Applied Signal Processing SSY130 Tutorial 1

Tomas McKelvey
Dept. of Signals and Systems
Chalmers University of Technology
Gothenburg, Sweden
mckelvey@chalmers.se

November, 2017

Problems

- 1. Analyze the block diagrams of Figure 1 and derive the relations between y(n) and x(n). The z^{-1} -blocks are unit time delays. We assume $|d_1| < 1$ to ensure that the circuit is stable.
- 2. A periodic signal x(n) with period N is applied to a causal linear time invariant (LTI) filter with impulse response h(n) generating the output y(n). Write out the expression (the convolution) for the output y(n). Is the output a periodic signal? What is the period?
- 3. Show that the convolution between two signals $x_1(n)$ and $x_2(n)$ is commutative i.e.

$$x_1(n) * x_2(n) = x_2(n) * x_1(n)$$
 (1)

Figure 1: Signal diagram

4. Let the step response s(n) be the output of a discrete time LTI system where the input is a unit step

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases} \tag{2}$$

Derive an expression for the output of this system given an arbitrary input x(n) in terms of s(n). (Hint: How can the impulse response of the system be calculated from the step response?)

5. The output of a system is defined recursively according to

$$y(n) = \alpha y(n-1) + x(n) \tag{3}$$

What is the impulse response of the system?

6. Consider the following two coupled recursive equations

$$y_r(n) = y_r(n-1)\cos\omega - y_i(n-1)\sin\omega$$

$$y_i(n) = y_r(n-1)\sin\omega + y_i(n-1)\cos\omega$$
(4)

with the initial conditions $y_r(0) = 1$ and $y_i(0) = 0$. Show that the solution is $y_r(n) = \cos n\omega$ and $y_i(n) = \sin n\omega$. Hence the two equations forms an oscillator with frequency ω . (Hint: $\cos n\omega = \text{Re}\{e^{j\omega n}\}$)

7. Which of the following impulse responses are causal?

(a)
$$h(n) = \begin{cases} 1/n^2 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

(b)
$$h(n) = \begin{cases} e^{\alpha n} & n > 0 \\ 0 & n \le 0 \end{cases}$$

(c)
$$h(n) = \begin{cases} 1/M & -M < n < M \\ 0 & \text{otherwise} \end{cases}$$

(d)
$$h(n) = \begin{cases} 1/M & 0 < n < M+1 \\ 0 & \text{otherwise} \end{cases}$$

8. The Discrete Time Fourier Transform is defined by the relations where Δt is the sampling period ans $\omega_s = 2\pi/\Delta t$ is the sampling frequency in radians/seconds.

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n\Delta t}$$
$$x(n) = \frac{1}{\omega_s} \int_0^{\omega_s} X(\omega)e^{j\omega n\Delta t} d\omega$$

(a) Show that for any signal x(n) (where the DTFT exists) we have

$$X(\omega) = X(\omega + k\omega_s), k = 0, \pm 1, \pm 2, \dots$$

The following table show some properties of the DTFT

Property	Signal	DTFT
	g(n)	$G(\omega)$
	x(n)	$X(\omega)$
linearity	$\alpha g(n) + \beta x(n)$	$\alpha G(\omega) + \beta X(\omega)$
time shifting	$g(n-n_0)$	$e^{-j\omega n_0 \Delta t} G(\omega)$
frequency shifting/modulation	$e^{j\omega_0 n\Delta t}g(n)$	$G(\omega-\omega_0)$
convolution	g(n) * x(n)	$G(\omega)X(\omega)$
frequency convolution	g(n)x(n)	$\frac{1}{\omega_s} \int_0^{\omega_s} G(\theta) X(\omega - \theta) d\theta$

Prove the results in the table.

(b) The following table show some symmetry relations for complex signals

Signal	DTFT
x(n)	$X(\omega)$
x(-n)	$X(-\omega)$
$x^*(-n)$	$X^*(\omega)$
$\operatorname{Re}\{x(n)\}$	$\frac{1}{2}\left(X(\omega)+X^*(-\omega)\right)$
$j\operatorname{Im}\{x(n)\}$	$\frac{1}{2}(X(\omega)-X^*(-\omega))$

Show the results in the table. Note that $x^*(n)$ denotes the complex conjugate of x(n) and x(-n) implies the time reversal of the sequence x(n).

- (c) If we now assume x(n) is a real signal. What symmetries does then $X(\omega)$ have? Use the table in (b) to derive them and visualize them graphically.
- 9. An ideal low pass filter with cut off frequency ω_c has a DTFT given by

$$H_{\rm LP}(\omega) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| \le \omega_s/2 \end{cases}$$
 (5)

Derive the impulse resonse $h_{\rm LP}(n)$ of the filter. Is the filter causal? How long is the impulse response?

10. Consider a filter described by equation (3). Assume the input is given by $x = \cos(\frac{\pi}{4}n)$. What is the output y(n)?