

## Answers to Tutorial Exercises Set 10

1.



2.



Still to play: P-Q, P-U, Q-R, Q-T, R-T, S-T, S-U

3. (i)



- (ii) There are 21 edges in  $K_7$ .
- (iii) 5 vertices: 10 edges; 6 vertices: 15 edges; n vertices: ½ n(n-1) edges.









(iii)



(iv)



## 5.



(ii) not possible because sum of degrees is odd















- 6. One such function is f(A) = P, f(B) = R, f(C) = T, f(D) = Q, f(E) = S. (There are other possibilities.)
- 7. The first graph has two vertices of degree 3 that are adjacent to each other, and (i) the second graph does not. Alternatively, the first graph has a closed loop consisting of 3 edges, and the second does not.
  - The first graph has a closed cycle of 3 edges (in fact two), but the second (ii) graph has none.
  - The first graph has four vertices of degree 3, but the second graph has only (iii) two vertices of degree 3. Alternatively, the second graph has a vertex of degree 4, but the first graph has no such vertex.

- 8. The graphs are isomorphic. For example consider the function f such that: f(A) = 2, f(B) = 3, f(C) = 6, f(D) = 1, f(E) = 4, f(F) = 5.
- 9. The graphs are isomorphic. For example consider the mapping:  $A \rightarrow Q$ ,  $B \rightarrow R$ ,  $C \rightarrow U$ ,  $D \rightarrow V$ ,  $E \rightarrow P$ ,  $F \rightarrow S$ ,  $G \rightarrow W$ ,  $H \rightarrow T$



Solutions\_10 Page 3 of 8

12.

13.



14. (i) One possible mapping is:  $A \rightarrow R$ ,  $B \rightarrow T$ ,  $C \rightarrow Q$ ,  $D \rightarrow P$ ,  $E \rightarrow S$  (There are many other possible mappings)

The matrix entries are identical, so the graphs are isomorphic.

## 15. (i) One possible mapping is:

$$A \rightarrow P$$
,  $B \rightarrow R$ ,  $C \rightarrow T$ ,  $D \rightarrow Q$ ,  $E \rightarrow S$ ,  $F \rightarrow U$ 

(There are many other possible mappings)

The matrix entries are identical, so the graphs are isomorphic.

- 16. (a) Eulerian circuit. (Hint: Start at any vertex)
  - (b) No Eulerian path, because more than two odd vertices.
  - (c) Eulerian path (Hint: Start at a vertex of degree 3)
  - (d) Eulerian circuit. (Hint: Start at any vertex)
  - (e) No Eulerian path, because more than two odd vertices.
  - (f) Eulerian path (Hint: Start at a vertex of degree 3)
  - (g) No Eulerian path, because more than two odd vertices.
  - (h) Eulerian circuit. (Hint: Start at any vertex)
- 17. (a) Hamiltonian circuit
  - (c) no Hamiltonian path
  - (e) Hamiltonian circuit
  - (g) Hamiltonian circuit
  - (j) Hamiltonian circuit

- (b) Hamiltonian path
- (d) no Hamiltonian path
- (f) Hamiltonian path
- (h) Hamiltonian circuit

Solutions\_10 Page 5 of 8



- 19. (i) 3126527547843 is an Eulerian circuit
  - (ii) 487562134 is a Hamiltonian circuit.



22. Consider the mapping:  $A \to P$ ,  $B \to Q$ ,  $C \to T$ ,  $D \to U$ ,  $E \to S$ ,  $F \to R$ 



The matrix entries are identical. So graphs A and B are isomorphic. Then, because graph B is planar, so is graph A.

23. Consider the mapping:  $P \to A$ ,  $Q \to D$ ,  $R \to B$   $S \to E$ ,  $T \to C$ ,  $U \to F$ 

The matrix entries are identical. So graphs A and  $K_{3,3}$  are isomorphic. Then, because graph  $K_{3,3}$  is non-planar, so is graph A.

24.

Solutions\_10





Hint: Use the mapping  $P \rightarrow J, Q \rightarrow K, R \rightarrow L, S \rightarrow M, T \rightarrow N$ 

25.



Hint: Use the mapping  $A \to U$ ,  $B \to V$ ,  $C \to W$ ,  $D \to X$ ,  $E \to Y$ ,  $F \to Z$ 

26. From the circuit,  $P = x \oplus y$ ,  $Q = x \oplus P$  and  $R = P \oplus y$ 

| X | y | P | Q | R |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |

From the truth table,  $Q \equiv y$  and  $R \equiv x$ .