Rule 0.27 (Use Efficient Loop Increment)

```
 \begin{bmatrix} [\dots] \\ \textbf{contract } A \ \{ \\ [\dots] \\ \textbf{function } f(pds) \ \{ \\ [\dots] \\ \textbf{for}(init; \ cond; \ i + = 1) \ \{ \\ stmts \\ \} \\ stmts' \\ \} \\ [\dots] \\ \}   = \begin{bmatrix} [\dots] \\ \textbf{contract } A' \ \{ \\ [\dots] \\ \textbf{function } f(pds) \ \{ \\ [\dots] \\ \textbf{for}(init; \ cond; \ ++i) \ \{ \\ stmts \\ \} \\ stmts' \\ \} \\ [\dots] \\ \}
```

where

i is the loop counter variable;

i + = 1 is the addition assignment increment operation;

++i is the pre-increment operator;

init and cond are the loop initialization and condition expressions;

stmts represents the loop body statements;

pds are the parameter declarations of function f;

stmts' represents statements following the loop.

provided

The loop uses i += 1 for incrementing the counter;

The pre-increment operator ++i produces equivalent behavior;

The increment operation occurs only in the loop update expression;

No side effects depend on the specific increment method used;

The pre-increment generates more efficient bytecode than addition assignment.

Invariant:

Let s_i and s'_i be the initial state of A and A', respectively.

Let s_f and s'_f be the state reached by A and A', respectively, after A.f() and A'.f() are executed from s_i and s'_i , respectively.

Then, the coupling invariant is

$$\forall s_i, s_i'$$
 . $(s_i = s_i') \rightarrow (s_f = s_f')$