Module III

PN Junction Diode:

How PN Junction is formed

• . Starting Material - Wafer Preparation

- The process begins with a thin, flat wafer of pure semiconductor material, usually silicon, which serves as the substrate.
- The wafer is created through a process called **Czochralski crystal growth**, in which a single silicon crystal is grown and then sliced into wafers.
- The wafers are polished and cleaned to remove any impurities or surface irregularities.

How PN Junction is formed

2. Doping to Create P-type and N-type Regions

- Photolithography:
 - A photosensitive material (photoresist) is applied to the wafer, and a specific pattern is transferred to the wafer by exposing it to light through a mask.
 - This pattern determines where doping will occur.
- Etching:
 - After photolithography, the exposed photoresist is chemically etched away to reveal areas where doping is required.

Doping Process:

- There are two main doping methods:
- Diffusion Doping:
 - The wafer is exposed to a high-temperature environment containing a gas with the desired dopant (e.g., boron for P-type, phosphorus for N-type).
 - At high temperatures, the dopant atoms diffuse into the exposed silicon areas.
- Ion Implantation:
 - A high-energy beam of ions (dopant atoms) is directed at the wafer. The ions penetrate the silicon in the exposed regions, embedding themselves at controlled depths and concentrations.

How PN Junction is formed

3. Formation of the PN Junction

- By selectively doping the wafer with P-type and N-type materials in adjacent regions, a **PN junction** is formed where the two regions meet.
- The doping concentrations and junction depth are controlled to set the electrical properties of the PN junction.
- This step creates the depletion region around the junction, crucial for the diode's rectifying properties.

Junction Theory

- The most important characteristic of a PN junction is its ability to conduct current in one direction only.
- In the other (reverse) direction, it offers very high resistance.
 - PN Junction with no External Voltage
 - PN Junction with Forward Bias
 - PN Junction with Reverse Bias

308 PN Junction with no External Voltage

- The P region has holes and negatively charged ions.
- The N region has free electrons and positively charged impurity ions.
- Holes and electrons are mobile charges, but the ions are immobile.
- The sample as a whole is electrically neutral and so are the P region and N region considered separately.
- Therefore in the P region, the charge of moving holes equal the total charges on its free electrons and immobile ions.
- Similarly in the N region, the negative charge of its majority carriers is compensated by the charge of its minority carriers and immobile ions.

A PN Junction when just formed

310 A PN Junction when just formed

•Formation of Depletion Region:

- •When a p-type and n-type semiconductor are joined, electrons from the n-region diffuse into the p-region and recombine with holes. Similarly, holes from the p-region diffuse into the n-region.
- •This creates a region devoid of free carriers (depletion region) near the junction.
- •Fixed ions are left behind in the depletion region: negatively charged ions in the pregion and positively charged ions in the n-region.

Built-in Electric Field:

- •The recombination of carriers leaves behind a built-in electric field across the junction.
- •This electric field opposes further diffusion of carriers.

•Equilibrium:

- •A dynamic equilibrium is established, where the diffusion of carriers is balanced by the drift caused by the electric field.
- •The net current across the junction is zero.

Space charge region or depletion 311 region is formed on the vicinity of the junction

PN Junction showing Forward Bias

PN Junction showing Forward Bias

- External Voltage Applied:
 - The p-side is connected to the positive terminal, and the n-side to the negative terminal of a voltage source.
- Reduction of Depletion Region:
 - The external voltage reduces the built-in electric field by supplying energy that allows carriers to overcome the potential barrier.
 - This narrows the depletion region.
- Carrier Movement:
 - Electrons from the n-side move toward the junction and recombine with holes in the p-side.
 - Holes from the p-side move toward the junction and recombine with electrons in the n-side.
- Current Flow:
 - A significant current flows through the junction due to the movement of majority carriers.

PN Junction showing Forward Bias

Forward Bias Connection:

- The **positive terminal** of the battery is connected to the **P**-side.
- The negative terminal of the battery is connected to the N-side.
- This configuration reduces the potential barrier at the PN junction, allowing current to flow.

Jesus Loves You

PN Junction showing Forward Bias

Behavior in Forward Bias:

- Holes (P-side):
 - The positive terminal of the battery repels the holes, pushing them towards the junction.
- Electrons (N-side):
 - The negative terminal repels electrons, causing them to drift toward the junction.
- The movement of majority carriers (holes and electrons) reduces the width of the **depletion region**.
- The **barrier potential** decreases, enabling charge carriers to diffuse across the junction.
- When majority carriers (holes and electrons) meet at the junction, they **recombine**, producing a continuous flow of current.

PN Junction showing Forward Bias

- External Current Flow:
 - For every recombination at the junction:
 - An electron from the battery enters the N-side, replenishing free electrons.
 - A hole is created in the P-side, replenished by electrons from the battery.
 - The circuit maintains a continuous flow of charge.
- Effect of Increased Voltage:
 - Raising the battery voltage further reduces the barrier potential.
 - This increases the diffusion of majority carriers, leading to a higher current through the diode.

PN Junction showing Reverse Bias

PN Junction showing Reverse Bias

- The holes in the P-region are attracted towards the negative terminal of the battery.
- The electrons in the N-region are attracted to the positive terminal of the battery.
- The majority carriers are drawn away from the junction.
 This action widens the depletion region and increases the barrier potential

PN Junction showing Reverse Bias

- The increased barrier potential makes it more difficult for the majority carriers to diffuse across the junction.
- However, this barrier potential is helpful to the minority carriers in crossing the junction.
- In fact, as soon as a minority carrier is generated, it is swept (or drifted) across the junction because of the barrier potential.
- The rate of generation of minority carriers depends upon temperature.
- If the temperature is fixed, the rate of generation of minority carriers remains constant.
- Therefore, the current due to the flow of minority carriers remains the same whether the battery voltage is low or high. For this reason, this current is called **reverse** saturation current.
- This current is very small as the number of minority carriers is small.
- It is of the order of nanoamperes in silicon diodes and microamperes in germanium diodes.

Iesus Loves You

PN Junction showing Reverse Bias

- There is another point to note.
- The reverse-biased PN-junction diode has a region of high resistivity (space charge or depletion region) sandwiched between two regions (P and N regions away from the junction) of relatively low resistivity.
- The P and N regions act as the plates of a capacitor and the space-charge region acts as the dielectric.
- Thus, the PN-junction in reverse bias has an effective capacitance called **transition or depletion capacitance**.

PN Junction showing Reverse Bias

- We have seen that a PN-junction allows a very small current to flow when it is reverse biased.
- This current is due to the movement of minority carriers.
- It is almost independent of the voltage applied.
- However, if the reverse bias is made too high, the current through the PN-junction increases abruptly (see Fig. 4.5).
- The voltage at which this phenomenon occurs is called **breakdown voltage**.
- At this voltage, the crystal structure breaks down. In normal applications, this condition is avoided.
- The crystal structure will return to normal when the excess reverse bias is removed, provided that overheating has not permanently damaged the crystal.

Jesus Loves You

PN Junction showing Reverse Bias

Depletion Region Expansion:

- The external voltage widens the depletion region, as shown by the extended charge separation.
- The negative terminal of the battery repels holes in the p-type region, while the positive terminal attracts electrons in the n-type region.

• Built-in Electric Field Enhancement:

The external voltage adds to the built-in potential, increasing the barrier for carrier movement.

Minority Carrier Flow:

• The current is due to the drift of minority carriers (electrons in the p-region and holes in the n-region), but this current is extremely small (reverse saturation current).

No Majority Carrier Flow:

Majority carriers are prevented from crossing the junction because of the enhanced barrier.

PN Junction showing Reverse Bias

- External Voltage Applied:
 - The p-side is connected to the negative terminal, and the n-side to the positive terminal of a voltage source.
- Expansion of Depletion Region:
 - The external voltage increases the built-in electric field, widening the depletion region.
- Carrier Movement:
 - Majority carriers are pushed away from the junction.
 - Minority carriers (thermally generated electrons in the p-side and holes in the n-side) are attracted across the junction, creating a very small reverse saturation current.

Current Flow:

 The current is minimal (reverse saturation current), as only minority carriers contribute.

Forward Bias Characteristics of Diode

Fig. 4.7 Forward characteristics of a silicon diode

Reverse Bias Characteristics of a Diode

