Foundation of Computer Science Assignment - 1

<u>Unit - 1</u>

- 1. Construct the Truth Table for the following:
 - a) $((p \rightarrow q) \rightarrow r) \rightarrow s$
 - b) $((p \land q) \lor \neg r) \leftrightarrow p$
- 2. Show whether the statement (p V $\neg q$) \rightarrow (p \land q)

Is a tautology, a contradiction or a contingency.

- 3. Determine the converse, inverse and contrapositive statement for the statement : "John is poor if John is a poet".
- 4. Show that the following rule is valid using Truth Table Method:

5. Let P be "It is snowing".

Q be "I will go to town". &

R be "I have time".

Write the following statement in English:

- i) $Q \leftrightarrow (R \land \neg P)$
- ii) $\neg (R V Q)$
- 6. Which rule of inference is used in each argument below?
 - ☐ Alice is a Math major. Therefore, Alice is either a Math major or a CSI major.
 - ☐ Jerry is a Math major and a CSI major. Therefore, Jerry is a Math major.
 - ☐ If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
- 7. Use De Morgan's laws to find the negation of each of the following statements.
 - ☐ Jan is rich and happy.
 - ☐ Carlos will bicycle or run tomorrow.
 - ☐ Mei walks or takes the bus to class.
 - ☐ Ibrahim is smart and hard working.
- 8. Prove: $(p \land \neg q) \lor q \Leftrightarrow p \lor q$ using logical equivalences.
- 9. If $A = \{1,2,3,4,5\}$. Determine the truth value of the following:
 - a) $\exists x \in A(x+5=10)$
 - b) $\forall x \in A(x+1<5)$

- 10. Test the validity of the following arguments:
- a) If two sides of a triangle are equal, then the opposite angles are equal.

Two sides of a triangle are not equal.

Therefore, the opposite angles are not equal.

b) If Today is Tuesday, then I have a test in Mathematics or Economics.

If my Economics Professor is sick, then I will not have a test in Economics.

Today is Tuesday and my Economics Professor is sick.

Therefore, I have a test in Mathematics.

11. Negate the statement:

For all real numbers x, if x>5 then $x^2>25$ [Hint: use predicates and quantifier]

12. Let K(x): x is a student.

M(x): x is clever.

N(x): x is successful.

Express using quantifier:

- a) There exists a student.
- b) Some students are clever.
- c) Some students are not successful
- 13.Use the method of contradiction to show that $\sqrt{5}$ is irrational.
- 14. Define NAND (\uparrow) and NOR (\downarrow) connectives. Construct their corresponding Truth Tables.
- 15. Express in PDNF:

Ш	(p	٨	\mathbf{q}) V	' ($\neg p$	٨	r)	V	(q	٨	r)
---	---	---	---	--------------	-----	------------	----------	---	----	---	----	---	---	---

- ☐ If John attends classes, then John passes in university exams.
- 16. Express in PCNF:

$$\square$$
 $(\neg p \rightarrow r) \land (q \leftrightarrow p)$

☐ Ken is playing football or Ken is sleeping.

17. Show that $(r \lor s)$ follows logically from the premises $(c \lor d)$, $(c \lor d) \rightarrow$

$$\neg h$$
, $\neg h \rightarrow (a \land \neg b)$, $(a \land \neg b) \rightarrow (r \lor s)$

- 18. Give an example of Nested Quantifiers, Bounded and Free Variable. [Hint: Two quantifiers are nested if one is within the scope of the other.]
- 19. Translate into English:

```
\forall \ x\forall \ y((x>0) \land (y<0) \rightarrow (xy<0))
```

20. Consider Universe of Discourse, P, = {1, 2, 4, 5, cat, table, fan}

Let
$$N(x) \equiv x$$
 is a number, $E(x) \equiv x$ is even
Let $A(x) \equiv N(x) \rightarrow E(x)$

- \square What is the Truth value of A(x)? i.e. N(x) \rightarrow E(x)?
- \square What is the Truth value of A(2)? i.e. N(2) \rightarrow E(2)?
- \square What is the Truth value of A(1)?, i.e. N(1) \rightarrow E(1)
- \square What is the Truth value of N(1) \rightarrow E(2)?
- \square What is the Truth value of A(cat) i.e.(cat) \rightarrow E(cat)?
