Multivariate Statistical Analysis

Lecture 05

Fudan University

luoluo@fudan.edu.cn

Outline

Characteristic Function

2 Maximum Likelihood Estimation

Outline

Characteristic Function

2 Maximum Likelihood Estimation

The characteristic function of a p-dimensional random vector \mathbf{x} is

$$\phi(\mathbf{t}) = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{x})\right]$$

defined for every real vector $\mathbf{t} \in \mathbb{R}^p$.

For the complex-valued function g(z) be written as

$$g(z) = g_1(z) + i g_2(z),$$

where $g_1(z)$ and $g_2(z)$ are real-valued, the expected value of g(z) is

$$\mathbb{E}[g(z)] = \mathbb{E}[g_1(z)] + \mathrm{i}\,\mathbb{E}[g_2(z)].$$

Theorem

If the p-dimensional random vector \mathbf{x} has the density $f(\mathbf{x})$ and the characteristic function $\phi(\mathbf{t})$, then

$$f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp(-\mathrm{i} \, \mathbf{t}^{\top} \mathbf{x}) \, \phi(\mathbf{t}) \, \mathrm{d}t_1 \ldots \mathrm{d}t_p.$$

- If the random variable have a density, the characteristic function determines the density function uniquely.
- If the random variable does not have a density, the characteristic function uniquely defines the probability of any continuity interval.

Theorem

The characteristic function of ${\bf x}$ distributed according to $\mathcal{N}_p(\mu,{f \Sigma})$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{ op} \boldsymbol{\mu} - rac{1}{2}\mathbf{t}^{ op} \mathbf{\Sigma} \mathbf{t}
ight).$$

for every $\mathbf{t} \in \mathbb{R}^p$.

Sketch of the proof:

- The characteristic function of $\mathbf{y} \sim \mathcal{N}_{\rho}(\mathbf{0}, \mathbf{I})$ is $\phi_0(\mathbf{t}) = \exp\left(-\mathbf{t}^{\top}\mathbf{t}/2\right)$.
- ② For $\mathbf{x} \sim \mathcal{N}_p(\mu, \mathbf{\Sigma})$, we have $\mathbf{x} = \mathbf{A}\mathbf{y} + \boldsymbol{\mu}$ such that $\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$.
- **3** Using $\phi_0(\mathbf{t})$ to present the characteristic function of $\mathbf{x} \sim \mathcal{N}_p(\mu, \mathbf{\Sigma})$.

Theorem

The characteristic function of ${\bf x}$ distributed according to $\mathcal{N}_p(\mu,{f \Sigma})$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{ op}oldsymbol{\mu} - rac{1}{2}\mathbf{t}^{ op}oldsymbol{\Sigma}\mathbf{t}
ight).$$

for every $\mathbf{t} \in \mathbb{R}^p$.

This theorem directly implies $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ leads to $\mathbf{C}\mathbf{x} \sim \mathcal{N}(\mathbf{C}\boldsymbol{\mu}, \mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top})$.

characteristic function

trick of matrix

Theorem

If every linear combination of the components of a random vector \mathbf{y} is normally distributed, then \mathbf{y} is normally distributed.

In other words, if the p-dimensional random vector \mathbf{y} leads to the univariate random variable

$$\mathbf{u}^{\top}\mathbf{y}$$

is normally distributed for any fixed $\mathbf{u} \in \mathbb{R}^p$, then \mathbf{y} is normally distributed.

This is another definition of multivariate normal distribution.

Example

Theorem

We let

$$\mathbf{x} \sim \mathcal{N}_p(\mu_1, \mathbf{\Sigma}_1), \qquad \mathbf{y} \sim \mathcal{N}_p(\mu_2, \mathbf{\Sigma}_2) \qquad ext{and} \qquad \mathbf{z} = \mathbf{x} + \mathbf{y}.$$

$$\mathbf{y} \sim \mathcal{N}_p(oldsymbol{\mu}_2, oldsymbol{\Sigma}_2)$$

$$z = x + y$$
.

Suppose that \mathbf{x} and \mathbf{y} are independent, then we have

$$\mathbf{z} \sim \mathcal{N}_{p}(oldsymbol{\mu}_{1} + oldsymbol{\mu}_{2}, oldsymbol{\Sigma}_{1} + oldsymbol{\Sigma}_{2}).$$

this result

Outline

Characteristic Function

Maximum Likelihood Estimation

The Maximum Likelihood Estimators

Theorem

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ with N > p, the maximum likelihood estimators of μ and $\mathbf{\Sigma}$ are

$$\hat{oldsymbol{\mu}} = ar{f x} = rac{1}{N} \sum_{lpha=1}^N {f x}_lpha \quad ext{and} \quad \hat{f \Sigma} = rac{1}{N} \sum_{lpha=1}^N ({f x}_lpha - ar{f x}) ({f x}_lpha - ar{f x})^ op$$

respectively.

The Maximum Likelihood Estimators

The likelihood function is

$$L = \frac{1}{(2\pi)^{\frac{pN}{2}} \left(\det(\mathbf{\Sigma}) \right)^{\frac{N}{2}}} \exp\left[-\frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right].$$

The vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ are fixed at the sample values and L is a function of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.

The logarithm of the likelihood function is

$$\ln L = -\frac{pN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\mathbf{\Sigma}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}).$$

The Maximum Likelihood Estimators

There are some results for estimating the covariance.

Theorem

The function $h: \mathbb{S}_{++}^p \to \mathbb{R}$ such that

$$h(\mathbf{X}) = -\log\det(\mathbf{X})$$

is convex, where $\mathbb{S}^p_{++} = \{ \mathbf{X} \in \mathbb{R}^{p \times p} : \mathbf{X} \succ \mathbf{0} \}.$

Theorem

If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$f(\mathbf{G}) = -N \ln \det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$$

with respect to positive definite matrices **G** exists, occurs at $\mathbf{G} = \frac{1}{N}\mathbf{D}$.