Parallel Processing in Combustion Analysis

Greg Schunk NASA/MSFC University of Alabama in Huntsville richard.schunk@msfc.nasa.gov

T. J. Chung University of Alabama in Huntsville

Introduction

- The objective of this research is to demonstrate the application of the Flow-field Dependent Variation (FDV) method to a problem of current interest in supersonic chemical combustion.
- problems on unstructured three dimensional grids often dictates the use of Due in part to the stiffness of the chemical reactions, the solution of such parallel computers.
- Preliminary results for the injection of a supersonic hydrogen stream into vitiated air are presented.

Flow-field Dependent Variation Approach

The conservation of mass for a chemical species, k, may be represented as follows:

$$\frac{\partial U_k}{\partial t} = B_k - \frac{\partial F_i}{\partial x_i} - \frac{\partial G_i}{\partial x_i}$$
$$U_k = [\rho Y_k]$$
$$F_i = [\rho Y_k \nu_i]$$
$$G_i = [-\rho D_{km} Y_{k,i}]$$
$$B_k = w_k$$

where Y_k represents the species mass fraction, F is the convective flux, G is the diffusive flux, and w_k is the generation of species k from chemical reaction.

below where the first and second order variational parameters, s₁ and s₂, are determined from the second order mixed explict/implicit formulation shown The change in the mass of species k over a single timestep, Δt , may be introduced to control the degree of implicit damping:

$$\Delta U_k^{N+1} - s_1 \Delta t \frac{\partial \Delta U_k^{N+1}}{\partial t} + s_2 \frac{\Delta t^2}{2} \frac{\partial^2 \Delta U_k^{N+1}}{\partial t^2} = \Delta t \frac{\partial U_k^{N}}{\partial t} + \frac{\Delta t^2}{2} \frac{\partial^2 U_k^{N}}{\partial t^2}$$

 $s_1, s_2 \rightarrow 0$ Fully explicit

 $s_1, s_2 \rightarrow 1$ Fully implicit

Control Volume Finite Element Method

Parallel Programming: Processes and Threads

- When a computational task is delivered to the operating system (OS) of a computer for execution, the OS responds by creating aprocess.
- The OS allocates memory for the process, provides access to system resources, and schedules time for the process to run.
- Processes do not normally share resources, but may communicate through mechanisms provided by the OS. ı
- Within a process, there exists data and program segments and the execution path through the program segment may be thought of as athread.
- If sections of the program may be executed concurrently, then multiple threads through the process may be created.
- Like processes, threads are scheduled for execution by the OS, but share global memory (within the same process) alleviating the need for process level communication.

Multi-threaded Programming

- ideal way to parallelize an application since individual threads may be assigned On shared memory multi-processor machines, creating multiple threads is an to separate CPU's by the OS.
- Balancing the computational load between multiple processors is critical to achieving a high degree of parallelism.
- A combined domain decomposition/multi-threaded approach is presented.

Additive Schwarz Method with Overlapping Sub-domains Domain Decomposition

Additive Schwarz Method with Overlapping Sub-domains Domain Decomposition

*Each interior node is solved in an implicit fashion in exactly one sub-domain.

Processor Load Balancing for the Ideal Case

Processor Load Balancing in the "Real World"

Increasing the Number of Sub-domains Improves Load Balancing

Multi-threaded Programming Implementation

Decompose the domain

Push each sub-domain onto a software stack

Multi-threaded Programming Implementation

Spawn threads and execute until stack is exhausted

Computational Benchmarks

Number of Proc	2	2	4	4	4	4	4
Processor	Pentium II					Alpha	Alpha
Speed-up	1.00	1.93	1.00	1.77	3.32	3.36	3 44
Elapsed Time CPU Utilization Speed-up	100%	196%	%66	195%	373%	378%	377%
Elapsed Time (5.05	2.62	4.72	2.66	1.42	1.40	1.37
CPU Time	5.05	5.13	4.69	5.19	5.30	5.30	5 16
Decomposition	4×4×4	4×4×4	4×4×4	4×4×4	4×4×4	4×4×4	4x4x4
Grid	55x41x31	55x41x31	55x41x31	55x41x31	55x41x31	55x41x31	55x41x31
Threads	1	2	-	2	4	ၑ	œ

Conclusions and Future Plans

- Preliminary results are encouraging:
- A more rigorous treatment of the chemical species generation terms may be necessary to relax timestep constraint. ١
- Incorporate the 28 reaction H2-Air chemical kinetic mechanism for comparison to the two step global reaction mechanism.
- Incorporate a Large Eddy Simulation or turbulence model to account for enhanced reaction rates due to turbulent mixing.
- Merge the Navier Stokes and species conservation solvers into one program. Migrate the application to a "truly" three dimensional benchmark.