Mapping x to z (General)

$$z \sim p_{\theta}(z)$$

$$x = g_{\theta}(z)$$

The z is latent variable, sample from probability distribution p_{θ} , normally normal distribution. g_{θ} is transformative function, invertible (or *bijective*)

After change of variables, probability density function (pdf) given a data-point will be:

$$\log p_{\theta}(x) = \log p_{\theta}(z) + \log \left| \det \left(\frac{dz}{dx} \right) \right|$$
$$= \log p_{\theta}(z) + \sum_{i=1}^{K} \log \left| \det \left(\frac{dh_{i}}{dh_{i-1}} \right) \right|$$

Jacobian matrix $\frac{dh_i}{dh_{i-1}}$ is a triangular matrix

GLOW

- (a) One step of our flow.
- (b) Multi-scale architecture (Dinh et al., 2016).

Description	Function	Reverse Function	Log-determinant
Actnorm. See Section 3.1.	$\left \begin{array}{c} \forall i, j : \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b} \end{array} \right $	$\forall i, j : \mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$	$ig h \cdot w \cdot exttt{sum}(\log \mathbf{s})$
Invertible 1×1 convolution. $\mathbf{W} : [c \times c]$. See Section 3.2.	$ig \; orall i, j: \mathbf{y}_{i,j} = \mathbf{W} \mathbf{x}_{i,j}$	$\forall i, j: \mathbf{x}_{i,j} = \mathbf{W}^{-1}\mathbf{y}_{i,j}$	
Affine coupling layer. See Section 3.3 and (Dinh et al., 2014)	$egin{array}{l} \mathbf{x}_a, \mathbf{x}_b = \mathtt{split}(\mathbf{x}) \\ (\log \mathbf{s}, \mathbf{t}) = \mathtt{NN}(\mathbf{x}_b) \\ \mathbf{s} = \exp(\log \mathbf{s}) \\ \mathbf{y}_a = \mathbf{s} \odot \mathbf{x}_a + \mathbf{t} \\ \mathbf{y}_b = \mathbf{x}_b \\ \mathbf{y} = \mathtt{concat}(\mathbf{y}_a, \mathbf{y}_b) \end{array}$	$ \begin{vmatrix} \mathbf{y}_a, \mathbf{y}_b = \mathtt{split}(\mathbf{y}) \\ (\log \mathbf{s}, \mathbf{t}) = \mathtt{NN}(\mathbf{y}_b) \\ \mathbf{s} = \exp(\log \mathbf{s}) \\ \mathbf{x}_a = (\mathbf{y}_a - \mathbf{t})/\mathbf{s} \\ \mathbf{x}_b = \mathbf{y}_b \\ \mathbf{x} = \mathtt{concat}(\mathbf{x}_a, \mathbf{x}_b) \end{vmatrix} $	$ \operatorname{sum}(\log(\mathbf{s})) $

Loss (Bits per dimension)

```
n_pixel = image_size * image_size * 3

loss = -log(n_bins) * n_pixel # loss considering noise inputted.
loss = loss + logdet + log_p
loss = (-loss / (log(2) * n_pixel)).mean()
```

$$\frac{1}{n_{pixel}\log 2} \left(\log n_{bins} \times n_{pixel} - \log p_{\theta}(z) - \sum_{i=1}^{K} \log \left| \det \left(\frac{dh_{i}}{dh_{i-1}} \right) \right| \right)$$

Reversible ViT

Mangalam_Reversible_Vision_Transformers_CVPR_2022_paper

Idea

$$x = g_{\theta}(z); \ z = g_{\theta}^{-1}(x)$$
$$y = h_{\theta}(z); \ z = h_{\theta}^{-1}(y)$$
$$x = g_{\theta}\left(h_{\theta}^{-1}(y)\right) = f_{\theta}(y)$$
$$x \stackrel{g}{\longleftrightarrow} z \stackrel{h}{\longleftrightarrow} y$$

Image to image:

Image to audio:

Structure change:

(a) One step of our flow.

(b) Multi-scale architecture (Dinh et al., 2016).

Problem:

Description	Function	Reverse Function	Log-determinant
Actnorm. See Section 3.1.	$\left \begin{array}{c} \forall i, j : \mathbf{y}_{i,j} = \mathbf{s} \odot \mathbf{x}_{i,j} + \mathbf{b} \end{array} \right $	$\forall i, j : \mathbf{x}_{i,j} = (\mathbf{y}_{i,j} - \mathbf{b})/\mathbf{s}$	$\left \begin{array}{c} h \cdot w \cdot \texttt{sum}(\log \mathbf{s}) \end{array}\right $
Invertible 1×1 convolution. $\mathbf{W} : [c \times c]$. See Section 3.2.	$ig \; orall i, j: \mathbf{y}_{i,j} = \mathbf{W} \mathbf{x}_{i,j}$	$\mid \forall i, j : \mathbf{x}_{i,j} = \mathbf{W}^{-1} \mathbf{y}_{i,j}$	
Affine coupling layer. See Section 3.3 and (Dinh et al., 2014)	$egin{array}{l} \mathbf{x}_a, \mathbf{x}_b = \mathtt{split}(\mathbf{x}) \ (\log \mathbf{s}, \mathbf{t}) = \mathtt{NN}(\mathbf{x}_b) \ \mathbf{s} = \exp(\log \mathbf{s}) \ \mathbf{y}_a = \mathbf{s} \odot \mathbf{x}_a + \mathbf{t} \ \mathbf{y}_b = \mathbf{x}_b \ \mathbf{y} = \mathtt{concat}(\mathbf{y}_a, \mathbf{y}_b) \end{array}$	$ \begin{vmatrix} \mathbf{y}_a, \mathbf{y}_b = \mathtt{split}(\mathbf{y}) \\ (\log \mathbf{s}, \mathbf{t}) = \mathtt{NN}(\mathbf{y}_b) \\ \mathbf{s} = \exp(\log \mathbf{s}) \\ \mathbf{x}_a = (\mathbf{y}_a - \mathbf{t})/\mathbf{s} \\ \mathbf{x}_b = \mathbf{y}_b \\ \mathbf{x} = \mathtt{concat}(\mathbf{x}_a, \mathbf{x}_b) \end{vmatrix} $	$\operatorname{sum}(\log(\mathbf{s}))$ No way to calculate