

Lecture#2:

Lattice and Basis (1)

Lattice and Basis (2)

Essential Electrical Concept & Basic Structure of Transistor

Basis placement in unit cell (0,0)

- Simple square lattice.
- The unit cell (the smallest repeating unit) is a square with a side a.
- Basis has two atoms.
- Crystal = Lattice + Basis. The unit cell is a simple square with two atoms.

All Possible Lattices

Intrinsic Semiconductor

Essential Electrical Concept & Basic Structure of Transistor

the f-block. The extended periodic table adds the 8th and 9th periods, incorporating the f-block and adding the theoretical g-block

Extrinsic Semiconductor (1)

Essential Electrical Concept & Basic Structure of Transistor

Substitution (doping)

- Group M element is donor when substituting group M-1 element, acceptor when substituting group M+1 element, isoelectronic (no doping) when substituting group M element, double donor (double acceptor) when substituting group M-2 (M+2) elements.

Extrinsic Semiconductor (2)

Essential Electrical Concept & Basic Structure of Transistor

n-type doping (Si:As)

- Arsenic doped Si crystal.
- The four valence electrons of As allow it to bond just like Si but the fifth electron is left orbiting the As site.
- The energy required to release to free fifth-electron into the CB is very small
 - → Free electron (negative)
 - → N-type Semiconductor; Major carrier is electron

Extrinsic Semiconductor (3)

Essential Electrical Concept & Basic Structure of Transistor

p-type doping (Si:B)

- Boron doped Si crystal.
- B has only three valence electrons.
- When it substitutes for a Si atom one of its bonds has an electron missing (a hole).
- The hole orbits around the B— site by the tunneling of electrons from neighboring bonds.
- Eventually, thermally vibrating Si atoms provides enough energy to free the hole from the B-site into the VB as shown.
 - → Hole (positive)
 - → P-type semiconductor; Major carrier is hole

Silicon Technology (1)

Essential Electrical Concept & Basic Structure of Transistor

- Substrate
- Substrate: Base body to fabricate device ex) Si, GaAs, GaN, Sapphire(Al2O3), Glass, Plastic
 - 1) Why Silicon?
 - abundant (low-cost) \leftrightarrow GaAs
 - wide band-gap (high-temp. operation)
 - * Ge: 0.67eV, Si: 1.12eV, GaAs: 1.42eV
 - process advantage (SiO2)

- 2) Crystal growth & wafer production
 - wafer growth
 - * Czochralski (CZ) method
 - * Float-zone (FZ) method
 - ◆ Ingot → Flat (type, orientation) → Sawing → Etching → Polishing

Czochralski crystal puller

Silicon Technology (2)

Essential Electrical Concept & Basic Structure of Transistor

Substrate (movie)

Silicon Technology (3)

Silicon Technology (4)

Essential Electrical Concept & Basic Structure of Transistor

3) Wafer quality

- silicon atoms $\approx 5x10^{22} / \text{cm}^3$
- dopant concentration $\approx 10^{15} \sim 10^{20} / \text{cm}^3$
- unintentional impurity concentration < 10¹³ /cm³
 - \rightarrow 1 impurity for every 10⁹ silicon atoms
 - → 1 foreigner in china

4) Wafer type & orientation

Silicon Technology (5)

Brief Principle of Transistor

Essential Electrical Concept & Basic Structure of Transistor

NMOS (n-type metal-oxide-semiconductor)

In operation, a positive gate voltage ($V_{GS} > 0$) induces the accumulation of electrons near the dielectric–semiconductor interface, which flow from source to drain under a positive drain bias ($V_{DS} > 0$).

NMOS Process

Essential Electrical Concept & Basic Structure of Transistor

Basic NMOS process flow

History of Transistors (1)

Essential Electrical Concept & Basic Structure of Transistor

1948 - 1958

First point-contact transistor invented at Bell Labs. (Source: Bell Labs.)

The first monolithic integrated circuit, about the size of a finger tip, was documented and developed at Texas Instruments by Jack Kilby in 1958. The IC was a chip of a single Ge crystal containing one transistor, one capacitor, and one resistor. (Source: Texas Instruments)

History of Transistors (2)

Essential Electrical Concept & Basic Structure of Transistor

1990s

A contemporary transistor, shown in profile through a transmission electron microscope, measures about two micron across and has elements as small as 0.4 micron. (From article entitled "Toward Point One" in *Scientific American*, February 1995, Page 90.)

SEM view of three levels of copper interconnect metallization in IBM's new faster CMOS integrated circuits (Photograph courtesy of IBM Corporation, 1997.)

History of Transistors (3)

Essential Electrical Concept & Basic Structure of Transistor

Multilayer Interconnects

Classic View of Moore's Law

Continuous Innovation Enables Continuation of Moore's Law

Scaling Progression: Entering the Atomic Scale Era

Materials Used in Semiconductor Devices (1)

Materials Used in Semiconductor Devices (2)

Essential Electrical Concept & Basic Structure of Transistor

■ Materials used in the 80s ■ Added in the 90s ■ Added or evaluated since 2000

Source: ITRS 2005, Lam Research

Summary

Essential Electrical Concept & Basic Structure of Transistor

- The unit cell: the smallest repeating unit
- Crystal = Lattice + Basis.

- Silicon: Diamond structure / 4 outer electrons at M shell ([Ne] 3S²3P²) / by covalent bonding, Si obtains stability with the shared 4 other electrons.
- Doping: Group M element is donor when substituting group M-1 element, acceptor when substituting group M+1 element.

: n-type → Free electron (negative), major carrier is electron

: p-type → Hole (positive), major carrier is hole

- NMOS transistor: In operation, a positive gate voltage ($V_{GS} > 0$) induces the accumulation of electrons near the dielectric–semiconductor interface, which flow from source to drain under a positive drain bias ($V_{DS} > 0$).