Package 'exageostatr'

December 28, 2022

SystemRequirements GNU Make, GNU CMake, GCC Compiler Suite (C and Fortran), nlopt (>= 2.4.2 http://ab-initio.mit.edu), lapack (https://github.com/xianyi/OpenBLAS/releases), lapacke (https://github.com/xianyi/OpenBLAS/releases), blas (https://github.com/xianyi/OpenBLAS/releases), cblas (https://github.com/xianyi/OpenBLAS/releases), hwloc (>=1.11.5 https://www.open-mpi.org), gsl (>= 2.4 https://ftp.gnu.org)

Version 1.2.0

Date 2022-03-14

Title R Package Demonstrates the R / C Language Interface for Exageostat

Author Sameh Abdulah <sameh.abdulah@kaust.edu.sa>

Maintainer Sameh Abdulah <sameh.abdulah@kaust.edu.sa>

Depends R (>= 3.5.0), assertthat (>= 0.2.1), MASS

Description An R-wrapper for ExaGeoStat: a parallel high performance unified framework for geostatistics on manycore systems. Its abbreviation stands for Exascale Geostatistics. The framework aims at optimizing the likelihood function for a given spatial data to provide an efficient way to predict missing observations. The framework targets many-core systems: clusters of CPUs and GPUs.

License GPL (>= 2)

URL https://www.github.com/ecrc/exageostatr

OS_type unix

RoxygenNote 7.2.2

NeedsCompilation yes

StagedInstall no

Encoding UTF-8

2 arg_check_mle

R topics documented:

arg_check_mle	2
arg_check_predict	3
bm	3
bm_comp	4
	5
check_kernel	5
	6
	6
	7
<u>*</u>	
c –	
· ·	
· · · · · · · · · · · · · · · · · · ·	
•	
ui_iiie	13
	17
	arg_check_predict

Check the MLE function args

Description

arg_check_mle

Check the MLE function args

Usage

```
arg_check_mle(data, dmetric, optimization)
```

Arguments

data A list of x vector (x-dim), y vector (y-dim), and z observation vector

dmetric A string - distance metric - "euclidean" or "great_circle"

optimization A list of opt lb values (clb), opt ub values (cub), tol, max_iters

Value

dmetric as integer

arg_check_predict 3

arg_check_predict

Check the prediction function args

Description

Check the prediction function args

Usage

```
arg_check_predict(data_train, data_test, theta, dmetric)
```

Arguments

data_train A list of x vector (x-dim), y vector (y-dim), and z observation vector

data_test A list of x vector (x-dim) and y vector (y-dim)

dmetric A string - distance metric - "euclidean" or "great_circle"

theta: list of n parameters

Value

dmetric as integer

bm

Benchmark function to run a given FUN on a set of synthetic datasets generated by ExaGeoStatR

Description

Benchmark function to run a given FUN on a set of synthetic datasets generated by ExaGeoStatR

```
bm(
    FUN,
    dmetric = "euclidean",
    n = 400,
    min_seed = 0,
    max_seed = 9,
    ts = 320,
    lts = 0,
    ncores = 4,
    ngpus = 0,
    pgrid = 1,
    qgrid = 1
)
```

4 bm_comp

Arguments

FUN: A predefined function to perform both modeling and prediction operations

dmetric: A string - distance metric - "euclidean" or "great_circle"

n: An integer - numer of spatial locations

min_seed: An integer - initial seed to generate the synthetic datasets

max_seed: An integer - last seed to generate the synthetic datasets

ncores: An integer - numer of CPU cores to use

ngpus: An integer - numer of GPUs to use

Value

a list of prediction errors (MSE_vec, RMSE_vec, MAE_vec, MSLE_vec)

bm_comp Running KAUST 2021 competition using the Benchmark function

Benchmark function to run a given FUN on KAUST 2021 competition

datasets generated by ExaGeoStatR

Description

Running KAUST 2021 competition using the Benchmark function Benchmark function to run a given FUN on KAUST 2021 competition datasets generated by ExaGeoStatR

Usage

```
bm_comp(FUN, Data_train_list, Data_predict_list)
```

Arguments

FUN: A predefined function to perform both modeling and prediction operations

Data_train_list:

A list of trainig data

Data_predict_list:

A list of predict data

Value

a list of prediction errors (MS, RMSE, MAE, MSLE) and the estimate of the parameters (sigma, beta, nu, nuggets)

check_dmetric 5

check_dmetric

Check the distance metric input to be "euclidean" or "great_circle"

Description

Check the distance metric input to be "euclidean" or "great_circle"

Usage

```
check_dmetric(dmetric)
```

Arguments

dmetric:

string

Value

dmetric as integer

check_kernel

Check the statistical kernel to be in ("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st")

Description

```
Check the statistical kernel to be in ("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st")
```

Usage

```
check_kernel(kernel)
```

Arguments

kernel:

string

Value

kernel as integer

6 dst_mle

check_theta

Check the statistical parameter vector (theta)

Description

Check the statistical parameter vector (theta)

Usage

```
check_theta(theta)
```

Arguments

theta:

list of n parameters

Value

N/A

dst_mle

Maximum Likelihood Evaluation (MLE) using Diagonal Super-tile (DST) method

Description

Maximum Likelihood Evaluation (MLE) using Diagonal Super-tile (DST) method

Usage

```
dst_mle(
   data = list(x, y, z),
   kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
   dst_band = 2,
   dmetric = c("euclidean", "great_circle"),
   optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-04,
        max_iters = 100)
)
```

Arguments

data A list of x vector (x-dim), y vector (y-dim), and z observation vector

dst_band A number - Diagonal Super-Tile (DST) diagonal thick
dmetric A string - distance metric - "euclidean" or "great_circle"

 $optimization \qquad A \ list \ of \ opt \ lb \ (clb), \ opt \ ub \ (cub), \ tol, \ max_iters$

kernel: string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-

st", "bgsm-st")

exact_mle 7

Value

vector of three values (theta1, theta2, theta3)

Examples

exact_mle

Maximum Likelihood Evaluation using exact method

Description

Maximum Likelihood Evaluation using exact method

Usage

```
exact_mle(
  data = list(x, y, z),
  kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
  dmetric = c("euclidean", "great_circle"),
  optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-04,
      max_iters = 100)
)
```

Arguments

data A list of x vector (x-dim), y vector (y-dim), and z observation vector dmetric A string - distance metric - "euclidean" or "great_circle"

optimization A list of opt lb values (clb), opt ub values (cub), tol, max_iters

Value

vector of three values (theta1, theta2, theta3)

8 exact_mloe_mmom

Examples

```
seed <- 0 ## Initial seed to generate XY locs.
sigma_sq <- 1 ## Initial variance.
beta <- 0.1 ## Initial range.
nu <- 0.5 ## Initial smoothness.
dmetric <- "euclidean" ## "euclidean" or "great_circle" distance.
n <- 144 ## The number of locations (n must be a square number, n=m^2).
exageostat_init(hardware = list(ncores = 2, ngpus = 0, ts = 320, lts = 0, pgrid = 1, qgrid = 1)) ## Initiate exageostat
data <- simulate_data_exact(sigma_sq, beta, nu, dmetric, n, seed) ## Generate Z observation vector
## Estimate MLE parameters (Exact)
result <- exact_mle(data, dmetric, optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-4, material print(result)
exageostat_finalize() ## Finalize exageostat instance</pre>
```

exact_mloe_mmom

Mean Misspecification of the Mean Square Error (MMOM) and Mean Loss of Efficiency (MLOE) using exact method

Description

Mean Misspecification of the Mean Square Error (MMOM) and Mean Loss of Efficiency (MLOE) using exact method

Usage

```
exact_mloe_mmom(
  data = list(x_train, y_train, z_train, x_test, y_test),
  kernel = c("ugsm-s", "ugsmn-s", "ugnsm-s", "bgsfm-s", "bgsbm-s", "ugsm-s", "ugsm-st"),
  dmetric = c("euclidean", "great_circle"),
  est_theta,
  true_theta,
  computation = 0
)
```

Arguments

dmetric string - distance metric - "euclidean" or "great_circle"

data: list of training and testing vectors

kernel: string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "tgspm-s", "ugsm-

st", "bgsm-st")

est_theta: list of n parameters (estimated theta)
true_theta: list of n parameters (true theta)
computation: integer - should be always dense

Value

vector of MLOE/MMOM values

exact_predict 9

exact_predict	Perform prediction on testing data using training data and pre-
	estimated theta vector

Description

Perform prediction on testing data using training data and pre-estimated theta vector

Usage

```
exact_predict(
  data_train = list(x, y, z),
  data_test = list(x, y),
kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgsfm-s", "ugsm-s", "ugsm-s"),
  dmetric = c("euclidean", "great_circle"),
  theta,
  computation = 0
)
```

Arguments

dmetric string - distance metric - "euclidean" or "great_circle" data_train: list of training data

data_test: list of testing data

kernel: string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "tgspm-s", "ugsm-s", "ugsm-s"

st", "bgsm-st")

theta: list of n parameters (estimated theta)

computation: integer - computation method

Value

list of predicted values

exageostat_finalize Finalize the current instance of ExaGeoStatR

Description

Finalize the current instance of ExaGeoStatR

```
exageostat_finalize()
```

fisher_general

Value

N/A

Examples

```
exageostat_finalize()
```

exageostat_init

Initial an instance of ExaGeoStatR

Description

Initial an instance of ExaGeoStatR

Usage

```
exageostat_init(
  hardware = list(ncores = 2, ngpus = 0, ts = 320, lts = 0, pgrid = 1, qgrid = 1)
)
```

Arguments

hardware

A list of ncores, ngpus, tile size, pgrid, and qgrid

Value

N/A

Examples

```
exageostat_init(hardware = list(ncores = 2, ngpus = 0, ts = 320, lts = 0, pgrid = 1, qgrid = 1))
exageostat_init(hardware = list(ncores = 1, ngpus = 2, ts = 320, lts = 0, pgrid = 1, qgrid = 1))
exageostat_init(hardware = list(ncores = 26, ngpus = 0, ts = 320, lts = 0, pgrid = 3, qgrid = 4))
```

fisher_general

Compute the Fisher information matrix for a given data and theta vector

Description

Compute the Fisher information matrix for a given data and theta vector

```
fisher_general(data = list(x, y), theta, dmetric)
```

mean_absolute_error 11

Arguments

dmetric string - distance metric - "euclidean" or "great_circle"

data: list of data vectors, x, and y

theta: list of n parameters (estimated theta)

Value

list of fisher matrix elements

mean_absolute_error

Mean Absolute Error used as an assessment tool

Description

Mean Absolute Error used as an assessment tool

Usage

```
mean_absolute_error(y, ypre)
```

Arguments

y<- c(5:20) - vector representing number of true values

ypre<- predict($lm(y \sim x)$) - vector denoting values of number of y predicted values.

Value

MAE is the average of the absolute error

```
mean_squared_logarithmic_error
```

Mean Absolute Error used as an assessment tool

Description

Mean Absolute Error used as an assessment tool

Usage

```
mean_squared_logarithmic_error(y, ypre)
```

Arguments

```
y<- c(5:20) - vector representing number of true values
```

ypre<- predict(lm(y \sim x)) - vector denoting values of number of y predicted values

12 plot.Krig

Value

MSLE is measure of the ratio between the true and predicted values

mean_square_error

Mean Square Error used as an assessment tool

Description

Mean Square Error used as an assessment tool

Usage

```
mean_square_error(y, ypre)
```

Arguments

```
y<- c(5:20) - vector representing number of true values

ypre<- predict(lm(y \sim x)) - vector denoting values of number of y predicted values.
```

Value

MSE is the is the average squares of the "errors"

plot.Krig	This function plots the the diagnostics and summaries of kriging one
	thing to note here is that x is Krig or sreg object. need to figure out
	$x."plot.Krig" \leftarrow function(x, digits = 4, which = 1:4,$

Description

This function plots the diagnostics and summaries of kriging one thing to note here is that x is Krig or sreg object. need to figure out x."plot.Krig" <- function(x, digits = 4, which = 1:4,

```
## S3 method for class 'Krig'
plot(x, digits = 4, which = 1:4, ...)
```

```
root_mean_squared_error
```

Root Mean Squared Error used as an assessment tool

Description

Root Mean Squared Error used as an assessment tool

Usage

```
root_mean_squared_error(y, ypre)
```

Arguments

```
y<- c(5:20) - vector representing number of true values
ypre<- predict(lm(y \sim x)) - vector denoting values of number of y predicted values.
```

Value

RMSE is the square root of the mean of the square of all of the error

```
simulate\_data\_exact Simulate Geospatial data (x, y, z)
```

Description

```
Simulate Geospatial data (x, y, z)
```

Usage

```
simulate_data_exact(
  kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
  theta,
  dmetric = c("euclidean", "great_circle"),
  n,
  seed = 0
)
```

Arguments

```
dmetric A string - distance metric - "euclidean" or "great_circle"

n A number - data size

seed A number - seed of random generation

kernel: string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "tgspm-s", "ugsm-st", "bgsm-st")

theta: list of n parameters (estimated theta)
```

14 simulate_obs_exact

Value

```
a list of of three vectors (x, y, z)
```

Examples

simulate_obs_exact

Simulate Geospatial data given (x, y) locations

Description

Simulate Geospatial data given (x, y) locations

Usage

```
simulate_obs_exact(
    x,
    y,
    kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
    theta,
    dmetric = c("euclidean", "great_circle")
)
```

Arguments

```
    x: A vector (x-dim)
    y: A vector (y-dim)
    kernel: string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "tgspm-s", "ugsm-st", "bgsm-st")
    theta: list of n parameters (estimated theta)
    dmetric: A string - distance metric - "euclidean" or "great_circle"
```

Value

```
a list of three vectors (x, y, z)
```

splitting_data 15

Examples

splitting_data

Spliting data into training and testing datasets

Usage

```
splitting_data(Datatray, k = 10, n = 400)
```

Arguments

Datatray: the full dataset

k: testing dataset portion k

\itemn:number of spatial locations a list of training and testing datasets

Spliting data into training and testing datasets

tlr_mle

Maximum Likelihood Evaluation (MLE) using Tile Low-Rank (TLR) method

Description

Maximum Likelihood Evaluation (MLE) using Tile Low-Rank (TLR) method

```
tlr_mle(
    data = list(x, y, z),
    kernel = c("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-st", "bgsm-st"),
    tlr_acc = 9,
    tlr_maxrank = 400,
    dmetric = c("euclidean", "great_circle"),
    optimization = list(clb = c(0.001, 0.001, 0.001), cub = c(5, 5, 5), tol = 1e-04,
        max_iters = 100)
)
```

16 tlr_mle

Arguments

data A list of x vector (x-dim), y vector (y-dim), and z observation vector

tlr_acc A number - TLR accuracy level

tlr_maxrank A string - TLR max rank

dmetric A string - distance metric - "euclidean" or "great_circle"

optimization A list of opt lb values (clb), opt ub values (cub), tol, max_iters

kernel: string - kernel ("ugsm-s", "ugsmn-s", "bgsfm-s", "bgspm-s", "tgspm-s", "ugsm-

st", "bgsm-st")

Value

vector of three values (theta1, theta2, theta3)

Examples

Index

```
arg_check_mle, 2
arg_check_predict, 3
bm, 3
bm_comp, 4
\verb|check_dmetric|, 5|
check_kernel, 5
check_theta, 6
dst_mle, 6
exact_mle, 7
exact_mloe_mmom, 8
exact_predict, 9
{\tt exageostat\_finalize}, 9
\verb|exageostat_init|, 10
{\tt fisher\_general}, {\tt 10}
mean_absolute_error, 11
mean_square_error, 12
{\tt mean\_squared\_logarithmic\_error}, 11
plot.Krig, 12
root_mean_squared_error, 13
simulate_data_exact, 13
simulate_obs_exact, 14
{\tt splitting\_data}, {\tt 15}
tlr_mle, 15
```