预习报告	实验记录	分析讨论	总成绩

年级、专业:	2017 级 物理学	组号:	实验班 2
姓名:	高寒	学号:	17353019
日期:		教师签名:	

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - 1) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成讲义中的预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(由学生自己在实验前设计好,可以打印)。预习成绩低于10分(共20分)者不能做实验。
 - 2) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
 - 3) 分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。

实验报告就是预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

- 2. 每次完成实验后的一周内交实验报告。
- 3. 除实验记录外,实验报告其他部分建议双面打印。

【实验目的】

- 1. 了解数字散斑干涉技术原理;
- 2. 学会搭建数字散斑干涉光路测量物体离面位移;
- 3. 了解数字剪切散斑干涉技术原理;
- 4. 学会搭建迈克尔逊剪切干涉光路;
- 5. 学会测量并分析被测物体相位变化量。

【仪器用具】

产品编号	产品名称	规格	数量	
1.106.1.07.408	散斑实验被测物	中心高 170mm,总高 235mm,直径	1	
		130mm		
1.301.0.19	调节套筒	L76mm	12	
1.301.0.21	支杆	L76mm,双头阳螺纹	12	
1.301.0.47	相机转接底板		1	
1.301.1.01	透镜/反射镜支架	Φ45mm 的内孔, 可装 Φ20, Φ25.4, Φ30,	1	
		Φ40mm 的镜片		
1.301.1.02	干板夹	外形 60×26×24mm	1	
1.301.1.03	镜圈	外径 Φ45mm,装 Φ40mm 镜片	1	
1.301.1.04	激光管夹持器	Φ25~Φ50mm,V 型	1	
4 004 4 00	透镜/反射镜座	外径Φ36, 厚8, 装Φ20 镜片, 底部带	1	
1.301.1.09		M4 螺纹孔		
1.301.1.15	透镜/反射镜座	外径Φ41.5, 厚 8, 装Φ25.4 镜片, 底部	3	
		带 M4 螺纹孔		
1.301.2.03	磁性表座	61mmX51mmX55mm,吸力 45kg	8	
1.301.2.12	磁性表座	35mmX30mmX35mm	4	
1.301.2.04	可变光阑	通光 Φ2~Φ28mm,外径 Φ50mm	1	

1.302.0.30	氦氖内腔激光器成品	JT-HN20,腔长	1	
		250mm,633nm,>1.5mW,TEM00 模	_ '	
1.302.3.11	CMOS 相机	130 万像素,黑白,1/1.8",C 接口	1	
1.303.1.01	圆形可调衰减器/分光镜	OD0.0~3.0	1	
1.303.2.7.84	十字叉丝板 (挡光板)	90X70,2mm 厚,发黑,丝网印刻度线,	1	
		中心 Φ 1 小孔		
2.01.01.02.0002	平凹透镜	焦距-50.8mm,直径 25.4mm	1	
2.01.01.05.004	双凹透镜	焦距-6.3mm,直径 6.3mm	2	
2.01.06.03.0001	宽带消偏振分光棱镜	25.4×25.4×25.4mm, 450~650nm	1	
2.01.06.06.0002		材料 K9,外形Φ40 上厚度 4mm, 2 度 9:		
	分光光楔	1, @450~650	1	
2.01.03.01.0007	窗口	双面毛,材料 K9,直径 22,厚度 1.5	1	
2.03.06.0027	USB 线	mini A 公口转 B 公口	1	
	棱镜支架	24*24mm	1	
	透镜卡具	连接双凹透镜和 25.4 镜座	2	
	CCTV 镜头	Computer,25mm	1	

1.106.1.07.408	散斑实验被测物	中心高 170mm,总高 235mm,直径 130mm	1
1.301.0.19	调节套筒	L76mm	12
1.301.0.21	支杆	L76mm,双头阳螺纹	12
1.301.0.47	相机转接底板		1
1.301.1.02	干板夹	外形 60×26×24mm	1
1.301.1.04	激光管夹持器	Ф25~Ф50mm,V 型	1
1.301.1.15	透镜/反射镜座	外径Φ41.5, 厚 8, 装Φ25.4 镜片, 底部带 M4 螺纹孔	3
1.301.2.03	磁性表座	61mmX51mmX55mm,吸力 45kg	8
1.301.2.12	磁性表座	35mmX30mmX35mm	4
1.301.2.04	可变光阑	通光 Φ2~Φ28mm,外径 Φ50mm	1
1.302.0.30	氦氖内腔激光器成品	JT-HN20,腔长 250mm,633nm,>1.5mW,TEM00 模	1
1.302.3.11	CMOS 相机	130 万像素, 黑白, 1/1.8", C接口	1
1.303.1.01	圆形可调衰减器/分光镜	OD0.0~3.0	1
2.01.01.02.0002	平凹透镜	焦距-50.8mm,直径 25.4mm	1
2.01.01.05.004	双凹透镜	焦距-6.3mm,直径 6.3mm	2
2.01.04.02.0003	加强铝反射镜	φ25.4mm Tc=4mm,装在 Φ25.4 的镜架上	2
2.01.06.03.0001	宽带消偏振分光棱镜	25.4×25.4×25.4mm, 450~650nm	1
2.03.06.0027	USB 线	mini A 公口转 B 公口	1
1.970.968	小型透镜/反射镜架	可装 Φ25.4 的镜片	2
	棱镜支架	24*24mm	1
	透镜卡具	连接双凹透镜和 25.4 镜座	2
	CCTV 镜头	Computer,25mm	1

【原理概述】

该实验分数字散斑干涉和剪切散斑干涉两部分。

对数字散斑干涉,激光器射出的光经分光镜分为物光和参考光两部分。假如被测物是光滑的,那么,这两束光间将存在一个恒定的相位差 Δ 。但若物体表面不平整,其形变由矢量

$$\vec{d} = (\mu, \nu, \omega) \tag{1}$$

衡量,而入射光和出射光的波矢分别为 $\vec{k_i}$ 和 $\vec{k_o}$, 那么,它将带来额外的相位差

$$\delta = \vec{d} \cdot (\vec{k_i} - \vec{k_o}) \tag{2}$$

这个相位差将体现在干涉条纹上,由数字相机测出,从而再利用入射方向和观察方向的信息得到形变矢量 \vec{d} 。

剪切散斑干涉的基本实现原理是一个迈克尔逊干涉仪,不过其中一个反射镜稍稍倾斜 α 角,这将带来一个剪切量

$$\Delta x_0 = l \tan 2\alpha \simeq 2\alpha l \tag{3}$$

或者说,由两个位置发射的光将成像在同一点上。两束光干涉带来的相位差为

$$\Delta \phi = \frac{2\pi}{\lambda} \vec{\beta} \Delta \vec{L} \tag{4}$$

其中 $\vec{\beta} = (A, B, C)$ 为位移敏感因子, $\Delta \vec{L} = (\delta u, \delta v, \delta w)$ 为位移矢量。当在 x 方向上剪切时,位移矢量依赖于 x,于是相差就是

$$\Delta \phi = \frac{2\pi \Delta x}{\lambda} \vec{\beta} \cdot \frac{\partial \vec{L}}{x} \tag{5}$$

这个公式建立了位移梯度和相位差直接的关系,因此可以用来测量位移空间梯度。

专业:	2017 级 物理学	年级:	实验班 2
姓名:	高寒	学号:	17353019
室温:		实验地点:	珠海教学楼 A5
学生签名:	高麗	评分:	
日期:		教师签名:	

【实验内容、步骤、结果】

搭建仪器,将实验结果截图并存档。

【实验过程中遇到问题记录】

专业:	物理学	年级:	2017 级
姓名:	高寒	学号:	17353019
日期:			
评分:		教师签名:	

【分析与讨论】

(Content)

【实验思考题】

(Content)