Multi-variable Quantification of BDDs in External Memory using Nested Sweeping

Steffan Christ Sølvsten, Jaco van de Pol

TACAS 2025

(a) $(x_0 \wedge x_1 \wedge x_3) \vee (x_2 \oplus x_3)$

Theorem (Bryant '86)Given a fixed variable order, a (Reduced Ordered)
Binary Decision Diagram is a unique canonical representation of a Boolean function.

(a) $(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$

Theorem (Bryant '86) Given BDDs ϕ and ψ , $\phi \odot \psi$ is computible in $\mathcal{O}(|\phi|\cdot|\psi|)$ time.

Theorem (Bryant '86)

Given BDD ϕ and Boolean b, $\phi[x_i \mapsto b]$ is computible in $\mathcal{O}(|\phi|)$ time.

Corollary

Given BDD ϕ , $\exists x_i$. $\phi(x)$ requires $\mathcal{O}(|\phi|^2)$ time.

Proof.

$$\exists x_i.\phi(x_i) \equiv \phi[x_i \mapsto \bot] \lor \phi[x_i \mapsto \top]$$

 $\exists x_i. \ \phi(x_i)$

 $\exists x_i. \ \phi(x_i)$

Theorem (Lars Arge '96)

Given BDDs ϕ and ψ , $\phi \odot \psi$ is computible in $\mathcal{O}(\operatorname{sort}(|\phi| \cdot |\psi|))$ time and I/Os.

Theorem (Sølvsten et al. '22) Given BDD ϕ and Boolean b, $\phi[x_i \mapsto b]$ is computible in $\mathcal{O}(\mathsf{sort}(|\phi|))$ time and I/Os.

 $\exists x_i. \ \phi(x_i)$

Theorem (Lars Arge '96)

Given BDDs ϕ and ψ , $\phi \odot \psi$ is computible in $\mathcal{O}(\operatorname{sort}(|\phi| \cdot |\psi|))$ time and I/Os.

Theorem (Sølvsten et al. '22) Given BDD ϕ and Boolean b, $\phi[x_i \mapsto b]$ is computible in $\mathcal{O}(\mathsf{sort}(|\phi|))$ time and I/Os.

Corollary (Søelvsten et al. '22)

Given $\overrightarrow{BDD} \phi$, the time and I/O complexity of quantification is

- $\mathcal{O}(\operatorname{sort}(|\phi|^2))$ for a single variable.
- $\mathcal{O}(\operatorname{sort}(|\phi|^{2^k}))$ for k variables.

Adiar

I/O-efficient Decision Diagrams

github.com/ssoelvsten/adiar

 $\exists \vec{x}. \ \phi(\vec{x})$

Theorem (Sølvsten et al. '25)

Given BDD ϕ , the quantification of k variables, $\exists \vec{x}. \ \phi(\vec{x})$, is computible in $\mathcal{O}(\operatorname{sort}(|\phi|^{2^k}))$ time and I/Os.

Benchmarks

Garden-of-Eden

Given dimensions N_1 , $N_2 \in \mathbb{N}$, determine whether there exists in Conway's *Game of Life* an initial state of size $N_1 \times N_2$ that is a *Garden of Eden*, i.e. is otherwise unreachable.

Quantified Boolean Formula

Determine whether a Boolean formula $\exists \vec{x_1} \forall \vec{x_2} \dots \exists \vec{x_k}. \ \phi(\vec{x_1}, \vec{x_2}, \dots, \vec{x_k})$ (or any order of quantifiers) evaluates to \top or \bot . For inputs, we use the two-player games from: Irfansha Shaik and Jaco van de Pol: "Concise QBF encodings for games on a grid (extended version)". arXiv (2023).

Benchmarks: Single vs. Nested Quantification

Benchmarks: Comparison to CAL

Benchmarks: Comparison to BuDDy and CUDD

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

<u>Adiar</u>

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

Nested Sweeping Framework

New BDD algorithms:

- O Functional Composition
- O Variable Reordering

Other Decision Diagrams:

- O Quantum Multi-valued Decision Diagrams
- O Polynomial Boolean Rings

	Single Quantification		Nested Sweeping	
	LOC	# Tests	LOC	# Tests
nested_sweeping.h	_	-	1287	104
quantify	548	84	1152	152
core/	326	_	904	_
bdd/	122	64	157	108
zdd/	100	20	20	44

