

Гра у підземеллі

Роман розробляє нову комп'ютерну гру. У грі присутній один герой, n супротивників та n+1 підзмель. Супротивники пронумеровані від 0 до n-1, а підземелля пронумеровані від 0 до n. Супротивник i ($0 \le i \le n-1$) знаходиться у підземеллі i і має силу s[i]. У підземеллі n супротивника немає.

Герой розпочинає гру заходом до підземелля x, з силою z. Кожен раз коли герой вхдить до підземелля i ($0 \le i \le n-1$), він змагається з супротивником i, і можливі наступні сценарії:

- Якщо сила героя більша, або рівна за силу супротивника s[i], герой перемагає. При цьому сила героя **збільшується** на s[i] ($s[i] \geq 1$). При цьому герой переходить до підземелля w[i] (w[i] > i).
- Інакше герой програє. При цьому сила героя **збільшується** на p[i] ($p[i] \geq 1$). В такому випадку герой переходить до підземелля l[i].

Зауважимо, що p[i] може бути меншим, рівним, або більшим ніж s[i]. Також, l[i] може бути меншим, рівним, або більшим ніж i. Незалежно від того, чим закінчилось протистояння, супротивник залишається в підземеллі i і його сила залишається рівною s[i].

Гра закінчується, коли герой потрапляє до підземелля n. Очевидно, що гра закінчиться за скінченну кількість кроків незалежно від початкової сили героя та стартового підземелля.

Роман просить вас протестувати гру в ході q симуляцій. Для кожної симуляції Роман визначає стартове підземелля x та стартову силу z. Ваша задача - визначити для кожної симуляції силу героя на момент завершення гри.

Деталі реалізації

Вам потрібно реалізувати наступні процедури:

```
void init(int n, int[] s, int[] p, int[] w, int[] l)
```

- n: кількість супротивників.
- $s,\;p,\;w,\;l$: масиви довжини $\;n.$ Для $\;0\leq i\leq n-1$:
 - $\circ \quad s[i]$ сила супротивника i. Відповідно це число, на яке збільшується сила героя у випадку перемоги над супротивником i.
 - $\circ p[i]$ число, на яке збільшуєтся сила героя у випадку програшу супротивнику i.
 - $\circ w[i]$ номер підземелля куди переходить герой у випадку перемоги над супротивником i.
 - $\circ l[i]$ номер підземелля куди переходить герой у випадку поразки супротивнику i.

• Ця процедура викликаєтся рівно 1 раз перед викликами процедури simulate (дивись далі).

int64 simulate(int x, int z)

- x: початкове підземелля.
- z: початкова сила героя.
- Процедура повинна повернути силу героя на момент завершення гри, припускаючи, що герой розпочинає гру у підземеллі x, з силою z.
- Процедура викликається рівно $\,q\,$ разів.

Приклад

Розглянемо наступний виклик:

Діаграма вище описує виклик. Кожен квадрат представляє підземелля. Для підземель $0,\ 1$ та $2,\$ значення s[i] та p[i] показані всередині квадратів. Рожеві стрілки показуть куди перейде герой у випадку перемоги, а чорні - у випадку поразки.

Припусимо, що модуль перевірки робить виклик simulate(0, 1).

Гра піде за наступним сценарієм:

Підземелля	Сила героя до протистояння	Результат
0	1	поразка
1	4	поразка
0	5	перемога
2	7	поразка
1	9	перемога
2	15	перемога
3	24	кінець гри

Отже процедура повинна повернути значення 24.

Припусимо, що модуль перевірки робить виклик simulate(2, 3).

Гра піде за наступним сценарієм:

Підземелля	Сила героя до протистояння	Результат
2	3	поразка
1	5	поразка
0	6	перемога
2	8	поразка
1	10	перемога
2	16	перемога
3	25	кінець гри

Отже процедура повинна повернути значення 25.

Обмеження

- $1 \le n \le 400\ 000$
- $1 \le q \le 50\ 000$
- $1 \leq s[i], p[i] \leq 10^7$ (для всіх $0 \leq i \leq n-1$)
- $0 \leq l[i], w[i] \leq n$ (для всіх $0 \leq i \leq n-1$)
- w[i] > i (для всіх $0 \leq i \leq n-1$)
- $0 \le x \le n-1$
- $1 \le z \le 10^7$

Підзадачі

1. (11 балів) $n \leq 50~000$, $q \leq 100$, $s[i], p[i] \leq 10~000$ (для всіх $0 \leq i \leq n-1$)

- 2. (26 балів) s[i] = p[i] (для всіх $0 \le i \le n-1$)
- 3. (13 балів) $n \leq 50~000$, у всіх супротивників однакова сила, іншими словами s[i] = s[j] для всіх $0 \leq i, j \leq n-1$.
- 4. (12 балів) $n \leq 50\ 000$, існує не більше $\ 5$ різних значень сили $\ s[i].$
- 5. (27 балів) $n \leq 50~000$
- 6. (11 балів) Без додаткових обмежень.

Приклад модуля перевірки

Модуль перевірки зчитує дані у наступному форматі:

- рядок 1: n q
- рядок 2: s[0] s[1] \dots s[n-1]
- рядок 3: p[0] p[1] ... p[n-1]
- рядок 4: w[0] w[1] ... w[n-1]
- рядок 5: l[0] l[1] \dots l[n-1]
- ullet рядок 6+i ($0\leq i\leq q-1$): x z для i-го виклику simulate.

Модуль перевірки виводить дані у наступному форматі:

• рядок 1+i ($0 \leq i \leq q-1$): значення яке повернув i-й виклик simulate.