NMB - Oefenzitting 6: Eigenwaardenproblemen

Simon Telen, Dries De Samblanx, Daan Camps

1 Defectieve matrices

Opgave 1. Beschouw de $n \times n$ -matrix

$$A = \begin{bmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & 1 & \end{bmatrix}$$

- a) Wat zijn de eigenwaarden van deze matrix en wat is de multipliciteit ervan?
- b) Perturbeer het element $a_{n,1}$ van deze matrix. Wat zijn de eigenwaarden?
- c) Wat is je besluit?

2 Stellingen van Gerschgorin en Bauer-Fike

Opgave 2. In deze oefening tonen we onderstaande stelling aan en passen we ze toe om de eigenwaarden van een matrix te localiseren.

Stelling 1 (Gerschgorin) Gegeven een $m \times m$ matrix A en de m gesloten ronde schijven D_i (disks) in het complexe vlak met middelpunten a_{ii} en stralen $\sum_{i \neq j} |a_{ij}|$. Enerzijds liggen alle eigenwaarden van A in de unie van al deze schijven D_i . Anderzijds, als k schijven met elkaar overlappen en een aaneengesloten domein vormen dat disjunct is van de andere m - k schijven, dan liggen er exact k eigenwaarden in dit domein.

- a) Toon het eerste deel van bovenstaande stelling aan. (Hint: beschouw een willekeurige eigenwaarde λ en bijhorende eigenvector x genormaliseerd in de ∞ -norm.)
- b) Beschouw de matrix:

$$A = \begin{bmatrix} -3 & 0.5 & 0.1 \\ 0.2 & -4 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Wat kan je gebaseerd op de stelling van Gerschgorin zeggen over de ligging van de eigenwaarden?

c) Toon aan dat indien A een diagonaal dominante matrix is, dat A niet singulier is.

Opgave 3. In deze oefening gaan we na wat de invloed is van een additieve perturbatie op een matrix A op het spectrum van A. We gaan er vanuit dat A diagonalizeerbaar (of niet defectief) is. Stel $\tilde{A} = A + \delta A$ en noem $\Lambda(A)$ het spectrum van A. We bestuderen volgende stelling.

Stelling 2 (Bauer-Fike) Beschouw een eigenwaarde $\tilde{\lambda}$ van \tilde{A} en noem V de matrix met als kolommen de eigenvectoren van A. Er bestaat een $\lambda \in \Lambda(A)$ zodanig dat

$$|\lambda - \tilde{\lambda}| \le \kappa_p(V) \|\delta A\|_p$$

met $p \ge 1$ en κ_p het conditiegetal ten opzichte van de p-norm.

- a) Genereer een random niet defectieve 7×7 matrix A in Matlab met eigenwaarden $0, 1, \ldots, 6$ en matrix van eigenvectoren V met $\kappa_2(V) = 7$. Bereken ook de geperturbeerde matrices $\tilde{A}_k = A + \delta A_k$ waarbij δA_k random matrices zijn met $\|\delta A_k\|_2 = 10^k \cdot \epsilon_{\text{mach}}$, $1 \le k \le 10$. Plot het verloop van de absolute verandering van de grootste eigenwaarde ten opzichte van k tesamen met de bovengrens van Bauer-Fike voor de 2-norm.
- b) Vervang de matrix A uit de eerste deelvraag door een matrix met eigenwaarden $1, 10, \dots 10^6$ en maak op dezelfde manier een figuur. Wat gebeurt er en hoe valt dit te verklaren?
- c) Bewijs dat voor een normale matrix $(A^{\top}A = AA^{\top})$ de waarde van $|\lambda \tilde{\lambda}|$ begrensd is door $||\delta A||_2$ en ga dit na op dezelfde manier als in de vorige deelvragen.

3 De QR-methode

Opgave 4. Het laatste deel van de oefenzitting mag je gebruiken om aan de implementatie van qr_rayleighshift uit opgave 5 van het practicum te werken. Wanneer je de code van die opgave klaar hebt, kan je ze testen met de volgende voorbeeldproblemen.

Construeer twee testmatrices:

• $A_1 = P_1 \Lambda_1 P_1^T$ met P_1 orthogonaal en

$$\Lambda_1 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{array} \right]$$

• $A_2 = P_2 \Lambda_2 P_2^{-1} \text{ met } \kappa(P_2) = 10^5 \text{ en } \Lambda_2 = \Lambda_1$

Bepaal voor de 2 testmatrices hoe de convergentie verloopt en waarom dat je dit gedrag ziet.