Gabarito Exercícios Prova 1

1. Considere dois programas A e B com complexidade 200n² e 22ⁿ, respectivamente. Qual é o mais eficiente?

Valor de n	200n ²	22 ⁿ
1	200	22
2	800	484
10	20000	2048
12	28800	8192
13	33800	16384
14	39200	32768
15	45000	65536

Para n<= 14 o algoritmo B é mais eficiente Para n>=15 o algoritmo A é mais eficiente

n		200n^2	22^n
	1	200	22
	2	800	484
	3	1800	10648
	4	3200	234256
	5	5000	5153632
	6	7200	1.13E+08
	7	9800	2.49E+09

Para $n \le 2$ o algoritmo B é mais eficiente, a partir de n > 2 o algoritmo A será mais eficiente.

2. Um algoritmo tem complexidade $2n^2$. Num certo computador, num tempo t, o algoritmo resolve um problema de tamanho x. Imagine agora que você tem disponível um computador 30 vezes mais rápido. Que parcela do tempo t precisará para resolver um problema 3 vezes maior?

$$T = Comp/VC$$

$$Comp = 2n^2$$

Computador A temos
$$T = t$$
 $n = x$ $VC = Vca$

Computador B temos
$$T = Tb = ??$$
 $VC = Vcb = 30Vca$ $n = 3x$

Em A
$$t = 2x^2/Vca$$

Vca =
$$2x^2 / t$$

Em B Tb = $2(3x)^2 / 30$ Vca

$$Vca = 18x^2/30Tb$$

Igualando os dois Vca obtemos

$$2x^2 / t = 18x^2 / 30$$
Tb

$$Tb = 18t/60$$

$$Tb = 3t/10$$

3. Escreva o pseudocódigo de um algoritmo que troque os valores contido em um arranjo A de n posições pela seguinte política: cada elemento i dentro do arranjo será substituído pela soma de todos os (i-1) elementos mais o elemento i. Por exemplo, dado um arranjo [1; 2; 3; 4; 5] após a aplicação da função teríamos esse arranjo preenchido com os seguintes valores [1; 3; 6; 10; 15].

Solução 1

Algoritmo TroqueValores(A,n)

- 1 soma = 0
- 2 **for** i=1 **to** n
- $3 \quad \text{soma} = \text{soma} + A[i]$
- 4 A[i] = soma

Solução 2

Algoritmo TroqueValores(A,n)

- 1 for i = 2 to n
- 2 chave = A[i]
- j = i-1
- 4 A[i] = A[i] + A[j]

Solução 3

Troca dos valores

1-For j=1 to A.comprimento

- 2- k = A[j]
- i = j-1
- 4- novoValor = novoValor + k
- 5- A[j] = novoValor

Solução 4

Algoritmo soma_Ant(A[n])
$$Se(n>1) \qquad C1|1$$

$$For i=1 \text{ to } n \qquad C2|n-1$$

$$A[i] = A[i]+A[i-1] \qquad C3|n-1$$

$$retorna A \qquad C4|1$$

4. Qual invariante de laço esse algoritmo mantém? Usando um invariante de laço, prove que seu algoritmo é correto. Certifique-se de que seu invariante de laço satisfaz as três propriedades necessárias.

A **invariante de laço** para esse pseudocódigo é a seguinte: no início de cada iteração do loop for, indexado por i, a variável soma contem a soma de todos os elementos A[1, 2, ...(i-1)].

Inicialização: Começamos mostrando que a invariante do laço é válida antes da primeira interação do laço, nesse momento a variável i ainda não foi inicializado, portanto trivialmente soma=0.

Manutenção: A cada volta do loop, a variável soma contem a soma de todos os elementos do subvetor A[1.. i-1]

Témino: Quando sair do laço i=n+1 e a variável soma contem a soma de todos os lementos do vetor A[1.. n].

5. Para esse algoritmo forneça os tempos de execução do melhor caso e do pior em notação Θ.

Algoritmo TroqueValores(A,n)		custo	vezes
1	soma = 0	c_1	1
2	for $i = 1$ n	c_2	n + 1
3	soma = soma + A[i]	c_3	n
4	A[i] = soma	c_4	n

$$T(n) = c_1 + c_2(n+1) + c_3n + c_4n$$

$$T(n) = (c_1^2 + c_2^2 + c_3^2 + c_4^2) + c_4n + c_4n$$

 $T(n) = (c2 + c_3 + c_4)n + c_1 + 1$

Para o melhor e pior caso $\Theta(n)$