

Vision & Perception Projects

26/04/2023

Rules

- The project can be carried out **individually or in groups** of up to 3 people
- The project is valid for **one academic year**. It is not necessary to submit the project in the same session as the written exam, even if it is highly recommended
- The project is delivered by making a **presentation** of the problem you chose, the proposed solution and the experiments carried out (there will be a specific day for the presentation, one for each session)
- To carry out the project it is necessary to send an abstract with the description of the proposed project, the members of the group, and a link to a Github repository that will be used for the delivery of the code. We will use anti-plagiarism software to make sure the code is really yours.

This information is sent via a **Google Form** to be filled in no later than May 16th at 11:59 pm!

Exams on 20 June and 20 July

Project Topics

- Classification and Detection
- Perception
- Computer Vision on Embedded Devices
- Generative Models
- Multimedia forensics

Classification

- Medical disease detection (e.g. Tumor, Cancer, ...)
- Activity recognition
- Vehicle Counting and Classification
- Unsupervised classification

Detection

- Human Pose Detection (e.g. sports)
- Traffic light detection (embedded / real-time)
- Horizon detection in images

Vehicle behaviour prediction

The project objective is to design a platform that succeeds in reducing hazardous situations during urban mobility.

- Detection of dangerous situations during mobility: road obstacles, potholes, pedestrian
- Recognition of risky driving behavior through vehicle trajectory forecasting

Perception

- Panoptic segmentation
 - Semantic segmentation
 - Instance segmentation
- Image/Depth Reconstruction
- Depth Completion
- Monocular Depth Estimation

Computer Vision on Embedded Devices

TensorFlow Lite Link

Embedded & Real-Time

- Collision Avoidance
- Hand Gesture Recognition
- Anomaly Detection
- Parking Occupancy Detection
- Multi Object Tracking

Generative Models

- Automatic Colorization of Photos using Deep Neural Networks
- Style Transfer
- Image Deblurring/Denoising using Generative Adversarial Networks
- Image Super-Resolution

Content

Style Recomposed Image

Generative Models

- Realistic images generation
- Text to image generation
- Face aging

Stage-II images

The small bird has a red head with feathers that fade from red to gray from head to tail

Stage-I images

This bird is black with green and has a very short beak

Stage-I images

Multimedia forensics

- Forgery detection in images
- Deepfake detection
- GAN, Diffusion model fingerprinting
- Image source reconstruction
- Robustness to adversarial attacks

A deepfake detection example

Artificial Intelligence Sandboxing

Adversarial deep learning learning, security and robustness of deep learning algorithms for computer vision sensible task (i.e. military scenario) to build trustworthy machine learning.

Multimedia forensics: open challenges

- Hateful meme detection
- <u>Detecting manipulated</u>
 <u>images: image similarity</u>
- GAN fingerprinting

Other topics

- Domain adaptation and/or Generalization
- 3D model reconstruction

Contacts

For questions you can send us an e-mail. Please include **everyone** in the email and specify "[Visiope]" in the email subject.

- Prof. Irene Amerini: <u>amerini@diag.uniroma1.it</u>
- Prof. Paolo Russo: paolo.russo@diag.uniroma1.it
- Luca Maiano: <u>maiano@diag.uniroma1.it</u>
- Lorenzo Papa: <u>papa@diag.uniroma1.it</u>