Problem 8. (Page 72 #8 in course notes)

```
Step 1:
     Loop invariants
Step 2:
```

(a) x is even and $\geq 0 \implies x = 2k, k \in \mathbb{N}$

(b) $y \ge -2$

Basis:

 $y = 0, \ x = 0$

So x is even and ≥ 0 , and $y \geq -2$, as wanted

INDUCTION STEP: Consider an arbitrary iteration of the loop Suppose LI holds before the loop iteration WTP: LI holds after the iteration

 $x \neq 0$ [line 1] $\implies x \ge 2$ since 2 is the next even number after 0. **(**

Case 1: $y \ge 1$ y' = y - 3[line 3] [line 2] $\geq 1 - 3$ = -2

as wanted fo LI(a)

x' = x + 2[line 3] = 2k + 2[IH]= 2(k+1)which is even > 0 [H]as wanted for LI(b)

Case 2: y < 1y' = y[line 3] ≥ -2 [H]as wanted fo LI(a)

$$x' = x - 2$$
 [line 3]
 $= 2k - 2$ [IH]
 $= 2(k - 1)$ which is even

Also, x' = x - 2[line 3] $\geq 2-2$ **(** = 0as wanted for LI(b)

Step 4:

Let
$$e = y + x + 2$$

Step 5:

- (A) Proving $e \ge 0$ e = y + x + 2 $\ge -2 + x + 2$ [by LI(a)] = x ≥ 0 [By LI(b)]
- (B) Consider an arbitrary interation.

Case 1:
$$y \ge 1$$

 $y' = y - 3$ [line 3]
 $x' = x + 2$ [line 3]
 $e' = y' + x' + 2$
 $= y - 3 + x + 2 + 2$
 $= y + x + 2 - 1$
 $= e - 1$ [definition of e]
 $< e$
Case 2: $y < 1$
 $y' = y$
 $x' = x - 2$ [line 5]

e' = y' + x' + 2= y + x - 2 + 2= e - 2 [definition of e] < e

as wanted.

If line 3 were changed to y := y - 1

Step 1:

Loop invariants

(a) x is even and $\geq 0 \implies x = 2k, k \in \mathbb{N}$

(b) $y \ge 0$

Step 2:

BASIS:
$$y = 0, x = 0$$

So x is even and ≥ 0 , and $y \geq 0$, as wanted

INDUCTION STEP: Consider an arbitrary iteration of the loop Suppose LI holds before the loop iteration

WTP: LI holds after the iteration

$$x \neq 0$$
 [line 1] $\Rightarrow x \geq 2$ since 2 is the next even number after 0. (4)

Case 1:
$$y \ge 1$$

$$y' = y - 1 \qquad [line 3]$$

$$\geq 1-1$$
 [line 2]

$$= 0$$

as wanted fo LI(a)

$$x' = x+2$$

$$= 2k + 2$$
 [IH]

$$-2\kappa+2$$
 [III]

$$= 2(k+1)$$
 which is even

[line 3]

[line 3]

$$\geq 0$$
 [IH]

as wanted for LI(b)

Case 2: y < 1

$$y' = y$$

$$\geq 0$$

as wanted fo LI(a)

$$x' = x - 2$$
 [line 3]

$$= 2k-2$$
 [IH]

$$= 2(k-1)$$

Also,

$$x' = x - 2$$

$$\geq 2 - 2$$

$$= 0$$

as wanted for LI(b)

Step 4:

Let
$$e = 3y + x$$

as wanted.

Step 5:

(A) Proving
$$e \ge 0$$

 $e = 3y + x$
 $\ge 3(0) + 0$ [by LI(a) and LI(b)]
 $= 0$

(B) Consider an arbitrary interation.

Case 1:
$$y \ge 1$$

 $y' = y - 1$ [line 3]
 $x' = x + 2$ [line 3]
 $e' = 3y' + x'$
 $= 3(y - 1) + x + 2$
 $= 3y + x - 1$
 $= e - 1$ [definition of e]
 $< e$
Case 2: $y < 1$
 $y' = y$
 $x' = x - 2$ [line 5]
 $e' = 3y' + x'$
 $= 3y + x - 2$
 $= e - 2$ [definition of e]
 $< e$

4

Problem 9. (Page 73 #9 in course notes)

Step 1:

Loop invariants

- (a) $y = x^2$
- (b) $x \ge 0$

Step 2:

Basis:

$$y = 0, x = 0$$

So $x \ge 0$, and $y = x^2$, as wanted

INDUCTION STEP: Consider an arbitrary iteration of the loop Suppose LI holds before the loop iteration [IH]

WTP: LI holds after the iteration

$$y \neq 0$$
 [line 2] $\implies x \geq 1$ (\clubsuit) since $y = x^2$ and the next natural number after 0 is 1

$$x' = x - 1$$
 [line 3]

$$\geq 1 - 1$$
 ()

as wanted fo LI(b)

$$y' = y - 2x - 1$$
 [line 4]

$$= x^2 - 2x - 1$$

$$= (x - 1)^2$$

$$= (x')^2$$
 [since $x' = x - 1$]
as wanted fo LI(a)

Step 4:

Let
$$e = x$$

Step 5:

(A) Proving
$$e \ge 0$$

 $e = x$
 ≥ 0 [by LI(b)]

(B) Consider an arbitrary interation.

$$x' = x - 1 \qquad [\text{line 3}]$$

$$\begin{array}{rcl} e' & = & x' \\ & = & x - 1 \\ & = & e - 1 \\ & < & e \end{array} \qquad \begin{tabular}{l} [definition of e] \\ \\ \end{array}$$

as wanted.