

Introduction to Machine Learning

WSS ML Workshop

WSS 2024

Outline

- Introduction and Motivation
- ML Problems
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Loss Function and Optimization
- Generalization and Overfitting

Machine Learning: Motivation

Extensive influence of Machine Learning across multitude of applications and everyday life:

- Computer Vision
- Signal Processing
- Audio and Speech Recognition
- Natural Language Processing
- Computational Social Science
- Control

Machine Learning: Motivation

Extensive influence of Machine Learning across multitude of applications and everyday life:

- Computational Biology and Bioinformatics
- Medicine, Diagnosis and Health Care
- Computational Neuroscience
- Brain-Computer Interface
- Financial Forecasting
- Recommender Systems

Machine Learning: Motivation

Why ML applications are growing?

- Improved machine learning algorithms
- Availability of data
 (Increased data capture, networking, ...)
- Algorithms too complex to write by hand
 - Demand for complex systems
 (high-dimensional, multi-modal, ...)
 - Demand for self-customization to user or environment

Machine Learning: Concept

- Making machines learn!
- Using statistical models and algorithms to perform a specific task by learning data patterns, without being explicitly programmed
- Generalization to new unseen examples.

Machine Learning: Main Recipe

A pattern exist ...

We do not know it mathematically!

We have data on it :)

Machine Learning: Role of Data

What's the scope?

WSS 202

Machine Learning: Main Steps

Typical steps:

Main ML Problems

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Density Estimation
 - Generative Modeling
 - Clustering
 - Dimensionality Reduction
- Reinforcement Learning
 - Multi-armed Bandit

Supervised Learning vs. Unsupervised Learning

Supervised learning

Given: Training set

Labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$

Goal: Learning a mapping from x to y

Supervised Learning vs. Unsupervised Learning

Supervised learning

Given: Training set

Labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$

Goal: Learning a mapping from x to y

Unsupervised learning

Given: Training set

$$D = \{(x^{(i)})\}_{i=1}^{N}$$

Goal: Revealing structure in the observed data and finding groups or intrinsic structures in the data

Supervised Learning: Classification vs. Regression

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

Supervised Learning: Classification vs. Regression

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

• Regression: predict a continuous target variable e.g. $y \in [0, 1]$

Supervised Learning: Classification vs. Regression

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

• Regression: predict a continuous target variable e.g. $y \in [0, 1]$

Classification

• A function $f: \mathbb{R}^n \to \{1, ..., k\}$ specifies which of k categories an input vector x belongs to.

Classification

- A function $f: \mathbb{R}^n \to \{1, ..., k\}$ specifies which of k categories an input vector x belongs to.
- Case Study: KNN (K Nearest Neighbors)
 - Stores all training cases and classify new cases based on similarity measure (like Euclidean distance)

Classification

More advanced applications:

Regression

• A function $f: \mathbb{R}^n \to \mathbb{R}$ that maps an input vector x to a continues value y.

Regression

• A function $f: \mathbb{R}^n \to \mathbb{R}$ that maps an input vector x to a continues value y.

Case study: Linear Regression

$$f(x; w) = w_0 + w_1 x$$

 $w = [w_0, w_1]$: Parameters that be estimated during optimization

Regression

More advanced applications:

Object Detection

Hypothesis Class and Inductive Bias

• The aim of supervised learning is to find f^* (best solution) from **hypothesis space** (e. g. the set of all possible functions)

Hypothesis Class and Inductive Bias

- The aim of supervised learning is to find f^* (best solution) from **hypothesis space** (e. g. the set of all possible functions)
- Example:

In linear regression the hypothesis space include all possible functions with the form of

$$f(x; w_0, w_1) = w_0 + w_1 x$$

set of all possible functions H $\bullet f$

Hypothesis Class and Inductive Bias

- Inductive bias is the set of assumptions that a learner uses to predict outputs of given inputs.
- Some times we use our knowledge about the nature of data to restrict the hypothesis space.

Supervised Learning (Recap)

• Classification: predict a discrete target variable e.g. $y \in \{1, 2, ..., C\}$

• Regression: predict a continuous target variable e.g. $y \in [0, 1]$

Unsupervised Learning

Unsupervised learning

Given: Training set

$$D = \{(x^{(i)})\}_{i=1}^{N}$$

Goal: Revealing structure in the observed data and finding groups or intrinsic structures in the data

Main Approaches:

- Density Estimation
- Generative Modelling
- Clustering
- Dimensionality Reduction

• Estimating the probability density function p(x), given a set of data points $\{x^{(i)}\}_{i=1}^N$ drawn from it.

More sophisticated applications:

More sophisticated applications:

More sophisticated applications:

Smile (discrete value) Smile (probability distribution) -1 0 1 Vs.

latent variable value

Variational Autoencoder (VAE)

Generative Modeling

 Sampling new data points based on observed data distribution.

• This can be achieved with / without explicitly learning density function p(x).

Generative Modeling:

More sophisticated applications (explicit density estimation)

Sampling from Multivariate Gaussian Distribution

Variational Autoencoder (VAE)

Generative Modeling:

More sophisticated applications (implicit density estimation)

- Generative Adversarial Networks (GANs)
- Diffusion Models

Generative Modeling:

More sophisticated applications (implicit density estimation)

- Large Language Models (LLMs)
- Generative pre-trained transformers (GPT)

Clustering

• A technique to assign each point into a specific group.

Clustering

• A technique to assign each point into a specific group.

Clustering: Case Study

K-means Algorithm:

- 1. Choose number of clusters K.
- 2. Pick K random points as cluster centers (centroid)
- 3. Compute the distance between data points and all centroids
- 4. Assign each data point to the closest centroid
- Compute the centroids for the clusters (by averaging)
- 6. Iterate steps 3-5 until convergence (no centroid change)

Clustering: Case Study

K-means Algorithm:

- 1. Choose number of clusters K.
- 2. Pick K random points as cluster centers (centroid)
- 3. Compute the distance between data points and all centroids
- 4. Assign each data point to the closest centroid
- 5. Compute the centroids for the clusters (by averaging)
- 6. Iterate steps 3-5 until convergence (no centroid change)

 A technique to find a lower-dimensional representation of data features that preserves some of its properties.

- A technique to find a lower-dimensional representation of data features that preserves some of its properties.
- Motivations:
 - Computation
 - Visualization
 - Feature extraction

- A technique to find a lower-dimensional representation of data features that preserves some of its properties.
- Case Study:
 Principal Component Analysis (PCA)

More sophisticated methods:

Variational Autoencoder (VAE)

Unsupervised Learning (Recap)

Unsupervised learning

Given: Training set

$$D = \{(x^{(i)})\}_{i=1}^{N}$$

Goal: Revealing structure in the observed data and finding groups or intrinsic structures in the data

- Main Approaches:
 - Density Estimation
 - Generative Modelling
 - Clustering
 - Dimensionality Reduction

Supervised Learning vs. Unsupervised Learning

