

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>Инфо</u>	рматика и системы управления и искусственный интеллект
КАФЕДРА	Системы обработки информации и управления
	ЛР №6
	По курсу
«Техн	ологии машинного обучения»
Подготовил:	
Студент группы	
ИУ5-63Б Борисов А.	M.
08.04.2022	
Проверил:	

Задание

- 1. Выберите набор данных (датасет) для решения задачи прогнозирования временного ряда.
- 2. Визуализируйте временной ряд и его основные характеристики.
- 3. Разделите временной ряд на обучающую и тестовую выборку.
- 4. Произведите прогнозирование временного ряда с использованием как минимум двух методов.
- 5. Визуализируйте тестовую выборку и каждый из прогнозов.
- 6. Оцените качество прогноза в каждом случае с помощью метрик.

Решение:

- Временные ряды
- Анализ временных рядов

passengers.head()

Импорт данных и работа в библиотеке Pandas

```
[] # импортируем необходимые библиотеки
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
[] # импортируем файл с данными о пассажирах
   passengers = pd.read_csv("/content/passengers.csv")
   passengers.head()
       Month #Passengers
    0 1949-01 112
    1 1949-02
                 118
               132
    2 1949-03
    3 1949-04
                 129
    4 1949-05 121
```

[] # превратим дату в индекс и сделаем изменение постоянным

passengers.set_index('Month', inplace = True)

```
[] # превратим дату (наш индекс) в объект datetime
   passengers.index = pd.to_datetime(passengers.index)
   # посмотрим на первые пять дат и на тип данных
   passengers.index[:5]
   dtype='datetime64[ns]', name='Month', freq=None)
[] # все это можно сделать в одну строчку с помощью parse_dates = True
   passengers = pd.read_csv("/content/passengers.csv", index_col = 'Month', parse_dates = True)
   passengers.head()
           #Passengers
      Month
   1949-01-01
                112
   1949-02-01
                118
   1949-03-01
```

[] # сделаем срез по дате, например, с августа 1949 по март 1950 года passengers['1949-08':'1950-03']

[] # рассчитаем скользящее среднее для трех предыдущих месяцев passengers.rolling(window = 3).mean().head()

#Passengers

129

121

Month	
1949-01-01	NaN
1949-02-01	NaN
1949-03-01	120.666667
1949-04-01	126.333333
1949-05-01	127.333333

1949-04-01

1949-05-01

300

200

1951

1953

[] # построим простой график изменения данных во времени прямо в библиотеке Pandas passengers.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7fbdb7d3cad0>


```
[] # изменим размер графика, уберем легенду и добавим подписи ax = passengers.plot(figsize = (12,6), legend = None) ax.set(title = 'Перевозки пассажиров с 1949 по 1960 год', xlabel = 'Месяцы', ylabel = 'Количество пассажиров')

[Техt(0, 0.5, 'Количество пассажиров'), Техt(0.5, 0, 'Месяцы'), Техt(0.5, 1.0, 'Перевозки пассажиров с 1949 по 1960 год')]

Перевозки пассажиров с 1949 по 1960 год

Перевозки пассажиров с 1949 по 1960 год

Оборование пассажиров с 1949 по 1960 год (1949 по 1960 год (194
```

1959

1957

```
# теперь воспользуемся библиотекой matplotlib для построения сразу двух графиков

# зададим размер графика
plt.figure(figsize = (15,8))

# поочередно зададим кривые (перевозки и скользящее среднее) с подписями и цветом
plt.plot(passengers, label = 'Перевозки пассажиров по месяцам', color = 'steelblue')
plt.plot(passengers.rolling(window = 12).mean(), label = 'Скользящее среднее за 12 месяцев', color = 'orange')

# добавим легенду, ее положение на графике и размер шрифта
plt.legend(title = '', loc = 'upper left', fontsize = 14)

# добавим подписи к осям и заголовки
plt.ylabel('Количество пассажиров', fontsize = 14)
plt.xlabel('Месяцы', fontsize = 14)
plt.title('Перевозки пассажиров с 1949 по 1960 год', fontsize = 16)

# выведем обе кривые на одном графике
plt.show()
```


▼ Разложение временного ряда на компоненты

```
[] # для наглядности импортируем второй датасет # сразу превратим дату в индекс и преобразуем ее в объект datetime births = pd.read_csv("/content/births.csv", index_col = 'Date', parse_dates = True) births.head(3)
```

Date
1959-01-01 35
1959-01-02 32
1959-01-03 30

```
[] # импортируем функцию seasonal_decompose из statsmodels
from statsmodels.tsa.seasonal import seasonal_decompose

# задаем размер графика
from pylab import rcParams
rcParams['figure.figsize'] = 11, 9

# применяем функцию к данным о перевозках
decompose = seasonal_decompose(passengers)
decompose.plot()

plt.show()
```



```
[] # сделаем то же самое для данных о рождаемости
decompose = seasonal_decompose(births)
decompose.plot()

plt.show()
```


Проверка временного ряда на стационарность

```
[] # проведем тест Дики-Фуллера (Dickey-Fuller test)

# импортируем необходимую функцию
from statsmodels.tsa.stattools import adfuller

# передадим ей столбец с данными о перевозках и поместим результат в adf_test
adf_test = adfuller(passengers['#Passengers'])

# выведем p-value
print('p-value = ' + str(adf_test[1]))
p-value = 0.991880243437641

[] # теперь посмотрим на данные о рождаемости
adf_test = adfuller(births['Births'])

# выведем p-value
print('p-value = ' +str(adf_test[1]))
p-value = 5.2434129901498554e-05
```

```
[] # для начала возьмем искусственные данные data = np.array([16, 21, 15, 24, 18, 17, 20])

# для сдвига на одно значение достаточно взять этот ряд, начиная со второго элемента lag_1 = data[1:]

# посчитаем корреляцию для лага 1 (у исходных данных мы убрали последний элемент)

# так как мы получим коррелационную матрицу, возьмем первую строку и второй столбец [0, 1] np.round(np.corrcoef(data[:-1], lag_1)[0,1], 2)

-0.71
```

```
[] # построим точечную диаграмму
plt.scatter(data[:-1], lag_1)

# добавим подписи
plt.xlabel('timeseries', fontsize = 16)
plt.ylabel('lag 1', fontsize = 16)
plt.title('Автокорреляция с лагом 1', fontsize = 18)
```



```
[] lag = data[1:]

# посчитаем корреляцию для лага 1 (у исходных данных мы убрали последний элемент)
# так как мы получим коррелационную матрицу, возьмем первую строку и второй столбец [0, 1]
np.round(np.corrcoef(data[:-1], lag_1)[0,1], 2)

-0.71

[] # импортируем автокорреляционную функцию (ACF)
from statsmodels.graphics.tsaplots import plot_acf

# применим функцию к нашему набору данных
plot_acf(data, alpha = None)
plt.show()
```


[] # применим ее к данным о пассажирах plot_acf(passengers) plt.show()


```
[] # построим аналогичный график для данных о рождаемости plot_acf(births) plt.show()
```


- Моделирование и построение прогноза
- Экспоненциальное сглаживание

```
[] alpha = 0.2

# первое значение совпадает со значением временного ряда
exp_smoothing = [births['Births'][0]]

# в цикле for последовательно применяем формулу ко всем элементам ряда
for i in range(1, len(births['Births'])):
    exp_smoothing.append(alpha * births['Births'][i] + (1 - alpha) * exp_smoothing[i - 1])

# выведем прогнозное значение для 366-го дня (1 января 1960 года)
exp_smoothing[-1]

46.6051933602952

[] # посмотрим на количество фактических и прогнозных значений
len(births), len(exp_smoothing)

(365, 365)

[] # добавим кривую сглаживаия в качестве столбца в датафрейм
births['Exp_smoothing'] = exp_smoothing
births.tail(3)
```

Births Exp_smoothing

Date		
1959-12-29	48	43.445615
1959-12-30	55	45.756492
1959-12-31	50	46.605193

```
# теперь нам нужно сдвинуть второй столбец на один день вперед (ведь это прогноз)

# вначале создадим индекс за 1 января

# для этого импортируем класс timedelta
from datetime import timedelta

# возьмём последний индекс (31 декабря 1959 года)
last_date = births.iloc[[-1]].index

# "прибавим" один день
last_date = last_date + timedelta(days = 1)
last_date

# добавим его в датафрейм
births = births.append(pd.DataFrame(index = last_date))

# значения за этот день останутся пустыми
births.tail()
```

Births Exp_smoothing

Date		
1959-12-28	52.0	42.307018
1959-12-29	48.0	43.445615
1959-12-30	55.0	45.756492
1959-12-31	50.0	46.605193
1960-01-01	NaN	NaN

```
[] # сдвинем этот столбец на один день вперед births['Exp_smoothing'] = births['Exp_smoothing'].shift(1)
```

[] # как и должно быть первое прогнозное значение совпадает с предыдущим фактическим births.head()

Births Exp_smoothing

Date		
1959-01-01	35.0	NaN
1959-01-02	32.0	35.000
1959-01-03	30.0	34.400
1959-01-04	31.0	33.520
1959-01-05	44.0	33.016

```
[] # и у нас есть прогноз на один день вперед births.tail()
```

[] # и у нас есть прогноз на один день вперед births.tail()

Births Exp_smoothing Date 39.883773 1959-12-28 52.0 1959-12-29 42.307018 1959-12-30 55.0 43.445615 1959-12-31 50.0 45.756492 1960-01-01 NaN 46.605193

```
# посмотрим на результат на графике

# зададим размер
plt.figure(figsize = (15,8))

# выведем данные о рождаемости и кривую экспоненциального сглаживания
plt.plot(births['Births'], label = 'Данные о рождаемости', color = 'steelblue')
plt.plot(births['Exp_smoothing'], label = 'Экспоненциальное сглаживание', color = 'orange')

# добавим легенду, ее положение на графике и размер шрифта
plt.legend(title = '', loc = 'upper left', fontsize = 14)

# добавим подписи к осям и заголовки
plt.ylabel('Количество родившихся', fontsize = 14)
plt.xlabel('Месяцы', fontsize = 14)
plt.title('Рождаемость в 1959 году. Прогноз на 1 января 1960 года', fontsize = 16)
plt.show()
```



```
[] # разобьём данные на обучающую и тестовую выборки

# обучающая выборка будет включать данные до декабря 1959 года включительно
train = passengers[:'1959-12']

# тестовая выборка начнется с января 1960 года (по сути, один год)
test = passengers['1960-01':]
```

```
[] # выведем эти данные на графике
  plt.plot(train, color = "black")
  plt.plot(test, color = "red")

# заголовок и подписи к осям
  plt.title('Разделение данных о перевозках на обучающую и тестовую выборки')
  plt.ylabel('Количество пассажиров')
  plt.xlabel('Месяцы')

# добавим сетку
  plt.grid()

plt.show()
```


[] # мы можем посмотреть результат с помощью метода summary() print(result.summary())

SARIMAX Results

Dep. Variab	ole:		#Passe	ngers No.	Observations:		132
Model:	SARI	MAX(3, 0,	0)x(0, 1, 0	, 12) Log	Likelihood		-451.953
Date:			Thu, 07 Apr	2022 AIC			911.907
Time:			14:	38:24 BIC			923.056
Sample:			01-01	-1949 HQIC			916.435
			- 12-01	-1959			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	0.7603	0.088	8.672	0.000	0.588	0.932	
ar.L2	0.2875	0.133	2.164	0.030	0.027	0.548	
ar.L3	-0.0823	0.109	-0.752	0.452	-0.297	0.132	
sigma2	107.0022	13.170	8.125	0.000	81.190	132.814	
							==
Ljung-Box (L1) (Q):		0.01	Jarque-Bera	(JB):	1.9	94
Prob(Q):			0.94	Prob(JB):		0.3	38
Heteroskeda	sticity (H):		1.44	Skew:		-0.1	10
Prob(H) (tw	o-sided):		0.25	Kurtosis:		3.5	59
Warnings:							
[1] Covariance matrix calculated using the outer product of gradients (complex-step).							
			-				

```
# тестовый прогнозный период начнется с конца обучающего периода start = len(train)

# и закончится в конце тестового end = len(train) + len(test) - 1

# применим метод predict predictions = result.predict(start, end) predictions
```

```
1960-01-01 422.703386

1960-02-01 404.947179

1960-03-01 466.293259

1960-04-01 454.781298

1960-05-01 476.848630

1960-06-01 527.162829

1960-07-01 601.449812

1960-08-01 610.821694

1960-09-01 513.229991

1960-10-01 455.692623

1960-11-01 409.200051

1960-12-01 450.754165

Freq: MS, Name: predicted_mean, dtype: float64
```

```
[] # выведем три кривые (обучающая, тестовая выборка и тестовый прогноз)
plt.plot(train, color = 'black')
plt.plot(test, color = 'red')
plt.plot(predictions, color = 'green')

# заголовок и подписи к осям
plt.title('Обучающая выборка, тестовая выборка и тестовый прогноз')
plt.ylabel('Количество пассажиров')
plt.xlabel('Месяцы')

# добавим сетку
plt.grid()
plt.show()
```



```
# выведем две кривые (фактические данные и прогноз на будущее)
plt.plot(passengers, color = 'black')
plt.plot(forecast, color = 'blue')

# заголовок и подписи к осям
plt.title('Фактические данные и прогноз на будущее')
plt.ylabel('Количество пассажиров')
plt.xlabel('Месяцы')

# добавим сетку
plt.grid()

plt.show()
```

