DATA COLLECTION

```
In [1]: # import libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: # To Import Dataset
sd=pd.read_csv(r"c:\Users\user\Downloads\21_cities.csv")
sd

Out[2]:

	id	name	state_id	state_code	state_name	country_id	country_code	country _.
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afgha
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afgha
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afgha
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afgha
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afgha
							•••	
150449	131496	Redcliff	1957	MI	Midlands Province	247	ZW	Zim
150450	131502	Shangani	1957	MI	Midlands Province	247	ZW	Zim
150451	131503	Shurugwi	1957	MI	Midlands Province	247	ZW	Zim
150452	131504	Shurugwi District	1957	MI	Midlands Province	247	ZW	Zim
150453	131508	Zvishavane District	1957	MI	Midlands Province	247	ZW	Zim
150454 rows × 11 columns								

```
In [3]: # to display top 10 rows
sd.head(10)
```

Out[3]:

	id	name	state_id	state_code	state_name	country_id	country_code	country_name	
0	52	Ashkāsham	3901	BDS	Badakhshan	1	AF	Afghanistan	3
1	68	Fayzabad	3901	BDS	Badakhshan	1	AF	Afghanistan	3
2	78	Jurm	3901	BDS	Badakhshan	1	AF	Afghanistan	3
3	84	Khandūd	3901	BDS	Badakhshan	1	AF	Afghanistan	3
4	115	Rāghistān	3901	BDS	Badakhshan	1	AF	Afghanistan	3
5	131	Wākhān	3901	BDS	Badakhshan	1	AF	Afghanistan	3
6	72	Ghormach	3871	BDG	Badghis	1	AF	Afghanistan	3
7	108	Qala i Naw	3871	BDG	Badghis	1	AF	Afghanistan	3
8	54	Baghlān	3875	BGL	Baghlan	1	AF	Afghanistan	3
9	140	Hukūmatī Dahanah- ye Ghōrī	3875	BGL	Baghlan	1	AF	Afghanistan	3
4.1								1	

DATA CLEANING AND PRE_PROCESSING

In [4]: sd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150454 entries, 0 to 150453
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	id	150454 non-null	int64
1	name	150454 non-null	object
2	state_id	150454 non-null	int64
3	state_code	150129 non-null	object
4	state_name	150454 non-null	object
5	country_id	150454 non-null	int64
6	country_code	150406 non-null	object
7	country_name	150454 non-null	object
8	latitude	150454 non-null	float64
9	longitude	150454 non-null	float64
10	wikiDataId	147198 non-null	object
dtype	es: float64(2)	, int64(3), object	t(6)

memory usage: 12.6+ MB

```
In [5]: # to display summary of statistics
sd.describe()
```

Out[5]:

	id	state_id	country_id	latitude	longitude
count	150454.000000	150454.000000	150454.000000	150454.000000	150454.000000
mean	76407.091689	2678.377677	140.658460	31.556175	2.369557
std	44357.755335	1363.513591	70.666123	22.813220	68.012770
min	1.000000	1.000000	1.000000	- 75.000000	-179.121980
25%	38160.250000	1451.000000	82.000000	19.000000	-58.468150
50%	75975.500000	2174.000000	142.000000	40.684720	8.669980
75%	115204.750000	3905.000000	207.000000	47.239220	27.750000
max	153528.000000	5116.000000	247.000000	73.508190	179.466000

```
In [6]: #to display colums heading
sd.columns
```

EDA and visualization

In [7]: sns.pairplot(sd)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1ff41d02700>


```
In [8]: | sns.distplot(sd['longitude'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='longitude', ylabel='Density'>

In [9]: | sns.heatmap(sd.corr())

Out[9]: <AxesSubplot:>

In [10]: sd1=sd[['id','state_id','country_id', 'latitude', 'longitude']]

TO TRAIN THE MODEL _MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [12]: x= sd1[['id','state_id','country_id', 'latitude']]
         y=sd1['longitude']
In [13]: # To split my dataset into training data and test data
         from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[15]: LinearRegression()
In [16]: |print(lr.intercept_)
         27.202502382736327
In [17]:
         coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
         coeff
Out[17]:
                    Co-efficient
                 id
                      0.000153
            state_id
                      0.002047
```

country_id

latitude

-0.275661

-0.099632

```
In [18]: prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[18]: <matplotlib.collections.PathCollection at 0x1ff45517e20>
           60
           40
           20
            0
          -20
                  -150
                       -100
                              -50
                                               100
                                                    150
In [19]: |print(lr.score(x_test,y_test))
         0.0653857823547388
In [20]: |lr.score(x_train,y_train)
Out[20]: 0.06759200477057536
In [21]: from sklearn.linear_model import Ridge,Lasso
In [22]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[22]: Ridge(alpha=10)
In [23]: |dr.score(x_test,y_test)
Out[23]: 0.06538578240795034
In [24]: | dr.score(x_train,y_train)
Out[24]: 0.06759200477057536
In [25]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[25]: Lasso(alpha=10)
In [26]: la.score(x_test,y_test)
Out[26]: 0.06539900560124579
```

```
In [27]: la.score(x_train,y_train)
Out[27]: 0.06754853515040748
        ElasticNet
In [28]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
        en.fit(x_train,y_train)
Out[28]: ElasticNet()
In [29]: print(en.coef_)
        In [30]: |print(en.intercept_)
        27.166826326990268
In [31]: | prediction=en.predict(x_test)
In [32]: print(en.score(x_test,y_test))
        0.06538875937056554
        Evaluation metric
In [33]: from sklearn import metrics
In [34]: print("mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
        mean Absolute Error: 51.705709014760394
In [35]: | print("mean squared Error:", metrics.mean_squared_error(y_test, prediction))
        mean squared Error: 4334.598735648923
```

In [36]: print("Root mean Absolytre Error:",np.sqrt(metrics.mean_squared_error(y_test,pr

Model Saving

Root mean Absolytre Error: 65.83766957942028

In [37]:	import pickle
In [38]:	<pre>filename="prediction" pickle.dump(lr,open(filename,'wb'))</pre>
In []:	
In []:	
In []:	