Radosław Matuszczyk Inżynieria i Analiza Danych Szyfrowanie i kompresja danych Semestr III, 2021/2022

Porównanie jakości i stopnia kompresji plików graficznych algorytmami JPEG oraz JPEG2000 dla różnych wartości współczynnika poziomu jakości.

W celu zmniejszenia pamięci zajmowanej przez pliki multimedialne stosujemy algorytmy kompresji. Jednym z jej rodzajów jest kompresja stratna charakteryzująca się brakiem możliwości odtworzenia oryginalnego pliku po dekompresji – część informacji zostaje utracona. Przy usuwaniu nadmiarowych informacji o dźwięku czy obrazie wykorzystujemy niedokładność ludzkich zmysłów. JPEG i JPEG2000 to przykłady standardów stratnej kompresji obrazów. Redukcja zajmowanej pamięci opiera się na przekształceniach dyskretnej transformacji kosinusowej lub falkowej, a następnie odfiltrowaniu poprzez etap kwantyzacji częstotliwości zmian słabiej zauważalnych przez ludzkie oko, w szczególności wysokich. Stopień kompresji zależy od ustalenia tzw. poziomu jakości QL (quality level), czyli współczynnika o wartościach całkowitych od 1 do 100. Im mniejsza wartość, tym większy stopień kompresji wyjściowego obrazu.

W bieżącym doświadczeniu badamy wpływ współczynnika QL na jakość obrazów kompresowanych poprzez standardy JPEG oraz JPEG2000. Wybieramy dwa obrazy o wymiarach 1920x1280 px zapisane w postaci nieskompresowanej (rozszerzenie .tiff) – jeden barwny (rys. 1) oraz drugi w poziomach szarości (rys. 2).

Rys. 2. Obraz w poziomach szarości.

Następnie za pomocą programu IrfanView dokonujemy wielokrotnej kompresji obu obrazów zmieniając za każdym razem wartość współczynnika QL – 1, 10, 30, 50, 70, 90, 100. W wyniku powyższych operacji otrzymujemy 7 skompresowanych obrazów zapisanych w formacie .jpg (odpowiadającym standardowi JPEG) oraz 7 w formacie .jp2 (odpowiadającym standardowi JPEG2000). Poniżej zestawienie uzyskanych obrazów.

Rys. 2.1. Obraz barwny, JPEG, QL = 100.

Rys. 3.1. Obraz barwny, JPEG2000, QL = 100.

Rys. 2.2. Obraz barwny, JPEG, QL = 90.

Rys. 3.2. Obraz barwny, JPEG2000, QL = 90.

Rys. 2.3. Obraz barwny, JPEG, QL = 70.

Rys. 3.3. Obraz barwny, JPEG2000, QL = 70.

Rys. 2.4. Obraz barwny, JPEG, QL = 50.

Rys. 3.4. Obraz barwny, JPEG2000, QL = 50.

Rys. 2.5. Obraz barwny, JPEG, QL = 30.

Rys. 3.5. Obraz barwny, JPEG2000, QL = 30.

Rys. 2.6. Obraz barwny, JPEG, QL = 10.

Rys. 3.6. Obraz barwny, JPEG2000, QL = 10.

Rys. 2.7. Obraz barwny, JPEG, QL = 1.

Rys. 3.7. Obraz barwny, JPEG2000, QL = 1.

Rys. 4.1. Obraz szary, JPEG, QL = 100.

Rys. 5.1. Obraz szary, JPEG2000, QL = 100.

Rys. 4.2. Obraz szary, JPEG, QL = 90.

Rys. 5.2. Obraz szary, JPEG2000, QL = 90.

Rys. 4.3. Obraz szary, JPEG, QL = 70.

Rys. 5.3. Obraz szary, JPEG2000, QL = 70.

Rys. 4.4. Obraz szary, JPEG, QL = 50.

Rys. 5.4. Obraz szary, JPEG2000, QL = 50.

Rys. 4.5. Obraz szary, JPEG, QL = 30.

Rys. 5.5. Obraz szary, JPEG2000, QL = 30.

Rys. 5.6. Obraz szary, JPEG2000, QL = 10.

Rys. 4.7. Obraz szary, JPEG, QL = 1.

Rys. 5.7. Obraz szary, JPEG2000, QL = 1.

Na koniec oceniamy jakość dokonanej kompresji badając stopień ingerencji algorytmów w wartości poszczególnych bitów kodujących obrazy. Za pomocą programu MATLAB liczymy średnią różnicę poziomów szarości RGB dla obrazu nieskompresowanego i wszystkich wersji obrazów skompresowanych. Przykładowy program obliczający średnią dla obrazu barwnego skompresowanego algorytmem JPEG przy wartości współczynnika QL = 50:

```
color = imread('jpg/color.tiff');
color_QL50 = imread('jpg/color_QL50.jpg');
mean_color_QL50 = mean(abs(double(color(:))-double(color_QL50(:))));
```

Wszystkie otrzymane wyniki prezentujemy w tabelach 1 i 2. Dodatkowo zamieszczamy wielkość poszczególnych plików oraz stopień kompresji wyliczony jako procentowy ubytek rozmiaru. Rozmiar oryginalnego obrazu barwnego wynosi 7201 KB, a szarego 2401 KB. Zamieszczamy także wykres zależności różnicy poziomów szarości od stopnia kompresji dla różnych wariantów obrazów i standardów (wykres 1).

Tabela 1. Stopień kompresji oraz średnie różnice poziomów szarości obrazów oryginalnych i skompresowanych standardem JPEG.

	obrazy barwne			obrazy w skali szarości		
QL	średnia	rozmiar	stopień	średnia	rozmiar	stopień
	różnica	[KB]	kompresji	różnica	[KB]	kompresji
100	0,6454	1683	76,6%	0,2797	1475	38,6%
90	2,1655	874	87,9%	1,8358	793	67,0%
70	6,2945	521	92,8%	5,9585	471	80,4%
50	7,0130	299	95,8%	6,6854	268	88,8%
30	8,0610	199	97,2%	7,6044	174	92,8%
10	10,8490	79	98,9%	9,5860	68	97,2%
1	18,7007	27	99,6%	14,7646	20	99,2%

Tabela 2. Stopień kompresji oraz średnie różnice poziomów szarości obrazów oryginalnych i skompresowanych standardem JPEG2000.

	obrazy barwne			obrazy w skali szarości		
QL	średnia	rozmiar	stopień	średnia	rozmiar	stopień
	różnica	[KB]	kompresji	różnica	[KB]	kompresji
100	1,3169	1282	82,2%	0,3702	1385	42,3%
90	1,6159	1106	84,6%	0,7358	1134	52,8%
70	2,4788	800	88,9%	1,7509	759	68,4%
50	3,7283	523	92,7%	3,2982	458	80,9%
30	5,5137	284	96,1%	5,3811	227	90,5%
10	8,8067	91	98,7%	8,8987	62	97,4%
1	12,0829	23	99,7%	11,9347	11	99,5%

Wykres 1. Zależność średniej różnicy poziomów szarości od stopnia kompresji.

Subiektywna analiza powyższych obrazów pozwala zauważyć, że kompresja standardem JPEG lub JPEG2000 przy współczynniku QL równym około 30-50 i wyższym nie wprowadza widocznych gołym okiem zmian. Przy tych wartościach QL uzyskujemy zmniejszenie rozmiaru obrazu barwnego o 92-97% oraz szarego o 80-90%. Istotne różnice pojawiają się dopiero przy kompresji powyżej wymienionych wartości. Stosunek ingerencji w jakość obrazu do stopnia kompresji rośnie wtedy znacznie, co podaje w wątpliwość sens tak drastycznej redukcji.

Mniejszy stopień kompresji obrazów szarych niż barwnych dla tego samego współczynnika QL wynika z faktu, że ludzie znacznie dokładniej dostrzegają różnice jasności niż koloru. Z tego powodu w przypadku obrazów barwnych możliwy jest dodatkowy etap odrzucenia części pikseli kanałów barwy.

Analizując wykres zależności średniej różnicy poziomów szarości RGB zauważamy, że w przypadku średniej i dużej kompresji (do około 70% dla obrazów szarych oraz 90% dla barwnych) oba algorytmy dają podobne rezultaty. Przy bardzo dużej kompresji (powyżej wymienionych wartości) mniejsze zniekształcenie obrazu zapewnia standard JPEG2000. Użyta w przypadku JPEG transformata kosinusowa powoduje efekty blokowe, co dokładnie widać porównując obrazy dla QL = 1 oraz QL = 10.

Podsumowując, zarówno standard JPEG oraz JPEG2000 pozwalają w dużym stopniu (rzędu 80-95%) zmniejszyć rozmiar obrazu bez wprowadzania widocznych gołym okiem zmian. W obu przypadkach uzyskujemy większą skuteczność przy kompresji obrazów kolorowych. Dla bardzo dużej redukcji preferowany jest standard JPEG2000 zapewniający mniejszy poziom zniekształceń.