第三部分

参考答案

第一章 概率论基础

1. (1)
$$\Omega = \{(i,j) : i,j = 1, \dots, 6\},\$$
 $A = \{(i,j) : i > j, i = 2, \dots, 6, j = 1, \dots, 5\},\$
 $B = \{(i,i) : i = 1, \dots, 6\},\$
 $C = \{(i,j) : i + j = 10, i, j = 1, \dots, 6\} = \{(4,6), (5,5), (6,4)\}.\$
(2) $\Omega = \{HHH, HHT, HTH, THH, TTH, THT, TTT\},\$
 $A = \{THH, THT, TTH, TTT\},\$
 $B = \{HHT, HTH, THH\},\$
 $C = \{TTT, HHH\}.\$
(3) $\Omega = \{(x,y) : x^2 + y^2 < 1\}$
 $A = \{(x,y) : 1/3 < x^2 + y^2 < 1/2\}.\$

- 2. 略
- 3. (1) $A_1\bar{A}_2\bar{A}_3 + \bar{A}_1A_2\bar{A}_3 + \bar{A}_1\bar{A}_2A_3$,
 - (2) $A_1 \cup A_2 \cup A_3$,
 - $(3) A_1 \cap (A_2 \cup A_3),$
 - (4) $A_1\bar{A}_2\bar{A}_3 + \bar{A}_1A_2\bar{A}_3 + \bar{A}_1\bar{A}_2A_3 + \bar{A}_1\bar{A}_2\bar{A}_3$.
- 4. (1) \emptyset , (2) $\Omega = [0,2]$, (3) $\bar{A} = \{0 \le x \le 1/2\} \cup \{1 < x \le 2\}$, (4) $B = \{1/4 < x \le 3/2\}$
- 5. (1) $A \subset B$, 0.7 (2) $A \cup B = \Omega$, 0.5
- $6. \ 3/4$
- 7. 4/11!, $4/A_{11}^7$
- 8. 略

- $9. \ 41/63$
- 10. $1 \frac{\binom{365}{50}50!}{365^{50}}$
- 11. $\frac{a}{a+b}$
- 12. $\frac{\binom{3}{2}}{\binom{100}{2}} = 1/1650, \frac{\binom{97}{2}}{\binom{100}{2}} = 776/825$
- 13. $\frac{\binom{4}{m}3^{4-m}}{4^4}$, $m = 0, \dots, 4$.
- 14. 3.1554
- 15. 1/4
- 16. 1/8
- 17. 0.504
- 18. $\frac{12!}{6^{12}2^6}$
- 19. 0.176
- 20. 0.0033
- 21. 0.7806
- $22. \ (1) \ 0.25, \ (2) \ 0.35, \ (3) \ 0.55, \ (4) \ 0.45.$
- 23. 五局三胜更好
- $24. \ \ (1) \ \ N \geq 2n-1, \frac{\binom{N-n+1}{n}}{\binom{N}{n}} \ (2) \ \ N \geq 3n/2-1, n \ mod \ 2=0, \frac{\binom{N-n+1}{n/2}}{\binom{N}{n}}; \ n \ mod \ 2=1, 0.$ $(3) \ \ N \ mod \ 2=0, \frac{\binom{N/2}{n}2^n}{\binom{N}{n}}; \ N \ mod \ 2=1, \frac{\binom{(N-1)/2}{n-1}2^{n-1}}{\binom{N}{n}}$
- 25. 19/36, 1/18
- 26. 5/11
- 27. 3/11
- 28. 5/12
- 29. $\frac{\binom{19}{8}11!}{198}$
- 30. (1) $\binom{11}{8}$ 8!/11⁸ (2) 1/11⁷ (3) $\binom{8}{3}$ $\binom{10}{5}$ 5!/11⁸

$$31. \ 2/3$$

32.
$$1/10, n = 1; \frac{\binom{9}{n-1} + \binom{8}{n-1} - \binom{4}{n-1}}{\binom{10}{n}}, 2 \le n \le 5; \frac{\binom{9}{n-1} + \binom{8}{n-1}}{\binom{10}{n}}, 6 \le n \le 9; 1, n = 10$$

33.
$$2(k-1)(n-k)/[(n(n-1)]$$

36.
$$\frac{1}{9} \sum_{n=m}^{9} \frac{1}{n}$$

$$40. \ 3/5$$

$$41. \ 3/10, \ 3/5$$

42. (1)
$$1/2$$
 (2)1 - $(5/6)^3$

$$45. \ 2/3$$

$$48. \ 6/7$$

$$50. \frac{rb(b+a)(r+a)}{(r+b)(r+b+a)(r+b+2a)(r+b+3a)}$$

51.
$$\left[\binom{10}{3} + \binom{5}{3}\right] / \binom{15}{3}$$

- 54. 略
- 55. 不独立
- 56. 略
- 57. 9
- 58. 0.182
- 59. (1) 0.26 (2) 0.96
- 60. $(1)1 (1-p)^m (2) {m \choose 10} p^{10} (1-p)^{m-10} (3) 1 \sum_{i=0}^{2} {m \choose i} p^i (1-p)^{m-i}$
- 61. 0.6928
- 62. 0.468
- 63. 略
- 64. 略
- 65. (1) $p_A p_B p_C$ (2)1 (1 p_A)(1 p_B)(1 p_C) (3) 1 (1 p_A^2)(1 p_B^2)(1 p_C^2) (4) $p_D^2 [1 - (1 - p_A)(1 - p_B)(1 - p_C)]$ (5) $2p_A (1 - p_A)[1 - (1 - p_B)(1 - p_B p_C)] + p_A^2 [1 - (1 - p_B)^2]$
- 66. $p^2(2-p^2)$, $p^2(2-p)^2$, 先并联在串联更稳定
- 67. $1 (1-p)^m$, $\binom{m}{10}p^{10}(1-p)^{m-10}$, $1 \sum_{j=0}^2 \binom{m}{j}p^j(1-p)^{m-j}$
- 68. $1 \prod_{i=1}^{n} p_i$ (2) $\prod_{i=1}^{n} (1 p_i)$ (3) $\sum_{i=1}^{n} [p_i \prod_{j=1, j \neq i}^{n} (1 p_j)]$
- 69. 来自第一个盒子的概率更大
- 70. 50%
- 71. 1/(m-1)
- $72. \ 4/9$
- 73. $[1-(1-p)^2][1-(1-p)^3]$
- 74. (1) 7/600 (2) 3/7
- 75. 4p/(3p+1)

- 76. (1) 29/90 (2) 20/61
- $77. \ 0.9542$
- 78. (m-2)/(2m-2)
- 79. 0.508
- 80. 4/9
- 81. (1) 91.3% (2) 99.9%
- 82. (1) 1/2 (2) 从第二个盒子取得的概率最大
- $83. \ 0.995\%$
- 84. (1)164/231 (2)20/41
- 85. (1)2/3 (2)2/3
- 86. 对乙更有利
- 87. 不会

第二章 随机变量及其分布

- 1. B.
- 2. (1) 若以 ${X = 7}$ 表示未获奖,则X的分布律为

$$X \sim \left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7\\ \frac{1}{17721088} & \frac{15}{17721088} & \frac{162}{17721088} & \frac{7695}{17721088} & \frac{137475}{17721088} & \frac{1043640}{17721088} & \frac{16532100}{17721088} \end{array}\right).$$

3. p = 0.1.

4.
$$X \sim \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ \frac{1}{3} & \frac{2}{9} & \frac{4}{27} & \frac{8}{81} & \frac{16}{81} \end{pmatrix}$$
.

5.
$$X \sim \begin{pmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \frac{1}{36} & \frac{1}{18} & \frac{1}{12} & \frac{1}{9} & \frac{5}{36} & \frac{1}{6} & \frac{5}{36} & \frac{1}{9} & \frac{1}{12} & \frac{1}{18} & \frac{1}{36} \end{pmatrix}$$
.

6.
$$X \sim \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{216} & \frac{7}{216} & \frac{19}{216} & \frac{37}{216} & \frac{61}{216} & \frac{91}{216} \end{pmatrix}$$
.

7.
$$X$$
 的分布律为 $X \sim \begin{pmatrix} 100 & 80 & 50 & -60 \\ 0.6 & 0.2 & 0.1 & 0.1 \end{pmatrix}$.

8. 分布律为
$$\left(\begin{array}{cccc} 10 & 5 & 0 & -2 \\ 0.32768 & 0.4096 & 0.2048 & 0.05792 \end{array}\right)$$
.

9. 随机变量 X的分布律为

$$\mathbb{P}(X = 100) = \frac{2}{\binom{20}{10}} = \frac{1}{92378} \approx 1.08 \times 10^{-5},$$

$$\mathbb{P}(X = 20) = \frac{2\binom{10}{9}\binom{10}{1}}{\binom{20}{10}} = \frac{100}{92378} \approx 1.08 \times 10^{-3},$$

$$\mathbb{P}(X = 5) = \frac{2\binom{10}{8}\binom{10}{2}}{\binom{20}{10}} = \frac{2025}{92378} \approx 0.022$$

$$\mathbb{P}(X = 0) = 1 - \frac{2126}{92378} \approx 0.977.$$

10. (1) 分布函数为

$$F(x) = \begin{cases} 0, & x < -1, \\ \frac{1}{4}, & -1 \le x < 1, \\ \frac{3}{4}, & 1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

 $(2) \frac{1}{4}; \frac{1}{2}; \frac{3}{4}; \frac{1}{4}.$

11.
$$X$$
 的分布律为 $X \sim \begin{pmatrix} 1 & 2 & 3 \\ \frac{4}{5} & \frac{8}{45} & \frac{1}{45} \end{pmatrix}$; 分布函数为 $F(x) = \begin{cases} 0, & x < 1, \\ \frac{4}{5}, & 1 \le x < 2, \\ \frac{44}{45}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$

12.
$$X$$
 的分布律为 $X \sim \begin{pmatrix} -1 & 1 & 2 \\ 0.4 & 0.4 & 0.2 \end{pmatrix}$.

13.
$$X$$
 的分布律为 $\mathbb{P}(X=k) = p(1-p)^{k-1}, k = 1, 2, \cdots$

- 14. $\frac{3}{8}$; $\frac{9}{25}$.
- 15. $\frac{2}{3}$.
- 16. 0.936.
- 17. $\mathbb{P}(X \ge 1) = 1 0.8^{20}$; X 的最有可能的取值为 4.
- 18. (1) 0.59526; (2) 0.4149.
- 19. 请5名董事代表比较好.

- 20. $p_4 = 0.6^4 \approx 0.13$; $p_5 = \binom{4}{1} \times 0.4 \times 0.6^4 \approx 0.21$; $p_6 = \binom{5}{2} \times 0.4^2 \times 0.6^4 \approx 0.21$; $p_7 = \binom{6}{3} \times 0.4^3 \times 0.6^4 \approx 0.17$. "三场两胜"制对乙队更有利.
- 21. (1) $\frac{3}{16}$; (2) $\frac{11}{16}$.
- 22. 所求的分布律为 $X \sim \begin{pmatrix} -1 & 1 & 2 & 3 \\ \frac{125}{216} & \frac{75}{216} & \frac{15}{216} & \frac{1}{216} \end{pmatrix}$.
- 23. $\frac{4}{3}e^{-2} \approx 0.18$.
- $24. \ \frac{27e^2}{27e^2 + 25} = 0.8886.$
- 25. 以 X 记一只昆虫产卵的个数,则对任意整数 $m, n \ge 0$,由

$$\begin{split} \mathbb{P}(Y=m,Z=n) &= \mathbb{P}(Y=m,Z=n|X=m+n)\mathbb{P}(X=m+n) \\ &= \binom{m+n}{m} p^m (1-p)^n \mathrm{e}^{-\lambda} \frac{\lambda^{m+n}}{(m+n)!} \\ &= \mathrm{e}^{-\lambda p} \frac{(\lambda p)^m}{m!} \cdot \mathrm{e}^{-\lambda(1-p)} \frac{[\lambda(1-p)]^n}{n!} \end{split}$$

可知 Y 和 Z 分别服从参数为 λp 和 $\lambda (1-p)$ 的Poisson分布, 且相互独立.

- 26. e^{-1} .
- 27. 所求概率 $\approx 1 9e^{-8} \approx 0.997$.
- 28. 在 10 秒内,所求概率为 $1 e^{-0.512} \approx 0.401$;而在 100 秒内,则所求概率为 $1 e^{-5.12} \approx 0.994$.
- 29. 大约为 $(1+2.6)e^{-(52\times5\%)} \approx 0.27$.
- 30. (1) $1 e^{-0.01} \approx 0.0099$. (2) $10000 \cdot \ln 20 \approx 3 \, \text{H}$.
- 31. {1,2,···,99} 上的均匀分布. 证明方法: 对总的投篮次数采用数学归纳法.
- 32. (1) $\frac{1}{4}$, $\frac{1}{12}$, $\frac{1}{6}$; (2) $\frac{1}{2}$.
- 33. a = 1, $\mathbb{P}(X > \frac{\pi}{6}) = \frac{1}{2}$.
- 34. C.
- 35. C.
- 36. $a = \frac{5}{16}$, $b = \frac{7}{16}$.

37. 证明: 先证对任意有理数 $x \in (0,1)$, 我们有 F(x) = x. 事实上, 若 $x = \frac{m}{n}$, 其中 m < n 为正整数, 则由题目条件可知 F(0) = 0, F(1) = 1, 且

$$F\left(\frac{1}{n}\right) - F(0) = F\left(\frac{2}{n}\right) - F\left(\frac{1}{n}\right) = \dots = F(1) - F\left(\frac{n-1}{n}\right).$$

易知上式中各项之和为 1, 故每项均等于 $\frac{1}{n}$. 从而对任意 m < n, 有 $F(\frac{m}{n}) = \frac{m}{n}$. 再由连续函数的右连续性可知 F(x) = x 对所有 (0,1) 中的无理数也成立. 这就证明了 $X \sim U(0,1)$.

- 38. $a = \frac{1}{3}, b = \frac{1}{2}$.
- 39. (1) $a = \frac{1}{\pi}$; (2) $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$; (3) $\frac{1}{2}$.
- 40. (1) a = 1; (2) $\mathbb{P}(|X| < \frac{1}{2}) = \frac{3}{4}$.
- 41. 密度函数为 $f(x) = \frac{3}{4}(2x x^2), 0 < x < 2$; 分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{3}{4}x^2 - \frac{1}{4}x^3, & 0 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

- 42. (1) a = 1, b = -1; (2) $f(x) = 2x \ln x x$, 1 < x < e.
- 43. (1) $a = \frac{1}{2}$, $b = \frac{1}{2}$; (2) $f(x) = \frac{1}{2}e^x I(x < 0) + \frac{1}{2}e^{-(x-1)}I(x > 1)$.
- 44. D.
- 45. $\frac{3}{5}$.
- 46. $\frac{1}{3}$.
- 47. $\frac{20}{27}$.
- 48. $1 e^{-1}$.
- 49. $e^{-2} \approx 0.318$; $e^{-2} \approx 0.318$.
- 50. $1 (1 e^{-2})^5 \approx 0.517$.
- 51. (1) 证明: 先证必要性. 设 X 服从参数为 $\lambda > 0$ 的指数分布, 则由条件概率的定义, 有

$$\mathbb{P}(X \le t + x | X > t) = \frac{\mathbb{P}(t < X \le t + x)}{\mathbb{P}(X > t)} = \frac{F(t + x) - F(t)}{1 - F(t)},$$

其中 F(x) 表示 X 的分布函数. 从而,

$$\mathbb{P}(X \le t + x | X > t) = \frac{e^{-\lambda t} - e^{-\lambda (t + x)}}{e^{-\lambda t}} = 1 - e^{-\lambda x} = F(x) = \mathbb{P}(X \le x).$$

下面来证充分性. 记函数 $g(x) = \ln(1 - F(x)), x > 0$, 则将题目中的式子变形可得

$$g(t + x) = g(t) + g(x), \quad t, x > 0.$$

而上述函数方程具有唯一解: g(x) = g(1)x, 其中 g(1)可以为任意常数. 由题意进一步可知此时 g(1) < 0, 若记常数 $\lambda = -g(1)$, 则 $F(x) = 1 - e^{-\lambda x}$. 这就证明了此时 X 服从参数为 λ 的指数分布. (2) 证明思路与 (1) 相同, 略.

- 52. (1) $\Phi(2) \approx 0.9773$, $2\Phi(2)-1 \approx 0.9546$; (2) a 满足 $\Phi(a) > 0.95$, 查表得 $a \ge 1.645$.
- 53. (1) $\mathbb{P}(0 \le X \le 4) = \Phi(1.5) + \Phi(0.5) 1 \approx 0.6247$, $\mathbb{P}(X > 2.4) = 1 \Phi(0.7) \approx 0.2420$, $\mathbb{P}(|X| > 2) = 2 \Phi(1.5) \Phi(0.5) \approx 0.3753$; (2) 由 $\Phi(\frac{1-c}{2}) = \frac{2}{3}$, 查表可知 $c \approx 0.14$.
- 54. (1) 0.8; (2) $2\Phi(2) 1 \approx 0.9546$.
- 55. (1) 两条路线满足要求的概率分别是 Φ (2) 和 Φ (2.5), 故选第二条路线; (2) 两条路线满足要求的概率分别是 Φ (1.5) 和 Φ (1.25), 故选第一条路线.
- 56. 所求概率为 $0.4[1 \Phi(0.8)] \approx 0.0848$.
- 57. 所求为 $170 + 6u_{0.995} \approx 185.5$ 厘米.
- 58. A.
- 59. A.
- 60. A.
- 61. B.
- 62. (1) Y₁ 的分布律为

$$Y_1 \sim \left(\begin{array}{cccc} -3 & -1 & 1 & 3 \\ 0.2 & 0.3 & 0.1 & 0.4 \end{array} \right).$$

(2) Y₂ 的分布律为

$$Y_2 \sim \left(\begin{array}{ccc} 0 & 1 & 2 \\ 0.3 & 0.3 & 0.4 \end{array} \right).$$

(3) Y_3 的分布律为

$$Y_2 \sim \left(\begin{array}{ccc} 0 & 1 & 4 \\ 0.1 & 0.7 & 0.2 \end{array} \right).$$

- 63. $Y \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, $Z \sim \begin{pmatrix} 0 & \frac{\pi}{2} & \pi \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \end{pmatrix}$.
- 64. (1) $a = \frac{1}{2}$, $b = \frac{1}{\pi}$. (2) 不成立,因为 $\int_{-\infty}^{\infty} |x| f(x) dx = \infty$,其中 f(x) 是 X 的密度函数. (3) $p(y) = \frac{3(y-3)^2}{\pi[1+(y-3)^6]}$. (4) 验证随机变量 $Y = \frac{1}{X}$ 的密度函数为 $p(y) = \frac{1}{\pi(1+y^2)}$.
- 65. (1) Y_1 的密度函数为 $f_1(y) = y^{-1}$, 1 < y < e. (2) Y_2 的密度函数为 $f_2(y) = y^{-2}$, y > 1. (3) Y_3 的密度函数为 $f_3(y) = \lambda e^{-\lambda y}$, y > 0, 即 Y_3 服从参数为 λ 的指数分布.
- 66. Y_1 的密度函数为 $f_1(y) = \frac{1}{\pi(1+y^2)}$; Y_2 的密度函数为 $f_2(y) = \frac{2}{\pi} \frac{1}{\sqrt{1-y^2}}$, 0 < y < 1.
- 67. 证明: 首先注意到 Y 的取值范围为 (0,1). 而当 0 < y < 1 时, 利用函数 F(x) 的严格单调性, 则

$$\mathbb{P}(Y\leq y)=\mathbb{P}(F(X)\leq y)=\mathbb{P}(X\leq F^{-1}(y))=F(F^{-1}(y))=y.$$
 从而有 $Y\sim U(0,1).$

- 68. Y_1 的密度函数为 $f_1(y) = \frac{1}{2\sqrt{y}} e^{-\sqrt{y}}$, y > 0; Y_2 的密度函数为 $f_2(y) = 1$, 0 < y < 1, 即 $Y_2 \sim U(0,1)$.
- 69. $g(x) = -2\ln(1-x)$.
- 70. Y 的分布律为

$$\mathbb{P}(Y = n) = e^{-\lambda n} (1 - e^{-\lambda}), \quad n = 0, 1, 2, \dots,$$

即 Y 服从参数为 $1 - e^{-\lambda}$ 的几何分布(取值范围为非负整值). 对任意 $n \ge 0$ 和 0 < z < 1, 由

$$\mathbb{P}(Z \le z | Y = n) = \frac{\int_n^{n+z} \lambda e^{-\lambda x} dx}{e^{-\lambda n} (1 - e^{-\lambda})} = \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}$$

可知 Y 和 Z 相互独立,且 Z 的密度函数为 $p(z) = \frac{\lambda e^{-\lambda z}}{1-e^{-\lambda}}, \ 0 < z < 1.$

71. Y 的密度函数为

$$p(y) = \begin{cases} \lambda e^{-\lambda y}, & y > 1, \\ \frac{\lambda}{2\sqrt{-y}} e^{-\lambda\sqrt{-y}}, & -1 < y < 0. \end{cases}$$

- 72. (1) Y_1 的密度函数为 $f_1(y) = \frac{1}{\sqrt{2\pi}y} e^{-\frac{(\ln y)^2}{2}}, \ y > 0$. (2) Y_2 的密度函数为 $f_2(y) = \sqrt{\frac{2}{\pi}} e^{-\frac{y^2}{2}}, \ y > 0$. (3) Y_3 的密度函数为 $f_3(y) = \frac{1}{2\sqrt{\pi(y-1)}} e^{-\frac{y-1}{4}}, \ y > 1$.
- 73. (1) 先求出常数 a 的值. 由 $\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$ 可知 a = 9. 当 $1 \leq y < 2$ 时, 有

$$F_Y(y) = \mathbb{P}(Y=1) + \mathbb{P}(1 < Y \le y) = \frac{2}{3} + \frac{y^3}{27}.$$

从而 Y 的分布函数为

$$F_Y(y) = \begin{cases} 0, & y < 1, \\ \frac{2}{3} + \frac{y^3}{27}, & 1 \le y < 2, \\ 1, & y \ge 2. \end{cases}$$

(2) 由全概率公式可知

$$\begin{split} \mathbb{P}(X \leq Y) &= \mathbb{P}(X \leq Y | Y = 1) \mathbb{P}(Y = 1) + \mathbb{P}(X \leq Y | Y = 2) \mathbb{P}(Y = 2) \\ &+ \mathbb{P}(X \leq Y | 1 < Y < 2) \mathbb{P}(1 < Y < 2) \\ &= 0 + \mathbb{P}(Y = 2) + \mathbb{P}(1 < X < 2) \\ &= \frac{1}{27} + \frac{7}{27} = \frac{8}{27}. \end{split}$$

第三章 多维随机变量及其分布

- 1. C.
- 2. 13/48.
- 3. (1). (X,Y) 的分布为

$$\mathbb{P}(X=1,Y=-1) = \mathbb{P}(X=0,Y=0) = \mathbb{P}(X=1,Y=1) = 1/3.$$

- (2). Z 的分布为 $\mathbb{P}(Z=-1) = \mathbb{P}(Z=0) = \mathbb{P}(Z=1) = 1/3$.
- 4. 随机变量 (*X*, *Y*) 的概率分布为:

$$\mathbb{P}(X = 0, Y = 0) = \mathbb{P}(X = 1, Y = 0) = 1/5, \quad \mathbb{P}(X = 0, Y = 1) = 2/5,$$

 $\mathbb{P}(X = 1, Y = 1) = 2/15, \quad \mathbb{P}(X = 0, Y = 2) = 1/15.$

5. (1) $\mathbb{P}(X=1|Z=0)=4/9$. (2) (X,Y) 的概率分布为

X	0	1	2
0	1/4	1/6	1/36
1	1/3	1/9	0
2	1/9	0	0

6. (X₁, X₂) 的联合分布为

$$\mathbb{P}(X_1 = k, X_2 = n - k) = C_k^n 2^{-n}, \quad k = 0, 1, 2, \dots, n.$$

 X_1 和 X_2 的边缘分布相同, 且

$$\mathbb{P}(X_1 = k) = \mathbb{P}(X_2 = k) = C_k^n 2^{-n}, \quad k = 0, 1, 2, \dots, n.$$

7. (X,Y) 的联合分布为:

$$\mathbb{P}(X = 0, Y = 1) = \mathbb{P}(X = 3, Y = 3) = 1/8,$$

 $\mathbb{P}(X = 1, Y = 1) = \mathbb{P}(X = 2, Y = 1) = 3/8.$

8. (X_1, X_2) 的联合分布为

$$\mathbb{P}(X_1 = 1, X_2 = 0) = 0.8, \ \mathbb{P}(X_1 = 0, X_2 = 1) = 0.1,$$

 $\mathbb{P}(X_1 = 0, X_2 = 0) = 0.1, \ \mathbb{P}(X_1 = 1, X_2 = 1) = 0.$

9. (1) (X,Y) 的联合概率分布为

$$\mathbb{P}(X=i,Y=j) = \binom{13}{i} \binom{13}{j} \binom{26}{13-i-j} / \binom{52}{13}, \ i,j \ge 0, \ i+j \le 13.$$

(2) 此时 Y 的条件概率分布为

$$\mathbb{P}(Y=j) = \binom{13}{j} \binom{26}{12-j} / \binom{39}{12}, \ 0 \le j \le 12.$$

10. a = 0.3, b = 0.2.

11. (1)
$$\mathbb{P}(X = i, Y = j) = p^2(1-p)^{j-2}, \ j = 2, 3, \dots, i = 1, 2, \dots, j-1.$$
 (2) $\mathbb{P}(X = i) = p(1-p)^{i-1}, \ i = 1, 2, \dots,$ $\mathbb{P}(Y = j) = (j-1)p^2(1-p)^{j-2}, \ j = 2, 3, \dots.$

12. C.

13.
$$\mu(\mu^2 + \sigma^2)$$
.

- 14. 1/2.
- 15. 1/4.
- 16. 对离散随机变量, 举例如下:

X_1 Y_1	0	1	$p_{i\cdot}$
0	4/25	6/25	2/5
1	6/25	9/25	3/5
$p_{\cdot j}$	2/5	3/5	

X_2 Y_2	0	1	$p_{i\cdot}$
0	2/15	4/15	2/5
1	4/15	5/15	3/5
$p_{\cdot j}$	2/5	3/5	

则 (X_1, Y_1) 与 (X_2, Y_2) 的边缘分布相同但联合分布不同. 对连续随机变量, 例 如 N(0,0,1,1,0) 和 N(0,0,1,1,1/2) , 两分布的边缘分布相同但联合分布不同.

17. 假设 (X,Y) 的联合密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-(x^2+y^2)/2} (1 + \sin x \sin y), \quad x, y \in \mathbb{R}.$$

则 $X \sim N(0,1), Y \sim N(0,1),$ 但 (X,Y) 不是二元正态的.

18. (1) $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2);$

(2)
$$f_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi\sigma_1^2(1-\rho^2)}} \exp\left\{-\frac{(x-\mu_1-\rho\sigma_2^{-1}\sigma_1(y-\mu_2))^2}{2\sigma_1^2(1-\rho^2)}\right\}, x \in \mathbb{R},$$

 $f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi\sigma_2^2(1-\rho^2)}} \exp\left\{-\frac{(y-\mu_2-\rho\sigma_1^{-1}\sigma_2(x-\mu_1))^2}{2\sigma_2^2(1-\rho^2)}\right\}, x \in \mathbb{R}.$

- 19. (1) $a = 1/\pi^2, b = c = \pi/2;$ (2) $\mathbb{P}(X > 0, Y > 0) = 1/4;$ (3) X 和 Y 的边缘密 度函数相同,均为 $p(x) = 1/(\pi(1+x^2)), x \in \mathbb{R}.$
- 20. (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} \lambda \mu e^{-\lambda x - \mu y}, & x > 0, \ y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

21. (1)

$$F(x,y) = \begin{cases} \sin x \sin y, & 0 < x < \pi/2, & 0 < y < \pi/2, \\ \sin x, & 0 < x < \pi/2, & y \ge \pi/2, \\ \sin y, & x \ge \pi/2, & 0 < y < \pi/2, \\ 1, & x \ge \pi/2, & y \ge \pi/2, \\ 0, & \not\equiv \text{th}. \end{cases}$$

(2)
$$\mathbb{P}(0 < X < \pi/4, \pi/4 < Y < \pi/2) = (\sqrt{2}/2)(1 - \sqrt{2}/2).$$

- 22. $A = 1/\pi$, 条件密度函数 $f_{Y|X}(y|x) = \frac{1}{\sqrt{\pi}}e^{-(x-y)^2}, y \in \mathbb{R}$.
- 23. A = 6, $\mathbb{P}(X \le 0.25 | Y = 0.5) = 9/16$.
- 24. 随机变量 Z = XY 的分布函数为

$$F_Z(z) = \begin{cases} 0.5\Phi(z), & z < 0, \\ 0.5 + 0.5\Phi(z), & z \ge 0. \end{cases}$$

25.
$$\mathbb{P}(Z=0) = \mathbb{P}(Z=1) = 1/2.$$

26. (1) 条件密度函数
$$f_{Y|X}(y|x) = \begin{cases} 1/x, & 0 < y < x, \\ 0, & 其他. \end{cases}$$
 (2) $\mathbb{P}(X \le 1|Y \le 1) = \frac{e-2}{e-1}$.

- 27. (1) $c = 3/(\pi R^3)$, (2) $r^2(3R 2r)/R^3$.
- 28. (1) A = 12; (2) 独立; (3) $f_Z(z) = 12(e^{-3z} e^{-4z})$, (z > 0); (4) $f_{X|Z=1}(x) = \frac{e^x}{e^{-1}}$ (0 < x < 1); $\mathbb{E}(X|Z=1) = \frac{1}{e^{-1}}$.
- 29. (1) (X,Y) 的联合密度函数 $f(x,y) = \begin{cases} \frac{9y^2}{x}, & 0 < x < 1, \ 0 < y < x, \\ 0, & 其他. \end{cases}$ 的边缘密度函数 $f_Y(y) = \begin{cases} -9y^2 \ln y, & 0 < y < 1, \\ 0, & 其他. \end{cases}$
- 31. $\mathbb{P}(Y=n) = 2^{-n-1}, n = 0, 1, 2, \cdots$
- 32. 记 p 为Bernoulli试验中的成功概率,则 (X_1, X_2, \dots, X_n) 的联合分布为 $\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = p^{\sum_i x_i} (1 p)^{n \sum_i x_i}, \quad x_i = 0, 1; \ i = 1, 2, \dots, n.$
- 33. X 的边缘密度为

$$f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

- 34. Z 的密度函数为 $f_Z(z) = \begin{cases} \frac{2-z}{z}, & 0 < z < 2 \\ 0, & 其他 \end{cases}$.
- 35. (1) 边缘密度 $f_X(x) = \begin{cases} x, & 0 < x \le 1, \\ 2 x, & 1 < x \le 2, \\ 0, & 其他. \end{cases}$
 - (2) $f_{X|Y}(x|y) = \begin{cases} \frac{1}{2-2y}, & 0 < y < x < 2-y, \\ 0, & \sharp \text{ th. } \end{cases}$
- 36. (1) (X,Y) 的联合密度为 $f(x,y) = \begin{cases} 2, & 0 \le x \le y \le 1, \\ 0, & 其他. \end{cases}$

(2) 边缘密度分别为

$$f_X(x) = \begin{cases} 2(1-x), & 0 \le x \le 1, \\ 0, & \text{其他}, \end{cases}$$
 $f_Y(y) = \begin{cases} 2y, & 0 \le y \le 1, \\ 0, & \text{其他}. \end{cases}$

- (3) 对任意 $0 \le y \le 1$, 条件密度为 $f_X(x|Y=y) = \begin{cases} 1/y, & 0 \le x \le y, \\ 0, & 其他. \end{cases}$
- (4) $\mathbb{E}(X|Y=y) = y/2$.
- 37. (1) X, Y 有相同的边缘密度 $f(x) = \begin{cases} x+1, & -1 \le z < 0, \\ 1-x, & 0 \le x \le 1. \end{cases}$
 - (2) X和Y不独立.
 - (3) $f_{Y|X}(y|x) = \frac{1}{2(1-x)}I(x-1 \le y \le 1-x)$, 其中 0 < x < 1.
- 38. (U, V) 的联合概率分布为

$$\mathbb{P}(U=0, V=0) = \mathbb{P}(U=1, V=0) = 1/4,$$

 $\mathbb{P}(U=1, V=1) = 1/2, \ \mathbb{P}(U=0, V=1) = 0.$

39. (1) (X_1, X_2, \dots, X_n) 服从多项分布 $M(m; p_1, p_2, \dots, p_n)$:

$$\mathbb{P}(X_1 = m_1, \dots, X_n = m_n) = \frac{m!}{m_1! m_2! \dots m_n!} p_1^{m_1} p_2^{m_2} \dots p_n^{m_n},$$

其中 m_1, m_2, \cdots, m_n 是任一使得 $m_1 + m_2 + \cdots + m_n = m$ 的非负整数列.

- (2) $X_k \sim B(m, p_k)$.
- (3) $\mathbb{P}(X_1 = m_1, X_2 = m_2) = \frac{m!}{m_1! m_2! (m m_1 m_2)!} p_1^{m_1} p_2^{m_2} (1 p_1 p_2)^{m m_1 m_2}$, 其中 m_1, m_2 是任一使得 $m_1 + m_2 \le m$ 的非负整数.
- (4) 条件分布为

$$\mathbb{P}(X_2 = m_2, \dots, X_n = m_n | X_1 = m_1)$$

$$= \frac{(m - m_1)!}{m_2! \cdots m_n!} \left(\frac{p_2}{1 - p_1}\right)^{m_2} \cdots \left(\frac{p_n}{1 - p_1}\right)^{m_n},$$

其中 m_2, \dots, m_n 是任一使得 $m_1 + m_2 + \dots + m_n = m$ 的非负整数列.

40.
$$X$$
 的边缘密度为 $f_X(x) = \begin{cases} (3/4)(1-x^2), & |x| \leq 1, \\ 0, & |x| > 1. \end{cases}$

41. D.

- 42. A.
- 43. 1/5.
- 44. 3/4.
- 45. $\binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}, B(n,\lambda/(\lambda+\mu)).$
- 46. (1) (X,Y) 的联合分布为

$$\mathbb{P}(X=0,Y=-1) = \mathbb{P}(X=0,Y=1) = 1/4, \ \mathbb{P}(X=1,Y=0) = 1/2.$$

- (2) X,Y 不独立.
- 47. (1) $\mathbb{P}(Y=m|X=n) = \binom{n}{m} p^m (1-p)^{n-m}, \ m=0,1,2,\cdots,n; \ n=0,1,2,\cdots$
 - (2) $\mathbb{P}(X = n, Y = m) = \binom{n}{m} p^m (1-p)^{n-m} \cdot \frac{\lambda^n}{n!} e^{-\lambda}, \quad m = 0, 1, 2, \dots, n; \quad n = 0, 1, 2, \dots$
- 48. (1) $\mathbb{P}(X = i, Y = j) = \frac{1}{6} \times \left(\frac{1}{3}\right)^{i-1}, i = 1, 2, \dots, j = 3, 4, 5, 6.$ $\mathbb{P}(X = i) = \frac{2}{3} \times \left(\frac{1}{3}\right)^{i-1}, i = 1, 2, \dots, \mathbb{P}(Y = j) = \frac{1}{4}, j = 3, 4, 5, 6.$
 - (2) X,Y 独立.
- 49. (1) $\mathbb{P}(Z \le 1/2 | X = 0) = 1/2$.
 - (2) Z 的密度函数为 $f_Z(z) = \begin{cases} 1/3, & -1 \le z < 2, \\ 0, & 其他. \end{cases}$
- 50. (X, |Y|) 的联合密度函数为 $f(x, y) = \begin{cases} \sqrt{\frac{2}{\pi}} e^{-x-y^2/2}, & x \ge 0, y > 0, \\ 0, & 其他. \end{cases}$
- 51. (1) 条件密度为 $f_{Y|X=1/2}(y) = \frac{2+y}{4}$, (|y| < 1).
 - (2) 因为 $\mathbb{P}(X^2 \le x, Y^2 \le y) = \sqrt{x} \cdot \sqrt{y} = \mathbb{P}(X^2 \le x) \mathbb{P}(Y^2 \le y)$,所以 X^2 和 Y^2 相互独立.
- 52. (1) X, Y 的分布相同, 均为 (0,1) 上的均匀分布; (2) X 和 Y 相互独立.
- 53. (1) X,Y 的分布相同,具有密度

$$f_X(z) = f_Y(z) = \begin{cases} \frac{2}{\pi} \sqrt{1 - z^2}, & |z| \le 1, \\ 0, & \text{其他}. \end{cases}$$

(2) X和Y不独立.

54. (1) 边缘密度分别为

$$f_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases} \qquad f_Y(y) = \begin{cases} \frac{3}{2}(1 - y^2), & 0 < y < 1, \\ 0, & \text{其他.} \end{cases}$$

(2) 不独立. (3) $\mathbb{P}(X + Y \le 1) = 3/8$.

55. (1)
$$F_X(x) = \begin{cases} 1 - (x+1)e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
, $F_Y(y) = \begin{cases} \frac{y}{1+y}, & y > 0 \\ 0, & y \le 0. \end{cases}$.

(2) $f(x,y) = \begin{cases} \frac{xe^{-x}}{(1+y)^2}, & x > 0, y > 0 \\ 0, & \cancel{x} = 0. \end{cases}$

$$f_X(x) = \begin{cases} xe^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases},$$

$$f_Y(y) = \begin{cases} \frac{1}{(1+y)^2}, & y > 0\\ 0, & y \le 0 \end{cases}$$
.

- (3) 因为 $F(x,y) = F_X(x)F_Y(y)$ (或 $f(x,y) = f_X(x)f_Y(y)$), 所以 X,Y 独立.
- 56. (1) 联合密度为 $f(x,y) = \begin{cases} \frac{1}{2}e^{-y/2}, & 0 < x < 1, y > 0 \\ 0, & 其他. \end{cases}$
 - (2) 二次方程 $a^2 + 2Xa + Y = 0$ 有实根的概率为

$$\mathbb{P}(X^2 \ge Y) = 1 - \sqrt{2\pi}(\Phi(1) - \Phi(0)) = 0.1446,$$

其中 $\Phi(x)$ 为标准正态的分布函数.

57. (X,Y), (X,Z), (Y,Z) 的联合分布均为

$$f(x,y) = \begin{cases} \frac{1}{4\pi^2}, & 0 \le x, y \le 2\pi, \\ 0, & \sharp \text{ th.} \end{cases}$$

而 X,Y,Z 的边缘分布相等且都等于

$$f(x) = \begin{cases} \frac{1}{2\pi}, & 0 \le x \le 2\pi, \\ 0, & 其他. \end{cases}$$

由此立得 X, Y, Z 两两独立. 但 $f_{X,Y,Z}(x,y,z) \neq f_X(x) f_Y(y) f_Z(z)$,因此 X, Y, Z 不是相互独立的.

58. 因为

$$f_X(x) = f_Y(x) = \begin{cases} 1/2, & |x| < 1, \\ 0, & \text{其他,} \end{cases}$$

所以 $f(x,y) \neq f_X(x)f_Y(y)$, 即 X,Y 不独立. 而

$$f_{X^2,Y^2}(x,y) = \begin{cases} 1/(4\sqrt{xy}), & 0 < x, y < 1, \\ 0, & \sharp \text{th}, \end{cases}$$

由此可得 X^2, Y^2 是相互独立的.

第四章 数字特征

- 1. (1) $\mathbb{E}X = \frac{1}{p}$; $\operatorname{Var}(X) = \frac{1-p}{p^2}$. (2) $\mathbb{E}X = \frac{r}{p}$; $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$.
- 2. 当 p=0.5 时, 我们有 $\mathbb{E}X=4 imes \frac{1}{8}+5 imes \frac{1}{4}+6 imes \frac{5}{16}+7 imes \frac{5}{16}=\frac{93}{16}\approx 5.81$ 场. 对一般的 0< p<1,记 q=1-p,则

$$\mathbb{E}X = 4 \times (p^4 + q^4) + 5 \times {4 \choose 1} \times (p^4q + pq^4) + 6 \times {5 \choose 2} \times (p^4q^2 + p^2q^4)$$
$$+7 \times {6 \choose 3} \times (p^4q^3 + p^3q^4)$$
$$= 4p^4(1 + 5q + 15q^2 + 35q^3) + 4q^4(1 + 5p + 15p^2 + 35p^3).$$

从而当 p=0.6 时,由上式可得 $\mathbb{E}X=\frac{17804}{3125}\approx 5.70$ 场.

3. 证明: (1) 我们只需要证明第一个等式. 由期望的定义可知,

$$\mathbb{E}X = \sum_{k=1}^{\infty} k \mathbb{P}(X=k) = \sum_{k=1}^{\infty} \sum_{n=1}^{k} \mathbb{P}(X=k)$$
$$= \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} \mathbb{P}(X=k) = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

(2) 证明思路与 (1) 类似. 设 f(x) 为其密度函数,则

$$\mathbb{E}X = \int_0^\infty t f(t) dt = \int_0^\infty f(t) dt \int_0^t dx$$
$$= \int_0^\infty dx \int_x^\infty f(t) dt = \int_0^\infty (1 - F(x)) dx.$$

(3) 以 I(A) 表示事件 A的示性函数, 则由

$$\mathbb{E}X = \mathbb{E}\left[\int_0^X \mathrm{d}x\right] = \mathbb{E}\left[\int_0^\infty I(X > x) \mathrm{d}x\right]$$
$$= \int_0^\infty \mathbb{E}[I(X > x)] \mathrm{d}x = \int_0^\infty \mathbb{P}(X > x) \mathrm{d}x$$

可知结论成立.

- 4. 以 X 表示满足要求的随机数的个数, 由 $\mathbb{P}(X>n)=\frac{1}{n!}, n=1,2,\cdots$, 可知所求即为 $\mathbb{E}X=\mathrm{e}$.
- 5. n = 8, p = 0.3.
- 6. 2.
- 7. $c = \frac{1}{\sqrt{\pi}} e^{-\frac{1}{4}}$, $\mathbb{E}X = Var(X) = \frac{1}{2}$.
- 8. $\mathbb{E}X = Var(X) = n + 1$.
- 9. (1) $\mathbb{E}X = \sqrt{\frac{\pi}{2}}\sigma$, $Var(X) = \frac{4-\pi}{2}\sigma^2$.
 - (2) $\mathbb{E}X = \frac{\alpha}{\alpha+\beta}$, $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$.
 - (3) $\mathbb{E}X = \lambda \Gamma(1 + \frac{1}{k}), \ \text{Var}(X) = \lambda^2 [\Gamma(1 + \frac{2}{k}) (\Gamma(1 + \frac{1}{k}))^2].$
- 10. a = 12, b = -12, c = 3.
- 11. e^{-1} .
- 12. 1.
- 13. 7.5.
- 14. [-1,1] 中的任一点都是 X 的中位数.
- 15. X 的 α 分位数为 $\Phi^{-1}(\alpha)$, 其中 $\Phi(x)$ 为标准正态分布函数而 $\Phi^{-1}(x)$ 为 $\Phi(x)$ 的 逆函数.
- 16. EX.
- 17. m(X) (X 的中位数).
- 18. $n(1-\frac{1}{n})^n$; e^{-1} .
- 19. (1) $\mathbb{E}[X_n] = n \sum_{k=1}^n \frac{1}{k} = 12 \sum_{k=1}^{12} \frac{1}{k} \approx 37.24;$ (2) 1.
- $20. \ \frac{na}{a+b}.$
- 21. 2.
- 22. 3.

23. 证明: 不妨设

$$X \sim \left(\begin{array}{ccc} x_1 & x_2 & \cdots & x_k \\ p_1 & p_2 & \cdots & p_k \end{array}\right),$$

其中 $p_i > 0$ $(i = 1, 2, \dots, k)$, $\sum_{i=1}^k p_i = 1$, 且 $x_1 > x_2 > \dots > x_k > 0$. 由于

$$\mathbb{E}[X^n] = \sum_{i=1}^k x_i^n p_i,$$

我们有

$$\lim_{n \to \infty} \frac{\mathbb{E}[X^n]}{x_1^n} = p_i.$$

由此,

$$\lim_{n \to \infty} \frac{\mathbb{E}[X^{n+1}]}{\mathbb{E}[X^n]} = \lim_{n \to \infty} \frac{\mathbb{E}[X^{n+1}]}{x_1^{n+1}} \frac{x_1^n \cdot x_1}{\mathbb{E}[X^n]} = x_1 = \max_{1 \le i \le k} x_i.$$

24.
$$(pe^t + 1 - p)^n$$
; $\exp\{\lambda(e^t - 1)\}$; $\frac{\lambda}{\lambda - t}$; $\exp\{\mu t + \frac{\sigma^2 t^2}{2}\}$.

25. (1) 验证
$$Y=cX$$
 的密度函数为 $p(y)=\frac{\lambda}{c}\mathrm{e}^{-\lambda y/c},\ y>0.$ (2) $n!/\lambda^n.$

26.
$$\mathbb{E}Y = 2e; \mathbb{E}Z = 2(1 - \ln 2).$$

27. X 的密度函数为

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}, \quad x > 0;$$

期望和方差分别为

$$\mathbb{E}X = e^{\mu + \frac{\sigma^2}{2}}, \quad Var(X) = (e^{\sigma^2} - 1) e^{2\mu + \sigma^2}.$$

28.
$$0, \frac{2}{\pi}, 0.$$

29.
$$\frac{an+bm}{a+b}$$
.

30.
$$(1) \frac{8}{9}$$
; $(2) \sqrt{\frac{2}{\pi}}$.

31.
$$\frac{\ln 2}{\pi} + \frac{1}{2}$$
.

32. (1) Y 的分布函数为

$$F(y) = \begin{cases} 0, & y < 0, \\ \frac{3y}{4}, & 0 \le y < 1, \\ \frac{y}{4} + \frac{1}{2}, & 1 \le y < 2, \\ 1, & y \ge 2. \end{cases}$$

$$(2) \mathbb{E}Y = \frac{3}{4}.$$

33. (1)
$$f_Z(z) = \frac{2}{\sqrt{\pi}}e^{-z^2}, \ z > 0; \ \mathbb{E}[Z] = \frac{1}{\sqrt{\pi}}; \ \ (2) \ \mathbb{E}[U] = 1 + \frac{1}{2\sqrt{\pi}}, \ \mathbb{E}[V] = 1 - \frac{1}{2\sqrt{\pi}}$$

34.
$$(1)\mathbb{E}[X_2|X_1=k] = \frac{(m-k)p_2}{1-p_1}, \quad \operatorname{Var}(X_2|X_1=k) = \frac{(m-k)p_2(1-p_1-p_2)}{(1-p_1)^2}.$$

 $(2)\mathbb{E}[X_1+X_2] = m(p_1+p_2),$
 $\operatorname{Var}(X_1+\cdots+X_k) = m\sum_{i=1}^k p_i(1-p_i) - 2m\sum_{i=1}^{k-1}\sum_{j=i+1}^k p_ip_j, k=1,\ldots,n.$

35.
$$\frac{2(21-\sqrt{3})}{73}$$

36. (1)
$$\mathbb{E}((X+Y-3\mu)_+)=\frac{2\sigma}{\sqrt{2\pi}}$$
 (2) $\operatorname{Var}((X+Y-3\mu)_+)=4\left(1-\frac{1}{2\pi}\right)\sigma^2$

37.
$$(1)f_Y(y) = \frac{1}{3} \sum_{k=0}^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-k)^2}{2}}, \quad \mathbb{E}(Y) = 1.$$
 $(2)F_{X+Y}(z) = \frac{1}{3} \sum_{k=0}^2 \phi(z-2k), \quad$ 其中 ϕ 为标准正态分布的分布函数. $(3)\frac{2}{3}$

- 38. 1.
- 39. 期望为 $\frac{1}{\lambda} \sum_{k=1}^{n} \frac{1}{k}$.
- 40. 12.5.
- 41. $\mathbb{E}(\min\{X_1, X_2\}) = \frac{1}{4}$, $\mathbb{E}(\max\{X_1, X_2\}) = \frac{3}{4}$.
- 42. 略.
- 43. 答案: D.
- 44. $\mathbb{E}[X_1 + X_2 + X_3] = 0$, $\operatorname{Var}(X_1 + X_2 + X_3) = \frac{1}{3}$.
- 45. 略.
- 46. 期望为1000, 方差为200.
- 47. 均值为4.2, 方差为0.072.

- $48. (1)\log n,$ (2)证明略.
- 49. $\frac{121}{12}$
- 50. 2
- $51. \ \frac{2}{3}$
- 52. $(1)\mathbb{E}[y] = 1$, $\mathbb{E}[Z] = 3$ (2)Var(Y) = 1, Var(Z) = 5
- 53. $\frac{k}{2}(n+1)$, $\frac{k}{12}(n^2-1)$
- $54. \ 12p(1-p) + 3$
- 55. $\frac{1}{3}$
- 56. B
- 57. -1
- 58. $-\frac{1}{4}$
- 59. C
- 60. 0
- 61. 0.275, -0.005
- 62. $(1)3.5, \frac{35}{12}, \frac{161}{36}, 1.97 (2)\frac{154}{9}, \frac{35}{24}$
- 63. $(1)(\alpha^2 \beta^2)\sigma^2$; (2) $\alpha = \beta$ 或 $\alpha = -\beta$
- 64. $\alpha = \beta$ 或 $\alpha = -\beta$
- 65. B
- 66. 0, 不独立
- 67. $2000, \frac{35000000}{9}$
- 68. 证明略
- 69. (1) 证明略; (2) 0.5
- 70. 证明略

- 71. 证明略
- 72. $\frac{n}{p}$, $\frac{np}{(1-p)^2}$, $\frac{npq}{(1-p)^2} + \frac{nq(1-q)}{p^2}$
- 73. $0, x^2$
- 74. $(1)\lambda b (2)\lambda^2 b + \lambda a$
- 75. $\frac{a}{1-p_0}$, $\frac{\sigma^2(1-p_0)-a^2p_0}{(1-p_0)^2}$
- 76. 31.5
- 77. 1, $\frac{5}{3}$
- 78. 5.625
- 79. 2p
- 80. 33/20
- 81. $(1)\binom{m}{k}(\frac{\lambda}{\lambda+\mu})^k(\frac{\mu}{\lambda+\mu})^{m-k}, \frac{m\lambda}{\lambda+\mu} (2)\frac{\binom{n}{k}\binom{n}{m-k}}{\sum_{i=1}^m \binom{n}{i}\binom{n}{m-i}}, \frac{m}{2}$
- 82. $\frac{1}{2}z$
- 83. 证明略

第五章 极限理论

- 1. 180000
- $2. 1/\epsilon$
- 3. 4
- 4. 5
- 5. $b + a^2$
- 6. 0.8, 0.97
- 7. $\frac{\sum_{i=1}^{n} X_i^2 n\alpha_2}{\sqrt{n(\alpha_4 \alpha_2^2)}} \stackrel{\mathrm{d}}{\to} N(0, 1).$
- 8. 0.79
- 9. 0.305
- $10. \ 0.08$
- 11. 0.608
- $12.\ \ 0.876,\ 0.0002$
- 13. (1)0.95, (2)9
- 14. 1167
- 15. (1)0.18, (2)443
- 16. (1)0.82, (2)10
- 17. 0.967

第六章 数理统计的基本概念

- 1. 在试验之前样本观测值是未知的,所以可以看成是随机变量; 而当试验完成之后样本又是一组确定的值, 故可以看成是一组确定的值. 视样本为随机变量时候方便研究其性质.
- 2. 总体即为该人射击的所有可能环数, 令为 $\Omega = \{0,1,2,3,4,5,6,7,8,9,10\}$; 记他射击5次的环数为 X_1,\ldots,X_5 , 即为样本, 样本值分别为8,9,7,10和6.
- 3. 总体为全班同学, 样本为选择的5名同学. 抽样结束后, 则样本值为特定的5名同学.
- 4. 记总体为X,则在不放回方式下 $\mathbb{P}(X=k) = \binom{2}{k} \binom{4}{2-k} / \binom{6}{2}, k = 0, 1, 2.$; 在有放回方式下 $\mathbb{P}(X=k) = \binom{2}{k} (2/6)^k (4/6)^{2-k}, k = 0, 1, 2.$
- 5. 记总体为X,则 $X \sim B(1,p)$. 记样本为 X_1, \ldots, X_{10} ,则样本分布为 $\mathbb{P}(X_1 = x_1, \ldots, X_{10} = x_{10}) = p^{\sum_{i=1}^{10} x_i} (1-p)^{10-\sum_{i=1}^{10} x_i}$.
- 6. 记物体真实长度为a, 则测量值依赖于测量误差, 因此可记总体为 $X = a + \epsilon$, 由于测量误差常常由多种不同类型误差综合组成, 故由中心极限定理, 可以假设 $\epsilon \sim N(0, \sigma^2)$, 因此总体 $X \sim N(a, \sigma^2)$, 这里 σ^2 反映了测量精度.
- 7. 可以取总体为指数分布或者威布尔分布. 由于寿命为非负值, 且失效率往往会随时间增加(为简单记, 也常假设为常数), 因此指数分布或威布尔分布是合适的.
- 8. $\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = 1/\binom{M}{m}\binom{N-M}{n-m}$, 其中 $(x_1, \dots, x_m) \subset \{a_1, \dots, a_M\}$, $(x_{m+1}, \dots, x_n) \subset \{a_{M+1}, \dots, a_N\}$.
- 9. (1) 样本空间为 $\Omega = \{(x_1, \dots, x_5) : x_i = 0, 1, 1 \le i \le 5\}$, 抽样分布为 $\mathbb{P}(X_1 = x_1, \dots, X_5 = x_5) = p^{\sum_{i=1}^5 x_i} (1-p)^{5-\sum_{i=1}^5 x_i}$. (2) $X_1 + X_2$ 和 $\min_{1 \le i \le 5} X_i$ 为统计量, 其余因为依赖于未知参数p, 因此不是统计量.

10.

$$F_n(x) = \begin{cases} 0, & x < -0.3 \\ 1/10, & -0.3 \le x < -0.1 \\ 3/10, & -0.1 \le x < 0.3 \\ 4/10, & 0.3 \le x < 0.4 \\ 5/10, & 0.4 \le x < 0.5 \\ 6/10, & 0.5 \le x < 0.6 \\ 7/10, & 0.6 \le x < 0.9 \\ 8/10, & 0.9 \le x < 1.7 \\ 9/10, & 1.7 \le x < 2.6 \\ 1, & 2.6 \le x. \end{cases}$$

- 11. 样本均值73.98929, 样本标准差0.03590596.
- 12. C
- 13. D
- 14. $F_{2,2}$
- 15. a = 1/20, b = 1/100.
- 16. t_2
- 17. $F_{10.5}$
- 18. (a) $N(a, \sigma^2/n)$; (b) 利用 $n\bar{X} \sim \mathbb{P}(n\lambda)$ 易得; (c) 利用 $2n\lambda\bar{X} \sim \chi^2_{2n}$ 易得.
- 19. (n-1)p(1-p)/n
- 20. t_{n-1}
- 21. t_{n+m-2}
- 22. (1) 299 (2) (n-1)/(n+1)

第七章 参数估计

- 1. 0.38
- 2. 利用EX, EX^2 得到 $\hat{p}_1 = n_1/n$, $\hat{p}_2 = n_2/n$.
- 3. (1) $2\bar{X}+1$ (2) $\hat{\theta}=1-S^2/\bar{X}$ (3) $2/\bar{X}$ (4) $1-\bar{X}/a_2$, 其中 a_2 为二阶原点矩. (5) \bar{X}
- 4. (1) $3\bar{X}$ (2) $(2\bar{X}-1)/(1-\bar{X})$ (3) $(\bar{X})^2/(1-\bar{X})^2$ (4) $\bar{X}/(\bar{X}-c)$ (5) $2\bar{X}$ (6) \bar{X}
- 5. (1) $\sqrt{\pi}/2\bar{X}$ (2) $Var(\hat{\theta}) = \frac{3\pi-8}{8n}\theta^2$
- 6. (1) $2\bar{X} 1/2$ (2) 不是无偏估计
- 7. (1) $e^{-\bar{X}}$ (2) $e^{-1.12}$
- 8. 2
- 9. $\hat{\theta} = 0.3866$.
- 10. (1) $\max_{i} X_{i} + 1$ (2) $\hat{\theta} = \bar{X}$ (3) $\hat{\theta} = 2/\bar{X}$ (4) 无显式解, $\hat{\theta} = \arg \max \theta^{\sum x_{i}} / (-\ln(1-\theta))^{n}$ (5) $\hat{\theta} = \bar{X}$
- 11. (1) 方程 $\sum_{i} \frac{1}{\theta x_{i}} = \frac{2n}{\theta}$ 的根 (2) $\hat{\theta} = -\frac{n}{\sum_{i} log(x_{i})} 1$ (3) $\hat{\theta} = [-n/\sum_{i} log(x_{i})]^{2}$ (4) $\hat{\theta} = n/(\sum_{i} log(x_{i}) nlogc)$ (5) 方程 $\sum_{i} \frac{1}{x_{i}(\theta x_{i})} = \frac{3}{\theta^{2}}$ 的根 (6) $\hat{\theta} = \frac{2}{\frac{1}{n}\sum_{i} 1/x_{i}}$
- 12. (1) 利用密度变换公式和指数分布的无记忆性. (2) $\hat{\lambda} = T/(2r)$
- 13. $\hat{\theta} = \frac{2n_1 + n_2}{2n}$
- 14. $\hat{\theta}_1 = \min_i X_i, \hat{\theta}_2 = \max_i X_i$.
- 15. $1 \Phi(\frac{2-\bar{X}}{\hat{\sigma}}), \hat{\sigma} = \frac{1}{n} \sum_{i} (X_i \bar{X})^2$.

16.
$$\hat{\theta} = \frac{n_0}{n_0 + n_1}, n_0 = \sum_i I(0 < X_i < 1), n_1 = \sum_i I(1 \le X_i < 2)$$

17. (1)
$$\sqrt{\pi\theta}2, \theta$$
 (2) $\frac{1}{n} \sum_{i} X_{i}^{2}$ (3) $a = \theta$

18. 略

19. (1)
$$g(t) = 9t^8/\theta^9 I(0 < t < \theta \ (2) \ 10/9$$

20. (1)
$$1/(2(n-1))$$
 (2) $1/n$

21.
$$a = n_1/(n_1 + n_2)$$

22.
$$a_i = \frac{1/\sigma_i^2}{\sum_i 1/\sigma_i^2}$$

23. (1)
$$\hat{\theta} = \max_i X_i/c$$
 (2) $\tilde{\theta} = 2\bar{X}/(c+1)$, 为无偏估计

24.
$$\bar{X}, S^2 + \bar{X}$$

25. ĝ₃的方差最小

26.
$$a_1 = 0, a_2 = a_3 = 1/n, Var(T) = \theta(1-\theta)/n$$

27. 矩估计为 $\hat{\theta} = N(2 - \bar{X}) = N(2 - (n_1 + 2n_2)/n)$; 最大似然估计为 $\tilde{\theta} = N * 4(n - n_2)/(3n)$

28. (1)
$$\hat{\theta}_1 = \bar{X} - \sigma, \hat{\theta}_2 = \min_i X_i$$
 (2) $\tilde{\theta}_1 = \hat{\theta}_1, \tilde{\theta}_2 = \hat{\theta}_2 - \sigma/n$ (3) $\tilde{\theta}_2$ 更优

29. (1)
$$\hat{\sigma} = \sqrt{\pi/2} \frac{1}{n} \sum_{i} |X_{i}|$$
 (2) $\hat{\sigma} = S$, $\sharp + S^{2} = \frac{1}{n} \sum_{i} X_{i}^{2}$.

30.
$$\frac{1}{n} \sum_{i} I(X_i > 1)$$

- 31. 利用EY, EY^2 得到矩估计 $\hat{\mu} = -\frac{\ln(\sum_i Y_i^2)}{2} + 2\ln(\sum_i Y_i) \frac{3}{2}\ln(n)$, $\hat{\sigma}^2 = \ln(\sum_i Y_i^2) 2\ln(\sum_i Y_i) + \ln(n)$. (2) 最大似然估计为 $\tilde{\mu} = \sum_i \ln(Y_i) / n$, $\tilde{\sigma}^2 = \frac{1}{n} \sum_i (\ln(Y_i) \tilde{\mu})^2$.
- 32. 矩估计 $\hat{a} = \bar{X}, \hat{\sigma} = S^2/2$; 最大似然估计 $\tilde{a} = m, \tilde{\sigma} = \frac{1}{n} \sum_i |X_i m|$,其中m为样本中位数.
- 33. (1) 矩估计 $\hat{\lambda}=[\Gamma(1/\alpha+1)/\bar{X}]^{\alpha}$ (2) 最大似然估计为 $\tilde{\lambda}=1/\sum_{i}X_{i}^{\alpha}$.
- 34. $[\max_i X_i 1/2, \min_i X_i + 1/2]$
- 35. $\max_i X_i/2$,可修正为 $\frac{n+1}{2n+1} \max_i X_i$

36.
$$\hat{\mu}_1 = \bar{X}, \hat{\mu}_2 = \bar{Y}, \hat{\sigma}^2 = \frac{1}{n+m} \left[\sum_i (X_i - \bar{X})^2 + \sum_j (Y_j - \bar{Y})^2 \right].$$

37.
$$\hat{\mu} = \frac{2m\bar{X} + n\bar{Y}}{2m+n}, \hat{\sigma}^2 = \frac{1}{n+m} \left[\sum_i (X_i - \hat{\mu})^2 + \frac{1}{2} \sum_j (Y_j - \hat{\mu})^2 \right].$$

- 38. 15000
- 39. k/n
- 40. (1) $\hat{\mu}* = \min_i X_i$, 可以修正为 $\hat{\mu}^{**} = \hat{\mu}* -1/n$ (2) $\hat{\mu} = \bar{X}$ (3) $\hat{\mu}^{**}$ 更有效
- 41. 略
- 42. 略
- 43. 不是
- 44. $\hat{\theta}_1 = \min_i X_i, \hat{\theta}_2 = \max_i X_i$
- 45. 后者
- 46. 前者更有效

47. 1)证明略, 2)
$$a = \frac{n_1}{n_1 + n_2 + n_3}, b = \frac{n_2}{n_1 + n_2 + n_3}, c = \frac{n_3}{n_1 + n_2 + n_3}$$

48. 1)
$$a_n = 2$$
, $b_n = n + 1$, $c_n = \frac{n+1}{n}$, 2) $\hat{\theta}_3$ 更有效.

- 49. 1) $a_n = 1$, $b_n = n$, 2) $\hat{\theta}_1$ 更有效.
- 50. 1) $a_n = -1$, $b_n = -\frac{1}{n}$, 2) $\hat{\theta}_2$ 更有效.
- 51. 1) $\hat{\theta}_M = (3 \bar{X})/5 = 2/5$, $\hat{\theta}_L = \frac{n n_3}{3n} = \frac{4}{15}$, 2) $\hat{\theta}_M$, $\hat{\theta}_L$ 都为 θ 的无偏估计, 3) $\hat{\theta}_L$ 更有效.
- 52. 证明略
- 53. 证明略
- 54. 证明略
- 55. $c_n = \alpha^{-1/n}$.
- 56. 1)证明略, 2) 1α 置信区间 $\left[\frac{\chi_{2n}^2(1-\alpha/2)}{\sum_{i=1}^n 2X_i}, \frac{\chi_{2n}^2(\alpha/2)}{\sum_{i=1}^n 2X_i}\right]$.
- 57. n = 25.
- 58. n = 166.

- 59. C.
- 60. A.
- 61. [46.76, 49.24].
- 62. [7712.17, 8287.83].
- 63. [2.120, 2.145].
- 64. 1) [119.80, 124.54], 2) [118.69, 127.53], 3) [118.43, 124.01].
- 65. 1) $e^{\mu+1/2}$, 2)[-0.922,1.038], 3) [0.657,4.654].
- 66. 1)[214.112, 225.888], 2) [154.44,165.55].
- 67. 1)[71.03, 110.97], 2) [72.22,114.96], 3)[-10.06, 4.88].
- 68. [0.307, 7.060].
- 69. 1)[43.04, 52.96], 2) [29.20, 234.89].
- 70. 1)[3.189, 3.211], 2) [0.024, 0.043].
- 71. 1)[0.141, 0.893], 2)[0.149, 1.050].
- 72. 1)[60.92, 384.28], [68.16, 316.67], 2) [65.46, 461.14], [73.60, 374.50]
- $73. \ [8.86, 18.57], [78.58, 344.93].$
- $74. \ \ 1)[7400.41,8904.23],\ 2)[5816.02,7077.04].$
- 75. 1)[431.37, 2721.25], 2) [494.01, 3116.42], 3)[60.36, 380.75].
- 76. [0.015, 0.045].
- $77. \ [0.00215, 0.01170].$

78. 1)
$$\left[\frac{t}{s} \pm \sqrt{\frac{t/s(1-t/s)}{s}} u_{\alpha/2}\right]$$
, 2) $\left[\frac{r}{\frac{t}{s} + \sqrt{\frac{t/s(1-t/s)}{s}} u_{\alpha/2}}, \frac{r}{\frac{t}{s} - \sqrt{\frac{t/s(1-t/s)}{s}} u_{\alpha/2}}\right]$.

- 79. [341, 478].
- 80. 1α 置信上界 $\alpha^{1/n}\theta$, 1α 置信下界 $(1 \alpha)^{1/n}\theta$.
- 81. 至少6块.

- 82. 792.
- 83. 1)0.0368, 2)0.0340.
- $84. \ \ 1)120.21, \ 2)119.54, \ 3)118.97.$
- 85. 41147.53
- 86. 1) 1593.426, 2) 464.82

第八章 假设检验

- 1. (1) 拒绝域 $\{\bar{X} > 0.6645\}$, (2) 第二类错误概率0.5576.
- 2. α应取大些,因为"减少次品混入正品的可能性"为减少第二类错误的概率.
- 3. (1) 0.1, 2) V_3 .
- 4. 63/64, 1/16, 7/8
- 5. (1)0.287, 0.046, 0.304, 0.046 (2) 0.046, 0.713, 0.916.
- 6. (1) $2.5^n/\theta^n$, $(2.5/3)^n$ (2) 17.
- 7. 拒绝*H*₀.
- 8. 接受H₀.
- 9. 接受H₀.
- 10. 25.
- 11. 原假设: 废品率为0.06, 备择假设: 废品率小于0.06, 2) 0.05, 3) 不支持备择假设.
- 12. 合格.
- 13. (1)接受 H_0 , (2)拒绝 H_0 , (3)拒绝 H_0 .
- 14. 备择假设:平均起薪大于7700, p值0.0207.
- 15. 备择假设都是平均身高大于120, (1)接受备择假设,(2)拒绝备择假设, (3)拒绝备择假设.
- 16. (1)备择假设:包月客户一个月平均通话时间大于190分钟,接受备择假设.2)备择假设:按流量收费的客户一个月平均通话时间小于190分钟,接受备择假设.

- 17. 备择假设: 更换经营策略后平均销量大于更换经营策略前平均销量, 拒绝备择假设.
- 18. 接受原假设.
- 19. 不能认为该班的数学平均成绩为 87 分.
- 20. 接受原假设.
- 21. 仍然显著高于全市平均成绩.
- 22. 显著小于全国人口出生率, p值5.110357e-72.
- 23. 备择假设: 合格,接受备择假设.
- 24. 比旧工艺有所提高.
- 25. 在 0.05的显著性水平下检验机器工作良好, 在0.01的显著性水平下不能认为检验机器工作良好.
- 26. 接受H₀.
- 27. (1)接受 H_1 , (2) 拒绝 H_1 .
- 28. 接受H₁.
- 29. 接受H₀.
- 30. (1)接受 $H_1, (2)$ 接受 H_1 .
- 31. C
- 32. C
- 33. B
- 34. 由题意,令 $Z_i = X_i Y_i$ 为各男孩 A, B 材料耐磨性的差异,若 A, B 材料无差异,则在n个试验单元中 Z_i 取"+"和"-"的概率都为 $\frac{1}{2}$,因此假设检验问题转化为 $n_+ \sim b(n,p)$, $0 \le p \le 1$,检验问题为

$$H_0: p = \frac{1}{2}, H_1: p \neq \frac{1}{2}.$$

拒绝域 $D = \{n_+ \ge c, n_+ \le d\}$ 在本例中 $n = 10, \alpha = 0.05,$ 查二分分布表知

$$\sum_{k=0}^{1} {10 \choose k} (\frac{1}{2})^{10} = 0.011$$
$$\sum_{k=0}^{2} {10 \choose k} (\frac{1}{2})^{10} = 0.055$$

故水平 $\alpha = 0.05$ 的符号检验的拒绝域为 $D = \{n_+ \ge 1, n_+ \le 9\}$,样本中的差值取正数的个数为 $n_+ = 2$,所以我们认为原假设成立,即两种材料的耐磨性无显著性差异.

35. 由题意,设 X_1, \dots, X_m $iid \sim N(\mu_1, \sigma_1^2), Y_1, \dots, Y_m$ $iid \sim N(\mu_2, \sigma_2^2)$,此处m = 9,故此问题属于Behrens-Fisher问题,用基于t分布的检验方法. 只能在方差未知的一般情形下,检验假设

$$H_0: \mu_1 - 8 \ge \mu_2, \ H_1: \mu_1 - 8 < \mu_2.$$

检验的拒绝域为

$$D = \{(X, Y) : T = \frac{\overline{X} - \overline{Y} - 8}{\sqrt{S_1^2/m + S_2^2/m}} < -t_r(\alpha)\}.$$

首先计算t分布的自由度为

$$r = \frac{(S_1^2/m + S_2^2/m)^2}{S_1^4/m^2(m-1) + S_2^4/m^2(m-1)} = 15.99 \approx 16,$$

查表得 $t_{16}(0.05) = 1.7459$,由数据得

$$T = \frac{\overline{X} - \overline{Y} - 8}{\sqrt{S_1^2/m + S_2^2/m}} = 0.019 > -1.7459$$

即认为原假设成立,俱乐部的宣传可信.

36. 由题意, 在 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知时, 检验假设

$$H_0: \mu_2 - \mu_1 \le -8, \ H_1: \mu_2 - \mu_1 > -8.$$

检验的拒绝域为

$$T_{w} = \frac{\overline{Y} - \overline{X} + 8}{S_{w}} \sqrt{\frac{mn}{m+n}}$$

$$S_{w}^{2} = \frac{(m-1)S_{1}^{2} + (n-1)S_{2}^{2}}{m+n-2}$$

$$D = \{(X, Y) : T_{w} > t_{m+n-2}(\alpha)\}$$

经计算得 $T_w = -0.027 < 1.7459$,所以我们认为原假设成立,俱乐部的宣传可信.

37. 由题意,在 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知时,检验假设

$$H_0: \mu_2 - \mu_1 = 0, \ H_1: \mu_2 - \mu_1 \neq 0.$$

检验的拒绝域为

$$T_{w} = \frac{\overline{Y} - \overline{X}}{S_{w}} \sqrt{\frac{mn}{m+n}}$$

$$S_{w}^{2} = \frac{(m-1)S_{1}^{2} + (n-1)S_{2}^{2}}{m+n-2}$$

$$D = \{(X, Y) : |T_{w}| > t_{m+n-2}(\frac{\alpha}{2})\}$$

经计算得 $|T_w| = 2.4627 > 2.0739$,所以我们认为原假设不成立,甲乙两种方法有显著不同.

- 38. 略
- 39. 略
- 40. (1) 由题意,在正态总体均值未知的情况下,检验假设

$$H_0: \ \sigma_1^2 = \sigma_2^2, \ H_1: \ \sigma_1^2 \neq \sigma_2^2.$$

检验的拒绝域为

$$F=rac{S_2^2}{S_1^2}$$
 $F< F_{n-1,m-1}(1-lpha/2)$ 或 $F>F_{n-1,m-1}(lpha/2)$

经计算得, $S_1^2 = 129447.6, S_2^2 = 181026.8, F_{7,6}(0.025) = 5.12, F_{7,6}(1-0.025) = 0.175.$ 显然不在拒绝域内,所以我们认为两者的方差相等 (2) 由题意,在正态总体均值方差未知的情况下,检验假设

$$H_0: \mu_2 - \mu_1 \ge 0, \ H_1: \mu_2 - \mu_1 < 0.$$

检验的拒绝域为

$$D = \{(X,Y) : T = \frac{\overline{Y} - \overline{X}}{\sqrt{S_1^2/m + S_2^2/n}} < -t_r(\alpha)\}.$$

首先计算t分布的自由度为

$$r = \frac{(S_1^2/m + S_2^2/n)^2}{S_1^4/m^2(m-1) + S_2^4/n^2(n-1)} = 12.99 \approx 13,$$

查表得 $t_{13}(0.05) = 1.7709$,由数据得

$$T = \frac{\overline{Y} - \overline{X}}{\sqrt{S_1^2/m + S_2^2/n}} = 1.848 > -1.7709$$

即认为原假设成立,甲企业的平均工资低于乙企业.

- 41. 略
- 42. 由题意,在正态总体均值未知的情况下,检验假设

$$H_0: \sigma_1^2 \ge \sigma_2^2, H_1: \sigma_1^2 < \sigma_2^2.$$

检验的拒绝域为

$$F = \frac{S_2^2}{S_1^2}$$

$$F > F_{n-1,m-1}(\alpha)$$

经计算得, $S_1^2=0.0015, S_2^2=0.0086, F_{8,8}(0.05)=3.44$. 显然 $F=\frac{0.0086}{0.0015}>3.44$, 所以原假设不成立,即 $\sigma_1^2<\sigma_2^2$.

43. 假定病人服用A种药一个固定时间后身体细胞内药的浓度服从 $N(\mu_A, \sigma_A^2)$,服用B种药一个固定时间后身体细胞内药的浓度服从 $N(\mu_B, \sigma_B^2)$.现将两个总体中分别抽取了容量为m=8, n=6的两个样本.欲检验 $H_0: \sigma_A^2 \geqslant \sigma_B^2 v.s.$ $H_1: \sigma_A^2 < \sigma_B^2$.检验统计量为: $F=S_A^2/S_B^2$,其中 S_A^2 , S_B^2 分别是两个样本的方差.显著性水平为 α 时的检验规则为:

当 $F \leq F_{1-\alpha}(m-1,n-1)$ 时拒绝 H_0 . 由样本数据计算得: $S_A^2 = 0.0192, S_B^2 = 0.0335, F = 0.5731, 而 <math>\alpha = 0.1$ 时, $F_{0.9}(7,5) = \frac{1}{F_{0.1}(5.7)} = \frac{1}{2.88} = 0.3472$, 因此无法拒绝 H_0 .

44. 由题意,在 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知时,检验假设

$$H_0: \mu_2 - \mu_1 = 0, \ H_1: \mu_2 - \mu_1 \neq 0.$$

检验的拒绝域为

$$T_{w} = \frac{\overline{Y} - \overline{X}}{S_{w}} \sqrt{\frac{mn}{m+n}}$$

$$S_{w}^{2} = \frac{(m-1)S_{1}^{2} + (n-1)S_{2}^{2}}{m+n-2}$$

$$D = \{(X, Y) : |T_{w}| > t_{m+n-2}(\frac{\alpha}{2})\}$$

经计算得 $|T_w| = 2.245 < 2.3646$,所以我们认为原假设成立,甲乙两处煤矿含灰率无显著差异.

45. 由题意,在 $\sigma_1^2 = 0.04, \sigma_2^2 = 0.09$ 的情况下,检验假设

$$H_0: \mu_2 - \mu_1 = 0, \ H_1: \mu_2 - \mu_1 \neq 0.$$

检验的拒绝域为

$$U = \frac{\overline{Y} - \overline{X}}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}$$
$$|U| > u_{\alpha/2}$$

经计算得|U| = 0.1463 < 1.96,所以我们认为原假设成立, μ_1,μ_2 无显著差异.

46. 由题意,在正态总体均值方差未知的情况下,检验假设

$$H_0: \mu_2 - \mu_1 = 0, \ H_1: \mu_2 - \mu_1 \neq 0.$$

检验的拒绝域为

$$D = \{(X,Y) : |T| = \left| \frac{\overline{Y} - \overline{X}}{\sqrt{S_1^2/m + S_2^2/n}} \right| > t_r(\alpha/2) \}.$$

首先计算t分布的自由度为

$$r = \frac{(S_1^2/m + S_2^2/n)^2}{S_1^4/m^2(m-1) + S_2^4/n^2(n-1)} = 9.97 \approx 10,$$

查表得 $t_10(0.025) = 2.228$,由数据得

$$|T| = \left| \frac{\overline{Y} - \overline{X}}{\sqrt{S_1^2/m + S_2^2/n}} \right| = 1.37 < 2.228$$

即认为原假设成立,两批电子原件电阻无显著差异.

- 47. 略
- 48. 略
- 49. 略
- 50. 略
- 51. 由题意,在正态总体均值方差未知的情况下,检验假设

$$H_0: \mu_2 - \mu_1 = 0, \ H_1: \mu_2 - \mu_1 \neq 0.$$

检验的拒绝域为

$$D = \{(X, Y) : |T| = |\frac{\overline{Y} - \overline{X}}{\sqrt{S_1^2/m + S_2^2/n}}| > t_r(\alpha/2)\}.$$

首先计算t分布的自由度为

$$r = \frac{(S_1^2/m + S_2^2/n)^2}{S_1^4/m^2(m-1) + S_2^4/n^2(n-1)} = 15.82 \approx 16,$$

查表得 $t_16(0.025) = 2.120$,由数据得

$$|T| = \left| \frac{\overline{Y} - \overline{X}}{\sqrt{S_1^2/m + S_2^2/n}} \right| = 0.108 < 2.120$$

即认为原假设成立,两种工艺对产品该性能指标的影响无显著性差异.

52. 由题意,(1)假定旧肥料产量服从 $N(\mu_A, \sigma_A^2)$,新肥料产量服从 $N(\mu_B, \sigma_B^2)$. 现将两个总体中分别抽取了容量为m=6, n=6的两个样本.欲检验 $H_0: \sigma_A^2 = \sigma_B^2 v.s. H_1: \sigma_A^2 \neq \sigma_B^2$.检验统计量为: $F = S_A^2/S_B^2$,其中 S_A^2 , S_B^2 分别是两个样本的方差.显著性水平为 α 时的检验规则为:

当 $F \geqslant F_{\alpha/2}(m-1,n-1)$ 或 $F \leqslant F_{1-\alpha/2}(m-1,n-1)$ 时拒绝 H_0 .

由样本数据计算得: $S_A^2 = 5.6, S_B^2 = 4, F = 1.4, \ \overline{m}\alpha = 0.05 \ \overline{m}, F_{0.025}(5,5) = 7.146, F_{0.975}(5,5) = \frac{1}{F_{0.025}(5,5)} = \frac{1}{7.146} = 0.1399,$ 因此无法拒绝 H_0 .

(2)假定旧肥料产量服从 $N(\mu_A, \sigma_A^2)$,新肥料产量服从 $N(\mu_B, \sigma_B^2)$. 现将两个总体中分别抽取了容量为m=6, n=6的两个样本.欲检验 $H_0: \mu_A \geqslant \mu_B \ v.s. \ H_1: \mu_A < \mu_B$.因为由第一问,我们可假定 $\sigma_A^2 = \sigma_B^2$,所以,检验统计量为: $t = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}}, S_w^2 = \frac{(m-1)S_A^2 + (n-1)S_B^2}{(m+n-2)}$,其中 \overline{X} , 为别是两个样本的均值, S_A^2 , S_B^2 分别是两个样本的方差.显著性水平为 α 时的检验规则为:

当 $t \leq -t_{\alpha}(m+n-2)$ 时拒绝 H_0 .

由样本数据计算得: $\overline{X}=16,\overline{Y}=19,S_A^2=5.6,S_B^2=4,t=-2.3717,$ 而 $\alpha=0.05$ 时, $-t_{0.05}(10)=-1.812,$ 因此拒绝 H_0 .

53. 记X = 1表示该人年龄在65岁以上,则检验问题可表示为

$$H_0: \mathbb{P}(X=1) = 0.1355, \mathbb{P}(X \neq 1) = 0.8645.$$

 $\diamondsuit \nu_1 = 57.\nu_2 = 343$ 则

$$k_0 = \frac{(57 - 400 * 0.1355)^2}{400 * 0.1355} + \frac{(343 - 400 * 0.8645)^2}{400 * 0.8645} = 0.1673,$$

拟合优度

$$\mathbb{P}(\chi_1^2(0.05)) = 3.841$$

故我们认为原假设成立,即该市现在老年人所占比例较2000年普查时无变化.

54. 检验问题为

H₀:吸烟与患慢性气管炎无关.

在列联表检验中,n=1000, r=s=2,查表 $\chi^2_{(r-1)(s-1)}(0.05)=3.841$ 检验统计量为

$$K = \frac{339(43 \times 121 - 13 \times 162)^2}{205 \times 134 \times 56 \times 283} = 7.469 > 3.841$$

故我们拒绝原假设. 这表明吸烟中患慢性气管炎比例较高.

55. 检验问题为

$$H_0$$
:施肥无效果.

在列联表检验中,n=1000,r=s=2,查表 $\chi^2_{(r-1)(s-1)}(0.01)=6.64$ 检验统计量为

$$K = \frac{1000(53 \times 117 - 47 \times 783)^2}{100 \times 900 \times 164 \times 836} = 75.884 > 6.64$$

故我们拒绝原假设. 这表明施肥的效果显著.

- 56. 略
- 57. 略
- 58. 检验问题为

此处 n = 112,

$$np_0 = 112 \times \frac{\binom{3}{8}}{\binom{8}{3}} = 2$$

$$np_1 = 112 \times \frac{\binom{5}{1}\binom{3}{2}}{\binom{8}{3}} = 30$$

$$np_2 = 112 \times \frac{\binom{5}{2}\binom{3}{1}}{\binom{3}{1}} = 60$$

$$np_3 = 112 \times \frac{\binom{5}{3}}{\binom{3}{3}} = 20$$

拟合优度

$$s = 2 \mathbb{P}(\chi_{4-2-1}^2(0.05)) = 3.841$$

$$K = \frac{(1-2)^2}{2} + \frac{(31-30)^2}{30} + \frac{(55-60)^2}{60} + \frac{(25-20)^2}{20} = 2.2 < 3.841$$

即接受 H_0 ,红球的个数为5.

59. 检验问题为

$$H_0$$
:各工厂的质量一致

此例中 $r = 3, s = 3, \overline{m}(r-1)(s-1) = 4,$ 查表得 $\chi_4^2(0.05) = 9.488,$ 计算检验统计量

$$\hat{K}^{\star} = n(\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{n_{ij}^{2}}{n_{i,n,j}} - 1) = 15.41 > 9.488$$

因此否定 H_0 ,即认为各工厂质量不一样,通过比较各工厂各品质产品百分比, 我们可以认为甲工厂质量最高,丙工厂质量最低.

- 60. H_0 :A和B两种蜗牛的分布在3种珊瑚礁中都是一样的, H_1 :A 和B两种蜗牛的分布在3种珊瑚礁中是有差异的,假设显著性水平 $\alpha=0.05$,计算卡方值公式为 $\chi^2=61\times(\frac{6^2}{28\times13}+\frac{8^2}{28\times29}+\frac{14^2}{28\times19}+\frac{7^2}{33\times13}+\frac{21^2}{33\times29}+\frac{5^2}{33\times19}-1)=9.8238,$ 而 $\chi^2_{0.05}(2)=5.99$,所以,说明A和B两种蜗牛的分布在3 种珊瑚礁中是有差异的.
- 61. H_0 :产品合格率与班次无关, H_1 :产品合格率与班次有关,假设显著性水平 $\alpha = 0.05$,计算卡方值公式为 $\chi^2 = \frac{323 \times (|232 \times 18 19 \times 54| 323/2)^2}{(232 + 19) \times (54 + 18) \times (232 + 18) \times (19 + 54)} = 15.0846$, 而 $\chi^2_{0.05}(1) = 3.841$,所以,产品合格率与班次有关.
- 62. H_0 :男性和女性对这三种类型的啤酒的偏好无显著差异, H_1 :男性和女性对这三种类型的啤酒的偏好有显著差异,假设显著性水平 $\alpha=0.05$, 计算卡方值公式为 $\chi^2=300\times(\frac{49^2}{180\times100}+\frac{31^2}{180\times51}+\frac{100^2}{180\times149}+\frac{51^2}{120\times100}+\frac{20^2}{120\times51}+\frac{49^2}{120\times149}-1)=8.1968$,而 $\chi^2_{0.05}(2)=5.991$,所以,男性和女性对这三种类型的啤酒的偏好有显著差异.

63. 检验问题为

H₀:每页上印刷错误的个数服从泊松分布

将数据重新分组,使得每组的错页个数不少于5,见下表 Possion分布中参数λ的MLE为

错误的个数 f_i	0	1	2	≥ 3
含 f_i 个错误的页数	86	40	19	5

$$\hat{\lambda} = \overline{X} = \frac{100}{150} = \frac{2}{3}$$

检验问题可视为

$$H_0: r.v.X \sim \text{Poisson} \ \text{分布} \ \mathbb{P}(\frac{2}{3})$$

此处n = 150,

$$np_0 = 150 \times \frac{(\frac{2}{3})^0 e^{-\frac{2}{3}}}{0!} = 77.01$$

$$np_1 = 150 \times \frac{(\frac{2}{3})^1 e^{-\frac{2}{3}}}{1!} = 51.34$$

$$np_2 = 150 \times \frac{(\frac{2}{3})^2 e^{-\frac{2}{3}}}{2!} = 17.11$$

$$np_3 = 4.53$$

从而有

$$K_n^{\star} = \frac{(86-77.01)^2}{77.01} + \frac{(40-51.34)^2}{51.34} + \frac{(19-17.11)^2}{17.11} + \frac{(5-4.53)^2}{4.53} = 3.812$$

查表得 $\chi_2^2(0.05) = 5.991$,即我们认为原假设成立,符合泊松分布.

64. 由题意,检验问题为

$$H_0: r.v.X \sim N(60, 15^2)$$

我们先计算r.v.X在每个区间中的概率. 区间的个数 $r=8,\hat{p}_i=\mathbb{P}(a_{i-1}\leq X\leq a_i)=\Phi(u_i)-\Phi(u_{i-1}), i=1,\cdots,8,$ 其中 $u_i=(a_i-60)/15, a_0=-\infty, a_8=+\infty,$ 故有

$$\hat{p_1} = \mathbb{P}(-\infty < X < 30) = \Phi(-2) = 0.023$$

$$\hat{p_2} = \mathbb{P}(30 < X < 40) = \Phi(-\frac{4}{3}) - \Phi(-2) = 0.068$$

以此类推得 $\hat{p}_3 = 0.161, \hat{p}_4 = 0.248, \hat{p}_5 = 0.248, \hat{p}_6 = 0.161, \hat{p}_7 = 0.068, \hat{p}_8 = 0.023$,此时我们计算 $K_n^{\star} = 6.557$,查表得 $\chi_{8-2-1}^2(0.05) = 11.071$,故我们认为原假设成立,符合正态分布.

65. 假定甲厂电视机的寿命服从 $N(\mu_A, \sigma_A^2)$,乙厂电视机的寿命服从 $N(\mu_B, \sigma_B^2)$.现将两个总体中分别抽取了容量为m=10, n=10的两个样本.欲检验 $H_0: \sigma_A^2=\sigma_B^2 v.s.\ H_1: \sigma_A^2 \neq \sigma_B^2$.检验统计量为: $F=S_A^2/S_B^2$,其中 S_A^2 , S_B^2 分别是两个样本的方差.显著性水平为 α 时的检验规则为:

当 $F \geqslant F_{\alpha/2}(m-1,n-1)$ 或 $F \leqslant F_{1-\alpha/2}(m-1,n-1)$ 时拒绝 H_0 .

由样本数据计算得: $S_A^2=3.8333, S_B^2=4.9889, F=0.7684,$ 而 $\alpha=0.05$ 时, $F_{0.025}(9,9)=4.03, F_{0.975}(9,9)=\frac{1}{F_{0.025}(9,9)}=\frac{1}{4.03}=0.2481,$ 因此无法拒绝 H_0 .

接下来,欲检验 $H_0: \mu_A = \mu_B \ v.s. \ H_1: \mu_A \neq \mu_B$.因为由上述检验,我们可假定 $\sigma_A^2 = \sigma_B^2$,所以,检验统计量为: $t = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}}, S_w^2 = \frac{(m-1)S_A^2 + (n-1)S_B^2}{(m+n-2)}, \ \text{其中}\overline{X}, \overline{Y}$ 分别是两个样本的均值, S_A^2 , S_B^2 分别是两个样本的方差.显著性水平为 α 时的检验规则为:

当 $t \ge t_{\alpha/2}(m+n-2)$ 或 $t \le -t_{\alpha/2}(m+n-2)$ 时拒绝 H_0 . 由样本数据计算得: $\overline{X} = 8.5, \overline{Y} = 7.1, S_A^2 = 3.8333, S_B^2 = 4.9889, t = 1.4905, 而<math>\alpha = 0.05$ 时, $t_{0.025}(18) = 2.101, -t_{0.025}(18) = -2.101$, 因此不能拒绝 H_0 .

66. H_0 :星座与是否当美国总统无关, H_1 :星座与是否当美国总统有关,假设显著性水平 $\alpha=0.05$,若假设星座与是否当美国总统无关,可计算出每个星座的理想频数为3.7,则计算卡方值公式为 $\chi^2=\frac{(5-3.7)^2\times2+(3-3.7)^2\times2+(2-3.7)^2\times2+(4-3.7)^2\times6}{3.7}=2.8865.$

而 $\chi^2_{0.05}(11) = 24.725$,所以,星座与是否当美国总统无关.

67. 略

68. H_0 :两家工厂的产品质量等级相同, H_1 :两家工厂的产品质量等级不同,计算卡方值公式为 $\chi^2 = 210 \times \left(\frac{58^2}{110 \times 98} + \frac{40^2}{110 \times 80} + \frac{12^2}{110 \times 32} + \frac{40^2}{100 \times 98} + \frac{40^2}{100 \times 80} + \frac{20^2}{100 \times 32} - 1\right) = 4.8409,$

假设显著性水平 $\alpha = 0.1$,而 $\chi_{0.1}^2(2) = 4.61$, 所以,两家工厂的产品质量等级不同. 假设显著性水平 $\alpha = 0.05$,而 $\chi_{0.05}^2(2) = 5.991$, 所以,两家工厂的产品质量等级相同.

- 69. 略
- 70. 略
- 71. 由题意, 总体 $X \sim N(\mu_1, \sigma^2), Y \sim N(\mu_2, \sigma^2), \sigma^2$ 未知, 且两样本相互独立. 检验问题

$$H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2.$$

检验的拒绝域为

$$|T| = \left| \frac{\bar{X} - \bar{Y}}{S_w \sqrt{1/m + 1/n}} \right| > t_{m+n-2}(\alpha/2),$$

其中, m = 8, n = 10, $\bar{X} = 0.2319$, $\bar{Y} = 0.2097$, $S_1^2 = 0.0146^2$, $S_2^2 = 0.0097^2$, $S_w^2 = \frac{(8-1)S_1^2 + (10-1)S_2^2}{8+10-2} = 0.012^2$, $t_{16}(0.025) = 2.1199$. 由于

$$|T| = \left| \frac{0.2319 - 0.2097}{0.012\sqrt{1/8 + 1/10}} \right| = 3.900 > 2.1199,$$

故否定 H_0 , 即认为两位作家所写的小品文中包含有 3 个字母组成的单字的比例有显著的差异.

72. (1) 由题意 $m=13, n=10, \alpha=0.1, F_{12,9}(0.05)=3.07, F_{12,9}(0.95)=1/F_{9,12}(0.05)=1/2.80=0.357, S_1^2=0.034, S_2^2=0.0264.$ 由于

$$F_{12,9}(0.95) < \frac{S_1^2}{S_2^2} = 1.288 < F_{12,9}(0.05),$$

故接受 H₀, 即认为两总体方差相等.

(2) 由 (1) 可认为 $\sigma_1^2 = \sigma_2^2$,接着检验 H_0' : $\mu_1 = \mu_2$, H_1' : $\mu_1 \neq \mu_2$. 计算可得 $\bar{X} = 1.752$, $\bar{Y} = 2.507$, $S_w^2 = \frac{12 \times 0.034 + 9 \times 0.0264}{13 + 10 - 2} = 0.03075$. 由于

$$|T| = \left| \frac{1.752 - 2.507}{\sqrt{0.03075} \sqrt{1/12 + 1/9}} \right| = 9.764 > t_{13+10-2}(0.1/2) = t_{21}(0.05) = 1.7207,$$

故拒绝 H'_0 , 认为杂志上刊载的论文与未出版的学术报告的可理解性有显著差异.

- 73. (1) 将区间 [20,100] 等分为 8个小区间,每个小区间的长度为 $\Delta = 10$. 记落在每个小区间内的数据频数,在第 i 个区间上以 Δ 为底,以 f_i 为高作小长方形,得直方图如图 9.1:
 - (2) 在显著水平 $\alpha = 0.1$ 下检验假设

图 9.1: "某大学一年级学生(200名)一次数学考试的成绩"

 H_0 : 数据 X 来自正态总体 $X \sim N(60, 15^2)$,

若 出,为真,则有

$$p_1 = \mathbb{P}(-\infty < X \le 30) = \Phi(\frac{30 - 60}{15}) = 1 - \Phi(2) = 0.0228,$$

同理可得, $p_2 = \mathbb{P}(30 < X \le 40) = 0.0690$, $p_3 = \mathbb{P}(40 < X \le 50) = 0.1596$, $p_4 = \mathbb{P}(50 < X \le 60) = 0.2486$, $p_5 = \mathbb{P}(60 < X \le 70) = 0.2486$, $p_6 = \mathbb{P}(70 < X \le 80) = 0.1596$, $p_7 = \mathbb{P}(80 < X \le 90) = 0.0690$, $p_8 = \mathbb{P}(90 < X < \infty) = 0.0228$.

因此, $\chi^2 = \sum_{i=1}^8 f_i^2/(np_i) - 200 = 6.4145$. 因 $\alpha = 0.1$, k = 8, r = 0, 有 $\chi^2_{k-r-1}(0.1) = \chi^2_7(0.1) = 12.017 > 6.4145$, 故在显著性水平 $\alpha = 0.1$ 下接受 H_0 , 即认为考试成绩的数据来自正态总体 $N(60, 15^2)$.

方法二: 若考虑把 $\{X \leq 30\}$ 设为一组, $\{X > 80\}$ 设为一组, 那么经计算可得 $\chi^2 = \sum_{i=1}^6 \tilde{f}_i^2/(n\tilde{p}_i) - 200 = 5.2164 < \chi^2_{6-0-1}(0.1) = 9.236$, 因此可得到上述相 同结论.

74. 在显著性水平 $\alpha = 0.05$ 下检验假设

$$H_0: X$$
 服从超几何分布 $P\{X=k\} = {5 \choose k} {3 \choose 3-k} / {8 \choose 3}, k=0,1,2,3.$

此处 n=112. 若 H_0 为真,则可按所给分布律计算,得如下的概率

$$p_1 = P\{X = 0\} = {5 \choose 0} {3 \choose 3} / {8 \choose 3} = 1/56, \quad p_2 = P\{X = 1\} = {5 \choose 1} {3 \choose 2} / {8 \choose 3} = 15/56,$$

 $p_3 = P\{X = 2\} = {5 \choose 2} {3 \choose 1} / {8 \choose 3} = 30/56, \quad p_4 = P\{X = 3\} = {5 \choose 3} {3 \choose 0} / {8 \choose 3} = 10/56.$

因此 $\chi^2 = \sum_{i=1}^4 f_i^2/(np_i) - 112 = 114.2 - 112 = 2.2 < \chi_3^2(0.05) = 7.815$, 故在显著性水平 $\alpha = 0.05$ 下接受 H_0 , 即认为 X 服从超几何分布 $P\{X = k\} = \binom{5}{k}\binom{3}{3-k}/\binom{8}{3}$, k = 0, 1, 2, 3.

方法二: 若把 $\{X=0\}$ 和 $\{X=1\}$ 设为一组, 那么可以得到 $\chi^2=\sum_{i=1}^3 \tilde{f}_i^2/(n\tilde{p}_i)$ — $112=1.6667<\chi_2^2(0.05)=5.991$, 因此可得到上述相同结论.

75. 以 X 记鱼种类的序号, 按题意需检验假设

$$H_0: \mathbb{P}(X=1) = 0.20, \mathbb{P}(X=2) = 0.15, \mathbb{P}(X=3) = 0.40, \mathbb{P}(X=4) = 0.25.$$

由题意 n=600, $f_1=132$, $f_2=100$, $f_3=200$, $f_4=168$, 因此, $\chi^2=\sum_{i=1}^4 f_i^2/(np_i)-600=11.1378>\chi_3^2(0.05)=7.815$. 故拒绝 H_0 , 认为各鱼类数量之比相对于 10 年期有显著的改变.

第九章 回归分析

1. (1) 散点图如图9.2:

图 9.2: "退火温度x(°C)对黄铜延性Y的效应"

(2) 由上图可以看出取回归函数为 x 的线性函数 a+bx 是合适的. 经计算得到

$$S_{xx} = \sum x_i^2 - \frac{1}{n} (\sum x_i)^2 = 1990000 - \frac{1}{6} \times 3300^2 = 175000,$$

$$S_{xy} = \sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i) = 198400 - \frac{1}{6} \times 3300 \times 342 = 10300,$$

从而

$$\hat{b} = \frac{S_{xy}}{S_{xx}} = \frac{10300}{175000} = 0.058857,$$

$$\hat{a} = \bar{y} - \hat{b}\bar{x} = \frac{1}{6} \times 342 - 0.058857 \times \frac{1}{6} \times 3300 = 24.62857.$$

则回归方程为

$$\hat{y} = 24.62857 + 0.058857x.$$

2. 经计算得到

$$S_{xx} = \sum x_i^2 - \frac{1}{n} (\sum x_i)^2 = 4200.56 - \frac{1}{15} \times 249.8^2 = 40.55733,$$

$$S_{xy} = \sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i) = 6740.71 - \frac{1}{15} \times 249.8 \times 400.3 = 74.38067,$$
 因此

$$\hat{b} = \frac{S_{xy}}{S_{xx}} = 1.833963,$$

$$\hat{a} = \bar{y} - \hat{b}\bar{x} = \frac{1}{15} \times 400.3 - 1.833963 \times \frac{1}{15} \times 249.8 = -3.854938,$$

故回归方程为

$$\hat{y} = -3.854938 + 1.833963x.$$

3. 经计算得到

$$S_{xx} = \sum x_i^2 - \frac{1}{n} (\sum x_i)^2 = 1332.8125 - \frac{1}{15} \times 141.25^2 = 2.708333,$$

$$S_{yy} = \sum y_i^2 - \frac{1}{n} (\sum y_i)^2 = 729.625 - \frac{1}{15} \times 104.5^2 = 1.608333,$$

$$S_{xy} = \sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i) = 985.5 - \frac{1}{15} \times 141.25 \times 104.5 = 1.458333,$$

(1)

$$\hat{b} = \frac{S_{xy}}{S_{xx}} = 0.53846,$$

$$\hat{a} = \bar{y} - \hat{b}\bar{x} = \frac{1}{15} \times 104.5 - 0.53846 \times \frac{1}{15} \times 141.25 = 1.896,$$

故回归方程为

$$\hat{y} = 1.896 + 0.53846x.$$

(2) 先计算 $Q_e = S_{yy} - \hat{b}S_{xy} = 1.608333 - 0.53846 \times 1.458333 = 0.823079$, 因 n = 15, 故 $\hat{\sigma}^2 = Q_e/(n-2) = 0.06331$. 查表可得 $t_{13}(0.025) = 2.1604$. 所以 b 的置信水平为 0.95 的置信区间为

$$(\hat{b} \pm t_{n-2}(\alpha/2) \frac{\hat{\sigma}}{\sqrt{S_{xx}}}) = (0.53846 \pm 2.1604 \times \frac{\sqrt{0.06331}}{\sqrt{2.708333}}) = (0.208, 0.869).$$

- 4. 略
- 5. 略
- 6. 略

- 7. 略
- 8. 略
- 9. 略
- 10. 略
- 11. 略
- 12. 略
- 13. (1) 散点图如图9.3:

图 9.3: "钢线碳 x 含量对于电阻 y 的效应"

(2) 由題意 n=7, 经计算得 $\sum x_i=3.8$, $\sum y_i=145.4$, $\sum x_i^2=2.595$, $y_i^2=3104.2$, $\sum x_iy_i=85.61$,

$$S_{xx} = \sum x_i^2 - \frac{1}{n} (\sum x_i)^2 = 0.5321429,$$

$$S_{yy} = \sum y_i^2 - \frac{1}{n} (\sum y_i)^2 = 84.03429,$$

$$S_{xy} = \sum x_i y_i - \frac{1}{n} (\sum x_i) (\sum y_i) = 6.678571.$$

$$\hat{b} = \frac{S_{xy}}{S_{xx}} = 12.55034,$$

$$\hat{a} = \bar{y} - \hat{b}\bar{x} = 13.95839,$$

因此

故回归方程为

$$\hat{y} = 13.95839 + 12.55034x.$$

(3)
$$\hat{\sigma}^2 = Q_e/(n-2) = (S_{yy} - \hat{b}S_{xy})/5 = 0.04319463.$$

(4) 检验统计量 T 使得

$$|T| = \left| \frac{\hat{b}}{\sqrt{\hat{\sigma}^2}} \sqrt{S_{xx}} \right| = 44.0509 \gg t_{n-2}(\alpha/2) = t_5(0.005) = 4.0322,$$

由此可知回归效果是极其显著的.

(5) b 的置信水平为 0.95 (即 $\alpha = 0.05$)的置信区间:

$$\left(\hat{b} \pm t_{n-2}(\alpha/2) \frac{\hat{\sigma}}{\sqrt{S_{xx}}}\right) = \left(12.5503 \pm 2.5706 \times \frac{\sqrt{0.0432}}{\sqrt{0.5321}}\right) = (11.81785, 13.28275).$$

(6) $x_0 = 0.50$ 处对应的 Y 对应的估计值为

$$\hat{y}_0 = 13.9584 + 12.5503 \times 0.50 = 20.23355.$$

因此x = 0.50处 $\mu(x)$ 的置信水平为0.95的置信区间为

$$\left(\hat{y_0} \pm t_{n-2}(\alpha/2)\hat{\sigma}\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}\right) = (20.23355 \pm 0.2044) = (20.03, 20.44).$$

(7) x = 0.50 处观察值Y的置信水平为0.95的置信区间为

$$\left(\hat{y}_0 \pm t_{n-2}(\alpha/2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}\right) = (20.23355 \pm 0.5720) = (19.66, 20.81).$$

- 14. (1) 在图 9.4 表示.
 - (2) 在图 9.5 表示.
 - (3) 将 $Y = a \exp(bx)\varepsilon$ 取对数, 得

$$\ln Y = \ln a + bx + \ln \varepsilon.$$

令 $Z = \ln Y$, 则回归模型为

$$Z = \ln a + bx + \ln \varepsilon,$$

图 9.4: "大树的年龄 x 和槲寄生的株数 y 的关系"

图 9.5: "大树的年龄 x 和槲寄生的株数 y 的函数 $\ln y$ 的关系"

其中 $\varepsilon \sim N(0, \sigma^2)$.

由题意 n=14, 经计算 $\sum x_i=173$, $\sum x_i^2=4193$, $\sum z_i=33.71363$, $\sum x_i z_i=238.3516$, $S_{xx}=2055.214$, $S_{xz}=-178.2525$, 于是得到 $\hat{b}=-0.08673185$, $\ln \hat{a}=3.479874$, $\exp(\ln \hat{a})=32.45565$, 则曲线回归方程为

$$\hat{y} = 32.45565e^{-0.08673x}.$$

- 15. (1) 散点图如图 9.6
 - (2) 令 $x_1 = x$, $x_2 = x^2$, 则题中假设的模型可写成

$$Y = b_0 + b_1 x_1 + b_2 x_2 + \varepsilon, \ \varepsilon \sim N(0, \sigma^2).$$

图 9.6: "一种合金在不同浓度的某种添加剂下的抗压强度"

记

$$X = \begin{bmatrix} 1 & 10 & 100 \\ 1 & 10 & 100 \\ 1 & 15 & 225 \\ 1 & 15 & 225 \\ 1 & 20 & 400 \\ 1 & 20 & 400 \\ 1 & 25 & 625 \\ 1 & 25 & 625 \\ 1 & 30 & 900 \\ 1 & 30 & 900 \\ 1 & 30 & 900 \end{bmatrix}, Y = \begin{bmatrix} 25.2 \\ 27.3 \\ 28.7 \\ 29.8 \\ 31.1 \\ 27.8 \\ 31.2 \\ 32.6 \\ 29.7 \\ 31.7 \\ 30.1 \\ 32.3 \\ 29.4 \\ 30.8 \\ 32.8 \end{bmatrix}, B = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}.$$

可以得到系数的估计为

$$\hat{B} = \begin{bmatrix} \hat{b}_0 \\ \hat{b}_1 \\ \hat{b}_2 \end{bmatrix} = (X^{\top} X)^{-1} X^{\top} Y = \begin{bmatrix} 19.03333 \\ 1.00857 \\ -0.02038 \end{bmatrix}.$$

故回归方程为

$$\hat{y} = 19.03333 + 1.00857x_1 - 0.02038x_2$$

即

$$\hat{y} = 19.03333 + 1.00857x - 0.02038x^2.$$

16. (1) 记

所要求的线性回归模型为

$$Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \varepsilon, \ \varepsilon \sim N(0, \sigma^2),$$

于是得到系数的估计

$$\hat{B} = \begin{bmatrix} \hat{b}_0 \\ \hat{b}_1 \\ \hat{b}_2 \\ \hat{b}_3 \end{bmatrix} = (X^{\top} X)^{-1} X^{\top} Y = \begin{bmatrix} 9.9 \\ 0.575 \\ 0.55 \\ 1.15 \end{bmatrix}.$$

故 Y 的多元回归方程为

$$\hat{y} = 9.9 + 0.575x_1 + 0.55x_2 + 1.15x_3$$

(2) 根据题意, 新模型

$$Y = b_0 + b_1 x_1 + b_3 x_3 + \varepsilon, \ \varepsilon \sim N(0, \sigma^2),$$

记 M 为 X 删去第三列后所得的矩阵, 新的系数向量为 $\beta = [\beta_0, \beta_1, \beta_3]^{\mathsf{T}}$, 于是得到系数的估计

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_3 \end{bmatrix} = \begin{bmatrix} 9.9 \\ 0.575 \\ 1.15 \end{bmatrix},$$

故多元回归方程为

$$\hat{y} = 9.9 + 0.575x_1 + 1.15x_3$$