МдАД: Дискретная математика

Осень 2018

Графы 1: 15 Сентября

Преподаватель: Антон Савостьянов

Асситент: Даяна Мухаметшина

Контакты: Антон Савостьянов, почта: a.s.savostyanov@gmail.com, telegram: @mryodo Даяна Мухаметшина, почта: dayanamuha@gmail.com, telegram: @anniesss1

Правила игры: Домашние задания следует присылать в читаемом виде не позднее чем через две недели (после проведения занятия) на почту ассистента. В выполнении домашнего задания ценен любой прогресс

1.1 Определения

Сегодня нам предстоит поговорить об объекте, который одновременно легко определить неформально и формально. В большинстве задач и приложений как раз неформальное представление о графах имеет основную ценность: следует понимать, что обсуждаемая нами математическая единица есть ничто иное как исключительно наглядная модель структуры или отношений между элементами некой сложной системы. Однако и формальное определение графов бывает исключительно полезно, если требуется говорить про бинарные отношения (например, отношения порядка) на нестандартном множестве элементов (об этом мы поговорим позднее).

Начнем мы с формального определения:

Определение 1.1. Для определения графа нам потребуется задать два множества:

- (a) множество вершин (vertices) (элементов графа) V произвольное конечное множество элементов системы;
- (b) и множество ребер (edges) графа E, где ребром называется пара вершин (u,v), $u,v\in V$.

Например, пусть дан граф G=(V,E), где множество V есть множество чисел $V=\{1,\,2,\,3,\,4,\,5,\,6,\,7\}$, а множество $E=\{(u,v)\mid u,v\in V,u\leq v\}$.

Чтобы наглядно представлять графы, договариваются множество вершин отрисовывать точками, а множество ребер — отрезками между ними.

Упражнение 1. Приведите иллюстрацию для графа G, заданного выше.

Определение 1.2. Если порядок вершин в паре важен (например, ребро означает «элемент a больше элемента b»), то граф называют ориентированным, а вместо отрезков рисуют стрелки между вершинами. В противном случае граф называют неориентированным.

Графы могут быть заданы несколькими способами:

- прямым заданием множеств V и E;
- графически (при помощи точек и отрезков/стрелок);
- при помощи таблицы смежности, где на месте с координатами (i,j) стоит 1, если есть ребро из i в j, или 0, если такого ребра нет. Если граф неориентированный, то ограничиваются заданием только части таблицы смежности над главной диагональю; иногда вместо 1 указывают так называемый вес ребра, например, длину дороги;
- при помощи списков смежности, где для каждой вершины указано множество вершин, в которые исходят ребра из данной вершины;
- и многие другие

1.2 Пути и циклы

Определение 1.3. Путем в графе называют последовательность вершин u_1, u_2, \ldots, u_n , такую что каждые две соседние вершины последовательности соединены ребрами из множества E:

$$\forall k: (u_{k-1}, u_k) \in E$$

Определение 1.4. Длино пути называют количество ребер пути, то есть если в пути n вершин, то его длина n-1.

Определение 1.5. Циклом в графе называют путь длины не меньше 3, начальная и конечная вершина которого совпадают: $u_1 = u_n$, $n \ge 4$.

Определение 1.6. Путь называют простым, если все его вершины различны; цикл называют простым, если все вершины цикла кроме u_1 и u_n различны.

Определение 1.7. Ребра вид (v,v) называют петлями. Часто рассматривают графы без них. Однако легко заметить, что в случае нашего графа G петли как раз будут по условию построения графа.

Определение 1.8. Иногда случается так, что при задании графа для множества E нарушают определение множества, а именно разрешают некоторым парам входить в него несколько раз (в этом случае корректнее использовать не термин «множество», а термин «совокупность»). Если ребро входит в множество E более одного раза, то такие повторяющиеся ребра называются кратными. Опять же, следует отметить, что зачастую договариваются, что в графах не может быть кратных ребер, однако это необязательно выполняется в жизненных условиях: например, если представить себе, что на графе автомобильных дорог есть старые и новые прямые дороги из Москвы в Петербург, то ровно они и будут кратными ребрами; несмотря на то, что хочется объявить старую дорогу ненужной, но в случае заторов (пробок) будет разумным оставить в рассмотрении кратное ребро.

1.3 Степень вершины

Определение 1.9. Степенью (degree) вершины неориентированного графа называется количество выходящих из нее ребер (несложно понять, что оно же равно количеству входящих в нее ребер). Такое число для вершины u обозначают d(u) или deg(u).

Определение 1.10. Исходящей степенью (out-degree) вершины ориентированного графа называется количество выходящих из нее ребер. Такое число для вершины u обозначают $d_{out}(u)$ или $deg_{out}(u)$.

Определение 1.11. Входящей степенью (in-degree) вершины ориентированного графа называется количество входящих в нее ребер. Такое число для вершины u обозначают $d_{in}(u)$ или $deg_{in}(u)$.

Теорема 1.12. Сумма степеней всех вершин неориентированного графа равна удвоенному числу ребер в данном графе:

$$\sum_{u \in V} deg(u) = 2|E|$$

Упражнение 2. Докажите, что не существует неориентированного графа с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Упражнение 3. В графе 100 вершин и 800 ребер. Докажите, что хотя из одной вершины выходят не меньше 16 ребер.

Теорема 1.13. Сумма исходящих степеней всех вершин ориентированного графа равно сумме входящих степеней всех вершин данного графа и равна количеству ребер в данном графе:

$$\sum_{u \in V} deg_{out}(u) = \sum_{u \in V} deg_{in}(u) = |E|$$

Упражнение 4. Граф называется полным, если в нем проведены всевозможные ребра (как правило, сюда намеренно не включают петли и кратные ребра). Пусть G — полный граф на n вершинах. Укажите:

- (a) степень каждой вершины графа G;
- (b) количество ребер в графе G;
- (c) длину минимального простого пути в графе G;
- (d) длину максимального простого пути в графе G.

Упражнение 5. Может ли оказаться, что в связном графе из n вершин степени всех вершин различны? Если да, то приведите пример, если нет, то докажите.

Определение 1.14. Дополнением графа \overline{G} называется такой граф на том же самом множестве вершин, что если ребро (u,v) есть в графе G, то его нет в графе \overline{G} и наоборот.

Упражнение 6. Пусть в графе G n вершин и k ребер. Укажите количество ребер в графе \overline{G} .

Упражнение 7. Докажите, что граф или его дополнение связны. Возможно ли, что это происходит одновременно?

Упражнение 8. В сказочной стране, название которой я не помню, среди прочих обитателей проживают Карабасы и Барабасы. Каждый Карабас знаком с шестью Барабасами и девятью Барабасами. Каждый Барабас знаком с десятью Карабасами и семью Барабасами. Кого в этой стране больше — Карабасов или Барабосов?

1.4 Связность и деревья

Определение 1.15. Неориентированный граф называют связным, если для любых двух вершин существует путь из одной вершины в другую исключительно по ребрам графа.

Определение 1.16. Ориентированный граф называют сильно связным, если для любых двух вершин существует путь из одной вершины в другую исключительно по ребрам графа.

Определение 1.17. Ориентированный граф называют слабо связным, если для любых двух вершин существует путь из одной вершины в другую исключительно по ребрам графа без учета их ориентации.

Определение 1.18. Если из вершины u есть путь в вершину v, то вершину v называют достижимой из вершины u.

Определение 1.19. В неориентированном графе множество попарно достижимых вершин, в которое нельзя добавить еще хотя бы одну вершину, не нарушая попарную достижимость (говорят, «максимальное по включению»), называется компонентой связности.

Теорема 1.20. Пусть число C есть количество компонент связности в данном графе. Тогда

$$C \ge |V| - |E|$$

Упражнение 9. Какое максимальное число ребер может быть в несвязном графе с n вершинами?

Определение 1.21. Неориентированный связный граф с минимальным числом ребер на данном множестве вершин называют деревом.

Определение 1.22. Неориентированный граф, где каждая компонента связности есть дерево, называют лесом или бором.

Теорема 1.23. Докажите при помощи математической индукции (или иначе), что в дереве на n вершинах (|V|=n) ровно n-1 ребро (|E|=n-1).

Упражнение 10. Дерево имеет 2017 вершин. Верно ли, что в нем найдется простой путь длины 3?

Упражнение 11. Существует ли дерево на 9 вершинах, в котором 2 вершины имеют степень 5?

Упражнение 12. Докажите, что если граф G является деревом, то в нем нет циклов. Такой граф называется ациклическим.

Упражнение 13. Пусть дан ациклический ориентированный граф. Обязан ли он быть деревом в слабо связном смысле (то есть минимальным слабо связным графом на данном множестве вершин)?

Упражнение 14. Докажите, что если граф G — дерево, то между любыми двумя несовпадающими вершинами есть единственный простой путь. Верно ли обратное?

Упражнение 15. Докажите, что если ориентированный граф ациклический, то каждая компонента сильной связности содержит ровно одну вершину. Верно ли обратное?

Упражнение 16 (задача о топологической сортировке). Докажите, что граф ацикличен тогда и только тогда, когда его вершины можно занумеровать так, что любое ребро ведет из вершины с меньшим номером в вершину с большим номером.

Упражнение 17. Рассмотрим связный граф без петель и кратных ребер. Докажите, что возможно удалить в нем одну вершину и все выходящие из нее ребра так, чтобы граф остался связным.

Упражнение 18. Найдите максимальное количество простых путей с заданными концами в ориентированном ациклическом графе на n вершинах.

Определение 1.24. Остовным деревом называют подграф графа, который является деревом на всех вершинах исходного графа.

Упражнение 19. Докажите, что любой связный граф имеет остовное дерево.

Упражнение 20. Имеется связный граф. Докажите, что в нем можно выбрать одну из вершин так, чтобы после ее удаления вместе со всеми ведущими из нее ребрами останется связный граф.

Упражнение 21. 50 команд сыграли турнир по волейболу в один круг. Говорят, что команда A сильнее B, если A выиграла у B или есть команда C, такая, что A выиграла у C, а C выиграла у B. Доказать, что команда, набравшая наибольшее число очков, сильнее любой другой.

Упражнение 22. В некоторой стране есть нерезиновая столица и еще 100 городов. Некоторые города (в том числе и столица) соединены дорогами с односторонним движением. Из каждого нестоличного города выходит 20 дорог, и в каждый такой город входит 21 дорога. Докажите, что в нерезиновую столицу нельзя проехать ни из одного города.