Experimento 3 Circuitos Combinacionais: Mapas de Karnaugh

Grupo D1 Alexandre Augusto, 15/0056940 Anderson Vieira, 19/0102322 Gabriel de Castro, 21/1055432

¹Dep. Ciência da Computação – Universidade de Brasília (UnB) CIC0231 - Laboratório de Circuitos Lógicos 12 de março de 2023

150056940@aluno.unb.br, 190102322@aluno.unb.br, 211055432@aluno.unb.br

Abstract. The experiment to be reported consists in circuits implementations on protoboard, designed from statements and simplifications of its boolean functions, with the aid of truth-tables and Karnaugh maps.

Resumo. O experimento a ser relatado consiste em implementações de circuitos em protoboard, projetados a partir de enunciados e simplificações de suas respectivas funções booleanas com tabelas-verdade e mapas de Karnaugh.

1. Introdução

Os mapas de Karnaugh (ou *K-maps*) são muito úteis para simplificação de funções booleanas elaboradas a partir de tabelas-verdade que traduzem o comportamento de um circuito que deseja-se implementar. Um exemplo de circuito que pode ser projetado a partir de tabelas-verdade e mapas de Karnaugh é o seguinte:

Projete um circuito em que a saída seja 1 apenas quando o número de 1's seja ímpar. Considere as entradas A, B, C, D e saída Y.

A primeira etapa é o preenchimento da tabela-verdade conforme o enunciado:

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1 1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1 0 0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1 0
1	1 1	0	1	1
1	1	1	0	1 0
1	1	1	1	0

Após a tabela-verdade, separamos os mintermos, que são as expressões correspondentes aos valores 1 da saída. Assim, obtemos uma função booleana da seguinte forma, utilizando soma de produtos (SOP):

$$Y = \sum m(1, 2, 4, 7, 8, 11, 13, 14) = \overline{ABCD} + \overline{AB}C\overline{D} + \overline{AB}C\overline{D} + \overline{ABCD} + A\overline{BCD} + A\overline{BCD} + A\overline{BCD} + AB\overline{CD} + ABC\overline{D}$$

Assim, utilizamos o mapa de Karnaugh com a expressão obtida acima:

	$\overline{\mathrm{C.D}}$	$\overline{\mathrm{C}}.\mathrm{D}$	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	0	1	0	1
\overline{A} .B	1	0	1	0
A.B	0	1	0	1
$A.\overline{B}$	1	0	1	0

Figura 1. Mapa de Karnaugh para a função Y.

É possível fazer simplificações em funções booleanas utilizando mapas como o da figura , porém nesse mapa em específico não conseguimos fazer simplificações, pois não existem agrupamentos para isso. Essa etapa de agrupamento é feita nos experimentos que relataremos adiante.

Para finalizar o circuito, então, basta montar o diagrama de acordo com a função Y:

Figura 2. Diagrama de circuito para a função Y.

Nos experimentos realizados, todos esses procedimentos descritos foram adotados, contando com a implementação em *protoboard*.

1.1. Objetivos

Com este experimento queremos implementar circuitos seguindo as etapas de projeto de circuitos combinacionais com uso de tabelas-verdade e métodos de simplificação de funções booleanas, tais como mapas de Karnaugh e o algoritmo de Quine-McCluskey. Entretanto, utilizaremos apenas o método de mapas de Karnaugh.

Além disso, queremos implementar os circuitos obtidos apenas com o uso de portas NAND.

1.2. Materiais

Neste experimento foram utilizados os seguintes materiais e equipamentos:

- Painel Digital
- Protoboard
- Fios
- Portas Lógicas NAND

2. Procedimentos e Resultados

Neste experimento estaremos utilizando como ponto de partida o seguinte enunciado:

Projete um circuito cuja saída seja 1 se e somente se a maioria das entradas for 1. Considere as entradas A, B, C, D e a saída Y_1

A partir do enunciado, obtemos a tabela-verdade e a fórmula com os mintermos:

Entradas Saída						
		B 0	A	Lo=41		
0	0	0	0	0		
10	0	10	1	0		
0	0	LI	10	0		
0	0	1	1	0		
0	1	0	10	0		
0	11	10	1	0		
0	1	1	0	0		
0	1	1	1	11		
1	0		0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
1	0	0	1	0		
1	0	1	10	0		
1	0	1	T	1		
1	1	0		0		
1	1	0	1	Ĭ 1		
1	1	1	0	1		
1	1	T	1	1		

Figura 3. Tabela-verdade para o circuito de saída Y_1 .

$$Y_1 = \sum m(7, 11, 13, 14, 15)$$

Elaborando o mapa de Karnaugh a partir da fórmula acima, obtemos:

Figura 4. Mapa de Karnaugh para o circuito de saída Y_1

Dessa vez, podemos simplificar bastante a fórmula de Y_1 , obtendo assim um circuito para implementação.

$$Y_1 = AB \cdot (C+D) + CD \cdot (A+B)$$

Figura 5. Diagrama de circuito para Y_1 .

Tendo como base esse projeto, a seção 2.1 descreverá a implementação do circuito de maioria com saída Y_1 , enquanto a seção 2.2 descreverá a implementação do circuito

de minoria com saída Y_2 (onde a saída é 1 se a minoria das entradas for 1). Por último, a seção 2.3 descreverá a implementação de um circuito com saída 1 apenas se o número de 0's e de 1's nas entradas forem iguais.

2.1. Circuito de maioria com portas NAND

Figura 6. Diagrama de circuito de maioria com portas NAND.

Neste experimento, deve ser implementado um circuito que, dadas 4 entradas (\mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D}), deverá apresentar saída (Y_1) igual a 1 toda vez que houver 3 ou mais entradas com 1. Tal circuito utilizará somente portas NAND para obter a seguinte tabela verdade:

Tabela 1. Tabela verdade para circuito de maioria

	Entr	Saída		
A	В	C	D	Y_1
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

A partir da tabela verdade, teremos seu respectivo mapa de Karnaugh, que é a figura 4, para então obter a fórmula mínima. Para a fórmula mínima teremos:

$$Y_1 = ABC + ABD + ACD + BCD$$

Desta forma teremos a implementação da figura 6. Link do video: 2.1

Figura 7. Circuito 1 com portas NAND.

2.2. Circuito de minoria com portas NAND

Neste experimento implementamos o circuito de minoria, dado as 4 entradas (A, B, C, D), deverá apresentar uma saída (Y1).

Figura 8. Diagrama de circuito de minoria com saída Y_2 .

Figura 9. Circuito de minoria com portas NAND.

Tabela 2. Tabela verdade para circuito de minoria

	Entr	Saída		
A	В	C	D	Y_1
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

	$\overline{\mathrm{C.D}}$	$\overline{\mathrm{C}}.\mathrm{D}$	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	1	1	0	1
\overline{A} .B	1	0	0	0
A.B	0	0	0	0
$A.\overline{B}$	1	0	0	0

Figura 10. Mapa de Karnaugh para a tabela-verdade do circuito de minoria.

A partir da tabela verdade, podemos preencher o mapa de Karnaugh na figura 10. A função pode ser representada por

$$Y_2 = \overline{AB}(\overline{C} + \overline{D}) + \overline{CD}(\overline{A} + \overline{B})$$

Desta forma, o circuito resultante implementado com portas NAND está representado no diagrama da figura 8. Na figura 9, podemos conferir a implementação em *protoboard*.

No vídeo que pode ser conferido neste link, podemos observar o funcionamento assim como o preenchimento da tabela-verdade.

2.3. Circuito de entradas iguais

Figura 11. Diagrama de circuito de saída 1 para número igual de 0's e 1's nas entradas.

Figura 12. Circuito de saída 1 para número igual de 0's e 1's nas entradas.

Para este experimento, foi implementado um circuito que, dadas as 4 entradas ($\bf A$, $\bf B$, $\bf C$, $\bf D$), apresentou saída (Y_1) igual a 1 toda vez que houvessem 2 ocorrências de 1 e 2 ocorrências de 0 nas entradas. Tal circuito utilizou somente portas NAND para obter a seguinte tabela verdade:

Tabela 3. Tabela verdade para circuito de igualdade

	Entr	Saída		
A	В	C	D	Y_1
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

A partir da tabela verdade, tivemos seu respectivo mapa de Karnaugh, para então obter a fórmula mínima. Para a fórmula mínima teremos:

$$Y_1 = A\overline{B}C\overline{D} + \overline{A}BC\overline{D} + \overline{A}\overline{B}CD + A\overline{B}\overline{C}D + AB\overline{C}\overline{D}$$

Desta forma tivemos a implementação da figura 11 e consistiu na junção dos dois circuitos anteriores mais um conjunto de portas NAND para garantir que as saídas se mantivessem corretas. Link para o video 2.3

3. Conclusões

Foi possível, a partir das atividades realizadas no laboratório, concluir que as portas NAND são universais, isto é, é possível realizar todas as operações booleanas somente com portas NAND. Além disso, foi possível obter as funções minimizadas ao fazer uso do mapa de Karnaugh e, desta forma, diminuir a quantidade de portas lógicas dos circuitos.

Referências

Auto-Avaliação

- 1. b
- 2. d
- 3. b
- 4. c
- 5. d