

$$\Pi'(a_1) = 0 \Rightarrow a_1 = \frac{2PL^3}{\pi^9 EI}$$

$$u(z) = \frac{2PL^3}{\pi^9 EI} \text{ sin } \frac{\pi L^2}{L} \text{ approx.}$$

$$u(z) = \frac{PZ}{48EI} \left(3\frac{L^2 + Z^2}{2}\right) \text{ cxect}$$

$$0 \leq z \leq \frac{L}{2}$$
Approx
$$u\left(\frac{L}{2}\right) = 0.02053 \frac{PL^3}{EI}$$

$$Exact$$

$$0.02083 \frac{PL^3}{EI}$$
Approx
$$u''\left(\frac{L}{2}\right) = 0.2026 PL$$

$$Exact$$

$$0.25 PL$$

$$u(z) = a_1 \sin \pi L + a_3 \sin 3\pi L + a_5 \sin 5\pi L$$

N = 3		L		
Oithogona	lity of sine	s Ssinm	∏z sìn n∏: L	ž 9s
		0	= L Smn	
η= <u>ETL</u>	a,2 (IL)	+ 43 (3T)	+ 45 (5	
	- P(a1-a3	+ 45)		
$\frac{3\sigma^1}{311} = 0$	30 = 0, 3	<u>∏</u> = 0		
a, = 2	<u>fl³</u> , a ₃	= -2PL3	, 45 = <u>2</u>	1L_
π	teI '	81Tl ⁴ EI	629	T'EI
approx	→ Umax	1	Mmax	
1 term	0.02055	°L³/€I	0.2026	PL
2 ferms	0.02081	₽Ĺ EI	0.225	2 PL
3 tems	0.02083	r13/EI	0.233	PL

^ ∨ 4 of 11 @ ⊋ ₽

$$\Pi\left(a_{1},a_{3},..\right) = \sum_{n=1/3/5}^{\infty} \left\{a_{n}^{2} \left[\left(\frac{EI}{2}\right)\left(\frac{L}{L}\right)\left(\frac{n\Pi}{L}\right) + \frac{kL}{4}\right] - q_{n} \frac{2qL}{n\Pi}\right\} \\
- q_{n} \frac{2qL}{n\Pi}\right\} \\
\frac{2\Pi}{2q_{n}} = 0 \Rightarrow a_{n} = \frac{4qL^{4}/(n^{5}\pi^{5}EI)}{1 + kL^{4}/(n^{4}\pi^{4}EI)}$$
3.

$$u(0) = 0$$

$$u'(0) = 0$$

$$L$$

$$\Pi = \int_{1}^{\infty} \left(\frac{EI}{2}u'' - qu\right) dz + \frac{1}{2}ku'[L]$$

$$u = \sqrt{4} + \sqrt{2} + q_{2}z^{2} + q_{3}z^{3} - \frac{1}{2}k'' + \frac{1}{2}k$$

^ ∨ 5 of 11 @ ⊋ D

^ ∨ 6 of 11 ⊕ 🤉 🔎

^ ∨ 7 of 11 @ ⊋ ⊅

$$\Pi = \int_{0}^{L} \frac{EI}{2} u^{12} dz + (+M, u'(L))$$

$$= \frac{6EIc_{1}^{2}}{L} + M_{0}c_{1}(-2)$$

$$\frac{2\Pi}{2} = 0 \Rightarrow c_{1} = \frac{M_{0}L}{6EI}$$

$$u(z) = \frac{M_{0}L}{6EI} (z - z^{3})$$

$$\frac{1}{6EI} \qquad \frac{1}{2}$$

$$\frac{1}{4} = 0 \Rightarrow 3z^{2} = L^{2} \Rightarrow z = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

^ ∨ 9 of 11 @ 🤉 ⊅

