Surfaces de révolution discrètes Réunion de lancement

Zied BEN OTHMANE Thomas BENOIST Adrien BISUTTI Lydie RICHAUME

Université de Poitiers

4 novembre 2015

- Introduction
- Ponctionnalités demandées
- 3 Conclusion

- Introduction
 - Collaborateurs et clients
 - Contexte
 - Objectifs
 - Organisation de l'équipe
- Ponctionnalités demandées
- Conclusion

Collaborateurs et clients

- Clients:
 - Éric ANDRES (Professeur et ancien directeur de département XLIM-SIC)
 - Gaëlle LARGETEAU-SKAPIN (Maitre de Conférence, Géométrie discrète)
- Encadrant pédagogique :
 - Philippe MESEURE (Professeur, Informatique graphique)

Contexte

- Nouvel algorithme conçu par Éric ANDRES et Gaëlle LARGETEAU-SKAPIN pour modéliser des surfaces de révolution discrètes.
- Visualisation des résultats avec Mathematica

Besoin d'un outil utilisable partout et par tous

Objectifs

- Objectifs métiers
 - Illustrer les résultats de l'algorithme
 - Mettre à disposition un outil de modélisation
- Objectifs techniques
 - $\bullet \ \ \mathsf{Application} \ \ \mathsf{web} \to \mathsf{WebGL}$
 - Utilisable par tous

Organisation de l'équipe

- Composition de l'équipe :
 - Thomas BENOIST Chef de projet
 - Zied BEN OTHMANE Responsable qualité
 - Adrien BISUTTI Responsable des risques
 - Lydie RICHAUME Responsable des tâches

- Introduction
- 2 Fonctionnalités demandées
 - Génération des Surfaces
 - Gestion des courbes
 - Manipulation de l'espace
 3D
 - Export et sauvegarde
 - Autre
- Conclusion

Génération des Surfaces

- Générer la surface
 - A partir d'une méridienne et d'une courbe de révolution
 - Méridienne : fonction y = f(x) ou paramétrique (dessin)
 - Courbe de révolution : fonction implicite f(x,y) = 0

Gestion des courbes

- Afficher la méridienne et la courbe de révolution
- Pouvoir choisir la méridienne et la courbe de révolution de différentes façons :
 - Choisir dans une liste de modèles
 - Entrer une équation mathématique
 - Dessiner une courbe (pour la méridienne)
- Modifier les paramètres des modèles
- Afficher/cacher le repère des courbes
- Choisir la taille d'affichage des voxels

Manipulation de l'espace 3D

- Choisir les dimensions
- Contrôler la caméra
- Mettre en évidence d'une méridienne et courbe de révolution sur la surface
- Choisir la connexité affichée
- Choisir la taille d'affichage des voxels
- Choisir des dimensions d'affichage de l'espace 3D (afficher des coupes)
- Afficher/cacher les limites de l'espace 3D
- Afficher/cacher l'objet repère
- Choisir vue orthographique/perspective

Export et sauvegarde

- Exporter la surface générée :
 - A destination d'un modeleur (format X3D)
 - A destion d'une imprimante 3D (STL)
- Exporter en PNG une image de la courbe de révolution, de la méridienne ou de la surface générée
- Sauvegarder les courbes dans une archive ZIP
- Charger les courbes à l'aide d'un ZIP générer par la fonction de sauvegarde

Autre

- Aide utilisateur
- Choix de la langue
- Sauvegarde automatique des courbes personnalisées dans le navigateur

- Introduction
- Ponctionnalités demandées
- 3 Conclusion

Conclusion

- ullet Organisation en cycles o développement incrémental
- Validation régulière et avec les clients
- Un seul risque majeur
- Prochaine étape : Conception

Surfaces de révolution discrètes

Réunion de lancement

Merci de votre attention.

Avez-vous des questions ?

