A solutions manual for Algebra by Thomas W. Hungerford

Chapter I: Groups - 1. Semigroups, Monoids, and Groups

Exercises

- 1. Give examples other than those in the text of semigroups and monoids that are not groups.
- 2. Let G be a group (written additively), S a nonempty set, and M(S,G) the set of all functions $f: S \to G$. Define additions in M(S,G) as follows: $(f+g): S \to G$ is given by $s \mapsto f(s) + g(s) \in G$. Prove that M(S,G) is a group, which is abelian if G is.
- 3. Is it true that a semigroup which has a *left* identity element and in which every element has a *right* inverse (see Proposition 1.3) is a group?
- 4. Write out a multiplication table for D_4^* .
- 5. Prove that the symmetric group on n letters, S_n , has order n!.
- 6. Write out an addition table for $Z_2 \oplus Z_2$. $Z_2 \oplus Z_2$ is called the **Klein Four Group**.
- 7. If p is prime, then the nonzero elements of \mathbb{Z}_p form a group of order p-1 under multiplication. [Hint: $\overline{a} \neq \overline{0} \Rightarrow (a,p) = 1$; use Introduction, Theorem 6.5.] Show that this statement is false if p is not prime.
- 8. (a) The relation given by $a \sim b \Leftrightarrow a b \in Z$ is a congruence relation on the additive group \mathbb{Q} [see Theorem 1.5].
 - (b) The set \mathbb{Q}/\mathbb{Z} of equivalence classes is an infinite abelian group.
- 9. Let p be a fixed prime. Let R_p be the set of all those rational numbers whose denominator is relatively prime to p. Let R^p be the set of rationals whose denominator is a power of p ($p^i, i \geq 0$). Prove that both R_p and R^p are abelian groups under ordinary addition of rationals.
- 10. Let p be a prime and let $Z(p^{\infty})$ be the following subset of the group \mathbb{Q}/\mathbb{Z} (see pg. 27):

$$Z(p^{\infty}) = \{\overline{a/b} \in Q/Z \mid a,b \in Z \text{ and } b = p^i \text{ for some } i \geq 0\}.$$

Show that $\mathbb{Z}(p^{\infty})$ is an infinite group under the addition operation of \mathbb{Q}/\mathbb{Z} .

11. The following conditions on a group G are equivalent: (i) G is abelian; (ii) $(ab)^2 = a^2b^2$ for all $a, b \in G$; (iii) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$; (iv) $(ab)^n = a^nb^n$ for all $n \in \mathbb{Z}$ and all $a, b \in G$; (v) $(ab)^n = a^nb^n$ for three consecutive integers n and all $a, b \in G$. Show (v) \Rightarrow (i) is false if "three" is replaced by "two."

- 12. If G is a group, $a, b \in G$ and bab = a for some $r \in \mathbb{N}$, then bab = a for all $i \in \mathbb{N}$.
- 13. If $a^2 = e$ for all elements a of a group G, then G is abelian.
- 14. If G is a finite group of even order, then G contains an element $a \neq e$ such that $a^2 = e$.
- 15. Let G be a nonempty finite set with an associative binary operation such that for all $a, b, c \in G$ $ab = ac \Rightarrow b = c$ and $ba = ca \Rightarrow b = c$. Then G is a group. Show that this conclusion may be false if G is infinite.
- 16. Let $a_1, a_2, ...$ be a sequence of elements in a semigroup G. Then there exists a unique function $\phi: \mathbb{N}^* \to G$ such that $\phi(1) = a_1, \phi(2) = a_1 a_2, \phi(3) = (a_1 a_2) a_3$ and for $n \geq 1, \phi(n+1) = (\phi(n)) a_{n+1}$. Note that $\phi(n)$ is precisely the standard n product $\prod_{i=1}^n a_i$ [Hint: Applying the Recursion Theorem 6.2 of the Introduction with $a = a_1, S = G$ and $f_n: G \to G$ given by $x \to x a_{n+2}$ yields a function $\varphi: N \to G$. Let $\phi = \varphi \theta$, where $\theta: \mathbb{N}^* \to \mathbb{N}$ is given by $k \mapsto k-1$.]