BME Gépészmérnöki Kar	SZILÁRDSÁGTAN	Név:		
Műszaki Mechanikai Tanszék	2. HÁZI FELADAT	Neptun kód: AHU27Z		
2024/25 II.	Határidő: lásd Moodle	Késedelmes beadás: □ Javítás: □		
Nyilatkozat: Aláírásommal igazolom, hogy szítettem el, az abban leírtak saját megértése	Aláírás:			

Csak a formai követelményeknek megfelelő feladatokat értékeljük! http://www.mm.bme.hu/targyak/bsc/sziltan

Feladatkitűzés

Az ábrán vázolt szerkezet két rúdja csuklósan kapcsolódik, anyaguk homogén, izotrop, lineárisan rugalmas (rugalmassági modulusz: E=210 GPa; Poisson-tényező: $\nu=0,3$). Az (1)-es rúd keresztmetszete az ábrán látható I-szelvény (I-80-MSZ-325), míg a (2)-es rúdé d külső átmérőjű körgyűrű.

Adatok

$L\left[\mathbf{m}\right]$	h [m]	d [mm]	F [kN]	M [kNm]	p [kN/m]	$\varepsilon_a [10^{-4}]$	$\varepsilon_b [10^{-4}]$	$\varepsilon_c [10^{-4}]$	α [°]
1.50	2.50	58	4	1.50	1.75	-5.20	2.50	6	30

(Rész)eredmények

A_z [kN]	x_{max}	[m]	w_{n}	nax [mm]	$t_{ m min}$ [mm]	$\varepsilon_y [10^-]$	·4]	γ_{xz} [10^{-4}]	σ_{i}	x [MPa]
σ_z [MPa	a]	$ au_{xz}$ [N	MPa]	σ_1	[MPa]	σ_2 [MPa]	σ_3 [MP	a]	$\Delta\sigma_{ m e}$	[MPa]	u_a	[J/cm ³]
								<u> </u>				
e_{1x} [-]	e_1	_{1y} [-]	e_{1z} [[-]	e_{2x} [-]	e_{2y} [-]	e_{2z} [-]	e_3	\mathbf{g}_{x} [-]	e_{3y} [-	-]	e_{3z} [-]

Pontozás

Minimumfeladat			Felac	Dokumentáció	Összesen			
Willimmumeladat	2.	3.	4.	5.	6.	7.	Dokumentacio	OSSZESCII
	/5	/3	/4	/4	/2	/2	/5	/25

Adatok:

$$\begin{split} L &= 1.5 \; [\mathrm{m}] \quad h = 2.5 \; [\mathrm{m}] \quad d = 58 \; [\mathrm{mm}] \\ F &= 4 \; [\mathrm{kN}] \quad M = 1.5 \; [\mathrm{kNm}] \; p = 1.75 \; [\mathrm{kN/m}] \\ \epsilon_A &= -5.2 \; [10^{-4}] \quad \epsilon_B = 2.5 \; [10^{-4}] \quad \epsilon_C = 6 \; [10^{-4}] \quad \alpha = 30 \; [^\circ] \\ E &= 210 \; [\mathrm{GPa}] \quad \nu = 0.3 \; [-] \end{split}$$

1. Feladat:

Az ábrán egy egység megfelel 1 m-nek és 2 kN-nak

A szerkezetünket két részre tudjuk bontani, hogy ki tudjuk számolni a reakcióerőket. Ekkor C-pontban meg fog jelenni egy C vektor, és a két rúdra külön tudunk 3-3 egyensúlyiegyenletet írni. A két rész (1. eset balra, 2. eset jobbra) szabadtest-ábrája:

1. esetben kijövő egyensúlyi egyenletek A pontra vonatkoztatva:

(1)
$$\sum F_x = 0 = C_x$$

(2)
$$\sum F_y = 0 = A_z + C_z + p \cdot L - F$$

(3)
$$\sum M_{A'} = 0 = C_z \cdot L - M - F \cdot 2L - (p \cdot L) \cdot \frac{L}{2}$$

2. esetben kijövő egyensúlyi egyenletek B pontra vonatkoztatva:

(4)
$$\sum F_x = 0 = -C_x + B_x$$

(5)
$$\sum F_y = 0 = -C_z + B_z$$

$$(6) \sum M_B = 0 = M_B + B_x \cdot h$$

A két egyenletrendszer megoldása:

$$A_z = -8.9375 \, [kN]$$

$$B_x = \underline{0 \text{ [kN]}}$$

$$B_z = \underline{10.3125 \text{ [kN]}}$$

$$M_B = 0 [kN]$$

$$C_x = \underline{0 \text{ [kN]}}$$

$$C_z = \underline{10.3125 \text{ [kN]}}$$

2. Feladat:

Ahhoz hogy meg tudjuk határozni w(x)-et először meg kell adnunk az (1)-es rúd hajlítónyomatéki igénybevételét: A szerkezetet három részre tudjuk bontani, így a függvény:

	I.	II.	ш.
	0 < x < 1.5	1.5 < x < 3	3 < x < 4.5
M_h	$-M - p \cdot x \cdot \frac{x}{2} =$	$-M - p \cdot L \cdot (x - \frac{L}{2}) - A_z \cdot (x - L) =$	$-M - p \cdot L \cdot (x - \frac{L}{2}) - A_z \cdot (x - L) - C_z \cdot (x - 2L) =$
	$= -0.875x^2 - 1.5 [\text{kNm}]$	=6.315x - 12.9375 [kNm]	= 18 - 4x [kNm]

Az egyenletekből adódó függvény:

Az (1)-es rúd lehajlásfüggvényének meghatározásához felhasználhatjuk az alábbi összefüggéseket:

$$-I \cdot E \cdot w''(x) = M_h(x) \rightarrow -I \cdot E \cdot w'(x) = \int M_h(x) \rightarrow -I \cdot E \cdot w(x) = \iint M_h(x)$$

Ezek az összefüggések a rúd egészén igazak, úgyhogy felírom a hajlítónyomaték-függvény három szakaszának szükséges alakjait:

	I.	II.	III.
M_h	$-0.875x^2 - 1.5$	6.315x - 12.9375	18-4x
$\int M_h$	$-0.2917x^3 - 1.5x + C_{11}$	$3.15625x^2 - 12.9375x + C_{21}$	$-2x^2 + 18x + C_{31}$
$\iint M_h$	$-0.072917x^4 - 0.75x^2 + C_{11}x + C_{12}$	$1.052083x^3 - 6.46875x^2 + C_{21}x + C_{22}$	$-0.667x^3 + 9x^2 + C_{31}x + C_{32}$

Az egyenletekben az integrálás miatt megjelenő ismeretleneket a peremfeltételekből kijövő egyenletrendszerrel tudjuk kiszámolni, itt elhagyhatjuk a $-I\cdot E$ szorzót.

A peremfeltételek:

$$w_1(L) = 0$$
 $w_2(L) = 0$ $w_2(2L) = 0$ $w_3(2L) = 0$ $w_1'(L) = w_2'(L)$ $w_2'(2L) = w_3'(2L)$

Ezek alapján be tudunk helyettesíteni az x-ek helyére számokat, és 6db egyenletünk jön ki.

Az egyenletrendszer megoldása:

$$C_{11} = 3.4688 \ \ C_{12} = -3.1465 \ \ C_{21} = 12.539 \ \ C_{22} = -7.8047 \ \ C_{31} = -33.8672 \ \ C_{32} = 38.6016$$

Az így kijövő eredményeket fel tudjuk használni w(x) és $\phi(x)$ függvény meghatározásához:

$$w(x) = -\frac{1}{I \cdot E} \cdot \iint M_h(x)$$
 $\phi(x) = -\frac{1}{I \cdot E} \cdot \int M_h(x)$

	I.	II.	III.
	0 < x < 1.5	$\begin{array}{ c c c } \hline 1.5 < x < 3 \\ \hline \end{array}$	3 < x < 4.5
w(x)	xyzsfdsfdsdsfdsfdfssssssssss	xyz	xyz
$\phi(x)$	xyz	xyz	xyz

kurva jó diagramok lestestotsostogooooooooooooo

Az ábráról láthatjuk, hogy a legnagyobb lehajlás x=4.5-nél következik be:

$$x_{max} = \underline{\underline{4.5[\mathrm{m}]}} \quad w_{max} = w(4.5) = \underline{\underline{-47.12[\mathrm{m}]}}$$

3. Feladat: