Lec02.md 9/2/2025

What is an Intelligent Agent?

An agent = anything that perceives its environment through sensors and acts upon it with actuators.

An **intelligent agent** = one that **chooses actions rationally** to achieve its goals (best possible outcome given what it knows).

Analogy: Student as an Agent

- **Sensors**: eyes, ears → see slides, hear lecture
- Actuators: hands, mouth → write notes, ask questions
- Goal: pass the course with good grades

Types of Agent Environments

According to **Russell & Norvig**, environments are classified using several dimensions:

1. Observable vs. Partially Observable

- Fully Observable: Agent has access to the complete state of the environment.
 - Example: Chess → the board is fully visible.
 - Analogy: Open-book exam → you see all the information.
- Partially Observable: Agent only has limited information.
 - Example: **Poker** → you can't see the opponent's cards.
 - Analogy: Closed-book exam → rely on memory, not all info is visible.

2. Deterministic vs. Stochastic

- **Deterministic**: Next state is fully determined by current state + action.
 - Example: Solving a math equation.
 - Analogy: Following a recipe → exact ingredients = exact result.
- **Stochastic**: Involves randomness or uncertainty in outcomes.
 - Example: **Self-driving car in traffic** → can't predict pedestrians perfectly.
 - Analogy: Playing football → strategy helps, but outcomes are uncertain.

3. Episodic vs. Sequential

- **Episodic**: Each action is independent of the previous one.
 - *Example*: Image classification → each picture is separate.
 - Analogy: Quiz show → each question is unrelated.
- **Sequential**: Current decision affects future decisions.
 - o Example: Driving a car → each turn affects destination.

Lec02.md 9/2/2025

o *Analogy*: Choosing university courses → affects prerequisites and graduation path.

4. Static vs. Dynamic

- **Static**: Environment doesn't change while the agent is deciding.
 - Example: Crossword puzzle → grid doesn't change.
 - Analogy: Paused game → time frozen while you think.
- **Dynamic**: Environment changes during decision-making.
 - Example: Driving in traffic → cars keep moving.
 - o Analogy: Group discussion → people add points as you think.

5. Discrete vs. Continuous

- **Discrete**: Finite set of states, actions, or percepts.
 - Example: Chess → 64 squares, fixed moves.
 - Analogy: Multiple-choice exam → limited answers.
- **Continuous**: Infinite possible states or actions.
 - o Example: Driving → continuous speed and steering.
 - Analogy: Essay exam → endless possible answers.

M Comparison Table

Property	Discrete Example	Continuous Example
Observable	Chess (see everything)	Poker (hidden cards)
Deterministic	Solving equations	Weather prediction (uncertain)
Episodic	Spam filter (each email separate)	Self-driving car (turns affect future)
Static	Sudoku puzzle	Stock market (changes while you think)
Discrete	Tic-tac-toe, multiple-choice exam	Driving, handwriting recognition

Key Idea

The design of an intelligent agent depends on its environment:

- Chess-playing agent → needs strategy & search.
- **Self-driving car** → needs **perception**, **uncertainty handling**, **and real-time decision-making**.