Recurrences: Methods and Examples

CSE 3318 – Algorithms and Data Structures
Alexandra Stefan

University of Texas at Arlington

Background

- Solving Summations
 - Needed for the Tree Method
- Math substitution
 - Needed for Methods: Tree and Substitution(induction)

```
    E.g. If T(n) = 3T(n/8) + 4n<sup>2.5</sup>lgn,
    T(n/8) = .....
    T(n-1) = ....
```

- Theory on trees
 - Given tree height & branching factor, compute:

```
nodes per level total nodes in tree
```

- Logarithms
 - Needed for the Tree Method
- Notation: TC = Time Complexity (cost may also be used instead f time complexity)
- We will use different methods than what was done for solving recurrences in CSE 2315, but one may still benefit from reviewing that material.

Recurrences

- Recursive algorithms
 - It may not be clear what the complexity is, by just looking at the algorithm.
 - In order to find their complexity, we need to:
 - Express the "running time" of the algorithm as a recurrence formula. E.g.: f(n) = n + f(n-1)
 - Find the complexity of the recurrence:
 - Expand it to a summation with no recursive term.
 - Find a concise expression (or upper bound), E(n), for the summation.
 - Find Θ , ideally, or O (big-Oh) for E(n).
- Recurrence formulas may be encountered in other situations:
 - Compute the number of nodes in certain trees.
 - Express the complexity of non-recursive algorithms (e.g. selection sort).

Solving Recurrences Methods

- The Master Theorem
- The Recursion-Tree Method
 - Useful for guessing the bound.
 - I will also accept this method as proof for the given bound (if done correctly).
- The Induction Method
 - Guess the bound, use induction to prove it.
 - Note that the book calls this the substitution method,
 but I prefer to call it the induction method

Recurrence - Recursion Tree Relationship

$$T(1) = c$$

Number of subproblems => Number of children of a node in the recursion tree. => Affects the number of nodes per level. At level i there will be aⁱ nodes.

Affects the level TC.

Affects the number of recursive calls (frame stack max height and tree height)

Recursion stops at level p for which the pb size is 1 (the node is labelled T(1)) => n/b^p = 1 =>

Last level, p, will be: p = log_bn (assuming the base case is for T(1)).

T(n/b^p)
c
T(1)

TC = time complexity

 $T(n/b^2)$

 $c(n/b^2)$

Recursion Tree for: T(n) = 2T(n/2)+c

T(1)

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => p = lgn$

Ecver	pb size	1 node	per level			
0	n	С	1		С	
1	n/2	С	2		2c	
2	n/4	С	4		4c	
i	n/2 ⁱ	С	2 ⁱ		2 ⁱ c	
•••						
p=lgn	1 (=n/2 ^p)	С	2 ^p (=n)		2 ^k c	

Nodes

Tree TC = $c(1+2+2^2+2^3+...+2^i+...+2^p)=c2^{p+1}/(2-1)$ = $2c2^p = 2cn = \Theta(n)$

Recursion Tree for: T(n) = 2T(n/2) + 8

If specific value is given instead of c, use that. Here c=8.

Base case: T(1) = 8	Level	Arg/ pb size	TC of 1 node	i
T(n) 8 $T(n)$	0	n	8	1
$T\left(\frac{n}{2}\right)$ (n) $\left(\frac{n}{2}\right)$	1	n/2	8	2
$T\left(\frac{n}{4}\right)$ 8 8 8 8	2	n/4	8	2
	•••			
• • • • • • • • • • • • • • • • • •	i	n/2 ⁱ	8	2

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => 2^p = n => p = lgn$

				level	
_	0	n	8	1	8
	1	n/2	8	2	2*8
	2	n/4	8	4	4*8
	•••				
	i	n/2 ⁱ	8	2 ⁱ	2 ⁱ *8
	•••				
	k=lgn	1 (=n/2 ^k)	8	2 ^k (=n)	2 ^{k*} 8

Nodes

per

Level TC

Tree TC =
$$c(1+2+2^2+2^3+...+2^i+...+2^p)=8*2^{p+1}/(2-1)$$

= $2*8*2^p = 16n = \Theta(n)$

Recursion Tree for: T(n) = 2T(n/2) + cn

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => 2^p = n => p = lgn$

Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
0	n	c*n	1	c*n
1	n/2	c*n/2 2		2*c*n/2 =c*n
2	n/4	c*n/4	4	4*c*n/4 =c*n
i	n/2 ⁱ	c*n/2 ⁱ	2 ⁱ	2 ⁱ *c*n/2 ⁱ =c*n
p=lgn	1 (=n/2 ^p)	c=c*1= c*n/2 ^p	2 ^p (=n)	2 ^p *c*n/2 ^p =c*n

Tree TC
$$= cn(p+1) = cn(1+lgn)$$

 $= cnlgn + cn = \theta(nlgn)$ 8

Recursion Tree for T(n) = 3T(n/2) + cn

Base case: T(1) = c	Level	Arg/ pb size	TC of 1 node	No pe lev
T(n) $T(n)$ $T(n)$ $T(n)$	0	n	c*n	1
$\begin{pmatrix} \frac{2}{n} \end{pmatrix} \qquad \begin{pmatrix} \frac{n}{2} \end{pmatrix} \qquad \begin{pmatrix} \frac{n}{2} \end{pmatrix}$	1	n/2	c*n/2	3
$T\left(\frac{n}{4}\right) = T\left(\frac{n}{4}\right) = T\left(\frac$	2	n/4	c*n/4	9
4/ / / / / / / / / / / / / / / / / / /				
• • • • • • • • • • • • • • • • •	i	n/2 ⁱ	c*n/2 ⁱ	3 ⁱ
T(1) $T(1)$ $T(1)$ $T(1)$				

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => 2^p = n => p = lgn$

 $(c)(c)\dots (c)$

	Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
	0	n	c*n	1	c*n
	1	n/2	c*n/2	3	3*c*n/2 =(3/2)*c*n
	2	n/4	c*n/4	9	(3/2) ² *c*n
	İ	n/2 ⁱ	c*n/2 ⁱ	3 ⁱ	(3/2) ⁱ *c*n
	p=lgn	1 (=n/2 ^p)	c=c*1= c*n/2 ^p	3 ^p (≠n)	(3/2) ^{p*} c*n

Total Tree TC for T(n) = 3T(n/2) + cn

Closed form

$$T(n) = cn + (3/2)cn + (3/2)^{2}cn + ...(3/2)^{i}cn + ...(3/2)^{\lg n}cn =$$

$$= cn * [1 + (3/2) + (3/2)^{2} + ... + (3/2)^{\lg n}] = cn \sum_{i=0}^{\lg n} (3/2)^{i} =$$

$$= cn * \frac{(3/2)^{\lg n+1} - 1}{(3/2) - 1} = 2cn[(3/2) * (3/2)^{\lg n} - 1] = 3cn * (3/2)^{\lg n} - 2cn$$

$$use : c^{\lg n} = n^{\lg c} = > (3/2)^{\lg n} = n^{\lg(3/2)} = n^{\lg 3 - \lg 2} = n^{\lg 3 - 1} = >$$

$$= 3cn * n^{\lg 3 - 1} - 2cn = 3cn^{1 + \lg 3 - 1} - 2cn = 3cn^{\lg 3} - 2cn = \Theta(n^{\lg 3})$$

Explanation: since we need Θ , we can eliminate the constants and non-dominant terms earlier (after the closed form expression):

... =
$$cn * \frac{(3/2)^{\lg n+1} - 1}{(3/2) - 1} = \Theta(n * (3/2) * (3/2)^{\lg n}) = \Theta(n * (3/2)^{\lg n})$$

 $use: c \lg n = n^{\lg c} => (3/2)^{\lg n} = n^{\lg(3/2)} = n^{\lg 3 - \lg 2} = n^{\lg 3 - 1} =>$
 $= \Theta(n * n^{\lg 3 - 1}) = \Theta(n^{\lg 3})$

Recursion Tree for: T(n) = 2T(n/5) + cn

T(1)

p=

log₅n

Level	Arg/ pb size	TC of 1 node
0	n	c*n
1	n/ 5	c*n/ 5
2	n/ 5²	c*n/ 5 ²
•••		
i	n/ <mark>5</mark> i	c*n/ <mark>5</mark> i
	0 1 2	pb size 0

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/5^p => n/5^p = 1 => 5^p = n => p = log_5 n$

T(1)

Tree TC (derivation similar to TC for T(n) = 3T(n/2) + cn)

 $(=n/5^p)$

c = c * 1 =

c*n/5p

Level TC

2*c*n/5

4*c*n/

=(2/5)icn

 $2^{i*}c*n/5^{i}$

=(2/5)icn

 $2^{p*}c*n/5^{p}$

 $=(2/5)^{p}$ cn

=(2/5)*cn

c*n

Nodes

per level

1

4

2i

2p

(=n)

Total Tree TC for T(n) = 2T(n/5) + cn

$$T(n) = cn + (2/5)cn + (2/5)^{2}cn + ...(2/5)^{i}cn + ...(2/5)^{\log_{5}n}cn =$$

$$= cn * [1 + (2/5) + (2/5)^{2} + ... + (2/5)^{\log_{5}n}] =$$

$$= cn \sum_{i=0}^{\log_{5}n} (2/5)^{i} \le cn \sum_{i=0}^{\infty} (2/5)^{i} =$$

$$= cn * \frac{1}{1 - (2/5)} = (5/3)cn = O(n)$$
Also
$$T(n) = cn + ... \Rightarrow T(n) \ge cn \Rightarrow T(n) = \Omega(n)$$

$$\Rightarrow T(n) = \Theta(n)$$

Code => Recurrence

In the recursive case of the recurrence formula capture the number of times the recursive call ACTUALLY EXECUTES as you run the instructions in the function.

```
int foo(int N) {
 int a,b,c;
 if (N<=3) return 1500; // Note N<=3
 a = 2*foo(N-1);
// a = foo (N-1) + foo (N-1);
 printf("A");
b = foo(N/2);
 c = foo(N-1);
 return a+b+c;
Base case: T( ) =
Recursive case: T( ) =
T(N) gives us the Time Complexity for foo(N). We need to solve it (find the closed form)
```

Code => Recurrence => ⊖

```
void bar(int N) {
 int i, k, t;
 if(N<=1) return;
 bar(N/5);
 for (i=1; i<=5; i++) {
   bar(N/5);
 for(i=1;i<=N;i++) {
   for (k=N; k>=1; k--)
     for (t=2; t<2*N; t=t+2)
       printf("B");
 bar(N/5);
T(N) = .....
Solve T(N)
```

In the recursive case of the recurrence formula capture the number of times the recursive call ACTUALLY EXECUTES as you run the instructions in the function.

Compare

```
void fool(int N) {
    if (N <= 1) return;
    for(int i=1; i<=N; i++) {
        fool(N-1);
    }
}
T(0)=T(1) = c
T(N) = N*T(N-1) + cN</pre>
```

```
void foo2(int N) {
    if (N <= 5) return;
    for(int i=1; i<=N; i++) {
        printf("A");
    }
    foo2(N-1); //outside of the loop
}
T(N) = c for all 0≤N≤5 (BaseCase(s))
T(N) = T(N-1) + cN (Recursive Case)</pre>
```

```
int foo3(int N) {
    if (N <= 20) return 500;
    for(int i=1; i<=N; i++) {
        return foo3(N-1);
// No loop. Returns after the first iteration.
    }
}</pre>
```

In the recursive case of the recurrence formula captures the number of times the recursive call **ACTUALLY EXECUTES** as you run the instructions in the function. E.g. pay attention to 2*foo(N/3) vs foo(N/3) + foo(N/3)

T(N) = c for all $0 \le N \le 20$ Do not confuse what the function returns with its time complexity. For the base case, c is not 500. At most, c is 2 (from the 2 instructions: one comparison, $N \le 20$, and one return, return 500)

T(N) = T(N-1) + c

Code =>recurrence

Code => recurrence

```
int weird(int A[], int N) {
   if (N \le 4) return 100;
   if (N\%5==0) return weird (A,N/5);
   else
            return weird (A, N-4) + weird(A, N-4);
Here, the behavior depends on N so we can explicitly capture that in the
recurrence formulas:
Base case(s): T(N) = c for all 0 \le N \le 4 (BC)
Recursive case(s):
T(N) = T(N/5) + c for all N>4 that are multiples of 5 (RC1)
T(N) = 2*T(N-4) + c for all other N
                                                    (RC2)
For any N, in order to solve, we need to go through a mix of the 2 recursive
cases => cannot easily solve. => try to find lower and upper bounds.
Note that RC1 has the best behavior: only one recurrence and smallest subproblem
size (i.e. N/5) => use this for a lower bound =>
T_{lower}(N) = T(N/5) + c = \Theta(log_5N), (and T(N) \ge T_{lower}(N)) => T(N) = \Omega(log_5N)
Note that RC2 has the worst behavior: 2 recurrences and both of larger subproblem
size (i.e. N-4) => use this for an upper bound =>
 T_{\text{upper}} (N) = 2*T(N-4) + c = \Theta(2^{N/4}) \text{, (and } T(N) \leq T_{\text{upper}}(N) = \Theta(2^{N/4}) \text{)} = > T(N) = O(2^{N/4}) 
We have \Omega and O for T(N), but we cannot compute \Theta for it.
```

Recurrence => Code Answers

 Give a piece of code/pseudocode for which the time complexity recursive formula is:

```
-T(1) = c and

-T(N) = N*T(N/2) + cN
```

```
void foo(int N) {
    if (N <= 1) return;
    for(int i=1; i<=N; i++)
        foo(N/2);
}</pre>
```

Recurrences:

Recursion-Tree Method

- 1. Build the tree & fill-out the table
- 2. Compute TC per level
- 3. Compute number of levels (find last level as a function of N)
- 4. Compute total over levels.
 - * Find closed form of that summation.

Example 1 : Solve
$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

Example 2 : Solve
$$T(n) = T(n/3) + T(2n/3) + O(n)$$

Recurrence - Recursion Tree Relationship

$$T(1) = c$$

Number of subproblems =>
Number of children of a node
in the recursion tree. =>
Affects the number of nodes
per level. At level i there will
be ai nodes.

Affects the level TC.

Affects the number of recursive calls (frame stack max height and tree height)
Recursion stops at level p for which the pb size is 1 (the node is labelled T(1)) => $n/b^p = 1$ => Last level, p, will be: $p = log_b n$ (assuming the base case is for T(1)).

•

•

• • T(n/b^p)

С

T(1

C

 $T(n/b^2)$

 $T(n) = 7T(n/5)+cn^3$, If n is not a multiple of 5, use round down for n/5 T(1) = c, T(0) = c

Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
0				
1				
2				
i				
p=				

 $T(n) = 7T(n/5)+cn^3$, If n is not a multiple of 5, use round down for n/5 TC of 1 T(1) = c, T(0) = cLevel Arg/ Nodes **Level TC** pb size node per level Each internal T(n)node has 7 cn³ 1 c*n3 children <u>>n/5</u> \rightarrow c(n/5)³ 7 $7*c*(n/5)^3$ $=cn^3 (7/5^3)$ 2 $n/5^2$ $7^{2*}c*(n/5^{2})^{3}$ $c(n/5^2)^3$ 7^2 $=cn^3 (7/5^3)^2$ $c(n/5^{i})^{3}$ n/5ⁱ 7ⁱ $7^{i*}c*(n/5^{i})^{3}$ $=cn^3 (7/5^3)^i$ T(1) $7^{p*}c*(n/5^{p})^{3}$ **7**p $c(n/5^p)^3$ $=cn^3 (7/5^3)^p$ Log₅n $(=n/5^p)$ Stop at level p, when the

subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/5^p = n/5^p = 1 = p = \log_5 n$

Where we used: $7^{i}(\frac{n}{5^{i}})^{3} = 7^{i}n^{3}(\frac{1}{5^{i}})^{3} = 7^{i}n^{3}(\frac{1}{5^{3}})^{i} = n^{3}(\frac{7}{5^{3}})^{i}$ Tree TC: $T(n) = \sum_{i=0}^{\log_5 n} cn^3 (\frac{7}{5^3})^i = cn^3 \sum_{i=0}^{\log_5 n} (\frac{7}{5^3})^i =$ $cn^3 \frac{1 - (7/125)^{1 + \log_5 n}}{1 - (7/125)} < cn^3 \frac{1}{1 - 7/125} = \Theta(n^3) \Rightarrow T(n) = O(n^3)$ But $T(n) = \Omega(n^3) \Rightarrow T(n) = \Theta(n^3)$

22

 $T(n) = 7T(n/5)+cn^3$, If n is not a multiple of 5, use round down for n/5 T(1) = c, T(0) = c

$$T(n) = 5T(n-6)+c$$

$$T(n) = c \text{ for all } 0 \le n \le 5 \text{ (i.e. } T(0) = T(1) = T(2) = T(3) = T(4) = T(5) = c \text{)}$$

Assume n is a multiple of 6 Each internal	Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
node has 5 children C	0	≻n	C →	1	С
T(n-6) T(n-6)	1	>n-6	C	5	5*c
T(n-2*6) C C C C	2	n-2*6	С	52	5 ² *c
• • • • • • • • • • • • • • • • •	i	n-6i	С	5 ⁱ	5 ⁱ *c
T(0) T(0)					
c c c c	p= n/6	0 (=n-6p)	c	5 ^p	5 ^{p*} c
Stop at level p, when the subtree is T(0).					

=> The problem size is 0, but the general formula for the problem size, at level p is: n-6p=> n-6p= 0 => p = n/6

$$T(n) = c(1+5+5^2+5^3+...+5^i+...+5^p) = c(5^{(p+1)}-1)/(5-1) = \Theta(5^p) = \Theta(5^{n/6})$$

 Rounding up or down the size of subproblems does not affect Theta. All four recurrences below have the same Theta:

$$T(N) = 2T\left(\frac{N}{3}\right) + c,$$

$$T(N) = 2T\left(\left\lfloor\frac{N}{3}\right\rfloor\right) + c,$$

$$T(N) = 2T\left(\left\lfloor\frac{N}{3}\right\rfloor\right) + c,$$

$$T(N) = T\left(\left\lfloor\frac{N}{3}\right\rfloor\right) + T\left(\left\lfloor\frac{N}{3}\right\rfloor\right) + c$$

See more solved examples later in the presentation. Look for page with title:

More practice/ Special cases

Tree Method for lower/upper bounds

$$T(n) = T(n/3) + T(2n/3) + O(n)$$

- Draw the tree, notice the shape, see length of shortest and longest paths.
- Notice that:
 - as long as the levels are full (all nodes have 2 children) the level TC is cn (the sum of TC of the children equals the parent: (1/3)*p TC+(2/3) *p TC)
 - \Rightarrow Total TC for those: cn*log₃n = Θ (nlgn)
 - The number of incomplete levels should also be a multiple of Ign and the TC for each of those levels will be less than cn
 - => Guess that T(n) = O(nlgn)
- Use the substitution method to show T(n) = O(nlgn)
- If the recurrence was given with Θ instead of O, we could have shown $T(n) = \Theta(n \lg n)$
 - with O, de only know that: $T(n) \le T(n/3)+T(2n/3)+cn$
 - The local TC could even be constant: T(n) = T(n/3) + T(2n/3) + c
- Exercise: Solve
 - $T_1(n) = 2T_1(n/3) + cn$ (Why can we use cn instead of $\Theta(n)$ in $T_1(n) = 2T_1(n/3) + cn$?)
 - $T_2(n) = 2T_2(2n/3) + cn$ (useful: lg3 ≈1.59)
 - Use them to bound T(n). How does that compare to the analysis in this slide? (The bounds are looser).

Common Recurrences Review

Halve problem in constant time :

$$T(n) = T(n/2) + c \qquad \Theta(\lg(n))$$

Halve problem in <u>linear</u> time :

$$T(n) = T(n/2) + n \qquad \Theta(n) \qquad (^2n)$$

3. Break (and put back together) the problem into 2 halves in constant time:

$$T(n) = 2T(n/2) + c \qquad \Theta(n) \qquad (\sim 2n)$$

4. Break (and put back together) the problem into 2 halves in linear time:

$$T(n) = 2T(n/2) + n \qquad \Theta(n | g(n))$$

5. Reduce the problem size by 1 in <u>constant</u> time:

$$T(n) = T(n-1) + c \qquad \Theta(n)$$

6. Reduce the problem size by 1 in <u>linear</u> time:

$$T(n) = T(n-1) + n \qquad \Theta(n^2)$$

Master theorem

 We will use the Master Theorem from wikipedia as it covers more cases:

https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)

- Check the above webpage and the notes handwritten in class.
- Discussion:

On Wikipedia, below the inadmissible equations there is the justification pasted below.

However the cases given for the Master Theorem on Wikipedia, do not include any ϵ in the discussion. Where does that ϵ come from? Can you do math derivations that start from the formulation of the relevant case of the Theorem and result in the ϵ and the inequality shown above?

In the second inadmissible example above, the difference between f(n) and $n^{\log_b a}$ can be expressed with the ratio $\frac{f(n)}{n^{\log_b a}} = \frac{n/\log n}{n^{\log_b 2}} = \frac{n}{n\log n} = \frac{1}{\log n}$. It is clear that $\frac{1}{\log n} < n^{\epsilon}$ for any constant $\epsilon > 0$. Therefore, the difference is not polynomial and the basic form of the Master Theorem does not apply. The extended form (case 2b) does apply, giving the solution $T(n) = \Theta(n \log \log n)$.

Recurrences: Induction Method

- 1. Guess the solution
- 2. Use induction to prove it.
- 3. Check it at the boundaries (recursion base cases)

Example: Find upper bound for: $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- 1. Guess that $T(n) = O(n \lg n) = >$
- 2. Prove that $I(n) = O(n \lg n)$ using $I(n) \le c n \lg n$ (for some c)
 - 1. Assume it holds for all m < n, and prove it holds for in
- 3. Assume base case (boundary): T(1) = 1.

 Pick c and n_0 s.t. it works for sufficient base cases and applying the inductive hypotheses.

Recurrences: Induction Method

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

2. Prove that
$$T(n) = O(n|gn)$$
, using the definition:
find c and n_0 s.t. $T(n) \le c*n|gn$

(here:
$$f(n) = T(n)$$
, $g(n) = nlgn$)

Show with induction:
$$T(n) \le c*nlgn (for some c>0)$$

T(n) =
$$2T(\lfloor n/2 \rfloor) + n \le 2*c*\lfloor n/2 \rfloor*\lg(\lfloor n/2 \rfloor) + n \le$$

$$I(n) = 2I([n/2]) + n \le 2*c*[n/2]*Ig([n/2]) + n \le 2*c*[n/2]*Ig([n/2]) + n = cn Ig([n/2]) $

$$= cn(\lg n - \lg 2) + n = cn(\lg n - 1) + n = cn\lg n - cn + n =$$

$$= cn \lg n + n(1-c)$$

$$\leq cn \lg n \Rightarrow$$

$$n(1-c) \le \delta \Rightarrow 1-c \le 0 \Rightarrow c \ge 1$$

Pick c = 2 (the largest of both 1 and 2).
Pick
$$n_0 = 2$$

3. Base case (boundary): Assume T(1) = 1

Find
$$n_0$$
 s.t. the induction
holds for all $n \ge n_0$.
 $n=1: 1=T(1) \le c*1*lg1 = c*0 = 0$

FALSE. =>
$$n_0$$
 cannot be 1.

n=2: T(2) = 2*T(1) + 2 = 2+2=4

Want T(2)
$$\leq$$
 c*2lg2=2c, True tor: c \geq 2

Want $5=T(3) \le c*3*lg3$

Recurrences: Induction Method Various Issues

- Subtleties (stronger condition needed)
 - Solve: $T(n) = T(\lfloor n/2 \rfloor + \Gamma(\lfloor n/2 \rfloor) + 1 \text{ with } T(1) = 1 \text{ and } T(0) = 1$
 - Use a stronger condition: off by a constant, subtract a constant
- Avoiding pitfalls
 - Wrong: In the above example, stop at T(n)≤cn+1 and conclude that T(n) =O(n)
 - See also book example of wrong proof for $T(n) = 2T(\lfloor n/2 \rfloor) + n$ is O(n)
- Making a good guess
 - Solve: $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$
 - Find a similar recursion
 - Use looser upper and lower bounds and gradually tighten them.
- Changing variables
 - Recommended reading, not required (page 86)

Stronger Hypothesis for

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

Show T(n) = O(n) using the definition: find c and n_0 s.t. $T(n) \le c^* p$

(here: f(n) = T(n), g(n) = n). Use induction to show $T(n) \le c^* n$

Inductive step: assume it holds for all m<n, show for n

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1 =$$

$$= c(\lfloor n/2 \rfloor + \lceil n/2 \rceil) + 1 = cn + 1$$

We're stuck. We CANNOT say that T(n) = O(n) at this point. We must prove the hypothesis exactly: $T(n) \le cn$ (pot: $T(n) \le cn + 1$).

Use a stronger hypothesis: prove that $T(n) \le cn-d$, for some const d>0:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor - d + c \lceil n/2 \rceil - d + 1 = c(\lfloor n/2 \rfloor + \lceil n/2 \rfloor) + 1 - 2d = cn - d + 1 - d$$

want:

$$\leq cn - d \Rightarrow$$

 $1 - d \leq 0 \Rightarrow d \geq 1$

Extra material – Solve:

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

Use the tree method to make a guess for:

$$T(n) = 3T(n/4) + \Theta(n^2)$$

 Use the induction method for the original recurrence (with rounding down):

$$T(n) = 3T(n/4) + \Theta(n^2)$$

More practice/ Special cases

Recurrences solved in following slides

Recurrences solved in following slides:

$$T(n) = T(n-1) + c$$

$$T(n) = T(n-4) + c$$

$$T(n) = T(n-1) + cn$$

$$T(n) = T(n/2) + c$$

$$T(n) = T(n/2) + cn$$

$$T(n) = 2T(n/2) + c$$

$$T(n) = 2T(n/2) + 8$$

$$T(n) = 2T(n/2) + cn$$

$$T(n) = 3T(n/2) + cn$$

$$T(n) = 3T(n/5) + cn$$

Recurrences left as individual practice:

$$T(n) = 7T(n/3) + cn$$

$$T(n) = 7T(n/3) + cn^3$$

$$T(n) = T(n/2) + n$$

See also "recurrences practice" problems on the Exams page.

Time complexity tree: T(N)T(N-1) T(1)

T(N) = T(N-1) + c fact(N)

```
int fact(int N)
{
    if (N <= 1) return 1;
    return N*fact(N-1);
}</pre>
```

```
Time complexity of fact(N) ? T(N) = ...
T(N) = T(N-1) + c
T(1) = c
T(0) = c
Levels: N
Each node has TC c = > 
T(N) = c*N = \Theta(N)
```

Time complexity tree: T(N)T(N-4) T(4) T(0)

T(N) = T(N-4) + c

```
int fact4(int N)
{
    if (N <= 1) return 1;
    if (N == 2) return 2;
    if (N == 3) return 6
    return N*(N-1)*(N-2)*(N-3)*fact4(N-4);
}</pre>
```

Time complexity of fact4(N) ? T(N) = ...

```
T(N) = T(N-4) + c
T(3) = c
T(2) = c
T(1) = c
T(0) = c

Levels: \approx N/4
Each node has T c = > 
T(N) = c*N/4 = \Theta(N)
```

Time complexity tree: T(N)T(N-1)T(1)

T(N) = T(N-1) + cNselection_sort_rec(N)

```
int fact(int N, int st, int[] A, ) {
    if (st >= N-1) return;
    idx = min_index(A, st, N); // \text{\Theta}(N-st)
    A[st] <-> A[idx]
    return sel_sort_rec(A, st+1, N);
}
```

```
T(N) = T(N-1) + cN
T(1) = c
T(0) = c

Levels: N
Node at level i has TC c(N-i) = > 
T(N) = cN + c(N-1) + ... ci + ... c = cN(N+1)/2 = \Theta(N^2)
```

T(N) = T(N/2) + c


```
T(1) = c
T(0) = c

Levels: \approx lgN ( from base case: N/2^p=1 => p=lgN)

Each node has TC c => T(N) = c*lgN = \Theta(lgN)
```

T(N) = T(N/2) + c

T(N) = T(N/2) + cN

Time complexity tree:


```
T(N) = T(N/2) + cN
T(1) = c
T(0) = c
Levels: \approx IgN (from base case: N/2^p=1 \Rightarrow p=IgN)
Node at level i has TC cN/2^i =>
T(N) = c(N + N/2 + N/2^2 + ... N/2^i + ... + N/2^k) =
      = cN(1 + 1/2 + 1/2^2 + ... 1/2^i + ... + 1/2^k) =
      = cN[1 + (1/2) + (1/2)^2 + ... (1/2)^i + ... + (1/2)^p] =
      = cN*constant
      =\Theta(N)
                                                                 41
```

Recursion Tree for: T(n) = 2T(n/2)+c

T(1)

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => p = lgn$

T(1)

2ⁱ 2ⁱc T(1) $2^k c$ **2**^p p=lgn $(=n/2^p)$ (=n)Tree TC = $c(1+2+2^2+2^3+...+2^i+...+2^p)=c2^{p+1}/(2-1)$

Nodes

per level

1

2

4

Level TC

2c

4c

 $= 2c2^p = 2cn = \Theta(n)$

Recursion Tree for: T(n) = 2T(n/2) + 8

If specific value is given instead of c, use that. Here c=8.

Level TC

8

2*8

4*8

2ⁱ*8

2k*8

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => 2^p = n => p = lgn$

Tree TC =
$$c(1+2+2^2+2^3+...+2^i+...+2^p)=8*2^{p+1}/(2-1)$$

= $2*8*2^p = 16n = \Theta(n)$

8

 $(=n/2^k)$

k=lgn

2^k

(=n)

Recursion Tree for: T(n) = 2T(n/2) + cn

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => 2^p = n => p = lgn$

Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
0	n	c*n	1	c*n
1	n/2	c*n/2	2	2*c*n/2 =c*n
2	n/4	c*n/4	4	4*c*n/4 =c*n
i	n/2 ⁱ	c*n/2 ⁱ	2 ⁱ	2 ⁱ *c*n/2 ⁱ =c*n
p=lgn	1 (=n/2 ^p)	c=c*1= c*n/2 ^p		2 ^p *c*n/2 ^p =c*n

Tree TC
$$= cn(p+1) = cn(1+lgn)$$

 $= cnlgn + cn = \theta(nlgn)$ 44

Recursion Tree for T(n) = 3T(n/2) + cn

Base case: T(1) = c	Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
T(n) $C(n)$	0	n	c*n	1	c*n
$\begin{pmatrix} 2 \\ \frac{n}{2} \end{pmatrix}$	1	n/2	c*n/2	3	3*c*n/2 =(3/2)*c*n
$T\left(\frac{n}{4}\right)$ $T\left(\frac{n}{4}\right)$ $C\left(\frac{n}{4}\right)$ $C\left(\frac{n}{4}\right)$ $C\left(\frac{n}{4}\right)$ $C\left(\frac{n}{4}\right)$ $C\left(\frac{n}{4}\right)$	2	n/4	c*n/4	9	(3/2) ² *c*n
4 / / / / / / / / / / / / / / / / / / /					
• • • • • • • • • • • • • • • • • • • •	i	n/2 ⁱ	c*n/2 ⁱ	3 ⁱ	(3/2) ^{i*} c*n
T(1) $T(1)$ $T(1)$ $T(1)$					
(c) (c) (c) (c) (c)	p=lgn	1	c=c*1=	3 p	(3/2) ^{p*} c*n

 $(=n/2^p)$

c*n/2p

(**≠**n)

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/2^p => n/2^p = 1 => 2^p = n => p = lgn$

Total Tree TC for T(n) = 3T(n/2) + cn

Closed form

$$T(n) = cn + (3/2)cn + (3/2)^{2}cn + ...(3/2)^{i}cn + ...(3/2)^{\lg n}cn =$$

$$= cn * [1 + (3/2) + (3/2)^{2} + ... + (3/2)^{\lg n}] = cn \sum_{i=0}^{\lg n} (3/2)^{i} =$$

$$= cn * \frac{(3/2)^{\lg n+1} - 1}{(3/2) - 1} = 2cn[(3/2) * (3/2)^{\lg n} - 1] = 3cn * (3/2)^{\lg n} - 2cn$$

$$use : c^{\lg n} = n^{\lg c} = > (3/2)^{\lg n} = n^{\lg(3/2)} = n^{\lg 3 - \lg 2} = n^{\lg 3 - 1} = >$$

$$=3cn*n^{\lg 3-1}-2cn=3cn^{1+\lg 3-1}-2cn=3cn^{\lg 3}-2cn=\Theta(n^{\lg 3})$$

Explanation: since we need Θ , we can eliminate the constants and non-dominant terms earlier (after the closed form expression):

... =
$$cn * \frac{(3/2)^{\lg n+1} - 1}{(3/2) - 1} = \Theta(n * (3/2) * (3/2)^{\lg n+1}) = \Theta(n * (3/2)^{\lg n})$$

$$use : c^{\lg n} = n^{\lg c} = > (3/2)^{\lg n} = n^{\lg(3/2)} = n^{\lg 3 - \lg 2} = n^{\lg 3 - 1} = >$$

= $\Theta(n * n^{\lg 3 - 1}) = \Theta(n^{\lg 3})$

46

Recursion Tree for: T(n) = 2T(n/5) + cn

T(1)

p=

log₅n

	Level	Arg/ pb size	TC of 1 node	per lev
T(n) (n)	0	n	c*n	1
$T\left(\frac{n}{5}\right)$ $T\left(\frac{n}{5}\right)$ $T\left(\frac{n}{5}\right)$ $T\left(\frac{n}{5}\right)$ $T\left(\frac{n}{5}\right)$	1	n/ 5	c*n/ 5	2
$T\left(\frac{n}{5^{2}}\right) \qquad C\left(\frac{n}{5^{2}}\right) \qquad C\left(\frac{n}{5^{$	2	n/ 5 ²	c*n/ 5 ²	4
• • • • • • • • • • • • • • • • •	İ	n/ 5 i	c*n/ <mark>5</mark> i	2 ⁱ

Stop at level p, when the subtree is T(1). => The problem size is 1, but the general formula for the problem size, at level p is: $n/5^p => n/5^p = 1 => 5^p = n => p = log_5 n$

Tree TC (derivation similar to TC for T(n) = 3T(n/2) + cn)

 $(=n/5^p)$

c=c*1=

c*n/5p

2p

(=n)

Level TC

2*c*n/5

4*c*n/

=(2/5)icn

 $2^{i*}c*n/5^{i}$

=(2/5)icn

 $2^{p*}c*n/5^{p}$

 $=(2/5)^{p}$ cn

=(2/5)*cn

c*n

des

Total Tree TC for T(n) = 2T(n/5) + cn

$$T(n) = cn + (2/5)cn + (2/5)^{2}cn + ...(2/5)^{i}cn + ...(2/5)^{\log_{5}n}cn =$$

$$= cn * [1 + (2/5) + (2/5)^{2} + ... + (2/5)^{\log_{5}n}] =$$

$$= cn \sum_{i=0}^{\log_{5}n} (2/5)^{i} \le cn \sum_{i=0}^{\infty} (2/5)^{i} =$$

$$= cn * \frac{1}{1 - (2/5)} = (5/3)cn = O(n)$$

Also

$$T(n) = cn + ... \Rightarrow T(n) \ge cn \Rightarrow T(n) = \Omega(n)$$

 $\Rightarrow T(n) = \Theta(n)$

Other Variations

• T(n) = 7T(n/3) + cn

- $T(n) = 7T(n/3) + cn^5$
 - Here instead of (7/3) we will use (7/3⁵)

- T(n) = T(n/2) + n
 - The tree becomes a chain (only one node per level)

Additional materials

Practice/Strengthen understanding Problem

- Look into the derivation if we had: T(1) = d ≠ c.
 - In general, at most, it affects the constant for the dominant term.

Practice/Strengthen understanding Answer

- Look into the derivation if we had: T(1) = d ≠ c.
 - At most, it affects the constant for the dominant term.

Level	Arg/ pb size	TC of 1 node	Nodes per level	Level TC
0	n	c*n	1	c*n
1	n/2	c*n/2	2	2*c*n/2 =c*n
2	n/4	c*n/4	4	4*c*n/4 =c*n
i	n/2 ⁱ	c*n/2 ⁱ	2 ⁱ	2 ⁱ *c*n/2 ⁱ =c*n
p=lgn	1 (=n/2 ^p)		2 ^p (=n)	=d*n

Tree
$$TC = cnp + dn = cnlgn + dn = \theta(nlgn)$$

Permutations without repetitions (Harder Example)

Covering this material is subject to time availability

- Time complexity
 - Tree, intuition (for moving the local TC in the recursive call TC), math justification
 - induction

More Recurrences Extra material – not tested on

M1. Reduce the problem size by 1 in logarithmic time

E.g. Check lg(N) items, eliminate 1

M2. Reduce the problem size by 1 in N^2 time

– E.g. Check N^2 pairs, eliminate 1 itcm

M3. Algorithm that:

- takes $\Theta(1)$ time to go over N items.
- calls itself 3 times on data of size N-1.
- takes $\Theta(1)$ time to combine the results.

M4. ** Algorithm that:

- cans itself N times on data of size N/2.
 - takes $\Theta(1)$ time to combine the results.
- This generates a difficult recursion.