Rob 501 - Mathematics for Robotics Recitation #6

Abhishek Venkataraman (Courtesy: Wubing Qin)

Oct 23, 2018

1 Matrices

- 1. $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^{\top} = A$.
 - $A \in \mathbb{R}^{n \times n}$ is skew symmetric if $A^{\top} = -A$.
 - $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^{\top}A = AA^{\top} = I$.
 - $A \in \mathbb{R}^{n \times n}$ is normal if $A^{\top}A = AA^{\top}$.
- 2. Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$.
 - A is positive definite if $\forall x \neq 0, x^{\top} Ax > 0$. We denote it as $A \succ 0$.
 - A is positive semi-definite or non-negative definite if $\forall x \neq 0, x^{\top} A x \geq 0$. We denote it as $A \succeq 0$.
 - A is negative definite if $\forall x \neq 0, x^{\top} A x < 0$. We denote it as A < 0.
 - A is negative semi-definite or non-positive definite if $\forall x \neq 0, x^{\top} A x \leq 0$. We denote it as $A \leq 0$.
- 3. Given a real matrix $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$, $\Delta_k = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}$ is called the leading principal minor of order k.
- 4. We have proven the following statement in the lecture. Given a symmetric matrix $P \in \mathbb{R}^{n \times n}$.

$$P \succeq 0 \iff (\exists N \in \mathbb{R}^{n \times n} : P = NN^\top)$$

- 5. Given a symmetric matrix $A \in \mathbb{R}^{m \times m}$. The following are equivalent (TFAE):
 - A is positive definite.
 - All the eigenvalues of A are positive, or the minimum eigenvalue of A is positive.
 - All the leading principal minors of A are positive definite.
 - All the leading principal minors of A have positive determinants.
- 6. Theorem 1: For any symmetric matrix $A \in \mathbb{R}^{n \times n}$, there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that $Q^{\top}AQ = \Lambda$, where $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix. In other words, any real symmetric matrix is orthogonally diagonalizable.
- 7. Matrix inversion lemma: Suppose the following matrix product are compatible and the inverses exists

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

This is also called Sherman-Morrison-Woodbury formula or Woodbury matrix identity.

8. Other useful matrix identities: Given $A, P, Q \in \mathbb{R}^{n \times n}$, then

•
$$(I+A)^{-1} = I - (I+A)^{-1}A$$
,

•
$$(I + PQ)^{-1}P = P(I + QP)^{-1}$$
,

if the inverses exist.

• $(I+A)^{-1} = (I+A)^{-1}(I+A-A) = (I+A)^{-1}(I+A) - (I+A)^{-1}A = I - (I+A)^{-1}A$,

• P+PQP=P(I+QP) and P+PQP=(I+PQ)P, thus P(I+QP)=(I+PQ)P, pre-multiplying both sides by $(I+PQ)^{-1}$ and then post-multiplying both sides by $(I+QP)^{-1}$ yield the result.

Ex:

(1) Which of the following matrices are orthogonally diagonalizable?

$$\mathbf{a})\begin{bmatrix}2 & 1\\ 1 & 2\end{bmatrix} \qquad \mathbf{b})\begin{bmatrix}2 & 1\\ -1 & 2\end{bmatrix} \qquad \mathbf{c})\begin{bmatrix}2 & 1\\ -1 & 1\end{bmatrix}$$

(a) A is symmetric, so it is orthogonally diagonalizable.

(b)

$$A^*A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$AA^* = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = A^*A \implies A \text{ is normal.}$$

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 2 & -1 \\ 1 & \lambda - 2 \end{bmatrix} = (\lambda - 2)^2 + 1 \implies \lambda_{1,2} = 2 \pm i$$

 \implies A is not orthogonally diagonalizable.

(c)

$$A^*A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix}$$

$$AA^* = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ -1 & 2 \end{bmatrix} \neq A^*A \implies A \text{ is not normal.}$$

(2) For those matrices that are normal in (1) find Q and Λ .

(a)

$$\det(\lambda I - A) = \det \begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} = \lambda^2 - 4\lambda + 3 \implies \lambda_1 = 3, \ \lambda_2 = 1$$

$$\lambda_1 I - A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \implies v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_2 I - A = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \implies v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\therefore \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

(3) Prove matrix inversion lemma.

$$(A + BCD)^{-1} = ((I + BCDA^{-1})A)^{-1} = A^{-1}(I + BCDA^{-1})^{-1}$$

$$= A^{-1} \Big(I - (I + \underbrace{BC}_{P} \underbrace{DA^{-1}}_{Q})^{-1} \underbrace{BC}_{P} DA^{-1}\Big)$$

$$= A^{-1} \Big(I - \underbrace{BC}_{P} (I + \underbrace{DA^{-1}}_{Q} \underbrace{BC}_{P})^{-1} DA^{-1}\Big)$$

$$= A^{-1} - A^{-1}BC(I + DA^{-1}BC)^{-1}DA^{-1}$$

$$= A^{-1} - A^{-1}B\Big((I + DA^{-1}BC)C^{-1}\Big)^{-1}DA^{-1}$$

$$= A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

$$\text{(4) Given } A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ D = B^{\top}. \ \text{Is } (A + BCD) \text{ invertible?}$$
 Notice that $(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1} \text{ cannot be applied here since}$

Notice that $(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$ cannot be applied here since C is not invertible, but it is cumbersome to calculate the inverse of a 4-by-4 matrix. So we try $(A + BCD)^{-1} = A^{-1} - A^{-1}BC(I + DA^{-1}BC)^{-1}DA^{-1}$.

$$DA^{-1}BC = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 25/12 & 0 \\ 25/6 & 0 \end{bmatrix}$$
$$(I + DA^{-1}BC)^{-1} = \begin{bmatrix} 37/12 & 0 \\ 25/6 & 1 \end{bmatrix}^{-1} = \frac{12}{37} \begin{bmatrix} 1 & 0 \\ -25/6 & 37/12 \end{bmatrix}$$

Then we can compute $(A + BCD)^{-1} = A^{-1} - A^{-1}BC(I + DA^{-1}BC)^{-1}DA^{-1}$.

(5) Given two vectors $u, v \in \mathbb{R}^n$, when is the matrix $(I + uv^{\top})$ invertible? If $(I + uv^{\top})$ is nonsingular, by applying matrix inversion lemma, we get

$$(I + uv^{\top})^{-1} = I - u(1 + v^{\top}u)^{-1}v^{\top} = I - \frac{1}{1 + v^{\top}u}uv^{\top},$$

When
$$v^{\top}u \neq -1$$
, $(I + uv^{\top})^{-1} = I - \frac{1}{1 + v^{\top}u}uv^{\top}$.

2 Block Matrices / Partitioned Matrices

1. What is a block matrix? Examples.

2. Given two block matrices
$$A = \begin{bmatrix} A_{11} & \cdots & A_{1q} \\ \vdots & \ddots & \vdots \\ A_{p1} & \cdots & A_{pq} \end{bmatrix} \in \mathbb{R}^{m \times n}, B = \begin{bmatrix} B_{11} & \cdots & B_{1r} \\ \vdots & \ddots & \vdots \\ B_{q1} & \cdots & B_{qr} \end{bmatrix} \in \mathbb{R}^{n \times l}, \text{ where } A_{ij} \in \mathbb{R}^{m_i \times n_j} \text{ and } B_{jk} \in \mathbb{R}^{n_j \times l_k} \text{ are block matrices and } \sum_{i=1}^p m_i = m, \sum_{j=1}^q n_j = n, \sum_{k=1}^r l_k = l.$$

$$\bullet \ A^{\top} = \begin{bmatrix} A_{11}^{\top} & \cdots & A_{p1}^{\top} \\ \vdots & \ddots & \vdots \\ A_{1q}^{\top} & \cdots & A_{pq}^{\top} \end{bmatrix}.$$

• For
$$k \in \mathbb{R}$$
, $kA = \begin{bmatrix} kA_{11} & \cdots & kA_{1q} \\ \vdots & \ddots & \vdots \\ kA_{p1} & \cdots & kA_{pq} \end{bmatrix}$.

• Suppose
$$C = AB$$
, then C can be partitioned as $C = \begin{bmatrix} C_{11} & \cdots & C_{1r} \\ \vdots & \ddots & \vdots \\ C_{p1} & \cdots & C_{pr} \end{bmatrix} \in \mathbb{R}^{m \times l}$, where

$$C_{ik} = \sum_{j=1}^{q} A_{ij} B_{jk} \in \mathbb{R}^{m_i \times l_j}.$$

3. A block matrix of the form $A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_p \end{bmatrix}$ is called a <u>block diagonal matrix</u>.

If $\forall 1 \leq i \leq p$, A_i is a square matrix, then $\det A = \prod_{i=1}^{p} \det A_i$, and the eigenvalues of A are the collection of the eigenvalues of A_i , i.e., $\{\lambda \mid Ax = \lambda x, x \neq 0\} = \{\lambda_i \mid \forall 1 \leq i \leq p, A_i y = \lambda_i y, y \neq 0\}$

4. Block LDU decomposition: Given a block matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ where A, D are square matrices, and D is invertible, then

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

This is called block LDU decomposition of M. Also,

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}.$$

 $D-CA^{-1}B$ is called Schur complement of A in M, and $A-BD^{-1}C$ is called Schur complement of D in M.

Lemma:

- If M is symmetric, i.e., $A = A^{\top}$, $D = D^{\top}$, $C = B^{\top}$, then the following are equivalent:
 - $-M \succ 0.$
 - $-A \succ 0 \text{ and } D B^{\top}A^{-1}B \succ 0.$
 - $-D \succ 0$ and $A BD^{-1}B^{\top} \succ 0$.
- $\det(M) = \det(A) \det(D CA^{-1}B) = \det(D) \det(A BD^{-1}C)$
- Suppose in a given matrix M, $A \in \mathbb{R}^{n \times n}$, $B = -u \in \mathbb{R}^n$, $C = v^{\top} \in \mathbb{R}^{1 \times n}$, D = 1, we obtain the matrix determinant lemma using the first lemma here:

$$\det{(A + uv^{\top})} = (1 + v^{\top}A^{-1}u)\det{(A)}$$

• In general,

$$\det(A + UWV^{\top}) = \det(A)\det(W)\det(W^{-1} + V^{\top}A^{-1}U)$$

if A, W are invertible square matrices.

• Note that even if A, B, C, D are square matrices of the same size, $\det(M) \neq \det(AD - BC)$ in general.

Ex: Given
$$M = \begin{bmatrix} 7 & 6 & 4 \\ 6 & 6 & 4 \\ 4 & 4 & 4 \end{bmatrix}$$
. Is M positive definite?

We can use any method given in the first part. However, to calculate the determinant or eigenvalues of a 3-by-3 matrix could be cumbersome. Here we can use Schur complement instead.

$$M = \begin{bmatrix} 7 & 6 & 4 \\ 6 & 6 & 4 \\ \hline 4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

- D is positive definite since 4 > 0.
- $A BD^{-1}C = \begin{bmatrix} 7 & 6 \\ 6 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} 4^{-1} \begin{bmatrix} 4 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}.$
- $A-BD^{-1}C$ is positive definite since 3>0 and $2-2\times\frac{1}{3}\times2>0$.
- \bullet Thus, M is positive definite.