

JPEG Reference Guide V1.0

Publication Release Date: Oct. 2011

Support Chips: Support Platforms:

W55FA Series Non-OS

The information in this document is subject to change without notice.

The Nuvoton Technology Corp. shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material.

This documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from the Nuvoton Technology Corp.

Nuvoton Technology Corp. All rights reserved.

Table of Contents

1.	JPF	EG Overview	
_•	011		
	1.1.	JPEG Overview	
	1.2.	Programming Guide	
		System Overview	
		JPEG Operation Control	
		JPEG Library Constant Definition	
		JPEG Library Property Definition	13
	1.3.	JPEG API	12
		jpegOpen	14
		jpegClose	
		jpegInit	
		jpegGetInfo	15
		jpegWait	
		jpegIsReady	
		jpegSetQTAB	
		jpegIoctl	17
	1.4.	Example code	21
2.	Res	vision History	22

1. JPEG Overview

FA95/VA95 Non-OS library consists of a set of libraries. These libraries are built to access those on-chip functions such as VPOST, APU, SIC, USBH, USBD, GPIO, I2C, SPI and UART, as well as File System (NVTFAT), USB Mass Storage devices (UMAS) and NAND Flash devices (GNAND). This document describes the provided APIs of JPEG library. With these APIs, user can quickly build a binary target for JPEG library on FA95/VA95 micro processor.

These libraries are created by using ARM Development Suite 1.2. Therefore, they only can be used in ADS environment.

1.1. JPEG Overview

This library is designed to make user application to use FA95/VA95 JPEG more easily. The JPEG library has the following features:

- JPEG Normal / Encode function
- I JPEG Encode Upscale function
- JPEG Decode Downscale function
- I JPEG Window Decode function
- I JPEG Decode Input Wait function
- JPEG Decode Output Wait function

1.2. Programming Guide

System Overview

The JPEG Codec supports Baseline Sequential Mode JPEG still image compression and decompression that is fully compliant with ISO/IEC International Standard 10918-1 (T.81). The features and capability of the JPEG codec are listed below.

JPEG Features

- I Support to encode interleaved YCbCr 4:2:2/4:2:0 and gray-level (Y only) format image
- Support to decode interleaved YCbCr 4:4:4/4:2:2/4:2:0/4:1:1 and gray-level (Y only) format image
- I Support to decode YCbCr 4:2:2 transpose format

- I The encoded JPEG bit-stream format is fully compatible with JFIF and EXIF standards
- I Support Capture and JPEG hardware on-the-fly access mode for encode
- I Support JPEG and Playback hardware on-the-fly access mode for decode
- I Support software input/output on-the-fly access mode for both encode and decode
- I Support arbitrary width and height image encode and decode
- I Support three programmable quantization-tables
- I Support standard default Huffman-table and programmable Huffman-table for decode
- I Support arbitrarily 1X~8X image up-scaling function for encode mode
- I Support down-scaling function for encode and decode modes
- I Support specified window decode mode
- I Support quantization-table adjustment for bit-rate and quality control in encode mode
- I Support rotate function in encode mode

JPEG Operation Control

n Memory access

The following figure shows the encode mode to access the source data which are from sensor normally and stored on the SDRAM.

Following figure shows the decode mode to output the decoded raw data on the SDRAM.

User can use stride function to output decoded image to any position on the Display Frame Buffer for Display. Following figure shows the decode mode with stride to output the decoded raw data on the Display Frame Buffer.

Display Frame Buffer Memory

n Encode operation flow

n Decode operation flow

n Decode stride

Before clearing Header Decode End interrupt, the value of stride must be set to stride value instead of original width. Offset is the difference between Stride and Image width. If Offset is 0, the decoded Raw data is continuous.

n Window Decode

The JPEG decoder supports specified window decode mode. This function allows user to specify a sub-window region within the whole image to be decoded as shown in the following figure. Only the specified window region image will be decoded and stored to frame memory.

Display Frame Buffer Memory

n Decode Input Wait

When the JPEG is in decoding mode, the input source is the JPEG bit-stream written by software. The bit-stream buffer size is in 2K unit dual-buffer manner. If the buffer-size is 2KB,user needs to fill 1KB bit-stream into one of the half buffer region before resuming JPEG operation when an input-wait interrupt is generated.

When JPEG engine decodes one of the half buffers, the Decode Input Wait call back function will be called. The Only thing user needs to do is to fill bit stream to the other buffer like the following Step 1 & Step 2 untill entired bistream is filled into the buffer.

[Step 1] JPEG engine decodes the data in Buffer 0 and S/W fills the data into Buffer 1

[Step 2] JPEG engine decodes the data in Buffer1 and S/W fills the data into Buffer 0

n Decode Output Wait

When there is not enough continuous space to store the decode output raw data, JPEG engine support a function to output data partially. User can get the whole data by assigning several output data address and size settings (JPEG_IOCTL_SET_DECOUTPUTWAIT). Using this function, user can get the JPEG decoded image that larger than the available continuous memory space.

The decode output wait call back function will be called when the Output Data size is equal to the Size assigned by IOCTL - JPEG_IOCTL_SET_DECOUTPUTWAIT. In the call back function, user should move the data to it's destination address and call the IOCTL again to set next address and data size.

[Note 1]. The data size of the final ICOTL must equal to the extract output size. Otherwise, user will get the Decode mplete interrupt instead of Decode output wait interrupt.

n Header Decode Complete

In the callback function, user can get JPEG image width and height by calling jpegGetInfo(). After getting the information, user can use jpegIoctl to

Allocate and set output buffer	à JPEG_IOCTL_SET_YADDR for Packet format Only
Change output buffer address	à JPEG_IOCTL_SET_YADDR for Packet format Only
Set Downscale	à JPEG_IOCTL_SET_DECODE_DOWNSCALE
Set Decode output Stride	à JPEG_IOCTL_SET_DECODE_STRIDE
Set windows decode	à JPEG_IOCTL_SET_WINDOW_DECODE
	Allocate and set output buffer Change output buffer address Set Downscale Set Decode output Stride Set windows decode

JPEG Library Constant Definition

n Encode operation

Name	Value	Description
Encode format		
JPEG_ENC_PRIMARY	0	Encode operation : Primary JPEG
JPEG_ENC_THUMBNAIL	1	Encode operation : Thumbnail JPEG
JPEG_ENC_SOURCE_PLANAR	0	Encode source : planar format
JPEG_ENC_SOURCE_PACKET	1	Primary Encode source : packet format

JPEG_ENC_PRIMARY_YUV420	0xA0	Primary Encode image format : YUV 4:2:0
JPEG_ENC_PRIMARY_YUV422	0xA8	Primary Encode image format : YUV 4:2:2
JPEG_ENC_PRIMARY_GRAY	0xA1	Primary Encode image format : GRAY
JPEG_ENC_THUMBNAIL_YUV420	0x90	Thumbnail Encode image format : YUV 4:2:0
JPEG_ENC_THUMBNAIL_YUV422	0x98	Thumbnail Encode image format : YUV 4:2:2
JPEG_ENC_THUMBNAIL_GRAY (Thumbnail Encode image format : GRAY
Encode Header control		
JPEG_ENC_PRIMARY_DRI	0x10	Restart Interval in Primary JPEG Header
JPEG_ENC_PRIMARY_QTAB	0x20	Quantization-Table in Primary JPEG Header
JPEG_ENC_PRIMARY_HTAB	0x40	Huffman-Table in Primary JPEG Header
JPEG_ENC_PRIMARY_JFIF	0x80	JFIF Header in Primary JPEG Header
JPEG_ENC_THUMBNAIL_DRI	0x1	Restart Interval in Thumbnail JPEG Header
JPEG_ENC_THUMBNAIL_QTAB	0x2	Quantization-Table in Thumbnail JPEG Header
JPEG_ENC_THUMBNAIL_HTAB	0x4	Huffman-Table in Thumbnail JPEG Header
JPEG_ENC_THUMBNAIL_JFIF	0x8	JFIF Header in Thumbnail JPEG Header

n Decode operation

Name	Value	Description			
Decode output format	Decode output format				
JPEG_DEC_PRIMARY_PLANAR_YUV	0x8021	Primary Decode output format : planar format			
JPEG_DEC_PRIMARY_PACKET_YUV422	0x0021	Primary Decode output format : planar YUV422			
JPEG_DEC_PRIMARY_PACKET_RGB555	0x04021	Primary Decode output format : packet RGB555			
JPEG_DEC_PRIMARY_PACKET_RGB565	0x06021	Primary Decode output format : packet RGB565			
JPEG_DEC_PRIMARY_PACKET_RGB888	0x14021	Primary Decode output format : packet RGB888			
JPEG_DEC_THUMBNAIL_PLANAR_YUV	0x8031	Thumbnail Decode output format : planar YUV			
JPEG_DEC_THUMBNAIL_PACKET_YUV422	0x0031	Thumbnail Decode output format : packet RGB555			
JPEG_DEC_THUMBNAIL_PACKET_RGB555	0x4031	Thumbnail Decode output format : packet RGB565			

JPEG format				
JPEG_DEC_YUV420	0x000	JPEG format is YUV420		
JPEG_DEC_YUV422	0x100	JPEG format is YUV422		
JPEG_DEC_YUV444	0x200	JPEG format is YUV444		
JPEG_DEC_YUV411	0x300	JPEG format is YUV411		
JPEG_DEC_GRAY	0x400	JPEG format is Gray		
JPEG_DEC_YUV422T	0x500	JPEG format is YUV422 Transport		

JPEG Library Property Definition

The JPEG library provide property structure to set JPEG property.

JPEG_INFO_T;

Name	Value	Description	
	JPEG_DEC_YUV420		
	JPEG_DEC_YUV422		
yuvformat	JPEG_DEC_YUV444	JPEG format (Decode only)	
yavioimat	JPEG_DEC_YUV411	or 20 format (2000ad orny)	
	JPEG_DEC_GRAY		
	JPEG_DEC_YUV422T		
width	< 8192	Decode Output width (Decode only)	
height	< 8192	Decode Output height (Decode only)	
jpeg_width	< 65535	JPEG width (Decode only)	
jpeg_height	< 65535	JPEG height (Decode only)	
stride	< 8192	Decode output Stride (Decode only)	
bufferend	Reserved	Reserved	
image_size[2]	< 2 ²⁴ -1	Encode Bitstream Size (Encode Only)	

The JPEG library provide window decode function, user can partially decode the JPEG image by MCU unit (16 pixels *16 pixels).

JPEG_WINDOW_DECODE_T

Name	Value	Description
u16StartMCUX	0~511	Decode MCU Horizontal Start index
u16StartMCUY	0~511	Decode MCU Vertical Start index
u16EndMCUX	0~511	Decode MCU Horizontal End index

u16EndMCUY	0~511	Decode MCU Vertical End index
u32Stride	< 8192	Decode output Stride

1.3. JPEG API

jpegOpen

Synopsis

INT jpegOpen(VOID)

Description

This function initializes the software resource, sets the engine clock and enables its interrupt

Parameter

None

Return Value

E_SUCCESS

- Always successes

Example

jpegOpen();

jpegClose

Synopsis

VOID jpegClose(VOID)

Description

Disable clock of JPEG engine and disable its interrupt

Parameter

None

Return Value

None

Example

jpegClose();

jpeglnit

Synopsis

VOID jpegInit(VOID)

Description

Reset JPEG engine and set default value to its registers

Parameter

None

Return Value

None

Example

jpegInit();

jpegGetInfo

Synopsis

```
VOID jpegGetInfo(JPEG_INFO_T *info)
```

Description

This function can get JPEG width and height after header decode complete and get JPEG bit stream size after encode complete.

Parameter

info

JPEG Data type pointer stores the returned JPEG header information

Return Value

None

Example

```
JPEG_INFO_T jpegInfo;
/* Get JPEG Header information */
jpegGetInfo(&jpegInfo);
```

jpegWait

Synopsis

INT jpegWait(VOID)

Description

After triggers JPEG engine, application need to wait the completion flag while JPEG engine completes it job.

Parameter

None

Return Value

E_FAIL Error happen

E_SUCCESS Action is done

Example

jpegWait();

jpegIsReady

Synopsis

BOOL jpegIsReady(VOID)

Description

The function can get the JPEG engine status.

Parameter

None

Return Value

TRUE Engine is ready

FALSE Engine is busy

Example

jpegIsReady ();

jpegSetQTAB

Synopsis

INT jpegSetQTAB(

PUINT8 puQTable0,
PUINT8 puQTable1,
PUINT8 puQTable2,
UINT8 u8num

);

Description

The function can specify the Quantization table

Parameter

puQTable0 Specify the address of Quantization table 0
puQTable1 Specify the address of Quantization table 1
puQTable2 Specify the address of Quantization table 2
u8num Specify the number of Quantization table

Return Value

E_SUCCESS: Success

E_JPEG_TIMEOUT : Set Quantization table timeout

Example

jpegSetQTAB(g_au8QTable0,g_au8QTable1, 0, 2);

jpegloctl

Synopsis

VOID jpegIoctl(UINT32 cmd, UINT32 arg0, UINT32 arg1)

Description

This function allows programmers configure JPEG engine, the supported command and arguments listed in the table below.

Command	Argument 0	Argument 1	comment
JPEG_IOCTL_SET_YADDR	JPEG Y component frame buffer address		Specify the JPEG Y component frame buffer address.
JPEG_IOCTL_SET_YSTRIDE	JPEG Y component frame buffer stride		Specify the JPEG Y component frame buffer stride
JPEG_IOCTL_SET_USTRIDE	JPEG U component frame buffer stride		Specify the JPEG U component frame buffer stride
JPEG_IOCTL_SET_VSTRIDE	JPEG V component frame buffer stride		Specify the JPEG V component frame buffer stride
JPEG_IOCTL_SET_BITSTRE AM_ADDR	JPEG bit stream buffer starting address		Specify the bit stream frame buffer starting address
JPEG_IOCTL_SET_SOURCE _IMAGE_HEIGHT	The encode source image height in pixel		Specify the encode source image height in pixel
JPEG_IOCTL_ENC_SET_HE ADER_CONTROL	JPEG_ENC_PRIMARY_DRI JPEG_ENC_PRIMARY_QTAB JPEG_ENC_PRIMARY_HTAB JPEG_ENC_PRIMARY_JFIF		Specify the header information includes in the encoding bit stream
JPEG_IOCTL_SET_DEFAULT _QTAB			Specify the Quantization table
JPEG_IOCTL_SET_DECODE	JPEG_DEC_PRIMARY_PLANAR_YUV		Specify the decoded image output

_MODE	JPEG_DEC_PRIMARY_PACKET_YUV42		format
	JPEG_DEC_PRIMARY_PACKET_RGB55		
	JPEG_DEC_PRIMARY_PACKET_RGB56		
	JPEG_DEC_PRIMARY_PACKET_RGB88		
JPEG_IOCTL_SET_ENCODE _MODE	JPEG_ENC_SOURCE_PLANAR JPEG_ENC_SOURCE_PACKET	JPEG_ENC_PRIMARY_ YUV420 JPEG_ENC_PRIMARY_ YUV422	Specify the encode source format and encoding image format
JPEG_IOCTL_SET_DIMENSI ON	Image height	Image width	Set the encode image dimension or decode output image dimension
JPEG_IOCTL_ENCODE_TRI GGER			Trigger the JPEG operation for encoding
JPEG_IOCTL_DECODE_TRI GGER			Trigger the JPEG operation for decoding
JPEG_IOCTL_WINDOW_DECODE	JPEG_WINDOW_DECODE_T		Enable window decode mode and set the decode window region
JPEG_IOCTL_SET_DECODE _STRIDE	Decode Output Stride (in pixel)		Specify the decode output stride
JPEG_IOCTL_SET_DECODE _DOWNSCALE	Scaled Height	Scaled Width	Set Decode downscale function
JPEG_IOCTL_SET_ENCODE _UPSCALE	Scaled Height	Scaled Width	Set Encode Upscale function
JPEG_IOCTL_SET_HEADER DECODE_CALBACKFUN	Header Decode Complete Call Back function pointer		Set Header Decode Complete Call Back function pointer
JPEG_IOCTL_SET_DECINPU TWAIT_CALBACKFUN	Decode Input Wait Call Back function pointer		Set Decode Input Wait Call Back function pointer
JPEG_IOCTL_ADJUST_QTAB	JPEG_ENC_PRIMARY JPEG_ENC_THUMBNAIL	Quantization-Table Adjustment and control values[0]	Set Quantization-Table Adjustment and control
JPEG_IOCTL_ENC_RESERV ED_FOR_SOFTWARE	Reserved size		Reserve memory space for user application
JPEG_IOCTL_SET_UADDR	Address for U Component		Set address for U Component
JPEG_IOCTL_SET_VADDR	Address for V Component		Set address for V Component
JPEG_IOCTL_SET_ENCODE _PRIMARY_RESTART_INTE RVAL	Primary Restart interval		Set Primary Restart interval size
JPEG_IOCTL_SET_ENCODE _THUMBNAIL_RESTART_INT ERVAL	Thumbnail Restart interval		Set Thumbnail Restart interval size
JPEG_IOCTL_GET_ENCODE _PRIMARY_RESTART_INTE RVAL	The pointer to store Primary Restart interval size		Get Primary Restart interval size
JPEG_IOCTL_GET_ENCODE _THUMBNAIL_RESTART_INT ERVAL	The pointer to store Thumbnail Restart interval size		Get Thumbnail Restart interval size
JPEG_IOCTL_SET_THUMBN AIL_DIMENSION	Thumbnail Heightt	Thumbnail Width	Set Thumbnail Dimension
JPEG_IOCTL_SET_ENCODE _SW_OFFSET	Offset		Set Software Encode Offset
JPEG_IOCTL_GET_THUMBN AIL_DIMENSION	The pointer to store Thumbnail Heightt	The pointer to store Thumbnail Width	Get Thumbnail Dimension

JPEG_IOCTL_GET_ENCODE _SW_OFFSET	The pointer to store Encode Offset		Get Software Encode Offset
JPEG_IOCTL_SET_ENCODE _PRIMARY_DOWNSCALE	Primary Downscaled Heightt	Primary Downscaled Width	Set Primary Encode downscale Size (Planar format only)
JPEG_IOCTL_SET_ENCODE _THUMBNAIL_DOWNSCALE	Thumbnail Downscaled Heightt	Thumbnail Downscaled Width	Set Thumbnail Encode downscale Size (Planar format only)
JPEG_IOCTL_SET_ENCODE _PRIMARY_ROTATE_RIGHT			Encode rotate right (Planar format only)
JPEG_IOCTL_SET_ENCODE _PRIMARY_ROTATE_LEFT			Encode rotate left (Planar format only)
JPEG_IOCTL_SET_ENCODE _PRIMARY_ROTATE_NORM AL			Encode no rotate (Planar format only)
JPEG_IOCTL_SET_DECOUT PUTWAIT_CALBACKFUN	Decode Output Wait call back function pointer		Set Decode Output Wait call back function (Packetformat Only)
JPEG_IOCTL_SET_DECOUT PUTWAIT	Data Output Address	Data Output Size	Set Decode Output Wait address and size
JPEG_IOCTL_GET_DECOUT PUTWAIT_ADDR	The pointer to store Decode Output Wait Address		Get Decode Output Wait Address
JPEG_IOCTL_GET_DECOUT PUTWAIT_SIZE	The pointer to store Decode Output Wait Size		Get Decode Output Wait Size

Parameter

cmd Command

arg0 First argument of the command

arg1 Second argument of the command

Return Value

None

Example

```
/* Set Downscale to QVGA */
jpegIoctl(JPEG_IOCTL_SET_DECODE_DOWNSCALE, 240, 320);

/* Set Decode Stride to Panel width (480 pixel)*/
jpegIoctl(JPEG_IOCTL_SET_DECODE_STRIDE, 480, 0);

/* Set Decoded Image Address */
jpegIoctl(JPEG_IOCTL_SET_YADDR, u32FrameBuffer, 0);

/* Set Bit stream Address */
jpegIoctl(JPEG_IOCTL_SET_BITSTREAM_ADDR, u32BitStream, 0);
```



```
/* Set Decode Input Wait mode (Input wait buffer is 8192) */
jpegIoctl(JPEG_IOCTL_SET_DECINPUTWAIT_CALBACKFUN, (UINT32)
JpegDecInputWait, 8192);
 /* Decode mode */
jpegIoctl(JPEG IOCTL SET DECODE MODE,
JPEG_DEC_PRIMARY_PACKET_YUV422, 0);
/* Set JPEG Header Decode End Call Back Function */
jpegIoctl(JPEG_IOCTL_SET_HEADERDECODE_CALBACKFUN, (UINT32)
JpegDecHeaderComplete, 0);
/* Trigger JPEG decoder */
jpegIoctl(JPEG_IOCTL_DECODE_TRIGGER, 0, 0);
/* Set Source Y/U/V Stride */
jpegIoctl(JPEG_IOCTL_SET_YSTRIDE, u16Width, 0);
jpegIoctl(JPEG_IOCTL_SET_USTRIDE, u16Width/2, 0);
jpegIoctl(JPEG_IOCTL_SET_VSTRIDE, u16Width/2, 0);
/* Primary Encode Image Width / Height */
jpegIoctl(JPEG_IOCTL_SET_DIMENSION, u16Height, u16Width);
/* Encode upscale 2x */
jpegIoctl(JPEG_IOCTL_SET_ENCODE_UPSCALE, u16Height * 2, u16Width * 2);
/* Set Encode Source Image Height */
jpegIoctl(JPEG_IOCTL_SET_SOURCE_IMAGE_HEIGHT, u16Height, 0);
/* Include Quantization-Table and Huffman-Table */
jpegIoctl(JPEG_IOCTL_ENC_SET_HEADER_CONTROL, JPEG_ENC_PRIMARY_QTAB
| JPEG_ENC_PRIMARY_HTAB, 0);
/* Use the default Quantization-table 0, Quantization-table 1 */
jpegIoctl(JPEG_IOCTL_SET_DEFAULT_QTAB, 0, 0);
```


Note [0]

8 bits Quantization-Table Adjustment and control value.

7	6	5	4	3	2	1	0
P_QADJUST				P_QVS			

Bits	Descriptions				
[7:4]	P_QADJUST	Primary Quantization-Table Adjustment If the sum of the position (x, y) of quantization-table is greater than P_QADJUST, the quantization value will be set to 127. Otherwise the value will keep as the original. 8x8 DCT block: x = 0~7, y = 0~7 if ((x+y) > P_QADJUST) => Q' = 127 else => Q' = Q			
[3:0]	P_QVS	Primary Quantization-Table Scaling Control Q' = (P_QVS[3]*2*Q)+(P_QVS[2]*Q)+(P_QVS[1]*Q/2)+(P_QVS[0]*Q/4)			

1.4. Example code

This demo code has sample code for "Normal Encode", "Encode Upscale", "Normal Decode", "Decode Downscale & Stride", "Decode Input Wait", and "Decode Output Wait" (write/read from SD Card). Please refer to the JPEG sample code of SDK Non-OS.

2. Revision History

Version	Date	Description
V1	Oct. 21, 2011	ı Created

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in equipment or systems intended for surgical implantation, atomic energy control instruments, aircraft or spacecraft instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for any other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications whereby failure could result or lead to personal injury, death or severe property or environmental damage.

Nuvoton customers using or selling these products for such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from their improper use or sales.