

RAMAIAH INSTITUTE OF TECHNOLOGY, BANGALORE – 560054 (Autonomous Institute, Affiliated to VTU)

Department of Computer Science & Engineering

Internship Report

on

Mobile Application Development

INT411: Intra Institutional Internship

STUDENT NAME : Rifah Balquees Nandita Nayak K

USN:1MS22CS114 1MS22CS088

Ramaiah Institute of Technology

(Autonomous Institute, Affiliated to VTU)
MSR Nagar, MSRIT Post, Bangalore-560054

October-November, 2023

RAMAIAH INSTITUTE OF TECHNOLOGY, BANGALORE – 560054 (Autonomous Institute, Affiliated to VTU)

Department of Computer Science & Engineering

CERTIFICATE

This is to certify that Mr./Ms.	,
a student of Bachelor of Engineering, bearing USN:	, has successfully
completed, 20 Hours: from 25.10.2023 to 8.11.2023 Intra Institutional	Internship in Mobile
Application Development from the Department of Computer Science & Engi	neering, M S Ramaiah
Institute of Technology, Bangalore.	

SL No.	Component	Maximum Marks	Marks Obtained
1	Continuous Evaluation	50	
2	Presentation	20	
3	Report	30	
	Total Marks	100	

Signature of the Student with Date

Signature of the Faculty Co-Ordinator

OVERVIEW OF INTERNSHIP ACTIVITIES

DATE	DAY	NAME OF THE TOPIC COMPLETED
	Monday	
	Tuesday	
	Wednesday	
	Thursday	
	Friday	
	Saturday	

INTRODUCTION

This report provides an overview of the development of a BMI (Body Mass Index) calculator application using the Flutter framework. The BMI calculator is a simple yet useful mobile application designed to help users calculate their BMI, a measure of a person's weight in relation to their height, and assess their general health status.

Project Description

Purpose

The primary goal of this project is to create a user-friendly BMI calculator application that can be used on Android and iOS devices. This application enables users to input their weight and height, calculates their BMI, and provides a brief interpretation of the results.

Technologies Used:

- 1. Flutter Framework: Flutter is a popular open-source framework for building natively compiled applications for mobile from a single codebase.
- 2. Dart Programming Language: Dart is the programming language used for building Flutter applications.

Features

The BMI calculator application has the following features:

- 1. Input Fields: Users can enter their weight (in kilograms) and height (in centimeters) using sliders.
- 2. Calculate BMI: After inputting their weight and height, users can press a "Calculate BMI" button to perform the BMI calculation.
- 3. Result Display: The calculated BMI is displayed on the screen along with an interpretation of the result, indicating whether the user is underweight, normal weight, overweight, or obese.
- 4. Health Information: The application provides brief information about BMI and its significance for the user's health.

Development Process

- 1. Project Setup: A new Flutter project was created using the Flutter CLI.
- 2.User Interface Design: The user interface (UI) was designed using Flutter widgets and layout components. It includes input fields for weight and height, a "Calculate BMI" button, and an area to display the result.
- 3. BMI Calculation: The application logic was implemented to calculate the BMI based on the user's input.
- 4. Result Interpretation: A function was created to interpret the BMI result and provide a simple health status message.
- 5. Testing: Extensive testing was conducted to ensure the application functions as expected and handles edge cases gracefully.
- 6. Deployment: The application was built for Android and iOS platforms and deployed to app stores.

Future Enhancements

While the current version of the BMI calculator is functional, there are several opportunities for improvement:

- 1. User Profiles: Implement user profiles to allow users to save their BMI results and track changes over time.
- 2. Improved User Experience: Enhance the application's design and user experience to make it more visually appealing and intuitive.
- 3. Health Tips: Provide health and fitness tips based on the user's BMI category.

Code:

Main.dart

```
import 'package:mad2/pages/show_details.dart';
import 'package:flutter/material.dart';
class HomePage extends StatefulWidget {
 static const String routeName = '/';
 const HomePage({Key? key}) : super(key: key);
 @override
 State<HomePage> createState() => _HomePageState();
class HomePageState extends State<HomePage> {
 double sliderWeight = 50;
 double sliderHeight= 1.5;
 double bmi = 0;
 String status = '';
 @override
 Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(
        title: Text('Welcome'),
        centerTitle: true,
      ),
      bottomNavigationBar: Container(
        height: 50,
        color: Color.fromARGB(255, 1, 19, 34),
        alignment: Alignment.bottomCenter,
        child: Padding(
          padding: const EdgeInsets.all(8.0),
        ),
      ),
      body: Center(
        child: Column(
          mainAxisSize: MainAxisSize.min,
          children: [
            const Text('Weight',style: TextStyle(fontSize: 25),),
            Slider(
                value: sliderWeight,
                min: 20,
                max: 120,
                divisions: 100,
                label: '${sliderWeight.round()}',
                onChanged: (value){
```

```
setState((){
                    sliderWeight = value;
                    calculateBmi();
                  });
                }),
            Text('${sliderWeight.toStringAsFixed(2)} kg',style:
TextStyle(fontSize: 25),),
            SizedBox(height: 30,),
            const Text('Height',style: TextStyle(fontSize: 25),),
            Slider(
                value: sliderHeight,
                min: 1.2,
                max: 2.2,
                divisions: 10,
                label: '${sliderHeight.round()}',
                onChanged: (value){
                  setState((){
                    sliderHeight = value;
                    calculateBmi();
                  });
                }),
            Text('${sliderHeight.toStringAsFixed(1)} m',style:
TextStyle(fontSize: 25),),
            SizedBox(height: 30,),
            Container(
              alignment: Alignment.center,
              height: 150,
              width: 150,
              decoration: BoxDecoration(
                  color: Colors.blue,
                  shape: BoxShape.circle
              ),
              child: Column(
                mainAxisAlignment: MainAxisAlignment.center,
                children: [
                  Text('BMI', style: TextStyle(fontSize: 40, color:
Colors.white),),
                  Text('${bmi.toStringAsFixed(1)}', style: TextStyle(fontSize:
40, color: Colors.white),),
                ],
              ),
            ),
            SizedBox(height: 20,),
            Center(child: Text(status, style: TextStyle(fontSize: 20, fontWeight:
FontWeight.bold),)),
            SizedBox(height: 20,),
            SizedBox(
              height: 40,
              child: ElevatedButton(
                //onPressed: () => Navigator.pushNamed(context,
SecondPage.routeName),
```

```
//onPressed: () => Navigator.pushReplacementNamed(context,
SecondPage.routeName),
                onPressed: () => Navigator
                     .pushNamed(context, ShowDetails.routeName, arguments: bmi),
                 child: const Text('View Details'),
              ),
            ),
            SizedBox(height: 20,),
          ],
        ),
      ),
    );
 void calculateBmi() {
    bmi = sliderWeight/(sliderHeight*sliderHeight);
    if(bmi<16){
      status = 'Underweight (Severe thinness)';
    } else if(bmi>=16 && bmi <=16.9){</pre>
      status = 'Underweight (Moderate thinness)';
    }else if(bmi>=17 && bmi <=18.4){</pre>
      status = 'Underweight (Mild thinness)';
    }else if(bmi>=19 && bmi <=24.9){</pre>
      status = 'Normal';
    }else if(bmi>=25 && bmi <=29.9){</pre>
      status = 'Overweight (Pre-obese)';
    }else if(bmi>=30 && bmi <=34.9){</pre>
      status = 'Obese (Class I)';
    }else if(bmi>=35 && bmi <=39.9){</pre>
      status = 'Obese (Class II)';
    } else {
      status = 'Obese (Class III)';
```

```
import 'package:flutter/material.dart';
class ShowDetails extends StatefulWidget {
 static const String routeName = '/show_details';
 const ShowDetails({Key? key}) : super(key: key);
 @override
 State<ShowDetails> createState() => _ShowDetailsState();
class _ShowDetailsState extends State<ShowDetails> {
 @override
 void initState() {
    print('InitStake Call');
    super.initState();
 @override
 void didChangeDependencies() {
    bmi = ModalRoute.of(context)!.settings.arguments as double;
    print('BMI is: $bmi');
    super.didChangeDependencies();
 late double bmi;
 @override
 Widget build(BuildContext context) {
    print('Build Call');
    return Scaffold(
      appBar: AppBar(
        title: const Text('Show Details'),
        centerTitle: true,
      ),
      body: Padding(
        padding: const EdgeInsets.all(16.0),
        child: Center(
          child: Column(
            mainAxisAlignment: MainAxisAlignment.start,
            children: [
              SizedBox(height: 10,),
              DataTable(
                  headingRowColor:
                  MaterialStateColor.resolveWith((states) => Colors.blue),
                  columns: [
                    DataColumn(
                      label: Text('Category',style: TextStyle(fontSize: 20,),),
                    ),
                    DataColumn(
                      label: Text('BMI', style: TextStyle(fontSize: 20,),),
                    ),
                  ],
                  rows: [
                    DataRow(
                          color: MaterialStateColor.resolveWith((states) {
                            return bmi<16 ? Colors.green : Colors.white;}),</pre>
```

```
cells: [
                      DataCell(Text('Underweight (Severe thinness')),
                      DataCell(Text('< 16.0')),</pre>
                    ]),
                    DataRow(
                        color: MaterialStateColor.resolveWith((states) {
                          return bmi>=16 && bmi<=16.9 ? Colors.yellow :
Colors.white;}),
                        cells: [
                      DataCell(Text('Underweight (Moderate thinness')),
                      DataCell(Text('16-16.9')),
                    ]),
                    DataRow(
                        color: MaterialStateColor.resolveWith((states) {
                          return bmi>=17 && bmi<=18.4 ? Colors.yellow :
Colors.white;}),
                        cells: [
                      DataCell(Text('Underweight (Mild thinness')),
                      DataCell(Text('17-18.4')),
                    ]),
                    DataRow(
                        color: MaterialStateColor.resolveWith((states) {
                          return bmi>=19 && bmi<=24.9 ? Colors.green :
Colors.white;}),
                        cells: [
                          DataCell(Text('Normal')),
                          DataCell(Text('19-24.9')),
                        ]),
                    DataRow(
                        color: MaterialStateColor.resolveWith((states) {
                          return bmi>=25 && bmi<=29.9 ? Colors.orange :</pre>
Colors.white;}),
                        cells: [
                          DataCell(Text('Overweight (Pre-Obese')),
                          DataCell(Text('25-29.9')),
                        ]),
                    DataRow(
                        color: MaterialStateColor.resolveWith((states) {
                          return bmi>=30 && bmi<=34.9 ? Colors.red :
Colors.white;}),
                        cells: [
                          DataCell(Text('Obese(Class I)')),
                          DataCell(Text('30-34.9')),
                        1),
                    DataRow(
                        color: MaterialStateColor.resolveWith((states) {
                          return bmi>=35 && bmi<=39.9 ? Colors.red :
Colors.white;}),
                        cells: [
                          DataCell(Text('Obese(Class II)')),
                          DataCell(Text('35-39.9')),
```

RESULT SNIPPIT

Conclusion

The BMI calculator application developed using Flutter is a useful tool for individuals to quickly assess their BMI and understand their general health status. It showcases the capabilities of Flutter in building cross-platform mobile applications efficiently. Further development and enhancements can make this application even more valuable to users interested in tracking their health and fitness.