Bayesian inference for sample surveys

Roderick Little and Trivellore Raghunathan Module 9: Role of sampling weights in regression

Weighting and models

- The weights can't generally be ignored from a modeling perspective
 - Ignores different selection effects that bias estimates
- Weights are <u>auxiliary covariates</u> from a modeling perspective
- Design: weight the respondents
 - One size fits all Y variables
- Model: use weights to help predict non-sampled and non-responding values
 - Weighting adds noise for Y's unrelated to weights
- The model perspective is more flexible (but potentially more work)

 Sampling weights in regression

Weighting in multiple regression

- Model-based: standard method of estimation is ordinary least squares (OLS)
 - OLS if the residual variance is constant
 - Or WLS, weighting by the inverse of the residual variance,
 if the residual variance is not constant:

$$y_i \mid x_i \sim N(\beta_0 + \beta^T x_i, \sigma^2 / u_i), w_i \propto u_i$$

- Design-based: WLS, weighting cases by inverse of probability of selection, $w_i = 1/\pi_i$
- These approaches to weighting are in general different, so which is right?
 - Much debated in the literature. See for example Brewer and Mellor (1973), DuMouchel and Duncan (1983)

Key concepts

- <u>Superpopulation parameters</u>: parameters included in a superpopulation model (e.g. the regression coefficients in a multiple regression model)
- <u>Finite population quantities</u>: population quantities defined by fitting model to the whole population, by some specified method (e.g. ordinary least squares)
- <u>Target model</u>: a model that defines the target quantity (or quantities) of interest
- Working model: a model used for predicting nonsampled units in the population
 - Could be Bayesian

Target model and working model 1

• Design: stratified sampling, Z = strata

Target quantity: \overline{Y}

Target model: $y_i \sim_{iid} N(\mu, \sigma^2)$

(\overline{Y} is estimate of μ from fitting this model to population)

Working model: $(y_i | z_i = j) \sim_{iid} N(\mu_j, \sigma^2)$

(Prediction model needs to condition on strata)

Resulting estimate of \overline{Y} weights cases by their sampling weights

Target model and working model 2

• Design: stratified sampling, Z = strata

Target quantity: \overline{Y}_j = mean of Y in stratum j

Target = working model: $(y_i | z_i = j) \sim N(\mu_j, \sigma^2)$

Estimate of $\overline{Y}_i = \overline{y}_i$, sample mean in stratum j

(Not weighted since weights are constant within strata)

Weighting in Regression

- Appropriate analysis depends on how the variables leading to the design weights enter the model of substantive interest
 - (a) all are included
 - (b) some are included, others aren't
 - (c) none are included
- Consider these distinctions for regression coefficients

• Target model:

```
y_i \mid x_i \sim N(\beta_0 + \beta^T x_i, \sigma^2 / u_i), u_i \text{ known (constant for OLS)}
```

- Target parameter: β
- Corresponding finite population parameter: B = result of fitting model to the entire population

 z_i = design variables leading to sampling weights (stratum, size in pps sample)

- Consider three cases:
- (a) z_i included as part of x_i
 - (b) z_i not a part of x_i
 - (c) $z_i = (z_{i1}, z_{i2}), z_{i1}$ a part of x_i, z_{i2} not a part of x_i

(a) z_i included as part of x_i

If working model is correctly specified, then regression with weight u_i is correct – no need to include the sample weight

Design-weighted regression with weight $u_i w_i$ yields a design-consistent estimate of the target population quantity B. If this differs markedly from model estimate with weight u_i , this suggests model is misspecified, and assumptions need checking.

(b) z_i not a part of x_i

Working model with weight u_i is subject to a known selection bias arising from the stratified design – only valid if this selection does not affect the target parameter estimate Principled modeling approach is to regress y_i on x_i and z_i and then average over the distribution of z_i given x_i ; e.g. if

$$E(y_i \mid x_i, z_i) = \gamma_0 + \gamma_1 x_i + \gamma_2 z_i \text{ then}$$

$$E(y_i | x_i) = \gamma_0 + \gamma_1 x_i + \gamma_2 E(z_i | x_i, \psi), \text{ etc.}$$

Bayes simulation: impute draws of the non-sampled values of Y based on regression of Y on X, Z, and then fit regression of Y on X to imputed population. Repeat to simulate posterior distribution of β

(b) z_i not a part of x_i

Pragmatic approach: design-based regression of y_i on x_i with weights $w_i u_i$

Model-based justification: assume a working model with a different regression model for y_i on x_i within each stratum defined by Z. Regression of y_i on x_i with weight w_iu_i then approximates the posterior mean of β . (Little 2004, Example 11)

(b) z_i not a part of x_i

Pragmatic approach B: compare regression of y_i on x_i with weights $w_i u_i$ with regression of y_i on x_i with weights u_i . If coefficients of interest are close, effects of selection may be ignored, leading to model-based solution.

Dumouchel and Duncan (1983): provides a test of equality of coefficients from weighted and unweighted least squares
Uses weighted least squares as a specification check on the target model

(c) $z_i = (z_{i1}, z_{i2})$, z_{i1} a part of x_i, z_{i2} not a part of x_i

Principled modeling approach is to regress y_i on x_i and z_{i2} and then average over the distribution of z_{i2} given x_i ; e.g. if

$$E(y_i | x_i, z_{i2}) = \gamma_0 + \gamma_1 x_i + \gamma_2 z_{i2}$$
 then

$$E(y_i | x_i) = \gamma_0 + \gamma_1 x_i + \gamma_2 E(z_{i2} | x_i, \psi), \text{ etc.}$$

Bayes simulation: impute draws of the non-sampled values of Y based on regression of Y on X, Z_2 , and then fit regression of Y on X to imputed population. Repeat to simulate posterior distribution of β

(c) $z_i = (z_{i1}, z_{i2}), z_{i1}$ a part of x_i, z_{i2} not a part of x_i

Pragmatic approach: design-based regression of y_i on x_i with weights $w_{i2}u_i$, where w_{i2} is component of sampling weight attributable to z_{i2} (given z_{i1}).

(Weighting on $w_i u_i$ is ok but inefficient)

Pragmatic approach B: compare regression of y_i on x_i with weights $w_i u_i$ with regression of y_i on x_i with weights u_i . If coefficients of interest are close, effects of selection may be ignored, leading to model-based solution.

Summary

- Calibrated Bayes approach
 - Sampling weights as predictors
 - Flexible models for relationship between outcomes and sampling weights: eg penalized spline of propensity model
 - For regression, impute nonsampled cases using a target model that includes sampling weights (or stratum) as predictor; then fit target model to fitted population
- Next: cluster, multistage sampling