Le réseau CAN (Controller Area Network)

Nicolas NAVET **INRIA Lorraine - projet TRIO**

nnavet@loria.fr - http://www.loria.fr/~nnavet

Certaines images de ce cours proviennent de :

- spécification CAN (CAN in Automation http://www.can-cia.de)
- Cours de P. Koopman (http://www.ece.cmu.edu/~ece540/lecture/)
- Slides CAN In Automation (http://www.can-cia.de)

CAN: un réseau pour l'automobile (1/3)

- CAN conçu pour le multiplexage véhicule (conception BOSCH 1983 – normalisation ISO 1994)
- Pourquoi multiplexer les communications ? Réduction des coûts de câblage et de maintenance
- Situation à la fin des 80's:

N. Navet - cours EMN 2003

CAN: un réseau pour l'automobile (2/3)

Actuellement :

CAN High Speed ≥250kbit/s

CAN Low Speed

- Quelques chiffres :
 - R25 (fin 80's): 2 km de câbles cuivre! >80kg
 - MB Classe C (2001): 12 ECU's 25 fonctions

MB Classe S (2002): > 50 ECU's! N. Navet - cours EMN 2003

3

CAN: un réseau pour l'automobile (3/3)

Un marché énorme : 50 millions de véhicules par an

Des contraintes de temps et de sûreté de fonctionnement importantes (ex: correcteur de stabilité, ABS, contrôle-moteur ...)

Caractéristiques Techniques

- Bus à diffusion technique CSMA
- MAC priorisé avec arbitrage non destructif
- Un identificateur unique par message :
 - priorité pour l'accès au bus
 - filtrage des messages en réception
- Retransmission automatique des trames corrompues
- Compteurs d'erreurs sur chaque contrôleur
- 8 octets de données au plus par trame

N. Navet - cours EMN 2003

5

CAN dans le modèle OSI

CAN ne normalise que les couches LDD et physique !

N. Navet - cours EMN 2003

Couche Physique: codage NRZ

Non-Return to Zero (NRZ) Coding :

= 011010

Niveau logique 0 : bit dominant

Niveau logique 1 : bit récessif

Couche Physique: « et » logique

En cas de transmissions simultanées :

niveau 0 (dominant) + niveau 1 (récessif) = 0 sur le bus

- Le temps bit minimum est 2 x temps de propagation
 - qui est fonction (données CiA):
 - Contrôleurs CAN (50-62ns)
 - Interface de ligne (120-250ns)
 - Opto-coupleur (40-140ns)
 - Câble (environ 5ns/m)

N. Navet - cours EMN 2003

C

Les supports physiques

- Standard ISO : paire torsadée
- Autres supports envisageables :
 - √ Support monofilaire
 - ✓ Courant porteur
 - √ Transmission radio
 - ✓ Infra-rouge
 - √ Fibre-optique
 - **√** ...

Couche Physique: débit vs longueur

• En pratique, on peut atteindre (réseau filaire) :

N. Navet - cours EMN 2003

11

Couche Physique : Bit-Stuffing (1/2)

Bit-Stuffing (taille=5) pour créer des fronts sur le signal

Suite de bits à transmettre

N. Navet - cours EMN 2003

Couche Physique : Bit-Stuffing (2/2)

Bit-Stuffing : le pire cas

Accroissement $\,$ max de $\left\lfloor (n\text{-}1)/4 \right\rfloor$ bits

N. Navet - cours EMN 2003

13

Couche Physique : sensibilité EMI

Fct du support physique :

- Fct du débit du bus : + élevé → + de perturbations
- Fct de l'environnement d'utilisation :
 - perturbations d'origine interne
 - Perturbations d'origine externe (radars, haute tension, FM ..)

N. Navet - cours EMN 2003

Implémentations CAN typiques

N. Navet - cours EMN 2003

15

Les différents types de trame

- Trame de données (data frame)
 - CAN standard (2.0A): Ident. sur 11 bits
 - CAN étendu (2.0B) : Ident. sur 19 bits
- Trame de demande de données (remote transmission request RTR)
- Trame d'erreurs (error frame)
- Trame de surcharge (overload frame)

N. Navet - cours EMN 2003

Format de la trame de données (1/2)

CAN standard (2.0A): identificateur de 11 bits

En théorie: 2048 id différents, en pratique 2032 .. (id dans [2033,2048] interdits)

- CAN étendu (2.0B) : identificateur de 29 bits
- > 500 millions d'id différents

N. Navet - cours EMN 2003

17

Format de la trame de données (2/2)

N. Navet - cours EMN 2003

Champ d'arbitrage

CAN standard (2.0A)

CAN étendu (2.0B)

N. Navet - cours EMN 2003

19

L'accès au bus (1/2)

- La phase d'arbitrage ou de « résolution des collisions » : la trame la plus prio. gagne le bus
- Se fait sur les champs Identificateur + RTR
- Principe : chaque station émet puis écoute, si la valeur lue est différente de la valeur émise, la station sait qu'elle a perdu l'arbitrage
- Conséquence : un aller-retour pour le signal avant l'émission d'un nouveau bit d'où limite sur le débit max.

N. Navet - cours EMN 2003

Champs de contrôle et de données

Champ de contrôle :

- Bit RTR : 0 trame de données, 1 trame de demande.
- IDE(2.0A)/r1(2.0B): dominant (pour CAN 2.0B, le champ IDE est un champ d'arbitrage)
- r0 : dominant
- DLC : taille des données (octets)
- Champ de données : de 0 à 8 octets

N. Navet - cours EMN 2003

Champs d'acquittement

- ACK Slot : Émis récessif toute station qui reçoit la trame écrit un bit dominant
- Signification de l'acquittement : au moins une station a reçue la trame mais pas forcément le destinataire !! L'acquittement est non-fiable

N. Navet - cours EMN 2003

23

Champs soumis au bit-stuffing

Bit-Stuffing sur ces champs uniquement

N. Navet - cours EMN 2003

Exercices

- 1. A un instant donné, le bus devient libre et 2 trames d'identificateurs 31 et 29 (émises respectivement par les stations 1 et 2) sont en concurrence. Représenter les bits émis par la station 1 et 2 et le niveau résultant sur le bus.
- 2. Quelle est la durée maximale de transmission d'une trame CAN (2.0A) sur un réseau à 125kbit/s ?
- 3. Sur un bus CAN à 500kbit/s, quel débit utile (données) peut-on espérer ?
- 4. Est-il possible d'envisager de transmettre le signal qui ordonne le déclenchement d'un airbag sur un réseau CAN à 125kbit/s?

N. Navet - cours EMN 2003

25

Trame de demande de données

- Bit RTR à 1 (d'où une priorité inférieure à la trame de données!)
- Ne contient pas de données
- La réponse n'est pas « écrite » dans la trame
- Permet une coopération de type Client-Serveur
- Induit une surcharge sur le réseau
- Aucune garantie sur le délai de la réponse !

N. Navet - cours EMN 2003

Les erreurs de transmission

- Pas de technique de correction automatique
- Principe : une station qui détecte une erreur, la signale aux autres par une trame d'erreur (6 bits dominants)
- La trame corrompue participera à un prochain arbitrage (mais ne gagne pas en priorité)
- Probabilité d'erreur résiduelle très faible (de l'ordre de 10-12)

N. Navet - cours EMN 2003

27

Les ≠ types d'erreurs

- Bit-stuffing : 6 bits consécutifs même niveau
- Bit-error : dominant + récessif = récessif !
- CRC error : CRC calculé ≠ CRC trame
- Acknowledgement error : pas d'acquittement
- Form error : mauvaise valeur pour un champ fixe

N. Navet - cours EMN 2003

La trame d'erreur

- Meilleur cas : retransmission après 17 bits
- Pire cas : retransmission après 23 bits

N. Navet - cours EMN 2003

29

Erreur de bit-stuffing

Bit-stuffing uniquement sur ces champs

- 6 bits consécutifs de même niveau entraînent une erreur de bit-stuffing
- La trame d'erreur permet de propager l'erreur à toutes les stations ...

N. Navet - cours EMN 2003

Erreur du niveau d'un bit

vérification uniquement sur ces champs

 Bit-error = émission d'un bit dominant et réception d'un bit récessif

N. Navet - cours EMN 2003

31

Erreur de CRC

CRC calculé sur ces champs

 Erreur de CRC : le CRC reçu est différent du CRC calculé

N. Navet - cours EMN 2003

Erreur d'acquittement

Erreur d'acquittement : ACK slot récessif

N. Navet - cours EMN 2003

33

Erreur « de forme »

 Erreur de forme : un champ dont la valeur est fixée par le protocole n'a pas la valeur attendue

N. Navet - cours EMN 2003

Le confinement d'erreurs

- Problème sur CAN : une station défectueuse peut perturber le fonctionnement de tout le système .. (ex: envoi ininterrompu de trames d'erreurs)
- Une solution : les stations «défectueuses» se déconnectent automatiquement (ou limitent leur prérogatives comme le signalement d'erreurs)
- Comment détecter un pb ? 2 compteurs d'erreurs de transmission sur chaque contrôleur
 - sur les trames émises (TEC transmit error counter)
 - sur les trames reçues (REC receive error counter)

N. Navet - cours EMN 2003

35

Les 3 états d'une station

Selon la valeur des compteurs :

- Etat Erreur-active : fonctionnement normal
- Etat Erreur-passive :
 - émission possible mais 8 bits après que le bus soit libre (temps de réponse !!)
 - plus de signalement d'erreurs
- Etat Bus-off:
 - la station se déconnecte du bus (plus d'émission ni de réception)

N. Navet - cours EMN 2003

Évolution des compteurs

• REC:

- Réception d'une trame corrompue : +1 (jusque 128)
- Réception d'une trame correcte : -1 (si >0)

TFC:

- Emission d'une trame corrompue : +8 (jusque 256)
- Emission d'une trame correcte : -1 (si >0)
- ⇒ Il existe quelques exceptions mineures à ces règles (ex: quand une station est seule sur le réseau)

N. Navet - cours EMN 2003

37

Les règles de changement d'états

TEC: Transmit Error Counter

N. Navet - cours EMN 2003

Conclusion sur le confinement d'erreurs

Le confinement est un plus pour la sûreté de fonctionnement mais ...

- de fortes EMI peuvent conduire à bus-off ou erreur passive sans dysfonctionnement hardware
- le concepteur doit évaluer les risques et prévoir des changements de mode de marche (ex: que faire si le contrôle-moteur est bus-off ??)
- des études ont montrés que le REC ne servait à rien si la station émettait .. (on passe toujours en erreur-passive plus tôt avec le TEC)

N. Navet - cours EMN 2003

39

Trame de surcharge

 Une station émet une trame de surcharge (6 bits dominants) pour signaler qu'elle ne peut recevoir la prochaine trame (pas plus de 2 consécutivement)

⇒ En pratique très rarement utilisé ..

N. Navet - cours EMN 2003

Un « bug » du protocole

Certaines trames peuvent être reçues en double!

- une perturbation localisée à certaines stations (dont l'émetteur) sur le dernier bit du champ EOF : retransmission ..
- 2. Toutes les stations non-affectées reçoivent 2x la trame

Conséquences : sur un réseau CAN

- ne jamais utiliser de messages on/off
- pas d'incréments relatifs (+20°)

Vraisemblablement pas de validation formelle du protocole ...

N. Navet - cours EMN 2003

41

Une application de multiplexage

- Actuellement, 2 sous-réseaux et une douzaine d'ECUs (cf. slides introductifs)
- le réseau « moteur » pour le contrôle temps-réel du véhicule (CAN ≥ 250kbit/s)
- Le réseau habitacle ou confort (CAN / VAN / J1850 souvent ≤125kbit/s)
- Dans l'avenir, un réseau haut-débit multimédia (ethernet switché, IEEE 1394 ?) et un réseau dédié X-by-Wire (TTP, FlexRay ?)

N. Navet - cours EMN 2003

Une messagerie « moteur » typique

réseau CAN à 250kbit/s - charge ≈ 20%

Trame	Site émetteur	DLC	Période
			(ms)
1	CM (contrôle moteur)	8	10
2	CAV (capteur angle volant)	3	14
3	CM	3	20
4	BVA (boite vitesse automatique)	2	15
5	ABS	5	20
6	ABS	5	40
7	ABS	4	15
8	Calcul carrosserie	5	50
9	Suspension	4	20
10	CM	7	100
11	BVA	5	50
12	ABS	1	100

N. Navet - cours EMN 2003

43

Les contraintes de temps

- Informations transmises ont une durée de vie limitée (eg : vitesse, angle volant etc..)
- Les contraintes temporelles
 - sont issues de la dynamique du véhicule
 - induisent des problèmes d'ordonnancement

CAN bien adapté: arbitrage basé sur la priorité permet de garantir des bornes sur le temps de réponse (étudié dans le cours d'ordonnancement temps réel)

N. Navet - cours EMN 2003

Comment «valider» une application?

- ⇒ Valider = vérifier le respect des contraintes
- •Mesures sur un système réel ou maquette : coûts, difficultés d'instrumentation, tard dans le cycle de vie
- La simulation : résultats pire-cas généralement sans valeur
- Modèles analytiques : peu aptes à refléter toute la complexité d'un système

N. Navet - cours EMN 2003

45

Techniques de validation: + et -

Validation sur Modèles Validation sur Prototypes + coûts et rapidité de développement + pas d'hypothèse simplificatrice - Hypothèses simplificatrices + certaines contraintes ne peuvent être vérifiées que sur Modèles Analytiques Modèles de Simulation prototype! + validité du modèle + moins d'hypothèses - construction, instrumentation facile à vérifier simplificatrices longues et coûteuses + bien adaptés aux + facilité de modélisation - intervient tard dans la phase de contraintes dans le - résultats orientés pirepire-cas et aux cas généralement sans - résultats orientés pire-cas évènements rares validité généralement sans validité - validité des modèles ! hvpothèses simplificatrices fortes - difficultés de modélisation!

N. Navet - cours EMN 2003

Techniques analytiques utiles dans la phase de conception

- Calcul de bornes sur les temps de réponse
- Fixation optimale des priorités
- Calcul du nombre d'erreurs tolérables par une trame
- Calcul de la probabilité de non-respect des échéances
- Calcul du temps moyen d'atteinte des états bus-off et erreur-passive

N. Navet - cours EMN 2003

47

Conclusions

- CAN standard dans l'industrie automobile, pourquoi ?
 - bien adapté aux exigences temps réel du domaine
 - très bon marché
 - simple d'utilisation
- Mais:
 - débit limité (par la technique d'accès au bus)
 - peu de services: en particulier, peu de fonctionnalités relatives à la sûreté de fonctionnement

N. Navet - cours EMN 2003

Le réseau TTP (Time Triggered Protocol)

Nicolas NAVET INRIA Lorraine - projet TRIO

nnavet@loria.fr - http://www.loria.fr/~nnavet

Certaines images de ce cours proviennent de :

- [1] Cours de P. Koopman (http://www.ece.cmu.edu/~ece540/lecture/)
- [2] Slides TTPtech (http://www.tttech.com/)
- [3] Normes TTP v1.0 et v0.5
- [4] Simulation of a Time Triggered Protocol D. Bradbury

TTP – Time Triggered Protocol

- Développé à la T.U. Vienne + TTTech
- 2 variantes : TTP/C et TTP/A
- Objectifs:
 - Déterminisme
 - Tolérance aux fautes
 - Horloge globale
 - Support des changements de mode de marche
 - « Composabilité »
- ⇒ un bon candidat pour le X-By-Wire

X-by-Wire

- connexion mécanique remplacée par connexion digitale / informatique - utilisée en aéronautique depuis longtemps
- Pourquoi ?
 - Réduction bruit / vibration / poids / maintenance / encombrement
 - Assistance à la conduite / évitement des chocs
 - Moins de pollution (liquide de freins/transmission)
 - Ajout/remplacement d'équipements
 - •

N. Navet - cours EMN 2003

51

X-by-wire: un premier exemple environnement Retour de Capteur Capteurs force angle volant (caméra) Assistance à Volant la conduite actionneurs direction Réseau Capteur angle roue « Steer-by-wire » N. Navet - cours EMN 2003 52

X-by-wire: un second exemple

Capteur de pression sur la pédale

Transmission par le réseau

Réception par les actionneurs et action physique sur les freins

N. Navet - cours EMN 2003

53

X-by-Wire : pour quels domaines d'un véhicule ?

- Châssis (abs, suspension pilotée,cds ..)
- Transmission (contrôle-moteur, boite de vitesses..)
- Domaines a priori non-concernés :
 - Habitacle (siège, tableau de bord ...)
 - Interface homme/machine
 - Télématique

N. Navet - cours EMN 2003

Structure d'un réseau TTP

- Medium Access Control : TDMA
- Support physique redondant!
- Débits: 500kbit/s, 1Mbit/s, 2Mbit/s, 5Mbit/s, 25Mbit/s
- Topologie: bus ou étoile

N. Navet - cours EMN 2003

55

Un nœud TTP

Nœud ou SRU (Smallest Replaceable Unit):

- Un micro-contrôleur
- Un contrôleur de communication TTP/C
- Une interface E/S

Contrôleur TTP:

- Communication Network Interface
- Le « processeur du protocole »
- Le « gardien » du bus
- Message Descriptor List

N. Navet - cours EMN 2003

Modes de marche

- Modes de marche = phases de fonctionnement parfaitement identifiées et exclusives
- Par exemple, pour un avion:
 - Sur la piste
 - En vol
 - À l'atterrissage
- Utilisés pour gérer des dysfonctionnements du système : modes de marche dégradés
- ⇒ Différents modes de marche nécessitent différentes messageries !

N. Navet - cours EMN 2003

57

Exemples de modes de marche dans l'automobile

- Factory mode
- Showroom mode
- User mode :
 - Pre-run mode (après ouverture portes avant mise en marche moteur)
 - Run mode (moteur en marche)
 - Post-run mode (refroidissement etc..)
 - Park mode (parking longue durée)

• ...

Structure d'un réseau TTP

- Medium Access Control: TDMA
- Support physique redondant!
- Débits normalisés: 500kbit/s, 1Mbit/s, 2Mbit/s bientôt des composants jusqu'à 25Mbit/s

N. Navet - cours EMN 2003

59

Un nœud TTP

Nœud ou SRU (Smallest Replaceable Unit) :

- Un micro-contrôleur
- Un contrôleur de communication TTP/C
- Une interface E/S

Contrôleur TTP:

- Communication Network Interface
- Le « processeur du protocole »
- Le « gardien » du bus
- Message Descriptor List

N. Navet - cours EMN 2003

TDMA — Time division Multiplexed Access (1/2)

- Un slot est un intervalle de temps durant lequel une station émet un message
- Un round TDMA est une séquence de slots t.q. chaque station parle exactement 1x

N. Navet - cours EMN 2003

61

TDMA — Time division Multiplexed Access (2/2)

- Plusieurs rounds TDMA différents par les messages transmis peuvent être définis (l'ordre de transmission et la taille des slots sont nécessairement identiques)
- Un cluster est la suite de tous les rounds TDMA. Le cluster est exécuté en boucle.

N. Navet - cours EMN 2003

TTP/C: Implications du protocole MAC

Temps de réponse borné et « heart-beat » mais:

- Perte de bande passante!
- Nécessité de micro-contrôleurs puissants
- Contrainte de temps maximum:
 - Si une station émet une seule donnée, le rafraîchissement ne peut être plus fréquent que le temps d'un round
 - Si une station émet plusieurs données, le rafraîchissement ne peut être plus fréquent que 2x le temps d'un round

Ex: contrainte de 5ms - réseau à 500kbit/s avec 200 bits par trames - au plus 12 trames (6 FTUs redondantes) ou 6 trames si la station émet 2 données.

N. Navet - cours EMN 2003

FTU: Unité tolérante aux fautes (1/2)

- FTU (Fault Tolerant Unit) = ensemble de stations qui remplissent les mêmes fonctions
- Objectif : tolérance aux fautes

N. Navet - cours EM1

55

FTU: Unité tolérante aux fautes (2/2)

- Assure une protection contre:
 - disparition d'une station (crash, déconnexion..)
 - des transmissions corrompues par des EMI
 - des erreurs de mesure (capteurs) ou de calcul

FTU: redondance double (1/3)

 Node « fantôme » (shadow SRU) : émet dans les slots d'une station active lorsque celle-ci devient défaillante - ne possède pas de slots propres

N. Navet - cours EMN 2003

67

FTU: redondance double (2/3)

 Nodes « répliques » : chacune des SRUs possède son slot dans chaque round TDMA

N. Navet - cours EMN 2003

FTU: redondance double (3/3)

- Sous l'hypothèse d'une défaillance unique, une redondance double assure qu'il y aura une transmission (terminologie TTP: protection dans le domaine temporel)
- Si les valeurs produites peuvent être divergentes, la redondance double ne suffit pas ! d'où l'emploi de la redondance triple (terminologie TTP: protection dans « le domaine des valeurs »)
- Problème majeur : il est parfois nécessaire de transmettre un historique avant reconnexion, comment faire sans trafic dynamique ?

N. Navet - cours EMN 2003

69

Processeur de protocole

par le protocole :

Freeze, Init, Listen, Cold start, Ready, Active, Passive, Await, Self Test, Download, Reconfigure

N. Navet - cours EMN 2003

70

le CPU par le CNI

CNI: Communication Network Interface Interface processeur hôte – contrôleur TTP CNI contains contains contains Status Area Message Area Control Area Stockage des données à émettre et des données reçues État du contrôleur local et état des autres Etat du CPU stations Chgt de mode de marche N. Navet - cours EMN 2003 71

Le « gardien du bus » (1/2)

Assure une protection contre les stations qui n'émettent pas selon leurs spécifications (par exemple perte de syncho)

N. Navet - cours EMN 2003

73

Le « gardien du bus » (2/3)

Ouverture de la ligne uniquement aux instants spécifiés dans le MEDL

N. Navet - cours EMN 2003

Le « gardien du bus » (3/3)

Le gardien de bus devrait :

- avoir une horloge propre
- ne pas être trop proche physiquement du contrôleur
- avoir une alimentation électrique propre

N. Navet - cours EMN 2003

75

Trames TTP (1/2)

Trames avec C-State explicite: au minimum 2 par cluster

Trames avec C-State implicite:

N. Navet - cours EMN 2003

Trames TTP: format spec. V0.5

Trames de données avec C-state implicite

N. Navet - cours EMN 2003

77

Trames TTP: acceptation

- Pour être acceptée, une trame doit être valide (codage ok, nombre de bits spécifié dans le MEDL..) et correcte :
 - C-Frames implicite: CRC reçu = CRC calculé
 - C-Frames explicite : CRC reçu = CRC calculé et C-state dans la trame = C-state de la station qui reçoit la trame

N. Navet - cours EMN 2003

Après la réception d'une trame

■ Mise à jour du CNI :

⇒ Les performances du protocole dépendent de l'IFG de la station la moins rapide !

N. Navet - cours EMN 2003

79

CAN vs TTP (1)

	CAN	TTP
MAC	CSMA/CA avec arbitrage selon la priorité	TDMA avec un ordonnancement global et statique
Topologie	Bus	Bus ou étoile (avec plus de 4 stations)
Débit	1 Mbit/s max. sur 30 mètres	Actuellement 2Mbit/s, 25Mbit/s à moyen terme

N. Navet - cours EMN 2003

CAN vs TTP (2)

	CAN	TTP
Support redondant?	Non prévu mais possible	Oui
Connaissance de l'état des stations ?	Non prévu mais possible	Oui
Temps global ?	Non prévu mais possible	Oui
Intégrité des données	CRC 16 bits	CRC 16 bits

N. Navet - cours EMN 2003

81

CAN vs TTP (3)

	CAN	TTP
Données utiles par trame	≤ 8 octets	≤ 16 octets
Overhead par trame	47 bits + bit- stuffing	20 bits + IFG
Autres overheads		transmissions inutiles (par construction du MEDL)

CAN vs TTP (4)

	CAN	TTP
Acquittement	-Non-fiable t.q. prévu dans le protocole -Explicite par un message spécifique ⇒ perte de bande passante	Implicite par le «membership», légèrement différé (au plus un round après transmission)
Protection contre une station qui monopolise le bus	Non	Oui
Protection contre une erreur locale (contrôleur ou interface de ligne)	Partielle (confinement d'erreurs)	Oui (gardien de bus, self test)

N. Navet - cours EMN 2003

83

CAN vs TTP (5)

	CAN	TTP
Support des « shadow » nodes	NON	OUI
Support des réplicas	possible	OUI
Changement de modes de marche	Non – possible par un message explicite de l'application	OUI

N. Navet - cours EMN 2003

CAN vs TTP: conclusion

	CAN	TTP
+	 Bon marché Flexible et facile à utiliser Temps de réponse bornés Nouvelles fonctionnalités possibles par des couches supérieures 	- Fonctionnalités de SdF (réplicas, membership, synchro) - Connaissance exacte des temps de réponse - Débits élevés
-	- Débit limités - Peu de services liés à la SdF	 Ajout non-prévu de nodes nécessitent de revoir la conception de toutes les autres Coût

Le réseau FlexRay

Nicolas NAVET
INRIA Lorraine - projet TRIO

nnavet@loria.fr - http://www.loria.fr/~nnavet

FlexRay

- Initiative de l'industrie automobile (1999) pour concevoir un bus « X-by-Wire »
- Partenaires: DaimlerChrysler, BMW, Bosch, GM,
 VW, ... + fondeurs: Philips et Motorola.
- Réutilisation du réseau ByteFlight de BMW
- Caractéristiques principales VS TTP/C : plus de flexibilité
- ⇒ un autre bon candidat pour le X-By-Wire

N. Navet - cours EMN 2003

87

Topologie du réseau / couche physique

- Bus simple ou redondant possibilité d'être connecté sur un seul des supports physiques (!=TTP/C)
- Bus ou étoile(s)

- Couche physique optique ou électrique
- Débit : entre 500kbit/s et 10Mbit/s

N. Navet - cours EMN 2003

Format de la trame

- Res1/res2: indique présence vecteur d'acquittement dans les données (non implémenté actuellement FPGA V5.0)
- Length: taille des données/2
- Sync Bit=1 : trame utilisée pour synchronisation d'horloge
- Header CRC calculé sur Length et Sync Bit
- Data Update bit: donnée rafraichie depuis dernière transmission
- Cycle counter: cycle courant

N. Navet - cours EMN 2003

89

Codage de la trame

- Codage NRZ 8N1: Non-Return to Zero, ajout d'un bit de start et d'un bit de stop pour chaque octet de donnée
- Frame Start Sequence (FSS): 8 bits au niveau 0
- Start Of Cycle (SOC) normal symbol: 10 bits 1 suivi de 30 bits 0

N. Navet - cours EMN 2003

Medium Access Control

3 modes: statique pure, dynamique pure, mixed statique/dynamique

N. Navet - cours EMN 2003

91

MAC: partie statique (TDMA)

- Les slots ont tous la même taille (!= TTP/C)
- Une même station peut obtenir plusieurs slots par cycle (jusque 16, != TTP/C)
- Si redondance, possibilité d'émettre des données différentes sur chaque médium (=TTP/C) ou rien sur un ou les deux médiums
- Existence d'un gardien de bus (=TTP/C)
- Des slots peuvent être laissés libres pour des extensions futures (=TTP/C)

N. Navet - cours EMN 2003

MAC: partie dynamique (F-TDMA)

- Chaque station possèdent une ou des priorités uniques sur l'ensemble du système
- Des transmissions successives de la même trame peuvent être de tailles différentes
- Si redondance, chaque médium opère indépendamment
- Pas de retransmission si erreur ..
- Sous certaines hypothèses sur le trafic, il est possible de calculer des pires temps de réponse (cf. CAN)

N. Navet - cours EMN 2003

93

Confinement d'erreurs

- 4 gravités d'erreurs :
 - Normal (S0): fct normal
 - Warning (S1): fct normal notification application
 - Error (S2): arrêt transmission mais réception ok
 - Fatal Error (S3): arrêt total désynchronisation attente d'un reset logiciel
- 3 modes de marche : normal (S0 et S1), Passive (S2), Fatal Error (S3)
- Mode de marche courant fct des valeurs de multiples compteurs d'erreurs (cf. CAN)
- Un Frame Status and Error Vector pour chaque médium (bit error, CRC, trame manquante ..)

N. Navet - cours EMN 2003

Conclusions préliminaires

	FlexRay
+	 Flexibilité: topologie: cohabitation redondance ou non – médium différents MAC: trafic dynamique possible Réutilisation savoir-faire et existant issus de CAN Répond au besoins spécifiques automobiles (ex: wake up)
-	 Spécification non-achevée Validation du protocole! Peu de fonctionnalités liées à la SdF (redondance, membership?)
	N. Navet - cours EMN 2003 95