Computational statistics

Week 2

Léa Bresson

List of exercises:

- Exercice 3.21
- Exercice 4.16
- Exercice 4.19
- Exercice 5.1

1 Exercice **3.21**

Monte Carlo marginalization is a technique for calculating a marginal density when simulating from a joint density. Let $(X_i, Y_i) \sim f_{XY}(x, y)$, independent, and the corresponding marginal distribution $f_X(x) = \int f_{XY}(x, y) dy$.

a) Let w(x) be an arbitrary density. Show that

$$\lim_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{f_{XY}(x^{\star}, y_{i})w(x_{i})}{f_{XY}(x_{i}, y_{i})} = \int \int \frac{f_{XY}(x^{\star}, y)w(x)}{f_{XY}(x, y)} f_{XY}(x, y) dx dy = f_{X}(x^{\star}),$$

and so we have a Monte Carlo estimate of f_X , the marginal distribution of X, from only knowing the form of the joint distribution.

Solution:

En utilisant la loi des grands nombres et l'indépendance des couples (X_i, Y_i) , nous avons:

$$\lim_{n} \frac{1}{n} \sum_{i=1}^{n} \frac{f_{XY}(x^{*}, y_{i})w(x_{i})}{f_{XY}(x_{i}, y_{i})} = \mathbb{E}_{XY} \left[\frac{f_{XY}(x^{*}, Y)w(X)}{f_{XY}(X, Y)} \right]$$

$$= \int \int \frac{f_{XY}(x^{*}, y)w(x)}{f_{XY}(x, y)} f_{XY}(x, y) dx dy$$

$$= \int \int f_{XY}(x^{*}, y)w(x) dx dy$$

$$= \int f_{XY}(x^{*}, y) dy \operatorname{car} w(x) \operatorname{est une densit\'{e} donc} \int w(x) dx = 1.$$

$$= f_{X}(x^{*})$$

b) Let $X|Y=y\sim Ga(y,1)$ and $Y\sim Exp(1)$. Use the technique of part a) to plot the marginal density of X. Compare it to the exact marginal.

Solution:

La distribution marginale de *X* s'écrit :

$$\begin{split} f_X(x) &= \int f_{X,Y}(x,y) dy \\ &= \int f_{X|Y}(x) f_Y(y) dy \\ &= \int \frac{x^{y-1}}{\Gamma(y)} e^{-(x+y)} dy \text{ car } f_Y(y) = e^{-y} \text{ et } f_{X,Y}(x,y) = \frac{x^{y-1}}{\Gamma(y)} e^{-x}. \end{split}$$

La figure ci-dessous montre que la densité marginale obtenue grâce à la méthode développée à la question précédente (en bleu) est similaire à la densité marginale exacte (en violet).

Densité marginale de X

Code R:

```
In [1]: N = 1000
         n = 30
         X = c()
         Y = c()
         xplot = seq(0, n, 1)
         for(i in 1:N){
             Y[i] = rexp(1)
             X[i]=rgamma(1, 1, rate=Y[i])
         }
         MC = function(x, X, Y) \{
             return(mean( (dgamma(x,1,Y)/dgamma(X,1,Y))*dgamma(X,2,3) ))
         }
         Marginal_MC = c()
         for(i in 1:length(xplot)){
            Marginal_MC[i] = MC(xplot[i], X, Y)
         Marginal_exact = function(x) (1+x)^{(-2)}
         plot(xplot, Marginal_MC, col="cyan", xlim=c(0,30), lty=2,
              main="Densité marginale de X")
         curve(Marginal_exact(x), add=T, xlim=c(0,30), col="violet", lty=1)
         legend('topright', legend=c("Marginal_MC", "Marginal_exact"), lty=1,
                col=c("cyan","violet") , bty='n', cex=.75)
```

c) Choosing $w(x) = f_{X|Y}(x|y)$ works to produce the marginal distribution, and it is optimal. In the spirit of Theorem 3.12, can you prove this?

Solution:

Nous cherchons à minimiser la variance de l'estimateur. Celle-ci s'écrit:

$$\mathbb{V}\left[\frac{f_{XY}(x^{*},Y)w(X)}{f_{XY}(X,Y)}\right] = \mathbb{E}\left[\frac{f_{XY}^{2}(x^{*},Y)w^{2}(X)}{f_{XY}^{2}(X,Y)}\right] - \left(\mathbb{E}\left[\frac{f_{XY}(x^{*},Y)w(X)}{f_{XY}(X,Y)}\right]\right)^{2} \\
= \mathbb{E}\left[\frac{f_{XY}^{2}(x^{*},Y)w^{2}(X)}{f_{XY}^{2}(X,Y)}\right] - [f_{x}(x^{*})]^{2}$$

Seul le premier terme dépend de w(x).

$$\mathbb{E}\Big[\frac{f_{XY}^{2}(x^{*},Y)w^{2}(X)}{f_{XY}^{2}(X,Y)}\Big] = \int \int \frac{f_{XY}^{2}(x^{*},y)w^{2}(x)}{f_{XY}^{2}(x,y)} f_{XY}(x,y) dxdy$$
$$= \int \int \frac{f_{XY}^{2}(x^{*},y)w^{2}(x)}{f_{XY}(x,y)} dxdy$$
$$= \int \int \frac{f_{XY}^{2}(x^{*},y)}{f_{Y}(y)} \frac{w^{2}(x)}{f_{XY}(x,y)} dxdy$$

Nous pouvons donc simplifier le problème et minimiser $\int \frac{w^2(X)}{f_{X|Y}(x,y)} dxdy$ sous les contraintes $\int w(x)dx = 1 \text{ et } w(x) \ge 0.$

Le lagrangien de ce problème s'écrit: $L(w(x),\lambda)=\frac{w^2(X)}{f_{X|Y}(x,y)}-\lambda w(x),\,\lambda\geq 0.$ La solution qui satisfait les conditions Karush-Kuhn-Tucker (KKT) est telle que:

$$\int 2w(x)dx = \int f_{X|Y}(x|y)\lambda dx \Rightarrow \left\{ \begin{array}{l} \lambda = 2 \\ w(x) = f_{X|Y}(x|y) = f_X(x) \end{array} \right. \text{ (X et Y \'etant ind\'ependants)}.$$

Pour conclure choisir $w(x) = f_{X|Y}(x|y)$ est optimal.

Exercice 4.16 (R)

A naive way to implement the antithetic variable scheme is to use both U and (1-U) in an inversion simulation. Examine empirically whether this method leads to variance reduction for the following distributions:

- $\bullet \ f_1(x) = \frac{1}{\pi(1+x^2)},$

- $f_2(x) = \frac{1}{2}e^{-|x|}$, $f_3(x) = e^{-x}1x > 0$, $f_4(x) = \frac{2}{\pi\sqrt{3}}(1 + \frac{x^2}{3})^{-2}$, and $f_5(x) = 2x^{-3}1x > 1$.

Examine variance reductions of the mean, second moment, median, and 75th percentile.

Solution:

Nous allons comparer les performances de la méthode antithétique avec celles de la méthode traditionnelle de Monte Carlo.

Soit $U \sim U(0,1)$, l'estimateur traditionnel s'écrit:

$$\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} h(X_i) \text{ où } X_i = F^{-1}(U_i).$$

L'estimateur antithétique est:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} h(X_i) + h(Y_i)$$
 où $X_i = F^{-1}(U_i)$ et $Y_i = F^{-1}(1 - U_i)$.

Procédé:

Dans un premier temps, nous simulons un échantillon d'une loi $U \sim U(0,1)$. Puis nous calculons l'inverse des fonctions de repartition associées aux densités proposées dans l'énoncé sur l'échantillon $U_1 = U$ et également l'échantillon $U_2 = 1 - U$. Finalement, nous obtenons l'estimateur antithétique en utilisant la formule ci-dessus.

Code R qui simule U_1 et U_2 et calcule les moments d'ordre 1 et 2, la médiane et le 75e centile:

```
In [2]: # Initialisation
        N = 10000 # taille de l'échantillon simulé
        U1 = runif(N,0,1)
        U2 = 1-U1
         # Moyenne, second moment, médiane et le 75e centile
        movenne = function(p){
           return (cumsum(p)/(1:N))
        moyenne2 = function(p){
          return (cumsum(p*2)/(1:N))
        mediane = function(p){
           return (sapply(1:N, function(x) median(p[1:x])))
         c75 = function(p){
           return (sapply(1:N, function(x) quantile(p[1:x], probs=0.75)))
         # Fonction retournant l'estimateur antithétique
         antithetique = function(a,b){
           return(1/2*(a+b))
         }
```

a) Distribution de Cauchy: $f_1(x) = \frac{1}{\pi(1+x^2)}$

La première distribution à étudier est une distribution de Cauchy avec $x_o = 0$ (paramètre de position) et $\alpha = 1$ (paramètre d'échelle).

La fonction de distribution s'écrit: $F(x) = \frac{1}{\pi} \arctan(x) + \frac{1}{2}$. Donc on simule $F^{-1}(U) = tan \left[(U - \frac{1}{2})\pi \right]$ pour $U_1 = U$ et $U_2 = 1 - U$.

```
In [3]: # Génération d'un échantillon suivant une loi de Cauchy
    F_inv = function(u){tan(pi*(u-0.5))}
    X = F_inv(U1)
    Y = F_inv(U2)

# Médiane et 75e centile
    medianex = mediane(X)
    medianey = mediane(Y)
    mediane_anti=antithetique(medianex,medianey)
    cx75 = c75(X)
    cy75 = c75(Y)
    c75_anti=antithetique(cx75,cy75)
```


La loi de Cauchy n'admettant ni espérance ni écart-type, nous nous concentrons sur la médiane et le 75e centile.

- Nous constatons que la "vraie" valeur de la médiane est atteinte immédiatement avec la méthode antithétique: l'estimateur est toujours nul car la loi est symétrique en 0 (la médiane empirique des U_1i est égale à la moyenne empirique des U_2i). Avec la méthode traditionnelle, la convergence n'est plus immédiate.
- Par ailleurs, l'estimateur antithétique du 75e centile converge plus vite, ainsi la méthode antithétique réduit la variance de l'estimateur.

Pour conclure, la méthode antithétique semble être préférable.

b) Distribution de Laplace: $f_2(x) = \frac{1}{2}e^{-|x|}$

La fonction de répartition d'une variable aléatoire suivant une loi de Laplace, avec b=1 (paramètre d'échelle) et $\mu=0$ (paramètre de position) est:

$$F(x) = -\frac{1}{2}(1 + sign(x)(1 - e^{-|x|}),$$

ainsi, nous simulons $F^{-1}(U)=-sign(U-\frac{1}{2})ln\Big(1-2|U-\frac{1}{2}|\Big)$ pour $U_1=U$ et $U_2=1-U$.

```
In [5]: # Génération d'un échantillon suivant une loi de Laplace
        F_inv = function(u) {
          return (-sign(u-0.5)*log(1-2*abs(u-0.5)))
         X = F_{inv}(U1)
         Y = F_{inv}(U2)
         # Moments d'ordre 1 & 2, médiane et 75e centile
         movennex = movenne(X)
         moyenney = moyenne(Y)
         moyenne_anti=antithetique(moyennex,moyenney)
         moyenne2x = moyenne2(X)
         moyenne2y = moyenne2(Y)
         moyenne2_anti=antithetique(moyenne2x,moyenne2y)
         medianex = mediane(X)
         medianey = mediane(Y)
         mediane_anti=antithetique(medianex,medianey)
         c75x = c75(X)
         c75y = c75(Y)
         c75_anti=antithetique(c75x,c75y)
```

```
In [6]: # Graphes
        par(mfrow=c(2,2))
        plot(moyennex,type="l",main="Moment d'ordre 1",xlab="Simulations",
              ylab="moment d'ordre 1", col='violet')
         lines(moyenne_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
         plot(moyenne2x,type="l",main="Moment d'ordre 2",xlab="Simulations",
              ylab="moment d'ordre 2", col='violet')
         lines(moyenne2_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
         plot(medianex,type="l",main="Médiane",xlab="Simulations",ylab="médiane",
              col='violet')
         lines(mediane_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
         plot(cx75,type="1",main="75e centile",xlab="Simulations",
              ylab="75e centile", col='violet')
         lines(c75_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
```


La figure ci-dessus nous permet de dresser les conclusions suivantes:

- La symétrie de la loi de Laplace implique que les estimateurs antithétique de la médiane et de la moyenne atteignent immédiatement leur vraie valeur.
- L'estimateur du moment d'ordre 2 converge également immédiatement avec la méthode antithétique. En effet, de par la symétrie de la distribution, les variances empiriques de *U*₁ et *U*₂ sont égales. On ne constate donc pas de gain pour l'estimatation du moment d'ordre 2.
- Néanmoins, si on considère le 75e centile, les deux estimateurs ne convergent pas vers la même valeur (l'estimateur antithétique converge vers une valeur moindre).

c) Distribution exponentielle: $f_3(x) = e^{-x} \mathbb{1}x > 0$

On s'intéresse désormais à la loi exponentielle avec $\lambda = 1$ (parametre d'intensité).

Nous avons $F(x) = 1 - e^{-x}$, ce qui nous amène à simuler $F^{-1}(U) = -ln(1-U)$ pour $U_1 = U$ et $U_2 = 1 - U$.

```
In [7]: # Génération d'un échantillon suivant une loi exponentielle
        F_inv = function(u){
             return (-log(1-u))
        X = F_{inv}(U1)
        Y = F_{inv}(U2)
         # Moments d'ordre 1 & 2, médiane et 75e centile
         moyennex = moyenne(X)
         moyenney = moyenne(Y)
         movenne_anti=antithetique(movennex, movenney)
         moyenne2x = moyenne2(X)
         moyenne2y = moyenne2(Y)
         moyenne2_anti=antithetique(moyenne2x,moyenne2y)
         medianex = mediane(X)
         medianey = mediane(Y)
         mediane_anti=antithetique(medianex,medianey)
         c75x = c75(X)
         c75y = c75(Y)
         c75_anti=antithetique(c75x,c75y)
```

```
In [8]: # Graphes
        par(mfrow=c(2,2))
        plot(moyennex,type="l",main="Moment d'ordre 1",xlab="Simulations",
              ylab="moment d'ordre 1", col='violet')
         lines(moyenne_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(moyenne2x,type="l",main="Moment d'ordre 2",xlab="Simulations",
              ylab="moment d'ordre 2", col='violet')
         lines(moyenne2_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(medianex,type="l",main="Médiane",xlab="Simulations",ylab="médiane",
              col='violet')
         lines(mediane_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(cx75,type="1",main="75e centile",xlab="Simulations",
              ylab="75e centile", col='violet')
         lines(c75_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo","Antithetique"),lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
```


Pour tous les estimateurs considérés, la méthode antithétique converge plus rapidement que la méthode classique : la variance empirique est réduite.

En outre, les estimateurs du 75e centile ne convergent pas vers la même valeur; toutefois, cette fois-ci, la valeur de l'estimateur antithétique est supérieure à celle de l'estimateur traditionnel.

d) Distribution de Student:
$$f_4(x) = \frac{2}{\pi\sqrt{3}}(1+\frac{x^2}{3})^{-2}$$

Nous pouvons reconnaitre la densité d'une loi de student avec 3 degrés de liberté:

$$F(x) = \frac{1}{2} + \frac{\sqrt{3}x}{\pi(3+x^2)} + \frac{\arctan\frac{x}{\sqrt{3}}}{\pi}$$

Il est compliqué de calculer l'inverse de la fonction de répartition d'une telle variable manuellement; par conséquent, nous utilisons la fonction quantitle (au lieu de F^{-1}).

```
In [9]: U1 = runif(N,0,1)
        U2 = 1-U1
         X = qt(U1, df = 3)
         Y = qt(U2, df = 3)
         # Moments étudiés
         movennex = movenne(X)
         moyenney = moyenne(Y)
         moyenne_anti=antithetique(moyennex,moyenney)
         moyenne2x = moyenne2(X)
        moyenne2y = moyenne2(Y)
        movenne2_anti=antithetique(movenne2x,movenne2y)
         medianex = mediane(X)
         medianey = mediane(Y)
         mediane_anti=antithetique(medianex,medianey)
         c75x = c75(X)
         c75y = c75(Y)
         c75_anti=antithetique(c75x,c75y)
```

```
In [10]: # Graphes
         par(mfrow=c(2,2))
        plot(movennex,type="l",main="Moment d'ordre 1",ylab="", col='violet')
         lines(moyenne_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(moyenne2x,type="1",main="Moment d'ordre 2",ylab="", col='violet')
         lines(moyenne2_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo","Antithetique"),lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
         plot(medianex,type="l",main="Médiane",ylab="", col='violet')
         lines(mediane_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
         plot(cx75,type="l",main="75% Quantile", col='violet')
         lines(c75_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
```


Encore une fois, l'estimateur antithétique permet de réduire la variance empirique et les deux méthodes étudiées livrent des estimateurs du 75e centile qui ne convergent pas vers la même valeur.

e) Distribution de Pareto : $f_5(x) = 2x^{-3}\mathbb{1}x > 1$

Nous considérons désormais une distribution de Pareto avec $x_m=1$ (paramètre d'échelle) et $\alpha=2$ (paramètre de forme). La fonction de répartition est :

$$F(x) = 1 - \frac{1}{x^2}.$$

Ainsi,
$$F^{-1}(U) = \frac{1}{\sqrt{1-U}}$$
.

```
In [11]: # Génération d'un échantillon suivant une loi de Pareto
         F_inv = function(u){
           return (1/sqrt(1-u))
         X = F_{inv}(U1)
         Y = F_{inv}(U2)
         # Moments d'ordre 1 & 2, médiane et 75e centile
         moyennex = moyenne(X)
         movenney = movenne(Y)
         movenne_anti=antithetique(movennex,movenney)
         moyenne2x = moyenne2(X)
         moyenne2y = moyenne2(Y)
         moyenne2_anti=antithetique(moyenne2x,moyenne2y)
         medianex = mediane(X)
         medianey = mediane(Y)
         mediane_anti=antithetique(medianex,medianey)
         c75x = c75(X)
         c75y = c75(Y)
         c75_anti=antithetique(c75x,c75y)
```

```
In [12]: # Graphes
        par(mfrow=c(2,2))
        plot(moyennex,type="l",main="Moment d'ordre 1",xlab="Simulations",
              ylab="moment d'ordre 1" , col='violet')
         lines(moyenne_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(moyenne2x,type="l",main="Moment d'ordre 2",xlab="Simulations",
              ylab="moment d'ordre 2", col='violet')
         lines(moyenne2_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(medianex,type="l",main="Médiane",xlab="Simulations",ylab="médiane",
              col='violet')
         lines(mediane_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo", "Antithetique"), lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
        plot(cx75,type="l",main="75e centile",xlab="Simulations",
              ylab="75e centile", col='violet')
         lines(c75_anti,col="cyan")
         legend('topright', legend=c("Monte Carlo","Antithetique"),lty=1,
                col=c("violet","cyan"), bty='n', cex=.75)
```


L'estimateur antithétique converge plus rapidement que l'estimateur classique pour les moments d'ordre 1 et 2 et la médiane. Concernant le 75e centile, les deux estimateurs sont, cette fois-ci, identiques.

3 Exercice 4.19

For $t \sim Geo(p)$, show that:

• (i)
$$\mathbb{E}[t^{-1}] = -\frac{
ho log
ho}{1-
ho}$$
, and

• (ii)
$$\mathbb{E}\left[t^{-2}\right] = -\frac{\rho L_i(1-\rho)}{1-\rho}$$
,

where $L_i(x)$ is the dilog function.

Solution:

(i) Soit $t \sim Geo(p)$, on a alors :

$$\forall k \in \mathbb{N}^*, P(t=k) = (1-\rho)^{k-1}\rho.$$

L'espérance peut être diretement calculée:

$$\mathbb{E}[t^{-1}] = \sum_{k=1}^{+\infty} \frac{1}{k} (1 - \rho)^{k-1} \rho$$
$$= \frac{\rho}{1 - \rho} \sum_{k=1}^{+\infty} \frac{(1 - \rho)^k}{k}$$

Or le développement en série entière de la fonction $x \to ln(1-x)$ est $-\sum_{k=1}^{+\infty} \frac{x^k}{k}$ pour $x \in]-1:1[$. On a donc: $\mathbb{E}\big[t^{-1}\big] = -\frac{\rho}{1-\rho}ln(\rho)$.

(ii) Calculons à présent $\mathbb{E}[t^{-2}]$.

$$\mathbb{E}[t^{-2}] = \sum_{k=1}^{+\infty} \frac{1}{k^2} (1 - \rho)^{k-1} \rho$$

$$= \frac{\rho}{1 - \rho} \sum_{k=1}^{+\infty} \frac{(1 - p)^k}{k^2}$$

$$= \frac{\rho}{1 - \rho} L_i (1 - \rho)$$

avec $L_i(x)$ la fonction dilog, i.e. $L_i(x) = \sum_{k=1}^{+\infty} \frac{x^k}{k^2}$.

4 Exercice 5.1 (R)

Use a numerical maximiser to find the maximum of:

$$f(x) = [\cos(50x) + \sin(20x)]^2.$$

Compare to the results of a stochastic exploration.

Solution:

```
In [13]: # Fonction à maximiser :
    f = function(x){
        return((cos(50*x) + sin(20*x))^2)
    }
```

La fonction à maximiser est la suivante:

Nous pouvons constater que cette fonction a plusieurs maximum locaux.

a) Maximisation en utilisant la fonction "optimize" de R

\$maximum 0.379151241833723

\$objective 3.83254327925211

b) Exploration stochastique

Méthode 1: Simulated-annealing

3.83254418849292

On trouve bien le même minimum que précèdemment, à savoir environ 3.83.

Méthode 2: exploration stochastique "à la main"

L'idée ici est de simuler $u_1, ..., u_m \sim U_{\Theta}$ et d'utiliser l'approximation $h_m^* = max(h(u_1), ..., h(u_m))$.

```
In [17]: U = f(matrix(runif(10^5), ncol = 10^2))
    # Calcul du max pour chaque index
    cumul = t(apply(U, 1, cummax))
    cum = stack(data.frame(cumul[1, ]))

plot( cum$value, type = "p", col = "violet", lwd = 2, main =
    "Exploration stochastique", ylab="valeur maximale")
```

Le graphe ci-dessous montre qu'après 100 itérations, on atteint la valeur maximale (3.83): la méthode converge. Ceci est du au fait que Θ est borné. Pour conclure les méthodes ci-dessus permettent bien d'obtenir un des maxima globaux.

Exploration stochastique

