

Chapter 12: Waves pg. 337-352

Introduction to Coastal Hazards

- Influenced by plate tectonics
- Atlantic Coast of CAN and US is located on a tectonically passive margin (wide continental shelves and extensive sandy beaches and barrier islands)
- Pacific coast of CAN and the US located on tectonically active margin (coasts with sea cliffs and rock shorelines)
- Coastal topography is strongly influenced by geology type and structure of the rock at the shorelines
- shorelines affected by climate, plants and animals
- Main coastal hazards:
 - Strong coastal currents, including rip currents generated in the surf zone and tidal currents in narrow bays and channels
 - Coastal erosion
 - o Sea-level rise
 - o Storm surges from tropical and extratropical cyclones
 - o Tsunamis

Coastal Processes

- Waves
 - o Generated by wind, transfers energy to water, producing waves, then waves expend their energy at the shoreline
 - Size depends on:
 - Velocity of wind
 - Duration of wind
 - Distance wind blows across the water (fetch)
 - As waves move away from their source, they become organized into groups or sets of similar size and shape
 - o Rogue waves
 - o 3 parameters describe the size and movement of the wave
 - wave height: difference in hiehgt between the trough and the crest of the wave
 - wavelength: distance between successive wave crests
 - wave period: time in seconds for successive waves to pass a reference point
 - o at about ½ their wavelength, waves begin to feel the bottom causing the circular orbits to become ellipses
 - o swell: wave sets generated by storms far out at sea
 - by knowing the velocity and height of the waves generated by a distant storm, we can estimate when the waves will strike shore and how erosive they will be
 - o wave crest becomes unstable when the water depth is about 1.3x the wave hields
- Variations along a Coastline
 - o Caused by irregularities in near-shore bathymetry and the shape of the coastline
 - Headlands: small rocky peninsulas

- o Refract: bending of wave
- Effects of Wave Refraction
 - Shorelines tends to become straightened
- o Breaking Waves: plunge (steep beaches and can be erosive) or surge (develop on wide, gently sloping, sandy beaches and are less erosive than plunging breakers)
- Tidal bores: steep fronts, several metres high, and surge forward like broken waves
- Beach Form and Processes
 - o Beach: loose material that has accumulated by wave action at the shoreline
 - The Beach Onshore
 - Sea cliff: landward boundary of the beach can be a cliff along a seashore
 - Bluff: ^^ along lakeshore
 - Coastal sand dunes form by deposition of wind-blown beach sand
 - Two zones:
 - Berm: flat or slopes gently landward
 - Beach face: slopes seaward, located within the swash zone
 - o The Beach Offshore:
 - Surf zone: just seaward of the swash zone and is the place where waves move turbulently toward the shore after they break
 - Breaker zone: incoming waves peak and break
 - Longshore bar: low ridge consisting of sand or gravel
 - Longshore trough: form by wave and current action landward of the longshore bar
- Sand Transport
 - Sand not static
 - o littoral transport: sand carried parallel to the shore in the swash and surf zones
 - beach drift: repeated shoreward and seaward movement of sand in the swash zone produces sinuous or zigzag transport path
 - longshore drift: transport of the sediment by currents that flow parallel to the shoreline (longshore currents)
- Landforms Produced by Littoral Drift
 - Spits: narrow and low, finger-like ridges of sand or gravel that are attached to the coast and extend out into the sea or lake
 - o Tombolos: similar to spits except they are connected at both ends to the shore
 - o barrier islands: long and relatively narrow islands that lie offshore of a coast and are parallel to it

Sea-Level Change

- constantly changing due to tidal fluctuations produced by the gravitational attraction of the moon and the sun
- changes in wind speed and atmospheric pressure
- relative sea level: controlled by the vertical movement of both the land and sea water
- Eustatic Sea-Level Change: global changes in sea level when the amount of water in the world's oceans increase or decrease or when theres a change in the shape of ocean basins
 - Due to platemovements
 - o Climate

- Average air temp: as sea water warms it expands and as it cools it contracts (thermal expansion)
- Atmospheric temp: control the amount of snow and glacier ice on land (glaciers to melt increasing water in the oceans)
- Isostatic Sea-Level Change: local and regional processes also affect relative sea level, general equilibrium of the forces tending to elevate or depress Earth's crust
 - o Increase or decrease in the weight of ice or water on the crust or by change in the thickness of the lithosphere
 - o Glacio-isostatic uplift
 - Hydro-isostatic uplift
- Tectonic and Other Effects
 - Sudsidence of deltas

Coastal Hazards

- Coastal communities threatened by coastal erosion and sea-level rise
- Rip Currents: carry large amounts of water directly away from the shore
- Coastal Erosion: shorelines retreat
- Beach Erosion: sediment budget, both gain and lose material
 - o If losses are greater than gains, beach erodes
 - o Losses are less than gains, beach grows by accretion of sand
- Cliff Erosion: moving shoreline landward
- Sea-level Rise: entire islands disappear

Links Between Coastal Processes and Other Natural Hazards

- Intense precipitation and storm surges
- Landslides
- Climate conditions

Natural Service Functions of Coastal Processes

- Ecological health and aestethic value of coastal zone
- Deposits of diamds and gold

