

Gorivne ćelije

Korištenje gorivnih ćelija za proizvodnju el. energije Energijske tehnologije FER 2008.

Gdje smo:

- Organizacija i sadržaj predmeta
- 2. Uvodna razmatranja
- 3. O energiji
- 4. Energetske pretvorbe i procesi u termoelektranama
- 5. Energetske pretvorbe i procesi u hidroelektranama
- 6. Energetske pretvorbe i procesi u nuklearnim el.
- 7. Geotermalna energija
- 8. Potrošnja električne energije
- 9. Prijenos i distribucija električne energije
- 10. Energija Sunca
- 11. Energija vjetra
- 12. Biomasa
- 13. Gorivne ćelije i druge pretvorbe
- 14. Skladištenje energije
- 15. Utjecaj na okoliš, održivi razvoj i energija

Sadržaj

Uvod: Što je to neposredna pretvorba

- Nas zanima prvenstveno električna energija te kako je najjednostavnije proizvesti
- Neposredna (direktna)
 pretvorba je svaki proces
 koji kao rezultat daje
 električnu energiju
- Gorivne ćelije predstavljaju uz fotonaponske ćelije najzanimljiviju direktnu (neposrednu) pretvorbu

- Neposredne pretvorbe:
 - Fotonaponski efekt
 - Termoelektrični efekt
 - Termoionski efekt
 - Direktna transformacija kemijske energije:
 - · Gorivna ćelija
 - Akumulatori
 - Magnetohidrodinamički proces
 - Mnogi drugi (piezoelektricitet, statički elektricitet, ...)

Gorivna ćelija

- Gorivna ćelija
 - elektrokemijski element koji kontinuirano transformira kemijsku energiju goriva i oksidacijskog sredstva u el. en.
- Vodik + Kisik =Voda + El. en. + Toplina
 - Baterija s kontinuiranim dotokom goriva (dvije elektrode i elektrolit)
 - obrnuti proces od elektrolize

- 1839. (William R. Grove)
 - 1932 F. T. Bacon kreira iskoristivo rješenje
 - 60-te početak korištenja (SAD i Rusija)
- Prema načinu rada:
 - primarne
 - sekundarne
- Prema vrsti elektrolita
 - polimerna membrana (PEMFC)
 - fosforna kiselina (PAFC)
 - alkalne (AFC)
 - rastaljeni karbonati (MCFC)
 - kruti oksidi (SOFC)

Način rada gorivne ćelije

Gorivna ćelija sa membranom za izmjenu protona (PEM):

- sastoji se od dvije porozne elektrode (anoda i katoda) prevučene platinom na strani prema čvrstoj membrani (elektrolit) koja ih razdvaja
- anodni katalizator omogućava razdvajanje elektrona od protona vodika
- elektroni idu kroz trošilo, a protoni idu kroz membranu
- katodni katalizator spaja elektrone s protonima i kisikom

Kako radi gorivna ćelija

Za vodik i kisik kao gorivo:

- kontakt vodika i kisika u plinskom stanju rezultira vodom i energijom
- u gorivnom elementu to se odvija u dva koraka

– vodik na anodi:

$$H_2 \rightarrow 2H^+ + 2e$$

 elektroni i kisik na katodi:

$$O_2 + 2H_2O + 4e \rightarrow 4OH^{-1}$$

$$H^+ + OH^- \rightarrow H_2O$$

- to je oksidni put redukcije kisika (kompleksno)
- postoji još čitav niz mehanizama ovisno o korištenom gorivu

 $2H_2 + O_2 \rightarrow 2H_2O + en.$

- konačni rezultat (voda)
 nastaje u reakcijskom sloju
 ovisno o vrsti elektrolita
 - kiseli –katode
 - · alkalni anoda

- Allis-Chalmers gorivna ćelija pogonila je traktor, 1959. Prva u vozilu.
- APOLLO gorivna ćelija.

Performanse gorivne ćelije

- 1.17 V (prazni hod)
- gubitci napona
 - razni ovisno o vrsti gorivne ćelije i tehničkoj izvedbi te o struji
- istosmjerna snaga P = I·U
 - maksimalna snaga kod srednjih struja ovisna o unutrašnjem otporu elektrolita
- maksimalna efikasnost kod manjih struja

Vrste gorivnih ćelija

Vrstu određuje elektrolit, katalizator, gorivo i radna temperatura

Vrsta °C	PEM 90-110	AFC 100-250	PAFC 150-220	MCFC 500-700	SOFC 700-1000
Efikasnost	35-45%	60 %	40-45%	45-60%	50-65%
Primjene	male, prijevoz	svemir, prijevoz	velike stacionarne	velike stacionarne	stacionarne, prijevoz
Katalizator: anoda/katoda	Pt/Vulcan carbon	Ni, Ni-Pt,/ NiO, AG	Pt/Vulcan carbon	Ni-Al, Ni-Cr legure/ NiO	Ni+YSZ/ (La,Sr)MnO _{3-d}
Gorivo	$H_2 + H_2O$	H ₂	H ₂	HC + CO	HC + CO
Elektrolit Ioni	Nafion <i>H</i> ₃ O ⁺ ↓	KOH <i>OH</i> -↑	H_3PO_4 $H^+\downarrow$	Na_2CO_3 CO_3^{2-}	Y-ZrO ₂ <i>O</i> ²⁻ ↑
Oksidant	O ₂	O ₂ + H ₂ O	O ₂	$O_2 + CO_2$	O ₂

Nastaje: H₂O, CO₂

PEM = polymer electrolyte membrane, ili proton exchange membrane

AFC = alkalne gorivne ćelije

PAFC = phosphoric acid fuel cell

MCFC = molten carbonate fuel cell

SOFC = solid oxide fuel cell

Odabir gorivne ćelije

Temperatura određuje pogonske parametre i gorivo

- Temperatura okoline
 - ✓ Brzo pokretanje
 - × H₂ ili CH₃OH kao goriva
 - × Katalizator se lako otruje

- Visoke temperature
 - ✓ Fleksibilnost za gorivo
 - ✓ Vrlo visoka efikasnost
 - » Dugo vrijeme za pokretanje

- Primjene
 - Prijenosni izvor
 - Veliki broj ciklusa uključivanja
 - Male dimenzije

- Primjene
- Stacionarni izvor
- Pomoćni izvori u prijenosnim sustavima

Zašto gorivne ćelije?

Potencijalne primjene

2008.

Energijske tehnologije: Gorivne ćelije

Vodik i platina

4 kg vodika za 400 km.

- Energetska gustoća vodika
 - Veliki sadržaj energije po jedinici mase vodika
 - ali najbolje tehnike za spremanje vodika su na ~ 5 % mase H₂
 - 5x potrebna ukupna masa za masu benzina iste energije
- Konvencionalne gorivne ćelije trebaju platinu
 - Cilj smanjivanja potreba od 1 g/kW ⇒ ~ 1 mg/kW
 - Cijena:
 - 100 kW stroj \Rightarrow 100 g Pt \Rightarrow \$4850 (i raste!)
 - Resursi:
 - za sve automobile na Zemlji treba desetak puta više Pt od dokazanih rezervi (5600 t; 80% rezervi u jednom rudniku u JAR, a 15% u Rusiji)

Proizvodnja vodika

<u>Proizvodnja</u>

- Iz vode
 - elektrolizom
- energijom iz nuklearnih i obnovljivi izvora
- Biomasa (ugljen)
 - rasplinjavanje/piroliza
- Fosilna goriva
 - prirodni plin reformiranjem
 - benzin direktno
 - Toplinska energija
 - iz nuklearnih i drugih izvora
 - termička disocijacija
 - parno reformiranje

Table of

Pohranjivanje vodika

<u>Pohranjivanje</u>

- skupo
 - kapitalni troškovi za velika spremišta 1 do 2 \$/W
- pod tlakom
 - gubitci energije ~22%
 - oko 250 bar
 - potreban veliki prostor
- ukapljivanje
 - na niskoj temperaturi
 - gubitci vodika ~0,2%/dan
- napredno
 - metalni i kemijski hidridi
 - jeftinije i efikasnije

Snaga i efikasnost gorivnih ćelija

Gorivne ćelije u hibridnom sustavu

220 kW hibridni sustav tlačne cilindrične gorive ćelije s krutim oksidima i plinskom turbinom

 $http://www.nfcrc.uci.edu/ACTIVITIES/RESEARCH/STUDIES/Hybrid_Fuel_Cell_Systems/Analyses_of_Hybrid_FC_Gas_Turbine_Systems/Index.htm$

Ukupna efikasnost

Za pravu ocjenu važno je uzeti u obzir cijeli ciklus

Ukupni utjecaj na okoliš

Stanje i perspektive

Prototip dlanovnika i MP3-a na GC, do 60 h

Termički procesi za proizvodnju vodika

 Direktna termoliza vode traži temperature veće od 2500°C za značajniju proizvodnju vodika

$$H_2O => H_2 + 1/2 O_2$$
 (2500°C min.)

 Termokemijsko razlaganje vode u sumpor/jod ciklusu. Potrebna procesna toplina (para-plin temperature oko 900°C) u izmjenjivaču topline

$$H_2SO_4 => SO_2 + H_2O + 1/2 O_2$$
 (850°C min.)
 $I_2 + SO_2 + 2H_2O => 2HI + H_2SO_4$ (120°C min.)
 $2HI => I_2 + H_2$ (450°C min.)

Nuklearni reaktori i proizvodnja vodika

Vrlo-visoko-temperaturni reaktori

(VHTR - Very-High-Temperature Reactor System)

- MTU CFC HotModuel
 instalacija u Essenu
- 250kW MCFC komercijalizacija do kraja 2008. (očekivanje)

- Siemens Westinghouse 250kW goriva ćelija sa čvrstim oksidom.
- najveći SOFC 250kW sistem u svijetu

Chugoky Electric Power

W/D/H: 1,000/1,300/1,500mm Operating Tamperature: 60°C Efficiency: 58%

• Chugoku Electric Power 1kW PEM

- Plug Power i Hondin prototip Home Energy Stationa
- proizvodi dovoljno vodika za jedno vozilo na dan

- Toyota FCHV-BUS2
- Scania's Fuel Cell Bus
- Mercedes-Benz Citaro
 Fuel Cell Bus

Infrastruktura – u početku

Što je bilo prije jaje ili kokoš?

Infrastruktura u budućnosti

Ukratko o gorivnim ćelijama

- Opisana je gorivna ćelija
- Navedeni su razlozi zašto je gorivna ćelija važna
- Prednosti
 - direktna proizvodnja el.
 en. bez pokretnih dijelova (tiho i kompaktno)
 - smanjivanje ispuštanja stakleničkih plinova
 - rješavanje problema energenta za transport kod ograničene dostupnosti fosilnih goriva

- Navedene su neke izvedbe gorivnih ćelija
- Izneseni su primjeri korištenja gorivnih ćelija
- Sigurnost korištenja je usporediva sa drugim plinovima
- Opisana je ideja ekonomije vodika
- Nedostatci
 - proizvodnja
 - pohranjivanje
 - ekonomičnost