

M54HCT540/541 M74HCT540/541

OCTAL BUS BUFFER WITH 3 STATE OUTPUTS HCT540: INVERTED - HCT541 NON INVERTED

- HIGH SPEED
 - $t_{PD} = 10 \text{ ns} (TYP.) \text{ at } V_{CC} = 5V$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $I_{A} = 25 \, ^{\circ}\text{C}$
- COMPATIBLE WITH TTL OUTPUTS V_{IH} = 2V (MIN.) V_{IL} = 0.8V (MAX.)
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE |I_{OH}| = I_{OL} = 6 mA (MIN)
- BALANCED PROPAGATION DELAYS tplh = tphl
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS540/541

DESCRIPTION

The M54/74HCT540 and HCT541 are high speed CMOS OCTAL BUS BUFFERS (3-STATE) fabricated in silicon gate C²MOS technology. They have the same high speed performance of LSTTL combined with true CMOS low power consumption. The HCT540 is an inverting buffer and HCT541 is a non inverting buffer.

The 3 STATE control gate operates as a two input AND such that if either G1 and G2 are high, all eight outputs are in the high impedance state. In order to enhance PC board layout, the HCT540 and HCT541 offers a pinout having inputs and outputs on opposite sides of the package. All inputs are equipped with protection circuits against static

discharge and transient excess voltage.

This integrated circuit has input and output characteristics that are fully compatible with 54/74 LSTTL logic families. M54/74HCT devices are designed to directly interface HSC²MOS systems with TTL and NMOS components. They are also plug in replacements for LSTTL devices giving a reduction of power consumption.

IT IS PROHIBITED TO APPLY A SIGNAL TO BUS TERMINAL WHEN IT IS IN OUTPUT MODE. WHEN A BUS TERMINAL IS FLOATING (HIGH IMPEDANCE STATE) IT IS REQUESTED TO FIX THE INPUT LEVEL BY MEANS OF EXTERNAL PULL DOWN OR PULL UP RESISTOR.

PIN CONNECTION (top view)

October 1993 1/12

CHIP CARRIER

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION (HCT540)

PIN No	SYMBOL	NAME AND FUNCTION
1, 19	G 1, G 2	Output Enable Inputs
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs
18, 17, 16, 15, 14, 13, 11, 12	Y1 to Y8	Bus Outputs
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

PIN DESCRIPTION (HCT541)

PIN No	SYMBOL	NAME AND FUNCTION				
1, 19	G1, G2	Output Enable Inputs				
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs				
18, 17, 16, 15, 14, 13, 11, 12	Y1 to Y8	Bus Outputs				
10	GND	Ground (0V)				
20	V _{CC}	Positive Supply Voltage				

IEC LOGIC SYMBOLS

TRUTH TABLE

	INPUT	OUTPUT			
G1	G2	Yn (HCT540)	Yn (HCT541)		
Н	X	X	Z	Z	
X	Н	X	Z	Z	
L	L	Н	L	Н	
L	L	L	Н	L	

X: "H" or "L"

CIRCUIT SCHEMATIC (Per Circuit)

Z: High impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	٧
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. (*) 500 mW: ≅ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series	-55 to +125 -40 to +85	ိုင
t _r , t _f	Input Rise and Fall Time ($V_{CC} = 4.5 \text{ to } 5.5V$)	0 to 500	ns

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol Parameter	Parameter	V cc (V)				_A = 25 ^o C and 7		1	85 °C HC		125 °C HC	Unit
		(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	4.5 to 5.5			2.0			2.0		2.0		V
V _{IL}	Low Level Input Voltage	4.5 to 5.5					0.8		0.8		0.8	V
V _{OH}	High Level Output Voltage		V _I = V _{IH}	I _O =-20 μA	4.4	4.5		4.4		4.4		V
		4.5	or V _{IL}	I _O =-6.0 mA	4.18	4.31		4.13		4.10		V
V _{OL}	Low Level Output Voltage	4.5	V _I = V _{IH}	Ιο= 20 μΑ		0.0	0.1		0.1		0.1	V
		4.5	or V _{IL}	lo= 6.0 mA		0.17	0.26		0.33		0.4	V
lı	Input Leakage Current	5.5	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
l _{OZ}	3 State Output Off State Current	5.5		V _{IH} or V _{IL} V _{CC} or GND			±0.5		±5		±10	μΑ
I _{CC}	Quiescent Supply Current	5.5	V _I = '	V _{CC} or GND			4		40		80	μА
Δl _{CC}	Additional worst case supply current	5.5	V _I : V Othe	Input pin = 0.5V or 1 = 2.4V er Inputs at c or GND			2.0		2.9		3.0	mA

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Conditions						Value				
Symbol	Parameter	V _{CC}	C _L (pF)			$T_A = 25$ °C 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(۷)	(pr)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition Time	4.5	50			6	12		15		18	ns
tpLH	Propagation	4.5	50			12	20		25		30	ns
t _{PHL}	Delay Time (for HCT540)	4.5	150			16	25		31		38	ns
t _{PLH}	Propagation	4.5	50			14	23		29		35	ns
t _{PHL}	Delay Time (for HCT541)	4.5	150			18	28		35		42	ns
t _{PZL}	Output Enable	4.5	50	$R_L = 1K\Omega$		18	30		38		45	ns
t _{PZH}	Time	4.5	150	$R_L = 1K\Omega$		22	34		43		51	ns
t _{PLZ} t _{PHZ}	Output Disable Time	4.5	50	$R_L = 1K\Omega$		19	27		34		41	ns
C _{IN}	Input Capacitance					5	10		10		10	рF
C _{PD} (*)	Power Dissipation Capacitance					34						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/8$ (per gate)

TEST CIRCUIT Icc (Opr.)

SWITCHING CHARACTERISTICS TEST CIRCUIT

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm		inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

Ceramic DIP20 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			25			0.984		
В			7.8			0.307		
D		3.3			0.130			
Е	0.5		1.78	0.020		0.070		
e3		22.86			0.900			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
I	1.27		1.52	0.050		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N1			4° (min.),	15° (max.)				
Р	7.9		8.13	0.311		0.320		
Q			5.71			0.225		

SO20 MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			2.65			0.104		
a1	0.10		0.20	0.004		0.007		
a2			2.45			0.096		
b	0.35		0.49	0.013		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.50			0.020			
c1			45°	(typ.)				
D	12.60		13.00	0.496		0.512		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.299		
L	0.50		1.27	0.19		0.050		
М			0.75			0.029		
S			8° (r	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

