Category Theory

Ivan Murashko

July 22, 2018

Contents

1	Base definitions 7								
	1.1	Defini	tions		7				
		1.1.1	Object		7				
		1.1.2	Morphism		8				
		1.1.3	Category		10				
	1.2	Exam	ples		10				
		1.2.1	Set category		11				
		1.2.2	Hask category		13				
		1.2.3	C ++ category		14				
2	Objects and morphisms 15								
	2.1		ity		15				
		2.1.1	Equality of objects						
		2.1.2	Equality of morphisms						
	2.2 Initial and terminal objects								
	2.3								
	2.4		ples						
		2.4.1	Set category						
		2.4.2	Hask category		15				
3	Fun	ctors			17				
4	Monads								
Index									

4 CONTENTS

Introduction

There is an introduction to Category Theory. $\,$

6 CONTENTS

Base definitions

1.1 Definitions

1.1.1 Object

Definition 1.1 (Class). A class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share.

Definition 1.2 (Object). In category theory object is considered as something that does not have internal structure (aka point) but has a property that makes different objects belong to the same Class

Remark 1.3 (Class of Objects). The Class of Objects will be marked as ob(C) (see fig. 1.1).

Figure 1.1: Class of objects $\operatorname{ob}(C) = \{a,b,c,d\}$

1.1.2 Morphism

Morphism is a kind of relation between 2 Objects.

Definition 1.4 (Morphism). A relation between two Objects a and b

$$f_{ab}: a \to b$$

is called *morphism*. Morphism assumes a direction i.e. one Object (a) is called *source* and another one (b) target.

Morphisms have several properties. ¹

Property 1.5 (Composition). If we have 3 Objects a, b and c and 2 Morphisms

$$f_{ab}: a \to b$$

and

$$f_{bc}: b \to c$$

then there exists Morphism

$$f_{ac}: a \to c$$

such that

$$f_{ac} = f_{bc} \circ f_{ab}$$

Remark 1.6 (Composition). The equation

$$f_{ac} = f_{bc} \circ f_{ab}$$

means that we apply f_{ab} first and then we apply f_{bc} to the result of the application i.e. if our objects are sets and $x \in a$ then

$$f_{ac}(x) = f_{bc}(f_{ab}(x)),$$

where $f_{ab}(x) \in b$.

Property 1.7 (Associativity). The Morphisms Composition (Property 1.5) s should follow associativity property:

$$f_{ce} \circ (f_{bc} \circ f_{ab}) = (f_{ce} \circ f_{bc}) \circ f_{ab} = f_{ce} \circ f_{bc} \circ f_{ab}.$$

¹The properties don't have any proof and postulated as axioms

1.1. DEFINITIONS

9

Figure 1.2: Class of morphisms hom $ob(C) = \{f, g, h\}$, where $h = f \circ g$

Definition 1.8 (Identity morphism). For every Object a we define a special Morphism $\mathbf{1}_a: a \to a$ with the following properties: $\forall f_{ab}: a \to b$

$$\mathbf{1}_a \circ f_{ab} = f_{ab} \tag{1.1}$$

and $\forall f_{ba}: b \to a$

$$f_{ba} \circ \mathbf{1}_a = f_{ba}. \tag{1.2}$$

This morphism is called *identity morphism*.

Definition 1.9 (Commutative diagram). A commutative diagram is a diagram of Objects (also known as vertices) and Morphisms (also known as arrows or edges) such that all directed paths in the diagram with the same start and endpoints lead to the same result by composition

The following diagram commutes if $f_{ab} = f_{cb} \circ f_{ac}$.

Remark 1.10 (Class of Morphisms). The Class of Morphisms will be marked as hom(C) (see fig. 1.2)

Definition 1.11 (Monomorphism). If $\forall g_1, g_2$ the equation

$$f \circ g_1 = f \circ g_2$$

leads to

$$g_1 = g_2$$

then f is called monomorphism.

Figure 1.3: Category C. It consists of 4 objects $ob(C) = \{a, b, c, d\}$ and 7 morphisms $ob(C) = \{f, g, h = f \circ g, \mathbf{1}_a, \mathbf{1}_b, \mathbf{1}_c, \mathbf{1}_d\}$

Definition 1.12 (Epimorphism). If $\forall g_1, g_2$ the equation

$$g_1 \circ f = g_2 \circ f$$

leads to

$$g_1 = g_2$$

then f is called *epimorphism*.

1.1.3 Category

Definition 1.13 (Category). A category C consists of

- Class of Objects ob(C)
- Class of Morphisms hom(C) defined for ob(C), i.e. each morphism f_{ab} from hom(C) has both source a and target b from ob(C)

For any Object a there should be unique Identity morphism $\mathbf{1}_a$. Any morphism should satisfy Composition (Property 1.5) and Associativity (Property 1.7) properties. See fig. 1.3

1.2 Examples

There are several examples of categories that will also be used later

1.2. EXAMPLES 11

1.2.1 Set category

Definition 1.14 (Set). Set is a collection of distinct object. The objects are called the elements of the set.

Definition 1.15 (Function). If A and B are 2 Sets then a subset of $A \times B$ is called function f between the 2 sets, i.e. $f \subset A \times B$.

Example 1.16 (Set category). In the set category we consider a Set of Sets where Objects are the Sets and Morphisms are Functions between the sets.

The Identity morphism is trivial function such that $\forall x \in X : \mathbf{1}_X(x) = x$.

Remark 1.17 (Set vs Category). There is an interesting relation between sets and categories. In both we consider objects(sets) and relations between them(morphisms/functions).

In the set theory we can get info about functions by looking inside the objects(sets) aka use "microscope" [1]

Contrary in the category theory we initially don't have info about object internal structure but can get it using the relation between the objects i.e. using Morphisms. In other words we can use "telescope" [1] there.

Definition 1.18 (Domain). Given a function $f: X \to Y$, the set X is the domain.

Definition 1.19 (Codomain). Given a function $f: X \to Y$, the set Y is the codomain.

Definition 1.20 (Surjection). The function $f: X \to Y$ is surjective (or onto) if $\forall y \in Y$, $\exists x \in X$ such that f(x) = y (see figs. 1.4 and 1.5).

Remark 1.21 (Surjection vs Epimorphism). Surjection and Epimorphism are related each other. Consider a non-surjective function $f: X \to Y' \subset Y$ (see fig. 1.6). One can conclude that there is not an Epimorphism because $\exists g_1: Y' \to Y'$ and $g_2: Y \to Y$ such that $g_1 \neq g_2$ because they operates on different Domains but from other hand $g_1(Y') = g_2(Y')$. For instance we can choose $g_1 = \mathbf{1}_{Y'}, g_2 = \mathbf{1}_Y$. As soon as Y' is Codomain of f we always have $g_1(f(X)) = g_2(F(X))$.

As result we can say that an Surjection is a Epimorphism in **Set** category. Moreover there is a proof [3] of that fact.

Definition 1.22 (Injection). The function $f: X \to Y$ is injective (or one-to-one function) if $\forall x_1, x_2 \in X$, such that $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ (see figs. 1.5 and 1.7).

Figure 1.4: A surjective (non-injective) function from domain X to codomain Y

Figure 1.5: An injective and surjective function (bijection)

Figure 1.6: A non-surjective function f from domain X to codomain $Y' \subset Y$. $\exists g_1 : Y' \to Y', g_2 : Y \to Y$ such that $g_1(Y') = g_2(Y')$, but as soon as $Y' \neq Y$ we have $g_1 \neq g_2$. Using the fact that Y' is codomain of f we got $g_1 \circ f = g_2 \circ f$. I.e. the function f is not epimorphism.

1.2. EXAMPLES 13

Figure 1.7: A injective (non-surjective) function from domain X to codomain Y

Figure 1.8: A non-injective function f from domain X to codomain Y. $\exists g_1 : A \to X, g_2 : B \to X$ such that $g_1 \neq g_2$ but $f \circ g_1 = f \circ g_2$. I.e. the function f is not monomorphism.

Remark 1.23 (Injection vs Monomorphism). Injection and Monomorphism are related each other. Consider a non-injective function $f: X \to Y$ (see fig. 1.8). One can conclude that it is not monomorphism because $\exists g_1, g_2$ such that $g_1 \neq g_2$ and $f(g_1(a_1)) = g_3 = f(g_2(b_1))$.

As result we can say that an Injection is a Monomorphism in **Set** category. Moreover there is a proof [2] of that fact.

1.2.2 Hask category

Example 1.24 (Hask category). Types in Haskell are considered as Objects Functions are considered as Morphisms

For instance consider the function even that converts Int type into Bool.

```
isEven :: Int -> Bool
isEven x = x `mod` 2 == 0

There is also Identity morphism that is defined as follows
id :: a -> a
```

If we have an additional function

id x = x

```
stringLength :: String -> Int
stringLength x = length x
```

then we can create a Composition (Property 1.5)

```
isStringLengthEven :: String -> Bool
isStringLengthEven = isEven . stringLength
```

Remark 1.25 (Haskell lazy evaluation). Each Haskell type has a special value \perp . The value presents and lazy evaluations make several category law invalid, for instance Identity morphism behaviour become invalid in specific cases:

The following code

```
seq undefined True
```

produces undefined But the following

```
seq (id.undefined) True
seq (undefined.id) True
```

produces *True* in both cases. As result we have (we cannot compare compare functions in Haskell, but if we could we can get the following)

```
id . undefined /= undefined
undefined . id /= undefined,
```

i.e. (1.1) and (1.2) are not satisfied.

1.2.3 C++ category

Example 1.26 (C++ category). TBD

Objects and morphisms

2.1	Equ	ality

2.1.1 Equality of objects

via unique isomorphism

2.1.2 Equality of morphisms

TBD

2.2 Initial and terminal objects

TBD

2.3 Product and sum

TBD

2.4 Examples

2.4.1 Set category

TBD

2.4.2 Hask category

TBD

Functors

TBD

Monads

TBD

Index

C++ category	definition, 11	
example, 14	Haskell lazy evaluation	
Hask category	remark, 14	
example, 13	Telliark, 14	
Set category	Identity morphism, 10, 11, 14	
example, 11	definition, 9	
Aggagiativity property 10	Injection, 13	
Associativity property, 10	definition, 11	
declaration, 8	Injection vs Monomorphism	
Category	remark, 13	
definition, 10	Manager 12	
Class, 7, 9, 10	Monomorphism, 13	
definition, 7	definition, 9	
Class of Morphisms	Morphism, 8–11, 13	
remark, 9	C++ example, 14	
Class of Objects	Hask example, 13	
remark, 7	Set example, 11	
Codomain, 11	definition, 8	
definition, 11	Object, 7–11, 13	
Commutative diagram	C++ example, 14	
definition, 9	Hask example, 13	
Composition	Set example, 11	
remark, 8	definition, 7	
Composition property, 8, 10, 14	,	
declaration, 8	Set, 11	
,	definition, 11	
Domain, 11	Set vs Category	
definition, 11	remark, 11	
Epimorphism, 11	Surjection, 11	
definition, 10	definition, 11	
,	Surjection vs Epimorphism	
Function, 11	remark, 11	

Bibliography

- [1] Milewski, B. Category Theory for Programmers / B. Milewski. Bartosz Milewski, 2018. https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v0.7.0/category-theory-for-programmers.pdf.
- [2] ProofWiki. Injection iff monomorphism in category of sets / ProofWiki. 2018. https://proofwiki.org/wiki/Injection_iff_Monomorphism_in_Category_of_Sets.
- [3] ProofWiki. Surjection iff epimorphism in category of sets / ProofWiki. 2018. https://proofwiki.org/wiki/Surjection_iff_Epimorphism_in_Category_of_Sets.