AlgMetP SS 2020

Lösung zu: Artifacts

Lösungsskizze zu Aufgabe 6d

Bernhard Germann, Massoud Vincent Shahriyari June 30, 2020

Aufgabenstellung

• Gegeben:

- n_w Krieger
- n_s Zauber
- n_m Magier
- n_a Artefakte
- Magier verbrauchen Artefakte, um Zauber zu wirken
- Ein Krieger ist nur mit manchen Zaubern kompatibel
- Auf den Krieger wij können höchstens bij Zauber gewirkt werden
- Ein Magier ist nur mit manchen Zaubern kompatibel
- Ein Magier ist nur mit manchen Artefakten kompatibel
- Ein Artefakt ist entweder episch oder normal
- Von Artefakt ai gibt es ei Exemplare
- Ein Magier verbraucht 3 identische normale Artefakte oder 1 episches Artefakt, um einen Zauber zu wirken
- Frage: Was ist die maximale Anahl an Zaubern, die unter den gegebenen Constraints gewirkt werden können?
- **Ansatz:** Modelliere das Problem als Flussgraphen und wende dann den Max-Flow Algorithmus an.

Lösungsskizze

- Flussgraph G = (V, E) und Gewichtsfunktion f definiert definiert durch:
 - Quelle $s \in V$, Ziel $t \in V$
 - Krieger $a_1, \ldots, a_{n_a} \in V$
 - Krieger $m_1, \ldots, m_{n_m} \in V$
 - Krieger $s_1, \ldots, s_{n_s} \in V$
 - Krieger $w_1, \ldots, w_{n_w} \in V$
 - $(s, a_i) \in E$
 - Wenn a_i normal, dann $f(s,a_i)=\lfloor \frac{e_i}{3} \rfloor$
 - Wenn a_i episch, dann $f(s, a_i) = e_i$
 - $(a_i, m_j) \in E$, falls a_i, m_j kompatibel, $f(a_i, m_j) = \infty$
 - $(m_i, s_j) \in E$, falls m_i, s_j kompatibel, $f(m_i, s_j) = \infty$
 - $(s_i, w_i) \in E$, falls s_i, w_i kompatibel, $f(s_i, w_i) = \infty$
 - $(w_i, t) \in E$
 - $f(w_i, t) = b_i$
- Die Lösung ist Max-Flow(G, s, t)

Flussgraph zum Beispiel-Input 1, Testcase 2

Zusammenfassung

- Art des Problems:
 - Optimierungsproblem
 - Graphenproblem
- Algorithmische Methoden zur Lösung:
 - Max-Flow-Algorithmus (z.B. Edmonds-Karp Algorithmus)