T6.GA.P01. La carrera de la ardilla

La posición de una ardilla (coordenadas x e y en metros) corriendo en función del tiempo, t (seg), se da en la tabla siguiente.

<i>t</i> (s)	0	2	4	6	8	10	12	14
x (m)	61	72.8	81.9	87.9	90.9	90.8	87.3	80.5
y (m)	65	46.7	30.3	15.8	3.2	-7.4	-15.8	-22.1
<i>t</i> (s)	16	18	20	22	24	26	28	30
x (m)	70.4	56.9	39.9	19.4	-4.6	-32.2	-63.3	-98
y (m)	-26.2	-28.1	-27.9	-25.3	-20.5	-13.4	-4.1	7.6

La velocidad de la ardilla, v, viene dada por $v = \sqrt{v_x^2 + v_y^2}$ donde $v_x = \frac{\mathrm{d}x}{\mathrm{d}t}$, $v_y = \frac{\mathrm{d}y}{\mathrm{d}t}$, y la aceleración a está dada

por
$$a = \sqrt{a_x^2 + a_y^2}$$
 donde $a_x = \frac{d^2x}{dt^2}$, $a_y = \frac{d^2y}{dt^2}$

- a) (3p) Calcula la velocidad y la aceleración de la ardilla. Da el resultado en una tabla donde las columnas sean x, y, t, v, a
- b) (2p) Representa gráficamente (en la misma gráfica v_x, v_y y v en función del tiempo
- c) (2p) Representa gráficamente (en la misma gráfica a_x, a_y y a en función del tiempo
- d) (3p) Calcula el momento en que la velocidad es mínima y cuánto es dicha velocidad mínima. Para ello calcula la derivada de v, representala gráficamente frente a t mediante splines cúbicas y, a la vista de la gráfica, realiza interpolación inversa sobre tres puntos entre los que se encuentre la raíz buscada.

Respuesta

a) Calculamos v y a

```
clc, clear, clf
t = 0:2:30;
x = [61 72.8 81.9 87.9 90.9 90.8 87.3 80.5 70.4 56.9 39.9 19.4 -4.6 -32.2 -63.3 -98];
y = [65 46.7 30.3 15.8 3.2 -7.4 -15.8 -22.1 -26.2 -28.1 -27.9 -25.3 -20.5 -13.4 -4.1 7
[vx,ax] = PrimSegDeriv(t,x);
[vy,ay] = PrimSegDeriv(t,y);
```

```
v = sqrt(vx.^2 + vy.^2);
a = sqrt(ax.^2 + ay.^2);
T = table(x',y',t',v',a');
T.Properties.VariableNames = {'x(m)','y(m)','t(s)','v(m/s)','a(m/s^2)'};
disp(T)
```

x(m)	y(m)	t(s)	v(m/s)	a(m/s^2)	
61	65	0	11.656	0.74582	
72.8	46.7	2	10.127	0.82538	
81.9	30.3	4	8.598	0.90898	
87.9	15.8	6	7.1388	0.88776	
90.9	3.2	8	5.8451	0.92229	
90.8	-7.4	10	4.8345	1.0124	
87.3	-15.8	12	4.4873	0.97788	
80.5	-22.1	14	4.9609	0.99153	
70.4	-26.2	16	6.0877	1.0124	
56.9	-28.1	18	7.6368	1.0204	
39.9	-27.9	20	9.4011	1.061	
19.4	-25.3	22	11.278	1.0335	
-4.6	-20.5	24	13.239	1.068	
-32.2	-13.4	26	15.237	1.0335	
-63.3	-4.1	28	17.267	1.0817	
-98	7.6	30	19.356	1.1305	

b) Dibujamos las velocidades:

```
plot(t,vx,'-r','LineWidth',2)
hold on
plot(t,vy,'-b','LineWidth',2)
plot(t,v,'-k','LineWidth',2)
legend('vx','vy','v','location','best')
xlabel('t(min)')
ylabel('v(m/s)')
title('Velocidades (m/s)')
hold off
```


c) Dibujamos las aceleraciones

```
plot(t,ax,'-r','LineWidth',2)
hold on
plot(t,ay,'-b','LineWidth',2)
plot(t,a,'-k','LineWidth',2)
legend('ax','ay','a','location','best')
xlabel('t(min)')
ylabel('a(m/s^2)')
title('Aceleraciones (m/s^2)')
hold off
```


d) Para calcular el mínimo de la velocidad hacemos interpolación inversa. Primero calculamos la derivada de la velocidad (que no es lo mismo que la aceleración):

```
[dv ~] = PrimSegDeriv(t,v);
tp = linspace(0+0.01,30-0.01,100);
for i=1:100
yp(i) = SplineCub(t,dv,tp(i));
end
plot(t,dv,'or','LineWidth',2)
hold on
plot(tp, yp,'-k','LineWidth',2)
yline(0)
xlabel('x(m)')
ylabel('dv/dx')
hold off
```


Tomamos los 3 puntos próximos a donde la derivada de v se hace cero para interpolar

```
tpi = t(1,6:8);
dvi = dv(1,6:8);
tmin = SplineCub(dvi,tpi,0);
fprintf('La velocidad mínima se produce a los %6.4f s.\n',tmin)
```

La velocidad mínima se produce a los 11.8292 s.

```
vmin = SplineCub(t,v,tmin);
fprintf('La velocidad mínima es de %6.4f m/s\n',vmin)
```

La velocidad mínima es de 4.4847 m/s