Comp Econ Homework 6

Carlos Lizama

March 22, 2016

Analytical Exercises

Exercise 1

To show that X'X is invertible, I will use the hint and show that the matrix is positive definite. It is a well-known theorem that a positive definite matrix has a positive determinant and therefore it is invertible.

Def: $\mathbf{A} \in \mathcal{M}(k \times k)$ is positive definite if $\mathbf{z}' \mathbf{A} \mathbf{z} > 0 \ \forall \mathbf{z} \in \mathbb{R}^k \setminus \mathbf{0}$

Let $\mathbf{z} \in \mathbb{R}^k \setminus \mathbf{0}$. Let $\mathbf{A} = \mathbf{X}'\mathbf{X}$. WTS: **A** is positive definite, ie $\mathbf{z}'\mathbf{A}\mathbf{z} > 0$.

In fact,

$$\mathbf{z}'\mathbf{A}\mathbf{z} = \mathbf{z}'\mathbf{X}'\mathbf{X}\mathbf{z} = (\mathbf{X}\mathbf{z})'(\mathbf{X}\mathbf{z}) = ||\mathbf{X}\mathbf{z}||^2 > 0$$

Note that (Xz) is a linear combination of the columns of X and $Xz \in \mathbb{R}^k$ Hence, X'X is positive definite.

Exercise 2

Let $P = X(X'X)^{-1}X'$. WTS: if k = n, then **P** is the identity, P = I

In other words, WTS: $\forall y \in \mathbb{R}^n$, $\mathbf{P}\mathbf{y} = \mathbf{y}$

Since k = n and X has linearly independent columns, the columns of form a base of \mathbb{R}^n , ie span(X) = $S = \mathbb{R}^n$.

Since **P** is the projection matrix, we know that $\mathbf{v} - \mathbf{P}\mathbf{v} \in S^{\perp}$, and $(\mathbb{R}^n)^{\perp} = \{\mathbf{0}\}$

Therefore,

$$y - Py = 0$$
$$\Rightarrow y = Py$$

Exercise 3

Let $\mathbf{1} = (1, ..., 1)' \in \mathbb{R}^n$ a column vector of ones and $\mathbf{P} = \mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}'$. Let $y \in \mathbb{R}^n$ Note that $\mathbf{P}\mathbf{y} \in \mathbb{R}^n$.

$$\mathbf{P}\mathbf{y} = \underbrace{\mathbf{1}}_{(n\times1)} \underbrace{(\mathbf{1}'\mathbf{1})^{-1}}_{(1\times n)\times(n\times1)} \underbrace{(\mathbf{1}'\mathbf{y})}_{(1\times n)\times(n\times1)}$$

I'll compute each term separately.

The term $\mathbf{1}'y = \sum_{i=1}^{n} y_i$

Note also that $(\mathbf{1}'\mathbf{1}) = n$ and hence $(\mathbf{1}'\mathbf{1})^{-1} = \frac{1}{n}$

Therefore, $(\mathbf{1}'\mathbf{1})^{-1}(\mathbf{1}'y) = \frac{1}{n}\sum_{i=1}^n y_i \equiv \bar{y}$

Finally,

$$\mathbf{P}\mathbf{y} = \mathbf{1}\bar{y} = \begin{pmatrix} \bar{y} \\ \vdots \\ \bar{y} \end{pmatrix}$$

Exercise 4

$$\begin{split} \hat{\mathbf{u}} &= \mathbf{M} \mathbf{y} = (\mathbf{I} - \mathbf{P}) \mathbf{y} \\ \mathbf{X}' \hat{\mathbf{u}} &= \mathbf{X}' (\mathbf{I} - \mathbf{P}) \mathbf{y} \\ &= \mathbf{X}' (\mathbf{I} - \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}') \mathbf{y} \\ &= (\mathbf{X}' - \mathbf{X}' \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}') \mathbf{y} \\ &= (\mathbf{X}' - \mathbf{X}') \mathbf{y} \\ &= \mathbf{0} \end{split}$$

Note that the first row of \mathbf{X}' is a row of only ones, and hence $\mathbf{X}'_{1,\cdot}\hat{\mathbf{u}} = 0$ which is the sum of the elements of $\hat{\mathbf{u}}$.

Exercise 5

Let $\mathbf{x} \in S \cap S^{\perp}$. Then, x is perpendicular to itself, hence $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$