Assignment

- Submission Format (.zip to CyberCampus)
 - Python .py file (clean and commented)
 - Matplotlib figures (screen)
 - Inline or markdown-style explanations for each section (word)

Assignment: Data Preprocessing & Feature Scaling (Hands-On)

Learning Objectives

- By completing this assignment, you will:
- Handle missing values using basic and advanced methods
- Detect and treat outliers using statistical techniques
- Apply different feature scaling methods
- Understand when and why to use each scaling technique
- Visualize data before and after transformation

- Data Setup
 - You'll generate synthetic data using NumPy no file loading needed.

```
import numpy as np
np.random.seed(42)
n = 150
# Synthetic features
age = np.random.normal(40, 10, n)
income = np.random.normal(60000, 15000, n)
purchases = np.random.exponential(300, n)
clicks = np.random.poisson(5, n)
# Inject missing values
income[5] = np.nan
purchases[10] = np.nan
# Inject outliers
income[7] = 300000
purchases[3] = 5000
```

- Missing Value Handling
 - Detect which features contain missing values.
 - Fill missing values using:
 - Mean for income
 - Median for purchases
 - Print both original and filled values for confirmation.
- Outlier Detection & Handling
 - Use the IQR method to detect outliers in:
 - income
 - purchases
 - Print outlier values and their indices.
 - Replace them with the nearest non-outlier value or clip them.

Feature Scaling

- Apply the following scaling methods:
- · a. Min-Max Scaling for age
- b. Z-score Standardization for income
- · c. Log Transformation for purchases
- · d. Robust Scaling for income
- e. Vector Normalization for [age, income, clicks] as a feature vector

For each method:

- Print the transformed values (first 5 entries)
- Explain why that method is or isn't appropriate for the given feature

Visualization

- Use matplotlib to plot:
- Histogram of purchases before and after log transform
- · Box plot of income before and after robust scaling

Assignment: Categorical Encoding (Hands-On)

"From Strings to Vectors: Encoding Categorical Data"

- Learning Objectives
 - Identify nominal vs ordinal categorical variables
 - Apply label encoding, manual ordinal encoding, and manual one-hot encoding using NumPy
 - · Understand when each method is appropriate
- Synthetic Dataset Setup
 - You'll simulate a small dataset:

```
# Categorical variables
colors = np.array(["Red", "Green", "Blue", "Green", "Red", "Blue"])
sizes = np.array(["Small", "Medium", "Large", "Small", "Large", "Medium"])
brands = np.array(["Nike", "Adidas", "Puma", "Nike", "Puma", "Adidas"])
```

Assignment: Categorical Encoding (Hands-On)

1 Label Encoding

- Write code to convert brands into numeric labels:
- "Nike" → 0
- "Adidas" → 1
- "Puma" \rightarrow 2
- Use np.unique() to get sorted unique values, then loop to encode.

2 Ordinal Encoding

- Encode sizes based on order:
- "Small" → 1
- "Medium" \rightarrow 2
- "Large" \rightarrow 3
- Use a manual mapping with a dictionary.

3 One-Hot Encoding

- One-hot encode colors using np.unique() and a loop.
- Output should be a 6x3 array where each row represents a color.

Assignment: Categorical Encoding (Hands-On)

- 4 Print a final feature matrix combining:
 - One-hot encoded colors
 - Ordinal encoded sizes (as one column)
 - Label encoded brands (as one column)
 - \rightarrow Final shape should be 6x(3 + 1 + 1) = 6x5
- Short Reflection Questions (in comments)
 - Why is one-hot encoding better for colors than label encoding?
 - Why is ordinal encoding okay for sizes?

Assignment: Feature Selection & Preprocessing

 Apply a variety of data preprocessing and feature selection techniques to a real-world dataset and analyze which features are most useful for classification.

Dataset

Use the built-in Breast Cancer Wisconsin dataset from sklearn.datasets.

Part 1: Data Preparation

- Load the dataset and display:
- Number of samples
- Feature names
- · Target class distribution
- Normalize all feature values using MinMaxScaler.

Assignment: Feature Selection & Preprocessing

- Part 2: Feature Selection Techniques
- A. Chi-Square Test
 - Apply SelectKBest with chi2 to score all features.
 - Plot a bar chart of Chi-Square scores.
 - Identify the top 5 features.

B. Lasso Regression

- Use Lasso(alpha=0.01) to fit the scaled data.
- Print out the coefficients.
- Identify which features are selected (non-zero).

C. Tree-Based Model

- Train ExtraTreesClassifier on the same data.
- Plot feature importances.
- Identify the top 5 most important features.

Assignment: Feature Selection & Preprocessing

- Part 3: Comparison & Reflection
- Answer the following:
 - Which features were selected consistently across methods?
 - Did any method eliminate features that another considered important?
 - Which method do you think is most trustworthy for this task, and why?