Technika bezdrátové komunikace **B2B17TBK**

Část 5 - Signály

Přemysl Hudec

ČVUT-FEL katedra elektromagnetického pole

hudecp@fel.cvut.cz

verze 2025

Obsah

- VF a mikrovlnné signály
- Koncepce modulované nosné
- Analogové versus digitální modulace
- IQ modulace
- OFDM
- Parametr E_b/N_0

VF a mikrovlnné signály

- V tomto kurzu jen VELMI VELMI stručný základní přehled
- Podrobnosti v B2B37ROZ, B2B37SAS, B2M37DKM
- Nyní téměř 100% komunikací jsou digitální komunikace
- Informace jsou přenášeny ve formě symbolů, které jsou vybírány z omezené množiny symbolů
- Na obrázku je jako příklad 16 symbolů, každý symbol přenáší 4 bity

Digitální signál v základním pásmu

- Digitální signály v základním frekvenčním pásmu ("base-band", BB) obsahují frekvence od DC do f_{hiah}
- Je možné je přímo bezdrátově přenášet? URČITĚ NE:
 - Vyžadovaly by nesmyslně velké antény
 - Byly by zatíženy neřešitelnými interferencemi
 - Přímé přenosy jsou možné jen po metalických vedeních (ETHERNET, ...)
- Proto 100% moderních radiových komunikací používá digitální modulaci VF nebo mikrovlnné

nosné ("carrier") f₀

-5 85 dBm

Koncepce modulované nosné

- Sinusová nosná f_0 je modulována digitálním signálem:
 - o Nosná f_0 = sinusový signál, 1 spektrální čára
 - Digitální modulační signál → B široké spektrum v BB
 - Výsledek modulace → 2B široké spektrum kolem f₀
- Výhody:
 - o f_0 lze zvolit z velmi širokého pásma frekvencí
 - Běžně od cca 10²MHz do 10²GHz
 - Pro vyšší f₀, je možné používat menší antény (~1,5cm na 10GHz)
 - Na vyšších f_o, jsou k dispozici větší šířky pásma tedy vyšší datové rychlosti
 - Rozložením (koordinací) služeb na různé frekvence lze omezit interference

Možnosti modulace

- Možnosti modulace:
 - U základního f₀ sinusového signálu je možné modulovat:

$$u(t) = A\cos(\omega_0 t + \Psi)$$

- Amplitudu → amplitudová modulace AM
- Frekvenci → frekvenční modulace FM
- Fázi → fázová modulace PM
- Kombinaci amplituda + fáze
 → X-QAM

Analogové x digitální modulace

- Analogové modulace:
 - Amplitudy, frekvence nebo fáze jsou měněny spojitě
 - Nekonečný počet předpokládaných stavů
 - Je nutné je sledovat ve spojitém čase (stále)
 - Složité vyhodnocování, jsou nutné velmi vysoké hodnoty SNR
 - Min. 45dB pro analogový TV signál

Analogové x digitální modulace

- Digitální modulace:
 - A, ω, Ψ nabývají jen omezený počet stavů
 - Informace se přenášejí jako řada symbolů z omezené sady možných symbolů
 - Symboly jsou přenášeny v diskrétním čase, optimální čas pro vyhodnocování je předpokládatelný → je dán přenosovou symbolovou rychlostí
 - Příklad QPSK = 4-QAM:
 - Celkem 4 symboly
 - Liší se amplitudou a fází
 - Každý přenáší současně 2 bity
 - Kolem každého symbolu je toleranční okolí
 - Vyhodnocování je tedy velmi tolerantní na chyby, například šum
 - Dostatečné mohou být SNR~15dB

Digitální modulace

Výhody:

- Pro správné vyhodnocování stačí podstatně nižší hodnoty SNR
- Lze vysílat nižší výkony
- Stačí podstatně menší šířky pásma B → jednodušší koordinace frekvencí
- O Umožňuje sloučit zcela rozdílné služby do 1 toku → např. hlas, video, data, ...
- Umožňuje nasadit mimořádně efektivní metody zpracování signálů → komprese, kanálové kódování, šifrování, ... (nejsou možné v analogové formě)
- Téměř 100% moderních komunikací jsou proto digitální komunikace

Nevýhody

- Skoro žádné
- Při poklesu SNR pod určitou hranici velmi rychle (téměř skokem) klesá kvalita přenosu
- U analogových přenosů je pokles pozvolnější
- Proto se stále ještě používají například pro komunikaci mezi letadly a řízením letového provozu

IQ modulace

- Moderní a často používaná rodina digitálních modulací:
 - Quadrature AmplitudeModulation = M-QAM
 - Současné změny amplitudy a fáze
 - Může být popsáno v IQ diagramu
 v rovině definované osami I ("Inphase") a Q ("Quadrature")
 - Může být popsáno v polární rovině amplituda-fáze
 - Každý bod v IQ rovině definuje 1
 symbol (stav) s určitou
 amplitudou a fází
 - Každý z M symbolů současně přenáší N bitů

$$N = \log_2(M)$$

Často používané konfigurace:

0	16-QAM	4 bity/sym
0	64-QAM	6 bitů/sym
0	256-QAM	8 bitů/sym
0		
0	1048-QAM	10 bitů/sym
0	4096-QAM	12 bitů/svm

IQ modulace - popis

- Symboly jsou definovány v rovině = možnosti:
 - Polární rovina se souřadnicemi amplituda – fáze Α - Ψ
 - Dvě navzájem kolmé (kvadraturní) osy
 - Obvykle označené I ("In-phase") a Q ("Quadrature")
 - Každý symbol je určen složkovými napětími u_{l} a u_{O}
 - Používá se i popis v rovině komplexních čísel, kde je rovina definována Re+jIM
 - Ten se ve složitějších výpočtech používá nejčastěji
 - Používá se pojem "komplexní obálka" = "complex envelope"

$$v_I(t) = A(t)\cos(\Phi(t))$$

$$v_Q(t) = A(t)\sin(\Phi(t))$$

$$\hat{s}_{TX}(t) = A(t)e^{j\omega_0 t}e^{j\Phi(t)}$$

$$\tilde{s}_{TX}(t) = A(t)e^{j\Phi(t)}$$

$$\widetilde{S}_{TX}(t) = A(t)e^{j\Phi(t)}$$

$$A(t)e^{j\Phi(t)} = A(t)\cos(\Phi(t)) + jA(t)\sin(\Phi(t)) = v_I(t) + jv_Q(t)$$

Příklad 4-QAM

- Jiné označení je QPSK
- Celkem 4 symboly stejné amplitudy, liší se fází
- Složková napětí (příklad)
 - \circ **u**₁ = ± 0.5 V
 - \circ $u_Q = \pm 0.5 \text{V}$
- Symbol 1 = přenáší 01
 - $u_{I}=0.5V$ $u_{O}=0.5V$
- Symbol 2 = přenáší 00
 - $u_{I}=-0.5V$ $u_{O}=0.5V$
- Symbol 3 = přenáší 10
 - $u_{e}=0.5V$ $u_{e}=0.5V$
- Symbol 4 = přenáší 11
 - $u_{0}=0.5V$ $u_{0}=-0.5V$
- Symboly se odečítají na středu dób symbolů

Příklad 16-QAM

- Celkem 16 symbolů
- Každý nese informaci o 4 bitech
- Složková napětí u_l a u_Q mají dvě úrovně ±0,5V a ±1V
- Při datovém přenosu se u_l a u_Q mění v čase

Matematický popis IQ modulace

Vysílaný VF signál:

$$s_{TX}(t) = A(t)\cos(\omega_0 t + \Psi(t))$$

Vzorec

$$A\cos(\alpha + \beta) = A\cos(\alpha)\cos(\beta) + A\sin(\alpha)\sin(\beta)$$

Po úpravě

$$s_{TX}(t) = A(t)\cos(\omega_0 t)\cos(\Psi(t)) + A(t)\sin(\omega_0 t)\sin(\Psi(t))$$

Při použití složkových napětí

$$v_I(t) = A(t)\cos(\Psi(t))$$
 $v_Q(t) = A(t)\sin(\Psi(t))$

$$v_Q(t) = A(t)\sin(\Psi(t))$$

Je vysílaný signál

$$s_{TX}(t) = v_I(t)\cos(\omega_0 t) + v_Q(t)\sin(\omega_0 t)$$

- Generuje se v IQ modulátorech
- To jsou základní prvky většiny digitálních TX
- Obdobně fungují IQ demodulátory v RX

IQ modulátor

- Vytvoření signálu M-QAM:
 - Nosná ω₀ je pomocí 0º/90º děliče rozdělena do LO vstupů 2 identických směšovačů
 - o Na IF vstupy jsou připojeny signály $v_l(t)$ a $v_Q(t)$ z výstupů 2 identických DAC
 - Směšovače pracují jako násobičky
 - Horní směšovač generuje:
 - Dolní směšovač generuje:
 - Signály se sčítají
 slučovačem 0º/0º
- Praktická realizace → často digitálně v DSP + DAC

Základní digitální modulace

Parametry:

- o A_k = diskrétní amplituda
- o $\Phi_k = \Psi_k = \text{diskrétní fáze}$
- o M = počet symbolů

Zkratky:

- OOK → "ON-OFF keying"
- BPSK → "bipolar phase-shift keying"
- QPSK → "qadrature phase-shift keying"
- M-PSK → "M-state PSK"
- M-ASK → "M-state amplitude shift keying"
- M-QAM → "M-state quadratureamplitude modulation"
- o V praxi:
 - 32-QAM, ..., 2048-QAM

	A_k	$\Phi_{\scriptscriptstyle k}$	M	bits/symbol
OOK	A_c , 0	0	2	1
BPSK	A_c	0, π	2	1
QPSK	A_c	$0, \pi/2, \pi, 3\pi/2$	4	2
M-PSK	A_c		M	$\log_2(M)$
M-ASK				
M-QAM				

Signal-processing

- Zpracování digitálních signálů:
 - Zdrojové kódování ("source coding") →
 úprava digitálních signálů pro modulaci např.
 komprese (MPEG, ...)
 - Šifrování ("encryption") → potlačení neoprávněného příjmu dat pomocí přídavného kódování
 - Kanálové kódování ("channel coding") →
 zpracování dat přispívající k vyšší odolnosti proti
 problémům vznikajícím při přenosu interference,
 šumy, úniky ("fading")
 - Modulace → kódování dat na nosnou
- Výsledkem je analogový signál, který reprezentuje data:
 - V diskrétním čase
 - S omezenou "abecedou" = s omezenou sadou symbolů

- V RX → musí být provedeny opačné kroky:
 - Demodulace
 - Kanálové dekódování
 - Dešifrování
 - Zdrojové dekódování

Kanálové kódování ("Channel Coding")

- Skupina metod používaných k omezení nežádoucích vlivů při přenosu (šum, úniky EM vln, IM produkty, ...) na chybovost přenosu dat BER:
 - K vlastním datům jsou přidávány další pomocné informace (bity)
 - To umožňuje detekovat chyby a někdy je i opravovat
 - Přídavné = redundantní bity nepřenášejí užitečné informace zhoršují tedy spektrální účinnost datového přenosu
 - Ale zlepšují energetickou účinnost (lze vysílat nižší VF výkon)
 - V digitálních komunikacích jsou velmi široce používané
- Detekce chyb, například:
 - Kontrola parity
 - Kontrolní součet
 - Obvykle, "mnohem-mnohem" složitější metody
 - Pokročilé kódování umožňuje chyby opravovat
- Výsledek kanálového kódování = "coding gain"
 - Pro požadované *BER* umožňuje snížit nároky na E_b/N_0

OFDM

- "Orthogonal Frequency Division Multiplex"
 - Moderní široce používaný modulační concept
 - Vhodný pro datové přenosy v přítomnosti silných úniků typ. DVB-T, LTE, ...
- Hlavní principy:
 - Datový tok je rozdělen do N paralelních kanálů
 - Každý kanál má přiřazenu trochu jinou frekvenci nosné
 - 2 sousední nosné se liší o Δf
 - Každý kanál je modulován některou ze standardních modulací
 - Např. 64-QAM
 - jsou signály zcela nekorelované (navzájem se neovlivňují)
 - T_s je doba 1 symbolu

Band Group 1

-(122) OFDM Subcarriers -61 to -1 and +1 to +61

symbol-time = 242.42 + 70.08 = 312.5 nSec

1/4.125 MHz = 242.42 nSec ____

OFDM

- Je ekvivalentní:
 - Používat 1kanál s větší šířkou pásma 1/T
 - Nebo N kanálů s šířkou pásma 1/NT
- Výhody OFDM:
 - Vysoká odolnost vůči únikům = změny amplitudy přijatých VF signálů
 vznikajících jako důsledek odrazů EM vln při šíření a atmosférickými vlivy podrobnost dále v kurzu.
 - Funguje jako "frekvenční diverzita" signály jsou vysílány na více frekvencích a některé jsou vždy ovlivněny méně.
- Nevýhody OFDM:
 - Shluk frekvenčně blízkých signálů představuje v časové oblasti signál s velmi proměnnou amplitudou - při špičkách může docházet k saturaci PA a generaci IM produktů.
 - o Zesilovače s vysokými hodnotami P_{-1dB} a $IP3 \rightarrow$ obecně rozměrnější, vyšší příkon, nižší účinnost, dražší.
 - Citlivost na Dopplerovy frekvenční posuvy.

 $\Delta f_D = \frac{v_r f_0}{c}$

OFDM - příklady

• LTE

IQ demodulace

- Může být prováděna v IQ demodulátoru:
 - Pomocí děliče 0º je vstupní signál rozdělen do 2 identických větví se 2 identickými směšovači
 - Na LO branách jsou směšovače buzeny silným signálem ω₀ rozděleným děličem 0 º / 90 º
 - Oba směšovače pracují jako násobičky
 - Řešení pro větev I: .
 - Na výstupu filtru typu DP je signál v_i(t)

$$v_I^{IF}(t) = \left[v_I(t)\cos(\omega_0 t) + v_Q(t)\sin(\omega_0 t)\right]\cos(\omega_0 t) =$$

$$= v_I(t)\cos^2(\omega_0 t) + v_Q(t)\sin(\omega_0 t)\cos(\omega_0 t) =$$

$$= \frac{1}{2}v_I(t)(1 + \cos(2\omega_0 t)) + \frac{1}{2}v_Q(t)(\sin(0) + \cos(2\omega_0 t)) =$$

$$= filtrace = \frac{1}{2}v_I(t)$$

IQ demodulace

- Řešení pro větev Q:
 - o Na výstupu za filtrem je signál $v_O(t)$
- Praktická demodulace:
 - o HW demodulátor → ne vždy
 - Často → ADC + digitální IQ demodulace v DSP
 - Nižší amplitudové a fázové chyby ("amplitude and phase errors")
 - Lze také měnit modulaci, datarate, ...,
 - a to velmi snadno jen změnou SW.

$$\begin{aligned} v_Q^{IF}(t) &= \left[v_I(t) \cos(\omega_0 t) + v_Q(t) \sin(\omega_0 t) \right] \sin(\omega_0 t) = \\ &= v_I(t) \cos(\omega_0 t) \sin(\omega_0 t) + v_Q(t) \sin^2(\omega_0 t) = \\ &= \frac{1}{2} v_I(t) (\sin(0) + \sin(2\omega_0 t)) + \frac{1}{2} v_Q(t) (1 - \cos(2\omega_0 t)) = \\ &= filtrace = \frac{1}{2} v_Q(t) \end{aligned}$$

Parametr E_b/N_o

Energie na symbol

$$E_S = A_m^2 \int_0^T 1^2 dt = A_m^2 T$$

Energie na bit:

$$E_b = \frac{E_s}{\log_2(M)}$$

Výkon signálu

$$S = \frac{E_b}{T_b}$$

Výkon šumu

$$P_n = kT_e B$$

Spektrální výkonová hustota šumu:

$$N_0 = \frac{P_n}{B}$$

- Uvažuje se konstantní v celém B
- Odstup signál-šum:

$$SNR = \frac{S}{P_n} = \frac{\frac{E_b}{T_b}}{N_0 B} = \frac{1}{T_b B} \frac{E_b}{N_0}$$
 $\frac{E_b}{N_0} = T_b B.SNR$

$$\frac{E_b}{N_0} = T_b B.SNR$$

- Používá se v moderních komunikacích pro srovnání různých modulací

BER

- "Bit error-rate" = pravděpodobnost chyb:
 - Počet chybně přenesených bitů k celkovému počtu bitů
 - Jeden z nejdůležitějších parametrů každého bezdrátového propojení
 - Požadovaná max. hodnota BER udává cílovou kvalitu dané služby
 - o K požadované max. BER lze vypočítat minimální nutnou hodnotu E_b/N_0 (docela složité výpočty)
 - Podrobnosti v B2B37ROZ, B2M37DKM
 - ∨ tomto kurzu → jen grafické příklady
 - Závislosti BER na E_b/N₀ pro různé standardní modulace
 - Složitější modulace vyžadují vyšší hodnoty E_b/N_0

Figure 6.18. Probability of bit error as a function of E_b/N_0 for M-ASK.

Figure 6.19. Probability of bit error as a function of E_b/N_0 for M-QAM.

Shrnutí: Signály

- Moderní radiové bezdrátové komunikace:
 - o Používají skoro 100% digitální modulace,
 - o a to ve formě digitálně modulovaných nosných.
- Hlavní kroky zpracování digitálních signálů:
 - Zdrojové kódování dekódování
 - Šifrování dešifrování
 - Kanálové kódování dekódování
 - Modulace demodulace
- Velmi často se používá IQ modulace demodulace
- Pro výpočty se používá E_b/N_0 místo SNR
- OFDM je moderní modulační koncepce s významnými výhodami (i nevýhodami)
- Požadovaná max. hodnota BER je jeden z nejvýznamnějších cílových parametrů každé radiové trasy

