01204211 Discrete Mathematics Lecture 12b: Linear functions

Jittat Fakcharoenphol

September 15, 2022

Linear functions

Linear functions

Consider vector spaces $\mathcal V$ and $\mathcal W$ over $\mathbb R$. A function $f:\mathcal V\to\mathcal W$ is linear if

- 1. for all $x, y \in \mathcal{V}$, f(x + y) = f(x) + f(y) and
- 2. for all $\alpha \in \mathbb{R}$ and $x \in \mathcal{V}$, $f(\alpha x) = \alpha f(x)$.

Example 2 - Page rank (1)

Example 2 - Page rank (2)

Matrix-vector multiplication

Given an $m \times n$ matrix M over \mathbb{R} , consider a product

Mx.

Note that for the multiplication to work, x must be in \mathbb{R}^n and the result vector is in \mathbb{R}^m . Therefore, we can define a function $f: \mathbb{R}^n \to \mathbb{R}^m$ as

$$f(\boldsymbol{x}) = M\boldsymbol{x}.$$

Note that f is linear because:

$$f(\boldsymbol{x} + \boldsymbol{y}) = M(\boldsymbol{x} + \boldsymbol{y}) = M\boldsymbol{x} + M\boldsymbol{y} = f(\boldsymbol{x}) + f(\boldsymbol{y}),$$

and

$$f(\alpha \mathbf{x}) = M(\alpha \mathbf{x}) = \alpha M \mathbf{x} = \alpha f(\mathbf{x}).$$

The converse

Lemma 1

For any linear function $f:\mathbb{R}^n \to \mathbb{R}^m$, there exists an $m \times n$ matrix M such that

$$f(\boldsymbol{x}) = M\boldsymbol{x}.$$

Proof.

Consider any $x \in \mathbb{R}^n$. Let $\boldsymbol{x} = [x_1, x_2, \dots, x_n]$. Note that

$$\mathbf{x} = [x_1, 0, \dots, 0] + [0, x_2, 0, \dots, 0] + \dots + [0, \dots, 0, x_n].$$

Let $e_1,e_2,\ldots,e_n\in\mathbb{R}^n$ be standard generators, i.e., e_i be a vector with 1 at the i-th row and 0 at every other positions. (For example $e_1=[1,0,\ldots,0]$ and $e_3=[0,0,1,0,\ldots,0]$.)

We thus have

$$\boldsymbol{x} = x_1 \boldsymbol{e}_1 + x_2 \boldsymbol{e}_2 + \dots + x_n \boldsymbol{e}_n.$$

Since f is linear, this implies that

$$f(x) = x_1 f(e_1) + x_2 f(e_2) + \dots + x_n f(e_n).$$

Proof (cont.)

Define M as follows

$$M = \left[\begin{array}{c|c} f(\boldsymbol{e}_1) & f(\boldsymbol{e}_2) & \cdots & f(\boldsymbol{e}_n) \end{array} \right].$$

Hence.

$$Mx = \begin{bmatrix} f(e_1) & f(e_2) & \cdots & f(e_n) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= x_1 f(e_1) + x_2 f(e_2) + \cdots + x_n f(e_n) = f(x),$$

as required.

Zero

Lemma 2

Consider any linear function $f: \mathcal{V} \to \mathcal{W}$. Let $0_{\mathcal{V}}$ denote the zero vector in \mathcal{V} and $0_{\mathcal{W}}$ denote the zero vector in \mathcal{W} . We have that linear function f always maps zero to zero, i.e., $f(0_{\mathcal{V}}) = 0_{\mathcal{W}}$.

Proof.

First note that $0_{\mathcal{V}} = 0_{\mathcal{V}} + 0_{\mathcal{V}}$. Since f is linear, we have that

$$f(0_{\mathcal{V}}) = f(0_{\mathcal{V}} + 0_{\mathcal{V}}) = f(0_{\mathcal{V}}) + f(0_{\mathcal{V}}).$$

Subtracting $f(0_{\mathcal{V}})$ from both sides, we conclude that

$$0_{\mathcal{W}} = f(0_{\mathcal{V}}).$$

One-to-one linear functions and Onto linear functions

One-to-one and onto functions

Consider a function $f:D\to R$ (i.e., the domain of f is D and its range is R).

- Function f is **one-to-one** (or **injective**) if for all $x, y \in D$, f(x) = f(y) implies that x = y.
- Function f is **onto** (or **surjective**) if for all $x \in R$, there exists $y \in D$ such that f(y) = x.

For this course, we consider only linear functions; therefore, we consider $f: \mathcal{V} \to \mathcal{W}$, where \mathcal{V} and \mathcal{W} are vector spaces.

One-to-one linear functions

Suppose that f is not one-to-one, i.e., there exists a pair $x,y\in\mathcal{V}$ such that $x\neq y$ and f(x)=f(y). Since f is linear, we know that

$$f(x - y) = f(x) - f(y) = 0.$$

Since $x \neq y$, $x - y \neq 0$ and we have that there exists a non-zero element z = x - y that f maps to 0. The contraposition of this fact is as follows.

If the only element in V that f maps to 0_{W} is 0_{V} , f is one-to-one (or injective).

Because the set of elements that f maps to zero is very important, we have a name for it.

Definition (Kernel)

The ${\bf kernel}$ of f, denoted by ${\rm Ker}\ f,$ is the set of all elements that f maps to zero, i.e.,

$$\mathrm{Ker}\ f = \{ \boldsymbol{v} \in \mathcal{V} : f(\boldsymbol{v}) = 0_{\mathcal{V}} \}.$$

We can now restate the condition for f to be one-to-one using this concept.

Lemma 3

A linear function f is one-to-one, if and only if $\operatorname{Ker} f = \{0\}$.

The kernel is also a vector space

Lemma 4

Ker f is a vector space.

Proof.

First note that f(0) = 0; thus $0 \in \text{Ker } f$.

Suppose that $x \in \operatorname{Ker} f$, i.e., f(x) = 0. Note that for any scalar α ,

$$f(\alpha x) = \alpha f(x) = \alpha 0 = 0.$$

Also suppose $y \in \text{Ker } f$. We have that

$$f(x+y) = f(x) + f(y) = 0 + 0 = 0.$$

Onto linear functions

Definition (Image)

For any function g, its **image**, denoted by Im g, is the set of all elements that g maps to, i.e.,

Im $g = \{y : \text{there exists } x \text{ such that } g(x) = y\}.$

The image is also a vector space

Lemma 5

The image of linear function f, Im f, is a vector space.

Proof.

Since $f(0_{\mathcal{V}}) = 0_{\mathcal{W}}, 0_{\mathcal{W}} \in \text{Im } f$.

Consider $y \in \operatorname{Im} f$. We have that there exists x such that f(x) = y. Consider any scalar α . We know that $\alpha y \in \operatorname{Im} f$

because $f(\alpha x) = \alpha f(x) = \alpha y$.

Consider, also, $y' \in \text{Im } f$. Let x' be such that f(x') = y'. Since $y' \in \text{Im } f$, we know that x' exists. We have that

$$f(x + x') = f(x) + f(x') = y + y'.$$

This implies that $y + y' \in \text{Im } f$.

Kernels and images

Theorem 6 (Kernel-Image Theorem)

Consider a linear function $f: \mathcal{V} \to \mathcal{W}$. We have that

 $\dim \mathcal{V} = \dim \operatorname{\mathsf{Ker}} f + \dim \operatorname{\mathsf{Im}} f.$

Completing the basis

Lemma 7

For a set of linearly independent vectors

$$\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k$$

in V with basis $B = \{v_1, v_2, \dots, v_n\}$ (where $k \leq n$), there exists a set of vectors $w_1, w_2, \dots, w_{n-k} \in B$ such that

$$\{u_1, u_2, \dots, u_k, w_1, w_2, \dots, w_{n-k}\}$$

is also a basis for V.

Proof.

Use the morphing lemma.

Theorem 8 (Kernel-Image Theorem)

For a linear function $f: \mathcal{V} \to \mathcal{W}$, $\dim \mathcal{V} = \dim \operatorname{\mathsf{Ker}} f + \dim \operatorname{\mathsf{Im}} f$.

Proof of Kernel-Image Theorem (1).

Let $n = \dim \mathcal{V}$ and $k = \dim \operatorname{Ker} f$. Our goal is to show that $\dim \operatorname{Im} f = n - k.$

Since Ker f is a vector space, there is a basis

 $B = \{v_1, v_2, \dots, v_k\}$. From the previous slide, we can find other n-k vectors $w_1, w_2, \ldots, w_{n-k}$ to extend B to be a basis S for \mathcal{V} ,

i.e., we have that

$$S = \{v_1, v_2, \dots, v_k, w_1, w_2, \dots, w_{n-k}\}$$

is a basis for \mathcal{V} .

Proof of Kernel-Image Theorem (2).

Consider any $u \in \mathcal{V}$. We can write u as

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{w}_1 + \beta_2 \mathbf{w}_2 + \dots + \beta_{n-k} \mathbf{w}_{n-k},$$

because S is a basis. Consider f(u). We have that

$$f(\boldsymbol{u}) = f(\alpha_1 \boldsymbol{v}_1 + \dots + \alpha_k \boldsymbol{v}_k + \beta_1 \boldsymbol{w}_1 + \dots + \beta_{n-k} \boldsymbol{w}_{n-k})$$

$$= f(\alpha_1 \boldsymbol{v}_1) + \dots + f(\alpha_k \boldsymbol{v}_k) + f(\beta_1 \boldsymbol{w}_1) + \dots + f(\beta_{n-k} \boldsymbol{w}_{n-k})$$

$$= f(\beta_1 \boldsymbol{w}_1) + f(\beta_2 \boldsymbol{w}_2) + \dots + f(\beta_{n-k} \boldsymbol{w}_{n-k})$$

$$= \beta_1 f(\boldsymbol{w}_1) + \beta_2 f(\boldsymbol{w}_2) + \dots + \beta_{n-k} f(\boldsymbol{w}_{n-k})$$

This calculation shows that an image of f can be written as a linear combination of $f(\boldsymbol{w}_1),\ldots,f(\boldsymbol{w}_{n-k})$. That is

(Note that the second step follows because $v_i \in \text{Ker } f$. Other steps use the fact that f is linear.)

$$\operatorname{Im} f = \operatorname{Span} \{ f(\boldsymbol{w}_1), \dots, f(\boldsymbol{w}_{n-k}) \}.$$

Proof of Kernel-Image Theorem (3).

Let $S'=\{f(\boldsymbol{w}_1),\ldots,f(\boldsymbol{w}_{n-k})\}$. If we can show that S' is a basis for Im f, we are done because that would imply that $\dim\operatorname{Im} f=n-k$ as required.

We already know that S' spans Im f. To show that S' is a basis we still need to show that S' is linearly independent.

Suppose that there exist $\beta_1, \ldots, \beta_{n-k}$ such that

$$\beta_1 f(\boldsymbol{w}_1) + \beta_2 f(\boldsymbol{w}_2) + \dots + \beta_{n-k} f(\boldsymbol{w}_{n-k}) = 0_{\mathcal{W}}.$$

Since f is linear we know that

$$0_{W} = \beta_{1}f(\mathbf{w}_{1}) + \beta_{2}f(\mathbf{w}_{2}) + \dots + \beta_{n-k}f(\mathbf{w}_{n-k})$$

$$= f(\beta_{1}\mathbf{w}_{1}) + f(\beta_{2}\mathbf{w}_{2}) + \dots + f(\beta_{n-k}\mathbf{w}_{n-k})$$

$$= f(\beta_{1}\mathbf{w}_{1} + \beta_{2}\mathbf{w}_{2} + \dots + \beta_{n-k}\mathbf{w}_{n-k}),$$

i.e.,
$$\beta_1 w_1 + \beta_2 w_2 + \cdots + \beta_{n-k} w_{n-k}$$
 is in Ker f .

Proof of Kernel-Image Theorem (4).

Suppose that some $\beta_i \neq 0$.

Since
$$\beta_1 w_1 + \beta_2 w_2 + \cdots + \beta_{n-k} w_{n-k} \in \text{Ker } f$$
,

we know that it is a linear combination of vectors from B, as B is a basis for vector space Ker f.

From here, we can reach a contradiction using the fact that vectors in Sare linearly independent.

Therefore, we conclude that all $\beta_1, \ldots, \beta_{n-k}$ must be 0. Hence,

 $S' = \{f(\mathbf{w}_1), \dots, f(\mathbf{w}_{n-k})\}\$ is linearly independent as needed.

Direct sum (optional)

Consider two subspaces $\mathcal V$ and $\mathcal W$ of a vector space $\mathcal Z$. If $\mathcal V\cap\mathcal W=\{0\}$, we can define their *direct sum* to be another vector space $\mathcal V\oplus\mathcal W$ as

$$V \oplus W = \{v + u : v \in V, u \in W\}.$$

Note, again, that $\mathcal{V} \oplus \mathcal{W}$ is defined only when $\mathcal{V} \cap \mathcal{W} = \{0\}$.