Machine Learning

Clanifiers.

Bag of words.	~~	\$	٤	-8		sotire	cenes	1545	orst
Docs	fance	f poxi	ff.lm	Agreal	olat	9t 32	Pece	Of J	03
worst boxing scenes	0	1	0	0	0	0	'1	0	1
Satire and great plot twists	1	0	0	1	1	1	0	1	0_
great scenes great- films.	0	0	1	2	0	0	1	0	0

Pros

* Easy

Cons

* Oreates spane matrix.

Suppose you have a feature vector of 12000 words. Now on average sentence has 20 words max. so we are oreating a matrix of 11980 Zeros!

* loss of sequence * loss of efficiency

Naive Bayes classifier with and ex, Tr. Data + Sorry 9'll call you later 101000100 + U can call me now - U have won call now !! 0 1 010 Te. Data Sorry! U cannot unsubscribe 10001100000 smoothing = (1+ count) This is to remove the occurance

$$P(+|0) = P(+) P(sorry|+) P(u|+) P(1|+) P(can|+) E(con)$$

$$= \frac{2}{3} \times \frac{1+1}{10+12} \times \frac{1+1}{10+12} \times \frac{1}{22} \times \frac{1+1}{22} = 0.000028.$$

P(-10) = P(-) P(sorryl-) P(UH) P(!-) P(canl-)= $\frac{1}{3} \times \frac{1}{7+12} \times \frac{1+1}{7+12} \times \frac{2+1}{7\times 12} \times \frac{1}{7\times 12} = 0.000015$.

So, the test will go to the "positive" agan.