Feuille d'exercice n° 09 : **Séries de fonctions**

I. Convergence

Exercice 1 Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite à termes dans $[0, +\infty[$, décroissante. On note, pour tout $n\in\mathbb{N}^*$: $f_n:[0,1]\longrightarrow\mathbb{R}, x\longmapsto a_nx^n(1-x)$.

- 1) Montrer que $\sum_{n\geqslant 1} f_n$ converge simplement sur [0,1].
- 2) Montrer que $\sum_{n\geqslant 1} f_n$ converge normalement sur [0,1] si et seulement si la série $\sum_{n\geqslant 1} \frac{a_n}{n}$ converge.
- 3) Montrer que $\sum_{n\geqslant 1}f_n$ converge uniformément sur [0,1] si et seulement si : $a_n \underset{n\to +\infty}{\longrightarrow} 0$.

Exercice 2 (${\mathfrak{D}}$) Étudier les types de convergence (simple, normale, uniforme) des séries de fonctions $\sum f_n$ suivantes :

- 1) $f_n:]0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{x^a}{(n+x)^b}, (a,b) \in (\mathbb{R}_+^*)^2 \text{ fixé}, n \in \mathbb{N}^*.$
- 2) $f_n : [0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{x e^{-nx}}{\ln n}, n \in \mathbb{N}, n \geqslant 2.$
- 3) $f_n: [0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{(-1)^n x}{x^2 + n}, n \in \mathbb{N}^*.$
- 4) $f_n : \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto \operatorname{Arctan}(x+n) \operatorname{Arctan} n, n \in \mathbb{N}.$
- **5)** $f_n: [0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{nx}{1 + n^3x^2}, n \in \mathbb{N}.$

II. Régularité

Exercise 3 (56) Soit
$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$
 et $\zeta_2(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$.

- 1) Déterminer les domaines de définition des fonctions ζ et ζ_2 .
- 2) Justifier que les fonctions ζ et ζ_2 sont continues.
- 3) Établir la relation $\zeta_2(x) = (1 2^{1-x})\zeta(x)$ pour tout x > 1.

Exercice 4 (\circlearrowleft) On définit pour $n \in \mathbb{N}$ et $x \in \mathbb{R}, u_n(x) = \ln(1 + e^{-nx})$ et $f(x) = \sum_{n=0}^{+\infty} u_n(x)$ lorsque cela est défini.

- 1) Domaine de définition de f, continuité sur cet intervalle. Montrer que f est strictement décroissante.
- 2) Limite de f en $+\infty$.
- 3) Équivalent de f en 0.

Exercice 5 On pose sous réserve de convergence et pour $x \in \mathbb{R}$: $f(x) = \sum_{n=0}^{+\infty} e^{-x^2 n^2}.$

- 1) Déterminer le domaine de définition de f.
- 2) Quelle est la limite de f en $+\infty$?
- 3) Quelle est la limite de $x^2 f(x)$ lorsque x tend vers 0 ?

Exercice 6

On note, pour tout $n \in \mathbb{N}^*$: $f_n : [0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{\ln(n+x)}{n^2}]$.

- 1) Étudier la convergence simple de la série d'applications $\sum_{n\geqslant 1}f_n$. On note S la somme.
- 2) Montrer que S est de classe \mathscr{C}^2 sur $[0, +\infty[$ et exprimer, pour tout $x \in [0, +\infty[$, S'(x) et S''(x) sous forme de sommes de séries.
- 3) En déduire que S est strictement croissante sur $[0, +\infty[$ et que S est concave sur $[0, +\infty[$.

Exercice 7

Montrer :
$$\sum_{n=0}^{+\infty} \frac{x^n}{1+x^n} \sim_{x\to 1^-} \frac{\ln 2}{1-x}$$
.

Exercice 8

1) Déterminer les domaines de définition de :

$$A: x \mapsto \sum_{n=1}^{+\infty} \ln\left(1 + x^{2n}\right)$$

$$B: x \mapsto \sum_{n=1}^{+\infty} \ln\left(1 + x^{2n-1}\right)$$

et
$$C: x \mapsto \sum_{n=1}^{+\infty} \ln\left(1 - x^{2n-1}\right)$$

- 2) Montrer que A, B et C sont continues sur leurs domaines de définition respectifs.
- 3) Donner une expression simplifiée de la fonction $x \mapsto A(x) + B(x) + C(x)$.

Exercice 9 On note, pour tout $n \in \mathbb{N}^*$: f_n : $[0, +\infty[\longrightarrow \mathbb{R}, x \mapsto \operatorname{Arctan} \frac{n+x}{1+n^3x}]$.

- 1) Montrer que $\sum_{n\geqslant 1} f_n$ converge simplement sur $]0,+\infty[$ et converge normalement sur $[1,+\infty[$. On note S la somme.
- 2) Montrer : $S(x) \xrightarrow[x \to +\infty]{} L = \sum_{n=1}^{+\infty} \operatorname{Arctan} \frac{1}{n^3}$, et calculer une valeur approchée décimale de L à 10^{-3} près.

Exercice 10 (\triangle) On note, pour tout $n \in \mathbb{N}$:

$$f_n: [0, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{(-1)^n}{\sqrt{1+nx}}.$$

1) Montrer que $\sum_{n\geqslant 1} f_n$ converge simplement sur $]0,+\infty[$ et converge uniformément sur $[1,+\infty[$.

On note S la somme.

- **2)** Montrer : $S(x) \xrightarrow[x \to +\infty]{} 0$.
- **3)** Notons, pour tout $n \in \mathbb{N}^*$, $g_n : [1; +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{(-1)^n}{\sqrt{nx}}]$. Montrer que pour tout $x \in [1, +\infty[, |f_n(x) g_n(x)| \leqslant \frac{1}{2x^{3/2}} \frac{1}{n^{3/2}}]$.
- 4) On note $a = \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}$. Établir : $S(x) = \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x\sqrt{x}}\right)$.

Exercice 11 (La fonction de Van der Waerden —

1) Soit F une fonction dérivable en x. Montrer que pour toute suite (a_n) tendant vers x en croissant et toute suite (b_n) tendant vers x en décroissant, telles que pour tout n, $b_n - a_n > 0$, on a :

$$\lim_{n \to +\infty} \frac{F(b_n) - F(a_n)}{b_n - a_n} = F'(x).$$

2) Pour $x \in \mathbb{R}$ on pose $f(x) = \min(x - \mathbb{E}(x), \mathbb{E}(x) + 1 - x) = d(x, \mathbb{Z})$. On pose alors $F(x) = \sum_{n=0}^{+\infty} 10^{-n} f(10^n x)$.

Montrer que f est définie sur \mathbb{R} , continue, périodique mais n'est nulle part dérivable.

III. Interversion somme - intégrale

Exercice 12 () Existence et calcul de $\int_0^1 \frac{\ln t}{1-t^2} dt$. Le résultat est à exprimer en fonction de $\zeta(2)$.

Exercice 13 () Montrer que $\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Exercice 14 (A) Existence et calcul de $I = \int_0^{+\infty} \frac{x}{\sinh x} dx$. On admettra que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 15 On note, pour tout $n \in \mathbb{N} : f_n : [0,1] \longrightarrow \mathbb{R}, x \longmapsto \ln(1+x^n)$.

- 1) Étudier les convergences de la série d'applications $\sum_{n\geqslant 0}f_n$. On note S la somme.
- 2) Montrer que S est de classe \mathscr{C}^1 sur [0,1[et que S est strictement croissante sur [0,1[.
- **3)** a) Montrer : $\forall n \in \mathbb{N}, \ \forall x \in [0,1[, \sum_{k=0}^{n} f_k(x) \geqslant \ln\left(\sum_{k=0}^{n} x^k\right)]$. b) En déduire : $S(x) \xrightarrow{x \to 1^{-}} +\infty$.
- 4) En utilisant une comparaison série/intégrale, montrer :

$$S(x) \sim \frac{I}{1-x}$$
, où $I = \int_0^{+\infty} \ln(1 + e^{-u}) du$.

Exercice 16 Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose $f_n(x) = \frac{(-1)^n}{n^{2\alpha} + x^2}$, avec α dans \mathbb{R}^*_{\perp} .

- 1) Montrer que $\sum f_n$ converge normalement sur \mathbb{R} si et seulement si $\alpha > 1/2$.
- 2) Montrer que $\sum f_n$ converge uniformément sur \mathbb{R} .
- 3) Soit $S: x \longmapsto \sum_{n=1}^{+\infty} f_n(x)$. Montrer que $\int_0^1 S(x) dx = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}} \arctan\left(\frac{1}{n^{\alpha}}\right)$
- 4) Déterminer la limite de S en $+\infty$.
- 5) Montrer que $\int_0^{+\infty} S(x) dx = \frac{\pi}{2} \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}.$

