

Récurrence - Nombres complexes

Exercice 1. Soit x un réel. On appelle *partie entirère* du réel x l'unique entier relatif noté $\lfloor x \rfloor$ vérifiant l'encadrement suivant :

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

- **1.** Comme $1 \le \sqrt{2} < 2$, par unicité : $\lfloor \sqrt{2} \rfloor = 2$. De même $-4 \le -3, 1 < -3$, donc et $\lfloor -3, 1 \rfloor = -4$, et enfin $0 \le 0 < 1$ donc $\lfloor 0 \rfloor = 0$.
- **2.** Soit $x \in \mathbb{R}_+ \setminus \mathbb{N}$. Par définition de la partie entière $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. En multipliant ces inégalités par -1 < 0, on trouve : $-\lfloor x \rfloor \geq -x > -\lfloor x \rfloor 1$. Comme -x n'est pas un entier, il est certain que $-\lfloor x \rfloor > -x$. Finalement, l'encadrement s'écrit en notant $p = -\lfloor x \rfloor 1$:

$$p < -x < p + 1$$
.

Comme p est entier, $p = \lfloor -x \rfloor$ puisqu'il vérifie la propriété de définition de la partie entière. On a bien le résultat.

3. On veut prouver la propriété suivante :

$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

a) La preuve directe est la suivante : pour tout réel x, il est vrai par définition de la partie entière :

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1.$$

Soit ensuite un entier n naturel. Ajoutons n membre à prendre dans cet encadrement. En posant : $p = \lfloor x \rfloor + n$ qui est un entier on obtient :

$$p \le x + n .$$

Ainsi $p = \lfloor x + n \rfloor$, c'est-à-dire : $\lfloor x \rfloor + n = \lfloor x + n \rfloor$

b) Soit x un réel, et pour tout entier naturel n, notons (P_n) la propriété : $\lfloor x+n\rfloor = \lfloor x\rfloor + n$. Montrons par récurrence sur n que P_n est vraie.

Initialisation Si n = 0, il est clair que (P_n) est vraie.

Hérédité On montre pour tout entier n l'implication $[P_n \Rightarrow P_{n+1}]$. Soit $n \in \mathbb{N}$. Supposons que pour cet entier n, P_n est vraie et montrons que pour l'entier suivant P_{n+1} est vraie. Par hypothèse de récurrence :

$$|x| + n \le x + n < |x| + n + 1$$

En ajoutant 1 membre à membre :

$$|x| + n + 1 \le x + n + 1 < (|x| + n + 1) + 1.$$

Maintenant, notons p = |x| + n + 1. C'est un entier et l'encadrement précédent s'écrit :

$$p \le \lfloor x \rfloor + n + 1$$

Par définition de partie entière, $p = \lfloor x + n + 1 \rfloor$. On a donc montré que $[P_n \Rightarrow P_{n+1}]$.

Conclusion Par principe de récurrence, (P_n) est vraie pour tout entier n.

■ Exercice 2.

1. Vu en TD.

Récurrence - Nombres complexes

2. a) Soit $n \ge 0$ un entier. Par définition de u_n :

$$\begin{array}{rcl} u_{n+1} - j^2 u_n & = & (z_{n+2} - z_{n+1}) - j^2 (z_{n+1} - z_n) \\ & = & z_{n+2} - (1 + j^2) z_{n+1} + j^2 z_n + \\ & \stackrel{\square}{=} & z_{n+2} + j z_{n+1} + j^2 z_n \\ & \stackrel{(R)}{=} & e^{i\pi/3} \end{array}$$

- **b)** Comme $1 j^2 \neq 0$, $C = \frac{e^{i\pi/3}}{1 j^2}$ convient.
- c) Comme on a:

$$u_{n+1} = j^2 u_n + e^{i\pi/3} \quad \forall n \ge 0$$

 $C = j^2 C + e^{i\pi/3}$

par soustraction : $\forall n \geq 0$ $u_{n+1} - C = j^2(u_n - C)$, ce qui veut bien dire que la suite (w_n) est géométrique (de raison j^2).

- **d)** On déduit que pour tout entier $n \ge 0$: $w_n = w_0 \times (j^2)^n$, et revenatn à la définition de w_n : $u_n = C + j^{2n}(u_0 C) \quad \forall n \ge 0$.
- **3.** a) Cela se voit bien sur la forme algébrique : $-j^2 = -(\cos(4\pi/3) + i\sin(4\pi/3)) = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\pi/3}$.
 - **b)** Comme $1 j^2 = 1 + e^{i\pi/3}$ d'après la question précédente, on trouve que :

$$1 - j^2 = e^{i\pi/6} \left(e^{-i\pi/6} + e^{i\pi/6} \right) \stackrel{\text{Euler}}{=} e^{i\pi/6} 2 \cos(\pi/6) = \sqrt{3} e^{i\pi/6}.$$

Finalement :
$$C = \frac{e^{i\frac{\pi}{3}}}{1 - i^2} = \frac{e^{i\pi/6}}{\sqrt{3}}$$
.

4. a) Comme $u_0 = z_1 - z_0 = C$, $u_0 - C = 0$ et

$$\forall n \geq 0 \quad u_n = C$$

b) Calculons pour tout entier n la différence $|z_{n+1} - z_n|$:

$$|z_{n+1} - z_n| = |u_n| \stackrel{\text{3.b}}{=} |C| = \frac{1}{\sqrt{3}} > 0.$$

Ce qui prouve que pour tout entier $n \ge 0$, z_{n+1} ne peut pas être égal à z_n .