Notes on Metric and Normed Spaces

Mathew Calkins mathewpcalkins@gmail.com

November 25, 2018

Contents

1	Metrics and norms	1
2	Convergence	2
3	Upper and lower bounds	3
4	Continuity	4
5	Open and closed sets	5
6	The completion of a metric space	6
7	Compactness	6
8	Maxima and minima	6
9	Exercises	6

1 Metrics and norms

Claim The unit ball in any normed linear space is convex.

Proof Let X be a linear space with norm $\|\cdot\|$. As usual, denote by \overline{B} the unit ball

$$\overline{B} = \{x \in X : \|x\| \le 1\}.$$

To demonstrate convexity, fix arbitrary $x,y\in \overline{B}$ and $t\in [0,1].$ We claim that

$$tx + (1 - t)y \in \overline{B}$$

or equivalently that

$$||tx + (1-t)y|| \le 1.$$

Indeed,

$$||tx + (1 - t)y|| \le ||tx|| + ||(1 - t)y||$$

$$= t ||x|| + (1 - t) ||y||$$

$$\le t \cdot 1 + (1 - t) \cdot 1$$

$$= 1.$$

QED

Claim If $(X, \|\cdot\|)$ is a normed linear space, then

$$d(x,y) = \frac{\|x - y\|}{1 + \|x - y\|}$$

defined a nonhomogenous, translation-invariant metric on X.

Proof We proof that $d: X \times X \to \mathbb{R}$ is a metric one property at a time. Since the top and bottom of our fraction are always nonnegative, we have that $d(x,y) \geq 0$ for all $x,y \in X$. And the only time d(x,y) = 0 is when ||x-y|| = 0, which occurs only when x = y, so $d(x,y) = 0 \iff x = y$. Symmetry (d(x,y) = d(y,x)) is clear by inspection.

The triangle inequality is harder. Fix $x, y, z \in X$. We wish to show that

$$\frac{\|x-y\|}{1+\|x-y\|} + \frac{\|y-z\|}{1+\|y-z\|} \ge \frac{\|x-z\|}{1+\|x-z\|}.$$

2 Convergence

Definition 1.12 A sequence (x_n) in a metric space (X,d) is Cauchy if $\forall \epsilon > 0, \exists N \text{ such that } m, n \geq N \in \mathbb{N} \implies d(x_n, x_m) < \epsilon$.

Definition 1.16 (Usual definition of convergence in a metric space)

Claim In a general metric space, every convergent sequence in is Cauchy.

Proof Let $(X, \|\cdot\|)$ be a metric space and let $\{x_n\}$ be a sequence in X converging to $x \in X$. Fix $\epsilon > 0$. So there exists N such that $n \geq N \implies d(x, x_n) < \epsilon/2$. Then for all $m, n \geq N$ the triangle inequality implies

$$d(x_n, x_m) \le d(x, x_n) + d(x, x_m)$$
$$< \epsilon/2 + \epsilon/2$$
$$= \epsilon$$

QED

Definition 1.17 A metric space (X, d) is *complete* if every Cauchy sequence in X converges to a limit in X. A subset Y is *complete* if the metric subspace $(Y, d|_Y)$ is complete. A *Banach space* is a normed linear space which is complete with respect to the norm-induced metric.

3 Upper and lower bounds

Definition 1.20 (defitions of upper bound, lower bound, bounded from above, bounded from below for subsets of \mathbb{R})

Definition 1.121 (definitions of supremum / least upper bound and infimum / greatest lower bound)

Note that Hunter uses monotone increasing to mean non-decreasing $(n > m \implies x_n \ge x_m)$ and likewise for monotone decreasing.

Given a sequence (x_n) in \mathbb{R} , we define

$$\lim \sup x_n = \lim_{n \to \infty} \left[\sup \{ x_k \mid k \ge n \} \right].$$

Notice that the sequence (y_n) on the inside of the RHS given by

$$y_n = \sup\{x_k \mid k \ge n\}$$

is monotone increasing (i.e., never decreasing). We similarly define

$$\lim \inf x_n = \lim_{n \to \infty} \left[\inf \{ x_k \mid k \ge n \} \right].$$

Both of these values always exist, as long as we allow $\pm \infty$ in addition to real values. Observe the useful sandwiching

$$\sup\{x_k \mid k \ge 1\} \ge \sup\{x_k \mid k \ge n\} \ge x_n \ge \inf\{x_k \mid k \ge n\} \ge \inf\{x_k \mid k \ge 1\}.$$

Notice that (x_n) is convergent if and only if $\lim \inf x_n = \lim \sup x_n$, in which case it converges to their common value.

4 Continuity

Definition 1.26 (continuity in a metric space) $f: X \to Y$ is continuous at $x_0 \in X$ if $\forall \epsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \epsilon.$$

 $f: X \to Y$ is continuous on X if it is continuous at every points in X.

Example 1.27 (distance is continuous) Fix $a \in X$ and define $f : X \to \mathbb{R}$ by f(x) = d(x, a). Then f is continuous on A.

Proof Per the premise, let (X, d) be a metric space with some $a \in X$ and define $f: X \to \mathbb{R}$ by the rule f(x) = d(x, a). To show continuity, fix arbitrary $x_0 \in X$ and $\epsilon > 0$. Being carefully about which metrics are used where, we wish to find $\delta > 0$ such that

$$d_X(x, x_0) < \delta \implies d_{\mathbb{R}}(f(x), f(x_0)) < \epsilon.$$

From the definition of f, this is equivalent to the condition

$$d_X(x,x_0) < \delta \implies |d_X(x,a) - d_X(x_0,a)| < \epsilon.$$

But according to the following corrolary of the triangle inequality:

$$d(x_1, x_2) \ge |d(x_1, x_3) - d(x_2, x_3)|.$$

It suffices to set $\delta = \epsilon$. QED

Definition 1.30 (uniform continuity in a metric space) A function $f: X \to Y$ is uniformly continuous on X if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \epsilon$$

for all $x, y \in X$. This differs from regular continuity in that δ is independent of $x, y \in X$.

Example 1.32 A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if

$$f(tx + (1-t)y) = tf(x) + (1-t)f(y) \ \forall x, y \in \mathbb{R}^n \text{ and } t \in [0,1].$$

Every affine function is uniformly continuous and has the form $x \mapsto Ax + b$ for some constant matrix M and constant vector b.

Definition 1.33 A function $f: X \to Y$ is sequentially continuous at $x \in X$ if, for every sequence (x_n) converging to $x \in X$, the sequence $(f(x_n))$ converges to $f(x) \in Y$.

Proposition 1.34 Let X, Y be metric spaces. Then $f: X \to Y$ is continuous at $x \in X$ if and only if it is sequentially continuous at that point.

5 Open and closed sets

Open and closed balls in a metric space (X, d):

$$B_r(a) = \{ x \in X \mid d(x, a) < r \},\ \overline{B}_r(a) = \{ x \in X \mid d(x, a) > r \}.$$

Definition 1.36 (open and closed sets in a metric space) Let (X, d) be a metric space. A subset $G \subset X$ is open if $\forall x \in G$, there exists r > 0 such that $B_r(x) \subset G$. A subset $F \subset X$ is closed if its complement $F^c = X - F$ is open.

Example 1.39 (rationals have Lebesgue measure zero) Let $\{q_n \mid n \in \mathbb{N}\}$ be an enumeration of \mathbb{Q} and fix $\epsilon > 0$. For each $n \in \mathbb{N}$, consider the open interval

$$I_n = \left(q_n - \frac{\epsilon}{2^n}, q_n + \frac{\epsilon}{2^n}\right).$$

The union $\bigcup_{n\in\mathbb{N}}I_n$ is very interesting: it covers \mathbb{Q} , and yet the sum of the lengths of the intervals is 2ϵ , where ϵ can be made as small as we want. A subset of \mathbb{R} has Lebesgue measure zero if $\forall \epsilon > 0$, there exists a countable collection of open intervals whose unions contains the subset and such that the sum of the lengths of the intervals is less than ϵ .

6 The completion of a metric space

- 7 Compactness
- 8 Maxima and minima
- 9 Exercises

Exercise 1.2 Give an $\epsilon - \delta$ proof that

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x},$$

when |x| < 1.

Solution We begin by obtaining a nice expression for the nth partial sum

$$s_n(x) = \sum_{n=0}^k x^k = 1 + x + x^2 + \dots + x^k.$$

To do so, observe that

$$xs_n(x) = x \sum_{n=0}^{k} x^k$$

= $x + x^2 + \dots + x^{k+1}$
= $s_n(x) + x^{k+1} - 1$.

Solving for $s_n(x)$ gives

$$s_n(x) = \frac{1 - x^{k+1}}{1 - x}.$$

In other words,

$$s_n(x) = \frac{1 - x^{k+1}}{1 - x}$$
$$= \frac{1}{1 - x} - \frac{x^{k+1}}{1 - x}.$$

So it finally suffices to show that $\lim_{n\to\infty} x^n = 0$ for |x| < 1. For $\epsilon > 0$, we need to find $N \in \mathbb{N}$ such that $n \geq N$ implies $|x^n| < \epsilon$. To do so, simply set $N > \log_x(\epsilon)$. QED

Exercise 1.3 If x, y, z are points in a metric space (X, d), show that

$$d(x,y) \ge |d(x,z) - d(y,z)|$$

Solution The triangle inequality tells us that

$$d(x,z) \ge d(x,y) + d(y,z)$$

and

$$d(y,z) \ge d(x,y) + d(x,z).$$

Isolating d(x, y) in both inequalities gives

$$d(x, y) \le d(x, z) - d(y, z),$$

 $d(x, y) \le -((d, z) - d(y, z)).$

Equivalently,

$$d(x,y) \le |d(x,z) - d(y,z)|.$$

QED