130 Mécanismes matériels

INF3173

Principes des systèmes d'exploitation

Jean Privat

Université du Québec à Montréal

Hiver 2021

Mode noyau processeur (privilégié)

Analogie

- « L'État est une communauté humaine qui, dans les limites d'un territoire, revendique avec succès le monopole de la violence physique légitime. » — Max Weber, Le Savant et le politique (1919)
- « Le système d'exploitation est une couche logicielle qui, dans les limites d'un ordinateur, revendique avec succès le monopole du mode noyau. » — Analogie facile...

Appels système

Permet à un processus de demander un service au SE

- Passage du CPU en mode noyau
- Branchement à une sous-routine spéciale du SE

Plan

- 1 Interruption matérielle
- 2 Fautes
- **3** Horloge programmable
- 4 Protection mémoire

Interruption matérielle

Interruption matérielle

Permettre au matériel de signaler des évènements

- Appui d'une touche, nouveaux paquets réseau, etc.
- Notification d'une commande terminée
- Problème physique
- Etc.

Mécanisme

- Connexion dédiée: périphériques → CPU
 - Pour signaler l'existence d'un évènement
- Le CPU vérifie la présence d'une interruption
 - À chaque instruction
- Si interruption, automatiquement le CPU
 - Sauvegarde des registres (dont le CO)
 - Passe en mode noyau
 - Branche à un endroit spécifique en mémoire

SE gère les interruptions

Le noyau au démarrage:

- Configure la machine
- Sous-routines spéciales associées aux interruptions

Le noyau en cas d'interruption:

- Le processus actif perd le CPU
- Une routine spéciale du noyau est automatiquement invoquée
- Le noyau
 - Sauvegarde les registres
 - Traite efficacement l'interruption
 - Restaure les registres
 - Passe en mode utilisateur
 - \rightarrow Le processus s'est rendu compte de rien

Exemple

- Une interruption matérielle arrive
- Le CPU est donné au noyau qui traite avec le matériel
- Le noyau rend la main au processus
- \rightarrow Le processus est interrompu, mais ne s'en rend pas compte

Interruptions vs. appels système

Cause

- L'appel système est volontaire
 Le processus fait un appel explicite
- L'interruption est involontaire
 Peut arriver à tout moment

Mécanismes analogues

- Bascule en mode noyau
- Branchement emplacement dédié du noyau
- Sauvegarde et restauration de registres

« Interruption logicielle »

- Nom alternatif des appels système
- int pour x86, swi (software interrupt) pour ARM
- → Cause de la confusion inutile

Fautes

Fautes

Mécanisme: faute CPU

Le CPU lance (lui-même) une interruption matérielle en cas de:

- Instruction inconnue
- Opérandes invalides (division par 0)
- Violation de privilège (mode utilisateur)
- Etc.

On trouve aussi les termes « exception » ou « trap »

Politique

Le système d'exploitation sait

- Gérer les fautes CPU: interruptions matérielles classiques
- Déterminer le responsable: le processus qui a été interrompu

Exemple de scénario

- Un processus exécute une instruction privilégiée
- Le CPU refuse (mode utilisateur) et génère une faute
- Le SE s'exécute alors:
 - Inspecte les registres et la mémoire
 - Détermine le processus coupable
 - Lui envoie un signal (kill)
 - Ce qui termine le processus

Justice implacable

 $\mathsf{SE} = \mathsf{investigue}, \ \mathsf{arr\hat{e}te}, \ \mathsf{condamne} \ \mathsf{et} \ \mathsf{ex\acute{e}cute} \ \mathsf{les} \ \mathsf{processus} \ \mathsf{d\acute{e}linquants}$

```
Exemple: division par zéro
```

```
int main(int argc, char *argv[]) { return 0/0; }
```

Horloge programmable

Horloge programmable

Problèmes

Comment attendre des échéances ?

- Faire une pause quelques secondes
- Gérer les expirations (timeouts)

Comment récupérer un CPU accaparé par un processus ?

- Calcul intensif
- Boucle infinie

Mécanisme

- Un matériel spécial
- ightarrow une composante dédiée sur la carte mère
- → ou directement le contrôleur d'interruption
 - Décrémente un compteur
 - Lève une interruption quand il atteint 0

Exemple de politique

- Le SE programme l'horloge
- Puis il donne la main à un processus
- Le processus bloque le CPU dans une boucle infinie
- Le délai programmé de l'horloge expire
- Une interruption est levée
- Le CPU est rendu au système

Question. C'est le processus ou le processeur qui est en boucle infinie ?

Multitâche

- C'est la base du multitâche préemptif
- Permet de répartir le CPU entre plusieurs processus
- ightarrow On y reviendra

3 types d'horloges dans un ordinateur

Horloge programmable

- Pour lever des interruptions
- Analogie: minuterie

Signal d'horloge

- Rythme le fonctionnement électronique (CPU, RAM, Bus, etc.)
- Analogie: métronome

Horloge temps réel

- Maintient la date et l'heure réelle
- Alimentation autonome avec une pile
- Analogie: horloge murale

Protection mémoire

Organisation mémoire d'un programme

En mémoire, il y a

- Code du programme (en langage machine)
- Données (statiques, pile, tas, etc.)
- Bibliothèques

Défi: plusieurs programmes à la fois

Chaque processus

- A accès (lecture/écriture) qu'à son propre espace
- Tout accès en dehors est physiquement interdit

Le SE

- A accès à toute la mémoire
- Gère les limites physiques des programmes

Mécanisme

- On peut marquer des zones mémoires comme valides ou invalides
- Le mode noyau est nécessaire pour changer les zones
- Le CPU peut efficacement déterminer la validité d'une adresse
- → Plusieurs approches possibles, on y reviendra
 - Un accès en dehors d'une zone valide lève une faute
- → le CPU vérifie chaque accès fait à la mémoire

Politique

- Le système rend valide les zones mémoire d'un processus
- Puis il lui donne la main
- Le processus accède dans ses zones
 - Tout va bien
- Le processus accède en dehors
 - Le CPU lève une faute
 - Le SE prend la main
 - Envoie un signal au processus fautif (kill)
 - Ce qui le termine

```
#include <stdlib.h>
int main(int argc, char *argv[]) {
  int *i = NULL; return *i;
}
```

Nom habituel: « faute de segmentation » (segmentation fault)

Mémoire virtuelle et pagination

De nos jours quasiment

- tout processeur
- et système d'exploitation

Utilisent

- De la mémoire virtuelle
- Plus précisément de la pagination
- Avec des modes de protection

On y reviendra plus tard

Conclusion: Le SE au centre

