Seth W. Musser

70 Pacific Street Cambridge, MA 02139

swmusser.com swmusser@mit.edu

STATEMENT OF PURPOSE

My goal as a physicist is to probe the role that topology plays in fundamental physics phenomena from the quantum Hall effect to vortex dynamics in a superfluid. As such, in graduate school I plan to study the role of topology in hard condensed matter. I am also passionate about helping students to think about physics pictorially and to appreciate and take advantage of symmetry in their work.

EDUCATION

2018 - Present PhD student in PHYSICS

Massachusetts Institute of Technology: Cambridge, MA

2017-2018 MASt (MSc equivalent) with Distinction in APPLIED MATHEMATICS

The University of Cambridge: Cambridge, UK

2013-2017 BA with Honors in Physics

BS with Honors in MATHEMATICS

The University of Chicago: Chicago, IL

CUMULATIVE GPA: 3.97/4.00

HONORS AND AWARDS

2019-2022 NSF Graduate Fellow 2017-2018 Churchill Scholar

Summer 2017 Enrico Fermi Institute Undergraduate Research Award
Summer 2017 James Franck Institute Undergraduate Research Award
May 2017 John H Lewis Prize for best graduating physics student

Summer 2016 Selove Prize for Summer Research

May 2016 Phi Beta Kappa (3rd year) March 2016 Goldwater Scholar

PUBLICATIONS AND PRESENTATIONS

In preparation with Prof. Irvine: "Tunable Nucleation of Superfluid Vortices from Hydrofoil"

Talk for ChuSOARS: "Vortex Nucleation in Superfluids"
Paper for 2016 REU: "Weyl's Law on Riemannian Manifolds"

Paper for 2015 REU: "From Hamiltonian Systems to Poisson Geometry"

Talk for 2015 REU: "Poisson Geometry with Applications to the Hamiltonian Formulation

of Inviscid Fluid Mechanics"

Paper for 2014 REU: "Weakly Nonlinear Oscillations with Analytic Forcing"

RESEARCH EXPERIENCE

APR. 2016 - PRESENT

University of Chicago Department of Physics Superfluids Researcher

PI: Professor William Irvine

- Built from scratch simulation of dragging hydrofoil through a 2D superfluid governed by Gross-Pitaevskii equation (GPE); later independently ported to GPU
- Using simulation to understand the role circulation plays in vortex nucleation, and similarities between superfluid and ideal fluid flow
- Working on a paper detailing controlled nucleation of vortices in a superfluid, using a hydrofoil potential

SUMMER 2016, '15, '14

University of Chicago Department of Mathematics REU Student

MENTORS: Sean Howe and Yun Cheng, Clark Butler, and Ben Seeger

- 2016 Studied Riemannian geometry and the spectrum of the geometric Laplacian to understand Weyl's law and DeWitt expansion
- 2015 Studied Poisson manifolds to develop a rigorous background for understanding the Hamiltonian formulation of inviscid fluid mechanics
- 2014 Studied the failure of regular perturbation theory to address the weakly nonlinear oscillator and demonstrated two-timing as an alternative approach

JAN. 2015 - MAR. 2016

University of Chicago Department of Mathematics Mathematical Fluid Dynamics Researcher MENTOR: Professor Norman Lebovitz

- Studied turbulence through seminal papers and texts
- Studied the application of Hamiltonian formulation of inviscid fluid mechanics to stability results for Riemann ellipsoids
- Numerically and analytically evaluated various methods to probe stability within this context

WORK EXPERIENCE

SEP. 2014 - JUNE 2017

University of Chicago Department of Mathematics Junior Tutor for MATH 13000s

- · Lead 80-minute tutorial sessions twice a week to solidify students' understanding
- · Gave quizzes and other formative assessments, and graded homework

AUG. 2014 - OCT. 2014

University of Chicago College Programming Office Orientation Leader

- Helped set up and organize events for the Class of 2018's Orientation Week
- Led a group of 30 members of the Class of 2018 in discussions about drugs, alcohol, sexuality, race, and privilege at the college
- Conveyed the college's expectations for behavior while facilitating discussions

PROGRAMMING LANGUAGES

Fluent: LATEX, python, Mathematica, FORTRAN, OpenCL

Some Experience: CUDA, C, LabVIEW