QUESTION 1

(1 pts)

Suppose you have a function, f(x), that represents some curve, and a point (a, b) on the curve. How do you find the slope of the tangent line at that point?

- A. Plug in the given point, and write in y = mx + b form.
- B. Find the derivative of f(x).
- C. Re-write the function in point-slope form.
- D. Find the derivative of f(x), and then determine the value of the derivative at that point.

QUESTION 2

(1 pts)

If c is a constant and f is a differentiable function, then $\frac{d}{dx}[cf(x)]$ is equivalent to:

- A. $c\frac{d}{dx}f(x)$
- B. $\frac{d}{dx}cf(x)$
- C. $\frac{d}{dx}f(x)c$
- D. f(x)

GUESTION 3 (1 pts) If f and g are both differentiable functions, then $\frac{d}{dx}[f(x)g(x)]$ is equivalent to:

- A. $\frac{d}{dx}f(x)\frac{d}{dx}g(x)$
- B. $\frac{d}{dx}[f(x) + g(x)]$
- C. $f(x)\left[\frac{d}{dx}g(x)\right] + g(x)\left[\frac{d}{dx}f(x)\right]$
- D. $\frac{d}{dx}f(x) + \frac{d}{dx}g(x)$

(1 pts)

If f and g are both differentiable functions, then $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right]$ is equivalent to:

- A. $\frac{\frac{d}{dx}f(x)}{\frac{d}{dx}g(x)}$
- B. $\frac{g(x)\frac{d}{dx}[f(x)]-f(x)\frac{d}{dx}[g(x)]}{[g(x)^2]}$
- C. $\frac{\frac{d}{dx}f(x) \frac{d}{dx}g(x)}{f(x)g(x)}$
- D. $\frac{d}{dx}f(x) \frac{d}{dx}g(x)$

Question 5		(1 pts)
Two lines are parallel if:		(1 Ptb)
A. They have the same slope.		
B. They are continuous.		
C. They have the same y-intercept.		
D. They pass the vertical line test.		
QUESTION 6		(1 pts)
Match the functions below (A-D) with their de	erivatives (E-H).	· - /
(Write your answers as A-G, B-F, etc.)		
A. $\frac{d}{dx}csc(x)$	E. $-csc(x)cot(x)$	
B. $\frac{d}{dx}sec(x)$	F. $-csc^2(x)$	
C. $\frac{d}{dx}cot(x)$	G. $-sin(x)$	
D. $\frac{d}{dx}cos(x)$	H. sec(x)tan(x)	
QUESTION 7		(1 pts)
$f(x) = cos(x)$. What is $f'(\frac{\pi}{2})$?		
A. 1		
B. 0		
C1		
D. $-\sin(x)$		
Question 8		(1 pts)
$f(x) = \sin(x)$. What is $f'(\frac{\pi}{4})$?		(1)
A. 0		
B. $\frac{\sqrt{2}}{2}$		
C. 1		
D. $-\frac{\sqrt{2}}{2}$		

QUESTION 9	(1 pts)
Given a function $f(x)$, when would we have a horizontal tangent line?	(1)
A. When $f'(x) = 0$.	
B. When the function is continuous.	
C. When $x = 0$.	
D. When $f(x) = 0$.	
Question 10	(1 pts)
Calculate $\lim_{x\to 0} \frac{\sin^2(x)}{x}$, - ,
A. 1	
$\operatorname{B} - \sin(r)$	

B. sin(x)

C. -1

D. 0