

Implementing smooth dielectric function to pKa predictions and other applications

Lin Li, Chuan Li, Emil Alexov

Computational Biophysics and Bioinformatics Lab
Department of Physics and Astronomy
Clemson University

Explicit model

Three important problems:

(A) How to treat the solvent-solution boundary

Framework of continuum electrostatics

- (B) How to treat the cavities inside biomolecules
- (C) How to treat the dielectric property of a biomolecule

How to assign dielectric constant values to different regions **automatically**?

How to model smooth dielectric function

Grant, J. A.; Pickup, B. T.; Nicholls, A. Journal of computational chemistry 2001, 22(6), 608-640.

Density and epsilon of an atom

What is an atom?

1 Å = 100,000 fm

How to model the density and epsilon of molecules

Grant, J. A.; Pickup, B. T.; Nicholls, A. Journal of computational chemistry 2001, 22(6), 608-640.

Dielectric distributions from different methods

Homogeneous DelPhi:

Gaussian DelPhi:

Movie

pKa calculation

$$\Delta pK_a = [G(depro, protein) - G(proto, protein) - G(depro, water) + G(proto, water)] / 2.3$$

Homogeneous DelPhi:

The $\varepsilon_{protein}$ value was varied from 1.0 to 20.0 with increment 1.0.

Gaussian DelPhi:

The reference \mathcal{E}_{in} varied from 1.0 to 10.0 with increment 1.0 σ varied from 0.80 to 1.20 with increment 0.01.

No "surface" is needed, it's the difference of grid energies.

pKa calculation

The dataset used is from Garcia-Moreno lab (http://pkacoop.org/wordpress/?p=28), This dataset is comprised of **89** pKa's staphylococcal nuclease (SNase). which is used in pKa-cooperative (http://pkacoop.org/wordpress/).

Homogeneous DelPhi: RMSD=2.62

$$\varepsilon_{protein}$$
 = 10.0

Gaussian DelPhi: RMSD=1.77

$$\varepsilon_{in}$$
= 4.0 and σ =0.93

Is it reasonable physics?

Dielectric distribution analysis

Dataset from PDB bank

Three filtering steps were performed to all of the protein structures of entire PDB bank:

- 1. Only structures determined by X-Ray with resolution < 1.5 Å were selected.
- 2. The sequence similarity > 30% were removed.
- 3. structures with cofactors which are not made of regular residues were removed

The final dataset is made of **91 proteins**:

Based on this dataset, we analyzed:

- (1) the average ε distribution against radii of proteins;
- (2) the average ε distribution against residue types.

The average ε distribution with respect to radii of proteins

Similar tendency has also been observed by analysis of MD simulation with explicit model:

Simonson, T. & Perahia, D. Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. **Proceedings of the National Academy of Sciences** 92, 1082-1086 (1995).

The average ε with respect to residue type distribution

Then a sphere of radius 5 Å was drown around each side-chain atom and the dielectric constant of all mid-grid points within the sphere were summed and averaged. Further these average dielectric constants were summed over all atoms of the side-chain and averaged again to obtain the average dielectric constant per side-chain. Finally the average dielectric constant for each type of residues was obtained from all residues with the 91 protein set.

Electrostatic potential calculation for reaction center protein

Homogeneous ε_{in} Delphi:

Epsilon: 4.0 or 80.0

Gaussian DelPhi:

Epsilon: from 4.0 to 80.0

Similar result has been obtained

Alexov, E. and Gunner, M., Biochemistry, (1999), 38 (26) 8253-8270. Rocchia, W., Alexov, E. and Honig, B., J. Phys. Chem. (2001), 105, 6507-6514.

Assign different dielectric values **manually**Based on analysis of **Monte-Carlo** simulation.

Our method:

Assign dielectric values **automatically No MD or MC** simulations

Reducing grid dependence

Conclusion

Go back to the considerations at the beginning

Three important problems:

- (A) how to treat the solvent-solution boundary
- (B) How to treat the cavities inside proteins
- (C) how to treat the macromolecule dielectric properties

The first layer of water shell surround protein: $\mathcal{E} < 80$

Cavities:

 $4 < \mathcal{E} < 80$

Inside protein:

 ${\mathcal E}$ is inhomogeneous

Current concern:

Side chains at surfaces and cavities:

- 1. More flexible
- 2. Some of them are highly charged

How to model the dielectric property of these regions? Should the dielectric constant be always less than in water?

$$\varepsilon = \begin{cases} \varepsilon_{out}, & \text{when } \rho = 0\\ \rho \cdot \varepsilon_{in} + (1 - \rho) \cdot \varepsilon'_{out}, & \text{when } \rho > 0 \end{cases}$$

$$\mathcal{E}_{out} = 80$$

$$_{\mathcal{E}}'_{out}$$
 = 60, 100, 120

The reference \mathcal{E}_{in} varied from 1.0 to 10.0 with increment 1.0 σ varied from 0.80 to 1.20 with increment 0.01.

Results show that \mathcal{E}'_{out} prefers to be larger than 80.0

Eps(in)	sigma	Eps'(out)	RMSD
8.0	1.00	120	1.69099
8.0	0.99	120	1.69786
8.0	1.00	100	1.71363
6.0	0.96	120	1.71674
8.0	1.01	120	1.71711
6.0	0.97	120	1.72060
6.0	0.97	100	1.72069
8.0	1.01	100	1.72650
4.0	0.93	120	1.72790
6.0	0.96	100	1.72814
4.0	0.93	100	1.72884
8.0	0.99	100	1.72993
8.0	0.98	120	1.73627
4.0	0.94	100	1.74421
4.0	0.94	120	1.74899
6.0	0.95	120	1.76269
8.0	1.02	100	1.76664
6.0	0.98	100	1.76722

previous calculation (without \mathcal{E}'_{out})

Eps(in)	sigma	Eps'(out)	RMSD
4.0	0.93		1.77

Acknowledgement

- Thank Barry Honig for the continuous support
- Thank Chuan Li and Prof. Emil Alexov and our lab (Computational Biophysics and Bioinformatics Lab, Clemson University)
- Thank the work from Anthony Nicholls's group which is published on J.C.C. 2001
- Grant: NIH R01 GM093937

Thank you!

