метрический фактор, определяющий геометрию конкретного вклада µ-й связи в нелинейную восприимчивость; $\langle \psi_0 \mid e_{i,\,j,\,k} \mid \psi_{\alpha} \rangle - i$ -, j-, k-е составляющие матричны сэлементов, вычисляемые по методике [11]. Проведенные оценки для тензора электрооптического коэффициента r_{33} дали значения порядка 5.10-15 м/В. Соответствующие значения, полученные из эксперимента методом Сенармона $\lambda = 0.6328$ мкм, оказались равными 2.1.10-14 м/В, что можно считать неплохим результатом, учитывая простоту предложенного подхода определения нелинейных восприимчивостей.

Список литературы

[1] Krogh—Moe // J. Acta Crystal. 1968. V. B24. N 1. P. 179—181.
 [2] Бурак Я. В., Довгий Я. О., Китык И. В. // ЖПС. 1989. Т. 51. № 4. С. 754—759.
 [3] Chadi D. J., Cohen M. L. // Phys. Rev. 1973. v. B8. N 11. P. 5747—5763.
 [4] Харрисон У. Электронная структура твердых тел. Физика химической связи. Т. 2. М.: Мир, 1983. 460 с.
 [5] Довгий Я. О., Китык И. В. // УФЖ. 1984. Т. 29. № 6. С. 884—888.
 [6] Довгий Я. О., Китык И. В., Рудь Н. А. // Изв. АН СССР, неорг. матер. 1985. Т. 21. № 5. С. 864—869.
 [7] Алексаниров Ю. М., Ловгий Я. О. Китык И. В. Колобенов В. И. Мотер.

[7] Александров Ю. М., Довгий Я. О., Китык И. В., Колобанов В. Н., Махов В. Н., Михайлин В. В. // ФТТ. 1985. Т. 27. № 5. С. 1565—1567.
[8] Довгий Я. О., Заморский М. К., Китык И. В. // Препринт ФМИ АН УССР № 122. Львов, 1986. 40 с.

[9] Ковалев О. В. Неприводимые и индуцированные представления и копредставле-

ния федоровских групп: Справочное пособие. М., 1986. 368 с. [10] Levine B. F. // Phys. Rev. Lett. 1969. V. 22. N 15. P. 787—790. [11] Moss D. J., Sipe J. E., van Driel H. M. // Phys. Rev. 1987. V. B36. N 18. P. 9708—

Поступило в Редакцию 29 декабря 1988 г. В окончательной редакции 11 апреля 1989 г.

УДК 621.315.592

Физика твердого тела, том 31, в. 9, 1989 Solid State Physics, vol. 31, N 9, 1989

РОЛЬ МАЛОУГЛОВЫХ ГРАНИЦ В ИЗМЕНЕНИИ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ КРИСТАЛЛОВ Сол Недиствием УЛЬТРАЗВУКА

П. И. Баранский, К. А. Мысливец, Я. М. Олих

Кристаллы $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ из-за низкого порога пластичности. определяемого характером химической связи и особенностями их дефектной структуры (включения второй фазы, дислокации, малоугловые границы (МУГ)), весьма чувствительны к деформациям [1, 2], в том числе и к динамическим воздействиям ультразвука $(\hat{y}3)$ [3]. Отметим, что упомянутые выше дефекты типичны для данных соединений и составляют предмет многочисленных физических исследований [4]. Обнаруженная в [5] связь характерных размеров технологических ячеек кристалла с оптимальной частотой УЗгенерации сигналов акустической эмиссии качественно согласуется с моделью вынужденных резонансных колебаний границ субблоков структуры во внешнем УЗ-поле [6].

Целью данной работы было исследование корреляции эффективности УЗ-воздействия (в диапазоне 5—17 МГц) на электрофизические параметры n-Cd_xHg_{1-x}Te состава x=0.221 $\div 0.225$ с разной плотностью МУГ.

Исследованы два образца, вырезанные из разных мест одной и той же пластины с различной плотностью МУГ ($N_{\rm MVT}$ $_1$ = 14 \div 18 и $N_{\rm MVT}$ $_2$ \sim \sim 87 см $^{-1}$). Измерение температурных зависимостей подвижности μ_{π} и концентрации электронов n_0 в интервале $4.2-100~{\rm K}$ при значениях B=

=0.08 Тл проводилось общепринятым трехзондовым методом эффекта Холла. УЗ-обработка осуществлялась на продольных волнах при комнатной температуре в два этапа — на частоте 5 и 17 МГц соответственно. Причем интенсивность УЗ, вводимого в исследуемые кристаллы в течение 30 мин на обеих частотах, задавали приблизительно одинаковой и равной $(2-5)\cdot 10^3$ Вт/м². Частоты обработки $f_1=5$ и $f_2=17$ МГц соответствовали

Рис. 1. Температурные зависимости подвижности электронов до (1) и после первой (2) и второй (3) УЗ-обработки образцов № 1 (a) и № 2 (б). j=5 (2) и 17 МГц (3).

частотам, определяемым размерами субблочной структуры [6], т. е. резонансным частотам субблоков каждого образца $f_6^1 = v/2 \cdot L_1 \sim 3$ и $f_6^2 = v/2 \cdot L_2 \sim 15 \ \mathrm{MFL}$, где $v = 3.4 \cdot 10^5 \ \mathrm{cm/c}$ — скорость звука; $L_1 = 1/N_{\mathrm{MYF}} \cdot 1 \sim 0.06$, $L_2 = 1/N_{\mathrm{MYF}} \cdot 2 \sim 0.011 \ \mathrm{cm}$ — средние размеры субблоков исследованных образцов. Для минимизации влияния наведенной УЗ поверхностной проводимости [7] после каждого этапа УЗ-обработки (УЗО) методом химического травления удалялся поверхностный слой толщиной $20-50 \ \mathrm{mkm}$.

Рис. 2. Температурные зависимости концентрации электронов до и после УЗ-обработки образцов № 1 (a) и № 2 (δ) .

Обозначения те же, что и на рис. 1.

Результаты измерений приведены на рис. 1, 2. Значительные отличия исходных зависимостей μ_n (T) и n_0 (T) (с учетом того, что образцы вырезаны из одного слитка) определяются, естественно, в первую очередь различием их дефектно-дислокационной структуры. Увеличение $N_{\rm MY\Gamma}$ приводит к уменьшению μ_n , хотя детали механизма этого эффекта нуждаются в дополнительном изучении. Весьма характерным для образцов с различной концентрацией МУГ является то, что для них эффективность УЗвоздействия при выбранных режимах УЗО существенно различна. Действительно, из рис. 1, 2 видно, что в результате УЗО в первом режиме более значительные изменения (уменьшение) μ_n произошли в образце \mathbb{N} 1,

для которого данная частота УЗО является близкой к резонансной $\binom{f_k}{k}$. С пругой стороны, повторная УЗО (т. е. УЗО на частоте $f_2 = 17~{
m MFm}$, которая близка к 🖒 обусловила весьма сильное уменьшение подвижности в образце № 2, в то время как в образце № 1 изменение величины и оказалось невелико и даже другого знака (кривая 3 на рис. 1, a распо-

лагается выше кривой 2).

Данные результаты позволяют заключить, что эффективность УЗО определяется не только величиной вводимой УЗ-энергии, но и особенностями УЗ-взаимодействия с дефектной структурой исследованных кристаллов. В зависимости от удельной величины поглощаемой УЗ-энергии реализуются различные механизмы такого взаимодействия: при низких интенсивностях — это релаксация внутренних напряжений в объеме матрицы и, возможно, частичный «распад» (уменьшение размеров) включений, а также геттерирование дефектов на стоки [8]. В случае «нерезонансного» УЗ-воздействия для обоих образцов (кривые 3 на рис. 1, aи 2, a; кривые 2 на рис. 1, 6 и 2, 6) уменьшение $n_0 = N_d - N_a$ и увеличение р., можно связать с геттерированием донорных примесных атомов на дислокации и границы субблоков с последующей их деионизацией, обеспечивающей уменьшение числа рассеивающих центров. Причем в образце № 2 (с бо́льшей плотностью МУГ) уменьшение электронной концентрации более значительно, чем в образце № 1, что может быть связано не только с различной эффективностью УЗО, но и с отличием их исходных концентраций n_0 . При некоторых сверхпороговых интенсивностях поглощаемого звука возможен процесс активной генерации дефектов [9], в том числе и дислокаций, что должно с неизбежностью приводить к понижению подвижности [4]. В зависимости от типа вводимых дефектов этот процесс будет сопровождаться возрастанием или уменьшением концентрации свободных носителей заряда. В случае «резонансных» УЗ-воздействий (кривые 2 на рис. 1, a и 2, a; кривые 3 на рис. 1, b и 2, b), когда амплитуда колебаний МУГ значительна, а значит, велики акустические потери, улучшаются условия теплообмена между МУГ и объемом субблоков, что ведет к увеличению скорости диффузионных процессов в этих областях кристалла. Из эксперимента видно, что в этом случае преобладает процесс генерации электрически активных дефектов, причем различного типа для образцов № 1 и 2. Однако подвижность электронов как в образце № 1, так и в образце № 2 ведет себя одинаково — падает из-за роста числа рассеивающих центров. Таким образом, эффекты изменения электрофизических параметров в результате «резонансного» УЗ-воздействия значительнее в образце с бо́льшей плотностью М ${f Y}\Gamma$, поскольку удельный объем кристалла, подверженный УЗ-активации, также значительно больше. Безусловно, более определенное понимание механизма УЗ-воздействия на дефектную структуру кристаллов Са Нд. Те потребует дальнейших исследований.

Авторы выражают искреннюю благодарность Г. А. Шепельскому за полезное обсуждение работы.

Список литературы

Баранский П. И., Гаврилюк Ю. Н., Елизаров А. И., Кулик В. А. // ФТП. 1977. Т. 11. № 8. С. 1560—1564.
 Гасан-заде С. Г., Зинченко Э. А., Сальков Е. А., Шепельский Г. А. // Материалы

Всес. семинара по проблеме «Физика и химия полупроводников. Примеси и де-

фекты в узкозонных полупроводниках». Павлодар, 1987. С. 179—182.
[3] Любченко А. В., Олих Я. М. // ФТТ. 1985. Т. 27. № 8. С. 2505—2507.
[4] Dornhaus B. R., Nimtz G. // The properties and applications of the Hg_{1-x}Cd_xTe alloy system. Narrow—Gap. Sem. Berlin, 1985. P. 199—281.
[5] Калитенко В. А., Олих Я. М., Перга В. М. // УФЖ. 1988. Т. 33. № 5. С. 788—

790. [6] Олих Я. М., Сальков Е. А., Курбанов К. Р. // ФТП. 1985. Т. 19. № 4. С. 762—

765.[7] Баранский П. И., Городничий О. П., Олих Я. М. и др. // ФТП. 1986. Т. 20. № 6. C. 1104—1106.

[8] Здебский А. П., Остапенко С. С., Савчук А. У., Шейнкман М. К. // Письма в ЖТФ. 1984. Т. 10. № 20. С. 1243—1247.
[9] Островский И. В. // Письма в ЖЭТФ. 1981. Т. 34. № 8. С. 467—471.

Институт полупроводников АН УССР Киев

Поступило в Редакцию 9 января 1989 г. В окончательной редакции 1 апреля 1989 г.

УДК 537.312.62

Физика твердого тела, том 31, с. 9, 1989 Solid State Physics, vol. 31, N 9, 1989

проникновение магнитного поля В ВЫСОКОТЕМПЕРАТУРНЫЙ СВЕРХПРОВОДНИК $YBa_{2}Cu_{3}O_{7+\delta}$

И. М. Шушлебин, В. Е. Милошенко, М. Н. Золотухин

Известно, что в высокотемпературных сверхпроводниках (ВТСП), находящихся во внешнем магнитном поле $B_e > B_{k1}$, магнитный поток существует в виде вихрей $[^{1, 2}]$. Однако процесс проникновения вихрей пока не ясен.

Рис. 1. Влияние температуры на изменение частоты колебаний пластин $YBa_2Cu_3O_{7\pm\delta}$ в магнитном поле.

T, K: δ (1), 20 (2), 40 (3), 60 (4), 80 (5), 83 (6), 110 (7). $f_0 = 200$ Гц. На вставке — зависимость $B_{k_1}(T)/B_{k_1}$ (6). Штриховая линия — функция $1-(T/T_k)^2$, где $T_{L} = 90 \text{ K}$.

Рис. 2. Влияние магнитного поля на изменение частоты колебаний пластин $YBa_2Cu_3O_{7+\delta}$ с температурой.

 B_e , MTm: 20 (1), 40 (2), 60 (3), 80 (4), 100 (5).

В металлических же сверхпроводниках (СП) проникновение вихрей в их объем приводит к росту собственной частоты f колебаний СП и избыточной диссипации энергии этих колебаний Q^{-1} [3, 4], что позволило использовать механический метод для исследования проникновения поля в СП [5]. Особенности в изменении f и Q^{-1} отмечались и в ВТСП на основе лантана [6] и иттрия[7].

В данной работе представлены результаты изучения проникновения поля в $Y_1 Ba_2 Cu_3 O_{7+\delta}$ механическим методом в звуковом диапазоне частот [8]. Образцы в виде пластинок с характерными размерами $3 \times 1 \times$ х 0.3 мм крепились на свободном конце несущей консоли из бронзы или ниобия, совершающей изгибные колебания. Внешнее магнитное поле В, созданное магнитом типа ФЛ-1, направлялось по нормали к большей