Gradient Descent

Sravan Danda*

*CS&IS and APPCAIR, BITS-Pilani, Goa, India

Week 2

Outline

- 1 Recap: Convex Functions
- 2 Gradient Descent

3 Summary and What Next?

Characterizations of Convex Functions

Definition: Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function. f is said to be **convex** when line segment joining any two points (x, f(x)) and (y, f(y)) on the graph lies on or above the graph of the function

Screenshot Source 1

¹Optimization for Data Science, Lecture Notes, ETH, 2023

Characterizations of Convex Functions

First-order characterization: Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. f is convex if and only if the tangent at any point on the graph lies below the graph.

Screenshot Source 2

²Optimization for Data Science, Lecture Notes, ETH, 2023

Characterizations of Convex Functions⁴

Second-order characterization: Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function. The *Hessian* (matrix of second partial derivatives) exists at every point and is symmetric. f is convex if and only if the Hessian is a positive semi-definite³

Example: If $f(x_1, x_2) = x_1^2 + x_2^2$ then the Hessian is given by

$$\nabla^2 f(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \tag{1}$$

which is a positive-semi-definite

³A matrix M is said to be a positive semi-definite if $\mathbf{x}^T M \mathbf{x} \geq 0$ for all \mathbf{x}

⁴ characterizations help recognize convex functions in multiple ways. For a given function one way might be easier to check than the others.

Minimizing Convex Functions

Definition

A local minimum of $f:\mathbb{R}^d \to \mathbb{R}$ is a point ${\pmb x}$ such that there exists $\epsilon>0$ with

$$f(\mathbf{x}) \le f(\mathbf{y}) \ \forall \mathbf{y} \ \text{satisfying} \ ||\mathbf{y} - \mathbf{x}|| < \epsilon$$
 (2)

Local and Global Minima of Convex Functions

Lemma

Let \mathbf{x}^* be a local minima of a convex function $f : \mathbb{R}^d \to \mathbb{R}$ then \mathbf{x}^* is a global minima of f i.e.

$$f(\mathbf{x}^*) \le f(\mathbf{y}) \ \forall \mathbf{y} \in \mathbb{R}^d$$
 (3)

If a convex function happens to have a local minima then it has to be a global minima. Note that there are convex functions that are unbounded below. These functions do not have any minima

Global Minima of Differentiable Convex Functions

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable convex function. Let \mathbf{x}^* be such that $\nabla f(\mathbf{x}^*) = 0$ then \mathbf{x}^* is a global minima of f.

Goal: Iterative Approach to Approximate Global Minima

The set-up: Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex and differentiable function. Assume f has a global minimum \mathbf{x}^* . The goal is to find \mathbf{a} x such that

$$f(\mathbf{x}) - f(\mathbf{x}^*) < \epsilon \tag{4}$$

for some given $\epsilon > 0$

Gradient Descent and Variants

Broadly, all the iterative methods start with an initialization x_0 and obtain a sequence x_1, \dots, x_T until

$$f(\boldsymbol{x}_T) - f(\boldsymbol{x}^*) < \epsilon \tag{5}$$

Convergence Rates⁶

Convention: Measure the relative error terms 5 as a function of the iteration and recursively track how fast it reduces. Let

$$\epsilon_t = \frac{f(\mathbf{x}_t) - f(\mathbf{x}^*)}{f(\mathbf{x}_0) - f(\mathbf{x}^*)} \tag{6}$$

Linear Convergence: $\exists t \geq T$ such that

$$\epsilon_{t+1} \le c\epsilon_t \tag{7}$$

for some constant 0 < c < 1

Practical implication: We require $\mathcal{O}(\log\left(\frac{1}{\epsilon}\right))$ iterations to obtain an approximate solution

this quantity may be hard to obtain if $f(\mathbf{x}^*)$ is unknown

⁶ help determining how many iterations are needed to obtain an approximate solution if we know how good the initial estimate is

Convergence Rates

Superlinear Convergence⁷: $\exists t \geq T$ such that

$$\epsilon_{t+1} \le c(\epsilon_t)^r \tag{8}$$

for some constant 0 < c < 1 and for some r > 1

Practical implication: We require $\mathcal{O}(\frac{\log(\log\left(\frac{1}{\epsilon}\right))}{\log r})$ iterations to obtain an approximate solution

Convergence Rates: Loose Upper Bounds

	Lipschitz convex functions	smooth convex functions	strongly convex functions	smooth & strongly convex functions
gradient	Thm. 3.1	Thm. 3.8		Thm. 3.14
descent	$O(1/\epsilon^2)$	$O(1/\varepsilon)$		$\mathcal{O}(\log(1/\varepsilon))$
accelerated gradient descent		Thm. 3.9 $\mathcal{O}(1/\sqrt{\varepsilon})$		
projected gradient descent	Thm. 4.2 $\mathcal{O}(1/\varepsilon^2)$	Thm. 4.4 $\mathcal{O}(1/\varepsilon)$		Thm. 4.5 $\mathcal{O}(\log(1/\varepsilon))$
subgradient	Thm. 10.20		Thm. 10.22	
descent	$O(1/\varepsilon^2)$		$O(1/\varepsilon)$	
stochastic gradient descent	Thm. 12.4 $\mathcal{O}(1/\varepsilon^2)$	-	Thm. 12.4 $\mathcal{O}(1/\varepsilon)$	

Table 3.1: Results on gradient descent. Below each theorem, the number of steps is given which the respective variant needs on the respective function class to achieve additive approximation error at most ε .

Screenshot Source 8

⁸Optimization for Data Science, Lecture Notes, ETH, 2023

Gradient Descent: Algorithm

Idea: Make a small step \mathbf{v}_t in the opposite direction of the gradient to ensure descent on the value of the function i.e. $f(\mathbf{x}_t + \mathbf{v}_t) < f(\mathbf{x}_t)$

$$f(\mathbf{x}_t + \mathbf{v}_t) = f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^T \mathbf{v}_t + o(||\mathbf{v}_t||)$$
(9)

With a fixed stepsize 9 $\gamma > 0$, we have

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) \tag{10}$$

 $^{^9}$ has to be small enough. If γ is too small the convergence will take forever and if it is large there will be fluctuations and the function may not strictly decrease as we iterate $\frac{1}{2}$ $\frac{1}{2}$

Vanilla Analysis

Recall the first-order characterization: the tangent at any point is below the graph of the function

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \tag{11}$$

Set $\mathbf{x} = \mathbf{x}_t$, $\mathbf{y} = \mathbf{x}^*$ and rearranging we can upper-bound the error in terms of the gradient!

$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \le \nabla f(\mathbf{x}_t)^T (\mathbf{x}_t - \mathbf{x}^*)$$
(12)

Vanilla Analysis Continued¹¹ · · ·

For a fixed step-size i.e. when

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t) \tag{13}$$

the sum of errors can be bounded by

$$\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\nabla f(\mathbf{x}_t)||^2 + \frac{1}{2\gamma} ||\mathbf{x}_0 - \mathbf{x}^*||^2 \quad (14)$$

smaller the squared gradients¹⁰ and closer the initialization, the better!

¹⁰Lipschitz functions have bounded gradients. Can we provide some kind of guarantees for such subclass of convex functions?

¹¹see ETH 2023 lecture notes for a complete proof

Analysis: Lipschitz Convex Functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable function with a global minimum \mathbf{x}^* . Furthermore suppose that $||\mathbf{x}_0 - \mathbf{x}^*|| < R$ and $||\nabla f(\mathbf{x})|| \le B$ for all \mathbf{x} then choosing the step size

$$\gamma = \frac{R}{B\sqrt{T}} \tag{15}$$

gradient descent yields

$$\frac{1}{T}\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{RB}{\sqrt{T}} \tag{16}$$

Analysis: Lipschitz Convex Functions

Implications:

- The average error is bounded as a function of the distance of initialization from the global minima, maximum norm of gradient and the number of iterations provided the step size is carefully chosen.
- **2** A loose upper bound 12 on T so that the minimum error within the first T iterations is less than ϵ is given by $\frac{R^2B^2}{\epsilon^2}$
- The choice of step-size and the number of iterations for such guarantees depends on knowledge of initialization and an upper bound on the norm of the gradient

 $^{^{12}}$ this is a bad bound as the growth is quadratic in $\frac{1}{\epsilon}$ even if the initialization and Lipschitz constant are low

L-Smooth Functions¹³

Definition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function and $L \in \mathbb{R}^+$. A function f is called L-smooth (i.e. parameter L) if

$$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2 \ \forall \ \mathbf{x}, \mathbf{y}$$
 (17)

This is intuitively imposing a restriction on how fast the function is allowed to grow!

¹³NOT to be confused with infinitely differentiable functions

Visualizing L-Smooth Convex Functions

If a function is both smooth and convex then the graph is lower bounded by the tangent and upper-bounded by the addition of quadratic term to the tangent. \boldsymbol{L} controls the growth of the gradient norm

Figure 3.2: A smooth convex function

Screenshot Source 14

¹⁴Optimization for Data Science, Lecture Notes, ETH, 2023

Characterizing L-Smooth Functions

Intuition: The curvature of a L-smooth function does not exceed L

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function then the following statements are equivalent

- 1 f is L-Smooth.
- $\mathbf{2}$ $g: \mathbb{R}^d \to \mathbb{R}$ defined by

$$g(x) = \frac{L}{2} \mathbf{x}^{\mathsf{T}} \mathbf{x} - f(\mathbf{x}) \tag{18}$$

is convex.

Quadratic Forms

Intuition: All quadratic forms are smooth as the highest degree term is a squared term and for large enough L, $\frac{L}{2} \mathbf{x}^T \mathbf{x}$ would have a higher curvature than that of the quadratic form

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be defined as

$$f(\mathbf{x}) = \mathbf{x}^T Q \mathbf{x} + \mathbf{b}^T \mathbf{x} + c \tag{19}$$

where Q is a symmetric matrix, $\mathbf{b} \in \mathbb{R}^d$ and $c \in \mathbb{R}$. Then f is smooth with parameter 2||Q|| where ||Q|| refers to the spectral norm of Q.

L-Smooth Functions and Lipschitz

Intuition: Restricting the growth of the curvature is effectively imposing an upper bound on the norm of the second derivative!

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable function. The following statements are equivalent

- **1** f is L-Smooth.
- **2** The gradient of f is L-Lipschitz i.e.

$$||\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})|| \le L||\mathbf{y} - \mathbf{x}||$$
 for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$

Choosing Step-Size for L-Smooth Functions

Intuition: With an appropriate step-size true descent is guaranteed¹⁵!

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable function and L-smooth. With the step-size

$$\gamma = \frac{1}{L} \tag{20}$$

the gradient descent satisfies

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} ||\nabla f(\mathbf{x}_t)||^2, \ t \ge 0$$
 (21)

progress is guaranteed although the function may be flat. L-smooth only provides an upper bound on 4日ト 4周ト 4 三ト 4 三ト 三 めのの steepness and NOT a lower bound

Convergence Rate for L-Smooth Convex Functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex, differentiable function and has a global minimum \mathbf{x}^* . Furthermore assume f is L-smooth. With the step-size

$$\gamma = \frac{1}{L} \tag{22}$$

the gradient descent yields

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \ T > 0$$
 (23)

Implication: If $T > \frac{R^2L}{2\epsilon}$, the approximation would be within ϵ

How to Find Parameter of a Smooth Function?

Intuition:

- **1** The norm of the Hessian i.e. the largest eigenvalue of the Hessian would be the smoothness parameter
- 2 How to compute the largest Eigenvalue efficiently 16?
 - 1 Lanczos algorithm:

https://en.wikipedia.org/wiki/Lanczos_algorithm

Acceleration for Smooth Convex Functions

Definition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex, differentiable function and has a global minimum \mathbf{x}^* . Furthermore assume f is L-smooth. Accelerated gradient descent is the following algorithm: choose $\mathbf{z}_0 = \mathbf{y}_0 = \mathbf{x}_0$ arbitrary. For $t \geq 0$, set

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \frac{1}{L} \nabla f(\mathbf{x}_t)$$
 (24)

$$\boldsymbol{z}_{t+1} = \boldsymbol{z}_t - \frac{t+1}{2L} \nabla f(\boldsymbol{x}_t)$$
 (25)

$$\mathbf{x}_{t+1} = \frac{t+1}{t+3} \mathbf{y}_{t+1} + \frac{2}{t+3} \mathbf{z}_{t+1}$$
 (26)

Acceleration for Smooth Convex Functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex, differentiable function and has a global minimum \mathbf{x}^* . Furthermore assume f is L-smooth. Accelerated gradient descent yields

$$f(\mathbf{y}_T) - f(\mathbf{x}^*) \le \frac{2L}{T(T+1)} ||\mathbf{z}_0 - \mathbf{x}^*||^2, \ T > 0$$
 (27)

Implication: The rate of convergence is $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$

Strongly Convex Functions

Intuition: Convex with a minimum level of the steepness allows for faster convergence

Definition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function and $\mu \in \mathbb{R}^+$. A function f is called strongly convex with parameter μ if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2 \ \forall \ \mathbf{x}, \mathbf{y}$$
 (28)

Note: Strongly convex functions form a subclass of the convex functions as the first order characterization is automatically satisfied by obtaining a lower bound (removing the last term on RHS)

Visualizing Strongly Convex Functions

The steepness is at least as much as that of a quadratic scaled by μ

Figure 3.3: A smooth and strongly convex function

Screenshot Source 17

 $^{^{17}\}mathrm{Optimization}$ for Data Science, Lecture Notes, ETH, 2023

Characterizing Strongly Convex Functions

Intuition: The curvature of a Strongly convex function exceeds at least μ

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function then the following statements are equivalent

- **1** f is strongly convex with parameter μ .
- $\mathbf{2} \ g: \mathbb{R}^d \to \mathbb{R} \ defined \ by$

$$g(x) = f(\mathbf{x}) - \frac{\mu}{2} \mathbf{x}^{\mathsf{T}} \mathbf{x}$$
 (29)

is convex.

Convergence Rate for Smooth and Strongly Convex Functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex, differentiable function. Furthermore assume f is L-smooth and strongly convex with parameter μ . Then f has a unique global minimum \mathbf{x}^* and choosing the step-size $\gamma = \frac{1}{L}$ the gradient descent with arbitrary \mathbf{x}_0 satisfies the following: 1) Squared distances to \mathbf{x}^* are geometrically decreasing:

$$||\mathbf{x}_{t+1} - \mathbf{x}^*||^2 \le \left(1 - \frac{\mu}{L}\right) ||\mathbf{x}_t - \mathbf{x}^*||^2, \ t \ge 0$$
 (30)

2) The absolute error after T iterations is exponentially small in T:

$$f(\mathbf{x}_{T}) - f(\mathbf{x}^{*}) \le \frac{L}{2} \left(1 - \frac{\mu}{I} \right)^{T} ||\mathbf{x}_{0} - \mathbf{x}^{*}||^{2}, \ T > 0$$
 (31)

Convergence Rate for Smooth and Strongly Convex Functions

To approximate within ϵ it is enough to iterate for T steps where

$$T > \frac{L}{\mu} \log \left(\frac{R^2 L}{2\epsilon} \right) \tag{32}$$

Intuitively, if it is known that the steepness is between L and μ , the minima can be reached very fast!

How to Find Parameter of a Strongly Convex Function?

Intuition:

- The smallest eigenvalue of the Hessian would be the strong convexity parameter
- 2 How to compute the smallest Eigenvalue efficiently ¹⁸?
 - 1 Lanczos algorithm:

https://en.wikipedia.org/wiki/Lanczos_algorithm

Optimizing Neural Networks

Question: What are the factors that affect the smoothness and strong convexity parameters?

- Loss function
- Network architecture via
 - 1 larger depth larger L and μ
 - 2 larger width larger L and μ
 - 3 activation functions ReLU, Sigmoid etc. How do they affect?
 - 4 special structures such as skip connections make L lower and μ larger
 - 5 BatchNorm reduces L

Summary and What Next?

Summary

What Next?