Analysis and Design of Algorithms

Lecture 11,12 Backtracking Method

Lecturer: Hoa Tat Thang

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

Giới thiệu

- Phương pháp quay lui dùng để giải các bài toán mà lời giải của nó X là một tập các phần tử x₁, x₂, .., x_n.
- Ví dụ: Bài toán 8 hậu, Mã đi tuần ...

Ý tưởng

- Ý tưởng chính của phương pháp quay lui là các bước hướng tới lời giải cuối cùng của bài toán dựa trên việc Thử-và-Sai.
- Tại mỗi bước:
 - Nếu có 1 lựa chọn được chấp nhận thì ghi nhận lại lựa chọn này và và tiến hành các bước thử tiếp theo;
 - Nếu tất cả các lựa chọn không được chấp nhận thì trở lại bước trước, xóa bỏ sự ghi nhận của ứng viên và chọn lựa ứng viên tiếp theo.

1	14	5	
8	11	2	
13	4	9	6
10	7	12	3

1		5	
8	11	2	
13	4	9	6
10	7	12	3

1		5	
8	11	2	
	4	9	6
10	7	12	3

1		5	
8	11	2	
	4	9	6
10	7	12	3

Quay lui

- Khi quay lui điểm quan trọng của thuật toán là phải ghi nhớ tại mỗi bước đi để tránh trùng lặp khi quay lui.
- Dễ thấy cấu trúc ngăn xếp khá phù hợp để lưu trữ các thông cần ghi nhớ như đề cập ở trên.
- Đệ qui là kỹ thuật thường được sử dụng trong phương pháp quay lui.

Lược đồ chung

- Lời giải bài toán có thể mô tả dạng 1 vector n chiều x = (x₁, x₂, .., x_n) thỏa mãn một điều kiện nào đó.
- Giả sử đã xây dựng được i-1 thành phần $(x_1, x_2, ..., x_{i-1})$, cần xác định thành phần thứ i:
 - Nếu khả năng k nào đó phù hợp -> lấy x_i=k, ghi
 nhận trạng thái đã dùng của k. Nếu i=n -> có được
 1 lời giải.
 - Nếu không có khả năng nào cho x_i thì quay lui và chọn lại x_{i-1} .

Biên soạn: Hà Đại Dương, duonghd@mta.edu.vn

Lược đồ chung ...

```
Try(i) \equiv
  for (j = 1 \rightarrow k)
           If (x<sub>i</sub> chấp nhận được khả năng j)
                    Xác định x_i theo khả năng j;
                    Ghi nhận trạng thái mới;
                    if (i < n)
                            Try(i+1);
                    else
                            Ghi nhận nghiệm;
                    Trả lại trạng thái cũ cho bài toán;
```

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

Bài toán

 Hãy tìm cách xếp 8 con hậu trên một bàn cờ vua sao cho không con nào ăn được nhau.

Ví dụ: Đây là 1 PA

Ý tưởng thuật toán

- Ý tưởng (Thử và Sai) bài toán 8 hậu
- 1. Lần lượt xếp các con hậu vào bàn cờ
- 2. Giả sử đã xếp được i con hậu (từ 1 đến i)
- 3. Xếp hậu thứ i+1
 - a. Nếu tìm được 1 ô hợp lệ (không bị các con hậu trước đó ăn) -> xếp hậu thứ i+1 vào vị trí vừa tìm thấy. Lặp lại bước 3.
 - b. Nếu không tìm được ô hợp lệ -> tìm vị trí phù hợp khác để đặt lại hậu thứ i.

Phương án (nghiệm) của bài toán

- Nhận xét: Mỗi con hậu phải nằm trên 1 hàng
- Dùng mảng x[1..8] để thể hiện một phương án của bài toán:
 - Chỉ số mảng i: dòng chứa con hậu thứ i (chỉ số dòng là cố định)
 - Giá trị x[i] (i=1..8): là cột đặt con hậu thứ i
- Bài toán xếp hậu trở thành: Lần lượt xác định giá trị các thành phần của x[i], i=1..8.

Phương án nghiệm

x[1]=4

x[2]=7

x[3]=3

x[4]=8

x[5]=2

x[6]=5

x[7]=1

x[8]=6

Ứng viên

- Tại bước i
 - Cần xác định giá trị k , là chỉ số cột, cho x[i],k={1,..,8}.
 - Nếu ứng viên được chọn là j, nghĩa là x[i]=j, khi đó cần "đánh dấu" là cột j đã được chọn để bước sau không chọn lại.
- Tổ chức mảng a[j], j=1..8, để ghi nhận cột j đã được chọn hay chưa, a[j]=1 là cột j chưa được chọn và a[j]=0 là cột j đã được chọn.

Tính hợp lệ

Hậu ở dòng i, chỉ được đặt vào cột j nếu i-1
 hẫu đã đặt trước đó không "ăn" được hậu ở vị trí [i,j] (dòng i, cột j).

Trên đường chéo đỏ:

Giá trị i+j là hằng số

Có giá trị từ 2 đến 16

Trên đường chéo xanh

Giá trị i-j là hằng số

Có giá trị từ -7 đến 7

Tính hợp lệ ...

- Mảng b[k], k=2..16, nếu b[k]=1, được đặt ở đường chéo thuận k.
- Mảng c[k], k=-7..7, nếu c[k]=1, được đặt ở đường chéo nghịch k.

Tính hợp lệ ...

 Như vậy hậu i (dòng i) được đặt vào cột j nếu:

$$b[i+j] = 1$$

và

$$c[i-j] = 1$$


```
for (j = 1; j \le 8; j++)
                       if (a[j] \&\& b[i+j] \&\& c[i-j])
Cài đặt
                           x[i] = j; a[i] = 0;
                            b[i+j] = 0; c[i-j] = 0;
Khởi tạo
                            if (i < 8)
                                   Try (i+1);
a[j] = 1
                            else
b[i+j] = 1
                                    Xuất(x);
c[i - j] = 1
                            /* Sau khi in 1 lời giải xong,trả lại
                              tình trạng ban đầu còn trống cho hàng
                              a[j], đường chéo i+j và đường chéo
                              i-j, để tìm lời giải khác */
                           a[i] = 1; b[i+j] = 1; c[i-j] = 1;
                            Biên soan: Hà Đai Dương,
  10/26/2021
                             duonghd@mta.edu.vn
```

 $Try(i) \equiv$

Minh họa

Một lời giải của bài toán với N=8

Kết quả

- Độ phức tạp thuật toán: T(n) = ???
- Viết hàm Xuat(x): in phương án lựa chọn ra màn hình.
- Code, chạy thử và trình bày kết quả

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

Bài toán

- Trên bàn cờ vua, con mã ở vị trí (x₀, y₀)
- Hãy chỉ ra hành trình
 để con mã đi qua tất cả
 các ô, mỗi ô 1 lần.
- Ví dụ: Đây là 1 PA trên bàn cờ 8x8 khi mã bắt đầu từ ô (1,1)

Ý tưởng thuật toán

- Ý tưởng (Thử và Sai) bài toán mã đi tuần
- 1. Đặt ngựa tại vị trí (x₀,y₀) di chuyển ngựa theo luật cờ vua.
- 2. Giả sử đã đi được i-1 bước.
- 3. Xét nước đi thứ i
 - a. Nếu tìm được 1 nước đi hợp lệ (và ngựa chưa qua lần nào) -> xếp nước đi thứ i của ngựa vào vị trí vừa tìm thấy. Lặp lại bước 3.
 - b. Nếu không tìm được ô hợp lệ -> tìm vị trí phù hợp khác để đặt hợp bừ ớc đị thứ i-1 của ngựa.

Phương án nghiệm

• Dùng mảng 2 chiều h[x,y] (x=1..N, y=1..N) với qui ước:

```
h[x,y] = 0 là \hat{o}(x,y) chưa có ngựa đi qua h[x,y] = k là ngựa đã qua \hat{o}(x,y) ở nước thứ k.
```

 Bài toán trở thành: Xác định giá trị mảng h là nước đi của mã trong hành trình đi qua tất cả các ô bắt đầu từ (x₀,y₀). Khi NxN ô được đi qua ta có 1 phương án (nghiệm) thể hiện cách đi của mã.

 Một phương án để mã đi tuần trên bàn cờ 5x5 bắt đầu từ ô (1,1) là

7	18	13/	\ 	ω
12/	7	7	19	14
17	24	21	4	9
22	(11.)	6	15	20
25	16	23	10	5

Ứng viên

- Tại bước i
 - Vị trí mã đang đứng là (x_i,y_i)
 - Theo luật cờ vua mã có thể di chuyển tới nhiều nhất là 8 ô (hình bên)
 - Tọa độ 8 vị trí so với vị trí hiện tại (x_i,y_i) lần lượt là:

$$(x_i+1,y_i+2), (x_i+2,y_i+1), (x_i+2,y_i-1), (x_i+1,y_i-2)$$

 $(x_i-1,y_i-2), (x_i-2,y_i-1), (x_i-2,y_i+1), (x_i-1,y_i+2)$

Ứng viên

- Tại bước i
 - Dùng mảng a[1..8] mô tả sai khác tọa độ X so với x_i , theo trên ta có:

$$a=(1,2,2,1,-1,-2,-2,-1)$$

 Dùng mảng b[1..8] mô tả sai khác tọa độ Y so với y_i,
 theo trên ta có:

$$b=(2,1,-1,-2,-2,-1,1,2)$$

Tính hợp lệ

- Tại bước i
 - Vậy ứng viên của bước i+1
 được xác định tại tọa độ
 (x_i+a[k],y_i+b[k]) với k=1..8
- Tính hợp lệ:
 - Ứng viên tại tọa độ $(x_i+a[k],y_i+b[k]) \text{ với } k=1..8$

được chấp nhận nếu $h[x_i+a[k],y_i+b[k]] = 0$.

Ngoài ra (x_i+a[k],y_i+b[k]) phải nằm trong bàn cờ


```
Try(i, x, y) \equiv
             for(k = 1; k \le 8; k++)
                 u = x + a[k];
                 v = y + b[k];
                 if (1 \le u, v \le n \&\&h[u][v] == 0)
Cài đặt
                      h[u][v] = i;
                      if (i < n*n)
                               Try(i+1,u,v);
                      else
                               xuat_h(); // In ma trận h
                 h[u][v] = 0;
                          Biên soan: Hà Đại Dương,
                            duonghd@mta.edu.vn
```

Minh họa

• Với N=5, mã xuất phát tại (1,1)

1	6	15	10	21
14	9	20	5	16
19	2	7	22	11
8	13	24	17	4
25	18	3	12	23

Minh họa

Với N=6, mã xuất phát tại (2,3)

36	17	6	29	8	11
19	30	1	10	5	28
16	35	18	7	12	9
23	20	31	2	27	4
34	15	22	25	32	13
21	24	33	14	3	26

Kết quả

- Độ phức tạp thuật toán: T(n) = ???
- Viết hàm Xuat_h(x): in phương án lựa chọn ra màn hình.
- Code, chạy thử và trình bày kết quả
- Lưu ý: Tùy vào kích thước bàn cờ, bài toán chỉ có lời giải ở một số vị trí bắt đầu (x₀,y₀) nhất định.

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

Bài toán

 Trò chơi: Cho hình vuông được chia thành 9x9 ô, trên đó 1 số ô đã có sẵn các số từ 1 đến 9.

Hãy đặt các số từ 1-9 vào các ô trống sao cho: 1
 hàng, 1 cột, 1 vùng 3x3 đều có đủ các số từ 1-9.

Ví dụ

Ban đầu

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Ý tưởng thuật toán

Ý tưởng (Thử và Sai) bài toán Sudoku

- 1. Cần xếp N ô trống
- 2. Giả sử đã xếp được đến ô thứ i.
- 3. Xét ô thứ i+1
 - a. Nếu tìm được 1 giá trị thích hợp -> xếp giá trị đó vào ô thứ i+1 vừa tìm thấy. Lặp lại bước 3.
 - b. Nếu không tìm được 1 giá trị hợp lệ -> tìm giá trị phù hợp khác để đặt lại cho ô thứ i.

Phương án nghiệm

• Dùng mảng 2 chiều **S[x,y]** (x=1..9, y=1..9) để lưu giá trị số Sudoku:

```
S[x,y] = 0 là ô (x,y) chưa được xử lý S[x,y] = k (k=1...9) là giá trị số Sudoku.
```

 Bài toán trở thành: Xác định giá trị mảng S là các số Sukodu. Khi tất cả các ô được đặt ta có 1 phương án (nghiệm) thể hiện 1 cách chơi Sukodu.

Ứng viên

 Úng viên (giá trị) có thể đặt cho ô có tọa độ (x_i,y_i) là giá trị k:

 $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Tính hợp lệ

- Úng viên k được đặt vào ô (x_i,y_i) nếu
 - Trên hàng x_i chưa có giá trị k
 - Trên cột y_i chưa có giá trị k
 - Vùng 3x3 chứa (x_i,y_i) chưa có giá trị k

Cài đặt

```
• Tính hợp lê, hàm <u>Feasible</u>(S[1,2,...,9][1,2,...,9],x,y,k)
           FEASIBLE (S[1,2,\ldots,9][1,2,\ldots,9],x,y,k):
              for i \leftarrow 1 to 9
                 if S[x][i] = k
                    return False
              for i \leftarrow 1 to 9
                 if S[i][y] = k
                    return False
             a \leftarrow |(x-1)/3|, b \leftarrow |(y-1)/3|
              for i \leftarrow 3a+1 to 3a+3
                 for j \leftarrow 3b+1 to 3b+3
                   if S[i][j] = k
                       return False
```

```
\underline{\text{SUDOKU}}(S|1,2,\ldots,9|[1,2,\ldots,9],x,y):
   if y = 10
      if x=9
         print S
     else
         Sudoku(S[1,2,\ldots,9][1,2,\ldots,9],x+1,1)
   else if S[x][y] = \emptyset
      for k \leftarrow 1 to 9
         if Feasible (S, x, y, k)
             S[x][y] \leftarrow k
             Sudoku(S[1,2,\ldots,9][1,2,\ldots,9],x,y+1)
             S[x][y] \leftarrow \emptyset [[for next branching]]
                                    [[S[x][y] \text{ is given}]]
   else
      Sudoku(S[1,2,\ldots,9][1,2,\ldots,9],x,y+1)
```

Minh họa

9	1	3	6	5	2	8	7	4
7	5	8	9	4	1	6	2	3
6	2	4	7	3	8	5	1	9
2	9	7	3	8	5	4	6	1
1	3	6	4	2	9	7	5	8
8	4	5	1	6	7	3	9	2
3	7	1	8	9	6	2	4	5
4	6	2	5	1	3	9	8	7
5	8	9	2	7	4	1	3	6

Minh họa ...

4	8	3	7	5	9	1	6	2
9	2	1	8	4	6	3	5	7
5	7	6	1	3	2	9	8	4
2	5	7	6	9	1	8	4	З
8	1	9	3	7	4	5	2	6
6	3	4	2	8	5	7	9	1
3	4	2	5	1	8	6	7	9
1	6	8	9	2	7	4	3	5
7	9	5	4	6	3	2	1	8

Minh họa ...

4	2	3	6	9	7	8	1	5
6	9	1	5	3	8	4	7	2
5	8	7	4	2	1	6	3	9
3	1	9	80	7	5	2	6	4
2	5	6	1	4	9	3	8	7
7	4	8	M	6	2	5	9	1
9	6	4	2	1	3	7	5	8
1	3	5	7	8	4	9	2	6
80	7	2	9	5	6	1	4	3

Minh họa ...

Bài tập

- 1. Thực hiện việc đặt 5 con hậu trên bàn cờ, thế hiện kết quả từng bước.
- Thực hiện các nước đi của con ngựa trên bàn cờ 5x5 bắt đầu từ ô (1,2) thể hiện kết quả từng bước.

Bài tập

3. Chơi trò sudoku (theo thuật toán) với các số đã cho như sau:

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2	Ξ.			6
	6					2	8	
			4	1	9			5
				8			7	9

Bài tập

- 4. Hoàn thiện cài đặt bài toán 8 hậu
- 5. Hoàn thiện cài đặt bài toán mã đi tuần.
- 6. Hoàn thiện cài đặt trò chơi Sukodu.
- 7. Giải bài toán cái túi theo giải thuật quay lui.