$B_s \to D_s K \pi \pi$: γ measurement

Philippe d'Argent ¹, Evelina Gersabeck ¹, Matthieu Kecke ¹, Manuel Schiller ²

¹PI Heidelberg, ²Glasgow

xx.xx.2017

Status

A lot of progress since last update:

- ullet re-optimized selection for γ measurement
- added 2015 & 2016 Run2 data
- use Meerkat PID sampling to control misID contributions
- developed time dependent MINT version (see last B2OC-talk)
- integrated time acceptance and resolution in TD-MINT (currently tested)

Re-optimized Selection

We now use specific phasespace cuts during preselection to suppress background:

$$m(K\pi\pi) < 1.95 \, GeV$$

$$m(K\pi) < 1.2 GeV$$

$$m(\pi\pi) < 1.2$$
 GeV

The reduced background level allows us to loosen the BDT cut and significantly improve $\frac{S}{\sqrt{S+B}}$

New data!

Data from 2015 & 2016 now added to analysis

Slightly reorganized mass fits, now fit simultaneously in every year and D_s final state:

- years: 2011, 2012, 2015, 2016
- $D_s \to \phi \pi \to KK\pi$
- $D_s \rightarrow K^*K \rightarrow KK\pi$
- $D_s o KK\pi$ (non-resonant)
- $D_s \rightarrow \pi\pi\pi$

Fit components

Components we model in the invariant mass distributions:

$$B_s \to D_s \pi \pi \pi$$
:

- B_s signal
- $B_s o D_s^* \pi \pi \pi$ partial reconstructed background combinatorial
- combinatorial background

$$B_s \to D_s K \pi \pi$$
:

- B_s/B^0 signal
- $B_s/B^0 o D_s^* K \pi \pi$ partial reconstructed background
- $B_s \to D_s \pi \pi \pi$ mis-ID background
- combinatorial background

Massfits norm 15

Massfits norm 16

Massfits signal 15

Massfits signal 16

Run1 & 2 Data combined

fit component	yield 2011	yield 2012	yield 2015	yield 2016
$B_s o D_s \pi \pi \pi$		22940 ± 316	7839 ± 185	45186 ± 452
$B_s o D_s K \pi \pi$	426 ± 57	909 ± 71	319 ± 38	2049 ± 104

 $[\]rightarrow$ 3700 Signals in total !

Time-Acceptance

$$ullet$$
 $rac{\Gamma(t)^{observed}}{dt} = rac{\Gamma(t)^{theory}}{dt} \cdot \epsilon(t)$

- ullet Use control channel $B^0_s o D^+_s\pi^-\pi^+\pi^-$
- describe $\epsilon(t)$ using cubic splines
- fit flavour averaged t-distribution, e.g.

$$\mathcal{P}(t^{'}, \vec{\lambda}) = \left[(e^{\Gamma_s t} \cdot cosh(\frac{\Delta \Gamma_s t}{2}) \times \mathcal{R}(t - t^{'}) \right] \cdot \epsilon(t^{'}, \vec{\lambda})$$

• fix $\Delta\Gamma$ and Γ to PDG, float polynomials

Time-Acceptance

knots at 0.5, 1, 1.5, 2, 3, 6. 9.5, 10 ps

Spline Products

We also imported the Spline Product class (see talk by Agnieszka) to check corrections between $B_s \to D_s \pi \pi \pi$ and $B_s \to D_s K \pi \pi$

need more MC statistic for this fit

Per-event decay-time error σ_t estimated by the decay tree fitter

Problem: Not calibrated, real decay-time error will be shifted

Fit double Gaussian to distribution of $\Delta t = t_{true} - t_{observed}$ in every Bin, on MC

Derive effective resolution from Dilution of CP-observables

$$\mathcal{D} = f_1 e^{-\sigma_1^2 \Delta m_s^2/2} + (1 - f_1) e^{-\sigma_1^2 \Delta m_s^2/2}, \mathcal{D} \in [0, 1]$$
 $\sigma_{eff} = \sqrt{(-2/\Delta m_s^2) \ln D}$

Plot σ_t from decay tree fitter against $\sigma_{\it eff}$ from Gaussian fits

Fitted with first order polynomial

Might be able to get LTU data by re-stripping due to HLT bug !

Appendix

Massfits norm 11

Massfits norm 12

Massfits signal 11

Massfits signal 12

