

Termodinâmica de Soluções: Aplicações

Professor: Ricardo Pires

OBJETIVOS

- Entender/articular dados de ELV para obtenção de correlações para o coeficiente de atividade para trabalhar com a FASE LIQUIDA.
- Apresentar e definir os modelos de energia livre de Gibbs em excesso para descrição do comportamento de misturas liquidas.

Propriedades da Fase liquida a partir de dados de ELV

Para um sistema fechado em que tem-se uma mistura em ELV.

T e P são uniformes em todo o vaso (sistema).

Podem ser medidas por instrumentos apropriados.

Fugacidade

Para a espécie *i* na mistura vapor: $\hat{f}_i^v = y_i \hat{\phi}_i^v P$

Do critério de ELV:
$$\hat{f}_i^v = \hat{f}_i^l$$
 $(i=1,2,\ldots,N)$
$$\hat{f}_i^l = y_i \hat{\phi}_i^v P$$

Frequentemente as medidas de ELV são realizadas em pressões baixas. Nestas, pode-se considerar a fase vapor <u>GI</u>.

$$\hat{f}_i^l = \hat{f}_i^v = y_i P$$

A fugacidade de *i* (nas fases liquida e vapor) é igual à sua pressão parcial.

$$\hat{f}_1 = y_1 P \qquad \qquad \hat{f}_2 = y_2 P$$

A Lei de Raoult

Em sistemas em ELV, a pressões baixas o suficiente, pode-se aplicar a LEI DE RAOULT e considerar:

A fase vapor um GI;

A fase liquida uma solução ideal.

$$y_i P = x_i P_i^{Sat}$$

Enunciado matemático da Lei de Raoult.

Do Capitulo 11: Fugacidade de um liq. puro
$$f_i = \phi_i^{\text{sat}} P_i^{\text{sat}} \exp \frac{V_i^l (P - P_i^{\text{sat}})}{RT} \qquad \phi_i^{\text{sat}} = \frac{f_i^{\text{sat}}}{P_i^{\text{sat}}}$$

Coeficiente de Atividade

Para um sistema que têm-se fases liquida com a não idealidade contabilizada no coeficiente de atividade e vapor como gás ideal.

$$\hat{f}_i^l = \hat{f}_i^v$$

$$\gamma_i \equiv \frac{\hat{f_i}}{x_i f_i} = \frac{\hat{f_i}}{\hat{f_i}^{id}}$$

LEI DE RAOULT MODIFICADA

$$\gamma_i = \frac{y_i P}{x_i f_i} = \frac{y_i P}{x_i P_i^{\text{sat}}} \qquad (i = 1, 2, ..., N)$$
(5)

A Lei de Henry

Para uma espécie i cuja T crítica é inferior a T de utilização. Se esta espécie i se encontra muito diluída na fase liquida(soluto), a Lei de Henry enuncia que a pressão parcial da espécie na fase vapor é diretamente proporcional à sua fração molar na fase liquida.

$$y_i P = x_i H_i$$

 H_i é a constante de Henry.

Exemplo: Sistema ar- água em equilíbrio liquido-vapor a 298,15K.

A fração de água no ar pode ser calculada pela lei de Raoult.

E a fração de ar dissolvido na água?

Resposta: Pela Lei de Henry. Tc_(Ar)=132,2 K; Tc_(Água)=647,1 K

Dependência com a composição das fugacidades na fase liquida para a espécie i num binário

Definição da cte de Henry

$$\lim_{x_i \to 0} \frac{\hat{f}_i}{x_i} = \left(\frac{d\hat{f}_i}{dx_i}\right)_{x_i = 0} \equiv \mathcal{H}_i \quad (1)$$

$$\hat{f}_i = x_i \mathcal{H}_i \mid (2)$$

Regra de Lewis/Randall

$$\left(\frac{d\,\hat{f}_1}{dx_1}\right)_{x_1=1} = f_1 \quad (3)$$

Num binário, a Lei de Henry se aplica para uma espécie na medida em que esta se aproxima da diluição infinita e a Regra de Lewis/Randall se aplica ao outro componente.

Lei de Henry se relaciona com Lewis /Randall por meio de Gibbs/Duhem.

$$x_1 d\mu_1 + x_2 d\mu_2 = 0$$
 (const T,P)

Sendo: $d\mu_i$ =RTdln \hat{f}_i

$$x_1 \frac{d \ln \hat{f_1}}{dx_1} + x_2 \frac{d \ln \hat{f_2}}{dx_1} = 0$$
 (const T, P) (4)

$$\left(\frac{d\,\hat{f}_1}{dx_1}\right)_{x_1=1} = f_1$$

MODELOS DE GE

Objetivo: Descrever bem o comportamento de misturas liquidas

A principio, $G^E = f(T,P,n)$

Entretanto vamos tomar como exemplo dados experimentais de uma mistura equimolar de benzeno e ciclohexano a 25°C e 1 atm:

Sabemos que:

$$\frac{V^E}{RT} = \left[\frac{\partial (G^E/RT)}{\partial P}\right]_{T,x} \qquad \frac{H^E}{RT} = -T\left[\frac{\partial (G^E/RT)}{\partial T}\right]_{P,x}$$

Para uma variação de 1°C, temos:

$$\Delta \left(\frac{G^{E}}{RT}\right) = -\int \frac{H^{E}}{RT^{2}} dT = -1,079.10^{-3}$$

Para produzir a mesma variação em G^E que uma variação de 1°C produziu (mexendo agora na pressão), temos que variar P de:

$$\Delta \left(\frac{G^{E}}{RT}\right) = -\int \frac{V^{E}}{RT} dP = V^{E} \frac{\Delta P}{RT}$$
$$\Delta P = -41,25bar$$

Portanto conclui-se que G^E é uma fraca função de P. Assim os modelos de GE adotam a hipótese de que G^E é função apenas de T e n (ou x).

Coeficiente de Atividade e Energia Livre de Gibbs em Excesso

 A energia livre de Gibbs em excesso e o coeficiente de atividade estão relacionados da seguinte forma:

$$\ln \gamma_i = \frac{\overline{G}_i^E}{RT}$$

$$\frac{G^E}{RT} = \sum_{i} x_i \ln \gamma_i$$

$$\ln \gamma_i \equiv \left[\frac{\partial \left(nG^E / RT \right)}{\partial n_i} \right]_{T, P, n_{j \neq i}}$$

Modelos empíricos para G^E

Expansão Redlich-Kister-Turnquist

$$\frac{G^E}{x_1 x_2 RT} = A + B(x_1 - x_2) + C(x_1 - x_2)^2 + \cdots$$

Eq. de Margules 3 sufixos

$$\frac{G^E}{RT} = (A_{21}x_1 + A_{12}x_2)x_1x_2$$

$$\frac{G^E}{x_1x_2RT} = A_{21}x_1 + A_{12}x_2$$

$$\ln \gamma_1 = x_2^2 [A_{12} + 2(A_{21} - A_{12})x_1]$$

$$\ln \gamma_2 = x_1^2 [A_{21} + 2(A_{12} - A_{21})x_2]$$

Eq. de Margules com 2 sufixos

$$\frac{G^E}{RTx_1x_2} = A$$

$$B = C = ... = 0$$

$$\ln \gamma_1 = A x_2^2$$

$$\ln \gamma_1 = Ax_2^2$$

$$\ln \gamma_2 = Ax_1^2$$

Sugerido a misturas líquidas de moléculas de tamanho, forma e natureza química parecidas, a baixas e moderadas pressões.

Equação de van Laar

Aplica-se a misturas líquidas cujos componentes têm natureza química similar, mas os tamanhos das moléculas são diferentes

$$\frac{G^{R}}{RTx_{1}x_{2}} = \frac{A_{12}A_{21}}{A_{12}x_{1} + A_{21}x_{2}}$$

$$\ln \gamma_1 = \frac{A_{12}^{'}}{\left(\frac{x_1 A_{12}^{'}}{x_2 A_{21}^{'}}\right)^2}$$

$$\ln \gamma_2 = \frac{A_{21}}{\left(\frac{x_2 A_{21}^2}{x_2 A_{12}^2} + 1\right)^2}$$

Modelos semi-empíricos ou de composição local para G^E

Conceito de composição local (Wilson, 1964)

Numa solução binária, a composição macroscópica não corresponde à composição microscópica, ou seja, as moléculas dos 2 componentes não se distribuem uniformemente na mistura líquida, ocorrendo duas situações:

- A molécula do componente 1 cercada por outras moléculas (tanto de 1 como de 2)
- A molécula do componente 2 cercada por outras moléculas (tanto de 1 como de 2)

Equação de Wilson

PARA 1 BINÁRIO

$$\frac{G^{E}}{RT} = -x_{1} \ln(x_{1} + \Lambda_{12}x_{2}) - x_{2} \ln(x_{2} + \Lambda_{21}x_{1})$$

$$\ln \gamma_1 = -\ln \left(\mathbf{x}_1 + \mathbf{\Lambda}_{12}\mathbf{x}_2\right) + \mathbf{x}_2 \left[\frac{\mathbf{\Lambda}_{12}}{\left(\mathbf{x}_1 + \mathbf{\Lambda}_{12}\mathbf{x}_2\right)} - \frac{\mathbf{\Lambda}_{21}}{\left(\mathbf{x}_2 + \mathbf{\Lambda}_{21}\mathbf{x}_1\right)} \right]$$

$$\ln \gamma_2 = -\ln (\mathbf{x}_2 + \mathbf{\Lambda}_{21} \mathbf{x}_1) - \mathbf{x}_1 \left[\frac{\mathbf{\Lambda}_{12}}{(\mathbf{x}_1 + \mathbf{\Lambda}_{12} \mathbf{x}_2)} - \frac{\mathbf{\Lambda}_{21}}{(\mathbf{x}_2 + \mathbf{\Lambda}_{21} \mathbf{x}_1)} \right]$$

Os modelos de composição local possuem flexibilidade limitada no ajuste de dados mas possuem a vantagem de poderem ser generalizados para sistemas multicomponentes sem a introdução de parâmetros além dos utilizados na descrição do sistema binário.

$$\frac{G^E}{RT} = -\sum_i x_i \ln \sum_j (x_i + \Lambda_{ij})$$

$$\ln \gamma_i = 1 - \ln \sum_j \left(x_j \Lambda_{ij} \right) - \sum_j \frac{x_j \Lambda_{ji}}{\sum_k \left(x_k \Lambda_{jk} \right)}$$

$$\Lambda_{ij} = -\frac{V_j}{V_i} \exp \frac{-a_{ij}}{RT}$$

 V_i e V_j são os volumes molares na temperatura T dos líquidos puros i e j;

 a_{ij} é uma constante de interação entre moléculas de i e j;

Generalização do modelo de Wilson

Equação NRTL

Non-Random-Two-Liquid

Melhoria da equação de Wilson, introduzindo um terceiro parâmetro (α), para considerar o fato das misturas líquidas serem não-randômicas (efeito entrópico).

$$\frac{G^E}{RT} = x_1 x_2 \left(\frac{\tau_{21} G_{21}}{x_1 + x_2 G_{21}} + \frac{\tau_{12} G_{12}}{x_2 + x_1 G_{12}} \right)$$

$$\tau_{12} = \frac{b_{12}}{RT}$$

$$\tau_{21} = \frac{b_{21}}{RT}$$
 $G_{12} = \exp(-\alpha \tau_{12})$
 $G_{21} = \exp(-\alpha \tau_{21})$

Os parâmetros b_{12} , b_{21} e α são ajustáveis e dependentes dos pares de moléculas e <u>independentes da T e composição</u>.

Coeficientes de Atividade da Equação NRTL para 1 binário

$$\ln \gamma_1 = x_2^2 \left[\tau_{21} \left(\frac{G_{21}}{x_1 + G_{21} x_2} \right)^2 + \frac{\tau_{12} G_{12}}{(x_2 + G_{12} x_1)^2} \right]$$

$$\ln \gamma_2 = x_1^2 \left[\tau_{12} \left(\frac{G_{12}}{x_2 + G_{12} x_1} \right)^2 + \frac{\tau_{21} G_{21}}{(x_1 + G_{21} x_2)^2} \right]$$

Equação NRTL para um Sistema Multicomponente

$$\frac{G^E}{RT} = \sum_{i} x_i \frac{\sum_{j} x_j \tau_{ji} G_{ji}}{\sum_{j} x_j G_{ji}} \qquad \tau_{ij} = \frac{b_{ij}}{RT} \qquad \overline{G_{ij} = \exp(-\alpha.\tau_{ij})}$$

$$\tau_{ij} = \frac{b_{ij}}{RT}$$

$$G_{ij} = \exp(-\alpha.\tau_{ij})$$

$$\ln \gamma_{i} = \frac{\sum_{j} x_{j} \tau_{ji} G_{ji}}{\sum_{j} x_{j} G_{ji}} + \sum_{j} \frac{x_{j} G_{ij}}{\sum_{k} x_{k} G_{kj}} \left(\tau_{ij} - \frac{\sum_{k} x_{k} \tau_{kj} G_{kj}}{\sum_{k} x_{k} G_{kj}} \right)$$

Modelo UNIQUAC (UNIversal QUAsi-Chemical)

Modelo fenomenológico desenvolvido por Abrams e Prausnitz (1975).

Melhoria das equações anteriores, levando em conta não apenas o conceito de composição local. Aqui, também o efeito das diferenças de tamanho entre as moléculas é contabilizado através de parâmetros estruturais obtidos a partir de dados dos componentes puros.

A expressão de G^E é dada como a soma de 2 contribuições: a <u>combinatorial ou configuracional</u>, que reflete as diferenças de tamanho e forma (volume e área superficial) das moléculas da mistura, e a <u>residual</u>, que reflete as interações intermoleculares dentro da mistura.

$$\frac{G^E}{RT} = \frac{G_C^E}{RT} + \frac{G_R^E}{RT}$$

Equação UNIQUAC para um sistema multicomponente

$$\frac{G_C^E}{RT} = \sum_i x_i \ln \frac{\Phi_i}{x_i} + 5 \sum_i q_i x_i \ln \frac{\theta_i}{\Phi_i} \qquad \frac{G_R^E}{RT} = -\sum_i q_i x_i \ln \left(\sum_j \theta_j \tau_{ji}\right) \qquad \text{Todos somator}$$

$$\frac{G_R^E}{RT} = -\sum_{i} q_i x_i \ln \left(\sum_{j} \theta_j \tau_{ji} \right)$$

OS somatórios são sobre todas as espécies.

$$\ln \gamma_{i}^{C} = 1 - J_{i} + \ln J_{i} - 5q_{i} \left(1 - \frac{J_{i}}{L_{i}} + \ln \frac{J_{i}}{L_{i}} \right)$$

$$\ln \gamma_i^R = q_i \left[1 - \ln s_i - \sum_j \theta_j \frac{\tau_{ij}}{s_j} \right]$$

$$\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R$$

i: indica a espécie;

j e l: índices mudos;

q_i: Área sup. Relativa da molécula i

r_i: Volume Relativo da molécula i

 \mathbf{u}_{ij} : interação intermolecular entre o par ij

u_{ii}: interação intermolecular entre o par jj

quando i=j τ_{ii} =1

r_i e q_i são parâmetros das espécies puras.

$$\Phi_i = \frac{r_i x_i}{\sum_k r_k x_k}$$

$$\theta_i = \frac{q_i x_i}{\sum_k q_k x_k}$$

$$\Phi_i = \frac{r_i x_i}{\sum_k r_k x_k} \qquad \theta_i = \frac{q_i x_i}{\sum_k q_k x_k} \qquad \tau_{ji} = \exp\left(-\frac{(u_{ji} - u_{ii})}{RT}\right)$$

Fatores de Forma

$$s_i = \left(\sum_l \theta_l \tau_{li}\right)$$

Modelo UNIFAC (Universal Functional Group Activity Coefficient)

Modelo fenomenológico desenvolvido por Fredeslund, Jones e Prausnitz (1975).

Baseia-se no modelo UNIQUAC, no entanto as características de cada molécula são contabilizadas a partir de suas unidades formadoras denominadas **subgrupos**.

Os subgrupos são unidades pertencentes a grupos caracterizados de acordo com suas funções químicas.

A parte combinatorial deste modelo é igual à do UNIQUAC, só que nesse caso os parâmetros "r" e "q" de cada componente puro são calculados como a soma das respectivas contribuições de volume R_k e de área superficial Q_k de cada grupo constituinte da molécula.

$$\ln \gamma_{i}^{C} = 1 - J_{i} + \ln J_{i} - 5q_{i} \left(1 - \frac{J_{i}}{L_{i}} + \ln \frac{J_{i}}{L_{i}} \right)$$

$$\ln \gamma_i^R = q_i \left[1 - \sum_k \left(\theta_k \frac{\beta_{ik}}{s_k} - e_{ki} \ln \frac{\beta_{ik}}{s_k} \right) \right]$$

Sendo:

$$r_i = \sum_k v_k^{(i)} R_k \qquad q_i = \sum_k v_k^{(i)} Q_k$$

$$q_i = \sum_k v_k^{(i)} Q_k$$

 $v^{(i)}_{k}$ - n° de subgrupos do tipo kna molécula do tipo i

$$J_i = \frac{r_i}{\sum_{I} r_j x_j}$$

$$J_i = \frac{r_i}{\sum_{J} r_j x_j} \qquad L_i = \frac{q_i}{\sum_{J} q_j x_j}$$

Sendo:

$$e_{ki} = \frac{v_k^{(i)} Q_k}{q_i}$$

$$\beta_{ik} = \sum_{m} e_{mi} \tau_{mk}$$

$$\theta_k = \frac{\sum_{i} x_i q_i e_{ki}}{\sum_{j} x_j q_j}$$

$$s_k = \sum_m \theta_m \tau_{mk}$$

$$\tau_{mk} = \exp\frac{-a_{mk}}{T}$$

i - identifica e percorre as espécies

j - índice mudo que percorre todas as espécies

k - identifica o subgrupo

m - índice que percorre todos os subgrupos

Para:

$$m=k \rightarrow a_{mk} = 0 e \tau_{mk} = 1$$

Para:

m≠k

- . Se m e k são do mesmo grupo, $a_{mk} = 0$
- . Se m e k não são do mesmo grupo $a_{mk} \neq 0$

Table H.1: UNIFAC-VLE Subgroup Parameters[†]

Main group	Subgroup	k	R _k	Q _k	Examples of molecules and their constituent groups		
1 "CH ₂ "	CH ₃	1			n-Butane:	2CH ₃ , 2CH ₂	
£7	CH_2	2	0.6744	0.540	Isobutane:	3CH ₃ , 1CH	
	CH	3	0.4469	0.228	2,2-Dimethyl	000 000 0 0 9 0	
	C	4	0.2195	0.000	propane:	4CH ₃ , 1C	
3 "ACH"	ACH	10	0.5313	0.400	Benzene:	6ACH	
(AC = arc	omatic carbon)					
4 "ACCH ₂ "	ACCH ₃	12	1.2663	0.968	Toluene:	5ACH, 1ACCH ₃	
-	ACCH ₂	13	1.0396	0.660	Ethylbenzene:	1CH ₃ , 5ACH, 1ACCH ₂	
5 "OH"	ОН	15	1.0000	1.200	Ethanol:	1CH ₃ , 1CH ₂ , 1OH	
7 "H ₂ O"	Н2О	17	0.9200	1.400	Water:	1H ₂ O	
9 "CH ₂ CO"	CH ₃ CO	19	1.6724	1.488	Acetone:	1CH ₃ CO, 1CH ₃	
	CH ₂ CO	20	1.4457	1.180	3-Pentanone:	2CH ₃ , 1CH ₂ CO, 1CH ₂	
13 "CH ₂ O"	CH ₃ O	25	1.1450	1.088	Dimethyl ether:	1CH ₃ , 1CH ₃ O	
	CH ₂ O	26	0.9183	0.780	Diethyl ether:	2CH ₃ , 1CH ₂ , 1CH ₂ O	
	CH-O	27	0.6908	0.468	Diisopropyl ether:	4CH ₃ , 1CH, 1CH-O	
15 "CNH"	CH ₃ NH	32	1.4337	1.244	Dimethylamine:	1CH ₃ , 1CH ₃ NH	
	CH ₂ NH	33	1.2070	0.936	Diethylamine:	2CH ₃ , 1CH ₂ , 1CH ₂ NH	
	CHNH	34	0.9795	0.624	Diisopropylamine:	4CH ₃ , 1CH, 1CHNH	
19 "CCN"	CH ₃ CN	41	1.8701	1.724	Acetonitrile:	1CH ₃ CN	
	CH ₂ CN	42	1.6434	1.416	Propionitrile:	1CH ₃ , 1CH ₂ CN	

[†]H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, *IEC Research*, vol. 30, pp. 2352–2355, 1991.

Table H.2: UNIFAC-VLE Interaction Parameters, a_{mk} , in kelvins[†]

Table H.2: UNIFAC-VLE Interaction Parameters, a_{mk} , in kelvins [†]													
	1	3	4	5	7	9	13	15	19				
1 CH ₂	0.00	61.13	76.50	986.50	1,318.00	476.40	251.50	255.70	597.00				
3 ACH	-11.12	0.00	167.00	636.10	903.80	25.77	32.14	122.80	212.50				
4 ACCH ₂	-69.70	-146.80	0.00	803.20	5,695.00	-52.10	213.10	-49.29	6,096.00				
5 OH	156.40	89.60	25.82	0.00	353.50	84.00	28.06	42.70	6.712				
7 H ₂ O	300.00	362.30	377.60	-229.10	0.00	-195.40	540.50	168.00	112.60				
9 CH ₂ CO	26.76	140.10	365.80	164.50	472.50	0.00	-103.60	-174.20	481.70				
13 CH ₂ O	83.36	52.13	65.69	237.70	-314.70	191.10	0.00	251.50	-18.51				
15 CNH	65.33	-22.31	223.00	-150.00	-448.20	394.60	-56.08	0.00	147.10				
19 CCN	24.82	-22.97	-138.40	185.40	242.80	-287.50	38.81	-108.50	0.00				

[†]H. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, *IEC Research*, vol. 30, pp. 2352–2355, 1991.

Propriedades de mistura

Partindo de uma solução ideal:

$$G^{id} = \sum_{i} x_i G_i + RT \sum_{i} x_i \ln x_i$$

$$S^{id} = \sum_{i} x_i S_i - R \sum_{i} x_i \ln x_i$$

$$V^{id} = \sum_{i} x_i V_i \qquad H^{id} = \sum_{i} x_i H_i$$

Para uma solução qualquer:

$$G^E = G - \sum_i x_i G_i - RT \sum_i x_i \ln x_i$$

$$S^E = S - \sum_i x_i S_i + R \sum_i x_i \ln x_i$$

$$V^E = V - \sum_i x_i V_i$$

$$H^E = H - \sum_i x_i H_i$$

Variação da propriedade M no processo de mistura.

Sabendo que: $\Delta M \equiv M - \sum x_i M_i$ (6)

M Propriedade da solução a T e P;

 $M_{\,i}\,$ Propriedade da espécie i pura nas mesmas T e P.

$$G^{E} = \Delta G - RT \sum_{i} x_{i} \ln x_{i}$$

$$S^{E} = \Delta S + R \sum_{i} x_{i} \ln x_{i}$$

$$V^{E} = \Delta V$$

$$H^{E} = \Delta H$$
Propriedades de mistura.

Numa solução ideal em que a propriedade de excesso se torna 0:

$$\Delta G^{id} = RT \sum_{i} x_{i} \ln x_{i} \qquad \Delta V^{id} = 0$$

$$\Delta S^{id} = -R \sum_{i} x_{i} \ln x_{i} \qquad \Delta H^{id} = 0$$

Agora, vamos reescrever a Eq. 6 para uma solução ideal:

$$\Delta M^{id} = M^{id} - \sum x_i M_i$$

Vamos subtrair o resultado da Eq. 6:

$$\Delta M - \Delta M^{id} = M - M^{id}$$

Quando aplicamos a definição de propriedade de excesso, chegamos:

$$M^E = \Delta M - \Delta M^{id} \tag{7}$$

AS PROPRIEDADES DE EXCESSO E AS PROPRIEDADES DE MISTURA SÃO CALCULADAS UMA A PARTIR DA OUTRA. V^E e H^E são as propriedades de maior interesse, pois têm medidas diretas e são relacionadas facilmente.

Volume de mistura e Entalpia de mistura

Num binário: $n = n_1 + n_2$

Para o volume:

$$\Delta V^{t} = (n_1 + n_2)V - n_1V_1 - n_2V_2$$

Dividindo por n

$$\Delta V \equiv V - x_1 V_1 - x_2 V_2 = \frac{\Delta V^t}{n_1 + n_2}$$

O volume de mistura ΔV e a entalpia de mistura ΔH são obtidos a partir de medidas de Q e ΔV^t . ΔH é chamado de calor de mistura.

Para a entalpia:

$$Q = \Delta H^{t} = (n_1 + n_2)H - n_1H_1 - n_2H_2$$

Dividindo por n

$$\Delta H \equiv H - x_1 H_1 - x_2 H_2 = \frac{Q}{n_1 + n_2}$$

Diagramas Entalpia x Concentração 100 80 60 40 $H(Btu)/(lb_m)$ solution 20 -20-40-60-80-100-120-140

10

20

30

Figure 12.17: Hx diagram for $H_2SO_4(1)/H_2O(2)$. (Redrawn from the data of W. D. Ross, *Chem. Eng. Prog.*, vol. 48, pp. 314 and 315, 1952. By permission.)

50

Wt. % H₂SO₄

80

100

Figure 12.17: Hx diagram for $H_2SO_4(1)/H_2O(2)$. (Redrawn from the data of W. D. Ross, *Chem. Eng. Prog.*, vol. 48, pp. 314 and 315, 1952. By permission.)