سلسلة تمارين حول درس التطبيقات

 $\overline{m{| LTalund LTalund | R^+ | LTalund | R^$

$$g(x) = \frac{x}{x+1}$$

- 1. بين أن g تقابل و حدد تقابله العكسى.
 - 2. لكل عدد صحيح طبيعي $2 \ge n$ ، نضع

$$g^{(n)} = \underbrace{\circ g \circ \dots \circ g}_{n}$$
مرة

 $g^{(3)}$ مع $g^{(2)}$ و أحسب $g^{(1)}$ و

3. تضنن صيغة $g^{(n)}(x)$ ثم أثبث ذلك بإستعمال برهان بالترجع.

 $\mathbb R$ نحو f التمرین الثانی. لیکن f تطبیقاً من $\mathbb R$ نحو بحیث لکل x من $\mathbb R$ لدینا

$$f(x+1) + 2f(1-x) = 3x - 2$$

f(x)

بدلالة

التمرین الثالث. نعتبر المجموعتین c و b و a حیث E = $\{a,b,c\}$ مختلفة مثنی مثنی.

- 1. حدد جميع التطبيقات المعرفة من E نحو F ثم حدد عدد هذه التطبيقات.
- حدد من بین هذه التطبیقات، الشمولیة منها و التباینیة منها.

 \mathbb{R} نحو الت**مرین الرابع.** نعتبر التطبیق f من \mathbb{R} نحو المعرف بما یلی $]0,+\infty[$

$$f(x) = \frac{1}{x^2 - 2x + 2}$$

- 1. بين أن f غير تبايني.
- $f(\mathbb{R})=]0,1]$ بين أن 2.
- 3. حدد هل f شمولی معللاً جوابك.

 $f:\mathbb{R}^2 o\mathbb{R}$ التمرين الخامس. نعتبر التطبيق f(x,y)=2x+y المعرف بما يلى

- 1. بين أن التطبيق f ليس تباينياً.
 - 2. بین أن f شمولی.
- $A=\{-1,2\}$ لتكن المجموعة $A\times A$ حيث $A\times A$ الجداء الديكارتي $A\times A$

التمرين السادس. بإعتبار المجموعة $A=\{n\in\mathbb{N}\mid n\notin f(n)\}$ بين أنه $\mathcal{P}(\mathbb{N})$ نحو \mathbb{N} نحو f

التمرين السابع. لتكن \overrightarrow{u} متجهة غير منعدمة و (D) مستقيماً متجهته الموجهة S_Δ و \overrightarrow{u} للإزاحة ذات المتجهة \overrightarrow{u} و Δ التماثل المحوري الذي محوره Δ .

- $.t_{\overrightarrow{u}}\circ S_{\Delta}=S_{\Delta}\circ t_{\overrightarrow{u}}$ 1. بين أن
- $(t_{\overrightarrow{u}}\circ S_\Delta)^{-1}$ عقابل ثم حدد $t_{\overrightarrow{u}}\circ S_\Delta$.2 .2

ربحو $\mathcal{P}(E)$ نحو f تطبیقاً من $\mathcal{P}(E)$ نحو $\mathcal{P}(E)$ معرفاً بما یلی $\mathcal{P}(E)$

$$f(X) = X - \{a\}, \qquad a \in X$$

$$f(X) = X \cup \{a\}, \qquad a \notin X$$

- $.f \circ f$ أحسب.
- 2. ماذا يمكنك أن تستنتج ؟

التمرين التاسع. F و F و G و G و G اربع $G:g:g:g:f:E\to F$ التطبيقات $G:g:g:f:E\to F$ التطبيقات $G:g:f:F\to G$ و $G:g:f:F\to G$ و كان $G:g:f:F\to G$ تقابلاً فإن $G:g:f:F\to G$ و كان $G:g:f:F\to G$

 $\overline{$ التمرين العاشا. ليكن f تطبيقاً بحيث لكل x من $\mathbb R$ لدينا

$$(f \circ f \circ f)(x) = 2x - 1$$

.f(1) أحسب

التمرين الحادي عشر. نعرف التطبيق التطبيق $f:\mathbb{N}^2 o \mathbb{N}$

$$f(x,y) = \frac{(x+y)(x+y+1)}{2} + y$$

بين أن التطبيق f تبايني.

حدد