Assignment #1

Summer 2022 REU

George Ekman July 9, 2022

Exercise One:

a) Code:

If $f(x) = x^n$, then

\$\$

 $f^\mathrm{n-1}$.

\$\$

Output: If $f(x) = x^n$, then

$$f'(x) = nx^{n-1}.$$

b)

If $n \neq -1$, then

 $\ \[\inf x^n dx = \frac{1}{n + 1} x^{x + 1} + C \det{.} \]$

Output: If $n \neq -1$, then

$$\int x^n dx = \frac{1}{n+1} x^{x+1} + C.$$

c)

The derivative of a function f at x = a is $f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \text{ }$

Output: The derivative of a function f at x = a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Exercises Two:

a)

The number \$e\$ is defined by

 $[e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \left(. \right)]$

Output: The number e is defined by

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

b)

If \$f\$ is a continuous function, then

 $\[\frac{d}{dx} \left[\int_a^x f(t)dt \right] = f(x) \left(. \right) \]$

Output: If f is a continuous function, then

$$\frac{d}{dx} \left[\int_{a}^{x} f(t)dt \right] = f(x).$$

Exercise Three:

Code:

```
\begin{center}
\begin{tabular}{|r1|cc|}
\hline
First Name & Last Name & Ice Cream Flavor & Number of Scoops \\
\hline
          & Ekman
                       & Butter Pecan
                                          & $\infty$
                                                             //
George
Alexa
          & Leal
                      & Vanilla
                                          & $4$
                                                             //
          & Maschi
                      & Chocolate
                                          & $2$
Julia
                                                             //
Johnny
          & Tran
                      & Strawberry
                                         & $18$
                                                             //
\hline
\end{tabular}
\end{center}
```

Output:

ſ	First Name	Last Name	Ice Cream Flavor	Number of Scoops
ſ	George	Ekman	Butter Pecan	∞
	Alexa	Leal	Vanilla	4
	$_{ m Julia}$	Maschi	Chocolate	2
	Johnny	Tran	Strawberry	18

Exercise Four:

Code:

\[\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \text{.} \]
Output:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Exercise Five:

Code:

% In preamble:

 $\verb|\newcommand{Nb}{\mathbb{N}}|$

 $\mbox{\newcommand}{\Zb}{\mathbb{Z}}$

 $\label{local_property} $$\operatorname{\mathbb{Q}}_{\mathbb{Q}}$$

\newcommand{\Cb}{\mathbb{C}}}

% Here:

\[\Nb \subset \Zb \subset \Qb \subset \Rb \subset \Cb \text{.} \]

If
$$z = x^2 + xy + y^2$$
, then $\left[\pder{z}{x} = 2x + y \text{.} \right]$

Output:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

If
$$z = x^2 + xy + y^2$$
, then

$$\frac{\partial z}{\partial x} = 2x + y.$$

Exercise Six:

Code:

Output: If $f(x) = x^2$, then

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

$$= \lim_{h \to 0} \frac{(a+h)^2 - a^2}{h}$$

$$= \lim_{h \to 0} \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$= \lim_{h \to 0} 2a + h = 2a.$$