МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №8
по дисциплине «Организация ЭВМ и систем»
Тема: «Обработка вещественных чисел. Программирование
математического сопроцессора»

Студент гр. 1383	 Петров А.С.
Преподаватель	 Ефремов М. А

Санкт-Петербург 2022

Цель работы.

Изучить обработку вещественных чисел на языке Ассемблера и запрограммировать математический сопроцессор.

Задание на лабораторную работу.

Разработать подпрограмму на языке Ассемблера, обеспечивающую вычисление заданной математической функции с использованием математического сопроцессора.

Подпрограмма должна вызываться из головной программы, разработанной на языке С. При этом должны быть обеспечены заданный способ вызова и обмен параметрами.

Альтернативный вариант реализации: разработать на языке Ассемблера фрагмент программы, обеспечивающий вычисление заданной математической функции с использованием математического сопроцессора, который включается по принципу inline в программу, разработанную на языке C++.

ВАРИАНТ 2.

* function

Name cosh - hyperbolic function:

Usage double cosh(double x);

Prototype in math.h

Description cosh computes the hyperbolic cosine of the input value.

$$\cosh(x) = (\exp(x) + \exp(-x)) / 2$$

cosh is more accurately calculated by the polynomial $(1 + x^2/2)$

when x is tiny ($|x| < 2^{-13}$).

Выполнение работы.

В начале выполнения программы происходит считывание числа x, необходимого для вычисления значения функции $\cosh(x)$. После этого в ассемблерном модуле происходит вычисление e^x с помощью выражения $a^b = 2^b$. Также вычисляется e^x , после чего экспоненты суммируются и сумма делится пополам. Полученное значение и является значением $\cosh(x)$.

Тестирование.

Номер теста	Входные данные	Результат
1	4	$\cosh(x) = 27.3082$
		error rate =
		3.55271e-15
2	10	cosh(x) = 11013.2
		error rate =
		5.45697e-12
	1	1

Выводы.

B ходе выполнения работы была реализована программа для вычисления значения функции $\cosh(x)$, и получены навыки работы с математическим сопроцессором.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.cpp

```
#include <cmath>
#include <iostream>
int main() {
    long double x;
    long double two = 2;
    long double e = exp(1);
    long double res;
    std::cout << "Input x\n";</pre>
    std::cin >> x;
    __asm {
        ;e^ x
        fld qword ptr[x]
        fld qword ptr[e]
        fy12x
        fld st
        frndint
        fsub st(1), st
        fxch st(1)
        f2xm1
        fld1
        faddp st(1), st
        fscale
        fstp st(1)
        fst qword ptr[res]
        ;1 / e ^ x
        fld1
        fdiv qword ptr[res]
        ;e^x + 1 / (e^x)
        fadd st, st(1)
        ; cosh(x)
        fdiv qword ptr[two]
        fstp qword ptr[res]
    std::cout << "cosh(x) " << res << '\n';
    std::cout << "error rate " << abs(res - cosh(x)) << '\n';</pre>
    return 0;
}
```