LAB1

PB19000196 晏瑞然

内容纲要

- 结果展示及参数解读:
 - 网络参数设定 (CNN,RESNET) ,包括dropout等
 - 。 学习率与epoch设定
 - o 优化器、学习率调整、loss函数设定
 - o Transform设定
 - o early_stopping方法
- 实验过程记录,记录各种对比结果
 - o 网络结构
 - o Ir
 - 。 优化器
 - o transform对比
 - o 有意思的发现(valloss低于trainloss)
- 实验总结

最终实验结果

网络参数

CNN:

网络层	类型	输入	kernal, stride, padding	激活函数	输出
conv0	conv	3,64,64	3,1,1	Relu	32,64,64
conv1	conv	32,64,64	3,2,1	Relu	64,32,32
conv2	conv	64,32,32	3,2,1	Relu	128,16,16
conv3	conv	128,16,16	3,2,1	Relu	256,8,8
pool	pooling	256,8,8	4,4,0	-	256,2,2
linear1	linear	256*2*2	-	Relu	512
linear2	linear	512	-	Relu	200

Resnet:

网络层	类型	输入	downsample	输出
conv0	conv	3,64,64	-	64,64,64
block1	reslayer	64,64,64	F	64,64,64
block2	reslayer	64,32,32	Т	128,32,32
block3	reslayer	128,16,16	Т	256,16,16
block4	reslayer	256,8,8	Т	512,8,8
pool	pooling	512,8,8	-	512,2,2
linear1	linear	512*2*2	-	512
linear2	linear	512	-	200

两个网络都使用dropout(0.15)且所有卷积层后会做BN,激活函数都使用Relu.

residual connection就是简单的通过一个卷积层来让通过block的输出和原始输入维度对齐,block里面用两个3×3的kernel去卷,通过downsample参数控制是否将图片大小降维。

其他设定

学习率: 初始为0.001

max_epoch: 50(因为设了early stopping)

优化器: optim.Adam(model.parameters(),lr=lr,weight_decay=1e-4),使用adam并带有正则化

学习率调整: 递减策略为 scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10,

gamma=0.1),没10步乘以0.1。

loss_func: crossentropy

数据增强: transforms.RandomResizedCrop & transforms.RandomHorizontalFlip

early stop: True(patience=3)

早停策略是为了自动防止过拟合,如果没设早停策略则需要手动调节max_epoch,否则会出现如下过拟合现象:

最终结果

最终准确率为: 45.19%

Loss&acc曲线:

实验记录 (对比实验)

网络结构对比

注意,此对比中没有使用数据增强策略(但做了归一化),学习率默认为0.001,优化器为adam,学习率递减策略为每10epoch乘0.1。进行了早停策略,patience为3。

CNN

如果使用简单的网络(参数如下):

(64*64*3) -> (64*64*32)->(22*22*64)->(11*11*16)->flatten->512->200

最终test准确率为20.99%。

loss及acc曲线如下:

可以看出结果并不是很好,主要原因是网络太小了,模型泛化性能不行,但也能看出有拟合的效果。这种简单的网络运行时间也很快,训练一个epoch能在30s以内。

如果采用最终结果的模型参数(见上表格), 最终结果为test_acc=33.41%

loss及acc曲线如下:

resnet

同样如果使用简单网络,只是用两个block,每次downsample并让通道数翻倍,最终结果test_acc只能达到**25.11%。**

而如果采用得到最终结果的那种复杂resnet(其他参数如优化器与前面一样),最终能达到**38.04%**的 test准确率,效果是非常好的,比简单的CNN高了将近1倍,也说明了resnet的优越性。但这也增加了运行时间,每个epoch要跑2min,是最简单的CNN所需时间的4倍。下图是loss及acc曲线:

可以看出resnet效果确实比简单cnn要好(虽然也更耗时),所以之后的实验全部使用上述得到最终结果的resnet网络结构(其他策略可能不同)。

数据增强对比

上述结果显然还不够好,接下来实验采用增强策略,主要增强方法是 RandomResizedCrop 和 RandomHorizontalFlip,风别为随机裁剪和水平翻转。

注意:原有的代码框架中如果进行增强会使得验证集一起增强,这显然是不合理的,验证集的分布显然不能因为数据增强方法的改变而改变,所以我对代码进行了一些修改,使得增强(即transform1)只作用在训练集上。

同时,所有实验都对数据进行了归一化,归一化的参数主要来源于对数据集的数据分析,具体分析过程在这就不多赘述了,我也仅仅只是做了提取均值方差等这些基本分析。归一化的参数为: ([0.480, 0.448, 0.398], [0.272, 0.265, 0.274]) 前三项是三个通道的均值,后三项为三个通道的方差。其他参数与之前一样。

采用数据增强后test acc=45.19%, loss-acc曲线如下:

从loss&acc曲线中可以看到数据增强能显著提高预测结果,此外,还能发现一些有趣的事情:

从图中可以看出在前15个左右的epoch验证集效果比训练集还要好,不论是Loss还是acc,验证集的表现都要优于训练集,当发现这件事情的时候我一开始非常恐慌。因为一般出现这种情况都是因为数据泄露问题,经过多次检查发现代码并没有这种错误,网上搜索也没有头绪。最后发现,可能是因为数据增强的原因,数据增强使得训练集变得更加复杂更难拟合,但在拟合这种更加复杂的分布时,对模型的泛化性能也是一种提升。所以在刚开始的时候,验证集的效果反而比训练集好,等到后来,也就是15个epoch之后,验证集loss降低越来越缓慢而training loss仍然下降,并会低于val loss,等到即将过拟合时早停策略使得训练停止。这也是合理的。

优化器对比

我还使用SDG的optimizer进行了实验, SDG参数为 optim. SGD(model.parameters(), 1r=0.01, momentum=0.9, weight_decay=1e-4), 其他策略与上相同(使用了数据增强), 最终得到的结果如下:

test准确率: 44.52%

loss&acc曲线:

可以看出,使用不同优化器对完全拟合后的结果影响并不大。也可能是本次任务比较简单,无法看出不同优化器的不同优越性(比如可能SDG效果更好,adam速度更快等)。至少从本次实验的数据来看,两者差别不大。

学习率递减策略对比

之前我们使用 StepLR(optimizer, step_size=10, gamma=0.1) 的策略,接下来我们使用 ExponentialLR(optimizer, gamma=0.9) 进行了实验,该方法表示每个epoch后将学习率乘以 gamma即0.9,最终得到的结果与使用stepLR几乎没有区别,test_acc=44.28%。loss&acc曲线也与前面的基本相同,在大约30epoch左右停止。

实验记录汇总表

所有实验结果如下表所示:

网络	复杂/简单	优化器	增强	学习率递减	test acc
CNN	简单	adam	只做了归一	StepLR	20.99%
CNN	复杂	adam	只做了归一	StepLR	33.41%
ResNet	简单	adam	只做了归一	StepLR	25.11%
ResNet	复杂	adam	只做了归一	StepLR	38.04%
ResNet	复杂	adam	归一、裁剪、水平翻转	StepLR	45.19%
ResNet	复杂	SDG	归一、裁剪、水平翻转	StepLR	44.52%
ResNet	复杂	adam	归一、裁剪、水平翻转	ExponentialLR	44.28%

总结

本次实验从头搭建了CNN和ResNet网络(虽然助教写好了框架),并进行调参在Tiny ImageNet上进行训练与验证。虽然最终结果不是很好只有不到50%,但个人感觉还是挺满意的。

最终效果仍有很大的提升空间。主要是因为本地跑代码受限与计算资源。本实验后面的得到结果的那种相对复杂的网络一个epoch就要2~3分钟(3060笔记本卡),一次实验就要一个多小时。本人笔记本的垃圾卡根本跑不动(一个epoch30min.....),只能借别人的电脑跑TAT(不过3060是真的爽),所以也不敢把网络做的更大。网上也看了很多resnet的结构,基本都是数十层的卷积层。所以本实验效果肯定没这些好,这也没什么办法。

但本次实验也要我感受到了搭建网络和调参的乐趣,一次一次调参让最终结果变得更好也挺有成就感的。总之,本次实验要我收获颇丰,coding能力和调参水平在本次实验中得到了很好的锻练(虽然主要时间都是在调参和等模型training XD)。