Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра инженерной графики

ЗАДАЧИ ДЛЯ УПРАЖНЕНИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Практикум для студентов всех специальностей БГУИР

Студент		 _
Группа	 	

Составители: С.А. Задруцкий, В.А. Столер, И.А. Хоростовская

Задачи для упражнений по начертательной геометрии: практикум для студ. всех спец. БГУИР/ сост. С.А.Задруцкий, В.А. Столер, И.А. Хоростовская – Мн.: БГУИР, 2013.-40 с.: ил.

Задачи подобраны в соответствии с курсом лекций по начертательной геометрии для студентов всех специальностей БГУИР. Выбор конкретных задач и их количество для каждой специальности определяются учебными программами.

[©] Задруцкий С.А., Столер В.А., Хоростовская И.А., составление 2010

[©] УО «Белорусский государственный университет информатики и радиоэлектроники», 2010

РАЗДЕЛ 1

Изображение геометрических образов на чертеже. Позиционные задачи с геометрическими элементами

- 1.1. По координатам точек построить их проекции:
- A (20, 0, 30); B (10, 15, 10); C (0, 10, 15); D (5, 10, 0); E (30, 0, 0); F (0,25,0)
- 1.2. Построить недостающие проекции точек. Записать координаты точек.

- 1.3. Определить, принадлежат ли точки A и B прямой k и точки C и D прямой EF.
- 1.4. Определить взаимное положение прямых m и n; AB и CD.

- 1.5. Через точку С провести прямые:
- -т, параллельную прямой k;
- -n, пересекающую прямую k в точке D, координата X которой равна 40 мм.
- 1.6. Через точки А, В и С провести соответственно:
- -горизонтальную прямую m под углом 60° к плоскости $\mathcal{\Pi}_2$;
- -фронтальную прямую k под углом 45° к плоскости \mathcal{T}_1 ;
- -произвольную прямую общего положения.

- 1.7. Найти точки пересечения прямой k с плоскостями проекций.
- $X = \frac{k''}{k'}$
- 1.8. Данные отрезки разделить в отношениях:

$$\frac{AC}{BC} = \frac{2}{3} \; ; \qquad \frac{DF}{EF} = \frac{1}{4} \, .$$

1.9. Найти точку C, которая принадлежит отрезку AB, при условии, что AC=25 мм. Определить углы наклона отрезка AB к плоскостям проекций $\mathcal{\Pi}_1$ и $\mathcal{\Pi}_2$.

1.10. Построить горизонтальную проекцию отрезка AB, истинная величина которого равна 65 мм.

 $\circ B'$

1.11. Построить фронтальную проекцию отрезка CD, наклоненного к плоскости $\mathcal{\Pi}_1$ под углом 45°.

1.12. Определить расстояние от точки C до прямых m, n и k.

1.13. Построить равнобедренный треугольник ABC с основанием BC=30 мм, высота которого равна 30 мм. Основание принадлежит прямой п $\parallel \mathcal{T}_1$, высота принадлежит прямой k.

1.14. Построить равнобедренный прямоугольный треугольник, катеты которого AB и AC - 30 мм. Катет AB $\parallel \pi_1$.

1.15. Построить ромб ABCD. AC - диагональ ромба. Вершина $D \in \mathcal{T}_1$, вершина B равноудалена от \mathcal{T}_1 и \mathcal{T}_2 . 1.16. Через точки А,В и С провести соответственно :

- фронтально-проецирующую плоскость;
- горизонтально-проецирующую плоскость;
- плоскость общего положения.

1.17. Найти недостающие проекции точек A и B , принадлежащих плоскости $\mathcal {A}$.

1.18. Определить, принадлежит ли прямая m плоскости α .

1.19. Определить, принадлежит ли точка A плоскости $\, {\cal C} \,$, а точка B плоскости $\, {\cal B} \,$.

- 1.20. В данных плоскостях провести :
- горизонтали на расстоянии 10 мм от плоскости \mathcal{T}_1 .
- фронтали на расстоянии 15 мм от плоскости \mathcal{T}_2 .

- 1.21. Построить проекций линии пересечения данной плоскости АВС с плоскостями проекций.
- A'' B'' A'' B'
- 1.22. Найти недостающие проекции точек A и B. Обозначить видимые и невидимые варианты. Точки принадлежат:
- а) конической поверхности $\delta \quad (m,\,S)\,\big[\,A\,\big]\;;$

б) призматической поверхности;

в) цилиндрической поверхности

- 1.23. Найти недостающие проекции точек A, B, C. Обозначить видимые и невидимые варианты. Точки принадлежат:а) поверхности пирамиды;
 - S'' S'' 1' $(C') \circ / A$ $/ \circ$ S'

б) поверхности вращения;

в) поверхности тора;

1.24. Построить фронтальную проекцию линии k, которая принадлежит поверхности δ .

1.25. Назвать повехности и плоскости, которые образуют данную пространственную фигуру.

Например:

 $lpha_1 \dots lpha_4$ -горизонтальная плоскость уровня

$$\gamma_{1}, \gamma_{2} - \sigma_{1}, \sigma_{2} - \varepsilon_{1}, \varepsilon_{2} - \sigma_{2} - \sigma_{3}$$

РАЗДЕЛ 2

Взаимное положение поверхностей (простейшие случаи)

2.1. Построить линии пересечения данных плоскостей.

2.2. Через прямую к провести плоскость, параллельную данной плоскости.

2.3. Через точку А провести плоскость, параллельную данной .

2.4. Построить горизонтальную проекцию линии пересечения поверхности вращения α фронтально проецирующей плоскостью β .

Записать алгоритм решения задачи.

2.5. Построить горизонтальную проекцию шара с треугольным сквозным отверстием.

2.6. Найти и обозначить проекции сечения призмы и пирамиды плоскостью α Построить развертки нижних частей усеченных поверхностей.

2.7. Построить проекции линии пересечения конусов плоскостями. В задаче "б" построить натуральную величину сечения и развертку нижней части поверхности усеченного конуса.

2.8. Построить проекции линии взаимного пересечения поверхностей конуса и цилиндра. Записать алгоритм решения задачи.

- 2.9. Построить проекции линии пересечения данных поверхностей:
- а) конической и призматической;

РАЗДЕЛ З

Взаимное положение прямой линии и поверхности

3.1. Определить точки персечения прямой лисии п с данными плоскостями. Для случая "в" записать алгоритм решения.

3.2. Определить, параллельна 3.3. Провести фронтальную 3.4. Через точку А провести ли прямая k плоскости α . проекцию отрезка AB, прямую, параллельную плоспараллельного плоскости α . кости α .

3.5.~ Из точки A плоскости провести отрезок AB = 30~ мм, перпендикулярный плоскости.

3.6. Через точку А провести прямую, перпендикулярную данной плоскости и определить координаты точки пересечения ее с плоскостью.

3.7. Построить горизонтальную проекцию треугольника ABC , если плоскость его перпендикулярна данной плоскости α .

3.8. Найти проекции точек пересечения прямой k с поверхностью вращения lpha . Обозначить видимые и невидимые части прямой. Записать алгоритм решения задачи.

3.9. Найти проекции точек пересечения прямой k с торовой поверхностью. Определить видимые и невидимые участки прямой.

3.10. Найти проекции точек пересечения прямых с данными поверхностями. Обозначить видимые и невидимые участки прямых (а,б).

3.11. Найти проекции точек пересечения прямых с данными поверхностями. Обозначить видимые и невидимые участки прямых.

РАЗДЕЛ 4

Позиционные задачи в общих случаях

- 4.1. Привести элементы данной пирамиды в следующее положение:
 - -ребро AS параллельно новой плоскости проекций;
 - -ребро BS перпендикулярно новой плоскости проекций (использовать ось X 1);
 - -основание АВС перпендикулярно новой плоскости проекций;
 - -основание АВС параллельно новой плоскости проекций.

4.2. Построить проекции линии пересечения поверхности конуса плоскостью $\,\mathcal{C}$.

4.3 . Найти проекции точек пересечения прямой линии с поверхностью конуса. Обозначить видимые и невидимые участки прямой .

4.4. Найти проекции точек пересечения прямой линии с поверхностью сферы. Обозначить видимые и невидимые участки прямой .

4.5. Построить проекции линии пересечения линейчатой поверхности, заданной направляющими m, n и горизонтальной плоскостью параллелизма, с поверхностью цилиндра.

4.6. Построить горизонтальную проекцию линии пересечения поверхности коноида, заданного направляющими n и k и плоскостью параллелизма β , с плоскостью α .

4.7. Найти проекции точек пересечения прямой $\,k\,$ с цилиндрической поверхностью, которая задана направляющей $\,$ m $\,$ и направлением образующей $\,$ S.

4.8. Найти проекции точек пересечения прямых k с данными поверхностями Обозначить видимые и невидимые участки прямой.

4.9. Построить проекции правой прямой цилиндрической винтовой поверхности. Шаг винтовой направлляющей линии поверхности равен 40 мм, диаметр - 30 мм.

4.10. Построить проекции линии пересечениия поверхностей призмы и пирамиды.

РАЗДЕЛ 5 Метрические задачи

- 5.1.Определить расстояние от вершины C до ребра AD призмы (использовать ось проекций X_1). Обозначить на чертеже и записать:
 - расстояние между параллельными ребрами AD и CF;
 - натуральную величину ребра АD;
 - угол наклона ребра AD к плоскости \mathcal{T}_I .
- 5.2. Определить расстояние от вершины C до грани DEF.

Обозначить на чертеже и записать:

- расстояние между параллельными основаниями EDF и ABC;
- расстояние от ребра АС до параллельной ему грани DEF.

- 5.3. Определить действительную величину основания ABC пирамиды. Обозначить на чертеже и записать величину угла CAB.
- 5.4. Определить углы, которые образует основание АВС пирамиды с плоскостями проекций.

5.5. Определить натуральную величину угла:

- между прямой k и плоскостью $\,\,{\cal A}\,\,$

- между плоскостями α и β .

5.6. Определить расстояние от точки $\, \, A \,$ до плоскости $\, \, \, \alpha \,$.

5.7. Определить углы, которые образует данная плоскость β с плоскостями проекций.

5.8. Определить угол между отрезком $\ AB$ и плоскостью $\ \alpha$.

РАЗДЕЛ 6

Изображения - виды, разрезы, сечения

6.1. Выполнить на месте соответствующих основных видов фронтальный, профильный и горизонтальный разрезы.

6.2. Выполнить на месте соответствующих основных видов: фронтальный, горизонтальный и профильный разрезы;

дополнительный вид А.

6.3. Выполнить на месте соответствующих основных видов: фронтальный, горизонтальный и профильный разрезы; местный вид А; дополнительный вид Б и необходимые местные разрезы.

6.4. Выполнить на месте соответствующих основных видов: сложный ступенчатый фронтальный разрез, сложный ступенчатый профильный разрез, местный вид А.

6.5. Выполнить на месте соответствующих основных видов: сложный ступенчатый фронтальный разрез, сложный ступенчатый профильный разрез, вынесенное сечение А-А.

6.6. Выполнить на месте соответствующих основных видов: сложный ломаный разрез, простой профильный разрез; вынесенное сечение А-А.

Учебное издание

ЗАДАЧИ ДЛЯ УПРАЖНЕНИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Практикум для студентов всех специальностей БГУИР

Составители: Задруцкий Сергей Александрович, Столер Владимир Алексеевич, Хоростовская Ирина Алексеевна

Редактор Корректор

Подписано в печать

Формат

Бумага офсетная

Гарнитура Уч.-изд. л. Печать ризографическая

Усл. печ. л.

Тираж 500 экз.

Заказ

Издатель и полиграфическое исполнение: Учреждение образования "Белорусский государственный университет информатики и радиоэлектроники" Лицензия на осуществление издательской деятельности №02330/0056964 от.01.04.2004. Лицензия на осуществление полиграфической деятельности №02330/0133108 от.30.04.2004. 220013, Минск, П.Бровки,6