Topološke grupe

Benjamin Benčina

Fakulteta za matematiko in fiziko

7. april 2019

DEFINICIJA: Topološka grupa je grupa (G, *) s topologijo τ , glede na katero sta strukturni operaciji zvezni.

Strukturni operaciji:

- ightharpoonup Množenje: $\mu: G \times G \to G$, $(x,y) \mapsto xy$.
- ightharpoonup Invertiranje: $\iota: G \to G, x \mapsto x^{-1}$.

Nekaj lastnosti

IZREK: Naj bo G topološka grupa in $a \in G$ njen poljuben element. Leva translacija $x \mapsto ax$, desna translacija $x \mapsto xa$ in invertiranje $x \mapsto x^{-1}$ so homeomorfizmi na G.

OPOMBA: Vemo že, da so to avtomorfizmi grupe G.

Nekaj lastnosti

IZREK: Naj bo G topološka grupa in $\mathcal U$ odprta baza okolic enote e. Veljajo naslednje trditve:

- ightharpoonup za vsako okolico $U\in\mathcal{U}$ obstaja taka okolica $V\in\mathcal{U}$, da velja $V^2\subset U$,
- ightharpoonup za vsako okolico $U\in\mathcal{U}$ obstaja taka okolica $V\in\mathcal{U}$, da velja $V^{-1}\subset U$,
- ightharpoonup za vsako okolico $U \in \mathcal{U}$ in element $x \in U$ obstaja taka okolica $V \in \mathcal{U}$, da velja $xV \subset U$,
- \succ za vsako okolico $U \in \mathcal{U}$ in element $x \in U$ obstaja taka okolica $V \in \mathcal{U}$, da velja $xVx^{-1} \subset U$.

Nekaj lastnosti

<u>Trditev:</u> Vsaka topološka grupa ima odprto bazo okolic enote e, sestavljeno iz simetričnih množic $U = U^{-1}$.

Posledica: Za vsako okolico U enote e topološke grupe G, obstaja taka okolica V enote e, da velja $\overline{V} \subset U$.

REGULARNOST

- $ightharpoonup Vemo: T_2 \implies T_1 \implies T_0.$
- ightharpoonup Za topološke grupe: $T_0 \iff T_2$.

REGULARNOST

- $ightharpoonup Vemo: T_2 \implies T_1 \implies T_0.$
- ightharpoonup Za topološke grupe: $T_0 \iff T_2$.
- ➤ Še več:

IZREK: Vsaka topološka grupa, ki zadošča separacijskemu aksiomu T_0 , je regularen topološki prostor.

Metrika in pseudometrika

DEFINICIJA: Metrika na množici X je funkcija $d: X \times X \to [0, \infty)$, ki zadošča pogojem:

$$> d(x,y) = 0 \iff x = y$$

$$> d(x,y) = d(y,x),$$

$$> d(x,z) \le d(x,y) + d(y,z).$$

Metrika in pseudometrika

DEFINICIJA: Metrika na množici X je funkcija $d: X \times X \to [0, \infty)$, ki zadošča pogojem:

$$> d(x,y) = 0 \iff x = y,$$

$$> d(x,y) = d(y,x),$$

$$> d(x,z) \le d(x,y) + d(y,z).$$

 $\underline{\text{DEFINICIJA:}} \quad \textit{Pseudometrika} \text{ na množici } X \text{ je funkcija}$

 $d: X \times X \rightarrow [0, \infty)$, ki zadošča pogojem:

$$> d(x,x) = 0$$
,

$$> d(x,y) = d(y,x),$$

$$> d(x,z) \le d(x,y) + d(y,z).$$

IZREK O PSEUDOMETRIKI

<u>IZREK:</u> Naj bo $\{U_k\}_{k=1}^{\infty}$ družina simetričnih okolic enote e topološke grupe G z lastnostjo $U_{k+1}^2 \subset U_k$ za vsak $k \in \mathbb{N}$. Potem obstaja taka levoinvariantna pseudometrika σ , da velja:

- $\succ \sigma$ je enakomerno zvezna na levi uniformni strukturi na $G \times G$,
- $ightharpoonup \sigma(x,y) = 0 \iff y^{-1}x \in \bigcap_{k=1}^{\infty} U_k$,
- $> \sigma(x,y) \le 2^{-k+2}$, če je $y^{-1}x \in U_k$,
- > $2^{-k} \le \sigma(x, y)$, če $y^{-1}x \notin U_k$.

Če poleg tega velja še, da $xU_kx^{-1}=U_k$ za vse $x\in G$ in $k\in\mathbb{N}$, je σ tudi desnoinvariantna in velja:

$$> \sigma(x^{-1}, y^{-1}) = \sigma(x, y)$$
 za vsaka $x, y \in G$.

Metrizabilnost

Pseudometriki do metrike manjka: $d(x, y) = 0 \iff x = y$.

IZREK: Naj bo G topološka grupa, ki zadošča separacijskemu aksiomu T_0 . Tedaj je G metrizabilen topološki prostor natanko tedaj, ko obstaja števna odprta baza okolic enote e.

Povsem regularnost

DEFINICIJA: Topološki prostor X zadošča separacijskemu aksiomu $T_{3\frac{1}{2}}$, če za vsako zaprto množico $F\subset X$ in točko $a\in X-F$ obstaja zvezna funkcija $\psi:X\to\mathbb{R}$, da je $\psi(a)=0$ in $\psi|_F=1$. Topološki prostor je *povsem regularen*, če zadošča $T_1+T_{3\frac{1}{2}}$.

IZREK: Vsaka topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je povsem regularen topološki prostor.

NORMALNOST

ightharpoonup Ali velja tudi $T_0 \implies T_4$?

NORMALNOST

ightharpoonup Ali velja tudi $T_0 \implies T_4$? Ne.

NORMALNOST

- ightharpoonup Ali velja tudi $T_0 \implies T_4$? Ne.
- ➤ Kaj manjka?

Normalnost

- ightharpoonup Ali velja tudi $T_0 \implies T_4$? Ne.
- ➤ Kaj manjka?

IZREK: Vsaka lokalno kompaktna topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je normalna.