CSE 4304: Data Structures

Lab: 05

Topic: Problems related to queue , heap

Task 1

Implement Enqueue & Dequeue operation using

- Linear Queue
- Circular Queue

Task 2

Suppose an arbitrary array of size N is given as input. Your task is to build a **max-heap** from the set of numbers. Finally, sort the numbers using **Heap-sort**.

Task 3

Use the Heap that you created in **Task 2** as a 'Min Priority Queue' and implement the following functionalities:

- Heap_Minimim()
- Heap_extract_min()
- Min_heap_insert()
- Heap_decrease_key()

C++ has Some built-in functions for performing operations on Queue, Heap/ Priority Queue. Check the following links for better understanding:

- https://www.geeksforgeeks.org/queue-cpp-stl/
- https://www.geeksforgeeks.org/heap-using-stl-c/
- https://www.geeksforgeeks.org/heap-using-stl-c/

Task 4

Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value **K**. To do this, Jesse repeatedly mixes two cookies with the least sweetness. He creates a special combined cookie with:

Sweetness = $(1 \times Least \times Lea$

He repeats this procedure until all the cookies in his collection have a sweetness $\geq \mathbf{K}$

You are given Jesse's cookies. Print the number of operations required to give the cookies a sweetness \geq **K** Print -1 if this isn't possible.

Input format

The first line consists of integers \mathbf{N} , the number of cookies and \mathbf{k} , the minimum required sweetness, separated by a space.

The next line contains **N** integers describing the array **A** where A_i is the sweetness of the ith cookie in Jesse's collection.

Output format

Output the number of operations that are needed to increase the cookie's sweetness $\geq \mathbf{K}$ Output **-1** if this isn't possible.

Sample Input

67

12 9 1 3 10 2

Sample Output

2

Explanation

Combine the first two cookies to create a cookie with sweetness = $1 \times 1 + 2 \times 2 = 5$

After this operation, the cookies are (3, 5, 9, 10, 12)

Then, combine cookies with sweetness and sweetness, to create a cookie with resulting $sweetness = 1 \times 3 + 2 \times 5 = 13$

Now, the cookies are (9, 10, 12, 13).

All the cookies have a sweetness ≥ 7

Thus, **2** operations are required to increase the sweetness.

[Note: You need to use Heap to solve this problem.]