DM 16

Problème: Produit tensoriel

K désigne un corps quelconque.

Partie I: applications bilinéaires

Lorsque E, F et G sont trois \mathbb{K} -espaces vectoriels, si b est une application de $E \times F$ dans G, on dit que b est bilinéaire si et seulement si , pour tout $x, y \in E$, pour tout $z, t \in F$ et pour tout $\alpha \in \mathbb{K}$, $b(\alpha x + y, z) = \alpha b(x, z) + b(y, z)$ et $b(x, \alpha z + t) = \alpha b(x, z) + b(x, t)$.

- 1°) Montrer que $(x,y) \longmapsto xy$ est une application bilinéaire de \mathbb{R}^2 dans \mathbb{R} . Plus généralement, si A est une \mathbb{K} -algèbre, montrer que $(x,y) \longmapsto xy$ est une application bilinéaire de A^2 dans A.
- **2°)** On note E l'espace vectoriel des applications continues de [0,1] dans \mathbb{C} et F l'espace vectoriel des applications de classe C^1 de \mathbb{R} dans \mathbb{C} . Pour tout $(f,g) \in E \times F$, on pose $b(f,g) = \int_0^1 f(t)(g(t) + 2g'(t)) \ dt$. Montrer que b est bilinéaire.
- ${\bf 3}^{\circ}$) Lorsque E,F et G sont 3 K-espaces vectoriels, montrer que l'ensemble noté B(E,F;G) des applications bilinéaires de $E\times F$ dans G est un K-espace vectoriel.
- **4°**) Lorsque E est un \mathbb{K} -espace vectoriel, on note L(E) l'ensemble des endomorphismes de E.

On suppose que E, F et G sont 3 \mathbb{K} -espaces vectoriels. Montrer que B(E, F; G) est isomorphe à L(E, L(F, G)).

Partie II : unicité du produit tensoriel

Dans cette partie, on fixe deux \mathbb{K} -espaces vectoriels notés E et F. Soit P un troisième \mathbb{K} -espace vectoriel et u une application bilinéaire de $E \times F$ dans P.

5°) Lorsque G est un \mathbb{K} -espace vectoriel, montrer que l'application $\ell \longmapsto \ell \circ u$ est une application linéaire de L(P,G) dans B(E,F;G).

Lorsque, pour tout \mathbb{K} -espace vectoriel G, l'application $\ell \longmapsto \ell \circ u$ est un isomorphisme de L(P,G) dans B(E,F;G), on dit que P, muni de u, est un produit tensoriel de E par F.

6°) Soit P' un \mathbb{K} -espace vectoriel et $u' \in B(E, F; P')$.

On suppose que P muni de u est un produit tensoriel de E par F.

Montrer que P' muni de u' est aussi un produit tensoriel de E par F si et seulement si il existe un isomorphisme h de P dans P' tel que $u' = h \circ u$.

On peut donc dire que, si le produit tensoriel de E par F existe, alors il est unique à un isomorphisme près.

Ainsi, lorsque P muni de u est un produit tensoriel de E par F, on dira que P est le produit tensoriel de E par F, et on le notera $E \otimes F$. De plus, pour tout $(x,y) \in E \times F$, on notera $x \otimes y = u(x, y)$.

Alors, pour tout K-espace vectoriel G et pour toute application bilinéaire b de $E \times F$ dans G, il existe une unique application linéaire b' de $E \otimes F$ dans G telle que, pour tout $(x,y) \in E \times F$, $b(x,y) = b'(x \otimes y)$. On convient d'identifier b et b', de sorte que toute application bilinéaire b de $E \times F$ dans G peut être vue comme une application linéaire de $E \otimes F$ dans G.

De plus, tout autre produit tensoriel de E par F se déduit de $E \otimes F$ par un isomorphisme h de $E\otimes F$ dans un $\mathbb{K}\text{-espace}$ vectoriel P' : alors P' est un produit tensoriel de E par Fmuni de $u' = h \circ u$. Si l'on note $P' = E \otimes' F$, et pour tout $(x, y) \in E \times F$, $u'(x, y) = x \otimes' y$, alors : pour tout $(x, y) \in E \times F$, $x \otimes' y = h(x \otimes y)$.

Partie III: quotient d'espaces vectoriels

Dans cette partie, on fixe un \mathbb{K} -espace vectoriel E et un sous-espace vectoriel F de E. Pour tout $x, y \in E$, on convient que x R y si et seulement si $x - y \in F$.

 7°) Montrer que R est une relation d'équivalence.

Lorsque $x \in E$, on note \overline{x} la classe d'équivalence de x pour cette relation d'équivalence. De plus l'ensemble quotient E/R est noté E/F: c'est le quotient de l'espace vectoriel E par l'espace vectoriel F.

On définit sur E/F une addition et une multiplication par des scalaires en convenant que, pour tout $x, y \in E$ et $\alpha \in \mathbb{K}$, $\overline{x} + \overline{y} = \overline{x + y}$ et $\alpha.\overline{x} = \overline{\alpha}\overline{x}$.

- 8°) Montrer que ces égalités structurent E/F en un K-espace vectoriel.
- 9°) On suppose que G est un sous-espace vectoriel de E tel que $F \oplus G = E$, c'est-à-dire tel que E = F + G et $F \cap G = \{0\}$.

Montrer que E/F est isomorphe à G.

10°) Pour cette seule question,
$$E = \mathbb{R}^3$$
 et $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ / \ x + y + z = 0 \right\}$.

On note G la droite vectorielle engendrée par $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Montrer $E = F \oplus G$ puis que E/F est une droite vectorielle.

Partie IV: existence du produit tensoriel

Dans cette partie, on fixe à nouveau deux \mathbb{K} -espaces vectoriels notés E et F. Lorsque I est un ensemble quelconque et que $(x_i)_{i\in I}$ est une famille d'éléments de \mathbb{K} , on dit que cette famille est presque nulle si et seulement si $\{i \in I \mid x_i \neq 0\}$ est fini. On note $\mathbb{K}^{(I)}$ l'ensemble des familles presque nulles d'éléments de \mathbb{K} .

11°) Montrer que $\mathbb{K}^{(I)}$ est un \mathbb{K} -espace vectoriel.

Pour tout
$$i, j \in I$$
, on pose $\delta_{i,j} = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$.
Pour tout $i \in I$, on note $c_i = (\delta_{i,j})_{i \in I}$.

12°) Montrer que la famille $(c_i)_{i\in I}$ est une base de $\mathbb{K}^{(I)}$. On dit que $(c_i)_{i\in I}$ est la base canonique de $\mathbb{K}^{(I)}$.

On note $Q = \mathbb{K}^{(E \times F)}$ et $(c_{e,f})_{(e,f) \in E \times F}$ la base canonique de Q. On note également $A_1 = \{c_{\alpha e + e',f} - \alpha c_{e,f} - c_{e',f} \ / \ \alpha \in \mathbb{K}, \ e,e' \in E, \ f \in F\}$ et $A_2 = \{c_{e,\alpha f + f'} - \alpha c_{e,f} - c_{e,f'} \ / \ \alpha \in \mathbb{K}, \ e \in E, \ f,f' \in F\}$. Enfin, on note S le sous-espace vectoriel de Q engendré par $A_1 \cup A_2$ et P = Q/S.

- 13°) Montrer que $(e, f) \longmapsto \overline{c_{e,f}}$ est une application bilinéaire de $E \times F$ dans P, que l'on notera u.
- 14°) Montrer que P muni de u est un produit tensoriel de E par F.

$Partie V : Newton \iff Leibniz$

15°) Soit $a, b \in \mathbb{R}$ et $n \in \mathbb{N}$.

Calculer la dérivée n-ième de $t \longmapsto e^{at}$.

À partir de la formule de Leibniz, relative à la dérivée n-ième du produit de deux fonctions, retrouver la formule du binôme de Newton relative au développement de $(a+b)^n$.

Réciproquement, nous souhaitons retrouver la formule de Leibniz à partir de la formule du binôme de Newton.

On note E le \mathbb{R} -espace vectoriel des applications de classe C^{∞} de \mathbb{R} dans \mathbb{R} (on ne demande pas de prouver que c'est un \mathbb{R} -espace vectoriel).

16°) Montrer qu'il existe un unique triplet (d_1, d_2, p) tels que d_1 et d_2 sont des endomorphismes de $E \otimes E$ et $p \in L(E \otimes E, E)$ et tels que, pour tout $f, g \in E$, $d_1(f \otimes g) = f' \otimes g$, $d_2(f \otimes g) = f \otimes g'$ et $p(f \otimes g) = fg$.

On note d l'application de E dans E définie par d(f) = f'.

- 17°) Montrer que, pour tout $n \in \mathbb{N}$, $d^n p = p(d_1 + d_2)^n$, où le produit utilisé est la composition.
- 18°) Conclure.