4 A student investigated the bending of a plastic beam.

The beam, of width w and height h, was supported at either end by two metal rods a distance l apart, as shown.

She applied a force F to the middle of the plastic beam by hanging a mass from it.

The beam bent downwards as shown.

She measured the vertical distance d moved by the middle of the plastic beam and repeated this measurement for increasing values of F.

She recorded her results in a table, as shown.

F/N	<i>d</i> /m
4.9	0.0007
9.8	0.0013
14.7	0.002
19.6	0.0027
24.5	0.0033
29.4	0.004

(a) (Criticise	the	record	ling	of	these	resul	ts.
----	-----	-----------	-----	--------	------	----	-------	-------	-----

(2)

(b) Using the grid opposite, plot a graph of d on the y-axis against F on the x-axis.

(5)

(c) (i) The 'bending modulus' E of the plastic beam can be calculated using the equation

$$E = \frac{l^3 F}{4wh^3 d}$$

Show that the gradient of the graph is equal to $\frac{l^3}{4wh^3E}$

(2)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
|
 |
| | | | | | | | | | | | | | | | |

(ii) Determine the gradient of your graph.

(2)

Gradient =

(iii) The student recorded the following measurements for the plastic beam.

l/cm	30
w/mm	20
h/mm	10

Determine E, in GPa, for the plastic beam.

(2)

$$E =$$
 GPa

-	surement of d .	
Justify the teacher's stat	tement.	(2
	epeating the investigation using a gla	ss rod instead of a
plastic beam.		
	nat would be caused by using a glass	rod.
	nat would be caused by using a glass	rod.
	nat would be caused by using a glass	
	nat would be caused by using a glass	
	nat would be caused by using a glass	
	nat would be caused by using a glass	
	nat would be caused by using a glass	