CSE 2321 Foundations I Spring, 2024 Dr. Estill Homework 5 Due: Friday, March 1

1.) (25 points each) Write down a summation version of the run-time of each of the following algorithms and then figure out and prove the asymptotic complexity (Θ -set) of that run-time function.

(a) FUNCTION
$$W_a(n \in \mathbb{N})$$
 $x \leftarrow 0$ $i \leftarrow 1$ WHILE $i \leq n^2$ DO $x + +$ $i \leftarrow 5i$ RETURN (x)

(b) FUNCTION
$$W_b(n \in \mathbb{N})$$

$$x \leftarrow 0$$

$$\text{FOR } i \leftarrow 1 \text{ TO } n^2 \text{ DO}$$

$$j \leftarrow 3$$

$$\text{WHILE } j \leq i \text{ DO}$$

$$x + +$$

$$j \leftarrow 2j$$

$$\text{RETURN}(x)$$

$$(c) \ \mbox{FUNCTION} \ W_c(n \in \mathbb{N})$$

$$x \leftarrow 0$$

$$i \leftarrow n$$

$$\mbox{WHILE} \ i > 1 \ \mbox{DO}$$

$$\mbox{FOR} \ j \leftarrow 1 \ \mbox{TO} \ n^2 \ \mbox{DO}$$

$$x + +$$

$$i \leftarrow i/2$$

$$\mbox{RETURN}(x)$$

$$(\mathbf{d}) \ \ \mathsf{FUNCTION} \ \ W_d(n \in \mathbb{N})$$

$$x \leftarrow 0$$

$$i \leftarrow 0$$

$$\mathsf{WHILE} \ i < n \ \mathsf{DO}$$

$$j \leftarrow 1$$

$$\mathsf{WHILE} \ j < i \ \mathsf{DO}$$

$$x + +$$

$$j \leftarrow 2j$$

$$i \leftarrow i + \sqrt{n}$$

$$\mathsf{RETURN}(x)$$