<u>UE MATH 101: EVALUATION DE SYNTHESE</u> <u>SEMESTRE HARMATTAN</u>

EXERCICE 1 (12 pts)

On considère le \mathbb{R} -espace vectoriel \mathbb{R}^3 muni de sa base canonique $\mathcal{B}=(e_1,e_2,e_3)$. Soit T un endomorphisme de \mathbb{R}^3 représenté par la matrice $A=\begin{pmatrix}4&1&-1\\2&5&-2\\1&1&2\end{pmatrix}$ sur \mathcal{B} .

- 1. Calculer les vecteurs propres et les espaces propres associés à chaque valeur propre de A.
- $2.\ A$ est-elle diagonalisable? Justifier votre réponse.
- 3. On note \mathcal{B}_p une base de vecteurs propres de T. Donner une matrice de passage P de la base \mathcal{B} à la base \mathcal{B}_p (On précisera la base \mathcal{B}_p). Calculer P^{-1} .

EXERCICE 2 (5 pts)

(On pourra s'aider de la question précédente.)

- 1. Soit $a,b,c \in \mathbb{R}$. Déterminer les racines du polynôme en $x, P(x) = \begin{vmatrix} x & a & b & c \\ a & x & b & c \\ a & b & x & c \\ a & b & c & x \end{vmatrix}$.
- 2. On pose $M_{abc}=\begin{pmatrix}0&a&b&c\\a&0&b&c\\a&b&0&c\\a&b&c&0\end{pmatrix}$. La matrice M_{123} est-elle diagonalisable? Justifier la réponse.

EXERCICE 3 (3 pts)

On considère la matrice $M = \begin{pmatrix} 1 & 1 & 1 - t \\ 1 + t & -1 & 2 \\ 2 & -t & 3 \end{pmatrix}$. Pour quelles valeurs du paramètre réel t, la matrice M est-elle inversible?