Graph Theory

A NPTEL Course

S.A. Choudum

Department of Mathematics

IIT Madras

Chennai, India

email: sac@iitm.ac.in

Notes to the Reader

- At a faster pace the course can be read in about 65 lectures and at a slower pace in about 100 lectures.
- By skipping certain topics (indicated as optional) the course can be read in about 45 lectures.
- Solve as many exercises as you can. Do not get bogged down on a single exercise for long hours. Revisit the exercises later.
- Those who would like to go for research are advised not to skip any topic.
- A list of the books/monographs is included. These books can be referred to for the proofs which we have not included.

Modules

1	Preliminaries (5 - 10 lectures)				
	1.1	Introduction: Discovery of graphs			
	1.2	Graphs	4		
		• Definitions	4		
		• Pictorial representation of a graph	4		
		• Isomorphic graphs	6		
		• Subgraphs	8		
		• Matrix representations of graphs	9		
		• Degree of a vertex	11		
		• Special graphs	13		
		• Complements	16		
		• Larger graphs from smaller graphs	16		
		Union	16		
		Sum	17		
		Cartesian Product	17		
		Composition	18		
	1.3	Graphic sequences	19		
		• Graph theoretic model of the LAN problem	20		
		• Havel-Hakimi criterion	21		
		Realization of a graphic sequence	22		

ii	MODULES

		•	Erdös-Gallai criterion	25
		Exerci	ises	28
2	Con	nectec	d graphs and shortest paths (4-8 lectures)	33
_			,	
	2.1	Walks	, trails, paths, cycles	34
	2.2	Conne	ected graphs	39
		•	Distance	43
		•	Cut-vertices and cut-edges	44
		•	Blocks	47
	2.3	Conne	ectivity	50
	2.4	Weigh	ted graphs and shortest paths	55
		•	Weighted graphs	56
		•	Dijkstra's shortest path algorithm	57
		•	Floyd-Warshall shortest path algorithm	61
		Exerci	ises	66
3	Tree	es (5 -	10 lectures)	71
	3.1	Definit	tions and characterizations	72
	3.2	Numb	er of trees (Optional)	75
		•	Cayley's formula	77
		•	Kirchoff-matrix-tree theorem	79
	3.3	Minim	num spanning trees	83
		•	Kruskal's algorithm	84
		•	Prim's algorithm	88
		Exerci	ises	90

MODULES	iii

Spe	cial classes of graphs(6 - 12 lectures)	07
•	cial classes of graphs (0 - 12 lectures)	97
4.1	Bipartite Graphs	99
4.2	Line Graphs (Optional)	103
4.3	Chordal Graphs (Optional)	107
	Exercises	114
Eul	erian Graphs (2 - 4 lectures)	119
5.1	Motivation and origin	120
5.2	Fleury's algorithm	123
5.3	Chinese Postman problem (Optional)	128
	Exercises	131
Har	nilton Graphs (4 - 8 lectures)	135
6.1	Introduction	136
6.2	Necessary conditions and sufficient conditions	137
	Exercises	146
Ind	ependent sets, coverings and matchings(8-16lectures)	151
7.1	Introduction	152
7.2	Independent sets and coverings: basic equations	152
7.3	Matchings in bipartite graphs	159
	• Hall's Theorem	160
	• König's Theorem	163
7.4	Perfect matchings in graphs	167
7.5	Greedy and approximation algorithms (Optional)	172
	5.1 5.2 5.3 Har 6.1 6.2 Inde 7.1 7.2 7.3	Eulerian Graphs (2 - 4 lectures) 5.1 Motivation and origin

•	MODILLEG
1V	MODULES

		Exercises	176		
8	8 Vertex Colorings (4 - 8 lectures)				
	8.1 Basic definitions				
	8.2	Cliques and chromatic number	182		
		• Mycielski's theorem	182		
	8.3	Greedy coloring algorithm	184		
		\bullet Coloring of chordal graphs (Optional)	187		
		• Brooks theorem (Optional)	188		
		Exercises	191		
9	Edg	e Colorings (8 - 16 lectures)	195		
	9.1	Introduction and Basics	196		
	9.2	Gupta-Vizing theorem	198		
	9.3	Class-1 and Class-2 graphs	201		
		• Edge-coloring of bipartite graphs	202		
		• Class-2 graphs	205		
		\bullet	208		
	9.4	A scheduling problem and equitable edge-coloring (Optional)	210		
		Exercises	214		
10	Plar	nar Graphs (10 - 20 lectures)	217		
	10.1	Basic concepts	218		
	10.2	Euler's formula and its consequences	223		
	10.3	Polyhedrons and planar graphs (Optional)	226		

MODULES	V

	10.4	Characterizations of planar graphs	231
		• Subdivisions and Kuratowski's characterization	231
		• Minors and Wagner's theorem	241
	10.5	Planarity testing (Optional)	242
		• D-M-P-planarity algorithm	243
	10.6	5-Color-theorem	247
		Exercises	250
11	Dire	ected Graphs (8 - 16 lectures)	255
	11.1	Basic concepts	256
		• Underlying graph of a digraph	257
		• Out-degrees and in-degrees	258
		• Isomorphism	259
	11.2	Directed walks, paths and cycles	259
		• Connectivity in digraphs	261
	11.3	Orientation of a graph	265
	11.4	Eulerian and Hamilton digraphs	268
		• Eulerian digraphs	268
		• Hamilton digraphs	269
	11.5	Tournaments	272
		Exercises	278
Li	st of	Books	283
		• Old Classics	283
		Text Books	283

vi		MODULES		
	•	Books on Selected Topics		