São Paulo Tech School

1CCOB - 02/25

Disciplina de Tecnologia da Informação

Sentinela: Monitoramento Inteligente de Temperatura e Umidade na Cadeia de Frio da Carne

Projeto de desenvolvimento de um sistema inteligente para reduzir perdas e garantir conformidade na Logística e Cadeia de Frio da Carne

Alunos:

Bill Hebert Pereira da Rocha Choi,

César Augusto Araujo Miguel,

Enzo Alexandre Pina Servilha,

Felipe Hideki Inoue de Souza,

Pedro Luiz Santos Giraldi

São Paulo

2025

Sumário

Sentinela: Monitoramento Inteligente de Temperatura e Umidade	1
Sumário	1
1. Contexto (Problema)	2
2. Objetivo	5
3. Justificativa	6
4. Escopo do Projeto	7
5. Riscos e Restrições	8
6. Partes Interessadas	8
7. Tecnologias Utilizadas	9
8. Fases do Projeto	9
9. Critérios de Sucesso	10
10. Premissas e Restrições	10

1. Contexto (Problema)

O armazenamento e transporte de carnes exigem controle rigoroso de temperatura e umidade para garantir a qualidade e segurança alimentar.

Quando expostas a condições inadequadas, as carnes se tornam um ambiente propício para a proliferação de bactérias patogênicas, como *Salmonella e Escherichia coli*. Esses microrganismos podem se multiplicar rapidamente em temperaturas acima dos 4°C, com crescimento acelerado entre 10°C e 60°C – uma faixa conhecida como "zona de perigo", onde a deterioração ocorre mais rapidamente e há maior risco de contaminação.

A umidade também desempenha um papel importante, pois níveis elevados (>95%) podem favorecer o crescimento de fungos e bactérias, enquanto níveis muito baixos podem ressecar a carne (<65%) e comprometer sua qualidade. Pequenas variações nesses parâmetros podem gerar grandes impactos, resultando na perda de cargas, aumento do desperdício e risco à saúde do consumidor.

Dados da Organização Mundial da Saúde indicam que anualmente milhões de pessoas são afetadas por doenças alimentares, muitas das quais estão associadas a falhas no controle da temperatura de armazenamento e transporte de alimentos.

O custo dessa falta de controle é altíssimo, não apenas para as empresas, mas também para os consumidores, devido aos riscos à saúde e aos danos financeiros causados por perdas de produtos e interrupções na cadeia logística.

Estudos indicam que até 30% dos defeitos em produtos manufaturados estão associados a falhas no controle de temperatura.

Apesar dessas exigências, muitas empresas ainda utilizam métodos manuais ou sistemas rudimentares para o controle dessas variáveis, tornando a resposta a problemas mais lenta e imprecisa. Além disso, a ausência de registros detalhados pode dificultar auditorias sanitárias e comprometer a rastreabilidade do produto ao longo da cadeia de distribuição.

Diante desse cenário, há uma necessidade crescente por soluções automatizadas e conectadas que permitam o monitoramento em tempo real das condições de transporte e armazenamento de carnes. Essas soluções garantem não apenas a

segurança alimentar, mas também reduzem desperdícios, aumentam a eficiência operacional e asseguram conformidade com normas sanitárias.

Impacto Técnico-Econômico:

- Sistemas similares reduziram 18% das perdas na Friboi (2022).
- Custo de Não Conformidade: Cada desvio térmico gera R\$ 5.000 em multas sanitárias.

O Brasil, líder global na exportação de carne bovina (25% do mercado mundial), enfrenta perdas anuais de 20% da produção devido a falhas na cadeia de frio, gerando prejuízos de R\$ 1 bilhão/ano.

Dados Críticos:

- 15% das perdas ocorrem durante o transporte.
- A cada 5°C acima de 4°C, a taxa de crescimento de Salmonella dobra.
- Uma carga de **10 toneladas de carne perdida** equivale a **R\$ 250.000 em prejuízos**.

Exigências Regulatórias:

- Faixas Térmicas:
 - o Carnes frescas: -1°C a 4°C (RDC ANVISA 275/2002).
 - o Congelados: < -18°C (Ministerio da saude).

Além dos impactos financeiros e operacionais, esta solução também desempenha um papel fundamental na **sustentabilidade**.

O desperdício de alimentos é um dos grandes desafios ambientais globais, contribuindo significativamente para a emissão de gases do efeito estufa.

Quando carnes são descartadas devido a problemas de armazenamento e transporte, não apenas há prejuízo econômico, mas também um impacto ambiental considerável, visto que toda a água, energia e insumos utilizados na produção desses alimentos são desperdiçados. Além da forma de descarte muitas vezes por incineração e compostagem

Implementando um sistema eficiente de monitoramento, reduzimos a quantidade de produtos descartados, diminuímos a pegada de carbono do setor e contribuímos para uma cadeia de suprimentos mais sustentável e responsável.

Sustentabilidade:

- 4,5 toneladas de CO₂ são emitidas por tonelada de carne desperdiçada.
- Redução de **15 ton no consumo de água** por ton de carne.

2. Objetivo

O objetivo deste projeto é desenvolver uma solução baseada em Internet das Coisas (IoT) para o monitoramento contínuo da temperatura e umidade durante o armazenamento e transporte de carnes. A solução permitirá a coleta de dados em tempo real por meio de sensores,

Dessa forma, o projeto visa contribuir para a segurança alimentar, reduzir prejuízos financeiros e facilitar a conformidade com as normas sanitárias, ao mesmo tempo em que melhora a eficiência do setor de distribuição de carnes.

Desenvolver um sistema IoT para:

- Monitoramento em tempo real com medições a cada 2 segundos e latência máxima de 1 minuto para alertas.
- Integral Tempo-Temperatura (TTI): Cálculo automático da degradação térmica acumulada.

 Redução de 25% no tempo de resposta a incidentes comparado a métodos manuais.

Funcionalidades-Chave:

- Alertas via push notifications para desvios (>7°C, <-15°C, >-12, umidade <80% ou >95%).
- Dashboard web com gráficos interativos e relatórios de conformidade.
- Armazenamento de dados.

Este projeto surge como uma resposta direta a esses problemas. Ao desenvolver uma solução de monitoramento em tempo real para temperatura e umidade, com alertas imediatos e acompanhamento detalhado por meio de relatórios históricos, buscamos evitar falhas no controle que poderiam resultar em contaminações, prejuízos financeiros e danos à reputação das empresas.

3. Justificativa

Impacto Técnico-Econômico:

- Sistema reduzira em **10% das perdas.** Que equivale a 250 Mil reais anualmente a cada 100 toneladas
- Custo de Não Conformidade: alerta antes de ocorrer uma não conformidade evitando assim os R\$ 5.000 em multas sanitárias por desvio térmico gerado.

Portanto, a implementação dessa solução tem um impacto direto e positivo, não apenas no aumento da eficiência operacional e na redução de custos, mas também na preservação da saúde pública e no fortalecimento da confiança do consumidor.

Ao prevenir danos, melhorar o controle logístico e garantir a conformidade com as normas de segurança alimentar, o projeto representa uma inovação essencial para o setor.

• Investir nessa solução não é apenas uma escolha inteligente; é uma medida essencial para garantir a competitividade no mercado, aumentar a

eficiência operacional e proteger o seu negócio contra riscos financeiros e legais. A adoção desta tecnologia posiciona sua empresa como uma líder em qualidade e segurança, oferecendo um diferencial competitivo que pode ser decisivo na escolha de seus clientes e parceiros comerciais.

4. Escopo do Projeto

Arquitetura do Sistema:

Sensores \rightarrow Arduino (Serial) \rightarrow API REST (Node.js) \rightarrow MYSQL \rightarrow Dashboard (html e css)

Especificações Técnicas:

Componente	Detalhes
Sensores	DHT11 (0–50°C, ±1°C)
Hardware	Arduino Uno
Software	Pentest anual (ISO 27001) (Desejavel)

Critérios de Aceitação:

- Suporte a 5 dispositivos IoT simultâneos.
- Uptime de 99% em ambiente produtivo.

Descrição

Desenvolvimento de uma solução baseada em IoT para o monitoramento de temperatura e umidade no transporte e armazenamento de carnes. A solução irá coletar dados em tempo real e garantir que os produtos permaneçam nas condições ideais de conservação, com alertas em caso de desvios. Será possível armazenar o histórico das medições e gerar relatórios acessíveis por uma aplicação web.

5. Riscos e Restrições

Matriz de Riscos:

Risco	Probabilidade	Impacto	Mitigação
Falha do DHT11	Alta	Alta	Redundância com dados em memória offline
Plataforma offline	Baixa	Médio	Página de aviso manutenção
Sistema	Baixa	Alto	
Problemas com a integração dos sensores.	Baixa	Baixa	Realizar testes preliminares para garantir a compatibilidade dos sensores com o sistema.
Atrasos no desenvolvimento da aplicação web.	Baixa	Baixa	Ajustar o cronograma de forma flexível para garantir entregas parciais.
Falhas na conectividade com o banco de dados.	Baixa	Baixa	Garantir redundância e backup dos dados armazenados.

Restrições Técnicas:

• DHT11 não certificado para temperaturas negativas.

6. Partes Interessadas

Papéis e Responsabilidades:

Stakeholder	Função
Empresas de transporte	Obedecer às normas de qualidade
ANVISA	Validar conformidade com RDC 275/2002
Equipe de TI	Garantir escalabilidade da aplicação

7. Tecnologias Utilizadas

Ferramentas:

• **IoT:** Arduino IDE.

Web: HTML, CSS, Node.js.
Segurança: criptografia.
Ferramentas: Figma, Trello

8. Fases do Projeto

O projeto será dividido em sprints de desenvolvimento, conforme as orientações da faculdade. As fases podem ser definidas da seguinte forma, de acordo com o fluxo típico de desenvolvimento ágil:

Cronograma Detalhado:

Sprint	Duração	Entregáveis
--------	---------	-------------

1	4 semanas	Projeto criado e configurado no GitHub Documento de Contexto de Negócio e Justificativa do Projeto Visão de Negócio (Diagrama) Protótipo do Site Institucional Tela de simulador financeiro Ferramenta de Gestão de Projeto configurada Requisitos populados na ferramenta Tabelas criadas no MySQL Instalação e Configuração IDE Arduíno
2	6 semanas	
3	5 semanas	

9. Critérios de Sucesso

KPIs Mensuráveis (Indicador Chave Desempenho):

- Redução de 30% nos alertas críticos em 3 meses.
- **Tempo médio de resposta**: ≤5 minutos.
- Conformidade com 100% das normas ANVISA/MAPA.

10. Premissas e Restrições

Premissas:

- **Disponibilidade de Equipamentos**: A solução será baseada no uso do sensor DHT11 para medir a temperatura e a umidade. Também será considerado o uso de um sensor adicional para medir temperaturas negativas, se necessário.
- Conectividade do Sistema: O sistema de IoT será capaz de se conectar à rede local ou à nuvem para garantir que os dados sejam transferidos em tempo real para a plataforma de monitoramento.
- Infraestrutura de Notificação: Será possível configurar e enviar alertas por e-mail ou push notifications de forma eficaz quando a temperatura ou umidade ultrapassarem os limites definidos.

- **Sensores**: Sensores calibrados conforme **ISO/IEC 17025** (termômetros NIST-traceable).
- **Dados**: Dados anonimizados seguindo **LGPD Art. 5**°.
- Local: A equipamento deve ser colocado no suporte adequado para o micro. Onde irá necessitar de internet e o suporte para os sensores.
- **Estabilidade da Rede**: A estabilidade da rede de comunicação entre os dispositivos IoT e o banco de dados é uma restrição, pois problemas de conectividade podem afetar a coleta e armazenamento de dados em tempo real.

Restrições:

- **Prazo**: **6 meses** (alinhado ao calendário acadêmico).
- Limitação do Sensor DHT11: O sensor DHT11 tem um limite de medição de temperatura entre 0 e 50°C, o que pode ser insuficiente para algumas situações que exigem temperaturas negativas. Um sensor adicional será necessário para esses casos.

Referências

https://www.fao.org/home/en/

https://www.gov.br/anvisa/pt-br

https://www.jbs.com.br/

https://www.abiec.com.br/

https://www.sciencedirect.com/journal/food-microbiology

https://www.embrapa.br/

https://www.abrafrigo.com.br/

https://www.usda.gov/

https://lume.ufrgs.br/bitstream/handle/10183/235770/001135812.pdf

 $\frac{https://documentos.ufca.edu.br/wp-folder/wp-content/uploads/2021/05/Guia-para-T%C3%A9cnicas-B%C3%A1sicas-de-Anonimiza%C3%A7%C3%A3o-de-Dados.pdf}$

https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf?srsltid=AfmBOoohTeNDkRWYQyxsSp1sJaOn73AKr2-2X76sCrRxY5uV04JzgpC8

https://blog.daryus.com.br/seguranca-da-informacao-e-iso-27001/