NANYANG TECHNOLOGICAL UNIVERSITY School of Electrical & Electronic Engineering

IE2108 Data Structures and Algorithms

Tutorial No. 2 (Sem 1, AY2022-2023)

- 1. Write an algorithm that returns the sum of first *m* elements of an array *S*.
- 2. Write an algorithm that outputs the smallest and largest values in the array S which has *m* unique elements.
- 3. Given an array $s[1], s[2], \dots, s[n]$ such that n > 1 and $s[i] \le s[i+1]$ for all i. Write an algorithm that insert an input value x into the array so that $s[i] \le s[i+1]$ for all i.
- 4. Order the following functions according to their order of growth (from the lowest to the highest).

$$n!$$
, $5 \lg(n+100)^{10}$, 2^{2n} , $n^4 + 3n^3 + 1$, $n \lg n$, 3^n

5. Prove the following assertion:

If
$$f(n) = O(g(n))$$
, then $g(n) = \Omega(f(n))$.

- 6. Prove that $\lg(n^k + c) = \Theta(\lg n)$ for every fixed k > 0 and c > 0. Note that $\lg x =$ $\log_2 x$.
- 7 (if) If $f(n) = 2n^2 + 1$, prove that $f(n) = O(n^2)$.
 - (ii) If $f(n) = 2^{n+2}$, prove that $f(n) = O(2^n)$.

Ver: 20210724