Fahrzeugregelung Antriebskraftverteilung

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

Einleitung Ziele der Antriebskraftverteilung

Über eine **Antriebskraftverteilung** kann das Antriebsmoment **variabel** zwischen **links und rechts** sowie **vorne und hinten** verteilt werden.

Hierdurch können die folgenden **fahrdynamischen Ziele** erreicht werden:

- Verbeserung Traktion an Steigungen
- > Verbesserung **Traktion** in μ**-low** und μ**-Split** Situationen
- Verbesserung Traktion beim Beschleunigen aus enger Kurve
- > Verminderung Beschleunigungsuntersteuern
- Verbesserung des Anlenkverhaltens
- Steigerung der maximalen Querbeschleunigung
- Umsetzung einer Gierratenregelung
- > Beeinflussung der Lastwechselreaktion
- > Beeinflussung des Eigenlenkverhaltens

Seite 3

Ziele der Antriebskraftverteilung Traktion an Steigungen

ohne Antriebskraftverteilung (Vorderradantrieb)

Ausnutzung des maximal möglichen Traktionspotenzials an allen Rädern.

Ziele der Antriebskraftverteilung Traktion in μ -low und μ -Split Situationen

ohne Antriebskraftverteilung (Vorderradantrieb)

Ausnutzung des **maximal möglichen** Traktionspotenzials **an allen Rädern bei** μ**-low** ...

Ziele der Antriebskraftverteilung Traktion in μ -low und μ -Split Situationen

ohne Antriebskraftverteilung (Allrad, offen)

Ausnutzung des **maximal möglichen** Traktionspotenzials **an allen Rädern bei** μ-low, μ-Split vorne-hinten (μ-Sprung)...

Ziele der Antriebskraftverteilung Traktion in μ-low und μ-Split Situationen

ohne Antriebskraftverteilung (Allrad, offen)

Ausnutzung des maximal möglichen Traktionspotenzials an allen Rädern bei μ -low, μ -Split vorne-hinten und μ -Split links-rechts.

Ziele der Antriebskraftverteilung Traktion beim Beschleunigen aus enger Kurve

Nutzung des **Traktionspotenzials** der **äußeren Räder**.

Ziele der Antriebskraftverteilung Beschleunigungsuntersteuern

Ziele der Antriebskraftverteilung Beschleunigungsuntersteuern

Verringerung der Untersteuertendenz durch Erhöhung des Antriebsanteils an der Hinterachse.

Ziele der Antriebskraftverteilung Lastwechselreaktion Übersteuern

Ziele der Antriebskraftverteilung Lastwechselreaktion Übersteuern

Verringerung der Übersteuertendenz durch Erhöhung des Antriebsanteils an der Vorderachse.

Ziele der Antriebskraftverteilung Anlenkverhalten

Verbesserung des **Gierratenaufbaus** durch ein- oder ausdrehendes Giermoment.

Ziele der Antriebskraftverteilung Maximale Querbeschleunigung

Untersteuernd ausgelegte Fahrzeuge erreichen zuerst an der Vorderachse die Kraftschlussgrenze

Erhöhung der maximalen Querbeschleunigung durch eindrehendes Giermoment -> gleiche Kraftschlussausnutzung an beiden Achsen.

Seite 14

Ziele der Antriebskraftverteilung Gierratenregelung

Beispiel: Ausweichmanöver bzw. doppelter Spurwechel

Zusätzliches Giermomentenpotenzial und späterer/geringerer Eingriff des **ESP**-Systems.

Vergleich von Längs- und Querverteilung Giermomentenpotenzial bei Längsverteilung

- "Indirektes" Giermoment durch Änderung der Querkraft
- Kein Giermoment bei Geradeausfahrt

Vergleich von Längs- und Querverteilung Giermomentenpotenzial bei Querverteilung

• "Direktes" Giermoment durch asymmetrische Antriebskräfte, auch bei Geradeausfahrt

Seite 17

Einfluss Antriebskraftverteilung auf Fahrdynamik Traktion an Steigungen

SPS in x-Richtung mit he= hev=hen hand FL eight

mix = -ungsicht + Fer + Fen (1) ryfing < 30°

Drallsort hun y-Aclese hefest ber troust. Leinz beschenning 0 = - Ngulv + Ngelen - (Fgu+ Fger) h(2) SPS in 2-Richtung bei Vernach-lassig ung von Vertralbewegungen Ngu + Nger = mg cosq Fir du dangs snafte fill Ten= MNgen

Einfluss Antriebskraftverteilung auf Fahrdynamik Traktion an Steigungen

(2) Vorderradantorel

(3) Hinteradaulnel

Einfluss Antriebskraftverteilung auf Fahrdynamik Traktion an Steigungen – Gegenüberstellung

Einfluss Antriebskraftverteilung auf Fahrdynamik Beeinflussung des Eigenlenkverhaltens

Für kleine Winkel gilt

$$\alpha_h = -\beta + l_h \frac{\psi}{v}$$

$$\alpha_v = -\beta + \delta_v - l_v \frac{\dot{\psi}}{v}$$

Fis des lin. ESM wit es ymmetrisches Autoribstraftverterlung (linten) gill bei Stadionairer Olsew fahrt ($\beta=0, 4=v$)

mit

Seite 21

Einfluss Antriebskraftverteilung auf Fahrdynamik Beeinflussung des Eigenlenkverhaltens

Es assist siter.

$$\beta = \frac{ler}{S} - \frac{uv^2lv}{Slcd} - \frac{ates}{2lcd}$$

$$Sv = \frac{e}{S} + \frac{uv^2(ler-ler)}{Slcd} - \frac{stes}{2lcd}$$

$$dv = \frac{uv^2ler}{Slcd} - \frac{stes}{2lcd}$$

$$dl = \frac{uv^2lr}{Slcd} + \frac{stes}{2lcd}$$

$$dl = \frac{uv^2lr}{Slcd} + \frac{stes}{2lcd}$$

Einfluss Antriebskraftverteilung auf Fahrdynamik Beeinflussung des Eigenlenkverhaltens

Grundprinzipien der Antriebskraftverteilung Differential und Differentialsperre

Kegelraddifferential

Differentialgetriebe Porsche Cayenne

Grundprinzipien der Antriebskraftverteilung Differential - Sperrdifferential

Torsen-Ausgleichsgetriebe (drehmomentfühlend, z. B. Audi Quattro)

Grundprinzipien der Antriebskraftverteilung Kupplungen

Klauenkupplung

("Four-Wheel-Drive")

- ➤ Manuell zuschaltbar
- ➤ Einfach, robust
- Momentenverteilung 50:50 (Differential, Kupplung offen)

Viskokupplung (drehzahlfühlend)

- Drehzahlbasierte Momentenaufteilung
- Erhöhung der Antriebskraft an Achse mit besserer Bodenhaftung
- ➤ Momentenverteilung zwischen 2:98 und 98:2

Seite 26

Grundprinzipien der Antriebskraftverteilung Kupplungen

Hydraulisch betätigte Lamellenkupplung (z.B. Haldex)

- > Elektronisch beeinflussbar
- Momentenverteilung zwischen 0:100 und 100:0

Beispiele für Allradsysteme Daimler 4Matic

Beispiele für Allradsysteme BMW XDrive

Lamellenkupplung zur variablen Antriebskraftverteilung zwischen vorne und hinten

Seite 29

Vielen Dank für Ihre Aufmerksamkeit!