A practical a posteriori strategy to predict the optimal number of degrees of freedom for *h*-refinement in finite element methods

Jie Liu, Matthias Möller, Henk M. Schuttelaars

Delft Institute of Applied Mathematics

2th Oct., 2019

Can we know the highest attainable accuracy for a fixed p without performing h-refinements until the error starts increasing?

Can we know the highest attainable accuracy for a fixed p without performing h-refinements until the error starts increasing?

Can we know the highest attainable accuracy for a fixed p without performing h-refinements until the error starts increasing?

$$(D(x)u_x)_x + r(x)u(x) = f(x), \qquad x \in I = (0,1)$$

Number of DoFs

Number of DoFs

Number of DoFs

Number of DoFs

Number of DoFs

Number of DoFs

Validation

Example equation:

$$((0.01 + x)(1.01 - x)u_x)_x + (0.01i)u(x) = 1.0, x \in I = (0,1),$$

with $u(0) = 0$ and $u_x(1) = 0$.

Variables: u, u_x and u_{xx}

Elements: P_p and $P_p/P_{p-1}^{\rm disc}$ for p=1, 2, ..., 5

tol_{var}	FEM method	element degree -	$N_{ m opt}$		
			u	u_x	u_{xx}
10^{-8}	mixed	3	12648	13502	372785

Conclusions

- We propose a novel strategy to indicate whether the required accuracy can be reached and predict the optimal number of DoFs if it exists.
- This strategy makes use of the theoretical order of convergence of the truncation error and the bound of the round-off error.
- To obtain higher accuracy, higher-order elements or the mixed FEM are recommended.
- This strategy is able to indicate if the required accuracy can be reached efficiently and give the optimal number of DoFs accurately if it exists.

Thank You!

