCTTCAGACCAAAAACAAGCT AGAAAAAATGCTACTGACAATATAAGCAAGCTTTTCCCAGCACCATCAGAGAAGAGTCATGAAGAAA CAGACAGTACCAAGGAAGAAGCAGCTAAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAA GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTATTTGGAAGC CATCAGAAAAATATTGAATGGTTGAAGAAACATGACAAAAAGGGAAATAAAGAAGATTATGACCTTT CAAAGATGAGAACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAA ${\tt GAAGCCGAGGCCATCAAGCGCATTTATAGCAGCCTG}$ CTGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTTGACCCAAGG GTTATTAGAAAGTGCTGAATTTACAGTAGTTAACCTTTTACAAGTGGTTAAAACATAGCTTTCTTCCC

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNTLTLTNGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIKRIYSSL

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCTGTGGAGCTCAA GATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTGC ATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAGATCAGC GTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAGGGTGGAAG CCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTGAACATCATGG AGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTACCGGCGGGACATGGGGCTCACC TCCAGCTTCGAGTCGGCTGCCTACCCGGGCTGGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCC TGTCAGACTCACCCAGCTTCCCGAGAATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCC GAGTGGAGGACCCATGGCGGACAATCACTCTCTCTGCTCTCAGGACCCCCACGTCTGACTTAG TGGGCACCTGACCACTTTGTCTTCTGGTTCCCAGTTTGGATAAATTCTGAGATTTGGAGCTCAGT CCACGGTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAACCTTGTAAAAACCATGTGGGGTAAA TAATGGTAACTGACAAGTGTTACCCTGAGCCCCGCAGGCCAACCCATCCCCAGTTGAGCCTTATA GGGTCAGTAGCTCTCCACATGAAGTCCTGTCACTCACCACTGTGCAGGAGAGGGGGGGTGGTCATA GAGTCAGGGATCTATGGCCCTTGGCCCAGCCCCACCCCTTCCCTTTAATCCTGCCACTGTCATA TGCTACCTTTCCTATCTCTCCCTCATCATCTTGTTGTGGGCATGAGGAGGTGGTGATGTCAGAA GAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTAGGGTATGCTGATCCTCTTTTAAAAACCCAA GATACAATCAAAATCCCAGATGCTGGTCTCTATTCCCATGAAAAAGTGCTCATGACATATTGAGA TCTTTATAGAAAAAGTCTGGAAGAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTAT AGGTGATTTTTCTTTTAATTCTGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGA ATTCCTTGTATAAAAATAAGAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGA TTGTCCTCAGCCTCCACTTCCCCAGAGTAAATTCAAATTGAATCGAGCTCTGCTGCTCTGGTTGG TTGTAGTAGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAGTTTGT GTGGCTGGAATCTCTGGGTAAGGAACTTAAAGAACAAAAATCATCTGGTAATTCTTTCCTAGAAG GATCACAGCCCCTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGCTGCTGTACTGGTTGA ATTGTGTCCCCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTGTGAGTTTATTTGGAGATAAG GTCTCTGCAGATGTAGTTAGTTAAGACAAGGTCATGCTGGATGAAGGTAGACCTAAATTCAATAT GACTGGTTTCCTTGTATGAAAAGGAGAGGACACAGAGACAGAGGAGACGCGGGGAAGACTATGTA AAGATGAAGGCAGAGATCGGAGTTTTGCAGCCACAAGCTAAGAAACACCAAGGATTGTGGCAACC ATCAGAAGCTTGGAAGAGGCAAAGAAGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCTG CTGAAACCTTAATCTCAGACTTCCAGCCTCCTGAACGAAGAAGAATAAATTTCGGCTGTTTTAA GCCACCAAGGATAATTGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATCCCTGT CTCCTCGTGTTTACATTCTGTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTGTGACCAA TAGAATATGGCAGAAGTGATGGCATGCCACTTCCAAGATTAGGTTATAAAAGACACTGCAGCTTC AAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAAAATGAAGTCTCCT

 ${\tt MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQGGS} \\ {\tt QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP} \\ {\tt VRLTQLPENGGWNAPITDFYFQQCD} \\ {\tt VRLTQLPEN$

N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature.

amino acids 111-131

Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

 $\tt CTTCAGAACAGGTTCTCCTTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCTTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCAGTCACCAGTTGCTCACAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCAGTCACCAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCAGTCACCAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCAGTCACCAGTTAGAATTGTCTGCA{\color{blue}ATG}CCGCCAGTCACCAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACCAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACCAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACCAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCGCAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CCAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CAGTCACAGTTAGAATTGTCTGCAA{\color{blue}ATG}CAGTCACAGTTAGAATTGTCTGCAATTGTCAACAGTTAGAATTGTCTGAATTGTC$ CCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTCTCTGG ${\tt TTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAGCTTGGCTGATAA}$ ATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTCCCTCAATCTGATAGGTTC CAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAAGC TTGGAGAGAGTGGAGAGTCAAAGCAATTGGAGAACTGGATTTGCTGTTTATGTCTCTGAGAAAT GCCTGCATT**TGA**CCAGAGCAAAGCTGAAAAATGAATAACTAACCCCCTTTCCCTGCTAGAAATAA CAATTAGATGCCCCAAAGCGATTTTTTTTAACCAAAAGGAAGATGGGAAGCCAAACTCCATCATG ATGGGTGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTTGTTTATA AGACCAGAAGGTAGACTTTCTAAGCATAGATATTTATTGATAACATTTCATTGTAACTGGTGTTC TATACACAGAAAACAATTTATTTTTTAAATAATTGTCTTTTTCCATAAAAAAAGATTACTTTCCAT TCCTTTAGGGGAAAAAACCCCTAAATAGCTTCATGTTTCCATAATCAGTACTTTATATTTATAAA AGAAACATCATTCGATATTGCTACTTGAGTGTAAGGCTAATATTGATATTTATGACAATAATTAT AGAGCTATAACATGTTTATTTGACCTCAATAAACACTTGGATATCCC

 $\label{thm:colllallvqggaaapisshcrldksnfqqpyitnrtfmlakeasl\\ ADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLARLSNRLS\\ TCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI$

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT $\tt TGCCAGGTTTGGGGGCCGAGTGGAGTGAGAAACTGGGATCCCAGGGGGAGGGTGCAGAT$ **G**AGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTTTCCTACAGGTGGTTGCAT TCTTGGCAATGGTCATGGGAACCCACACCTACAGCCACTGGCCCAGCTGCTGCCCCAGCAAAGGG CAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACTGTGCCTGTGCCTCCCCTAGAGCCTGCTAG GCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGACCCCTCAACAGCAGGGCCATCT CCCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACCACGCCCGT TGCCTGTGCCCGCACTGCGTCAGCCTACAGACAGGCTCCCACATGGACCCCCGGGGCAACTCGGA GCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA $\tt GTGATGGGC\underline{TAG}CCGGACCTGCTGGAGGCTGGTCCCTTTTTGGGAAACCTGGAGCCAGGTGTACA$ ACCACTTGCCATGAAGGGCCAGGATGCCCAGATGCTTGGCCCCTGTGAAGTGCTGTCTGGAGCAG CAGGATCCCGGGACAGGATGGGGGGCTTTGGGGAAAACCTGCACTTCTGCACATTTTGAAAAGAG ${\tt CAGCTGCTTAGGGCCGCCGGAAGCTGGTGTCCTGTCATTTTCTCTCAGGAAAGGTTTTCAAA}$ GTTCTGCCCATTCTGGAGGCCACCACTCCTGTCTCTTCCTCTTTTCCCATCCCTGCTACCCTG GCCCAGCACAGGCACTTTCTAGATATTTCCCCCTTGCTGGAGAAGAAGAGCCCCTGGTTTTATT ${\tt TGTTTGTTTACTCATCACTCAGTGAGCATCTACTTTGGGTGCATTCTAGTGTAGTTACTAGTCTT}$ CTTTATTTAAAAATGAAAAA

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPPLEPA RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

 $\tt CCGGCGATGTCGCTGCTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCGAGAGCC$ GACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCC CCGGAGACTTGAGGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGACTATTCA ATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAGGCCACCAA GATTTGTGTGACGGCCAAAAGCAACTTCCAGTCCTACAGCTGTGTGAGGTGCAATTACACAGAGG CCTTCCAGACTCAGACCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATCGGCTTCCCTGTA CCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATAATGAAAATATAAAAAAA AGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGTAAGAAGAATGAGGAGACA TATCATCGGGTTTTCTCAGGTGTTTGAGCCACACCAGAAGAAACGAGCGGGGCTTCAGTGGTGA TTCCAGTGACTGGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTTCCTACTTGTGGC AGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGCCCACAAACAGGCGTCCCTTTCCCTCT GGATAACAACAAAAGCCAGGGAGGCTGGCTGCCTCTCCTGCTGTCTCTGCTGGTGGCCA CATGGGTGCTGGTGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTT TCTACCACCACACTACTGCCCCCCATTAAGGTTCTTGTGGTTTACCCATCTGAAATATGTTTCCA TCACACAATTTGTTACTTCACTGAATTTCTTCAAAACCATTGCAGAAGTGAGGTCATCCTTGAAA AGTGGCAGAAAAAGAAATAGCAGAGATGGGTCCAGTGCAGTGCCTTGCCACTCAAAAGAAGGCA GCAGACAAAGTCGTCTTCCTTCTTTCCAATGACGTCAACAGTGTGTGCGATGGTACCTGTGGCAA GAGCGAGGCAGTCCCAGTGAGAACTCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCA GTGATCTAAGAAGCCAGATTCATCTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACA AAAGACGATTACAATGCTCTCAGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTT CTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACG ATGGCTGCTGCTCCTTGTAG

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVSWV LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP NANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFL QNHCRSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHD GCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

 ${\tt MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIINEN}$ ${\tt QRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQETLVV}$ ${\tt RRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ}$

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

ACACTGGCCAAACAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTCCCAGG ACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCTCTGGAGGCTGAAGAGGGATTC AGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAGATGCCTGTGCCCTGGTTCTTGCTGTCCT TGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAGGCTTGTGGGGCCTCAGGACGCTACC AGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCCACTTGGCCGTGCATGGGCACTGG GAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGAGCCTAGGAA TGCCTCTCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCCTACTGCCCGCTGCGTCCTGC TGGAGGTGCAAGTGCCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATATGAC TGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA GGAACTCAACCACACAGCAGCTGCCTGCCCTGGCTCAACGTGTCAGCAGATGGTGACA ACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCACCTTCGGCCTCTCCCTGTACTGGAATCAG GTCCAGGGCCCCCCAAAACCCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTTGAA CCACACAGACCTGGTTCCCTGCCTCTGTATTCAGGTGTGGCCTCTGGAACCTGACTCCGTTAGGA CGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCAGAACCTCTGGCAAGCCGCCCGACTG CGACTGCTGACCCTGCAGAGCTGGCTGCTGGACGCACCGTGCTCGCTGCCCGCAGAAGCGGCACT GTGCTGGCGGGCTCCGGGTGGGGACCCCTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACG TCACTGTGGACAAGGTTCTCGAGTTCCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTG AACAGCTCGGAGAAGCTGCAGCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGA CGATGTGCTACTGTTGGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCA CAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG CCCCATGGACAAATACATCCACAAGCGCTGGGCCCTCGTGTGGCCTGGCCTACTCTTTGCCG CAGGACGTCCGCTCGGGGGCGCCCCAGGGGCCGCGCGCTCTGCTCCTCTACTCAGCCGATGA CTCGGGTTTCGAGCGCCTGGTGGGCGCCCTGGCGCCTGTGCCAGCTGCCGCTGCG GTGCAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGGGCGCACGGCCCGCACGACGCCTTCC GCGCCTCGCTCAGCTGCTGCCCGACTTCTTGCAGGGCCGGGCGCCCGGCAGCTACGTGGGG GCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTT CACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCG CATCCCCGGGGACTCCCGCGCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGA CGGGACT**TAA**ATAAAGGCAGACGCTGTTTTTCTAAAAAAA

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELV LRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV QVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQN LWQAARLRLLTLQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQS GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAAARG RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSP GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT LPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGFGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain.

amino acids 453-475

N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site.

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

 $\tt GGGAGGGCTCTGTGCCAGCCCCG\textbf{ATG}AGGACGCTGCTGACCATCTTGACTGTGGGATCCCTGGCT$ GCTCACGCCCTGAGGACCCCTCGGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACTTTGA AAACATCCTGACGTGGGACAGCGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCGAGTATA AGACGTACGGAGAGGGACTGGGTGGCAAAGAAGGGCTGTCAGCGGATCACCCGGAAGTCCTGC AACCTGACGGTGGAGACGGGCAACCTCACGGAGCTCTACTATGCCAGGGTCACCGCT GTCAGTGCGGGAGGCCGGTCAGCCACCAAGATGACTGACAGGTTCAGCTCTCTGCAGCACACTAC CCTCAAGCCACCTGATGTGACCTGTATCTCCAAAGTGAGATCGATTCAGATGATTGTTCATCCTA CCCCACGCCAATCCGTGCAGGCGATGGCCACCGGCTAACCCTGGAAGACATCTTCCATGACCTG TTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGGAAGCAGAGAGA ATATGAGTTCTTCGGCCTGACCCCTGACACAGAGTTCCTTGGCACCATCATGATTTGCGTTCCCA CCTGGGCCAAGGAGAGTGCCCCCTACATGTGCCGAGTGAAGACACTGCCAGACCGGACATGGACC TACTCCTTCTCCGGAGCCTTCCTGTTCTCCATGGGCTTCCTCGTCGCAGTACTCTGCTACCTGAG CTACAGATATGTCACCAAGCCGCCTGCACCTCCCAACTCCCTGAACGTCCAGCGAGTCCTGACTT TCCAGCCGCTGCGCTTCATCCAGGAGCACGTCCTGATCCCTGTCTTTGACCTCAGCGGCCCCAGC AGTCTGGCCCAGCCTGTCCAGTACTCCCAGATCAGGGTGTCTGGACCCAGGGAGCCCGCAGGAGC TCCACAGCGGCATAGCCTGTCCGAGATCACCTACTTAGGGCAGCCAGACATCTCCATCCTCCAGC CCTCCAACGTGCCACCTCCCCAGATCCTCTCCCCACTGTCCTATGCCCCAAACGCTGCCCCTGAG GTCGGGCCCCATCCTATGCACCTCAGGTGACCCCCGAAGCTCAATTCCCATTCTACGCCCCACA GGCCATCTCTAAGGTCCAGCCTTCCTCCTATGCCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT CCTATGGGGTATGCATGGAAGGTTCTGGCAAAGACTCCCCCACTGGGACACTTTCTAGTCCTAAA CACCTTAGGCCTAAAGGTCAGCTTCAGAAAGAGCCACCAGCTGGAAGCTGCATGTTAGGTGGCCT TTCTCTGCAGGAGGTGACCTCCTTGGCTATGGAGGAATCCCAAGAAGCAAAATCATTGCACCAGC CCCTGGGGATTTGCACAGACAGACATCTGACCCAAATGTGCTACACAGTGGGGAGGAAGGGACA CCACAGTACCTAAAGGGCCAGCTCCCCCTCCTCTCCTCAGTCCAGATCGAGGGCCACCCCATGTC CCTCCCTTTGCAACCTCCTTCCGGTCCATGTTCCCCCTCGGACCAAGGTCCAAGTCCCTGGGGCC TGCTGGAGTCCCTTGTGTGTCCCAAGGATGAAGCCAAGAGCCCAGCCCCTGAGACCTCAGACCTG GAGCAGCCCACAGAACTGGATTCTCTTTTCAGAGGCCTGGCCCTGACTGTGCAGTGGGAGTCC**TG** ${f A}$ GGGGAATGGGAAAGGCTTGGTGCTTCCTCCCTGTCCCTACCCAGTGTCACATCCTTGGCTGTCA ATCCCATGCCTGCCCATGCCACACTCTGCGATCTGGCCTCAGACGGGTGCCCTTGAGAGAAGC AGAGGGAGTGGCATGCAGGGCCCCTGCCATGGGTGCGCTCCTCACCGGAACAAAGCAGCATGATA AGGACTGCAGCGGGGGAGCTCTGGGGAGCAGCTTGTGTAGACAAGCGCGTGCTCGCTGAGCCCTG CAAGGCAGAATGACAGTGCAAGGAGGAAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTC CTAACACCATGGATTCAAAGTGCTCAGGGAATTTGCCTCTCCTTGCCCCATTCCTGGCCAGTTTC ACAATCTAGCTCGACAGAGCATGAGGCCCCTGCCTCTTCTGTCATTGTTCAAAGGTGGGAAGAGA GCCTGGAAAAGAACCAGGCCTGGAAAAGAACCAGAAGGAGGCTGGGCAGAACCAGAACAACCTGC TTCCCAGCCAGGCAACTGCCTGACGTTGCACGATTTCAGCTTCATTCCTCTGATAGAACAAAGC ATCCTGAGAATGGGGTTTGAAAGGAAGGTGAGGGCTGTGGCCCCTGGACGGGTACAATAACACAC TGTACTGATGTCACAACTTTGCAAGCTCTGCCTTGGGTTCAGCCCATCTGGGCTCAAATTCCAGC CTCACCACTCACAAGCTGTGTGACTTCAAACAAATGAAATCAGTGCCCAGAACCTCGGTTTCCTC ATCTGTAATGTGGGGATCATAACACCTACCTCATGGAGTTGTGGTGAAGATGAAATGAAGTCATG TCTTTAAAGTGCTTAATAGTGCCTGGTACATGGGCAGTGCCCAATAAACGGTAGCTATTTAAAAA AAAAAAA

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW VAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVTCIS KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT EFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMGFLVAVLCYLSYRYVTKPPAP PNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT YLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAM EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSGPC SPSDQGPSPWGLLESLVCPKDEAKSPAPETSDLEQPTELDSLFRGLALTVQWES

Signal sequence.

amino acids 1-17

Transmembrane domain.

amino acids 233-250

N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

TGGCCTACTGGAAAAAAAAAAAAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGGTGGCCACAACATGG TCGGATCTCAGCCACGGACGGCGTTTCTCGGACCTCAAAGTGTGCGGGGACGAAGAGTGCAGCAT GTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTGTGAATTTTA AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACTTTGGGCTGGA AGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCATAAATACACGGA AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGTCTGCTTTGAAGGAGGAAGAGATGATT TTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGACTCTGTACCTGAAGAG TCGAAGAAAGCTGAAGAAGTTTCTCAGCACAGAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGA ACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGAGGATGGAGAAGGTGCTTTCT ATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGGTGGAGCGGGAGA AGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAGTCAGAGAGGAAGTGGACAGTGCGTTATT

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPDCRFVN FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFEGGRD DFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVPEPEAFRADSEDGEGA FSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGNSSPASVER EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAGCGC AACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAACTTC AGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGCACAGG CGCGGCAGGCGGCAGGTCCCGGCCGAAGGCGATGCGCGCAGGGGGTCGGGCAGCTGGGCTCGGGC GGCGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTCGCGGGCTGCGCCCTG TCTCGCTGCTGCTGGGCGCCGCGCTGCTCTGCCGCCACGGAGCCTTCTGCCGCCGCGTGGTCAGC GGCCAAAAGGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAACT GCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGCAAAACCTGACAAAACCCGGG ACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGAATGGAGATGGCCAAACATCTGG TGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATTCCCAGTACCGAAACTGGTACACAG CTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACAGGTGTAACATGAAGCACAATTATATTTG CAAGTATGAACCAGAGATTAATCCAACAGCCCCTGTAGAAAAGCCTTATCTTACAAATCAACCAG GAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTCCCAATCTAATTTATGTTGTT ATACCAACAATACCCCTGCTCTTACTGATACTGGTTGCTTTTGGAACCTGTTGTTTCCAGATGCT GCATAAAAGTAAAGGAAGAACAAAAACTAGTCCAAACCAGTCTACACTGTGGATTTCAAAGAGTA CCAGAAAAGAAAGTGGCATGGAAGTA**TAA**TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCT GGATCTGTATAAGGAATGGCATCAGAACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGC AAGATGAACTGTAAGCTCCCCCTTGAGGCAAATATTAAAGTAATTTTATATGTCTATTATTTCA TTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAA ACTTCAAACTTCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTA TGTGTGTTAGAAGCAATTCCTTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAA TGTATATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAA ATGAACTGTTCTAATATTTATTTTTATGGCATCTCATTTTCAATACATGCTCTTTTGATTAAAG AAACTTATTACTGTTGTCAACTGAATTCACACACACAAATATAGTACCATAGAAAAAGTTTGT TTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGA AATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGAT TGTCTAATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTAGCTTAAAATTAAACAGATT TTGTAATAATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAG TGACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTGA GGGTTCTGAAATCAATGTGGTCCCTCTCTTGCCCACTAAACAAAGATGGTTGTTCGGGGTTTGGG ATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTG ACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAG ACAAGCACAGCACACAGACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTGG AACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATGGTGGCTCCTTT CTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAGTTGTAACTCT CTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTGTTTCTGGGGGAAAAA

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACESE GGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSNSQ YRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK PYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKTSPNQ STLWISKSTRKESGMEV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217