Function-Space Distributions over Kernels

Greg Benton^[1], Wesley Maddox^[1], Jayson Salkey^[1], Julio Albinati^[2], Andrew Gordon Wilson^[1]

[1] Cornell University, [2] Microsoft

Outline

- Gaussian processes (GPs) are powerful regression tools, relying only on mean and covariance functions
- In general can assume constant mean; care most about uncovering the covariance through *kernel learning*
- Learn everything about a stationary covariance function $k(\tau)$ by learning its spectral density $S(\omega)$
- Propose Functional Kernel Learning (FKL): model the log-spectral density of a kernel using a latent GP
- Representation Learning with Gaussian processes through the construction of unconventional kernels

Spectral Representation

Bochner's Theorem: Can represent a (positive definite) kernel as

$$k(au) = \int_{\mathbb{D}} e^{2\pi i \omega au} S(\omega) d\omega$$

with $\tau = |x - x'|$, the distance between any two inputs, and some positive finite function $S(\omega)$. Only need to learn the (unnormalized) spectral density $S(\omega)$ to learn $k(\tau)$.

Model Specification

{Hyperprior} $p(\phi) = p(\theta, \gamma)$ {Latent GP} $g(\omega)|\theta \sim \mathcal{GP}(\mu(\omega; \theta), k_g(\omega, \omega'; \theta))$ {Spectral Density} $S(\omega) = \exp\{g(\omega)\}$ {Data GP} $f(x_n)|S(\omega), \gamma \sim \mathcal{GP}(\gamma_0, k(\tau; S(\omega))).$

Inference: We employ Monte Carlo EM to learn the hyper-parameters and instance of the spectral density corresponding to the kernel over data $k(\tau)$:

- Initialize $g(\omega)$ to log-periodogram and ϕ to likely values from $p(\phi)$ then repeat:
- Fix $g(\omega)$ and update ϕ using gradient descent
- Fix ϕ and update $g(\omega)$ using elliptical slice sampling

Functional Kernel Learning

- Top plots show standard
 GP regression process over data
- Bottom plots show similar process over kernels
- FKL provides
 non-parametric regression
 interpretation of kernel
 learning

Recovering Spectra of Known Kernels

- Generate data from GP with known kernel: spectral density is mixture of two Gaussians
- Learn true (known) spectral density and kernel using alternating inference strategy

Extrapolation and Interpolation

Multi-Task Learning

Tie covariance for each location together by assuming single latent GP over log-spectral density. With $g^t(\omega)$ as the t^{th} realization of $g(\omega)$ we have,

{Latent GP}
$$g(\omega)|\theta \sim \mathcal{GP}(\mu(\omega;\theta), k_g(\omega, \omega'; \theta))$$
{Task GP, $\forall t$ }
$$f_t(x)|g^t(\omega), \gamma \sim \mathcal{GP}(\gamma_0, k(\tau; S(\omega)))$$

where the hyperprior and link functions are the same as in the single dimensional case.

- Multi-output time series data from US Historical Climatology Network:
- Average positive precipitation by day
- Can run extrapolation simulations on >100 stations (N = 40k) at a time

Results

- Developed FKL: a non-parametric approach to kernel learning
- Outperforms state-of-the-art on extrapolation while requiring less intervention
- Extends to multi-task data in a new and intuitive way via linking spectral densities