Технологии программирования. Время и тайминги

[Факультативная] лекция №9 АКОС

Уровни абстракции

		Программки					High-level
		C++ / Python / Apache Portable Runtime / Qt / Java					Runtime
		Bionic (libc	ماناه م			msvcrt.dll	ISO C
		for Android)		glibc		WinAPI kernel.dll	Уровень ОС
Программки		Linux/*BSD/XNU				ntoskrnl.exe	Ядро
uCLib / NewLib		LIIIUX/ BSD/XINO					
MIPS	ARM		x86-Apple		x86-PC	Железо	

man 2 v.s. man 3 v.s. man 3p

- 1. Исполняемые файлы
- 2. Системные вызовы
- 3. Библиотечные вызовы
- 4. Специальные файлы [устройств]
- 5. Форматы файлов
- 6. Игры (fortune!)
- 7. [без классификации]
- 8. Команды /sbin
- 9. Документация разработчика ядра

Архитектуры CPU/System

- Процессоры:
 - RISC v.s. CISC
 - Endianess
 - Features: MMU, FPU, SIMD
- Системы:
 - System-on-Chip
 - PC-style
 - Mac

Ядро OC

- ntoskrnl.exe ну куда уж без него...
- Linux
- Free/Net/Open BSD
- XNU для Мас
- QNX, MINIX3 микроядра

Микроконтроллеры

- Фиксированные физические адресные пространства
- Фиксированные порты ввода-вывода
- Как правило, нет MMU
- Можно писать высокоуровневые программы на "упрощенном" Си или Си с ограниченной библиотекой

POSIX

- Стандарт по обеспечению базовой функциональности UNIX-подобных систем
- Регламентирует:
 - файловый ввод-вывод
 - работу с ФС
 - процессы и запуск программ
 - работа с памятью
 - межпроцессное взаимодействие
 - взаимодействие с сетью
- Способы реализации:
 - СИСТЕМНЫЕ ВЫЗОВЫ
 - функции в библиотеке Си
 - стандартные команды и опции

Qt [www.qt.io]

- Фреймворк (набор библиотек):
 - Без GUI:
 - альтернатива С++
 - объектная модель сигналов/слотов
 - абстракция от файловой системы
 - GUI для Windows, X11, MacOS
 - Сетевой взаимодействие
 - OpenGL
 - (много всякой ереси): WebKit/Chromium,
 JavaScript, QML

ВРЕМЯ

Железяки

- Без кварца встроенный LC-контур до сотен килогерц
- Кварцевый резонатор
 - часовой 32 768 Гц
 - высокочастотный: 8.000, 11.0592, 14.7456,25.0000, 33.0000, 33.3333, 40.0000 МГц

Железяки

- Тактовый генератор процессора умножение базовой частоты от резонатора (133.3МГц х много раз)
- Тактовый генератор RTC отдельная микросхема с часовым кварцем 32768Гц

Гипотетическая точность RTC - десятки микросекунд (10⁻⁵)

Проблемы точности

- Системный вызов как прерывание
- Может быть занята шина AD
- Процесс, запрашивающий время, может быть переключен планировщиком

Для "бытовых" систем гарантируется точность 10-30 миллисекунд

OCPB

- Гарантированная реакция на события в строго заданный интервал времени
- Минимальные задержки на переключение контекста, возможность входа во временные критические секции
- Примеры: RTLinux, QNX, FreeRTOS, Багет

Linux

- time время в секундах с сотворения мира
- gettimeofday время в секундах+микросекундах с начала суток
- clock_gettime время, вычисляемое самим процессором:
 - CLOCK REALTIME
 - CLOCK_MONILITIC
 - CLOCK UPTIME
 - CLOCK_VIRTUAL / CLOCK_PROCESS_CPUTIME_ID
 - CLOCK_PROF

Python

- time.time() -> float
- time.process_time() -> float

