Particle spectrograph

Wave operator and propagator

$\tau_1^{\#2}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{+}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_1 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2}(k+k^3)(2r_1+r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} + ^{lpha}$	$\sigma_1^{\#2} + ^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\sharp 1} \dagger$	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0		(0	$k^2 r_1 + \frac{t_1}{2}$
$f_2^{#1}$	- <u>i kt1</u>	٧2	. 6.	$k^{2}t_{1}$	0
$\omega_{2}^{\#1}{}_{\alphaeta}$)	디	2		$\sqrt{2}$	0
	$\omega_{2+}^{#1} + \alpha \beta$	7	$c#1 + \alpha B$	12+T	$\omega_{2}^{#1} + ^{\alpha eta \chi}$
$\omega_{0^{\text{-}}}^{\#1}$	0	c)	0	0
$f_0^{\#2} \;\; \omega_0^{\#1}$	0 0	0	0	0 0	0 0
$f_0^{\#1}$ $f_0^{\#2}$ $\omega_0^{\#1}$	$i \sqrt{2} k t_1 0 0$	2,12	$-2K^{-}l_1$ 0 0	0 0 0	0 0 0
$f_0^{#2}$	$-t_1$ $i\sqrt{2} kt_1$ 0 0	2,12	$-I \bigvee Z K \mathcal{E}_1 \mid -Z K^- \mathcal{E}_1 \mid O \mid O$	0 0 0 0	0 0 0 0

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\sigma_0^{\#1} == 0$	1			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 \bar{i} k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	17			

$f_{1^{-}}^{\#2}\alpha$	0	0	0	$i k t_1$	0	0	0
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha} f_{1}^{\#1}{}_{\alpha} f_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ar{u}kt_1$
$f_1^{\#1}_+\alpha\beta$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>ikt</i> 1 3	$\frac{k^2 t_1}{3}$	0	0	0	0
$\omega_{1}^{\#2}_{+\alpha\beta}\ f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	4 <u>1</u> 3	$-\frac{1}{3}$ ikt	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$.2 ($-\frac{t_1}{3\sqrt{2}}$	$\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{\beta} k$	$\omega_1^{\#_2} + ^{\alpha \beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_1} > 0$$
Polarisations: 5
Square mass: $-\frac{t_1}{2r_1} > 0$
Spin: 2
Parity: Odd

Quadratic pole					
Pole residue:	$\frac{1}{(2r_1+r_5)t_1^2p^2} > 0$				
Polarisations:	2				

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$