机器学习基石·笔记(第5、6讲)

Machine Learning Foundations by Prof. Hsuan-Tien Lin

Haoming Wang

Spring 2020

这篇笔记是台湾大学林轩田教授的 Coursera 课程:機器學習基石上 (Machine Learning Foundations)—Mathematical Foundations 的课程笔记. 您可以点击这里获取更多笔记.

This is a note I took while studying the Coursera course taught by Prof. Hsuan-Tien Lin at National Taiwan University. You can click here for more notes.

目录

1	处理	无限假设集 $\operatorname{process} \mathcal{H} = \infty$	2
	1.1	有效假设函数总量 Effective Number Hypothesis	2
	1.2	成长函数 Growth Function	5
	1.3	突破点 Break Point	7
2	二维	感知器的成长函数 2D Perceptron Growth Func	8
	2.1	突破点的限制 Restriction of Break Point	8
	2.2	上限函数 Bounding Func	9

1 处理无限假设集 process $|\mathcal{H}| = \infty$

1.1 有效假设函数总量 Effective Number Hypothesis

上一讲讲到, 对于某个 hypothesis 函数 h 有 \mathbb{P} (BAD \mathcal{D} for h) $\leq 2e^{-2\epsilon^2 N}$. 若 $|\mathcal{H}| = M$, 则 \mathcal{D} 对于某个 $h \in \mathcal{H}$ 而言是 BAD 的概率有

$$\mathbb{P} (BAD \mathcal{D} \text{ for } \mathcal{H}) = \mathbb{P} \left(\bigcup_{h \in \mathcal{H}} BAD \mathcal{D} \text{ for } h \right)$$

$$\leq \sum_{i=1}^{M} \mathbb{P} (BAD \mathcal{D} \text{ for } h_i)$$

$$\leq 2Me^{-2\epsilon^2 N}.$$

这说明当样本足够大时, 我们有很大的把握认定 $E_{out}(h) = E_{in}(h)$; 再通过在 \mathcal{H} 中选择 $E_{in}(h) \approx 0$ 的 hypothesis 函数 h^* 作为 g, 我们就可以推断出

$$E_{in}(h^*) \approx E_{out}(h^*) = E_{out}(g) \approx 0,$$

从而证明了学习的可行性. 即我们将学习的过程归结为两个过程:

- $\notin E_{in}(g) \approx E_{out}(g)$
- 在 \mathcal{H} 找到使 $E_{in}(h)$ 足够小的 h 作为 g.

现在的问题是 $|\mathcal{H}| = M$ 如何影响学习的可行性? 当 M 很小的时候, 我们抽到 BAD 的概率上限 $2Me^{-2\epsilon^2N}$ 也会减小, 即可以增强第一个过程的把握. 但是对于第二个过程而言, 容量过小的假设集可能使我们找不到足够使 $E_{in}(h)$ 接近于 0 的 hypothesis 函数 h.

当 M 很大的时候, 抽到 BAD 的概率上限 $2Me^{-2\epsilon^2N}$ 也会增大 (甚至大于 1, 从而使 PAC 框架失效), 即样本 \mathcal{D} 更有可能对某个 $h \in \mathcal{H}$ 是一个 BAD 样本, 从而使第一个过程的把握减小. 但是对应的, 会使我们更可能在 \mathcal{H} 中找到理想的 h 作为 g.

可见 M 对机器学习的可行性是至关重要的,但是我们的模型对于 $M=\infty$ 是无效的,下面思考改进这一问题. 考虑霍夫丁不等式的结论:

$$\mathbb{P}\left(|E_{in}(g) - E_{out}(g) > \epsilon|\right) \le 2Me^{-2\epsilon^2 N}.$$

对于 $h_i \in \mathcal{H}$ 而言, BAD 事件为 $\mathcal{B}_m = \{|E_{in}(h_m) - E_{out}(h_m) > \epsilon\}$, 而对于 \mathcal{H} 而言 BAD 的概率为

$$\mathbb{P}\left(\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \cdots \mathcal{B}_{n} \cup \cdots\right) \leq \mathbb{P}\left(\mathcal{B}_{1}\right) + \mathbb{P}\left(\mathcal{B}_{2}\right) + \cdots + \mathbb{P}\left(\mathcal{B}_{n}\right) + \cdots$$

需要注意, 对于 $h_i, h_j \in \mathcal{H}$, 可能 $\mathcal{B}_i \cap \mathcal{B}_j \to \mathcal{B}_i \cup \mathcal{B}_j$, 即

$$\mathbb{P}\left(\mathcal{B}_{i} \cup \mathcal{B}_{j}\right) = \mathbb{P}\left(\mathcal{B}_{i}\right) + \mathbb{P}\left(\mathcal{B}_{j}\right) - \mathbb{P}\left(\mathcal{B}_{i} \cap \mathcal{B}_{j}\right)$$

$$\ll \mathbb{P}\left(\mathcal{B}_{i}\right) + \mathbb{P}\left(\mathcal{B}_{j}\right) < 2 \cdot 2 \cdot e^{-2\epsilon^{2}N},$$

这为我们将 M 替换为更小的值提供了思路.

设 $\mathcal{H} = \{\text{all lines in } \mathbb{R}^2\}$. 考虑 $\mathcal{X} = \mathbf{x}_1 \in \mathbb{R}^2$ 的情形. 此时对于样本 \mathbf{x}_1 而言, 只有两类 hypothesis 是不同的, 一是 h_1 , 它将 \mathbf{x}_1 推断为 \circ ; 二是 h_2 , 它将 \mathbf{x}_1 推断为 \times .

图 1: $\mathcal{X} = \mathbf{x}_1 \in \mathbb{R}^2$

而对于 h_1 与 h_3 而言, 他们对 \mathbf{x}_1 (或者说 \mathcal{X}) 的推断是完全一致的, 因此若 \mathcal{X} 对 h_1 而言是 BAD, 则对 h_3 而言也是 BAD. 即

$$\mathbb{P}\left(\mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \cdots\right) = \mathbb{P}\left(\mathcal{B}_1 \cup \mathcal{B}_2\right) \leq 2 \cdot 2 \cdot e^{-2\epsilon^2 N}.$$

下图展示了当 $\mathcal{X} = \mathbf{x}_1$ 是 h_1 的 BAD 样本的一种可能的情况, 其中 \mathbf{x}_1 以外的点表示真实的总体情况, 并不在样本中.

图 2: 一种可能的总体

下面考虑 $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2\}$ 的情况. 此时对于 \mathcal{X} 而言, \mathcal{H} 中一共有四类 hypothesis h_1, h_2, h_3, h_4 . 这四类 hypothesis 将 \mathcal{X} 划分为如下四类: $h_1: \mathcal{X} \mapsto \{\circ, \circ\}, h_2: \mathcal{X} \mapsto \{\times, \times\}, h_3: \mathcal{X} \mapsto \{\circ, \times\}, h_4: \mathcal{X} \mapsto \{\times, \circ\}.$

对于除此之外任意一个 hypothesis 如 h_5 , 它对 $\mathcal X$ 的推断与 h_4 完全一致, 因此若 $\mathcal X$ 是 h_4 的一个 BAD 样本, 则它也是 h_5 的一个 BAD 样本. 因此

$$\mathbb{P}\left(\mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5 \cup \cdots\right) = \mathbb{P}\left(\mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4\right)$$
$$\leq 2 \cdot 4 \cdot e^{-2\epsilon^2 N}.$$

图 3: $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2\} \in \mathbb{R}^2$

下图展示了一种可能的总体,这种情况下样本 $\mathcal{D} = \mathcal{X} \times \mathcal{Y} = \{(\mathbf{x}_1, \times), (\mathbf{x}_2, \circ)\}$,此时 $E_{in}(h_4) = E_{in}(h_5) = 0$. 但是显然 \mathcal{D} 是 h_4, h_5 的 BAD 样本.

图 4: 一种可能的总体

下面我们要探索更一般的情况. 对于一个二分类的问题, 即 $\mathcal{H} = \{h_i : \mathcal{X} \mapsto \{-1, +1\}, i = 1, 2, \cdots, M\}$, 我们可以计算出若 $|\mathcal{X}| = N$, 则 \mathcal{X} 最多一共有 2^N 种分类方式, 一次无论 $|\mathcal{H}| = M$ 为多少, 都只有 2^N 种 hypothesis, 因此我们可以把 M 替换成 2^N , 即

$$\mathbb{P}\left(\bigcup_{i} \mathcal{B}_{i}\right) \leq 2 \cdot 2^{N} \cdot e^{-2\epsilon^{2}N}.$$

但是对于 $\mathcal{X} \subset \mathbb{R}^2$ 的 N 个点,到第能够被二分类分为多少种,是取决于假设集 \mathcal{H} 的 结构的. 例如当 $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\} \subset \mathbb{R}^2$ 时,虽然二分类最多可以一共分出 $2^4 = 16$ 中,但是当我们令 $\mathcal{H} = \{\text{all lines in } \mathbb{R}^2\}$ 时, $\{\circ, \times, \circ, \times\}$ 和 $\{\times, \circ, \times, \circ\}$ 这两种情况是无法被任意 $h \in \mathcal{H}$ 实现的. 因此对于 \mathcal{H} 而言, \mathcal{X} 最多只能被分为 $2^4 - 2 = 14$ 类;换句话说,对于 \mathcal{X} 而言, \mathcal{H} 中一共有 14 类 hypothesis,因此我们可以将 M 替换为更小的某一个值,在这个例子中:

$$\mathbb{P}\left(\bigcup_{i} \mathcal{B}_{i}\right) \leq 2 \cdot 14 \cdot e^{-2\epsilon^{2}N} \leq 2 \cdot 2^{4} \cdot e^{-2\epsilon^{2}N} \ll 2 \cdot M \cdot e^{-2\epsilon^{2}N}.$$

1.2 成长函数 Growth Function

上面讨论了当 $\mathcal{H} = \{\text{all lines in } \mathbb{R}^2\}$ 时, 对于不同的 $\mathcal{X} = \{\mathbf{x}\}_N$, 有几种 hypothesis h. 下面一般化 \mathcal{H} . 设先存在一个 hypothesis set:

$$\mathcal{H} = \{\text{hypothesis } h : \mathcal{X} \mapsto \{\times, \circ\}\}.$$

我们称

$$h(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N) := (h(\mathbf{x}_1), h(\mathbf{x}_2), \cdots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N, \ \forall h \in \mathcal{H}$$

为一个 dichotomy. 将一个 hypothesis set \mathcal{H} 在 $\mathcal{X} = \{\mathbf{x}_i\}_N$ 上作出的所有 dichotomy 构成一个集合记为 $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)$. 比较 \mathcal{H} 与 $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)$.

	hypothesis set \mathcal{H}	dichotomies $\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N)$
e.g.	all lines in \mathbb{R}^2	$\{\circ\circ\circ\circ_{X},\circ\circ_{X}_{X},\cdots\}$
size	M , possible ∞	$ \mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N) \leq 2^N$

如上文分析, $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N)|$ 取决于 $\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N$. 这不仅取决于 N 还取决于 N 个点的分布. 如令 $\mathcal{H}=\{\text{all lines in }\mathbb{R}^2\},\,N=4,\,$ 若 $\mathbf{x}_1',\mathbf{x}_2',\mathbf{x}_3',\mathbf{x}_4'$ 四点共线,则我们只

能将其分为两类,即 $|\mathcal{H}(\mathbf{x}_1',\mathbf{x}_2',\mathbf{x}_3',\mathbf{x}_4')| = 2$,而当 $\{\mathbf{x}_i\}_4$ 分布在一个圆上时, $|\mathcal{H}(\{\mathbf{x}_i\}_4)| = 14$.为了规避 $\{\mathbf{x}_i\}_N$ 的分布带来的影响,我们定义

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N)|$$

为 hypothesis set \mathcal{H} 的成长函数 (Growth Function). 如上文分析当 $\mathcal{H}=2D$ Perceptron 时,

$$m_{\mathcal{H}}(1) = 2, m_{\mathcal{H}}(2) = 4, m_{\mathcal{H}}(3) = 8, m_{\mathcal{H}}(4) = 14.$$

对于任意二分类 hypothesis set \mathcal{H} , 有 $m_{\mathcal{H}}(N) \leq 2^{N}$.

若 $m_{\mathcal{H}}(N) = 2^N$,则**存在** N 个 input $\{\mathbf{x}_i'\}_N$ 使得 \mathcal{H} 可以将其映射到 $\{\times, \circ\}$ 中的每一点. 称 $\{\mathbf{x}_i'\}_N$ 被 \mathcal{H} 击碎 (shattered),例如, $\mathcal{H} = 2D$ Perceptron,则存在 $\{\mathbf{x}_i\}_1, \{\mathbf{x}_i\}_2, \{\mathbf{x}_i\}_3$ 被 \mathcal{H} shatter,但是任意 $\{\mathbf{x}_i\}_4$ 不可被 \mathcal{H} shatter.

至此, 我们可以将霍夫丁不等式中的 M 替换为 $m_{\mathcal{H}}(N)$:

$$\mathbb{P}\left(|E_{in}(g) - E_{out}(g)| > \epsilon\right) \le 2 \cdot m_{\mathcal{H}}(N) \cdot e^{-2\epsilon^2 N}.$$

对于二分类的 \mathcal{H} , 有 $m_{\mathcal{H}}(N) \leq 2^{N}$. 下面讨论几种 \mathcal{H} 的增长函数:

1. Positive Intervals $\mathcal{X} = \{\mathbf{x}_i\}_N \subset \mathbb{R}, \, \mathcal{H} = \{h(x) = \text{sign}(x-a), a \in \mathbb{R}\}.$ 易知

$$m_{\mathcal{H}}(N) = N + 1 \ll 2^{N}$$
.

2. Positive Intervals $\mathcal{X} = \{\mathbf{x}_i\}_N \subset \mathbb{R}, \, \mathcal{H} = \{h(x) = +1 \text{ iff } x \in [l,r); -1 \text{ otherwise}\}.$ 易知

$$m_{\mathcal{H}}(N) = C_N^2 + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \ll 2^N.$$

3. Convex Sets $\mathcal{X} = \{\mathbf{x}_i\}_N \subset \mathbb{R}^2, \, \mathcal{H} = \{h(x) = +1 \text{ iff } x \in \text{Convex Set } \subset \mathbb{R}^2\}.$ 只需要将 $\{\mathbf{x}_i\}_N$ 排列在一个圆上,即可算得

$$m_{\mathcal{H}}(N) = 2^N.$$

图 5: Growth Function for Convex Sets

注意, 对于任意 $N \in \mathbb{Z}^+$, 存在 $\{\mathbf{x}_i\}_N$ 被 \mathcal{H} 击碎 (shattered).

1.3 突破点 Break Point

我们定义: 如果当 N=k 时 \mathcal{H} 不可 shatter $\{\mathbf{x}_i\}_k$, 即 $m_{\mathcal{H}}(k) < 2^k$, 则 k 为 \mathcal{H} 的突破点 (Break Point). 若 k 为 \mathcal{H} 的突破点, 则

$$m_{\mathcal{H}}(k+1) \le 2 \cdot m_{\mathcal{H}}(k) < 2 \cdot 2^k = 2^{k+1}.$$

因此 $k+1, k+2, \cdots$ 也是 \mathcal{H} 的突破点. 对于 2D perceptrons 而言, 其最小突破点为 4. 比较突破点与成长函数:

\mathcal{H}	Min Break Point	Growth Func
Positive Rays	2	$m_{\mathcal{H}}(N) = N + 1 = O(N)$
Positive Interval	3	$m_{\mathcal{H}}(N) = 1/2N^2 + 1/2N + 1 = O(N^2)$
Convex Sets	None (∞)	$m_{\mathcal{H}}(N) = 2^N$
2D perceptrons	4	$m_{\mathcal{H}}(N) = ?$

我们提出如下猜测: 若 $\mathcal H$ 无 min break point, 则 $m_{\mathcal H}(N)=2^N$; 若 $\mathcal H$ 的 min break point 为 k, 则 $m_{\mathcal H}(N)=O(N^{k-1})$. 我们在下一讲证明这一猜想.

2 二维感知器的成长函数 2D Perceptron Growth Func

2.1 突破点的限制 Restriction of Break Point

上一讲说明 \mathcal{H} 在 $\{\mathbf{x}_i\}_N$ 上产生的 dichotomy 的种类的最大值为 $m_{\mathcal{H}}(N)$. 本讲我们 考察 Min Break Point 是否会对 \mathcal{H} 在 $\{\mathbf{x}_i\}_N$ 上产生的 dichotomy 的种类产生更强的限制.

如果对于某个二分类 hypothesis set \mathcal{H} , 其 Min Break Point k=2. 则有以下推论: 当 N=1 时, $m_{\mathcal{H}}(N)=2^N=2$. 当 N=2 时, $m_{\mathcal{H}}(N)<2^N=4$, 即 $\max m_{\mathcal{H}}(2)=3$ (最大 dichotomy 最多种类为 3). 当 N=3 时, 注意: 一方面 $\max m_{\mathcal{H}}(3)\leq 7$; 另一方面, $\{\mathbf{x}_i\}_3$ 中任意两个点都不可被 shatter, 即任意两个点最多产生 3 种 dichotomy. 在这两个条件的限制下, 注意到若要 shatter 两个点, 则至少需要 4 种 dichotomy, 因此当 1< dichotomy <4 时都是成立的,即我们只需要考察 4, 5, 6, 7 种 dichotomy 的情况.

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	
1				No: $m_{\mathcal{H}}(1) = 2$
2				Yes
3				Yes
4				?
5				?
6				?
7				?
8				No: $\max m_{\mathcal{H}}(3) = 7$
9				No: $\max m_{\mathcal{H}}(3) = 7$

考察 4 种 dichotomy 的情况, 左图的情况下 $\mathbf{x}_2, \mathbf{x}_3$ 被 shatter; 右图的情况下, 满足条件. 因此 $\max m_{\mathcal{H}}(3) \geq 4$.

图 6: 4 种 dichotomy

考察 5 种 dichotomy 的情况. 左一图中 $\mathbf{x}_1, \mathbf{x}_3$ 被 shatter, 左二图 $\mathbf{x}_1, \mathbf{x}_2$ 被 shatter, 左三图 $\mathbf{x}_1, \mathbf{x}_2$ 被 shatter.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{X}_1	\mathbf{x}_2	X 3	\mathbf{X}_1	\mathbf{x}_2	X 3
0	0	0	0	0	0	0	0	0
0	0	×	0	0	×	0	0	×
0	×	0	0	×	0	0	×	0
×	0	0	×	0	0	×	0	0
×	0	×	×	×	0	×	×	×

图 7: 5 种 dichotomy

任意 5 种 dichotomy 的情况下, 总有两个点被 shatter, 这违反了我们的假设, 因此 $\max m_{\mathcal{H}}(3) = 4$. $(m_{\mathcal{H}}(3)$ 可以为 2, 3, 4.) 由此可知, Min Break Point k 限制了 $\max m_{\mathcal{H}}(N)$, 对于 N > k.

注 2.1. 易知, 若 \mathcal{H} 的 Min Break Point k=1, 则 $m_{\mathcal{H}}(N)=1, \forall N$. 因为任意两个及以上不同的 dichotomy, 必然导致某个点被 shatter.

2.2 上限函数 Bounding Func

定义: 若 \mathcal{H} 的 Min Break Point 为 k, 则 $\max m_{\mathcal{H}}(N)$ 为上限函数 B(N,k) (有 N 个点,任何 k 个点不能 shatter,则该 N 个点的 dichotomy 最多种数的最大值为 B(N,k),注意如果 k > N,则不能 shatter 的条件无效,此时 $B(N,k) = \max m_{\mathcal{H}}(N) = 2^N$).

注 2.2. "最多种数的最大值","最多"是指不同分布的 N 个点在 \mathcal{H} 下产生的 dichotomy 的最大值,即 $m_{\mathcal{H}}$. "最大值"是指在所有结构的二分类 $hypothesis\ set\ \mathcal{H}$ 中产生的最大 $m_{\mathcal{H}}$.

注意到,我们在上一节推导 B(3,2) 的过程中,除了设定 \mathcal{H} 是二分类 hypothesis set,并没有对其结构进行其他假设,如 Positive Interval 或 2D perceptron. 这为我们替换霍夫丁不等式中的 M 提供了方便,因为不需要对每一类 \mathcal{H} 计算其成长函数 $m_{\mathcal{H}}(N)$. 下面考察上限函数的结构:

首先, 如上文分析, B(2,2) = 3, B(3,2) = 4, $B(N,1) \equiv 1$:

	B(N, k)	1	2	3	k 4	5	6	
	1	1	•					
	2 3	1	3 1					
N	4	i	7					
	5	1						
	6	1						
	÷	÷						

图 8: Table of Bounding Function

如果 k > N,则 N 个点中任意 k 个点不 shatter 的条件无效,此时 $B(N,k) = \max m_{\mathcal{H}}(N) = 2^N$ (参考 Convex Set \mathcal{H});当 N = k 时,即 N 个点不能 shatter,则 $B(N,k) = \max m_{\mathcal{H}}(N) = 2^N - 1$.

					k			
	B(N, k)	1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	
	3	1	4	7	8	8	8	
Ν	4	1			15	16	16	
	5	1				31	32	
	6	1					63	
	÷	÷						γ_{ij}

图 9: Table of Bounding Function

注意, $B(N,k) = \max m_{\mathcal{H}}(N) = 2^N - 1$ 并不是说存在某个结构的 \mathcal{H} 满足 $m_{\mathcal{H}}(N) = 2^N - 1$, 而只是理论上任意结构的 \mathcal{H} 的 $m_{\mathcal{H}}(N)$ 上限. 例如 2D Perceptron 的 $m_{\mathcal{H}}(4) = 14 < B(4,4) = 15$.

下面考虑 B(4,3) 的大小. 假设 B(4,3) 种 dichotomy 由 pair 和 single 两类 dichotomy 构成. pair dichotomy 指某 output $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ 存在一个对应的仅 \mathbf{x}_4 不同的 output; single dichotomy 指不存在这样的对应的 output.

	X ₁	\mathbf{x}_2	\mathbf{x}_3	X ₄
	0	0	0	0
	0	0	0	×
	×	0	0	0
2α	×	0	0	×
	0	×	0	0
	0	×	0	×
	0	0	×	0
	0	0	×	×
	×	×	0	×
β	×	0	×	0
	0	×	×	0

图 10: Estimating Part of B(4,3)

假设 pair dichotomy 与 single dichotomy 的个数分别为 2α 与 β , 则 $B(4,3) = 2\alpha + \beta$. 下面暂不考虑 \mathbf{x}_4 的值,因为 Min Break Point k=3,因此 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ 不能 shatter,即 $\alpha + \beta \leq B(3,3)$.

	X ₁	\mathbf{x}_2	\mathbf{x}_3				
	0	0	0				
α	×	0	0				
	0	×	0		X ₁	\mathbf{x}_2	X 3
	0	0	×		0	0	0
	×	×	0	α	×	0	0
β	×	0	×		0	×	0
	0	×	×		0	0	X

图 11: Estimating Part of B(4,3)

因为任意三个点不能 shatter, 因此 α 个 pair 的 dichotomy 中任意两个点不能 shatter, 否则 shatter 的两个点 (4 个 dichotomy) 加上 \mathbf{x}_4 这三个点 (8 个 dichotomy) 必然 shatter. 即 $\alpha \leq B(3,2)$, 综上

$$B(4,3) = 2\alpha + \beta \le B(3,3) + B(3,2).$$

由类似的分析方法有

$$B(N,k) \le B(N-1,k) + B(N-1,k-1).$$

至此我们推出了上界函数的上界 (N 个点中任意 k 个不能 shatter 下最多种类 dichotomy 的最大值的上界).

					k		
	B(N, k)	1	2	3	4	5	6
	1	1	2	2	2	2	2
	2	1	3	4	4	4	4
	3	1	4	7	8	8	8
Ν	4	1	≤ 5	11	15	16	16
	5	1	≤ 6	≤ 16	≤ 26	31	32
	6	1	≤ 7	≤ 22	≤ 42	≤ 57	63

图 12: Table of Bounding Function

可以证明的是 B(N,k) 的上界是一个多项式函数. 设 $B(N-1,k) \leq \sum_{i=1}^{k-1} C_{N-1}^{i}$, 则

$$B(N,k) \leq B(N-1,k) + B(N-1,k-1)$$

$$\leq \sum_{i=0}^{k-1} C_{N-1}^{i} + \sum_{i=0}^{k-2} C_{N-1}^{i}$$

$$= 1 + \sum_{i=1}^{k-1} C_{N-1}^{i} + \sum_{i=0}^{k-2} C_{N-1}^{i}$$

$$= 1 + \sum_{i=0}^{k-2} C_{N-1}^{i+1} + \sum_{i=0}^{k-2} C_{N-1}^{i}$$

$$= 1 + \sum_{i=0}^{k-2} C_{N}^{i+1}$$

$$= 1 + \sum_{i=1}^{k-1} C_{N}^{i}$$

$$= \sum_{i=0}^{k-1} C_{N}^{i}.$$

由数学归纳法可知 $B(N,k) \leq \sum_{i=1}^{k-1} C_N^i$. 因为

$$C_N^{k-1} = \frac{N!}{(k-1)!(N-k+1)!} = \frac{N \cdot N - 1 \cdot \dots N - k + 2}{(k-1)!} = O(N^{k-1}),$$

所以 $B(N,k) \leq P_{k-1}(N)(P_{k-1}$ 表示 k-1 阶多项式). 综上若 \mathcal{H} 的 Break Point 存在,则 $m_{\mathcal{H}}(N)$ 是多项式,对于 2D Perceptron 而言 $m_{\mathcal{H}}(N) \leq \frac{1}{6}N^3 + \frac{5}{6}N^2 + 1$.