

NP-C: Set Cover

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

SET-COVER

Sea

Un conjunto de U de n elementos

Una colección S₁,...,S_m de subconjuntos de U

Existe

Una colección de como mucho k de los subconjuntos cuya unión es igual a U?

Ejemplo

$U = \{a,b,c,d,e,f,g,h,i\}$

$$S_1 = \{a,b,c,d\}$$

$$S_2 = \{a,b,f,i\}$$

$$S_3 = \{a,e,h,g\}$$

$$S_4 = \{b,c,g\}$$

$$S_5 = \{a,d,e\}$$

$$S_6 = \{g,h\}$$

$$S_7 = \{e, i\}$$

$$S_8 = \{f\}$$

$$S_9 = \{i\}$$

Existe k=3?

$$S_1 \cup S_2 \cup S_3 = U$$

¿SET-COVER es "NP"?

Sea

U conjunto de elementos,

K tamaño buscado

los Subset S₁,...,S_m

T certificado con subconjunto de conjuntos

Verificar

|T| = k

Para todo elemento en U, si existen en algunos de los subconjuntos de T

Se puede hacer en Tiempo polinomial

SET-COVER ∈"NP"

VERTEX-COVER

Sea

Grafo G=(V,E)

Determinar

Si existe una cobertura de vértices (VERTEX-COVER) de tamaño al menos k

Con

 \forall eje e \in E=(u,v), u \in S y/o v \in S

Intentaremos demostrar que

 $VERTEX-COVER \leq_p SET-COVER$

Reducción de VERTEX-COVER a SET-COVER

Partimos de

G=(V,E) y k

Queremos

Que todos los ejes queden cubiertos

Construimos

Set de elementos U=E

Por cada Vértice v ∈ V, crearemos un subconjunto S_v con todos los ejes incidentes a él

Mantenemos en K la cantidad de subconjuntos a buscar para cubrir U

Si

Encontramos el subconjunto, eso nos dirá que vértices seleccionar.

Ejemplo

Sea el problema

Vertex-cover (k=3)

Reducimos a

Set Cover (k=3)

$$U = \{1-2, 1-4, 2-3, 3-4, 4-5, 4-6, 5-7, 5-8\}$$

$$S_1 = \{1-2, 1-4\}$$

$$S_2 = \{1-2, 2-3\}$$

$$S_3 = \{2-3, 3-4\}$$

$$S_4 = \{1-4, 3-4, 4-5, 4-6\}$$

$$S_5 = \{4-5, 5-7, 5-8\}$$

$$S_6 = \{4-6\}$$

$$S_7 = \{5-7\}$$

$$S_8 = \{5-8\}$$

SET-COVER ∈ NP-C

Reducimos

Vertex-cover a set-cover en tiempo polinomial

Si resolvemos cualquier instancia de set-cover, podemos resolver cualquier instancia de vertex-cover

Por lo tanto

SET-COVER ∈ NP-C

Presentación realizada en Junio de 2020