مبانى نظريه محاسبه

كارگاه سوم

مبحث: تعریف اتوماتای متناهی؛ پذیرش اجتماع، اشتراک و تفاضل دو زبان؛ تمییز ۱ دو رشته از هم

- ۱. درستی یا نادرستی هر یک از گزارههای زیر را مشخص کنید. در صورت درستی، اثبات و در غیر این صورت مثال نقض $(\Sigma = \{a,b\})$
- آ) اگر L_1 توسط E_1 ای پذیرفته نشود، آنگاه $L_1 \cup L_1$ نیز توسط هیچ E_1 ای پذیرفته نشود، آنگاه E_2 نیز توسط هیچ E_3 ای پذیرفته نمی شود.
- $L_1 \cup L_7$ هایی پذیرفته شوند اما L_1 توسط هیچ E_1 ای پذیرفته نشود، آنگاه E_2 هایی پذیرفته نمی شود. نیز توسط هیچ E_3 ای پذیرفته نمی شود.
- ج) اگر L_1 توسط FA ای پذیرفته شود اما L_1 و $L_1 \cap L_7$ توسط هیچ FA ای پذیرفته نشوند، آنگاه $L_1 \cup L_7$ نیز توسط هیچ FA ای پذیرفته نمی شود.
- د) اگر هر کدام از زبان های $L_1, L_2, ...$ توسط FA ای پذیرفته شوند. در نتیجه $\sum_{n=1}^{\infty} L_n$ توسط FA ای پذیرفته میشود.
- ه) اگر زبان های L_1, L_7, \ldots که برای هر i داریم i داریم ، $L_i \subseteq L_{i+1}$ ، توسط هیچ i ای پذیرفته نشوند، در نتیچه i توسط هیچ i ای پذیرفته نمیشود. i توسط هیچ i ای پذیرفته نمیشود.
- $L(M_1) = L(M_7)$ در شکل ۱ نشان دهید هیچ اتوماتای متناهی مثل M_1 وجود ندارد که M_1 در شکل ۱ نشان دهید هیچ اتوماتای متناهی $|Q(M_7)| < |Q(M_1)|$ و

 $M_1:$ ۱ شکل

را یک عدد صحیح مثبت در نظر بگیرید. زبان L اینگونه تعریف میشود: n

$$L = \{x \in \{a, b\}^* | |x| = n \land n_a(x) = n_b(x)\}$$

کمترین تعداد حالت ها در اتوماتای متناهی پذیرنده زبان L چیست؟ برای جواب خود دلیل ارائه دهید.

¹distinguishability

²states

۴. برای هر یک از زبانهای $\{a^n\mid n\geq 0\}$ نشان دهید اعضای مجموعه $\{a^n\mid n\geq 0\}$ نسبت به $L\subseteq \{a,b\}^*$ نسبت به $\{a^n\mid n\geq 0\}$ هستند و نتیجه بگیرید اتوماتای متناهی برای آنها وجود ندارد.

a)
$$L = \{a^n b a^{2n} \mid n \ge 0\}$$

b)
$$L = \{a^i b^j a^k \mid k > i + j\}$$

c)
$$L = \{a^i b^j \mid j = i \text{ or } j = 2i\}$$

d)
$$L = \{a^i b^j \mid j \text{ is multiple of } i\}$$

e)
$$L = \{x \in \{a, b\}^* \mid n_a(x) < 2n_b(x)\}$$

f)
$$L = \{x \in \{a, b\}^* \mid \text{no prefix of } x \text{ has more } b \text{'s than } a \text{'s} \}$$

g)
$$L = \{a^{n^3} \mid n \ge 1\}$$

h)
$$L = \{ww \mid w \in \{a, b\}^*\}$$

 $^{^3}$ pairwise L-distinguishable

 $^{^4\}mathrm{FA}$