

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 27600 N	M_{v}	= -661000 Nmm	G	= 75000 N/mm ²
T_x	= 850 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 30000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A,	=	$\tau(M_t)_d$		σ_{tresca}	=
$S_v^{^\star}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	Jolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 40400 N	M_{v}	= -989000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1480 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 38800 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$\boldsymbol{\tau}_{d}$	=	J_p	=
_ ^ ^ I			40.00.00	-	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 55200 N	M_{v}	= -1360000 Nmm	G	= 75000 N/mm ²
T_x	= 1650 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 69400 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_{y})$	=	σ_{IId}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(M_t)_d$		σ_{tresca}	=
S_{v}^{r}	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
\bigcirc \land	Iolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 28100 N	M_{v}	= 984000 Nmm	G	= 75000 N/mm ²
T_x	= 978 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 29600 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)		σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
${\sf S}_{\sf v}^{^\star}$	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ ^4	Jolfo Zavolani Possi, Politooniaa	di Mila			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 39300 N	M_{v}	= -938000 Nmm	G	= 75000 N/mm ²
T_x	= 1670 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 60300 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
$S_v^{^\star}$	=	$\tau(M_t)_d$		σ_{tresca}	=
$S_v^{\scriptscriptstyle{v}}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{\sf d}$		J_p	=
@ Ad	Jolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 53300 N	M_v	= -1300000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 2550 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 66600 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
\bigcirc \land	lalfa Zavalani Passi, Palitasnica	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 41600 N	M_{v}	= 940000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1110 N	$\sigma_a^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 30500 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	$\sigma_{\sf ld}$	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	$\sigma_{ ext{tresca}}$	=
A S _v C _w	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
♠ ∧ I		1. 8 4.1	40.00.00		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 38700 N	M_{v}	= 1360000 Nmm	G	= 75000 N/mm ²
T_x	= 1840 N	σ_a	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 57800 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A,	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
@ A a	lolfo Zavolani Possi Politosnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51100 N	M_v	= -1220000 Nmm	G	= 75000 N/mm ²
T_x	= 2760 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 101000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_{v}^{n}	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ A a	Jolfo Zavolani Possi Politosnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 44500 N	M_{v}	= 1330000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 628 N	$\sigma_a^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 28600 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	$\sigma_{\sf lls}$	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A S _v C _w	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
ο A I		11. 8 4.1	40.00.00		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 35800 N	M_{v}	= 1530000 Nmm	G	= 75000 N/mm ²
T_x	= 905 N		$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 37100 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
${\sf S}_{\sf v}^{^\star}$	=	$\tau(M_t)_d$		σ_{tresca}	=
S_{v}^{r}	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{\sf d}$		J_p	=
@ Δd	Iolfo Zavalani Rossi, Politacnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 43600 N	M_v	= -1300000 Nmm	G	= 75000 N/mm ²
T_x	= 1200 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 65100 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A S _v	=	$\tau(M_t)_d$		σ_{tresca}	=
S_{v}^{r}	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ac	lolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 53300 N	M_{v}	= -1600000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1650 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 53800 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _.	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$\mathbf{J}_{\mathbf{u}}$	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ac	dolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 62400 N	M_{v}	= 1860000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1220 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 56100 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
$S_v^{^\star}$	=	$\tau(M_t)_d$	_d =	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$) =	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	o _d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$; =	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	_i =	r_u	=
$J_{xy}^{''}$	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
@ A	dolfo Zavelani Possi, Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 49300 N	M_{v}	= -2230000 Nmm	G	= 75000 N/mm ²
T_x	= 1700 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 96500 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)		σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_d$	=	J_p	=
@ ^ 4	olfo Zavoloni Bossi, Bolitooniaa	di Mila			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 58100 N	M_{v}	= -1740000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 2130 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 113000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A S _v C _w	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
_ ^ ^ I		11 8 411	40.00.00	-	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 69700 N	M_{v}	= 2090000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 2670 N	$\sigma_{\rm a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 86100 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
A S _v	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ac	Jolfo Zavolani Possi, Politosnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 40200 N	M_{v}	= 1110000 Nmm	G	= 75000 N/mm ²
T_x	= 835 N	$\sigma_{\rm a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 26800 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_{\nu})$		σ_{IId}	=
A,	=	$\tau(M_t)_c$	_j =	σ_{tresca}	=
$\mathbf{S}_{v}^{^{\star}}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	l _d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$, =	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
@ A	dolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 33600 N	$M_v = 13$	300000 Nmm G	= 75000 N/mm ²
Τ,	_v = 1290 N		10 N/mm ²	
M		E = 20	00000 N/mm ²	
X	₃ =	α =	σ_{ls}	=
y	₃ =	$J_t =$	σ_{lls}	=
u _c		$\sigma(N) =$	$\sigma_{\sf Id}$	=
٧	_ =	$\sigma(M_y) =$	σ_{IId}	=
Α	. =	$\tau(M_t)_d =$	$\sigma_{ m tresca}$	=
A S	_v =	$\tau(T_{xc}) =$	σ_{mises}	
С		$\tau(T_{xb})_{d} =$	$\sigma_{st.ven}$	=
J_{x}	α =	$\tau(T_x)_s =$	Θ_{t}	=
J_y	_{/y} =	$\tau(T_x)_d =$	r_{u}	=
J,		σ =	r_v	=
J		τ_{s} =	r_{o}	=
J′	, =	τ_{d} =	J_{p}	=
6	Adolfo Zavoloni Bo	oci. Politoppioo di Milano y		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto A di AB

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 41900 N	M_{v}	= 1010000 Nmm	G	= 75000 N/mm ²
T_x	= 2210 N	$\sigma_{\rm a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 48700 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _.	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
A S _v	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ac	Holfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 46600 N	M_{v}	= -1330000 Nmm	G	= 75000 N/mm ²
T_x	= 1610 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 41600 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A,	=	$\tau(M_t)_d$	_i =	σ_{tresca}	=
A S _v	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ A	dolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 57800 N	M_{v}	= 1610000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1700 N	σ_{a}^{y}	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 56200 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	$\sigma_{\sf ls}$	=
y_G	=	J_t	=	$\sigma_{\sf IIs}$	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A S _v C _w	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_{p}	=
♠ ∧ I		11 8 411	40.00.00		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 46600 N	M_{v}	= 1850000 Nmm	G	= 75000 N/mm ²
T_x	= 2300 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 66300 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _.	=	$\tau(M_t)_d$	=	σ_{tresca}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ A a	Jolfo Zavolani Possi Politosnico	di Mila			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 52400 N	M_{v}	= -1500000 Nmm	G	= 75000 N/mm ²
T_x	= 2120 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 88700 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A S _v	=	$\tau(M_t)_d$		σ_{tresca}	=
S_{v}^{r}	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ac	lolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 62500 N	M_{v}	= -1780000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 2860 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 74200 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_{\nu})$		σ_{IId}	=
A,	=	$\tau(M_t)_c$	_j =	σ_{tresca}	=
$S_v^{^\star}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$, =	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	₁ =	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_v	=	$ au_{d}$	=	J_p	=
@ A	dolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 75700 N	M_v	= -2120000 Nmm	G	= 75000 N/mm ²
T_x	= 2790 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 96900 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_{t}	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _.	=	$\tau(M_t)_d$	=	σ_{tresca}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ A a	Jolfo Zavolani Possi Politosnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 26200 N	M_{v}	= 863000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1650 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 26700 Nmm	Ε̈́	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A S _v C _w	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	lolfo Zavelani Rossi, Politecnico	di Mila			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 40100 N	M_v	= -933000 Nmm	G	= 75000 N/mm ²
T_x	= 2340 N		$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 57400 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)		σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$		σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Δd	Inlfo Zavalani Rossi, Politacnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 57300 N	M_v	= -1360000 Nmm	G	= 75000 N/mm ²
T_x	= 3840 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 75600 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A,	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_o	=
J_{v}	=	$\tau_{\sf d}$		J_p	=
@ A a	lolfo Zavolani Possi Politosnico	di Mila			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 42200 N	M_{v}	= 873000 Nmm	J	G	$= 75000 \text{ N/mm}^2$
T_x	= 2810 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$			
$\hat{M_{t}}$	= 31500 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_{G}	=	α	=		σ_{ls}	=
y_G	=	J_{t}	=		σ_{lls}	=
u_o	=	- ()	=		σ_{ld}	=
V_0	=	$\sigma(M_y)$			σ_{IId}	=
A _*	=	$\tau(M_t)_d$	₁ =		σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$	=		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=		$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$, =		θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	₁ =		r_u	=
J_{xy}	=	σ	=		r_{v}	=
J_{u}	=	$ au_{s}$	=		r_{o}	=
J_v	=	$ au_{d}$	=		J_p	=
♠ ∧ I		11. 8 4.1	40.00.00			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 40800 N	M_{v}	= -1380000 Nmm	G	= 75000 N/mm ²
T_x	= 3180 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 67400 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_{y})$		σ_{IId}	=
A.	=	$\tau(M_t)_d$	₁ =	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_o	=
J_{v}	=	$\tau_{\sf d}$		J_p	=
@ \ \	lolfo Zavolani Possi, Politosnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 57100 N	M_{v}	= -1320000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 4420 N	σ_{a}^{y}	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 114000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A S _v C _w	=	$\tau(M_t)_d$	=	σ_{tresca}	=
S_v	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	Θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$\boldsymbol{\tau}_{d}$	=	J_p	=
♠ ∧ I		11 8 411	40.00.00		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 62600 N	M_{v}	= 1370000 Nmm	G	= 75000 N/mm ²
T_x	= 4410 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 71300 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)		σ_{ld}	=
V_{o}	=	$\sigma(M_{y})$		σ_{IId}	=
A _.	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ A 4	lolfo Zavolani Possi Politosnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 56200 N	M_{v}	= -1920000 Nmm	G	= 75000 N/mm ²
T_x	= 5260 N		$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 124000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A,	=	$\tau(M_t)_d$		σ_{tresca}	=
$S_v^{^\star}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	Jolfo Zavelani Rossi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 23000 N	M_{v}	= 406000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 1410 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 22800 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{Id}	=
Vo	=	$\sigma(M_y)$	=	σ_{IId}	=
A _.	=	$\tau(M_t)_d$		σ_{tresca}	=
S_v^\star	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{\sf d}$		J_p	=
@ Ad	lolfo Zavelani Rossi, Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 35600 N	M_{v}	= -673000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_x	= 2220 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 34700 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{lls}	=
u_o	=	σ(N)		σ_{Id}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$		σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	Iolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 50900 N	M_{v}	= -983000 Nmm	G	= 75000 N/mm ²
T_x	= 2560 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 70200 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A,	=	$\tau(M_t)_d$		σ_{tresca}	=
$S_v^{^\star}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	_d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	Jolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 24000 N	M_{v}	= 597000 Nmm	G	= 75000 N/mm ²
T_x	= 2090 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 26000 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A,	=	$\tau(M_t)_d$		σ_{tresca}	=
$S_v^{^\star}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	_d =	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	Jolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 36100 N	M_{v}	= -653000 Nmm	G	= 75000 N/mm ²
T_x	= 2830 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 58700 Nmm	E	= 200000 N/mm ²		
x_{G}	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)		σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$		σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_{u}	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_v	=	$\boldsymbol{\tau}_{d}$	=	J_p	=
@ ^ 4	olfo Zavoloni Possi, Politooniaa	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 50600 N	M _v	= -957000 Nmm	G	= 75000 N/mm ²
T_x	= 4190 N	σ_a^{y}	$= 210 \text{ N/mm}^2$		
$\hat{M_t}$	= 69200 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$		σ_{IId}	=
A _*	=	$\tau(M_t)_d$	=	σ_{tresca}	=
A S _v C _w	=	$\tau(T_{xc})$	=	σ_{mises}	=
C_{w}	=	$\tau(T_{xb})$	_d =	$\sigma_{\text{st.ven}}$	
J_xx	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_v	=
J_{u}	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$\boldsymbol{\tau}_{d}$	=	J_p	=
@ A -I	lakta Zamalami Danai Dalikamian	-1: N A:1-			

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 36200 N	M_{v}	= 950000 Nmm	G	= 75000 N/mm ²
T_x	= 3730 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 60700 Nmm	E	= 200000 N/mm ²		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{IIs}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_y)$	=	σ_{IId}	=
A,	=	$\tau(M_t)_d$		σ_{tresca}	=
$S_v^{^\star}$	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})_{c}$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
$J_{u}^{'}$	=	$ au_{s}$	=	r_{o}	=
J_{v}	=	$ au_{d}$	=	J_p	=
@ Ad	Jolfo Zavelani Possi Politecnico	di Mila		•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 49900 N	M_{v}	= -911000 Nmm	G	= 75000 N/mm ²
T_x	= 4780 N	$\sigma_{a}^{'}$	$= 210 \text{ N/mm}^2$		
$\hat{M_{t}}$	= 109000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_G	=	α	=	σ_{ls}	=
y_G	=	J_t	=	σ_{lls}	=
u_o	=	σ(N)	=	σ_{ld}	=
V_{o}	=	$\sigma(M_{y})$	=	σ_{IId}	=
$\mathbf{A}_{\mathbf{v}}$	=	$\tau(M_t)_d$		σ_{tresca}	=
S_{v}^{r}	=	$\tau(T_{xc})$	=	σ_{mises}	
C_{w}	=	$\tau(T_{xb})$	d=	$\sigma_{\text{st.ven}}$	
J_{xx}	=	$\tau(T_x)_s$	=	θ_{t}	=
J_{yy}	=	$\tau(T_x)_d$	=	r_u	=
J_{xy}	=	σ	=	r_{v}	=
J_{u}	=	$ au_{s}$	=	r_o	=
J_{v}	=	$ au_{d}$	=	J_p	=
\bigcirc \land	Iolfo Zavelani Possi Politecnico	di Mila			