Data Structures and Algorithms

Chapter 10

- Map is a data structure to efficiently store and retrieve values based on search keys.
- Map stores (key, value) pairs.
- Each (key, value) pair is called an entry.
- Keys are unique.
- Maps are also known as associative arrays.
- Applications:
 - (movie title, movie information)
 - (part number, part information)
 - (reservation number, reservation information)
 - (student id, student information)

- size(): Returns the number of entries in *M*.
- isEmpty(): Returns true if M is empty. Returns false, otherwise.
- get(k): Returns the value v associated with the key k, if such entry exists. Returns null, otherwise.
- put(k, v): If there is no entry in M with a key equal to k, then adds the entry (k, v) to M and returns null.
 Otherwise, replaces the existing value associated with the key k with v and returns the old value.

- remove(k): Removes from M the entry with the key k and returns its value. If there is not entry in M with the key k, returns null.
- keySet(): Returns an iterable collection containing all keys in M.
- values(): Returns an iterable collection containing all values in M. If multiple keys map to the same value, then the value appears multiple times in the returned collection.
- entrySet(): Returns an iterable collection containing all (key, value) entries in M.

Map interface

```
1 public interface Map<K,V> {
2  int size();
3  boolean isEmpty();
4  V get(K key);
5  V put(K key, V value);
6  V remove(K key);
7  Iterable<K> keySet();
8  Iterable<V> values();
9  Iterable<Entry<K,V>> entrySet();
10 }
```

• Note: *java.util.Map* interface provides more extensive set of operations than those defined above.

- Simple application example: Word Frequency
 - Counts frequency of each word in a text.
 - Create an empty map.
 - In the map, an entry is (word, frequency) pair.
 - Read one word at a time.
 - If the word is not in the map, insert it and set frequency = 1
 - If the word is already in the map, increment the frequency of the word.
- WordCount.java code.

Maps Hash Tables

- Hash table is an efficient implementation of a map.
- Consider a map that stores n entries.
- Assume keys are integers in the range [0, N 1] and values are characters, usually N ≥ n.
- We can design a lookup table of length N as follows, where keys are used as indexes:

0	1	2	3	4	5	6	7	8	9	10
	D		Z			С	Q			

Lookup table's capacity N = 11

Currently there are 4 entries: (1,D), (3,Z), (6,C), and (7,Q)

Maps Hash Tables

Issues:

- The domain of keys may be much larger than the actual number of elements to be stored in the table, i.e., N >> n. This is a waste of space.
- Keys may not be integers. Then, they cannot be used as indexes in the table.

Solution:

- Use a *hash function* that maps keys to integers in the range [0, N-1], distributing keys relatively evenly.
- N doesn't have to be very large (could be smaller).

Maps Hash Tables

- Ideally a hash function distributes keys evenly across the table.
- In practice, some keys are mapped to the same location.
 This is called *collision*.

• One solution: each slot in the table keeps a *bucket* which stores a collection of entries. This table is called *bucket*

array.

Maps Hash Function

- Two step process:
 - Hash code maps keys of arbitrary object type to integers. The resulting integer is also called hash code.
 - Compression function maps the hash code to integers in the range [0, N – 1]

Maps Hash Code

- Treat bit representation of base types as integers
- Polynomial hash code: used for strings or variable-length objects
- Cyclic-shift hash code: a variant of polynomial hash code
- Java has a default *hashCode*() function defined in the *Object* class, which returns a 32-bit integer of *int* type.
- When designing a hashCode() for a user-defined class,
 make sure: If x.equals(y), x.hashCode() = y.hashCode()

Compression Function

- When two keys are mapped to the same hash table index, it is called *collision*.
- A good compression function must distribute hash codes (of keys) relatively uniformly across the hash table to minimize collisions.
- Will discuss two compression functions (compression functions are often called just *hash functions*):
 - division method
 - MAD (multiply-add-and-divide) method

Compression Function

- Division method: i mod N,
 where i is an integer (such as a hash code) and N is the hash table size.
- MAD method: [(ai + b) mod p] mod N,
 where N is hash table size, p is a prime number larger than N, and a and b are integers in [0, p 1], a > 0.

Maps Compression Function

 MAD method is better (in terms of well distributing keys across the has table), but division method is more efficient.

Maps Collision Handling

- When two keys are mapped to the same slot in the hash table, it is called *collision*.
- Will discuss two collision resolution approaches: chaining and open addressing.
- Chaining: Each slot in the table keeps an unsorted list and all keys that are mapped to the same slot are kept in the list.

Maps Chaining Method

- Advantage: Easy to implement
- Drawback:
 - Additional storage
 - In the worst case, all keys are stored in the same list, which increases running time.
- Running time
 - Load factor $\lambda = n / N$, which is expected size of a list.
 - Map operations run in $O(\lceil n/N \rceil)$ or $O(\lambda)$
 - If keys are well distributed, $O(\lambda) = O(1)$ and running time is O(1).
 - In the worst case, O(n).

Maps Open Addressing

- All entries are stored in a hash table itself.
- No additional data structure and no additional storage space is needed.
- When adding a new key causes a collision, an alternative location in the table is found and the new element is stored in that location.
- Will discuss three open addressing techniques *linear* probing, quadratic probing, and double hashing.

- Assume A is the array of a hash table.
- Inserting an entry (k, v).
 - Hash function h is applied to key k, i.e., $j \leftarrow h(k)$. We say k is mapped to j.
 - If A[j] is empty, then the entry is stored there, i.e., $A[j] \leftarrow (k, v)$.
 - If that slot is occupied, the next bucket A[j+1] is probed to see whether it is available.
 - If it is empty, the entry is stored there. Otherwise, the next bucket, A[j+2], is probed, and so on, until an empty slot is found or all slots have been probed.
 - The sequence of slots probed, called *probe sequence*, is determined by $A[(j+i) \mod N]$, for i = 0, 1, 2, ..., N-1.
 - − *i* is called *probe number*.

Linear Probing

• Illustration: N = 10, $h = k \mod N$, keys are added in the following order: 4, 12, 14, 24.

	24			\ /	\bigcirc	\bigcirc			
0	1	2	3	4	5	6	7	8	9
		12		4	14	24			

- Searching an entry with key = k.
 - A key k is mapped to the array index j, i.e., $j \leftarrow h(k)$.
 - If A[j] is empty, then conclude the entry is not in the hash table.
 - If that slot is occupied and it has the entry with k, then the entry is found.
 - If the slot is occupied and the key of the entry in the slot is not k, the next bucket, A[j+2], is probed, and so on, until the entry is found or all slots have been probed.

- Deleting an entry:
 - Assume initially all slots are empty.
 - Assume we want to remove an entry in A[j].
 - We cannot simply remove the entry in A[j].
 - Assume the current table is:

0	1	2	3	4	5	6	7	8	9
		12		4	14	24			

- And, we delete an entry with key = 14.

After deleting entry with key = 14

0	1	2	3	4	5	6	7	8	9
		12		4		24			

Search entry with key = 24

24 is mapped to A[4]; occupied; A[5] is probed; empty; conclude entry with key = 24 is not in the table => this is wrong.

se	arch 2	4 —		\ /	\bigcirc				
0	1	2	3	4	5	6	7	8	9
		12		4		24			

Linear Probing

- Solution: Put a "special object" or a "defucnt" object in the slot from which an entry is deleted.
- For example, place φ in the slot when an entry is removed.
- After removing entry with key = 14

0	1	2	3	4	5	6	7	8	9
		12		4	ф	24			

- When inserting, the slot with ϕ is considered empty.
- When searching and entry with key = k, the slot with φ is considered having an entry with a key ≠ k.

- Linear probing tends to create primary clustering.
- A cluster is a contiguous occupied slots.
- Once a cluster is formed, it tends to grow, which is called primary clustering.

Quadratic Probing

- Uses a quadratic function to determine the next slot to probe.
- Example: Probe sequence is determined by $A[(h(k) + f(i)) \mod N]$, for i = 0, 1, 2, ..., N 1, where $f(i) = i^2$
- Assume that we are inserting a key 24 and it is mapped to A[4], and that it is occupied. Then, the probe sequence is:

```
A[(4 + 1^2) \mod 10] = A[5],

A[(4 + 2^2) \mod 10] = A[8],

A[(4 + 3^2) \mod 10] = A[3],
```

Maps Quadratic Probing

- Quadratic hashing does not have primary clustering.
- But, it still has clustering problem, which is called secondary clustering.
- There are quadratic probing methods that use different quadratic functions.

Maps Double Hashing

- Does not cause serious clustering problem.
- Uses two hash functions.
- Probe sequence is determined by
 A[(h(k) + i· h'(k)) mod N], for i = 0, 1, 2, ..., N 1
- One common secondary hash function h' is:
 h'(k) = q (k mod q), for some prime number q < N, N is prime
- Another common h' is:
 h'(k) = 1 + (k mod N'), where N' is slightly smaller than N, N is prime

Maps Double Hashing

• Example (of the second *h*')

$$h(k) = k \mod 13$$

 $h'(k) = 1 + (k \mod 11)$
 $h(k, i) = (h(k) + i*h'(k)) \mod N$

- Inserting k = 14, h(k) = 1, h'(k) = 4
- h(14) = 1, occupied
- -i = 1: (1 + 1*4) mod 13 = 5, occupied
- -i = 2: (1 + 2*4) mod 13 = 9, empty, store 14 here

Load Factor and Efficiency

- Load factor is defined as λ = n / N
- A larger value of λ means there is higher probability of collisions.
- So, a smaller λ is better.
- With chaining method, λ could be greater than 1.
- With open addressing, $\lambda \le 1$.
- Performance of chaining method:
 - A theoretical analysis shows that the average number of entries that need to be probed for a successful search is approximately $1+\frac{\lambda}{2}$.

Load Factor and Efficiency

- Performance of chaining method (continued):
 - Let C be the average number of entries that need to be probed for a successful search.

λ	С
0.5	1.25
0.7	1.35
1.0	1.5
2.0	2

– Java uses chaining method and λ is set to 0.75 or less by default.

Load Factor and Efficiency

- Performance of double hashing:
 - The average number of slots that need to be probed for a successful search is approximately $\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
 - Let C be the average number of slots that need to be probed for a successful search.

λ	С
0.3	1.19
0.5	1.39
0.7	1.72
0.9	2.56

References

 M.T. Goodrich, R. Tamassia, and M.H. Goldwasser, "Data Structures and Algorithms in Java," Sixth Edition, Wiley, 2014.