

November 2007

# FDP2614 200V N-Channel PowerTrench MOSFET

# **General Description**

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

# **Application**

PDP application



# **Description**

- 62A, 200V,  $R_{DS(on)} = 22.9 m\Omega$  @ $V_{GS} = 10 V$
- Fast switching speed
- Low gate charge
- High performance trench technology for extremely low R<sub>DS(on)</sub>
- · High power and current handling capability
- RoHS compliant





# **Absolute Maximum Ratings**

| Symbol                           | Parameter                                                                    |                                                                             | Ratings     | Unit         |           |
|----------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|--------------|-----------|
| V <sub>DS</sub>                  | Drain-Source Voltage                                                         |                                                                             | 200         | V            |           |
| $V_{GS}$                         | Gate-Source Voltage                                                          |                                                                             |             | ± 30         | V         |
| I <sub>D</sub>                   | Drain Current                                                                | - Continuous (T <sub>C</sub> = 25°C<br>- Continuous (T <sub>C</sub> = 100°C | ,           | 62<br>39.3   | A<br>A    |
| I <sub>DM</sub>                  | Drain Current                                                                | - Pulsed                                                                    | (Note 1)    | see Figure 9 | A         |
| E <sub>AS</sub>                  | Single Pulsed Avalanche Energy (Note 2)                                      |                                                                             | 145         | mJ           |           |
| dv/dt                            | Peak Diode Recovery dv/dt (Note 3)                                           |                                                                             | 4.5         | V/ns         |           |
| P <sub>D</sub>                   | Power Dissipation                                                            | (T <sub>C</sub> = 25°C)<br>- Derate above 25°C                              |             | 260<br>2.1   | W<br>W/°C |
| T <sub>J,</sub> T <sub>STG</sub> | Operating and Storage Temperature Range                                      |                                                                             | -55 to +150 | °C           |           |
| T <sub>L</sub>                   | Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds |                                                                             | pose,       | 300          | °C        |

## **Thermal Characteristics**

| Symbol          | Parameter                               | Min. | Max. | Unit |
|-----------------|-----------------------------------------|------|------|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case    |      | 0.48 | °C/W |
| $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | -    | 62.5 | °C/W |

# **Package Marking and Ordering Information**

| Device Marking | Device  | Package | Reel Size | Tape Width | Quantity |
|----------------|---------|---------|-----------|------------|----------|
| FDP2614        | FDP2614 | TO-220  | -         | -          | 50       |

# Electrical Characteristics T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                                 | Parameter                                             | Conditions                                                                                                           | Min | Тур  | Max       | Units                    |  |
|----------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|------|-----------|--------------------------|--|
| Off Charac                             | Off Characteristics                                   |                                                                                                                      |     |      |           |                          |  |
| BV <sub>DSS</sub>                      | Drain-Source Breakdown Voltage                        | $V_{GS} = 0V$ , $I_D = 250\mu A$ , $T_J = 25^{\circ}C$                                                               | 200 |      |           | V                        |  |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature<br>Coefficient          | I <sub>D</sub> = 250μA, Referenced to 25°C                                                                           |     | 0.2  |           | V/°C                     |  |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current                       | V <sub>DS</sub> = 200V, V <sub>GS</sub> = 0V<br>V <sub>DS</sub> = 200V, V <sub>GS</sub> = 0V, T <sub>J</sub> = 125°C |     |      | 10<br>500 | μ <b>Α</b><br>μ <b>Α</b> |  |
| I <sub>GSSF</sub>                      | Gate-Body Leakage Current, Forward                    | V <sub>GS</sub> = 30V, V <sub>DS</sub> = 0V                                                                          |     |      | 100       | nA                       |  |
| I <sub>GSSR</sub>                      | Gate-Body Leakage Current, Reverse                    | $V_{GS} = -30V$ , $V_{DS} = 0V$                                                                                      |     |      | -100      | nA                       |  |
| On Charac                              | teristics                                             |                                                                                                                      |     |      | •         | •                        |  |
| V <sub>GS(th)</sub>                    | Gate Threshold Voltage                                | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                                                                 | 3.0 | 4.0  | 5.0       | V                        |  |
| R <sub>DS(on)</sub>                    | Static Drain-Source On-Resistance                     | V <sub>GS</sub> = 10V, I <sub>D</sub> = 31A                                                                          |     | 22.9 | 27        | mΩ                       |  |
| 9 <sub>FS</sub>                        | Forward Transconductance                              | V <sub>DS</sub> = 10V, I <sub>D</sub> = 31A (Note 4)                                                                 |     | 72   |           | S                        |  |
| Dynamic C                              | haracteristics                                        |                                                                                                                      |     |      |           |                          |  |
| C <sub>iss</sub>                       | Input Capacitance                                     |                                                                                                                      |     | 5435 | 7230      | pF                       |  |
| C <sub>oss</sub>                       | Output Capacitance                                    | V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0V<br>f = 1.0MHz                                                            |     | 505  | 675       | pF                       |  |
| C <sub>rss</sub>                       | Reverse Transfer Capacitance                          | - 1 - 1.0WH12                                                                                                        |     | 110  | 165       | pF                       |  |
| Switching                              | Characteristics                                       |                                                                                                                      |     |      |           |                          |  |
| t <sub>d(on)</sub>                     | Turn-On Delay Time                                    |                                                                                                                      |     | 77   | 165       | ns                       |  |
| t <sub>r</sub>                         | Turn-On Rise Time                                     | $V_{DD} = 100V, I_{D} = 62A$<br>$V_{GS} = 10V, R_{GEN} = 25\Omega$                                                   |     | 284  | 560       | ns                       |  |
| t <sub>d(off)</sub>                    | Turn-Off Delay Time                                   |                                                                                                                      |     | 103  | 220       | ns                       |  |
| t <sub>f</sub>                         | Turn-Off Fall Time                                    | (Note 4, 5)                                                                                                          |     | 162  | 335       | ns                       |  |
| Qg                                     | Total Gate Charge                                     |                                                                                                                      |     | 76   | 99        | nC                       |  |
| Q <sub>gs</sub>                        | Gate-Source Charge                                    | $V_{DS} = 100V, I_D = 62A$<br>$V_{GS} = 10V$                                                                         |     | 35   |           | nC                       |  |
| Q <sub>gd</sub>                        | Gate-Drain Charge                                     | (Note 4, 5)                                                                                                          |     | 18   |           | nC                       |  |
| Drain-Sour                             | ce Diode Characteristics and Maximun                  | n Ratings                                                                                                            |     |      |           |                          |  |
| I <sub>S</sub>                         | Maximum Continuous Drain-Source Diode Forward Current |                                                                                                                      |     |      | 62        | Α                        |  |
| I <sub>SM</sub>                        | Maximum Pulsed Drain-Source Diode Forward Current     |                                                                                                                      |     |      | 186       | Α                        |  |
| $V_{SD}$                               | Drain-Source Diode Forward Voltage                    | V <sub>GS</sub> = 0V, I <sub>S</sub> = 62A                                                                           |     |      | 1.2       | V                        |  |
| t <sub>rr</sub>                        | Reverse Recovery Time                                 | V <sub>GS</sub> = 0V, I <sub>S</sub> = 62A                                                                           |     | 145  |           | ns                       |  |
| Q <sub>rr</sub>                        | Reverse Recovery Charge                               | $dI_F/dt = 100A/\mu s$ (Note 4)                                                                                      |     | 0.81 |           | μС                       |  |

#### Notes

<sup>1.</sup> Repetitive Rating: Pulse width limited by maximum junction temperature

<sup>2.</sup> L = 1mH, I $_{AS}$  = 17A, V $_{DD}$  = 50V, R $_{G}$  = 25 $\Omega$ , Starting T $_{J}$  = 25°C

<sup>3.</sup> I  $_{SD}$   $\leq$  62A, di/dt  $\leq$  100A/ $\mu$ s, V  $_{DD}$   $\leq$  BV  $_{DSS}$ , Starting T  $_{J}$  = 25°C

<sup>4.</sup> Pulse Test: Pulse width  $\leq 300 \mu s,$  Duty Cycle  $\leq 2\%$ 

<sup>5.</sup> Essentially Independent of Operating Temperature Typical Characteristics

Figure 1. On-Region Characteristics



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage



Figure 5. Capacitance Characteristics



Figure 2. Transfer Characteristics



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature



Figure 6. Gate Charge Characteristics



# Figure 7. Breakdown Voltage Variation vs. **Temperature**



Figure 9. Maximum Safe Operating Area



3.0

Drain-Source On-Resistance

0.0 └─ -100 50 T<sub>J</sub>, Junction Temperature [°C] Figure 10. Maximum Drain Current vs. Case-

**Temperature** 

0

Notes: 1. V<sub>GS</sub> = 10V

2. I<sub>D</sub> = 31A

Figure 8. On-Resistance Variation vs. Tem-

perature



70 l<sub>D</sub>, Drain Current [A] 50 40 30 20 10 0 50 75 100 T<sub>C</sub>, Case Temperature [°C] 25 125 150

Figure 11. Transient Thermal Response Curve



www.fairchildsemi.com

## **Gate Charge Test Circuit & Waveform**



## **Resistive Switching Test Circuit & Waveforms**





## **Unclamped Inductive Switching Test Circuit & Waveforms**





## Peak Diode Recovery dv/dt Test Circuit & Waveforms









# **Mechanical Dimensions**

# TO-220











### **TRADEMARKS**

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| _                                   |                         | _                          |                        |
|-------------------------------------|-------------------------|----------------------------|------------------------|
| ACEx <sup>®</sup>                   | Green FPS™              | Power247 <sup>®</sup>      | SuperSOT™-8            |
| Build it Now™                       | Green FPS™ e-Series™    | POWEREDGE <sup>®</sup>     | SyncFET™               |
| CorePLUS™                           | GTO™                    | Power-SPM™                 | The Power Franchise®   |
| CROSSVOLT™                          | i-Lo™                   | PowerTrench <sup>®</sup>   | the DAMAR              |
| CTL™                                | IntelliMAX™             | Programmable Active Droop™ | p wer franchise        |
| Current Transfer Logic™             | ISOPLANAR™              | QFET <sup>®</sup>          | TinyBoost™             |
| EcoSPARK <sup>®</sup>               | MegaBuck™               | QS™                        | TinyBuck™              |
| <b>₽</b> ® .                        | MICROCOUPLER™           | QT Optoelectronics™        | TinyLogic <sup>®</sup> |
| <b>F</b> airchild <sup>®</sup>      | MicroFET™               | Quiet Series™              | TINYOPTO™              |
| Fairchild Semiconductor®            | MicroPak™               | RapidConfigure™            | TinyPower™             |
| FACT Quiet Series™                  | MillerDrive™            | SMART START™               | TinyPWM™               |
| FACT <sup>®</sup>                   | Motion-SPM™             | SPM <sup>®</sup>           | TinyWire™              |
| FAST <sup>®</sup>                   | OPTOLOGIC <sup>®</sup>  | STEALTH™                   | µSerDes™               |
| FastvCore™                          | OPTOPLANAR <sup>®</sup> | SuperFET™                  | UHC®                   |
| FPS™                                | (I)®                    | SuperSOT™-3                | UniFET™                |
| FRFET®                              | PDP-SPM™                | SuperSOT™-6                | VCX™                   |
| Global Power Resource <sup>SM</sup> | Power220 <sup>®</sup>   | •                          |                        |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

#### As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### PRODUCT STATUS DEFINITIONS

#### **Definition of Terms**

| Datasheet Identification                   | Product Status    | Definition                                                                                                                                                                                               |  |
|--------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Advance Information Formative or In Design |                   | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |
| Preliminary                                | First Production  | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |
| No Identification Needed                   | Full Production   | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.                                                   |  |
| Obsolete                                   | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.                                      |  |

8

Rev. I31