Unit 13

——Programmable Logic Devices

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

几大PLD供应商

供应商	特 点	开发软件	
Altera	SOPC倡导者 (可编程芯片系统)	MaxPlusII和 QuatersII	
Xinlinx	FPGA发明者	ISE 和 Vivado	XILINX [®]
Lattace	ISP技术发明者	Diamond	Lattice Semiconductor Corporation
Actel	保密性好	Libero	_Acte

复杂可编程逻辑门阵列

CPLD

- □可编程的 I/O
- □ 可编程的逻辑阵列 (宏单元)
- □ 可编程的内部互联 资源

- □ 每块芯片只分成几 块内部逻辑块(数 十个输入端和一、 二十个输出端)
- □ 乘积项的数量标志 、了CPLD的容量

1. Xilinx XCR3064XL CPLD的内部结构

2. Xilinx CoolRunner-II 的内部结构

Complex Programmable Logic Devices

FPGA(现场可编程逻辑门阵列)

FPGA (现场可编程逻辑门阵列)

Xilinx Virtex/ Spartan II CLB

FPGA(现场可编程逻辑门阵列)

F = a'b'c'd + a'b'cd + a'bc'd + a'bcd' + ab'c'd + ab'cd' + abc'd' + abcd

CPLD与FPGA的比较

	CPLD	FPGA				
内部逻辑 块粒度	粗粒度(数十个输入端和一、二十个输出端, 每块 芯片只分成几块)	细粒度(每个LUT输入变量为4~8,输出 为1~2,每块芯片中有几十到上千个这 样的单元.)				
资源类型	丰富的与或阵列	丰富的触发器资源				
程序存储	基于EEPROM或FLASH, 系统掉电数据不会丢失	SRAM, 外挂EEPROM, 系统掉电易失				
保密性	可加密	一般不能加密				
设计优势	实现组合逻辑	实现时序逻辑				

PROM,PLA,PAL,GAL,大多数CPLD属于阵列型,基本结构是与或阵列 FPGA属于单元型,基本结构是可编程的逻辑块

Xinlinx 7-Series +SOC FPGAs家族

	ARTIX.7	KINTEX:	VIRTEX.7	ZYNQ.
最大的能力	最低功耗 和成本	企业的 最佳性价比	企业的 最高性能	完全可编程 SOC
逻辑单元	33K – 215K	70K – 478K	326K – 1,955K	28K – 444K
RAM块	12 Mb	34 Mb	65 Mb	27 Mb
DSP 片	40 – 700	240 – 1,920	700 – 3,960	80–2,020
峰值DSP性能	504 GMACS	2,450 GMACs	5,053 GMACS	2,662 GMACS
收发器	最多 16	最多32	最多88	最多16
收发器性能	6.6Gbps	12.5Gbps	12.5Gbps, 13.1Gbps 及28Gbps	6.6Gbps, 12.5Gbps
存储器性能	1066Mbps	1866Mbps	1866Mbps	1333Mbps
I/O 引脚	500	500	1,200	400
I/O 电压	3.3V 及以下	3.3V及以下 1.8V及以下	3.3V及以下 1.8V及以下	3.3V及以下 1.8V及以下

Artix-7 Family

Device Logic Cells	Configurable Logic Blocks (CLBs)		DSP48E1	Block RAM Blocks ⁽³⁾		Clock Mgmt Tiles	PCle		XADC	Total I/O	Max		
	Cells	Slices ⁽¹⁾	Max Distributed RAM (Kb)	Slices ⁽²⁾	18Kb	36Kb	Max (Kb)	(CMTs)	(5)	GTPs	Blocks (6)	Banks ⁽⁷⁾	User I/O ⁽⁸⁾
XC7A20SL	16,000	2,500	208	60	60	30	1,080	3	0	0	1	5	216
XC7A35SL	32,909	5,142	453	120	130	65	2,340	3	0	0	1	5	216
XC7A50SL	52,480	8,200	688	180	190	95	3,420	4	0	0	1	6	300
XC7A75SL	71,642	11,194	974	240	250	125	4,500	4	0	0	1	6	300
XC7A20SLT	16,000	2,500	208	60	60	30	1,080	3	1	4	1	5	216
XC7A35SLT	32,909	5,142	453	120	130	65	2,340	3	1	4	1	5	216
XC7A50SLT	52,480	8,200	688	180	190	95	3,420	4	1	8	1	6	300
XC7A75SLT	71,642	11,194	974	240	250	125	4,500	4	1	8	1	6	300
XC7A100T	101,440	15,850	1,188	240	270	135	4,860	6	1	8	1	6	300
XC7A200T	215,360	33,650	2,888	740	730	365	13,140	10	1	16	1	10	500

FPGA: Xilinx Artix-7 XC7A35T 时钟: 100MHz 配置方式: USB-JTAG/SPI Flash

存储器:

SRAM: 2Mbit SPI Flash: N25Q032A

通用IO:

Switch: x8 LED: x16 Button: x5 DIP: x8

通用扩展IO: 32pin

音视频/显示: 7段数码管:x8 VGA视频输出接口

VGA视频输出接口 Audio音频接口

通信接口:

UART: USB转UART Bluetooth: 蓝牙模块

模拟接口:

DAC: 8-bit分辨率

XADC: 2路12bit 1Msps ADC

	Part Number	XC7A12T	XC7A15T	XC7A25T	XC7A35T
	Logic Cells	12,800	16,640	23,360	33,280
Logic Resources	Slices	2,000	2,600	3,650	5,200
nesources	CLB Flip-Flops	16,000	20,800	29,200	41,600
	Maximum Distributed RAM (Kb)	171	200	313	400
Memory Resources	Block RAM/FIFO w/ ECC (36 Kb each)	20	25	45	50
nesources	Total Block RAM (Kb)	720	900	1,620	1,800
Clock Resources	CMTs (1 MMCM + 1 PLL)	3	5	3	5
1/0 P	Maximum Single-Ended I/O	150	250	150	250
I/O Resources	Maximum Differential I/O Pairs	72	120	72	120
	DSP Slices	40	45	80	90
Embedded	PCIe® Gen2 ⁽¹⁾	1	1	1	1
Hard IP	Analog Mixed Signal (AMS) / XADC	1	1	1	1
Resources	Configuration AES / HMAC Blocks	1	1	1	1
	GTP Transceivers (6.6 Gb/s Max Rate)(2)	2	4	4	4
	Commercial	-1, -2	-1, -2	-1, -2	-1, -2
Speed Grades	Extended	-2L, -3	-2L, -3	-2L, -3	-2L, -3
	Industrial	-1, -2, -1L	-1, -2, -1L	-1, -2, -1L	-1, -2, -1L

例: Xinlinx Artix-7 Xc7A35T ——口袋板

FPGA (现场可编程逻辑门阵列)

Artix-7 FPGA 架构

CLB是FPGA的 主要逻辑单元

BRAM (块RAM)

I/C

CMT (时钟管理)

FIFO Logic

BUFG (全局缓冲)

BUFIO & BUFR

MGT

- □ 每个CLB包含2个Slice, Slice分为2种: Slice_L和Slice_M。
 - Slice_L: 具备基本功能,包括逻辑和算术
 - Slice_M: 在基本逻辑功能的基础上可以扩展为分布式RAM或移位寄存器
- □ 一个CLB可以有2个Slice_L,或 者1个Slice_L+1个Slice_M。

CLB中的slice

- □ CLB是成对、对称的连接 在一起
- □ 同一CLB中的两片slices没有直接的线路连接,它们分属于两个不同的列。
- □ 每列拥有独立的快速进位 链资源。

Slice

- □ 每个Slice有4个6输-input 的LUT
- 数据选择器(Multiplexers)
- □ 进位链 (Carry chains)
- □ 8个寄存器(即:触发器/锁存器)

Slice 构成

6-Input LUT

- 6-input LUT内部由2个5-input LUT组成,有两个输出分别对应O6和O5。
- 可以表示任意一个6变量的逻辑函数,或者两个5变量的逻辑函数(前提是5个输入是必须相同的)
- 两个5-LUTs 的输出可以经过2选1数据选择器输出, 或单独输出

利用LUT生成 不同功能

- 一个LUT能够实现1个4选1数据 选择器,一个Slice能够实现4个 4选1数据选择器。
- 两个LUT能够实现1个8选1数据选择器,一个Slice能够实现2个8选1数据选择器。
- ■四个LUT能够实现1个16选1数据选择器,一个Slice能够实现1个16选1数据选择器。
- 每个LUT可配置成32-bit的移位 寄存器。切记:直接使用LUT作 为移位寄存器,一定不能有复位 端口!

数据选择器

- 一个Slice中包含有3个多路复用器: F7MUXA、F7MUXB和F8MUX。
- 两个LUT的输出可以经过一个数据选择器进行控制。
- F7MUXA组合LUT A和LUT B成为7输入LUT, F7MUXB组合LUT C和LUT D成为7输入LUT, 而F8MUX组合1个Slice中的4个LUT成为8输入LUT。
- 通过F7MUXA、F7MUXB和F8MUX的 搭配,1个Slice可以实现4:1、8:1和 16:1多路复用器
- 数据选择器的输出可以驱动组合逻辑 ,也可以驱动触发器(时序逻辑)

数据选择器 (multiplexer)

- 进位链是一种可以提高算术功能(如加法器,累加器,减法器、比较 器)的专用硬件资源,在两个slice 间实现快速进位。
- 同一CLB中的两片slices没有直接的线路连接,它们分属于两个不同的列。每列拥有独立的快速进位链资源。
- 每个SLICE有4bit的进位链。每bit 都由一个进位MUX和一个异或门组 成,可在实现加法/减法器时生成进 位逻辑。
- 进位链逻辑走向垂直向上,设计时 ,最起始的bit应该被放置在进位链 的底部,从而节省很多的资源。

进位链(Carry Chain)

- 每个slice 有4个flip-flop/latches (FF/L)
- 第1列的register: 只能作为Flip-Flop使用, 第2列的register: 既能作为Flip-Flop也能 作为Latch使用。
- Flip-flops和latches共享相同的控制信号: CLK, SR, CE等。
 - ➤ 意味着:如果一个组中的一个flip-flop用了时钟使能信号,那么所有其他的Flip-Flop必须使用相同的时钟使能或者不用时钟使能。如果一个组中的一个flip-flop用了置位或者复位信号,那么所有其他的Flip-Flop必须使用相同的置位或者复位信号。
 - ▶ 同一个Slice中的Flip-Flops会在同一时间进入 复位或者置位的状态。
 - ▶ 写代码时,复位/置位选择同步高电平有效。

Flip-Flops and Flip-Flop/Latches

FPGA(现场可编程逻辑门阵列)

- 所有触发器都是D触发器
- 所有的触发器都有:
 - ▶ 一个时钟输入(CLK)
 - ▶ 一个使能信号(CE)
 - ▶ 一个高有效的复位信号(SR),可以基于用户的编码风格被配置成同步置位/复位、异步置位或者复位、清零端口。
- XILINX器件大部分都是<mark>高有效</mark>。意味着:若使用低有效, 需要额外占用LUT构成反转逻辑。


```
always @ (posedge CLK or posedge RST )
begin
if (RST)
Q <= 1'b0;
else
Q <= D;
End
```

```
always @ (posedge CLK)
begin
if (RST)
Q <= 1'b0;
else
Q <= D;
end

| D步复位 (高电平):
    复位信号不能
在敏感列表里
```


□ 按功能模块划分 的系统框图

1. 原理框图的设计

□ 不涉及具体实现

- . 设计输入----[/] 两种方式:
- 3. 逻辑综合 □逻辑图输入方式

□HDL输入方式

- 4. 仿真
- 5. 下载到PLD芯片,调试验证
- 6. 发现错误,在计算机上修改设计,重复上述过程。

明确各个模块之间 的关系,确定输入 和输出。

EDA软件

数字系统 设计趋势

➡数字系统

空白PLD

FPGA设计流程

□ 逻辑图输入方式

- 1. 原理框图的设计
- 2. 设计输入
- 3. 逻辑综合
- 4. 仿真
- 5. 下载到PLD芯片,调 试验证
- 6. 发现错误,在计算机 上修改设计,重复上 述过程。

FPGA设计流程 1. 原理框图的设计 2. 设计输入 3. 逻辑综合

4. 仿真

input a, b, cin, output sum, cout

6. 发现错误, 在计 算机上修改设计, 重复上述过程。

5. 下载到PLD芯片,

调试验证

assign cout= $((a^b)\&cin) | (a\&b);$ endmodule

assign sum= a^b^cin;

Verilog(全加器)

FPGA设计流程

FPGA设计流程

1. 原理框图的设计 / 可综合的HDL代码

□ RTL代码实现是否

□ 对FPGA器件特点

合理

的理解

- 2. 设计输入
- 3. 逻辑综合
- 4. 仿真
- 5. 下载到PLD芯片,调试验证
- 6. 发现错误,在计算机上修改 设计,重复上述过程。

□ 仿真

□ 典型应用1——高速接口电路

- (1) 粘合功能: 高速的A/D和D/A转换芯片 (如视频Decoder或者Encoder, 不能与通 用的MCU或者DSP直接接口。利用FPGA可 以完成粘合逻辑功能)
- (2) 简化外围电路设计:设计中如果需要的接口比较多,就需要较多的外围芯片,体积、功耗都比较大。使用FPGA,接口逻辑可以在FPGA内部实现,大大简化了外围电路的设计
- (3) 实现各种存储接口的控制器:利用FPGA可以实现各种存储接口的控制器(如SDRAM、SRAM、Flash等)

- □ 典型应用2——高速数学运算与数据处理
- (1) 替代传统的多片DSP并联的多处理器系统:

多处理器系统的问题:设计复杂度及系统功耗高,系统稳定性受到影响。FPGA支持并行计算(例如,高清视频编码算法,采用的DSP芯片需要4片,FPGA只需要1片)

(2) 新兴应用:人工智能、大数据处理、云计算加速

视频会议处理

□典型应用3——ASIC/SoC的原型验证 ····

ASIC/SoC的原型验证:一种在FPGA上搭建ASIC/SoC设计原型的方法,可以方便的进行硬件验证和早期软件开发。

- (1) 缩短验证时间,降低开发成本: FPGA具有可编程的特点,可以反复修改逻辑设计,直至达到满意的结果,加速开发速度,降低开发成本。
- (2) 基于FPGA的原型验证可以比软件仿真速度高出4~6个数量级,而且还可以提高流片成功率,并为软件开发提供了硬件平台,加速了软件的开发速度。

□其它领域应用

- (1) 汽车电子领域: 如网关控制器/车用PC 机、远程信息处理系统。
- (2) 军事领域: 如安全通信、雷达和声纳、 电子战。
- (3) 测试和测量领域:如通信测试和监测、 半导体自动测试设备、通用仪表
- (4) 消费产品领域:如显示器、投影仪、 数字电视和机顶盒、家庭网络。
- (5) 医疗领域

通用母板设计

交通信息处理

