Sprout 2020 Algorithm - Week

Author: 陳楚融

Problem 1

假設 $n\ (n>1)$ 人時,存在一組關係,使任兩人之認識人數皆不同,令 a_i 為第 $i\ (1\leq i\leq n)$ 人之認識人數

因 $0 \le a_i \le n-1$,共 n 種可能,且根據假設, n 項中兩兩不重複,得 $a_1 \cdots a_n$ 必定 與 $0 \cdots n-1$ ——對應

令 $a_1=0,\ a_n=n-1$,表示沒有人認識第1 人,第n 人卻認識所有人,假設矛盾得證必有兩人認識人數相同

Problem 2

已知 n=3 時:

$$3^n + 4^n = 91 < 5^n = 125 \quad \cdots \quad (1)$$

命題成立

假設 n=k 時, $3^k+4^k<5^k$,則 n=k+1 時:

命題仍然成立

由(1),(2),以數學歸納法得證

Problem 3

已知 n=4 時:

$$3^n = 81 > n^3 = 64 \quad \cdots \quad (1)$$

命題成立

假設 $n=k\ (k\geq 4)$ 時, $3^k>k^3$,則 n=k+1 時:

$$3^{k+1} = 3 * 3^k$$
 $(k+1)^3 = (\frac{k+1}{k})^3 * k^3$

根據分數性質:

$$\frac{k+1}{k} < \frac{k}{k-1}, \quad k > 1$$

又k=4時:

$$(\frac{k+1}{k})^3 < (\frac{k}{k-1})^3 = \frac{64}{27} < 3$$

因此:

$$3*k^3 > (\frac{k+1}{k})^3 *k^3 \qquad \cdots \qquad (2)$$

 $3^{k+1} > (k+1)^3$

命題仍然成立

由(1),(2),以數學歸納法得證

Problem 4

令 F(n) 為 $n \in \mathbb{N}$ 之總得分,已知 n = 1 時:

$$F(n) = 0 = \frac{1^2 - 1}{2}$$

$$= \frac{n^2 - n}{2} \qquad \cdots \qquad (1)$$

命題成立

假設 $n\geq 2$,可將 n 拆成任意之 $a+b=n,\ a,\ b\geq 1$,此操作得 a*b 分,再將 $a,\ b$ 拆至僅剩 1 為止,分別會獲得分數 $F(a),\ F(b)$,得:

由(1),(2),以數學歸納法得證

Problem 5

對於一種可行的投票結果 $a_1 \cdots a_n$,將其順序重組後仍然有解,故假設 $a_1 \cdots a_n$ 為降 幂排序,並令一序列 $B = [b_1 = 0 \cdots b_n = 0]$

若 $b_j=i$,表示令第 j 人投給第 i 人

已知條件:

$$0 \le a_i < n \quad \cdots \quad (1)$$

$$\sum_{i=1}^{n} a_i = n \quad \cdots \quad (2)$$

由(1),(2)可知若不考慮不能投給自己之限制,所有人皆可恰投一票

先令 $b_2=1$,設 $a_1\,\cdots\,a_n$ 中不為 0 之項目數量為 p ,B 中最後一個不為 0 之項目編號 為 q

對所有 $i~(1 \leq i \leq p-1)$,依序將當前 $b_q ~\cdots ~b_{q+a_i-1}$ 修改為 i~ ,因:

$$egin{aligned} q &= 2 + \sum_{j=1}^{i-1} a_j - 1 = 1 + \sum_{j=1}^{i-1} a_j \ &\geq 1 + \sum_{j=1}^{i-1} 1 = i \end{aligned}$$

得 $i\leq q$,故 $b_i\neq i$,第 i (i>1) 人必不投給自己,最後修改 b_{n-a_p+2} ··· b_n ,为 p 至此對於任意 n (n>1) 人之投票結果,構造出一合法投票方法 得證只要符合 (1) ,必為一可能的投票結果