TD 3 - CALCULUS

(1) Prove the formula for a geometric series:

$$\forall n \ge 0, \forall x \ne 1:$$
 $1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}.$

- (2) Find a general formula for $\sum_{i=n_0}^{\infty} x^i$ and $\sum_{i=n_0}^{m} x^i$ for $n_0, m \in \mathbb{N}$ and |x| < 1.
- (3) Compute the values of the following series:

(a)
$$10 + 20 + 40 + 80 + \ldots + 10240$$

(b)
$$12+4+\frac{4}{3}+\frac{4}{9}+\frac{4}{27}+\dots$$

(c)
$$2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\dots$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 2^n}{3^{n-1}}$$

(4) Assume a series whose general term a_i is given by $a_i = 2 - \frac{1}{3^{2i}}$. What is the value of the partial sum $\sum_{i=0}^{n} a_i$? Does the series converge for $n \to \infty$?