

Analysis of factors affecting fertility rate

출산율에 영향을 미치는 요인 분석

Contents

- 1.연구 배경
- 2. 데이터 수집
- 3. 데이터 분석
- 4. 결론
- 5. 한계점 및 느낀 점

대한민국의 출산율은 세계 최하위 수준으로 평균 1명이 안되는 유일무이한 국가이며, 지속적으로 감소하는 추세를 보이고 있음 (현재 세계 평균 출산율은 약 2.4명)

출처: 네이버 뉴스

2. 데이터 수집 3. 데이터 분석 4. 결론 5. 한계점 및 느낀 점

그렇다면, 출산율이 낮은 나라들이 가지고 있는 공통적인 특징이 있을지?

- 국민 소득 수준이 높은 국가일수록 출산율이 낮을까?
- 도시화율이 높은 국가일수록 출산율이 낮을까?
- 경제활동을 하는 여성의 비율이 높은 국가일수록 출산율이 낮을까?
- 성비가 높은 국가일수록 출산율이 낮을까?

1. 연구 배경

- 지니 계수가 높은 국가일수록 출산율이 낮을까?
- 국민 소득 대비 주택 가격이 클수록 출산율이 낮을까?
- → 국민 소득 수준, 도시화율, 여성 경제활동 인구 비율, 성비, 지니 계수, 국민 소득 대비 주택 가격 등 총 6 개를 독립변수로 고려
- → 6개의 후보 독립 변수 중 국민 소득 수준, 도시화율, 여성 경제활동 인구 비율 변수에 대해서 dataset 수집이 가능하여 총 3개의 독립변수로 분석 진행

2. 데이터 수집

¹⁾ 합계출산물				1-1		
		다운로드	X 닫기			
		-				
⊙ 자료갱신일: 2020-10-06 / 수	·록기간: 5년 1955 ~ 210		1			
일괄설정 + 항목[1/	[1] 국가별		1	메타자료받기(TXT)		
(단위 : 명)		파일형태	✓ 빈셀 부호(-) 🗌 통계부호 🗌 코드포함			
국가별	2020	L 파크용대	☑ 인월 -	- 조(-) □ 옹세구호 □ 포트포함		
▲ ∨ -	^ ∨ -		1			
가나	3,89	○ ■ EXCEL(xlsx) (⊃ ■ EXCEL(xls)	(셈 병합)		
가봉	4.00) - 1.10 = 2(1.10)			
가이아나	2.47	- T00U	1			
감비아	5,25	O SCSV	1 1			
과들루프	2.17		1 1 1			
과테말라	2.90	○ <u></u> TXT	1			
괌	2.32		1			
그레나다	2.07	○ AA SDMV(2.0) F ○	Den (데이티크조)	ODATA - 1		
그리스	1.30		2-000-(0101014277-1	⊕DATA Generic •		
기니	4.74		1			
기니비사우	4.51					
나미비아 나이지리아	3, 42 5, 42	▶ 시점정렬	1			
남아메리카	3,42		1 1			
남아프리카공화국	2.41	⊙ 오름차순 ○ 내림차	_			
네덜란드	1.66	O 포듬자군 () 데딤자	<u> </u>			
네팔	1.93		!			
노르웨이	1,68		!			
뉴질랜드	1,90	▶ 소수점	1 			
뉴칼레도니아	1.97		! !			
니제르	6.95	○ 수록자료형식과 동일	🖁 🔘 조회화면과 동일			
니카라과	2.42					
대만	1.15		1			
덴마크	1.76					
도미니카공화국	2.36					
독일	1.59		다운로드			
라오스	2.70					
라이베리아	4.35		1 1 1			
			I .			

각 변수에 대한 dataset(2015년, 2020년 자료)을 각각 kosis(국가통계포털)에서 csv 형태로 다운로드

	Α	В			Α	В	
1	국가별	출산율		1	국가별	도시화율	
2	가나	3.89		2	가나	57.3	
3	가봉	4		3	가봉	90.1	
4	가이아나	2.47		4	가이아나	26.8	
5	감비아	5.25		5	감비아	62.6	
6	과들루프	2.17		6	과들루프	98.5	
7	과테말라	2.9		7	과테말라	51.8	
8	괌	2.32		8	괌	94.9	
9	그레나다	2.07		9	교황청	100	
10	그리스	1.3		10	그레나다	36.5	
11	기니	4.74		11	그리스	79.7	
12	기니비사두	4.51		12	기니	36.9	
13	나미비아	3.42		13	기니비사위	44.2	
14	나이지리0	5.42		14	나미비아	52	
15	남아메리키	ŀ		15	나이지리0	52	
16	남아프리키	2.41		16	남아메리카		
17	네덜란드	1.66		17	남아프리키	67.4	
18	네팔	1.93		18	네덜란드	92.2	
19	노르웨이	1.68		19	네팔	20.6	
20	뉴질랜드	1.9		20	노르웨이	83	
21	뉴칼레도니	1.97		21	뉴질랜드	86.7	
22	니제르	6.95		22	니제르	16.6	
23	니카라과	2.42		23	니카라과	59	
24	대만	1.15		24	덴마크	88.1	
25	덴마크	1.76		25	도미니카공	82.5	
26	도미니카공	2.36		26	도미니카인	71.1	
27	독일	1.59		27	독일	77.5	
28	라오스	2.7		28	동티모르	31.3	
29	라이베리이	4.35		29	라오스	36.3	
30	라트비아	1.72		30	라이베리이	52.1	
31	러시아	1.82		31	라트비아	68.3	
32	레바논	2.09		32	러시아	74.8	
33	레소토	3.16		33	레바논	88.9	
34	레위니옹	2.27		34	레소토	29	
		1		. –			

	Α	В
1	국가	1인당 소득
2	가나	2230
3	가봉	6970
4	가이아나	6600
5	감비아	750
6	과테말라	4490
7	그레나다	8740
8	기니	1020
9	기니비사위	760
10	나미비아	4520
11	나이지리0	2000
12	남아메리키	ŀ
13	남아프리키	5410
14	네팔	1190
15	노르웨이	78250
16	니제르	540
17	니카라과	1850
18	덴마크	62720
19	도미니카공	
20	도미니카인	6870
21	독일	46980
22	동티모르	1830
23	라오스	2480
24	라이베리이	530
25	러시아	10690
26	레바논	5510
27	레소토	1100
28	루마니아	12570
29	르완다	780
30	리비아	4850
31	마다가스키	
32	말라위	580
33	말레이시0	10580

1	Α	В			
	77	여성 경제활동			
1	국가	비율			
2	가나	46.44			
3	가봉	40.319			
4	과테말라	33.046			
5	그리스	43.824			
6	나이지리0	44.822			
7	남아프리키	45.471			
8	네덜란드	46.269			
9	노르웨이	46.995			
10	뉴질랜드	47.608			
11	니카라과	38.68			
12	덴마크	47.374			
13	독일	46.324			
14	라이베리이	47.414			
15	라트비아	49.939			
16	러시아	48.57			
17	레바논	24.451			
18	루마니아	42.907			
19	룩셈부르크	45.999			
20	리비아	33.995			
21	리투아니0	50.082			
22	마다가스키	48.894			
23	말레이시0	38.45			
24	멕시코	37.827			
25	모로코	24.113			
26	몬테네그로	43.586			
27	몰도바	49.446			
28	몰타	40.864			
29	미국	46.008			
30	바레인	19.775			
31	바베이도스	49.48			
32	바하마	47.403			
33	베냉	49.223			

	Α	В	С	D	E	F
	^				여성 경제활동	1
1	Year	국가	출산율	도시화율	비율	1인당 소득
2	2020	가나	3.89	57.3	46.44	2230
3	2020	가봉	4	90.1	40.319	6970
4	2020	가이아나	2.47	26.8		6600
5	2020	감비아	5.25	62.6		750
6	2020	과들루프	2.17	98.5		
7	2020	과테말라	2.9	51.8	33.046	4490
8	2020	괌	2.32	94.9		
9	2020	그레나다	2.07	36.5		8740
10	2020	그리스	1.3	79.7	43.824	
11	2020	기니	4.74	36.9		1020
12	2020	기니비사우	4.51	44.2		760
13	2020	나미비아	3.42	52		4520
14	2020	나이지리아	5.42	52	44.822	2000
15	2020	남아프리카공화국	2.41	67.4	45.471	5410
16	2020	네덜란드	1.66	92.2	46.269	
17	2020	네팔	1.93	20.6		1190
18	2020	노르웨이	1.68	83	46.995	78250
19	2020	뉴질랜드	1.9	86.7	47.608	
20	2020	뉴칼레도니아	1.97			
21	2020	니제르	6.95	16.6		540
22	2020	니카라과	2.42	59	38.68	1850
23	2020	대만	1.15			
24	2020	덴마크	1.76	88.1	47.374	62720
25	2020	도미니카공화국	2.36	82.5		7260
26	2020	독일	1.59	77.5	46.324	46980
27	2020	라오스	2.7	36.3		2480
28	2020	라이베리아	4.35	52.1	47.414	530
29	2020	라트비아	1.72	68.3	49.939	
30	2020	러시아	1.82	74.8	48.57	10690
31	2020	레바논	2.09	88.9	24.451	5510
32	2020	레소토	3.16	29		1100
33	2020	레위니옹	2.27	99.7		

다운로드한 각각의 변수에 대한 dataset을 Excel의 VLOOKUP 함수를 이용하여 하나의 dataset으로 통합

3. 데이터 분석

```
# 데이터셋 불러오기
fertility <- read.csv('fertility_rate.csv')</pre>
head(fertility,10)
# 종속변수/독립변수 추출 및 결측치 제거
fertility <- fertility[c(3:6)] # 종속변수: 출산율 / 독립변수: 도시화율, 여성 경제활동인구 비율, 1인당 국민소득 <u>열만 추출</u>
names(fertility) <- c('fertility_rate', 'urbanization_rate', 'female_worker_ratio', 'national_income') # 열 이름 영문으로 수정
fertility <- na.omit(fertility) # 결측치가 존재하는 행 제거
str(fertility) # 'data.frame': 205 obs. of 4 variables:
```

▶ 데이터셋 로드 및 결측치가 존재하는 행 제거 -> 제거 후 총 205개의 행

```
# 각 변수별 분포, 통계량 확인
library(moments)
#1) fertility_rate(출산율)
summary(fertility$fertility_rate)
# Min. 1st Qu. Median
                     Mean 3rd Qu.
# 1.110 1.680 2.090 2.491 2.900
hist(fertility$fertility_rate) # 왼쪽으로 치우친 형태(주로 1.5~2.5)
skewness(fertility$fertility_rate) # 왜도 = 1.183909 > 0
kurtosis(fertility$fertility_rate) # 첨도 = 3.428276 -> 정규분포(3)보다 약간 뾰족한 형태
#2) urbanization_rate(도시화율)
summary(fertility$urbanization_rate)
# Min. 1st Qu. Median Mean 3rd Qu.
       53.80 67.20 65.51 81.30 100.00
hist(fertilitysurbanization_rate) # 오른쪽으로 약간 치우친 형태
skewness(fertility$urbanization_rate) # 왜도 = -0.3967547 < 0
kurtosis(fertility$urbanization_rate) # 첨도 = 2.572506 -> 정규분포(3)보다 뭉툭한 형태
#3) female_worker_ratio(여성 경제활동인구 비율)
summary(fertility$female_worker_ratio)
# Min. 1st Qu. Median
                       Mean 3rd Qu.
# 8.111 38.536 44.119 40.545 47.125 50.465
hist(fertility$female_worker_ratio) # 오른쪽으로 많이 치우친 형태
skewness(fertility$female_worker_ratio) # 왜도 = -1.497028 < 0
kurtosis(fertility$female_worker_ratio) # 첨도 = 4.284562 -> 정규분포(3)보다 뾰족한 형태
#4) national_income(1인당 국민소득)
summary(fertility$national_income)
# Min. 1st Qu. Median Mean 3rd Qu.
             6970 15752 20140
                                   92910
hist(fertility$national_income) # 왼쪽으로 많이 치우친 형태
skewness(fertility$national_income) # 왜도 = 1.723397 > 0
kurtosis(fertility$national_income) # 첨도 = 5.413992 -> 정규분포(3)보다 매우 뾰족한 형태
```


각 변수에 대한 통계량 및 대략적인 분포 확인

```
# 상관계수 확인
COR <- cor(fertility)
COR["fertility_rate",]
                   urbanization_rate female_worker_ratio
                                                             national_income
 1.000000000 -0.49020925 -0.07164783
-> 여성 경제활동 인구 비율은 상관관계가 거의 없는 것으로 보임
                                                                 -0.47659585
# 상관계수 및 회귀선 시각화
library(psych)
pairs.panels(fertility, stars = TRUE, lm = TRUE, ci = TRUE)
```

▶ 종속변수와 독립변수 간의 상관관계 분석 결과 여성 경제활 동 인구 비율은 약 -0.07로 종속변수와 거의 상관관계가 없 는 것처럼 보임

```
독립변수간 다중공선성 확인
library(car)
vif(f_lm) > 10 # 분산팽창계수가 10을 초과하는지 확인
 urbanization_rate female_worker_ratio
                                  national_income
                                           FALSE
    독립변수간 다중공선성 문제 없음
```

▶ 분산팽창계수가 10을 초과하는 독립변수가 없으므로 다중 공선성 문제도 없는 것으로 확인됨


```
#회귀모델 생성 및 확인
f_lm = lm(formula = fertility_rate ~., data = fertility)
summary(f_1m)
Call:
lm(formula = fertility_rate ~ ., data = fertility)
Residuals:
   Min
            10 Median
                           3Q
                                 Max
-1.7944 -0.6873 -0.1400 0.4215 3.3606
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
              4.349e+00 4.100e-01 10.608 < 2e-16 ***
urbanization_rate -1.954e-02 4.195e-03 -4.659 5.78e-06 ***
female_worker_ratio -7.941e-03 7.069e-03 -1.123 0.262604
                  -1.623e-05 4.346e-06 -3.734 0.000246 ***
national_income
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
```

Residual standard error: 0.9551 on 201 degrees of freedom

F-statistic: 29.07 on 3 and 201 DF, p-value: 1.182e-15

Adjusted R-squared: 0.2922

Multiple R-squared: 0.3026,

- ▶ 회귀모델 생성 후 확인 결과 여성 경제활동 인구 비율 은 유의하지 않은 변수로 나타남
- 도시화율, 국민 소득 변수는 매우 유의한 변수로 나타 나며 모두 종속변수에 부(-)의 영향을 끼침
- ▶ p-value: 1.182e-15 < 0.05이므로 통계적으로 유의 함
- ➤ Adjusted R-squared = 0.2922로 모델의 설명력은 다소 낮은 편에 속함
- \triangleright RMSE = 0.9551
- \rightarrow MSE = RMSE² = 0.9551² = 0.912216

4. 결론

- 1.여성 경제활동 인구 비율은 출산율에 큰 영향을 미치지 않음
- 2. 도시화율이 높은 국가일수록 출산율이 낮음
- 3. 국민의 소득 수준이 높은 국가일수록 출산율이 낮음

5. 한계점 및 느낀 점

<한계점>

▶ 결측치가 존재하는 행을 모두 제거하였으나 실제로는 데이터손실율을 최소화하기 위해 평균대체법, 최빈수대체법, 다중대체법등의 기법을 고려해야함

<느낀 점>

- ▶ 본래 총 6개의 독립변수를 고려하였으나 데이터 수집에 어려움이 있어 3개의 독립변수밖에 분석하지 못하여 다양한 변수에 대한 검증을 하지 못한 아쉬움이 있음
- ▶ 유의할 것이라고 생각한 변수가 실제로 유의하지 않게 나왔으며, 사람들의 생각과 의문점을 직접 분석하여 증명하는 것이 데이터 분석가의 역할임을 깨달을 수 있었음

감사합니다 ⓒ