Graphs: Shortest Paths

Bijendra Nath Jain

bnjain@iiitd.ac.in

Outline of next 9 lectures

- Graphs:
 - Undirected graphs
 - Directed graphs
 - (Directed) acyclic graphs (or DAGs)
 - Sparse graphs
 - Weighted graphs
- Graph applications
- Representation of graphs:
 - Adjacency matrix
 - Linked lists
- Algorithms:
 - Traversal algorithms:
 - BFS
 - DFS
 - Topological sort
 - Minimum spanning trees
 - Dijkstra's Shortest path
 - One-to-one
 - One-to-many
 - Many-to-many

- Applicable to any/every kind of networks
 - Road travel
 - Air travel
 - Internet
 - Speed-post/courier delivery
 - Etc.

- Applicable to any/every kind of networks
 - Road travel –optimization of travel time

- Applicable to any/every kind of networks
 - Airline network optimization of airfare

- Applicable to any/every kind of networks
 - Internet optimization of end-to-end delay, using "link-state routing" within a routing domain

- Shortest path problems
 - Single source-single destination routing
 - One-to-many or single source routing
 - Many-to-many or all pairs routing

- Brute force technique
 - Consider a 5 node network with "distance" or weight associated with each edge

 - To do so, list all possible paths a
 D, and compute the distance along the path
 - Example: for a ② b:

a-b	9
a-c-d-b	15
a-c-d-e-b	18
a-c-e-b	
a-c-e-d-b	
a-d-b	8
a-d-c-e-b	
etc.	

Consider the 7 vertex network, with distances associated with each edge

Run the BFS algorithm, and identify routes, compute path lengths

Works on both directed and undirected graphs, but with nonnegative weights

- Works on both directed and undirected graphs, but with nonnegative weights
- However consider following graphs with edges that have negative weight
 - What is the shortest path:

s 🗆 a

s 🗆 b

 $s \square g$

- Works on both directed and undirected graphs, but with nonnegative weights
- However consider following graphs with edges that have negative weight
 - What is the shortest path:
 - s 🗆 a
 - s 🗆 b
 - s 🗆 c
 - $s \square d$
 - s □ g
 - The problem is not so much with negative weights

- Works on both directed and undirected graphs, but with nonnegative weights
- However consider following graphs with edges that have negative weight
 - What is the shortest path:
 - s 🗆 a
 - s 🗆 b
 - s \square c
 - s 🗆 d
 - s □ e
 - $s \square f$
 - s 🗆 g
 - The problem is not so much with negative weights, but with cycles that have negative weights

Dijkstra's algorithm:

- Input: Weighted graph G = (E,V), weights W, source vertex s ∈ V
- Output: Shortest paths from vertex *s* ∈ V to all other vertices

Mimics Prim's algorithm:

- 1a. Call $s = u_0$. Identify shortest path $s \rightarrow u_0$, with path weight/distance = 0
- 1b. Set distance to all other vertices as ∞
- 2a. Compute (update) shortest path from s to all other vertices reachable from u_0 , but going through vertex s or u_0
- 2b. Sort all vertices, other than u₀, in non-decreasing order of their path lengths
- 2c. Identify vertex u₁ with the shortest path length, and freeze the shortest path
- 3 Repeat steps 2a-2c n-1 times, viz. there are no more vertices to be considered

Put differently:

- Let δ(u): shortest path from s to u
- The algorithm runs in n iterations: in iteration i, it finds vertex u_i and $\delta(u_i)$ in non decresing order of $\delta(u_i)$

Dijkstra's algorithm:

Vertex u is presently estimated to be D[u] away

Initialize
$$S = \emptyset$$
, $D[s] = 0$, $D[u] = \infty$, $u \neq s$

for i = 1, ..., n
Let u* be the vertex with min
$$D[u]$$

Add u* to S
For every $u \notin S$, $(u^*, u) \in E$

$$D[u] = \min(D[u], D[u^*] + w(u^*, u))$$

$$parent(u) = u^* \text{ if } D[u] \text{ was updated}$$

Maintain a min binary heap of u ∉ S with u.key = D[u]

whether a vertex is in S is determined by setting a bit in array S

Single-source-all-destination routing: Dijkstra's algorithm

S: { A, C }

Single-source-all-destination routing: Dijkstra's algorithm

Single-source-all-destination routing: Dijkstra's algorithm

$$S = \{A\}$$
$$D(A) = 0$$

$$S = \{A\}$$
$$D(A) = 0$$

Update D(B), D(D), parent(B), parent(D)


```
S = {A}
D(A) = 0
Update D(B), D(D), parent(B), parent(D)
S = S U {D}
Update D(C), D(F), D(G), D(E), parent(...)
```


Dijkstra's algorithm: Running time: O(m log n)

Initialize
$$S = \emptyset$$
, $D[s] = 0$, $D[u] = \infty$, $u \neq s$

O(1)

for $i = 1, ..., n$

Let u^* be the vertex with min $D[u]$

Add u^* to S

For every $u \notin S$, $(u^*, u) \in E$

$$D[u] = \min(D[u], D[u^*] + w(u^*, u))$$

parent(u) = u^* if $D[u]$ was updated

Q&A

Dijkstra's algorithm:

```
Initialize S_1 = \{s\}, \delta(s) = 0 for i = 1, 2, ..., n-1 for every u \notin S_i, D_i[u] = \min_{v \in S_i} (\delta(v) + w(v, u)) Let u^* be the vertex with min D_i[u] Set \delta(u^*) = D_i[u^*] and S_{i+1} = S_i \cup \{u^*\}
```

Vertex u is presently estimated to be at most $D_i[u]$ away

Dijkstra's algorithm:

```
Initialize S_1=\{s\}, \delta(s)=0.

For I=1,2,...,n-1

For every u\not\in S_i, D_i[u]=\min_{v\in S_i}(\delta(v)+w(v,u))

Let u^* be the vertex with \min D_i[u]

Set \delta(u^*)=D_i[u^*] and S_{i+1}=S_i\cup\{u^*\}
```

$$D_{i}[u] = \min(D_{i-1}[u], \delta(u_{i}) + wt(v, u))$$

Recognize that in i-th iteration u_i has been added. Improved algorithm since change in path length can only happen because u_i has since been added