Name:	Section:
Signature:	EEE 313 Fall 2014-2015

Bilkent University Department of Electrical and Electronics Engineering EEE 313 Electronic Circuit Design

Midterm 1

25 October 2014, 10:00 (4 questions, 120 minutes)

- This is a **closed book**, closed notes exam. No cheat sheet allowed.
- All cell-phones should be completely **turned off**.
- Use a calculator for numerical computations. Carry at least **4 significant digits** during calculations. Your final answer should be at least **3 significant digits**.
- Be sure to write the **units** of all numerical results.
- **Show** all work clearly.
- Please put your **final answer** for each part inside a box for easy identification. Do not give multiple answers, they will not be graded.
- Do not remove the **staple** from the exam sheets or separate pages of the exam. All extra pages must be stamped to your exam.
- You may leave the exam room when you are done.
 However, please do not leave during the last five minutes of the exam.
- At the end of the exam, please stay seated unitl all exam papers are collected.

FET equations:

n-channel MOSFET

$$i_D = K_n (v_{GS} - V_{Tn})^2$$
 SAT
 $i_D = K_n [2(v_{GS} - V_{Tn})v_{DS} - v_{DS}^2]$ NON-SAT

p-channel MOSFET

$$i_D = K_p (v_{SG} + V_{Tp})^2$$
 SAT
 $i_D = K_p \Big[2(v_{SG} + V_{Tp})v_{SD} - v_{SD}^2 \Big]$ NON-SAT

n-channel JFET

$$i_D = \frac{I_{DSS}}{V_p^2} (v_{GS} - V_P)^2$$
 SAT

$$i_D = \frac{I_{DSS}}{V_p^2} \left[2(v_{GS} - V_P)v_{DS} - v_{DS}^2 \right]$$
 NON-SAT

Please do not write below this line

1. 25 pts.	
2. 20 pts.	
3. 25 pts.	
4. 30 pts.	
Total 100 pts.	

1. (20 points) The input signal V_i is a sinusoid with an amplitude of 20 V. For the diode assume V_g =0 V (i.e., V_{on} voltage) and that the diodes are ideal. All resistors are equal to 10 k Ω . Determine the output signal V_o .

2. (20 points) For the following circuit, find the states of the n-channel MOS enhancement mode transistors Q1 and Q2, assuming that $V_{\text{Tn1}} = V_{\text{Tn2}} = 2.5 \text{V}$, and $K_{\text{n1}} = 4 K_{\text{n2}} = 1 \text{mA/V}^2$.

Q ₁ state	Q ₂ state	I_{D1}	I_{D1}	V_{S}

3. (30 points) Consider the p-channel MOS common-gate circuit in the figure. The transistor parameters are: $V_{\rm TP} = -1$ V, $K_{\rm p} = 0.5$ mA/V², and $\lambda = 0$. (a) Determine $R_{\rm S}$ and $R_{\rm D}$ such that $I_{\rm DQ} = 0.75$ mA and $V_{\rm SDQ} = 6$ V. (b) Determine the input impedance $R_{\rm i}$ and the output impedance $R_{\rm o}$. (c) Determine the load current $i_{\rm o}$ and the output voltage $v_{\rm o}$, if $i_{\rm i} = 5 \sin(\omega t)$ μ A. Assume all capacitors are very large. V⁺ and V⁻ are applied DC voltages.

- **4.** (30 points) Design the common source circuit below using an n-channel enhancement-mode MOSFET. The quiescent values are to be I_{DQ} = 5mA and V_{GSQ} = 4V. The transconductance is g_m =10mA/V. Let R_L =1k Ω , $A_v = v_{out}/v_{in} = -5$, R_{in} = 48k Ω . Find:
 - a) (10 points) R_1 and R_2
 - b) (10 points) R_D
 - c) (5 points) K_n
 - d) (5 points) V_{tn}

