Lab 8 - BCC406

REDES NEURAIS E APRENDIZAGEM EM PROFUNDIDADE

Modelos Generativos

Prof. Eduardo e Prof. Pedro

Objetivos:

Predição de série temporal com redes recorrentes (RNN)

Data da entrega: 21/10

- Complete o código (marcado com ToDo) e quando requisitado, escreva textos diretamente nos notebooks. Onde tiver None, substitua pelo seu código.
- Execute todo notebook e salve tudo em um PDF nomeado como "NomeSobrenome-LabX.pdf"
- Envie o PDF via google <u>FORM</u>

Este notebook é baseado em tensorflow e Keras.

→ Predição de preço de criptomoedas com redes recorrentes

Informação sobre o Bitcoin : https://www.kaggle.com/ibadia/bitcoin-101-bitcoins-and-detailed-insights

O valor de uma criptomoeda, assim como um ativo financeiro do mercado de ações, pode ser configurado com uma série temporal. Aqui, consideraremos o valor ponderado do preço diário do Bitcoin para constuir nossa série. O objetivo deste estudo é predizer o próximo valor, baseado nos últimos valores da criptomoeda. Para tal, usaremos de redes recorrentes, pois as mesmas tem memória, o que é importante quando se trata de dados sequenciais.

Carregando os pacotes

Importa as bibliotecas necessárias
from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
import pandas as pd
from datetime import datetime
from sklearn.preprocessing import MinMaxScaler

```
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
import plotly.offline as py
import plotly.graph_objs as go
import numpy as np
import seaborn as sns
py.init_notebook_mode(connected=True)
%matplotlib inline
```

Vamos usar o pacote *quandl* para baixar diretamente dados fornecidos por uma corretora de criptomoedas (Kraken).

```
!pip install quandl
```

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/</a>
Collecting quandl
 Downloading Quandl-3.7.0-py2.py3-none-any.whl (26 kB)
Requirement already satisfied: numpy>=1.8 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: more-itertools in /usr/local/lib/python3.7/dist-packa
Requirement already satisfied: requests>=2.7.0 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from q
Collecting inflection>=0.3.1
  Downloading inflection-0.5.1-py2.py3-none-any.whl (9.5 kB)
Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: pandas>=0.14 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-pa
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-package
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-p
Installing collected packages: inflection, quandl
Successfully installed inflection-0.5.1 quandl-3.7.0
```

Carregando os dados

```
# baixa os dados da exchange Kraken, até o período atual.
import quandl
data = quandl.get('BCHARTS/KRAKENUSD', returns='pandas')
```

▼ Entendendo os dados

#exibe as primeiras linahs
data.head()

	0pen	High	Low	Close	Volume (BTC)	Volume (Currency)	Weighted Price
Date							
2014- 01-07	874.67040	892.06753	810.00000	810.00000	15.622378	13151.472844	841.835522
2014- 01-08	810.00000	899.84281	788.00000	824.98287	19.182756	16097.329584	839.156269
2014- 01-09	825.56345	870.00000	807.42084	841.86934	8.158335	6784.249982	831.572913

data.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 2713 entries, 2014-01-07 to 2021-06-20

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype		
0	0pen	2713 non-null	float64		
1	High	2713 non-null	float64		
2	Low	2713 non-null	float64		
3	Close	2713 non-null	float64		
4	Volume (BTC)	2713 non-null	float64		
5	Volume (Currency)	2713 non-null	float64		
6	Weighted Price	2713 non-null	float64		
4					

dtypes: float64(7)
memory usage: 169.6 KB

verifica os últimos dados. Repare na data. Deve ter dados atuais (Jun / 2021).
data.tail()

	O pen	High	Low	Close	Volume (BTC)	Volume (Currency)	Weighted Price
Date							
2021-06- 16	40167.3	40493.0	38120.0	38337.1	6487.206888	2.539206e+08	39141.737747
2021-06- 17	38337.1	39561.4	37405.0	38078.2	6003.220618	2.307246e+08	38433.468618
2021-06- 18	38078.2	38193.1	35126.0	35824.0	6558.468890	2.409217e+08	36734.445103

Repare que temos dados de abertura do pregão, fechamento, valor mais alto, valor mais baixo, volume diário do bitcoin e de todas as criptomoedas combinadas. E também, temos os preço ponderado pelos valores de compra/venda de um período, que em nosso caso é diário. Para facilitar, vamos usar o valor ponderado.

→ Plotando os dados

```
# imprima os dados
pyplot.plot(data['Weighted Price'])
```


▼ Pré-processamento dos dados

#existem alguns pontos com valor zero (outliers), vamos trocar por NaN e depois chamar um data['Weighted Price'].replace(0, np.nan, inplace=True) data['Weighted Price'].fillna(method='ffill', inplace=True)

imprima novamente e observe que não existe mais estes outliers. pyplot.plot(data['Weighted Price'])

- # vamos usar o preço ponderado como entrada para nossa rede recorrente
- # como já vimos, eh sempre bom normalizar os dados para ajudar na convergência do treiname
- # Normaliza na faixa entre [0 e 1]
- from sklearn.preprocessing import MinMaxScaler

Vamos considerar uma janela de um único dia para efetuar a predição. Para isso, use a função create_dataset(..) e deixe o parâmetro look_back=1. O parâmetro look_back controla a quantidade de dados que vai fazer parte da janela de entrada para a rede. Estude e entenda o que a função faz.

```
#função para criar os conjuntos de dados de treino
def create_dataset(dataset, look_back=1):
   dataX, dataY = [], []
    for i in range(len(dataset) - look_back):
        a = dataset[i:(i + look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i + look_back, 0])
    print(len(dataY))
    return np.array(dataX), np.array(dataY)
# entra com janela de 1 único valor
look back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
     1898
     813
trainX.shape, trainY.shape
     ((1898, 1), (1898,))
testX.shape, testY.shape
     ((813, 1), (813,))
```

Projeto de uma rede recorrente

Projete uma rede recorrente, usando alguma das camadas abaixo:

```
tf.keras.layers.LSTM
tf.keras.layers.GRU
tf.keras.layers.RNN
```

As camadas recorrentes (LSTM, GRU, RNN) podem ser bidirecionais ou simples, por exemplo, uma camada LSTM com 32 unidades e bidirecional:

```
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32))
```

Você também pode usar dropout e camadas densas em seu modelo.

Experimente três arquiteturas (rasas e profundas) e pelo menos dois algoritmos de otimização. Documente os resultados em uma tabela e anexe.

Por exemplo, você pode usar um modelo raso como o abaixo:

```
np.random.seed(42)

tf.random.set_seed(42)

model_1 = Sequential([
   LSTM(128,input_shape=[None,1]),
   Dense(1)
])
```

Com uma função de custo **Mean Square Error** e o algoritmo de otimização **ADAM**:

```
model_1.compile(loss='mse',optimizer = 'adam')
```

Ou pode usar um modelo profundo, mais complexo como o abaixo:

```
model = Sequential()
model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)))
model.add(Dense(units = 64, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(units = 1))
```

O erro médio quadrático deste último modelo, com o otimizador **ADAM** e erro médio quadrático como função de custo deve resultar em:

```
Test Root Mean Square Error (RMSE): 380.139
```

Observações

- 1. Seu RMSE pode ser diferente devido aos dados usados.
- 2. Use modelos diferentes dos de exemplo!

▼ ToDo: Projetando os seus modelos (30pt)

```
# Camadas LSTM, GRU, RNN - Bidirecionais ou simples
# 3 arquiteturas (rasas e profundas)
# 2 algoritmos de otimização
# Dropout e camadas densas
```

▼ Modelo 1:

```
# ToDO : projete o modelo aqui
# Rasa
model1 = Sequential()
model1.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(128, input_shape=[None,1])))
model1.add(Dense(units = 64, activation='relu'))
model1.add(Dense(units = 1))
#model1.compile(loss=tf.keras.losses.MSE,optimizer = tf.keras.optimizers.Adam())
```

▼ Modelo 2:

```
# ToDO : projete o modelo aqui
#Profunda
model2 = Sequential()
model2.add(tf.keras.layers.Bidirectional(tf.keras.layers.GRU(256, input_shape=[None,1])))
model2.add(Dense(units = 128, activation='relu'))
```

```
model2.add(Dense(units = 64, activation='relu'))
model2.add(Dense(units = 32, activation='relu'))
model2.add(Dense(units = 32, activation='relu'))
model2.add(Dense(units = 16, activation='relu'))
model2.add(Dense(units = 16, activation='relu'))
model2.add(Dense(units = 1))
#model2.compile(loss=tf.keras.losses.MSE,optimizer = tf.keras.optimizers.Adam())
```

▼ Modelo 3:

```
# ToDO : projete o modelo aqui
model3 = Sequential()
model3.add(tf.keras.layers.SimpleRNN(256, input_shape=[None,1]))
model3.add(Dense(units = 32, activation='relu'))
model3.add(Dense(units = 32, activation='relu'))
model3.add(Dense(units = 32, activation='relu'))
model3.add(tf.keras.layers.Dropout(0.01))
model3.add(Dense(units = 16, activation='relu'))
model3.add(Dense(units = 1))
#model3.compile(loss=tf.keras.losses.MAE,optimizer = tf.keras.optimizers.Adamax())
```

▼ ToDo: Função de custo (10pt)

Como é um problema de regressão, usaremos funções de custo apropriadas. Você pode usar, por exemplo, *Mean Absolute Error* (mae) ou *Mean Squared Error* (mse).

ToDo: Estude as funções de custo MAE e MSE. Qual das duas funções você usaria. Justifique sua escolha. Repare que vamos avaliar os modelos pela métrica *Root Mean Square Error* (RMSE).

O MSE penaliza os erros de maior magnitude, pois eleva ao quadrado o resultado do erro, sendo muito alto em base de dados que possuem muitos outliers, diferente do MAE que utiliza valores absolutos dos erros. Nesse caso, seria melhor a utilização do MSE, pois vai acentuar mais os erros, e se o MSE for baixo então o modelo terá um bom poder preditivo.

▼ ToDo: Função para treinar o seu modelo (15pt)

```
# Função para treinar o modelo
def train_model(model, loss, optimizer, trainX, trainY):
    # Compile o modelo : atenção para a função de CUSTO. Abaixo um exemplo de uso da 'mae'
    model.compile(loss=loss, optimizer=optimizer)

#treine o modelo
```

```
history = model.fit(trainX, trainY, validation_data=(testX, testY), epochs=50) # todo...

# plote a curva de custo
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()

pyplot.show()
```

▼ Função para avaliar o seu modelo

```
# Avaliando o modelo treinado
def evaluate model(model, testX, testY):
 # plote as curvas, valor real e valor predito no mesmo gráfico
 yhat = model.predict(testX)
  pyplot.title('Curva do valor real e valor predito na escala usado no treino')
  pyplot.plot(yhat, label='predict')
  pyplot.plot(testY, label='true')
  pyplot.legend()
  pyplot.show()
 # os valores foream normalizados para o treinamento.
 # Veja que para fazer sentido, eles devem voltar para a escala original.
 # Volta para escala em US dollar :
 yhat_inverse = scaler.inverse_transform(yhat.reshape(-1, 1))
 testY_inverse = scaler.inverse_transform(testY.reshape(-1, 1))
 # calcula o RMSE
  rmse = sqrt(mean_squared_error(testY_inverse, yhat_inverse))
  print('Test RMSE: %.3f' % rmse)
 # valor em US dollar
  pyplot.title('Curva do valor real e valor predito em US dollar')
  pyplot.plot(yhat_inverse, label='predict')
  pyplot.plot(testY inverse, label='actual', alpha=0.5)
  pyplot.legend()
  pyplot.show()
```

▼ ToDo: Treinando e avaliando o seu modelo (15pt)

▼ Modelo 1

```
# Modelo 1
train_model(model1, tf.keras.losses.MSE, tf.keras.optimizers.Adam(), trainX, trainY)
```

evaluate_model(model1, testX, testY)

```
LPUCII I/JU
60/60 [============ ] - 5s 21ms/step - loss: 8.8028e-04 - val los
Epoch 2/50
Epoch 3/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.2750e-05 - val_loss
Epoch 4/50
60/60 [============= ] - 0s 6ms/step - loss: 1.2196e-05 - val_loss
Epoch 5/50
60/60 [============= ] - 0s 7ms/step - loss: 1.2767e-05 - val_loss
Epoch 6/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.6106e-05 - val_loss
Epoch 7/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.2993e-05 - val_loss
Epoch 8/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.2672e-05 - val_loss
Epoch 9/50
60/60 [============= ] - 0s 6ms/step - loss: 1.3238e-05 - val_loss
Epoch 10/50
Epoch 11/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.2420e-05 - val_loss
Epoch 12/50
60/60 [============= ] - 0s 6ms/step - loss: 1.3391e-05 - val_loss
Epoch 13/50
Epoch 14/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.3156e-05 - val_loss
Epoch 15/50
60/60 [============= ] - 0s 6ms/step - loss: 1.4394e-05 - val_loss
Epoch 16/50
60/60 [============== ] - 0s 6ms/step - loss: 1.2707e-05 - val_loss
Epoch 17/50
Epoch 18/50
60/60 [============= ] - 0s 6ms/step - loss: 1.4514e-05 - val_loss
Epoch 19/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.7467e-05 - val_loss
Epoch 20/50
Epoch 21/50
60/60 [============= ] - 0s 6ms/step - loss: 1.3326e-05 - val_loss
Epoch 22/50
60/60 [============ ] - 0s 6ms/step - loss: 1.2292e-05 - val loss
Epoch 23/50
Epoch 24/50
60/60 [================== ] - 0s 6ms/step - loss: 1.6435e-05 - val loss
Epoch 25/50
60/60 [================== ] - 0s 6ms/step - loss: 1.5920e-05 - val loss
Epoch 26/50
Epoch 27/50
60/60 [============== ] - 0s 6ms/step - loss: 1.2736e-05 - val_loss
Epoch 28/50
60/60 [============= ] - 0s 6ms/step - loss: 1.3189e-05 - val_loss
Epoch 29/50
Epoch 30/50
60/60 [================ ] - 0s 6ms/step - loss: 1.3137e-05 - val_loss
Epoch 31/50
```

```
Epoch 32/50
Epoch 33/50
60/60 [============= ] - 0s 6ms/step - loss: 1.3628e-05 - val_loss
Epoch 34/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.4472e-05 - val loss
Epoch 35/50
60/60 [============= ] - 0s 6ms/step - loss: 1.3123e-05 - val_loss
Epoch 36/50
60/60 [============ ] - 0s 6ms/step - loss: 1.5441e-05 - val_loss
Epoch 37/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.4380e-05 - val loss
Epoch 38/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.3002e-05 - val_loss
Epoch 39/50
60/60 [============ ] - 0s 6ms/step - loss: 1.4163e-05 - val_loss
Epoch 40/50
Epoch 41/50
60/60 [============ ] - 0s 6ms/step - loss: 1.3730e-05 - val_loss
Epoch 42/50
60/60 [=========== ] - 0s 6ms/step - loss: 1.1985e-05 - val loss
Epoch 43/50
Epoch 44/50
60/60 [============ ] - 0s 6ms/step - loss: 1.4153e-05 - val_loss
Epoch 45/50
                       1 0- (--/--- 1--- 1 2524- 05 ...] 1---
```

▼ Modelo 2

```
Fnoch 48/50
# Modelo 2
train_model(model2, tf.keras.losses.MSE, tf.keras.optimizers.Adam(), trainX, trainY)
evaluate model(model2, testX, testY)
```

```
LPUCII I/JU
Epoch 2/50
Epoch 3/50
60/60 [============ ] - 1s 12ms/step - loss: 1.8951e-05 - val_los
Epoch 4/50
60/60 [============= ] - 1s 13ms/step - loss: 1.5745e-05 - val_los
Epoch 5/50
60/60 [============= ] - 1s 12ms/step - loss: 2.5711e-05 - val_los
Epoch 6/50
60/60 [============ ] - 1s 12ms/step - loss: 1.7850e-05 - val_los
Epoch 7/50
60/60 [============ ] - 1s 12ms/step - loss: 2.8531e-05 - val_los
Epoch 8/50
60/60 [============ ] - 1s 11ms/step - loss: 2.1339e-05 - val_los
Epoch 9/50
60/60 [============= ] - 1s 11ms/step - loss: 1.5850e-05 - val_los
Epoch 10/50
60/60 [=============== ] - 1s 11ms/step - loss: 1.6278e-05 - val_los
Epoch 11/50
60/60 [=========== ] - 1s 11ms/step - loss: 2.3219e-05 - val los
Epoch 12/50
60/60 [============= ] - 1s 11ms/step - loss: 2.4474e-05 - val_los
Epoch 13/50
60/60 [============= ] - 1s 12ms/step - loss: 1.9968e-05 - val_los
Epoch 14/50
60/60 [============ ] - 1s 11ms/step - loss: 2.2057e-05 - val_los
Epoch 15/50
60/60 [============= ] - 1s 11ms/step - loss: 1.9057e-05 - val_los
Epoch 16/50
Epoch 17/50
60/60 [============ ] - 1s 12ms/step - loss: 1.6689e-05 - val_los
Epoch 18/50
60/60 [============= ] - 1s 12ms/step - loss: 1.9214e-05 - val_los
Epoch 19/50
60/60 [============ ] - 1s 13ms/step - loss: 1.5477e-05 - val_los
Epoch 20/50
60/60 [============== ] - 1s 12ms/step - loss: 1.7078e-05 - val_los
Epoch 21/50
Epoch 22/50
60/60 [============ ] - 1s 12ms/step - loss: 1.6941e-05 - val los
Epoch 23/50
Epoch 24/50
Epoch 25/50
60/60 [================== ] - 1s 12ms/step - loss: 2.6943e-05 - val los
Epoch 26/50
Epoch 27/50
60/60 [============== ] - 1s 13ms/step - loss: 1.3863e-05 - val_los
Epoch 28/50
60/60 [============== ] - 1s 14ms/step - loss: 2.3769e-05 - val_los
Epoch 29/50
Epoch 30/50
Epoch 31/50
```

```
Lab8.ipynb - Colaboratory
60/60 [============= ] - 1s 13ms/step - loss: 1.5082e-05 - val_los
Epoch 32/50
60/60 [================== ] - 1s 13ms/step - loss: 1.9500e-05 - val los
Epoch 33/50
60/60 [============== ] - 1s 14ms/step - loss: 1.7220e-05 - val_los
Epoch 34/50
60/60 [============ ] - 1s 14ms/step - loss: 1.5074e-05 - val_los
Epoch 35/50
60/60 [============= ] - 1s 13ms/step - loss: 2.1591e-05 - val_los
Epoch 36/50
60/60 [=================== ] - 1s 13ms/step - loss: 2.3466e-05 - val_los
Epoch 37/50
60/60 [============ ] - 1s 12ms/step - loss: 2.4139e-05 - val_los
Epoch 38/50
60/60 [============ ] - 1s 14ms/step - loss: 1.8513e-05 - val_los
Epoch 39/50
60/60 [================== ] - 1s 12ms/step - loss: 2.0983e-05 - val_los
Epoch 40/50
60/60 [============= ] - 1s 12ms/step - loss: 1.8302e-05 - val_los
Epoch 41/50
60/60 [============== ] - 1s 11ms/step - loss: 1.4012e-05 - val_los
Epoch 42/50
60/60 [============ ] - 1s 11ms/step - loss: 1.7418e-05 - val_los
Epoch 43/50
60/60 [============= ] - 1s 13ms/step - loss: 1.9326e-05 - val_los
Epoch 44/50
60/60 [============== ] - 1s 11ms/step - loss: 1.7937e-05 - val_los
Epoch 45/50
60/60 [============ ] - 1s 11ms/step - loss: 1.4157e-05 - val_los
Epoch 46/50
60/60 [============== ] - 1s 13ms/step - loss: 1.3272e-05 - val_los
Epoch 47/50
60/60 [============== ] - 1s 13ms/step - loss: 1.6444e-05 - val_los
Epoch 48/50
60/60 [============ ] - 1s 12ms/step - loss: 2.4420e-05 - val_los
Epoch 49/50
60/60 [============== ] - 1s 13ms/step - loss: 1.5651e-05 - val_los
Epoch 50/50
60/60 [=================== ] - 1s 12ms/step - loss: 2.7083e-05 - val los
                                      train

    test

0.004
0.003
0.002
```


Curva do valor real e valor predito na escala usado no treino

▼ Modelo 3

Tast DMCF. 2054 206

Modelo 3

train_model(model2, tf.keras.losses.MAE, tf.keras.optimizers.Adamax(), trainX, trainY)
evaluate_model(model2, testX, testY)

```
LPUCII I/JU
Epoch 2/50
Epoch 3/50
60/60 [============ ] - 1s 13ms/step - loss: 0.0016 - val_loss: 0
Epoch 4/50
Epoch 5/50
Epoch 6/50
60/60 [============ ] - 1s 11ms/step - loss: 0.0016 - val_loss: 0
Epoch 7/50
Epoch 8/50
60/60 [=========== ] - 1s 11ms/step - loss: 0.0021 - val_loss: 0
Epoch 9/50
60/60 [============= ] - 1s 12ms/step - loss: 0.0017 - val_loss: 0
Epoch 10/50
60/60 [============== ] - 1s 13ms/step - loss: 0.0016 - val_loss: 0
Epoch 11/50
60/60 [============ ] - 1s 11ms/step - loss: 0.0019 - val loss: 0
Epoch 12/50
60/60 [============= ] - 1s 13ms/step - loss: 0.0016 - val_loss: 0
Epoch 13/50
Epoch 14/50
60/60 [============ ] - 1s 13ms/step - loss: 0.0019 - val_loss: 0
Epoch 15/50
60/60 [============= ] - 1s 12ms/step - loss: 0.0018 - val_loss: 0
Epoch 16/50
Epoch 17/50
60/60 [============= ] - 1s 12ms/step - loss: 0.0015 - val_loss: 0
Epoch 18/50
60/60 [============= ] - 1s 13ms/step - loss: 0.0019 - val_loss: 0
Epoch 19/50
60/60 [============ ] - 1s 13ms/step - loss: 0.0017 - val_loss: 0
Epoch 20/50
60/60 [============== ] - 1s 14ms/step - loss: 0.0016 - val_loss: 0
Epoch 21/50
Epoch 22/50
60/60 [============ ] - 1s 14ms/step - loss: 0.0016 - val loss: 0
Epoch 23/50
Epoch 24/50
60/60 [============ ] - 1s 14ms/step - loss: 0.0014 - val loss: 0
Epoch 25/50
60/60 [=================== ] - 1s 13ms/step - loss: 0.0015 - val loss: 0
Epoch 26/50
Epoch 27/50
60/60 [============= ] - 1s 17ms/step - loss: 0.0016 - val_loss: 0
Epoch 28/50
60/60 [============== ] - 1s 16ms/step - loss: 0.0017 - val_loss: 0
Epoch 29/50
Epoch 30/50
60/60 [============== ] - 1s 15ms/step - loss: 0.0015 - val_loss: 0
Epoch 31/50
```