ECE 102 Homework 6

SANJIT SARDA

TOTAL POINTS

96 / 100

QUESTION 1

Frequency Response 32 pts

- 1.1 (a) 18 / 18
 - √ 0 pts Correct
 - 2 pts part 3 partially correct
 - 2 pts part2 partially correct
 - 2 pts part 1 partially correct
- 1.2 (b) 7/8
 - 0 pts Correct
 - √ 1 pts minor mistakes
 - 2 pts major mistakes
 - 4 pts incomlpete
- 1.3 (C) 6 / 6
 - √ 0 pts Correct
 - 1 pts part 2 partially correct
 - 2 pts part 2 missing

QUESTION 2

Filters 18 pts

- 2.1 (a) 4/6
 - 0 pts Correct
 - 1 pts wrong alpha
 - √ 2 pts wrong phase
- 2.2 (b) 2/3
 - Opts Correct
 - √ 1 pts infinite not mentioned
 - 1 pts non causal not mentioned
 - 3 pts missing
- 2.3 (C) 5 / 5
 - √ 0 pts Correct

- 1 pts not rejected -2pi
- 2 pts wrong final answer
- 2 pts incomplete
- 2.4 (d) 4/4
 - √ 0 pts Correct
 - 1 pts frequency response partially correct
 - 2 pts frquency response missing
 - 1 pts high pass not mentioned

QUESTION 3

Moving Average Filter 25 pts

- 3.1 (a) 6 / 6
 - √ 0 pts Correct
 - 3 pts Partial Correct
 - 1 pts Incorrect power of exp(.)
 - 1 pts Incorrect sinc(.) term
 - 6 pts Missing/ Fully incorrect
- 3.2 (b) 6/6
 - √ 0 pts Correct
 - 2 pts Incorrect Graph
 - 1 pts Incorrect response at w-> infinity
 - 4 pts Missing Graph
 - 1 pts Missing w->infinity response
- 3.3 (C) 6 / 6
 - √ 0 pts Correct
 - 2 pts Partial Correct
 - 6 pts Missing/incorrect
- 3.4 (d) 7/7
 - √ 0 pts Correct
 - 3 pts Partial Correct
 - 7 pts Incorrect/ Missing

QUESTION 4

Modulation and Demodulation 25 pts

4.1 (a) 10 / 10

√ - 0 pts Correct

- 1 pts part 3 partially correct
- 1 pts systen recovers signal
- 3 pts part 1 missing
- 3 pts part 2 missing
- 3 pts part 3 missing

4.2 (b) 15 / 15

- 2 pts partially correct
- 15 pts missing
- 10 pts no plots
- 6 pts 2 plots missing

$$y(t) = (4e^{-t} - 4e^{-4t})v(t)$$

 $y(t) = 2e^{-t}v(t)$
 $y't + 6y' + 8y = 3 \approx 0$

 $f'' = \frac{1}{4} + \frac{6y' + 8y = 3x}{4 + 6y' + 8y' = 3x}$ $f' = \frac{1}{4} + \frac{1}$

$$H(J\omega) = Y(J\omega) = \frac{3}{X(J\omega)} (J\omega + 2)(J\omega + 4)$$

y(t) = x(t) + h(t) y'(t) = x(y(t)) + h(t)

We have:

$$x(t) * h_1(t) = y_1(t) : X(y_w)H(y_w) = Y(y_w)$$

$$y_1(t) * h_2(t) = y_1(t) : Y_1(y_w)H(y_w) = Y(y_w)$$

$$\therefore Y(y_w) = X(y_w)H_1(y_w)H_2(y_w) = X(y_w)H(y_w)$$

$$we know H(y_w) = 3$$

$$(w+3)(y_w+4)$$

$$y_1(t) = 2e^{-t}v(t) - (1 + (1 + 2)) = 2$$

$$\frac{y(t)=4e^{-t}v(t)-4e^{-4t}(t)}{2} = \frac{4(y\omega+4)-4(y\omega+1)}{2} \\
= \frac{12}{(y\omega+4)(y\omega+1)}$$

y(t)= h,(t)+h,(t) = 4 sin(ret+3 ru/8)+cos(2 ret-7/2 r)

h_(t)= |H(jaz)|2cos(azt-(T/3+(H(jaz)))> cos(2nt-ZT)

1.1 (a) 18 / 18

- 2 pts part 3 partially correct
- 2 pts part2 partially correct
- 2 pts part 1 partially correct

y(t)= h,(t)+h,(t) = 4 sin(ret+3 ru/8)+cos(2 ret-7/2 r)

h_(t)= |H(jaz)|2cos(azt-(T/3+(H(jaz)))> cos(2nt-ZT)

1.2 (b) 7/8

- 0 pts Correct
- √ 1 pts minor mistakes
 - 2 pts major mistakes
 - 4 pts incomlpete

1.3 (C) 6 / 6

- √ 0 pts Correct
 - 1 pts part 2 partially correct
 - 2 pts part 2 missing

$$\frac{1}{100} + \frac{1}{100} + \frac{1}$$

D Ideal filters are non realizable systems because they are noncousal strong te pend on future values and thus cannot be implemented. Non realizable.

C)
$$H_{LP2}(JO) = K$$
 $H_{LP2}(JO) = 18$
 $H_$

2.1 (a) 4 / 6

- 0 pts Correct
- 1 pts wrong alpha
- √ 2 pts wrong phase

$$\frac{1}{100} + \frac{1}{100} + \frac{1}$$

D Ideal filters are non realizable systems because they are noncousal strong te pend on future values and thus cannot be implemented. Non realizable.

C)
$$H_{LP2}(JO) = K$$
 $H_{LP2}(JO) = 18$
 $H_$

2.2 (b) 2/3

- 0 pts Correct
- \checkmark 1 pts infinite not mentioned
 - 1 pts non causal not mentioned
 - 3 pts missing

$$\frac{1}{100} + \frac{1}{100} + \frac{1}$$

D Ideal filters are non realizable systems because they are noncousal strong te pend on future values and thus cannot be implemented. Non realizable.

C)
$$H_{LP2}(JO) = K$$
 $H_{LP2}(JO) = 18$
 $H_$

For
$$\beta = k = -2k$$
, $H_{LP2}(J\omega) = 2\pi i$, $h_{LP2}(t) = 2\pi e^{2\pi t} v(t)$

Since this is noncound, $\beta = k = -2\pi i$ is not a valid solution.

For $\beta = k = 2\pi i$, $H_{LP2}(J\omega) = 2\pi i$, $h_{LP2}(t) = 2\pi e^{2\pi t} v(t)$

Since this is noncound, $\beta = k = 2\pi i$ is valid.

2d) Using $\alpha = -1$, $H(J\omega) = -1 + H_{LP2}(J\omega) = -J\omega$
 $2\pi + J\omega$
 $H(J\omega) = -1 + H_{LP2}(J\omega) = -J\omega$
 $2\pi + J\omega$
 $H(J\omega) = -1 + H_{LP2}(J\omega) = -J\omega$
 $2\pi + J\omega$
 $2\pi + J\omega$

It still cots low frequencies is a HPF.

2.3 (C) 5 / 5

- 1 pts not rejected -2pi
- 2 pts wrong final answer
- 2 pts incomplete

For
$$\beta = k = -2k$$
, $H_{LP2}(J\omega) = 2\pi i$, $h_{LP2}(t) = 2\pi e^{2\pi t} v(t)$

Since this is noncound, $\beta = k = -2\pi i$ is not a valid solution.

For $\beta = k = 2\pi i$, $H_{LP2}(J\omega) = 2\pi i$, $h_{LP2}(t) = 2\pi e^{2\pi t} v(t)$

Since this is noncound, $\beta = k = 2\pi i$ is valid.

2d) Using $\alpha = -1$, $H(J\omega) = -1 + H_{LP2}(J\omega) = -J\omega$
 $2\pi + J\omega$
 $H(J\omega) = -1 + H_{LP2}(J\omega) = -J\omega$
 $2\pi + J\omega$
 $H(J\omega) = -1 + H_{LP2}(J\omega) = -J\omega$
 $2\pi + J\omega$
 $2\pi + J\omega$

It still cots low frequencies is a HPF.

2.4 (d) 4 / 4

- 1 pts frequency response partially correct
- 2 pts frquency response missing
- 1 pts high pass not mentioned

3) a)
$$h(t) = \{ 1/T, 0 \le t \le T = \frac{1}{T} \text{ rect} \left(\frac{t}{T} - \frac{1}{2} \right) = \frac{1}{T} \text{ rect} \left(\frac{t - T/2}{T} \right) = \frac{1}{T} \text{ rect} \left($$

limt HGW 120

Will allow the impulses to align,

3.1 (a) 6 / 6

- 3 pts Partial Correct
- 1 pts Incorrect power of exp(.)
- 1 pts Incorrect sinc(.) term
- 6 pts Missing/ Fully incorrect

3) a)
$$h(t) = \{ 1/T, 0 \le t \le T = \frac{1}{T} \text{ rect} \left(\frac{t}{T} - \frac{1}{2} \right) = \frac{1}{T} \text{ rect} \left(\frac{t - T/2}{T} \right) = \frac{1}{T} \text{ rect} \left($$

limt HGW 120

Will allow the impulses to align,

3.2 (b) 6 / 6

- 2 pts Incorrect Graph
- 1 pts Incorrect response at w-> infinity
- 4 pts Missing Graph
- 1 pts Missing w->infinity response

3) a)
$$h(t) = \{ 1/T, 0 \le t \le T = \frac{1}{T} \text{ rect} \left(\frac{t}{T} - \frac{1}{2} \right) = \frac{1}{T} \text{ rect} \left(\frac{t - T/2}{T} \right) = \frac{1}{T} \text{ rect} \left($$

limt HGW 120

Will allow the impulses to align,

3.3 (C) 6 / 6

- √ 0 pts Correct
 - 2 pts Partial Correct
 - 6 pts Missing/ incorrect

3.4 (d) 7 / 7

- √ 0 pts Correct
 - 3 pts Partial Correct
 - 7 pts Incorrect/ Missing

$$(ii) \geq \zeta_0 = \chi_{\zeta_0} + 1 \left(M_{\zeta_0} + \chi(8(\omega - \omega) + 8(\omega + \omega)) \right)$$

!- Using sifting and sampling,

Does this system recover m(t): Sort of.

After Applying the ideal Lowpass filter, you have 1/2 of m(t). The cosines each half the signal S th LP doubles it

1 1/2 = 1. So you end up with the signal halved.

$$\vdots \cdot \delta_{+}(t) \rightarrow \omega_{c} \delta_{\omega_{c}}(\omega)$$

$$y(t)h_{s}(t) = \frac{1}{2\pi} \left(Y(j\omega) \omega_{c} S_{\omega_{c}}(\omega) \right)$$

$$= \frac{1}{2\pi} \frac{\omega_{c}}{2} \frac{1}{2} \frac{M(j\omega)}{2} = \frac{1}{2\pi} \frac{M(j\omega)}{2}$$

4.1 (a) 10 / 10

- 1 pts part 3 partially correct
- 1 pts systen recovers signal
- 3 pts part 1 missing
- 3 pts part 2 missing
- 3 pts part 3 missing

Does this system recover m(t): Sort of.

After Applying the ideal Lowpass filter, you have 1/2 of m(t). The cosines each half the signal S th LP doubles it

1 1/2 = 1. So you end up with the signal halved.

$$\vdots \cdot \delta_{+}(t) \rightarrow \omega_{c} \delta_{\omega_{c}}(\omega)$$

$$y(t)h_{s}(t) = \frac{1}{2\pi} \left(Y(j\omega) \omega_{c} S_{\omega_{c}}(\omega) \right)$$

$$= \frac{1}{2\pi} \frac{\omega_{c}}{2} \frac{1}{2} \frac{M(j\omega)}{2} = \frac{1}{2\pi} \frac{M(j\omega)}{2}$$

After applying the LP filter, we get just 1 MGw

4.2 (b) 15 / 15

- 2 pts partially correct
- 15 pts missing
- 10 pts no plots
- 6 pts 2 plots missing