Зміст

1	Глава 1	
		2
	1.1 <i>QGSP_BERT_HP</i>	2
2	Глава 2	
		2
	2.1 Опис детектора	2
Лi	ітература	3

1 Глава 1

$1.1 \quad QGSP \quad BERT \quad HP$

 $QGSP_BERT_HP$ - ця фізична модель входить в перелік стандартних фізичних моделей розрахункового пакету Geant4 Базується на каскадній моделі Бертіні та враховує реакції для нейтронів менше ніж 20 МеВ. Для валідації данної моделі необхідне виконання наступних умов $\frac{\lambda_B}{\nu} \ll \tau_c \ll \Delta t, \, \lambda_B$ - хвиля де-Бролля для налітаючої частинки, ν - швидкість налітаючої частинки, Δt - час між зіткненнями. Та модель яка лягла в основу коду Geant4 була протестована на частинках з енергіями від 100 МеВ до 3 ГеВ

2 Глава 2

2.1 Опис детектора

Для моделювання чутливого об'єму був обраний надчистий германій, з діаметром 60.6 міліметрів, та довжиною 56.7 міліметрів. Рис. 2.1

Рис. 2.1: Форма чутливого об'єму

Детектор буде розміщенний поряд з джерелом нейтронів високих енергій, 14.5 MeB. Тому детектор був розміщений у трьох шаровий захист. Рис. 2.2

В захисті використовується Бор для поглинання теплових нейтронів, так як вся детекторна система буде знаходитися під водою, то нейтрони від джерела будуть втрачати енергію при пружному розсіянні на водню.

Опис реакцій на захисті— та сповільнювачі Опис вторинного альфа випроміннення від Бор—

Рис. 2.2: Захист детектора, Al - зелений товщина 2 см., B - жовтий товщина 5 см., Pb - червоний товщина 1 см. Блакитний шар повітря

Література

[1] R.M. Keyser and T.R. Twomey - Extended Source Sensitivity and Resolution Comparisons of Several HPGe Detector Types with Low-energy Capabilities

HPGe Detector Types

[2] Aatos Heikkinen, Nikita Stepanov Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland Johannes Peter Wellisch CERN, Geneva, Switzerland - Bertini intra-nuclear cascade implementation in Geant4 link