1.

$$(\mathcal{F}(h) \circ \phi_A)(a) = \mathcal{F}(h)(\phi_A(a))$$

$$= \mathcal{F}(h)(\{U \in \text{Ult}(A) \mid a \in U\})$$

$$= \mathcal{P}(\text{Ult}(h))(\{U \in \text{Ult}(A) \mid a \in U\})$$

$$= (\text{Ult}(h))^{-1}(\{U \in \text{Ult}(A) \mid a \in U\})$$

$$= \{V \in \text{Ult}(B) \mid h(a) \in V\}$$

$$= (\phi_B \circ h)(a).$$

Therefore, we have a commutative diagram

2.

- (i) ϕ_B is a homomorphism: $\phi_B(0) = \{V \in \text{Ult}(B) \mid 0 \in V\} = \emptyset$. Also, $\phi_B(a \wedge b) = \{V \in \text{Ult}(B) \mid a \wedge b \in V\} = \{V \in \text{Ult}(B) \mid a \in V \text{ and } b \in V\} = \phi_B(a) \cap \phi_B(b) \text{ and } \phi_B(a \vee b) = \{V \in \text{Ult}(B) \mid a \vee b \in V\} = \{V \in \text{Ult}(B) \mid a \in V \text{ or } b \in V\} = \phi_B(a) \cup \phi_B(b)$.
- (ii) ϕ_B is injective: Suppose $a \nleq b$. Then $a \land (\neg b) \neq 0$ and hence $\uparrow (a \land \neg b)$ is a nontrivial filter. Therefore, $\phi_B(a \land (\neg b)) = \phi_B(a) \cap \phi_B(\neg b)$ is not empty by Boolean prime ideal theorem. Let U be one of the member. Then $a \in U$ and $\neg b \in U$, hence $b \notin U$ since U is an ultrafilter, resulting that $\phi_B(a) \neq \phi_B(b)$. The other case is analogous.

3.

- (i) $A(B) \cong \text{Ult}(B)$: Let $a \in A(B)$ be an atom. Then obviously $\uparrow (a) \in \text{Ult}(B)$. Conversely, let $U \in \text{Ult}(B)$. We will show that $\land_{x \in U} x \in A(B)$. Suppose $b \leq \land x$. Since $\land x \in U$ is minimal, $b \notin U$ and hence $\neg b \in U$. Then $(\land x) \lor \neg b = \neg b$ but $b \lor \neg b = 1 \leq \neg b$, meaning that b = 0.
- (ii) Lemma 7.33: (a) $b = \bigvee \{a \in A(B) \mid a \leq b\} = y$: Obviously $b \geq y$. Now suppose $b \nleq y$. Then $b \land \neg y > 0$. Since B is finite, there is an atom $x \leq b \land \neg y$. Since $x \leq b$, it is a member of the set and hence $x \leq y$. Also $x \leq \neg y$ and hence $x \leq y \land \neg y = 0$, contradiction. Thus b = y. (b) $a \in A(B), a \leq b \lor b' \to a \leq b$ or $a \leq b'$: Suppose b, b' > 0 and $a \nleq b, a \nleq b'$. Since a is an atom, $a \land b = a \land b' = 0$ but then $a \land (b \lor b') = (a \land b) \lor (a \land b') = 0$, contradiction.
- (iii) $\beta: B \cong \mathcal{P}(A(B)):$ Note that β is defined by $\beta(b) = \{a \in A(B) \mid a \leq b\}$. Then the inverse is defined by $\beta^{-1}(X) = \bigvee_{a \in X} a$ by (ii). Now suppose $S \subseteq A(B)$. Obviously $S \subseteq \beta(\bigvee_{x \in S} x)$. For $y \in \beta(\bigvee_{x \in S} x), y \in A(B)$ and $y \leq \bigvee_x$. Then by (ii)(b), there is $x_i \in S$ such that $y \leq x_i$, meaning that $y = x_i$. Therefore, $\beta(\bigvee_x) \subseteq S$ and hence β is onto.

4.

$$\mathbf{Groups} \overset{U}{\rightarrow} \mathbf{Mon} \overset{V}{\rightarrow} \mathbf{Sets}$$

U: Faithful: obvious

Full: If A, B are groups and $h: A \to B$ is a monoid homomorphism, then h(ab) = h(a)h(b), $h(e) = h(aa^{-1}) = h(a)h(a)^{-1} = e$, meaning that $h(a^{-1}) = h(a)^{-1}$ and hence a group homomorphism.

Injective on arrows, objects: Obvious

Not surjective on arrows, objects: \mathbb{N} is an example

V: Faithful: obvious

Not full, surjective on arrows: There is a function which is not a monoid homomorphism. Surjective on objects: By assigning multiplication, we can make any set X a monoid. Not injective on arrows, objects: Obvious.

5.

Define a functor

$$A: \mathbf{Pos} \to \mathbf{Top}$$

by $(X, \leq) \mapsto (X, \mathcal{T})$ where $U \in \mathcal{T}$ iff for all $x \in U$, $x \leq y \Rightarrow y \in U$ for objects and $f \mapsto f$ for arrows.

- (i) Obviously \mathcal{T} is a topology. Let $f: X \to Y$ and $V \subseteq Y$ be an open set. Let $a \in f^{-1}(V)$. If $a \le b$ in X, then $f(a) \le f(b)$ since f is an arrow in **Pos**. By the definition of topology, we can get $f(b) \in V$, and hence $b \in f^{-1}(V)$ consequently, meaning that $f^{-1}(V)$ is open in X. Therefore, A is a well-defined functor.
- (ii) A is trivially faithful. Now let $f: X \to Y$ be continuous. Define $U = \{y \mid f(x) \leq y\} \subseteq Y$. By definition, $f^{-1}(U)$ is also closed upward. Thus for $x \in f^{-1}(U)$, if $x \leq z$, then $z \in f^{-1}(U)$ and therefore, $f(x) \leq f(z)$. Thus f is monotone and hence A is full.

6.

- (a) Define **E** as follows: For object, define $Ob(\mathbf{E}) = Ob(\mathbf{C})$. Now define a relation on arrows of **C** by $f \sim g$ iff F(f) = F(g). Let [f] be the arrow of **E**. Then obviously E is bijective on objects and full. By defining D canonically, we can construct such factorization.
- (b) Object of E: Image of F, arrows: corresponding arrows in \mathbf{D} .

7.

Suppose $\alpha: F \to G$ be a natural isomorphism. Then there is $\alpha^{-1}: G \to F$ the inverse of α , satisfying $\alpha \circ \alpha^{-1} = 1_G$ and $\alpha^{-1} \circ \alpha = 1_F$. Then for any object C, $\alpha_C \circ (\alpha_C)^{-1} = 1_{FC}$ and hence $\alpha_C^{-1} = (\alpha^{-1})_C$, meaning that all components of α is an isomorphism. Conversely, suppose all components of α are isomorphisms. Choose α^{-1} such that all components are inverse of the components of α . We will show that α^{-1} is a natural transformation. Let $f: C \to D$. We know that by definition, $Gf \circ \alpha_C = \alpha_D \circ Ff$. By compososing α_D^{-1} on the left side, $\alpha_D^{-1} \circ Gf \circ \alpha_C = Ff$. Similarly, we get $\alpha_D^{-1} \circ Gf = Ff \circ \alpha_C^{-1}$, showing that α^{-1} is a natural transformation.

8.

Let $F, G \in \mathbf{D^C}$ be two functors. Define $F \times G$ by $(F \times G)(C) = FC \times GC$ and $(F \times G)f = Ff \times Gf$. Then we have canonical natural transformations π_1, π_2 . Now take a functor H and natural transformations $\alpha: H \to F, \beta: H \to G$. By UMF, for any object C, there is a unique arrow $h_C: HC \to FC \times GC$

such that $\pi_{1C} \circ h_C = \alpha_C$ and $\pi_{2C} \circ h_C = \beta_C$. Now it remains to prove the arrow case. Consider a diagram

$$\begin{array}{ccc} HC & \stackrel{h_C}{\longrightarrow} FC \times GC \xrightarrow{\pi_{1C}} FC & . \\ \downarrow_{Hf} & \downarrow_{Ff \times Gf} & \downarrow_{Ff} \\ HD & \stackrel{h_D}{\longrightarrow} FD \times GD \xrightarrow{\pi_{1D}} FD \end{array}$$

Since π_1 is natural, we get

$$\pi_{1D} \circ (Ff \times Gf) \circ h_C = Ff \circ \pi_{1C} \circ h_C$$

$$= Ff \circ \alpha_C$$

$$= \alpha_D \circ Hf$$

$$= \pi_{1D} \circ h_D \circ Hf.$$

We can show the similar case for π_2 and those results show that by UMP, the diagram commutes, proving that h is natural.

9.

For $f: A \to B$, define $\mathcal{PP}f: \mathcal{PP}A \to \mathcal{PP}B$ by $\{U \subseteq A \mid a \in U\} \mapsto \{V \subseteq B \mid f(a) \in V\}$. Then the map $\eta_A: A \to \mathcal{PP}A$ is a natural transformation.

10.

It is enough to show that the map Hom satisfies the condition of bifunctor lemma. So we only need to show that the diagram

$$\operatorname{Hom}(C,D) \xrightarrow{\operatorname{Hom}(f,D)} \operatorname{Hom}(C',D)$$

$$\operatorname{Hom}(C,g) \downarrow \qquad \qquad \downarrow \operatorname{Hom}(C',g)$$

$$\operatorname{Hom}(C,D') \xrightarrow{\operatorname{Hom}(f,D')} \operatorname{Hom}(C',D')$$

commutes where $f: C \to C'$ in $\mathbf{C^{op}}$ and $g: D \to D'$ in \mathbf{D} . But for $h \in \text{Hom}(C, D)$, either paths maps it to $g \circ h \circ f: C' \to D'$, concluding that Hom is a functor.

11.

Obviously 1 is the identity groupoid. For two groupoids A, B, we can define $A \times B$ canonically. For exponential, define B^A be a functor category. For $F, G: A \to B$, Take $C, D \in A$ and consider a component of natural transformation α , $\alpha_C: FC \to GC$. Since α_C is an arrow in B, meaning that α_C^{-1} exists. Thus by exercise 7, α is a natural isomorphism, concluding that B^A is a groupoid.

12.

Suppose $C \cong D$. Then there are two functors $F: C \to D$ and $G: D \to C$ such that $\alpha: 1_D \to FG$ and $\beta: GF \to 1_C$ are natural isomorphisms. Suppose C has binary products and let $D, D' \in D_0$. Then we have $GD \times GD'$ in C. Let $Z \in D$ and $a: Z \to D$, $a': Z \to D'$. Then there is a unique arrow $h: GZ \to GD \times GD'$ such that $\pi_1 \circ h = Ga$ and $\pi_2 \circ h = Ga'$. Now consider $F(GD \times GD')$ and the map

$$Z \stackrel{\alpha_Z}{\to} FGZ \stackrel{Fh}{\to} F(GD \times GD') \stackrel{F\pi_1}{\to} FGD \stackrel{\alpha_P^{-1}}{\to} D.$$

Then we can see

$$\alpha_D^{-1} \circ F\pi_1 \circ Fh \circ \alpha_Z = \alpha_D^{-1} \circ F(\pi_1 \circ h) \circ \alpha_Z$$
$$= \alpha_D^{-1} \circ FGa \circ \alpha_Z$$
$$= \alpha_D^{-1} \circ \alpha_D \circ a$$
$$= a$$

The map $Fh \circ \alpha_Z : Z \to F(GD \times GD')$ is unique since h is unique and therefore we can regard $\alpha_D^{-1} \circ F\pi_1$ as a projection $F(GD \times GD') \to D$, meaning that $F(GD \times GD')$ is the product of D and D'.

13.

Don't understand the meaning of the problem.

14.

pass

15.

Two categories C, D are equivalent if there are two functors F, G such that $FG \cong 1_D$ and $GF \cong 1_C$. Obviously the equivalence is reflexive and symmetry. For trainsivity, let E be another category and suppose $D \cong E$, with $H : D \to E$ and $J : E \to D$. Then the map $GJHF \cong G1_DF = GF \cong 1_C$ and $HFGJ \cong H1_DJ = HJ \cong 1_E$ and hence $C \cong E$, proving that it is an equivalence relation.

16.

Let C be a category and define a relation \sim where $A \sim B$ if they are isomorphic. By choose one object from each isomorphism class, we get a subcategory D. Define an inclution functor $I: D \to C$ and define $F: C \to D$ by F(A) = B where $B \in [A]$ a class and $F(f: C \to D) = i_D \circ f \circ i_C^{-1}$ where $i_C: C \to E \in [C]$ an isomorphism. Then F is a functor and $IF \cong 1_C$, $FI \cong 1_D$, concluding the assertion.

17.

Skip

18.

Define $A \otimes B = \pi_1(A \times B) = A$ and I as a terminal object. Then we can see it is a monoidal category. Obviously, by converting it to the opposite category, we can see the same ressult for coproducts.