COMP S265F Unit 6: Languages, Finite Automata, Regular Expressions

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

Overview

- Basics:
 - > Alphabet, String over an alphabet, Language
 - > Decision problem = Language acceptance problem
- Finite state machine:
 - >States, Input & Output alphabets,
 - >Transition & Output functions (representations), Starting state
 - >Example: Binary adder
- Finite automaton:
 - States, Input alphabet, Transition function, Starting state, Final states
 - > Deterministic vs Nondeterministic Finite Automaton (DFA vs NFA)
 - >Pumping lemma
 - >NFA with ε moves
- Regular expression

Basics: Formal language

- An alphabet, usually denoted by Σ or Γ, is a set of symbols.
 E.g., Σ = {0,1}; Σ = {a,b,c,d,...,x,y,z}.
- A string over an alphabet is a sequence of symbols from that alphabet.
 - E.g., 10111001 is a string over the alphabet {0,1}; "computers" is a string over the alphabet {a,b,..,y,z}.
- The length of a string is the number of symbols in the string.
 E.g., The length of "computers" is 9.
- The null string or empty string is a string of length 0.

Basics: Formal language (cont')

- Σ^* denotes the set of all possible strings over the alphabet Σ , including the empty string.
- Σ^{i} , where $i \ge 1$, denotes the set of strings of length exactly i. E.g., $\Sigma = \{0, 1\}$, and $\Sigma^{2} = \{00, 10, 11, 01\}$

```
A language L over an alphabet \Sigma is a set of strings over \Sigma. I.e., L \subseteq \Sigma^*.

E.g., \Sigma = \{a,b,c,d,...,x,y,z\};

• L_1 = \{algorithms, complexity, computer, PC, unix\};

• L_2 = \{w \in \Sigma^* \mid w \text{ contains an "a"}\}

E.g., \Sigma = \{0, 1\};

• L_3 = \{w \in \Sigma^* \mid w \text{ is a } \textit{prime} \text{ binary number}\}
```

Languages versus Decision problems

- Decision (yes/no) problems: Given a binary string x, determine whether x is prime.
- Language acceptance problem: Given a binary string x, determine whether x is an element of L₃.
- Note that $x \in L_3$ if and only if x is prime.

Language acceptance problem

In general, any decision problem can be formulated as a language acceptance problem.

- Let ${\sf P}$ be any decision problem; assume the input is a string over an alphabet Σ .
 - The answer of P with respect to any input $w \in \Sigma^*$ is either "YES" or "NO".
- The corresponding language L is
 {w ∈ Σ* | the answer of P w.r.t. input w is "YES" }.
 NB. L includes all positive instances of P.
- An algorithm that can accept (decide) correctly the elements of L also solves the problem P.

Modeling Computation

- We will study three models of computation in this course: finite automata, pushdown automata and Turing machines.
- They are very simple, and their computation can be argued mathematically.
- Finite automata are primitive, modelling computers with a very limited memory.
- Turing machines are more powerful and can model the computation of a PC or any computer.
- Based on Turing machines, we can easily study the limitation of computers, showing that some problems cannot be solved by computers.

Computability & Complexity theory: Classification of problems

Finite state machines

The control - At any time the machine is in a particular **state**. In one step, it reads an input. Depending on what is read and the current state, the machine jumps to another state and outputs something.

- The number of possible states is fixed in advance, i.e., independent of the input.
- The state transition is pre-specified by a function.

Example: Vending machine

- Input: 5 cents (nickel), 10 cents (dime), 25 cents (quarter),
 Orange button, Red button
- Output: change, Orange juice, Apple juice
- Control: 7 possible states

Finite state machine: Formal definition

A finite state machine $M = (S, I, O, f, g, s_0)$ consists of

- a finite set S of states,
- a finite input alphabet I,
- a finite output alphabet O,

What are the possible input/output symbols?

- a transition function f: S × I → S that assigns a new state to each combination of state and input,
- an output function g: S × I → O that assigns to each state and input an output,
- a starting state s₀

NB. Alphabet = set of symbols

Transition/Output function

can be represented by a table or a diagram.

s0	s1	s2	s3	s4
s1	s2	s2	s3	s0
s3	s1	s0	s4	s1
s4	s4	s4	s4	s2
	s1 s3	s1 s2 s3 s1	s1 s2 s2 s3 s1 s0	s1 s2 s2 s3 s3 s1 s0 s4

$$S = \{s0, s1, s2, s3, s4\}$$

 $I = \{a, b, c\}$

Finite state machine: Computation

Given a finite state machine M, how does it operate?

- First, the machine starts off in the state s₀.
- Let $x = x_1 x_2 x_3 ... x_n$ be the input, where each $x_i \in I$.
- The machine reads the input symbols one by one.
- After reading x_1 , M jumps to state $s = f(s_0, x_1)$ and outputs the symbol $g(s_0, x_1)$.
- Next, M reads x_2 and jumps to state $s' = f(s, x_2)$ and outputs the symbol $g(s, x_2)$.
- Next, M reads x_3 and jumps to state $s'' = f(s', x_3)$ and outputs the symbol $g(s', x_3)$.

• . . .

After the whole input is read, the computation ends.

Example: Binary adder

- A finite state machine with 2 states, representing carry=0 and carry=1.
- $S = \{s_0, s_1\}, I = \{00, 01, 10, 11\}, O = \{0, 1\}$
- The input 01 means the first operand is 0 and the second operand is 1...
 - E.g., if we want to add **0110** & **1000**, the input is **00**, **10**, **10**, **01**.

Finite state machine with no output

• In the literature, the studies of finite state machines focus on those which do not output. These machines only tell us whether the input is accepted (yes) or rejected (no).

• E.g., a finite state machine for checking whether the input is a binary string with odd parity.

How to signal the acceptance of input?

- Some of the states in the machine are marked as final states.
- If the machine, after reading the input, stops at a final state, the input is said to be *accepted* or recognized (Yes);
- if the machine stops at a non-final state, the input is said to be **rejected** (No).

E.g., input = 11011 (stops at s_0 ; rejected) input = 11011001 (stops at s_1 ; accepted)

S₁ is the final state; final states are represented by double circles

More examples

What are the inputs accepted by the following machines?

Finite automaton: Formal definition

A finite state machine with no output (also called a <u>finite automaton</u>) $M = (S, \Sigma, f, s_0, F)$ consists of

- a finite set S of states,
- an input alphabet Σ,
- a transition function $f: S \times \Sigma \to S$,
- a starting state s₀, and
- a set of F ⊆ S of final states.

No output alphabet & output function!

An input x, which is a string composed of symbols in Σ , is accepted or recognized by M if M on input x stops at a state in F.

Intuitively, M solves a decision (yes/no) problem rather than computing something.

Finite automaton: Languages

- Recall that a language is a subset of strings over a certain alphabet.
- The language accepted (recognized) by M comprises all the input strings over Σ that are accepted by M.
- I.e., $L(M) = \{ w \mid M \text{ accepts } w \}.$

Nondeterministic finite automaton

DFA

• The finite automata discussed so far are <u>deterministic</u> in the sense that given any pair of state and input, an automaton goes to a single state in the next step (because f is a function).

NFA

• A <u>nondeterministic finite automaton</u> is more flexible, allowing <u>more than one possible next state</u>.

NFA: Formal definition

NFA

- A <u>nondeterministic finite automaton</u> $M = (S, \Sigma, f, s_0, F)$ consists of
- a finite set S of states, an input alphabet Σ,
- a transition function f that assigns a set of states to each pair of state and input
- a starting state s_0 , and a set of $F \subseteq S$ of final states.
- Given an input **x**, M can <u>take different sequence of moves</u>, <u>arriving at different states</u>. Some of these states may be final and others may not.
- We say that **x** is **accepted/recognized** if, among all the states at which M can arrive, there is one in **F**.
- An NFA also defines a language, which comprises all the input strings it accepts.

NFA: Example

 Design an NFA to accept the set of strings of lower-case letters or bits containing at least two consecutive bits.

Is NFA more powerful than DFA?

- Is there a decision problem that can be solved by an NFA but not by a DFA?
- Is there a set of strings over a certain alphabet that can be accepted by an NFA but not by a DFA?
- The answer is NO.

Theorem: Let M be any NFA accepting a set L of strings.
 Then there exists a DFA M' that can accept exactly all strings in L.

Proof: Subset construction

- Suppose an NFA $M=(S,\Sigma,f,s_0,F)$ has **n** states, where **n** is a constant.
- After reading some input symbols, M can possibly reach more than one state, more precisely, a certain subset of states.
- On different inputs, M can reach different subsets of states.
 - How many possible subsets of states M can reach? Answer: 2ⁿ, which is also a constant.
- E.g., n=10. There are 1024 different subsets of states. No matter what is the input, the subset of states M can reach is one of these 1024 subsets.
- By definition, an input x is accepted by M if and only if one of the states at which M stops is a final state (i.e., in F).
- We construct a DFA M' to simulate M in the next slide...

Proof: Subset construction - DFA

- Let $S = \{s_0, s_1, \dots, s_{n-1}\}$ be the set of states of M.
- M' = (S',Σ,f',U₀,F') is a DFA with 2ⁿ "states", each "state"∈ S' is labeled with (and represents) a subset of S.

Let U and U' be two "states" of M'.

if and only if U' represents the subset containing all the states s_i such that s_i is in $f(s_i, a)$ for some state s_i in U.

$$s_i$$
 s_j s_j

Intuitively, M' uses one state to memorize all the possible states that can be reached in M.

M' (DFA) simulates M (NFA)

- What is the starting state of M'? $U_0 = \{s_0\}$.
- Which are the final states of M'?

 $U \subseteq S$ is a final state of M' if U contains a state in F.

- On any input x, M can reach a subset U of states
 - ⇔ M' can reach the state U.

NB. This can be proven using an induction on the length of x.

M accepts x ⇔ U contains a state in F

⇔ U is a final state of M'

 \Leftrightarrow M' accepts x.

Limitation of finite automata

Let L be the set of strings 00...00011...111 which contain the same number of 0's and 1's.

I.e., $L = \{01, 0011, 000111, \dots \}$.

Notation: Let **a**ⁱ denote the string with *i* a's.

Question: Can we construct a DFA or NFA to accept L?

 In other words, we want a finite automaton to check the number of 0's and 1's.

Answer: No, such an automaton doesn't exist.

NB. Roughly speaking, DFA has no memory to store a counter.

Proof (by contradiction)

- Suppose that there is a DFA M accepting L.
- Assume that M has n states and the starting state is s₀.
 Note that n is a constant.
- Consider the string $x = a^n b^n$. By definition, M should accept x.
- Denote the state of M after reading the 1st symbol of x as $s_{x,1}$.
- And similarly, $s_{x,2}, \ldots, s_{x,k}$ for the 2nd symbol, ..., k-th symbol, respectively.
- For convenience, we denote $s_{x,0} = s_0$.

Proof (by contradiction): Pigeonhole principle

- Consider the states $s_0(=s_{x,0})$, $s_{x,1}$, $s_{x,2}$, ..., $s_{x,n}$, $s_{x,n+1}$, ..., $s_{x,2n}$.
- Since M accepts x, s_{x,2n} is a final state of M.

- Note that M has n distinct states. By the pigeonhole principle, there exist 0 ≤ j < k ≤ n such that s_{x,i} = s_{x,k}
- What can we conclude?
- Let m = k-j. M accepts the string $a^{n-m} b^n$. What about $a^{n+m}b^n$?
- A contradiction occurs.

Pumping Lemma

Theorem: Let L be a language that can be accepted by a DFA M with n states. For any string s in L of length at least n, s can be divided into three pieces, s = xyz such that

- > |y| > 0,
- $> |xy| \le n$, and
- > for all $i \ge 0$, xy^iz is in L.

Proof: Let $s = s_1 s_2 s_3 \dots s_m$, where its length $m \ge n$.

- Let $r_1, r_2, ..., r_{m+1}$ be the sequence of states M enters in processing s.
- Among $r_1, r_2, ..., r_{n+1}$, by pigeonhole principle, $\exists p < q \text{ s.t. } r_p = r_q$.
- Now, let $\mathbf{x} = s_1 s_2 \dots s_{p-1}$, $\mathbf{y} = s_p s_{p+1} \dots s_{q-1}$, $\mathbf{z} = s_q s_{q+1} \dots s_m$.
- |y| = (q-1) p + 1 = q p > 0 (as p < q).
- $|xy| = q-1 \le n+1 -1 = n \text{ (as } q \le n+1).$
- \gt As \mathbf{x} takes M from $\mathbf{r_1}$ to $\mathbf{r_p}$, \mathbf{y} from $\mathbf{r_p}$ to $\mathbf{r_q} = \mathbf{r_p}$, \mathbf{z} from $\mathbf{r_q}$ to $\mathbf{r_{m+1}}$ (which is a final state), M must accept \mathbf{x} \mathbf{y}^i \mathbf{z} for all $i \ge 0$ (i.e., \mathbf{x} \mathbf{y}^i $\mathbf{z} \in \mathbf{L}$).

NFA with ε moves

power set of S

- Let ε denote the null string.
- Extend the transition function $f: S \times (\Sigma \cup \{\epsilon\}) \rightarrow P(S)$

$$\triangleright$$
E.g., f(a) = {q1, q2}; f(ϵ) = {q2, q3}

- Are NFA with ε moves more powerful than NFA and DFA?
- Answer: No.

NFA with ε moves vs. NFA

Lemma. Given an NFA M_{ϵ} with ϵ moves, we can construct another NFA M (without ϵ moves) accepting the same language. **Idea.** M uses the same set of states as M_{ϵ} .

For every pair of states (q, q'),

M has a transition from q to q' labeled with some a in Σ if and only if

in M_{ϵ} , there is a path from q to q' labeled with all ϵ except one a.

NFA with ε moves vs. NFA

Lemma. Given an NFA M_{ϵ} with ϵ moves, we can construct another NFA M (without ϵ moves) accepting the same language. **Idea.** M uses the same set of states as M_{ϵ} .

For every pair of states (q, q'),

M has a transition from q to q' labeled with some a in Σ if and only if

in M_{ϵ} , there is a path from q to q' labeled with all ϵ except one a.

Non-computational models

- Given a language (decision problem) L, we can reason whether there is a finite automaton (pda, or Turing machine) accepting L.
- In fact, languages that can be accepted by finite automata can be characterized by some non-computation-based models.
- Regular expressions
 - ightharpoonup Theorem. A language L is accepted by a DFA if and only if L = L(R) of some regular expression R.
- Right (Left) Linear grammars
 - >**Theorem.** A language L is accepted by a DFA if and only if L = L(G) of some right linear grammar G.

Equivalence

- DFA
- NFA
- NFA with ε moves
- Regular expressions

Regular Expressions

- A simple way to define a set of strings (i.e., a language).
- For example, (0 ∪ 1)0* denotes the set { 0, 1, 00, 10, 000, 100, 0000, 1000, ...}
- A recursive definition: R is a regular expression over an alphabet Σ if R is
 - \triangleright a for some a in Σ , ϵ , \emptyset ,
 - >(R1 ∪ R2), (R1 o R2), or R1*, where R1 and R2 are regular expressions.

R1 R2

More examples: 0*10*, (0 ∪ 1)*1

Regular Expressions: Languages

A regular expression R defines a language, denoted by L(R).

```
• R = a: L(R) = \{a\}.
• R = \boldsymbol{\epsilon}: L(R) = \{\boldsymbol{\epsilon}\} \text{ (i.e., the set of null string)}.
• R = \emptyset: L(R) \text{ is empty}.
• R = (R_1 \cup R_2): L(R) = \{w \mid w \text{ is in } L(R_1) \text{ or } L(R_2)\}.
• R = (R_1 \cup R_2): L(R) = \{w \mid w = \boldsymbol{xy} \text{ where } \boldsymbol{x} \text{ is in } L(R_1) \text{ and } \boldsymbol{y} \text{ is in } L(R_2)\}.
• R = R_1^*: L(R) = \{w \mid w \text{ is in } L(R_1)^*\}.
```

Def. $w = \varepsilon$ or $w_1 w_2 w_3 \dots w_n$, where $n \ge 1$ and each $w_i \in L(R1)$.

Regular Expressions: Examples

• (01*)*:

For convenience: we let R⁺ be shorthand for RR^{*}, i.e., R occurs at least 1 times.

· (01⁺)*:

• 1* Ø:

• 8*:

Regular Expressions & DFA

Theorem. Let L be a language accepted by a DFA M. Then there exists a regular expression R such that L(R) = L.

Implication: An NFA or DFA is no more powerful than a regular expression.

Regular Expressions & DFA (con't)

Theorem. Suppose L is accepted by a DFA. Then L = L(R) for some regular expression R.

Proof: Suppose L is accepted by a DFA M = (S, Σ, f, s_1, F) with n states. Let $S = \{s_1, s_2, ..., s_n\}$.

The transition function of M (i.e., f) defines a directed graph, in which every vertex is a state and every edge is labeled with a symbol in Σ. The following discussion is based on this graph:

From State s_i to State s_j

- Consider any k in the range [0, n].
- Let $S_{i,j} = \{ x \mid x \text{ is the string on the path from } \mathbf{s}_i \text{ to } \mathbf{s}_i \text{ in } M \}.$
- Let S_{i,j}(k) = { x | x is the string on the path from s_i to s_j in M, and excluding the two ends, every state on this path has a label s_b with b ≤ k}.

$$s_i \xrightarrow{a} \leq k \xrightarrow{b} \leq k \xrightarrow{e} \leq k \xrightarrow{h} \leq k \xrightarrow{a} s_i$$

A technical lemma

Lemma. $S_{i,j}(k) = S_{i,j}(k-1) \cup S_{i,k}(k-1) (S_{k,k}(k-1))^* S_{k,j}(k-1)$ **Proof.**

- Any string (i.e., path) in S_{i,i}(k-1) is also a string in S_{i,i}(k).
- If a string in S_{i,i}(k) passes state s_k, then
 - \triangleright it must first go from s_i to s_k via a path with label < k,
 - it may then go from s_k to s_k via a path with label < k,
 and this may repeat multiple times, and
 </p>
 - \succ it must finally go from s_k to s_j via a path with label < k.

$$\langle k \rangle \langle k$$

$S_{1,j}(n)$

- Suppose s_i is a state in F.
- What does $S_{1,i}(n) = S_{1,i}$ denote?
- Ans: The set of strings that M accepts using the final state s_i.
- Let L be the language accepted by M.
- Then, L is equal to the union of all S_{1,i}(n), where s_i ∈ F.

Converting DFA to regular expressions

Lemma. For any i, j, k, there is a regular expression R such that $L(R) = S_{i,i}(k)$.

Proof. By induction on k.

- **Base case:** k = 0.
- Let $a_1, a_2, ..., a_h$ be symbols in Σ such that $\mathbf{f}(\mathbf{s_i}, a_1) = \mathbf{s_j}$, $\mathbf{f}(\mathbf{s_i}, a_2) = \mathbf{s_j}, ..., \mathbf{f}(\mathbf{s_i}, a_h) = \mathbf{s_j}$.
- Let R be the regular expression $a_1 \cup a_2 \cup ... \cup a_h$.
- Then $L(R) = \{a_1, a_2, ..., a_h\} = S_{i,i}(0)$.

Lemma. For any i, j, k, there is a regular expression R such that $L(R) = S_{i,i}(k)$.

- Induction hypothesis: Suppose the lemma is true for k-1.
- Recall that $S_{i,j}(k) = S_{i,j}(k-1) \cup S_{i,k}(k-1) (S_{k,k}(k-1))^* S_{k,j}(k-1)$.
- By the induction hypothesis, there exists regular expressions R1, R2, R3, and R4 such that
 - >L(R1) = $S_{i,j}(k-1)$, >L(R2) = $S_{i,k}(k-1)$, >L(R3) = $S_{k,k}(k-1)$, >L(R4) = $S_{k,i}(k-1)$.
- Then, R = R1 ∪ (R2 (R3)* R4) is a regular expression such that L(R) = S_{i,i}(k).

From regular expressions to NFA

Theorem. Let R be a regular expression. Then there exists an NFA with ε moves M such that L(M) = L(R).

Proof. By induction on the structure of R.

• R = ∅:

From regular expressions to NFA (cont')

• R = **a**:

• $R = \varepsilon$:

From regular expressions to NFA: Induction step

Consider a regular expression R. Assume the theorem is true for all sub-expressions of R.

Case 1.
$$R = ST$$

Combine the two NFAs to make a bigger NFA for R.

- For each final state q of M_S , add an ϵ transition to the start state of M_T .
- New final states: All final states of M_T remain final states.
- What about the final states of M_S?

From regular expressions to NFA: Induction step (cont')

Case 2. $R = S \cup T$

• Create a new start state, which has an ϵ transition to the start state of M_S and M_T .

What are the new final states?

 Ans: Final states of M_S and M_T.

From regular expressions to NFA: Induction step (cont')

Case 3. $R = T^*$

- Create a new start state, which is also a new final state, and has an ε transition to the original start state.
- Each original final state has an ε transition to the original start state.

