Niveau: Première année de PCSI

COLLE 8 = FONCTIONS DÉRIVABLES ET POLYNÔMES

Questions de cours :

1. Soient $k \in \mathbb{N}^*$ et $f, g \in \mathbb{C}^k$ (I, \mathbb{R}) , exprimer $(fg)^{(k)}$. En déduire les dérivées successives de la fonction $x \mapsto x^3 e^x$

2. Démontrer la propriété suivante :

Propriété.

Soient $I \subset \mathbb{R}$, $f: I \to \mathbb{C}$ une fonction dérivable sur I et $a \in I$. Si f(a) est un extremum local de f alors f'(a) = 0.

3. Rappeler le théorème de Rolle et donner sa démonstration.

4. Rappeler le théorème des acroissements finis et démontrer la propriété suivante :

Propriété.

Soient $I \subset \mathbb{R}$ et $f: I \to \mathbb{C}$ une fonction dérivable sur I. f est constante sur I si et seulement si f' est nulle sur I.

5. Soit P un polynôme différent de X. Montrer que P(X) - X divise P(P(X)) - X.

6. Démontrer la propriété suivante :

Propriété.

Soient $P \in K[X]$ et $a \in K$. a est racine de P si et seulement si (X - a) divise P

7. Soient $x_1, x_2, ..., x_n \in K$ distincts et $y_1, y_2, ..., y_n \in K$ quelconques. Donner l'espression du seul et unique polynôme P de degré n-1 pour lequel $P(x_i) = y_i$ pour tout $i \in [1, n]$

Fonctions dérivables :

Exercice 1.

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. On fait l'hypothèse que :

$$\forall x \in \mathbb{R} : f \circ f(x) = \frac{x}{4} + 1$$

1. Montrer que : $f'(x) = f'\left(\frac{x}{4} + 1\right)$ pour tout $x \in \mathbb{R}$.

2. En déduire de f' est une fonction constante sur \mathbb{R}

3. Déterminer les fonctions $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telles que $f \circ f(x) = \frac{x}{4} + 1$ pour tout $x \in \mathbb{R}$.

Exercice 2. Soient x et y réels avec 0 < x < y.

1. Montrer que

$$x < \frac{y - x}{\ln y - \ln x} < y.$$

2. On considère la fonction f définie sur [0,1] par $\alpha\mapsto f(\alpha)=\ln(\alpha x+(1-\alpha)y)-\alpha\ln x-(1-\alpha)\ln y.$

De l'étude de f déduire que pour tout α de]0,1[$\alpha \ln x + (1-\alpha) \ln y < \ln(\alpha x + (1-\alpha)y).$

Interprétation géométrique?

Exercice 3.

Étudier la dérivabilité des fonctions suivantes :

$$f_1(x) = x^2 \cos \frac{1}{x}$$
, si $x \neq 0$; $f_1(0) = 0$;

$$f_2(x) = \sin x \cdot \sin \frac{1}{x}$$
, si $x \neq 0$; $f_2(0) = 0$;

$$f_3(x) = \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}$$
, si $x \neq 1$; $f_3(1) = 1$.

Exercice 4.

Montrer que le polynôme $X^n + aX + b$, (a et b réels) admet au plus trois racines réelles.

Exercice 5.

Pour tous $n \in \mathbb{N}^*$, calculer la dérivée $n^{\text{ème}}$ de $x \mapsto x^{n-1} \ln(1+x)$ sur $]-1,+\infty[$.

Exercice 6.

Montrer que pour tous $n \in \mathbb{N}*$ et $x \in \mathbb{R}*$:

$$\frac{d^n}{dx^n}\left(x^{n-1}\exp\left(\frac{1}{x}\right)\right) = \frac{(-1)^n}{x^{n+1}}\exp\left(\frac{1}{x}\right)$$

Niveau: Première année de PCSI

Polynômes:

Exercice 7.

Soit P un polynôme à coefficients réels tel que $\forall x \in \mathbb{R}, \ P(x) \geq 0$. Montrer qu'il existe deux polynômes R et S à coefficients réels tels que $P = R^2 + S^2$.

Exercice 8.

Montrer que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

(Indication: étudier le polynôme $(X+1)^{2n}$)

Exercice 9.

Trouver les polynômes P de $\mathbb{R}[X]$ vérifiant $P(X^2) = P(X)P(X+1)$ (penser aux racines de P).

Exercice 10.

Soit P un polynôme à coefficients entiers relatifs de degré supérieur ou égal à 1. Soit n un entier relatif et m = P(n).

- 1. Montrer que $\forall k \in \mathbb{Z}$, P(n+km) est un entier divisible par m.
- 2. Montrer qu'il n'existe pas de polynômes non constants à coefficients entiers tels que P(n) soit premier pour tout entier n.

Exercice 11.

Trouver tous les polynômes divisibles par leur dérivée.

Exercice 12.

Déterminer deux polynômes U et V vérifiant $UX^n + V(1-X)^m = 1 \text{ et } \deg(U) < m \text{ et } \deg(V) < n.$