CHIMIE DES SOLUTIONS AQUEUSES

Chapitre 1 : Équilibres acido-basiques

Correction des applications de cours

 $\underline{\textbf{Application 1}}$: Montrer que l'acide carbonique $(H_2CO_{3(aq)})$ est un diacide et que l'ion phosphate $(PO_{4(aq)}^{3-})$ est une tribase.

$$\begin{split} H_2CO_{3(aq)} &= HCO_{3(aq)}^- + H_{(aq)}^+ \; \; ; \quad HCO_{3(aq)}^- = CO_{3(aq)}^{2-} + H_{(aq)}^+ \\ H_3PO_{4(aq)} &= H_2PO_{4(aq)}^- + H_{(aq)}^+ \; \; ; \quad H_2PO_{4(aq)}^- = HPO_{4(aq)}^{2-} + H_{(aq)}^+ \; \; ; \quad HPO_{4(aq)}^{2-} = PO_{4(aq)}^{3-} + H_{(aq)}^+ \end{split}$$

<u>Application 2</u>: Écrire la constante d'acidité des couples impliquant l'acide nitrique, l'acide éthanoïque et l'ion hydrogénosulfate.

$$K_a(HNO_3/NO_3^-) = \frac{[NO_{3(aq)}^-]_{eq}[H_{(aq)}^+]_{eq}}{[NHO_{3(aq)}]_{eq}}$$

$$K_a(CH_3COOH/CH_3COO^-) = \frac{[CH_3COO^-_{(aq)}]_{eq}[H^+_{(aq)}]_{eq}}{[CH_3COOH_{(aq)}]_{eq}}$$

$$K_a(HSO_4^-/SO_4^{2-}) = \frac{[HSO_{4(aq)}^-]_{eq}[H_{(aq)}^+]_{eq}}{[SO_{4(aq)}^{2-}]_{eq}}$$

<u>Application 3</u> : On dissout du chlorure de sodium dans l'eau : de quoi est composée la solution? De même pour de l'éthanolate de sodium? de l'ammoniaque?

- * $NaCl + H_2O$: base indifférente dans l'eau $(pK_a < 0) \rightarrow$ solution d'ions chlorure;
- * $CH_3CH_2ONa + H_2O$: base forte dans l'eau $(pK_a > 14) \rightarrow$ solution d'ion hydroxyde et d'éthanol;
- $\star NH_3 + H_2O$: base faible dans l'eau $(pK_a = 9,3) \rightarrow$ solution d'ion ammonium et d'ammoniaque.

Application 4 : On donne ci-dessous le diagramme de distribution de l'EDTA, un quadriacide noté H_4Y .

- 1. Attribuer à chaque courbe l'espèce associée.
- **2.** Déterminer le pK_a de chaque couple.
- **3.** Pour quel domaine de pH a-t-on plus de 95% de HY^{3-} ?
- **4.** Pourquoi la courbe 2 n'atteint-elle jamais 100%?

2.
$$pK_{a1} = 2,0$$
, $pK_{a2} = 2,7$, $pK_{a3} = 10,2$.

3.
$$pH = [7,4;8,9]$$

4. H_3Y^- n'est jamais majoritaire (ΔpK_a trop faible).

Application 5: Adapter la schématisation et le raisonnement dans le cas où $pK_{a1} < pK_{a2}$

Dans ce cas, $pK_{a1} - pK_{a2} < 0$ puis K < 1 donc la réaction est défavorable dans le sens direct.

Application 6:

- 1. Dans un bécher, on mélange 0,10 mol d'ammoniaque et 0,10 mol d'acide acétique. Que se passe-t-il?
- 2. On dissout 0,10 mol d'acétate d'ammonium dans un bécher d'eau. Que se passe-t-il?

BASE
$$pK_a$$
 ACIDE

 HO^- 14 H_2O
 NH_3 9,2 NH_4^+
 CH_3COO^- 4,8 CH_3COOH
 H_2O 0 H_3O^+

$$NH_{3(aq)} + CH_3COOH_{(aq)} = NH_{4(aq)}^+ + CH_3COO_{(aq)}^-$$

$$K = \frac{K_{a CH_3COOH}}{K_{a NH_3}} = 10^{pK_{a NH_3} - pK_{a CH_3COOH}}$$

$$= 10^{9,2-4,8} = 10^{4,4} >> 1$$

Réaction favorable (K > 1) quantitative (K >> 1).

$$NH_{4(aq)}^{+} + CH_{3}COO_{(aq)}^{-} = NH_{3(aq)} + CH_{3}COOH_{(aq)}$$

$$K = \frac{K_{a NH_{4}^{+}}}{K_{a CH_{3}COO^{-}}} = 10^{pK_{a CH_{3}COO^{-}} - pK_{a NH_{4}^{+}}}$$

$$= 10^{4,8-9,2} = 10^{-4,4} << 1$$

Réaction défavorable (K < 1) peu avancée (K < < 1).