Задание по квантовой механике І

Авторы заметок:

Хоружий Кирилл Примак Евгений Гурьева Соня

От: 10 сентября 2021 г.

Содержание

1 Задачи

T5

I. Найдём уровни энергии и волновые функции связанных состояний (E < 0) частицы в поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \left(\delta(x+a) + \delta(x-a) \right).$$

Гамильтониан системы и стационарное уравнение Шрёдингера:

$$H = -\frac{\hbar^2 \partial_x^2}{2m} + U(x), \qquad -\frac{\hbar^2 \partial_x^2}{2m} \psi(x) + U(x)\psi(x) = -|E|\psi(x),$$

далее считая E=-E, будем решать уравнение

$$\psi''(x) - \frac{2m}{\hbar^2}(U(x) + E)\psi(x) = 0.$$

В местах, где не происходит скачков производной подходит в качестве решения экспонента, так что будем искать решение в виде

$$\psi(x) = \begin{cases} Ae^{\varkappa(x+a)}, & x < -a \\ Be^{-\varkappa(x+a)} + Ce^{\varkappa(x-a)}, & |x| < a \\ De^{-\varkappa(x-a)}, & x > a. \end{cases}$$

где введено $\varkappa^2 = 2mE/\hbar^2$.

Можно было бы заметить, что потенциал симметричен, а значит можно искать решение уравнения Шредингера, как собственные функции оператора инверсии: четные и нечетные решения (A=D,B=C) и A=D, B=C, но мы пойдём другим путём, чтобы посмотреть, как из уравнений вылезет симметрия задачи.

Чтобы найти $\psi(x)$ запишем условия непрерывности и, интегрируя стационарное уравнение Шредингера, уравнение на скачок производной:

$$\psi(-a+\varepsilon) = \psi(-a-\varepsilon),$$

$$\psi(a+\varepsilon) = \psi(a-\varepsilon),$$

$$\psi'(-a+\varepsilon) - \psi'(-a-\varepsilon) = -2\varkappa_0\psi(-a)$$

$$\psi'(a+\varepsilon) - \psi'(a-\varepsilon) = -2\varkappa_0\psi(a)$$

$$\Rightarrow A-C-Be^{2a\varkappa} = 0$$

$$B-D+Ce^{2a\varkappa} = 0$$

$$-A+C-Be^{2a\varkappa} + 2A\varkappa_0/\varkappa = 0$$

$$B-D-Ce^{2a\varkappa} + 2d\varkappa_0/\varkappa = 0$$

Для удобства введем $X=e^{2a\varkappa}$, и выразив из первого уравнения A, из второго B, из третьего C подставим и получим уравнение вида

$$\frac{D\varkappa(\varkappa-\varkappa_0)}{(\varkappa-\varkappa_0)+\varkappa_0X^{-2}}=d\varkappa_0, \quad \Rightarrow \quad \varkappa^2-2\varkappa\varkappa 0+\varkappa 0^2-\frac{\varkappa 0^2}{X^2}=0, \quad \Rightarrow \quad \boxed{\varkappa_\pm=(1\pm e^{-2A\varkappa})\varkappa_0}, \tag{1}$$

что составляет условие совместности полученной СЛУ,

Забавный факт: составим матричку для СЛУ и найдём определитель

$$M = \begin{pmatrix} 1 & -X & -1 & 0 \\ 0 & 1 & X & -1 \\ \varkappa - 2\varkappa 0 & \varkappa X & -\varkappa & 0 \\ 0 & \varkappa & -\varkappa X & 2\varkappa 0 - \varkappa \end{pmatrix}, \qquad \det M = 4(X^2(\varkappa - \varkappa_0)^2 - \varkappa_0^2).$$

1 ЗАДАЧИ $\Phi_{\text{ИЗ}}$ Т_ЕX

Решение уравнения $\det M = 0$ относительно \varkappa приводит к тем же корням, что и уравнение (1): $\varkappa = (1 \pm e^{-2A\varkappa})\varkappa_0$, таким образом СЛУ будет совместна, если вырождена.

Стоит заметить, что $\operatorname{rg} M(\varkappa_{\pm}) = 3$, тогда, решая уравнение относительно A, B, C, находим

$$\varkappa_{+}$$
: $A=D,\;B=C=rac{A}{1+e^{2aarkappa}},$ четное решение \varkappa_{-} : $A=-D,\;B=-C=-rac{A}{-1+e^{2aarkappa}},$ нечетное решение

Для наглядности можем их построить.

Рис. 1: Четное и нечётное решение к Т5

Стоит вспомнить, что уравнение (1) – трансцендентное уравнение, где $\varkappa = \varkappa(E)$, то есть уравнение на уровни энергии. Как мы показали, \varkappa_+ соответствует четному решению и \varkappa_- нечётному.

Рис. 2: Решение трансцендентного уравнения к Т5