Консультация 20.10.2023

Семинары: Погорелова П.В.

Задача 1. Модель порождающая данные имеет вид $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$. Ошибки независимы и их дисперсия равна $Var(\varepsilon_i) = \sigma^2$. Регрессоры детерминированы. Для оценки дисперсии σ^2 используется формула $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$. Является ли $\hat{\sigma}^2$ несмещенной оценкой σ^2 ? Если оценка смещена, то что можно сказать о знаке смещения?

Задача 2. Рассмотрим регрессию вида

$$y_i = \beta_1 + \beta_2 d_i + \varepsilon_i, i = 1, \dots, n,$$

где d — некоторая фиктивная переменная. Пусть $\bar{y_0}$ — среднее значение переменной y по n_0 элементам, для которых d=0, и $\bar{y_1}$ — среднее значение переменной y по n_1 элементам, для которых d=1 $(n_0+n_1=n)$. Найдите $Var(\hat{\beta_1}), Var(\hat{\beta_2})$.

Задача 3. Вместо того чтобы оценивать параметры β_1,β_2 в модели

$$y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon,$$

 $(X_1, X_2 - n \times k_1, n \times k_2)$ матрицы соответственно, β_1, β_2 — векторы размерности k_1, k_2 соответственно), строятся МНК-оценки этих параметров, исходя из модели

$$y = X_1^* \beta_1 + X_2 \beta_2 + \varepsilon^*,$$

где X_1^* — матрица остатков, полученных в результате регрессии каждого столбца матрицы X_1 на X_2 .

- (a) Покажите, что полученная таким образом оценка вектора β_2 совпадает с оценкой, полученной в результате регрессии y только на X_2 .
- (b) Найдите смещение оценки вектора β_2 .

Задача 4. Ниже представлены результаты МНК-оценивания двух регрессий, часть из которых не сохранилась. Утерянные оценки коэффициентов регрессий заменены символами.

Модель 1:
$$\hat{y_i} = \hat{\beta}_1 + \hat{\beta}_2 x_i$$

Модель 2:
$$\hat{y_i} = \hat{\alpha}_1 + \hat{\alpha}_2 x_i + \underset{(2)}{10} w_i, R^2 = 0.8$$

Оценивание проводилось по 103 наблюдениям. В скобках под оценками коэффициентов указаны их стандартные ошибки. Восстановите значение оценки коэффициента $\hat{\beta}_2$ первой регрессии?

Зависимая переменная: логарифм среднего дохода ln(<i>AHE</i>)			
Perpeccop	(1)	(2)	(3)
College	1,05	1,00	0,96
	(0,16)	(0,10)	(0,11)
Age		0,04	0,05
		(0,01)	(0,01)
Northeast			0,04
			(0,01)
Midwest			0,06
			(0,02)
South			-0,03
			(0,01)
Константа	2,96	0,82	0,83
	(0,03)	(0,16)	(0,15)
R ²	0,12	0,58	0,60
Число наблюдений	1000	1000	1000

Семинары: Погорелова П.В.

Задача 5. Вопросы этого задания связаны с анализом результатов оценивания трех моделей регрессии, представленных в таблице 1:

- АНЕ средний доход (долл. в час),
- College переменная, равная единице, если работник закончил колледж, и равная нулю в противном случае,
- Age возраст в годах,
- Northeast переменная, равная единице, если работник из северо-восточного региона, и равная нулю в противном случае,
- Midwest переменная, равная единице, если работник со Среднего Запада, и равная нулю в противном случае,
- South переменная, равная единице, если работник из южного региона, и равная нулю в противном случае,
- West переменная, равная единице, если работник из западного региона, и равная нулю в противном случае (в выборке есть работники только из 4 перечисленных регионов).
- (а) Существуют ли статистически значимые региональные особенности на рассматриваемом рынке труда?
- (b) Существуют ли статистически значимые региональные особенности на рассматриваемом рынке труда? На основе результатов расчетов из предыдущего пункта проверьте соответствующую гипотезу при уровне значимости 5% и ответьте на вопрос.
- (c) Кто получает более высокую заработную плату при прочих равных условиях: работники из северо-восточного или из южного регионов? На сколько процентов?
- (d) В соответствии с результатами модели №2 на сколько процентов зарплата выпускника колледжа выше по сравнению с работником такого же возраста, который не заканчивал колледж?

Задача 6. Рассматривается уравнение $y_i = \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + \varepsilon_i$, для которого выполнены все предпосылки классической линейной модели множественной регрессии. Параметры уравнения оцениваются при помощи МНК. Имеются следующие данные о 1000 наблюдениях соответствующих переменных:

Семинары: Погорелова П.В.

$$\sum_{i=1}^{1000} x_i^{(1)} x_i^{(2)} = \sum_{i=1}^{1000} \left(x_i^{(2)} \right)^2 = 1, \sum_{i=1}^{1000} \left(x_i^{(1)} \right)^2 = 3,$$

$$\sum_{i=1}^{1000} x_i^{(1)} y_i = 30, \sum_{i=1}^{1000} x_i^{(2)} y_i = 20.$$

- (a) Вычислите оценку разности коэффициентов $\beta_1 \beta_2$. Ответ в виде числа.
- (b) Пусть также известно, что сумма квадратов остатков в оцененной регрессии оказалась равна 5988. Постройте 99-процентный доверительный интервал для разности $\beta_1 \beta_2$.

Список источников

1. Универсиада по эконометрике — 2018. https://new.universiade-ecm.com.