But the emptiness of the regions $\mathcal{T}(3,2,k_3)$ for $k_3 \geqslant 3$ follows from lemma 3(3c). Therefore, $\mathcal{A}_3^{\circ}(3,1,2)$ consists of the triples (23).

Further, if $(k_1, k_2, k_3) \in \mathcal{A}_3^*(3, 1, 2)$, then we necessarily have $(k_1, k_2) \in \mathcal{A}_2^*(3, 1, 2)$. As it was stated before, we either have $k_1 \equiv 0 \pmod{3}$, $k_1 \geqslant 3$, $k_2 = 1$, or $k_1 = 3$, $k_2 = 2$.

For $k_2 = 1$, the condition (19) corresponding to i = r = 3, reduces to

$$k_1(k_3 - 1) \not\equiv 0 \pmod{3}$$
.

Since $k_1 \equiv 0 \pmod{3}$ in the first case, this condition can not be satisfied for any k_3 . In the second case, the same condition takes the form

$$7k_3 \not\equiv 0 \pmod{3}$$
.

For $k_3 \ge 3$, the emptiness of $\mathcal{T}(3,2,k_3)$ follows from lemma 3 (3c). Therefore, non-empty regions correspond to the values $k_3 = 1, k_3 = 2$ only. Hence, the set $\mathcal{A}_3^*(3,1,2)$ consists of the triples

$$(3,2,1), (3,2,2).$$
 (24)

It turns out that for any $r \ge 4$ the set $\mathcal{A}_r^*(3,1,2)$ consists of two sets: $(3,2^{r-2},1)$ and $(3,2^{r-1})$. Let us prove it by induction with respect to r.

For r=3, it was proved earlier. Suppose now that this assertion holds for any r, $3 \le r \le m-1$, and check it for r=m.

Indeed, let $(k_1, \ldots, k_m) \in \mathcal{A}_m^*(3, 1, 2)$. Then $(k_1, \ldots, k_{m-1}) \in \mathcal{A}_{m-1}^*(3, 1, 2)$, so, by the induction, (k_1, \ldots, k_{m-1}) is either $(3, 2^{m-3}, 1)$ or $(3, 2^{m-2})$. Hence, (k_1, \ldots, k_m) has the form $(3, 2^{m-3}, 1, k)$ or $(3, 2^{m-2}, k)$, where $k \ge 1$ is some integer.

In the first case, the condition (19) corresponding to i = m, has the form

$$\mathbb{K}_m(3, 2^{m-3}, 1, k) + \mathbb{K}_{m-1}(2^{m-3}, 1, k) \not\equiv 2 \pmod{3}.$$
 (25)

By explicit formulas for the continuants, we get

$$\mathbb{K}_m(3, 2^{m-3}, 1, k) = 2(k - m) + 3, \quad \mathbb{K}_{m-1}(2^{m-3}, 1, k) = k - m + 2,$$

so (25) has the form $3(k-m)+5 \not\equiv 2 \pmod{3}$. Therefore, it is not satisfied for any k. In the second case, we have the condition

$$\mathbb{K}_m(3, 2^{m-2}, k) + \mathbb{K}_{m-1}(2^{m-2}, k) \not\equiv 2 \pmod{3}.$$

Using the formulas

$$\mathbb{K}_m(3, 2^{m-2}, k) = 2km - k - 2m + 3, \quad \mathbb{K}_m(2^{m-2}, k) = km - k - m + 2,$$

we rewrite it as follows

$$3m(k-1) - 2k + 5 \not\equiv 2 \pmod{3}$$
, that is, $k \not\equiv 0 \pmod{3}$.

Now let us find all the tuples that contain the set $\mathcal{A}_r^{\circ}(3,1,2)$ for $r \geq 4$.