2007-04-12 Sequence Listing-JAMES68.016APC.txt SEQUENCE LISTING

<110>	Bryan, Gregory Thomas Johnson, Richard Scott, Barry Young, Carolyn A. Tapper, Brian Anthony Parker, Emily Jane									
<120>	INDOLE-DITERPENE BIOSYNTHESIS									
<130>	JAMES68.016APC									
<140> <141>	US 10/584,429 2006-06-22									
<150> <151>	PCT/NZ2004/000333 2004-12-22									
<150> <151>	NZ 530331 2003-12-22									
<160>	55									
<170>	PatentIn version 3.3									
<210> <211> <212> <213>	1 1110 DNA Neotyphodium lolii									
<400> atgacga	1 patgg ctgccaatga ctttccattt caatgccagg agaagaaatc atattctcag	60								
ccaagt	ctag tctactgcaa tggtaacatt gcggagacgt atctcgaaga aaaggtattt	120								
atactg	ctcc tttataatct cgaatgccac ttaaaattta gacaggtttt gacagcgccg	180								
ttggat	tatt tgcgtgcctt acctagcaaa gatattcgca gtggactgac cgacgccatt	240								
aatgag	ttcc tgcgtgtccc agaggaaaag gttcttgtca taaagcgtat aattgatctt	300								
cttcac	aatg catccttact gtaagttcga gattgcataa catagaccta gtagattcta	360								
actaac	agct ttagcattga tgatatccag gattcatcca aactgcgacg tggagtccct	420								
gtagcc	cacc acatatttgg aatcgcacaa acaataaatt cggccaatct agcgtatttc	480								
attgcc	caga gagagcttga gaagcttacg aatcctcgag catttgctat atataatgag	540								
gagcta	atca atctgcatcg tggtcagggt atggagctcc attggagaga atcgctccat	600								
tgccct	accg aagatgagta tctgcgaatg atccaaaaga agacaggcgg tctgttccga	660								
ttggca	atca gactgctgca aggcgaaagc gctagcgatg acgattatgt ctcacttatt	720								
gatact	ctcg gaaccctgtt ccagattcga gatgactatc aaaacttaca gagtgatata	780								
tattct	aaga acaaaggcta ctgtgaggat ttaacagagg gcaaattctc gtatccggtc	840								
atccat	agta ttcggtcgcg accaggagat gttcgattaa tcaatatttt gaaacagcgt	900								
agtgaa	gatg ttatggtgaa gcaatacgcg gtgcaacata tcgaatctac aggaagcttc Page 1	960								

2007-04-12 Sequence Listing-JAMES68.016APC.txt

gcattctgtc aaaataaaat tcaatctttg gtggagcaag caagagagca attggcggct 1020 ctagaaaata gcagttcatg tggaggcccc gttcgcgaca tccttgacaa gttagcaata 1080 aaaccacggg caaatataga agtagagtag 1110

<210> 2

<211> 334

<212> PRT

<213> Neotyphodium lolii

<400> 2

Met Thr Met Ala Ala Asn Asp Phe Pro Phe Gln Cys Gln Glu Lys Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Tyr Ser Gln Pro Ser Leu Val Tyr Cys Asn Gly Asn Ile Ala Glu 20 25 30

Thr Tyr Leu Glu Glu Lys Val Leu Thr Ala Pro Leu Asp Tyr Leu Arg 35 40 45

Ala Leu Pro Ser Lys Asp Ile Arg Ser Gly Leu Thr Asp Ala Ile Asn 50 60

Glu Phe Leu Arg Val Pro Glu Glu Lys Val Leu Val Ile Lys Arg Ile 65 70 75 80

Ile Asp Leu Leu His Asn Ala Ser Leu Leu Ile Asp Asp Ile Gln Asp 85 90 95

Ser Ser Lys Leu Arg Arg Gly Val Pro Val Ala His His Ile Phe Gly $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ile Ala Gln Thr Ile Asn Ser Ala Asn Leu Ala Tyr Phe Ile Ala Gln 115 120 125

Arg Glu Leu Glu Lys Leu Thr Asn Pro Arg Ala Phe Ala Ile Tyr Asn 130 135 140

Glu Glu Leu Ile Asn Leu His Arg Gly Gln Gly Met Glu Leu His Trp 150 155 160

Arg Glu Ser Leu His Cys Pro Thr Glu Asp Glu Tyr Leu Arg Met Ile 165 170 175

Gln Lys Lys Thr Gly Gly Leu Phe Arg Leu Ala Ile Arg Leu Leu Gln 180 185 190

2007-04-12 Sequence Listing-JAMES68.016APC.txt Gly Glu Ser Ala Ser Asp Asp Tyr Val Ser Leu Ile Asp Thr Leu Gly Thr Leu Phe Gln Ile Arg Asp Asp Tyr Gln Asn Leu Gln Ser Asp 210 215 220Ile Tyr Ser Lys Asn Lys Gly Tyr Cys Glu Asp Leu Thr Glu Gly Lys 225 230 235 240 Phe Ser Tyr Pro Val Ile His Ser Ile Arg Ser Arg Pro Gly Asp Val 245 250 255 Arg Leu Ile Asn Ile Leu Lys Gln Arg Ser Glu Asp Val Met Val Lys 260 265 270 Gln Tyr Ala Val Gln His Ile Glu Sér Thr Gly Ser Phe Ala Phe Cys 280 Gln Asn Lys Ile Gln Ser Leu Val Glu Gln Ala Arg Glu Gln Leu Ala 290 295 300 Ala Leu Glu Asn Ser Ser Ser Cys Gly Gly Pro Val Arg Asp Ile Leu 305 310 315 320Asp Lys Leu Ala Ile Lys Pro Arg Ala Asn Ile Glu Val Glu 325 330 <210> 1647 <211> <212> DNA Neotyphodium lolii <400> atgactagcg acttcaaggt aataatcgtg ggaggatcag tggctgggct ttcactagcc cactgcttag aaaaaatcgg tgtttctttc atggttctag agaagggtaa tcaaatagct ccccaactcg gtgcctcaat tggcattttg ccaaatggtg gacgtattct tgatcaactg ggcatcttcc atagcatcga ggatgaaatc gaacctctag aatctgctat gatgagatac

60 120 180 240 300 ccggatggtt tctctttcaa aagtcaatat ccccaagctt tgcatactag gtaataacag 360 tgaaagaaga gtggcctata agtgttcata tatcgctaac ttcgtgcggt taatagtttt 420 ggttatcccg tggctttcct tgagaggcaa aggtttcttc agatacttta tgataaactc 480 aagagcaaag actgcgtttt tacaaacaag cgggtagtca gtattgcaag tggccaagac 540 aaagtcacag caaagacttc agatggcgct aagtacttag cagatatcgt gatcggtgct gacggggtcc acagcatcgt caggtcagag atttggaggc atttgaagga aaactctcaa 600 atatcagtat tagaggcacc gaacgcaagt aggttaacct aggattaatt gcaaagaaac 660 Page 3

	200	07-04-12 Sec	quence Listi	ng-JAMES68	.016APC.txt	
tttactaatg	agggagccac	ttaggtatta	agcatgatta	ttcatgcatt	tacggaattt	720
ctttaaacgt	tccccagatc	atcctaggaa	tacagttaaa	ctgtttagat	gacggagtgt	780
caatacactt	gtttacgggt	aaacaatcca	aattattttg	gtttgttatc	atcaaaacgc	840
ctcaggctag	ctttgctaaa	gtagagattg	acaatacaca	tacagcaagg	tgtatctgcg	900
aaggactgag	gacgaaaaag	gtttcagata	ccttatgttt	tgaagatgta	tggtcaagat	960
gcaccatatt	caagatgacg	cctcttgagg	aaggggtgtt	taagcattgg	aactatggcc	1020
gcttagcatg	tattggtgat	gctatccgca	aggtatgtgg	atgatgctat	atgtccctat	1080
ttcgtgtcat	cagtgggatg	acaaaagaag	gccactattt	gccgctaata	taaatgatcg	1140
tatcgctaac	attaacagat	ggccccaaat	aatgggcaag	gagcaaatat	ggcgatagag	1200
gacgcttgca	gtctcgcaaa	catcctccag	aaaaagatat	cacatggttc	gattcgagac	1260
caagatatca	attcaatgtt	tcaggaattc	tctatggctc	aacgggctcg	cacggagagc	1320
gtctgcgcgc	agtcggagtt	tctagtccgc	atgcatgcga	atcaaggtat	tggaagaaga	1380
cttcttgggc	ggtaccttat	tcctttcctg	tatgacgcac	ctgctggttt	atctggattt	1440
tctataagtg	gcgcaacaag	aatagagttc	atagacttgc	ccactagatc	tcttagggga	1500
gcgtggggaa	agtcatggag	agggtcatgg	gaattcatcc	tacaaagctt	ggtctatttg	1560
cgacccaagt	ttaggatagt	ttatgccttg	tatctcgttg	cagctgcagc	ttttatcttg	1620
tattgtctta	gcagtctctt	cccgtag				1647

<210> 4 <211> 472 <212> PRT

<213> Neotyphodium lolii

<400> 4

Leu Ser Leu Ala His Cys Leu Glu Lys Ile Gly Val Ser Phe Met Val 20 25 30

Leu Glu Lys Gly Asn Gln Ile Ala Pro Gln Leu Gly Ala Ser Ile Gly 40 45

Ile Leu Pro Asn Gly Gly Arg Ile Leu Asp Gln Leu Gly Ile Phe His 50 60

Ser Ile Glu Asp Glu Ile Glu Pro Leu Glu Ser Ala Met Met Arg Tyr 65 70 75 80 2007-04-12 Sequence Listing-JAMES68.016APC.txt Pro Asp Gly Phe Ser Phe Lys Ser Gln Tyr Pro Gln Ala Leu His Thr 85 90 95 Ser Phe Gly Tyr Pro Val Ala Phe Leu Glu Arg Gln Arg Phe Leu Gln 100 105 110Ile Leu Tyr Asp Lys Leu Lys Ser Lys Asp Cys Val Phe Thr Asn Lys 115 120 125 Arg Val Val Ser Ile Ala Ser Gly Gln Asp Lys Val Thr Ala Lys Thr 130 135 140 Ser Asp Gly Ala Lys Tyr Leu Ala Asp Ile Val Ile Gly Ala Asp Gly 145 150 155 160 Val His Ser Ile Val Arg Ser Glu Ile Trp Arg His Leu Lys Glu Asn 165 170 175 Ser Gln Ile Ser Val Leu Glu Ala Pro Asn Ala Ser Ile Lys His Asp 180 185 190 Tyr Ser Cys Ile Tyr Gly Ile Ser Leu Asn Val Pro Gln Ile Ile Leu 195 200 205 Gly Ile Gln Leu Asn Cys Leu Asp Asp Gly Val Ser Ile His Leu Phe 210 220 Thr Gly Lys Gln Ser Lys Leu Phe Trp Phe Val Ile Ile Lys Thr Pro 225 230 235 240 Gln Ala Ser Phe Ala Lys Val Glu Ile Asp Asn Thr His Thr Ala Arg 245 250 255 Cys Ile Cys Glu Gly Leu Arg Thr Lys Lys Val Ser Asp Thr Leu Cys 260 265 270 Phe Glu Asp Val Trp Ser Arg Cys Thr Ile Phe Lys Met Thr Pro Leu 275 280 285 Glu Glu Gly Val Phe Lys His Trp Asn Tyr Gly Arg Leu Ala Cys Ile 290 295 300 Gly Asp Ala Ile Arg Lys Met Ala Pro Asn Asn Gly Gln Gly Ala Asn 305 310 315 320 Met Ala Ile Glu Asp Ala Cys Ser Leu Ala Asn Ile Leu Gln Lys Lys 325 330 335

				2	2007-	-04-1	L2 S€	equer	nce l	isti	ing-I	JAMES	68.	016AF	C.txt	
Ile	Ser	His	Gly 340	Ser	Ile	Arg	Asp	G1n 345	Asp	Ile	Asn	Ser	Met 350	Phe	Gln	
Glu	Phe	Ser 355	Met	Ala	Gln	Arg	Ala 360	Arg	Thr	Glu	Ser	Val 365	Cys	Ala	Gln	
Ser	G]u 370	Phe	Leu	val	Arg	Met 375	His	Ala	Asn	Gln	Gly 380	Ile	Gly	Arg	Arg	
Leu 385	Leu	Gly	Arg	Tyr	Leu 390	Ile	Pro	Phe	Leu	Tyr 395	Asp	Ala	Pro	Ala	Gly 400	
Leu	Ser	Gly	Phe	Ser 405	Ile	Ser	Gly	Ala	Thr 410	Arg	Ile	Glu	Phe	Ile 415	Asp	
Leu	Pro	Thr	Arg 420	Ser	Leu	Arg	Gly	Ala 425	Trp	GТу	Lys	Ser	Trp 430	Arg	Gly	
Ser	Trp	Glu 435	Phe	Ile	Leu	Gln	Ser 440	Leu	val	Tyr	Leu	Arg 445	Pro	Lys	Phe	
Arg	Ile 450	val	Tyr	Ala	Leu	Tyr 455	Leu	val	Аlа	Аlа	А]а 460	Аlа	Phe	Ile	Leu	
Tyr 465	Cys	Leu	Ser	Ser	Leu 470	Phe	Pro									
<210 <211 <211 <211	1> 2 2> [5 2063 DNA Neoty	yphod	dium	1o1 ⁻	ii										
<400		9 C	ntaai	tttaa	ac aa	acta	tatta	a cti	tcta	ata	atao	-+++;	att 4	atcci	tgaat	60
_			-			_			_	_				_	tgatc	120
															ggatat	180
															gcctca	240
															ccgga	300
															cacga	360
tac	gacg	gtg a	acati	tctta	at to	gtgc	ctcca	a aga	atat	ttgg	atga	acct	cca	caaca	aagtca	420
caa	gagga	agt 1	taagt	tgcta	at ti	tatg	gttt	g at	tcgg	gtga	ggaa	atgc	cac	caaco	caaaaa	480
acg	caga	gcc 1	tatta	agcgo	ca to	ggtc	tcaca	a ta	ttcga	aatt	tgct	tagaa	att	ttggi	ggtag	540
cta	tagc	ggc a	atcad	ccct	gc ti	tgga	gaaaa	a cga	atgti	tggc	atto	gtg	cgc	ttcag	ggtatg	600

tacacccttc			quence Listi tccttactct			660
			gggatgagtt	-		720
_			caaaatccca			780
_		_	acatcagtgt			840
aaagcagtcg	aaaggataac	acatcggatt	tttgttggat	tgccattatg	tcggaatccc	900
caatgggtcc	aagcgaccag	caagcatgca	cattacggta	cgtcaattga	ctaataatag	960
gcaatatacg	cgctcatatg	ctttgcagca	acaatgatac	agatagctat	gagatctgtc	1020
ccaaagttca	ttcagccttt	actaaatttt	tgccttccgt	ggccatggaa	gaacgcagcc	1080
tgtgttcgtg	aagcaaagaa	tgcccttata	ttagaaatgc	aacgccgacg	aaatctcgag	1140
aaagttaaca	gttttgatta	tatcaaatcc	aatgacttgc	tgcaagcagt	tatggaaatg	1200
tcttctccta	gtcatgagga	tagccagctt	gatgttgtcg	cccagataat	gctcacgatg	1260
aacacaatcg	ctggccacag	tactgccgca	tccggagcac	atgcactgtt	cgatatggtt	1320
agccactcta	agtatattga	attgctgcgt	gaggaggctc	ttcaagtctt	tcgacatgtt	1380
gaactgcgtg	ttacaaaaca	ggctttgggg	gatttgcgaa	aattggacag	cttcctcaga	1440
gagttagtat	tgtcctaaac	atcacaatct	caccacattc	tcacgctagc	ttttcctccg	1500
tactaatgat	ggtcgttgct	aagatcccaa	cgacataatc	cgctaagctt	gtgtatgttt	1560
agctaagagt	ctcgaaaacc	tggaaatgtt	tgtcctgtgc	ccgagttcta	acgtctctta	1620
ctacagtagg	cttttttcgg	gtcgtattag	accctgccgg	tatcacactt	caagatggca	1680
cacatgttcc	ttacaacaca	ctgctttgtg	tcgcaccaca	tgcgatatcc	aatgacccgg	1740
atgtgataga	agacccaacc	tcgttcaacg	gtctgcgata	ctacgaacag	cgctgtcgtg	1800
acgccagtca	agagaaaaag	catcaatacg	ctactacgga	taaatctcac	ctgcattttg	1860
gctacggaac	ctgggcctgt	ccaggccgct	tcttggcctc	tgatatgtta	aaagtgattc	1920
taacgatgct	tctgcttcag	tatgacatcc	gctccccga	gagagcaaaa	cggcctgtgg	1980
caggtcattt	tcatgagttt	ccgcttttca	atattaacac	accactgtta	atgaaacgac	2040
gcaatgattc	gctagttcta	tga				2063

<210> 6 <211> 533 <212> PRT <213> Neot

<400> 6

Met Gln Tyr Gly Asn Léu Thr Thr Val Leu Leu Leu Arg Asn Thr Leu 10 15

Leu Ser Leu Asn Ser Ser Ser Ile Cys His Val His Trp Leu Gln Val Page 7

<213> Neotyphodium lolii

Ile Val Ala Leu Leu Val Leu Ile Val Cys Ile Phe Leu Tyr Trp Arg 35 40 45

Thr Pro Thr Gly Ile Asn Ala Pro Phe Ala Gly Tyr Arg Ser Pro Trp 50 60

Glu Pro Pro Leu Leu Val Gln Met Arg Tyr Val Phe Asn Ala Ala Ser 70 75 80

Met Ile Arg Glu Gly Tyr Ala Lys Trp Lys Asp Ser Leu Phe Gln Ile $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ser Arg Tyr Asp Gly Asp Ile Leu Ile Val Pro Pro Arg Tyr Leu Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Asp Leu His Asn Lys Ser Gln Glu Glu Leu Ser Ala Ile Tyr Gly Leu 115 120 125

Ile Arg Asn Phe Gly Gly Ser Tyr Ser Gly Ile Thr Leu Leu Gly Glu 130 135 140

Asn Asp Val Gly Ile Arg Ala Leu Gln Thr Lys Ile Thr Pro Asn Leu 145 150 155

Ala Lys Leu Cys Asp Asp Ile Arg Asp Glu Phe Gln Tyr Cys Leu Asp 165 170 175

Thr Asp Phe Pro Ala Cys Arg Asp Trp Thr Ser Val Ser Val His Pro 180 185 190

Leu Phe Leu Lys Ala Val Glu Arg Ile Thr His Arg Ile Phe Val Gly 200 205

Leu Pro Leu Cys Arg Asn Pro Gln Trp Val Gln Ala Thr Ser Lys His 210 220

Ala His Tyr Ala Thr Met Ile Gln Ile Ala Met Arg Ser Val Pro Lys 235 230 240

Phe Ile Gln Pro Leu Leu Asn Phe Cys Leu Pro Trp Pro Trp Lys Asr 245 250 255

Ala Ala Cys Val Arg Glu Ala Lys Asn Ala Leu Ile Leu Glu Met Gln 260 265 270

2007-04-12 Sequence Listing-JAMES68.016APC.txt Arg Arg Arg Asn Leu Glu Lys Val Asn Ser Phe Asp Tyr Ile Lys Ser 285 Asp Leu Leu Gln Ala Val Met Glu Met Ser Ser Pro Ser His Glu 290 295 300 Asp Ser Gln Leu Asp Val Val Ala Gln Ile Met Leu Thr Met Asn Thr Ile Ala Gly His Ser Thr Ala Ala Ser Gly Ala His Ala Leu Phe Asp 325 330 335 Met Val Ser His Ser Lys Tyr Ile Glu Leu Leu Arg Glu Glu Ala Leu Gln Val Phe Arg His Val Glu Leu Arg Val Thr Lys Gln Ala Leu Gly Asp Leu Arg Lys Leu Asp Ser Phe Leu Arg Glu Ser Gln Arg His Asn 370 380 Pro Leu Ser Leu Leu Gly Phe Phe Arg Val Val Leu Asp Pro Ala Gly 385 390 395 Ile Thr Leu Gln Asp Gly Thr His Val Pro Tyr Asn Thr Leu Leu Cys 405 410 415Val Ala Pro His Ala Ile Ser Asn Asp Pro Asp Val Ile Glu Asp Pro 420 425 430 Thr Ser Phe Asn Gly Leu Arg Tyr Tyr Glu Gln Arg Cys Arg Asp Ala 435 440 445 Ser Gln Glu Lys Lys His Gln Tyr Ala Thr Thr Asp Lys Ser His Leu 450 455 460 His Phe Gly Tyr Gly Thr Trp Ala Cys Pro Gly Arg Phe Leu Ala Ser 465 470 475 480 Asp Met Leu Lys Val Ile Leu Thr Met Leu Leu Gln Tyr Asp Ile 485 490 495 Arg Ser Pro Glu Arg Ala Lys Arg Pro Val Ala Gly His Phe His Glu Phe Pro Leu Phe Asn Ile Asn Thr Pro Leu Leu Met Lys Arg Asn 515 520 525

Asp Ser Leu Val Leu

<210>

<400>

```
1115
       DNA
       Neotyphodium lolii
<400>
                                                                       60
atgacatctg gagcatggct cgtggctcgc cctgcggcca tcgaaattgc ggccctcttg
tttgcattta cgctcgggta tctagtaaag tacacaatca attaccaatc tgtcgtttct
                                                                      120
                                                                      180
caagccattg atcattatgg ctatggctat gaacgtacct ctcacgaagg tattggcggc
                                                                      240
agcaatggca agattcctga ctgtccatac tcttatgtga ttagtctcta tgggcataat
                                                                      300
catttctctc ccctcgtgga ttttcttcat ccaacattga aacataaata tcccaagaaa
cattctttga tcctggatat catggatgcg gtccatcttt gtctaattat ggttgacgat
                                                                      360
atttgcgacc acagccctaa gcggaaaaat cacactacgg ctcacttgct atacggatca
                                                                      420
                                                                      480
tgcgaaactg ccaatcgagc atacttcgtt ctcacaaagg tcattaatag agcaatgaaa
                                                                      540
gaacaacctg tccttggaat tgaacttctg agagcactag aactgatact cgagggacaa
                                                                      600
gacatgtctt tggtttggcg aagagacggt ttgcgatctt tcgaatccta tggtgaagaa
agcctgttga cgtacaaaaa tatggctctg ctgaagacag gcacactttt tgtgctcctt
                                                                      660
                                                                      720
gggaggcttt tgaaccaagg aggtcatcaa tcagacgatc tgttaggccg atttgggtat
                                                                      780
qtaaattttt tttttttcg ctcgtttcat aattccgcgg caaggtcgct taactaattc
                                                                      840
aatggaatgg tagctggtac gcacaattgc aaaatgattg caagaacata tactcagaag
                                                                      900
agtacgcttt taacaaaggc actgttgcag aagacctacg caacagagaa ttgtcctttc
                                                                      960
ctgttgtggt tgctcttaat gacaaacata ctgagccgca gataaggaag gcgtttcaga
                                                                     1020
gccaaaatca aggcgacatt aaacgggcac tccaagcgtt agagtcacct agtgttaaaa
                                                                     1080
acacgtgtct caaaacgctc caggaggcag gtcagggtct agagaacttg gtggccgtct
                                                                     1115
ggggacgaaa agaacaaatg cactttacaa aatga
<210>
       345
<212>
       PRT
<213>
       Neotyphodium lolii
```

Met Thr Ser Gly Ala Trp Leu Val Ala Arg Pro Ala Ala Ile Glu Ile 1 10 15

Ala Ala Leu Leu Phe Ala Phe Thr Leu Gly Tyr Leu Val Lys Tyr Thr 20 25 30 Page 10 Ile Asn Tyr Gln Ser Val Val Ser Gln Ala Ile Asp His Tyr Gly Tyr 35 40 45 Gly Tyr Glu Arg Thr Ser His Glu Gly Ile Gly Gly Ser Asn Gly Lys 50 60 Ile Pro Asp Cys Pro Tyr Ser Tyr Val Ile Ser Leu Tyr Gly His Asn 65 70 75 80 His Phe Ser Pro Leu Val Asp Phe Leu His Pro Thr Leu Lys His Lys 85 90 95 Tyr Pro Lys Lys His Ser Leu Ile Leu Asp Ile Met Asp Ala Val His Leu Cys Leu Ile Met Val Asp Asp Ile Cys Asp His Ser Pro Lys Arg 115 120 125 Lys Asn His Thr Thr Ala His Leu Leu Tyr Gly Ser Cys Glu Thr Ala 130 135 140 Asn Arg Ala Tyr Phe Val Leu Thr Lys Val Ile Asn Arg Ala Met Lys 145 150 155 160 Glu Gln Pro Val Leu Gly Ile Glu Leu Leu Arg Ala Leu Glu Leu Ile 165 170 175 Leu Glu Gly Gln Asp Met Ser Leu Val Trp Arg Arg Asp Gly Leu Arg 180 185 190 Ser Phe Glu Ser Tyr Gly Glu Glu Ser Leu Leu Thr Tyr Lys Asn Met 200 205 Ala Leu Leu Lys Thr Gly Thr Leu Phe Val Leu Leu Gly Arg Leu Leu Asn Gln Gly Gly His Gln Ser Asp Asp Leu Leu Gly Arg Phe Gly Trp 225 230 235 240 Tyr Ala Gln Leu Gln Asn Asp Cys Lys Asn Ile Tyr Ser Glu Glu Tyr 245 250 255 Ala Phe Asn Lys Gly Thr Val Ala Glu Asp Leu Arg Asn Arg Glu Leu 260 265 270 Ser Phe Pro Val Val Val Ala Leu Asn Asp Lys His Thr Glu Pro Gln

Page 11

Ile Arg Lys Ala Phe Gln Ser Gln Asn Gln Gly Asp Ile Lys Arg Ala 290 295 300

Leu Gln Ala Leu Glu Ser Pro Ser Val Lys Asn Thr Cys Leu Lys Thr 305 310 315 320

Leu Gln Glu Ala Gly Gln Gly Leu Glu Asn Leu Val Ala Val Trp Gly 325 330 335

Arg Lys Glu Gln Met His Phe Thr Lys 340 345

<210> 9 <211> 1829

<213> Neotyphodium lolii

<400> 60 atgttaatgt tgcacgctgt cccagtgggt atctgtttac tactgtggta cgttgtttac ggtaccaaac ggaaagaatg tataccaacc attcgacgtt ggcctcgatt actccccaa 120 ttcctcgatc ggctgagtta taatgaccat gccgcccgcc tagtcaaaca tggctatgag 180 240 aaggtgttcg gtcccaagtc tgtgagcatc cgtgatgata gtactaaccg cctaggttac agcacaaaaa tcaaccgttt aggctactta agatggacat ggatctgatt gtcattcctt 300 360 tacaatacgc gctggaatta cgggcggtta cgagcgacaa attagaccct ttaacagcca 420 gctttgatga caatgctggt aaagttacga ggatattatt agggagcgaa cttcacacac 480 gtgccataca gcagcgtttg actccaaagc ttcgtaagtg taatctaaca gaatacgttt 540 gcactatgct aactgaatcc agcacaaact cttccagtgc tattggatga gctcaatcat 600 gcctttgggc aagtcttacc tgccggcaac gacggtatgt gttttcattc tttcaaacat 660 tccacttgtc tagtgttgtc taatattagt ggaggttcca atgcttggat ttctgtcaat 720 ccatacgaat tggttctcaa tctagctacc cgtgctacag cgaggctatt cgttggagac ctgatttgtc gaaacgaaat ttttctcgag actactgctt cttttagtcg caacacgttt 780 840 gatacgatat ccacctcccg tagttttggc aatttgttca cacattattt cgcacggtgg 900 atttccacag cgaaagaagc tcacgggcaa ttacaataca ttcaaaacct ccttggttca 960 gaagtccaga gaaggaaact taactctgag gaaaagcacg acgacttttt gcagtggtgt 1020 acagagttag cagtcaccga ggatgaagca cggccagaag cacttgcgca tcgtacgcta 1080 ggaatattga gcatggctgt cattcataca acagctatgg cgttaactca catacttttt 1140 gacatgatct cggacgacag cttgaaggag agcctccgaa gagaacagca aaacgtgctc

2007-04-12 Sequence Listing-JAMES68.016APC.txt	
aagcatggtt ggacggaaat cacgcaacag actatgcttg atatgaaaca attggatagc	1200
ctgatgagag agtcacaacg aatcaatcca gtgggcgagt gtaaggacta ttctaagcca	1260
gtcttttgtc aaacttggaa ctaactggcg attgaagtca cttttagacg cattgtccga	1320
gaacgaatta cattgtccga tggctaccag ctacagccgg gacagcagat tgcgattcca	1380
gcgaagtgta tcaatacgga cagtacgaaa ttatccgacg ctcacttgtt tcaacctttt	1440
cgatggttga aacaatctgg cactgccaca acatcatttt ctaacagcag cgccttgaat	1500
ctgcacttcg gatttgggag atatgcctgt ccgggacgct tcatagcttc cgtatgtgat	1560
gtagattttc atctttttt tttccatatc aatctccctt caagctcatg tgacgcacat	1620
tcgaccttct tgactaaccc ttgagtttgt gctcatagta tatgattaaa gcaatcatga	1680
gtcggattct gctcgagtat gattttaagc tagatagtga gtttccgtcg cggcgccctc	1740
ctaacattgt tcatggggat aagatcctcc ccaatcggaa tgccgttgtt cttttgcgcc	1800
gcttggagaa gacagttacc gtatgttga	1829

<210> 10

<400> 10

Met Leu Met Leu His Ala Val Pro Val Gly Ile Cys Leu Leu Leu Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Tyr Val Val Tyr Gly Thr Lys Arg Lys Glu Cys Ile Pro Thr Ile Arg 20 25 30

Arg Trp Pro Arg Leu Leu Pro Gln Phe Leu Asp Arg Leu Ser Tyr Asn 35 40 45

Asp His Ala Ala Arg Leu Val Lys His Gly Tyr Glu Lys His Lys Asn 50 60

Gln Pro Phe Arg Leu Leu Lys Met Asp Met Asp Leu Ile Val Ile Pro 65 70 75 80

Leu Gln Tyr Ala Leu Glu Leu Arg Ala Val Thr Ser Asp Lys Leu Asp 85 90 95

Pro Leu Thr Ala Ser Phe Asp Asp Asp Ala Gly Lys Val Thr Arg Ile $100 \hspace{1cm} 105 \hspace{1cm} 110$

Leu Leu Gly Ser Glu Leu His Thr Arg Ala Ile Gln Gln Arg Leu Thr 115 120 125

<211> 498 <212> PRT

<213> Neotyphodium lolii

				2	2007-	-04-1	12 Se	eque	nce l	_ist	ing-:	JAMES	568.0	0 1 6AF	c.txt
Pro	Lys 130	Leu	Pro	Gln	Thr	Leu 135	Pro	٧a٦	Leu	Leu	Asp 140	Glu	Leu	Asn	His
Ala 145	Phe	Gly	Gln	٧al	Leu 150	Pro	Ala	Gly	Asn	Asp 155	Gly	Ser	Asn	Ala	Trp 160
Ile	Ser	∨al	Asn	Pro 165	Tyr	Glu	Leu	∨al	Leu 170	Asn	Leu	Ala	Thr	Arg 175	Ala
Thr	Ala	Arg	Leu 180	Phe	٧a٦	Glу	Asp	Leu 185	Ile	Cys	Arg	Asn	Glu 190	Ile	Phe
Leu	Glu	Thr 195	Thr	Ala	Ser	Phe	Ser 200	Arg	Asn	Thr	Phe	Asp 205	Thr	Ile	Ser
Thr	Ser 210	Arg	Ser	Phe	Gly	Asn 215	Leu	Phe	Thr	ніѕ	Tyr 220	Phe	Ala	Arg	Trp
11e 225	Ser	Thr	Ala	Lys	G]u 230	Ala	His	Glу	Gln	Leu 235	Gln	Tyr	Ile	Gln	Asn 240
Leu	Leu	Gly	Ser	G]u 245	٧a٦	Gln	Arg	Arg	Lys 250	Leu	Asn	Ser	Glu	Glu 255	Lys
His	Asp	Asp	Phe 260	Leu	Gln	Trp	Cys	Thr 265	Glu	Leu	Ala	val	Thr 270	Glu	Asp
Glu	Ala	Arg 275	Pro	Glu	Ala	Leu	Ala 280	His	Arg	Thr	Leu	Gly 285	Ile	Leu	Ser
Met	Ala 290	∨al	Ile	His	Thr	Thr 295	Ala	Met	Ala	Leu	Thr 300	His	Ile	Leu	Phe
Asp 305	Met	Ile	Ser	Asp	Asp 310	Ser	Leu	Lys	Glu	Ser 315	Leu	Arg	Arg	Glu	G]n 320
Gln	Asn	∨al	Leu	Lys 325	His	Glу	Trp	Thr	Glu 330	Ile	Thr	Gln	Gln	Thr 335	Met
Leu	Asp	Met	Lys 340	Gln	Leu	Asp	Ser	Leu 345	Met	Arg	Glu	Ser	Gln 350	Arg	Ile
Asn	Pro	Val 355	Glу	Glu	Phe	Thr	Phe 360	Arg	Arg	Ile	val	Arg 365	Glu	Arg	Ile
Thr	Leu 370	Ser	Asp	GТу	Tyr	G]n 375	Leu	Gln		Gly age	380	Gln	Ile	Ala	Ile

Pro Ala Lys Cys Ile Asn Thr Asp Ser Thr Lys Leu Ser Asp Ala His 385 390 395 400

Leu Phe Gln Pro Phe Arg Trp Leu Lys Gln Ser Gly Thr Ala Thr Thr 405 410 415

Ser Phe Ser Asn Ser Ser Ala Leu Asn Leu His Phe Gly Phe Gly Arg 420 425 430

Tyr Ala Cys Pro Gly Arg Phe Ile Ala Ser Tyr Met Ile Lys Ala Ile 435 440 445

Met Ser Arg Ile Leu Leu Glu Tyr Asp Phe Lys Leu Asp Ser Glu Phe 450 455 460

Pro Ser Arg Arg Pro Pro Asn Ile Val His Gly Asp Lys Ile Leu Pro 465 470 475 480

Asn Arg Asn Ala Val Val Leu Leu Arg Arg Leu Glu Lys Thr Val Thr 485 490 495

val Cys

<210> 11 <211> 1945

<212> DNA

<213> Neotyphodium lolii

<400> 11 atggcatttg caagtctttt gcaccatatc tggaaccatg cagtggattg cgctgagcag 60 120 ctgacttggt ggcagaccat tgtgagcttc atcattttct gcatcatgtg ctcttggcta cctgggaatg gggaaatgcg cgctccgttt gttggttatc gctggccatt cgagcctact 180 240 ttctgggtcc gaatgcgctt catctttcag agtttaggca tgatgaccga aggatactca 300 aaggtgagct cccgtccggg tggagaaaga cagctagacg aatgactgac gccaaacgct 360 tgacagttca aggattccat gttcaagatc acgaccaacg atgccgactg gcttgtcctc 420 tcccaacgct acttggatga cttgcagtct ctgccagccg agagattgag ccatacagac gctctagtga cggtgagggc gcatactagt cgctagtccc tacgacagtg gtgtgctaat 480 cgagttgtgt ctcatttaga tgtgggggag cagccacagc ccttttgctc tgctcaacaa 540 600 gagtgatctt agctctcgag ctcttcgtgt aaggaccaat ccctccttgt tatgcagaac 660 ggatctgact tgaaaaggac gtggttgcgc cgaattatgc caaggacctt gatagcctcg 720 tagacgaact ccgctattcg cttgagcacg atatagacat acaggatggt atgtatgcgc Page 15

	200)7-04-12 Sec	quence Listi	ing-JAMES68.	016APC.txt	
ctattttcca	actaattttg	aggtcgtcat	gttggctgac	tgggtcgatg	cgcttagact	780
ggaaaccgat	tgatgccctt	gaactttctt	cgaagttggt	gttgcggata	tcgcagcgaa	840
tcttgatcgg	ctggcccatg	agtcgcgatc	aagagctcct	tgaatgcgca	caaggctacg	900
cagacgctgg	taagaggacg	agctgttacg	tatgaccctt	ttcttcggta	aaaactaacg	960
ggggtttcag	ctaccgtcgt	ccagtttgcc	ctgaaactac	ttcctcgcca	gattcggccg	1020
cttgtctatc	ctctgctccc	acaagcatgg	gctactaaat	cgtggatcag	gcgctgtgac	1080
aagatactgg	caaaggaaat	gcaacgtcga	caagttttgg	agaagtcgga	tcccgtgtac	1140
gagaaaccaa	aggacttgct	gcagggcatg	gtggacctgg	agccgtcccg	gcctgttgac	1200
aaacttggac	atgattttct	cgtccaagcc	ttgatttcca	gaatggctcc	agttgttacc	1260
atggcccaaa	cccttgttga	tcttgccctc	catcctgagg	atatcgagga	gctgcgtgat	1320
gaggttctgc	aagtcatagg	accagacggg	gcgggattag	gaaacctacg	acaatcattt	1380
accaaacttg	acaagatgga	cagcgtcttg	agggaatctg	ccaggttcac	ccctctatct	1440
atgagtaagt	gccatttctg	tcctccagaa	tagcttgctg	gcatgactaa	tctgtggtat	1500
agtgacaatg	caccgccggg	ttcaggacgc	caagggcatc	acgctccatg	acggtgtgca	1560
tcttccacga	ggcacgcatg	tggcattccc	agcgtaccac	attggcagag	atcccaagtt	1620
ggtgtcaggt	gcagatatct	atgacgggct	gcgctggtac	aggaaggacc	tcggcgaggc	1680
ccaagaaaac	gaagctccca	agcatcgatt	tgtcaccccc	gacagcaact	acttgacctt	1740
tgggtccggt	aaatacgtct	gccccggccg	atttatagcg	gaacacatgt	tgaagctgat	1800
gatgaccgcc	gtgctcctgc	gctacgagtt	caagtggcct	ccgggagtcc	ctgtgcccga	1860
acaacagtat	cggcatgtct	ttgcttatcc	aagcaaaacc	acactgttga	ttaaacgacg	1920
caaagatggc	gatcagattc	tttaa				1945

```
<210>
<211>
<212>
         12
525
          Neotyphodium lolii
```

<400> 12

Met Ala Phe Ala Ser Leu Leu His His Ile Trp Asn His Ala Val Asp $1 \hspace{1cm} 10 \hspace{1cm} 15$

Cys Ala Glu Gln Leu Thr Trp Trp Gln Thr Ile Val Ser Phe Ile Ile 20 25 30

Phe Cys Ile Met Cys Ser Trp Leu Pro Gly Asn Gly Glu Met Arg Ala 35 40 . 45

2007-04-12 Sequence Listing-JAMES68.016APC.txt Phe Val Gly Tyr Arg Trp Pro Phe Glu Pro Thr Phe Trp Val Arg Met Arg Phe Ile Phe Gln Ser Leu Gly Met Met Thr Glu Gly Tyr Ser 65 70 75 80 Lys Phe Lys Asp Ser Met Phe Lys Ile Thr Thr Asn Asp Ala Asp Trp 85 90 95 Leu Val Leu Ser Gln Arg Tyr Leu Asp Asp Leu Gln Ser Leu Pro Ala 100 105 110 100 Glu Arg Leu Ser His Thr Asp Ala Leu Val Thr Met Trp Gly Ser Ser His Ser Pro Phe Ala Leu Leu Asn Lys Ser Asp Leu Ser Ser Arg Ala Leu Arg Asp Val Val Ala Pro Asn Tyr Ala Lys Asp Leu Asp Ser Leu 145 150 155 160 Val Asp Glu Leu Arg Tyr Ser Leu Glu His Asp Ile Asp Ile Gln Asp 165 170 175 Asp Trp Lys Pro Ile Asp Ala Leu Glu Leu Ser Ser Lys Leu Val Leu Arg Ile Ser Gln Arg Ile Leu Ile Gly Trp Pro Met Ser Arg Asp Gln Glu Leu Leu Glu Cys Ala Gln Gly Tyr Ala Asp Ala Ala Thr Val Val Gln Phe Ala Leu Lys Leu Leu Pro Arg Gln Ile Arg Pro Leu Val Tyr 225 230 235 240 230 Pro Leu Leu Pro Gln Ala Trp Ala Thr Lys Ser Trp Ile Arg Arg Cys 245 250 255 Asp Lys Ile Leu Ala Lys Glu Met Gln Arg Arg Gln Val Leu Glu Lys 260 Ser Asp Pro Val Tyr Glu Lys Pro Lys Asp Leu Leu Gln Gly Met Val Asp Leu Glu Pro Ser Arg Pro Val Asp Lys Leu Gly His Asp Phe Leu 290 295 300

2007-04-12 Sequence Listing-JAMES68.016APC.txt Val Gln Ala Leu Ile Ser Arg Met Ala Pro Val Val Thr Met Ala Gln Thr Leu Val Asp Leu Ala Leu His Pro Glu Asp Ile Glu Glu Leu Arg Asp Glu Val Leu Gln Val Ile Gly Pro Asp Gly Ala Gly Leu Gly Asn Arg Gln Ser Phe Thr Lys Leu Asp Lys Met Asp Ser Val Leu Arg Glu Ser Ala Arg Phe Thr Pro Leu Ser Met Met Thr Met His Arg Arg Val Gln Asp Ala Lys Gly Ile Thr Leu His Asp Gly Val His Leu Pro 385 390 395 400 Arg Gly Thr His Val Ala Phe Pro Ala Tyr His Ile Gly Arg Asp Pro
405 410 415 Lys Leu Val Ser Gly Ala Asp Ile Tyr Asp Gly Leu Arg Trp Tyr Arg 420 425 430

Lys Asp Leu Gly Glu Ala Gln Glu Asn Glu Ala Pro Lys His Arg Phe 435 440 445

Val Thr Pro Asp Ser Asn Tyr Leu Thr Phe Gly Ser Gly Lys Tyr Val 450 455 460

Cys Pro Gly Arg Phe Ile Ala Glu His Met Leu Lys Leu Met Met Thr

Ala Val Leu Leu Arg Tyr Glu Phe Lys Trp Pro Pro Gly Val Pro Val 485 490 495

Pro Glu Gln Gln Tyr Arg His Val Phe Ala Tyr Pro Ser Lys Thr Thr 500 505 510

Leu Leu Ile Lys Arg Arg Lys Asp Gly Asp Gln Ile Leu 515 520 525

<210> 13

²⁰¹⁴

<211> <212> DNA

<213> Neotyphodium lolii

<400> 13

	200	07-04-12 Sec	quence List	ing-JAMES68	.016APC.txt	60
	taacagagca					60
	ccattattgg					120
tgaatctgtt	tcccttgcta	tgcacttttc	ttggatgctc	accaaaattt	ttcaaggtga	180
atgtacctgt	tgttggcatt	ggagttcgat	atacaaaatg	gctagcggct	attataaacg	240
tgcgtcatgc	tcgacaatct	atccgcgagg	gctatgcaaa	ggtttgtgtt	aaaaacgaat	300
aaaagcgctt	cgtaaacaaa	gagaactaat	actagtttct	agtatggcga	tttcgcgttt	360
cagataccta	ctatgactcg	aatggaggta	ttcatttgtg	atagacagat	gacaagggag	420
tatcagaatg	ttgacgacta	tcatttgtcg	ttccgagctg	tcatgaccga	ggtaagtaac	480
tagaccatgt	taactgtagg	aaaagaagaa	aaagctaaac	cgccgtacag	gagtttcaat	540
tcaaatggct	acttccagga	caggcacacg	aagcccggat	tatccctaac	tcagtgattg	600
ctaaggcctt	gagctggcag	agaacaaggg	cgaataaacc	cagcgatcca	ttcttcgaat	660
ctttctccgc	cgaattcatg	caggggtttc	aggaagagat	gcgacgacta	atccaatatc	720
aaaattcgtc	agttatgtca	aaccgctccg	gtgctgtcct	ggatccagcg	catggttggc	780
atgctgtgcc	ttgttttccc	ttggctctga	aggtaattgg	gcgccttact	acatacgtct	840
tgttcggcaa	acctttgtgc	caagatgcga	cattcctaaa	catgtgctgt	caatttggcg	900
atgtgattcc	cagggatgcg	atcatactac	gttcatggcc	agcattggca	aggccgtaag	960
caagtgccta	gacataaacc	cgtcagggtt	taaactcgca	ttaacattca	tatagtctta	1020
ttgtaaagat	cttgagtgct	ccaagggtta	tgggaaagtt	gcgaaacatt	ttgattgttg	1080
agataaagag	caggagagaa	tcccacgaaa	cgaacccaat	gagtgtatgg	ctgtctcgca	1140
cacccctct	agcattacac	attaacgtat	atctaggata	tcttggattt	cacaatggcc	1200
tgggttgacc	gtcatcctaa	cgctagcttt	gacgatcagc	acattgccga	gatgatgatt	1260
aacactattt	tcgcagctct	tcatacgtcg	agtcaggtat	attttttct	gtatgaaaag	1320
tccagagctt	aaagctaact	ggctcatagc	tggtggtgca	taccatcttt	gagcttgcct	1380
cacgtcctga	atatagcgat	gcgcttctgg	aagagataga	tgcatgcttt	gaaaagcatg	1440
gaaagggcac	taaagcagct	ctagactcaa	tgttcaaggt	ggatagtttc	atcaaagaaa	1500
cgcagaggtt	taaccctctt	gacgcatgta	taaattccct	gtctccgatt	ccatcattgc	1560
gatttgacta	acgccaccgt	cagccgctct	tgcaagactg	gctctcaaag	actttacttt	1620
ttccaatggc	ctaaacatcc	caaagggcag	tgtgattttc	acgccgaatt	cgcctatctt	1680
tgaggacgag	agatattaca	aggatccgaa	agtttttgat	ggatttcggt	ttgctaggat	1740
gcgtaatgac	ccaaaattag	gtctattctg	cgacctaaca	gcaacgaatg	aacaaagcat	1800
gcattttggg	actggacgtc	acgcctgtcc	tggtagattt	atggtttctg	atgaggtcaa	1860
gttagctgtg	attcatatct	taagtaattt	cgatttttgt Page		ttggaccacg	1920

19802014

<210> 14

<211> 537

<212> PRT

<213> Neotyphodium lolii

<400> 14

Met Lys Met Leu Thr Glu His Phe Asp Phe Pro Lys Leu Asn Phe Ala 1 5 10 15

Thr Ile Val Ile Ser Gly Ala Thr Ile Ile Gly Ile Ile Phe Leu Arg 20 25 30

Tyr Leu Asn Tyr Pro Thr Lys Val Asn Val Pro Val Val Gly Ile Gly
35 40 45

Val Arg Tyr Thr Lys Trp Leu Ala Ala Ile Ile Asn Val Arg His Ala 50 55 60

Arg Gln Ser Ile Arg Glu Gly Tyr Ala Lys Tyr Gly Asp Phe Ala Phe 65 70 75 80

Gln Ile Pro Thr Met Thr Arg Met Glu Val Phe Ile Cys Asp Arg Gln 85 90 95

Met Thr Arg Glu Tyr Gln Asn Val Asp Asp Tyr His Leu Ser Phe Arg 100 105 110

Ala Val Met Thr Glu Glu Phe Gln Phe Lys Trp Leu Leu Pro Gly Gln 115 120 125

Ala His Glu Ala Arg Ile Ile Pro Asn Ser Val Ile Ala Lys Ala Leu 130 135 140

Ser Trp Gln Arg Thr Arg Ala Asn Lys Pro Ser Asp Pro Phe Phe Glu 145 150 155 160

Ser Phe Ser Ala Glu Phe Met Gln Gly Phe Gln Glu Glu Met Arg Arg 165 170 175

Leu Ile Gln Tyr Gln Asn Ser Ser Val Met Ser Asn Arg Ser Gly Ala 180 185 190

Val Leu Asp Pro Ala His Gly Trp His Ala Val Pro Cys Phe Pro Leu 195 200 205 Page 20 Ala Leu Lys Val Ile Gly Arg Leu Thr Thr Tyr Val Leu Phe Gly Lys 210 220 Pro Leu Cys Gln Asp Ala Thr Phe Leu Asn Met Cys Cys Gln Phe Gly 225 230 235 240 Asp Val Ile Pro Arg Asp Ala Ile Ile Leu Arg Ser Trp Pro Ala Leu 245 250 255 Ala Arg Pro Leu Ile Val Lys Ile Leu Ser Ala Pro Arg Val Met Gly 260 265 270 Lys Leu Arg Asn Ile Leu Ile Val Glu Ile Lys Ser Arg Arg Glu Ser 275 280 285 His Glu Thr Asn Pro Met Ser Asp Ile Leu Asp Phe Thr Met Ala Trp 290 295 300 Val Asp Arg His Pro Asn Ala Ser Phe Asp Asp Gln His Ile Ala Glu 305 310 315 320Met Met Ile Asn Thr Ile Phe Ala Ala Leu His Thr Ser Ser Gln Leu 325 330 335 Val Val His Thr Ile Phe Glu Leu Ala Ser Arg Pro Glu Tyr Ser Asp 340 345 350 Ala Leu Leu Glu Glu Ile Asp Ala Cys Phe Glu Lys His Gly Lys Gly 355 360 365 Thr Lys Ala Ala Leu Asp Ser Met Phe Lys Val Asp Ser Phe Ile Lys 370 375 380 Glu Thr Gln Arg Phe Asn Pro Leu Asp Ala Ser Ala Leu Ala Arg Leu 385 Ala Leu Lys Asp Phe Thr Phe Ser Asn Gly Leu Asn Ile Pro Lys Gly 405 410 415Ser Val Ile Phe Thr Pro Asn Ser Pro Ile Phe Glu Asp Glu Arg Tyr 420 Tyr Lys Asp Pro Lys Val Phe Asp Gly Phe Arg Phe Ala Arg Met Arg 435 440 445 Asn Asp Pro Lys Leu Gly Leu Phe Cys Asp Leu Thr Ala Thr Asn Glu

Page 21

Gln Ser Met His Phe Gly Thr Gly Arg His Ala Cys Pro Gly Arg Phe 465 470 475 480

Met Val Ser Asp Glu Val Lys Leu Ala Val Ile His Ile Leu Ser Asn 485 490 495

Phe Asp Phe Cys Ile Glu Asn Phe Gly Pro Arg Pro Ala Asn Gln Pro 500 505 510

Phe Gly Lys Phe Leu Leu Pro Asp Met Ser Ala Lys Ile Trp Leu Arg 515 520 525

Glu Lys Arg Ala Arg Glu Lys Asn Leu 530 535

<210> 15 <211> 1496

<212> DNA <213> Neotyphodium lolii

<400> 15 60 atgattgcga aaaatattga actcaatggc ttggatccgg caaccagggc attggacatt 120 ctatactgga aaaatcactg catcaaacag ctagaatctc tcctatgcgc cacagattca 180 tactgcactg cagacaaggc cgctcaacta cgcattttgt cagagttggt gctccccaat 240 cttggccctc ggccgtccaa tgccactggg ccatcctatc ttacacgaag tggttcccca 300 ataatgttaa gtctaaatac aacatcatca aaaaactgcg tcagatattg ctgggagatt 360 ctaggggcga ctggcgcaag taatgatgat cctttggcag tccaagttgc taaggatgta 420 qtggcttctc tgtctgctac ttttcgcctt tcaacaaaat ggagcgaaac tctactgtcc 480 aattttgcag taacaccaga ccaagctcga caagttatta acatgctacc cgagtggatt 540 caaggcttcg tacctgaggg aatggagtgc gattttccaa agagaatccc gttcgccatg acatcattcg acctaaatgg ctccaatgta gctatgaagc tctacgttaa tccaagggta 600 660 aaggagattt taactggtac tccctcatca gacttggtct gggagttcct ccgaaattta 720 acaccagaaa tgaaaccacg agcggtcgac ttgcttgaga ggtaagaatg gctttgaact 780 ttcqcccacc ttgtcagccc catacgctaa gcgctaactc cccacacatt aacaggttta 840 ttaccgataa ttcaggcccg tctgctattg agcttgtagg tattgactgc gttgacgacg 900 ctcacctatc aaatgcaagg gtcaagcttt acgttcatac catgagcagc tcatttaaca 960 ccgtaaagaa ttatgttact cttgggggtg caatctggga tgaacaaacc caaaagggct 1020 taggaatact acaaagtatt tggcacctat tgcttcagga gccagagggt atttctgaca

	200	7-04-12 Sec	uence Listi	ina-JAMES68.	.016APC.txt	
atggattcga		aacgactctt				1080
tcgagctacg	cccaggtaca	gacttccctc	aggtgaagac	ctatgtgcca	acttggaact	1140
atcttcgaac	cgacggggaa	actatccaga	actatgaggc	gatcttccga	gcttgtgacc	1200
atccttgggg	tgaagatagg	acgtacggca	aaatttttca	agatgcattg	taagttatcc	1260
cttcagatta	gcgctaaaag	gagtttgaga	tactcctcaa	tgcaagctat	taggttgtga	1320
aattgccact	actaattgga	gctttttata	gcggacctgc	aaccgagagt	cggaaaaaac	1380
ccattcactg	cgacgcatct	tttctgttta	ccgaagaaac	tggtgtctac	cagacgctgt	1440
atttcagtcc	tccgattgag	ggggaaacag	aagtccagtc	aaatctcgtt	gcttga	1496

<210> 16

<211> 439

<212> PRT

<213> Neotyphodium lolii

<400> 16

Met Ile Ala Lys Asn Ile Glu Leu Asn Gly Leu Asp Pro Ala Thr Arg $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Leu Asp Ile Leu Tyr Trp Lys Asn His Cys Ile Lys Gln Leu Glu 20 25 30

Ser Leu Leu Cys Ala Thr Asp Ser Tyr Cys Thr Ala Asp Lys Ala Ala 35 40 45

Gln Leu Arg Ile Leu Ser Glu Leu Val Leu Pro Asn Leu Gly Pro Arg 50 60

Pro Ser Asn Ala Thr Gly Pro Ser Tyr Leu Thr Arg Ser Gly Ser Pro 65 70 75 80

Ile Met Leu Ser Leu Asn Thr Thr Ser Ser Lys Asn Cys Val Arg Tyr 85 90 95

Cys Trp Glu Ile Leu Gly Ala Thr Gly Ala Ser Asn Asp Asp Pro Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Arg Leu Ser Thr Lys Trp Ser Glu Thr Leu Leu Ser Asn Phe Ala Val 130 135 140

Thr Pro Asp Gln Ala Arg Gln Val Ile Asn Met Leu Pro Glu Trp Ile 145 150 155 160

				2	2007-	-04-1	L2 Se	equer	ice i	ist-	ing-:	JAMES	68.0)16AF	C.txt
Gln	Gly	Phe	٧a٦	Pro 165	Glu	Gly	Met	Glu	Cys 170	Asp	Phe	Pro	Lys	Arg 175	Ile
Pro	Phe	Ala	Met 180	Thr	Ser	Phe	Asp	Leu 185	Asn	Gly	Ser	Asn	Val 190	Ala	Met
Lys	Leu	Tyr 195	∨al	Asn	Pro	Arg	Va1 200	Lys	Glu	Ile	Leu	Thr 205	Gly	Thr	Pro
Ser	Ser 210	Asp	Leu	Val	Trp	Glu 215	Phe	Leu	Arg	Asn	Leu 220	Thr	Pro	Glu	Met
Lys 225	Pro	Arg	Ala	val	Asp 230	Leu	Leu	Glu	Arg	Phe 235	Ile	Thr	Asp	Asn	Ser 240
Gly	Pro	Ser	Ala	Ile 245	Glu	Leu	۷al	Gly	Ile 250	Asp	Cys	٧a٦	Asp	Asp 255	Ala
His	Leu	Ser	Asn 260	Ala	Arg	val	Lys	Leu 265	Tyr	٧a٦	His	Thr	Met 270	Ser	Ser
Ser	Phe	Asn 275	Thr	∨al	Lys	Asn	Tyr 280	۷a٦	Thr	Leu	Glу	Gly 285	Ala	Ile	Trp
Asp	G]u 290	Gln	Thr	Gln	Lys	G]y 295	Leu	Gly	Ile	Leu	G]n 300	Ser	Ile	Trp	His
Leu 305	Leu	Leu	Gln	Glu	Pro 310	Glu	Gly	Ile	Ser	Asp 315	Asn	Gly	Phe	Asp	Lys 320
Pro	val	Asn	Asp	Ser 325	Ser	Met	Leu	Cys	G]n 330	Lys	Leu	Tyr	Phe	Ser 335	Phe
Glu	Leu	Arg	Pro 340	Gly	Thr	Asp	Phe	Pro 345	Gln	val	Lys	Thr	Tyr 350	val	Pro
Thr	Trp	Asn 355	Tyr	Leu	Arg	Thr	Asp 360	Gly	Glu	Thr	Ile	G]n 365	Asn	Tyr	Glu
Ala	11e 370	Phe	Arg	Ala	Cys	Asp 375	His	Pro	Trp	Gly	Glu 380	Asp	Arg	Thr	Tyr
Gly 385	Lys	Ile	Phe	Gln	Asp 390	Ala	Phe	Glу	Pro	А]а 395	Thr	Glu	Ser	Arg	Lys 400
Lys	Pro	Ile	His	Cys 405	Asp	Ala	Ser	Phe	410	Phe age		Glu	Glu	Thr 415	Gly

Val Tyr Gln Thr Leu Tyr Phe Ser Pro Pro Ile Glu Gly Glu Thr Glu 420 425 430

Val Gln Ser Asn Leu Val Ala 435

<210> 17 <211> 1110 <212> DNA <213> Epichloe festucae

<400> atgacgatgg ctgccaatga ctttccattt caatgccagg agaagaaatc atattctcag 60 120 ccaagtctag tctactgcaa tggtaacatt gcggagacgt atctcgaaga aaaggtattt atactgctcc tttataatct cgaatgccac ttaaaattta gacaggtttt gacagcgccg 180 240 ttqqattatt tqcqtqcctt acctagcaaa gatattcgca gtggactgac cgacgccatt 300 aatgagttcc tgcgtgtccc agaggaaaag gttcttgtca taaagcgtat aattgatctt 360 cttcacaatg catccttact gtaagttcga gattgcataa catagaccta gtagattcta 420 actaacagct ttagcattga tgatatccag gattcatcta aactgcgacg tggagtccct qtagcccacc acatatttgg aatcgcacaa acaataaatt cggccaatct agcgtatttc 480 540 attgcccaga gagagettga gaagettacg aatcetegag catttgctat atataatgag gagctaatca atctgcatcg tggtcagggt atggagctcc attggagaga atcgctccat 600 660 tgccctaccg aagatgagta tctgcgaatg atccaaaaga agacaggcgg tctgttccga 720 ttggcaatca gactgctgca aggcgaaagc gctagcgatg acgattatgt ctcacttatt 780 gatactctcg gaaccctgtt ccagattcga gatgactatc aaaacttaca gagtgatata 840 tattctaaga acaaaggcta ctgtgaggat ttaacagagg gcaaattctc gtatccggtc atccatagta ttcggtcgcg accaggagat gttcgattaa tcaatatttt gaaacagcgt 900 agtgaagatg ttatggtgaa gcaatacgcg gtgcaacata tcgaatctac aggaagcttc 960 1020 gcattctgtc aaaataaaat tcaatctttg gtggagcaag caagagagca attggcggct ctagaaaata gcagttcatg tggaggcccc gttcgcgaca tccttgacaa gttagcaata 1080 1110 aaaccacggg caaatataga agtagagtag

<210> 18 <211> 334 <212> PRT <213> Epichloe festucae <400> 18

Met Thr Met Ala Ala Asn Asp Phe Pro Phe Gln Cys Gln Glu Lys Lys Page 25 Ser Tyr Ser Gln Pro Ser Leu Val Tyr Cys Asn Gly Asn Ile Ala Glu 20 25 30

Thr Tyr Leu Glu Glu Lys Val Leu Thr Ala Pro Leu Asp Tyr Leu Arg 35 40 45

Ala Leu Pro Ser Lys Asp Ile Arg Ser Gly Leu Thr Asp Ala Ile Asn 50 60

Glu Phe Leu Arg Val Pro Glu Glu Lys Val Leu Val Ile Lys Arg Ile 65 70 75 80

Ile Asp Leu Leu His Asn Ala Ser Leu Leu Ile Asp Asp Ile Gln Asp 85 90 95

Ser Ser Lys Leu Arg Arg Gly Val Pro Val Ala His His Ile Phe Gly 100 105 110

Ile Ala Gln Thr Ile Asn Ser Ala Asn Leu Ala Tyr Phe Ile Ala Gln 115 120 125

Arg Glu Leu Glu Lys Leu Thr Asn Pro Arg Ala Phe Ala Ile Tyr Asn 130 135 140

Glu Glu Leu Ile Asn Leu His Arg Gly Gln Gly Met Glu Leu His Trp 145 150 155 160

Arg Glu Ser Leu His Cys Pro Thr Glu Asp Glu Tyr Leu Arg Met Ile 165 170 175

Gln Lys Lys Thr Gly Gly Leu Phe Arg Leu Ala Ile Arg Leu Leu Gln 180 185 190

Gly Glu Ser Ala Ser Asp Asp Tyr Val Ser Leu Ile Asp Thr Leu 195 200 205

Gly Thr Leu Phe Gln Ile Arg Asp Asp Tyr Gln Asn Leu Gln Ser Asp 210 215 220

Ile Tyr Ser Lys Asn Lys Gly Tyr Cys Glu Asp Leu Thr Glu Gly Lys 235 230 235

Phe Ser Tyr Pro Val Ile His Ser Ile Arg Ser Arg Pro Gly Asp Val 245 250 255 2007-04-12 Sequence Listing-JAMES68.016APC.txt
Arg Leu Ile Asn Ile Leu Lys Gln Arg Ser Glu Asp Val Met Val Lys
260 265 270

Gln Tyr Ala Val Gln His Ile Glu Ser Thr Gly Ser Phe Ala Phe Cys 275 280 285

Gln Asn Lys Ile Gln Ser Leu Val Glu Gln Ala Arg Glu Gln Leu Ala 290 295 300

Ala Leu Glu Asn Ser Ser Ser Cys Gly Gly Pro Val Arg Asp Ile Leu 305 310 315 320

Asp Lys Leu Ala Ile Lys Pro Arg Ala Asn Ile Glu Val Glu 325 330

<210> 19 <211> 1647

<212> DNA <213> Epichloe festucae

<400> 60 atgactagcg acttcaaggt aataatcgtg ggaggatcag tggctgggct ttcactagcc 120 cactgcttag aaaaaatcgg tgtttctttc gtggttctag agaagggtaa tcaaatagct ccccaactcg gtgcctcaat tggcattttg ccaaatggtg gacgtattct tgatcaactg 180 240 ggcatcttcc atagcatcga ggatgaaatc gaacctctag aatctgctat gatgagatac ccggatggct tctctttcaa aagtcaatat ccccaagctt tgcatactag gtaataacag 300 360 tgaaagaaga gtggcctata agtgttcata tatcgctaac ttcgtgcggt taatagtttt 420 ggttatcccg tggctttcct tgagaggcaa aggtttcttc agatacttta tgataaactc 480 aagagcaaag actgcgtttt tacaaacaag cgggtagtca gtattgcaag tggccaagac 540 aaagtcacag caaagacttc agatggcgct aagtacttag cagatatcgt gatcggtgct gacggggtcc acagcatcgt caggtcagag atttggaggc atttgaagga aaactctcaa 600 atatcagtat tagaggcacc gaacgcaagt aggttaacct aggattaatt gcaaagaaac 660 720 tttactaatg agggagccac ttaggtatta agcatgatta ttcatgcatt tacggaattt ctttaaacgt tccccagatc atcctaggaa tacagttaaa ctgtttagat gacggagtgt 780 840 caatacactt gtttacgggt aaacaatcca aattattttg gtttgttatc atcaaaacgc ctcaggctag ctttgctaaa gtagagattg acaatacaca tacagcaagg tgtatctgcg 900 960 aaggactgag gacgaaaaag gtttcagata ccttatgttt tgaagatgta tggtcaagat 1020 gcaccatatt caagatgacg cctcttgagg aaggggtgtt taagcattgg aactatggcc 1080 gcttagcatg tattggtgat gctatccgca aggtatgtgg atgatgctat atgtccctat 1140 ttcgtgtcat cagtgggatg acaaaagaag gccactattt gccgctaata taaatgatcg Page 27

2007-04-12 Sequence Listing-JAMES68.016APC.txt 1200 tatcgctaac attaacagat ggccccaaat aatgggcaag gagcaaatat ggcgatagag 1260 gacgcttgca gtctcgcaaa catcctccag aaaaagatat cacatggttc gattcgagac 1320 caagatatca attcaatgtt tcaggaattc tctatggctc aacgggctcg cacggagagc gtctgcgcgc agtcggagtt tctagtccgc atgcatgcga atcaaggtat tggaagaaga 1380 cttcttgggc ggtaccttat tcctttcctg tatgacgcac ctgctggttt atctggattt 1440 1500 tctataagtg gcgcaacaag aatagagttc atagacttgc ccactagatc tcttagggga 1560 gcgtggggaa agtcatggag agggtcatgg gaattcatcc tacaaagctt ggtctatttg cgacccaagt ttaggatagt ttatgccttg tatctcgttg cagctgcagc ttttatcttg 1620 1647 tattgtctta gcagtctctt cccgtag <210> 20 472 **PRT** Epichloe festucae <400> Met Thr Ser Asp Phe Lys Val Ile Ile Val Gly Gly Ser Val Ala Gly 1 10 15 Leu Ser Leu Ala His Cys Leu Glu Lys Ile Gly Val Ser Phe Val Val 20 25 30 Leu Glu Lys Gly Asn Gln Ile Ala Pro Gln Leu Gly Ala Ser Ile Gly 35 40 45 Ile Leu Pro Asn Gly Gly Arg Ile Leu Asp Gln Leu Gly Ile Phe His 50 60

Ser Ile Glu Asp Glu Ile Glu Pro Leu Glu Ser Ala Met Met Arg Tyr 65 70 75 80

Pro Asp Gly Phe Ser Phe Lys Ser Gln Tyr Pro Gln Ala Leu His Thr 85 90 95

Ser Phe Gly Tyr Pro Val Ala Phe Leu Glu Arg Gln Arg Phe Leu Gln 100 105 110

Ile Leu Tyr Asp Lys Leu Lys Ser Lys Asp Cys Val Phe Thr Asn Lys 115 120 125

Arg Val Val Ser Ile Ala Ser Gly Gln Asp Lys Val Thr Ala Lys Thr 130 135 140 2007-04-12 Sequence Listing-JAMES68.016APC.txt Ser Asp Gly Ala Lys Tyr Leu Ala Asp Ile Val Ile Gly Ala Asp Gly 145 150 155 160 Val His Ser Ile Val Arg Ser Glu Ile Trp Arg His Leu Lys Glu Asn 165 170 175 Ser Gln Ile Ser Val Leu Glu Ala Pro Asn Ala Ser Ile Lys His Asp 180 185 190 Tyr Ser Cys Ile Tyr Gly Ile Ser Leu Asn Val Pro Gln Ile Ile Leu 195 200 205 Gly Ile Gln Leu Asn Cys Leu Asp Asp Gly Val Ser Ile His Leu Phe 210 220 Thr Gly Lys Gln Ser Lys Leu Phe Trp Phe Val Ile Ile Lys Thr Pro 225 230 235 240 Gln Ala Ser Phe Ala Lys Val Glu Ile Asp Asn Thr His Thr Ala Arg 245 250 255 Cys Ile Cys Glu Gly Leu Arg Thr Lys Lys Val Ser Asp Thr Leu Cys 260 265 270 Phe Glu Asp Val Trp Ser Arg Cys Thr Ile Phe Lys Met Thr Pro Leu 275 280 285 Glu Glu Gly Val Phe Lys His Trp Asn Tyr Gly Arg Leu Ala Cys Ile 290 295 300 Gly Asp Ala Ile Arg Lys Met Ala Pro Asn Asn Gly Gln Gly Ala Asn 305 315 320 Met Ala Ile Glu Asp Ala Cys Ser Leu Ala Asn Ile Leu Gln Lys Lys 325 330 335 Ile Ser His Gly Ser Ile Arg Asp Gln Asp Ile Asn Ser Met Phe Gln 340 345 350Glu Phe Ser Met Ala Gln Arg Ala Arg Thr Glu Ser Val Cys Ala Gln 355 360 365 Ser Glu Phe Leu Val Arg Met His Ala Asn Gln Gly Ile Gly Arg Arg 370 375 380 Leu Leu Gly Arg Tyr Leu Ile Pro Phe Leu Tyr Asp Ala Pro Ala Gly 385 390 395 400

2007-04-12 Sequence Listing-JAMES68.016APC.txt

Leu Ser Gly Phe Ser Ile Ser Gly Ala Thr Arg Ile Glu Phe Ile Asp 405 410 415

Leu Pro Thr Arg Ser Leu Arg Gly Ala Trp Gly Lys Ser Trp Arg Gly 420 430

Ser Trp Glu Phe Ile Leu Gln Ser Leu Val Tyr Leu Arg Pro Lys Phe 435 440 445

Arg Ile Val Tyr Ala Leu Tyr Leu Val Ala Ala Ala Ala Phe Ile Leu 450 460

Tyr Cys Leu Ser Ser Leu Phe Pro 465 470

<210> 21 <211> 2063 <212> DNA

<213> Epichloe festucae

<400> 21 60 atgcaatacg gtaatttaac aactgtatta cttctgcgta atactttatt gtccttgaat 120 tcttcgtcaa tctgccatgt tcactggctg caagtgattg tggctctgct tgtcttgatc 180 gtctgcatct ttctatattg gcgaacaccc actggcatca atgctccttt cgcaggatat 240 cgttcaccat gggagccgcc gctcttggtt cagatgcgtt acgtcttcaa cgctgcctca atgatacgcg aaggatatgc taaggtatgt tttatcccgc gtagaggtct tctacccgga 300 360 tagaccgaga agataacaac ttcggaacag tggaaagact ccttgttcca gatctcacga 420 tacgacggtg acattcttat tgtgcctcca agatatttgg atgacctcca caacaagtca caagaggagt taagtgctat ttatggtttg attcgggtga ggaatgccac caaccaaaaa 480 540 acgcagagcc tattagcgca tggtctcaca tattcgaatt tgctagaatt ttggtggtag ctatagcggc atcaccctgc ttggagaaaa cgatgttggc attcgtgcgc ttcaggtatg 600 tacaccette caaaagtetg ttagggacet teettaetet actacagaca aaaatcacee 660 caaatcttgc gaaattatgc gatgacataa gggatgagtt tcagtattgt ctagatacag 720 780 acttcccagc ctgcagaggt atgccatttc caaaatccca ttatgcagtc tctacttttt 840 ctggcactaa cgatatctaa catagattgg acatcagtgt ccgtgcatcc attgtttcta 900 aaagcagtcg aaaggataac acatcggatt tttgttggat tgccattatg tcggaatccc 960 caatgggtcc aagcgaccag caagcatgca cattacggta cgtcaattga ctaataatag 1020 gcaatatacg cgctcatatg ctttgcagca acaatgatac agatagctat gagatctgtc ccaaagttca ttcagccttt actaaatttt tgccttccgt ggccatggaa gaacgcagcc 1080

	200	- 04 40 -			040	
tgtgttcgtg	aagcaaagaa	17-04-12 Sec tgcccttata	quence Listi ttagaaatgc	ng-JAMES68. aacgccgacg	aaatctcgag	1140
aaagttaaca	gttttgatta	tatcaaatcc	aatgacttgc	tgcaagcagt	tatggaaatg	1200
tcttctccta	gtcatgagga	tagccagctt	gatgttgtcg	cccagataat	gctcacgatg	1260
aacacaatcg	ctggccacag	tactgccgca	tccggagcac	atgcactgtt	cgatatggtt	1320
agccactcta	agtatattga	attgctgcgt	gaggaggctc	ttcaagtctt	tcgacatgtt	1380
gaactgcgtg	ttacaaaaca	ggctttgggg	gatttgcgaa	aattggacag	cttcctcaga	1440
gagttagtat	tgtcctaaac	atcacaatct	caccacattc	tcacgctagc	ttttcctccg	1500
tactaatgat	ggtcgttgct	aagatcccaa	cgacataatc	cgctaagctt	gtgtatgttt	1560
agctaagagt	ctcgaaaacc	tggaaatgtt	tgtcctgtgc	ccgagttcta	acgtctctta	1620
ctacagtagg	cttttttcgg	gtcgtattag	accctgccgg	tatcacactt	caagatggca	1680
cacatgttcc	ttacaacaca	ctgctttgtg	tcgcaccaca	tgcgatatcc	aatgacccgg	1740
atgtgataga	agacccaacc	tcgttcaacg	gtctgcgata	ctacgaacag	cgctgtcgtg	1800
acgccagtca	agagaaaaag	catcaatacg	ctactacgga	taaatctcac	ctgcattttg	1860
gctacggaac	ctgggcctgt	ccaggccgct	tcttggcctc	tgatatgtta	aaagtgattc	1920
taacgatgct	tctgcttcag	tatgacatcc	gctccccga	gagagcaaaa	cggcctgtgg	1980
caggtcattt	tcatgagttt	ccgcttttca	atattaacac	accactgtta	atgaaacgac	2040
gcaatgattc	gctagttcta	tga			•	2063

```
<210>
```

<400> 22

Met Gln Tyr Gly Asn Leu Thr Thr Val Leu Leu Leu Arg Asn Thr Leu 10 15

Leu Ser Leu Asn Ser Ser Ser Ile Cys His Val His Trp Leu Gln Val 20 25 30

Ile Val Ala Leu Leu Val Leu Ile Val Cys Ile Phe Leu Tyr Trp Arg 35 40 45

Thr Pro Thr Gly Ile Asn Ala Pro Phe Ala Gly Tyr Arg Ser Pro Trp 50 60

Glu Pro Pro Leu Leu Val Gln Met Arg Tyr Val Phe Asn Ala Ala Ser 65 70 75 80

Met Ile Arg Glu Gly Tyr Ala Lys Trp Lys Asp Ser Leu Phe Gln Ile Page 31

²² 533 <211>

<212> PRT

Epichloe festucae <213>

2007-04-12 Sequence Listing-JAMES68.016APC.txt 85 90 95

Ser Arg Tyr Asp Gly Asp Ile Leu Ile Val Pro Pro Arg Tyr Leu Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$ Asp Leu His Asn Lys Ser Gln Glu Glu Leu Ser Ala Ile Tyr Gly Leu 115 120 125 Ile Arg Asn Phe Gly Gly Ser Tyr Ser Gly Ile Thr Leu Leu Gly Glu 130 135 140 Asn Asp Val Gly Ile Arg Ala Leu Gln Thr Lys Ile Thr Pro Asn Leu 145 150 155 160 Ala Lys Leu Cys Asp Asp Ile Arg Asp Glu Phe Gln Tyr Cys Leu Asp 165 170 175 Thr Asp Phe Pro Ala Cys Arg Asp Trp Thr Ser Val Ser Val His Pro 180 185 190 Leu Phe Leu Lys Ala Val Glu Arg Ile Thr His Arg Ile Phe Val Gly 195 200 205 Leu Pro Leu Cys Arg Asn Pro Gln Trp Val Gln Ala Thr Ser Lys His 210 225 220 Ala His Tyr Ala Thr Met Ile Gln Ile Ala Met Arg Ser Val Pro Lys 235 240 Phe Ile Gln Pro Leu Leu Asn Phe Cys Leu Pro Trp Pro Trp Lys Asn 245 250 255 Ala Ala Cys Val Arg Glu Ala Lys Asn Ala Leu Ile Leu Glu Met Gln 260 265 270 Arg Arg Asn Leu Glu Lys Val Asn Ser Phe Asp Tyr Ile Lys Ser 275 280 285 Asn Asp Leu Leu Gln Ala Val Met Glu Met Ser Ser Pro Ser His Glu 290 295 300 Asp Ser Gln Leu Asp Val Val Ala Gln Ile Met Leu Thr Met Asn Thr 305 310 315 320 Ile Ala Gly His Ser Thr Ala Ala Ser Gly Ala His Ala Leu Phe Asp 325 330 335

2007-04-12 Sequence Listing-JAMES68.016APC.txt Met Val Ser His Ser Lys Tyr Ile Glu Leu Leu Arg Glu Glu Ala Leu Gln Val Phe Arg His Val Glu Leu Arg Val Thr Lys Gln Ala Leu Gly Asp Leu Arg Lys Leu Asp Ser Phe Leu Arg Glu Ser Gln Arg His Asn Pro Leu Ser Leu Leu Gly Phe Phe Arg Val Val Leu Asp Pro Ala Gly 385 Ile Thr Leu Gln Asp Gly Thr His Val Pro Tyr Asn Thr Leu Leu Cys
405 410 415 Val Ala Pro His Ala Ile Ser Asn Asp Pro Asp Val Ile Glu Asp Pro 420 425 430 Thr Ser Phe Asn Gly Leu Arg Tyr Tyr Glu Gln Arg Cys Arg Asp Ala Ser Gln Glu Lys Lys His Gln Tyr Ala Thr Thr Asp Lys Ser His Leu 450 455 460 His Phe Gly Tyr Gly Thr Trp Ala Cys Pro Gly Arg Phe Leu Ala Ser 465 470 475 480 Asp Met Leu Lys Val Ile Leu Thr Met Leu Leu Gln Tyr Asp Ile 485 490 495 Arg Ser Pro Glu Arg Ala Lys Arg Pro Val Ala Gly His Phe His Glu Phe Pro Leu Phe Asn Ile Asn Thr Pro Leu Leu Met Lys Arg Arg Asn 515 520 525 Asp Ser Leu Val Leu 530 <210> 23 11400 <211> <212> DNA Neotyphodium lolii <213> aatggactag aaagtacatt tgttatacag tgctatctcc ttaggctcag tctaccttgt gggtcagtgc aggccccaca ggccccctgc cacaaggtta gtaaccgcgc aagcacgcga aagtgtagcg tagtaaatta tataggaaaa attagcagta tattaattat tagcctatct

Page 33

60 120

180

2007-04-12 Sequence Listing-JAMES68.016APC.txt

atatataagt	aaatatacct	ttaattcact	tctatttaat	tggatataga	ccctagttaa	240
cgtgacttca	caaggtgaac	taagtccaag	aagatagagg	taattgcagt	gagatccaca	300
ggtcttgtca	ggggacggca	atgtatgcat	atatcgtgaa	atcaatgcta	gcggcattga	360
atcaatgact	tctgtagcta	gcgataatag	cagcgataga	agcctctaga	atctatatag	420
acagtattaa	gtaaactctc	cacctgtatc	cacagctaac	ttacatacac	ctagccctgt	480
cttgagtgct	tttagaagac	tatgctaact	tagatcacac	cctaagtgcc	aatgtctccc	540
aattagccgc	gaagagagaa	cttatcgcaa	ggaagtgata	aggctataac	atccaacagg	600
ttacttaaag	acaacaggct	aggaatcaat	tatagtagca	atcaaaacta	gatcctgtat	660
tctataacaa	gaagttaaat	ccccctaga	ctatctgtct	atctttagtt	atactttggt	720
tttgctttgt	tgtcttatgc	ctacattcct	aaaagatctt	tatgacgatg	gctgccaatg	780
actttccatt	tcaatgccag	gagaagaaat	catattctca	gccaagtcta	gtctactgca	840
atggtaacat	tgcggagacg	tatctcgaag	aaaaggtatt	tatactgctc	ctttataatc	900
tcgaatgcca	cttaaaattt	agacaggttt	tgacagcgcc	gttggattat	ttgcgtgcct	960
tacctagcaa	agatattcgc	agtggactga	ccgacgccat	taatgagttc	ctgcgtgtcc	1020
cagaggaaaa	ggttcttgtc	ataaagcgta	taattgatct	tcttcacaat	gcatccttac	1080
tgtaagttcg	agattgcata	acatagacct	agtagattct	aactaacagc	tttagcattg	1140
atgatatcca	ggattcatcc	aaactgcgac	gtggagtccc	tgtagcccac	cacatatttg	1200
gaatcgcaca	aacaataaat	tcggccaatc	tagcgtattt	cattgcccag	agagagcttg	1260
agaagcttac	gaatcctcga	gcatttgcta	tatataatga	ggagctaatc	aatctgcatc	1320
gtggtcaggg	tatggagctc	cattggagag	aatcgctcca	ttgccctacc	gaagatgagt	1380
atctgcgaat	gatccaaaag	aagacaggcg	gtctgttccg	attggcaatc	agactgctgc	1440
aaggcgaaag	cgctagcgat	gacgattatg	tctcacttat	tgatactctc	ggaaccctgt	1500
tccagattcg	agatgactat	caaaacttac	agagtgatat	atattctaag	aacaaaggct	1560
actgtgagga	tttaacagag	ggcaaattct	cgtatccggt	catccatagt	attcggtcgc	1620
gaccaggaga	tgttcgatta	atcaatattt	tgaaacagcg	tagtgaagat	gttatggtga	1680
agcaatacgc	ggtgcaacat	atcgaatcta	caggaagctt	cgcattctgt	caaaataaaa	1740
ttcaatcttt	ggtggagcaa	gcaagagagc	aattggcggc	tctagaaaat	agcagttcat	1800
gtggaggccc	cgttcgcgac	atccttgaca	agttagcaat	aaaaccacgg	gcaaatatag	1860
aagtagagta	gttgacatta	agaacattgc	gataaaagac	acttttacta	tactcgacta	1920
gttttaaaac	tatgtgtgag	attaagacgt	cttcaggtac	tcaaagtgtg	gaagtatgtc	1980
acgcagaaaa	gagctaacat	tgctctcagc	ttcctcacta	tttagtttca	ccaagagcat	2040

ccttcataga	200 gacatttgcg	07-04-12 Sec gctgtgattt	quence List tcgtttacgt	ing-JAMES68. catgttgtta	.016APC.txt aacattgttg	2100
	ttgcttagga					2160
	atacatttct					2220
	gagtacgtgt					2280
	ttaaagcttt					2340
	aacactaagt					2400
	ataaacccaa					2460
	atatatatat					2520
	ctagttagtt	_	-			2580
						2640
	gcgaaaacaa					2700
	atttgacgat					2760
	ccacgcctag	-		_		
	attaaacaat					2820
	aatctagggg					2880
	gatctgacaa					2940
tcttgtgaga	gaggtctcga	gaggtcacaa	tgctagccac	acaatatcta	tcaatatatg	3000
aatatattat	attatatgat	ttaccctaga	tagcaattta	tgccattaac	cagtactcct	3060
gccgtgatgt	tgctttgtag	taggaaaacc	atactaggtt	gctaattatc	tagataacta	3120
gataactagt	tagttgccta	gttagaactc	gtatctcaaa	tccctgttac	gtatctctct	3180
acccgcagtc	ctttttagat	cttgttattg	agtctcgtag	aagtagcaca	tccgcgctac	3240
ctgcagctgg	accagctatg	agactgacaa	aaaacatcct	taccataact	cgtaagctca	3300
agtgtttatt	ttctgcttca	agtgcttgag	aaaatagccc	cacggtcaag	aaaaatccac	3360
ttgatgtacc	agtcatctca	ttaatctgtc	tgagtctagc	atgtcgtgca	gcgatctcgg	3420
aacacggaaa	ctgcgagcaa	tcgggtacac	caaggaggct	attccctata	tgaaagggag	3480
cagtggcgtc	tctgtgaagg	agagtcgcca	cgatcgctac	cataaaaatg	ccaatgtggc	3540
ttataccagt	gcaccagaaa	atagtcctta	ggaaagcctt	ctcttgcctc	ctcggccacg	3600
ctgttactaa	tttctcggca	cgatattgat	ttaggatcca	cagtgaaaag	acgggaaagg	3660
cagtggaaag	tccaactgtg	taagagagat	agcctagtgc	ggccaaactt	cttcaaaaag	3720
taagcatagt	cagtgagtca	gagttaacag	ggaatcacat	actcaaactt	gcggaggaat	3780
gcgccatgcg	gtacggtctc	atgcagaatt	atcaaaatga	gcccaaccag	ctgagcaatg	3840
taaagcatta	ggtgaagcca	aaaccaaggc	ccattatccc	aaatggactg	catcgacgca	3900
acagcgcgaa	acccgaacca	tggtgatgtg	gttccatagc Page	ttaatgtagc 35	atccgaagaa	3960

2007-04-12 Sequence Listing-JAMES68.016APC.txt

tcaatgaact	gtaatgggca	gggaaagtca	atgatcggat	atccttcccg	tgacttccat	4020
attacgccgg	ctaaacaaaa	gaaaccctgc	agagagataa	agatccaatc	acttcgcgac	4080
atagggaaaa	atagaggaaa	actgataata	actttaggtc	cagtttcatg	caatattggg	4140
aaaggccaga	agcataatcc	gtacaatcgt	catgatatcg	tcaaagcgag	actaagctgt	4200
ttctttatag	gggctgagaa	atcttggcaa	taggaaaccg	gaagaatgcc	gagtgcgact	4260
gacgcaaaga	attggcttga	gcacccgacc	ccctctccat	ccctaacccg	tgtcgtcatt	4320
atctttcggc	aatagatatg	gcgtttcatt	tcactgtaac	atacagatta	ctccgtattt	4380
atgtaataat	acaccctatt	acatgtaata	ttacacgtag	ggagggggtg	attaggaagc	4440
gtgcggatga	tacgtagaac	tactatataa	ttaactactc	cgtatagata	gctagtatta	4500
gttattgtaa	aggtaggggt	caatatagat	gattaaaagc	gttcaattta	gtcaattaga	4560
ggtgcagaca	gcacctgagt	tttgtaccta	aaaggtacat	agtgcgctat	agtaatgact	4620
agtttacgga	ggtacttcta	atacattgta	tccactcgtt	gtcttagaga	gagttttatc	4680
ctagtcaatg	cgcgctgcct	catacatcct	aggctttaag	ggagctctcc	ctgacagtta	4740
ttgcagctac	cttagctaca	ttcaggggtg	ctatttacgc	ataagggtgt	gcttaataaa	4800
cacacccctg	tcaataccca	agccacaata	aagacagttt	ttgtctttgt	gcagattcgt	4860
gaatcctact	aaagcttaca	gacacatgca	ataccactaa	taaaatattg	atttggagtt	4920
gttttggagg	tggattttag	tataggacta	taaccactct	cctatcttac	atcagaataa	4980
acccaatttt	tgtggtctag	acaaaacgta	atgctaagca	aaaagtggag	agcttgcaaa	5040
agccagagag	aagacatggc	gccataacta	aattgatcct	tgtatatctg	atgcagttgc	5100
cactgcgtga	gagataaagc	aagttaatcg	attagtatcc	gatcaaaact	tttcgttcta	5160
ggaaagcttt	atttcgcaca	catcaatgtt	cttggaatgc	taacccgaat	cgcaattatc	5220
tgaaaccatg	actagcgact	tcaaggtaat	aatcgtggga	ggatcagtgg	ctgggctttc	5280
actagcccac	tgcttagaaa	aaatcggtgt	ttctttcatg	gttctagaga	agggtaatca	5340
aatagctccc	caactcggtg	cctcaattgg	cattttgcca	aatggtggac	gtattcttga	5400
tcaactgggc	atcttccata	gcatcgagga	tgaaatcgaa	cctctagaat	ctgctatgat	5460
gagatacccg	gatggtttct	ctttcaaaag	tcaatatccc	caagctttgc	atactaggta	5520
ataacagtga	aagaagagtg	gcctataagt	gttcatatat	cgctaacttc	gtgcggttaa	5580
tagttttggt	tatcccgtgg	ctttccttga	gaggcaaagg	tttcttcaga	tactttatga	5640
taaactcaag	agcaaagact	gcgtttttac.	aaacaagcgg	gtagtcagta	ttgcaagtgg	5700
ccaagacaaa	gtcacagcaa	agacttcaga	tggcgctaag	tacttagcag	atatcgtgat	5760
cggtgctgac	ggggtccaca	gcatcgtcag	gtcagagatt	tggaggcatt	tgaaggaaaa	5820

ctctcaaata)7-04-12 Sec aggcaccgaa				5880
aagaaacttt	actaatgagg	gagccactta	ggtattaagc	atgattattc	atgcatttac	5940
ggaatttctt	taaacgttcc	ccagatcatç	ctaggaatac	agttaaactg	tttagatgac	6000
ggagtgtcaa	tacacttgtt	tacgggtaaa	caatccaaat	tattttggtt	tgttatcatc	6060
aaaacgcctc	aggctagctt	tgctaaagta	gagattgaca	atacacatac	agcaaggtgt	6120
atctgcgaag	gactgaggac	gaaaaaggtt	tcagatacct	tatgttttga	agatgtatgg	6180
tcaagatgca	ccatattcaa	gatgacgcct	cttgaggaag	gggtgtttaa	gcattggaac	6240
tatggccgct	tagcatgtat	tggtgatgct	atccgcaagg	tatgtggatg	atgctatatg	6300
tccctatttc	gtgtcatcag	tgggatgaca	aaagaaggcc	actatttgcc	gctaatataa	6360
atgatcgtat	cgctaacatt	aacagatggc	cccaaataat	gggcaaggag	caaatatggc	6420
gatagaggac	gcttgcagtc	tcgcaaacat	cctccagaaa	aagatatcac	atggttcgat	6480
tcgagaccaa	gatatcaatt	caatgtttca	ggaattctct	atggctcaac	gggctcgcac	6540
ggagagcgtc	tgcgcgcagt	cggagtttct	agtccgcatg	catgcgaatc	aaggtattgg	6600
aagaagactt	cttgggcggt	accttattcc	tttcctgtat	gacgcacctg	ctggtttatc	6660
tggattttct	ataagtggcg	caacaagaat	agagttcata	gacttgccca	ctagatctct	6720
taggggagcg	tggggaaagt	catggagagg	gtcatgggaa	ttcatcctac	aaagcttggt	6780
ctatttgcga	cccaagttta	ggatagttta	tgccttgtat	ctcgttgcag	ctgcagcttt	6840
tatcttgtat	tgtcttagca	gtctcttccc	gtagcaagga	acaactgtcg	aaaatggcct	6900
taatctggaa	aagctaatgc	ggcgatgaag	gcaggcagaa	ctcaaaaaca	gacaagcaat	6960
gaccctcata	ttgttaaatg	ctagttgtta	cataacttca	tgtgattcga	ggtgaaacta	7020
tattaaccca	ttttccaact	aggagaaaaa	tgtgttatag	aaaagtaagc	aaatagctag	7080
taagaatata	ataaaaagct	agacatgaac	ttatatttcc	aacagcaaga	cctaggtata	7140
tagtaactaa	aaggtattac	gaacctaaca	tatactaata	gtatataata	gagtagctta	7200
tgtagaaata	taagtaaaga	aatagcaaat	aggtaaggaa	ttaataaacc	taataggcca	7260
tagtagcacc	atttagacta	aacacaatat	agttagctat	agttatgtag	tcataactaa	7320
gaattcaatt	aagtaaacac	ttagtaagat	agtaataagt	tactatagag	aatatagagt	7380
ctatatcctt	atccttgttc	atagtgtcta	taagctccta	gagctattct	agaatagcaa	7440
aacgattagc	aaaattgccc	tcaagtgtaa	gaatagccta	gtgtaaaaac	catagcgtta	7500
agaaactata	agactagtaa	aaaaaaggga	gacttgtagt	cttgcaggta	ttgcctctct	7560
tattacacta	gatatagcgc	tttaaagttt	agtcttagct	agagtagaaa	ttaaaaccta	7620
atggaaactc	aagttgattt	atagtaatat	agccttaata	aggggttttt	tttaaagtcc	7680
gtgtacttag	tatgtaaata	acacatatag	ctacactttt Page		tgtagttata	7740

ttagtggtaa	aacggtggta	aatagaaggg	ttaaagaggg	tatgaactaa	gcttaaaaaa	7800
accctaggaa	agaaactagg	tttataggga	gaaaaaccta	atcaggcaat	agggaactgc	7860
aagtaaatgt	tagagatagg	atacttacaa	aataaagggc	taggaaaact	ttagatcctt	7920
tagataatta	agcagctagc	tagctatggg	atagctatgt	gtttataaag	caaggtattt	7980
agcaaagact	acttatacta	tatatagtaa	attagagttt	aagaccttta	cacacctact	8040
cctaggtagt	atctttctag	tagtaactac	gaatcttagc	cttcaatcta	ttcattaccc	8100
tataaccgaa	gttataacaa	atccttaaat	ttttaataag	tattaatcta	tacttaacac	8160
atataagtac	tatatttatc	aagtattaat	taacactata	aaggttataa	atataaattc	8220
tacttataaa	aaggaaatat	atcttcttta	aaataagggc	taattaatta	atttaatgac	8280
gcatgaaaat	attattgtta	taaaggaaaa	ggggggatta	tttactaccc	cttaagttat	8340
ataatcatgc	gttgttagaa	atattaaagc	ttctagtgta	aaataaaagc	taagtgcaac	8400
taagtgtaat	taaaagcact	aggcttataa	cctataagat	agtggaaaaa	gtaataataa	8460
taaattcagc	tatctaagct	ctttatatac	gtggtataat	aaggctatat	aacgagagca	8520
aaagacagtc	tttaccctaa	gtgacaaggt	ctcgtaatta	gccgcgaaga	gggaaagcat	8580
cgcgatgaaa	gtgatgccta	agatgtgagg	ctgctacatc	taacagatca	gacccttcgt	8640
ctcctcagaa	cacgcggttt	gaaaagttct	acctctagca	actcctcgca	ccaagctgtt	8700
tctacatgct	cttaccgcaa	tctaaactga	aacccaaaat	tcacctcgca	catagcccct	8760
aatccgcaat	tgctttaaca	tgcaatacgg	taatttaaca	actgtattac	ttctgcgtaa	8820
tactttattg	tccttgaatt	cttcgtcaat	ctgccatgtt	cactggctgc	aagtgattgt	8880
ggctctgctt	gtcttgatcg	tctgcatctt	tctatattgg	cgaacaccca	ctggcatcaa	8940
tgctcctttc	gcaggatatc	gttcaccatg	ggagccgccg	ctcttggttc	agatgcgtta	9000
cgtcttcaac	gctgcctcaa	tgatacgcga	aggatatgct	aaggtatgtt	ttatcccgcg	9060
tagaggtctt	ctacccggat	agaccgagaa	gataacaact	tcggaacagt	ggaaagactc	9120
cttgttccag	atctcacgat	acgacggtga	cattcttatt	gtgcctccaa	gatatttgga	9180
tgacctccac	aacaagtcac	aagaggagtt	aagtgctatt	tatggtttga	ttcgggtgag	9240
gaatgccacc	aaccaaaaaa	cgcagagcct	attagcgcat	ggtctcacat	attcgaattt	9300
gctagaattt	tggtggtagc	tatagcggca	tcaccctgct	tggagaaaac	gatgttggca	9360
ttcgtgcgct	tcaggtatgt	acacccttcc	aaaagtctgt	tagggacctt	ccttactcta	9420
ctacagacaa	aaatcacccc	aaatcttgcg	aaattatgcg	atgacataag	ggatgagttt	9480
cagtattgtc	tagatacaga	cttcccagcc	tgcagaggta	tgccatttcc	aaaatcccat	9540
tatgcagtct	ctactttttc	tggcactaac	gatatctaac	atagattgga	catcagtgtc	9600

cgtgcatcca			quence Listi aaggataaca			9660
gccattatgt	cggaatcccc	aatgggtcca	agcgaccagc	aagcatgcac	attacggtac	9720
gtcaattgac	taataatagg	caatatacgc	gctcatatgc	tttgcagcaa	caatgataca	9780
gatagctatg	agatctgtcc	caaagttcat	tcagccttta	ctaaattttt	gccttccgtg	9840
gccatggaag	aacgcagcct	gtgttcgtga	agcaaagaat	gcccttatat	tagaaatgca	9900
acgccgacga	aatctcgaga	aagttaacag	ttttgattat	atcaaatcca	atgacttgct	9960
gcaagcagtt	atggaaatgt	cttctcctag	tcatgaggat	agccagcttg	atgttgtcgc	10020
ccagataatg	ctcacgatga	acacaatcgc	tggccacagt	actgccgcat	ccggagcaca	10080
tgcactgttc	gatatggtta	gccactctaa	gtatattgaa	ttgctgcgtg	aggaggctct	10140
tcaagtcttt	cgacatgttg	aactgcgtgt	tacaaaacag	gctttggggg	atttgcgaaa	10200
attggacagc	ttcctcagag	agttagtatt	gtcctaaaca	tcacaatctc	accacattct	10260
cacgctagct	tttcctccgt	actaatgatg	gtcgttgcta	agatcccaac	gacataatcc	10320
gctaagcttg	tgtatgttta	gctaagagtc	tcgaaaacct	ggaaatgttt	gtcctgtgcc	10380
cgagttctaa	cgtctcttac	tacagtaggc	ttttttcggg	tcgtattaga	ccctgccggt	10440
atcacacttc	aagatggcac	acatgttcct	tacaacacac	tgctttgtgt	cgcaccacat	10500
gcgatatcca	atgacccgga	tgtgatagaa	gacccaacct	cgttcaacgg	tctgcgatac	10560
tacgaacagc	gctgtcgtga	cgccagtcaa	gagaaaaagc	atcaatacgc	tactacggat	10620
aaatctcacc	tgcattttgg	ctacggaacc	tgggcctgtc	caggccgctt	cttggcctct	10680
gatatgttaa	aagtgattct	aacgatgctt	ctgcttcagt	atgacatccg	ctccccgag	10740
agagcaaaac	ggcctgtggc	aggtcatttt	catgagtttc	cgcttttcaa	tattaacaca	10800
ccactgttaa	tgaaacgacg	caatgattcg	ctagttctat	gatttattgt	gactttcgtt	10860
agcatattac	atagtgcgaa	acttaatcta	gaaaactaga	gaatgaatat	ctttggcact	10920
gtcatgcatg	cacgccttaa	catcatattc	atttatatta	ttactaatgg	cctagatctt	10980
atttacttag	tgaaactagg	ggaacacatc	actttctttg	tcctagtgtg	gttttaaatg	11040
ttattctttg	cgtacatttc	catatagcag	cccgtttagt	aaccgtattc	accttgccta	11100
acaatcgttt	tctaataaca	cgctaagggc	aacaagtgac	aagtgtttag	taattagtaa	11160
gcagtttagg	ttagggggag	caaggtagtg	taagcgcagg	gcgtgcggtt	tattataata	11220
gaaaagaata	tagtattagg	gttaacacta	gaaaaatccc	cctagcttat	taagtaagga	11280
aatagattag	ataattatag	tagtaatatt	tatagaatcg	ctctagctag	cttaagtagt	11340
aattaaccat	catcattacc	taatcatttt	ggtactatta	caggcctttc	cgtacagcca	11400

<212> DNA <213> Neotyphodium lolii

<400> 24 60 atttatgtct tttgcagcgc tgtcgtataa ttaagagcaa ttatggctcg ttgcagcaaa 120 caatcgccca attgatacaa tcaaaattcc acaagcgaaa gttgtgacaa ctcacgtcct 180 atcactcctg tcgtttcctt tcaacatacg gtaactgtct tctccaagcg gcgcaaaaga 240 acaacqqcat tccqattqqq qaqqatctta tccccatqaa caatqttagq aggqcqccqc 300 gacggaaact cactatctag cttaaaatca tactcgagca gaatccgact catgattgct 360 ttaatcatat actatgagca caaactcaag ggttagtcaa gaaggtcgaa tgtgcgtcac 420 atgagcttga agggagattg atatggaaaa aaaaaagatg aaaatctaca tcacatacgg aagctatgaa gcgtcccgga caggcatatc tcccaaatcc gaagtgcaga ttcaaggcgc 480 540 tgctqttaga aaatgatgtt gtggcagtgc cagattgttt caaccatcga aaaggttgaa 600 acaagtgagc gtcggataat ttcgtactgt ccgtattgat acacttcgct ggaatcgcaa tctgctgtcc cggctgtagc tggtagccat cggacaatgt aattcgttct cggacaatgc 660 720 gtctaaaagt gacttcaatc gccagttagt tccaagtttg acaaaagact ggcttagaat agtccttaca ctcgcccact ggattgattc gttgtgactc tctcatcagg ctatccaatt 780 840 gtttcatatc aagcatagtc tgttgcgtga tttccgtcca accatgcttg agcacgtttt gctgttctct tcggaggctc tccttcaagc tgtcgtccga gatcatgtca aaaagtatgt 900 960 gagttaacgc catagctgtt gtatgaatga cagccatgct caatattcct agcgtacgat 1020 gcgcaagtgc ttctggccgt gcttcatcct cggtgactgc taactctgta caccactgca aaaagtcgtc gtgcttttcc tcagagttaa gtttccttct ctggacttct gaaccaagga 1080 1140 ggttttgaat gtattgtaat tgcccgtgag cttctttcgc tgtggaaatc caccgtgcga 1200 aataatgtgt gaacaaattg ccaaaactac gggaggtgga tatcgtatca aacgtgttgc 1260 1320 atagcctcgc tgtagcacgg gtagctagat tgagaaccaa ttcgtatgga ttgacagaaa 1380 tccaagcatt ggaacctcca ctaatattag acaacactag acaagtggaa tgtttgaaag aatgaaaaca cataccgtcg ttgccggcag gtaagacttg cccaaaggca tgattgagct 1440 1500 catccaataq cactqqaaqa qtttqtqctq qattcagtta gcatagtgca aacgtattct gttagattac acttacgaag ctttggagtc aaacgctgct gtatggcacg tgtgtgaagt 1560 1620 tcgctcccta ataatatcct cgtaacttta ccagcattgt catcaaagct ggctgttaaa gggtctaatt tgtcgctcgt aaccgcccgt aattccagcg cgtattgtaa aggaatgaca 1680 atcagatcca tgtccatctt aagtagccta aacggttgat ttttgtgctg taacctaggc 1740 1800 ggttagtact atcatcacgg atgctcacag acttgggacc gaacaccttc tcatagccat Page 40

gtttgactag	gcgggcggca	tggtcattat	aactcagccg	atcgaggaat	tgggggagta	1860
atcgaggcca	acgtcgaatg	gttggtatac	attctttccg	tttggtaccg	taaacaacgt	1920
accacagtag	taaacagata	cccactggga	cagcgtgcaa	cattaacatt	ctcaagagta	1980
gctgatttga	cttgaatgga	atataaaatg	atttatgaat	taattttgaa	tgggcttggc	2040
atctacagaa	taaaagatta	taagacaaat	aagacaaagc	ttaatgttaa	aactttatgt	2100
taagtacttg	aaattgtcct	aagccatcga	atctaatgca	acgcctgtcc	tcttttctct	2160
tgacactatg	taaggagcct	gcagcaataa	ctaaggatgt	gatccaagtt	agcgcagtta	2220
tttaaaattc	gtcattttta	gacccactag	cgccttccta	tatttagaca	gtattttacg	2280
gtatataacc	tagataattt	cacccttgct	tataatacaa	tacaatccct	gaattgtttt	2340
acaaatctat	ataatagaag	taattgagct	aattaaatta	tagctaggaa	ataaaggaga	2400
cagggggtgg	tatattttag	tactagaacc	tgcatagaaa	tagatattct	cttttgtgac	2460
gctatatacc	ttgcatattt	cccttgtagc	tctctaataa	taggattact	tatagctaat	2520
cacagccgtt	agggaggaat	caataactag	ggcatgtaga	cttgtaaaat	aattcagcgg	2580
gtagagtgtg	tacttaaatt	acagtggtgt	tacaggggct	atttagatag	ccaaaagagg	2640
gaagccctat	ttctgacact	ggcgtagtaa	aaaaaaaag	tgcgctaatg	tattacttta	2700
ttcttacgga	ttagtatctg	atcctattgc	aggcatttac	ttggcactag	ttgaaaagat	2760
atattataaa	caggggggag	tggttttatg	caatgtgaac	aaagtttcac	aaatttctac	2820
tccgtataaa	cataatttat	tgggggtctt	gacatgtccg	tcttagccga	caaccccacc	2880
atgccacgaa	tcccgcggag	accccaatca	atccatacac	ggcacttaca	cagatcattc	2940
catccgccca	agtaccgtcc	tatactccgt	acaccctaaa	agccttagag	cacgaacata	3000
tgccgttgtc	tccctagtca	cacacaagat	gcctaccccc	cttcccgatt	ccccttctca	3060
catgtgtaac	gtatgtaacg	caaggttagg	tcgcggtggc	acaaaaaagt	aacgccgcag	3120
ccgaaagcca	tcctgtcgcc	agcggaggtg	tcgcggttcg	tatctgctta	gctgtgtttc	3180
attgttaggc	gtgtgcataa	tgcgcggggt	gcgtttaaat	gtctagctga	agtcatatct	3240
gttgccgtgc	atcacatcac	ttttacttcg	ggcaccattt	catgcaccct	aatagccacg	3300
acacacagaa	tccatcacca	attaactcag	gcagttcgca	cctacactaa	gccattcgaa	3360
caatatacat	tacttcaaag	actcacctta	ggccgtcttt	tcacgcagcc	aagaagtttg	3420
aacagctcgt	tcctacatcc	ctgcgaatcg	gacgtttttc	acggatagac	cctctaggcc	3480
cttaatgaag	acttctaaat	gtcaggagct	atctaagtca	agtacgttga	caatacattt	3540
ctttggaagt	gttgtcttcc	gttttcttat	ccctcttatc	cctttagcct	aggttttcta	3600
aagttaaagt	cgtcaagcta	ggttcgatat	gaagatgtta	acagagcatt	ttgactttcc	3660

					04.0	
taaacttaac	ttcgccacca)7-04-12 Sec ttgtaatttc	quence Listi aggcgccacc	ng-JAMES68. attattggta	taatattcct	3720
tcgatatctt	aattacccta	caaaggtttg	aatctgtttc	ccttgctatg	cacttttctt	3780
ggatgctcac	caaaattttt	caaggtgaat	gtacctgttg	ttggcattgg	agttcgatat	3840
acaaaatggc	tagcggctat	tataaacgtg	cgtcatgctc	gacaatctat	ccgcgagggc	3900
tatgcaaagg	tttgtgttaa	aaacgaataa	aagcgcttcg	taaacaaaga	gaactaatac	3960
tagtttctag	tatggcgatt	tcgcgtttca	gatacctact	atgactcgaa	tggaggtatt	4020
catttgtgat	agacagatga	caagggagta	tcagaatgtt	gacgactatc	atttgtcgtt	4080
ccgagctgtc	atgaccgagg	taagtaacta	gaccatgtta	actgtaggaa	aagaagaaaa	4140
agctaaaccg	ccgtacagga	gtttcaattc	aaatggctac	ttccaggaca	ggcacacgaa	4200
gcccggatta	tccctaactc	agtgattgct	aaggccttga	gctggcagag	aacaagggcg	4260
aataaaccca	gcgatccatt	cttcgaatct	ttctccgccg	aattcatgca	ggggtttcag	4320
gaagagatgc	gacgactaat	ccaatatcaa	aattcgtcag	ttatgtcaaa	ccgctccggt	4380
gctgtcctgg	atccagcgca	tggttggcat	gctgtgcctt	gttttccctt	ggctctgaag	4440
gtaattgggc	gccttactac	atacgtcttg	ttcggcaaac	ctttgtgcca	agatgcgaca	4500
ttcctaaaca	tgtgctgtca	atttggcgat	gtgattccca	gggatgcgat	catactacgt	4560
tcatggccag	cattggcaag	gccgtaagca	agtgcctaga	cataaacccg	tcagggttta	4620
aactcgcatt	aacattcata	tagtcttatt	gtaaagatct	tgagtgctcc	aagggttatg	4680
ggaaagttgc	gaaacatttt	gattgttgag	ataaagagca	ggagagaatc	ccacgaaacg	4740
aacccaatga	gtgtatggct	gtctcgcaca	cccctctag	cattacacat	taacgtatat	4800
ctaggatatc	ttggatttca	caatggcctg	ggttgaccgt	catcctaacg	ctagctttga	4860
cgatcagcac	attgccgaga	tgatgattaa	cactattttc	gcagctcttc	atacgtcgag	4920
tcaggtatat	ttttttctgt	atgaaaagtc	cagagcttaa	agctaactgg	ctcatagctg	4980
gtggtgcata	ccatctttga	gcttgcctca	cgtcctgaat	atagcgatgc	gcttctggaa	5040
gagatagatg	catgctttga	aaagcatgga	aagggcacta	aagcagctct	agactcaatg	5100
ttcaaggtgg	atagtttcat	caaagaaacg	cagaggttta	accctcttga	cgcatgtata	5160
aattccctgt	ctccgattcc	atcattgcga	tttgactaac	gccaccgtca	gccgctcttg	5220
caagactggc	tctcaaagac	tttacttttt	ccaatggcct	aaacatccca	aagggcagtg	5280
tgattttcac	gccgaattcg	cctatctttg	aggacgagag	atattacaag	gatccgaaag	5340
tttttgatgg	atttcggttt	gctaggatgc	gtaatgaccc	aaaattaggt	ctattctgcg	5400
acctaacagc	aacgaatgaa	caaagcatgc	attttgggac	tggacgtcac	gcctgtcctg	5460
gtagatttat	ggtttctgat	gaggtcaagt	tagctgtgat	tcatatctta	agtaatttcg	5520
atttttgtat	tgagaatttt	ggaccacggc	cagcaaatca Page	gccatttggt 42	aaatttcttc	5580

tacctgatat	gagtgcaaaa	atctggctaa	gggagaaaag	agctagggag	aagaatctgt	5640
gaaagccgtt	aagataatgc	caattgctac	acgatacata	tatgttcatg	ttagcgagtt	5700
ttgaagagaa	gctttgaggc	ctctaagaaa	ttttaactac	ctatgataat	gaagcagctt	5760
tatttctaac	atgatttttc	tagcctgtga	aaagtgattt	ttgcagctta	gacaatagga	5820
tacatgttat	tagcctacct	gagggggcta	tggtaagtga	ctctaagatc	tcgcaatatc	5880
aatgaaacta	taggcaatat	ctagctaatt	aggcctatat	ctatgcttac	aaatgcagta	5940
ttacctctaa	gtctatagat	aacaagcata	cagctagttt	cgtttcatta	cgtaacggtt	6000
tgtctctaag	tagcgacagc	taagtgagac	agatatatca	ggcacaatac	aatacacccc	6060
ctgagttctt	ttacaaatct	acatgcccca	gttattcgtt	cctctctaat	agctatgatt	6120
agctatatgt	aatactatta	ttagtgagct	ataagggcaa	aatacaaggt	atataacgcc	6180
ataaaagagt	atatttttt	tttctctatg	taagtgccta	gtacaagaat	gtactatccc	6240
ctattacctt	catttcctat	ctgttatcta	attagcttaa	ttacccctgt	tatgtggatt	6300
tgtaaaataa	ttcagggggt	gtattgtaca	tcattccaat	ccgtcttaaa	tcatagatat	6360
atgctccttg	ggctttcgtg	ccacaccccc	ataagtacaa	atgcactgtt	cacatgtttc	6420
acagcctttg	attgcctaga	agagacgaat	aggtataata	gtgcacatat	tgccatccac	6480
ttaatgctaa	tatccctttc	gctcgctctc	tttatctttt	gtggacgcag	gtcctatttt	6540
tcacatataa	gcacttccga	acctgcgtaa	aatcttactc	acgcaaggaa	atacaattca	6600
aattatatcg	tgcttgattg	atctctttct	aggcttcctt	ttgttcaaga	gactaactaa	6660
caattgttgt	cttcggctct	cacattacac	catgattgcg	aaaaatattg	aactcaatgg	6720
cttggatccg	gcaaccaggg	cattggacat	tctatactgg	aaaaatcact	gcatcaaaca	6780
gctagaatct	ctcctatgcg	ccacagattc	atactgcact	gcagacaagg	ccgctcaact	6840
acgcattttg	tcagagttgg	tgctccccaa	tcttggccct	cggccgtcca	atgccactgg	6900
gccatcctat	cttacacgaa	gtggttcccc	aataatgtta	agtctaaata	caacatcatc	6960
aaaaaactgc	gtcagatatt	gctgggagat	tctaggggcg	actggcgcaa	gtaatgatga	7020
tcctttggca	gtccaagttg	ctaaggatgt	agtggcttct	ctgtctgcta	cttttcgcct	7080
ttcaacaaaa	tggagcgaaa	ctctactgtc	caattttgca	gtaacaccag	accaagctcg	7140
acaagttatt	aacatgctac	ccgagtggat	tcaaggcttc	gtacctgagg	gaatggagtg	7200
cgattttcca	aagagaatcc	cgttcgccat	gacatcattc	gacctaaatg	gctccaatgt	7260
agctatgaag	ctctacgtta	atccaagggt	aaaggagatt	ttaactggta	ctccctcatc	7320
agacttggtc	tgggagttcc	tccgaaattt	aacaccagaa	atgaaaccac	gagcggtcga	7380
cttgcttgag	aggtaagaat	ggctttgaac	tttcgcccac	cttgtcagcc	ccatacgcta	7440

agcgctaact	200 ccccacacat	07-04-12 Sec taacaggttt	quence Listi attaccgata	ing-JAMES68. attcaggccc	016APC.txt gtctgctatt	7500
gagcttgtag	gtattgactg	cgttgacgac	gctcacctat	caaatgcaag	ggtcaagctt	7560
tacgttcata	ccatgagcag	ctcatttaac	accgtaaaga	attatgttac	tcttgggggt	7620
gcaatctggg	atgaacaaac	ccaaaagggc	ttaggaatac	tacaaagtat	ttggcaccta	7680
ttgcttcagg	agccagaggg	tatttctgac	aatggattcg	acaagcctgt	gaacgactct	7740
tccatgttat	gccaaaagct	atattttagt	ttcgagctac	gcccaggtac	agacttccct	7800
caggtgaaga	cctatgtgcc	aacttggaac	tatcttcgaa	ccgacgggga	aactatccag	7860
aactatgagg	cgatcttccg	agcttgtgac	catccttggg	gtgaagatag	gacgtacggc	7920
aaaatttttc	aagatgcatt	gtaagttatc	ccttcagatt	agcgctaaaa	ggagtttgag	7980
atactcctca	atgcaagcta	ttaggttgtg	aaattgccac	tactaattgg	agctttttat	8040
agcggacctg	caaccgagag	tcggaaaaaa	cccattcact	gcgacgcatc	ttttctgttt	8100
accgaagaaa	ctggtgtcta	ccagacgctg	tatttcagtc	ctccgattga	gggggaaaca	8160
gaagtccagt	caaatctcgt	tgcttgaggt	tgaattaact	ccgcaatgct	acgtctaaaa	8220
gaagtgtctt	tggtgaacag	atgatagggt	tcccttgatc	tttcatatat	ttgtgtacag	8280
ctgtggaaat	ttagggtcta	gctctagata	aagccattgc	ttcaatcgtc	atttgacgta	8340
ttctgagtct	tgagctattc	catattttt	ttctaattaa	tcttgacttt	attaagtgtt	8400
gtaggccgtt	gcaataatat	ttgctttgat	cttacaagtg	tagcagctac	ccttgcactc	8460
ttcgattctt	gaacgagcgt	tgctattcgg	agctgtgttc	aagaactagg	ttgtgcgcat	8520
aggtttaatt	ttgcaatatc	acgaggagag	gcccgttagc	caactgctta	aatacaggtc	8580
ttgctagaaa	atggttgcct	taatacagct	gctatgctac	ctcctatctc	cttaagcgtg	8640
ttctaccttg	tgggtctagg	ctttggtaaa	gggtagttat	tacaggcaag	agatgtcaca	8700
tcaagatagt	ttttgtctag	catagcgcgt	gagttacatt	tctccgaaat	cattttgtaa	8760
agtgcatttg	ttcttttcgt	ccccagacgg	ccaccaagtt	ctctagaccc	tgacctgcct	8820
cctggagcgt	tttgagacac	gtgttttaa	cactaggtga	ctctaacgct	tggagtgccc	8880
gtttaatgtc	gccttgattt	tggctctgaa	acgccttcct	tatctgcggc	tcagtatgtt	8940
tgtcattaag	agcaaccaca	acaggaaagg	acaattctct	gttgcgtagg	tcttctgcaa	9000
cagtgccttt	gttaaaagcg	tactcttctg	agtatatgtt	cttgcaatca	ttttgcaatt	9060
gtgcgtacca	gctaccattc	cattgaatta	gttaagcgac	cttgccgcgg	aattatgaaa	9120
cgagcgaaaa	aaaaaaaat	ttacataccc	aaatcggcct	aacagatcgt	ctgattgatg	9180
acctccttgg	ttcaaaagcc	tcccaaggag	cacaaaaagt	gtgcctgtct	tcagcagagc	9240
catatttttg	tacgtcaaca	ggctttcttc	accataggat	tcgaaagatc	gcaaaccgtc	9300
tcttcgccaa	accaaagaca	tgtcttgtcc	ctcgagtatc Page	agttctagtg	ctctcagaag	9360
			i age	• •		

2007-04-12 Sequence Listing-JAMES68.016APC.txt ttcaattcca aggacaggtt gttctttcat tgctctatta atgacctttg tgagaacgaa 9420 9480 gtatgctcga ttggcagttt cgcatgatcc gtatagcaag tgagccgtag tgtgattttt 9540 ccgcttaggg ctgtggtcgc aaatatcgtc aaccataatt agacaaagat ggaccgcatc catgatatcc aggatcaaag aatgtttctt gggatattta tgtttcaatg ttggatgaag 9600 9660 aaaatccacg aggggagaga aatgattatg cccatagaga ctaatcacat aagagtatgg 9720 acagtcagga atcttgccat tgctgccgcc aataccttcg tgagaggtac gttcatagcc atagccataa tgatcaatgg cttgagaaac gacagattgg taattgattg tgtactttac 9780 9840 tagatacccg agcgtaaatg caaacaagag ggccgcaatt tcgatggccg cagggcgagc 9900 cacgagccat gctccagatg tcatcttgga atagtgatgt acgtcggcta aaggcagatt 9960 gccttgagaa agaattcagt taagcaaagt tttatcaatt ctcgcaatat atgcagagca 10020 actcaagcaa atgttaggaa tatcgttaga ctataattat agaggcagag cttctagaat 10080 agcgcaatca tagtctatta tgtatacgcc caggcgcggt taaatacata catataattc aacgaccttg tcaggcaatc aagatgtgct actcttaatt acataatgaa caagatgcta 10140 10200 gaggtattaa aggccaaaat gtgtccttct ggatagcaga ccggactaaa ccttcgcaaa 10260 ccattcctat aatactagct gattttatca ctatggacgg attcagcaat atggagcaag 10320 cgccgctcgc ttatcaggaa gttcaatggc tagctgaaac ttttgtcact ttcatggggc 10380 ttggctggct tatcaattac gtcttgatga tctggcactc taggaggggt gaaccgagca 10440 gcatggctct catacccctc tgcaacaaca tcgcctggga gctcgtatac acgattatct 10500 atccgtctcc taacaaagtg gaacttgcgg ctttcatagc aggtgtcact ttgaacttcc ttatcatgac ctctgcagcc cgttcggcaa gatccgagtg gagtcactca cccacaatgg 10560 10620 ctaagcatgc aggtttgatt atagtcgcag gaatattgat gtgcttcacc ggacatgtag 10680 cattggcgat ggaaatagga cctgcgcttg cttactcatg gggagctgtc atatgccaac tagctctaag cattggaggc gtgtgtcaat tgttgcagca gcatagtact ggtgggacat 10740 10800 catggaaact ttggtaagtg aataaatcaa ttacgtttct aatctatatt gaatgtcata 10860 tcaggggtgg ctgacatgaa agttttcagg tcaagtcgat ttctaggctc ttgttgtgcg 10920 gttggctttg cctttcttcg ctggagatac tggcccgagg cgtacggatg gctggccagt ccccttatcc tctggagtct tgccacgttt cttgtggccg atttgacgta cggggtttgt 10980 ctccttcttt aggcagaaga gaggacagtc gaactccact aagcttcaga ctgcgcaacg 11040 11100 aaaacgagta acggcttgag actagttcta tcttatcgat cgctatctta catggttaat 11160 gtaaccttct atctttgtct aagggcttac actcaaatga aatcatacat gcaacttaaa 11202 ctatcataca taggagagtg ccaatttaag caatttaagc ac

- <210> 25 <211> 6583 <212> DNA <213> Neotyphodium lolii
- <400> 25 aagcttttta ccctaaatta tagtataaaa aagcaaatct ctcttagtaa gctactttat 60 120 aatattaata tatatatact attactctta attatctagt ataataataa gtaaataatc tagattacta aatatataga aaaaaggctt tagactagcc ttaagtacct taatataaat 180 240 300 ttagagatac ctatagatag ctttataaag ctacttttag gttaaacata taaggacttt 360 tactataaaa ttagattata agaaattcct atttaattat aatattaggg attatttata 420 atctcttcct atacctttaa tctttagctt taataaatat cttagctagg gggggtatat taggaaaagc tccctaaagt aataaacata taaatatagc ctatataata actaggttaa 480 aacccttaat aaaataatag taaagataat atattagaag tatctttata gactagttat 540 600 tactatagcg cactatatac cttttaggta taaaagttag gtggtgttta cacctctagt 660 taaccqaaat cqaacctttt ctattatcta caccgacccc taccttgaca gttaggactc 720 ttgttcctgc aggtcagcta gcttgagcgc aaggcaccgt tgcaccatgc atgtcatgtg cagcacggcg catagatgcc gatgatgccg ccagtgccta tcttgaaccc cagatgcaga 780 840 ccttgatatg gcctcttgcg agtaaacgca ttgcgactat acggccttga agggcattga 900 gttggaggct cttccctata atatgtgctt gtagaattgg tatcgctgct tcattttaag 960 cattggaaac attcaggaga cgtactacgc ttgtgtatgc aacgcttttc tttttgaaca 1020 atgaaaccta ctactcqctq tccattcqac tatctgqtga gccagtgtgg aaagcatcat ttcaaaacct ttgtccagtt actgtcacct cttctccaag acgaagatcc cgacagatat 1080 1140 gctttaattc tggacattat ggacgctgtc cacttctccg ccatcttgat cgatgacatt gccaaccaaa gtgctctacg caggaaccag ccggccgccc atgttgtttt tggggagacg 1200 1260 qaaacqqcca ctaqaqccta cctcqttctg ctgcgggtcg tcaacaggac aatgcgagag aacccagtcc tggccggtga gctactaaac agcctggaag aaattcacca gggtcaggac 1320 1380 qaqtctcttq tqtqqcqccq cqacqqqctq qagacttttc ccgtcgccga tgacgagaga 1440 ctggcagcct acgtgcgcat gtcccgcctc aaaacgggct ccctcttcgt gctcctcgga 1500 cggcttctag ccaacggtgg taccgagttt gatgacctgc tggtacgctt tgggtacgtt 1560 tctgcctctt gtcccaacaa agagggccgc cgactaactg gttctctctt gttcttgaag cctgtacgcg cagctgcaac atgattgcaa gaacatttac tctcccgaat acgctctcaa 1620 caagggatcc gtcgctgaag atttgcgaaa tggcgaattg tcctatcccg ttgtggtcgc 1680

		07-04-12 Sec				
cttgattgag	aacaaggcgg	aagggatcgt	gggagaggcc	ttgcgcacgc	gcagcgacgg	1740
ggataccgaa	caggcactcc	gcgttttgga	gagcccggca	gtcaaggacg	cgtgcctgca	1800
cgcactcgag	gctgcgagtg	tcggcttgga	agaccttgtt	gaggcatggg	gacgacgaga	1860
aaaaatgaga	tccgacaccc	tcgacggcga	cgacttaaca	aggccaagca	ccatcacaca	1920
acatgaacaa	gatgaccatg	ttgatagagc	tgccatcgat	gccaagagtg	atgcgagtgg	1980
cagtagcaat	aagtctctca	cgccccaga	gacagcccct	acgacggaca	ccctgtccga	2040
gacagctgtg	ggggatatct	cgtcagtcga	cgtggattac	tggactcgga	gatgcgttcc	2100
cataatcggt	agcctcttga	aatcatgccg	agtctactcg	gaagcggaac	gggaaacaca	2160
gctgcgcttc	cttcaggaac	atgtgctacc	taatctaggt	cctcgtccat	cctccccgg	2220
ctcgcagatc	cagtccatgg	ctacattcag	cggctttcct	ctccaaccca	gcatcaacct	2280
gagcggctcc	ggccaggcca	aagtccgcta	cacgtttgaa	ccgctcgaca	gcctgagtgg	2340
caccgaggtt	gacccttttg	cactggcgcc	ggctcagcga	gtgctcgaaa	agctctccac	2400
ccttctcggc	gtctggcctg	gatggatcga	cgctttgatc	gctgcgtacc	acccaaccag	2460
agaggaagtc	gagcaattac	acccgaatct	gcacgagtac	ctcagaggcg	tcctcgtgag	2520
aacgacagga	cgccaagatg	tgcaggttcc	tcccatgccg	cgaatgtggg	tgtgcttcgt	2580
tgcgcttgat	ctggagggcg	cctcacaggc	actcaaggtt	tattttgatc	ccaagatcaa	2640
agaagccgtg	actggtattc	cttcctgcaa	atacacttgt	cagattctac	ggacggttga	2700
taggtttggc	aacgccaagg	ccgtcgacat	gcttgagcag	tgagtcacgt	ctgggagcac	2760
tatccaggtc	cgaggtacta	acaagatttt	gtcaggttct	tggcagagga	gcacagcata	2820
ggcgctgtcg	aactgattgc	cattgattgc	gtcccagaag	aaatgcagcc	atcggcgcgg	2880
atcaaggtct	acgttcacac	catgagcaac	tcgtttcaga	cagtacgcaa	gtacatgaca	2940
atgggtggcc	gctgcatgga	tcctgcgacc	ctcgagggtc	tggaaaactt	gcacgacgtg	3000
tggtactccc	ttctcgggga	aagtcaaggt	attgtcaatg	aagagtacag	caagcccttg	3060
actggcttta	gctcgatgca	gcatcacttg	tactttagct	acgagatgac	gcctggcaat	3120
gctgatcccg	gcgtcaaagt	ctacatacct	gtgcaaagct	acgcgccaga	cgacaagacc	3180
atcgcgcaga	actacgaggc	aaattttcgg	caactcaact	ggccgtgggg	cgaacccggc	3240
gtttacgaag	cggtgataga	gagtgctctg	tacgtaatga	caggcccttt	gaccatatta	3300
cttactgaca	acttggaatt	tagtggacca	gtaaagcaca	gccgcgcaac	gttcctccat	3360
ggaggatctt	ctttcatctt	ttccaaaggc	cgaggagttt	atcagtccat	atatctagac	3420
cctccactgg	aggaaggagg	gaacattgct	gtattcgagc	accacgacga	tcaggatact	3480
atagttgacc	ttggcaatat	gtagtcttgt	catcaattga	tcagctgtat	gagctcttgt	3540
gttttttcct	ttagctagtt	tggcctgaat	gtttgaaaaa Page	catgtctgta 47	tgaactagtg	3600

atggaagaag	ggttgaaagt	gagcatgtac	cgcaaaacat	tattccttca	ccttgctcga	3660
gatagctcac	cgtaaacgta	cctggtgagg	tattccagaa	ttgagccggt	tcattttcgc	3720
ggacatgaac	ccatcatcag	cttttgccga	tcctaaagtc	tagacctgaa	tagtgacgca	3780
gctggtatga	ttggtgcagg	acaattactg	cgcccacggc	ggacgcgatg	ccggggggcc	3840
gcccggagac	cccggcatgc	agaacgatca	gctcttgagc	tcctacgtcg	cgcatgtctc	3900
attcaagcat	gcactatata	ttgagaccta	ctgtatgcag	cctcgaatgt	aaccgtagta	3960
ttcaaacaag	aaacatgcat	atatttgcat	gatgctttcc	gtggcgctgc	gcatatgata	4020
tacatggttt	acatatgagc	tgacttgaag	cacggcatag	ccggaggatt	cttctgcatg	4080
gagcactgta	tccggctgaa	aattacattg	tacgaggtct	caatctgcgg	ccagctagcc	4140
gagcaccgga	gaaccggcgc	atctctgctt	gaactcgggc	aagggactca	cttctacaaa	4200
agtcagagat	gcataccatc	aactgaaatc	aagttaggat	ttatagcctt	tatatttcag	4260
tggcatcact	caattacttg	tttgaactac	gccgtcagag	gttcacctac	taccagaaac	4320
gacagcacca	tggcatttgc	aagtcttttg	caccatatct	ggaaccatgc	agtggattgc	4380
gctgagcagc	tgacttggtg	gcagaccatt	gtgagcttca	tcattttctg	catcatgtgc	4440
tcttggctac	ctgggaatgg	ggaaatgcgc	gctccgtttg	ttggttatcg	ctggccattc	4500
gagcctactt	tctgggtccg	aatgcgcttc	atctttcaga	gtttaggcat	gatgaccgaa	4560
ggatactcaa	aggtgagctc	ccgtccgggt	ggagaaagac	agctagacga	atgactgacg	4620
ccaaacgctt	gacagttcaa	ggattccatg	ttcaagatca	cgaccaacga	tgccgactgg	4680
cttgtcctct	cccaacgcta	cttggatgac	ttgcagtctc	tgccagccga	gagattgagc	4740
catacagacg	ctctagtgac	ggtgagggcg	catactagtc	gctagtccct	acgacagtgg	4800
tgtgctaatc	gagttgtgtc	tcatttagat	gtgggggagc	agccacagcc	cttttgctct	4860
gctcaacaag	agtgatctta	gctctcgagc	tcttcgtgta	aggaccaatc	cctccttgtt	4920
atgcagaacg	gatctgactt	gaaaaggacg	tggttgcgcc	gaattatgcc	aaggaccttg	4980
atagcctcgt	agacgaactc	cgctattcgc	ttgagcacga	tatagacata	caggatggta	5040
tgtatgcgcc	tattttccaa	ctaattttga	ggtcgtcatg	ttggctgact	gggtcgatgc	5100
gcttagactg	gaaaccgatt	gatgcccttg	aactttcttc	gaagttggtg	ttgcggatat	5160
cgcagcgaat	cttgatcggc	tggcccatga	gtcgcgatca	agagctcctt	gaatgcgcac	5220
aaggctacgc	agacgctggt	aagaggacga	gctgttacgt	atgacccttt	tcttcggtaa	5280
aaactaacgg	gggtttcagc	taccgtcgtc	cagtttgccc	tgaaactact	tcctcgccag	5340
attcggccgc	ttgtctatcc	tctgctccca	caagcatggg	ctactaaatc	gtggatcagg	5400
cgctgtgaca	agatactggc	aaaggaaatg	caacgtcgac	aagttttgga	gaagtcggat	5460

```
2007-04-12 Sequence Listing-JAMES68.016APC.txt
cccgtgtacg agaaaccaaa ggacttgctg cagggcatgg tggacctgga gccgtcccgg
                                                                     5520
                                                                     5580
cctgttgaca aacttggaca tgattttctc gtccaagcct tgatttccag aatggctcca
gttgttacca tggcccaaac ccttgttgat cttgccctcc atcctgagga tatcgaggag
                                                                     5640
ctgcgtgatg aggttctgca agtcatagga ccagacgggg cgggattagg aaacctacga
                                                                     5700
caatcattta ccaaacttga caagatggac agcgtcttga gggaatctgc caggttcacc
                                                                     5760
                                                                     5820
cctctatcta tgagtaagtg ccatttctgt cctccagaat agcttgctgg catgactaat
ctgtggtata gtgacaatgc accgccgggt tcaggacgcc aagggcatca cgctccatga
                                                                     5880
                                                                     5940
cggtgtgcat cttccacgag gcacgcatgt ggcattccca gcgtaccaca ttggcagaga
                                                                     6000
tcccaagttg gtgtcaggtg cagatatcta tgacgggctg cgctggtaca ggaaggacct
cggcgaggcc caagaaaacg aagctcccaa gcatcgattt gtcacccccg acagcaacta
                                                                     6060
                                                                     6120
cttgaccttt gggtccggta aatacgtctg ccccggccga tttatagcgg aacacatgtt
gaagctgatg atgaccgccg tgctcctgcg ctacgagttc aagtggcctc cgggagtccc
                                                                     6180
tgtgcccgaa caacagtatc ggcatgtctt tgcttatcca agcaaaacca cactgttgat
                                                                     6240
taaacgacgc aaagatggcg atcagattct ttaaagtatc attatctgaa aagaagaaaa
                                                                     6300
gaggatgtct tcctcttccc gttaaagact gctgagtgca agtttgtgaa aggagaggtg
                                                                     6360
ttacgaacag aatgtacatg cccactagaa cgagttagag tatggcagct accttgacta
                                                                     6420
atatgttaac tttaataata tataattgat tattaattgt ttttaaatat ttagtattta
                                                                     6480
                                                                     6540
ataaaaaata gaatattgta ttttatataa attataatta aacaatatat tatgtttaat
aatataatta aatataaaat acttttattc aagattataa aac
                                                                     6583
<210>
       26
<211>
       20
<212>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<220>
<221>
       misc_feature
<222>
       (3)..(3)
<223>
       y is t or c
<220>
<221>
       misc_feature
<222>
       (4)..(4)
<223>
       m is a or c
<220>
<221>
       misc_feature
<222>
       (6)..(6)
<223>
       n is a, c, g, or t
<220>
```

<221>

<222>

misc_feature

(12)..(12)

```
2007-04-12 Sequence Listing-JAMES68.016APC.txt
<223>
       r is g or a
<400>
                                                                                    20
caymgnggtc arggtatgga
<210>
<211>
        27
23
<212>
        DNA
<213>
        Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<220>
<221>
<222>
<223>
        misc_feature
        (6)..(6)
       r is g or a
<220>
<221>
<222>
<222>
<223>
        misc_feature
        (15)..(15)
        n is a, c, g, or t
<220>
<221>
<222>
<222>
<223>
        misc_feature
        (17)..(17)
        k is g or t
<220>
<221>
       misc_feature
<222>
        (21)..(21)
<223> y is t`or`c
<400> 27
                                                                                    23
ttcatrtagt cgtcncktat ytg
<210>
        28
        23
<211>
<212>
        DNA
        Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<220>
<221>
<222>
<223>
       misc_feature
        (9)..(9)
       y is t or c
<220>
<221>
<222>
<222>
<223>
       misc_feature
       (12)..(12)
n is a, c, g, or t
<220>
<221>
<222>
        misc_feature
        (15)..(15)
<223>
        s is g or c
<220>
       misc_feature
(17)..(17)
<221>
<222>
<223> r is g or a
```

```
2007-04-12 Sequence Listing-JAMES68.016APC.txt
<220>
<221>
       misc_feature
<222>
       (21)..(21)
<223>
       y is tor c
<400> 28
aactttccyt cngtsargtc ytc
                                                                         23
<210>
       29
       24
<211>
<212>
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
gcttggatcc gatattgaag gagc
                                                                         24
<210>
       30
<211>
       24
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
                                                                         24
ttggatccgg ttcccggtcg gcat
<210>
       31
<211>
       18
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
                                                                         18
tggatcattc gcagatac
<210>
       32
       18
<211>
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                         18
gtgtgagatt aagacgtc
<210>
       33
<211>
       18
<212>
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                         18
accgacgcca ttaatgag
<210>
       34
<211>
       18
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
                                                                         18
actgggcatc ttccatag
```

```
2007-04-12 Sequence Listing-JAMES68.016APC.txt
<210>
       35
<211>
       18
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
       35
<400>
                                                                         18
attagaggca ccgaacgc
<210>
       36
<211>
       18
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                          18
atcaagctgg ctatcctc
<210>
       37
<211>
       18
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                          18
aaataatggg caaggagc
<210>
       19
<211>
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
                                                                          19
tgggaatttt ggaaatggc
<210>
       39
<211>
       18
<212>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
gctccttgcc cattattt
                                                                          18
<210>
       40
<211>
       18
<212>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
gtcttgatcg tctgcatc
                                                                          18
<210>
       41
<211>
       18
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
       41
                                                                          18
tgtccgtgca tccattgt
```

```
2007-04-12 Sequence Listing-JAMES68.016APC.txt
<210>
       42
<211>
       18
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400> 42
catagagcta gctagagt
                                                                         18
<210>
       43
<211>
       18
<212>
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                         18
gttcggtgcc tctaatac
<210>
       44
       18
<211>
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                         18
gaggatagcc agcttgat
<210>
       45
<211>
       24
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
                                                                         24
gattggtacc ttgaagtcgc tagt
<210>
       46
       25
<211>
<212>
       DNA
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                         25
gtagggtacc tctagtactg cctct
<210>
       47
<211>
       18
<212>
<213>
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<400>
                                                                         18
tagcgaatca ttgcgtcg
<210>
       48
<211>
       20
<212>
       DNA
       Neotyphodium lolii; Epichloe festucae; Epichloe typhina;
<213>
<400>
                                                                         20
atggctgcca atgactttcc
```

		2	2007-04	-12 Sec	quence	Listi	ng-JAME	S68.	016APC.tx	t
<210> <211>	49 20									
<211>	DNA									
<213>	Neot	yphodium	lolii;	Epich]	oe fes	tucae	; Epich	loe	typhina;	
<400>	49									
aggccat	ttt	cgacagtto	jt							20
<210> <211>	50 20									
<212>	DNA				_			_		
<213>	Neot	yphodium	lolii;	Epich]	oe fes	tucae	; Epich	iloe	typhina;	
<400>	50									20
ccagcaa	ıgca	tgcacatta	ıc							20
-210	-1									
<210> <211>	51 20									
<212> <213>	DNA	yphodium	767444	Enich]	loo for	+11620	. Enich	100	+vnhina.	
		ypnourum	10111,	Epicii	ive res	Lucae	e, Epici	1106	cypiiiia,	
<400>	51	ataaagcaa	na							20
cgcgcgo	igug	acadageac	•9							20
<210>	52									
<211>	2544	:								
<212> <213>	DNA Neot	yphodium	lolii							
<400>	52	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
		ctactcgct	g tcca	ttcgac	tatctg	jgtga	gccagto	gtgg	aaagcatca	t 60
ttcaaaa	acct	ttgtccagt	t actg	tcacct	cttctc	caag	acgaaga	atcc	cgacagata	t 120
gctttaa	ittc	tggacatta	at ggac	gctgtc	cactto	tccg	ccatctt	gat	cgatgacat	t 180
gccaaco	aaa	gtgctctad	g cagg	aaccag	ccggcc	gccc	atgttgt	ttt	tggggagac	g 240
gaaacgg	jcca	ctagagcct	a cctc	gttctg	ctgcgg	gtcg	tcaacag	ggac	aatgcgaga	.g 300
aacccag	gtcc	tggccggtg	ga gcta	ctaaac	agcctg	gaag	aaattca	acca	gggtcagga	.c 360
gagtctc	ttg	tgtggcgc	g cgac	gggctg	gagact	tttc	ccgtcgc	cga	tgacgagag	a 420
ctggcag	jcct	acgtgcgca	at gtcc	cgcctc	aaaacg	ggct	ccctctt	cgt	gctcctcgg	a 480
cggcttc	tag	ccaacggt	g tacc	gagttt	gatgac	ctgc	tggtacg	gctt	tgggtacgt	t 540
tctgcct	ctt	gtcccaaca	aa agag	ggccgc	cgacta	actg	gttctct	ctt	gttcttgaa	.g 600
cctgtac	gcg	cagctgcaa	ac atga	ttgcaa	gaacat	ttac	tctcccg	gaat	acgctctca	a 660
caaggga	atcc	gtcgctgaa	ag attt	gcgaaa	tggcga	attg	tcctato	ccg	ttgtggtcg	ic 720
cttgatt	gag	aacaaggc	gg aagg	gatcgt	gggaga	iggcc	ttgcgca	acgc	gcagcgacg	ıg 780
ggataco	gaa	caggcacto	c gcgt	tttgga	gagccc	ggca	gtcaagg	gacg	cgtgcctgc	a 840
cgcacto	gag	gctgcgagi	a tcaa	cttgga	agacct	tgtt	gaggcat	tggg	gacgacgag	a 900

aaaaatgaga tccgaca	2007-04-12 Sec ccc tcgacggcga				960
acatgaacaa gatgacc	atg ttgatagagc	tgccatcgat	gccaagagtg	atgcgagtgg	1020
cagtagcaat aagtctc	tca cgccccaga	gacagcccct	acgacggaca	ccctgtccga	1080
gacagctgtg ggggata	tct cgtcagtcga	cgtggattac	tggactcgga	gatgcgttcc	1140
cataatcggt agcctct	tga aatcatgccg	agtctactcg	gaagcggaac	gggaaacaca	1200
gctgcgcttc cttcagg	aac atgtgctacc	taatctaggt	cctcgtccat	cctccccgg	1260
ctcgcagatc cagtcca	tgg ctacattcag	cggctttcct	ctccaaccca	gcatcaacct	1320
gagcggctcc ggccagg	cca aagtccgcta	cacgtttgaa	ccgctcgaca	gcctgagtgg	1380
caccgaggtt gaccctt	ttg cactggcgcc	ggctcagcga	gtgctcgaaa	agctctccac	1440
ccttctcggc gtctggc	ctg gatggatcga	cgctttgatc	gctgcgtacc	acccaaccag	1500
agaggaagtc gagcaat	tac acccgaatct	gcacgagtac	ctcagaggcg	tcctcgtgag	1560
aacgacagga cgccaag	atg tgcaggttcc	tcccatgccg	cgaatgtggg	tgtgcttcgt	1620
tgcgcttgat ctggagg	gcg cctcacaggc	actcaaggtt	tattttgatc	ccaagatcaa	1680
agaagccgtg actggta	ttc cttcctgcaa	atacacttgt	cagattctac	ggacggttga	1740
taggtttggc aacgcca	agg ccgtcgacat	gcttgagcag	tgagtcacgt	ctgggagcac	1800
tatccaggtc cgaggta	cta acaagatttt	gtcaggttct	tggcagagga	gcacagcata	1860
ggcgctgtcg aactgat	tgc cattgattgc	gtcccagaag	aaatgcagcc	atcggcgcgg	1920
atcaaggtct acgttca	cac catgagcaac	tcgtttcaga	cagtacgcaa	gtacatgaca	1980
atgggtggcc gctgcat	gga tcctgcgacc	ctcgagggtc	tggaaaactt	gcacgacgtg	2040
tggtactccc ttctcgg	gga aagtcaaggt	attgtcaatg	aagagtacag	caagcccttg	2100
actggcttta gctcgat	gca gcatcacttg	tactttagct	acgagatgac	gcctggcaat	2160
gctgatcccg gcgtcaa	agt ctacatacct	gtgcaaagct	acgcgccaga	cgacaagacc	2220
atcgcgcaga actacga	ggc aaattttcgg	caactcaact	ggccgtgggg	cgaacccggc	2280
gtttacgaag cggtgat	aga gagtgctctg	tacgtaatga	caggcccttt	gaccatatta	2340
cttactgaca acttgga	att tagtggacca	gtaaagcaca	gccgcgcaac	gttcctccat	2400
ggaggatctt ctttcat	ctt ttccaaaggc	cgaggagttt	atcagtccat	atatctagac	2460
cctccactgg aggaagg	agg gaacattgct	gtattcgagc	accacgacga	tcaggatact	2520
atagttgacc ttggcaa	tat gtag				2544

<210> <211> <212> <213>

⁵³ 788 PRT Neotyphodium lolii

<221> misc_feature <222> (185)..(185)

<223> Xaa can be any naturally occurring amino acid

<400> 53

Met Lys Pro Thr Thr Arg Cys Pro Phe Asp Tyr Leu Val Ser Gln Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Lys His His Phe Lys Thr Phe Val Gln Leu Leu Ser Pro Leu Leu 20 25 30

Gln Asp Glu Asp Pro Asp Arg Tyr Ala Leu Ile Leu Asp Ile Met Asp 35 40 45

Ala Val His Phe Ser Ala Ile Leu Ile Asp Asp Ile Ala Asn Gln Ser 50 60

Ala Leu Arg Arg Asn Gln Pro Ala Ala His Val Val Phe Gly Glu Thr 65 70 75 80

Glu Thr Ala Thr Arg Ala Tyr Leu Val Leu Leu Arg Val Val Asn Arg 85 90 95

Thr Met Arg Glu Asn Pro Val Leu Ala Gly Glu Leu Leu Asn Ser Leu 100 105 110

Glu Glu Ile His Gln Gly Gln Asp Glu Ser Leu Val Trp Arg Arg Asp 115 120 125

Gly Leu Glu Thr Phe Pro Val Ala Asp Asp Glu Arg Leu Ala Ala Tyr 130 135 140

Val Arg Met Ser Arg Leu Lys Thr Gly Ser Leu Phe Val Leu Leu Gly 145 150 155 160

Arg Leu Leu Ala Asn Gly Gly Thr Glu Phe Asp Asp Leu Leu Val Arg 165 170 175

Phe Gly Leu Tyr Ala Gln Leu Gln Xaa Asp Cys Lys Asn Ile Tyr Ser 180 185 190

Pro Glu Tyr Ala Leu Asn Lys Gly Ser Val Ala Glu Asp Leu Arg Asn 195 200 205

Gly Glu Leu Ser Tyr Pro Val Val Val Ala Leu Ile Glu Asn Lys Ala 210 215 220

2007-04-12 Sequence Listing-JAMES68.016APC.txt Glu Gly Ile Val Gly Glu Ala Leu Arg Thr Arg Ser Asp Gly Asp Thr 225 230 235 240 Glu Gln Ala Leu Arg Val Leu Glu Ser Pro Ala Val Lys Asp Ala Cys 245 250 255 Leu His Ala Leu Glu Ala Ala Ser Val Gly Leu Glu Asp Leu Val Glu 260 265 270 Ala Trp Gly Arg Arg Glu Lys Met Arg Ser Asp Thr Leu Asp Gly Asp 285 Asp Leu Thr Arg Pro Ser Thr Ile Thr Gln His Glu Gln Asp Asp His Val Asp Arg Ala Ala Ile Asp Ala Lys Ser Asp Ala Ser Gly Ser Ser 305 310 315 320 Asn Lys Ser Leu Thr Pro Pro Glu Thr Ala Pro Thr Thr Asp Thr Leu 325 330 335 Ser Glu Thr Ala Val Gly Asp Ile Ser Ser Val Asp Val Asp Tyr Trp 340 345 350 Thr Arg Arg Cys Val Pro Ile Ile Gly Ser Leu Leu Lys Ser Cys Arg 365 365Val Tyr Ser Glu Ala Glu Arg Glu Thr Gln Leu Arg Phe Leu Gln Glu 370 380 His Val Leu Pro Asn Leu Gly Pro Arg Pro Ser Ser Pro Gly Ser Gln 385 Ile Gln Ser Met Ala Thr Phe Ser Gly Phe Pro Leu Gln Pro Ser Ile 415 Asn Leu Ser Gly Ser Gly Gln Ala Lys Val Arg Tyr Thr Phe Glu Pro 420 425 430 Leu Asp Ser Leu Ser Gly Thr Glu Val Asp Pro Phe Ala Leu Ala Pro Ala Gln Arg Val Leu Glu Lys Leu Ser Thr Leu Leu Gly Val Trp Pro 450 460 Gly Trp Ile Asp Ala Leu Ile Ala Ala Tyr His Pro Thr Arg Glu Glu 465 470 475 480

2007-04-12 Sequence Listing-JAMES68.016APC.txt Val Glu Gln Leu His Pro Asn Leu His Glu Tyr Leu Arg Gly Val Leu 490 485 Val Arg Thr Thr Gly Arg Gln Asp Val Gln Val Pro Pro Met Pro Arg Met Trp Val Cys Phe Val Ala Leu Asp Leu Glu Gly Ala Ser Gln Ala 515 520 525 Leu Lys Val Tyr Phe Asp Pro Lys Ile Lys Glu Ala Val Thr Gly Ile 530 540 Pro Ser Cys Lys Tyr Thr Cys Gln Ile Leu Arg Thr Val Asp Arg Phe 545 550 555 Gly Asn Ala Lys Ala Val Asp Met Leu Glu Gln Phe Leu Ala Glu Glu 565 570 575 His Ser Ile Gly Ala Val Glu Leu Ile Ala Ile Asp Cys Val Pro Glu 580 585 590 Glu Met Gln Pro Ser Ala Arg Ile Lys Val Tyr Val His Thr Met Ser 595 Asn Ser Phe Gln Thr Val Arg Lys Tyr Met Thr Met Gly Gly Arg Cys 610 620 Met Asp Pro Ala Thr Leu Glu Gly Leu Glu Asn Leu His Asp Val Trp Tyr Ser Leu Leu Gly Glu Ser Gln Gly Ile Val Asn Glu Glu Tyr Ser 645 650 655 Lys Pro Leu Thr Gly Phe Ser Ser Met Gln His His Leu Tyr Phe Ser 660 665 670 Glu Met Thr Pro Gly Asn Ala Asp Pro Gly Val Lys Val Tyr Ile 680 Pro Val Gln Ser Tyr Ala Pro Asp Asp Lys Thr Ile Ala Gln Asn Tyr Glu Ala Asn Phe Arg Gln Leu Asn Trp Pro Trp Gly Glu Pro Gly Val 705 710 715 720 Tyr Glu Ala Val Ile Glu Ser Ala Leu Gly Pro Val Lys His Ser Arg 725 730 735 Page 58

Ala Thr Phe Leu His Gly Gly Ser Ser Phe Ile Phe Ser Lys Gly Arg
740 745 750

Gly Val Tyr Gln Ser Ile Tyr Leu Asp Pro Pro Leu Glu Glu Gly Gly 765 765

Asn Ile Ala Val Phe Glu His His Asp Asp Gln Asp Thr Ile Val Asp 770 775 780

Leu Gly Asn Met

54 <210>

742 <211>

DNA Neotyphodium lolii

<400> atggagcaag cgccgctcgc ttatcaggaa gttcaatggc tagctgaaac ttttgtcact 60 120 ttcatggggc ttggctggct tatcaattac gtcttgatga tctggcactc taggaggggt 180 gaaccgagca gcatggctct catacccctc tgcaacaaca tcgcctggga gctcgtatac acquitatet atccqtetee taacaaagtg gaacttgegg ettteatage aggtgteaet 240 300 ttgaacttcc ttatcatgac ctctgcagcc cgttcggcaa gatccgagtg gagtcactca 360 cccacaatgg ctaagcatgc aggtttgatt atagtcgcag gaatattgat gtgcttcacc 420 ggacatgtag cattggcgat ggaaatagga cctgcgcttg cttactcatg gggagctgtc 480 atatgccaac tagctctaag cattggaggc gtgtgtcaat tgttgcagca gcatagtact 540 ggtgggacat catggaaact ttggtaagtg aataaatcaa ttacgtttct aatctatatt gaatgtcata tcaggggtgg ctgacatgaa agttttcagg tcaagtcgat ttctaggctc 600 ttgttgtgcg gttggctttg cctttcttcg ctggagatac tggcccgagg cgtacggatg 660 720 gctggccagt ccccttatcc tctggagtct tgccacgttt cttgtggccg atttgacgta 742 cggggtttgt ctccttcttt ag

55 227 <210>

<212>

<213> Neotyphodium lolii

<400> 55

Met Asp Gly Phe Ser Asn Met Glu Gln Ala Pro Leu Ala Tyr Gln Glu 1 5 10 15

Val Gln Trp Leu Ala Glu Thr Phe Val Thr Phe Met Gly Leu Gly Trp Page 59

Leu Ile Asn Tyr Val Leu Met Ile Trp His Ser Arg Arg Gly Glu Pro 35 40 45

Ser Ser Met Ala Leu Ile Pro Leu Cys Asn Asn Ile Ala Trp Glu Leu 50 60

Val Tyr Thr Ile Ile Tyr Pro Ser Pro Asn Lys Val Glu Leu Ala Ala 65 70 75 80

Phe Ile Ala Gly Val Thr Leu Asn Phe Leu Ile Met Thr Ser Ala Ala 85 90 95

Arg Ser Ala Arg Ser Glu Trp Ser His Ser Pro Thr Met Ala Lys His $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ala Gly Leu Ile Ile Val Ala Gly Ile Leu Met Cys Phe Thr Gly His 120 125

Val Ala Leu Ala Met Glu Ile Gly Pro Ala Leu Ala Tyr Ser Trp Gly 130 135 140

Ala Val Ile Cys Gln Leu Ala Leu Ser Ile Gly Gly Val Cys Gln Leu 145 150 155 160

Leu Gln Gln His Ser Thr Gly Gly Thr Ser Trp Lys Leu Trp Ser Ser 165 170 175

Arg Phe Leu Gly Ser Cys Cys Ala Val Gly Phe Ala Phe Leu Arg Trp 180 185 190

Arg Tyr Trp Pro Glu Ala Tyr Gly Trp Leu Ala Ser Pro Leu Ile Leu 195 200 205

Trp Ser Leu Ala Thr Phe Leu Val Ala Asp Leu Thr Tyr Gly Val Cys 210 215 220

Leu Leu Leu