Team notebook

${\it HCMUS}$ - ${\it IdentityImbalance}$

October 4, 2021

Contents			3.11 segment tree	I	5.11 query with lca	
1	Algorithms 1.1 Mo's algorithm on trees	1 1	3.13 splay tree	13	5.12 tarjan scc	
	1.2 Mo's algorithm	$\frac{2}{2}$	3.15 wavelet tree	15 16	6 Math 6.1 Lucas theorem	2 0
2	DP Optimizations 2.1 convex hull trick	3 3 4 4	4.1 center 2 points + radious	16 16 17	6.2 counting	20 20 20
3	Data structures 3.1 STL Treap	5 5	5 Graphs 5.1 SCC kosaraju	18 18	6.6 polynomials	
	3.2 STL order statistics tree II 3.3 STL order statistics tree 3.4 binary index tree	6 6 7	5.2 board	19 20	7 Matrix 7.1 matrix	2 8
	3.5 dsu	7 8 8	5.5 directed mst	20 21 21 22	8 Misc 8.1 Template Java	
	3.9 persistent seg tree	9 10	5.9 minimum path cover in DAG . 5.10 planar graph (euler)	22 22	8.3 fraction	

9	Number theory				
	9.1	convolution	31		
	9.2	crt	32		
	9.3	diophantine equations	32		
	9.4	discrete logarithm	33		
	9.5	ext euclidean	33		
	9.6	highest exponent factorial	33		
	9.7	miller rabin	34		
	9.8	mod integer	34		
	9.9	$\mod \text{inv} \dots \dots \dots$	34		
		$\mod \operatorname{mul} \ldots \ldots \ldots \ldots$	34		
		$\mod pow \ldots \ldots \ldots \ldots \ldots$	35		
	9.12	number theoretic transform	35		
9.13 pollard rho f		pollard rho factorize	35		
		primes	36		
	9.15	totient sieve	37		
	9.16	totient	37		
10	Stri	$_{ m ngs}$	37		
	10.1	Incremental Aho Corasick	37		
		minimal string rotation	38		
	10.3	suffix array	36		
	10.4	suffix automaton	40		
	10.5	z algorithm	40		

1 Algorithms

1.1 Mo's algorithm on trees

```
/**
problems:
    - https://codeforces.com/gym/101161
         problem E
```

```
*/
void flat(vector<vector<edge>> &g,
   vector<int> &a,
   vector<int> &le, vector<int> &ri,
       vector<int> &cost,
   int node, int pi, int &ts, int w) {
  cost[node] = w;
  le[node] = ts;
  a[ts] = node;
  ts++;
  for (auto e : g[node]) {
   if (e.to == pi) continue;
   flat(g, a, le, ri, cost, e.to, node,
       ts, e.w);
  ri[node] = ts;
  a[ts] = node;
  ts++;
 * Case when the cost is in the edges.
 * */
void
   compute_queries(vector<vector<edge>>
   &g) {
  // g is undirected
  int n = g.size();
  lca_tree.init(g, 0);
  vector\langle int \rangle a(2 * n), le(n), ri(n),
     cost(n):
  // a: nodes in the flatten array
```

```
// le: left id of the given node
// ri: right id of the given node
// cost: cost of the edge from the
   node to the parent
int ts = 0; // timestamp
flat(g, a, le, ri, cost, 0, -1, ts, 0);
int q; cin >> q;
vector<query> queries(q);
for (int i = 0; i < q; i++) {</pre>
  int u, v;
  cin >> u >> v;
  u--; v--;
 int lca = lca_tree.query(u, v);
  if (le[u] > le[v])
   swap(u, v);
 queries[i].id = i;
  queries[i].lca = lca;
 queries[i].u = u;
 queries[i].v = v;
  if (lca == u) {
   queries[i].a = le[u] + 1;
   queries[i].b = le[v];
  } else {
   queries[i].a = ri[u];
   queries[i].b = le[v];
solve_mo(queries, a, le, cost); //
   this is the usal algorithm
```

1.2 Mo's algorithm

```
const int MN = 5 * 100000 + 1;
const int SN = 708;
struct Query {
 int a, b, id;
 Query() {}
 Query(int x, int y, int i) : a(x),
     b(y), id(i) {}
 bool operator<(const Query &o) const {</pre>
   if (a / SN != o.a / SN) return a <
       o.a:
   return a / SN & 1 ? b < o.b : b >
       o.b;
 }
};
struct DS {
 DS() : {}
  void Insert(int x) {}
 void Erase(int x) {}
 long long Query() {}
};
Query s[MN];
int ans[MN];
DS active;
int main() {
 int n;
```

```
cin >> n;
vector<int> a(n);
for (auto &i : a) cin >> i;
int q;
cin >> q;
for (int i = 0; i < q; ++i) {</pre>
  int b, e;
  cin >> b >> e;
  b--;
  e--;
  s[i] = Query(b, e, i);
sort(s, s + q);
int i = 0;
int j = -1;
for (int k = 0; k < (int)q; ++k) {
 int L = s[k].a;
 int R = s[k].b;
  while (j < R) active.Insert(a[++j]);</pre>
  while (j > R) active.Erase(a[j--]);
  while (i < L) active.Erase(a[i++]);</pre>
  while (i > L) active.Insert(a[--i]);
  ans[s[k].id] = active.Query();
for (int i = 0; i < q; ++i) {</pre>
 cout << ans[i] << endl;</pre>
return 0;
```

```
};
```

1.3 sliding window

```
* Given an array ARR and an integer K,
    the problem boils down to computing
    for each index i: min(ARR[i],
    ARR[i-1], ..., ARR[i-K+1]).
* if mx == true, returns the maximun.
    http://people.cs.uct.ac.za/~ksmith/article
* */
vector<int>
   sliding_window_minmax(vector<int> &
   ARR, int K, bool mx) {
 deque< pair<int, int> > window;
 vector<int> ans;
 for (int i = 0; i < ARR.size(); i++) {</pre>
   if (mx) {
     while (!window.empty() &&
         window.back().first <= ARR[i])</pre>
       window.pop_back();
   } else {
     while (!window.empty() &&
         window.back().first >= ARR[i])
       window.pop_back();
   window.push_back(make_pair(ARR[i],
       i));
   while(window.front().second <= i - K)</pre>
```

```
window.pop_front();
   ans.push_back(window.front().first);
 return ans;
}
```

DP Optimizations

convex hull trick

```
* Problems:
    http://codeforces.com/problemset/problem/319/Coold insert_line(long long m, long
    http://codeforces.com/contest/311/problem/B
    https://csacademy.com/contest/archive/task/squared-endsprevious
    http://codeforces.com/contest/932/problem/F
 * */
struct line {
 long long m, b;
 line (long long a, long long c):
     m(a), b(c) {}
 long long eval(long long x) {
   return m * x + b;
};
long double inter(line a, line b) {
```

```
long double den = a.m - b.m;
 long double num = b.b - a.b;
 return num / den:
/**
* min m_i * x_j + b_i, for all i.
     x_j \le x_{j+1}
      m_i >= m_{i+1}
* */
struct ordered_cht {
 vector<line> ch;
 int idx; // id of last "best" in query
 ordered cht() {
   idx = 0;
     long b) {
   line cur(m, b);
   // new line's slope is less than all
   while (ch.size() > 1 &&
      (inter(cur, ch[ch.size() - 2]) >=
         inter(cur, ch[ch.size() -
         1]))) {
       // f(x) is better in interval
          [inter(ch.back(), cur), inf)
       ch.pop_back();
   ch.push_back(cur);
```

```
long long eval(long long x) { //
     minimum
   // current x is greater than all the
       previous x,
   // if that is not the case we can
       make binary search.
   idx = min<int>(idx, ch.size() - 1);
   while (idx + 1 < (int)ch.size() &&</pre>
       ch[idx + 1].eval(x) <=
       ch[idx].eval(x))
     idx++;
   return ch[idx].eval(x);
 }
};
* Dynammic convex hull trick
 * */
typedef long long int64;
typedef long double float128;
const int64 is_query = -(1LL<<62), inf =</pre>
   1e18;
struct Line {
 int64 m, b;
 mutable function<const Line*()> succ:
 bool operator<(const Line& rhs) const {</pre>
   if (rhs.b != is_query) return m <</pre>
       rhs.m;
   const Line* s = succ();
   if (!s) return 0;
```

```
int64 x = rhs.m:
   return b - s->b < (s->m - m) * x:
 }
};
struct HullDynamic : public
   multiset<Line> { // will maintain
   upper hull for maximum
 bool bad(iterator y) {
   auto z = next(y);
   if (y == begin()) {
     if (z == end()) return 0;
     return y->m == z->m && y->b <= z->b;
   }
   auto x = prev(y);
   if (z == end()) return y->m == x->m
       \&\& v -> b <= x -> b;
   return (float128)(x->b - y->b)*(z->m
       - y->m) >= (float128)(y->b -
       z->b)*(y->m - x->m);
 }
 void insert_line(int64 m, int64 b) {
   auto y = insert({ m, b });
   y->succ = [=] { return next(y) ==
       end() ? 0 : &*next(v); };
   if (bad(y)) { erase(y); return; }
   while (next(y) != end() &&
       bad(next(y))) erase(next(y));
   while (y != begin() && bad(prev(y)))
       erase(prev(y));
 }
 int64 eval(int64 x) {
   auto 1 = *lower_bound((Line) { x,
       is_query });
```

```
return 1.m * x + 1.b;
};
```

2.2 divide and conquer

```
/**
 * recurrence:
     dp[k][i] = min dp[k-1][j] + c[i][j]
    - 1], for all j > i;
 * "comp" computes dp[k][i] for all i in
    O(n log n) (k is fixed)
 * Problems:
    https://icpc.kattis.com/problems/branch
    http://codeforces.com/contest/321/problem/E * child).
 * */
void comp(int 1, int r, int le, int re) {
  if (1 > r) return:
  int mid = (1 + r) >> 1;
  int best = max(mid + 1, le);
 dp[cur][mid] = dp[cur ^ 1][best] +
     cost(mid, best - 1);
 for (int i = best; i <= re; i++) {</pre>
   if (dp[cur][mid] > dp[cur ^ 1][i] +
       cost(mid, i - 1)) {
     best = i;
```

2.3 dp on trees

```
* This trick is very useful when doing
    DP on trees, basically, you can save
 * the answer for each node as if it was
    the root of the tree. Partial results
 * are also stored in order to query
    subtrees (taking the root and
    exclude some
 * problems:
 * - http://codeforces.com/gym/101161,
    problem I : Sky tax
    http://codeforces.com/contest/791/problem/
 * */
struct edge {
 int to, p_id;
 edge (int a, int b) : to(a), p_id(b) {}
};
```

```
struct state {
 bool seen:
 long long missing;
 long long total;
 vector<long long> partial;
 state() { clear(); }
 void clear() {
   seen = false;
   missing = 0;
   total = 0;
   partial.clear();
 }
};
void add_edge(int u, int v) {
 int id_u_v = g[u].size();
 int id_v_u = g[v].size();
 g[u].emplace_back(v, id_v_u); // id of
     the parent in the child's list
     (g[v][id] \rightarrow u)
 g[v].emplace_back(u, id_u_v); // id of
     the parent in the child's list
     (g[u][id] \rightarrow v)
}
int go(int node, int id_parent) {
 state &s = dp[node];
 if (!s.seen) {
   int ans = 1;
```

```
s.partial.assign(g[node].size(), 0);
     // create the list of partial
     results.
 for (int i = 0; i <</pre>
     int(g[node].size()); i++) {
   int to = g[node][i].to;
   int pid = g[node][i].p_id;
   if (i != id_parent) {
     int tmp = go(to, pid);
     ans += tmp;
     s.partial[i] = tmp;
 }
 s.missing = id_parent;
 s.total = ans;
 s.seen = true;
 return ans:
} else {
 if (s.missing == id_parent) { // the
     same id_parent than before, so we
     can not complete the results yet
   return s.total;
 if (s.missing != -1) { // only one
     missing and is different of
     'id_parent'
   int tmp = go(g[node][s.missing].to,
       g[node][s.missing].p_id);
   s.partial[s.missing] = tmp;
   s.total += tmp;
   s.missing = -1;
```

```
int extra = (id_parent == -1) ? 0 :
    s.partial[id_parent];
return s.total - extra;
}
```

3 Data structures

3.1 STL Treap

```
#include <ext/rope> //header with rope
using namespace std;
using namespace __gnu_cxx; //namespace
   with rope and some additional stuff
int main()
   ios_base::sync_with_stdio(false);
   rope <int> v; //use as usual STL
       container
   int n, m;
   cin >> n >> m:
   for(int i = 1; i <= n; ++i)</pre>
       v.push_back(i); //initialization
   int 1, r;
   for(int i = 0; i < m; ++i)</pre>
       cin >> 1 >> r;
       --1, --r;
       rope <int> cur = v.substr(1, r -
          1 + 1);
       v.erase(1, r - 1 + 1);
```

```
v.insert(v.mutable_begin(), cur);
}
for(rope <int>::iterator it =
    v.mutable_begin(); it !=
    v.mutable_end(); ++it)
    cout << *it << " ";
return 0;</pre>
```

3.2 STL order statistics tree II

```
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef
   tree<int,null_type,less<int>,rb_tree_tag,
tree_order_statistics_node_update>
   order_set;
order_set X;
int get(int y) {
 int l=0,r=1e9+1;
 while(l<r) {</pre>
   int m=l+((r-l)>>1);
   if (m-X.order_of_key(m+1)<y)</pre>
     1=m+1;
   else
     r=m;
 }
```

```
return 1:
main(){
  ios::sync_with_stdio(0);
  cin.tie(0);
  int n,m;
  cin>>n>>m;
  for(int i=0;i<m;i++) {</pre>
    char a;
    int b;
    cin>>a>>b:
    if(a=='L')
      cout<<get(b)<<endl;</pre>
    else
     X.insert(get(b));
}
/***
Input
20 7
L 5
D 5
T. 4
L 5
D 5
T. 4
I. 5
Output
5
4
6
```

```
4
7
***/
```

3.3 STL order statistics tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <bits/stdc++.h>
using namespace __gnu_pbds;
using namespace std;
typedef
tree<
 pair<int,int>,
 null_type,
 less<pair<int,int>>,
 rb_tree_tag,
 tree_order_statistics_node_update>
ordered_set;
main()
   ios::sync_with_stdio(0);
   cin.tie(0);
   int n;
   int sz=0;
   cin>>n;
   vector<int> ans(n,0);
   ordered_set t;
   int x,y;
   for(int i=0;i<n;i++)</pre>
```

```
{
        cin>>x>>y;
        ans[t.order_of_key(\{x,++sz\})]++;
       t.insert({x,sz});
    }
   for(int i=0;i<n;i++)</pre>
        cout<<ans[i]<<'\n';</pre>
}
/***
Input
1 1
5 1
7 1
3 3
5 5
Output
***/
```

3.4 binary index tree

```
struct binary_index_tree {
  int n;
  int t[2 * N];

void add(int where, long long what){
```

3.5 dsu

```
struct Dsu {
  vector<int> p;

Dsu(int n) {
    p.resize(n);
    for (int i = 0; i < n; i++) {
       p[i] = i;
    }
}</pre>
```

3.6 hash table

```
/**
 * Micro hash table, can be used as a
    set.
 * Very efficient vs std::set
 * */
const int MN = 1001;
struct ht {
 int _s[(MN + 10) >> 5];
 int len:
 void set(int id) {
   len++:
   _s[id >> 5] \mid = (1LL << (id & 31));
 bool is_set(int id) {
   return _s[id >> 5] & (1LL << (id &</pre>
       31));
 }
};
```

3.7 heavy light decomposition

```
// Heavy-Light Decomposition
struct TreeDecomposition {
 vector<int> g[MAXN], c[MAXN];
 int s[MAXN]; // subtree size
 int p[MAXN]; // parent id
 int r[MAXN]; // chain root id
 int t[MAXN]; // index used in
     segtree/bit/...
 int d[MAXN]; // depht
 int ts;
 void dfs(int v, int f) {
   p[v] = f;
   s[v] = 1;
   if (f != -1) d[v] = d[f] + 1;
   else d[v] = 0;
   for (int i = 0; i < g[v].size();</pre>
      ++i) {
     int w = g[v][i];
     if (w != f) {
       dfs(w, v);
       s[v] += s[w];
   }
 }
 void hld(int v, int f, int k) {
   t[v] = ts++;
   c[k].push_back(v);
   r[v] = k;
   int x = 0, y = -1;
```

```
for (int i = 0; i < g[v].size();</pre>
     ++i) {
   int w = g[v][i];
   if (w != f) {
     if (s[w] > x) {
       x = s[w]:
       y = w;
  if (y != -1) {
   hld(y, v, k);
 for (int i = 0; i < g[v].size();</pre>
     ++i) {
   int w = g[v][i];
   if (w != f && w != y) {
     hld(w, v, w);
   }
void init(int n) {
 for (int i = 0; i < n; ++i) {</pre>
   g[i].clear();
 }
void add(int a, int b) {
 g[a].push_back(b);
 g[b].push_back(a);
void build() {
```

```
ts = 0;
dfs(0, -1);
hld(0, 0, 0);
}
```

3.8 persistent array

```
struct node {
 node *1, *r;
 int val:
 node (int x) : 1(NULL), r(NULL),
     val(x) {}
 node () : l(NULL), r(NULL), val(-1) {}
};
typedef node* pnode;
pnode update(pnode cur, int 1, int r,
   int at, int what) {
 pnode ans = new node();
 if (cur != NULL) {
   *ans = *cur;
 if (1 == r) {
   ans-> val = what;
   return ans;
 int m = (1 + r) >> 1;
 if (at <= m) ans-> 1 = update(ans-> 1,
     1, m, at, what);
```

3.9 persistent seg tree

```
/**
 * Problems:
 *
   http://codeforces.com/contest/813/problem/E
 *
 * Important:
 * When using lazy propagation
   remembert to create new
 * versions for each push_down
   operation!!!
 * */

struct node {
   node *1, *r;
   long long acc;
   int flip;
```

```
node (int x) : 1(NULL), r(NULL),
     acc(x), flip(0) {}
 node (): 1(NULL), r(NULL), acc(0),
     flip(0) {}
};
typedef node* pnode;
pnode create(int 1, int r) {
  if (1 == r) return new node();
  pnode cur = new node();
  int m = (1 + r) >> 1:
  cur \rightarrow 1 = create(1, m):
  cur -> r = create(m + 1, r);
  return cur;
}
pnode copy_node(pnode cur) {
  pnode ans = new node();
  *ans = *cur;
  return ans;
void push_down(pnode cur, int 1, int r) {
  assert(cur);
  if (cur-> flip) {
   int len = r - l + 1;
   cur-> acc = len - cur-> acc;
   if (cur-> 1) {
     cur-> 1 = copy_node(cur-> 1);
     cur-> 1 -> flip ^= 1;
   if (cur-> r) {
     cur-> r = copy_node(cur-> r);
```

```
cur-> r -> flip ^= 1;
   cur-> flip = 0;
}
int get_val(pnode cur) {
  assert(cur);
 assert((cur-> flip) == 0);
 if (cur) return cur-> acc;
 return 0;
pnode update(pnode cur, int 1, int r,
   int at, int what) {
 pnode ans = copy_node(cur);
 if (1 == r) {
   assert(1 == at):
   ans-> acc = what:
   ans-> flip = 0;
   return ans;
 int m = (1 + r) >> 1;
 push_down(ans, 1, r);
 if (at \le m) ans-> 1 = update(ans-> 1,
     1, m, at, what);
 else ans-> r = update(ans-> r, m + 1,
     r, at, what);
 push_down(ans-> 1, 1, m);
 push_down(ans-> r, m + 1, r);
 ans-> acc = get_val(ans-> 1) +
     get_val(ans-> r);
 return ans;
```

```
pnode flip(pnode cur, int 1, int r, int
   a, int b) {
 pnode ans = new node();
 if (cur != NULL) {
   *ans = *cur;
 if (1 > b || r < a)
   return ans;
 if (1 >= a \&\& r <= b) {
   ans-> flip ^= 1:
   push_down(ans, 1, r);
   return ans:
 int m = (1 + r) >> 1:
 ans-> 1 = flip(ans-> 1, 1, m, a, b);
 ans-> r = flip(ans-> r, m + 1, r, a,
     b);
 push_down(ans-> 1, 1, m);
 push_down(ans-> r, m + 1, r);
 ans-> acc = get_val(ans-> 1) +
     get_val(ans-> r);
 return ans;
}
long long get_all(pnode cur, int 1, int
   r) {
 assert(cur):
 push_down(cur, 1, r);
 return cur-> acc;
```

3.10 persistent trie

```
// both tries can be tested with the
   problem:
   http://codeforces.com/problemset/problem/916/D
// Persistent binary trie (BST for
   integers)
const int MD = 31;
struct node_bin {
 node_bin *child[2];
  int val;
  node_bin() : val(0) {
   child[0] = child[1] = NULL;
};
typedef node_bin* pnode_bin;
pnode_bin copy_node(pnode_bin cur) {
```

```
pnode_bin ans = new node_bin();
 if (cur) *ans = *cur:
 return ans:
pnode_bin modify(pnode_bin cur, int key,
   int inc, int id = MD) {
 pnode_bin ans = copy_node(cur);
  ans->val += inc;
 if (id >= 0) {
   int to = (key >> id) & 1;
   ans->child[to] =
      modify(ans->child[to], key, inc,
      id - 1):
 }
 return ans;
int sum_smaller(pnode_bin cur, int key,
   int id = MD) {
 if (cur == NULL) return 0;
 if (id < 0) return 0; // strictly</pre>
     smaller
 // if (id == - 1) return cur->val; //
     smaller or equal
 int ans = 0:
 int to = (key >> id) & 1;
 if (to) {
   if (cur->child[0]) ans +=
       cur->child[0]->val:
   ans += sum_smaller(cur->child[1],
      key, id -1);
 } else {
```

```
ans = sum_smaller(cur->child[0],
       key, id - 1);
 }
 return ans;
// Persistent trie for strings.
const int MAX_CHILD = 26;
struct node {
 node *child[MAX_CHILD];
 int val;
 node() : val(-1) {
   for (int i = 0; i < MAX_CHILD; i++) {</pre>
     child[i] = NULL;
   }
 }
}:
typedef node* pnode;
pnode copy_node(pnode cur) {
 pnode ans = new node();
 if (cur) *ans = *cur;
 return ans;
pnode set_val(pnode cur, string &key,
   int val, int id = 0) {
 pnode ans = copy_node(cur);
 if (id >= int(key.size())) {
   ans->val = val:
 } else {
   int t = kev[id] - 'a';
```

```
ans->child[t] =
    set_val(ans->child[t], key, val,
    id + 1);
}
return ans;
}

pnode get(pnode cur, string &key, int id
    = 0) {
    if (id >= int(key.size()) || !cur)
        return cur;
    int t = key[id] - 'a';
    return get(cur->child[t], key, id + 1);
}
```

3.11 segment tree

```
/**
 * Taken from:
    http://codeforces.com/blog/entry/18051
 * */

const int MN = 1e5; // limit for array
    size

struct seg_tree {
    int n; // array size
    int t[2 * MN];

    seg_tree(int _n) : n(_n) {}

    void clear() {
        memset(t, 0, sizeof t);
    }
}
```

```
void build() { // build the tree
   for (int i = n - 1; i > 0; --i) t[i]
       = t[i << 1] + t[i << 1|1];
 }
 // Single modification, range query.
  void modify(int p, int value) { // set
     value at position p
   for (t[p += n] = value; p > 1; p >>=
       1) t[p>>1] = t[p] + t[p^1];
 }
 int query(int 1, int r) { // sum on
     interval [1, r)
   int res = 0:
   for (1 += n, r += n; 1 < r; 1 >>= 1,
       r >>= 1) {
     if (1&1) res += t[1++]:
     if (r&1) res += t[--r]:
   }
   return res;
};
// Range modification, single query.
void modify(int 1, int r, int value) {
 for (1 += n, r += n; 1 < r; 1 >>= 1, r
     >>= 1) {
   if (1&1) t[1++] += value:
   if (r\&1) t[--r] += value:
 }
}
```

```
int query(int p) {
 int res = 0:
 for (p += n; p > 0; p >>= 1) res +=
     t[p];
 return res;
/**
 * If at some point after modifications
    we need to inspect all the
 * elements in the array, we can push
    all the modifications to the
 * leaves using the following code.
    After that we can just traverse
 * elements starting with index n. This
    way we reduce the complexity
 * from O(n \log(n)) to O(n) similarly to
    using build instead of n
    modifications.
 * */
void push() {
 for (int i = 1; i < n; ++i) {
   t[i<<1] += t[i];
   t[i<<1|1] += t[i];
   t[i] = 0;
 }
}
// Non commutative combiner functions.
void modify(int p, const S& value) {
 for (t[p += n] = value; p >>= 1; )
     t[p] = combine(t[p<<1], t[p<<1|1]);
}
```

```
S query(int 1, int r) {
  S resl, resr;
 for (1 += n, r += n; 1 < r; 1 >>= 1, r
     >>= 1) {
   if (1&1) resl = combine(resl,
       t[1++]);
   if (r&1) resr = combine(t[--r],
       resr);
 return combine(resl, resr);
 * segment tree for intervals
 * */
const int MN = 100000 + 100;
struct seg_tree {
 int val[MN * 4 + 4];
 int pending [MN * 4 + 4];
 seg_tree() {
   memset(val, -1, sizeof val);
   memset(pending, -1, sizeof pending);
 void propagate(int node, int b, int e)
     {
   if (pending[node] != -1) {
     val[node] = pending[node];
     if (b < e) {
```

```
pending[node << 1] =</pre>
         pending[node];
     pending[node << 1 | 1] =</pre>
         pending[node];
   pending[node] = -1;
}
void set(int node, int b, int e, int
   from, int to, int v) {
 if (b > to || e < from) return;</pre>
  if (b >= from && e <= to) {</pre>
   pending[node] = v;
   propagate(node, b, e);
   return;
  int mid = (b + e) \gg 1;
 set(node << 1, b, mid, from, to, v);</pre>
 set(node << 1 | 1, mid + 1, e, from,
     to, v);
}
int query(int node, int b, int e, int
   pos) {
 propagate(node, b, e);
 if (b == e && b == pos) {
   return val[node];
```

3.12 sparse table

```
// RMQ.
const int MN = 100000 + 10; // Max
   number of elements
const int ML = 18; // ceil(log2(MN));
struct st {
  int data[MN];
  int M[MN][ML];
  int n;

void init(const vector<int> &d) {
  n = d.size();
  for (int i = 0; i < n; ++i)</pre>
```

```
data[i] = d[i];
   build();
  void build() {
   for (int i = 0; i < n; ++i)</pre>
     M[i][0] = data[i];
   for (int j = 1, p = 2, q = 1; p <=
       n; ++j, p <<= 1, q <<= 1)
     for (int i = 0; i + p - 1 < n; ++i)
       M[i][j] = max(M[i][j - 1], M[i +
           q][i - 1]);
  }
 int query(int b, int e) {
   int k = log2(e - b + 1);
   return max(M[b][k], M[e + 1 -
       (1 << k)][k];
};
```

3.13 splay tree

```
};
struct splay_tree{
 node *root:
 void right_rot(node *x) {
   node *p = x->parent;
   if (x->parent = p->parent) {
     if (x->parent->left == p)
         x->parent->left = x;
     if (x->parent->right == p)
         x->parent->right = x;
   if (p->left = x->right)
       p->left->parent = p;
   x->right = p;
   p->parent = x;
  void left_rot(node *x) {
   node *p = x->parent;
   if (x->parent = p->parent) {
     if (x->parent->left == p)
         x->parent->left = x;
     if (x->parent->right == p)
         x->parent->right = x;
   if (p->right = x->left)
       p->right->parent = p;
   x \rightarrow left = p;
   p->parent = x;
```

```
void splay(node *x, node *fa = 0) {
 while( x->parent != fa and x->parent
     != 0) {
   node *p = x->parent;
   if (p->parent == fa)
     if (p->right == x)
       left_rot(x);
     else
       right_rot(x);
    else {
     node *gp = p->parent; //grand
         parent
     if (gp->left == p)
       if (p->left == x)
         right_rot(x), right_rot(x);
       else
         left_rot(x),right_rot(x);
     else
       if (p->left == x)
         right_rot(x), left_rot(x);
       else
         left_rot(x), left_rot(x);
   }
 if (fa == 0) root = x;
}
void insert(T key) {
  node *cur = root;
 node *pcur = 0;
  while (cur) {
   pcur = cur;
   if (key > cur->key) cur =
       cur->right;
```

```
else cur = cur->left;
    cur = new node(key);
   cur->parent = pcur;
   if (!pcur) root = cur;
   else if (key > pcur->key )
       pcur->right = cur;
   else pcur->left = cur;
   splay(cur);
 node *find(T key) {
   node *cur = root:
   while (cur) {
     if (key > cur->key) cur =
         cur->right;
     else if(key < cur->key) cur =
         cur->left:
     else return cur;
   return 0;
 splay_tree(){ root = 0;};
};
```

3.14 trie

```
const int MN = 26; // size of alphabet
const int MS = 100010; // Number of
    states.

struct trie{
    struct node{
```

```
int c;
 int a[MN];
};
node tree[MS];
int nodes:
void clear(){
 tree[nodes].c = 0;
 memset(tree[nodes].a, -1, sizeof
     tree[nodes].a);
 nodes++;
}
void init(){
 nodes = 0;
 clear();
int add(const string &s, bool query =
   0){
 int cur_node = 0;
 for(int i = 0; i < s.size(); ++i){</pre>
   int id = gid(s[i]);
   if(tree[cur_node].a[id] == -1){
     if(query) return 0;
     tree[cur_node].a[id] = nodes;
     clear();
   cur_node = tree[cur_node].a[id];
  if(!query) tree[cur_node].c++;
 return tree[cur_node].c;
```

};

3.15 wavelet tree

```
// this can be tested in the problem:
   http://www.spoj.com/problems/ILKQUERY/
struct wavelet {
 vector<int> values, ori;
 vector<int> map_left, map_right;
 int 1, r, m;
 wavelet *left, *right;
 wavelet() : left(NULL), right(NULL) {}
 wavelet(int a, int b, int c) : l(a),
     r(b), m(c), left(NULL), right(NULL)
};
wavelet *init(vector<int> &data,
   vector<int> &ind, int lo, int hi) {
 if (lo > hi || (data.size() == 0))
     return NULL:
 int mid = ((long long)(lo) + hi) / 2;
 if (lo + 1 == hi) mid = lo; // handle
     negative values
 wavelet *node = new wavelet(lo, hi,
     mid);
 vector<int> data_1, data_r, ind_1,
     ind_r;
 int ls = 0, rs = 0;
 for (int i = 0; i < int(data.size());</pre>
     i++) {
```

```
int value = data[i];
   if (value <= mid) {</pre>
     data_l.emplace_back(value);
     ind_l.emplace_back(ind[i]);
     ls++;
   } else {
     data_r.emplace_back(value);
     ind_r.emplace_back(ind[i]);
     rs++;
   node->map_left.emplace_back(ls);
   node->map_right.emplace_back(rs);
   node->values.emplace_back(value);
   node->ori.emplace_back(ind[i]);
  if (lo < hi) {</pre>
   node->left = init(data_1, ind_1, lo,
       mid):
   node->right = init(data_r, ind_r,
       mid + 1, hi);
 return node;
}
int kth(wavelet *node, int to, int k) {
  // returns the kth element in the
     sorted version of (a[0], ..., a[to])
  if (node->1 == node->r) return node->m;
  int c = node->map_left[to];
  if (k < c)
   return kth(node->left, c - 1, k);
 return kth(node->right,
     node->map_right[to] - 1, k - c);
```

```
int pos_kth_ocurrence(wavelet *node, int
   val, int k) {
 // returns the position on the
     original array of the kth ocurrence
     of the value "val"
 if (!node) return -1:
 if (node->l == node->r) {
   if (int(node->ori.size()) <= k)</pre>
     return -1;
   return node->ori[k];
 }
 if (val <= node->m)
   return pos_kth_ocurrence(node->left,
       val, k);
 return pos_kth_ocurrence(node->right,
     val. k):
```

4 Geometry

4.1 center 2 points + radious

```
vector<point> find_center(point a, point
   b, long double r) {
  point d = (a - b) * 0.5;
  if (d.dot(d) > r * r) {
    return vector<point> ();
  }
  point e = b + d;
```

4.2 closest pair problem

```
struct point {
 double x, y;
 int id;
 point() {}
 point (double a, double b) : x(a),
     y(b) {}
};
double dist(const point &o, const point
   %p) {
 double a = p.x - o.x, b = p.y - o.y;
 return sqrt(a * a + b * b);
double cp(vector<point> &p,
   vector<point> &x, vector<point> &y) {
 if (p.size() < 4) {</pre>
   double best = 1e100;
   for (int i = 0; i < p.size(); ++i)</pre>
```

```
for (int j = i + 1; j < p.size();</pre>
       ++j)
     best = min(best, dist(p[i],
         p[i]);
 return best;
int ls = (p.size() + 1) >> 1;
double l = (p[ls - 1].x + p[ls].x) *
   0.5;
vector<point> xl(ls), xr(p.size() -
   ls):
unordered set<int> left:
for (int i = 0; i < ls; ++i) {</pre>
 xl[i] = x[i];
 left.insert(x[i].id);
for (int i = ls; i < p.size(); ++i) {</pre>
 xr[i - ls] = x[i];
vector<point> yl, yr;
vector<point> pl, pr;
yl.reserve(ls); yr.reserve(p.size() -
pl.reserve(ls); pr.reserve(p.size() -
   ls):
for (int i = 0; i < p.size(); ++i) {</pre>
 if (left.count(y[i].id))
   yl.push_back(y[i]);
  else
   yr.push_back(y[i]);
 if (left.count(p[i].id))
   pl.push_back(p[i]);
```

```
else
     pr.push_back(p[i]);
 }
 double dl = cp(pl, xl, yl);
 double dr = cp(pr, xr, yr);
 double d = min(dl, dr);
 vector<point> yp; yp.reserve(p.size());
 for (int i = 0; i < p.size(); ++i) {</pre>
   if (fabs(y[i].x - 1) < d)
     yp.push_back(y[i]);
 for (int i = 0; i < yp.size(); ++i) {</pre>
   for (int j = i + 1; j < yp.size() &&</pre>
       j < i + 7; ++j) {
     d = min(d, dist(yp[i], yp[j]));
   }
 }
 return d:
}
double closest_pair(vector<point> &p) {
 vector<point> x(p.begin(), p.end());
 sort(x.begin(), x.end(), [](const
     point &a, const point &b) {
   return a.x < b.x;</pre>
 }):
 vector<point> y(p.begin(), p.end());
 sort(y.begin(), y.end(), [](const
     point &a, const point &b) {
   return a.y < b.y;</pre>
 }):
 return cp(p, x, y);
```

4.3 squares

```
typedef long double ld;
const ld eps = 1e-12;
int cmp(ld x, ld y = 0, ld tol = eps) {
   return ( x \le y + tol) ? (x + tol \le
       y) ? -1 : 0 : 1;
}
struct point{
 ld x, y;
 point(ld a, ld b) : x(a), y(b) {}
 point() {}
};
struct square{
 ld x1, x2, y1, y2,
    a, b, c;
 point edges[4];
 square(ld _a, ld _b, ld _c) {
   a = _a, b = _b, c = _c;
   x1 = a - c * 0.5;
   x2 = a + c * 0.5:
   y1 = b - c * 0.5;
   y2 = b + c * 0.5;
   edges[0] = point(x1, y1);
   edges[1] = point(x2, y1);
   edges[2] = point(x2, y2);
   edges[3] = point(x1, y2);
};
ld min_dist(point &a, point &b) {
```

```
1d x = a.x - b.x.
    y = a.y - b.y;
 return sqrt(x * x + y * y);
bool point_in_box(square s1, point p) {
 if (cmp(s1.x1, p.x) != 1 && cmp(s1.x2,
     p.x) != -1 \&\&
     cmp(s1.y1, p.y) != 1 && cmp(s1.y2,
        p.y) != -1)
   return true;
  return false;
}
bool inside(square &s1, square &s2) {
 for (int i = 0; i < 4; ++i)
   if (point_in_box(s2, s1.edges[i]))
     return true:
 return false;
bool inside_vert(square &s1, square &s2)
 if ((cmp(s1.y1, s2.y1) != -1 &&
     cmp(s1.y1, s2.y2) != 1) ||
     (cmp(s1.y2, s2.y1) != -1 \&\&
         cmp(s1.y2, s2.y2) != 1))
   return true;
return false:
}
bool inside_hori(square &s1, square &s2)
   {
```

```
if ((cmp(s1.x1, s2.x1) != -1 \&\&
     cmp(s1.x1, s2.x2) != 1) ||
     (cmp(s1.x2, s2.x1) != -1 \&\&
         cmp(s1.x2, s2.x2) != 1))
   return true:
return false:
}
ld min_dist(square &s1, square &s2) {
 if (inside(s1, s2) || inside(s2, s1))
   return 0;
 1d ans = 1e100:
 for (int i = 0; i < 4; ++i)</pre>
   for (int j = 0; j < 4; ++j)
     ans = min(ans,
        min_dist(s1.edges[i],
         s2.edges[j]));
 if (inside_hori(s1, s2) ||
     inside_hori(s2, s1)) {
   if (cmp(s1.y1, s2.y2) != -1)
     ans = min(ans, s1.y1 - s2.y2);
   else
   if (cmp(s2.y1, s1.y2) != -1)
     ans = min(ans, s2.y1 - s1.y2);
 }
 if (inside_vert(s1, s2) ||
     inside_vert(s2, s1)) {
   if (cmp(s1.x1, s2.x2) != -1)
     ans = min(ans, s1.x1 - s2.x2);
   else
   if (cmp(s2.x1, s1.x2) != -1)
```

```
ans = min(ans, s2.x1 - s1.x2);
}
return ans;
}
```

4.4 triangles

Let a, b, c be length of the three sides of a triangle.

$$p = (a + b + c) * 0.5$$

The inradius is defined by:

$$iR = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

The radius of its circumcircle is given by the formula:

$$cR = \frac{abc}{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}$$

5 Graphs

5.1 SCC kosaraju

```
struct SCC {
  vector<vector<int> > g, gr;
  vector<bool> used;
  vector<int> order, component;
  int total_components;
```

```
SCC(vector<vector<int> > &adj) {
 g = adj;
 int n = g.size();
 gr.resize(n);
 for (int i = 0; i < n; i++)</pre>
   for (auto to : g[i])
     gr[to].push_back(i);
 used.assign(n, false);
 for (int i = 0; i < n; i++)</pre>
   if (!used[i])
     GenTime(i):
 used.assign(n, false);
  component.assign(n, -1);
 total_components = 0;
 for (int i = n - 1; i >= 0; i--) {
   int v = order[i]:
   if (!used[v]) {
     vector<int> cur_component;
     Dfs(cur_component, v);
     for (auto node : cur_component)
       component[node] =
           total_components;
     total_components++;
void GenTime(int node) {
  used[node] = true:
 for (auto to : g[node])
   if (!used[to])
     GenTime(to);
```

```
order.push_back(node);
  void Dfs(vector<int> &cur, int node) {
   used[node] = true;
   cur.push_back(node);
   for (auto to : gr[node])
     if (!used[to])
       Dfs(cur, to);
 }
 vector<vector<int>> CondensedGraph() {
   vector<vector<int>>
       ans(total_components);
   for (int i = 0; i < int(g.size());</pre>
       i++) {
     for (int to : g[i]) {
       int u = component[i], v =
           component[to];
       if (u != v)
         ans[u].push_back(v);
   return ans;
};
```

5.2 board

```
struct board {
  int n, m, r;
  board(int a, int b, int c = 1) : n(a),
      m(b), r(c) {}
```

```
long long frec(int x, int y) {
    // returns how many squares of r x r
        contain the cell (x, y)
    long long a = min(x, n - r) - max(x
        - r + 1, 0) + 1;
    long long b = min(y, m - r) - max(y
        - r + 1, 0) + 1;
    return a * b;
}

bool valid(int x, int y) {
    return x >= 0 && x < n && y >= 0 &&
        y < m;
}
};</pre>
```

5.3 bridges

```
struct Graph {
  vector<vector<Edge>> g;
  vector<int> vi, low, d, pi, is_b;
  int bridges_computed;

int ticks, edges;

Graph(int n, int m) {
  g.assign(n, vector<Edge>());
  is_b.assign(m, 0);
  vi.resize(n);
  low.resize(n);
  d.resize(n);
  pi.resize(n);
  edges = 0;
  bridges_computed = 0;
```

```
}
void AddEdge(int u, int v) {
 g[u].push_back(Edge(v, edges));
 g[v].push_back(Edge(u, edges));
  edges++;
void Dfs(int u) {
 vi[u] = true;
 d[u] = low[u] = ticks++;
 for (int i = 0; i <</pre>
     (int)g[u].size(); ++i) {
   int v = g[u][i].to;
   if (v == pi[u]) continue;
   if (!vi[v]) {
     pi[v] = u;
     Dfs(v):
     if (d[u] < low[v])</pre>
         is_b[g[u][i].id] = true;
     low[u] = min(low[u], low[v]);
   } else {
     low[u] = min(low[u], d[v]);
 }
}
// Multiple edges from a to b are not
   allowed.
// (they could be detected as a
   bridge).
// If you need to handle this, just
   count
```

```
// how many edges there are from a to
  void CompBridges() {
   fill(pi.begin(), pi.end(), -1);
   fill(vi.begin(), vi.end(), 0);
   fill(low.begin(), low.end(), 0);
   fill(d.begin(), d.end(), 0);
   ticks = 0;
   for (int i = 0; i < (int)g.size();</pre>
       ++i)
     if (!vi[i]) Dfs(i);
   bridges_computed = true;
 }
 map<int, vector<Edge>> BridgesTree() {
   if (!bridges_computed) CompBridges();
   int n = g.size();
   Dsu dsu(g.size());
   for (int i = 0; i < n; i++)</pre>
     for (auto e : g[i])
       if (!is_b[e.id]) dsu.Join(i,
           e.to);
   map<int, vector<Edge>> tree;
   for (int i = 0; i < n; i++)</pre>
     for (auto e : g[i])
       if (is_b[e.id])
         tree[dsu.Find(i)].emplace_back(dsu.Fin
             e.id);
   return tree;
};
```

5.4 dijkstra

```
struct edge {
 int to:
 long long w;
 edge () {}
 edge (int a, long long b) : to(a),
     w(b) {}
 bool operator < (const edge &o) const {</pre>
   return w > o.w;
 }
}:
typedef vector<vector<edge>> graph;
const long long inf = 1000000LL *
   1000000LL;
pair<vector<int>, vector<long long>>
   dijkstra(graph &g, int start) {
 int n = g.size();
 vector<long long> d(n, inf);
 vector<int> p(n, -1);
 d[start] = 0;
 priority_queue<edge> q;
 q.push(edge(start, 0));
  while (!q.empty()) {
   int node = q.top().to;
   long long dist = q.top().w;
   q.pop();
   if (dist > d[node]) continue;
```

5.5 directed mst

```
const int inf = 1000000 + 10;

struct edge {
  int u, v, w;
  edge() {}
  edge(int a,int b,int c) : u(a), v(b),
      w(c) {}
};

/**

* Computes the minimum spanning tree
  for a directed graph

* - edges : Graph description in the
  form of list of edges.

* each edge is: From node u to node v
  with cost w
```

```
* - root : Id of the node to start the
    DMST.
* - n : Number of nodes in the graph.
* */
int dmst(vector<edge> &edges, int root,
   int n) {
 int ans = 0;
 int cur_nodes = n;
 while (true) {
   vector<int> lo(cur_nodes, inf),
       pi(cur_nodes, inf);
   for (int i = 0; i < edges.size();</pre>
       ++i) {
     int u = edges[i].u, v = edges[i].v,
         w = edges[i].w;
     if (w < lo[v] and u != v) {</pre>
      lo[v] = w:
       pi[v] = u;
   lo[root] = 0;
   for (int i = 0; i < lo.size(); ++i) {</pre>
     if (i == root) continue;
     if (lo[i] == inf) return -1;
   int cur_id = 0;
   vector<int> id(cur_nodes, -1),
      mark(cur_nodes, -1);
   for (int i = 0; i < cur_nodes; ++i) {</pre>
     ans += lo[i]:
     int u = i:
     while (u != root and id[u] < 0 and
         mark[u] != i) {
```

```
mark[u] = i;
     u = pi[u];
    if (u != root and id[u] < 0) { //</pre>
       Cycle
      for (int v = pi[u]; v != u; v =
          pi[v])
        id[v] = cur_id;
      id[u] = cur_id++;
   }
  }
  if (cur id == 0)
    break:
 for (int i = 0; i < cur_nodes; ++i)</pre>
   if (id[i] < 0) id[i] = cur_id++;</pre>
 for (int i = 0; i < edges.size();</pre>
     ++i) {
   int u = edges[i].u, v = edges[i].v,
       w = edges[i].w;
    edges[i].u = id[u];
   edges[i].v = id[v];
   if (id[u] != id[v])
      edges[i].w -= lo[v];
  }
 cur_nodes = cur_id;
  root = id[root];
}
return ans;
```

5.6 eulerian path

```
// Taken from
   https://github.com/lbv/pc-code/blob/master/code/grakarp,min mean cycle
// Eulerian Trail
struct Euler {
 ELV adj; IV t;
 Euler(ELV Adj) : adj(Adj) {}
 void build(int u) {
   while(! adj[u].empty()) {
     int v = adj[u].front().v;
     adj[u].erase(adj[u].begin());
     build(v):
   t.push_back(u);
};
bool eulerian_trail(IV &trail) {
 Euler e(adj);
 int odd = 0, s = 0;
    for (int v = 0; v < n; v++) {
    int diff = abs(in[v] - out[v]);
    if (diff > 1) return false:
    if (diff == 1) {
    if (++odd > 2) return false;
    if (out[v] > in[v]) start = v;
    }
    */
 e.build(s);
 reverse(e.t.begin(), e.t.end());
 trail = e.t;
 return true;
```

```
/**
 * Finds the min mean cycle, if you need
    the max mean cycle
 * just add all the edges with negative
    cost and print
 * ans * -1
 * test: uva, 11090 - Going in Cycle!!
 * */
const int MN = 1000;
struct edge{
 int v;
 long long w;
 edge(){} edge(int v, int w) : v(v),
     W(w) {}
};
long long d[MN][MN];
// This is a copy of g because
   increments the size
// pass as reference if this does not
   matter.
int karp(vector<vector<edge> > g) {
 int n = g.size();
 g.resize(n + 1); // this is important
 for (int i = 0; i < n; ++i)</pre>
   if (!g[i].empty())
```

```
g[n].push_back(edge(i,0));
++n;
for(int i = 0; i < n; ++i)
  fill(d[i],d[i]+(n+1),INT_MAX);
d[n - 1][0] = 0;
for (int k = 1; k \le n; ++k) for (int
   u = 0; u < n; ++u) {
 if (d[u][k - 1] == INT_MAX) continue;
 for (int i = g[u].size() - 1; i >=
     0: --i)
   d[g[u][i].v][k] =
       min(d[g[u][i].v][k], d[u][k -
       1] + g[u][i].w;
}
bool flag = true;
for (int i = 0; i < n && flag; ++i)</pre>
  if (d[i][n] != INT_MAX)
   flag = false;
if (flag) {
  return true; // return true if there
     is no a cycle.
}
double ans = 1e15:
for (int u = 0; u + 1 < n; ++u) {
  if (d[u][n] == INT_MAX) continue;
  double W = -1e15;
```

5.8 konig's theorem

In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover

5.9 minimum path cover in DAG

Given a directed acyclic graph G = (V, E), we are to find the minimum number of vertex-disjoint paths to cover each vertex in V.

We can construct a bipartite graph $G' = (Vout \cup Vin, E')$ from G, where :

```
Vout = \{v \in V : v \text{ has positive out} - degree\}
Vin = \{v \in V : v \text{ has positive in} - degree\}
```

$$E' = \{(u, v) \in Vout \times Vin : (u, v) \in E\}$$

Then it can be shown, via König's theorem, that G' has a matching of size m if and only if there exists n-m vertex-disjoint paths that cover each vertex in G, where n is the number of vertices in G and m is the maximum cardinality bipartite mathching in G'.

Therefore, the problem can be solved by finding the maximum cardinality matching in G' instead.

NOTE: If the paths are note necessarily disjoints, find the transitive closure and solve the problem for disjoint paths.

5.10 planar graph (euler)

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then:

$$f + v = e + 2$$

It can be extended to non connected planar graphs with c connected components:

$$f + v = e + c + 1$$

5.11 query with lca

```
struct lowest_ca {
 int T[MN], L[MN], W[MN];
 int P[MN][ML], MI[MN][ML], MA[MN][ML];
 void dfs(vector<vector<edge> > &g, int
     root, int pi = -1) {
   if (pi == -1) {
    L[root] = W[root] = 0;
     T[root] = -1:
   for (int i = 0; i <</pre>
       (int)g[root].size(); ++i) {
     int to = g[root][i].v;
     if (to != pi) {
       T[to] = root;
       W[to] = g[root][i].w;
       L[to] = L[root] + 1;
       dfs(g, to, root);
     }
   }
 }
 void init(vector<vector<edge> > &g,
     int root) {
   // g is undirected
   dfs(g, root);
   int N = g.size(), i, j;
   for (i = 0; i < N; i++) {</pre>
     for (j = 0; 1 << j < N; j++) {
       P[i][j] = -1;
       MI[i][j] = inf;
     }
```

```
}
 for (i = 0; i < N; i++) {</pre>
   P[i][0] = T[i];
   MI[i][0] = W[i];
 }
 for (j = 1; 1 << j < N; j++)
   for (i = 0; i < N; i++)</pre>
     if (P[i][j - 1] != -1) {
       P[i][j] = P[P[i][j-1]][j-1];
       MI[i][j] = min(MI[i][j-1], MI[
          P[i][j-1]][j-1]);
     }
}
int query(int p, int q) {
 int tmp, log, i;
  int mmin = inf;
 if (L[p] < L[q])
   tmp = p, p = q, q = tmp;
 for (log = 1; 1 << log <= L[p];</pre>
     log++);
 log--;
 for (i = log; i >= 0; i--)
   if (L[p] - (1 << i) >= L[q]) {
     mmin = min(mmin, MI[p][i]);
     p = P[p][i];
  if (p == q)
   // return p;
```

```
return mmin:
 for (i = log; i >= 0; i--)
   if (P[p][i] != -1 && P[p][i] !=
       P[q][i]) {
     mmin = min(mmin, min(MI[p][i],
         MI[q][i]));
     p = P[p][i], q = P[q][i];
 // return T[p];
 return min(mmin, min(MI[p][0],
     MI[q][0]));
}
int get_child(int p, int q) { // p is
   ancestor of q
 if (p == q) return -1;
  int i, log;
 for (log = 1; 1 << log <= L[q];</pre>
     log++) {}
  log--;
 for (i = log; i >= 0; i--)
   if (L[q] - (1 << i) > L[p]) {
     q = P[q][i];
 assert(P[q][0] == p);
 return q;
int is_ancestor(int p, int q) {
 if (L[p] >= L[q])
```

```
return false;
int dist = L[q] - L[p];
int cur = q;
int step = 0;
while (dist) {
   if (dist & 1)
      cur = P[cur][step];
   step++;
   dist >>= 1;
}
return cur == p;
}
};
```

5.12 tarjan scc

```
const int MN = 20002;
struct tarjan_scc {
  int scc[MN], low[MN], d[MN],
      stacked[MN];
  int ticks, current_scc;
  deque<int> s; // used as stack.

tarjan_scc() {}

void init () {
  memset(scc, -1, sizeof scc);
  memset(d, -1, sizeof d);
  memset(stacked, 0, sizeof stacked);
  s.clear();
```

```
ticks = current_scc = 0;
 void compute(vector<vector<int> > &g,
     int u) {
   d[u] = low[u] = ticks++;
   s.push_back(u);
   stacked[u] = true;
   for (int i = 0; i < g[u].size();</pre>
       ++i) {
     int v = g[u][i];
     if (d[v] == -1)
       compute(g, v);
     if (stacked[v]) {
       low[u] = min(low[u], low[v]);
   }
   if (d[u] == low[u]) { // root
     int v;
     do {
       v = s.back();s.pop_back();
       stacked[v] = false;
       scc[v] = current_scc;
     } while (u != v);
     current_scc++;
   }
};
```

5.13 two sat (with kosaraju)

```
/**
```

```
* Given a set of clauses (a1 v a2)^(a2
    v a3)....
 * this algorithm find a solution to it
    set of clauses.
 * test:
    http://lightoj.com/volume_showproblem.php?
 **/
#include<bits/stdc++.h>
using namespace std;
#define MAX 100000
#define endl '\n'
vector<int> G[MAX];
vector<int> GT[MAX]:
vector<int> Ftime;
vector<vector<int> > SCC;
bool visited[MAX];
int n;
void dfs1(int n){
 visited[n] = 1;
 for (int i = 0; i < G[n].size(); ++i) {</pre>
   int curr = G[n][i];
   if (visited[curr]) continue;
   dfs1(curr):
 Ftime.push_back(n);
void dfs2(int n, vector<int> &scc) {
  visited[n] = 1;
```

```
scc.push_back(n);
 for (int i = 0;i < GT[n].size(); ++i) {</pre>
   int curr = GT[n][i];
   if (visited[curr]) continue;
   dfs2(curr, scc);
 }
}
void kosaraju() {
 memset(visited, 0, sizeof visited);
 for (int i = 0; i < 2 * n; ++i) {</pre>
   if (!visited[i]) dfs1(i):
 }
 memset(visited, 0, sizeof visited);
 for (int i = Ftime.size() - 1; i >= 0;
     i--) {
   if (visited[Ftime[i]]) continue;
   vector<int> _scc;
   dfs2(Ftime[i],_scc);
   SCC.push_back(_scc);
}
/**
 * After having the SCC, we must
    traverse each scc, if in one SCC are
    -b y b, there is not a solution.
 * Otherwise we build a solution, making
    the first "node" that we find truth
    and its complement false.
**/
```

```
bool two sat(vector<int> &val) {
 kosaraju();
 for (int i = 0; i < SCC.size(); ++i) {</pre>
   vector<bool> tmpvisited(2 * n,
       false);
   for (int j = 0; j < SCC[i].size();</pre>
       ++j) {
     if (tmpvisited[SCC[i][j] ^ 1])
         return 0;
     if (val[SCC[i][j]] != -1) continue;
     else {
       val[SCC[i][j]] = 0;
       val[SCC[i][j] ^ 1] = 1;
     tmpvisited[SCC[i][j]] = 1;
 return 1;
// Example of use
int main() {
  int m, u, v, nc = 0, t; cin >> t;
 // n = "nodes" number, m = clauses
     number
  while (t--) {
   cin >> m >> n;
   Ftime.clear();
   SCC.clear();
   for (int i = 0; i < 2 * n; ++i) {</pre>
```

```
G[i].clear();
 GT[i].clear():
// (a1 v a2) = (a1 -> a2) = (a2 ->
   a1)
for (int i = 0; i < m; ++i) {</pre>
  cin >> u >> v;
  int t1 = abs(u) - 1;
  int t2 = abs(v) - 1;
  int p = t1 * 2 + ((u < 0)? 1 : 0);
  int q = t2 * 2 + ((v < 0)? 1 : 0);
 G[p ^ 1].push_back(q);
 G[q ^ 1].push_back(p);
  GT[p].push_back(q ^ 1);
 GT[q].push_back(p ^ 1);
vector<int> val(2 * n, -1);
cout << "Case " << ++nc <<": ";
if (two_sat(val)) {
  cout << "Yes" << endl;</pre>
 vector<int> sol;
  for (int i = 0; i < 2 * n; ++i)
   if (i % 2 == 0 and val[i] == 1)
     sol.push_back(i / 2 + 1);
  cout << sol.size();</pre>
 for (int i = 0; i < sol.size();</pre>
     ++i) {
   cout << " " << sol[i]:
  cout << endl;</pre>
} else {
  cout << "No" << endl;</pre>
```

```
}
return 0;
}
```

6 Math

6.1 Lucas theorem

For non-negative integers m and n and a prime p, the following congruence relation holds: :

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where:

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0$$

and:

$$n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0$$

are the base p expansions of m and n respectively. This uses the convention that $\binom{m}{n} = 0$ if m < n.

6.2 counting

```
const int MN = 1e5 + 100;
long long fact[MN];
void fill_fact() {
```

```
fact[0] = 1;
  for (int i = 1; i < MN; i++) {
    fact[i] = mult(fact[i - 1], i);
  }
}

long long perm_rep(vector<int> &frec) {
  int total = 0;
  long long den = 1;
  for (int i = 0; i < (int)frec.size();
    i++) {
    den = mult(den,
        mod_inv(fact[frec[i]]));
    total += frec[i];
  }
  return mult(fact[total], den);
}</pre>
```

6.3 cumulative sum of divisors

```
/**
The function SOD(n) (sum of divisors) is
   defined
as the summation of all the actual
   divisors of
an integer number n. For example,

SOD(24) = 2+3+4+6+8+12 = 35.

The function CSOD(n) (cumulative SOD) of
   an integer n, is defined as below:

csod(n) = \sum_{i = 1}^{n} sod(i)
```

```
It can be computed in O(sqrt(n)):
*/

long long csod(long long n) {
  long long ans = 0;
  for (long long i = 2; i * i <= n; ++i)
        {
     long long j = n / i;
     ans += (i + j) * (j - i + 1) / 2;
     ans += i * (j - i);
  }
  return ans;
}</pre>
```

6.4 fft

```
/**
 * Fast Fourier Transform.
 * Useful to compute convolutions.
 * computes:
 * C(f star g)[n] = sum_m(f[m] * g[n - m])
 * for all n.
 * test: icpc live archive, 6886 - Golf
    Bot
 * */

using namespace std;
#include<bits/stdc++.h>
#define D(x) cout << #x " = " << (x) << endl
#define endl '\n'</pre>
```

```
const int MN = 262144 << 1;</pre>
int d[MN + 10], d2[MN + 10];
const double PI = acos(-1.0);
struct cpx {
 double real, image;
 cpx(double _real, double _image) {
   real = _real;
   image = _image;
 cpx(){}
}:
cpx operator + (const cpx &c1, const cpx
   &c2) {
 return cpx(c1.real + c2.real, c1.image
     + c2.image);
}
cpx operator - (const cpx &c1, const cpx
   &c2) {
 return cpx(c1.real - c2.real, c1.image
     - c2.image);
}
cpx operator * (const cpx &c1, const cpx
   &c2) {
 return cpx(c1.real*c2.real -
     c1.image*c2.image, c1.real*c2.image
     + c1.image*c2.real);
}
int rev(int id, int len) {
```

```
int ret = 0;
 for (int i = 0; (1 << i) < len; i++) {</pre>
   ret <<= 1:
   if (id & (1 << i)) ret |= 1;
 return ret;
}
cpx A[1 << 20];
void FFT(cpx *a, int len, int DFT) {
 for (int i = 0; i < len; i++)</pre>
   A[rev(i, len)] = a[i];
 for (int s = 1; (1 << s) <= len; s++) {
   int m = (1 << s);
   cpx wm = cpx(cos(DFT * 2 * PI / m),
       sin(DFT * 2 * PI / m));
   for(int k = 0; k < len; k += m) {</pre>
     cpx w = cpx(1, 0);
     for(int j = 0; j < (m >> 1); j++) {
       cpx t = w * A[k + j + (m >> 1)];
       cpx u = A[k + j];
       A[k + j] = u + t;
       A[k + j + (m >> 1)] = u - t;
       w = w * wm;
   }
  if (DFT == -1) for (int i = 0; i <
     len; i++) A[i].real /= len,
     A[i].image /= len;
 for (int i = 0; i < len; i++) a[i] =</pre>
     A[i];
  return:
```

```
cpx in[1 << 20];
void solve(int n) {
 memset(d, 0, sizeof d);
 int t;
 for (int i = 0; i < n; ++i) {</pre>
   cin >> t;
   d[t] = true;
 }
 int m;
  cin >> m;
 vector<int> q(m);
 for (int i = 0; i < m; ++i)</pre>
   cin >> q[i];
 for (int i = 0; i < MN; ++i) {</pre>
   if (d[i])
     in[i] = cpx(1, 0);
   else
     in[i] = cpx(0, 0);
 }
 FFT(in, MN, 1);
 for (int i = 0; i < MN; ++i) {</pre>
   in[i] = in[i] * in[i];
 }
 FFT(in, MN, -1);
 int ans = 0:
 for (int i = 0; i < q.size(); ++i) {</pre>
   if (in[q[i]].real > 0.5 || d[q[i]]) {
     ans++;
   }
```

```
cout << ans << endl:
}
int main() {
 ios_base::sync_with_stdio(false);cin.tie(NULL); deque<double> coef;
 int n:
 while (cin >> n)
   solve(n);
 return 0;
```

fibonacci properties

Let A, B and n be integer numbers.

$$k = A - B \tag{1}$$

$$F_A F_B = F_{k+1} F_A^2 + F_k F_A F_{A-1} \tag{2}$$

$$\sum_{i=0}^{n} F_i^2 = F_{n+1} F_n \tag{3}$$

ev(n) = returns 1 if n is even.

$$\sum_{i=0}^{n} F_i F_{i+1} = F_{n+1}^2 - ev(n) \tag{4}$$

$$\sum_{i=0}^{n} F_i F_{i-1} = \sum_{i=0}^{n-1} F_i F_{i+1}$$
 (5)

polynomials

```
const double pi = acos(-1);
struct poly {
 double x_lo, x_hi;
 double evaluate(double x) {
   double ans = 0;
   for (auto it : coef)
     ans = (ans * x + it);
   return ans;
 double volume(double x, double
     dx=1e-6) {
   dx = (x_hi - x_lo) / 1000000.0;
   double ans = 0;
   for (double ix = x_lo; ix <= x; ix</pre>
       += dx) {
     double rad = evaluate(ix);
     ans += pi * rad * rad * dx;
   return ans;
```

sigma function

the sigma function is defined as:

$$\sigma_x(n) = \sum_{d|n} d^x$$

when x = 0 is called the divisor function,

that counts the number of positive divisors of n.

Now, we are interested in find

$$\sum_{d|n} \sigma_0(d)$$

if n is written as prime factorization:

$$n = \prod_{i=1}^{k} P_i^{e_k}$$

we can demonstrate that:

$$\sum_{d|n} \sigma_0(d) = \prod_{i=1}^k g(e_k + 1)$$

where q(x) is the sum of the first x positive numbers:

$$q(x) = (x * (x + 1))/2$$

Matrix

matrix

```
const int MN = 111;
const int mod = 10000;
struct matrix {
 int r, c;
 int m[MN][MN];
```

```
matrix (int _r, int _c) : r (_r), c
     (_c) {
   memset(m, 0, sizeof m);
 void print() {
   for (int i = 0; i < r; ++i) {</pre>
     for (int j = 0; j < c; ++j)
       cout << m[i][j] << " ";
     cout << endl;</pre>
 }
 int x[MN][MN];
 matrix & operator *= (const matrix &o)
   memset(x, 0, sizeof x);
   for (int i = 0; i < r; ++i)</pre>
     for (int k = 0; k < c; ++k)
       if (m[i][k] != 0)
         for (int j = 0; j < c; ++j) {</pre>
           x[i][j] = (x[i][j] +
               ((m[i][k] * o.m[k][j]) %
               mod) ) % mod;
   memcpy(m, x, sizeof(m));
   return *this:
};
void matrix_pow(matrix b, long long e,
   matrix &res) {
 memset(res.m, 0, sizeof res.m);
 for (int i = 0; i < b.r; ++i)</pre>
   res.m[i][i] = 1;
```

```
if (e == 0) return;
while (true) {
   if (e & 1) res *= b;
   if ((e >>= 1) == 0) break;
   b *= b;
}
```

8 Misc

8.1 Template Java

```
public void solve(Scanner in,
       OutputWriter out){
}
class Scanner{
   public BufferedReader reader;
   public StringTokenizer st;
   public Scanner(InputStream stream){
       reader = new BufferedReader(new
          InputStreamReader(stream));
       st = null:
   public String next(){
       while(st == null ||
           !st.hasMoreTokens()){
           try{
              String line =
                  reader.readLine();
              if(line == null) return
                  null:
              st = new
                  StringTokenizer(line);
          }catch (Exception e){
              throw (new
                  RuntimeException());
          }
       return st.nextToken();
   public int nextInt(){
```

```
return Integer.parseInt(next());
   }
   public long nextLong(){
       return Long.parseLong(next());
   public double nextDouble(){
       return Double.parseDouble(next());
}
class OutputWriter{
   BufferedWriter writer;
   public OutputWriter(OutputStream
       stream){
       writer = new BufferedWriter(new
          OutputStreamWriter(stream));
   }
   public void print(int i) throws
       IOException {
       writer.write(i);
   }
   public void print(String s) throws
       IOException {
       writer.write(s);
   }
   public void print(char []c) throws
       IOException {
       writer.write(c);
   public void close() throws
       IOException {
```

```
writer.close();
}
```

8.2 dates

```
//
// Time - Leap years
//
// A[i] has the accumulated number of
   days from months previous to i
const int A[13] = \{ 0, 0, 31, 59, 90, \}
   120, 151, 181, 212, 243, 273, 304,
   334 };
// same as A, but for a leap year
const int B[13] = \{ 0, 0, 31, 60, 91, \dots \}
   121, 152, 182, 213, 244, 274, 305,
   335 };
// returns number of leap years up to,
   and including, y
int leap_years(int y) { return y / 4 - y
   / 100 + y / 400; }
bool is_leap(int y) { return y % 400 ==
   0 \mid | (y \% 4 == 0 \&\& y \% 100 != 0); }
// number of days in blocks of years
const int p400 = 400*365 +
   leap_years(400);
const int p100 = 100*365 +
   leap_vears(100);
const int p4 = 4*365 + 1;
const int p1 = 365;
int date_to_days(int d, int m, int y)
```

```
{
 return (y - 1) * 365 + leap_years(y -
     1) + (is_{pap}(y) ? B[m] : A[m]) + d;
void days_to_date(int days, int &d, int
   &m, int &y)
₹
 bool top100; // are we in the top 100
     years of a 400 block?
 bool top4; // are we in the top 4
     years of a 100 block?
 bool top1; // are we in the top year
     of a 4 block?
 y = 1;
 top100 = top4 = top1 = false;
 y += ((days-1) / p400) * 400;
 d = (days-1) \% p400 + 1;
 if (d > p100*3) top100 = true, d -=
     3*p100, y += 300;
 else y += ((d-1) / p100) * 100, d =
     (d-1) \% p100 + 1;
 if (d > p4*24) top4 = true, d -=
     24*p4, y += 24*4;
 else y += ((d-1) / p4) * 4, d = (d-1)
     % p4 + 1;
 if (d > p1*3) top1 = true, d -= p1*3,
 else y += (d-1) / p1, d = (d-1) % p1 +
```

```
const int *ac = top1 && (!top4 ||
     top100) ? B : A;
 for (m = 1; m < 12; ++m) if (d <= ac[m</pre>
     + 11) break:
 d = ac[m];
}
```

fraction

```
struct frac{
 long long x, y;
 frac(long long a, long long b) {
   long long g = \_gcd(a, b);
   x = a / g;
   y = b / g;
 bool operator < (const frac &o) const {</pre>
   return (x * o.y < y * o.x);
 }
};
```

8.4 io

```
// taken from :
   https://github.com/lbv/pc-code/blob/master/sotlyperdlef-d.onligablomed.iianbtloLcpp
// this is very fast as well :
   https://github.com/lbv/pc-code/blob/master/code/input.cpp
typedef unsigned int u32;
#define BUF 524288
struct Reader {
 char buf[BUF]; char b; int bi, bz;
```

```
Reader() { bi=bz=0; read(); }
  void read() {
   if (bi==bz) { bi=0; bz = fread(buf,
       1, BUF, stdin); }
   b = bz ? buf[bi++] : 0; }
 void skip() { while (b > 0 && b <= 32)</pre>
     read(); }
  u32 next_u32() {
   u32 v = 0; for (skip(); b > 32;
       read()) v = v*10 + b-48; return
       v; }
  int next_int() {
   int v = 0: bool s = false:
   skip(); if (b == '-') { s = true;
       read(): }
   for (; 48<=b&&b<=57; read()) v =</pre>
       v*10 + b-48; return s ? -v : v; }
 char next_char() { skip(); char c = b;
     read(); return c; }
};
```

Number theory

convolution 9.1

```
typedef pair<LL, LL> PLL;
inline bool is_pow2(LL x) {
 return (x & (x-1)) == 0;
inline int ceil_log2(LL x) {
```

```
int ans = 0;
  --x:
  while (x != 0) {
   x >>= 1:
   ans++;
 }
 return ans;
/* Returns the convolution of the two
   given vectors in time proportional to
   n*log(n).
* The number of roots of unity to use
    nroots_unity must be set so that the
    product of the first
* nroots_unity primes of the vector
    nth_roots_unity is greater than the
    maximum value of the
 * convolution. Never use sizes of
    vectors bigger than 2^24, if you
    need to change the values of
* the nth roots of unity to appropriate
    primes for those sizes.
vector<LL> convolve(const vector<LL> &a,
   const vector<LL> &b, int nroots_unity
   = 2) {
 int N = 1 << ceil_log2(a.size() +</pre>
     b.size());
 vector<LL> ans(N,0), fA(N), fB(N),
     fC(N):
 LL modulo = 1:
 for (int times = 0; times <</pre>
     nroots_unity; times++) {
   fill(fA.begin(), fA.end(), 0);
```

```
fill(fB.begin(), fB.end(), 0);
 for (int i = 0; i < a.size(); i++)</pre>
     fA[i] = a[i]:
 for (int i = 0; i < b.size(); i++)</pre>
     fB[i] = b[i];
 LL prime =
     nth_roots_unity[times].first;
 LL inv_modulo = mod_inv(modulo %
     prime, prime);
 LL normalize = mod_inv(N, prime);
 ntfft(fA, 1, nth_roots_unity[times]);
 ntfft(fB, 1, nth_roots_unity[times]);
 for (int i = 0; i < N; i++) fC[i] =</pre>
     (fA[i] * fB[i]) % prime;
 ntfft(fC, -1,
     nth_roots_unity[times]);
 for (int i = 0; i < N; i++) {</pre>
   LL curr = (fC[i] * normalize) %
       prime;
   LL k = (curr - (ans[i] % prime) +
       prime) % prime;
   k = (k * inv_modulo) % prime;
   ans[i] += modulo * k;
 modulo *= prime;
return ans;
```

9.2 crt

```
/**
 * Chinese remainder theorem.
```

```
* Find z such that z % x[i] = a[i] for
    all i.
 * */
long long crt(vector<long long> &a,
    vector<long long> &x) {
 long long z = 0;
 long long n = 1;
  for (int i = 0; i < x.size(); ++i)</pre>
    n *= x[i];
  for (int i = 0; i < a.size(); ++i) {</pre>
    long long tmp = (a[i] * (n / x[i]))
       % n:
    tmp = (tmp * mod_inv(n / x[i],
       x[i]) % n:
   z = (z + tmp) \% n;
  return (z + n) \% n:
```

9.3 diophantine equations

```
long long gcd(long long a, long long b,
    long long &x, long long &y) {
    if (a == 0) {
        x = 0;
        y = 1;
        return b;
    }
    long long x1, y1;
    long long d = gcd(b % a, a, x1, y1);
    x = y1 - (b / a) * x1;
    y = x1;
```

```
return d:
}
bool find_any_solution(long long a, long
   long b, long long c, long long &x0,
   long long &y0, long long &g) {
 g = gcd(abs(a), abs(b), x0, y0);
 if (c % g) {
   return false;
 x0 *= c / g;
 y0 *= c / g;
 if (a < 0) x0 = -x0;
 if (b < 0) y0 = -y0;
 return true;
}
void shift_solution(long long &x, long
   long &y, long long a, long long b,
   long long cnt) {
 x += cnt * b;
 v -= cnt * a;
long long find_all_solutions(long long
   a, long long b, long long c,
   long long minx, long long maxx, long
       long miny,
   long long maxy) {
 long long x, y, g;
 if (!find_any_solution(a, b, c, x, y,
     g)) return 0;
 a /= g;
 b /= g;
```

```
long long sign_a = a > 0 ? +1 : -1;
long long sign_b = b > 0 ? +1 : -1;
shift_solution(x, y, a, b, (minx - x)
   / b):
if (x < minx) shift_solution(x, y, a,</pre>
   b, sign_b);
if (x > maxx) return 0;
long long lx1 = x;
shift_solution(x, y, a, b, (maxx - x)
   / b):
if (x > maxx) shift_solution(x, y, a,
   b, -sign_b);
long long rx1 = x;
shift_solution(x, y, a, b, -(miny - y)
   / a):
if (y < miny) shift_solution(x, y, a,</pre>
    b, -sign_a);
if (y > maxy) return 0;
long long 1x2 = x;
shift_solution(x, y, a, b, -(maxy - y)
   / a);
if (y > maxy) shift_solution(x, y, a,
   b, sign_a);
long long rx2 = x;
if (1x2 > rx2) swap(1x2, rx2);
long long lx = max(lx1, lx2);
long long rx = min(rx1, rx2);
if (1x > rx) return 0;
```

```
return (rx - lx) / abs(b) + 1;
}
```

9.4 discrete logarithm

```
// Computes x which a \hat{x} = b \mod n.
long long d_log(long long a, long long
   b, long long n) {
 long long m = ceil(sqrt(n));
 long long aj = 1;
 map<long long, long long> M;
 for (int i = 0; i < m; ++i) {</pre>
   if (!M.count(aj))
     M[ai] = i;
   aj = (aj * a) % n;
 long long coef = mod_pow(a, n - 2, n);
 coef = mod_pow(coef, m, n);
  // coef = a ^{-} (-m)
 long long gamma = b;
 for (int i = 0; i < m; ++i) {</pre>
   if (M.count(gamma)) {
     return i * m + M[gamma];
   } else {
     gamma = (gamma * coef) % n;
 return -1;
```

9.5 ext euclidean

9.6 highest exponent factorial

```
int highest_exponent(int p, const int
    &n){
  int ans = 0;
  int t = p;
  while(t <= n){
    ans += n/t;
    t*=p;
  }
  return ans;
}</pre>
```

9.7 miller rabin

```
const int rounds = 20;
```

```
// checks whether a is a witness that n
   is not prime, 1 < a < n
bool witness(long long a, long long n) {
 // check as in Miller Rabin Primality
     Test described
 long long u = n - 1;
 int t = 0;
 while (u % 2 == 0) {
   t++;
   u >>= 1;
 long long next = mod_pow(a, u, n);
 if (next == 1) return false:
 long long last;
 for (int i = 0; i < t; ++i) {</pre>
   last = next:
   next = mod_mul(last, last, n);
   if (next == 1) {
     return last != n - 1;
   }
 return next != 1;
// Checks if a number is prime with prob
   1 - 1 / (2 ^ it)
// D(miller rabin(9999999999999997LL)
   == 1):
// D(miller rabin(99999999971LL) ==
   1):
// D(miller rabin(7907) == 1):
bool miller_rabin(long long n, int it =
   rounds) {
 if (n <= 1) return false;</pre>
```

```
if (n == 2) return true;
if (n % 2 == 0) return false;
for (int i = 0; i < it; ++i) {
   long long a = rand() % (n - 1) + 1;
   if (witness(a, n)) {
     return false;
   }
}
return true;
}</pre>
```

9.8 mod integer

```
template < class T, T mod>
struct mint_t {
   T val;
   mint_t() : val(0) {}
   mint_t(T v) : val(v % mod) {}

   mint_t operator + (const mint_t& o)
        const {
      return (val + o.val) % mod;
   }
   mint_t operator - (const mint_t& o)
        const {
      return (val - o.val) % mod;
   }
   mint_t operator * (const mint_t& o)
        const {
      return (val * o.val) % mod;
   }
   return (val * o.val) % mod;
   }
};
```

```
typedef mint_t<long long, 998244353>
  mint;
```

9.9 mod inv

```
long long mod_inv(long long n, long long
   m) {
  long long x, y, gcd;
  ext_euclid(n, m, x, y, gcd);
  if (gcd != 1)
    return 0;
  return (x + m) % m;
}
```

9.10 mod mul

```
// Computes (a * b) % mod
long long mod_mul(long long a, long long
   b, long long mod) {
   long long x = 0, y = a % mod;
   while (b > 0) {
      if (b & 1)
        x = (x + y) % mod;
      y = (y * 2) % mod;
      b /= 2;
   }
   return x % mod;
}
```

9.11 mod pow

```
// Computes ( a ^ exp ) % mod.
long long mod_pow(long long a, long long
  exp, long long mod) {
  long long ans = 1;
  while (exp > 0) {
    if (exp & 1)
      ans = mod_mul(ans, a, mod);
    a = mod_mul(a, a, mod);
    exp >>= 1;
  }
  return ans;
}
```

9.12 number theoretic transform

```
typedef long long int LL;
typedef pair<LL, LL> PLL;
/* The following vector of pairs
        contains pairs (prime, generator)
  * where the prime has an Nth root of
          unity for N being a power of two.
  * The generator is a number g s.t
           g^{(p-1)}=1 \pmod{p}
  * but is different from 1 for all
           smaller powers */
vector<PLL> nth_roots_unity {
     \{1224736769, 330732430\}, \{1711276033, 927759239\}, \{167772161, 167489322\}, j < n; j += m) \{ 1224736769, 330732430\}, \{1711276033, 927759239\}, \{167772161, 167489322\}, j < n; j += m) \} 
       \{469762049,343261969\}, \{754974721,643797295\}, \{1107296257,883\underline{8}65065\}\}; \{1107296257,883\underline{8}65065\}
PLL ext_euclid(LL a, LL b) {
    if (b == 0)
        return make_pair(1,0);
```

```
pair<LL,LL> rc = ext_euclid(b, a % b);
 return make_pair(rc.second, rc.first -
     (a / b) * rc.second);
//returns -1 if there is no unique
   modular inverse
LL mod_inv(LL x, LL modulo) {
 PLL p = ext_euclid(x, modulo);
 if ( (p.first * x + p.second * modulo)
     != 1 )
   return -1;
 return (p.first+modulo) % modulo;
//Number theory fft. The size of a must
   be a power of 2
void ntfft(vector<LL> &a, int dir, const
   PLL &root_unity) {
  int n = a.size();
 LL prime = root_unity.first;
 LL basew = mod_pow(root_unity.second,
     (prime-1) / n, prime);
  if (dir < 0) basew = mod_inv(basew,</pre>
     prime);
 for (int m = n; m >= 2; m >>= 1) {
   int mh = m >> 1;
   LL w = 1:
   for (int i = 0; i < mh; i++) {</pre>
       LL x = (a[j] - a[k] + prime) %
           prime;
       a[i] = (a[j] + a[k]) % prime;
```

9.13 pollard rho factorize

```
long long pollard_rho(long long n) {
  long long x, y, i = 1, k = 2, d;
  x = y = rand() % n;
  while (1) {
    ++i;
    x = mod_mul(x, x, n);
    x += 2;
    if (x >= n) x -= n;
    if (x == y) return 1;
    d = __gcd(abs(x - y), n);
    if (d != 1) return d;
    if (i == k) {
        y = x;
        k *= 2;
    }
  }
  return 1;
```

```
// Returns a list with the prime
   divisors of n
vector<long long> factorize(long long n)
   {
 vector<long long> ans;
 if (n == 1)
   return ans;
 if (miller_rabin(n)) {
   ans.push_back(n);
 } else {
   long long d = 1;
   while (d == 1)
     d = pollard_rho(n);
   vector<long long> dd = factorize(d);
   ans = factorize(n / d);
   for (int i = 0; i < dd.size(); ++i)</pre>
     ans.push_back(dd[i]);
 }
 return ans;
```

9.14 primes

```
namespace primes {
  const int MP = 100001;
  bool sieve[MP];
  long long primes[MP];
  int num_p;
  void fill_sieve() {
    num_p = 0;
    sieve[0] = sieve[1] = true;
    for (long long i = 2; i < MP; ++i) {</pre>
```

```
if (!sieve[i]) {
     primes[num_p++] = i;
     for (long long j = i * i; j < MP;
         j += i)
       sieve[j] = true;
// Finds prime numbers between a and
   b, using basic primes up to sqrt(b)
// a must be greater than 1.
vector<long long> seg_sieve(long long
   a, long long b) {
 long long ant = a;
 a = max(a, 3LL);
 vector<bool> pmap(b - a + 1);
 long long sqrt_b = sqrt(b);
 for (int i = 0; i < num_p; ++i) {</pre>
   long long p = primes[i];
   if (p > sqrt_b) break;
   long long j = (a + p - 1) / p;
   for (long long v = (j == 1) ? p + p
       : j * p; v \le b; v += p) {
     pmap[v - a] = true;
 vector<long long> ans;
 if (ant == 2) ans.push_back(2);
 int start = a % 2 ? 0 : 1;
 for (int i = start, I = b - a + 1; i
     < I: i += 2)
   if (pmap[i] == false)
     ans.push_back(a + i);
  return ans;
```

```
}
vector<pair<int, int>> factor(int n) {
  vector<pair<int, int>> ans;
  if (n == 0) return ans;
 for (int i = 0; primes[i] *
     primes[i] <= n; ++i) {</pre>
   if ((n % primes[i]) == 0) {
     int expo = 0;
     while ((n % primes[i]) == 0) {
       expo++;
       n /= primes[i];
     ans.emplace_back(primes[i], expo);
  if (n > 1) {
   ans.emplace_back(n, 1);
 return ans;
```

9.15 totient sieve

```
for (int i = 1; i < MN; i++)
  phi[i] = i;

for (int i = 1; i < MN; i++)
  if (!sieve[i]) // is prime
  for (int j = i; j < MN; j += i)
    phi[j] -= phi[j] / i;</pre>
```

9.16 totient

```
long long totient(long long n) {
   if (n == 1) return 0;
   long long ans = n;
   for (int i = 0; primes[i] * primes[i]
        <= n; ++i) {
      if ((n % primes[i]) == 0) {
        while ((n % primes[i]) == 0) n /=
            primes[i];
      ans -= ans / primes[i];
    }
   if (n > 1) {
      ans -= ans / n;
   }
   return ans;
}
```

10 Strings

10.1 Incremental Aho Corasick

```
class IncrementalAhoCorasic {
  static const int Alphabets = 26;
  static const int AlphabetBase = 'a';
  struct Node {
   Node *fail;
   Node *next[Alphabets];
   int sum;
   Node() : fail(NULL), next{}, sum(0)
        { }
};
```

```
struct String {
   string str;
   int sign;
 };
public:
 //totalLen = sum of (len + 1)
 void init(int totalLen) {
   nodes.resize(totalLen);
   nNodes = 0;
   strings.clear();
   roots.clear():
   sizes.clear():
   que.resize(totalLen);
 void insert(const string &str, int
     sign) {
   strings.push_back(String{ str, sign
       });
   roots.push_back(nodes.data() +
       nNodes);
   sizes.push_back(1);
   nNodes += (int)str.size() + 1;
   auto check = [&]() { return
       sizes.size() > 1 &&
       sizes.end()[-1] ==
       sizes.end()[-2]; };
   if(!check())
     makePMA(strings.end() - 1,
         strings.end(), roots.back(),
        que);
   while(check()) {
     int m = sizes.back();
```

```
roots.pop_back();
     sizes.pop_back();
     sizes.back() += m:
     if(!check())
       makePMA(strings.end() - m * 2,
          strings.end(), roots.back(),
          que);
 }
 int match(const string &str) const {
   int res = 0;
   for(const Node *t : roots)
     res += matchPMA(t, str);
   return res:
private:
 static void
     makePMA(vector<String>::const_iterator
     begin,
     vector<String>::const_iterator end,
     Node *nodes, vector<Node*> &que) {
   int nNodes = 0;
   Node *root = new(&nodes[nNodes ++])
       Node();
   for(auto it = begin; it != end; ++
       it) {
     Node *t = root;
     for(char c : it->str) {
       Node *&n = t->next[c -
          AlphabetBase];
      if(n == nullptr)
        n = new(&nodes[nNodes ++])
            Node():
```

```
t = n:
   t->sum += it->sign;
 int qt = 0;
 for(Node *&n : root->next) {
   if(n != nullptr) {
     n->fail = root;
     que[qt ++] = n;
   } else {
     n = root;
 }
 for(int qh = 0; qh != qt; ++ qh) {
   Node *t = que[qh];
   int a = 0;
   for(Node *n : t->next) {
     if(n != nullptr) {
       que[qt ++] = n;
       Node *r = t->fail;
       while(r->next[a] == nullptr)
         r = r->fail;
       n->fail = r->next[a];
       n->sum += r->next[a]->sum;
     ++ a;
   }
}
static int matchPMA(const Node *t,
   const string &str) {
 int res = 0:
 for(char c : str) {
   int a = c - AlphabetBase;
```

```
while(t->next[a] == nullptr)
       t = t->fail:
     t = t- next[a]:
     res += t->sum:
   return res:
  vector<Node> nodes;
  int nNodes;
 vector<String> strings;
  vector<Node*> roots:
  vector<int> sizes:
  vector<Node*> que;
};
int main() {
  int m:
 while(~scanf("%d", &m)) {
   IncrementalAhoCorasic iac;
   iac.init(600000);
   rep(i, m) {
     int ty;
     char s[300001];
     scanf("%d%s", &ty, s);
     if(ty == 1) {
       iac.insert(s, +1);
     } else if(ty == 2) {
       iac.insert(s, -1);
     } else if(ty == 3) {
       int ans = iac.match(s);
       printf("%d\n", ans);
       fflush(stdout);
     } else {
```

```
abort();
}
}
return 0;
}
```

10.2 minimal string rotation

```
// Lexicographically minimal string
   rotation
int lmsr() {
  string s;
  cin >> s;
 int n = s.size();
 s += s;
 vector<int> f(s.size(), -1);
 int k = 0;
 for (int j = 1; j < 2 * n; ++j) {
   int i = f[j - k - 1];
   while (i != -1 && s[j] != s[k + i + i]
       1]) {
     if (s[i] < s[k + i + 1])
       k = j - i - 1;
     i = f[i]:
   if (i == -1 \&\& s[j] != s[k + i + 1])
     if (s[j] < s[k + i + 1]) {
       k = j;
     f[j - k] = -1;
   } else {
     f[j - k] = i + 1;
```

```
}
return k;
}
```

10.3 suffix array

```
/**
* 0 (n log^2 (n))
 * See
    http://web.stanford.edu/class/cs97si/suffix-array.pdf next, i);
    for reference
 * */
struct entry{
 int a, b, p;
 entry(){}
 entry(int x, int y, int z): a(x),
     b(y), p(z)
 bool operator < (const entry &o) const</pre>
   return (a == o.a) ? (b == o.b) ? ( p
      < o.p) : (b < o.b) : (a < o.a);
 }
};
struct SuffixArray{
 const int N;
 string s;
 vector<vector<int> > P;
 vector<entry> M;
 SuffixArray(const string &s) :
     N(s.length()) , s(s), P(1,
```

```
vector<int> (N, 0)), M(N) {
 for (int i = 0; i < N; ++i)</pre>
   P[0][i] = (int) s[i];
 for (int skip = 1, level = 1; skip <</pre>
     N; skip *= 2, level++) {
   P.push_back(vector<int>(N, 0));
   for (int i = 0; i < N; ++i) {
     int next = ((i + skip) < N)?
         P[level - 1][i + skip]:
         -10000;
     M[i] = entry(P[level - 1][i],
   sort(M.begin(), M.end());
   for (int i = 0; i < N; ++i)</pre>
     P[level][M[i].p] = (i > 0 and
         M[i].a == M[i - 1].a and
         M[i].b == M[i - 1].b)?
         P[level][M[i - 1].p] : i;
 }
vector<int> getSuffixArray(){
 vector<int> &rank = P.back();
 vector<pair<int, int> >
     inv(rank.size());
 for (int i = 0; i < rank.size(); ++i)</pre>
   inv[i] = make_pair(rank[i], i);
 sort(inv.begin(), inv.end());
 vector<int> sa(rank.size());
 for (int i = 0; i < rank.size(); ++i)</pre>
   sa[i] = inv[i].second;
 return sa;
```

```
// returns the length of the longest
    common prefix of s[i...L-1] and
    s[j...L-1]
int lcp(int i, int j) {
    int len = 0;
    if (i == j) return N - i;
    for (int k = P.size() - 1; k >= 0 &&
        i < N && j < N; --k) {
        if (P[k][i] == P[k][j]) {
            i += 1 << k;
            j += 1 << k;
            len += 1 << k;
        }
    }
    return len;
}</pre>
```

10.4 suffix automaton

```
/*
 * Suffix automaton:
 * This implementation was extended to
    maintain (online) the
 * number of different substrings. This
    is equivalent to compute
 * the number of paths from the initial
    state to all the other
 * states.
 *
 * The overall complexity is O(n)
 * can be tested here:
    https://www.urionlinejudge.com.br/judge/en
```

```
* */
struct state {
 int len, link;
 long long num_paths;
 map<int, int> next;
};
const int MN = 200011;
state sa[MN << 1];
int sz, last;
long long tot_paths;
void sa_init() {
 sz = 1:
 last = 0;
 sa[0].len = 0;
 sa[0].link = -1:
 sa[0].next.clear();
 sa[0].num_paths = 1;
 tot_paths = 0;
void sa_extend(int c) {
 int cur = sz++;
 sa[cur].len = sa[last].len + 1;
 sa[cur].next.clear();
 sa[cur].num_paths = 0;
 int p;
 for (p = last; p != -1 &&
     !sa[p].next.count(c); p =
     sa[p].link) {
   sa[p].next[c] = cur;
   sa[cur].num_paths += sa[p].num_paths;
   tot_paths += sa[p].num_paths;
```

```
}
if (p == -1) {
 sa[cur].link = 0;
} else {
 int q = sa[p].next[c];
 if (sa[p].len + 1 == sa[q].len) {
   sa[cur].link = q;
 } else {
   int clone = sz++;
   sa[clone].len = sa[p].len + 1;
   sa[clone].next = sa[q].next;
   sa[clone].num_paths = 0;
   sa[clone].link = sa[q].link;
   for (; p!= -1 && sa[p].next[c] ==
       q; p = sa[p].link) {
     sa[p].next[c] = clone;
     sa[q].num_paths -=
         sa[p].num_paths;
     sa[clone].num_paths +=
         sa[p].num_paths;
   sa[q].link = sa[cur].link = clone;
last = cur;
```

10.5 z algorithm

```
using namespace std;
#include<bits/stdc++.h>
vector<int> compute_z(const string &s){
```

```
int n = s.size();
 vector<int> z(n,0);
 int 1,r;
 r = 1 = 0;
 for(int i = 1; i < n; ++i){</pre>
   if(i > r) {
     1 = r = i:
     while(r < n \text{ and } s[r - 1] ==
         s[r])r++;
     z[i] = r - 1;r--;
   }else{
     int k = i-1;
     if(z[k] < r - i +1) z[i] = z[k]:
     else {
       1 = i:
       while (r < n \text{ and } s[r - 1] ==
           s[r])r++;
       z[i] = r - 1:r--:
   }
 }
 return z;
int main(){
 //string line;cin>>line;
 string line = "alfalfa";
 vector<int> z = compute_z(line);
 for(int i = 0; i < z.size(); ++i ){</pre>
   if(i)cout<<" ";</pre>
   cout<<z[i];
 }
 cout<<endl;</pre>
```

		}
// must print "0 0 0 4 0 0 1"	return 0;	