HW4 - Part 2

Summary of Results:

	<u> </u>				- -	ropout Probability			_	_		
Base Case		0.001	i	128	i	0.5	'n	2	2	50	0.2818	0.4471
Case 1	ı	0.0005	- 1	128	1	0.5	1	2	2	50	0.2811	0.4438
Case 2	Ĺ	0.001	T.	256	Ť.	0.3	Ĺ	2	2	50	0.2885	0.4449
Case 3		0.001	i.	128	Ĺ	0.3	Ì.	3	2	50	0.2852	0.4521
Case 4		0.001	i.	128		0.7	Ĺ	2	2	50	0.2687	0.4314
Case 5		0.001	i.	128	i.	0.3	į.	2	14	150	0.2894	0.4478

Insights and Observations:

- 1. Effect of Learning Rate (Base Case vs. Case 1):
 - a. Learning Rate Change: Reduced from 0.001 to 0.0005.
 - b. Observation: Slightly worse performance in NDCG@10 and HR@10.
 - c. Interpretation: A lower learning rate can slow down convergence, preventing the model from fully leveraging the data during the training epochs. This suggests 0.001 is a better learning rate for this setup.
- 2. Effect of Batch Size and Dropout (Base Case vs. Case 2):
 - a. Batch Size: Increased from 128 to 256.
 - b. Dropout Probability: Reduced from 0.5 to 0.3.
 - c. Observation: Improved NDCG@10 but no significant change in HR@10.
 - d. Interpretation: A larger batch size can stabilize gradient updates, leading to better generalization, while a lower dropout rate helps the model learn more expressive representations, as seen in the improved ranking metric (NDCG@10).
- 3. Effect of Number of Blocks (Base Case vs. Case 3):
 - a. Number of Blocks: Increased from 2 to 3.
 - b. Observation: Higher HR@10 and slightly better NDCG@10.
 - c. Interpretation: Adding more blocks enhances the model's capacity to capture sequential patterns, improving hit rate, especially for longer sequences.
- 4. Effect of Dropout Probability (Base Case vs. Case 4):
 - a. Dropout Probability: Increased from 0.5 to 0.7.
 - b. Observation: Both metrics decreased significantly.
 - c. Interpretation: Higher dropout probability may lead to underfitting, as the model discards too much information during training, reducing its ability to learn from the data.

- 5. Effect of Attention Heads (Base Case vs. Case 5):
 - a. Number of Attention Heads: Increased from 2 to 4.
 - b. Observation: Best performance in NDCG@10 and slightly better HR@10 compared to the base case.
 - c. Interpretation: Increasing the number of attention heads allows the model to capture finer-grained interactions in the sequence, leading to better rankings of the next items.

Overall Insights:

- 1. Dropout probability needs careful tuning. While reducing it to 0.3 helped (Case 2, Case 5), increasing it to 0.7 was detrimental (Case 4).
- 2. Number of blocks and attention heads significantly impact model performance. Adding more blocks and heads can improve metrics, but this likely comes with a computational tradeoff.
- 3. Batch size plays a role in stabilizing training and improving rankings, as seen in Case 2.
- 4. Learning rate around 0.001 works well, consistent with the SASRec paper, as too low a value slows convergence without apparent benefits.

Recommendations:

- 1. Further experiments with combinations of higher attention heads, more blocks, and moderately lower dropout rates may yield better results.
- 2. Evaluate computational efficiency and training time tradeoffs when scaling parameters, such as the number of heads or blocks.