Object Description

COS791: Chapter 7

Dr. Mardé Helbig

Object Descriptions

- Need to describe properties of a group of pixels
- A set of numbers
- Called the object's descriptors
- Can compare and recognize objects by matching known object descriptors with objects in an image

- By storing coordinates of a sequence of pixels, we can obtain a representation of a contour
- Or we can store the relative position between a sequence of pixels => basic idea behind chain codes
- One of the oldest techniques in computer vision introduced in the 1960s

- By storing coordinates of a sequence of pixels, we can obtain a representation of a contour
- Or we can store the relative position between a sequence of pixels => basic idea behind chain codes
- One of the oldest techniques in computer vision introduced in the 1960s
- Set of pixels on the border of a shape is translated into a set of connections between them

- Given a complete border, we must be able to:
 - determine the direction of the next pixel in the sequence
 - using compass directions
- Chain code is created by concatenating the number that designates the direction of the next pixel

	North 0		
West 3	Origin	East 1	
	South 2		

North West 7	North 0	North East 1
West 6	Origin	East 2
South West 5	South 4	South East 3

			P23	Start			
		P21	P22	P1	P2		
	P19	P20			P3		
	P18				P4	P5	
	P17	P16				P6	
		P15	P14		P8	P7	
1.	e for		P13	P12	P9		•
	vay	,		P11	P10		

Write down the chain code for the above figure using 4-way and 8-way connectivity

		P23	Start		
	P21	P22	P1	P2	
P19	P20			P3	
P18				P4	P5
P17	P16				P6
	P15	P14		P8	P7
		P13	P12	P9	
	,		P11	P10	

{2,1,2,2,1,2,2,3,2,2,3,0,3,0,3,0,3,0,0,1,0,1,0,1}

(a) Chain code given 4-way connectivity

		P15	Start		
	P14			P1	
P13				P2	
P12					P3
P11					P4
	P10				P5
		P9		P6	
			P8	P7	

Code = $\{3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2\}$

(b) Chain code given 8-way connectivity

Shifts and Minimum integer chain code

Starting point invariance

Code = {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2} (a) Initial chain code	Code = {4,3,4,4,5,4,6,7,7,7,0,0,1,1,2,3} (b) Result of one shift		
Code = {3,4,4,5,4,6,7,7,7,0,0,1,1,2,3,4} (c) Result of two shifts	Code = {0,0,1,1,2,3,4,3,4,4,5,4,6,7,7,7} (d) Minimum integer chain code		
	Minimum of all possible shifts		

- Rotation invariance: express code as a difference of chain code – relative description removes rotation dependence
- Scale independence: re-sample boundary before coding
- Noise can have drastic effects
- BUT, chain codes are simple to use

- With Fourier descriptors we bring Fourier theory to shape description
- Want to characterize a shape contour by a set of numbers that represent frequency content of a whole shape
- Can select a small set of numbers (Fourier coefficients) that describes a shape

Two main steps to obtain a Fourier description of a curve:

- 1. Define a representation of a curve
- 2. Expand representation using Fourier theory
- Will consider Fourier descriptors of angular and complex contour representations
- The trace of a curve defines a periodic function => we will use a Fourier series expansion

- Although a curve in an image is composed of discrete pixels, Fourier descriptors are developed for a continuous curve
- It leads to a discrete set of Fourier descriptors
- Pixels in image are sampled points of a continuous curve in scene
- Formulations leads to the definition of the integral of a continuous curve
- In practice we have a sampled version of a continuous curve
- The expansion is approximated by means of numerical integration

Fourier Descriptors Basis

- Coordinates of boundary pixels are x and y point coordinates
- Fourier description of these pixels gives the set of spatial frequencies that fit the boundary points
- 1st element of Fourier components (DC component) is the average value of the x and y coordinates:
 - Gives the center point of the boundary
 - Expressed in complex form
- 2nd component gives radius of circle that best fits the points

Fourier Descriptors Basis

- A circle can be described by its zero and 1st components
- Higher order components increasingly describe detail
- How can we check whether the Fourier descriptor is correct?

- But what if we want descriptors that are position, scale and rotation invariant
- Need to consider more basic properties
- Need the Fourier theory for shape description

Fourier Descriptors Fourier Expansion

A continuous curve c(t) can be expressed as:

- We want to find the coefficients of the set of basis functions
- A Fourier expansion represents periodic functions by a basis defined as a set of infinite complex exponentials:

$$c(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega t}$$
 fundamental frequency = $2\pi/T$, where T is period of function

Fourier Descriptors Fourier Expansion

Main property is that it defines an orthogonal basis

$$\int_0^T f_k(t)f_j(t)dt = 0 \qquad \text{for } k \neq j$$

This property ensures:

- 1. Expansion does not include redundant information
- 2. A simple way to compute the coefficients

Fourier Descriptors Additional Links

- Illustrations of various shapes and number of descriptors: http://demonstrations.wolfram.com/FourierDescriptors/
- Effect of translation, rotation, scaling and position: http://fourier.eng.hmc.edu/e161/lectures/fd/node1

 .html

- May want to describe the region and not the boundary
- Can use regional shape descriptors
- 2 types:
 - * Basic: describes geometric properties of region
 - Moments: concentrate on density of region

Basic: Size

Size or area of region is given by:

$$A(S) = \int_{X} \int_{Y} I(x, y) dy dx$$
 where I=1 if pixel is within shape, 0 otherwise

 In practice, integrals are approximated by summations:

$$A(S) = \sum_{x} \sum_{y} I(x, y) \Delta A$$
 ΔA is the area of 1 pixel

· A changes with scale, but is invariant to rotation

Basic: Perimeter

- Let x(t) and y(t) denote parametric coordinates of a curve enclosing a region S.
- Then the perimeter of the region is given by:

$$P(S) = \int_{t} \sqrt{x^{2}(t) + y^{2}(t)} dt$$
 which is the sum of all the arcs defining the curve

This is approximated by:

$$P(S) = \sum_{i} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$$

where x_i and y_i represent pixel i from the curve

Basic: Compactness

 Using A and P, we can define compactness as follows:

$$C(S) = \frac{4\pi A(s)}{P^2(s)}$$

Can re-write it as follows:

$$C(S) = \frac{A(s)}{P^2(s)/4\pi}$$

Area of circle whose perimeter is P(S)

Basic: Compactness

Basic: Dispersion and Irregularity

- Dispersion measures the ratio of major chord length to area
- Irregularity (density) is a simplified version, defined as:

$$I(S) = \frac{\pi \max((x_i - \overline{x})^2 + (y_i - \overline{y})^2)}{A(S)}$$
 Area of maximum circle enclosing the region

OR

$$IR(S) = \frac{\max\left(\sqrt{(x_i - \overline{x})^2 + (y_i - \overline{y})^2}\right)}{\min\left(\sqrt{(x_i - \overline{x})^2 + (y_i - \overline{y})^2}\right)}$$

Basic: Issues

- Perimeter measures will vary with rotation
- Perimeter measures are more likely to be affected by noise than area measures

Basic: Comparison of shapes

(a) Circle

(b) Convoluted region

(c) Ellipse

$$A(S) = 4917$$

$$P(S) = 259.27$$

$$C(S) = 0.91$$

$$I(S) = 1.00$$

$$IR(S) = 1.03$$

(a) Descriptors for the circle

$$A(S) = 2316$$

$$P(S) = 498.63$$

$$C(S) = 0.11$$

$$I(S) = 2.24$$

$$IR(S) = 6.67$$

(b) Descriptors for the convoluted region

$$A(S) = 6104$$

$$P(S) = 310.93$$

$$C(S) = 0.79$$

$$I(S) = 1.85$$

$$IR(S) = 1.91$$

(b) Descriptors for the (c) Descriptors for the ellipse