

Avancier Reference Model

Architecture Frameworks (ESA 3)

It is illegal to copy, share or show this document (or other document published at http://avancier.co.uk) without the written permission of the copyright holder

Mapping the reference model to an architecture framework

3.1 Architecture frameworks (not to be examined)

Architecture framework

- A comprehensive architecture framework contains advice on:
 - Processes for architecting
 - Products for architecture
 - People architect and related roles.

Architecture state

- [an architecture description] at a point in time.
- ► A baseline architecture describes a system to be reviewed and/or revised.
- A target architecture describes a system to be created and implemented in the future.
- An intermediate or transition architecture defines a system between baseline and target.

		Gap analysis reveals	
State	Baseline	changes and work to be done	Target
Domain			
Business	Process Organisation Locations		Process Organisation Locations
Information Systems	Data Applications		Data Applications
Technology	Infrastructure Technologies		Infrastructure Technologies

- [An architecture framework] published on a free-to-read public web site.
- Its use by a commercial organisation is restricted by copyright conditions.
- It is a relatively abstract management framework for architecture work.
- ▶ It is centred on a process called the architecture development method.
- Originally focused on technology architecture; now focused more on business architecture.
- Originally intended for transforming an enterprise's business systems from a baseline state to a target state; now commonly used at a narrower and more tactical level.

Figure 5-1 Architecture Development Cycle

ADM: Architecture Development Method

- [The process] defined in TOGAF to develop and use an enterprise architecture.
- Users are expected to adapt the process and iterate through it.
- It is centered on a cycle of 8 phases.
 - A: Architecture Vision
 - B: Business Architecture
 - C: Information System Architecture (Data and Applications)
 - D: Technology Architecture
 - E: Opportunities and Solutions
 - F: Migration Planning
 - G: Implementation Governance
 - H: Architecture Change Management.

Write Down Phase Names In ADM Circles

AM: Avancier Methods

- [an architecture framework] focused on solution architecture, though it also addresses enterprise architecture rationalisation.
- ▶ It is published on a free-to-read public web site, though its use by an organisation is limited by copyright conditions.
- It features a solution architecture process with four phases
- (Initiate, Architect, Plan and Govern),
- each subdivided into lower level processes.

3.3 Architecture products

- Architecture content framework
- Architecture repository
- Mapping
- View
- Viewpoint
- Model

Architecture content framework

- ► [a passive structure] for organising an architecture description composed of deliverables, artefacts and entities.
 - Architecture deliverable
 - Architecture artefact
 - Architecture entity

Architecture deliverable

- [a document] that architects produce or contribute to, for approval by sponsors if not all stakeholders.
- It should conform to a document type defined by a standard contents list.
- Deliverables often contain artefacts, which are in turn composed from architectural entities.

Architecture artefact

- [a model] that conforms to one of three artefact types:
- Catalogue

Deliverables

Artefacts

Entities

Matrix

Location Technology	Paris	New York	Hong Kong
PC	10,000	7,000	2,000
Printer	1,000	700	200
Photocopier	100	70	20

Diagram.

Architecture entity

- ► [An entity] that appears in one or more artifacts.
- ► E.g.
 - Process,
 - Organisation,
 - Location,
 - Data entity,
 - Application,
 - Technology.

How architecture description develops

- 1. You start off writing a <u>deliverable</u> as one document
- You write sections covering business, apps and technology concerns, mentioning entities such human roles, business processes, apps and technologies
- 3. You insert various <u>artefacts (tables and diagrams)</u> to show the relationships between the Entities
- 4. The artefacts refer to the entities by name
- 5. You describe the entities more fully in catalogues in appendices
- You divide the document into documents for different stakeholders with different concerns
- 7. Your overall description has now become so complex and distributed that (behind the scenes), you turn the appendices into a set of spreadsheets (a repository) from which you copy content into deliverables for stakeholders to read.

Architecture repository

- ► [A data store] an information base used by architects; a database that holds descriptions of an enterprise's business and its systems, and the meta data that describes those descriptions.
- Its structure is defined in some kind of schema or architecture meta model.
- ► The content of the repository can be categorised in many ways.
- ► For example, using the Zachman Framework or the Enterprise Continuum.

Mapping

[a correspondence] that is drawn between elements of the same or different structures.

	Loc	Loc	Loc
Org	Works at		
Org		Works at	Works at
Org	Works at	Works at	

- Correspondences can be mapped for several purposes including:
 - gap analysis (see section 10),
 - impact analysis (see section 11),
 - requirements traceability analysis
 - cluster analysis (see section 4).

Mappings for gap analysis

- Gap analysis means looking for
 - items with no relationship,
 - loose ends, black holes and
 - gaps that may require attention.
- If the correspondence if close to one-to-one, then in a simple table will suffice:

Baseline Office Buildings	Target Office Buildings
London	London
Paris	Paris
New York to be closed	
	Mumbai to be opened

Mappings for gap analysis between states

- ▶ What elements in this architecture **state**
- don't match or relate to elements in another architecture state?

Target Apps Baseline Apps	Billing	CRM	Business Intelligence	Baseline not in target
Billing	Port to new platform			
CRM		Leave as is		
Resourcing			???	Decommission or reconsider
Target not in baseline			Buy or build	

Mappings for gap analysis between domains

- Which elements in this architecture domain
- don't match or relate to elements in another architecture domain?

Technologies Applications	DBMS	Messaging	ESB	Apps with no technology
CRM	Supported by	Supported by		
Broker App		Supported by		
Employee Portal			???	Employee Portal
Technologies not used			ESB	

Mappings for traceability analysis

- Why is this element needed? What objectives does it help to meet?
- What valued service or output does it help to produce?

Solution items Requirements	Business Intelligence	Sales Mobile device	CRM	Requirements with no solution
Faster Ordering		Satisfied by	Satisfied by	
Remote Working		Satisfied by		
Better Forecasts	Satisfied by			
Lower Sale Cost			???	No solution
Solution items with no requirement			No requirement	

- Real life example: 40 solution elements
- ▶ 800 functional requirements (in a hierarchy) + 200 NFRs!

If we change this element, what related elements may be affected?

	App A	Арр В	App C
Арр А		Depends on	Depends on
Арр В			
App C		Depends on	

Mappings for change impact analysis

Mappings for cluster analysis

- Which elements are closely enough related to be grouped in one component or work package?
- ► E.g. Which activities create the same data?

Actor or Activity Data element	Billing	Delivery	Sales	Reporting
Customer	Use	Use	Create	Use
Order	Use	Use	Create	Use
Delivery	Use	Create		Use
Invoice	Use	Create		Use
Payment	Create			Use
Report				Create

Actor or Activity Data element	Sales	Delivery	Billing	Reporting
Customer	Create	Use	Use	Use
Order	Create	Use	Use	Use
Delivery		Create	Use	Use
Invoice		Create	Use	Use
Payment			Create	Use
Report				Create

Mappings for cluster analysis

- Which elements are closely enough related to be grouped in one component or work package?
- E.g. Which activities create the same data?

KEY
C = creators of data U = users of data

© Minder Chen, 1997-2008

Figure 12-1

Enterprise A

Mappings for cluster analysis

- Which elements are closely enough related to be grouped in one component or work package?
- E.g. Which entities are related by location and time-frame?

Four reasons to draw *mappings* between architectural entities

- Gap analysis
 - To find potentially missing items

- Traceability analysis
 - To check deliverables meet goals and solutions solve problems.
- Impact/Dependency analysis
 - To find the effects of a change
- Cluster analysis
 - To group closely-coupled items into encapsulated components

ISO/IEC 42010: Recommended Practice for Architecture Description of Software-Intensive Systems

Architecture viewpoints and views

What	Why?	Who cares?	How to draw it?
Context diagram	The I/O scope of the system	Owners and designers	Supplier Input System Output Consumer

View

- Stakeholder Concern View Point (type)

 Avancier

 View (instance)
- [a work product] that shows a part or slice of an architecture that addresses particular concerns.
- It can be visual, graphical or textual, and may contain one or more models.
- It can be an instance or example of a viewpoint, meaning that it conforms to the definition of that viewpoint.

Location Technology	Paris	New York	Hong Kong
PC	10,000	7,000	2,000
Printer	1,000	700	200
Photocopier	100	70	20

Viewpoint

Stakeholder Concern View Point (type)

Avancier

(instance)

- [a work product description] that typifies a view and provide a template for it.
- ▶ It defines the conventions for creating and using views to address concerns about a system.
- It defines:
 - what the name of the viewpoint
 - why concern(s) that the viewpoint addresses
 - who stakeholder(s) who have the concerns
 - how model kind(s) used in the view.
- Within one architecture description, the viewpoint-to-view relationship is one-to-one.
- However, one viewpoint may be used as a template for views of many different systems.

Modelling languages

3.4 Architecture models

Model

- [A work product] that simplifies or abstracts from a thing or another description.
- It displays or records some properties of what is modelled.
- It enables some questions to about it to be answered.
- Architects build relatively abstract models of systems, and parts and views of them.

Model kind

[A work product description] that typifies a model and provides a template for building a model.

Modelling language

- [A standard] that defines shapes for representing architecture entities and arc/line styles for representing relationships between them.
- ► Three international varieties are IDEF, UML and ArchiMate.
- ► IDEF: Integration DEFinition language
 - [A modelling language] for systems and software engineering, originally funded by the US DoD.
 - Its includes IDEF0 (a process modeling language building on SADT) and IDEF1X for information models and database design.

UML: Unified Modelling Language

- [A modelling language] maintained by the Object Management Group.
- Initially designed to help in OO software design, it is now used outside of that.
- It includes structural models such as class diagrams and deployment diagrams.
- It includes behavioural models such as use case, activity and sequence diagrams.

ArchiMate

- [A modelling language] maintained by the Open Group.
- Components, interfaces and services are shown in distinct boxes.
- It overlaps with UML, but is intended for more abstract architectural design.

- Grew out of 1970s USAF standards, best known for
- IDEF 0 Function Models

IDEF 1X Data Models (Wikipedia)

UML (OMG standard)

Class

Diagram

Profile

Diagram

Notation: UML

Most popular

Also

- Created to assist in design of OO software
- The notation you are likely to come across

Structure

Diagram

Component

Diagram

But not the panacea some assume

Composite

Structure

Diagram

Object

Diagram

Deployment

Diagram

Core ArchiMate symbols

MDE: Model-Driven Engineering

- ► [A technique] used in methods and tools for forward engineering and reverse engineering.
- ► That is, the process of transforming a conceptual model to a logical model to a physical model, and the reverse of that process.

Model-Driven Architecture (MDA)

- a vision of the Object Management Group (OMG) that encourages suppliers to develop tools to standards defined by the OMG.
- The idealisation hierarchy is:
 - computation-independent model (CIM),
 - platform-independent model (PIM), unrelated to a specific technology
 - platform-specific model (PSM), related to specific technology.

Abstraction By Reverse Engineering

Elaboration By Forward Engineering

Anecdotal evidence

- People do like reverse engineering from code
 - because they can erase stuff from the model to leave a useful abstraction for discussion.
- People do not like forward engineering from model to code.
 - 1. The model has to be as detailed as the code so there is no abstraction benefit developers can work as readily with the code.
 - 2. Forward engineering leads to ugly, unreadable and sometimes inefficient code.
 - 3. Developers still have reasons to look at and work with the code anyway which breaks the round-trip paradigm.
 - 4. People almost never have the requirement that justifies MDA to port code from one platform to another
 - 5. If they do seek portability they don't trust the tool vendor will keep step with all possible platforms and upgrades thereof.
 - 6. An enterprise is locked into a niche CASE tool, and developers who are trained in it.

But see "Empirical Assessment of MDE in Industry" for a contrary view

3.3 Abstraction of architecture descriptions from systems

- Abstraction from reality
 - creating a description, the opposite of concretion.
- Abstraction from detail
 - creating a simpler description, the opposite of refinement.

Architects use a mixture of abstraction techniques to hide details and assist explanations.

Avancier

Abstraction by delegation (from server to client)

- ► [A technique] that simplifies clients by hiding work they delegate to servers.
- A *client* requests a service from a server; a *server* performs services requested by a client.

Abstraction by composition (from smaller to larger)

- ► [A technique] that simplifies by hiding small things ones inside larger ones.
- A coarse-grained description features only large system elements.
- A fine-grained description features shows more detail by way of smaller system elements.

Composition – Coarse-grained views and models

- Enterprise architecture
- Applications portfolio

- ▶ Software architecture
- Application components

Abstraction by generalisation (from unique to universal)

- ► [A technique] that simplifies by hiding differences between things.
- ► A *generic* description is more widely applicable.
- A specific description is more narrowly applicable; it may extend a more generic description with additional properties.
- Class hierarchy
- ➤ A hierarchy in which a generic description is incrementally specialised into successively more specific descriptions.

Generalisation - Common components and processes

- ► E.g.
- ► Single sign on, across 1,000 applications

Abstraction by idealisation (from reality to concept)

- [A technique] that simplifies by hiding physical and/or supplierspecific details.
- ► The classic idealisation hierarchy "reverse engineers" from real to conceptual.

Conceptual (or domain) model

 a model that defines terms and concepts in a business or problem domain without reference to any computer or software application.

Logical model

- a model that excludes details of that system's physical implementation. It is supplier-independent and portable.
- It may specify services or processes to be performed, and data or abilities needed.
- It leaves open the choice of particular components, products and mechanisms.

Physical model

- a model that is supplier-specific or includes implementation details.
- A description of particular products or mechanisms that can be employed or deployed to realise a logical model.

Elaboration by Forward Engineering Abstraction by Reverse Engineering

Avancier

How do you distinguish logical model from physical model?

	Supplier dependence	Resource dependence	Encapsulation	Design
Logical HLD?	Supplier independent	Not dependent on a specific technology or material resource	Interfaces and service contracts that hide internal workings	Designed for simplicity and integrity
Physical LLD?	Supplier specific	Dependent on a specific technology or material resource	Internal processes and components	Designed for performance (speed and throughput)

Idealisation level	Data	Processes	Deployment
Conceptual regardless of computing	Business data model - describes business terms and facts	Business process models or use cases – describe workflows	Distribution of data processing
Logical specifies a computerised system – regardless of technologies	Logical data model - describes the content of a data store	Class diagram - describes logical modules and the operations they can perform State charts	Data flow diagram – shows application communications Logical deployment diagram – maps applications to logical nodes
Physical specific to a programming language, DBMS, OS or other platform technology	DB schema Indexes Sorting Clustering data entities into one block or page Next/prior/owner pointers Other features specific to a vendor's DBMS	Source code (Java, C++,) Use of platform infrastructure (CICS, WebSphere) Connection of distributed modules (via CORBA, DCOM, Web Services) Etc.	Cache - for response time and throughput Load balancers and clustering - for availability Remote replication - for recoverability Firewalls - for security Server monitoring - for serviceability

Idealisation - in architecture frameworks

Zachman Fr	amework v2	Columns						
Rows - re	eification	What	How	Where	Who	When	Why	
Idealisation- Reification	Stakeholders	Inventory sets	Process Transform'n	Network nodes	Organisation groups	Time periods	Motivation reasons	
Scope Contexts	Strategists & theorists							
Business Concepts	Enterprise leaders & owners							
System Logic	Architects & designers	Abstra	ction					
Technology Physics	Engineers & builders	By ideali						
Component assemblies	Technicians & implementers							
Operations Instance classes	Workers & participants							

Kinds of abstraction summary

Omission leaving out details	Composition packing smaller things inside bigger things	Generalisation removing differences between things	Idealisation removing differences between physical forms
Vacuous	Coarse-grained composite	Universal	Concept
Sketchy	Mid-grained composite	Fairly generic	Logical Model
Elaborate	Fine-grained composite	Fairly specific	Physical Model
Complete	Elementary part	Uniquely configured	Physical Material
Elaboration	Decomposition	Specialisation	Realisation

EA tends to be more abstract in every possible way

- More generic a higher level of generalisation
- More conceptual a higher level of idealisation
- More coarse-grained a higher level of granularity

Who are you talking to?

Manager

The architects' working space							
Architecture facet Business Data Applications Technology Architecture level Architecture Architecture Architecture							
Enterprise Architecture							
Solution Architecture	Abstraction	Abstraction	Abstraction	Abstraction			
Software Architecture & Technical Specialisms							

Technician

3.5: Pre-defined classifications and reference models

3.5: Pre-defined classifications and reference models

- Documentation classification frameworks
 - Zachman framework
 - Enterprise continuum (TOGAF)
- Reference models

Documentation classification frameworks

Nothing more or less than a set of pigeon holes for architecture description artefacts

Zachman Framework	What	How	Where	Who	When	Why	
Scope Contexts							
Business Concepts							
System Logic							
Technology Physics							TOCAE
Tool components							TOGAF
Operations – Instance classes							Enterprise Continuum Requirements and Context
							Architecture Continuum
							Solution Continuum
							Deployed Solutions

- A window on to an architecture repository
- ► A *classification scheme* for reusable architecture assets

Zachman framework

► [a pattern] "A logical structure for classifying and organising the descriptive representations of an Enterprise that are significant to managers and to developers of Enterprise systems."

"Columns show "the primitive interrogatives"

Zachman Fra	mework v3	What	How	Where	Who	When	Why			
Level	Stakeholder perspective	Inventory sets	Process flows	Distribution networks	Responsibility assignments	Timing cycles	Motivation intentions			
Scope Contexts	Executive									
Business Concepts	Business manag't			show "reifica						
System Logic	Architect				n abstract id	<mark>ea </mark>				
Technology Physics	Engineer		•Identifi	· · · · · · · · · · · · · · · · · · ·	i labeled					
Tool components	Technician		Definition,Representation,Specification,							
Operations Instance classes	Enterprise			uration &						

- The 6 columns, though titled with interrogative questions, are mapped to architectural description elements.
- ► The 6 rows are levels of realisation from context to operational systems.
- But also mapped to stakeholder types and architecture domains or views.
- Zachman says the rows should not be interpreted as levels of decomposition.

Zachman Fram	ework v3	What	How	Where	Who	When	Why
Level	Stakeholder perspective	Inventory sets	Process flows	Distribution networks	Responsibility assignments	Timing cycles	Motivation intentions
Scope Contexts	Executive						
Business Concepts	Business manag't	Ideal					
System Logic	Architect						
Technology Physics	Engineer						
Tool components	Technician						
Operations Instance classes	Enterprise	Real					

20011, essence of the Zachman Framework version 3

	Zachman Framework v3		What	How	Where	Who	When	Why
	Idealisation	Stakeholder perspective	Inventory sets	Process flows	Distribution networks	Responsibility assignments	Timing cycles	Motivation intentions
	Scope Contexts	Executive	List inventory types	List process types	List distribution types	List responsibility types	List timing types	List motivation types
ldeal	Business Concepts	Business management	Business entities & relationships	Business & input output	Business location & connection	Business role & work product	Business interval & moment	Business ends & means
to Real	System Logic	Architect	System entities & relationships	System & input output	System location & connection	System role & work product	System interval & moment	System ends & means
	Technology Physics	Engineer	Technology entities & relationships	Technology input & output	Technology & location connection	Technology role & work product	Technology interval & moment	Technology ends & means
	Tool components	Technician	Tool entities & relationships	Tool input & output	Tool location & connection	Tool role & work product	Tool interval & moment	Tool ends & means
V	Operations - Instance classes	Enterprise	Operations entities & relationships					

Hmm... The ZF rows

Zachman Framework v3				
Idealisation	Stakeholder perspective			
Scope Contexts	Executive			
Business Concepts	Business management			
System Logic	Architect			
Technology Physics	Engineer			
Tool components	Technician			
Operations - Instance classes	Enterprise			

- Conflate three different meanings
 - idealisation levels
 - stakeholders
 - architecture domains
- They unwisely force correspondences between them.

- People seem unclear whether the bottom row is
 - instances of things in real world system operation
 - instances of records of those things (as in CMDB?)

The ZF columns

What?	How?	Where?	Who?	When?	Why?
Inventory sets	Process flows	Distribution networks	Responsibility assignments	Timing cycles	Motivation intentions
Passive structure	Process or behaviour	Position in space	Active structure	Position in time	Purpose or aim

- People usually map what? to data.
- But Zachman changed his mind years and called it inventory.
- People seem unclear whether that means it is
 - objects in reality
 - data records describing objects in reality
 - data records describing objects and events in reality.
- Nobody I have in the last 20 years has used the ZF directly.

Enterprise continuum

- ► [A pattern] a logical structure in TOGAF for classifying and organising architecture artifacts.
- It can be drawn as a table or grid.
- From top to bottom is ideal to real
- From left to right is general to specific.

Enterprise Continuum	Foundation	Common systems	Industry	Organisation
	Universal building blocks for system construction	Used in most business domains	E.g. Telecoms or Banking	Your unique business
Context and requirements				
Architecture continuum				
Solution continuum				
Deployed solutions				

The core of the enterprise continuum

			Generic to Specific		
		Generic, horizontal, infrastructure building blocks and services	Patterns or structures of components and services	Business domain (Retail, Banking, Telecoms)	Enterprise (Tesco, HBOS, Orange)
		Foundation (Universal)	Common Systems (Fairly generic)	Industry (Fairly specific)	Organisation (Uniquely configured)
	Requirements and Context				C
Ideal to Real	Architecture Continuum (Logical Models)	e.g. Open standards	e.g. application integration patterns.	e.g. Function, Data and Process models	e.g. Bespoke application use cases and data models
	Solution Continuum (Physical Models)	Strategic products Operating systems	Product assemblies (Email system, Security system)	e.g. COTS Packages	Bespoke solutions
V	Deployed solutions				

Reference Models in the enterprise continuum

		Generic to Specific			
		Generic, horizontal, infrastructure building blocks and services	Patterns or structures of components and services	Business domain (Retail, Banking, Telecoms)	Enterprise (Tesco, HBOS, Orange)
		Foundation (Universal)	Common Systems (Fairly generic)	Industry (Fairly specific)	Organisation (Uniquely configured)
	Requirements and Context				
Ideal to Real	Architecture Continuum (Logical Models)	TRM A hierarchical catalogue of platform services	III-RM An SOA design pattern for apps architecture.	BIAN - banking TMF - telecoms ProAct - retail	Bespoke application use cases, data models
	Solution Continuum (Physical Models)				
	Deployed solutions				

Reference model

- [a pattern] a generic structure or classification used to create more specific models.
- It can be a structure of components, processes or data elements.
- It is sometimes applicable to a particular industry or business domain.
- It can act as a design pattern.
- ► E.g.
 - APQC for a generic commercial organisation
 - BIAN for banking (one of many banking reference models)
 - TMF for telecoms
 - eTOM Business Architecture
 - SID Data Architecture
 - TAM Applications Architecture
 - SCOR for supply-chain businesses
 - ProAct for retailers
 - FEA for US federal government
 - A long list of industry-specific canonical data model

APQC process classification framework.

This standard hierarchical classification of the functions in a commercial enterprise can provide you with a means to

- Structure baseline activities
- Identify and structure required activities.

APQC updated and limited to 3 levels

1. UNDERSTAND MARKETS AND CUSTOMERS				
1.1 Determine customer needs and wants				
1.1.1 Conduct qualitative assessments				
1.1.1.1 Conduct customer interviews				
1.1.1.2 Conduct focus groups				
1.1.2 Conduct quantitative assessments				
1.1.2.1 Develop and implement surveys				
1.1.3 Predict customer purchasing behavior				
1.2 Measure customer satisfaction				
1.2.1 Monitor satisfaction with products and servi				
1.2.2 Monitor satisfaction with complair 2. DEVE				
1.2.3 Monitor satisfaction with commun				
1.3 Monitor changes in market or customer expecta				
1.3.1 Determine weaknesses of produc				
1.3.2 Identify new innovations that mee				
1.3.3 Determine customer reactions to				

VELOP VISION AND STRATEGY 2.1 Monitor the external environment 2.1.1 Analyze and understand competition 2.1.2 Identify economic trends 2.1.3 Identify political and regulatory issues 2.1.4 Assess new technology innovations 2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units 2.4 Develop and set organizational goals				
2.1 Monitor the external environment 2.1.1 Analyze and understand competition 2.1.2 Identify economic trends 2.1.3 Identify political and regulatory issues 2.1.4 Assess new technology innovations 2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units	ے	rvices		
2.1.1 Analyze and understand competition 2.1.2 Identify economic trends 2.1.3 Identify political and regulatory issues 2.1.4 Assess new technology innovations 2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units	١	/ELOP VIS	ION AND STRATEGY	
2.1.2 Identify economic trends 2.1.3 Identify political and regulatory issues 2.1.4 Assess new technology innovations 2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units		2.1 Monito	or the external environment	
2.1.3 Identify political and regulatory issues 2.1.4 Assess new technology innovations 2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.1.1 Analyze and understand competition	
2.1.4 Assess new technology innovations 2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.1.2 Identify economic trends	
2.1.5 Understand demographics 2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.1.3 Identify political and regulatory issues	
2.1.6 Identify social and cultural changes 2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.1.4 Assess new technology innovations	
2.1.7 Understand ecological concerns 2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.1.5 Understand demographics	
2.2 Define the business concept and organizational strategy 2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units	2.1.6 Identif		2.1.6 Identify social and cultural changes	
2.2.1 Select relevant markets 2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.1.7 Understand ecological concerns	
2.2.2 Develop long-term vision 2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units		2.2 Define	the business concept and organizational strategy	
2.2.3 Formulate business unit strategy 2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.2.1 Select relevant markets	
2.2.4 Develop overall mission statement 2.3 Design the organizational structure and relationships between organizational units			2.2.2 Develop long-term vision	
2.3 Design the organizational structure and relationships between organizational units			2.2.3 Formulate business unit strategy	
organizational units			2.2.4 Develop overall mission statement	
-		2.3 Design the organizational structure and relationships between		
2.4 Develop and set organizational goals		organizational units		
		2.4 Develop and set organizational goals		

More on ISO 42010

Architecture Frameworks (ESA 3)

It is illegal to copy, share or show this document (or other document published at http://avancier.co.uk) without the written permission of the copyright holder

Diagram types and instances

Viewpoint, view and architecture model (1)

Viewpoint					
	View oint	Addresses these concerns	Of these stakeholders	Using this kind of model	
	Business	Where business is done	CEO	Hierarchical tree showing	
	distribution		COO	locations of functions	

Viewpoints and Views

Viewpoint

Any group of architects should share ways to address concerns

What	Why	Who	How	library
Viewpoint	Addresses these concerns	Of these stakeholders	Using this kind of r	model
Business distribution	Where we do our business	CEO COO	Hierarchical tree sl locations of fu	•
Location activity	What we do at each location	Facilities Manager	Location Function A Function B	Location Function A Function C
Deployment overview	Where our kit is	IT Services Manager	Location Technology X Y	A B 99 9 9 9
Data model	Data structure Data item types Potential access paths	Systems analysts Database designers Domain experts	IDEF1X standard	
Application usage	Which applications used by which roles in which business functions	Application portfolio manager Systems analysts	In-house template	

Viewpoints and Views

Any group of architects should share ways to address concerns

Any group of architects should share ways to address concerns				
What	Why	Who	How	library
Viewpoint	Addresses these concerns	Of these stakeholders	Using this kind o	f model
Networks	Bandwidth, protocols, resilience, performance	Network architect/consultant	Communication diagram	engineering
Monitoring	SNMP, performance, probes, instrumentation	Operational monitor	Enterprise mana diagram	gement
Storage and back up	Data storage, movement, availability, recovery, replication	Storage architect/consultant		

ISO 42010: Reuse of view points

► The standard encourages you to define generic viewpoints and store them in libraries for re-use in different architectures.

Benefits:

- Less work for the architects
 - (because the viewpoints have already been defined and therefore the views can be created faster)
- Better comprehensibility for stakeholders
 - (because the viewpoints are already familiar)
- ► Greater confidence in the validity of the views
 - (because the viewpoints have a known track record)

The simple version implied by BCS reference model

 BCS exam may test your understanding of the relationships between these four essential concepts in ISO 42010 (aka ANSI 1471)

Imagine a spread sheet you can sort on any column/field

Stakeholder catalogue

Stakeholder	Concern	Viewpoint
CEO	Will the systems support business goals?	Business footprint diagram
Domain expert	How will the application support activities?	Use case definition
	What data can users query?	Logical data model
DBA	How to create the database schema?	Logical data model
Ops manager	What infrastructure is needed to run the apps?	Hardware configuration diagram

Viewpoint library

Sort on

Viewpoint	Concern	Stakeholder
Business footprint diagram	Will the systems support business goals?	CEO
Use case definition	How will the application support activities?	Domain expert
Logical data model	What data can users query?	Domain expert
	How to create the database schema?	DBA
Hardware configuration diagram	What infrastructure is needed to run the apps?	Ops manager

The simple version implied by BCS reference model

 BCS exam may test your understanding of the relationships between these four essential concepts in ISO 42010 (aka ANSI 1471)

ISO 42010: "The architecture of a system

"fundamental concepts or properties of a system in its environment embodied in its **elements**, relationships, and in the principles of its design and evolution"

A well-known definition in the ISO standard, you may come across it elsewhere

Note: the elements include components and processes Showing processes that assemble parts into a whole

A vastly simplified meta model of UML entities

