Тема 4. Анализ нелинейных моделей (продолжение)

Периодические решения (предельные циклы)

Пусть при $t \to \infty$ решение системы (1)

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(t_0) = \mathbf{x}_0 \tag{1}$$

является периодическим: $\mathbf{x}(t+T) = \mathbf{x}(t)$. Что такое «устойчивость решения» в этом случае? Рассмотренный ранее в прошлой теме рис. 4в — пример того, что периодическое решение может быть своеобразным объектом притяжения (аттрактором) при различных возмущениях в начальных условиях. Однако, хотя все эти возмущенные решения при $t \to \infty$ стремятся к траектории предельного цикла, но их разность не стремится к нулю, как это требуется для асимптотической устойчивости. Все сказанное является основанием для введения нового понятия — «орбитальной устойчивостии», совпадающего с устойчивостью по Ляпунову для стационарных точек.

Пусть $\mathbf{x} \in \mathbf{R}^n$, $\mathbf{y} \in \mathbf{R}^n$, а $\rho(\mathbf{x}, \mathbf{y})$ – расстояние между точками \mathbf{x} и \mathbf{y} . Определим расстояние от некоторой точки $\mathbf{a} \in \mathbf{R}^n$ до множества $\mathbf{M} \subset \mathbf{R}^n$ как

$$\rho(a,M) = \inf_{x \in M} \rho(a,x) \ .$$

Пусть также $\mathbf{x}(t)$ – решение системы (1), $\gamma(\mathbf{x}_0)$ – его траектория, а $\mathbf{y}(t)$ – другое решение (1), отличающееся начальными условиями $\mathbf{y}(t_0) = \mathbf{y}_0$.

Определение. Решение $\mathbf{x}(t)$ системы (1) называется орбитально устойчивым, если

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall \mathbf{y}(t)) (\rho(\gamma(x_0), \mathbf{y}_0) < \delta \Rightarrow \rho(\gamma(x_0), \mathbf{y}(t)) < \varepsilon).$$
 (2)

Если в дополнение к (2)

$$\lim_{t\to\infty} \rho(\gamma(x_0), \mathbf{y}(t)) \to 0,$$

то $\mathbf{x}(t)$ – асимпиотически орбитально устойчивое решение.

Определение. Замкнутая орбитально устойчивая траектория называется *устойчивым предельным циклом*.

Критерий Ляпунова устойчивости стационарной точки формулировался на основе собственных значений матрицы Якоби. Для определения критерия орбитальной устойчивости предварительно рассмотрим некоторые свойства линейной системы с периодической матрицей

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}(t) \cdot \mathbf{x}, \quad \mathbf{A}(t+T) = \mathbf{A}(t)$$
(3)

Ее решение записывается в виде $\mathbf{x}(t) = \mathbf{U}(t)\mathbf{x}_0$, где $\mathbf{U}(t)$ — невырожденная *фундаментальная матрица системы* (3), удовлетворяющая уравнениям

$$\frac{d\mathbf{U}}{dt} = \mathbf{A}(t) \cdot \mathbf{U}(t), \quad \mathbf{U}(0) = \mathbf{E} . \tag{4}$$

Так как

$$\frac{d\mathbf{U}(t+T)}{dt} = \mathbf{A}(t+T) \cdot \mathbf{U}(t+T) = \mathbf{A}(t) \cdot \mathbf{U}(t+T),$$

то $\mathbf{U}(t+T)$ также является решением системы (4) и отличается от $\mathbf{U}(t)$ постоянным матричным множителем \mathbf{C} :

$$\mathbf{U}(t+T) = \mathbf{U}(t) \cdot \mathbf{C}. \tag{5}$$

Покажем, что $\mathbf{U}(t)$ может быть записана в виде $\mathbf{U}(t) = \mathbf{L}(t)$ $e^{\mathbf{R}t}$, где \mathbf{R} – постоянная, а $\mathbf{L}(t)$ – периодическая матрица $(\mathbf{L}(t+T) = \mathbf{L}(t))$. Действительно,

$$\mathbf{U}(t+T) = \mathbf{L}(t+T) \cdot e^{\mathbf{R}(t+T)} = \mathbf{L}(t) \cdot e^{\mathbf{R}t} \cdot e^{\mathbf{R}T} = \mathbf{U}(t) \cdot e^{\mathbf{R}T}.$$
 (6)

Так как при этом $\mathbf{U}(0) = \mathbf{L}(0) = \mathbf{L}(T) = \mathbf{E}$, то $\mathbf{U}(T) = \mathbf{U}(0) \cdot e^{\mathbf{R}T} = e^{\mathbf{R}T}$, и в соответствии с (6) имеем

$$\mathbf{U}(t+T) = \mathbf{U}(t) \cdot \mathbf{U}(T), \quad \mathbf{U}(n \cdot T) = (\mathbf{U}(T))^{n}. \tag{7}$$

Матрица $\mathbf{U}(T) = e^{\mathbf{R}T}$ называется *матрицей монодромии*, а ее собственные значения ρ_k – *мультипликаторами*.

Так как $\mathbf{x}(nT) = \mathbf{U}(nT)\mathbf{x}_0 = (\mathbf{U}(T))^n\mathbf{x}_0$, то, как легко заметить, для асимптотической устойчивости нулевого стационарного решения все мультипликаторы должны быть по модулю меньше единицы: $|\rho_k| < 1$.

Полученные формулы позволяют сформулировать также критерий существования периодического решения и его орбитальной устойчивости. Условие периодичности решения $\mathbf{x}(T) = \mathbf{U}(T)\mathbf{x}_0 = \mathbf{x}_0$ означает, что \mathbf{x}_0 – это собственный вектор матрицы монодромии, а отвечающий ему мультипликатор равен единице $\rho_1 = 1$. При этом остальные мультипликаторы должны быть по модулю меньше единицы.

Критерий асимптотической орбитальной устойчивости предельного цикла:

$$\rho_1 = 1; \quad |\rho_k| < 1, \quad k = 2, 3, ..., n$$
 (8)

Теперь обратимся к критерию орбитальной устойчивости в нелинейной системе (1).

Уравнение в вариациях.

Пусть $\mathbf{p}(t)$ – решение системы (1)

$$\frac{d\mathbf{p}}{dt} = \mathbf{f}(\mathbf{p}). \tag{9}$$

Рассмотрим другое решение $\mathbf{x}(t) = \mathbf{p}(t) + \Delta \mathbf{x}(t)$, близкое к $\mathbf{p}(t)$, где $\Delta \mathbf{x}(t)$ достаточно мало по величине

$$\frac{d(\mathbf{p} + \Delta \mathbf{x})}{dt} = f(\mathbf{p} + \Delta \mathbf{x}). \tag{10}$$

Вычитая из (10) равенство (9) и раскладывая в ряд по Δx

$$\frac{d\Delta \mathbf{x}}{dt} = \mathbf{f}(\mathbf{p} + \Delta \mathbf{x}) - \mathbf{f}(\mathbf{p}) = \mathbf{f}(\mathbf{p}) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{p}) \cdot \Delta \mathbf{x} + (**) - \mathbf{f}(\mathbf{p}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{p}) \cdot \Delta \mathbf{x} + (**),$$

ограничимся линейным приближением и пренебрежем остальными слагаемыми (**)

$$\frac{d\Delta \mathbf{x}}{dt} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{p}) \cdot \Delta \mathbf{x}. \tag{11}$$

Уравнение (11) называется *уравнением в вариациях* для решения $\mathbf{p}(t)$ системы (1) или линеаризацией системы (1) на решении $\mathbf{p}(t)$. В частности, если $\mathbf{p}(t)$ — стационарное решение, то матрица Якоби в (11) постоянна и эта система превращается в привычную для нас линейную систему с постоянной матрицей. Теперь рассмотрим случай, когда $\mathbf{p}(t)$ – периодическое решение. Тогда (11) является линейной системой с периодической матрицей $\mathbf{A}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{r}}(\mathbf{p})$. Можно показать, что в этом случае решение уравнения в вариациях также $\Delta \mathbf{x}$ периодическим. Периодическим является, тем $\mathbf{p} = \frac{d\mathbf{p}}{dt}$ Действительно, обозначение $\mathbf{x}(t) = \mathbf{p}(t) + \Delta \mathbf{x}(t)$. вводя продифференцируем (9) по t

$$\frac{\partial \mathbf{p}}{\partial t} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{p}) \cdot \dot{\mathbf{p}}. \tag{12}$$

Вид (12) совпадает с (11), а ${\bf p}$ — периодическое решение, как и ${\bf p}$. Следовательно, периодическим является и решение $\Delta {\bf x}$ системы (11). Эти соображения и позволяют сформулировать критерий орбитальной устойчивости периодического решения нелинейной системы (1) в той форме (8), как он был определен для линейной системы (3).

Получение периодического решения и оценка его орбитальной устойчивости

Пусть решение системы (1) является периодическим

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(T) = \mathbf{x}(0). \tag{13}$$

Применить для решения этой задачи традиционные методы решения краевых задач обыкновенных дифференциальных уравнений мешает тот факт, что промежуток интегрирования не определен, так как период T неизвестен. Поэтому выполним в (13) замену переменных $t = T \cdot \tau$

$$\frac{d\mathbf{x}}{d\tau} = T \cdot \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(1) = \mathbf{x}(0), \quad \tau \in [0,1]. \tag{14}$$

Теперь промежуток решения определен, однако для n+1 неизвестного (вектор $\mathbf{x}(0)$ и период T) имеется лишь n уравнений: $\mathbf{x}(1) = \mathbf{x}(0)$. Неоднозначность вызвана тем, что в качестве начальной точки может быть выбрана любая точка, принадлежащая траектории периодического решения. Для решения возникшей проблемы можно зафиксировать одну из компонент вектора $\mathbf{x}(0)$, например, $\mathbf{x}^{(j)}(0) = \alpha$. Если $\mathbf{x}^{(j)}(0) = \alpha$ не принадлежит траектории периодического решения, следует подобрать нужное значение α или изменить номер j компоненты $\mathbf{x}(0)$.

Для оценки орбитальной устойчивости необходимо вычислить матрицу монодромии $\mathbf{U}(T) = \mathbf{U}(1)$ и рассчитать ее мультипликаторы. Пользуясь равенством

 $\mathbf{x}(\tau) = \mathbf{U}(\tau) \cdot \mathbf{x}(0)$, для элементов $u_{ik}(\tau)$ матрицы $\mathbf{U}(\tau)$ получаем

$$u_{ik}(\tau) = \frac{\partial x^{(i)}(\tau)}{\partial x^{(k)}(0)}.$$

Продифференцируем i -е уравнение (14) по $x^{(k)}(0)$ и поменяем порядок дифференцирования

$$\frac{du_{ik}(\tau)}{dt} = T \cdot \sum_{s=1}^{n} \frac{\partial \mathbf{f}^{(i)}}{\partial x^{(s)}} u_{sk}(\tau), \quad u_{ik}(0) = \begin{cases} 0, & i \neq k \\ 1, & i = k \end{cases}$$
 (15)

Система (15) решается совместно с (14). Результатом является матрица $\mathbf{U}(1)$, мультипликаторы которой позволяют судить об орбитальной устойчивости периодического решения.

В системе (13) может быть один или несколько параметров. При их вариации можно строить диаграммы периодических решений от параметра или бифуркационные диаграммы.

Простейшие виды бифуркации периодического решения.

В соответствии с (8) асимптотически орбитальное периодическое решение характеризуется одним мультипликатором, равным единице, и остальными, по модулю меньшими единице. Пусть значение параметра $\varepsilon = \varepsilon^*$

характеризует точку бифуркации. Простейшие виды бифуркации реализуются одном из следующих трех способов.

- I. *Появляется еще один мультипликатор, равный 1*. Этот вид бифуркации связан с рождением (исчезновением) пары замкнутых траекторий. Например, при слиянии двух циклов реализуется неустойчивый фокус (рис. 1)
- II. *Один из мультипликаторов становится равным* -1. Эта бифуркация называется бифуркацией удвоения периода (рис. 2)

Рис. 1. Исчезновение пары замкнутых траекторий

Рис. 2. Бифуркация удвоения периода

III. *Модуль комплексно-сопряженной пары мультипликаторов становится равным* 1. Этот вид бифуркации характеризуется возникновением инвариантного тора (рис. 3)

Рис. 3. Возникновение инвариантного тора *Отображение Пуанкаре*

Пусть $\gamma(\mathbf{x}_0)$ — замкнутая траектория решения системы (8). Выберем точку $\mathbf{x}_0 \in \gamma$ и проведем через нее сечение Σ (малая часть гиперплоскости, пересекающая γ под ненулевым углом в точке \mathbf{x}_0). Траектории системы, близкие к γ , задают отображение \mathbf{P} сечения Σ на себя следующим образом. Пусть $\mathbf{x}_0 \in \Sigma$, а $\mathbf{P}(\mathbf{x}_0)$ — первая после \mathbf{x}_0 точка пересечения $\gamma(\mathbf{x}_0)$ с сечением Σ .

Отображение **P**: $\Sigma \to \Sigma$ называется отображением Пуанкаре, соответствующим замкнутой траектории γ :

$$\mathbf{x}_1 = \mathbf{P}(\mathbf{x}_0), \quad \mathbf{x}_2 = \mathbf{P}(\mathbf{x}_1), \dots \quad \mathbf{x}_k = \mathbf{P}^k(\mathbf{x}_0).$$

Предельному циклу отвечает \mathbf{x}_0 – неподвижная точка на Σ . Бифуркации, связанной с рождением (исчезновением) пары замкнутых траекторий, отвечают две неподвижные точки. Бифуркации удвоения периода траектория, замыкающаяся после двух $\mathbf{x}_1 = \mathbf{P}(\mathbf{x}_0), \quad \mathbf{x}_0 = \mathbf{P}(\mathbf{x}_1).$ Наконец, возникновение инвариантного тора сопровождается ответвлением от точки \mathbf{x}_0 инвариантной окружности (замкнутой инвариантной кривой) отображения Р.

Использование отображения Пуанкаре упрощает процесс исследования решения по следующим причинам:

- число координат сокращается на единицу;
- время дискретизируется и дифференциальные уравнения заменяются разностными уравнениями, определяющими отображение Пуанкаре;
- резко сокращается число данных, подлежащих обработке, так как почти всеми точками траектории можно пренебречь.

Теперь рассмотрим вопрос построения отображения Пуанкаре.

Пусть сечение Σ (участок гиперповерхности S) для траектории γ системы (8.1) задается уравнением

$$\mathbf{S}(\mathbf{x}) = \mathbf{S}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(n)}) = 0.$$
 (16)

Обычный подход к нахождению орбиты отображения Пуанкаре заключается в интегрировании (1) выбранным методом. Как только в двух соседних по t точках $\mathbf{S}(\mathbf{x})$ меняет знак, например

$$\mathbf{S}(\mathbf{x}(t_m)) < 0, \quad \mathbf{S}(\mathbf{x}(t_{m+1})) > 0,$$

начинается утомительная процедура подбора нужного шага на промежутке $[t_m,t_{m+1}]$ с целью выполнения условия (16) с требуемой точностью. При этом весь процесс каждый раз повторяется для очередной точки пересечения траекторией γ сечения Σ . Для устранения этого недостатка, модифицируем процесс вычислений, чтобы после достижения точки $\mathbf{x}(t_m)$ сразу оказаться на Σ .

Пусть первоначально сечение S задается уравнением

$$\mathbf{S}(\mathbf{x}) = \mathbf{x}^{(k)} - a = 0 \tag{17}$$

Перейдем в системе (1) к новой независимой переменной $\mathbf{x}^{(k)}$ вместо t. Тогда (1) примет вид

$$\frac{d\mathbf{x}^{(i)}}{d\mathbf{x}^{(k)}} = \frac{\mathbf{f}^{(i)}(\mathbf{x})}{\mathbf{f}^{(k)}(\mathbf{x})}; \quad i \neq k$$

$$\frac{dt}{d\mathbf{x}^{(k)}} = \frac{1}{\mathbf{f}^{(k)}(\mathbf{x})}$$
(18)

Теперь, достигнув $\mathbf{x}(t_m)$, выполним шаг интегрирования в (18) по независимой переменной $\mathbf{x}^{(k)}$ размером $\Delta \mathbf{x}^{(k)} = a - \mathbf{x}^{(k)}(t_m)$. Сразу после этого продолжим интегрирование системы в обычном виде (1). Если сечение \mathbf{S} задается не формулой (17), а более общим выражением (16), то расширим вектор \mathbf{x} , введя еще одну его компоненту

$$\mathbf{x}^{(n+1)} = \mathbf{S}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(n)}),$$

и дополним (8.1) дифференциальным уравнением

$$\frac{d\mathbf{x}^{(n+1)}}{dt} = f^{(n+1)}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial \mathbf{S}}{\partial \mathbf{x}^{(j)}} \cdot f^{(j)}(\mathbf{x}). \tag{19}$$

Для новой совместной системы (1) и (19) уравнение сечения приобретает простой вид (17)

$$\mathbf{S}(\mathbf{x}) = \mathbf{x}^{(n+1)} = 0,$$

и все сводится к ранее рассмотренному случаю.

Нахождение точек бифуркации для периодических решений.

Обратимся к системе (14), введя в нее скалярный параметр є

$$\frac{d\mathbf{x}}{d\tau} = T \cdot \mathbf{f}(\mathbf{x}, \varepsilon), \quad \mathbf{x}(1) = \mathbf{x}(0), \quad \tau \in [0, 1]. \tag{20}$$

Система (20) решается совместно с (15). Результатом является матрица монодромии U(1), мультипликаторы которой позволяют судить об орбитальной устойчивости периодического решения. Теперь необходимо записать дополнительные уравнения для определения значений ε , отвечающих конкретному виду бифуркации периодического решения. Обратимся к ранее рассмотренным простейшим случаям.

Бифуркация удвоения периода. Один из мультипликаторов U(1) становится равным (-1). Отвечающий ему собственный вектор обозначим за \mathbf{v} и запишем

$$\mathbf{U}(1) \cdot \mathbf{v} = -\mathbf{v} \implies (\mathbf{U}(1) + \mathbf{E}) \cdot \mathbf{v} = \mathbf{0},$$

$$\mathbf{v}^{(k)} = 1$$
(21)

Последнее уравнение в (21) аналогично в теме 3 последнему уравнению в (22). Систему (21) составляет (n+1) уравнение относительно (n+1) неизвестного:

вектора **v** и параметра ε. Если ε окажется вектором из двух компонент, то варьируя с некоторым шагом одну из них и решая (21) относительно другой, можно строить бифуркационную диаграмму для данного вида бифуркации.

Рождение (исчезновение) пары замкнутых траекторий. При этом у матрицы U(1) появляется еще один мультипликатор, равный единице, и в зависимости от вида жордановой формы U(1) возможны две ситуации.

1) Матрица U(1) имеет два линейно независимых вектора v и w, отвечающие единичным собственным значениям:

$$(\mathbf{U}(1) - \mathbf{E}) \cdot \mathbf{v} = \mathbf{0},$$

$$(\mathbf{U}(1) - \mathbf{E}) \cdot \mathbf{w} = \mathbf{0}$$
(22)

2) Матрица U(1) имеет один собственный вектор v и один корневой вектор w:

$$(\mathbf{U}(1) - \mathbf{E}) \cdot \mathbf{v} = \mathbf{0},$$

$$(\mathbf{U}(1) - \mathbf{E}) \cdot \mathbf{w} = \mathbf{v}$$

$$(23)$$

При этом заранее неизвестно, какой из случаев (22) или (23) имеет место. Для получения уравнений, пригодных в обеих ситуациях, умножим вторые уравнения в (22) и (23) на матрицу $(\mathbf{U}(1) - \mathbf{E})$. В итоге с учетом условий на \mathbf{v} и \mathbf{w} получим:

$$(\mathbf{U}(1) - \mathbf{E}) \cdot \mathbf{v} = \mathbf{0},$$

$$(\mathbf{U}(1) - \mathbf{E})^2 \cdot \mathbf{w} = \mathbf{0},$$

$$\mathbf{v}^{(k)} = 1, \quad \mathbf{w}^{(k)} = 0.$$
(24)

Возникновение инвариантного тора. Модуль комплексно-сопряженной пары мультипликаторов $\lambda_{1,2} = \alpha \pm i\omega$ становится равным 1. Обозначая отвечающие им собственные векторы за $\mathbf{u} \pm i\mathbf{v}$

$$\mathbf{U}(1) \cdot (\mathbf{u} + i\mathbf{v}) = (\alpha + i\omega) \cdot (\mathbf{u} + i\mathbf{v})$$
(25)

и приравнивая отдельно действительные и мнимые части равенства (25), имеем

$$(\mathbf{U}(1) - \alpha \mathbf{E}) \cdot \mathbf{u} + \omega \cdot \mathbf{v} = \mathbf{0},$$

$$-\omega \cdot \mathbf{u} + (\mathbf{U}(1) - \alpha \mathbf{E}) \cdot \mathbf{v} = \mathbf{0},$$

$$\mathbf{u}^{(k)} = 1, \quad \mathbf{v}^{(k)} = 0, \quad \alpha^2 + \omega^2 = 1.$$
(26)

Подведем некоторые промежуточные итоги. Рассмотренные задачи анализа нелинейных моделей могут быть представлены в виде рис. 4:

Рис. 4 Задачи анализа нелинейных моделей

- 1 Нахождение стационарных точек
- 2 Анализ устойчивости
- 3 Построение диаграмм стационарных решений
- 4 Построение бифуркационных диаграмм
- 5 Нахождение периодических решений
- 6 Анализ орбитальной устойчивости
- 7 Построение диаграмм периодических решений
- 8 Построение бифуркационных диаграмм периодических решений

Используемый при этом математический аппарат сводится к следующему.

Задача 1. Решается система нелинейных уравнений $\mathbf{f}(\mathbf{x}, \varepsilon) = \mathbf{0}$ при заданном значении ε .

Задача 2. Рассчитываются собственные значения матрицы Якоби в стационарной точке.

Задача 3. Многократно решается задача 1.

Задача 4. Аналогично задачам 1 и 3 с использованием дополнительных уравнений, характеризующих конкретный вид бифуркации.

Задача 5. Решается краевая задача (14).

Задача 6. Система (14) решается одновременно с (15) и рассчитываются собственные значения матрицы монодромии.

Задача 7. Многократно решается задача 5.

3adaчa 8. Аналогично 3adaчa 5 u 7 с использованием дополнительных уравнений (21) – (26).

При возникновении «хаотического» (или «странного») аттрактора отображение Пуанкаре дает хаотическую картину, но с очевидной ограниченностью решения. В следующей теме познакомимся с объектами этого рода.