Aprendizado de Máquina Aprendizado Supervisionado e Não Supervisionado Aprendizado Supervisionado

Inteligência Artificial - 2020/1

Aprendizado de Máquina Supervisionado

Aprendizado de Máquina Supervisionado

Conjunto de dados

Filme	País de Origem	Estrela	Gênero	Sucesso
Filme 1	Estados Unidos	Sim	Ficção científica	V
Filme 2	Estados Unidos	Não	Comédia	F
Filme 3	Estados Unidos	Sim	Comédia	V
Filme 4	Europeu	Não	Comédia	V
Filme 5	Europeu	Sim	Ficção científica	F
Filme 6	Europeu	Sim	Romance	F
Filme 7	Outros	Sim	Comédia	F
Filme 8	Outros	Não	Ficção científica	F
Filme 9	Europeu	Sim	Comédia	V
Filme 10	Estados Unidos	Sim	Comédia	V

Aprendizado de Máquina Supervisionado

• Árvore de Decisão

• Estrutura de Árvore que resulta de um processo de aprendizado de máquina

Nós internos: atributos

Nós folha: classes

Aprendizado de Máquina Supervisionado

Regras

O conhecimento representado em uma árvore de decisão pode ser representado, de forma equivalente, por regras:

Se País de Origem = EUA e Estrela = Sim

Então Sucesso = V

Se País de Origem = Europeu e Gênero = Comédia

Então Sucesso = V

Finalidade:

Classificar exemplos desconhecidos

Como construir?

Classificar o maior número de exemplos com a menor árvore possível.

Algoritmo Indutor de Árvore de Decisão:

Particiona recursivamente o conjunto de treinamento com base em um atributo selecionado até que os conjuntos obtidos com esse particionamento contenham dados de uma única classe.

Algoritmo ID3

- Proposto por Quinlan em 1980;
- Trabalha apenas com atributos nominais;
- Utiliza o ganho de informação como critério para selecionar os atributos;
- Não utiliza pós-poda;
- Não trata valores desconhecidos.

- Dados de treinamento e dados de teste
- No aprendizado de máquina supervisionado, o conjunto de dados é separado em conjunto de treinamento e conjunto de teste

Filme	País de Origem	Estrela	Gênero	Sucesso	
Filme 1	Estados Unidos	Sim	Ficção científica	V	
Filme 2	Estados Unidos	Não	Comédia	F	
Filme 3	Estados Unidos	Sim	Comédia	V	
Filme 4	Europeu	Não	Comédia	V	
Filme 5	Europeu	Sim	Ficção científica	F	Treinamento
Filme 6	Europeu	Sim	Romance	F	
Filme 7	Outros	Sim	Comédia	F	
Filme 8	Outros	Não	Ficção científica	F	
Filme 9	Europeu	Sim	Comédia	V	
Filme 10	Estados Unidos	Sim	Comédia	V	
Filme 11	Estados Unidos	Não	Ficção científica	V	
Filme 12	Estados Unidos	Sim	Romance	V	Teste
Filme 13	Outros	Não	Romance	F	

- Selecionar um atributo para dividir o conjunto de dados de treinamento
 - Caso fosse selecionado o atributo País de Origem:
 - Criação do nó País de origem
 - Criação de três arcos, um para cada valor: EUA, Europeu, Outros

- Selecionar um atributo para dividir o conjunto de dados de treinamento
 - Caso fosse selecionado o atributo Estrela:
 - Criação do nó Estrela
 - Criação de dois arcos, um para cada valor: Sim, Não

- Selecionar um atributo para dividir o conjunto de dados de treinamento
 - Caso fosse selecionado o atributo Gênero:
 - Criação do nó Gênero
 - Criação de três arcos, um para cada valor: Comédia, Romance, Ficção

Qual atributo selecionar?

- O atributo a ser selecionado deve ser aquele que melhor separa os dados de cada classe.
- Para o atributo País de Origem:
- O valor "Outros" só tem dados da classe Não; (MUITO BOM!)
- O valor "EUA" tem a maioria dos dados da classe Sim; (BOM!)
- O valor "Europeu" tem número igual de dados das duas classes. (Não tão bom...)

- Qual atributo selecionar?
- A estatística possui medidas que permitem avaliar as situações destacadas nos exemplos:
- Entropia: Medida de incerteza de uma variável randômica;
- Ganho de informação: redução em entropia
- O Algoritmo ID3 seleciona o atributo que oferece o maior ganho de informação.
 - Calcula a entropia do conjunto de dados
 - Calcula o ganho de informação de cada atributo e seleciona o que mais reduz a entropia

Cálculo de Entropia

Conjunto de dados S com duas classes: positivos e negativos

$$H(S) = -p_1 \log_2 p_1 - p_0 \log_2 p_0$$

$$p_1 = \frac{positivos}{positivos + negativos}$$
 $p_0 = \frac{negativos}{positivos + negativos}$

Valores de entropia para conjuntos com duas classes:

Próximos de 0 – entropia baixa, não há desordem nos dados

Próximos de 1 – entropia alta, há muita desordem na distribuição de classes

Cálculo de Entropia

- Conjunto de dados dos filmes
- Entropia do conjunto de dados original

$$H(S) = -p_1 \log_2 p_1 - p_0 \log_2 p_0$$

H(S) = 1

Filme	País de Origem	Estrela	Gênero	Sucesso
Filme 1	Estados Unidos	Sim	Ficção científica	V
Filme 2	Estados Unidos	Não	Comédia	F
Filme 3	Estados Unidos	Sim	Comédia	V
Filme 4	Europeu	Não	Comédia	V
Filme 5	Europeu	Sim	Ficção científica	F
Filme 6	Europeu	Sim	Romance	F
Filme 7	Outros	Sim	Comédia	F
Filme 8	Outros	Não	Ficção científica	F
Filme 9	Europeu	Sim	Comédia	V
Filme 10	Estados Unidos	Sim	Comédia	V

$$p_1 = 5/10 = \frac{1}{2} = 0.5$$

 $p_0 = 5/10 = \frac{1}{2} = 0.5$
 $H(S) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -0.5 (-1) - 0.5 (-1) = 0.5 + 0.5 = 1$

O conjunto tem entropia máxima: igual número de exemplos de cada classe.

Cálculo de Ganho de Informação

O ganho de informação de um atributo é a redução de entropia esperada com a escolha desse atributo.

No exemplo, o ganho de informação de cada atributo é dado por:

```
Ganho(País de origem) = H(S) – ERestante (País de Origem)
Ganho(Estrela) = H(S) – ERestante (Estrela)
Ganho(Gênero) = H(S) – ERestante (Gênero)
```

ERestante(A) – entropia esperada restante, depois de testar o atributo A

Selecionar o atributo que der o maior ganho de informação.

Cálculo de Ganho de Informação

Um atributo A com d valores distintos divide o conjunto de treinamento E em subconjuntos

$$E_1, E_2, ..., E_d.$$

Cada subconjunto E_k tem:

- p_k exemplos positivos e
- n_k exemplos negativos

Seguindo o ramo do atributo E_k, a entropia restante será

$$H(E_k) = -p_{1k} \log_2 p_{1k} - p_{0k} \log_2 p_{0k}$$

$$p_{1k} = \frac{pk}{pk + nk}$$

$$p_{0k} = \frac{nk}{pk + nk}$$

Cálculo de Ganho de Informação

Calculando a entropia restante esperada para todos os valores do atributo A, temos a entropia restante esperada com a seleção do atributo A:

ERestante(A) =
$$\sum_{k=1}^{d} \frac{p_k + n_k}{p + n} H(E_k)$$

$$H(E_k) = -p_{1k} \log_2 p_{1k} - p_{0k} \log_2 p_{0k}$$

Ganho de informação obtido com a seleção do atributo A:

$$Ganho(A) = H(S) - ERestante(A)$$

Calcular a Entropia de País de origem = EUA

Calcular a Entropia de País de origem = Europeu

 $H(S_Europeu) = -0.5 log_2 0.5 - 0.5 log_2 0.5$

 $H(S_Europeu) = 0.5 + 0.5 = 1$

Calcular a Entropia de País de origem = Outros

Calcular a Entropia restante de País de Origem

ERestante(País de Origem) = $(4/10) H(S_EUA) + (4/10) H(S_Europeu) + (2/10) H(S_Outros)$

$$= 0.4 * 0.811 + 0.4 * 1 + 0.2 * 0 = 0.7244$$

Calcular o Ganho de Informação de País de Origem

Ganho(País de Origem) = H(S) – ERestante (País de Origem)

= 1 - 0,7244

= 0,2756

Calcular Entropia Restante e Ganho de Informação de Estrela

HAC 1A2020 25

Calcular Entropia Restante e Ganho de Informação de Gênero

ERestante (Gênero) = (6/10) H(S_Comédia) + (1/10) H(S_Romance) + (3/10) H(S_Ficção)

$$= 0.6 * 0.9199 + 0.1 * 0 + 0.3 * 0.9199$$

$$= 0,5519 + 0,2759 = 0,8279$$

$$Ganho(Gênero) = 1 - 0.8279 = 0.1721$$

HAC 1A2020 26

Ganho(**País de Origem**) = 1 - 0,7244 = 0,2756

Ganho(Estrela) = 1 - 0,9651 = 0,0344

Ganho(Gênero) = 1 - 0.8264664 = 0.1721

Selecionado o maior

- O processo é repetido para todos os filhos criados pelo nó anterior.
 - Como o valor "Outros" leva a um subconjunto dos dados que tem só instâncias da classe F, esse nó se torna um nó folha, rotulado pela classe F.

Calculando o ganho de informação de Estrela e Gênero para o nó do ramo País de

Origem = EUA País de origem EUA Europeu Outros 10 Gênero? Estrela ou Gênero? Estrela? Ficção Comédia Romance Não Sim 10 \varnothing 10

IA2020

HAC

- O atributo Estrela tem o maior ganho de informação
- Cada um dos seus ramos leva a conjunto de dados da mesma classe
- Os nós do próximo nível já podem representar uma classe

- O atributo Estrela tem o maior ganho de informação
- Cada um dos seus ramos leva a conjunto de dados da mesma classe
- Os nós do próximo nível já podem representar uma classe

Calculando o ganho de informação de Estrela e Gênero para o nó do ramo País de

- O atributo Gênero tem o maior ganho de informação
- Cada um dos seus ramos leva a conjunto de dados da mesma classe
- Os nós do próximo nível já podem representar uma classe

HAC

- O atributo Gênero tem o maior ganho de informação
- Cada um dos seus ramos leva a conjunto de dados da mesma classe
- Os nós do próximo nível já podem representar uma classe

Árvore de Decisão – Teste

• Com a árvore de decisão pronta, exemplos de teste com classe conhecida são apresentados à arvore para testar o modelo aprendido

Conjunto de dados de teste:

Filme	País de Origem	Estrela	Gênero	Sucesso
Filme 11	EUA	Não	Ficção	V
Filme 12	EUA	Sim	Romance	V
Filme 13	Outros	Não	Romance	F

• Predizer a possibilidade de sucesso do filme, em função de seus atributos

Árvore de Decisão – Teste

Filme	País de Origem	Estrela	Gênero	Classe Esperada	Classe Predita
Filme 11	EUA	Não	Ficção	V	F
Filme 12	EUA	Sim	Romance	V	V
Filme 13	Outros	Não	Romance	F	F 37

Árvore de Decisão – Teste

Filme	País de Origem	Estrela	Gênero	Classe Esperada	Classe Predita
Filme 11	EUA	Não	Ficção	V	F
Filme 12	EUA	Sim	Romance	V	V
Filme 13	Outros	Não	Romance	F	F 38

Cálculo de Entropia

 O cálculo de entropia pode ser generalizado quando o conjunto de dados possui mais que duas classes.

Conjunto de dados S com c classes:

$$H(S) = -\sum_{i=1}^{c} p_i \log_2 p_i$$

$$p_i = \frac{n_i}{n}$$

- n_i número de exemplos da classe i
- ▶ n número total de exemplos

Limitações do algoritmo ID3

Trata apenas atributos categóricos

 Utiliza ganho de informação, que não leva em conta o número de arestas do nó

Não trata valores desconhecidos

Não utiliza poda, para evitar super ajuste

Algoritmo C4.5

- Apresenta melhorias com relação ao ID3:
- Trata valores categóricos e numéricos;
- Para atributos contínuos utiliza o teste simples com divisão binária;
- Trata valores desconhecidos;
- Utiliza razão de ganho para selecionar o atributo que melhor divide os exemplos;
- Apresenta um método de pós-poda.

Algoritmo C4.5 – Razão de ganho

- Problema do ganho de informação:
 - Dá preferência a atributos com número grande de valores;
 - Pode selecionar atributos irrelevantes, que tem um só exemplo para cada valor de atributo.

- Proposta de solução: razão de ganho
 - Modifica o ganho de informação para reduzir a tendência de favorecer atributos com muitas ramificações

Algoritmo C4.5 – Métodos de poda

- Arestas ou subárvores da árvore de decisão podem representar ruídos, erros ou exemplos específicos;
- Esse problema é chamado superajuste (overfitting);
- Significa que a árvore induzida está excessivamente ajustada ao conjunto de dados de treinamento e não aprendeu um conhecimento genérico
- A capacidade da árvore de classificar exemplos desconhecidos fica reduzida;
- É um fenômeno geral, podendo ocorrer em qualquer método de aprendizado.

43

Indutor de árvore de decisão (para atributos discretos)

função ARVORE (exemplos, atributos, default) retorna arvore

- 1. se não há exemplos então retorne valor default
- 2. se todos os exemplos tem a mesma classe então retorne a classe
- 3. *best* = escolha atributo(*atributos, exemplos*);
- 4. arvore = nova arvore de decisão com atributo best na raiz
- 5. **para todo** valor v_i de *best* **faça**
- **6.** $exemplos_i = \{elementos de exemplos com best = v_i\}$
- 7. subarvore = ARVORE (exemplos; , atributos best, valor_maioria(exemplos))
- 8. adicione um ramo para *arvore* com rótulo v_i e subárvore *subarvore*
- 9. fim-para
- 10. retorne grvore

Indutor de árvore de decisão (para atributos discretos)

Valor default: valor atribuído ao nó folha quando nenhum exemplo chega até o nó.
 Pode ser o valor da classe majoritária (classe da majoria dos exemplos de treinamento).

 A função escolha_atributo(exemplo, atributos) utiliza alguma medida para escolher o atributo de divisão de um nó. No ID3 é o ganho de informação, no C4.5 é o razão de ganho.

 Número mínimo de exemplos nas folhas: é possível definir um número mínimo de exemplos para interromper o processo em um ramo. Se o número de exemplos estiver igual ou melhor que o mínimo, criar um nó folha com o valor default.