${ m TD5.}$ Chaînes de Markov (II).

Exercice 1. (MODÈLE DE WRIGHT-FISCHER) Ce modèle décrit l'évolution d'un ensemble de N chromosomes. On suppose qu'il y a 2 types de chromosomes, A et B, et on note X_n le nombre de chromosomes de type A présents à la génération n (il y en a donc $N-X_n$ de type B). Le modèle évolue de la façon suivante : chaque chromosome de la génération n+1 choisit au hasard et uniformément un chromosome parent dans la génération n, ceci indépendamment des autres chromosomes. Le chromosome fils a alors le même type que son chromosome parent.

1. Sachant que $X_n = i$, calculer la probabilité qu'un chromosome donné de la génération n + 1 soit de type A. En déduire que la suite $(X_n, n \ge 0)$ est une chaîne de Markov à valeurs dans $\{0, 1, ..., N\}$, de probabilité de transition

$$\begin{split} P(i,j) = &\binom{N}{j} \bigg(\frac{i}{N}\bigg)^j \bigg(\frac{N-i}{N}\bigg)^{N-j}, \forall i,j \in \{0,1,...,N\}, \\ \text{où } \binom{N}{j} = &\frac{N!}{j!(N-j)!}. \end{split}$$

- 2. Cette matrice est-elle irréductible ?
- 3. Donnez deux exemples simples de probabilités stationnaires pour cette chaîne. En déduire qu'elle possède une infinité de probabilités stationnaires.

(Remarque: une probabilité π est stationnaire pour P si $\pi = \pi P$.)

Exercice 2. Des catastrophes se produisent à des temps $T_1, T_2, ...$ où $T_i = X_1 + X_2 + ... + X_i$ et les X_i 's sont des variables aléatoires i.i.d., positives, d'espérance finie et non nulle.

- a) Montrer que le processus $(T_i, i \ge 1)$ est une chaîne de Markov. Soit $N(t) = \sum_{i \ge 1} 1_{\{T_i \le t\}}$ le nombre de catastrophes arrivées avant l'instant t. Montrer que lorsque $t \to \infty$:
- b) $N(t) \to \infty$ presque sûrement.
- c) $\frac{N(t)}{t} \rightarrow \frac{1}{E[X_1]}$ presque sûrement.

Exercice 3. Soit $N_y = \sum_{n \geqslant 1} 1_{X_n = y}$ et $T_x = \inf\{n > 0 : X_n = x\}$. Montrer que la loi de N_y sous \mathbb{P}_x est

$$\mathbb{P}_{x}(N_{y} = r) = \begin{cases} f_{xy} f_{yy}^{r-1} (1 - f_{yy}) & \text{si } r \geqslant 1 \\ 1 - f_{xy} & \text{si } r = 0 \end{cases}$$

où $f_{xy} = \mathbb{P}_x(T_y < +\infty)$ est la probabilité de repasser par y en démarrant de x.

Exercice 4. (Trasmission d'un message codé de façon binaire est transmis à travers un réseau. Chaque bit est transmis avec probabilité d'erreur:

- égale à a pour un passage de 0 à 1 $(a \neq 0 \text{ et } 1)$,
- égale à b pour un passage de 1 à 0 ($b \neq 0$ et 1),

Le résultat de la transmission au n-éme relais est noté X_n . On suppose que les relais se comportent indépendamment les uns des autres et que les erreurs sur les bits sont indépendantes. On souhaite calculer la taille critique du réseau au dela de laquelle la probabilité de recevoir un message erroné est supérieure à ϵ .

- 1. À l'aide de deux suites de Bernoulli $(U_n)_n$ et (V_n) indépendantes de probabilité de succés a et b respectivement, écrire X_n comme une suite récurrente aléatoire.
- 2. Soit $g_n = \mathbb{P}(X_n = 0)$. Montrér que

$$q_{n+1} = (1-a)q_n + b(1-q_n)$$

et calculer g_n en fonction de g_0 .

3. Calculer

$$r_n(0) = \mathbb{P}(\text{le message } X_n \text{ ne soit pas erroné}|X_0 = 0)$$

et

$$r_n(1) = \mathbb{P}(\text{le message } X_n \text{ ne soit pas erroné}|X_0 = 1)$$

4. Supposons maintenant de envoyer un message de longeur l (l bits) $X_0 = (X_0^1, ..., X_0^l)$. Alors $X_n = (X_n^1, ..., X_n^l)$ sont indépendantes avec la même loi. Soit r_n la probabilité pour que le message X_n ne soit pas erroné. Montrer que

$$r_n \ge [\alpha + (1-\alpha)(1-a-b)^n]^l$$
 où $\alpha = \inf\left\{\frac{a}{a+b}, \frac{b}{a+b}\right\}$

en deduire la taille maximale du réseau n_c pour avoir $r_n \ge 1 - \epsilon$.

- 5. Déterminer P^n et les mesures invariantes éventuelles.
- 6. Soit, pour $x, y \in \{0, 1\}$, $N_n(x, y) = \mathbb{E}_x \left[\sum_{k=1}^n 1_{\{X_k = y\}} \right]$. Calculer la quantité $N_n(x, y)$, puis $\lim_{n \to \infty} \frac{N_n(x, y)}{n}.$

Exercice 5. (MARCHE ALÉATOIRE SUR \mathbb{Z}) Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes de même loi à valeurs dans $\{-1,1\}$ telle que $\mathbb{P}(X_n=1)=p\in(0,1)$. On définit pour tout $n\geqslant 1$: $S_n=\sum_{k=1}^n X_k$ et $A_n=\{S_n=0\}$.

- a) Calculer $\mathbb{P}(A_n)$ (distinguer les cas pairs et impairs).
- b) Que représente l'événement $\overline{\lim} A_n := \bigcap_{k \ge 1} \bigcup_{n \ge k} A_n$?
- c) Montrer que $\mathbb{P}(\overline{\lim} A_n) = 0$ lorsque $p \neq \frac{1}{2}$,
 - i. en utilisant le lemme de Borel-Cantelli
 - ii. en utilisant la loi forte des grands nombres.
- d) Montrer que $(S_n, n \ge 1)$ est une chaîne de Markov. Préciser sa matrice de transition.
- e) On considère T_0 : =inf $\{n \ge 1: S_n = 0\}$ le premier instant où S touche 0 et soit N_0 le nombre de passages en 0. Montrer que $\mathbb{P}(N(0) < \infty)$ est soit égale à 0 soit 1 et que

$$\mathbb{P}(N(0) < \infty) = 1 \Leftrightarrow \mathbb{P}(T_1 < \infty) < 1 \Leftrightarrow \mathbb{E}[N(0)] < \infty.$$

- f) On suppose ici que p = 0.5. L'objectif est de montrer que $\mathbb{P}(\overline{\lim} A_n) = 1$.
 - i. Trouver un équivalent de $\mathbb{P}(A_{2n})$ à l'aide de la formule de Stirling : $n! = n^n e^{-n} \sqrt{2\pi n} (1+o(1)).$
 - ii. En déduire que $E[N(0)] = \infty$ et conclure.

Exercice 6. (ETATS RÉCURRENTS D'UNE CHAÎNE DE MARKOV) Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov de matrice de transition P sur un espace dénombrable d'états M. Soit $y\in M$ et soit $T_y=\inf\{k\geq 1\colon X_k=y\}$. On pose

$$\theta(x) = \mathbb{P}_x(T_y < +\infty) = \mathbb{P}_x(\exists n \ge 1 : X_n = y) \qquad x \ne y$$

 $\theta(y) = 1$

1. Montrer que $\theta(x)$ satisfait l'équation

$$\sum_{z \in M} P(x, z)\theta(z) = \theta(x) \qquad x \neq y$$

$$\theta(y) = 1$$
(1)

2. Montrer que si on pose $\tilde{\theta}(x) = \mathbb{P}_x(T_y < +\infty)$ pour tout $x \in M$, alors $\tilde{\theta}$ satisfait l'inégalité

$$\sum_{z \in M} P(x, z)\tilde{\theta}(z) \le \tilde{\theta}(x) \qquad \forall x \in M$$

3. En déduire que si $\{\theta(x) = 1, \forall x \in M\}$ est la seule solution de l'équation (1), alors y est un état récurrent (c-à-d $\tilde{\theta}(y) = \mathbb{P}_y(T_y < +\infty) = 1$).

Exercice 7. Soit $(X_n)_{n\geqslant 0}$ la chaîne de Markov sur $\mathbb N$ de matrice de transition donnée par

$$P(0,1) = 1,$$
 $P(x,x-1) + P(x,x+1) = 1,$ $P(x,x+1) = \left(\frac{x+1}{x}\right)^2 P(x,x-1), x \ge 1$

Montrer que si $X_0 = 0$ alors la probabilité que $X_n \ge 1$ pour tout $n \ge 1$ est $6/\pi^2$.

Exercice 8. (CHÂTEAU DE CARTES). On considère la suite de v.a. définie par

$$X_{t+1} = \left\{ \begin{array}{ll} X_t + 1 & \text{avec probabilit\'e } p \in]0,1[\\ 0 & \text{avec probabilit\'e } 1-p \ ; \end{array} \right.$$

indépendamment de ce qui précède.

- 1. Vérifier que $(X_n)_{n\geq 1}$ est une chaîne de Markov, et donner sa matrice de transition.
- 2. Calculer la probabilité invariante par la chaîne (on pourra en chercher la fonction génératrice).
- 3. Soit $\tau_k = \inf\{n \ge 1: X_n = k\}$ pour $k = 0, 1, 2, \dots$ Calculer $\mathbb{E}_k(\tau_k)$.
- 4. Calculer, en partant de 0 $(X_0=0)$ l'espérance du temps passé au-dessus de k avant de tomber sur 0 la première fois

$$\mathbb{E}_0 \left(\sum_{n=0}^{\tau_0 - 1} 1_{[X_n \ge k]} \right)$$

5. Montrer que, $\forall y$, $\lim_{t\to\infty} \mathbb{P}_y(X_t=x) = \pi(x)$, où π est la probabilité invariante.