FLUORIDE / AZIDE LIGAND EXCHANGE REACTIONS

Ralf Haiges, Stefan Schneider, Thorsten Schroer, Michael Gerken, Jerry Boatz, Ashwani Vij, Muhammed Yousufuddin, and <u>Karl Christe</u>

University of Southern California and ERC, Inc and Propellants Branch, Propulsion Directorate, Air Force Research Laboratory, Edwards AFB

maintaining the data needed, and of including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headquld be aware that notwithstanding a	to average 1 hour per response, inc ction of information. Send commen quarters Services, Directorate for In any other provision of law, no person	ts regarding this burden estimated formation Operations and Repo	e or any other aspect of rts, 1215 Jefferson Dav	this collection of information, is Highway, Suite 1204, Arlington
REPORT DATE UN 2004 2. REPORT TYPE			3. DATES COVERED -		
4. TITLE AND SUBTITLE Fluoride/Azide Lig	ctions		5a. CONTRACT NUMBER F0r611-99-C-0025		
6. AUTHOR(S) Ralf Haiges; Stefan Schneider; Thorsten Schroer; Michael Gerken; Jerry Boatz				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
				5d. PROJECT NUMBER DARP	
				5e. TASK NUMBER A205	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ERC, Inc.,AFRL/PRS,10 E. Saturn Blvd.,Edwards AFB,CA,93524-7680				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distribut	tion unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT N/A					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC		17. LIMITATION	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT	OF PAGES 21	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

Project Sponsors

Objective and Background

- Preparation and Characterization of High Energy Density Matter (HEDM) derived from binary covalent polyazides
- HN₃ was discovered in 1890 by Curtius, and binary covalent polyazides have been known for at least half a century (B(N₃)₃: Wiberg, 1954)
- Most compounds are extremely shock sensitive, difficult to handle and purify, and often have not been structurally characterized
- Important contributions to the field were made by Wiberg, Dehnicke, Schmidt, Roesky, Ang, Fillippou, and paricularly Klapoetke

Synthesis of Covalent Binary Polyazides

 Conventional methods involve the reactions of chlorides or iodides with either HN₃, NaN₃, AgN₃, or (CH₃)₃SiN₃

$$SbI_3 + 3 AgN_3 \longrightarrow Sb(N_3)_3 + 3 AgI$$
 $BCI_3 + 3 HN_3 \longrightarrow B(N_3)_3 + 3 HCI$
 $PCI_5 + 6 NaN_3 \longrightarrow NaP(N_3)_6 + 5 NaCI$
 $L \cdot BCI_3 + 3 (CH_3)_3 SiN_3 \longrightarrow L \cdot B (N_3)_3 + 3 (CH_3)_3 SiCI$

- Potential Problems with these methods
 - Shock sensitivity of AgN₃ and HN₃
 - > CI / N₃ ligand exchange is often incomplete
 - Solvent problems ($CH_2CI_2 + 2MN_3 \longrightarrow CH_2(N_3)_2$)

 14th European Symposium on Fluorine Chemistry, Poznan, Poland

Our Method

- Use of fluorides with (CH₃)₃SiN₃ in a suitable solvent, such as SO₂ (-64 C), CH₃CN (-40 C), or excess (CH₃)₃SiN₃ (-40 C)
- Advantages
 - Rapid exchange
 - Complete conversions in a single step
 - Highly pure products
 - Easy product separation

Results from our Studies, $As(N_3)_3$ and $Sb(N_3)_3$

- As(N₃)₃ and Sb(N₃)₃ were previously known as highly explosive oil or powder, respectively, but no structures were known
- We obtained both compounds in crystalline form and determined their crystal structures

CHEMISTRY

A EUROPEAN JOURNAL

10/2

2004

Stabilization of p-Block Organoelement Terminal Hydroxides, Thiols, and Selenols Requires Newer Synthetic Strategies H. W. Roesky et al.

High Oxidation-State Organometallic Chemistry in Aqueous Media:

New Opportunities for Catalysis and Electrocatalysis

B. Poli

CEUJED 10 (2) 313-560 (2004) - ISSN 0947-6539 - Vol. 10 - No. 2 - January 23, 2004

Crystal Structure of [Sb(N₃)₆]

- Sb(N₃)₆- anion had been known, but its structure was unknown
- We prepared the [P(C₆H₅)₄][Sb(N₃)₆] salt and determined its structure

Syntheses and Vibrational Spectra of $As(N_3)_5$ and $Sb(N_3)_5$

- Neutral polyazides are generally the most sensitive and, therefore, most difficult to prepare and characterize
- Unstable neutral polyazides can usually be stabilized by
 - negative charges (anion formation)
 - adduct formation with large organic bases
 - large bulky inert spacers, such as cations, to stop propagation
- Although $M(N_3)_6^-$ anions and $M(N_3)_5$ donor-acceptor adducts with amines (M = As or Sb) had been known, the free pentaazides had been considered to be too sensitive for isolation
- The free pentaazides were now successfully prepared from the pentafluorides and TMSazide in SO₂ solution and characterized by lowtemperature Raman spectroscopy and theoretical calculations

Raman Spectra of As(N₃)₅ and Sb(N₃)₅

√/cm⁻¹

 Good agreement between observed spectra and those calculated for trigonalbypyramidal monomers

Tellurium Azides

• We prepared and characterized the novel $Te(N_3)_4$, $[N(CH_3)_4][Te(N_3)_5]$, and $[P(C_6H_5)_4]_2[Te(N_3)_6]$

$$TeF_6 + 6 (CH_3)_3SiN_3 \xrightarrow{CH_3CN, CsF cat} Te(N_3)_4 + 6 (CH_3)_3SiF + 3 N_2$$

- Te(N₃)₄ is a shock sensitive, yellow solid and was characterized by vibrational and multinuclear NMRspectroscopy
- •Te $(N_3)_5^-$ and Te $(N_3)_6^{2-}$ were characterized by their crystal structures
- •The results were published in *Angew. Chem. Int. Ed.* **2003**, *115*, 1627 and highlighted in Chem. & Eng. News

Structures of $Te(N_3)_4$, $Te(N_3)_5$, and $[Te(N_3)_6]^{2-}$

Titanium azide, does it possess linear Ti-N-N bonds?

- Based on quantum chemical calculations, Gagliardi and Pyykkoe have recently predicted, (*Inorg. Chem.* 2003, 42, 3074), for Ti(N₃)₄, Zr(N₃)₄, Hf(N₃)₄, and Th(N₃)₄ a novel type of bonding involving linear M-N-N bonds.
- We have confirmed these calculations for $Ti(N_3)_4$ and also predict that other azides, such as $Fe(N_3)_2$ (Melanie Teichert), can form linear M-N-N bonds. However, based on our calculations, we expect that the $Ti(N_3)_6^{2-}$ anion possesses the usual bent M-N-N bonds.

Synthesis and Characterization of Ti(N₃)₄

Synthesis

$$TiF_4$$
 + exc. $TMSN_3 \rightarrow Ti(N_3)_4$ + 4 TMSF

- Properties
 - ➤ Yellow-orange solid
 - ➤ Very shock-sensitive
 - ➤ Very low volatility, decomposes on sublimation
 - Could not get single crystals for structure determination, but Raman spectrum and comparison with calculated spectra suggest that CN is higher than 4 and the Ti-N-N angle is bent.
 - ➤ Need a gas-phase structure of free Ti(N₃)₄

Possible explanations for linear M-N-N bonds

- Gagliardi and Pyykkoe invoke conjugation.
- We prefer the following interpretation because the calculated Ti-N bond distances are relatively long and are similar to single bonds. Also, the N_{β} - N_{γ} bonds are quite short, and the Ti-N-N bonds in $Ti(N_3)_6^{2-}$ are strongly bent.
 - The N_{α} atom of the $-N_3$ ligand has three free valence electron pairs which can act as a tridentate ligand and, in a tetrahedron, can perfectly overlap with three of the lobes of the Ti 3*d*-orbitals. This scheme is

analogous to the structure of $Zr(BH_4)_4$ which possesses 4 trihapto BH_4 groups. In the usual covalent azides, the azide ligands utilize only one electron pair of the N_α atom for the bonding, and the presence of two additional, sterically active free valence electron pairs results in a pyramidal configuration with an M-N-N angle of about 120 °.

Crystal Structure of [Ti(N₃)₆]²⁻

Synthesized the [Ti(N₃)₆]²⁻ anion according to

$$Ti(N_3)_4 + 2 P(Ph)_4 N_3 - P(Ph)_4 P(Ph)_4$$

and determined its crystal structure.

• Ti azide work has just appeared as a VIP paper in Angew. Chem. Int. Ed. **2004**, *116*, 3148.

Tantalum Azides

- $Ta(N_3)_5$ and $Ta(N_3)_6^-$, the first examples of binary Group V azides, were prepared from TaF_5 and were characterized by vibrational spectroscopy.
- $Ta(N_3)_5$ is very sensitive and unstable, whereas the $P(C_6H_5)_4$ ⁺ $Ta(N_3)_6$ ⁻ salt is a stable white solid.

Molybdenum and Tungsten Azides

- $Mo(N_3)_6$ and $W(N_3)_6$, the first examples of binary Group VI azides, were prepared from MoF_6 and WF_6 , respectively.
- Both compounds are highly shock sensitive and were characterized by low-temperature Raman spectroscopy and, in the case of WF₆, also by its crystal structure.
- W(N₃)₆ can be stabilized as its $P(C_6H_5)_4$ +W(N₃)₇ salt which was also characterized by vibrational spectroscopy.

Oxoazides

- WO(N₃)₄, the first example of an oxoazide, was prepared from WOF₄ and characterized by vibrational spectroscopy
- Recrystallization from CH₃CN solution resulted in a hexacoordinated structure
- The P(C₆H₅)₄+WO(N₃)₅ salt was also prepared and characterized by vibrational spectroscopy

Combination of N_5^+ with $P(N_3)_6^-$ and $B(N_3)_4^-$

• First successful combinations of N₅⁺ with highly energetic anions:

$$N_5SbF_6$$
 + $NaP(N_3)_6$ $\xrightarrow{SO_2, -64 \text{ C}}$ $N_5P(N_3)_6$ + $NaSbF_6\downarrow$ $SO_2, -64 \text{ C}$ N_5SbF_6 + $NaB(N_3)_4$ $\xrightarrow{SO_2, -64 \text{ C}}$ $N_5B(N_3)_4$ + $NaSbF_6\downarrow$

- NaP(N_3)₆ and NaB(N_3)₄ are already extremely shock-sensitive and their N_5 ⁺ salts are even more vicious.
- N₅B(N₃)₄ contains 96 weight % of energetic nitrogen.
- Paper has been accepted by Angewandte for publication.

Characterization of N₅P(N₃)₆ and N₅B(N₃)₄

Low-temperature Raman spectra

- Material balances
- Stable at -64 °C, explode on warm-up toward room temperature

Summary

- Fluorine compounds and trimethylsilylazide undergo rapid and quantitative fluoride / azide ligand exchange
- This reaction is ideally suited for the preparation of binary polyazides in high purity and quantitative yield
- Compounds studied so far under this program include:

$$\begin{split} &W(N_3)_6,\ Mo(N_3)_6,\ W(N_3)_7^-,\ WO(N_3)_4,\ WO(N_3)_4\cdot CH_3CN,\\ &WO(N_3)_5^-,\ Ta(N_3)_5,\ Ti(N_3)_4,\ Ti(N_3)_5^-,\ Ti(N_3)_6^{2-},\ Te(N_3)_4,\\ &Te(N_3)_5^-,\ Te(N_3)_6^{2-},\ Sb(N_3)_5,\ As(N_3)_5,\ Sb(N_3)_6^-,\ As(N_3)_3,\\ &Sb(N_3)_3,\ N_5^+B(N_3)_4^-,\ and\ N_5^+P(N_3)_6^- \end{split}$$

• This work is extremely challenging, because of the high energy content and explosiveness of these materials