NAIVE BAYES CLASSIFIER

Supervised learning algorithm based on the application of Bayes' theorem with the "naive" assumption of independence between every pair of features.

1 Bayes' Theorem

$$\mathbf{P}(A \cap B) = \mathbf{P}(A|B) \times \mathbf{P}(B)$$
$$= \mathbf{P}(B|A) \times \mathbf{P}(A)$$

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(B|A) \times \mathbf{P}(A)}{\mathbf{P}(B)}$$

2 Derivation

$$\mathbf{P}(\mathbf{Y} = y_k \mid x_1, \ x_2, \ \dots \ x_p) = \frac{\mathbf{P}(x_1, \ x_2, \ \dots \ x_p | \mathbf{Y} = y_k) \times \mathbf{P}(\mathbf{Y} = y_k)}{\mathbf{P}(x_1, \ x_2, \ \dots \ x_p)}$$

Choose y_k which maximizes $\mathbf{P}(\mathbf{Y} = y_k | x_1, x_2, \dots x_p)$.

$$\mathbf{Y} = \underset{y_k}{\operatorname{argmax}} \left\{ \begin{array}{l} \mathbf{P}(x_1, x_2, \dots x_p | \mathbf{Y} = y_k) \times \mathbf{P}(\mathbf{Y} = \mathbf{y_k}) \\ \mathbf{P}(x_1, x_2, \dots x_p) \end{array} \right.$$

Since $\mathbf{P}(x_1, x_2, \dots x_p)$ is constant for all y_k , the above can be written as follows:

$$\mathbf{Y} = \underset{y_k}{\operatorname{argmax}} \left\{ \mathbf{P}(x_1, x_2, \dots x_p | \mathbf{Y} = y_k) \times \mathbf{P}(\mathbf{Y} = \mathbf{y_k}) \right.$$

The "naive" assumption that all $X_1,\ X_2,\ ...\ X_p$ are independent allows for the following simplification.

$$\mathbf{Y} = \underset{y_k}{\operatorname{argmax}} \left\{ \prod_i \mathbf{P}(x_i | \mathbf{Y} = y_k) \times \mathbf{P}(\mathbf{Y} = \mathbf{y_k}) \right.$$

All the terms on the right are easy to calculate.

3 Example

Table 1: Training data

Table 1. Haming data								
Sr.	Outlook	Temperature	Humidity	Windy	PLAY GOLF			
1	rainy	hot	high	false	NO			
2	rainy	hot	high	true	NO			
3	overcast	hot	high	false	YES			
4	sunny	mild	high	false	YES			
5	sunny	cool	normal	false	YES			
6	sunny	cool	normal	true	NO			
7	overcast	cool	normal	true	YES			
8	rainy	mild	high	false	NO			
9	raniy	cool	normal	false	YES			
10	sunny	mild	normal	false	YES			
11	rainy	mild	normal	true	YES			
12	overcast	mild	high	true	YES			
13	overcast	hot	normal	false	YES			
_14	sunny	mild	high	true	NO			

The following tables are calculated.

Outlook	YES	NO	Temperature	YES	NO
rainy	2	3	hot	2	2
overcast	4	0	mild	4	2
sunny	3	2	cool	3	1

Humidity	YES	NO	Windy YES	NO
high	3	4	false 6	2
normal	6	1	true 3	3

If X = (sunny, hot, normal, false), then

```
 \begin{array}{l} \mathbf{P}(\mathbf{Outlook} = sunny | \mathbf{PLAY} \ \mathbf{GOLF} = YES) \\ \times \mathbf{P}(\mathbf{Temprature} = hot | \mathbf{PLAY} \ \mathbf{GOLF} = YES) \\ \times \mathbf{P}(\mathbf{Humidity} = normal | \mathbf{PLAY} \ \mathbf{GOLF} = YES) \\ \times \mathbf{P}(\mathbf{Windy} = false | \mathbf{PLAY} \ \mathbf{GOLF} = YES) \\ \times \mathbf{P}(\mathbf{PLAY} \ \mathbf{GOLF} = YES) \\ \end{array}   \begin{array}{l} \mathbf{P}(\mathbf{Dutlook} = sunny | \mathbf{PLAY} \ \mathbf{GOLF} = NO) \\ \times \mathbf{P}(\mathbf{Temprature} = hot | \mathbf{PLAY} \ \mathbf{GOLF} = NO) \\ \times \mathbf{P}(\mathbf{Humidity} = normal | \mathbf{PLAY} \ \mathbf{GOLF} = NO) \\ \times \mathbf{P}(\mathbf{Windy} = false | \mathbf{PLAY} \ \mathbf{GOLF} = NO) \\ \times \mathbf{P}(\mathbf{PLAY} \ \mathbf{GOLF} = NO) \\ \end{array}
```

$$\mathbf{PLAY\ GOLF} = \underset{y_k}{\operatorname{argmax}} \begin{cases} 3/9 \\ \times 2/9 \\ \times 6/9 \\ \times 9/14 \end{cases}$$

$$\frac{2/5}{\times 2/5}$$

$$\frac{\times 1/5}{\times 2/5}$$

$$\frac{\times 2/5}{\times 5/14}$$

$$\mathbf{PLAY\ GOLF} = \operatorname*{argmax}_{y_k} \left\{ \begin{array}{l} 0.0212 \\ 0.0046 \end{array} \right.$$

Therefore, **PLAY GOLF** = YES because 0.0212 > 0.0046.

4 Extensions

- For a continuous input feature, assumption regarding the distribution needs to be made. Examples: Gaussian, Multinomial and Bernoulli.
- Smoothing may be required to prevent the multiplication from being zero when one probability term is zero.

5 Comments

• Due to independence assumption, naive Bayes' classifiers often perform good even with less training data.

- Main applications include **spam filtering** and **document classification**.
- Extremely fast in both training and prediction.
- Often fail to produce a good estimate of the correct class probabilities but make the correct classification if the correct class is more probable than any other class.