

Gene Set Enrichment Analysis

february 2020

MARGenomics

Gene Set Enrichment Analysis (GSEA)

List of genes with statistics (p.Value and logFC)

Pre-ranked analysis

Classic analysis

List of over represented pathways

GS follow link to MSigDB	GS DETAILS	SIZE	ES	NES	NOM p-val	FDR q-val	
NADLER_OBESITY_DN	Details	46	0.80	2.65	0.000	0.000	0.000
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	Details	42	0.73	2.48	0.000	0.000	0.000
HSIAO_LIVER_SPECIFIC_GENES	Details	218	0.59	2.47	0.000	0.000	0.000
KIM_LIVER_CANCER_POOR_SURVIVAL_DN	Details	38	0.75	2.42	0.000	0.000	0.000
WOO LIVER CANCER RECURRENCE DN	Details	70	0.66	2.42	0.000	0.000	0.000
LEE_LIVER_CANCER_CIPROFIBRATE_DN	Details	61	0.65	2.33	0.000	0.000	0.000
CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_DN	Details	161	0.56	2.31	0.000	0.000	0.000
LEE_LIVER_CANCER_SURVIVAL_UP	Details	159	0.55	2.27	0.000	0.000	0.000
KEGG_PROPANOATE_METABOLISM	Details	31	0.73	2.26	0.000	0.000	0.000
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	Details	31	0.73	2.26	0.000	0.000	0.000
KEGG_DRUG_METABOLISM_CYTOCHROME_P450	Details	48	0.67	2.25	0.000	0.000	0.000
LEE_LIVER_CANCER_DENA_DN	Details	73	0.62	2.21	0.000	0.000	0.003

Molecular Signatures Database (MSigDB)

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

Molecular Signatures Database (MSigDB)

C5: GO gene sets (browse 9996 gene sets)	Gene sets that contain genes annotated by the same GO term. The C5 collection is divided into three sub-collections based on GO ontologies: BP, CC, and MF. details	Download GMT Files gene symbols NCBI (entrez) gene ids
BP: GO biological process (browse 1350 gene sets)	Gene sets derived from the GO Biological Process Ontology.	Download GMT Files gene symbols NCBI (entrez) gene ids
CC: GO cellular component (browse 1001 gene sets)	Gene sets derived from the GO Cellular Component Ontology.	Download GMT Files gene symbols NCBI (entrez) gene ids
MF: GO molecular function (browse 1645 gene sets)	Gene sets derived from the GO Molecular Function Ontology.	Download GMT Files gene symbols NCBI (entrez) gene ids

Gene Sets: GMT format

- Genes are grouped in families describing biological pathways, molecular functions, disease mechanisms etc..
- Example: Collection 5 from MSigDB Biological processes (c5.bp.v7.0.symbols.gmt)

Enrichment Score (ES): Degree to which a gene set is overrepresented at the top or bottom of a ranked list of genes (the default ranking metric is signal-to-noise ratio)

Examples for positive enriched gene sets in the contrast LINC vs CTRL (enriched in LINC)

Table: GSEA Results Summary									
Dataset	LINC.vs.Ctrl								
Phenotype	NoPhenotypeAvailable								
Upregulated in class	na_pos								
GeneSet	GO_CELLULAR_RESPONSE_TO_ZINC_ION								
Enrichment Score (ES)	0.8632142								
Normalized Enrichment Score (NES)	2.4628952								
Nominal p-value	0.0								
FDR q-value	0.0								
FWER p-Value	0.0								

Fig 1: Enrichment plot: GO_CELLULAR_RESPONSE_TO_ZINC_ION Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

Enrichment Score (ES): Degree to which a gene set is overrepresented at the top or bottom of a ranked list of genes (the default ranking metric is signal-to-noise ratio)

Examples for negative enriched gene sets in the contrast LINC vs CTRL (enriched in CTRL)

Normalized enrichment score (NES)

- Obtained by normalizing the enrichment score
- Accounts for differences in gene set size and in correlations between gene sets and the expression dataset
- Used to compare analysis results across gene sets

$$NES = \frac{\text{actual ES}}{\text{mean(ESs against all permutations of the datset)}}$$

Fig 1: Enrichment plot: GO_ACTIN_MEDIATED_CELL_CONTRACTION Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

Nominal p-value: Estimates the statistical significance of the enrichment score for a single gene set

FDR q-value: The false discovery rate (FDR) is the estimated probability that a gene set with a given NES represents a false positive finding (Ex: an FDR of 25% indicates that the result is likely to be valid 3 out of 4 times)

Fig 1: Enrichment plot: GO_ACTIN_MEDIATED_CELL_CONTRACTION Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

GSEA tool practical

Input data preparation

Input Data: Lung Cancer dataset example

Transcriptome of Human NSCLC tissues (GEO accession: GSE74706)

NSCLC: n=18

TumorFree: n=18

Series matrix

Input data: GCT format

GCT format: For microarrays, contains the expression data. Tabulator separated.

First row is always #1.2

Second row has two tab separated values:

34183 = Number of geneID 36 = Number of samples From the **third row** on starts the expression matrix

```
#1.2
   34183
          Description 17962 08 Lung 17962 08 Tumor 21577 08 Lung 21577 08 Tumor 6495 08 Lung
                        0.1795826 0.1795826 0.1795826 0 -0.069934845 0.1795826
                    -0.19623804 -0.28856254 -0.5115266 0.39665508 -0.71220696 1.0335908
                                                                                  2.3404715
                              -0.28793335 -0.93885803 1.4892027
                                                             -1.1166267 2.0433853
                                                                                  4.0047445
                              0.45030403 0.36336517 1.3216305
                                                            -0.23709536 0.7641797
    (+)E1A r60 a107 NA 0.15162134
                              0.6699066 0.99248886 1.3114834
                                                             0.0710907 0.48975086 0.56334877 0.58070755
   (+)E1A r60 a135 NA 0.48870468
                              0.49859428 1.0381546 1.1965628
                                                            -0.030184746 0.24079514 0.47081947 0.43220806 0.78427505
                NA 0.5134697
                                                  1.3308182
                                                             0.16920853 0.33121872 0.49439335 0.5239725
                              0.69098663 1.1606741 1.3366041 0.32015896 0.37965775 0.6580162
   (+)E1A_r60_n11 NA 0.5108471
                              (+)E1A r60 n9 NA 0.15073204 0.20399284 0.25653076 0.4207363
                                                             0.039978027 0.08213234 0.29883766 0.08213234
  (-)3xSLv1 NA -0.07265639 0.026640415 -0.04011154 -0.09190309 -0.01863134 -0.15329444 -0.2357111 0.01543498
15 A 23 P100001 NA 0.30399132 0.8295469 -0.5054226 0.24987602 0.2578745 -2.989729
                                                                                  -0.48598194 0.41997814
16 A 23 P100022
                NA 0.5760064 -1.5653286 0.9171052
                                                   -0.8337636 0.38460922 0.33457136 2.8440013
                             -0.09235954 -1.2997136
                NA -0.74025345 -0.80999184 -1.1920676 -0.8951044 -0.7765732 1.0460758
18 A 23 P100074
19 A 23 P100127
                                                             -1.1477237 1.763371
                              1.1270428 -0.6877289 1.700746
                                                                                  -0.9462967 3.7809863
                                                             0.1839261 -0.03980875 1.0823107
20 A 23 P100141
                              -0.4087453 0.7880449 0.5643873
                                                                                           -1.0503159
21 A 23 P100189
                              0.56400204 0.9729352 0.87494993 0 -0.106552124
                                                                             1.253355
                                                                                         0.6427555
                                                                                                   0.73570824 0.83143
                    -0.15721703 -0.33642197 -0.05117798 0.21472263 0 0.65099144 -0.8198786 0.67990875 0.33212185 1.1101093
```

First column in the expression matrix contains gene IDs

Second column in the expression matrix contains description but is ignored by the program (NA in this case)

The rest of the columns in the expression matrix contain expression values for each sample

Change file extension in Windows

Input data: CLS format

CLS format: For microarrays, contains the phenotypic data. Blank space separated.

Third row: Names of the phenotypic traits for each sample/column in the expression matrix (Important: the order has to be the same) Second row: Names of the phenotypic traits.

IMPORTANT: First condition is

Tumorfree_lung, like in the third row.

GSEA tool

Available at: https://software.broadinstitute.org/gsea/index.jsp

GSEA Classic Analysis

- 1. Download GSEA: GSEA v4.0.3 Java Web Start (all platforms)
- 2. Download gct and cls files in the folder "MaterialsCursGSEA"
- 3. Open the app
- 4. "Load data" "Browse for files" load the .cls and .gct files

GSEA Classic Analysis

1. Go to "Run GSEA" - "Required fields" and "Basic fields"

GSEA Classic Analysis

1. Go to "Run GSEA" - "Advanced fields"

GSEA Classic results

GSEA Report for Dataset NSCLCndNT

Enrichment in phenotype: NSCLC (18 samples)

- 958 / 3305 gene sets are upregulated in phenotype NSCLC
- 384 gene sets are significant at FDR < 25%
- 189 gene sets are significantly enriched at nominal pvalue < 1%
- 288 gene sets are significantly enriched at nominal pvalue < 5%
- · Snapshot of enrichment results
- · Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- · Guide to interpret results

Enriched in NSCLC

Enrichment in phenotype: Tumorfree lung (18 samples)

- · 2347 / 3305 gene sets are upregulated in phenotype Tumorfree lung
- 1291 gene sets are significantly enriched at FDR < 25%
- 490 gene sets are significantly enriched at nominal pvalue < 1%
 868 gene sets are significantly enriched at nominal pvalue < 5%
- · Snapshot of enrichment results
- · Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- · Guide to interpret results

Dataset details

- The dataset has 34183 native features
- · After collapsing features into gene symbols, there are: 14110 genes

Gene set details

- . Gene set size filters (min=15, max=500) resulted in filtering out 4045 / 7350 gene sets
- . The remaining 3305 gene sets were used in the analysis
- · List of gene sets used and their sizes (restricted to features in the specified dataset)

index.html in the folder contains the results summary

Gene set information Enriched in TumorFree GO MEIOTIC CHROMOSOME SEGREGATION O_REGULATION_OF_CHROMOSOME_SEGREGATION SO MEIOTIC CELL CYCLE PROCESS GO MEIOSIS I CELL CYCLE PROCESS GO SIGNAL TRANSDUCTION INVOLVED IN CELL CYCLE CHECKPOINT GO DNA PACKAGING GO NEGATIVE REGULATION OF DNA REPLICATION GO_REGULATION_OF_NUCLEAR_DIVISION GO MITOTIC CELL CYCLE CHECKPOINT GO NEGATIVE REGULATION OF CHROMOSOME SEGREGATION GO REGULATION OF SISTER CHROMATID SEGREGATION 0.64 2.00 0.000 0.017 0.164 GO MEIOTIC CELL CYCLE

GSEA classic results

GSEA plots in "Details..."

- Enrichment plot
- Table with genes in the gene set
- Heatmap
- Random ES distribution

Fig 2: GO_MEIOTIC_CHROMOSOME_SEGREGATION Blue-Pink O' Gram in the Space of the Analyzed GeneSet

Input data: RNK format

RNK file:

- Valid for microarrays and RNAseq
- A rank score is given for each gene: Rank Score = -log10(pvalue) * sign(logFC)
- A gene differentially expressed at a significant level (low pvalue close to 0) will be assigned with a high score

GSEA Preranked results

GSEA Report for Dataset GSE74706_NSCLCvsNT

Enrichment in phenotype: na

- 970 / 3897 gene sets are upregulated in phenotype na_pos
- 569 gene sets are significant at FDR < 25%
- 368 gene sets are significantly enriched at nominal pvalue < 1%
 469 gene sets are significantly enriched at nominal pvalue < 5%
- . Snapshot of enrichment results
- Detailed enrichment results in html format
- Detailed enrichment results in excel format (tab delimited text)
- . Guide to interpret results

Enrichment in phenotype: na

- . 2927 / 3897 gene sets are upregulated in phenotype na_neg
- 1757 gene sets are significantly enriched at FDR < 25% 794 gene sets are significantly enriched at nominal pvalue < 1%
- 1272 gene sets are significantly enriched at nominal pvalue < 5%
- . Snapshot of enrichment results
- · Detailed enrichment results in html format
- · Detailed enrichment results in excel format (tab delimited text)
- . Guide to interpret results

Dataset details

- . The dataset has 21754 features (genes)
- No probe set => gene symbol collapsing was requested, so all 21754 features were used

Gene set details

- . Gene set size filters (min=15, max=500) resulted in filtering out 3453 / 7350 gene sets
- . The remaining 3897 gene sets were used in the analysis
- . List of gene sets used and their sizes (restricted to features in the specified dataset)

na pos=NSCLC

na neg=NT

GSEA plots in "Details..."

- **Enrichment plot**
- Table with genes in the gene set
- Random ES distribution

(no heatmap)

GSEA Leading edge analysis

Leading edge analysis to compare two gene sets:

- Load a folder with GSEA results
- Select the gene sets to compare

Practical Exercise

Dataset GSE5600 to perform GSEA analysis:

Classic analysis

- Download the series matrix from GEO
- 2. Use Sublime Text to generate the GCT and CLS files
- 3. Load files in GSEA tool Load data
- 4. Perform a GSEA Run GSEA with the parameters previously described

Pre-Ranked analysis

- 5. Use the differential expression analysis results from GEOtoR
- 6. Calculate the RNK score in excel (=SIGNO(F2)*-LOG10(C2))
- 7. Change the extension of the file to .rnk
- 8. Load .rnk file in GSEA tool Load data
- 9. Perform a GSEA Run GSEAPreranked

