МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Физтех-школа радиотехники и компьютерных технологий

Отчёт о выполнении лабораторной работы 1.2.4. «Определение главных моментов инерции твердых тел с помощью крутильных колебаний»

Работу выполнили: Студенты группы Б01-304 Лепин Владислав Дмитриевич Каспаров Николай Михайлович Преподаватель: Колесов Юрий Иванович

Содержание

1 Введение

1.1 Цель работы

Измерить периоды крутильных колебаний рамки при различных положениях закрепленного в ней тела, проверить теорети- ческую зависимость между периодами крутильных колебаний тела относительно различных осей, определить моменты инерции относи- тельно нескольких осей для каждого тела, по ним найти главные моменты инерции тел и построить эллипсоид инерции.

1.2 В работе используются:

- установка для получения крутильных колебаний (жесткая рамка, имеющая винты для закрепления в ней твердых тел, подвешенная на натянутой вертикально проволоке);
- набор исследуемых твердых тел;
- секундомер;
- весы;
- штангенциркуль.

1.3 Оборудование и их систематические погрешности

Штангенциркуль: $\Delta_{\text{mt}}=0,1$ мм

Электронные весы: $\Delta_{\scriptscriptstyle B}=1$ г

Секундомер: $\Delta_c = 0, 4c$

2 Теоретические сведения

2.1 Экспериментальная установка

В данной работе используется устройство для получения крутильных колебаний, изображенное на рис. ??. Рамка 1 жестко соединена с проволокой 2, закрепленной вертикально в специальных зажимах 3, позволяющих сообщить начальное закручивание для возбуждения крутильных колебаний вокруг вертикальной оси. В рамке с помощью планки 4, гаек 5 и винта 6 закрепляется твердое тело 7. На теле име- ются специальные выемки, позволяющие его закрепить так, чтобы ось вращения проходила в теле под различными углами через центр масс.

> Крутильные колебания рамки с телом описываются уравнением

Здесь I и I_p – моменты инерции тела и рамки относительно оси вращения, φ – угол поворота рамки, меняющийся со временем t, f – модуль кручения проволоки. Период крутильных колебаний рамки с телом определяется формулой

$$T = 2\pi \sqrt{\frac{I + I_p}{f}}. (2)$$

На рис. ?? показано, как проходят оси вращения в параллелепипеде. Оси AA', BB' и CC' являются главными. Моменты инерции относительно этих осей обозначим соответственно $I_x, I_y I_z$. Ось DD', проходящая вдоль диагонали параллелепипеда, с главными осями составляет такие же углы, как с ребрами a, b и C, которые им параллельны.

Косинусы этих углов соответственно A/d, b/d и c/d, где длина диагонали $d = \sqrt{a^2 + b^2 + c^2}.$

жается через главные моменты с помощью следующей формулы:

Рис. 1: Схема установ-КИ

Момент инерции I_d при вращении относительно диагонали DD^\prime выра-

$$I_d = I_x \frac{a^2}{d^2} + I_y \frac{b^2}{d^2} + I_z \frac{c^2}{d^2}.$$
 (3)

Рис. 2: Оси вращения прямоугольного параллелепипеда

Отсюда получаем соотношение

$$(a^2 + b^2 + c^2)I_d = a^2I_x + b^2I_y + c^2I_z.$$
(4)

Используя связь момента инерции с периодом крутильных колебаний ??, получаем соотношение между периодами колебаний

$$(a^{2} + b^{2} + c^{2})T_{d}^{2} = a^{2}T_{x}^{2} + b^{2}T_{y}^{2} + c^{2}T_{z}^{2}.$$
 (5)

Экспериментальная проверка этого соотношения является вместе с тем и проверкой соотношения $\ref{eq:continuous}$. Из этой формулы следуют также выражения, связывающие моменты инерции относительно осей EE, MM' и PP с главными моментами инерции. С помощью $\ref{eq:continuous}$ и для этих осей получаем выражения для периодов крутильных колебаний. Также можно получить следующие формулы

$$(b^2 + c^2)T_E^2 = b^2T_y^2 + c^2T_z^2, (6)$$

$$(a^2 + c^2)T_P^2 = a^2T_x^2 + c^2T_z^2, (7)$$

$$(a^2 + b^2)T_M^2 = a^2T_x^2 + b^2T_y^2. (8)$$

Эти соотношения также необходимо проверить экспериментально.

3 Ход работы

3.1 Знакомство с экспериментальной установкой

Перед началом работы было проведено ознакомление с установкой для получания крутильных колебаний. Проволока натянуна безупречно. Рамка закреплена на ней жесточайшим образом. Устройство для возбуждения крутильных колебаний работает без нареканий. Колебания в вертикальной плоскости, к счастью, не возникают.

3.2 Закрепление тела в рамке

На данном этапе лабораторной работы был осуществлен процесс закрепления тел в рамке с использованием специальных углублений на телах и винтов, находящихся на рамке.

Процесс закрепления тел в рамке был внимательно выполнен в соответствии с предоставленными инструкциями, тем самым мы обеспечили надежность и стабильность закрепленных тел в экспериментальной установке.

3.3 Определение амплитуды крутильных колебаний

Перед каждой серией измерений, включая пустую рамку или рамку с предварительным закреплением тела, произведено важное действие — выбор оптимальной амплитуды крутильных колебаний. Этот процесс характеризуется следующими этапами:

- 1. Проведение измерения периода колебаний, определяемого по 10-15 колебаниям рамки.
- 2. Уменьшение амплитуды в два раза, согласно установленным критериям. Оцененка изменения периода колебаний при уменьшении амплитуды.
- 3. В случае изменения периода колебаний после уменьшения амплитуды, произведение коррекции амплитуды в соответствии с установленными критериями.

Примечание: процесс коррекции повторяется до тех пор, пока не будет достигнута оптимальная амплитуда, при которой период колебаний остается постоянным.

Этот этап эксперимента направлен на обеспечение точности и надежности измерений путем правильного выбора амплитуды крутильных колебаний перед каждой серией наблюдений.

3.4 Измерение периодов колебаний для пустой рамки и тел в различных положениях

На данном этапе исследования проведены измерения периодов колебаний для как пустой рамки, так и тел, находящихся в различных положениях относительно оси колебаний. Процедура измерения включала в себя следующие этапы:

1. Пустая рамка.

• Проведено измерение периода колебаний для пустой рамки, при этом осуществлены не менее трех повторных измерений для обеспечения достоверности данных. Каждое измерение включало в себя фиксацию времени, затраченного на 10-15 колебаний.

2. Тела в различных положениях.

- Каждое тело было размещено в рамке в различных положениях относительно оси колебаний.
- Для каждого положения тела были проведены измерения периода колебаний, повторенные от трех до пяти раз. Результаты измерений приведены в таблицах ??, ??.
- Зафиксированы временные интервалы, необходимые для осуществления 10-15 колебаний для каждого положения тела.

3. Обработка данных.

Для каждого измерения были рассчитаны средние значения периода колебаний по формуле:

$$T_{\rm cp} = \frac{1}{N} \sum_{i=1}^{N} T_i,$$
 (9)

где N – количество измерений.

Также была вычислена случайная погрешность измерений:

$$\sigma_{\rm ch} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (T_{\rm cp} - T_i)^2},$$
(10)

и полная погрешность в пределах одной серии опытов:

$$\sigma = \sqrt{\Delta_{\rm c}^2 + \sigma_{\rm c.n}^2}.$$
 (11)

В таблицу была записана полная относительная погрешность $\varepsilon_t^{\text{полн}}$ измерений среднего периода колебаний $T_{\text{сp}}$:

$$\varepsilon_t^{\text{\tiny ПОЛН}} = \frac{\sigma}{T_{\text{\tiny CD}}} \tag{12}$$

Из таблиц ?? и ?? видно, что периоды колебаний симметричных осей равны, а значит, параллелепипед действительно является симметричным.

Только платформа						
$_{\mathrm{t,c}}$	N	t,c	$T_{ m cp}$	$\sigma_t^{\text{случ}}$,с	$\varepsilon_t^{\text{полн}}, c$	
45,15	10	4,515				
45,17	10	4,517				
45,11	10	4,511	4,515	0,005	0,009	
45,22	10	4,522				
45,08	10	4,508				
			Ось Z			
$_{\mathrm{t,c}}$	N	$_{\mathrm{t,c}}$	$T_{\rm cp},$ c	$\sigma_t^{\mathrm{случ}}$,с	$arepsilon_t^{ ext{IIOJIH}}$	
56,22	10	5,622				
56,40	10	5,640				
56,30	10	5,630	5,633	0,007	0,007	
56,32	10	5,632				
56,42	10	5,642				
			Ось Ү			
$_{\mathrm{t,c}}$	N	$_{ m t,c}$	$T_{\rm cp},$ c	$\sigma_t^{\mathrm{случ}}$,с	$arepsilon_t^{ ext{полн}}$	
69,01	10	0.001				
	10	6,901				
69,12	10	6,912				
69,12 68,91	10 10	6,912 6,891	6,900	0,007	0,006	
69,12 68,91 68,97	10 10 10	6,912 6,891 6,897	6,900	0,007	0,006	
69,12 68,91	10 10	6,912 6,891 6,897 6,901	,	0,007	0,006	
69,12 68,91 68,97	10 10 10 10	6,912 6,891 6,897 6,901	Ось Х			
69,12 68,91 68,97 69,01 t,c	10 10 10 10	6,912 6,891 6,897 6,901 t,c	,	0.007 $\sigma_t^{\text{случ}}, c$	$0,006$ $\varepsilon_t^{\text{полн}}$	
69,12 68,91 68,97 69,01 t,c 65,71	10 10 10 10 10 N 10	6,912 6,891 6,897 6,901 t,c 6,571	Ось Х			
69,12 68,91 68,97 69,01 t,c 65,71 65,51	10 10 10 10 N 10 10	6,912 6,891 6,897 6,901 t,c 6,571 6,551	Ось X $T_{\rm cp}, { m c}$	$\sigma_t^{\mathrm{случ}}$,с	$arepsilon_t^{ ext{полн}}$	
69,12 68,91 68,97 69,01 t,c 65,71 65,51 65,53	10 10 10 10 10 N 10 10	6,912 6,891 6,897 6,901 t,c 6,571 6,551 6,553	Ось Х			
69,12 68,91 68,97 69,01 t,c 65,71 65,51	10 10 10 10 N 10 10	6,912 6,891 6,897 6,901 t,c 6,571 6,551	Ось X $T_{\rm cp}, { m c}$	$\sigma_t^{\mathrm{случ}}$,с	$arepsilon_t^{ ext{полн}}$	

Таблица 1: Измерение основных периодов колебаний параллелепипеда.

Ось ЕЕ'			Ось ЕЕ' (симметричная)						
$_{\mathrm{t,c}}$	N	T,c	$T_{\rm cp,c}$	$_{\mathrm{t,c}}$	T,c	$T_{\rm cp,c}$	$\sigma_t^{\text{случ}}$,с	$arepsilon_T^{ ext{полн}}$	
57,84	10	5,784		57,81	5,781				
57,64	10	5,764		57,79	5,779				
57,78	10	5,778	5,774	57,66	5,766	5,776	0,006	0,007	
57,80	10	5,780		57,80	5,780				
57,65	10	5,765		57,73	5,773				
	Ось РР'			C	Ось РР' (симметричная)				
$_{\mathrm{t,c}}$	N	$_{\mathrm{T,c}}$	$T_{\rm cp},$ c	$_{\rm t,c}$	$_{\mathrm{T,c}}$	$T_{\rm cp},$ c	$\sigma_t^{\text{случ}}$,с	$arepsilon_T^{ ext{полн}}$	
59,35	10	5,935		59,48	5,948				
59,45	10	5,945		59,32	5,932				
59,33	10	5,933	5,939	59,45	5,945	5,939	0,007	0,007	
59,43	10	5,943		59,37	5,937				
59,38	10	5,938		59,31	5,931				
Ось ММ'			Ось ММ' (симметричная)						
t,c	N	T,c	$T_{\rm cp},$ c	$_{\rm t,c}$	T,c	$T_{\rm cp},$ c	$\sigma_t^{\text{случ}}$,с	$arepsilon_T^{ ext{полн}}$	
66,84	10	6,684		66,82	6,682				
66,57	10	6,657		66,61	6,661				
66,68	10	6,668	6,669	66,63	6,663	6,667	0,008	0,006	
66,72	10	6,672		66,71	6,671				
66,63	10	6,663		66,59	6,659				

Таблица 2: Сравнение периодов колебаний для симметричных осей.

Ось 1й диагонали			Результат			
t,c	N	T,c	$T_{\rm cp,c}$	$\sigma_t^{\text{случ}},$ с	$arepsilon_T^{ ext{IIOJIH}}$	
60,57	10	6,057				
60,58	10	6,058				
60,41	10	6,041				
Ось 2і	йди	агонали				
t,c	N	$_{\mathrm{T,c}}$				
60,45	10	6,045				
60,39	10	6,039	6,048	0,008	0,007	
60,59	10	6,059				
Ось 3й диагонали						
t,c	N	Τ				
60,62	10	6,062				
60,28	10	6,028				
60,60	10	6,060				

Таблица 3: Измерение периодов колебаний для диагоналей.

3.5 Измерение геометрических размеров и расчет главных моментов инерции параллелепипеда

Результаты измерений геометрических размеров параллелепипеда штангенциркулем с соответствующими погрешностями приведены в таблице ??:

а, см	b, см	с, см
10,04	5,05	15,02
σ_a , cm	σ_b , cm	σ_c , cm
0,01	0,01	0,01

Таблица 4: Геометрические размеры параллелипипеда.

Проверим справедливость формул (5) - (8). Результаты предоставлены в таблице ??

Формула	$c^2 \cdot M^2$	ε	σ
$(a^2 + b^2 + c^2)T_d^2$	1,29	0,01	0,01
$a^2T_x^2 + b^2T_y^2 + c^2T_z^2$	1,27	0,01	0,01
$(b^2 + c^2)T_e$	0,837	0,01	0,008
$b^2T_y^2 + c^2T_z^2$	0,837	0,01	0,008
$(a^2+c^2)T_p$	1,15	0,01	0,01
$a^2 * T_x^2 + c^2 * T_z^2$	1,15	0,01	0,01
$(a^2 + b^2) * T_m$	0,56	0,01	0,01
$a^2T_m + b^2T_m$	0,55	0,01	0,01

Таблица 5: Проверка справедливости формул

Полученные результаты подтверждают, что формулы (5) - (8) верны в пределах погрешностей.

Вычислим главные моменты инерции по следующим формулам (теоретические значения):

$$I_x = \frac{1}{12}m(b^2 + c^2); (13)$$

$$I_y = \frac{1}{12}m(a^2 + c^2); (14)$$

$$I_z = \frac{1}{12}m(a^2 + b^2),\tag{15}$$

где m = 2083 г. – масса исследуемого цилиндра.

Таким образом, получим следующие значения:

- $I_x = 4,36, 10^{-3} \text{ kg/m}^2$
- $I_y = 5,67, 10^{-3} \text{ kg/m}^2$
- $I_z = 2, 19, 10^{-3} \text{ kg/m}^2$

3.6 Построение сечений эллипсоида инерций главными плоскостями

Построим сечения эллипсоида инерции плоскостями хОу и хОz:

Рис. 3: Сечения эллипсоида инерции главными плоскостями

Из графика можно найти отношения эллипсоидов инерций:

$$I_x/I_y \approx 0.831$$

$$I_x/I_z \approx 1,994$$

Сравним с теоретическими значениями:

$$I_x/I_y \approx 0,769$$

 $I_x/I_z \approx 2,004$

Значения совпали с неплохой точностью

4 Вывод

В результате опыта мы проверили симметрию параллелипипеда, а также эксперементально проверили уравнения (5) - (8), эксперементально нашли отношения моментов импульсов основных осей, которые с хорошей точностью совпали с теоретическими значениями.