B. Tech Third Semester Examination, 2014-15

Mathematics-III

Time: 3 Hours

Total Marks: 100

Note: Attempt all the questions. Each question carries equal

marks.

1. Attempt any four parts of the following:

(5x4=20)

(a) If \$\phi\$ and \$\Psi'\$ are functions satisfying Laplace's equation, show that (s + it) is analytic, where

$$t = \frac{\partial \phi}{\partial y} = \frac{\partial \nu}{\partial x}$$
 and $t = \frac{\partial \phi}{\partial x} = \frac{\partial \nu}{\partial y}$

(b) Find the value of $\int \frac{2z^3+z}{z^2-1}dz$, where c is the circle of unit radius with centre at z=1.

(c) Using Taylor's theorem for an analytic function, $(x-0)^2$, $(x-0)^2$, $(x-1)^2$

$$\log z = (z-1) - \frac{(z-1)^3}{2} + \frac{(z-1)^4}{3} - \dots$$
, where $|z-1| < 1$

(d) Find the value of the integral \(\int_{(x-y-n^2)\tilde} \) along real axis from \(z = 0 \) to \(z = 1 \) and then along a line parallel to imaginary axis from \(z = 1 \) to \(z = 1 + i \).

(e)Find the residue of

$$f(z) = \frac{z^2}{(z-1)^2(z-2)(z-3)}$$
 at its pole.

(f) Using residue theorem, evaluate $\int_{1}^{\infty} \frac{d\theta}{4 + 3 \sin \theta}$

2. Attempt any two parts of the following:

(b) Using Fourier transform solve $\frac{\partial Y}{\partial \phi} = \frac{\partial^2 Y}{\partial x^2}$, $-\infty$ (a.e., 190 and $V(x_*, 0) = f(x)$).

(c)(i) Find the z-transform of cos h(nn/2 + 0)

- (ii) Solve by z-transform $y_{n+2} - 4y_n = 0$ given that $y_0 = 0$, $y_1 = 2$
- 3. Attempt any two parts of the following: (10x2=20)
 - (a) Find the mean of the binomial distribution. Also find the moment generating function of the binomial distribution about its mean.
 - (b) (i) If θ is the acute angle between the two regression lines in case of two variables x and y, show that $\tan \theta = \frac{1-r^2}{r} \frac{\sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2}$

where r is correlation coefficient between x and y, σ_x and σ_y are their standard deviations. Also, explain the significance of the formula when r = 0 and $r = \pm 1$.

- (ii) Two lines of regression are given by x+2y-5=0, 2x+3y-8=0 and $\sigma_x^2=12$, Calculate the mean values of x and y, the coefficient of correlation between x and y.
- (c)Calculate the correlation coefficient between x and y for the following data:

x	21	23	30	54	57	58	72	78	87	90
У	60	71	72	83	110	84	100	92	113	135

- 4. Attempt any four parts of the following: (5x4=20)
 - (a)Find a positive value of (17)^{1/3} correct to four decimal places by Newton-Raphson method.
 - (b) Find the rate of convergence for Regula-Falsi method.
 - (c)Using Newton's divided difference formula, find a polynomial function satisfying the following data:

X	1-4	1-1	0	2	5
f(x)	1245	33	15	9	1135

- (d) Prove that the nth difference of a polynomial function of nth degree is constant when the values of the independent variable are at equal intervals.
- (e)Using method of least squares, fit a straight line from the

	mik maru				700	112
X	12	4	6	8	10	1.6
y	110	5	- 16	4	8	10

(f) Obtain the least squares fit of the form $f(t) = a e^{bt}$, for the data

5. Attempt any two parts of the following: (10x2=20)

(a)Apply Guass-Seidel iteration method to solve the following equations (three iterations only)

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x-3y + 20z = 25$$

(b) A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time 't' seconds:

1	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity of the rod when t = 0.6

(c) Find y(2) if y(x) is the solution of $dy/dx = \frac{1}{2}(x+y)$ using Runge-Kutta method, in two steps taking h=1.0. Given y(0)=2.0.