## Inducing Teacher Retention in Remote Locations: Evidence from Peru

Max Perez Leon

Yale University

Presentation at NERA White Plains February 05, 2019



## Urban/Non-urban Disparities





## Motivation

To what extent can governments attract and retain public workers in remote locations?

## Motivation

To what extent can governments attract and retain public workers in remote locations?

## Monetary incentives can be large

- Shortages and low quality in remote settings are still unresolved

## Motivation

To what extent can governments attract and retain public workers in remote locations?

## Monetary incentives can be large

- Shortages and low quality in remote settings are still unresolved

## Ultimate goal is to improve public services in remote locations

- Educational results of students
- Health outcomes

## **Research Questions**

1. To what extent will teachers be attracted and retained by monetary incentives?

## **Research Questions**

1. To what extent will teachers be attracted and retained by monetary incentives?

2. What characteristics enhance the efficacy of the incentives?

## **Research Questions**

1. To what extent will teachers be attracted and retained by monetary incentives?

2. What characteristics enhance the efficacy of the incentives?

3. Do incentives affect the composition of teachers within schools?

## Contribution

- 1. Construct dataset of the universe of public teachers ('13-'17) and job openings in Peru
- 2. New approach to study regression discontinuity designs in spatial settings

  Bayer et al. (2007) Black (1999), Dell (2010)
- 3. Use this approach to quantify the effect of monetary incentives

Alva et al. (2017), Castro and Esposito (2018), Clotfelter et al. (2008)

- 4. Teachers' contract determine the efficacy of the monetary incentive
  - $\implies$  Permanent vs temporary

## **Preview of Results**

- Retention of temporary teachers' increases significantly with monetary incentives

- The monetary incentives do not modify permanent teachers' behavior:
  - Job openings with a salary bonus are not more attractive
  - Retention remains similar with and without a bonus

- At the school level, the composition of teachers remains unaltered
  - Corollary: The experience of temporary teachers increases

## Outline

Introduction

**Institutional Details** 

**Boundary Discontinuity Design** 

Results

Conclusions

Peruvian Education Institutional Details and Data

## Peruvian Public Education System

- 2015: Government implemented monetary incentives aimed at remote school.
- The government spends on this program:
  - 120 million dollars
  - 5% of payroll
- The policy implemented by the government induced a quasi-experiment design:
  - (Implicit) Boundaries where created
  - On one side of the boundary teachers receive a 20% salary bonus

## Contracts and wages

- Two types of contracts:
  - Permanent teachers with tenured
  - Temporary teachers with yearly contracts
- Wage structure:
  - 1. Permanent teachers face a 6-step base salary schedule Schedule
  - 2. Lowest base salary: \$7,556
  - 3. Highest base salary: \$13,219 (175% of first step)
  - 4. Temporary teachers receive lowest base salary (\$7,556)

## **Bonus Structure**



## **Treatment and Outcomes Variables**

- Control: Rural (\$400)
- Treatment: Isolated (\$2100)
- Teacher retention:
  - Stay at a school one more year
- Teacher attraction:
  - Job opening is filled by a permanent teacher
- Teach composition:
  - Share of Permanent Teachers at the school level

## Data

- Universe of Public Teachers
  - 2013 2017
  - Salary, Age, Contract type, Working location, College degree
- School data
  - School and surrounding town's characteristics
  - Average standardized test scores
- Job Openings data
  - 2015 2017
  - Covers 35-50% of school districts

## Statistics Pre-reform (2013)

|                                  | (1)      | (2)    | (3)      | (4)     |
|----------------------------------|----------|--------|----------|---------|
|                                  | Isolated | Rural  | Suburban | Urban   |
| Fraction of Permanent Teachers   | 0.63     | 0.74   | 0.81     | 0.80    |
|                                  | (0.43)   | (0.38) | (0.33)   | (0.32)  |
| Retention Rate of Perm. Teachers | 0.88     | 0.90   | 0.92     | 0.94    |
|                                  | (0.29)   | (0.25) | (0.21)   | (0.17)  |
| Retention Rate of Temp. Teachers | 0.12     | 0.12   | 0.12     | 0.16    |
|                                  | (0.30)   | (0.28) | (0.27)   | (0.30)  |
| Students to Teacher Ratio        | 18.87    | 18.28  | 20.13    | 24.81   |
|                                  | (11.8)   | (10.6) | (10.8)   | (11.2)  |
| Math Score                       | 479.22   | 496.40 | 507.51   | 534.30  |
|                                  | (84.0)   | (80.4) | (75.0)   | (69.0)  |
| Schools                          | 10,831   | 12,347 | 7,996    | 13,641  |
| Permanent Teachers               | 14,850   | 27,262 | 28,983   | 131,038 |
| Temporary Teachers               | 8,569    | 8,401  | 5,367    | 16,776  |











## Boundary Discontinuity Design

## **Unobserved Boundaries**



## **Unobserved Boundaries**



## **Unobserved Boundaries**



## Potential Outcome Framework

## Potential Outcome Framework

- Rubin (1974)
- Teacher i
- Treatment variable  $W_i$

$$W_i = \begin{cases} 1 & \text{if teacher } i \text{ works at Isolated school} \\ 0 & \text{if teacher } i \text{ works at Rural school} \end{cases}$$

- N<sub>1</sub>: Set of treated units
- No: Set of control units
- Potential outcome variable:  $Y_i(1)$  (treatment) and  $Y_i(0)$  (control)

## Statistic of Interest

- Regression discontinuity's average treatment effect at the cutoff c for variable X

$$ATET_c = \mathbb{E}\left[\left.Y_i\left(1\right) - Y_i\left(0\right)\right|W_i = 1, X = c\right]$$

## Statistic of Interest

- Regression discontinuity's average treatment effect at the cutoff c for variable X

$$ATET_c = \mathbb{E}[Y_i(1) - Y_i(0)|W_i = 1, X = c]$$

- Average treatment effect at the boundary

$$\mathsf{ATET}_{\mathcal{B}} = \mathbb{E}\left[\left.Y_{i}\left(1\right) - Y_{i}\left(0\right)\right| \, W_{i} = 1, \mathcal{B}\right]$$

where  ${\cal B}$  is the boundary between two bonus regions

## **Estimator**

- Researcher only observes  $Y_i$ 

$$Y_i \equiv \begin{cases} Y_i(1) & \text{if } W_i = 1 \\ Y_i(0) & \text{if } W_i = 0 \end{cases}$$

- Main goal when estimating average treatment effect for the treated:

Construct an approximation  $\hat{Y}_i(0)$  for treated units

## **Estimator**

- The ATET $_{\mathcal{B}}$  estimator

$$\widehat{\mathsf{ATET}}_{\mathcal{B}} = \frac{1}{N_1} \sum_{i \in N_1 \cap \mathcal{B}} \left( \mathbf{Y}_i - \hat{\mathbf{Y}}_i \left( \mathbf{0} \right) \right)$$

# Matching Estimator

## **Matching Estimators**



## Objective

Construct a control group for  $Y_1$ 

$$\hat{Y}_{1}\left(0\right)\equiv f\left(Y_{2},Y_{3},Y_{4}\right)$$





## **Matching Estimators**



One-Nearest-Neighbor

$$\hat{Y}_{1}^{1NN}\left( 0\right) =\text{ }Y_{2}$$

Two-Nearest-Neighbors

$$\hat{Y}_{1}^{2NN}(0) = \frac{1}{2} \left( |Y_{3}| + |Y_{2}| \right)$$

Kernel • Kernel

$$\hat{Y}_{1}^{K}\left(0\right)=\left[\omega_{13}\right]Y_{3}+\left[\omega_{12}\right]Y_{2}$$



## **Matching Estimators**



One-Nearest-Neighbor

$$\hat{Y}_{1}^{1NN}\left( 0\right) =\text{ }Y_{2}$$

Two-Nearest-Neighbors

$$\hat{Y}_1^{2NN}(0) = \frac{1}{2} \left( \begin{array}{c|c} Y_3 \end{array} + \begin{array}{c|c} Y_2 \end{array} \right)$$

Kernel • Kernel

$$\hat{Y}_{1}^{K}\left(0\right)=\left|\omega_{13}\right|Y_{3}+\left|\omega_{12}\right|Y_{2}$$

## $\mathsf{ATET}_\mathcal{B}$

- The ATET $_{\mathcal{B}}$  estimator

$$\mathsf{AT\hat{E}T}_{\mathcal{B}} = \frac{1}{N_{1}} \sum_{i \in N_{1} \cap \mathcal{B}} \left( \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}^{1}(\mathbf{0}) \right) = \begin{cases} \frac{1}{N_{1}} \sum_{i \in N_{1} \cap \mathcal{B}} \left( \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}^{1NN}(\mathbf{0}) \right) \\ \frac{1}{N_{1}} \sum_{i \in N_{1} \cap \mathcal{B}} \left( \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}^{2NN}(\mathbf{0}) \right) \\ \frac{1}{N_{1}} \sum_{i \in N_{1} \cap \mathcal{B}} \left( \mathbf{Y}_{i} - \hat{\mathbf{Y}}_{i}^{K}(\mathbf{0}) \right) \end{cases}$$

## **Regression Discontinuity**







## **Fixed-Effects**



Block fixed-effects





#### Matching Estimators: Pros and cons

- Pros:
  - 1. Readily available
  - 2. No need to know the exact location of boundary
  - 3. Allows more complex distance measures (travel time)
- Cons:
  - 1. Only allows binary treatment
  - 2. Lose graphical representation



#### Salary 2013 - Pre-reform



#### Salary 2016 - Post-reform











**ATET** 

95% C.I.



#### **Attraction of Permanent Teachers**

Pooled





#### **Fraction of Permanent Teachers**





# Difference in Differences at Boundary

- Control for difference in fraction of permanent teacher  $(F_t)$  before the reform

- Difference in difference at the boundary (Difference-in-Discontinuities)

- Outcome variable

Kindergarten

$$Y_{i,t} = \Delta F_t \equiv F_t - F_{2013}$$

## Difference in Differences at Boundary



#### Robustness checks

- Matching methods
  - Kernel matching: 5, 10, 15 and 20 km bandwidths
  - Nearest-neighbor: 1 to 6 nearest-neighbors
- Three levels of education
  - Kindergarten
  - Elementary School
  - High School
- Two additional boundaries Table
  - Coca-growing region bonus boundary
  - Frontier bonus boundary
- Estimated separately by age and income groups

#### Interpreting retention results

Temporary Teachers in the Isolated/Rural Boundary

- 1. An 8 p.p. increase in retention is significant
  - It represents a 25-40% increase of temporary teachers' retention rate
- 2. Is it harder to obtain statistically significant results for permanent teachers? Back-of-the-envelope calculation
  - Retention rate for
    - Temporary teachers: 25%
    - Permanent teachers: 90%
  - $\widehat{ATET}_{\mathcal{B}}$  for temporary teachers = 8 percentage points
  - Using discrete choice model for permanent teacher:  $\widehat{ATET}_{\mathcal{B}} = 2.4 \text{ p.p.}$

#### Limitations

- Threat to identification: Potentially stable unit treatment value assumption (SUTVA) does not hold
  - Control unit on one side of the border move towards higher bonus schools.
  - Permanent teacher would be more likely to show an effect if SUTVA did not hold
  - This threat works against my results for permanent teachers
- Higher retention rates of permanent teachers reduces power of tests

#### **Conclusions**

- Monetary incentives can significantly affect teacher retention
- The efficacy depends on the type of contract

- The incentives end up not modifying the composition of teachers within schools
- The new approach to study boundary discontinuity designs is
  - Intuitive
  - Simple to use

#### **Policy**

- It is difficult to alter permanent teachers' behavior
  - Reduce the scope of the bonus to certain age group (loan repayment)
  - Back-load bonus
  - Tie bonus to quality measures
- There are no teacher shortage problems
  - No need to provide incentives for temporary teachers



# Salary Schedule

| (1)    | (2)              | (3)             | (4)             | (5)             |
|--------|------------------|-----------------|-----------------|-----------------|
| ` '    | , ,              | , , ,           | Distribution of | Distribution of |
| Step   | Base Year Salary | % of First Step | Permanent       | Temporary       |
|        | (\$)             |                 | Teachers        | Teachers        |
| First  | 7,556            | 100%            | 34%             | 100%            |
| Second | 8,311            | 110%            | 29%             | 0%              |
| Third  | 9,066            | 120%            | 20%             | 0%              |
| Fourth | 9,821            | 130%            | 11%             | 0%              |
| Fifth  | 11,332           | 150%            | 4%              | 0%              |
| Sixth  | 13,219           | 175%            | 1%              | 0%              |



#### Bias-adjustment (Abadie and Imbens, 2011)



#### Control for other covariates

- Age is a covariate:  $A_i$
- Regress  $A_i$  on  $Y_i$  only within control units

$$Y_i(0) = \hat{\beta}_0 A_i + \hat{\varepsilon}_i$$

- The bias-adjusted  $\hat{Y}_{1}^{1NN}(0)$ 

$$\hat{Y}_{1}^{1NN}(0) \equiv Y_{2} - \hat{\beta}_{0} \frac{A_{2}}{A_{2}} + \hat{\beta}_{0} \frac{A_{1}}{A_{1}}$$

## **Boundaries**

| Bonus                    | Salary<br>Bonus | % of Lowest<br>Base Salary | % of Highest<br>Base Salary |
|--------------------------|-----------------|----------------------------|-----------------------------|
| Non-urban Classification |                 |                            |                             |
| Isolated                 | \$2100          | 28.1%                      | 18.7%                       |
| Rural                    | \$400           | 5.6%                       | 3.7%                        |
| Suburban                 | \$300           | 3.9%                       | 2.6%                        |
| VRAEM                    | \$1300          | 16.8%                      | 11.2%                       |
| Frontiers                | \$400           | 5.6%                       | 3.7%                        |

Figure: Epanechnikov kernel with 1 km, 5km and 10 km half-bandwidths



# Statistics (2013)

|                                  | (1)      | (2)      | (3)      | (4)        |
|----------------------------------|----------|----------|----------|------------|
|                                  | Isolated | Rural    | Suburban | Urban      |
| Town's population                | 191.25   | 294.09   | 602.76   | 96,862.75  |
|                                  | (637.6)  | (1307.4) | (1104.5) | (171590.2) |
| Town with water network          | 0.44     | 0.62     | 0.74     | 0.88       |
|                                  | (0.46)   | (0.44)   | (0.39)   | (0.26)     |
| Fraction of Permanent Teachers   | 0.63     | 0.74     | 0.81     | 0.80       |
|                                  | (0.43)   | (0.38)   | (0.33)   | (0.32)     |
| Retention Rate of Perm. Teachers | 0.88     | 0.90     | 0.92     | 0.94       |
|                                  | (0.29)   | (0.25)   | (0.21)   | (0.17)     |
| Retention Rate of Temp. Teachers | 0.12     | 0.12     | 0.12     | 0.16       |
|                                  | (0.30)   | (0.28)   | (0.27)   | (0.30)     |
| Students to Teacher Ratio        | 18.87    | 18.28    | 20.13    | 24.81      |
|                                  | (11.8)   | (10.6)   | (10.8)   | (11.2)     |
| Reading Score                    | 480.21   | 498.33   | 511.96   | 543.04     |
|                                  | (71.1)   | (60.8)   | (55.4)   | (52.4)     |
| Math Score                       | 479.22   | 496.40   | 507.51   | 534.30     |
|                                  | (84.0)   | (80.4)   | (75.0)   | (69.0)     |
| Schools                          | 10,831   | 12,347   | 7,996    | 13,641     |
| Permanent Teachers               | 14,850   | 27,262   | 28,983   | 131,038    |
| Temporary Teachers               | 8,569    | 8,401    | 5,367    | 16,776     |

## Math Scores Pre-reform (2013)





## Share of Permanent Teachers Pre-reform (2013)





## Validity Test - Pre-reform

|                          | (1)                         | (2)           | (3)        | (4)                           | (5)                        |
|--------------------------|-----------------------------|---------------|------------|-------------------------------|----------------------------|
|                          | Student to<br>Teacher Ratio | Reading Score | Math Score | Town with<br>Electric service | Town with<br>Water service |
| ATET (Isolated vs Rural) | -0.382                      | -2.634        | -0.729     | -0.0502***                    | -0.0564***                 |
| s.e.                     | (0.29)                      | (3.28)        | (4.37)     | (0.01)                        | (0.01)                     |
| N                        | 16,485                      | 6,069         | 6,070.0    | 15,675.0                      | 15,675.0                   |

<sup>\*</sup> p<0.05, \*\* p<0.01, \*\*\* p<0.001



### Retention of Permanent Teachers Pre-reform (2013)





## Retention of Temporary Teachers Pre-reform (2013)





## **Teacher Composition and Standardized Math Scores**

#### Outcome variable: Math Scores

|                       | (1)          | (2)          | (3)          |
|-----------------------|--------------|--------------|--------------|
| Fraction of Temporary | -58.2***     | -32.8***     | -6.97**      |
|                       | (3.84)       | (1.94)       | (2.51)       |
| Constant              | 552.4***     | 547.3***     | 544.4***     |
|                       | (1.84)       | (0.79)       | (0.49)       |
| Obs                   | 55984        | 55984        | 53165        |
| $R^2$                 | 0.10         | 0.28         | 0.66         |
| Time FE               | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| School District FE    |              | $\checkmark$ |              |
| School FE             |              |              | ✓            |

## Regression Discontinuity

**Usual RD** 

$$Y_i = \beta \times \mathsf{Treated}_i + f(\mathsf{distance\ to\ boundary}_i) + \varepsilon_i$$

as in Michalopoulos and Papaioannou (2013) and Schumann (2014) or

$$Y_i = \beta \times \text{Treated}_i + f(\text{longitude}_i, \text{latitude}_i) + \varepsilon_i$$

as in Dell (2010).

## Regression with block fixed-effects

$$Y_i = \beta \times \mathsf{Treated}_i + \xi_b + \varepsilon_i$$

where  $\xi_b$  is a X  $km^2$  fixed-effect (Black, 1999).

Elementary



High-School





|                         | Pre-reform    |              |            |               |              |            | Post-reform   |              |            |                |               |             |
|-------------------------|---------------|--------------|------------|---------------|--------------|------------|---------------|--------------|------------|----------------|---------------|-------------|
|                         |               | 2013         |            |               | 2014         |            |               | 2015         |            |                |               |             |
|                         | (1)<br>Kinder | (2)<br>Elem. | (3)<br>H-S | (4)<br>Kinder | (5)<br>Elem. | (6)<br>H-S | (7)<br>Kinder | (8)<br>Elem. | (9)<br>H-S | (10)<br>Kinder | (11)<br>Elem. | (12)<br>H-S |
| Kernel ( b = 5km )      | 0.05          | 0.03         | 0.03       | 0.04          | 0.06         | 0.05       | 0.10***       | 0.03         | 0.05       | 0.07**         | 0.06**        | 0.02        |
|                         | (0.04)        | (0.05)       | (0.04)     | (0.03)        | (0.03)       | (0.03)     | (0.03)        | (0.02)       | (0.03)     | (0.02)         | (0.02)        | (0.02)      |
| Kernel ( b = 10km )     | 0.01          | -0.02        | -0.03      | 0.02          | 0.05*        | 0.04       | 0.09***       | 0.03*        | 0.05**     | 0.08***        | 0.06***       | 0.05**      |
|                         | (0.03)        | (0.03)       | (0.03)     | (0.02)        | (0.02)       | (0.02)     | (0.02)        | (0.01)       | (0.02)     | (0.02)         | (0.01)        | (0.02)      |
| Kernel ( $b = 15km$ )   | 0.02          | -0.03        | -0.00      | 0.00          | 0.02         | 0.03       | 0.09***       | 0.03*        | 0.05***    | 0.09***        | 0.06***       | 0.06***     |
|                         | (0.02)        | (0.03)       | (0.02)     | (0.02)        | (0.02)       | (0.02)     | (0.02)        | (0.01)       | (0.01)     | (0.01)         | (0.01)        | (0.01)      |
| Obs ( b = 5km )         | 609           | 582          | 637        | 1,561         | 1,189        | 1,451      | 1,828         | 2,334        | 1,912      | 2,780          | 3,434         | 2,814       |
| Obs ( b = 10km )        | 1,375         | 1,388        | 1,657      | 3,100         | 2,824        | 3,654      | 3,617         | 4,872        | 4,742      | 5,377          | 7,091         | 6,877       |
| Obs ( b = 15km )        | 1,914         | 1,942        | 2,470      | 3,977         | 3,869        | 5,159      | 4,535         | 6,242        | 6,679      | 6,809          | 9,116         | 9,677       |
| Sample Share ( b = 5 )  | 0.22          | 0.20         | 0.15       | 0.30          | 0.22         | 0.18       | 0.32          | 0.28         | 0.19       | 0.32           | 0.29          | 0.19        |
| Sample Share ( b = 10 ) | 0.51          | 0.47         | 0.38       | 0.60          | 0.51         | 0.45       | 0.63          | 0.59         | 0.46       | 0.62           | 0.61          | 0.47        |
| Sample Share ( b = 15 ) | 0.70          | 0.66         | 0.56       | 0.77          | 0.70         | 0.63       | 0.79          | 0.76         | 0.65       | 0.79           | 0.78          | 0.67        |
| Base Retention Rate     | 0.16          | 0.16         | 0.23       | 0.26          | 0.23         | 0.33       | 0.15          | 0.12         | 0.19       | 0.24           | 0.25          | 0.31        |

<sup>\*</sup> p<0.05, \*\* p<0.01, \*\*\* p<0.001



Elementary





High-School





|                         | Pre-reform |        |        |        |        |        |        | Post-reform |        |        |        |        |  |
|-------------------------|------------|--------|--------|--------|--------|--------|--------|-------------|--------|--------|--------|--------|--|
|                         |            | 2013   |        |        | 2014   |        |        | 2015        |        | 2016   |        |        |  |
|                         | (1)        | (2)    | (3)    | (4)    | (5)    | (6)    | (7)    | (8)         | (9)    | (10)   | (11)   | (12)   |  |
|                         | Kinder     | Elem.  | H-S    | Kinder | Elem.  | H-S    | Kinder | Elem.       | H-S    | Kinder | Elem.  | H-S    |  |
| Kernel ( b = 5km )      | -0.01      | 0.00   | -0.01  | -0.03  | -0.00  | 0.01   | 0.05   | 0.02        | 0.01   | -0.01  | 0.03*  | 0.05   |  |
|                         | (0.05)     | (0.01) | (0.02) | (0.03) | (0.01) | (0.01) | (0.09) | (0.01)      | (0.03) | (0.06) | (0.01) | (0.03) |  |
| Kernel ( b = 10km )     | -0.01      | 0.00   | -0.02  | -0.02  | 0.00   | 0.00   | -0.01  | 0.00        | 0.01   | 0.03   | 0.02*  | 0.02   |  |
|                         | (0.04)     | (0.01) | (0.01) | (0.02) | (0.00) | (0.01) | (0.06) | (0.01)      | (0.02) | (0.05) | (0.01) | (0.01) |  |
| Kernel ( b = 15km )     | -0.04      | -0.00  | -0.01  | -0.01  | 0.00   | -0.01  | -0.04  | 0.00        | 0.01   | 0.00   | 0.02   | 0.01   |  |
|                         | (0.03)     | (0.01) | (0.01) | (0.02) | (0.00) | (0.01) | (0.04) | (0.01)      | (0.02) | (0.03) | (0.01) | (0.01) |  |
| Obs ( b = 5km )         | 280        | 9,171  | 1,767  | 243    | 8,706  | 1,662  | 232    | 8,383       | 1,620  | 220    | 7,394  | 1,463  |  |
| Obs ( b = 10km )        | 622        | 15,912 | 4,623  | 555    | 14,912 | 4,354  | 551    | 14,287      | 4,260  | 465    | 13,491 | 3,852  |  |
| Obs ( b = 15km )        | 869        | 19,200 | 6,887  | 788    | 18,041 | 6,420  | 784    | 17,283      | 6,294  | 710    | 17,067 | 5,859  |  |
| Sample Share ( b = 5 )  | 0.16       | 0.39   | 0.15   | 0.15   | 0.40   | 0.16   | 0.14   | 0.40        | 0.16   | 0.14   | 0.34   | 0.14   |  |
| Sample Share ( b = 10 ) | 0.35       | 0.68   | 0.40   | 0.34   | 0.68   | 0.41   | 0.34   | 0.68        | 0.41   | 0.29   | 0.63   | 0.38   |  |
| Sample Share ( b = 15 ) | 0.49       | 0.82   | 0.60   | 0.49   | 0.82   | 0.61   | 0.49   | 0.82        | 0.61   | 0.44   | 0.79   | 0.57   |  |
| Base Retention Rate     | 0.83       | 0.93   | 0.89   | 0.97   | 0.97   | 0.98   | 0.72   | 0.87        | 0.74   | 0.91   | 0.92   | 0.91   |  |

<sup>\*</sup> p<0.05, \*\* p<0.01, \*\*\* p<0.001



#### **Teacher Attraction of Permanent Teachers**

|                         | P      | Post-reform |        |  |  |  |  |  |
|-------------------------|--------|-------------|--------|--|--|--|--|--|
|                         | (1)    | (2)         | (3)    |  |  |  |  |  |
|                         | 2015   | 2016        | 2017   |  |  |  |  |  |
| Kernel ( b = 10km )     | 0.00   | 0.01        | -0.01  |  |  |  |  |  |
|                         | (0.02) | (0.01)      | (0.03) |  |  |  |  |  |
| Kernel ( $b = 15km$ )   | 0.00   | 0.01        | -0.01  |  |  |  |  |  |
|                         | (0.02) | (0.01)      | (0.02) |  |  |  |  |  |
| Kernel ( $b = 20km$ )   | -0.02  | 0.00        | -0.03  |  |  |  |  |  |
|                         | (0.02) | (0.01)      | (0.02) |  |  |  |  |  |
| Obs ( b = 10km )        |        |             |        |  |  |  |  |  |
| Obs ( b = 15km )        | 1,471  | 6,515       | 1,413  |  |  |  |  |  |
| Obs ( b = 20km )        | 1,931  | 8,036       | 1,798  |  |  |  |  |  |
| Sample Share ( b = 5 )  |        |             |        |  |  |  |  |  |
| Sample Share ( b = 10 ) | 0.49   | 0.62        | 0.59   |  |  |  |  |  |
| Sample Share ( b = 15 ) | 0.64   | 0.76        | 0.75   |  |  |  |  |  |
| Base Attraction Rate    | 0.26   | 0.095       | 0.15   |  |  |  |  |  |



#### **Fraction of Permanent Teachers**

|                                                   |         |          | Pre-r    | eform    |          |          | Post-reform |           |          |          |          |          |          |          |          |
|---------------------------------------------------|---------|----------|----------|----------|----------|----------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|
|                                                   |         | 2013     |          |          | 2014     |          |             | 2015 2016 |          |          |          |          | 2017     |          |          |
|                                                   | (1)     | (2)      | (3)      | (4)      | (5)      | (6)      | (7)         | (8)       | (9)      | (10)     | (11)     | (12)     | (13)     | (14)     | (15)     |
|                                                   | Kinder  | Elem.    | H-S      | Kinder   | Elem.    | H-S      | Kinder      | Elem.     | H-S      | Kinder   | Elem.    | H-S      | Kinder   | Elem.    | H-S      |
| Kernel ( b = 5km )                                | -0.02   | -0.05*** | -0.02    | -0.04*   | -0.06*** | -0.08*   | -0.06**     | -0.06***  | -0.05    | -0.05*** | -0.05*** | -0.06*   | -0.03*   | -0.00    | -0.04    |
|                                                   | (0.03)  | (0.01)   | (0.04)   | (0.02)   | (0.01)   | (0.03)   | (0.02)      | (0.01)    | (0.03)   | (0.01)   | (0.01)   | (0.02)   | (0.01)   | (0.01)   | (0.02)   |
| Kernel ( b = 10km )                               | -0.06** | -0.04*** | -0.06*   | -0.04**  | -0.07*** | -0.09*** | -0.06***    | -0.07***  | -0.06*** | -0.05*** | -0.08*** | -0.07*** | -0.04*** | -0.04**  | -0.05*** |
|                                                   | (0.02)  | (0.01)   | (0.02)   | (0.02)   | (0.01)   | (0.02)   | (0.01)      | (0.01)    | (0.02)   | (0.01)   | (0.01)   | (0.02)   | (0.01)   | (0.01)   | (0.01)   |
| b20                                               | -0.05** | -0.05*** | -0.08*** | -0.06*** | -0.08*** | -0.11*** | -0.07***    | -0.08***  | -0.08*** | -0.06*** | -0.10*** | -0.09*** | -0.06*** | -0.06*** | -0.08*** |
|                                                   | (0.02)  | (0.01)   | (0.02)   | (0.01)   | (0.01)   | (0.01)   | (0.01)      | (0.01)    | (0.01)   | (0.01)   | (0.01)   | (0.01)   | (0.01)   | (0.01)   | (0.01)   |
| Obs ( b = 5km ) Obs ( b = 10km ) Obs ( b = 15km ) | 1,447   | 5,458    | 497      | 2,450    | 5,864    | 600      | 2,552       | 5,922     | 625      | 3,455    | 5,618    | 678      | 3,491    | 5,741    | 689      |
|                                                   | 2,949   | 9,409    | 1,292    | 4,725    | 10,085   | 1,544    | 4,899       | 10,172    | 1,612    | 6,475    | 10,352   | 1,733    | 6,538    | 10,608   | 1,766    |
|                                                   | 4,252   | 12,237   | 2,277    | 6,584    | 13,002   | 2,595    | 6,703       | 13,097    | 2,682    | 9,031    | 14,115   | 2,944    | 9,174    | 14,411   | 3,002    |
| Sample Share ( b = 5 )                            | 0.28    | 0.40     | 0.16     | 0.33     | 0.41     | 0.18     | 0.33        | 0.41      | 0.18     | 0.34     | 0.35     | 0.17     | 0.34     | 0.35     | 0.17     |
| Sample Share ( b = 10 )                           | 0.58    | 0.70     | 0.42     | 0.63     | 0.70     | 0.45     | 0.64        | 0.70      | 0.46     | 0.63     | 0.65     | 0.44     | 0.63     | 0.65     | 0.45     |
| Sample Share ( b = 15 )                           | 0.84    | 0.90     | 0.74     | 0.88     | 0.90     | 0.76     | 0.87        | 0.90      | 0.77     | 0.88     | 0.89     | 0.75     | 0.88     | 0.89     | 0.76     |
| Base Retention Rate                               | 0.38    | 0.89     | 0.71     | 0.24     | 0.84     | 0.55     | 0.23        | 0.74      | 0.46     | 0.17     | 0.70     | 0.39     | 0.16     | 0.68     | 0.36     |



- Abadie, A. and G. W. Imbens (2011). Bias-corrected matching estimators for average treatment effects. *Journal of Business & Economic Statistics* 29(1), 1–11.
- Alva, C., M. Bobba, G. Leon, C. Neilson, and M. Nieddu (2017, September). Teacher wages, student achievement and the recruitment of talent in rural peru. Technical report, Unpublished Manuscript.
- preferences for schools and neighborhoods. *Journal of Political Economy* 115(4), 588–638.

Bayer, P., F. Ferreira, and R. McMillan (2007). A unified framework for measuring

- Black, S. E. (1999). Do better schools matter? parental valuation of elementary education. *The Quarterly Journal of Economics* 114(2), 577.
- Castro, J. F. and B. Esposito (2018). The effect of bonuses on teacher behavior: A story with spillovers. Technical Report 104, Peruvian Economic Association. August.
- Clotfelter, C., E. Glennie, H. Ladd, and J. Vigdor (2008). Would higher salaries keep teachers in high-poverty schools? evidence from a policy intervention in north carolina. *Journal of Public Economics* 92(5), 1352 1370.
- Dell, M. (2010). The persistent effects of peru's mining mita. *Econometrica* 78(6), 1863–1903.

- Michalopoulos, S. and E. Papaioannou (2013). Pre-colonial ethnic institutions and contemporary african development. *Econometrica* 81(1), 113–152.
- Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology* 66(5), 688–701.
- Schumann, A. (2014, July). Persistence of population shocks: Evidence from the occupation of west germany after world war ii. *American Economic Journal: Applied Economics* 6(3), 189–205.