

Bootloader Multi-Etapa

Autor:

Ing. Lautaro Juan Bautista Vera

Director:

Mg. Ing. Christian Yánez Flores (INTI, FIUBA)

Índice

1. Descripción técnica-conceptual del proyecto a realizar
2. Identificación y análisis de los interesados
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios ($Product\ backlog$)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	22/10/2021
1	Se completa hasta el punto 5 inclusive	04/11/2021

Acta de constitución del proyecto

Buenos Aires, 30 de abril de 2021

Por medio de la presente se acuerda con el Ing. Ing. Lautaro Juan Bautista Vera que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Bootloader Multi-Etapa", consistirá en el desarrollo de un bootloader multi-etapa con secureboot y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$200, con fecha de inicio 30 de abril de 2021 y fecha de presentación pública 15 de mayo de 2022.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Juan Pablo Trípodi ECCOSUR

Mg. Ing. Christian Yánez Flores Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Un bootloader es un programa cuyo principal propósito es permitir a los sistemas embebidos actualizar su software sin el uso de hardware especializado como puede ser un programador JTAG. En ciertos casos, puede ser utilizado como el punto más temprano para la validación de la integridad de un sistema embebido. Existen distintos tipos de bootloaders y pueden comunicarse a través de casi cualquier protocolo como USART, CAN, I2C, Ethernet, USB, entre otros.

El uso de bootloaders es mandatorio en la industria. Cumple una rol vital en el ciclo de vida del producto, precisamente en la etapa de mantenimiento, ya que permite actualizar el software para introducir parches y nuevas funcionalidades.

En el caso del Holter de Eccosur, se tiene implementado un bootloader genérico USB, que cumple con la actualización del software mediante este protocolo. El firmware del Holter es bastante complejo, y el bootloader actual no está a la altura de las necesidades del producto. Se hace necesario una evolución hacia un bootloader de mayores prestaciones.

El presente proyecto propone una innovación del bootloader actual del Holter, desarrollando un bootloader que comprenda las siguientes funcionalidades:

- Multi-etapa, con bootloader principal o bootmanager y bootloader secundario o bootloader propiamente dicho.
- Capacidad de seleccionar el modo de operación mediante branching, aplicación o bootloader.
- Comunicación con un "Flasher" (host) a través del protocolo USB.
- Capacidad de actualización y restauración del firmware.
- Seguridad e integridad:
 - Localización del bootloader en flash protegida.
 - Secureboot: Sólo se ejecuta la aplicación si ésta es válida.
 - Checksum: Verifica que no hubo cambios accidentales por pérdida de paquetes durante la transmisión de los paquetes.
- Reutilizable, mediante un manual de integración un ingeniero idóneo debería ser capaz de incluir este bootloader en su proyecto.

En la figura 1 se puede observar el diagrama de bloques de un bootloader genérico de dos etapas. La primera etapa referida como "Branch. es el denominado bootmanager y es donde se lleva a cabo el branching y el secureboot. La segunda etapa hace referencia al bootloader y es donde se lleva a cabo la descarga de la imagen de software a través del protocolo correspondiente y su posterior actualización.

Figura 1. Diagrama en bloques del sistema

2. Identificación y análisis de los interesados

A continuación se identifican los roles de los interesados:

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	Juan Pablo Trípodi	ECCOSUR	Gerente I+D+i
Cliente	Juan Pablo Trípodi	ECCOSUR	Gerente I+D+i
Responsable	Ing. Lautaro Juan Bau-	FIUBA	Alumno
	tista Vera		
Orientador	Mg. Ing. Christian Yánez	INTI, FIUBA	Director Trabajo final
	Flores		

Por otro lado, el análsis de las características de los interesados es el siguiente:

- Auspiciante: Es proactivo a la hora de brindar recursos técnicos.
- Cliente: Tiene especial interés en la innovación en seguridad e integridad del nuevo bootloader.
- Responsable: Tiene experiencia en bootloaders pero no en la arquitectura del microcontrolador del Holter (Texas Instruments). Trabaja jornada completa, puede saturarse de tareas con mala planificación.
- Orientador: Tiene experiencia en la definición de proyectos. Puede dar buen soporte a la hora de definir requerimientos y el desglose de tareas.

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un bootloader robusto, seguro, versátil y reutilizable con comunicación USB. El mismo debe cumplir con las funcionalidades descritas en la descripción técnica (sección 1) y se validará integrándose con el Holter de Eccosur.

4. Alcance del proyecto

El presente proyecto incluye:

- Desarrollo de bootmanager
- Desarrollo de bootloader
- Adaptación del mapa de memoria de la aplicación de Holter para que sea compatible con el nuevo bootloader.
- Desarrollo de script de prueba que simule la aplicación flasher para validar el bootloader.
- Manual de integración incluido en la memoria técnica del proyecto.

Por otro lado, el presente proyecto no incluye:

- Desarrollo de *flasher* como aplicación de sistema operativo de propósito general.
- Funcionalidad Firmware Update Over The Air (FUOTA).

5. Supuestos del proyecto

Para el desarrollo exitoso del proyecto se tienen las siguientes hipótesis:

- El responsable tiene experiencia en bootloaders pero no con arquitecturas de Texas Instruments.
- El cliente compartirá todo el código fuente de la aplicación del Holter.
- El conocimiento en Makefile y Linker Scripts serán claves a la hora del desarrollo del proyecto.
- El stack de comunicación USB podrá ser directamente reutilizado.
- La memoria flash del microcontrolador es suficiente para almacenar una imagen estable para la restauración y la imagen nueva para la actualización.

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)

- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: çomo [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

Figura 2. Diagrama en $Activity\ on\ Node$

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
COSTOS INDIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
TOTAL							

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.