$$=(A \cup B) \cap \sim (X \cup Y)$$
 (德·摩根律)

$$=(A \cup B) - (X \cup Y)$$
 (补交转换律)

$$=\sim (X \cup Y)$$
 ($E = A \cup B$)

$$=\sim \varphi(\langle X, Y \rangle)$$
 (φ 定义)

这就证明了 $\langle \mathcal{P}(A \cup B), \cap, \cup, \sim, \varnothing, A \cup B \rangle \stackrel{\varphi}{\cong} \langle \mathcal{P}(A) \times \mathcal{P}(B), \wedge, \vee, -, \langle \varnothing, \varnothing \rangle, \langle A, B \rangle \rangle$ 。

19.38

证明: 作 $f: B_1/\sim \to B_2$, $\forall [x] \in B_1/\sim$, 令 $f([x]) = \varphi(x)$ 。 由定义, 对任意 $[x], [y] \in B_1/\sim$, 有

f([x]) = f([y])

$$\iff \varphi(x) = \varphi(y) \tag{f 定义}$$

$$\iff$$
 $x \sim y$ (~ 定义)

$$\iff$$
 [x] = [y] (教材定理 2.27)

这就证明了 f 是函数, 且为单射。

对任意 $y \in B_2$,由于 φ 是满射,所以存在 $x \in B_1$,使 $f([x]) = \varphi(x) = y$,所以 f 是满射,从而是双射。

由于 φ 是同态, 所以对 B_1 上的任何 k_i 元运算 \circ_i 和任意 $x_1, x_2, \cdots, x_k \in B_1$, 有

$$\circ_i (f([x_1]), f([x_2]), \cdots, f([x_{k_i}])) = \circ_i (\varphi(x_1), \varphi(x_2), \cdots, \varphi(x_{k_i}))$$
 (f 定义)

$$=\varphi(\circ_i(x_1,x_2,\cdots,x_{k_i})) \qquad \qquad (\varphi 是同态)$$

$$= f([\circ_i(x_1, x_2, \cdots, x_{k_i})]) \tag{f 定义}$$

上述关于 o_i 的证明适用于 B_1 上的所有运算,从而证明了 f 是同构。

对任意 $x \in B_1$,由定义立即有 $f \circ g(x) = f(g(x)) = f([x]) = \varphi(x)$ 。这就证明了 f 是一个满足 $f \circ g = \varphi$ 的同构映射。

假设存在另一个同构映射 f',满足 $f' \circ q = \varphi$ 。则对任意 $x \in B_1$,有

$$f' \circ g(x) = \varphi(x) \tag{前提}$$

$$\iff f'([x]) = \varphi(x) \tag{g 定义}$$

$$\iff f'([x]) = f([x]) \tag{f[x] = \varphi(x)}$$

从而有 f' = f。这就证明了 f 是唯一的。

19.39 由有限布尔代数的表示定理可知,任何 8 元布尔代数都同构于 3 位逻辑代数 $(\{0,1\}^3, \land, \lor, -, 000, 111)$,其中 \land 、 \lor 和 - 分别是按位与、按位或和按位非运算。因此,下面只需讨论 $\{0,1\}^3$ 的所有子代数即可。

由于布尔代数的子代数也是布尔代数,从而由教材定理 19.26 可知, $\{0,1\}^3$ 的子代数只能是 1、2、4或8 阶的。又由于子代数需要对所有运算(包括代数常元 000 和 111)封闭,所以对 $\{0,1\}^3$ 的任意子代数 B_i ,必有 000, $111 \in B_i$ 。这就是说, $\{0,1\}^3$ 不可能有 1 阶的子代数。

显然, $\{0,1\}^3$ 的 8 阶子代数只有它自身, $\{0,1\}^3$ 的 2 阶子代数只有 $\{000,111\}$ 。

对 $\{0,1\}^3$ 的任意 4 阶子代数 B,若有 $x \in B$, $x \neq 000$, $x \neq 111$,则由子代数对补运算的封闭性知, $\bar{x} \in B$ 。由习题 19.16 第 (1) 小题结论可知, $\bar{x} \neq x$,又由分配格的补元唯一性可知, $\bar{x} \neq 000$, $\bar{x} \neq 111$ (若不然,比如 $\bar{x} = 111$,则 111 将有 x 和 000 两个补元,矛盾)。从而有 $B = \{000, x, \bar{x}, 111\}$ 。

反之,易于验证(完整证明见下题),对任意 $x \in \{0,1\}^3$, $\{0,x,\bar{x},1\}$ 都是 $\{0,1\}^3$ 的一个子布尔代数。从而 $\{0,1\}^3$ 的子代数有: