3.4 Determinanten und Eigenwerte

Im Folgenden $A \in \mathbb{K}^{n \times n}$ quadratisch, A^{ij} ist A nach Streichen von Zeile i und Spalte j.

<u>Determinante einer Matrix:</u>

- $\det(a)=a$, sonst $\det A=\sum\limits_{j=1}^{n}\left(-1\right)^{i+j}*a_{ij}*\det A^{ij}$ für eine Zeile $i\in\{1,...,n\}$
- det A = det A^T (man kann nach Zeilen oder Spalten entwickeln)
- ist A Dreiecksmatrix, gilt $det A = \prod_{i=1}^{n} a_{ii}$ (Produkt auf der Hauptdiagonale)
- Vertauschen von Zeilen kehrt das Vorzeichen von det A um
- multipliziert man eine Zeile mit λ , muss man det A mit λ multiplizieren
- daraus folgt: $det(\lambda \cdot A) = \lambda^n \cdot det A$
- det A ≠ 0 ⇔ A ist invertierbar ⇔ Rang A = n ⇔ Kern A = {0}
 - ⇔ Zeilen und Spalten von A sind linear unabhängig. Dann det A⁻¹ = (det A)⁻¹
- $det(A \cdot B) = det A \cdot det B (für A, B \in \mathbb{K}^{n \times n})$ (gilt nicht für det(A + B)!)

<u>Eigenwerte einer Matrix:</u>

- λ ∈K heißt <u>Eigenwert</u> von A, wenn es einen Vektor v ≠ 0 gibt, s.d. A·v = λ ·v
- v heißt dann **Eigenvektor** zu λ und die Menge aller Eigenwerte **Spektrum** von A
- $\operatorname{Eig}_{\Delta}(\lambda) = \{v \in \mathbb{K}^n \mid A \cdot v = \lambda \cdot v\} = \operatorname{Kern}(A \lambda E_n)$ heißt <u>Eigenraum</u> von A zum Eigenwert λ
- Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig
- eine Matrix A∈K^{n×n} hat höchstens n verschiedene Eigenwerte (und muss keine haben)
- λ Eigenwert \Leftrightarrow det(A- λ E_n) = 0, χ _A(x) = det(A-xE_n) heißt <u>charakteristisches Polynom</u>

Basistransformation:

- B und B' Basen für \mathbb{K}^n , S Standardbasis. $(a_1 \dots a_n)_B = a_1b_1 + \dots + a_nb_n$ (Vektor bezüglich Basis B)
- <u>Transf.mat.</u>: $T_{B\rightarrow B}$,= $B^{'-1}$ · B mit V_{B} ,= $T_{B\rightarrow B}$, · V_{B} , also $T_{B\rightarrow S}$ =(b_1 ... b_n), $T_{B\rightarrow B}$ = $T_{B\rightarrow B}$, · $T_{B\rightarrow B}$, · T
- für eine Basis aus Eigenvektoren B und D mit $\lambda_{_{\rm i}}$ auf der Hauptdiagonalen gilt ${\rm A\cdot v_{_B}=D\cdot v_{_B}}$
- A <u>diagonalisierbar</u> ⇔ ∃ Basis aus Eigenvektoren ⇔ ∃T,T⁻¹: T⁻¹·A·T=D bzw. AT=TD

<u>4. Permutationen und symmetrische Gruppe</u>

- eine bijektive Abbildung σ: [1,n]→[1,n] heißt <u>Permutation</u> von [1,n] (hier nur auf $\mathbb{N}!$)
- (S_n, \circ) heißt <u>symmetrische Gruppe</u> vom Grad n, dabei $S_n = \{\sigma | \sigma : [1, n] \rightarrow [1, n]$ Permutation $\}$
- $(\frac{1}{\sigma(1)}, \frac{2}{\sigma(2)}, \frac{n}{\sigma(n)})$ ist die Wertetabelle von $\sigma \in S_n$, $|S_n| = n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$ (Fakultät)
- π = (a_1 a_2 ... a_m) heißt <u>m-Zykel</u>, wenn für $a_i \neq a_j$ gilt (a_m)= a_1 , $\pi(a_i)=a_{i+1}$ und $\pi(a)=a$ für $a\neq a_i$
- die Menge aller a∈[1,n] mit $\sigma(a) \neq a$ heißt <u>Träger</u> von $\sigma \in S_n$ (bei m-Zykel: {a1,...,a_m})
- sind π_1 und π_2 Zykel mit disjunkten Trägern, gilt $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1$ (\circ kommutativ)
- jede Permutation ist eine Komposition von Zykeln mit disjunkten Trägern
- 2-Zykel heißen <u>Transpositionen</u>, jedes Zykel ist eine Komposition von Transpositionen
- daraus folgt: jede Permutation ist eine Komposition von Transpositionen
- also $S_n = \langle (i j) \rangle$ (die Transpositionen aus S_n erzeugen die symmetrische Gruppe S_n)
- $(i \ j)^{-1} = (i \ j)$, daraus und von oben folgt: $(a_1 \ a_2 \ ... \ a_m)^{-1} = (a_m \ ... \ a_2 \ a_1)$ (umdrehen!)

<u>Analysis - 1. Folgen und Reihen</u>. <u>Folgen:</u>

- eine Abbildung $(a_n)_{n \in \mathbb{N}}$ = a: N→M heißt <u>Folge</u> in M, a_n = a(n) heißt n-tes <u>Folgenglied</u>
- (a_n) konvergiert gegen den <u>Grenzwert</u> $a \in \mathbb{C}$: $\lim_{n \to \infty} a_n = a \iff \forall \epsilon > 0 \exists n_{\theta} \in \mathbb{N} \forall n > n_{\theta}$: $|a_n a| < \epsilon$
- (a_n) heißt konvergent, wenn sie einen Grenzwert hat, sonst divergent
- ist (a_n) konvergent, so ist der Grenzwert eindeutig bestimmt
- (a_n) heißt <u>Nullfolge</u>, falls $\lim_{n\to\infty} a_n = 0$, $(a_n)\in\mathbb{C}$ ist Nullfolge $\Leftrightarrow (|a_n|)$ ist Nullfolge
- $-\lim_{n\to\infty}a_n=a \iff \lim_{n\to\infty}a_n-a=0 \text{, für } \epsilon>0 \text{ und } a\in\mathbb{C} \text{ heißt } \{x\in\mathbb{C} \mid |a-x|<\epsilon\} \text{ } \underline{\epsilon-\text{Umgebung}} \text{ von a in } \mathbb{C}$

- für reelle Folgen (a_n), (b_n), (c_n) gilt:
 - $-\lim_{n\to\infty}a_n=\infty \iff \forall M>0 \ \exists n_0\in\mathbb{N} \ \forall n>n_0: \ a_n>M, \ \lim_{n\to\infty}a_n=-\infty \iff \forall M<0 \ \exists n_0\in\mathbb{N} \ \forall n>n_0: \ a_n<M \ (\underline{Unendlichkeit})$
 - (a_n) heißt <u>bestimmt divergent</u>, wenn $\lim_{n \to \infty} a_n = \infty$ oder $\lim_{n \to \infty} a_n = -\infty$
 - (a_n) ist nach oben (unten) <u>beschränkt</u> $\Leftrightarrow \exists M \in \mathbb{R} \forall n \in \mathbb{N}$: $a_n \leq M$ ($a_n \geq M$)
 - (a_n) ist beschränkt \Leftrightarrow (a_n) ist nach oben *und* nach unten beschränkt
 - (a_n) ist <u>monoton</u> wachsend (fallend) $\Leftrightarrow \forall n \in \mathbb{N}$: $a_{n+1} \ge a_n$ $(a_{n+1} \le a_n)$ (>,< für streng monoton)
 - ist (a_n) konvergent, so ist (a_n) beschränkt (nicht beschränkt \Rightarrow nicht konvergent)
 - ist (a_n) nach oben (unten) beschr. und mon. wachsend (fallend), so konvergiert (a_n)
 - <u>Vergleichskriterium</u>: Ist $a_n \le b_n \le c_n$ und $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = b \in \mathbb{R}$, so ist $\lim_{n \to \infty} b_n = b$.

Ist $a_n \le b_n$ ($b_n \le c_n$) und $\lim_{n\to\infty} a_n = \infty$ ($\lim_{n\to\infty} c_n = -\infty$), so ist $\lim_{n\to\infty} b_n = \infty$ ($\lim_{n\to\infty} b_n = -\infty$).

- ist (a_n) Nullfolge und (b_n) beschränkt, so ist $\lim_{n\to\infty} (a_n * b_n) = 0$
- ist $a_n \le b_n$ und sind (a_n) und (b_n) konvergent, so ist $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$ (beachte $\le !$)
- für *komplexe* Folgen (a_n), (b_n) mit $\lim_{n\to\infty}a_n=a$ und $\lim_{n\to\infty}b_n=b$ (a,b \neq $\pm\infty$) gilt:
 - $-\lim_{n\to\infty}(a_n+b_n)=a+b\;,\quad \lim_{n\to\infty}(a_n*b_n)=a*b\;,\quad \lim_{n\to\infty}(c*a_n)=c*a\;,\quad \lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}\quad \text{(beachte b,b}_n\neq 0!)\;,\quad \lim_{n\to\infty}|a_n|=|a|$
 - (a_n) ist konvergent \Leftrightarrow $(Re(a_n))$ und $(Im(a_n))$ konvergieren. Dann $\lim_{n\to\infty} a_n = \lim_{n\to\infty} Re(a_n) + i\lim_{n\to\infty} Im(a_n)$
- die <u>eulersche Zahl</u>: $\lim_{n\to\infty} (1+\frac{1}{n})^n = \sum_{k=0}^{\infty} \frac{1}{k!} = e$, allgemein $\lim_{n\to\infty} (1+\frac{z}{n})^n = \sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z$
- (a_{m_n}) mit einer streng monoton wachsenden Folge $(m_n) \in \mathbb{N}$ heißt <u>Teilfolge</u> von (a_n)
- $a \in \mathbb{C}$ heißt <u>Häufungspunkt</u> von (a_n) , falls es eine Teilfolge mit dem Grenzwert a gibt
- jede beschränkte Folge hat einen Häufungspunkt

<u>Reihen:</u>

- für $(a_k) \in \mathbb{C}$ bezeichnet die <u>Reihe</u> $\sum_{k=1}^{\infty} a_k$ die Folge $(S_n)_{n \in \mathbb{N}}$ mit $S_n = \sum_{k=1}^{n} a_k$
- S_n heißt <u>n-te Partialsumme</u>. Konvergiert S_n gegen a, schreibt man $\sum_{k=1}^{\infty} a_k = a$
- **geometrische Reihe**: $\sum\limits_{k=0}^{n}q^{k}=\frac{1-q^{n+1}}{1-q}$, für |q|<1: $\sum\limits_{k=0}^{\infty}q^{k}=\frac{1}{1-q}$ bzw. $\sum\limits_{k=1}^{n}q^{k}=\frac{q-q^{n+1}}{1-q}$, für |q|<1: $\sum\limits_{k=1}^{\infty}q^{k}=\frac{q}{1-q}$
- ist $\sum\limits_{k=1}^{\infty}a_k$ konvergent, so ist $\lim\limits_{k\to\infty}a_k=0$ ((a_k) keine Nullfolge \Rightarrow $\sum\limits_{k=1}^{\infty}a_k$ nicht konvergent)
- die Reihe $\sum\limits_{k=1}^{\infty}a_k$ mit $(a_k)\in\mathbb{R}$ heißt <u>alternierend</u>, wenn $a_i\cdot a_{i+1}<0$
- $\sum\limits_{k=1}^{\infty}a_k$ mit $(a_k)\in\mathbb{C}$ heißt <u>absolut konvergent</u>, falls $\sum\limits_{k=1}^{\infty}\left|a_k\right|$ konvergiert
- jede absolut konvergente Reihe ist konvergent (stärkere Eigenschaft als Konvergenz)
- $-\sum_{k=1}^{\infty}\alpha*a_k=\alpha*\sum_{k=1}^{\infty}a_k\text{,}\sum_{k=1}^{\infty}(a_k+b_k)=\sum_{k=1}^{\infty}a_k+\sum_{k=1}^{\infty}b_k\text{ und }\left(\sum_{k=0}^{\infty}a_k\right)\left(\sum_{k=0}^{\infty}b_k\right)=\sum_{k=0}^{\infty}c_k\text{ mit }c_k=\sum_{i=0}^{\infty}a_i*b_{k-i}\text{ (Cauchy-Produkt)}$
- Konvergenzkriterien: $(a_k) \in \mathbb{C}$, nicht absolut konvergent heißt divergent, wenn $a_k = |a_k|$
 - <u>Leibniz</u>: ist $\sum\limits_{k=1}^\infty a_k$ altern. Reihe und ($|a_k|$) mon. fallende Nullfolge, konvergiert $\sum\limits_{k=1}^\infty a_k$
 - <u>Majorante</u>: $\exists \sum_{k=1}^{\infty} b_k$ (reell & konvergent) $\exists k_0 \in \mathbb{N} \ \forall k > k_0$: $|a_k| \leq b_k \Rightarrow \sum_{k=1}^{\infty} a_k$ absolut konvergent
 - <u>Minorante</u>: $\exists \sum_{k=1}^{\infty} b_k$ (reell & divergent) $\exists k_0 \in \mathbb{N} \ \forall k > k_0$: $|a_k| \ge b_k \ge 0 \Rightarrow \sum_{k=1}^{\infty} a_k$ nicht abs. konv.
 - **Quotient**: $\exists q \in \mathbb{R}$, q < 1 $\exists k_0 \in \mathbb{N}$ $\forall k > k_0$: $\left| \frac{a_{k+1}}{a_k} \right| \le q \Rightarrow \sum_{k=1}^{\infty} a_k$ absolut konvergent $\exists k_0 \in \mathbb{N}$ $\forall k > k_0$: $\left| \frac{a_{k+1}}{a_k} \right| \ge 1 \Rightarrow \sum_{k=1}^{\infty} a_k$ divergent

2. Stetigkeit von Funktionen. f: D→R, D⊆R heißt reellwertige Funktion

- $D_f = \{x \in \mathbb{R} \mid f(x) \text{ definiert}\}\ \text{heißt } \underline{\textbf{Definitions-}}, \ W_f = \{f(x) \mid x \in D_f\}\ \underline{\textbf{Wertebereich}}\ \text{von } f$
- f ist monoton wachsend $\Leftrightarrow \forall x > x'$: $f(x) \ge f(x')$ (fallend / streng analog)
- f nach oben <u>beschr.</u> \Leftrightarrow ∃M∈ \mathbb{R} $\forall x \in D_f$: f(x)≤M (unten analog). beschr. \Leftrightarrow ob.&unt. beschr.
- $a^n = a \cdot ... \cdot a$, $a^{-n} = \frac{1}{a^n}$, $a^0 = 1$, $a^{\frac{m}{n}} = \sqrt[n]{a^m}$, $f(x) = a^x$ heißt <u>Exponentialfunktion</u>, e^x die Exponentialf.
- $f(x)=a^x$. Dann $D_f=\mathbb{R}$, $W_f=\mathbb{R}_{>0}$, f injektiv und $f^{-1}=\log_a$ heißt <u>Logarithmus</u> mit $D_{\log}=\mathbb{R}_{>0}$, $W_{\log}=\mathbb{R}$
- $a^{\log_a x} = \log_a a^x = x$, $\log_a 1 = 0$, $\log_a a = 1$. $a^x = a^y$ und $\log_a x = \log_a y \Leftrightarrow x = y$, $\log_e = \ln a^y = \log_a x$
- $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$, $\log_a(x^b) = b \cdot \log_a(x)$, $\log_a x = \frac{\log_b x}{\log_b a}$, $\log_a x = \frac{\ln x}{\ln a}$
- f heißt gerade (ungerade), wenn f(-x)=f(x) (f(-x)=-f(x)) gilt (Achsen-/Punktsymmetrie)
- f hat den <u>Grenzwert</u> $y_0 \in \mathbb{R}_{\pm \infty}$: $\lim_{x \to x_0} f(x) = y_0 \iff \forall (x_n)_{n \in \mathbb{N}} \in D_f \setminus \{x_0\}$, $\lim_{n \to \infty} x_n = x_0$: $\lim_{n \to \infty} f(x_n) = y_0$
- $-\lim_{x\to x_0}\alpha\,f(x)=\alpha\lim_{x\to x_0}f(x)\,\,\text{,}\quad \lim_{x\to x_0}(f(x)+g(x))=\lim_{x\to x_0}f(x)+\lim_{x\to x_0}g(x)\quad\text{(.,: analog),}\quad \lim_{x\to x_0}g\circ f(x)=\lim_{y\to y_0}g(y)\quad\text{mit}\quad y_0=\lim_{x\to x_0}f(x)=\lim_{x\to x_0}f(x$
- $\ \underline{\text{rechtsseitiger Grenzwert}} : \lim_{x \to x_0^+} f(x) = y_0 \ \Leftrightarrow \ \forall \big(\mathbf{x_n} \big)_{\mathbf{n} \in \mathbb{N}} > \mathbf{x_0}, \ \lim_{n \to \infty} x_n = x_0 : \ \lim_{n \to \infty} f(x_n) = y_0 \ \text{(linkss. analog)}$
- $-\lim_{x\to x_0}f(x)=y_0 \iff \lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)=y_0 \text{, } \underline{\text{asymptotisch}} \text{: } \lim_{x\to \infty}f(x)=y_0 \iff \forall \big(\mathbf{x_n}\big)_{\mathbf{n}\in\mathbb{N}}\text{, } \lim_{n\to\infty}x_n=\infty\text{: } \lim_{n\to\infty}f(x_n)=y_0$
- f heißt <u>stetig</u> in $\mathbf{x}_0 \in \mathbf{D}_{\mathbf{f}}$, wenn $\lim_{x \to x_0} f(x) = f(x_0)$. Für f, g stetig gilt $\lim_{x \to x_0} g \circ f(x) = g(\lim_{x \to x_0} f(x))$
- <u>Nullstellensatz</u>: f stetig auf [a,b] \land f(a)·f(b) < 0 \Rightarrow $\exists x_0 \in [a,b]$ mit f(x_0)=0
- <u>Zwischenwertsatz</u>: f stetig auf [a,b] \land y∈[f(a),f(b)] \Rightarrow $\exists x_e \in [a,b]$ mit f($x_e = x_e \in [a,b]$) mit f($x_e = x_e \in [a,b]$
- Polynome (Grad 2n+1(haben mind. 1 Nullstelle, f ist injektiv ⇔ f ist streng monoton
- f stetig auf [a,b] ⇒ f hat ein Maximum und Minimum auf [a,b] (gilt nicht für (a,b)!)

3. Differentialrechnung

- $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$ heißt <u>Ableitung</u> von f in $x_0 \in D_f$, f ist <u>differenzierbar</u> in $x_0 \in D_f$
- ist f differenzierbar in x_0 , so ist f stetig in x_0 (Stetigkeit ist notw. Bedingung)
- gibt es die <u>n-te Ableitung</u> $f^{(n)}=(f^{(n-1)})$ ' (+stetig), ist f n-mal (stetig) differenzierbar
- Monotoniekriterien: f differenzierbar auf (a,b) mit a,b $\in \mathbb{R}_{\pm \infty}$
 - f ist monoton wachsend auf (a,b) $\Leftrightarrow \forall x \in (a,b)$: f'(x)≥0 (fallend analog)
 - f ist streng mon. wac. auf (a,b) $\leftarrow \forall x \in (a,b)$: f'(x)>0 (fallend analog, beachte \leftarrow !)
- f stetig auf [a,b] \land diff-ar auf (a,b) \land f(a) = f(b) $\Rightarrow \exists x_0 \in (a,b): f'(x_0) = \emptyset$
- <u>Mittelwertsatz</u>: f stetig auf [a,b] \wedge diff-ar auf (a,b) $\Rightarrow \exists x_0 \in (a,b)$: $f'(x_0) = \frac{f(b)-f(a)}{b-a}$
- allgemein: f stetig und differenzierbar auf (a,b) $\Rightarrow \exists x_0 \in (a,b)$: $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(x_0)}{g'(x_0)}$

Extrema:

- f hat in x_0 ein lokales $\underline{\text{Minimum}} \Leftrightarrow \exists \epsilon > 0 \ \forall x \in (x_0 \epsilon, x_0 + \epsilon) \setminus \{x_0\} \colon f(x_0) < f(x) \ (\underline{\text{Maximum}} \ \text{analog})$
- f hat in x_0 ein globales Minimum $\Leftrightarrow \forall x \in D_f \setminus \{x_0\}$: $f(x_0) < f(x)$ (Maximum analog)
- ist f differenzierbar auf $(x_0-\epsilon,x_0+\epsilon)$ und hat f in x_0 ein Extremum, so ist f' $(x_0)=0$
- ist f nicht differenzierbar auf $(x_0-\epsilon,x_0+\epsilon)$, kann f in x_0 ein Extremum haben
- $f'(x_0)=0$ \wedge links von x_0 : f'(x)<0 \wedge rechts von x_0 : $f'(x)>0 <math>\Rightarrow$ lok. Min. (Max. analog)
- <u>Kriterium</u>: f m-mal differenzierbar auf (a,b) mit a,b $\in \mathbb{R}_{\pm \infty}$ und $x_0 \in (a,b)$
 - \exists m gerade: $f'(x_0) = ... = f^{(m-1)}(x_0) = 0 \neq f^{(m)}(x_0) \Rightarrow f$ hat in x_0 ein Extremum
 - $f^{(m)}(x_0)$ < 0 \Rightarrow lokales Maximum, $f^{(m)}(x_0)$ > 0 \Rightarrow lokales Minimum

Krümmungsverhalten:

- f ist <u>konvex</u> (linksgekrümmt) $\Leftrightarrow \forall x_1, x_2 \in D_f$: $f\left(\frac{x_1+x_2}{2}\right) \leq \frac{f(x_1)+f(x_2)}{2}$ (<u>konkav</u> analog)
- x_0 ist <u>Wendepunkt</u> \Leftrightarrow links von x_0 : f konkav \land rechts von x_0 : f konvex (oder andersrum)
- Kriterium: f 2-mal differenzierbar und $x_0 \in (a,b)$
 - f ist konvex $\Leftrightarrow \forall x \in D_f$: $f''(x) \ge 0$, f ist konkav $\Leftrightarrow \forall x \in D_f$: $f''(x) \le 0$

- \exists m ungerade: $f^{''}(x_0) = ... = f^{(m-1)}(x_0) = 0 \neq f^{(m)}(x_0) \Rightarrow f$ hat in x_0 einen Wendepunkt
- <u>L'Hospital</u>: in den Fällen " $\frac{0}{0}$ " und " $\frac{\pm \infty}{\pm \infty}$ " gilt $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = c$ (beachte g,g' $\neq 0$ und \mathbf{x}_0 , $\mathbf{c} \in \mathbb{R}_{\pm \infty}$)

Taylorpolynome und -reihen:

- $T_{f,n}(x,x_0) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ heißt n-tes <u>Taylorpolynom</u> von f mit Entw.pkt. $\mathbf{x}_{\mathbf{0}}$ (<u>-reihe</u> für n=∞)
- $\forall x \in (a,b] \exists \theta \in (a,x)$: $f(x) = T_{f,n}(x,a) + R_{f,n}(x,\theta)$ mit dem Restglied $R_{f,n}(x,\theta) = \frac{f^{(n+1)}(\theta)}{(n+1)!}(x-a)^{n+1}$
- für ein Polynom P mit Grad n gilt P(x) = $T_{P,n}(x, 0)$. $e^x = T_{e^x}(x, 0) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k$

4. Integralrechnung

- F heißt <u>Stammfunktion</u> von f, wenn F'=f, auch $\int f(x)dx = F(x)+c$ (<u>unbestimmtes Integral</u>)
- $\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) F(a)$ heißt <u>bestimmtes Integral</u> von f (Summe von Flächeninhalten)
- $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$ (f muss auf [a,c] keine Stammfunktion haben)
- $-\int_{0}^{0} f(x) dx = 0, \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx, \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx, \quad f(x) \le g(x); \int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$
- $-\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx, \quad D_{f} = (a,b]: \quad \int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0+} \int_{a+\epsilon}^{b} f(x) dx, \quad D_{f} = (a,b): \quad \int_{a}^{c} f(x) dx = \lim_{a' \to a+} \int_{a'}^{b} f(x) dx + \lim_{c' \to c-} \int_{b}^{c'} f(x) dx$

5. Differentialrechnung in mehreren Variablen

- im Folgenden f: $\mathbb{R}^n \to \mathbb{R}$. $(\overline{x_k})_{k \in \mathbb{N}}$ konvergiert gegen $\overline{x^*}$, falls $\lim_{k \to \infty} \left| \left| \overline{x_k} \overline{x^*} \right| \right| = 0$
- $-\lim_{k\to\infty}\overline{x_k}=\overline{x^*}\iff (\overline{x_k}) \text{ konvergiert komponentenweise gegen } \overline{x^*}. \text{ } \underline{\epsilon\text{-Kugel}} \text{ um } \overline{x^*}\text{ : } \{\overline{y}\in\mathbb{R}\mid \left|\left|\overline{x^*}-\overline{y}\right|\right|<\epsilon\}$
- f hat den <u>Grenzwert</u> \mathbf{y}^* an $\overline{x^*} \Leftrightarrow \forall \overline{x_k} \to \overline{x^*}$: $\lim_{k \to \infty} f(\overline{x_k}) = y^*$. Falls auch $\lim_{k \to \infty} f(\overline{x_k}) = f(\overline{x^*})$, f <u>stetig</u> an $\overline{x^*}$
- die $\underline{part.}$ $\underline{Ableitung}$ $\frac{df}{dx_i} = f_{x_i}$ ist f', wobei man Variablen außer $\mathbf{x_i}$ als konstant annimmt
- sind die partiellen Ableitungen $f_{\it x}, f_{\it y}, f_{\it xy}, f_{\it yx}$ stetig, gilt $f_{\it xy}$ = $f_{\it yx}$
- $\nabla f(\overline{x^*}) = (f_{x_1}(\overline{x^*}), \dots, f_{x_n}(\overline{x^*}))$ heißt <u>Gradient</u> von f in $\overline{x^*}$
- $Hess_f(\overline{x^*}) = \binom{f_{xx}(\overline{x^*}) \dots f_{xy}(\overline{x^*})}{f_{y_x}(\overline{x^*}) \dots f_{y_y}(\overline{x^*})}$ heißt <u>Hesse-Matrix</u> von f in $\overline{x^*}$ (symmetrisch, falls alle f* stetig!)
- symm. $M \in \mathbb{R}^{n \times n}$ ist positiv (semi-)definit $\Leftrightarrow \lambda_i > 0$ ($\lambda_i \ge 0$) (negativ analog, indefinit sonst)
- f hat in \overline{x}^* ein lokales <u>Minimum</u> $\Leftrightarrow \exists \epsilon$ -Kugel $\forall \overline{x}$ in ϵ -Kugel: $f(\overline{x}^*) \leq f(\overline{x})$ (<u>Maximum</u> analog)
- <u>Kriterium für Extrema</u>: $\nabla f(\overline{x^*}) = (0, \dots, 0)$ und $Hess_f(\overline{x^*})$ definit \Rightarrow f hat in $\overline{x^*}$ ein Extremum positiv (negativ) definit \Rightarrow lok. Min. (Max.), indef. \Rightarrow kein Extremum, semidef. \Rightarrow ?

7. Lagrange-Multiplikatoren-Methode

- Extremum von f unter Nebenbedingungen $g_m(x_1,...,x_n)=c_m$ bestimmen
- <u>Lagrange-Funktion</u>: $L(\lambda_1,...,\lambda_m,x_1,...,x_n) = f(x_1,...,x_n) + \lambda_1 \cdot (g_1(x_1,...,x_n) c_1) + ... + \lambda_m \cdot (g_m(x_1,...,x_n) c_m)$
- <u>Notwendige Bedingung</u>: $\overline{x^*}$ ist lok. Extremum Λ $\nabla g_i(\overline{x^*}) \neq 0 \Rightarrow \exists \lambda_1^*, \dots, \lambda_m^*$: $\nabla L(\lambda_1^*, \dots, \lambda_m^*, \overline{x^*}) = 0$

f(x)	f'(x)	f(x) $f'(x)$	Ableitungsregeln	f(x) F(x)	Integrationsregeln
ax+b	a	$\log_a x \frac{1}{x \ln a}$	(u+v)' = u' + v'	X^a $\frac{1}{a+1} x^{a+1}$	$\int \lambda f = \lambda \cdot \int f$
X ^a	a∙x ^{a-1}	$\ln x \frac{1}{x}$	$(\lambda v)' = \lambda v'$	$\frac{1}{x}$ ln $ x $	$\int (f+g) = \int f + \int g$
a ^x	ln(a)·a ^x	sin x cos x	(uv)' = u'v + uv'	$\mathbf{a}^{x} \qquad \frac{1}{\ln a} a^{x}$	<pre>fg' = fg - ff'g</pre>
e ^x	e ^x	cos x -sin x	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	e^{ax} $\frac{1}{a}e^{ax}$	$\int f(g) \cdot g' = F(g) + c$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	tan x $\frac{1}{\cos^2 x}$	$(u \circ v)' = u'(v) \cdot v'$	tan x -ln cos x	$\int \ln x = x \cdot \ln x - x$

 $\int f(g(x)) \ dx = \frac{F(g(x))}{g'(x)} + c \quad \int g^n(x) \ g'(x) \ dx = \frac{1}{n+1} \ g^{n+1}(x) + c \quad \int \frac{g'(x)}{g(x)} \ dx = \ln |g(x)| + c \quad \int \frac{g'(x)}{g^n(x)} \ dx = \frac{-1}{(n-1) \ g^{n-1}(x)} + c \quad \int g'(x) \ e^{g(x)} \ dx = e^{g(x)} + c$