• Using refined techniques we can improve the bound for the hard SVM rule for particular μ :

Theorem 4.5:

Let μ be a distribution on $\mathbb{R}^d \times \{-1, +1\}$ with the so-called (γ, ρ) -separability property, i.e., there exists $(\mathbf{w}^*, b^*) \in \mathbb{R}^{d+1}$ with $\|\mathbf{w}^*\| = 1$ and such that for $(\mathbf{X}, Y) \sim \mu$ almost surely

$$Y(\mathbf{w}^* \cdot \mathbf{X} + b^*) \ge \gamma > 0$$
 and $\|\mathbf{X}\| \le \rho < \infty$.

Then we have with probability at least $1-\delta$ that

$$\mathcal{R}_{\mu}(\mathrm{SVM}_{\mathsf{hard}}(S)) \leq \frac{1}{\sqrt{m}} \left(\frac{2\rho}{\gamma} + \sqrt{2\ln\left(\frac{2}{\delta}\right)} \right).$$

Proof: See Chapter 26 in "Understanding Machine Learning" (2014)

■ This yields, the error of the (hard) SVM rule is dimension independent for such distributions μ .

4.2 Soft SVM

- Let us now extend the procedure of the hard SVM rule to the case of arbitrary, in particular non-linearly separable samples s.
- lacksquare I.e., we can no longer assume that there is $(\mathbf{w},b)\in\mathbb{R}^{d+1}$ with

$$y_i\left(\mathbf{w}\cdot\mathbf{x}_i+b\right)>0 \qquad \forall i=1,\ldots,m$$

respectively, in terms of the constraint of the hard SVM rule,

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i = 1, \dots, m.$$

Slack Variables are used in the Soft Margin SVM to handle cases where data points are not perfectly separable.

• We therefore introduce non-negative slack variables $\xi_i \geq 0$, $i = 1, \dots, m$, and replace the above constraint with

$$y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i \qquad \forall i = 1, \dots, m.$$

■ Thus, for $\xi_i > 1$, \mathbf{x}_i may be on the "wrong side" of the hyperplane.

- The slack variables ξ_i quantify the violation of the constraints of the hard SVM rule.
- So we are looking for a vector (\mathbf{w}, b) with small norm $\|\mathbf{w}\|^2$ and small violation of the original hard SVM constraints.
- To balance both goals we choose a control parameter $\lambda > 0$ and consider

Soft SVM rule

Given:

- Sample s with m data pairs $(\mathbf{x}_i, y_i) \in \mathbb{R}^d \times \{-1, +1\}$
- Parameter $\lambda > 0$

Compute: $h_{\mathbf{w}_s,b_s} = \text{SVM}_{\text{soft}}(s;\lambda) \in \mathcal{L}_d$ given by

$$(\mathbf{w}_s, b_s, \boldsymbol{\xi}_s) \in \underset{(\mathbf{w}, b, \boldsymbol{\xi}) \in \mathbb{R}^{d+1+m}}{\operatorname{argmin}} \lambda \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i$$

subject to:
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$$
 and $\xi_i \ge 0$ $\forall i = 1, ..., m$.

oresponds to training date

$$\frac{1}{2!}(W.x+b) \ge 1-\frac{2}{2!}$$

$$\frac{1}{2!}$$

Notes

- The optimal weight vector \mathbf{w}_s in the soft SVM rule is unique. But there can be an interval of optimal bias values b_s unlike for the hard SVM rule.
- Furthermore, due to the convexity of the optimization task, any minimum found is a global minimum both SVM rules thus have no local minima, unlike (deep) neural networks.
- Likewise, the weight vector \mathbf{w}_s learned by the soft SVM rule is again in the span of certain support vectors \mathbf{x}_i :

$$\mathbf{w}_s = \sum_{i: g_i(\mathbf{w}_S, b_S, \boldsymbol{\xi}_S) = 0} \alpha_i \mathbf{x}_i.$$

■ For $\lambda \to 0$, the violation of the constraints is increasingly penalized. If s is linearly separable, then for sufficiently small $\lambda \ll 1$ we have

$$SVM_{soft}(s; \lambda) \approx SVM_{hard}(s)$$

The Hinge loss

The soft SVM rule is a regularized ERM rule based on a new loss function:

The hinge loss For $\mathbf{w}' = (\mathbf{w}, b) \in \mathbb{R}^{d+1}$ and $\mathbf{x} \in \mathbb{R}^d$ and $y \in \{-1, +1\}$ let $\ell_{\mathsf{hinge}}(\mathbf{w}', (\mathbf{x}, y)) := \max\{0, 1 - y(\mathbf{w}' \cdot \mathbf{x}')\}, \qquad \mathbf{x}' := (\mathbf{x}, 1).$ The Smallest slalk vars, the better because of violating original Proposition 4.6: The soft SVM learning rule is equivalent to

The soft SVM learning rule is equivalent to

$$(\mathbf{w}_s, b_s) \in \underset{(\mathbf{w}, b) \in \mathbb{R}^{d+1}}{\operatorname{argmin}} \mathcal{R}_s^{\mathsf{hinge}}((\mathbf{w}, b)) + \lambda \|\mathbf{w}\|^2$$

with the empirical risk $\mathcal{R}_s^{\text{hinge}}((\mathbf{w}, b)) := \frac{1}{m} \sum_{i=1}^m \ell_{\text{hinge}}((\mathbf{w}, b), (\mathbf{x}_i, y_i)).$

Notes

■ The proposition follows from the fact that in a minimum of the soft SVM rule we have for the slip variables $\xi_1 > 0$, i.e.,

$$\xi_i = \max\{0, 1 - y_i (\langle \mathbf{w}, \mathbf{x}_i + b \rangle)\} = \ell_{\mathsf{hinge}}((\mathbf{w}, b), (\mathbf{x}_i, y_i)) \qquad \forall i = 1, \dots, m.$$
 where \mathbf{v} where \mathbf{v} is the type \mathbf{v} and \mathbf{v} and \mathbf{v} is the type \mathbf{v} is the type \mathbf{v} and \mathbf{v} is the type \mathbf{v}

Learning rules of the type

$$\mathcal{R}_s(h) + \lambda \underline{R(h)} \to \min_h$$

are called regularized ERM rules with regularization parameter λ and regularization or penalty functional R.

11,12

■ The hinge loss is again convex with respect to the parameters w, b and thus also the objective function to be minimized $f(\mathbf{w}, b) = \Re(\mathbf{w}, b) + \lambda \|\mathbf{w}\|^2$, $L_1 = (|\mathbf{w}|)$

However,
$$\ell_{\text{hinge}}$$
 and hence f is no longer differentiable with respect to \mathbf{w}, b .

ang min /m = max(o, 1-yi(wx+bi))

Comparison of loss functions

■ The 0-1 loss, log loss, and hinge loss can be defined as follows using the affine mapping $f_{\mathbf{w},b}(\mathbf{x}) := \mathbf{w} \cdot \mathbf{x} + b$:

$$\begin{split} \ell_{0\text{-}1}(f_{\mathbf{w},b},\mathbf{x},y) &:= \mathbbm{1}_{\left(-\infty,0\right)}\left(yf_{\mathbf{w},b}(\mathbf{x})\right),\\ \ell_{\log}(f_{\mathbf{w},b},\mathbf{x},y) &:= \ln\left(1 + \exp(-yf_{\mathbf{w},b}(\mathbf{x}))\right),\\ \ell_{\text{hinge}}(f_{\mathbf{w},b},\mathbf{x},y) &:= \max\left\{0,1 - yf_{\mathbf{w},b}(\mathbf{x})\right\} \end{split}$$

- \Rightarrow All three losses are real functions of the scalar value $yf_{\mathbf{w},b}(\mathbf{x})$.
- The hinge loss is always greater or equal to the 0-1 loss.
- To achieve the same for the log loss you can scale it:

$$\frac{\ln\left(1+\exp(-yf_{\mathbf{w},b}(\mathbf{x}))\right)}{\ln 2}.$$

Example: Synthetic dataset

- For $\mathcal{X} = \mathbb{R}^2$ we want to learn $h_{\mathbf{w},0} \in \mathcal{L}_d$ by the soft SVM rule.
- m=25 training data is randomly generated with random labels corresponding to a Bernoulli distribution as in Section 3.2 with $\mathbf{w}^\dagger=(1,2)^\top$, $b^\dagger=0$.
- For the soft SVM rule, we choose $\lambda = \frac{1}{m}$ and obtain $\mathbf{w}_s \approx (0.17, 0.81)^{\top}$.
- Logistic regression yields $\mathbf{w}_s^{\mathsf{LR}} \approx (0.70, 1.60)^{\mathsf{T}}$.
- The example can be reproduced by a provided Jupyter notebook

Choice of λ

The parameter λ can have a significant effect on the learning outcome:

Its effect depends in general on the data:

Comparison of hard and soft SVM

For linearly separable data we recover for small λ the result of the hard SVM rule:

Example: MNIST dataset

- We apply the soft SVM learning rule to the MNIST dataset to learn to distinguish handwritten sevens and eights.
- We thereby consider the influence of λ on the misclassification obtained.

■ Small λ leads to an improved fit. For $\lambda=1/m\approx 8\cdot 10^{-5}$ we get 0.21% misclassifications.

Advantages of the soft SVM rule

• We cannot apply the quantitative fundamental theorem from Chapter 2 to obtain bounds $C(m,\delta)<\infty$ with

$$\mathbb{P}_{\mu^m}\left(\mathcal{R}_{\mu}^{\mathsf{hinge}}(h_{\mathbf{w}_S,b_S}) \leq C(m,\delta)\right) \geq 1 - \delta$$

for the output (\mathbf{w}_S, b_S) of the soft SVM rule, because:

- the soft SVM rule yields for $\lambda > 0$ no ERM hypothesis,
- the hinge loss is unbounded.

■ However, for regularized ERM rules

$$h_s = \text{ERM}_{\mathcal{H},R}(s;\lambda) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{R}_s(h) + \lambda R(h)$$

one can show bounds for the mean generalization error

$$\mathbb{E}_{\mu^m}[\mathcal{R}_{\mu}(h_S)] \le C(m).$$

Theorem 4.7:

Let μ be a distribution on $\mathbb{R}^d \times \{-1, +1\}$ such that for $(\mathbf{X}, Y) \sim \mu$ we have almost surely $\|\mathbf{X}\| \leq \rho < \infty$. Then for

$$\mathbf{w}_s := \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} \lambda \|\mathbf{w}\|^2 + \mathcal{R}_s^{\mathsf{hinge}}(f_{\mathbf{w},0}),$$

we have

$$\mathbb{E}_{\mu^m} \left[\mathcal{R}_{\mu}^{\mathsf{hinge}}(f_{\mathbf{w}_S,0}) \right] \leq \min_{\mathbf{v} \in \mathbb{R}^d} \left(\mathcal{R}_{\mu}^{\mathsf{hinge}}(f_{\mathbf{v},0}) + \lambda \|\mathbf{v}\|^2 \right) + \frac{2\rho^2}{\lambda m}.$$

- The term $\frac{2\rho^2}{\lambda m}$ bounds the (mean) estimation error $\mathbb{E}_{\mu^m}[\varepsilon_{\mathsf{est}}(S)]$ and the green highlighted text the approximation error.
- Again, the bound for the generalization error does not depend on the feature dimension $d = \text{VCD}(\mathcal{L}_d^0)$. This has some advantages in practice, e.g., in text classification where $d \gg 10^4$ but $\|\mathbf{x}\| < 1 = \rho$.