NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER II EXAMINATION 2020–2021

MH1812 - Discrete Mathematics

May 2021	TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

QUESTION 1. (10 marks)

Prove or disprove the following statements.

(a) For all sets A, B, and C, if $B \cup C \subseteq A$ then

$$(A - B) \cap (A - C) = \emptyset.$$

(b) For all sets A and B,

$$P(A) \cup P(B) \subseteq P(A \cup B),$$

where P(A) and P(B) denotes the power set of A and B, respectively.

Solution:

- (a) False. Counterexample: $A = \{1\}, B = C = \emptyset$.
- (b) True. We prove it. Let $X \in P(A) \cup P(B)$. This implies that either $X \in P(A)$ or $X \in P(B)$.

Case $X \in P(A)$. This implies $X \subset A \subset A \cup B$. Hence $X \in P(A \cup B)$.

Case $X \in P(B)$. This implies $X \subset B \subset A \cup B$. Hence $X \in P(A \cup B)$.

QUESTION 2. (20 marks)

(a) Suppose that $C_1 = 1$ and for each integer $k \ge 2$ we have $C_k = \frac{4k-2}{k+1}C_{k-1}$. Using induction, prove that

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$
 for each positive integer n ,

where $\binom{2n}{n}$ is the number of subsets of $\{1,\ldots,2n\}$ that have cardinality n.

(b) Let $F_0 = 1$, $F_1 = 1$, $F_2 = 2$, F_3 ,... be the Fibonacci sequence, i.e., $F_k = F_{k-1} + F_{k-2}$ for each integer $k \ge 2$. Prove by induction that, for each integer $n \ge 3$,

$$F_n < 2^{n-1}$$
.

Solution:

(a) Let P(n) be the hypothesis that

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Base case: P(1) is true. Assume that P(n) is true for some $n \in \mathbb{N}$. Now consider P(n+1). Using the hypothesis P(n) we see that the LHS of P(n+1) is

$$C_{n+1} = \frac{4n+2}{n+2}C_n$$

$$= \frac{4n+2}{n+2} \frac{1}{n+1} \binom{2n}{n}$$

$$= \frac{4n+2}{n+2} \frac{1}{n+1} \frac{(2n)!}{n!n!}$$

$$= \frac{4n+2}{n+2} \frac{n+1}{1} \frac{(2n)!}{(n+1)!(n+1)!}$$

$$= \frac{2n+1}{n+2} \frac{2n+2}{1} \frac{(2n)!}{(n+1)!(n+1)!}$$

$$= \frac{1}{n+2} \binom{2(n+1)}{n+1},$$

as required.

(b) Let P(n) be the hypothesis that

$$F_n < 2^{n-1}.$$

Basis case: n=3 we have the LHS is 3 and the RHS is 4. So P(3) is true. n=4 we have the LHS is 5 and the RHS is 8. So P(4) is true. Assume that P(n) is true for some integer $n \ge 4$. Now consider P(n+1). Using the hypothesis P(n) we see that the LHS of P(n+1) is

$$F_n = F_{n-1} + F_{n-2}$$

$$< 2^{n-2} + 2^{n-3}$$

$$= 2^{n-3}(2+1)$$

$$< 2^{n-1},$$

as required.

MH1812

QUESTION 3. (10 marks)

A coin is tossed ten times. In each case, the outcome H (for heads) or T (for tails) is recorded. (One possible outcome for the ten tosses is denoted THHTTTHTH.)

- (a) What is the total number of possible outcomes of the coin-tossing experiment?
- (b) In how many of the possible outcomes are exactly five heads obtained?
- (c) In how many of the possible outcomes are at least eight heads obtained?

- (a) $2^{10} = 1024$
- (b) 10!/(5!5!) = 252

(c)
$$1 + 10!/9! + 10!/(2!8!) = 1 + 10 + 45 = 56$$

QUESTION 4. (15 marks)

- (a) Let $A = \{a, b\}$.
 - (i) How many relations on A are equivalence relations?
 - (ii) How many relations on A are partial orders?
- (b) Define a relation R on \mathbb{Z} , the set of all integers as follows. For each $m, n \in \mathbb{Z}$, $(m, n) \in R$ if and only if m + n is even.
 - (i) Is R reflexive?
 - (ii) Is R symmetric?
 - (iii) Is R anti-symmetric?
 - (iv) Is R transitive?
 - (v) Is R an equivalence relation?
 - (vi) Is R a partial order?

Justify your answers.

- (a) (i) 2: $\{(a,a),(b,b)\},\{(a,a),(b,b),(a,b),(b,a)\}$
 - (ii) 3: $\{(a,a),(b,b)\},\{(a,a),(b,b),(a,b)\},\{(a,a),(b,b),(b,a)\}$
- (b) (i) R is reflexive: m + m = 2m is even for all $m \in \mathbb{Z}$
 - (ii) R is symmetric: if m+n is even then so is n+m.
 - (iii) R is not anti-symmetric: 1+3 is even and is 3+1 but $1 \neq 3$.
 - (iv) R is transitive: if m + n = 2k and n + p = 2l then m + p = 2k + 2l 2n is also even.
 - (v) R is an equivalence relation: it is reflexive, symmetric, and transitive
 - (vi) R is not a partial order: it is not anti-symmetric

QUESTION 5. (20 marks)

(a) Define the function $F: \mathbb{R} \to \mathbb{Z}$ by the formula $F(x) = \lfloor x \rfloor$ for each $x \in \mathbb{R}$.

- (i) Is F(x) one-to-one? If so then prove it, if not then give a counterexample.
- (ii) Is F(x) onto? If so then prove it, if not then give a counterexample.
- (b) Define the function $G: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ by the formula $G(x,y) = x + \sqrt{2}y$ for each $(x,y) \in \mathbb{Q} \times \mathbb{Q}$. Is G(x) one-to-one? If so then prove it, if not then give a counterexample.
- (c) True or False? Given any set X and given any functions $f: X \to X$, $g: X \to X$, and $h: X \to X$, if h is one-to-one and $h \circ f = h \circ g$ then f = g. Justify your answer.

- (a) (i) No: F(1) = F(1.5) = 1.
 - (ii) Yes: $\forall y \in \mathbb{Z}$, we have F(y) = y.
- (b) Yes: if G(a,b) = G(x,y) then $a + \sqrt{2}b = x + \sqrt{2}y$, which implies $a x = (y b)\sqrt{2}$. We must have y = b since $\sqrt{2}$ is irrational. Whence x = a, as required.
- (c) True. Suppose h is one-to-one and $h \circ f = h \circ g$. We want to show that $\forall x in X$, f(x) = g(x). Let $x \in X$. Then h(f(x)) = h(g(x)). Since h is one-to-one, we must have f(x) = g(x).

QUESTION 6. (10 marks)

Each of (a)-(c) describes a graph. In each case answer, yes, no, or not necessarily to this question: Does the graph have an Euler circuit? No justification is required.

- (a) G = (V, E) is a connected graph where |V| = 5 and the five vertices of G have the five degrees 2, 2, 3, 3, 4.
- (b) G = (V, E) is a connected graph where |V| = 5 and the five vertices of G have the five degrees 2, 2, 4, 4, 6.
- (c) G = (V, E) is a graph where |V| = 5 and the five vertices of G have the five degrees 2, 2, 4, 4, 6.

- (a) no
- (b) yes
- (c) not necessarily

QUESTION 7. (15 marks)

Let A be a set of six positive integers, each of which is less than 15. Show that there exists two distinct subsets $S \subset A$ and $T \subset A$ such that the sum of the elements in S is equal to the sum of the elements in T. For example, if $A = \{3, 4, 5, 10, 11, 12\}$ then there exists subsets $S = \{3, 12\}$ and $T = \{5, 10\}$ whose elements both add up to 15 = 3 + 12 = 5 + 10.

Solution: The number of nonempty subsets is $2^6 - 1 = 64 - 1 = 63$. Let $S = \{a_1, a_2, \ldots, a_6\}$ where $a_1 < a_2 < \cdots < a_6$. For any nonempty subset $S \subset A$ the sum of the elements in S is at most $a_1 + a_2 + \cdots + a_6$ and at least a_1 . Therefore there are at most $1 + a_2 + \cdots + a_6 \le 1 + 10 + 11 + 12 + 13 + 14 = 61$ possible values for the sum of elements of S. The statement then follows from the pigeonhole principle.

END OF PAPER