Notatki do wykładów: "Naiwny" klasyfikator Bayesowski

(c) Marcir Sydow

Notatki do wykładów: "Naiwny" klasyfikator Bayesowski

(c) Marcin Sydow

Tu zakładamy na ogół, że wszystkie atrybuty są kategoryczne. Mamy zbiór treningowy T składający się z N n-wymiarowych wektorów atrybutów.

Traktujemy atrybuty X_i i atrybut decyzyjny Y jako zmienne losowe

Mamy zaklasyfikować wektor $x = (x_1, x_2, ..., x_n)$

Stosujemy wzór Bayesa:

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

(interpretacja: prawdopobieństwo tego, że atrybut decyzyjny wynosi y pod warunkiem, że wartości atrybutów opisane są przez wektor x)

Zasada klasyfikatora Bayesa

Notatki do wykładów: "Naiwny" klasyfikator Bavesowski

(c) Marcii Sydow Wektorowi x przydzielimy tę klasę (wartość atrybutu decyzyjnego) y, dla którego powyższe prawdopobieństwo jest najwyższe.

Obliczamy więc powyższe wyrażenie dla wszystkich możliwych klas (wartości atrybutu decyzyjnego Y) i wybieramy najwyższą wartośc prawdopobieństwa.

Ponieważ wszystkie powyższe porównywane wyrażenia mają ten sam mianownik (P(X=x))), więc można go pominąć.

Kluczowe dla "naiwnego" klasyfikatora Bayesowskiego jest ("naiwne") założenie, że atrybuty są parami niezależne, a więc:

$$P(X = (x_1, ..., x_n)|Y = y) = P(X_1 = x_1|Y = y)*...*P(X_n = x_n|Y = y)$$

Otrzymujemy więc po zastosowaniu powyższego założenia wzór: $P(Y=y|X=(x_1,...,x_n)) \propto P(X_1=x_1|Y=y)*...*P(X_n=x_n|Y=y)*P(Y=y)$ gdzie już bezpośrednio ze zbioru treningowego w prosty sposób można obliczyć oszacowania:

- $P(X_i = x_i | Y = y)$ (proporcja tych przypadków w zbiorze testowym, które mają wartość atrybutu $X_i = x_i$ wśród przypadków mających wartość atrybutu decycyjnego Y = y)
- oraz P(Y = y) (proporcja przypadków w zbiorze treningowym, które mają wartość atrybutu decycyjnego Y = y)

Wygładzanie

Notatki do wykładów: "Naiwny" klasyfikator Bayesowski

(c) Marcin Sydow Może się zdarzyć, że w zbiorze uczącym nie występuje żaden przypadek, w którym zachodzi $X_j = x_j$ oraz Y = y dla pewnego atrybutu j.

W takim wypadku oszacowane prawdopobieństwo $P(X_i = x_i | Y = y)$ wynosiłoby zero i wyzerowało cały iloczyn, niezależnie od wartości pozostałych prawdopodobieństw $P(X_i = x_i | Y = y)$.

Aby tego uniknąć stosuje się tzw. wygładzanie, czyli zapewnienie, że zera zastępowane będą pewną (bardzo małą) wartością kosztem odpowiedniego zmniejszenia pozostałych (niezerowych) prawdopobieństw dla tego atrybutu.

Najprostsze wygładzanie

Notatki do wykładów: "Naiwny" klasyfikator Bayesowski

(c) Marci Sydow

W najprostszym rodzaju wygładzania, do licznika proporcji dla danego atrybutu i dodajemy zawsze jeden a do mianownika tyle, ile jest różnych możliwych wartości tego atrybutu. W ten sposób zmodyfikowane prawdopodobieństwa sumują się do 1, ale nigdy nie wystąpi 0 nawet jak nie ma takiego przypadku w zbiorze treningowym.

Notatki do wykładów: "Naiwny" klasyfikator Bayesowski

(c) Marci Sydow

Dziękuję za uwagę