Limite d'une fonction numérique

Limite infinie et limite infinie d'une fonction au voisinage de $\pm \infty$ I.

1. Limite infinie d'une fonction au voisinage de ±∞

₽Activité

a. Compléter le tableau suivant

х	10	10^{4}	10^{12}	10^{25}	-10^{4}	-10^{12}	-10^{25}
<i>x</i> ²							
x^3							

- b. Que remarquez-vous pour x^2 et x^3 quand x prend des valeurs positives plus en plus grandes ?
- c. Que remarquez-vous pour x^2 et x^3 quand x prend des valeurs négatives plus en plus petites ? 2)
- Compléter le tableau suivant a.

х	10	10^{4}	1012	10^{36}
\sqrt{x}				

Que remarquez-vous pour \sqrt{x} quand x prend des valeurs positives plus en plus grandes

Définition @

Soit f une fonction numérique définie dans un voisinage de $+\infty$.

- Si f(x) tend vers $+\infty$ quand x tend vers $+\infty$ alors on écrit $\lim_{x \to \infty} f(x) = +\infty$ ou $\lim_{x \to \infty} f(x) = +\infty$ lit la limite de la fonction f si x tend vers $+\infty$ est $+\infty$.
- Si f(x) tend vers $-\infty$ quand x tend vers $+\infty$ alors on écrit $\lim_{x \to \infty} f(x) = -\infty$ ou $\lim_{x \to \infty} f(x) = -\infty$ et se lit la limite de la fonction f si x tend vers $+\infty$ est $-\infty$.

Définition @

Soit f une fonction numérique définie dans un voisinage de $-\infty$.

- Si f(x) tend vers $+\infty$ quand x tend vers $-\infty$ alors on écrit $\lim_{x \to \infty} f(x) = +\infty$ ou $\lim_{x \to \infty} f(x) = +\infty$ et se lit la limite de la fonction f si x tend vers $-\infty$ est $+\infty$.
- Si f(x) tend vers $-\infty$ quand x tend vers $-\infty$ alors on écrit $\lim_{x \to \infty} f(x) = -\infty$ ou $\lim_{x \to \infty} f(x) = -\infty$ et se lit la limite de la fonction f si x tend vers $-\infty$ est $-\infty$.

Propriété

Soit $n \in \mathbb{N}^*$ et soit $k \in \mathbb{R}$ on a

$$\bigotimes \lim_{x \to +\infty} x^n = +\infty \qquad \qquad \bigotimes \lim_{x \to -\infty} x^{2n} = +\infty \qquad \qquad \bigotimes \lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\bigotimes \lim_{x \to +\infty} x^{n} = +\infty \qquad \bigotimes \lim_{x \to -\infty} x^{2n} = +\infty \qquad \bigotimes \lim_{x \to -\infty} x^{2n+1} = -\infty \qquad \bigotimes \lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\bigotimes \lim_{x \to +\infty} k.x^{n} = \begin{cases} +\infty & ; si \quad k > 0 \\ -\infty & ; si \quad k < 0 \end{cases}$$

$$\bigotimes \lim_{x \to +\infty} k.x^{2n} = \begin{cases} +\infty & ; si \quad k > 0 \\ -\infty & ; si \quad k < 0 \end{cases}$$

$$\bigotimes \lim_{x \to +\infty} k.x^{2n+1} = -\infty \qquad \bigotimes \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Exemples:

2. Limite finie d'une fonction au voisinage de ±∞

<u> Activité</u>

La figure ci-dessous présente la représentation graphique de la fonction définie par $f(x) = \frac{1}{x^2}$ dans un repère orthonormé.

1) Que remarquez-vous pour les valeurs de f(x) si x tend vers $+\infty$

2) Que remarquez-vous pour les valeurs de f(x) si x tend vers $-\infty$

3) Peut-on conclure $\lim_{x\to +\infty} \frac{1}{x^3}$; $\lim_{x\to -\infty} \frac{1}{x^3}$; $\lim_{x\to -\infty} \frac{1}{x^4}$; $\lim_{x\to +\infty} \frac{1}{x^4}$

Propriété :

Soit $n \in \mathbb{N}^*$ et soit $k \in \mathbb{R}$ on a

$$\otimes \lim_{x \to +\infty} \frac{k}{x^n} = 0 \qquad \qquad ; \qquad \qquad \otimes \lim_{x \to +\infty} \frac{k}{\sqrt{x}} = 0$$

Propriété

Soit f une fonction numérique et soit $l \in \mathbb{R}$ on a :

Application *O*

- 1) Montrer que $\lim_{x \to -\infty} \frac{2x^3 + x}{x^3} = 2$
- 2) Montrer que $\lim_{x \to +\infty} \frac{2x^2 + 5}{4x^2} = \frac{1}{2}$

II. Limite finie et limite infinie d'une fonction en un point

1. Limite finie d'une fonction en un point

Activité

Soit ABC un triangle de surface $18cm^2$ et soit E(x) un point se déplace sur le segment [BC].

On désigne par f(x) la surface du triangle ABE

- 1) Que remarquez-vous si x approche plus en plus de 6.
- 2) Que remarquez-vous si x approche plus en plus de 0.

Définition

Soient a et l deux nombres réels

Soit f une fonction numérique définie sur un intervalle ouvert de forme $]a-\alpha;a+\alpha[$ sachant que $\alpha \in \mathbb{R}_+^*$ ou définie sur un ensemble de forme $]a-\alpha;a+\alpha[\setminus\{a\}.$

Si f(x) tend vers l quand x tend vers a alors on écrit $\lim_{x\to a} f(x) = l$

Propriété

Soit f une fonction numérique et Soient a et l deux nombres réels.

Si f admet une limite l en a alors cette limite est unique.

Remarque

Pour calculer $\lim_{x\to a} f(x)$; on remplace x par a:

- * Si $f(a) \in \mathbb{R}$ alors $\lim_{x \to a} f(x) = f(a)$.
- * Si $f(a) = \frac{0}{0}$, il faut chercher des méthodes (factorisation par (x-a); multiplier par le conjugué.....) pour éliminer $\frac{0}{0}$.
 - * Les formes indéterminées : $\frac{"0"}{0}$; $\frac{"\infty"}{\infty}$; $"0 \times \infty"$; $"+\infty-\infty"$

Application @

Calculer les limites suivantes

$$\lim_{x \to -2} \sqrt{x^2 + 4} \quad ; \quad \lim_{x \to 3} \frac{\sqrt{x} - 3}{x - 9} \quad ; \quad \lim_{x \to -1} \frac{x^2 - 2x - 3}{x + 1} \quad ; \quad \lim_{x \to 1} \frac{\sqrt{x + 3} - 2}{x^2 + 2x - 3} \quad ; \quad \lim_{x \to 5} \frac{\sqrt{x - 1} - 2}{3 - \sqrt{x + 4}}$$

2. Limite infinie d'une fonction en un point

<u>Définition</u>

Soit f une fonction numérique et a un nombre réel.

- * Si f(x) tend vers $+\infty$ quand x tend vers a alors on écrit $\lim_{x\to a} f(x) = +\infty$ ou $\lim_a f = +\infty$.
- * Si f(x) tend vers $-\infty$ quand x tend vers a alors on écrit $\lim_{x \to a} f(x) = -\infty$ ou $\lim_{a} f = -\infty$.

*Limite à gauche et limite à droite d'une fonction en un point

<u>Définition</u>

Soit f une fonction numérique et a un nombre réel.

* Si f(x) tend vers l quand x tend vers a à droite alors on écrit $\lim_{\substack{x \to a \\ x > a}} f(x) = l$ ou $\lim_{x \to a^+} f(x) = l$.

* Si f(x) tend vers l quand x tend vers a à gauche alors on écrit $\lim_{\substack{x \to a \\ x < a}} f(x) = l$ ou $\lim_{x \to a^-} f(x) = l$.

Remarque

On peut définir d'une manière analogue $\lim_{\substack{x \to a \\ x > a}} f(x) = \pm \infty$ et $\lim_{\substack{x \to a \\ x < a}} f(x) = \pm \infty$

PLimites usuelles

Soit $n \in \mathbb{N}^*$ on a

- Si *n* est pair alors $\lim_{x\to 0^-} \frac{1}{x^n} = +\infty$
- Si *n* est impair alors $\lim_{x\to 0^-} \frac{1}{x^n} = -\infty$

Application 3

Calculer les limites suivantes :

$$\lim_{x \to 1^{+}} \frac{x^{2} - 2x + 3}{x - 1} \quad ; \quad \lim_{x \to 2^{+}} \frac{x^{2} - 3}{2 - x} \quad ; \quad \lim_{x \to -1^{+}} \frac{x^{3} + 1}{x^{2} + x} \quad ; \quad \lim_{x \to 3} \frac{x^{2} + x - 1}{x - 3} \quad ; \quad \lim_{x \to 2^{-}} \frac{1 - x}{4 - 2x} \quad .$$

Propriété :

Soit f une fonction numérique et a un nombre réel

$$\bullet \lim_{x \to a} f(x) = l \iff \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = l$$

•
$$\lim_{x \to a} f(x) = \pm \infty \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \pm \infty$$

Application @

1) Soit
$$f$$
 une fonction numérique définie par
$$\begin{cases} f(x) = -x + 2; & x \ge 4 \\ f(x) = x^2 - 2x - 10; & x < 4 \end{cases}$$

Calculer $\lim_{x \to 4^+} f(x)$ et $\lim_{x \to 4^-} f(x)$. Conclure

2) Soit
$$g$$
 une fonction numérique définie par
$$\begin{cases} g(x) = 1 - 2ax; & x \ge 2 \\ g(x) = \frac{x^2 - 3x + 1}{-x + 3}; & x < 2 \end{cases}$$

Déterminer le nombre réel a pour que f admet une limite en 2

III. Opérations sur les limites

Dans cette paragraphe l et l' désignent des nombres réels et a désigne un réel ou $\pm \infty$

1. Limite d'une somme

$\lim_{x \to a} f(x)$	l	l	l	+∞	$+\infty$	$-\infty$
$\lim_{x \to a} g(x)$	l'	+∞	-∞	+∞	-∞	-∞
$\lim_{x \to a} (f(x) + g(x))$	l+l'	+∞	∞	+∞	F.I	-∞

2. Limite d'un produit

$\lim_{x \to a} f(x)$	l	<i>l</i> > 0	<i>l</i> > 0	<i>l</i> < 0	<i>l</i> < 0	$+\infty$	$+\infty$		0	0
$\lim_{x\to a}g(x)$	l'	+∞	$-\infty$	+∞	$-\infty$	+8	$-\infty$	-8	$+\infty$	8
$\lim_{x \to a} (f(x) \times g(x))$	$l \times l'$	+∞	$-\infty$	∞	+∞	+∞	-∞	+∞	F.I	F.I

3. Limite d'un quotient

$\lim_{x \to a} f(x)$	l	l	l	+∞	+∞	$-\infty$	-8	+∞	+∞	-8	-8
$\lim_{x\to a}g(x)$	$l' \in \mathbb{R}^*$	+∞	-8	l'>0	l' < 0	l'>0	l' < 0	+	-8	+	-8
$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right)$	$\frac{l}{l'}$	0	0	+∞		-∞	8+	F.I	F.I	F.I	F.I

Application 5

Calculer les limites suivantes :

$$\lim_{x \to 0} x^2 + \frac{1}{x^2} \quad ; \quad \lim_{x \to +\infty} x^3 - x \quad ; \quad \lim_{x \to 1} \frac{x^2 + 2x + 4}{x} \quad ; \quad \lim_{x \to -\infty} \frac{-3x^4 + x + 1}{2x^2 - 5} \quad ; \quad \lim_{x \to \frac{3}{2}^+} \frac{x + 2}{2x - 3} \quad ; \quad \lim_{x \to -\infty} \frac{x(x + 1) + 1}{x + 1} = \frac{x + 2}{x + 1}$$

IV. Limite d'une fonction polynôme – Limite d'une fonction rationnelle Limite d'une fonction de forme \sqrt{f}

1. Limite d'une fonction polynôme

Propriété

Soit f une fonction polynôme et a un nombre réel.

- $\bullet \qquad \lim_{x \to a} f(x) = f(a)$
- La limite d'une fonction polynôme au voisinage de ∞ c'est la limite du terme le plus dominant (plus haut degré).

Exemples

$$\bigotimes \lim_{x \to 3} 4x^2 + 2x - 5 = 4 \times 3^2 + 2 \times 3 - 5 = 37$$
.

$$\bigotimes \lim_{x \to +\infty} \left(1 - \sqrt{2} \right) x^3 + 2x^2 - 1 = \lim_{x \to +\infty} \left(1 - \sqrt{2} \right) x^3 = -\infty$$

$$\bigotimes \lim_{x \to -\infty} 5x^2 + 3x - 4 = \lim_{x \to -\infty} 5x^2 = +\infty.$$

Application ©

Calculer les limites suivantes :

$$\lim_{x \to +\infty} -5x^7 + 4x^2 - 9$$

$$\lim_{x \to +\infty} \left(-\sqrt{3} + 2 \right) x^4 + 2x - 1$$

$$\lim_{x \to -\infty} \frac{1}{\sqrt{2} - 3} x^5 + 2x + 1$$

2. Limite d'une fonction rationnelle

Propriété

Soit f une fonction rationnelle et a un nombre réel.

• Si
$$f(x) = \frac{P(x)}{Q(x)}$$
 alors $\lim_{x \to a} f(x) = \frac{P(a)}{Q(a)}$

La limite d'une fonction rationnelle au voisinage de ∞ c'est la limite du quotient de termes les plus dominant (plus haut degré au numérateur et plus haut degré au dénominateur).

Application 🕏

$$\lim_{x \to +\infty} \frac{4 + 2x^2}{3x^3 + 5x^2 + 1}$$

$$\lim_{x \to +\infty} \frac{4 + 2x^2}{3x^3 + 5x^2 + 1} \qquad ; \qquad \lim_{x \to -\infty} \frac{-\sqrt{3}x^2 - 4x + 1}{2x^2 - 1} \qquad ; \qquad \lim_{x \to 3} \frac{-2x^2 + 3x - 5}{2x + 4}$$

$$\lim_{x \to 3} \frac{-2x^2 + 3x - 5}{2x + 4}$$

3. Limite d'une fonction de la forme \sqrt{f}

Propriété :

Soit f une fonction définie sur un intervalle de forme $[a; +\infty[$ $(a \in \mathbb{R})$ telle qu $\forall x \in [a; +\infty[; f(x) \ge 0]$

• Si
$$\lim_{x \to +\infty} f(x) = l$$
 alors $\lim_{x \to +\infty} \sqrt{f(x)} = \sqrt{l}$

• Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} \sqrt{f(x)} = +\infty$

Remarque :

La propriété précédente est reste valable pour \overline{x} tend vers $-\infty$ ou a ou a^+ ou a^-

Application **®**

Calculer les limites suivantes

$$\lim_{x \to 1} \sqrt{x^2 + 3x + 5} \quad ; \quad \lim_{x \to +\infty} \sqrt{4x^3 + 3x^2 + 7} \quad ; \quad \lim_{x \to -\infty} \sqrt{-3x^3 + 2x - 1}$$

Limites et ordre

<u>Propriétés</u>

Soient f, g et h définies sur un intervalle de forme $[a-\alpha; a+\alpha[$ ou $\alpha \in \mathbb{R}^*$ et soit $l \in \mathbb{R}$

• Si
$$\begin{cases} (\forall x \in I); f(x) \le g(x) \\ \lim_{x \to a} g(x) = -\infty \end{cases}$$
 alors $\lim_{x \to a} f(x) = -\infty$.

• Si
$$\begin{cases} (\forall x \in I); g(x) \le f(x) \\ \lim_{x \to a} g(x) = +\infty \end{cases}$$
 alors $\lim_{x \to a} f(x) = +\infty$

• Si
$$\begin{cases} (\forall x \in I); g(x) \le f(x) \le h(x) \\ \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l \end{cases}$$
 alors $\lim_{x \to a} f(x) = l$

• Si
$$\begin{cases} (\forall x \in I); |f(x) - l| \le g(x) \\ \lim_{x \to a} g(x) = 0 \end{cases}$$
 alors $\lim_{x \to a} f(x) = l$

Remarque

Les propriétés sont valables pour x tend vers $\pm \infty$ ou x tend vers à droite ou à gauche de a

Exemple: Calculons $\lim_{x\to +\infty} x^2 + \cos(x)$

On a
$$-1 \le \cos(x) \le 1 \Rightarrow -1 + x^2 \le x^2 + \cos(x) \le 1 + x^2$$

Or on a
$$\lim_{x \to +\infty} x^2 + 1 = \lim_{x \to \infty} x^2 - 1 = +\infty$$

Donc
$$\lim_{x\to +\infty} x^2 + \cos(x) = +\infty$$

Application @

- 1) Montrer que $(\forall x \in \mathbb{R}); \frac{1}{3} \le \frac{1}{2 \sin(x)} \le 1$
- 2) Calculer les limites suivantes $\lim_{x \to +\infty} \frac{x}{2 \sin(x)}$ et $\lim_{x \to -\infty} \frac{x^3}{2 \sin(x)}$

VI. <u>Limites trigonométriques</u>

Propriété O

Soit $a \in \mathbb{R}$ on a

$$\bigotimes \lim_{x \to a} \cos(x) = \cos(a) \quad ; \quad \bigotimes \lim_{x \to a} \sin(x) = \sin(a) \quad ; \quad \bigotimes \lim_{x \to a} \tan(x) = \tan(a) / \left(a \neq \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right)$$

<u>Exemple</u>

$$\lim_{x \to \frac{\pi}{4}} \cos(x) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \quad ; \quad \lim_{x \to \pi} \tan(x) = \tan\left(\pi\right) = 0 \quad ; \quad \lim_{x \to \frac{-\pi}{6}} \sin(x) = \sin\left(\frac{-\pi}{6}\right) = \frac{-1}{2}$$

Remarque

Les fonction $x \mapsto \cos(x)$, $x \mapsto \sin(x)$ et $x \mapsto \tan(x)$ n'admettent pas de limite au voisinage de $\pm \infty$

<u>Propriété</u> @

$$\bullet \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad ; \quad \bullet \lim_{x \to 0} \frac{\tan(x)}{x} = 1 \quad ; \quad \bullet \lim_{x \to 0} \frac{1 - \cos(x)}{\frac{x^2}{2}} = 1 \quad \text{ou} \quad \bullet \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

Démonstration

a. Montrer que
$$\bullet \lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

On a
$$\left(\forall x \in \left] 0; \frac{\pi}{2} \right[\right); \sin(x) \le x \le \tan(x)$$

Donc
$$\frac{1}{\tan(x)} \le \frac{1}{x} \le \frac{1}{\sin(x)}$$

Alors
$$\frac{\cos(x)}{\sin(x)} \le \frac{1}{x} \le \frac{1}{\sin(x)}$$

Or
$$\left(\forall x \in \left]0; \frac{\pi}{2}\right[\right); \sin(x) \ge 0$$

D'où
$$\cos(x) \le \frac{\sin(x)}{x} \le 1$$

Puisque
$$\lim_{x\to 0} \cos(x) = \lim_{x\to 0} 1 = 1$$
 alors

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

b. Montrer que
$$\bullet \lim_{x\to 0} \frac{\tan(x)}{x} = 1$$

On a
$$\left(\forall x \neq \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right)$$
; $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Donc
$$\frac{\tan(x)}{x} = \frac{\sin(x)}{x \cdot \cos(x)} = \frac{\sin(x)}{x} \times \frac{1}{\cos(x)}$$

Puisque

$$\lim_{x \to 0} \frac{\sin(x)}{x} \times \frac{1}{\cos(x)} = 1 \times 1 = 1$$

Alors
$$\bullet \lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

c. Montrer que
$$\bullet \lim_{x\to 0} \frac{1-\cos(x)}{\frac{x^2}{2}} = 1$$

On a
$$\bullet \lim_{x \to 0} \frac{1 - \cos(x)}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{\frac{x^2}{2}}$$

On pose
$$X = \frac{x}{2}$$
 donc si $x \to 0$ alors $X \to 0$

Par conséquent
$$\lim_{x\to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{\frac{x^2}{2}} = \lim_{X\to 0} \frac{2\sin^2(X)}{2X^2} = \lim_{X\to 0} \frac{\sin^2(X)}{X^2} = \lim_{X\to 0} \left(\frac{\sin(X)}{X}\right)^2 = 1$$

D'où
$$\lim_{x\to 0} \frac{1-\cos(x)}{\frac{x^2}{2}} = 1$$

Résultats :

Soit $a \in \mathbb{R}^*$ on a

$$\bigoplus \lim_{x \to 0} \frac{\sin(ax)}{ax} = 1$$

$$\bigoplus \lim_{x \to 0} \frac{\tan(ax)}{ax} = 1$$

$$\bigoplus \lim_{x \to 0} \frac{\sin(ax)}{ax} = 1 \quad ; \quad \bigoplus \lim_{x \to 0} \frac{\tan(ax)}{ax} = 1 \quad ; \quad \bigoplus \lim_{x \to 0} \frac{1 - \cos(ax)}{\left(ax\right)^2} = \frac{1}{2} \quad ; \quad \bigoplus \lim_{x \to 0} \frac{1 - \cos(ax)}{\left(ax\right)_2} = 1$$

$$\bigoplus_{x \to 0} \frac{1 - \cos(ax)}{\left(\frac{ax}{2}\right)^2} = 1$$

Application @@

Calculer les limites suivantes

$$\lim_{x \to 0} \frac{\sin(3x)}{4x}$$

$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(4x)}$$

$$\lim_{x\to 0} \frac{1-\cos(3x)}{x}$$

$$\lim_{x \to 0} \frac{\sin(3x)}{4x} \quad ; \quad \lim_{x \to 0} \frac{\sin(2x)}{\sin(4x)} \quad ; \quad \lim_{x \to 0} \frac{1 - \cos(3x)}{x} \quad ; \quad \lim_{x \to 0} \frac{\tan(3x)}{\sin(x)}$$