Machine Learning: Introduction

Battista Biggio

What Number Is This?

7

What Number Is This?

What Number Is This?

• Are you able to write in Python (or any other language) the **exact algorithm** (step after step) that you use to **recognize** the above numbers?

Writing a **deterministic** algorithm to recognize numbers from images is very difficult...

But we can collect easily many example images...

If We Could Design a Machine that Learns from Examples...

So, What Is Machine Learning?

Machine learning is the technology that we use to solve a problem by **learning** the solution **through examples**

"The goal of machine learning is to build computer systems that automatically improve with experience"

Tom M. Mitchell, The discipline of Machine Learning, 2006

Take-Home Messages

- Machine learning is very useful when no algorithmic solution is known. It also avoids a
 detailed algorithm to overfit known cases, reducing errors
- 2. When you are able to devise algorithmic solutions (*step after step through every possible corner case*) that work 100% of the time, **you should not use machine learning**!

When Did It Start?

It All Started In 1955

A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence

August 31, 1955

John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon

1956 Dartmouth Conference: The Founding Fathers of AI

Claude Shannon

John MacCarthy

Herbert Simon Arth

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester Trenchard More

open:campus

A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence

... from the idea of mimicking human reasoning to learning from examples (machine/deep learning)

But... What's the Difference between AI/ML?

Difference between machine learning and AI:

If it is written in Python, it's probably machine learning

If it is written in PowerPoint, it's probably Al

2:25 AM · Nov 23, 2018 · Twitter Web Client

8.6K Retweets 24.1K Likes

Data-Driven AI/ML (1990-now)

Facebook 350 millions of images per day

Walmart 2.5 Petabytes customer data hourly

YouTube 300 hours of videos per minute

open:campus

ImageNet Large Scale Visual Recognition Challenge

1,2M training images 100K test images 1,000 classes

Fei-Fei Li

Artificial Intelligence and Machine Learning Today

Al is going to transform industry and business as electricity did about a century ago

Andrew Ng, Jan. 2017

Applications:

- Cybersecurity
- Robotics
- Healthcare
- Speech recognition
- Virtual assistants
- ..

Speech Recognition for Virtual Assistants

Microsoft Cortana

Google Assistant

Modern AI is Numerical Optimization + Big Data

... by iteratively updating the classifier parameters ${m w}$ along the gradient direction $\nabla_{{m w}} L(D;{m w})$

The Workhorse of Machine Learning: Gradient Descent

1:
$$\mathbf{w} \leftarrow \mathbf{w}_0$$

 $2: i \leftarrow 0$

3: while i < maxiter do

4:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \ \nabla_{\mathbf{w}} L(\mathbf{X}, \mathbf{y})$$

5:
$$i \leftarrow i + 1$$

6: end while

7: return w

Classification with Machine Learning

Pattern Recognition as a Classification Problem

• Pattern Classification: assigning a "pattern" (input data) to a category/class

• In this picture, the pattern is the specific grouping of pixels that represent the number 7

Pattern Recognition as a Classification Problem

Pattern classification is about assigning class labels to patterns

- Patterns are described by a set of measurements called *features* (or attributes)
 - For images, feature/input values could correspond to the brightness of each pixel

Basic Concepts: Class and Features

• Each input sample is described by a feature vector with "d" elements: $\mathbf{x} = (x_1, x_2,, x_d)$.

$$\mathbf{x} = (x_1, x_2, ..., x_d) = (170, 238, 85....136)$$

- **Class**: intuitively, a class contains similar patterns, whereas patterns from different classes are dissimilar (e.g., dogs and cars)
 - In this course, we assume that there are c possible classes, normally denoted with $y_1 \dots y_c$
 - Each sample belongs to one of the "c" classes We say that each input sample has a **class label**

Different Feature Types

Combining Pattern Classifiers WILEY

Ludmila Kuncheva, Combining pattern classifiers, Wiley, 2004

• Statistical pattern classification uses (mostly) *numerical* features

Basic Concepts: Feature Vector and Feature Space

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_d \end{bmatrix}$$

Feature vector

Feature space (3D)

Scatter plot (2D)

Feature 1

A Toy Example

Let's assume we aim to build an ML model to discriminate between screws and hammers

Feature Extraction

We consider height and width as our input features

Feature Extraction

Now we can represent the two samples in the feature space

Feature Extraction

... and repeat for different screws and hammers...

Training Dataset

• The information to design a machine-learning model is usually in the form of a labeled data set (called training set): $\mathcal{D} = (x_i, y_i)_{i=1}^n$

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$$

• In the previous example, \mathcal{D} is the data set of screws and hammers that we collected...

Model Training

- Training a model amounts to finding a function that splits the training points according to their class label
- Can you find one?

Model Training

- Can you find one? Yes, of course...
- Let's pick $f(x) = \mathbf{w}^T x + b = w_1 x_1 + w_2 x_2 + b$
- If $f(x) \ge 0$ the model predicts «hammer» and «screw» otherwise
- Model training aims to estimate the model parameters (w, b) from the training data,
 - using either a probabilistic approach or solving an optimization problem
- This model makes zero errors on the training data. Can we trust it?

Model Evaluation

• Once the model is trained, it should be evaluated on never-before-seen input samples (a.k.a. *test* samples) to check if it can *generalize...*

Model Evaluation

- We evaluate our model on the test set, and report only 1 mistake out of 10
- The classification accuracy of this model is 90% (or its test error is 10%)

ML Model Design and Evaluation

- Let's recap the steps we just followed...
 - Data collection (and labeling)
 - Feature extraction
 - Training-test splits
 - Model Training
 - Model Evaluation
- Typically, feature values also need to be scaled (data normalization)
- Important: The underlying assumption is that the training and the test data are drawn from the same, unknown probability distribution p(X, Y)
 - This is known as the **stationarity** assumption data is *independent* and *identically distributed* (iid)
 - Most of the ML algorithms/models are built under this assumption

Feature Scaling

- Feature values are normally scaled within a bounded interval to facilitate model training
- Min-max scaling: $x' = \frac{x-m}{M-m}$, where x is the input feature, and
 - -m and M are the min and max values of that feature over the whole training set
- **Z-score scaling:** $x' = \frac{x-\mu}{\sigma}$, where x is the input feature, and
 - $\,\mu$ and σ are the mean and standard deviation of that feature estimated from the training set

ML Model Design

Model Training: Underfitting vs. Overfitting

Why do we need testing on a separate data split?

Underfitting

- high training error
- high test error

Good fit

- low training error
- low test error

Overfitting

- low training error
- high test error

Generalization Error - Overfitting

- The best values of the model's parameters are learned by minimizing the loss incurred on a training set consisting of some number of examples collected for training
- However, doing well on the training data does not guarantee that we will do well on (unseen) test data
- So we split the available data into two partitions: the training data (for fitting model parameters) and the test data (which is held out for evaluation), and then measure:
 - Training Error The error on that data on which the model was trained
 - **Test Error** This is the error incurred on an **unseen** test set (**generalization error**). This can deviate significantly from the training error. When a model performs well on the training data but fails to generalize to unseen data, we say that it is **overfitting**

https://d2l.ai, Chapter 1

What Is the Main Idea Behind Deep Learning?

Hand-crafted vs. Non-handcrafted (Learned) Features

• **Handcrafted** features are manually engineered by the human designer

Processing flow for extraction of **handcrafted** features

 Today, we can extract non-handcrafted features that are automatically learned from a machine learning algorithm

Processing flow for learning **non-handcrafted** features («learned» features)

Learning Non-handcrafted Features

 Non-handcrafted features can be automatically learned with deep neural networks (we will see more later)

