Econometrics: Multiple Regression and Applications ECON4004: LAB 5

Duong Trinh

University of Glasgow

March 6, 2024

Intro

- Duong Trinh
 - PhD Student in Economics (Bayesian Microeconometrics)
 - Email: Duong.Trinh@glasgow.ac.uk
- ECON4004-LB01
 - Wednesday 10am -12 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357
- ♦ ECON4004-LB02
 - Wednesday 12-2 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357

Record Attendance

Plan for LAB 5

- ♦ Excercise: based on Stock & Watson, E15.1
- ♦ We will focus on "Time series Regression"

Time Series Data - What it looks like...

Time series data are data collected on the same observational unit at multiple time periods (t).

$$\{Y_t\},\$$

 $t=1,\ldots,T$

Can be of any time frequency - daily, monthly, quarterly, annual, etc.¹

¹Typical resource: https://fred.stlouisfed.org/

[SN] Working with dates and times in STATA

 $\mathsf{Date}\ \mathsf{types}\ \mathsf{in}\ \mathsf{Stata}^2$

Date type	Format	<u>Unit</u>
Datetime	%tc	Milliseconds since 01jan1960 00:00:00.000
Daily date	%td	Days since 01jan1960
Weekly date	%tw	Weeks since 1960w1
Monthly date	%tm	Months since 1960m1
Quarterly date	%tq	Quarters since 1960q1

²See guideline at: https://www.stata.com/bookstore/dtguide.pdf

[SN] Our Example

- . * Import Quarterly Data from Excel file
- . * first row considered as variable names
- . import excel "us_macro_quarterly.xlsx", sheet("Data") firstrow clear (5 vars, 252 obs)

. describe

Variable

Contains data

Observations: 252

Variables:

Storage

Display

name	type	format	label	Variable label	
freq	int	%td		freq	$\overline{}$
GDPC1	double	%10.0g		GDPC1	
JAPAN_IP	double	%10.0g		JAPAN_IP	
PCECTPI	double	%10.0g		PCECTPI	
CPIAUCSL	double	%10.0g		CPIAUCSL	

[SN] Working with dates and times in STATA

(I) Option 1: Building dates and times from components.³

Date type	Format	Pseudofunction	Function
Daily date	%td	td(day-month-year)	mdy(M, D, Y)
Weekly date	%tw	tw(year-week)	yw(Y, W)
Monthly date	%tm	tm(year-month)	ym(Y, M)
Quarterly date	%tq	tq(year-quarter)	yq(Y, Q)

³See guideline at: https://www.stata.com/bookstore/dtguide.pdf

[SN] Our Example

```
. * Create a desired quarterly date, e.g. 1955q1
. display %tq tq(1955q1) //using pseudofunction tq(.)
1955q1
. display %tg yg(1955,1) //using function yg(.)
1955q1
. * Generate quarterly date variables, recursively starting from 1955q1
. * By default, tq(1960q1) is defined to be 0 in Stata.
. gen date1 = tq(1955q1) + _n-1
. gen date2 = yq(1955,1) + _n-1
. format %tg date1 date2 // express them in quarterly format, see Data Editor
. list if datel != date2 // check if both variables are identical
```

[SN] Working with dates and times in STATA

(II) Option 2: Converting dates and times from existing variables.⁴

	То				
From	Daily date	Weekly date	Monthly date	Quarterly date	
Daily date		wofd()	mofd()	qofd()	
Weekly date	dofw()		mofd(dofw())	qofd(dofw())	
Monthly date	dofm()	wofd(dofm())		qofd(dofm())	
Quarterly date	dofq()	wofd(dofq())	mofd(dofq())		

⁴See guideline at: https://www.stata.com/bookstore/dtguide.pdf

[SN] Our Example

[SN] STATA command for Setting Data as Time Series

Excercise: based on Stock & Watson, E15.1

Picture the Scenario

- Objective: Construct forecasting models for the rate of inflation.
- Dataset: us_macro_quaterly.xlsx.
 - $\diamond\,$ contains quarterly data on several macroeconomic series for the US.
 - \diamond use the sample period 1963 : Q1-2017 : Q4 (where data before 1963 may be used, as necessary, as initial values for lags in regressions)
- Key variables: For each country in each year
 - PCEPI: the price index for personal consumption expenditures from the U.S. National Income and Product Accounts.

Questions

(a)

- i. Compute the inflation rate, $Infl = 400 \times [In(PCEPI_t) In(PCEPI_{t-1})]$. What are the units of Inf1?
- ii. Plot the values of Infl from 1963:Q1 through 2017:Q4. Based on the plot, do you think that Infl has a stochastic trend? Explain.

(b)

- i. Compute the first four autocorrelations of $\Delta Infl$.
- ii. Plot the value of $\Delta \mathit{Infl}$ from 1963:Q1 through 2017:Q4. The plot should look choppy or jagged. Explain why this behaviour is consistent with the first autocorrelation that you computed in (i.).

Questions

(c)

- i. Run an OLS regression of $\Delta Infl_t$ on $\Delta Infl_{t-1}$. Does knowing the change in inflation over the current quarter help predict the change in inflation over the next quarter? Explain.
- ii. Estimate an AR(2) model of $\Delta Infl_t$. Is the AR(2) model better than the AR(1) model? Explain.
- iii. Use the AR(2) model to predict the change in inflation from 2017:Q4 to 2018:Q1 that is, to predict the value of $\Delta Infl_{2018:Q1}$.

Questions

(d)

i. Use the ADF test for AR(p) regression

$$\Delta Y_t = \beta_0 + \delta Y_{t-1} + \gamma_1 \Delta Y_{t-1} + \ldots + \gamma_p \Delta Y_{t-p+1} + u_t$$

using 2 lags of $\Delta Infl$ (so that p=3 in the above equation) to test for a stochastic trend in Infl.

ii. Is that ADF test based on the above regression preferred to the regression including a determinstic trend

$$\Delta Y_t = \beta_0 + \alpha t + \delta Y_{t-1} + \ldots + \gamma_p \Delta Y_{t-p+1} + u_t$$

for testing for a stochastic trend in *Infl*? Explain.

iii. Based on the ADF tests carried out, does the AR model for *Infl* contain a unit root?