Cuadrados Mágicos

Los cuadrados mágicos son matrices cuadradas, de lado n, que contienen los números $1..n^2$ y que suman lo mismo por filas, columnas y en ambas diagonales principales. Existen para todo valor n! =2.

Es muy fácil probar que se cumple que "la constante mágica" (el valor que suman columnas filas y diagonal) es

$$M_2(n)=\frac{n(n^2+1)}{2}$$

para un cuadrado de lado n. Por ejemplo, en el cuadrado que se muestra arriba (tomado de un cuadro de Dürer), tenemos que ela constante mágica es 4(16+1)/2=34

1) [8 puntos] Escribir un modelo MiniZinc para obtener cuadrados mágicos. Probar con valores n=4 y n=5.

Se valorará (1 punto) que el cuadrado se escriba en "bonito" asumiendo valores entre 0 y 999 (correctamente indentado).

Ejemplos:

4	3	8		18	19	17	20	16	21
9	5	1		15	22	14	23	13	24
2	7	6		12	25	11	26	10	27
				28	33	35	1	8	6
				31	9	32	5	30	4
				7	3	2	36	34	29

2) [2 puntos] . Ahora vamos a hacer cuadrados mágicos multiplicativos, donde al multiplicar por filas, columnas o las dos diagonales principales se obtiene el mismo valor "mágico" Un ejemplo para n=3 :

escribir un modelo para calcular este tipo de cuadrados. Se puede partir del modelo anterior, pero conviene tener en cuenta las siguientes diferencias:

- Estos cuadrados no contienen números consecutivos. Al declarar el cuadrado podemos poner que sus elementos son enteros en el rango 1..pow(n,5) (es un valor arbitrario que vale para nuestro caso)
- Además aquí el valor mágico no se puede calcular de antemano (será una variable de tipo entero)
- Por último, no olvidar cambiar sum por product

Subir al campus los dos modelos como parte del fichero solución.txt