RESEARCH

A sample article title

Jane E Doe^{??*†} and John RS Smith^{??,??}

*Correspondence: jane.e.doe@cambridge.co.uk ??Department of Zoology, Cambridge, Waterloo Road, London, UK Full list of author information is available at the end of the article

[†]Equal contributor

Abstract

First part title: Text for this section. **Second part title:** Text for this section.

Keywords: sample; article; author

Background

Text and results for this section, as per the individual journal's instructions for authors.

Results

Text for this section ...

Sub-heading for section

Text for this sub-heading ...

Sub-sub heading for section

Text for this sub-sub-heading ...

Sub-sub-sub heading for section Text for this sub-sub-heading... In this section we examine the growth rate of the mean of Z_0 , Z_1 and Z_2 . In addition, we examine a common modeling assumption and note the importance of considering the tails of the extinction time T_x in studies of escape dynamics. We will first consider the expected resistant population at vT_x for some v > 0, (and temporarily assume $\alpha = 0$)

$$E[Z_1(vT_x)] = E\left[\mu T_x \int_0^{v \wedge 1} Z_0(uT_x) \exp(\lambda_1 T_x(v-u)) du\right].$$

If we assume that sensitive cells follow a deterministic decay $Z_0(t) = xe^{\lambda_0 t}$ and approximate their extinction time as $T_x \approx -\frac{1}{\lambda_0} \log x$, then we can heuristically estimate the expected value as

$$E[Z_1(vT_x)] = \frac{\mu}{r} \log x \int_0^{v \wedge 1} x^{1-u} x^{(\lambda_1/r)(v-u)} du$$

$$= \frac{\mu}{r} x^{1-\lambda_1/\lambda_0 v} \log x \int_0^{v \wedge 1} x^{-u(1+\lambda_1/r)} du$$

$$= \frac{\mu}{\lambda_1 - \lambda_0} x^{1+\lambda_1/r v} \left(1 - \exp\left[-(v \wedge 1)\left(1 + \frac{\lambda_1}{r}\right)\log x\right]\right). \quad (1)$$