IMIĘ I NAZWISKO Tomasz Piotrowski NR INDEKSU 200524

PROJEKTOWANIE ALGORYTMOW I METODY SZTUCZNEJ INTELIGENCJI

SPRAWOZDANIE Z LABORATORIUM Sortowanie quick poruwniane czasow sortowaia

1. Wstęp

Quicksort w podstawowej wersji za piwot obiera środkowy element zbioru. Taki sposób jest często stosowany w implementacji algorytmu, jednak aby zminimalizować prawdopodobieństwo przypadku pesymistycznego można losowwo wybierać piwot. Dzięki czemu szansa na wystąpienie najgorszego przypadku są statystycznie znacznie mniejsze.

Celem tego ćwiczenia jest zSprawdzenie jaki wpływ na czas sortowania ma sposób doboru piwotu.

2. Wyniki symulacji

CZASY SORTOWANIA W PESYMISTYCZNYM PRZYPADKU

Rozmiar	średnia z:	Czas
1000	5	0
10000	5	0.0033
100000	5	0.04166
1000000	5	4.7833
10000000	5	53.94

Tabela 1. Czas sortowania podstawowym Quicksortem

Rozmiar	średnia z:	Czas
1000	5	0
10000	5	0.0027
100000	5	0.3001
1000000	5	3.876
10000000	5	42.65

Tabela 2. Czas sortowania Quicksortem z losowym doborem piwotu

CZASY SORTOWANIA W ŚREDNIM PRZYPADKU

Rozmiar	średnia z:	Czas
1000	5	0
10000	5	0.00396
100000	5	0.02
1000000	5	0.2666
10000000	5	3.0166
100000000	5	34.4567

Tabela 3. Czas sortowania podstawowym Quicksortem

Rozmiar	średnia z:	Czas
1000	5	0
10000	5	0.00333
100000	5	0.02
1000000	5	0.2133
10000000	5	2.4533
10000000	5	28.37

Tabela 4. Czas sortowania Quicksortem z losowym doborem piwotu

3. Wykresy

Rysunek 1. Złożoność obliczeniowa sortowania w przypadku pesymistycznym

Rysunek 2. Złożoność obliczeniowa sortowania w przypadku srednim

4. Wnioski

Po przeprowadzeniu symulacji zauważalna jest różnica w czasie wykonywania algorytmu dla obu metod W obu przypadkach losowy dobór piwotu powoduje szybsze posortowanie zbioru niż w dobor stałego elementu zbioru. Zastosowanie tej metody wyboru piwotu usprawnia działanie sortowania szybkiego zmniejszając czas jego wykonywania.