Problem

1. Implement linear Conjugate Gradient method for following function:

(a)
$$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$$

- 2. Implement nonlinear Conjugate Gradient methods for the following functions:
 - (a) $f(x,y) = 40(y-x^2)^2 + (1-x)^2$

(b)
$$f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2$$

3. Discuss their performances between nonlinear CGs:

Implementation

- 1. Implementation
 - (a) LinearCG
 - i. LinearCG is the method for linear function, which can be represented as $\frac{1}{2}x^TAx bx$
 - ii. Therefore after deriving matrix A from the function, then we can apply this as input on a computing.
 - iii. In the implementation, the constructor of Linear CG takes A and b as input argument
 - iv. As termination condition, the residual r_k should be zero, when the convergence occrus. Because of a numerical calculation, it is not exact zero value, but is set as near zero, threshold 1e-2

Numerical Opimization December 1, 2021

(a) NonlinearCG

i. As similar as Linear CG, to terminate the criterion should be g_k is zero, but as same reason, currently set as 1e-4

Plotting

1. LinearCG behavior

(a) LinearCG

Figure 1: $f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$

2. NonlinearCG behavior

- According to Hager and Zhang [hager2006algorithm], in Fletcher-Reeves scheme, a jamming can occur, when the search direction nearly orthogonal to the gradient
- CG-PR is the method to escape this problem has the fastest convergence speed
 - (a) $\beta_k^{PR} = \frac{y_k^T g_{k+1}}{\|g_k\|^2}$, where $y_k = g_{k+1} g_k$. When jamming occurs $g_{k+1} \approx g_k$, $\beta_k^{PR} \approx 0$, and $d_{k+1} \approx -g_{k+1}$
 - (b) It means when jamming occurs, the search direction is not orthogonal to the gradient
- This situation is observed apparently in Figure 2, in the CG-FR cases, the plot show the moving purple line following the contour. But, not in the CG-PR and CG-HS cases.
- Also, Figure 3 show this type of result, which in the case of CG-FR makes convergence failed.

Numerical Opimization December 1, 2021

Performance

1. Convergence speed

• As said before, CG-FR fails to converge, when the search direction is nearly orthogonal to gradient. And also, this affects Convergence speed

Figure 4: $f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2$

• Especially, the function b case shows the failure case of convergence, which is

Numerical Opimization December 1, 2021

indicatied in Figure 4

• Otherwise, CG-HS method has the fastest convergence speed

initial point	f(x,y)	Performance(x, y)		
		CG-FR	CG-PR	CG-HS
[1.2, 1.2]	(b)	62409445493 ns	320895182 ns	41624827 ns
	(c)	740809097 ns	349752676 ns	80612994 ns