

Simone Milani Room 216 DELA

Phone: 049 827 7641

E-mail:

simone.milani@dei.unipd.it

Digital Forensics

A.A. 2018/2019

Lab experience n.1 – Network forensics

Scenario 1: traffic classification

- Let us assume we are sniffing the packets from an android phone
- Monitoring encrypted traffic: only packet lengths are available

Features: since packets are encrypted we need some high level feature

e.g. discriminating between Twitter and Facebook, average packet length and their variance.

$$x_1 = L = \frac{1}{N} \sum_{i} l(p_i)$$

$$x_2 = \sigma_L = \sqrt{\frac{1}{N} \sum_{i} \left(l(p_i) - \overline{L} \right)^2}$$

PCAP files

PCAP files

Stores information about sniffed streams (tools: libpcap)

Global	Packet	Packet	Packet	Packet	Packet	Packet	
Header	Header	data	Header	data	Header	data	• • •

PCAP->CSV files

арр	action	seq.	action start	flow nr.	IP dest.	IP dest. resol.	port source	port dest.	flow length	flow start	packets length total
facebook	open facebook	1	1383129102.11	0	х		14146	53	2	xxxx	[79, _185]
facebook	open facebook	1	1383129102.11	1	x		18748	53	2	xxxx	[78, _203]
facebook	open facebook	1	1383129102.11	2	У	а	47559	443	29	xxxx	[250, _1514,]
facebook	open facebook	1	1383129102.11	3	У	b	42963	443	30	xxxx	[250, _1514,]
facebook	open facebook	1	1383129102.11	4	x		7633	53	2	xxxx	[76, _183]
facebook	open facebook	1	1383129102.11	5	У	a	33554	443	9	xxxx	[250, _1514,]
facebook	open facebook	1	1383129102.11	6	У	a	47559	443	2	xxxx	[764, _1014]
facebook	open facebook	1	1383129102.11	7	У	а	42599	443	31	xxxx	[282, _1514,]
facebook	open facebook	1	1383129102.11	8	У	b	42963	443	5	xxxx	[92, 92, 93,]
facebook	open facebook	1	1383129102.11	9	У	С	49785	443	46	xxxx	[250, _1514,]
facebook	open facebook	1	1383129102.11	10	x		39051	53	2	xxxx	[78, _206]
facebook	open facebook	1	1383129102.11	11	У	b	42963	443	7	xxxx	[92, 92, 93,]
facebook	menu selection	1	1383129213.08	12	У	b	42963	443	7	xxxx	[92, 92, 93,]
facebook	menu selection	1	1383129213.08	13	У	b	42963	443	10	xxxx	[92, 92, 93,]
facebook	menu selection	1	1383129213.08	14	У	а	33554	443	2	xxxx	[-93, 93]
facebook	menu selection	1	1383129213.08	15	У	а	42599	443	9	xxxx	[917, 1514,]
facebook	replacing menu in	1	1383129244.01	16	у	a	47559	443	1	xxxx	[-93]
facebook	replacing menu in in initial position	1	1383129244.01	17	у	С	49785	443	1	xxxx	[-93]
facebook	replacing menu in	1	1383129244.01	18	у	b	42963	443	7	xxxx	[92, 92, 93,]
facebook	edit search selection	1	1383129275.01	19	У	b	42963	443	7	xxxx	[92, 92, 93,]

NB: > 0 outgoing <0 incoming

Session of packets

Binary linear separator

Given a set of points

$$(\mathbf{x}_1,y_1), \ (\mathbf{x}_2,y_2), \dots, (\mathbf{x}_n,y_n)$$

The hyperplane that separates the points of each class is

$$\mathbf{w} \cdot \mathbf{x} - b = 0$$

Introducing a margin we have

$$\mathbf{w} \cdot \mathbf{x} - b = 1 \qquad \mathbf{w} \cdot \mathbf{x} - b = -1$$

The distance between the two margin is increased if $||\mathbf{w}||$ is small.

 $\frac{2}{\|\mathbf{w}\|^2}$ which implies that robustness is

The two classes can be defined as

$$\mathbf{w} \cdot \mathbf{x}_i - b \le -1$$
 for y_i =-1

$$\mathbf{w} \cdot \mathbf{x}_i - b \ge 1$$
 for $y_i = 1$

$$y_i \left(\mathbf{w} \cdot \mathbf{x}_i - b \right) \ge 1$$

Kernel-based classification

It is possible to have a representation of \mathbf{w} in the space so defined

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \varphi(\mathbf{x}_{i})$$

Note that
$$\mathbf{w}\varphi(\mathbf{x}) = \sum_i \alpha_i y_i \varphi(\mathbf{x}_i) \varphi(\mathbf{x}) = \sum_i \alpha_i y_i k(\mathbf{x}_i, \mathbf{x})$$

In the linear case:
$$\mathbf{w} = \sum_i c_i y_i \mathbf{x}_i$$

Commands to be used

Create a .mat file to be read by libsvm

```
>>write_svm_file(mat1,mat2,'train.mat');
```

```
Label 1:feat1 2:feat2 ...
....
```

Create a classifier

```
$svm-train [options] train.mat classifier.mod
```

```
train.mat: training set file
```

classifier.mod: file with classifier parameters (support vector, etc.)

[Options]

```
-t <n> kernel function ('0': linear, '2': RBF)
```

-v <n> cross-validation; <n>: number of partitions

-e <n> tolerance for termination

-b [0|1] probability estimates

Predict input values

```
$svm-predict test.mat classifier.mod output.txt
```

output.txt: classified labels test.mat: training set file

Compute separating hyperplane

Compute hyperplane with linear kernels

Find line equation

$$k(\mathbf{x}_i, \mathbf{x}) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}\|)$$

Compute hyperplane with RBF kernels

Scenario 2: incoming traffic

What happens if we analyze the incoming traffic?

Question 1

- ① Compute a classifier with linear kernel for scenario 1
- 2 Compute a classifier with linear kernel for scenario 2
- ③ Is it possible to improve the accuracy using different kernels?
- What about overfitting?