HOMEWORK 3/4

9.22

考察要点

• 各种调制方式的频谱利用效率

M元ASK, PSK, DPSK, QAM: $0.5log_2M$

MFSK (相干) : $2log_2M/(M+3)$

MFSK (非相干) : $log_2M/(M+1)$

• 二元调制方式相干解调性能

BASK, OOK, FSK: $Q(\sqrt{\rho})$

BASK, BPSK: $Q(\sqrt{2\rho})$

 $ho = E_{sym}/N_0$

- 1. ASK: 100kHz, ρ =13.5dB; BPSK: 100kHz, ρ =10.5dB; FSK: 125kHz, ρ =13.5dB.
- 2. ASK: 1MHz, ρ =12.6dB; BPSK: 1MHz, ρ =9.6dB; FSK: 1.25MHz, ρ =12.6dB.

9.32

考察要点

• 格雷码作用 (将平均比特错误率变为误符号率的k分之一) , 构造方法

Dec	Bin	Grey	Dec	Bin	Grey
0	00000	00000	16	10000	11000
1	00001	00001	17	10001	11001
2	00010	00011	18	10010	11011
3	00011	00010	19	10011	11010
4	00100	00110	20	10100	11110
5	00101	00111	21	10101	11111
6	00110	00101	22	10110	11101
7	00111	00100	23	10111	11100
8	01000	01100	24	11000	10100
9	01001	01101	25	11001	10101
10	01010	01111	26	11010	10111
11	01011	01110	27	11011	10110
12	01100	01010	28	11100	10010
13	01101	01001	29	11101	10011
14	01110	01000	30	11110	10001
15	01111	01000	31	11111	10000

9.34

考察要点

• PAM信号的调制带宽, 误比特率

1.
$$Blog_2M=R$$
 , $M=16$.

2. MPAM误符号率:
$$P_s=rac{2(M-1)}{M}Q(\sqrt{rac{6
ho}{M^2-1}})$$
, $ho=
ho_blog_2M$, $P_b=P_s/log_2M$ $P_s=rac{15}{32}Q(\sqrt{rac{24
ho}{255}})=10^{-6},10^{-5}$ ho =23.5dB,22.5dB

- 对各类调制信号的频谱利用率,符号误码率计算 $Q(\sqrt{rac{d^2}{2N_0}})$,注意d和 ho_b 的关系
- 1. 可选BPSK。 ρ_b =10.5dB
- 2. 可选QPSK。 ρ_b =10.5dB
- 3. 频谱利用率1.5,可选8PSK, ρ_b =14.0dB
- 4. 频谱利用率为2,可选16PSK, ρ_b =18.5dB; 或16QAM, ρ_b =15.0dB
- 5. 频谱利用率2.5,选32PSK, ρ_b =23.4dB

9.39

考察要点

• 带限信号无码间干扰, 9.6章节

$$|H_R(f)|_{ ext{opt}} = rac{K^{1/2}P^{1/2}(f)}{G_n^{1/4}(f)|H_C(f)|^{1/2}}$$

$$\left|H_T(f)
ight|_{ ext{opt}} = rac{AP^{1/2}(f)G_n^{1/4}(f)}{K^{1/2}\left|H_C(f)
ight|^{1/2}}$$

1.
$$G_n^{1/4}(f)=(N_0/2)^{1/4}=10^{-11/4}$$
. 对于 $P(f)$,采取升余弦谱, $\alpha=1$
$$P(f)=\frac{T}{2}[1+\cos(\pi T|f|)]=\frac{1}{9600}\cos^2\left(\frac{\pi|f|}{19200}\right), 0\leq |f|\leq 9600Hz$$

代入求得:

$$egin{align} |H_T(f)|_{opt} &= rac{A}{9798K^{1/2}} \Big| \cos\Big(rac{\pi|f|}{19200}\Big) \Big| \left[1+\Big(rac{f}{4800}\Big)^2
ight]^{1/4}, \quad 0 \leq f| \leq 9600Hz \ |H_R(f)|_{opt} &= rac{100K^{1/2}}{97.98} \Big| \cos\Big(rac{\pi|f|}{19200}\Big) \Big| \left[1+\Big(rac{f}{4800}\Big)^2
ight]^{1/4}, \quad 0 \leq f| \leq 9600Hz \ |rac{\pi}{4}|_{opt} &= 0.9798, \quad K = 0.9798 \ \end{pmatrix}$$

2. 根据式9.151

$$P_E = \mathrm{P}(N \geq A) = \int_A^\infty rac{\exp\left(-u^2/2\sigma^2
ight)}{\sqrt{2\pi\sigma^2}} du = Q\left(rac{A}{\sigma}
ight)$$

解得 $A/\sigma = 3.71$

3. 根据式9.159

$$\left(rac{\sigma}{A}
ight)_{\min}^2 = rac{1}{E_b} \left[\int_{-\infty}^{\infty} rac{G_n^{1/2}(f)P(f)}{|H_C(f)|} df
ight]^2$$

Question 3

1. M-FSK是M维的正交调制。使用Union Bound分析误符号率:

$$P_b \leq rac{M}{2}Q[\sqrt{rac{E}{N_0}}] \leq rac{M}{4}e^{-rac{E_s}{2N_0}}$$

2.

3. 8FSK requires more correlators.

MFSK: 衡包络, 功率效率高, 适应非线性, 远距离传输; 频谱利用率低。

MPSK: 频谱效率相对更高,频谱均匀谱密度;功率效率相对更低

4. MFSK

Question 4

1. 2维信号

3.
$$P(C|s_1) = (1 - P_{BPSK})^2 = (1 - Q(\sqrt{\frac{2E}{N_0}}))^2$$

4. 因为等概率发送,
$$P_{eM}=1-P(C|s_1) pprox 2Q(\sqrt{rac{2E}{N_0)}})$$

