Страменопилы

(финальная презентация)

	Название	Идентификатор	Длина генома	Число генов
Екатерина Гришина	Aureococcus anophagefferens	GCF_000186865.1	56.7 Mb	11522
Полина Шайдурова	Phytophthora sojae	GCF_000149755.1	82.6 Mb	28142
Илья Герман	Blastocystis hominis	GCF_000151665.1	18.8 Mb	6020
Ян Аникиев	Nannochloropsis gaditana	GCF_000240725.1	34 Mb	3465
Михаил Сизов	Aphanomyces invadans	GCF_000520115.1	71.4 Mb	15416
Ульяна Ключникова	Aphanomyces astaci	GCF_000520075.1	75.8 Mb	19 584
Георгий Караваев	Thalassiosira pseudonana	GCF_000149405.2	32.4 Mb	11771
Денис Михайлов	Phytophthora nicotianae	GCF_000247585.1	82.4 Mb	23240
Егор Попов	Phaeodactylum tricornutum	GCF_000150955.2	27.5 Mb	10398

Число G квадруплексов

Интроны

Промотеры

Downstream

Межгенники

Всего

T. pseudonana

P. nicotianae

P. tricornutum

Экзоны

A. anophagefferens	415	101	73	105	33	256
P. sojae	2426	504	256	862	100	704
B. hominis	105	42	8	34	9	59
N. gaditana	18495	1908	1550	1756	573	15349
A. invadans	33	31	1	14	3	8
A. astaci	170	127	11	22	2	8

Доля G квадруплексов

	Экзоны	Интроны	Промотеры	Downstream	Межгенники
A. anophagefferens	0.24	0.18	0.25	0.08	0.62
P. sojae	0.21	0.11	0.35	0.04	0.29
B. hominis	0.4	0.08	0.32	0.09	0.56
N. gaditana	0.1	0.08	0.09	0.03	0.83
A. invadans	0.94	0.03	0.42	0.01	0.24
A. astaci	0.75	0.06	0.13	0.02	0.05
T. pseudonana	0.33	0.05	0.39	0.11	0.64
P. nicotianae	0.29	0.02	0.34	0.12	0.68
P. tricornutum	0.47	0.0	0.56	0.09	0.56

Видим, что почти все организмы коррелируют по долям квадруплексов, кроме A. invadans и A. astaci, представителей одного рода

- 0.6

- 0.4

- 0.2

- 0.0

Число Z-ДНК (ZDNABERT)

Экзоны

Всего

A. anophagefferens

T. pseudonana

P. nicotianae

P. tricornutum

		-				
P. sojae	104869	57643	7218	18127	2138	21743
B. hominis	1178	836	49	336	48	328
N. gaditana	30287	4262	970	2775	599	25249
A. invadans	2717	3538	303	989	174	351
A. astaci	5661	4306	189	846	109	211

Интроны

Промотеры

Downstream

Межгенники

Доля Z-ДНК (ZDNABERT)

	Экзоны	Интроны	Промотеры	Downstream	Межгенники
A. anophagefferens	0.36	0.08	0.20	0.04	0.58
P. sojae	0.53	0.07	0.17	0.02	0.21
B. hominis	0.71	0.04	0.29	0.04	0.28
N. gaditana	0.14	0.03	0.09	0.02	0.83
A. invadans	1.3	0.11	0.36	0.06	0.13
A. astaci	0.76	0.03	0.15	0.02	0.04
T. pseudonana	0.51	0.06	0.42	0.09	0.43
P. nicotianae	1.09	0.04	0.38	0.07	0.22
P. tricornutum	0.67	0.04	0.42	0.09	0.31

Здесь хорошо коррелируют все, кроме А. anophagefferens и N. gaditana, оомицет и водоросль (живущие в воде)

Параметры

- Выравнивая строились при помощи ClustalW со стандартными параметрами
- Деревья строились при помощи **Minimum Evolution Tree** со стандартными параметрами
- Параметры для ZHUNT были взяты с прошлого года, то есть запуск команды выглядел так: !./zhunt3 12 8 12 genomic.fna и порог был равен 300
- Параметры для ZDNABERT были стандартными, то есть:

model = 'HG kouzine' model_confidence_threshold = 0.5 minimum_sequence_length = 10

Pfam Domain	HGNC approved symbol	Function
PF00004	ATAD2	Chromatin remodeling
PF00012	HSPA1A	Histone modification write cofactor
PF00022	ACTB	Chromatin remodeling, Histone modification read
PF00063	MYO1C	Chromatin remodeling cofactor
PF00069	AURKA	Histone modification write

Арhanomyces группируются в одну кладу. Также 4 водоросли группируются в одну кладу.

*У invadans перепутано название,

должно быть Aphanomyces invadans.

одного семейства Phytophtora и

Aureococcus anophagefferens EGB11846.1 D R D L

2. Thalassiosira pseudonana XP 002286617.1 D R
3. Phytophthora sojae XP 009537954.1 D R

Blastocystis hominis XP 012897014.1

ESFSQKMKQQRGNMGSGVANFSFGDAQNINAPADDLDGLYDDVPARNPVHPPNNRAATSQGQTQPQPPAPESGRGDEDFE

A A P G A A P A A A G G G F A A A A D D D E E D L Y S

PFUUUZ.

Здесь почти полное совпадение последовательностей. Заметно отличается только паразит В. hominis. На дереве организмы из одних семейств попадают в одну кладу.

PF00063

Здесь есть совпадающие участки в выравнивании. Больше всего отличается последовательность у N. gaditana, это заметно и на дереве.

1. Aureococcus anophagefferens EGB04984.1 FYMVIELMEGGELFERIVKKTFYNEKEARDLIRILLDALAYLHHRHIVHRDLKPENLLLKSPYNDFDIKLADFGFAKKV 2. Thalassiosira pseudonana XP 002292529.1 / Y L V T E Q M R G G E L F D R I V S K S Y Y N E K E A R D V C K I L F E S I G F C H S K S V A H R D L K P E N L L L R A E D N D S D I K I A D F G F A K K V

попали в одну кладу, снизу 5 паразитных организмов попали ближе друг к другу. Странно, что Aphanomyces далеко друг от друга на дереве.

3. Phytophthora sojae XP 009532688.1

4. Blastocystis hominis XP 012895293.1

_YMMMELADT-DLHRLIQSSCPLTEGHIRVIMYQVLSGVKAMHDNGVLHRDLKPGNLLLNKD---CELKITDFGLARMM

Выводы

- У генов-ортологов есть протяженные области генов с совпадающими участками. Можно сделать вывод, что эти участки консервативные и имеют какую-то функциональную роль.
- Организмы из 1 семейства часто попадают в одну кладу их последовательности очень схожи.
- Похожими друг на друга оказываются белки водорослей и белки паразитов.

G-квадруплексы

Квадруплексов нашлось мало: в каждом промотере всего 1 квадруплекс у одного организма. На выравнивании эти квадруплексы заметно отличаются. Возможно, квадруплексы в промотерах у наших организмов не консервативны, потому что не имеют важных функций.

Blastocystis hominis XP 012897014.1 1

Phaeodactylum tricornutum XP 002185883.1 1

Nannochloropsis gaditana XP 005855805.1 2

1 Aphanomyces astaci XP 009845345.1 1

Z-DNA

сложно сделать какие-то выводы. Видимо, последовательности z-днк не консервативны у наших организмов.

Из выравниваний z-днк тоже