Cluster Comparison Simulation Study Supplementary

Jeremy Ash May 21, 2018

Simulation 1

```
set.seed(123)
N <- 300
components <- sample(1:3,prob=c(15/30, 10/30, 5/30),size=N,replace=TRUE)</pre>
mydata <- matrix(ncol = 2, nrow = N)</pre>
for(i in 1:N) {
  if(components[i] == 2) {
    x \leftarrow rnorm(1)
    e <- rnorm(1)
    y = -15 + x + x^2 + x^3 + e
    mydata[i, ] \leftarrow c(x, y)
  } else if(components[i] == 1) {
    x <- rnorm(1, sd = 1.5)
    e <- rnorm(1)
    y = x + x^2 + e
    mydata[i, ] <- c(x, y)</pre>
  } else if(components[i] == 3){
    mydata[i, ] \leftarrow mvrnorm(1, c(-4,-4), matrix(c(1,0,0,1), ncol=2))
}
truth <- components
plot(mydata, pch=19, col = truth + 1)
bivn.kde \leftarrow kde2d(mydata[,1], mydata[,2], n = 50)
contour(bivn.kde, add = TRUE)
```


image(bivn.kde) # from base graphics package
contour(bivn.kde, add = TRUE)

df <- simulate(mydata, truth, run.seed = 132, imax = 100, ks = seq(2, 10, 1))</pre>

Best kmpp clustering: ASW index

Best kmpp clustering: ASW index

Best khm clustering: ASW index

Best khm clustering: ASW index

Best ms clustering: ASW index

Best kmpp clustering: CH index

Best kmpp clustering: CH index

Best khm clustering: CH index

Best khm clustering: CH index

Best gmm-em clustering: CH index

Best gmm-em clustering: CH index

Table 1: External validation measures for simulation data set 1. Number of clusters, k = 2, ..., 10, was selected by average silhouette width or Calinski and Harabasz index. The best performing method in bold.

	Average Silhouette Width								Calinski and Harabasz index							
	RI	HA	MA	FM	JI	VI	NMI	RI	HA	MA	FM	JI	VI	NMI		
k-means++	0.78	0.58	0.58	0.79	0.63	0.83	0.64	0.70	0.34	0.35	0.57	0.39	1.63	0.52		
k-harmonic means	0.78	0.57	0.57	0.79	0.63	0.86	0.63	0.85	0.67	0.67	0.79	0.63	0.86	0.74		
GMM-EM	0.78	0.57	0.57	0.79	0.63	0.86	0.63	0.89	0.77	0.77	0.86	0.74	0.75	0.77		
Mean Shift	0.92	0.83	0.83	0.90	0.82	0.55	0.81	0.92	0.83	0.83	0.90	0.82	0.55	0.81		

Best ms clustering: CH index


```
dat1 <- mydata
truth1 <- truth

df <- round(df, 2)
rownames(df) <- c("k-means++", "k-harmonic means", "GMM-EM", "Mean Shift")

kable(df, format = "latex", align = "c", booktabs = T, caption = "External validation measures for simu
row_spec(4, bold = T)</pre>
```

Simulation 2

```
N <- 200 # Number of random samples
set.seed(123)
# Target parameters for univariate normal distributions</pre>
```

```
mu1 <- 1; s1 <- 2
mu2 <- 1; s2 <- 8
# Parameters for bivariate normal distribution
mu <- c(mu1,mu2) # Mean
sigma <- list()</pre>
rho <- -0.8
sigma[[1]] \leftarrow matrix(c(s1^2, s1*s2*rho, s1*s2*rho, s2^2), 2) # Covariance matrix
rho <- 0.8
sigma[[2]] \leftarrow matrix(c(s1^2, s1*s2*rho, s1*s2*rho, s2^2), 2) # Covariance matrix
# Function to draw ellipse for bivariate normal data
ellipse_bvn <- function(bvn, alpha){</pre>
  Xbar <- apply(bvn,2,mean)</pre>
  S <- cov(bvn)
  ellipse(Xbar, S, alpha = alpha, col="red")
}
components <- sample(1:2,prob=c(0.75,0.25),size=N,replace=TRUE)</pre>
mydata <- matrix(ncol = 2, nrow = N)</pre>
for(i in 1:N) {
  mydata[i, ] <- mvrnorm(1, mu = mu, Sigma = sigma[[components[i]]])</pre>
plot(mydata,xlab="X1",ylab="X2", col = components + 2, pch = 19)
rho < -0.8
mu1 <- 1; s1 <- 2
mu2 <- 1; s2 <- 8
# Parameters for bivariate normal distribution
mu <- c(mu1,mu2) # Mean
sigma \leftarrow matrix(c(s1<sup>2</sup>, s1*s2*rho, s1*s2*rho, s2<sup>2</sup>), 2) # Covariance matrix
bvn1 <- mvrnorm(N, mu = mu, Sigma = sigma) # from MASS package
rho <- 0.8
sigma \leftarrow matrix(c(s1<sup>2</sup>, s1*s2*rho, s1*s2*rho, s2<sup>2</sup>), 2) # Covariance matrix
bvn2 <- mvrnorm(N, mu = mu, Sigma = sigma) # from MASS package
ellipse_bvn(bvn1, .05)
ellipse_bvn(bvn2, .05)
```



```
bivn.kde <- kde2d(mydata[,1], mydata[,2], n = 50)
image(bivn.kde) # from base graphics package
contour(bivn.kde, add = TRUE)</pre>
```



```
truth <- components
df <- simulate(mydata, truth, run.seed = 123, imax = 100, ks = seq(2, 10, 1), cov_model = "EEV")</pre>
```

Best kmpp clustering: ASW index

Best kmpp clustering: ASW index

Best khm clustering: ASW index

Best khm clustering: ASW index

Best ms clustering: ASW index

Best kmpp clustering: CH index

Best kmpp clustering: CH index

Best khm clustering: CH index

Best khm clustering: CH index

Best gmm-em clustering: CH index

Best gmm-em clustering: CH index

Table 2: External validation measures for simulation data set 2. Same caption as Table 1

	Average Silhouette Width								Calinski and Harabasz index							
	RI	HA	MA	FM	JI	VI	NMI	RI	HA	MA	FM	JI	VI	NMI		
k-means++	0.50	0.00	0.00	0.57	0.39	1.77	0.00	0.42	-0.01	0.00	0.38	0.20	2.96	0.01		
k-harmonic means	0.50	0.00	0.00	0.56	0.39	1.78	0.00	0.42	0.02	0.02	0.34	0.16	3.25	0.07		
GMM-EM	0.80	0.54	0.54	0.86	0.75	0.77	0.43	0.49	0.11	0.11	0.47	0.26	2.60	0.16		
Mean Shift	0.64	0.00	0.00	0.80	0.64	0.79	0.00	0.64	0.00	0.00	0.80	0.64	0.79	0.00		

Best ms clustering: CH index


```
dat2 <- mydata
truth2 <- truth

df <- round(df, 2)
rownames(df) <- c("k-means++", "k-harmonic means", "GMM-EM", "Mean Shift")

kable(df, format = "latex", align = "c", booktabs = T, caption = "External validation measures for simu row_spec(3, bold = T)</pre>
```

Simulation 3

```
set.seed(11118)
z1 <- rnorm(100,0,1)
z2 <- rnorm(100,4,1)
z3 <- rnorm(100,0,1)</pre>
```

```
z4 <- rnorm(100,0,1)
z5 <- rnorm(5,50,1)
z6 <- rnorm(5,0,1)
# z7 <- rnorm(5,50,1)
# z8 <- rnorm(5,-4,1)
za <- cbind(c(z1,z2),c(z3,z4))
zb <- rbind(za, cbind(z5, z6))
truth <- c(rep(1, 100), rep(2, 100), rep(3, 5))
plot(zb, col = truth, pch=19)
```



```
mydata <- zb

df <- simulate(mydata, truth, run.seed = 154, imax = 100, ks = seq(2, 10, 1))</pre>
```


Best khm clustering: ASW index

Best khm clustering: ASW index

Best gmm-em clustering: ASW index

[1] "Selection of the bandwidth parameter"

Best ms clustering: ASW index

Best kmpp clustering: CH index

Best kmpp clustering: CH index

Best khm clustering: CH index

Best khm clustering: CH index

Best gmm-em clustering: CH index

Best gmm-em clustering: CH index

 $\mbox{\tt \#\#}$ [1] "Selection of the bandwidth parameter"

Table 3: External validation measures for simulation data set 3. Same caption as Table 1.

	Average Silhouette Width								Calinski and Harabasz index							
	RI	HA	MA	FM	JI	VI	NMI	RI	HA	MA	FM	JI	VI	NMI		
k-means++	0.52	0.09	0.09	0.71	0.5	0.98	0.25	0.96	0.92	0.93	0.96	0.92	0.28	0.88		
k-harmonic means	0.85	0.70	0.71	0.83	0.7	0.73	0.74	0.85	0.70	0.70	0.83	0.70	0.74	0.73		
GMM-EM	0.52	0.09	0.09	0.71	0.5	0.98	0.25	0.75	0.48	0.49	0.68	0.48	1.19	0.63		
Mean Shift	0.52	0.09	0.09	0.71	0.5	0.98	0.25	0.52	0.09	0.09	0.71	0.50	0.98	0.25		

Best ms clustering: CH index


```
dat3 <- mydata
truth3 <- truth

df <- round(df, 2)
rownames(df) <- c("k-means++", "k-harmonic means", "GMM-EM", "Mean Shift")

kable(df, format = "latex", align = "c", booktabs = T, caption = "External validation measures for simu row_spec(1, bold = T)</pre>
```

Simultation 4

```
simulation_results <- list()
param_results <- list()
grid <- c(5, 10)
for(z in 1) {</pre>
```

```
1 <- grid[z]</pre>
  k \leftarrow grid[z]
  for(m in c(50)) {
    mu <- matrix(ncol = 2, nrow = 1*k)</pre>
    idx <- 1
    for(i in 1:1) {
      for(j in 1:k) {
        mu[idx, ] \leftarrow c(i, j)
        idx <- idx + 1
      }
    }
    dat <- matrix(ncol = 2, nrow = 1*k*m)</pre>
    for(i in 1:nrow(mu)) {
      dat[1:m + m*(i-1), 1] <- rnorm(m, mu[i, 1], .5)
      dat[1:m + m*(i-1), 2] <- rnorm(m, mu[i, 2], .5)
    plot(dat)
    truth <- vector(length = 1*k*m)</pre>
    for(i in 1:nrow(mu)) {
      truth[1:m + m*(i-1)] <- rep(i, m)
    df <- simulate(dat, truth, run.seed = 154, imax = 100, ks = l*k)</pre>
    dat4 <- dat
    truth4 <- truth
  }
}
```


Best kmpp clustering: ASW index

Best kmpp clustering: ASW index

Best khm clustering: ASW index

Best khm clustering: ASW index

Best gmm-em clustering: ASW index

[1] "Selection of the bandwidth parameter"

Best ms clustering: ASW index

Best kmpp clustering: CH index

Best khm clustering: CH index

Best gmm-em clustering: CH index

Best gmm-em clustering: CH index

 $\ensuremath{\mbox{\#\#}}$ [1] "Selection of the bandwidth parameter"

Best ms clustering: CH index

df

```
FM
                          HA
                                     MA
                                                                    VI
##
               RΙ
                                                           JΙ
## [1,] 0.9444458 0.28855796 0.30172473 0.3176805 0.18868913 3.880284
## [2,] 0.9468669 0.30739668 0.32045958 0.3351141 0.20124405 3.830526
## [3,] 0.5042575 0.05535948 0.05666674 0.2448092 0.06629269 4.159785
## [4,] 0.6521364 0.08424610 0.08657618 0.2532973 0.08061633 4.067529
##
              NMI
                          RI
                                     HA
                                                           FM
                                                MA
## [1,] 0.5795231 0.94444580 0.28855796 0.30172473 0.3176805 0.18868913
## [2,] 0.5864499 0.94686693 0.30739668 0.32045958 0.3351141 0.20124405
## [3,] 0.2577282 0.50425749 0.05535948 0.05666674 0.2448092 0.06629269
## [4,] 0.3636795 0.03923139 0.00000000 0.00000000 0.1980691 0.03923139
##
              VI
                       NMI
## [1,] 3.880284 0.5795231
## [2,] 3.830526 0.5864499
## [3,] 4.159785 0.2577282
## [4,] 4.643856 0.0000000
df <- round(df, 2)
rownames(df) <- c("k-means++", "k-harmonic means", "GMM-EM", "Mean Shift")
kable(df, format = "latex", align = "c", booktabs = T, caption = "External validation measures for simu
row_spec(2, bold = T)
```

Table 4: External validation measures for simulation data set 4. Same caption as Table 1, except that only the correct k=25 was considered

	Average Silhouette Width							Calinski and Harabasz index						
	RI	HA	MA	FM	JI	VI	NMI	RI	HA	MA	FM	JI	VI	NMI
k-means++	0.94	0.29	0.30	0.32	0.19	3.88	0.58	0.94	0.29	0.30	0.32	0.19	3.88	0.58
k-harmonic means	0.95	0.31	0.32	0.34	0.20	3.83	0.59	0.95	0.31	0.32	0.34	0.20	3.83	0.59
GMM-EM	0.50	0.06	0.06	0.24	0.07	4.16	0.26	0.50	0.06	0.06	0.24	0.07	4.16	0.26
Mean Shift	0.65	0.08	0.09	0.25	0.08	4.07	0.36	0.04	0.00	0.00	0.20	0.04	4.64	0.00

Simulation 5

```
\# n = 100, 200, 400, 800, 1600 and k = 2, 4, 8
N <- c(1600) # Number of random samples
p <- c(16, 32, 64, 128, 128*2)
set.seed(123)
times <- list()</pre>
for(1 in 1:4) {
  times[[1]] <- matrix(ncol = length(p), nrow = length(N))</pre>
}
for (i in 1:length(N)) {
  for (j in 1:length(p)) {
    # Target parameters for univariate normal distributions
    mu1 <- -2
    mu2 <- 2
    mu <- c(mu1,mu2) # Mean components
    s <- 1
    c <- sample(1:2,prob=c(0.5,0.5),size=N[i],replace=TRUE)
    mix.mu <- mu[c]
    mydata <- matrix(ncol = p[j], nrow = N[i])</pre>
    for(l in 1:N[i]) {
      for(m in 1:p[j]) {
        mydata[1, m] \leftarrow rnorm(1, mix.mu[1], sd = s)
    }
    plot(mydata,xlab="X1",ylab="X2", col = c + 2, pch = 19)
    dat <- mydata
    k < -2
    times[[1]][i, j] <- system.time(kmpp_slow(dat, k))[3]</pre>
    times[[2]][i, j] <- system.time(khm(dat, k))[3]</pre>
    randPairs <- randomPairs(dat)</pre>
    print(dim(dat))
    times[[3]][i, j] <- system.time(Mclust(dat, G = k, modelNames = "EII",</pre>
                                             initialization = list(hcPairs = randPairs),
                                             control = emControl(tol = c(0,0), itmax = 100)))[3]
    times[[4]][i, j] <- system.time(ms(dat, thr=0, iter=100, plotms=0))[3]
```

```
print(times)
 }
}
col1 <- 2
par(mfrow = c(1, 2))
# Use these two plots
plot(1, type = "n", ylab = "Elapsed Time (ms)",
     xlab = "Input Size", xlim = range(N), ylim = c(0, max(times[[4]][, length(p)])),
     main = paste0("p = ", max(p)))
for(i in 1:4) {
  lines(x = N, y = times[[i]][, length(p)], type = "o", col = i+2)
legend("topleft", legend=c("k-means++", "k-harmonic means", "GMM-EM", "Mean Shift"),
       col=1:4 + 2, lty = 1)
plot(1, type = "n", ylab = "Elapsed Time (ms)",
     xlab = "Number of Descriptors", xlim = range(p), ylim = c(0, max(times[[4]][length(N), ])),
     main = pasteO("N = ", max(N)))
for(i in 1:4) {
  lines(x = p, y = times[[i]][length(N), ], type = "o", col = i+2)
legend("topleft", legend=c("k-means++", "k-harmonic means", "GMM-EM", "Mean Shift"),
       col=1:4 + 2, lty = 1)
par(mfrow = c(1, 1))
save.image("run_time_plots.rda")
load("run_time_plots.rda")
par(mfrow = c(1, 2))
# Use these two plots
plot(1, type = "n", ylab = "Normalized Elapsed Time",
     xlab = "Input Size", xlim = range(N[1:4]), ylim = c(0, max(times[[4]][1:4, 1])),
     main = paste0("p = ", max(p[1:4])))
for(i in 1:4) {
  if(i == 3) {
    lines(x = N[1:4], y = times[[i]][1:4,length(p)], type = "o", col = i+2)
    lines(x = N[1:4], y = times[[i]][1:4, length(p)]/times[[i]][1, length(p)], type = "o", col = i+2)
}
legend("topleft", legend=c("km++", "khm", "GMM-EM", "ms"),
       col=1:4 + 2, lty = 1, cex = .75)
L < -4
plot(1, type = "n", ylab = "Normalized Elapsed Time",
     xlab = "Number of Descriptors", xlim = range(p[1:4]), ylim = c(0, 4),
     main = paste0("N = ", max(N[1:L])))
for(i in 1:4) {
  if(i == 3){
    lines(x = p[1:L], y = times[[i]][length(N), 1:L]/times[[i]][length(N), 1], type = "o", col = i+2)
  } else {
 lines(x = p[1:L], y = times[[i]][length(N), 1:L]/times[[i]][length(N), 1], type = "o", col = i+2)
```


Final figure of all data sets

```
par(mfrow=c(2,2), mai = c(.3, 0.3, 0.3, 0.3))
plot(dat1, pch=19, xlab = "", ylab = "x2", col = truth1 + 1)
plot(dat2, pch=19, xlab = "", ylab = "", col = truth2 + 1)
plot(dat3, pch=19, xlab = "x1", ylab = "x2", col = truth3 + 1)
plot(dat4, pch=19, xlab = "x1", ylab = "", col = rainbow(25)[truth4], cex = .5)
```

