

GRAU DE MATEMÀTIQUES

Treball final de grau

EL MEU TFG

Autor: Víctor Rubio Jiménez

Director: Dr. Ignasi Mundet

Realitzat a: Departament de matemàtiques i informàtica

Barcelona, 21 de febrer de 2025

Abstract

My wonderful abstract.

Resum

- Explicar diferència entre Continu i Diferenciable i totes les restriccions
- $\bullet\,$ Explicar C1 i mobius
- Mirar tor ambient space isometric embeddings square flat torus
- MIrar article Nash, Gromov
- Mirar quin Cn agafa al paper band

Agraïments

blablabla

Índex

1	Introducció	iv
2	Comencem	1
3	Teorema Nash-Kuiper C1 3.1 Explicació del Sung-Jin Oh	2
4	Paper Mobius strip	5
5	Conclusions	6

Introducció

Objectius del treball

 \bullet explicats

Estructura de la memòria

tremendo

Guia de lectura

faig servir incrustació, que potser hauria de dir immersió?

Comencem

Teorema Nash-Kuiper C1

3.1 Explicació del Sung-Jin Oh

Teorema 3.1.1. Sigui (M,g) una superfície, $N \ge \dim M + 1$ i $u : M \to \mathbb{R}^N$ una incrustació estrictament curta, és a dir, tal que la longitud de cada vector en M s'escurça (estrictament) sota ∇u . Aleshores u es pot aproximar uniformement per incrustacions isomètriques C^1 .

Per exemple, l'homotècia $\mathbb{S}^2 \to \varepsilon \mathbb{S}^2$ amb $\varepsilon \in (0,1)$ és una aplicació curta.

Observació 3.1.2. De fet, qualsevol incrustació C^2 isomètrica $u: \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ ha de ser igual a la incrustació estàndar $\mathbb{S}^2 \hookrightarrow \{x \in \mathbb{R}^3 : |X| = 1\}$ fins translació i rotació.

Això és demostra amb integració convexa.

Sung-Jin Oh demostra aquí el Baby Nash theorem. Sigui $D = \{x \in \mathbb{R}^2 : |x| < 1\}$ el disc unitat, i $g = g_{ij}(x)$ una mètrica de D. Una aplicació $u : D \to \mathbb{R}^n$ és una immersió si $\nabla u(x)$ és injectiva per tot x. La mètrica en D induïda per u és de la forma

$$\nabla u^{\mathsf{T}}(x)\nabla u(x) = \begin{pmatrix} \nabla_1 u \nabla_1 u & \nabla_1 u \nabla_2 u \\ \nabla_2 u \nabla_1 u & \nabla_2 u \nabla_2 u \end{pmatrix}$$

Diem que l'aplicació és isomètrica si $\nabla u^{\mathsf{T}} \nabla u = g$, i diem que és (estrictament) curta si $\nabla u(x) \nabla u(x) - g(x) \leq 0$ per tot $x \in D$.

Teorema 3.1.3. Sigui $n \geq 4$ i $u: D \to \mathbb{R}^n$ una immersió isomètrica estrictament curta. Per qualsevol $\varepsilon > 0$, existeix una immersió isomètrica C^1 $\tilde{u}: D \to \mathbb{R}^n$ tal que $\|u-v\|_{C^0(D)} < \varepsilon$.

Observació 3.1.4. Aquest teorema necessita que la codimensió sigui com a mínim 2.

La manera de demostrar aquest resultat és a través d'un mètode iteratiu amb passos altament oscl·lants. Sigui $u_1=u+U$ amb

$$U = \sum_{I \in \mathcal{I}} U_I$$

Volem que cada component U_I^j sigui complex, per tal que oscil·li com $e^{ix\cdot\xi}$ però el resultat del sumatori sigui real. Així, imposem per cada $I\in\mathcal{I}$ que exiteixi $\overline{I}\in\mathcal{I}$ tal que

$$U_{\overline{I}} = \overline{U}_I, \quad \overline{\overline{I}} = I.$$

Ara tenim un error mètric $h_1 = g - \nabla u_1^{\mathsf{T}} \nabla u_1$.

$$h_1 = \left(h - \sum_I \nabla \overline{U}_I^\intercal \nabla U_I \right) - \sum_I \left(\nabla u^\intercal \nabla U_I + \nabla U_I^\intercal \nabla u \right) - \sum_{I,J:J \neq \overline{I}} \nabla U_I^\intercal \nabla U_J.$$

I anomenem els tres sumands, en ordre, $q_{\text{mèt}}$, q_{lin} i q_{alt} .

Volem una correcció que oscil·li en una sola direcció $\xi \in \mathbb{R}^2$, $|\xi| = 1$. Posem

$$U_I = W = \frac{1}{\lambda} a(x) \mathbf{n}(x) e^{\lambda i x \cdot \xi},$$

amb $a:D\to\mathbb{R}$ i $\mathbf{n}:D\to\mathbb{C}^n$ tal que $\mathbf{n}\cdot\overline{\mathbf{n}}=1$. Perque sigui real, definim també $\overline{I}\in\mathcal{I}$ tal que

$$U_{\overline{I}} = \overline{W} = \frac{1}{\lambda} a(x) \overline{\mathbf{n}}(x) e^{-\lambda i x \cdot \xi}.$$

Per eliminar el terme $q_{\text{mèt}}$, observem que

$$\nabla_{j}W = i\xi_{j}a(x)\mathbf{n}(x)e^{\lambda ix\cdot\xi} + \frac{1}{\lambda}\nabla_{j}(a(x)\mathbf{n}(x)e^{\lambda ix\cdot\xi})$$
$$= i\xi_{j}a(x)\mathbf{n}(x)e^{\lambda ix\cdot\xi} + O(\frac{1}{\lambda})$$

EXPLICAR PER QUE ÉS O(1/LAMBDA)!!! I, per tant,

$$\nabla_i W^*(x) \nabla_j W(x) = (-i\xi_i a(x) e^{-\lambda i x \cdot \xi}) (i\xi_j a(x) e^{\lambda i x \cdot \xi}) \overline{\mathbf{n}}(x) \cdot \mathbf{n}(x) + O(\frac{1}{\lambda})$$
$$= \xi_i \xi_j a(x)^2 + O(\frac{1}{\lambda})$$

on definim $(\cdot)^* = (\bar{\cdot})^\intercal$. Així, la oscil·lació és cancel·lada i en resulta un terme $a(x)^2 \xi_i \xi_j$.

Exemple 3.1.5. EXPLICAR MILLOR AQUEST EXEMPLE Posem que per un cert $x \in D$, l'error h és de la forma

$$h(x) = a^{2}(x)\xi \otimes \xi + b^{2}(x)\xi' \otimes \xi' + c^{2}(x)\xi'' \otimes \xi''$$

Aleshores, amb això fem desaparèixer el terme $\xi \otimes \xi$. Repetint-ho per $\xi' \otimes \xi'$ i $\xi'' \otimes \xi''$ aconseguim reduir l'error h(x) a un terme $O(\frac{1}{\lambda})$.

Observació 3.1.6. EXPLICAR AQUESTA OBSERVACIÓ Aquest mètode requereix que h sigui curta, ja que $\nabla_i W^*(x) \nabla_j W(x)$ és un terme no-negatiu. De fet, per tal que h_1 sigui curt, necessitem que h sigui estrictament curt.

Ara bé, els autovectors ξ depenen de x. Això es pot resoldre amb el seguent lema.

Lema 3.1.7. (Decomposició de l'error mètric) Sigui \mathcal{P} l'espai de totes les matrius definides positives. Existeix una successió $\xi^{(k)}$ de vectors unitaris en \mathbb{R}^n i una successió $\Gamma_{(k)} \in C_c^{\infty}(\mathcal{P};[0,\infty))$ tals que

$$A_{ij} = \sum_{k} \Gamma_{k}^{2}(A) \xi_{i}^{(k)} \xi_{j}^{(k)}$$

i aquesta suma és localment finita. És a dir, existeix $N \in \mathbb{N}$ tal que per tot $A \in \mathcal{P}$ com a màxim N termes de $\Gamma_{(k)}$ són no-nuls.

Observació 3.1.8. La demostració d'aquest teorema no l'escrivim aquí explícitament. ESTA AL SUNG-JIN OH.

Fins ara no ha calgut específicar el vector $\mathbf{n}(x) \in \mathbb{C}^n$ per tal de minimitzar l'error mètric. Veurem que el podem escollir de tal manera que els termes q_{lin} i q_{alt} desapareguin fins a terme $O(1/\lambda)$.

ullet Error de linearització. Substituïm el terme amb W

$$\nabla_i u^{\mathsf{T}} \nabla_j W = i \xi_j a(x) e^{ix \cdot \xi} \nabla_i u \cdot \mathbf{n} + O(1/\lambda)$$

i veiem que podem eliminar aquest component escollint un vector perpendicular a l'espai tangent de u(x), $\mathbf{n}(x) \perp \nabla_j u(x)$. Això es pot fer perquè l'espai té codimensió 1 (REVISAR!!!)Podem fer el mateix amb $\nabla_i W^{\mathsf{T}} \nabla_j u$ i obtenim

$$\nabla_i u^{\mathsf{T}} \nabla_j W + \nabla_i W^{\mathsf{T}} \nabla_j u = O(1/\lambda)$$

• Interferència altament oscil·lant. De nou, substituïm el terme

$$\nabla_i W^{\mathsf{T}} \nabla_i W = (-a^2(x)\xi_i \xi_j e^{2ix\cdot \xi}) \mathbf{n} \cdot \mathbf{n} + O(1/\lambda).$$

I ara només cal aprofitar que la incrustació té codimensió ≥ 2 per escollir un vector complex tal que $\mathbf{n} \cdot \mathbf{n} = 0$. Podem prendre, per exemple,

$$\mathbf{n} = \frac{1}{i\sqrt{2}}\zeta(x) + \frac{1}{i\sqrt{2}}\eta(x)$$

on $\zeta(x)$ i $\eta(x)$ són vectors reals unitaris ortogonals a l'espai tangent $T_{u(x)}u(D)$.

Paper Mobius strip

Conclusions

Hem apres un munt

Bibliografia

Autor
1, A., & Autor
2, B. (ANY). Nom del treball. Cambridge University Press.