Primeras pruebas de programación

Librerías

La única librería imprescindible para que el robot funcione es la librería **SoftWire**. Es necesaria para comunicarse por bus I2C al expansor I2C, ya que debido a la cantidad de entradas/salidas necesarias no se ha podido implementar en el bus I2C que Arduino trae por defecto, sino en dos pines digitales cualquiera. Precisamente por la gran cantidad de entradas/salidas necesarias ha sido por lo que se ha decidido incluir un expansor I2C para poder incluir más dispositivos.

Consideraciones para la programación

Debido a la existencia de algunas diferencias entre los kits de Cyclops-project, cabe mencionarlas para evitar líos con la programación:

- Por la falta de pines de entrada/salida disponibles, el Bluetooth comparte puerto serie
 con el USB de programación de la Arduino, por lo que es necesario desconectar el
 Bluetooth para poder cargar los programas en la Arduino. De hecho, el Bluetooth
 está pensado para hacer pruebas en movimiento, corriendo sobre algún circuito, para
 enviar telemetría y recibir órdenes sin el cable USB.
- Se aconseja que el baudrate declarado para el puerto serie sea siempre el mismo y que coincida con el que se ha programado en el Bluetooth siguiendo su tutorial de configuración. Así se podrá cambiar de USB a Bluetooth y viceversa sin necesidad de cambiar el baudrate.
- Existen dos tipos de expansor I2C que sirven y se han empleado en Cyclops-Project hasta ahora: PCF8574P y PCF8574AP. Funcionan exactamente igual a nivel de hardware, pero para poder comunicarse con ellos, hay que hacer uso de direcciones I2C diferentes:
 - PCF8574P: utiliza la dirección hexadecimal 0x20, teniendo sus tres pines físicos de dirección conectados a masa.
 - PCF8574AP: utiliza la dirección hexadecimal 0x38, teniendo sus tres pines físicos de dirección conectados a masa.

El valor de dirección se puede modificar en la constante **expAddress** que puede verse declarada en el programa de test. Y para saber cuál es el código de tu expansor, basta con mirar la inscripción en el integrado, que estará justo debajo de la Arduino.

Los encoders magnéticos, al igual que los sensores CNY70 o los pulsadores, actúan como transistores o interruptores que abren y cierran un circuito, pero para que a su salida experimenten una variación de tensión de 0 a 5V necesitan una resistencia de pull up. Algunos de los encoders empleados en los kits pueden no llevar esas resistencias. La configuración por defecto en la función de setup es la siguiente:

```
pinMode(ENC_IZQ_A, INPUT);
pinMode(ENC_IZQ_B, INPUT);
pinMode(ENC_DER_A, INPUT);
pinMode(ENC_DER_B, INPUT);
```

Pero si no se aprecia variación en Monitor Serial al cargar el programa de test de los encoders y girar las ruedas, es muy probable que sea porque los encoders no tienen resistencias de pull up y aparezcan todos los valores en cero. Bastaría cambiar el código anterior por este otro para utilizar las resistencias internas de la Arduino:

```
pinMode(ENC_IZQ_A, INPUT_PULLUP);
pinMode(ENC_IZQ_B, INPUT_PULLUP);
pinMode(ENC_DER_A, INPUT_PULLUP);
pinMode(ENC_DER_B, INPUT_PULLUP);
```

Comprobar que todo funciona correctamente

Se ha diseñado un programa de test para comprobar que todas las partes del robot funcionan correctamente. Este programa puede encontrarse dentro de la carpeta de firmware del proyecto.

Para probar cada uno de los dispositivos, basta con descomentar la línea correspondiente en la cabecera del programa, cargarlo en la Arduino, y abrir Monitor Serial o Putty con la configuración de baudrate que se haya especificado en la programación, para el USB o para el Bluetooth:

```
#define TEST_PULSADORES

//#define TEST_LEDS

//#define TEST_BATERIA

//#define TEST_SENSORES_LINEA

//#define TEST_SENSORES_DISTANCIA

//#define TEST_MOTORES

//#define TEST_ENCODERS

//#define TEST_CAMARA
```