MOwNiT - aproksymacja wielomianami trygonometrycznymi

1. Sprzęt

System operacyjny:

- Windows 10 19044.2604

Język:

- Python 3.10, numpy 1.24.2, matplotlib 3.7.1, jupyter

Procesor:

- AMD Ryzen 7 4700U
 - 2. Treść zadania

Dla funkcji:

$$F(x) = \sin(2x) * \sin(2x^2/\pi), x < -2\pi, \pi >$$

obliczyć wartości funkcji f(x) dla n punktów. Następnie opierając się na wyliczonych wartościach przybliżyć zadaną funkcję za pomocą aproksymacji średniokwadratowej wielomianami trygonometrycznymi.

Należy przeprowadzić serię eksperymentów numerycznych, w których zostaną użyte różne liczby punktów dyskretyzacji oraz zestawy funkcji bazowych z różną liczbą funkcji. Następnie trzeba oszacować błędy wynikające z przybliżenia i przedstawić graficznie ciekawe przypadki.

3. Informacje wstępne

Wielomian trygonometryczny stopnia P jest to funkcja postaci:

$$T_p(x) = a_0 + \sum_{j=1}^p a_j \cos(jx) + b_j \sin(jx),$$

określona na przedziale $[-\pi,\pi]$.

Ze względu na fakt, że układ funkcji bazowych:

$$1, \sin(x), \cos(x), \dots, \sin(mx), \cos(mx)$$

jest ortogonalny to układ równań aproksymacji średniokwadratowej staje się ortogonalny. Ostatecznie funkcja aproksymująca f(x) została wyznaczona za pomocą wzoru:

$$f(x) = \frac{a_0}{2} + \sum_{j=1}^{m} a_j \cos(jx) + b_j \sin(jx)$$
$$a_j = \frac{2}{n} \sum_{i=0}^{n-1} F(x_i) \cos(jx_i)$$
$$b_j = \frac{2}{n} \sum_{i=0}^{n-1} F(x_i) \cos(jx_i)$$

Gdzie:

n – liczba punktów dyskretyzacji F(x)

m – stopień wielomianu

Ze względu na to, że liczba niewiadomych wynosi 2m+1 to aby problem był dobrze uwarunkowany należy zadbać o zachowanie nierówności:

$$2m + 1 \le n$$

Ze względu na przedział określenia wielomianu trygonometrycznego w eksperymentach numerycznych dokonano mapowania przedziałów z użyciem wzoru:

$$x' = \frac{x-a}{b-a}(d-c) + c,$$

gdzie:

(a, b) – przedział mapowany

(c, d) – przedział na który dokonywane jest mapowanie

 $x \in (a, b)$

x' - x po mapowaniu

Dokładność aproksymacji została zmierzona przy pomocy 2 metryk:

• błędu maksymalnego

$$\forall i \in < i, p > \max |f(x_i) - F(x_i)|$$

• błędu średniokwadratowego

$$\frac{1}{p}\sqrt{\sum_{i=0}^{p}(f(x_i)-(Fx_i))^2}$$

Gdzie p oznacza liczbę punktów, dla których przeprowadzono pomiar.

4. Wykonanie ćwiczenia

Aproksymacja została wykonana dla:

$$\forall (n,m): n \in \{3,5,7,10,15,20,25,30,35,40,45,50,55,60,65,70\} \land m \in \{2,3,4,5,6,8,10,12,15\}$$

Liczba punktów dla których liczone były wartości to 1000.

n\m	2	3	4	5	6	8	10	12	15
5	1,1629E+00								
7	9,4951E-01	9,4951E-01							
10	1,3804E+00	1,3804E+00	1,6767E+00						
15	1,2695E+00	1,4670E+00	1,3207E+00	1,2749E+00	1,3493E+00				
20	9,6054E-01	9,5537E-01	1,0861E+00	1,1224E+00	1,1931E+00	8,4440E-01			
25	9,4656E-01	9,5077E-01	1,0521E+00	1,0434E+00	1,0637E+00	7,3609E-01	7,0058E-01	6,2106E-01	
30	9,4508E-01	9,5603E-01	1,0434E+00	1,0273E+00	1,0381E+00	6,9712E-01	5,6793E-01	3,3397E-01	
35	9,4479E-01	9,5805E-01	1,0413E+00	1,0235E+00	1,0327E+00	6,9000E-01	5,7048E-01	3,2955E-01	1,6666E-01
40	9,4475E-01	9,5902E-01	1,0406E+00	1,0222E+00	1,0310E+00	6,8761E-01	5,7021E-01	3,2709E-01	1,4906E-01
45	9,4476E-01	9,5959E-01	1,0404E+00	1,0218E+00	1,0303E+00	6,8648E-01	5,6951E-01	3,2887E-01	1,4377E-01
50	9,4480E-01	9,5998E-01	1,0404E+00	1,0216E+00	1,0300E+00	6,8583E-01	5,6881E-01	3,3091E-01	1,4167E-01
55	9,4484E-01	9,6025E-01	1,0405E+00	1,0215E+00	1,0299E+00	6,8540E-01	5,6819E-01	3,3205E-01	1,4076E-01
60	9,4488E-01	9,6047E-01	1,0405E+00	1,0215E+00	1,0299E+00	6,8510E-01	5,6765E-01	3,3275E-01	1,4037E-01
65	9,4492E-01	9,6064E-01	1,0406E+00	1,0216E+00	1,0299E+00	6,8487E-01	5,6718E-01	3,3320E-01	1,4023E-01
70	9,4495E-01	9,6078E-01	1,0407E+00	1,0216E+00	1,0299E+00	6,8469E-01	5,6678E-01	3,3352E-01	1,4020E-01

Tabela 1.Przedstawia wartość błędu maksymalnego w zależności od n – liczby węzłów i m – stopnia wielomianu aproksymującego

Najmniejszy wielkości 1,402E-01 błąd uzyskano dla 70 węzłów i wielomianu stopnia 15. Błąd największej wielkości uzyskano dla 10 węzłów i wielomianu stopnia 4.

n\m	2	3	4	5	6	8	10	12	15
5	1,570E-02								
7	1,381E-02	1,381E-02							
10	1,663E-02	1,663E-02	1,581E-02						
15	1,386E-02	1,425E-02	1,304E-02	1,298E-02	1,333E-02				
20	1,287E-02	1,284E-02	1,099E-02	1,099E-02	1,081E-02	8,689E-03			
25	1,286E-02	1,282E-02	1,093E-02	1,082E-02	1,037E-02	6,824E-03	6,179E-03	5,596E-03	
30	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,746E-03	5,736E-03	3,428E-03	
35	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,741E-03	5,719E-03	3,363E-03	1,260E-03
40	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,739E-03	5,716E-03	3,356E-03	1,189E-03
45	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,738E-03	5,714E-03	3,353E-03	1,174E-03
50	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,737E-03	5,712E-03	3,351E-03	1,166E-03
55	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,736E-03	5,712E-03	3,349E-03	1,160E-03
60	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,736E-03	5,711E-03	3,348E-03	1,156E-03
65	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,735E-03	5,710E-03	3,347E-03	1,153E-03
70	1,286E-02	1,281E-02	1,093E-02	1,082E-02	1,036E-02	6,735E-03	5,710E-03	3,346E-03	1,150E-03

Tabela 2.Przedstawia wartość błędu średniokwadratowego w zależności od n – liczby

węzłów i m – stopnia wielomianu aproksymującego

Najmniejszy wielkości 1,15E-03 błąd uzyskano dla 70 węzłów i wielomianu stopnia 15, są to te same parametry, dla których uzyskano najmniejszy błąd maksymalny. Błąd największej wielkości uzyskano dla 10 węzłów i wielomianu stopnia 2 i 3.

Wykres 1. Przedstawia rezultat aproksymacji wielomianem trygonometrycznym stopnia 15 i dla 70 węzłów.

Wykres 2. Przedstawia rezultat aproksymacji wielomianem algebraicznym stopnia 15 i dla 70 węzłów.

Patrząc na wykres 1 widać, że najlepsza aproksymacja wielomianami trygonometrycznymi daje dla zadanej funkcji daje rezultaty bardziej zbliżone do interpolacji niż do aproksymacji wielomianami algebraicznymi, której rezultat jest widoczny na wykresie 2 dla tych samych parametrów.

Wykres 3. Przedstawia rezultat aproksymacji wielomianem trygonometrycznym stopnia 4 i dla 10 węzłów.

Największy błąd maksymalny jest spowodowany charakterystyką funkcji zadanej i rozmieszczeniem jednego z węzłów, który nagina wielomian aproksymacyjny w kierunku jednego z minimów w niedalekim sąsiedztwie jednego z maksimów.

Wykres 4. Przedstawia rezultat aproksymacji wielomianem trygonometrycznym stopnia 3 i dla 10 węzłów.

Wykres 5. Przedstawia rezultat aproksymacji wielomianem trygonometrycznym stopnia 2 i dla 10 węzłów.

Najgorsze rezultaty dla błędu średniokwadratowego są przedstawione an wykresach 4 i 5. Ciekawe jest to, że są one w zasadzie identyczne. Jest to spowodowane, wartościami współczynników a_4 i b_4 , które są rzędu E-016 co w praktyce jest równe 0.

poprzednia- następna wartość									
n\m	2	3	4	5	6	8	10	12	15
"5-7"	18,35%								
"7-10"	-45,38%	-45,38%							
"10-15"	8,03%	-6,27%	21,23%						
"15-20"	24,34%	34,87%	17,76%	11,96%	11,58%				
"20-25"	1,45%	0,48%	3,13%	7,04%	10,84%	12,83%			
"25-30"	0,16%	-0,55%	0,82%	1,55%	2,41%	5,29%	18,93%	46,23%	
"30-25"	0,03%	-0,21%	0,20%	0,37%	0,51%	1,02%	-0,45%	1,32%	
"35-40"	0,01%	-0,10%	0,06%	0,12%	0,17%	0,35%	0,05%	0,75%	10,56%
"40-45"	0,00%	-0,06%	0,02%	0,05%	0,07%	0,16%	0,12%	-0,54%	3,55%
"45-50"	0,00%	-0,04%	0,00%	0,02%	0,03%	0,10%	0,12%	-0,62%	1,46%
"50-55"	0,00%	-0,03%	0,00%	0,01%	0,01%	0,06%	0,11%	-0,34%	0,64%
"55-60"	0,00%	-0,02%	-0,01%	0,00%	0,00%	0,04%	0,10%	-0,21%	0,28%
"60-65"	0,00%	-0,02%	-0,01%	0,00%	0,00%	0,03%	0,08%	-0,14%	0,10%
"65-70"	0,00%	-0,01%	-0,01%	0,00%	0,00%	0,03%	0,07%	-0,09%	0,02%

Tabela 3. Przedstawia zmiany procentowe błędu maksymalnego dla danego stopnia aproksymującego przy zmianie liczby węzłów.

poprzednia- następna wartość\m	2	3	4	5	6	8	10	12	15
"5-7"	12,06%								
"7-10"	-20,41%	-20,41%							
"10-15"	16,61%	14,26%	17,53%						
"15-20"	7,19%	9,92%	15,71%	15,37%	18,95%				
"20-25"	0,05%	0,20%	0,48%	1,48%	4,02%	21,46%			
"25-30"	0,00%	0,01%	0,01%	0,04%	0,08%	1,15%	7,16%	38,74%	
"30-25"	0,00%	0,00%	0,01%	0,01%	0,01%	0,07%	0,29%	1,91%	
"35-40"	0,00%	0,00%	0,00%	0,01%	0,01%	0,03%	0,06%	0,19%	5,65%
"40-45"	0,00%	0,00%	0,00%	0,00%	0,00%	0,02%	0,03%	0,09%	1,29%
"45-50"	0,00%	0,00%	0,00%	0,00%	0,00%	0,01%	0,02%	0,06%	0,68%
"50-55"	0,00%	0,00%	0,00%	0,00%	0,00%	0,01%	0,02%	0,05%	0,47%
"55-60"	0,00%	0,00%	0,00%	0,00%	0,00%	0,01%	0,01%	0,04%	0,36%
"60-65"	0,00%	0,00%	0,00%	0,00%	0,00%	0,01%	0,01%	0,03%	0,28%
"65-70"	0,00%	0,00%	0,00%	0,00%	0,00%	0,01%	0,01%	0,02%	0,22%

Tabela 4. Przedstawia zmiany procentowe błędu średniokwadratowego dla danego stopnia aproksymującego przy zmianie liczby węzłów.

W tabelach 3 i 4 można zaważyć generalną niezależność dokładności aproksymacji w zależności od liczby węzłów. Dla wielomianów niskiego stopnia zwiększenie liczby węzłów może nawet zmniejszyć dokładność w obu metrykach. Ostatecznie jednak wartości zmian szybko się stabilizują i zachodzą minimalne (dla błędu maksymalnego) lub w praktyce zerowe (dla błędu średniokwadratowego).

n\poprzednia-								
następna								
wartość m	"2-3"	"3-4"	"4-5"	"5-6"	"6-8"	"8-10"	"10-12"	"12-15"
5								
7	0,00%							
10	0,00%	-21,46%						
15	-15,56%	9,97%	3,47%	-5,84%				
20	0,54%	-13,68%	-3,34%	-6,30%	29,23%			
25	-0,44%	-10,65%	0,82%	-1,95%	30,80%	4,82%	11,35%	
30	-1,16%	-9,14%	1,55%	-1,05%	32,85%	18,53%	41,20%	
35	-1,40%	-8,69%	1,71%	-0,91%	33,19%	17,32%	42,23%	49,43%
40	-1,51%	-8,51%	1,77%	-0,86%	33,31%	17,07%	42,64%	54,43%
45	-1,57%	-8,43%	1,79%	-0,84%	33,37%	17,04%	42,25%	56,28%
50	-1,61%	-8,38%	1,81%	-0,83%	33,42%	17,06%	41,82%	57,19%
55	-1,63%	-8,35%	1,82%	-0,82%	33,45%	17,10%	41,56%	57,61%
60	-1,65%	-8,33%	1,82%	-0,82%	33,48%	17,14%	41,38%	57,81%
65	-1,66%	-8,32%	1,83%	-0,81%	33,50%	17,18%	41,25%	57,92%
70	-1,68%	-8,31%	1,83%	-0,81%	33,52%	17,22%	41,16%	57,96%

Tabela 5. Przedstawia procentowe zmiany błędu maksymalnego dla danej liczby węzłów przy zmianie stopnia wielomianu aproksymacyjnego.

n\poprzednia- następna wartość	"2-3"	"3-4"	"4-5"	"5-6"	"6-8"	"8-10"	"10-12"	"12-15"
5								
7	0,00%							
10	0,00%	4,93%						
15	-2,82%	8,55%	0,42%	-2,73%				
20	0,20%	14,43%	0,01%	1,62%	19,61%			
25	0,35%	14,67%	1,02%	4,16%	34,21%	9,46%	9,43%	
30	0,36%	14,68%	1,05%	4,20%	34,92%	14,97%	40,23%	
35	0,36%	14,68%	1,05%	4,20%	34,96%	15,16%	41,20%	62,52%
40	0,36%	14,68%	1,05%	4,20%	34,97%	15,19%	41,28%	64,57%
45	0,36%	14,68%	1,05%	4,20%	34,98%	15,20%	41,31%	65,00%
50	0,36%	14,69%	1,05%	4,20%	34,99%	15,21%	41,34%	65,22%
55	0,36%	14,69%	1,05%	4,20%	34,99%	15,21%	41,36%	65,36%
60	0,36%	14,69%	1,05%	4,20%	35,00%	15,22%	41,37%	65,48%
65	0,36%	14,69%	1,05%	4,20%	35,00%	15,22%	41,38%	65,56%
70	0,36%	14,69%	1,05%	4,20%	35,00%	15,22%	41,39%	65,63%

Tabela 6. Przedstawia procentowe zmiany błędu średniokwadratowego dla danej liczby węzłów przy zmianie stopnia wielomianu aproksymacyjnego.

Tabele 5 i 6 przedstawiają zmiany dokładności dla obu metryk błędu dla danej liczby węzłów przy zmianie stopnia wielomianu aproksymującego. Widać tutaj generalną zależność miedzy stopniem wielomianu aproksymującego, a dokładnością aproksymacji. Mimo wahań zmian dla błędu maksymalnego od przejścia z wielomianu stopnia 6 na 8 dla obu metryk każde

kolejne zwiększenie stopnia tylko poprawia dokładność. Dodatkowo w przeciwieństwie do zmiany liczby wierzchołków przy zadanym stopniu nie następuje wypłaszczenie przyrostu dokładności.