### LINEARNO BINARNI BLOK KODOVI

$$K: (n, M, d) \leftrightarrow [n, k, d] \leftrightarrow [n, k]$$

$$R(K) = \frac{k}{n} \le 1$$

$$d(K) = \min_{x,y \in K} (d(x,y)|x \neq y)$$



$$d(x,y) = w(x-y)$$

k – broj informacijskih bitova u kodnoj riječi

n - duljina kodne riječi

M - broj kodnih riječi u kodu

d – distanca (udaljenost) koda

R – kodna brzina

w - težina kodne riječi

Uvjeti lineranosti binarnog blok koda

1) 
$$x + y \in K$$
,  $x,y \in K$ 

2) 
$$a \cdot x \in K$$
,  $a \in \{0,1\}$ 

#### HAMMINGOVA MEĐA

$$M \leq \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{t}}$$

# PERFEKTAN KÔD

$$M = \frac{2^n}{\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{t}}$$

#### VJEROJATNOST ISPRAVNOG DEKODIRANJA

$$p(K) = \sum_{i=0}^{t} {n \choose i} p_g^i (1 - p_g)^{n-i}$$

#### **DEKODIRANJE LINEARNOG BINARNOG KODA:**

1) Metoda najbližeg susjeda

$$d(K) \ge s + 1$$
  
$$s = d(K) - 1$$

$$t = \left\lfloor \frac{d(K)-1}{2} \right\rfloor$$
$$d(K) \ge 2t + 1$$

$$2^{n-k} \ge \sum_{i=0}^{t} {n \choose i}$$

s - najveći broj pogrešaka koje kôd može otkriti

t - najveći broj pogrešaka koje kôd K može ispraviti

2) Sindromsko dekodiranje

$$e = y - x$$

e - vektor pogreške

🗶 - poslana kodna riječ

y - primljena kodna riječ

$$G = [I_k \mid A]$$

$$H = [A^T \mid I_{n-k}]$$

$$S(y) = y \cdot H^T$$

**G** – generirajuća matrica koda dimenzija  $k \times n$ 

H - matrica provjere pariteta

5 - sindrom

#### HAMMINGOV KÔD

**H** - matrica provjere pariteta dimenzija  $r \times (2^r - 1)$ 

$$r = n - k$$

Generirajuću matricu G je iz matrice H moguće dobiti sljedećim postupkom:

- U matrici H izbrisati sve stupce koji se nalaze na pozicijama s indeksom jednakim potenciji broja 2 (pozicije 1,2,4, 8, 16, itd).
  - 2. Dobivenu matricu transponirati.
- 3. Stupce dobivene matrice smjestiti na pozicije generirajuće matrice G čiji indeksi odgovaraju potencijama broja 2.
  - 4. Ostale stupce popuniti redom stupcima jedinične matrice.

#### HAM [7,4]

$$G = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

#### CIKLIČKI KÔD

Uvjeti:

- 1.  $\forall a(x), b(x) \in K$ ,  $vrijedi a(x) + b(x) \in K$
- 2.  $\forall a(x) \in K i \forall r(x) \in Rn, \text{ vrijedi}$  $r(x) \cdot a(x) \mod (xn-1) \in K.$

$$x^n - 1 = g(x) \cdot h(x)$$

r - stupanj generirajućeg polinoma

h(x) - polinom za provjeru pariteta cikličnog koda K.

$$d(x) \cdot x^r = g(x)q(x) + r(x) = c(x)$$

$$r(x) = d(x) \cdot x^r \bmod[g(x)]$$

$$S(c'(x)) = \frac{x^{n-k}c'(x)}{g(x)}$$

$$c = \lceil d | r \rceil$$

g(x) - generirajući polinom

q(x) - kvocijent

d(x) – polinom kodirane poruke

r(x) – ostatak nakon dijeljenja s g(x)

c(x) – kodna riječ

S(c'(x)) - sindrom primljene kodne riječi

## FAKTORIZACIJE NEKIH POLINOMA OBLIKA $x^n-1$

| N  | Ari  | Faktorizacija u aritmetici modulo 2                                                      |
|----|------|------------------------------------------------------------------------------------------|
|    | t.   |                                                                                          |
| 1  | x -  | x + 1                                                                                    |
| 2  | x2 - | $(x+1)^2$                                                                                |
| 3  |      | $(x+1)(x^2+x+1)$                                                                         |
| 5  | x5 - | $(x+1)(x^4+x^3+x^2+x+1)$                                                                 |
| 7  | 7 –  | $(x+1)(x^3+x+1)(x^3+x^2+1)$                                                              |
| 9  | x9 - | $(x+1)(x^2+x+1)(x^6+x^3+1)$                                                              |
| 11 | x11  | $(x+1)(x^{10}+x^9+\cdots+x+1)$                                                           |
| 13 | x13  | $(x+1)(x^{12}+x^{11}+\cdots+x+1)$                                                        |
| 15 | x15  | $(x+1)(x^2+x+1)(x^4+x+1)(x^4+x^3+1)(x^4+x^3+x^2+x^4+x^4+x^4+x^4+x^4+x^4+x^4+x^4+x^4+x^4$ |
|    |      | 1)                                                                                       |
| 17 | x17  | $(x+1)(x^8+x^5+x^4+x^3+1)(x^8+x^7+x^6+x^4+x^2+x+$                                        |
|    |      | 1)                                                                                       |
| 19 | x 19 | $(x+1)(x^{18}+x^{17}+\cdots+x+1)$                                                        |

