

7. Propiedades de los LIC

7.1. Formas normales para las GIC

Fernando Rosa Velardo

"Simplificación" de GICs

Formas de simplificar/limpiar una GIC

(limpiar)

1. Eliminar símbolos inútiles

(simplificar)

2. Eliminar producciones ε

3. Eliminar producciones *unitarias* A X В

Eliminación de símbolos inútiles

Un símbolo X es <u>alcanzable</u> si existe:

$$S = >^* \alpha X \beta$$

Un símbolo es *generador* si existe:

- $X = >^* W,$
 - para w ∈ T*

Para que un símbolo X sea "útil", ha de ser tanto alcanzable como generador

S =>*
$$\alpha X \beta$$
 =>* w', para w' $\in T$ *

alcanzable generador

Algoritmo de eliminación de símbolos inútiles

 Primero eliminamos los símbolos no generadores

 Después eliminamos los símbolos no alcanzables

¡El orden importa!

Ejemplo: símbolos inútiles

- S → AB | a
- A → b
- 1. A, S son generadores
- 2. B no es generador (y por lo tanto, es inútil)
- 3. ==> Eliminamos las producciones en las que aparezca B
 - 1. $S \rightarrow a$
 - $A \rightarrow b$
- 4. Ahora, A no es alcanzable, y por lo tanto es inútil
- 5. Simplificada:

1. $S \rightarrow a$

¿Y si comprobamos antes la alcanzabilidad?

No eliminamos:

$$A \rightarrow b$$

Algoritmo para encontrar los generadores

- Dada: G=(V,T,P,S)
- Base:
 - Todo símbolo terminal es generador.
- Inducción:
 - Si existe una producción A → α, y todos los símbolos de α son generadores
 - Entonces A también es generador

Algoritmo para encontrar los alcanzables

- Dada: G=(V,T,P,S)
- Base:
 - S es alcanzable
- Inducción:
 - Si existe una producción A → x₁ x₂... x_k, donde A es alcanzable
 - Entonces los símbolos x₁, x₂,... x_k son alcanzables

¿Para qué eliminar transiciones ε?

Eliminación de producciones ε

Ojo: no es posible eliminar producciones ϵ en lenguajes que contienen ϵ

Hablaremos del <u>resto</u> del lenguaje

<u>Teorema:</u> Si G=(V,T,P,S) es una GIC para L entonces L- $\{\epsilon\}$ tiene una GIC sin producciones ϵ

Definición: A es "anulable" si $A=>^* \mathcal{E}$

- Si A es anulable entonces una producción de la forma B → CAD se puede reemplazar por:
 - B → CD | CAD
 - Lo que nos permite eliminar las transiciones ε para A

Algoritmo para detectar símbolos anulables

Base:

 Si existe la producción A → ε entonces A es anulable (aunque existan otras producciones para A)

Inducción:

Si existe B → C₁C₂...C_k, y todos los C_i son anulables entonces B es anulable

Eliminación de producciones ε

Dada: G=(V,T,P,S)

Algoritmo:

- Detectar todas las variables anulables de G
- 2. Construir G₁=(V,T,P₁,S) de la siguiente manera:
 - Para cada producción A → X₁X₂...X_k, donde k≥1, si *m* de los *k* X_i's son anulables
 - Entonces G₁ tiene 2^m versiones de esta producción
 - Todas las combinaciones para las que cada X_i anulable aparece o no
 - Eliminar todas las producciones $A \to \epsilon$

Ejemplo: eliminación de producciones ε

- Sea L el lenguaje dado por la GIC:
 - $S \rightarrow AB$
 - ii. $A \rightarrow aAA \mid \epsilon$
 - iii. $B \rightarrow bBB \mid \epsilon$

Objetivo: Construir G1, gramática sin producciones ε , para L- $\{\varepsilon\}$

- Símbolos anulables: {S, A, B}
- G₁:
 - B → b | bB | bB | bBB
 - ==>
- $B \rightarrow b \mid bB \mid bBB$
 - análogamente, A → a | aA | aAA
 - análogamente, S → A | B | AB
- Obs: $L(G) = L(G_1) U \{ \epsilon \}$

- A → a | aA | aAA
- $B \rightarrow b \mid bB \mid bBB$

Eliminación de producciones unitarias

¿Para qué eliminar producciones unitarias?

Menos pasos de derivación

13

Ej.
$$A \rightarrow B \mid ...$$
 $B \rightarrow C \mid ...$
 $C \rightarrow D \mid ...$
 $D \rightarrow xxxx \mid yyy \mid zzz$

$$D \rightarrow xxxx \mid yyyy \mid zzz$$

$$después$$

Eliminación A→B de producciones unitarias

- Una producción unitaria es de la forma A → B, donde B es una variable
- Por ejemplo,

```
1. E \rightarrow T \mid E+T

2. T \rightarrow F \mid T^*F

3. F \rightarrow I \mid (E)

4. I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1
```

- ¿Cómo eliminamos producciones unitarias?
 - Reemplazamos $E \rightarrow T$ por $E \rightarrow F \mid T^*F$
 - Y continuamos recursivamente mientras haya producciones unitarias:

```
    E → F | T*F | E+T
    E → I | (E) | T*F | E+T
    E → a | b | la | lb | l0 | l1 | (E) | T*F | E+T
    Ahora E no tiene producciones unitarias
```

Igual para el resto de las producciones unitarias

Pares unitarios: algoritmo

- (A,B) es un "par unitario" si A=>*B
- Algoritmo para detectar pares unitarios:
 - Base: Todos los pares (A,A) son unitarios. Si A → B es una producción, (A,B) es un par unitario.
 - Inducción: Si (A,B) es un par unitario y → C es una producción entonces (A,C) es un par unitario.

Algoritmo para eliminar producciones unitarias

Entrada: G=(V,T,P,S)

Salida: G₁=(V,T,P₁,S) equivalente, sin producciones unitarias

Algoritmo:

- 1. Encuentra todos los pares unitarios
- 2. Para cada (A,B) unitario:

Añadimos la producción A $\rightarrow \alpha$, para cada producción no unitaria B $\rightarrow \alpha$

Ejemplo: eliminación de producciones unitarias

2. $T \rightarrow F \mid T^*F$ 3. $F \rightarrow I \mid (E)$

4. $I \rightarrow a | b | la | lb | l0 | l1$

Pares unitarios	Producciones añadidas		
(E,E)	E → E+T		
(E,T)	E → T*F		
(E,F)	E o (E)		
(E,I)	E → a b la lb l0 l1		
(T,T)	$T \rightarrow T^*F$		
(T,F)	$T \rightarrow (E)$		
(T,I)	T → a b Ia Ib I0 I1		
(F,F)	$F \rightarrow (E)$		
(F,I)	F → a b la lb l0 l1		
(1,1)	I → a b Ia Ib I0 I1		

<u>3_{1:}</u>					
١.	$E \to E+T$	T*F	(E)	a b	la

 $T \rightarrow T^*F \mid (E) \mid a \mid b \mid la \mid lb \mid l0 \mid l1$

 $F \rightarrow (E) | a| b | la | lb | l0 | l1$

 $I \rightarrow a \mid b \mid la \mid lb \mid l0 \mid l1$

| lb | l0 | l1

Todo junto...

- <u>Teorema:</u> Si G es una GIC que genera un lenguaje L (no vacío ni {ε}), existe otra GIC G₁ tal que L(G₁)=L(G) – {ε}, y G₁:
 - no tiene producciones ε
 - no tiene producciones unitarias
 - no tiene símbolos inútiles

Algoritmo:

- 1) eliminar producciones ε
- 2) eliminar producciones unitarias
- 3) eliminar símbolos inútiles

De nuevo, ¡el orden importa!

¿Por qué?

Formas normales

¿Para qué formas normales?

- Si se sabe que las producciones de la gramática tienen cierta forma, entonces:
 - Es más sencillo diseñar algoritmos para gramáticas
 - b. Es más sencillo probar cosas

Forma Normal de Chomsky (FNC)

Sea G una GIC.

Definición:

G está en FNC si todas sus producciones son de la forma:

```
i. A \rightarrow BC donde A,B,C son variables, o donde a es un terminal
```

Además, G no tiene símbolos inútiles

Por i y ii:

=> no puede contener producciones unitarias ni producciones ε)

¿Está la siguiente GIC en FNC?

```
G_1:
1. E → E+T | T*F | (E) | la | lb | l0 | l1
2. T → T*F | (E) | la | lb | l0 | l1
3. F → (E) | la | lb | l0 | l1
4. I → a | b | la | lb | l0 | l1
```

- G no tiene producciones ε
- G no tiene producciones unitarias
- G no tiene símbolos inútiles
- Pero...
 - las producciones no están en FNC

Conversión de G en FNC

- Hipótesis: G no tiene producciones ε ni unitarias, ni símbolos inútiles
- Para cada terminal a que aparezca en el cuerpo de una producción 1) junto con otros símbolos:
 - creamos una única variables X_a , y una producción $X_a \rightarrow a$, y
 - Reemplazamos las demás apariciones de a (acompañada de más símbolos) por X₃
- Ahora todas las producciones tienen la forma:
 - $\bullet \quad A \to B_1 B_2 \dots B_k \ (k \ge 3) \qquad o \qquad A \to a$
- Reemplazamos cada producción $A \rightarrow B_1B_2B_3...B_k$ por: 3)

$$B_1 \xrightarrow{C_2} C_2 \text{ y asi...}$$

$$\blacksquare \qquad A \rightarrow B_1C_1 \qquad C_1 \rightarrow B_2C_2 \quad ... \quad C_{k\text{-}3} \rightarrow B_{k\text{-}2}C_{k\text{-}2} \qquad C_{k\text{-}2} \rightarrow B_{k\text{-}1}B_k$$

Ejemplo

<u>G:</u>

 $S \rightarrow AS \mid BABC$

 $A \rightarrow A1 \mid 0A1 \mid 01$

 $B \rightarrow 0B \mid 0$

 $C \rightarrow 1C \mid 1$

G en FNC:

$$X_0 \rightarrow 0$$

 $X_1 \rightarrow 1$
 $S \rightarrow AS \mid BY_1$
 $Y_1 \rightarrow AY_2$
 $Y_2 \rightarrow BC$
 $A \rightarrow AX_1 \mid X_0Y_3 \mid X_0X_1$
 $Y_3 \rightarrow AX_1$
 $B \rightarrow X_0B \mid 0$
 $C \rightarrow X_1C \mid 1$

Todas las producciones tiene la forma correcta

Ejemplo

```
E \rightarrow E+T \mid T^*F \mid (E) \mid Ia \mid Ib \mid I0 \mid I1
T \to T^*F | (E) | la | lb | l0 | l1
```

3.
$$F \rightarrow (E) | la | lb | l0 | l1$$

4.
$$I \rightarrow a | b | la | lb | l0 | l1$$

Paso (1)

- $\mathsf{E} \to \mathsf{EX}_{+}\mathsf{T} \mid \mathsf{TX}_{*}\mathsf{F} \mid \mathsf{X}_{(\mathsf{EX}_{)}} \mid \mathsf{IX}_{\mathsf{a}} \mid \mathsf{IX}_{\mathsf{b}} \mid \mathsf{IX}_{\mathsf{0}} \mid \mathsf{IX}_{\mathsf{1}}$ 2. $T \rightarrow TX_{*}F \mid X_{(EX_{)}} \mid IX_{a} \mid IX_{b} \mid IX_{0} \mid IX_{1}$ 3. $F \rightarrow X_{(EX_{)}} \mid IX_{a} \mid IX_{b} \mid IX_{0} \mid IX_{1}$ 4. $I \rightarrow X_{a} \mid X_{b} \mid IX_{a} \mid IX_{b} \mid IX_{0} \mid IX_{1}$

- 7. $X_+ \rightarrow +$
- 8. X₍→ (9.

- $\mathsf{E} \to \mathsf{EC}_1 \mid \mathsf{TC}_2 \mid \mathsf{X}_0 \mathsf{C}_3 \mid \mathsf{IX}_a \mid \mathsf{IX}_b \mid \mathsf{IX}_0 \mid \mathsf{IX}_1$
- $2. \qquad C_1 \to X_+ T$
- 3. $C_2 \rightarrow X_*F$
- $C_3 \rightarrow EX_)$
- T →.....

7. Propiedades de los LIC

7.2. Lema de bombeo para los LIC

Fernando Rosa Velardo

El regreso del lema de bombeo...

- Resultado útil para probar que algunos lenguajes NO son incontextuales
 - (como en el caso de los lenguajes regulares)

- Antes de enunciar el lema de bombeo,
 - Una propiedad acerca de los árboles de derivación de GIC en FNC

Profundidad de los árboles de

Obs: los árboles de derivación de una GIC en FNC son árboles binarios

Dados:

- Un árbol de derivación para w, en una GIC G=(V,T,P,S) en FNC
- h, la altura del árbol de derivación

Entonces:

 $|w| \leq 2^{h-1}$

Árbol para w

Demostración

Por inducción sobre h

Base: h = 1

- → La derivación es "S → a"
- \rightarrow |w|= 1 = 2^{1-1} .

Hipótesis de inducción: h = k-1

|w|≤ 2^{k-2}

Paso inductivo: h = k

S tiene exactamente dos hijos: $S \rightarrow AB$

- Alturas de los subárboles de A y B a lo sumo h-1
- → $w = w_A w_B, con |w_A| \le 2^{k-2} y$ $|w_B| \le 2^{k-2}$
- \rightarrow $|w| \leq 2^{k-1}$

Árbol de derivación para w

Consecuencias del teorema (para GICs en FNC)

Resultado:

- Si la altura de un árbol de derivación es k,
 - $|w| = |w| \le 2^{k-1}$
- Dicho de otra manera:
 - Un árbol de derivación de altura k no puede generar palabras de longitud mayor que 2^{k-1}

Consecuencia:

 Si |w| ≥ 2^k sus árboles de derivación tienen una altura de al menos k+1

Lema de bombeo para LICs

Sea L un LIC.

Entonces existe una constante N, tal que

- si z ∈L con |z|≥N, podemos descomponer z=uvwxy, tal que:
 - 1. $|\mathbf{v}\mathbf{w}\mathbf{x}| \leq \mathbf{N}$
 - 2. **V**X≠€
 - Para todo k≥0: uv^kwx^ky ∈ L

Obs: bombeamos en dos sitios

Demostración (sketch)

- Sea L un LIC
 - Sea G una GIC para L en FNC
 - Sea m = número de variables en G
 - Tomamos N=2^m.
 - Sea z ∈ L tal que |z|≥ N

Se repite alguna de las últimas m+1 variables

Árbol de derivación de z

Extensiones del árbol de derivación...

Aplicación del lema de bombeo para LICs

Ejemplo 1: $L = \{a^m b^m c^m \mid m>0 \}$

Hipótesis: L no es un LIC

- Sea N = constante del lema de bombeo
- Tomamos $z = a^{N}b^{N}c^{N}$
- z = uvwxy
- Como |vwx| ≤ N y vx≠ε
 - ==> v, x no pueden contener los tres símbolos (a,b,c)
 - ==> podemos bombear para construir otra palabra que no está en L

-

Ejemplo #2

L = { ww | w en {0,1}*} no es un LIC

```
z = 0^{N}0^{N}
```

- ¿qué ocurre?
- $z = 0^{N}1^{N}0^{N}1^{N}$
 - ¿qué ocurre?

Ejemplo 3

■ L = { 0^{k²} | k cualquier entero)

L no es un LIC

Ejemplo 4

 $L = \{a^ib^jc^k \mid i < j < k \}$

L no es un LIC

7. Propiedades de los LIC

7.3. Propiedades de clausura de los LIC

Fernando Rosa Velardo

Propiedades de clausura

- LICs cerrados para:
 - Unión
 - Concatenación
 - Clausura de Kleene
 - Reflexión
- LICs NO cerrados para:
 - Intersección
 - Diferencia
 - Complemento

Obs: Los lenguajes regulares sí lo son

LICs cerrados para...

- Sean S₁ y S₂ las variables iniciales de las GICs para L₁ y L₂
 - Unión: S_{new} → S₁ | S₂
 - Concatenación: S_{new} → S₁ S₂
 - Clausura de Kleene: S_{new} → S₁ S_{new} | ε
 - Reflexión: Sustitiuimos $A \rightarrow \alpha$ por $A \rightarrow \alpha^R$

LICs *no* cerrados para la intersección

- Demostración constructiva:
 - $L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$
 - $L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$
- Tanto L₁ como L₂ son LICs
 - ¿Gramáticas?
- Pero L₁ ∩ L₂ no en un LIC
 - $L_1 \cap L_2 = \{0^n 1^n 2^n \mid n \ge 1\}$

LICs no cerrados para el complemento

 Consecuencia de no ser cerrados para la intersección

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

LICs no cerrados para la diferencia

- Se sigue del hecho de no ser cerrados para el complemento
- Si fuesen cerrados para la diferencia:

$$\blacksquare L = \sum^* - L$$

y L también sería un LIC

7. Propiedades de los LIC

7.4. Propiedades de decisión de los LIC

Fernando Rosa Velardo

Propiedades de decisión

- Test de vacío:
 - ¿S generadora?
- Test de pertenencia
 - Ejecución del AP
 - Enumeración de los árboles de derivación de una GIC en FNC
 - Otro algoritmo más eficiente...

4

Algoritmo CYK

Entrada: G=(V,T,P,S) en FNC, w=a₁...a_n en T*
Salida: Respuesta a ¿w en L(G)?

Algoritmo:

- X_{ij}=conjunto de variables que generan la palabra a_ia_{i+1}...a_i
 - Base: X_{ij}=conjunto de variables A para las que hay una producción A → a_i
 - Inducción: X_{ii}=conjunto de variables A tal que:
 - Existe una producción A → BC
 - B pertenece a X_{ik} y C pertenece a X_{k+1,j}
- ¿Está S en X1n?

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
b	а	а	b	а

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

b	а	а	b	а

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	а

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	а

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

_	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	а

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

_	{S,A,C}			
_	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	а

 $\begin{array}{c} \underline{G:} \\ S \rightarrow AB \mid BC \\ A \rightarrow BA \mid a \\ B \rightarrow CC \mid b \\ C \rightarrow AB \mid a \end{array}$

{ S ,A,C}				
-	{S,A,C}			
_	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	а	а	b	а

Problemas "indecidibles" para LICs

- ¿Es una GIC dada ambigua?
- ¿Es un LIC dado inherentemente ambiguo?
- ¿Es la intersección de dos LICs vacía?
- ¿Son dos LICs iguales?
- Dada G, ¿L(G)=∑*?