Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 7

Prof. Nathan Sturtevant JGH 318

Class Overview

- Review from Wednesday
- Inference in propositional logic
- Propositional logic agents
- First-Order Logic (Ch 8)

Nathan Sturtevar

Introduction to Artificial Intelligence

Entailment

- α entails β or $\alpha \models \beta$
 - β follows logically from α
 - In every model in which α is true, β is also true
 - $M(\alpha) \subseteq M(\beta)$

Entailment examples?

lathan Sturtevant

Introduction to Artificial Intelligence

Propositional Logic Syntax

- Sentence → AtomicSentence | ComplexSentence
- AtomicSentence \rightarrow True | False | P | Q | R | ...
- Complex Sentence → (Sentence) | [Sentence]
 - | ¬ Sentence | Sentence ∧ Sentence
 - | Sentence ∨ Sentence | Sentence ⇒ Sentence
 - | Sentence ⇔ Sentence
- Operator precedence: ¬, ∧, ∨, ⇒, ⇔

Nathan Sturtevant

Introduction to Artificial Intelligence

Model checking

- How does it work?
- What is the running time?
- What is the space required?

Example statements

- There is no pit in [1, 1]
- A square is breezy iff there is a pit in a neighboring square
- If there is no smell in [1, 1], there can't be a wumpus in [1, 2]

Nathan Sturtevan

Introduction to Artificial Intelligence

Theorem proving [7.5]

- No longer consult models
 - Derive inferences (entailment) directly from KB
- In some ways this mimics algebraic theorem proving
 - Start with the known
 - Apply rules/transformations
 - Reach the desired result (if possible)

han Sturtevant Introduction to Artificial Inte

Nathan Sturtevant

Logical equivalence

- Two statements are logically equivalent if they are true in the same set of models
 - $\alpha = \beta$
 - $\alpha = \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

Nathan Sturtevan

Introduction to Artificial Intelligen

Standard logical equivalences

- $(\alpha \wedge \beta) = (\beta \wedge \alpha)$
- $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$
- $((\alpha \land \beta) \land \gamma) = (a \land (\beta \land \gamma))$
- $((\alpha \lor \beta) \lor \gamma) = (a \lor (\beta \lor \gamma))$
- $\bullet \neg (\neg \alpha) \equiv \alpha$

Nathan Sturtevar

Introduction to Artificial Intelligence

Standard logical equivalences

•
$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$

•
$$(\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta)$$

•
$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

•
$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

DENVER DENVER

Standard logical equivalences

•
$$(\alpha \land (\beta \lor \gamma)) = ((\alpha \land \beta) \lor (\alpha \land \gamma))$$

•
$$(\alpha \vee (\beta \wedge \gamma)) = ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$$

Nathan Sturtevant

Introduction to Artificial Intelligence

Nathan Sturteva

Validity

- A sentence is valid if it is true in all models
 - $\bullet P \lor \neg P$
 - $\bullet Q \Rightarrow Q$
- Valid sentences are tautologies
- Deduction theorem
 - For any sentences α and β , $\alpha \models \beta$ iff $(\alpha \Rightarrow \beta)$ is valid
 - Essence of model checking algorithm

Nathan Sturtevant

Introduction to Artificial Intelligent

Validity and Satisfiability

- α is satisfiable iff $\neg \alpha$ is not valid
- $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - Proof? [Hint: $\alpha \models \beta$ iff $(a \Rightarrow \beta)$ is valid]
- This is the logical basis of proof by contradiction

Satisfiability

- A sentence is satisfiable if it is true in some model
 - Abbreviated as SAT
 - Can we find a variable assignment that makes some statement true

Nathan Sturtevan

Introduction to Artificial Intelligence

Validity and Satisfiability (Proof)

- α is satisfiable iff $\neg \alpha$ is not valid
 - if α is unsatisfiable, $\neg \alpha$ is valid
 - if $\neg \alpha$ is unsatisfiable, α is valid
- $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $(\alpha \Rightarrow \beta)$ is valid
 - $\alpha \models \beta$ iff $\neg(\alpha \Rightarrow \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $\neg(\neg \alpha \lor \beta)$ is unsatisfiable
 - $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable

athan Studevant Introduction to Artificial Intellig

Nathan Sturtevant

Inference & Proofs

New notation for inference rules

$$\frac{given 1, \quad given 2}{conclusion}$$

• We supply the items on the top and conclude what is on the bottom

DENVER DENVER

Modus Ponens

• Latin for mode that affirms

$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

DENVER DENVER

DENVER DENVER

And-Elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

Biconditional elimination

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$$
$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

$$\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$$

Wumpus World Example

• Previous definitions

lathan Sturtevant

Introduction to Artificial Intelligence

• Initial state: KB

Actions: all inference rules that apply (top of rule)

• Result: inference in bottom of rule added to KB

• Goal: sentence we want to prove

Nathan Sturtevant

Introduction to Artificial Intelligence

DENVER DENVER

Monotonicity

- The set of entailed sentences can only *increase* as information is added to the KB
 - if $KB \models \alpha$ then $KB \land \beta \models \alpha$
 - Adding β to our KB will not decrease what we can entail from the KB

Inference: sound & complete

- The previous inference rules were all sound
 - Derive entailed sentences
- Are they complete? No
 - There are some things they can't derive
 - (Example?)

han Sturtevant Introduction to Artificial In

Nathan Sturtevant

Unit Resolution

$$\frac{\ell_1 \vee \ell_2, \quad \neg \ell_2}{\ell_1}$$

• Can be generalized to more clauses (see book)

introduction to Artificial intelligent

Resolution

DENVER DENVER

Generalized resolution can handle more clauses

$$\frac{\ell_1 \vee \ell_2, \quad \neg \ell_2 \vee \ell_3}{\ell_1 \vee \ell_3}$$

• Completely general form in the book

Nathan Sturtevant

Introduction to Artificial Intelligence

DENVER DENVER

Examples

Conjunctive Normal Form (CNF)

 All propositional logic can be reduce to clauses or conjunctive normal form (CNF)

an Sturtevant Introduction to Artificial In

Nathan Sturtevant

Example

- $\bullet \; B_{1,1} \Leftrightarrow \left(P_{1,2} \vee P_{2,1}\right)$
- $B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1}) \wedge (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
- $(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
 - $(\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}$
 - $\bullet \; (\!(B_{1,1} \vee \neg P_{1,2}\!) \wedge (B_{1,1} \vee \neg P_{2,1}\!)\!)$
- $\bullet \; (\neg B_{1,1} \, \vee \, P_{1,2} \, \vee \, P_{2,1}) \, \wedge \, (B_{1,1} \, \vee \, \neg P_{1,2}) \, \wedge \, (B_{1,1} \, \vee \, \neg P_{2,1})$

Nathan Sturtevant

Introduction to Artificial Intelligence

Example

- R1: dog_{fred} ⇒ likesbones_{fred}; R2: dog_{fred}
- R3: ¬dog_{fred} ∨ likesbones_{fred}
- Prove: likesbones_{fred}
- Add R4: ¬likesbones_{fred} to KB
- Resolve R4 and R3: R5: ¬dog_{fred}
- Resolve R5 and R2: (null)
 - Contradiction!

Using resolution

- Proofs using resolution are proofs by contradiction
 - $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable
- Assume we want to prove $\alpha \models \beta$
 - Add ¬ ß to KB
 - If we can infer false, we have a contradiction
 - If we can't, then $\alpha \not = \beta$

Nathan Sturtevant

Introduction to Artificial Intelligence

Special Case: Horn & definite Clauses

- A Horn clause is a disjunction of literals of which at most one is positive
 - $\bullet \neg A \lor \neg B \lor C$
 - In Definite clause exactly one is positive
- Definite clauses correspond to implications
 - \bullet A \wedge B \Rightarrow C
- Modus Ponens is sound and complete with Horn clauses

athan Sturtevant Introduction to Artificial Ir

Nathan Sturtevant

Building Logic Agents

- Can we now build propositional logic agents?
 - There are a few important details!
- All percepts depend on the current time/location of the agent
 - Frame problem: need to reason about what does/ does not change as time goes forward
 - This tremendously complicates writing proper logical descriptions of the world

Nathan Sturtevant

Introduction to Artificial Intelligence

First-Order Logic: Motivation

- Returning to fred likes bones:
 - Expensive to have to specify if everyone likes bones
 - Works in wumpus world, but can be computationally infeasable
 - Cannot make statements like:
 - "All dogs like bones"

Building Logic Agents

- Can now build an agent
 - Use A* to plan movement
 - Use logical inference to decide where to go
- Caveat: planning gets more expensive as more time passes, even if the agent just moves around the know part of the state space
- Harder to build an agent that generates a full plan

Nathan Sturtevant

Introduction to Artificial Intelligence

First-Order Logic

- Propositional logic only has variables
 - These are true or false
- First-order logic adds objects, functions and relations
- Also adds quantifiers:
 - ∃: There exists
 - ∀: For all

han Sturtevant Introduction to Artificial Inte

Nathan Sturtevant

First-Order Logic Examples

- Occupation(p, o); Boss(p1, p2); Customer(p1, p2)
- Emily; Doctor, Surgeon, Lawyer
- Emily is either a surgeon or a lawyer.
- All surgeons are doctors.
- Emily has a boss who is a lawyer.
- Every surgeon has a lawyer.

Homework: 7.14

-or-

Show a problem that resolution can solve and other rules cannot. (2 HW's -- do not use the internet.)

han Sturtevant Introduction to Artificial Intellig