AMENDMENTS TO THE CLAIMS

1-10. (Cancelled)

11. (Currently amended) A needle crystal comprising a C_{60} platinum derivative and C_{60} fullerene molecules, which is single crystalline and having a hollow structural portion.

12-13. (Cancelled)

14. (Currently amended) The needle crystal as claimed in Claim 12 Claim 11, having an end that is closed or open.

15. (Cancelled)

16. (Currently amended) The needle crystal as claimed in Claim 10 or 11 Claim 11, wherein the C_{60} platinum derivative is $(\eta^2-C_{60})Pt(PPh_3)_2$.

17. (Cancelled)

- 18. (Currently amended) A method for preparing a needle crystal comprising a C_{60} platinum derivative and C_{60} fullerene molecules that is single crystalline and having a hollow structural portion by a liquid-liquid interfacial precipitation method, which comprises (1) a step in which a solution containing a first solvent dissolving the C_{60} platinum derivative and the C_{60} fullerene molecules therein, wherein the amount of the C_{60} platinum derivative to be added is in the range of 1-10 mass % for the C_{60} fullerene molecules, is combined with an alcohol as a second solvent; (2) a step in which a liquid-liquid interface is formed between the solution and the second solvent; and (3) a step in which a carbon fine wire is precipitated on the liquid-liquid interface.
- 19. (Currently amended) The method for preparing a needle crystal as claimed in Claim 17 or 18 Claim 18, wherein the C_{60} platinum derivative is (η^2-C_{60}) Pt(PPh₃)₂.

U.S. Serial No. 10/593,870 Attorney Docket No. 2006_1609A March 10, 2011

- **20.** (Currently amended) The method for preparing a needle crystal as claimed in Claim 17 or 18 Claim 18, wherein the first solvent is toluene.
- **21.** (Currently amended) The method for preparing a needle crystal as claimed in Claim 17 or 18 Claim 18, wherein the second solvent is isopropyl alcohol.
- **22.** (Previously presented) A C_{60} fullerene needle comprising an amorphous structure, wherein nanometer-sized particles of platinum are dispersed thereon.
- **23.** (Previously presented) The C_{60} fullerene needle as claimed in Claim 22, having a hollow structural portion.
- **24.** (Previously presented) The C_{60} fullerene needle as claimed in Claim 22, having an end that is closed or open.
- **25.** (Currently amended) A method for preparing a C₆₀ fullerene needle comprising an amorphous structure, wherein nanometer-sized particles of platinum are dispersed thereon, which comprises:
- (1) a step in which a solution containing a first solvent dissolving the C_{60} platinum derivative therein is combined with an alcohol as a second solvent;
- (2) a step in which a liquid-liquid interface is formed between the solution and the second solvent; and
 - (3) a step in which a carbon fine wire is precipitated on the liquid-liquid interface; and
- (4) a step in which a vacuum thermal treatment at 600°C or higher or an irradiation of an electron beam with high energy of 100 keV or higher at room temperature is carried out for the carbon fine wire.
- **26.** (Previously presented) The method for preparing a C_{60} fullerene needle as claimed in Claim 25, wherein the C_{60} platinum derivative is (η^2-C_{60}) Pt(PPh₃)₂.

U.S. Serial No. 10/593,870 Attorney Docket No. 2006_1609A March 10, 2011

- **27.** (Previously presented) The method for preparing a C_{60} fullerene needle as claimed in Claim 25, wherein the first solvent is toluene.
- **28.** (Previously presented) The method for preparing a C_{60} fullerene needle as claimed in Claim 25, wherein the second solvent is isopropyl alcohol.