Preferences orders and utility functions

Dr. Sooie-Hoe Loke

What is utility?

Utility theory concerns individuals' preferences or values over some set of goods (objects, services, activities, wealth).

It has been used in many decision-making applications including

- Economics ("Economics is the father of utility theory")
- Psychology
- Finance
- Many more

"Most utility theories, when stripped of all nonmathematical interpretation, amount to abstract mathematical theories of binary relations."

- P. Fishburn (1968)

We will kick off this quarter with the binary relation, based on Fishburn's book: Utility Theory for Decision Making (1970).

Dr. Loke MATH407 Week 1 2 / 14

Notation

Let X denote a set whose elements are to be evaluated in terms of preference in a particular decision situation (alternatives, cash flows, food items, etc.).

For now, assume that X is a countable set (i.e. finite or countably infinite) with elements denoted by lowercase letters (x, y, ...).

Define strict preference \prec (read $x \prec y$ as x is less preferred than y, or y is preferred to x) as the basic binary relation on X, and indifference \sim will later be defined as the absence of strict preference.

The main result here is that, under some conditions, numbers $u(x), u(y), \ldots$ can be assigned to elements x, y, \ldots in X in such a way that

$$x \prec y \Leftrightarrow u(x) < u(y)$$
.

4D > 4B > 4B > 4B > B 900

Dr. Loke

MATH407

Week 1

Binary relations

Definition

A binary relation on a set Y is a set of ordered pairs (x, y) with $x \in Y$ and $y \in Y$.

Definition

The universal binary relation on Y is the set $\{(x, y) : x, y \in Y\}$ of all ordered pairs from Y.

- If R is a binary relation on Y, then R is a subset of the universal binary relation.
- We write xRy to mean that $(x,y) \in R$. Similarly, not xRy (it is false that x stands in the relation R to y) means that $(x,y) \notin R$.
- If R is a binary relation on Y, then for each (x, y) in the universal relation either xRy or not xRy, and not both.
- (x,y) is not the same as (y,x) unless x=y.

 Dr. Loke
 MATH407
 Week 1
 4 / 14

If R is a binary relation on Y and if $x, y \in Y$, then exactly one of the following four cases holds:

- (1) (xRy, yRx),
- (2) (xRy, not yRx),
- (3) (not xRy, yRx),
- (4) (not xRy, not yRx).

Example

Let Y be the set of all living people. Define R_1 as "is shorter than," so that xR_1y means that x is shorter than y.

Case (1) is impossible. Case (2) holds when x is shorter than y.

When does case (4) hold?

Example

Let R_2 be "is the brother of" (by having at least one parent in common). Fishburn claimed that "Here cases (2) and (3) are impossible." What do you think?

 Dr. Loke
 MATH407
 Week 1
 5 / 14

Some Relation Properties

A binary relation R on a set Y is

- p1. reflexive if xRx for every $x \in Y$,
- p2. irreflexive if not xRx for every $x \in Y$,
- p3. symmetric if $xRy \Rightarrow yRx$, for every $x, y \in Y$,
- p4. asymmetric if $xRy \Rightarrow \text{not } yRx$, for every $x, y \in Y$,
- p5. antisymmetric if $(xRy, yRx) \Rightarrow x = y$, for every $x, y \in Y$,
- p6. transitive if $(xRy, yRz) \Rightarrow xRz$, for every $x, y, z \in Y$,
- p7. negatively transitive if (not xRy, not yRz) \Rightarrow not xRz, for every $x, y, z \in Y$,
- p8. connected or complete if xRy or yRx (possibly both) for every $x, y \in Y$,
- p9. weakly connected if $x \neq y \Rightarrow (xRy \text{ or } yRx)$ throughout Y.

Example

The relation R_1 (shorter than) is irreflexive, asymmetric, transitive, and negatively transitive. If no two people are of same height, R_1 is weakly connected.

 Dr. Loke
 MATH407
 Week 1
 6 / 14

Some Relation Properties

A binary relation R on a set Y is

- p1. reflexive if xRx for every $x \in Y$,
- p2. irreflexive if not xRx for every $x \in Y$,
- p3. symmetric if $xRy \Rightarrow yRx$, for every $x, y \in Y$,
- p4. asymmetric if $xRy \Rightarrow \text{not } yRx$, for every $x, y \in Y$,
- p5. antisymmetric if $(xRy, yRx) \Rightarrow x = y$, for every $x, y \in Y$,
- p6. transitive if $(xRy, yRz) \Rightarrow xRz$, for every $x, y, z \in Y$,
- p7. negatively transitive if (not xRy, not yRz) \Rightarrow not xRz, for every $x, y, z \in Y$,
- p8. connected or complete if xRy or yRx (possibly both) for every $x, y \in Y$,
- p9. weakly connected if $x \neq y \Rightarrow (xRy \text{ or } yRx)$ throughout Y.

Example

What are some properties satisfied by R_2 (brother of)? Note that Fishburn wrote that " R_2 is symmetric."

 Dr. Loke
 MATH407
 Week 1
 7 / 14

Different types of relations

Definition

A binary relation R on a set Y is

- a. a weak order $\Leftrightarrow R$ on Y is asymmetric and negatively transitive;
- b. a strict order $\Leftrightarrow R$ on Y is a weakly connected weak order;
- c. an equivalence $\Leftrightarrow R$ on Y is reflexive, symmetric, and transitive.

Example

The relation < on the real numbers is a weak order and also a strict order since x < y or y < x whenever $x \neq y$.

Example

The relation = on the real numbers is an equivalence, since x = x, $x = y \Rightarrow y = x$, and $(x = y, y = z) \Rightarrow x = z$.

Dr. Loke MATH407 Week 1 8 / 14

Equivalence relation

An equivalence on a set defines a natural partition of the set into a class of disjoint, nonempty subsets, such that two elements of the original set are in the same class if and only if they are equivalent.

If R is an equivalence, then the set $R(x) = \{y : y \in Y \text{ and } yRx\}$ is the equivalence class generated by x. In this case, R(x) = R(y) if and only if xRy. When R on Y is an equivalence, we denote the set of equivalence classes as Y/R.

Example

Consider the set of all integers (\mathbb{Z}). For $i = 0, 1, 2, x \in R[i]$ provided that x is congruent to i modulo 3, that is, 3 divides x - i. Write down R[0], R[1], and R[2].

Indifferent preference

We can define indifference \sim as the absence of strict preference:

$$x \sim y \Leftrightarrow (\text{not } x \prec y, \text{not } y \prec x).$$

Indifference might arise in several ways.

- An individual might feel that there is no real difference between x & y.
- They are uncertain as to their preference between x and y.
- They consider x and y incomparable on a preference basis.

Define preference-indifference \preccurlyeq as the union of \prec and \sim via

$$x \leq y \Leftrightarrow x \prec y \text{ or } x \sim y.$$

Dr. Loke

Theorem

Suppose \prec on X is a weak order (i.e. asymmetric and negatively transitive). Then

- a. exactly one of $x \prec y, y \prec x, x \sim y$ holds for each $x, y \in X$;
- b. \prec is transitive;
- c. \sim is an equivalence (i.e. reflexive, symmetric, transitive);
- d. $(x \prec y, y \sim z) \Rightarrow x \prec z$, and $(x \sim y, y \prec z) \Rightarrow x \prec z$;
- e. ≼ is transitive and connected;
- f. with \prec' on X/\sim (the set of equivalence classes of X under \sim) defined by

$$a \prec' b \Leftrightarrow x \prec y \text{ for some } x \in a \text{ and } y \in b$$
,

 \prec' on X/\sim is a strict order.

Proof.

See p. 13

Dr. Loke

An Order-Preserving Utility Function

Theorem

If \prec on X is a weak order and X/\sim is countable then there is a real-valued function u on X such that

$$x \prec y \Leftrightarrow u(x) < u(y), \quad \text{ for all } x, y \in X.$$

Proof.

See p. 14 and 15.

Remarks:

- Consequently, for all $x, y \in X$, $x \sim y \Leftrightarrow u(x) = u(y)$, and $x \leq y \Leftrightarrow u(x) \leq u(y)$.
- The utility function u is said to be order-preserving since the numbers $u(x), u(y), \ldots$ as ordered by < reflect the order of x, y, \ldots under \prec .

Week 1

An Order-Preserving Utility Function

Theorem

If \prec on X is a weak order and X/\sim is countable then there is a real-valued function u on X such that

$$x \prec y \Leftrightarrow u(x) < u(y), \quad \text{for all } x, y \in X.$$

Remarks:

• If (•) holds, then

$$x \prec y \Leftrightarrow v(x) < v(y)$$
, for all $x, y \in X$

for a real-valued function v on X if and only if $[v(x) < v(y) \Leftrightarrow u(x) < u(y)]$ holds throughout X.

- Another theorem can be obtained by assuming strict partial order, in which case the ⇔ in (►) is replaced by ⇒.
- There are utility functions with properties beyond that of order preservation.

References

- Fishburn, P. C. (1979). *Utility theory for decision making*. NY: Krieger.
- ② Fishburn, P. C. (1968). *Utility theory*. Management science, 14(5), 335-378.

Dr. Loke