PC₁

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: A61K 38/16, C07K 14/46

(11) International Publication Number:

WO 99/07404

(43) International Publication Date:

18 February 1999 (18.02.99)

(21) International Application Number:

PCT/US98/16387

A1

(22) International Filing Date:

6 August 1998 (06.08.98)

(30) Priority Data:

60/055,404

8 August 1997 (08.08.97)

US

(71) Applicant (for all designated States except US): AMYLIN PHARMACEUTICALS, INC. [US/US]; 9373 Towne Centre Drive, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BEELEY, Nigel, Robert, Amold [US/US]; 227 Loma Corta Drive, Solana Beach, CA 92131 (US). PRICKETT, Kathryn, S. [US/US]; 7612 Trailbrush Terrace, San Diego, CA 92126 (US).

(74) Agents: DUFT, Bradford, J. et al.; Lyon & Lyon LLP, First Interstate World Center, Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

RECEIVED

MAR - 4 1999

LYON & LYON INTIL, PROSECUT

(54) Title: NOVEL EXENDIN AGONIST COMPOUNDS

(57) Abstract

Novel exendin agonist compounds are provided. These compounds are useful in treating Type I and II diabetes and conditions which would be benefited by lower plasma glucose and delaying and/or slowing gastric emptying.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	. ra	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	. TJ	Tajikistan
BE	Belgium	GN	Guinea	- MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	[refand]	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

DESCRIPTION

NOVEL EXENDIN AGONIST COMPOUNDS

This application claims the benefit of U.S. Provisional Application No. 60/055,404, filed August 8, 1997, the contents of which are hereby incorporated by reference in their entirety.

Field of the Invention

The present invention relates to novel compounds which have activity as exendin agonists. These compounds are useful in treatment of Type I and II diabetes, in treatment of disorders which would be benefited by agents which lower plasma glucose levels and in treatment of disorders which would be benefited with agents useful in delaying and/or slowing gastric emptying.

BACKGROUND

The following description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art to the presently claimed invention, nor that any of the publications specifically or implicitly referenced are prior art to that invention.

20 Exendin

5

10

15

The exendins are peptides that are found in the venom of the Gila-monster, a lizard common in Arizona and Northern Mexico. Exendin-3 [SEQ. ID. NO. 1] is present in the venom of Heloderma horridum, and exendin-4 [SEQ. ID. NO. 2] is

present in the venom of Heloderma suspectum (Eng, J., et al., J. Biol. Chem., 265:20259-62, 1990; Eng.; J., et al., J. Biol. Chem., 267:7402-05, 1992). The amino acid sequence of exendin-3 is shown in Figure 2. The amino acid sequence of exendin-4 is shown in Figure 3. The exendins have some 5 sequence similarity to several members of the glucagon-like peptide family, with the highest homology, 53%, being to GLP-1[7-36]NH₂ [SEQ. ID. NO. 3] (Goke, et al., <u>J. Biol. Chem.</u>, 268:19650-55, 1993). GLP-1[7-36]NH₂, also known as proglucagon[78-107] or simply, "GLP-1," has an insulinotropic 10 effect, stimulating insulin secretion from pancreatic β -cells. The amino acid sequence of GLP-1 is shown in Figure 4. GLP-1 also inhibits glucagon secretion from pancreatic α-cells (Ørsov, et al., Diabetes, 42:658-61, 1993; D'Alessio, et al., J. Clin. Invest., 97:133-38, 1996). GLP-1 is 15 reported to inhibit gastric emptying (Willms B, et al., J Clin Endocrinol Metab 81 (1): 327-32, 1996; Wettergren A, et al., Dig Dis Sci 38 (4): 665-73, 1993), and gastric acid secretion. Schjoldager BT, et al., Dig Dis Sci 34 (5): 7-03-8, 1989; O'Halloran DJ, et al., J_Endocrinol 126 (1): 20 169-73, 1990; Wettergren A, et al., Dig Dis Sci 38 (4): 665-73, 1993). GLP-1[7-37], which has an additional glycine residue at its carboxy terminus, also stimulates insulin secretion in humans (Orsov, et al., Diabetes, 42:658-61, 1993). A transmembrane G-protein adenylate-cyclase-coupled 25 receptor believed to be responsible for the insulinotropic effect of GLP-1 has been cloned from a β -cell line (Thorens, Proc. Natl. Acad. Sci. USA 89:8641-45 (1992)).

Exendin-4 reportedly acts at GLP-1 receptors on insulinsecreting β TC1 cells, at dispersed acinar cells from guinea pig pancreas, and at parietal cells from stomach; the peptide

30

```
is also said to stimulate somatostatin release and inhibit
              15 also sald to scimulate sometostatin release and innibit gastrin release in isolated stomachs (Goke) and an innibit control of the stomach and innibit con
                      gastrin release in isolated stomachs et al., Eur. I Pharmacol., chem. 268:19650-55, 1993; schepp, et al., es.co.
WO 99107404
                               inem. 208:12030-33; Sciletty Elssele, et al., Life Sci., 55:629-34; 69:183-91, 1994; Elssele, et al., Life Sci., 69:183-91, 1994; Elssele, et al., Life Sci.
                                                                                                 Exendin-3 and exendin-4 were reportedly found to
                                               1994). Exendin-j and exendin- were release from and amylase release from in and amylase release from the stimulate cAMP production in and amylase release from the stimulate camp production in and amylase release from the stimulate camp production in and amylase release from the stimulate camp production in and amylase release from the stimulate camp production in and amylase release from the stimulate camp production in and amylase release from the stimulate camp production in an and amylase release from the stimulate camp production in an and amylase release from the stimulate camp production in an and amylase release from the stimulate camp production in the stimulate camp productin
                                                     Stimulate came production in any any rase release from Regulatory
pancreatic acinar cells (Malhotra, R., et al., R
                                                              Pancreatic acinar celis (Mainotra, et al., Legularory, pancreatic acinar 1992; Raufman, et al., J., Biol., Chem.
                                                                      Peptides, 41:149-36, 1992; Kaurman, et al., Peptides, 41:149-36, Singh, et al., Regul., 267:21432-37, 1992; Singh, et al., Peptides, 41:149-36, Singh, et al., Peptides, 41:14
                                                                              201:41432-311 based on their insulinotropic activities the use of 1994).
                                                                                      exendin-3 and exendin-4 for the treatment of diabetes
                                             1994).
                                                                                             exemulary and the prevention of hyperglycemia has been mellitus and the prevention of hyperglycemia has been
                                                                                                                                                    Agents which serve to delay gastric emptying have found
                                                                                                                     Agents which serve to delay gastric emptying have round in gastro-intestinal aplace in medicine as diagnostic aids in gastro-intestinal
                                                                                                      proposed (Eng. U.S. patent No. 5,424,286).
                                                                                                                              a prace in meurone as traymostro example, glucagon is a radiologic examinations.
                                                                                                                                    radiologic examinations. For example, glucagon is a the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the a cells of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the acceptance of the polypeptide hormone which is produced by the polypeptide hormone which is produced by the polypeptide hormone acceptance of the polypeptide hormone which is produced by the polypeptide hormone which is produced by the polypeptide hormone acceptance of the polypeptide hormone which is produced by the polypeptide hormone which is produced by the polypeptide hormone acceptance of the polypeptide hormone which is produced by the polypep
                                                                                                                                             polypeptide normone which is produced by the a celis of the pancreatic islets of Langerhans.
                                                                                                                                                    pancreatic islets of Langernans. It is a nypergrycemic agent hepatic glycogenolysis.

Which mobilizes glucose by activating hepatic constitution of
                                     10
                                                                                                                                                            It can to a lesser extent
                                                                                                                                                                   It can to a lesser extent stimulate the secretion of glucagon is used in the treatment of pancreatic insulin.
                                                                                                                                                                                     administration of glucose intravenously is not possible.
                                                                                                                                                                             insulin-induced hypoglycemia, for example, when
                                                                               15
                                                                                                                                                                                           However, as dincadou reduces the worthing of the dastro
                                                                                                                                                                                                    nowever tract it is also used as a diagnostic aid in intestinal
                                                                                                                                                                                                           Intestinal tract it is also used as a glagnostic ald in has glucagon intestinal radiological examinations.
                                                                                                                                                                                                                   gastro-intestinal radiological examinations, glucagon nas painful assorbeen used in several studies to treat various painful also been used in several studies.
                                                                                                                                                                                                                          also peen used in several scuales to treat various paintul
also peen used in several associated with spasm.

gastro-intestinal disorders associated with spasm.
                                                                                                                      20
                                                                                                                                                                                                                                     symptomatic relief of acute diverticulitis in parients
                                                                                                                                                                                                                                                    Treated with glucagon compared with those who had been
                                                                                                                                                               25
                                                                                                                                                                                                    30
```

treated with analgesics or antispasmodics. A review by Glauser, et al., (J. Am. Coll. Emergency Physns, 8:228, 1979) described relief of acute esophageal food obstruction following glucagon therapy. In another study glucagon significantly relieved pain and tenderness in 21 patients with biliary tract disease compared with 22 patients treated with placebo (M.J. Stower, et al., Br. J. Surg., 69:591-2, 1982).

Methods for regulating gastrointestinal motility using amylin agonists are described in International Application No. PCT/US94/10225, published March 16, 1995.

10

Methods for regulating gastrointestinal motility using exendin agonists are described in a U.S. Patent Application Serial No. 08/908,867.

15 Certain exendin agonists are described in United States Provisional Application No. 60/065,442 filed November 14, 1997 and in United States Provisional Application Serial No. 60/066,029 filed November 14, 1997.

SUMMARY OF THE INVENTION

According to one aspect, the present invention provides novel exendin agonist compounds which exhibit advantageous properties which include effects in slowing gastric emptying and lowering plasma glucose levels.

According to the present invention, provided are compounds of the formula (I) [SEQ. ID. NO. 4]:

1 5 10
Xaa, Xaa, Xaa, Gly Thr Xaa, Xaa, Xaa, Xaa, Xaa,
5 15 20
Ser Lys Gln Xaa, Glu Glu Glu Ala Val Arg Leu
25 30
Xaa, Xaa, Xaa, Xaa, Leu Lys Asn Gly Gly Xaa,
35

including said compounds and salts thereof.

10 Ser Ser Gly Ala Xaa₁₅ Xaa₁₆ Xaa₁₇, Xaa₁₈-Z

15

20

25

wherein Xaa₁ is His, Arg or Tyr; Xaa₂ is Ser, Gly, Ala or Thr; Xaa₃ is Asp or Glu; Xaa₄ is Phe, Tyr or naphthylalanine; Xaa₅ is Thr or Ser; Xaa₆ is Ser or Thr; Xaa₇ is Asp or Glu; Xaa₈ is Leu, Ile, Val, pentylglycine or Met; Xaa₉ is Leu, Ile, pentylglycine, Val or Met; Xaa₁₀ is Phe, Tyr or naphthylalanine; Xaa₁₁ is Ile, Val, Leu, pentylglycine, tertbutylglycine or Met; Xaa₁₂ is Glu or Asp; Xaa₁₁ is Trp, Phe, Tyr, or naphthylalanine; Xaa₁₄, Xaa₁₅, Xaa₁₆ and Xaa₁₇ are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, Nalkylglycine, N-alkylpentylglycine or N-alkylalanine; Xaa₁₈ is Ser, Thr or Tyr; and Z is -OH or -NH₂; with the proviso that the compound does not have the formula of either SEQ. ID.

NOS. 1 or 2. Also included within the scope of the present invention are pharmaceutically acceptable salts of the compounds of formula (I) and pharmaceutical compositions

Also provided are compounds of the formula (II) [SEQ. ID. NO. 36]:

1 5 10

Xaa, Xaa, Xaa, Gly Thr Xaa, Xaa, Xaa, Xaa, Xaa, Xaa, 15 20

Ser Lys Gln Xaa, Glu Glu Glu Ala Val Arg Leu 25 30

Xaa, Xaa, Xaa, Xaa, Leu X, Gly Gly Xaa, 10

35

Ser Ser Gly Ala Xaa, Xaa, Xaa, Xaa, Xaa, Zaa, 2

wherein Xaa, is His, Arg, Tyr or 4-imidazopropionyl; Xaa, is Ser, Gly, Ala or Thr; Xaa, is Asp or Glu; Xaa, is Phe, Tyr or naphthylalanine; Xaa, is Thr or Ser; Xaa, is Ser or Thr; Xaa, is Asp or Glu; Xaa, is Leu, Ile, Val, pentylglycine or Met; 15 Xaa, is Leu, Ile, pentylglycine, Val or Met; Xaa, is Phe, Tyr or naphthylalanine; Xaa, is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met; Xaa, is Glu or Asp; Xaa, is Trp, Phe, Tyr, or naphthylalanine; X, is Lys Asn, Asn Lys, Lys-NHe-20 R Asn, Asn Lys-NH $^{\epsilon}$ -R where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl or cycloalkylalkanoyl; Xaa,4, Xaa,5, Xaa,6 and Xaa, are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-alkylglycine, N-alkylpentylglycine or Nalkylalanine; Xaa₁₈ is Ser, Thr or Tyr; and Z is -OH or -NH₂; 25 with the proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2. Also included within the scope of the presentinvention are pharmaceutically acceptable slats of the compounds of formula (II) and pharmaceutical compositions including said compounds and salts thereof.

30 Definitions

In accordance with the present invention and as used

herein, the following terms are defined to have the following meanings, unless explicitly stated otherwise.

The term "amino acid" refers to natural amino acids. unnatural amino acids, and amino acid analogs, all in their D 5 and L stereoisomers if their structure allow such stereoisomeric forms. Natural amino acids include alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), Lysine (Lys), methionine (Met), phenylalanine (Phe), proline 10 (Pro), serine (Ser), threonine (Thr), typtophan (Trp), tyrosine (Tyr) and valine (Val). Unnatural amino acids include, but are not limited to azetidinecarboxylic acid, 2aminoadipic acid, 3-aminoadipic acid, beta-alanine, 15 aminopropionic acid, 2-aminobutyric acid, 4-aminobutyric acid, 6-aminocaproic acid, 2-aminoheptanoic acid, 2aminoisobutyric acid, 3-aminoisbutyric acid, 2-aminopimelic acid, tertiary-butylglycine, 2,4-diaminoisobutyric acid, desmosine, 2,2'-diaminopimelic acid, 2,3-diaminopropionic 20 acid, N-ethylglycine, N-ethylasparagine, homoproline, hydroxylysine, allo-hydroxylysine, 3-hydroxyproline, 4hydroxyproline, isodesmosine, allo-isoleucine, Nmethylalanine, N-methylglycine, N-methylisoleucine, Nmethylpentylglycine, N-methylvaline, naphthalanine, 25 norvaline, norleucine, ornithine, pentylglycine, pipecolic acid and thioproline. Amino acid analogs include the natural and unnatural amino acids which are chemically blocked, reversibly or irreversibly, or modified on their N-terminal amino group or their side-chain groups, as for example, 30 methionine sulfoxide, methionine sulfone, S-(carboxymethyl)-

cysteine, S-(carboxymethyl)-cysteine sulfoxide and S-

(carboxymethyl) - cysteine sulfone.

5

10

20

25

The term "amino acid analog" refers to an amino acid wherein either the C-terminal carboxy group, the N-terminal amino group or side-chain functional group has been chemically codified to another functional group. For example, aspartic acid-(beta-methyl ester) is an amino acid analog of aspartic acid; N-ethylglycine is an amino acid analog of glycine; or alanine carboxamide is an amino acid analog of alanine.

The term "amino acid residue" refers to radicals having the structure: (1) -C(O)-R-NH-, wherein R typically is -CH(R')-, wherein R' is an amino acid side chain, typically H or a carbon containing substitutent;

or (2)
$$c(=0)$$
, wherein p is 1, 2 or 3 representing the

15 azetidinecarboxylic acid, proline or pipecolic acid residues, respectively.

The term "lower" referred to herein in connection with organic radicals such as alkyl groups defines such groups with up to and including about 6, preferably up to and including 4 and advantageously one or two carbon atoms. Such groups may be straight chain or branched chain.

"Pharmaceutically acceptable salt" includes salts of the compounds of the present invention derived from the combination of such compounds and an organic or inorganic acid. In practice the use of the salt form amounts to use of the base form. The compounds of the present invention are

useful in both free base and salt form, with both forms being considered as being within the scope of the present invention.

In addition, the following abbreviations stand for the following:

"ACN" or "CH,CN" refers to acetonitrile.

"Boc", "tBoc" or "Tboc" refers to t-butoxy carbonyl.

"DCC" refers to N, N'-dicyclohexylcarbodiimide.

"Fmoc" refers to fluorenylmethoxycarbonyl.

"HBTU" refers to 2-(1H-benzotriazol-l-yl)-

1,1,3,3, -tetramethyluronium hexaflurophosphate.

"HOBt" refers to 1-hydroxybenzotriazole monohydrate.

"homoP" or hPro" refers to homoproline.

"MeAla" or "Nme" refers to N-methylalanine.

"naph" refers to naphthylalanine.

25

"pG" or pGly" refers to pentylglycine.

"tBuG" refers to tertiary-butylglycine.

"ThioP" or tPro" refers to thioproline.

BRIEF DESCRIPTION OF THE DRAWINGS

20 Figure 1 depicts the amino acid sequences for certain compounds of the present invention [SEQ. ID. NOS. 5 TO 35].

Figure 2 depicts the amino acid sequence for exendin-3 [SEQ. ID. NO. 1].

Figure 3 depicts the amino acid sequence for exendin-4 [SEQ. ID. NO. 2].

Figure 4 depicts the amino acid sequence for GLP-1 [SEQ. ID. NO. 3].

Figure 5 depicts dose dependent effects of exendin-4 in comparison with compound 1 of Figure 1 [SEQ. ID. NO. 5] on

plasma glucose levels in db/db mice.

Figure 6 depicts a comparison of effects on gastric emptying of exendin-4, exendin-4 acid and compound 1 of Figure 1 [SEQ. ID. NO. 5].

DETAILED DESCRIPTION OF THE INVENTION

Preferred Compounds

5

According to the present invention, provided are compounds of the formula (I) [SEQ. ID. NO. 4]:

1 5 10

Xaa, Xaa, Xaa, Gly Thr Xaa, Xaa, Xaa, Xaa, Xaa, Xaa, 15 20

Ser Lys Gln Xaa, Glu Glu Glu Ala Val Arg Leu
25 30

Xaa, Xaa, Xaa, Xaa, Xaa, Leu Lys Asn Gly Gly Xaa,
15 35

Ser Ser Gly Ala Xaa, Xaa, Xaa, Xaa, Xaa, Z

wherein Xaa, is His, Arg or Tyr; Xaa, is Ser, Gly, Ala or Thr; Xaa, is Asp or Glu; Xaa, is Phe, Tyr or naphthylalanine; Xaa, is Thr or Ser; Xaa, is Ser or Thr; Xaa, is Asp or Glu; Xaa, is 20 Leu, Ile, Val, pentylglycine or Met; Xaa, is Leu, Ile, pentylglycine, Val or Met; Xaa, is Phe, Tyr or naphthylalanine; Xaa, is Ile, Val, Leu, pentylglycine, tertbutylglycine or Met; Xaa, is Glu or Asp; Xaa, is Trp, Phe, Tyr, or naphthylalanine; Xaa,, Xaa,, Xaa, and Xaa, are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-25 alkylglycine, N-alkylpentylglycine or N-alkylalanine; Xaa18 is Ser, Thr or Tyr; and Z is -OH or -NH2; with the proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2. Preferred N-alkyl groups for N-alkylglycine, Nalkylpentylglycine and N-alkylalanine include lower alkyl 30

groups preferably of 1 to about 6 carbon atoms, more

preferably of 1 to 4 carbon atoms. Suitable compounds of

formula (I) include those having amino acid sequences of SEQ. ID. NOS. 5 to 35.

Preferred exendin agonist compounds of formula (I) include those wherein Xaa, is His or Tyr. More preferably Xaa, is His. Preferred are those such compounds wherein Xaa, is Gly. Preferred are those such compounds wherein Xaa, is Leu, pentylglycine or Met.

Preferred compounds of formula (I) include those wherein Xaa, is Trp or Phe.

Also preferred are compounds of formula (I) wherein Xaa, is Phe or naphthylalanine; Xaa, is Ile or Val and Xaa, Xaa, Xaa, and Xaa, are independently selected from Pro, homoproline, thioproline or N-alkylalanine. Preferably N-alkylalanine has a N-alkyl group of 1 to about 6 carbon atoms. According to an especially preferred aspect, Xaa, Xaa, and Xaa, are the same amino acid reside.

Preferred are compounds of formula (I) wherein Xaa_{18} is Ser or Tyr, more preferably Ser.

Preferably Z is -NH,.

30

According to one aspect, preferred are compounds of formula (I) wherein Xaa, is His or Tyr, more preferably His; Xaa, is Gly; Xaa, is Phe or naphthylalanine; Xaa, is Leu, pentylglycine or Met; Xaa, is Phe or naphthylalanine; Xaa, is Ile or Val; Xaa, Xaa, Xaa, and Xaa, are independently selected from Pro, homoproline, thioproline or Nalkylalanine; and Xaa, is Ser or Tyr, more preferably Ser. More preferably Z is -NH,

According to an especially preferred aspect, especially preferred compounds include those of formula (I) wherein:

Xaa, is His or Arg; Xaa, is Gly; Xaa, is Asp or Glu; Xaa, is

Phe or napthylalanine; Xaa, is Thr or Ser; Xaa, is Ser or Thr; Xaa, is Asp or Glu; Xaa, is Leu or pentylglycine; Xaa, is Leu or pentylglycine; Xaa, is Leu or pentylglycine; Xaa10 is Phe or naphthylalanine; Xaa11 is Ile, Val or t-butyltylglycine; Xaa12 is Glu or Asp; Xaa13 is Trp or Phe; Xaa14, Xaa15, Xaa16, and Xaa1, are independently Pro, homoproline, thioproline, or N-methylalanine; Xaa16 is Ser or Tyr: and Z is -OH or -NH2; with the proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2. More preferably Z is -NH2. Especially preferred compounds of formula (I) include those having the amino acid sequence of SEQ. ID. NOS. 5, 6, 17, 18, 19, 22, 24, 31, 32 and 35.

5

10

15

20

According to an especially preferred aspect, provided are compounds of formula (I) where Xaa, is Leu, Ile, Val or pentylglycine, more preferably Leu or pentylglycine, and Xaa, is Phe, Tyr or naphthylalanine, more preferably Phe or naphthylalanine. These compounds will exhibit advantageous duration of action and be less subject to oxidative degration, both in vitro and in vivo, as well as during synthesis of the compound.

Also provided are compounds of the formula (II) [SEQ. ID. NO. 36]:

1 5 10

Xaa, Xaa, Xaa, Gly Thr Xaa, Xaa, Xaa, Xaa, Xaa,

25 15 20

Ser Lys Gln Xaa, Glu Glu Glu Ala Val Arg Leu

25 30

Xaa, Xaa, Xaa, Xaa, Leu X, Gly Gly Xaa,

35

Ser Ser Gly Ala Xaa, Xaa, Xaa, Xaa, Xaa, Xaa, Z

wherein Xaa, is His, Arg, Tyr or 4-imidazopropionyl; Xaa, is Ser, Gly, Ala or Thr; Xaa, is Asp or Glu; Xaa, is Phe, Tyr or naphthylalanine; Xaa, is Thr or Ser; Xaa, is Ser or Thr; Xaa, is Asp or Glu; Xaa, is Leu, Ile, Val, pentylglycine or Met; Xaa, is Leu, Ile, pentylglycine, Val or Met; Xaa, is Phe, Tyr or naphthylalanine; Xaa, is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met; Xaa, is Glu or Asp; Xaa, is Trp, Phe, Tyr, or naphthylalanine; X₁ is Lys Asn, Asn Lys, Lys-NH^c-R Asn, Asn Lys-NH $^{\epsilon}$ -R where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl or cycloalkylalkanoyl; Xaa,, Xaa,, Xaa,, and Xaa,, are independently Pro, homoproline, 3Hyp, 4Hyp, thioproline, N-alkylglycine, N-alkylpentylglycine or Nalkylalanine; Xaa, is Ser, Thr or Tyr; and Z is -OH or -NH,; with the proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2. Also included within the scope of the presentinvention are pharmaceutically acceptable slats of the compounds of formula (II) and pharmaceutical compositions including said compounds and salts thereof. Suitable compounds of formula (II) include that compound having the amino acid sequences of SEQ. ID. NOS. 37-40.

10

15

20

Preferred exendin agonist compounds of formula (II) include those wherein Xaa, is His, Tyr or 4-imidazopropionyl. More preferably, Xaa, is His or 4-imidazopropionyl.

Preferred are those compounds of formula (II) wherein Xaa, is Gly.

Preferred are those compounds of formula (II) wherein Xaa, is Leu, pentylglycine or Met.

Preferred are those compounds of formula (II) wherein Xaa, is Trp or Phe.

30 Preferred are those compounds of formula (II) wherein

 X_1 is Lys Asn, or Lys-NH^e-R Asn, where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl.

5

10

15

20

25

30

Also preferred are compounds of formula (II) wherein Xaa4 is Phe or naphthylalanine; Xaa10 is Phe or naphthylalanine; Xaa11 is Ile or Val and Xaa14, Xaa15, Xaa16 and Xaa17 are independently selected from Pro, homoproline, thioproline or N-alkylalanine. According to an especially preferred aspect, Xaa18 is Ser or Tyr. Preferred are those such compounds wherein Xaa18 is Ser. Preferably, Z is -NH2.

According to one preferred aspect, preferred are compounds of formula (II) wherein Xaa, is Phe or naphthylalanine; Xaa, is Phe or naphthylalanine; Xaa, is Ile or Val, X, is Lys Asn, or Lys-NH^e-R Asn, where R is Lys, Arg, C₁-C₁₀ straight chain or branched alkanoyl and Xaa, Xaa, Xaa, and Xaa, are independently selected from Pro, homoproline, thioproline or N-alkylalanine.

The compounds referenced above form salts with various inorganic and organic acids and bases. Such salts include salts prepared with organic and inorganic acids, for example, HCl, HBr, H₂SO₄, H₃PO₄, trifluoroacetic acid, acetic acid, formic acid, methanesulfonic acid, toluenesulfonic acid, maleic acid, fumaric acid and camphorsulfonic acid. Salts prepared with bases include ammonium salts, alkali metal salts, e.g., sodium and potassium salts, and alkali earth salts, e.g., calcium and magnesium salts. Acetate, hydrochloride, and trifluoroacetate salts are preferred. The salts may be formed by conventional means, as by reacting the free acid or base forms of the product with one or more equivalents of the appropriate base or acid in a solvent or medium in which the salt is insoluble, or in a solvent such

as water which is then removed in vacuo or by freeze-drying or by exchanging the ions of an existing salt for another ion on a suitable ion exchange resin.

Utility

5

10

15

20

The compounds described above are useful in view of their pharmacological properties. In particular, the compounds of the invention are exendin agonists, and possess activity as agents to regulate gastric motility and to slow gastric emptying, as evidenced by the ability to reduce post-prandial glucose levels in mammals.

Preparation of Compounds

The compounds of the present invention may be prepared using standard solid-phase peptide synthesis techniques and preferably an automated or semiautomated peptide synthesizer. Typically, using such techniques, an α -N-carbamoyl protected amino acid and an amino acid attached to the growing peptide chain on a resin are coupled at room temperature in an inert solvent such as dimethylformamide, N-methylpyrrolidinone or methylene chloride in the presence of coupling agents such as dicyclohexylcarbodiimide and 1-hydroxybenzotriazole in the presence of a base such as diisopropylethylamine. The α -Ncarbamoyl protecting group is removed from the resulting peptide-resin using a reagent such as trifluoroacetic acid or piperidine, and the coupling reaction repeated with the next desired N-protected amino acid to be added to the peptide chain. Suitable N-protecting groups are well known in the art, with

t-butyloxycarbonyl (tBoc) and fluorenylmethoxycarbonyl (Fmoc)

being preferred herein.

20

25

30

The solvents, amino acid derivatives and 4-methylbenzhydryl-amine resin used in the peptide synthesizer may be purchased from Applied Biosystems Inc. 5 (Foster City, CA). The following side-chain protected amino acids may be purchased from Applied Biosystems, Inc.: Boc-Arg(Mts), Fmoc-Arg(Pmc), Boc-Thr(Bzl), Fmoc-Thr(t-Bu), Boc-Ser(Bzl), Fmoc-Ser(t-Bu), Boc-Tyr(BrZ), Fmoc-Tyr(t-Bu), Boc-Lys(C1-Z), Fmoc-Lys(Boc), Boc-Glu(Bzl), Fmoc-Glu(t-Bu), Fmoc-10 His(Trt), Fmoc-Asn(Trt), and Fmoc-Gln(Trt). Boc-His(BOM) may be purchased from Applied Biosystems, Inc. or Bachem Inc. (Torrance, CA). Anisole, dimethylsulfide, phenol, ethanedithiol, and thioanisole may be obtained from Aldrich Chemical Company (Milwaukee, WI). Air Products and Chemicals 15 (Allentown, PA) supplies HF. Ethyl ether, acetic acid and methanol may be purchased from Fisher Scientific (Pittsburgh, PA).

Solid phase peptide synthesis may be carried out with an automatic peptide synthesizer (Model 430A, Applied Biosystems Inc., Foster City, CA) using the NMP/HOBt (Option 1) system and tBoc or Fmoc chemistry (see, Applied Biosystems User's Manual for the ABI 430A Peptide Synthesizer, Version 1.3B July 1, 1988, section 6, pp. 49-70, Applied Biosystems, Inc., Foster City, CA) with capping. Boc-peptide-resins may be cleaved with HF (-5°C to 0°C, 1 hour). The peptide may be extracted from the resin with alternating water and acetic acid, and the filtrates lyophilized. The Fmoc-peptide resins may be cleaved according to standard methods (Introduction to Cleavage Techniques, Applied Biosystems, Inc., 1990, pp. 6-12). Peptides may be also be assembled using an Advanced

Chem Tech Synthesizer (Model MPS 350, Louisville, Kentucky). Peptides may be purified by RP-HPLC (preparative and analytical) using a Waters Delta Prep 3000 system. A C4, C8 or C18 preparative column (10 μ , 2.2 x 25 cm; Vydac, Hesperia, CA) may be used to isolate peptides, and purity may be determined using a C4, C8 or C18 analytical column (5 μ , 0.46 x 25 cm; Vydac). Solvents (A=0.1% TFA/water and B=0.1% TFA/CH,CN) may be delivered to the analytical column at a flowrate of 1.0 ml/min and to the preparative column at 15 ml/min. Amino acid analyses may be performed on the Waters Pico Tag system and processed using the Maxima program. Peptides may be hydrolyzed by vapor-phase acid hydrolysis (115°C, 20-24 h). Hydrolysates may be derivatized and analyzed by standard methods (Cohen, et al., The Pico Tag Method: A Manual of Advanced Techniques for Amino Acid Analysis, pp. 11-52, Millipore Corporation, Milford, MA (1989)). Fast atom bombardment analysis may be carried out by M-Scan, Incorporated (West Chester, PA). Mass calibration may be performed using cesium iodide or cesium iodide/glycerol. Plasma desorption ionization analysis using time of flight detection may be carried out on an Applied Biosystems Bio-Ion 20 mass spectrometer. Electrospray mass

5

10

15

20

25

30

Peptide compounds useful in the invention may also be prepared using recombinant DNA techniques, using methods now known in the art. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor (1989). Non-peptide compounds useful in the present invention may be prepared by art-known methods.

The compounds referenced above may form salts with

spectroscopy may be carried and on a VG-Trio machine.

various inorganic and organic acids and bases. Such salts include salts prepared with organic and inorganic acids, for example, HCl, HBr, H2SO4, H3PO4, trifluoroacetic acid, acetic acid, formic acid, methanesulfonic acid, toluenesulfonic acid, maleic acid, fumaric acid and camphorsulfonic acid. Salts prepared with bases include ammonium salts, alkali metal salts, e.g., sodium and potassium salts, and alkali earth salts, e.g., calcium and magnesium salts. Acetate, hydrochloride, and trifluoroacetate salts are preferred. The salts may be formed by conventional means, as by reacting the free acid or base forms of the product with one or more equivalents of the appropriate base or acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is then removed in vacuo or by freeze-drying or by exchanging the ions of an existing salt for another ion on a suitable ion exchange resin.

Formulation and Administration

5

10

15

20.

25

Compounds of the invention are useful in view of their exendin-like effects, and may conveniently be provided in the form of formulations suitable for parenteral (including intravenous, intramuscular and subcutaneous) or nasal or oral administration. In some cases, it will be convenient to provide an exendin or exendin agonist and another antigastric-emptying agent, such as glucagon, an amylin, or an amylin agonist, in a single composition or solution for administration together. In other cases, it may be more advantageous to administer another anti-emptying agent separately from said exendin or exendin agonist. In yet other cases, it may be beneficial to provide an exendin or an

exendin agonist either co-formulated or separately with other glucose lowering agents such as insulin. A suitable administration format may best be determined by a medical practitioner for each patient individually. Suitable pharmaceutically acceptable carriers and their formulation are described in standard formulation treatises, e.g., Remington's Pharmaceutical Sciences by E.W. Martin. See also Wang, Y.J. and Hanson, M.A. "Parenteral Formulations of Proteins and Peptides: Stability and Stabilizers," Journal of Parenteral Science and Technology, Technical Report No. 10, Supp. 42:2S (1988).

5

10

15

20

25

30

Compounds useful in the invention can be provided as parenteral compositions for injection or infusion. They can, for example, be suspended in an inert oil, suitably a vegetable oil such as sesame, peanut, olive oil, or other acceptable carrier. Preferably, they are suspended in an aqueous carrier, for example, in an isotonic buffer solution at a pH of about 5.6 to 7.4. These compositions may be sterilized by conventional sterilization techniques, or may be sterile filtered. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH buffering agents. Useful buffers include for example, sodium acetate/acetic acid buffers. A form of repository or "depot" slow release preparation may be used so that therapeutically effective amounts of the preparation are delivered into the bloodstream over many hours or days following transdermal injection or delivery.

The desired isotonicity may be accomplished using sodium chloride or other pharmaceutically acceptable agents such as

dextrose, boric acid, sodium tartrate, propylene glycol, polyols (such as mannitol and sorbitol), or other inorganic or organic solutes. Sodium chloride is preferred particularly for buffers containing sodium ions.

The claimed compounds can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and/or complexes thereof. Pharmaceutically acceptable salts are non-toxic salts at the concentration at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical-chemical characteristics of the composition without preventing the composition from exerting its physiological effect. Examples of useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate the administration of higher concentrations of the drug.

Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, hydrochloride, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate.

Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, and quinic acid. Such salts may be prepared by, for example, reacting the free acid or base forms of the product with one or more equivalents of the appropriate base or acid in a solvent or medium in which the

salt is insoluble, or in a solvent such as water which is then removed in vacuo or by freeze-drying or by exchanging the ions of an existing salt for another ion on a suitable ion exchange resin.

Carriers or excipients can also be used to facilitate administration of the compound. Examples of carriers and excipients include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. The compositions or pharmaceutical composition can be administered by different routes including intravenously, intraperitoneal, subcutaneous, and intramuscular, orally, topically, or transmucosally.

10

15

20

25

30

If desired, solutions of the above compositions may be thickened with a thickening agent such as methyl cellulose. They may be prepared in emulsified form, either water in oil or oil in water. Any of a wide variety of pharmaceutically acceptable emulsifying agents may be employed including, for example, acacia powder, a non-ionic surfactant (such as a Tween), or an ionic surfactant (such as alkali polyether alcohol sulfates or sulfonates, e.g., a Triton).

Compositions useful in the invention are prepared by mixing the ingredients following generally accepted procedures. For example, the selected components may be simply mixed in a blender or other standard device to produce a concentrated mixture which may then be adjusted to the final concentration and viscosity by the addition of water or thickening agent and possibly a buffer to control pH or an additional solute to control tonicity.

For use by the physician, the compounds will be provided in dosage unit form containing an amount of an exendin agonist, with or without another anti-emptying agent. Therapeutically effective amounts of an exendin agonist for use in the control of gastric emptying and in conditions in which gastric emptying is beneficially slowed or regulated are those that decrease post-prandial blood glucose levels, preferably to no more than about 8 or 9 mM or such that blood glucose levels are reduced as desired. In diabetic or glucose intolerant individuals, plasma glucose levels are higher than in normal individuals. In such individuals, beneficial reduction or "smoothing" of post-prandial blood glucose levels, may be obtained. As will be recognized by those in the field, an effective amount of therapeutic agent will vary with many factors including the age and weight of the patient, the patient's physical condition, the blood sugar level or level of inhibition of gastric emptying to be obtained, and other factors.

5

10

15

20

25

30

Such pharmaceutical compositions are useful in causing gastric hypomotility in a subject and may be used as well in other disorders where gastric motility is beneficially reduced.

The effective daily anti-emptying dose of the compounds will typically be in the range of 0.01 or 0.03 to about 5 mg/day, preferably about 0.01 or 0.5 to 2 mg/day and more preferably about 0.01 or 0.1 to 1 mg/day, for a 70 kg patient, administered in a single or divided doses. The exact dose to be administered is determined by the attending clinician and is dependent upon where the particular compound lies within the above quoted range, as well as upon the age,

weight and condition of the individual. Administration should begin at the first sign of symptoms or shortly after diagnosis of diabetes mellitus. Administration may be by injection, preferably subcutaneous or intramuscular. Orally active compounds may be taken orally, however dosages should be increased 5-10 fold.

5

10

15

20

25

30

Generally, in treating or preventing elevated, inappropriate, or undesired post-prandial blood glucose levels, the compounds of this invention may be administered to patients in need of such treatment in a dosage ranges similar to those given above, however, the compounds are administered more frequently, for example, one, two, or three times a day.

The optimal formulation and mode of administration of compounds of the present application to a patient depend on factors known in the art such as the particular disease or disorder, the desired effect, and the type of patient. While the compounds will typically be used to treat human patients, they may also be used to treat similar or identical diseases in other vertebrates such as other primates, farm animals such as swine, cattle and poultry, and sports animals and pets such as horses, dogs and cats.

To assist in understanding the present invention the following Examples are included which describe the results of a series of experiments. The experiments relating to this invention should not, of course, be construed as specifically limiting the invention and such variations of the invention, now known or later developed, which would be within the purview of one skilled in the art are considered to fall within the scope of the invention as described herein and

hereinafter claimed.

EXAMPLE 1

Preparation of amidated peptide having SEO_ID_NO_[5]

The above-identified peptide was assembled on 4-(2'-4'-5 dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.). In general, single-coupling cycles were used throughout the synthesis and Fast Moc (HBTU activation) chemistry was 10 employed. However, at some positions coupling was less efficient than expected and double couplings were required. In particular, residues Asp,, Thr, and Phe, all required double coupling. Deprotection (Fmoc group removal) of the growing peptide chain using piperidine was not always 15 efficient. Double deprotection was required at positions Arg, Val, and Leu, Final deprotection of the completed peptide resin was achieved using a mixture of triethylsilane (0.2 mL), ethanedithiol (0.2 mL), anisole (0.2 mL), water 20 (0.2 mL) and trifluoroacetic acid (15 mL) according to standard methods (Introduction to Cleavage Techniques, Applied Biosystems, Inc.) The peptide was precipitated in ether/water (50 mL) and centrifuged. The precipitate was reconstituted in glacial acetic acid and lyophilized. The 25 lyophilized peptide was dissolved in water). Crude purity was about 55%.

Used in purification steps and analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN).

The solution containing peptide was applied to a

preparative C-18 column and purified (10% to 40% Solvent B in Solvent A over 40 minutes). Purity of fractions was determined isocratically using a C-18 analytical column. Pure fractions were pooled furnishing the above-identified peptide. Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 14.5 minutes. Electrospray Mass Spectrometry (M): calculated 4131.7; found 4129.3.

10

15

20

EXAMPLE 2

Preparation of Peptide having SEO. ID. NO. [6]

The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 25% to 75% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 21.5 minutes. Electrospray Mass Spectrometry (M): calculated 4168.6; found 4171.2.

EXAMPLE 3

Preparation of Peptide having SEO. ID. NO. [7]

The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 17.9 minutes. Electrospray Mass Spectrometry (M): calculated 4147.6; found 4150.2.

EXAMPLE 4

Preparation of Peptide having SEO. ID. NO. [8]

10

15

20

The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 35% to 65% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 19.7 minutes. Electrospray Mass Spectrometry (M): calculated 4212.6; found 4213.2.

EXAMPLE, 5

Preparation of Peptide having SEO ID NO. [9]

5

10

15

20

25

The above-identified peptide was assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis were Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 50% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide gave product peptide having an observed retention time of 16.3 minutes. Electrospray Mass Spectrometry (M): calculated 4262.7; found 4262.4.

EXAMPLE_6

Preparation of Peptide having SEO. ID. NO. [10]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4172.6

EXAMPLE 7

Preparation of Peptide having SEO ID NO [11]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4224.7.

15 EXAMPLE 8

5

10

20

25 -

Preparation of Peptide having SEO. ID. NO. [12]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4172.6

EXAMPLE 9

Preparation of Peptide having SEO. ID. NO. [13]

5

10

15

20

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4186.6

EXAMPLE 10

Preparation of Peptide having SEO, ID, NO, [14]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4200.7

EXAMPLE 11

Preparation of Peptide having SEO. ID. NO. [15]

-5

10

15

20.

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4200.7

EXAMPLE 12

Preparation of Peptide having SEO. ID. NO. [16]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4202.7.

EXAMPLE 13

Preparation of Peptide having SEO. ID. NO. [17]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4145.6.

5

10

15

20

25

EXAMPLE 14

Preparation of Peptide having SEO, ID, NO. [18]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4184.6.

EXAMPLE 15

Preparation of Peptide having SEO. ID. NO. [19]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4145.6.

15 EXAMPLE 16

5

10

20

25

Preparation of Peptide having SEO. ID. NO. [20]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4224.7.

EXAMPLE 17

Preparation of Peptide having SEO. ID. NO. [21]

5

10

15

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4172.6.

EXAMPLE 18

Preparation of Peptide having SEO. ID. NO. [22]

The above-identified peptide is assembled on 4-(2'-4'dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide
norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved
from the resin, deprotected and purified in a similar way to
Example 1. Used in analysis are Solvent A (0.1% TFA in water)
and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient
30% to 60% Solvent B in Solvent A over 30 minutes) of the
lyophilized peptide is then carried out to determine the
retention time of the product peptide. Electrospray Mass
Spectrometry (M): calculated 4115.5.

EXAMPLE 19

Preparation of Peptide having SEQ. ID. NO. [23]

5

10

15

20

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4188.6.

EXAMPLE 20

Preparation of Peptide having SEO. ID. NO. [24]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4131.6.

EXAMPLE 21

Preparation of Peptide having SEO. ID. NO. [25]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4172.6.

EXAMPLE 22

Preparation of Peptide having SEQ. ID. NO. [26]

5

10

20

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4145.6.

EXAMPLE 23

Preparation of Peptide having SEO. ID. NO. [27]

5

10

15

20

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the thioproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4266.8.

EXAMPLE 24

Preparation of Peptide having SEO. ID. NO. [28]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the thioproline positions 38, 37 and 36. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then

carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4246.8.

EXAMPLE 25

Preparation of Peptide having SEO. ID. NO. [29]

5

10

15

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the homoproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4250.8.

EXAMPLE 26

20 Preparation of Peptide having SEQ. ID. NO. [30]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the

homoproline positions 38, 37, and 36. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4234.8.

5

25

EXAMPLE 27

Preparation of Peptide having SEO. ID. NO. [31]

The above-identified peptide is assembled on 4-(2'-4'-10 dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the 15 thioproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product 20 peptide. Electrospray Mass Spectrometry (M): calculated 4209.8.

EXAMPLE 28

Preparation of Peptide having SEQ. ID. NO. [32]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide

norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the homoproline positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4193.7.

5

10

15

20

EXAMPLE 29

Preparation of Peptide having SEO. ID. NO. [33]

The above-identified peptide is assembled on 4-(2'-4'dimethoxyphenyl) - Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the Nmethylalanine positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 25 3858.2.

EXAMPLE 30

Preparation of Peptide having SEO. ID. NO. [34]

5

10

15

20

25

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the N-methylalanine positions 38, 37 and 36. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3940.3.

EXAMPLE 31

Preparation of Peptide having SEO. ID. NO. [35]

The above-identified peptide is assembled on 4-(2'-4'-dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the N-methylalanine positions 38, 37, 36 and 31. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then

carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 3801.1.

EXAMPLE_32

Preparation of Peptide having SEO. ID. NO. [36]

5

10

15

20

25

4-Imidazolylpropionyl-Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys-NH cottanoyl Asn Gly Gly Pro Ser Ser Gly Ala Pro Pro Pro Ser-NH₂ [SEQ. ID. NO. 36] is assembled on 4-(2'-4'dimethoxyphenyl) - Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the proline positions 38, 37, 36 and 31. Fmoc-Lys-NH^eoctanoyl acid is used for coupling at position 27. Instead of using protected His for the final coupling at position 1, 4imidazolylpropionic acid is coupled directly to the Nterminus of residues 2-39 on the resin. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4294.5.

EXAMPLE 33

Preparation of Peptide having SEO. ID. NO. [37]

5

10

15

20

25

4-Imidazolylpropionyl-Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Leu Glu Glu Glu Ala Val Arq Leu Phe Ile Glu Phe Leu Lys-NH^eoctanoyl Asn Gly Gly Pro Ser Ser Gly Ala Pro Pro Pro Ser-NH, [SEQ. ID. NO. 37] is assembled on 4-(2'-4'dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the proline positions 38, 37, 36 and 31. Fmoc-Lys-NH octanoyl acid is used for coupling at position 27. Instead of using protected His for the final coupling at position 1, 4imidazolylpropionic acid is coupled directly to the Nterminus of residues 2-39 on the resin. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4242.7.

EXAMPLE 34

Preparation of Peptide having SEO. ID. NO. [38]

4-Imidazolylpropionyl-Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Asn Lys-NH^eoctanoyl Gly Gly Pro Ser Ser Gly Ala Pro

Pro Pro Ser-NH₂ [SEQ. ID. NO. 38] is assembled on 4-(2'-4'dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Additional double couplings are required at the proline positions 38, 37, 36 and 31. Fmoc-Lys-NH^eoctanoyl acid is used for coupling at position 28. Instead of using protected His for the final coupling at position 1, 4imidazolylpropionic acid is coupled directly to the Nterminus of protected residues 2-39 on the resin. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4294.5.

10

15

20

25

EXAMPLE 35

Preparation of Peptide having SEQ. ID. NO. [39]

4-Imidazolylpropionyl-Gly Glu Gly Thr Phe Thr Ser Asp
Leu Ser Lys Gln Leu Glu Glu Glu Ala Val Arg Leu Phe Ile Glu
Phe Leu Asn Lys-NH^coctanoyl Gly Gly Pro Ser Ser Gly Ala Pro
Pro Pro Ser-NH₂ [SEQ. ID. NO. 39] is assembled on 4-(2'-4'dimethoxyphenyl)-Fmoc aminomethyl phenoxy acetamide
norleucine MBHA resin (Novabiochem, 0.55 mmole/g) using Fmocprotected amino acids (Applied Biosystems, Inc.), cleaved
from the resin, deprotected and purified in a similar way to
Example 1. Additional double couplings are required at the

proline positions 38, 37, 36 and 31. Fmoc-Lys-NH⁶octanoyl acid is used for coupling at position 28. Instead of using protected His for the final coupling at position 1, 4-imidazolylpropionic acid is coupled directly to the N-terminus of residues 2-39 on the resin. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry (M): calculated 4242.7.

5

10

15

20

25

EXAMPLE 36

Preparation of C-terminal carboxylic acid Peptidescorresponding to the above C-terminal amide sequences.

The above peptides of Examples 1 to 35 are assembled on the so called Wang resin (p-alkoxybenzylalacohol resin (Bachem, 0.54 mmole/g)) using Fmoc-protected amino acids (Applied Biosystems, Inc.), cleaved from the resin, deprotected and purified in a similar way to Example 1. Used in analysis are Solvent A (0.1% TFA in water) and Solvent B (0.1% TFA in ACN). Analytical RP-HPLC (gradient 30% to 60% Solvent B in Solvent A over 30 minutes) of the lyophilized peptide is then carried out to determine the retention time of the product peptide. Electrospray Mass Spectrometry provides an experimentally determined (M).

EXAMPLES A TO D

Reagents Used

5

10

15

20

25

GLP-1 was purchased from Bachem (Torrance, CA), all other peptides were prepared in house using synthesis methods such as those described therein. All chemicals were of the highest commercial grade. The cAMP SPA immunoassay was purchased from Amersham. The radioligands were purchased from New England Nuclear (Boston, MA). RINm5f cells (American Type Tissue Collection, Rockville, MD) were grown in DME/F12 medium containing 10% fetal bovine serum and 2mM L-glutamine. Cells were grown at 37°C and 5% CO₂/95% humidified air and medium was replaced every 2 to 3 days. Cells were grown to confluence then harvested and homogenized using on a Polytron homogenizer. Cell homogenates were stored frozen at -70°C until used.

Example A

GLP-1 Receptor Binding Studies

Receptor binding was assessed by measuring displacement of [\$^{125}I\$] human GLP-1 (7-36) or [\$^{125}I\$] Exendin (9-39) from RINm5f membranes. Assay buffer contained 5 \$\mu g/ml\$ bestatin 1 \$\mu g.ml\$ phosphoramidon, 1 mg/ml bovine serum albumin (fraction V), 1 mg/ml bacitracin, and 1 mM MgCl, in 20 mM HEPES, pH 7.4. To measure binding, 30 \$\mu g\$ membrane protein (Bradford protein assay) was resuspended in 200 \$\mu l\$ assay buffer and incubated with 60 pM [\$^{125}I\$] human GLP-1 or Exendin (9-39) and unlabeled peptides for 120 minutes as 23°C in 96 well plates (Nagle Nunc, Rochester, NY). Incubations were terminated by rapid filtration with cold phosphatebuffered saline, pH 7.4,

through polyethyleneimine-treated GF/B glass fiber filters (Wallac Inc., Gaithersburg, MD) using a Tomtec Mach II plate harvester (Wallac Inc., Gaithersburg, MD). Filters were dried, combined with scintillant, and radioactivity determined in a Betaplate liquid scintillant counter (Wallac Inc.).

Peptide samples were run in the assay as duplicate points at 6 dilutions over a concentration range of $10^{-6}M$ to $10^{-12}M$ to generate response curves. The biological activity of a sample is expressed as an IC_{50} value, calculated from the raw data using an iterative curve-fitting program using a 4-parameter logistic equation (Prism, GraphPAD Software).

Example B

5

10

25

Cyclase Activation Study

- Assay buffer contained 10 μ M GTP, 0.75 mM ATP, 2.5 mM MgCl₂, 0.5mM phosphocreatine, 12,5 U/ml creatine kinase, 0.4 mg/ml aprotinin, 1 μ M IBMX in 50 mM HEPES, pH 7.4. Membranes and peptides were combined in 100 ml of assay buffer in 96 well filter-bottom plates (Millipore Corp., Bedford, MA).
- After 20 minutes incubation at 37°C, the assay was terminated by transfer of supernatant by filtration into a fresh 96 well plate using a Millipore vacuum manifold. Supernatant cAMP contents were quantitated by SPA immunoassay.
 - Peptide samples were run in the assay as triplicate points at 7 dilutions over a concentration range of $10^{-6}M$ to $10^{-12}M$ to generate response curves. The biological activity of a particular sample was expressed as an EC₅₀ value, calculated as described above. Results are tabulated in Table I.

TABLE_I

Activity in the RINm5f cyclase assay

						EC _{so}
5	Exendin-4	[SEQ.	ID.	NO.	2]	0.23
	Compound 1	[SEQ.	ID.	NO.	5]	0.17
	Compound 2	[SEQ.	ID.	NO.	6]	0.23
	Compound 3	[SEQ.	ID.	NO.	7]	0.42

Example C

15

20

10 Determination of Blood Glucose Levels in db/db Mice - 1 Hour Protocol

C57BL/6J-m=/=Lepr^{db} mice, at least 3 months of age were utilized for the study. The mice were obtained from The Jackson Laboratory and allowed to acclimate for at least one week in the vivarium. Mice were housed in groups of ten at 22° ±1°C with a 12:12 light:dark cycle, with lights on at 6 a.m.

All animals were deprived of food for 2 hours before taking baseline blood samples. Approximately 100 μ l of blood was drawn from each mouse via eye puncture, after a light anesthesia with metophane. After collecting baseline blood samples, to measure plasma glucose concentrations, all animals receive subcutaneous injections of either vehicle, exendin-4 or test compound in concentrations indicated.

25 Blood samples were drawn again, using the same procedure,

after exactly one hour from the injections, and plasma glucose concentrations were measured.

For each animal, the % change in plasma value, from baseline value, was calculated and a dose dependent relationship was evaluated using Graphpad $Prizm^{TM}$ software.

Figure 5 depicts the effects of varying doses of exendin-4 and Compound 1 of Figure 1 [SEQ. ID. NO. 5] on plasma glucose levels.

Example D

5

20

25

The following study was carried out to examine the effects of exendin-4, exendin-4 acid and an exendin agonist (Compound 1 of Figure 1 [SEQ. ID. NO. 5]) on gastric emptying in rats. This experiment followed a modification of the method of Scarpignato, et al., Arch. Int. Pharmacodyn. Ther. 246:286-94 (1980).

Male Harlan Sprague Dawley (HSD) rats were used. All animals were housed at 22.7±0.8 C in a 12:12 hour light:dark cycle (experiments being performed during the light cycle) and were fed and watered ad libitum (Diet LM-485, Teklad, Madison, WI). Exendin-4 and exendin-4 acid were synthesized according to standard peptide synthesis methods. The preparation of Compound 1 [SEQ. ID. NO. 5] is described in Example 1.

The determination of gastric emptying by the method described below was performed after a fast of -20 hours to ensure that the stomach contained no chyme that would interfere with spectrophotometric absorbance measurements.

Conscious rats received by gavage, 1.5ml of an acaloric gel containing 1.5% methyl cellulose (M-0262, Sigma Chemical

Co, St Louis, MO) and 0.05% phenol red indicator. Twenty minutes after gavage, rats were anesthetized using 5% halothane, the stomach exposed and clamped at the pyloric and lower esophageal sphincters using artery forceps, removed and opened into an alkaline solution which was made up to a fixed volume. Stomach content was derived from the intensity of the phenol red in the alkaline solution, measured by absorbance at a wavelength of 560 nm. In separate experiments on 7 rats, the stomach and small intestine were both excised and opened into an alkaline solution. The quantity of phenol red that could be recovered from the upper gastrointestinal tract within 20 minutes of gavage was 89±4%; dye which appeared to bind irrecoverably to the gut luminal surface may have accounted for the balance. To account for a maximal dye recovery of less than 100%, percent of stomach contents remaining after 20 min were expressed as a fraction of the gastric contents recovered from control rats sacrificed immediately after gavage in the same experiment. Percent gastric contents remaining = (absorbance at 20 $min)/(absorbance at 0 mm) \times 100.$

5

10

15

20

25

30

In baseline studies, with no drug treatment, gastric emptying over 20 min was determined. In dose-response studies, rats were treated with 0.01, 0.1, 0.3, 1, 10 and 100 μ g of exendin-4, 0.01, 0.03, 0.1, 1, 10 and 100 μ g exendin-4 acid, and 0.1, 0.3, 1, 10 and 100 μ g of Compound 1 [SEQ. ID. NO. 5].

The results are shown in Figure 6. The results, shown in Figure 6 and Table II, show that the exendin agonists, exendin-4 acid and compound 1 are potent inhibitors of gastric emptying. The EC $_{50}$ of exendin-4 was 0.27 μ g. The

EC $_{50}$ s of exendin-4 acid and Compound 1 were comparable (0.12 μg and 0.29 μg , respectively).

TABLE II

5	Compound	•	EC _{so} (µg)
5	exendin-4		0.27
	exendin-4	acid	0.12
	Conpound 1		0.29

We claim:

20

```
1. A peptide compound of the formula (I) [SEQ. ID. NO. 4]:
```

wherein Xaa, is His, Arg or Tyr;

Xaa, is Ser, Gly, Ala or Thr;

Xaa, is Asp or Glu;

15 Xaa, is Phe, Tyr or naphthylalanine;

Xaa, is Thr or Ser;

Xaa, is Ser or Thr;

Xaa, is Asp or Glu;

Xaa, is Leu, Ile, Val, pentylglycine or Met;

Xaa, is Leu, Ile, pentylglycine, Val or Met;

Xaa, is Phe, Tyr or naphthylalanine;

Xaa₁₁ is Ile, Val, Leu, pentylglycine, tert-butylglycine or Met;

Xaa₁₂ is Glu or Asp;

Xaa₁, is Trp, Phe, Tyr, or naphthylalanine;

Xaa, Xaa, Xaa, and Xaa, are independently

Pro, homoproline, 3Hyp, 4Hyp, thioproline, Nalkylglycine, N-alkylpentylglycine or N-

alkylalanine;

Xaa₁₈ is Ser, Thr or Tyr; and
Z is -OH or -NH₂;

with the proviso that the compound does not have the formula of either SEQ. ID. NOS. 1 or 2:

and pharmaceutically acceptable salts thereof.

- 5 2. A compound according to claim 1 wherein Xaa, is His or Tyr.
 - 3. A compound according to claim 2 wherein Xaa, is His.
 - 4. A compound according to claim 2 wherein Xaa, is Gly.
- 5. A compound according to claim 4 wherein Xaa, is Leu, pentylglycine or Met.
 - 6. A compound according to claim 5 wherein Xaa_{13} is Trp or Phe.
- 7. A compound according to claim 6 wherein Xaa, is Phe or naphthylalanine; Xaa, is Phe or naphthylalanine; Xaa, is Ile or Val and Xaa, Xaa, Xaa, and Xaa, are independently selected from Pro, homoproline, thioproline or Nalkylalanine.
 - 8. A compound according to claim 7 wherein Xaa_{18} is Ser or Tyr.
- 9. A compound according to claim 8 wherein Xaa₁₈ is Ser.

10. A compound according to claim 9 wherein Z is $-\mathrm{NH}_2$.

- 11. A compound according to claim 1 wherein Xaa, is Gly.
- 12. A compound according to claim 1 wherein Xaa, is Leu,5 pentylglycine or Met.
 - 13. A compound according to claim 1 wherein Xaa, is Trp or Phe.
- 14. A compound according to claim 1 wherein Xaa, is Phe or naphthylalanine; Xaa, is Phe or naphthylalanine; Xaa, is Ile or Val and Xaa, Xaa, Xaa, and Xaa, are independently selected from Pro, homoproline, thioproline or Nalkylalanine.
 - 15. A compound according to claim 1 wherein Xaa_{18} is Ser or Tyr.
- 15 16. A compound according to claim 1 wherein Z is $-NH_2$.
 - 17. A compound according to claim 1 which has an amino acid sequence selected from SEQ. ID. NOS. 5 to 35.

```
18. A peptide compound of the formula (I) [SEQ. ID. NO.
      4]:
           Xaa, Xaa, Xaa, Gly Thr Xaa, Xaa, Xaa, Xaa, Xaa,
5
           Ser Lys Gln Xaa, Glu Glu Glu Ala Val Arg Leu
           Xaa, Xaa, Xaa, Xaa, Leu Lys Asn Gly Gly Xaa,
10
           Ser Ser Gly Ala Xaa, Xaa, Xaa, Xaa, Xaa, Z
      wherein
                Xaa, is His or Arg;
                Xaa, is Gly or Ala;
                Xaa, is Asp or Glu;
                Xaa, is Phe or naphthylalanine;
15
                Xaa, is Thr or Ser;
                Xaa, is Ser or Thr;
                Xaa, is Asp or Glu;
                Xaa, is Leu or pentylglycine;
                Xaa, is Leu or pentylglycine;
20
                Xaa, is Phe or naphthylalanine;
                Xaa, is Ile, Val or tert-butylglycine;
                Xaa, is Glu or Asp;
                Xaa, is Trp or Phe;
                Xaa,, Xaa,, Xaa, and Xaa, are independently
25
                Pro, homoproline, thioproline or
                     N-methylalanine;
                Xaa, is Ser or Tyr; and
                Z is -OH or -NH<sub>2</sub>;
               with the proviso that the compound does not
30
                have the formula of either SEQ. ID. NOS. 1
```

or 2;

and pharmaceutically acceptable salts thereof.

- 19. A compound according to claim 18 which has an amino acid sequence selected from SEQ. ID. NOS. 5, 6, 17, 18, 19, 22, 24, 31, 32 and 35.
 - 20. A compound according to claim 18 which is exendin-3 acid.
- 10 21. A compound according to claim 18 which is exendin-4 acid.
 - 22. A composition comprising a compound of any of claims 1-18, 20 or 21 in a pharmaceutically acceptable carrier.
- 23. A composition comprising a compound of claim 19 in a pharmaceutically acceptable carrier.
 - 24. A peptide compound of the formula (II) [SEQ. ID. NO. 40]:
- 5 10

 20 Xaa, Xaa, Xaa, Gly Thr Xaa, Xaa, Xaa, Xaa, Xaa, Xaa, 15 20

 Ser Lys Gln Xaa, Glu Glu Glu Ala Val Arg Leu 25 30

 Xaa, Xaa, Xaa, Xaa, Leu X, Gly Gly Xaa, 25

 35

 Ser Ser Gly Ala Xaa, Xaa, Xaa, Xaa, Xaa, Xaa, Z

```
wherein
                 Xaa, is His, Arg, Tyr or 4-imidazopropionyl;
                 Xaa, is Ser, Gly, Ala or Thr;
                 Xaa, is Asp or Glu;
                 Xaa, is Phe, Tyr or naphthylalanine;
 5
                 Xaa, is Thr or Ser;
                 Xaa, is Ser or Thr;
                 Xaa, is Asp or Glu;
                 Xaa, is Leu, Ile, Val, pentylglycine or Met;
                 Xaa, is Leu, Ile, pentylglycine, Val or Met;
10
                 Xaa<sub>10</sub> is Phe, Tyr or naphthylalanine;
                 Xaa, is Ile, Val, Leu, pentylglycine,
                       tert-butylglycine or Met;
                 Xaa, is Glu or Asp;
                 Xaa, is Trp, Phe, Tyr, or naphthylalanine;
                 X_i is Lys Asn, Asn Lys, Lys-NHe-R Asn, Asn Lys-NHe-R
15
                       where R is Lys, Arg, C1-C10 straight chain or
                       branched alkanoyl or cycloalkylalkanoyl
                       Xaa<sub>14</sub>, Xaa<sub>15</sub>, Xaa<sub>16</sub> and Xaa<sub>17</sub> are independently
                       Pro, homoproline, 3Hyp, 4Hyp,
20
                       thioproline, N-alkylglycine,
                       N-alkylpentylglycine or N-alkylalanine;
                 Xaa<sub>18</sub> is Ser, Thr or Tyr; and
                 Z is -OH or -NH,;
                 with the proviso that the compound does not
25
                 have the formula of either SEQ. ID. NOS. 1 or 2;
      and pharmaceutically acceptable salts thereof.
```

25. A compound according to claim 24 wherein Xaa, is His, Tyr or 4-imidazopropionyl.

26. A compound according to claim 25 wherein Xaa_1 is His or 4-imidazopropionyl.

- 27. A compound according to claim 24 wherein Xaa_2 is Gly.
- 5 28. A compound according to claim 24 wherein Xaa, is Leu, pentylglycine or Met.
 - 29. A compound according to claim 24 wherein Xaa_{13} is Trp or Phe.
- 30. A compound according to claim 24 wherein X_1 is Lys 10 Asn, or Lys-NH $^{\varepsilon}$ -R Asn, where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl.
- 31. A compound according to claim 24 wherein Xaa, is Phe or naphthylalanine; Xaa, is Phe or naphthylalanine; Xaa, is Ile or Val and Xaa, Xaa, And Xaa, are independently selected from Pro, homoproline, thioproline or Nalkylalanine.
 - 32. A compound according to claim 24 wherein Xaa_{18} is Ser or Tyr.
- 33. A compound according to claim 32 wherein Xaa, is 20 Ser.
 - 34. A compound according to claim 24 wherein Z is -NH2.

35. A compound according to claim 24 wherein Xaa_4 is Phe or naphthylalanine; Xaa_{10} is Phe or naphthylalanine; Xaa_{11} is Ile or Val, X_1 is Lys Asn, or Lys-NH^o-R Asn, where R is Lys, Arg, C_1 - C_{10} straight chain or branched alkanoyl and Xaa_{14} , Xaa_{15} , Xaa_{16} and Xaa_{17} , are independently selected from Pro, homoproline, thioproline or N-alkylalanine.

36. A compound according to claim 35 wherein Xaa_{18} is Ser or Tyr.

5

- 37. A compound according to claim 35 wherein Z is -NH₂.
- 10 38. A compound according to claim 22 which has an amino acid sequence selected from SEQ. ID. NOS. 36-39.
 - 39. A composition comprising a compound of any of claims 24-37 in a pharmaceutically acceptable carrier.
 - 40. A composition comprising a compound of claim 38 in a pharmaceutically acceptable carrier.

			·——			٠,									ļ
, ,	7dd10	Phe	Phe	Phe	Phe	Phe	Phe .	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe
, , , , , , , , , , , , , , , , , , ,	6ppy	Leu	Leu	Met	Met	Met	Met	Met	Met	Met	Met	Met	Met	Leu	pG1y
, ,	\dd8	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	Leu	pG1 ỷ	pG1y	Leu
, ,	7997	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	G1u	Asp	Asp	Asp
, , , , , , , , , , , , , , , , , , ,	7 d d 6	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Thr	Thr	Ser	Ser	Ser	Ser
\	Adds	Thr	Thr	Thr	Thr	Thr	Thr	Thr	Ser	Ser	Thr	Thr	Thr	Thr	Thr
, ,	\d d 4	Phe	Phe	Phe	Phe	Phe	Phe	naph	Phe	Phe	Phe .	Phe	Phe	Phe	Phe
, c c >	7443	Glu	Glu	Glu	Glu	Glu	Asp	Glu	Glu	Ġlu	G1u	Glu	Glu	Glu	Glu
	7dd2	βŢλ	Gly	Gly	G1 y	Gly	Gly	Gly	Gly	Gly	G1 y	G1 y	Gly	Gly	Gly
, ,	۷dd]	His	His	His	Tyr	His	His	His	His	His	His	His	His	His	His
Compound	[SEQ. ID. NO.]	. 1 (3129) [5]	2 (3174) [6]	3 (3175) [7]	4 (3110) [8]	5 (3000) [9]	6 [10]	7 (11)	8 [12]	9 [13]	10 [14]	11 [15]	12 [16]	13 [17]	14 [18]

ig. 1A

SUBSTITUTE SHEET (RULE 26)

1 <u>B</u>	
Fig.	

Хаал	Xaaı2	Хааіз	Xaa14	Xaaıs	Xaaı6	Xaaıı	Хааів	2
Ile	G1u	Phe	Pro	Pro	Pro	Pro	Ser	NH2
Ile	610	Trp	Pro	Pro	Pro	Pro	Ser	NH.
Ile	Glu	Phe	Pro	Pro	Pro	Pro .	Ser	NH ₂
Ile	G1u	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Tyr	NH ₂
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH2
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH2
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH2
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH ₂
Ile	Glu	Phe	Pro	Pro	Pro	Pro	Ser	NH2
Ile	Glu	Trp	Pro	Pro	Pro	Pro	Ser	NH2

SUBSTITUTE SHEET (RULE 26)

7. 1C	Fig. 1E
Fig.	7. 1D
	Fig

Xaaıı	Phe	naph	Phe	Phe	. Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe	Phe
Хааэ	pG1y	Met	Met	Leu	Met	Leu	Met	Met	Met	Met	Met	Met	Leu	Leu	Met	Met	Leu
Хаав	Leu																
Хаал	Asp																
Хааб	Ser																
Xaas	Thr																
Xaa4	Phe	Phe	Phe.	Phe													
Хааз	Glu	Glu	G1u	61 u	G1 u	Glu	Glu	Glu	G1u	. Glu	Glu	Glu	Glu	Glu	Glu	Glu	Glu
Xáaz	Gly	Gly	Gly	G1y	G1 y	G1 y	С1у	Gly	G1y	Gly	G1.y	G1y	G1y	Gly	Gly	Gly	б1у
Xaaı	His																
Compound (SEQ. ID. NO.)	15 [19]	16 [20]	17 [21]	18 [22]	19 [23]	20 [24]	21 [25]	22 [26]	23 [27]	24 [28]	25 [29]	26 [30]	27 [31]	28 [32]	29 [33]	30 [34]	31 [35]

⁻ig. 1D

SUBSTITUTE SHEET (RULE 26)

Ш
7
Ġ
证

	,	_			- ,					,		,						
2	NH2	HN	71117	NH2	NH2	NH2	NH2	NH2	NH ₂	NH2	NH2	NH ₂	NH ₂	NH2	NH2	NH2	NH2	NH2
Хаатв	Ser	Ser	120	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Şer	Śer	Ser
Xaaıı	Pro	O S O	FIO	Pro	Pro	Pro	Pro	Pro	Pro	tPro	tPro	hPro	hPro	tPro	hPro	MeAla	MeAla	MeAla
Хаать	Pro	3	Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	tPro	hPro	hPro	tPro	hPro	MeAla	MeAla	MeAla
Xaa,s	Pro		Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	tPro	hPro	hPro	tPro	hPro	MeAla	MeAla	MeAla
Хээ.,	Pro		Pro	Pro	Pro	Pro	Pro	Pro	Pro	tPro	Pro .	hPro	Pro	tPro	hPro	MeAla	Pro	MeAla
X	Phe	2	Trp	Trp	Phe	Trp	Phe	Trp	Pile	Trp	Trp	Trp	Trp	Phe	Phe	Trp	Trp	Phe
, e e y	6111	3 1	Glu	Glu	Glu	Glu	Glu	Asp	Glu	Glu	Glu	n : 9	Glu	Glu	Glu	Glu	Glu	Glu
200	110	211	Ile	Val	Val	tBuG	tBuG	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile	Ile

SUBSTITUTE SHEET (RULE 26)

5/7

Fig. 2

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu Glu Ser Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser 20 25 30

Ser Gly Ala Pro Pro Pro Ser-NH, 35

Fig. 3

His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 5 10 15
Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg-NH₂ 20 25 30

Fig 4

DOSE RESPONSE OF THE GLUCOSE LOWERING EFFECT OF COMPOUND 1 [SEQ. ID. NO. 5] VS. EXENDIN-4 IN db/db MICE

Fig. 5

SUBSTITUTE SHEET (RULE 26)

Fig. 6

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16387

A. CLASSIFICATION OF SUBJECT MATTER IPC(6): A61K 38/16; C07K 14/46 US CL: \$14/02, 866; 435/69.1; 530/324 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: \$14/02, 866; 435/69.1; 530/324 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN ON LINE									
C. DOCUMENTS CONSIDERED TO BE RELEVANT	•								
Category* Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.								
Y US 5,424,286 A (ENG) 13 June 1995	, co. 5, Table 1.								
Further documents are listed in the continuation of Box (C. See patent family annex.								
* Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X". document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "A" document member of the same patent family								
Date of the actual completion of the international search 29 OCTOBER 1998	Date of mailing of the international search report 14DEC 1998								
Name and mailing address of the ISA/US Commissioner of Palents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	MICHAEL BORN Telephone No. (703) 308-0956								

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16387

Box I Observations where certain claims were found unsearchable	e (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claim:	s under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be search.	hed by this Authority, namely:
Claims Nos.: 1-17 in part because they relate to parts of the international application that an extent that no meaningful international search can be carri	do not comply with the prescribed requirements to such ed out, specifically:
The claims cannot be searched in full, because no computer-readdition, claism 2-16 fail to clearly and concisely define species of the elected species, the peptide of SEQ ID 5.	eadable Sequence Listing Form was submitted. In f peptides. The claims are searched within the scope
Claims Nos.: because they are dependent claims and are not drafted in accords	unce with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continue	tion of item 2 of first sheet)
This International Searching Authority found multiple inventions in this	international application, as follows:
Picaso See Extra Sheet.	•
	•
As all required additional search (see were timely paid by the a claims.	pplicant, this international search report covers all searchable
As all searchable claims could be searched without elfort justi of any additional fee.	fying an additional fee, this Authority did not invite payment
As only some of the required additional search fees were timel only those claims for which fees were paid, specifically claim	• • • • • • • • • • • • • • • • • • • •
:	
No required additional search (see were timely paid by the restricted to the invention first mentioned in the claims; it is 1-17, SEQ ID No:5	• • • • • • • • • • • • • • • • • • • •
Remark on Protest The additional search fees were ac-	nomeniad by the applicant's vertex
No protest accompanied the payme	companied by the applicant's protest.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/16387

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA-found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claims 1-17 drawn to peptides as defined by the broad claim 1.

Group II, claims 18-23, 38, 40, drawn to peptides as defined by the broad claim 18.

Group III, claim 24-37, 39 drawn to peptides as defined by the broad claim 24.

The inventions listed as Groups I-III do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features because there is no structurally distinctive portion of the structure which is shared by all of the alternative peptide structures.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

The species are as follows: species 1-31 are as specified in the table of Figure 1-1; species 32+ are not specified species resulting from further permutations of residues Xaa1, Xaa2, Xaa4, Xaa7-Xaa18, which comprised of groups of amino acid residues being not obvious substitutions. Claims 1, 18, 24 are generic. Under PCT Rule 13.2, the species lack the same or corresponding special technical features because they do not share any common structure, i.e., there is no structurally distinctive portion of the structure which is shared by all of the alternatives.

Claims 2-16 do not clearly and concisely recite species of the genus of claim 1. Thus, the first named species of the genus appears to be that of SEQ ID No:5.