

Lecture 9: Clustering

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Clustering: Overview
02	K-Means Clustering
03	Hierarchical Clustering
04	Density-based Clustering: DBSCAN
04	R Exercise

- K-Means Clustering (KMC)
 - √ Partitional clustering approach
 - Each cluster is associated with a centroid
 - Each point is assigned to the cluster with the closest centroid
 - Number of cluster, K, must be specified

$$\mathbf{X} = C_1 \cup C_2 \dots \cup C_K, \quad C_i \cap C_j = \phi, \quad i \neq j$$

$$\arg \min_{\mathbf{C}} \sum_{i=1}^K \sum_{\mathbf{x} \in C} ||\mathbf{x}_j - \mathbf{c}_i||^2$$

K-Means Clustering Procedure

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

✓ Initial centroids are often chosen randomly: clustering results vary according to the initial centroid selection

Example

✓ Step 1: Initializing K centroids

- ✓ Step 2-I (Ist): Assign each instance to the closest center
- ✓ Step 2-2 (Ist): Re-compute the centroids based on the assigned instances

• Example

✓ Step 2-I (2nd): Assign each instance to the closest center

✓ Step 2-2 (2^{nd}): Re-compute the centroids based on the assigned instances

✓ Stop the algorithm because there is no change for centroids and membership
assignment

• KMC example

- Effect of initial centroids
 - ✓ Desirable centroid selection

- Effects of initial centroids
 - ✓ Undesirable centroid selection

- Some remedies for initial centroid selection
 - ✓ Multiple runs
 - ✓ Sample and use hierarchical clustering to determine initial centroids
 - √ Preprocessing & Postprocessing

Pilsung Kang and Sungzoon Cho. (2009). K-Means clustering seeds initialization based on centrality, sparsity, and isotropy. *The 13th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2009)*, Burgos, Spain. E. Corchado and H. Yin (Eds.), *Lecture Notes in Computer Science LNCS 5788*, 109-117.

- Limitations of K-Means Clustering
 - ✓ Cannot cope with different sizes

- Limitations of K-Means Clustering
 - ✓ Cannot cope with different densities

- Limitations of K-Means Clustering
 - √ Cannot cope with non-globular shapes

