Espacios de Lebesgue

De aquí en adelante (Ω, F, μ) es un espacio de medida. Si se requieren más se pondrán subíndices.

Recordamos que $\mathcal{L}^p(\mu)$ es el conjunto de funciones medibles p-integrables. La función $\|\cdot\|_p$ define una seminorma y tomando $\mathcal{N}(\mu)$ como las funciones que se anulan casi en todas partes podemos definir el espacio

$$L^p(\mu) := \mathcal{L}^p(\mu)/N(\mu)$$

que sí es un espacio normado con la norma $\|\cdot\|_p$. De hecho, es un espacio de Banach.

Teorema 1 (Riesz-Fischer). $L^p(\mu)$ es un espacio de Banach.

Demostraci'on. Vamos a probar que todas las series absolutamente sumables son sumables.

Caso $1 \le p < \infty$: Sea $(f_n)_{n \in \mathbb{N}}$ con $f_n \in L^p(\mu)$ tal que

$$\sum_{n\in\mathbb{N}} \|f_n\|_p \le M < \infty. \tag{1}$$

Consideremos las sumas parciales puntuales $G_n(x) = \sum_{k=1}^n |f_k(x)|$. Nótese que son no negativas y crecientes. Además, G_n es una suma finita de funciones medibles, así que es medible. Por otro lado, $G_n(x) \uparrow \sum_{n \geq 1} |f_n(x)| =: G(x)$ que está dominada por la serie en (1). Así, por el Teorema de Convergencia Dominada (TCD) tenemos que

$$\lim_{n \to \infty} \int G_n(x) \, d\mu = \int G(x) \, d\mu. \tag{2}$$

En particular,

$$\lim_{n \to \infty} \int G_n(x)^p d\mu = \int G(x)^p d\mu =: I.$$
 (3)

Y por lo tanto $I \leq M^p$ pues basta tomar límite en la expresión:

$$\left(\int G_n(x)^p \right)^{1/p} = \|G_n\|_p \le \sum_{n \in \mathbb{N}} \|f_n\|_p \le M < \infty.$$

Esto nos dice que $G^p \in L^1(\mu)$ y juntándolo con lo anterior concluimos que $0 \le G^p < \infty$ μ -ctp. De esta forma, el candidato a límite de la serie es

$$F(x) = \begin{cases} \sum_{n \in \mathbb{N}} f_n(x) &, G(x) < \infty \\ 0 &, e.o.c \end{cases}$$
 (4)

Dado que $|F(x)| \leq G(x)$, $F \in L^p(\mu)$. Además, F es medible porque TODO. Queda ver la convergencia. Dado que $|F(x) - \sum_{k=1}^n f_k(x)|$ está dominado por G

para cada x, en particular $|F(x) - \sum_{k=1}^n f_k(x)|^p$ está dominado por G^p . Luego, por TCD nos queda

$$\lim_{n \to \infty} \int |F(x) - \sum_{k=1}^{n} f_k(x)|^p = 0.$$
 (5)