Prof: Vivek Mukundan Uploaded By-Rahul & Saurath

INDIAN INSTITUTE OF TECHNOLOGY DELHI DEPARTMENT OF MATHEMATICS MTL104 (LINEAR ALGEBRA AND APPLICATIONS) Minor II

Time: 1 hour

Maximum Marks: 35

1. (1 points) Suppose $S, T \in \mathcal{L}(V)$ and S is invertible. Suppose $p \in \mathcal{P}(\mathbb{F})$ is a polynomial. Prove that

$$p\left(STS^{-1}\right) = Sp(T)S^{-1}.$$

(b) (4 points) Apply LU decomposition to solve the system Ax = b, where

$$A = \begin{pmatrix} 2 & 2 & 2 \\ 4 & 7 & 7 \\ 6 & 18 & 22 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

- 2. (a) (2 points) Suppose $T, S \in \mathcal{L}(V)$ be linear operators on finite dimensional vector spaces V over \mathbb{C} . Suppose that TS = ST, then show that there is a eigenvector w that is common to both T and S.
 - (b) (3 points) Let V be the vector space of $n \times n$ matrices with entries in \mathbb{C} . For a matrix $A \in V$ define a linear operator $T_A : V \to V$ such that $T_A(B) = AB$. If A is diagonalizable, show that T_A is diagonalizable.
- 3. (5 points) Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Prove that the following are equivalent:

(b)
$$V = \text{null } T + \text{range } T$$
.

(c)
$$\operatorname{null} T \cap \operatorname{range} T = \{0\}$$

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx.$$

- (b) (2 points) What happens if the Gram-Schmidt Procedure is applied to a list of vectors that is not linearly independent?
- 5. (2 points) Find the eigenvalues of the linear operator T on \mathbb{R}^2 which takes the circle $\{(x_1,x_2)|x_1^2+x_2^2=1\}$ to the ellipse $\{(x_1,x_2)|x_1^2/a^2+x_2^2/b^2=1\}$.
 - (3 points) Let T be the linear operator on $\mathcal{P}_2(\mathbb{R})$ defined by $T(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^2$. Check diagonalizability of this operator.
 - (a) (3 points) Suppose $\{v_1, \ldots, v_n\}$ form a linearly independent set of vectors. Show that there exists $w \in V$ such that $\langle w, v \rangle > 0$ for all $1 \le j \le m$.
 - (b) (2 points) Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^2 .
- 7. (a) (3 points) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. Prove that U is invariant under T if and only if U^{\perp} is invariant under the adjoint T^* .
 - (b) (2 points) Show that dim null $T^* = \dim \text{null } T + \dim W \dim V$ for every $T \in \mathcal{L}(V, W)$.

