0.0.1 Splitting Fields

Definition 0.1 F field, $f(x) \in F[x]$ non-zero, a splitting field of f is a field extension E/F such that $f(x) = \alpha \Pi_i(x - \alpha_i)$, with $\alpha, \alpha_1, \alpha_2, ..., \alpha_n$ and $E = F(\alpha_1, ..., \alpha_n)$

F field, A, B rings [e.g. $A = F[x], F \to F[X]$]

$$A \xrightarrow{\phi} E$$

$$\downarrow_{i_A}^{i_B} \nearrow E$$

$$F$$

 $Hom_F(A, B) = \{\phi : A \to B \mid i_b = \phi i_A\}$

Proposition 0.2 $F \to F[x], F \to B$ any ring morphism.

 $Hom_F(F[x], B) \to [\cong]B$

 $\phi \mapsto \phi(x)$

Proof: Given $b \in B$, define $\phi_b : F[x] \to B$ by $\phi(\sum_{n=0}^m a_n x^n) = \sum_{n=0}^m a_n b^n$

Check ϕ_b is a ring morphism

Cor: Fix $f(x) \in F[X]$, then there is a bijection $Hom_F(\frac{F[x]}{f(x)}, B)$

TODO: Turn scratchwork into proof.

Scratchwork below [Also refer to video]

$$A \xrightarrow{\bar{\phi}_P} B$$

$$\downarrow_P \xrightarrow{\bar{\phi}} A/I$$

$$\phi(a+I) = \phi(a)$$

$$a + I = a' + I \implies a - a' \in I$$

So
$$\phi(a) = \phi(a')$$

$$A = F[x]$$

 \downarrow

$$\frac{F[X]}{f} \to B$$

Corollary 0.3 TODO: Write up from notes

Proof: $f(\alpha) = \frac{F[x]}{(f(x))}$, f min. poly of α

Cor: ANy two splitting fields $\frac{E_1}{F}$, and E_2/F of a poly $f(x) \in F[x]$ are F-isomorphic.

Proof: ETS there is an F-morphism $\phi: E_1 \to E_2$. Since then $[E_1:F] \leq [E_2:F]$ By symmetry there would be a map from E_2 to E_1 , so $[E_1:F] \geq [E_2:F]$

So ϕ will be an isomorphism.

Let $\alpha_1, ..., \alpha_n$ be the roots in E_1 of f, so $F(\alpha_1, ..., \alpha_n)$.

Assume by induction we abve $\phi_i: F(\alpha_1,..,\alpha_i) \to E_2$

$$F(\alpha_1, ..., \alpha_{i+1}) \supseteq F(\alpha_1, ..., \alpha_i) \to E_2$$

Let g(x) be the min poly of α_{i+1} over $F(\alpha_1,...,\alpha_i)$, then g|F. So there exists a root of $g \in E_2$, since F splits there.

User cor. to define ϕ_{i+1}

0.0.2 Computing the degree of a splitting field