The Well Structured Problem for Presburger Counter Machines

Alain Finkel¹ Ekanshdeep Gupta²

¹LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, IUF, France
²Chennai Mathematical Institute, Chennai, India

FSTTCS'2019, Mumbai 13th December 2019

Well Structured Transition Systems [Finkel 87]

 (X, \rightarrow, \leq) is a well structured transition system iff

- \bullet (X, \leq) is a well quasi order.
- (X, \rightarrow, \leq) is monotone.
 - if there is a transition $s_1 \rightarrow s_1'$ and $s_2 \geq s_1$:

Well Structured Transition Systems [Finkel 87]

 (X, \rightarrow, \leq) is a well structured transition system iff

- \bullet (X, \leq) is a well quasi order.
- (X, \rightarrow, \leq) is monotone.
 - if there is a transition $s_1 \rightarrow s_1'$ and $s_2 \geq s_1$:

■ then there must exist $s_2' \ge s_1'$ such that $s_2 \stackrel{*}{\to} s_2'$.

Well Structured Transition Systems [Finkel 87]

 (X, \rightarrow, \leq) is a strong well structured transition system iff

- \bullet (X, \leq) is a well quasi order.
- (X, \rightarrow, \leq) is strongly monotone.
 - if there is a transition $s_1 \rightarrow s_1'$ and $s_2 \geq s_1$:

• then there must exist $s_2' \geq s_1'$ such that $s_2 \rightarrow s_2'$.

Well Structured Transition Systems

Examples:

- Petri Nets
- Vector addition systems with states (VASS)
- VASS with reset/transfer/affine- ω extensions
- Finite state automata
- Lossy fifo systems and variants with time, data and priority
- ..

```
(Finkel, Schnoebelen, 2001)
```

Coverability

 (X, \rightarrow, \leq) an ordered transition system. $x, y \in X$. y is coverable from x if $\exists x' \mid x \xrightarrow{*} x' \geq y$

Coverability

$$(X, \rightarrow, \leq)$$
 an ordered transition system. $x, y \in X$. y is coverable from x if $\exists x' \mid x \xrightarrow{*} x' \geq y$

Theorem

Coverability is decidable for WSTS.

Coverability

$$(X, \rightarrow, \leq)$$
 an ordered transition system. $x, y \in X$. y is coverable from x if $\exists x' \mid x \xrightarrow{*} x' \geq y$

Theorem

Coverability is decidable for WSTS.

- backward algorithm on upward closed sets.
 - (Abdulla, Cerans et al., 1996)
- forward algorithm on downward closed sets.

(Blondin, Finkel et al., 2017)

Motivation

Minsky Machines

- not WSTS in general.
- coverability undecidable.

Motivation

Minsky Machines

- not WSTS in general.
- coverability undecidable.

Motivation

Minsky Machines

- not WSTS in general.
- coverability undecidable.

Observe that M is (strongly) monotone.

Let us consider new problems about WSTS:

Well Structured Problems

Given an ordered transition system, is it a WSTS under:

monotony (WSP)

Let us consider new problems about WSTS:

Well Structured Problems

Given an ordered transition system, is it a WSTS under:

- monotony (WSP)
- strong monotony (strong WSP)

Presburger Arithmetic

First order formulae over $(\mathbb{N}, +)$.

Presburger Arithmetic

First order formulae over $(\mathbb{N}, +)$.

- $lessthan(x, y) : \exists z(x + z = y)$
- $divby3(x): \exists y(x=y+y+y)$
- $\phi(x,y): y = x + x + x + 3$

Presburger Arithmetic

First order formulae over $(\mathbb{N}, +)$.

- $lessthan(x, y) : \exists z(x + z = y)$
- $divby3(x): \exists y(x=y+y+y)$
- $\phi(x,y): y = x + x + x + 3$

Theorem (Presburger, 1929)

Presburger arithmetic is decidable.

d-dimensional PCM $M = (Q, \rightarrow, \Phi)$:

- d counters.
- Q : set of control-states.
- ullet Φ : set of Presburger formulae having 2d free variables.
- $\blacksquare \rightarrow \subseteq Q \times \Phi \times Q.$

d-dimensional PCM $M = (Q, \rightarrow, \Phi)$:

- d counters.
- Q : set of control-states.
- ullet Φ : set of Presburger formulae having 2d free variables.
- $\blacksquare \rightarrow \subseteq Q \times \Phi \times Q.$

$$x' = 19 - x$$

$$x' = x - 13$$

$$q_1$$

$$x' = x$$

$$x' = x$$

d-dimensional PCM $M = (Q, \rightarrow, \Phi)$:

- d counters.
- Q : set of control-states.
- ullet Φ : set of Presburger formulae having 2d free variables.
- $\blacksquare \to \subseteq Q \times \Phi \times Q.$

$$x' = 19 - x$$

$$x' = x - 13$$

$$q_1$$

$$x' = x$$

$$q_2$$

$$x' = x - 3$$

Sample run:

$$(q_1,0) o (q_1,19) o (q_2,6) o (q_2,3) o (q_1,3)$$

$$M = (Q, \rightarrow, \Phi)$$
 a d dimensional PCM.

$$M = (Q, \rightarrow, \Phi)$$
 a d dimensional PCM.

■ Functional PCMs: all formulae in Φ are functional.

- Functional PCMs: all formulae in Φ are functional.
- Minsky machines: either translations or zero-tests.

- Functional PCMs: all formulae in Φ are functional.
- Minsky machines: either translations or zero-tests.
- Affine VASS (AVASS): affine functions of the form $\vec{x'} = A\vec{x} + b$ with $A \in \mathbb{Z}^{d \times d}$, $b \in \mathbb{Z}^d$ with maximal domain.

- Functional PCMs: all formulae in Φ are functional.
- Minsky machines: either translations or zero-tests.
- Affine VASS (AVASS): affine functions of the form $\vec{x'} = A\vec{x} + b$ with $A \in \mathbb{Z}^{d \times d}$, $b \in \mathbb{Z}^d$ with maximal domain.
- Positive AVASS (self-modified nets): AVASS where $A \in \mathbb{N}^{d \times d}$.

- Functional PCMs: all formulae in Φ are functional.
- Minsky machines: either translations or zero-tests.
- Affine VASS (AVASS): affine functions of the form $\vec{x'} = A\vec{x} + b$ with $A \in \mathbb{Z}^{d \times d}$, $b \in \mathbb{Z}^d$ with maximal domain.
- Positive AVASS (self-modified nets): AVASS where $A \in \mathbb{N}^{d \times d}$.
- Totally Positive AVASS: Positive AVASS where $b \in \mathbb{N}^d$.

Well Structured Problem

Our Results:

	Well Structured Problem	Strong Well Structured Problem
PCM	U	D
Functional 1-PCM	U	D
2-AVASS	U	D
2-Minsky machines	U	D
1-AVASS	D	D

Well Structured Problem

Our Results:

	Well Structured Problem	Strong Well Structured Problem
PCM	U	D
Functional 1-PCM	U	D
2-AVASS	U	D
2-Minsky machines	U	D
1-AVASS	D	D

strong wellstructuredness is Presburger expressible

Undecidability of WSP for 1-PCM

- Reduction from Minsky machine reachability.
- Given Minsky machine $M=(Q, \rightarrow, q_0)$, convert to 1-PCM N such that:

all states reachable in $M \iff N$ is a WSTS.

Undecidability of WSP for 1-PCM

- Reduction from Minsky machine reachability.
- Given Minsky machine $M=(Q, \rightarrow, q_0)$, convert to 1-PCM N such that:

all states reachable in $M \iff N$ is a WSTS.

Encode Minsky machine counters via Gödel encoding:

$$(m,n) \rightarrow 2^m 3^n c$$
 where 2, 3 do not divide c

Undecidability of WSP for 1-PCM

- Reduction from Minsky machine reachability.
- Given Minsky machine $M=(Q, \rightarrow, q_0)$, convert to 1-PCM N such that:

all states reachable in $M \iff N$ is a WSTS.

Encode Minsky machine counters via Gödel encoding:

$$(m, n) \rightarrow 2^m 3^n c$$
 where 2, 3 do not divide c

Consider
$$(q, n)$$
 and (q, m) equivalent if $(\nu_2(n) = \nu_2(m)) \wedge (\nu_3(n) = \nu_3(m))$.

$$q_0 \qquad q_0 \qquad q_2 \qquad q_3 \qquad q_3$$

Μ

all states reachable in $M \implies N$ is a WSTS.

all states reachable in $M \implies N$ is a WSTS. all states reachable in $M \iff N$ is a WSTS.

Well Structured Problem

Theorem

WSP is undecidable for:

- Functional 1-dim PCMs.
- 2 counter Minsky machines.
- 2 AVASS.

	Well Structured Problem	Strong Well Structured Problem
PCM	U	D
Functional 1-PCM	U	D
2-AVASS	U	D
2-Minsky machines	U	D
1-AVASS	D	D

1-AVASS

$$M = (Q, \Phi, \rightarrow)$$
: 1 counter, transitions $x' = ax + b$, $a, b \in \mathbb{Z}$.

1-AVASS

 $M = (Q, \Phi, \rightarrow)$: 1 counter, transitions x' = ax + b, $a, b \in \mathbb{Z}$.

1-AVASS

 $M = (Q, \Phi, \rightarrow)$: 1 counter, transitions x' = ax + b, $a, b \in \mathbb{Z}$.

1-AVASS have the following properties:

- Reachability and coverability are decidable.
 (Finkel, Goller, Hasse, 2013)
- $Pre^*(q, n)$ is computable.
- WSP is decidable.

Given 1-AVASS $M=(Q,\rightarrow)$, configuration (q_f,n_f) . Compute $Pre^*(q_f,n_f)$:

Given 1-AVASS $M=(Q,\rightarrow)$, configuration (q_f,n_f) . Compute $Pre^*(q_f,n_f)$:

Key observations:

Given 1-AVASS $M = (Q, \rightarrow)$, configuration (q_f, n_f) . Compute $Pre^*(q_f, n_f)$:

Key observations:

■ $Pre^*(q_f, n_f)$ Presburger-expressible. So storing Presburger formulae sufficient.

Given 1-AVASS $M = (Q, \rightarrow)$, configuration (q_f, n_f) . Compute $Pre^*(q_f, n_f)$:

Key observations:

- $Pre^*(q_f, n_f)$ Presburger-expressible. So storing Presburger formulae sufficient.
- Can compute all back-accelerations of cycles.

Given 1-AVASS $M = (Q, \rightarrow)$, configuration (q_f, n_f) . Compute $Pre^*(q_f, n_f)$:

Key observations:

- $Pre^*(q_f, n_f)$ Presburger-expressible. So storing Presburger formulae sufficient.
- Can compute all back-accelerations of cycles.
- Computing back-accelerations of simple cycles sufficient ie 1-AVASS are flattable.

Given 1-AVASS $M = (Q, \rightarrow)$, configuration (q_f, n_f) . Compute $Pre^*(q_f, n_f)$:

Key observations:

- $Pre^*(q_f, n_f)$ Presburger-expressible. So storing Presburger formulae sufficient.
- Can compute all back-accelerations of cycles.
- Computing back-accelerations of simple cycles sufficient ie 1-AVASS are flattable.

Idea:

- Maintain Presburger formula for each state q storing $\{n: (q, n) \in Pre^*(q_f, n_f)\}.$
- Iteratively backtrack from each transition and back-accelerate simple cycles.

$$\phi_1$$
: $n = 19$ ϕ_2 : \bot

$$\phi_1: n \in \{19, 0\} \qquad \qquad \phi_2: n \in \{19, 0\}$$

$$\phi_1: n \in \{19, 0\}$$
 $\phi_2: (n \ge 19 \land n =_3 1) \lor (n =_3 0)$

$$\phi_1: n \in \{19, 0\} \lor \qquad \qquad \phi_2: (n \ge 19 \land n =_3 1) \lor \\ (n \ge 32 \land n =_3 2) \lor \qquad \qquad (n =_3 0) \\ (n \ge 13 \land n =_3 1)$$

$$\phi_1: n \in \{0, 3, 6, 19\} \lor \qquad \qquad \phi_2: (n \ge 19 \land n =_3 1) \lor (n \ge 32 \land n =_3 2) \lor \qquad \qquad (n =_3 0) \lor (n \ge 13 \land n =_3 1) \qquad \qquad (n \ge 32 \land n =_3 2)$$

$$\phi_1: n \in \{0, 3, 6, 19\} \lor \qquad \qquad \phi_2: (n \ge 19 \land n =_3 1) \lor \\ (n \ge 32 \land n =_3 2) \lor \qquad \qquad (n =_3 0) \lor \\ (n \ge 13 \land n =_3 1) \lor \qquad \qquad (n \ge 32 \land n =_3 2) \\ (n \ge 45 \land n =_3 0)$$

Theorem: WSP is decidable for 1-AVASS.

Theorem: WSP is decidable for 1-AVASS.

Positive transitions are monotone.

For negative transitions:

$$(q_1,0)
ightarrow (q_2,5)$$
. So for WSTS, $(q_1,n) \stackrel{*}{
ightarrow} (q_2,m \geq 5)$.

Theorem: WSP is decidable for 1-AVASS.

Positive transitions are monotone.

For negative transitions:

$$(q_1,0) o (q_2,5)$$
. So for WSTS, $(q_1,n) \stackrel{*}{ o} (q_2,m \geq 5)$.

- M is a WSTS, iff for all negative transitions $(q_1, (x' = ax + b), q_2)$, the set $\{q_1\} \times \mathbb{N}$ is a subset of $Pre^*(\uparrow(q_2, b))$.

Summary

	Well Structured Problem	Strong Well Structured Problem
PCM	U	D
Functional 1-PCM	U	D
2-AVASS	U	D
2-Minsky machines	U	D
1-AVASS	D	D

Further work

- Complexity analysis of the WSP on 1-AVASS.
- Complexity of the computation of *Pre** for 1-AVASS.
- Solve WSP for other models like pushdown counter machines, fifo automata, Petri net extensions.

Summary on Well Structured Problem Further work

Thank you!