Task 1 - Predictive model for the Lunar albedo based on the chemical composition data from the Lunar Prospector.

Results

Model	MSE (Mean Squared Error)
Linear Regression	0.001025152221398643
Support Vector Machine Regressor(tuned)	0.0010564847231500207
Random Forest (tuned)	0.000986584356014296
XGBOOST (tuned)	0.0009304179266331601
Neural Network (tuned)	0.0010610954305026602

Best Model - XGBOOST (MSE = 0.0009304179266331601)

<u>Image</u>

Residuals

Task 2 - Predicting Mercury's elemental composition from Albedo with MESSENGER Data

Results

Model	MSE (Mean Squared Error)		
Linear Regression	0.008239858222914646		
KNN (tuned)	0.008517812222464106		
Random Forest (Tuned)	0.007993775066409383		
XGBOOST using MultiOutputRegressor	0.007991978600932065		
XGBOOST using Chained Multioutput Regression	0.008699825503922025		
Neural Network using Tensorflow(Tuned)	0.008239864792106802		
Neural Network using MLPRegressor	0.008047336148208833		

Best Model – XGBOOST (MSE = 0.007991978600932065)

Predictions

	Fe	Al	Mg	S	Ca
0	0.541922	0.786952	0.556812	0.462441	0.484005
1	0.566629	0.757382	0.526328	0.475923	0.527736
2	0.561151	0.890483	0.498289	0.452601	0.507011
3	0.566629	0.757382	0.526328	0.475923	0.527736
4	0.541922	0.786952	0.556812	0.462441	0.484005