The Grammar of Graphics & ggplot2

Stat 133 by Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Visualization is simply mapping data to geometry and color

Title of this Graph

A description of the data or something worth highlighting to set the stage

Visual Cues

Encoding data with shapes, colors, and sizes. Which cues you choose depends on your data and your goals

Coordinate System

Mapping data requires a system of coordinates: cartesian, polar, etc

ľ		 																						

Scale

Increments that make sense can increase readability as well as shift focus

Title of this Graph

A description of the data or something worth highlighting to set the stage

Context

If your audience is unfamiliar with the data, it's your job to clarify what values represent and explain how people should read your plot

units

2017 Source: Somewhere reputable

Title of this Graph

A description of the data or something worth highlighting to set the stage

Grammar of Graphics?

The Grammar of Graphics

About the grammar of graphics

The *Grammar of Graphics* is Wilkinson's attempt to define a theoretical framework for graphics.

Grammar: formal system of rules for generating graphics:

- Some rules are mathematic
- Some rules are aesthetic (i.e. visual)

About the grammar of graphics

Three stages of graphic creation

Specification: link data to graphic objects

Assembly: put everything together

Display: render of a graphic

"ggplot2" The layered Grammar of Graphics

ggplot2 book

Gaston Sanchez 14

R Graphics Cookbook: mainly ggplots

Gaston Sanchez _______ 15

Resources

Documentation: http://docs.ggplot2.org

Book: ggplot2: Elegant Graphics for Data

Analysis by Hadley Wickham

Book: R Graphics Cookbook by Winston Chang

RStudio ggplot2 cheat sheet

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

About ggplot2

"ggplot2" is an R package for producing statistical graphics.

It provides a framework based on Leland Wilkinson's **Grammar of Graphics**.

"ggplot2" provides beautiful plots while taking care of fiddly details like legends, axes, colors.

base graphics

ggplot2

About ggplot2

Default appearance of plots carefully chosen

Designed with visual perception in mind

Inclusion of some components, like legends, are automated

Great flexibility for annotating, editing, and embedding output

ggplot2 philosophy: Describe a wide range of graphics with a compact syntax and independent components

R package "ggplot2"

```
Remember to install ggplot2 (just once)
install.packages("ggplot2")
library(ggplot2)
?ggplot
```

About ggplot2

"ggplot2" is the name of the package (don't forget the 2)

The gg in ggplot2 stands for Grammar of Graphics

Inspired in the Grammar of Graphics by Lee Wilkinson

ggplot() is the main function in "ggplot2"

Example

name	gender	height	weight	jedi	species	weapon
Luke Skywalker	male	1.72	77	jedi	human	lightsaber
Leia Skywalker	female	1.5	49	no_jedi	human	blaster
Obi-Wan Kenobi	male	1.82	77	jedi	human	lightsaber
Han Solo	male	1.8	80	no_jedi	human	blaster
R2-D2	male	0.96	32	no_jedi	droid	unarmed
C-3PO	male	1.67	75	no_jedi	droid	unarmed
Yoda	male	0.66	17	jedi	yoda	lightsaber
Chewbacca	male	2.28	112	no_jedi	wookiee	bowcaster

Let's use these variables to make a scatterplot

How does it work?

1 Dataset

2 Which variables

Which Aesthetic attributes

- 3 Which Geometric objects
 - abcd text y = C color = E size = default bars shape = default

Building a scatterplot

Dataset: starwars

Variables: height, weight, jedi

Objects: points

Visual attributes (of objects):

X-axis: height

Y-axis: weight

Color: jedi

```
ggplot(data = starwars) +
   geom_point(aes(x = height, y = weight, color = jedi))
```



```
ggplot(data = starwars) +
   geom_point(aes(x = height, y = weight, color = jedi))
```

ggplot() initializes a "ggplot" object You specify the data set (data frame) with data

geom_point() indicates the type of geometric object

aes() maps aesthetic attributes to variables:

X-position: height

Y-position: weight

Color: jedi

Automated things in ggplot2

- Axis labels
- Legends (positions, labels, symbols)
- Choice of colors for points
- Background color (i.e. gray)
- Grid lines (major and minor)
- Axis tick marks

You can always override the default settings (this is the tricky part in ggplot2)

Mapping

data values

height	weight	jedi
1.72 1.50 1.82 1.80 0.96 1.67 0.66	77 49 77 80 32 75 17	jedi no_jedi jedi no_jedi no_jedi no_jedi jedi
2.28	112	no_jedi

aesthetic attributes

X	у	color
X ₁	y ₁	#F8766D
X ₂	y ₂	#00BFC4
X ₃	y ₃	#F8766D
X ₄	y ₄	#00BFC4
X ₅	y ₅	#00BFC4
X ₆	y ₆	#00BFC4
X ₇	y ₇	#F8766D
X ₈	y ₈	#00BFC4

These values are meaningful to us, but not to the computer

They need to be converted from data units to physical units that the computer can display

Remarks

Aesthetics ≠ Beauty

Aesthetics (GG): attributes of the geometric objects

Meaning of aesthetic in the Grammar of Graphics

Aesthetics: pertaining to sense perception

Aisthesthai = perceive

GG aesthetic attributes: visual properties that affect the way observations are displayed

Main elements

A graphic is a mapping from data to aesthetic attributes (color, shape, size) of geometric objects (points, lines, bars, etc)

```
ggplot(data, ...)
aes()
geom objects()
```

How does ggplot2 work?

Plots are created piece-by-piece

Plot components added with + operator

Aesthetic attributes mapped to data values

Computation of scales for aesthetic attributes

The data MUST BE in a data frame!

Always ask

What is the data set of interest?

What variables (columns) will be used to make the plot?

What graphic shapes (geoms) will be used to display the data?

What features of the shapes will be used to represent the data values?

Warning

ggplot2 comes with the function qplot() (i.e. quick plot)

Avoid using it!

As Karthik Ram says: "you'll end up unlearning and relearning a good bit"

So, what is a Statistical Graphic?

A statistical graphic is ...

A mapping from data to aesthetic attributes (color, shape, size) of geometric objects (points, lines, bars)

A plot may also contain statistical transformations of the data

A plot is drawn on a specific coordinate system

Sometime faceting can be used to get the same plot for different subsets of the dataset

Data set mtcars

	mpg	hp	cyl
Mazda RX4	21.0	110	6
Mazda RX4 Wag	21.0	110	6
Datsun 710	22.8	93	4
Hornet 4 Drive	21.4	110	6
Hornet Sportabout	18.7	175	8
Valiant	18.1	105	6
Duster 360	14.3	245	8
Merc 240D	24.4	62	4
Merc 230	22.8	95	4
Merc 280	19.2	123	6

Elements to draw the chart "manually"

Coordinate system x and y axes
Axis tick marks

Axis labels, and title

Points (of a given size and color)

Regression line (and ribbon)

Legend