Planche nº 23. Arithmétique

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice no 1 (** I)

Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par : $F_0=0$, $F_1=1$ et pour tout $n\in\mathbb{N}^*$, $F_{n+2}=F_{n+1}+F_n$ (suite de Fibonacci).

Montrer que pour tout $n \in \mathbb{N}^*$, F_n et F_{n+1} sont des entiers premiers entre eux.

Exercice nº 2 (**)

- 1) Soit p un nombre premier. Résoudre sans $\mathbb{Z}/p\mathbb{Z}$ l'équation $x^2=\widehat{1}$.
- 2) Même question dans $\mathbb{Z}/12\mathbb{Z}$.
- 3) Résoudre dans $\mathbb{Z}/19\mathbb{Z}$ l'équation $x^7 = \hat{1}$.

Exercice nº 3 (**)

Montrer que $\widehat{223}$ est inversible dans $(\mathbb{Z}/418\mathbb{Z}, +, \times)$ et déterminer son inverse.

Exercice nº 4 (**)

- 1) Résoudre dans $\mathbb{Z}/19\mathbb{Z}$ le système $\left\{ \begin{array}{l} \widehat{3}x+\widehat{4}y=\widehat{0}\\ \widehat{4}x+\widehat{3}y=\widehat{5} \end{array} \right..$
- 2) Résoudre le même système dans $\mathbb{Z}/18\mathbb{Z}$.

Exercice no 5 (*** I)

On note ϕ l'indicatrice d'Euler : pour tout $n \geqslant 2$, $\phi(n) = \operatorname{card}\{k \in [\![1,n]\!]/ k \land n = 1\} = \operatorname{card}((\mathbb{Z}/n\mathbb{Z})^*)$.

Soit $n \ge 2$. Pour tout diviseur d en n, on pose $E_d = \{k \in [1, n] / k \land n = d\}$.

- 1) Déterminer le cardinal de E_d.
- 2) En déduire que $n = \sum_{d \mid n} \phi(d)$.

Exercice nº 6 (**)

Soit $m \ge 2$. Montrer qu'il existe m entiers naturels consécutifs qui ne sont pas des nombres premiers.

Exercice no 7 (***)

- 1) Soit $n \in \mathbb{N}^*$. Soit p un nombre premier impair divisant $n^2 + 1$. Montrer que $p \equiv 1$ [4].
- 2) Montrer qu'il existe une infinité de nombres premiers de la forme 4K + 1, $K \in \mathbb{N}^*$.

Exercice nº 8 (**)

Résoudre dans \mathbb{Z} le système $\left\{ \begin{array}{l} x \equiv 4 \; [9] \\ x \equiv 2 \; [13] \end{array} \right. .$

Exercice nº 9 (*)

Montrer que $5^{657} - 5$ est divisible par 12.