Machine Learning HW5 Report

學號:R08942025 系級:電信碩一 姓名:徐瑋辰

1. (1%) 請說明你實作之 RNN 模型架構及使用的 word embedding 方法,回報模型的正確率並繪出訓練曲線*

本作業使用之架構如下,正確率為: public-0.77674/private-0.76976

2. (1%) 請實作 BOW+DNN 模型,敘述你的模型架構,回報模型的正確率並繪出訓練曲線*。

BOW+DNN 模型之架構如下,正確率為: public-0.75813/private-0.75116

FC Layers(linear -> BatchNorm1d -> ReLU -> Dropout(0.5))	
FC Layers(linear -> BatchNorm1d -> ReLU -> Dropout(0.5))	
FC Layers(linear -> BatchNorm1d -> ReLU -> Dropout(0.25))	
FC Layers(linear -> BatchNorm1d -> ReLU -> Dropout(0.25))	
Softmax	

3. (1%) 請敘述你如何 improve performance (preprocess, embedding, 架構等), 並解釋為何這些做法可以使模型進步。

在資料前處理時,將表情符號等刪除,避免干擾判斷 Embedding 的過程則是由 gensim 產生後跟 model 一起訓練,可以更快收斂

4. (1%) 請比較不做斷詞 (e.g.,用空白分開) 與有做斷詞,兩種方法實作出來的效果差異,並解釋為何有此差別。

下表為斷詞與否的正確率比較

	Public	Private		
有斷詞	0.77674	0.76976		
無斷詞	0.76046	0.75581		

以詞為單位作 embedding,可以使訓練之模型較能掌握詞與詞之間之關係,比起整句一起處理有著更好的效果

5. (1%) 請比較 RNN 與 BOW 兩種不同 model 對於 "Today is hot, but I am happy."與"I am happy, but today is hot." 這兩句話的分數(model output),並討論造成差異的原因。

兩個句子在不同模型之分數如下:

	Today is hot, but I am happy.	I am happy, but today is hot.		
RNN	[1.3885164 -1.7341924]	[1.2636071 -1.5947468]		
BOW	[1.0746359 -1.2542158]	[1.0156772 -1.2955631]		

BOW 不考慮詞的順序,故分數之差距會比 RNN 來的小。RNN 則考慮語意的轉折等因素,所以會有著不同的分數。

6. (2%) Math Problems

LSIM Cell								
	1	7	3	4	2	6	/)	8
Z	3	7	7	U	7	-4	1	ک
71	90	(P	(90	90	90	9	190	90
57	เง	0)	-90	lo	W	(\0	-90	(0
20	一(0	90	90	90	-(0	90	90	90
(0	M	1	4	4	Ь	6	1
C /	3	1	4	4	6	6		3
प्र	136.10	Ī	4	Y	57110	6		3

Word Embedding h= WTX $u = w'^T h$ $= -\sum_{c=1}^{c} Ucj^* + \left(loj \sum_{i=1}^{c} exp(ui) \right)$

alle y Gi-tci= ec,i $\frac{9MJ_{L}}{9\Gamma} = \frac{C=1}{5} \frac{9NC_{1}}{9\Gamma} \frac{9NC_{1}}{9NC_{1}}$ Y = Softmax(u) $= Softmax(w^{T}w^{T}x)$ = -log (CEC) = exp(uc) $= \frac{2}{2} (e_{c.i}) \cdot (e_{c.i}) \cdot$ $= \sum_{c=1}^{c} (e^{c \cdot i}) \left(\sum_{k=1}^{k=1} M^{k} \chi_{k} \right)$ = 5 5 9 7 4 5 8 MINT XX $= \underbrace{\xi}_{k=1} \underbrace{\xi}_{c,k} \underbrace{\psi_{kj}}_{\chi_i} \underbrace{\chi_i}_{i}$