MATH2111 Tutorial 7

T1A&T1B QUAN Xueyang T1C&T2A SHEN Yinan T2B&T2C ZHANG Fa

1 Applications of Determinant

1. **Theorem** (Cramer's Rule). Let A be an invertible $n \times n$ matrix. For any **b** in \mathbb{R}^n , the unique solution **x** of A**x** = **b** has entries given by

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A}$$
 for $i = 1, 2, \dots, n$

where $A_i(b)$ is the matrix obtained from A by replacing column i by the vector b.

2. **Theorem (Inverse Formula)**. Let A be an invertible $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$
where $\operatorname{adj} A = (\cot A)^T$ and $\cot A = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}$.

- 3. **Theorem**. If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.
- 4. **Theorem**. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{\text{area of } T(S)\} = |\det A| \cdot \{\text{area of } S\}$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^3 , then

$$\{\text{volume of } T(S)\} = |\det A| \cdot \{\text{volume of } S\}$$

1

2 Vector Spaces

- 1. **Definition (Vector Space)**. A vector space is a nonempty set *V* of objects, called **vectors**, on which are defined two operations, called **addition** and **scalar multiplication** (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors **u**, **v**, and **w** in *V* and for all scalars *c* and *d*.
 - (a) The sum of \mathbf{u} and \mathbf{v} , denoted by $\mathbf{u} + \mathbf{v}$, is in V.
 - (b) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - (c) (u + v) + w = u + (v + w)
 - (d) There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
 - (e) For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
 - (f) The scalar multiple of \mathbf{u} by \mathbf{c} , denoted by $\mathbf{c}\mathbf{u}$, is in V.
 - (g) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
 - (h) $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{v}$
 - (i) $c(d\mathbf{u}) = (cd)\mathbf{u}$
 - (j) 1**u**=**u**
- 2. **Fact**. For each **u** in *V* and scalar *c*,
 - (a) 0u = 0
 - (b) c0 = 0
 - (c) $-\mathbf{u} = (-1)\mathbf{u}$
- 3. **Definition** (Subspace). A subspace of a vector space V is a subset H of V that has three properties:
 - (a) The zero vector of V is in H.
 - (b) H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u} + \mathbf{v}$ is in H.
 - (c) H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c\mathbf{u}$ is in H.
- 4. **Theorem**. If v_1, \ldots, v_p are in a vector space V, then Span $\{v_1, \ldots, v_p\}$ is a subspace of V.

3 Exercises

1. Use Cramer's rule to solve the following linear system.

$$\begin{cases} x_{1} + x_{2} = 3 \\ -3x_{1} + 2x_{3} = 0 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ -3x_{1} + 2x_{3} = 0 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ -3x_{1} + 2x_{3} = 0 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ -3x_{1} + 2x_{3} = 0 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ -3x_{2} + 2x_{3} = 0 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ -3x_{2} + 2x_{3} = 0 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1} + x_{2} = 3 \\ x_{2} - 2x_{3} = 2 \end{cases}$$

$$\begin{cases} x_{1}$$

By Gramer's Rule,

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \frac{-\lambda}{-8} \\ \frac{-2\lambda}{-8} \\ \frac{-3}{-9} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{11}{4} \\ \frac{3}{8} \end{bmatrix}$$

2. Compute the adjugate of the given matrix, and then use the inverse formula to give A^{-1} .

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$

$$\det A = \begin{vmatrix} + & - & + \\ & 1 & 0 & -2 \\ & -3 & 1 & 4 \\ & 2 & -3 & 4 \end{vmatrix} = (1) \cdot \begin{vmatrix} 1 & 4 \\ -3 & 4 \end{vmatrix} + (-2) \cdot \begin{vmatrix} -3 & 1 \\ 2 & -3 \end{vmatrix}$$
$$= |b - |4| = 2$$

$$C_{11} = \begin{vmatrix} 1 & 4 \\ -3 & 4 \end{vmatrix} = 16$$
 $C_{12} = -\begin{vmatrix} -3 & 4 \\ 2 & 4 \end{vmatrix} = 20$ $C_{13} = \begin{vmatrix} -3 & 1 \\ 2 & -3 \end{vmatrix} = 7$

$$C_{12} = -\begin{vmatrix} -3 & 4 \\ 2 & 4 \end{vmatrix} = 2\alpha$$

$$C_{13} = \begin{bmatrix} -3 & 1 \\ 2 & -3 \end{bmatrix} = 7$$

$$c_{21} = -\begin{vmatrix} 0 & -2 \\ -3 & 4 \end{vmatrix} = b$$

$$C_{22} = \begin{vmatrix} 1 & -2 \\ 2 & 4 \end{vmatrix} = 8$$

$$|C_{21}| = -\left| \begin{array}{ccc} 0 & -2 \\ -3 & 4 \end{array} \right| = b$$
 $|C_{22}| = \left| \begin{array}{ccc} 1 & -2 \\ 2 & 4 \end{array} \right| = 8$
 $|C_{23}| = -\left| \begin{array}{ccc} 1 & 0 \\ 2 & -3 \end{array} \right| = 3$

$$|C_{31}| = \left| \begin{array}{cc} 0 & -2 \\ 1 & 4 \end{array} \right| = 2$$

$$(3) = \begin{vmatrix} 0 & -2 \\ 1 & 4 \end{vmatrix} = 2$$
 $(32 = -\begin{vmatrix} 1 & -2 \\ -3 & 4 \end{vmatrix} = 2$ $(33 = \begin{vmatrix} 1 & 0 \\ -3 & 1 \end{vmatrix} = 1$

$$C^{33} = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\therefore \text{ adj } (A) = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}^{T} = \begin{bmatrix} 16 & 6 & 2 \\ 20 & 8 & 2 \\ 7 & 3 & 1 \end{bmatrix}$$

:.
$$A^{-1} = \frac{1}{det A} adj(A) = \frac{1}{2} \begin{bmatrix} 16 & 6 & 2 \\ 20 & 8 & 2 \\ 7 & 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

3. Let *S* be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and let $A = \begin{bmatrix} 6 & -2 \\ -3 & 2 \end{bmatrix}$. Compute the area of the image of *S* under the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

Area of image of S $= |\det A| \cdot \text{Area of } S$ $= |b \cdot 2| \cdot |-2 - 2|$ $= |b \cdot 2| \cdot |-3 \cdot 5| \text{ absolute value}$ $= |b| \cdot |-4| = 24$

4. Let R be the triangle with vertices at (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) . Show that

{ area of triangle } =
$$\frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

Translate triangle to one having the origin as a vertex.

Due can subtract the vertex (x_i, y_i) from 3 vertices:

$$(0,0)$$
, (x_2-x_1, y_2-y_1) , (x_3-x_1, y_3-y_1) .

This: $\begin{cases}
Area of triangle = \frac{1}{2} \text{ for ea of parallelogram } \\
= \frac{1}{2} \det \begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix}$

Therefore,
$$\left\{ \text{Area of triangle} \right\} = \frac{1}{2} \text{det} \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

5. Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $\mathbf{0}$, \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 , and let S' be the tetrahedron with vertices at vectors $\mathbf{0}$, \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

- a. Describe a linear transformation that maps S onto S'.
- b. Find a formula for the volume of the tetrahedron S' using the fact that $\{ \text{ volume of } S \} = (1/3) \{ \text{ area of base } \} \cdot \{ \text{ height } \}$
- a. A linear transformation T which maps S onto S' will map $\vec{e_1}$ to $\vec{v_1}$, $\vec{e_2}$ to $\vec{V_2}$, $\vec{e_3}$ to $\vec{V_3}$, that is,

That is,

$$T(\vec{e}) = \vec{V_1}$$
, $T(\vec{e_3}) = \vec{V_3}$

The standard matrix A will be:
$$A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix}$$

- b. Area of base of S is $|x|x_2^2 = \frac{1}{2}$. Volume of S $\int = \frac{1}{3} \times \frac{1}{2} \times 1 = \frac{1}{6}$
 - : Tvolume of $S'J = \{volume \text{ of } T(S)\}$ $= |det A| \cdot \{volume \text{ of } S\}$ $= \frac{1}{h} |det A|$

6. Let S be a set of 2×2 matrices, whose sum of all diagonal entries is zero. Verify S is a subspace of the vector space of all 2×2 matrices.

let
$$S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $a+d=0$.

O S contains O $(o \in Mzxz)$ matrix, i.e. $\begin{bmatrix} o & o \\ o & o \end{bmatrix} \in S$

$$S_1+S_2 = \begin{bmatrix} a_1+a_2 & b_1+b_2 \\ c_1+c_2 & d_1+d_2 \end{bmatrix}$$

Note that
$$a_1+a_2+d_1+d_2=(a_1+d_1)+(a_2+d_2)=0+0=0$$

: Sis closed under addition

3 for
$$t \in \mathbb{R}$$
, $S_1 \in S_1$
 $tS_1 = t \begin{bmatrix} a_1 & b_1 \\ C_1 & d_1 \end{bmatrix} = \begin{bmatrix} ta_1 & tb_1 \\ tC_1 & td_1 \end{bmatrix}$
note that $ta_1 + td_1 = t(a_1 + d_1) = t \cdot o = 0$

· S is closed under multiplication.

.: S is a subspace of the vector space of all 2x2 matrices.