

Time Series Analysis

Time series data is ubiquitous in research, from economic indicators to climate measurements. This page demonstrates various techniques for analyzing and visualizing temporal data^[1].

Climate Data Analysis

Temperature Anomalies Over Time

Global Temperature Anomalies (1950-2024)

Monthly observations with 12-month moving average

Seasonal Decomposition

Time series often contain trend, seasonal, and irregular components^[2]. Here we decompose the signal:

Seasonal Decomposition of Temperature Data

Economic Indicators

Multiple Time Series Comparison

Economic Indicators (2019-2024)

Comparing key economic metrics over time

Forecasting

Time Series Forecasting with Confidence Intervals

Time Series Forecast with Prediction Intervals

24-month forecast with 95% confidence bands

Event Timeline

Using our custom Timeline component to show research milestones^[3]:

TypeError: Timeline is not a function

Autocorrelation Analysis

ACF and PACF Plots

Autocorrelation helps identify patterns and dependencies in time series data^[4].

TypeError: Cannot use 'in' operator to search for 'length' in null

Volatility Analysis

Rolling Standard Deviation

Temperature Volatility Over Time

12-month rolling standard deviation

Change Point Detection

Identifying structural breaks in time series^[5]:

Change Point Detection using CUSUM

Identifying structural breaks in the time series

Summary Statistics by Period

Decade	Mean Temp	Std Dev	Min	Max	Trend
1950s	-0.229	1.938	-5.052	4.358	-0.0008
1960s	0.381	2.286	-5.326	5.237	0.0267
1970s	0.120	2.138	-5.391	5.176	-0.0045
1980s	0.507	2.240	-5.295	5.451	-0.0041
1990s	0.962	2.268	-4.582	6.684	0.0315
2000s	0.946	2.206	-4.640	6.051	-0.0369
2010s	0.842	2.088	-4.385	5.264	0.0030
2020s	1.195	2.014	-3.439	4.706	-0.0154

Methods and Applications

Time series analysis is crucial for understanding temporal patterns in data^[6]. Key applications include:

- 1. Climate Science: Analyzing temperature trends and detecting climate change signals
- 2. Economics: Forecasting GDP, inflation, and market indicators
- 3. Epidemiology: Tracking disease spread and seasonal patterns
- 4. Engineering: Monitoring system performance and detecting anomalies
- 1. Time series analysis involves statistical techniques for analyzing time-ordered data points. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., & Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.
- Seasonal decomposition separates a time series into trend, seasonal, and residual components. The STL (Seasonal and Trend decomposition using Loess) method is particularly robust. Cleveland, R.B., Cleveland, W.S., McRae, J.E., & Terpenning, I. (1990). STL: A seasonaltrend decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3-73.
- 3. Timeline visualizations help communicate the temporal sequence of events in research projects. They are particularly useful for project management and presenting research progress to stakeholders.
- 4. The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are essential tools for identifying the order of ARIMA models. Ljung, G.M., & Box, G.E.P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297-303.
- 5. Change point detection identifies times when the statistical properties of a time series change. The CUSUM (Cumulative Sum) method is one of the simplest approaches. Page, E.S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115.
- For comprehensive coverage of modern time series methods, see: Hyndman, R.J., &
 Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts. Available
 online at https://otexts.com/fpp3/