Supervised Data Mining Copyright 2021: Jeffrey Saltz and Jeffrey Stanton; please do not upload. School of Information Studie

Reminder: Data Science Day

In person and virtually (Today & Tomorrow)

Registration :

Thursday talks (starting at ~4pm):

- Exploring What is Data Science & Analytics
- What is Visual Analytics?
- Metadata & Analytics Learning Analytics
- Graduate Student Panel

- Friday talks (starting at ~10am) Room 347, Hinds Hall

 The Use of Data Science to Better Address COVID-19 Thibaut Jombart (WHO / UK researcher)
- Applied Deep Learning, Examples in Industry
- Ethics in Data Science: Problems, Approaches, and Future

Break for lunch (then re-start at 1pm)

- Managing Risk in Data Science

 Data Science in the Real World a discussion of what our adjunct faculty do outside the iSchool
- Data Science Job Market Update

Summary of Previous Learning

What you should know and be able to do at this point :

- 1. List major skills needed by data scientists and describe the development of a DS project with domain analysis, SMEs, data and modeling
- 2. Explain and use a data frame in R and various diagnostics for variables and data structures; describe and use multiple strategies for accessing external data from R; use SQL facilities from within R; automate with functions
- 3. Define and calculate the most common descriptive statistics; describe the effects of randomness on sampling; create and interpret a sampling distribution including defining the law of large numbers and the central limit theorem
- 4. Use plot and ggplot to visualize data and create maps
- Create and interpret a multiple regression model using

Objectives

- Create appropriate "training" and "test" dataset environments
- Use the data mining techniques
 - Support vector machines (SVM)
 - Classification and Regression Trees (CART)
- Develop SVM & Cart R code

Using Classification and
Regression Trees

School of Information Studies
SYRAUSE UNIVERSITY

Reviewing The Modeling Process

- Use a substantial number of training cases
- The machine learning algorithm can use that data to build a model
- Use the results of this process (i.e., the model) on test data set to determine how well algorithm performed
 - Validate the model on new data
- The result is a model that can be used for prediction
 - Predict data that was not used during training
 - Predict future instances of data

Note: The model is not always useful for explaining results to managers. In some cases, algorithms produce results that are not easy to interpret or visualize; for some algorithms there is no output that is like a regression coefficient.

An Example: CART <u>Classification and Regression Trees</u>

- A family of data mining techniques for developing predictions on either continuous outcome variables or class outcome variables
- Can be used either for classification with unordered categories, or pseudo-continuous ordered outcomes
- Uses iterative model building techniques, typically:
 - Develops "splits" in the data where the level of a predictor is used to divide the dataset into two (or more) partitions according to the status of the outcome variable
 - The resulting models can be represented as binary trees

Example of RPART – for titanic

library(rpart)

url <- "https://intro-datascience.s3.us-east-2.amazonaws.com/titanic.raw.Rdata"

download.file(url, "t.raw.Rdata")
load("t.raw.Rdata")

titanic <- titanic.raw

#Explore the dataset

str(titanic)

'data.frame': 2201 obs. of 4 variables:

\$ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 3 3 3 3 3 ...
\$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
\$ Age : Factor w/ 2 levels "Adult","Child": 2 2 2 2 2 2 2 2 2 2 2 ...
\$ Survived: Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1

#Build the model cartTree <- rpart(Survived ~ ., data = titanic) prp(cartTree, faclen = 0. cex = 0.8. extra = 1) For left pointing leaves: The first number: # of correctly classified cases The second number: # incorrectly classified. For right pointing leaves, vice versa.

Copyright 2021 - Jeff Stanton and Jeff Saltz

Example of RPART – for titanic

cartTree

n= 2201

node), split, n, loss, yval, (yprob) * denotes terminal node

1) root 2201 711 No (0.6769650 0.3230350) 2) Sex=Male 1731 367 No (0.7879838 0.2120162) 4) Age=Adult 1667 338 No (0.7972406 0.2027594) * 5) Age=Child 64 29 No (0.5468750 0.4531250) 10) Class=3rd 48 13 No (0.7291667 0.2708333) * 11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) * 3) Sex=Female 470 126 Yes (0.2680851 0.7319149)

6) Class=3rd 196 90 No (0.5408163 0.4591837) *
7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) *

Predicting values using the Model

titanic[1,

Class Sex Age Survived 3 3rd Male Child No

predictValues[1]

1 No

Levels: No Yes

What was the Accuracy

actualSurvived <- as.factor(titanic\$Survived == "Yes") confMatrix <- table(predictedSurvived,actualSurvived) confMatrix

actualSurvived
predictedSurvived FALSE TRUE
FALSE 1470 441
TRUE 20 270

accuracy 0.7905498

Questions	
Is 79% good?	
What is overfitting?	-
How might that be relevant?	
	•
	•
Using Caret to create Training and Test sets	
library(caret)	
# makes the sampling predictable set.seed(110)	
# Randomly sample elements to go into a training data set	
trainList <- createDataPartition(y=titanic\$Survived,p=.80,list=FALSE)	
# Include all of those elements in the training set trainSet <- titanic[trainList,]	
# Construct test set from everything that didn't go into the training testSet <- titanic[-trainList,]	
	1
Check trainSet	
head(trainList)	
Resample1	
[1,] 1 [2,] 2 Note that some observations are	
[3,] 4 skipped [4,] 5	
[5,] 6	
[6,] 7	

Exploring the model build via Caret n= 1761 CART

1761 samples 3 predictor 2 classes: 'No'. 'Yes' 1) root 1761 569 No (0.67688813 0.32311187) 3) SexMale>=0.5 1385 295 No (0.7800361 0.21299639) *
3) SexMale< 0.5 376 102 Yes (0.27127660 0.72872340)
6) Class3rd>=0.5 156 73 No (0.53205128 0.46794872) * 7) Class3rd< 0.5 220 19 Yes (0.08636364 0.91363636) *

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 1761, 1761, 1761, 1761, 1761, 1761, ...

Resampling results across tuning parameters:

Accuracy Kappa 0.009666081 0.7840318 0.4267801 0.017574692 0.7802065 0.4222871 0.302284710 0.7206203 0.1868332

complexity parameter (cp): imposes a penalty to the tree for having too many splits

Accuracy was used to select the optimal model using the largest value. The final value used for the model was cp = 0.009666081.

Exploring the model build via Caret

predictValues <- predict(cartTree1,newdata=testSet, type = "raw")</pre>

confusion <- confusion Matrix (predict Values, test Set \$Survived)

Confusion Matrix and Statistics

Reference Prediction FALSE TRUE FALSE 297 89 TRUE 1 53

Accuracy: 0.7955

95% CI : (0.7547, 0.8322) No Information Rate: 0.6773 P-Value [Acc > NIR]: 2.382e-08

Exploring Variable Importance Overall Age 8.178044 Class 98.019060 Sex 157.306989 plot(varImp(cartTree1)) varImp(cartTree1) rpart variable importance Overall SexMale 100.000 Class3rd 25.233 ClassCrew 7 825

0 20 40 60 80 100

AgeChild 1.136

0.000

Class2nd

	Adv	vanced E	xample	e:
U	sing Class	sification	and Re	egression
	Trees on Credit Decisioning			
			Sc S \	thool of Information Studio VRACUSE UNIVERSIT

The German Credit Database

- From the UCI Machine Learning Repository
- Built-in dataset stored in the caret package
- 1000 cases and 62 variables
- "Class" is the outcome variable: binary creditworthiness ("good" or "bad")

Duration	Age	NumberExistingCredits	NumberPeopleMaintenance	Telephone	ForeignWorker	Class
4	67	2	1	0	1	Good
2	22	1	1	1	1	Bad
3	49	1	2	1	1	Good
4	45	1	2	1	1	Good
4	53	2	2	1	1	Bad
4	35	1	2	0	1	Good
4	53	1	1	1	1	Good
2	35	1	1	0	1	Good

The German Credit Database

- Example predictors:
 - Checking account status, duration, credit history, purpose of the loan, amount of the loan, savings accounts or bonds, installment rate in percentage of disposable income, other installment plans, number of existing credits
 - Employment duration, personal information, other debtors/guarantors, residence duration, property, age, housing, job information, number of people being liable to provide maintenance for, telephone, and foreign worker status
- For convenience, we will only use the first 10 columns, including Class
- We will try the "treebag" algorithm, a bagged CART; there are more than 200 fitting algorithms
- See http://topepo.github.io/caret/modelList.html

Create Training and Test sets

Just grab a subset of the data for the demo
data("GermanCredit")
subCredit <- GermanCredit[,1:10]</pre>

makes the sampling predictable set.seed(111)

Randomly sample elements to go into a training data set trainlist <-

createDataPartition(y=subCredit\$Class,p=.80,list=FALSE)

create test and train datasets
trainSet <- subCredit[trainList,]
testSet <- subCredit[-trainList,]</pre>

Train Using a treebag model

fit1 <- train(Class ~ ., data=trainSet, method="treebag", preProc=c("center","scale"))

- The train() command trains the specified model (here it is "treebag" – look it up)
- Class ~. This is the standard model specification syntax; the dot after the tilde includes all of the other variables as predictors; otherwise spell them out separated with plus signs
- preProc= allows pre-processing of the input data, in this
 cases taking the precaution of centering and scaling to put
 every input variable on the same scale

Interpret Results: Variable Importance

varImp(fit1)

treebag variable importance

Amount Age Duration	Overall 100.00 76.73 57.75
ResidenceDuration InstallmentRatePercentage NumberExistingCredits Telephone NumberPeopleMaintenance	35.73 34.33 20.84 13.91 11.77
ForeignWorker	0.00

Interpret Results: Use rpart

- Use rpart to display a simple CART tree with key variables.
- This tree gives a general idea of how variables are working, but is different from the treebag model (which has 25 trees!)

cartTree <- rpart(Class ~ Amount + Age + Duration, data = trainSet, method="class")

Step 4: Assess Fit with New (test) Data

predOut <- predict(fit1, newdata=testSet)
confusion <- confusionMatrix(predOut, testSet\$Class)
confusion</pre>

Confusion Matrix and Statistics

Reference
Prediction Bad Good
Bad 20 18
Good 40 122

Accuracy: 0.71

Is this a good model?

confusion

Confusion Matrix and Statistics

Reference Prediction Bad Good Bad 20 18 Good 40 122

> Accuracy: 0.71 95% CI: (0.6418, 0.7718) mation Rate: 0.7

No Information Rate : 0.7 P-Value [Acc > NIR] : 0.412322

#Step 1: load the required packages was already done #Step 2: Create Training and Test sets data("GermanCredit") subCredit <- GermanCredit[,1:10] # makes the sampling predictable set.seed(111) # Randomly sample elements to go into a training data set trainList <- createDataPartition(y=subCredit\$Class,p=.80,list=FALSE) trainSet <- subCredit[trainList,] testSet <- subCredit[-trainList,]

Use SVM to Explore the Credit Data

preProc=c("center","scale"))

#Train the SVM model fit2 <- train(Class ~ ., data=trainSet, method="svmRadial",

#Assess Fit with new data predOut <- predict(fit2, newdata=testSet)

Compare the Results

TreeBag

confMatrix <table(predOut,testSet\$Class) confMatrix

predOut Bad Good Bad 20 18 Good 40 122

prop.table(confMatrix)

predOut Bad Good Bad 0.10 0.09 Good 0.20 0.61

SVM

confMatrix <table (predOut, testSet\$Class) confMatrix predOut Bad Good Bad 10 3 Good 50 137

prop.table(confMatrix)

predOut Bad Good Bad 0.05 0.015 Good 0.25 0.685

errorRate

Compare the Results (varImp)

11.77

0.00

TreeBag

NumberPeopleMaint.

ForeignWorker

SVM

I	mportance
Duration	100.00
Age	51.92
Amount	43.20
InstallmentRatePerc	31.54
NumberExistingCredi	ts 25.19
ForeignWorker	9.85
NumberPeopleMaint	7.01
ResidenceDuration	0.27
Telephone	0.00

Explore the confusion matrix

Review the error – use the built in 'confusionMatrix' confusion <- confusionMatrix(predOut, testSet\$Class)</pre>

Confusion Matrix and Statistics

Reference Prediction Bad Good

Bad 10 3 Good 50 137

> Accuracy: 0.735 95% CI : (0.6681, 0.7948)

No Information Rate: 0.7 P-Value [Acc > NIR] : 0.1579

Explore the "C" parameter

Support Vector Machines with Radial Basis Function Kernel

9 predictor

2 classes: 'Bad', 'Good'

Pre-processing: centered (9), scaled (9)

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 800, 800, 800, 800, 800, 800, ... Resampling results across tuning parameters:

Accuracy

0.25 0.6969592

0.50 0.6974949

1.00 0.6989207

Non-separable training sets Use linear separation, but admit training errors.

Why Error Might Not Be Bad

Penalty of error: distance to hyperplane multiplied by error cost C.

Cost Parameter ('C')						
ksvm Cost Parameter Impact Summary						
Higher Cost 'C' Value	Fewer Classification Mistakes Fewer Problem Points	Smaller Margin of Separation	Specialized Model	Higher Cross- Validation Error	Lower Training Error	
Cost 'C' Value	More Classification Mistakes More Problem Points	Higher Margin of Separation	Generalized Model	Lower Cross- Validation Error	Higher Training Error	

Question

If SVM is such a "black box" – where it is hard to know how the model actually works and what variables mater the most – why would we ever bother to use it?