北京航空航天大学

2022-2023 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班	号	_学号	_姓名
任课教	女师	_考场	_成绩

题 号	1	11	11]	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2023年06月15日

选择题(每小题4分,满分20分)

- 1. 设 $D: x^2 + y^2 \le ay (a > 0), f(x, y)$ 是D上的连续函数, $\iint f(x, y) dx dy = (a > 0)$
 - (A) $\int_0^a dr \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(r\cos\theta, r\sin\theta) r d\theta$ (B) $\int_0^{\pi} d\theta \int_0^{a\sin\theta} f(r\cos\theta, r\sin\theta) r dr$
 - (C) $\int_0^a dr \int_{-\arccos\frac{r}{a}}^{\arccos\frac{r}{a}} f(r\cos\theta, r\sin\theta)rd\theta$ (D) $\int_{-\frac{\pi}{a}}^{\frac{\pi}{2}} d\theta \int_0^{a\sin\theta} f(r\cos\theta, r\sin\theta)rdr$
- 2. 设 $c = 8xi + 2yj z\vec{k}$, 数量场 $h(x, y, z) = \ln(x^2 + y^2 + z^2)$, 则div(hc) = (
 - (A) $\frac{8x^2 + 2y^2 z^2}{x^2 + y^2 + z^2}$

- (B) $\frac{8x^2 + 2y^2 z^2}{x^2 + y^2 + z^2} + 9\ln(x^2 + y^2 + z^2)$
- (C) $\frac{16x^2 + 4y^2 2z^2}{x^2 + y^2 + z^2}$
- (D) $\frac{16x^2 + 4y^2 2z^2}{x^2 + y^2 + z^2} + 9\ln(x^2 + y^2 + z^2)$
- 3.设曲线积分 $\int_L xf(y)dx + x^2ydy$ 与路径无关,其中 f 具有一阶连续的导数,且 $f(0) = 0, \text{ } \iint_{(0,0)}^{(1,2)} x f(y) dx + x^2 y dy = ($).
- (B) 2 (C) -4 (D) 4
- 4.已知球面 $x^2 + y^2 + z^2 = 1$, Σ是上半球面, Σ₁是Σ位于第一卦限的部分, 则 ().

- (A) $\iint_{\Sigma} x \, dS = 4 \iint_{\Sigma_{1}} x \, dS$ (B) $\iint_{\Sigma} y \, dS = 4 \iint_{\Sigma_{1}} x \, dS$ (C) $\iint_{\Sigma} z \, dS = 4 \iint_{\Sigma_{1}} x \, dS$ (D) $\iint_{\Sigma} xyz \, dS = 4 \iint_{\Sigma_{1}} xyz \, dS$
- 5. 设Σ为上半球面 $z = \sqrt{1 x^2 y^2}$, 取上侧, 则以下结论**错误**的是 (
- (A) $\iint_{\Sigma} x^2 dy dz = 0$ (B) $\iint_{\Sigma} y^2 dy dz = 0$ (C) $\iint_{\Sigma} x dy dz = 0$ (D) $\iint_{\Sigma} y dy dz = 0$

二、 计算题(每小题6分,满分30分)

1. 设定义在全空间 R^3 上的数量值函数f(x,y,z)具有二阶连续偏导数,求 $rot(grad\ f)$.

2. 计算 $\iint_D (x^2 + y^2 - x) dxdy$,其中D是由直线y = x, y = 2x和y = 2所围成的有界闭区域.

3. 计算∭ $\frac{\cos\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}$ dxdydz,其中 Ω : $\pi^2 \le x^2+y^2+z^2 \le 4\pi^2$.

4. 计算
$$\int_{L} (x^2 + y^2) ds$$
, 其中 L 是曲线 $\begin{cases} x = a(\cos\theta + \theta\sin\theta) \\ y = a(\sin\theta - \theta\cos\theta) \end{cases}$, $0 \le \theta \le \pi$, 常数 $a > 0$.

5. 计算
$$\iint_{\Sigma} [4x^2 + 5y^2 - \sin(xz^2)] dS$$
,其中Σ是球面 $x^2 + y^2 + z^2 = 1$.

三、(10分)

计算第二型曲面积分

$$I = \iint_{\Sigma} [g(x, y, z) + x] dydz + [2g(x, y, z) + y] dzdx + [g(x, y, z) + z] dxdy,$$

其中g(x,y,z)为连续函数, Σ为平面x-2y+3z=4在第四卦限部分的上侧.

四、(10分)(利用 Green 公式)

计算曲线积分
$$I = \int_L \frac{4x - y}{4x^2 + y^2} dx + \frac{x + y}{4x^2 + y^2} dy$$
,其中 $L: x^2 + y^2 = 2$,顺时针方向.

五、(10分) (利用 Gauss 公式)

计算
$$\iint_{\Sigma} \frac{x dy dz + (y-2) dz dx + (z+2) dx dy}{r^3}$$
,其中 $r = \sqrt{x^2 + (y-2)^2 + (z+2)^2}$,

Σ为长方体 $V = \{(x, y, z): |x| \le 1, |y| \le 3, |z| \le 3\}$ 的表面,并取外侧.

六 、(10分) (利用 Stokes 公式)

计算曲线积分 $\int (2e^x + y^2 - z^2) dx + (y^2 + z^2 - x^2) dy + (x^2 - y^2 + 4 \ln z^2) dz$,

其中Γ是平面 $x+y+z=\frac{3}{2}$ 截立方体: $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ 的表面所得截痕,

从x轴的正向看向原点时取逆时针方向.

七、(10分)设 ρ , ψ 有连续导数,曲线积分

 $I = \int_{L} 2[x\varphi(y) + \psi(y)] dx + [x^{2}\psi(y) - 2x\varphi(y)] dy$ 与路径无关,

(1)当 $\varphi(0) = 0, \psi(0) = 1$ 时,求 $\varphi(y), \psi(y)$;

(2)设 L 是从 O(0,0)到 $N(\pi,\frac{\pi}{2})$ 的分段光滑曲线,计算 I .