

SEQUENCE LISTING

University of Victoria Innovation and Development Corporation Hintz, William E. Eades, Caleb Joshua

- <120> Mannosidases and Methods for using the Same
- <130> 2847-62447-01
- <140> 10/089,211
- <141> 2002-03-25
- <150> PCT/US00/27210
- <151> 2000-10-02
- <150> 60/157,341
- <151> 1999-10-01
- <160> 19
- <170> PatentIn version 3.1
- <210> 1
- <211> 3328
- <212> DNA
- <213> Aspergillus nidulans

<400> 1

agggeetttt caggggetgg ttggeeaaac ctgeegtatt ttegatteag ggegggeett 60 taattetggg gacegatate eettgaaege gggggeaate agtteaaeca acceagaeeg 120 ctgggcttgg tatgagattg cgagcatcta tgtcggtgta ccttctgaat gacaatgaat 180 gtattttact tctcgaaaag aacccttggg cactgaattg tgcggagaat gatgccctga 240 ttatgataca actagtccgc tccgtcaagc cacaagggtc tgggcagtcc gctataaatc 300 aaaatcgcct gcacgaacag acgaataacc aagaaaacgc ccgagcgcga gcgtttcttc 360 ttcctctaag ccttgcagct ggctctgcgt ctttgatcaa ccctttagct gaatttcccc 420 agaacttcaq ccctctqcat cctqtcctta ccqcaactcq ttaacctqcq cqacctcqcq 480 cgaccacage ettaggttte gagatgecat gaaaateaga aattgaacce cetttecatt 540 actateatte tetgeattet gegagtgate tgteettega egtteettet tteeageget 600 geggegeett cactetegtt gectaegttt gaccaeggte etaectetee tactgetgat 660 tattaggctc ctccctacgc ctccaataca gggaagtcgc cggccatgtt tcgtgcacga 720 cgatctcgca tctcgctggt gtttgccgtt atatttgtcc tcctcatatt ccactttagc 780 cgtctcgcag ttacgatcag cctgcaatct tgggtacctc cgccgcccgt cgatcaccat 840 aatccccctt tccccgacca gaacctcaaa gatccatacg aaaacgacaa tagtgcgacc 900 ggcagtgggg ctcctccgcc tgcgttggta gagccagaag aataccaacg accaccactt 960

tacacagatt cagatgacag cccaactccg tcaaaagaac gcctggacac cccgagcaat 1020 gtcccatctc aggagcctga atttgatgcc gccagacttc agacgggtgc gcagacccaa 1080 aataaacatg aagatgatga ggatattgtc ccaatttctc actggaagcc gatgcccgaa 1140 1200 cggcatccag tcagtccgga ggctttgatc aagctgccaa ccgggcaatc aaaggaactc ccccaactqc aaqctaaqtt caaggacgag tcgtcctcgg acaagatgca gcggctgcaa 1260 1320 caacttgaca ctatcaagtc ggcgttctta catgcgtgga acggttacaa gatctctgcc 1380 atgggtcatg atgaggttag acctctgcgc ggtggtttca aggacacatt caatggctgg ggcgcgaccc ttgtcgacgc cttggatacc ctgtggatca tggatctcaa agaggagttc 1440 tccatggcag tcgactacgt caagaaaatc gattttacca ccagcaccaa gaaagagatt 1500 ccggtctttg aaaccactat tcgctaccta ggcgggatgc tcggggccta tgatatttcg 1560 1620 ggacacaaat acgatatact tttggaaaag tctgttgagc ttgcggatgt cttgatggac 1680 gccttcgaca caccgaaccg gatgccaacc ctctattata aatggagccc agagtatgct 1740 teaqaqttte qeeqqqqqa etttaagget gttetegeeg agettggete tetetetete gagttcacgc gtttggcgca gttgaccaaa caggacaagt actacgatgc aattgcacga 1800 atcacaaatg agctcgaaaa gtatcaggat ttgacaaagc ttcccggctt gtggcctctc 1860 aacctggacg catccgggtg caggcgagtt cccggcgtct cgcgagagcc tgctgcggct 1920 1980 acaagacaaa ttcatgaggg cggagagcct gtccgtcatg acaatgattc gtttgaaacg 2040 ggttttcctg tatcagtcga tactcggact cctccccaa agcaagattg caccggaggc 2100 2160 ctcaacgatc agetetcagg cattgacaag ttcggactcg gagccettgg tgactctacg 2220 tacgagtact taccgaaaga gtatatgttg ctcggcggta acaacgacca gtacctcaac atgtatcaga aggccatgga cacagtgcga gaatatcttg tttatcagcc aatgctcaag 2280 aataatcgcg atgtccgctt cttagcgaca gttagtatga caaagagcct tgatgcaaac 2340 cctccggggc gtaccacttt cgcgtacgaa ggcactcacc tcacctgttt tgctggtggt 2400 atgettgeca ttggegecaa gttgtttggg ettgataagg atetaaaget gggtagteaa 2460 ctgacggacg gctgtgtctg ggcatatgaa gccacaaagt ccggaatcat gccggaagca 2520 ttccaactgg tcccttgtaa gaaaggcgag ccatgcgaat gggatgagga cgcatactac 2580 2640 atggccatgg atccttatgc cgacaagcgg ccaatatcac ataacaaacg ctccgccggc 2700 cctgaaaagg ggaattggca cgtcgtcgcc acagccgaat cgtcttcgcc ccaggaagat aaaacacaga aatcaaccac tactgagggt cgacacaccg gtacaactac cggggcaggc 2760

gegetetege acgaggaatt egteaeggga aaaateetea acgaeegaet eeegeeggge 2820 atgacaggga totoggotog goagtacoto ottogocogg aggogatoga gtotgtotto 2880 2940 atcatgttcc gcctcacggg cgatccttcc tggcgcgaaa agggttggaa gatgttccag gctgtcgaca aagccacgaa gacggagctg gcgaactcgg ccatttccga cgtaaccgtc 3000 gataatccac gcccggtgga cagtatggaa tcattctggc ttgcggagac tctgaaatac 3060 3120 ttctaccttc ttttcagcga tccaagcctg gtgagccttg acgaatatgt cttgtaagtg atgettgact taategactg ettgatgetg aetttteeet taggaacace gaggeteate 3180 cgttcaagcg acccaagtac tgaagtacta atttaaatga tcttttagcc tgtatctata 3240 catggccgct ccgctgtaga agcattgata ccattaagac agtatcgctg cattcgtgta 3300 3328 ccatttgagc ttccagagga acctcttt

<210> 2

<211> 2448

<212> DNA

<213> Aspergillus nidulans

<220>

<221> variation

<222> (1632)..(1632)

<223> R = A, C, G, or T

<400> 2

atgtttcgtg cacgacgate tegeateteg etggtgtttg cegttatatt tgteeteete 60 atattccact ttagccgtct cgcagttacg atcagcctgc aatcttgggt acctccgccg 120 cccgtcgatc accataatcc ccctttcccc gaccagaacc tcaaagatcc atacgaaaac 180 gacaatagtg cgaccggcag tggggctcct ccgcctgcgt tggtagagcc agaagaatac 240 caacgaccac cactttacac agattcagat gacagcccaa ctccgtcaaa agaacgcctg 300 gacaccccga gcaatgtccc atctcaggag cctgaatttg atgccgccag acttcagacg 360 ggtgcgcaga cccaaaataa acatgaagat gatgaggata ttgtcccaat ttctcactgg 420 aagccgatgc ccgaacggca tccagtcagt ccggaggctt tgatcaagct gccaaccggg 480 caatcaaagg aactccccca actgcaagct aagttcaagg acgagtcgtc ctcggacaag 540 atgcagcggc tgcaacaact tgacactatc aagtcggcgt tcttacatgc gtggaacggt 600 tacaagatet etgeeatggg teatgatgag gttagaeete tgegeggtgg ttteaaggae 660 acattcaatg gctggggcgc gacccttgtc gacgccttgg ataccctgtg gatcatggat 720 ctcaaagagg agttctccat ggcagtcgac tacgtcaaga aaatcgattt taccaccagc 780 accaagaaag agattccggt ctttgaaacc actattcgct acctaggcgg gatgctcggg 840

gcctatgata	tttcgggaca	caaatacgat	atacttttgg	aaaagtctgt	tgagcttgcg	900
gatgtcttga	tggacgcctt	cgacacaccg	aaccggatgc	caaccctcta	ttataaatgg	960
agcccagagt	atgcttcaga	gtttcgccgg	ggggacttta	aggctgttct	cgccgagctt	1020
ggctctctct	ctctcgagtt	cacgcgtttg	gcgcagttga	ccaaacagga	caagtactac	1080
gatgcaattg	cacgaatcac	aaatgagctc	gaaaagtatc	aggatttgac	aaagcttccc	1140
ggcttgtggc	ctctcaacct	ggacgcatcc	gggtgcaggc	gagttcccgg	cgtctcgcga	1200
gagcctgctg	cggctgggca	gccagtcaga	tggtcctctg	acgagatcaa	ctcgacgagc	1260
tcggtatcgt	atcgtacaag	acaaattcat	gagggcggag	agcctgtccg	tcatgacaat	1320
gattcgtttg	aaacgggttt	tcctgtatca	gtcgatactc	ggactcctcc	cccaaagcaa	1380
gattgcaccg	gaggcctcaa	cgatcagctc	tcaggcattg	acaagttcgg	actcggagcc	1440
cttggtgact	ctacgtacga	gtacttaccg	aaagagtata	tgttgctcgg	cggtaacaac	1500
gaccagtacc	tcaacatgta	tcagaaggcc	atggacacag	tgcgagaata	tcttgtttat	1560
cagccaatgc	tcaagaataa	tcgcgatgtc	cgcttcttag	cgacagttag	tatgacaaag	1620
agccttgatg	cnaaacctcc	ggggcgtacc	actttcgcgt	acgaaggcac	tcacctcacc	1680
tgttttgctg	gtggtatgct	tgccattggc	gccaagttgt	ttgggcttga	taaggatcta	1740
aagctgggta	gtcaactgac	ggacggctgt	gtctgggcat	atgaagccac	aaagtccgga	1800
atcatgccgg	aagcattcca	actggtccct	tgtaagaaag	gcgagccatg	cgaatgggat	1860
gaggacgcat	actacatggc	catggatcct	tatgccgaca	agcggccaat	atcacataac	1920
aaacgctccg	ccggccctga	aaaggggaat	tggcacgtcg	tcgccacagc	cgaatcgtct	1980
tegececagg	aagataaaac	acagaaatca	accactactg	agggtcgaca	caccggtaca	2040
actaccgggg	caggcgcgct	ctcgcacgag	gaattcgtca	cgggaaaaat	cctcaacgac	2100
cgactcccgc	cgggcatgac	agggatctcg	gctcggcagt	acctccttcg	cccggaggcg	2160
atcgagtctg	tcttcatcat	gttccgcctc	acgggcgatc	cttcctggcg	cgaaaagggt	2220
tggaagatgt	tccaggctgt	cgacaaagcc	acgaagacgg	agctggcgaa	ctcggccatt	2280
tccgacgtaa	ccgtcgataa	tccacgcccg	gtggacagta	tggaatcatt	ctggcttgcg	2340
gagactctga	aatacttcta	ccttctttc	agcgatccaa	gcctggtgag	ccttgaggaa	2400
tatgtcttga	acaccgaggc	tcatccgttc	aagcgaccca	ggtactga		2448

<210> 3

<211> 815

<212> PRT

					•										
<213	213> Aspergillus nidulans														
<400 Met 1		3 Arg	Ala	Arg 5	Arg	Ser	Arg	Ile	Ser 10	Leu	Val	Phe	Ala	Val 15	Ile
Phe	Val	Leu	Leu 20	Ile	Phe	His	Phe	Ser 25	Arg	Leu	Ala	Val	Thr 30	Ile	Ser
Leu	Gln	Ser 35	Trp	Val	Pro	Pro	Pro 40	Pro	Val	Asp	His	His 45	Asn	Pro	Pro
Phe	Pro 50	Asp	Gln	Asn	Leu	Lys 55	Asp	Pro	Thr	Glu	Asn 60	Asp	Asn	Ser	Ala
Thr 65	Gly	Ser	Gly	Ala	Pro 70	Pro	Pro	Ala	Leu	Val 75	Glu	Pro	Glu	Glu	Thr 80
Gln	Arg	Pro	Pro	Leu 85	Thr	Thr	Asp	Ser	Asp 90	Asp	Ser	Pro	Thr	Pro 95	Ser
Lys	Glu	Arg	Leu 100	Asp	Thr	Pro	Ser	Asn 105	Val	Pro	Ser	Gln	Glu 110	Pro	Glu
Phe	Asp	Ala 115	Ala	Arg	Leu	Gln	Thr 120	Gly	Ala	Gln	Thr	Gln 125	Asn	Lys	His
~ 1	λar	7 an	Clv.	7 020	Tlo	1757	Drc	Tla	Cor	uic	m-r-	Tuc	Dre	Mo+	Dro

Glu Asp Asp Glu Asp Ile Val Pro Ile Ser His Trp Lys Pro Met Pro

Glu Arg His Pro Val Ser Pro Glu Ala Leu Ile Lys Leu Pro Thr Gly

Gln Ser Lys Glu Leu Pro Gln Leu Gln Ala Lys Phe Lys Asp Glu Ser

Ser Ser Asp Lys Met Gln Arg Leu Gln Gln Leu Asp Thr Ile Lys Ser

Ala Phe Leu His Ala Trp Asn Gly Thr Lys Ile Ser Ala Met Gly His

Asp Glu Val Arg Pro Leu Arg Gly Gly Phe Lys Asp Thr Phe Asn Gly

Trp Gly Ala Thr Leu Val Asp Ala Leu Asp Thr Leu Trp Ile Met Asp

Leu Lys Glu Glu Phe Ser Met Ala Val Asp Thr Val Lys Lys Ile Asp 245 250 255

Phe Thr Thr Ser Thr Lys Lys Glu Ile Pro Val Phe Glu Thr Thr Ile 260 265 270

Arg Thr Leu Gly Gly Met Leu Gly Ala Thr Asp Ile Ser Gly His Lys 275 280 285

Thr Asp Ile Leu Leu Glu Lys Ser Val Glu Leu Ala Asp Val Leu Met 290 295 300

Asp Ala Phe Asp Thr Pro Asn Arg Met Pro Thr Leu Thr Thr Lys Trp 305 310 315 320

Ser Pro Glu Thr Ala Ser Glu Phe Arg Arg Gly Asp Phe Lys Ala Val 325 330 335

Leu Ala Glu Leu Gly Ser Leu Ser Leu Glu Phe Thr Arg Leu Ala Gln 340 345 350

Leu Thr Lys Gln Asp Lys Thr Thr Asp Ala Ile Ala Arg Ile Thr Asn 355 360 365

Glu Leu Glu Lys Thr Gln Asp Leu Thr Lys Leu Pro Gly Leu Trp Pro 370 380

Leu Asn Leu Asp Ala Ser Gly Cys Arg Arg Val Pro Gly Val Ser Arg 385 390 395 400

Glu Pro Ala Ala Ala Gly Gln Pro Val Arg Trp Ser Ser Asp Glu Ile 405 410 415

Asn Ser Thr Ser Ser Val Ser Thr Arg Thr Arg Gln Ile His Glu Gly
420 425 430

Gly Glu Pro Val Arg His Asp Asn Asp Ser Phe Glu Thr Gly Phe Pro 435 440 445

Val Ser Val Asp Thr Arg Thr Pro Pro Pro Lys Gln Asp Cys Thr Gly 450 455 460

Gly Leu Asn Asp Gln Leu Ser Gly Ile Asp Lys Phe Gly Leu Gly Ala

Leu Gly Asp Ser Thr Thr Glu Thr Leu Pro Lys Glu Thr Met Leu Leu 485 490 495

Gly Gly Asn Asn Asp Gln Thr Leu Asn Met Thr Gln Lys Ala Met Asp 500 505 510

Thr Val Arg Glu Thr Leu Val Thr Gln Pro Met Leu Lys Asn Asn Arg 515 520 525

Asp Val Arg Phe Leu Ala Thr Val Ser Met Thr Lys Ser Leu Asp Ala 530 540

Asn Pro Pro Gly Arg Thr Thr Phe Ala Thr Glu Gly Thr His Leu Thr 545 550 555 560

Cys Phe Ala Gly Gly Met Leu Ala Ile Gly Ala Lys Leu Phe Gly Leu 565 570 575

Asp Lys Asp Leu Lys Leu Gly Ser Gln Leu Thr Asp Gly Cys Val Trp 580 585 590

Ala Thr Glu Ala Thr Lys Ser Gly Ile Met Pro Glu Ala Phe Gln Leu 595 600 605

Val Pro Cys Lys Lys Gly Glu Pro Cys Glu Trp Asp Glu Asp Ala Thr 610 615 620

Thr Met Ala Met Asp Pro Thr Ala Asp Lys Arg Pro Ile Ser His Asn 625 630 635 640

Lys Arg Ser Ala Gly Pro Glu Lys Gly Asn Trp His Val Val Ala Thr 645 650 655

Ala Glu Ser Ser Ser Pro Gln Glu Asp Lys Thr Gln Lys Ser Thr Thr
660 665 670

Thr Glu Gly Arg His Thr Gly Thr Thr Thr Gly Ala Gly Ala Leu Ser 675 680 685

His Glu Glu Phe Val Thr Gly Lys Ile Leu Asn Asp Arg Leu Pro Pro 690 695 700

Gly Met Thr Gly Ile Ser Ala Arg Gln Thr Leu Leu Arg Pro Glu Ala

Ile Glu Ser Val Phe Ile Met Phe Arg Leu Thr Gly Asp Pro Ser Trp
725 730 735

Arg Glu Lys Gly Trp Lys Met Phe Gln Ala Val Asp Lys Ala Thr Lys 740 745 750

Thr Glu Leu Ala Asn Ser Ala Ile Ser Asp Val Thr Val Asp Asn Pro 755 760 765

Arg Pro Val Asp Ser Met Glu Ser Phe Trp Leu Ala Glu Thr Leu Lys
770 780

Thr Phe Thr Leu Leu Phe Ser Asp Pro Ser Leu Val Ser Leu Glu Glu 785 790 795 800

Thr Val Leu Asn Thr Glu Ala His Pro Phe Lys Arg Pro Arg Thr 805 810 815

<210> 4

<211> 2177

<212> DNA

<213> Aspergillus nidulans

<400> 4

cggaatgtgc ctaaagtgga aggtatgatg atgcccagga tcgcgcccca gtcatcaact 60 ccatcatggg acggtccttg atcctcaagg cacgaagtgg agatcaggtc cgtagtgcat 120 atgcatggcc catcagcctg aagcacttcc ccaagcaaag tcgagactcg gacaccgatg 180 atatecetge tgteeetgae tgatgeatag tgcatgeece tgegetgget cecettttea 240 ctccgcctgg tctccagtct ccactcctca ccattgatgt ctgcccccgc ccgccctcca 300 tectecatea ttettatate taeggaeteg gteactegtt ateactagag teettgttta 360 ttcctagtgt ttgcattctt acgtgtagtt atgcgtacgc ttctcgctct cgcggccttc 420 gegggetttg cegetgetag ggtgecegee taegecatea egegeceggt gatgegeagt 480 gattetegeg cegacgetgt caaggaggee ttttegeatg cetgggaegg ttactacaac 540 tacgcttttc ctcatgacga gcttcacccg atttcgaacg gttacggaga ctcgcgaaac 600 cactggggcg cgtcggccgt cgacgctcta tcgacggcca tcatgatgcg caacgcgacc 660 atogtcaacc agatocttga coatattgot gotgtggact actocaagac caacgcoatg 720 gtaagtttgt tcgagacgac catccggtac ctcgcgggca tgatttctgg atacgacctg 780 840 ctcaaaggcc ctgcggcggg gttggtggac gacagcaggg tcgacgtgct tctagagcag

tcgcagaacc	tcgccgaggt	gctgaaattc	gcgttcgaca	ctccttctgg	tgtgccgtac	900
aacatgatta	acattacttc	gggcggcaac	gacggcgcca	cgaccaacgg	gctggccgtg	960
accggtacct	tggtgctgga	gtggacgcgt	ctgtcggact	tgactgggaa	cgacgagtat	1020
gcccgcttga	gccagagagc	tgaagactac	cttctccacc	cggagccagc	gcagtacgaa	1080
ccgttccctg	gattgattgg	aagcgcagtc	aatattgccg	acggcaagct	cgccaatggt	1140
cacatcagct	ggaatggtgg	cgcagactcg	tactacgagt	acctgatcaa	gatgtacgtc	1200
tacgatcccg	aacgctttgg	cctctaccgg	gaccgctggg	tegeagetge	cgagtcgagc	1260
atcaaccatc	tggcttcgca	cccgtccacc	cgcccagacg	tgactttctt	ggccacttac	1320
aacgaggagc	atcagctggg	cctgaccagc	caacacctga	cctgcttcga	cggtggaagc	1380
tttctgcttg	gtgggacatt	gctggaccgc	caggactttg	tcgacttcgg	ccttgacctt	1440
gtcgccggct	gccacgagac	gtacaactcg	actctgacgg	gcatcggccc	tgagcaattc	1500
agctgggacc	ctaacggtgt	gcccgacagc	cagaaggagc	tgttcgagcg	cgcaggcttc	1560
tacatcaaca	gcggccaata	cattcttcgt	cccgaagtca	tcgagagctt	ctactatgca	1620
tggcgcgtca	caggtgatgg	aacggtacgt	tcactcagcg	ctgcttccgt	aggaagacca	1680
tactgaccgc	tttagtacct	cgaatgggtg	tggaacgcct	tcaccaacat	caacaagtac	1740
tgccgcactg	cgaccggttt	cgcggggctg	gagaacgtca	atgcagcgaa	cggcggaggc	1800
cggatcgaca	accaggagag	tttcatgttc	gcagaggtgc	tgaagtattc	gtttttgact	1860
tttgctcctg	gtacgtttcc	ctagttctgg	ttcacctgtg	gagaatatta	ctgactgcag	1920
cagaggacga	ctggcaggtg	cagaagggca	gtggaaatac	gtttgtttat	aacaccgagg	1980
cgcacccgtt	taaggtgtat	acgcctcagt	agatagtaca	tattgtgctc	tagcgtactg	2040
catgcataac	ctaaatggca	tcacctactt	actgactact	ctactgacaa	gcagttgcct	2100
ttatatgctc	ttaaggagct	tgggcggtaa	atcgtaattc	actctaaact	ccgcgtgctg	2160
ttcggggaag	actagac					2177

<400> 5

atgcgtacgc ttctcgctct cgcggccttc gcgggctttg ccgctgctag ggtgcccgcc 60
tacgccatca cgcgcccggt gatgcgcagt gattctcgcg ccgacgctgt caaggaggcc 120
ttttcgcatg cctgggacgg ttactacaac tacgctttc ctcatgacga gcttcacccg 180

<210> 5

<211> 1515

<212> DNA

<213> Aspergillus nidulans

atttegaacq qttacqqaqa ctcqcgaaac cactggggcg cgtcggccgt cgacgctcta 240 tegaeggeea teatgatgeg caaegegaee ategteaaee agateettga ceatattget 300 gctgtggact actccaagac caacgccatg gtaagtttgt tcgagacgac catccggtac 360 420 ctcgcgggca tgatttctgg atacgacctg ctcaaaggcc ctgcggcggg gttggtggac gacaqcaggg tcgacgtgct tctagagcag tcgcagaacc tcgccgaggt gctgaaattc 480 qcqttcqaca ctccttctqq tqtqccgtac aacatgatta acattacttc gggcqgcaac 540 qacqqcqcca cqaccaacqq qctqqccqtq accqqtacct tqqtqctqqa qtqqacqcqt 600 ctqtcqqact tqactqqqaa cqacqaqtat gcccqcttga gccagagagc tgaagactac 660 cttctccacc cggagccagc gcagtacgaa ccgttccctg gattgattgg aagcgcagtc 720 780 aatattgccg acggcaagct cgccaatggt cacatcagct ggaatggtgg cgcagactcg 840 tactacgagt acctgatcaa gatgtacgtc tacgatcccg aacgctttgg cctctaccgg gaccgctggg tcgcagctgc cgagtcgagc atcaaccatc tggcttcgca cccgtccacc 900 eqeccaqaeq tqaetttett qqecaettae aacqaqqage atcaqetggg cetgaecage 960 caacacctga cctqcttcqa cqqtqgaagc tttctqcttg gtgggacatt gctggaccgc 1020 caggaetttg tegaettegg cettgaeett gtegeegget gecaegagae gtacaacteg 1080 1140 actetgaegg geateggeee tgageaatte agetgggaee etaaeggtgt geeegaeage cagaaggagc tgttcgagcg cgcaggcttc tacatcaaca gcggccaata cattcttcgt 1200 cccgaagtca tcgagagctt ctactatgca tggcgcgtca caggtgatgg aacgtacctc 1260 gaatgggtgt ggaacgcctt caccaacatc aacaagtact gccgcactgc gaccggtttc 1320 geggggetgg agaaegteaa tgeagegaae ggeggaggee ggategaeaa ceaggagagt 1380 ttcatqttcg cagaggtgct gaagtattcg tttttgactt ttgctcctga ggacgactgg 1440 caqqtqcaga aqggcagtgg aaatacgttt gtttataaca ccgaggcgca cccgtttaag 1500 1515 gtgtatacgc ctcag

```
<210> 6
```

<400> 6

Met Arg Thr Leu Leu Ala Leu Ala Ala Phe Ala Gly Phe Ala Ala Ala 1 5 10 15

Arg Val Pro Ala Thr Ala Ile Thr Arg Pro Val Met Arg Ser Asp Ser 20 25 30

<211> 505

<212> PRT

<213> Aspergillus nidulans

Arg	Ala	Asp 35	Ala	Val	Lys	Glu	Ala 40	Phe	Ser	His	Ala	Trp 45	Asp	Gly	Thr
Thr	Asn 50	Thr	Ala	Phe	Pro	His 55	Asp	Glu	Leu	His	Pro 60	Ile	Ser	Asn	Gly
Thr 65	Gly	Asp	Ser	Arg	Asn 70	His	Trp	Gly	Ala	Ser 75	Ala	Val	Asp	Ala	Leu 80
Ser	Thr	Ala	Ile	Met 85	Met	Arg	Asn	Ala	Thr 90	Ile	Val	Asn	Gln	Ile 95	Leu
Asp	His	Ile	Ala 100	Ala	Val	Asp	Thr	Ser 105	Lys	Thr	Asn	Ala	Met 110	Val	Ser
		115					120				Met	125			
Asp	Leu 130	Leu	Lys	Gly	Pro	Ala 135	Ala	Gly	Leu	Val	Asp 140	Asp	Ser	Arg	Val
145					150					155	Glu			-	160
				165					170		Met			175	
			180					185			Leu		190		
		195					200				Leu	205			
	210					215					Thr 220				
225					230					235	Ile				240
				245					250		Ile			255	
Gly	Ala	Asp	Ser 260	Thr	Thr	Glu	Thr	Leu 265	Ile	Lys	Met	Thr	Val 270	Thr	Asp

Pro	Glu	Arg 275	Phe	Gly	Leu	Thr	Arg 280	Asp	Arg	Trp	Val	Ala 285	Ala	Ala	Glu
Ser	Ser 290	Ile	Asn	His	Leu	Ala 295	Ser	His	Pro	Ser	Thr 300	Arg	Pro	Asp	Val
Thr 305	Phe	Leu	Ala	Thr	Thr 310	Asn	Glu	Glu	His	Gln 315	Leu	Gly	Leu	Thr	Ser 320
Gln	His	Leu	Thr	Cys 325	Phe	Asp	Gly	Gly	Ser 330	Phe	Leu	Leu	Gly	Gly 335	Thr
Leu	Leu	Asp	Arg 340	Gln	Asp	Phe	Val	Asp 345	Phe	Gly	Leu	Asp	Leu 350	Val	Ala
Gly	Cys	His 355	Glu	Thr	Thr	Asn	Ser 360	Thr	Leu	Thr	Gly	Ile 365	Gly	Pro	Glu
Gln	Phe 370	Ser	Trp	Asp	Pro	Asn 375	Gly	Val	Pro	Asp	Ser 380	Gln	Lys	Glu	Leu
Phe 385	Glu	Arg	Ala	Gly	Phe 390	Thr	Ile	Asn	Ser	Gly 395	Gln	Thr	Ile	Leu	Arg 400
Pro	Glu	Val	Ile	Glu 405	Ser	Phe	Thr	Thr	Ala 410	Trp	Arg	Val	Thr	Gly 415	Asp
Gly	Thr	Thr	Leu 420	Glu	Trp	Val	Trp	Asn 425	Ala	Phe	Thr	Asn	Ile 430	Asn	Lys
Thr	Cys.	Arg 435	Thr	Ala	Thr	Gly	Phe 440	Ala	Gly	Leu	Glu	Asn 445	Val	Asn	Ala
Ala	Asn 450	Gly	Gly	Gly	Arg	Ile 455	Asp	Asn	Gln	Glu	Ser 460	Phe	Met	Phe	Ala
Glu 465	Val	Leu	Lys	Thr	Ser 470	Phe	Leu	Thr	Phe	Ala 475	Pro	Glu	Asp	Asp	Trp 480
Gln	Val	Gln	Lys	Gly 485	Ser	Gly	Asn	Thr	Phe 490	Val	Thr	Asn	Thr	Glu 495	Ala
His	Pro	Phe	Lys 500	Val	Thr	Thr	Pro	Gln 505							

```
<210> 7
<211> 6
<212> DNA
<213> Aspergillus nidulans
<400> 7
                                                                      6
gtaagt
<210> 8
<211> 6
<212> DNA
<213> Aspergillus nidulans
<220>
<221> variation
<222> (4)..(4)
<223> N = A, C, G, or T
<400> 8
gtangt
                                                                      6
<210> 9
<211> 6
<212> DNA
<213> Aspergillus nidulans
<400> 9
gctgac
                                                                      6
<210> 10
<211> 6
<212> DNA
<213> Aspergillus nidulans
<400> 10
                                                                      6
rctrac
<210> 11
<211> 6
<212> DNA
<213> Aspergillus nidulans
<400> 11
gtacgt
                                                                      6
<210> 12
<211> 6
<212> DNA
<213> Aspergillus nidulans
<400> 12
actgac
                                                                      6
```

```
<210> 13
<211> 10
<212> PRT
<213> Asperfillus nidulans
<400> 13
Gly Gly Leu Gly Glu Ser Phe Thr Glu Thr
<210> 14
<211> 9
<212> PRT
<213> Aspergillus nidulans
<400> 14
Leu Ala Glu Thr Leu Lys Thr Leu Thr
               5
<210> 15
<211> 29
<212> DNA
<213> PCR Primer
<220>
<221> y represents c, t, or u; r represents g or a; n represents a, c, g, t, or
u; and h represents a, c, t, or u
<222> (1)..(29)
<223>
<400> 15
ggyggyctng gygartcntt ctacgagta
                                                                     29
<210> 16
<211> 33
<212> DNA
<213> PCR Primer
<220>
<221> y represents c, t, or u; r represents g or a; n represents a, c, g, t, or
u; and h represents a, c, t, or u
<222> (1)..(33)
<223>
<400> 16
gtanaggtac ttnagngtct cngcnagrha gaa
                                                                     33
<210> 17
<211> 2032
<212> DNA
<213> Aspergillus nidulans
<400> 17
ategatgtet getgeataaa ggeagaegga ggaagatgee gagaeggtgg teeteeetea
tcagcatcac agccatcttc ttggtcctct tcttcctcct tcataggaat acagacacac
                                                                    120
```

cacgcgccgc caatagggct acaaacggcc ctgccaacgg ctttgctagg cagcaaagca 240 tatgtccatc aacaccccct cagcctccat ataaccgaac cagcacggga gggttcaact 300 ggggtgaaat cccagtcaga taccctgtat ccgacttcat cccgctgtca accaactctc ctgcaacact tccgcgcatc caacgctctt ccttcccact tcaatcctca atcactaaat 360 420 cccgccaggc agcagtcaaa ggtgcctttc agcgcgcatg gacctcctac acaacccacg 480 cctggaaggc ggacgaggta cggcccatca cggccggatc tcgaaacaac tttggcggat ggggagcgac cctagtcgac aatctcgaca cactgctaat catggggctg gacgaggagt 540 tegeagegge agtegaegeg etegeagata tagaatteag ecegeaeteg teeceateet 600 660 cctcccagag cacaatcaac atattcgaaa cgacaatccg gtatctgggc ggcttgctcg 720 eggegtatga teteactgge tgtegagaga eteggetget ggacaaagea atceagettg 780 gggagatgat ctacacctcc ttcgacacag agaaccgcat gcccgtacca cggtggaatc tgcacaaagc aggcaacgga gagcctcagc gcgcggcagt gcagggcgtg ctcgctgaac 840 900 tegecageag cagtetegag tteaegegge tgtegeaget gaegggggat atgeggtatt 960 tegatgegge atccegcatt acegatetge ttgacteeca ageeggeeat aceeggatee 1020 cggggttgtg gccagtcagc gtgaacctgc agaaaggcga tctgacccgt gggtcgacat tcagttttgg cgggatggcc gatagcgcct acgagtatct cggcaagacg tatcggctcc 1080 teggtggtgt ggggaaaggg ceacagtaeg agegtetgge gegaaaegea etagatgeeg 1140 1200 ggattcgaca tctcctcttc cgaccgatga cgcctgatca tgcagatatc ctcctacccg 1260 gggtcgcgca cgcaaccagc tcttccgtgg gactcgagcc ccggacagag catctcgcct gttttgtggg tgggatgtac gcgctcgccg ggaagctttt ctcaaaccag acgtacctcg 1320 acaccggccg gaagctgaca gacggttgta tctggtacta cgataattca ccgctaggta 1380 tcatgccgga gatgttcacc gtgccggctt gtccgtcagt ggctgaatgt ccttgggacg 1440 aaacaagggg tggtatctac acctacgtgc gtgatgggca ctactttctg cgtcctgagg 1500 caatggagag tatcttctat atgtggcgca ttacagggga cgaaaagtac cgcgaggctg 1560 catggagaat gttcacggct atcgaagcgg ttacaaagac ggagtttggg aatgcggcgg 1620 tgcgggatgt tatggttgag gaaggaaatg taaagagaga agatagcatg gagagtttct 1680 1740 ggatggcaga gacgttgaag tatctgtatc tgatatttgg ggagaccgat ttggtcagct 1800 tggacgactg ggtgttcaat acggaggcgc accetttgag gggtgcaggg agttgacatt gtattcacac atcggtatag acaaattata gagtagacgt tcaaaacggc caaaactgaa 1860 1920 tggatagact ccatatgcat tgaatataca atgtattcgc tgcaaagcat ggataaaata

180

ggca	agtg	taa d	ccaa	ccct	ct at	tatca	accta	a cat	agad	cagc	tgat	tgatagaccg gc				
<211 <212	<210> 18 <211> 586 <212> PRT <213> Aspergillus nidulans															
<400> 18 Met Pro Arg Arg Trp Ser Ser Leu Ile Ser Ile Thr Ala Ile Phe Leu														•		
Met	Pro	Arg	Arg	Trp	Ser	Ser	Leu	Ile	Ser	Ile	Thr	Ala	Ile	Phe	Leu	
1				5					10					15		
Val	Leu	Phe	Phe 20	Leu	Leu	His	Arg	Asn 25	Thr	Asp	Thr	Pro	Arg 30	Ala	Ala	
Asn	Arg	Ala 35	Thr	Asn	Gly	Pro	Ala 40	Asn	Gly	Phe	Ala	Arg 45	Gln	Gln	Ser	
Ile	Cys 50	Pro	Ser	Thr	Pro	Pro 55	Gln	Pro	Pro	Tyr	Asn 60	Arg	Thr	Ser	Thr	
Gly 65	Gly	Phe	Asn	Trp	Gly 70	Glu	Ile	Pro	Val	Arg 75	Tyr	Pro	Val	Ser	Asp 80	
Phe	Ile	Pro	Leu	Ser 85	Thr	Asn	Ser	Pro	Ala 90	Thr	Leu	Pro	Arg	Ile 95	Gln	
Arg	Ser	Ser	Phe 100	Pro	Leu	Gln	Ser	Ser 105	Ile	Thr	Lys	Ser	Arg 110	Gln	Ala	
Ala	Val	Lys 115	Gly	Ala	Phe	Gln	Arg 120	Ala	Trp	Tyr	Ser	Thr 125	Thr	Thr	His	
Ala	Trp 130	Lys	Ala	Asp	Glu	Val 135	Arg	Pro	Ile	Thr	Ala 140	Gly	Ser	Arg	Asn	
Asn 145	Phe	Gly	Gly	Trp	Gly 150	Ala	Thr	Leu	Val	Asp 155	Asn	Leu	Asp	Thr	Leu 160	
Leu	Ile	Met	Gly	Leu 165	Asp	Glu	Glu	Phe	Ala 170	Ala	Ala	Val	Asp	Ala 175	Leu	
Ala	Asp	Ile	Glu 180	Phe	Ser	Pro	His	Ser 185	Ser	Pro	Ser	Ser	Ser 190	Gln	Ser	

aagatgtaca aagtgtcttt gttgtcgctt tgaaagtggt atatcatccc atcataaggt

Thr	Ile	Asn 195	Ile	Phe	Glu	Thr	Thr 200	Ile	Arg	Tyr	Leu	Gly 205	Gly	Leu	Leu
Ala	Ala 210	Tyr	Asp	Leu	Thr	Gly 215	Cys	Arg	Glu	Thr	Arg 220	Leu	Leu	Asp	Lys
Ala 225	Ile	Gln	Leu	Gly	Glu 230	Met	Ile	Tyr	Thr	Ser 235	Phe	Asp	Thr	Glu	Asn 240
Arg	Met	Pro	Val	Pro 245	Arg	Trp	Asn	Leu	His 250	Lys	Ala	Gly	Asn	Gly 255	Glu
Pro	Gln	Arg	Ala 260	Ala	Val	Gln	Gly	Val 265	Leu	Ala	Glu	Leu	Ala 270	Ser	Ser
Ser	Leu	Glu 275	Phe	Thr	Arg	Leu	Ser 280	Gln	Leu	Thr	Gly	Asp 285	Met	Arg	туг
Phe	Asp 290	Ala	Ala	Ser	Arg	Ile 295	Thr	Asp	Leu	Leu	Asp 300	Ser	Gln	Ala	Gly
His 305	Thr	Arg	Ile	Pro	Gly 310	Leu	Trp	Pro	Val	Ser 315	Val	Asn	Leu	Gln	Lys 320
Gly	Asp	Leu	Thr	Arg 325	Gly	Ser	Thr	Phe	Ser 330	Phe	Gly	Gly	Met	Ala 335	Asp
Ser	Ala	Tyr	Glu 340	Tyr	Leu	Gly	Lys	Thr 345	Tyr	Arg	Leu	Leu	Gly 350	Gly	Val
Gly	Lys	Gly 355	Pro	Gln	Tyr	Glu	Arg 360	Leu	Ala	Arg	Asn	Ala 365	Leu	Asp	Ala
Gly	Ile 370	Arg	His	Leu	Leu	Phe 375	Arg	Pro	Met	Thr	Pro 380	Asp	His	Ala	Asp
Ile 385	Leu	Leu	Pro	Gly	Val 390	Ala	His	Ala	Thr	Ser 395	Ser	Ser	Val	Gly	Leu 400
Glu	Pro	Arg	Thr	Glu 405	His	Leu	Ala	Cys	Phe 410	Val	Gly	Gly	Met	Tyr 415	Ala
Leu	Ala	Gly	Lys 420	Leu	Phe	Ser	Asn	Gln 425	Thr	Tyr	Leu	Asp	Thr 430	Gly	Arg

Lys Leu Thr Asp Gly Cys Ile Trp Tyr Tyr Asp Asn Ser Pro Leu Gly 435 440 445

Ile Met Pro Glu Met Phe Thr Val Pro Ala Cys Pro Ser Val Ala Glu 450 455 460

Cys Pro Trp Asp Glu Thr Arg Gly Gly Ile Tyr Thr Tyr Val Arg Asp 465 470 475 480

Gly His Tyr Phe Leu Arg Pro Glu Ala Met Glu Ser Ile Phe Tyr Met
485 490 495

Trp Arg Ile Thr Gly Asp Glu Lys Tyr Arg Glu Ala Ala Trp Arg Met 500 505 510

Phe Thr Ala Ile Glu Ala Val Thr Lys Thr Glu Phe Gly Asn Ala Ala 515 520 525

Val Arg Asp Val Met Val Glu Glu Gly Asn Val Lys Arg Glu Asp Ser 530 540

Met Glu Ser Phe Trp Met Ala Glu Thr Leu Lys Tyr Leu Tyr Leu Ile 545 550 555 560

Phe Gly Glu Thr Asp Leu Val Ser Leu Asp Asp Trp Val Phe Asn Thr 565 570 575

Glu Ala His Pro Leu Arg Gly Ala Gly Ser 580 585

<210> 19

<211> 6

<212> DNA

<213> Artificial Sequence

<220>

<223> Consensus Splice Site

<220>

<221> variation

<222> (1)..(1)

<223> R = G or A

<220>

<221> variation

<222> (4)..(4)

<223> R = G or A

<400> 19

rctrac