Informal description

 \triangleright Process the vertices of the mesh by **increasing** value of f.

- \triangleright Process the vertices of the mesh by **increasing** value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.

- Process the vertices of the mesh by increasing value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;

- Process the vertices of the mesh by increasing value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- ► While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;
 - ▶ the current **level set** $f^{-1}(r)$.

- Process the vertices of the mesh by **increasing** value of *f*.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- ► While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;
 - ▶ the current **level set** $f^{-1}(r)$.
- When processing a vertex, update the level set and the Reeb graph accordingly.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

▶ nodes \leadsto edges of the mesh \mathcal{M} ;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

→ a triangle connects its two sides intersecting f⁻¹(r)

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

▶ **Trigger**: update when processing a vertex v.

$$r = f(v) - \epsilon \text{ to } r = f(v) + \epsilon$$

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .
 - 2. \mathbf{v} is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of T.
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .
 - 2. \mathbf{v} is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \leadsto triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

Data structure: the following operations are required;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. v is the upper vertex of \mathcal{T} .

- Data structure: the following operations are required;
 - find the connected component of a node e;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

- ▶ **Data structure**: the following operations are required;
 - find the connected component of a node e;
 - ▶ insert a new edge between nodes e_1 , e_2 ;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

- ▶ Data structure: the following operations are required;
 - find the connected component of a node e;
 - ▶ insert a new edge between nodes e_1 , e_2 ;
 - delete the edge between nodes e1, e2;

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

- ► **Trigger**: update when processing a vertex *v*.
- **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

- ▶ Data structure: the following operations are required;
 - find the connected component of a node e;
 - ▶ insert a new edge between nodes e₁, e₂;
 - ▶ delete the edge between nodes e_1 , e_2 ;
 - → offline dynamic connectivity problem

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- ▶ nodes \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

- ► **Trigger**: update when processing a vertex *v*.
- ▶ **Action**: process each triangle \mathcal{T} of Star(v) separately.
 - 1. \mathbf{v} is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. \mathbf{v} is the upper vertex of \mathcal{T} .

- **Data structure**: the following operations are required;
 - find the connected component of a node e;
 - ▶ insert a new edge between nodes e_1 , e_2 ;
 - \triangleright delete the edge between nodes e_1 , e_2 ;
 - → offline dynamic connectivity problem → ST-trees

support all the operations in $O(\log m)$

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

The augmented Reeb graph has one open edge for each component of G_r

The partial augmented Reeb graph is represented by a pair $(\overline{\mathcal{R}}, \Phi)$.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

 $\mbox{partial segmentation map;} \ \, \mbox{\tt maps each vertex of the mesh to a node or an edge of } \mathcal{R}$

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$ lower components

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$ upper components

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $\underline{\mathsf{Uc}} = \big\{ \mathit{G}_{\mathit{f}(v) + \epsilon}.\mathtt{find}([\mathit{vv'}]) : \mathit{v'} \in \mathsf{Link}^+(\mathit{v}) \big\}.$
- 3. If |Lc| = |Uc| = 1 then:
 - $ightharpoonup \mathcal{R}$ is unchanged;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. If |Lc| = |Uc| = 1 then:
 - \triangleright \mathcal{R} is unchanged;
 - $\Phi(v)$ = the open edge associated to the lower component.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** $|\mathbf{Lc}| = |\mathbf{Uc}| = 1$ **then**:
 - $ightharpoonup \mathcal{R}$ is unchanged;
 - $\Phi(v)$ = the open edge associated to the lower component.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - \triangleright \mathcal{R} is unchanged;
 - $\Phi(v)$ = the open edge associated to the lower component.

create a new node w in R;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - $ightharpoonup \mathcal{R}$ is unchanged;
 - $\Phi(v)$ = the open edge associated to the lower component.

- reate a new node w in \mathcal{R} ;
- all the open edges associated to the lower components end at w;

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - $ightharpoonup \mathcal{R}$ is unchanged;
 - $\Phi(v)$ = the open edge associated to the lower component.

- create a new node w in R;
- all the open edges associated to the lower components end at w;
- ▶ open a new edge in \mathcal{R} starting at w for each upper component.

The augmented Reeb graph

The partial augmented Reeb graph is represented by a pair (\mathcal{R}, Φ) .

Updating (\mathcal{R}, Φ)

When processing a vertex v:

- 1. Let $Lc = \{G_{f(v)-\epsilon}.find([vv']) : v' \in Link^-(v)\}.$
- 2. Let $Uc = \{G_{f(v)+\epsilon}.find([vv']) : v' \in Link^+(v)\}.$
- 3. **If** |Lc| = |Uc| = 1 **then**:
 - $ightharpoonup \mathcal{R}$ is unchanged;
 - $\Phi(v)$ = the open edge associated to the lower component.

- create a new node w in R;
- all the open edges associated to the lower components end at w;
- open a new edge in R starting at w for each upper component.

Full implementation

```
input: a triangulated mesh \mathcal{M}
              a scalar field f on \mathcal{M}
   output: the augmented Reeb graph (\mathcal{R}, \Phi)
1 begin
       \mathcal{R}, \Phi \leftarrow \emptyset [graph], \emptyset [function]
 2
        G_r \leftarrow \emptyset [ST-tree]
 3
       sort the vertices of \mathcal{M} by increasing value of f
 4
       foreach v vertex of M do
 5
            Lc \leftarrow GetLowerComponents(v)
 6
            UpdatePreimageGraph()
 7
            Uc \leftarrow GetUpperComponents(v)
 8
            if |Lc| = |Uc| = 1 then update \Phi(v)
 9
            else UpdateReebGraph(v, Lc, Uc)
10
       end
11
       return (\mathcal{R}, \Phi)
12
13 end
```