Anticipez les besoins en consommation électrique des bâtiments

Parcours Data Scientist - OPENCLASSROOMS

Plan de la présentation

- Exploration des données
 - a. Présentation de la problématique
 - b. Nettoyage des données
 - c. Transformation des variables
- Modélisation des données
 - a. Démarche effectuée
 - b. Les différentes modélisations
 - c. Etude de la variable l'EnergySTARScore
- 3. Conclusion

Exploration des données

Présentation de la problématique

Présentation de la problématique

- Prédire les consommations d'énergie et d'émissions en CO2 sur les années à venir pour la ville de Seattle
- Évaluer l'importance de la feature EnergyStarScore
- Existence de deux relevés (2015 et 2016) + description des colonnes
- En 2015 on a 3340 lignes et 47 colonnes, en 2016 : 3376 lignes et 46 colonnes
- Approche choisie :
 - Avoir les mêmes colonnes en 2015 et 2016
 - Faire les même transformations sur les deux données
 - Faire la modélisation sur 2016 et tester les résultats sur 2015

Exploration des données

Nettoyage des données

- Nombre de colonnes communes -> 37 :
 - Utilisation des différentes sources d'énergie
 - Différentes données sur la propriété
 - Informations sur la donnée collectée
- Les colonnes non communes:
 - 4 colonnes qui ont été renommées
 - o 6 seulement en 2015: représentent des informations redondantes ou non intéressantes
 - o 5 seulement en 2016: idem

Données 2015 :

Données 2016 :

Enlever les colonnes remplies en dessous de 50%

- Les colonnes servant pour identifier la donnée 'OSEBuildingID',
 'TaxParcelldentificationNumber', 'PropertyName'
- Les informations redondantes 'ListOfAllPropertyUseTypes',
- Remplacer la colonne 'YearBuilt' par 'Building Age'
- Enlever les données erronées (non compliant, ou compliance à Error)

- Certaines features en rapport avec l'énergie sont très corrélées.
- D'après la définition des colonnes ce sont bien des information redondantes

- 0.4

 Le test du Chi-2 donne une p-value = 0 pour chaque couple de features d'intensité énergétique

De même pour l'énergie

• l'éléctricité

Et le gaz naturel

- 0.50

- 0.25

- 0.00

Exploration des données

- Transformation de l'utilisation de natural gaz, d'électricité, ou de vapeur en booleans
- Transformation des colonnes objet en variables catégorielles
- Certaines données sont mal réparties, donc on les passe au log
- Et finalement on standardise nos données en utilisant un StandardScaler

Modélisation des données

Démarche effectuée

Démarche effectuée

- 2 colonnes target: TotalGHGEmissions et SiteEnergyUseWN(kBtu)
- Choix d'une baseline pour chacune des valeurs target
- Test de différents modèles.
- Test du modèle sur les données 2015
- intégration de la variable EnergySTARScore
- Test avec la nouvelle variable sur les données 2015

Modélisation des données

Les différentes modélisations

Les différentes modélisations :baseline

- Régression linéaire :
 - Pour les émissions de gaz :
 - MSE 0.27
 - RMSE 0.52
 - Testing Score 0.73
 - Training Score 0.71
 - Cross val RMSE: 0.54 +/- 0.02
 - Pour les consommation d'énergie :
 - MSE 0.31
 - RMSE 0.56
 - Testing Score 0.67
 - Training Score 0.67
 - Cross val RMSE: 0.58 +/- 0.02

Les différentes modélisation : Ridge

Pour les émissions de gaz, alpha = 0.52, score=0.69

Les différentes modélisation : Ridge

Pour la consommation d'électricité alpha = 138.95 et score = 0.65

Les différentes modélisation : Lasso

• Pour les émissions de gaz alpha = 1e-5 et score = 0.70

Les différentes modélisation : Lasso

Pour la consommation d'énergie alpha = 0.005 et score = 0.65

- Pour les émissions de gaz : score = 0.73, training score= 0.78
- {'bootstrap': True, 'max_depth': 5, 'min_samples_leaf': 3, 'min_samples_split': 3, 'n_estimators': 200}

- Pour la consommation d'énergie : score = 0.73, training score=0.75
- {'bootstrap': True, 'max_depth': 5, 'min_samples_leaf': 3, 'min_samples_split': 3, 'n_estimators': 200}

Les différentes modélisations : Gradient Boosting

- Pour les émissions de gaz : score = 0.78, training score = 0.84
- {'max_depth': 3, 'min_samples_leaf': 6, 'min_samples_split': 3, 'n_estimators': 200}

Les différentes modélisations : Gradient Boosting

- Pour la consommation en énergie: score = 0.77, training score = 0.84
- {'max_depth': 3, 'min_samples_leaf': 5, 'min_samples_split': 3, 'n_estimators': 200}

Les différentes modélisations : SVR

- Pour les émissions de gaz : score = 0.74, training score = 0.76
- {'C': 20.0, 'gamma': 0.01, 'kernel': 'rbf'}

Les différentes modélisations : SVR

- Pour la consommation d'énergie : score = 0.71, training score = 0.71
- {'C': 17.33, 'gamma': 0.01, 'kernel': 'rbf'}

- Pour les émissions de gaz : score = 0.79, training score = 0.82
- {'colsample_bytree': 0.8, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_weight': 7, 'n_estimators': 1000, 'subsample': 1.0}, early stopping 104

Prédiction vs target pour les émissions de gaz

Importance des variables pour les émissions de gaz

- Pour la consommation d'énergie : score = 0.79, training score = 0.82
- {'colsample_bytree': 0.6, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_weight': 6, 'n_estimators': 200, 'subsample': 1.0}, Early stopping round = 161

Prédiction vs target pour la consommation en énergie

Importance des variables pour la consommation d'énergie

Les différentes modélisations

- Sur les données 2015 :
 - Score en utilisant le XGBoost pour les émissions de gaz : 0.79
 - Score en utilisant le XGboost pour la consommation d'énergie : 0.78

Modélisation des données

- Pour les émissions de gaz :
 - Training score= 0.89 vs 0.82 avant
 - Testing score=0.85 vs 0.79 avant
 - data 2015 score = 0.87 vs 0.79 avant

- Pour la consommation en énergie
 - Training score= 0.93 vs 0.82 avant
 - Testing score=0.88 vs 0.79 avant
 - o data 2015 score = 0.90 vs 0.78 avant

Conclusion

Conclusion

- Meilleur compromis c'est l'utilisation du XGBoost
- Importance de la variable EnergyStarScore
- Pistes d'améliorations
 - Prendre en compte les utilisations secondaires de chaque propriété
 - Essayer d'input l'EnergySTARScore
 - Refaire la modélisation pour les lignes contenant uniquement l'EnergySTARScore