STANISLAS Exercices

Réduction des endomorphismes

PSI2021-2022

Chapitre XI

I. Spectres

Exercice 1. (**2**) Montrer que $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ sont semblables. Déterminer les valeurs propres et sous-espaces propres de A.

Exercice 2. (🖾) Déterminer les valeurs et sous-espaces propres de l'endomorphisme défini sur $\mathbb{R}[X]$ par $\varphi: P \mapsto (2X+1)P + (1-X^2)P'$.

Exercice 3. (\heartsuit) Soit $A = (a_{i,j}) \in \mathscr{M}_n(\mathbb{C})$.

- **1.** Montrer que $\operatorname{Sp}(A) \subset E = \bigcup_{i=1}^{n} \overline{\mathscr{B}}\left(a_{i,i}, \sum_{j \neq i} |a_{i,j}|\right).$ **2.** En notant $E' = \bigcup_{i=1}^{n} \overline{\mathscr{B}}\left(a_{i,i}, \sum_{k \neq i} |a_{k,i}|\right)$, montrer que $\operatorname{Sp}(A) \subset E \cap E'$.

Exercice 4. (\mathscr{D}) Soient E l'ensemble des fonctions réelles continues sur \mathbb{R}_+ qui admettent une limite finie en $+\infty$ et T l'application définie pour tout $f \in E$ par

$$T(f): \mathbb{R}_+ \to \mathbb{R}$$

 $x \mapsto f(x+1)$.

- **1.** Montrer que T est un endomorphisme de E.
- **2.** Montrer que $Sp(T) \subset]-1,1].$
- **3.** Déterminer le spectre de T.

Exercice 5. (Matrices stochastiques, \heartsuit) Soit $P \in \mathscr{M}_n(\mathbb{R})$ une matrice à coefficients strictement positifs et tels que pour tout i entier naturel non nul, $\sum_{i=1}^{n} p_{i,j} = 1$.

j=11. Montrer que 1 est valeur propre de P.

2. Soit $v = {}^t(v_1 \cdots v_n)$ un vecteur propre associé à la valeur propre

1. En considérant $|v_{i_0}| = \max_{1 \leq i \leq n} |v_i|$, montrer que le sous-espace propre associé E_1 est de dimension 1.

3. Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de P, alors $|\lambda| \leq 1$.

4. Soit $\lambda \in \mathbb{C}$ est une valeur propre de P telle que $|\lambda| = 1$ et \widetilde{x} un vecteur propre associé.

a) Montrer qu'il existe un vecteur propre associé à λ tel que $||x||_{\infty} = 1$.

b) Montrer qu'il existe $i_0 \in [\![1,n]\!]$ tel que $\left|\sum_{j=1}^n p_{i_0,j}x_j\right| = 1$. **c)** Soit θ l'argument principal de $\sum_{j=1}^n p_{i_0,j}x_j$. Montrer que : $\forall j \in [\![1,n]\!]$,

 $\Re e\left(e^{-i\theta}x_i\right) = 1.$

d) En déduire que $\lambda = 1$.

II. Diagonalisation

Exercice 6. (🗷) [TPE] Soit $A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$.

1. Montrer que A est diagonalisable puis calculer A^n .

2. Soient $u_0 = v_0 = w_0 = 1$ et pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = 5u_n + v_n - w_n \\ v_{n+1} = 2u_n + 4v_n - 2w_n \\ w_{n+1} = u_n - v_n + 3w_n \end{cases}$$

Pour $n \in \mathbb{N}$, calculer u_n , v_n et w_n .

est-elle diagonalisable sur \mathbb{R} ? sur \mathbb{C} ?

Exercice 8. [Mines] Soit $n \ge 2$. Diagonaliser $\begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$.

Exercices XI PSI

Exercice 9. [CCP] Soit $n \ge 2$. On définit

$$A_{n} = \begin{pmatrix} 1 & n & 1 & 1 & \cdots & 1 & n \\ 2 & n-1 & 2 & 2 & \cdots & 2 & n-1 \\ 3 & n-2 & 3 & 3 & \cdots & 3 & n-2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ n & 1 & n & n & \cdots & n & 1 \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R}).$$
1. Pour toute matrice $A \in \mathcal{M}_{n}(\mathbb{R})$, montrer que $\operatorname{Sp}(A) = \operatorname{Sp}({}^{t}A)$.

- **2.** Déterminer $Rg(A_n)$.
- 3. A_n est-elle diagonalisable? Déterminer la dimension des sous-espaces propres.

Exercice 10. (\heartsuit) [Mines] \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(\mathbb{K}^n)$.

- 1. On suppose que f est diagonalisable. Montrer que tout sous-espace de \mathbb{K}^n stable par f admet un supplémentaire stable par f.
- **2.** Que dire de la réciproque dans \mathbb{C} ?
- **3.** Décrire un contre-exemple à la réciproque dans \mathbb{R} , en dimension 2.

Exercice 11. () [X-ENS] Soit $A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$. Est-ce qu'il existe une matrice $B \in \mathcal{M}_3(\mathbb{R})$ telle que $B^2 = 1$

Exercice 12. (Autour du commutant, \heartsuit) [X-ENS] Soient $A \in \mathscr{M}_n(\mathbb{R})$ et $C(A) = \{ M \in \mathscr{M}_n(\mathbb{R}) ; MA = AM \}.$

- **1. a)** Montrer que C(A) est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ stable par multiplication.
 - **b)** Montrer que si $M \in C(A)$ et M est inversible, alors $M^{-1} \in C(A)$.
- 2. Soit D une matrice diagonale dont les coefficients diagonaux sont deux à deux distincts.
 - a) Déterminer C(D).
 - **b)** Montrer que (I_n, D, \dots, D^{n-1}) est une base de C(D).
- **3.** On se limite au cas n=2.
 - a) Déterminer les matrices A telles que dim C(A) = 4.
 - **b)** Montrer que dim $C(A) \ge 2$.

- c) On suppose que dim $C(A) \ge 3$. En utilisant $F = \text{Vect}\{E_{1,1}, E_{1,2}\}$ ou $G = \text{Vect}\{E_{2,1}, E_{2,2}\}\$, montrer que $A = \lambda I_n$.
 - **d)** Pour tout $A \in \mathcal{M}_2(\mathbb{R})$, déterminer une base de C(A).

Exercice 13. [X-ENS] Soit $(f,g) \in \mathcal{L}(E)$, où E est un espace vectoriel de dimension finie. Soient A et B les matrices associées dans une base de E fixée. On suppose A et B inversibles.

- 1. Montrer que AB et BA ont même polynôme caractéristique. Soit E_{λ} le sous-espace propre de $f \circ g$ associé à la valeur propre λ et F_{λ} celui de $q \circ f$.
- **2.** Montrer que $f(F_{\lambda}) \subset E_{\lambda}$ et $g(E_{\lambda}) \subset F_{\lambda}$.
- **3.** Montrer que dim $E_{\lambda} = \dim F_{\lambda}$.
- **4.** Montrer que, si $f \circ q$ est diagonalisable, alors $q \circ f$ est diagonalisable.
- 5. Déterminer X et Y tel que XY soit diagonalisable et YX ne soit pas diagonalisable.

III. Polynômes annulateurs

Exercice 14. [CCP] Soit $A \in \mathcal{M}_6(\mathbb{R})$ inversible vérifiant $A^3 - 3A^2 + 2A = 0$ ainsi que Tr(A) = 8.

- **1.** Montrer que A est diagonalisable.
- **2.** Que peut-on dire sur les valeurs propres de A?
- **3.** Donner une matrice diagonale semblable à A.
- **4.** Déterminer l'ensemble des polynômes annulateurs de A.

un endomorphisme de E vérifiant $f^3 = 4f$. Montrer que la trace de fest un entier pair.

Exercice 16. [Mines] Soient $A \in \mathcal{M}_n(\mathbb{R})$, $a \in \mathbb{R}^*$ et $p \in \mathbb{N}^*$. On suppose que $(X-a)^p$ est un polynôme annulateur de A et que $(X-a)^{p-1}$ n'est pas un polynôme annulateur de A. On note $\mathbb{R}[A]$ l'ensemble des polynômes en A.

1. Déterminer une base et la dimension de $\mathbb{R}[A]$.

Exercices XI PSI

- **2.** Montrer que A est inversible et que $A^{-1} \in \mathbb{R}[A]$.
- **3.** Soit $P \in \mathbb{R}[X]$ tel que P(A) soit inversible. Montrer que

$$P(A)^{-1} \in \mathbb{R}[A]$$

Exercice 17. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 + A^2 + A = 0_n$. Montrer que A est de rang pair.

Exercice 18. (\heartsuit) [Mines] Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{C})$. On suppose que M^2 est diagonalisable. Montrer que M est diagonalisable si et seulement si $\operatorname{Ker}(M) = \operatorname{Ker}(M^2)$.

Exercice 19. [Centrale] Soient A et $B \in \mathcal{M}_n(\mathbb{C})$. On considère l'endomorphisme L de $\mathcal{M}_n(\mathbb{C})$ défini par

$$\forall M \in \mathscr{M}_n(\mathbb{C}), L(M) = AM - MB.$$

- **1.** Montrer que si α est une valeur propre de A et β est une valeur propre de B, alors $\alpha \beta$ est une valeur propre de L.
- **2.** Soit λ une valeur propre de L associée au vecteur propre M. Montrer que : $\forall P \in \mathbb{C}[X], P(A)M = MP(\lambda I_n + B)$.
- **3.** Si λ est une valeur propre de L, montrer qu'il existe α valeur propre de A et β valeur propre de B telles que $\lambda = \alpha \beta$.

IV. Trigonalisation

Exercice 20. [Mines] Soit $\varphi : \mathscr{M}_2(\mathbb{C}) \to \mathbb{C}$ telle que pour tout $(A, B) \in \mathscr{M}_2(\mathbb{C})$, $\varphi(AB) = \varphi(A)\varphi(B)$ et pour tout $\lambda \in \mathbb{C}$, $\varphi\left(\begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}\right) = \lambda$. Montrer que $\varphi = \det$.

Exercice 21. [Mines] Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. Déterminer une condition nécessaire et suffisante sur les polynômes caractéristiques de A et B pour que pour tout entier naturel k, $\text{Tr}(A^k) = \text{Tr}(B^k)$.

Exercice 22. [Mines] Soient H l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ de trace nulle et N l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ nilpotentes.

- 1. Ces deux ensembles sont-ils des espaces vectoriels?
- **2.** Monter que l'espace engendré par N est inclus dans H.
- 3. L'inclusion ci-dessus est-elle une égalité?

Exercice 23. [Mines] Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que : $\forall k \in \mathbb{N}^*$, $\operatorname{Tr}(A^k) = 0$. Montrer que A est nilpotente.

V. Avec Python

Exercice 24. [Centrale] On considère 4 cases nommées C_1 , C_2 , C_3 et C_4 . On de déplace de case en case en suivant l'algorithme suivant :

- * Si n=0, on se trouve en C_1 .
- * Si on est en C_1 à l'instant n, on choisit uniformément parmi les 4 cases l'endroit où on se trouvera à l'instant n + 1.
- * Si on est en $C_i \in \{2,3,4\}$ à l'instant n, on se déplace en C_{i-1} à l'instant n+1.
- 1. a) Écrire un algorithme position(n) qui donne la liste des positions lors des n premières étapes.
- **b)** Représenter graphiquement la position en fonction de l'étape. Pour tout entier naturel n, on note X_n la position à l'instant n.
- **2. a)** Déterminer A telle que, en posant $U_n = \begin{pmatrix} \mathbb{P}(X_n = C_1) \\ \mathbb{P}(X_n = C_2) \\ \mathbb{P}(X_n = C_3) \\ \mathbb{P}(X_n = C_4) \end{pmatrix}$, alors

 $U_{n+1} = AU_n.$

- **b)** Diagonaliser la matrice A et en déduire que (U_n) converge.
- **3.** On étudie la variable aléatoire $Y_n(i)$ qui donne le nombre de passages dans la case C_i lors des n premières étapes.
- a) Écrire une fonction occurrences (n, i) qui renvoie le nombre de passages dans la case C_i lors des n premières étapes.
 - **b)** Que conjecturez-vous sur l'espérance de $Y_n(i)$? Le justifier.