- 1. (001211) 求下列各函数的单调区间, 并证明.
 - (1) f(x) = 2x + 3;
 - (2) $f(x) = \frac{1}{x}$;
 - (3) $f(x) = x^2 + 2x$;

 - (4) $f(x) = x \frac{1}{x}$; (5) $f(x) = ax + \frac{b}{x}$, $\sharp \div a > 0$, b > 0;
- 2. (009518) 证明: 函数 $y = \frac{2}{r^3}$ 在区间 $(-\infty, 0)$ 上是严格减函数.
- 3. (001218) 判断下列各函数的单调性, 并证明
 - (1) $f(x) = \sqrt{1+x}$;
 - (2) $f(x) = x + x^5, x \in [0, +\infty)$:
 - (3) $f(x) = (\sqrt{x} + 1)(x^2 + 1)$:
- 4. (010178) 证明: 函数 $y = \lg(1-x)$ 在其定义域上是严格减函数.
- 5. (009521) 判断函数 $y = |x+1|, x \in [-2, 2]$ 的单调性, 并求出其单调区间.
- 6. (002894) 设函数 $f(x) = e^x + \frac{1}{e^x}$.
 - (1) 求证: y = f(x) 在 R 上不是增函数;
 - (2) 求证: y = f(x) 在 $[0, +\infty)$ 上是增函数.
- 7. (000092) 作出函数 $y = (x^2 1)^2 1$ 的大致图像, 写出它的单调区间, 并证明你的结论.
- 8. (002884) 下列函数中, 在其定义域上是单调函数的序号为_

①
$$y = \frac{2-x}{x}$$
; ② $y = x - \frac{1}{x}$; ③ $y = 3^{x-1}$; ④ $y = \ln \frac{1}{x}$; ⑤ $y = \tan x$.

- 9. (002885) 函数 y = |x 1| 递减区间的是
- $10._{(007911)}$ 画出函数 $y=x^2-2|x|$ 的图像, 并写出它的定义域、奇偶性、单调区间、最小值.
- 11. (007931) 作出函数 $y = |x^2 4x|$ 的图像, 并指出其单调区间.
- 12. (007932) 作出函数 y = 2|x| 3 的图像, 并指出其单调区间
- 13. (007941) 已知函数 y = f(x) 具有如下性质:
 - ① 定义在 R 上的偶函数; ② 在 $(-\infty,0)$ 上为增函数; ③ f(0)=1; ④ f(-2)=-7; ⑤ 不是二次函数. 求 y = f(x) 的一个可能的解析式.
- 14. (007950) 已知函数 $f(x) = \frac{ax+1}{x+2}$, $a \in \mathbf{Z}$. 是否存在整数 a, 使函数 f(x) 在 $x \in [-1, +\infty)$ 上递减, 并且 f(x)不恒为负? 若存在, 找出一个满足条件的 a; 若不存在, 请说出理由,
- 15. (1009517) 小明说: "如果当 x > 0 时, 总有 f(x) > f(0), 那么函数 y = f(x) 在区间 $[0, +\infty)$ 上是严格增函数." 他的说法是否正确? 说明理由

16. (010187) 如果函数 $y = x^2 - 2mx + 1$ 在区间 $(-\infty, 2]$ 上是严格减函数, 那么实数 m 的取值范围为_____ 17. (002895) 设常数 $a \in \mathbf{R}$. 若 $y = \log_{\frac{1}{2}}(x^2 - ax + 2)$ 在 $[-1, +\infty)$ 上是减函数, 求 a 的取值范围 18. (001270) 写出下列函数的单调减区间: (1) $y = x^2$; _____ (2) $y = x^2 + 2x + 3$; _____ (3) $y = -x^2 + 2x + 3$; _____ (4) $u = \sqrt{-x^2 + 2x + 3}$. 19. (002887) 函数 $y = (\frac{1}{2})^{x^2}$ 的递减区间是_____. 20. (002888) 函数 $y = \frac{1}{\sqrt{x^2 + 2x - 3}}$ 的递增区间是______. 21. (002977) 若函数 $f(x) = x + \frac{4}{x} (1 \le x \le 5)$,则函数 y = f(x) 的递减区间是______,递增区间是_____ 最小值是______, 最大值是______ 22. (002982) 函数 $y = 2x + \frac{1}{x}(x < 0)$ 的递增区间是______. 23. (004265) 已知 a 为实数, 函数 $f(x) = x|x-a|-a, x \in \mathbf{R}$. (1) 当 a=2 时, 求函数 f(x) 的单调递增区间; (2) 若对任意 $x \in (0,1)$, f(x) < 0 恒成立, 求 a 的取值范围. 24. (001278) 试分析函数 $y = x + \sqrt{4 - x^2}$ 的单调性. (提示, 分 $x \le 0$ 和 $x \ge 0$ 讨论, 有一部分比较容易) 25. (001331) 函数 $y = \log_{x^2+x-1} 2$ 的递增区间是_____ 26. (002889) 设常数 $a \in \mathbb{R}$. 若 $y = \frac{ax}{x+1}$ 在区间 $(-1,+\infty)$ 上递增, 则 a 的取值范围是______. 28. (007939) 已知 y = f(x) 是定义在 (-1,1) 上的奇函数, 在区间 [0,1) 上是减函数, 且 $f(1-a) + f(1-a^2) < 0$,

- 30. (009522) 设 y = f(x) 是奇函数, 且它在区间 (-3,0] 上是严格增函数.
 - (1) 求证: 它在区间 [0,3) 上是严格增函数;

求实数 a 的取值范围.

- (2) y = f(x) 是否在区间 (-3,3) 上是严格增函数? 说明理由.
- 31. (002899) 已知 y = f(x) 是偶函数, 且在区间 [0,4] 上递减. 记 a = f(2), b = f(-3), c = f(-4), 则将 a,b,c 按从 小到大的顺序排列是 ______.

29. (008392) 定义在 R 上的偶函数 f(x) 在 $[0,+\infty)$ 上是增函数, 且 $f(\frac{1}{2})=0$, 则满足 $f(\log_{\frac{1}{4}}x)>0$ 的 x 的值范