

Kleine TikZ-Wunder

Till Tantau

DANTE-Frühjahrstagung 2015

IM FOCUS DAS LEBEN

Ein Bild voller kleiner Wunder.

Gliederung

Das Wunder der Geburt

Das Wunder der Graphen

Das Wunder der Pfeile

Das Wunder der Schatten

2003: Wie alles begann.

ON STRUCTURAL SIMILARITIES OF FINITE AUTOMATA AND TURING MACHINE Enumerability Classes

Till Tantau

2003: Wie alles begann.

2003: Wie alles begann.

2003: Das allererste »Tik7«-Bild.

```
\left\{-1.9cm\right\}\left\{-1.5cm\right\}\left\{1.9cm\right\}\left\{2cm\right\}
 \pgfcircle[stroke] {\pgfpolar{90}{1cm}}{0.975cm}
 \pgfcircle[stroke] {\pgfpolar{210}{1cm}}{0.975cm}
 \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{0.975cm}
 \pgfcircle[stroke] {\pgfpolar{90}{1cm}}{0.8cm}
 \pgfcircle[stroke]{\pgfpolar{210}{1cm}}{0.8cm}
 \pgfcircle[stroke]{\pgfpolar{330}{1cm}}{0.8cm}
 \pgfputat{\pgfrelative{\pgfpolar{90}{1cm}}}
   {\pgfpoint{0pt}{-.5ex}}}%
   {\pgfbox[center,base]{$A\times \bar A$}}
 \pgfputat{\pgfrelative{\pgfpolar{210}{1cm}} %
   {\pgfpoint{0pt}{-.5ex}}} %
   {\pqfbox[center,base]{$A\times A$}}
 \pgfputat{\pgfrelative{\pgfpolar{330}{1cm}}%
   {\pgfpoint{0pt}{-.5ex}}} %
   {\pgfbox[center,base]{\$\bar A\times \bar A\\}}
\end{pgfpicture}
```

2004: Die Version 0.62 von TikZ. Die Liste der Dateien

AUTHORS pgf-tu-logo.jpg ChangeLog pgf-tu-logo.mask.jpg FILES pgf.sty TNSTALL pqfarrows.sty README pgfautomata.sty TODO pqfheaps.sty pqf-apple.jpq pqfnodes.sty pgfshade.sty pgf-apple.mask.jpg pgf-tu-logo.25.eps pqfuserquide.pdf pgf-tu-logo.25.jpg pgfuserguide.tex paf-tu-logo.eps xxcolor.sty

(Die aktuelle TikZ-Version auf diesem Rechner hat 4080 Dateien...)

2004: Die Version 0.62 von TikZ. Das Handbuch

Till Tantau		
	tantau@cs.tu-berlin.de	
	July 6, 2004	
Cont	tents	
	reduction 1	
1.1	Overview 1 Installation 2	
1.3	Installing Prebundled Packages	
	1.3.1 Temporary Installation 2 1.3.2 Installation in a texmf Tree 3	
1.4	Quick Start	
1.5	Gallery	
	ic Graphic Drawing 7	
	Main Environments 7 How to Specify a Point 7	
2.3	Coordinate Systems	
2.4 2.5	Path Construction 10 Stroking and Filling 11	
2.6	Clipping 13	
2.7	Shape and Line Drawing 14 Image Inclusion 15	
2.9	Text Drawing	
	Drawing Arrows at Line Ends 18 Placing Labels on Lines 20	
	Shadings	
t The	ng Nodes 22	
3.1	Node Creation 23	
3.2	Coordinates Relative to Nodes 24 Counceting Nodes 24	
3.4	Placing Labels on Node Connections	
· P	ended Color Support 26	
	tunta Cont Support	

- Das Handbuch hatte 27 Seiten.
- Heute sind es 1165 Seiten.

2004: Die Version 0.62 von Tik7. Die TODO-Datei

- 1) more nodes stuff
- 2) new "simple input mode" (more pstricks like input)
- 3) plotting interface to gnuplot
- 4) xfig interface
- 5) Syntax extensions, such as easy color specifications.
- 6) rotated shadings
- 7) option to reference nodes defined in other pictures
- 8) shading as a primitive like fill or stroke
- 9) \graphicspath command.

Gliederung

Das Wunder der Geburt

Das Wunder der Graphen

Das Wunder der Pfeile

Das Wunder der Schatter

Welche Zeichnung des Graphen ist die schönste?

Warum ist die rechte Zeichnung besser als die linke?

Beobachtungen:

- 1. Rechts gibt es weniger Überschneidungen.
- 2. Rechts gibt es weniger Überlappungen.
- 3. Rechts gibt es mehr Symmetrien.
- 4. Die Kantenlängen sind rechts gleichmäßiger.
- 5. Die Winkel den Knoten sind rechts gleichmäßiger.

Warum ist die rechte Zeichnung besser als die linke?

Abgeleitetes Optimierungsproblem: »Zeichne Graphen so, dass

- 1. Kantenüberschneidungen minimiert werden,
- 2. Knotenüberlappungen ausgeschlossen sind,
- 3. Symmetrien maximiert werden,
- 4. die Abweichung der Kantenlängen vom Idealwert minimiert wird,
- 5. die Varianz der Winkel an einem Knoten minimiert wird.«

Die Natur erzeugt wunderschöne Zeichnungen von Graphen

Creative Commons Licence, Autor IDS.photos from Tiverton, UK

- Wir fassen die Knoten als *bewegliche Punkte* auf.
- Über die Kanten wirken dann Kräfte zwischen den Knoten.
- Wir simulieren, wie sich die Knoten bewegen, bis sie einen Gleichgewichtszustand erreichen.

- Wir fassen die Knoten als *bewegliche Punkte* auf.
- Über die Kanten wirken dann Kräfte zwischen den Knoten.
- Wir simulieren, wie sich die Knoten bewegen, bis sie einen Gleichgewichtszustand erreichen.

- Wir fassen die Knoten als *bewegliche Punkte* auf.
- Über die Kanten wirken dann Kräfte zwischen den Knoten.
- Wir simulieren, wie sich die Knoten bewegen, bis sie einen Gleichgewichtszustand erreichen.

- Wir fassen die Knoten als *bewegliche Punkte* auf.
- Über die Kanten wirken dann Kräfte zwischen den Knoten.
- Wir simulieren, wie sich die Knoten bewegen, bis sie einen Gleichgewichtszustand erreichen.

- Wir fassen die Knoten als *bewegliche Punkte* auf.
- Über die Kanten wirken dann Kräfte zwischen den Knoten.
- Wir simulieren, wie sich die Knoten bewegen, bis sie einen Gleichgewichtszustand erreichen.

- Wir fassen die Knoten als *bewegliche Punkte* auf.
- Über die Kanten wirken dann Kräfte zwischen den Knoten.
- Wir simulieren, wie sich die Knoten bewegen, bis sie einen Gleichgewichtszustand erreichen.

Kräfte 1 (Tutte): Federkräfte

Public Domain

- Kanten sind Federn.
- Federn »möchten« eine bestimmte Länge haben.
- Sind Kanten zu kurz, »drücken sie Knoten auseinander«.
- Sind Kanten zu lang, »ziehen sie Knoten zusammen«.

Kräfte 1 (Tutte): Federkräfte

Kräfte 2 (Eades): Elektrische Kräfte

Creative Commons License

- Zwischen Knoten gibt es zusätzlich abstoßende Kräfte.
- Knoten richten sich daher »gerne« in »Linien« und »Kreisen« aus.
- Winkel gleichen sich aus.

Kräfte 2 (Eades): Elektrische Kräfte

Kräfte 3: Graviationskräfte

Public Domain

- Knoten ziehen sich zusätzlich an.
- Dies zieht »wichtige« Knoten in die Mitte.

Kräfte 3: Graviationskräfte

Kräfte 4: Magnetische Kräfte

GNU Free Documentation License, Autor Gregory F. Maxwell

- Kanten »möchten sich entlang von Magnetfeldern« ausrichten.
- Hierdurch kann man horizontale und vertikale Kanten bevorzugen.

Integrieren von Graphzeichnungen in Dokumenten ist schwierig

Integrieren von Graphzeichnungen in Dokumenten ist schwierig

3. Steps towards a final layout: (a) PR \mathcal{R} , (b) fine-layering of the subgra

Die Lösung: Graphzeichnen in TikZ

- Man kombiniere eine existierende Dokumentensprache (T_EX) mit einer existierenden Graphiksprache (TikZ).
- Füge Syntax hinzu, mit denen sich *Graphen leicht angeben lassen*.
- Führe die Graphzeichnen-Algorithmen als Teil der Dokumentverarbeitung aus.
- Das Aussehen von Knoten und Kanten passt nun zum Dokument.

Eine bessere Syntax für Graphen

- Eine knappe, gute Syntax für Graphen ist wichtig, wenn *Menschen Graphen »per Hand*« beschreiben wollen.
- Die neue Syntax *mischt die Philosophien* von DOT und TikZ.

```
\tikz \graph[spring electrical layout] {
  Hello -> World -> "$c^2$";
  World -> "$\delta$" -> Hello;
};
World
World
```

- Knotenoptionen folgen Knoten in eckigen Klammern.
- Kantenoptionen folgen Kanten in eckigen Klammern.
- Spezielle Notation für Kanten.
- Bäume lassen sich sehr natürlich beschreiben.

```
\tikz \graph[spring electrical layout] {
    Hello [rounded rectangle]
    -> World [tape]
    -> "$c^2$" [circle, dashed];

World
    -> "$\delta$" [diamond]
    -> Hello;
};
```


- Knotenoptionen folgen Knoten in eckigen Klammern.
- Kantenoptionen folgen Kanten in eckigen Klammern.
- Spezielle Notation für Kanten.
- Bäume lassen sich sehr natürlich beschreiben.

```
\tikz \graph[spring electrical layout] {
     Hello [rounded rectangle]
 ->[bend right, "foo"']
     World [tape]
 -> "$c^2$" [circle, dashed];
 World
 ->[densely dotted, blue]
     "$\delta$"[diamond]
 -> Hello;
};
```


- Knotenoptionen folgen Knoten in eckigen Klammern.
- Kantenoptionen folgen Kanten in eckigen Klammern.
- Spezielle Notation für Kanten.
- Bäume lassen sich sehr natürlich beschreiben.

```
\tikz \graph [tree layout] {
 a -> b -- c <- d <-> e;
};
```


- Knotenoptionen folgen Knoten in eckigen Klammern.
- Kantenoptionen folgen Kanten in eckigen Klammern.
- Spezielle Notation für Kanten.
- Bäume lassen sich sehr natürlich beschreiben.

```
\tikz \graph [binary tree layout] {
 root -> {
   left. -> {
    2 -> 3 [second]
   right -> {
    4 -> { , 5 }
```


Das Wunder des Kreises.


```
\tikz \graph [simple necklace layout, necklace routing] {
 "$z i$" -> "$z i^2$"
          -> "$z i^2 + c$"
          -> "$z {i+1}$"
          -> "$z i$"
};
```

Das Wunder des Kreises.

Gliederung

Das Wunder der Geburt

Das Wunder der Graphen

Das Wunder der Pfeile

Das Wunder der Schatter

Es ist schwierig, neue Arten Pfeilspitzen zu definieren...

- TikZ muss »sehr viel wissen« über die Pfeilspitzen (insbesondere sind die »Dreh- und Angelpunkte« wichtig sowie die »Länge«).
- TikZ muss »oft und schnell« Pfeilspitzen zeichnen.

```
name = Computer Modern Rightarrow,
 defaults = l
  length = +1.6pt 2.2, % Opt 5.2
  width' = +0pt 2.096774,
  line width = 0pt 1 1.
  round
 setup code =
   % inner length:
  \pgfutil@tempdima\pgfarrowlength
  \advance\pgfutil@tempdima
    by-\pgfarrowlinewidth
  \pgfutil@tempdimb\pgfarrowwidth
  \advance\pgfutil@tempdimb
    bv-\pgfarrowlinewidth
   % The following are needed in the code:
... 58 Zeilen ...
```

```
\else
   \pgfpathcurveto
    {\pgfqpoint{-0.41019\pgfutil@tempdima}{-0.
    {\pgfgpoint{-0.81731\pgfutil@tempdima}{-.2
    {\pgfgpoint{-\pgfutil@tempdima}{-.5\pgfuti
parameters = {
 \the\pgfarrowlinewidth, %
 \the\pgfarrowlength, %
 \the\pgfarrowwidth, %
 \ifpqfarrowharpoon h\fi
 \ifpqfarrowharpoon r\fi
 \ifpgfarrowroundjoin i\fi%
 \ifpgfarrowroundcap c\fi%
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = - ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{Stealth} ]
  (0,1) edge[bend right] (4,1);
```

Till Tantau


```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{Stealth[scale=1.5]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{Stealth[inset=0pt]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{Stealth[inset=0pt, sep=2mm]} ]
  (0,1) edge[bend right] (4,1);
```


\usetikzlibrary{arrows.meta}

```
\draw [ arrows = -{Stealth[round, scale=2, open]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{Stealth[] Stealth[]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{To[] Stealth[]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{To[] To[] Stealth[]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{To[]. To[] Stealth[]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{To[]. To[red] Stealth[]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{To[]. To[red] Stealth[reversed,blue]} ]
  (0,1) edge[bend right] (4,1);
```



```
\usetikzlibrary{arrows.meta}
...
\draw [ arrows = -{Latex[]. Circle[open] Kite[]} ]
  (0,1) edge[bend right] (4,1);
```

Das Wunder des Kreises.

TikZ kann Pfeile auf drei Arten »biegen«.

TikZ kann Pfeile auf drei Arten »biegen«.

TikZ kann viele Dinge »biegen« – insbesondere Pfeilspitzen.


```
\draw [help lines] (0pt,0mm) grid[xstep=10pt] (90pt, 4cm);
\draw [very thick, red] (20pt,3cm) circle [radius=5mm];
\node [draw=blue, very thick] at (60pt,1cm) {foo};
\foreach \angle in {0,30,60,90}
\foreach \dist in {2,4}
\node at (\angle pt, \dist cm) {\angle$^\circ$};
```

TikZ kann viele Dinge »biegen« – insbesondere Pfeilspitzen.


```
\pgftransformnonlinear{\polartransformation}
\draw [help lines] (0pt,0mm) grid[xstep=10pt] (90pt, 4cm);
\draw [very thick, red] (20pt,3cm) circle [radius=5mm];
\node [draw=blue, very thick] at (60pt,1cm) {foo};
\foreach \angle in {0,30,60,90}
\foreach \dist in {2,4}
\node at (\angle pt, \dist cm) {\angle$^\circ$};
```

Gliederung

Das Wunder der Geburt

Das Wunder der Graphen

Das Wunder der Pfeile

Das Wunder der Schatten

»Schatten« sind »Farbverläufe«.

- Bei einem »Farbverlauf« hat jeder Punkt eine eigene Farbe.
- Man braucht eine Funktion, die Koordinaten (x, y) auf Farben (r, q, b)abbildet.
- Funktionen wie die für einen linearen Verlauf sind vordefiniert,...
- ...man kann aber auch selber Funktionen definieren...
- ...sogar die für die Mandelbrotmenge!

»Schatten« sind »Farbverläufe«.

»Schatten« sind »Farbverläufe«.


```
\pgfdeclarefunctionalshading{Mandelbrot set}
{\pgfpoint{-50bp}{-50bp}}
{\pgfpoint{50bp}{50bp}}{}
 12.5 div exch 12.5 div exch
 1 index 1 index
 % Stack: c\_r c\_i z\_r z\_i % Formula: z'=z^2+c=(z\_r+i z\_i)^2+c\_r+i c\_i
           = (z_r^2 - z_i^2 + c_r) + i (2 z r z i + c i)
 % First iteration
 % 1. Compute z r^2 - z i^2 + c r
 1 index dup mul % z r^2
 1 index dup mul % z_i^2
 sub % z r^2 - z i^2
 4 index add % z r^2 -z i^2 + c r
 % 2. Compute 2 z r z i + c i
 3 1 roll
 % Second iteration
... 96 Zeilen ...
 add sgrt
 dup 4 1 roll
 2 gt { pop pop 2.0 exch
  div 1.0 exch sub dup dup}
  {pop pop 0.0 0.0 0.0} ifelse
```

Till Tantau

Zusammenfassung

TikZ ist voller kleiner Wunder.