TIME IN DISTRIBUTED SYSTEMS

Network Distributed Computing Dr. Christina Thorpe

EXERCISE

- · Everyone record the time on their watch at the same moment.
- What are the results?
- What is the range of times?
- What is your conclusion?
- What factors have contributed to the distribution of values?
- How can we synchronise all the time nodes in the room?

NEED FOR PRECISION TIME

- Stock market buy and sell orders
- Secure document timestamps (with cryptographic certification)
- Distributed network gaming and training
- Aviation traffic control and position reporting
- Multimedia synchronization for real-time teleconferencing
- Event synchronization and ordering
- · Network monitoring, measurement and control

COMPUTER CLOCKS

- Each node has its own private physical clock!
- Physical clocks are HW devices that count oscillations of a quartz
- After a specified number of oscillations, the clock increments a register, thereby adding one clock-tick to a counter the represents the passing of time: Hi(t).
- Resolution: Period between clock updates
- The OS maintains SW Clock by scaling and adding an offset to it: $Ci(t) = \alpha Hi(t) + \beta$.
- Ci(t) approximates the physical time t at process pi. Ci(t) may be implemented by a 64-bit word, representing nanoseconds that have elapsed at time t.
- Successive events can be distinguished if the clock resolutions is smaller that the time interval between the two events.

DRIFT AND SKEW

- Computer clocks, like any other clocks tend not to be in perfect agreement!!
- Clock skew (offset): the difference between the times on two clocks |Ci(t)
 Cj(t)|
- Clock drift: they count time at different rates
 - Ordinary quartz clocks drift by ~ Isec in II-I2 days. (10^-6 secs/sec).
 - High precision quartz clocks drift rate is ~ 10^-7 or 10^-8 secs/sec
 - Differences in material, Temperature variation.

SYNCHRONISATION

External synchronization

- synchronization of process' clocks C_i with an authoritative external source
 S.
- Let $\delta > 0$ be the synchronization bound and S be the source of UTC.
- Then $|S(t) C_i(t)| < \delta$ for i=1,2,...,N and for all real times t.
- We say that clocks C_i are *accurate* within the bound of δ

Internal synchronization

- synchronization of process' clocks
 With each other.
- •Let $\delta > 0$ be the synchronization bound and C_i and C_j are clocks at processes p_i and p_i , respectively.
- •Then $|C_i(t) C_j(t)| < \delta$ for i,j=1,2,...,N and for all real times t.
- •We say that clocks C_i , C_j agree within the bound of δ

Note that clocks that are internally synchronized are not necessarily externally synchronized. i.e., even though they agree with each other, the drift collectively from the external source of time.

SYNCHRONISATION IN A SYNCHRONOUS SYSTEM

- In a synchronous system we have:
 - known upper (max) and lower (min) bound for communication delay,
 - known maximum clock drift,
 - known maximum time taken for each computational step.
- We synchronize by:
 - time server sends its local time t to a client,
 - Ideally, client sets clock to t_s +Ttran (Unknown!)
 - the client sets its local clock to t_s + (max + min)/2.
 - Skew is at most (max min)/2

SYNCHRONIZATION IN AN ASYNCHRONOUS SYSTEM

- · Christians algorithm.
- The Berkeley algorithm.
- Network time protocol (NTP)

CRISTIAN'S ALGORITHM

- A node is a time server TS (presumably with access to UTC). How can the other nodes be sync'ed?
- Periodically, at least every $\delta/2\rho$ seconds, each machine sends a message to the TS asking for the current time and the TS responds.

CHRISTIANS ALGORITHM

- Client p sends request (mr) to time server S,
- S inserts its time t immediately before reply (mt) is returned,
- p measures how long it takes (Tround=T1 T0) from mr is send to mt is received
- p sets its local clock to t+T/2.

ACCURACY OF CHRISTIAN'S

- Assume min = minimal message delay
- t is in the interval [T0+min,T1-min]
- Uncertainty on t = Tround-2min
- Estimated Accuracy=Tround/2 min

PROPERTIES OF CHRISTIAN'S

- Monotonicity:
 - Jumps in time backward not permitted
 - Jumps forward may be confusing
 - Receiver adjusts clock rate α : Ci(t) = α Hi(t) + β .
- Improve precision
 - by taking several measurements and taking the smallest round trip
 - or use an average after throwing out the large values

THE BERKLEY ALGORITHM

- Choose master co-ordinator which periodically polls slaves
 - Master estimates slaves' local time based on round-trip
 - Calculates average time of all, ignoring readings with exceptionally large propagation delay or clocks out of synch
 - Sends message to each slave indicating clock adjustment
 - •Synchronisation feasible to within 20-25 msec for 15 computers, with drift rate of 2×10^-5 and max round trip propagation time of 10 msec.

Accuracy

depends on the round-trip time

Fault-tolerant average:

- eliminates readings of faulty clocks probabilistically
- •average over the subset of clocks that differ by up to a specified amount

If master fails?

• Elect a new one

THE BERKELEY ALGORITHM

- The time daemon asks all the other machines for their clock values
- The machines answer their offset
- The time daemon tells each how to adjust its clocks

NETWORKTIME PROTOCOL

- · Synchronization of clients relative to UTC on an internet-wide scale
- Reliable, even in the presence of extensive loss of connectivity
- Allow frequent synchronization (relative to clock drift)
- Tolerant against disturbance
 - < Ims within LAN</p>
 - 1-10 ms internet scale

NTP STRATUM

 Never synchronizewith servers at lover stratum

NTP MODES

- Multicast (for quick LANs, low accuracy)
 - · server periodically sends its actual time to its leaves in the LAN
- Procedure-call (medium accuracy)
 - server responds to requests with its actual timestamp
 - like Cristian's algorithm
- Symmetric mode (high accuracy)
 - · used to synchronize between pairs of time servers
- In all cases, the UDP is used

MESSAGES EXCHANGED BETWEEN A PAIR OF NTP PEERS

- Exchanges local timestamps to estimate offset oi and delay di
- NTP server filters pairs <oi,di>, saves 8 latest
- · Use the oi, with smallest di.(the smaller delay the better accuracy)

THEORETICAL FOUNDATION

Inherent characteristic of a distributed system:

- Absence of a global clock:
- Absence of 100% accurately synchronized clocks
- Impact: Due to the absence of global clock, it is difficult to reason about the temporal order of events in distributed system, e.g. scheduling events is more difficult.

LOGICAL CLOCKS IN A DS

What is important is usually not when things happened but in what order they happened so the integer counter works well in a centralized system.

- However, in a DS, each system has its own logical clock, and you can run into problems if one "clock" gets ahead of others. (like with physical clocks)
- RELIABLE WAY OF ORDERING EVENTS IS REQUIRED
- We need a rule to synchronize the logical clocks.