- 1. [25 points] In the circuit below, find the small signal output voltage v_{out} . Assume:
 - All transistors are biased in saturation.
 - The bias current sources are ideal.
 - For all transistors, Cgs = 0, Cgd = 0, Csb = 0, Cdb = 0, and ro = ∞ .
 - gm1 = gm2 = gm3 = gm

Write in Exam Book Only

- 2. [25 points] In the circuit below, find the small signal input resistance R_{IN} . Assume:
 - The transistor is biased in saturation.
 - Cgs = 0, Cgd = 0, Csb = 0, Cdb = 0, and $ro = \infty$.

Write in Exam Book Only

3. [25 points] In the circuit below, find the small signal output voltages v_{out1} and v_{out2} .

Assume:

- The transistor is biased in saturation.
- The op-amp is ideal.
- The bias current source is ideal.
- Cgs = 0, Cgd = 0, Csb = 0, Cdb = 0, and $ro = \infty$.

- 4. [25 points] In the circuit below, find the transfer function $H(s) = v_{out}/v_{in}$. Assume:
 - The op-amps are ideal.
 - All transistors are biased in saturation.
 - The bias current source is ideal.
 - For all transistors, Cgs ≠ 0, Cgd = 0, Csb = 0, Cdb = 0, and ro = ∞ .
 - -gm1 = gm2 = gm
 - -R1 = R2 = R3 = R4 = R5 = R6 = R

Write in Exam Book Only