电子技术实验

实验报告

(2021 - 2022 学年度 秋季学期)

实验名称 _____实验五脉冲波形发生电路的设计____

姓名刘若涵学号2020011126班级自 05 班教师陈莉萍时间2021 年 12 月

一、 实验内容

(一) 必做任务

1. 整体电路图

2. 各模块工作原理

该电路可分为红外光信号接收与转换模块,定时模块。

(1) 红外光信号接收与转换模块

该模块可分为输入电路部分和微分电路部分。

a) 输入电路

该模块由红外发射管、光电三极管、施密特触发器构成,将检测到物体通过产生的光信号转化为驱动后续电路的电信号。当没有物体遮挡光路时,光电三极管接收到的红外光较强,电流较大,输出低电平。当有物体遮挡光路时,光电三极管接收到的红外光较弱,电流较小,输出高电平。但由于光电三极管的输出为模拟量,电压不一定能满足后端驱动要求,且噪声较大,因此后接施密特触发器,将信号转化为稳定而有效的高低电平。

R1 的选取要考虑两个因素。首先 R1 不能过小,否则红外发射管上的电流过大容易烧毁;此外 R1 也不能过大,否则产生的电流不足以使红外发射管发出红外光。即应满足 $\frac{V_{CC}-V_D}{I_{min}} < R_1 < \frac{V_{CC}-V_D}{I_{min}}$ 。本实验中选用 R1 = 1k Ω 。

R2 的选取需要满足: 当光电三极管导通时,输出理想的低电平; 光电三极管截止时,上拉出理想的高电平。设 R2 上经过的电流为 i2,则 $V_{cc} - i_2 R_2 \leq V_{LL}$ 、 $V_{cc} - i_2 R_2 \geq V_{LL}$ 、查阅数据手册后得知,施密特触发器在 $V_{cc} = 5V$ 时, $V_{LL} = 2.0V$ 、 $V_{LH} = 3.15V$ 。当有物体遮挡光路时,输出高电平,i2 = $I_{CEO} \approx 0$ mA,当没有物体遮挡光路时,输出低电平,i2 = ic,ic 取 1mA。带入得 R2 > 3k Ω 。本实验中取 R2 = 10k Ω 。

b) 微分电路

为了满足定时模块输入要求,避免触发脉冲的宽度过长导致 555 定时器内 S-R 锁存器工作在不稳定状态,输入电路后接微分电路,将信号转化为很窄的脉冲。当施密特触发器输出由高电平变为低电平时,由于电容 C3 两端电压不能突变,电容另一端也会变

为低电平,而这时电容 C3 会通过电阻 R3 充电,一段时间后微分电路输出会回到高电平。这样就给后级提供了一个负脉冲,而与输入端是否已经回到高电平无关。

为保证微分电路能给后级一个有效的脉冲,且输出信号脉宽小于定时电路输出信号的 tw,需满足 $\mathbf{t}_{\text{setup}} < 5R_3C_3 < t_w$ 。其中系数 5 的选取是由于 RC 电路的过渡过程可视为在 3~5 个时间常数后结束, $\mathbf{t}_{\text{setup}}$ 为后级电路所需的建立时间,为 ns 量级,而 tw > 1s,可取 R3 = 100k Ω , C3 = 470nF。

(2) 定时模块

本模块是由 555 定时器接成的负脉冲触发的单稳态电路。稳态时输入端 TR 为高电平,内部三极管导通,输出端 VOUT 为低电平,DIS 和 THR 端为低电平电容 C2 未充电。当输入端变为低电平时,输出端 VOUT 瞬间变为高电平,内部三极管截止,由 R4 上拉,电容 C2 通过 R4 开始充电。当电容充电到 2/3 VCC 时,且输入端 TR 已经回到了高电平,则输出端变为低电平。从而实现了负脉冲到来时 LED 灯被点亮,延时 1~5 秒再自动熄灭的功能。

 $t_w = R_4 C_2 ln \frac{v_{cc-0}}{v_{cc-\frac{2}{3}} v_{cc}} = R_4 C_2 ln3$,为满足 tw 在 1~5s 之内,可取 R4 = 6.8MΩ,C2 = 470nF。计算得 tw = 3.5s,满足要求。

3. 各模块输入输出波形

(1) 红外光信号接收与转换模块

注:通道二探头应为10:1

如图所示,一通道为光电三极管输出电压波形,二通道为微分电路输出波形。可见物体遮挡光路时光电三极管输出约 4V 高电平,虽可驱动后端电路,但不够理想。经过施密特触发器和微分电路处理后的信号,无物体通过时为 5V 高电平,有物体通过时产生一个的最低为 0V 窄负脉冲,脉冲时长大约为 250ms,小于 1s,符合单稳态电路输入要求。物体通过后出现一个最高为 6V 的小正脉冲,不影响后续电路。

(2) 定时模块

注: 通道二探头应为 10: 1

如图所示,一通道为 555 定时器输入端 TR 电压波形,二通道为 555 定时器输出端 VOUT 电压波形。输入端 TR 电压为微分电路输出的触发脉冲。可见在单稳态电路输出需要变为低电平前,脉冲信号已恢复高电平。

(二) 选做任务

1. 整体电路图

2. 各模块工作原理

该电路较必做任务增加计数模块,并对定时模块进行改进。

(1) 定时模块

为了实现重复触发,该模块增加放电电路。使用施密特反相器和 NPN 型三极管接成。前端微分电路产生的负脉冲经施密特反相器转化为正脉冲,正脉冲使三极管导通,电容 C2 经三极管放电,可以实现重复触发。

(2) 计数模块

该电路由十六进制计数器 74HC161 改装而成,实现对通过物体的计数功能。74HC161 经过同步置数法该装成十进制计数器, Q3Q2Q1Q0 接面包板数码管,显示通过物体数目

的个位。将光电三极管的输出串联两个施密特反相器,对信号的整形后,接入到计数器的 CLK 端。物体通过后产生的上升沿触发计数器,进行计数。555 定时器 VOUT 端接计数器置零端,实现完成一次计数过程后清零。

二、实验总结

1. 脉冲波形发生电路的设计步骤

- (1) 根据电路所需功能划分模块,分析每一模块输入输出信号波形。
- (2) 查阅数据手册,选择电子元件,明确工作原理。
- (3) 根据设计目标选择合适电阻电容(具体方法见实验内容部分),画出电路图。
- (4) 对输入输出波形仿真。

2. 脉冲波形发生电路的调试步骤

- (1) 测量电路输入输出波形,观察是否符合要求。
- (2) 按照电路模块的次序从输入到输出依次检查波形,找到不符合预期的模块,检查电路搭接,调整电容电阻值。
 - (3) 可利用外接稳定的脉冲源提供输入,检查输出。

3. 其他功能电路的设计和调试步骤

- (1) 根据电路所需功能划分模块,分析每一模块输入输出信号波形。
- (2) 查阅数据手册,选择电子元件,明确工作原理。
- (3) 根据设计目标选择合适电阻电容(具体方法见实验内容部分),画出电路图。
- (4) 对输入输出波形仿真。
- (5) 搭接电路。
- (6) 分模块测量输入输出电压,判断是否符合预期。
- (7) 对不符合预期的模块检查电路搭接和电容电阻选取。

4. 实验中遇到的问题及解决方法

- (1) 光电三极管的输出信号接到 74HC161 计数器, 计数器并不计数, 可能电压不足以驱动计数器, 串联两个施密特反相器后接入, 计数器正常工作。
 - (2) 微分电路波形只有一条竖线,显示不出。调节 Horizontal 旋钮,放大水平定标。

三、 思考题

1. R1 的选取应考虑哪些因素? 这次实验中 D1 导通的正向电流是多少、导通压降是多少?

答: R1 的选取要考虑两个因素。首先 R1 不能过小,否则红外发射管上的电流过大容易烧毁; 此外 R1 也不能过大,否则产生的电流不足以使红外发射管发出红外光。即应满足 $\frac{Vcc-V_D}{I_{max}}$ < R_1 < $\frac{Vcc-V_D}{I_{min}}$ 。其中 V_D 是红外发射管的导通压降,Imax 表示可承受的最大电流,Imin 表示使红外发射管发光的最小电流。本实验中测得 D1 的导通正向电流为 4.96mA,导通压降为 1.132V。

2. 请简述 R2 选取原则。在实验中使用的是 74HC 系列器件,若将其更换为 74LS 系列器件 R2 取值会发生什么变化。

答: R2 的选取需要满足: 当光电三极管导通时,输出理想的低电平; 光电三极管截止时,上拉出理想的高电平。设 R2 上经过的电流为 i2,则 $V_{\rm CC}-i_2R_2 \leqslant V_{\rm IL}$ 、 $V_{\rm CC}-i_2R_2 \geqslant V_{\rm IL}$ 。由于输入电路后接施密特触发器,查阅数据手册后得知, $V_{\rm IL}$ (HC) = 2.0 V、 $V_{\rm IH}$ (HC) = 3.15 V、 $V_{\rm IL}$ (LS) = 1.1 V、 $V_{\rm IH}$ (LS) = 2.0 V。当输出为高电平时,TTL 电路 T1 截止,HC 和 TTL 电路的 i2 均为 $i_{\rm CEO}$, $i_{\rm IH}$ (HC) > $i_{\rm IH}$ (LS) ,则 LS 电路 R2 上限较 HC 电路大。当输出为低电平时,TTL 电路 T1 导通,有导通电流 $i_{\rm In}=-0.18$ mA,TTL 电路 $i_{\rm IE}=i_{\rm IL}=i_{\rm IL}=i_{$