conv_filter_visualization

April 16, 2018

1 What CNN See

This notebook is based solely from the content presented in https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html by *Francois Chollet* and https://github.com/keras-team/keras/blob/master/examples/conv_filter_visualization.py.

Some extra content have been added from the original content to aid my understanding of using **Keras**.

This notebook visualises what deep convolutional neural networks see from the images we feed them.

We will start by defining the VGG16 model in Keras by

- Import Keras applications using the command from keras import applications Keras
 Applications are deep learning models that are made available alongside pre-trained
 weights.
- (2) Instantiate a VGG16 model (performing this, weights are downloaded automatically to ~/.keras/models/.

```
keras.applications.vgg16.VGG16(include_top=True, weights='imagenet', input_tensor=None, inp
```

- include_top: whether to include the 3 fully-connected layers at the top (end) of the network. _In this code, we set include_top = False. This is because adding the FC layers requires us to use a fixed input size for the model (i.e. 224x244, the original ImageNet format).
- weights: it can be None for random initilisation or imagenet for pre-trained weights on ImageNet

/home/supannee/tensorflow/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conver from ._conv import register_converters as _register_converters
Using TensorFlow backend.

Layer (type)	Output	Shape			Param #
input_1 (InputLayer)	(None,	None,	None,	3)	0
block1_conv1 (Conv2D)	(None,	None,	None,	64)	1792
block1_conv2 (Conv2D)	(None,	None,	None,	64)	36928
block1_pool (MaxPooling2D)	(None,	None,	None,	64)	0
block2_conv1 (Conv2D)	(None,	None,	None,	128)	73856
block2_conv2 (Conv2D)	(None,	None,	None,	128)	147584
block2_pool (MaxPooling2D)	(None,	None,	None,	128)	0
block3_conv1 (Conv2D)	(None,	None,	None,	256)	295168
block3_conv2 (Conv2D)	(None,	None,	None,	256)	590080
block3_conv3 (Conv2D)	(None,	None,	None,	256)	590080
block3_pool (MaxPooling2D)	(None,	None,	None,	256)	0
block4_conv1 (Conv2D)	(None,	None,	None,	512)	1180160
block4_conv2 (Conv2D)	(None,	None,	None,	512)	2359808
block4_conv3 (Conv2D)	(None,	None,	None,	512)	2359808
block4_pool (MaxPooling2D)	(None,	None,	None,	512)	0
block5_conv1 (Conv2D)	(None,	None,	None,	512)	2359808
block5_conv2 (Conv2D)	(None,	None,	None,	512)	2359808
block5_conv3 (Conv2D)	(None,	None,	None,	512)	2359808
block5_pool (MaxPooling2D)	(None,	None,	None,	512)	0
Total params: 14,714,688 Trainable params: 14,714,688					

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

Create a dictionary for (layer.name, layer) using layer.name as key because each layer has a

unique name. We could list the layer name by

This results in a list of all layer in VGG16 network (notice the missing FC layers as the results of setting include_top = False).

input_1 block1_conv1 block1_conv2 block1_pool block2_conv1 block2_conv2 block2_pool block3_conv1 block3_conv2 block3_conv3 block3_pool block4_conv1 block4_conv2 block4_conv3 block4_pool block5_conv1 block5_conv2 block5_conv3 block5_pool

```
In [2]: layer_dict = dict([(layer.name, layer) for layer in model.layers])
```

Next, define a **loss function** that will seek to **maximize the activation** of a specific filter (filter_index) in a specific layer (layer_name). We do this via a Keras backend function, which allows our code to run both on top of TensorFlow and Theano.

```
from keras import backend as K
```

layer_name can be set using following layer.name of any layer with filter. For example,

```
layer_name = 'block5_conv3'
```

filter_index can be set to any integer that corresponds to the filter index in that layer. For example, there are 512 filters for block5_conv3. Thus, we can set the index to any value between 0 and 511.

```
In [3]: from keras import backend as K

layer_name = 'block5_conv3'
filter_index = 0 # can be any integer from 0 to 511, as there are 512 filters

# build a loss function that maximises the activation of the nth filter of the chosen lost in the output of the selected layer 'layer_name'
layer_output = layer_dict[layer_name] output
# 2. Get the mean of the tensor at filter_index
if K.image_data_format() == 'channels_first':
    loss = K.mean(layer_output[:, filter_index, :, :])
else:
    loss = K.mean(layer_output[:, :, :, filter_index])

# Define the placeholder for the input images
input_img = model.input

# compute the gradient of the input picture wrt this loss
```

grads = K.gradients(loss, input_img)[0]

```
# normalise the gradient
small_value = 1e-5 # or K.epsilon()
grads /= (K.sqrt(K.mean(K.square(grads))) + small_value)

# This function returns the loss and grads given the input picture
iterate = K.function([input_img], [loss, grads])
```

In the code above, the gradient of the pixels of the input image is normalised. This avoids very small and very large gradients which ensure smooth gradient ascent process. Next, we use the Keras function we defined to do gradient ascent in the input space, with regard to our filter activation loss.

```
In [8]: import numpy as np
        from scipy.misc import imsave
        # Let's define dimensions of the generated pictures for each filter.
        img\_width = 128
        img_height = 128
        # Let's start from a gray image with some noise
        if K.image_data_format() == 'channels_first':
            input_img_data = np.random.random((1, 3, img_width, img_height))
        else:
            input_img_data = np.random.random((1, img_width, img_height, 3))
        input_img_data = (input_img_data - 0.5) * 20 + 128
        imsave('gray_image.png', input_img_data[0,:,:,:])
        print(input_img_data.shape)
        # run gradient ascent for N steps
        step = 1. # step size for gradient ascent
        for i in range(N):
            loss_value, grads_value = iterate([input_img_data])
            input_img_data += grads_value * step
            print('Current loss value:', loss_value)
            if loss_value <= 0.:</pre>
                # some filter get stuck to 0, skip them
                break
(1, 128, 128, 3)
Current loss value: 0.0
/home/supannee/tensorflow/lib/python3.5/site-packages/ipykernel_launcher.py:15: DeprecationWarni
```

`imsave` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.

Use ``imageio.imwrite`` instead.

```
from ipykernel import kernelapp as app
```

Now we can extract and display the generated input.

Time to run and get the results!

```
In [12]: img = input_img_data[0]
    img = deprocess_image(img)
    imsave('%s_filter_%d.png' % (layer_name, filter_index), img)
```

/home/supannee/tensorflow/lib/python3.5/site-packages/ipykernel_launcher.py:3: DeprecationWarnir `imsave` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``imageio.imwrite`` instead.

This is separate from the ipykernel package so we can avoid doing imports until

Input image: 🛚

Result: