MATH 518 Notes

Jiantong Liu

September 24, 2023

1 Aug 21, 2023

Definition 1.1. Let M be a topological space. An atlas on M is a collection $\{\varphi_{\alpha}: U_{\alpha} \to W_{\alpha}\}_{\alpha \in A}$ of homeomorphisms called *coordinate charts*, so that

- 1. $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of M,
- 2. for all $\alpha \in A$, W_{α} is an open subset of some $\mathbb{R}^{n_{\alpha}}$,
- 3. for all $\alpha, \beta \in A$, the induced map $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}|_{U_{\alpha} \cap U_{\beta}}$ is C^{∞} , i.e., smooth.

Figure 1: Atlas and Coordinate Chart

Example 1.2. Let $M = \mathbb{R}^n$ be equipped with standard topology, and let $A = \{*\}$, so $U_* = \mathbb{R}^n$ is the open cover of itself. Now the identity map

$$\varphi_*: U_* \to \mathbb{R}^r$$
$$u \mapsto u$$

is an atlas on \mathbb{R}^n .

Example 1.3. Let $M=S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$ be equipped with subspace topology. Let $U_\alpha=S^1\setminus\{(1,0)\}$ and $U_\beta=S^1\setminus\{(-1,0)\}$, and let $A=\{\alpha,\beta\}$. Let $W_\alpha=(0,2\pi)$ and $W_\beta=(-\pi,\pi)$. We define $\varphi_\alpha^{-1}(\theta)=(\cos(\theta),\sin(\theta))$ and $\varphi_\beta^{-1}(\theta)=(\cos(\theta),\sin(\theta))$, then

$$(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})(\theta) = \begin{cases} \theta, 0 < \theta < \pi \\ \theta - 2\pi, \pi < \theta < 2\pi \end{cases}$$

is smooth.

Example 1.4. Let X be a topological space with discrete topology, and let A = X, then $\{\varphi_x : \{x\} \to \mathbb{R}^0\}_{x \in X}$ gives an atlas.

Example 1.5. Let V be a finite-dimensional real vector space of dimension n. Pick a basis $\{v_1, \ldots, v_n\}$ of V, then there is a linear bijection φ with inverse

$$\varphi^{-1}: \mathbb{R}^n \to V$$
$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i v_i.$$

The topology on V needs to make φ^{-1} a homeomorphism, and the obvious choice is just the collection of preimages, namely

$$\mathcal{T} = \{ \varphi^{-1}(W) \mid W \subseteq \mathbb{R}^n \text{ open} \},$$

then $\varphi: V \to \mathbb{R}^n$ becomes an atlas.

Definition 1.6. Two atlases $\{\varphi_{\alpha}: U_{\alpha} \to W_{\alpha}\}_{\alpha \in A}$ and $\{\psi_{\beta}: V_{\beta} \to O_{\beta}\}_{\beta \in B}$ on a topological space M are equivalent if for all $\alpha \in A$ and $\beta \in B$,

$$\psi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap V_{\beta}) \subseteq \mathbb{R}^{n_{\alpha}} \to \psi_{\beta}(U_{\alpha} \cap V_{\beta}) \subseteq \mathbb{R}^{n_{\beta}}$$

is always C^{∞} , with C^{∞} -inverses. Such continuous maps are called *diffeomorphisms*. Alternatively, the two atlases are equivalent if their union $\{\varphi_{\alpha}\}_{{\alpha}\in A}\cup\{\psi_{\beta}\}_{{\beta}\in B}$ is always an atlas.

Exercise 1.7. Equivalence of atlases is an equivalence condition.

Definition 1.8. A (smooth) manifold is a topological space together with an equivalence class of atlases.

Convention. All manifolds are assumed to be smooth of C^{∞} , but not necessarily *Haudorff* and/or *second countable*.

Example 1.9. Continuing from Example 1.5, now suppose $\{w_1, \ldots, w_n\}$ gives another basis of V, with

$$\psi^{-1}: \mathbb{R}^n \to V$$

$$(y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i w_i.$$

This gives a change-of-basis matrix, so it is automatically C^{∞} as a multiplication of invertible matrices. Therefore, the topology here does not depend on the chosen basis.

Recall. A topological space X is *Hausdorff* if for all distinct points $x, y \in X$, there exists open neighborhoods $U \ni x$ and $V \ni y$ such that $U \cap V = \emptyset$.

Figure 2: Hausdorff Condition

Convention. Via our definition (Definition 1.8), not all manifolds are Hausdorff.

Example 1.10. Let $Y = \mathbb{R} \times \{0,1\}$, i.e., a space with two parallel lines, with a fixed topology. Define \sim to be the smallest equivalence relation on Y such that $(x,0) \sim (x,1)$ for $x \neq 0$, and define $X = Y / \sim$. X is called the *line with two origins*, and it is second countable but not Hausdorff.

Figure 3: Line with Two Origins

Example 1.11. Take charts

$$\{\varphi: M = \mathbb{R} \to \mathbb{R}\}$$
$$x \mapsto x$$

and

$$\{\psi: M = \mathbb{R} \to \mathbb{R}\}$$
$$x \mapsto x^3$$

on $M = \mathbb{R}$, then

$$\varphi \circ \psi^{-1} : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{\frac{1}{3}}$$

is not C^{∞} , so φ and ψ are two different charts, hence give two different manifolds.

Definition 1.12. A map $F: M \to N$ between two manifolds is *smooth* if

- 1. F is continuous, and
- 2. for all charts $\varphi: U \to \mathbb{R}^m$ on M and charts $\psi: V \to \mathbb{R}^n$ on $N, \psi^{-1} \circ F \circ \varphi|_{\varphi(U \cap F^{-1}(V))}$ is C^{∞} .

Figure 4: Smooth Map between Manifolds

2 Aug 23, 2023

Exercise 2.1. 1. $id: M \to M$ is smooth.

2. If $f:M\to N$ and $g:N\to Q$ are smooth maps between manifolds, then so is $gf:M\to Q$.

Punchline. The manifolds and the smooth maps between manifolds form a category.

Recall. A smooth map $f: M \to N$ is called a *diffeomorphism*, as seen in Definition 1.6, if it has a smooth inverse. This is the notion of an isomorphism in the category of manifolds.

Warning. 1. Following Example 1.11,

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^3$$

has an inverse

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{\frac{1}{3}}.$$

but f^{-1} is not differentiable at x=0. Hence, f is not a diffeomorphism.

2. Take \mathbb{R} with discrete topology, then all singletons are open sets, then the map

$$f: \mathbb{R}_{\mathrm{dis}} \to \mathbb{R}_{\mathrm{std}}$$
$$r \mapsto r$$

is a smooth bijection, but f^{-1} is not continuous.

Example 2.2. Consider $M=(\mathbb{R},\{\psi=\mathrm{id}:\mathbb{R}\to\mathbb{R}\})$ and $N=(\mathbb{R},\{\psi:\mathbb{R}\to\mathbb{R},x\mapsto x^3\})$ as two manifolds on \mathbb{R} with standard topology. To see that they are equivalent, consider the homeomorphism

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{\frac{1}{3}},$$

then $(\psi \circ f \circ \varphi^{-1})(x) = \psi(f(x)) = (x^{\frac{1}{3}})^3 = x$, so f is smooth, and $(\psi \circ f \circ \varphi^{-1})^{-1} = \varphi \circ f^{-1} \circ \psi^{-1} = id$, therefore f^{-1} is also smooth. Hence, f is a diffeomorphism.

We will now consider the real projective space $\mathbb{R}P^{n-1}$ and the quotient map $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}P^{n-1}$.

Definition 2.3. Define a binary relation on $\mathbb{R}^n\setminus\{0\}$ by $v_1\sim v_2$ if and only if there exists $\lambda\neq 0$ such that $v_1=\lambda v_2$. This is an equivalence relation, and we identify the equivalence class [v] of $v\in\mathbb{R}^n\setminus\{0\}$ as a line $\mathbb{R}v=\operatorname{span}_{\mathbb{R}}\{v\}$ through v. Then we define the *real projective space* $\mathbb{R}P^{n-1}=(\mathbb{R}^n\setminus\{0\})/\sim$.

The natural topology on $\mathbb{R}P^{n-1}$ is the quotient topology, where $\pi:\mathbb{R}^n\setminus\{0\} \to \mathbb{R}P^{n-1}$ is surjective and continuous, so we define $U\subseteq\mathbb{R}P^{n-1}$ to be open if and only if $\pi^{-1}(U)$ is open in $\mathbb{R}^n\setminus\{0\}$.

Figure 5: Stereographical Projection

Claim 2.4. $\mathbb{R}P^{n-1}$ is a manifold.

Proof. Define

$$\varphi_i: U_i \to \mathbb{R}^{n-1}$$
$$[v_1, \dots, v_n] \mapsto \left(\frac{v_1}{v_i}, \dots, \frac{v_{i-1}}{v_i}, \frac{v_{i+1}}{v_i}, \dots, \frac{v_n}{v_i}\right),$$

then

$$\varphi_i^{-1} : \mathbb{R}^{n-1} \mapsto U_i$$

 $(x_1, \dots, x_{n-1}) \mapsto [(x_1, \dots, x_{i-1}, 1, x_i, \dots, x_{n-1})],$

therefore

$$\begin{aligned} \varphi_{j} \circ \varphi_{i}^{-1} &: \varphi_{i}(U_{i} \cap U_{j}) \to \varphi_{j}(U_{i} \cap U_{j}) \\ &(x_{1}, \dots, x_{n-1}) \mapsto \varphi_{j}([(x_{1}, \dots, x_{i-1}, 1, x_{i}, \dots, x_{n-1})]) \\ &= \begin{cases} \left(\frac{x_{1}}{x_{j}}, \dots, \frac{x_{j-1}}{x_{j}}, \frac{x_{j+1}}{x_{j}}, \dots, \frac{x_{n-1}}{x_{j}}\right), & j < i \\ (x_{1}, \dots, x_{n-1}), & j = i \\ \left(\frac{x_{1}}{x_{j-1}}, \dots, \frac{1}{x_{j-1}}, \dots, \frac{x_{j-2}}{x_{j-1}}, \frac{x_{j}}{x_{j-1}}, \dots, \frac{x_{n-1}}{x_{j-1}}\right), & j > i \end{cases} \end{aligned}$$

Therefore, this is C^{∞} as a rational map on $\varphi_i(U_i \cap U_j)$, and so this gives an atlas, hence $\mathbb{R}P^{n-1}$ is a manifold.

Claim 2.5. $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}P^{n-1}$ is smooth.

Proof. Note that

$$\psi: \mathbb{R}^n \backslash \{0\} \hookrightarrow \mathbb{R}^n$$
$$x \mapsto x$$

is an atlas on $\mathbb{R}^n \setminus \{0\}$, and

$$\varphi_i \circ \pi \circ \varphi_i^{-1} : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^{n-1}$$

$$(v_1, \dots, v_n) \mapsto \varphi_i([(v_1, \dots, v_n)])$$

$$= \left(\frac{v_1}{v_i}, \dots, \frac{v_{i-1}}{v_i}, \frac{v_{i+1}}{v_i}, \dots, \frac{v_n}{v_i}\right).$$

This is C^{∞} on $\pi^{-1}(U_i) = \{(v_1, \dots, v_n) \mid v_i \neq 0\}$, so π is smooth.

Definition 2.6. A smooth function on a manifold M is a function $f: M \to \mathbb{R}$ so that for any coordinate chart $\varphi: U \to \varphi(U)$ open in \mathbb{R}^m , the function $f \circ \varphi^{-1}: \varphi(U) \to \mathbb{R}$ is smooth.

Remark 2.7. $f: M \to \mathbb{R}$ is smooth if and only if $f: M \to (\mathbb{R}, \{ \text{id} : \mathbb{R} \to \mathbb{R} \})$, usually called the *standard manifold structure on* \mathbb{R} , is smooth.

Notation. We denote $C^{\infty}(M)$ to be the set of all smooth functions $f:M\to\mathbb{R}$.

Remark 2.8. $C^{\infty}(M)$ is a smooth \mathbb{R} -vector space, that is, for all $\lambda, \mu \in \mathbb{R}$ and $f, g \in C^{\infty}(M)$,

- $(\lambda f + \mu g)(x) = \lambda f(x) + \mu g(x)$ for all $x \in M$,
- $(f \cdot g)(x) = f(x)g(x)$ for all $x \in M$.

Therefore, $C^{\infty}(M)$ becomes a (commutative, associative) \mathbb{R} -algebra.

Fact. Connecting manifolds have the notion of dimension. That is, the dimensions of open subsets induced by coordinate charts are the same.

Definition 3.1. Let M be a manifold, then for every point $q \in M$, there exists a well-defined non-negative integer $\dim_M(q)$, so that for any coordinate chart $\varphi: U \to \mathbb{R}^m$ for $U \ni q$, we have $\dim_M(q) = m$ for some non-negative integer m that only depend on M. Consequently, $\dim_M: M \to \mathbb{Z}^{\geqslant 0}$ is a locally constant function. This integer m is called the *dimension* of M.

Proof. Indeed, say $\psi: V \to \mathbb{R}^n$ is another chart with $U \cap V \ni q$, then $\psi \circ \varphi^{-1}|_{\varphi(U \cap V)}: \varphi(U \cap V) \subseteq \mathbb{R}^m \to \psi(U \cap V) \subseteq \mathbb{R}^n$ is a diffeomorphism, therefore the Jacobian $D(\psi \circ \varphi^{-1})(\varphi(a)): \mathbb{R}^m \to \mathbb{R}^n$ is a linear isomorphism, thus m = n.

Definition 3.2. Suppose $(M, \{\varphi_{\alpha} : U_{\alpha} \to \mathbb{R}^m\}_{\alpha \in A})$ and $(N, \{\psi_{\alpha} : V_{\beta} \to \mathbb{R}^n\}_{\beta \in B})$ are two manifolds. One can give a manifold structure to the product set $M \times N$, called the *product manifold*, as follows:

- give $M \times N$ the product topology,
- let $\{\varphi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \to \mathbb{R}^{m} \times \mathbb{R}^{n}\}_{(\alpha,\beta) \in A \times B}$ to be the atlas on $M \times N$. This is well-defined since the transition maps of $\alpha, \alpha' \in A$ and $\beta, \beta' \in B$ are over $(U_{\alpha} \times V_{\beta}) \cap U_{\alpha'} \times V_{\beta'} = (U_{\alpha} \cap U_{\alpha'}) \times (V_{\beta} \cap V_{\beta'})$ with $(\varphi_{\alpha'} \times \psi_{\beta'}) \circ (\varphi_{\alpha} \times \psi_{\beta})^{-1} = (\varphi_{\alpha'} \circ \varphi_{\alpha}^{-1}, \psi_{\beta'} \circ \psi_{\beta}^{-1})$. This is smooth since products of smooth maps are smooth.

Punchline. The product construction of manifolds gives the categorical product in the category of manifolds.

Property. 1. The projection maps

$$p_M: M \times N \to M$$
$$(m, n) \mapsto m$$

and

$$p_N: M \times N \to N$$
 $(m,n) \mapsto n$

are C^{∞} .

2. Universal Property of Product: for any manifold Q and smooth maps $f_M:Q\to M$ and $f_N:Q\to N$, there exists a unique map

$$g:Q\to M\times N$$

$$q\mapsto (f(q),g(q))$$

such that $p_M \circ g = f_M$, and $p_N \circ g = f_N$.

Figure 6: Universal Property of Product

Recall. • A topological space X is *second countable* if the topology has a countable basis: there exists a collection $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ of open sets so that any open set of X is a union of some B_i 's.

• A cover $\{U_{\alpha}\}_{{\alpha}\in A}$ of a topological space is *locally finite* if for all $x\in X$, there exists a neighborhood N of X such that $N\cap U_{\alpha}=\varnothing$ for all but finitely many α 's.

Example 3.3. Let $X = \mathbb{R}$, then

- $\{U_n = (-n, n)\}_{n \ge 0}$ is an open cover, but is not locally finite,
- $\{U_n = (n, n+2)\}_{n \in \mathbb{Z}}$ is a locally finite open cover of \mathbb{R} ,
- $\{U_n=(n,n+2]\}_{n\in\mathbb{Z}}$ is a locally finite cover of \mathbb{R} , but is not an open cover.

Recall. An (open) cover $\{V_{\beta}\}_{{\beta}\in B}$ is a refinement of a cover $\{U_{\alpha}\}_{{\alpha}\in A}$ if for all β , there exists $\alpha=\alpha(\beta)$ such that $V_{\beta}\subseteq U_{\alpha(\beta)}$.

Definition 3.4. A Hausdorff topological space is *paracompact* if every open cover has a locally finite open refinement.

Fact. A connected Hausdorff manifold is paracompact if and only if it is second countable.

Corollary 3.5. A Haudorff manifold is paracompact if and only if its connected components are second countable.

Example 3.6. \mathbb{R} with discrete topology is paracompact but not second countable.

Convention. Usually, we assume manifolds are paracompact, except when we need a non-Haudorff manifold. This condition is required for the existence of *partition of unity* (i.e., constant function id).

Recall. If X is a space, and $Y \subseteq X$ is a subset, then the closure \overline{Y} of Y is the smallest closed set containing Y.

Definition 3.7. Given a topological space X and a function $f: X \to \mathbb{R}$, the support of f over X is

$$\operatorname{supp}(f) = \overline{\{x \in X \mid f(x) \neq 0\}}.$$

Example 3.8. The function

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

is C^{∞} , with support $\overline{(0,\infty)} = [0,\infty)$.

Definition 3.9. Let M be a topological space and let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover. A partition of unity subordinate to the cover is a collection of continuous functions $\{\psi_{\alpha}: M \to [0,1]\}_{{\alpha}\in A}$ such that

- 1. $\operatorname{supp}(\psi_{\alpha}) \subseteq U_{\alpha}$ for all $\alpha \in A$,
- 2. $\{\operatorname{supp}(\psi_{\alpha})\}_{{\alpha}\in A}$ is a locally finite closed cover of M,
- 3. $\sum_{\alpha \in A} \psi_{\alpha}(x) = 1$ for all $x \in M$.

Remark 3.10. For all $x \in M$, there exists $\alpha_1, \ldots, \alpha_n$ such that $x \in \text{supp}(\psi_{\alpha_i})$. Hence, for $\alpha \neq \alpha_1, \ldots, \alpha_n, \psi_{\alpha}(x) = 0$. Therefore, the summation in Definition 3.9 is finite.

Theorem 3.11. Let M be a paracompact manifold with open cover $\{U_{\alpha}\}_{{\alpha}\in A}$, then there exists a partition of unity $\{\psi_{\alpha}:U_{\alpha}\to[0,1]\}_{{\alpha}\in A}\subseteq C^{\infty}(M)$ subordinate to the cover.

Example 3.12. Let $M = \mathbb{R}$ and consider for n > 0 the open sets $\{U_n = (-n, n)\}_{n \in \mathbb{N}}$. This is not locally finite at one point.

Example 3.13. Let $M = \mathbb{R}^n$, then for all $x \in \mathbb{R}^n$ and for r > 0, we have $B_r(x) = \{x' \in \mathbb{R}^n \mid ||x - x'|| < r\}$ and so $\{B_r(x)\}_{r>0, x \in \mathbb{R}^n}$ is an open cover, but this is not locally finite everywhere.

We will start to talk about tangent vectors.

Recall. For any point $q \in \mathbb{R}^n$ and any vector $v \in \mathbb{R}^n$, and any $f \in C^{\infty}(\mathbb{R}^n)$, the directional derivative of q in direction v with respect to f is

$$D_v f(q) = \frac{d}{dt}|_{0} f(q + tv).$$

This gives a map $D_v(-)(q): C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ which is

· linear, and

· Leibniz rule holds, i.e.,

$$D_v(fg)(q) = D_v(f)(q) \cdot g(q) + f(q)D_v(g)(q).$$

In other words, $D_v(-)(q): C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is a derivation.

Definition 4.1. Let q be a point of a manifold M. A tangent vector to M at q is an \mathbb{R} -linear map $v: C^{\infty}(M) \to \mathbb{R}$ such that for all $f, g \in C^{\infty}(M)$,

$$v(fg) = v(f)g(q) + f(q)v(g).$$

Remark 4.2. v gives smooth vector fields over M an $C^{\infty}(M)$ -module structure via evaluation.

Lemma 4.3. The set T_qM of all tangent vectors to M at q is an \mathbb{R} -vector space.

Lemma 4.4. Suppose $c \in C^{\infty}(M)$ is a constant function, then for all q and all $v \in T_qM$, v(c) = 0.

Proof. We have $v(1) = v(1 \cdot 1) = 1(q)v(1) + v(1)1(q) = 2v(1)$, so v(1) = 0. For a constant function c, we have

$$v(c) = v(c \cdot 1) = cv(1) = c(0) = 0.$$

Lemma 4.5 (Hadamard). For any $f \in C^{\infty}(\mathbb{R}^n)$, there exists $g_1, \ldots, g_n \in C^{\infty}(\mathbb{R}^n)$ such that

• $f(x) = f(0) + \sum_{i=1}^{n} x_i g_i(x)$, and

•
$$g_i(0) = \left(\frac{\partial}{\partial x_i} f\right)(0).$$

Proof. We have

$$f(x) - f(0) = \int_0^1 \frac{d}{dt} (f(tx)) dt$$
$$= \int_0^1 \sum_{i=1}^n \frac{\partial f}{\partial x_i} (tx) \cdot x_i dt$$
$$= \sum_{i=1}^n x_i \int_0^1 \frac{\partial f}{\partial x_i} (tx) dt$$
$$= \sum_{i=1}^n x_i g_i(x).$$

Therefore, $g_i(0) = \int_0^1 \frac{\partial f}{\partial x_i}(t \cdot 0) dt = \frac{\partial f}{\partial x_i}(0)$.

Remark 4.6. For $1 \le i \le n$, we have canonical tangent vectors to \mathbb{R}^n at 0 given by

$$\frac{\partial}{\partial x_i}|_0: C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$$
$$f \mapsto \frac{\partial f}{\partial x_i}(0).$$

Lemma 4.7. $\left\{ \frac{\partial}{\partial x_1} |_0, \dots, \frac{\partial}{\partial x_n} |_0 \right\}$ is a basis of $T_0 \mathbb{R}^n$.

Proof. Suppose $\sum c_i \frac{\partial}{\partial x_i}|_{0} = 0$, then

$$0 = \left(\sum_{i} c_{i} \frac{\partial}{\partial x_{i}}|_{0}\right) (x_{j}) = \sum_{i} c_{i} \delta_{ij} = c_{j}.$$

Therefore, $c_j = 0$ for all j, thus we have linear independence. For all $v \in T_0\mathbb{R}^n$, i.e., $v : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is a derivation, then $v = \sum_i v(x_i) \frac{\partial}{\partial x_i}|_{0}$. Let $f \in C^{\infty}(\mathbb{R}^n)$, then $f(X) = f(0) + \sum x_i g_i(x)$, thus

$$v(f) = v(f(0)) + \sum_{i=1}^{n} v(x_i g_i(x))$$

$$= \sum_{i=1}^{n} v(x_i g_i(x))$$

$$= \sum_{i=1}^{n} (v(x_i) g_i(0) + x_i(0) v(g_i))$$

$$= \sum_{i=1}^{n} v(x_i) g_i(0)$$

$$= \sum_{i=1}^{n} v(x_i) \frac{\partial f}{\partial x_i}(0).$$

Remark 4.8. This shows $\dim(T_0\mathbb{R}^n) = n$ with the basis above.

Now let V be a finite-dimensional vector space with a basis e_1, \ldots, e_n , then

$$\varphi: \mathbb{R}^n \to V$$

$$(t_1, \dots, t_n) \mapsto \sum_{i=1}^n t_i e_i$$

is a linear bijection, with linear inverse

$$\psi: V \to \mathbb{R}^n$$

$$v \mapsto (\psi_1(v), \dots, \psi_n(v))$$

where $\psi_i(v)$'s are linear maps. To describe this with a basis, we have $\psi(\sum_i a_i e_i) = (a_1, \dots, a_n)$, i.e., $\psi_i(e_j) = \delta_{ij}$.

Claim 4.9. $\{\psi_1,\ldots,\psi_n\}$ is a basis of $V^*=\operatorname{Hom}(V,\mathbb{R})$, called the dual basis of $\{e_1,\ldots,e_n\}$, denoted $e_i^*=\psi_i$.

Proof. Linear independence follows from $e_j^*(e_i) = \delta_{ij}$. Given $\ell: V \to \mathbb{R}$ to be a linear map, then $\ell = \sum \ell(e_i)e_i^*$ since $\left(\sum_i \ell(e_i)e_i^*\right)(e_j) = \ell(e_j)$. Given $v \in T_0\mathbb{R}^n$, $v(f) = \sum a_i \left(\frac{\partial}{\partial x_i}|_0f\right)$ for all $f \in C^\infty(\mathbb{R}^n)$. Note that $\frac{\partial}{\partial x_i}|_0(x_j) = \delta_{ij}$, so $v(x_j) = \sum a_i \frac{\partial}{\partial x_i}|_0(x_j) = \sum_i a_i \delta_{ij} = a_j$. Therefore, we have $a_i = v(x_i)$ for all i, thus $v(f) = \sum v(x_i) \left(\frac{\partial}{\partial x_i}|_0f\right)$. Thus, the dual basis to $\frac{\partial}{\partial x_i}|_0, \ldots, \frac{\partial}{\partial x_n}|_0$ is $\{d(x_i)_0\}_{i=1}^n$ where $(dx_i)_0(v) = v(x_i)$ for all i. Hence, we have $v = \sum (dx_i)_0(v) \frac{\partial}{\partial x_i}|_0$.

Remark 4.10. Via a change of basis, this works at every point q on the local chart, so we can describe the tangent space on any point on a local chart.

Let M be a manifold and $x \in M$. Recall that a tangent vector $v : C^{\infty}(M) \to \mathbb{R}$ is a derivation, i.e., linear map, and the set of tangent vectors at q gives the tangent space.

Example 5.1. Let $M = \mathbb{R}^n$, and q = 0, then $\left\{\frac{\partial}{\partial x_1}|_0, \dots, \frac{\partial}{\partial x_n}|_0\right\}$ is a basis of $T_0\mathbb{R}^n$. Moreover, for all $v \in T_0\mathbb{R}^n$, $v = \sum v(x_i)\frac{\partial}{\partial x_i}|_0$, thus $\{v \mapsto v(x_i)\}_{i=1}^n$ is the dual basis, with $v(x_i) = (dx_i)_0(v)$ for all $1 \le i \le n$.

Remark 5.2. The proof used Hadamard's lemma (Lemma 4.5) and the fact that for all $x \in \mathbb{R}^n$ and all $t \in [0, 1]$, f(tx) is defined. Thus, the same argument should work for a version of Hadamard's lemma for star-shaped open subsets $U \subseteq \mathbb{R}^n$.

Definition 5.3. We say an open subset $U \subseteq \mathbb{R}^n$ is a star-shaped domain if for all $t \in [0,1]$ and all $x \in U$, $tx \in U$.

Definition 5.4. Let $F: M \to N$ be a smooth map between two manifolds, and $q \in M$ is a point, then

$$T_q F: T_q M \to T_q N$$

 $v(f) \mapsto v(f \circ F)$

via the pullback.

Exercise 5.5. Check that the definition makes sense, in particular:

- (i) $(T_q F)(v)$ is a tangent vector to N of F(q), and
- (ii) $T_q F$ is a derivation.

Remark 5.6. (a) It is easy to deduce the *chain rule*. That is, given $M \xrightarrow{F} N \xrightarrow{G} Q$ with $q \in M$, then $T_q(G \circ F) = T_{F(q)}G \circ T_qF$ because for all $f \in C^{\infty}(Q)$ and all $v \in T_qM$, we have

$$(T_q(G \circ F)(v))(f) = v(f \circ (G \circ F))$$

and

$$(T_{F(q)}G(T_qF(v))) = (T_qF)(v)(f \circ G) = v((f \circ G) \circ F).$$

(b) $T_q(\mathrm{id}_M) = \mathrm{id}_{T_qM}$.

As a result, we know T is a functor from the category of pointed manifolds to the category of \mathbb{R} -vector spaces.

Corollary 5.7. If $F: M \to N$ is a diffeomorphism, then for all $q \in M$, $T_qF: T_qM \to T_{F(q)}N$ is an isomorphism.

Proof. Since F is a diffeomorphism, then it has a smooth inverse $G: N \to M$, so

$$id_{T_qM} = T_q(id_M) = T_q(G \circ F) = T_{F(q)}G \circ T_qF$$

and

$$\mathrm{id}_{T_{F(q)}N}=T_{F(q)}(\mathrm{id}_N)=T_{F(q)}(F\circ G)=T_{F(q)}F\circ T_{F(q)}G.$$

We also need to show that $\dim(T_qM) = \dim_q(M)$, which is a result of Lemma 5.8, whose proof will be postponed till next time.

Lemma 5.8. Let M be a manifold and $q \in M$, and let U be an open neighborhood of q in M, and let $i: U \hookrightarrow M$ be an inclusion, then

$$I = T_q i : T_q U \to T_q M$$
$$v(f) \mapsto v(f|_U)$$

is an isomorphism for all $v \in T_qM$ and all $U \subseteq M$.

Notation. We denote $r_1, \ldots, r_n : \mathbb{R}^m \to \mathbb{R}$ to be the standard coordinates on \mathbb{R}^m .

Let M be a manifold, $q_0 \in M$, and $\varphi : U \to \mathbb{R}^m$ is a coordinate chart with $q_0 \in U$. Now let $x_i = r_i \circ \varphi$, then $\varphi(q) = (x_1(q), \dots, x_m(q))$.

We may now assume that

- $\varphi(q_0)=0$, otherwise, we replace $\varphi(q)$ by $\varphi(q):=\varphi(q)-\varphi(q_0)$, and
- $\varphi(U)$ is an open ball $B_R(0) = \{r \in \mathbb{R}^m \mid ||r|| < R\}$ because there exists R > 0 such that $B_R(0) \subseteq \varphi(U)$, and we can then replace U with $\varphi^{-1}(B_R(0))$ and restrict the charts φ to $\varphi|_{\varphi^{-1}(B_R(0))}$.

We now define

$$\frac{\partial}{\partial x_j}|_{q_0}: C^{\infty}(U) \to \mathbb{R}$$

$$f \mapsto \frac{\partial}{\partial r_j}|_{0} (f \circ \varphi^{-1})$$

Claim 5.9. $\left\{\frac{\partial}{\partial x_j}|_{q_0}\right\}_{j=1}^m$ is a basis of T_qM and for all $v \in T_{q_0}M$, $v = \sum v(x_j)\frac{\partial}{\partial x_j}|_{q_0}$.

Proof. By Hadamard's lemma Lemma 4.5 on $B_R(0)$, for all $f \in C^\infty(U)$, we have $f \circ \varphi^{-1} \in C^\infty(B_R(0))$, so there exists $g_1, \ldots, g_m \in C^\infty(B_R(0))$ such that $(f \circ \varphi^{-1})(r) = f(\varphi^{-1}(0)) + \sum r_i g_i(r)$. Therefore, $f(q) = f(q_0) + \sum (r_i \circ \varphi)(q)(g_i \circ \varphi)(q)$, hence $f = f(q_0) + \sum x_i(g_i \circ \varphi)$, and $(g_i \circ \varphi)(q_0) = g_i(0) = \frac{\partial}{\partial r_i}|_0 (f \circ \varphi^{-1}) = \frac{\partial}{\partial x_i}|_0 (f)$. Hence, for all $v \in T_{q_0}(U)$, we know

$$v(f) = v(f(q_0)) + v\left(\sum x_i \cdot (g_i \circ \varphi)\right)$$
$$= \sum_i v(x_i)(g_i \circ \varphi)(q_0)$$
$$= \sum_i v(x_i) \frac{\partial}{\partial x_i}|_{q_0}(f).$$

Remark 5.10. 1. The linear functionals

$$(dx_i)_{q_0}: T_{q_0}U \to \mathbb{R}$$

 $v \mapsto v(x_i)$

is the basis of $(T_{q_0}U)^*$ dual to $\left\{\frac{\partial}{\partial x_i}|_{q_0}\right\}$.

2. $(T_0\varphi^{-1})\left(\frac{\partial}{\partial r_i}|_0\right) = \frac{\partial}{\partial x_i}|_{q_0}$ by definition. Since $\left\{\frac{\partial}{\partial x_i}|_0\right\}_{i=1}^n$ is a basis of $T_0(B_R(0))$, then $\left\{\frac{\partial}{\partial x_i}|_{q_0}\right\}$ has to be a basis

Lemma 5.11. Let M be a manifold and $q \in M$ a point. Let $U \ni q$ be anopen neighborhood, and $f \in C^{\infty}(M)$ such that $f|_{U} = 0$, then for all $v \in T_{q}M$, we have v(f) = 0.

Proof. We have shown the existence of a bump function $\rho \in C^{\infty}(M)$ in homework 1, that is, $0 \le \rho(x) \le 1$, $\operatorname{supp}(\rho) \subseteq U$ and $\rho \equiv 1$ near q.

Figure 7: Bump Function

Therefore, $\rho f \equiv 0$, so $v(f) = v(\rho)f(q) + \rho(q)v(f) = v(\rho f) = 0$.

Recall. Given a coordinate chart $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$, and $q \in U$ with f(q) = 0, we defined $\left\{\frac{\partial}{\partial x_i}|_q\right\}_{i=1}^m \subseteq T_q U$ by $\frac{\partial}{\partial x_i}|_q f = \frac{\partial}{\partial r_i} (f \circ \varphi^{-1})|_{\varphi(q)}$ where $\frac{\partial}{\partial r_i}$'s are the standard partials on $C^{\infty}(\mathbb{R}^m)$. We know this is a basis with dual basis

$$(dx_i)_q: T_qM \to \mathbb{R}$$

 $v \mapsto v(x_i)$

therefore $v = \sum v(x_i) \frac{\partial}{\partial x_i}|_q$ for all v. Note that

$$C^{\infty}(M) \to C^{\infty}(U)$$

 $f \mapsto f|_{U}$

is not surjective.

Also, we know $v \in T_qM$ is local, if $f, g \in C^{\infty}(M)$ agree on a neighborhood of q, then v(f) = v(g). Finally, given $F: M \to N$, this induces

$$T_q F : T_q M \to T_{F(q)} N$$

 $v \mapsto v(f \circ F).$

Lemma 6.1. Given a manifold M and $q \in M$, open neighborhood $q \in U \subseteq M$ and $i: U \hookrightarrow M$ inclusion, then

$$I \equiv T_q i : T_q U \to T_q M$$

is an isomorphism with $(I(v))(f) = v(f|_U)$ for all $f \in C^{\infty}(M)$.

Proof. Suppose $v \in \ker(I)$, then $v(f|_U) = 0$ for all $f \in C^{\infty}(M)$. We want v(h) = 0 for all $h \in C^{\infty}(U)$. We first choose bump function $\rho : M \to [0,1]$ that is C^{∞} , and $\rho \equiv 1$ near q, and suppose $\operatorname{supp}(\rho) \subseteq U$, hence $\rho|_{M \setminus U} \equiv 0$. Then define $\rho h \in C^{\infty}(M)$ via

$$\rho h(x) = \begin{cases} \rho(x)h(x), & x \in U \\ 0, & x \notin U \end{cases}$$

Now $\rho h|_U \equiv h$ near q, i.e., identically 1. Therefore, $v(h) = v(\rho h|_U) = 0$, so $v \equiv 0$.

It remains to show that for all $w \in T_qM$, there exists $v \in T_qU$ such that I(v) = w, i.e., for all $f \in C^{\infty}(M)$, $w(f) = v(f|_U)$. Take the same $\rho \in C^{\infty}(M, [0.1])$ as above, define $v(h) = w(\rho h)$ for all $h \in C^{\infty}(M)$, and we can check that

- $v \in T_qM$, and
- for all $f \in C^{\infty}(M)$, $v(f|_U) = w(f)$.

Note that v is \mathbb{R} -linear, and for all $f, g \in C^{\infty}(W)$ we have $v(fg) = w(\rho fg) = w(\rho^2 fg)$ since $\rho fg = \rho^2 fg$ near q, then we have

$$v(fg) = w(\rho^2 fg)$$

$$= w((\rho f)(\rho g))$$

$$= v(\rho f) \cdot (\rho g)(g) + \rho(f)(q) \cdot v(\rho g)$$

$$= v(f)g(q) + f(q)v(g).$$

Finally, for all $f \in C^{\infty}(M)$, we have $v(f|_U) = w(\rho f) = w(f)$ since $\rho f = f$ near q.

Notation. We now suppress the isomorphisms $I:T_qU\to T_qM$. In particular, given a chart $\varphi=(x_1,\ldots,x_m):U\to\mathbb{R}^m$, we view $\left\{\frac{\partial}{\partial x_i}|_q\right\}_{i=1}^m$ as a basis of T_qM .

Lemma 6.2. Let V be a finite-dimensional vector space with $q \in V$, then

$$\varphi: V \to T_q V$$

$$v(f) \mapsto \frac{d}{dt}|_0 f(q+tv)$$

for all $f \in C^{\infty}(V)$, is an isomorphism.

Proof. One can see this is linear, so it suffices to show injectivity. We have

$$\ker(\varphi) = \{ v \in V \mid \frac{d}{dt} | _0(q + tv) = 0 \,\forall f \in C^{\infty}(V) \}.$$

If $0 \neq v \in \ker(\varphi)$, then there exists $\ell: V \to \mathbb{R}$ such that $\ell(V) \neq 0$, so

$$0 \neq \frac{d}{dt}|_{0}(\ell(q+tv)) = \frac{d}{dt}|_{0}(\ell(q) + t\ell(v)) = \ell(v).$$

Definition 6.3. A curve through a point $q \in M$ on a manifold M is a C^{∞} -map $\gamma : (a, b) \to M$ with $0 \in (a, b)$ such that $\gamma(0) = q$.

Definition 6.4. Given $\gamma:(a,b)\to M$ with $\gamma(0)=q$, we define $\dot{\gamma}(0)\in T_qM$ by $\dot{\gamma}(0)f=\frac{d}{dt}|_0f(\gamma(t))=\frac{d}{dt}|_0(f\circ\gamma)$ for all $f\in C^\infty(M)$.

Remark 6.5.

$$t:(a,b)\to\mathbb{R}$$

is a coordinate chart on (a, b), where $\frac{d}{dt}|_{0} \in T_{0}(a, b)$ is a basis vector. Since γ is C^{∞} ,

$$T_0\gamma: T_0(a,b) \to T_{\gamma(0)}M \equiv T_qM$$
$$((T_0\gamma)(\frac{d}{dt}|_0))f = \frac{d}{dt}|_0(f \circ \gamma) = \dot{\gamma}(0),$$

so $\dot{\gamma}(0) = (T_0 \gamma) \left(\frac{d}{dt} |_0 \right)$.

Let $\mathscr{C} = \{ \gamma : I \to M \mid \gamma(0) = q, I \text{ interval depending on } \gamma \}$, then we have a map

$$\Phi: \mathscr{C} \to T_q M$$
$$\gamma \mapsto \dot{\gamma}(0)$$

Note that Φ is not injective. However, there is an equivalence relation \sim on $\mathscr C$ defined by $\gamma \sim \sigma$ if and only if $\Phi(\gamma) = \Phi(\sigma)$, so this gives an injection

$$\begin{split} \tilde{\Phi}: \mathscr{C}/\sim &\to T_q M \\ [\gamma] \mapsto \dot{\gamma}(0). \end{split}$$

Claim 6.6. $\tilde{\Phi}$ is onto.

Proof. Choose coordinates $\varphi=(x_1,\ldots,x_m):U\to\mathbb{R}^m$ near q such that $(x_1,\ldots,x_m)(q)=0$. Now, for all $v\in T_qM$, we have $v=\sum v(x_i)\frac{\partial}{\partial x_i}|_q$. Consider $\gamma(t)=\varphi^{-1}(tv(x_1),\ldots,tv(x_m))$, then $\gamma(0)=\varphi^{-1}(0)=q$ and for any $f\in C^\infty(M)$, we have

$$\dot{\gamma}(0)f = \frac{d}{dt}|_{0}(f \circ \varphi^{-1})(tv(x_{1}), \dots, tv(x_{m}))$$

$$= \sum \frac{\partial}{\partial r_{i}}(f \circ \varphi^{-1})|_{0} \cdot v(x_{i})$$

$$= \sum v(x_{i})\frac{\partial}{\partial x_{i}}|_{q}f$$

$$= v(f).$$

Lemma 6.7. For any smooth map $F: M \to N$ between manifolds, for all $q \in M$, we have

$$T_q F(\dot{\gamma}(0)) = (F \circ \gamma) \cdot (0).$$

Proof.

$$T_q F(\dot{\gamma}(0)) = T_q F(T_0 \gamma \left(\frac{d}{dt}|_0\right))$$
$$= T_0(F \circ \gamma) \left(\frac{d}{dt}|_0\right)$$
$$= (F \circ \gamma)^{\cdot}(0).$$

Example 6.8. Let $M=N=\mathbb{C}$ and $F(z)=e^z$. We claim that $(T_zF)(v)=e^zv$, which uses $\mathbb{C}\cong T_w\mathbb{C}$ for all $w\in\mathbb{C}$. Indeed, since $\frac{d}{dt}|_0e^{tv}=v$, then

$$(T_z F)(v) = \frac{d}{dt}|_0 F(z + tv)$$

$$= \frac{d}{dt}|_0 e^{z+tv}$$

$$= \frac{d}{dt}|_0 (e^z e^{tv})$$

$$= e^z v.$$

Note that T_zF is an isomorphism for all z, given by

$$T_{z}\mathbb{C} \xrightarrow{T_{z}F} T_{F(z)}\mathbb{C}$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\mathbb{C} \xrightarrow{e^{z}} \mathbb{C}$$

Also note that this is not a diffeomorphism, since the inverse is the complex logarithm function, which is only well-behaved on the principal branches.

Definition 7.1. Given a manifold $M, q \in M$, and $f \in C^{\infty}(M)$, we define the exact differential to be a linear map

$$df_q: T_qM \to \mathbb{R}$$

 $v \mapsto v(f)$

in $\operatorname{Hom}(T_qM,\mathbb{R})=:T_q^*M$, the cotangent space.

Exercise 7.2. • df_q is linear,

• $f \equiv g$ near q, then $df_q = dg_q$.

We have seen differentials before: given a coordinate chart $\varphi=(x_1,\ldots,x_m):U\to\mathbb{R}^m$ is a coordinate chart, then $\{(dx_i)_q\}_{i=1}^m$ is a basis of T_q^*M dual to $\{\frac{\partial}{\partial x_i}|_q\}_{i=1}^m$. Note that for all $\eta\in T_q^*M\equiv (T_qM)^*$, then $\eta=\sum\eta\left(\frac{\partial}{\partial x_i}|_q\right)(dx_i)_q$.

Lemma 7.3. Let M be a manifold, $q \in M$, and $f \in C^{\infty}(M)$, then the derivative

$$(T_q f)(v) = df_q(v) \frac{d}{dt}|_{f(q)}.$$

Proof. Note that $\{dt_{f(q)}\}\$ is a basis of $T_{f(q)}^*\mathbb{R}$, then

$$dt_{f(q)}(T_q f(v)) = (T_q f(v))t = v(t \circ f) = v(f) = df_q(v),$$

so $(T_q f)(v) = df_q(v) \frac{d}{dt}|_{f(q)}$.

Recall. Let $T:V\to W$ be a linear map, and let $\{e_1,\ldots,e_n\}$ be a basis of V, and let $\{f_1,\ldots,f_n\}$ be a basis of W, with dual basis $\{f_1^*,\ldots,f_n^*\}$ in W^* . Then let $t_{ij}=f_i^*(Te_j)$, then

$$T(e_j) = \sum_i f_i^*(Te_j) f_i = \sum_i t_{ij} f_i.$$

For all $F: \mathbb{R}^m \to \mathbb{R}^n$, consider the coordinates $(x_1, \ldots, x_m): \mathbb{R}^m \to \mathbb{R}$ and $(y_1, \ldots, y_n): \mathbb{R}^n \to \mathbb{R}$, which gives coordinates $\{(\frac{\partial}{\partial x_i}|_q)\}$ and $\{(\frac{\partial}{\partial y_i}|_{F(q)})\}$, respectively. With $T = T_q F$, we have

$$t_{ij} = (dy_i)_{F(q)} \left(T_q F\left(\frac{\partial}{\partial x_j}|_q \right) \right) = \left(T_q F\left(\frac{\partial}{\partial x_j}|_q \right) \right) y_i = \frac{\partial}{\partial x_j} |_q (y_i \circ F).$$

If we denote $F = (F_1, \dots, F_n)$ where $F_i = y_i \circ F$ then this is just $\frac{\partial F_i}{\partial x_j}(q)$, so $\left(\frac{\partial F_i}{\partial x_j}(q)\right)$ is the matrix of T_qF .

Definition 7.4. Let $F: M \to N$ be a smooth map, we say $c \in N$ is a regular value of F if either $F^{-1}(c) = \emptyset$, or for all $q \in F^{-1}(c)$, $T_qF: T_qM \to T_{F(q)}N = T_cN$ is onto.

We say $c \in N$ is a singular value if it is not a regular value.

Example 7.5. Consider

$$F: \mathbb{R}^2 \to \mathbb{R}$$
$$(x_1, x_2) \mapsto x_1 - x_2^2$$

for all $q=(x_1,x_2)\in\mathbb{R}^2$, then T_qF is the matrix $\left(\frac{\partial F}{\partial x_1}(q),\frac{\partial F}{\partial x_1}(q)\right)=(2x_1,2x_2)$. Hence, $c\neq 0$ is a regular value, and c=0 is a singular value.

Definition 7.6. An embedded submanifold (of dimension k) of a manifold M is a subspace $Z \subseteq M$ such that for all $q \in Z$ there exists a coordinate chart $\varphi = (x_1, \ldots, x_k, x_{k+1}, \ldots, x_m) : U \to \mathbb{R}^m$ with $\varphi(U \cap Z) = \{(r_1, \ldots, r_m) \in \varphi(U) \mid r_k = \cdots = r_m = 0\}.$

Figure 8: Embedded Submanifold

Remark 7.7. • Any open subset $U \subseteq M$ is an embedded submanifold.

• Any singleton in M is an embedded submanifold.

Example 7.8. Let $f: \mathbb{R}^k \to \mathbb{R}^l$ be C^{∞} , then the graph of f is

$$graph(f) = \{(x, f(x) \in \mathbb{R}^k \times \mathbb{R}^l \mid x \in \mathbb{R}^k\}$$

is an embedded submanifold of $\mathbb{R}^k \times \mathbb{R}^l$.

Here $\varphi(x,y)=(x,y-f(x))$ is a coordinate chart of $\mathbb{R}^k\times\mathbb{R}^l$ with inverse $\varphi^{-1}(x,y')=(x,y'+f(x))$.

Theorem 7.9 (Regular Value Theorem). Let $c \in N$ be a regular value of smooth function $F: M \to N$. If $F^{-1}(c) = \emptyset$, then for all $q \in F^{-1}(c)$, $T_qF: T_qM \to T_qN$ is onto, so $F^{-1}(c)$ is an embedded submanifold of M. Moreover, $T_qF^{-1}(c) = \ker(T_qF)$ and $\dim(F^{-1}(c)) = \dim(M) - \dim(N)$.

Example 7.10. Consider

$$F: \mathbb{R}^m \to \mathbb{R}$$
$$x \mapsto \sum x_i^2 = ||x||^2$$

Now $T_q F$ gives a local chart with $(2x_1, \ldots, 2x_m)$. Any $c \neq 0$ is a regular value. We have $F^{-1}(c) = \{x \mid ||x||^2 = c\}$ is the sphere of radius \sqrt{c} for c > 0. Moreover, $F^{-1}(0) = \{0\}$, an embedded submanifold, but $\dim(\{0\}) \neq \dim(\mathbb{R}^m) - \dim(\mathbb{R})$.

Recall. A subset Z of a manifold M is an embedded submanifold (of dimension k and codimension m-k for $m=\dim(M)$) if for all $z\in Z$, there exists a coordinate chart $\varphi:U\to\mathbb{R}^m$ and $z\in U$ which is adapted to Z, i.e., $\varphi(U\cap Z)=\varphi(U)\cap(\mathbb{R}^k\times\{0\})$.

Remark 8.1. • Submanifolds of codimension 0 are open subsets.

• Submanifolds of codimension $m = \dim(M)$ are discrete sets of points.

We will proceed to prove Theorem 7.9.

Remark 8.2. Once we proved $F^{-1}(c)$ is embedded and $\dim(F^{-1}(c)) = \dim(M) - \dim(N)$, then the last statement follows. Indeed, given $v \in T_q(F^{-1}(c))$, there exists $\gamma: (a,b) \to F^{-1}(c)$ such that $\gamma(0) = q, \gamma'(0) = v$, and $F(\gamma(t)) = c$ for all t. Therefore,

$$0 = \frac{d}{dt}|_{0}F(\gamma(t)) = T_{q}F(\gamma'(0)) = T_{q}Fv,$$

so $v \in \ker(T_q F)$, and so $T_q F^{-1}(c) \subseteq \ker(T_q F)$. By dimension argument, we have equality.

We will introduce inverse function theorem and implicit function theorem.

Theorem 8.3 (Inverse Function Theorem). Let $U \subseteq \mathbb{R}^n$ be open, $f: U \to \mathbb{R}^n$ be C^{∞} with $q \in U$ such that $T_q f = Df(q): T_q U = \mathbb{R}^n \to \mathbb{R}^n = T_{F(q)} \mathbb{R}^n$ is an isomorphism. Then there exists an open neighborhood $q \in V \subseteq U$ and $f(q) \in W$ such that $f: V \to W$ is a diffeomorphism.

Notation. Given $F: \mathbb{R}^k \times \mathbb{R}^l \to \mathbb{R}^m$ for $(a,b) \in \mathbb{R}^k \times \mathbb{R}^l$, then we denote

- $\frac{\partial F}{\partial x}(a,b) = T_{(a,b)}F|_{\mathbb{R}^k \times \{0\}} = DF(a,b)|_{\mathbb{R}^k \times \{0\}}$
- $\frac{\partial F}{\partial y}(a,b) = T_{(a,b)}F|_{\{0\}\times\mathbb{R}^l} = DF(a,b)|_{\{0\}\times\mathbb{R}^l}$

Theorem 8.4 (Implicit Function Theorem). Let $F: \mathbb{R}^k \times \mathbb{R}^n \to \mathbb{R}^n$ be C^{∞} , let $(a,b) \in \mathbb{R}^k \times \mathbb{R}^l$. Suppose $\frac{\partial F}{\partial y}(a,b): \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism, then there exists a neighborhood $W \ni (a,b)$ and $U \ni a$ in \mathbb{R}^k , as well as C^{∞} -map $g: U \to \mathbb{R}^n$ such that $F^{-1}(c) \cap W = \operatorname{graph}(g) \cap W$.

Remark 8.5. inverse function theorem and implicit function theorem are equivalent.

Proof. Consider

$$H: \mathbb{R}^k \times \mathbb{R}^n \to \mathbb{R}^k \times \mathbb{R}^n$$

 $(x, y) \mapsto (x, F(x, y))$

then H(a,b) = (a,F(a,b)) = (a,c). The partials give

$$DH(a,b) = \begin{pmatrix} I & 0\\ \frac{\partial F}{\partial x}(a,b) & \frac{\partial F}{\partial y}(a,b) \end{pmatrix}$$

As $\frac{\partial F}{\partial y}(a,b)$ is invertible, so is DH(a,b), so there exists neighborhoods $(a,b) \in W \subseteq \mathbb{R}^n \times \mathbb{R}^k$ and $a \in U \subseteq \mathbb{R}^k$, $c \in V \subseteq \mathbb{R}^n$, such that $H: W \to U \times V$ is a diffeomorphism. Consider

$$G = H^{-1}: U \times V \to W \subseteq \mathbb{R}^n \times \mathbb{R}^l$$
$$(u, v) \mapsto (G_1(u, v), G_2(u, v))$$

therefore

$$(u,v) = H(H^{-1}(u,v)) = H(G_1(u,v), G_2(u,v)) = (G_1(u,v), F(G_1(u,v), G_2(u,v)))$$

so $G_1(u,v)=u$, and $v=F(u,G_2(u,v))$ for all u,v, hence $c=F(u,G_2(u,c))$ for all u. Now let $g(u)=G_2(u,c)$, then F(u,g(u))=c for all u. Hence, graph $(g)\subseteq F^{-1}(c)$.

Proof of Regular Value Theorem. Let $F: M \to N$, $c \in N$, $F^{-1}(c) \neq \emptyset$. Now for all $q \in F^{-1}(c)$, then $T_qF: T_qM \to T_qN$ is onto. Given $q \in F^{-1}(c)$, we want a chart T from a neighborhood of q to \mathbb{R}^m , adapted to $F^{-1}(c)$. Let $\varphi: U \to \mathbb{R}^m$ and $\psi: V \to \mathbb{R}^m$ be charts such that $q \in U$, $c \in V$, then

$$\tilde{F} = \psi \circ F \circ \varphi^{-1}|_{\varphi(F^{-1}(V) \cap U)} : \varphi(F^{-1}(V) \cap U) \subseteq \mathbb{R}^m \to \mathbb{R}^n$$

is C^{∞} . Now $\psi(c)$ is a regular value in \tilde{F} , Let $r=\varphi(q)$, then we have $D\tilde{F}(r):\mathbb{R}^m \to \mathbb{R}^n$. Let $X=\ker(D\tilde{F}(r))$ and Y be a complement in \mathbb{R}^m . So $\mathbb{R}^m=X\otimes Y$ and $D\tilde{F}(r)|_Y:Y\to\mathbb{R}^n$ is an isomorphism. Apply inverse function theorem to \tilde{F} from the intersection of $X\times Y$ and the open subset to \mathbb{R}^n .

Example 8.6. Let $\operatorname{Sym}^2(\mathbb{R}^n)$ be the $n \times n$ symmetric real matrices, also known as $\mathbb{R}^{\frac{n^2-n}{2}+n}$. There is

$$F: \operatorname{GL}_{(n,\mathbb{R})} \to \operatorname{Sym}^{2}(\mathbb{R}^{n})$$

$$A \mapsto A^{T}A$$

$$F^{-1}I = \{A \in \operatorname{GL}(n,\mathbb{R}) \mid A^{T}A = I\} \longleftrightarrow I$$

Remark 8.7. We have $F = F \circ L_A$ for all $A \in O(U)$, then for all A, we have $T_A F$ onto.

Claim 8.8. 1 is a regular value of F, so O(n) is an embedded submanifold of $\mathrm{GL}(n,\mathbb{R})$.

Proof.

$$(T_I F)(v) = \frac{d}{dt}|_0 (I + tv)^T (I + tv)$$
$$= \frac{d}{dt}|_0 (I^2 + tv^T + tv + t^2 v^T v)$$
$$= v^T + v$$

and this is surjective since for all $Y \in \operatorname{Sym}^2(\mathbb{R})$, we have $Y = \frac{1}{2}(Y^T + Y)$, so $Y = (T_I F)(\frac{1}{2}Y)$.

Recall. Let $F:M\to N$ be C^∞ , let $c\in N$ be a regular value such that $F^{-1}(c)\neq\varnothing$. (For all $q\in F^{-1}(c),T_qF:T_qM\to T_qN$ is onto.) Then:

i $F^{-1}(c)$ is an embedded submanifold of M.

ii
$$\dim(M) = \dim(F^{-1}(c)) = \dim(N)$$
.

iii for all
$$q \in F^{-1}(c)$$
, $T_q F^{-1}(c) = \ker(T_q F)$.

The proof uses inverse function theorem and/or implicit function theorem, and the key is to note that locally $f^{-1}(c)$ is a graph.

Also, $O(n) = \{A \in \operatorname{GL}(n, \mathbb{R}) \mid A^T A = I\}$ is an embedded submanifold.

Definition 9.1. A Lie group G is a group and a manifold so that

i the multiplication map

$$m: G \times G \to G$$

 $(a,b) \mapsto (a,b)$

is C^{∞} .

ii the inverse map

$$\operatorname{inv}: G \to G$$
$$g \mapsto g^{-1}$$

is C^{∞} .

Notation. $e_G = 1_G$ is the identity element.

Example 9.2. $G = \mathbb{R}^n$ with m(v, w) = v + w, and inv(v) = -v gives a Lie group.

Example 9.3. Let $G = GL(n, \mathbb{R})$ be with $e_G = \operatorname{diag}(1, \dots, 1) = I$, with maps m(A, B) = AB and $\operatorname{inv}(A) = A^{-1}$.

Remark 9.4. One can think of a Lie group G as four pieces of data:

- manifold G,
- map $m: G \times G \to G$,
- map inv : $G \rightarrow G$,
- $e_G \in G$.

Note that a subgroup H of a Lie group G is not necessarily a Lie group. The sufficient condition would be H is an embedded submanifold of G, i.e.,

- $m|_{H\times H}: H\times H\to H \text{ are } C^{\infty}$,
- $\operatorname{inv}|_H: H \to H$

 $\text{are } C^{\infty}. \text{ Note } m|_{H\times H}: H\times H \to G \text{ is } C^{\infty} \text{ since } i: H \hookrightarrow G \text{ is } C^{\infty} \text{ and } m|_{H\times H} = m(i\times i).$

Example 9.5. For example, think of the embedding

but at the origin the preimage is split into three pieces, because the inverse is not continuous, which does not embed into a submanifold.

Lemma 9.6. If $i:Q\hookrightarrow M$ is an embedded submanifold, and $f:N\to M$ is a smooth map such that $f(N)\subseteq Q$, then $g:N\to Q$ with g(n)=f(n) is C^∞ .

Proof. Since $Q \hookrightarrow M$ is embedded, for all $q \in Q$, there exists an adapted chart $\varphi = (x_1, \dots, x_n, x_{k+1}, \dots, x_m) : U \to \mathbb{R}^m$ such that $Q \cap U = \{x_k = \dots = x_n = 0\}$. Consider $\varphi \circ f|_{f^{-1}(U)} : f^{-1}(U) \to \mathbb{R}^m$, then $f(f^{-1}(U)) \subseteq Q \cap U$.

Then $\varphi \circ f|_{f^{-1}(U)} = \varphi(U \cap Q) = \{(r_1, \dots, r_k, r_{k+1}, \dots, r_m) \mid r_{k+1} = \dots = r_n = 0\}, \text{ so } \varphi \circ f = (h_1, \dots, h_k, 0, \dots, 0) \text{ where } h_1, \dots, h_k \in C^{\infty}(f^{-1}(U)).$ Therefore, $\varphi|_{U \cap Q} g|_{f^{-1}(U)} = (h_1, \dots, h_k).$

Example 9.7. $O(n) \subseteq \operatorname{GL}(n,\mathbb{R})$ is embedded, thus a Lie group.

Example 9.8. $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \mid \det(A) = 1\}$ is also a Lie group.

Claim 9.9. $1 \in \mathbb{R}$ is a regular value of det : $GL(n, \mathbb{R}) \to \mathbb{R}$.

Proof. The key fact is that $T_I(\det): \mathbb{R}^{n^2} \to \mathbb{R}$ is an $(n \times n)$ -matrix given by $A \mapsto \operatorname{tr}(A)$. Indeed, note that the trace is the differential of the determinant.

Definition 9.10. A (real) *Lie algebra* is a (real) vector space \mathfrak{g} with an \mathbb{R} -bilinear map

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$$
$$(X,Y)\mapsto[X,Y]$$

such that for all $X, Y, Z \in \mathfrak{g}$,

- [Y, X] = -[X, Y],
- [X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]

Example 9.11. Let $\mathfrak{g}=M_n(\mathbb{R}), [X,Y]=XY-YX$ is the anti-commutator.

Example 9.12. Let M be a manifold, $\mathfrak{g}=\mathrm{Der}(C^\infty(M))=\{X:C^\infty(M)\to C^\infty(M)\mid X(fg)=X(f)\cdot g+f\cdot X(g)\}$. Therefore, \mathfrak{g} is a Lie algebra with the bracket [X,Y](f)=X(Y(f))-Y(X(f)) for all $f\in C^\infty(M)$. This is the Lie algebra of vector fields on M.

Example 9.13. Let $\mathfrak{g} = \mathbb{R}^3$, then $[v, w] := v \times w$ is a Lie algebra with cross product.

We will see that for all Lie group G, $\mathfrak{g} = \text{Lie}(G) = T_e G$ is naturally a Lie algebra.

Definition 9.14. Let $F: M \to N$ be a C^{∞} -map, $Z \subseteq N$ be an embedded submanifold. We say F is transverse to Z, denoted $F \pitchfork Z$, if for all $x \in F^{-1}(Z)$, $T_x F(T_x M) + T_{F(x)} Z = T_{F(x)} N$.

Example 9.15. If $Z = \{c\}$, then $F \pitchfork c$ if and only if for all $q \in F^{-1}(c)$, $(T_x F)(T_x N) + T_c c = T_c N$, if and only if for all $q \in F^{-1}(c)$, $(T_x F)(T_x N) = T_c N$, if and only if c is a regular value of F.

Example 9.16. Let $M = \mathbb{R}^2$, $N = \mathbb{R}^3$, $Z = \{(x, y, z) \mid z = x^2 + y^2\}$, with f(x, y) = (x, y, 1) and g(x, y) = (x, y, 0), then $f \cap Z$ but $g \not h Z$.

10 Sept 13, 2023

Theorem 10.1. Suppose $f: M \to N$ is transverse to an embedded submanifold $Z \subseteq N$, then

- (i) $f^{-1}(z)$ is an embedded submanifold of M.
- (ii) If $f^{-1}(z) \neq \emptyset$, then $\dim(M) \dim(f^{-1}(z)) = \dim(N) \dim(Z)$, i.e., $\operatorname{codim}(f^{-1}(Z)) = \operatorname{codim}(Z)$.

Proof. Fix $z_0 \in Z$ with $f^{-1}(z_0) \neq \emptyset$, let $\psi : V \to \mathbb{R}^n$ be a coordinate chart on N, adapted to Z such that $\psi(V \cap Z) = \psi(V) \cap (\mathbb{R}^k \setminus \{0\})$. Let $\pi : \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ be the canonical projection, then

$$(\pi \circ \psi)^{-1}(0) = \psi^{-1}(\pi^{-1}(0)) = \psi^{-1}(\psi(V) \cap (\mathbb{R}^k \times \{0\})) = Z \cap V,$$

therefore

$$(\pi \circ \psi \circ f)^{-1}(0) = f^{-1}(Z \cap V) = f^{-1}(Z) \cap f^{-1}(V).$$

Claim 10.2. 0 is a regular value of $\pi \circ \psi \circ f|_{f^{-1}}(V)$.

Subproof. Take arbitrary $x \in (\pi \circ \psi \circ f)^{-1}(0) = f^{-1}(V) \cap f^{-1}(Z)$, then $T_x f(T_x M) + T_{f(x)} Z = T_{f(x)} N$. Note that $T_x M = T_x (f^{-1}(V))$. Therefore,

$$\mathbb{R}^{k} \times \mathbb{R}^{n-k} = T_{f(x)} \psi(T_{f(x)} N) = T_{f(x)} \psi(T_{x} f(T_{x} f^{-1}(V))) + T_{f(x)} \psi(T_{f(x)} Z)$$

by applying $T_{f(x)}\psi$ on both sides. Now apply $T_{\psi(f(x))}\psi$ on both sides, then $T_{f(x)}\psi(T_{f(x)}Z)$ vanishes, so we get

$$\mathbb{R}^{n-k} = T_{\psi(f(x))} \pi(T_{f(x)} \psi(T_x f(T_x f^{-1}(V))))$$

= $T_x (\pi \circ \psi \circ f) (T_x f^{-1}(V)).$

Definition 10.3. A C^{∞} -map $f:Q\to M$ is an embedding if

- (i) $f(Q) \subseteq M$ is an embedded submanifold, and
- (ii) $f: Q \to f(Q)$ is a diffeomorphism.

Remark 10.4. We know $f:Q\to f(Q)$ is C^∞ since $f(Q)\subseteq M$ is embedded and $f:Q\to M$ is given by the composition of $i:f(Q)\hookrightarrow M$ and $f:Q\to f(Q)$.

Remark 10.5. 1. Since $f:Q\to f(Q)$ is a diffeomorphism, then it is a homeomorphism. Thus $f:Q\to M$ is a topological embedding.

2. For all $q \in Q$, then $T_q f: T_q Q \to T_{f(q)} M$ is injective, i.e., $T_q f(T_q Q) = T_{f(q)} f(Q)$.

Example 10.6 (Non-example). Let $Q = \mathbb{R}$ with discrete topology, then Q is a paracompact but not second countable as a 0-dimensional manifold. Consider

$$f: Q \to \mathbb{R}^2$$
$$x \mapsto (x, 0)$$

be a C^{∞} -map, then this is not an embedding.

Example 10.7. Let M be a manifold with $f \in C^{\infty}(M)$, then

$$g: M \to M \times \mathbb{R}$$

 $q \mapsto (q, f(q))$

gives an embedding of M into $R \times \mathbb{R}$, as the graph of f.

Definition 10.8. A C^{∞} -map $f:Q\to M$ is an immersion if for all $q\in Q, T_qf:T_qQ\to T_{f(q)}M$ is injective.

Example 10.9. Consider

$$f: \mathbb{R} \to S^1 \times S^1$$

 $\theta \mapsto (e^{i\theta}, e^{i\sqrt{2}\theta})$

Example 10.10. Now $g \circ f^{-1} : (0,1) \to (0,1)$ is not an embedding, as it is not continuous.

Definition 10.11. The rank of a C^{∞} -map $f: M \to N$ at a point $q \in M$ is the rank of the linear map $T_q f: T_q M \to T_{f(q)} N$, i.e., $\operatorname{rank}_q(f) = \dim(T_q f(T_q M))$.

Example 10.12. If $f: M \to N$ is an immersion, then $\operatorname{rank}_q(f) = \dim_q(M)$.

Remark 10.13. Immersions are embeddings.

Theorem 10.14 (Rank Theorem). Let $F: M \to N$ be a C^{∞} -map of constant rank k. Then for all $q \in M$, there exists coordinates $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$ on M with $q \in U$, and $\psi = (y_1, \dots, y_n) : V \to \mathbb{R}^n$ with $F(q) \in V$ such that $(\psi \circ F \circ \varphi^{-1})(r_1, \dots, r_m) = (r_1, \dots, r_k, 0, \dots, 0)$ for all $r = (r_1, \dots, r_m) \in \varphi(F^{-1}(V) \cap U)$.

Notation. Given a collection of sets $\{S_{\alpha}\}_{{\alpha}\in A}$, $\coprod_{{\alpha}\in A} S_{\alpha}$ is the disjoint union of the collection.

We will give the following construction of a tangent bundle.

Remark 10.15. Given a manifold M, we form a set $TM = \coprod_{q \in M} T_q M$. Given a chart $\varphi = (x_1, \dots, x_n) : U \to \mathbb{R}^m$ on M, the corresponding candidate chart is $\tilde{\varphi} : TU = \coprod_{q \in U} T_q M \to \varphi(U) \times \mathbb{R}^m$. One can check that if $\varphi : U \to \mathbb{R}^m$ and $\psi : V \to \mathbb{R}^m$ are charts on M with $U \cap V \neq \emptyset$, then $\tilde{\psi} \tilde{\varphi}^{-1} : \varphi(U \cap V) \times \mathbb{R}^m \to \psi(U \cap V) \times \mathbb{R}^m$ is C^{∞} . Now we give TM the topology making $\tilde{\varphi}$'s homeomorphic onto their images, then $\{\tilde{\varphi} : TU \to \varphi(U) \times \mathbb{R}^m\}$ will be an atlas on TM.

Definition 11.1. A map $f: M \to N$ is a submersion if for all $p \in M$, the differential $T_q f: T_q M \to T_{f(q)} N$ is onto.

Remark 11.2. Every value over a submersion is regular.

Recall. For a manifold M, we defined the set $TM = \coprod_{q \in M} T_q M = \bigcup (\{q\} \times T_q M)$, which is a called a tangent bundle, with additional structures. We will show that TM is a manifold, and

$$\pi: TM \to M$$
$$(q, v) \mapsto q$$

is C^{∞} and a submersion.

Proof. Let $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$ be a coordinate chart on M. For any $q \in U$, let $\left\{ \left. \frac{\partial}{\partial x_1} \right|_q, \dots, \left. \frac{\partial}{\partial x_m} \right|_q \right\}$ be a basis of $T_q M$. The dual basis is $\{(dx_1)_q, \dots, (dx_m)_q\}$. For any $v \in T_q M$, we have $v = \sum v(x_i) \left. \frac{\partial}{\partial x_i} \right|_q := \sum (dx_i)_q(v) \left. \frac{\partial}{\partial x_i} \right|_q$, and

$$T_q M \to \mathbb{R}$$

 $v \mapsto ((dx_1)_q(v), \dots, (dx_m)_q(v))$

is a linear isomorphism. Define

$$\tilde{\varphi}: TU = \coprod_{q \in M} T_q M \to \mathbb{R}^m \times \mathbb{R}^m$$
$$(q, v) \mapsto (x_1(q), \dots, x_m(q), (dx_1)_q(v), \dots, (dx_m)_q(v)).$$

Suppose $\psi = (y_1, \dots, y_m) : V \to \mathbb{R}^m$ is another chart, we then have

$$\tilde{\psi}: TV \to \mathbb{R}^m \times \mathbb{R}^m$$
$$(q, v) \mapsto (y_1(q), \dots, y_m(q), (dy_1)_q(v), \dots, (dy_m)_q(v)).$$

Claim 11.3. For any $(r, w) \in \varphi(U \cap V) \times \mathbb{R}^m$, we have

$$(\tilde{\psi} \circ \tilde{\varphi}^{-1})(r, w) = ((\psi \circ \varphi^{-1})(r), \sum_{j} \frac{\partial y_{1}}{\partial x_{j}}(\varphi^{-1}(r))w_{i}, \dots, \sum_{j} \frac{\partial y_{m}}{\partial x_{j}}(\varphi^{-1}(r))w_{i})$$

$$= \left((\psi \circ \varphi^{-1})(r), \left(\frac{\partial y_{i}}{\partial x_{j}}(\varphi^{-1}(r))\right)\begin{pmatrix} w_{1} \\ \vdots \\ w_{m} \end{pmatrix}\right)$$

Subproof.

Recall. If $T:A\to B$ is a linear map, with $\{e_1,\ldots,e_n\}$ basis of $A,\{f_1,\ldots,f_n\}$ is a basis of B, with dual basis $\{f_1^*,\ldots,f_n^*\}$, then we set $t_{ij}=f_u^*(Te_j)$, i.e.,

$$\begin{array}{ccc}
\mathbb{R}^n & \xrightarrow{(t_{ij})} \mathbb{R}^n \\
(v_1, \dots, v_n) \mapsto \sum v_i e_i \downarrow & \downarrow \\
A & \xrightarrow{T} & B
\end{array}$$

In our case, we have $A=B=T_qM$ with $T=\mathrm{id}$, with basis $\left\{\left.\frac{\partial}{\partial x_i}\right|_q\right\}$ of $A,\{f_1,\ldots,f_n\}=\left\{\left.\frac{\partial}{\partial y_1}\right|_q,\ldots,\left.\frac{\partial}{\partial y_m}\right|_q\right\}$ and dual basis $\{f_1^*,\ldots,f_m^*\}=\{(dy_1)_q,\ldots,(dy_m)_q\}$, then

$$t_{ij} = (dy_i)_q \left(\frac{\partial}{\partial x_j} \Big|_q \right)$$
$$= \frac{\partial}{\partial x_j} (y_i)(q)$$
$$= \frac{\partial y_i}{\partial x_i} (\varphi^{-1}(\gamma)).$$

We define the topology on TM to be the topology generated by the sets of form $\tilde{\varphi}^{-1}(W)$ where $\varphi: U \to \mathbb{R}^m$ is a coordinate chart with open subset $W \subseteq \mathbb{R}^m \times \mathbb{R}^m$. Given an atlas $\{\varphi_\alpha: U_\alpha \to \mathbb{R}^m\}$ on M, we get an induced atlas $\{\tilde{\varphi}_\alpha: TU_\alpha \to \mathbb{R}^m \times \mathbb{R}^m\}$ on TM. One can check that the choice of an atlas on M does not matter.

Exercise 11.4. • If M is Hausdorff, then so is TM.

• If M is second countable, then so is TM.

Lemma 11.5. The canonical projection $\pi:TM\to M$ is C^∞ and is a submersion.

Proof. Let $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$ be a coordinate chart, $\tilde{\varphi} : TU \to \mathbb{R}^m \times \mathbb{R}^m$ be the induced chart on TM, then

$$(\varphi \circ \pi \circ \tilde{\varphi}^{-1})(r, w) = \varphi \circ \pi \left(\varphi^{-1}(r), \sum_{i} w_{i} \left. \frac{\partial}{\partial x_{i}} \right|_{q} \right)$$
$$= \varphi(\varphi^{-1}(r))$$
$$= r.$$

Moreover,

$$(T_{(r,w)}(\varphi \circ \pi \circ \tilde{\varphi}^{-1}))(v,w') = v$$

where $(v,w') \in T_{(r,w)}(\varphi(U) \times \mathbb{R}^m) \cong \mathbb{R}^n \times \mathbb{R}^m$. Therefore, $T_{(q,v)}\pi : T_{(q,v)}TM \to T_qM$ is onto, hence a submersion.

Definition 11.6. A (algebraic) vector field on a manifold M is a derivation $v: C^{\infty}(M) \to C^{\infty}(M)$, i.e., v is \mathbb{R} -linear and v(fg) = v(f)g + fv(g) for all $f, g \in C^{\infty}(M)$.

Definition 11.7. A (geometric) vector field on a manifold M is a section of the tangent bundle TM of M, i.e., $X:M\to TM$ is C^{∞} with $\pi\circ X=\mathrm{id}_{M}$. Geometrically, this depicts tangent vectors over a point with directions in X(q).

Notation. • $Der(C^{\infty}(M))$ is the set of all derivations of $C^{\infty}(M)$.

• $\mathfrak{X}(M) = \Gamma(TM)$ is the set of sections of $\pi: TM \to M$.

Proposition 11.8. Given a section $v: M \to TM$ in $\mathfrak{X}(M)$, we can try and define

$$D_v: C^{\infty}(M) \to C^{\infty}(M)$$

 $(D_v(f))(q) \mapsto v(q)f$

and this assignment $v \mapsto D_v$ is a linear isomorphism.

Recall. $TM = \coprod_{q \in M} T_q M$ is a manifold. To show this, given chart $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$ on M, we set

$$\tilde{\varphi} = (x_1, \dots, x_m, dx_1, \dots, dx_m) : TU \equiv \coprod_{q \in U} T_q M \to \mathbb{R}^m \to \mathbb{R}^m$$
$$(q, v) \mapsto (\varphi(q), (dx_1)_q(v), \dots, (dx_m)_q(v))$$

with inverse

$$\tilde{\varphi}^{-1}(r,u) = (\varphi^{-1}(r), \sum w_i \left. \frac{\partial}{\partial q_i} \right|_{\varphi(r)}.$$

Also,

$$\pi: TM \to M$$
$$(q, v) \mapsto q$$

is a C^{∞} -submersion.

We defined vector fields in two ways,

- as sections of tangent bundle $\pi:TM\to M$, i.e., as C^∞ -maps $X:M\to TM$ such that $\pi X=\mathrm{id}$, i.e., $X(q)\in T_qM$, and
- as derivations $c: C^{\infty}(M) \to C^{\infty}(M)$, i.e., as \mathbb{R} -linear maps such that v(fg) = fv(g) + v(f)g for all $f, g \in C^{\infty}(M)$.

Remark 12.1. Both $\Gamma(TM)$ and $\mathfrak{X}(M)$ are \mathbb{R} -vector spaces, and $C^{\infty}(M)$ -modules.

We now prove Proposition 11.8.

Proof. Given $v \in \Gamma(TM)$ and $f \in C^{\infty}(M)$, consider a function

$$D_v f : M \to \mathbb{R}$$

 $(D_v(f))(q) = v(q)f$

To go back, given $X \in \mathrm{Der}(C^{\infty}(M))$, for any $q \in M$, we have $\mathrm{ev}_q : C^{\infty}(M) \to \mathbb{R}$, and then $\mathrm{ev}_q \circ X : C^{\infty}(M) \to \mathbb{R}$ is a tangent vector. Define $v_X(q) = \mathrm{ev} \circ X$, and we can check other requirements like C^{∞} and so on.

Claim 12.2. $D_v f$ is C^{∞} .

Subproof. Given a chart $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$, we have

$$\tilde{\varphi}: TU \to \mathbb{R}^m \times \mathbb{R}^m$$

 $(q, v) \mapsto (\varphi(q), dx_1(v), \dots, dx_m(v))$

Since v is C^{∞} , the map $\tilde{\varphi} \circ v|_{U}: U \to \mathbb{R}^{m} \times \mathbb{R}^{m}$, defined by $(\tilde{\varphi} \circ v)(q) = (\varphi(q), (dx_{1})_{q}(v(q)), \ldots, (dx_{m})_{q}(v(q)))$, is C^{∞} . Therefore, the assignment $q \mapsto (dx_{i})_{q}(v(q))$ are C^{∞} on U. Hence, $v = \sum v_{i} \frac{\partial}{\partial x_{i}}$ where $v_{i}(q) = (dx_{i})_{q}(v(q))$ for all i. So $(D_{v}f)|_{U} = \left(\sum v_{i} \frac{\partial}{\partial x_{i}}\right) f = \sum v_{i} \frac{\partial f}{\partial x_{i}}$. This concludes the proof.

Also, for all $f, g \in C^{\infty}(M)$ and all q, we have

$$(D_v(fg))(q) = v(q)(fg) = (v(q)f)g(q) + f(q)(v(q)g) = ((D_vf)g + f(D_vg))(q).$$

Recall that derivations are local, i.e., for $X \in \operatorname{Der}(C^{\infty}(M))$ and $f \in C^{\infty}(M)$ and $f|_{U} \equiv 0$, then $Xf|_{U} \equiv 0$. As a consequence, for $U \subseteq M$ open, define $X|_{U}: C^{\infty}(U) \to C^{\infty}(U)$ such that $(X|_{U})(f|_{U}) = (Xf)|_{U}$ for all $f \in C^{\infty}(M)$. Now given a chart $\varphi = (x_{1}, \ldots, x_{m}): U \to \mathbb{R}^{m}$, we know x_{i} 's are in $C^{\infty}(U)$, then $(X|_{U})(x_{i})$ is a smooth function on U. Therefore,

$$\begin{aligned} v_X|_U &= \sum (dx_i)(v_X) \frac{\partial}{\partial x_i} \\ &= \sum v_X X(x_i) \frac{\partial}{\partial x_i} \\ &= \sum X|_U(x_i) \frac{\partial}{\partial x_i}, \end{aligned}$$

and thus $v_X|_U: U \to TU$ is C^{∞} , and since U is arbitrary, then $v_X \in \Gamma(TM)$.

Recall. For any $X,Y \in \mathrm{Der}(C^{\infty}(M)), [X,Y] \in \mathrm{Der}(C^{\infty}(M))$. Therefore, $\mathrm{Der}(C^{\infty}(M))$ is a real Lie algebra with bracket $(X,Y) \mapsto [X,Y]$. Note that $\mathrm{Der}(C^{\infty}(M)) \subseteq \mathrm{Hom}_{\mathbb{R}}(C^{\infty}(M),C^{\infty}(M))$.

Recall. If (A, \circ) is a real associative algebra, then $[a, b] := a \circ b - b \circ a$ gives A the structure of a Lie algebra, and $Der(C^{\infty}(M)) \subseteq Hom_{\mathbb{R}}(C^{\infty}(M), C^{\infty}(M))$.

Now given a C^{∞} -map $f: M \to N$ of manifolds, we get a map

$$Tf: TM \to TN$$

 $(q, v) \mapsto (f(q), T_a f v)$

Exercise 12.3. Tf is C^{∞} .

Remark 12.4. Given $f: M \to N$ and $v \in \Gamma(TM)$, we may not have a commutative diagram:

$$TM \xrightarrow{Tf} TN$$

$$v \uparrow \qquad \qquad \uparrow ?$$

$$M \xrightarrow{f} N$$

Definition 12.5. Let $f: M \to N$ be a smooth map on manifolds, then $v \in \Gamma(TM)$ and $w \in \Gamma(TN)$ are f-related if we have a commutative diagram

$$\begin{array}{ccc} TM & \xrightarrow{Tf} & TN \\ v & & \uparrow w \\ M & \xrightarrow{f} & N \end{array}$$

That is, for any $q \in M$, $w(f(q)) = (f(q), T_q f(v(q)))$.

Equivalently, for $f: M \to N$, we say $X \in \text{Der}(C^{\infty}(M))$ is f-related to $Y \in \text{Der}(C^{\infty}(N))$ if for all $h \in C^{\infty}(N)$, we have $Y(h) \circ f = X(h \circ f)$ in $C^{\infty}(M)$.

Recall. Let M be a manifold, we have a bijection

$$\Gamma(TM) \to \operatorname{Der}(C^{\infty}(M))$$

 $v \mapsto D_v : (Dvf)(q) = v_q(f) \, \forall f, q$

with inverse by assignment $X \mapsto v_X$ where $v_X(q)f = (Xf)(q)$.

Lemma 13.1. Let $f: M \to N$, then $v \in \Gamma(TM)$ is f-related to $w \in \Gamma(TN)$ if and only if $D_v \in \text{Der}(C^{\infty}(M))$ is f-related to $D_w \in \text{Der}(C^{\infty}(N))$.

Proof. v is f-related to w if and only if $(T_q f)(v(q)) = w(f(q))$ for all q, if and only if $((T_q f)(v(q)))h = (w(f(q)))h$ for all q and all h, if and only if $(D_v(h \circ f))(q) = (D_w h)(f(q))$, if and only if $D_v(h \circ f) = D_w(h \circ f)$.

Lemma 13.2. Suppose $f: M \to N$, let $X_1, X_2 \in \text{Der}(C^{\infty}(M))$, and $Y_1, Y_2 \in \text{Der}(C^{\infty}(N))$ such that X_i is f-related to Y_i for i = 1, 2, then $[X_1, X_2]$ is f-related to $[Y_1, Y_2]$.

Proof. For any $h \in C^{\infty}(N)$, $X_i(h \circ f) = Y_i(h) \circ f$ for i = 1, 2. Therefore,

$$\begin{split} ([X_1, X_2])(h \circ f) &= X_1(X_2(h \circ f)) - X_2(X_1(h \circ f)) \\ &= X_1(Y_2(h) \circ f) - X_2(Y_1(h) \circ f) \\ &= Y_1(Y_2(h)) \circ f - Y_2(Y_1(h)) \circ f \\ &= ([Y_1, Y_2](h)) \circ f. \end{split}$$

Definition 13.3. Let $Q \subseteq M$ be an embedded submanifold. A vector field $Y \in \Gamma(TM)$ is tangent to Q if for all $q \in Q$, $Y(q) \in T_qQ$.

Example 13.4. If $M = \mathbb{R}^2$, let $Q = \mathbb{R} \times \{0\}$, then $Y(x_1, x_2) = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$, so $Y(x, 0) = x_1 \frac{\partial}{\partial x_1} + 0 \in T_{(x,0)}Q$. Equivalently, we have $i: Q \hookrightarrow M$ to be an inclusion, so $Ti: TQ \hookrightarrow TM$ is an embedding since i is, as $Y(q) \in T_qQ$ for all $q \in Q$ indicates $(Y \circ i)(Q) \subseteq TQ$:

$$\begin{array}{ccc} Q & \stackrel{i}{\longrightarrow} M \\ Y \circ i & & \downarrow Y \\ TQ & \stackrel{}{\longleftarrow} TM \end{array}$$

Hence, $Y \circ i : Q \to TQ$ is a vector field on Q, and $Y \circ i$ is i-related to Y.

Lemma 13.5. Let $Q \subseteq M$ be an embedded submanifold, let $Y_1, Y_2 \in \Gamma(TM)$ which are tangent to Q, then $[Y_1, Y_2]$ is tangent to Q.

Proof. Since $Y_i|_Q$ is *i*-related to Y_i , then $[Y_1,Y_2]|_Q$ is *i*-related to $[Y_1,Y_2]$.

Definition 13.6. Let G be a Lie group, then we give T_eG the structure of a Lie algebra. A vector field $X: G \to TG$ is left-invariant if for all $a \in G$, $TL_a(X(g)) = X(L_ag)$ for all $g \in G$ and all $a \in G$, that is, X is L_a -related to X where $L_a(g) = ag$ is the left translation.

Recall. • $(La)^{-1} = L_{a^{-1}}$.

• By Lemma 13.2, if X and Y are left-invariant, then so is [X, Y].

Notation. We denote $\mathfrak{g} = \text{Lie}(G)$ to be the Lie algebra of the left-invariant vector fields.

Lemma 13.7. Let G be a Lie group, let \mathfrak{g} be the space of left-invariant vector fields, then the evaluation map

$$\operatorname{ev}_e: \mathfrak{g} \to T_e G$$

 $X \mapsto X(e)$

is an \mathbb{R} -linear bijection. In particular, they have the same dimension.

Proof. Obviously ev_e is linear. If X(e) = 0, then for all $a \in G$, $X(a) = X(L_a e) = (TL_a)_e(X(e)) = 0$, so ev_e is injective. Conversely, given $v \in T_eG$, define

$$\tilde{v}: G \to TG$$

$$a \mapsto (TL_a)_e v$$

then \tilde{v} is left-invariant. We know

$$m: G \times G \to G$$

 $(a,b) \mapsto ab$

is C^{∞} , so $T_m: TG \times TG \to TG$ is C^{∞} . Consider

$$f: G \to TG \times TG$$

 $a \mapsto ((a,0),(e,v)).$

Claim 13.8. $(T_m \circ f)(a) = (T_e L_a)(v)$.

Subproof. Pick $\gamma: I \to G$ such that $\gamma(0) = e$ and $\dot{\gamma}(0) = v$, then

$$\sigma: I \to G \times G$$

$$t \mapsto (a, \gamma(t))$$

is C^{∞} where $\sigma(0)=(a,e)$, and $\frac{d}{dt}|_{0}(a,\gamma(t))=(0,v)\in T_{(a,e)}(G\times G)$. Now

$$T_m(f(a)) = (T_m)_{(a,e)}(0,v)$$

$$= \frac{d}{dt}\Big|_0 m(\sigma(t))$$

$$= \frac{d}{dt}\Big|_0 a\gamma(t)$$

$$= \frac{d}{dt}\Big|_0 L_a(\gamma(t))$$

$$= (T_e L_a)(\dot{\gamma}(0))$$

$$= (T_e L_a)(v)$$

$$= \tilde{v}(a).$$

Therefore, the left-invariant vector field Lie(G) is isomorphic to T_eG as \mathbb{R} -vector spaces.

Definition 13.9. Let $X: M \to TM$ be a vector field. An integral curve $\gamma: I \to M$ of X passing through q at t=0 is a C^∞ -map $\gamma: I \to M$ such that $\gamma(0) = q$ and $\dot{\gamma}(t) = X(\gamma(t))$ for all $t \in I$. Here $\dot{\gamma}(t) = (T_t \gamma) \left(\frac{d}{dt}\Big|_t\right) \in T_{\gamma(t)}M$. Equivalently, $\dot{\gamma}(t)f = X(\gamma(t))f = \frac{d}{dt}\Big|_t (f \circ \gamma)$ for all $f \in C^\infty(M)$.

Remark 14.1. if $\varphi = (x_1, \dots, x_m) : U \to \mathbb{R}^m$ is a coordinate chart and v is a vector field on U, so $v = \sum v_i \frac{\partial}{\partial x_i}$ for v_1, \dots, v_m in $C^{\infty}(U)$. This is a section $q \mapsto \sum v_i(q) \left. \frac{\partial}{\partial x_i} \right|_q \in \Gamma(TU)$ and for all $f \in C^{\infty}(U)$, $f \mapsto \sum v_i \frac{\partial f}{\partial x_i} \in C^{\infty}(U)$ which is a derivation.

Recall. An integral curve of $X \in \Gamma(TM)$ is a curve $\gamma: I \to M$ with $\gamma(0) = q$ such that $\frac{d\gamma}{dt}\Big|_{t} = X(\gamma(t))$.

Example 14.2. Let M=U be open in \mathbb{R}^m , and $X=\sum x_i\frac{\partial}{\partial r_i}$. Let $\gamma(t)=(\gamma_1(t),\ldots,\gamma_m(t))$ for $\gamma_i\in C^\infty(I)$, then $\frac{\partial\gamma}{\partial t}\Big|_t=\sum \gamma_i'(t)\frac{\partial}{\partial\gamma_i}$. Therefore, $\frac{\partial\gamma}{\partial t}=X(\gamma(t))$ amounts to $\sum \gamma_i'(t)\frac{\partial}{\partial\gamma_i}=\sum x_i(\gamma(t))\frac{\partial}{\partial\gamma_i}$. Therefore, $\gamma_i'(t)=x_i(\gamma_1(t),\ldots,\gamma_m(t))$.

Hence, γ is an integral curve of X if and only if γ solves such a system of equations with initial condition $\gamma(0) = q$.

Theorem 14.3. Let $U \subseteq \mathbb{R}^m$ be open, $X = (x_1, \dots, x_m) : U \to \mathbb{R}^m$ be C^{∞} , then for all $q_0 \in U$, there exists an open neighborhood V of q_0 in U and $\varepsilon > 0$, and a C^{∞} -map $\Phi : V \times (-\varepsilon, \varepsilon) \to U$ such that for all $q \in V$, $\gamma_q(t) := \Phi(q, t)$ solves $\gamma_i'(t) = x_i(\gamma_1(t), \dots, \gamma_m(t))$ with initial condition $\gamma_q(0) = q$. Moreover, such mapping Φ is unique.

Proof. Apply contraction mapping principle.

Example 14.4. Say U = (-1, 1), let

$$X: (-1,1) \to \mathbb{R}$$

$$x \mapsto \frac{d}{dx}$$

with X(q)=1 be the ODE, i.e., $\frac{dX}{dt}=1$ with X(0)=q, then $\Phi(q,t)=q+t$. The domain of definition of Φ is $W=\{(q,t)\mid q\in (-1,1), q+t\in (-1,1)\}.$

Remark 14.5. We need to keep track of the initial conditions. Say $\gamma:(a,b)\to M$ is an integral curve of vector field X on M with $\gamma(0)=q$, then for all $t_0\in(a,b)$, we know

$$\sigma: (a - t_0, b - t_0) \to M$$
$$s \mapsto \gamma(s + t_0)$$

is also an integral curve. Therefore, γ and σ has the same image.

Proof.

$$\frac{d}{dt}\Big|_{t} \sigma = \frac{d}{ds}\Big|_{t} \gamma(s+t_{0})$$

$$= \frac{d}{du}\Big|_{u=t+t_{0}} \gamma(u)$$

$$= X(\gamma(t+t_{0}))$$

$$= X(\sigma(t)).$$

Lemma 14.6. Let $X: M \to TM$ be a vector field, $\varphi = (x_1, \dots, x_m): U \to \mathbb{R}^m$ be a coordinate chart and $X = \sum x_i \frac{\partial}{\partial x_i}$ where $x_i \in C^\infty(U)$, then $\gamma: I \to U$ with $\gamma(0) = q$ is an integral curve of X if and only if $(x_1 \circ \gamma, \dots, x_m \circ \gamma): I \to \mathbb{R}^m$ solves $y_i' = Y_i(Y_1, \dots, y_m)$ with $y_i(0) = x_i(\gamma(0))$. Here $Y_i = X_i \circ \varphi^{-1} \in C^\infty(\varphi^{-1}(U))$.

Proof. We have $\dot{\gamma}(t) = \sum dx_i(\dot{\gamma}(t)) \frac{\partial}{\partial x_i} = \sum (x_i \circ \gamma)'(t) \frac{\partial}{\partial x_i}$. Therefore, $\dot{\gamma}(t) = X(\gamma(t))$ if and only if $(X_i \circ \gamma)' = X_i(\gamma(t)) = (X_i \circ \varphi^{-1})(\varphi(\gamma(t))) = Y_i(X_1 \circ \gamma(t), \dots, X_m \circ \gamma(t))$ for all i.

Corollary 14.7. Let $X: M \to TM$ be a vector field, then for all $q \in M$, there exists an integral curve $\gamma: I \to M$ of X such that $\gamma(0) = q$. Moreover, γ depends smoothly on q, and is locally unique: for all integral curve $\sigma: J \to M$ of X mapping $0 \mapsto q$, there exists $\delta > 0$ such that $(-\delta, \delta) \in I \cap J$ and $\gamma|_{(-\delta, \delta)} = \sigma|_{(-\delta, \delta)}$.

Remark 14.8. It may not be the case that $\gamma|_{I\cap J}=\sigma|_{I\cap J}$. This is true if M is Hausdorff.

Example 14.9. Consider line with two origins in Example 1.10, with translations that agree before the origins.

Lemma 14.10. Suppose $\gamma:I\to M$ and $\sigma:J\to M$ are continuous curves, and M is Hausdorff, then the set $Z=\{t\in I\cap J\mid \gamma(t)=\sigma(t)\}$ is closed in $I\cap J$.

Proof. Note that

$$(\gamma, \sigma): I \cap J \to M \times M$$

 $t \mapsto (\gamma(t), \sigma(t))$

is continuous, and $Z=(\gamma,\sigma)^{-1}(\Delta_M).$