Assignment 6 Qual Problems

D. Zack Garza

November 7, 2019

Contents

1	Prob	olem 1																1													
	1.1	Part (a)																 		 											1
	1.2	Part (b)															 	 		 											1

1 Problem 1

1.1 Part (a)

Definition: A field extension L/F is said to be a *splitting field* of a polynomial f(x) if L contains all roots of f and thus decomposes as

$$f(x) = \prod_{i=1}^{n} (x - \alpha_i)^{k_i} \in L[x]$$

where α_i are the distinct roots of f and k_i are the respective multiplicities.

1.2 Part (b)

Let F be a finite field with q elements, where $q=p^k$ is necessarily a prime power, so $F\cong \mathbb{F}_{p^k}$. Then any finite extension of E/F is an F-vector space, and contains $q^n=(p^k)^n=p^{kn}$ elements. Thus $E\cong \mathbb{F}_{p^{kn}}$ Then if $\alpha\in E$, we have $\alpha^{p^{kn}}=\alpha$, so we can define $f(x):=x^{p^{kn}}-x\in F[x]$.