

Label shift

Training set

Why would anyone be so stupid?

Label Shift q(x,y) = q(y)p(x|y)

Medical diagnosis

- Train on data with few sick patients (in CA)
- Test in South Dakota after Sturgis Biker Rally when q(C19) > p(C19) while COVID19 symptoms $p(\text{symptoms} \mid C19)$ are still the same.

Speech recognition

- Train on newscast data before election
- Test on newscast after election (new topics, names, discussions, but still same language)

Label Shift Correction when we know p(y) and q(y)

- Given trained model with p(y | x)
- We want q(y|x) $=\overline{q(x|y)}$ $q(y|x) = \frac{q(x|y)q(y)}{q(x)} = \frac{p(x|y)p(y)}{p(x)} \cdot \frac{q(y)}{p(y)} \cdot \frac{p(x)}{q(x)} \propto p(y|x) \frac{q(y)}{p(y)}$

Bayes Rule

Drop this

• TL;DR - When you have q(y), fixing models is easy.

Label Shift Correction when we know p(y|x) and q(y)

- Given trained model with p(y | x)
- We want q(y|x)

$$q(y|x) = \frac{q(x|y)q(y)}{q(x)} = \frac{p(x|y)p(y)}{p(x)} \cdot \frac{q(y)}{p(y)} \cdot \frac{p(x)}{q(x)} \propto p(y|x) \frac{q(y)}{p(y)}$$

- Train original model on p(x,y)
- Reweight estimates via $q(y \mid x) \propto p(y \mid x) \frac{q(y)}{p(y)}$
- Renormalize

Label Shift

$$q(x,y) = q(y)p(x|y)$$

- Data generating process p(x|y) is unchanged
- Labels change since the underlying cause changed
- . Need to reweight according to $\beta(y) = \frac{q(y)}{p(y)}$ to get

$$\int dq(x,y)l(f(x),y) = \begin{cases} \int dq(y) \int dp(x|y)l(f(x),y) = \end{cases}$$
We don't have samples from q(y)!
$$\int dp(y) \frac{q(y)}{p(y)} \int dp(x|y)l(f(x),y) = \int dp(x,y) \frac{q(y)}{p(y)}l(f(x),y)$$

Label Shift

$$q(x,y) = q(y)p(x|y)$$

- Data generating process p(x|y) is unchanged
- Labels change since the underlying cause changed
- . Need to reweight according to $\beta(y) = \frac{q(y)}{p(y)}$ to get

$$\int dq(x,y)l(f(x),y) =$$

$$\int dq(y) \int dp(x|y)l(f(x),y) =$$

$$\int dp(y) \frac{q(y)}{p(y)} \int dp(x|y)l(f(x),y) = \int dp(x,y) \frac{q(y)}{p(y)} l(f(x),y)$$

Label Shift

$$q(x,y) = q(y)p(x|y)$$

- Key Idea measure the estimates on test set
 - p(x|y) is the same for training and test
 - Use distribution of predictions per label (error confusion matrix) is

$$p(\hat{y}, y) = \int \hat{p}(\hat{y} | x) p(x | y) p(y) dx$$

- Match distribution of predictions on training and test set.
- Spectral algorithm (linear equation, Lipton et al. 2018)

$$q(\hat{y}) = \int \hat{p}(\hat{y} \mid x) q(x) dx = \sum p(\hat{y}, y) \beta_y$$

Simple Algorithm

$$C=0$$
 and $q=0$

for i = 1 to m do (training set)

$$C[:, y[i]] += p(:|x[i])$$

for i = 1 to m' do (test set)

$$q += p(y | x'[i])$$

$$b = C^{-1}q$$

minimize $||q - Cb||^2$

Better solution

subject to $b[y] \ge 0$ and $\sum b[y]p[y] = 1$

Guarantees

Robust under misspecification

- Even if the estimates $\hat{y}(x)$ are wrong, calibration is OK: (same errors on hold-out and test set)
- Confusion matrix and label vector are concentrated: (use matrix Bernstein inequality)

Simple algorithm

Cubic in number of classes, linear in sample size.

Black Box Shift Correction on CIFAR10

Tweaking one class probability

Dirichlet prior over shifts

Extensions

Streaming data Estimate weights while observing data (e.g. via SGD on moment matching)

Large label sets

- Feature moment matching (via MMD)
- GAN moment matching
- Classifier of scores between training and test set
- Better objective

Use KL-divergence to calibrate q(y) against $\beta(y)p(y)$

Training ≠ **Testing**

- Generalization performance (the empirical distribution lies)
- Covariate shift (the covariate distribution lies)
- Adversarial data
 (the support of the distribution lies)
- Two-Sample Tests
 (distributions don't match)
- Label shift (the label distribution lies)

$$p_{\rm emp}(x,y) \neq p(x,y)$$

$$p(x) \neq q(x)$$

$$\operatorname{supp}(p) \neq \operatorname{supp}(q)$$

$$p \neq q$$

$$p(y) \neq q(y)$$

Things we didn't cover

Covariate Drift

- Things change slowly over time, e.g. language, user preferences, disease symptoms
- Geographic preferences (Canada vs. USA search behavior, demographics)
- Strategy: estimate $\frac{p(x,t)}{p(x,t')} \propto \exp(g(x,t) g(x,t'))$ as a time-varying function.

Things we didn't cover

Concept Drift

- Dependency p(y | x) changes slowly over time.
- Train classifier p(y | x, t) instead.

Concept Shift

Much bigger problem if concept shifts between training and test set. No real guarantees possible.