CS Summer

Online Algorithms

Problems

Authors: Shaleen Baral

Contents

1.	. Introduction	. 2
	1.1. Komm 1.1	. 2
	1.2. Komm 1.2	
	13 Komm 13	2

1. Introduction

1.1. Komm 1.1

No, this does not change the analysis. The analysis for the approximation ratio comes from showing $\mathsf{ALG} \geq \frac{W}{2}$. The proposed changes to the algorithm only incrases the value of ALG for any instance, so this lower bound is still effective. Furthermore, the family of instances provided to show that r=2 is tight for the original algorithm also shows that r=2 is tight for this algorithm.

1.2. Komm 1.2

Consider the following instance on $K_4.$

Then the approximation ratio is,

$$\frac{\mathrm{ALG}}{\mathrm{OPT}} = \frac{3+\gamma}{6} = \frac{1}{2} + \frac{\gamma}{6}.$$

By making γ arbitrarily large, we may then make the approximation ratio arbitrarily large.

1.3. Komm 1.3

We prove this by induction. Let P(k) be the statement that all edges added in the first k rounds are in the minimum spanning tree.