PREDICTION - EV X DRP

Artur J. Ferreira^{1,3} arturj@isel.pt

David P. Coutinho^{1,2} davidpc.isel@gmail.coms

David A. S. G. Albuquerque ¹ david.alb2011@gmail.com

¹Instituto Superior de Engenharia de Lisboa ²Instituto Superior Técnico ³Instituto de Telecomunicações, Lisboa, PORTUGAL

Friday, 25 March 2022

Outline

Introdução

O que é eRange?

O problema de estimação

Objetivo

Estado da arte

Datasets Implementações

O que foi feito

Trabalho futuro

Overview

Diagrama

Introdução - O que é eRange?

- A distância máxima que um veículo electrico consegue viajar;
- Alivia a ansiedade do condutor;
- Depende de vários dados da condução do veículo:
 - SOC (State of charge) indica o estado de carga da bateria;
 - Estado do ar condicionado;
 - Travagem regenerativa;
 - Inclinação da estrada;
 - (entre outros)

Introdução - O problema

- Dependência de vários fatores;
- Escacês de datasets;
- Escolha dos algoritmos de machine learning (slide 7);

Introdução - Objetivo

- Realizar a estiamção do eRange em tempo real;
- Uso de inteligência artificial para a resolução do problema;
- Aprendizagem através de datasets de viajens de carros electricos;

VED Dataset¹:

- Dados reais de condução de veículos elétricos (2013 Nissan leaf)
- Emobpy².
 - Geração de dados de condução de veículos elétricos.

¹G. S. Oh, David J. Leblanc, and Huei Peng. *Vehicle Energy Dataset* (VED), A Large-scale Dataset for Vehicle Energy Consumption Research. 2019.
²Carlos Gaete-Morales et al. "An open tool for creating battery-electric

vehicle time series from empirical data, emobpy". In: *Scientific Data* (June 2021).

- Uso combinado de Gradient Boosting Regression Trees³;
- Ensemble learning⁴ com:
 - Decision Tree ;
 - Random Forest;
 - K-Nearest Neighbor.
- Self-Organizing Maps⁵ (e híbridos com Regression Trees⁶);
- Redes neuronais com Multiple Linear Regression⁷.

 $^{^3}$ Liang Zhao et al. "Machine Learning-Based Method for Remaining Range Prediction of Electric Vehicles". In: IEEE Access (2020).

⁴Irfan Ullah et al. "Electric vehicle energy consumption prediction using stacked generalization: an ensemble learning approach". In: International Journal of Green Energy (2021).

⁵Chung-Hong Lee and Chih-Hung Wu. "A Novel Big Data Modeling Method for Improving Driving Range Estimation of EVs". In: *IEEE Access* (2015).

⁶B. Zheng et al. "A Hybrid Machine Learning Model for Range Estimation of Electric Vehicles". In: 2016 IEEE Global Communications Conference (GLOBECOM). 2016.

⁷Cedric De Cauwer et al. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions". In: *Energies* (2017).

O que foi feito

- Estudo do problema e soluções existentes;
- Escolha de um dataset válido;
- Implementação de um modelo de baseado em historial⁸.

⁸David Coutinho. "Classic EV X Project Driving Range Prediction". Draft version. July 2021.

Trabalho futuro

- Arquitetura de projeto:
 - Escolha do algoritmo de machine learning;
- Implementação do projeto:
 - Integração do dataset;
 - Implementação do modelo;
- Testes;
- Recolha de resultados.

Trabalho futuro - Diagrama

Figure: Project planning.