

PHYSICS Chapter 15

ELECTROSTÁTICA II

¿Qué sucede cuando se está expuesto a campos eléctricos o magnéticos?

https://www.youtube.com/watch?v=dwZuKaexAJ

Estudios sobre voluntarios han determinado que algunas personas pueden percibir campos eléctricos de entre 2 y 10 kV/m. Estas personas describen una sensación de "cosquilleo" que se produce porque el campo eléctrico hace vibrar el pelo de la cabeza y del cuerpo. En el

CAMPO

Es e Entermedia de para que se lleve a cabo las interacciones eléctricas, es decir, gracias a él los cuerpos electrizados se pueden

as líneas de campo

Las líneas de campo de fuerza

sale

del cuerpo electrizado positivamente

Las líneas de campo de fuerza entran

INTENSIDAD DE CAMPO ELÉCTRICO

Intensidad de campo eléctrico debido a una caro

Q, : cuerpos electrizado (coulomb: C)

E: módulo de la intensidad de campo

eléctrico (N/C)

d: distancia (metro: m)

En el aire o vacio.K =9x $10^9 Nm^2/C^2$

RELACION DE FUERZA ELECTRICA SOBRE UNA PARTICULA ELECTRIZADA POSITIVAMENTE

Q(+)

RELACION DE FUERZA ELECTRICA SOBRE UNA PARTICULA ELECTRIZADA NEGATIVAMENTE

(h)

PROBLEMA 1

Determine el módulo de la intensidad de campo eléctrico a 5 m de una partícula electrizada con $q = 20 \mu C$.

Determinamos el módulo de la intensidad del campo eléctrico en el punto p

$$\mathsf{E} = \frac{Kxq}{d^2}$$

$$\mathsf{E} = \frac{9(10)^9 x 20 (10)^{-6}}{5^2}$$

$$\mathsf{E} = \frac{180(10)^3}{5^2}$$

Se sabe que la intensidad de campo eléctrico a 3 m de una partícula electrizada es 160 N/C. Determine dicha intensidad de campo eléctrico en otro punto a 12 m de la partícula.

$$\mathsf{E} = \frac{Kxq}{d^2}$$

$$Kxq = Exd^2$$

kxq: es constante

$$E_A \cdot d_A^2 = E_B \cdot d_B^2$$

$$160x3^2 = E_B x 12^2$$

$$4x4x10x3x3 = E_Bx12x12$$
 $E_B=10 \text{ N/C}$

$$E_B=10 N/C$$

Si las intensidades de campo eléctrico en el punto P, alrededor de las esferas electrizadas (1) y (2), son de módulo 200 N/C y 370 N/C, respectivamente, determine el módulo de la intensidad resultante en dicho punto.

SU MÓDULO:

$$E_R = 370 \text{ N/C} - 200 \text{ N/C}$$

$$E_{R} = 170 \text{ N/C}$$

En el esquema se muestran dos cargas puntuales. Determine el módulo de la intensidad de campo eléctrico resultante en el punto P.

Determinamos E₆ y E₄

$$\mathsf{E} = \frac{KxQ}{d^2}$$

$$\mathbf{E_6} = \frac{9x10^9 \, x6x10^{-6}}{1^2}$$

$$E_6 = 54 \text{ KN/C}$$

$$E_4 = \frac{9x10^9 x4x10^{-6}}{2^2}$$

$$E4 = 9 \text{ KN/C}$$

 $E_{\rm R}$ = 54KN/C-9KN/C=45 KN/C

FUERZA EN EL CAMPO ELÉ

CAMPO ELÉCTRICO HOMO

Se muestra un campo eléctrico homogéneo de 80 kN/C de intensidad. Si la esfera de 2×10-4 C está en reposo en la posición que se indica, ¿qué masa tiene la esfera? ($g=10 \text{ m/s}^2$)

Por equilibrio mecánico

$$\rightarrow$$
 mg =F_c......α

Sabemos:

$$\rightarrow$$
 $F_C = q \cdot E$

$$F_C = 2.10^{-4}.80.10^{3}N$$

$$F_{c} = 16N$$

En la gráfica, la esfera de 0,5 kg y electrizada con -4 μ C está sujeta a una cuerda. Determine el módulo de la tensión en la cuerda. ($g=10 \text{ m/s}^2$, $E=5\times10^5$

Por condición de equilibrio Mecánico

$$T + F_C = 5N....\alpha$$

Sabemos:

$$\rightarrow$$
 $F_C = q \cdot E$

Reemplazamos:

$$F_C = 4.10^{-6}.5.10^{5}N$$

$$F_C = 2N$$

$$T = 3N$$

Si la esfera de 0,1 kg y electrizada con -15μ C, determine el módulo de la tensión en la cuerda. ($g=10 \text{ m/s}^2$, E=140 kN/C)

POR CONDICION DE EQUILIBRIO

$$T + 1N = F_{C} - \alpha$$

Sabemos:

$$\rightarrow$$
 $F_c = q \cdot E$

Reemplazamos:

$$F_C = 15 \cdot 10^{-6} \cdot 140 \cdot 10^3 N$$

$$F_C = 2100 \cdot 10^{-3} N$$

$$F_{c} = 2,1N$$

$$T = 1,1N$$

Se sabe que quien actúa realmente sobre las partículas electrizadas es el "campo eléctrico" cuya línea de acción será radial para una sola carga puntual y con dirección variable para varias cargas puntuales. En la figura se observa el destello dejado por partículas electrizadas al moverse dentro de un campo eléctrico. ¿Cuántas cargas purtuales hay y cómo serían sus cargas purtuales purtual

Se tiene 2 partículas cargadas son de cargas contrarias.