AL/2024/10/T-I

முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

MORA EXAMS 2024 | Tamil Students Paculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering. University of Moratuwa MORA EXAMS 2024 | Tamil Students, Faculty of Engineering.

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2024 General Certificate of Education (Adv.Level) Pilot Examination - 2024

இணைந்த கணிதம் Combined Mathematics 10 T I

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவு செய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண் 🤇					
------------	--	--	--	--	--

அறிவுறுத்தல்கள்:

- * இவ்வினாத்தாள் **பகுதி A** (வினாக்கள் 1-10), **பகுதி B** (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டது
- **∗ பகுதி A:**

எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.

∗ பகுதி В:

ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

(10) இணைந்த கணிதம் I					
பகுதி	ഖിனா எண்.	புள்ளிகள்			
	1				
	2				
	3				
	4				
	5				
A	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
В	14				
	15				
	16				
	17				
	Total				

	மொத்தம்
இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

<i>்</i> விடைத்தாள் பரீட்சகர்	
1 பரிசீலித்தவர்:	
2	
மேற்பார்வை செய்தவர்:	

பகுதி - ${f A}$

1.	$u_1=2$ எனவும் $n\in\mathbb{Z}^+$ இற்கு $\dfrac{u_{n+1}}{u_n}=\dfrac{n+2}{(n+1)^2}$ எனவும் கொள்வோம். கணிதத் தொகுத்தறிவுக்	•
	கோட்பாட்டைப் பயன்படுத்தி, $n\in\mathbb{Z}^+$ இந்கு $u_n=rac{n+1}{n!}$ எனக்காட்டுக.	
_		
2.	$y=2\left x-1\right ,\ y=\left x-2\right $ என்பவற்றின் பரும்படி வரைபுகளை ஒரே வரிப்படத்தில் வரைக. இதிலிருந்து	ı
2.	$y=2\left x-1\right ,\ y=\left x-2\right $ என்பவந்நின் பரும்படி வரைபுகளை ஒரே வரிப்படத்தில் வரைக. இதிலிருந்து அல்லது வேறுவிதமாக , சமனிலி $\left 2x-1\right <\left x-1\right $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.		
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	
2.	அல்லது வேறுவிதமாக , சமனிலி $ 2x-1 < x-1 $ ஐத் திருப்தியாக்கும் x இன் பெறுமான வீச்சைக்	

3.	$\left z-3i\right \leq 2,\ \mathrm{Re}(z)\geq \sqrt{2}$ ஆகிய சமனிலிகளைத் திருப்தியாக்கும் சிக்கலெண்கள் z ஐ வகை
	குறிக்கும் புள்ளிகளைக் கொண்ட பிரதேசம் S ஐ ஒர் ஆகண் வரிப்படத்தில் நிழந்றுக. மேலும், S இன்
	பரப்பைக் காண்க.
4.	$a\in\mathbb{R}$ இந்கு $\left(2a+rac{3}{a^2} ight)^6$ இன் ஈருறுப்பு விரியில் 2 ஆம் உறுப்பு, a ஐச் சாராத உறுப்பிற்கு சமன்
	$\left(\frac{2a}{a^2}\right)^{2a} = \frac{2a}{a^2}$
	எனின், $a^3 = \frac{15}{4}$ எனக்காட்டுக.

5.	$\lim_{x \to \frac{\pi}{4}} \frac{\left(\tan^2 x - 1\right)\left(1 - \sqrt{2}\cos x\right)}{\left(\sin x - \cos x\right)\left(x - \frac{\pi}{4}\right)} = 2\sqrt{2}$ எனக்காட்டுக.
	$x \to \frac{\pi}{4} \left(\sin x - \cos x \right) \left(x - \frac{\pi}{4} \right)$
_	. π
6.	$y = \sin x + \cos x$, $x = 0$, $x = \frac{\pi}{2}$, $y = 0$ ஆகியவற்றினால் உள்ளடைக்கப்படும் பிரதேசம் S என்க.
	S இன் பரப்பளவைக் காண்க. S ஐ x - அச்சுப் பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்
	S இன் பரப்பளவைக் காண்க. S ஐ x - அச்சுப் பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப் பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\pi \left(\frac{\pi}{2} + 1 \right)$ எனக்காட்டுக.

7.	$a>0$ எனவும் வளையி C ஆனது $0<\theta<\frac{\pi}{2}$ இற்கு $x=a\sec\theta,\ y=a\left(\tan\theta-\theta\right)$ ஆகுமாறு பரமான
	வடிவில் தரப்படுகிறது. $\frac{dy}{dx} = \sin \theta$ எனக்காட்டுக. $\frac{d^2y}{dx^2}$ ஐ θ இல் கண்டு, C ஆனது மேல்முகக்
	குழிவானது என உய்த்தறிக .
8.	k>4 எனின் $A(k,1),B(2,k)$ எனும் புள்ளிகள் $2x+y-2k=0$ எனும் கோட்டிற்கு எதிர் எதிர்ப்
8.	k>4 எனின் $A(k,1),B(2,k)$ எனும் புள்ளிகள் $2x+y-2k=0$ எனும் கோட்டிற்கு எதிர் எதிர்ப் பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்
8.	பக்கங்களில் அமையும் எனக்காட்டுக. அத்துடன் AB ஆனது தரப்பட்ட கோட்டை $1:3$ எனும் விகிதத்தில்

9.	வட்டம் $x^2+y^2=100$ ஐ உட்புறமாகத் தொடுவதும் உற்பத்தியினூடு செல்வதும் தொடு புள்ளியில்
	3x + 4y - 50 = 0 எனும் கோட்டைத் தொடலியாகக் கொண்டதுமான வட்டத்தின் சமன்பாட்டைக்
	காண்க.
10.	$0 < x < \pi$ இல் $4\cos\left(x + \frac{\pi}{4}\right)\cos\left(x - \frac{\pi}{4}\right) - 4\sin\left(x + \frac{\pi}{6}\right)\sin\left(x - \frac{\pi}{6}\right) = 1$ ஐத் தீர்க்க.

முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

MORA EXAMS 2024 | Tamil Students Faculty of Figineerica, University of Moratuwa | MORA exams 2024 | Tamil Students Faculty of Engineerica, University of Moratuwa | MORA exams | Moratuma | Moratum

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2024 General Certificate of Education (Adv.Level) Pilot Examination - 2024

இணைந்த கணிதம் I Combined Mathematics I

பகுதி - B

🛪 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (a) $x \in \mathbb{R}$ இற்கு $f(x) = x^2 + bx + c$ எனக் கொள்வோம்; இங்கு $b, c \in \mathbb{R}$ ஆகும்.

f(x) இன் இழிவுப் பெறுமானம் $-\frac{\Delta}{4}$ எனக்காட்டுக; இங்கு $\Delta = b^2 - 4c$.

 $p,\,q$ ஆகிய மெய்யெண்கள், pq>0 எனவும் r>0 எனவும் கொள்வோம். மேலும் $x\in\mathbb{R}$ இற்கு $g(x)=x^2-pqx+(p^2+r^2)$ எனத் தரப்பட்டுள்ளது.

g(x) இன் இழிவுப் பெறுமானம் $\left(p^2-1\right)$ எனின் $2\sqrt{r^2+1}=pq$ எனக்காட்டுக.

சமன்பாடு g(x)=0 மெய்யான வேறு வேறு மூலங்களைக் கொண்டிருப்பின் $p^2<1$ எனக் காட்டுக.நேர்கோடு $y=-\frac{5}{9}$ ஆனது, y=g(x) ஐத் தொடின் $p=\pm\frac{2}{3}$ எனக்காட்டுக.

மேலும் கோடு $y=-\frac{5}{9}$ ஆனது $x=\sqrt{5}$ இல் y=g(x) ஐத் தொடுகிறது எனத்தரப்படின் r=2 எனக்காட்டி, q இன் பெறுமானங்களைக் காண்க.

(b) $a \in \mathbb{R}$ எனவும் p(x) ஆனது 3 ஆம் படி அல்லது அதனிலும் கூடிய படியாகவுள்ள பல்லுறுப்பி எனவும் கொள்வோம். $(x-a)^2$ ஆனது p(x) இன் காரணி எனின் (x-a) ஆனது p'(x) இன் காரணி எனக் காட்டுக; இங்கு p'(x) என்பது p(x) இன் x குறித்த பெறுதியாகும்.

 $x \in \mathbb{R}$ இந்கு $f(x) = x^4 + ax^3 + 13x^2 - 18x + b$ எனக் கொள்வோம். இங்கு a,b மெய்ம்மாறிலிகள். $(x-1)^2$ ஆனது f(x) இன் காரணி எனின் $a=-4,\ b=8$ எனக்காட்டுக. a,b இன் மேலே கண்ட பெறுமானங்களிற்கு f(x) ஒரு போதும் மறையாக இருக்கமாட்டாது எனக்காட்டுக.

- **12.** (a) ஐந்து சிறுவன்கள், நான்கு சிறுமிகள், மூன்று ஆசிரியர்கள் என மொத்தமாகப் பன்னிரண்டு பேரைக் கொண்ட குழுமத்திலிருந்து பத்துப் பேரைக் கொண்ட குழு தெரிந்தெடுத்தல் வேண்டும். பின்வரும் சந்தர்ப்பங்களில் ஆக்கப்படக்கூடிய குழுக்களின் எண்ணிக்கையைக் காண்க.
 - (i) எவராவது 10 பேர்.
 - (ii) குழுக்களில் நான்கு சிறுவன்கள், நான்கு சிறுமிகள், இரண்டு ஆசிரியர்கள் இடம் பெறும் வண்ணம்.

பகுதி (ii) இல் தெரிந்தெடுக்கப்பட்ட குறித்த ஒரு குழுவை, இரு சிறுவன்கள் அடுத்தடுத்து அமராமலும், இரு ஆசிரியர்களும் ஒன்றாக அமரக் கூடியதாகவும் இருக்க எத்தனை வழிகளில் ஒரு நிரையில் அமர்த்தலாம்?

 $(\mathbf{b})\,U_1+U_2+U_3+\dots$ எனும் தொடரின் \mathbf{n} உறுப்புக்களின் கூட்டுத்தொகை S_n ஆனது, $S_n=rac{n}{n+k}$ ஆல் தரப்படுகிறது; இங்கு k மாறிலி. அத்துடன் $S_3=rac{3}{4}$ எனவும் தரப்படின் k=1 எனக்காட்டி, $r\in\mathbb{Z}^+$ இற்கு $U_r=rac{1}{r(r+1)}$ எனக்காட்டுக.

எல்லா $r\in\mathbb{Z}^+$ இற்கும் $V_r=(1-r-r^2)U_r$ எனக் கொள்வோம். எல்லா $r\in\mathbb{Z}^+$ இற்கும் $V_r=\frac{Ar^2+B}{r}+\frac{Cr^2-2r+D}{r+1}$ ஆக இருக்கத்தக்கதாக $A,\ B,\ C,\ D$ ஆகிய மெய்ம் மாறிலிகளைக் காண்க.

இதிலிருந்து அல்லது வேறுவிதமாக, $n\in\mathbb{Z}^+$ இற்கு $\sum_{r=1}^n V_r=2-rac{(n+1)^2+1}{n+1}$ எனக்காட்டுக.

இதிலிருந்து, முடிவில் தொடர் $\sum_{r=1}^{\infty} V_r$ ஒருங்காது எனக்காட்டுக.

13. (a) தாயம் $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$ எனின் \mathbf{A}^2 ஐக் காண்க.

 λ , μ மெய்ம் மாறிலிகளாக இருக்க ${f A}^2 + \lambda \, {f A} + \mu \, {f I} = {f O}$ எனக்கொள்வோம். இங்கு ${f I}, {f O}$ என்பன முறையே 2×2 அலகுத்தாயமும், பூச்சியத்தாயமுமாகும். $\lambda = -1$, $\mu = 2$ எனக்காட்டி, ${f A}^3$ ஐ உய்த்தறிக.

(b) $z\in\mathbb{C}$ எனக் கொள்வோம். $\left|z-1\right|=1$ ஆகுமாறுள்ள z இன் ஒழுக்கை ஆகண் வரிப்படத்தில் வரைக. $\arg z=\frac{\pi}{6}$ எனின் z வகைக்குறிக்கும் புள்ளி P ஐ அதே வரிப்படத்தில் குறித்து, $\left|z\right|=\sqrt{3}$ எனக்காட்டுக.

(z-1) எனும் சிக்கலெண் வகைக்குறிக்கும் புள்ளி Q ஐ அதே ஆகண் வரிப்படத்தில் குறித்து அதன் மட்டு, வீசலை எழுதுக.

z(z-1) என்ற சிக்கலெண் அறக்கற்பனையானது எனக்காட்டி, அதைக் காண்க.

 $z_0 = (z-1) + \frac{1}{\sqrt{3}} \, z(z-1)$ என்பதால் வரையறுக்கப்படும் சிக்கலெண் z_0 ஐக் காண்க.

 z_0 வகைக்குறிக்கும் புள்ளி S என்க.

 $Q,\ R$ ஆகிய புள்ளிகளை பிறிதொரு ஆகண் வரிப்படத்தில் குறித்து, இதன் மூலம் S இன் தானத்தை அதே வரிப்படத்தில் குறிக்க.

 $\tan \frac{\pi}{12} = 2 - \sqrt{3}$ என்பதை உய்த்தறிக.

(c) $n,m\in\mathbb{Z}^+$ எனக் கொள்வோம். $\left(-\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)^n=\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)^m$ எனின் 11n-m=12k எனக் காட்டுக. இங்கு $k=\pm 2,~\pm 4,~\pm 6,...$

14. (a) $a,b,c \in \mathbb{R}$ எனவும் b>c எனவும் கொள்வோம். $x \in \mathbb{R} - \{b,c\}$ இற்கு $f(x) = \frac{3x+a}{(x-b)(x-c)}$ எனக் கொள்வோம்.

y=f(x) இன் வரைபின் நிலைக்குத்து அணுகுகோடுகள் $x=0,\ x=1$ எனத்தப்பட்டுள்ளன. b,c ஆகியவற்றின் பெறுமானங்களை எழுதுக.

f(x) இன் பெறுதி f'(x) ஐக் கண்டு, நிலையான புள்ளிகளில் x ஆனது $3x^2 + 2ax - a = 0$ எனும் சமன்பாட்டைத் திருப்தியாக்குகின்றது எனக்காட்டுக. x = -1 இல் ஒரு நிலையான புள்ளி உண்டு எனத்தரப்படின் a இன் பெறுமானத்தைக் கண்டு, மற்றைய நிலையான புள்ளியைக் காண்க.

a,b,c இன் பெறுமானங்களிற்கு f(x) இன் அதிகரிக்கும், குறையும் ஆயிடைகளைக் காண்க. g(x)=f(x)-2 எனக் கொள்வோம். அணுகுகோடுகளையும், திரும்பற் புள்ளிகளையும் காட்டி y=g(x) இன் பரும்படி வரைபை வரைக.

இதிலிருந்து, g(x) இன் வீச்சின் ஆயிடைகளைக் காண்க.

(b) ABCDE என்பது ஒரு ஐங்கோணி வடிவ பிரதேசமாகும். AE = ED = 5x m, AB = y m, $CF = 3x \text{ m}, \ \widehat{A} = \widehat{B} = \widehat{C} = 90^{\circ} AB \text{ //}$ EF. அத்துடன் இப்பிரதேசத்தின் சுற்றளவு 700 m ஆகும். இப்பிரதேசத்தின் பரப்பளவு $A = 2(1400x - 31x^2) \text{ m}^2$ எனக்காட்டுக; இங்கு 0 < x < 50 ஆகும். **இதிலிருந்து**, $x = \frac{700}{31}$ ஆகும் போது பரப்பு A உயர்வாகும் எனக்காட்டுக.

15. (a) $k \in \mathbb{R}_0^+$ எனக் கொள்வோம்.

$$\int \frac{3x-2k+1}{(x+1)(x^2+k)} dx$$
 ஐக் காண்க.

(b) f(x) என்பது x இல் சார்பாக இருக்க, பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int e^x \left\{ f(x) + f'(x) \right\} dx = e^x f(x) + c \text{ எனக்காட்டுக; இங்கு } c \text{ என்பது எதேட்சை மாறிலியும், } f'(x)$ என்பது f(x) இன் x குறித்த பெறுதியுமாகும்.

இதிலிருந்து,
$$\int\limits_0^{\frac{\pi}{4}}e^x\left\{\frac{tanx\left(1-\tan x\right)}{\left(1+\tan x\right)^2}\right\}dx$$
 ஐக் காண்க.

(c) $x > -\frac{1}{2}$ எனக் கொள்வோம். $\frac{d}{dx} \{ (x^2 + 1) \ln(2x + 1) \}$ ஐக் காண்பதன் மூலம் $\int\limits_0^1 x \ln(2x + 1) \, dx = \frac{3}{8} \ln 3$ எனக்காட்டுக.

16. $m \in \mathbb{R}$ எனவும் l ஆனது படித்திறன் m ஐ உடையதும் புள்ளி $A \equiv (5,-5)$ இனூடாகச் செல்வதுமான கோடு எனவும் கொள்வோம். l இன் சமன்பாட்டை m இல் எழுதுக. வட்டம் $S \equiv x^2 + y^2 - 4x + 2y - 9 = 0$ எனவும் நேர்கோடு $U \equiv 4x + 3y + 2 = 0$ எனவும் கொள்வோம்.

வட்டம் $S_0=0$ என்பது வட்டம் S=0, நேர்கோடு U=0 என்பன வெட்டும் புள்ளிகளினூடு செல்லும் வட்டம் எனக் கொள்வோம். புள்ளி A இனூடாகக் கோடு U=0 இற்குச் செங்குத்தாக வரையப்படும் கோடு l_1 ஆனது $S_0=0$ ஐத் தொடுகிறது. l_1 இன் சமன்பாட்டைக் கண்டு, வட்டம் $S_0=0$ இற்கு இரு சமன்பாடுகள் இருக்கின்றன எனக்காட்டி, மைய ஆள்கூறு நிறை எண்களைக் கொண்ட வட்டத்தின் சமன்பாடு $S_0\equiv x^2+y^2+4x+8y-5=0$ எனக்காட்டுக.

மேற்கண்ட வட்டம் $S_0=0$ இற்கான A(5,-5) இற்கூடாகச் செல்லும் மற்றைய தொடலி, கோடு U=0 இற்கு சமாந்தரம் எனக்காட்டுக.

17. (a) $\theta \in \mathbb{R}$ இற்கு $\sin^2 \theta + \cos^2 \theta = 1$ எனக்காட்டுக.

இதிலிருந்து, k ஒற்றை எண்ணாக இருக்க $\theta \neq k \frac{\pi}{2}$ இற்கு $\sec^2 \theta = 1 + \tan^2 \theta$ எனக்காட்டுக.

 $\tan^3 x + 3 \tan x = \sec^2 x + 2$ எனும் சமன்பாட்டின் x இன் தீர்வுகளை $[0,2\pi]$ எனும் ஆயிடையில் காண்க.

(b) A,B,C எனும் மூன்று கோணங்கள் $A+B+C=rac{\pi}{2}$ ஆகுமாறுள்ளன. $\sin(A+B)=\cos C$ எனவும் $\cos(A+B)=\sin C$ எனவும் காட்டுக.

 $\cot A + \cot B = \cos C \cos ecA \cos ecB$ எனவும் $\cot A \cot B = 1 + \sin C \cos ecA \cos ecB$ எனவும் உய்த்தறிக.

இதிலிருந்து, $\cot A + \cot B + \cot C = \cot A \cot B \cot C$ எனக்காட்டுக.

(c) $x \in \mathbb{R}$ இந்கு $\tan^{-1} x + \tan^{-1} (x - 1) = \frac{\pi}{4}$ ஐத் தீர்க்க. x இந்கு பெறப்படும் பொருந்தாத பெறுமானம் எச்சமன்பாட்டின் தீர்வாக இருக்கும்?

* * *

முழுப் பதிப்புரிமை உடையது / All Rights Reserved]

MORA EXAMS 2024 | Tamil Students | Faculty of Engineering. University of Moratuwa | MORA EXAMS 2024 | Tamil Students | Faculty of Engineering. University of Moratuwa | MORA EXAMS 2024 | Tamil Students | Faculty of Engineering University of Moratuwa | MORA EXAMS 2024 | Tamil Students | Faculty of Engineering University of Moratuwa | MORA EXAMS 2024 | Tamil Students | Faculty of Engineering University of Moratuwa | MORA EXAMS 2024 | Tamil Students | Faculty of Engineering University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engine

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2024 General Certificate of Education (Adv.Level) Pilot Examination - 2024

இணைந்த கணிதம் II Combined Mathematics II 10 T II

மூன்று மணித்தியாலம் Three hours மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடைஎழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண்:						
-----------	--	--	--	--	--	--

அறிவுறுத்தல்கள்:

- stஇவ்விணந்தாள் **பகுதி A** (விணக்கள் 1–10) **பகுதி B** (வினாக்கள் 11–17) என்னும் இரு பகுதிகளைக் கொண்டது.
- * **பகுதி A: எல்லா** வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமாயின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B: ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** யின் விடைத்தாள் ஆனது **பகுதி B** யின் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- lpha வினாத்தாளின் **பகுதி B** ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

(10) இணைந்த கணிதம் II					
பகுதி	ഖിனா எண்	புள்ளிகள்			
	1				
	2				
	3				
	4				
A	5				
A	6				
	7				
	8				
	9				
	10				
	11				
	12				
	13				
В	14				
	15				
	16				
	17				
	மொத்தம்				
	சதவீ தம்				

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப்புள்ளி	

<u> </u>	
ത്രവാ	
இறுதிப்	புள்ளிகள்
ے ج	

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர் 1	
விடைத்தாள் பரீட்சகர் 2	
புள்ளிகளை பரீட்சித்தவர்	
மேற்பார்வை செய்தவர்	

	பகுதி $f A$
1.	ஒர் ஒப்பமான கிடைமேசை மீது ஒரே நேர்கோடு வழியே முறையே $2u,u$ ஆகிய கதிகளுடன் படத்தில் காட்டப்பட்டவாறு ஒரே திசையில் இயங்கும் $m, 2m$ திணிவுள்ள A, B என்னும் இரு துணிக்கைகள் a நீளமுள்ள இலேசான நீட்டமுடியாத இழையினால் தொடுக்கப்பட்டு நேரடியாக மோதுகின்றன. A இந்கும் B இற்குமிடையே உள்ள மீளமைவுக்குணகம் e ஆகும். மோதுகைக்குப் பின்னர்
	A,B ஆகியவற்றின் வேகங்களைக் கண்டு, இழையானது இறுக எடுக்கும் நேரம் $\dfrac{3a}{u}$ எனத்தரப்படின் $e=\dfrac{1}{3}$
	ய 3 எனக் காட்டுக.
2.	ஒரு கிடைத்தரைக்கு மேலே தூரம் $\frac{a}{2}$ இல் உள்ள ஒரு புள்ளி A
	இலிருந்து கிடையுடன் கோணம் $\frac{\pi}{3}$ இல் தொடக்க வேகம் $\sqrt{\frac{\pi}{3}}$
	$u=\sqrt{3}ga$ உடன் ஒரு துணிக்கை எறியப்படுகின்றது. உருவிற் $\frac{3a}{2}$ காட்டப்பட்டுள்ளவாறு ஒன்றிலிருந்தொன்று கிடைத்தூரம் d இல் a
	இருக்கும் $\frac{3a}{2}$ உயரம் உள்ள இரு நிலைக்குத்துச் சுவர்களுக்கு $\frac{a}{2}$ $\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix}$
	மட்டுமட்டாக மேலாகத் துணிக்கை செல்கின்றது எனின் $d=\frac{\sqrt{3}}{2}a$
	எனக் காட்டுக.

3.	உருவிற் காட்டப்பட்டுள்ளவாறு முறையே $m,2m,3m$ திணிவுகளை உடைய P,Q,R
	என்னும் மூன்று துணிக்கைகளில், கிடையுடன் $\frac{\pi}{6}$ சாய்விலுள்ள ஒரு ஒப்பமான $\frac{\binom{2m}{m}}{\binom{3m}{n}}R$
	சாய்தளத்தின் உச்சியில் நிலைப்படுத்தப்பட்டுள்ள ஒரு சிறிய ஒப்பமான கப்பிக்கு $P\left(m ight)$ /
	மேலாகச் செல்லும் ஒரு இலேசான நீட்டமுடியாத இழையினால் Q,R தொடுக்கப்
	பட்டுள்ளன. அத்துடன் P உம் Q உம் வேறொரு இலேசான நீட்ட முடியாத இழை $\sqrt{rac{\pi}{6}}$
	யினால் தொடுக்கப்பட்டுள்ளன. இழைகள் இறுக்கமாக இருக்கும் போது தொகுதி
	ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. R இன் ஆர்முடுகலைத் துணிவதற்குப் போதிய சமன்பாடுகளைப் பெறுக.
	π
4.	$100kg$ திணிவுள்ள ஒரு கார் கிடையுடன் சாய்வு $\dfrac{\pi}{6}$ ஐக் கொண்ட ஒரு நேர் வீதி வழியே $2ms^{-2}$ என்ற
4.	•
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$
4.	ஒரு மாநா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாநாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க.
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$
4.	ஒரு மாநா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாநாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க.
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்
4.	ஒரு மாறா ஆர்முடுகலுடன் மேல்நோக்கி இயங்குகின்றது. அதன் இயக்கத்திற்கு ஒரு மாறாத்தடை $700N$ உள்ளது. காரின் வேகம் $5~ms^{-1}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் காண்க. ஒரு நேர்க்கிடைப் பாதை வழியே எஞ்சின் அதே வலுவில் தொழிற்படும் போது காரானது $1~ms^{-2}$ ஆர்முடுகலுடனும் $10~ms^{-1}$ வேகத்துடனும் இயங்கும் எனின் காரின் இயக்கத்திற்கான தடைவிசையைக்

5.	உருவிற் காட்டப்பட்டவாறு திணிவு λm ஐ உடைய ஒரு துணிக்கை P ஆனது நீளம் $2a$ ஐ உடைய ஓர் இலேசான நீட்டமுடியாத இழையினால் ஒரு நிலைத்த புள்ளி A இற்கு இணைக்கப்பட்டுள்ளது. வேறொரு இலேசான நீட்டமுடியாத இழையானது P இற்கு இணைக்கப்பட்டு நிலைப்படுத்தப்பட்ட ஒரு சிறு வளையம் B யினூடு சென்று மறுமுனையில் m திணிவுடைய துணிக்கை Q ஐக் காவுகின்றது. Q நாப்பத்தில்
	இருக்க $A\hat{P}O = B\hat{P}O = \frac{\pi}{6}$ ஆகுமாறு P யானது $\sqrt{\frac{3g}{2a}}$ எனும் கோண வேகத்துடன்
	O இனை மையமாகவுடைய ஒரு கிடை வட்ட இயக்கத்தை ஆற்றும் எனின் $\lambda=2$ எனக் காட்டுக.
	В Ø
	igorplus Q(m)
6.	$\hat{AOB} = rac{\pi}{2}$ ஆகுமாறு உற்பத்தி O குறித்து புள்ளிகள் A,B இன் தானக்காவிகள் முறையே
	$(2\mathbf{a}-\mathbf{b}),(\mathbf{a}+2\mathbf{b})$ ஆகும். AB இன் நடுப்புள்ளி C ஆகுமாறு \overrightarrow{OC} ஐ \mathbf{a},\mathbf{b} ஆகியவற்றின் சார்பில்
	கண்டு, இதிலிருந்து $OC^2 = \frac{5}{4} \left(\left \mathbf{a} \right ^2 + \left \mathbf{b} \right ^2 \right)$ எனக் காட்டுக.

7.	$AG: GB = 3:1$ ஆகவுள்ள $2w$ நிறையுடைய கோல் AB ஆனது கிடையுடன் θ சாய்வில் இருக்குமாறு AB யின் நடுப்புள்ளி C ஆனது நிலையான ஒப்பமான கோள மேற்பரப் பினைத் தொட்டுக் கொண்டுள்ளது. கோலின் முனை A யில் w நிறை இணைக்கப் பட்டு மற்றைய முனை B யானது ஒரு ஒப்பமான கிடைத்தளத்தில் வைக்கப்பட்டு B யில் பிரயோகிக்கப்படும் ஒரு கிடை விசை P யினால் கோல் AB நாப்பத்தில் பேணப்படுகிறது. (உருவைப்
	பார்க்க) கிடைத்தளத்தினால் கோலிற்கு முனை B யில் உள்ள $\stackrel{\longleftarrow}{}$
	செவ்வன் மறுதாக்கம் R எனின் $P = R\cot heta$ எனக் காட்டுக.
	இங்கு G ஆனது கோல் AB இன் புவியீர்ப்பு மையமாகும்.
8.	படத்தில் காட்டியவாறு $2a$ நீளமும் w நிறையும் உடைய ஒரு சீரான கோல் AB இன் முனை A ஆனது ஒரு கரடான கிடைத்தரை மீது, AB கிடையுடன் கோணம் $\frac{\pi}{6}$ அமைக்குமாறு வைக்கப்பட்டு மறுமுனை B யில்
	இணைக்கப்பட்ட கிடையுடன் கோணம் $\frac{\pi}{3}$ அமைக்கும் ஒரு இலேசான நீளா $\sqrt{\frac{3}{3}}$
	இழையின் மறுமுனை ஒரு நிலைத்த புள்ளி C யுடன் இணைக்கப்பட்டு கோல் நாப்பத்தில் உள்ளது. இழையில் உள்ள இழுவையைக் கண்டு
	$\mu \geq \sqrt{3}$ எனக் காட்டுக. இங்கு μ ஆனது கோலுக்கும் கிடைத்தரைக்கும் $\frac{6}{2}$
	இடையிலான உராய்வுக் குணகம் ஆகும்.

9.	A,B ஆகியன ஒரு மாதிரிவெளி Ω இன் இரு நிகழ்வுகளெனக் கொள்வோம். $P(A)=rac{1}{5},P(B)=rac{3}{10},P(B)$
	$Pig(A/B'ig) = rac{1}{7}$ எனத் தரப்படின் $Pig(A\cap Big), Pig(A'\cup B'ig), Pig(B'/A'ig)$ ஆகியவற்றினைக் காண்க. இங்கு
	A ', B ' ஆகியன முறையே A,B ஆகியவற்றின் நிரப்பு நிகழ்ச்சிகளைக் குறிக்கின்றன.
	20
10.	20 வீதிகளின் நீளங்கள் x மைல்களில் அளக்கப்பட்டு அது தொடர்பான தரவுகள் $\sum_{i=1}^{20} x_i = 320,$
	$\sum_{i=1}^{20} x_i^2 = 5300$ எனத் தரப்பட்டுள்ளன. வீதி ஒன்றின் இடை நீளத்தைக் கண்டு நியம விலகல் 3 எனக் காட்டுக.
	ுவீதி ஒன்றின் நீளம் $y=1.5x$ எனும் உரு மாற்றத்தினால் கிலோ மீற்றருக்கு மாற்றப்படும் எனின் y இன் இடையையும் நியம விலகலையும் உய்த்தறிக.

முழுப் பதிப்புரிமை உடையது / All Rights Reserved]

MORA EXAMS 2024 | Tamil Students Faculty of Engineerica, University of Moratuwa | MORA EXAMS 2024 | Tamil Students Faculty of Engineerica, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering, University of Moratuwa | MORA EXAMS 2024 | Tamil Students, Faculty of Engineering University of Moratuwa | MORA EXAMS 2024 | Tamil Students | Gung | Land | L

கல்விப் பொதுத் தராதரப் பத்திர(உயர் தர) முன்னோடிப் பரீட்சை - 2024 General Certificate of Education (Adv.Level) Pilot Examination - 2024

இணைந்த கணிதம் II Combined Mathematics II

பகுதி B

- ☀ ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- 11. (a) ஒரு நேர்க்கிடை வீதியில் உள்ள ஒரு புள்ளி A யிலிருந்து $\frac{v}{2}$ எனும் வேகத்துடன் பயணத்தை ஆரம்பிக்கும் ஒரு கார் P யானது அவ் வேகத்துடன் t நேரத்திற்கு இயங்கி பின் 2f எனும் சீரான ஆர்முடுகலுடன் பயணிக்கின்றது. கார் P யானது A யில் பயணத்தை ஆரம்பிக்கும் அதே கணத்தில் கார் Q ஆனது A யிலிருந்து v எனும் வேகத்துடன் பயணத்தை ஆரம்பித்து f எனும் சீரான அமர்முடுகலுடன் 2t நேரத்திற்கு இயங்கி u(2u>v) எனும் வேகத்தைப் பெற்று பின்னர் அது 2f எனும் சீரான அமர்முடுகலுடன் இயங்கி அந்நேர்க்கிடை வீதியில் AB=d ஆகுமாறுள்ள புள்ளி B யில் ஓய்வடைகின்றது. கார் Q ஓய்வடையும் கணம் வரை P,Q ஆகியவற்றின் இயக்கங்களுக்கான வேக-நேர வரைபை ஒரே வரிப்படத்தில் பரும்படியாக வரைக.
 - **இதிலிருந்து,** Q ஓய்வடையும் கணத்தில் P இன் வேகம் $\dfrac{3v}{2}$ எனக் காட்டுக. இப்போது $v=\dfrac{3u}{2}$ எனத் தரப்படின் Q ஆனது B இனை அடையும் கணத்தில் P இற்கும் Q இற்கும் இடைப்பட்ட தூரம் $\dfrac{d}{2}$ எனக் காட்டுக.
 - $(b\)$ ஒரு பஸ் வண்டியானது $20\ ms^{-1}$ எனும் சீரான வேகத்துடன் மேற்கு நோக்கிச் செல்கின்றது. பாதசாரி ஒருவரில் இருந்து தெற்கிற்கு கோணம் $\frac{\pi}{3}$ கிழக்கே $200\ m$ தூரத்தில் பஸ்வண்டி உள்ள கணத்தில், பஸ் வண்டியினை இடைமறிக்கும் நோக்கில் பாதசாரி $10\sqrt{2}\ ms^{-1}$ எனும் சீரான வேகத்துடன் ஒரு நேர்கோட்டுப் பாதையில் இயங்குகிறார். பஸ்வண்டியினை இடைமறிப்பதற்கு பாதசாரி இரு திசைகளில் ஒன்றில் செல்லலாம் எனக் காட்டி, இவ்விரு திசைகளுக்குமிடையே உள்ள கோணம் $\frac{\pi}{2}$ எனக் காட்டுக. இவ்விரு திசைகளிலும் பாதசாரி பஸ்வண்டியினை இடைமறிக்க எடுக்கும் நேரங்களிற்கிடையிலான வித்தியாசத்தைக் காண்க.
- 12. (a) திணிவு $3\ m$ ஐ உடைய ஓர் ஒப்பமான சீரான குந்நியின் புவியீர்ப்பு மையத்தினூடாகவுள்ள நிலைக்குத்துக் குறுக்கு வெட்டு ABCDE உருவிற் காட்டப்பட்டுள்ளது. AE ஐக் கொண்டுள்ள முகம் கிடையுடன் $\frac{\pi}{6}$ சாய்விலுள்ள ஒப்பமான சாய்தளத்தின் மீது வைக்கப்பட்டுள்ளது. AB உம் CD உம் அவற்றைக் கொண்டுள்ள முகங்களின் அதியுயர் சரிவுக்கோடுகளாகும்.

மேலும் $B\hat{A}E=\frac{\pi}{6}$, CD=2a ஆகவும் AB,CD என்பன ஒன்றுக்கொன்று சமாந்தரமானதாகவும் அத்துடன் BC யானது AE இந்குச் சமாந்தரமாகவும் உள்ளது. m திணிவுடைய P,Q என்னும் இரு துணிக்கைகள் B யில் குற்றியில் நிலைப்படுத்தப்பட்டுள்ள ஓர் ஒப்பமான இலேசான சிறிய கப்பிக்கு மேலாகச் செல்லும் ஓர் இலேசான நீட்டமுடியாத இழையின் இரு நுனிகளுடனும் இணைக்கப்பட்டுள்ளன. குற்றியின் புள்ளி E உம் திணிவு 4m ஐ உடைய ஒரு துணிக்கை R உம் சாய்தளத்தின் உச்சி F இல் நிலைப்படுத்தப்பட்டுள்ள ஒரு சிறிய ஒப்பமான கப்பிக்கு மேலாகச் செல்லும் ஓர் இலேசான நீட்டமுடியாத இழையின் நுனிகளுடன் இணைக்கப்பட்டுள்ளன. இழைகள் ABCDE ஐக் கொண்டுள்ள அதே நிலைக்குத்துத் தளத்தில் இருக்கின்றது. 2m திணிவுடைய துணிக்கை S ஆனது CD யின் நடுப்புள்ளியில் வைக்கப்பட்டுள்ளது. துணிக்கை R சுயாதீனமாகத் தொங்குகிறது. இழைகள் இறுக்கமாக இருக்கத் தொகுதி ஓய்விலிருந்து இவ்வமைவினின்றும் விடுவிக்கப்படுகின்றது. துணிக்கை S ஆனது C இனை அடையும் கணத்தில் குற்றி இயங்கிய தூரத்தைத் துணிவதற்குப் போதிய சமன்பாடுகளைப் பெறுக.

 $(b\)$ உருவிற் காட்டப்பட்டுள்ளவாறு ஒரு மெல்லிய ஒப்பமான குழாய் $ABC\$ ஆனது $AB\$ கிடையுடன் $\frac{\pi}{3}$ சாய்வில் இருக்குமாறு ஒரு நிலைக்குத்துத் தளத்தில் நிலைப்படுத்தப்பட்டுள்ளது. $AB\$ யின் நீளம் $\sqrt{3}\ a$ ஆக இருக்கும் அதேவேளை பகுதி $BC\$ ஆனது ஆரை $a\$ ஐயும் மையம் $O\$ ஐயும் உடையதும் $OC\$ நிலைக்குத்தானதுமான ஒரு வட்ட வில் வடிவில் அமைந்த பகுதியாகும். $m\$ திணிவுடைய ஒரு துணிக்கை $P\$ ஆனது குழாயினுள்ளே புள்ளி A யில் வைக்கப்பட்டு, அதற்கு $\overline{AB}\$ இன் திசையில் பருமன் $\sqrt{7ga}$ ஐ உடைய ஒரு வேகம் தரப்படுகின்றது. துணிக்கை $P\$ யானது $B\$ இனை அடையும்போது அதன் வேகத்தைக் காண்க.

 \overrightarrow{OP} ஆனது, கீழ்முக நிலைக்குத்துடன் கோணம் $hetaigg(rac{\pi}{3} \le heta \le \piigg)$ இனை

அமைக்கும் போது துணிக்கை P இன் கதி v ஆனது $v^2 = ga(3+2\cos\theta)$

இனால் தரப்படும் எனக் காட்டி, அக்கணத்தில் குழாயிலிருந்து துணிக்கை P மீது உள்ள மறுதாக்கத்தைக் காண்க.

மேலும் துணிக்கை P யானது குழாயின் முனை C யினூடு வெளியேறி புவியீர்ப்பின் கீழ் இயங்குகின்றது. தொடரும் இயக்கத்தில் துணிக்கை P யானது A யினூடான கிடைத்தளத்தை அடிக்கும் தூரத்தை C யினூடான நிலைக்குத்திலிருந்து காண்க.

உருவிற் காட்டப்பட்டுள்ளவாறு ஓர் ஓப்பமான கிடைமேசை மீது A,B,C,D,E என்னும் புள்ளிகள் அதே நேர்கோட்டில் $AB=a,\ BC=3a,\ CD=a,\ DE=2a$ ஆக இருக்குமாறு உள்ளன. ഖ്വിசെயിல் ஒ(Ђ இயற்கை நீளம் a ஐயும் மீள்தன்மை மட்டு mg ஐயும் உடைய ஓர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி A உடனும் மற்றைய நுனி திணிவு mதுணிக்கை உடனும் ஐ உடைய ஒரு நீளம் 2aஐயும் மீள்தன்மை மட்டு 6*mg* இணைக்கப்பட்டுள்ளன. இயற்கை ஐயும் உடைய வேறோர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி E உடனும் மற்றைய நுனி துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. துணிக்கை P யானது Cயில் நாப்பத்தில் இருக்கும் எனக் காட்டுக. இப்போது mதிசையில் $3\sqrt{2ag}$ எனும் வேகத்துடன் Pயுடன் மோதி திணிவுடைய துணிக்கை Q ஆனது CA

இணைகின்றது. P,Q ஆகிய இரு துணிக்கைகளையும் கொண்ட சேர்த்தித் துணிக்கை R ஆனது $3\sqrt{rac{ag}{2}}$

C

எனும் வேகத்துடன் இயங்கத் தொடங்கும் எனக் காட்டுக. AR = x ஆக இருக்கும்போது சேர்த்தித் துணிக்கை R இற்கான இயக்கச் சமன்பாட்டைப் பெற்று, வழக்கமான குறிப்பீட்டில் $\ddot{x} + \frac{2g}{a}(x-4a) = 0$ எனக்

காட்டுக. X=x-4a என எழுதுவதன் மூலம் $\ddot{X}+w^2X=0$ எனக் காட்டுக. இங்கு $\omega=\sqrt{\frac{2g}{a}}$ ஆகும்.

மேற்குறித்த எளிய இசை இயக்கத்தின் மையத்தையும், $\dot{X}^2 = \omega^2(C^2 - X^2)$ எனும் சூத்திரத்தைப் பயன்படுத்தி வீச்சம் C ஐயும் காண்க.

தொடரும் இயக்கத்தில் D யில் R இன் வேகம் $\sqrt{\frac{5ag}{2}}$ எனக் காட்டுக.

D ஐ அடையும் போது சேர்த்தித் துணிக்கை R இற்கு ஒரு கணத்தாக்கு, அக்கணத்தாக்கத்திற்குச் சந்றுப்பின்னர் R இன் வேகம் \overrightarrow{DA} இன் திசையில் $3\sqrt{\frac{ga}{2}}$ ஆக இருக்குமாறு தரப்படுகின்றது. இக்கணத்தில் இழை DE வெட்டப்படுகின்றது.

தொடரும் இயக்கத்தில் R இன் இயக்கத்தின் சமன்பாடு $\ddot{y} + \frac{g}{2a}(y-a) = 0$ இனால் தரப்படுகின்றதெனக் காட்டுக; இங்கு AR = y.

Y=y-a என எழுதுவதன் மூலம் $\ddot{Y}+\omega_{\rm l}^2$ Y=0 எனக் காட்டுக. இங்கு $\omega_{\rm l}=\sqrt{\frac{g}{2a}}$ ஆகும்.

மேலும் துணிக்கை R ஆனது C யில் தொடங்கி முதல் தடவை B இனை அடைய எடுத்த மொத்த நேரம் $\sqrt{\frac{a}{2g}}\left\{\pi+\sin^{-1}\left(\frac{2}{3}\right)+2\sin^{-1}\left(\frac{4}{5}\right)\right\}$ எனக் காட்டுக.

14. (a) O, A, B என்பன ஒரே நேர்கோட்டிலில்லாத மூன்று புள்ளிகளாகும். உந்பத்தி O குறித்து புள்ளிகள் A,B யின் தானக்காவிகள் முறையே ${\bf a},{\bf b}$ ஆகும். OC யானது BA இற்குச் சமாந்தரமாகவும், OC=3BAஆகுமாறும் சரிவகம் OBACஅருகில் உள்ள உருவில் காட்டப்பட்டுள்ளது. $AD:DC\!=\!1\!:\!3$ ஆகுமாறு பக்கம் AC யில் புள்ளி D அமைந்துள்ளது. BC,OD இடைவெட்டும் புள்ளி ஆகும். \overrightarrow{OC} , \overrightarrow{OD} ஆகியவற்றை \mathbf{a}, \mathbf{b} ஆகியவற்றின் சார்பில் காண்க.

 $\overrightarrow{OE} = \mu \overrightarrow{OD}$, $\overrightarrow{BE} = \lambda \overrightarrow{BC}$ ஆகவும் உள்ளது. இங்கு $\lambda, \mu \in \mathbb{R}$.

முக்கோணிக்கூட்டல் விதியைப் பயன்படுத்தி $3\left(\frac{1}{2}\mu - \lambda\right)\mathbf{a} + \left(4\lambda - \frac{3}{4}\mu - 1\right)\mathbf{b} = \mathbf{0}$ எனக் காட்டி, \overrightarrow{OE} இனைக் காண்க.

மேலும் $O\hat{E}C = \frac{\pi}{2}$ எனின் $\mathbf{a} \cdot \mathbf{b} = \frac{2}{11} \left(3 \left| \mathbf{a} \right|^2 + 2 \left| \mathbf{b} \right|^2 \right)$ எனக் காட்டுக. அத்துடன் $AB = \frac{1}{2} \left| \mathbf{a} \right|$ எனவும் தரப்படின் $\sqrt{5} |\mathbf{a}| = 2 |\mathbf{b}|$ எனவும் காட்டி, \mathbf{a} இற்கும் \mathbf{b} இற்கும் இடைப்பட்ட கோணம் $\cos^{-1} \left(\frac{2}{\sqrt{5}} \right)$ எனக் காட்டுக.

-10-

(b) உருவிற் காட்டப்பட்டுள்ள 2a பக்க நீளமுடைய ஒழுங்கான அறுகோணி இன் மையம் O ஆகும். $P,\,2P,\,\lambda P,\,3P,\,P,\,4\sqrt{3}P$ ABCDEF என்னும் பருமன்களையுடைய ஆறு விசைகள் முரையே \overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{FE} , \overrightarrow{FA} , \overrightarrow{AE} வழியே தாக்குகின்றன. இங்கு $\lambda \in \mathbb{R}$. இவ்விசைத்தொகுதியின் $\,O\,$ பற்றிய வலஞ்சுழிப் போக்கிலான திருப்பம் $9\sqrt{3}\ Pa$ இந்கு சமனாகும் எனின் $\lambda=4$ எனக் காட்டி இவ்விசைத் தொகுதியின் விளையுளின் பருமனையும் திசையையும் காண்க. மேலம் ഖിതെ്വെപ്പണ് C யினூடாகச் செல்வதந்கு சேர்க்கவேண்டிய இணையின் பருமனையும் போக்கையும் காண்க.

- **15.** (a) சமநீளம் 2a ஐயும் சமநிறை w ஐயும் உடைய AB,BCஎன்னும் இரண்டு சீரான கோல்கள் B யில் ஓப்பமாக மூட்டப் பட்டுள்ளன. மையம் O ஐயும் ஆரை $\frac{a}{2}$ ஐயும் நிறை $2\lambda w$ ஐயும் உடைய ஓர் ஒப்பமான சீரான மெல்லிய வட்டத் தட்டு AB,BCஆகிய ABCஇனுள்ளே கோல்களை D, Eஆகிய பள்ளிகளில் முளையே தொடுமாறு வைக்கப் பட்டுள்ளது. காட்டப்பட்டுள்ளவாறு, உருவிற் சட்டத்தையும்
 - **தட்டையும்** கொண்ட தொகுதியானது $A.\ C$ ധിல் இணைக்கப்பட்ட நீளமுள்ள இரு இலேசான நீளா இழைகளினால் ஒரு நிலைத்த புள்ளி P யிலிருந்து தொங்கவிடப்பட்டு $A,\,C$ யில் பிரயோகிக் கப்படும் கிடை விசை 2w இனால் ஒரு நிலைக்குத்துத் தளத்

இப்போது $heta=45^\circ$ எனத்தரப்படின் BC இன் மூலம் AB மீது மூட்டு B யில் உருந்நப்படும்

மறுதாக்கத்தின் பருமனைக் கண்டு, $k=\frac{1}{2}$ எனக் காட்டுக.

- (b) உருவிற் காட்டப்பட்டுள்ள சட்டப்படல் $AB,\,BC,\,AD,\,BD,\,CD$ என்னும் ஐந்து இலேசான கோல்களை அவற்றின் முனைகளில் ஒப்பமாக மூட்டி அமைக்கப்பட்டுள்ளது. $AB=2a,\ DC=2\sqrt{3}a,$ $B\hat{D}C=90^\circ$ எனத் தரப்பட்டுள்ளது. அத்துடன் ABD ஒரு சமபக்க முக்கோணி. முட்டு Aயில் **ஒ**(Ҧ சுமை தொங்கவிடப்பட்டுள்ளது. மூட்டு B யில் CD இற்கு சமாந்தரமாக w எனும் விசையும், மூட்டு D யில் P எனும் கிடை விசையும் பிரயோகிக்கப்பட்டு AB கிடையாக இருக்குமாறு சட்டப்படலை Cநிலைத்த புள்ளியுடன் ஒப்பமாகப் பிணைத்து நிலைக்குத்துத் தளத்திலே நாப்பத்தில் பேணப்படுகின்றது.
 - P இன் பெறுமானத்தைக் காண்க.
 - A, B, D(ii) போவின் குறிப்பீட்டைப் பயன்படுத்தி ஆகிய மூட்டுகளுக்கு ஒரு தகைப்பு வரிப்படத்தை வரைக.

2w**இதிலிருந்து,** கோல்களில் உள்ள தகைப்புகளை அவை இழுவைகளா, உதைப்புகளா எனக் கூறிக் காண்க.

- a மையத்தில் கோணம் a வை எதிரமைக்கும் ஆரை a ஐ உடைய வட்டத்தின் ஒரு சீர்வட்ட ஆரைச்சிறையின் திணிவு மையம் அதன் மையத்திலிருந்து தூரம் a இலும்
 - a ஐ உடைய ஓர் சீரான அரைவட்ட வில்லின் திணிவு மையம் அதன் மையத்திலிருந்து தூரம் $\frac{2a}{\pi}$

இருக்கின்றனவெனக் காட்டுக.

உருவிற் காட்டப்பட்டுள்ளவாறு மையம் O வில் $\frac{\pi}{3}$ கோணம் எதிரமைக்கும் 4a ஆரையும் பரப்படர்த்தி $\frac{3}{2}\rho$ ஐயும் உடைய ஆரைச்சிறை OEFG வடிவத்திலுள்ள ஒரு சீரான மெல்லிய தகட்டுலோகத்துடன் AOG, DOE சமபக்க முக்கோணிகளை அமைக்குமாறு $\frac{1}{2}\rho a$ நீள அடர்த்தியுடைய AG, AD, DE ஆகிய மெல்லிய சீரான கம்பிகள் ஆரைச்சிறையின் உச்சிகள் O, E, G உடன் விறைப்பாகப்

பொருத்தப்பட்டுள்ளது. மேலும் AD கிடையாக இருக்க ஒவ்வொன்றும் $2\sqrt{3}a$ நீளமும் $\sqrt{3}\ \rho a$ நீள அடர்த்தியும் உடைய FH,FI ஆகிய சீரான இரு மெல்லிய கம்பிகள் ஆரைச்சிறையின் உச்சி F இல் விறைப்பாகப் பொருத்தப்பட்டு மற்றைய முனைகள் H,I உடன் $\sqrt{3}\ a$ ஆரையும் $\sqrt{3}\ \rho a$ நீள அடர்த்தியும் உடைய அரை வட்ட வடிவில் அமைந்த HQI எனும் மெல்லிய சீரான கம்பி விறைப்பாகப் பொருத்தப்பட்டுள்ளது. இக்கூட்டுருவின் திணிவு மையம் O விலிருந்து $\frac{(98+10\sqrt{3}+21\pi)a}{(7\pi+20)}$ எனும் தூரத்தில் உள்ளதெனக் காட்டுக.

இக்கூட்டுருவானது I இலிருந்து ஒரு நிலைக்குத்து இழையினால் சுயாதீனமாகத் தொங்கவிடப்படும் போது நாப்பத்தானத்தில் $O\!F$ கீழ்முக நிலைக்குத்துடன் ஆக்கும் கோணத்தைக் காண்க.

- 17. (a) ஒரு குறித்த பிரபல பாடசாலையில் சிரேஷ்ட மாணவ முதல்வனைத் தெரிவு செய்வதற்கான வாக்களிப்பு இடம்பெற்றது. அப்பாடசாலை மாணவர்களில் 40% ஆனோர் மாணவன் A யின் ஆதரவாளர்களாகவும் 35% ஆனோர் மாணவன் B யின் ஆதரவாளர்களாகவும் 25% ஆனோர் மாணவன் C யின் ஆதரவாளர்களாகவும் உள்ளனர். இவர்களில் A யின் ஆதரவாளர்களில் 45% ஆனவர்களும் B யின் ஆதரவாளர்களில் 40% ஆனவர்களும் வாக்களித்தனர். இப்பாடசாலையிலிருந்து ஒருவர் எழுமாற்றாகத் தெரிவு செய்யப்படும்போது
 - (i) அவர் வாக்களித்தவராக இருப்பதற்கு
 - (ii) வாக்களித்தவராக இருப்பின் பேசின் தேற்றத்தைப் (Bayes' Theorem) பயன்படுத்தி அவர் மாணவன் B யின் ஆதரவாளராக இருப்பதற்கு நிகழ்தகவைக் காண்க.

(b) பரீட்சை ஒன்றில் 50 மாணவர்களால் பெறப்பட்ட புள்ளிகள் தொடர்பான தகவல் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளது.

புள்ளிகள்	மாணவர்களின் எண்ணிக்கை
45 - 55	9
55 – 65	11
65 - 75	14
75 - 85	10
85 – 95	6

இம்மாணவர்கள் பெற்ற புள்ளிகளின் ஆகாரம், இடை, நியம விலகல் ஆகியவற்றைக் காண்க. அத்துடன் ஓராயக்குணகத்தையும் காண்க.
