Enrollment No: ___ Seat No: ___

PARUL UNIVERSITY

FACULTY OF ENGINEERING & TECHNOLOGY B.Tech., Winter 2017 - 18 Examination

Semester: 3 Date: 30/12/2017

Subject Code: 03107203 Time: 10:30am to 1:00pm **Total Marks: 60**

Subject Name: Digital Electronics

т_		tr		- 4	• -		
ır	ıc	rr	117	ľ	10	m	c.
ᄺ	LO.	u	w	·ι	LU	,,,	•

2. F 3. N	Il questions are compulsory. igures to the right indicate full marks. Iake suitable assumptions wherever necessary. tart new question on new page.						
Q.1	Objective Type Questions (Each of one mark)						
	1. The gate produces a HIGH output whenever the two inputs are unequal.						
	2. Statement of Associative law is						
	3. Gray code of number 11100101 is						
	4. In Boolean algebra A.A is equal to						
	5. 10's complement of number 935 is						
	6. What are the symbols used to represent digits in the binary number system?						
	7. The decimal value of binary 10010						
	8. Convert the fractional decimal number 6.75 to binary.						
	9. When output of NOR gate is HIGH?						
	10. Convert the following octal number to decimal. (17)8						
	11. A logic circuit that can store one bit of information is a						
	A. flip-flop						
	B. counter						
	C. gate						
	D. code converter						
	12. If a HIGH logic level is assigned a binary zero (0), and a low level is assigned a binary one (1), the logic is called						
	A. negative logic						
	B. positive logic						
	C. invalid logic						
	D. assertion-level logic						
	13. A half-adder does not have						
	A. carry in						
	B. carry out						

(15)

C. two inputs			
D. all of the above			
14. The Boolean equation for the exclusive-OR function is			
A. $X = \overline{A} \overline{B} + A B$			
B. $X = \overline{A} B + \overline{A} \overline{B}$			
C. $X = \overline{A} \overline{B} + A B$			
D. $X = \overline{A} B + A \overline{B}$			
15. The Boolean equation results from this Karnaugh map.			
c c			
Ā B 1 1			
Ā B 1			
A B 1			
A B 1			
A. $(\overline{A} \ \overline{B}) + (\overline{A} \ C) + (A \ \overline{C})$			
B. $(\overline{A} \ \overline{B}) + (A \ \overline{B}) + (B \ \overline{C})$			
C. $(A \overline{B}) + (\overline{A} B) + (\overline{B} \overline{C})$			
D. $(\overline{A} B) + (\overline{B} \overline{C}) + (\overline{B} C)$			
Answer the following questions. (Attempt any three)A) Prove Demorgan's Laws for 2 input variables.	(15)		
B) Simplify following Boolean function using K-map and implement with only NOR gates. F(w,x,y,z) = Σ m (1 , 3 , 7 , 11 , 15) with don't care conditions d(w,x,y,z) = Σ m (0, 2 ,5)			
C) What is Multiplexer? Explain working of 8*1 MUX with necessary diagrams.			
D) Define Decoder. Explain working of 3:8 line Decoder with diagram and truth table.			
A) Compare ROM, RAM and EPROM.			
B) Explain working of Positive Edge Triggered D flip flop with logic diagram and truth table.			
OR B) Design counter for below sequence using D flip flop: 000,010,111,011,001,110			
A) Simplify following Boolean function using K-Map method F (a,b,c,d) = \prod M (0,2,4,6,8). \prod D (1,12,9,15) and implement using NAND/NOR gates.			
OR			

A) Define state table, state diagram, state graph, input and output equations.

Q.2

Q.3

Q.4

(07)

