UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS

Tema: Parcial

Apellidos: Moreno Vera Nombres: Felipe Adrian Código: 20120354I

Curso: Física Computacional

Codigo Curso: CC063

3. Dinámica pobacional

r es la tasa de crecimiento y K es la capacidad poblacional

a) Método de Malthus:

Se tiene la ecuación diferencial:

$$\frac{dx}{dt} = rx$$

Resolviendo por variable separables:

$$\int \frac{dx}{x} = \int rdt$$

$$\ln (|(x)|) = rt + C$$

Usando exponencial:

$$x(t) = C_0 e^{rt}$$

Con r = 0.1, calculamos $C_0=1$:

$$x(t) = e^{t/10}$$

Usando el programa malthus.cpp, se obtiene:

Se ve que la población incrementa de manera exponencial sin limite definido

b) Método de Verhulst:

Se tiene la ecuación diferencial:

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{K}\right)$$

Haciendo: $n = \frac{x}{K}$ y $\tau = rt$, la ecuación de Verhulst queda:

$$\frac{dn}{d\tau} = n(1-n)$$

Resolviendo por variables separables:

$$\int \frac{dn}{n-n^2} = \int d\tau \rightarrow \ln\left(\left|(n)\right|\right) - \ln\left(\left|(1-n)\right|\right) = \tau + C \rightarrow \ln\left(\left|\left(\frac{n}{1-n}\right)\right|\right) = \tau + C$$

Usando exponencial:

$$\frac{n}{1-n} = e^{\tau+C} = e^{C} e^{\tau} = C_0 e^{\tau} \implies n(\tau) = \frac{C_0 e^{\tau}}{1 + C_0 (e^{\tau} - 1)} \dots (1)$$

De (1) se obtiene:

$$x(t) = \frac{KC_0 e^{rt}}{K + C_0 (e^{rt} - 1)}$$

Usando los datos de: K=0.2, r =0.1 y $x_0 = 1$ calculamos $C_0=1$: $x(t) = \frac{Ke^{t/10}}{K + e^{t/10} - 1}$

$$x(t) = \frac{Ke^{t/10}}{K + e^{t/10} - 1}$$

Usando el programa verhulst.cpp se obtiene:

Se observa que la población tiene un límite de crecimiento a diferencia del modelo de malthus, y esto se debe al factor: $\frac{-rx^2}{K}$, creando un tope al ser la capacidad poblacional (K=5).

c) Método de Lokta-Volterra:

Se tienen las ecuaciones diferenciales(loktaVolterra.cpp):

Presa:

$$\frac{dx}{dt} = (a - by)x$$

Depredador:

$$\frac{dy}{dt} = (cx - d)y$$

de estas 2 se sabe: $\frac{dy}{dx} = -\frac{y}{x} \frac{(cx-d)}{(by-a)}$, resolviendo por variable separables:

$$\frac{1}{y}(by-a)dy = -\frac{1}{x}(cx-d)dx$$

se tiene:

$$(by-a)dln(y)+(cx-d)dln(x)=0$$

Se construye la ecuación:

Solución general:

Constante de integración:

$$V(x,y) = -cx + d \ln(x) - by + a \ln(y)$$

Graficando se obtiene:

Presa, Depredador vs t:

Presa vs Depredador:

Análisis de las gráficas:

1. Presa, Depredador vs t:

Se observa de las gráficas que por cada temporada de tiempo que pasa, las poblaciones de presas y depredadores van incrementando (tienen un local máximo en cada intervalo de interacción), siguiendo el modelo de malthus, cada población crece exponencialmente y a su vez, siguiendo el modelo de Verhulst, la poblacion crece hasta un tope, pero en vez de mantenerse, decae debido a la interacción con la otra especie.

2. Presa vs Depredador:

Se observa que las poblaciones van incrementando (se observa por las curvas de poblacón y se identifica debido a que no se mantiene constante y ocurre un aumento).

Nota: Cambie el nombre de "c" a d" y de "d" a "c" (siguiendo el modelo general explicado arriba), revise cambios al programa.

Inestabilidad:

Usando los valores de:

const double a = 0.05; const double b = 0.02; const double c = 0.04; const double d = 0.6;

Se observa que el sistema diverge:

Preda, Depredador vs t:

Se observa que las poblaciones llegando a cierto punto, comienzan a crecer independientemente una de otra.

Presa vs Depredador:

Se observa la interacción de las poblaciones divergentes.

Criterio de elección, se sabe que x' = x(a - by) y y' = y(cx - d), entonces para que diverja, d > c y a < b.

La característica del modelo respecto a los otros 2 ya se explicó en **Análisis de gráficos.**

1. Problema de dos-cuerpos

Compile y ejecute el código de problema de dos cuerpos (doscuerpos.cpp), utilizando el método de Euler y LeapFrog:

a) Metodo de euler con excentricidad = 0:

Gráficas de dtMin:

Energía:

Gráficas de dtMax:

Energía:

Rmin:

Orbita:

b) Metodo de euler con excentricidad = 0.5:

Gráficas de dtMin:

Energía:

Gráficas de dtMax:

Energía:

Rmin:

c) Metodo de euler con excentricidad = 0.8: Gráficas de dtMin:

Energía:

Rmin:

Gráficas de dtMax:

Energía:

Rmin:

Orb<u>ita:</u>

d) Metodo de euler con excentricidad = 0.99:

Gráficas de dtMin:

Energía:

Rmin:

Orbita:

Gráficas de dtMax:

Energía:

Rmin:

Orbita:

Observación y análisis del método de euler:

Hasta este punto que hemos visto los cambios de los errores relativos usando euler y cambiando la excentricidad (que es más notoria en como afecta al movimiento de la partícula expresada en las gráficas orbita q va abriendose hacia una hiperbola conforme aumenta la excentricidad de datos) se ve que a mayor excentricidad el error relativo de la excentricidad y los radios van disminuyendo, sin embargo, la energía se mantiene casi en su margen de error, también se observa que a mayor excentricidad, los errores relativos convergen a un solo valor.

e) Metodo de leapfrog con excentricidad = 0: Gráficas de dtMin:

Energía:

Orbit<u>a:</u>

Gráficas de dtMax:

Energía:

Momento Angular:

4.5e-14

Rmin:

f) Metodo de leapfrog con excentricidad = 0.5: Gráficas de dtMin:

Energía:

Gráficas de dtMax:

Energía:

Rmin:

g) Metodo de leapfrog con excentricidad = 0.8: Gráficas de dtMin:

Rmin:

Orbit<u>a:</u>

Gráficas de dtMax:

Energía:

Orb<u>ita:</u>

h) Metodo de leapfrog con excentricidad = 0.99: Gráficas de dtMin:

Energía:

Gráficas de dtMax:

Energía:

Observación y análisis del método de lepfrog:

Hasta este punto que hemos visto los cambios de los errores relativos usando leapfrog y cambiando la excentricidad (que es más notoria en como afecta al movimiento de la partícula expresada en las gráficas orbita q va abriendose hacia una hiperbola conforme aumenta la excentricidad de datos) se ve sea cual sea el valor escogido para la excentricidad, el error relativo de los indicadores convergen a 0, a excepción del momento angular que tiene oscilaciones de su valor (en torno a 0), pero con excentricidad 0, se ve la oscilación de los errores relativos.

LeapFrog vs Euler:

Se observa que leapfrog, disminuye su error relativo conforme pasa el tiempo, es decir, cada iteración se hace más preciso (converge más rápido) que el método de euler.

Nota 1: El dt debe ser menor a 1e-5 para poder observar el comportamiento de las órbitas y la diferencia de rapidez de convergencia entre leapfrog y euler.

Nota 2: Por ejemplo, cuando se llegua a un valor muy próximo a cero (que geenralmente es -263), la máquina lo manda a 0 por lo que los errores relativos s alzan hacia inf o Nan, dificultando la recolección de los datos, entonces el principal error en este programa es la división en el error relativo que se va acumulando.

2. Problema de N-cuerpos: Fokker-Planck:

a) Describa brevemente en qué consiste el método Fokker-Planck. (2. Theoretical model).

Define el sistema en coordenadas cilíndricas, por el cual se puede definir el momento angular $J=\omega v_{\varphi}$ y la energía del sistema: $E=\frac{1}{2}v^2+\phi(\omega,z)$ y la ecuación de

boltzmann en términos de E y
$$J_z$$
 : $\frac{\partial f}{\partial t} + \frac{\partial \phi}{\partial t} \frac{\partial f}{\partial E} = \left(\frac{\partial f}{\partial t}\right)$

Entonces la simulación empieza con condiciones iniciales (con f(E,J) inicial como la ecuación de boltzmann para tranferencia de calor), se calcula las velocidades angulares y los radios.

b) Qué sistemas de N-cuerpos se intenta simular en este estudio?

Sistemas donde insteractúan N-cuerpos debido a las fuerzas gravitacionales (que generan energía potencial y cinética) y a su vez, donde el cuerpo tenga la propiedad de rotación, entonces, se intenta simular sistemas donde las particulas interactúen entre sí y además, al moverse presenten rotación. Junto a un cuerpo (agujero negro) en el centro del sistema, es decir, la rotación de varios conjuntos de Galaxias.

c) Qué indicadores se utilizan para comparar las simulaciones con observaciones reales de este tipo de sistemas?(5. Observational Data Comparison).

Utilizan 8 indicadores:

Identificación de galaxia: (cluster galaxy).

 r_c : Radio del núcleo actual en minutos sexagesimales (arcmin).

 r_h : Radio de la masa media actual en minutos sexagesimales (arcmin).

 r_t : Radio de marea actual en minutos sexagesimales (arcmin).

 $c = \log_{10}(r_t/r_c)$, concentración.

e: Elipticidad (radio axial proyectado).

 t_{rh} : tiempo de vida media (en años).

Edad del cluster galaxy (en años) tomada de datos reales.

d) Cual le parece que es la ventaja de utilizar métodos computacionales alternativos para analizar el mismo problema desde el punto de vista teórico?

Que hasta cierto punto, se puede o bien verificar las teorías planteadas, según algún comportamiento pre-definido o según un modelo establecido poder ver lo que sucederá en un tiempo según las condiciones iniciales.