Knowledge Representation & programming in Logic (P) IT3113(P) & CSH 3143(P)

Ms.K.Sangeetha Assistant Lecturer

Indented Out Comes

Clear knowledge to solve the practical problems in Computer Science and AI using prolog programming language.

Comprehensive idea of how the prolog interpreter actually works.

Introduction to Prolog Programming

■ What is Prolog?

Prolog (Programming in Logic) is a high-level programming language rooted in formal logic.

■ Key Characteristics:

- Declarative programming language.
- Focuses on "what" rather than "how."
- Uses facts, rules, and queries to solve problems.

Real World Applications

- Expert System
- Game Als.
- Natural Language Processing
- Web development
- Bioinformatics
- Financial Applications

What is a Fact?

Definition:

- A fact is a statement that is always true in the system's knowledge base.
- A fact is expressed as a predicate with arguments.
- Facts are used to describe the real world object or relationship between the real world objects.

Real World Facts & Prolog Facts

Try to convert the following real world facts into prolog facts

- 1. Dog is an animal.
- 2. Kiwi is a fruit.
- 3. Gun is a weapon.
- 4. Keyboard is a hardware.
- 3. Samsung is an android phone.
- 6. Kamal is a male.
- 7. John is a student.
- 8. Elephant is black.
- 9. Circle is a Shape.
- 10. Bus is a vehicle.

Real World Facts & Prolog Facts

Try to convert the following real world facts into prolog facts

- Q1
- 1. John likes ann.
- 2. Charlie studies Al.
- 3. Collins teaches CS.
- 4. / Vincent loves Mia.
- 5. October is the next month of September.
- 6. Jane is a student of Roy.
- 7. Elephant's color is black.
- Q2: Feed the knowledge about months.

Prolog Rules

□ Definition:

- A rule is a predicate expression that uses logical implication (:-) to describe a relationship among facts.
- ☐ Prolog rule form:
 - left_hand_side :- right_hand_side .
- Left hand side should be a single fact & cannot contain logical connectives.
- ☐ This notation known as a "**Horn Clause**". Here left-hand side is conclusion and right-hand side is premises.
- Horn clause calculus is equivalent to the first-order predicate calculus.

Examples:

- ☐ friends(X,Y):-likes(X,Y),likes(Y,X).
 - X and Y are friends if they like each other.
- hates(X,Y):- not(likes(X,Y)).
 - X hates Y if X does not like Y.
- nemies(X,Y):- not(likes(X,Y)),not(likes(Y,X))
 - X and Y are enemies if they don't like each other