

ФГАОУ ВО «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

ТЕОРИЯ АВТОМАТОВ

Практическое задание **№3** Вариант 8

> Лабушев Тимофей Группа Р3302

Цель работы

Практическое освоение метода перехода от абстрактного автомата к структурному автомату.

Задание

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура — одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ.

Исходный автомат Мили

δ	a_1	a_2	a_3	a_4	a_5	a_6	λ	a_1	a_2	a_3	a_4	a_5	a_6
z_1	a_2	a_1	a_5	a_6	a_2	a_3	z_1	w_1	w_2	w_3	w_3	w_2	w_1
z_2	a_4	a_3	a_1	a_4	a_6	a_5	z_2	w_2	w_3	w_1	w_2	w_1	w_3
z_3	a_6	a_5	a_3	a_2	a_4	a_1	z_3	w_3	w_1	w_2	w_1	w_3	w_2

Двоичное кодирование исходного автомата

Входной алфавит:

	x_1	x_2
z_1	0	0
z_2	0	1
z_3	1	0

Выходной алфавит:

	y_1	y_2
w_1	0	0
w_2	0	1
w_3	1	0

Состояния:

	Q_1	Q_2	Q_3
a_1	0	0	0
a_2	0	0	1
a_3 a_4	0	1	0
a_4	0	1	1
a_5	1	0	0
a_6	1	0	1

Анализ переходов

Примем за начальное состояние a_1 . Выберем закодированное входное слово, которое покрывает все переходы между состояниями:

Вычислим закодированное выходное слово, полученное в результате работы автомата:

Таблицы переходов и выходов структурного автомата

$x_1 x_2 / Q_1 Q_2 Q_3$	000	001	010	011	100	101
00	001	000	100	101	001	010
01	011	010	000	011	101	100
10	101	100	010	001	011	000

$x_1 x_2 / Q_1 Q_2 Q_3$	000	001	010	011	100	101
00	00	01	10	10	01	00
01	01	10	00	01	00	10
10	10	00	01	00	10	01
	$y_{1}y_{2}$	$y_{1}y_{2}$	y_1y_2	y_1y_2	$y_{1}y_{2}$	y_1y_2

ДНФ для выходных сигналов

По таблице выходов построим ДНФ для каждого выходного сигнала:

$$y_1 = \bar{x_1}\bar{x_2}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{x_2}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}x_2\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}x_2Q_1\bar{Q_2}Q_3 \vee \bar{x_1}x_2\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}\bar{x_2}\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}\bar{x_2}\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee \bar{x_1}\bar{x_2}\bar{Q_1}\bar{Q_2}\bar{Q_3} = 2 \vee 3 \vee 9 \vee 13 \vee 16 \vee 20$$

$$y_2 = \bar{x_1}\bar{x_2}\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}\bar{x_2}Q_1\bar{Q_2}\bar{Q_3} \vee \bar{x_1}x_2\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee \bar{x_1}x_2\bar{Q_1}Q_2Q_3 \vee \bar{x_1}\bar{x_2}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}\bar{x_2}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{x_2}Q_1\bar{Q_2}Q_3 = 1 \vee 4 \vee 8 \vee 11 \vee 18 \vee 21$$

Синтез автомата на D-триггерах

С учетом закона функционирования D-триггера построим таблицу сигналов функций возбуждения:

$x_1 x_2 / Q_1 Q_2 Q_3$	000	001	010	011	100	101
00	001	000	100	101	001	010
01	011	010	000	011	101	100
10	101	100	010	001	011	000
	$D_1D_2D_3$	$D_1D_2D_3$	$D_1D_2D_3$	$D_1D_2D_3$	$D_1D_2D_3$	$D_1D_2D_3$

$$\begin{split} D_1 &= \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} x_2 Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_$$

$$D_2 = \bar{x_1}\bar{x_2}Q_1\bar{Q_2}Q_3 \vee \bar{x_1}x_2\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee \bar{x_1}x_2\bar{Q_1}\bar{Q_2}Q_3 \vee \bar{x_1}x_2\bar{Q_1}Q_2Q_3 \vee \bar{x_1}x_2\bar{Q_1}Q_2Q_3 \vee \bar{x_1}\bar{x_2}\bar{Q_1}Q_2\bar{Q_3} \vee \bar{x_1}\bar{x_2}Q_1\bar{Q_2}\bar{Q_3} = 5 \vee 8 \vee 9 \vee 11 \vee 18 \vee 20$$

$$\begin{split} D_3 &= \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} = \\ &= 0 \vee 3 \vee 4 \vee 8 \vee 11 \vee 12 \vee 16 \vee 19 \vee 20 \end{split}$$

Проверим правильность работы функциональной схемы:

Входное слово (пары x_1x_2):

Выходное слово (пары y_1y_2):

Выходное слово совпадает с ожидаемым (см. анализ переходов)

Синтез автомата на Т-триггерах

С учетом закона функционирования Т-триггера построим таблицу сигналов функций возбуждения:

$x_1 x_2 / Q_1 Q_2 Q_3$	000	001	010	011	100	101
00	001	001	110	110	101	111
01	011	011	010	000	001	001
10	101	101	000	010	111	101
	$T_1T_2T_3$	$T_1T_2T_3$	$T_1T_2T_3$	$T_1T_2T_3$	$T_1T_2T_3$	$T_1T_2T_3$

$$\begin{split} T_1 &= \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} = \\ &= 2 \vee 3 \vee 4 \vee 5 \vee 16 \vee 17 \vee 20 \vee 21 \end{split}$$

$$T_2 = \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} = 2 \vee 3 \vee 5 \vee 8 \vee 9 \vee 10 \vee 19 \vee 20$$

$$T_3 = \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar$$

Проверим правильность работы функциональной схемы:

Входное слово (пары x_1x_2):

Выходное слово (пары y_1y_2):

Выходное слово совпадает с ожидаемым (см. анализ переходов)

Синтез автомата на RS-триггерах

С учетом закона функционирования RS-триггера построим таблицу сигналов функций возбуждения:

$x_1 x_2 / Q_1 Q_2 Q_3$	000	001	010	011	100	101
00	-0/-0/01	-0/-0/10	01/10/-0	01/10/0-	10/-0/01	10/01/10
01	-0/01/01	-0/01/10	-0/10/-0	-0/0-/0-	0-/-0/01	0-/-0/10
10	01/-0/01	01/-0/10	-0/0-/-0	-0/10/0-	10/01/01	10/-0/10
	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$	$R_1S_1/$
	$R_2S_2/$	$R_2S_2/$	$R_2S_2/$	$R_2S_2/$	$R_2S_2/$	$R_2S_2/$
	R_3S_3	R_3S_3	R_3S_3	R_3S_3	R_3S_3	R_3S_3

$$\begin{array}{l} R_1 = \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee x_1 \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee x_1 \bar{x_2} Q_1 \bar{Q_2} Q_3 = 4 \vee 5 \vee 20 \vee 21 \\ S_1 = \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee x_1 \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee x_1 \bar{x_2} \bar{Q_1} \bar{Q_2} Q_3 = 2 \vee 3 \vee 16 \vee 17 \\ R_2 = \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} x_2 \bar{Q_1} Q_2 \bar{Q_3} \vee x_1 \bar{x_2} \bar{Q_1} Q_2 Q_3 = 2 \vee 3 \vee 10 \vee 19 \\ S_2 = \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} Q_3 \vee x_1 \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} = 5 \vee 8 \vee 9 \vee 20 \\ R_3 = \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_$$

Проверим правильность работы функциональной схемы:

Входное слово (пары x_1x_2):

Выходное слово (пары y_1y_2):

Выходное слово совпадает с ожидаемым (см. анализ переходов)

Синтез автомата на ЈК-триггерах

С учетом закона функционирования JK-триггера построим таблицу сигналов функций возбуждения:

$x_1 x_2 / Q_1 Q_2 Q_3$	000	001	010	011	100	101
00	0-/0-/1-	0-/0-/-1	1-/-1/0-	1-/-1/-0	-1/0-/1-	-1/1-/-1
01	0-/1-/1-	0-/1-/-1	0-/-1/0-	0-/-0/-0	-0/0-/1-	-0/0-/-1
10	1-/0-/1-	1-/0-/-1	0-/-0/0-	0-/-1/-0	-1/1-/1-	-1/0-/-1
	$J_1K_1/$	$J_1K_1/$	$J_1K_1/$	$J_1K_1/$	$J_1K_1/$	$J_1K_1/$
	$J_2K_2/$	$J_2K_2/$	$J_2K_2/$	$J_2K_2/$	$J_2K_2/$	$J_2K_2/$
	J_3K_3	J_3K_3	J_3K_3	J_3K_3	J_3K_3	J_3K_3

$$\begin{split} J_1 &= \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee x_1 \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee x_1 \bar{x_2} \bar{Q_1} \bar{Q_2} Q_3 = 2 \vee 3 \vee 16 \vee 17 \\ K_1 &= \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee x_1 \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee x_1 \bar{x_2} Q_1 \bar{Q_2} Q_3 = 4 \vee 5 \vee 20 \vee 21 \\ J_2 &= \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} Q_3 \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} Q_3 \vee x_1 \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} = 5 \vee 8 \vee 9 \vee 20 \\ K_2 &= \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} x_2 \bar{Q_1} Q_2 \bar{Q_3} \vee x_1 \bar{x_2} \bar{Q_1} Q_2 Q_3 = 2 \vee 3 \vee 10 \vee 19 \\ J_3 &= \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} x_2 Q_1 \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{x_2} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee$$


```
Проверим правильность работы функциональной схемы:
```

Входное слово (пары x_1x_2):

Выходное слово (пары y_1y_2):

 $00 \ 10 \ 00 \ 01 \ 01 \ 00 \ 00 \ 10 \ 10 \ 10 \ 00 \ 01 \ 10 \ 01 \ 01 \ 10 \ 01$

Выходное слово совпадает с ожидаемым (см. анализ переходов)

Вывод

B ходе выполнения работы был изучен канонический метод структурного синтеза, получены практические навыки преобразования абстрактного автомата Мили в структурный автомат на D-, T-, RS- и JK-триггерах.