Math 459 Lecture 19

Todd Kuffner

Last Time

Bayesian approach to hypothesis testing

Introduction to Bayes Factors

The importance of the marginal likelihood

Today: computing Bayes factors and marginal likelihoods via Laplace approximation and MCMC

Reminder

Consider a model $M_{\alpha} = \{\mathcal{F}_{\alpha}, \Pi_{i}, \lambda_{\alpha}\}$ for some α in a countable index set A.

• usual way a Bayesian assesses evidence for or against some model is by computing the Bayes factor for the model of interest and some alternative model under consideration.

$$BF_{kl} = \frac{m(y|M_k)}{m(y|M_l)}$$

where the marginal likelihood for model M_i is

$$m(y|M_i) = \int f(y|\theta_i, M_i)\pi(\theta_i|M_i)d\theta_i,$$

where $f(y|\theta_i, M_i)$ is the likelihood under model i and $\pi(\theta_i|M_i)$ is the prior under model i.

Key issue: how to compute or accurately estimate the marginal likelihoods

Strength of Evidence

Let K be the Bayes factor for H_0 relative to H_1 .

	K	Strength of evidence for H_0
Jeffreys scale	< 1	negative (supports H_1)
	$(1, \sqrt{10})$	weak
	$(\sqrt{10}, 10)$	substantial
	$(10, 10\sqrt{10})$	strong
	$(10\sqrt{10}, 100)$	very strong
	> 100	decisive

Kass & Raftery (1995 survey)

$2\log K$	K	Strength of evidence for H_0
(0,2)	(1, 3)	weak
(2, 6)	(3, 20)	positive
(6, 10)	(20, 150)	strong
> 10	> 150	very strong

Problem

Often the integral

$$m(y|M_i) = \int f(y|\theta_i, M_i) \pi(\theta_i|M_i) d\theta_i,$$

cannot be evaluated analytically.

- ▶ some common numerical methods are inefficient because when sample sizes are moderate or large, the integrand becomes highly peaked around its maximum, which can be found by other methods
- ▶ for example, quadrature methods which are initialized without knowing the maximum can encounter difficulty finding the region where the integrand mass is accumulating
- ▶ moreover in high dimensions, MCMC is often more efficient (see below)

In fact, the commonly-encountered examples for which the marginal likelihood can be evaluated analytically are restricted to exponential family models with conjugate priors (e.g. normal linear models)

Proposal 1: Laplace's method

- ► Tierney, Kadane (1986) Accurate approximations for posterior moments and marginal densities. JASA 81, 82-86.
- ➤ Tierney, Kass, Kadane (1989) Fully exponential Laplace approximations to expectations and variances of nonpositive functions. *JASA* 84, 710–716.

Laplace approximation of integrals

Motivation

Suppose we have an integral of the form

$$I(x) = \int_{a}^{b} e^{xg(t)} f(t)dt$$

for large x (i.e. as $x \to \infty$).

- we want an accurate approximation $\hat{I}(x)$ s.t. the ratio converges to 1 as $x \to \infty$
- ▶ clearly $\hat{I}(x)$ will depend on the two functions f, g, e.g. whether g is monotone or not, the boundary behaviors of f, g, etc.

Example

Suppose g is strictly monotone and has nonzero derivative in the interval (a, b), then integration by parts yields

$$I(x) = \frac{1}{x} \frac{f(t)}{g'(t)} e^{xg(t)} \Big|_a^b - \frac{1}{x} \int_a^b \frac{d}{dt} \frac{f(t)}{g'(t)} e^{xg(t)} dt$$

• if one of f(a), f(b) is nonzero, the first term will dominate and then

$$I(x) \sim \frac{1}{x} \frac{f(b)}{g'(b)} e^{xg(b)} - \frac{1}{x} \frac{f(a)}{g'(a)} e^{xg(a)}$$

This is the simplest situation.

More realistically

In practical situations, g may not be strictly monotone and may have zero derivative at one or more points in the interval (a, b).

▶ then we can't integrate by parts

Idea of Laplace's method: if g has a maximum at some unique c in (a,b), and if $f(c) \neq 0$, $g'' \neq 0$, then due to the large magnitude of the parameter x, the dominant part of the integral will come from a neighborhood of c.

(continued)

Taylor expansion of g around c up to a quadratic term yields a normal kernel (density).

- ▶ the integral will not change much if the range of integration is changed from (a, b) to the real line
- upon normalizing the normal density, the factor $\sqrt{2\pi}$ appears and we have the approximation

$$\hat{I}(x) = \frac{\sqrt{2\pi}f(c)e^{xg(c)}}{\sqrt{-xg''(c)}}$$

and as $x \to \infty$, $\hat{I}(x) \sim I(x)$

- intermediate steps of this derivation require that a, b are not stationary points of g, that g'(c) = 0 and that g''(c) < 0
- \blacktriangleright if either of the two boundary points a,b is a stationary point of g, then the approximating function will change to accommodate contributions from the boundary stationary points

If the interior local maximum of g is not unique, then I(x) must be partitioned into subintervals separating the different maxima and summing over the terms to obtain a final approximation to I(x).

Example 1

Let

$$I(x) = \int_{-\infty}^{\infty} e^{x(t-e^t)} dt,$$

(which equals $\Gamma(x)/x^x$ for a suitable change of variable in I(x)).

- ▶ try an asymptotic approximation for I(x) as $x \to \infty$ by Laplace's method with f(t) = 1 and $g(t) = t e^t$
- ▶ the only saddlepoint of g is t = 0, and $g''(t) = -e^t$

Therefore, the Laplace approximation is

$$\hat{I}(x) = \frac{\sqrt{2\pi}e^{-x}}{x}$$

Example 2

Consider approximation of n! by writing it directly as a Gamma function:

$$n! = \int_0^\infty e^{-z} z^n dz = \int_0^\infty e^{n \log z} e^{-z} dz = n^{n+1} \int_0^\infty e^{n (\log t - t)} dt$$

- consider Laplace approximation with f(t) = 1, $g(t) = \log t t$
- ▶ plugging in g'' yields

$$n! \sim e^{-n} n^{n + \frac{1}{2}} \sqrt{2\pi}$$

which is the usual Stirling approximation

Application to Marginal Likelihood

Let $\tilde{\ell}(\theta) = \frac{1}{n} \log L(\theta) + \frac{1}{n} \log \pi(\theta)$, so that

$$m(y) = \int e^{n\tilde{\ell}(\theta)} d\theta$$

Laplace's method: let θ_m be the posterior mode

$$m(y) \approx \int \exp[n\tilde{\ell}(\theta_m) - n(\theta - \theta_m)^2/(2\sigma^2)]d\theta$$

with
$$\sigma^2 = -1/\tilde{\ell}''(\theta_m)$$

(continued)

$$m(y) \approx \int \exp[n\tilde{\ell}(\theta_m) - n(\theta - \theta_m)^2/(2\sigma^2)]d\theta$$

 $\approx \sqrt{2\pi}\sigma n^{-1/2} \exp\{n\tilde{\ell}(\theta_m)\}$

- ▶ the error in this approximation is $O(n^{-1})$ in the sense that $m(y) = \hat{m}(y)(1 + O(n^{-1}))$, and the same error holds if using MLE instead of posterior mode for θ
- prior must be explicitly specified
- using the expected information matrix (instead of observed) in σ is less accurate by conveniently implemented

Common Presentation

Expanding $\tilde{\ell}(\theta)$ as a quadratic about θ_m and then exponentiating yields an approximation to the $f(y|\theta)\pi(\theta)$ having the form of a normal density with mean θ_m and covariance matrix

$$\tilde{\Sigma} = (-D^2 \tilde{\ell}(\theta_m))^{-1},$$

where $D^2\tilde{\ell}(\theta_m)$ is the Hessian matrix of second derivatives.

▶ integrating this approximation yields

$$\hat{m}(y) = (2\pi)^{d/2} |\tilde{\Sigma}|^{1/2} f(y|\theta_m) \pi(\theta_m),$$

with $\dim(\theta) = d$

Usage in Model Comparison

Consider model comparison when model M_0 is **nested** in model M_1 , e.g.

$$M_0: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon,$$

 $M_1: Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$

with the same error distribution in both models

- ▶ nested means it is possible to obtain any joint distribution for the data (Y, X) in model M_0 using a restriction on the parameters in M_1
- ▶ here this means the predictors in M_0 are a subset of the predictors in M_1

More generally, suppose M_0 is nested in M_1 and that M_0 has d_0 parameters and M_1 has $d_1 \geq d_0$ parameters.

▶ If we use the Laplace approximation to the marginal likelihoods in the Bayes factor, evaluated at the MLE in each model, we arrive at an approximation of the Bayes factor:

$$2\log B_{10} \approx \Lambda + \log|\tilde{\Sigma}_1| - \log|\tilde{\Sigma}_0| + \log \pi(\hat{\theta}_1|M_1)$$
$$-\log \pi(\hat{\theta}_0|M_0) + (d_1 - d_0)\log 2\pi$$

where
$$\Lambda = 2[\log f(y|\hat{\theta}_1, M_1) - \log f(y|\hat{\theta}_0, M_0)]$$

• $\hat{\theta}_0$ means the MLE of the parameters in model M_0 and $\hat{\theta}_1$ is the MLE of the parameters in M_1

Simple Monte Carlo estimation of marginal likelihood

Basic idea: since

$$m(y) = \int f(y|\theta)\pi(\theta)d\theta,$$

draw $\theta_1, \ldots, \theta_m$ i.i.d. from $\pi(\theta)$.

▶ a Monte Carlo estimator of m(y) is then

$$\frac{1}{m} \sum_{i=1}^{m} f(y|\theta^{(i)})$$

Common problem is large variance of this estimator.

Marginal likelihood from the Gibbs Sampler Output

► Chib (1995) Marginal likelihood from the Gibbs output. JASA 90(432), 1313–1321.

Note the **basic marginal likelihood identity** (rearranging definition of posterior):

$$m(y) = \frac{f(y|\theta)\pi(\theta)}{\pi(\theta|y)}$$

- ▶ an identity since it holds for any θ (in the parameter space)
- easy to evaluate $f(y|\theta)$ and $\pi(\theta)$
- so to estimate m(y) we only need to estimate the posterior $\pi(\theta|y)$

(continued)

Decompose θ into two blocks (θ_1, θ_2) such that $\pi(\theta_1|\theta_2, y)$ and $\pi(\theta_2|\theta_1, y)$ are known (completely specified).

$$\pi(\theta_1, \theta_2|y) = \pi(\theta_2|\theta_1, y)\pi(\theta_1|y)$$

▶ Gibbs sampler gives dependent draws from joint posterior $\pi(\theta_1, \theta_2|y)$ and therefore marginally from $\pi(\theta_2|y)$; find the marginal posterior for θ_1 by

$$\pi(\theta_1|y) = \int \pi(\theta_1|\theta_2, y) \pi(\theta_2|y) d\theta_2$$

$$\approx \frac{1}{G} \sum_{i=1}^{G} \pi(\theta_1|\theta_2^{(g)}, y)$$

Such a marginal posterior estimator is (simulation) consistent; under regularity conditions $\hat{\pi}(\theta|y) \to \pi(\theta|y)$ almost surely as $G \to \infty$ (due to ergodic theorem)

General case (arbitrary number of blocks)

Decompose posterior at the point θ as

$$\pi(\theta|y) = \pi(\theta_1|y) \times \pi(\theta_2|\theta_1, y) \times \dots \times \pi(\theta_B|\theta_1, \dots, \theta_{B-1}, y)$$

where the last term is the marginal ordinate and can be estimated from the draws of the initial Gibbs run

▶ the other terms are the reduced conditional ordinates $\pi(\theta_r|\theta_1,\ldots,\theta_{r-1},y)$ given by

$$\int \pi(\theta_r|\theta_1,\ldots,\theta_{r-1},\theta_l(l>r),y)d\pi(\theta_{r+1},\ldots,\theta_B|\theta_1,\ldots,\theta_{r-1},y)$$

Estimate this by

$$\hat{\pi}(\theta_r | \theta_s(s < r), y) = G^{-1} \sum_{i=1}^{G} \pi(\theta_r | \theta_1, \dots, \theta_{r-1}, \theta_l^{(j)}(l > r), y)$$

and estimate the joint density by $\prod_{r=1}^{B} \hat{\pi}(\theta_r | \theta_s(s < r), y)$

Bayes factor estimate

Typically the log of the marginal likelihood is estimated using the above method, yielding the estimate of B_{kl}

$$\hat{B}_{kl} = \exp\{\log \hat{m}(y|M_k) - \log \hat{m}(y|M_l)\}\$$

What about Metropolis-Hastings?

► Chib, Jeliazkov (2001) Marginal likelihood from the Metropolis-Hastings output. JASA 96(453), 270–281.

Goal is again to estimate posterior $\pi(\theta|y)$ given a posterior sample $\{\theta^{(1)}, \dots, \theta^{(M)}\}.$

Let $q(\theta, \theta'|y)$ denote the proposal (candidate generating) density for the transition from θ to θ' , which can depend on data y.

► let

$$\alpha(\theta, \theta'|y) = \min\left\{1, \frac{f(y|\theta')\pi(\theta')}{f(y|\theta)\pi(\theta)} \frac{q(\theta', \theta|y)}{q(\theta, \theta'|y)}\right\}$$

denote the probability of a move (i.e. probability of accepting the proposed value)

▶ letting $p(\theta, \theta'|y) = \alpha(\theta, \theta'|y)q(\theta, \theta'|y)$ denote the subkernel of the M-H algorithm, then from the reversibility (detailed balance) of the subkernel, we have for any point θ^*

$$p(\theta, \theta^*|y)\pi(\theta|y) = \pi(\theta^*|y)p(\theta^*, \theta|y)$$

Integrating both sides w.r.t. θ , where $\theta \in \Theta \subset \mathbb{R}^d$, we find that the posterior ordinate is given by

$$\pi(\theta^*|y) = \frac{\int \alpha(\theta, \theta^*|y) q(\theta, \theta^*|y) \pi(\theta|y) d\theta}{\int \alpha(\theta^*, \theta|y) q(\theta^*, \theta|y) d\theta}$$

To clarify the estimation procedure, write this in a different form:

$$\pi(\theta^*|y) = \frac{E_1\{\alpha(\theta, \theta^*|y)q(\theta, \theta^*|y)\}}{E_2\{\alpha(\theta^*, \theta|y)\}}$$

where the numerator expectation E_1 is w.r.t. the distribution $\pi(\theta|y)$ and the denominator expectation E_2 is w.r.t. $q(\theta^*, \theta|y)$.

 \Rightarrow a simulation-consistent estimate is

$$\hat{\pi}(\theta^*|y) = \frac{M^{-1} \sum_{g=1}^{M} \alpha(\theta^{(g)}, \theta^*|y) q(\theta^{(g)}, \theta^*|y)}{J^{-1} \sum_{j=1}^{J} \alpha(\theta^*, \theta^{(j)}|y)}$$

where $\{\theta^{(g)}\}\$ are the M-H samples from the posterior and $\{\theta^{(j)}\}\$ are draws from $q(\theta^*, \theta|y)$, given the fixed value of θ .