Topic Extraction and Categorization using LDA

Overview

- ☐ Feature extraction from the Web
- ☐ Term Frequency Inverse Document Frequency (TF-IDF)
- Latent Semantic Indexing (LSI)
- Unigram, Mixture of Unigrams, and Probabilistic LSI
- ☐ Latent Dirichlet Allocation (LDA)
 - ☐ Graphical view
 - ☐ Geometrical Interpretation
- ☐ LDA for dimensionality reduction
- □ LDA for document classification

Feature Extraction

Extract tokens or terms from the document text and represent them in a machine readable format

Methods:

- Tokenization
- Lemmatization (e.g. appeared → appear)
 - Different forms of a term into a common form
- Stemming (e.g. walking to walk)
 - Remove grammatical markings
- Removing noise from the documents
- Represent terms and documents to vector space models, e.g. $d_i = \{w_j\}_{j=1,\dots,N}$
- Features are term-frequencies in a document

TF-IDF

Reduces each document into a vector of TF-IDF values

$$\bullet tf_{ij} = \frac{n_{ij}}{\sum_k n_{kj}}$$

- n_{ij} represents the number of occurrences of a term i in the document j
- $\sum_k n_{kj}$ is the sum of number of occurrences of all terms in document; to prevent a bias towards longer documents

•
$$idf_i = \ln \frac{|D|}{|\{d: t_i \in d\}|}$$

- |D| represents total number of docs in a corpus
- Denominator represents number of documents where the term t_i appears

TF-IDF

- $(TF IDF)_{ij} = tf_{ij} * idf_i$
 - Results in a VXD matrix of real numbers
 - V vocabulary size
- Helps to remove common terms in a corpus
- Limitations
 - No dimensionality reduction
 - Reveals a little about the inter-or intra-document statistical structure

Latent Semantic Indexing (LSI)

- Assume we have a V X D matrix X of TF-IDF values
- LSI does singular value decomposition of X

$$X = U \Sigma S^T$$

- U is a $V \times V$ unitary matrix; Eigen vectors of $X^T \times X$
- \sum is a $V \times D$ diagonal matrix w/ non-negative real values, called as **singular values**
- S is a D X D unitary matrix; Eigen vectors of XX^T
- Identifies a linear subspace in the space of TF-IDF features
- Achieves significant compression in large collections

Unigram Model

The generative process:

- Words in a document is considered as an outcome of independent multinomial draws
- Thus, the probability of generating a document d is:

$$P(w_1 \dots w_{N_d}) = \prod_{n=1}^{N_d} p(w_n)$$

Mixture of Unigrams

- The generative process:
 - Pick a hidden topic z with probability $P(z_d)$ for each document d
 - Generate each word w_{dn} in a document with probability $P(w_{dn} \mid z_d)$
- Thus, the probability of generating a document d is:

$$P(w_1 ... w_{N_d}) = \sum_{z_d} p(z_d) \prod_{n=1}^{N_d} p(w_{dn}|z_d)$$

Probabilistic LSI

- The <u>generative process</u>:
 - Pick a topic mixture for each document d
 - Pick a hidden topic z_n with probability $P(z_n|d)$ for each term w_n
 - Generate a word w_n with probability $P(w_n|z_n)$
- Thus, the probability of generating a document d is:

$$P(w_1 ... w_{N_d}) = \prod_{n=1}^{N_d} \sum_{i=1}^K P(w_n | z_{ni}) P(z_{ni} | d)$$

Probabilistic LSI

$$P(d, w_1 ... w_{N_d}) = p(d) \prod_{i=1}^{N_d} \sum_{z=1}^K P(w_i|z) P(z|d)$$

- Limitations
 - No probabilistic model at the level of documents
 - Number of parameters of the model increases with the size of the corpus

pLSI - Geometric Interpretation

- The corners of the word simplex represent three distributions, where each word has probability one
- The corners of the topic simplex represent three distributions, where each topic has probability one

Latent Dirichlet Allocation - review

Latent Dirichlet Allocation - review

The generative process:

- Choose Θ from a Dirichlet distribution $Dir(\alpha)$
- Chose β from a Dirichlet distribution $Dir(\eta)$
- For each of the N_d words w_n in a document d
 - Choose a latent topic z_n from Multinomial (Θ)
 - Choose a words w_n from a multinomial $p(w_n|z_n,\beta)$, conditioned on z_n
- Thus, per-document posterior is

$$\frac{p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta) p(w_n \mid z_n, \beta_{1:K})}{\int_{\theta} p(\theta \mid \alpha) \prod_{n=1}^{N} \sum_{z=1}^{K} p(z_n \mid \theta) p(w_n \mid z_n, \beta_{1:K})}$$

LDA Geometric Interpretation

 Each word is generated by a randomly chosen topic which is drawn from a smooth distribution with a randomly chosen parameter (ά)

LDA Inference – review

LDA Inference gives

- per-word topic assignment (Z_{dn})
- per-document topic proportions (Θ) , K X D matrix
- per-corpus topic distributions (β), K X V matrix

LDA for Topic Extraction

Data set: Wikipedia pages from **whales** and **tires** domain; two given topics

```
[Topic 1] [Topic 2]
[1,] "whale" "tire"
[2,] "dolphin" "tyre"
[3,] "species" "wheel"
[4,] "sea" "rubber"
[5,] "ship" "vehicle"
[6,] "killer" "tread"
[7,] "iwc" "car"
[8,] "orca" "pressure"
[9,] "population" "wear"
[10,] "animal" "system"
```

Topic-words are listed in the non-increasing order of *p(topic | term)*

First 119 docs are from whales domain and last 111 from tires domain. K = 2 (input)

Observations

- If the training documents are from completely different domains, LDA finds document topic mixtures that can classify the corpus documents
 - E.g. whales are tires
 - E.g. Case w/ similar domains subdomains of Whale_Products,
 Killer_Whale, Whaling, Baleen_Whale, and Toothed_Whale
- This is supported by the path-similarity defined in the WordNet hierarchy

	Tires	Killer_whale	Baleen_whale	Toothed_whale
Tires	1	0.0526	0.0588	0.0588
Killer_whale	0.0526	1	0.2000	0.3333
Baleen_whale	0.0588	0.2000	1	0.3333
Toothed_whale	0.0588	0.3333	0.3333	1

WordNet - facts

- A manually build lexical data base of English
- English words are grouped into synsets or sets of synonyms
 - Contains nouns, verbs, adverbs
- Synsets are connected to other synsets by semantic relations such as
 - Hypernyms e.g. canine is a hypernym of dog
 - hyponyms e.g. dog is a hyponym of canine
- Path similarity is based on the path distance defined on the semantic hierarchy of synsets

LDA for Dimensionality Reduction

LDA for Dimensionality Reduction

LDA output for classification

Limitations of LDA

- Inability to model topic correlation
 - E.g. a document about genetics is more likely to be about disease
 - Reason: Dirichlet distribution is used to model the topic variability
 - Correlated topic model solves this by using the logistic normal distribution
- Inability to capture the number of topics in a corpus
 - Hierarchical Dirichlet process

Conclusion

- Topic Modeling in general
- TF-IDF, LSI and pLSI advantages and disadvantages
- Latent Dirichlet allocation
 - A fully generative process even at the level of documents
 - Advantages over TF-IDF, LSI, and pLSI
 - Dimensionality reduction
 - Limitations