EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

ΛK femtoscopy in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76~\mathrm{TeV}$

ALICE Collaboration*

Abstract

We present our femtoscopy analysis of ΛK correlations in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV from ALICE. The femtoscopic correlations result from strong final-state interactions, and are fit with a parametrization based on a model by Lednicky and Lyuboshitz. This allows us to both characterize the emission source and measure the scattering parameters for the particle pairs. We observe a large difference in the ΛK^+ and ΛK^- correlations in pairs with low relative momenta. This might suggest an effect arising from different quark-antiquark interactions between the pairs ($s\bar{s}$ in ΛK^+ and $u\bar{u}$ in ΛK^-), or from different net strangeness for each system.

© 2015 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}See Appendix A for the list of collaboration members

1 Introduction

This is where the introduction goes.

2 Data Analysis

This is where the data analysis section goes.

2.1 V0 selection

This is how we select V0s.

2.1.1 A selection

This is how we select Λ candidates.

2.1.2 K_S^0 selection

This is how we select K_S^0 candidates.

2.2 K^{\pm} selection

This is how we select K^{ch} or K^{\pm} candidates.

3 Construction of correlation functions and fitting

This is how we do it.

3.1 Fit Function

Ya boys Lednicky and Lyuboshitz!

3.2 Systematic uncertainties

This is the worst.

4 Results

Hooray, finally some results!

5 Summary

We did physics, and we found physics.

Acknowledgements

A The ALICE Collaboration