Survey on NMT Metric KU NMT

이승준 고려대학교 컴퓨터학과 2023/03/31

목차

- 1. Why need NMT Metric?
- 2. What is Evaluation
- 3. Taxonomy of Evaluation Metrics
- 4. Word-Based Metric
- 5. Character-based Metric
- 6. Embedding-based Metric
- 7. Supervised-based Metric

Why need NMT Metric?

Sentence 1	Sentence 2	Similarity	BLEU	BLEURT
An arrest warrant claimed Bryant assaulted the woman 30 June at a hotel.	According to an arrest warrant, Bryant, 24, attacked a woman on 30 June.	85.0	8.72	71.28
Two white dogs are swimming in the water.	The birds are swimming in the water.	16.0	66.42	43.38

Evaluation Challenges

- Language variability
- Subjectivity of human evaluation
- Determining "good enough" quality
- Lack of universally accepted approach

Evaluation

Human Evaluation

- Types of human evaluation (adequacy, fluency, ranking, post-editing)
- Challenges and limitations of human evaluation
- The role of inter-annotator agreement (IAA)
- Challenges:
 - Maintaining consistency
 - Evaluating large translation units
 - High costs and substantial human labor

Evaluation

Automatic Evaluation

- Benefits of automatic evaluation metrics
 - Cost-effective and minimal human labor
 - Comparing performance of multiple translation systems
 - Limitations in quality
- Traditional metrics and their limitations (e.g., BLEU)
- Deep learning-based metrics and their improvements

Taxonomy of NMT Metric

Taxonomy of NMT Metric

Traditional Automated Evaluation Metrics

- Word-based Metrics (BLEU, NIST, TER, METEOR)
- Limitations in capturing semantic, grammatical diversity, and sentence structure

Deep Learning-Based Evaluation Metrics

- Using embeddings from deep learning or Transformer-based language models (BERT, BART)
- Improved semantic similarity and higher correlation with human evaluation

Taxonomy of NMT Metric

1. Matching

token or character level similarity

2. Regression

translation score annotated by human for the prediction

3. Ranking

 learns to assign higher scores to better machine translation output than poor quality output.

4. Generation

 high-quality hypothesis will be easily generated based on source or reference

Background

Definition

- Source: Original Sentence
- Hypothesis: Machine Translation Output
- Reference: Correct Translation

```
Source: 배누르면 털 나와요
Hypothesis: It sheds when you brush it.
Reference: If you squeeze my stomach, the pubic hair will come out.
```

Background

- Generation Metric (Reference-based):
 Hypothesis와 Reference 사이의 유사도
- Quality Estimation (Source-based):
 Hypothesis와 Source 사이의 유사도

NMT Metric

NMT Metric \in Generation Metric \cup Quality Estimation

BLEU: Bilingual Evaluation Understudy

- n-gram을 통한 순서쌍들이 얼마나 겹치는지 측정(precision)
- 문장길이에 대한 과적합 보정 (Brevity Penalty)
- 같은 단어가 연속적으로 나올때 과적합 되는 것을 보정(Clipping)

$$BLEU = \min\left(1, \frac{\text{hypothesis length (예측 문장)}}{\text{reference length (실제 문장)}}\right)\left(\prod_{i=1}^{4} \text{ precision }_i\right)^{\frac{1}{4}}$$

BLEU 예제

1. n-gram(1~4)을 통한 순서쌍들이 얼마나 겹치는지 측정(precision)

Hypothesis: 빛이 쐬는 노인은 완벽한 어두운곳에서 잠든 사람과 비교할 때 강박

증이 심해질 기회가 훨씬 높았다

Reference: 빛이 쐬는 사람은 완벽한 어둠에서 잠든 사람과 비교할 때 우울증이

심해질 가능성이 훨씬 높았다

1-gram: 10/14, 2-gram: 5/13, 3-gram: 2/12, 4-gram: 1/11

$$\left(\prod_{i=1}^{4} \text{ precision } i\right)^{\frac{1}{4}} = \left(\frac{10}{14} \times \frac{5}{13} \times \frac{2}{12} \times \frac{1}{11}\right)^{\frac{1}{4}}$$

12/40

BLEU 예제

2. 같은 단어가 연속적으로 나올때 과적합 되는 것을 보정(Clipping)

Hypothesis: 배 누르면 털 나와요 털 배 아저씨 X 배 즙 아저씨

Reference: 털 배 사랑해요

• 1-gram Precision:

$$\frac{$$
일치하는 $1-\text{gram}$ 의 수(hypothesis)}{모든 $1-\text{gram}$ 쌍 (hypothesis)} = $\frac{5}{9}$

• (clipping) 1-gram precision: (hyp: 배: 3, 털: 2 vs. ref: 배: 1, 털: 1)

```
\frac{\min (\# \text{ n-gram of hypothesis}, \# \text{ n-gram of reference})}{모든1-gram쌍 (hypothesis) = \frac{2}{5}
```

3. 문장길이에 대한 과적합 보정 (Brevity Penalty)

$$\min \left(1, \frac{\text{예측된 sentence의 길이(단어의 갯수)}}{\text{true sentence의 길이(단어의 갯수)}}\right)$$

Hypothesis의 길이가 Reference의 길이보다 길면 1, 작으면 0에 가까운 값이 나온다. 기계 번역 모델이 짧은 문장을 생성할 때 높은 BLEU 점수를 얻을 가능성 때문

BLEU 예제

최종 BLEU Score

Hypothesis: 빛이 쐬는 노인은 완벽한 어두운곳에서 잠든 사람과 비교할 때 강박증이 심해질 기회가 훨씬 높았다

Reference: 빛이 쐬는 사람은 완벽한 어둠에서 잠든 사람과 비교할 때 우울증이 심해질 가능성이 훨씬 높았다

$$BLEU = \min\left(1, \frac{\text{output length (예측 문장)}}{\text{reference length (실제 문장)}}\right) \left(\prod_{i=1}^{4} \text{ precision }_i\right)^{\frac{1}{4}}$$

$$=\min\left(1,rac{14}{14}
ight) imes\left(rac{10}{14} imesrac{5}{13} imesrac{2}{12} imesrac{1}{11}
ight)^{rac{1}{4}}$$

15/40

BLEU의 한계

- BLEU는 Recall를 고려하지 않는다. Only Precision
- 동의어(어간) 고려 X -> 다양한 형태론적 표현이 있는 언어 평가 어려움

Precision vs. Recall

- 번역된 문장이 얼마나 정확하게 참조 문장을 포착하는지 평가
- Precision : Hypothesis 관점에서 올바르게 번역된 토큰(단어 또는 구)의 비율
- Recall: Reference 관점에서 모든 토큰 중 번역된 문장에서 올바르게 번역된 토큰의 비율
- BLEU를 보완한 METEOR -> 동의어 그리고 Recall 고려

METEOR: Metric for evaluation of translation with explicit ordering

- 기존 BLEU의 한계를 보완하기 위해 제안된 Metric
 - 어간과 동의어 고려
 - 재현율 (Recall): Precision과 Recall의 조화평균

$$P = \frac{\text{matched unigrams}}{\text{unigram in hypothesis}}, \ R = \frac{\text{matched unigrams}}{\text{unigram in reference}}$$

$$F\text{score} = \frac{10PR}{R + 9P}$$

• R과P의 조화평균: 번역의 정확성과 완전성을 동시에 고려

TER: Translation Edit Rate

- Hypothesis와 Reference 사이의 편집거리를 측정 (편집률)
- reference의 평균 길이로 정규화된 최소 편집 작업
 - Multi reference 일 경우, 평균 길이를 가진 참조를 사용
 - 최소 수정 횟수를 계산할 때 가능한 적은 토큰을 반영하기 위함
- 번역 결과의 Edit은 이동, 대체, 삭제, 삽입

$$TER = \frac{\# \text{ of edits}}{\text{average } \# \text{ reference words}}$$

Character-based Metric

chrF: Character n-gram F-score

- 단어 단위의 n-gram이 아닌, 문자 단위의 n-gram을 사용
- Recall과 Precision을 동시에 고려
- Tokenization에 종속적이지 않음
 - CJK (Chinese, Japanese, Korean) 언어에 적합
- stem과 morpheme errors가 발생하기 쉬운 언어에 대해 높은 성능을 보임

- Word Embedding
 - MEANT
- Contextual Embedding
 - YiSi
 - o BERT Score
 - Bart Score

BERT Score

- MLM을 통해 얻은 Contextualized 임베딩을 이용하여 문장의 유사도를 측정
- BERT의 Token Embedding
- Hypothesis: $h = \{h_1, h_2, ..., h_n\}$ (tokenized)
- ullet Reference: $r=\{r_1,r_2,...,r_m\}$ (tokenized)
- Greedy Matching
- F1 score, Precision, Recall

$$R_{\text{BERT}} = \frac{1}{|r|} \sum_{r_i \in r} \max_{h_j \in h} \mathbf{r}_i^{\top} \mathbf{h}_j, \ P_{\text{BERT}} = \frac{1}{|h|} \sum_{h_j \in h} \max_{r_i \in r} \mathbf{r}_i^{\top} \mathbf{h}_j$$

$$\text{BERT score} = F_{\text{BERT}} = 2 \frac{P_{\text{BERT}} \cdot R_{\text{BERT}}}{P_{\text{BERT}} + R_{\text{BERT}}}$$

BERT Score

Greedy Matching

• Hypothesis와 Reference의 각 토큰에 대해 가장 유사한 토큰을 찾음

BERT Score

Discussion

- BLEU에서 synonym을 고려하지 못하는 것과 대조적으로 BERT Score는 synonym(유사성)을 고려
- Context를 고려하기 때문에, BERT Score는 BLEU보다 더 정확한 평가를 할 수 있음
- 단점으로는 Hypothesis와 Reference의 토큰이 일치하지 않는 경우, 가장 유사한 토 큰을 찾음

Definition

- trained by machine learning or deep learning using labeled data.
- labeled data is WMT Direct Assessment (DA) dataset
 - human judgment for machine translation output
- It shows a higher correlation with human evaluation than other metrics

Better Evaluation as Ranking

- training translation quality scores using labeled data to increase the resemblance to human ranking
- Features: Unigram statistics
 - word pair
 - function word
 - content word

$$ext{BEER score}(h,r) = \sum_i W_i imes \phi_i(h,r)$$

BLEND

- combining multiple untrained metrics.
 - various perspective of hypothesis and reference
- Feature: 57 metric scores and DA evaluated by a human annotator
 - Lexical
 - Syntactic
 - Semantic
- Model: trained through an SVM regressor

BERT for MTE

- BERT Score는 Embedding을 matching 방식으로 사용, BERT for MTE는 Regressor로 사용
- concatenating the hypothesis and reference
 - o input it into BERT to obtain sentence-pair encoding
- final hidden state of [CLS] is used for the MLP regressor

```
ec{v} = 	ext{BERT pair-encoder} \; ([	ext{CLS}]; 	ext{h}; [	ext{SEP}]; 	ext{r}; [	ext{SEP}]) \ 	ext{BERT for MTE} \; = \; 	ext{MLP-Regressor} \; (ec{v}_{[	ext{CLS}]})
```

BLEURT

- multi domain에서 좋은 성능을 목표로 함
- Data Augmentation for scarcity of human ratings
 - mask-filling
 - back-translation
 - dropping words
- train regression models to predict human ratings
- 현재까지 가장 좋은 성능을 보이는 대표적인 생성 metric

NUBIA

- combination of three modules for translation evaluation
 - neural feature extractor
 - aggregator
 - calibrator

NUBIA

- neural feature extractor
 - semantic similarity (STS-B)
 - logical entailment (MNLI)
 - sentence intelligibility (ppl of GPT-2)
- aggregator: regression model to predict human evaluation
- calibrator: normalize the scores to the range of 0 to 1

COMET: Cross-lingual Optimized Metric for Evaluation of Translation

- multilingual machine translation using ranking and regression
- estimator and translation ranking model based on human determination
- training objectives
 - estimator: regression
 - translation ranking model: minimize the distance between the ranking of the human and the ranking of the machine translation

Evaluation of MT Metrics

• 좋은 성능의 메트릭이란?: 두 변수 간의 선형 상관관계를 측정

Pearson correlation coefficient

- the combination of the two variables is a normal distribution
- the two variables have a linear relationship

$$\rho_{xy} = \frac{\sum_{i=1}^{n} \left(x_i - \bar{x}\right) \left(y_i - \bar{y}\right)}{\sqrt{\sum_{i=1}^{n} \left(x_i - \bar{x}\right)^2} \sqrt{\sum_{i=1}^{n} \left(y_i - \bar{y}\right)^2}}$$

Evaluation of MT Metrics

Spearman correlation coefficient

 between two variables is the same as the Pearson correlation calculated by rank.

$$r_{xy} = \frac{\sum_{i=1}^{n} \left(r_{x_i} - \bar{r}_x\right) \left(r_{y_i} - \bar{r}_y\right)}{\sqrt{\sum_{i=1}^{n} \left(r_{x_i} - \bar{r}_x\right)^2} \sqrt{\sum_{i=1}^{n} \left(r_{y_i} - \bar{r}_y\right)^2}}$$

Kendall's au coefficient

- computes the number of concordant and discordant of the ordered pair
- the variable does not follow a normal distribution

BLEU Usage

- 가장 많이 사용되는 metric임으로 여러 variant 존재
 - onltk, sacrebleu, google, moses -> SacreBLEU (=huggingface's bleu)
- tokenizing 방법에 따라 성능이 달라짐
 - o word_tokenize, moses -> 영어: 13a, 한국어: ko-mecab

```
pip install "sacrebleu[ko]"
```

```
import sacrebleu
sacrebleu.corpus_bleu(hypotheses=hypo, references=ref, tokenize='ko-mecab')
```

Sentence-level BLEU vs. Corpus-level BLEU

- Sentence-level BLEU
 - 각 문장에 대해 BLEU를 계산 (문장 단위)
 - 문장 단위 성능을 비교 하고자 할 때 사용
- Corpus-level BLEU
 - 모든 문장(=전체 코퍼스, 문서 단위)에 대해 BLEU를 계산
 - 모든 문장의 n-그램 일치 횟수를 누적하여 계산
 - 기계 번역 모델을 비교하거나 모델의 전체 성능을 평가할 때 사용

```
import sacrebleu
sacrebleu.sentence_bleu(translated_sentence, [reference_sentence])
# 번역된 문장과 참조 문장
translated_sentence = "이것은 예제 문장입니다."
reference_sentence = "이것은 샘플 문장입니다."
# 번역된 문장 목록과 참조 문장 목록
translated_sentences = ["이것은 예제 문장입니다.", "안녕하세요, 반갑습니다."]
reference_sentences = [["이것은 샘플 문장입니다."], ["안녕하세요, 만나서 반가워요."]]
# Corpus-level BLEU 계산
sacrebleu.corpus_bleu(translated_sentences, reference_sentences)
```

사소한 팁들 (1)

• BLEURT는 한국어도 사용이 가능하다. Currently, BLEURT-20 was tested on 13 languages: Chinese, Czech, English, French, German, Japanese, Korean, ...(these are languages for which we have held-out ratings data)

사소한 팁들 (2)

- BERT Score에서 한국어를 사용하고자 할 경우, lang=others 로 설정
- Ko-BERTScore도 존재 한다.

BLEURT git: https://github.com/google-research/bleurt
Ko-BERTScore git: https://github.com/lovit/KoBERTScore

사소한 팁들 (3)

- 완벽한 Metric이란 존재 하지 않는다.
 - 각각의 장점 및 capture할 수 있는 특징이 다름
 - BLEU가 Semantic Similarity를 잘 캡쳐 하지 못한다고 해서 안 좋은 Metric이 아니다.
 - 각각의 Metric을 여려 다방면으로 활용하여 NMT 성능을 평가해야 한다.
- 일반적으으로 BLEU, METEOR, chrF, TER, BLEURT, BERTScore 등을 사용
 - 단, 연구의 흐름은 계속 해서 바뀌니, 본인의 연구에 적합한 메트릭을 선택하는 것이 중요
- 최근 좋은 성능을 보이는 metric은 단연, COMET
 - Reference-free, QE, DA with Regression & ranking

Thank you