Ignacio Larrosa Cañestro 14/10/2023

Números que se invierten al multiplicarlos por 4 o 4-flips

1º Si $\{F_i\}$ es un conjunto cualquiera de 4-flips, cualquier concatenación **SIMÉTRICA** de ellos también lo es. Denotando la concatenación por '**&**', $F=F_{i1}\&F_{i2}\&...\&F_{in}$ es simétrica si $i_k=i_{n+1-k}$, k=1... n. Por ejemplo:

```
F_1\&F_2\&F_1\&F_3\&F_1\&F_2\&F_1 ó F_1\&F_1
```

Llamando en general F'= $4\cdot$ F, tendríamos F'= $4\cdot$ F= F'_{i1} & F'_{i2} &......& F'_{in} , puesto que al multiplicar cada 4-flip por 4 el número de cifras se mantiene. Entonces si F es una concatenación simétrica de 4-flips, se ve fácilmente que las cifras de F' son las de F en orden inverso.

2º Llamemos a estos 4-flips "**compuestos**", y "**simples**" a los que no se pueden descomponer en una concatenación simétrica de 4-flips. Veamos entonces como deben ser los 4-flips simples.

3º Sea $F=a_n\&a_{n-1}\&....\&a_1\&a_0$ un 4-flip, donde los a_i son números del 0 al 9. Entonces $F'=a_0\&a_1\&....\&a_{n-1}\&a_n$. Ha de ser $a_0=4\cdot a_n$, para que no aumente el número de cifras, lo que nos da tres posibilidades: $a_0=a_n=0$; $a_n=1$ y $4\le a_0\le 9$; o $a_n=2$ y $a_0\ge 8$. De la primera posibilidad nos surge el primer 4-flip: 0. Le denominaremos por razones que luego se verán, F_{-2} .

Si por alguna extraña razón decidiéramos que un 4-flip podía empezar por 0, también terminaría en 0 y una de dos: o es simplemente 0 o es compuesto, pues las cifras intermedias también conformarían un 4-flip.

El segundo caso se descarta de inmediato, pues $a_n \equiv 4 \cdot a_1 \pmod{10}$ y por lo tanto par.

Entonces, $a_0 = 2 \text{ y } 2 \equiv 4 \cdot a_0 \pmod{10} \Rightarrow a_0 = 8 \text{ (recordemos } a_0 \geq 8\text{)}.$

Por tanto, $F=2\&a_{n-1}\&...\&a_1\&8$.

a_{n-1} sólo puede ser 0, 1 ó 2, para no producir un acarreo sobre a_n:

#1 $a_1 \equiv 4 \cdot a_{n-1} + c \pmod{10}$ (c ≤ 3 , acarreo anterior)

#2 $a_{n-1} \equiv 4 \cdot a_1 + 3 \pmod{10}$

Por #2 a_{n-1} tiene que ser impar, así que $a_{n-1} = 1$ y $a_1 = 2$ ó 7

Pero $a_1 = 2 \Rightarrow c = 8$, por lo que debe ser $a_1 = 7$ y c = 3.

Un 4-flip "simple" debe ser por tanto de la forma 21..78. Con ello tenemos el segundo

4-flip simple: 2178 (llamémosle F₀), y vemos que no hay otro con menos de

cinco cifras. Vamos con a_{n-2} y a_2 :

#3 a $2 \equiv 4 \cdot a_{n-2} + c \pmod{10}$ (y se genera un acarreo de 3)

Ignacio Larrosa Cañestro 14/10/2023

#4
$$a_{n-2} \equiv 4 \cdot a_2 + 3 \pmod{10}$$

Sustituyendo a_{n-2} en #3, se tiene $a_2 \equiv 16 \cdot a_2 + 12 + c \equiv 6 \cdot a_2 + 2 + c \pmod{10} \Rightarrow 5 \cdot a_2 + 2 + c \equiv 0 \Rightarrow c = 3 \circ 8$, pero $c \leq 3$, por lo que es c = 3 y a_2 impar. Por #3, debe ser $a_{n-2} \geq 7$ y por #4 es impar, luego $a_{n-2} = 7 \circ 9$.

i) $a_{n-2}=7$ y $a_2=1$. Se tiene:

#5
$$a_3 \equiv 4 \cdot a_{n-3} + c \pmod{10}$$
 (y se genera un acarreo de 3)

#6
$$a_{n-3} \equiv 4 \cdot a_3$$
 (mod 10)

Sustituyendo a_{n-3} en #5, se tiene $a_3 \equiv 16 \cdot a_3 + c \equiv 6 \cdot a_3 + c \pmod{10} \Rightarrow c = 0 \circ 5$. Pero $c \leq 3$, por lo que es c = 0. Como en #5 debe producirse un acarreo de 3 y por #6 debe ser par, tiene que ser

$$a_{n-3} = 8 y a_3 = 2$$

Si el número de cifras es 4 obtenemos F₀=2178. Si no debe ser al menos 8,

obteniendose 2178...2178, un 4-flip "compuesto" con F₀ como uno de sus

"elementos". Exactamente $F_0\&F''\&F_0$, con F'' un 4-flip cualquiera o una cadena

vacía.

ii) a_{n-2}=a₂=9. Tenemos ya F=219..978.

#7
$$a_3 \equiv 4 \cdot a_{n-3} + c \pmod{10}$$
 (y se genera un acarreo de 8)

#8
$$a_{n-3} \equiv 4 \cdot a_3 + 3 \pmod{10}$$

Este sistema es idéntico al #3 - #4, y se reproduce la misma situación:

- a) $a_{n-3} = 7$ y $a_3 = 1$, lo que lleva a $a_{n-4} = 8$ y $a_4 = 2$, F=21978 ó 21978...21978,
- **b)** $a_{n-3} = a_3 = 9$

Por tanto, un 4-flip simple o es 0, o empieza por 21, continua con una

cadena de cero o más 9 y un 78 para finalizar.

Es decir, todos los 4-flips simples son de la forma $F_n = 2100 \cdot 10^n + (10^n - 1) \cdot 100 + 78$, con n = -2, 0,1,2,3,4,...

$$F_{-2} = 0$$
, $F_0 = 2178$, $F_1 = 21978$, $F_2 = 219978$, etc ...

Y los demás son concatenaciones simétricas de estos. Por ejemplo:

2199780219978.9=8799120879912