

PCT

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE		ATTORNEY'S DOCKET NUMBER 23541-01
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO. (If known) 09/423093
INTERNATIONAL APPLICATION NO PCT/AU98/00315	INTERNATIONAL FILING DATE 01/05/1998 (1 MAY 1998)	PRIORITY DATE CLAIMED 01/05/1997 (01 MAY 1997)
TITLE OF INVENTION NUCLEIC ACID MOLECULES SPECIFIC FOR BACTERIAL ANTIGENS AND USES THEREOF		
APPLICANT(S) FOR DO/EO/US Peter Richard REEVES and Lei WANG		
Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:		
<ol style="list-style-type: none"> <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. <input checked="" type="checkbox"/> This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). <input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ol style="list-style-type: none"> <input checked="" type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau). <input type="checkbox"/> has been transmitted by the International Bureau. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US) <input type="checkbox"/> A translation of the International Application into English (35 U.S.C. 371(c)(2)). <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ol style="list-style-type: none"> <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). <input type="checkbox"/> have been transmitted by the International Bureau <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. <input checked="" type="checkbox"/> have not been made and will not be made. <input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). <input type="checkbox"/> A translation of the annexes of the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). 		
Items 11. to 16. below concern document(s) or information included:		
<ol style="list-style-type: none"> <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98 <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. <input checked="" type="checkbox"/> A FIRST preliminary amendment. <ol style="list-style-type: none"> <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. <input type="checkbox"/> A substitute specification. <input type="checkbox"/> A change of power of attorney and/or address letter. <input checked="" type="checkbox"/> Other items or information: <ul style="list-style-type: none"> - PCT Publication No. WO 98/50531 - PCT Request - PCT Chapter II Demand - International Search Report and Citations - International Preliminary Examination Report - Written Opinion 		
EXPRESS MAIL Label No. EL007669381US - November 1, 1999		

09/423093		INTERNATIONAL APPLICATION NO PCT/AU98/00315	ATTORNEY'S DOCKET NUMBER 23541-01				
17. <input checked="" type="checkbox"/> The following fees are submitted:		CALCULATIONS PTO USE ONLY					
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)): Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO \$1070.00							
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$930.00							
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$790.00							
International preliminary examination fee (37 CFR 1.482) paid to USPTO but all claims did not satisfy provisions of PCT Article 33(1)-(4) \$720.00							
International preliminary examination fee (37 CFR 1.482) paid to USPTO and all claims satisfied provisions of PCT Article 33(1)-(4) \$98.00							
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$ 1070.00					
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$					
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE				
Total claims	52 - 20 =	32	x \$22.00 \$ 576				
Independent claims	16 - 3 =	13	x \$82.00 \$ 1014				
MULTIPLE DEPENDENT CLAIM(S) (if applicable)	1	+ \$270.00	\$ 260				
TOTAL OF ABOVE CALCULATIONS =		\$ 2920					
Reduction of 1/2 for filing by small entity, if applicable. A Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28).		+ \$ -1460					
SUBTOTAL =		\$ 1460					
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		\$					
TOTAL NATIONAL FEE =		\$ 1460					
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +		\$					
TOTAL FEES ENCLOSED =		\$ 1460					
		Amount to be refunded: \$					
		charged: \$					
<p>a. <input checked="" type="checkbox"/> A check in the amount of \$ 1460 to cover the above fees is enclosed</p> <p>b. <input type="checkbox"/> Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No 03-3415. A duplicate copy of this sheet is enclosed.</p>							
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137 (a) or (b)) must be filed and granted to restore the application to pending status.</p> <p>SEND ALL CORRESPONDENCE TO:</p> <p style="text-align: right;"> SIGNATURE</p> <p>William H. Dippert Cowan Liebowitz & Latman, P.C. 1133 Avenue of the Americas New York, NY 10036-6799</p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">NAME</td> <td style="width: 50%;">William H. Dippert</td> </tr> <tr> <td>REGISTRATION NUMBER</td> <td>26.723</td> </tr> </table>				NAME	William H. Dippert	REGISTRATION NUMBER	26.723
NAME	William H. Dippert						
REGISTRATION NUMBER	26.723						

09/423093

420 Rec'd PCT/PTO 154 NOV 1999

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Peter Richard REEVES, et al.

Serial No.: to be assigned

Filed: to be assigned

For: NUCLEIC ACID MOLECULES SPECIFIC FOR
BACTERIAL ANTIGENS AND USES THEREOF

November 1, 1999

Asst. Commissioner for Patents
U.S. Patent and Trademark Office
Washington, D.C. 20231

PRELIMINARY AMENDMENT

S I R :

Prior to examination or calculation of the filing fee,
please amend the above-referenced application as follows:

IN THE CLAIMS:

At lines 1 and 2 of each of Claims 27 and 28, change "any
one of claims 22 to 26" to -- claim 22 --.

Claim 29, lines 3 and 4, Claim 30, lines 3 and 4, and Claim
31, lines 3 and 4, change "any one of claims 16 to 28" to --
claim 16 or 28 --.

Claim 42, line 1, change "31" to -- 32 --.

Respectfully submitted,

William H. Dippert
Reg. No. 26,723

COWAN, LIEBOWITZ & LATMAN, P.C.
1133 Avenue of the Americas
New York, NY 10036-6799
(212) 790-9200

EXPRESS MAIL CERTIFICATE 37 C.F.R. 1.10

Date of Deposit November 1, 1999

Express Mail Label No. EL007669381US

I hereby certify that this paper is being deposited with the U.S. Postal Service
"Express Mail Post Office to Addressee" service under 37 C.F.R. 1.10 on the
date indicated above and is addressed to Commissioner of Patents and
Trademarks, Washington, D.C. 20231

Eugene Acevedo
Name of Person Mailing

Signature

STATEMENT CLAIMING SMALL ENTITY STATUS (37 CFR 1.9(f) & 1.27(d))—NONPROFIT ORGANIZATION		Docket Number (Optional) 23541-01
--	--	--------------------------------------

Applicant, Patentee, or Identifier: Peter Richard REEVES and Lei WANG

Application or Patent No.: To be assigned

Filed or Issued: To be assigned

Title: NUCLEIC ACID MOLECLES SPECIFIC FOR BACTERIAL ANTIGENS AND USES ...

I hereby state that I am an official empowered to act on behalf of the nonprofit organization identified below:

NAME OF NONPROFIT ORGANIZATION The University of Sydney

ADDRESS OF NONPROFIT ORGANIZATION Parramatta Road, Sydney NSW, Australia 2006

TYPE OF NONPROFIT ORGANIZATION:

UNIVERSITY OR OTHER INSTITUTION OF HIGHER EDUCATION

TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE (26 U.S.C. 501(a) and 501(c)(3))

NONPROFIT SCIENTIFIC OR EDUCATIONAL UNDER STATUTE OF STATE OF THE UNITED STATES OF AMERICA
(NAME OF STATE _____)
(CITATION OF STATUTE _____)

WOULD QUALIFY AS TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE (26 U.S.C. 501(a) and 501(c)(3))
IF LOCATED IN THE UNITED STATES OF AMERICA

WOULD QUALIFY AS NONPROFIT SCIENTIFIC OR EDUCATIONAL UNDER STATUTE OF STATE OF THE UNITED
STATES OF AMERICA IF LOCATED IN THE UNITED STATES OF AMERICA
(NAME OF STATE _____)
(CITATION OF STATUTE _____)

I hereby state that the nonprofit organization identified above qualifies as a nonprofit organization as defined in 37 CFR 1.9(e) for purposes of paying reduced fees to the United States Patent and Trademark Office regarding the invention described in:

the specification filed herewith with title as listed above.

the application identified above.

the patent identified above.

I hereby state that rights under contract or law have been conveyed to and remain with the nonprofit organization regarding the above identified invention. If the rights held by the nonprofit organization are not exclusive, each individual, concern, or organization having rights in the invention must file separate statements as to their status as small entities and that no rights to the invention are held by any person, other than the inventor, who would not qualify as an independent inventor under 37 CFR 1.9(e) if that person made the invention, or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

Each person, concern, or organization having any rights in the invention is listed below:

no such person, concern, or organization exists.

each such person, concern, or organization is listed below.

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate (37 CFR 1.28(b)).

NAME OF PERSON SIGNING *Claire Baxter*

CLAIREE BAXTER

TITLE IN ORGANIZATION OF PERSON SIGNING *Director Business Liaison Office*

ADDRESS OF PERSON SIGNING *UNIVERSITY OF SYDNEY, AUSTRALIA 2006*

SIGNATURE *Claire Baxter* DATE *Oct 19 1999*

09/423093

58/PRTS

WO 98/50531

PCT/AU98/00315

- 1 - 420 Rec'd PCT/PTO 01 NOV 1999

Nucleic acid molecules specific for bacterial antigens and uses thereof.

TECHNICAL FIELD

5 The invention relates to novel nucleotide sequences located in a gene cluster which controls the synthesis of a bacterial polysaccharide antigen, especially an O antigen, and the use of those nucleotide sequences for the detection of bacteria which express particular
10 polysaccharide antigens (particularly O antigens) and for the identification of the polysaccharide antigens (particularly O antigens) of those bacteria.

BACKGROUND ART

15 Enteropathogenic *E. coli* strains are well known causes of diarrhoea and haemorrhagic colitis in humans and can lead to potentially life threatening sequelae including haemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Some of these strains are
20 commonly found in livestock and infection in humans is usually a consequence of consumption of contaminated meat or dairy products which have been improperly processed. The O specific polysaccharide component (the "O antigen") of lipopolysaccharide is known to be a major virulence factor of enteropathogenic *E. coli* strains.

The *E. coli* O antigen is highly polymorphic and 166 different forms of the antigen have been defined; Ewing, W. H. [in Edwards and Ewings "Identification of the Enterobacteriaceae" Elsevier. Amsterdam (1986)] discusses 30 128 different O antigens while Lior H. (1994) extends the number to 166 [in "Classification of *Escherichia coli* In *Escherichia coli* in domestic animals and humans pp31-72. Edited by C.L.Gyles CAB International]. The genus *Salmonella enterica* has 46 known O antigen types [Popoff M.Y. et al (1992) "Antigenic formulas of the *Salmonella enterica* serovars" 6th revision WHO Collaborating Centre for Reference and Research on *Salmonella enterica*, Institut Pasteur Paris France].

An important step in determining the biosynthesis of O antigens and therefore the mechanism of the polymorphism has been to characterise the gene clusters controlling O antigen biosynthesis. The genes specific for the synthesis of the O antigen are generally located in a gene cluster at map position 45 minutes on the chromosome of E. coli K-12 [Bachmann, B. J. 1990 "Linkage map of Escherichia coli K-12". *Microbiol. Rev.* 54: 130-197], and at the corresponding position in S. enterica LT2 [Sanderson et al (1995) "Genetic map of Salmonella enterica typhimurium", Edition VIII *Microbiol. Rev.* 59: 241-303]. In both cases the O antigen gene cluster is close to the *gnd* gene as is the case in other strains of E. coli and S. enterica [Reeves P.R. (1994) "Biosynthesis 15 and assembly of lipopolysaccharide", 281-314. in A. Neuberger and L.L.M. van Deenen (eds) "Bacterial cell wall, new comprehensive biochemistry" vol 27 Elsevier Science Publishers]. These genes encode enzymes for the synthesis of nucleotide diphosphate sugars and for assembly of the sugars into oligosaccharide units and in general for polymerisation to O antigen.

The E. coli O antigen gene clusters for a wide range of E. coli O antigens have been cloned but the O7, O9, O16 and O111 O antigens have been studied in more detail with only O9 and O16 having been fully characterised with regard to nucleotide sequence to date [Kido N., Torgov V.I., Sugiyama T., Uchiya K., Sugihara H., Komatsu T., Kato N. & Jann K. (1995) "Expression of the O9 polysaccharide of Escherichia coli: sequencing of the E. coli O9 rfb gene cluster, characterisation of mannosyl transferases, and evidence for an ATP-binding cassette transport system" *J. of Bacteriol.* 177 2178-2187; Stevenson G., Neal B., Liu D., Hobbs M., Packer N.H., Batley M., Redmond J.W., Lindquist L. & Reeves PR (1994) 30 "Structure of the O antigen of E. coli K12 and the sequence of its rfb gene cluster" *J. of Bacteriol.* 176 4144-4156; Jayaratne, P. et al. (1991) "Cloning and analysis of duplicated rfbM and rfbK genes involved in the 35

formation of GDP-mannose in *Escherichia coli* O9:K30 and participation of *rfb* genes in the synthesis of the group 1 K30 capsular polysaccharide" *J. Bacteriol.* 176: 3126-3139; Valvano, M. A. and Crosa, J. H. (1989)" Molecular cloning

- 5 and expression in *Escherichia coli* K-12 of chromosomal genes determining the O7 lipopolysaccharide antigen of a human invasive strain of *E.coli* O7:K1". *Inf and Immun.* 57:937-943; Marolda C. L. And Valvano, M. A. (1993). "Identification, expression, and DNA sequence of the GDP-mannose biosynthesis genes encoded by the O7 *rfb* gene 10 cluster of strain VW187 (*Escherichia coli* O7:K1)". *J. Bacteriol.* 175:148-158.]

Bastin D.A., et al. 1991 ["Molecular cloning and expression in *Escherichia coli* K-12 of the *rfb* gene cluster determining the O antigen of an *E.coli* O111 strain". *Mol. Microbiol.* 5:9 2223-2231] and Bastin D.A. and Reeves, P.R. [(1995)] Sequence and analysis of the O antigen gene(*rfb*)cluster of *Escherichia coli* O111". *Gene* 164: 17-23] isolated chromosomal DNA encoding the *E. coli* 15 O111 *rfb* region and characterised a 6962 bp fragment of *E. coli* O111 *rfb*. Six open reading frames (orfs) were identified in the 6962 bp partial fragment and the alignment of the sequences of these orfs revealed homology with genes of the GDP-mannose pathway, *rfbK* and *rfbM*, and 20 other *rfb* and *cps* genes.

- The nucleotide sequences of the loci which control expression of Salmonella enterica B, A, D1, D2, D3, C1, C2 and E O antigens have been characterised [Brown, P. K., L. K. Romana and P. R. Reeves (1991) "Cloning of the *rfb* gene cluster of a group C2 Salmonella enterica: comparison with the *rfb* regions of groups B and D *Mol. Microbiol.* 5:1873-1881; Jiang, X.-M., B. Neal, F. Santiago, S. J. Lee, L. K. Romana, and P. R. Reeves (1991) "Structure and sequence of the *rfb* (O antigen) gene cluster of Salmonella enterica 25 serovar typhimurium (LT2)". *Mol. Microbiol.* 5:692-713; Lee, S. J., L. K. Romana, and P. R. Reeves (1992) "Sequences and structural analysis of the *rfb* (O antigen)gene cluster from a group C1 Salmonella enterica

- enterica strain" J. Gen. Microbiol. 138: 1843-1855; Lui, D., N. K. Verma, L. K. Romana, and P. R. Reeves (1991) "Relationship among the rfb regions of Salmonella enterica serovars A, B and D" J. Bacteriol. 173: 4814-4819; Verma, N. K., and P. Reeves (1989) "Identification and sequence of rfbS and rfbE, which determine the antigenic specificity of group A and group D Salmonella entericae" J. Bacteriol. 171: 5694-5701; Wang, L., L. K. Romana, and P. R. Reeves (1992) "Molecular analysis of a Salmonella enterica enterica group E1 rfb gene cluster: O antigen and the genetic basis of the major polymorphism" Genetics 130: 429-443; Wyk, P., and P. Reeves (1989). "Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B Salmonella entericae: homology with galactose epimerase" J. Bacteriol. 171: 5687-5693.; Xiang, S. H., M. Hobbs, and P. R. Reeves. 1994 Molecular analysis of the rfb gene luster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J. Bacteriol. 176: 4357 -4365; Curd, H., D. Liu and P. R. Reeves, 1998. Relationships among the O antigen Salmonella enterica groups B, D1, D2, and D3. J. Bacteriol. 180: 1002-1007.].
- Of the closely related Shigella (which really can be considered to be part of E. coli) S. dysenteriae and S. flexneri O antigens have been fully sequenced and are next to gnd. [Klena JD & Schnaitman CA (1993) "Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1" Mol. Microbiol. 9 393-402; Morona R., Mavris M., Fallarino A. & Manning P. (1994) "Characterisation of the rfc region of Shigella flexneri" J.Bacteriol 176: 733-747]
- Inasmuch as the O antigen of enteropathogenic E. coli strains and the O antigen of Salmonella enterica strains are major virulence factors and are highly polymorphic, there is a real need to develop highly specific, sensitive, rapid and inexpensive diagnostic assays to

detect E. coli and assays to detect S. enterica. There is also a real need to develop diagnostic assays to identify the O antigens of E. coli strains and assays to identify the O antigens of S. enterica strains. With regard to the detection of E. coli these needs extend beyond EHEC (enteropathogenic haemorrhagic E. coli) strains but this is the area of greatest need. There is interest in diagnostics for ETEC (enterotoxigenic E. coli) etc in E. coli.

10 The first diagnostic systems employed in this field
used large panels of antisera raised against E. coli O
antigen expressing strains or S. enterica O antigen
expressing strains. This technology has inherent
difficulties associated with the preparation, storage and
15 usage of the reagents, as well as the time required to
achieve a meaningful diagnostic result.

Nucleotide sequences derived from the O antigen gene clusters of S. enterica strains have been used to determine S. enterica O antigens in a PCR assay [Luk,
20 J.M.C. et al. (1993) "Selective amplification of abequose and paratose synthase genes (*rfb*) by polymerase chain reaction for identification of S. enterica major serogroups (A, B, C2, and D)", *J. Clin. Microbiol.* 31:2118-2123].
The prior complete nucleotide sequence characterisation of
25 the entire *rfb* locus of serovars Typhimurium, Paratyphi A, Typhi, Muenchen, and Anatum; representing groups B, A, D1, C2 and E1 respectively enabled Luk et al. to select oligonucleotide primers specific for those serogroups.
Thus the approach of Luk et al. was based on aligning
30 known nucleotide sequences corresponding to CDP-abequose and CDP-paratose synthesis genes within the O antigen regions of S. enterica serogroups E1, D1, A, B and C2 and exploiting the observed nucleotide sequence differences in order to identify serotype-specific oligonucleotides.

35 In an attempt to determine the O antigen serotype of
a Shiga-like toxin producing E. coli strain, Paton, A. W.,
et al. 1996 ["Molecular microbiological investigation of
an outbreak of Hemolytic-Uremic Syndrome caused by dry

- 6 -

fermented sausage contaminated with Shiga-like toxin producing *Escherichia coli*". *J. Clin. Microbiol.* 34: 1622-1627], used oligonucleotides derived from the *wbdI* (*orf6*) region, which were believed to be specific to the *E. coli*

5 O111 antigen and which were derived from *E. coli* O111 sequence, in a PCR diagnostic assay. Unpublished reports indicate that the approach of Paton et al. is deficient in that the nucleotide sequences derived from *wbdi* may not specifically identify the O111 antigen and in fact lead to detection of false positive results. Paton et al.
10 disclose the detection of 5 O111 antigen isolates by PCR when in fact from only 3 of those isolates did they detect bacteria which reacted with O111 specific antiserum.

15 DESCRIPTION OF THE INVENTION

Whilst not wanting to be held to a particular hypothesis, the present inventors now believe that the reported false positives found with the Paton et al. method are due to the fact that the nucleic acid molecules employed by Paton et al. were derived from genes which have a putative function as a sugar pathway gene, [Bastin D.A. and Reeves, P.R. (1995) Sequence and analysis of the O antigen gene(*rfb*) cluster of *Escherichia coli* O111. *Gene* 164: 17-23] which they now believe to lack the necessary nucleotide sequence specificity to identify the *E. coli* O antigen. The inventors now believe that many of the nucleic acid molecules derived from sugar pathway genes expressed in *S. enterica* or other enterobacteria are also likely to lack the necessary nucleotide sequence specificity to identify specific O antigens or specific serotypes.

In this regard it is important to note that the genes for the synthesis of a polysaccharide antigen include those related to the synthesis of the sugars present in the antigen (sugar pathway genes) and those related to the manipulation of those sugars to form the polysaccharide. The present invention is predominantly concerned with the latter group of genes, particularly the assembly and

transport genes such as transferase, polymerase and flippase genes.

The present inventors have surprisingly found that the use of nucleic acid molecules derived from particular assembly and transport genes, particularly transferase, wzx and wzy genes, within O antigen gene clusters can improve the specificity of the detection and identification of O antigens. The present inventors believe that the invention is not necessarily limited to the detection of the particular O antigens which are encoded by the nucleic acid molecules exemplified herein, but has broad application for the detection of bacteria which express an O antigen and the identification of O antigens in general. Further because of the similarities between the gene clusters involved in the synthesis of O antigens and other polymorphic polysaccharide antigens, such as bacterial capsular antigens, the inventors believe that the methods and molecules of the present invention are also applicable to these other polysaccharide antigens.

Accordingly, in one aspect the present invention relates to the identification of nucleic acid molecules which are useful for the detection and identification of specific bacterial polysaccharide antigens.

The invention provides a nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit, including a wzx gene, wzy gene, or a gene with a similar function; the gene being involved in the synthesis of a particular bacterial polysaccharide antigen, wherein the sequence of the nucleic acid molecule is specific to the particular bacterial polysaccharide antigen.

Polysaccharide antigens, such as capsular antigens of *E. coli* (Type I and Type II), the Virulence capsule of *S. enterica* sv. Typhi and the capsules of species such as *Streptococcus pneumoniae* and *Staphylococcus albus* are

encoded by genes which include nucleotide sugar pathway genes, sugar transferase genes and genes for the transport and processing of the polysaccharide or oligosaccharide unit. In some cases these are wzx or wzy but in other cases they are quite different because a different processing pathway is used. Examples of other gene clusters include the gene clusters for an extracellular polysaccharide of Streptococcus thermophilus, an exopolysaccharide of Rhizobium meliloti and the K2 capsule of Klebsiella pneumoniae. These all have genes which by experimental analysis, comparison of nucleotide sequence or predicted protein structure, can be seen to include nucleotide sugar pathway genes, sugar transferase genes and genes for oligosaccharide or polysaccharide processing.

In the case of the E. coli K-12 colanic acid capsule gene cluster [Stevenson et al (1996) "Organization of the *Escherichia coli* K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid". J. Bacteriol 178: 4885-4893] genes from the three classes were identified either provisionally or definitively. Colanic acid capsule is classified with the Type I capsule of E. coli.

The present inventors believe that, in general, transferase genes and genes for oligosaccharide processing will be more specific for a given capsule than the genes coding for the nucleotide sugar synthetic pathways as most sugars present in such capsules occur in the capsules of different serotypes. Thus the nucleotide sugar synthesis pathway genes could now be predicted to be common to more than one capsule type.

As elaborated below the present inventors recognise that there may be polysaccharide antigen gene clusters which share transferase genes and/or genes for oligosaccharide or polysaccharide processing so that completely random selection of nucleotide sequences from within these genes may still lead to cross-reaction; an example with respect to capsular antigens is provided by

the *E. coli* type II capsules for which only transferase genes are sufficiently specific. However, the present inventors in light of their current results nonetheless consider the transferase genes or genes controlling oligosaccharide or polysaccharide processing to be superior targets for nucleotide sequence selection for the specific detection and characterisation of polysaccharide antigen types. Thus where there is similarity between particular genes, selection of nucleotide sequences from within other transferase genes or genes for oligosaccharide or polysaccharide processing from within the relevant gene cluster will still provide specificity, or alternatively the use of combinations of nucleotide sequences will provide the desired specificity. The combinations of nucleotide sequences may include nucleotide sequences derived from pathway genes together with nucleotide sequences derived from transferase, *wzx* or *wzy* genes.

Thus the invention also provides a panel of nucleic acid molecules wherein the nucleic acid molecules are derived from a combination of genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including *wzx* or *wzy* genes; wherein the combination of genes is specific to the synthesis of a particular bacterial polysaccharide antigen and wherein the panel of nucleic acid molecules is specific to a bacterial polysaccharide antigen. In another preferred form, the nucleic acid molecules are derived from a combination of genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including *wzx* or *wzy* genes, together with nucleic acid molecules derived from pathway genes.

In a second aspect the present invention relates to the identification of nucleic acid molecules which are useful for the detection of bacteria which express O antigens and for the identification of the O antigens of those bacteria in diagnostic assays.

The invention provides a nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit such as a wzx or 5 wzy gene, the gene being involved in the synthesis of a particular bacterial O antigen, wherein the sequence of the nucleic acid molecule is specific to the particular bacterial O antigen.

10 The nucleic acids of the invention may be variable in length. In one embodiment they are from about 10 to about 20 nucleotides in length.

15 In one preferred embodiment, the invention provides a nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit including a wzx or wzy gene the gene being involved in the synthesis of an O antigen expressed by E. coli, wherein the sequence of the nucleic acid molecule is specific to the O antigen.

20 In one more preferred embodiment, the sequence of the nucleic acid molecule is specific to the nucleotide sequence encoding the O111 antigen (SEQ ID NO:1). More preferably, the sequence is derived from a gene selected from the group consisting of *wbdH* (nucleotide position 739 25 to 1932 of SEQ ID NO:1), *wzx* (nucleotide position 8646 to 9911 of SEQ ID NO:1), *wzy* (nucleotide position 9901 to 10953 of SEQ ID NO:1), *wbdM* (nucleotide position 11821 to 12945 of SEQ ID NO:1) and fragments of those molecules of at least 10-12 nucleotides in length. Particularly 30 preferred nucleic acid molecules are those set out in Table 5 and 5A, with respect to the above mentioned genes.

35 In another more preferred embodiment, the sequence of the nucleic acid molecule is specific to the nucleotide sequence encoding the O157 antigen (SEQ ID NO:2). More preferably the sequence is derived from a gene selected from the group consisting of *wbdN* (nucleotide position 79 to 861 of SEQ ID NO:2), *wbdO*, (nucleotide position 2011 to 2757 < SEQ ID NO:2), *wbdP* (nucleotide position 5257 to

- 11 -

6471 of SEQ ID NO:2)), *wbdR* (13156 to 13821 of SEQ ID NO:2), *wzx* (nucleotide position 2744 to 4135 of SEQ ID NO:2) and *wzy* (nucleotide position 858 to 2042 of SEQ ID NO:2). Particularly preferred nucleic acid molecules are 5 those set out in Table 6 and 6A.

The invention also provides in a further preferred embodiment a nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or 10 oligosaccharide unit including a *wzx* or *wzy* gene; the gene being involved in the synthesis of an O antigen expressed by *Salmonella enterica*, wherein the sequence of the nucleic acid molecule is specific to the O antigen.

In one more preferred form of this embodiment, the 15 sequence of the nucleic acid molecule is specific to the nucleotide sequence encoding the *S. enterica* C2 antigen (SEQ ID NO:3). More preferably the sequence of the nucleic acid molecule is derived from a gene selected from the group consisting of *wbaR* (nucleotide position 2352 to 20 3314 of SEQ ID NO:3), *wbaL* (nucleotide position 3361 to 3875 of SEQ ID NO:3), *wbaQ* (nucleotide position 3977 to 5020 of SEQ ID NO:3), *wbaW* (nucleotide position 6313 to 7323 of SEQ ID NO:3), *wbaZ* (nucleotide position 7310 to 8467 of SEQ ID NO:3), *wzx* (nucleotide position 1019 to 25 2359 of SEQ ID NO:3) and *wzy* (nucleotide position 5114 to 6313 of SEQ ID NO:3). Particularly preferred nucleic acid molecules are those set out in Table 7.

In another more preferred form of this embodiment, 30 the sequence of the nucleic acid molecule is specific to the nucleotide sequence encoding the *S. enterica* B antigen (SEQ ID NO:4). More preferably the sequence is derived from *wzx* (nucleotide position 12762 to 14054 of SEQ ID NO:4) or *wbaV* (nucleotide position 14059 to 15060 of SEQ ID NO:4). Particularly preferred nucleic acid molecules 35 are those set out in Table 8 which are derived from *wzx* and *wbaV* genes.

In a further more preferred form of this embodiment, the sequence of the nucleic acid molecule is specific to

- 12 -

the S. enterica D3 O antigen and is derived from the wzy gene.

In yet a further preferred form of this embodiment, the sequence of the nucleic acid molecule is specific to the S. enterica E1 O antigen and is derived from the wzx gene.

While transferase genes, or genes coding for the transport or processing of a polysaccharide or oligosaccharide unit, such as a wzx or wzy gene, are superior targets for specific detection of individual O antigen types there may well be individual genes or parts of them within this group that can be demonstrated to be the same or closely related between different O antigen types such that cross-reactions can occur. Cross reactions should be avoided by the selection of a different target within the group or the use of multiple targets within the group.

Further, it is recognised that there are cases where O antigen gene clusters have arisen from recombination of at least two strains such that the unique O antigen type is provided by a combination of gene products shared with at least two other O antigen types. The recognised example of this phenomenon is the S. enterica O antigen serotype D2 which has genes from D1 and E1 but none unique to D2. In these circumstances the detection of the O antigen type can still be achieved in accordance with the invention, but requires the use of a combination of nucleic acid molecules to detect a specific combination of genes that exists only in that particular O antigen gene cluster.

Thus, the invention also provides a panel of nucleic acid molecules wherein the nucleic acid molecules are derived from genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including wzx or wzy genes, wherein the panel of nucleic acid molecules is specific to a bacterial O antigen. Preferably the particular bacterial O antigen is expressed by S. enterica. More preferably,

SEARCHED - EXAMINED -

the panel of nucleic acid molecules is specific to the D2 O antigen and is derived from the E1 wzy gene and the D1 wzx gene.

5 The combinations of nucleotide sequences may include nucleotide sequences derived from pathway genes, together with nucleotide sequences derived from transferase, wzx or wzy genes.

Thus, the invention also provides a panel of nucleic acid molecules, wherein the nucleic acid molecules are 10 derived from genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including wzx or wzy genes, and sugar pathway genes, wherein the panel of nucleic acid molecules is specific to a particular bacterial O antigen.

15 Preferably the O antigen is expressed S. enterica.

Further it is recognised that there may be instances where spurious hybridisation will arise through initial selection of a sequence found in many different genes but this is typically recognisable by, for instance, 20 comparison of band sizes against controls in PCR gels, and an alternative sequence can be selected.

The present inventors believe that based on the teachings of the present invention and available information concerning polysaccharide antigen gene 25 clusters (including O antigen gene clusters), and through use of experimental analysis, comparison of nucleic acid sequences or predicted protein structures, nucleic acid molecules in accordance with the invention can be readily derived for any particular polysaccharide antigen of interest. Suitable bacterial strains can typically be 30 acquired commercially from depositary institutions.

As mentioned above there are currently 166 defined E. coli O antigens while the S. enterica has 46 known O antigen types [Popoff M.Y. et al (1992) "Antigenic 35 formulas of the Salmonella serovars" 6th revision WHO Collaborating centre for Reference and Research on Salmonella, Institut Pasteur Paris France]. Many other genera of bacteria are known to have O antigens and these

include Citrobacter, Shigella, Versinia, Plesiomonas, Vibrio and Proteus.

Samples of the 166 different E. coli O antigen serotypes are available from Statens Serum Institut,

5 Copenhagen, Denmark.

The 46 S. enterica serotypes are available from Institute of Medical and Veterinary Science, Adelaide, Australia.

In another aspect, the invention relates to a method
10 of testing a sample for the presence of one or more bacterial polysaccharide antigens comprising contacting the sample with at least one oligonucleotide molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme

15 for transport or processing of oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene; wherein said gene is involved in the synthesis of the bacterial polysaccharide antigen; under conditions suitable to permit the at least one oligonucleotide molecule to
20 specifically hybridise to at least one such gene of any bacteria expressing the particular bacterial polysaccharide antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules.

Where a single specific oligonucleotide molecule is
25 unavailable a combination of molecules hybridising specifically to the target region may be used. Thus the invention provides a panel of nucleic acid molecules for use in the method of testing of the invention, wherein the nucleic acid molecules are derived from genes encoding
30 transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including *wzx* or *wzy* genes, wherein the panel of nucleic acid molecules is specific to a particular bacterial polysaccharide. The panel of nucleic acid molecules can
35 include nucleic acid molecules derived from sugar pathway genes where necessary.

In another aspect, the invention relates to a method of testing a sample for the presence of one or more

bacterial polysaccharide antigens comprising contacting the sample with at least one pair of oligonucleotide molecules, with at least one oligonucleotide molecule of the pair capable of specifically hybridising to: (i) a
5 gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene; wherein said gene is involved in the synthesis of the bacterial polysaccharide antigen; under conditions suitable to
10 permit the at least one oligonucleotide molecule of the pair of molecules to specifically hybridise to at least one such gene of any bacteria expressing the particular bacterial polysaccharide antigen present in the sample and detecting any specifically hybridised oligonucleotide
15 molecules.

The pair of oligonucleotide molecules may both hybridise to the same gene or to different genes. Only one oligonucleotide molecule of the pair need hybridise specifically to sequence specific for the particular antigen type. The other molecule can hybridise to a non-specific region.

Where the particular polysaccharide antigen gene cluster has arisen through recombination, the at least one pair of oligonucleotide molecules may be selected to be
25 capable of hybridising to a specific combination of genes in the cluster specific to that polysaccharide antigen, or multiple pairs may be selected to provide hybridisation to the specific combination of genes. Even where all the genes in a particular cluster are unique, the method may
30 be carried out using nucleotide molecules which recognise a combination of genes within the cluster.

Thus the invention provides a panel containing pairs of nucleic acid molecules for use in the method of testing of the invention, wherein the pairs of nucleic acid
35 molecules are derived from genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including *wzx* or *wzy* genes, wherein the panel of nucleic acid molecules is

specific to a particular bacterial polysaccharide antigen. The panel of nucleic acid molecules can include pairs of nucleic acid molecules derived from sugar pathway genes where necessary.

- 5 In another aspect, the invention relates to a method
of testing a sample for the presence of one or more
particular bacterial O antigens comprising contacting the
sample with at least one oligonucleotide molecule capable
of specifically hybridising to: (i) a gene encoding an O
10 antigen transferase, or (ii) a gene encoding an enzyme for
transport or processing of the oligosaccharide or
polysaccharide unit, including a *wzx* or *wzy* gene; wherein
said gene is involved in the synthesis of the particular O
15 antigen; under conditions suitable to permit the at least
one oligonucleotide molecule to specifically hybridise to
at least one such gene of any bacteria expressing the
particular bacterial O antigen present in the sample and
detecting any specifically hybridised oligonucleotide
molecules. Preferably the bacteria are *E. coli* or *S.
20 enterica*. More preferably, the *E. coli* express the 0157
serotype or the 0111 serotype. More preferably the *S.
enterica* express the C2 or B serotype. Preferably, the
method is a Southern blot method. More preferably, the
nucleic acid molecule is labelled and hybridisation of the
25 nucleic acid molecule is detected by autoradiography or
detection of fluorescence.

The inventors envisage circumstances where a single specific oligonucleotide molecule is unavailable. In these circumstances a combination of molecules hybridising specifically to the target region may be used. Thus the invention provides a panel of nucleic acid molecules for use in the method of testing of the invention, wherein the nucleic acid molecules are derived from genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including *wzx* or *wzy* genes, wherein the panel of nucleic acid molecules is specific to a particular bacterial O antigen. Preferably the particular bacterial O antigen is

expressed by *S. enterica*. The panel of nucleic acid molecules can include nucleic acid molecules derived from sugar pathway genes where necessary.

In another aspect, the invention relates to a method of testing a sample for the presence of one or more particular bacterial O antigens comprising contacting the sample with at least one pair of oligonucleotide molecules with at least one oligonucleotide molecule of the pair being capable of specifically hybridising to: (i) a gene encoding an O antigen transferase, or (ii) a gene encoding an enzyme for transport or processing of the oligosaccharide or polysaccharide unit, including a *wzx* or *wzy* gene; wherein said gene is involved in the synthesis of the particular O antigen; under conditions suitable to permit the at least one oligonucleotide molecule to specifically hybridise to at least one such gene of any bacteria expressing the particular bacterial O antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules.

Preferably the bacteria are *E. coli* or *S. enterica*. More preferably, the *E. coli* are of the 0111 or the 0157 serotype. More preferably the *S. enterica* express the C2 or B serotype. Preferably, the method is a polymerase chain reaction method. More preferably the oligonucleotide molecules for use in the method of the invention are labelled. Even more preferably the hybridised oligonucleotide molecules are detected by electrophoresis. Preferred oligonucleotides for use with 0111 which provide for specific detection of 0111 are illustrated in Table 5 and 5A with respect to the genes *wbdH*, *wzx*, *wzy* and *wbdM*. Preferred oligonucleotide molecules for use with 0157 which provide for specific detection of 0157 are illustrated in Table 6 and 6A.

With respect to serotypes C2 and B, suitable oligonucleotide molecules can be selected from appropriate regions described in column 3 of Tables 7 and 8.

The inventors envisage rare circumstances whereby two genetically similar gene clusters encoding serologically

different O antigens have arisen through recombination of genes or mutation so as to generate polymorphic variants. In these circumstances multiple pairs of oligonucleotides may be selected to provide hybridisation to the specific combination of genes. The invention thus provides a panel containing pairs of nucleic acid molecules for use in the method of testing of the invention, wherein the pairs of nucleic acid molecules are derived from genes encoding transferases and/or enzymes for the transport or processing of a polysaccharide or oligosaccharide unit including *wzx* or *wzy* genes, wherein the panel of nucleic acid molecules is specific to a particular bacterial O antigen. Preferably the particular bacterial O antigen is expressed by *S. enterica*. The panel of nucleic acid molecules can include pairs of nucleic acid molecules derived from sugar pathway genes where necessary.

In another aspect, the invention relates to a method for testing a food derived sample for the presence of one or more particular bacterial O antigens comprising contacting the sample with at least one pair of oligonucleotide molecules with at least one oligonucleotide molecule of the pair being capable of specifically hybridising to: (i) a gene encoding an O antigen transferase, or (ii) a gene encoding an enzyme for transport or processing of the oligosaccharide or polysaccharide unit, including a *wzx* or *wzy* gene; wherein the gene is involved in the synthesis of the particular O antigen; under conditions suitable to permit the at least one oligonucleotide molecule to specifically hybridise to at least one such gene of any bacteria expressing the particular bacterial polysaccharide antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules. Preferably the bacteria are *E. coli* or *S. enterica*. More preferably, the *E. coli* are of the 0111 or 0157 serotype. More preferably the *S. enterica* are of the C2 or B serotype. Preferably, the method is a polymerase chain reaction method. More preferably the oligonucleotide molecules for use in the

method of the invention are labelled. Even more preferably the hybridised oligonucleotide molecules are detected by electrophoresis.

In another aspect the present invention relates to a method for testing a faecal derived sample for the presence of one or more particular bacterial O antigens comprising contacting the sample with at least one pair of oligonucleotide molecules with at least one oligonucleotide molecule of the pair being capable of specifically hybridising to: (i) a gene encoding an O antigen transferase, or (ii) a gene encoding an enzyme for transport or processing of the oligosaccharide or polysaccharide unit, including a wzx or wzy gene; wherein said gene is involved in the synthesis of the particular O antigen; under conditions suitable to permit the at least one oligonucleotide molecule to specifically hybridise to at least one of said genes of any bacteria expressing the particular bacterial O antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules. Preferably the bacteria are *E. coli* or *S. enterica*. More preferably, the *E. coli* are of the 0111 or 0157 serotype. More preferably, the *S. enterica* are of the C2 or B serotype. Preferably, the method is a polymerase chain reaction method. More preferably the oligonucleotide molecules for use in the method of the invention are labelled. Even more preferably the hybridised oligonucleotide molecules are detected by electrophoresis.

In another aspect, the present invention relates to a method for testing a sample derived from a patient for the presence of one or more particular bacterial O antigens comprising contacting the sample with at least one pair of oligonucleotide molecules with at least one oligonucleotide molecule of the pair being capable of specifically hybridising to: (i) a gene encoding an O antigen transferase, or (ii) a gene encoding an enzyme for transport or processing of the oligosaccharide or polysaccharide unit, including a wzx or wzy gene; wherein

said gene is involved in the synthesis of the particular O antigen; under conditions suitable to permit the at least one oligonucleotide molecule to specifically hybridise to at least one such gene of any bacteria expressing the 5 particular bacterial O antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules. Preferably the bacteria are E. coli or S. enterica. More preferably, the E. coli are of the 0111 or 10 0157 serotype. More preferably, the S. enterica are of the C2 or B serotype. Preferably, the method is a polymerase chain reaction method. More preferably the oligonucleotide molecules for use in the method of the invention are labelled. Even more preferably the 15 hybridised oligonucleotide molecules are detected by electrophoresis.

In the above described methods it will be understood that where pairs of oligonucleotides are used one of the oligonucleotide sequences may hybridise to a sequence that is not from a transferase, wzx or wzy gene. Further where 20 both hybridise to one of these gene products they may hybridise to the same or a different one of these genes.

In addition it will be understood that where cross reactivity is an issue a combination of oligonucleotides may be chosen to detect a combination of genes to provide 25 specificity.

The invention further relates to a diagnostic kit which can be used for the detection of bacteria which express bacterial polysaccharide antigens and the identification of the bacterial polysaccharide type of 30 those bacteria.

Thus in a further aspect, the invention relates to a kit comprising a first vial containing a first nucleic acid molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an 35 enzyme for transport or processing oligosaccharide or polysaccharide, including a wzx or wzy gene, wherein the said gene is involved in the synthesis of a bacterial polysaccharide. The kit may also provide in the same or a

separate vial a second specific nucleic acid capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide, 5 including a wzx or wzy gene, wherein the said gene is involved in the synthesis of a bacterial polysaccharide, wherein the sequence of the second nucleic acid molecule is different from the sequence of the first nucleic acid molecule.

10 In a further aspect the invention relates to a kit comprising a first vial containing a first nucleic acid molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide including wzx or wzy, wherein the said gene is involved in the synthesis of a bacterial O antigen. 15 The kit may also provide in the same or a separate vial a second specific nucleic acid capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide including wzx or wzy, wherein the said gene is involved in the synthesis of O antigen, wherein the sequence of the second nucleic acid molecule is different from the sequence of the first 20 nucleic acid molecule. Preferably the first and second nucleic acid sequences are derived from E. coli or the first and second nucleic acid sequences are derived from S. enterica.

30 The present inventors provide full length sequence of the O157 gene cluster for the first time and recognise that from this sequence of this previously uncloned full gene cluster appropriate recombinant molecules can be generated and inserted for expression to provide expressed O157 antigens useful in applications such as vaccines.

35

DEFINITIONS

The phrase, "a nucleic acid molecule derived from a gene" means that the nucleic acid molecule has a

nucleotide sequence which is either identical or substantially similar to all or part of the identified gene. Thus a nucleic acid molecule derived from a gene can be a molecule which is isolated from the identified gene by physical separation from that gene, or a molecule which is artificially synthesised and has a nucleotide sequence which is either identical to or substantially similar to all or part of the identified gene. While some workers consider only the DNA strand with the same sequence as the mRNA transcribed from the gene, here either strand is intended.

Transferase genes are regions of nucleic acid which have a nucleotide sequence which encodes gene products that transfer monomeric sugar units.

Flippase or *wzx* genes are regions of nucleic acid which have a nucleotide sequence which encodes a gene product that flips oligosaccharide repeat units generally composed of three to six monomeric sugar units to the external surface of the membrane.

Polymerase or *wzy* genes are regions of nucleic acid which have a nucleotide sequence which encodes gene products that polymerise repeating oligosaccharide units generally composed of 3-6 monomeric sugar units.

The nucleotide sequences provided in this specification are described in the sequence listing as anti-sense sequences. This term is used in the same manner as it is used in *Glossary of Biochemistry and Molecular Biology Revised Edition*, David M. Glick, 1997 Portland Press Ltd., London on page 11 where the term is described as referring to one of the two strands of double-stranded DNA usually that which has the same sequence as the mRNA. We use it to describe this strand which has the same sequence as the mRNA.

NOMENCLATURE**Synonyms for *E. coli* O111 rfb****Current names Our names Bastin et al. 1991**

5	wbdH	orf1	
	gmd	orf2	
	wbdI	orf3	orf3.4*
	manC	orf4	rfbM*
	manB	orf5	rfbK*
10	wbdJ	orf6	orf6.7*
	wbdK	orf7	orf7.7*
	wzx	orf8	orf8.9 and rfbX*
	wzy	orf9	
	wbdL	orf10	
15	wbdM	orf11	

* Nomenclature according to Bastin D.A., et al. 1991 "Molecular cloning and expression in *Escherichia coli* K-12 of the rfb gene cluster determining the O antigen of an *E. coli* O111 strain". *Mol. Microbiol.* 5:9 2223-2231.

20 Other Synonyms

	wzy	rfc	
	wzx	rfbX	
	rmlA	rfbA	
	rmlB	rfbB	
25	rmlC	rfbC	
	rmlD	rfbD	
	glf	orf6*	
	wbbI	orf3#, orf8* of <i>E. coli</i> K-12	
	wbbJ	orf2#, orf9* of <i>E. coli</i> K-12	
30	wbbK	orf1#, orf10* of <i>E. coli</i> K-12	
	wbbL	orf5#, orf 11* of <i>E. coli</i> K-12	

Nomenclature according to Yao, Z. And M. A. Valvano 1994.

*Genetic analysis of the O-specific lipopolysaccharide biosynthesis region (rfb) of *Escherichia coli* K-12 W3110: identification of genes the confer groups-specificity to *Shigella flexineri* serotypes Y and 4a". *J. Bacteriol.* 176: 4133-4143.

* Nomenclature according to Stevenson et al. 1994. "Structure of the O-antigen of *E. coli* K-12 and the sequence of its rfb gene cluster". *J. Bacteriol.* 176: 4144-4156.

- 40 • *S. enterica* is a name introduced in 1987 to replace the many other names such as *Salmonella typhi* and *Salmonella typhimurium*, the old species names becoming serovar names as in *S. enterica* sv Typhi. However, the traditional names are still widely used.
- 45 • The O antigen genes of many species were given rfb names (rfbA etc) and the O antigen gene cluster was often referred to as the rfb cluster. There are now new names for the rfb genes as shown in the table. Both terminologies have been used herein, depending on the source of the information.

- BRIEF DESCRIPTION OF DRAWINGS

Figure 1 shows *Eco* R1 restriction maps of cosmid clones pPR1054, pPR1055, pPR1056, pPR1058, pPR1287 which are subclones of *E. coli* O111 O antigen gene cluster. The thickened line is the region common to all clones. Broken lines show segments that are non-contiguous on the chromosome. The deduced restriction map for *E. coli* strain M92 is shown above.

Figure 2 shows a restriction mapping analysis of *E. coli* O111 O antigen gene cluster within the cosmid clone pPR1058. Restriction enzymes are: (B: *Bam*H1; Bg: *Bgl*III, E: *Eco*R1; H: *Hind*III; K: *Kpn*I; P: *Pst*I; S: *Sall* and X: *Xba*I. Plasmids pPR1230, pPR1231, and pPR1288 are deletion derivatives of pPR1058. Plasmids pPR1237, pPR1238, pPR1239 and pPR1240 are in pUC19. Plasmids pPR1243, pPR1244, pPR1245, pPR1246 and pPR1248 are in pUC18, and pPR1292 is in pUC19. Plasmid pPR1270 is in pT7T319U. Probes 1, 2 and 3 were isolated as internal fragments of pPR1246, pPR1243 and pPR1237 respectively. Dotted lines indicate that subclone DNA extends to the left of the map into attached vector.

Figure 3 shows the structure of *E. coli* O111 O antigen gene cluster.

Figure 4 shows the structure of *E. coli* O157 O antigen gene cluster.

Figure 5 shows the structure *S. enterica* locus encoding the serogroup C2 O antigen gene cluster.

Figure 6 shows the structure *S. enterica* locus encoding the serogroup B O antigen gene cluster.

Figure 7 shows the nucleotide sequence of the *E. coli* O111 O antigen gene cluster. Note: (1) The first and last three bases of a gene are underlined and of italic respectively.; (2) The region which was previously sequenced by Bastin and Reeves 1995 "Sequence and analysis of the O antigen gene (rfb) cluster of *Escherichia coli* O111" Gene 164: 17-23 is marked.

Figure 8 shows the nucleotide sequence of the *E. coli* O157 O antigen gene cluster. Note: (1) The first and last

three bases of a gene (region) are underlined and of italic respectively (2) The region previously sequenced by Bilge et al. 1996 "Role of the *Escherichia coli* O157-H7 O side chain in adherence and analysis of an rfb locus". Inf. and Immun 64:4795-4801 is marked.

5 Figure 9 shows the nucleotide sequence of *S. enterica* serogroup C2 O antigen gene cluster. Note:

(1) The numbering is as in Brown et al. 1992. "Molecular analysis of the rfb gene cluster of *Salmonella* serovar 10 muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B". Mol. Microbiol. 6: 1385-1394 (2) The first and last three bases of a gene are underlined and in italics respectively. (3) Only that part 15 of the group C2 gene cluster, which differs from that of group B, was sequenced and is presented here.

Figure 10 shows the nucleotide sequence of *S. enterica* serogroup B O antigen gene cluster Note: (1) The numbering is as in Jiang et al. 1991. "Structure and sequence of the rfb (O antigen) gene cluster of *Salmonella* serovar typhimurium (strain LT2)". Mol. Microbiol. 5: 695-713. The first gene in the O antigen gene cluster is *rmlB* which starts at base 4099. (2) The first and last three bases of a gene are underlined and in italics respectively.

25 **BEST METHOD FOR CARRYING OUT THE INVENTION**

Materials and Methods-part 1

The experimental procedures for the isolation and characterisation of the *E. coli* O111 O antigen gene cluster (position 3,021-9,981) are according to Bastin 30 D.A., et al. 1991 "Molecular cloning and expression in *Escherichia coli* K-12 of the rfb gene cluster determining the O antigen of an *E. coli* O111 strain". Mol. Microbiol. 5:9 2223-2231 and Bastin D.A. and Reeves, P.R. 1995 "Sequence and analysis of the O antigen gene(rfb)cluster 35 of *Escherichia coli* O111". Gene 164: 17-23.

A. Bacterial strains and growth media

Bacteria were grown in Luria broth supplemented as required.

B. Cosmids and phage

Cosmids in the host strain x2819 were repackaged in vivo. Cells were grown in 250mL flasks containing 30mL of culture, with moderate shaking at 30°C to an optical

5 density of 0.3 at 580 nm. The defective lambda prophage was induced by heating in a water bath at 45°C for 15min followed by an incubation at 37°C with vigorous shaking for 2hr. Cells were then lysed by the addition of 0.3mL chloroform and shaking for a further 10min. Cell debris 10 were removed from 1mL of lysate by a 5min spin in a microcentrifuge, and the supernatant removed to a fresh microfuge tube. One drop of chloroform was added then shaken vigorously through the tube contents.

C. DNA preparation

15 Chromosomal DNA was prepared from bacteria grown overnight at 37°C in a volume of 30mL of Luria broth. After harvesting by centrifugation, cells were washed and resuspended in 10mL of 50mM Tris-HCl pH 8.0. EDTA was added and the mixture incubated for 20min. Then lysozyme 20 was added and incubation continued for a further 10min. Proteinase K, SDS, and ribonuclease were then added and the mixture incubated for up to 2hr for lysis to occur. All incubations were at 37°C. The mixture was then heated to 65°C and extracted once with 8mL of phenol at the same 25 temperature. The mixture was extracted once with 5mL of phenol/chloroform/iso-amyl alcohol at 4°C. Residual phenol was removed by two ether extractions. DNA was precipitated with 2 vols. of ethanol at 4°C, spooled and washed in 70% ethanol, resuspended in 1-2mL of TE and 30 dialysed. Plasmid and cosmid DNA was prepared by a modification of the Birnboim and Doly method [Birnboim, H. C. And Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA *Nucl. Acid Res.* 7:1513-1523. The volume of culture was 10mL and the 35 lysate was extracted with phenol/chloroform/iso-amyl alcohol before precipitation with isopropanol. Plasmid

SEARCHED
INDEXED
SERIALIZED
FILED

DNA to be used as vector was isolated on a continuous caesium chloride gradient following alkaline lysis of cells grown in 1L of culture.

D. Enzymes and buffers.

5 Restriction endonucleases and DNA T4 ligase were purchased from Boehringer Mannheim (Castle Hill, NSW, Australia) or Pharmacia LKB (Melbourne, VIC Australia). Restriction enzymes were used in the recommended commercial buffer.

10 E. Construction of a gene bank.

Individual aliquots of M92 chromosomal DNA (strain Stoke W, from Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark) were partially digested with 0.2U Sau3A1 for 1-15mins. Aliquots giving the greatest proportion of fragments in the size range of approximately 40-50kb were selected and ligated to vector pPR691 previously digested with BamH1 and PvuII. Ligation mixtures were packaged *in vitro* with packaging extract. The host strain for transduction was x2819 and recombinants were selected with kanamycin.

15 F. Serological procedures.

Colonies were screened for the presence of the O111 antigen by immunoblotting. Colonies were grown overnight, up to 100 per plate then transferred to nitrocellulose discs and lysed with 0.5N HCl. Tween 20 was added to TBS at 0.05% final concentration for blocking, incubating and washing steps. Primary antibody was *E. coli* O group 111 antiserum, diluted 1:800. The secondary antibody was goat anti-rabbit IgG labelled with horseradish peroxidase diluted 1:5000. The staining substrate was 4-chloro-1-naphthol. Slide agglutination was performed according to the standard procedure.

20 G. Recombinant DNA methods.

Restriction mapping was based on a combination of 35 standard methods including single and double digests and sub-cloning. Deletion derivatives of entire cosmids were produced as follows: aliquots of 1.8 μ g of cosmid DNA were

digested in a volume of 20 μ l with 0.25U of restriction enzyme for 5-80min. One half of each aliquot was used to check the degree of digestion on an agarose gel. The sample which appeared to give a representative range of fragments was ligated at 4°C overnight and transformed by the CaCl₂ method into JM109. Selected plasmids were transformed into s ϕ 174 by the same method. P4657 was transformed with pPR1244 by electroporation.

H. DNA hybridisation

Probe DNA was extracted from agarose gels by electroelution and was nick-translated using [α -32P]-dCTP. Chromosomal or plasmid DNA was electrophoresed in 0.8% agarose and transferred to a nitrocellulose membrane. The hybridisation and pre-hybridisation buffers contained either 30% or 50% formamide for low and high stringency probing respectively. Incubation temperatures were 42°C and 37°C for pre-hybridisation and hybridisation respectively. Low stringency washing of filters consisted of 3 x 20min washes in 2 x SSC and 0.1% SDS. High-stringency washing consisted of 3 x 5min washes in 2 x SSC and 0.1% SDS at room temperature, a 1hr wash in 1 x SSC and 0.1% SDS at 58°C and 15min wash in 0.1 x SSC and 0.1% SDS at 58°C.

I. Nucleotide sequencing of *E. coli* O111 O antigen gene cluster (position 3,021-9,981)

Nucleotide sequencing was performed using an ABI 373 automated sequencer (CA, USA). The region between map positions 3.30 and 7.90 was sequenced using uni-directional exonuclease III digestion of deletion families made in PT7T3190 from clones pPR1270 and pPR1272. Gaps were filled largely by cloning of selected fragments into M13mp18 or M13mp19. The region from map positions 7.90-10.2 was sequenced from restriction fragments in M13mp18 or M13mp19. Remaining gaps in both the regions were filled by priming from synthetic oligonucleotides complementary to determined positions along the sequence,

using a single stranded DNA template in M13 or phagemid. The oligonucleotides were designed after analysing the adjacent sequence. All sequencing was performed by the chain termination method. Sequences were aligned using SAP 5 [Staden, R., 1982 "Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing". *Nuc. Acid Res.* 10: 4731-4751; Staden, R., 1986 "The current status and portability of our sequence handling software". *Nuc. Acid Res.* 14: 217-231]. The 10 program NIP [Staden, R. 1982 "An interactive graphics program for comparing and aligning nucleic acid and amino acid sequence". *Nuc. Acid Res.* 10: 2951-2961] was used to find open reading frames and translate them into proteins. J. Isolation of clones carrying *E. coli* O111 O antigen gene cluster

The *E. coli* O antigen gene cluster was isolated according to the method of Bastin D.A., et al. [1991 "Molecular cloning and expression in *Escherichia coli* K-12 of the *rfb* gene cluster determining the O antigen of an *E. coli* O111 strain". *Mol. Microbiol.* 5(9), 2223-2231]. Cosmid gene banks of M92 chromosomal DNA were established in the *in vivo* packaging strain x2819. From the genomic bank, 3.3×10^3 colonies were screened with *E. coli* O111 antiserum using an immuno-blotting procedure: 5 colonies 20 (pPR1054, pPR1055, pPR1056, pPR1058 and pPR1287) were positive. The cosmids from these strains were packaged *in vivo* into lambda particles and transduced into the *E. coli* deletion mutant S ϕ 174 which lacks all O antigen genes. In this host strain, all plasmids gave positive agglutination 25 with O111 antiserum. An Eco R1 restriction map of the 5 independent cosmids showed that they have a region of approximately 11.5 kb in common (Figure 1). Cosmid pPR1058 included sufficient flanking DNA to identify several chromosomal markers linked to O antigen gene cluster and was selected for analysis of the O antigen gene cluster region.

K. Restriction mapping of cosmid pPR1058

Cosmid pPR1058 was mapped in two stages. A preliminary map was constructed first, and then the region between map positions 0.00 and 23.10 was mapped in detail, since it was shown to be sufficient for O111 antigen expression. Restriction sites for both stages are shown in Figure 2. The region common to the five cosmid clones was between map positions 1.35 and 12.95 of pPR1058.

To locate the O antigen gene cluster within pPR1058, pPR1058 cosmid was probed with DNA probes covering O antigen gene cluster flanking regions from *S. enterica* LT2 and *E. coli* K-12. Capsular polysaccharide (cps) genes lie upstream of O antigen gene cluster while the gluconate dehydrogenase (*gnd*) gene and the histidine (*his*) operon are downstream, the latter being further from the O antigen gene cluster. The probes used were pPR472 (3.35kb), carrying the *gnd* gene of LT2, pPR685 (5.3kb) carrying two genes of the cps cluster, *cpsB* and *cpsG* of LT2, and K350 (16.5kb) carrying all of the *his* operon of K-12. Probes hybridised as follows: pPR472 hybridised to 1.55kb and 3.5 kb (including 2.7 kb of vector) fragments of *Pst*I and *Hind*III double digests of pPR1246 (a *Hind*III/*Eco*R1 subclone derived from pPR1058, Figure 2), which could be located at map positions 12.95-15.1; pPR685 hybridised to a 4.4 kb *Eco*R1 fragment of pPR1058 (including 1.3 kb of vector) located at map position 0.00-3.05; and K350 hybridised with a 32kb *Eco*R1 fragment of pPR1058 (including 4.0kb of vector), located at map position 17.30-45.90. Subclones containing the presumed *gnd* region complemented a *gnd*⁻*edd* strain GB23152. On gluconate bromothymol blue plates, pPR1244 and pPR1292 in this host strain gave the green colonies expected of a *gnd*⁻*edd* genotype. The *his* phenotype was restored by plasmid pPR1058 in the *his* deletion strain S ϕ 174 on minimal medium plates, showing that the plasmid carries the entire *his* operon.

It is likely that the O antigen gene cluster region lies between *gnd* and *cps*, as in other *E. coli* and *S. enterica* strains, and hence between the approximate map

- 31 -

positions 3.05 and 12.95. To confirm this, deletion derivatives of pPR1058 were made as follows: first, pPR1058 was partially digested with *Hind*III and self ligated. Transformants were selected for kanamycin resistance and screened for expression of O111 antigen. Two colonies gave a positive reaction. EcoR1 digestion showed that the two colonies hosted identical plasmids, one of which was designated pPR1230, with an insert which extended from map positions 0.00 to 23.10. Second pPR1058 was digested with *Sall* and partially digested with *Xba*I and the compatible ends were re-ligated. Transformants were selected with kanamycin and screened for O111 antigen expression. Plasmid DNA of 8 positively reacting clones was checked using EcoR1 and *Xba*I digestion and appeared to be identical. The cosmid of one was designated pPR1231. The insert of pPR1231 contained the DNA region between map positions 0.00 and 15.10. Third, pPR1231 was partially digested with *Xba*I, self-ligated, and transformants selected on spectinomycin/ streptomycin plates. Clones were screened for kanamycin sensitivity and of 10 selected, all had the DNA region from the *Xba*I site in the vector to the *Xba*I site at position 4.00 deleted. These clones did not express the O111 antigen, showing that the *Xba*I site at position 4.00 is within the O antigen gene cluster. One clone was selected and named pPR1288. Plasmids pPR1230, pPR1231, and pPR1288 are shown in Figure 2.

L. Analysis of the *E. coli* O111 O antigen gene cluster (position 3,021-9,981) nucleotide sequence data

Bastin and Reeves [1995 "Sequence and analysis of the O antigen gene(*rfb*)cluster of *Escherichia coli* O111". Gene 164: 17-23] partially characterised the *E. coli* O111 O antigen gene cluster by sequencing a fragment from map position 3,021-9,981. Figure 3 shows the gene organisation of position 3,021-9,981 of *E. coli* O111 O antigen gene cluster. *orf3* and *orf6* have high level amino acid identity with *wcaH* and *wcaG* (46.3% and 37.2% respectively), and are likely to be similar in function to

sugar biosynthetic pathway genes in the *E. coli* K-12 colanic gene cluster. *orf4* and *orf5* show high levels of amino acid homology to *manC* and *manB* genes respectively. *orf7* shows high level homology with *rfbH* which is an abequose pathway gene. *orf8* encodes a protein with 12 transmembrane segments and has similarity in secondary structure to other *wzx* genes and is likely therefore to be the O antigen flippase gene.

10 Materials and Methods-part 2

A. Nucleotide sequencing of 1 to 3,020 and 9,982 to 14,516 of the *E. coli* O111 O antigen gene cluster

The sub clones which contained novel nucleotide sequences, pPR1231 (map position 0 and 1,510), pPR1237 (map position -300 to 2,744), pPR1239 (map position 2,744 to 4,168), pPR1245 (map position 9,736 to 12,007) and pPR1246 (map position 12,007 to 15,300) (Figure 2), were characterised as follows: the distal ends of the inserts of pPR1237, pPR1239 and pPR1245 were sequenced using the

15 M13 forward and reverse primers located in the vector. PCR walking was carried out to sequence further into each insert using primers based on the sequence data and the primers were tagged with M13 forward or reverse primer sequences for sequencing. This PCR walking procedure was repeated until the entire insert was sequenced. pPR1246

20 was characterised from position 12,007 to 14,516. The DNA of these sub clones was sequenced in both directions. The sequencing reactions were performed using the dideoxy termination method and thermocycling and reaction products were analysed using fluorescent dye and an ABI automated sequencer (CA, USA).

B. Analysis of the *E. coli* O111 O antigen gene cluster (positions 1 to 3,020 and 9,982 to 14,516 of SEQ ID NO:1) nucleotide sequence data.

25 The gene organisation of regions of *E. coli* O111 O antigen gene cluster which were not characterised by Bastin and Reeves [1995 "Sequence and analysis of the O antigen gene(*rfb*)cluster of *Escherichia coli* O111." Gene

164: 17-23], (positions 1 to 3,020 and 9,982 to 14,516) is shown in Figure 3. There are two open reading frames in region 1. Four open reading frames are predicted in region 2. The position of each gene is listed in Table 5.

5 The deduced amino acid sequence of *orf1* (*wbdH*) shares about 64% similarity with that of the *rfp* gene of *Shigella dysenteriae*. *Rfp* and *WbdH* have very similar hydrophobicity plots and both have a very convincing predicted transmembrane segment in a corresponding position. *rfp* is a galactosyl transferase involved in the synthesis of LPS core, thus *wbdH* is likely to be a galactosyl transferase gene. *orf2* has 85.7% identity at amino acid level to the *gmd* gene identified in the *E. coli* K-12 colanic acid gene cluster and is likely to be a *gmd* gene. *orf9* encodes a protein with 10 predicted transmembrane segments and a large cytoplasmic loop. This inner membrane topology is a characteristic feature of all known O antigen polymerases thus it is likely that *orf9* encodes an O antigen polymerase gene, *wzy*. *orf10* (*wbdL*) has a deduced amino acid sequence with low homology with *Lsi2* of *Neisseria gonorrhoeae*. *Lsi2* is responsible for adding GlcNAc to galactose in the synthesis of lipooligosaccharide. Thus it is likely that *wbdL* is either a colitose or glucose transferase gene. *orf11* (*wbdM*) shares high level nucleotide and amino acid similarity with *TrsE* of *Yersinia enterocholitica*. *TrsE* is a putative sugar transferase thus it is likely that *wbdM* encodes the colitose or glucose transferase.

20 In summary three putative transferase genes and an O antigen polymerase gene were identified at map position 1 to 3,020 and 9,982 to 14,516 of *E. coli* O111 O antigen gene cluster. A search of GenBank has shown that there are no genes with significant similarity at the nucleotide sequence level for two of the three putative transferase genes or the polymerase gene. SEQ ID NO:1 and Figure 7 provide the nucleotide sequence of the O111 antigen gene cluster.

Materials and Methods-part 3

A. PCR amplification of O157 antigen gene cluster from an *E. coli* O157:H7 strain (Strain C664-1992, from Statens Serum Institut, 5 Artillerivej, 2300, Copenhagen S,

5 Denmark)

E. coli O157 O antigen gene cluster was amplified by using long PCR [Cheng et al. 1994, Effective amplification of long targets from cloned inserts and human and genomic DNA" P.N.A.S. USA 91: 5695-569] with one primer (primer 10 #412: att ggt agc tgt aag cca agg gcg gta gcg t) based on the JumpStart sequence usually found in the promoter region of O antigen gene clusters [Hobbs, et al. 1994 "The JumpStart sequence: a 39 bp element common to several polysaccharide gene clusted" Mol. Microbiol. 12: 855-856], and another primer #482 (cac tgc cat acc gac gac gcc gat 15 ctg ttg ctt gg) based on the *gnd* gene usually found downstream of the O antigen gene cluster. Long PCR was carried out using the Expand Long Template PCR System from Boehringer Mannheim (Castle Hill NSW Australia), and 20 products, 14 kb in length, from several reactions were combined and purified using the Promega Wizard PCR preps DNA purification System (Madison WI USA). The PCR product was then extracted with phenol and twice with ether, precipitated with 70% ethanol, and resuspended in 40 μ L of 25 water.

B. Construction of a random DNase I bank:

Two aliquots containing about 150ng of DNA each were subjected to DNase I digestion using the Novagen DNase I Shotgun Cleavage (Madison WI USA) with a modified protocol 30 as described. Each aliquot was diluted into 45 μ L of 0.05M Tris -HCl (pH7.5), 0.05mg/mL BSA and 10mM MnCl₂. 5 μ L of 1:3000 or 1:4500 dilution of DNaseI (Novagen) (Madison WI USA) in the same buffer was added into each tube respectively and 10 μ L of stop buffer (100mM EDTA), 30%

35 glycerol, 0.5% Orange G, 0.075% xylene and cyanol (Novagen) (Madison WI USA) was added after incubation at 15°C for 5 min. The DNA from the two DNaseI reaction

tubes were then combined and fractionated on a 0.8% LMT agarose gel, and the gel segment with DNA of about 1kb in size (about 1.5mL agarose) was excised. DNA was extracted from agarose using Promega Wizard PCR Preps DNA

- 5 Purification (Madison WI USA) and resuspended in 200 µL water, before being extracted with phenol and twice with ether, and precipitated. The DNA was then resuspended in 17.25 µL water and subjected to T4 DNA polymerase repair and single dA tailing using the Novagen Single dA Tailing
10 Kit (Madison WI USA). The reaction product (85µl containing about 8ng DNA) was then extracted with chloroform:isoamyl alcohol (24:1) once and ligated to 3x 10⁻³ pmol pGEM-T (Promega) (Madison WI USA) in a total volume of 100µL. Ligation was carried out overnight at 4°C and the ligated DNA was precipitated and resuspended in 20µL water before being electroporated into E. coli strain JM109 and plated out on BCIG-IPTG plates to give a bank.
- 15

C. Sequencing

- 20 DNA templates from clones of the bank were prepared for sequencing using the 96-well format plasmid DNA miniprep kit from Advanced Genetic Technologies Corp (Gaithersburg MD USA) The inserts of these clones were sequenced from one or both ends using the standard M13 sequencing primer sites located in the pGEM-T vector. Sequencing was carried out on an ABI377 automated sequencer (CA USA) as described above, after carrying out the sequencing reaction on an ABI Catalyst (CA USA). Sequence gaps and areas of inadequate coverage were PCR
25 amplified directly from O157 chromosomal DNA using primers based on the already obtained sequencing data and sequenced using the standard M13 sequencing primer sites attached to the PCR primers.
- 30
- D. Analysis of the E. coli O157 O antigen gene cluster
35 nucleotide sequence data

Sequence data were processed and analysed using the

Staden programs [Staden, R., 1982 "Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing." *Nuc. Acid Res.* 10: 4731-4751; Staden, R., 1986 "The current status and portability of our sequence handling software". *Nuc. Acid Res.* 14: 217-231; Staden, R. 1982 "An interactive graphics program for comparing and aligning nucleic acid and amino acid sequence". *Nuc. Acid Res.* 10: 2951-2961]. Figure 4 shows the structure of *E. coli* O157 O antigen gene cluster. Twelve open reading frames were predicted from the sequence data, and the nucleotide and amino acid sequences of all these genes were then used to search the GenBank database for indication of possible function and specificity of these genes. The position of each gene is listed in Table 6. The nucleotide sequence is presented in SEQ ID NO:2 and Figure 8.

orfs 10 and 11 showed high level identity to *manC* and *manB* and were named *manC* and *manB* respectively. *orf7* showed 89% identity (at amino acid level) to the *gmd* gene of the *E. coli* colanic acid capsule gene cluster (Stevenson G., K. et al. 1996 "Organisation of the *Escherichia coli* K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid". *J. Bacteriol.* 178:4885-4893) and was named *gmd*. *orf8* showed 79% and 69% identity (at amino acid level) respectively to *wcaG* of the *E. coli* colanic acid capsule gene cluster and to *wbcJ* (*orf14.8*) gene of the *Yersinia enterocolitica* 08 O antigen gene cluster (Zhang, L. et al. 1997 "Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of *Y. enterocolitica* serotype 08". *Mol. Microbiol.* 23:63-76). Colanic acid and the *Yersinia* 08 O antigen both contain fucose as does the O157 O antigen. There are two enzymatic steps required for GDP-L-fucose synthesis from GDP-4-keto-6-deoxy-D-mannose, the product of the *gmd* gene product. However, it has been shown recently (Tonetti, M et al. 1996 Synthesis of GDP-L-fucose by the human FX protein J. Biol. Chem. 271:27274-27279) that the human FX

protein has "significant homology" with the *wcaG* gene (referred to as *Yefb* in that paper), and that the FX protein carries out both reactions to convert GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose. We believe that this makes a very strong case for *orf8* carrying out these two steps and propose to name the gene *fcl*. In support of the one enzyme carrying out both functions is the observation that there are no genes other than *manB*, *manC*, *gmd* and *fcl* with similar levels of similarity between the three bacterial gene clusters for fucose containing structures.

orf5 is very similar to *wbeE* (*rfbE*) of *Vibrio cholerae* O1, which is thought to be the perosamine synthetase, which converts GDP-4-keto-6-deoxy-D-mannose to GDP-perosamine (Stroher, U.H et al. 1995 "A putative pathway for perosamine biosynthesis is the first function encoded within the *rfb* region of *Vibrio cholerae*" O1. Gene 166: 33-42). *V. cholerae* O1 and *E. coli* O157 O antigens contain perosamine and N-acetyl-perosamine respectively.

The *V. cholerae* O1 *manA*, *manB*, *gmd* and *wbeE* genes are the only genes of the *V. cholerae* O1 gene cluster with significant similarity to genes of the *E. coli* O157 gene cluster and we believe that our observations both confirm the prediction made for the function of *wbe* of *V. cholerae*, and show that *orf5* of the O157 gene cluster encodes GDP-perosamine synthetase. *orf5* is therefore named *per*. *orf5* plus about 100bp of the upstream region (position 4022-5308) was previously sequenced by Bilge, S.S. et al. [1996 "Role of the *Escherichia coli* O157-H7 O side chain in adherence and analysis of an *rfb* locus". Infect. Immun. 64:4795-4801].

orf12 shows high level similarity to the conserved region of about 50 amino acids of various members of an acetyltransferase family (Lin, W., et al. 1994 "Sequence analysis and molecular characterisation of genes required for the biosynthesis of type 1 capsular polysaccharide in *Staphylococcus aureus*". J. Bacteriol. 176: 7005-7016) and we believe it is the N-acetyltransferase to convert GDP-perosamine to GDP-perNac. *orf12* has been named *wbdR*.

The genes *manB*, *manC*, *gmd*, *fcl*, *per* and *wbdR* account for all of the expected biosynthetic pathway genes of the O157 gene cluster.

The remaining biosynthetic step(s) required are for synthesis of UDP-GalNAc from UDP-Glc. It has been proposed (Zhang, L., et al. 1997 "Molecular and chemical characterisation of the lipopolysaccharide O-antigen and its role in the virulence of *Yersinia enterocolitica* serotype O8". Mol. Microbiol. 23:63-76) that in *Yersinia enterocolitica* UDP-GalNAc is synthesised from UDP-GlcNAc by a homologue of galactose epimerase (Gale), for which there is a *gale* like gene in the *Yersinia enterocolitica* O8 gene cluster. In the case of O157 there is no *gale* homologue in the gene cluster and it is not clear how UDP-GalNAc is synthesised. It is possible that the galactose epimerase encoded by the *gale* gene in the *gal* operon, can carry out conversion of UDP-GlcNAc to UDP-GalNAc in addition to conversion of UDP-Glc to UDP-Gal. There do not appear to be any gene(s) responsible for UDP-GalNAc synthesis in the O157 gene cluster.

orf4 shows similarity to many *wzx* genes and is named *wzx* and *orf2* which shows similarity of secondary structure in the predicted protein to other *wzy* genes and is for that reason named *wzy*.

The *orf1*, *orf3* and *orf6* gene products all have characteristics of transferases, and have been named *wbdN*, *wbdO* and *wbdP* respectively. The O157 O antigen has 4 sugars and 4 transferases are expected. The first transferase to act would put a sugar phosphate onto undecaprenol phosphate. The two transferases known to perform this function, *WbaP* (*RfbP*) and *WecA* (*Rfe*) transfer galactose phosphate and N-acetyl-glucosamine phosphate respectively to undecaprenol phosphate. Neither of these sugars is present in the O157 structure.

Further, none of the presumptive transferases in the O157 gene cluster has the transmembrane segments found in *WecA* and *WbaP* which transfer a sugar phosphate to undecaprenol phosphate and expected for any protein which

transferred a sugar to undecaprenol phosphate which is embedded within the membrane.

The WecA gene which transfers GlcNAc-P to undecaprenol phosphate is located in the Enterobacteeral Common Antigen (ECA) gene cluster and it functions in ECA synthesis in most and perhaps all *E. coli* strains, and also in O antigen synthesis for those strains which have GlcNAc as the first sugar in the O unit.

It appears that WecA acts as the transferase for addition of GalNAc-1-P to undecaprenol phosphate for the *Versinia enterocolitica* O8 O antigen [Zhang et al. 1997 "Molecular and chemical characterisation of the lipopolysaccharide O antigen and its role in the virulence of *Versinia enterocolitica* serotype O8" Mol. Microbiol.

23: 63-76.] and perhaps does so here as the O157 structure includes GalNAc. WecA has also been reported to add Glucose-1-P phosphate to undecaprenol phosphate in *E. coli* O8 and O9 strains, and an alternative possibility for transfer of the first sugar to undecaprenol phosphate is WecA mediated transfer of glucose, as there is a glucose residue in the O157 O antigen. In either case the requisite number of transferase genes are present if GalNAc or Glc is transferred by WecA and the side chain Glc is transferred by a transferase outside of the O antigen gene cluster.

orf9 shows high level similarity (44% identity at amino acid level, same length) with wcaH gene of the *E. coli* colanic acid capsule gene cluster. The function of this gene is unknown, and we give orf9 the name wbdQ.

The DNA between manB and wbdR has strong sequence similarity to one of the H-repeat units of *E. coli* K12. Both of the inverted repeat sequences flanking this region are still recognisable, each with two of the 11 bases being changed. The H-repeat associated protein encoding gene located within this region has a 267 base deletion and mutations in various positions. It seems that the H-repeat unit has been associated with this gene cluster for a long period of time since it translocated to the gene

cluster, perhaps playing a role in assembly of the gene cluster as has been proposed in other cases.

Materials and Methods - part 4

5 To test our hypothesis that O antigen genes for transferases and the *wzx*, *wzy* genes were more specific than pathway genes for diagnostic PCR, we first carried out PCR using primers for all the *E. coli* 016 O antigen genes (Table 4). The PCR was then carried out using PCR
10 primers for *E. coli* 0111 transferase, *wzx* and *wzy* genes (Table 5, 5A). PCR was also carried out using PCR primers for the *E. coli* 0157 transferase, *wzx* and *wzy* genes (Table 6, 6A).

15 Chromosomal DNA from the 166 serotypes of *E. coli* available from Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen Denmark was isolated using the Promega Genomic (Madison WI USA) isolation kit. Note that 164 of the serogroups are described by Ewing W. H.: Edwards and Ewings "Identification of the Enterobacteriaceae" Elsevier,
20 Amsterdam 1986 and that they are numbered 1-171 with numbers 31, 47, 67, 72, 93, 94 and 122 no longer valid. Of the two serogroup 19 strains we used 19ab strain F8188-41. Lior H. 1994 ["Classification of *Escherichia coli* In *Escherichia coli* in domestic animals and humans pp 31-72.
25 Edited by C.L. Gyles CAB international] adds two more numbered 172 and 173 to give the 166 serogroups used. Pools containing 5 to 8 samples of DNA per pool were made. Pool numbers 1 to 19 (Table 1) were used in the *E. coli* 0111 and 0157 assay. Pool numbers 20 to 28 were also used
30 in the 0111 assay, and pool numbers 22 to 24 contained *E. coli* 0111 DNA and were used as positive controls (Table 2). Pool numbers 29 to 42 were also used in the 0157 assay, and pool numbers 31 to 36 contained *E. coli* 0157 DNA, and were used as positive controls (Table 3). Pool
35 numbers 2 to 20, 30, 43 and 44 were used in the *E. coli* 016 assay (Tables 1 to 3). Pool number 44 contained DNA of *E. coli* K-12 strains C600 and WG1 and was used as a positive control as between them they have all of the *E.*

coli K-12 O16 O antigen genes.

PCR reactions were carried out under the following conditions: denaturing 94°C/30"; annealing, temperature varies (refer to Tables 4 to 8)/30"; extension, 72°C/1'; 5 30 cycles. PCR reaction was carried out in an volume of 25µL for each pool. After the PCR reaction, 10µL PCR product from each pool was run on an agarose gel to check for amplified DNA.

Each E. coli and S. enterica chromosomal DNA sample 10 was checked by gel electrophoresis for the presence of chromosomal DNA and by PCR amplification of the E. coli or S. enterica mdh gene using oligonucleotides based on E. coli K-12 or Salmonella enterica LT2 [Boyd et al. (1994) "Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica" Proc. Nat. Acad. Sci. USA. 91:1280-1284.] Chromosomal DNA samples from other bacteria were only checked by gel electrophoresis of 15 chromosomal DNA.

20 A. Primers based on E. coli O16 O antigen gene cluster sequence.

The O antigen gene cluster of E. coli O16 was the only typical E. coli O antigen gene cluster that had been 25 fully sequenced prior to that of O111, and we chose it for testing our hypothesis. One pair of primers for each gene was tested against pools 2 to 20, 30 and 43 of E. coli chromosomal DNA. The primers, annealing temperatures and functional information for each gene are listed in Table 30 4.

For the five pathway genes, there were 17/21, 13/21, 0/21, 0/21, 0/21 positive pools for rmlB, rmlD, rmlA, rmlC and gfp respectively (Table 4). For the wzx, wzy and three transferase genes there were no positives amongst 35 the 21 pools of E. coli chromosomal DNA tested (Table 4). In each case the #44 pool gave a positive result.

B. Primers based on the *E. coli* 0111 O antigen gene cluster sequence.

One to four pairs of primers for each of the transferase, *wzx* and *wzy* genes of 0111 were tested against

5 the pools 1 to 21 of *E. coli* chromosomal DNA (Table 5).

For *wbdH*, four pairs of primers, which bind to various regions of this gene, were tested and found to be specific for 0111 as there was no amplified DNA of the correct size in any of those 21 pools of *E. coli* chromosomal DNA

10 tested. Three pairs of primers for *wbdM* were tested, and they are all specific although primers #985/#986 produced a band of the wrong size from one pool. Three pairs of primers for *wzx* were tested and they all were specific.

Two pairs of primers were tested for *wzy*, both are

15 specific although #980/#983 gave a band of the wrong size in all pools. One pair of primers for *wbdL* was tested and found unspecific and therefore no further test was carried out. Thus, *wzx*, *wzy* and two of the three transferase genes are highly specific to 0111. Bands of the wrong

20 size found in amplified DNA are assumed to be due to chance hybridisation of genes widely present in *E. coli*. The primers, annealing temperatures and positions for each gene are in (Table 5).

The 0111 assay was also performed using pools

25 including DNA from O antigen expressing *Versinia pseudotuberculosis*, *Shigella boydii* and *Salmonella enterica* strains (Table 5A). None of the oligonucleotides derived from *wbdH*, *wzx*, *wzy* or *wbdM* gave amplified DNA of the correct size with these pools. Notably, pool number

30 25 includes *S. enterica* Adelaide which has the same O antigen as *E. coli* 0111: this pool did not give a positive PCR result for any primers tested indicating that these genes are highly specific for *E. coli* 0111.

Each of the 12 pairs binding to *wbdH*, *wzx*, *wzy* and

35 *wbdM* produces a band of predicted size with the pools containing 0111 DNA (pools number 22 to 24). As pools 22 to 24 included DNA from all strains present in pool 21 plus 0111 strain DNA (Table 2), we conclude that the 12

pairs of primers all give a positive PCR test with each of three unrelated O111 strains but not with any other strains tested. Thus these genes are highly specific for *E. coli* O111.

5

C. Primers based on the *E. coli* O157 O antigen gene cluster sequence.

Two or three primer pairs for each of the transferase, wzx and wzy genes of O157 were tested against

10 *E. coli* chromosomal DNA of pools 1 to 19, 29 and 30 (Table 6). For *wbdN*, three pairs of primers, which bind to various regions of this gene, were tested and found to be specific for O157 as there was no amplified DNA in any of those 21 pools of *E. coli* chromosomal DNA tested. Three pairs of primers for *wbdO* were tested, and they are all

15 specific although primers # 1211/#1212 produced two or three bands of the wrong size from all pools. Three pairs of primers were tested for *wbdP* and they all were specific. Two pairs of primers were tested for *wbdR* and they were all specific. For *wzy*, three pairs of primers were tested and all were specific although primer pair

20 #1203/#1204 produced one or three bands of the wrong size in each pool. For *wzx*, two pairs of primers were tested and both were specific although primer pair #1217/#1218 produced 2 bands of wrong size in 2 pools, and 1 band of wrong size in 7 pools. Bands of the wrong size found in amplified DNA are assumed to be due to chance hybridisation of genes widely present in *E. coli*. The primers, annealing temperatures and function information

25 30 for each gene are in Table 6.

The O157 assay was also performed using pools 37 to 42, including DNA from O antigen expressing *Versinia pseudotuberculosis*, *Shigella boydii*, *Versinia enterocolitica* O9, *Brucella abortus* and *Salmonella enterica* strains (Table 6A). None of the oligonucleotides derived from *wbdN*, *wzy*, *wbdO*, *wzx*, *wbdP* or *wbdR* reacted specifically with these pools, except that primer pair #1203/#1204 produced two bands with *V. enterocolitica* O9

and one of the bands is of the same size with that from the positive control. Primer pair #1203/#1204 binds to wzy. The predicted secondary structures of Wzy proteins are generally similar, although there is very low
5 similarity at amino acid or DNA level among the sequenced wzy genes. Thus, it is possible that *Y. enterocolitica* O9 has a wzy gene closely related to that of *E. coli* O157. It is also possible that this band is due to chance hybridization of another gene, as the other two wzy primer
10 pairs (#1205/#1206 and #1207/#1208) did not produce any band with *Y. enterocolitica* O9. Notably, pool number 37 includes *S. enterica* Landau which has the same O antigen as *E. coli* O157, and pool 38 and 39 contain DNA of *B. abortus* and *Y. enterocolitica* O9 which cross react
15 serologically with *E. coli* O157. This result indicates that these genes are highly O157 specific, although one primer pair may have cross reacted with *Y. enterocolitica* O9.

Each of the 16 pairs binding to wbdN, wzx, wzy, wbdO,
20 wbdP and wbdR produces a band of predicted size with the pools containing O157 DNA (pools number 31 to 36). As pool 29 included DNA from all strains present in pools 31 to 36 other than O157 strain DNA (Table 3), we conclude that the 16 pairs of primers all give a positive PCR test with each of the five unrelated O157 strains.

Thus PCR using primers based on genes wbdN, wzy,
25 wbdO, wzx, wbdP and wbdR is highly specific for *E. coli* O157, giving positive results with each of six unrelated O157 strains while only one primer pair gave a band of the expected size with one of three strains with O antigens known to cross-react serologically with *E. coli* O157.

D. Primers based on the *Salmonella enterica* serotype C2 and B O antigen gene cluster sequences.

35 We also performed a PCR using primers for the *S. enterica* C2 and B serogroup transferases, wzx, wzy and genes (Tables 7 to 9). The nucleotide sequences of C2

and B O antigen gene clusters are listed as SEQ ID NO: 3 (Fig. 9) and SEQ ID NO:4 (Fig. 10) respectively.

Chromosomal DNA from all the 46 serotypes of Salmonella enterica (Table 9) was isolated using the Promega Genomic isolation kit, 7 pools of 4 to 8 samples per pool were made. Salmonella enterica serotype B or C2 DNA was omitted from the pool for testing primers of 46 respective serotypes but added to a pool containing 6 other samples to give pool number 8 for use as a positive control.

PCR reactions were carried out under the following conditions: denaturing, 94°C/30"; annealing, temperature varies (see below)/30"; extension, 72°C/1'; 30 cycles.

PCR reaction was carried out in a volume of 25µL for each pool. After the PCR reaction, 10µL PCR product from each pool was run on an agarose gel to check for amplified DNA. For pools which gave a band of correct size, PCR was repeated using individual chromosomal samples of that pool, and agarose gel was run to check for amplified DNA from each sample.

The Salmonella enterica serotype B O antigen gene cluster (of strain LT2) was the first O antigen gene cluster to be fully sequenced, and the function of each gene has been identified experimentally [Jiang, X. M., Neal, B., Santiago, F., Lee, S. J., Romana, L. K., and Reeves, P. R. (1991) "Structure and sequence of the *rfb* (O antigen) gene cluster of *Salmonella* serovar *typhimurium* (strain LT2)." Mol. Microbiol. 5(3), 695-713; Liu, D., Cole, R., and Reeves, P. R. (1996). "An O antigen processing function for Wzx(RfbX): a promising candidate for O-unit flippase" J. Bacteriol., 178(7), 2102-2107; Liu, D., Haase, A. M., Lindqvist, L., Lindberg, A. A., and Reeves, P. R. (1993). "Glycosyl transferases of O-antigen biosynthesis in *S. enterica* : identification and characterisation of transferase genes of groups B, C2 and E1." J. Bacteriol., 175, 3408-3413; Liu, D., Lindquist, L., and Reeves P. R. (1995). "Transferases of O-antigen biosynthesis in *Salmonella enterica*: dideoxhexosyl

transferases of groups B and C2 and acetyltransferase of group C2." J. Bacteriol., 177, 4084-4088; Romana, L. K., Santiago, F. S., and Reeves, P. R. (1991). "High level expression and purification dThymidine-diphospho-D-glucose 5 4,6 dehydratase (*rfbB*) from *Salmonella* serovar *typhimurium* LT2." BBRC, 174, 846-852]. One pair of primers for each of the pathway genes and *wbaP* was tested against the pools of *Salmonella enterica* DNA, two to three pairs of primers for each of the other transferases and *wzx* genes were also 10 tested. See Table 8 for a list of primers and functional information of each gene, as well as the annealing temperature of the PCR reaction for each pair of primers.

For pathway genes of group B strain LT2, there are 19/45, 14/45, 15/45, 12/45, 6/45, 6/45, 6/45, 1/45, 15 9/45, 8/45 positives for *rmlB*, *rmlD*, *rmlA*, *rmlC*, *ddhD*, *ddhA*, *ddhB*, *ddhC*, *abe*, *manC*, and *manB* repsectively (Table 9).

For the LT2 *wzx* gene we used three primer pairs each of which gave 1/45 positive. For the 4 transferase genes 20 we used a total of 9 primer pairs. 2 primer pairs for *wbaV* gave 2/90 positives. For 3 primer pairs of *wbaN*, 11/135 gave a positive result. For the *wbaP* primer pair 10/45 gave a positive result (Table 9).

The experimental data show that oligonucleotides 25 derived from the *wzx* and *wbaV* group B O antigen genes are specific for group B O antigen amongst all 45 *Salmonella enterica* O antigen groups except O group 67. The oligonucleotides derived from *Salmonella enterica* B group *wbaN* and *wbaU* genes detected B group O antigen and also 30 produced positive results with groups A, D1 and D3. *WbaU* encodes a transferase for a Mannose $\alpha(1-4)$ Mannose linkage and is expressed in groups A, B and D1 while *wbaN*, which encodes a transferase for Rhamnose $\alpha(1-3)$ Galactose 35 linkage is present in groups A, B, D1, D2, D3 and E1. This accounts for the positive results with the group B *wbaU* and *wbaN* genes. The *wbaN* gene of groups E and D2 has considerable sequence differences from that of groups A,

B, D1 and D3 and this accounts for the positive results only with groups B, D1 and D3.

The Salmonella enterica B primers derived from *wzx* and transferase genes produced a positive result with 5 Salmonella enterica 067. We find that Salmonella enterica

10 067 has all the genes of the group B O antigen cluster. There are several possible explanations for this finding including the possibility that the gene cluster is not functional due to mutation and the group 067 antigenicity is due to another antigen, or the O antigen is modified after synthesis such that its antigenicity is changed.

Salmonella enterica 067 would therefore be scored as Salmonella enterica group B in the PCR diagnostic assay.

15 However, this is of little importance because Salmonella enterica 067 is a rare O antigen and only one (serovar Crossness) of the 2324 known serovars has the 067 serotype [Popoff M.Y. et al (1992) "Antigenic formulas of the Salmonella enterica serovars" 6th revision WHO Collaborating Centre for Reference and Research on Salmonella enterica, Institut Pasteur Paris France], and serovar Crossness had only been isolated once [M. Popoff, personal communication].

20 The Salmonella enterica B primers derived from *wbaP* reacted with group A, C2, D1, D2, D3, E1, 54, 55, 67 and 25 E4 O antigen groups. *WbaP* encodes the galactosyl transferase which initiates O unit synthesis by transfer of Galactose phosphate to the lipid carrier Undecaprenol phosphate. This reaction is common to the synthesis of several O antigens. As such *wbaP* is distinguished from other transferases of the invention as it does not make a linkage within an O antigen.

30 We also tested 20 primer pairs for the *wzx*, *wzy* and 5 transferase genes of serotype C2 and found no positives in all the 7 pools (Table 7).

35 Groups A, B, D1, D2, D3, C2 and E1 share many genes in common. Some of these genes occur with more than one sequence in which case each specific sequence can be named after one of the serogroups in which it occurs. The

distribution of these sequence specificities is shown in Table 10. The inventors have aligned the nucleotide sequences of *Salmonella enterica* wzy, wzx genes and transferase genes so as to determine specific combinations of nucleic acid molecules which can be employed to specifically detect and identify the *Salmonella enterica* groups A, B, D1, D2, D3, C2 and E1 (Table 10). The results show that many of the O antigen groups can be detected and identified using a single specific nucleic acid molecule although other groups in particular D2 and E1, and A and D1 require a panel of nucleic acid molecules derived from a combination of genes.

It will be understood that in carrying out the methods of the invention with respect to the testing of particular sample types including samples from food, patients and faeces the samples are prepared by routine techniques routinely used in the preparation of such samples for DNA based testing.

- 49 -

TABLE 1

Pool No.	Strains of which chromosomal DNA included in the pool	Source*
1	<i>E. coli</i> type strains for O serotypes 1, 2, 3, 4, 10, 16, 18 and 39	IMVS ^a
2	<i>E. coli</i> type strains for O serotypes 40, 41, 48, 49, 71, 73, 88 and 100	IMVS
3	<i>E. coli</i> type strains for O serotypes 102, 109, 119, 120, 121, 125, 126 and 137	IMVS
4	<i>E. coli</i> type strains for O serotypes 138, 139, 149, 7, 5, 6, 11 and 12	IMVS
5	<i>E. coli</i> type strains for O serotypes 13, 14, 15, 17, 19ab, 20, 21 and 22	IMVS
6	<i>E. coli</i> type strains for O serotypes 23, 24, 25, 26, 27, 28, 29 and 30	IMVS
7	<i>E. coli</i> type strains for O serotypes 32, 33, 34, 35, 36, 37, 38 and 42	IMVS
8	<i>E. coli</i> type strains for O serotypes 43, 44, 45, 46, 50, 51, 52 and 53	IMVS
9	<i>E. coli</i> type strains for O serotypes 54, 55, 56, 57, 58, 59, 60 and 61	IMVS
10	<i>E. coli</i> type strains for O serotypes 62, 63, 64, 65, 66, 68, 69 and 70	IMVS
11	<i>E. coli</i> type strains for O serotypes 74, 75, 76, 77, 78, 79, 80 and 81	IMVS
12	<i>E. coli</i> type strains for O serotypes 82, 83, 84, 85, 86, 87, 89 and 90	IMVS
13	<i>E. coli</i> type strains for O serotypes 91, 92, 95, 96, 97, 98, 99 and 101	IMVS
14	<i>E. coli</i> type strains for O serotypes 103, 104, 105, 106, 107, 108 and 110	IMVS
15	<i>E. coli</i> type strains for O serotypes 112, 162, 113, 114, 115, 116, 117 and 118	IMVS
16	<i>E. coli</i> type strains for O serotypes 123, 165, 166, 167, 168, 169, 170 and 171	See b
17	<i>E. coli</i> type strains for O serotypes 172, 173, 127, 128, 129, 130, 131 and 132	See c
18	<i>E. coli</i> type strains for O serotypes 133, 134, 135, 136, 140, 141, 142 and 143	IMVS
19	<i>E. coli</i> type strains for O serotypes 144, 145, 146, 147, 148, 150, 151 and 152	IMVS

*

- a. Institute of Medical and Veterinary Science, Adelaide, Australia
- b. 123 from IMVS; the rest from Statens Serum Institut, Copenhagen, Denmark
- c. 172 and 173 from Statens Serum Institut, Copenhagen, Denmark, the rest from IMVS

TABLE 2

Pool No.	Strains of which chromosomal DNA included in the pool	Source*
20	<i>E. coli</i> type strains for O serotypes 153, 154, 155, 156, 157, 158 , 159 and 160	IMVS
21	<i>E. coli</i> type strains for O serotypes 161, 163, 164, 8, 9 and 124	IMVS
22	As pool #21, plus <i>E. coli</i> 0111 type strain Stoke W.	IMVS
23	As pool #21, plus <i>E. coli</i> 0111:H2 strain C1250-1991	See d
24	As pool #21, plus <i>E. coli</i> 0111:H12 strain C156-1989	See e
25	As pool #21, plus <i>S. enterica</i> serovar Adelaide	See f
26	<i>Y. pseudotuberculosis</i> strains of O groups IA, IIA, IIB, IIC, III, IVA, IVB, VA, VB, VI and VII	See g
27	<i>S. boydii</i> strains of serogroups 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14 and 15	See h
28	<i>S. enterica</i> strains of serovars (each representing a different O group) Typhi, Montevideo, Ferruch, Jangwani, Raus, Hvittingfoss, Waycross, Dan, Dugbe, Basel, 65,:i:e,n,z,15 and 52:d:e,n,x,z15	IMVS

*

- d. C1250-1991 from Statens Serum Institut, Copenhagen, Denmark
- e. C156-1989 from Statens Serum Institut, Copenhagen, Denmark
- f. *S. enterica* serovar Adelaide from IMVS
- g. Dr S Aleksic of Institute of Hygiene, Germany
- h. Dr J Lefebvre of Bacterial Identification Section, Laboratoire de Santé Publique du Québec, Canada

TABLE 3

Pool No.	Strains of which chromosomal DNA included in the pool	Source*
29	<i>E. coli</i> type strains for O serotypes 153, 154, 155, 156, 158, 159 and 160	IMVS
30	<i>E. coli</i> type strains for O serotypes 161, 163, 164, 8, 9, 111 and 124	IMVS
31	As pool #29, plus <i>E. coli</i> O157 type strain A2 (O157:H19)	IMVS
32	As pool #29, plus <i>E. coli</i> O157:H16 strain C475-89	See d
33	As pool #29, plus <i>E. coli</i> O157:H45 strain C727-89	See d
34	As pool #29, plus <i>E. coli</i> O157:H2 strain C252-94	See d
35	As pool #29, plus <i>E. coli</i> O157:H39 strain C258-94	See d
36	As pool #29, plus <i>E. coli</i> O157:H26	See e
37	As pool #29, plus <i>S. enterica</i> serovar Landau	See f
38	As pool #29, plus <i>Brucella abortus</i>	See g
39	As pool #29, plus <i>Y. enterocolitica</i> O9	See h
40	<i>Y. pseudotuberculosis</i> strains of O groups IA, IIA, IIB, IIC, III, IVA, IVB, VA, VB, VI and VII	See i
41	<i>S. boydii</i> strains of serogroups 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14 and 15	See j
42	<i>S. enterica</i> strains of serovars (each representing a different O group) Typhi, Montevideo, Ferruchi, Jangwani, Raus, Hvittingfoss, Waycross, Dan, Dugbe, Basel, 65:i:e,n,z15 and 52:d:e,n,x,z15	IMVS
43	<i>E. coli</i> type strains for O serotypes 1,2,3,4,10,18 and 29	IMVS
44	As pool #43, plus <i>E. coli</i> K-12 strains C600 and WG1	IVMS See k

*

- d. O157 strains from Statens Serum Institut, Copenhagen, Denmark
- e. O157:H26 from Dr R Brown of Royal Children's Hospital, Melbourne, Victoria
- f. *S. enterica* serovar Landau from Dr M Popoff of Institut Pasteur, Paris, France
- g. *B. Abortus* from the culture collection of The University of Sydney, Sydney, Australia
- h. *Y. enterocolitica* O9 from Dr. K. Bettelheim of Victorian Infectious Diseases Reference Laboratory Victoria, Australia.
- i. Dr S Aleksic of Institute of Hygiene, Germany
- j. Dr J Lefebvre of Bacterial Identification Section, Laboratoire de Santé Publique du Québec, Canada
- k. Strains C600 and WG1 from Dr. B.J. Backmann of Department of Biology, Yale University, USA.

TABLE 4 PCR assay result using primers based on the *E. coli* serotype O16 (strain K-12) O antigen gene cluster sequence

Gene	Function	Base positions of the gene	Forward primer (base positions)	Reverse primer (base positions)	Length of the PCR fragment	Number of pools (out of 21) giving band of correct size	Annealing temperature of the PCR
<i>rmlB</i> *	TDP-rhamnose pathway	90-1175	#1064(91-109)	#1065(1175-1157)	1085bp	17	60°C
<i>rmlD</i> *	TDP-rhamnose pathway	1175-2074	#1066(1175-1193)	#1067(2075-2058)	901bp	13	60°C
<i>rmlA</i> *	TDP-rhamnose pathway	2132-3013	#1068(2131-2148)	#1069(3013-2995)	883bp	0	60°C
<i>rmlC</i> *	TDP-rhamnose pathway	3013-3570	#1070(3012-3029)	#1071(3570-3551)	599bp	0	60°C
<i>glfA</i> *	Galactofuranose pathway	4822-5925	#1074(4822-4840)	#1075(5925-5908)	1104bp	0	55°C
<i>w21</i> *	Flipase	3267-4814	#1072(3267-3386)	#1073(4814-4797)	1248bp	0	55°C
<i>w27</i> *	O polymerase	5525-7091	#1076(5925-5944)	#1077(7091-7074)	1167bp	0	60°C
<i>wbbJ</i> *	Galactofuranosyl transferase	7094-8086	#1078 (7094-7111)	#1079(8086-8059)	993bp	0	50°C
<i>wbbJ</i> *	Acetyltransferase	8067-8654	#1080(8067-8084)	#1081(8654-8632)	588bp	0	60°C
<i>wbbK</i> **	Glucosyl transferase	5770-6888	#1082(5770-5787)	#1083(6888-6871)	1119bp	0	55°C
<i>wbbL</i> ***	Rhamanoxylyl transferase	679-1437	#1084(679-697)	#1085(1473-1456)	795bp	0****	55°C

* ** *** ****
 Base positions based on GenBank entry U09876, U03041 and L19337 respectively
 19 pools giving a band of wrong size

TABLE 5 PCR assay data using 0111 primers

Gene	Base positions of the gene according to SEQ ID NO: 1	Forward primer (base positions)	Reverse primer (base positions)	Length of the PCR fragment	Number of pools (out of 21) giving band of correct size	Annealing temperature of the PCR
<i>wbH</i>	739-1932	#866(739-757)	#867(1941-1924)	1203bp	0	60°C
		#976(925-942)	#978(1731-1714)	807bp	0	60°C
		#976(925-942)	#979(1347-1330)	423bp	0	60°C
		#977(1165-1182)	#978(1731-1714)	567bp	0	60°C
<i>w2X</i>	8646-9911	#969(8646-8663)	#970(9908-9891)	1263bp	0	50°C
		#1060(8906-8923)	#1062(9468-9451)	563bp	0	60°C
		#1061(9150-9167)	#1063 (9754-9731)	605bp	0	50°C
<i>wzy</i>	9901-10953	#900(9976-9996)	#901(10827-10807)	852bp	0	60°C
		#980(0113-10130)	#983(10484-10467)	372bp	0*	61°C
<i>wbL</i>	10931-11824	#870(10931-10949)	#871(11824-11796)	894bp	7	60°C
<i>wbM</i>	11821-12945	#868(11821-11844)	#869(12945-12924)	1125bp	0	60°C
		#984(12042-12059)	#987(12447-12430)	406bp	0	60°C
		#985(12258-12275)	#986(12659-12681)	441bp	0**	65°C

* Giving a band of wrong size in all pools
 ** One pool giving a band of wrong size

TABLE 5A PCR specificity test data using 0111 primers

Gene	Base positions of the gene according to SEQ ID NO: 1	Forward primer (base positions)	Reverse primer (base positions)	Length of the PCR fragment	Number of pools (pools no. 25-28) giving band of correct size	Annealing temperature of the PCR
<i>whdH</i>	739-1932	#866 (739-757)	#867(1941-1924)	1203bp	0*	60°C
		#976(925-942)	#978(1731-1714)	807bp	0	60°C
		#976(925-942)	#979(1347-1330)	423bp	0	60°C
		#977(1165-1182)	#978(1731-1714)	567bp	0	60°C
<i>wzx</i>	8646-9911	#969(8646-8663)	#970(9908-9891)	1263bp	0	55°C
		#1060(8906-8923)	#1062(9468-9451)	563bp	0	60°C
		#1061(9150-9167)	#1063 (9754-9737)	605bp	0*	50°C
<i>wzy</i>	9901-10933	#900(9976-9996)	#901(10827-10807)	852bp	0	60°C
		#980(10113-10130)	#983(10484-10467)	372bp	0**	60°C
<i>wzdL</i>	10931-11824	#870(10931-10949)	#871(111824-11796)	894bp	0	60°C
<i>wzdM</i>	11821-12945	#868(11821-11844)	#869(12945-12924)	1125bp	0	60°C
		#984(12042-12059)	#987(12447-12430)	406bp	0	60°C
		#985(12258-12275)	#986(12698-12681)	441bp	0*	65°C

* 1 pool giving a band of wrong size

** 2 pools giving 3 bands of wrong sizes, 1 pool giving 2 bands of wrong sizes

TABLE 6 PCR results using primers based on the *E. coli* O157 sequence

Gene	Function	Base position of the gene according to SEQ ID NO: 2	Forward primer (base positions)	Reverse primer (base positions)	Length of the PCR fragment	Number of pools (out of 21) giving band of correct size	Annealing temperature of the PCR
wbdN	Sugar transferase	79-861	#1199(184-201)	#1198(861-844)	783	0	53°C
			#1200(531-514)		348	0	53°C
			#1202(768-751)		459	0	53°C
wzy	O antigen	858-2042	#1203(858-875)	#1204(2042-2025)	1185	0*	50°C
			#1205(6053-1070)	#1206(1619-1622)	567	0	63°C
			#1207(1278-1295)	#1208(1913-1896)	636	0	60°C
wzdO	Sugar transferase	2011-2757	#1209(2011-2028)	#1210(2257-2740)	747	0	50°C
			#1211(2110-2127)	#1212(2493-2476)	384	0**	62°C
wzx	O antigen flipase	2744-4135	#1213(2305-2322)	#1214(2682-2665)	378	0	60°C
			#1215(2744-2761)	#1216(4135-4118)	1392	0	50°C
wzbP	Sugar transferase	5257-6471	#1217(2942-2959)	#1218(3628-3611)	687	0***	63°C
			#1221(5257-5274)	#1222(6471-6454)	1215	0	55°C
			#1223(5440-5457)	#1224(5975-5946)	534	0	55°C
			#1225(5707-5724)	#1226(6331-6214)	525	0	55°C
wcrR	N-acetyl transferase	13156-13821	#1229(3261-3278)	#1230(15629-15612)	369	0	55°C
			#1231(13384-13401)	#1232(13731-13714)	348	0	60°C

* 3 bands of wrong size in one pool, 1 band of wrong size in all other pools

** 3 bands of wrong sizes in 3 pools, 2 bands of wrong size in all other pools

*** 2 bands of wrong sizes in 2 pools, 1 band of wrong size in 7 pools

TABLE 6A PCR results using primers based on the *E. coli* O157 sequence

Gene	Function	Base position of the gene according to SEQ ID NO: 2	Forward primer (base positions)	Reverse primer (base positions)	Length of the PCR fragment	Number of pools (pools no. 37-42) giving band of correct size	Annealing temperature of the PCR
<i>wbaN</i>	Sugar transferase	79-861	#1197(79-96) #1199(184-201)	#1198 (861-844) #1200(551-514)	783	0*	55 °C
			#1201(310-327)	#1202(768-751)	348	0*	55 °C
<i>wzy</i>	O antigen polymerase	858-2042	#1203(658-875)	#1204(2042-2025)	459	0	61 °C
			#1205(1053-1070)	#1206(1619-1602)	1185	1**	50 °C
<i>wbdO</i>	Sugar transferase	2011-2757	#1207(1278-1295)	#1208(1913-1896)	567	0***	60 °C
			#1209(2011-2028)	#1210(2757-2740)	747	0	60 °C
<i>wzx</i>	O antigen N-ase	2744-4135	#1211(2110-2127)	#1212(2493-2476)	384	0****	61 °C
			#1213(2305-2322)	#1214(2682-2665)	378	0	60 °C
<i>wbdP</i>	Sugar transferase	5257-6471	#1215(2744-2761)	#1216(4135-4118)	1392	0	50 °C
			#1217(2942-2959)	#1218(3628-3611)	687	0	63 °C
<i>wbaR</i>	N-acetyl transferase	13156-13821	#1221(5257-5274)	#1222(6471-6454)	1215	0	55 °C
			#1223(5440-5457)	#1224(5973-596)	534	0*	60 °C
			#1225(5707-5724)	#1226(6231-6214)	525	0	55 °C
			#1229(13261-13278)	#1230(13529-	369	0	50 °C
			#1231(13384-13401)	#1232(13731-	348	0	60 °C

*

1 band of wrong size in one pool
pool #39 giving two bands, one band of correct size, the other band of wrong size in another pool.

** 2 bands of wrong sizes in one pool

*** 3 bands of wrong sizes in 2 pools, 2 bands of wrong sizes in 2 other pools

TABLE 7
PCR assay data using primers based on the *Salmonella enterica* serotype C2 (strain M67)
O antigen gene cluster sequence

Gene	Function	Base positions of the gene according to SEQ ID NO: 3	Forward primer (base position)	Reverse primer (base position)	Length of the PCR fragment	Number of pools (out of 7) giving band of correct size	Annealing temperature of the PCR
wzx	Flipase	1019-2359	#1144(1019-1036) #1146(1708-1725)	#1145(1414-1397) #1147(2170-2153)	396bp 463bp	0 0	55°C
wbaR	Aldeoxyol transferase	2352-3314	#1148(1938-1955) #1150(2355-2369)	#1149(2356-2339) #1151(2759-2742)	419bp 408bp	0 0	55°C
wbaZ	Acetyl transferase	3361-3875	#1152(2601-2618) #1154(2910-2927)	#1153(3047-3030) #1155(3311-3294)	447bp 402bp	0 0	55°C
wzy	O polymerase	3977-5020	#1158(3578-3595) #1160(3977-3994)	#1159(3972-3955) #1161(4378-4361)	395bp 402bp	0 0	50°C
wbaW	Mannosyl transferase	6313-7323	#1162(4167-4184) #1164(4603-4620)	#1163(4774-4757) #1165(5017-5000)	608bp 415bp	0 0*	55°C 60°C
wzy	Mannosyl transferase	7310-8467	#1166(5114-5131) #1168(5664-5681)	#1167(5115-5138) #1169(6112-6095)	402bp 449bp	0** 0	55°C
wbaZ	Mannosyl transferase		#1170(5907-5924)	#1171(6310-6293)	404bp	0	55°C
			#1172(6313-6330)	#1173(6805-6798)	493bp	0	50°C
			#1174(6897-6714)	#1175(7058-7031)	372bp	0	55°C
			#1176(6905-6922)	#1177(7320-7303)	416bp	0	55°C
			#1178(7310-7327)	#1179(7715-7758)	466bp	0	.50°C
			#1180(7750-7547)	#1181(7907-7890)	378bp	0	55°C
			#1182(8007-8024)	#1183(8464-8447)	458bp	0	55°C

* Positive pool gives another band, which is also present in another pool. All other pools gave bands of wrong size.
 ** Band of wrong size in 6 other pools.

TABLE 8
PCR primers based on the *Salmonella enterica* serotype B (strain LT2) O antigen gene cluster sequence

Gene	Function	Base position of the gene according to SEQ ID NO: 4	Forward primer (base position)	Reverse primer (base position)	Length of the PCR fragment	Annealing temperature of the PCR
<i>rmlB</i>	TDP-rihamnose pathway	4099-5184	#1094 (4100-4117)	#1095(4499-4482)	400bp	55°C
<i>rmlD</i>	TDP-rihamnose pathway	5184-5083	#1092(5186-5203)	#1093(5543-5526)	358bp	50°C
<i>rmlA</i>	TDP-rihamnose pathway	6131-7009	#1090(6531-6548)	#1091(6837-6820)	308bp	55°C
<i>rmlC</i>	TDP-rihamnose pathway	7010-7361	#1088(7013-7030)	#1089(7372-7355)	360bp	55°C
<i>ddhD</i>	CDF-ribulose pathway	7567-8359	#1112(7567-7584)	#1113(7970-7933)	404bp	55°C
<i>ddhA</i>	CDF-ribulose pathway	8556-9329	#1114(8556-8573)	#1115(8975-8958)	420bp	60°C
<i>ddhB</i>	CDF-ribulose pathway	9334-10413	#1116(9334-9351)	#1117(9816-9799)	483bp	45°C
<i>ddhC</i>	CDF-ribulose pathway	10440-11753	#1118(10440-10457)	#1119(10871-10854)	432bp	60°C
<i>abe</i>	CDF-adequose pathway	11781-12860	#1101(12008-12025)	#1101(12388-12371)	381bp	55°C
<i>wzt</i>	Flippase	12763-14054	#1120(12762-12779)	#1121(13150-13133)	389bp	55°C
<i>wzaV</i>	Adequoyl transferase	14059-15060	#1121(12993-13010)	#1123(13417-13400)	425bp	55°C
<i>wzaW</i>	Adequoyl transferase	14059-15060	#1126(14059-14076)	#1127(14421-14404)	417bp	55°C
<i>wbaU</i>	Mannosyl transferase	15379-16440	#1130(15379-15396)	#1131(15768-15751)	390bp	60°C
<i>wbaV</i>	Rhamnosyl transferase	16441-17385	#1132(15355-15652)	#1125(14051-14034)	413bp	55°C
<i>wbaN</i>	Rhamnosyl transferase	16441-17385	#1126(14059-14076)	#1127(14421-14404)	363bp	45°C
<i>manC</i>	CDP-mannose pathway	17386-18825	#1128(14688-14705)	#1129(15037-15040)	370bp	45°C
<i>mbbB</i>	CDP-mannose pathway	18812-20245	#1130(16650-16647)	#1139(17087-17070)	458bp	55°C
<i>wbaP</i>	Galactosyl transferase	20317-21747	#1140(16978-16995)	#1141(17382-17365)	405bp	50°C
			#1140(16978-16995)	#1090(18143-18126)	687bp	60°C
			#1096(18991-19008)	#1097(19345-19328)	355bp	55°C
			#1142(20389-20405)	#1143(20709-20692)	321bp	55°C

- 59 -

TABLE 9 PCR results using LT2 primers*

✓ indicates a positive PCR result. Blank indicates a negative result.

TABLE 10 Gene specificities in *Salmonella enterica* serogroups

Serogroup	Genes						
	wzy	wzx	wbaP	wbaU	wbaN	wbaV	wbaO
A	B	D	B	B	D	-	-
B	B	B	B	B	B	-	-
D1	B	D	B	B	D	-	-
D2	E1	D	B	-	E1	D	E1
D3	D3	D	B	B	D	-	-
C2	C2	C2	B	-	-	-	-
E1	E1	E1	B	-	E1	-	E1

- means 'not present'

- 61 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Reeves, Peter R
Wang, Lei
- (ii) TITLE OF INVENTION: Nucleic Acid Molecules Specific For
Bacterial Antigens And Uses Thereof

(iii) NUMBER OF SEQUENCES: 4

- (iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Thomas Gumley
(B) STREET: 168 Walker Street
(C) CITY: North Sydney
(D) STATE: New South Wales
(E) COUNTRY: Australia
(F) ZIP: 2068

- (v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30

- (vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:

- (viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Gumley, Thomas P

- (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 99575944
(B) TELEFAX: 99576288

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 14516 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: YES

- (v) ORIGINAL SOURCE:
(A) ORGANISM: Escherichia coli

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATCTGATGG CCGTAGGGCG CTACGTGCTT TCTGCTGATA TCTGGGCTGA GTTGGAAAAA	60
ACTGCTCCAG GTGCCTGGGG ACGTTATTCAA CTGACTGATG CTATTGCAGA GTTGGCTAA	120
AAACAGTCTG TTGATGCCAT GCTGATGACC GGCGACAGCT ACGACTGCGG TAAGAAGATG	180

- 62 -

GGCTATATGC AGGCATTCTG TAAGTATGGG CTGCGCAACC TAAAGAAGG GGGGAAGTTC
CGTAAGAGCA TCAAGAACGCT ACTGAGTGAG TAGAGATTTC CACGTCTTTC TGACGATAAG
CCAGAAAAAA TAGCGGCAGT TAACATCCAG GCTTCTATGC TTTAAGCAAT GGAATGTTAC
TGCGGTTTT TATGAAAAAT GACCAATAAT AACAGTTAA CCTACCAAGT TTAATCTGCT
TTTGTGTTGA TTTTTCTTG TTCTGGTCG CTTTGGTAA GACAATTAGC GTGAGTTTA
GAGAGTTTG CGGGATCTCG CGGAACGTCT CACRTCTTG GCATTTAGTT AGTGCACITGG
TAGCTGTTAA GCCAGGGGGG GTAGCTTGCC TAATTAAATT TTAACGTATA CATTAACTCT
TGCGGTTAT ACCAAATAAA GTCATCGGA TTAAACTCTT TTCCATTAG GAAAAGAGT
GTTTGTAGTC GTCAGGGAA ATTGTTTTG GTAGTAGTAC TTTTCAAATT ATCCATTTC
CGATTAGAT GGCAGTTGAT GTTACTATGC TGCATACATA TCAATGTATA TTATTTACTT
TTAGAATGTG ATATGAAAAA AATAGTGTAC ATAGGCAATG TAGCGTCAAT GATGTTAAGG
TTCAGGAAAG AATTAATCAT GAATTAGTG AGGCAGGTG ATAATGTATA TTGCTAGCA
AATGATTTT CCACTGAAGA TCTTAAAGTA CTTTCTGTAT GGGGGTTAA GGGGGTTAAA
TTCTCTCTTA ACTCAAAGGG TATTAATCTT TTAAAGGATA TAATTGCTG TTATGAACTA
AAAAAAATTC TAAAGGATAT TTCCCCAGAT ATTGTTTTT CTTATTTTGT AAAGCCAGTA
ATATTTGGAA CTATTGCTTC AAAGTGTCA AAAGTGCCAA GGATTGTTGG ATGATTGAA
GGTCTAGGTA ATGCCCTTCAC TTATTATAAG GGAAAGCAGA CCACAAAAAC TAAATGATA
AAGTGGTAC AATTCCTTT ATATAAGTTA GCATTACCGA TGCTTGATGA TTGATTCTA
TTAAATCATG ATGATAAAA AGATTTAACG GTCAGTATA ATATTAAGC TAAGGTAACA
GTGTTAGGTG GGATTGGATT GGATCTTAT GAGTTTCTAT ATAAAGAGCC ACCGAAAGAG
AAATTTACCT TTATTTTAT AGCAAGGTTA TTAAGAGAGA AAGGGATATT TGAGTTTATT
GAAGCCGCAA AGTCGTTAA GACAACCTT CCAAGTCTG AATTTGTTA TTAGGAGGT
TTGAGAGTA ATAATCCTT CTCATTACAA AAAATGAAA TTGAATCGCT AAGAAAAGAA
CATGATCTTA TTATCTTGG TCATGTTGAA AATGTTCAAG ATTGTTAGA GAAAAGTCT
GTTTTGTT TACCTACATC ATATCGAGAA GGCGTACCAA GGGTGATCCA AGAAGCTATG
GCTATTGGTA GACCTGTAAT AACCAACTTAT GTACCTGGGT GTAGGGATAT ATAAATGAT
GGGGTCAATG GCTTTTTGAT ACCTCCATTG GAAATTAAATT TACTGGCAGA AAAATGAAA
TATTTTATTG AGAATAAAAAGA TAAAGTACTC GAAATGGGGC TTGCTGGAG GAAGTTGCA
GAAAAAAACT TTGATGCTT TGAAAAAAAT AATAGACATG CATCAATAAT AAAATCAAT
AATGATTTT GACTTGAGCA GAAATTATTT ATATTCAT CTCATCAATAA AAGGCTGTTA
TTATGAATAA AGTGGCATTA ATTACTGGTA TCATCTGGCA AGATGGCTTC TATTTGGCAG
AATTATGTT AGAAAAAAAGT TATGAAATTC ATGGTATTAAC AGCGCGTCA TCTTCATTTA
ATACTGAGCG AGTGGATCAC ATCTATCAGG ATTTCACATTG AGCTAATCTT AACTTTTC
TACACTATGG CGATTGACA GATACTTCCA ATCTGACCGG TATTTTTAA GAAAGTTCAC

- 63 -

CAGATGAAGT TTACAATTG GGGCGATGA GCCATGTAGC GGTATCATTT GAGTCACCA	2280
AATAACACTGC TGATGTTGAT GCGATAGGA CATTGCGCT TCTTGAAAGCT ATCAGGATAT	2340
TGGGGCTGGA AAAAAAGACAA AAATTTTATC AGGCTTCAAC TTCAGAGCTT TATGGTTTGG	2400
TTCAAGAAT TCCACAAAAA GAGACTACGC CATTTCATCC ACGTTCGCCT TATGCTGTTG	2460
CAAATTATA TGCCTATTGG ATCACTGTTA ATTATCGTA GTCTTATGGT ATGTTTGCCT	2520
GCAATGGTT TCTCTTAAAC CACGAACTCAC CTGCCGTGG CGAGACCTTT GTTACTCGTA	2580
AAATAACACG CGGGATAGCA AATATTGCTC AAGGTCTGTA TAAATGCTTA TACTTGGAA	2640
ATATGGATTTC TCTGCGTGTAT TGGGGACATG CTAAGGATTA TGTCAAAATG CAATGGATGA	2700
TGCTGCAGCA AGAAAATCCTCA GAAGATTTG TAATTGCTAC AGGAATTCAA TATTCTGTCC	2760
GTGAGTTGT CACAATGGCG CGAGAGCAAG TAGGCATAGA GTTAGCATTG GAAGGTGAGG	2820
GAGTAATGA AAAAGGTGTT GTTGTTCGCG TCAATGGCAC TGATGCTAA GCTGTAAC	2880
CGGGCGATGT AATTATATCT GTAGATCCAA GGTTATTTAG GCCTGCAGAA GTGAAACCT	2940
TGCTTGGCGA TCCTACTATAA GCGCATAAAA AATTAGGATG GAGCCTGTAA ATTACAITGC	3000
GTGAAATGGT AAAAGRAATG GTTCCAGCG ATTTAGCATT AGCGAAAAG AACGCTTGC	3060
TGAAAGCTAA TAACATTGCC ACTAATATTG CGCAAGAATA AAAAGATAAA TACATTTAA	3120
AATTAAAAAT GGTGCTAGAT TTATTAGTAC CATTATTTT TTTGGGTGA CTAATGTTA	3180
TTACATCAGA TAAATTAGA GAATTATCA AGTTAGTTC ATTAGTATCA ATTGATCTGC	3240
TAATTGAAAA CGGAATGGT GAATATTAT TTGGCTTGA GAATAATCGA CCGGCCAAA	3300
ATTATTTTT TGTCAGGT GGTAGGATTC GCAAAATAGT ATCTATTAA AATGCTTTA	3360
AAAGAATATC ATCTATGGAA TTAGGTAAG AGTATGGT ATTCAAGGAGT GTTTTAATG	3420
GTGTATGGGA ACATTTCTAT GATGATGGTT TTTTTCTGA AGGGCGAGGCA ACACATTATA	3480
TAGTGTTTG TTACACACTG AAAGTTCTTA AAAGTGAATT GAATCTCCCA GATGATCAAC	3540
ATCGTGAATA CCTTGGCTA ACTAAACACC AAATAAATGC TAAACAAGAT GTTCATAACT	3600
ATTCAAAAAA TTATTTTTG TAATTTTAA TAAAAATTAA TATGCGAGAG AATTGTATGT	3660
CTCAATGCT TTACCTGTA ATTATTGCGG GAGGAACCGG AAGCCGCTCA TGGCGTTGT	3720
CTCGAGTATT ATACCTAAA CAATTTTAA ATTAGTTGG GGATTCTACA ATGTTGCAA	3780
CAACAAATTAC GCGTTGGAT GGCACTGAAT GCGAAAATCC AATTGTTATC TGCAATGAAG	3840
ATCACCGATT TATGTAAGCA GAGCAATTAC GACAGATGG TAAGCTAAC AAGAATATTA	3900
TACTTGAGCC GAAAGGCCGT AATACTGCAC CTGCCATAGC TTTAGCTGCT TTTATCGCTC	3960
AGAAGAATAA TCCTAATGAC GACCCCTTAT TATTAGTACT TGCGGGCAGAC CACTCTATAA	4020
ATAATGAAA AGCATTTCGA GAGTCATAAA TAAAAGCTAT GCCGTATGCA ACTTCTGGGA	4080
AGTTAGTAAC ATTTGGAAATT ATTCGGACA CGGCAARTAC TGGTTATGGA TATATTAAGA	4140
GAAGTTCTTC AGCTGATCCT AATAAAGAAT TCCCAGCATA TAATGTTGCG GAGTTGATG	4200
AAAAACCAGA TGTTAAAACA GCACAGGAAT ATATTCGAG TGGGAATTAT TACTGGAATA	4260

- 64 -

GCGGAATGTT	TTTATTTCGC	GCCAGTAAAT	ATCCTTGATGA	ACTACGGAAA	TTTAGACCAG	4320
ATATTTATCA	TAGCTGTGAA	TGTGCAACCG	CTACAGCAA	TATAGATATG	GACTTTGTCC	4380
GAATTAAACGA	GGCTGAGTTT	ATTAATTGTC	CTGAAGAGTC	TATCGATTAT	GCTGTGATGG	4440
AAAAAACAAA	AGACGCTGTA	GTTCCTCCGA	TAGATATTGG	CTGGAATGAC	GTGGGTTCTT	4500
GGTCATCACT	TTGGGATATA	AGCCAAAAGG	ATTGCCATGG	TAATGTGTGC	CATGGGGATG	4560
TGCTCAATCA	TGATGGAGAA	AATAGTTTTA	TTTACTCTGA	GTCAAGTCTG	GTTCGACAG	4620
TCGGGAGTAAG	TAATTTAGTA	ATTGTCCAA	CCAAGGATGC	TGTTACTGGTT	CGGGACCGTG	4680
ATAAAAGTCCA	AAATGTAA	AAACATAGTTG	ACGATCTAA	AAAGAGAAAA	CGTGCTGAAT	4740
ACTACATGCA	TCGTGCAGTT	TTTCGCCCTT	GGGGTAATT	CGATGCAATA	GACCAAGGCG	4800
ATAGATATAG	AGTAAAAAAA	ATAATAGTTA	AACCAAGGAGA	AGGGTAGAT	TTAAGGATGC	4860
ATCATCATAG	GGCAGAGCAT	TGGATTGTTG	TATCCGGTAC	TGCTAATAGTT	TCACTAGGTA	4920
GTGAAGTTAA	ACTATTAGTT	TCTAATGAGT	CTATATATAT	CCCTCAGGGAA	GCAAAATATA	4980
GTCTTGAGAA	TCCAGCGTAA	ATACCTTGC	ATCTAATTGA	AGTAAGTTCT	GGTGATTACC	5040
TTGAATCAGA	TGATATAGTG	CGTTTTACTG	ACAGATATA	CAGTAAACAA	TTCCCTAAAGC	5100
GAGATTGATA	AAATGAATA	AAATAACTTG	CTTCAAAGCA	TATGATATAC	GTGGGCGTCT	5160
TGGTGCTGAA	TTGAATGATG	AAATAGCATA	TAGAATTGGT	CGCGCTTATG	GTGAGTTTT	5220
TAACACCTCA	ACTGTAGTTG	TGGGAGGAGA	TGCTCGCTTA	ACAAGTGAGA	GTTTAAAGAA	5280
ATCACTCTCA	AATGGGCTAT	GTGATGCAGG	CGTAAATGTC	TTAGATCTT	GAATGTGTGG	5340
TACTGAAGAG	ATATATTTTT	CCACTTGGTA	TTTAGGAATT	GATGGTGGAA	TCGAGGTAAC	5400
TGCAAGCCAT	AATCCAATTG	ATTATAATGG	ARTGAATTTA	GTAACCAAAG	GTGCTCGACC	5460
AACTCAGCAGT	GACACAGGTC	TCAAAGATA	ACAACAAATT	GTAGAGAGTA	ATAATTGTA	5520
AGAGCTCRAAC	CTGAAAAAAA	AAGGGAATAT	TACCAAATAT	TCCACCCGAG	ATGCCATACAT	5580
AAATCATTG	ATGGGCTATG	CTAATCTGCA	AAAAATAAAA	AAATCAAA	TAGTTGTGAA	5640
TTCTGGGAAT	GGTGCAGCTG	GTCTCTGTAT	TGATGCTATT	GAGGAATGCT	TTTACGGAA	5700
CAATAATTCCG	ATTCAAGTTG	AAAAAATAAA	TAATACACCC	GATGGTAATT	TTCCACATGG	5760
TATCCCTAAT	CCATTACTAC	CTGAGTCAG	AGAAGATACC	AGCAGTGCAG	TTATAAGACA	5820
TAGTGCTGAT	TTTGGTATTG	CATTGATGG	TGATTTGTAT	AGGTGTTTT	TCTTTGTGATG	5880
AAATGGCACAA	TTTATTGAAAG	GATACTACAT	TGTTGGTTA	TTAGCGGAAAG	TTTTTTTAGG	5940
GGAAATATCCA	AAACGAAAAAA	TCATTCTATGA	TCCTCGCCCTT	ATATGGAATA	CTATTGATAT	6000
CGTAGAAAGT	CATGGTGTGTA	TACCTATAAT	GAATAAACCC	GGTCATGCTT	ACATTAAGCA	6060
AAAGAATGCGT	GAAGAGGATG	CCGTATATGG	CGCGGAATG	AGTGCCTAC	ATTATTTAA	6120
AGATTTTGCA	TACTGCGATA	GTGGAATGAT	TCCTTGGATT	TTAATTGTTG	AACTTTTGAG	6180
TCTGACAAT	AAAAAATTAG	GTGAACTGGT	TTGTGGTTGT	ATAAACGACT	GGCCGGCAAG	6240
TGGAGAAATA	AACTGTACAC	TAGACAACTCC	GCACAAATGAA	ATAGATAAAT	TATTTAATCG	6300

TTACAAAGAT	AGTGCCTTAG	CTGTTGATTA	CACTGATGGA	TAACTATGG	AGTTCTCTGA	6360
TTGGCGTTT	AATGTTAGAT	GCTCAAATAC	AGAACCTGT	GTACGATTGA	ATGTAGAAC	6420
TAGGAATAAT	GCTATTCTTA	TGCAAGAAAA	AAACAGAAGAA	ATTCTGAATT	TTATATCAA	6480
ATAAAATTGC	ACCTGAGTTC	ATAATGGAA	CAAGAAATAT	ATGAAAGTAC	TTCTGACTGG	6540
CTCAACTGGC	ATGGTTGGTA	AGAATATATT	AGAGCATGAT	AGTCAGAAGTA	AATATAATAT	6600
ACTTACTCCA	ACCAGCTCTG	ATTTGAATT	ATTAGATAAA	AATGAAATAG	AAAAGATCAT	6660
GCCTTATCAAC	ATGCCAGACT	GTATTATACA	TGCAGCGGGA	TTAGTTGGAG	GCATTCATGC	6720
AAATATAAGC	AGGCCGTTTG	ATTTCTGGA	AAAAAAATTG	CAGATGGGTT	TAATTTAGT	6780
TTCCGTCGCA	AAAAAACTAG	GTATCAAGAA	AGTGCCTAAC	TTGGGTAGTT	CATGCATGTA	6840
CCCCAAAAAC	TTTGAAGAGG	CTATTCTGA	GAAAGCTCTG	TAACTGGTG	AGCTAGAANGA	6900
AACTAATGAG	GGATATGCTA	TTGCGAAAAT	TGCTGTAGCA	AAAGCATGCG	AATATATATC	6960
AAGAGAAAAC	TCTAATTATT	TTTATAAAAC	AATTATCCC	TGTAATTAT	ATGGGAATAA	7020
TGATAAATT	GATGATAACT	CGTCACATAT	GATTCCGGCA	GTTATAAAA	AAATCCATCA	7080
TGCGAAAATT	AATAATGTC	CAGAGATCGA	AAATTGGGG	GATGGTAATT	CGCGCCGTGA	7140
GTTTATGTAT	GCAGAAGATT	TAGCTGATCT	TATTTTTTAT	GTATTCTTA	AAATAGAATT	7200
CATGCCTTAAT	ATGGTAAATG	CTGGTTAGG	TTACGATTAT	TCAATTAAATG	ACTATTATAA	7260
GATAATTGCA	GAAGAAATTG	GTTATACTGG	GAGTTTTCT	CATGATTAA	AAAAACCAAC	7320
AGGAATGAAA	CGGAAGCTAG	TAGATATTTC	ATTGCTTAAT	AAAATTGGTT	GGTCAAGTCA	7380
CTTTGAACTC	AGAGATGGCA	TCAGAAAGAC	CTATAATTAT	TACTGGAGA	ATCAAATAA	7440
ATGATTACAT	ACCCACTTGC	TAGTAATACT	TGGGATGAAT	ATGAGTATGC	AGCAATACAG	7500
TCAGTAATIG	ACTAAAAAT	GTITACCATG	GGTAAAAAGG	TTGAGTTATA	TGAGAAAAT	7560
TTTGTGATT	TGTTTGGTAG	CAAATATGCC	GTAATGGTTA	GCTCTGGTTC	TACAGCTTAAT	7620
CTGTTAATGA	TTGCTGCCCT	TTTCTTCACT	AATAAACCAA	AACTAAAAAG	AGGTGATGAA	7680
ATAATAGTAC	CTGCGATGTC	ATGGTCTAACG	ACATATTAC	CTCTGCAACA	GTATGGCTTA	7740
AAGGTGAAGT	TTGTCGATAT	CAATAAGAA	ACTTTAAATA	TTGATATCGA	TAGTTTGGAAA	7800
AATGCTATT	CAGATAAAAC	AAAAGCRATA	TTGACAGTAA	ATTTTATTAGG	TAATCCTAAT	7860
GATTTTGCAA	AAATAAATGA	GATAATAAAT	AAATGGGATA	TTATCTTACT	AGAAGATAAC	7920
TGTGAGTCGA	TGGCGCGGT	CTTCAAAAT	AAGCAGGCA	GCACATTCCG	AGTTATGGGT	7980
ACCTTTAGTT	CTTTTACTC	TCATCATATA	GCTACAATGG	AAAGGGGCTG	CGTAGTTACT	8040
GATGATGAAG	AGCTGTATCA	TGTTATTGTG	TGCCCCCGAG	CTCATGGTTG	GACAAGAAAT	8100
TTACCAAAAG	AGAATATGGT	TACAGGCACT	AAGAGTGTG	ATATTTCGA	AGAGTCGTTT	8160
AAGTTTGTGTT	TACCAAGGATA	CAATGTTGC	CCACTTGAA	TGAGTGGTGC	TATTGGGATA	8220
GAGCAACTTA	AAAAGTTAAC	AGGTTTTATA	TCCACCAGAC	GTTCCAATGC	ACAATATT	8280
GTAGATAAAT	TTAAGAGATCA	TCCATTCCCT	GATATACAAA	AAGAAGTTGG	TGAAAGTAGC	8340

- 66 -

TGGTTTGGTT	TTTQCTTCGT	TATAAAGGAG	GGAGCTGCTA	TTGAGAGGAA	GAGTTTAGTA	8400
AATAATCTGA	TCTCAGCAGG	CATTGAATGC	CGACCAATTG	TTACTGGAA	TTTCTCAAA	8460
AATGAACGTG	TTTGAGTTA	TTTGATTAC	TCTGTACATG	ATACGGTAGC	AAATGCCAA	8520
TATATAGATA	AGAATGGTT	TTTGTCGGA	AACCACCAGA	TACCTTTGTT	TAATGAAATA	8580
GAATTATCTAC	GAAAAGTATT	AAAATAACTA	ACGAGGCACT	CTATTTGAA	TAGAGTGCT	8640
TTAAGAGTGGT	ATTAACAGTG	AAAAAAATT	TAGC GTTGG	CTATTCTAA	GTACTACCAC	8700
CGGTTATTGA	ACAGTTGTC	AATCCAATT	GCATCTTCAT	TATCACACCA	CTAATACTCA	8760
ACCACCTGGG	TAAGCAAAGC	TATGGTAATT	GGATTTTATT	AATTACTATT	GTATCTTTT	8820
CTCAGTTAAT	ATGTGGAGGA	TGTTCCGCA	GGATTGCAA	AATCATTGCA	GAACAGAGAA	8880
TTCTTAGTGA	TTTATCAAA	AAAAATGCTT	TACGTCAAA	TTCTTATAAT	TTTCAATTG	8940
TTTATTATCGC	ATTTGCGGT	TTGATTCTT	TTCTTATATT	AAGTATTGTT	TTCTTCGATG	9000
TTGCGAGGAA	TAATTCTTC	TTCTTATTG	CGATTATTAT	TTGTTGGTTT	TTTCAGGAA	9060
TTGATAATT	ATTTAGTGGT	GCGCTAAAAG	GTTTTGAAA	ATTAATGTA	TCATGTTTT	9120
TTGAGAAT	TACAAGAGTG	CTCTGGGCTT	CTATAGTAAT	ATATGGCATT	TACGGAAATG	9180
CACTCTATA	TTTTACATGT	TTAGCCTTA	CCATTAAGG	TATGCTAAA	TATATTCTTG	9240
TATGTCGAA	TATTACCGGT	TGTTTCATCA	ATCCTAATT	TAATAGAGT	GGGATTGTTA	9300
ATTTGTTAA	TGAGTCAAA	TGGATGTTT	TTCAATTAA	TGGTGGCGTC	TCACTTAGTT	9360
TGTTTGATAG	GCTCGTAATA	CCATTGATTT	TATCTGTCAG	AAAATGGCT	TCTTATGTC	9420
CTTGCCCTCA	ACTAGCTAA	TTGATGTTCA	CTCTTTCTGC	GTCTGCAAAT	CAAATATTAC	9480
TACCAATGTT	TGCTAGAATG	AAAGCATCTA	ACACATTCC	CTCTAATTG	TTTTTTAAA	9540
TTCTGCTTGT	ATCACTAATT	TCTGTTTGC	CTTGTCTTGC	GTATTTCTT	TTTGGTCGTG	9600
ATATATTATC	AAATGGATA	AAACCTACAT	TTGCAACTG	AAATTTATAAA	TTAATGCAA	9660
TTTTAGCTAT	AAGTTACATT	TTATGTCAA	TGATGACATC	TTTCATTTTC	TTGTTATTAG	9720
GAATTGGTAA	ATCTAAGCTT	TTGCAAAATT	AAATCTGGT	TGCAAGGCTG	GCACATTGCTG	9780
CTTCAACGTT	AATCGCAGCT	CATTATGGCC	TTTATGCAAT	ATCTATGGTA	AAAATAATA	9840
ATCCGGCTTT	TCAATTCTAT	TACCTTTATG	TAGCTTTGT	CTATTTTAAT	AGAGCGAAR	9900
ATGTCATATTG	ATTTACTTT	TTCAATTACT	GAAATCGCAA	TTGTTTTTC	TTGCACTATT	9960
TACATATTAA	CTCAATGTTT	GTTAATGCGG	AGGATCTATT	TAGATAAAAAG	TATTTTAATT	10020
CTTTTATGCT	TGCTCTTTT	TTTAGTAAATC	ATTCAACTTC	CTGAGCTTAA	TGTAAACGGT	10080
TTGGTCGATT	CTTTAAAGTT	ATCACTGCT	TTATTGATGG	TCTTTATCGC	TTTCAAAAAA	10140
CCGAAATTAT	GCTTGTGGGT	TATTATGCA	TTGTTGGTTT	TGAACCTGTC	ATTTAATT	10200
TTATATTTAA	AGACATTGCA	TAAGTTAGC	TCATTTCCTT	TTACTTTTTT	TATATTGCTG	10260
TTTTACTGT	TTAGATGGGG	AATTGGTAAT	TTACCGGTTT	ATAAAATAA	AAAATTTCAC	10320
GGCTTGATT	TTCTCTTAT	ATTAATAGAC	ATAATGCGA	CATTGTTAAT	AAATTATAGG	10380

- 67 -

GGGCAGAGTTT TATATTCCGT AATTGCACT CTGATACTTG TGTTTAAAGT TAATTTAAGA	10440
AAAAAGATTC CATACTTTT TTAATGCTG CCAGTTTTAT ATGTAATTAT TATGGCTTAT	10500
ATTGGTTTA ATTATTCAA TAAAGCGTA ACTTTTTTG AACCTACAGC AAGTAATATT	10560
GAACGTACGG GGATGATATA TTATTTGGTT TCACAGCTTG GTGATTATAT ATTCCATGGT	10620
ATGGGGACAT TAAATTCTT AAATAACGGC GGACAATATA AGACGTTATA TGGACTTCCA	10680
TCATTAATTC CTAATGACCC TCATGATTT TTATTAACGGT TCTTTATAAG TATTTGGTGTG	10740
ATAGGAGCAT TGGTTTATCA TTCTATATT TTIGTTTTT TTAGGAGAAT ATCTTCITTA	10800
TTATATGAGA GAAATGCTCC TTICATTGTT GTAAGTTGTT TGTTACTGTT ACAAGTTGTG	10860
TTAATTATA CATTAAACCC TTTTGATGCT TTAATCGAT TGATTTGCGG GCTTACAGTT	10920
GGAGTTGTT ATGATTTGC AAAAATTAGA TAAGTATACC TGTAATGGAA ATTTAGACGC	10980
TCCACTTGT TCAATAATCA TTGCAACTTA TAATTCTGAA CTTGATATAG CTAAGTGT	11040
GCAATCGGTA ACTAATCAAT CTTATAAGAA TATTGAAATC ATAATAATGG ATGGAGGATC	11100
TTCTGATAAA ACGCTTGATA TTGCAAAATC GTTAAAGAC GACCGAATAAA AAATAGTTTC	11160
AGAGAAAGAT CGTGGAAATT ATGATGGCTG GAATAAAGCA GTTGTATTT CCATTGGTGA	11220
TTGGGTAGCA TTATTTGGTT CAGATGATGT TTACTATCAT ACAGATGCAA TTGCTTCATT	11280
GATGAAGGGG GTTATGGTAT CTAATGGCGC CCCTGTGGTT TATGGGAGGA CAGCGCACGA	11340
AGGTCCCCGT AGGRACATAT CTGGATTITC AGGCAGTGAA TGTGACAAACC TACAGGATT	11400
TAAGTTAAC TATTACAAT GTAAATTACC ATTGCCATT ATGAGCGCAA TATAATTCTCG	11460
TGATTTCTTC AGAACAGAAC GTTTTGATAT TAAATTAAAA ATTGTTGCTG ACGCTGATTG	11520
GTTTCTGAGA TGTTTCAATCA AATGGAGTAA AGAGAACTCA CCTTATTATA TTAATGACAC	11580
GACCCCTATT GTTAAATGG GATATGGTGG GGTTTCGACT GATATTCTT CTCAAGTTAA	11640
AACTACGCTA GAAAGTTCA TTGTAACGCAA AAAGAATAAT ATATCCCTGT TAAACATACAA	11700
GCTGATTCTT AGATATGCTA AAATTCGGT GATGGTAGCG ATCAAAAATA TTTTTGGCAA	11760
TAATGTTTAT AAATTAATGC ATAACGGGT TAATCCCTA AAGRAAATCA AGAATAAAT	11820
ATGAAGATTC TTATATATAAT AACCGGGCTT ACTTGTGGTG GAGCGAACAA CCTTATGACG	11880
CAGTTAGCAG ACCAAATGTT TATACCGGGG CATGATGTTA ATATTTATTG TCTAACTGGT	11940
ATATCTGAGG TAAAGCCAC ACAAAATATT AATATTCTT ATGTTAATAT GGATAAAAAT	12000
TTTAGAGACT TTTTAGAGC TTATTTCA GTAAAAAAA TAATGTCGC CTAAAGCCA	12060
GATATAATAC ATAGTCATAT GTTTCATGCT AATATTTTA GTCGTTTTAT TAGGATGCTG	12120
ATTCCACGGG TGCCCTGAT ATGTACCGCA CACAACAAA ATGAGGGTGG CAATGCAAGG	12180
ATGTTTGTGTT ATCGACTGAG TGATTTTTA GCTTCTATTA CTACAAATGT AAGTAAAGAG	12240
GCTGTTCAAG AGTTTATAGC AAGAAAGGC ACACCTAAAA ATAAAAATAGT AGAGATTCCG	12300
AATTTTATTA ATACAAATAA ATTTGATTTT GATATTAAATG TCAGAAAGAA AACGCGAGAT	12360
GCTTTTAAATT TGAAAGACAG TACAGCAGTA CTGCTCGCAG TAGGAAGACT TGTTGAAGCA	12420

- 68 -

AAAGACTATC CGAACCTTAAATGCAATA AATCATTTGA TTCTTTCAA AACATCAATT	12480
TGTAATGATT TTATTTGCT TATTGCTGGC GATGGCGCAT TAAGAAATAA ATTATTGGAT	12540
TTGGTTTGTG C ATTGAATCT TGTGATGAAA GTTTCTCTCT TGAGGCAAAG AAGTGATATT	12600
AAAGAATTA TGTGTGCTGC AGATCTTTT GTTTGAGTT CTGAGTGGGA AGGTTTTGGT	12660
CTCGTTGTTG CAGAAGCTAT GGCGTGTGAA CGTCCCGTTG TTGCTACCGA TTCTGGTGG	12720
GTTAAAGAAG TCCTGGGACG TCATAATGAT GTTATCCCTG TCAGTAATCA TATTCTGTTG	12780
GCAGAGAAAA TCGCTGAGAC ACTTAAATAA GATGATAACG CAAGAAAAAT AATAGGTATG	12840
AAAAATAGAG AATATATTGT TTCCAATTT TCAATTAAA CGATAGTGAG TGAGTGGGAG	12900
CGCTTATATT TTAATATTTC CAAGCGTAAT AATATAATTG ATTGAAAATA TAAGTTGTA	12960
CTCTGGATTC AATAGTTCT CTATGCTGT TTTTACTGG CTCCGTATT TTACTTATAG	13020
CTGGATTTG TTATATATCA GTATTAATCT GTCTCAACTT CATCTAGACT ACATTCAAGC	13080
CGCGCATGGC TCGCGCGGTG ACTACACCTG ACAGGAGTAT GTAATGTCCA AGCAACAGAT	13140
CGGCGTGTG GGTATGGCAG TGATGGGGC CAACCTGGC CTCAACATCG AAAGCCGG	13200
TTATACCGTC TCCATCTTC ACCGCTCCC CGAGAAAACT GAAGAAGTTG TTGCCGAGAA	13260
CCCGGATAAG AAACCTGGTTC CTTATTACAC GGTGAAAGAG TTCGTCGAGT CTCTTGAAC	13320
CCCACGTCGTT ATCCCTGTTAA TGGTAAAGC AGGGGCGGGA ACTGATGCTG CTATCGATT	13380
CCTGAAGCCC TATCTGGATA AAGGCGACAT CATTATTGAT GGTGGCAACA CCTTCTTCCA	13440
GGACACTATC CGTCGTAACC GTGAACCTGTC CGCGGAAGGC TTAACTTC TCGGTACCGG	13500
CGTGTCCGGC GGTGAAGAGG CGCCCTTGAA AGGCCCCTATC ATCATGCCAG GTGGCAGAA	13560
AGAACCGTAT GAGCTGGTTG CGCCTATCCT GACCAAGATT GCTGCGTTG CTGAAGATGG	13620
CGAACCATGT ATAACCTACCA TCGGTGCTGA CGGTGCGGGT CACTACGTGA AGATGGTGC	13680
CAACGGTATC GAATATGGCG ATATGCAGCT GATTGCTGAA GCCTATTCTC TGCTTAAAGG	13740
CGGGCTTAAT CTGCTCAACG AAGAGCTGGC ACCACTTT ACCGAGTGGA ATGAAGGGCGA	13800
GCTAAGTAC TACCTGATTG ACATCACCAA AGACATCTT ACCAAAAAAAG ATGAAGAGGG	13860
TAAATACCTG GTTGATGTGA TCTCTGGACCA AGCTGCGAAC AAAGGCACCG GTAAATGGAC	13920
CAGCCAGAGC TCTCTGGATC TGGGTGAACC GCTGTCGCTG ATCACCGAAT CGTATTGCG	13980
TCGCTACATC TCTCTCTGAA AAGACCAGCG CATTGCGGCA TCTAAAGTGC TGTCTGGTCC	14040
GCAGGCTAAA CTGGCTGGTG ATAAAGCAGA GTTCTGGTGAA AAAGTCCGTC GCGCGCTGTA	14100
CCTGGTAAAT ATCGTCTT ATGCCCAAGG CTCTCTCCTA CTGCGTGCCTG CGTCTGACGA	14160
ATACAACTGG GATCTGAACT ACGGCGAAAT CGCGAAGATC TTCCGCGCGG GCTGCGATCAT	14220
TCTGCGCGAG TTCCGCGAGA AAATTAAGTCA CGCTGATGTC GAAAACAAAG GCATTGCTAA	14280
CCTGTTGCTG GCTCGTACT TCAAAATAT CGCTGATGAA TATCAGCAAG CGCTGCGTGA	14340
TGTAGTGGCT TATGCTGTGC AGAACGGTAT TCCGGTACCG ACCTTCTCTG CAGCGGTAGC	14400
"ACTACGAC AGCTACCGTT CTGGCGTACT GCCGGCTAAT CTGAGTCAGG CACAGCGTGA	14460

- 69 -

TTACTTCGGT GCGCACACGT ATAAACGCAC TGATAAAAGAA GGTGTGTTCC ACACCG

14516

(2) INFORMATION FOR SEO ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14024 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: YES
 - (v) ORIGINAL SOURCE
 - (A) ORGANISM: Escherichia coli
 - (vi) Note that the first 19bp is from the primer used for the long PCR

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GTAACCCRAGG GCGGTACGTG CATAAATTTC AATGCTTATC AAAACTATTA GCATTAAAA 60
TATATAAGAA ATTCTCAATC GAACCAAAGA ACCGTTTCAA TAATTATGCC CGTTTACAAT 120
GGGGCCAAAA CTATAATCTC ATCAGTAGAA TCAATTATAC ATCAATCTTA TCAAGATTTC 180
GTTTTGTATA TCATTGACGA TTGTAGCACG GATGATACAT TTTCATTAAT CAACAGTCAA 240
TACAAAACA ATCAGAAAAT AAGAATATTG CGTAACAAGA CAAATTTAGG TGTTGCAGAA 300
AGTCGAAATT ATGGAATAGA AATGGCCACG GGGAAATATA TTTCCTTTTG TGATGCGGAT 360
GATTITGGC ACGAGAAAAA ATTAGAGCGT CAAATCGAAG TGTAAATAA TGAATGTGTA 420
GATCTGGTAT GTTCTAAATTA TTATGTATTA GATAACAATA GAAATATTGT TGCGAAGTT 480
AATGCTCCTC ATGTGATAAA TTATAGAAAA ATGCTCATGA AAAACTACAT AGGAAATTG 540
ACAGGAATCT ATAATGCCAA CAAATTGGGT AAGTTTATC AAAAAAAAGAT TGGTACGAG 600
GATTATTGTA TGTGGCTGGA AATAATTATTA AAAACAAATG GTGTATTTG TATTCAAGAT 660
AATCTGGCGT ATTACATGCG TTCAAATAATC TCACTATCGG GTAATAAAAT TAAAGCTGCA 720
AAATGGACAT GGAGTATATA TAGAGAACRT TTACATTGT CCTTTCCAAA AACATTATAT 780
TATTTTTAT TATATGCTTC AAATGGAGTC ATGAAAAAAA TAACACATTG ACTATTAAGG 840
AGAAAGGAGA CTAAAAAGTG AAGTCAGCGG CTAAAGTTGAT TTTTTTATTC CTATTTACAC 900
TTTATAGTCT CCAGTTGTAT GGGGTTPATCA TAGATGATCG TATAACAAAT TTGATACAA 960
AGGTATTAAC TAGTATTATA ATTATATTC AGATTTTTTG TGTTTTTATTA TTTTATCTAA 1020
CGATTATAAA TGAAAAGAAA CAGCAGAAAA AATTTATCGT GAACTGGGAG CTAAAGTTA 1080
TACTCGTTT CCTTTTTGTG ACTATAGAAA TTGCTGCTGT AGTTTTTATTC CTAAAGAAG 1140

- 70 -

GTATTCCTAT ATTTGATGAT GATCCAGGGG GGGCTAAACT TAGAATAGCT GAAGGTAATG	1200
GACTTTACAT TAGATATATT AAGTATTITG GTAATATAGT TGTGTTTGC A TTAAATTTC	1260
TTTATGATGA GCATAAATTCA AACAGAGGA CCATCATATT TGATATTTT ACAACGATTG	1320
CTTTATTGGT TTATCGTTCT GAATTGGTG TGCTCATTCT TCAATATATA TTGATTACCA	1380
ATATCCGTCA AAAGGATAAC CGTAATCCTA AAATAAAAAG ATAATAGGG TATTTTTTAT	1440
TGGTAGGGGT TGTATGCTCG TTGTTTATC TAAGTITAGG ACAAGACGGA GAACAAAATG	1500
ACTCATATAA TAATATGTT AGGATAATTAA ATAGGTTAAC AATAGAGCAA GTTGAAGGTG	1560
TTCCATATGT TGTTTCTGAA TCTATTAAGA ACGATTCTT TCCGACACCA GAGTTAGAAA	1620
AGGAATTAAA AGCATAATAA AATAGAATAC AGGGAAATAA GCATCAAGAC TTATTTTATG	1680
GAGAACGGTT ACATAAACAA GTATTTGGAG ACATGGGAGC AAATTTTTA TCAGTTACTA	1740
CGTATGGAGC AGAACTGTTA GTTTTTTTG GTTTCTCTG TGATTCATT ATCCCTTATG	1800
GGATATATAT ACCTTTTAT CTTTAAAGA GAATGAAAAA AACCCTATGC TCGATAAATT	1860
CGCCATTCTA TTCATATATC ATTATGATT TATTGCAATA CTTAGTGGT GGGAAUTGCAT	1920
CGGCCATTCTT TTGTTGGTCTT TTCTCTCCG TATTGATAAT GTGTACTCCT CTGATCTTAT	1980
TGCATGATAC GTTAAAGAGA TTATCACGAA ATGAAAATAT CAGTTAAAC TGTGACTTT	2040
AATAATGCTG AAGGGTTAGA AAAAACTTA AGTATTTTAT CAATTTAA AATAAAAACCT	2100
TTTGAGGATTA TTATAGTTGA TGGCGGCTCT ACAGATGGAA CGAACCGTGT CATTAGTAGA	2160
TTTACTAGTA TGAATATTAC ACATGTTAT GAAAAAGATG AAGGGATATA TGATGCGATG	2220
AATAAGGCC GAATGTTGGC CAAAGGCAC TTAATACATT ATTTAAACCC CGGGCATAGC	2280
GTAATTGGAG ATATATATAA AAATATCAA GAGCCATGTT TGATTTAAAGT TGGCCTTTTC	2340
GAAAATGATA AACTCTGGG ATTTCTCTTCT ATAACCCATT CAAATACAGG GTATTGTCT	2400
CAAGGGGTGA TTTCACCAA GAATCATTCA GAATATGATC TAAGGTATAA AATATGTGCT	2460
GATTATAAGC TTATTCAAGA GGTGTTCTCT GAAGGGTTAA GATCTCTATC TTTGATTACT	2520
TCGGGTTATG TAAAATATGA TATGGGGGGA GTATCTCAA AAAAAGAAT TTTAAGAGAT	2580
AAAGAGCTTG CCAAAATTAT GTTTGAAAAA AAAAAAAA ACCTTATTAAT TTTTATCCAA	2640
ATTTCAATAA TCAAAATTATTT ATTCCTGAA CGTTTAAGAA GAGTATTGCG GAAAATGCAC	2700
TATATTGTC TAACCTTATT CTTCATGAAG AATAGTTCAAC CATATGATAA TGAATAAAAT	2760
CAAAAAAATA CTTAAATTCTT GCACCTTTAA AAAATATGAT ACATCAAGTG CTTTAGGTAG	2820
AGAACAGGAA AGGTACAGGA TTATATCCTT GTCTGTTATT TCAAGTTGTTAGTAAAAAAT	2880
ACTCTCACTA CTTTCTCTTA TATTAACCTGT AAGTTAACT TTACCTTATT TAGGACAAGA	2940
GAGATTTGGT GTATGGATGA CTATTACAG TCTGGTGTCT GCTCTGACAT TTTGGACTT	3000
AGGTATAGGA ATGCAATTAA CAAACAGGAT CGCACATTCA TTGCGGTGTG GCRAAAAATT	3060
AAAGATGAGT CGGCACAAATTA GTGGTGGGCT CACTTTGCTG GCTGGATAT CGTTTGTCA	3120
AACTGCACATA TGCTATATTA CTTCTGGCAT GATTGATGG CAACTAGTAA TAAAAGGTAT	3180

- 71 -

AAACGAGAAT	GTGTATGCAG	AGTTACAACA	CTCAATTAAA	GTCTTGTAA	TCATATTTGG	3240
ACTTGGAAATT	TATTCAAATG	GTGTGCAAAA	AGTTTATATG	GGAATACAAA	AAGCCTATAT	3300
AAGTAATATT	GTТАATGCCA	TATTTATATT	GTТАATCTATT	ATTACTCTAG	TAATATCGTC	3360
GAAACTACAT	CGGGGACTAC	CAGTTTAAAT	TGTCAGCACT	CTTGGTATTIC	AATACATATC	3420
GGGAATCTAT	TTAACAAATTA	ATCTTATTAT	AAAGCGATTA	ATAAAGTTA	CAAAGTTAA	3480
CATACATGT	AAAAGAGAAG	CTCCATATT	GATATTAAC	GGTTTTTCT	TTTTTATTIT	3540
ACAGTTAGGC	ACTCTGGCAA	CATGGAGTGG	TGATAACTTT	ATAATATCTA	TAACATTGGG	3600
TGTTACTTAT	GTGCTGTTT	TTAGCATTAC	ACAGAGATTA	TTTCAAATAT	CTACGGTCCC	3660
TCTTACGATT	TATAACATCC	CGTTATGGGC	TGCTTATGCA	GATGCTCATG	CACGCAATGA	3720
TACTCAATT	ATAAAAAAGA	CGCTCAGAAC	ATCATTGAAA	ATAGTGGGTA	TTTCATCATT	3780
CTTATTGGCC	TTCATATTAG	TAGTGTTCGG	TAGTGAAGTC	GTТАATATT	GGACAGAAGG	3840
AAAGATTCA	GTACCTCGAA	CATTCTAAAT	AGCTTATGCT	TTATGGTCTG	TTATTGATGC	3900
TTTTCGAAT	ACATTGCA	GCTTTTAAAT	TGGTTGAC	ATAGTTAAC	ACAAATGCT	3960
TGCTGTTGTA	ACATTGATAT	TGATCGCAAT	TCCAGCAAA	TACATCATAG	TTAGCCATT	4020
TGGGTTAACT	GTТАATGTTG	ACTGCTTCAT	TTTTATATAT	ATTGTAARTT	ACTTTATATG	4080
GTATAAATGT	AGTTTAAAT	AACATATCGA	TAGACAGTTA	AAATAAAGAG	GATGAAAATG	4140
AAATATATAC	CAGTTTACCA	ACCGTCATTG	ACAGGAAAG	AAAAAGAATA	TGTAATGAA	4200
TGTCCTGACT	CAACGTGGAT	TTCATCAAAA	GGAAACTATA	TTCAGAAGTT	TGAAAATAAA	4260
TTTGCAGAAC	AAAACCATGT	GCAATATGCA	ACTACTGTTA	GTATGGAAC	GGTTGCTCTT	4320
CATTTAGCTT	TGTTAGCGTT	AGGTATATCG	GAAGGAGATG	AAGTTATTG	TCCAACACTG	4380
ACATATATAG	CATCAGTTAA	TGCTATAAAA	TACACAGGAG	CCACCCCCAT	TTTCGTTGAT	4440
TCAGATAATG	AAACTTGGCA	AATGCTGTT	AGTGACATAG	AAACAAAAAT	CACTAATAAA	4500
ACTAAAGCTA	TTATGTTGTT	CCATTATAC	GGACATCCAT	GTGATATGGA	ACAAATTGTA	4560
GAACGGCCA	AAAGTAGAAA	TTTGTGTTGTA	ATTGGAAGATT	GGCGCTGAAGC	CTTTGGTCT	4620
AAATATAAAG	GTAAATATGT	GGAAACATT	GGAGATATT	CTACTTTAG	CTTTTTGGAA	4680
AAATAAAATCA	TTACTACAGG	TGAAGGTGGA	ATGGTTGTC	CGAATGACAA	AAACATTAT	4740
GACCGTTGTT	TACATTITAA	AGGCCAAGGA	TTAGCTGTAC	ATAGGCAATA	TTGGCATGAC	4800
GTTATAGGCT	ACAAATTATAG	GATGACAAAT	ATCTGCGCTG	CTATAGGATT	AGCCCACTTA	4860
GAACAAAGCTG	ATGATTITAT	ATCACGAAA	CGTGAATTG	CTGATATTAA	AAAAAAAAAT	4920
ATCAACAGTC	TTGTACAAAGT	CCACAAGGA	AGTAAAGATG	TTTTTCACAC	TTATGGATG	4980
GTCTCAATTC	TAACTAGGAC	CGCAGAGGAA	AGAGAGGAAT	TAAGGAATCA	CCTTGCAGAT	5040
AAACTCATCG	AAACAAGGCC	AGTTTTTAC	CCTGTCCACA	CGATGCAAAT	GTACTCGGAA	5100
AAATATCAAA	AGCACCCAT	AGCTGAGGAT	CTTGGTTGGC	GTGGAATTAA	TTTACCTAGT	5160
TTCCCCAGCC	TATCGAATGA	GCAAGTTATT	TATATTG	AATCTATTAA	CGAATTAT	5220

- 72 -

AGTGATAAAT AGCCTAAAT ATTGTAAGG TCATTGATGA AAATTGCGTT GAAATTCCAGAT 5280
GGATTTACG AGTGGGGCGG TGGAAATTGAT TTATTAAT ATATTCTGTC AATATTAGAA 5340
ACGAAACCAG AAATATGTAT CGATATTCTT TTACCGAGAA ATGATATACA TTCTCTTATA 5400
AGAGAAAAAG CATTCCCTT TAAAGTATA TTAAAGCAA TTAAAGAG GGAAAGGCCT 5460
CGATGGATT CATTAAATAG ATTTAATGAG CAAACTATA GAGATGCCCT TACACAAAAT 5520
AATATAGAGA CGAACCTTAC TTATTAATAA AGTAAGAGCT CTGCCCTTTA TTCAATTTT 5580
GATAGTAGCG ATTGTGATGT TATTCTCTC TGATGCGTG TTCCCTCGGG AAATTTGAAT 5640
AAAAAGCAT GGATGGTTA TATTTATGAC TTTCACACT GTTACTATCC TTCACTTTT 5700
AGTAACCGAG AAATAGATCA AAGGAATGTG TTTTTAAAT TGATGCTCAA TTGGCCTAAC 5760
AATATTATIG TTAATGCACA TTCACTTATT ACCGATGCAA ATAATATGT TGGGAAATTAT 5820
TCTGCAAAAC TACATTCTC TCCATTAGT CCATGCCCTC AATTAATATG GTTCGCTGAT 5880
TACTCTGGTA ATATTGCCAA ATATAATATT GACAAGGATT ATTITATAAT TTGCAATCAA 5940
TTTGGAAAC ATAAAGATCA TGCAACTGCT TTAGGGCAT TTAAATTTA TACTGAATAT 6000
AATCCTGATG TTATTTAGT ATGCACTGGGA GCTACTCAAG ATTATCGATT CCTGGATAT 6060
TTTAAATGAAT TGATGGTTT GGCAAAAAAG CTGGAAATTG ATACGAAAAT TAAGATATTA 6120
GGGCATATAC CTAAACTTGA ACRAAATGAA TTAAATCAAA ATTGCATTGC TGTAATACAA 6180
CCAACCTTAT TTGAAGGCGG GCCTGGAGGG GGGGTAACAT TTGACGCTAT TGCAATTAGGG 6240
AAAAAAGTTA TACTATCTGA CATAGATGTC AATAAAGAAG TTAAATGCGG TGATGTTAT 6300
TTCTTTCTCAGG CAAAAACCA TTATTCATTA ATGACGCGA TGGTAAAAGC TGATGAATCT 6360
AAATTTTTT ATGAACCTAC AACTCTGATA GAATTGGTC TCAAAAGACG CAATCGCTGT 6420
GCAGATTTTC TTCTAGATGT TGTGAAACRA GAAATTGAAT CCCGATCTTA ATATATTCAA 6480
GAGGTATATA ATGACTAAAG TCGCTCTTAC TACAGGTGTA ACTGGACAAG ATGGATCTTA 6540
TCTAGCTGAG TTCTTGCTTG ATAAAGGGTA TGAAGTTCAT GGTATCAAAC GCGGAGCCTC 6600
ATCTTTTAAT ACAGAACGCA TAGACCATAAT TTATCAAGAT CCACATGGTT CTAACCCAAA 6660
TTTCACTTG CACTATGGAG ATCTGACTGA TTCACTAAAC CTCACTAGAA TTCTAAAGGA 6720
GGTACAGCCA GATGAAGSTAT ATAAATTIAGC TGCCTATGAGT CACGTAGCAG TTCTTTTGA 6780
GTCTCCAGAA TATACAGCCG ATGTCGATGC ATTGGTACA TTACGTTTAC TTGGAAAGCAAT 6840
TGCCTTTTA GGATGGAAA ACAAAACGGG TTCTCTATCAA GCTTCAACCT CAGAATTATA 6900
TGGACTTGTGTT CAGGAATCC CTCAAAAGA ATCCGACCCCTT TTCTATCCTC GTTCCCCCTTA 6960
TGCAGTTGCA AAACCTTACG CATTATTGGAT CACGGTTAAAT TATCGAGAGT CATATGGTAT 7020
TTATGCGATGT AATGGTATAT TTCTCAATCA TGAAATCTCCA CGCCCTGGAG AACGTTTGT 7080
AACAAAGGAAA ATTACTCGAG GACTTGCAA TATTGACACA GGCTTGGAAAT CATGTTTGT 7140
TTTAGGGAAAT ATGGATTGCGT TACCGAGATTG GGGACATGCA AAAGATTATG TTGAAATGCA 7200
ATGGTTGATG TTACAACRGG AGCAACCCGA AGATTTGTG ATTGCAACAG GAGTCACATA 7260

- 73 -

CTCAGTCGGT CAGTTTGTCG AAATGGCAGC AGCACAACTT GGTATTAAGA TGAGCTTTGT	7320
TGGTAAAGGA ATCGAAGAAA AAGGCATTGT AGATTGGGT GAAGGACAGG ATGCTCCAGG	7380
TGTGAACCCA GGTGATGTCG TTGGTGGCTG TGATCCTCGT TATTCGCCAG CAGCTGAAGT	7440
TGATACTTGT CTTGGAGATC CGAGCAAAGC TAATCTCARA CTTGGGGGAA GACCAGAAAT	7500
TACTCTTGCT GAAATGATTT CTGAAATGGT TGCCAAAGAT CTTGAAGCCG CTAAAAAACAA	7560
TTCTCTTTTA AAATCGCATG GTTTTCTGTG AAGCTTAGCT CTGGAATGAT GATGAAATAAG	7620
CAACGTATT TTATTGGCTGG TCACCAAGGA ATGGGTTGGAT CAGCTATTAC CCGACGCCCTC	7680
AAACAAACGTG ATGATGTTGA GTTGGTTTTA CGTACTCGGG ATGAATTGAA CTTGGTTGGAT	7740
AGTAGCGCTG TTTGGATT TTCTCTTCAGA CAGAAAATCG ACCAGGTTTA TTTGGCAGCA	7800
GCAAAAGTCG GAGCTATTAGT AGCTAACAGT TCTTATCTCG CCGATTATAT ATATGAGAAT	7860
ATAATGATAG AGGCAGATGT CATTCATGCT GCCCACAAAA ATAATGTAATAA TAAATGCTT	7920
TTCCCTCGGT CGTCTGTAT TTATCCTAAAG TTAGCACACC AACCGATTAT GGAAGACGAA	7980
TTATTACAAAG GGAAACTTGA GCCAACAAAT GAACCTTATG CTATCGCAAA ATTGCAAGGT	8040
ATTAATTTAT GTGAATCTTA TAACCGTCAG TTTGGGCGTG ATTACCGTTTC AGTAATGCCA	8100
ACCAATCTT ATGGTCCAAA TGACAATTAACT CATCCAAGTA ATTCTCATGT GATTCCGGCG	8160
CTTTTGGCGC GCTTCTCATGA TGCTGTGGAA ACAATTCTCG CGAATGTTGT TGTTGGGGA	8220
AGTGGTACTC CAAACGGTGA ATTCTTACAT GTAGATGATA TGGCTTCCTGC AAGCATTTAT	8280
GTCATGGAGA TGCCATACGA TATATGGCAA AAAAATACTA AAGTAATGTT GTCTCATATC	8340
AATATGGAA CAGGTATTGA CTGCACGATT TGTGAGCTTG CGGAAACAAAT AGCAAAAGTT	8400
GTAGGTTATA AAGGGCATAAT TACGTTCTGC ACAACAAAGC CCGATGGAGC CCCTCGAA	8460
CTACTTGTG TAACGCTCTC TCATCAACTA GGTTGGAATC ATAAAATTAC CCTTCACAAAG	8520
GGTCTTGAAATACACAA CTGGTTCTT GAAAACCAAC TTCAATATCG GGGGTAATAA	8580
TGTTTTTACA TTCCCAAGAC TTTGCCACAAA TTGTAAAGGT TACTCTCTT ATTCTATAG	8640
ATTTGATTGT GGAAACAGG TTTGGCAGAA TTTTGTCTAGG AAAACGAATC AACCGCCCCGG	8700
CACAGGGCTA TTGGTTGGT CCTGGTGGTA GGGTGTGAA AGATGAAAAA TTGAGACAG	8760
CCTTGTGAAAC ATTGACAGAA ATTGAACTAG GAATTGCTTT GCCTCTCTCT GTGGGTAAGT	8820
TTTATGGTAT CTGGCAGCAC TTCTACGAAG ACAATAGTAT GGGGGGAGAC TTTCAACGC	8880
ATTATATAGT TATAGCATT CTTCTTAAAT TACAACCAAAT CATTGAAATC TTACCGAAGT	8940
CACAAACATAA TGCTTATTGCG TGGCTATCGC GAGCAAAGCT GATAATGAT GACGATGTGC	9000
ATTATAATGGT TCGCGCATAT TTAAACAAATA AAACRAATGA TGCGATTGGC TTAGATAATA	9060
AGGATATAAT ATGTCTGTG CGCCAATAAT TGCTGTAGTT ATGGCCGGTG GTACAGGCAG	9120
TCTGCTTTGG CCACCTTCTC GTGAACTATA TCCAAAGCAG TTTTACAAAC TCTCTGGTGA	9180
TAACACCTTG TTACAAACGA CTTTGCTACG ACTTTCAGGC CTATCATGTC AAAAACCAATT	9240
AGTGATAACA AATGAACAGC ATCGCTTTGT TGTTGGCTGAA CAGTTAAGGG AAATAAAATAA	9300

- 74 -

ATTAATGGT AATATTATTC TAGAACCATG CGGGCGAAAT ACTGCACCAAG CAATAGCGAT	9360
ATCTGCGTT CATGCGTTAA AACGTAATCC TCAGGAAGAT CCATTGCTTC TAGTTCTGC	9420
GGCAGACCAAC GTTATAGCTA AAGAAAAGTG TTTCTGTGAT GCTATTTAAA ATGCAACTCC	9480
CATCGCTAAT CAAGGTAAAA TTGTAAACGTT TGGAATTATA CCAGAAATATG CTGAAACTGG	9540
TTATGGGTAT ATTGAGAGAG GTGAACTATC TGACCGCTT CAAGGGCATG AAAATACTGG	9600
TTTTTATTAT GTAAATAAGT TTGTCGAAAA GCCTAATCGT GAAACCGAG AATTGTATAT	9660
GACTTCGTT AATCACTATT GGAATAGTGG AATATTCTATG TTTAAGGCAT CTGTTTATCT	9720
TGAGGAATTG AGAAAATTTA GACCTGACAT TTACAATGTT TGTGAACAGG TTGCCCTCATC	9780
CTCATACATT GATCTAGATT TTATTCGATT ATCAAAGAGA CAATTTCAAG ATTGTCCITGC	9840
TGAATCTATT GATTITGCTG TAATGGAAA AACAGAAAAA TGTGTTGTAT GCCCTGTTGA	9900
TATTGGTTGG AGTGAACGTTG GATCTGGCA ATCGTTATGG GACATTAGTC TAAAATCGAA	9960
AACAGGAGAT GTATGTAAG GTGATATATT AACCTATGAT ACTAAGAATA ATTATATCTA	10020
CTCTGAGTCA GCGTTGGTAG CCGCCATTGG AATTGAAGAT ATGGTTATCG TGCAAACTAA	10080
AGATGCCGTT CTTGTGCTA AAAAGAGTGA TGTACAGCAT GTAAAAAAAAA TAGTCGAAT	10140
GCTTAAATTC CAGCAACGTA CAGAGTATAT TAGTCATCGT GAAGTTTCC GACCATGGGG	10200
AAAATTGAT TCGATTGACC AAGGTGAGGG ATACRAAGTC AAGAAAATTA TTGTGAAACC	10260
TGGTGAGGGG CTTTCTTAA GGATGCATCA CCATCGTTCT GAACATTGGA TCGTGCCTTC	10320
TGGTACAGCA AAAGTAACCC TTGGCGATAA AACTAAACTA GTCACCGCRA ATGAATCGAT	10380
ATACATTCCC CTTGGCGCAG CGTATAGTCT TGAGAATCCG GGCATAATCC CTCTTAATCT	10440
TATTGAAGTC AGTTCAAGGGG ATTATTTGGG AGAGGATGAT ATTATAAGAC AGAAAAGAACG	10500
TTACAAACAT GAAGATTAAC ATATGAAATC TTAAACCTTC TTAAAGGCCT ATGATATTG	10560
CGGAAARTTA GGCAGAAGAAC TGAATGAAGA TATTGCGCTGG CGCAATTGGGC GTGCCATTATGG	10620
CGAATTTCCTC AAACCGAAAA CCATTGTTT AGGCGGTGAT GTCCGCCTCA CCAGCGAAGC	10680
GTAAAACCTG GCGCTTGCGA AAGGTTACR GGATGCGGGC GTCGATGTGC TGGATATCGG	10740
TATGTCGGC ACCGAAGAGA TCTATTTCGC CACGTTCCAT CTGGAGTGG ATGGCGGCAT	10800
CGAAGTTAACC GCCAGCCATA ACCCGATGGA TTACAACGGC ATGAAGCTGG TCGCGAAGG	10860
GGCTCGCCCG ATCAGCGGTG ATACCGGACT GCGCGATGTC CAGCGTCTGG CAGAAGCCAA	10920
TGACTTCCCT CCTGTCGATG AAACCAAACG TGTCGCTAT CAGCAATCA ATCTGGTGA	10980
CGCTTACGTT GATCACCTGT TCGTTTATAT CAACGTCAAA AACCTCACGC CGCTCAAGCT	11040
GGTGATCAAC TCCGGGAACG GCGCAGCGGG TCCGGTGGTG GACGCCATTG AAGCCCCATTG	11100
TAAAGCCCTC GGCGCACCCGG TGGAATTAAAT CAAAGTACAC AACACGCCGG ACGGCAATT	11160
CCCCAACCGT ATTCTTACCC CGCTGCTGCC GGAATGCCGC GACGACACCC GTAATCGGGT	11220
CATCAACAC GGCGCGGATA TGGGCATTGC CTTTGATGCC GATTTGACCC GCTGTTCCCT	11280
GTTTGACGAA AAAGGGCAGT TTATCGAGGG CTACTACATT GTCGGCCTGC TGGCAGAACG	11340

- 75 -

GTTCCTCGAA AAAATCCCG GCGCGAAGAT CATCCACGAT CCACGTCTCT CCTGGAACAC 11400
 CGTTGATGTG GTGACTGCCG CAGGCGGCAC CCCGGTAATG TCGAAAACCG GACACGCCCT 11460
 TATAAAGAA CGTATGCGCA AGGAAGACGC CATCTACGGT GGCGAATGAA GCGCTCACCA 11520
 TTACTTCGGT GATTCGCTT ACTGCGACAG CGGCATGATC CGGTGGCTGC TGGTCGCCGA 11580
 ACTGGTGTGC CTGAAAGGAA AAACGCTGGG CGAAATGGTG CGCGACCGGA TGGCGCGTT 11640
 TCCGGCAAGC GGTGAGATCA ACAGCAAACCT GGCGCAACCC GTTGAGGCAA TTAATCGCGT 11700
 GGAACAGCAT TTGACCGCG AGGCCTGGC GGTGGATCGC ACCGATGGCA TCAGCATGAC 11760
 CTTTGGCGAC TGGCGCTTAA ACCTGCGCTC CTCCAACACC GAACCGGTGG TGCGGTTGAA 11820
 TGTGGAATCA CGCGGTGATG TAAAGCTAAT GGAAAAGAAA ACTAAAGCTC TTCTTAAATT 11880
 GCTAAGTGG TGATTATTAA CATTAATCAT TAAGCGTATT TAAGATTATA TTAAAGTAAT 11940
 GTTATTGCGG TATATGATGA ATATGTGGC TTTTTATGT ATAACGACTA TACCGCAACT 12000
 TTATCTAGGA AAAGATTAAT AGAAATAAG TTTTGTACTG ACCAATTGTC ATTCACGTC 12060
 ACGATTGAGA CGTTCCTTTCG CTTAACATC TTTTCATCG CTTATGTAAT AACAAATGTC 12120
 CCTTATATAA AAAGGAAAC AAAATGGAACT TTAAATTAAT TGAGACAATAA GATTTTATT 12180
 ATCCCTGTTT ACGATATTAG AGCCAAAGTT GTATCCTGCA TCAGTCCTGC AATATTTCAC 12240
 GAGTGCTTIG TTAACTGAAT ACATGCTGCA CTTTTCCAG ATGATAACGA CGTCATCGCA 12300
 ATTGATGGTA AAACACTTCG GCACACTTAT GACRAGACTC GTCCGAGGG AGTGGTTCAT 12360
 GTCATTAGTG CGTTTCAGCA ATGCACAGTC TGGTCCTCGG ATAGATCAAG ACGGATGAGA 12420
 AACCTAATGC GTTACAGTT ATTCAATGAA TTTCTAAAT GATGGGTATT AAAGGAAAAAA 12480
 TAATCATAAC TGATGCGATG GTTGGCAGA AAGATATTGC AGAGAAAGATA TAAAAACAGA 12540
 GATGTGATTA TTTATTGCGT GTAAAAGGAA ATAAGAGTCG GCTTAATAGA GTCTTTGAGG 12600
 AGATATTTCAC GCTGAAAGAA TTAAATAATC CAAACATGCA CAGTTACGCA ATTAGTGA 12660
 AGAGGCACGG CAGAGACGAT GTCCGCTTC ATATTGTTTG AGATGCTCCT GATGAGCTTA 12720
 TTGATTTAC GTTGAATGG AAAGGGCTGC AGAATTTATG ATGGCAGTC CACTTTCTCT 12780
 CAATAATAGC AGAGCAAAG AAAGATTCG AAATGACGAT CAAATATTAT ATTAGATCTG 12840
 CTGCTTTAAC CGCAGAGAAAG TTCGCCACAG TAAATCGAAA TCACTGGCGC ATGGAGAATA 12900
 AGTTGCACAG TAGCCTGATG TGGTAATGAA TGAAATCGAC TATAATATAA GAAGGCGAGT 12960
 TGCATTGAA TGATTTCTA GAATGGGGCA CATCGCTAAT AATATCTGAC AATGATAATG 13020
 TATTCAAGGC AGGATTATCA TGTAAGATGC GAAAAGCACT CATGGACAGA AACTTCCTAG 13080
 CGTCAGGCAT TGCAAGCTGC GGGCTTTCTA AATCTTGATG TGGTTTGATG AAGATATTTC 13140
 TTTGGAGATG GGAAAATGAA TTTGTATGGT ATTTTGGTG CTGGAAAGTTA TGGTAGAGAA 13200
 ACAATACCA TTCTAAATCA ACRAATAAAG CAAGAATGTG GTTCTGACTA TGCTCTGGTT 13260
 TTTGTGGATG ATGTTTTGGC AGGAAAGAAA GTTAATGGTT TTGAAAGTGT TTCAACCAAC 13320
 TGCTTTCTAA AAGCCCCCTTA TTTAAAAAAG TATTTTAATG TTGCTATTGCA TAATGATAAG 13380

- 76 -

ATACGACAGA GAGTGTCTGA GTCAATATTA TTACACGGGG TTGAACCAAT AACTATAAAA 13440
 CATCCAAATA GCGTTGTTA TGATCATACT ATGATAGGTA GTGGCGCTAT TATTTCTCCC 13500
 TTTGTTACAA TATCTACTAA TACTCATATA GGGAGGTTTT TTCATGCAA CATAACTCA 13560
 TACGTTGCAC ATGATTGTCA AATAGGAGAC TATGTTACAT TTGCTCCTGG GGCTAAATGT 13620
 AATGGGATATG TTGTTATTGA AGACAATGCA TATATAGGCT CGGGTGCAGT AATTAAGCAG 13680
 GGTGTTCTTA ATCGCCCACT TATTATGGC GCGGGAGCCA TTATAGGTAT GGGGGCTGTT 13740
 GTCACTAAAA GTGTTCCCTGC CGGTATAACT GTGTCGCGAA ATCCAGCAAG AGAAAATGAAA 13800
 AGATCGCCAA CATCTATTIA ATGGGAATGC GAAAACACGT TCCAAATGGG ACTAATGTTT 13860
 AAAATATNTA TAATTCGCT AATTTACTAA ATTATGGCTT CTTTTTAAGC TATCCTTTAC 13920
 TTAGTTATTAA CTGATACAGC ATGAAATTAA TAATACTCTG ATACATTTT ATACGTTATT 13980
 CAAGCCGCAT ATCTAGCGT AACCCCTGAC AGGAGTAAAC AATG 14024

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Salmonella enterica* serovar muenchen serogroup C2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTGACAAAT ACCGACCGTA TAATGAATCA AACGTTCTGG ATTGGTATTG ATCCAGGCTT	60
GACTACAGAG CTTTAGATT ATGTCGTAAG TAAGTTGAA GAATTTTTTG GTTTAAATT	120
CTAATTTTA GGATAGGATG CTTGATGTGA ATAAGAAAT CCTAATGACT GGGCCTACTA	180
GCTTGTAGG TACCCATCTA CTACATAGTC TCATAAAGGA AGGTTATAGT ATTATTGCT	240
TAAAGCGTCC TATAACCGAG CCAACGATTA TCAATACCTT GATTGAATGG TTGAATATAC	300
AAGATATAGA AAAATATGT CAATCATCTA TGAATATTCA TGCGATTGTC CATATTGCAA	360
CAGACTATGG TCGAACACAGA ACCCCTATAT CTGAACAATA TAAATGTAAT GTCCTATTAC	420
CAACAGACT GCTTGAGTTA ATGCCAGCCTTAAACCGAA ATTCTTTATT TCTACTGACT	480
CTTTTTTGG GAAATATGAG AAGCACTATG GATATATGCG TTCTTACATG GCATCTAAA	540
GACATTTGT AGAACTATCA AAAATATACG TAGAGGAACA TCCAGACGTT TGTTTTATAA	600
ATTTACGTTT AGAACATGTT TACGGTGAGA GGGATAAAGC AGGTAAATAA ATCCCGTATG	660
TTATCAAAA AATGAAAAAC AATGAAGATA TTGATTGTAC GATGCCAGG CAGAAAAGAG	720
ATTTTATTTA TATAGACGAT GTTGTTCGG CCTATTGAA AATTTAAAG GAGGGTTTA	780

04320593-2004-0500

- 77 -

ACGCTGGACA CTATGATGTC GAGGTGGGGA CTGGAAAATC GATAGAGCTA AAAGAAGTGT	840
TTGAGATAAT AAAAAGAGA ACGCATAGTA GTAGTAAGAT AAATTATGGT GCAGTTGCAG	900
TGCGTGATGA TGAGATTATG GAGTCACATG CAAATACCTC TTTCCTGACT CGATTAAGTGT	960
GGAGTGCAGA GTTTTCTATT GAGAAGGGTG TGAAAAAAAT GTTGAGTATG AAAGAGTAAT	1020
GAATCGTATT ATTAGAATGT TAGGTGTAGA TAAAGCAATT CGTTATGTTA TTTTTGGTAA	1080
GATAATATC GTATTAACGG GTTACTGT AATAATGTTA ATATCACACC ATTTATCTAA	1140
AGACGCACAG GGCTATTATT ATACATTTAA TTCAGTAGTG GCACTACAGA TAATATTGAA	1200
ATTGGGGCTA TCAACGGTAA TCATTCAATT CGCTAGCCAT GAAATGTCAG CGTTAAAATA	1260
TGATTATTCT GAACGAGATA TTATAGGTGA AAGTAAAAT AAGCAACGTT ACCTATCGTT	1320
ATTCGTTG GCAAAATAAT GGTTATGCACT AATAGCTTG CTAATAATAT TAATAGTCGG	1380
TCCCCATCGGG TTATGTTTTT TTACGCAAA AGAAGGCTTA GGTGTACCTT GGCAAGGGC	1440
ATGGTTATTAA TTAAACAATAG TTACAGCTTT TAATATTTT CTTGTTCTG TACTTTCTGT	1500
CGCTGAAGGG AGTGGGTTAA TTACTGTGTT GAATAAAATG AGRATGTCAG AGTCGCTGT	1560
AGCTGGTATA TTGGCAGTAA CCTTACTTTA TAGTGGCTTT GGACTATATG CTACGTCCTG	1620
AATAGCTTATC TCAGGGACTA TCATATTCTC CATATTTCA TATAAGTATT TTAAAAAAAT	1680
TTTCTGCAA TCTTTAAAGC ATAATAATAA ATATACTGAA GGTGGTATT CATGGGTTAA	1740
TGAAATATT CCTATGCAA GGCAGAATTG CTTAAGTGG ATGTCAGGGT ATTTTATTTA	1800
TTTTGTATG ACCCCCCATTG CATTCAAATA TTTCGGGCT ATATATGCG GGCAGTTAGG	1860
GATGTCCTTA ACATTATGCA ATATGGTAAAT GGCTACGGGC CTGGCTTGGA TATCCACTAA	1920
ATATCCAAA TGGGGAGTAA TGGTTTCCAA CAAACAGCTT GCGGAACTGA GTAAATCGTT	1980
CAAAAGTGCATGCAAT CTCCTTTTG TGCTTGACCA GGATTAACGT GTGTATACAT	2040
TTCAATTATGG TTATGAAAT TATCTGGTTC AACACATTGGC GAGCGGTTTG TGGGATTGCA	2100
GGATTTTTC TTTCATCTT TAGCAATTAT TGGTAACTC ATTGTAGCTT GCTTGTGCAAC	2160
CTATATAAGA GCGCATAAAAA CTGAAAAAAAT GACATTGGCA TCATGTATAA TGGCTCTCTT	2220
GAECTATAACT ACAATGTTGT TTGTTGCATA TTTAGAGTAC TCGAGGTTCT ACATGTTAAAT	2280
GTATGCGAGCA CTAACGTGGT TATATTTGTG TCCTCAAAC TATATAATCT TTAAAAGATT	2340
CAAGAGTTCT TATGAGTAAA AACACCTCTT TTACTATTGCA TATTGGACCA TATAACCGCT	2400
CTTCATGTGTT GGCTCGTTA CTTGATGATGTA TAATTCACCA GGAGAAGCTAT TGTCATGATG	2460
AACTCGAGGT TATTGTTGTG GATAATGCTT CAACAGATGA AACAGCAAGA ATAGCCAAGA	2520
GTGGCTTAGA TAAATAAGA AATAGTACTT ATCATCTAAA TGAAGAAAAT TTAGGAATGG	2580
ATGGTAACTT CCAGAAATGT TTTGAGTTAT CAAATGGAAA ATATCTTGG ATGATTGGCG	2640
ATGATGATCT AATAGTCAAA AATGGTATTG CGAAGGTTTT TTGATGATTTA AAGTCCCAGC	2700
CTGCGATTAGA TATGGTGTAT GTAAATTCAAG CAGCAAAGAC TGAGTTAAC TATAATGCTG	2760
ATGTCAGGAGAC GTCATTCTAC ACAAAATGATG TAGATTTTAT TTCAAGACGTG AAAGTTATGT	2820

- 78 -

TCACGTTTAT TTCTGGAATG ATATGTAAGA AACTGATGC AATTGTCAA GCGGTTGGTA	2880
TTTCAGTCC GCAAAC TACT GGAAAATATC TTATGCATT AACATGGCAA TTGCCATTAC	2940
TTAAACAGGG TGGAGAGTTC GCAGTTATCC ATAATAATAT AATTGAGGCT GAGCCAGATA	3000
ATTCAGGTG ATATCAATTAA TATAAGGTTT TTTCTAATAA TCTTGCGACA ATCTTGTG	3060
TTTTTATCC CAGAGAGCAC CGTGTAAAGTA AAAGAGTTCG CGCATCAGCA TGTTTATTCT	3120
TACTTAACCT CATAGGGCAT GAAGATAAAA CCAAAATTT TGCTACAAAT AATTATTTAA	3180
GAGATTGCGA TAGTGCATT ATAGATTAA TTATATATAA ATATGGCTT AGGTTTTCT	3240
ATCTATATCC TAAAACGTG CCTTTATTTA GAAAATAAA ATATATTATA AAGACGGTTT	3300
TAATGCGGAA ATAAAAATTAA TTCAAGATGG TTGCTGAAA ACGACTTATA GGACTATCTA	3360
ATGTTTGTCT ATAGTTTAAG ATTAAAATTAA AATCTTATCA TATCATTATT GAGTAAAGTT	3420
AGGCGGAAT CAAAAGCAA GTTTCTGTT CTGCTTAGCG GATATGATT TAAAATGGTT	3480
GGGAAGAATT TTRAATTGAA TGTCAAACCT TACTCTGCAA AAAATAACAC CTCTTCCAAA	3540
TGGGGTAGTA TGCGGGTTGG TGATAACTGC TGGATTGAG CTGTATATAA TTATGGTGT	3600
GAAAATTTG AACCTTATTGT STACATAGGT GATCGTATAT GTTTAAGTGA TAATGTTCAT	3660
ATTTCTGCG TATCATGTTT ATTGTTAGAA AACGATATAT TAATGGTAG CAAAGTTTAT	3720
ATAGGCATC ATAGCCATGG CAGTTATAAA GTATGCAGTC CGAAATAGA ACCGCCAGCA	3780
AATAAGCCAT TAGGTGATAT TGCTCCTATT AAAATAGGTA ATTGCTGCTG GATTGGAGAT	3840
AATGCAGTAA TTCTGGCTGG TAGTGAATT TGTGATGGCT GTGTAAATCG AGCTAATTCA	3900
GTGCTCAAGG ATTAAAAGT CGATAAAGCCA TGTTTAATTG GTGGGGTTCC TGCTAAAGTA	3960
ATAAAAGGTAT TTAAATGAA ATGTTTTAT CAGTATTGTT ATACCGTCTT ATAATAGAGC	4020
TGAGTTTTA GAGCCACTAC TGGATAGCA ATATAATCAA GATTATTGTT TAAGGATAA	4080
TGAGTTTGAG GTCAATTGTTT GTGAAGATAA ATCTCCACAG AGAGATGAGA TAAACTCTAT	4140
TATCGAAAAC TATAAAGCAA AAAATAATAA ACAAAATCTT TATGTTAATT TCAATGAAGA	4200
TAATTTAGGC TATGATAAGA ATTAAAAAAATGCATTAGT TTGACGACAG GTAAATATTG	4260
CATGATCATG GGCAACGATG ATCTATTAGC AGATGGAGCG TTATCAAAA TAGTGAAGT	4320
TTTGAAGGCT AATCCTGAAA TTGTATTGGC TACCGCAGCG TATGGTTGGT TTAAGGAAAA	4380
TCCGAATGAG TTATGTGATA CTGTTCTGCA TTAAACAGAC GATACTTAT TTCAGCCGGG	4440
GGCTGATGCC ATTAAATTTT TCCTCCGTAG AGTTGGAGCT ATTTCAGGCT TTATTGTCAA	4500
TGCTGAAAAA GCAAAAAAAC TATCGAGTGA TTATTTGAT GGGCGTTTAT ATTATCAAAAT	4560
GTACCTTGCT GGTATGCTAA TGGCTGAAGG TCAGGGATAC TATTTAGCG ACGTGATGAC	4620
ATTGTCGAGG GATACAGAGG CTCTGTACTT TGTTAACGCT GGAACGTAA AAGGAGTTTT	4680
CACCCCCGGGG GGGTATAAAC CAGAGGGCCG TATACTATAG GTGAGGCT TGTTGCTAAT	4740
TGCAAAATAT ATAGAAGATA CAACAAAAAT TGATGGCGTT TATGCTGGAA TTAGAAAAGA	4800
CTTAGCGAAC TATTTTATC CTTATATTG AGATCAACTC GACTTGCCTC TTTATACTTA	4860

DRAFT - 6502511

- 79 -

TATTAATAATG ATAAATAAAT TTGGGAAAAT GGGATTTCA AATGAAAAGC TTTTCTATGT	4920
GCATGCCATT TTAGGGTATG TACTAAACG GAGGGCTAT GATGCTTAA TAAATACAT	4980
TCGTAGCAA AAAGGCGGTA CTCCGCGTCT TGTTATTAA CCTCCACTTT CAAAAATGTC	5040
TATGAATATA CTTCTTGCTG CGATATTAGG CGTTAACCTA TTTTCTCCAT ATATTAGTTC	5100
GTGGATGGTG GGTATGCTGC CATTTCACC AGGAGCAATC CTAAGGGATG TACTCAATGTC	5160
ATTTTTGTC GCGTAGTGC TAGTCGATT TGTCATTGAT AGGAAAAAAA CTTATTCCC	5220
GTTGGTTTT ACTATTTTT CATGGTCGGC GGTAATACTA TGGGTAATAG CGTTAACCTAT	5280
ATTCACCG GATAAAATTC AAGCAATTAT GGGGGGGCGG AGTTATATTT TATTCCCGGC	5340
AGTTTCTATA GCATTAGTGA TTTAAAGT ATCATACCCG CATTCTTAA ATATTGAAAA	5400
AATAGTTGCA TACATAATT TTCTAATGTT TATGGTTGCG ACAATATCTA TTATTGATGT	5460
ACTAATGAAT GGAGAGTTC A TAAATTGCT CGGATATGAT GAGCATTATG CAGGAGAAC	5520
ATTAACCTTA ATTAATAGCT ATGATGGGAT GTGCGGGCT ACAGGCGGTT TTAGTGTGTC	5580
TCTCAATTTC GGATATATGC TCACATTAGG TGTTTGTAA TGATGGAGT GTTTTCCCA	5640
AGGATATAAA AGATATTGTA TGCTTATTAT TAGTTTTGCT ATTTTATAG CGATCTGCAT	5700
GAGTCCTACT AGAGGGCAA TACTTGTGCG TGCGCTTATT TACGCACTTT ATATAATTC	5760
AAATCGGAAG ATGCTTTTT GTGGAATAC TTTATTGTA ATAATTTAC CCGTTTAC	5820
AATTCTACT AATATTTTG ACACATATAC AGAATTTTG ATCGGCAGGT TTACAGATTC	5880
GTCTCAGGCA TCGCGTGGAT CTACACAGGG CGGGATAGAT ATGGCAATTA ATTCACTAAA	5940
CTTCTGTCA GAACATCCAT CAGGTATAGG TCTGGTACT CAAGGTTCA GAAACATGCT	6000
TTGGTAAAAA GATAATAGGT TAAATACGGA TAATTATTT TTCTGGATCG CCCTTGAGAC	6060
TGGTATTATG GCCTAATCTCA TAAATATTAT TTATCTGGCA AGTCATTTC ATTCTCAAC	6120
TTTACTAAAT AGAATATATG CGAGTCATTG TAGCAATATG CACTATAGAT TATAATTTCT	6180
CITGGGAAGT ATATATTTTA TAAGTCACG CTAAAGTTCGA GCACCTCTG CATCAACTTT	6240
TTCTATATAT TATTGGACAG TTTAGCTT GATTCCATT TAAATTTAA CAAATAGACG	6300
GTGCACGCGA TAATGAATAA TAAAAGGTT TTGATGGATA TTAGTTGGTC TAATAAAGGG	6360
GGGATTGGAC TTGTTACTGTA TGAATTTCTT AAACACTATAT GTGATATATC TAAGGAGGA	6420
CTATATAGAA AATGTGCTTC TCCGCTGGCC CCATTAGGTT TAGCAGTCAA TATTTTCTG	6480
CGAAAGAAA CTGATGTGGT TTTCCTCTC GGCTATATTC CACCACTTT TTGTTGAA	6540
AAGTTCTATAA TAACAATACG TGATCTAAAT CACCTGGATT TAAATGATAA TTCTCTCTT	6600
TTTAAAGAGGT TATTTTATAA TTGTTATAAA AAGGGCGGTT GTAGAAAAGC ATATAAAATA	6660
TTTACAGTTT CGAATTTC AAGGAAAGA ATAGTAGCAT GGTCAAGGTG AAACCCATAA	6720
AAATAGTCA CGGTATATAA TGGGTACTCT AGTCTATTAA ATGCGATGT AAAACCATTG	6780
AATTTAGGCT ATAAATATTT GCTATGTGA GGAAACAGAA AAACCTATAA GAATGAGAAG	6840
TGTGTTATAT CTGCCCTTGC CAAAGCAGAT ATTGATCCAT CAATAAAATC CGTTTTACT	6900

- 80 -

GGTAATCCTT	GTAATGATT	AGAAAAACTA	ATAATACAA	ATGGTTAAC	TGAACGTGTA	6960
AAGTTCTTG	GGTCGTTGC	TGAAAAAGAT	TTACCATCGT	TATATAAGGG	CTCGTTAGGA	7020
TTAGTTTCC	CTTCCTTATA	TGAAGGTTT	GGATTACCTG	TAGTGGAGGG	CATGGCCTGT	7080
GGTATTCTG	TATTAACCTC	TCTAACTTC	TCATTGCCAG	AGGTGCTGG	AGATGCAGCG	7140
ATTCTTGTC	ACCCCTCTTC	GGAAAGATGCT	ATTACTAAAG	GAATTCGAG	TTAATTAAT	7200
GATTCTGAAC	TTCGTAAGCA	TITAATCCAA	AAGGGCTTT	TGCGGGCAA	GAGGTTCAAT	7260
TGGCAAAACG	TGGTTAGTGA	GATTGAAATG	GTACTGACAG	AGGCATGTGA	TGAAATAAA	7320
TGAAATAAAA	ATATCTCTG	TTCATGAGTG	GTATTAAAGT	TATGCAGGCT	CCGAACAGGT	7380
ATCATCTGCC	ATCCCTGATG	TTTTCCTGAA	AGCGAAGTTA	TATTCGGTGG	TTGATTTCT	7440
AACGGATGAA	CAAAGAACAC	ATTTCTGGG	GAAATATCGC	ACTACACAT	TTATTCAAAA	7500
TTTACCTAAA	GCTAAAAAT	TTTACCAAGAA	ATATTTACCA	CTAATGCCAC	TGGCTATTGA	7560
ACAACCTGAT	TTATCAGATG	CTAATATCAT	CATTAGTAGC	GCCCATTCCG	TTGCAAAAGG	7620
TGTTATTTCC	GGACCAGATC	AGCTTCACAT	TAGCTATGTT	CATTCTCTTA	TTCGATATGC	7680
GTGGGATT	CAAGCATCAGT	ACCTTAATG	GTCTAACCTG	AATAAAGGAA	TTAAAGGTTG	7740
GTTAGCAAAA	TGGCTTCTTC	ACAAAATACG	AATTGGGGAT	TCTCGAACCG	CAAATGGGGT	7800
TGATCATT	ATAGCTAATT	CTCAATATAT	CGCGCGTAGA	ATTAATTAAG	TATACAGACG	7860
TGAGGCTTCA	GTTATATATC	CGCGCTGAGA	TGTGGATAAT	TTTGAAGTAA	AAAATGAAAA	7920
GCAAGACTAT	TATTCACAG	CATCCCGTAT	GGTACCCCTA	AAACGTATTG	ATCTTATTGT	7980
CGAAGCCTTT	AGTAAAATGC	CGGAAAAGAA	ATTAGTAGTT	ATTGGTGTATG	GACCGGAGAT	8040
GAAAAAAATA	AAGAGCAAGG	CTACAGACAA	TATAAAATTC	CTCGTTATC	AATCTTTTCC	8100
TGTTTTAAA	GAGTATATGC	AGAGGCCAG	GGCGTTTGT	TTTGAGGG	AGAGGACTT	8160
TGGAATAATA	CCTGCGAAG	CTCAAGCTTG	CGGTACCCCT	GTTATTGCCT	TTGGGAAGGG	8220
TGGGGCCTTA	GAAACCGTTC	GCCCCACTAGG	TGTAGAGGAA	CCGACTGGCA	TTTCTTCAA	8280
GGAACAGAAAT	ATTGCTCTT	TGCATGAAGC	TGTTAGTGA	TTTGAAAAAA	ATGCATCATT	8340
TTTACATCT	CAGGCCTGTA	GAAAAAAATTC	TCTCGATCAA	GATTGAAACA	8400	
AGAATTTAAG	AACTTTGTTA	ATGAAAAGTG	GAATCTTTTC	AAAACAGAAC	AGATTATTAA	8460
ACGTTAATT	TGGTTTATTG	AATGTCTAA	TTAATACAG	TAATAATGGC	CGGTGGGATT	8520
GGTAGCCGTT	TGTGGCCACT	TTCACGTGAA	GAGCATCCGA	AACAGTTTT	AAGCGTAGAT	8580
GGTGAATTAT	CTATGCTGCA	AAACACCAATT	AAAAGATTGA	CTCCCTTTT	GGCTGGAGAA	8640
CCTTTAGTC	TTTGTAAATGA	TAGTCACCGC	TTCCCTGTGCG	CTGAAACACT	TCGAGCTATA	8700
ATAAAACTAG	CAAATAACAT	CATATTAGAG	CCAGTGGGGC	GTAATACAGC	CCCAGCTATA	8760
GGCCTGGCCG	CTTTTGTTC	ACITCAGAAT	GTGCGTGTG	AAGACCCGCT	TTTGCTTGT	8820
CTTGCTGCCG	ATCATGTCA	CCGCGATGAG	AAAGTGTTC	TTAAAGCTAT	CAATCACGCT	8880
GAATTTTTG	CAACACAAGG	TAAGCTAGTA	ACGTTGGTA	TTGTAACCCAC	ACAGGCCGAA	8940

650524-6.0

- 81 -

ACTGGCTACG	GTTATATTTG	TAGAGGTGAA	GCAATCGGGG	AAGATGCTTT	TTCTGTAGCC	9000
GAATTTGTA	AGAAGCCTGA	TTTCGATACA	GCGCGTCATT	ATGTAGAATC	AGAGAAATAT	9060
TATTGGAACA	GCGGTATGTT	CCTATTTCGT	GCAAGTAGTT	ACTTACAAGA	ATTAAGGAT	9120
CTGTCCCCCG	ATATTTACCA	AGCATGTGAA	AATGCGGTAG	GGAGTATTAA	TCCTGATCTT	9180
GATTTTATCC	GTATTGATAA	AGAACGATTC	GCAATGTGCC	CTAGTGATTIC	TATCGATTAT	9240
GCGGTAATGG	AAACATACTAG	GCATGCAGTT	GTCTGACCGA	TGAATGCCG	CTGGTCAGAT	9300
GTGGGGTCAT	GGTCTTCACT	GTGGGATATT	TCTAAGAAAAG	ATCCACAAACG	TAATGTATTAA	9360
CATGGCGATA	TTTTGCTATA	TAATAGTAAA	GATAATTATA	TCTATTCTGA	AAATCGTTT	9420
ATTAGTACAA	TGGGAGTAAA	TAATTTAGTT	ATCGTGCAGA	CAGCAGATGC	ATTATTAGTA	9480
TCTGATAAAG	ATTCAGTC	GGATGTTAAA	AAAGTTGTTG	ATTATTTAAA	AGCTTAAAT	9540
AGAAAACGAA	ATAAAAAAACA	TTTAGAGTTT	TTCCGACCGT	GGGGAAAATT	TACCGTAATT	9600
CATAGTGGC	ATAATTATTT	AGTTAAAAGA	ATAACTGTTA	AACCAGCGC	GAAGTTTGCT	9660
GCTCAGATGC	ATCTCCATCG	TGCTGAGCAT	TGGATAGTGG	TATCTGGTC	TGCTTGATT	9720
ACTAAGGGGG	AAGAAATTTT	TACAATTTCG	GAGAATGTA	CAACATTAT	ACCTGCTAAT	9780
ACAGTTCTA	CGTTAAAAAA	CCCCGCGACT	ATTCCATTAG	AACTAATAGA	AAATCAATCT	9840
GGCACCTATC	TTGCGGAGGA	TGATATTATT	CGCCTGGAGA	AAACATTCTGG	ATATCTGGAG	9900
TAATGAATTG	ATGAAAATAA	TATATAATAC	TTACGATGTT	ATCAACAAAT	CTGGAAATTAA	9960
TTTTGGAAAC	AGTGGTGC	CGGGCCTTGT	TACCGATTTT	ACACCCGAAG	TTTGCGCAGC	10020
ATTTACCAT	TCTCTTTGAA	CAGTAAATGCA	GCAAAGATTIC	TCATTACAA	CGGTTGCGCT	10080
CGCAATTGAT	AATCGTCCAA	CGAGTTACCG	GATGGCTCAA	GCTTGTGCCG	CTGCTTTGCA	10140
AGAAAAAAGG	ATTTAAACCG	TTTACTATCG	CGTAATTCCA	ACACCTGCTT	TAGCTCATCA	10200
ATCAATTTC	GATAAACTAC	CTGCAATCAT	GGTTACTGGC	AGTCATATCC	CTTTTGACCG	10260
TAATGGCTG	AAATTTATA	GACCAGATGG	TGAAAATTACT	AAAGATGATG	AGAATGCTAT	10320
TATTCTATTT	GATGCCATCAT	TTATGCAGCC	TAAGCTGAA	CAATTGACAA	TTTCCACAAAT	10380
CGCTGCTAGA	AAATATAATTC	TACGATATAC	CTCATTATTTC	CCAATGCCAT	TCTTGAAAAA	10440
TAAGCGCATT	GGAAATTATG	AGCATTCTAG	TGCGGGTCGT	GATCTCTATA	AGACGTTATT	10500
CAAAATGTTG	GGTGTCTACAG	TTGTTAGTTT	AGCAAGGAGC	GACGAATTTC	TTCCTATTGA	10560
TACTGAAGCT	GTAAAGTGAAG	ATGATAGAAA	TAAGCAATC	ACATGGGCAA	AAAATATACA	10620
GTTAGATGCT	ATATTTCAA	CTGATGGTG	TGGAGATCGC	CCTCTGATAG	CTGACGAATA	10680
TGGAAATTGG	TAAAGAGGAG	ATATATTAGG	CCTCTGTGTC	TCTCTGGAAT	TAGCTGCTGA	10740
TGCAGTCGCT	ATTCCTGTAA	GCTGCAACAG	TACAATCTCA	TCTGGTAACT	TTTTAAACCA	10800
TGTGGAACGA	ACAAAGATG	GTTCACCCCA	TGTGATTGCA	GCATTTGCTA	AATTATCTGC	10860
AAACTATAAT	TGTATAGCTG	GTGTTGAAGC	GAATGGTGGC	TTTCTGCTAG	GTAGCGATGT	10920
TTATATTAAT	CAGCGTTAC	TTAAGGCATT	ACCAACACGT	GATGCTTTAT	TACCTGCCAT	10980

- 82 -

TATGCTTCTG	TTGGTAGCA	AGGACAAAAG	TATTAGTGAG	CTTGTTAAAA	AACTTCCTGC	11040
TCGCTATAACC	TATTCAAACA	GATTACAGGA	TATAAGTGT	AAAACAAGTA	TGTCTTTAAT	11100
AAATCTTGGT	CTGACAGATC	AAGAGGATT	TTTGAGTAT	ATGGTTTTA	ATAAACATCA	11160
TATATTACAT	TCTGATGTTA	CTGATGCC	TAGAATCACT	ATCGATAACA	ACAATATTAT	11220
TCATTTACGA	CCTTCAGGCA	ATGCCCCCTGA	GTGCGTTGC	TATGCGGAGG	CTGACTCGCA	11280
AGAGGATGCA	TGTAATATTG	TTGAAACTGT	TCTCTCTAAT	ATCAARAGCA	AACTGGGTAG	11340
AGCTTAATGC	TGTTGATAAT	AGAGCGTTTC	TTTCCAGTAA	TACTTTGCT	GGTTATCTGG	11400
TACCCAAGTT	GAGGGTGAGA	ATTTAAATGGA	TCGTTTTGAT	AATAAGTATA	ACCCAAATT	11460
ATGCAAATAA	TTATTGGCTA	TATCAGATTT	ACTGTTTTT	AATGTAGCCT	TATGGGCATC	11520
GTAGGAGATT	GTATATTTAA	TCTTGATGA	AGTCAGCGA	TTTGTACAC	AGAGCAATT	11580
AGATAATCGA	TTTATATCAC	ATTTTATCT	ATCTATAGTA	TGCGTTGGAT	GGTTTTGGGT	11640
TCGACTGCGT	CACTATACAT	ATCGAAAGCC	ATTCCTGGTAT	GAGTTGAAAG	AGGTTATTGCG	11700
TACTATCGTT	ATTTTGCTG	TGTTTGATTT	GGCTTTAAAT	GCCTTTACAA	AATGGCAGTT	11760
TTCACGCTAT	GTCTGGGTGT	TTTGTGGAC	TTTGCCATA	ATCCTGGTC	CTTTTTTCG	11820
CGCACTTACA	AAGCATTTAT	TGAAACAACT	AGGTATCTGG	AAGAAAAAAA	CTATCATCCT	11880
TGGGAGCGGA	CAGAATGCTC	GTGGTCGATA	TCTGCGCTG	CAAAGTGAGG	AGATGATGGG	11940
GTGTTGATGTT	ATCGTTTTT	TTGATACCGA	TGCGTCAGAT	GCTGAATAA	ATATGTTGCC	12000
GGTGATAAAG	GACACTGAGA	CTATTGGGA	TTTAAATCGT	ACAGGTGATG	TCCATTATAT	12060
CCTTGCTTAT	GAATACACCG	AGTTGGAGAA	AAACACATT	TGGCTACGTG	AACTTTCAA	12120
ACATCATTGT	CGTTCTGTTA	CTGTCGTC	CTCGTTTAGA	GGATTGCCAT	TATATAATAAC	12180
TGATATGCT	TTTATCTTAA	GGCCTGGAAT	TATGTTATTA	AGGATACAAA	ATTAACCTGGC	12240
TAAAAGGTCG	TCCCGTTTC	TCAAACGGAC	ATTTGATATT	GTGTTGTCAA	TAATGATTCT	12300
TATAATTGCA	TCACCACTTA	TGATTTATCT	GTGGTATAAA	GTTCACCGAG	ATGGTGGTCC	12360
GGCTATTAT	GGTCACCAAGC	GAGTAGGTG	GCATGGAAAA	CTTTTCCAT	GCTACRAATT	12420
TCGTTCTATG	GTATGAATT	C				12441

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22080 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *S. enterica* serovar *typhimurium* (serogroup B)

- 83 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAATTCGGGA GGCAGCAATGAAAGTCAGCTT	TTTTCTGCTGAAATTTCCAC	TCTCATCGGA	60
AACCTTTGTG CTGAATCAGA TTACTGCGTT	TATTGATATGGCCATGAGG	TGGAGATTGT	120
CGCGTTACAA AAAGGCAGATA CCCAACATAC	TCACGCCGCC	TGGGAGAAAGT	180
GGCGAAAACC CGCTGGTTAC AGGATGAGCC	CCAGGGACCG	CTGGCAGAAC	240
GGCATGTAAC ACAGCTGCCGG	GGCTGCATCG	GGCGGCCGACC	300
CCGATGTCGAC GATGAATCAC	GCAATTGAT	CTTTCCCGG	360
GCCTTTGTG GCGGATGATGTT	TTATCGCACA	CTTGGTCCG	420
ACTACGCGAA CTGGGCGTGC	TTCGCGCAAA	AATCGCGACT	480
CTCTAGTCGT GAGGTGCTCA	GTCATTACAC	GCCGGAGTAT	540
CGATCTGATG CTGCCCCATCA	GCGATCTGTC	GGCGCGTCG	600
GCGGGAAAAG ATTGCGCTT	CGCGCATGG	CGTCGACATG	660
GGTGAAGACCG CCAGGGATGC	CGCTGGAGAT	GATTTCCGTC	720
AGGCTGCAAT GTGGCGATTG	AAGCCTGTCG	GCAACTGAAA	780
CTACCGCATT CTGGGGATTG	GCCCCTGGGA	ACGTCGGCTG	840
TCAGCTAGAG GATGTCATTG	AGATGCCGG	GTTTAAACCG	900
GCTGGATGAC	GCCGATGTTT	TTTTCTGCTG	960
AGGTATTCCG GTAGCGCTGA	TGGAGCGAT	GGCGGTAGGG	1020
GCATAGCGGT ATTCCGGAAAC	TGGTGGAGGC	CGGCAAATCC	1080
CGATGCGCAG CGCGCTGGCG	CCCGACTCGC	TGAGTTCA	1140
GGAGTCGGTG ATCACGCGCG	CCCGCTGAAAA	AGTGGCGCAA	1200
TAATCGCCAG TTAGCCAGCC	TGCTACAAAC	GATATAAAACG	1260
AATTCTCCCG ACGTACCCCTC	CTGACGGCAG	GTTCTGCGCT	1320
GCGCCCTGGCC	GGTACAGGGCG	CGTGAACCTC	1380
CGGATGACGG	TATCGCTCG	TTCAACACGG	1440
CGCCAGGATG GGTGTGTGAA	AATATCAATG	CGGCGATAAC	1500
TGCGGGTACA	GGCGCGGGTG	CGTGGGAATG	1560
GTCAGGTGGT	GGGGGAGCAG	GGCGGCAGTC	1620
CGGACTGTGT	GATTAAGGC	GTGGCGATGA	1680
TCGGTGGTAA	GGRACCGCAG	GTGATCGCTA	1740
ACGCCAACTA	CGCCATTCTC	CGCCAGGGAT	1800
CGCATAGCG	CTTAGCGAT	TTACAGGGGG	1860
ACCGCGACAT	CCTGATTTC	GATCATGTCA	1920
CGAACGCA	TAATTGTAC	AATGGCAAA	

- 84 -

TCAACTGGGG GATCGGCATC GGGCTGGCGG GTAGCACCTA TGACAAACAGT TATCCTGAAG	1980
ACCAGGCAGT AAAAAACTTT GTGGTGGCCA ATATTACCGG ATCTGATTGC CGACAGCTTG	2040
TGCGACGTAGA AAATGGCAA CATTCTGTC TTCGCAATGT CAAAGCCAAA AACATCACGC	2100
CCGGTTTCAG TAAAAATGCG GGTATTGATA ACACGCAACGAT CGCAATTAT GGCTGTGATA	2160
ATTTCTGTCAT TGATAATATT GATATGACGA ATAGTGGCGG GATGCTCATC GGCTATGGCG	2220
TCGTTAAAGG AAAATACCTG TCAATTCCGC AAAACTTTAA ATTAAACGCT ATTGGTTPGG	2280
ATAATCGCCA GGTTGCTTAT AAATTACCGC GCATTCAAT TTCCCTCCGGC AACACCCCCCT	2340
CTTTTGTGCG CATCACCAAT GTACGGATGA CGCGTGCTAC GCTGGAACTG CATAATCAAC	2400
CGCAGCACCT CTTCTGCGC AATATCAACG TGATGCAAC TTCAGCGATT GGCCGGCGT	2460
TAAAAATGCA TTTCGATTIG CGTAAAGATG TAGTGGTCA ATTATGGCC CGCCAGGACA	2520
CGCTGCTTTC CCTCGCTAAT GTTCATGCCA TCAATGAAAA CGGGCAGAGT TCCGTGGATA	2580
TCGACAGGAT TAATCACCAA ACCGTGAATG TCGAAGCAGT GAATTTTCG CTGCCGAAGC	2640
GGGGAGGGAT AGTACCGCTA TTTTACGAA ATTCCCTGGG AAAAAGTTGT TCATACTTAA	2700
TGTTATGGTG CGACTAAGA CGTAATGTAG AGCGTGCCAT CATTATCCCTT GGCAAGAGAG	2760
TAATTCTATGC TGGCGAAAC AAGCTAAAGA GCTATAATTG AGCAACCATT TTACAGGTGG	2820
AAGAAACAAAT GATGAATTIG AAAGCAGTTA TACCGGTAGC GGGTTGGGT ATGCATATGTT	2880
TGCTGCCAC CAAGGCATC CCAAAAGAGA TGCTACCGAT CGTCGACAAG CCAATGATTC	2940
AGTACATTGT CGATGAGATT GTGGCTGCAG GGATCAAAGA AATCGTGTG GTGACTCAGC	3000
CGTCTAAAAA CGCCGTTGAG ACCACTTCG ACACCTCTTA TGAACTTGA TAACITCTTG	3060
AGCAGCGCGT TAAGCGTCAG CTTTGGCGG AAGTGCATACT TATCTGCCA CGGGCGGTGA	3120
CGATTATGAA CGTTCGCCAG GGGCAGCGGT TAGGGCTGGG GCATTCTATT CTGTGGCCCG	3180
GTCCGGTCGT GGGCGATAAC CCTTTCTATTG TGGTACTCCC GGATATTATT ATCGATGATG	3240
CTACCGCCGA TCCGCTGCCG TATAACCTTG CGGCAGATGGT GGCGCGTTTC AATGAAACGG	3300
GTGCCAGCCA GGTGCTGGC AAGCGCATGA AAGGTGATTG ATCGGAGTAT TCCGTTATCC	3360
AGACGAAAGA ACCTCTGGAT AATGAAGGCA AAGTCAGCGG GATTGTTGGAG TTTATCGAAA	3420
AACCGGATCA GCGCGACAGC CTGGATTCCG ATTTGATGGC GGTAGGCGGT TATGTGCTTT	3480
CAGCCGACAT CTGGCGGAA CTGGAAAGAA CGAACCGGG CGCCTGGGGC CGCATCCAGC	3540
TCACCGATGC CATTGCTGAA CTGGCGAAA AACAGTCGGT TGACCGCATG CTAATGACGG	3600
GTGACAGCTA TGACTCGGGT AAAAAATGG GCTACATGCA GGCATTGTC AAGTACGGGC	3660
TGCGCAACCT GAAAAGAGGA GCCAAGTTCC GTAAGAGCAT AGACGAGCTT TTGCATGAAT	3720
AAGTATTAAC AACCGTGATA AATGGTGGT GATAAACATA ATAACGGCAG TGAACATTG	3780
AAGCGGCAG TTGGCTGAAA CGAGTGTGTA CTGGCGTTTT AGTTTGTAT AAAGGGCTTA	3840
AGTAACAAAGG GGTTATCTGG AGCATTAA TGCTGATTGTT ATAAGATTAA TCCCTGTTTC	3900
CGGATGCAAT TAATAAGACA ATTACGCTT AAGTTTGTAGT GAGCTTGCCT CGTGGCGC	3960

- 85 -

AGGTTTGCAA	CAAGTCGATA	TGTACCGAGT	GCACTGGTAG	CTGATGAGCC	AGGGGCGGTA	4020
GCGTGTGAA	CGACTTGAGC	ATTAATTTC	TATTGGCAA	TTAATACCA	CATTAATAC	4080
GCCTTATGGA	ATAGAAAAGT	GAAGATACTT	ATTACTGGCG	GGGCAGGTTT	TATTGGATCA	4140
GCTGTTGTCC	GCCATATTAT	TAAGAATACA	CAGGACACTG	TAGTTAATAT	TGATAAATT	4200
ACCTACGCCG	GTAACTCTGA	ATCCCTTCT	GATATTTCTG	AAAGTAATCG	CTACAAATT	4260
GAACACGCCG	ATATTTGTGA	TTCCGCTGAA	ATAACCGTGA	TTTTTGAGCA	GTACCAGCCG	4320
GACGCGGTGA	TGCAATTGCG	TGCGGAAAGT	CATGTGGACC	GTTCGATTAC	CGGGCCAGCA	4380
GCATTTATTG	AAACCAATAT	CGTCGGCAC	TATGCACTTC	TTGAAGTTGC	GCGTAAATAC	4440
TGGTCTGCC	TTGGCGAAGA	AAAAAAAAT	AATTTTCGTT	TTCATCATAT	TTCCACTGAT	4500
GAAGTTTACG	GGGATTAC	GCATCCTGAT	GAAGTTGAA	ACACCGTTAC	GCTGCCGTTA	4560
TTTACTGAAA	CGACGGCATA	TGCGCCAAGT	AGCCCCTATT	CTGCGTCAA	AGCATCCAGC	4620
GATCATTAG	TCCGTGCGCT	CGGGCGTAC	TATGGTCTAC	CAACGATCGT	TACCAATTGT	4680
TCTAATRACT	ATGGCCCTTA	TCACCTCC	AAAAAACTGA	TTCCGTTGGT	CATTTTGAC	4740
GCACTGGAAG	GAAAGCCTT	GCCAATTAT	GGCAAAGGGG	ATCAGATTG	CGATTGGCTA	4800
TATGTAGAAG	ATCATGCTCG	CGCGCTTCA	ATGGTAGTGA	CTGAGGGCAA	GGCAGGGGAG	4860
ACTTATAACA	TTGGTGGACA	CAATGAGAAG	AAAAATCTCG	ATGTGGTATT	TACCATCTGT	4920
GATCTGCTGG	ATGAGATTGT	ACCCAAGCG	ACTTCTTATC	GTGAAACAAT	CACTTATGTC	4980
GCGGATCGTC	CGGGCCATGA	TCGTCGTTAT	GCCATTGATG	CAGGTAAT	TAGCCGCGAA	5040
TTAGGCTGGA	AACCGCTGGA	GACCTTTGAA	ACGGTATTTC	GTAAAACAGT	GGAATGGTAC	5100
CTTGCAAAATA	CTCAATGGGT	AAACAATGTT	AAAAGTGGG	CGTATCAGAG	TTGGATGAA	5160
CAGAACTATG	AAAGGACCCA	GTAAATGATA	TCTTACTTTT	TGGTAAGACA	GGGCAAGTAG	5220
GCTGGGAGTT	GCAACGTTCT	CTGGCACCGG	TAGGAAATCT	GATTGCCCTG	GATGTCGCATT	5280
CAAAAGAGTT	TTGCGGTGAT	TTTAGTAATC	CGAAAAGCGT	TGCGGAAACC	GTTCGTAAGC	5340
TTCGCTCCCGA	TGTGATTGTT	AACGCAGCAG	CCCATACTGC	AGTAGATAAAA	CGAGAGTC	5400
AACCCAGAACT	GGCGCAGTTA	CTTAAACGCCA	CCAGTGTGGA	AGCCATCGCT	AAAGCAGCCA	5460
ACGAAAACCTGG	CGCATGGGTA	GTGCATTATT	CAACCGATT	TGTATTCTCT	GGTACCGGGC	5520
ATATCCCCATG	GCAGGAAAACG	GACGCTACGT	CGCCGCTGAA	TGTCTATGGC	AAAACCAAAC	5580
TGGCGGGAGA	AAAGGCCCTG	CAGGATAACT	GCCCTAAACA	CCTTATCTTC	CGCACCGTT	5640
GGGTTTATGC	AGGTAAGGGC	AATAATTTCG	CAAAGAACAT	GCTTCGTC	GGCAAAGAGC	5700
GTCAGACACT	TTCAGTCATT	AAACGATCAGT	ACGGTGC	AACCGGTGCG	GRATTACTGG	5760
CTGACTGTAC	GGCGCATCG	ATCCGTGTTG	CGTTAAATAA	ACCAGAAGTC	GCAGGTCTT	5820
ACCATCTGGT	TGCCGGGGGA	ACCACAACT	GGCATGACTA	CGCGGCCCTA	GTCTTTGACG	5880
AGGCGCGCAA	ACGAGGGATA	ACGCTTGCGC	TGACTGAGCT	TAATGCTGTC	CCGACCAGCG	5940
CCTACCCGAC	GGCGCGGAGC	AGACCAGGCA	ATTGCGTCT	CAATACTGAA	AAGTTTCAGC	6000

- 86 -

GTAATTTGAGCTTATTCTGCCTCAATGGGAAATTAGGAGTTAAGCGTATGCTGACTGAAA 6060
 TGTTTACGACGACAACCATCTAATAAAATTAAATGCCCATCAGGGCATTTCTATGAATG 6120
 AGAAATGGAAATGAAAACCCGTAAGGGCATTTATTTAGCGGGGGCTCCGGCACCCGTCT 6180
 TTATCCGGTGTACCATGGCGGTTAAGTAAGCAATTGCTACCAATTATGATAAACCGATGAT 6240
 TTACTATCCCCTTTCCACGCTTATGCTGGCAGGCATTGGCAGATATCCTGATCATCAGTAC 6300
 GCCACAGGACACGGCGTGTTCACAACACTGCTGGGAGACGGCAGCCAGTGGGGCTGAA 6360
 TCTTCATATAAGTACAGCAGGCCGGAGGGCTTAGCAAGCGTTTAATTGGTGAGAGATTCATT 6420
 GGTCTATGATATTGTCATTAGTGTGCAATTGCTGGGTGACAATATCTCTATGGTCA 6480
 TGATTTACCAAAAGTAAATGGAAAGCTGGCTTAATAAAAGAAAGTGGTGCTACCGTCTTCGC 6540
 TTATCATGTAACCGATCCGGAGCGCTACGGTGTGGTTGAGTTGACCAAAAGGGCACAGC 6600
 CGTTAGTCTGGAAGAAAAACCATACAAACCGAAGAGTAATACGCGGTTACGGGGCTGTA 6660
 TTTTTATGATAATAGCGTGGTGGAGATGGCTAAAGGATCTTAAAGCTTCCGCTCGGTTGA 6720
 GTTAGAAATACACGGATATTACCGATATCTATGGGAGCAGGAAAGATTGTCTGCGTAT 6780
 GATGGGGCGCGGTGATGCCTGGCTGGATACAGGGACGCACTAGAGTTGATAGAGGCCAG 6840
 TAATTTTAAITGCAACCATCGAAGAACGCCAGGGCTAAAGTGTCTGCCTGGAGAGAT 6900
 CGCATTTCGTAAAAATTTTAATAATGCCACACAGGTATTAAGACTGGCCGGCCATTATC 6960
 AAAAATGATTATGGCAAATTTGCTGAAAGTGGTGAAGTTTATAAGTGATGATTGT 7020
 GATTTAAACAGCAATACCGAGTCTGATCTTAGAGCCTAAAGTTTTGCGATGAGAG 7080
 GGGATTCTTTTTGAAAGTTATAACCGAGCAACCTTGAAAGTGTGATTGACGCTAAAGT 7140
 TACATTGTTCAAGATAATTCACCAAAATCCTAAAGAACGACTCAGAGGGCTACATT 7200
 TCAGAGAGGAAGAAATGCCACAGGGGAAGTTAGTCTGTTGCTGCTGGTGGAGTTTTG 7260
 TGTTGCGGTCGATATCCGAAAGAACATGCCACTTTTGTGCTATGGGTTGTTGTAATCT 7320
 GTCTGCTGAGATAAGCGACAGCTTGGATTCCAGAAGGTTTGCTCATGTTTTGTTAC 7380
 TCTTAGTGTGATATGCAGAGTTCTGTACAAAGCAACTAATTATTAATCCTTCATCGGA 7440
 AGGTAGCATTCTATGGAAATGAGGAGCAATAGGTATTGAACTGGCTTTCTCAGCTGCC 7500
 TGAGCTTCAAGAACAGATGCTGCAGCACCCTTACTGGATCAAGCCTTGTAAACAGAGTA 7560
 AGCATCGTGTCTCATATTATTAAGATTTTCTCATCAAATACTGAATTTCCTGGAGAG 7620
 GATGAATCAAACCTCGATGCTGGCTATCGGCTGGTATCCATCTGAACATAGCTGCAA 7680
 GCGGGTGATTGTGGTATCTGTGAGTCGGATTTGTTGGCGGGAGAAGTTGTGACTCCAAA 7740
 GGTAATATTTTTGGACAGGGTGATAAAATACTAACCTGCTGCTGTAACCGCC 7800
 CTTGAGCTAAATGCGCATTTTTCTGTAACTAGCTGGACAGACAAAAAAATGTCCCCA 7860
 TGCAAGGTAAATAGTGTGCTGACTGGTTCTGAGGCGATGTTAAGTGTGAACTACGGCACA 7920
 CCACCAACAGAAAAATGGCTTCACGGCAGTATACTAATTACATATAAAAGGT 7980
 GTTAACTCGCACTTATTCTATCGCTAATAGTGTGAGTCGAATGGTATTGAGTTGCTATGTA 8040

- 87 -

AGGAATGTTCA CCAATGGTCA GATGAGTTCG CTCATTTTG GGGAGTTACA AGAAAATACT 8100
 CTTATGCGCA TTGAAGGGCC TTGCGGAACA TTTTTATTC GTGAAAGTGA CAGACCTATA 8160
 ATCTTCCTTG CAGCGGTAC TGAGATTGCT CCAGTTAAT CAATGGTGA GCATCTCATT 8220
 CAGGGAAAT GTCGTCGTGA GATCTACATT TAECTGGGAA TGCAATATAG TAAAGATT 8280
 TACTCTGCAT TACCGCAGCA GTGGAGTGA CAGCACGACA ACAGTTCATTA TATCCCTGTT 8340
 GTTTCTGGTG ATGAGCGCGA ATGGGGGGG AGAAAGGGAT TTGTCATCA TGCGTGATG 8400
 GATGATTTTG ATTCTCTAGA GTTCTTCGAT ATATATGAT GTGGTTCAACC TGTGATGATC 8460
 GATGCCAGTA AAAAGGACTT TATGATGAAA AATCTCTCTG TAGAACATTT CTATTCTGAT 8520
 GCATTTACCG CATCTAATAA TATTGAGGAT AATTATGAA AGCGGTATC CTGGCTGGTG 8580
 GACTTGGTAC CAGACTAAGT GAAGAAACAA TTGAAAACC AAAACCGATG GTAGAAATTG 8640
 GTGGCAAGCC TATTCTTG CGACATTATGA AAATGTATTG TGTCATGGT ATCAAGGATT 8700
 TTATTATCTG CTGTTGTTAT AAAGGATATTG TGATTAAGA ATATTTTGCG AACTACTTCC 8760
 TTCACATGTC AGATGTAAACCA TTCCATATGG CTGAAAACCG TATGGAAGTT CACCATAAAC 8820
 GTGTTGAACC ATGGAATGTC ACATGGTTG ATACGGGTGA TTCTTCATG ACTGGTGGTC 8880
 GTCTGAAACG TTGTTGTTGAA TAGCTAAAGG ATGACGAGGC TTTCCTGTTT ACTTATGGTG 8940
 ATGGCGTTGC CGACCTTGAT ATCAAAGCGA CTATCGATT CCATAAGGCT CACGGTAAGA 9000
 AAAGGACTTT AACAGCTACT TTCCACCGAG GACGCTTTGG CGCATTAGAT ATCCGAGCTG 9060
 GTCAAGGTCCG GTCAATTCCAG GAAAACCGA AAGGCGATGG GGCAATGATC AATGGTTGTT 9120
 TCTTTGTTGTT GAATCCATCG GTTATCGATC TCATCGATAA CGATGCAACAA ACCTGGGAAAC 9180
 AAGAGCCATT AATGACATTG GCACACACAGG GGGAGTTAAT GGCTTTGAA CACCCAGGTT 9240
 TCTGGCAGCC GATGGTACCC CTACGTGATA AAGTTTACCT CGAAGGGCTG TGGGAAAAG 9300
 GTAAAGCTCC GTGAAAACC TGGGAGTAAC TAGATGATTG ATAAAAAATT TTGGCAAGGT 9360
 AAACGTGTAT TCGTTACCGG CCATACTGGC TTTAAAGGAA GCTGGCTTTC GCTATGGCTG 9420
 ACTGAAATGG GTGCAATTGT AAAAGGCTAT GCACATTGATG CGCCAACTGT TCCAAGTTA 9480
 TTTGAGATAG TGCGTCTTAA TGATCTTATG GAATCTCATCA TTGGCGACAT TCCTGATTTT 9540
 GAAAAGCTGC GCAATTCTAT TGCAAGATT AAGCCAGAAA TTGTTTCCA TATGGCAGCC 9600
 CAGCCTTCTAG TGCGCTATC TTATGAACAG CCAATCGAAA CATACTCAAC AATGTTATG 9660
 GGTACTGTCC ATTGCTTGA AACAGTTAG CAAAGTAGGTAA ACATAAAGGC AGTCGTAAAT 9720
 ATCACCAAGTG ATAAGTGCCTA CGACAATCGT GAGTGGGTGT GGGGCTATCG TGAGAACGAA 9780
 CCCATGGGAG GGTACGATCC ATACTCTAAAT AGTAAAGGTT GTGCAGAAATT AGTCGCGTCT 9840
 GCATTCGGGA ACTCATTCTT CAATCCGTCA AATTATGAGC AACATGGCGT TGGTTGGCG 9900
 TCTGTGAGGG CTGGTAAATGT CATAGGCGGA GGCGATTGGG CTAAAGACCG TTTAATTCCC 9960
 GATATTCTGC GCTCATTTGA AAATAACCGAG CAGGGTATTAA TTGCAAACCC ATATTCTATC 10020
 CGTCCCTGGC AGCATGTACT GGAGCCTCTT TCTGGTTACA TTGTTGGTGGC GCAACGCTTA 10080

- 88 -

TATACAGAAG	GTGCTAATTGTT	TTCTGAAGGA	TGGAATTTCG	GCCC CGTGA	TGAAGATGCG	10140
AAGACGGTCG	AATTATTTGTT	TGACAAGATG	GTCACGCTTT	GGGGTGTATGA	TGCAAGCTGG	10200
TTACTGGATG	GTGAGAAATCA	TCCTCATGAG	GCACATTACCG	TGAAACTGGA	TTGCTCTAAA	10260
GCATAATATGC	AATTAGGATG	GCATCCCGCGT	TGGGGATTGA	CTGAAACACT	TGGTCGCATC	10320
GTAAAATGGC	ATAAAGCATG	GATTCGCGGC	GAAGATATGT	TGATTTGTTC	AAAGCGTGAA	10380
ATCAGCGACT	ATATGCTGC	AACTACTCGT	TAAGAAAATA	AGTTTAAGGA	ATCAAAGTAA	10440
TGACAGCAA	TAACCTCGGT	GAGCAAATCT	CTCAGCTTGT	CGCTCAGTAT	CGCAARTGAGG	10500
CATTGAGGCC	GAACCTTTT	GTTGCAGGTA	CAAGCGTGT	GCCTCCTTCC	GGGAAGGTTA	10560
TTGGTGCCTAA	AGAGTTACAA	TTGATGGTTG	AGGCCTCTCT	TGATGGATGG	CTAACTACTG	10620
GTCTGTTCAA	TGATGCCCTT	AAAAAAAAC	TTGGGAAATT	TATTGGGTTT	CCTCATGTTT	10680
TAACGCAAC	ATCTGGCTCT	TCGGCAAAC	TGCTGGCACT	GACTGCGCTG	ACTTCCCCAA	10740
AATTAGGCGA	GCGAGCTCTC	AAACCTGGTG	ATGAGGTTAT	TACTGTCGCT	GCTGGCTTCC	10800
CGACTACAGT	TAACCCGGCG	ATCCAGAATG	GTATAATACC	GGTATTCTGT	GATGTTGATA	10860
TCCGACACATA	TAATATCGAT	GCCTCTCTCA	TTGAAGCTGC	AGTTACTGAG	AAATCAAAAG	10920
CGATAATGAT	CGCTCATACA	CTCGGTAAATG	CATTAAACCT	GACTGAGATT	CGTCGGATTG	10980
CCGATAATAA	TAACCTTATGG	TTGATTGAAG	ACTGCTGTGA	TGCCCTTGGG	ACGACTTTATG	11040
AAGGCCAGAT	GGTAGGTAC	TTTGGTACCA	TCGGAACCGT	TAGTTTTAT	CCGGCTCAC	11100
ATATCACAAAT	GGGTGAAGGC	GGTGTGTAT	TCACCAAGTC	AGGTGAAC	AAGAAAATTA	11160
TTGAGTCGTT	CCGTGACTGG	GGCCGGGATT	GTATTGTCG	GCCAGGATGC	GATAAACACCT	11220
GCGGTAAACG	TTTTGGTCAG	CAATTGGGAT	CACTTCCCTCA	AGGCTATGAT	CACAAATATA	11280
CTTATTCCCA	CCTCGGATAT	AATCTCAAA	TCACGGACAT	GCAGGCAGCA	TGTGGTCTGG	11340
CTCAGTTGGA	GGCGTAGGAA	GAGTTTGAG	AGCAGCGTA	AGCTAAC	TTTTCCTGAT	11400
AACAGGGCTT	GCAATCTTC	ACTGAATTCC	TGAAATTAC	AGAAGCAACA	GAGAAATCAG	11460
ATCCATCCG	TTTGGCTTC	CCTATCACCC	TGAAAGAAC	TAGCGGTGTT	AACCGTGTGCG	11520
AACTGGTGA	ATTCCCTGAT	GAAGCAAAA	TGGGTACAG	TTTACTGTTT	GCTGGAAATC	11580
TGATTCGCCA	ACCGTATTTT	GCTAATGTA	AATATCGTG	AGTGGGTGAG	TTGACAAATA	11640
CCGACCGTAT	AATGAATCAA	ACGTTCTGGA	TTGGTATTTA	TCCAGGCTTG	ACTACAGAGC	11700
ATTTAGATTA	TGTAGTTAGC	AAAGTTGAAG	AGTTCTTGTG	TTTGAAATTTC	TAATTCAATT	11760
TATTCTATCT	GGTGTGTGCG	ATGACCTTTT	TGAAAGATA	TGTAATTGTC	AGTGGGGCTT	11820
CCGGCTTTAT	TGGTAAGCAT	TTACTCGAAG	CGCTAAAAAA	ATCGGGGATT	TCAGTTGTCG	11880
CAATCACTCG	AGATGTAATA	AAAAATAATA	GTAATGCATT	AGCTAATGTT	AGATGGTGCA	11940
GTTGGGATAA	TATCGAATTA	TTAGTCGAGG	AGTTATCAAT	TGATTCTGCA	TTAATTGGTA	12000
TCATTCTATT	GGCAACAGAA	TATGGGCATA	AAACATCATC	TCTCATAAAT	ATTGAAGATG	12060
CAAATGTTAT	AAAACCATTA	AAGCTTCTTG	ATTTGGCAAT	AAAATATCGG	GGGGATATCT	12120

TTTTAAATAC AGATAGTTT TTTGCCAAGA AAGATTTTA TTATCAACAT ATGCCGCCTT	12180
ATATAATTAC TAAAAGACAC TTGATGAAA TTGGGCATTA TTATGCTAAT ATGCATGACA	12240
TTTCATTGT AAACATGCAG TTAGAGCATG TATATGGCC TGGGGATGGT GAAAATAAT	12300
TTATTCATCA CATTATCGAC TGCTTAAATA AAAAACAGAG TTGCGTGAAA TGTACAAACAG	12360
GCGAACAGAT AAGAGACTTT ATTTTGTAG ATGATGTGGT AATGCTTAT TTAACATAT	12420
TAGAAAATAG AAAAGAAGTA CCTTCATATA CTGAGTATCA AGTTGGAACG GGTGCTGGGG	12480
TAAGTTGAA AGATTTCTG GTTATTGAA AAAATACTAT GATGCCAGGT TCATCGAGTA	12540
TATTTGAATT TGGTGCATA GAGCAAAGAG ATAATGAAAT AATGTTCTCT GTAGCAAATA	12600
ATAAAAATT AAAAGCAATG GGCTGGAAAC CAAATTCGA TTATAAAAAA GGAATTGAAG	12660
AACTACTGAA ACGGTTATGA GATTTCTATG ATCTTTTAAT AAATAAATCG TTAACAAATT	12720
AGTCGCGTTA TGTGTAAAAA ACTAAGTCGT TAAATTGCA AGTGAAAGTT CAATTGTTAA	12780
AAATTCCGAG TCATTTAATT GTTGAGGTT CATCATGGTT ATCCAAAATA ATAATTGCCG	12840
GGGTGCAAGT AGCAAGTATT TCATATCTA TTCTATGCT AGGTGAAGAG AAATATGCAA	12900
TCCTTAGTTT GTTAACTGGT TTATTAGTAT GGTGTAGCGC TGTGATTTT GGCGATAGGTA	12960
CAGGACTGCA AAATTATATA TCAGAACTCA GAGGCCAAA CAAAAGTTAT GATGCAATA	13020
TTAAATCAGC ATTACATCTA AGCTTTATAG CTATTATTTT TTTTATTGCT TTATTTATA	13080
TTTTTCTGG GGTAAATTCC GCTAAATAC TTTCTCTT TCATGAGGTA TTACAGGACA	13140
AAACCAGAAAT GCTCTTTTT ACCTCATGTC TGGTTTCAG TTCTATTGGA ATCGGAGCTA	13200
TTGCTTATAA AATACCTTTT GCCGAATTGG TCGGGTGGAA AGCTAATCTA TTAAACGCAT	13260
TATCTTATAT GATAGGTATG CTGGCTTGC TATATATATA CTATAGGGGG ATCTCAGTTG	13320
ACATAAAATT ATCACTAATA GTCCGTGATC TCCCAGTGGG TATGATTCTA TTGTGCTATA	13380
TTGTATATAG ATACATAAAAG CTTTATCATG TAAACACAC AAAATCTCAT TATATAGCAA	13440
TTTTACGTAG ATCTTCAGGG TTTCCTCTT TTACTTTATT ATCGATAGTG GTGCTCAAA	13500
CAGATTATAT GGTCAATTCT CAAAGGCTAA CTCCCTGCTGA TATTGTCATA TATACAGTAA	13560
CGATGAAAAT TTGGTTTA GTCTTTTTA TTATACATGC TATTGTCAA GCATTATGGC	13620
CTATATGTGC TGAATTGAGA GTCAAACAC AATGGAAAAA ACTTAAACAAA ATGATAGGTG	13680
TCAATATTIT GCTGGCTCA CTATACTGTTG TTGGATGTAC AATATTATT TATTTATTA	13740
AAGAACAGAT ATTTTCAGTA ATAGCCAAG ATATTAATTA TCAAGTTCT ATTTTATCTT	13800
TTATGTTAAT TGGCATATAT TTCTGTATTC GCGTTGGTG TGACACTTAT GCAATGTTAT	13860
TGCAAAGTAT GAATTATTAA AAAATACCTT GTGATATTAGT ACCACTACAA GCAATAATTG	13920
GTGGAATAGC ACAATGGTAT TTCTCTAGTA CCCTTGGAAAT CAGTGGAGTG CTGCTTGGCT	13980
TGATTATATC TTGGCTTTA ACTGTTTTT GGGGGCTTCC ACTAACTTAC TTAATTAAGG	14040
CAAATAAGGG ATAATCATAT GCTTATATCA TTGTTGATTCA CAACTTATAA TAGAAAACRA	14100
TATCTTGAAG AGTTGTTGAA TAGTATAAAT AATCAGGAAA AATTTAATT AGATATTGAG	14160

- 90 -

ATATGTATAT CAGATAATGC CTCTACTGAT GGTACAGAGG AAATGATTGA TGGTTGGAGG	14220
AACAATTATA ATTTCCCAAT AATATATCGG CGTAATAGCG TTAAACCTTGG GCCAGATAGG	14280
AATTTCTTG CTTCACTGATC CCTTCGGAAT GGGGATTATT GTTGGATATT TGGCACTGAT	14340
GATGCTCTTG CGAAAGACTC GTTAGCGATA TTACAAACATT ATCTCGATTC TCAAGCAGAT	14400
ATATATTTAT GTGACAGAAA AGAGACCGGG TGTGATTAG TTGAGATTAG AAACCTCAT	14460
CGTTCTTGGC TCAGAACAGA TGATGAACCT TATGTGTTA ATAATAATT AGATAGGGAA	14520
ATCTATCTCA GTAGATGCTT ATCTATTGGT GGTGTATTAA GCTATCTAA TTCTTTAATA	14580
GTAAAAAAAG AACGATGGGA TGCCATTGAT TTTGATGCGT CCTATATTGG CACTTCTTAT	14640
CCTCATGTAT TTATCATGAT GAGCGTATTAA ATACGCGAC GGTGCCCTTT GCATTATATA	14700
TCAAAACAC TCGTAATATG CCGAGGAGAT AATGATAGTT TCGAGAAAGA AGGAAAGGCC	14760
AGACGAATTAA TAATGATTAT TATTGCAATT TAAAGATAG CTAATGATT TTACAGTAAA	14820
AATATATCTT TAAACGAGC ATTTGAAAAT GTTTGCTAA AAGAGAGACC ATGGTTATAT	14880
ACAACCTTGG CTATGGCATG TTATGGCAAT AGTGATGAAA AAAGAGATT ATCTGAATTAA	14940
TATGCAAAGC TAGGITGTAAT TAAAGATAG ATCAACACTG TACTTCGATT TGGGAACACTA	15000
GCATATGCAAG TGAAAATAT TACCGTGTGTT AAGAATTAACTA CTAACCGGAT AATTAAGTAG	15060
TAGTAAGTTA TTATATTGAG ATTTAATGTA GATTTAACCTT TTCTGGATTG AGCTAGATT	15120
ACGTTACTGA CTTTTCTTTT TAATGAAAAT CATATTTGAT ATATATAAAAT AAATTGGAT	15180
AGCTTAACCA CTTAGATGTT TTTTCTGGG AATGTTAGTA TAATAATATA TTTCTTTATG	15240
ATTGTTTTTG TAGTGTTTTA CTGCGGGTAT TACATTAACCT CTATTATTAA GAATTACACC	15300
TAGTGTAAGC TTCGTAATAT TATTTATCCT TATGATTATT GCTTTAAAGA TGCGTATGGAA	15360
AAAACGGAGA GCTATTCAAT GATCGTAAAC CTATCACGTT TAGGTTAAAG TGGTACGGGA	15420
ATGTTGGCAAT ACTCGATTAA ATTTTAAACG GCACCTGCGAG AAATAGCTGA TGGTACGCCA	15480
ATAATCTGTA GCAAGGTACA CGCTGATTAT TTTGAAAAGC TCGGTTATGC AGTAGTTACT	15540
GTTCGARTTA TTGTTAGCAR CACATCAAAA ACATCGCGAC TTAGACCATT AGTATGGTAT	15600
GTATATAGTT ACTGGCTTGC GCTGAGGGGT TTAATTAAGT TTGGTAATAA AAAATTGGTG	15660
TGTACTACAC ATCACACTAT CCCCTTACTG AGAAAACCAA CGATAACCGT ACATGATATA	15720
AGACCTTTT ATTATCCAGA TAGTTTTATT CAGAAAGTGT ATTTTGTGTT TTTTATTAATAA	15780
ATGTCGGTTA AGCGATGTAAC GCTATGTTTA ACGGTATCTT ATACCGTTAA AGATAGCATT	15840
GCTAAACCTT ATAATGTAAGA TAGTGAGAAT ATATCAGTAA TTTATAATAG TGTTAATAAA	15900
TCTGATTITA TACAAAAAAA AGAAAAAGAG AATTAACCTT TAGCTGTTGG TGCAAGTTGG	15960
CCACATAAAA ATATTCATTC ATTCAAAAAA AATAAAAAAG TTTGGTCTGA CTCTTATAATA	16020
TTAATTATTTG TATGTGGTGC TACTGACTAT GCAATGCTC TCCAACAAAT GGTCGTTGAT	16080
CTGGAACTAA AAGATAAAAGT GACTTTTTA CATGAAGTCT CATTAAATGA ATTAAAGATT	16140
TTATATTCTA AAGCCTACGC GCTTGTATTG CCATCTATTG ATGAGGGTTT TGGTATACCT	16200

- 91 -

CCTATTGAAG CGATGGCATC AAATACTCCA GTTATAGTGT CGCATATACC AGTATTTCAT	16260
GAAGTGTAA CCAATGGTGC ATTATATGTG AATCCGGATG ATGAAAAAAG CTGGCAGAGT	16320
GCAATTAAA ATATAGAGCA GTTGCGTGT GCAATTCCC GATTTAACAA CTATGTCGCA	16380
CGGTATGACT TTGATAATAT GAAGCAGATG GTGGCAAAT GGTTGGCGGA ATCAAATAA	16440
ATGAAAATAA CTTAATTAT TCCCACATAT AATGCAGGGT CGCTTGGCC TAATGTTCTG	16500
GATGCGATTA AGCAGCAAC TATATATCCG GATAAATTGA TTGTTATAGA CTCAGGTTCT	16560
AAAGATGAAA CGGTTCCGTT AGCCTCAGAC CTGAAAAATA TATCAATATT TAATATTGAC	16620
TCTAAAGATT TTAATCATGG AGGAACCAGA AATTTAGCAG TTGCAAAAC TCTGGACGCT	16680
GATGTTATAA TTTTTCTAAC GCAAGATGCA ATTCTCGCG ATTGGATGC AATTAAAAAT	16740
TTGGTTTATT ATTTTCAGA TCCATTGATA GCAGCGGTT GTGGTAGACA ACTTCCTCAT	16800
AAAGATGCTA ATCCCCCTGC AGTGCATGCC AGAAAATTAA ATTATAGTTC AAAATCTATT	16860
GTAAAAAGTA AGGCAGATAT AGAAAATTG GGTATTTAAA CTGTTATTTAT GTCCAATTCT	16920
TTTGCTGCCT ATGCCGTTTC CGTTTTGAA GAGTTAAGTG GGTTTCTGAA ACATACAATT	16980
CTTGCCGAGG ATATGTTTAT GGCGGCTAAG ATGATTCAAG CGGGTTATAA GGTCGCCTAC	17040
TGCGCTGAAG CGGTGGTAAG ACACCTCCCAT AATTATACCC CGCGAGAAGA GTTCAACGA	17100
TATTTTGATA CTGGTGTATT TCATGCTTGT TCTCCGTGGA TTCAGCGTGA CTTTGGCGGA	17160
GCCGGTGGTGG AGGGTTCCG CTTCGTAAAC TCAGAGATTCA ATTCTCTGCT TAAAATGCA	17220
CCGTTCTGGA TTCCAAGAGC TTATTAACA ACCTTTGCTA AATTCTTGGG TTACAAATTAA	17280
GGCAAGCATT GGCAATCTTT ACCGTTGCTC ACATGTCGCT ATTTTAGCAT GTACAAGAGT	17340
TATTTGGAATA ATATCCAATA TTCTTCGTCA AAAGAGATA AATAATGTC TTTCTTCCC	17400
GTAATTATGG CTGGCGGCAC AGGTAGCCGT TTATGGCCGC TTTCACCGGA ATATCATCCG	17460
AAGCAGTTTC TAAGCGTGTG AGGTAAACTA TCAATGTCG AAAATACTAT AAAGCAGATTA	17520
GCTTCACTTT CTACAGAAGA ACCCGTTGTC ATTTGCAATG ACAGACACCG TTTCTTAGTC	17580
GCTGAACAAAC TCCGTGAAAT TGACAAGTTA GCAAATAATA TTATTCTGCA ACCGGTAGGC	17640
CGTAATACTG CACCAAGCGAT CGCTCTTGC GCGTTTGTG CGCTCCAGAA TGCTGATAAT	17700
GCTGATCCTC TTTTGTGGT TCTTGTGTCA GATCATGTA TTCAGGATGA AATAGCTTTT	17760
ACGAAAGCTG TCAGACATGCA TGAAGAATAC GCTGCAATG GTAAGCTTGT AACCTTTGGT	17820
ATTGTTCCAA CGCATGCTGA AACGGGTTAT GGATATATTG CTGCTGGTGA GTTGATAGGA	17880
AATGACGCTT ATGCACTGGC TGAATTGTG GAGAAACCGG ATATGATAC CGCCGGTGAC	17940
TATTTCAATAA CAGGGAAATA TTACTGGATG AGCGGTATGT TTTTATTTCG TGCAAGCTCT	18000
TATTTAAACG ATTAAAGTA TTATCACCCT GAAATTATAA AGCTGTGAA AAAGGGCGTAA	18060
GGACATATAA ATCCCGATCT TGATTTTATT CGTATTGATA AAGAAGAGTT TATGTCATGC	18120
CCGAGTGTGATT CTATGATTA TGCAGTTATG GAGCACACAC AGCATGCGGT GGTGATACCA	18180
ATGAGCGCTG GCTGGTGGGA TGTGGGTTCC TGGTCCTCAG TTTGGGATAT ATCGAATAAA	18240

- 92 -

GATCATCAGA GAAATGTTTT AAAAGGAGAT ATTTTCGCAC ATGCTGTAA TGATAATTAC	18300
ATTTATTCCG AAGATATGTT TATAAGTGC ATTGGTGAA GCAATCTGT CATTGTTCAA	18360
AACACAGACG CTTTACTGGT GGCTAATAAA GATACAGTAC AGATGTTAA AAAAATTGTC	18420
GATTATTAA AACGAATGA TAGGAACGAA TATAAACAAAC ATCAAGAAGT TTCCGCC	18480
TGGGGAAAAT ATAATGTGAT TGATAGCGGC AAAAATTACG CGTGTGATG TATCACTGTT	18540
AAGCCGGTG AGAAATTTGT GGCGCAGATG CATCACCAACC GGGCTGAGCA TTGGTAGATA	18600
TTATCCGGGA CTGCTCGTGT TACAAGGGG GAGCAGACTT ATATGGTTTC TGAAATGAA	18660
TCAACATTAA TTCCCTCGGAA TACTATTACG CGCCTGGAAA ATCCTGGAAT GACCCCCCTG	18720
AAGTTAATTG AGATTCATC AGGTACCTAT CTGGGTGAGG ATGATATTAT TCGTTTAGAA	18780
CAACGTTCTG GATTTTGCAGA GGAGTGGACT AATGAACGTA GTTAATAATA GCCGTGATGT	18840
TATTTATTCA TCAGGTATTG TGTTTGGAAC GAGTGGGGCT CGCGGTCTTG TAAAAGATT	18900
TACACCTCAG GTATGTGCTG CTTTTACGGT TTCAATTGTT GCGCTTATGC AGGAACATT	18960
TTCTTITGAT ACCGTAGCAT TGGCAATAGA TAATCGTCCA AGTAGTTATG GGATGGCTCA	19020
GGGGTGTGCT GCTGCGATTTGG CGGATAAAGG CGTTAACGTT ATTTTTTAAG GAGTGGTACCC	19080
AACCCCGAGCT TTGGCCCTTC AGTCTATGTC TGACAATATG CCTGCATATA TGTTTACGGG	19140
AAGTCATATT CCATTCGAGG GGAACCGCTT CAAGTTTATAT CGTCTCGATG GTGAATTCA	19200
GAAACATGAT GAGGCTCGGA TCTCTAGTGT TGAAGATACG TGAGCCATT TAGAGCTTA	19260
AGAACTCATA GTTTCGAAAGG TGGCTGTGT TAATTATATA TCTCGTTATA CATCTTTATT	19320
TTCTTACTCCA TTCCGTAAAAA ATAAGCGTAT TGGTATTTCGAAACATTCAA GCGCTGGCG	19380
TGATCTTAT AAGCCTTAT TTATTCGATT GGGGCTGAA GTCGTTAGCT TGGGTAGAAG	19440
CGATAATTTCGATACAGAGGC TGTAAAGCAGA GAGGATCGGG AAAAAGCTCG	19500
CTCATGGGCT AAAGAGTTCC ATTTAGATGC CATAATTCTCG ACAGATGGGG ATGGTGTGATCG	19560
CCCTCTTATT GCTGATGAGG CGCGTGGAGTC GCTAAAGAGGC GATATACTAG GTCTATTATG	19620
TTCACTTGCA TTGGATGCAAG AAGCCGTGCG TATTCTGTGTT AGTTGTAACA GCATAATTTC	19680
TTCTGGCCCG TTTTTTAAAC ATGTTAGCT TACAAAAATT GGCTCGCCCTT ATGTTATGCA	19740
AGCTTTTAAT GAATTATCGG GGAGTTATAG TCGTATTGTC GGTTTTGAAG CCAATGGCGG	19800
TTTTTTATTA GGAAGCGACA TCGTGTATTA CGAGCAGAAT CTTCATGCC TACCAACTCG	19860
TGATGCTGTA TTACCGACAA TAATGCTGTGTT TACAAAAAGT AGGAATAACCA GCATTAGCGC	19920
TTTAGTCAT GAACTCCCAA CTGCTTACAC CCATTCTGAC AGATTACAGG GGATTACAC	19980
TGATRAAAGT CAACTCTTAA TTAGTATGGG CAGAGAAAAT CTGAGCAACCC TCTTAAGCTA	20040
TATTGGTTTG GAGAATGAAG GTGCAATTTC TACAGATATG ACAGATGGTA TGCGAAATTAC	20100
TTTACGTGAT GGATGTTATG TGCATTGCG CGCTTCTGGT ARTGCACCTG AGTTACGCTG	20160
CTATGCGAGA GCTAATTAT TAAATAGGGC TCAGGATCTT GTAAATACAA CGCTTGCTAA	20220
TATTAATTTA CGATGCTTGC TGTAATTTAAT TTGATGTTA ATGCCTATT	20280

- 93 -

TATTTACATT ATGCACGGTC AGAGGGTGAG GATTAATGG ATAATATTGA TAATAAGTAT	20340
AATCCACAGC TATGTAATAAT TTTTTGGCT ATATCGGATT TGATTTTTT TAATTTAGCC	20400
TTATGGTTT CATTAGGATG TGTCTATTIT ATTGTTGATC AAGTACAGCG ATTGTTACCT	20460
CAAGACCAAT TAGATACAAG AGTTATTACG CATTGTTATT TGTCAGTAGT ATGTTGCGGT	20520
TGGTTTGGA TTCGTTGCG ACATTATACT ATCCGCAAGC CATTGTTGGTA TGAGTTAAA	20580
GAAATTTTC GTACGATCGT TATTTTGCT ATATTTGATT TGGCTCTGAT AGCGTTACA	20640
AAATGGCAGT TTTCACGCTA TGTCGGGTG TTGTTGGTA CTGGCCCT AATCCTGGTG	20700
CCTTTTTTC CGCGACTTAC AAAGCATTTA TTGACAAGC TAGGTATCTG GAAGAAAAAA	20760
ACTATCATCC TGGGGAGCGG ACAGAATGCT CGTGGTGCAT ATTCTCGCCT GCAGAGTGAG	20820
GAGATGATGG GGTTTGATGT TATCGTTTT TTTGATACGG ATGCGTCAGA TGCTGAAATA	20880
AATATGTTGC CGGTGATAAA GGATACTGAG ATTATTTGGG ATTTAACATCG TACAGGTGAT	20940
GTCCATTATA TCCTTGCTTA TGAATACACC GAGTTGGAGA AACACATTT TTGGTACGCT	21000
GAACCTTCAA AACATCATTG TCGTTCTGTT ACTGTAGTCC CCTCGTTAG AGGATTGCCA	21060
TTATATAATA CTGATATGTC TTGTTATCTT AGCCATGAAG TTATGTTATT AAGGATACAA	21120
AATAACTTGG CTAAAAGGTC GTCCCGTTT CTCAAACGGA CATTGATAT TGTTGTTCA	21180
ATAATGATTCT TTATAATTGC ATCACCACTT ATGATTATTC TGTGGTATAA AGTTACTCGA	21240
GATGGTGGTC CGGCTATTAA TGGTCACCAAG CGAGTAGGTC GGCGATGAAAC TCTTTTCCA	21300
TGCTACAAAT TTGCTTCTAT GGTTATGAAT TCTCAAGAGG TACTAAAAGA ACTTTTGGCT	21360
AACGATCCTA TTGCGAGGGC TGAATGGAG AAAGATTTTA AACTGAAAAA TGATCCTCGA	21420
ATCACAGCTG TAGGTCGATT TATACGTAAC ACTAGCCTTG ATGAGTTGCC ACRAACTTTT	21480
ATATGACTAA AAGGTGATAT GAGCCTGGT GGACCCACGAC CTATCGTTTC GGATGAACTG	21540
GAGCGTTATT GTGATGATGT TGATTATTAT TTGATGGCA AGCCGGGCAT GACAGGTCTA	21600
TGGCAAGTGA GTGGGGCTAA TGATGTTGAT TATGACACTC GTGTTTATT TGATTCTGG	21660
TATGTTAAA ACTGGACGCT TTGGAATGAT ATTGCCATTIC TGTTAAAC AGCGAAAGTT	21720
GTTTTGGCAG GAGATGGTGC GTATTAAGCT TACCGAGAAAG TACTGAAATA TAATTGATA	21780
AATTAGCCTG CGTAAAATCT GAACGCATCA ATCGCTACCT TAATATCATA CCTTTGAGTT	21840
AACATACTAT TCACCTTTAA CCTGCCATGA CGGTTTGTGG CAGGGTTTCC ACACCTGACA	21900
GGAGTATGTA ATGTCCAAGC AACAGATCGG CGTCGTCGGT ATGGCAGTGA TGGGGCGCAA	21960
CCTCGCGCTC AACATCGAAA GCCGTTGGTTA TACCGTCTCC GTTTCAACC GCTCCCGTGA	22020
AAAGACCGAA GAAGTGATTG CGGAGAATCC CGGCAAAAG CTGGTGCCTT ATTACACGGT	22080

THE CLAIMS:

1. A nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit, including a wzx gene or a wzy gene, or a gene with a similar function; the gene being involved in the synthesis of a particular bacterial polysaccharide antigen, wherein the sequence of the nucleic acid molecule is specific to the particular bacterial polysaccharide antigen.
2. A nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit such as a wzx or wzy gene; the gene being involved in the synthesis of a particular bacterial O antigen, wherein the sequence of the nucleic acid molecule is specific to the particular bacterial O antigen.
3. A nucleic acid molecule derived from: a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit such as a wzx or wzy gene; the gene being involved in the synthesis of an O antigen expressed by *E. coli*, wherein the sequence of the nucleic acid molecule is specific to the O antigen.
4. A nucleic acid molecule derived from a gene encoding a transferase; or a gene encoding an enzyme for the transport or processing of a polysaccharide or oligosaccharide unit such as a wzx or wzy gene; the gene being involved in the synthesis of an O antigen expressed by *S. enterica*, wherein the sequence of the nucleic acid molecule is specific to the O antigen.
5. A nucleic acid molecule according to any one of claims 1 to 4 wherein the nucleic acid molecule is

RECEIVED 25 OCT 1998

approximately 10 to 20 nucleotides in length.

6. A nucleic acid molecule derived from a gene,
the gene being selected from a group consisting of the
5 following sequences:

nucleotide position 739 to 1932 of SEQ ID NO:1;

nucleotide position 8646 to 9911 of SEQ ID NO:1;

nucleotide position 9901 to 10953 of SEQ ID NO:1;

nucleotide position 11821 to 12945 of SEQ ID NO:1;

10 nucleotide position 79 to 861 of SEQ ID NO:2;

nucleotide position 858 to 2042 of SEQ ID NO:2;

nucleotide position 2011 to 2757 of SEQ ID NO:2;

nucleotide position 2744 to 4135 of SEQ ID NO:2;

nucleotide position 5257 to 6471 of SEQ ID NO:2; and

15 nucleotide position 13156 to 13821 of SEQ ID NO:2;

which nucleic acid molecule is capable of hybridizing to
complementary sequence from said gene.

7. A nucleic acid molecule which is any one of
20 the oligonucleotides in Table 5 or 5A, with respect to the
genes *wbdH*, *wzx*, *wzy* and *wbdM*.

8. A nucleic acid molecule which is any one of
25 the oligonucleotides in Table 6 or 6A.

9. A nucleic acid molecule derived from a gene,
the gene being selected from a group consisting of the
following sequences:

nucleotide position 1019 to 2359 of SEQ ID NO:3;

30 nucleotide position 2352 to 3314 of SEQ ID NO:3;

nucleotide position 3361 to 3875 of SEQ ID NO:3;

nucleotide position 3977 to 5020 of SEQ ID NO:3;

nucleotide position 5114 to 6313 of SEQ ID NO:3;

nucleotide position 6313 to 7323 of SEQ ID NO:3;

35 nucleotide position 7310 to 8467 of SEQ ID NO:3;

nucleotide position 12762 to 14054 of SEQ ID NO:4; and

nucleotide position 14059 to 15060 of SEQ ID NO:4;

which nucleic acid molecule is capable of hybridizing to

complementary sequences from said gene.

10. A nucleic acid molecule which is any one of the oligonucleotides in Table 7.

5

11. A nucleic acid molecule which is any one of the oligonucleotides in Table 8 with respect to the genes *wzx* and *wbaV*.

10 12. A method of testing a sample for the presence of one or more bacterial polysaccharide antigens, the method comprising the following steps:

- (a) contacting the sample with at least one oligonucleotide molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing of oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene; wherein said gene is involved in the synthesis of the bacterial polysaccharide antigen; under conditions suitable to permit the at least one oligonucleotide molecule to specifically hybridise to at least one such gene of any bacteria expressing the bacterial polysaccharide antigen present in the sample and (b) detecting any specifically hybridised oligonucleotide molecules.

13. The method according to claim 12, the method further comprising contacting the sample with a further at least one oligonucleotide molecule capable of specifically hybridising to at least one sugar pathway gene under conditions suitable to permit the further at least one oligonucleotide molecule to specifically hybridise to at least one such sugar pathway gene of any bacteria expressing the bacterial polysaccharide antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules.

14. A method of testing a sample for the presence

SEARCHED 96052460

of one or more bacterial polysaccharide antigens, the method comprising the following steps:

(a) contacting the sample with at least one pair of oligonucleotide molecules, with at least one

- 5 oligonucleotide molecule of the pair capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing of oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene; wherein
10 the gene is involved in the synthesis of the bacterial polysaccharide antigen; under conditions suitable to permit the at least one oligonucleotide molecule of the pair of molecules to specifically hybridise to at least such gene of any bacteria expressing the bacterial
15 polysaccharide antigen present in the sample and
 (b) detecting any specifically hybridised oligonucleotide molecules.

15. The method according to claim 14, the method
20 further comprising contacting the sample with a further at least one pair of oligonucleotide molecules, with at least one oligonucleotide molecule of the pair capable of specifically hybridising to at least one sugar pathway gene under conditions suitable to permit the further at
25 least one oligonucleotide molecule of the pair to specifically hybridise to at least one such sugar pathway gene of any bacteria expressing the bacterial polysaccharide antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules.

- 30
35 16. A method of testing a sample for the presence of one or more bacterial O antigens, the method comprising the following steps:

- (a) contacting the sample with at least one oligonucleotide molecule capable of specifically hybridising to: (i) a gene encoding an O antigen transferase, or (ii) a gene encoding an enzyme for transport or processing of the oligosaccharide or

- polysaccharide units, including a *wzx* or *wzy* gene; wherein said gene is involved in the synthesis of the bacterial O antigen; under conditions suitable to permit the at least one oligonucleotide molecule to specifically hybridise to
- 5 at least one such gene of any bacteria expressing the bacterial O antigen present in the sample and
- (b) detecting any specifically hybridised oligonucleotide molecules.

10 17. The method according to claim 16, the method further comprising contacting the sample with a further at least one oligonucleotide molecule capable of specifically hybridising to at least one sugar pathway gene under conditions suitable to permit the further at least one

15 oligonucleotide molecule to specifically hybridise to at least one such sugar pathway gene of any bacteria expressing the bacterial O antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules.

20 18. The method according to claim 16 or 17 wherein the O antigen is expressed by *E. coli* or *S. enterica*.

25 19. The method according to claim 18 wherein the *E. coli* express the 0157 O antigen serotype or the 0111 O antigen serotype.

30 20. The method according to claim 18 wherein the *S. enterica* express the C2 or B O antigen serotype.

21. The method according to any one of claims 16 to 20 wherein the specifically hybridised oligonucleotide molecules are detected by Southern blot analysis.

35 22. A method of testing a sample for the presence of one or more bacterial O antigens, the method comprising the following steps:

- (a) contacting the sample with at least one pair of oligonucleotide molecules, with at least one oligonucleotide molecule of the pair being capable of specifically hybridising to: (i) a gene encoding an O antigen transferase, or (ii) a gene encoding an enzyme for transport or processing of oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene; wherein the gene is involved in the synthesis of the bacterial O antigen; under conditions suitable to permit the at least one oligonucleotide molecule of the pair of molecules to specifically hybridise to at least one such gene of any bacteria expressing the bacterial O antigen present in the sample and
- (b) detecting any specifically hybridised oligonucleotide molecules.

23. The method according to claim 22, the method further comprising contacting the sample with a further at least one pair of oligonucleotide molecules, with at least one oligonucleotide molecule of the pair capable of specifically hybridising to at least one sugar pathway gene under conditions suitable to permit the further at least one oligonucleotide molecule of the pair to specifically hybridise to at least one such sugar pathway gene of any bacteria expressing the bacterial O antigen present in the sample and detecting any specifically hybridised oligonucleotide molecules.

24. The method according to claim 22 or 23 wherein the O antigen is expressed by *E. coli* or *S. enterica*.

25. The method according to claim 24 wherein the *E. coli* are 0111 or the 0157 O antigen serotype.

35 26. The method according to claim 24 wherein the *S. enterica* express the C2 or B O antigen serotype.

27. The method according to any one of claims 22 to 26 wherein the method is performed according to the polymerase chain reaction method.

5 28. The method according to any one of claims 22
to 26 wherein the oligonucleotide molecules are selected
from the group of nucleic acid molecules according to any
one of claims 5 to 11.

10 29. A method for testing a food derived sample for
the presence of one or more particular bacterial O
antigens, the method being according to any one of claims
16 to 28.

15 30. A method for testing a faecal derived sample for
the presence of one or more particular bacterial O
antigens, the method being according to any one of claims
16 to 28.

20 31. A method for testing a sample derived from a patient for the presence of one or more particular bacterial O antigens, the method being according to any one of claims 16 to 28.

25 32. A kit comprising a first vial containing a first nucleic acid molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide units, including a wzx
30 or wzy gene, wherein said gene is involved in the synthesis of a bacterial polysaccharide.

33. The kit according to claim 32 further comprising
in the first vial, or in a second vial, a second nucleic
35 acid molecule capable of specifically hybridising to: (i)
a gene encoding a transferase, or (ii) a gene encoding an
enzyme for transport or processing oligosaccharide or
polysaccharide units, including a *wzx* or *wzy* gene, wherein

said gene is involved in the synthesis of a bacterial polysaccharide, and wherein the sequence of the second nucleic acid molecule is different from the sequence of the first nucleic acid molecule.

5 34. The kit according to claim 33 further comprising a nucleic acid molecule derived from a sugar pathway gene.

10 35. A kit according to claim 32 further comprising in the first vial, or in a second vial, a second nucleic acid molecule capable of specifically hybridising to a sugar pathway gene.

15 36. A kit according to any one of claims 32 to 35 wherein the nucleic acid molecules are approximately 10 to 20 nucleotides in length.

20 37. A kit comprising a first vial containing a first nucleic acid molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene, wherein said gene is involved in the synthesis of a bacterial O antigen.

25 38. The kit according to claim 37, further comprising in the first vial, or in a second vial, a second nucleic acid molecule capable of specifically hybridising to: (i) a gene encoding a transferase, or (ii) a gene encoding an enzyme for transport or processing oligosaccharide or polysaccharide units, including a *wzx* or *wzy* gene, wherein said gene is involved in the synthesis of a bacterial O antigen, and wherein the sequence of the second nucleic acid molecule is different from the sequence of the first nucleic acid molecule.

35 39. A kit according to claim 37 further comprising in the first vial, or in a second vial, a second nucleic acid molecule capable of specifically hybridising to a

sugar pathway gene.

40. The kit according to claim 38 further comprising a nucleic acid molecule derived from a sugar pathway gene.

5

41. The kit according to any one of claims 37 to 40 wherein the nucleic acid molecules are approximately 10 to 20 nucleotides in length.

10

42. The kit according to any one of claims 31 to 34 wherein the first and second nucleic acid molecules are according to any one of claims 5 to 11.

SEARCHED.....INDEXED.....

1/58

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

09/423093

WO 98/50531

PCT/AU98/00315

7/58

GATCTGATGGCCGTAGGGCGTACGTGCTTCGTGATATCTGGGCTGAGTTGGAAAAA	60
ACTGCTCCAGGTGCCCTGGGACGTATTCAACTGACTGATGCTATTGCAGAGTTGGCTAAA	120
AAACAGTCTGTTGATGCCATGCTGATGCCGGCACAGCTACGACTGCCGTAAGAAGATG	180
GGCTATATGCAGGCATTGTTAAGTATGGCTGCCAACCTTAAAGAAGGGCGAAGTTC	240
CGTAAGAGCATCAAGAAGCTACTGAGTAGAGATTTACAGCTTTGACGATAAG	300
CCAGAAAAAAATAGCGGAGTTAACATCCAGGTTCTATGCTTAAAGCAATGGAATGTTAC	360
TGCCGTTTTTATGAAAAATGACCAATAAACAAAGTTAACCTACCAAGTTAACATGCT	420
TTTTGTTGGATTTCTGTTCTGGTCGCAATTGGTAGAGAACATTAACGTTAGGTTAAG	480
GAGAGTTTCGCGGGATCTCGCGGAACGCTCACATCTTGGCATTAGTTAGTGCACGTT	540
TAGCTTAAAGCCAGGGCGGTAGCTGCTTAATTAAATTAAACGTATACATTATTC	600
TGCCGTTATAGCAAATAAGTCATCGGATTAACCTCTTCCATTAGGTTAAAGAGT	660
GTTCAGTAGTCGCTCAGGGAAATTGGTTGGTAGTAGTACTTTCAAAATTATCCATTTC	720
 Start of orf1	
M L C C I H I N V Y Y L L	
CGATTAGATGGCAGTTGATGTTACTATGCTGCATACATATCAATGTATTTTACTT	780
L E C D M K K I V I I G N V A S M M L R	
TTAGAATGATGATATGAAAAAAATAGTGTATCAAGGCATAGGCAATGTAGCGTCATGTTAAGG	840
F R K E L L I M N L V R Q G D N N V Y C L A	
TTCAAGGAAAGATAATCATGAATTAGTGTAGGGCAAGGTGATAATGTATTTGTCTAGCA	900
N D F S T E D L K V L S S W G V K G V K	
AATGATTTTCCACTGAAGATCTTAAAGTACTTTCTGTCATGGGGCTTAAGGGGTTAAAG	960
F S L N S K G I N P F K D I I A V Y E L	
TTCTCTTAACTCAAAAGGTATTAACTCTTAAAGGATATAATTGCTGTTATGAACTA	1020
K K I L K D I S P D I V F S Y F V K P V	
AAAAAAATTCTTAAAGGATATTCCCAGATATTGTATTTCTATTTGTAAGCCAGTA	1080
I F G T I A S K L S K V P R I V G M I E	
ATATTGAACTATTGCTTCAAGGTGTCAAAAGTGCCTAAAGGATTGTTGAATGATTGAA	1140
G L G N A F T Y Y K G K Q T T K T K M I	
GGTCTAGGTAAATGCTTCACTTTATAAGGAAAGCAGACCAACAAACTAAATGATA	1200
K W I Q I L L Y K A L A P M L D D L I L	
AAAGTGATACAAATTCTTTATAAGGTGATTACCGATGCTTGTGATGATTCTA	1260
L N H D D K K D L I D Q Y N I K A K V T	
TTAAATCATGATGATAAAAAGTTATACGATCAGTATAATTAAAGCTAAGGTAAAGGTAACCA	1320
V L G G I G L D L N E F S Y K E P P K E	
GTGTTAGGTGGGATGGATGGATCTTAAATGAGTTTCTATATAAGAGGCCACCGAAAGAG	1380
K I T F I F I A R L L R E K G I F E F I	
AAAATACCTTTATTTATAGCAAGGTATTAAAGAGAGAAAGGGATATTGAGTTTATT	1440
E A A K F V K T T Y P S S E F V I L G G	
GAAGCCGCAAAGTTCGTTAAGACAATTATCCAAGTCTGAAATTGTAATTAGGAGGT	1500

Figure 7/1

09/423093

WO 98/50531

PCT/AU98/00315

8/58

F E S N N P F S L Q K N E I E S L R K E TTTGAGAGTAATACTCTTCTCATACAAAAAAATGAAATTGATCGCTAAGAAAAGAA	1560
H D L I Y P G H V E N V Q D W L E K S S CATGATCTTATTTACTCTGGTCATGGAAAATGTTCAAGATGGTTAGAGAAAAGTTCT	1620
V F V L P T S Y R E G V P R V I Q E A M GTTTTGTGTTACCTACATCATACGAGAAGGCCTACCAAGGGTGATCCAAGAACGCTATC	1680
A I G R P V I T T N V P G C R D I I N D GCTATTGGTAGACCTGTAATAACAACTAATGTTACCTGGGTAGGGATATAAAATGAT	1740
G V N G F L I P P F E I N L L A E K M K GGGGTCAATGGCTTTGTACCTCCATTGAAAATTAACTTACTGGCAGAAAAATGAAA	1800
Y F I E N K D K V L E M G L A G R K F A TATTTTATTGAGAATAAGATAAGACTCGAAATGGGCTTGCTGGAAGGAAGTTTGCA	1860
E K N F D A F E K N N R L A S I I K S N GAAAAAAACTTGTGCTTTGAAAAAAATAATGACTAGCATCAATAAAATCAAAT	1920

End of orf1
N D F *

AAATGATTTTGACTTGAGCAGAAAATTATTTATTTCAATCTGAAAAATAAAGGCTGTTA	1980
Start of orf2	
M N K V A L I T G I T G Q D G S Y L A TTATGATAAAAGTGGCATTTAAATTACTGGTATCACTGGCAAGATGGCTCTATTGGCAG	2040
E L L E K G Y E V H G I K R R A S S F AATTATTGTTAGAAAAGGTTATGAAAGTTCATGGTATTAAACGCCGTGCATCTCATTTA	2100
N T E R V D H I Y Q D S H L A N P K L F ATACTGAGCGAGTGGATCACATCTAGGAGTCACATTAGCTAATCTAACTTTC	2160
L H Y G D L T D T S N L T R I L K E V Q TACACTATGGCAGATTGACAGAATCTTCAATCTGACCCGTATTAAAAGAAGTTCAAC	2220
P D E V Y N L G A M S H V A V S F E S P CAGATGAGTTTACATTTGGGGCGATGAGCCATGTAGCGGTATCTTGTGAGTCACCG	2280
E Y T A D V D A I G T L R L L E A I R I AAATACACTGCTGATGTTGATGCGATAGGAACATTGCGCTCTCTGAAGCTATCAGGATAT	2340
L G L E K K T K F Y Q A S T S E L Y G L TGGGGCTGAAAAAAAGACAAAATTATCAGGCTTCAGAGCTTATGGTTTGG	2400
V Q E I P Q K E T T P F Y P R S P Y A V TTCAAGAAATTCCACAAAAGAGACTACGCCATTATCCAGCTGGCCTTATGCTGTTG	2460
A K L Y A Y W I T V N Y R E S Y G M F A CAAAATATATGCCATTGGATCACTGTTAATTATCGTAGCTTATGGTATGTTGCCT	2520
C N G I L F N H E S P R R G E T F V T R GCAATGGTATTCTCTTTAACCGAGAACCTCGCCGAGACCTTGTACTCGTA	2580
K I T R G I A N I A Q G L D K C L Y L G AAATAACACGCCATTGGATAGCAAATTGCTCAAGGCTTGTATAATGCTTACCTGGAA	2640
N M D S L R D W G H A K D Y V K M Q W M ATATGGATTCTCTGCCTGATTGGGACATGCTAAGGATTATGCTAAATGCAATGGATGA	2700

Figure 7/2

M L Q Q E T P E D F V I A T G I Q Y S V TGCTGCAGCAAGAAACTCCAGAAGATTGTAAATTGCTACAGGAATTCAATATTCTGTCC	2760
R E F V T M A A E Q V G I E L A F E G E GTGAGTTTGTCAACATGGCGCAGGCAGCACTAGGCATAGCTAGCATTTGAAAGGTGAGG	2820
G V N E K G V V V S V N G T D A K A V N GAGTAATGAAAAGGTTGTTGTTGGCTCAATGGCAGCTGATGCTAAAGCTGTAAAC	2880
P G D V I I S V D P R Y F R P A E V E T CGGGCAGTGTAAATTATCTGTAGATCCAAGGTATTTCAGGCTGTGAGAAGTTGAAACCT	2940
L L G D P T N A H K K L G W S P E I T L TGCTTGGCAGTCTACTAATGCCATAAAAAATTAGGATGGAGCCCTGAAATTACATTG	3000
R E M V K E M V S S D L A I A K K N V L GTGAAATGGTAAAAGAAATGGTTCCAGGATTAGCAATAGGAAAGAACCTTTG	3060
End of orf2	
L K A N N I A T N I P Q E * TGAAAGCTAAATGATGCCACTAAATTCCGAAAGAAATAAAGATAATACATTAAAT	3120
Start of orf3	
M F AATTTAAATGGTGTAGATTATTAGTACCAATTATTTTTGGGTGACTAACTGTTTA	3180
I T S D K F R E I I K L V P L V S I D L TTACATGAGATAATTAGAGAAATTATCAAGTTAGCTTCAATTATCAATTGATCTGC	3240
L I E N E N G E Y L F G L R N N R P A K TAATTGAAACAGAGAAATGGTCAATTATTTATGGCTCTTAGCAATACTGACGGGCCAAA	3300
N Y F F V P G G R I K R N E S I K N A F ATTTATTTTTGTCAGGTGGTAGGATTGGCAATTAGTAACTTAAATGCTTTA	3360
K R I S S M E L G K E Y G I S G S V F N AAAGAAATCATGATGGATTGGTAAGCTATGGTAGTATGGTATTCAGGAAGCTTTTAAATG	3420
G V W E H F Y D D G F F S E G E A T H Y GTGTTATGGGACATTCTATGATGATGTTTTCTGAGGGAGGGCACACATTATA	3480
I V L C Y T L K V L K S E L N L P D D D Q TAGCTTTGTTGTTACACATGAACTGTTAAATGTAATGAACTCCAGATGATCAAC	3540
H R E Y L W L T K H Q I N A K Q D V H N ATCTGAAATACCTTGGCTAATCAACACCAAATAATGCTAAACAGATGTTGTAATCT	3600
End of orf3	
Y S K N Y F L * M ATTCATTTATTTTTGTTAAATTTTATTTAAATATGGAGAGAACTGTTAGT	3660
S Q C L Y P V I I A G G T G S R L W P L CTGAAATCTTACCTGTAATTATGGGGAGGAAACGGAGGAGGCTATGGGGTTG	3720
S R V L Y P K Q F L N L V G D S T M L Q CTGGAGTATTAACCTTAACAAATTATTTGTTGGGATCTACAAATGTTGCAAA	3780
T T I T R L D G I E C E N P I V I C N E CAACAAATTACGGTTGGATGCACTGCAATTGCAATTGCAATTGCAATTGCAAG	3840
D H R F I V A E Q L R Q I G K L T K N I ATCAGGGATTATGTAGCAGAGCAATTAGCAAGATTGGTAGCTAACCAAGATA	3900
I L E P K G R N T A P A I A L A A F I A TACTTGAGGGAGGGCGCTAACTGCACTGCACTGCACTGCTTGTGCTTGTGCT	3960

Figure 7/3

09/423093

WO 98/50531

PCT/AU98/00315

10/58

Q K N N P N D D P L L L V L A A D H S I
 AGAAGATAATGCTAAATGAGGACCTTTATTATTAATGACTTCCGGACAGACCTCTATA 4020

N N E K A F R E S I T K A M P Y A T S G
 ATATGAGAATTCATTTGAGCTATATATATATATATATATATATATATATATATATGGGA 4080

K L V T F G I I P D T A N T G Y G Y I K
 AGTTAGTAACATTTGGAAATTATTECGGACACGGCAAACTCTGGTATATGGATATATTAAGA 4140

R S S S A D P N K E F P A Y N V A E F V
 GAACTTCTCAGCTATCTTAAATAGATATTECGGACACGGCAAACTCTGGGAGTTTGATAG 4200

E K P D V U K T A Q E Y I S S G N Y Y W N
 AAAAACCGAGTTAAACAGCACAGGAATATATTTGGATGCGGAAATTATTAAGGAAATA 4260

S G M F L F R A S K Y L D E L R K F R P
 GGGAAATCTTCTTCTGGCCGCACTAAATATCTTGATGAACTACGGAAATTAGGACAG 4320

D I Y H S C E C A T A N I D M D F V
 ATATTTATCATGGCTGTGAACTGGCAACGGTACACGAATATAGATATGGACTTCTGCE 4380

R I N E A E F I N C P E E S I D Y A V M
 GAAATTAACCGAGGCTGAGTTTATATATGCTGAAAGASTATCTGATTATGGCTGTGATGG 4440

E K T K D A V L P I D I G W N D V G S
 AAAACGAAACCCGCTGAGCTCTTCGCAATAGATATTTGGCTGCAATGAGCTGGGTCTT 4500

W S S L W D I S Q K D C H G N V C H G D
 CCTCTCATCTGATGGAGAAATTAGTTTATTTACTCTGAGTCAGTCTGGTTTCCGACAG 4560

V L N H D G E N S F I Y S E S S L V A T
 TGCTCATCATGATGGAGAAATTAGTTTATTTACTCTGAGTCAGTCTGGTTTCCGACAG 4620

V G U S V N L V I V Q T K D A V L V A D R
 TCGGCTACTAGTAAATGCTAAATGCTAAACCAAGGAGCTGCTGACTGCTTCGGACCTG 4680

D K V Q N V K N I V D D L K K R K R A E
 ATAAACTCCAAATGCTAAACATAGTTGACGATCTAAAGAGAAACGTGCTGAT 4740

Y Y M H R A V F R P W G K F D A I D Q G
 ACTACATGCACTGCACTTTTCCCTGGGTAATTCGATGCAATAGAACCAAGGEG 4800

D R Y R V K K I I V K P G E G L D L R M
 ATAGTATAGCTAAATATATAGCTAAACCAAGGAGCAAGGGTTAGATTAAAGGATGC 4860

H H H R A E H W I V V S G T A K V S L G
 ATCATCATAGGGCAGAGCATGGATTGCTATCTGGCTACTGCTAAAGTTTCACTGCTA 4920

S E V K L L V S N E S I Y I P Q G A K Y
 GTGAACTTAACCTTATGCTAAATGACTGCTATATATCTGGACAGGAACTGGGAAATA 4980

S L E N P G V I P L H L I E V S S G D Y
 CTCTGAGATCCAGGGCTAACTCTGGCATCTAACTGGATGAGTCTGGTGTGATTAC 5040

L E S D D I V R F T D R Y N S K O F L K
 TTGAACTCAGATGATATAGTGGCTTTACTGACAGATATACAGTAAACGATTCCTAAAGC 5100

End of orf4 Start of orf5

M	N	K	I	T	C	F	K	A	Y	D	I	R	G	R	L
R	D	*													

GAGATTCGATAAATGCTAAATATCTGGCTTCAAGCTATGCTATACGCTGGGGCTCT 5160

Figure 7/4

11/58

G A E L N D E I A Y R I G R A Y G E F F	
TGGTGCCTGAAATGATGATAAATTAGCATATAGAATTGGTCGGCGTTATGTGAGTTTTT	5220
K P Q T V V V G G D A R L T S E S L K K	
TAACCTCAACTGTTACTGGGAGGAATGCTGCTTAAAGAATGTGAGTTAAAGAA	5280
S L S N G L C D A G V N V L D L G M C G	
ATCAGTCATAATGGGTTATGTGATGCCAGCCGTTATGTCTTAGATCTTGAAATGTGTGG	5340
T E E I Y F S T W Y L G I D G G G I E V T	
TACTGAAGAGATAATTTTCGACTTGGTATTAGAAATGTGGTGGATCGAGGTAC	5400
A S H P I D Y N G M K L V T K G A R P	
TGCGAACGATAATCCGATGATAATGGAAATTTGAACTAACAAAGCTGCTGAC	5460
I S S D T G L K D I Q Q L V E S N N F E	
AAATCAGCAGTGACACAGCTCTAACAGATAACAAATTAGTAGAGAGATAATTTTGAA	5520
E L N L E K K G N I T K Y S T R D A Y I	
AGAGCTCAACCTAGAAAAAGGAATATTACCAAATTGACCCGGAGATGCGTACAT	5580
N H L M G Y A N L O K I K K I K I V V N	
AAATCTTGTGGGAAATGGCAGCTGGTCTGTTATTGATGCTATGAGGATGCTTTTACGAA	5640
S G N G A A G P V I D A I E E C F L R N	
TTCTGGGAAATGGCAGCTGGTCTGTTATTGATGCTATGAGGATGCTTTTACGAA	5700
N I P I Q F V K I N N N T P D G N F P H G	
CATATTCCGATTCAGTTGAAATATACACCCGGATGGTAATTTCACAGATG	5760
I P N P L L P E C R E D T S S A V I R H	
TATCGCTTAATCCATTACTACCTGAGTGGAGAGATAACAGCAGCTGGGTTTAAAGACA	5820
S A D F G I A F D G D F D R C F F F D E	
TACTGCTGATTTCGTTATTCGATGCTGCTGTTATGAGGTTTTCTTGTGATGA	5880
N G Q F I E G Y Y I V G L L A E V F L G	
AAATGGACAAATTATGAAAGGATACTACATTGGTTGGTTATTAGCGGAAGTTTTTACG	5940
K Y P N A K I I H D P R L I T W N T I D I	
GAATATCCAAACGCAAATTCATGATGCTGCTTATATGGAAACACTATTGATAT	6000
V E S H G G I P I M T K T G H A Y I K Q	
CGTAGAAAGTCATGGTGTATACCTTATGACTAAACCGGTGATGCTTACATTAGCA	6060
R M R E E D A V Y G G E M S A H H Y F K	
AAAGATCTGAAAGGAGATEGGTATATGGGGCGAAATGACTGCGGATCATTTTAA	6120
D F A Y C D S G M I P W I L I C E L L S	
AGATTTCGATCTGCAACTGGAAATTCTGTTATGCTGAACTTGTGAACTTTTACG	6180
L T N K K L G E L V C G C I N D W P A S	
TCTGACAAATTAGGTGACTGCTTGTGGTTATAGACTGGGCGAA	6240
G E I N C T L D N P Q N E I D K L F N R	
TGGAGCAATTAACTGTCAACTAGACANTCCCAAATGAAATAGATAATATTAAATCG	6300
Y K D S A L A V D Y T D G L T M E F S D	
TTACAAAGAATCTGCTTATGCTGATACACTGATGCTTAACTATGGAGTTCTGTGA	6360
W R F N V R C S N T E P V V R L N V E S	
TTGGCTTTTAACTGAGATGCTCAATACAGAACCTGACTACGATTGATGAGATC	6420
R N N A I L M Q E K T E E I L N F I S K	
TAGGAAATGCTTATGCTTATGGAGGAACAGAGAAATCTGAAATTATGAA	6480

Figure 7/5

12 / 58

Start of orf6

ATATAATTGGCACCTGAGTCATAATGGGAAACAGAAATATGCAACTCTGTACTGG	M K V L L T G	6540
S T G M V G K N I L E H D S A S K Y N I		
CTCAACTGGCATGGTGTAGAATATATTAGAGCATGATAGTGCGAGTAATATATAAT		6600
L T P T S S D L N L L D K N E I E K F M		
ACTTACTCCACCAACGAGCTGTGATTTATAGATAAATGAAATAGAAATTCAT		6660
L I N M P D C I I H A A G L V G G I H A		
GCTTATCACATGCCAGACTGTATATACATGCGAGGGGATTAGTGAGGGATTCTG		6720
N I S R P F D F L E K N L O M G L N L V		
AAATATAAGCAGGCCCTTTGATTTCTGGAAAAAAATTCGCGAGTGGTTAAATTAGT		6780
S V A K K L G I K K V L N L G S S C M Y		
TTCCTGGCGAAATTTAGGTATCGAGAAAGTGTCTAACCTGGTAGTGTATGCGATGA		6840
P K N F E E A I P E K A L L T G E L E E		
CCCCAAAATTTGAAGAGGCCTTCTCTGGAAAGCTCTCTACTGCGAGCTGAGAAGA		6900
T N E G Y A I A K I A V A K A C E Y I S		
AACTAATGAGGGATATGCTATTCGCAAATTCGCTGTAGCAGAAAGCATGCCAATATATC		6960
R E N S N Y F Y K T I I P C N L Y G K Y		
AAAGAGAAACTCTAAATTTATTTATTTACATATCCCATGATAATTATATGGGAAATA		7020
D K F D D N S S H M I P A V I K K I H H		
TGATAATTTCATGATCATACTCGTCACATGATTCGGCAGCTTAAATTCATGCA		7080
A K I N N V P E I E I W G D G N S R R E		
TGCGAAATTAATATGTCGAGAGATCGAAATTGGGGGATGGTAAATCGGGCGTGA		7140
F M A E E D L A D L I F Y V I P K I E F		
GTTCATATTCATGCGAGAAATTACTGATCTTATTTCTATCTTACTCTAAATGAGATT		7200
M P N M V N A G L G Y D Y S I N D Y Y K		
CATGCCAAATTCGTTATGCTGCTTACAGATTATTCGATTAATGACTATATATAA		7260
I I A E E I G Y T G S F S H D L T K P T		
GATAATTGCGAGAAAGATTGGTATATCTGGAGATTTCATGATTTAAACAAACAC		7320
G M K R K L V D I S L L N K I G W S S H		
AGGAATGAAACGGCAACTGAGATGATCTTATCTGCTTAAATTCGTTGCTCACTCA		7380
F E L R D G I R K T Y N Y Y L E N Q N K		
CTTGTGAACTCAGAGATGSCATCAGAAGACCTATATTTACTTGGAGAAATCAATAA		7440

art of orf7, End of orf6

M I T Y P L A S N T W D E Y E Y A A I Q		
ATGATTACATACCCACTTGCTAGTAATCTGGCATGAAATGACTATGCCGAAATACAG		7500
S V I D E S K M F T M G K K V E L Y E K N		
TCACTTAACTGACTGAAATTTACCATGGGAAAGCTGAGCTTATATGAGAAAT		7560
F A D L F G S K Y A V M V S G S T A N		
TTGCTGATTGTTGTTGACAAATATGCCGAAATGCTGACTCTGGTTCTGAGCTTAT		7620

Figure 7/6

13/58

L L M I - A A L F F T - N K P K L K R G D E
CTGTTAATGATTCGTGCTCCCTTTTCTTCACTAATAAAACCAAAACTTAAAGAGCTGATGAA 7680

I I V P A V S W S T T Y Y P L Q Q Y G L
ATAATAGTACCTCGCAGTCGTCACTGGTCACGACATAATTACCCCTCTGGCACAGTATGGCTTA 7740

K V K F V D I N K E T L N I D I D S L K
AAGGTGAAGTTTGTGCGATATCAATAAAAGAACTTAAATGATATCGATAGTTGAA 7800

N A I S D K T K A I L T V N L L G N P N
AATGCTATTTCAGATAAAACAAAAGCAATTGAGACGTAATAATTATAGGTAAATCCTAAT 7860

D F A K I N E I I N N R D I I L L E D N
GATTTTCGAAATTAATGAGATAATAATAATAGGGATAATTATCTACTAGAGAGATAAC 7920

C E S M G A V F Q N K Q A G T F G V M G
TGTGACTGATGGGGGGGGCTTTCGAATAATGCAAGGGGCACATTCGGAGTTATGGGT 7980

T F S S F Y S H H I A T M E G G C V V T
ACCTTTACTCTTTTACTCTCATCATATACTACATGGAAAGGGGCTCGTAGCTACT 8040

D D E E L Y H V L L C L R A H G W T R N
GATGATGAAAGAGCTGTCTCATGTTGCTTCTGGACTCATGGTTGGACAAGAAAT 8100

L P K E N M V T G T K S D D I F E E S F
TTACCAAAGAGATAAGGGTACAGGCACTAACAGACTGATATACTGGAGAGCTGGTT 8160

K F V L P G Y N V R P L E M S G A I G I
AACTTTGTTTACCAAGGATAACAATGTTGGCTTAACTTGAAATGAGTCGTGCTATTGGATA 8220

E Q L K K L P G F I S T R R S N A Q Y F
GACCACTTAAAGTTACCAAGGTTTATATGCCACAGAGCTCCATGGCACATAATT 8280

V D K F K D H P F L D I Q K E V G E S S
GTAGATAATAAGATCTGGCTTCTGGCTATGATATAACAAAGAACTTGGTGAAGATGAGE 8340

W F G F S F V I K E G A A I E R K S L V
TGGTTGGTTTCTCTGGTTATAAGGAGGGAGCTGCTATTGAGAGGAGACTTTAGTA 8400

N N L I S A G I E C R P I V T G N F L K
AAATACCTGATTCAGGAGGCTTGTAACTGGCACTTACTGGGATTTTCTCAA 8460

N E R V L S Y F D Y S V H D T V A N A E
AAATGAACTGTTTCACTTATTCGATTCATGATGAGTACGGTACGAAATGGGAA 8520

Y I D K N G F F V G N H Q I P L F N E I
TATATGATAAGATGGTTTTTGTCTGAAACCACCAAGATACTTTGTTAAATGAAATA 8580

End of orf7

D Y L R K V L K *

GATTATCTACCGAAAAGTATTAAATACTAAGGAGGCACCTATTCTGAAATAGAGTCGCTT 8640

Start of orf8

M V L T V K K I L A F G Y S K V L P
TTAACCTGGTATTAACAGTGAACAAATAATTCTGGCTTGGCTATTCTAAAGTACTTCAC 8700

P V I E Q F V N P I C I F I I T P L I L
CGGTTATGAAACAGTTCTCATCTTCTGATCTTCTCATATTCACACCAACTAACTGCA 8760

N H L G K Q S Y G N W I L L I T I V S F
AAGCACTGGCTAAGCAACCTATGGTAATTGGATTTTATTAATCTATGATGATCTTTT 8820

Figure 7/7

S Q L I C G G C S A W I A K I I A E Q R
 CTCAGTTATATGCGGAGGATCTTGGCATGGATTCAAATTCATGGAGAACAGAGAA 8880

I L S D L S K K N A L R Q I S Y N F S I
 TTCTTACTGATTTATCCTAATTCCTTACGTCAAAATTCTCTATAATTTCGAATTG 8940

V I I A F A V L I S F L I S I C F F D
 TTATTATCGCATTCGGGTATTGATCTTCTTCTTATTAATTTATTTGTTCTGGATG 9000

V A R N N S S F L F A I I I C G F F Q E
 TTGGCGAGGAATATTCTGCATTCTTATTCGGATTATATTGCTGTTTTTCAGGAAG 9060

V D N L F S G A L K X G F E K F N V S C F
 TTGATATTATTTAGTGGTGGCTAAAGGTTTGAAATTTAATGATCATGTTTTT 9120

F E V I T R V L W A S I V G I Y G N
 TTGCAATTAATCACAGAGCTCTGGCTCTATAGTAAATATAGGCATTACGGAAATG 9180

A L L Y F T C L A F T I K G M L K Y I L
 CACTCTTATTTTACATGTTTACGCTTACCATTAAGGTATGCTAAATATATTCTTG 9240

V C L N I T G C F I N P N F N R V G I V
 TATGTCGAATATTACCEGGTTGTTCTCATCAATGCTAAATTAAATAGACTGGATTGTA 9300

N L L N E S K W M F L Q L T G G V S L S
 ATTTGTAATAGACTGAAATATGGATTCTCAAAATACGGTGGCTCTGACTTAGTT 9360

L F D R L V I P L I L S V S K L A S Y V
 TGTTGATAGGCTCTAAATACCATGTTTATCTGTCATAACTGGCTCTTATGTEC 9420

P C L Q L A Q L M F T L S A S A N Q I L
 CCTGGCTCTACTGCTCAATTGATGTCACTTTCTGGCTCTGCAAAATGCAATATAC 9480

L P M F A R M K A S N T P F S N C F F K
 TACCAATTTGCTAGAGTGAAGCATTAACACATTCCCTCAATGTTTTTTAAA 9540

I L L V S L I S V L P C L A L F F F G R
 TTCTGCTTGTATCACTAAATTCTGTTTGCCTTGTCTGGCTTATCTTTTGGTCGTG 9600

D I L S I W I N P T F A T E N Y K L M Q
 ATATATATCAATATGATTAACCTCACTTGCAACTGAAATTAATGCAAA 9660

I L A I S Y I L L S M M T S F H F L L L
 TTCTACCTTATGCTACCTTATGCTATGATGACATCTTCTGCTTCTGCTTATG 9720

G I G K S K L V A N L N L V A G L A L A
 GAATGGTAATCTAGCTGCTGCAATTAAATCTGGTGGAGGGCTGGACTTGCTG 9780

A S T L I A A H Y G L Y A I S M V K I I
 CTTCACGGTTAATCGGAGCTGCTATGCTTATGCAATATCTATGCTTAAATATAT 9840

Y P A F Q F Y Y L Y V A F V Y F N R A K
 ATCGGGCTTTGATTTTACCTTATGCTTATGCTTCTTATGCTTATGAGGGAA 9900

Start of orf9, End of orf8

M S I D L L F S I T E I A I V F S C T I N V Y *	9960
ATGCTTATGATTTACTCTTCTTCTGAAATGCTAAATGTTCTGCTGACTATT	
Y I F T O C L L M R R I Y L D K S I L I TACATATTACTGATCTTCTGTTAATGCGGAGGATCTTATGATAAAAGTATTTAATT	10020
L C L L F F L V I I Q L P E L N V N G CTTTATGCTTGTCTTCTTCTTATGTAATCACTTCCTGAGCTTAATGTAACCGGT	10080

Figure 7/8

09/423093

WO 98/50531

PCT/AU98/00315

15/58

L V D S L K L S L P L L M V F I A F Q K TTGGTCGATTCTTAAAGTTATCACTGCCCTTATTGATGGCTTATCGCTTTCAAAAA	10140
P K L C L W V I I A L L F L N S A F N F CCGAAATTATGCTTGGGTTATTGATCTGGTTTGACTCTGCATTAAATT	10200
L Y L K T F D K F S S F P F T F F I L L TTATATTTAAAGACATTCGATAAGTTAGCTCATTCCTTTACTTTTTATATTGCTG	10260
F Y L F R L G I G N L P V Y K N K K F Y TTTACTCTGGTAGATTGGAAATTGGTAATTACCGCTTATAAAAATAAAAAATTTAC	10320
A L I F L F I L I D I M O S L L I N Y R GCGTTGATTTCCTCTTTATATTAAAGACATAATGCAGTCATTGTTAAATAATTATAGG	10380
G Q I L Y S V I C I L I L V F K V N L R GGCAGATTATTCCTGAATTGCATCTGATACTGTGTTAAAGTTAAATTAAAGA	10440
K K I P Y F F L M L P V L Y V I I M A Y AAAATTCATCACTTTTTATTGCTGCCAGTTATATGTAATTATTGCTTAT	10500
I G F N Y F N K G V T F F E P T A S N I ATTGGTTTAATTATTCAATAAAGGCGTAACCTTTTGAAACCTACAGCAAGTAATATT	10560
E R T G M I Y Y L V S Q L G D Y I F H G GAACCTACGGGATGATAATTATTGCTTACAGCTGGTGTTATATAATTCCATGTT	10620
M G T L N F L N N G G Q Y K T L Y G L P ATGGGACATTAAATTCTTAAATAACGGCGAACATAAAGCCTTATATGGACTTCCA	10680
S L I P N D P H D F L L R F F I S I G V TCATTAATTCCCTAATGACCCCTCATGATTTTATTACGGTCTTATAAGTATTGGTGTG	10740
I G A L V Y H S I F F V F F R R I S F L ATAGGAGCATGGTTATCATCTATATTGTTTTAGGAGAAATACTTCTTCA	10800
L Y E R N A P F I V V U S C L L L Q O V V TTATAGAGAAATGCTCTTCAATTGTTAGTTACTGTTACAAGTTGTG	10860
L I Y T L N P F D A F N R L I C G L T V TTAATTATACATTAACCCCTTTGATGCTTTATGATTTGCGGGCTTACAGTT	10920
Start of orf10	End of orf9
G V V Y G F A K I R *	
M D L Q K L D K Y T C N G N L D A GGAGTTGTTATGGATTGCAAAATTAGATAAGTATACCTGTAATGGAAATTAGACGC	10980
P L V S I I I A T Y N S E L D I A K C L TCCACTTGTTCATAATCATTGCAACTTATAATTCTGAACTTGTATAGCTAAGTGT	11040
Q S V T N Q S Y K N I E I I I I M D G G S GCAATCGGTAACTAACATTGAAATATTGAAATCATATAATGGATGGAGGATC	11100
S D K T L D I A K S F K D D D R I K I V S TTCTGATAAAACGCTTGTATTGCAAATCTGTTAAAGACGACCGAACAAAAATAGTTTC	11160
E K D R G I Y D A W N K A V D L S I G D ACAGAGAAGATCGTGGAAATTATGATGCTGGAATAAACAGTTGATTATCCATTGGTGA	11220
W V A F I G S D D V Y Y H T D A I A S L TTGGTAGCATTTATTGTTCAAGATGATGTTACTATCATACAGATGCAATTGCTTCATT	11280
M K G V M V S N G A P V V Y G R T A H E GATGAAGGGGTTATGGTATCTAATGGCGCCCCGTGGTTATGGAGGACAGCGCACGA	11340

Figure 7/9

16/58

G P D R N I S G F S G S E W Y N L T G F
AGGTCCCGATAGGAACATACTGGATTTCAGGCACTGAATGGTACAACCTAACAGGATT 11400

K F N Y Y K C N L P L P T M S A I Y S R
TAAGTTAATTATTACAAATGTAAATTACATTGCCATTATGAGCGCAATAATTCTCG 11460

D F F R N E R F D I K L K I V A D A D W
TGATTCTCAGAACGAGCTTGTATTAATTAATGAGCGTACGCGTGTGATTG 11520

F L R C F I K W S K E P Y F I N D T
GTTTCAGAGATGTTCATCAAATGGAGAAAGAGTCACCTTATTATTAAATGACAC 11580

T P I V R M G Y G G V S T D I S S Q V K
GACCCCTATTGTTAGAATGGGATATGGTGGGTTTCGACTGATATTCTCTCAAGTTAA 11640

T T L E S F I V R K K N N I S C L N I Q
AACTACGCTAGAAAGTTCTATTGTACGCAAAAGAATAATAATCCTGTTAAACATACAA 11700

L I L A K I V L M V M V A I K N I F G N
GCTGATTCTTAGATATGCTAAAATCTGGTGTAGGTAGCGATCAAATATTGGCAA 11760

N V Y K L M H N G Y H S L K K I K N K I
TAATGTTATAAAATATGCTAACGGGTATCATCCCTAAAGAAAATCAAGAATAAAAT 11820

Start of orf11, End of orf10

M K I V Y I I T G L T C G G A E H L M T
* ATGAAGATTGTTATATAACCGGGCTTACTTGTGGTGGACCGAACACCTTATGACG 11880

Q L A D Q M F I R G H D V N I I C L T G
CAGTTAGCAGACCAAAATGTTATACGGGGCATGTGTTAATATTATTCTCTAACTGGT 11940

I S E V K P T Q N I N I H Y V N M D K N
ATATCTGAGGTAAAGCCAAACACAAAATAATTAATATTCTATTGTAAATATGGTAAAGAAT 12000

F R S F F R A L Q V K K I I V A L K P
TTTAAAGCTTTAGAGCTTATTCAGTAAAGAAAAATAATTGTGCCCTAAAGCCA 12060

D I I H S H M F H A N I F S R F I R M L
GATATAATACATAGTCATATGTTCATGCTAATATTAGTCGTTTATTAGGATGCTG 12120

I P A V P L I C T A H N K N E G G N A R
ATTCCAGCGGTCCCTGATATGTCAGCACACAAAATGAAGGTGGCAATGCAAGG 12180

M F C Y R L S D F L A S I T T N V S K E
ATGTTTGTATCGACTGAGTGTATTAGCTTATTAATACAAATGTAAAGAG 12240

A V Q E F I A R K A T P K N K I V E I P
GCTGTCAGAGTTATAGCAAGAAAGGCTACACCTAAAATAATAGTAGGATTCG 12300

N F I N T N K F D F D I N V R K K T R D
AATTTTATAATACAATAATTGTATTGTGATTTAATGTCAGAAAGAAAACGCGAGAT 12360

A F N L K D S T A V L L A V G R L V E A
GCTTTAATGAAAGACAGTCACAGCAGTACTGCTCGCAGTAGGAAAGACTTGTGAAGCA 12420

K D Y P N L L N A I N H L I L S K T S N
AAAGACTATCCGAACCTTAAATGCAATAATCATTGATTCTTCAAAACATCAAAT 12480

C N D F I L L I A G D G A L R N K L L D
TGTAATGATTATTGTCTTATGCTGGCAGTGGCGCTTAAAGAATAATTATGGAT 12540

L V C Q L N L V D K V F F L G Q R S D I
TTGGTTGTCAATTGAAATCTTGTGGATAAGTTCTTGGGCAAGAAGTGTATT 12600

Figure 7/10

17/58

K E L M C A A D L F V L S S E W E G F G
 AAAGAATTAAATGTGCTGCAGATCTTTGGTTTGAAGTCTGAGTGGGAAGGTTTGTT 12660

L V V A E A M A C E R P V V A T D S G G
 CTCGTTGTTGCAAGCTATGCCGTGTAACGTCGGTGTGCTACCGATTCTGGTGA 12720

V K E V V V G P H N D V I P V S N H I L L
 GTTAAAGAAGTCGTTGGACCTCATAATGATGTTATCCCTGTCAGTAATCATATTCTGGTTG 12780

A E K I A E T L K I D D N A R K I I G M
 GCAGAGAAAATCGCTGAGACACTTAAATAGATGATAACCGCAAGAAAATATAAGGTATG 12840

K N R E Y I V S N F S I K T I V S E W E
 AAAAATAGAGAATATATTGTTCCAATTTCATTAAACGATAGTGAGTGAGTGGGAG 12900

R L Y F K Y S K R N N I I D * End of orf11
 CGCTTATATTTAAATATTCCAAGCGTAATAATATAATTGTG TGAAAATATAAGTTGTA 12960

CTCTGGATGCAATAGTTCTCTATGCTGTTTTTACTGGCTCCGTATTTCATTATAG 13020

CTGGATTTGTTATATCAGTTAACTCTGCTCAACTTCATCTAGACTACATTCAAGC 13080

M S K Q Q I Start of gnd
 CGGCCATCGCTCGCGCGGTGACTACACCTGACAGGAGTATGTAATGTCCAAGCAACAGAT 13140

G V W G M A V M G R N L A L N I E S R G
 CGGCTCGTCGTTATGGCAGTGTGGGGCGAACCTGGCGCTCAACATCGAAAGCGCGG 13200

Y T V S I F N R S R E K T E E V V A E N
 TTATACCGCTCTCATCTCAACCGCTCCCGAGAAAATGAGAAGTTGTTGCGAGAA 13260

P D K K L V P Y Y T V K E F V E S L E T
 CCCGGATAAGAACCTGGTTCCCTTATTACACGGTGAAGAGTCGAGTCCTCTGAAAC 13320

P R R I L L M V K A G A G T D A A I D S
 CCCGGCTCGTATCCCTGTTAATGTTAAAGCAGGGCGGGAACTGATGCTGCTATCGATTC 13380

L K P Y L D K G D I I I D G G N T T F F Q
 CCTGAAGCGGTATCGATAAAAGCGACATCAITATTGTGTTGCAACACCTCTTCCA 13440

D T I R R N R E L S A E G F N F I G T G
 GGACACTATCCCTCGTAACCGGTGAACTGTCGCGGAAGGCTTAACTCATCGGTACCGG 13500

V S G G E E G A L K G P S I M P G G Q K
 CGTGTCCGGCGGTGAAGAGGGCGCCCTGAAAGGCCATCTATCATGCCAGGTGGCCAGAA 13560

E A Y E L V A P I L T K I A A V A A E D G
 AGAACCGTATGAGCTGTTGCGCCTATCTGACCAAGATGCTGGGTGCTGAAGATGG 13620

E P C I T Y I G A D G A G H Y V K M V H
 CGAACCATGTAATCACTACATCGGTGCTGACGGTGCAGGCTACTACGTGAAGATGGTGC 13680

N G I E Y G D M Q O L I A E A Y S L L K G
 CAACGGTATCGAAATATGGCGATATGCACTGATGGCTGAAGCCTATTCTCTGCTTAAAGG 13740

G L N L S N E E L A T T F T E W N E G E
 CGGCCCTTAATCTGCTAACGAAGAGCTGGCAACCACTTTACCGAGTGGAAATGAAGGG 13800

L S S Y L I D I T K D I F T K K D E E G
 GCTAAAGTAGCTACCTGATTGACATCACCAAAAGACATCTCACCAAAAAAGATGAAGAGGG 13860

Figure 7/11

09/423093

WO 98/50531

PCT/AU98/00315

18/58

K Y L V D V I L D E A A N K G T G K W T		
TAATAACCTGGTTGATGTGATCCCTGGACGAAGCTGC	AAACAAAGGCACCGTAAATGGAC	13920
S Q S S L D L G E P L S L I T E S V F A	CAGCCAGAGCTCTCTGGATCTGGTGAAACCCTGTCGCTGATCACCGAATTCCGTATTTCGC	13980
R Y I S S L K D Q R I A A S K V L S G P	TCGCTACATCTCTCTGAAAGACCAGCGCATTGCCGCACTTAAAGTGCCTGTCGTCG	14040
Q A K L A G D K A E F V E K V R R A L Y	GCAGGCTAAACTGGCTGGTGTATAAAAGCAGAGTCTGGTTGAGAAAGTCCGTCGCGCGTGTAA	14100
L G K I V S Y A Q G F S Q L R A A S D E	CCTGGGTTAAAATCGCTCTTATGCCAAAGGCTTCCTCAACTGCGTGCCGCGTCTGACGCA	14160
Y N W D L N Y G E I A K I F R A G C I I	ATACAACCTGGGATCTGAACTACGGCGAAATCGCGAAGATCTCCGCGCGGTGCAATCAT	14220
R A Q F L O K I T D A Y A E N K G I A N	TGCGCGCAGTTCCCTGCAGAAAATTACTGACGGCTATGCTGAAAACAAAGGCATTGCTAA	14280
L L L A P Y F K N I A D E Y Q Q A L R D	CCTGGTTGCAGGCTCCGACTTCAAAATATCGCTGTGATGAAATATCAGCAAGCGCTGGCTGA	14340
V V A Y A V Q N G I P V P T F S A A V A	TGTAGTGGCTTATGGCTGTCAGAACCGTATTCCGGTACCCGACCTTCTCTGCAGCGGTAGC	14400
Y Y D S Y R S A V L P A N L I Q A Q R D	CTACTACGACAGCTACCGTTCTGCGGTACTGCCGCTAATCTGATTCAAGGCACAGCGTGA	14460
Y F G A H T Y K R T D K E G V F H T G	TTACTTCGGTGCACACCGTATAAACCGACTGATAAAAGAAGGTGTGTTCCACACCG	14516

Figure 7/12

601041-15032450

GTAACCAAGGGCGGTACGTGCATAAATTAAATGCTTATCAAAACTATTAGCATTAAAAA	60
---	----

Start of orf1

M N K E T V S I I M P V Y N	
TATATAAGAAAATTCTCAAAATGAACAAAAGAACCGTTCAATAATTATGCCCGTTACAAT	120

G A K T I I S S V E S I I H Q S Y Q D F	
GGGGCCAAAACCTATAATCTCATAGTAGAAATCAATTATACATCAATCTTATCAAGATTTT	180

V L Y I I D D C S T D D T F S L I N S R	
GTTTGATATCATGAGCATGGTAGACCGATGATACTTTCATTAATCACAGTCGA	240

Y K N N Q K I R I L R N K T N L G V A E	
TACAAAACAATCAGAAAATAAGAAATTGCGTAAACAGAACATTAGGTGTTGAGAA	300

S R N Y G I E M A T G K Y I S F C D A D	
AGTCGAAATTATGGAATAGAAATGGCACGGGGAAATATTTCTTTGTGATGCGGAT	360

D L W H E K K L E R R Q I E V L N N E C V	
GATTTGTGGCACGAGAAAAATTAGAGCTCAAATCGAAGTGTAAATAATGAATGTGTA	420

D V V C S N Y V I D N N R N I V G E V	
GATGTGTTATGTTCTAATTATGTGTTAGATAACAAATATTGTGCAAGTT	480

N A P H V I N Y R K M L M K N Y I G N L	
AATGCTCTCATGTATAAAATTAGAAAATGCTCATGAAAACATAGGGAAATTG	540

T G I Y N A N K L G K F Y Q K K I G H E	
ACAGGAATCTATAATGCCAACAAATTGGTAAGTTTATGAAAAGATGGTCACGAG	600

D Y L M W L E I I N K T N G A I C I Q D	
GATTATTGTGTCGCTGAAATAATTAAAACAAATTGGTGTATTGTATTCAAGAT	660

N L A Y Y M R S N N S L S G N K I K A A	
AATCTGGCGTATTACATGCGTCAAATAATTCACTATCGGTAATAAAATAAGCTGCA	720

K W T W S I Y R E H L H L S F P K T L Y	
AAATGGAACTGGAGTATATAGAGAACATTACATTGTGCTTTCCAACATTATAT	780

Y F L L Y R A S N G V M K K I T H S L L R	
TATTTTTTATTATATGCTCAAATGGAGTCATGAAAAAAACACATTCACTATTAAAGG	840

Start of orf2, End of orf1

R K E T K K *	
---------------	--

V K S A A K L I F L F L F T	
AGAAGGAGACTAAAAGTAGAGCTCAGGGCTAAGTTTTTATTCCTATTACAC	900

L Y S L Q L Y G V I I D D R I T N F D T	
TTTATGTCCTCCAGTTGATGGGGTTATCATAGATGATGCTATAACAAATTGATACAA	960

K V L T S I I I I F Q I F F V L L F Y L	
AGGTATAACTGTTATATAATTATTCAGATTTTTGTTTATTATTTATCTAA	1020

T I I N E R K Q Q K F I V N W E L K L	
CGATTATAATGAGAAAAGAACAGCACGAAAAAAATTATCCTGAACTGGGAGCTAAAGITAA	1080

I L V F L F V T I E I A A V V L F L K E	
TACTCGTTTCTCTTTGTGACTATAGAAATTGCTGCTGAGTTTATTCTAAAGAG	1140

G I P I F D D D P G G G A K L R I A E G N	
GTATTCCATATAATTGATGATGATCCAGGGGGGCTAAACTTGAAGTAGCTGAAGGTAAATG	1200

Figure 8/1

09/423093

WO 98/50531

PCT/AU98/00315

20/58

G L Y I R Y I K Y F G N I V V F A L I I
GACTTTACATTAGATATTAAGTATTTGGTAATATAGTTGTGTTGCATAATTATTC 1260

L Y D E H K F K Q R T I I F V Y F T T I
TTTATGATGAGCATTAATTCAAAACAGAGGACCACATATTGTATATTACAAACGATTG 1320

A L F G Y R S E L V L Q Y I L I T
CTTTATTGTTATCGTCTGAATTGGGTGCTCATCTTCATAATATATTGATTACCA 1380

N I L S K D N R N P K I K R I I G Y F L
ATATCCGTCAAAGGATAACCGTAATCCTAAATAAAAAGAATAATAGGGTATTTTAT 1440

L V G V V C S L F Y L S L G Q D G E Q N
TGGTAGGGGTGATGCTCGTTCTGAATTCTAAGTATTAGGACAAGACGGAGAACAAAATG 1500

D S Y N N M L R I I N R I T E Q V E G
ACTCATATAATAATAGTTAAGGATAATAAGTAAACATAGAGCAAGGTGAAGGTG 1560

V P Y V V S E S I K N D F F P T P E L E
TTCCATATGTTGTTCTGAATCTATTAGAACGATTCTCCGACACCAAGAGTTGAAAAA 1620

K E L K A I I N R I Q G I K H Q D L F Y
AGGAATTAAAAGCAATAATAAGAATCACGGGATAAACGATCAAGACTTATTATTCATG 1680

G E R L H K Q V F G D M G A N F L S V T
GAGAACCGGTACATAACAAAGTATTGGAGACATGGAGCAATTTCATCGTTACTA 1740

T Y G A E L L V F F G F L C V F I I P L
CGTATGGAGCAGAACTGTAGTTTTTTCTCTGTGATTCAATTATCCCTTTAG 1800

G I Y I P F Y L L K R M K K T H S S I N
GGATATATACCTTTTATCTTTAAAGAGAATGAAAAAAACCCATAGCTGATAATT 1860

C A F Y S Y I I M I L L Q Y L V A G N A
GCGCATCTATTACATATTCAATTGATTTATTGCAATATTAGTGGCTGGGAATGCAT 1920

S A F F F G P F L S V L I M C T P L I L
CGGCCCTCTTTGGCTCTCTCGTATTGATAATGTGTACTCCTCTGATCTTAT 1980

Start of orf3

M K I S V I T V T Y
L H D T L K R L S R N E N I S Y N C D L
TGCATGATACGTTAAAGAGATTACAGGAAATGAAATATCAGTTATAACTGTGACTTAT 2040

End of orf2

N N A E G L E K T L S S L S I L K I K P
*
AATAATGCTGAAGGGTTAGAAAAAACTTAAAGTAGTTTCAATTAAAATAAAACCT 2100

F E I I I V D G G S T D G T N R V I S R
TTTGAGATTATTATAGTTGATGGCGGCTACAGATGGAAACGATGTTCAATTAGA 2160

F T S M N I T H V Y E K D E G I Y D A M
TTTACTAGTATGAATATTACACATGTTATGAAAAAGATGAAGGGATATATGATGCGATG 2220

N K G R M L A K G D L I H Y L N A G D S
AAATGGCGGAATGTTGGCCTAAAGGCAGCTTAACATATTAAACGCCGGCGATAGC 2280

V I G D I Y K N I K E P C L I K V G L F
GTAATTGGAGATATATAAAATATCAAAAGAGCCATGTTGATTAAGGTGGCCTTTTC 2340

E N D K L L G F S S I T H S N T G Y C H
GAAAATGATAAACTCTGGGATTCTCTATAACCCATTCAAACAGGGTATGTCAT 2400

Figure 8/2

21/58

Q G V I F P K N H S E Y D L R Y K I C A CAAGGGGTGATTTCCCAAAGAACATTCAGAATATGATCTAAGGTATAAAATATGTGCT	2460
D Y K L I Q E V F P E G L R S L S L I T GATTATAAGCTTATTCAAGGGTGTCTCAGGGTTAAAGATCTCTATCTTGTGATTACT	2520
S G Y V K Y D M G G V S S K K R I L R D TCGGGTTATGTAAAATATGATATGGGGGGAGTATCTCBBBBBAAAGAATTAAAGAGAT	2580
K E L A K I M F E K N K K N L I K F I P AAAAGACCTTGCCAAAATATGTTGAAAAAAATAAAAAAACCTTATTAAAGTTTATTCCA	2640
I S I I K I L F P E R L R V L R K M Q ATTTCAATAATCAAAAATTTATTCTCTGAAACGTTAAAGAAGATATTGCGGAAAATGCAA	2700
Start of orf4 End of orf3	
Y I C L T L F F M K N S S P Y D N E * TATATTGTCTAACITTTATTCTCATGAAGAATAGTTCCACCATATGATAATGAAATAAAT	2760
K K I L K F C T L K K Y D T S S A L G R CAAAATAACTTAAATTGACTTAACTTACGATTATATCCTTGTCTGTTATTCAAGTTTAGTAG	2820
E Q E R Y R I I S L S V I S S L I S K I AGAACAGGAAAGGTACAGGATTATATCCTTGTCTGTTATTCAAGTTTAGTAGAAAT	2880
L S L S L I L T V S L T L P Y L G Q E ACTCTCACTACTTTCTCTTATATACTGTAAGTTAACCTTACCTTATTAGGACAAGA	2940
R F G V W M T I T S L G A A L T F L D L GAGATTGGTGTATGGATGACTATTACCACTTGGTGTCTGCTGACATTGGACTT	3000
G I G N A L T N R I A H S F A C G K N L AGGTATAAGGAATGCATTAACAAACAGGATGCACTTCACTTGGTGTGGCAAAATT	3060
K M S R I I S G G L T L L A G L S F V I AAAGATGAGTCGGCAAATTAGTGGGGCTCACCTTGTCTGCTGATTATGCTTGTCT	3120
T A I C Y I T S G M I D W O L V I K G I AACTGCAATATGCTATATTACTCTGGCATGATTGATTGCAACTAGTAATAAAAGGTAT	3180
N E N V Y A A E L Q Q H S I K V F V I I F G AAACGAGAATGTGTATGCAGAGTTAACACACTCAATTAAAGCTTGTAACTCATATTGG	3240
L G I Y S N G V Q K W M G I Q K A Y I ACTTGGAAATTATTCAATTGGTGTGCAAAAAGTTTATATGGAAACATACAAAGCTTAT	3300
S N I V N A I F I L L S I I T L V I S S AAGTAATTGGTAATGCCATTATTTATATGGTATCTATTACTCTAGTAATAATCGTC	3360
K L H A G L P V L I V S T L G I Q Y I S GAAACTACATCGGGACTACCAGTTTAACTGTCAGCAGCTTGGTATTCAATACATTC	3420
G I Y L T I N L I I K R L I K F T K V N GGGAATCTATTAAACATTAATCTTATATAAGCGATAATAAAAGTTACAAAAGTTAA	3480
I H A K R E A P Y L I L N G F F F F I L CATACATGCTAAAAGAGAAGCTCATATTGATATAAACCGTTTTCTTTTATT	3540
Q L G T L A T W S G D N F I S I T L G ACAGTTAGGCACTCTGGCAACATGGAGTGTGATAACCTTATAATATCTATAACATTGGG	3600

Figure 8/3

09/423093

WO 98/50531

PCT/AU98/00315

22/58

V T Y V A V F S I T Q R L F Q I S T V P P
TGTTACTTATGTTGCTGTATTAGCATACACAGAGATTATTCAAATATCTACGGTCCCG 3660

L T I Y N I P L W A A Y A D A H A R N D
TCTTACGATTATAACATCCCGTTATGGGCTGCCTATGCAAGATGCTCATGCCACGGCAATGAA 3720

T Q F I K K T L R T S L K I V G I S S F
TACTCAATTATATAAAGCAGCTCAGAACATCATTGAAATAGTGGGTATTCATCATT 3780

L L A F I L V V F G S E V V N I W T E G
CTTATTGGCCTTCATATTAGTAGTGGCTGGTAGTGAAGTCGTTAATATTGGACAGAAGG 3840

K I Q V P R T F I I A Y A L W S V I D A
AAAGATTCAGGTACCTCGAACATTCATAATAGCTTATGCTTATGGTCTGTTATTGATGCA 3900

F S N T F A S F L N G L N I V K Q Q M L
TTTTCAATACATTGCAAGCTTTAAATGGTTGAACATAGTTAACACAAATGCT 3960

A V V T L I L I A I P A K Y I I V S H F
TGCTGTGTGAACTTGTATATGATATTGATCGAACATTCCAGCAAATACATCATAGTTAGCCATT 4020

G L T V U M L Y C F I F I Y I V N Y F I W
TGGGTTACTGTATATGTTGACTGTCTCATTTTATATTTATGTAAATTACTTTATATG 4080

Start of orf5, End of orf4

	M K M
Y K C S F K K H I D R Q L N I R G *	4140
GTATAATGTTACTTTTAAACATATGCTAGACAGCTTAATATAAGAGGATGAAATATG	
K Y I P V Y Q P S L T G K E K E Y V N E AAATATATACCACTAGTTACCAACGGCTATTGACAGGAAAGAAATATGTAATATGAA	4200
C L D S T W I S S K G N Y I Q K F E N K TGTCTGGACTAACCTGGATTTCATCAAGGAAACTATATTGAGAAGTTGAAAATAAA	4260
F A E Q N H V Q Y A T T V S N G T V A L TTTGGGAAACAAACCATGTCATATGCAACTCTGAACTATGGAAAGGTTGGCTCTT	4320
H L A L L A L G I S E G D E V I P T L CATTTACTCTGTTACCTTGTAGTATATGGAAGGGAGATGAACTTATGTTGGCACACTG	4380
T Y I A S V N A I K Y T G A T P I F V D ACATATATAGCATCAGTTATGCTATATAACACAGGACCCACCCCCATTTGGTTGAT	4440
S D N E T W Q M S V S D I E Q K I T N K TCAGATATGAAACTTGGCAATGTCCTGTAGTGCATAGAACAAAAACTCATATAAA	4500
T K A I M C V H L Y G H P C D M E Q I V ACTAACTGCTTATGTCGTCATTTATGGAGCATCTGCTATGGAAACAAATTTGAA	4560
E L A K S R N L F V I E D C A E A F G S GAAGTGGCCAAACTAGAAATTGTTGTATATGAGAACTGGCTGAAAGCTTGGCTT	4620
K Y K G K Y V G T F G D I S T F S F F G AAATATGAACTACTACAGGTGAAGGGAAATGGTGTCAAGGATGACAAACACTTTATG	4680
N K T I T T G E G G M V V T N D K T L Y AAATATGAACTACTACAGGTGAAGGGAAATGGTGTCAAGGATGACAAACACTTTATG	4740
D R C L H F K G Q G L A V H R Q Y W H D GACGGTTTACATTTAAAGGCCAAGGATTAGCTCATAGGCATATGGCATGAC	4800
V I G Y N Y R M T N I C A A I G L A Q L GTATAGGCTACAAATATAGGATGACAATATGCGCTGCTATAGGATTAAGCCGCTTA	4860

Figure 8/4

E Q A D D F I S R K R E I A D I Y K K N GACAAAGCTGATGATTATATCAGAAACCGTGAATTGCTGATTTTAAAAA	4920
I N S L V Q V H K E S K D U F H T Y W M ATCAACAGCTCTGTACAAGTCACAAAGGAAGTAAGAGTGTTCACACTTATGGATG	4980
V S I L T R T A E E R E E L R N H L A D GTCTGAACTTCTTAACTAGGACGGAGAGGAAGAGAGGAATTAGGAATCACCTTGCGAGAT	5040
K L I E T R P V F P V H T M P M Y S E AACTCTGAAACAGGGCATTTTACCTGTCACAGATGCCATTACTCGGA	5100
K Y Q K H P I A E D L G W R G I N L P S AAATATCAAAAGCCCTATAGCTGAGGATCTGGTGGCTGGAAATAATTACCTAGT	5160
F P S L S N E Q V I Y I C E S I N E F Y TTCCCCAGCTATCGAAATGAGCAAGTATTATTTGTGAATCTATTAAAGGAATTTTAT	5220
 End of orf5	
S D K * Start of orf6 AGCTGATAATAGCTTAATATATGTAAGCTCATCGAAATTGGTGAATTCTGAT	5280
G F Y E W G G G I D F I K Y I L S I L E GGATTACAGATGGGGGGGGGGATTTGATTATTAATATATTCTGTCATAATTAGAGA	5340
T K P E I C I D I L L P R N D I H S L I ACGAAACCAAATATGATCGATATTCTTACCGAGAAATGATATACATTCTTATA	5400
R E K A F P F K S I L K A I L K R E R P AGAGAAAAGCATTTCTCTTTAAAAGTATTTAAAGCAATTAAAGGGAAAGGCCT	5460
R W I S L N R F N E Q Y Y R D A F T Q N CGATGGATTTCATTAATAGATTTAATGAGCAATACATAGAGATGCCATTACACAAAAT	5520
N I E T N L T F I K S K S S A F Y S Y F AATATAGAGACGAATCTACCTTTATTAAGTAAGCTCTGCCTTTATTCTCATTTT	5580
D S S D C V I L C M R V P S G N L N GATAGTAGCATTGTGATGTTATCTTCTTGCATGGCTGTTCCCTTCGGGAAATTGGAAT	5640
K K A W I G Y I Y D F Q H C Y Y P S F F AAAAAGCATGGATTGGTTATTTATGACTTTCAACACTGTTACTATCCTTCATTTT	5700
S K R E I D Q R N V F F K L M L N C A N AGTAAGCGAGAAATAGATCAAAAGGAATGTGTTTTAAATTGATGCTCAATTGCGCTAAC	5760
N I I V N A H S V I T D A N K Y V G N Y AATATATTGTTAATGCAATTCTGCTTACGTTATTACCGATGCAAAATAATGTTGGAAATTAT	5820
S A K L H S L P F S P C C P Q L K W F A D TCTGCAAAACTACATTCTCCATTAGTCATGCCCTCAATTAAATGGTTCGCTGAT	5880
Y S G N I A K Y N I D K D Y F I I C N O TACTCTGGTAATATTGCCAAATATAATATGACAAGGATTTTATAATTGCAANTCAA	5940
F W K H K D H A T A F R A F K I Y T E Y TTTGGAAACATAAGATCATGCAACTGCTTTAGGGCATTTAAATTATACTGAAATAT	6000
N P D V Y L V C T G A T Q D Y R F P G Y AATCCCTGATGTTATTAGTATGCAACGGGGCTACTCAAGATTATCGATTCCCTGGATAT	6060
F N E L M V L A K K L G I E S K I K I L TTTAAATGAATTGATGGTTTGGCAAAAAGCTCGGAATTGAAATCGAAAATTAAAGATATTA	6120

Figure 8/5

09/423093

WO 98/50531

PCT/AU98/00315

24/58

G H I P K L E Q I E L I K N C I A V I Q GGGCATATACTAAACTGAAACAAATTGAAATTCAAAAATTGCAATTGCTGTAAACAA	6180
P T L F E G G P G G G V T F D A I A L G CCAACCTTATTGAGGGGGGGCTGGAGGGGGGTAACATTGACGCTATTGCAATTAGGG	6240
K K V I L S D I D V N K E V N C G D V Y AAAAAAAGTTATACTATCTGACATAGATGTCATAAAAGAAGTTAATTGCGGTGATGTATAT	6300
F F Q A K N H Y S L N D A M V K A D E S TTCTTCAGGAAAAAACCAATTTCATAAAATGACGCCATGGTAAAAGCTGATGAATCT	6360
K I F Y E P T T L I E L G L K R R N A C AAAATTTTATGAACCTACAACCTGTAGATAATTGGGCTCAAAAGCAGCAATGCGTGT	6420

End of orf6

A D F L L D V V K Q E I E S R S *	
GCAGATTTCTTTAGATGTTGTGAAACAAAGAAATTGAAATCCGATCTTAATATATTCAA	6480

Start of orf7

M T K V A L I T G V T G Q D G S Y GAGGTATAATTGACTAAAGTCGCTCTTATTACAGGTGTAACCTGGACAAGATGGATCTTA	6540
L A E F L L D K G Y E V H G I K R R A S TCTAGCTGAGTTTGCTTGTATAAAGGGTATGAGTCATGGTATCAAACGCCAGCCTC	6600
S F N T E R I D H I Y Q D P H G S N P N ATCTTTAAATACAGAACCATGACGACATGACCATTTTATCAAGGTCACATGGTTCTAACCCAAA	6660
F H L H Y G D L T D S S N L T R I L K E TTTCACTTGCACTATGGAGATCTGACTGTTCTAACCCTACTAGAAATTCTAAAGGA	6720
V Q P D E V Y N L A A M S H V A V S F E GGTAGCAGGAGATGAAGTATAATTGACTGCTATGAGTCACGTAGCAGTTCTTTG	6780
S P E Y T A D V D A I G T L R L L E A I GTCCTCCAGAAATACAGCGATGTCGATGCAATTGTCATCACGTTACTGGAAAGCAAT	6840
R F L G L E N K T R F Y Q A S T S E L Y TCGCTTTAGGATTGAAACAAACCGCTTCTATCAAGGTCACACCTCAGAAATTATA	6900
G L V Q E I P Q K E S T P F Y P R S P Y TGGACTTGTCAAGGAAACCCCTCAAAAGAATCCACCCCTTTATCCTCGTTCCCCTTA	6960
A V A K L Y A Y W I T V N Y R E S Y G I TGCAGTTGCAAAACATTACGCATATTGCGATCAGGTAATTATCAGAGTCATATGGTAT	7020
Y A C N G I L F N H E S P R R G E T F V TTATGCATGTAATTGTTCAATCATGAATCTCACGCCGTGGAGAAACGTTTGT	7080
T R K I T R G L A N I A Q G L E S C L Y ACAAAGGAAATTACTCGAGGACTTGCACAAATTATGCAACAGGTTGGAAATCATGTTGTA	7140
L G N M D S L R D W G H A K D Y V R M Q TTAGGGAAATATGGATTCGTTACGAGATTGGGACATGCAAAAGATTATGTTAGAATGCA	7200
W L M L Q Q E Q P E D F V I A T G V Q Y ATGGTTGATGTTACAACAGGAGCAACCCGAAGATTGTTGATGCAACAGGAGTCACAA	7260
S V R Q F V E M A A A Q L G I K M S F V CTCAGTCCGTCAGTTGTCGAAATGGCAGCAGCACAACTGGTATTAAGATGAGCTTGT	7320

Figure 8/6

25/58

G K G I E B K G I V D S V E G Q D A P G TGGTAAGGAATCGAAGAAAAGGATTGTAGATTGCTTGAGGACAGGATGCTCCAGG	7380
V K P G D V I V A V D P R Y F R P A E V TGTAACCAGGTGATGTCATTGTTGCTGTGATCCTCGTTATTCCGACAGCTGAAGT	7440
D T L L G D P S K A N L K L G W R P E I TGATACTTGCCTGGAGATCCGAGCAAAGCTAACTCTCAAATTGGTTGGAGACCAAGAAAT	7500
T L A E M I S E M V A K D L E A A K K H TACTCTGCTGAAATGATTCTGCAAATGGTTGCCAAAGATCTGAAGCCGCTAAAAAACAA	7560

Start of orf8, End of orf7
M M M N K

S L L K S H G F S V S L A L E * TTCTCTTTAAATCGCATGGTTTCTGTAAGCTTAGCTCTGGAATGATGATGAATAAG	7620
Q R I F I A G H Q G M V G S A I T R R L CAACGTATTTTATTCGCTGGTCACCAAGGAATGGTTGGATCAGCTATTACCCGACGCCCTC	7680
K O R D D V E L R T R D E L N L L D AAACAACGCTGATGATGTTGAGTTGGTTTACGCTACTCGGGATGATGAACTTGGAT	7740
S S A V L D F F S S Q K I D Q V Y L A A AGTAGCGCTGTTGGATTTTCTCACAGAAAATGCCAGGTTTATTGGCAGCA	7800
A K V G G I L A N S S Y P A D F I Y E N GCAAAGTCGGAGGTATTTAGCTAACAGTTCTCTGCGGATTTATATGAGAAAT	7860
I M I E P V I H A A H K N N V N K L L ATAATGAGAGGGAAATGTCATTCTCATGCTGCCACAAAATAATGAAATAACTGCTT	7920
F L G S S C I Y P K L A H Q P I M E D E TTCCCTCGGTTGCTGCTGTATTCTAACAGTTAGCTAACACCGATTATGGAAGCGAA	7980
L L O G K L E P T N E P Y A I A K I A G TTATTACAGGGAAACTTGAGCCAAACATGACCTTATGCTATGCCAAAATGAGGT	8040
I K L C E S Y N R Q F G R D Y R S V M P ATTAATTATGTAATCTTATAACCGTCAGTTGGCGTGAATTACCGTTAGCTAAATGCCA	8100
T N L Y G P N D N F H P S N S H V I P A ACCAATCTTATGGTCCAAATGACAAATTCTCATCCAAGTAATTCTCATGTGAATTCCGGCG	8160
L L R F H D A V E N N S P N V V V W G CTTTGCGCCGCTTCTCATGATGCTGTGGAAAACAATTCTCCGAATGTTGTTGGGA	8220
S G T P K R E F L H V D D M A S A S I Y AGTGGTACTCCAAAGCTGAATTCTACATGCTAGATGATATGGCTCTGCAAGCATTAT	8280
V M E M P Y D I W Q K N T K V M L S H I GTCATGGAGATGCCATACGATATATGCAAAAAAAATACAAAGTAATGTTGTCATATC	8340
N I G T G I D C T I C E L A E T I A K V AAATGGAACAGGTATTGACTGCAAGATTGTGAGGCTTGCAGGAAACAATAGCAGAAAGTT	8400
V G Y K G H I T F D T T K P D G A F R K GTAGGTTATAAGGGCATATTACGTTGATACAACAAAGCCGATGGAGCCCCCTCGAAAA	8460
L L D V T L L H Q L G W N H K I T L H K CTACTGTGATGAAACGCTTCTCATCAACTAGGTGGAAATCATAAAATTACCCCTTCACAAAG	8520

Figure 8/7

09/423093

WO 98/50531

PCT/AU98/00315

26/58

G L E N T Y N W F L E N Q L Q Y R G *	End of orf8
GGTCTTGA AAA ATACATA CACA ACTGGTTCTGAAA ACCA ACTTCAT ATCGGGGG TAATAA	8580
Start of orf9	
M F H S Q D F F A T I V R S T P L I S I	
TGTTTTAACATTCCCAA GACTTTGCCAACATTGTAAAGGTCTACTCCTCTATTCTATAG	8640
D L I V E N E F G E I L L G K R I N R P	
ATTTGATTGGAAA ACAGAGTTGGCGAA ATTTCGCTAGGAA AACGAA TCAACGCCGG	8700
A Q G Y W F V P G G R V L K D E K L Q T	
CACAGGGCTATTGGTCGTTCTGGTAGGGTGTAAAGATGAAAAATTGCAAGACAG	8760
A F E R L T E I E L G I R P L S V G K	
CCCTTGAA CGATGACAGAA ATTGAA CTAGGA ATT CGTTTGCTCTCTGTGGTAAGT	8820
F Y G I W Q H F Y E D N S M G G D F S T	
TTTATGGTATCTGGCACACTTCA CGAA AGCA ATAGTATGGGGGAGACTTTCAACGC	8880
H Y I V I A F L L K L Q P N I L K L P K	
ATTATATAGTTAGCATCTCTCTTA ATTACA ACCAA ACATT TTGAA ATTACCGAAGT	8940
S Q H N A Y C W L S R A K L I N D D D D V	
CACAA CATAATGCTTATGGCTGCTATGCCGAGCAAGCTGTATAATGATGACGATGTG	9000
H Y N C R A Y F N N K T N D A I G L D N	
ATTATAATTGTCGCCAT ATTAA CAACAA AACATGATGCGATTGGCTTAGATAATA	9060
Start of orf10 End of orf9	
M S D A P I I A V V M A G G T G S	
K D I I C L M R Q I A V V M A G G T G S	
AGGATATAATATGCTGATGCCAA TATTGCTGTAGTTATGGCCGGTGGTACAGGCAG	9120
R L W P L S R E L Y P K Q F L Q L S G D	
TCGTCCTTGCCACTTTCTCGTGAACTATATCCAAGCGATT TACACTCTCTGGTGA	9180
N T L Q T T L L R L S G L S C Q K P L	
TAACACCTTGTATCAAACAGACTTCTGCTGACTTTCA CGGCCATCATGTCAAAACCATT	9240
V I T N E Q H R F V V V A E Q L R E I N K	
AGTGTATRACAATGAACAGCATCGCTTGTGTGCGCTGAACGTTAAGGGAAATAATAAA	9300
L N G N I I L E P C G R N T A P A I A I	
ATTTAAATGGTAATATTCTAGAACCATGCCGGCGAA ACTTGCA CACCAGCA ATAGCGAT	9360
S A F H A L K R N P Q E D P L L L V L A	
ATCTGCGTTCTAGCGTTAAAGCTAATCTCAGGAAGATCCATTGCTTAGTCTAGTCTG	9420
A D H V I A K E S V F C D A I K N A T P	
GGCAGACCA CGCTTATAGCTAAAGAAAGTGTCTGTGTGCTATTAAAGTCACACTCC	9480
I A N Q G K I V T F G I I P E Y A E T G	
CATCGCTTAATCAAGGTA AAA ATTGTAA CGCTTGTGA ATTATACCA CGAAT ATGCTGAA ACTGG	9540
Y G Y I E R G E L S V P L Q G H E N T G	
TTTGGGTATATTGAGAGAGGTGA ACTATCTGTACCGCTCAAGGGCATGAAA ACTGG	9600
F Y Y V N K F V E K P N R E T A E L Y M	
TTTTTATTATGTAAATAAGTTGTGCGAAA AGCCTAATCGTGAACCGCAGAATT GTATAT	9660
T S G N H Y W N S G I F M F K A S V Y L	
GACTTCTGGTAATCACTATTGGAATAGTGGAA ATTATCATGTTAAGGCATCTGTTATCT	9720

Figure 8/8

09/423093

WO 98/50531

PCT/AU98/00315

27/58

E E L R K F R P D I Y N V C E Q V A S S TGAGGAATTGAGAAAATTAGACCTGACATTACAATGTTGTGAAAGGGTGCCTCATC	9780
S Y I D L D F I R L S K E Q F Q D C P A CTCATACATTGATCTAGATTATTGATATTCAAAAGAACATTCAAGATTGTCCTG	9840
E S I D F A V M E K T E K C V V C P V D TGAATCTATTGATTTGCTGTAATGGAAAAACAGAAAAATGTGTTGTATGCCCTGTTG	9900
I G W S D V G S W Q S L W D I S L K S K TATTGGTTGGAGTCAGCGTTGGATTCGGCAATCGTTATGGCACATTAGCTAAATCGAA	9960
T G D V C K G D I L T Y D T K N N Y I Y AACAGGAGATGTATGTAAGGTATATAACCTATGATACTAAGAATAATTATATCTA	10020
S E S A L V A A I G I E D M V I V Q T K CTCTGAGTCAGCGTTGGTAGCCGCAATTGGAAATTGAGATATGGTTATCGTGCAAATCAA	10080
D A V L S S K E D S V Q H V K K I V E M AGATGCGGTTCTGTGCTAAAGAGTGTAGTCAGCATGTGAAAAAAATAGTCGAAAT	10140
L K L Q Q R T E Y I S H R E V F R P W G GCTTAAATTGCAAGCTACAGAGTATATTAGTCATCGTGAAGTTCCGACCATGGGG	10200
K F D S I D Q G E R Y K V K K I I V K P AAAATTGATTCGATTGACCAAGGTGAGCGATACAAAGTCAGAAAGGTTATGTGAAACC	10260
G E G L S L R M H H H R S E H W I V L S TGGTGGGGGCTTCTGAGGTCACCATCGTCTGAAATTGGATCGTGGCTTTC	10320
G T A K V T L G D K T K L V T A N E S I TGGTACAGCAAAGTAACCTTGGCGATAAAACTAAACTAGTCACCGCAAATGAATCGAT	10380
Y I P L G A A Y S L E N P G I I P L N L ATACATTCCCCCTGGCGAGCGTATAGTCCTGAGAACTCCGGGCATAATCCCTCTTAAATCT	10440
I E V S S G D Y L G E D D I I R Q K E R TATTGGAGGTCACTTCAGGGGATTATTGGAGAGGATGATAATTAAAGACAGAAAGAACG	10500
End of orf10 Start of orf11	
Y K H E D * M K S L T C F K A Y D I R TTACAAACATGAAGATTAACATATGAATCTTAAACCTGCTTAAAGCTATGATATTGCG	10560
G K L G E E L N E D I A W R I G R A Y G CGGGAAATTAGCGAAGAACTGAATGAAGATATTGCGCTGGCGCATGGCGTGCCTATGG	10620
E F L K P K T I V L G G D V R L T S E A CGAATTCTCAAAACCGAAAACCATTGTTTACGGCGGTGATGTCGCCTCACCGCGAACG	10680
L K L A L K G L Q D A G V D V L D I G GTTAAAACCTGGCGTTGCGAAAGGGTTACAGGATGCGGGCGTCGATGTGCTGGATATCGG	10740
M S G T E E I Y F A T F H L G V D G G I TATGTCCGGACCGAAGAGATCTATTGCGCACGTTCCATCTGGAGTGGATGGCGCAT	10800
E V T A S H N P M D Y N G M K L V R E G CGAAGTTACCGCCAGCCATAACCGAGTCGATTAACACGGCATGAAGCTGGTGCAGCGAAGG	10860
A R P I S G D T G L R D V Q R L A E A N GGCTCGCCGATCAGCGGTGATACCGGAGTCGCGATGTCAGCGTCTGCGAGAAGCCAA	10920
D F P P V D E T K R G R Y Q Q I N L R D TGACTCCCTCCTGTCGATGAAACCAACGTTGGTCGCTATCAGCAATCAATCTGCGTGA	10980

Figure 8/9

09/423093

WO 98/50531

PCT/AU98/00315

28/58

A Y V D H L F G Y I N V K N L T P L K L CGCTTACGGTGTACCTGTTGGTTATATCAAGCTAAAAACCTCACGCCGCCTCAAGCT	11040
V I N S G N G A A G P V V D A I E A R F GGTGATCAACTCCGGAAACGGCGCAGCGGGTCCGGTGGTGGACGCCATTGAAGCCCGATT	11100
K A L G A P V E L I K V H N T P D G N F TAAAGGCCCTCGCGCACCGGTGGAATTAACTCAAAGTACACAACAGCGGGAGCGCAATTTC	11160
P N G I P N P L L P E C R D D T R N A V CCCCAACGGTATTCTAACCCCGTGTGCGGAATGCCGGACACCCGTATTCGCGGT	11220
I K H G A D M G I J A F D G D F D R C F L CATCAACACCGCGCGGATATGGCATTCCTGTGATGGCGATTTCGCGCTGTTGCGAAGAC	11280
F D E K G Q F I E G Y Y I V G L L A E A GTTTGACGAAAAGGGCAGTTATCGAGGGCTACTACATTGTCGCCCTGCTGGCGAGAAC	11340
F L E K N P G A K I I H D P R L S W N T GTTCTCGAAAAAAATCCGGCGCAAGATCATCCACGATCCACGTCTCTCCTGGAAACAC	11400
V D V V T A A G G T P V U M S K T T G H A F CGTTGATGTGGTACTGCGCAGCGCGAACCCCGTATGCGAAAACCGGACACGCCCTT	11460
I K E R M R K E D A I Y G G E M S A H H TATTAAGAACGTATGCCAAGGAAGACGCCATCTACGGTGGCGAAAATGAGCGCTACCCA	11520
Y F R D F A Y C D S G M I P W L L V A E TTACTCCGTGATTGCGCTTACTGCGACAGCGGCATGATCCCGTGGCTGCTGGTCCGGA	11580
L V C L K G K T L G E M V R D R M A A F ACTGGTGTGCCGAAAGGGAAAACCGTGGCGAAAATGGTGCACCGGATGGCGCGTT	11640
P A S G E I N S K L A Q P V U V E A I N R V TCCGGCAAGCGGTGAGATCACAGCAACTGGCGAACCCCGTGGAGGCAATTATCGCGT	11700
E Q H F S R E A L A V D R T D G I S M T GGAACAGCATTTAGCCGCGAGGCCTGGCGTGGATGCCACCGATGCCATCAGCATGAC	11760
F A D W R F N L R S S N T E P V V R L N CTTGGCGGACTGGCGCTTAACTGGCTCTCCAAACCGAACCCGGTGGTCCGGTTGAA	11820
V E S R G D V K L M E K K T K A L L K L TGTGGATCACGGGTGATGTAAGCTATGGAAAAGAAAATAAGCTTCTTAAATT	11880
End of orf11	
L S E * GCTAAGTGAATGATTATTTACATTAATCATTAAGCTATTTAAGATTATATTAAGTAAT	11940
GTTATTGCGGTATATGATGAATATGTGGCTTTTTATGTATAACGACTATACCGCAACT	12000
Start of H-repeat	
TTATCTAGAAAAGATTAATAGAAAATAAGTTTGACTGACCAATTGCAATTACAGTC	12060
ACGATGAGACGTTCTTGTCTTAAGACATTTCATCGCTTATGTAATAACAAATGTG	12120
CCTTATATAAAAAGGAGAACAAATGGAACTTAAATAATTGAGACAATAGATTTTTATT	12180
ATCCCTGTTACGATATTAGCCAAAGTTGTATCCCTGCACTAGTCCTGCAATTTCAC	12240
GAGTGCTTGTGTTAACTGAATACATGTCGCCATTTCAGATGATAACGACGTCACTGCA	12300
ATTGATGGTAAAACACTTCGGCACACTTATGACAAGAGTCGTCGCAGAGGAGTGGTCAT	12360

Figure 8/10

09/423093

WO 98/50531

PCT/AU98/00315

29/58

GTCATTAGTCGCTTCAGCAATGCACAGCTGGTCTCGGATAGATCAAGACGGATGAGA	12420
AACTTAATCGCGTTCACAGTTATTCTCATGAACCTCTAAATGTGGTATTAAAGGAAAAA	12480
TAATCTATAACTGATGCGATGGCTTGCAGAAAGATATTGAGAGAAGATATAAAAACAGA	12540
GATGTGATTATTTATTCGCTGAAAAGGAATAAGACTCGGCTTAATAGAGTCCTTGAGG	12600
AGATATTACGCTGAAAGAATTAAATAATCCAAAATGACAGTTACCCAATTAGTGAAGA	12660
AGAGGCACGGCAGAGACGATGTCGCTTCATATTGTTGAGATGCTCTGAGCTTA	12720
TTGATTTCAGTTGAATGGAAGGGCTGCAGAATTATGATGGCAGTCACTTCTCT	12780
CAATAATAGCAGAGCAAAGAAAAGAATCCGAAATGACGATCAATATTATATTAGATCTG	12840
CTGCTTAAACCGCAGAGAAAGTTCGCCACAGTAAATCGAAATCACTGGCGCATGGAGAATA	12900
AGTTGCAAGCTAGGCCTGATGGTAATGAATGAAATCGACTATAATATAAGAAGGGAGT	12960
TGCATTGCAATGATTCTAGAATGCCGACATCGCTATTAAATCTGACAATGATAATG	13020
TATTCAAGGCAGGATTATCATGTAAGATGCGAAAAGCAGTCATGGACAGAAACTTCCTAG	13080
End of the H-repeat	
CGTCAGGCAATTGCAAGCGTGCAGGGCTTCATAATCTGCAATTGTTGATTAAGATATTTC	13140
Start of orf12	
M N L Y G I F G A G S Y G R E	
TTTGGAGATGGAAAATGAAATTGATGGTATGGTATTTTGGTCTGGAAGTTATGGTAGAGAA	13200
T I P I L N Q Q I K Q O E C G S D Y A L V	
ACAATACCCATTCTAAATCAACAAATAAAGCAAGAAATGGTTCTGACTATGCTCTGGTT	13260
F V D D V L A G K K V N G F E V L S T N	
TTTGTGGATGATGTTTGCAGGAAAGAAAGTTAATGGTTTGAGTGCTTCAACCAACAA	13320
C P L K A P Y L K K Y F N V A I A N D K	
TGCTTCTAAAAGGCCCTTATTTAAAAGTATTAAATGTTGCTATTGCTAAATGATAAG	13380
I R Q R V S E S I L L H G V E P I T T I K	
ATACGACAGAGATGTCGAGTCATATTACACGGGTTGAACCAATAACTATAAAA	13440
H P N S V V Y D H T M I G S G A I I S P	
CATCCAAATAGCGTTGTTATGATCATACTATGATAGGTAGTGGCGCTATTATTCCTCCC	13500
F V T I S T N T H I G R F H A N I Y S	
TTTGTGAAATACTACTAATACTCATAGGAGGTTTTCTATGCAAACATAACTCA	13560
Y V A H D C Q I G D Y V T F A P G A K C	
TACGTTGCACATGATTGTCAAATAGGAGACTATGTTACATTGCTCTGGGCTAAATGT	13620
N G Y V V I E D N A Y I G S G A V I K Q	
AATGGGATATGGTTATTGAAGACATGCAATATAGGCTCGGGTGCAGTAATTAGCG	13680
G V P N R P L I I G A G A I I G M G A V	
GTTGTTCTAACCGCCATTATTGCGCGGGAGCCATTAGGTATGGGGCTGTT	13740
V T K S V P A G I T V C G N P A R E M K	
GTCACTAAAGTGTCTCGCGGTAAACTGTGTGCGGAAATCCAGCAAGAGAAATGAAA	13800
End of orf12	
R S P T S I * AGATCGCCAACATCTATTAAATGGGAATGCGAAAACACGTTCCAATGGGACTAATGTTT	13860

Figure 8/11

09/423093

WO 98/50531

PCT/AU98/00315

30/58

AAAAATATATAATTCGCTAATTTACTAAATTATGGCTCTTTTAAGCTATCCTTAC 13920
TTAGTTATTACTGATACAGCATGAAATTATAATACTCTGATACATTACGTTATT 13980
CAAGCCGCATATCTAGCGTAACCCCTGACAGGAGTAAACATG 14024

Figure 8/12

09/423093

WO 98/50531

PCT/AU98/00315

31/58

GTTGACAAATACCGACCGTATAATGAATCAAACGTTCTGGATTGGTATTCAGGCTT 60
 GACTACAGAGCATTAGATTATGCTGTAAGTAAGTTGAAGAATTMTGGTTAAATT 120

Start of abe

M L D V N K K I L M T G A T
 CTAATTTAGGATAGGATCTTGATGTAAAGAAAATCTAATGACTGGCGCTACTA 180
 S F V G T H L L H S L I K E G Y S I I A
 GCTTGTAGGTACCCATCTACTACATCATGCTTCAAAAGGAAGGTTATAGTATTATTGCAT 240
 L K R P I T E P T I I N T L I E W L N I
 TAAAGCGTCCTATAACCGAGCCAACCGATTATCAACCTTGATGAAATGGTTGAATATAC 300
 Q D I E K I C Q S S M N N I H A I V H I A
 AAGATATAGAAAAAAATATGTCATCATCTATGAATATTCTATGCAATTGCTTCAATTTGCAA 360
 T D Y G R N R T P I S E Q Y K C N V L L
 CAGACTATGGTCAAGAACAGAACCCCTATATCTGAAACATATAATGTAATGCTTCAATTGCAA 420
 P T R L L E L M P A L K T K F F I S T D
 CAACAAGACTGGTTGAGTTAATGCCAGCGCTTAAACGAAATTCTTATTTCTACTGACT 480
 S F F G K Y E K H Y G Y M R S Y M A S K
 CTTTTTTGGAAATATGAGAACACTATGGATATATGCGTTCTTACATGGCATCTAAAA 540
 R H F V E L S K I Y V E E H P D V C F I
 GACATTITGAGAACATCAAAATACGTTAGGAGAACATCCAGACCTTGTGTTATAA 600
 N L R L E H V Y G E R D K A G K I I P Y
 ATTACGTTAGAACATGTTACGGTAGAGGGATAAACGAGGTAAAATACCGTATG 660
 V I K K M K N N E D I D C T I A R Q K R
 TTATCACAAAATAGAAAAACATGAAGATATTGATTGATCGATCGCCAGGCAGAAAGAG 720
 D F I Y I D D V V U S A Y L K I L K E G F
 ATTTCATATAGACGATGTTGTTGGCTATTGAAATTTAAAGGAGGTTTA 780
 N A G H Y D V E V G T G K S I E L K E V
 ACCTGGACACTATGATGTCAGGTGGGACTGGAAATCGATAGAGCTAAAAGAAGTGT 840
 F E I I K K E T H T S S S K I N Y G A V A
 TTGAGATAAAAAAGAACGCACTAGTAGTAGAATAATTATGGTGCAGTTGCGA 900
 M R D D E I M E S H A N T T S F L T R L G
 TGCGTGTGATGAGATTATGGAGTCACATGCAAATACCTTCTTGACTCGATTAGGTT 960

End of abe Start of wzz

W S A E F S I E K G V K K M L S M K E *
 GGAGTGCCGAGTTTCTATTGAGAAGGGTGTGAAAAAAATGTTGAGTATGAAAGAG TAAT 1020
 N R I I R M L G V D K A I R Y V I F G K
 GAATCGTATTATAGAATGTTAGGTGAGATAAAGCAATTGCTTATGTTATTGGTAA 1080
 I I S V L T G L L I M L I S H H L S K
 GATAATATCTGTTAACGGGTTACTGTTAATAATGTTAATTCACACCCATTATCTAA 1140
 D A Q G Y Y Y T F N S V V A L Q I I F E
 AGACGCAACGGGCTATTATACATTTAATTCACTAGTAGTGGCACTACAGATAATATTGAA 1200

Figure 9/1

09/423093

WO 98/50531

PCT/AU98/00315

32/58

L G L S T V I I Q F A S H E M S A L K Y ATTCGGGCTATCAACGGTAATCATTCAGCTAGCCATGAAATGTCAACGGTTAAAAATA	1260
D Y S E R D I I G E S K N K Q R Y L S L TGATTATTCGAAACGGAGATATTATAGGTGAAAGTAAAATAACCGTACCTATCCCT	1320
F R L A I K W Y A V I A L L I I L I V G ATTCGGGCTATGGCAATAAATGGTATGCAGTAATAGCTTGCATAATAATTAAAGTCTGG	1380
P I G Y V F F T Q K E G L G V P W Q G A TCCCATCGGGTAGTTTTTACGCCAAAAGAAGGCTTAGGTGACCTTGGCAAGGGC	1440
W L L L T I V T A F N I F L V S V L S V ATGGTTATTAAACAAATAGTACAGCTTTAATATTTCTCTGTACTTTCTGT	1500
A E G G L I T D V C N K M R M Y Q O S L L CGCTGAAGGGAGTGGGTTAACTACTGATGTGAATAAATGAGAATGTATCGCTCGCT	1560
A G I L A V S L L I S G F G L Y A T S A AGCTGGTATATTGGCAGTAAGCTTACTATTAGTGGCTTGGACTATATGCTACGTC	1620
I A I S G T I I F S I F S Y K Y F K K I AATAGCTATTTCAGGGACTATCATATTCTCCATATTTCATATAAGTATTAAAAAAAT	1680
F L Q S L K H K N K Y T E G G I S S W V N TTCTCTGCAATTAAACGCAATAAAATAACTGAAAGGTGTTATTTCATGGGTTAA	1740
E I F P M Q W R I A L S W M S G Y F I Y TGAAATATTCTCTATGCAATTGGCAATTGCTCTAACGTTGGATGTCAAGGTATTATTA	1800
F V M T P I A F K Y F G A I Y A G Q L G TTTGTATGACCCCCATTGCAATTCAAATATTTCGGGGCTATATATGCAAGGGCAGTTAGG	1860
M S L T L C N M V M A T G L A W I S T K GATGCTTTAACATATTGCAATTGCTTAATGGCTACGGGCCTGGCTTGGATATCCACTAA	1920
Y P K W G V M V S N K Q L A E L S K S F ATATCCAAATGGGGAGTAATGGTTCCAACAAACAGCTTGGCAACTGAGTAATCGTT	1980
K S A V M Q S S F F V L T G L T G V Y I CAAAGTGCAGTAATGCAATCATCCTTTTGTCTTGACAGGTTAACTGGTGTATACAT	2040
S L W L L K L S G S N I G E R F L G L Q TTCAATTAGGTATGAAATTATCTGGTTCAAACATTGGCAGGGTTTTGGGATTGCA	2100
D F F F L S L A I I G N H I V A C F A T GGATTTTTCTTTTATCTGGTAATTGGTAATCACATGGTAGCTTGTCTGGCAAC	2160
Y I R A H K T E K M T L A S C I M A L L CTATATAAGAGCCGATAAAACTGAAAAAAATGACATTGGCATCATGTAATAGGTCTCT	2220
T I T T M L F V A Y L E Y S R F Y M L M GACTATAACTAACATGGTTGGCATATTAGAGTACTCGAGGTCTACATGTTAAT	2280
Y A A L T W L Y F V P Q T Y I I F K R F GTATGCAGCACTAACGTGGTTATTTGTCCCTCAAACCTATATAATCTTAAAGATT	2340

Figure 9/2

Start of wbaR End of wzx

K S S Y E *	
M S K K P L L T I A I P T Y N R	
CAAGAGTTCTTATGAGTAAAAACCTCTTCTTA CTTCATGTTGGCTCGTTACTTGATAGTATAATTCA AACTCGAGGTTATGTTGTGATAATGCTTCACAGA GAACTATTGTGATGATG	2400
S S C L A R L L D S I I Q Q E N Y C H D	2460
E L E V I V C D N A A S T D E T A R I A K AACTCGAGGTTATGTTGTGATAATGCTTCACAGA GAACTATTGTGATGATGATG	2520
S G L D K I R N S T Y H L N E E N L G M GTGGCTTAGATAAAATAAGAAAATAGTACTTATC ATAATGAGAAAACCTTAGGAATGG	2580
D G N F Q O K C F E L S N G K Y L W M I G ATGGTAACCTCCAGAACATGTTGAGTTATCA AAATGAGAAAATCTTGGATGATTGGCG	2640
D D D L I V K N G I S S K V F S I L K S R ATGATGATCTAATAGTCAAAATGGTTATTC CGAGGTTTTCGATATTAAGTCCGGC	2700
P A L D M V Y V N S A A K T E L N Y N A CTGCATTAGATAATGGTGTATGTA AAATTCAGCAGCAAAGACTGAGTTAA ACTATAATGCTG	2760
D V R T S F Y T N D V D F I S D V K V M ATGTGAGGAGCCTCATCTAC AAATGATGAGTTTATTCAGACGTGAAAGTTATGT	2820
F T F I S G M I C K K T D A I V K A V G TCACGTTTATTCAGGAATGATGTA AAAGAAAATCTGATGCAATTGCA AAAGCCGTTGGTA	2880
I F S P Q T T G K Y L M H L T W Q L P L TTTCAGTCGCAAACACTGGA AAATCTTATGCA TTAACATGGCAATTGCCATTAC	2940
L K Q G G E F A V I H N N N I I E A E P D TTAACAGGGGGAGCTCGCAGT TATCCATAATAATAATTGAGGCTGAGCCAGATA	3000
N S G G Y H L Y K V F S N N L A T I F D ATTCAAGGTGATATCATT ATATAAGGTTTCT ATAATCTGCGAACATTGGATG	3060
V F Y P R E H R V S K R V R A S A C L F TTTTTATCCAGAGAGCACCGCTGTA ACTAAAGAGGTTGCGC CATCAGCATGTTTCT	3120
L L N F I G D E D K T K N F F A T N N Y L TACTAACTTCAGAGCGAT AAAGATAACCAAAATTGCT ACAATAATTATTTAA	3180
R D C D S A F I D L I I Y K Y G L R F F GAGATTGCGATAGTC ATTATGAGTTAA TATATATAATATG GGGCTTGGTTTCT	3240
Y L Y P K T V P L F R K I K Y I I K T V ATCTATATCTAAACTG GCTTTATTAGAAA ATAATATATTATA AAAGACGGTT	3300
End of wbaR	
L M R K *	
TAATGCGGAAA TAAAAATTATTC AAAGATGGTTGCTGAAA ACGACTTATGAGACTATCTA	3360
Start of wbaL	
M F V Y S L R L K L N L I I S L L S K V ATGTTGCTATAGTTA AGATAAAATTAA ATCTATCATC ATTGAGTAAAGGT	3420
R R K S K A K F L V L L S G Y D F K M V AGCGGAAATCA AAAGCAAAGTTCT GTTCTGCTTAGCG GATATGATT TTAAATGGTT	3480

Figure 9/3

G K N F K L N V K P Y S A K N N T S S K
 GGGAAAGAATTAAATTGAAATCTCAACACCTTACTCTGCACAAAATAAACACCCCTTCCAAA 3540
 W G S M R V G D N C W I E A V Y N Y G D
 TGGGGTAGTATCGGGGTGGTGTACACTGCTGGATTGAAGCTGTATATAATTATGGTGAT 3600
 E K F E P Y L Y I G D R I C L S D N V H
 GAAAAATTGAACCTTATTGTACATAGGTGATCGTATAATTGTTAAGTGATAATGTCAT 3660
 I S C V S C L I L E N D I L I G S K V Y
 ATTCTTCCGATCATGTTTAATTGTAGAAAACGATATAATTGTTAGCAAAGTTAT 3720
 I G D H S H G S Y K V C S F P K I E P P A
 ATAGGCATGATCATGCCATGGCAGTTATAAGTATGCGAGTCGAAATAGAACCGCCAGCA 3780
 N K P L G D I A P I K I G N C C W I G D
 ATAAGCCATTAGGTGATATTGCTCTTATTAAATAGGTAAATTGCTGCTGGATTGGAGAT 3840
 N A V L A G S E I C D G C V I A A N S
 ATTCAGTAATTCTGGCTGGTAGTGAATTGGTAGCTGTAAATGCCAGCTAAATCA 3900
 V V K D L K V D K P C L I G G V P A K V
 GTCGTCAAGGATTAAAAGTCGATAAGCCATGTTAATTGGTGGGGTTCTGCTAAAGTA 3960
 End of wbaL Start of wbaQ
 I K V F *
 M N V F I S I C I P S Y N R A
 ATAAGGTATTTAAATGATGTTTTATCAGTATTGATAACCGTCTTATAATAGACC 4020
 E F L E P L L D S I Y N Q D Y C L K N N
 TGAGTTTGTAGGCCACTACTGGATGATATAATCAAGATTATTGTTAAAGATAAA 4080
 D F E V I V C E D K S P Q R D E I N S I
 TGATTTGAGGTCAATTGTTGTGAAGATAAAATCCTCACAGAGAGATGAGATAAACTCTAT 4140
 I E N Y K A K N N K Q N L Y V N F N E D
 TATCGAAAACATAAAGCAAAAATAAACAAATCTTTATCTTAATTCAATGAGAAGA 4200
 N L G Y D K C N L K K C I S L T T G K Y C
 TAATTAGGCATGATAAGAAATTAAAAAAATGCATTAGTTGACGACAGGTAAATATTG 4260
 M I M G N D D L L A D G A L S K I V K V
 CATGATCATGGCAACGATGATCATTTAGCAGATGGAGCTTATCAAAAATGTAAGA 4320
 L K A N P E I V L A T R A Y G W F K E N
 TTGAGGCTAATCCGTAAATTGGTATGGTACCGCAGCGTATGGTTGGTTAAAGGAAA 4380
 P N E L C D T V R H L T D D T L F Q P G
 TCCGAATGAGTTATGTGATACTGTTCTGTCATTAAACAGAGCATTTTCAAGCCGG 4440
 A D A I K F F F R R V G V I S G F I V N
 GCCTGATGCCATTAAATTCTCCGTAGAGTTGGAGTTACGCTTATTGCAA 4500
 A E K A K K L S S D L F D G R L Y Y Q M
 TGCTGAAAAGCAAAAACATCGACTGATTTATTGATGGCGTTTATATTATCAAAT 4560
 Y L A G M L M A E G Q G Y Y F S D V M T
 GTACCTTGCTGGTATGCTTAATGGCTGAAGGTCAAGGGATACTTTAGCGACGTGATGAC 4620

Figure 9/4

09/423093

WO 98/50531

PCT/AU98/00315

35/58

L S R D T E A P D F G N A G T E K G V F	
ATTGTCGAGGGATACAGAGGCTCTGACTTTGGTAAACGCTGGAAC TGAAAAAGGAGTTTT	4680
T P G G Y K P E G R I H M V E G L L L I	
CACCCGGGGGGGTATAAACCGAGGGCGTATACTATGGTTGAAGGCTTGCTAAT	4740
A K Y I E D T T K I D G V Y A G I R K D	
TGCAAAATATAGAAGATACAACAAAAATTGATGGCTTATGCTGGAATTAGAAAAGA	4800
L A N Y F Y P Y I R D Q L D L P L Y T Y	
CTTAGC GAACATTTTTATCCCTATATTCGAGATCACTCGACTTGCCTCTTTATACCTTA	4860
I K M I N K F R K M G F S N E K L F Y V	
TATAAAATGATAAAATTTGGAAATGGATTTCRAATGAAAAGCTTTCTATG	4920
H A F L G Y V L K R R G Y D A L I K Y I	
GCATGCCTTTAGGGTATGACTAAACGGAGGGCTATGATGCTTAAATAAACAT	4980
End of wbaQ	
R S K K G G T P R L G I *	
TCGTAGCAAAAGCGGGTACTCCGGCTTGGTATTAACTCCACTTCAAAAAATGT	5040
TATGAATATACTTCCTGCGCATATTAGGC GTAACTTATTTCTCCATATATTAGTT	5100
Start of wzy	
M L P F P P G A I L R D V L N V	
GTGGATGGTGGGTATGCTGCCATTCCACCAAGGCAATCCTAAGGGATGACTCAATG	5160
F F P A V L V R F V I D R D K K T Y F P	
ATTTTTGTGGGTAGTGCTAGTCGATTTGGTATTGATAGGAAAAAAACTTATTCC	5220
L V F T I F S W S A V I L W V I A L T I	
GTTGGTTTTACTATTTTCATGGTGGCGTAATACTATGGTAAAGCGTTAACAT	5280
F S P D K I Q A I M G G R S Y I L F P A	
ATTCTACCCGATAAAATCAACCAATTAGGGGGGGGGAGTTATATTATTATCCC	5340
V F I A L V I L K V S Y P Q S L N I E K	
AGTTTTCATAGCATAGTGGATTAAAGATCATACCCGCAATCTAAATTATTGAAA	5400
I V C Y I I F L M F M V A T I S I I D V	
AATAGTTGCTACATAAATTCTAATGTTATGGTGGACAATATCTATTATTGATGT	5460
L M N G E F I K L L G Y D E H Y A G E Q	
ACTAATGAATGGAGAGTTCATTAATGCTCGGATATGATGAGCATTATGCAGGAGAAC	5520
L N L I N S Y D G M V R A T T G G F S D A	
ATTAACCTTAATTAATAGCTATGATGGGATGGTCGGCTACAGCGGTTTGTGATG	5580
L N F G Y M L T L G V L L C M E C F S Q	
TCTCAATTGGATATGCTCACATTAGGTGTTTGTATGGAGTGTGTTTCCCA	5640
G Y K R L L M L I I S F V L F I A I C M	
AGGATATAAAAGATTATGATGCTTATTAGTGTGCTATTATAGCGATCTGCAT	5700
S L T R G A I L V A L I Y I I S	
GAGTCTACTAGAGGAGCAATACTGGCTGGCTTACAGCACTTTATACG	5760
N R K M L F C G I T L F V I I I P V L A	
AAATCGGAAGATGCTTTTTGTGGAATAACTTATTGATAATTACCCGTTTAC	5820

Figure 9/5

09/423093

WO 98/50531

PCT/AU98/00315

36/58

I S T N I F D N Y T E Y L I G R F T D S	
A A T T C T A C T A A T A T T T G A C A C T A T A C A G A A T T T G A T C G G C A G G T T A C A G A T T C	5880
S Q A S R G S T Q G R I D M A I N S L N	
G T C T C A G G C A T C G C G T G G A T C T A C A G G G C G G A T P A G A T A T G G C A A T T A A T T C A T T A A A	5940
F L S E H P S G I G L G T Q G S G N M L	
C T C C T G T C A G A A C A T C C A T C A G G T A T A G G T C T G G G T A C T C A A G G T C A G G A A C A T G C T	6000
S V K D N R L N T D N Y F F W I A L E T	
T T C G G T A A A A G A T A A T A G G T T A A A T A C G G T A A T A T T T T T C T G G A T C G C C C T T G A G A C	6060
G I I G L I I N I I Y L A S Q F Y S S T	
T G G T A T T A T G G C T T A A T C A T A A T T A T T A T T C T G G C A A G T C A A T T T A T T C T C A A C	6120
L L N R I Y G S H C S N M H Y R L Y F L	
T T T A C T A A A T A G A A T A T A G G C A G T C A T T G T A G C A A T A T G C A C T A T A G A T T A T T T T C T	6180
F G S I F I S A A L S S A P S S S T F	
C T T G G A A G T A T A T T T T A A G T G C A G C G T T A A G G T C A G C A C C T C G T C A T C A A C T T	6240
S I Y Y W T V L A L I P F L K L T N R R	
T T C T A T A T A T T A T T G G C A G T T T A G C T T G A T T C C A T T T T T A A A T T A A C A A A T A G A C G	6300
End of wzy Start of wbaW	
C T R * M N N K K V L M D I S W S N K G	
G T G C A C G C G A T A A T G A A T A A A A A G G T T T G A T G G A T A T T A G T T G G T C A A T A A A G G G	6360
G I G R F T D E I S K L L C D I S K E E	
G G G A T T G G A C G T T T T A C T G A G A A T T T C T A A A C T A C T A T G T G A T A T A T C T A A G G A G O A A	6420
L Y R K C A S P L A P L G L A V N I F L	
C T A T A G A A A A T T G G C T T C C G C C C A T T A G G T T T A G C A T T A T T T T C T G	6480
R K K T D V V F L P G Y I P P L F C S K	
C G G A A G A A A A C T G A T G T G G T T T C T C C T G G C T A T A T C C A C C A T T T T T G T C G A A	6540
K F I I T I H D L N H L D L N D N S S L	
A A G T T C A T A A T A C A A T A C A T G A T C T A A T C A T C T G G A T T T A A T G A T A A T T C C T C T C T	6600
F K R L F Y N F I I K R G C R K A Y K I	
T T T A A G G G T T A T T T A A T T T A A T A A A A G C G C G T T G T A G A A A A G C A T A A A A A T A	6660
F T V S N F S K E R I V A W S G V N P N	
T T T A C A G T T C G A T T T T C A A A A G A A A G A A T A G T A G C A T G G T C A G G T G T A A A C C T A A T	6720
K I V T V Y N G V S S L F N A D V K P L	
A A A A T A G T C A C G G T A T A A T G G G T A T C T A G T C T A T T T A A T G C C G A T G T A A A A C C A T T G	6780
N L G Y K Y L L C V G N R K T H K N E K	
A A T T T A G G C T A T A A T T T G C T A T G T G T A G G A A A C G A A A A A C T C A T A A G A A T G A G A A G	6840
C V I S A F A K A D I D P S I K L V F T	
T G T G T A T A T C G C C T T G C C A A G C A G A T A T T G A T C C A T C A A A A A C T C G T T T T A C T	6900
G N P C N D L E K L I I Q H G L S E R V	
G G T A A T C C T T G T A A T G A T T T A G A A A A A C T A A T A A C A A C A T G G T T A A G T G A A C G T G T A	6960

Figure 9/6

09/423093

WO 98/50531

PCT/AU98/00315

37/58

K F F G F V S E K D L P S L Y K G S L G AGTCTGGGTTCTGTCTGAAGATTCACATCGTTATATAAGGGCTCGTTAGGA	7020
L V F P S L Y E G F G L P V V E G M A C TTAGTTCCCTCTTATATGAAGGTTGGATTACCTGTAGTGGAGGGCATGGCCTGT	7080
G I P V L T S L T S S L P E V A G D A A GGTATTCTGTATTAACTCTAACTCATTCATGCCAGAGGTGGCTGGAGATGCAGCG	7140
I L V D P L S E D A I T K G I S R L I N ATTCITGCGACCCCTTCGAAGATGCTTACCTAAAGGAATTGAGGTTAATTAAAT	7200
D S E L R K H L I Q K G L L R A K R F N GATCTGAATCTGAAAGATTAACTCAAAGGGCTTTGCGGGCAAGAGGTCAAT	7260
W Q N V V S E I E M V L T E A C D G N K TGGAAAACGTGGTAGTGAGATTGAAATGGTACTGACAGAGGCATGTGATGAAATAAA	7320
Start of wbaZ	
E I K I S L V H E W L L S Y A G S E Q V TGAATAAAATATCTCGTCATGAGTGGTTATTAGTTATGCAGGCTCGAACAGGT	7380
S S A I L H V F P E A K L Y S V V D F L ATCATCTGCCATCTCGCATGTTCTGTAGCGAACAGTTATCGGTGGTTGATTCT	7440
T D E Q R H F L G K Y A T T T F I Q N AACGGATGAACAAAGAACAGACATTCTGGGGAAATATCGCAGTACACATTTATTCAAA	7500
L P K A K K F Y Q K Y L P L M P L A I E TTTACCTAACGTTAAACAGAACATTACCAACTATGCCACTGGCTATTGGA	7560
O L D L S D A N I I I S S A H S V A K G ACAATGATTATACGATGCTAATCATCATTAGTAGCGCCCATCCGTGCAAAGG	7620
V I S G P D Q L H I S Y V H S P I R Y A TGTATTCCGGACAGATCAGCTTCACATTAGTAGCTATTCTCTATTGATATGC	7680
W D L Q H Q Y L N E S N L N K G I K G W GTGGGATTACGACATCAGTACCTTAATGAGTCTAACCTGAATAAGGAATTAAAGGTTG	7740
L A K W L L H K I R I W D S R T A N G V GTAGCAAAATGGCTCTCACAAAAATACGAATTGGATTCTCGAACCGCAAATGGGT	7800
D H F I A N S Q Y I A R R I K K V Y R R TGATCATTTATAGCTAATCTCAATATCGCGCTGAGATTAAAAAGTATACAGACG	7860
E A S V I Y P P V D V D N F E V K N E K TGAGGCTCAGTTATATACGCTGTAGATGTGGATAATTGAAAGTAAAAAATGAA	7920
Q D Y Y F T A S R M V P Y K R I D L I V GCAAGACTTACAGCATCCCGTATGGTACCTACAAACGTATTGATCTTATG	7980
E A F S K M P E K K L V V I G D G P E M CGAACGCTTAGTAAATGCCGAAAGAAATTAGTAGTTATGGTGTAGGACCGGAGAT	8040
K K I K S K A T D N I K L L G Y Q S F P GAAAAAAATAGAGCAAGGCTACAGACAATATAAAATTGCTCGGTATCAATCTTCC	8100

Figure 9/7

U9/423093

WO 98/50531

PCT/AU98/00315

38/58

V L K E Y M Q S A R A F V F A A E E D F	
TGTTTAAAGAGTATATGCAGAGGCCAGGGCCTTGTTTGCA	8160
G I I P V E A Q A C G T P V I A F G K G	
TGGAATAATACCTGTCAGGCTCACCGCTTGCGTACCCCTGT	8220
G A L E T T V R P L G V E E P T G I F F K	
TGGGCTCTAGAAACCCTGCCCCACTAGGTAGAGGAACCGACT	8280
E Q N I A S L H E A V S E F E K N A S F	
GGAACAGAATTGCTCTTGCATGAAGCTTGTAGATTGAAAAAA	8340
F T S Q A C R K N A E K F S R S R F E Q	
TTTACATCTCAGGCTTGAGAAAAATGCAGAAAATTCTCGAT	8400
E F K N F V N E K W N L F K T E Q I I K	
AGAATTAAAGAACTTGTAAATGAAAAGTGGATCTTCAAAACAGA	8460
End of wbaZ Start of manc	
M S K L I P V I M A G G I	
R *	
ACCTTAATTATGGTTTATTGATGCTAAATTAAACCGATAAAT	8520
G S R L W P L S R E E H P K Q F L S V D	
GGTAGCCGTTGTCGCCACTTACCTGAGAGCAGTTAAAGCGT	8580
G E L S M L Q N T I K R L T P L L A G E	
GGTGAATTATCTATGCTGCAAACACCATTAAGAGTGA	8640
P L V I C N D S H R F L L V A E Q L R A I	
CCTTTAGCTATTGTAATGAGTCACCGCTTCCTGCGTGA	8700
N K L A N N I I L E P V G R N T A P A I	
AATAAACTAGCAAATAACATCATATTAGAGCCAGTGGGCGT	8760
A L A A F C S L Q N V V D E D P L L L V	
GCGCTGGCCGCTTTGTCACCTCAGAATGTCGATGAAGAC	8820
L A A D H V I R D E K V F L K A I N H A	
CTTGCTGGGATCATGTCATCCGCGATGAGAAAGTGTCTTAA	8880
E F F A T Q G K L V T F G I V P T Q A E	
GAATTGGTACACAAGGTAGAGCTAGTAACGTTGGTATTG	8940
T G Y G Y I C R G E A I G E D A F S V A	
ACTGGCTACGGTTATTTGAGAGGTAGAGCAATCGGGAA	9000
E F V E K P D F D T A R H Y V V E S E K Y	
GAATTGGTACACAAGGTAGAGCTAGTCAGCGCTATTAGT	9060
Y W N S G M F L F R A S S Y L Q E L K D	
TATGGAAACAGCGGTATGTCCTATTGCGCAAGTAGTTAC	9120
L S P D I Y Q A C E N A V G S I N P D L	
CTGTCCCCGATATTACCAAGCATGTGAAAATCGGGTAGGAG	9180
D F I R I D K E A F A M C P S D S I D Y	
GATTTATCCGTATTGATAAAGACATTGCAATGTGCCC	9240

Figure 9/8

09/423093
PCT/AU98/00315

WO 98/50531

39/58

A V M E H T R H A V V V P M N A G W S D
GCGGTAAATGGAACATACTAGGCATGCCAGTTGTCGTACCGATGAATGCCGCTGGTCAGAT 9300

V G S W S S L W D I S K D P Q R N V L
GTGGGGTCATGGTCTTCACTGTGGGATATTCTAAGAAAGATCACAACGTAATGTATTAA 9360

H G D I F A Y N S K D N Y I Y S E K S F
CATGGCAGATATTGGCATATAATAGATAAGATAATTATATCTATTCTGAAAATCGTT 9420

I S T I G V N N L V I V Q T A D A L L V
ATTAGTACAATCGGAGTAATAATTAGTTATCGTCAGACAGCAGATGCAATTAGTA 9480

S D K D S V Q D V K K V V D Y L K A N N
TCTGATAAAAGTCACTGGCTCAGGATCTAAAAAAGTTGGTGTATTAAAGCTAATAAT 9540

R N E H K K H L E V F R P W G K F S V I
AGAAACGAAACATAAAAAACATTAGGGTTTCGACCGTGGGGAAATTAGCGTAATT 9600

H S G D N Y L V K R I T V K P G A K F A
CATAGTGGCATAATTATTAGTTAAAGAATAACTGTTAACCCAGGGCGAAGTTGCT 9660

A Q M H L H R A E H V V V S G T A C I
GCTCAGATGCACTCTCAGTGTGAGCATGGATAGTGGTATCTGGTACTGCTGTATT 9720

T K G E E I F T I S E N E S T F I P A N
ACTAAGGGGAAGAAATTTCACATTTCGGAGAATGAATCAACATTACCTGCTAAT 9780

T V H T L K N P A T I P L E L I E I Q S
ACAGTCATACGTTAAAAACCCCGCAGTATTCATTAGAAACTAATAGAAATTCAATCT 9840

G T Y L A E D D I R L E K H S G Y L E
GGCACCTATCTGGCGAGGATGATATTATTCGCGCTGGAGAACATTCTGGATATCTGGAG 9900

End of manC Start of manB

M K N I Y N T Y D V I N K S G I N
TAATGAATTGATGAAAAAATATATAATACCTACGATGTTATCAACAAATCTGGAAATTAA 9960

F G T S G A R G L V T D F T P E V C A R
TTTGGAACCGAGTGGTGCCCGGGCCCTTGTACCGATTTACACCCGAAGTTGGCAGC 10020

F T I S F L T V M Q Q R F S F T T V A L
ATTACCATTTCTTGTGACAGTATGCGACAGATCTCATTTACACGGTTGGCCT 10080

A I D N R P S S Y A M A Q A C A A A L Q
CGCAATTGATAATCGTCAAGCAGTTACCGGATGGCTCAAGCTTGTGCGCTGGCTTGC 10140

E K G I K T V Y Y G V I P T P A L A H Q
AGAAAAAGGAATTAACCGTTACTATGGCGTAATTCAACACCTGCTTAGCTCATCA 10200

S I S D K V P A I M V T G S H I P F D R
ATCAATTCCGATAAGTACCTGCAATCATGGTTACTGGCAGTCATATCCCCTTGTGAC 10260

N G L K F Y R P D G E I T K D D E N A I
TAATGGCCTGAATTATGACCAAGATGGTAAATTACTAAAGATGATGAGAATGCTAT 10320

I H V D A S F M Q P K L E Q L T I S T I
TATTGATGCTCATTTATGAGCAGATGGTAAATTACTAAAGATGATGAGAATGCTAT 10380

Figure 9/9

A A R N Y I L R Y T S L F P M P F L K N CGCTGCTAGAAATTATTCACGATAACCTCATTATTCGAATGCCATTCTGAAAAA	10440
K R I G I Y E H S S A G R D L Y K T L F TAAGCGCATGGAAATTATGAGCATCTAGTGCCTCGTGATCTATAAGACGTTATT	10500
K M L G A T V V S L A R S D E F V P I D CAAATGTTGGGTGCTACAGTTAGTTAGCAAGGCGACGAATTGTTCTATTG	10560
T E A V S E D D R N K A I T W A K K Y Q TACTGAAGCTGTAAGTGAAGATGATAGAAATAAACCAATCACATGGGCAAAAAATATCA	10620
L D A I F S T D G D G D R P L I A D E Y GTGAGTGTCTATTTCACACTGATGGTGATGGAGATGCCCTCTGATACTGACGAA	10680
G N W L R G D I L G L C S L E L A A D TGAAATTGGTAAAGAGGAGATATAATTAGGCCTCTGTGCTCTCGAATTAGCTGCTG	10740
A V A I P V S C N S T I S S G N F F K H TGCAGTCGCTATTCTGTAACTGACAGTACAATCTCATCGTAACCTTTAAACCA	10800
V E R T K I G S P Y V I A A F A K L S A TGCGAACACAAGATGGTTCTGCTATGAGCTGAGCTAAATTATCTGC	10860
N Y N C I A G F E A N G G F L L G S D V AAACTATAATTGTATAGCTGGTTGAAGCAGATGGCTGGCTCTGCTAGGGTAGCGATGT	10920
Y I N Q R L L K A L P T R D A L L P A I TTATATTAACTAGCGTTTFACTTAAGGCATTACCAACAGCTGATGCTTTAACCTGCCAT	10980
M L L F G S K D K S I S E L V K K L P A TATGCTCTGTGGTCAAGGACAAGGAGTATTAGTGAGCTTGTAAACCTCTGC	11040
R Y T Y S N R L Q D I S V K T S M S L I TCGCTATACCTATCAGAGTACAGGATATAAGTGTAAACAGATATGCTTTAA	11100
N L G L T D Q E D F L Q Y I G F N K H H AACTCTGGTCTGACAGATCGAGGAGTTTTGCGATATAATTGGTTAAATAAACATCA	11160
I L H S D V T D G F R I T I D N N N I I TATATTACATTCTGATGTTACTGATGGTTAGAATCACTATCGATAACAAACATATT	11220
H L R P S G N A P E L R C Y A E A D S Q TCATTACGACCTTCAGCAATGCCCTGAGTTGCGCTATCGAGGGTAGCTCGCA	11280
E D A C N I V E T V L S N I K S K L G R AGAGGATCATGTAATATTGTTGAACAGCGTTCTCTCTAATATCAAAGCAACATGGTAG	11340
End of main	
A *	
AGCTTAATGCTGTTGATAATAGAGCGTTCTTCCAGTAATACTTGTCTGGTTATCTGG	11400
Start of wbaP	
M D R F D N K Y N P N L	
TACCCAAGTTGAGGGTGAGAATTAATGGATCGCTTGTATAAAGTATAACCCAAATT	11460
C K I L L A I S D L L F F N V A L W A S ATGAAAATATTATGGCTATATCAGATTTACTGTTTTAATGTAGCCTATGGCATC	11520

Figure 9/10

09/423093

WO 98/50531

PCT/AU98/00315

41/58

L G V V Y L I F D E V Q R F V P Q E Q L GTTAGGAGTTGTATATTAACTTGTATGAGTTCAAGGATTGATCCACAAGAGCAATT	11580
D N R F I S H F P I L S I V C V G W F W V AGATAATCGATTATATCACATTATTCTATCTAGTATCGGTGGATGGTTGGGT	11640
R L R H Y T Y R K P F W Y E L K E V I R TCGACTGCGTCACTATACATATCGAAAGGCCATTCTGGATGAGTTGAAGAGGTTATTCG	11700
T I V I F A V F D L A L I A F T K W Q F TACATCGTTATTGCTGTGATTTGGCTTAATTGGTTAACAAAATGGCAGTT	11760
S R Y V W V C W T F A I I L V P F F R TTCACGCTATGCTGGGGTGTGTTGGACTTTCGCATAATCCTGGTGCTTTTCG	11820
A L T K H L L N K L G I W K K K T I I L CGCACTTACAAAGCATTTATGAAACAGCTAGGTATCTGGAAAGAAAAAACTATCATCCT	11880
G S G Q N A R G A Y S A L Q S E E M M G TGGGAGCGGACAGAATGCTGTTGGCATATTCTGGCTGCAAGTGAGGAGATGATGGG	11940
F D V I A F F D T D A S D A E I N M L P GTTGATGTTATCGCTTGTGATGGATGGCTGTCAGATGCTGAATAATATGTTGCG	12000
V I K D T E T I W D L N R T G D V H Y I GGTGTAAAGGACACTGAGACTATTGGGATTTAACATGTCACAGGTGATGTCATTATAT	12060
L A Y E Y T E L E K T H F W L R E L S K CCTGGCTTATGAAACACCGAGTTGGAGAAAACACATTGGCTACGTGAACCTTCAA	12120
H H C R S V T V V P S F R G L P L Y N T ACATCATTGCTGTTCTGTTACTGTCGCCCCCTGTTAGAGGATTGCCATTATATAAC	12180
D M S F I F S H E V M L L R I Q N N L A TGATATGTCCTTATCTTAGCCATGAAGTTATGTTAAGGATACAAAATAACTGGC	12240
K R S S R F L K R T F D I V C S I M I L TAAAAGGTGTCGCCCCGTTCTCAACAGGACATTGATATTGTTGTCATAATGATTCT	12300
I I A S P L M I Y L W Y K V T R D G G P TATAATTGTCATCACCACCTATGATTATCTGGTATTAAGGTTACTCGAGATGGTGTCC	12360
A I Y G H Q R V G R H G K L F P C Y K F GGCTATTATGGTCACCAGCGAGTAGGTGGCATGGAAAACCTTTTCATGCTACAAATT	12420
R S M V M N S TCGTTCTATGGTTATGAATTC 12441	

Figure 9/11

09/423093

WO 98/50531

PCT/AU98/00315

42/58

GAATTCCGGGAGGCCAATGAAAGTCAGCTTTTCTCGCTGAAATTCCACTCTCATCGGA	60
AACCTTGCTGAATCAGATTACTCGTTTATTGATATGGGCCATGAGGTGGAGATTGT	120
CGCGTTACAAAAGGCATAACCAACATACTCACGCCCTGGGAGAAGTATGGCCTGGC	180
GGCAAACCCGCTGGTACAGGATGAGCCCCAGGGACGCCCTGGCAGAACTGGCCTACCG	240
GGCATGAAACAGCTGCCGGGCTGCCATCGGGCGGCACCTGGAAAGCGCTCAATTTCAC	300
CCGCTATGGCGATGAATCACGCAATTGATCCTTCCCGCATTTGCGCAGGTGAGCCA	360
GCTTTGTGGCGATGTGTTATCGCACACTTGGTCGGCGGGCGTGACGGCGCAA	420
ACTACGCAACTGGCGTGCTCGGGCAAATCGCAGCTATTTCACGGGATTGATAT	480
CTCTAGTCGTGAGGTGCTCAGTCATTACACGCCGGAGTATCAGCAGTTGTTCTCGTGTGG	540
CGATCTGATGCTGCCATCAGCGATCTGTGGCGCGTCGCTGAAAGTATGGCTGTCC	600
GCGAAAAGATTGCCGTTCCGCAATGGCGCTCGACATGACGGTTTACCCATCGTC	660
GGTAAAAGCGCCAGGGATGCCGCTGGAGATGATTCCTGCGCCTGACAGAAAAAA	720
AGGCTGCATGTGGGATTGAAGCTGTGGCAACTGAAAGCACAGGGCTGGCGTTTCG	780
CTACCGCATTCTGGGATTGGCCGGGGAACTCGCCTGCGCACGCTCATCGAGCAGTA	840
TCACTAGAGGATGTCATTGAGATGCCGGGTTAACCGAGCCATGAAGTGAAGGCAT	900
GCTGGATGACGCCATGTTTTCTGCGCTGATTACCGGTACGGATGGCATAATGGA	960
AGGTATTCCGGTAGCGCTATGGAGGGATGGCGGTAGGGATTCCCGTGGTATCTACCGT	1020
GCATAGCGTATTCGGAACTGGTAGGGCCGAAATCCGGCTGGCTGGCGGGAAAA	1080
CGATGCCGAGGCCGCTGGCGCCCGACTCGCTGAGTTAGCCGGATTGACCACGACACGCT	1140
GGAGTCGGTGATCGCGCCCGTGGAAAAGTGGCGCAAGATTAACTCAGCAGGGAT	1200
TAATGCCAGTTAGCCAGCCTGCTACAAACGATATAACGAGGTGGTATGCCCGCACTA	1260
AATTCTCCGACGTACCCCTCTGACCGCAGGTTCTGGCTTGCTGTTCTTCTTTCTGC	1320
GGCCCTTCCGCTACGGCGCTGAAACCTCGCGAGACCGTCGATATTAAAGGATTATCCGG	1380
CGGATGACGGTATCGCTCGTCAACAGGCCCTCGCCGACGGACAGACCGTGGCTGTAC	1440
CGCCAGGATGGGTGTGAAAATCAATCGCGCGATAACGATTCCGGGGAAAACGC	1500
TGGGGTACAGGGCGGGTGCCTGGGAATGGCGGGACGGTTTATTGAGGACGGGT	1560
GTCAGGTGGTGGGGGAGCAGGGCGCAGTCTGCACAATGTGACGCTGGATGTCGGGGT	1620
CGGACTGTGTGATTAAGGGCTGGCGATGAGCGCTTGGCCCGTCCGCGCAAATTTCAC	1680
TGGTGGTAAGGAAACCGCAGGTGATGCGTAATCTCAATTGATGACATCACCGTTACCC	1740
ACGCCAACTACGCCATTCTCCGCCAGGGATTCTACAACCAATGGATGGCGCGGATTA	1800
CGCATAGCCGTTAGCGATTTACAGGGGAGGCCATTGAGTGGAAATGTCGCGATTACAG	1860
ACCGCGACATCTGATTTCCGATCTGATCGAACGATTAATTGACCAATGGAAAA	1920
TCAACTGGGGATCGGCATCGGCTGGCGTAGCACCTATGACAAACAGTTATCCGTAG	1980

Figure 10/1

ACCAAGGCAGTAAAAAAACTTTGTGGTGGCCAATATTACCGGATCTGATTGCCGACAGCTTG	2040
TGCACTGAGAAAATGGCAAACATTTCTCATTGCAATGTCAAAGCCAAAACATCACGC	2100
CCGGTTTCAGTAAAATGCGGGTATTGATAACGCAACGATCGCAATTATGGCTGTGATA	2160
ATTTCTCATTGATAATTGATATGACGAATAGTGGCCGGATGCTCATCGGCTATGGCG	2220
TCTGTTAAAGAAAATACCTGTCAACTCCGCAAACCTTAAATTAAACGCTATTGGTTGG	2280
ATAATCGCCAGGTTGCTTATAAATTACGCGGATTCAAATTCTCCGGCAACACCCCCCT	2340
CTTTTGTCGCCATCACCAATGTACCGATGACCGCTGCTACGCTGGAACTGCATAATCAAC	2400
CGCAGCACCTCTTCTCGCBAATATCAACGTTGATGCAAACTTCAGCGATTGGCCGGGT	2460
TAAAATGCAATTGCAATTGCGTAAGATGTAACGTGGTCATTATGGCCGCCAGGACA	2520
CGCTGCTTCCCTCGCTAACATGTCATGCCATCAATGAAAACGGCAGAGTTCCTGGATA	2580
TCGACAGGTTAACACCAACCGTGAATGTCGAAGCAGTGAATTTCGCTGCCGAAAGC	2640
GGGGAGGGTAAGTACCGTATTTTACGAAAATTCTGGGAAAAGTTGTTCAACTTAA	2700
TGTTATGGTGCCGACTAACAGCTAATGTAACGCTGGCCATCATTATCCCTGGCAGCAGAG	2760
TAATTCACTGCTGGCAAAACAGCTAAAGAGCTATAATTCAACCACTTTACAGGTGG	2820
AAGAAAACATGATGAATTGAAAGCAGTTACCGGTAGCGGGTTTGGGTATGCAATTG	2880
TGCCCCTGCCACCAAGGCAATCCAAAAGAGATGCTACCGATCGTCGACAAGCCAATGATTC	2940
AGTACATTGTCGATGAGATTGTCGAGGGTCAAGAAAATCGTCTGGTACTCAG	3000
CGCTTAAAACGCCCTTGAGAACCACTTCGACACCTTATGAACTTGAATCATTCTTG	3060
AGCAGCGCGTTAACCGTCAGCTTGGCGGAAGTGAATCTATCTGCCACCGGGCGTGA	3120
CGATTATGAACGTTGCCAGGGCAGCCGTTAGGGCTGGGCATTCTATTCTGCGC	3180
GTCGGGTCGTTGGCGATAACCCCTTCATTGTTGACTCCGGATATTATTATCGATGATG	3240
CTACCGCCGATCCGCTGCCATAACCTTGTGGCGATGGTGGCGCGTTCAATGAAACGG	3300
GTCGCAGCGAGGTGCTGGCGAGCCATGAAAGGTGATTATCGGAGTATCCGTTATCC	3360
AGACGAAAAGAACCTCTGGATAATGAAGGCAAAGTCAGCCGGATTGTTGAGTTATCGAAA	3420
AACCGGATCAGCCGAGCGCTGGATTCCGATTGTGAGGGCTATGCAAGTGGCTT	3480
CAGCCGACATCTGGCGGAACTGGAAAAGAACCGAACCGGGCGCTGGGGCGCATCCAGC	3540
TCACCGATGCCATTGTAACCTGGGAAAAAACAGTCGGTTGACCGATGCTAATGACGG	3600
GTGACAGCTATGACTCGGGTAAAAAAATGGGCTACATGCAAGGATTGTGAAGTACGGC	3660
TGCCAACCTGAAAGAAGGAGCCAAGTCCGTAAGAGCAATAGACGAGCTTGTGATGAAT	3720
AAGTATTAAACAACCGTGAATAATGGTTGGTGTAAACATAATAACGGCAGTGAACATTG	3780
AAGCGGCAAGTGGCTGAACGAGTGTGACTGCCGTTTAGTTGTATAAAGGGCTTA	3840
AGTAACAAAGGGTTATCTGGAGCATTTAATGCTGATTATAAAGATAATCCTTGTTC	3900
CGGATGCAATTAAGACAATTAGCGTTAAAGTTTAGTGAGCTTGGCCCTGCTGGCG	3960

Figure 10/2

AGTTTGCAACAAGTCGATATGTACGCAGTGCACTGGTAGCTGATGAGCCAGGGCGGTA	4020
GGCTGTAAACGACTTGGACCAATTAAATTTCATTGGCAAATTAAACACCATAAATAC	4080
Start of rmlB	
V K I L I T G G A G F I G S	
GCCTTATGGAATAGAAAAGTGAAGATACTTATTACTGGCGGGCAGGTTTATTGGATCA	4140
A V V R H I I K N T Q D T V V N I D K L	
GCTGTTGTCGCCATATAATTAAAGAACATACAGGACACTGTAGTTAATTGATAATTAA	4200
T Y A G N L E S L S D I S E S N R Y N F	
ACCTACGCCGTAATCTGAACTCCCTTCGTAAATTCTGAAAGTAATCGCTACAAATTTC	4260
E H A D C D S A E I T R I F E Q Y Q P	
GAACACCGCGGATATTGATGATTCCCTGAAATAACCGGTATTGAGCGTACCGACCG	4320
D A V M H L A A E S H V D R S I T G P A	
GACCGCGTGTGCACTTGGCTGCGGAAGTCATGTGACCGTGTGATTACCGGGCCACCA	4380
A F I E T T N I V G T Y A L L E V A R K Y	
GCATTATTGAAACCAATATCGTCGCCACCTATGCACTTCTGAAAGTTGCGCGTAAATAC	4440
W S A L G E D K K N F R F H H I S T D	
TGGCTGCCCTTGGCGAAGATAAAAAAAATAATTTCGTTTACATCATATTCCACTGAT	4500
E V Y G D L P H P D E V E N S V T L P L	
GAAGTTTACCGCGATTTACCGCATCTGTGATGAAAGTTGAAACACCGTTACGCTGCCGTTA	4560
F T E T T A Y A P S S P Y S A S K A S S	
TTTACTGAAACGACCGCATATGCGCAAGTAGGCCCTATTCTGCGTCAAAAGCATCCAGC	4620
D H L V R A W R R T Y G L P T I V T N C	
GATCATTTAGTCGCTGCCCTGGCGGCTACCTATGGCTTACCAACGATCGTTACCAATTG	4680
S N N Y G P Y H F P E K L I P L V I L N	
TCTAATAACATGGCCCTTATCACTCCCTGAAAACGTTACCGTGGCATTTGAAAC	4740
A L E E G K P L P I Y G K G D Q I R D W L	
GCACGGAAAGGAAGCCCTTGGCAATTATGGCAAAAGGGGATCAGATCGCGATTGGCTA	4800
Y V E D H A R A L H M V V T E G K A G E	
TATGTAGAAGATCATGCTCGCGCGCTCATAGGTAGTGACTGAAGGCAAGGCAGGGAG	4860
T Y N I G G H N E K K N L D V V F T I C	
ACTTATAACATTGGTGGACACAATGAGAAGAAAATCTCGATGTGGTATTACCATCTGT	4920
D L L D E I V P K A T S Y R E Q I T Y V	
GACTGCTGGATGAGATTGACCCAAAGCGACTTCTTATCGTAAACAAATCACTTATGTC	4980
A D R P G H D R R Y A I D A G K I S R E	
GGGGATCGTCGGGCCATGATCGCTTATGCCATTGATGCAAGGAAATTAGCCGCGAA	5040
L G W K P L E T F E S G I R K T V E W Y	
TTAGGCTGGAAACCGCTGGAGACCTTGAAAGCGGTATTGCTAAACAGTGGAAATGGTAC	5100
L A N T Q W V N N V K S G A Y Q S W I E	
CTTGCAAATACTCAATGGTAAACAAATGTTAAAGTGGGGCTATCAGAGTTGGATAGAA	5160
End of rmlB Start of rmlD	
Q N Y E G R Q *	
M N I L L F G K T G Q V	
CAGAACTATGAAGGACGCCAGTAACTGAAATCTTACTTTGGTAAGACAGGGCAAGTAG	5220

Figure 10/3

09/42093

WO 98/50531

PCT/AU98/00315

45/58

G W E L Q R S L A P V G N L I A L D V H GCTGGGAGTTGCAACGTTCTCCTGGCACCGGTAGGGAAATCTGATTGCCCTGGATGTCATT	5280
S K E F C G D F S P N P K G V A E T V R K CAAAGAGAGTTTGCCTGATTTAGTAATCCGAAAGCCGTGCGAACCGTTCTGAAAGC	5340
L R P D V I V N A A A H T A V D K A E S TTCGTCCCAGATGATTTAGTAACGCGACGAGCCATACTGCACTAGATAAAGCAGAGTCG	5400
E P E L A Q L L N A T S V E A I A K A A AACCGAGAACTGGCGCAGTTACCTAACGCCAACAGTGTGAGAGCTAAAGCAGGCCA	5460
N E T G A W V V H Y S T D Y V F P G T G ACCGAAACTGCGCATGGTAGTCATTATTCAACCGGATATGTGATTCTCGGTACCGCCG	5520
D I P W Q E T D A T S P L N V Y G K T K ATATCCCATGGCAGGAAACGGACGCTACGTCGCCGCTGAATGTCATGGCAAAACCAAC	5580
L A G E K A L Q D N C P K H L I F R T S TGCGGGAGAAAAGGCCCTGCAGGATAACTGCCCTAACACCCATTCTCCGCACCGATT	5640
W V Y A G K G N N F A K T M L R L A K E GGGTTATCAGGTAAGGGCAATAATTGCGAACAGAACATGCTCTGGCGAAAGAGC	5700
R Q T L S V I N D Q Y G A P T G A E L L GTCAGACACTTCACTGCAATTAAACGATCAGTACGGTGCGCCAACCGTGCAGGAAATTACTGG	5760
A D C T A H A I R V A L N K P E V A G L CTGACTGTACGGCGCATGCGATCCGTGCGTTAAATAAACAGAAGTCGAGGTCTTT	5820
Y H L V A G G T T T W H D Y A A L V F D ACCACATGGTTGGGGGGGAAACCAACCTGGCATGTCAGCGGCCATTAGTCAGCG	5880
E A R K A G I T L A L T E L N A V P T S AGGGGCCAAGCAGGGATAACGCTTGCGCTGACTGAGCTTAATGCTGTGCCGACCAAGCG	5940
A Y P T P A S R P G N S R L N T E K F Q CCTACCCGACGCCGGCAGACCCAGGCAATTGCGCTCAATAACTGAAAANGTTTCAGC	6000
R N F D L I L P Q W E L G V K R M L T E GTAATTGACCTATTCTGCCCTAACGGAAATTAGGAGTTAACGGTATGCTGACTGAA	6060
M F T T T T I *	End of rmlD
TGTTTACGACGACACCCATCAATAATTAAATGCCCATCAGGGCAATTCTATGAATG	6120
Start of rmlA	
M K T R K G I I L L A G G G S G T R L AGGAAATGGAAATGAAACCGCTAAGGGCATTTTACGGGGGGCTCCGGCACCCGCT	6180
Y P V T M A V S K Q L L P I Y D K P M I TTATCCGGTACCATGGCGTAAGTAAAGCAATTGCTACCAATTATGATAAACCGATGAT	6240
Y Y P L S T L M L A G I R D I L I I S T TTACTATCCCTTCCACGCTTATGCTGGCAGGCACTGGGATATCTGATCATCAGTAC	6300
P Q D T P R F Q Q L L G D G S Q W G L N GCCACAGGACACGCCGGCTTTCAACAATGCTGGGAGACGGCAGCCAGTGGGGCTGAA	6360
L Q Y K V Q P S P D G L A Q A F I I G E TCTCAATATAAAGTACAGCCAAGCCGGATGGCTTAGCACAGGGTTTATTATGGTGA	6420
E F I G H D D C A L V L G D N I F Y G H AGAGTCATTGGCATGATGATGTTGCACTAGTGTGCTGGGTGACAATATCTCTATGGTCA	6480

Figure 10/4

09/423093

WO 98/50531

PCT/AU98/00315

46/58

D L P K L M E A A V N K E S G A T V F A	
TGATTATC CAAAGTTAATGGAGCTGCCGTTAATAAGAAAGTGGTGCTACCGCTTCGC	6540
Y H V N D P E R Y G V U F E D Q K G T A	
TTATCATGTAACCGATCCGGAGCGCTACCGGTGTTGAGTTGACCAAAAGGGCACAGC	6600
V S L E E K P L Q P K S N Y A V T G L Y	
CGTTAGTCTGGAAAGAAAAACCATTAACCGAAGAGTAATTACCGGTAACGGGCTGTA	6660
F Y D N S V V E M A K N L K P S A R G E	
TTTTATGATAATACCGTGGATGGCGAAAATCTTAAGCCTCGCTCGGGTGA	6720
L E I T D I N R I Y M E Q G R L S V A M	
GTAGAAATCACGGATAAACCGTATCTATGGAGCAGGGAGATTTGTCCTGCGCTAT	6780
M G R G Y A W L D T G T H Q S L I E A S	
GATGGGGCCGTTATGCCCTGGATACAGGGACGCATCAGAGTTGATAGAGGCCAG	6840
N F I A T I E E R Q G L K V S C P E E I	
TAATTTTATGCCAACCATCGAAGAACCCAGGGCTTAAGTGTCTGCCCGAAGAGAT	6900
A F R K N F I N A Q Q V T E L A G P L S	
CGCATTGTAAAAATTTATAAACGACACAGGTATAGAACTGGCCGGGCTATTAC	6960
K N D Y G K Y L L K M V K G L * V M I V	
End of rmlA Start of rmlC AAAAAAATGATTATGCCAATATTGGCTGAAGATGGTGAAGGTTTA TAAGTGTATGTTG	7020
I K T A I P D V L I L E P K V F G D E R	
GATTTAAAACAGCAATACCAAGATGCTTGTACTTAGGCCAAAGTTTGGCGATGAGAG	7080
G F F F E S Y N Q Q T F E E L I G R K V	
GGGATTCTTTTGAAAGTTAACACAGCAGACCTTGAAGAGTTGATGGACGTAAAGT	7140
T F V Q D N H S K S K C K N V L R G L H F	
TACATTGTCAGAACATAATCAATTCAAAACGAACTGACTCACAGGGCTACATT	7200
Q R G E N A Q G K L V R C A V G E V F D	
TCAGAGAGGAGAAAATGCACAGGGAGTTAGTCCTGCTGTGCGTGGAGTTTGA	7260
V A V D I R K E S P T F G Q W V G V N L	
TGTTGCGGTGATATCCGAAAAGAACATGCCACTTCTGGTCAATGGTTGGTGAATCT	7320
S A E N K R Q L W I P E G F A H G F V T	
GTCTGCTGAGAACATGCCAGCTTGGATCTGGAGGTTTGCTCATGGTTGTTAC	7380
L S E Y A E F L Y K A T T N Y Y S P S S E	
TCTTAGTGAGTATGCGAGAGTTCTGTACAAGCAACTAATTATTACTCACCTTCATCGGA	7440
G S I L W N D E A I G I E W P F S Q L P	
AGGTAGCATTCTATGGAATGATGAGGCCATAGGTATTAATGGCTTCTCACTGCC	7500
E L S A K D A A A P L L D Q A L L T E *	
End of rmlC TGAGCTTTCAGCAAAGATGCTGCCAGCACCTTACTGGATCAAGCCTTGTAAACAGAGTA	7560
Start of ddhd	
V S H I I K I F P S N I E F S G R E	
AGCATCGTCTCATATTAAAGATTCTCATCAAAATTGAAATTCTGGTAGAGAG	7620
D E S I L D A A L S A G I H L E H S C K	
GATGAATCAATCCTCGATGCTGCCGTATCGGCTGGTATCCATCTTGAACATAGCTGCAA	7680
A G D C G I C E S D L L A G E V V D S K	
CGGGGTGATTGTTGAGTCTGTGAGTCGATTGTTGGCGGGAGAAGTTGTTGACTCCAAA	7740

Figure 10/5

09/423093

WO 98/50531

PCT/AU98/00315

47/58

G N I F G Q G D K K I L T C C C K P K T A GGTAATATTGGACAGGGTGATAAAACTAACCCTGCTGTAAACCTAAACCGCC	7800
L E L N A H F F P E L A G Q T K K I V P CTTGAGCTAAATCGCATTTCCTGACTGGAGCTAGCTGGACAGACAAAAAAATTGTCCCA	7860
C K V N S A V L V S G D V M T L K L R T TGCAAGGTAATAGTGTGACTGGTTCAAGGCAGATGTTAGACTTTGAAGTTACGCACA	7920
P P T A K I G F P E L A G Q Y I N L H Y K G CCACCAAACGCAAAATTGGCTTCCTCCAGGGCAGTATACATTACATTAAAGGT	7980
V T R S Y S I A N S D E S N G I E L H V GTAACTCGCAGTTATCTATCGCTAATAGTGTGAGTCGAATGGTATTGAGTTGATGTA	8040
R N V P N G Q M S S L I F G E L Q E N T AGGAATGTCCTAACATGGTCAGATGAGGTTGCTCATTTGGGAGTTACAAGAAAATACT	8100
L M R I E G P C G T F F I R E S D R P I CTTAGCGCATTGGGGCTTCGGGAGAACATTTCCTGTAAGTGTACAGACCTATA	8160
I F L A G G T G F A P V K S M V E H L I ATCTTCTTCCTGCAGCGGTACTGGATTGCTCCAGTTAAATCAATGGTTGAGCATCTCAT	8220
Q G K C R R E I Y I Y W G M Q Y S K D F CAGGAAAATGTCGTCGTGAGATCTACATTTACTGGGAAATGCAATATAGTAAAGATT	8280
Y S A L P Q Q W S E O H G D N V H Y I P V TACTCTGCATACCGCACAGTGGAGTCGAACAGCACGACAACGTTCAATTATCCCCTGTT	8340
V S G D D A E W G G R K G F V U H H A V M GTTCTGGATGTCAGCGCGAATGGGGGGAGAAAGGGATTGTCATCATGCCGTGATG	8400
D D F D S L E F F D I Y A C G S P V M I GATGATTGGATCTCTAGACTTCATGATATATGTCATGTTGTCACCTGIGATGATC	8460
D A S K K D F M M K N L S V E H F Y S D GATGCCAGTAAAAGGACTTATGATGAAAAATCTCTGTAGAACATTTCTGAT	8520
End of ddBd Start of ddBn	
A F T A S N N I E D N L *	
M K A V I L A G GCATTTACCGCATCTAAATAATTGAGGATAATTGAGGATTCATCTGGCTGGTG	8580
G L G T R L S E E T I V K P K P M V E I GACTGGTACCAAGACTAAGTGAAGAACAAATTGTAACCAACCAAACCGATGGTAGAAATTG	8640
G G K P I L W H I M K M Y S V H G I K D GTGGCAAGCCATTCTCTGGCACATTGAAATGTATTCTGTGATGGTATCAAGGATT	8700
F I I C C G Y K G Y V I K E Y F A N Y F TTATTATCTGCTGTTGTTAAAGGATATGTGATTAAGAATTTTGCGAACTACTTCC	8760
L H M S D V T F H M A E N R M E V H H K TTCACATGTCAGATGTAACATTCCATATGGCTGAAAACCGTATGGAGTTACCCATAAAC	8820
R V E P W N V T L V D T G D S S M T G G GTGTGAAACCATGGAATGTCACATTGGTTGATACGGGTGATTCTCAATGACTGGTGGTC	8880
R L K R V A E Y V K D D E A F L F T Y G GTCTGAAACCTGTTGCTGTAACCTGAAAGATGACGAGGCTTCCCTGTTACTTATGGTG	8940
D G V A D L D I K A T I D F H K A H G K ATGGCGTTGCCGACCTTGATATCAAAGGCACTATCGATTCCATAAGGCTCACGGTAAGA	9000

Figure 10/6

09/423093

WO 98/50531

PCT/AU98/00315

48/58

K A T L T A T F P P G R F G A L D I R A	
AAGCGACTTAAACAGCTACTTTCCACAGGACGCTTGGCGCATAGATATCCGAGCTG	9060
G Q V R S F Q E K P K G D G A M I N G G	
GTCAGGTCCGGTCAATTCCAGGAAAAACCGAAAGGCATGGGGCAATGATAATGGTGGTT	9120
F F V L N P S V I D L I D N D A T T W E	
TCTTGTGTTGAATCCATCGTTATCGATCTCATCGATAACGATGCAACACCTGGGAAAC	9180
Q E P L M T L A Q O G E M A F E H P G	
AAGAGCCTTAATGACATTGGCACACAGGGGGATTAATGGCTTTGAAACACCCAGGTT	9240
F W Q P M D T L R D K V Y L E G L W E K	
TCTGGCAGCGATGGATAACCCCTACGTGATAAGTTACCTCGAAGGGCTGTGGGAAAAG	9300
End of ddha Start of ddhs	
M I D K N F W Q G	
G K A P W K T W E *	
GTTAAAGCTCGTGGAAACCTGGAGTAACTAGATGATTGATAAAAATTTGGCAAGGT	9360
K R V F V T G H T G F K G S W L S L W L	
AAACGCTGTTACCGGCCATACGGCTTAAAGGAAGCTGGCTTCGCTATGGCT	9420
T E M G A I V K G Y A L D A P T V P S L	
ACTGAAATGGGTGCAATTGTTAAAGGCTATGCACTTGATGCGCCAACCTGGCTTCAAGTTA	9480
F E I V R L N D L M E S H I G D I R D F	
TTGAGAGATACTGGCTCTTAATGATCTTATGAAATCTCATATTGGCACATTGGTATT	9540
E K L R N S I A E F K P E I V F H M A A	
GAAAGCTGGCCAATTCTGAGAAATTAAAGGCCAAATTGTTCCATATGGCAGCC	9600
Q P L V R L S Y E Q P I E T Y S T N V M	
CAGCCTTATGGCCCTATCTTATGAAACAGCCAATCGAAACATACTCAACAAATGTTATG	9660
G T V H L L E T V K Q V G N I K A V V N	
GGTACTGTCCATTGCTTGAAACAGTTAACGAAGTAGGTAAACATAAAGGCAGTCGTTAAT	9720
I T S D K C Y D N R E W V W G Y R E N E	
ATCAGGACTGATACTGGCTACGACAATCTGAGTGGGTCTGGCTATCGTGAGAACGAA	9780
P M G G Y D P Y S N S K G C A E L V A S	
CCCAGGGAGGGTACGATCCATACCTTAATAGTAAAGGTGTCAGAATTAGTCGCGTCT	9840
A F R N S F F N P A N Y E Q H G V G L A	
GCATTCCGGAACTCATCTTCATCCTGCACATTATGAGCAACATGGCGTTGGCTTGGCG	9900
S V R A G N V U I G G D W A K D R L I P	
TCTGTGAGGGCTGGTAATGTCATAGGCCAGGGCATGGGCTAAAGCCATTATCCTAC	9960
D I L R S F E N N Q Q V I I R N P Y S I	
GATATTCTGCGCTATTGAAATAACCGCAGGTTATTATCGAAACCCATATTCTATC	10020
R P W Q H V L E P L S G Y I V V A Q R L	
CGTCCTCTGGCAGCATGTTACTGGAGCCCTTCTGGTTACATTGTGGTGGCGCAACGCTTA	10080
Y T E G A K F S E G W N F G P R D E D A	
TATACAGAAGGTGCTAAGTTCTGAAAGGATGGAATTCCGGCCGGTGTGAGAACGATGG	10140
K T V E F I V D K M V T L W G D D A S W	
AAAGACGGCTGAATTATTGTTGACAAAGATGGTACCGCTTGGGGTGTGATGATGCAAGCTGG	10200
L L D G E N H P H E A H Y L K L D C S K	
TTACTGGATGGTGAAGAATCATCTCATGGGCCACATTACCTGAAACTGGATTGCTCTAAA	10260

Figure 10/7

09/423093

WO 98/50531

PCT/AU98/00315

49/58

A N M Q L G W H P R W G L T E T L G R I GCAAATATGCAATTAGGATGGCATCGCGTGGGGATTGACTGAAACACTTGGTCGCATC	10320
V K W H K A W I R G E D M L I C S K R E GTAAGGATGCGATAAAGCATGGATTCGGCGGAAGATAATGTTGATTCTCAAGCGTGA	10380
End of ddhB	
I S D Y M S A T T R * ATCACGCACTATATGTCTGCAACTACTCGTTAAGAAAATAAGTTAAGGAATCAAAGTAA	10440
Start of ddhC	
M T A N N L R E Q I S Q L V A Q Y A N E TGACAGCAAATAACCTGGCTGAGCAAATCTCAGCTTGTCGCTCAGTATGCCAATGAGG	10500
A L S P K F P V A G T S V V P P S G K V CATTGAGCCGAAACCTTTGTGAGGTTACAAGCGTTGTCGCTCCTCCGGAAAGGGTAA	10560
I G A K E L Q L M V E A S L D G W L T T TTGGTGCCTAACAGAGTTACAATTGATGGTTGAGGCGTCTTGTATGGATGGCTAACTACTG	10620
G R F N D A F E K K L G E F I G V P H V GTCCTTCAATGATGCCCTTGAAAAAAACTGGGAATTATTGGGTTCCATGATGTT	10680
L T T T S G S S A N L L A T A L T S P TAACGACAACATCTGGCTCTCGCAAACCTGGCTGACTGACTGCCGTGACTCCCCAA	10740
K L G E R A L K P G D E V I T V A A G F AATTAGCCGAGCGAGCTCTCAAACCTGGTGATGAGGTTATTACTGTCGCTGCTGGCTTC	10800
P T T V N P A I Q N G L I P V F V D V D CGACTACAGTTAACCGGCCATCCAGAATGGTTAACCGGTATTGCGATGTGATA	10860
I P T Y N I D A S L I E A A V T E K S K TCCCGACATATAATTCGATGCCCTCTCATTAAGCTGAGTACTGAGAAATCAAAG	10920
A I M I A H T L G N A F N L S E V R R I CGATAATGATGCCATACACTCGGAATGCAATTAAACCTGAGTGAAGTTCGTCGAGATG	10980
A D K Y N L W L I E D C C D A L G T T Y CCGATAAAATAACTATGGTGATGAGACTGCTGTGATGCCCTGGGACGACTATG	11040
E G Q M V G T F G D I G T V S F Y P A H AAGGCCAGATGGTAGGTACCTTGGTGACATCGAACCGTTAGTTTATCCGGCTCAC	11100
H I T M G E G G A V F T K S G E L K K I ATATCACAAATGGGTGAAGGGCGGTGCTGTATTCCAAGTCAGGTGAACTGAAGAAAATTA	11160
I E S F R D W G R D C Y C A P G C D N T TTGGAGTCGTTCCGTGACTGGGCCGGATTGTATTGCGCCAGGTGCGATAACACCT	11220
C G K R F G Q Q L G S L P Q G Y D H K Y GCGGTAAACGTTGGTCAAGCAATTGGATCATCTTCAAGGTATGATCACAAATATA	11280
T Y S H L G Y N L K I T D M Q A A C G L CTTATTCCCACCTCGGATATAATCTAAACATCGGACATGCGAGCAGCATGTGGCTCG	11340
A Q L E R V E E F V E Q R K A N F S Y L CTCAGTGGAGCGCGTAGAAGAGTTGTAGAGCAGCGTAAAGCTAACTTTCTATCTGA	11400
K Q G L Q S C T E F L E L P E A T E K S AACAGGGCTTGCATCTGGACTGAATTCTCGCAATTAGCAAGGAAACAGAGAAATCAG	11460
D P S W F G F P I T L K E T S G V N R V ATCCATCCTGGTTGGCTTCCCATCACCCCTGAAAGAAAATAGCGGTGTTAACCGTGTG	11520

Figure 10/8

09/423093

WO 98/50531

PCT/AU98/00315

50/58

E L V K F L D E A K I G T R L L F A G N
AACTGGTGAATTCCCTGTAGAACGAAAATCGGTACACGTTACTGTTGCTGGAAATC 11580

L I R Q P Y F A N V K Y R V V G E L T N
TGATTCTGCCAACCGTATTTGCTAATGTAAGATTCGTTGAGTTGCTGGATGACAAATA 11640

T D R I M N Q T F W I G I Y P G L T T E
CCGACCGTATAATGAATCAAACGTTCTGGATTGCTATTATCCAGGCTTGACTACAGAGC 11700

End of ddhc

H L D Y V V S K F E E F F G L N P
ATTAGATTATGTAGTAGCAAGTTGAAGAGTTCTTGGTTGAATTTC TAATTCAATT 11760

Start of abe

M T F L K E Y V I V S G A
TATTCTATCTGGTATTGCGATGACCTTTTGAAAGAATATGTAATTGTCAGTGGGGCTT 11820

S G F I G K H L L E A L K K S G I S V V
CCGGCTTTATTGGTAAGCATTTACTCGAAGCGCTAAAAAAATCGGGGATTCAGTTGTCG 11880

A I T R D V I K N N S N A L A N V R W C
CAATCACTCGAGATGTAATAAAAATAGTAATGCTATTAGCTAATGTTAGATGGTGC 11940

S W D N I E L L V E E L S I D S A L I G
GTGGGATAATATGCCAATTATTAGTCGAGGATTTCAATTGATTCTGCATTAATTGGTA 12000

I I H L A T E Y G H K T S S L I N I E D
TCATTCAATTGCCAACAGAAATATGGGCATAAAAACATCATCTCTCATAAATATGAGATG 12060

A N V I K P L K L L D L A I K Y R A D I
CAAATGTTATAAAAACCATTAAAGCTCTTGATTGGCAATAAAAATCGGGGGATATCT 12120

F L N T D S F F A K K D F N Y Q H M R P
TTTTAAATACAGATTTTTGGCAAGAGATTATTCATACATATGCGCTT 12180

Y I I T K R H F D E I G H Y Y A N M H D
ATATAATTACTAAAAGACACTTGTAGAAATTGGCATTATTATGCTAATATGCACTGACA 12240

I S F V N M R L E H V Y G P G D G E N K
TTTCATTGTAACATGCGATTAGCATGCTATGGGCTGGGATGGTGAAAAAT 12300

F I P Y I I D C L N K K Q S C V K C T T
TTATTCCATACATATTGACTGCTTAATAAAACAGAGTTGGCTGAATCTACACAG 12360

G E Q I R D F I F V D D V V N A Y L T I
GGCAACAGATAAGAGACTTATTGGTAGATGATGTTGAAATGCTTATTAACATAT 12420

L E N R K E P V P S Y T E Y Q V G T G A G
TAGAAAATAGAAAGACTTCTGCTCATACTGAGTATCAAGTTGGAACTGGTGTGGG 12480

V S L K D F L V Y L Q N T M M P G S S S
TAAGTTGAAAGATTCTGGTTATTGCAAATATGATGCCAGGTTCATCGAGTA 12540

I F E F G A I E Q R D N E I M F S V A N
TATITGAAATTGGTGCAGATAGCAAAAGAGATAATGAATAATGTTCTGTAGCAAATA 12600

N K N L K A M G W K P N F D Y K K G I E
ATAAAAATTTAAAGCAATGGGCTGGAAAACCAATTGCTATTAAAAGGAATTGAAG 12660

End of abe

E L L K R L *
AACTACTGAAACGGTTATGAGATTTCATGATCTTTAATAAAATCGTTAACAAATT 12720

Start of wxx

V K V Q L L
AGTCGCGTTATGTTGTAAGAAACTAAGTCGTTAATTGCAATTGAAAGTTCAATTGTTAA 12780

Figure 10/9

09/423093

WO 98/50531

PCT/AU98/00315

51/58

K I P S H L I V A G S S W L S K I I I A	
AAATTCCGAGTCATTTAATTGGTGCAGGTTCATCATGGTTATCCAAAATAATAATTGCCG	12840
G V Q L A S I S Y L I S M L G E E K Y A	
GGGTGCGAGTTAGCAAGTATTCATATCCTATTCTATGGCTAGGGTAGGCTGAAGAGAAATATGCAA	12900
I F S L L T G L L W T C S A V D F G I G	
TCTTTAGTTGTTAACTGGTTTATTAGTAGGGTGACGGCTGGTGAATTGGCATAGGTA	12960
T G L Q N Y I S E C R A K N K S Y D A Y	
CAGGACTGCAAAATTATATATCAGAACATGCGAGGCCAAAACAAAAGTTATGATGCATATA	13020
I K S A L H L S F I A I I F F I A L F Y	
TTAAATCAGCATTACATCTAACGCTTATAGCTATTATTTTTATTGGCTTTATTGTTATA	13080
I F S G V I S K L L S S F H E V L Q D	
TTTTTCTGGGTAATTCCGCTAAATCTTCTCTTCTATGGTGAAGGCTTACAGGACA	13140
K T R M L F F T S C L V F S S I G I G A	
AAACAGAACATGCTTTTACCTCATGCTGGTTTCAGTCTATTGGAAATCGGAGCTA	13200
I A Y K I L F A E L V G W K A N L L N A	
TTGCTTATAAAACTTTTGCGGAATTGGTCGGGTGGAAAGCTAATCTATTAAACGCAT	13260
L S Y M I G M L G L L Y I Y R G I S V	
TATCTTATATGATAGGTATGGCTGGCTTGTCTATATATACTATAGGGGATCTCAGTTG	13320
D I K L S L I V L Y L P V G M I S L C Y	
ACATAAAATTACTCACTAAATGCTCTGTATCTCCAGTGGGTATGATTCTATTGTGCTATA	13380
I V V Y R Y I K L Y H V K T T K S H Y I A	
TTGTATAGATACATAAAGCTTATCATGTTAAAACAACAAAATCTCATTATATAGCAA	13440
I L R R S S G F F L T L S I V V L Q	
TTTACGTAGATCTCAGGGTTTCTCTTTACTATGATAGGGTGCCTCAA	13500
T D Y M V I S Q R L T P A D I V Q Y T V	
CAGATTATATGTCATTCTCAAAAGCTAACTCTGCTGATATTGTTCAATATACAGTAA	13560
T M K I F G L V F F I Y T A I L Q A L W	
CGATGAAATTTCAGGGTTAGCTTCTTATTAATCTGCTATTGCAACCATATTGCG	13620
P I C A E L R V K Q Q W K L N K M I G	
CTATATGTCGAATTGAGAGTCACACAGCAATGGAAAAACTTAAACAAATGAGGTG	13680
V N I L L G S L Y V V G C T I F I Y L F	
TCAATATTTGCTGGCTCACTATATGTTGGATGACAATATTATTTATTTATTTA	13740
K E Q I F S V I A K D I N Y Q V S I L S	
AAGAACAGATTTCTGCTAAAGATATTAACTATGCAAGTTCTATTGTTATGTT	13800
F M L I G I Y F C I R V W C D T Y A M L	
TTATGTTAATTGGCATATTTCTGTTAGCTGGCTGACACTATGCAATGTTAT	13860
L Q S M N Y L K I L W I L V P L Q A I I	
TGCAAGTATGAATTATTTAAAGTACTTGGATATTAGTACCAACTAACAGCAATAATTG	13920
G G I A Q W Y F S S T L G I S G V L L G	
GTGGAATAGCACATGGTATTCTGAGCTGGGACTGGAGTGCTGGCTTGGCT	13980
L I I S F A L T V F W G L P L T Y L I K	
TGATTATATCTTGTCTTAACTGTTTGGGGCTTCAACTACTTAATTAAAGG	14040

Figure 10/10

09/423093

WO 98/50531

PCT/AU98/00315

52/58

End of wzx Start of wbaV

A N K G *	M I S F C I P T Y N R K Q	
CAAAATAAGGGATAATCATATGCTTATATCATTGGTATTCCAACTTATAATAGAAAACAA		14100

Y L E E L L L N S I N N Q E K F N L D I E	
TATCTTGAAGACTGTGTTGAATAGTATAAATAATCAGGAAAAATTAAATTAGATATTAGAG	14160

I C I S D N A S T D G T E E M I D V W R	
ATATGTTATCATGAGATAATGCCTCTACTGTGTTACAGAGGAAATGATTGATGTTGGAGG	14220

N N Y N F P I I Y R R N S V N L G P D R	
ACAAATTATAATTCCCAATAATATCGCGCTTAAGCGTTAACCTTGGCCAGATAGG	14280

N F L A S V S L A N G D Y C W I F G S D	
AAATTTCCTGCTTCAGTATCCCTTGGCAATGGGGATTATTGTTGATATTGGCAGTGAT	14340

D A L A K D S L A I L Q T Y L D S Q A D	
GATGCTCTTGGCGAAAGACTCGTTAGCGATATTACAACATTCTCGATTCTCAAGCAGAT	14400

I Y L C D R K E T G C G D L V E I R N P H	
ATATATTTATGAGACGAAAGAGACCGGGTGTGATTTAGTGGAGATTTAGAAACCCCTCAT	14460

R S W L R T D D E L Y V F N N N L D R E	
CGTTCTTGGCTCGAACAGATGATGAACTTTATGTGTTAATAATTTAGATAGGGAA	14520

I Y L S C R C L S I G G V F E S Y L S S L I	
ATCTATCTCGATGAGATGCTTATCTATTGGTGTGTTAGCTATCTAAAGTCTTTATAA	14580

V K K E R W D A I D F D A S Y I G T S Y	
GTAAAAAAAGAACGATGGGATGCCATTGATTTGATGCGCTCTATATGGCACTTCCAT	14640

P H V F I M M S V F N T P G C L L H Y I	
CCTCATGTTATCATGATGAGCGTATTTAAACGCCAGGGTGCCTTTGCATTATATA	14700

S K P L V I C R G D N D S F E E K K G K A	
TCACAAACCAACTCGTAATATGCCGAGGAGATAATGATAGTTCTCGAGAGAAAAGGCC	14760

R R I L I D F I A Y L K L A N D D F Y S K	
AGACGAATTTTATGATTTATTGCAATTAAATTAGCTAATGATTTCACGTA	14820

N I S L K R A F E E N V L L K E R P W L Y	
ATATATATCTTAAACCGAGCTTGGAAATGTTTGCTAAAGAGAGACCATGGTATAT	14880

T T L A M A C Y G N S D E K R D L S E F	
ACAATTTGGCTATGGCATGTTATGGCAATGATGAGAAAAGAGATTATCTGAATT	14940

Y A K L G C N K N M I N T V L R F G K L	
TATGCAAAGCTAGGTGTAATAAAATATGATCAACACTGTTACTTCGATTTGGGAAACTA	15000

End of wbaV

A Y A V K N I T V L K N F T K R I I K *	
GCATATGCGAGTGGAAATATTACCGTCTTAAAGATTACTAAACCGATAATTAGTAG	15060
TAGTAAAGTTATTATGAGATAATGTTAGTTAACCTTCTGGATTAGCTAGATTT	15120
ACGTTACTGACTTTCTTTAAATGAAAATCATATTGATATATAAATAAAATTGGAT	15180
AGCTTAACACTTGTGTTTTCTGGGAATGTTAGTATAATAATATTCTTTATG	15240
ATTGTTTTGTGATGTTTACTGCGGTATTACATTAACCTATTATAAGAATTACACC	15300
TAGTGTAAAGCTCGTAATTATTTATCCTTATGATTATGCTTAAAGATGCGTATGG	15360

Start of wbaU

M I V N L S R L G K S G T G	
AAAACGGAGAGCTATTCAATGATCGTAAACCTATCACGTTAGTAAAGTGGTACCGGA	15420

Figure 10/11

09/423093

09/423093

WO 98/50531

PCT/AU98/00315

53/58

M W Q - Y S I K F L - T A L R E I A D V D A
ATGTTGGCAATACTCGATTAAATTCTTAACGGCACTCGAGAAAATAGCTGATGTTGACGCA 15480

I I C S K V H A D Y F E K L G Y A V V T
ATAATCTGTAGCAAGGTACACGGCTGATTATTGAAAGCTCGGTTATGCAGTAGTTACT 15540

V P N I V S N T S K T S R L R P L V W Y
GTTCCGAATATTGTTAGCAACACATCAAACATCCCGCACTTAGACCATTTAGGTATGGTAT 15600

V Y S Y W L A L R V L I K F G N K K L V
GTATATAGTTACTGGCTTGCCTGAGGGTTTTAATTAAGTTGGTATAAAAAATTGGTG 15660

C T T H H T I P L L R N Q T I T V H D I
TGACTACACATCACACTATCCCCTTACTGAGAAAACCAAACGATAACCGTACATGATATA 15720

R P F Y D S F I Q K V Y F R F L L K
AGACCTTTTATTATCAGATAGTATTCTAGAACTGATTTTCGCTTTTATTAAAA 15780

M S V K R C K H V L T V S Y T V K D S I
ATGTCGTTAACCGATGTAAGCATGTTAACCGTATCTTACCGTTAACAGATAGCAT 15840

A K T Y N V D S E K I S V I Y N S V N K
GCTAAAACCTTAAATAGTAGATAGTAGAGAAAATATCGTAATTATAATAGTGTAAATAAA 15900

S D F I Q K K E K E N Y F L A V G A S W
TCTGATTTTAACAAAAAAAGAAAAGAGAAATTACTTTAGCTGTTGGTGCAGTTGG 15960

P H K N I H S F I K N K K V W S D S Y N
CCACATAAAAATTCATTCACTCATCAAAAAATAAAAAGTTGGTGTGACTCTTATAAT 16020

L I I V C G R T D Y A M S L Q Q Q M V V D
TTAATTATTGTATGGTCGACTGACTATGCAATGTCCTCCAACAAATGGTCGTTGAT 16080

L E L K D K V T F L H E V S F N E L K I
CTGGAACTAAAGATAAGTGAATTCTTACATGAAGTCTCATTTAATGAATTAAAGATT 16140

L Y S K A Y A L V Y P S I D E G F G I P
TTAATTCTAACCGCTACGCCCTGGTTATCCATCTATTGATGAGGGTTGGTATACCT 16200

P I E A M A S N T P V I V S D I P V F H
CCTATTGAAAGCATGGCATCAAAATCTCCAGTTAGTGTCCGATATAACCGTATTTCAT 16260

E V L T N G C A A L Y V N P D E K S W Q S
GAAGTGTAAACCAATGGTCATTATATGTGAATCCGGATGATGAAAAGCTGGCAGAGT 16320

A I K N I E Q L P D A I S R F N N Y V A
GCAATTAAAAATATAGACGAGTTGCCGTATGCAATTCCCGATTAAACAATATGTCGA 16380

End of wbaU

R Y D F D N M K Q M V G N W L A E S K *
CGGTATGACTTGTATAATGAAGCAGATGGTGGCAATTGGTGGCGAATCAAATAA 16440

Start of wbaN

M K I T L I I P T Y N A G S L W P N V L
ATGAAAATAACATTAAATTCTCCACATATAATGCAGGGTCGCTTGGCTAATTTCTG 16500

D A I K Q Q T I Y P D K L I V I D S G S
GATGGCATTAAACCGACCAAACATATATCCGGATAATTGATGTTAGACTCAGGTTCT 16560

K D E T V P L A S D L K N I S I F N I D
AAAGATGAAACGGTCCGTTAGCCTCAGACCTGAAAATATATCAATATTAAATTGAC 16620

S K D F N H G G T R N L A V A K T L D A
TCTAAAGATTAAATCATGGAGGAACCGAAATTAGCAGTTGCAAAAACCTCTGGACCT 16680

Figure 10/12

09/423093

WO 98/50531

PCT/AU98/00315

54/58

D V I I F L T Q D A I L A D S D A I K N	16740
GATGTTATAATTTCAGTCAACGCAAGATGCAATTCTCGCCGATTTCGGATGCCAATTAAAAAT	
L V Y Y F S D P L A A V C G R Q L P H	16800
TTGGTTTATTATTCAGATCCATGTAGCAGCGGTTGTGGTAGACAACCTCCCTCAT	
K D A N P L A V H A R N F N Y S S K S I	16860
AAAGATGCTAATCCCCCTTGCACTGCAGTGCCAGAAAATTAAATTATAGTTCAAAATCTATT	
V K S K A D I E K L G I K T V F M S N S	16920
GTAAAGTAAGGCAGATAGAAAAATTGGGTATTTAAACTGTATTATGTCCTAACATTCT	
F A Y R S V F E E L S P G F P E H T I	16980
TTCTGCTATCGCCGTTCCGTTTGAGAGTTAAGTGGGTTCTGAAACATACAATT	
L A E D M F M A A K M I Q A G Y K V A Y	17040
CTTGCGGAGGATATGTTATGGCGGCTAAGATGATTCAAGCCTGGTTAAGGTCGCTAC	
C A E A V V R H S H N Y T P R E E F O R	17100
TGCGCTGAAGCGGTGTAAGACACTCCATAATTACCCCGGAGAGAGTTCAACGA	
Y F D T G V F H A C C S P W I Q R D F G G	17160
TATTGATACTGGTGTATTTCATGCTTCTCCGATTCAAGCGTGAATTGGGGA	
A G G E G F R F V K S E I Q F L L K N A	17220
GCCGGTGGTGAGGGTTCCGCTTCGCTAAACAGATTCCTGCTAAATTACCGGAGAAGATTCAGA	
P F W I P R A L L T T F A K F L G Y K L	17280
CCGTTCTGGATTCCAAGAGCTTAAACACCTTCTGCTAAATTCTGGGTTACAATT	
G K H W Q S L P L S T C R Y F S M Y K S	17340
GGCAAGCATGGCAATCTTACCGCTGTACATGTCGCTATTACATGAGATCAACAGAGT	
End of wbaN Start of manC	
Y W N N I Q Y S S S K E I K * M S F L P	17400
TATTGGAAATAATCCTAACATTCTCGTCAAAGAGATAAAAATAATGCTTTCTTCCC	
V I M A G G T G S R L W P L S R E Y H P	17460
GTAATTATGGCTGGCCACAGGTAGCCGTTATGGCCGCTTCACCGCAATATCATCCG	
K Q F L S V E G K L S M L Q N T I K R L	17520
AAGCAGTTCTAACGCTGAAAGGTAACATCAATGCTGCAAATACTATAAGGGATA	
A S L S T E P V V I C N N D R H R F L V	17580
GCTTCATCTTCTACAGAAAGACCCGTTGTCATTGCAATGACAGACACCGTTCTAGTC	
A E Q L R E I D K L A N N I I L E P V G	17640
GCTGAACAACCTCCGTGAAATTGACAAGTTGCAAAATATTATTCCTGAAACCGTAGGC	
R N T A P A I A L A A F C A L Q N A D N	17700
CGTAATACTGCACCAAGCGATCGCTTGCCTGCGCTCCAGAATGCTGATAAT	
A D P L L L V L A A D H V I Q D E I A F	17760
GCTGATCCTCTTGTGTTGCTGCTGAGATCATGCTGATTCAGGATGAAATAGCTT	
T K A V R H A E E Y A A N G K L V T F G	17820
ACGAAAGCTGTCAGACATGCTGAAGAATACGCTGCAAATGGTAAGCTTGTAACTTTGCT	
I V P T H A E T G Y G Y I R R G E L I G	17880
ATTGTTCCAACGCACTGCTGAAACGGGTTATGGATATTCCTGCTGCTGAGTTGATAGGA	
N D A Y A V A E F V E K P D I D T A G D	17940
ATGACGCTTATGCACTGGCTGAATTGAGAAGACCCGATATCGATACCGCGGTGAC	
Y F K S G K Y Y W N S G M F L F R A S S	18000
TATTCATGAGGAAATTACTGGAAATACGCGTATGTTTATTCGTGCAAGCTCT	

Figure 10/13

09/423093

WO 98/50531

PCT/AU98/00315

55 / 58

Y L N - E L K Y L S . P E I Y K A C E K A V T A T T T A A C G A T T A A G T T A T T C A C C T G A A T T T A A A G C T T G A A A G G C G G T A	18060
G H I N P D L D F I R I D K E E F M S C G G A C A T A T A A T C C C G A T C T T G A T T T T A T T C G A T T G A T A A A G A G A G T T T A T G C A T G C	18120
P S D S I D Y A V M E H T Q H A V V I P C C G A G T G A T T C A T C G A T T A T G C A G T T A T G G A G C A C A C A C A G C A T G C G G T G G T G A T T C A C C A	18180
M S A G W S D V G S W S S L W D I S N K A T G A G C C T G G C T G G T C C G G A T G G G T T C C T G G T C C T C A C T T G G G T A T A T C G A T T A A A A	18240
D H Q R N V L K G D I F A H A C N D N Y G A T C A T C A G A G A A T G T T T A A A G G A G A T A T T C G C A C A T G C T T G T A A T G A T A A T T P A C	18300
I Y S E D M F I S A I G V S N L V I V Q A T T T A T C C G A A G A T A T G T T T A A T G C G A T T G G T G T A A G C A T C T G T C A T T G T T C A T T G T T C A	18360
T T D A L L V A N K D T V O D V K K I V A C A A C A G C G T T T A C T G G T G G C T A A T A A A G A T A C A G T A C A A G A T G T T A A A A A T T G T C	18420
D Y L K R N D R N E Y K Q H Q E V F R P G A T T T A T T A A A C G G A T G A T G A G C G A T A T A A A C A C A T C A A G A G T T T C C G C C C C	18480
W G K Y N V I D S G K N Y L V R C I T V T G G G G A A A T A T A T G T G A T T G A T G A C G C C A A A A A T T A C C T C G T C G A T G T A T C A C T G T T	18540
K P G E K F V A Q M H H H R A E H W I V A A G C C G G G T G A G A A T T T G T G G C G C A G T G C A T C A C C A C C G G G T G A G C A T T G G A T A G T A	18600
L S G T A R V T K G E Q T Y M V S E N E T T A T C C G G G A C T G C T G T T A C A A R G G G A G G C A G A C T T A T G G T T C T G A A A T G A A	18660
S T F I P P P N T I H A L E N P G M T P L T C A A C A T T T A T C C T C C G A A T A C T A T C A G C C T G G G A A A T C C T G G A A T G A C C C C C T G	18720
K L I E I Q S G T Y L G E D D I I R L E A A G T T A A T T G A G A T T C A A T C A G G T A C C T A T C T G G T G A G G A T G A T A T T A T C G I T T A G A A	18780
<i>Start of manB End of manC</i>	
M N V V N N S R D V	
Q R S G F S K E W T N E R S *	
C A C G T T C T G G A T T T C G A A G G A T G G A C T A A T G A C G T A G T T A A T A A T A G C C G T G A T G T	18840
I Y S S G I V F G T S G A R G L V K D F T A T T T A T T C A T C A G G T A T T G T G T T G G A C G T G G G G T C G C G G T C T T G T A A A A G A T T T	18900
T P Q V C A A F T V S F V A V M Q E H F T A C A C T C A G G T A T T G T G C T C T T A C G G T T C A T T G T G C C C T T A T G C A G G A A C A T T	18960
S F D T V A L A I D N R P S S Y G M A Q T T C C T T G A T A C C G T A G C A T T G G C A A T A G A T A A T C G T C C A A G T G A T G T T A T G G G A T G G C T C A	19020
A C A A A L A D K G V N C I F Y G V V P G G C G T G T G C T G C A T T G G C G G A A A G G C G G T T A C T G T A T T T T A T G G G A T G G T A C C	19080
T P A L A F Q S M S D N M P A I M V T G A C C C C A G C T T T G G C T T C A G T C T A T G T C T G A C A A T A T G C C T G C G A T A T G G T T A C C G G	19140
S H I P F E R N G L K F Y R P D G E I T A A G T C A T A T T C C A T T C G A G G G A A C G G C C T C A A G T T T A T C G T C C T G A T G G T G A A T C A C	19200
K H D E B A A I L S V E D T C S H L E L K G A A C A T G A T G A G G G C T G C G A T C T T A G T G T G A A G A T A C G T G C A G C C A T T A G A G C T T A	19260

Figure 10/14

E L I V S E M A A V N Y I S R Y T S L F AGAACTCATAGTTTCAGAAATGGCTGCTGTTAATTATATCTCGTTACATCTTATT	19320
S T P F L K N K R I G I Y E H S S A G R TTCTACTCCATTCTGAAAAATAAGCGTATTGGTATTACGAACATTCAAGCGCTGGCG	19380
D L Y K P L F I A L G A E V V U S L G R S TGATCTTTATAAGCTTATTATTCGATATTGGCTGAAGTCGTAGCTGGTAGAAG	19440
D N F V P I D T E A V S K E D R E K A R CGATAATTGTGACCTATAGATACAGAGGCTGTAAGCAAAGAGGATCGGGAAAAAGCTCG	19500
S W A K E F D L D A I F S T D G D G D R CTCATGGGCTAAAGAGTTCGATTAGTCGATTCGAGATGGGGATGGTGATCG	19560
P L I A D E G E W L R G D I L G L L C CCCTCTTATTGGCTGATGAGGCCGGTGGCTAAGAGGCATATACTAGGCTATTATG	19620
S L A L D A E A V A I P V S C N S I I S TTCACTTGCATTGGATGCAGAACGGCTGCATTCTCTTGTAGCTTAACAGCATAATTTC	19680
S G R F F K H V K L T K I G S P Y V I E TTCTGGCCGCTTTTTAACATGTTAACGTTACAAAATTGGCTGCCTTATGTTATCGA	19740
A F N E L S R S Y S R I V G F E A N G G AGCTTTAATGAATTATCGCGGAGTTAGTCGTTAGTCGTTTGAGCCAATGGCGG	19800
F L L G S D I C I N E Q N L H A L P T R TTTTTATTAGGAAGCAGACATCTGTTAACGAGCAGATCTCATGCCCTTACCAACTCG	19860
D A V L P A I M L L Y K N R T S I S A TGATGCTGTATTACCAAGCAATACTGCTTACAAAAGTAGGAATACCAAGCATTCAGCGC	19920
L V N E L P T R Y T H S D R L Q G I T T TTTAGTCATGAACTCCAACTCGTTACACCCATTCTGACAGATTACAGGGATTACAAC	19980
D K S Q S L I S M G R E N L S N L L S Y TGATAAAAGTCATCCTTAATTAGTATGGGCAGAGAAAATCTGAGCAACCTCTTAAGCTA	20040
I G L E N E G A I S T D M T D G M R I T TATTGGTTGGAGAATGAGGGTCGAAATTCTCACAGATGACAGATGGTATGCCGAATTAC	20100
L R D G C I V H L R A S G N A P E L R C TTTACGTTGATGGATGTATTGTCATTGCGCGCTTCTGGTAATGCACCTGAGTTACGCTG	20160
Y A E A N L L N R A Q D L V N T T L A N CTATGCAAGCTAATTATTAATAGGGCTCAGGATCTGTAAACACGCTTGCTAA	20220
End of main	
I K K R C L L * TATTTAAACAGATGCTTGCTGAAAAAAATTGAATGTTATTACTTAATATGCCATT	20280
Start of wbaP	
M D N I D N K Y TATTTACATTATGCACGGTCAGAGGGTGAGGATTAATGGATAATAAGTAT	20340
N P Q L C K I F L A I S D L I F F N L A AATCCACAGCTATGTAATTGGCTATCGGATTGATTITTTAATTTCAGCC	20400
L W F S L G C V Y F I F D Q V Q R F I P TTATGGTTTCATAGGATGTCATTATTTGATCAAGTACAGCGATTATTCCT	20460
Q D Q L D T R V I T H F I L S V V C V G CAAGACCAATTAGATACAAGAGTTTACGCATTATTTGTCAGTAGTATGTGTCGGT	20520

Figure 10/15

09/423093

WO 98/50531

PCT/AU98/00315

57/58

W F W I R L R H Y T I R K P F W Y E L K TGTTTGGATTGCGTTGCACATTATACTATCCGAAGCCATTGGTATGAGTTAAA	20580
E I F R T I V I F A I F D D L A L I A F T GAATTTCGACGATCGTTATTTGCTATATTGATTTGGCTCTGATAGCGTTACA	20640
K W Q F S R Y V W V F C W T F A L I L V AAATGGCAGTTTCACGCTATCTCGTGGTTGGACTTTGCCCTAATCCTGGTG	20700
P F F R A L T K H L L N K L G I W K K K CCTTTTCGCGCACTTACAAGCATTTATTGAAACAGCTAGGTATCTGGAAAGAAAAA	20760
T I I L G S G Q N A R G A S A L Q S E ACTATCATCCTGGGAGCGGACAGAACGTCGTGGTCATATTCTGGCTGCAAAGTCGA	20820
E M M G F D V I A F F D T D A S D A E I GAGATGATGGGGTTGTGATCTTACGCTTTTGATACGGATGCGTCAGATGCTGAATA	20880
N M L P V I K D T E I I W D L N R T G D AATATGTTGGCTGTATAAGGATACTGAGATTATTCGGATTAAACGTACAGGTGAT	20940
V H Y I L A Y E Y T E L E T H F W L R GTCATTATATCCTGCTTATGAAATCACCGAGTTGGAGAAAACACATTGGTACAGT	21000
E L S K H H C R S V T V V P S F R G L P GAACCTTCAAAACATCATTGCTCTGTACTGATGTCCTCTGTTAGAGGATTGGCA	21060
L Y N T D M S F I F S H E V M L L R I Q TTATATAACTGATATGCTTTATCTTAGCCATGAAGTTATGTTAAAGGATACAA	21120
N N L A K R S S R F L K R T F D I V C S AATAACTGGCTAAAGGTGTCCTGTTACTGATGTCCTCTGTTAGAGGATTGGCA	21180
I M I L I I A S P L M I Y L W Y K V T R ATAATGATCTTATAATTGCACTACCAACTTATGATTATCTGTGGTATAAGGTTACTCGA	21240
D G G G P A I Y G H Q R V G R H G K L F P GATGGTGGTCCCGCTATTATGGTACCCAGCGAGTAGGTGGCATGGAAAACCTTCCA	21300
C Y K F R S M V M N S Q E V L K E L L A TGCTCACAAATTGCTCTATGGTTATGAAATTCTCAAGAGGTACTAAAGAACCTTGGCT	21360
N D P I A R A E W E K D F K L K N D P R AACGATCTTGGCAGGGCTGAATGGAGAAAAGATTAAACTGAAATGATCTCGA	21420
I T A V G R F I R K T S L D E L P Q L F ATCACAGCTGTAGGTGATTTACGTAACACTAGGCTTGATGAGTTGCCACAACCTTT	21480
N V L K G D M S L V G P R P I V S D E L AATGTTACTAAAGGTGATATGAGCTGGTGGACCGACCTATCGTTGGATGAACTING	21540
E R Y C D D V D Y Y L M A K P G M T G L GAGCGTTATGATGATGTTGATTATTATGATGCGCAAGCCGGCATGACAGGTCTA	21560
W Q V S G R N D V D Y D T R V Y F D S W TGCGCAAGTGGGGCTAATGATGTTGATTATTATGATGCGCAAGCCGGCATGACAGGTCTG	21660
Y V K N W T L W N D I A I L F K T A K V TATGTTAAAAGTGGCAGCTTGGAAATGATATTGCAACTCGTGTATTGATTCCTGG	21720
V L R R D G A Y * GTTTGGCGCGAGATGTCGGTATGAGCTTACCGAGAAGTACTGAATAATAATTGATA AATTAGCCTGCGTAAATCTGAACGCATCAATCGTACCTTAATATCATACCTTTGAGTT	21780 21840

09/423093

WO 98/50531

PCT/AU98/00315

58 / 58

AACATACTATTACACCTTTAACCTGCCATGACCGTTGTGGCAGGGTTCCACACCTGACA	21900
GGAGTATGTAATGTCCAAGCAACAGATCGGCCTCGTCGGTATGGCAGTGATGGGGCGCAA	21960
CCTCGCGCTCAACATCGAAAGCCGTGGTTATACCGTCTCCGTTTCAACCGCTCCCGTGA	22020
AAAGACCGAAGAAGTGAATTGCCGAGAATCCGGCAAAAGCTGGTGCCTTATTACACGGT	22080

55032460

Figure 10/17

Please type a plus sign (+) inside this box → +

PTO/SB/01 (12-97)
Approved for use through 9/30/00. OMB 0651-0052

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

**DECLARATION FOR UTILITY OR
DESIGN
PATENT APPLICATION
(37 CFR 1.63)**

Declaration Submitted with Initial Filing Declaration Submitted after Initial Filing (surcharge (37 CFR 1.16 (e)) required)

Attorney Docket Number	23541-01
First Named Inventor	Peter Richard REEVES
<i>COMPLETE IF KNOWN</i>	
Application Number	/ to be assigned
Filing Date	to be assigned
Group Art Unit	
Examiner Name	

As a below named Inventor, I hereby declare that:

My residence, post office address, and citizenship are as stated below next to my name.

I believe I am the original, first and sole Inventor (if only one name is listed below), or an original, first and joint Inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

NUCLEIC ACID MOLECULES SPECIFIC FOR BACTERIAL ANTIGENS AND USES THEREFOR

the specification of which
 is attached hereto
OR
 was filed on (MM/DD/YYYY) [REDACTED] as United States Application Number or PCT International

Application Number [REDACTED] and was amended on (MM/DD/YYYY) [REDACTED] (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment specifically referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR 1.56.

I hereby claim design priority benefits under 35 U.S.C. 119(a)-(d) or 386(e) of any foreign application(s) for patent or Inventor's certificate, or 365(e) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below, by checking the box, any foreign application for patent or Inventor's certificate, or of any PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application Number(s)	Country	Foreign Filing Date (MM/DD/YYYY)	Priority Not Claimed	Certified Copy Attached? YES NO
PO 6545	AU	05/01/1997	<input type="checkbox"/>	<input type="checkbox"/> <input checked="" type="checkbox"/>
PO 8162	AU	07/22/1997	<input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	<input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>

Additional foreign application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto.

I hereby claim the benefit under 35 U.S.C. 119(e) of any United States provisional application(s) listed below.

Application Number(s)	Filing Date (MM/DD/YYYY)	<input type="checkbox"/> Additional provisional application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto.
[REDACTED]	[REDACTED]	

[Page 1 of 2]

Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

Please type a plus sign (+) inside this box → +

Approved for use through 8/30/00. OMB 0651-0002

Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

DECLARATION—Utility or Design Patent Application

I hereby claim the benefit under 35 U.S.C. 120 of any United States application(s), or 365(c) of any PCT International application designating the United States of America, listed below and, Insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. 112, I acknowledge the duty to disclose information in accordance with the provisions of 37 CFR 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

U.S. Parent Application or PCT Parent Number	Parent Filing Date (MM/DD/YYYY)	Parent Patent Number (if applicable)
PCT/AU98/00315	05/01/1998	

Additional U.S. or PCT International application numbers are listed on a supplemental priority data sheet PTO/SB/02B attached hereto.

As a named Inventor, I hereby appoint the following registered practitioner(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: Customer Number → Place Customer Number Bar Code Label here
 OR
 Registered practitioner(s) name/registration number listed below

Name	Registration Number	Name	Registration Number
Michael I. Wolfson	24,750	Morey B. Wildes	36,968
William H. Dippert	26,723		
R. Lewis Gable	22,479		

Additional registered practitioner(s) named on supplemental Registered Practitioner Information sheet PTO/SB/02C attached hereto.

Direct all correspondence to: Customer Number OR Correspondence address below

Name	William H. Dippert		
Address	Cowen, Liebowitz & Latman, P.C.		
Address	1133 Avenue of the Americas		
City	New York	State	NY
Country	USA	Telephone	(212) 790-9200
		Fax	(212) 575-0571

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that wilful false statements and the like so made are punishable by the law, or imprisonment, or both, under 18 U.S.C. 1001 and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

1-00
Name of Sole or First Inventor: A petition has been filed for this unsigned inventor

Given Name (first and middle if any) Family Name or Surname

Peter Richard REEVES
Inventor's Signature Date 25/10/99

Residence: City Glebe State NSW Country AU AUX Citizenship AU

Post Office Address 20 Mansfield Street

Post Office Address

City Glebe State ZIP NSW 2037 Country Australia

Additional inventors are being named on the supplemental Additional Inventor(s) sheet(s) PTO/SB/02A attached hereto

Please type a plus sign (+) inside this box → +

PTO/USPTO-02A (3-97)
Approved for use through 02/06/08. OMB 0651-0032

Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

DECLARATION			ADDITIONAL INVENTOR(S) Supplemental Sheet Page 1 of 1		
Name of Additional Joint Inventor, if any:			<input type="checkbox"/> A petition has been filed for this unsigned inventor		
Given Name (first and middle [if any])			Family Name or Surname		
Lei			WANG		
Inventor's Signature				Date	25/10/99
Residence City	North Ryde	State	NSW	Country	AU AUX Citizenship AU
Post Office Address	8A Holt Street				
Post Office Address					
City	North Ryde	State	ZIP	NSW 2113 Country	Australia
Name of Additional Joint Inventor, if any:			<input type="checkbox"/> A petition has been filed for this unsigned inventor		
Given Name (first and middle [if any])			Family Name or Surname		
Inventor's Signature				Date	
Residence City		State		Country	Citizenship
Post Office Address					
Post Office Address					
City		State	ZIP		Country
Name of Additional Joint Inventor, if any:			<input type="checkbox"/> A petition has been filed for this unsigned inventor		
Given Name (first and middle [if any])			Family Name or Surname		
Inventor's Signature				Date	
Residence City		State		Country	Citizenship
Post Office Address					
Post Office Address					
City		State	ZIP		Country

Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.