

Liliana Palomino

Mechanical Engineer

Fourth-year Mechanical Engineering student at Northeastern University with a minor in Mathematics. Passionate about product development, with hands-on experience in both engineering design and project management through co-ops, technical leadership, and team-based projects.

Contact Me

palomino.l@northeastern.edu 781.605.470 www.linkedin.com/in/l-palomino

Leadership & Product Delivery

- Analyzed weekly progress and delivered targeted action items to each member, balancing timeline and budget constraints
- Developed 3-week assembly plan and tracking system for subsystem completion status
- Presented functional arcade cabinet that transforms into transportable box at Generate Showcase event

Technical Contribution

- Sketched out and distributed workload across six mechanical subsystems after conducting pre-semester research and planning
- Modeled and 3D printed replacement connector pins when wooden ones failed
- Cut precision holes for electrical components
- Fabricated MDF woodworking jigs
- Managed master assembly in **Onshape** and simulated collapsing mechanism using fasten, revolute, and slider mates
- Acquired access to additional industrial tools from shop mechanics and engineering clubs to supplement laser cutting capacity

Fitolux

Automated protein powder dispensing device for precise and convenient supplement storage and dosing

Hopper

- Designed custom protein powder storage hopper with integrated 3D-printed desiccant cage to prevent moisture buildup
- Created removable hopper system featuring a permanent connector to auger screw for easy maintenance and refilling
- Optimized internal geometry for consistent powder flow

Structural Frame

- Utilized cold saw to efficiently cut framing pieces to size
- Selected T-slot 80/20 hardware for structural modularity and support capabilities
- Utilized **Onshape** frame tool to model structure, prioritizing hopper support and space for subsystem integration
- Redesigned with indented front corners after enclosure aesthetic requirements conflicted with initial design

Outer Enclosure

- Performed tolerance stack-up analysis to determine dimensions
- Combined 3D-printed components and laser-cut acrylic paneling for sleek product appearance
- Developed assembly sequence and process plan; simplifying flow, preventing potential mistakes, and enabling smooth final assembly

Yield Improvement Project @ J&J

Data Collection & Defect Analysis

- Analyzed thousands of dollars of scrapped motor housing parts to identify defect patterns and categorize failure modes
- Established trending data and quantified common defect areas
- Met with operators at each process bench to understand manufacturing nuances from their perspective

Root Cause Investigation

- Hosted weekly scrap review meetings with international colleagues to compare data and align on findings
- Collaborated with manager on root cause analysis using **fishbone diagram** to map potential causes from statistical data, operator insights, and scrap reviews
- Implemented and tested multiple solutions across different defect areas, using failed attempts to eliminate potential root causes and guide next steps

Results & Impact

- Achieved **20% yield improvement** in motor housing process through systematic defect reduction sprints across five months
- Established sustainable data collection methodology for ongoing yield monitoring
- Documented actions to provide incoming production engineers with critical process context and decision rationale