Distance & Similarity

Boston University CS 506 - Lance Galletti

	Refund	Marital Status	Income	Age
--	--------	----------------	--------	-----

Refund	Marital Status	Income	Age
1	Single	125k	25

Refund	Marital Status	Income	Age
1	Single	125k	25
0	Married	100k	27

Refund	Marital Status	Income	Age
1	Single	125k	25
0	Married	100k	27
0	Single	70k	22

Refund	Marital Status	Income	Age
1	Single	125k	25
0	Married	100k	27
0	Single	70k	22
1	Married	120k	30
0	Divorced	90k	28
0	Married	60k	37
1	Divorced	220k	24
0	Single	85k	23
0	Married	75k	23
0	Single	90k	26

Data

Data

Feature Space

From our data we can generate a **feature space** of all possible values for the set of features in our data.

name	age	balance
Jane	25	150
John	30	100

Feature Space

From our data we can generate a **feature space** of all possible values for the set of features in our data.

name age balance

Jane 25 150

John 30 100

Feature Space

From our data we can generate a **feature space** of all possible values for the set of features in our data.

Our feature space is the Euclidean plane

Dissimilarity

In order to uncover interesting structure from our data, we need a way to **compare** data points.

A **dissimilarity function** is a function that takes two objects (data points) and returns a **large value** if these objects are **dissimilar**.

Dissimilarity

Dissimilarity

Distance

A special type of dissimilarity function is a **distance** function

d is a distance function if and only if:

- d(i, j) = 0 if and only if i = j
- $\bullet \quad d(i,j) = d(j,i)$
- $d(i, j) \le d(i, k) + d(k, j)$

We don't **need** a distance function to compare data points, but why would we prefer using a distance function?

intuitive, more digestible compared to a dissimilarity func. reasoning abt data is important

dissim(A, B) is small

dissim(B, C) is small

dissim(A, C) not necessarily small

d(B, C) is small

Triangle inequality guarantees d(A, C) small

Minkowski Distance

For **x**, **y** points in **d**-dimensional real space

I.e.
$$x = [x_1, ..., x_d]$$
 and $y = [y_1, ..., y_d]$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

When $\mathbf{p} = 2 \rightarrow \text{Euclidean Distance}$

When $\mathbf{p} = 1$ -> Manhattan Distance

d = 2

d = 2

$$p = 2$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 2$$

$$p = 2$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 2$$

$$p = 2$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 2$$

$$p = 2$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

d = 2

$$p = 1$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

d = 2

$$p = 1$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 2$$

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 3$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 3$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 3$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d = 3$$

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Minkowski Distance

Is L_p a distance function when 0 ?

Minkowski Distance

Is L_p a distance function when 0 ?

Minkowski Distance

a func is a distance function when Is L_p a distance function when 0 ? there's a triangle inequality. we are trying toprove this function violates it

Minkowski Distance

Is L_p a distance function when 0 ?

But... if **p < 1** then **1/p > 1**

Minkowski Distance

Is L_p a distance function when 0 ? no

So D(B, C) > D(B, A) + D(A, C) which violates the triangle inequality

How similar are the following documents?

looks at sets

(ex: documents are sets of words)

	W ₁	W ₂		w _d
X	1	0		1
у	1	1	•••	0

One way is to use the Manhattan distance which will return the size of the set

difference *counting all the times where there is a

"mismatch" (not present in both documents)

= the set difference

	W ₁	W ₂	 w _d
X	1	0	 1
у	1	1	 0

$$L_1(x,y) = \sum_{i=1}^{a} |x_i - y_i|$$
 however, this doesn't account for the size of the document

One way is to use the Manhattan distance which will return the size of the set difference however, this doesn't account for the size of the document

	w ₁	W ₂		w _d
X	1	0	•••	1
у	1	1		0

$$L_1(x,y) = \sum_{i=1}^d (x_i - y_i)$$
 Will only be 1 when $\mathbf{x_i} \neq \mathbf{y_i}$

But how can we distinguish between these two cases?

	W ₁	W_2		W _{d-1}	w _d
х	1	1	1	0	1
у	1	1	1	1	0

	W ₁	W_2
x	0	1
у	1	0

Only differ on the last two words

Completely different

But how can we distinguish between these two cases?

	W ₁	W ₂		W _{d-1}	w _d
х	1	1	1	0	1
у	1	1	1	1	0

	W ₁	W ₂
x	0	1
у	1	0

Only differ on the last two words

Completely different

Both have Manhattan distance of 2

We need to account for the size of the intersection!

Given two documents x and y:

accounts for the size difference; intersection of words / union of words

$$JSim(x,y) = \frac{|x \cap y|}{|x \cup y|}$$

x, y are both a set of words

We need to account for the size of the intersection!

Given two documents x and y:

$$JDist(x,y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$

solves problem of manhattan distance

$$JDist(x,y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$

	W ₁	W ₂		W _{d-1}	w _d
х	1	1	1	0	1
у	1	1	1	1	0

	W ₁	W ₂
Х	0	1
у	1	0

Only differ on the last two words

Completely different

What is the jaccard distance in each?

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between \mathbf{x} and \mathbf{y}

a similarity function; large vals = similar small = not similar

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between \mathbf{x} and \mathbf{y}

two proportional vectors have a cosine similarity of:

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between \mathbf{x} and \mathbf{y}

two proportional vectors have a cosine similarity of: 1

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between \mathbf{x} and \mathbf{y}

two proportional vectors have a cosine similarity of: 1

two orthogonal vectors have a similarity of:

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between \mathbf{x} and \mathbf{y}

two proportional vectors have a cosine similarity of: 1

two orthogonal vectors have a similarity of: 0

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where θ is the angle between \mathbf{x} and \mathbf{y}

two proportional vectors have a cosine similarity of: 1

two orthogonal vectors have a similarity of: 0

two opposite vectors have a similarity of:

A **similarity** function is a function that takes two objects (data points) and returns a **large value** if these objects are **similar**.

$$s(x, y) = cos(\theta)$$

where $\boldsymbol{\theta}$ is the angle between \mathbf{x} and \mathbf{y}

two proportional vectors have a cosine similarity of: 1

two orthogonal vectors have a similarity of: 0

two opposite vectors have a similarity of: - 1

To get a corresponding **dissimilarity** function, we can usually try

$$d(x, y) = 1 / s(x, y)$$

or

$$d(x, y) = k - s(x, y)$$
 for some k

Here, we can use

$$d(x, y) = 1 - s(x, y)$$

When should you use **cosine (dis)similarity** over **euclidean distance**?

When direction matters more than magnitude

When should you use **cosine (dis)similarity** over **euclidean distance**?

When direction matters more than magnitude

When should you use **cosine (dis)similarity** over **euclidean distance**?

When direction matters more than magnitude

Close under Euclidean distance

When should you use **cosine (dis)similarity** over **euclidean distance**?

When direction matters more than magnitude

Close under Cosine Similarity

A quick Note on Norms

$$d(A,B) = ||A - B||$$

Size = Distance from the origin

$$d(0,X) = ||X||$$

- Minkowski Distance <=> Lp Norm
- Not all distances can create a Norm.