Outline

- K-Means
- Hierarchical Clustering
- Model-based Clustering (GMM and Expectation Maximization)
- Evaluation of Clustering Algorithms

Model-based Clustering: Gaussian Mixture Model

• Density estimation with multimodal/clumpy data

- The GMM assumption
- There are k components. The ith component is called ω_i
- Component ω_i has an associated mean vector μ_i

- The GMM assumption
- There are k components. The ith component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

- The GMM assumption
- There are k components. The ith component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$
- Assume that each datapoint is generated according to the following recipe:
 - Pick a component at random. Choose component i with probability $P(\omega_i)$.
 - Datapoint ~ $N(\mu_i, \Sigma_i)$

- The GMM assumption
- There are k components. The ith component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$
- Assume that each datapoint is generated according to the following recipe:
 - Pick a component at random. Choose component i with probability $P(\omega_i)$.
 - Datapoint ~ $N(\mu_i, \Sigma_i)$

- Given the means and σ^2 , we can compute P(data | $\mu_1, \mu_2...\mu_{k_i}$ σ^2). How do we find the μ_i s and σ^2 which give max likelihood?
- The normal max likelihood trick:

Set
$$\underline{d}$$
 log Prob (....) = 0 $d\mu_i$

and solve for μ_i 's.

- Use gradient descent
 - Slow but doable
- Use a much faster and popular method: EM

Expectation Maximization (EM)

- We'll get back to unsupervised learning/clustering/GMM soon.
- The EM algorithm was explained and given its name in a classic 1977 paper by Arthur Dempster, Nan Laird, and Donald Rubin.
- They pointed out that the method had been "proposed many times in special circumstances" by earlier authors.
- EM is typically used to compute maximum likelihood estimates given incomplete samples.
 - An excellent way of doing our unsupervised learning problem, as we'll see
 - Many, many other uses, including inference of Hidden Markov Models
- The EM algorithm estimates the parameters of a model iteratively. Starting from some initial guess, each iteration consists of
 - an E step (Expectation step)
 - an M step (Maximization step)

EM: Trivial Example

Let events be "grades in a class"

$$w_1 = Gets an A$$

$$P(A) = \frac{1}{2}$$

$$w_2 = Gets a B$$

$$P(B) = \mu$$

$$w_3 = Gets a C$$

$$P(C) = 2\mu$$

$$w_4 = Gets a D$$

$$P(D) = \frac{1}{2} - 3\mu$$

(Note
$$0 \le \mu \le 1/6$$
)

Assume we want to estimate μ from data. In a given class, there were

What's the maximum likelihood estimate of μ given a,b,c,d?

EM: Trivial Example

P(A) =
$$\frac{1}{2}$$
 P(B) = μ P(C) = 2μ P(D) = $\frac{1}{2}$ - 3μ
P($a,b,c,d \mid \mu$) = $(\frac{1}{2})^a(\mu)^b(2\mu)^c(\frac{1}{2}$ - 3μ)^d
log P($a,b,c,d \mid \mu$) = $a\log \frac{1}{2} + b\log \mu + c\log 2\mu + d\log (\frac{1}{2}$ - 3μ)

FOR MAX LIKE
$$\mu$$
, SET $\frac{\partial Log P}{\partial \mu} = 0$

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$

Gives max like
$$\mu = \frac{b+c}{6(b+c+d)}$$

So if class got

Α	В	С	D
14	6	9	10

Max likelihood estimate : $\mu = \frac{1}{10}$

EM: Same Example with Hidden Info

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = c

What is the max likelihood estimate of μ now?

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

EM: Same Example with Hidden Info

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = a

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

What is the max likelihood estimate of μ now? We can answer this circularly as below

EXPECTATION

If we know the value of μ we could compute the expected value of a and b

Since the ratio a:b should be the same as the ratio $^{1\!/_{\!2}}:\mu$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

EM: Solution for Trivial Example

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMIZATION to improve our estimates of μ and a and b.

Define $\mu(t)$ the estimate of μ on the t^{th} iteration b(t) the estimate of b on t^{th} iteration

Continue iterating until converged.

Good news:

Converging to local optimum is assured.

Bad news: "local" optimum.

EM: Converg ence

- Convergence proof based on fact that $Prob(data \mid \mu)$ must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed I [OBVIOUS]

So it must therefore converge [OBVIOUS]

In our example, suppose		t	μ(t)	b(t)
we had h = 20 c = 10 d = 10 μ(0) = 0		0	0	0
		1	0.0833	2.857
		2	0.0937	3.158
		3	0.0947	3.185
	•	4	0.0948	3.187
Convergence is generally <u>linear</u> : error decreases by a constant factor each time step.		5	0.0948	3.187
		6	0.0948	3.187

Back to GMM

Given a training data set: X={x(1),x(2),...,x(n)}

Z={z(1),z(2),...,z(n)}

z(i) is the calss/group label of sample x(i).

As we are in Clustering setting,

X is Given and Z is unknown

Now, we model the data by specifying a joint distribution p(x(i), z(i))=p(x(i)|z(i))p(z(i))

$$z^{(i)} \sim \text{Multinomial}(\phi)$$

 $\phi_j \geq 0, \ \sum_{j=1}^k \phi_j = 1$
 $k = \# \text{ of } z(i) \text{ 's values}$
 $\phi_j = p(z_{(i)} = j)$
 $z^{(i)} = j \sim \mathcal{N}(\mu_j, \Sigma_j)$

The parameters of our model are thus ϕ , μ and Σ .

$X=\{x(1),x(2),...,x(n)\}$ Given Data

 $Z=\{z(1),z(2),...,z(n)\}$ Given $Z=\{z(1),z(2),...,z(n)\}$ unknown

What is the value of z(i)?

The parameters of our model ϕ, μ, Σ

EM for GMM

We can answer this question circularly:

EXPECTATION

If we know the values of ϕ , μ , Σ we could compute the expected values of Z

MAXIMIZATION

If we know the expected values of Z we could compute the maximum likelihood value of ϕ, μ, Σ

We begin with a guess for ϕ , μ , Σ , and then iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of ϕ , μ , Σ and Z Continue iterating until converged.

Slide Courtesy: Andrew Moore, CMU

unknown

$\ell(\phi, \mu, \Sigma) = \sum_{i=1}^{m} \log p(x^{(i)}|z^{(i)}; \mu, \Sigma) + \log p(z^{(i)}; \phi)$

EM for GMM

Maximizing this with respect to ϕ , μ and Σ gives the parameters:

$$\phi_{j} = \frac{1}{m} \sum_{i=1}^{m} 1\{z^{(i)} = j\},$$

$$\mu_{j} = \frac{\sum_{i=1}^{m} 1\{z^{(i)} = j\}x^{(i)}}{\sum_{i=1}^{m} 1\{z^{(i)} = j\}},$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{m} 1\{z^{(i)} = j\}(x^{(i)} - \mu_{j})(x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} 1\{z^{(i)} = j\}}.$$

EM for GMM

Repeat until convergence: {

(E-step) For each i, j, set

$$w_j^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)$$

(M-step) Update the parameters:

$$\phi_{j} := \frac{1}{m} \sum_{i=1}^{m} w_{j}^{(i)},$$

$$\mu_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}},$$

$$\Sigma_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{j}^{(i)}}$$

0

GMM vs k-Means

Given a training data set: X={x(1),x(2),...,x(n)}

 $Z=\{z(1),z(2),...,z(n)\}$

z(i) is the calss/group label of sample x(i).

As we are in Clustering setting,

X is Given and Z is unknown

Model of EM

EM model the data by specifying a joint distribution p(x(i), z(i))=p(x(i)|z(i))p(z(i))

$$z(i) \sim \text{Multinomial}(\phi)$$

 $\phi_j \geq 0, \ \sum_{j=1}^k \phi_j = 1$
 $k = \# \text{ of } z(i) \text{ 's values}$
 $\phi_j = p(z(i) = j)$
 $x(i)|z(i) = j \sim \mathcal{N}(\mu_j, \Sigma_j)$

each x(i) was generated by randomly choosing z(i) from $\{1, \ldots, k\}$, and then x(i) was drawn from one of k Gaussians.

K-means is a simplified EM, it assumes that

$$\phi_j = \phi_i = 1/k$$
, and $\Sigma_j = \Sigma_i$ for i, j=1,2,...k k is given by user

GMM: Example

Start: 0th iteration

Slide Courtesy: Andrew Moore, CMU

23-Nov-20

After Ist iteration

GMM: Example

Slide Courtesy: Andrew Moore, CMU

23-Nov-20

After 2nd iteration

GMM: Example

Slide Courtesy: Andrew Moore, CMU

23-Nov-20

After 3rd iteration

GMM: Example

After 4th iteration

GMM: Example

After 5th iteration

GMM: Example

After 6th iteration

GMM: Example

After 20th iteration

GMM: Example

More on EM Algorithm

- What are the EM algorithm initialization methods?
 - Random guess.
 - Initialized by k-means. After a few iterations of k-means, using the parameters to initialize EM
- What are the main advantages of parametric methods?
 - You can easily change the model to adapt to different distribution of data sets.
 - Knowledge representation is very compact. Once the model is selected, the model is represented by a specific number of parameters.
 - The number of parameters does not increase with the increasing of training data .