10.2. Attention Pooling by Similarity

Lecture based on "Dive into Deep Learning" http://D2L.AI (Zhang et al., 2020)

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

Attention by similarity

Nadaraya-Watson estimators rely on a similarity kernel $\alpha(\mathbf{q},\mathbf{k})$ relating queries \mathbf{q} to keys \mathbf{k} . Some common kernels are

$$\alpha(\mathbf{q}, \mathbf{k}) = \exp\left(-\frac{1}{2}\|\mathbf{q} - \mathbf{k}\|^2\right)$$
 Gaussian $\alpha(\mathbf{q}, \mathbf{k}) = 1$ if $\|\mathbf{q} - \mathbf{k}\| \le 1$ Boxcar $\alpha(\mathbf{q}, \mathbf{k}) = \max(0, 1 - \|\mathbf{q} - \mathbf{k}\|)$ Epanechikov

See for a more extensive review and how the choice of kernels for kernel density estimation.

- All the kernels $\alpha(\mathbf{k}, \mathbf{q})$ defined here are translation and rotation invariant.
- i.e., shifting and rotating both $\mathbf k$ and $\mathbf q$ in the same way
- Different kernels correspond to different notions of range and smoothness.
 - e.g., the boxcar kernel only attends to observations within a distance of 1.

Nadaraya Watson Estimators

Regression and classification via kernel density estimation

$$f(\mathbf{q}) = \sum_{i} \mathbf{v}_{i} \frac{\alpha(\mathbf{q}, \mathbf{k}_{i})}{\sum_{j} \alpha(\mathbf{q}, \mathbf{k}_{j})}.$$

For **regression**:

- observations (\mathbf{x}_i, y_i) (features and labels)
- $\mathbf{v}_i = y_i$ scalars
- $\mathbf{k}_i = \mathbf{x}_i$ are vectors
- ullet query ${f q}$ denotes the new location where f should be evaluated.

For (multiclass) **classification**, we use one-hot-encoding of y_i to obtain \mathbf{v}_i .

- This estimator requires no training.
- If we narrow the kernel with increasing amounts of data, the approach is consistent, i.e., will converge to some statistically optimal solution.

Summary

- Nadaraya-Watson kernel regression is an early precursor of the current attention mechanisms.
- It can be used directly with little to no training or tuning, both for classification and regression.
- The attention weight is assigned according to the similarity (or distance) between query and key.

4 Attention 09.06.2023