Analyse Numerique

David Wiedemann

Table des matières

1	Representation de nombres en arithmetique finie					
	1.1	Representation des nombres dans les ordinateurs	3			
	1.2	Approximation de \mathbb{R} dans $\mathcal{F}(2,53,-1021,1024)$	3			
	1.3	Operations dans \mathcal{F}	4			
	1.4	Parenthese sur le concept de stabilite	4			
2	Integration Numerique					
	2.1	Formules d'integration de Newton-Cotes	5			
	2.2	Formules de quadrature d'ordre optimal	8			
	2.3	Noeuds d'integration optimaux : Formule de Gauss	9			
	2.4	Etude d'erreur des formules de quadrature	11			
3	Interpolation de fonctions					
	3.1	Polynomes de Lagrange	12			
	3.2	Interpolation sur les points de Chebyshev	14			
	3.3	Approximation par des polynomes dans la norme L^2	16			
	3.4	Erreurs d'arrondissement	17			
	3.5	Interpolation par polynomes par parties	18			
	3.6	Approximation dans la norme L^2	19			
4	Resolution de systemes lineaires 19					
	4.1	Quelques rappels sur les matrices	20			
	4.2	Methodes iteratives pour la resolution de systemes lineaires $$	20			
\mathbf{L}	\mathbf{ist}	of Theorems				
	2	Proposition	3			
	1	Definition	4			
	2	Definition (Formule de Quadrature)	5			
	3	Definition	6			
	4	Theorème	6			
	7	Theorème (Thm. fondamental de la theorie de l'integration)	8			

8	Lemme	9
4	Definition (Polynomes de Legendre)	9
9	Theorème (Forme des polynomes de Legendre) $\ \ \ldots \ \ \ldots \ \ \ldots$	9
10	Theorème	10
11	Lemme	10
5	Definition	10
12	Theorème (Erreurs dans les formules de quadrature)	11
13	/	12
6	Definition	12
14	Proposition	13
16	Theorème (Representation de l'erreur)	13
17	Theorème	14
18	Theorème	14
19	Proposition	15
20	Theorème	15
7	Definition (Lebesgue constant)	17
23	Theorème	18
24	(18
8	Definition	18
25	Theorème	18
26	Theorème	19
9	Definition (matrice creuse)	20
27	Proposition	20
10	Definition	20

Lecture 1: Representation de nombres en arithmetique finie

Thu 03 Mar

1 Representation de nombres en arithmetique finie

Notons $\mathcal{F}(\beta, t, L, U)$ l'ensemble des nombres representables sous la forme $(-1)^s(0, \alpha_1 \dots \alpha_t)_{\beta}\beta^e$ ou e est l'exposant, $L \leq e \leq U, 0 \leq \alpha_i < \beta, \alpha_1, \dots, \alpha_t$ est la mantisse et s le signe.

Cette representation est la representation floating point.

1.1 Representation des nombres dans les ordinateurs

On appelle les nombres en double precision l'ensemble

$$\mathcal{F}(2,53,-1021,1024)$$

Bien que les valeurs maximales et minimales sont tres grandes ($2\cdot 10^{-308}$ et $2\cdot 10^{308}$), mais on en saute beaucoup.

Tous les nombres dans \mathcal{F} sont de la forme $\frac{p}{2^n}, p \in \mathbb{N}$.

On regarde la distance entre deux nombres consecutifs de \mathcal{F} .

Pour un exposant fixe, $[2^p, 2^{p+1}]$, le premier nombre apres 2^p est

$$(0.10...01)2^{p+1} = 2^p + 2^{p+1-t}$$

Donc dans ce cas, on a que le spacing est donne par 2^{p-52} .

Remarque

Si on a que des entiers dans un intervalle $[\beta^p, \beta^{p+1}]$, alors $\beta^{p+1-t} = 1$.

1.2 Approximation de \mathbb{R} dans $\mathcal{F}(2, 53, -1021, 1024)$

Soit $x \in \mathbb{R}$, on appelle $fl(x) \in \mathcal{F}(2, 53, -1021, 1024)$.

Notons $x = (-1)^s (0, \alpha_1 \dots \alpha_{t-1} \alpha_t \alpha_{t+1} \dots) \beta^e$, on definit alors

$$fl(x) = (-1)^s (0, \alpha_1 \dots \alpha_{t-1} \tilde{\alpha_t}) \beta^e$$

on fait l'hypothese ici que au moins un des α_i est non nul.

On veut borner $|x - fl(x)| \le \frac{1}{2} \operatorname{spacing} = \frac{1}{2} \beta^{e-t}$.

Bien que l'erreur absolue est, en principe, grande, l'erreur relative sera bornee, on a en effet

$$\frac{|x - fl(x)|}{|x|} \le \frac{1}{2}\beta^{e-t} \frac{1}{|x|} \le \frac{1}{2}\beta^{1-t} (\simeq 10^{-16} \text{ dans notre systeme })$$

On appelle cette erreur la "machine precision" et on la note u

Proposition 2

On peut egalement ecrire que

$$x \in \mathbb{R}$$
 $fl(x) = x(1+\epsilon), |\epsilon| \le u$

1.3 Operations dans \mathcal{F}

Soit $x, y \in \mathbb{R}$, $x+y \mapsto fl[fl(x)+fl(y)]$, qu'elle est l'erreur relative commise?

$$\frac{|fl[fl(x) + fl(y) - (x+y)|}{|x+y|}$$

En utilisant la proposition ci-dessus, notons $fl(x) = x(1+\epsilon_1), fl(y) = y(1+\epsilon_2),$ on a alors

$$|(x(1+\epsilon_1)+y(1+\epsilon_2))(1+\epsilon_3)-(x+y)| \cdot \frac{1}{|x+y|} \le \frac{x\epsilon_1+y\epsilon_2+\epsilon_3(x+y)-(x+y)}{|x+y|} + petit$$

$$\leq \big(\frac{|x|}{|x+y|} + \frac{|y|}{|x+y|} + 1\big)u$$

On remarque que si x > 0, y < 0, il est possible de commettre une erreur tres grande.

On dit que la soustraction est une operation instable.

1.4 Parenthese sur le concept de stabilite

On veut resoudre y = G(x).

Definition 1

La resolution de y = G(x) est stable si une petite perturbation de x correspond a une petite perturbation de y, ie.

$$y + \delta y = G(x + \delta x)$$

On appelle alors le conditionnement absolu du probleme

$$\kappa_{abs} = \sup_{\delta x} \frac{\|\delta y\|}{\|\delta x\|}$$

Et on appelle perturbation relative du probleme

$$\kappa_{rel} = \sup_{\delta x} \frac{\|\delta y\| / \|y\|}{\|\delta x\| / \delta x}$$

Lecture 2: Integration Numerique

Thu 10 Mar

2 Integration Numerique

On veut construire des algorithme pour calculer de maniere approchee $\int_a^b f(x)dx$

2.1 Formules d'integration de Newton-Cotes

On ecrit

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

Chacun des termes de la somme se reecrit comme

$$\int_{x_{i}}^{x_{i+1}} f(x)dx = \int_{0}^{1} f(x_{i} + th_{i})h_{i}dt$$

Et on trouve

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{N-1} h_{i} \int_{0}^{1} f(x_{i} + th_{i})dt$$

Ainsi, il suffit de trouver un algorithme pour calculer des integrales de la forme $\int_0^1 g(t)dt$. La maniere la plus naive pour approximer cette integrale serait de prendre $\int_0^1 g(t)dt \approx g(\frac{1}{2})$, et on note $Q_1^{nc}(g) = g(\frac{1}{2})$.

Une maniere moins naive de faire est d'approcher g par une fonction lineaire et de prendre l'approximation

$$\int_0^1 g(t)dt \approx \frac{1}{2} \left(g(0) + g(1) \right) = Q_2^{nc}(g)$$
(formule de Newton-Cote a deux noeuds)

ou encore

$$\int_0^1 \approx \frac{1}{6}(g(0) + 4g(\frac{1}{2}) + g(1)) = Q_3^{nc}(g)$$
 (formule de cote a trois noeuds ou formule de Simpson)

De maniere generale, on appelle formule de Newton-Cotes a S noeuds

$$\int_0^1 g(t)dt \approx \int_0^1 p(t)dt$$

ou p(t) est le polynome de degre s-1 passant par les points $(c_i, g(c_i))$, ou $0 \le c_1 \le \ldots \le c_{s-1} < c_s \le 1$.

Ainsi, de maniere generale

$$Q_S^{nc}(g) = \sum_{i=1}^s b_i g(c_i)$$

ou b_i sont les poids des formules de N.C.

On veut donc essayer de trouver des formules qui donnennt les poids de l'integration de Newton-Cotes.

Definition 2 (Formule de Quadrature)

Une formule de quadrature $Q_s(f)$ est donnée par n'importe quelle en-

semble de couples $(\{b_i\}_{i=1}^s, \{c_i\}_{i=1}^s)$:

$$Q_s(f) = \sum_{i=1}^{N} b_i f(c_i)$$

Definition 3

 $Q_s(\cdot)$ est d'ordre s quand elle est exacte sur tout polynomme de degre $\leq s-1$

Remarque

Par definition les formules Q_s^{nc} sont d'ordre s.

Theorème 4

Etant donne s noeuds distincts $\{c_i\}_{i=1}^N$, la formule donnee par $(\{b_i\}, \{c_i\})$ est d'ordre s si et seulement si les poids verifient

$$\sum_{i=1}^{s} c_i^{q-1} b_i = \frac{1}{q} \quad \forall q = 1, \dots, s$$

Preuve

 $Supposons \ que \ Q \ est \ d'ordre \ s, \ alors \ prenons$

$$p(t) = t^q \quad q = 1 \dots s$$

On ecrit

$$\int_0^1 p(t)dt = \int_0^1 t^{q-1}dt = \frac{1}{q}$$

d'autre part

$$\sum_{i=1}^{s} b_i p(c_i) = \sum_{i=1}^{s} b_i p(c_i) = \sum_{i=1}^{s} b_i c_i^{q-1}$$

Dans l'autre sens, si $\sum_{i=1}^{s} c_i^{q-1} b_i = \frac{1}{q}$, alors la formule est exacte sur tout monome (par le raisonnement ci-dessus), par linearite, elle sera donc exacte sur n'importe quel polynome.

On montre maintenant qu'enfait les poids b_i sont uniques etant donne les c_i , en effet, etant donne le theoreme ci-dessus, on a

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ c_1 & c_2 & c_3 & \dots & c_s \\ c_1^2 & c_2^2 & c_3^2 & \dots & c_s^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_1^{s-1} & c_2^{s-1} & c_3^{s-1} & \dots & c_s^{s-1} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ \vdots \\ b_s \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{3} \\ \vdots \\ \frac{1}{s} \end{pmatrix}$$

Ainsi, soit la matrice A ci-dessus est inversible, alors il y a un seul choix de poids pour la formule de N.C.

Par un theoreme d'algebre lineaire, la matrice est inversible En appliquant donc ceci a une fonction f generale, on trouve

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{N-1} \int_{x_{j}}^{x_{j+1}} f(x)dx = \sum_{j=0}^{N-1} h_{j} \int_{0}^{1} f(x_{j} + th_{j})dt$$
$$= \sum_{j=0}^{N-1} h_{j} Q_{s}^{nc} (f(x_{j} + th_{j})) = \sum_{j=0}^{N-1} h_{j} \sum_{i=1}^{s} b_{i} f(x_{j} + c_{i}h_{j})$$

Remarque

Pour les noeuds c_i fixes, il existe un seul choix de poids qui garantit que Q_s est d'ordre s.

Quel est le choix optimal des noeuds?

- Choix 1 Choisir des noeuds equidistants.

 Ce choix rend le calcul instable en arithmetique finie.

 En effet, supposons qu'on veut integrer f(x) > 0, on aura $\sum_{i=1}^{s} f(ih)b_i$.

 Alors les poids oscillent fortement.
- Choix 2 On cherche a comprendre ou placer les noeuds pour maximiser l'ordre de la formule.

Exemple

On considere a nouveau la formule de Simpson

$$Q_3^{nc}(g) = \frac{1}{6} \left[g(0) + 4g(\frac{1}{2}) + g(1) \right]$$

Ainsi, pour $c_i = 0, \frac{1}{2}, 1$ on a les poids $b_i = \frac{1}{6}, \frac{2}{3}, \frac{1}{6}$ Est-ce que cette formule est d'ordre 4?

$$\int_0^1 t^3 dt = \frac{1}{4} = \sum_i b_i c_i^3 = \frac{1}{4} (en substituant les valeurs)$$

Est-elle aussi d'ordre 5?

$$\int_0^1 t^4 dt = \frac{1}{5} = \sum_i b_i c_i^4 = \frac{2}{3} \frac{1}{16} + \frac{1}{6} \neq \frac{1}{5}$$

2.2 Formules de quadrature d'ordre optimal

On veut donc choisir des noeuds c_1, \ldots, c_s pour maximiser l'ordre de la formule de quadrature

Theorème 7 (Thm. fondamental de la theorie de l'integration)

Soit $(\{b_i\}, \{c_i\})$ une formule de quadrature d'ordre $s, Q_s(\cdot)$.

Soit $M(t)=(t-c_1)(t-c_2)\dots(t-c_s)$, alors la formule $Q_s(\cdot)$ est d'ordre $p\geq s+m$ si et seulement si

$$\int_0^1 M(t)g(t) = 0$$

Preuve

Soit f(t) un polynome de degre s+m-1, prenons r(t) un polynome de degre s-1 passant par les points $(c_i, f(c_i))$.

Alors f(t) - r(t) est un polynome de degre s + m - 1 est un polynome s'annullant sur tous les noeuds.

Ainsi

$$f(t) - r(t) = M(t)g_f(t)$$
 avec $\deg g_f \le m - 1$

 \Leftarrow

Supposons que $\int_0^1 M(t)g(t)dt = 0 \ \forall \ polynome \ g(t) : \deg g \le m-1$.

On demontre que la formule est d'ordre s + m - 1.

Soit f un polynome $\deg f \leq s+m-1$, on peut donc ecrire

$$f(t) = r(t) + \underbrace{\int_0^1 M(t)g_f(t)dt}_{=0}$$

De meme, on a que

$$Q_s(f) = \sum_{i=1}^{s} b_i f(c_i) = \sum_{i=1}^{s} b_i \left[r(c_i) + \underbrace{M(c_i)g_f(c_i)}_{=0} \right] = \int_0^1 r(t)dt$$

Et donc la formule est exacte

 \Rightarrow

Supposons que la formule est d'ordre s+m, demontrons que $\int_0^1 M(t)g(t)dt = 0 \forall g, \deg g \leq m-1$, ainsi

$$\int_{0}^{1} M(t)g(t)dt = \sum_{i=1}^{s} b_{i}M(c_{i})g(c_{i}) = 0$$

Lecture 3: Integration Numerique

Thu 17 Mar

Lemme 8

Si une formule a s noeuds est d'ordre p, alors $p \leq 2s$

Preuve

Supposons que p = 2s + 1, si Q_s est d'ordre 2s + 1, par le theoreme fondamental, ceci implique que

$$\int_0^1 M(t)g(t) = 0 \forall g(t) : \deg g \le s$$

Ainsi, en particulier pour g(t) = M(t) on a

$$\int_0^1 M(t)^2 dt = 0$$

 $et\ donc\ M(t) = 0$

On se demande maintenant si on peut trouver la valeur des noeuds de maniere facile?

2.3 Noeuds d'integration optimaux : Formule de Gauss

Definition 4 (Polynomes de Legendre)

On considere la suite de polynomes $\{p_k\}_{k=0,\dots,n}$, avec $\deg p_k=k$ et $\int_{-1}^1 p_k(x) \cdot g(x) = 0 \forall g(x) \deg g \leq k-1$

Theorème 9 (Forme des polynomes de Legendre)

Les polynomes de Legendre ont la forme

$$p_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} \left[(x^2 - 1)^k \right]$$

Preuve

On veut montrer que

$$\int_{-1}^{1} p_k(x)g(x)dx = 0 \forall g \quad \deg g \le k - 1$$

$$\int_{-1}^{1} \frac{d^{k}}{dx^{k}} [(x^{2} - 1)^{k}] g(x) dx = - \int_{-1}^{1} \frac{d^{k}}{dx^{k-1}} \left[(x^{2} - 1)^{k} \right] \frac{d}{dx} g(x) dx \left[\frac{d^{k-1}}{dx^{k-1}} [(x^{2} - 1)^{k}] \cdot g \right]_{-1}^{1} dx$$

$$= (-1)^k \int_{-1}^{1} (x^2 \boxminus 1)^k \underbrace{\frac{d^k}{dx^k} g(x)}_{=0}$$

Theorème 10

Toutes les racines de P_k sont reelles, distinctes et dans l'intervalle (-1,1).

Preuve

Par l'absurde supposons qu'il y a τ_1, \ldots, τ_r racines distinctes de $p_k(x)$ dans l'intervalle (-1,1), r < k. Ainsi $g(x) = (x - \tau_1) \ldots (x - \tau_r)$ deg $g \le k - 1$ Par hypothese, on a donc

$$\int_{-1}^{1} p_k(x)g(x) = \int_{-1}^{1} qg^2$$

Or q ne change pas de signe, donc l'integrale ne peut pas etre nulle.

Lemme 11

Les polynomes de Legendre se calculent par

$$(k+1)P_{k+1} = (2k+1)xP_k - kP_{k-1}$$

On cherchait c_1, \ldots, c_s tel que $\deg M = s$ et tel que

$$\int_0^1 M(t)g(t) = 0 \forall g : \deg g \le s - 1$$

Choisissons donc

$$M(t) = P_s(2t - 1)$$

En effet

$$\int_0^1 M(t)g(t)dt = \int_{-1}^1 P_s(x)g(\frac{x}{2}+1)\frac{1}{2}dx$$

On a que $P_s(2t-1)$ a aussi s racines distinctes dans l'intervalle (0,1). Ces racines sont les deux d'integration optimaux.

Definition 5

La formule de quadrature $(\{b_i\}, \{c_i\})$ avec c_i choisis comme racines de $P_s(2t-1)$ et b_i les poids correspondants s'appelle formule de quadrature de Gauss.

2.4 Etude d'erreur des formules de quadrature

Theorème 12 (Erreurs dans les formules de quadrature)

Soit $f \in C^r([a,b]), r \ge p$.

Soit $Q_s(\cdot)$ une formule de quadrature d'ordre p.

$$I_n(f) = \sum_{i=0}^{n-1} h_j \sum_{i=1}^{s} b_i f(x_j + c_i h_j)$$

On a alors que

$$\left| \int_{a}^{b} f(x)dx - I_{n}(f) \right| \le C \frac{h^{p}}{p!} \max_{x \in [a,b]} \left| f^{(p)}(x) \right|$$

ou $h = \max_j h_j$ et C ne depend ni de f, ni de p ni de h, mais depend de

$$\frac{\max h_i}{\min h_i}$$

Preuve

Dans cette demonstration, C indiquera une constante generique qui ne depend pas de h, f, p.

On definit

$$E_n(f) = \left| \sum_{j=0}^{h-1} \int_0^1 f(x_j + h_j t) dt - \sum_{i=1}^s b_i f(x_j + h_j C_i) \right|$$

Posons $g(t) = f(x_j + h_j t)$ et

$$E_h^j(f) = |\int_0^1 g(t)dt - \sum_{i=1}^s b_i g(c_i)| (= E(g))$$

Supposons d'abord que g(x) est une fonction entiere, alors

$$\sum_{r\geq 0} \frac{g^{(r)}(0)}{r!} t^r$$

$$g(t) = \sum_{r=0}^{p-1} \frac{g^{(r)}(0)}{r!} t^r + \sum_{r \ge p} \frac{g^{(r)}(0)}{r!} t^r$$

La formule de quadrature est exacte sur la premiere partie, ainsi

$$E(g) = \left| \int_{0}^{1} \sum_{r \ge p} \frac{g^{(r)}(0)}{r!} t^{r} - \sum_{r \ge p} \sum_{i=1}^{s} b_{i} \frac{g^{(r)}(0)}{r!} c_{i}^{r} \right|$$
$$= \left| \sum_{r \ge p} \frac{g^{(r)}(0)}{r!} \left[\underbrace{\frac{1}{r+1} - \sum_{i=1}^{s} b_{i} c_{i}^{r}}_{-C} \right] \right|$$

$$= c_p \frac{g^{(p)}(0)}{p!} + "reste"$$

On a

$$a$$

$$g^{p}(0) = (f(x_{j} + th_{j})^{(p)})|_{t=0} = h_{j}^{p} \cdot f^{(p)}(x_{j})$$

On peut aussi montrer que

$$c_p = \left| \frac{1}{p+1} - \sum b_i c_i^p \right| \le 2$$

Ainsi $E_n^j(f) \le 2\frac{1}{p!}h_j^p|f^{(p)}(x_j)|$

Lecture 4: Interpolation de fonctions

Thu 24 Mar

3 Interpolation de fonctions

3.1 Polynomes de Lagrange

On considere le probleme d'interpolation a l'aide de polynomes.

Theorème 13 (Theoreme de Weierstrass)

Soit $f \in C^0([a,b])$ alors il existe un polynome p_n de degre n yrl wur

$$\lim_{n \to +\infty} \|f - p_n\| = 0$$

Pour la norme L^{∞} .

Etant donne $f(x_0), \ldots, f(x_n)$, on cherche un polynome de degre n qui approche f(x).

Definition 6

Etant donne une partition de [a, b] x_0, \ldots, x_n .

On appelle $\{l_i(x)\}$ les polynomes de lagrange, les polynomes $l_i(x)$ tels que

$$l_i(x_i) = \delta_{ij}, l_i \in \mathbb{P}_n$$

En general, on a

$$l_i(x) = \frac{\prod_{j=0, j \neq 1}^{n} (x - x_j)}{\prod_{j=0, j \neq i} (x_i - x_j)}$$

Ainsi, on peut considerer

$$p_n(x) = \sum_{i=0}^n f(x_i)l_i(x)$$

comme polynome interpolant et on remarque que $p_n(x_j) = f(x_j)$.

On se demande donc maintenant pour $f \in C^k([a,b]), k > 0$ si on peut borner $||f - p_n||$ par une quantite dependant de n.

Proposition 14

Etant donne une partition x_i .

Soit $d_n(x)$ une fonction de classe $C^n([a,b])$ tel que $d_n(x_i) = 0 \forall x_i$ de la partition. Alors $\exists \xi \in (x_0, x_n)$ tel que $d_n^{(n)}(\xi) = 0$

Remarque

Si f est reguliere, alors $f(x) - p_n(x)$ est reguliere et $f(x_i) - p_n(x_i) = 0$

Preuve

On doit appliquer le theoreme de rolle n fois.

En effet, on a $d_n(x_0) = d_n(x_1) = 0$ et donc $\exists y_0$ tel que $d'(y_0) = 0$ et de maniere generale, on a

$$d_n(x_i) = d_n(x_{i+1}) = 0 \implies \exists y_i \text{ tel que } d'(y_i) = 0$$

On reapplique le theoreme de rolle a y_1, \ldots, y_n

Theorème 16 (Representation de l'erreur)

Soit $f \in C^{n+1}([a,b])$ et soit p_n le polynome d'interpolation de f sur la partition (x_0,\ldots,x_n) alors $\forall x \in [a,b] \exists \xi \in (a,b)$:

$$f(x) - p_n(x) = f^{(n+1)}(\xi) \cdot \pi_n(x)$$

ou
$$\pi_n(x) = \frac{1}{(n+1)!}(x-x_0)\dots(x-x_n)$$

Preuve

On va demontrer le resultat pour tut point $x \in [a, b]$.

Si $x = x_i$, alors $f(x_i) - p_n(x_i) = f^{(n+1)}(\xi) \cdot 0$ ce qui est toujours vrai.

Donc, si $x \neq x_i$, alors $\pi_n(\overline{x}) \neq 0$.

Donc $\exists \eta \in \mathbb{R} : f(x) - p_n(\overline{x}) = \eta \pi_n(\overline{x}).$

On peut donc prendre $d_{n+1}(x) = f(x) - p_n(x) - \eta \pi_n(x)$, alors d_{n+1} s'annule sur les x_i et sur \overline{x} .

On peut donc appliquer la proposition d'avant a d_{n+1} ,

$$\exists \xi : d_{n+1}^{(n+1)}(\xi) = 0$$

Ainsi

$$d_{n+1}^{(n+1)} = f^{(n+1)}(x) - 0 - \eta \underbrace{\frac{d^{(n+1)}}{dx^{n+1}} \pi_n}_{=1}$$

Et donc il existe ξ tel que $f^{(n+1)}(\xi) - \eta = 0$

On va essayer d'utiliser la representation de l'erreur pour trouver une estimation de l'erreur

En effet

$$||f(x) - p_n(x)|| = \max_{x \in [a,b]} ||f^{(n+1)}(\xi)\pi_n(x)|| \le ||f^{(n+1)}(x)|| ||\pi_n||$$

On a

$$\|\pi_n\| = \left\| \frac{1}{(n+1)!} (x - x_0) \dots (x - x_{n-1}) \right\| \le \frac{1}{(n+1)!} (b - a)^{n-1}$$

Ainsi

$$||f - p_n|| \le \frac{1}{4} \frac{1}{(n+1)!} (b-a)^{n+1} ||f^{(n+1)}||$$

Pour quelle classe de fonctions puis-je donc deduire que $\lim_{n\to+\infty} \|f-p_n\|=0$? Clairement $f(x)=\frac{1}{1+x^2}$ n'appartient pas a cette classe.

Theorème 17

Soit x_0, \ldots, x_n une partition equidistante de l'intervalle [a, b] et soit $f : [-\alpha, \alpha] \to \mathbb{R}$ une fonction analytique.

Si f admet un developpement en serie entiere en x_0 de rayong R avec $R > 3\alpha$, alors $\lim_{n \to +\infty} \|f - p_n\| = 0$

En effet si $R > 3\alpha \ \exists a \in \mathbb{R}^+, a < 1 \ ||f - p_n|| \le C(R)a^{n+2}$

Lecture 5: qqchose

Thu 31 Mar

3.2 Interpolation sur les points de Chebyshev

En partant de la characterisation de l'erreur d'interpolation

$$||f - p^n|| \le \max |f^{(n+1)}(\eta) \max |\pi_n(x)||$$

Comment $\pi_n(x)$ depend des points choisis et quels sont les points minimisant $||f - p^n||$?

On se pose sur l'intervalle [-1,1], $p_n(x) = x^n + \sum_{i=1}^{n-1} a_i x^i$, quels sont les coefficients a_1, \ldots, a_{n-1} tel que

$$\min_{p_n \in \mathbb{P}_n^1} \max_{x} |p_n(x)|$$

Theorème 18

Ces polynomes existent pour tout n et il sonts de la forme $T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]$

On procede par etapes

Proposition 19

 $Si \ p_n \in \mathbb{P}^1_n$ minimise le probleme ci-dessus, alors p_n prend la valeur L = $\max_{x} |p_n(x)|$ exactement n+1 fois.

Preuve

On montre le cas n = 3.

Supposons que p_3 atteint le min seulement 3 fois, $p(x_1) = L, p(x_2) =$

Prenons q_2 tel que $q_2(x_1) > 0, q_2(x_2) < 0, q_3(x_3) > 0.$ Alors $p_3 - \epsilon q_2 \in \mathbb{P}^1_3$. Alors $p_3 - \epsilon q_2$ a diminue sa valeur en x_1, x_2, x_3 mais donc le polynome p_3 n'etait pas minimisant.

Les polynomes de Chebyshev sont des polynomes

On verifie juste quelques cas

$$T_0 = \cos 0 = 1$$

$$T_1 = \cos \arccos x = x$$

$$T_2 = \cos(2 \arccos x) = 2x$$

De plus, $T_n(x) \le 1 \forall x$ et les racines de $T_n(x)$ sont $\cos(\frac{2k+1}{2n}\pi), k = 0, \dots, n-1$. De plus, T)n(x) atteint -1 et 1 exactement n+1 fois. Ainsi,

$$\min_{p_n \in \mathbb{P}_n^1} \max_{x \in [-1,1]} |p_n(x)| = \max_x |2^{-n} T_n(x)|$$

En revenant au probleme d'interpolation

$$||f - p^n|| \le \max_{\eta \in [-1,1]} |f^{(n+1)(\eta)} \max_{x} |\pi_n(x)|$$

Ainsi, en prenant $\pi_n(x) = \frac{1}{(n+1)!} 2^{-n} T_{n+1}(x)$.

Les points d'interpolation qui minimisent l'erreur sont donc les racines de $T_{n+1}(x)$

Theorème 20

Soit $f:[-1,1] \to \mathbb{R}$, f Lipschitz, et si $p_n^c(x)$ est le polynome interpolant $de\ f(x)$ sur les points $de\ Chebychev,\ alors$

$$\lim_{n \to +\infty} \|f - p_n^c\| = 0$$

Remarque

On peut passer de [a,b] vers [-1,1] a travers une transformation lineaire.

3.3 Approximation par des polynomes dans la norme L^2

Jusqu'ici, on a cherche a minimiser

$$||f - p_n||_{\infty} = \max_{x \in [a,b]} |f(x) - p_n(x)|$$

On cherche maintenant un polynome p_n tel que $||f - p_n||_{L^2}$ est minimale. On cherche donc p_n qui minimise $\int_a^b (f(x) - p_n(x))^2 dx$.

On ecrit donc

$$p_n(x) = \sum_k \alpha_k p_k(x)$$

ou les p_k sont des polynomes de Legendre.

On cherche donc p_n tel que

$$\int_{a}^{b} (f - p_n)^2 \le \int_{a}^{b} (f - q_n)^2 \forall q_n$$

Ainsi,

$$\int_a^b (f - \sum \alpha_k p_k)^2 = \int_a^b f^2 - 2\sum_k \alpha_k \int_a^b f p_k + \sum_k \sum_{k'} \alpha_k \alpha_{k'} \int_a^b p_k p_{k'}$$

Sauf que les polynomes de Legendre sont orthogonaux pour la norme L^2 et donc

$$\int_{a}^{b} (f - \sum_{k} \alpha_{k} p_{k})^{2} = \int_{a}^{b} f^{2} - 2 \sum_{k} \alpha_{k} \int_{a}^{b} \alpha_{k} \int_{a}^{b} f p_{k} + \sum_{k} \alpha_{k}^{2} \int_{a}^{b} p_{k}^{2}$$

On cherche donc les coefficients α_k tel que

$$\frac{d}{d\alpha_i} \left(\int_a^b (f - p_n)^2 \right) = 0$$

$$\iff -2 \int_a^b f p_i + 2\alpha_i \int_a^b p_i^2 = 0$$

Ainsi, $\alpha_i = \frac{\int_a^b f p_i}{\int_a^b p_i^2}$.

Remarque

Pour calculer $p_n(x)$ on n'utilise pas une interpolation sur les points, mais on a besoin de connaître $\int f p_k$.

En general $\int_a^b f p_k$ ne peut pas etre calculee exactement, donc on peut ecrire

$$\int_{a}^{b} f p_{k} = Q(f p_{k})$$

Soit x_0, \ldots, x_n n+1 points de Gauss sur l'intervalle [a, b], alors

$$\int_{a}^{b} f p_{k} \simeq \sum_{i} f(x_{i}) p_{k}(x_{i}) c_{i}$$

Il s'agit d'une integrale approche mais c'est le mieux qu'on puisse faire avec n+1 approximations.

Ainsi, on obtient un polynome moins optimal

$$\tilde{p_n} = \sum_{k=0}^n \tilde{\alpha}_k p_k$$

ou \tilde{p}_n est calculee grace a n+1 evaluations de f.

Quel est alors le comportement asymptotique de $||f - \tilde{p}_n||_{L^2}$ par rapport a n

Lecture 6: Effets des erreurs d'arrondissement

Thu 07 Apr

3.4 Erreurs d'arrondissement

En realite, lorsqu'on interpole en pratique, a chaque etape de calcul, on commet une erreur d'arrondissement.

On remarque donc par exemple que, lorsqu'on interpolle sur des noeuds equidistants une fonction telle que $\sin x$ des grandes erreurs aux bords, meme si l'on s'attendrait a obtenir une convergence uniforme.

Donc on pose $\hat{f}(x_i) = f(x_i)(1+\epsilon)$ avec ϵ une certain erreur machine et on veut etudier l'erreur due au "round off".

En substituant cette valeur dans les valeurs de p_n on obtient

$$\hat{p}_n := \sum_i \hat{f}(x_i) l_i(x)$$

Ou les l_i sont les polynomes interpolant.

On peut donc calculer la difference entre p_n et \hat{p}_n

$$|p_n - \hat{p}_n| \le \sum_i |\epsilon f(x_i) l_i(x)| \le \epsilon ||f||_{\infty} \sum_i |l_i(x)|$$

Ceci motive la definition suivante

Definition 7 (Lebesgue constant)

$$\Lambda_n = \max_x \sum_i |l_i(x)|$$

et clairement Λ_n va dependre du choix des x_i .

Le calcul ci-dessus montre que

Theorème 23

Soit $n \in \mathbb{N}$, $f \in C^0([a,b])$ et p_n les polynomes d'interpolations de Lagrange, alors

$$\|p_n - \hat{p} - n\|_{\infty} \le \epsilon \Lambda_n \|f\|_{\infty}$$

Donc pour controler l'erreur, il nous faut controler Λ_n , enfait

Theorème 24 (Behaviour of lebesgue constant)

— Si les noeuds sont equidistants, alors

$$\Lambda_n \approx \frac{2^{n+1}}{\epsilon n \log n} \text{ quand } n \to \infty$$

— Pour les points de chebychev, on a

$$\lambda_n \approx \frac{2}{\pi} \log n \text{ quand } n \to \infty$$

Mais meme dans le cas des noeuds optimaux, on voit que l'erreur va tout de meme tendre vers l'infini.

On essaie donc d'approximer les fonctions par des fonctions lineaires.

3.5 Interpolation par polynomes par parties

Definition 8

Pour un $N \in \mathbb{N}$ fixe et $s \in \mathbb{N}$. On considere $f \in C^0$ et une partition a_i d'un intervalle [a,b]. Pour chaque i, on construit $p^{(i)}$ le polynome d'interpolation de lagrange locale pour s points choisis dans $[a_i,a_{i+1})$. On recolle alors les $p^{(i)}$ en une fonction \tilde{p}_s

Et on a un theoreme qui nous borne l'erreur :

Theorème 25

Soit $N \in \mathbb{N}, N \geq 1$ et $s \in \mathbb{N}, f \in C^{s+1}([a,b])$ et \tilde{p}_s le polynome d'interpolation par parties sur une partition generale, alors

$$||f - \tilde{p}_s||_{\infty} \le \frac{H^{s+1}}{4(s+1)!} ||f^{(s+1)}||_{\infty}$$

 $ou\ H \coloneqq \max |a_{i+1} - a_i|$

\mathbf{Preuve}

On

$$\|f - \tilde{p}_s\|_{\infty} = \max_i \|f - p_s^{(i)}\|_{\infty, [a_i, a_{i+1})} \le \frac{1}{4(s+1)!} H^{s+1} \|f^{(s+1)}\|_{\infty}$$

3.6 Approximation dans la norme L^2

Etant donne f , on veut trouver le meilleur polynome p^* qui minimisera la distance dans la norme L^2 , ie.

$$p^* = \operatorname{argmin}_{q_n \in \mathbb{P}_n} \|f - q_n\|_2^2$$

Theorème 26

La solution optimale est donnee par

$$p^* = \sum_k \alpha_k p_k \text{ avec } \alpha_k = \frac{\int_a^b f p_k dt}{\int_a^b |p_k|^2 dt}$$

Lecture 7: Resolution de systemes lineaires

Fri 08 Apr

4 Resolution de systemes lineaires

On cherche a resoudre $Ax = b, A \in \mathbb{R}^{n \times n}$ inversible, $b \in \mathbb{R}^n$.

Pour n grand, la regle de Cramer donne des erreurs d'arrondi enorme.

On souhaite donc utiliser la regle de Gauss.

On cherche a ecrire A=LU , L triangulaire inferieure et U triangulaire superieure.

Si on obtient cette decomposition, on a

$$Ax = b \implies LUx = b \implies \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Ainsi, Ax = b devient la resolution de deux systemes triangulaires.

Combien d'operations faut-il pour calculer $y = L^{-1}B$?

Par elimination directe, il faut $O(n^2)$ operations.

Ainsi, une fois que la decomposition A = LU a ete faite, on peut toujours resoudre le systeme.

On se demande donc combien d'operations il faut pour calculer L et U?

Cette decomposition n'est pas toujours possible, cependant, si A est inversible

 $\exists P$ un pivoting tel que PA admet une decomposition LU.

Une matrice pivoting est de la forme $(e_{\sigma(1)} \dots e_{\sigma(n)})$.

Ainsi PAx = Pb peut se resoudre par elimination de Gauss.

L'elimination de Gauss est un algorithme en $O(n^3)$ (donc tres couteux). Donc on va essayer de trouver un algorithme plus efficace.

Il y a quelques autres problemes lies a LU tel que la stabilite.

Definition 9 (matrice creuse)

A est creuse si #nz(A) = O(n) ou #nz est le nombre de valeurs non nulles.

Si A est creuse, sa decomposition LU n'est pas creuse, donc cette methode n'est pas viable en general.

4.1 Quelques rappels sur les matrices

On definit

$$\|A\|_p = \max_x \frac{\|Ax\|}{\|x\|}$$

$$||x||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}$$

et

$$\rho(A) = \max_{i} |\lambda_i|$$

Proposition 27

 $\forall p, \ on \ a$

$$||A||_p \ge \rho(A)$$

et

$$||A||_2 = \rho(A)$$

Definition 10

Le conditionnement de A est defini par

$$K_p(A) = ||A||_p ||A^{-1}||_p$$

si A n'est pas inversible, le conditionnement de A est $+\infty$. On definit de plus

$$K_2(A) = K(A) = \rho(A)\rho(A^{-1})$$

4.2 Methodes iteratives pour la resolution de systemes lineaires

On se contente de calculer une suite x^k une suite telle que $\lim_{k\to +\infty} x^k = x_*$ la solution.

On definit A = P - (P - A) avec P une matrice a definir, alors

$$Px_* - (P - A)x_* = b$$

Alors

$$Px^{k+1} - (P-A)x^k = b \implies Px^{k+1} = (P-A)x^k + b$$

Qui est un systeme verifie pour x_* .

On pose $r^k = b - Ax^k$ et on a donc

$$\begin{cases} Px^{k+1} = Px^k + r^k \\ x^0 = x_0 \text{ a choisir} \end{cases}$$

Pour calculer x^{k+1} , on doit pouvoir inverser P et donc P doit etre simple a inverser.

La convergence $x^k \to x_*$ depend donc du choix de P.

Ecrivons $A = A_D + A_L + A_U$.

On peut alors choisir $P = A_D + A_L$ ou $P = A_D$, dans les deux cas P est simple a inverser.

Methode de Richarson statique

La methode statique s'ecrit $Px^{k+1} = Px^k + \alpha r^k$ pour α une constante et la methode dynamique $Px^{k+1} = Px^k + \alpha_k r^k$ ou les α_k sont a choisir.