Minimize
$$f(x,y) = (x-4)^2 + (y-4)^2$$

s.t. 2+y 75

Minimize
$$f(x,y) = (x-4)^2 + (y-4)^2$$

Minimize
$$f(x,y) = (x-4)^{2} + (y-4)^{2}$$

s.t. $x+y > 5$

 $f(x,y) = (x-4)^2 + (y-4)^2$

 $g(x,y) = -x-y+5 \leq 0$

x+y=5

CONTOURS OF
$$f(x,y)$$
 x^{*},y^{*} (UNCONSTRAINED SOLUTION)

 $f(x,y) \leq 0$
 $f(x,y) \leq 0$

CONTOURS OF
$$f(x,y)$$

Solution)

$$g(x^*,y^*) \leq 0$$

$$Constraint Does NOT $x+y=5$$$

Take $part$

$$H=0 \Rightarrow \mu g(x,y)=0$$

Minimize
$$f(x,y) = x^2 + y^2$$

Minimize
$$f(x,y) = x^2 + y^2$$

 $s.t. x+y > 5$

 $g(x,y) = -x-y+5 \leq 0$

 $f(x,y) = x^2 + y^2$

WHY M: 7/0 & i

CONSIDER CASE WHEN M = 0

