

# Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

# Laboratorios de computación salas A y B

| Profesor:                             | Adrian Ulises Mercado Martinez     |
|---------------------------------------|------------------------------------|
| Asignatura:                           | Estructura de Datos y Algoritmos I |
| Grupo:                                | 13                                 |
| No de Práctica(s):                    | Analisis de Recursividad           |
| Integrante(s):                        | Méndez Bernal Luis Alberto         |
| No. de Equipo de<br>cómputo empleado: |                                    |
| No. de Lista o Brigada:               | 13                                 |
| Semestre:                             | 2020-2                             |
| Fecha de entrega:                     | 7 de Junio del 2020                |
| Observaciones:                        |                                    |
|                                       |                                    |
|                                       | CALIFICACIÓN:                      |

### INTRODUCCION

En este trabajo le hablare sobre la recursividad, qué es y porque es tan importante en la programación de algoritmos.

# **DESARROLLO**

La recursividad es la forma en la cual un objeto de autorreferencias y rea un proceso basado en su propia definición, pero ¿qué significa esto? Bueno, la recursividad en la programación es cuando un programa necesita ejecutarse muchas veces, pero para ahorrar memoria y escribir menos se hace que el programa se "auto llame" para que vaya haciendo poco a poco su trabajo hasta llegar a algo mucho superior.

En la practica numero 12 creamos un programa que usa recursividad para calcular un numero factorial. Las formulas de estas son

$$n! = \prod_{i=1}^{n} p_i = 1 \times 2 \times 3... \times (n-1) \times n$$

Para que la computadora pueda resolver este problema es necesario que el mismo problema se vaya dividiendo en cosas más pequeñas, empezamos con la escritura del problema

5

La computadora no sabe que significa eso, así que hay que simplificarlo para que ella pueda trabajar.

Ahora tratamos de que el problema se reduzca un poco más  $5! = 5 \times 4!$ 

Y así continuamos hasta que el problema se expanda a:

$$5! = 5(4!) = 5 \times 4 \times (3!) = 5 \times 4 \times 3 \times (2!) = 5 \times 4 \times 3 \times 2 \times 1! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

Asi que ya llegamos a un resultado "desmenuzando" el problema en operaciones más sencillas.

De esto podemos ver que el programa va trabajando conforme a una base y este, al llegar a la base se detiene y te manda un resultado. También puedo ver que este método es una forma mas sencilla de programar sin tener que usar un ciclo For.

## CONCLUSION

El termino de recursividad en la programación significa tomar un problema grande e irlo dividiendo poco a poco hasta llegar a algo tan simple que cualquier persona pueda hacer. Este tipo de algoritmo facilita mucho algunos trabajos como las factoriales, la sucesión de Fibonacci o incluso para dibujar una tortuga que alargue su paso con cada dibujito. En fin, esto solo sirve par que los problemas grandes se vuelvan mas sencillos.