A Modest Pareto Optimisation Analysis of Dependency Parsers in 2021

Mark Anderson, Carlos Gómez Rodríguez

DATA

- Chinese-PTB (analytic)¹
- Hindi-HDTB (fusional)²
- Polish-PDB (fusional)³
- Korean-Kaist (agglutinative)⁴

¹N. Xue, F. Chiou, and M. Palmer, *Building a large-scale annotated Chinese corpus*, 2002

²R.A. Bhat et al., *The Hindi/Urdu treebank project.*, 2017

³A. Wróblewska, Extended and enhanced Polish dependency bank in Universal Dependencies format, 2018

⁴J. Chun el al., Building Universal Dependency treebanks in Korean, 2018

PARSERS

- Biaffine (Graph-based)¹
- Left-to-right Pointer (Transition-based)²
- Bracketed Sequence-labelling Parser³

All implemented in same framework (PyTorch). All BiLSTM networks.

Available at: http://www.grupolys.org/software/iwpt2021/parsers-code.zip

¹T. Dozat and C.D. Manning, Deep biaffine attention for neural dependency parsing, 2017

²D. Fernández-González and C. Gómez-Rodríguez, *Left-to-right dependency parsing with pointer networks*, 2019

³M. Strzyz, D. Vilares, and C. Gómez-Rodríguez., *Viable dependency parsing as sequence labeling*, 2019

SYSTEM

- Hardware: Intel Core i7-7700 and NvidiaGeForce GTX 1080
- Software: Python 3.7.0, PyTorch 1.0.0, and CUDA 8.0

SPEED

ENERGY

ENERGY-TIME

L2R?

END