Homework Assignment 1

Due via canvas Feb 11th

SDS 384-11 Theoretical Statistics Please **do not** add your name to the HW submission.

- 1. (1+3+(1+1+2) pts) We will do some examples of convergence in distribution and convergence in probability here.
 - (a) Let $X_n \sim N(0, 1/n)$. Does $X_n \stackrel{d}{\to} 0$?
 - (b) Let $\{X_n\}$ be independent r.v's such that $P(X_n = n^{\alpha}) = 1/n$ and $P(X_n = 0) = 1 1/n$ for $n \ge 1$, where $\alpha \in (-\infty, \infty)$ is a constant. For what values of α , will you have $X_n \stackrel{q.m}{\to} 0$? For what values will you have $X_n \stackrel{p}{\to} 0$?
 - (c) Consider the average of n i.i.d random variables X_1, \ldots, X_n with $E[X_1] = \mu$ and $E[|X_1|] < \infty$. Write true or false. Explain.
 - i. $\bar{X}_n = o_P(1)$
 - ii. $\exp(\bar{X}_n \mu) = o_P(1)$
 - iii. $(\bar{X}_n \mu)^2 = O_P(1/n)$
- 2. (8 pts) Consider random variables X_1, \ldots, X_n be IID r.v's with mean μ and variance $\sigma^2 := \text{var}(X_i)$. We will use the following statistic to estimate $\theta = \mu^2$.

$$\hat{\theta} = \frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j$$

(a) Find constants C_1, C_2 where

$$\hat{\theta} - \mu^2 = \frac{C_1}{\binom{n}{2}} \sum_{i < j} (X_i - \mu)(X_j - \mu) + \frac{C_2 \mu}{n} \sum_i (X_i - \mu)$$

- (b) Show that the first term is $O_P(1/n)$ and the second term is $O_P(1/\sqrt{n})$.
- (c) Argue that $\hat{\theta} \stackrel{P}{\to} \mu^2$.
- 3. (8 pts) If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$?

1

- (a) $g(x) = 1(x \in (0, 10))$
- (b) $g(x) = e^{-x^2}$
- (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.]
- (d) g(x) = x

4. (6 pts) Let X_1, \ldots, X_n be independent r.v's with mean zero and variance $\sigma_i^2 := E[X_i^2]$ and $s_n^2 = \sum_i \sigma_i^2$. If $\exists \delta > 0$ s.t. as $n \to \infty$,

$$\frac{\sum_{i} E|X_{i}|^{2+\delta}}{s_{n}^{2+\delta}} \to 0,$$

then $\sum_i X_i/s_n$ converges weakly to the standard normal.