1 概率论基础

• (蒲丰投针问题, 2020.2.25)桌面上画满间隔为a的平行线, 投长为l(l < a)的针, 求事件 $E = \{$ 针与某直线相交 $\}$ 的概率.

图 1: a

• (Polya罐子模型, 2020.2.25)罐子中有a个白球b个黑球,每次摸出一个后连同c个同色球放回. 证明第n次取球,取出白球概率为 $\frac{a}{a+b}$

假设第
$$n = k - 1$$
次取,概率为 $\frac{a}{a+b}$,
则有 $P(A_k|A_1) = \frac{(a+c)}{(a+c)+b}$, $P(A_k|\overline{A_1}) = \frac{(a)}{a+(b+c)}$,
(实际上是假设最开始有 $a+c$ 个白球, b 个黑球,这样 $P(A_k)$)当然就是 $\frac{(a+c)}{(a+c)+b}$ 了)
因此 $P(A_k) = P(A_1)P(A_k|A_1) + P(\overline{A_1})P(A_k|\overline{A_1}) = \frac{a}{a+b}$

2 随机变量及其分布

● 离散

PAR TOTAL T						
分布	标记	公式	均值	方差	特点	
0-1分布		P(X = 1) = p, P(X = 0) = 1 - p	p	0		
伯努利分布	Ber(p)		p	p(1 - p)		
二项分布	B(n,p)	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	极限是泊松分布 再生性	
几何分布	G(p)	$P(X = k) = (1 - p)^{k-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$	无记忆性	
Poisson分布	$P(\lambda)$	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0$	λ	λ	再生性	
离散均匀分布	Ua_1,a_2,\cdots,a_n					

连续

<u> </u>					
分布	标记	公式	均值	方差	特点
正态分布	$N(\mu, \sigma)$	$f(x) = \frac{1}{\sqrt{2\pi}}\sigma \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$
指数分布	$Exp(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0, x \le 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	无记忆性
Weibull分布		$f(x) = \begin{cases} \lambda \alpha x^{\alpha - 1} e^{-\lambda x^{\alpha}}, & x > 0, \alpha > 0 \\ 0, & x \le 0 \end{cases}$			
均匀分布		$f(x) = \begin{cases} \frac{1}{b-a}, a \le x \le b\\ 0, else \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	

多维

•	少年					
	分布	标记	公式	均值	方差	特点
	多项分布		$P(X_1 = k_1, \dots, X_n = k_n) = \frac{n!}{k_1! \dots k_n!} p_1^k \dots p_n^k$			$(p_1 + \dots + p_n)^n =$
	二元正态	$N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2, ho)$	$\exp\left\{-\frac{1}{2(1-\rho^2)}\left(\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right)\right\}$			

- $\Phi(x)$ 和 $\phi(x)$ 表示N(0,1)的分布函数和密度函数
- 指数函数通常用来描述失效率(无老化寿命分布), 即在 Δx 这段时间内, 失效概率恒为 λ
- 失效率函数 $\frac{F'(x)}{1-F(x)} = \frac{P(x \le X \le x + \delta x | X > x)}{\delta x}$
- 三大分布
 - 卡方分布: $X \sim \chi_n^2, X = \sum_{i=1}^n X_i^2$
 - *EX = n, Var(X) = 2n
 - t分布: $T \sim t_n$, $T = \frac{X_1}{\sqrt{X_2/n}}$, $X_1 \sim N(0,1)$, $X_2 \sim \chi_n^2$
 - * $ET = 0 \stackrel{\text{def}}{=} n \ge 2$, $Var(T) = \frac{n}{n-2} \stackrel{\text{def}}{=} n \ge 3$
 - * 类似标准正态, n无穷时趋于标准正态
 - F分布: $F \sim F_{n,m}, X_1 \sim \chi_n^2, X_2 \sim \chi_m^2, F = \frac{X_1/n}{X_2/m}$
 - * 图像类似卡方分布
 - * 若 $Z \sim F_{m,n}$, 则 $\frac{1}{Z} \sim F_{n,m}$

* 若
$$T \sim t_n$$
,则 $T^2 \sim F_{1,n}$

*
$$F_{m,n}(1-\alpha) = \frac{1}{F_{n,m}(\alpha)}$$

2.1 连续型随机变量的条件分布

有

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

2.2 随机变量的函数的概率分布

y = g(x)严格单调连续, 反函数唯一为x = h(y), 且h'(y)存在且连续, 则Y = g(x)也是连续型随机变量, 有

$$p(y) = f(h(y))|h'(y)|$$

多元的则乘上Jacobi行列式的绝对值即可.

3 数字特征

3.1 期望

- E(aX + bY) = aE(X) + b(Y)
- 独立随机变量E(XY) = E(X)E(Y)

•
$$Eg(X) = \begin{cases} \sum_{i=1}^{\infty} g(a_i)p_i \\ \int_{-\infty}^{\infty} g(x)f(x)dx \end{cases}$$

•
$$E(Y|X=x) = \begin{cases} \sum_{i=0}^{\infty} a_i p_i \\ \int_{-\infty}^{\infty} y f(y|x) dy \end{cases}$$

- 全期望公式: E(E(Y|X)) = E(g(X)) = EY
- p分位数: $P(X \le \mu_p) \ge p 则 \mu_p$ 是随机变量X的p分位数

3.2 方差

- $Var(X) = E(X EX)^2 = \sigma^2 = EX^2 (EX)^2$
- 若X,Y不相关,则 $Var(aX+bY)=a^2Var(X)+b^2Var(Y)$
- 标准化随机变量: $X^* = \frac{X EX}{\sqrt{Var(X)}}, EX^* = 0, Var(X^*) = 1$

3.3 矩(Moment)

- 矩: $E[(X-c)^r]$
- 原点矩: c=0, 即 EX^r
- 中心矩: $E[(X EX)^r]$

- 均值是一阶原点矩, 方差是二阶中心矩
- k阶阶乘矩: $E[X(X-1)\cdots(X-k+1)]$

3.4 协方差

- Cov(X,Y) = E(X EX)(Y EY) = EXY EXEY
- Var(X+Y) = Var(X) + Var(Y) + 2E(X-EX)(Y-EY)
- 独立则Cov(X,Y)=0
- $Cov(a_1X_1 + a_2X_2, b_1Y_1 + b_2Y_2) = \sum_{i=1}^{2} \sum_{j=1}^{2} a_ib_jCov(X_i, Y_j)$
- 二元正态分布 $(X,Y) \sim N(a,b,\sigma_1^2,\sigma_2^2,\rho)$,则协方差矩阵为 $\begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$
- $[Cov(X,Y)]^2 \le \sigma_1^2 \sigma_2^2 = Var(X)Var(Y)$ 等号成立当且仅当Y = aX + b

3.5 相关系数

- $\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} \in [-1,1]$,等号成立当且仅当X,Y之间存在严格线性关系, $\rho_{X,Y}$ 的正负与线性关系斜率正负相同
- 衡量变量之间的线性强度
- $\rho = 0$ 时称X, Y不相关, 只表示无线性关系
- ξ, η 不相关 $\Leftrightarrow Cov(\xi, \eta) = 0 \Leftrightarrow E\xi\eta = E\xi E\eta \Leftrightarrow Var(\xi + \eta) = Var(\xi) + Var(\eta)$
- 独立一定不相关, 不相关却不一定独立. 只在二元正态分布下, 独立⇔不相关

4 大数定律和中心极限定理

4.1 大数定律

- 弱大数定律: 对任何 $\epsilon > 0$, $\lim_{n \to \infty} P(|\xi_n \xi| \ge \epsilon) = 0$
- 独立同分布数列 $\{X_n\}$ 服从大数定律, $\bar{X}=\frac{1}{n}\sum_{k=1}^n X_k \xrightarrow{P} \mu$, μ 为 X_n 期望. 即依概率收敛到 X_n 的期望 μ
- Markov不等式: Y非负, $\forall \epsilon > 0, P(Y \ge \epsilon) \le \frac{EY}{\epsilon}$
- 切比雪夫不等式: $P(|X EX| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$

4.2 中心极限定理

• $\{X_n\}$ 独立同分布,期望方差为 μ , σ^2 ,则 $\sum_{i=1}^n X_i$ 的标准化形式 $\frac{\sum\limits_{i=1}^n X_{i-n}\mu}{\sqrt{n}\sigma}$ 满足中心极限定理: $\lim_{n\to\infty} F_n(x) = \Psi(x)$, $F_n(x)$ 为标准化形式的分布函数. 即 $\frac{\sum\limits_{i=1}^n X_{i-n}\mu}{\sqrt{n}\sigma}$ $\stackrel{d}{\longrightarrow} N(0,1)$ (依分布收敛)

5 数理统计的基本概念

5.1 常用统计量

• 样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• 样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

• 样本原点矩: $a_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

• 次序统计量: 排好序的 $X_1 \le X_2 \le \cdots \le X_n$, 则 (X_1, X_2, \cdots, X_n) 称为次序统计量

- 样本中位数:
$$m_{\frac{1}{2}} = \left\{ egin{array}{ll} X_{(\frac{n+1}{2})} & \text{n is odd} \\ \frac{1}{2} \left[X_{(\frac{n}{2})} + X_{(\frac{n}{2}+1)}
ight] & \text{n is even} \end{array}
ight.$$

- 极值

• 经验分布函数

5.2 重要定理

1. 定理1: X_i *i.i.d.* $\sim N(a, \sigma^2)$, $X = \frac{1}{n} \sum_{i=1}^n X_i \pi S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 分别为样本均值和样本方差, 则有

(a)
$$\bar{X} \sim N(a, \frac{1}{\pi}\sigma^2)$$

(b)
$$(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$$

(c) \bar{X} 和 S^2 独立

2.
$$X_i$$
 i.i.d. $\sim N(a, \sigma^2)$,

$$T = \frac{\sqrt{n}(\bar{X} - a)}{S} \sim t_{n-1}$$

3. X_i $i.i.d. \sim N(a_1, \sigma_1^2), Y_i$ $i.i.d. \sim N(a_2, \sigma_2^2),$ 且 $\sigma_1^2 = \sigma_2^2 = \sigma^2,$ 相互独立. 则

$$T = \frac{(\bar{X} - \bar{Y}) - (a_1 - a_2)}{S_{\omega}} \sqrt{\frac{mn}{m+n}} \sim t_{n+m-2}$$

这里 $(n+m-2)S_{\omega}=(m-1)S_{1}^{2}+(n-1)S_{2}^{2}$. 将 $(\bar{X}-\bar{Y})$ 标准化

4. X_i i.i.d. $\sim N(a_1, \sigma_1^2), Y_i$ i.i.d. $\sim N(a_2, \sigma_2^2),$

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{m-1,n-1}$$

5. X_i *i.i.d.* $\sim Exp(\lambda)$, 则

$$2\lambda n\bar{X} = 2\lambda \sum_{i=1}^{n} X_i \sim \chi_{2n}^2$$

6. 三大分布

- 卡方分布: $X \sim \chi_n^2$, $X = \sum_{i=1}^n X_i^2$
 - -EX = n, Var(X) = 2n
- t分布: $T \sim t_n$, $T = \frac{X_1}{\sqrt{X_2/n}}, X_1 \sim N(0,1), X_2 \sim \chi_n^2$
 - $-ET = 0 \stackrel{\text{def}}{=} n \ge 2, \ Var(T) = \frac{n}{n-2} \stackrel{\text{def}}{=} n \ge 3$
 - 类似标准正态, n无穷时趋于标准正态
- F分布: $F \sim F_{n,m}, X_1 \sim \chi_n^2, X_2 \sim \chi_m^2, F = \frac{X_1/n}{X_2/m}$
 - 图像类似卡方分布
 - $若Z \sim F_{m,n}, 则 \frac{1}{Z} \sim F_{n,m}$
 - 若 $T \sim t_n$, 则 $T^2 \sim F_{1,n}$
 - $-F_{m,n}(1-\alpha) = \frac{1}{F_{n,m}(\alpha)}$

6 参数估计

- 6.1 点估计
- 6.1.1 矩估计
- 6.1.2 最大似然估计
- 6.1.3 点估计的优良准则
 - 弱相合估计: $\lim_{n\to\infty} P_{\theta_1,\dots,\theta_n}(|T(X_1,\dots,X_n)-g(\theta_1,\dots,\theta_n)|\geq \epsilon)=0$
 - 无偏性: 设 $\hat{g}(X_1, \dots, X_n)$ 为待估计参数 $g(\theta)$ 的一个估计量, 若

$$E\hat{q}(X_1,\cdots,X_n)=q(\theta)$$

则称 $\hat{g}(X_1,\dots,X_n)$ 为 $g(\theta)$ 的无偏估计量

- 相对有效性: 比较两个估计的方差, 小的更有效
- 6.2 区间估计
- 6.2.1 枢轴变量法
 - 1. 单正态总体. $X_1, X_2, \cdots, X_n i.i.d. N(\mu, \sigma^2)$
 - 估计μ, 未知σ

$$\frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}$$

• 估计 σ , 未知 μ

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

• 估计 σ , 已知 $\mu = \mu_0$.

$$\sum_{i=0}^{n} \frac{(X_i - \mu_0)^2}{\sigma^2} \sim \chi_n^2$$

• 估计 μ , 已知 $\sigma = \sigma_0$ 由 $\overline{X} \sim N(\mu, \frac{1}{n}\sigma_0^2)$ 有

$$\frac{\overline{X} - \mu}{\sqrt{\frac{1}{n}\sigma_0^2}} \sim N(0, 1)$$

2. 二正态总体. $X_1,X_2,\cdots,X_mi.i.d.N(\mu_1,\sigma_1^2),Y_1,Y_2,\cdots,Y_ni.i.d.N(\mu_2,\sigma_2^2),$ 两组样本之间相互独立

• 估计 $\mu_1 - \mu_2$, 未知 σ_1, σ_2 . 根据 $(\overline{X} - \overline{Y}) \sim N(\mu_1 - \mu_2, \frac{1}{n}\sigma_1^2 + \frac{1}{m}\sigma_2^2)$ 有

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{m+n}{mn}}} \sim t_{n+m-2}$$

这里
$$S_{\omega} = \frac{1}{m+n-2} (\sum_{i=0}^{m} (X_i - \overline{X})^2 + \sum_{i=0}^{n} (Y_i - \overline{Y}))^2$$

• 估计 $\frac{\sigma_1}{\sigma_2}$, 未知 μ_1, μ_2 . 根据 $\frac{(n-1)S_1^2}{\sigma_1^2} \sim \chi_{n-1}^2$

$$\frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F_{n-1,m-1}$$

这里计算时注意 $F_{n-1,m-1}(1-\frac{\alpha}{2})=1/F_{m-1,n-1}(\frac{\alpha}{2})$

• 估计 $\mu_1 - \mu_2$, 已知 $\sigma_1 = \sigma_2 = \sigma_0$. 根据 $(\overline{X} - \overline{Y}) \sim N(\mu_1 - \mu_2, \frac{1}{n}\sigma_1^2 + \frac{1}{m}\sigma_2^2)$ 有

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sigma_0 \sqrt{\frac{m+n}{mn}}} \sim N(0, 1)$$

• 估计 $\frac{\sigma_1}{\sigma_2}$, 已知 μ_1, μ_2 . 根据 $\sum_{i=0}^n \frac{(X_i - \mu_1)^2}{\sigma_1^2} \sim \chi_n^2 \mathcal{D} \sum_{i=0}^m \frac{(Y_i - \mu_2)^2}{\sigma_2^2} \sim \chi_m^2$ 有

$$\frac{\frac{1}{n}\sum_{i=0}^{n}(X_{i}-\mu_{1})^{2}}{\frac{1}{m}\sum_{i=0}^{m}(Y_{i}-\mu_{2})^{2}}\cdot\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\sim F_{n,m}$$

这里计算时注意 $F_{n,m}(1-\frac{\alpha}{2})=1/F_{m,n}(\frac{\alpha}{2})$

6.2.2 大样本法

利用中心极限定理即可

7 假设检验

7.1 一样本正态总体

表 7.2.1: 一样本正态总体 $N(\mu, \sigma^2)$.

	10 1.2.1.	117-11-10	μ, σ .
检验对象	检验统计量	分布	拒绝域 [†]
$\mu (\sigma^2$ 已知)	$Z = \sqrt{n}(\bar{X} - \mu_0)/\sigma$	N(0,1)	$\begin{cases} Z > u_{\alpha/2} \\ Z > u_{\alpha} \\ Z < -u_{\alpha} \end{cases}$
$\mu (\sigma^2 未知)$	$T = \sqrt{n}(\bar{X} - \mu_0)/S$	t_{n-1}	$\begin{cases} T > t_{n-1}(\alpha/2) \\ T > t_{n-1}(\alpha) \\ T < -t_{n-1}(\alpha) \end{cases}$
$\sigma^2 (\mu$ 已知)	$\chi^{2} = \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$	χ_n^2	$\begin{cases} \chi^2 > \chi_n^2(\alpha/2) \vec{g} \vec{a} \chi^2 < \chi_n^2(1 - \alpha/2) \\ \chi^2 > \chi_n^2(\alpha) \\ \chi^2 < \chi_n^2(1 - \alpha) \end{cases}$
$\sigma^2 (\mu 未知)$	$\chi^{2} = \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	χ^2_{n-1}	$\begin{cases} \chi^2 > \chi_{n-1}^2(\alpha/2) \vec{g} \vec{a} \chi^2 < \chi_{n-1}^2(1 - \alpha/2) \\ \chi^2 > \chi_{n-1}^2(\alpha) \\ \chi^2 < \chi_{n-1}^2(1 - \alpha) \end{cases}$

†有关均值的检验: 对立假设分别为 $\mu\neq\mu_0,\,\mu>\mu_0$ 和 $\mu<\mu_0.$ 有关方差的检验: 对立假设分别为 $\sigma^2\neq\sigma_0^2,$ $\sigma^2>\sigma_0^2$ 和 $\sigma^2<\sigma_0^2.$

7.2 两样本正态总体

衣 7.2.2: 网件平止念总体的假设位验						
检验对象	检验统计量	分布	拒绝域 [†]			
均值(方差已知)	$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$	N(0,1)	$ \begin{cases} Z > u(\alpha/2) \\ Z > u(\alpha) \\ Z < -u(\alpha) \end{cases} $			
均值(方差未知)‡	$T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}}$	t_{m+n-2}	$\begin{cases} T > t_{m+n-2}(\alpha/2) \\ T > t_{m+n-2}(\alpha) \\ T < -t_{m+n-2}(\alpha) \end{cases}$			
方差(均值已知)	$F = \frac{\sum_{i=1}^{m} (X_i - \mu_1)^2 / m}{\sum_{i=1}^{n} (X_i - \mu_2)^2 / n}$	$F_{m,n}$	$\begin{cases} F > F_{m,n}(\alpha/2) \overrightarrow{\boxtimes} F < \frac{1}{F_{n,m}(\alpha/2)} \\ F > F_{m,n}(\alpha) \\ F < \frac{1}{F_{n,m}(\alpha)} \end{cases}$			
方差(均值未知)	$F = \frac{S_1^2}{S_2^2}$	$F_{m-1,n-1}$	$\begin{cases} F > F_{m-1,n-1}(\alpha/2) \overrightarrow{\boxtimes} F < \frac{1}{F_{n-1,m-1}(\alpha/2)} \\ F > F_{m-1,n-1}(\alpha) \\ F < \frac{1}{F_{n-1,m-1}(\alpha)} \end{cases}$			

表 7.2.2: 两样本正态总体的假设检验

†有关均值的检验: 对立假设分别为 $\mu_1 \neq \mu_2$, $\mu_1 > \mu_2$ 和 $\mu_1 < \mu_2$. 有关方差的检验: 对立假设分别为 $\sigma_1^2 \neq \sigma_2^2$, $\sigma_1^2 > \sigma_2^2$ 和 $\sigma_1^2 < \sigma_2^2$.

‡假定方差相等

7.3 成对数据

作差构造一样本正态总体

7.4 0-1分布参数p的检验

由中心极限定理构造统计量 $T = \sqrt{n} \frac{\bar{X} - p}{\sqrt{p_0(1-p_0)}}$

7.5 拟合优度检验

判断是不是来自某个分布. H_0 : X服从分布F. 一般不必再写一个对立假设. 用Pearson提出的卡方拟合优度检验.

7.5.1 离散

理论频数和实际观测频数. 用

$$T = \sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i} \sim \chi_{k-1}^2$$

这里是将统计量 n_i 分布看成泊松分布,均值方差都为 np_i ,再由中心极限定理得到的,其平方求和则为卡方分布. 但 $\sum_{i=1}^k n_i = k$,因此自由度应该是k-1.

拒绝域: $T > \chi^2_{k-1}(\alpha)$

若含有r个未知参数,要用最大似然估计代替这些参数,则得到统计量

$$T = \sum_{i=1}^{k} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \sim \chi_{k-1-r}^2$$

7.5.2 列联表的独立性和齐一性检验

- 独立性: H₀: 属性A与属性B独立. 用列联表.
- 齐一性: 检验生存和死亡和住哪个医院无关. 转化为独立性. A的各个水平对应的B属性分布一致.

7.5.3 连续

分区间转化为离散型. 一般要求 $n\hat{p}_i \geq 5$, 如果不满足需要合并.