Rank-139 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 = 0$$

(0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 139

General information

Number of lines	6
Number of points	11
Number of singular points	1
Number of Eckardt points	2
Number of double points	3
Number of single points	6
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{6}
Type of lines on points	$3^2, 2^3, 1^6$

Singular Points

The surface has 1 singular points:

$$0: P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_1 = \mathbf{Pl}(1, 0, 1, 0, 0, 0)_3$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \mathbf{Pl}(1,0,0,0,1,0)_{10}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \mathbf{Pl}(0,0,1,0,1,0)_{12}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0,0,1,1,1,1)_{32}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{9} = \mathbf{Pl}(1,1,0,0,1,1)_{29}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{15} = \mathbf{Pl}(1,1,1,1,0,0)_{8}$$

Rank of lines: (1, 2, 5, 12, 9, 15)

Rank of points on Klein quadric: (3, 10, 12, 32, 29, 8)

Eckardt Points

The surface has 2 Eckardt points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0), T = 4$$

$$1: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1). T = -1$$

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_7 = (0, 1, 1, 0) = \ell_0 \cap \ell_5$$

 $P_{10} = (0, 1, 0, 1) = \ell_1 \cap \ell_4$

$$P_{12} = (0, 0, 1, 1) = \ell_2 \cap \ell_3$$

4: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_1

5: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_2

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_5 = (1, 1, 0, 0)$ lies on line ℓ_3

1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_4

2 : $P_8 = (1,1,1,0)$ lies on line ℓ_0

3 : $P_9 = (1,0,0,1)$ lies on line ℓ_5

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

	012345
$\overline{0}$	011001
1	101010
2	110100
3	001011
4	010101
5	$\begin{matrix} 011001 \\ 101010 \\ 110100 \\ 001011 \\ 010101 \\ 100110 \end{matrix}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_5
in point	P_0	P_0	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_0	P_{10}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_0	P_0	P_{12}

Line 3 intersects

Line	ℓ_2	ℓ_4	ℓ_5
in point	P_{12}	P_4	P_4

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5
in point	P_{10}	P_4	P_4

Line 5 intersects

Line	ℓ_0	ℓ_3	ℓ_4
in point	P_7	P_4	P_4

3

The surface has 11 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_0 = (1,0,0,0) & 4: \ P_7 = (0,1,1,0) \\ 1: \ P_4 = (1,1,1,1) & 5: \ P_8 = (1,1,1,0) \\ 2: \ P_5 = (1,1,0,0) & 6: \ P_9 = (1,0,0,1) \\ 3: \ P_6 = (1,0,1,0) & 7: \ P_{10} = (0,1,0,1) \end{array}$$