

External receiver

Internal processing

- Can we do this at the required data rate?
- Are moving and non-moving objects handled separately?
- Does it make sense to skip cross-match with static archives for moving objects?

Archive cross-match

Plug-and-play component API.

- · Adding new algorithms.
- Adding new archives.

Zone and vector with data in database.

Zone and vector with data in memory.

Multiple interfaces

JSON/REST webservice

- Control and configuration
- Cone search
- Cross match

Kafka stream component

- Consumer/Producer API?
- Kafka Connect component?

IVOA conesearch

Publish as IVOA services?

Filters create custom streams

- User defined code (Python).
- User defined code (Java).
- System filters (user = system).
- Multiple output filters

Standard Docker containers

Standard input and output interfaces.
Similar to the OGSA-DAI Activity class.

Single output yes/no filter

```
if (test)
    {
     output ..
}
```

Confluent Kafka Connect

How much of the Kafka Connect stack do we use?

How much do we create ourselves?

Kafka Connect provides a range of tools for data import and export .. but it adds yet another way of handling message schema.

Dual output left/right filter

```
if (test)
    {
     output ..
    }
else {
     output ..
}
```

Multiple output filter

```
switch (test)
{
   case xx :
      output ..
   case yy :
      output ..
   case zz :
      output ..
   default :
      output ..
}
```


Kafka Connect Import/export and schema

KSQL Streaming SQL for Kafka

SQL query language

```
CREATE TABLE
    error_counts
AS SELECT
    error_code,
    count(*)
FROM
    monitoring_stream
WINDOW TUMBLING
    (SIZE 1 MINUTE)
WHERE
    type = 'ERROR
```

Kafka Streams

Data streaming with Kafka

Stream processing API

```
KStream<String, Long> stream = ...;
stream.foreach(
   new ForeachAction<String, Long>()
      {
        @Override
        public void apply(
            String key,
            Long value
        ){
        ....
        }
    }
}
```


Internal event schema, critical set of attributes needed for filtering.

Event-expander, correlates mini-even with original event and creates a new event with additional params.

HTTP webservice with in memory cache?

memcache?

REST webservice control API Controller REST API for deploying and controlling Kaffa nodes Separation of concerns • Processor Activity interface Command and control API Internal Activity API insulates Deployment end user code from external environment command and control framework. End user code **Activities**

REST webservice control API Kafka input/output Controller docker **Activity containers Controller services** Kafka input/output python* docker docker Kafka input/output **Monitoring services** Kafka Connect -confluent Kafka Connect KSQL docker

We need to be able to deploy multiple NodeNet networks.

Development, testing and live services.

Single VM local instances.

Multiple physical machine deployments.

Start with a controller 'seed' and a set of configuration files.

Multiple Buffer sets, each with its own Zookeeper and Kafka worker nodes

Shared Buffer sets, common Zookeeper and Kafka worker nodes

Linking buffer sets and processor sets

Buffer set

Parameters:

- *n* nodes
- r replicas
- p partitions

Processor set

Parameters:

- *n* nodes
- input
 - zookeeper
 - topic
- output
 - zookeeper
 - topic

Database sets, database nodes RESSTUK Consortium Parabase Import Paraba

ISST qserv

qserv

Jupyter visualization

Elasticsearch

