Relação de Equivalência - Classes de Equivalência nos Inteiros

José Antônio O. Freitas

MAT-UnB

29 de agosto de 2020

Seja C uma classe de equivalência

Seja C uma classe de equivalência de uma relação de equivalência R.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}$$
.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Prova: Para todo $b \in A$ temos,

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A=\bigcup_{b\in A}\overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$. Logo $x \in \overline{x}$

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$. Logo $x \in \overline{x}$ e daí $x \in \bigcup_{b \in A} \overline{b}$.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}.$$

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$. Logo $x \in \overline{x}$ e daí $x \in \bigcup_{b \in A} \overline{b}$. Assim $x \in \bigcup_{a \in A} \overline{a}$.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}$$
.

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$. Logo $x \in \overline{x}$ e daí $x \in \bigcup_{b \in A} \overline{b}$. Assim $A \subseteq \bigcup_{a \in A} \overline{a}$. Portanto, $A = \bigcup_{b \in A} \overline{b}$.

Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento $y \in C$ é chamado **representante** de C.

Proposição

Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes \overline{b} , $b \in A$, ou seja,

$$A = \bigcup_{b \in A} \overline{b}$$
.

Prova: Para todo $b \in A$ temos, pela definição de classe de equivalência, que $\overline{b} \subseteq A$. Logo $\bigcup_{b \in A} \overline{b} \subseteq A$. Agora seja $x \in A$. Logo $x \in \overline{x}$ e daí $x \in \bigcup_{b \in A} \overline{b}$. Assim $A \subseteq \bigcup_{a \in A} \overline{a}$. Portanto, $A = \bigcup_{b \in A} \overline{b}$.

Sejam a, $b \in \mathbb{Z}$,

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a,

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \nmid a$.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

Exemplos

1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a \in \mathbb{Z}$ tal que b = 0a.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \nmid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.

Sejam a, $b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 //8.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 //8.
- *6*) 17 | 51.

Sejam $a, b \in \mathbb{Z}$, $b \neq 0$. Dizemos que b **divide** a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos $b \mid a$. Quando b **não divide** a, escrevemos $b \mid a$.

- 1) Os inteiros 1 e -1 dividem qualquer número inteiro a, pois a=1a e a=(-1)(-a).
- 2) O número 0 não divide nenhum inteiro b, pois não existe $a\in\mathbb{Z}$ tal que b=0a.
- 3) Para todo $b \neq 0$, b divide $\pm b$.
- 4) Para todo inteiro $b \neq 0$, b divide 0, pois 0 = b0.
- *5*) 3 //8.
- *6*) 17 | 51.

Proposição

i) a | a, para todo $a \in \mathbb{Z}$.

Proposição

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.

Proposição

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se $a \mid b$ e $a \mid c$, então $a \mid (bx + cy)$, para todos x, $y \in \mathbb{Z}$.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se a $\mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se $a \mid b$ e $a \mid c$, então $a \mid (bx + cy)$, para todos x, $y \in \mathbb{Z}$.

Prova:

i) Imediata.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se a $\mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$,

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se a $\mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem $k, l \in \mathbb{Z}$

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se $a \mid b$ e $a \mid c$, então $a \mid (bx + cy)$, para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem $k, l \in \mathbb{Z}$ tais que b = ka

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem $k, l \in \mathbb{Z}$ tais que b = ka e a = lb.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb,

- i) a | a, para todo a $\in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b$ e $b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0.

- i) a | a, para todo a $\in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$ e $l = \pm 1$.

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se $a \mid b$ e $a \mid c$, então $a \mid (bx + cy)$, para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$ e $l = \pm 1$. Mas a > 0 e b > 0,

- i) a | a, para todo $a \in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$ e $l = \pm 1$. Mas a > 0 e b > 0, logo k = l = 1.

- i) a | a, para todo a $\in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$ e $l = \pm 1$. Mas a > 0 e b > 0, logo k = l = 1. Logo a = b.

- i) a | a, para todo a $\in \mathbb{Z}$.
- ii) Se $a \mid b \in b \mid a$, a, b > 0 então a = b.
- iii) Se a | b e b | c, então a | c.
- iv) Se a | b e a | c, então a | (bx + cy), para todos x, $y \in \mathbb{Z}$.

- i) Imediata.
- ii) Como $a \mid b \in b \mid a$, existem k, $l \in \mathbb{Z}$ tais que b = ka e a = lb. Assim b = klb, isto é, b(1 kl) = 0. Como $b \neq 0$ então 1 kl = 0. Daí kl = 1 e então $k = \pm 1$ e $l = \pm 1$. Mas a > 0 e b > 0, logo k = l = 1. Logo a = b.

iii) Como $a \mid b \in b \mid c$,

iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$

iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka

iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl.

iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que $b = ka \in c = bl$. Assim c = kal = (kl)a,

iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que $b = ka \in c = bl$. Assim c = kal = (kl)a, ou seja, $a \mid c$.

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que $b = ka \in c = bl$. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b \in a \mid c$

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b \in a \mid c \text{ temos } b = ka \in c = al$,

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b \in a \mid c \text{ temos } b = ka \in c = al, \text{ com } k, \ l \in \mathbb{Z}.$

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com k, $l \in \mathbb{Z}$. Daí bx + cy =

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y =

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly)

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Sejam a, $b \in \mathbb{Z}$,

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$.

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com k, $l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Definição

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

- iii) Como $a \mid b \in b \mid c$, existem $k, l \in \mathbb{Z}$ tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja, $a \mid c$.
- iv) Como $a \mid b$ e $a \mid c$ temos b = ka e c = al, com $k, l \in \mathbb{Z}$. Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como $kx + ly \in \mathbb{Z}$ segue que $a \mid (bx + cy)$.

Definição

Sejam a, $b \in \mathbb{Z}$, dizemos que a **é congruente à** b **módulo** m se $m \mid (a - b)$. Neste caso, escrevemos $a \equiv_m b$ ou $a \equiv b \pmod{m}$.

1)
$$5 \equiv 2 \pmod{3}$$
, pois $3 \mid (5-2)$.

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv 1 \pmod{2}$, pois $2 \mid (3-1)$.

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv 1 \pmod{2}$, pois $2 \mid (3-1)$.
- 3) $3 \equiv 9 \pmod{6}$, pois $6 \mid (3-9)$.

- 1) $5 \equiv 2 \pmod{3}$, pois $3 \mid (5-2)$.
- 2) $3 \equiv 1 \pmod{2}$, pois $2 \mid (3-1)$.
- 3) $3 \equiv 9 \pmod{6}$, pois $6 \mid (3-9)$.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Prova

i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Prova

i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a - a)$.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$,

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$,

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b)

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m,

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$,

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$

A congruência módulo m é uma relação de equivalência em Z.

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$.

A congruência módulo m é uma relação de equivalência em Z.

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$. Assim, $m \mid [(a - b) + (b - c)]$.

A congruência módulo m é uma relação de equivalência em Z.

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$. Assim, $m \mid [(a - b) + (b - c)]$. Logo, $m \mid (a - c)$,

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$. Assim, $m \mid [(a - b) + (b - c)]$. Logo, $m \mid (a - c)$, isto é, $a \equiv c \pmod{m}$.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Prova

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$. Assim, $m \mid [(a - b) + (b - c)]$. Logo, $m \mid (a - c)$, isto é, $a \equiv c \pmod{m}$.

Portanto a congruência módulo *m* é uma relação de equivalência.

A congruência módulo m é uma relação de equivalência em \mathbb{Z} .

Prova

- i) Para todo $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$ pois $m \mid (a a)$.
- ii) Se $a \equiv b \pmod{m}$, então $m \mid (a b)$. Daí existe $k \in \mathbb{Z}$, tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja, $m \mid (b a)$. Daí $b \equiv a \pmod{m}$.
- iii) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $m \mid (a b)$ e $m \mid (b c)$. Assim, $m \mid [(a - b) + (b - c)]$. Logo, $m \mid (a - c)$, isto é, $a \equiv c \pmod{m}$.

Portanto a congruência módulo *m* é uma relação de equivalência.

i)
$$a_1 \equiv b_1 \pmod{m}$$
 se, e somente se, $a_1 - b_1 \equiv 0 \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- iv) Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- *iv)* Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.
- v) Vale a lei do cancelamento: se $d \in \mathbb{Z}$ e mdc(d, m) = 1 então $ad \equiv bd \pmod{m}$ implica $a \equiv b \pmod{m}$.

- i) $a_1 \equiv b_1 \pmod{m}$ se, e somente se, $a_1 b_1 \equiv 0 \pmod{m}$.
- ii) Se $a_1 \equiv b_1 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.
- iii) Se $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, então $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.
- *iv)* Se $a \equiv b \pmod{m}$, então $ax \equiv bx \pmod{m}$, para todo $x \in \mathbb{Z}$.
- v) Vale a lei do cancelamento: se $d \in \mathbb{Z}$ e mdc(d, m) = 1 então $ad \equiv bd \pmod{m}$ implica $a \equiv b \pmod{m}$.

Prova: Provemos o item iii).

Prova: Provemos o item iii). Como $a_1 \equiv b_2 \pmod{m}$

Prova: Provemos o item iii). Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$,

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1-b_1=km$$

$$a_2-b_2=Im,$$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$

 $a_2 - b_2 = lm$,

isto é,

$$a_1 = b_1 + km$$
$$a_2 = b_2 + lm,$$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$

 $a_2 - b_2 = lm$,

isto é,

$$a_1 = b_1 + km$$
$$a_2 = b_2 + lm,$$

$$a_1 a_2 =$$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$
$$a_2 = b_2 + lm,$$

$$a_1a_2 = (b_1 + km)(b_2 + lm)$$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$
$$a_2 = b_2 + lm,$$

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + klm^2$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + klm^2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + klm)}_{\in \mathbb{Z}} m$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + klm^2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + klm)}_{\in \mathbb{Z}} m$

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

Assim

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + k lm^2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + k lm)}_{\in \mathbb{Z}} m$

Ou seja, $a_1 a_2 - b_1 b_2 = cm$,

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

Assim

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + k lm^2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + k lm)}_{\in \mathbb{Z}} m$

Ou seja, $a_1a_2 - b_1b_2 = cm$, onde $c = lb_1 + kb_2 + klm \in \mathbb{Z}$.

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

Assim

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + k lm^2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + k lm)}_{\in \mathbb{Z}} m$

Ou seja, $a_1a_2 - b_1b_2 = cm$, onde $c = lb_1 + kb_2 + klm \in \mathbb{Z}$. Portanto, $a_1a_2 \equiv b_1b_2 \pmod{m}$.

Como $a_1 \equiv b_2 \pmod{m}$ e $a_2 \equiv b_2 \pmod{m}$, existem $k, l \in \mathbb{Z}$ tais que

$$a_1 - b_1 = km$$
$$a_2 - b_2 = lm,$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

Assim

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

= $b_1 b_2 + b_1 lm + b_2 km + k lm^2 = b_1 b_2 + \underbrace{(lb_1 + kb_2 + k lm)}_{\in \mathbb{Z}} m$

Ou seja, $a_1a_2 - b_1b_2 = cm$, onde $c = lb_1 + kb_2 + klm \in \mathbb{Z}$. Portanto, $a_1a_2 \equiv b_1b_2 \pmod{m}$.

