SAM Board v3 - User Manual

Presentation

The SAMboard is a specific electronic boards developed by ESIGELEC especially for building a small differential robots based on the Pololu rrc04a chassis. It accepts a Texas Instruments Launchpad as a daughter board to be the brain of this robot.

This manual presents usage and setup of this board.

Figure 1: SAMboard v3 assembled on Pololu chassis

Functionalities

The SAMboard bring many functionalities to have a fully-functional robot :

- Battery management : charging and supervision of a single cell 3.7V LiPo battery
- Power management: voltage conversion from the battery to 5V and 3.3V
- DC motor control with a dual H bridge (TI DRV8835) and two optical incremental encoders (sensitivity can be tuned using RV1 and RV2)
- Female SIL connectors to plug a Launchpad board (the connectors on a stock Launchpad needs to be modified)
- A quick connector for easy sensor connection

Jumpers configuration

Jumper	Description	Default Configuration	Other Configuration
JP1	DC motors power supply	Slower robot, but stronger	2-3: From 5V DC/DC converter Faster robot, but acceleration and decelerations ramps must be used to avoid overload of DC/DC converter and Launchpad reboot
JP2	Optical incremental encoders	Jumper present : encoders ON, D3 and D4 shows the status	Jumper removed: encoders OFF, D3 et D4 can be controlled by the Launchpad

Connectors

K1: 3 points connector, 2.54mm step; for 3.7V LiPo battery with embedded NTC.

K2: 3 points, 2mm step, for 3.7V LiPo battery without embedded NTC. Located under K1 which needs to be removed in order to use K2.

J1: mini-USB B type connector. Use it to power the system (5V only) and charge the battery.

P1, P3: female connectors to plug a Launchpad board with MSP430G2553 micro-controller. On the launchpad, all the jumpers should be on their default positions. The signals between the SAMboard and the Launchpad are described in the following tabular:

Launchpad Pin Number	SAMboard function	Direction (from the Launchpad perspective)
P1.0-P1.7	Connected on the extension connector (green)	Input or Output
P 2.0	Motor A optical encoder	Input
P 2.1	Motor A direction	Output
P 2.2	Motor A speed control : PWM [0100%] duty cycle , 250 KHz maximum frequency	Output
P 2.3	Motor B optical encoder	Input
P 2.4	Motor B speed control : PWM [0100%] duty cycle , 250 KHz maximum frequency	Output
P 2.5	Motor B direction	Output

P2: Green quick connector, gives access to all MSP430 signal which are not used by SAMboard functions as well as 3.3V and 5V voltages. See the silkscreen printed on the board.

Indicators

D1 Green: ON = a power supply is connected on J1.

Orange: ON = the battery is charging, OFF = battery fully charged (or disconnected).

D2 : ON =the system is operating.

D2, D3: Shows the rotation direction of each DC motor.

D5, D6: Shows the optical encoder states. The sensitivity of the encoders can be ajusted with RV1 and RV2 to have 50% duty cycle. If JP2 is removed, these leds can be used as indicators.

