Computação II

Laboratório 8

Entregue todos os métodos em um arquivo chamado lab8.py. Importe a biblioteca numpy como np e matplotlib.pyplot como plt. Preste atenção aos detalhes pedidos.

1. (3 pontos) Crie a função chamada racional com parâmetro de entrada n. Crie um np.ndarray com n números do intervalo [0.1,2] e plote as funções $\frac{1}{x}$ e $\frac{1}{x^2}$ como linhas contínuas de largura 2. A função $\frac{1}{x}$ deve ter a cor cian e os pontos devem ser desenhados com quadradinhos, $\frac{1}{x^2}$ deve ter a cor magenta e os pontos devem ser bolinhas. Os rótulos das funções devem ser escritos no canto superior direito. Os elementos que formam o eixo x devem ser apenas [0,1,2]. A figura deve ter tamanho 6 por 6 e o título Funções racionais. A função deve mostrar a figura na tela. Valor de retorno é None. Vê os exemplos com 5 e 30 pontos abaixo.

2. (3 pontos) Implemente a função polinomios cujo parâmetro de entrada é um inteiro indicando o grau máximo dos polinômios a serem desenhados. Crie um np.ndarray com 100 pontos do intervalo [-1,1] e plote todas as funções y=x**i para i de 1 até o grau máximo passado. As funções devem ser desenhadas com linhas contínuas de largura 2. Não precisa se preocupar com as cores, o python vai escolher por você. Os rótulos das funções devem ser escritos no canto inferior direito. Os elementos que formam os eixos x e y devem ser apenas [-1,0,1]. Mostre a figura com tamanho 6 por 6 na tela. Valor de retorno é None. Vê os exemplos com graus máximos 3 e 10 abaixo.

- 3. (4 pontos) Crie a função fun com três parâmetros de entrada: floats a, b e inteiro n. Crie um np.ndarray x com n pontos do intervalo [a,b] e plote a função $\frac{1}{\sin(x)}$ com uma linha cian descontínua. Seguem mais detalhes:
 - (a) A função $\frac{1}{\sin(x)}$ não é definida nos pontos onde $\sin(x) = 0$, portando esses pontos devem ser descartados.
 - (b) Desenhe o gráfico da função apenas para valores, onde $\left|\frac{1}{\sin(x)}\right| < 20$ (pois a função tende ao infinito quando x fica perto de um múltiplo inteiro de π).
 - (c) A função é descontínua, ela é feita de partes separadas que são inteiramente positivas ou inteiramente negativas. Você pode usar a função sinal para encontrar os pontos, onde os valores consecutivos da função $\frac{1}{\sin(x)}$ trocam de sinal. Ou seja, use o método $\operatorname{np.where}$ e função $\operatorname{np.sign}$ para encontrar os índices de x, onde os valores consecutivos da função $\operatorname{sign}(\sin(x))$ tem uma diferença maior que ± 1 . Insere pontos novos com valor $\operatorname{np.nan}$ nas posicões apropriadas para criar as descontinuidades.
 - (d) Mostre a figura com tamanho 6 por 6. O valor de retorno são as posições, onde foram inseridos os novos pontos (np.nan).

Vê os exemplos com $\mathtt{n}=100$ e 20 para $\mathtt{a}=0,\,\mathtt{b}=10.$

