Confounding variables

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Confounding variables

Confounding variable

- Additional variable not accounted for in study design
- Alters the independent and dependent variables

Example

- Examining children's test scores
- Expensive cars and higher test scores in school correlate
- Reliable?
- Actually due to confounding
- Both linked to family income

Obvious conclusion?

```
print(p9.ggplot(df)+ p9.aes(x= 'Team', y= 'Weight')+ p9.geom_boxplot())
```


Maybe not...

```
print(p9.ggplot(df)+ p9.aes(x= 'Team', y= 'Weight', fill="Event")+ p9.geom_boxplot())
```


Interpretation

Differences could be due to:

- 1. Country
- 2. Event
- 3. Country & event

Difficult to choose between these

• Event is a confounding variable

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Blocking and randomization

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Making comparisons

Compare like with like

• Only variable of interest should differ between groups

Remove sources of variation

• See variation of interest

Random sampling

Simple way to assign to treatments

```
import pandas as pd
from scipy import stats

seed= 1916
subset_A = df[df.Sample == "A"].sample(n= 30, random_state= seed)
subset_B = df[df.Sample == "B"].sample(n= 30, random_state= seed)

t_result = stats.ttest_ind(subset_A.value, subset_B.value)
```

Other sources of variation

Example

- Two potato varieties: Roosters & Records
- Two fertilizers: A & B
- Variety could be a confounder

Blocking

- Solution to confounding
- Control for confounding by balancing with respect to other variable

Example

• Equal proportions of each variety treated with each fertilizer

Design

Variety	Fertilizer A	Fertilizer B
Records	10	10
Roosters	10	10

Implementing a blocked design

```
import pandas as pd

block1 = df[(df.Variety == "Roosters") ].sample(n=15, random_state= seed)
block2 = df[(df.Variety == "Records") ].sample(n=15, random_state= seed)

fertAtreatment = pd.concat([block1, block2])
```

Paired samples

Special case

- Control for individual variation
- Increase statistical power by reducing noise

Example

 Yield of 5 fields before/after change of fertilizer

2017 yield (tons/hectare)	2018 yield (tons/hectare)
60.2	63.2
12	15.6
13.8	14.8
91.8	96.7
50	53

Implementing a paired t-test

```
from scipy import stats

yields2018= [60.2, 12, 13.8, 91.8, 50]
yields2019 = [63.2, 15.6, 14.8, 96.7, 53]

ttest = stats.ttest_rel(yields2018, yields2019)

print(ttest[1])
```

p-value:

0.007894143467973484

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

ANOVA

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Variable types

Independent (Factors)

Manipulate experimentally

Dependent

Try to understand their patterns

t-test

- One discrete independent variable with two levels
- One dependent variable

ANOVA

- Analysis of variance
- Generalize t-test to broader set of cases
- Examine multiple factors/levels

Approach

- Partition variation into separate components
- Multiple simultaneous tests

One-way ANOVA

Use

- One factor with 3+ levels
- Does factor affect sample mean?

Example:

• Does potato production differ between three fertilizers?

Implementing a one-way ANOVA

```
from scipy import stats

array_fertA = df[df.Fertilizer == "A"].Production
array_fertB = df[df.Fertilizer == "B"].Production
array_fertC = df[df.Fertilizer == "C"].Production

anova = stats.f_oneway(array_fertA, array_fertB, array_fertC)

print(anova[1])
```

0.00

Two-way ANOVA

Use

- Two factors with 2+ levels
- Does each factor explain variation in the dependent variable?

Example

- 2 fertilizers, 2 potato varieties
- Potato production (dependent variable)

Implementing a two-way ANOVA

```
import statsmodels as sm

formula = 'Production ~ Fertilizer + Variety'
model = sm.api.formula.ols(formula, data=df).fit()

aov_table = sm.api.stats.anova_lm(model, typ=2)
print(aov_table)
```

```
sum_sq df F PR(>F)

Fertilizer 1.0 p-value

Variety 1.0 p-value

Residual NaN NaN
```

Example

Example output

```
import statsmodels as sm

formula = 'Production ~ Fertilizer + Variety'
model = sm.api.formula.ols(formula, data=df).fit()

aov_table = sm.api.stats.anova_lm(model, typ=2)
print(aov_table)
```

```
df
                                      F PR(>F)
               sum_sq
Fertilizer
          16247.966193 1.0
                                            0.0
                             16347.749306
Variety
                                            0.0
          15881.785333
                        1.0
                            15979.319631
Residual
           3972.603180
                     3997.0
                                     NaN
                                            NaN
```

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

Interactive effects

EXPERIMENTAL DESIGN IN PYTHON

Luke Hayden Instructor

Additive model

Interactive effects

In this example:

• Fertilizer D only better for Rooster potatoes

Interactive effects

In this example:

- Fertilizer E is best for Roosters
- Fertilizer F is best for Records

Implementing ANOVA with interactive effects

```
import statsmodels as sm
formula = 'Production ~ Fertilizer + Variety + Fertilizer:Variety'
model = sm.api.formula.ols(formula, data=df).fit()
aov_table = sm.api.stats.anova_lm(model, typ=2)
print(aov_table)
```

	sum_sq df	F PR(>F)	
Fertilizer	1.0	p-value	
Variety	1.0	p-value	
Fertilizer:Variety	1.0	p-value	
Residual		NaN NaN	

Example 1

Interactive effect

```
import statsmodels as sm
formula = 'Production ~ Fertilizer + Variety + Fertilizer:Variety'
model = sm.api.formula.ols(formula, data=df).fit()
aov_table = sm.api.stats.anova_lm(model, typ=2)
print(aov_table)
```

	sum_sq	df	F	PR(>F)
Fertilizer	56425.833205	1.0	60222.992593	0.0
Variety	56049.056459	1.0	59820.860770	0.0
Fertilizer:Variety	55385.556078	1.0	59112.710332	0.0
Residual	3744.045584	3996.0	NaN	NaN

Example 2

No interactive effect

```
import statsmodels as sm
formula = 'Production ~ Fertilizer + Variety + Fertilizer:Variety'
model = sm.api.formula.ols(formula, data=df).fit()
aov_table = sm.api.stats.anova_lm(model, typ=2)
print(aov_table)
```

	sum_sq	df	F	PR(>F)
Fertilizer	15468.395105	1.0	15172.001139	0.000000
Variety	16010.275045	1.0	15703.497977	0.000000
Fertilizer:Variety	1.464654	1.0	1.436589	0.230763
Residual	4074.064210	3996.0	NaN	NaN

Beyond 2-way ANOVA

Two-way ANOVA

```
formula = 'Production ~
Fertilizer + Variety + Fertilizer:Variety'
```

- 3 variables, 3 p-values
- 2 factors, 1 interaction

Three-way ANOVA

```
formula = 'Production ~ Fertilizer +
Variety + Season + Fertilizer:Variety +
Fertilizer:Season + Variety:Season +
Fertilizer:Variety:Season'
```

- 7 variables, 7 p-values
- 3 factors, 4 interactions

Let's practice!

EXPERIMENTAL DESIGN IN PYTHON

