Formulaire d'Électrotechnique

 $Thierry\ Treyer\ thierry.treyer@epfl.ch$

26 novembre 2015

1 Cheatsheet

Formules	Résistance	Capacité	${\bf Inductance}$
Grandeur Tension	R [Ω]	C [F]	L [H]
	U = RI	$U = \int_0^T \frac{I}{C} dt$	$U = L \frac{dI}{dt}$
Courant			
	$I = \frac{U}{R}$	$I = \frac{dQ}{dt} = C\frac{dU}{dt}$	$I = \int_0^T \frac{U}{L} dt$
Série			
	$R_{equ} = \sum_{i=1}^{n} R_i$	$C_{equ} = \frac{1}{\sum_{i=1}^{n} \frac{1}{C_i}}$	$L_{equ} = \sum_{i=1}^{n} L_i$
Parallèle			
	$R_{equ} = \frac{1}{\sum_{i=1}^{n} \frac{1}{R_i}}$	$C_{equ} = \sum_{i=1}^{n} C_i$	$L_{equ} = \frac{1}{\sum_{i=1}^{n} \frac{1}{L_i}}$
Phaseur			
	$\underline{Z} = R$	$\underline{Z} = \frac{1}{j\omega C}$	$\underline{Z}=j\omega L$

Table 1: Résumé des formules

2 Régime Sinusoïdal

2.1 Formules

Valeur moyenne

$$U_{moy} = \frac{1}{T} \int_0^T u(t)dt$$

Valeur efficace

$$U_{eff} = \sqrt{\frac{1}{T} \int_0^T u^2(t) dt}$$

Mémo : linéarisation de cos^2 et sin^2

$$cos^{2}(x) = \frac{1 + cos(2x)}{2}$$
 $sin^{2}(x) = \frac{1 - cos(2x)}{2}$

Valeur max ou valeur de crête

$$U_{max} = max\{u(t)\}$$

Valeur min

$$U_{min} = min\{u(t)\}$$

Puissance

$$P_R = UI = \frac{U^2}{R} = RI^2$$

Formule d'Euler

$$z=a+jb=re^{j\theta}=r\cos\theta+jr\sin\theta$$

2.2 Valeurs efficaces des signaux courants

Sinusoïdal Triangulaire Carré
$$U_{eff}=\frac{U_{max}}{\sqrt{2}} \qquad U_{eff}=\frac{U_{max}}{\sqrt{3}} \qquad U_{eff}=U_{max}$$

3 Lois de Kirchoff

3.1 Loi des mailles

À partir d'un point quelconque du circuit, on peut former une boucle où la somme algébrique des tensions de chacuns des éléments traversé est égal à zéro. Cette loi s'applique quelque soit le nombre de sources dans le circuit.

FIGURE 1 – Tensions dans une maille

3.2 Loi des Nœuds

La somme algébrique des courants dans un nœud est égal à zéro. La somme des courants entrant dans un nœud est égal à la somme des courants sortant.

FIGURE 2 - Courants dans un nœud

4 Thévenin & Norton

Tout circuit linéaire, quelque soit sa complexité, peut être remplacé par une source de tension réelle (Thévenin) ou une source de courant réelle (Norton).

Combiné avec les transformations source tension \Leftrightarrow source courant, on peut réduire par étapes successives un circuit complexe

5 Phaseurs

Le phaseur permet de décrire le comportement de circuit RLC en faisant abstraction du temps.

Figure 3 – Transformation source de tension \Leftrightarrow source de courant

$$x(t) = \sqrt{2}X\cos(\omega t + \theta) \quad \Rightarrow \quad \underline{x} = \sqrt{2}Xe^{j(\omega t + \theta)}$$

Où $\omega = 2\pi f$, quand f est la fréquence des sources.

On peut alors caractériser toutes les valeurs du circuit avec sa valeur efficace (amplitude) X et son déphasage par rapport aux sources θ .

5.1 Diagramme de phaseur

On peut déterminer le comportement d'un phaseur \underline{X} selon la fréquence en utilisant une diagramme de phaseur. On fait le graphique du phaseur sur un plan de Gauss en faisant varier la fréquence ω .

FIGURE 4 – Différientiation du type de phaseur grâce à son diagramme