Heuristic Analysis

The aim of this report is to assess the performance of the three heuristics implemented for project completion. They basically make use of one of two major function which get distances from any location to every place in the board and get the maximum reachable depth from any location in board respectively.

Distances

Bearing in mind the particular move pattern of knights, which is an L shape in all directions, calculating distances is not as straight as getting the Euclidean or Manhattan distance. Positions seeming to be close to the starting point are in fact further away. In order to meet this problem, breadth-first search was implemented, it starts looking for closest reachable locations and continues through the tree's levels until no more locations are available or reachable.

2	3	4	1	2	1	8
∞	2	1	8	3	2	1
2	3	2	3	0	3	2
3	8	8	2	3	2	1
4	3	4	1	2	8	4
3	8	3	4	3	2	3
4	5	2	3	2	3	4

Distances from player 1 location

Maximum depth

Same consideration is taken into account when maximum depth is calculated, in this case though, board is explored using depth-first search, keeping track of all possible knight's moves. On grounds of efficiency, the search is stopped once a depth of 6 is reached, otherwise it could take a long time to finish.

Maximum reachable depth from 1 is

Heuristics

• **Custom Score:** This function uses distances from each player location and returns the difference between the numbers of first-reachable positions of each player.

```
score = 0
# Count how many positions are closer to each player
for i, own_dist in enumerate(own_distances):
    opp_dist = opp_distances[i]
    if own_dist < opp_dist:
        score += 1
    elif own_dist > opp_dist:
        score -= 1
return float (score)
```

• **Custom Score 2:** This function sums up the maximum reachable depth from each legal move of each player and returns the difference.

```
accum = 0
# Get max reachable depth from each player's legal move and sum up
for move in own_moves:
    accum += (get_max_depth(game, move)) + 1

# Get max reachable depth from each opponents's
# legal move and substrac from player' sum
for move in opp_moves:
    accum -= (get_max_depth(game, move)) + 1

return float (accum)
```

Custom Score 3: Same as before, it sums up the maximum reachable depth from each legal
move of each player but before calculating difference, it divides the sum by the number of
legal moves of each player (arithmetic mean).

```
# Sum up max reachable depth from each player's legal move
own_accum = 0
for move in own_moves:
    own_accum += get_max_depth(game, move) + 1

# Sum up max reachable depth from each opponent's legal move
opp_accum = 0
for move in opp_moves:
    opp_accum += get_max_depth(game, move) + 1

# Calculate the max reachable depth mean for each player
own_mean = own_accum / len (own_moves) if len(own_moves) else 0
opp_mean = opp_accum / len (opp_moves) if len(opp_moves) else 0
return float (own_mean - opp_mean)
```

Results

200 games were played between agents in order to determine which one is better overall, games were played in two rounds just as images below show.

Playing Matches										

Match #	Opponent	AB_Improved		AB_Custom		AB_Custom_2		AB_Custom_3		
		Won	Lost	Won	Lost	Won	Lost	Won	Lost	
1	Random	92	8	93	7	94	6	96	4	
2	MM_Open	70	30	82	18	81	19	76	24	
3	MM_Center	86	14	91	9	91	9	88	12	
4	MM_Improved	66	34	77	23	73	27	74	26	
5	AB_Open	50	50	48	52	58	42	46	54	
6	AB_Center	54	46	61	39	54	46	60	40	
7	AB_Improved	48	52	48	52	46	54	47	53	
	Win Rate:	66.6%		71.4%		71.0%		69.6%		

First round of games

Match #	Opponent	AB Improved		AB_Custom		AB_Custom_2		AB_Custom_3		
		Won	Lost	Won	Lost	Won	Lost	Won	Lost	
1	Random	94	6	94	6	91	9	90	10	
2	MM_Open	67	33	80	20	78	22	73	27	
3	MM_Center	90	10	90	10	83	17	77	23	
4	MM_Improved	70	30	79	21	74	26	70	30	
5	AB_Open	57	43	57	43	55	45	48	52	
6	AB_Center	62	38	56	44	67	33	62	38	
7	AB_Improved	49	51	55	45	61	39	47	53	
	Win Rate:	69.9%		73.0%		72.7%		66.7%		

Second round of games

Based on games played, first heuristic (AB_Custom) turns out to be the best, however it's not clearly decisive when it comes to play against Alpha-Beta players especially against AB_Open and AB_Improved where its performance is roughly the same. It could be said that second heuristic performs a little better against these agents however it is not totally clear, more games would have to be played to assess better its success. A combination between both heuristics may be good, though, especial attention would have to be put since it could drastically affect the overall performance.