CHAPTER 23: ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

23.1-1.

(a) Locations 1, 2, 3 are supply centers and locations 4, 5, 6, 7 are receiving centers. Shipments can be sent via intermediate points.

(b)

	1	2	3	4	5	6	7	s_i
1	0	21	50	62	93	77	M	270
2	29	0	17	54	67	M	48	280
3	50	17	0	60	98	67	25	250
4	62	54	60	0	27	M	38	200
5	93	67	98	27	0	47	42	200
6	77	M	67	M	47	0	35	200
7	M	48	25	38	42	35	0	200
d_{j}	200	200	200	230	260	250	260	

(c)

	1	2	3	4	5	6	7	s_i
1	200	70						270
2		130	150					280
3			50	200				250
4				30	170			200
5					90	110		200
6						140	60	200
7							200	200
d_j	200	200	200	230	260	250	260	

The shipping pattern obtained with the northwest corner rule forms a chain where location i ships only to location i + 1.

(d)

Optimal Solution: The main body of the table shows the optimal number of units (if not zero) to be sent from each source to each destination.

	- 1		Destination							
	- 1	1	2	3	4	5	6	7_	Supply	
	1	200			20		50		270	
	2		200	10	10	60			280	
	3		200	190				60	250	
Source	4				200				200	
	5					200			200	
	6						200		200	
	- 7 I							200	200	
Dem	and	200	200	200	230	260	250	260	Cost is	
									11320	

Shipping pattern:

23.1-2.

(a) Let the supply center be year 0 with a supply of 1 and the receiving center be year 3 with a demand of 1. Years 1 and 2 are transshipment points. The parameter table is as follows:

Years	0	1	2	3	Supply
0	0	13	28	48	1
1	M	0	17	33	0
2	M	M	0	20	0
3	M	M	M	0	0
Demand	0	0	0	1	

(b) The transportation problem is the same as above except that all supplies and demands are increased by one.

		Cost Per	Unit	Distribu	ıted	
		ľ	estina)	tion	- 1	
		1	2	3	4	Supply
	I_				I	
	1	0	13	28	48	2
Source	2	1 M	0	17	33	1
	3	1 M	1 M	0	20 J	1
	4	1 M	1 M	1 M	0	1
	I_				I	
Demand		1	1	1	2	

(c) Vogel's approximation

	l	Destir	nation	1		
	1	2	3	4	Supply	u[i]
	lI	I		ll		
	0	13	28	48	I	
1	B	B			I	
	1	1	2	2	2	13
	!!	!		<u> </u>		
	M	0	17	33	l l	
2		B		B	I	
	1M+13	01	4	1	1	0
	!!					
_	M	M	0	20		
3			B	B		
	1M+26	1M+13	1	0	1	-13
	!!	!				
	M	M	M	0 0 1		
4				B	I	
	1M+46	1M+33	1 M+ 20	1	1	-33
	<u> </u>					
Demand	1	1	1	2		
	l					
v[j]	-13	0	13	33		
					Z = 46	

(d) Vogel's approximation prices out optimal.

23.1-3.

(a) Let c_{ij}^k be the cost of buying a very old car (k=1) or a moderately old car (k=2) at the beginning of year i and trading it in at the end of year j. This cost is the difference of the purchase price, operating and maintenance costs for years $1, 2, \ldots, j-i+1$ from the trade in value after j-i+1 years.

	$c_{ij}^{\scriptscriptstyle 1}$			
	1	2	3	4
1	2400	4800	7400	10300
2	M	2400	4800	7400
3	M	M	2400	4800
4	M	M	M	2400

$c_{ar{i}j}$											
	1	2	3	4							
1	3000	5000	7200	10700							
2	M	3000	5000	7200							
3	M	M	3000	5000							
4	M	M	M	3000							
				l							

Let $c_{i,j+1} = \min \{c_{ij}^1, c_{ij}^2\}$. Let the supply center be year 1 with unit supply and the demand center be year 5 with unit demand. Years 2, 3, 4 are transshipment points. $c_{ii} = 0$, $c_{i1} = M$ for i > 1 and $c_{5j} = M$ for j < 5. The following is the parameter table of this transshipment problem:

			Year 3	j		
Year i	1	2	3	4	5	Supply
1	0	2400	4800	7200	10300	1
2	M	0	2400	4800	7200	0
3	M	M	0	2400	4800	0
4	M	M	M	0	2400	0
5	M	M	M	M	0	0
Demand	0	0	0	0	1	

(b) The cost and requirements table of the equivalent transportation problem is identical to the one in (a) except that all supplies and demands need to be increased by one.

(c)

	1	2	3	4	5	Supply
1	1	1				2
2					1	1
3			1			1
4				1		1
5					1	1
Demand	1	1	1	1	2	Cost: 9,600

The optimal solution is to purchase a very old car for year 1 and a moderately old one for years 2, 3, and 4. The cost of this is \$9,600.

23.1-4.

Suppose there are m supply centers, n receiving centers and p transshipment points.

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{m+n+p}\sum\limits_{j=1}^{m+n+p}c_{ij}x_{ij} \\ \\ \text{subject to} & \sum\limits_{j=1}^{m+n+p}(x_{ij}-x_{ji}) = \begin{cases} s_i & \text{for } i=1,2,\ldots,m\\ -d_i & \text{for } i=m+1,\ldots,m+n\\ 0 & \text{for } i=m+n+1,\ldots,m+n+p \end{cases} \\ \\ x_{ij} \geq 0, \text{ for all } i \neq j \\ \end{array}$$

This model has the special structure that each decision variable appears in exactly two constraints, once with a coefficient of +1 and once with a coefficient of -1. The table of constraint coefficients is:

x_{12}	x_{13}	 $x_{1,m+n+p}$	x_{21}	x_{23}	 $x_{2,m+n+p}$	 $x_{m+n+p,1}$	$x_{m+n+p,2}$	 $x_{m+n+p,m+n+p-1}$
1	1	 1	-1	0	 0	 -1	0	 0
-1	0	 0	1	1	 1	 0	-1	 0
:	:	:	:	:	:	:	:	:
0	0	 -1	0	0	 -1	 1	1	 1

23.2-1.

(b) After converting \geq inequalities to \leq inequalities, the coefficient table becomes:

x_1	x_2	x_3	x_4	x_5	x_6
5	-2	3	4	2	1
2	4		2		3
3	2	3			
5		-1			
1	-2	-1			
			1		
			-1		
				2	-1
				2	3

23.2-2.

(a)

	Constraint	x_1	x_4	x_2	x_5	x_7	x_3	x_6
Master Problem	3	4	2	3	4	1	-2	0
	6	0	0	5	1	4	3	-2
Subproblem 1	2	0	1					
	5	1	1					
	9	2	4					
Subproblem 2	1			1	1	1		
	8			2	1	3		
Subproblem 3	4						2	4
	7						0	1

(b) The first constraint of Subproblem 1 and the second constraint of Subproblem 3 are the upper-bound constraints. The second constraint of Subproblem 1 and the first constraint of Subproblem 2 are the GUB constraints.

23.2-3.

(a) maximize
$$7x_1 + 3x_2 + 5x_3 + 4x_4 + 7x_5 + 5x_6$$
 subject to
$$16x_1 + 7x_2 + 13x_3 + 8x_4 + 20x_5 + 10x_6 \le 150$$

$$10x_1 + 3x_2 + 7x_3 \le 50$$

$$4x_1 + 2x_2 + 5x_3 \le 30$$

$$6x_4 + 13x_5 + 9x_6 \le 45$$

$$3x_4 + 8x_5 + 2x_6 \le 25$$

$$xj \ge 0, \text{ for } j = 1, 2, \dots, 6$$

(b)

x_1	x_2	x_3	x_4	x_5	x_6
16	7	13	8	20	10
10	3	7			
4	2	5			
			6	13	9
			3	8	2

23.3-1.

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}, A_1 = (3), A_2 = (2), A_3 = (1), A_4 = (2)$$

$$c_1 = (3), c_2 = (5), \vec{x_1} = (x_1), \vec{x_2} = (x_2), b = 18, b_1 = 4, b_2 = 12$$

Subproblem 1: maximize
$$z_1 = 3x_1$$

subject to $x_1 \le 4, x_1 \ge 0$

$$x_{11}^* = 0 \rightarrow \rho_{11}, x_{12}^* = 4 \rightarrow \rho_{12}$$

Subproblem 2: maximize $z_2 = 5x_2$

subject to
$$2x_2 \le 12, x_2 \ge 0$$

$$x_{21}^* = 0 \rightarrow \rho_{21}, x_{22}^* = 6 \rightarrow \rho_{22}$$

Reformulate: maximize
$$12\rho_{12} + 30\rho_{22}$$

subject to $12\rho_{12} + 12\rho_{22} + x_5 = 18$
 $\rho_{11} + \rho_{12} = 1$

$$\rho_{21} + \rho_{22} = 1 \\ \rho \ge 0, x_5 \ge 0$$

(1) Start with
$$x_B = \begin{pmatrix} x_5 \\ \rho_{11} \\ \rho_{21} \end{pmatrix}$$
, $B = I = B^{-1}$, $B^{-1}b = \begin{pmatrix} 18 \\ 1 \\ 1 \end{pmatrix}$

Not optimal, $w_2^* < w_1^*$, so ρ_{22} enters the basis.

$$A_k'=\begin{pmatrix}12\\0\\1\end{pmatrix},$$
 $B^{-1}b=\begin{pmatrix}18\\1\\1\end{pmatrix}$, minimum ratio: $1/1$, so ρ_{21} leaves the basis.

(2)
$$x_B = \begin{pmatrix} x_5 \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
, $c_B = \begin{pmatrix} 0 & 0 & 30 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B^{-1} = \begin{pmatrix} 1 & 0 & -12 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$$w_1 = -3x_1, x_1^* = 4 = x_{12}^*, w_1^* = -12$$

$$w_2 = -5x_2 + 30, x_2^* = 6 = x_{22}^*, w_2^* = 0$$

Not optimal, $w_1^* < w_2^*$, so ρ_{12} enters the basis.

$$A'_k = \begin{pmatrix} 12\\1\\0 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 6\\1\\1 \end{pmatrix}$$
, minimum ratio: 6/12, so x_5 leaves the basis.

(3)
$$x_B = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
, $c_B = \begin{pmatrix} 12 & 0 & 30 \end{pmatrix}$, $B = \begin{pmatrix} 12 & 0 & 12 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
$$B^{-1} = \begin{pmatrix} 1/12 & 0 & -1 \\ -1/12 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$w_1 = 0x_1 + 0$$

$$w_2 = -3x_2 + 18, x_2^* = 6 = x_{22}^*, w_2^* = 0$$

 $c_B B^{-1} = 1 > 0$, so the solution is optimal, stop.

$$x_B = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix} = B^{-1}b = \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix}$$

$$\Rightarrow x_1 = 0(1/2) + 4(1/2) = 2, x_2 = 0(0) + 6(1) = 6, z = 36$$

23.3-2.

(a) Reformulate:

Subproblem 1:
$$x_{11}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $x_{12}^* = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$, $x_{13}^* = \begin{pmatrix} 5/2 \\ 15/2 \end{pmatrix}$, $x_{14}^* = \begin{pmatrix} 0 \\ 10 \end{pmatrix}$
Subproblem 2: $x_{21}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $x_{22}^* = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$, $x_{23}^* = \begin{pmatrix} 10/3 \\ 10/3 \end{pmatrix}$, $x_{14}^* = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$
maximize $50\rho_{12} + \frac{125}{2}\rho_{13} + 50\rho_{14} + 40\rho_{22} + 50\rho_{23} + 35\rho_{24}$
subject to $30\rho_{12} + \frac{105}{2}\rho_{13} + 50\rho_{14} + 20\rho_{22} + \frac{100}{3}\rho_{23} + 30\rho_{24} + x_5 = 40$
 $\rho_{11} + \rho_{12} + \rho_{13} + \rho_{14} = 1$
 $\rho_{21} + \rho_{22} + \rho_{23} + \rho_{24} = 1$
 $\rho \geq 0, x_5 \geq 0$

(b) Start with
$$x_B = \begin{pmatrix} x_5 \\ \rho_{11} \\ \rho_{21} \end{pmatrix}$$
, $B = I = B^{-1}$, $B^{-1}b = \begin{pmatrix} 40 \\ 1 \\ 1 \end{pmatrix}$, $c_B = 0$

$$\begin{array}{ll} \underline{j=1:} & \text{minimize} & w_1 = 10x_1 - 5x_2 \\ & \text{subject to} & 3x_1 + x_2 \leq 15, \, x_1 + x_2 \leq 10, \, x_1, x_2 \geq 0 \\ \\ & x_{13}^* = \begin{pmatrix} 5/2 \\ 15/2 \end{pmatrix} \text{ is optimal, } w_1^* = -125/2. \end{array}$$

$$\begin{array}{ll} \underline{j=2:} & \text{minimize} & w_2=-8x_3-7x_4\\ & \text{subject to} & x_3+2x_4\leq 10, 2x_3+x_4\leq 10, x_3, x_4\geq 0 \\ \\ x_{23}^*=\begin{pmatrix} 10/3\\10/3 \end{pmatrix} & \text{is optimal, } w_2^*=-50. \end{array}$$

Not optimal, $w_1^* < w_2^*$, so ρ_{13} enters the basis.

$$A'_k = \begin{pmatrix} 105/2 \\ 1 \\ 0 \end{pmatrix}$$
, $B^{-1}b = \begin{pmatrix} 40 \\ 1 \\ 1 \end{pmatrix}$, minimum ratio: 80/105, so x_5 leaves the basis.

(2)
$$x_B = \begin{pmatrix} \rho_{13} \\ \rho_{11} \\ \rho_{21} \end{pmatrix}$$
, $c_B = \begin{pmatrix} 125/2 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 105/2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$B^{-1} = \begin{pmatrix} 2/105 & 0 & 0 \\ -2/105 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$w_1 = -\frac{20}{7}x_1 + \frac{20}{21}x_2$$
, x_{12}^* is optimal, $w_1^* = -14.28$.

$$w_2 = -\frac{68}{21}x_3 + \frac{1}{7}x_4$$
, x_{22}^* is optimal, $w_2^* = -16.19$.

Not optimal, $w_2^* < w_1^*$, so ρ_{22} enters the basis.

$$A'_k = \begin{pmatrix} 40/105 \\ -40/105 \\ 1 \end{pmatrix}$$
, $B^{-1}b = \begin{pmatrix} 80/105 \\ 25/105 \\ 1 \end{pmatrix}$, minimum ratio: $1/1$, so ρ_{21} leaves the basis.

(3)
$$x_B = \begin{pmatrix} \rho_{13} \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
, $c_B = \begin{pmatrix} 125/2 & 0 & 40 \end{pmatrix}$, $B = \begin{pmatrix} 105/2 & 0 & 20 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$B^{-1} = \begin{pmatrix} 2/105 & 0 & -40/105 \\ -2/105 & 1 & 40/105 \\ 0 & 0 & 1 \end{pmatrix}$$

$$w_1 = -\frac{20}{7}x_1 + \frac{20}{21}x_2$$
, x_{12}^* is optimal, $w_1^* = -14.28$.

$$w_2 = -\frac{68}{21}x_3 + \frac{1}{7}x_4 - \frac{500}{21} + 40, x_{22}^*$$
 is optimal, $w_2^* = 0$.

Not optimal, $w_1^* < w_2^*$, so ρ_{12} enters the basis.

$$A'_k = \begin{pmatrix} 60/105 \\ 55/105 \\ 0 \end{pmatrix}$$
, $B^{-1}b = \begin{pmatrix} 40/105 \\ 65/105 \\ 1 \end{pmatrix}$, minimum ratio: $40/60$, so ρ_{13} leaves the basis.

(4)
$$x_B = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
, $c_B = \begin{pmatrix} 50 & 0 & 40 \end{pmatrix}$, $B = \begin{pmatrix} 30 & 0 & 20 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,

$$B^{-1} = \begin{pmatrix} 1/30 & 0 & -2/3 \\ -1/30 & 1 & 2/3 \\ 0 & 0 & 1 \end{pmatrix}$$

 $w_1 = \frac{10}{3}x_2, x_{11}^*$ and x_{12}^* are both optimal, $w_1^* = 0$.

$$w_2 = -\frac{4}{3}x_3 + 3x_4 - \frac{100}{3} + 40$$
, x_{22}^* is optimal, $w_2^* = 0$.

 $c_B B^{-1} = 5/3 > 0$, so optimality test holds, stop.

$$x_{B} = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix} = B^{-1}b = \begin{pmatrix} 2/3 \\ 1/3 \\ 1 \end{pmatrix}$$

$$\Rightarrow \vec{x_{1}} = \frac{1}{3} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 10/3 \\ 0 \end{pmatrix}, \vec{x_{2}} = 1 \begin{pmatrix} 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$$\Rightarrow x_{1} = 10/3, x_{2} = 0, x_{3} = 5, x_{4} = 0, z = 220/3$$

23.3-3.

The problem has three subproblems and two linking constraints.

(1) Initial basis:
$$x_B = \begin{pmatrix} x_{51} \\ x_{52} \\ \rho_{11} \\ \rho_{21} \\ \rho_{31} \end{pmatrix}, B = B^{-1} = I, c_B = 0$$

$$\begin{array}{ll} \underline{j=1:} \ \ \text{minimize} & -8x_1 - 5x_2 - 6x_3 \\ \text{subject to} & 2x_1 + 4x_2 + 3x_3 \leq 10 \\ & 7x_1 + 3x_2 + 6x_3 \leq 15 \\ & 5x_1 & + 3x_3 \leq 12 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$x_{1k}^* = \begin{pmatrix} 15/11 \\ 20/11 \\ 0 \end{pmatrix}$$
 is optimal, $w_1^* = -20$.

$$x_{2k}^* = \begin{pmatrix} 3/5 \\ 0 \\ 13/5 \end{pmatrix}$$
 is optimal, $w_2^* = -28.8$.

$$\begin{array}{ll} \underline{j=3:} \;\; \text{minimize} & -6x_7 - 5x_8 \\ & \text{subject to} & 8x_7 + 5x_8 \leq 25 \\ & 7x_7 + 9x_8 \leq 30 \\ & 6x_7 + 4x_8 \leq 20 \\ & x_7, x_8 \geq 0 \\ \\ & x_{3k}^* = \begin{pmatrix} 75/37 \\ 65/37 \end{pmatrix} \text{ is optimal, } w_2^* = -20.95. \end{array}$$

 w_2^* is smallest, so ρ_{2k} enters the basis.

$$A'_{k} = \begin{pmatrix} A_{2}x_{2k}^{*} \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 & 0 & 3 \\ 3 & 7 & 0 \end{pmatrix} \begin{pmatrix} 3/5 \\ 0 \\ 13/5 \end{pmatrix} \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 9/5 \\ 0 \\ 1 \\ 0 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 30 \\ 20 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

minimum ratio: 1/1, so ρ_{21} leaves.

$$(2) x_{B} = \begin{pmatrix} x_{51} \\ x_{52} \\ \rho_{11} \\ \rho_{2k} \\ \rho_{31} \end{pmatrix}, c_{B} = \begin{pmatrix} 0 & 0 & 0 & 144/5 & 0 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & 0 & 0 & -9 & 0 \\ 0 & 1 & 0 & -9/5 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$w_1$$
 same, $w_1^* = -20$
 $w_2 = (-9 \quad -7 \quad -9)\vec{x_2} + 144/5, w_2^* = 0$
 w_3 same, $w_3^* = -20.95$

 w_3^* is smallest, so ρ_{3k} enters the basis.

$$A'_{k} = \begin{pmatrix} A_{3}x_{3k}^{*} \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 4 & 6 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 75/37 \\ 65/37 \end{pmatrix} \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 18.65 \\ 2.03 \\ 0 \\ 0 \\ 1 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 21 \\ 91/5 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

minimum ratio: 1/1, so ρ_{31} leaves.

Let
$$x_B = \begin{pmatrix} x_{51} \\ x_{52} \\ \rho_{11} \\ \rho_{2k} \\ \rho_{3k} \end{pmatrix}$$
 and continue. This suggests that in the next iteration, ρ_{11} will be

replaced by ρ_{1k} .

23.4-1.

Constraint	x_3	x_6	x_7	x_1	x_2	x_4	x_5	x_8	x_9	x_{10}
1	0	0	0	3	1					
2	-1	0	0	1	2					
3	0	0	0			1	5			
4	1	-1	-1			2	-1			
5	0	0	0			0	1			
6	1	1	1					1	3	2
7	0	0	0					2	-1	1

23.4-2.

(a) Let x_{ij} denote the number of units of product i to be produced in year j for i=1,2 and j=1,2,3. Let y_{ij} denote the number of units of product i to be sold in year j for i=1,2 and j=1,2,3. Let z_{ijk} denote the number of units of product i to be produced and stored in year j and sold in year k, for i=1,2,j=1,2,3, and $k=j+1,j+2,\ldots,3$.

$$\begin{array}{ll} \text{maximize} & 3y_{11} + 5y_{21} + 4y_{12} + 4y_{22} + 5y_{13} + 8y_{23} \\ & - 2z_{112} - 2z_{212} - 4z_{113} - 4z_{213} - 2z_{123} - 2z_{223} \\ \text{subject to} & x_{11} \leq 4 \\ & 2x_{21} \leq 12 \\ & 3x_{11} + 2x_{21} \leq 18 \\ & x_{11} - y_{11} - z_{112} - z_{113} = 0 \\ & x_{21} - y_{21} - z_{212} - z_{213} = 0 \\ & x_{12} \leq 6 \\ & 2x_{22} \leq 12 \\ & 3x_{12} + 2x_{22} \leq 24 \\ & z_{112} + x_{12} - y_{12} - z_{123} = 0 \\ & z_{112} - y_{12} \leq 0 \\ & z_{212} + x_{22} - y_{22} - z_{223} = 0 \\ & z_{212} - y_{22} \leq 0 \\ & x_{13} \leq 3 \\ & 2x_{23} \leq 10 \\ & 3x_{13} + 2x_{23} \leq 15 \\ & z_{113} + z_{123} + x_{13} - y_{13} = 0 \\ & z_{213} + z_{223} + x_{23} - y_{23} = 0 \\ & x_{ij} \geq 0, y_{ij} \geq 0, z_{ijk} \geq 0, \text{ for all } i, j, k. \end{array}$$

(b) Table of constraint coefficients:

Z ₁₁₂ Z ₂₁₃ Z ₂₂₃ X ₁₁ X ₂₁₃ Z ₂₂₃ X ₁₁ Y ₁₁ X ₂₁ Y ₂₁ X ₂ Y ₁₂ X ₁₃ Y ₁₃ X ₂₃ Y ₂₃ O O O O O O O O O O O O O O O O O O O	적은 장은 작고			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	四 老四	223	Y. 4 . 4	
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 2 0 -1 -1 0 0 0 0 1 -1 0 0 0 0 -1 -1 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		M 711 721 72	12 72 72 72	2 413 /13 123 /23
0 0 0 0 0 0 3 0 2 0			i	
-1-10000 1-100 00 1-100 00 1-100 00			I	1 1
00-1-100 0c1-1 000000 000000 1000-10 1000-10 1000-10 00100-1 001-1 001000 00000 00000 00000				1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 1
000000 00000 1000-10 100000 00100-1 001000 00000 00000 00000	100-1-100	001-1		1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1000	!!
1000-10 100000 00100-1 001000 000000 1000 1000	000000	<u>'</u>	0020	1 1
0-1 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000	i	30 20	!!
00100-1	1000-10		1-100	
00100-1	100000		0-100	
001000 000-1	00100-1	·		
000000 0020	1001000	i	000-1	
000000 0020	000000			1000
	000000			
[0 0 0 0 0 0] [3 0 2 0]	000000	- 1		
010010	010010	- 1		
10001011 1001-11		- 1		0 0 1-1

23.5-1.

Constraint	x_2	x_8	x_1	x_4	x_3	x_7	x_5	x_9	x_{10}	x_6
3	-1	0	5	-1	2	-3	-1	0	4	0
7	1	1	2	3	0	0	0	-1	0	2
1	0	1	2	3						
6	0	0	1	1						
2	1	2			1	2				
8	-1	-1			2	1				
5	-1	-2					2	5	3	
9	0	0					1	2	1	
10	-1	0					4	1	5	
4	0	-1								1

23.5-2.

(a) Let types 1 and 2 denote raw lumber and plywood respectively. Let x_{ij} be the thousand board feet of type i to be purchased in season j, for i = 1, 2 and j = 1, 2, 3, 4. Let y_{ij} be the thousand board feet of type i to be sold in season j, for i = 1, 2 and j = 1, 2, 3, 4. Let z_{ijk} be the thousand board feet of type i to be purchased and stored in season j and sold in season k, for i = 1, 2, j = 1, 2, 3, 4, and $k = j+1, j+2, \ldots, 4$.

```
-410x_{11} + 425y_{11} - 17z_{112} - 27z_{113} - 37z_{114}
maximize
                     -680x_{21} + 705y_{21} - 24z_{212} - 42z_{213} - 60z_{214}
                     -430x_{12} + 440y_{12} - 17z_{123} - 27z_{124}
                      -715x_{22} + 730y_{22} - 24z_{223} - 42z_{224}
                     -460x_{13} + 465y_{13} - 17z_{134} - 760x_{23} + 770y_{23} - 24z_{234}
                     -450x_{14} + 455y_{14} - 740x_{24} + 750y_{24}
subject to
                     x_{11} - y_{11} - z_{112} - z_{113} - z_{114} = 0
                     x_{21} - y_{21} - z_{212} - z_{213} - z_{214} = 0
                     x_{11} + x_{21} \le 2000
                     y_{11} \le 1000
                     y_{21} \leq 800
                     z_{112} + x_{12} - y_{12} - z_{123} - z_{124} = 0
                     z_{112} - y_{12} \le 0
                     z_{212} + x_{22} - y_{22} - z_{223} - z_{224} = 0
                     z_{212} - y_{22} \le 0
                     z_{112} + z_{113} + z_{114} + z_{212} + z_{213} + z_{214} + x_{12} + x_{22} \le 2000
                     y_{12} \le 1400
                     y_{22} \le 1200
                     z_{113} + z_{123} + x_{13} - y_{13} - z_{134} = 0
                     z_{113} + z_{123} - y_{13} \le 0
                     z_{213} + z_{223} + x_{23} - y_{23} - z_{234} = 0
                     z_{213} + z_{223} - y_{23} \le 0
                     z_{113} + z_{114} + z_{123} + z_{124} + z_{213} + z_{214} + z_{223} + z_{224} + x_{13} + x_{23} \le 2000
                     y_{13} \le 2000
                     y_{23} \le 1500
                     z_{114} + z_{124} + z_{134} + x_{14} - y_{14} = 0
                     z_{214} + z_{224} + z_{234} + x_{24} - y_{24} = 0
                     z_{114} + z_{124} + z_{134} + z_{214} + z_{224} + z_{234} + x_{14} + x_{24} \le 2000
                     y_{14} \le 1600
                     y_{24} \le 100
                     x_{ij} \ge 0, y_{ij} \ge 0, z_{ijk} \ge 0, for all i, j, k.
```

(b)

