Weather Forecasting Project

1. Objective

To forecast future weather conditions using global weather data and demonstrate data science capabilities through comprehensive analysis and modeling. This includes:

- Data cleaning and preprocessing
- Exploratory Data Analysis (EDA)
- Forecasting using ARIMA and LSTM
- Advanced analyses like anomaly detection, spatial visualization, and feature importance

2. Data Cleaning And Pre Processing

- 1. Null Values: No missing values were found.
- 2. Outliers: Detected using IQR and visualized with boxplots. Handled in key features like temperature, humidity, and air quality.
- 3. Normalization: MinMaxScaler applied to scale numerical features.
- 4. Categorical Encoding:
 - a. Target column condition_text grouped into 6 major weather types (e.g., Sunny, Rainy, Snowy).
 - b. Categorical features like wind_direction, moon_phase encoded using LabelEncoder.

3. Exploratory Data Analysis

• Visualizations:

Temperature and Precipitation trends using line and box plot Correlation heatmap of key features

Insights:

- Strong correlation between humidity, precipitation, and condition type
- Seasonal temperature variations visible by country and region

4. Fore Casting Models

- ARIMA (AutoRegressive Integrated Moving Average)
 - Used for time series forecasting of temperature
 - Parameters: (5,1,0) optimized based on AIC
 - Forecasted temperature with decent accuracy
- **State of the Example 2** LSTM (Long Short-Term Memory)
 - Neural network model for sequential data
 - Trained on normalized temperature values
 - Outperformed ARIMA in capturing nonlinear patterns
- Ensemble Model
 - Combined ARIMA and LSTM predictions (average-based ensemble)
 - Provided smoother and more accurate temperature forecast

Advanced Analysis:

- Anomaly Detection
 - Identified extreme or unusual weather days using Z-score and IQR methods
 - Helpful for spotting climate disruptions
- Climate Analysis
 - Regional trends showed tropical regions had consistently higher humidity and precipitation
 - Temperate zones had higher variability in conditions
 - Environmental Impact
 - High PM2.5, CO levels correlated with low visibility and cloudy/foggy conditions
 - Air quality significantly impacted by location and temperature

Challenges:

- Dealing with many granular condition categories (reduced to 6 meaningful classes)
- Time series modeling required preprocessing datetime data
- Geographic data inconsistency handled via grouping and merging techniques