Algorithms for Big Data

Spring Semester 2022 Exercise Set 12

Exercise 1:

Show $\Omega(n)$ lower bound for number of vertices algorithm has to "touch" to solve 2-multiplicative approximation for estimating number of connected components.

Exercise 2:

Let G_1, G_2, \ldots, G_w be unweighted graphs such that: $e \in G_i$ iff $w(e) \le i$. Denote by K_i the number of connected components of G_i . Show that weight of MST satisfies

$$w(MST) = (n-1) + \sum_{i=1}^{w-1} (K_i - 1).$$

Exercise 3:

Why does rounding weights of the input graph to nearest full power of $(1\pm\varepsilon)$ does not provide any significant speed-up for cell-probe MST algorithm? Specifically, imagine we would use a following (up to rounding):

$$w(\text{MST}) \approx (n-1) + \sum_{j=0}^{\log_{1+\varepsilon}(w)} (K_{(1+\varepsilon)^j} - 1) \Big((1+\varepsilon)^{j+1} - (1+\varepsilon)^j \Big).$$

What would be the complexity of algorithm using this formula?