

IETF-115 IPMON Hackathon Project

November 6, 2022

Champions: Jaehoon (Paul) Jeong and Yiwen (Chris) Shen

Members: Bien Aime Mugabarigira, Junhee Kwon, hyeonah Jung, and yoseop Ahn

Department of Computer Science and Engineering at SKKU

Email: {pauljeong, bienaime, juun9714, hyeonah214, ahnjs124}@skku.edu, chrisshen@ks.ac.kr

I E T F

IPv6 Moving Object Networking (IPMON)

- IPMON aims at the provisioning of IPv6 networking for moving objects such as terrestrial, aerial, and marine vehicles.
- IPMON fills in the gap of IPv6-related standards to provide those vehicles with the communication among them or with infrastructure nodes for the Internet connectivity.
 - IPMON Communication Types: V2X, V2V, and V2I
- IPMON considers wireless multihop communication, high-speed mobility, and optimal packet routing in a temporary network topology.
 - IPMON BoF aims at developing protocols for moving objects with IPWAVE WG's Problem Statement and Use Cases Draft:
 - draft-ietf-ipwave-vehicular-networking-30

Moving Objects (MOs) in IPMON

 Vehicle, Motorcycle, Scooter, Pedestrian, Unmanned Aerial Vehicle (UAV), Drone, Urban Air Mobility (UAM), Train, Subway, Boat, Ship, etc.

Vehicular Network Architecture for IPMON

- An IPMON Network consists of Vehicular Ad Hoc Networks (VANET) and Access Networks (AN).
- Wireless Communications supports IEEE 802.11-OCB/802.11-bd, and 3GPP 5G V2X.

IPv6 Moving Object Networking (IPMON) Project

Champions: Jaehoon (Paul) Jeong (SKKU) and Yiwen (Chris) Shen (KSU)

IETF-115 IPMON Hackathon Project: Context-Aware Navigation Protocol (CNP)

Professors:

- Jaehoon (Paul) Jeong (SKKU)
- Younghan Kim (SSU)
- Yiwen (Chris) Shen (KSU)

Students:

- Bien Aime Mugabarigira (SKKU)
- Junhee Kwon (SKKU)
- Hyeonah Jung (SKKU)
- Yoseop Ahn (SKKU)

5G NR Protocol Stack

5G Drone Networks

Objectives

To Demonstrate IPMON Basic Protocols

- Context Aware Navigation Algorithm (CNP) for heavy-traffic drone networks
- Drone networks based on 5G V2X

IETF IPMON CNP Draft:

• URL: https://datatracker.ietf.org/doc/html/draft-jeong-ipwave-context-aware-navigator-06

Where to get source code:

GitHub: https://github.com/ipwave-hackathon-ietf

How to set up an environment:

- OS: Ubuntu 20.04
- SUMO 1.8.0
- OMNeT++ 5.6.2
- GNU GCC7.3
- INET 4.4

Implementation Contents:

- To extend the CNP implementation to Drones, Personal Mobility (PM), Motorcycles as well as Vehicles
- To change the previously implemented LTE-V2X CNP simulation into 5G-V2X one

Hackathon Plan

- Draft for this Project
 - Context-Aware Navigation Protocol for IP-Based Vehicular Networks
 - draft-jeong-ipwave-context-aware-navigator-06
 - https://datatracker.ietf.org/doc/draft-jeong-ipwavecontext-aware-navigator/
- Simulation
 - Context Aware Navigation Algorithm (CNP) for heavy-traffic drone networks
 - Drone networks based on 5G V2X

What got done (1/2)

OMNeT++

What got done (2/2)

- We checked whether the 5G communication feature of the 5G-Simu simulation can be used for CNP or not.
- Based on the 5G-Simu, we newly implemented our CNP simulation on it.

Open Source

URL: https://github.com/ipwave-hackathon-ietf/ipwave-hackathon-ietf-115

Demonstration

URL: https://www.youtube.com/watch?v=Ll-Y7MVP2tA

What we learned

 To extend the CNP implementation from Vehicles to Drones, Personal Mobility (PM), and Motorcycles.

To change the previously implemented LTE-V2X
 CNP simulation into 5G-V2X one.

Wrap Up

Hackathon Team

Champions:

- Jaehoon Paul Jeong (SKKU)
- Yiwen (Chris) Shen

Professor:

Younghan Kim (SSU)

Researchers:

- Jung-Soo Park (ETRI)
- Yunchul Choi (ETRI)

Students:

- Bien Aime Mugabarigira (SKKU)
- Junhee Kwon (SKKU)
- Hyeonah Jung (SKKU)
- Yoseop Ahn (SKKU)

Hackathon Team Photo

Appendix

- (1) Simulation Environment Preparation Guide
- (2) Implementation Environment

Simulation Environment

- OS: Ubuntu 20.04
- Simulators:
 - OMNeT++ 6.0
- GNU GCC 7.3
- Open Sources:
 - https://github.com/ipwave-hackathon-ietf/ipwave-hackathon-ietf-115
 - INET 4.4

Configurations

- Install OMNeT++ following the procedure in the installation manual: https://doc.omnetpp.org/omnetpp/InstallGuide.pdf
- Import projects in OMNeT++ workspace
 - Import INET by
 - -File → Import → General → Existing projects into workspace
 - Similarly, as INET, import SimuLTE

Project References

- Activate project features to ensure SimuLTE runs correctly.
- Right-click on Ite project and choose Properties
- Then, Project References and tick inet
- Run the scenario in veins:
- python3 sumo-launchd.py
- Run the simulation by:
- lte → simulations → cana → omnetpp and in set inifile configuration, choose Hachathon115