Lezione 10-12 Simulatione: oggi ore 14 Aula F Eq. dell 2° ordine omogenee. Policanatteristico senta radici reali y"+a.y'+b=0, a,beR polanett. 12 + al + b = 0 senza nedz. reul. 1 = a2-4b < 0 Ci sous 2 raulzi complesse conjugate $\lambda_1 = \mathbb{Z} + i \mathbb{B}$, $\lambda_2 = \mathbb{Z} - i \mathbb{B}$ $\mathbb{Z} + \mathbb{R}$

Le due solutioni fondamental. sono	
$y_1(x) = e^{x} \cdot (\cos(\beta x))$, $y_2(x) = e^{x} \cdot (\sin(\beta x))$	
La solutione generale olell'equatione e	
$Y(x) = e^{-x} \left(C_1 \cdot \cos(\beta x) + C_2 \cdot \sin(\beta x) \right)$	
Es: y"+ y=0	
Pol. conatt 12+1=0 rowhia /2=i, /2=-i	
$\int_{1}^{2} = O + 1 \cdot i \int_{2}^{2} = O + (-1) \cdot i$	

$Y(x) = e^{0 \cdot x} \left(c \cdot \cos(1 \cdot x) + c \cdot \sin(1 \cdot x) \right) = c \cdot \cos(x) + c \cdot \sin(x)$	
Es; y"-4y+13y=0	
Pol. caralteristico 12-4/+13=0	
$\lambda = 2 + \sqrt{4 - 13} = \frac{4 + \sqrt{6 - 52}}{2} = 2 + \sqrt{-9} = 2 + 3i$	
$\alpha = 2$ $\beta = 3$	
5 oluzione generale $e^{2x} \left(c_1 \cdot cos(3x) + c_2 \cdot sin(3x) \right)$.	

Problema di Cauchy
$(y^{2}+2y+2y=0)$
} yco>= 2
(y'co)=1
Pol. coralt: 1-2/+2=0
Radia: 1=1±11-2=1±i, a=1, B=1
Solgenerale $y(x) = e^{x} \cdot \left(c_1 \cdot cos x + c_2 \cdot sin x \right)$
Trovo C, e C, a partire delle condizioni iniziali.
Dalla prima constraine

2=4(0)=6. (c.coso+c.sino)=c = C = C = 2	
Per usare la seconda conditione des calculare y'(x)	
$y'(x) = e^{x} \left(c_{1} \cos x + c_{2} \sin x \right) + e^{x} \left(-c_{1} \sin x + c_{2} \cos x \right)$	
$1 = y'(0) = 1 \cdot (C_1 \cdot 1 + C_2 \cdot 0) + 1 \cdot (-C_1 \cdot 0 + C_2 \cdot 1) = C_1 + C_2$	
$\begin{cases} Y^{(0)} = 2 & C_1 = 2 \\ Y^{(0)} = 1 & C_2 = 1 \\ Y^{(0)} = 1 & C_1 + 2 = 1 \\ Y^{(0)} = 1 & C_2 = 1 \end{cases}$	
$(9^{10})^{-1}$ $(-1^{$	
Sostituisa C=2 e C=-1 nella solutione generale	
$y(x) = e^{x} \cdot (c_1 \cos x + c_2 \sin x) = e^{x} \cdot (2 \cos x - \sin x)$	
Los sol del probleme d'Candry.	

Equatione completa (mon omogenea)
or) y"+ ay'+b.y = f con f to (f=fcx)
Supposition d'avere hovate une solutione particulue dell'équatione
(X), de chamamo y.
Prendians une solutione y dell'equatione omogener
yo +ay + by = 0
Allora se indro y = y + y obteniano dre y risolve ex).
Infalt.
y"+ay+by=(y+y0)"+a(y+y0)+b(y+y0)=

Si applica a fexo di Fipo speciale. I deve essere della	
sequente forme:	
$\begin{cases} cx = e^{x} \left(p(x) \cdot cos(\beta x) + q(x) \cdot sin(\beta x) \right) \end{cases}$	
olove a BelR, pcx) e qcx) sono polinomi.	
Osserviano de possono essere presenti sia sin che il cos	
me devans avere la stessa frequenta B	
Occlir 6 f (x) = cos (3 x) + sin (2x) non e' della forma quistà	
$\int c(x) = e^{5x} \cdot \left(x \cos(2x) + x^2 \cdot \sin(2x) \right) $ va here	
$d=5$, $\beta=2$ pcx $\gamma=x$, $qcx \gamma=x^2$	
	+

0	Se f e della forma voluta, cerco ana solutione particolme	
	ell'equazione della forma:	
y ci	$\kappa = \chi^m e^{\alpha x} \left[r(x) \cdot \omega s(\beta x) + S(x) sin(\beta x) \right]$	
	e rex) e sex) sous polinomi incogniti con	
	ado (v (xs)= grado (s (x))= max { grado (p(x)), grado (q(x))}	
M d	e la mollèplicità di αtiβ come vadice del polinomio	
	e atiB non e'naulice del pulmunio caralteristico, allora m=0	

Es: Y"+44=5inx
Ouragenea: y'+4y=0
Pol. caralt. 12+4=0 rodici 1=2i, 1=2i
Solutione omogne
$V_0(x) = C_1 \cdot cos(2x) + C_2 \cdot sin(2x)$
Cerchiano una solutione particolme.
annolam il lorme noto gcx = sin x
Dero serverlo rella forma generale

agnoglio i coefficient di sinx e cosx	a sx e dx dell'agnale	
$\begin{cases} 3A=0 & A=0 \\ 8=1 \end{cases}$		
3)		
(3B=1		
=> y(x)= /cosx+ Bs.nx = fsinx		
3		
Ssl. generale stell'equazione completa e		
and the confine of		
$y = y_0 + \overline{y} = C \cdot \cos(2x) + C_2 \cdot \sin(2x) + \frac{1}{3}$	Sin	
1 1 2 3 11 2 2 3 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 11 2 2 3 3 11 2 2 3 1		
Fa William Ca		
Es: y"+4y=sin(2x)		

Omogenea y"+4y=0 12+4	=0 radici ± 2i
, L	
$V_0 = C_1 \cdot \cos(2x) + C_2 \cdot \sin(2x)$	
fcx)=5:n(2x)=ex. (ρcx)-	$(\omega)(\beta x) + a(x) \sin(\beta x)$
quind: <=0, B=2, pcN=0	o, q(x)=1
AtiB: 2i - e'rad-ce del ps	1. avat. d'molt. 1. m=1
ycx)= e . x . (r(x). cos(B)	$(x) + S(x) \cdot S(x) (B(x)) =$
= X. (A.cos(2x)+B.sin(2)	(ζ_{\times})

Omogenea y"-y=0
Pol-caratt. 12-1=0 radia. 1=+1
Sol. omogenea y = c, e + c, e +
Sol. particolare y
$\int c(x) = e^{x} = e^{x} \left(p(x) \cdot cos(\beta x) + q(x) \cdot sin(\beta x) \right)$
$d=1$, $\beta=0$, $\rho(x)$, $q(x)=0$
atiB=1 radre del pol-comald. d. molt. 1 m=1
gradus = quedo reo rcxs=A scx = B

