FIT 5190 Introduction to IT research methods

Type Inference On Noisy Linked Data

Keywords: Type Inference, Bag-of-word, Linked data graph

Name: Chen Jing ID: 2819****

Name: Pan Luming ID: 2819****

01

Part one What is the problem?

02

Part two
How to address
the problem?

03

Part three

Conclusions

Part four

References

What's the problem?

Speaker: Chen Jing

Missing type: A common phenomenon

Missing type: Influence sematic search

Sparql: searching for singers whose age is over 30

```
PREFIX job: <a href="http://example.com/job#">http://example.com/job#>
PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {
?person foaf:name ?name.
?person a job:Singer.
?person foaf:age ?age.
FILTER (?age > 30)
}
```

Matching result: Zhou Jielun

Predict missing type!

How to address the problem?

Speaker: Pan Luming, Chen Jing

Text-classification-based method

A. Why text?

Assumption: Texture information indicates the type

Inspiration: Tipalo (Gangemi et al., 2012)

B. Why classification?

Assumption: Classification method can predict the type

Inspiration: Support vector machine (Sleeman et al., 2015)

Bag-of-words (BOW) classification

C. Additional assumptions?

Assumption: Different relations has different influence on prediction

Inspiration: *SD-Type* (Paulheim et al., 2013)

Relation classification

Procedure(six steps)

Bag-of-words (BOW)

- (1) John likes to watch movies. Mary likes movies too.
- (2) John also likes to watch football games.

```
BOW of (1):
                                      BOW of (2):
  "John": 1,
                                         "John": 1,
  "likes": 2,
                                         "likes": 1,
  "to": 1,
                                         "to": 1,
  "watch": 1,
                                         "watch": 1,
  "movies": 2,
                                         "movies": 0,
  "also": 0,
                                         "also": 1,
  "football": 0,
                                         "football": 1,
  "games": 0,
                                         "games": 1,
  "Mary": 1,
                                         "Mary": 0,
  "too": 1
                                         "too": 0
```

Examples from Wikipedia:

https://en.wikipedia.org/wiki/Bag-of-words_model

Bag-of-word (BOW)

Testing

Training

No_song * Weight_song_composer = Precision(song_composer)

No_song * Weight_song_father = Precision(song_father) **

Relation classification

A. Based on direction:

- 1. Incoming relation
- 2. Outgoing relation

B. Based on domain and range:

- 1. Homogeneous relation
- 2. Heterogeneous relation

Dor	nain	Relation	Range	Homogeneous /heterogeneous
En	tity	type	class	homogeneous
So	ng	writtenby	compos er	heterogeneous
per	rson	haswife	person	homogeneous
En	tity	age	Int	heterogeneous

Relation classification(cont.)

in-heterogeneous: out-homogeneous: out-heterogeneous: predicted entity: in-homogeneous: **BOW** divided many songs node his wife node Age node Zhou Jielun node (writtenby) (haswife) (age)**BOW** presentation: **Predict type** Composer, + Millionaire + Father Person dependently: Singer

Target type:

- 1 Composer
- 2 Millionaire
- (3) Father

Conclusion and future work

Lecturer: Chen Jing

Conclusion and future work

A. Conclusion:

- 1. Consider Linked data structured feature
- 2. Text-based classification method
- 3. Solve the type missing problem

B. Improvement and future work

- 1. Not suitable for huge linked data base (bag-of-word)
- 2. Tensor decomposition or distributed method

PART 4

References

Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., & Lehmann, J. (2013). Crowdsourcing linked data quality assessment. *International Semantic Web Conference*, 260-276.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. *Semantic services, interoperability and web applications: emerging concepts*, 205-227.

Gangemi, A., Nuzzolese, A., Presutti, V., Draicchio, F., Musetti, A., & Ciancarini, P. (2012). Automatic typing of DBpedia entities. *The Semantic Web–ISWC 2012*, 65-81.

Ji, Q., Gao, Z., & Huang, Z. (2011). Reasoning with noisy semantic data. *Extended Semantic Web Conference*, 497-502.

Paulheim, H., & Bizer, C. (2013). Type inference on noisy RDF data. *International Semantic Web Conference*, 510-525.

Sleeman, J., Finin, T., & Joshi, A. (2015). Entity type recognition for heterogeneous semantic graphs. *AI Magazine*, 36(1), 75-86.

THANKS! Q & A