Constructing Entire Functions (a summary)

Kirill Lazebnik

SUNY Stony Brook

Kirill.Lazebnik@stonybrook.edu

July 31, 2015

$$p(z) = \frac{z^3}{2} - \frac{3z}{2}$$

$$p(z) = \frac{z^3}{2} - \frac{3z}{2}$$
$$p'(z) = (z - 1)(z + 1)$$

$$p(z)=rac{z^3}{2}-rac{3z}{2}$$
 (two critical values ± 1) $p'(z)=(z-1)(z+1)$

$$p(z) = \frac{z^4}{4} - \frac{z^3}{3} - \frac{z^2}{2} + z$$

$$p(z) = \frac{z^4}{4} - \frac{z^3}{3} - \frac{z^2}{2} + z$$
$$p'(z) = (z - 1)^2 (z + 1)$$

$$p(z) = \frac{z^4}{4} - \frac{z^3}{3} - \frac{z^2}{2} + z \text{ (two critical values } 5/12, -11/12)$$

$$p'(z) = (z-1)^2(z+1)$$

Shabat polynomial -

Proposition: For any *Shabat* polynomial p(z), it is true that $p^{-1}[-1,1]$ is a tree.

Proposition: For any *Shabat* polynomial p(z), it is true that $p^{-1}[-1,1]$ is a tree, with deg(p) edges.

Proposition: For any *Shabat* polynomial p(z), it is true that $p^{-1}[-1,1]$ is a tree, with deg(p) edges.

Theorem (*Grothendieck*): *ALL* combinatorial trees occur as $p^{-1}[-1,1]$ for some *Shabat* polynomial p(z).

Proposition: For any *Shabat* polynomial p(z), it is true that $p^{-1}[-1,1]$ is a tree, with deg(p) edges.

Theorem (*Grothendieck*): ALL combinatorial trees occur as $p^{-1}[-1,1]$ for some Shabat polynomial p(z).

Theorem (Bishop): Any continua can be ϵ -approximated in the Hausdorff metric by some $p^{-1}[-1,1]$.

infinite trees \iff Transcendental Functions

infinite trees \iff Subclass of Transcendental Functions

infinite trees \iff Subclass of Transcendental Functions

 $\mathcal{S}_{2,0}\,$ - transcendental functions with two critical values ± 1 and no asymptotic values

$$\cosh(z) := \frac{e^z + e^{-z}}{2}$$

$$cosh(z) := \frac{e^z + e^{-z}}{2}$$
$$cosh'(z) = \frac{e^z - e^{-z}}{2}$$

$$\cosh(z) := \frac{e^z + e^{-z}}{2}$$
$$\cosh'(z) = \frac{e^z - e^{-z}}{2} = 0 \implies z = \pi \text{ in} : n \in \mathbb{Z}$$

$$\cosh(z) := \frac{e^z + e^{-z}}{2}$$
 $\cosh'(z) = \frac{e^z - e^{-z}}{2} = 0 \implies z = \pi i n : n \in \mathbb{Z} \text{ (critical points)}$

$$\cosh(z) := \frac{e^z + e^{-z}}{2}$$

$$\cosh'(z) = \frac{e^z - e^{-z}}{2} = 0 \implies z = \pi i n : n \in \mathbb{Z} \text{ (critical points)}$$

critical values: ± 1

T - unbounded, locally finite tree

 Ω_j - components of $\mathbb{C}-\mathcal{T}$

 Ω_j - components of $\mathbb{C}-\mathcal{T}$

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to \mathbb{H}_r

 Ω_j - components of $\mathbb{C}-\mathcal{T}$

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to \mathbb{H}_r

V - the vertices of T.

 Ω_i - components of $\mathbb{C} - \mathcal{T}$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under τ restricted to Ω_j .

 Ω_i - components of $\mathbb{C} - T$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under τ restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

 Ω_i - components of $\mathbb{C} - \mathcal{T}$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of *T*.

 V_j - the image of V under au restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

 Ω_i - components of $\mathbb{C} - \mathcal{T}$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under au restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

 Ω_j - components of $\mathbb{C} - T$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under τ restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

T has uniformly bounded geometry if:

(1) The edges of T are C^2 with uniform bounds.

 Ω_i - components of $\mathbb{C} - \mathcal{T}$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under τ restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero

 Ω_i - components of $\mathbb{C} - T$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under τ restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The τ -size of edge e is the minimum length of the two images $\tau(e)$

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
 - (3) Adjacent edges have uniformly comparable lengths

 Ω_i - components of $\mathbb{C} - T$.

 $au: \cup \Omega_j o \mathbb{C}$ - the map conformal on each Ω_j to $\mathbb{H}_r.$

V - the vertices of T.

 V_j - the image of V under au restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
 - (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

- T unbounded, locally finite tree, with a bipartite labeling of vertices.
- Ω_i components of $\mathbb{C}-T$.
- $\tau': \cup \Omega_i \to \mathbb{C}$ the map conformal on each Ω_i to \mathbb{H}_r .
- V the vertices of T.
- V_i the image of V under au restricted to Ω_i .
- For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$
- The au-size of edge e is the minimum length of the two images au(e)

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem:

```
T - unbounded, locally finite tree, with a bipartite labeling of vertices.
\Omega_i - components of \mathbb{C} - T.
```

 $\tau^{'}: \cup \Omega_{j} \to \mathbb{C}$ - the map conformal on each Ω_{j} to \mathbb{H}_{r} .

V - the vertices of T.

 V_j - the image of V under au restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$ The τ -size of edge e is the minimum length of the two images $\tau(e)$

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry

 $\ensuremath{\mathcal{T}}$ - unbounded, locally finite tree, with a bipartite labeling of vertices.

 Ω_i - components of $\mathbb{C}-T$.

 $\tau' \colon \cup \Omega_i \to \mathbb{C}$ - the map conformal on each Ω_i to \mathbb{H}_r .

V - the vertices of T.

 V_i - the image of V under τ restricted to Ω_i .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has τ -size $> \pi$.

```
T - unbounded, locally finite tree, with a bipartite labeling of vertices.
```

 Ω_i - components of $\mathbb{C} - T$.

 $au^{'}\colon \cup\Omega_{j} o\mathbb{C}$ - the map conformal on each Ω_{j} to $\mathbb{H}_{r}.$

V - the vertices of T.

 V_i - the image of V under τ restricted to Ω_i .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has τ -size $\geq \pi$. Then there is an $r_0 > 0$, an entire f, and a quasiconformal ϕ

```
T - unbounded, locally finite tree, with a bipartite labeling of vertices.
```

- Ω_i components of $\mathbb{C}-T$.
- $\tau': \cup \Omega_i \to \mathbb{C}$ the map conformal on each Ω_i to \mathbb{H}_r .
- V the vertices of T.
- V_i the image of V under τ restricted to Ω_i .
- For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has τ -size $\geq \pi$. Then there is an $r_0 > 0$, an entire f, and a quasiconformal ϕ so that $f \circ \phi = \cosh \circ \tau$ off $T(r_0)$.

```
T - unbounded, locally finite tree, with a bipartite labeling of vertices. \Omega_j - components of \mathbb{C}-T. \tau: \cup \Omega_j \to \mathbb{C} - the map conformal on each \Omega_j to \mathbb{H}_r. V - the vertices of T. V_j - the image of V under \tau restricted to \Omega_j. For r>0, define T(r)=\bigcup_{e\in T}\{z: \mathrm{dist}(z,e)< r\mathrm{diam}(e)\}
```

The τ -size of edge e is the minimum length of the two images $\tau(e)$

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has τ -size $\geq \pi$. Then there is an $r_0 > 0$, an entire f, and a quasiconformal ϕ so that $f \circ \phi = \cosh \circ \tau$ off $T(r_0)$. K depends only on the bounded geometry constants of T.

```
{\cal T} - unbounded, locally finite tree, with a bipartite labeling of vertices.
```

 Ω_i - components of $\mathbb{C}-T$.

 $au^{'}: \cup \Omega_{i} \to \mathbb{C}$ - the map conformal on each Ω_{i} to \mathbb{H}_{r} .

V - the vertices of T.

 V_j - the image of V under τ restricted to Ω_j .

For r > 0, define $T(r) = \bigcup_{e \in T} \{z : \operatorname{dist}(z, e) < r \operatorname{diam}(e) \}$

The au-size of edge e is the minimum length of the two images au(e)

T has uniformly bounded geometry if:

- (1) The edges of T are C^2 with uniform bounds.
- (2) The angles between adjacent edges are bounded uniformly from zero
- (3) Adjacent edges have uniformly comparable lengths
- (4) For non-adjacent edges e, f, we have diam(e)/dist(e, f) uniformly bounded.

Theorem: Suppose T has bounded geometry and every edge has τ -size $\geq \pi$. Then there is an $r_0 > 0$, an entire f, and a quasiconformal ϕ so that $f \circ \phi = \cosh \circ \tau$ off $T(r_0)$. K depends only on the bounded geometry constants of T. The only critical values of f are ± 1 and f has no asymptotic values.

$$S^+ = \{x + iy : x > 0, |y| < \pi/2\}$$

 $S^+ = \{x + iy : x > 0, |y| < \pi/2\}$ is mapped conformally to \mathbb{H}_r by $\lambda \cdot \sinh$.

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n = a_n + i\pi$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda} \left[\frac{\lambda}{\pi} \cosh(n\pi)\right]\right)$$

$$z_n = a_n + i\pi, D_n = \{z \in \mathbb{C} : |z - z_n| < 1\}$$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi, D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z o(z-z_n)^{d_n}$.

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n = a_n + i\pi$, $D_n = \{z \in \mathbb{C} : |z - z_n| < 1\}$ is mapped holomorphically to |z| < 1 by $z \to (z - z_n)^{d_n}$. Then by a quasiconformal map ρ of the disc so that:

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n = a_n + i\pi$, $D_n = \{z \in \mathbb{C} : |z - z_n| < 1\}$ is mapped holomorphically to |z| < 1 by $z \to (z - z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

(1)
$$\rho_n(z) = z$$
 for $z \in \partial \mathbb{D}$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n = a_n + i\pi$, $D_n = \{z \in \mathbb{C} : |z - z_n| < 1\}$ is mapped holomorphically to |z| < 1 by $z \to (z - z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi, D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n = a_n + i\pi$, $D_n = \{z \in \mathbb{C} : |z - z_n| < 1\}$ is mapped holomorphically to |z| < 1 by $z \to (z - z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

$$a_n = \cosh^{-1}\left(rac{\pi}{\lambda}\left[rac{\lambda}{\pi}\,\cosh(n\pi)
ight]
ight)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem:

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$ (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem: For every choice of parameters λ , (d_n) , (w_n) with $\lambda \in \pi \mathbb{N}$, $d_n \in 2\mathbb{N}$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem: For every choice of parameters λ , (d_n) , (w_n) with $\lambda \in \pi \mathbb{N}$, $d_n \in 2\mathbb{N}$, there exists a transcendental f and a quasiconformal $\phi : \mathbb{C} \to \mathbb{C}$ so that:

$$a_n = \cosh^{-1}\left(rac{\pi}{\lambda}\left[rac{\lambda}{\pi}\cosh(n\pi)
ight]
ight)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem: For every choice of parameters λ , (d_n) , (w_n) with $\lambda \in \pi \mathbb{N}$, $d_n \in 2\mathbb{N}$, there exists a transcendental f and a quasiconformal $\phi : \mathbb{C} \to \mathbb{C}$ so that:

(1)
$$f(\overline{z}) = \overline{f(z)}, f(-z) = f(z)$$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem: For every choice of parameters λ , (d_n) , (w_n) with $\lambda \in \pi \mathbb{N}$, $d_n \in 2\mathbb{N}$, there exists a transcendental f and a quasiconformal $\phi : \mathbb{C} \to \mathbb{C}$ so that:

(1)
$$f(\overline{z}) = \overline{f(z)}, f(-z) = f(z)$$

(2)

$$f(z) = \begin{cases} \cosh(\lambda \sinh(\phi(z))) & \text{if } \phi(z) \in S^+\\ \rho_n((\phi(z) - z_n)^{d_n}) & \text{if } \phi(z) \in D_n \end{cases}$$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem: For every choice of parameters λ , (d_n) , (w_n) with $\lambda \in \pi \mathbb{N}$, $d_n \in 2\mathbb{N}$, there exists a transcendental f and a quasiconformal $\underline{\phi} : \mathbb{C} \to \mathbb{C}$ so that:

(1)
$$f(\overline{z}) = \overline{f(z)}, f(-z) = f(z)$$

(2)

$$f(z) = \begin{cases} \cosh(\lambda \sinh(\phi(z))) & \text{if } \phi(z) \in S^+\\ \rho_n((\phi(z) - z_n)^{d_n}) & \text{if } \phi(z) \in D_n \end{cases}$$

(3) f has no asymptotic values and its set of critical values is ± 1 and $\overline{\{w_n:n\geq 1\}}$

$$a_n = \cosh^{-1}\left(\frac{\pi}{\lambda}\left[\frac{\lambda}{\pi}\cosh(n\pi)\right]\right)$$

 $z_n=a_n+i\pi$, $D_n=\{z\in\mathbb{C}:|z-z_n|<1\}$ is mapped holomorphically to |z|<1 by $z\to(z-z_n)^{d_n}$. Then by a quasiconformal map ρ_n of the disc so that:

- (1) $\rho_n(z) = z$ for $z \in \partial \mathbb{D}$
- (2) $\rho_n(0) = w_n$ where w_n is a point near 1/2.
- (3) ρ_n is conformal on $\frac{3}{4}\mathbb{D}$
- (4) ρ_n is quasiconformal on \mathbb{D} .

Theorem: For every choice of parameters λ , (d_n) , (w_n) with $\lambda \in \pi \mathbb{N}$, $d_n \in 2\mathbb{N}$, there exists a transcendental f and a quasiconformal $\phi : \mathbb{C} \to \mathbb{C}$ so that:

(1)
$$f(\overline{z}) = \overline{f(z)}, f(-z) = f(z)$$

(2)

$$f(z) = \begin{cases} \cosh(\lambda \sinh(\phi(z))) & \text{if } \phi(z) \in S^+\\ \rho_n((\phi(z) - z_n)^{d_n}) & \text{if } \phi(z) \in D_n \end{cases}$$

- (3) f has no asymptotic values and its set of critical values is ± 1 and $\{w_n : n \ge 1\}$
 - (4) $\phi(0) = 0, \phi(\mathbb{R}) = \mathbb{R}$ and ϕ is conformal in S^+ .

Put in somewhere notion of conformally balanced do a better job with introducting fatou sets/julia sets

References

Chris Bishop (2014)

Constructing Entire Functions By Quasiconformal Folding

Acta Mathematica

Nuria Fagella, Sebastien Godillion, and Xavier Jarque (2014)

Wandering domains for composition of entire functions

Journal of Mathematical Analysis and Applications