A1 For awrt both x = 1.82 and 0.549

Question	Scheme	Marks
7(a)	$y = \sqrt{\frac{e^{4x}}{2x-3}} = e^{2x} (2x-3)^{-\frac{1}{2}}$	B1
	$y = \frac{e^{2x}}{\sqrt{2x - 3}} \Rightarrow \frac{dy}{dx} = \frac{2(2x - 3)^{\frac{1}{2}} e^{2x} - 2 \times \frac{1}{2} \times e^{2x} (2x - 3)^{-\frac{1}{2}}}{\left[(2x - 3)^{\frac{1}{2}}\right]^2}$	M1A1A1
	$\frac{dy}{dx} = \frac{\frac{2(2x-3)e^{2x}-2\times\frac{1}{2}\times e^{2x}}{(2x-3)^{\frac{1}{2}}}}{2x-3} = \frac{2(2x-3)e^{2x}-2\times\frac{1}{2}\times e^{2x}}{(2x-3)^{\frac{3}{2}}}$	M1
	$\frac{3}{dx} = \frac{7}{2x-3} = \frac{2}{(2x-3)^{\frac{3}{2}}}$	A1
	$= \frac{e^{2x} (4x-7)}{(2x-3)^{\frac{3}{2}}}$ $\Rightarrow \delta y \approx \frac{e^{2x} (4x-7)}{(2x-3)^{\frac{3}{2}}} \delta x^*$	A1cso [7]
(b)	When $x = 2.5$, $\delta x = \frac{0.2}{100} \times 2.5 = 0.005$	B1
	$\delta y \approx \frac{e^{2 \times 2.5} (4 \times 2.5 - 7)}{(2 \times 2.5 - 3)^{\frac{3}{2}}} \times 0.005$	M1
	$(2 \times 2.5 - 3)^{\frac{5}{2}}$	A1
	$\Rightarrow \delta y \approx 0.79$	[3]
	To	tal 10 marks

Part	Mark	Notes	
(a)	If any candidate attempts part (a) using Chain Rule – please send to Review.		
		Simplifies the equation into a form which can be differentiated. For example, Award this mark for correct subsequent use in differentiation.	
	B1	$y = \sqrt{\frac{e^{4x}}{2x - 3}} = e^{2x} (2x - 3)^{-\frac{1}{2}} \text{ or } \frac{e^{2x}}{(2x - 3)^{\frac{1}{2}}} \text{ or even } \frac{\left(e^{4x}\right)^{\frac{1}{2}}}{(2x - 3)^{\frac{1}{2}}} \text{ or } \frac{\left(e^{4x}\right)^{\frac{1}{2}}}{\sqrt{(2x - 3)}}$	
	Uses Quotient rule. – NB – This is a 'show' question. Check every line of working.		
	M1	 The denominator must be correct and squared. There must be an attempt to differentiate both terms The two terms in the numerator must be subtracted either way around. Minimally acceptable differentiation is as follows: e^{2x} → 2e^{2x}, (2x-3)^{1/2} → k(2x-3)^{-1/2} Allow (e^{4x})^{1/2} → 4e^{4x} × 1/2 × (e^{4x})^{-1/2} 	

		One term must be fully correct
	A1	Either $2(2x-3)^{\frac{1}{2}}e^{2x}$ or $-2\times\frac{1}{2}\times e^{2x}(2x-3)^{-\frac{1}{2}}$
		$\frac{dy}{dx}$ fully correct. Ignore poor notation and erroneous subsequent simplification.
	A1	$\frac{dy}{dx} = \frac{2(2x-3)^{\frac{1}{2}}e^{2x} - 2 \times \frac{1}{2} \times e^{2x}(2x-3)^{-\frac{1}{2}}}{2x-3}$ OR
		$\frac{dy}{dx} = \frac{(2x-3)^{\frac{1}{2}} \times 4e^{4x} \times \frac{1}{2} \times (e^{4x})^{-\frac{1}{2}} - 2 \times \frac{1}{2} \times (e^{4x})^{\frac{1}{2}} (2x-3)^{-\frac{1}{2}}}{2x-3}$
	Uses P	roduct Rule NB – This is a 'show' question. Check every line of working.
		The correct formula must be used.
		$\bullet \frac{\mathrm{d}y}{\mathrm{d}x} = uv' + vu'$
		at a
	M1	• There must be an attempt to differentiate both terms
		$e^{2x} \to 2e^{2x}, (2x-3)^{-\frac{1}{2}} \to k(2x-3)^{-\frac{3}{2}}$
		Allow $\left(e^{4x}\right)^{\frac{1}{2}} \rightarrow 4e^{4x} \times \frac{1}{2} \times \left(e^{4x}\right)^{-\frac{1}{2}}$
		One term must be fully correct
	A1	Either $(2x-3)^{-\frac{1}{2}} \times 2e^{2x}$ or $\left(-\frac{1}{2} \times 2 \times (2x-3)^{-\frac{3}{2}}\right) e^{2x}$
		$\frac{dy}{dx}$ fully correct. Ignore poor notation and erroneous subsequent simplification.
	A1	$\left \frac{dx}{dx} \right = (2x-3)^{-\frac{1}{2}} \times 2e^{2x} + \left(-\frac{1}{2} \times 2 \times (2x-3)^{-\frac{3}{2}} \right) e^{2x}$
		OR
		$\frac{dy}{dx} = (2x-3)^{-\frac{1}{2}} \times 4e^{4x} \times \frac{1}{2} \times (e^{4x})^{-\frac{1}{2}} + \left(-\frac{1}{2} \times 2 \times (2x-3)^{-\frac{3}{2}}\right) (e^{4x})^{\frac{1}{2}}$
	Simpli	fication – Check their work carefully here.
		Quotient Rule
	3.64	A correct attempt to simplify the numerator by forming a fraction over $(2x-3)^{\frac{1}{2}}$
	M1	Product Rule
		A correct attempt to simplify by forming a fraction over $(2x-3)^{\frac{3}{2}}$
	A1	For $\frac{dy}{dx}' = \frac{e^{2x}(4x-7)}{(2x-3)^{\frac{3}{2}}}$
	A1 cso	For the expression exactly as given $\delta y \approx \frac{e^{2x} (4x-7)}{(2x-3)^{\frac{3}{2}}} \delta x$
(b)	B1	For finding the change in <i>x</i>
	M1	For using the given expression to substitute the values and evaluate the expression.

	Do not accept a substitution of 0.2 or 0.2% for δx
A1	For $\delta y \approx 0.79$ accept awrt 0.79
	Do not penalise poor notation here. Allow $dy = 0.79$

	ALT 2	ALT 2 Uses Chain Rule		
	B1	This mark is scored when they divide through later by e^{2x} and $(2x-3)^{\frac{1}{2}}$		
		The correct form must be used.		
	M1	$y = u^{\frac{1}{2}} u' = \frac{4(2x-3)e^{4x} - 2e^{4x}}{(2x-3)^2} = \left[\frac{e^{4x}(8x-14)}{(2x-3)^2}\right] y' = \frac{1}{2}\left(\frac{e^{4x}}{2x-3}\right)^{-\frac{1}{2}}$		
	M1	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(\frac{\mathrm{e}^{4x}}{2x - 3} \right)^{-\frac{1}{2}} \times \left(\frac{4(2x - 3)\mathrm{e}^{4x} - 2\mathrm{e}^{4x}}{(2x - 3)^2} \right)$		
		Both terms must be differentiated correctly $e^{4x} \rightarrow 4e^{4x}$, $(2x-3) \rightarrow k$		
	A2	For the correct derivative in unsimplified form. We must see this in full to determine if they simplify further correctly as it is a show question.		
		Please award both A marks for the correct derivative seen.		
	B1	This mark is awarded at this point. Simplifies $\left(\frac{e^{4x}}{2x-3}\right)^{-\frac{1}{2}}$ to e^{2x} and $(2x-3)^{\frac{1}{2}}$ accept inverted or not.		
		Simplifies e^{2x} and $(2x-3)^{\frac{1}{2}}$ to obtain a denominator of $(2x-3)^{\frac{3}{2}}$		
	M1	$\frac{dy}{dx} = \frac{1}{2} \left(\frac{(2x-3)^{\frac{1}{2}}}{e^{2x}} \right) \times \left(\frac{4(2x-3)e^{4x} - 2e^{4x}}{(2x-3)^2} \right) = \frac{1}{2} \left(\frac{4(2x-3)e^{2x} - 2e^{2x}}{(2x-3)^{\frac{3}{2}}} \right)$		
	A1	For the correct expression with no errors.		