Convex Optimization Lecture 3 - Convex Functions

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Today's Lecture

Basic Concepts

- 1 Basic Concepts
- 2 Important Examples
- **3** Operations That Preserve Convexity
- 4 Quasiconvex Functions

•000000 Outline

Basic Concepts

- 1 Basic Concepts
- 2 Important Examples
- 3 Operations That Preserve Convexity
- 4 Quasiconvex Functions

Convex Functions

Basic Concepts

000000

Definition of Convex Functions

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if

- the domain domf is a convex set, and
- for all $x, y \in \text{dom} f$ and $\theta \in [0, 1]$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Strictly Convex Functions and Concave Functions

strictly convex: if dom f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom} f$ and $\theta \in (0, 1)$

concave: if dom f is convex and -f is convex

Quasiconvex

Equivalent Definition – Restriction to a Line

Restriction of Convex Function to a Line

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for any $x \in \text{dom} f$ and $v \in \mathbb{R}^n$, the function $g: \mathbb{R} \to \mathbb{R}$, where

$$g(t) = f(x + tv), \text{ dom} g = \{t | x + tv \in \text{dom} f\}$$

is convex in t.

Basic Concepts

0000000

check convexity of $f \rightarrow$ check convexity of g of one variable

Questions

Prove the equivalence with the original definition.

Equivalent Definition – Restriction to a Line

Restriction of Convex Function to a Line

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for any $x \in \text{dom} f$ and $v \in \mathbb{R}^n$, the function $g: \mathbb{R} \to \mathbb{R}$, where

Operations

$$g(t) = f(x + tv), \text{ dom} g = \{t | x + tv \in \text{dom} f\}$$

is convex in t.

check convexity of $f \rightarrow$ check convexity of g of one variable

Questions

Prove the equivalence with the original definition.

" \Rightarrow ": apply original definition on g " \Leftarrow ": for any $x, y \in \text{dom} f$, choose x and v = y - x, and use convexity of g

Equivalent Definition – First-Order Condition

f is differentiable if domf is open and its gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in dom f$

First-Order Condition

Basic Concepts

0000000

f is convex if and only if dom f is convex, and for any $x, y \in \text{dom } f$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

$$f(y)$$
 $f(x) +
abla f(x)^T (y-x)$ $(x,f(x))$

Equivalent Definition - First-Order Condition

Important implications for a convex function f

 local information (i.e., value and gradient) gives us global information (i.e., global underestimator)

Operations

• $\nabla f(x) = 0 \Leftrightarrow x$ is a global minimizer of f

Not true for non-convex functions

Questions

Prove the equivalence with the original definition.

Operations

Equivalent Definition – First-Order Condition

Important implications for a convex function f

- local information (i.e., value and gradient) gives us global information (i.e., global underestimator)
- $\nabla f(x) = 0 \Leftrightarrow x$ is a global minimizer of f

Not true for non-convex functions

Questions

 Prove the equivalence with the original definition. prove it for $x \in \mathbb{R}$ first; use the restrictions to a line for general x

Equivalent Definition – Second-Order Condition

f is twice-differentiable if domf is open and its Hessian (matrix)

$$\nabla^2 f(x) \in \mathbb{S}^n, \ [\nabla f(x)]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}$$

exists at each $x \in dom f$

Second-Order Condition

f is convex if and only if dom f is convex, and for any $x \in dom f$,

$$\nabla^2 f(x) \succeq 0$$
 (positive semidefinite)

f convex, $x \in \mathbb{R} \Leftrightarrow \nabla f$ non-decreasing $\Leftrightarrow \nabla^2 f > 0$

Questions

Basic Concepts

000000

Can we drop the requirement of domf being convex?

Equivalent Definition – Second-Order Condition

f is twice-differentiable if domf is open and its Hessian (matrix)

Operations

$$abla^2 f(x) \in \mathbb{S}^n, \ [\nabla f(x)]_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

exists at each $x \in dom f$

Second-Order Condition

f is convex if and only if dom f is convex, and for any $x \in dom f$,

$$\nabla^2 f(x) \succeq 0$$
 (positive semidefinite)

f convex, $x \in \mathbb{R} \Leftrightarrow \nabla f$ non-decreasing $\Leftrightarrow \nabla^2 f > 0$

Questions

 Can we drop the requirement of domf being convex? No, $f(x) = \frac{1}{x^2}$ with dom $f = \mathbb{R} \setminus \{0\}$

Outline

- Basic Concepts
- 2 Important Examples
- 3 Operations That Preserve Convexity
- 4 Quasiconvex Functions

Examples on \mathbb{R}

Basic Concepts

convex functions on \mathbb{R} :

- affine: ax + b on \mathbb{R} for any $a, b \in \mathbb{R}$
- exponential: e^{ax} on \mathbb{R} for any $a \in \mathbb{R}$
- powers: x^a on \mathbb{R}_{++} for $a \geq 1$ or $a \leq 0$
- powers of absolute value: $|x|^p$ on $\mathbb R$ for $p \geq 1$
- negative entropy: x log x on R₊₊

concave functions on \mathbb{R} :

- affine: ax + b on \mathbb{R} for any $a, b \in \mathbb{R}$
- powers: x^a on \mathbb{R}_{++} for $a \in [0,1]$
- logarithm: $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

convex functions on \mathbb{R}^n and $\mathbb{R}^{m \times n}$:

- affine: $a^T x + b$ on \mathbb{R}^n for any $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
- norms: ||x|| on \mathbb{R}^n (e.g., $||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$, $p \ge 1$; $||x||_{\infty} = \max_i |x_i|$)
- max: $f(x) = \max\{x_1, \dots, x_n\}$
- quadratic-over-linear: $f(x,y) = x^2/y$ on $\mathbb{R} \times \mathbb{R}_{++}$
- log-sum-exp: $f(x) = \log(e^{x_1} + \cdots + e^{x_n})$ on \mathbb{R}^n
- spectral norm (i.e., maximum singular value): $f(X) = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2} \text{ on } \mathbb{R}^{m \times n}$

concave functions on \mathbb{R}^n and $\mathbb{R}^{m \times n}$:

- affine: $a^T x + b$ on \mathbb{R}^n for any $a \in \mathbb{R}^n$, $b \in \mathbb{R}$
- geometric mean: $f(x) = (\prod_{i=1}^n x_i)$ on \mathbb{R}_{++}^n
- log-determinant: $f(X) = \log \det X$ on \mathbb{S}_{++}^n

Outline

- Basic Concepts
- 2 Important Examples
- 3 Operations That Preserve Convexity
- 4 Quasiconvex Functions

Operations

Operations That Preserve Convexity

How to decide whether a function f is convex?

Method 1: By definition and equivalent conditions

- restriction to a line
- first-order conditions
- second-order conditions

Method 2: Show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Nonnegative Weighted Sum

if f_1, \ldots, f_m are convex, the nonnegative weighted sum

$$f = w_1 f_1 + \cdots w_m f_m$$

is convex

Extension to infinite sums and integrals: if f(x, y) is convex in x for any $y \in \mathcal{A}$, and $w(y) \ge 0$ for any $y \in \mathcal{A}$, then

$$g(x) = \int_{A} w(y) f(x, y) dy$$

is convex (provided the integral exists)

if $f: \mathbb{R}^n \to \mathbb{R}$ is convex, and $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, then $g: \mathbb{R}^m \to \mathbb{R}$ defined as

Operations

$$g(x) = f(Ax + b)$$
, $dom g = \{x | Ax + b \in dom f\}$

is convex

Basic Concepts

useful examples:

log barrier for linear inequalities: (in interior-point methods)

$$f(x) = -\sum_{i=1}^{m} \log (b_i - a_i^T x), \text{ dom } f = \{x | a_i^T x < b_i, i = 1, \dots, m\}$$

norm of affine function

$$f(x) = ||Ax + b||$$

Pointwise Maximum

if f_1, \ldots, f_m are convex, the pointwise maximum

$$f(x) = \max\{f_1(x), \dots, f_m(x)\}\$$

Operations

is convex

useful examples:

pointwise linear function

$$f(x) = -\max_{i=1,\dots,m} \left(a_i^T x + b_i\right),\,$$

• sum of r largest components of $x \in \mathbb{R}^n$

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

where $x_{[i]}$ is the *i*th largest element of x

if f(x, y) is convex in x for any $y \in A$, the pointwise supremum

Operations 00000000000

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

useful examples:

support function of a set C

$$S_C(x) = \sup \left\{ x^T y | y \in C \right\},$$

distance to the farthest point of a set C

$$f(x) = \sup_{y \in C} ||x - y||$$

composition of $h: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$: f(x) = h[g(x)]

Operations

f is convex if either one of the two holds:

- h convex, \tilde{h} nondecreasing, g convex; or
- h convex, \tilde{h} nonincreasing, g concave

where \tilde{h} is extended-value extension of h:

$$\tilde{h}(x) = \begin{cases} h(x) & x \in \text{dom} f \\ \infty & x \notin \text{dom} f \end{cases}$$

f is concave if either one of the two holds:

- h concave, \tilde{h} nondecreasing, g concave; or
- h concave, \tilde{h} nonincreasing, g convex

where \tilde{h} is extended-value extension of h:

$$\tilde{h}(x) = \begin{cases} h(x) & x \in \text{dom} f \\ -\infty & x \notin \text{dom} f \end{cases}$$

Composition With Scalar Functions

examples of h:

• $h(x) = \log x$ with dom $h = \mathbb{R}_{++}$: concave, \tilde{h} nondecreasing

Operations

- $h(x) = x^{1/2}$ with dom $h = \mathbb{R}_+$: concave, \tilde{h} nondecreasing
- $h(x) = x^{3/2}$ with dom $h = \mathbb{R}_+$: convex, \tilde{h} not nondecreasing
- $h(x) = \begin{cases} x^{3/2} & x \ge 0 \\ 0 & x < 0 \end{cases}$ with dom $h = \mathbb{R}$: convex, \tilde{h} nondecreasing

examples of simple compositions:

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive
- $g(x)^p$ is convex if g is convex and nonnegative and p > 1
- $\log g(x)$ is concave if g is concave and positive

Questions

• Can we replace monotonicity of \tilde{h} with monotonicity of h? No; $g(x) = x^2$ with dom $g = \mathbb{R}$, h(x) = 0 with domh = [1, 2]

composition of $h: \mathbb{R}^k \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^k$:

$$f(x) = h[g(x)] = h[g_1(x), \dots, g_k(x)]$$

f is convex if either one of the two holds:

- h convex, \tilde{h} nondecreasing in each argument, g_i , $\forall i$ convex; or
- h convex, \tilde{h} nonincreasing in each argument, g_i , $\forall i$ concave

f is concave if either one of the two holds:

- h concave, \tilde{h} nondecreasing in each argument, $g_i, \ \forall i$ concave; or
- h concave, \tilde{h} nonincreasing in each argument, g_i , $\forall i$ convex

if f(x, y) is jointly convex in (x, y) and C is convex set,

$$g(x) = \inf_{y \in C} f(x, y),$$

is convex

useful examples

distance to a set:

$$\operatorname{dist}(x,S) = \inf_{y \in S} \|x - y\|$$

is convex if S is convex

note the difference from pointwise maximium

if $f: \mathbb{R}^n \to \mathbb{R}$ is convex, its perspective

$$g(x,t) = t \cdot f(x/t)$$
, with dom $g = \{(x,t)|x/t \in \text{dom}f, t > 0\}$

Operations

is convex in (x, t)

useful examples

- $g(x, t) = x^T x/t$ is convex for t > 0
- relative entropy: $g(x,t) = t \log t t \log x$ is convex on \mathbb{R}^2_{++}
- if f is convex, then

$$g(x,t) = (c^T x + d) \cdot f\left(\frac{Ax + b}{c^T x + d}\right)$$

is convex on $\{x|c^x+d>0, (Ax+b)/(c^Tx+d)\in domf\}$

Outline

- Basic Concepts
- 2 Important Examples
- 3 Operations That Preserve Convexity
- 4 Quasiconvex Functions

Quasiconvex Functions

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$S_{\alpha} = \{(x \in \mathsf{dom} f | f(x) \le \alpha\}$$

 $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if

- dom f is convex, and
- all subleval sets S_{α} are convex

f is quasiconcave if -f is quasiconvex f is quasilinear if f is quasiconvex and quasiconcave

equivalent conditions: f is quasiconvex if and only if dom f is convex and

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

useful examples:

- $\sqrt{|x|}$ is quasiconvex on $\mathbb R$
- ceiling function $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} | z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- f(x,y) = xy is quasiconcave on \mathbb{R}^2_{++}

operations that preserve quasiconvexity:

• pointwise maximum, composition, minimization

summation does not preserve quasiconvexity