CHAPTER-1 RELATIONS AND FUNCTIONS

EXERCISE 1.4

- 1. Determine whether or not each of the definitions of * given below gives a binary operation. In the event that * is not a binary operation, give justification for this.
 - (i) On \mathbb{Z}^+ , define a * b = a b
 - (ii) On \mathbb{Z}^+ , define a * b = ab
- (iii) On \mathbb{R} , define $a * b = ab^2$
- (iv) On \mathbb{Z}^+ , define a * b = |a b|
- (v) On \mathbb{Z}^+ , define a * b = a
- 2. For each operation * defined below, determine whether it is binary, commutative, or associative.
 - (i) On \mathbb{Z} , define a * b = a b
 - (ii) On \mathbb{Q} , define a * b = ab + 1
- (iii) On \mathbb{Q} , define $a * b = \frac{ab}{2}$
- (iv) On \mathbb{Z}^+ , define $a * b = 2^{ab}$
- (v) On \mathbb{Z}^+ , define $a * b = a^b$
- (vi) On $\mathbb{R} \{-1\}$, define $a * b = \frac{a}{b+1}$
 - **3.** Consider the binary operation \wedge on the set $\{1, 2, 3, 4, 5\}$ defined by

$$a \wedge b = \min(a, b).$$

Write the operation table of the operation \wedge .

- **4.** Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table (Table 1.2).
 - (i) Compute (2*3)*4 and 2*(3*4).
 - (ii) Is * commutative?

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	3
4	1	2	1	4	1
5	1	1	3	1	5

- (iii) Compute (2*3)*(4*5).
 - 5. Let *' be the binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by

$$a *' b = H.C.F.$$
 of a and b .

Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

- **6.** Let * be the binary operation on $\mathbb N$ given by $a*b=\mathrm{L.C.M.}$ of a and b. Find
 - (i) 5*7, 20*16
 - (ii) Is * commutative?
- (iii) Is * associative?
- (iv) Find the identity of * in \mathbb{N}
- (v) Which elements of \mathbb{N} are invertible for the operation *?
- **7.** Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b = L.C.M. of a and b a binary operation? Justify your answer.
- **8.** Let * be the binary operation on \mathbb{N} defined by a*b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist an identity for this binary operation on \mathbb{N} ?
 - **9.** Let * be a binary operation on the set \mathbb{Q} of rational numbers as follows:
 - (i) a * b = a b
 - (ii) $a * b = a^2 + b^2$
- (iii) a * b = a + ab
- (iv) $a * b = (a b)^2$
- $(v) \ a * b = \frac{ab}{4}$

(vi)
$$a * b = ab^2$$

Find which of the binary operations are commutative and which are associative.

- **10.** Find which of the operations given above has identity.
- 11. Let $A = \mathbb{N} \times \mathbb{N}$ and * be the binary operation on A defined by

$$(a,b)*(c,d) = (a+c,b+d).$$

Show that * is commutative and associative. Find the identity element for * on A, if any.

Mathematics

- 12. State whether the following statements are true or false. Justify.
 - (i) For an arbitrary binary operation * on a set \mathbb{N} , a*a=a for all $a\in\mathbb{N}$.
 - (ii) If * is a commutative binary operation on \mathbb{N} , then a*(b*c) = (c*b)*a.
- 13. Consider a binary operation * on \mathbb{N} defined as $a*b=a^3+b^3$. Choose the correct answer.
- (A) Is * both associative and commutative?
- (B) Is * commutative but not associative?
- (C) Is * associative but not commutative?
- (D) Is * neither commutative nor associative?