Algorithms 08 CS201

Kaustuv Nag

Problem Statement

- ▶ **Input:** n queens and an $n \times n$ chess board.
- ▶ **Input:** A way to place all *n* queens on the board such that no queens threaten another queen.

Issues to be Checked

- ► How do queens work?
- ► How do we formulate this problem?
- ► How do we represent a solution?

How do queens work?

First Idea

► Consider every placement of each queen one at a time.

Size of Search Space

► How many placements are there?

$$\binom{n^2}{n} \tag{1}$$

 \blacktriangleright when n=8

$$\binom{n^2}{n} = \binom{64}{8} = 4,426,165,368$$

Second Idea

▶ Do not place two queens in the same row.

Size of Search Space

- Now, how many positions need to be checked?
 - \triangleright we can put one queen at any of the *n* cells in a row. Therefore, n^n possibilities are there.
 - \blacktriangleright when n=8

$$n^n = 8^8 = 16,777,216$$

Third Idea

▶ Do not place two queens in the same row or in the same column.

Size of Search Space

- ► How many placements are there?
 - \blacktriangleright Generates all permutations of $\{1, 2, ..., n\}$. Therefore, n! placements are there.
 - \blacktriangleright when n=8

$$n! = 8! = 40,320$$

Shrinking the Search Space

▶ We applied explicit constraints to shrink our search space from $\binom{n^2}{n}$ to n^n to n!

Representation of a Solution

- Let us represent possible solutions to the *n*-queens problem using an array Q[1..n], where Q[i] indicates which square in row *i* contains a queen.
- ► Thus, Q[1..8] = [4,7,3,8,2,5,1,6] represents the following solution:

Four Queens Problem

The Complete Recursion Tree Without Backtracking

Observation

Two queens are placed at positions (i,j) and (k,l). They are on the same diagonal only if i-j=k-l or i+j=k+l.

Backtracking Algorithm

```
RecursiveNQueens(Q[1..n], r):
if r == n + 1
   print Q
else
    for j = 1 to n
        legal = True
        for i = 1 to r - 1
            if (Q[i] == j) or (Q[i] == j + r - i) or (Q[i] == j - r + i)
                legal = False
        if legal
            Q[r] = i
            RecursiveNQueens(Q[1..n], r + 1)
```

Four Queens Problem

The Complete Recursion Tree With Backtracking

Backtracking

When?

- ▶ Suppose we have to make a series of decisions, among various choices, where
 - ▶ We do not have enough information to know what to choose.
 - ► Each decision leads to a new set of choices.
 - ► Some sequence of choices (possibly more than one) may be a solution to our problem.

What?

- ▶ Backtracking is
 - A general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems.
 - ► Incrementally builds candidates to the solutions.
 - ▶ Abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.

Representation of a Solution and Solution Space

- ▶ We can represent the solution space for the problem using a state space tree.
 - A path from a root to a leaf represents a candidate solution.

Subset Sum Problem

Problem Statement

- ▶ **Input:** A set *X* of positive integers and target integer *T*.
- ▶ **Input:** Is there a subset of elements in *X* that add up to *T*?

Examples

- ► If $X = \{8,6,7,5,3,10,9\}$ and T = 15, the answer is *true* as T = 8+7, T = 7+5+3, T = 6+9, and T = 5+10.
- ightharpoonup if $X = \{11, 6, 5, 1, 7, 13, 12\}$ and T = 15, the answer is *false*.

Observations

- Considering an arbitrary element $x \in X$, there is a subset of X that sums to T if and only if one of the following statements is true:
 - ightharpoonup There is a subset of X that includes $x \in X$ and whose sum is T.
 - ▶ There is a subset of *X* that excludes $x \in X$ and whose sum is *T*.

Subset Sum Problem

Binary State Space Tree

Subset Sum Problem

Backtracking Algorithm

```
SubsetSum(X, T):
if T == 0
    return True
else if T < 0 or X is empty
    return False
else
    x = any element of X
    return SubsetSum(X \ {x}, T) OR SubsetSum(X \ {x}, T - x)</pre>
```

0/1 Knapsack Problem

- \triangleright Consider a collection of N indivisible objects, labelled by the integers i = 1, 2, ..., N.
- The *i*th object is associated a positive real number w_i , the "weight" of the object, and real number v_i , the "value" of the object.
- ▶ Need to form a loading of the objects by selecting from among the *N* objects a subcollection which has a maximum total value but which does not exceed a total weight of say *W* units.
- ▶ Mathematically: find $\mathbf{x} = (x_1, x_2, \dots, x_N)^T \in \{0, 1\}^N$, such that

maximize
$$\left\{\sum_{i=1}^{N} x_i v_i\right\}$$

such that $\sum_{i=1}^{N} x_i w_i \leq W$

0/1 Knapsack Problem

Example: Complete Recursion Tree (State Space Diagram)

$$\mathbf{v} = (45, 30, 45, 10), \mathbf{w} = (3, 5, 9, 5), W = 16$$

0/1 Knapsack Problem

Example

Branch and Bound

- ► Can be used to solve optimization problems especially in discrete and combinatorial optimization without an exhaustive search in the average case.
- ▶ It is efficient in the average case because many branches can be terminated very early.
- ► A very large tree may be generated in the worst case.

White Board

White Board