Formelsammlung Robotik

Vektoren

Mathematische Operationen im Vektorraum

Addition	$ec{a} + ec{b}$	$\begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix}$			
Subtraktion	$ec{a}-ec{b}$	$ \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{pmatrix} $			
Skalare Multipl.	$\lambda \cdot ec{a}$	$\begin{pmatrix} \lambda \cdot a_1 \\ \lambda \cdot a_2 \\ \lambda \cdot a_3 \end{pmatrix}$			
Abstand PUrpsr.					
Betrag (Norm)	$ \vec{a} $	$ \vec{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$			
Skalarprodukt	$ec{a}\cdotec{b}$	$a_1 \cdot b_1 + \ldots + a_n \cdot b_n = x$			
Kreuzprodukt	$ec{a} imesec{b}$	$\begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$			
Spatprodukt	$u\cdot (v imes w)$				
Winkel		$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \cdot \vec{b} }$			
Rotationsmatrix		$ \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} $			

Matrizen

Operatoren

Gleich	A = B	$(a_{ij}) = (b_{ij})$
Addition	C = A + B	$(c_{ij}) = (a_{ij}) + (b_{ij})$
Differenz	C = A - B	$(c_{ij}) = (a_{ij}) - (b_{ij})$
Multiplikation Skalar	$c \cdot A$	$cA \in R^{m \times n}$
Multiplikation Matrizen	$A \cdot B$	$AB = \sum_{i} a_{ij} b_{ij}$

Multiplikation

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

Inverse bilden

 $A\cdot A^{-1}=I|A=(a_{ij}),A^{-1}=(a_{ij})$ Multiplikation aus A und A^{-1} ergeben Einheitsmatrix:

$$\begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \hat{a}_{11} \dots \hat{a}_{1n} \\ \vdots & \vdots \\ \hat{a}_{n1} \dots \hat{a}_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \ddots \\ 0 & 0 \end{pmatrix}$$

Inverse kann mit Gauß-Jordan berechnet werden.

Koeffizientenmatrix A umd Einheitsmatrix I erweitern.

$$(A|I) = \begin{pmatrix} a_{11} \dots a_{1n} & 1 & 0 \\ \vdots & \vdots & \ddots \\ a_{n1} \dots a_{nn} & 0 & 0 \end{pmatrix}$$

Matrix A mit elementarer Zeilenumformung auf obere Dreiecksgestalt bringen, wobei Einheitsmatrix I mit umgeformt wird:

$$(D|B) = \begin{pmatrix} * \dots * & * \dots * \\ \vdots & \vdots & \vdots \\ 0 & * * \dots * \end{pmatrix}$$

Matrix A ist nur invertierbar, wenn D keine Null auf Hauptdiagonale D mit elementarer Zeilenumformung auf Diagonalgestalt und durch Skalierung in Einheitsmatrix. Rechte Seite enthält die Inverse.

$$(I|A^{-1}) = \begin{pmatrix} 1 & 0 & \hat{a}_{11} & \dots & \hat{a}_{1n} \\ \ddots & \vdots & \vdots \\ 0 & 1 & \hat{a}_{n1} & \dots & \hat{a}_{nn} \end{pmatrix}$$

Rechte Hand Regel

Koordinatensysteme

Objekt in 3D (OKS)	$ \begin{vmatrix} \vec{v} & = \\ (x, y, z, \alpha, \beta, \gamma) \end{vmatrix} $	$\alpha, \beta, \gamma = Drehwinkel$
Senkrechte		

Rotationsmatrizen

Rotation	$\lceil x' \rceil$	l	Γ1 0	0 -	1	$\lceil x \rceil$	1
um	$R_x(\alpha) = u'$	=	$0 \cos \alpha$	$-\sin \alpha$		u	
X	z'		$0 \sin \alpha$	$\cos \alpha$		z	
Rotation	x'		$\cos \alpha$	$0 \sin \alpha$		\overline{x}	
um	$R_{y}(\alpha) = y'$	=	0	1 0		$ _{y}$	
Y	z'		$-\sin\alpha$	$0 \cos \alpha$		z	
Rotation	x'		$\cos \alpha$ –	$\sin \alpha \ 0$		x	
um	$R_z(\alpha) = y'$	=	$\sin \alpha$	$\cos \alpha = 0$		y	
\mathbf{Z}	z'		0	0 1		z	
Vormultipl.	$R_{x}(\alpha) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha - \sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $R_{y}(\alpha) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $R_{z}(\alpha) = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \alpha - \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ Rotation um die ursprüngliche (feste) Achse. Schreib-						
(Roll-pitch-	weise: Letzte Drehung $\rightarrow 1$. Drehung						
yaw)			_		_		
Nachmultipl.	Rotation um die neuen (momentanen) Achsen.						
(Euler-	Schreibweise: 1. Drehung \rightarrow Letzte Drehung						
Winkel)							
Homogene							
$4\times$	$T = \left(\frac{R_{3\times3}}{f_{1\times3} = 0} \middle \frac{u_{3\times1}}{1\times1}\right) = \left(\begin{array}{ccc} n_{x\downarrow z} & o_{x\downarrow z} & a_{x\downarrow z} & u_{x\downarrow z} \\ 0 & 0 & 0 & 1 \end{array}\right)$						
4-							
Matrix							
	$\int n_x n$	$u_y n_z$	$ -n^T \cdot \bar{u} $: /			<u> </u>
Invertierung	T^{-1} $o_x \circ o_x$	$v_y o_z$	$ -o^T \cdot \vec{u} $: }			
4×4	$T^{-1} = \begin{pmatrix} n_x & n_y \\ o_x & o_z \\ a_x & o_z \\ 0 & o_z \end{pmatrix}$	$y a_z$	$-a^T \cdot \vec{u}$:			
	(-0-	0 0	1 1	/			
Verkettete							
Lagebeschr	$^{BKS}H_B = ^{BKS}H_A \cdot ^A H_B H = $ Homogene Matr.						
test							