ECE568 笔记汇总

- Cryptography Block Ciphers
- Cryptography Ciphers
- Cryptography Hashes, MACs, and Digital-Signitures
- Cryptography Public-Key Cryptography
- Cryptography Stream Ciphers

Table of Contents

- ECE568 笔记汇总
- Cryptography
 - Ciphers
 - Shift Ciphers
 - Attacking a cipher
 - One-Time Pad / Vernam Cipher
 - Stream Ciphers & Block Ciphers
 - Symmetric Key Ciphers

Cryptography

- protecting stored and transmitted data
 - Confidentiality Secrecy of data; provided by algorithms called ciphers
 - o Integrity Trustworthiness of data; provided by Hashes; no corruption/modification
 - Authentication Allows a machine to prove origin of data; signatures & MAC
 - Non-repudiation Prevents a principle from denying they performed an action; from help from trusted third party

Ciphers

- Algorithm that obfuscates info so that it seems random to anyone who does not possess special info (key)
 - Based on trapdoor one-way functions
 - one-way computational-easy encoding, but difficult decoding
 - o never proven to exist
 - \circ Factoring $z = x \cdot y; z = ?$
 - $\quad \text{o} \ \ \textbf{Discrete log} \ z = (x^y \mod m = xxx; z, x, m, y = ?, y = (log_x z) \mod m$
 - trapdoor decoding becomes easy ONLY when receiver has the key

Kerckhoff's Principle

- The security of any given encryption system must depend only on the secrecy of the key K and not the secrecy of algorithm
 - #SecurityByObsecurity
 - o algorithms can be RE-ed and hard to change, compiled into software & wired into circuits
 - o Mifare

Shift Ciphers

- · Substitution ciphers
- Easily broken with cryptanalysis
 - Weakness every letter in PT always gets encrypted to the same letter in CT
 - Attacker can perform frequency analysis on the CT to identify and decode common letters, then match against common English words to recover PT and thus the key
 - Doesn't hide frequency info b/c every PT letter always encrypts to same CT letter
 - Use Polyalphabetic Cipher/Periodic ciphers
 - Attacker needs to guess the period (N=15); harder for large N
 - Enigma Machine

Alphabet: ABCDE

Key #1: BEDAC Key #2: ACBDE Key #3: DACBE

E("BED") = EEB E("ABACADA") = BCDDABB

Attacking a cipher

- Target: plain-text corresponding to a cipher-text or the key
 - o Brute-force attack try all possible keys
 - Cryptanalysis sample plaintext-cipher-text pairs
 - More PT-CT pairs needed to break a cipher, the stronger it is
 - Pick PT and get corresponding CT, adaptively select PT to help break cipher
 - o In English, letter E appears 13% of the time
 - o In CT, if letter X appears 13% of the time, fair guess it's E

One-Time Pad / Vernam Cipher

- Special type of polyalphabetic cipher that never repeats
 - random substitution for every character
 - key is same length as the message encrypted; CT created by XOR of PT and key
 - o CT is PT with randomly flipped bits
- · Theoretically unbreakable
 - o CT only attack impossible to break
 - Known PT attack weak; just XOR CT with PT to reveal the key; so key is not supposed to repeat
 - o Chosen CT-PT weak
- Disadvantages....
 - o 100% overhead
 - each key can only be used **ONCE**
 - key must be sent separately
 - o cipher is malleable bit flip in CT flips only 1 bit in PT, needs integrity check to avoid tampering

Stream Ciphers & Block Ciphers

Practical Ciphers

- 1. Fixed length keys, shorter than message
- 2. Efficient to encrypt and decrypt
- 3. one-way trapdoor (computationally difficult to decrypt; but CPU capacity evolve, difficulty shift)
- 4. 2 types of ciphers: Symmetric key and Public (asymmetric key)

Symmetric Key Ciphers

- Stream Ciphers simple, fast, more performant
 - Similar to OTP; a key is used to generate pseudo-random sequence of bits
 - PT encrypted 1 bit a time, useful for streaming applications
 - Suffer from synchronization problems; if bits are lost, entire system may be corrupted

- Block Ciphers more common
 - Encrypt a block of PT at a time (64bits or multiple)
 - PT is divided into blocks and each is encrypted separately (last block might need to be padded)

