Übungen zu Analysis I für Ingenieure und Informatiker

(Abgabe bis Freitag, 06.06.2014 um 08:20 Uhr, H3)

1. Untersuche die folgenden Reihen auf Konvergenz und absolute Konvergenz.

(a)
$$\sum_{k=1}^{\infty} (-1)^k \cdot \frac{3^{k+2}}{2^k}$$

(c)
$$\sum_{k=1}^{\infty} \frac{(k+1)^{k^2}}{k^{k^2} 2^k}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n!}{n^n} 4^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{n!}{\sqrt{(2n)!}}$$

(6 Punkte)

2. Berechne folgende Grenzwerte, falls existent:

(a)
$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{|x|}$$
 (c) $\lim_{x \to 0} x \cdot \cos \frac{1}{x}$ (e) $\lim_{x \to 0} \frac{\sin x - x}{x}$

(c)
$$\lim_{x \to 0} x \cdot \cos \frac{1}{x}$$

(e)
$$\lim_{x \to 0} \frac{\sin x - x}{x}$$

(b)
$$\lim_{x\to 0} \cos \frac{1}{x}$$

(b)
$$\lim_{x\to 0} \cos \frac{1}{x}$$
 (d) $\lim_{x\to 0} \frac{\sin x}{x}$

(f)
$$\lim_{x \to 0} \frac{\cos^2 x - 1}{x^2}$$

(14 Punkte)

3. Zeige für alle $x \in \mathbb{R}$ gilt: $\cos(3x) = 4\cos^3 x - 3\cos x$.

(3 Punkte)

4. Zeige folgende Behauptungen mit Hilfe der aus der Vorlesung bekannten Eigenschaften der trigonometrischen Funktionen.

(a)
$$\sin \frac{\pi}{4} = \cos \frac{\pi}{4}$$

(b)
$$\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

(c)
$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

(c) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ Hinweis: Es lässt sich Aufgabe 3 verwenden.

(7 Punkte)

5. Vereinfache soweit wie möglich: $\cos^4\left(\frac{x}{2}\right) - \sin^4\left(\frac{x}{2}\right)$ für $x \in \mathbb{R}$.

(3 Punkte)

- 6. Löse:
 - (a) $\sin(x) + \frac{1}{2}\sin(2x) = 0$ für x in $[0, 2\pi]$.
 - (b) $\sin(2x) \cos(2x) = 1$ für x in $[0, 2\pi)$.

(8 Punkte)