

# Lecture 6

- Second-Order Circuits



#### **Second-Order Circuits**

- Two energy storage elements
- Analysis: Determine voltage or current as a function of time
- Initial/final values of voltage/current, and their derivatives are needed

A second order circuit is characterized by a second order differential equation.





### **Series RLC Circuits**



### **Source-Free Series RLC**



$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

#### **Source-Free Series RLC**



$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$



### **Initial and Final Conditions**





## **Example**

The switch has been closed for a long time. It is open at

t = 0. Find

- $i(0^+), v(0^+)$
- $di(0^+)/dt$ ,  $dv(0^+)/dt$
- $i(\infty), v(\infty)$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display  $4\Omega \stackrel{i}{\longrightarrow} 0.25 \text{ H} \\ + v_L - \\ + v_L -$ 



#### **Exercise**

- Assume the circuit has reached steady state at  $t=0^-$ . Find
  - $i(0^+), v(0^+)$
  - $di(0^+)/dt$ ,  $dv(0^+)/dt$
  - $i(\infty)$ ,  $v(\infty)$



#### Source-Free Series RLC



$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

9 Lecture 6 [Source: Berkeley]

## Case 1: Overdamped ( $\alpha > \omega_0$ )



$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

## Case 1: Overdamped ( $\alpha > \omega_0$ )



$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$





$$\frac{L}{I_0} + \frac{d^2v}{dt^2} + \frac{R}{L} \frac{dv}{dt} + \frac{1}{LC}v = 0 \qquad s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}} \qquad S_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} \qquad S_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

$$s_1 = s_2 = -\alpha = -\frac{R}{2L}$$

$$s_1 = s_2 = -\alpha = -\frac{R}{2L}$$
  $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ 

Go back to

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0 \qquad \alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

• When  $\alpha = \omega_0 = R/2L$ , the equation becomes

$$\frac{d^2v}{dt^2} + 2\alpha \frac{dv}{dt} + \alpha^2 v = 0$$

$$\frac{d}{dt} \left(\frac{dv}{dt} + \alpha v\right) + \alpha \left(\frac{dv}{dt} + \alpha v\right) = 0$$

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$



Lecture 6



$$v(t) = (A_1t + A_2)e^{-\alpha t}$$



(If 
$$A_2 = 0, A_1 = 1$$
)

A typical critically damped response is shown

Why maximize at  $t = \frac{1}{\alpha}$ ?



## Case 3: Underdamped ( $\alpha < \omega_0$ )

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha + \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha + j\omega_{d}$$

$$s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha - \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha - j\omega_{d}$$

where 
$$j = \sqrt{-1}$$
 and  $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$ .

- $\omega_0$  is often called the <u>undamped natural frequency</u>.
- ω<sub>d</sub> is called the <u>damped natural frequency</u>.

#### The natural response

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

becomes

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$



$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$



- Exponential  $e^{-\alpha t}$  \* Sine/Cosine term
  - Exponentially damped, time constant =  $1/\alpha$
  - Oscillatory, period  $T = \frac{2\pi}{\omega_d}$



## **Properties of Series RLC Network**

- Behavior captured by <u>damping</u>
  - Gradual loss of the initial stored energy
  - α determines the rate of damping





- 
$$\alpha < \omega_0$$
 (i.e.,  $R < 2\sqrt{\frac{L}{c}}$ ), underdamped 
$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$







## **Example**

• Find v(t) & i(t) in the circuit below. Assume the circuit has

reached steady state at  $t = 0^-$ .



$$\alpha = \frac{R}{2L} = 9 \qquad \omega_0 = \frac{1}{\sqrt{LC}} = 10$$

$$s_{1,2} = -\alpha \mp \sqrt{\alpha^2 - \omega_0^2} = -9 \mp j4.359$$





### **Source-Free Parallel RLC Network**



Lecture 6 20



#### Source-Free Parallel RLC Network

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

The <u>characteristic equation</u> is:

$$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$$



From this, we can find the roots of the characteristic equation to be:

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

As in last time, there are three scenarios to consider.

## **Three Damping Cases**

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0 \qquad \alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{1}{2RC} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

For the overdamped case, the roots are real and negative,

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

For critically damped, the roots are real and equal

$$v(t) = (A_2 + A_1 t)e^{-\alpha t}$$

In the underdamped case, the roots are complex

$$v(t) = e^{-\alpha t} \left( A_1 \cos \omega_d t + A_2 \sin \omega_d t \right)$$



## Series vs. Parallel (Source-Free RLC Network)

#### Series

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$



#### Parallel

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$v(t) = (A_2 + A_1 t) e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$$



### Step Response of a Series RLC Circuit

Convigable® The McGraw-Hill Companies. Inc. Permission required for reproduction or display.



The solution

$$v(t) = v_t(t) + v_{ss}(t)$$

The complete solutions for the three conditions of damping are:

$$v(t) = V_s + (A_1 e^{s_1 t} + A_2 e^{s_2 t})$$
 (Overdamped)

$$v(t) = V_s + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically Damped)

$$v(t) = V_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

Lecture 6 24



## **Example**

- Find v(t) and i(t) for t > 0.
   Consider three cases:
  - $R = 5\Omega$
  - $R = 4\Omega$
  - $R = 1\Omega$



When  $R = 5\Omega$ ,

• For t < 0, switch closed, capacitor open, inductor shorted.

$$i(0) = 4A = C \frac{dv(0)}{dt}, \ v(0) = 4V, \ \frac{dv(0)}{dt} = 16$$

• For t > 0, switch open, a series RLC network

$$\alpha = \frac{R}{2L} = 2.5$$
,  $\omega_0 = \frac{1}{\sqrt{LC}} = 2$ ,  $s_{1,2} = -1, -4$  Overdamped. 
$$v(t) = v_{ss} + (A_1 e^{-t} + A_2 e^{-4t})$$



When  $R = 4\Omega$ ,

• For t < 0, switch closed, capacitor open, inductor shorted.

$$i(0) = 4.8A = C \frac{dv(0)}{dt}, \ v(0) = 4.8V, \ \frac{dv(0)}{dt} = 19.2$$

• For t > 0, switch open, a series RLC network

$$\alpha=\frac{R}{2L}=2,\ \omega_0=\frac{1}{\sqrt{LC}}=2,\ s_{1,2}=-2\quad \text{Critically damped}$$
 
$$v(t)=v_{ss}+(A_1+A_2t)e^{-2t}$$

Lecture 6 26



When  $R = 1\Omega$ ,

• For t < 0, switch closed, capacitor open, inductor shorted.

$$i(0) = 12A = C \frac{dv(0)}{dt}, \ v(0) = 12V, \ \frac{dv(0)}{dt} = 48$$

• For t > 0, switch open, a series RLC network

$$\alpha = \frac{R}{2L} = 0.5$$
,  $\omega_0 = \frac{1}{\sqrt{LC}} = 2$ ,  $s_{1,2} = -0.5 \mp j1.936$  Underdamped 
$$v(t) = v_{ss} + (A_1 \cos 1.936t + A_2 \sin 1.936t)e^{-0.5t}$$

Lecture 6 27



Lecture 6

## Step Response of a Parallel RLC Circuit



So we get

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

## Step Response of a Parallel RLC Circuit

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

 As in the series RLC case, the response is a combination of transient and steady state responses:

$$i(t) = I_s + A_1 e^{\tau_1 t} + A_2 e^{\tau_2 t} \quad \text{(Overdamped)}$$

$$i(t) = I_s + (A_1 + A_2 t) e^{-\alpha t} \quad \text{(Critally Damped)}$$

$$i(t) = I_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t) e^{-\alpha t} \quad \text{(Underdamped)}$$

Here the variables  $A_1$  and  $A_2$  are obtained from the initial conditions, i(0) and di(0)/dt.

## **Example**

• Find i(t) and  $i_R(t)$  for t > 0.



Initial values 
$$(t < 0)$$
:  $i(0) = 4A$ ,  $v(0) = \frac{20}{20 + 20} \times 30V = 15V = L\frac{di(0)}{dt}$   
For  $t > 0$ ,  $\alpha = \frac{1}{2RC} = \frac{1}{2 \times 10 \times 8 \times 10^{-3}} = 6.25$ ,  $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{20 \times 8 \times 10^{-3}}} = 2.5$   
 $s_{1,2} = -6.25 \mp 5.7282$   
 $i(t) = I_S + A_1 e^{S_1 t} + A_2 e^{S_2 t}$ 

Lecture 6 31

#### Step response of RLC circuits for $t \geq 0$ .





#### **Total Response**

#### Total Response

#### Overdamped ( $\alpha > \omega_0$ )

(a) t = 0

$$v_{\rm C}(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t} + v_{\rm C}(\infty)$$

$$A_1 = \frac{\frac{1}{C} i_{\rm C}(0) - s_2[v_{\rm C}(0) - v_{\rm C}(\infty)]}{s_1 - s_2}$$

$$A_2 = \left[ \frac{\frac{1}{C} i_{C}(0) - s_1 [\nu_{C}(0) - \nu_{C}(\infty)]}{s_2 - s_1} \right]$$

Overdamped (
$$\alpha > \omega_0$$
)

$$i_{L}(t) = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t} + i_{L}(\infty)$$

$$A_1 = \frac{\frac{1}{L} \upsilon_{L}(0) - s_2[i_{L}(0) - i_{L}(\infty)]}{s_1 - s_2}$$

$$A_2 = \left[ \frac{\frac{1}{L} \ \upsilon_{L}(0) - s_1 [i_{L}(0) - i_{L}(\infty)]}{s_2 - s_1} \right]$$

#### Critically Damped ( $\alpha = \omega_0$ )

$$v_C(t) = (B_1 + B_2 t)e^{-\alpha t} + v_C(\infty)$$

$$B_1 = v_C(0) - v_C(\infty)$$

$$B_2 = \frac{1}{C} i_{\mathbf{C}}(0) + \alpha [\nu_{\mathbf{C}}(0) - \nu_{\mathbf{C}}(\infty)]$$

Critically Damped (
$$\alpha = \omega_0$$
)

$$i_{\rm L}(t) = (B_1 + B_2 t)e^{-\alpha t} + i_{\rm L}(\infty)$$

$$B_1 = i_{\rm L}(0) - i_{\rm L}(\infty)$$

$$B_2 = \frac{1}{L} \upsilon_{\mathbf{L}}(0) + \alpha [i_{\mathbf{L}}(0) - i_{\mathbf{L}}(\infty)]$$

#### Underdamped ( $\alpha < \omega_0$ )

$$v_{\rm C}(t) = e^{-\alpha t} (D_1 \cos \omega_{\rm d} t + D_2 \sin \omega_{\rm d} t) + v_{\rm C}(\infty)$$

$$D_1 = v_C(0) - v_C(\infty)$$

$$D_2 = \frac{\frac{1}{C} i_{\rm C}(0) + \alpha [\nu_{\rm C}(0) - \nu_{\rm C}(\infty)]}{\omega_{\rm d}}$$

#### Underdamped ( $\alpha < \omega_0$ )

$$i_{\rm L}(t) = e^{-\alpha t} (D_1 \cos \omega_{\rm d} t + D_2 \sin \omega_{\rm d} t) + i_{\rm L}(\infty)$$

$$D_1 = i_{\mathrm{L}}(0) - i_{\mathrm{L}}(\infty)$$

$$D_2 = \frac{\frac{1}{L} \upsilon_{\mathsf{L}}(0) + \alpha [i_{\mathsf{L}}(0) - i_{\mathsf{L}}(\infty)]}{\omega_{\mathsf{d}}}$$

#### **Auxiliary Relations**

$$\alpha = \begin{cases} \frac{R}{2L} & \text{Series RLC} \\ \frac{1}{2RC} & \text{Parallel RLC} \end{cases}$$

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

#### **General Second-Order Circuits**

- The principles of the approach to solving the series and parallel forms of RLC circuits can be applied to general second order circuits, by taking the following four steps:
  - 1. First determine the <u>initial conditions</u>, x(0) and dx(0)/dt.
  - 2. Turn off the independent sources and find the form of the <u>transient</u> <u>response</u> by applying KVL and KCL.
    - Depending on the damping found, the unknown constants will be found.
  - 3. We obtain the <u>steady-state response</u> as:

$$x_{ss}(t) = x(\infty)$$

where  $x(\infty)$  is the final value of x obtained in step 1.

**4.** The total response = transient response + steady-state response.

$$x(t) = x_t(t) + x_{ss}(t)$$



#### **General RLC Circuits**

- Find the complete response v for t > 0 in the circuit.
  - 1. Initial conditions

$$v(0^+) = v(0^-) = 12V, i(0^+) = i(0^-) = 0$$

$$dv(0^+) = i(0^+) = -12/2$$

$$\frac{dv(0^+)}{dt} = \frac{i_C(0^+)}{C} = \frac{-12/2}{0.5} = -12 V/s$$





#### **General RLC Circuits**

- Find the complete response v for t > 0 in the circuit.
  - 1. Initial conditions

$$v(0^{+}) = v(0^{-}) = 12V, i(0^{+}) = i(0^{-}) = 0$$
$$\frac{dv(0^{+})}{dt} = \frac{i_{C}(0^{+})}{C} = \frac{-12/2}{0.5} = -12V/s$$

2. Transient response

KCL at node a: 
$$i = \frac{v}{2} + 0.5 \frac{dv}{dt}$$

KVL on left mesh:  $4i + 1\frac{di}{dt} + v = 0$ 

$$\Rightarrow \frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 6v = 0 \Rightarrow v_t(t) = A_1e^{-2t} + A_2e^{-3t} = 12e^{-2t} - 4e^{-3t}$$

3. Steady-state response

$$v_{ss}(t) = 4V$$
Lecture 6

4. Put together





x(t) = unknown variable (voltage or current)

Differential equation: x'' + ax' + bx = c

Initial conditions: x(0) and x'(0)

 $x(\infty) = \frac{c}{b}$ Final condition:

 $\alpha = \frac{a}{2}$   $\omega_0 = \sqrt{b}$ 

#### Overdamped Response $\alpha > \omega_0$

$$x(t) = [A_1e^{s_1t} + A_2e^{s_2t} + x(\infty)]$$

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
  $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$ 

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

$$A_1 = \frac{x'(0) - s_2[x(0) - x(\infty)]}{s_1 - s_2}$$

$$A_2 = -\left[\frac{x'(0) - s_1[x(0) - x(\infty)]}{s_1 - s_2}\right]$$

#### Critically Damped $\alpha = \omega_0$

$$x(t) = [(B_1 + B_2 t)e^{-\alpha t} + x(\infty)]$$

$$B_1 = x(0) - x(\infty)$$
  $B_2 = x'(0) + \alpha[x(0) - x(\infty)]$ 

#### Underdamped $\alpha < \omega_0$

$$x(t) = [D_1 \cos \omega_{d}t + D_2 \sin \omega_{d}t + x(\infty)]e^{-\alpha t}$$

$$D_1 = x(0) - x(\infty)$$
 
$$D_2 = \frac{x'(0) + \alpha[x(0) - x(\infty)]}{\omega_d}$$
 
$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

36 Lecture 6

```
x(t) = \text{unknown variable (voltage or current)}
                                               x'' + ax' + bx = c
Differential equation:
                                               x(0) and x'(0)
Initial conditions:
                                              x(\infty) = \frac{1}{h}
Final condition:
                              \alpha = \frac{a}{2} \omega_0 = \sqrt{b}
                         Overdamped Response \alpha > \omega_0
                      x(t) = [A_1e^{s_1t} + A_2e^{s_2t} + x(\infty)]u(t)
s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2} s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}
A_1 = \frac{x'(0) - s_2[x(0) - x(\infty)]}{s_1 - s_2} \quad A_2 = -\left[\frac{x'(0) - s_1[x(0) - x(\infty)]}{s_1 - s_2}\right]
                             Critically Damped \alpha = \omega_0
                      x(t) = [(B_1 + B_2 t)e^{-\alpha t} + x(\infty)] u(t)
                                               B_2 = x'(0) + \alpha[x(0) - x(\infty)]
B_1 = x(0) - x(\infty)
                                Underdamped \alpha < \omega_0
              x(t) = [D_1 \cos \omega_d t + D_2 \sin \omega_d t + x(\infty)]e^{-\alpha t} u(t)
                                   D_2 = \frac{x'(0) + \alpha[x(0) - x(\infty)]}{\omega_{cl}}
D_1 = x(0) - x(\infty)
                                     \omega_{\rm d} = \sqrt{\omega_0^2 - \alpha^2}
```

#### [Important]

- 1.This table works well when c is a constant, as  $x(\infty)$  is actually a particular solution (特解) of the equation.
- 2. While for c is a function of time (t), such as c=5t;  $c=t^2+3$ ; you should also be able to solve the equation (Requirement of the course).
- 3. If you are not familiar with solving such an equation, read the material I uploaded.

Lecture 6 37

### **Self-test-General RLC Circuit**

• Find the complete response v for t > 0 in the circuit.



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Lecture 6



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Example of 2<sup>nd</sup>-order op-amp circuits  $C_2 = 100 \mu F$ 

• Find  $v_o$  for t > 0 when  $v_s = 10u(t)mV$ .



KCL at node 1:

$$\frac{v_s - v_1}{R_1} = C_2 \frac{dv_2}{dt} + \frac{v_1 - v_o}{R_2}$$

KCL at node 2:

$$C_1 \frac{dv_o}{dt} = \frac{v_1 - v_o}{R_2}$$

$$v_1 - v_2 = v_o$$

Initial conditions: 
$$v_o(0^+) = 0$$
,  $C_1 \frac{dv_o(0^+)}{dt} = \frac{v_1(0^+) - v_o(0^+)}{R_2} = \frac{v_2(0^+)}{R_2} = 0$ 

# Example---求Vsu(t) 状态下IL



Lecture 6 40

### **Example**



$$\frac{R_3}{R_2}i_{\rm L} + \left(\frac{L}{R_2} + R_3C\right)\frac{di_{\rm L}}{dt} + LC\frac{d^2i_{\rm L}}{dt^2} = -\frac{V_{\rm s}}{R_1}$$

$$i_{\rm L}(\infty) = \frac{v_{\rm out}(\infty)}{R_3} = -\frac{R_2 V_{\rm s}}{R_1 R_3} = -1 \text{ mA}$$

$$i_{\rm L}(0) = i_{\rm L}(0^-) = 0, \quad i'_{\rm L}(0) = \frac{1}{L} \ \upsilon_{\rm L}(0) = 0.$$



## **Summary**

Source Free Series RLC

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$v(t) = (A_1 t + A_2) e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$



$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

Source Free Parallel RLC

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$v(t) = (A_2 + A_1 t) e^{-\alpha t}$$

$$v(t) = e^{-\alpha t} (A_1 \cos \omega_d t + A_2 \sin \omega_d t)$$



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$



### **Step Response of RLC Circuits**

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{v}{LC} = \frac{V_s}{LC}$$



$$v(t) = V_S + (A_1 e^{S_1 t} + A_2 e^{S_2 t})$$
 (Overdamped)

$$v(t) = V_S + (A_1 + A_2 t)e^{-\alpha t}$$
 (Critically Damped)

$$v(t) = V_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t)e^{-\alpha t}$$
 (Underdamped)

$$\frac{d^2i}{d^2t} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_S}{LC}$$

$$I_S \qquad t = 0$$

