

Note for Homological Algebra

范畴论笔记

Edited by

颜成子游/南郭子綦

最后一次编译时间: 2024-03-11 22:41

Contents

1	范畴	论基础	2
	1.1	函子范畴与泛性质	2
		1.1.1 函子范畴	2
		1.1.2 泛性质	4
	1.2	可表函子	5
		1.2.1 四个函子和米田引理	5
	1.3	可表函子	8
	1.4	伴随函子	9
	1.5	极限与完备化	14
		1.5.1 极限和函子的可表性	16
		1.5.2 常用的极限	21
		1.5.3 完备性	23
		1.5.4 极限与函子之间的关系	25
	1.6	基础范畴论补充	26
		1.6.1 子商	26
2	幺半	· 范畴	29
	2.1	基础定义 2	29

范畴论基础是学习现代数学理论重要的语言。很多时候如果预先学习过范畴论,就可以很好的了解许 多已知的数学理论。我们将会以李文威所著的《代数学方法》为讲义,攥写该笔记。以此在将来遇到该门语 言时可以进行快速的复习。

由于范畴本身的概念在攥写笔记中可以得到反复强化,因此我们省略范畴论中最最基础的定义,直接从函子范畴开始攥写笔记。

幺半范畴

§2.1 基础定义

Definition 2.1.1: 幺半范畴

幺半范畴意指一组资料 $(\mathcal{V}, \otimes, a, 1, \iota)$, 其中:

1. 2 是一个范畴。

 $2.\otimes: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ 是一个二元函子, 其在对象和态射集上定义的映射分别记为: $(X,Y) \mapsto X \otimes Y$ 和 $(f,g) \mapsto f \otimes g.$

3.a 是函子范畴 $Fct(\mathcal{V} \times \mathcal{V} \times \mathcal{V}, \mathcal{V})$ 中的同构:

$$a: ((\cdot \otimes \cdot) \otimes \cdot) \cong (\cdot \otimes (\cdot \otimes \cdot)) \tag{2.1}$$

使得对于所有对象 X, Y, Z, W, 下图:

$$((X \otimes Y) \otimes Z) \otimes W$$

$$\downarrow^{a(X,Y,Z) \otimes \mathrm{id}_{W}} \qquad \qquad \downarrow^{a(X \otimes Y,Z,W)} \qquad \qquad \downarrow^{a(X \otimes Y,Z,W)} \qquad \qquad \downarrow^{a(X,Y \otimes Z,W)} \qquad \qquad \downarrow^{a(X,Y,Z \otimes W)} \qquad \downarrow^{a(X,Y,Z \otimes W)} \qquad \qquad \downarrow^{a(X,Y,Z \otimes W)} \qquad \qquad \downarrow^{a(X,Y,Z \otimes W)} \qquad \qquad \downarrow^$$

交换。

4. 对象 1 称为幺元, 相应的函子 $1 \otimes -$ 和 $- \otimes 1$ 给出范畴 \mathcal{V} 到自身的等价。

 $5.\iota:1\otimes 1\to 1$ 是同构。