

Cálculo Numérico

Ficha 1 - Introdução (Teoria de Erros)

- 1. Considere os seguintes valores aproximados
 - **a)** 108.1
 - **b)** 94.23 (8)
 - **c)** 61.124 (0.5)
 - **d)** 5.03 (20)
 - e) 206.1 ± 0.02
 - **f)** 717.0.

Indique, justificando, o número de casas decimais significativas e o número de algarismos significativos que se pode garantir para cada uma das aproximações anteriores.

- 2. Considere os números $x_1 = \pi$, $x_2 = e^{-1}$ e $x_3 = \sin(1)$ e os respetivos valores aproximados $\widehat{x_1} = 3.1416$, $\widehat{x_2} = 0.368$ e $\widehat{x_3} = 0.8414$.
 - a) Indique, justificando, quais dos valores $\widehat{x_1}$, $\widehat{x_2}$ e $\widehat{x_3}$ são valores aproximados por excesso ou por defeito.
 - **b)** Determine o erro absoluto e o erro relativo de cada um dos anteriores valores aproximados.
 - c) Qual dos valores \widehat{x}_1 , \widehat{x}_2 e \widehat{x}_3 , tem maior precisão ? Justifique.
 - d) Com base nas alíneas \mathbf{a}) e \mathbf{b}), indique intervalos, com amplitude tão pequena quanto possível (utilizando 6 casas decimais devidamente arredondadas), que contenham os valores exatos x_1 , x_2 e x_3 .

- 3. Sejam $f(x) = x^4 16$ e $g(y) = \cos(y)$, funções reais de variável real.
 - a) Determine expressões para $C_f(x)$ e $C_g(y)$. O que se pode dizer acerca do condicionamento das funções f e g?
 - **b)** Sendo x = 1.999 e $\hat{x} = 1.9999$, calcule os erros relativos

$$r_x = \frac{|x - \widehat{x}|}{|x|}$$
 e $r_{f(x)} = \frac{|f(x) - f(\widehat{x})|}{|f(x)|}$.

- c) Calcule $C_f(1.999)$ e, com base neste resultado, comente os resultados obtidos em b).
- d) Sendo $y = 0.499\pi$ e $\hat{y} = 0.4999\pi$, calcule os erros relativos

$$r_y = \frac{|y - \widehat{y}|}{|y|}$$
 e $r_{g(y)} = \frac{|g(y) - g(\widehat{y})|}{|g(y)|}$.

e) Calcule $C_g(0.499\pi)$ e, com base neste resultado, comente os resultados obtidos em **d**).

4. Exercício computacional (realizado em R ou Phyton)

Considere os sistemas de equações lineares:

$$S_1 \equiv \begin{cases} 4x + 13y = 26 \\ 3x + 10y = 20 \end{cases}$$
 e $S_2 \equiv \begin{cases} 4x + 13y = 25.9 \\ 3x + 10y = 20.1 \end{cases}$.

- a) Imprima o gráfico conjunto das retas correspondentes ao sistema de equações S_1 .
- b) Imprima o gráfico conjunto das retas correspondentes ao sistema de equações S_2 .
- c) Determine as soluções dos dois sistemas de equações.
- d) Com base nos resultados obtidos na alínea \mathbf{c}) o que pode concluir ? Justifique.