Gruppe B

Aufgabe 1. (Punkte: 8)

1	2
8	

Auf \mathbb{R}^2 sei als innere Verknüpfung die übliche Addition + und eine spezielle äußere Verknüpfung \circ definiert:

$$+: \left\{ \begin{array}{ccc} \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right) & \mapsto & \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} \right. \qquad \circ: \left\{ \begin{array}{ccc} \mathbb{R}^2 \times \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ \left(\lambda, \begin{pmatrix} x \\ y \end{pmatrix} \right) & \mapsto & \begin{pmatrix} \lambda \cdot y \\ \lambda \cdot x \end{pmatrix} \right. \right\}$$

Welche Vektorraumaxiome sind erfüllt?

Ja Nein

 \square $(\mathbb{R}^2, +)$ ist kommutative Gruppe

 $oxed{X}$ \Box $(\mathbb{R}^2,+,\circ)$ ist distributiv

 $\square \quad \mathbf{X} \quad \forall v \in \mathbb{R}^2: \quad 1 \circ v = v$

 $\square \quad \mathbf{X} \quad \forall v \in \mathbb{R}^2, \forall \lambda, \mu \in \mathbb{R}: \quad (\lambda \cdot \mu) \circ v = \lambda \circ (\mu \circ v)$

Aufgabe 2. (Punkte: 12)

Sei $p \in \mathbb{R}[x]$ ein Polynom höchstens dritten Grades, d.h. $p(x) = ax^3 + bx^2 + cx + d$ und $a, b, c, d \in \mathbb{R}$. Es gelte: p(1) = 1, p(0) = 4, p(-1) = 1 und $p(3) = \lambda \in \mathbb{R}$.

Stellen Sie ein lineares Gleichungssystem in den Unbekannten a, b, c, und d auf und bestimmen Sie a, b, c und d.

Für welches $\lambda \in \mathbb{R}$ ist der Grad von p kleiner 3, d.h. deg(p) < 3?

(B2)

turatz: p(x)= ax3+6x2+cx+d

LGS 2

 $p(3) = 5 \Rightarrow 27a + 9b + 3c + d = 5 \Rightarrow 27a - 27 - 3a + 4 = 5 \Rightarrow$ $\Rightarrow 24a = 5 + 23 \Rightarrow a = (5 + 23)/24$

grad von p < 3 = 0 = 0 = 1 = -23

Gegeben seien
$$a, b, c, d \in \mathbb{R}^3$$
 durch $a = \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 4 \\ \vartheta \end{pmatrix}$, $c = \begin{pmatrix} -1 \\ 7 \\ 2 \end{pmatrix}$, $d = \begin{pmatrix} -4 \\ 10 \\ 1 \end{pmatrix}$ (mit $\vartheta \in \mathbb{R}$). Zeigen Sie: $\exists \vartheta \in \mathbb{R}$, so dass $span(a,b) = span(c,d)$.

B3) knsatz:
$$a,b \in \text{Span}(c,d) \in \exists \lambda, \mu \in \mathbb{R} : \lambda c + \mu d = a \text{ bzw } b$$

=> $LGS \begin{pmatrix} -1 & -4 & 5 & 2 \\ 7 & 10 & 1 & 4 \\ 2 & 1 & 4 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & -5 & -2 \\ 0 & -18 & 36 & 18 \\ 0 & -7 & 14 & 9 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & -5 & -2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 9 & 9 \end{pmatrix} \notin \mathcal{Y} = 3$

=> $\text{Span}(a,b) \subseteq \text{Span}(c,d)$ fun $\theta = 3$ (and $\theta = 3$) (and $\theta = 3$) function (span) (a,b) = $\theta = 3$ and $\theta = 3$ span) (a,b) = $\theta = 3$ span(c,d) (4)

Aufgabe 4. (Punkte: 12)

1 2

Sei $0 < r \in \mathbb{R}$ und $M := \left\{ \begin{pmatrix} x & y \\ -ry & x \end{pmatrix} \in \mathbb{R}^{2 \times 2} \, \middle| \, (x,y) \in \mathbb{R}^2 \backslash \{(0,0)\} \right\}$. Zeigen Sie, dass M zusammen mit dem Matrixprodukt \cdot eine kommutative Gruppe ist.

(B4) a) Mabgerchlossen, da lür (xy) und ("v") EM gelt:

ligt in M, dh. (a,b) + (0,0), da

1

<u>kunahme</u>: $a = xu - ryv = 0 \land b = xv + yu = 0 \Rightarrow xuv - ryv^2 = 0 \Rightarrow$ $-yu^2 - ryv^2 = 0 (=) y(u^2 + rv^2) = 0 \Rightarrow y = 0 \Rightarrow \begin{cases} xu = 0 \\ xv = 0 \end{cases} \Rightarrow x = 0 \end{cases}$

- b) Fuir x=1 and y=0 int (10) EM (neutrales Slement?) 2
- c) Inverses Slement zer $\begin{pmatrix} \times & y \\ -ry & x \end{pmatrix} \in H$ int (nach Formel): fin +>0? $\begin{pmatrix} \times & y \\ -ry & x \end{pmatrix}^{-1} = \frac{1}{\det(\frac{\times}{ry} \frac{y}{x})} \begin{pmatrix} \times & -y \\ ry & x \end{pmatrix} = \frac{1}{x^2 + ry^2} \begin{pmatrix} \times & -y \\ ry & x \end{pmatrix} \in H$, de $x^2 + ry^2 \neq 0$
- d) troviativit at gilt allgemein bei Matrizenprodert

4

e) Kommutativit at:

Aufgabe	5.	(Punkte:	10)

1	2
10	

- a) Bestimmen Sie über dem Körper \mathbb{Z}_3 sämtliche Lösungen $x \in \mathbb{Z}_3^3$ des linearen Gleichungssystems $Ax = b \text{ mit } A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 2 & 2 & 2 \end{pmatrix} \in \mathbb{Z}_3^{3 \times 3} \text{ und } b = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \in \mathbb{Z}_3^3.$
- b) Bestimmen Sie über dem Körper $\mathbb C$ sämtliche Lösungen $x\in\mathbb C^2$ des linearen Gleichungssystems $Ax = b \text{ mit } A = \begin{pmatrix} 1 & 2 \\ 2i & \alpha i \end{pmatrix} \in \mathbb{C}^{2 \times 2} \text{ und } b = \begin{pmatrix} i \\ 1 \end{pmatrix} \in \mathbb{C}^2 \text{ in Abhängigkeit von } \alpha \in \mathbb{C}.$

(BS) a)
$$\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 1 & 2 & 1 & | & 2 \\ 2 & 2 & 2 & | & 0 \end{pmatrix}$$
 ~ $\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 2 & 2 & | & 1 \\ 0 & 2 & 2 & | & 1 \end{pmatrix}$ ~ $\begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 2 & 2 & | & 1 \\ 0 & 0 & 2 & | & 1 \end{pmatrix}$ ~ $\begin{pmatrix} 1 & 2 & | & i \\ 2i & \alpha i & | & 1 \end{pmatrix}$ ~ $\begin{pmatrix} 1 & 2 & | & i \\ -2 & -\alpha & | & i \end{pmatrix}$ ~ $\begin{pmatrix} 1 & 2 & | & i \\ 0 & 4 & -\alpha & | & 3i \end{pmatrix}$ (Eigenvertew) $\textcircled{2}$

Fall $\alpha = 4 \Rightarrow$ example themse token ($L = \emptyset$)

Fall $\alpha \neq 4 \Rightarrow$ $x_2 = \frac{3i}{4-\alpha}$; $x_4 = i - \frac{6i}{4-\alpha} = i\left(\frac{-2-\alpha}{4-\alpha}\right) \Rightarrow x = \begin{pmatrix} -i\left(\frac{2+\alpha}{4-\alpha}\right) \\ \frac{3i}{4-\alpha} \end{pmatrix}$

Aufgabe 6. (Punkte: 18)

18

Gegeben sei die Permutation $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 5 & 1 & 7 & 2 & 8 \end{pmatrix} \in S_8$.

- a) Stellen Sie π als Produkt paarweise elementfremder Zykel dar und berechnen Sie π^{2006} .
- b) Geben Sie π^{-1} an.
- c) Welche Ordnung hat die von π erzeugte Untergruppe der S_8 ? **X**12

 $\Box 1$

 $\Box 7$

 $\square 8$

(2)

d) Wie viele Transpositionen sind zur Darstellung von π mindestens notwendig?

X5

 $\Box 6$

 $\Box 7$

(3)

e) Lässt sich π als Produkt von n ($n \in \mathbb{N}$) nicht notwendigerweise verschiedenen 3-Zykeln darstellen? Achtung: falsche Antwort gibt hier (bei 6,e) Punktabzug!

 $\Box Ja$ $mbox{N}ein$

(5)

Wegen 2006 mod 3 = 2006 mod 4 = 2006 mod 12 = 2 gilt: $\pi^{2006} = (1345)^{2006}(267)^{2006} = (1345)^{2}(267)^{2} =$

$$= (14)(35)(276) \quad \text{low}.$$

$$\pi^{2006} = \pi^2 = \left(\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{5}{5} \cdot \frac{6}{7} \cdot \frac{8}{8}\right)^2 = \left(\frac{1}{4} \cdot \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{4}{3} \cdot \frac{5}{6} \cdot \frac{7}{8}\right)$$

b)
$$\pi^{-1} = (1345)^3(267)^2 = (1543)(276) = (12345678)$$

Aufgabe 7. (Punkte: 18)

4

Gegeben sei die Matrix $A = \begin{pmatrix} -9 & 6 & 6 \\ 6 & 4 & 0 \\ 6 & 0 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$ einer linearen Abbildung $f : \begin{cases} \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \\ x \longmapsto Ax \end{cases}$

- a) Geben Sie für Kern(f) und $Bild(\mathbb{R}^3)$ jeweils die Dimension und eine Basis an.
- b) Zeigen Sie, dass $\begin{pmatrix} -6\\2\\3 \end{pmatrix}$ ein Eigenvektor von A ist.
- c) Bestimmen Sie das charakteristische Polynom von A und geben Sie alle Eigenwerte von A an.

$$\begin{pmatrix}
-9 & 6 & 6 & 0 \\
6 & 4 & 0 & 0 \\
6 & 0 & -2 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
-3 & 2 & 2 & 0 \\
3 & 2 & 0 & 0 \\
3 & 0 & -4 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
-3 & 2 & 2 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 1 & 0
\end{pmatrix}
\sim
\begin{pmatrix}
-3 & 2 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\Rightarrow x_3 = k \in \mathbb{R}, \ x_2 = -\frac{k}{2}, \ x_4 = \frac{1}{3}(-k+2k) = +\frac{k}{3} \ i \ \text{ wit } \ k = 6\mu = 3$$

$$\begin{aligned} & \text{Kem}(f) = \left\{ x = \mu \cdot \begin{pmatrix} 2 \\ -3 \end{pmatrix} \mid \mu \in \mathbb{R}^{3} \right\}; \ \text{dein} \left(\text{Kem}(f) \right) = 1; \ \text{B}_{kem}(f) = \left(\begin{pmatrix} 2 \\ -3 \end{pmatrix} \right) \text{ (2)} \\ & \text{Basen} \\ & \text{dein} \left(\text{Bild}(f) \right) = \text{dein} \left(\text{IR}^{3} \right) - \text{dein} \left(\text{Kem}(f) \right) = 3 - 1 = 2; \ \text{B}_{kem}(f) = \left(\begin{pmatrix} -9 \\ 6 \end{pmatrix}, \begin{pmatrix} 6 \\ 4 \end{pmatrix} \right) \text{ (3)} \end{aligned}$$

$$dim(Bild(f)) = dim(IR^3) - dim(Iem(f)) = 3 - 1 = 2; B_{Bild(f)} = {\binom{-9}{6}, \binom{6}{4}} 3$$

b)
$$A \cdot V = \begin{pmatrix} -9 & 6 & 6 \\ 6 & 4 & 0 \\ 6 & 0 & -2 \end{pmatrix} \begin{pmatrix} -6 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 54+12+18 \\ -36+8 \\ -36-6 \end{pmatrix} = \begin{pmatrix} 84 \\ -28 \\ -42 \end{pmatrix} = -14 \cdot \begin{pmatrix} -6 \\ 2 \\ 3 \end{pmatrix} = -14 \cdot V$$
 3

c)
$$\chi_{A}(k) = det(A - kid_{3x3}) = det\begin{pmatrix} -9 - k & 6 & 6 \\ 6 & 4 - k & 0 \\ 6 & 0 & -2 - k \end{pmatrix} =$$

$$= (-9-5)[(4-5)(-2-5)] - 6\cdot[6(-2-5)] + 6\cdot[-(4-5)\cdot6] =$$

$$= (-9-5)[\lambda^2-25-8] + 72 + 361 + 361 - 144$$

$$= -5^3 + 5^2(-9+2) + 5(18+8+36+36) + 72+72-144$$

$$= - \lambda^3 - 7 \lambda^2 + 98 \lambda = -\lambda (\lambda^2 + 7\lambda - 98)$$

Eigenwerte van A mid Vullstellen van XA(K):

$$l_{1}=0 \ (v_{1}, a)!), l_{2}=-14 \ (v_{2}, b)!) = l_{3}=-\frac{98}{-14}=7$$

oder nit Formel für gread. Gl.