

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge
- Lead-Free
- Halogen-Free
- Marking: H0

V _{DSS}	$R_{DS(on)} \max (m\Omega)$	
-30V	98@V _{GS} = -10V	-3.0A
	165@V _{GS} = -4.5V	-2.6A

Power MOSFET

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain- Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.4	A
I _{DM}	Pulsed Drain Current ①	-24	
P _D @T _A = 25°C	Power Dissipation	1.25	W
P _D @T _A = 70°C	Power Dissipation	0.80	VV
	Linear Derating Factor	10	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	100	°C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.019		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			98	mΩ	V _{GS} = -10V, I _D = -3.0A ②
I IDS(on)				165		V _{GS} = -4.5V, I _D = -2.6A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0		-2.5	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 fs	Forward Transconductance	3.1			S	$V_{DS} = -10V, I_{D} = -3.0A$
I _{DSS}	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V$, $V_{GS} = 0V$
טטי				-5.0	μΑ	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	- nA	V _{GS} = -20V
IGSS	Gate-to-Source Reverse Leakage			100		V _{GS} = 20V
Qg	Total Gate Charge		9.5	14		$I_D = -3.0A$
Q_{gs}	Gate-to-Source Charge		2.3	3.5	nC	V _{DS} = -24V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.6	2.4		V _{GS} = -10V ②
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = -15V ②
t _r	Rise Time		18		ns	I _D = -1.0A
t _{d(off)}	Turn-Off Delay Time		88		115	$R_G = 6.0\Omega$
t _f	Fall Time		52			V _{GS} = -10V
C _{iss}	Input Capacitance		510			V _{GS} = 0V
Coss	Output Capacitance		71		pF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		43			f = 1.0 MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			4.0		MOSFET symbol
	(Body Diode)		-1.3	1.3 A	showing the	
I _{SM}	Pulsed Source Current		24	1 1	integral reverse	
	(Body Diode) ①				*	p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25$ °C, $I_S = -1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		17	26	ns	T _J = 25°C, I _F = -1.3A
Q _{rr}	Reverse Recovery Charge		12	18	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.

rig 2. Typical Output Onaracteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

0.40

 $\mathsf{R}_{\mathsf{DS}}\left(\mathsf{on}\right)$, Drain-to-Source On Resistance $\left(\Omega\right)$ 0.30 $V_{GS} = -4.5V$ 0.20 $V_{GS} = -1.0V$ 0.10 0.00 8 12 16 -I_D , Drain Current (A)

Fig 11. Typical On-Resistance Vs. Gate Voltage

Fig 12. Typical On-Resistance Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Fig 14. Threshold Voltage Vs. Temperature

Fig 15. Typical Power Vs. Time