Technical Note: ¹¹C Spallation Production Measurement

Hasung Song

September 22, 2025

Abstract

This technical note describes the $^{11}\mathrm{C}$ measurement in KLZ and how the rate is extracted.

Spallation Event Selection

- Standard FBE muon selection cuts
- Standard MoGURA neutron selection cuts
- Neutron Shower Cuts $(N_n = 1)$
- XeLS ¹¹C Candidate cuts

- Energy Range: 1.0-1.6 MeV

- Radius : 0-160 cm

- dT : 100-18,000 s (5 hours)

• KamLS ¹¹C Candidate cuts

- Energy Range: 1.4-2.4 MeV

- Radius : 220-350 cm

- dT : 100-18,000 s (5 hours)

• dR Cut : < 80 cm

Fit to dT

dT of muon-event pairs where the neutron shower contained 1 observed neutron is shown in Figure 1.

Figure 1: dT of muon-event pairs where the neutron shower contained 1 observed neutron.

Rate Calculation

The calculation of expected number of detected, selected, and correlated $^{11}\text{C-}\mu$ pairs.

$$I_{C11} = Y_{C11} \times E_{FBE} \times (1 - dt_{MoG}) \times P_n(1|^{11}C_{spall}) \times \epsilon_{dR} \times \epsilon_{dT} \times \epsilon_{FV} \times \epsilon_E$$
 (1)

- I_{C11} : Integral of the exponential component of the fit, "Observed $\mu-^{11}$ C pairs" [events]
- Y_{C11} : Production rate of ¹¹C in KamLS, XeLS **final result** [events/kton · days]
- E_{FBE} : Exposure, Livetime : $[kton \cdot days]$
 - Go through FBE runs and sum up muon veto/detector deadtimes, integrate FV.
- dt_{MoG} : MoGURA Deadtime Fraction: [unitless]
 - simply scale up based on the deadtime since muons that occur during deadtime will not be able to create accurate pairs.
 - Have to go through the MoGURA/FBE runs and check for overlap.
- $P_n(1|^{11}C_{spall})$: Neutron Production : How many muons that create 11 C create exactly 1 **observed** neutron [unitless]
 - Muons that create ¹¹C and create 1+ neutrons, some fraction of those have only one detected (Toy MC calculation using Neutron Tagging Efficiency and FLUKA simulated neutron yield)
 - Can estimate the rate of muons creating other isotopes, should be 1% of ¹¹C production in the analysis dT range.
- ϵ_{dR} : dR cut efficiency (from FLUKA tuned with 11 C), for each data period [unitless]
- ϵ_{dT} : dT > 100s cut efficiency (from known $^{11}{\rm C}$ half-life) [unitless]

- ϵ_{FV} : Fiducial Volume Cut Efficiency (KLG4Sim) [unitless]
- ϵ_E : Energy Cut Efficiency (KLG4Sim) [unitless]

Simply solve for Y_{C11} :

$$Y_{C11} = \frac{I_{C11}}{E_{FBE} \times (1 - dt_{MoG}) \times P_n(1|^{11}C_{spall}) \times \epsilon_{dR} \times \epsilon_{dT} \times \epsilon_{FV} \times \epsilon_E}$$
(2)

Systematic Errors

- A_{C11} , exponential amplitude, fit uncertainty : $A_{C11} = 509 \pm 39$, $\frac{39}{504} = 7.7\%$
- Exposure Uncertainty, from 0ν analysis uncertainty $\sim 4\%$
 - 4% uncertainty stated for uncertainty in xenon exposure, mainly driven by FV uncertainty, similar for Carbon?
- Neutron Tagging Efficiency Error: $74.5\% \pm 0.4\%$
- FLUKA simulation Systematic : dR Cut, Neutron Production
- FLUKA simulation Statistical (insignificant)
- Energy Scale Uncertainty: (use 1 sigma of kB, R contour)

Result