The Theoretical Minimum Quantum Mechanics - Solutions

L02E02

M. Bivert

April 2, 2023

Exercise 1. Prove that $|i\rangle$ and $|o\rangle$ satisfy all of the conditions in Eqs. 2.7, 2.8 and 2.9. Are they unique in that respect?

Let us recall, in order, Eqs. 2.7, 2.8, 2.9, 2.10, which defines $|i\rangle$ and $|o\rangle$, and both 2.5 and 2.6 which defines $|r\rangle$ and $|l\rangle$:

$$\langle i|o\rangle = 0$$

$$\begin{split} \left\langle o|u\right\rangle \left\langle u|o\right\rangle &=\frac{1}{2} \\ \left\langle i|u\right\rangle \left\langle u|i\right\rangle &=\frac{1}{2} \\ \\ \left\langle o|r\right\rangle \left\langle r|o\right\rangle &=\frac{1}{2} \\ \\ \left\langle i|r\right\rangle \left\langle r|i\right\rangle &=\frac{1}{2} \\ \\ \left\langle i|r\right\rangle \left\langle r|i\right\rangle &=\frac{1}{2} \\ \\ \\ \left\langle i|l\right\rangle \left\langle l|i\right\rangle &=\frac{1}{2} \\ \\ \\ \left\langle i|l\right\rangle \left\langle l|i\right\rangle &=\frac{1}{2} \\ \end{split}$$

$$|i\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{i}{\sqrt{2}}|d\rangle$$
 $|o\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{i}{\sqrt{2}}|d\rangle$

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$$
 $|l\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{1}{\sqrt{2}}|d\rangle$

For clarity, let us recall that $\langle u|A\rangle$ is the component of $|A\rangle$ on the orthonormal vector $|u\rangle$. This is because in a $(|i\rangle)_{i\in F}$ orthonormal basis we have:

$$\begin{split} |A\rangle &= \sum_{i \in F} \alpha_i |i\rangle \\ \Rightarrow \langle j|A\rangle &= \langle j| \sum_{i \in F} \alpha_i |i\rangle = \sum_{i \in F} \alpha_i \, \langle j|i\rangle = \alpha_j \end{split}$$

And to make better sense of those equations, let us recall that $\alpha_u^* \alpha_u = \langle A | u \rangle \langle u | A \rangle$ is the probability of a state vector $|A\rangle = \alpha_u |u\rangle + \alpha_d |d\rangle$ to be measured in the state $|u\rangle$.

For Eq. 2.7, we have

$$\begin{split} \langle i|o\rangle &= \begin{pmatrix} \iota_u^* & \iota_d^* \end{pmatrix} \begin{pmatrix} o_u \\ o_d \end{pmatrix} \\ &= \iota_u^* o_u + \iota_d^* o_d \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{-i}{\sqrt{2}} = \frac{1}{2} - \frac{1}{2} = 0 \quad \Box \end{split}$$

For Eqs. 2.8, we can rely on the projection on an orthonormal vector:

$$\langle o|u\rangle \langle u|o\rangle = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} \quad \Box$$

$$\langle o|d\rangle \langle d|o\rangle = \frac{i}{\sqrt{2}} \frac{-i}{\sqrt{2}} = \frac{1}{2} \quad \Box$$

$$\langle i|u\rangle \langle u|i\rangle = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} \quad \Box$$

$$\langle i|d\rangle \langle d|i\rangle = \frac{-i}{\sqrt{2}} \frac{i}{\sqrt{2}} = \frac{1}{2} \quad \Box$$

For Eqs. 2.9, we need to rely on the column form of the inner-product:

$$\begin{split} \langle o|r\rangle \, \langle r|o\rangle &= \left(o_{u}^{*} \quad o_{d}^{*}\right) \begin{pmatrix} \rho_{u} \\ \rho_{d} \end{pmatrix} \left(\rho_{u}^{*} \quad \rho_{d}^{*}\right) \begin{pmatrix} o_{u} \\ o_{d} \end{pmatrix} & \langle o|l\rangle \, \langle l|o\rangle = \left(o_{u}^{*} \quad o_{d}^{*}\right) \begin{pmatrix} \lambda_{u} \\ \lambda_{d} \end{pmatrix} \left(\lambda_{u}^{*} \quad \lambda_{d}^{*}\right) \begin{pmatrix} o_{u} \\ o_{d} \end{pmatrix} \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{-i}{\sqrt{2}}\right) \\ &= \left(\frac{1}{2} + \frac{i}{2}\right) \left(\frac{1}{2} - \frac{i}{2}\right) \\ &= \left(\frac{1}{2} + \frac{i}{2}\right) \left(\frac{1}{2} - \frac{i}{2}\right) \\ &= \frac{1}{4} (1+i) (1-i) \\ &= \frac{1}{4} (1+i-i+1) = \frac{1}{2} \quad \Box \\ &= \frac{1}{4} (1-i) (1+i) \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\frac{lu}{ld}\right) \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} + \frac{i}{2}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} + \frac{i}{2}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} + \frac{i}{2}\right) \\ &= \frac{1}{4} (1-i) (1+i) \\ &= \frac{1}{4} (1+i+i+1) = \frac{1}{2} \quad \Box \\ \end{split}$$

Regarding the unicity of $|i\rangle$, $|o\rangle$, as for $|r\rangle$, $|l\rangle$, there definitely is a phase ambiguity, meaning, we can multiply either $|i\rangle$ or $|o\rangle$ by a *phase factor*, say $e^{i\theta}$, without disturbing any of the constraints: orthogonality, probabilities, and the resulting vectors are still unitary.

But as stated by the authors for $|r\rangle$, $|l\rangle$, measurable quantities are independent of any phase factors. So up to it, they seem to be unique so far.

However, let's try to change the i's place for instance in $|i\rangle$:

$$|i\rangle = \frac{i}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$$

The vector is still unitary, we still have orthogonality with $|o\rangle$, and if you try to compute $\langle i|u\rangle \langle u|i\rangle$, $\langle i|d\rangle \langle d|i\rangle$, $\langle i|r\rangle \langle r|i\rangle$ or $\langle i|l\rangle \langle l|i\rangle$, you'll still have the same probabilities.

Now the question is, is this "swapping" of the i a phase factor? Meaning, can encode this transformation as a multiplication by some $e^{i\theta}$, for some $\theta \in \mathbb{R}$?

Well, the first term of $|i\rangle$ is multiplied by i; recall the definition of the complex exponential:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

So this means the first term is multiplied by

$$\exp(i\frac{\pi}{2}) = 0 + i$$

The second term though, is multiplied by -i, this means, multiplied by:

$$\exp(-i\frac{\pi}{2}) = 0 + i \times (-1)$$

So we've found a variant of $|i\rangle$, that cannot be obtained by multiplying $|i\rangle$ by a phase factor, and hence:

The proposed solution is *not* unique [up to a phase factor].

Remark 1. It may be interesting/possible to classify all such variants, meaning, see how much variety there is / how much structure they share and so forth.