Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

20 de enero del 2021

Cálculo de Valores y Vectores Propios de $A \in \mathbb{K}(n, n)$

Ejemplo

Halle la forma canónica de Jordan de la matriz

$$A = \begin{bmatrix} -1 & 3 & 4 & 0 \\ -1 & 3 & 1 & 0 \\ -2 & 2 & 5 & 0 \\ -1 & 1 & 1 & 3 \end{bmatrix}$$

El polinomio característico de A está dado por

$$p_A(\lambda) = det(A - \lambda I) = (\lambda - 2)^2(\lambda - 3)^2.$$

Observamos que $\lambda_1=2$ y $\lambda_2=3$ son los valores propios de A de multiplicidad dos cada uno de ellos.

Ahora vamos a calcular los vectores propios correspondientes

• $\lambda_1 = 2$, debemos resolver la ecuación

$$Av^{1} = \lambda_{1}v^{1} \equiv (A - \lambda_{1}I)v^{1} = (A - 2I)v^{1} = \mathbf{0},$$

obteniéndose el sistema

$$\begin{array}{rclrcrcr}
-3v_1 & + & 3v_2 & + & 4v_3 & & = & 0 \\
-v_1 & + & v_2 & + & v_3 & & = & 0 \\
-2v_1 & + & 2v_2 & + & 3v_3 & & = & 0 \\
-v_1 & + & v_2 & + & v_3 & + & v_4 & = & 0
\end{array}$$

el cual nos proporciona el vector propio $v^1 = (1, 1, 0, 0)^t$ de A asociado a $\lambda_1 = 2$.

el segundo vector propio w^1 correspondiente al valor propio $\lambda_1 = 2$, lo determinamos de la ecuación

$$(A-\lambda_1)w^1=v^1,$$

de dónde
$$w^1 = (-1, 2, -2, -1)^t$$

• $\lambda_2 = 3$, como antes resolvemos el sistema $(A - \lambda_2 I)v^3 = \mathbf{0}$

$$\begin{array}{rclrcrcr}
-4v_1 & + & 3v_2 & + & 4v_3 & & = & 0 \\
-v_1 & + & & + & v_3 & & = & 0 \\
-2v_1 & + & 2v_2 & + & 2v_3 & & = & 0 \\
-v_1 & + & v_2 & + & v_3 & & = & 0
\end{array}$$

observe que $v_3 = v_1$, por tanto $v_2 = 0$ y $v_4 \in \mathbb{R}$. Luego $v^3 = (v_1, v_2, v_3, v_4)^t = (v_1, 0, v_1, v_4)^t = v_1(1, 0, 1, 0)^t + v_4(0, 0, 0, 1)^t$, de donde los vectores $w^3 = (1, 0, 1, 0)^t$, $w^4 = (0, 0, 0, 1)^t$ son l. i. Luego la matriz P de cambio de base es

$$P = \begin{bmatrix} v^1 & w^1 & w^3 & w^4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

y esta transforma a A es su forma canónica,

$$P^{-1}AP = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ \hline 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} = J(A)$$

Proposición

Para toda matriz $A \in \mathbb{C}(n, n)$, las matrices A y A^t son semejantes.

Prueba

Consideremos la forma canónica de Jordan de A

$$J(A) = \left[egin{array}{cccc} J_1(A) & \cdots & 0 \ \cdots & \ddots & \cdots \ 0 & \cdots & J_r(A) \end{array}
ight]$$

Ahora analicemos cada submatriz $J_i(A)$. Por ejemplo, supongamos que

$$J_1(A) = \left[egin{array}{ccccc} \lambda & 1 & 0 & 0 & 0 \ 0 & \lambda & 1 & 0 & 0 \ 0 & 0 & \lambda & 0 & 0 \ 0 & 0 & 0 & \lambda & 1 \ 0 & 0 & 0 & 1 & \lambda \end{array}
ight]$$

La matriz anterior proviene de una base del tipo $\{v^1, v^2, v^3, w^1, w^2\}$, en la que

$$T(v^{1}) = \lambda v^{1}$$

$$T(v^{2}) = v^{1} + \lambda v^{2}$$

$$T(v^{3}) = v^{2} + \lambda v^{3}$$

$$T(w^{1}) = \lambda w^{1}$$

$$T(w^{2}) = w^{1} + \lambda w^{2}$$

Si reordenamos el orden en la base, por ejemplo $\{v^3, v^2, v^1, w^2, w^1\}$, entonces las relaciones anteriores tienen la forma

$$T(v^{3}) = \lambda v^{3} + v^{2}$$

$$T(v^{2}) = \lambda v^{2} + v^{1}$$

$$T(v^{3}) = \lambda v^{1}$$

$$T(w^{1}) = \lambda w^{2} + w^{1}$$

$$T(w^{2}) = \lambda w^{1}$$

Luego la matriz asociada a T en este caso es

$$B_{\tau} = \left[egin{array}{ccccc} \lambda & 0 & 0 & 0 & 0 \\ 1 & \lambda & 0 & 0 & 0 \\ 0 & 1 & \lambda & 0 & 0 \\ 0 & 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & 1 & \lambda \end{array}
ight]$$

Luego, por un lado B_{τ} es la transpuesta de $J_1(A)$ y notamos que $J_1(A)$ y B son semejantes por ser matrices asociadas a una misma transformación lineal T. Este razonamiento es completamente general, nos conduce a decir que $J_1(A)$ y $J_1(A)^t$ son semejantes. Por tanto, tenemos que

$$J(A)^t = \left[egin{array}{cccc} J_1(A)^t & \cdots & 0 \ \dots & \ddots & \dots \ 0 & \cdots & J_r(A)^t \end{array}
ight]$$

es semejante a J(A), por tanto A y A^t son semejantes.

Ejemplo

- 1. Sean V un espacio vectorial, $T:V\longrightarrow V$ una transfomación lineal, y sea $v\in V$ tal que $T^k(v)=\mathbf{0}$ y $T^{k-1}(v)\neq \mathbf{0}$. Entonces pruebe que
 - a) El conjunto $S = \{v, T(v), \dots, T^{k-1}(v)\}$ es l.i.
 - b) El susbespacio W generado por S es invariante bajo T.
 - c) La restricción \widehat{T} de T a W es nilpotente de índice k.
 - d) Respecto a la base $\{T^{k-1}(v), \dots, T(v), v\}$ de W, la matriz de T es de la forma

$$\left[\begin{array}{ccccccc} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{array}\right]$$

Luego, la matriz anterior es nilpotente de índice k.

a) Supongamos

$$\alpha \mathbf{v} + \alpha_1 T(\mathbf{v}) + \alpha_2 T^2(\mathbf{v}) + \dots + \alpha_{k-1} T^{k-1}(\mathbf{v}) = \mathbf{0} \quad (1)$$

Aplicamos T^{k-1} a la eccuación (1) y como $T^k = \mathbf{0}$, entonces obtenemos que $\alpha = 0$ (usando $T^{k-1}(v) \neq \mathbf{0}$).

Ahora aplicamos T^{k-2} a la eccuación (1), de donde $\alpha_1 = 0$. Repetimos este proceso de esta manera tenemos que

$$\alpha = \alpha_1 = \cdots = \alpha_{k-1} = 0.$$

Por tanto S es linealmente independiente.

b) Sea $v \in W$, entonces

$$v = \beta v + \beta_1 T(v) + \beta_2 T^2(v) + \dots + \beta_{k-1} T^{k-1}(v)$$

aplicamos T a la expresión anterior

$$T(v) = \beta v + \beta_1 T(v) + \beta_2 T^2(v) + \dots + \beta_{k-2} T^{k-2}(v) \in W$$

de donde W es invariante bajo T.

c) Sabemos que $T^k(v) = \mathbf{0}$, entonces para $i = 0, 1, \dots, k-1$ se tiene

$$\widehat{T}^k(T^i(v)) = T^{k+i}(v) = \mathbf{0}.$$

Ahora aplicamos \widehat{T}^k a cada generador de W, entonces obtenemos $\widehat{T}^k(v) = \mathbf{0}$, es decir que \widehat{T} es nilpotente de índice k a lo sumo. Por otra parte, $\widehat{T}^{k-1}(v) = T^{k-1}(v) \neq \mathbf{0}$

d) Para la base $\{T^{k-1}(v), \dots, T(v), v\}$ de W, se tiene

Y de esta manera obtenemos la matriz de T en esta base

$$\left[\begin{array}{cccccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]$$

Sea la matriz

y $A^3 = 0$, luego A es nilpotente de índice k = 3

Verifique que

Ejemplo

1. Halle la forma canónica de Jordan de las matrices

$$A = \begin{bmatrix} \alpha & 1 & 0 & 0 \\ 0 & \alpha & 1 & 0 \\ 0 & 0 & \alpha & 1 \\ 0 & 0 & 0 & \alpha \end{bmatrix}, B = \begin{bmatrix} \alpha & 1 & 0 & 0 \\ 0 & \alpha & 1 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & \alpha \end{bmatrix}, C = \begin{bmatrix} \alpha & 1 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \alpha & 1 \\ 0 & 0 & 0 & \alpha \end{bmatrix}$$

 $\alpha \neq 0$.

2. Halle el polinomio minimal de las matrices del item anterior.