Chapter III

GENERATING FUNCTIONS AND RECURRENCE RELATIONS

List of exercises 8

Generating functions and recurrence relations

- 1. Find the generating functions of the following sequences:
 - (a) $1, 5, 5^2, 5^3, \ldots$
 - (b) $1, -1, 1, -1, \dots$
 - (c) $1, 0, 1, 0, \dots$
 - (d) $0, 2, 0, 4, 0, 6, 0, 8, \dots$
 - (e) 4, 8, 16, 32, 64, ...
- 2. Find the general term (or nth term) of the sequences that generate the following functions:
 - (a) $\left(\frac{1}{1-t}\right)^3$
 - (b) $\frac{1}{1-t}\frac{1}{1+t}$
 - $(c) \ \frac{1}{1+4t}$
 - (d) $\frac{2t}{(1-t)(1-2t)}$
 - (e) e^{2t}
 - (f) e^{t^2}
 - (g) $\sin t$
 - (h) $\cos t$
- 3. Assume that g(t) (defined on (-r,r), with r>0) is the generating function of the sequence $(a_n)_{n\geq 0}$. In each of the following cases, find (that is, express by g(t)) the generating function of the sequence $(b_n)_{n\geq 0}$.

- (a) $b_n := (-1)^n a_n$
- (b) $b_n := a_{n+1}$
- (c) $b_n := a_{n-1}, (a_{-1} = 0)$
- (d) $b_n := a_n + a_{n+1}$
- (e) $b_n := a_n a_{n-1}, (a_{-1} = 0)$
- (f) $b_n := a_n$ or 0, depending on n even or odd.
- (g) $b_n := a_n$ or 0, depending on n odd or even.
- (h) $b_n := a_{n/2}$ or 0, depending on n even or odd.
- (i) $b_n := a_0 a_n + a_1 a_{n-1} + \ldots + a_n a_0$
- (j) $b_n := a_0 + a_1 + \ldots + a_n$
- (k) $b_n := na_n$
- (1) $b_n := n(n-1)\cdots(n-k+1)a_n$, (k fixed).
- 4. Find the generating function of the sequence $(a_n)_{n\geq 0}$.
 - (a) $a_0 := 0$, $a_1 := 1$, $a_n := 2a_{n-1} a_{n-2}$, $n \ge 2$
 - (b) $a_0 := 1$, $a_1 := 1$, $a_n := 3a_{n-1} + 4a_{n-2}$, $n \ge 2$
- 5. Find the generating function of the sequence a_0, a_1, \ldots , with a_n :
 - (a) The number of solutions, in non-negative integers, of the equation x + y + z + 4u = n.
 - (b) The number of solutions, in non-negative integers, of the equation 2x+2y+3z+3u=n.
- 6. Find the value of a_{10} in (a) and the value a_{15} in (b) of the previous exercise.
- 7. Let a_n be the number of ways to obtain a total of n points when a die is thrown 4 times. Find the generating function of (a_n) and the values of a_{12} and a_{20} .
- 8. Let a_n be the number of subsets of $\{1, 2, \ldots, n\}$ that do not contain two consecutive integers.
 - (a) Find a_0, a_1, a_2, a_3 .
 - (b) Give a recurrence relation for, $n \geq 2$.
 - (c) Find the generating function of $(a_n)_{n\geq 0}$.
- 9. A set of natural numbers is said fat if every element is at least the cardinality. For example, $\{6, 10, 11, 20, 33, 34\}$ is fat, but $\{2, 200, 300\}$ is not. Let a_n be the number of fat subsets of $\{1, 2, \ldots, n\}$ (the \emptyset is considered fat). Solve the same questions as in the previous exercise.
- 10. A domino piece is a 1×2 rectangle. Let a_n be the number of ways to build an $n \times 2$ rectangle with n domino pieces. Solve the same questions as in the previous exercise.
- 11. Let a_n be the number of sequences of length n (that is, of n terms) formed by zeros and ones in which there are not two consecutive ones. Solve the same questions as in the previous exercise.

Solutions 8

1. (a) $(1-5t)^{-1}$; (b) $(1+t)^{-1}$; (c) $(1-t^2)^{-1}$; (d) $[(1-t^2)^{-1}]' = 2t(1-t^2)^{-2}$; (e) $4(1-2t)^{-1}$. 2. (a) $\binom{n+2}{n}$; (b) $a_n = 1$ or 0, depending on n even or odd; (c) $(-4)^n$; (d) $2^{n+1} - 2$; (e) $2^n/n!$; (f) $a_n = 1/(n/2)!$ or 0, depending on n even or odd; (g) $a_{2n-1} = (-1)^{n-1}/(2n-1)!$, $a_{2n} = 0$; (h) $a_{2n} = (-1)^n/(2n)!$, $a_{2n-1} = 0$. 3. (a) g(-t); (b) [g(t) - g(0)]/t; (c) tg(t); (d) [(1+t)g(t) - g(0)]/t; (e) (1-t)g(t); (f) [g(t) + g(-t)]/2; (g) [g(t) - g(-t)]/2; (h) $g(t^2)$; (i) $[g(t)]^2$; (j) g(t)/(1-t); (k) tg'(t); (l) $t^kg^{(k)}(t)$. 4. (a) $t(1-t)^{-2}$; (b) $(1-2t)/(1-3t-4t^2)$. 5. (a) $(1-t)^{-3}(1-t^4)^{-1}$; (b) $(1-t)^{-2}(1-t^3)^{-2}$. 6. 100; 36. 7. $(t+t^2+\ldots+t^6)^4=t^4(1-t^6)^4/(1-t)^4$; 125; 35. 8. (a) 1,2,3,5; (b) $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$; (c) $(1+t)/(1-t-t^2)$ 9. (a_n) the same as in the previous exercise. 10. (a) 1,1,2,3; (b) $a_n = a_{n-1} + a_{n-2}$ $(n \ge 2)$; (c) $1/(1-t-t^2)$ 11. (a_n) the same as in exercises 8 and 9.