Bubble-sort

Bubble Sort

procedure BUBBLESORT(var A: arraytype; n: integer); var

```
i, j: integer;
  temp: itemtype;
begin {BUBBLESORT}
  for i \leftarrow I to n - I do
   for j \leftarrow I to n - i do
     if A[j] > A[j + 1] then
       begin
        temp \leftarrow A[j];
        A[i] \leftarrow A[i + 1];
        A[i + 1] \leftarrow temp;
       end;
end {BUBBLESORT};
```

We can modify this algorithm so as to stop early if no swaps happen in a pass (indicating the array is already sorted): The best case time complexity then will be O(n), but worst and average remains O(n²)

- Back to our old question
- How to build a heap from the array
- Remove elements from the heap one by one and insert them back into the array

procedure HEAPSORT(A:arraytype; n:integer);

```
var i:integer; item: itemtype;
begin
        HEAPIFY(A,n)
        for i \leftarrow n downto 2 do
        begin
                item \leftarrow A[i];
               A[i] \leftarrow A[1];
               A[I] \leftarrow item;
               ADJUST(A, I, i-I);
        end;
```

IE304 Algorithms: Rajeev Wankar

end.

0	100		0	
1	80		1	
2	90		2	
3	70		3	
4	20		4	
5	50		5	
6	10		6	
7	60		7	
8	30		8	
		-		

		_	
0		0	
1	80	1	
2	90	2	
3	70	3	
4	20	4	
5	50	5	
6	10	6	
7	60	7	
8	30	8	100

		_		
0	90		0	
1	80		1	
2	50		2	
3	70		3	
4	20		4	
5	30		5	
6	10		6	
7	60		7	
8			8	100

0		0	
1	80	1	
2	50	2	
3	70	3	
4	20	4	
5	30	5	
6	10	6	
7	60	7	90
8		8	100

0	80	0	
1	70	1	
2	50	2	
3	60	3	
4	20	4	
5	30	5	
6	10	6	
7		7	90
8		8	100

0		0	
1	70	1	
2	50	2	
3	60	3	
4	20	4	
5	30	5	
6	10	6	80
7		7	90
8		8	100

		_		
0	70		0	
1	60		1	
2	50		2	
3	10		3	
4	20		4	
5	30		5	
6			6	80
7			7	90
8			8	100

		_		
0			0	
1	60		1	
2	50		2	
3	10		3	
4	20		4	
5	30		5	70
6			6	80
7			7	90
8			8	100

	0	60	0
	1	30	1
	2	50	2
	3	10	3
	4	20	4
70	5		5
80	6		6
90	7		7
100	8		8

0		0	
1	30	1	
2	50	2	
3	10	3	
4	20	4	60
5		5	70
6		6	80
7		7	90
8		8	100

		_		
0	50		0	
1	30		1	
2	20		2	
3	10		3	
4			4	60
5			5	70
6			6	80
7			7	90
8			8	100

	0		0
	1	30	1
	2	20	2
50	3	10	3
60	4		4
70	5		5
80	6		6
90	7		7
100	8		8

	0	30	0
	1	10	1
	2	20	2
50	3		3
60	4		4
70	5		5
80	6		6
90	7		7
100	8		8

	0		0
	1	10	1
30	2	20	2
50	3		3
60	4		4
70	5		5
80	6		6
90	7		7
100	8		8

	0	20	0
	1	10	1
30	2		2
50	3		3
60	4		4
70	5		5
80	6		6
90	7		7
100	8		8

	0		0
20	1	10	1
30	2		2
50	3		3
60	4		4
70	5		5
80	6		6
90	7		7
100	8		8

0	10	C)	
1		1		20
2		2	-	30
3		3	3	50
4		4	ļ	60
5		5	•	70
6		6)	80
7		7	7	90
8		8	3	10

0	
1	
2	
3	
4	
5	
6	
7	
8	

0	10
1	20
2	30
3	50
4	60
5	70
6	80
7	90
8	100

Though the call of HEAPIFY requires only O(n) operations,
 ADJUST possible requires O(log n) operations for each invocation.

Thus the worse case time is O(n log n).

Sets and disjoint unions

Problem: Suppose we have a finite universe of n elements
 U, out of which sets will be created.

- Representation: SET(I:n) such that SET(i) = I if ith element of U is present, otherwise 0.
- This array is called the characteristic vector for the set.

- Advantages: It can be easily determined whether or not a particular element i is present.
- Union and Intersection can be done using "logical and" and "logical or".
- Disadvantages: This representation is inefficient when the value of n is large and the size of the set is smaller compare to U.
- The time will be proportional to n rather than the number of elements in the set.

- Alternate representation: Represent each set by its element (assuming m in first and n in second). If there is any ordering relationship between them, then the operation such as union and intersection can be carried out in time proportional to the length of the sets.
- (Can you write code that does this in O(m+n) time?)

- We represent sets as trees.
- We assume that they are pair wise disjoint and perform these operations.

- **Disjoint Union:** $S_i \cup S_j = \{\text{all elements } x \text{ such that } x \text{ is in } S_i \text{ or } S_i \}.$
- Find(i): find a set containing element i.
- Challenge is to device data representation for disjoint sets so that these operation can be performed efficiently.
- One possible representation of S_1 , S_2 , S_3 can be given by

Union: Make one of the trees a subtree of the other

Union: Make one of the trees a subtree of the other

- In order to find Union of two sets all one has to do is, set the parent field of the root to the other root.
- We identify the sets by the index of roots.

 The operation F(i) will find the root of the tree containing element i. U(i,j) require two trees with roots i, j to be joined.

```
procedure U(i,j);
```

var i,j : integer;

begin

 $parent(i) \leftarrow j;$

end.

```
procedure F(i);
var i,j : integer;
begin
       j←i;
       While (parent(j) > 0) do
              j \leftarrow parent(j)
       return(j)
end.
```

• performance of U and F is **not good**, for ex. $S_i = \{i\}$, $1 \le i \le n$, then there is forest of n nodes with parent(i) = 0, $1 \le i \le n$.

- If we perform these sequence of Union and Find-
- U(1,2), F(1), U(2,3), F(1), U(3,4), F(1),....., U(n-1,n).
- results in the degenerate tree.

- Since the time taken for union is constant, n-I calls to U can be processed in O(n) time. Time required to process F at level i is O(i).
- n-2 calls of find takes $O(n^2)$ time.
- Weighting rule: "if the number of nodes in tree i is less than the number of nodes in tree j, then make j the parent of i, else make i, the parent of j".

 using the rule on the data set given earlier, and using the same sequence of operations we have-

 In order to implement the weighting rule, we need to know how many nodes are there in a tree. We maintain a COUNT field in the root of every tree.

- If i is the root of the tree then COUNT(i) = number of nodes in that tree. COUNT can be maintained in the PARENT field as a negative number.
- Because we can store both parent and size in the same array without needing a separate data structure.
- The PARENT array stores either:
 - A positive number = the index of the parent node
 - A negative number = means this is a root, and the absolute value is the size of the tree.

```
procedure UNION(i,j);
//PARENT(i) = -COUNT(i), PARENT(j) = -COUNT(j), //
var
i,j,x: integer;
begin
       x \leftarrow PARENT(i) + PARENT(j);
       if (PARENT(i) > PARENT(j)) then
              PARENT(i) \leftarrow j;
              PARENT(i) \leftarrowx;
       else
              PARENT(j) \leftarrow i;
              PARENT(i) \leftarrowx;
```

- You have to trace it as an exercise
- Initially, each node is its own root:
 PARENT[i] = -I for all i = I to 8

 Time required by UNION is still bounded by constant. The maximum time required by FIND is given by the lemma-

• Lemma: Let T be a tree with n nodes created as a result of algorithm UNION. No node in the tree has a level greater than $\lfloor \log n \rfloor + 1$.

Proof: Theorem is true for n = 1, assume that it is true for all trees with i nodes, $i \le n - 1$. We show that it is true for i = n. Consider the last operation performed, UNION(k,j). Let m be number of nodes in tree j and n-m are number of nodes in k. We may assume $1 \le m \le n/2$. The maximum level of any node in T is

- >either is same as that in k or
- is one more than that in j

If first is the case then maximum level

$$T \le \lfloor \log(n - m) \rfloor + 1$$
$$\le \lfloor \log n \rfloor + 1$$

later is the case than it is

$$\leq \lfloor \log m \rfloor + 1 + 1$$

$$\leq \left|\log \frac{n}{2}\right| + 1$$

$$\leq \lfloor \log n \rfloor + 1$$

UNION(1,2) UNION(3,4) UNION(5,6) UNION(7,8)

UNION(1,3) UNION(5,7)

UNION(1,5)

- As a result of the lemma, the maximum time to process a find is O(log n).
- If there are n elements in the tree sequence of n unions and m finds is bounded by O(m log n).
- Further improvement is possible if we make use of collapsing rule.
- Collapsing rule: If j is the node on the path from i to its root then set PARENT(j) ← ROOT(i).

```
procedure FIND(i);
var j:integer;
begin
       j← i;
       while (PARENT(j) > 0) do
               j \leftarrow PARENT(i);
        k \leftarrow i;
       while (k \neq j) do
               t \leftarrow PARENT(k);
                PARENT(k) \leftarrow j;
                k \leftarrow t;
        return(j);
end.
```

processing FIND(8), FIND(8), FIND(8), FIND(8)
 FIND(8), FIND(8), FIND(8), FIND(8)

 using old F(8) we need 24 moves and with FIND we need 13 moves.

Example use

- Kruskal's Algorithm Minimum Spanning Tree (MST)
- Cycle Detection in Undirected Graph
- Connected Components in Undirected Graph
- Dynamic Connectivity (offline queries)
- Network Connectivity Tracking
- Grouping Social Network Users / Friend Circles
- Merging Accounts, Names, or Labels
- Image Processing Connected Component Labeling
- Equivalence of Equations (e.g., a == b, b == c, check a == c)

Equivalence Relations

- A relation R is defined on a set S if for every pair of elements (a, b) with $a, b \in S$, a R b is either true or false. If a R b is true, we say that "a is related to b".
- An equivalence relation is a relation R that satisfies three properties
 - (Reflexive) a R a for all $a \in S$
 - (Symmetric) a R b if and only if b R a
 - (Transitive) a R b and b R c implies that a R c

Equivalence Relation Examples

- "=", but not "≤"
- Students with the same CGPA
- All cities in the same country
- Computers connected in a network

Equivalence Classes

- The equivalence class for an element $a \in S$ is the subset of S that contains all the elements that are related to a.
- The subsets that represent the equivalence classes will be "disjoint"
- Example
 - All students in Algorithms who are from Ph D

Examples

- Same Birth Year (Students in Algorithms Class)
- Equivalence Relation: a ~ b if both were born in the same year.
- Equivalence Classes:
 - 2004: {Rahul, Anjali, Neha}
 - 2005: {Sohan, Ria}
 - 2006: {Deepak}

Examples

- Anagram Groups (Strings)
- Equivalence Relation: Two strings are equivalent if they are anagrams of each other.
- Equivalence Classes:
 - {listen, silent, enlist}
 - {rat, tar, art}
 - {dusty, study}

Maze Application

Build a random maze by erasing edges.

Maze Application

Pick Start and End

Sta	rt				
				F	nd
				_	

Maze Application

Repeatedly pick random edges to delete.

Equivalence Relations

Connection between rooms is an equivalence relation

- any room is connected to itself
- if room **a** is connected to room **b**, then room **b** is connected to room **a**
- if room a is connected to room b and room b is connected to room c, then room a is connected to room c

Maze Generator

- None of the boundary is deleted
- Randomly remove walls until the Start and End cells are in the same set.
- Removing a wall is the same as doing a union operation.
- Do not remove a randomly chosen wall if the cells it separates are already in the same set.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle

A Good Solution

A Hidden Tree

Number the Cells

We have disjoint sets $S = \{\{1\}, \{2\}, \{3\}, \{4\}, \dots \{36\}\}\}$ each cell is unto itself. We have all possible edges $E = \{(1,2), (1,7), (2,8), (2,3), \dots \}$ 60 edges total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Basic Algorithm

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S

pick a random edge (x,y) and remove from E

u ← Find(x);

v ← Find(y);

if u ≠ v then

Union(u,v)

else

add (x,y) to Maze

All remaining members of E together with Maze form the maze
```

Example Step

Example

```
S
                                                    S
\{1,2,\overline{7},8,9,13,19\}
                                                    {1,2,<del>7</del>,8,9,13,19,14,20 26,27}
                             Find(8) = 7
3
                                                    {<u>3</u>}
                             Find(14) = 20
4
                                                    {4}
{<u>5</u>}
                                                    5
6}
                                                    {<u>6</u>}
                              Union(7,20)
10
                                                    {<u>10</u>}
{11, 17}
                                                    {11, 17}
{<u>12</u>}
                                                    {<u>12</u>}
\{14, 20, 26, 27\}
                                                    {15,<u>16</u>,21}
{15, 16, 21}
                                                    {22,23,24,29,39,32
{22,23,24,29,39,32
                                                      33,34,35,36
 33,34,35,36}
```

Example

Example at the End

10

1

End of Chapter