Projeto e Análise de Algoritmos Introdução

Atílio G. Luiz

Primeiro Semestre de 2024

Agradecimentos

A maioria dos exemplos dos slides e exercícios adicionais foram ou criados e gentilmente cedidos pelo prof. Cid Carvalho de Souza e pela profa. Cândida Nunes da Silva (particularmente com modificações do prof. Orlando Lee); ou criados e gentilmente cedidos pelos professores Flávio Keidi Miyazawa e Lehilton Pedrosa. Eu recriei ou reestruturei o conteúdo das unidades, possivelmente introduzindo erros, que devem ser reportados a mim.

O conjunto de slides de cada unidade do curso será disponibilizado como guia de estudos e deve ser usado unicamente para revisar as aulas. Para estudar e praticar, leia o livro-texto indicado e resolva os exercícios sugeridos.

Atilio

Objetivos

O que veremos nesta disciplina?

- 1. Demonstrar correção de um algoritmo
 - como ter certeza de que a saída está correta
 - como convencer outras pessoas disso
- 2. Analisar a complexidade de um algoritmo
 - como estimar a quantidade de recursos utilizados
 - recursos podem ser tempo, memória, acesso a rede etc.

Objetivos

- 3. Utilizar técnicas conhecidas de projeto de algoritmos
 - divisão e conquista, programação dinâmica etc.
 - utilizar recursão adequadamente
- 4. Entender a dificuldade intrínseca de alguns problemas
 - inexistência de algoritmos eficientes
 - identificar os problemas intratáveis

Problemas computacionais

Um problema computacional é uma relação entre um conjunto de instâncias e um conjunto de soluções:

- uma instância é um conjunto de valores conhecidos
- uma solução é um conjunto de valores a computar
- cada instância corresponde a uma ou mais soluções

Exemplo de problema: teste de primalidade

Problema: determinar se um dado número é primo

instâncias: números naturais

soluções: sim ou não

Exemplo:

Instância: 9411461

► Solução: sim

Exemplo:

Instância: 8411461

Solução: não

Exemplo de problema: ordenação

Problema: ordenar os elementos de um vetor

- instâncias: conjunto de vetores de inteiros
- soluções: conjunto de vetores de inteiros em ordem crescente

Exemplo:

Instância:

Solução:

1										n
11	22	22	33	33	33	44	55	55	77	99

Algoritmos

Um algoritmo é uma sequência finita de instruções que

- recebe uma instância de um problema computacional
- devolve uma solução correspondente à instância recebida

Observações:

- a instância recebida é chamada de entrada
- a solução devolvida é chamada de saída
- toda instrução deve ser bem definida

Descrição de algoritmos

Podemos escrever um algoritmo de várias maneiras:

- em uma linguagem de programação, como C, Pascal, Java, Python...
- em português, ou outra língua natural
- em pseudocódigo, como no livro de CLRS

Usaremos apenas as duas últimas opções!

Exemplo de pseudocódigo

Um algoritmo para o problema da ordenação:

```
Insertion-Sort (A, n)

1 para j = 2 até n faça

2 chave = A[j]

3 i = j - 1

4 enquanto i \ge 1 e A[i] >  chave faça

5 A[i+1] = A[i]

6 i = i - 1

7 A[i+1] =  chave
```

Más práticas

Não misture código com pseudocódigo:

for
$$(i = 0; i < n; i++)$$
 ... if $(A[i] >= chave)$ break

Não escreva frases confusas:

```
se A[i] > chave então
troque as posições dos elementos
```

chave = pega o próximo elementoi = procura posição da chave

Evite algoritmos complicados ou com muitas variáveis:

```
se j=1 então A[2]=A[1] A[1]=\mathit{chave} senão enquanto i\geq 1 e A[i]\geq \mathit{chave} faça ...
```

Modelo computacional

Só podemos escrever instruções bem definidas:

- o resultado de cada instrução é inambíguo e depende somente do estado corrente da execução
- deve ser possível executar cada instrução usando o computador adotado

O conjunto de instruções permitidas é determinado pelo que chamamos de modelo computacional

Máquinas RAM

Usaremos o Modelo Abstrato RAM (Random Access Machine)

- simula máquinas convencionais
- possui um único processador sequencial
- tipos básicos são números inteiros e pontos flutuantes
- cada palavra de memória tem tamanho limitado, i.e., valores não podem ser arbitrários

Instruções elementares

- operações aritméticas como soma, subtração, produto...
- acesso direto às posições da memória
- comandos de fluxo de controle (se, enquanto...)

Operações como exponenciação não são elementares.

Correção de algoritmos

Um algoritmo está correto se:

- 1. só utiliza instruções do modelo de computação adotado,
- 2. termina para toda instância do problema e
- 3. devolve uma solução que correspondente à instância recebida.

Ao escrever um algoritmo, sempre devemos

- 1. Testar o algoritmo
 - com uma ou mais instâncias de exemplo
 - executando ou simulando o algoritmo
- 2. Demonstrar que o algoritmo está correto
 - escrever uma prova formal genérica
 - vale para toda instância do problema

Complexidade de algoritmos

- Nem sempre é viável executar um algoritmo
 - pode levar anos ou séculos para terminar
 - pode precisar de mais memória do que há disponível
- Queremos
 - 1. projetar algoritmos eficientes
 - 2. comparar algoritmos diferentes
- Para isso, precisamos medir a complexidade do algoritmo
 - independentemente de quem programou,
 - da linguagem em foi escrito
 - e da máquina a ser usada

Modelo computacional e complexidade

Vamos estimar o tempo de execução de um algoritmo

- contamos o número de instruções elementares executadas
- supomos que cada instrução elementar consome um tempo contante

A análise de complexidade depende sempre do modelo computacional adotado!

- o modelo computacional RAM é realista
- seu conjunto de instruções elementares é compatível com os computadores modernos
- é suficientemente genérico para as diferentes arquiteturas

Um parâmetro importante: tamanho da entrada

quantidade de bits necessários para codificar a entrada.

Quantos bits k são necessários para codificar um inteiro positivo n?

- ► Como 2^{k-1} é o menor valor n com k bits, $2^{k-1} \le n < 2^k \implies k-1 \le \log_2 n < k \implies k = \lfloor \log_2 n \rfloor + 1 \approx \log_2 n$
- Ex.: Entrada com valor 1 bilhão tem tamanho $k = \lfloor \log_2 10^9 \rfloor + 1 = 30$ bits.

Se algoritmo recebe valor n como entrada e gasta T(k) = n passos, seu tempo de execução é linear?

▶ Não, pois $T(k) = n \approx 2^k$ (exponencial em k)

Considere os algoritmos:

- $ightharpoonup P_1$: soma os N inteiros em um array
- P₂: testa se um número N é primo, checando se N é divisível por 2,3,..., N − 1

Os dois realizam da ordem de N-1 operações (adições ou divisões) P_1 é considerado *viável*, enquanto P_2 *inviável*. Por quê?

- Supondo inteiros de 64 bits, o tamanho da entrada para P_1 vale k=64N.

 Concluímos que $T_1(k)=N-1=\frac{1}{64}k-1$ (linear no tamanho da entrada).
- ▶ Em P_2 , o tamanho da entrada é o número de bits de N, ou seja, $k \approx \log_2 N$.

 Concluímos que $T_2(k) = N 1 \approx 2^k 1$. (exponencial no tamanho da entrada)

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits

Ex.: Quantidade de dígitos de um inteiro n

- ▶ Quantidade de bits $\approx \log_2 n$
- ▶ Quantidade de dígitos $\approx \log_{10} n$

$$\log_{10} n = \left(\frac{1}{\log_2 10}\right) \cdot \log_2 n$$

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits

Ex.: Tupla $\langle x_1, x_2, \dots, x_n \rangle$ com n elementos, cada um com aproximadamente C bits

- ▶ Total de bits = $C \cdot n$
- Então podemos usar *n* como tamanho da entrada
- Ex.: Vetor de inteiros, cada um com 32 bits
- Ex.: strings, cada caractere com 8 bits

Análise assintótica e de pior caso

Consideramos apenas instâncias grandes

- o número de instruções normalmente cresce com o tamanho da entrada n
- instâncias com tamanho limitado por constante gastam tempo constante

Fazemos apenas análise de pior caso

- restringimos a entradas com um dado tamanho n
- consideramos apenas uma instância para a qual o algoritmo executa o maior número de instruções

Denotamos por $\mathcal{T}(n)$ o número de instruções executadas no pior caso para entradas de tamanho n

Características e limitações

Esse tipo de análise de complexidade:

- normalmente estima bem tempo de execução real
- permite comparar diversos algoritmos para um problema
- continua relevante mesmo com evoluções tecnológicas

Limitações:

- é uma análise pessimista do tempo de execução
- em certas aplicações, certas instâncias ocorrem mais frequentemente que um pior caso
- não fornece informação sobre tempo de execução médio

Ordenação

Problema: ordenar os elementos de um vetor

- ▶ Entrada: vetor A[1...n]
- ▶ Saída: rearranjo de A[1...n] em ordem crescente

Vamos começar revendo a ordenação por inserção.

Inserção em um vetor ordenado

Ideia do algoritmo

- ▶ suponha que o subvetor A[1...j-1] já está ordenado.
- ightharpoonup vamos inserir o A[j] para que A[1...j] fique ordenado
- o valor do elemento a ser inserido é chamado de *chave*

Antes de inserir:

Após inserir:

1						j				n
20	25	35	38	40	44	55	99	10	65	50

Inserindo uma chave

Ordenando por inserção

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50
										_	
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50
chave	1										j

Pseudocódigo de Insertion-Sort

```
Insertion-Sort(A, n)

1 para j = 2 até n faça

2 chave = A[j]

3 i = j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] = A[i]

6 i = i - 1

7 A[i+1] = chave
```

Análise do algoritmo

O que é importante analisar?

- Correção
 - já testamos o algoritmo com um exemplo
 - por enquanto, suponha que o algoritmo está correto
 - vamos mostrar que ele está correto depois
- Complexidade de tempo
 - considere vetores com n elementos
 - quantas instruções são executadas?

Contando o número de instruções

Ins	sertion-Sort(A, n)	Custo	Qnts vezes?
1 p	oara $j = 2$ até n faça	<i>c</i> ₁	n
2	chave = A[j]	c_2	n-1
3	i = j - 1	<i>c</i> ₃	n-1
4	enquanto $i \ge 1$ e $A[i] > chave$ faça	<i>C</i> ₄	$\sum_{j=2}^{n} t_j$
5	A[i+1] = A[i]	<i>C</i> ₅	$\sum_{j=2}^{n} (t_j - 1)$
6	i = i - 1	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	A[i+1] = chave	<i>C</i> ₇	n-1

- ightharpoonup a linha k executa um número constante de instruções c_k
- cada linha executa uma ou mais vezes
- quantas vezes a linha 4 executa depende da entrada
 - ightharpoonup seja t_i quantas vezes enquanto executa para um certo j

Tempo de execução total

- Considere uma instância de tamanho n
- ightharpoonup Seja T(n) o número de instruções executadas para ela
- Basta somar para todas as linhas

$$\begin{split} T(n) &= c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot \sum_{j=2}^n t_j + \\ &c_5 \cdot \sum_{j=2}^n (t_j - 1) + c_6 \cdot \sum_{j=2}^n (t_j - 1) + c_7 \cdot (n-1) \end{split}$$

Observações:

- entradas do mesmo tamanho têm tempos diferentes
- vamos considerar diferentes instâncias
 - **melhor caso:** quando T(n) é o menor possível
 - **p**ior caso: quando T(n) é o maior possível

Melhor caso

Um melhor caso ocorre quando $t_j=1$ para cada j

- basta que a condição do enquanto sempre falhe
- ocorre se a entrada A já vem ordenada

Nesse caso:

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n-1) + c_7 \cdot (n-1)$$

$$= (c_1 + c_2 + c_3 + c_4 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

$$= a \cdot n + b$$

- os valores de a e b são constantes
- o tempo de execução no melhor caso é linear em n

Pior caso

Um pior caso ocorre quando t_j é máximo para cada j

- ▶ basta que a condição do enquanto só falha quando i = 0
- ▶ nessa situação, teremos $t_j = j$
- ocorre se a entrada A vem ordenada decrescentemente

Relembre que

$$\sum_{j=2}^{n} j = n(n+1)/2 - 1$$
 e $\sum_{j=2}^{n} (j-1) = n(n-1)/2$

Pior caso (cont)

Substituindo, temos

$$T(n) = c_1 \cdot n + c_2 \cdot (n-1) + c_3 \cdot (n-1) + c_4 \cdot (n(n+1)/2 - 1) + c_5 \cdot n(n-1)/2 + c_6 \cdot n(n-1)/2 + c_7 \cdot (n-1)$$

$$= (c_4/2 + c_5/2 + c_6/2) \cdot n^2 + (c_1 + c_2 + c_3 + c_4/2 - c_5/2 - c_6/2 + c_7) \cdot n - (c_2 + c_3 + c_4 + c_7)$$

$$= a \cdot n^2 + b \cdot n + c$$

- os valores de *a, b, c* são constantes
- o tempo de execução no pior caso é quadrático em n

Complexidade assintótica

Estamos interessados principalmente

- na análise de pior caso
- no tempo de execução para instâncias grandes

Comportamento assintótico

- ▶ no pior caso temos $T(n) = an^2 + bn + c$
 - ightharpoonup o termo dominante é o que contém n^2
 - o tempo de execução é uma função quadrática
 - as constantes *a, b, c* só dependem da implementação
- não nos preocupamos com os valores de a, b, c

Por que isso é razoável?

Um exemplo de função quadrática

Considere a função $3n^2 + 10n + 50$

n	$3n^2 + 10n + 50$	$3n^2$
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

- ▶ quando n é grande, o termo $3n^2$ é uma boa estimativa
- podemos nos concentrar nos termos dominantes

Notação assintótica

Como simplificar o tempo de pior caso de INSERTION-SORT?

- ▶ ao invés de escrever $T(n) = an^2 + bn + c$,
- escrevemos somente $T(n) = \Theta(n^2)$

Essa notação significa que, para n suficientemente grande,

- 1. T(n) é limitada superiormente por $c \cdot n^2$, para algum c > 0
- 2. T(n) é limitada inferiormente por $d \cdot n^2$, para algum d > 0

Vamos formalizar essa notação assintótica mais adiante!

Começando a trabalhar

Conclusões

Conclusões

Algumas conclusões:

- Projetar algoritmos melhores pode levar a ganhos extraordinários de desempenho.
- Isso é tão importante quanto o projeto de hardware.
- O ganho obtido ao melhorar a complexidade de um algoritmo não poderia ser obtida simplesmente com o avanço da tecnologia.
- Queremos estudar principalmente algoritmos fundamentais, que produzem avanços em outras componentes básicas das aplicações (pense nos compiladores, buscadores na internet, classificadores, etc).

Começando a trabalhar

Exercícios

- 1. Reescreva o procedimento INSERTION-SORT para ordenar em ordem não crescente, em vez da ordem não decrescente.
- 2. Considere o problema de busca:
 - ▶ **Entrada:** Uma sequência de *n* números $A = \langle a_1, a_2, ..., a_n \rangle$ e um valor v.
 - Saída: Um índice i tal que v = A[i] ou o valor especial NIL, se v não aparecer em A.

Escreva o pseudocódigo para busca linear, que faça a varredura da sequência, procurando por v.

3. Considerando a busca linear do exercício anterior, quantos elementos da sequência de entrada precisam ser verificados em média, considerando que o elemento que está sendo procurado tenha a mesma probabilidade de ser qualquer elemento no arranjo? E no pior caso? Quais são os tempos de execução do caso médio e do pior caso da busca linear em notação ⊖?

4. Considere a ordenação de n números armazenados no arranjo A, localizando primeiro o menor elemento de A e permutando esse elemento com o elemento contido em A[1]. Em seguida, determine o segundo menor elemento de A e permute-o com A[2]. Continue dessa maneira para os primeiros n-1 elementos de A.

Escreva o pseudocódigo para esse algoritmo, conhecido como **ordenação por seleção**. Forneça os tempos de execução do melhor caso e do pior caso da ordenação por seleção em notação Θ .

5. Considere o problema de somar dois inteiros binários de n bits, armazenados em dois arranjos de n elementos A e B. A soma dos dois inteiros deve ser armazenada em forma binária em um arranjo de (n+1) elementos C. Enuncie o problema formalmente e escreva o pseudocódigo para somar os dois inteiros.