Лабораторная работа 13

Статическая маршрутизация в Интернете. Планирование

Ланцова Яна Игоревна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Планирование	7 7 10
4	Выводы	18
5	Контрольные вопросы 5.1 1. Случаи использования статической маршрутизации	

Список иллюстраций

3.1	Схема L1 сети с дополнительными площадками	7
3.2	Схема L2 сети с дополнительными площадками	8
3.3	Схема L3 сети с дополнительными площадками	8
3.4	Медиаконвертер с модулями PT-REPEATER-NM-1FFE и PT-	
	REPEATER-NM-1CFE	11
3.5	Маршрутизатор msk-yalantsova-q42-gw-1 с дополнительным	
	интерфейс NM-2FE2W	12
3.6	Новый город Сочи	12
3.7	Новое здание 42-го квартала в Москве	13
3.8	Перенесенное оборудование в филиал в Сочи	13
3.9	Перенесенное оборудование в 42-ой квартал Москвы	14
3.10	Маршрутизатор msk-yalantsova-q42-gw-1 с дополнительным	
	интерфейс NM-2FE2W	14
3.11	Первоначальная настройка маршрутизатора msk-q42-yalantsova-	
	gw-1	15
	Первоначальная настройка коммутатора msk-q42-yalantsova-sw-1	15
3.13	Первоначальная настройка маршрутизирующего коммутатора msk-	
	hostel-yalantsova-gw-1	16
3.14	Первоначальная настройка коммутатора msk-hostel-yalantsova-sw-1	16
	Первоначальная настройка коммутатора sch-sochi-yalantsova-sw-1	17
3.16	Первоначальная настройка маршрутизатора sch-sochi-yalantsova-	
	gw-1	17

Список таблиц

3.1	Таблица VLAN	8
3.2	Таблица ІР для филиала в г. Сочи	9
3.3	Таблица IP для связующих разные территории линков	10

1 Цель работы

Провести подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

2 Задание

- 1. Внести изменения в схемы L1, L2 и L3 сети, добавив в них информацию о сети основной территории (42-й квартал в Москве) и сети филиала в г. Сочи.
- 2. Дополнить схему проекта, добавив подсеть основной территории организации 42-го квартала в Москве и подсеть филиала в г. Сочи.
- 3. Сделать первоначальную настройку добавленного в проект оборудования.

3 Выполнение лабораторной работы

3.1 Планирование

Внесем изменения в схему L1 сети, добавив в неё сеть квартала 42 и сеть в Сочи с указанием названий оборудования и портов подключения(рис. 3.1).

Рис. 3.1: Схема L1 сети с дополнительными площадками

Внесем изменения в схемы L2(рис. 3.2) и L3 (рис. 3.3) сети, указав ір-адреса и VLAN.

Рис. 3.2: Схема L2 сети с дополнительными площадками

Рис. 3.3: Схема L3 сети с дополнительными площадками

Скорректируем таблицу VLAN(табл. 3.1), добавим распределение IP-адресов в Сочи (табл. 3.2) и для связующих разные территории линков (табл. 3.3).

Таблица 3.1: Таблица VLAN

№ VLAN	Имя VLAN	Примечание
1	default	Не используется
2	management	Для управления устройствами
3	servers	Для серверной фермы

Nº VLAN	Имя VLAN	Примечание
4	nat	Зарезервировано
5	q42	Линк в сеть квартала 42 в Москве
6	sochi	Линк в сеть филиала в Сочи
101	dk	Дисплейные классы (ДК)
102	departments	Кафедры
103	adm	Администрация
104	other	Для других пользователей
201	q42-main	Основной для квартала 42 в Москве
202	q42-	Для управления устройствами 42-го квартала в
	management	Москве
301	hostel-main	Основной для общежитий в квартале 42 в
		Москве
401	sochi-main	Основной для филиала в Сочи
402	sochi-	Для управления устройствами в филиала в
	management	Сочи

Таблица 3.2: Таблица ІР для филиала в г. Сочи

ІР-адреса	Примечание	VLAN
10.130.0.0/16	Вся сеть филиала в Сочи	
10.130.0.0/24	Основная сеть филиала в Сочи	401
10.130.0.1	sch-sochi-gw-1	
10.130.0.200	pc-sochi-1	
10.130.1.0/24	Сеть для управления устройствами в	402
	Сочи	
10.130.1.1	sch-sochi-gw-1	

Таблица 3.3: Таблица IP для связующих разные территории линков

ІР-адреса	Примечание	VLAN
10.128.255.0/24	Вся сеть для линков	
10.128.255.0/30	Линк на 42-й квартал	5
10.128.255.1	msk-donskaya-gw-1	
10.128.255.2	msk-q42-gw-1	
10.128.255.4/30	Линк в Сочи 6	6
10.128.255.5	msk-donskaya-gw-1	
10.128.255.6	sch-sochi-gw-1	
10.129.0.0/16	Вся сеть квартала 42 в Москве	
10.129.0.0/24	Основная сеть квартала 42 в Москве	201
10.129.0.1	msk-q42-gw-1	
10.129.0.200	pc-q42-1	
10.129.1.0/24	Сеть для управления устройствами в	202
	сети квартала 42 в Москве	
10.129.1.1	msk-q42-gw-1	
10.129.1.2	msk-hostel-gw-1	
10.129.128.0/17	Вся сеть hostel	
10.129.128.0/24	Основная сеть hostel	301
10.129.128.1	msk-hostel-gw-1	
10.129.128.200	pc-hostel-1	

3.2 Первоначальная настройка оборудования

На схеме предыдущего проекта разместим необходимое оборудование для сети провайдера и сети модельного Интернета: 4 медиаконвертера (Repeater-PT), 2 маршрутизатора типа Cisco 2811, 1 маршрутизирующий коммутатор типа Cisco 3560-24PS, 2 коммутатора типа Cisco 2950-24, коммутатор Cisco 2950-24T, 3

оконечных устройства типа PC-PT. Затем присвоим названия в соответствии с планом.

На медиаконвертерах заменим имеющиеся модули ли на PT-REPEATER-NM-1FFE и PT-REPEATER-NM-1CFE для подключения витой пары по технологии Fast Ethernet и оптоволокна соответственно(рис. 3.4).

Рис. 3.4: Медиаконвертер с модулями PT-REPEATER-NM-1FFE и PT-REPEATER-NM-1CFE

На маршрутизаторе msk-q42-gw-1 добавим дополнительный интерфейс NM-2FE2Wc(рис. 3.5).

Рис. 3.5: Маршрутизатор msk-yalantsova-q42-gw-1 с дополнительным интерфейс NM-2FE2W

В физической рабочей области Packet Tracer добавим добавим город Сочи и в нём здание филиала(рис. 3.6), а в г. Москва здание 42-го квартала, а затем(рис. 3.7).

Рис. 3.6: Новый город Сочи

Рис. 3.7: Новое здание 42-го квартала в Москве

Перенесем из сети «Донская» оборудование сети 42-го квартала и сети филиала в соответствующие здания(рис. 3.8, 3.9).

Рис. 3.8: Перенесенное оборудование в филиал в Сочи

Рис. 3.9: Перенесенное оборудование в 42-ой квартал Москвы

Затем соединим все объекты в соответствии со схемой L1 сети(рис. 3.10).

Рис. 3.10: Маршрутизатор msk-yalantsova-q42-gw-1 с дополнительным интерфейс NM-2FE2W

Перейдем к настройке оборудования. Для всех сетевых устройств установим имя хоста, доступ по паролю, telnet и ssh(рис. 3.11 - 3.16).

```
msk-q42-yalantsova-gw-1>en
msk-q42-yalantsova-gw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msk-q42-yalantsova-gw-1(config)#line vty 0 4
msk-q42-yalantsova-gw-1(config-line) #password cisco msk-q42-yalantsova-gw-1(config-line) #login
msk-q42-yalantsova-gw-1(config-line) #exit
msk-q42-yalantsova-gw-1(config)fine console 0
msk-q42-yalantsova-gw-1(config-line)#password cisco
msk-q42-yalantsova-gw-1(config-line)#login
msk-q42-yalantsova-gw-1(config-line) #exit
msk-q42-yalantsova-gw-1(config) #enable secret cisco
msk-q42-yalantsova-gw-1(config) #service password encryption
% Invalid input detected at '^' marker.
msk-g42-valantsova-gw-1(config) #service password-encryption
msk-q42-yalantsova-gw-1(config) #username admin privilege 1 secret ciscomsk-q42-yalantsova-gw-1(config) #ip domain-name q42.rudn.edu
msk-g42-yalantsova-gw-1(config) #crypto key generate rsa
The name for the keys will be: msk-q42-yalantsova-gw-1.q42.rudn.edu
Choose the size of the key modulus in the range of 360 to 4096 for your
   General Purpose Keys. Choosing a key modulus greater than 512 may take
   a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]
msk-q42-yalantsova-gw-1(config) #line vty 0 4
*Mar 1 0:22:15.96; %SSH-5-ENABLED: SSH 1.99 has been enabled
msk-q42-yalantsova-gw-1(config-line) #transport input ssh msk-q42-yalantsova-gw-1(config-line) #
```

Рис. 3.11: Первоначальная настройка маршрутизатора msk-q42-yalantsova-gw-1

```
msK-q42-yalantsova-sw-leen
msk-q42-yalantsova-sw-leen
msk-q42-yalantsova-sw-leen
msk-q42-yalantsova-sw-l(config) #line vty 0 4
msk-q42-yalantsova-sw-l(config)-line) #sasword cisco
msk-q42-yalantsova-sw-l(config)-line) #sasword cisco
msk-q42-yalantsova-sw-l(config)-line) #sasword cisco
msk-q42-yalantsova-sw-l(config) #line console 0
msk-q42-yalantsova-sw-l(config) #line console 0
msk-q42-yalantsova-sw-l(config)-line) #sasword cisco
msk-q42-yalantsova-sw-l(config)-line) #sasword cisco
msk-q42-yalantsova-sw-l(config)-line) #sasword cisco
msk-q42-yalantsova-sw-l(config)-line) #sasword
msk-q42-yalantsova-sw-l(config)-line) #sasword

* Invalid input detected at '^' marker.

msk-q42-yalantsova-sw-l(config) #service password-encryption
msk-q42-yalantsova-sw-l(config) #susername admin privilege 1 secret cisco
msk-q42-yalantsova-sw-l(config) #sip domain-name q42.rudn.edu

* Invalid input detected at '^' marker.

msk-q42-yalantsova-sw-l(config) #ip domain-name q42.rudn.edu
msk-q42-yalantsova-sw-l(config) #sip domain-name q42.rudn.edu
choose the stze of the key modulus in the range of 360 to 4096 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 2048

* Generating 2048 bit RSA keys, keys will be non-exportable...[OK]

**Mar 1 0:37:49.147: *SSH-S-NABLED: SSH 1.99 has been enabled
msk-q42-yalantsova-sw-l(config) #line vty 0 4

**Mar 1 0:37:49.147: *SSH-S-NABLED: SSH 1.99 has been enabled
msk-q42-yalantsova-sw-l(config) #line vty 0 4

**Mar 1 0:37:49.147: *SSH-S-NABLED: SSH 1.99 has been enabled
msk-q42-yalantsova-sw-l(config) #line vty 0 4

**Mar 1 0:37:49.147: *SSH-S-NABLED: SSH 1.99 has been enabled
msk-q42-yalantsova-sw-l(config) #line vty 0 4
```

Рис. 3.12: Первоначальная настройка коммутатора msk-q42-yalantsova-sw-1

```
Switch>enable
Switch(configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) fhostname msk-hostel-yalantsova-gw-1
msk-hostel-yalantsova-gw-1(config) fline vty 0 4
msk-hostel-yalantsova-gw-1(config-line) fpassword cisco
msk-hostel-yalantsova-gw-1(config-line) flogin
msk-hostel-yalantsova-gw-1(config) flogin
msk-hostel-yalantsova-gw-1(conf
```

Рис. 3.13: Первоначальная настройка маршрутизирующего коммутатора mskhostel-yalantsova-gw-1

```
msk-hostel-yalantsova-sw-leon t
Enter configuration commands, one per line. End with CNTL/Z.
msk-hostel-yalantsova-sw-liconfig filme vty 0 4
msk-hostel-yalantsova-sw-liconfig filme vty 0 4
msk-hostel-yalantsova-sw-liconfig-line) figsaword cisco
msk-hostel-yalantsova-sw-liconfig-line) filme vty 0 4
msk-hostel-yalantsova-sw-liconfig-line) filme console 0
msk-hostel-yalantsova-sw-liconfig filme secret cisco
msk-hostel-yalantsova-sw-liconfig filme secret cisco
msk-hostel-yalantsova-sw-liconfig filme console of console consol
```

Рис. 3.14: Первоначальная настройка коммутатора msk-hostel-yalantsova-sw-1

Рис. 3.15: Первоначальная настройка коммутатора sch-sochi-yalantsova-sw-1

```
sch-sochi-yalantsova-sw-l>en
sch-sochi-yalantsova-sw-lpisco
Translating "cisco"...domain server (255.255.255.255)
% Unknown command or computer name, or unable to find computer address

sch-sochi-yalantsova-sw-lpisconf t
Enter configuration commands, one per line. End with CNTL/Z.
sch-sochi-yalantsova-sw-lpisconf t
Enter configuration commands, one per line. End with CNTL/Z.
sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # spassword cisco
sch-sochi-yalantsova-sw-lpisconfig-line) # spassword cisco
sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line)
% Invalid input detected at '^' marker.

sch-sochi-yalantsova-sw-lpisconfig-line) # service password-encryption
sch-sochi-yalantsova-sw-lpisconfig-line) # service password-encryption
sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line) # sch-sochi-yalantsova-sw-lpisconfig-line)
The name for the keys will be: sch-sochi-yalantsova-sw-lpisconfig-line)
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys, keys will be non-exportable...[OK]

sch-sochi-yalantsova-sw-lpisconfig-line) # transport input ssh
```

Рис. 3.16: Первоначальная настройка маршрутизатора sch-sochi-yalantsova-gw-1

4 Выводы

В результате выполнения лабораторной работы провели подготовительные мероприятия по организации взаимодействия через сеть провайдера посредством статической маршрутизации локальной сети с сетью основного здания, расположенного в 42-м квартале в Москве, и сетью филиала, расположенного в г. Сочи.

5 Контрольные вопросы

- 1. В каких случаях следует использовать статическую маршрутизацию? Приведите примеры.
- 2. Укажите основные принципы статической маршрутизации между VLANs.

5.1 1. Случаи использования статической маршрутизации

Статическую маршрутизацию следует использовать в следующих случаях:

- Для небольших сетей: Когда сеть маленькая и не требует динамической маршрутизации.
- Для резервных маршрутов: Как резервный путь для динамической маршрутизации в случае сбоев.
- Для контроля трафика: Для направления трафика по конкретным путям,
 например, чтобы предотвратить перегрузку определенных ссылок.
- Для администрирования сети: Для ручного управления маршрутизацией для целей устранения неполадок или настройки.

Примеры:

- Настройка статического маршрута для подключения к удаленной офисной сети через VPN-соединение.
- Создание резервного маршрута на случай сбоя основного маршрутизатора.
- Направление трафика в определенный VLAN, чтобы отделить его от других видов трафика.

 Использование статической маршрутизации для перенаправления трафика на устройство межсетевого экрана для дополнительной безопасности.

5.2 2. Принципы статической маршрутизации между VLANs

Для статической маршрутизации между VLANs действуют следующие основные принципы:

- Создание маршрута по умолчанию: Необходимо создать маршрут по умолчанию для переадресации пакетов, не имеющих конкретного статического маршрута.
- Указание адреса следующего перехода: В каждом статическом маршруте должен быть указан адрес шлюза следующего перехода, через который должен проходить трафик.
- Раздельное применение на разных VLANs: Статические маршруты должны применяться отдельно к каждому VLAN, обеспечивая изоляцию трафика и контроль доступа.
- Использование списков доступа (ACL): ACL могут использоваться для управления тем, каким типам трафика разрешено проходить через статические маршруты.
- Мониторинг и устранение неполадок: Регулярно проверяйте статические маршруты, чтобы убедиться, что они работают должным образом, и устраняйте любые возникающие проблемы.