SPRING 20 ELEMENTARY DIFFERENTIAL EQUATIONS: TAKE HOME MIDTERM 2

1. Instructions

- The midterm 2 consists of 12 questions. Please finishes all question.
- The full mark is 80.
- This is a take home examination.
- You must show your work and carefully justify your answers when answering the questions. The correct answer without any work will receive little or no credit.
- You are not allowed to discuss with anyone concerning the midterm 2. Answers copied directly elsewhere will receive no credit.
- Upload your solution on Canvas as an assignment before 10pm on April 9th (Local time).
- Only pdf file are allowed.

2. Questions

1. (6 marks) Find the equilibria for the following systems of differential equations:

$$x' = (x-1)(2x + y - 2),$$

$$y' = y(x + y - 3).$$

2. (4 marks) Transform the following second order differential equation into a systems of two differential equations:

$$y'' + y^2y' + y'\sin t + t^2 = 0.$$

3. (8 marks) Find the general solution to the following system of differential equations

$$x' = 2x,$$

$$y' = 4y + 2x^2.$$

4. (6 marks) Let $Y_1(t), Y_2(t)$ be two solutions to an autonomous system Y' = F(Y), where F and the partial derivatives of F are both continuous. If $Y_2(0) = Y_1(2)$, what is the relationship between Y_1 and Y_2 . Please explain your answer.

5. (6 marks) Calculate e^A , where A is the matrix

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 4 \end{pmatrix}.$$

6. (6 marks) Calculate e^{tB} , where

$$B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.$$

Hint: Write

$$B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and calculate B^2 , B^3 and so on.

7. (6 marks) Let

$$Y_1(t) = \begin{pmatrix} 2e^t - e^{-2t} \\ e^t + e^{-2t} \end{pmatrix}, \quad Y_2(t) = \begin{pmatrix} -2e^t + 2e^{-2t} \\ -e^t - 2e^{-2t} \end{pmatrix}$$

be two solutions to a linear system Y' = AY. Solve the initial value problem

$$\begin{cases} Y' = AY, \\ Y(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}. \end{cases}$$

- 8. (6 marks) Let v be a nonzero vector so that $e^{\lambda t}v$ is a solution to the system Y' = AY. Show that λ is an eigenvalue of A with eigenvector v.
- 9. (8 marks) Solve the initial value problem

$$Y' = \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix} Y, \quad Y(0) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

10. (8 marks) Sketch the phase portrait of the following system:

$$Y' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} Y.$$

11. (8 marks) Sketch the phase portrait of the following system:

$$Y' = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} Y.$$

12. (8 marks) Let A be a 2×2 matrix with eigenvalues λ_1, λ_2 . What are the conditions on λ_1, λ_2 , so that all solutions to Y' = AY converges to (0,0) as t goes to $+\infty$? Please explain your answer.