

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

GFPI-F-135 REALIZA EL PROCESO DE LIMPIEZA DE DATOS LIMPIEZA DE DATOS CON PYTHON

ACTIVIDADES POR DESARROLLAR:

- 1. Datos faltantes
- 2. Columnas irrelevantes (que no responden al problema a solucionar
- 3. Filas repetidas
- 4. Valores extremos o atípicos (outliers)
- 5. Errores tipográficos.
- 6. Formatos de fechas

Para realizar el taller se debe descargar el DATASET

"COVID19-JULIO2020", que corresponde a los datos del ICFES SABERPRO de 2012 calendario A.

Situaciones para realizar limpieza en los datos:

- Datos faltantes
- Columnas irrelevantes (que no responden al problema a solucionar
- Filas repetidas
- Valores extremos o atípicos (OUTLIERS)
- Errores tipográficos.
- Formatos de fechas
- Remover duplicados o datos irrelevantes: Tener datos duplicados sucede en la etapa de recolección de datos. Al tener diversas fuentes, se busca juntar los datos, lo que puede resultar en tener duplicados y se deben descartar filas repetidas. Los

of www.sena.edu.co

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

datos irrelevantes no influyen o no impactan al problema que se está intentando solucionar.

- Corregir errores estructurales: Cuando observan nomenclaturas extrañas, errores tipográficos o gramaticales.
- **Corregir** *outliers*: o valor atípico es aquel que se esta por encima o por debajo del rango normal de valores de la variable que se está estudiando.
- **Manejo de datos faltantes:** Son aquellos vacíos de datos en la información recolectada. Existen opciones para tratar los datos faltantes:
 - Eliminar todos los registros que contengan datos faltantes en algún campo: Siempre y cuando los registros a eliminar sean mínimos. Si son un porcentaje importante de los datos, más del 10%, es mejor considerar otra alternativa.
 - Reemplazar los datos faltantes por valores basados en otras observaciones: Existen varias técnicas para esto (utilizar knn o algoritmo de vecinos cercanos, predecir los datos faltantes, etc.), lo más común es reemplazar por el promedio, o por la mediana (en el caso que el promedio esté sesgado por algunos valores dentro de los datos).

Comandos utilizados en Python

Detección de datos nulos

Isnull: Nos permite detectar datos nulos, simplificando este proceso independientemente de la dimensión de nuestra base de datos.

Notnull: Es la indicación lógica contraria, y la forma de llamar a la función es similar.

Limpieza de Datos

Dropna: Elimina las filas que contienen datos nulos.

Fillna: Rellena los valores nulos con un valor predeterminado.

Bfill: Este método de fillna rellena los datos nulos, con base al valor de la siguiente fila.

- Ventajas: Este método es mejor que asignar un valor arbitrario a los datos, además garantiza que los datos se mantengan dentro de un rango específico. Es útil en bases de datos de gran extensión y con poca proporción de datos nulos.
- Desventajas: Se debe asegurar que el número de datos nulos NO sea significativo, para que el coeficiente de variación y otras medidas de dispersión no sufran de un sesgo muy grande.

www.sena.edu.co

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Datos erróneos e irrelevantes.

La reducción de la dimensionalidad produce una representación más compacta y más fácilmente interpretable del concepto de objetivo, centrando la atención del usuario en las variables más relevantes.

Utilizar las siguientes librerías

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Descargar el DATASET, descomprimir, colocar en la variable ruta el lugar donde se descargó el archivo, no olvide de no utilizar "\" sino "/" para construir la ruta.

Cargar el archivo CSV

data=pd.read_csv(ruta)
print(data.shape)

Realizar el inventario de filas y tipos

data.info()

Subniveles de las categorías

```
cols_cat=['PAIS','CIUDAD','SEXO','TIPO','ESTADO','ATENCION','DEPARTAMENTO']
for col in cols_cat:
    print(f'Columna {col}: {data[col].nunique()} subniveles')
```

Descubra y arregle el por qué sale un error al ejecutar la sentencia

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Columna PAIS: 49 subniveles
Columna CIUDAD: 871 subniveles
Columna SEXO: 4 subniveles
Columna TIPO: 6 subniveles
Columna ESTADO: 6 subniveles
Columna ATENCION: 5 subniveles
Columna DEPARTAMENTO: 37 subniveles

Medidas de tendencias central

data.describe()

EDAD	DIVIPOLA	ID	
400489.000000	400489.000000	400489.000000	count
39.378647	24228.489584	207136.763996	mean
18.054488	24497.916534	130326.805430	std
0.000000	5001.000000	1.000000	min
27.000000	8758.000000	100173.000000	25%
37.000000	11001.000000	200302.000000	50%
51.000000	25754.000000	300464.000000	75%
107.000000	99524.000000	997851.000000	max

data.hist('EDAD')

Quitar filas duplicadas

print(data.shape)

data.drop_duplicates(inplace=True) print(data.shape)

(400489, 11) (400489, 11)

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Graficar las cantidades de filas en columnas numéricas, identificar outliers

Identificar errores tipográficos:

```
colsnum=['SEXO','ATENCION','TIPO','ESTADO']
fig,aix=plt.subplots(nrows=4,ncols=1,figsize=(8,30))
fig.subplots_adjust(hspace=1)

for i,col in enumerate(colsnum):
    aix[i].set_title(col)
    sns.countplot(x=col,data=data,ax=aix[i])
```


Cambios de errores tipográficos.

En el caso de la variable "Estado", encontramos valores diferente que fueron escritos mal, por ejemplo "Leve y leve".

Para realizar el cambio:

29/05/2023 Pág. 9 Linea de atención di ciudadano: 018000 910270 Línea de atención al empresario: 018000 910682

MODELO ESTRELLA DEL COVID19

Convertir a CSV la dimensión "DM_ESTADO"

```
DA={
  'NOMBRE':data['ESTADO']
DM_ESTADO=pd.DataFrame(DA)
DM_ESTADO.drop_duplicates(inplace=True)
# agregar columna de consecutivo
DM_ESTADO['IDESTADO'] = range(1, len(DM_ESTADO) + 1)
# establecer columna "IDESTADO" como índice
DM_ESTADO.set_index('IDESTADO', inplace=True)
DM_ESTADO=DM_ESTADO.fillna('NA')
# mostrar DataFrame resultante
print(DM_ESTADO)
DM_ESTADO.to_csv('C:/borrar/DM_ESTADO.csv')
print('Guardado')
```


Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Convertir a CSV la dimensión "DM_TIPO"

```
'NOMBRE':data['TIPO']
data['TIPO']=data['TIPO'].str.replace('relacionado','Relacionado',regex=False)
data['TIPO']=data['TIPO'].str.replace('RELACIONADO','Relacionado',regex=False)
data['TIPO']=data['TIPO'].str.replace('En Estudio','En estudio',regex=False)
DM_TIPO=pd.DataFrame(DA)
DM_TIPO.drop_duplicates(inplace=True)
# agregar columna de consecutivo
DM_TIPO['IDTIPO'] = range(1, len(DM_TIPO) + 1)
# establecer columna "IDTIPO" como índice
DM_TIPO.set_index('IDTIPO', inplace=True)
DM_TIPO=DM_TIPO.fillna('NA')
# mostrar DataFrame resultante
print(DM_TIPO)
DM_TIPO.to_csv('C:/borrar/DM_TIPO.csv')
print('Guardado')
```

NOMBRE IDTIPO Importado Relacionado 3 En estudio relacionado RELACIONADO En Estudio Guardado

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Convertir a CSV la dimensión "DM_SEXO"

```
data['SEXO']=data['SEXO'].str.replace('m','M',regex=False)
data['SEXO']=data['SEXO'].str.replace('f','F',regex=False)
DM_SEXO=pd.DataFrame(data['SEXO'])
DM_SEXO.drop_duplicates(inplace=True)
# agregar columna de consecutivo
DM_SEXO['IDSEXO'] = range(1, len(DM_SEXO) + 1)
# establecer columna "IDSEXO" como índice
DM_SEXO.set_index('IDSEXO', inplace=True)
DM_SEXO=DM_SEXO.fillna('NA')
# mostrar DataFrame resultante
print(DM_SEXO)
DM_SEXO.to_csv('C:/borrar/DM_SEXO.csv')
print('Guardado')
```

	NOMBRE
IDSEX0	
1	F
2	M
3	m
4	f
Guardad	0

Convertir a CSV la dimensión "DM_ATENCION"

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

```
data['ATENCION']=data['ATENCION'].str.replace('Hospital UCI','UCI',regex=False)
DM_ATENCION=pd.DataFrame(data['ATENCION'])
DM_ATENCION.drop_duplicates(inplace=True)
# agregar columna de consecutivo
DM_ATENCION['IDATENCION'] = range(1, len(DM_ATENCION) + 1)
# establecer columna "IDATENCION" como índice
DM_ATENCION.set_index('IDATENCION', inplace=True)
DM_ATENCION=DM_ATENCION.fillna('NA')
# mostrar DataFrame resultante
print(DM_ATENCION)
DM_ATENCION.to_csv('C:/borrar/DM_ATENCION.csv')
print('Guardado')
```

	NOMBRE
IDATENCION	
1	Recuperado
2	Fallecido
3	NA
4	Casa
5	Hospital UCI
6	Hospital
Guandado	

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Convertir a CSV la dimensión "DM_DEPARTAMENTO"

```
'IDDPTO':data['DIVIPOLA']//1000,
 'NOMBRE':data['DEPARTAMENTO']
DM_DEPARTAMENTO=pd.DataFrame(DA)
DM_DEPARTAMENTO.drop_duplicates(inplace=True)
DM_DEPARTAMENTO.set_index('IDDPTO', inplace=True)
# mostrar DataFrame resultante
print(DM_DEPARTAMENTO)
DM_DEPARTAMENTO.to_csv('C:/borrar/DM_DEPARTAMENTO.csv')
print('Guardado')
```


NOMBRE IDDPTO Bogotá D.C. Valle del Cauca 76 5 Antioquia 13 Cartagena D.T. y C. 41 Huila 50 Meta 66 Risaralda 54 Norte de Santander 17 Caldas Cundinamarca 25 8 Barranquilla D.E. 68 Santander 63 Quindío 73 Tolima 19 47 Santa Marta D.T. y C. 20 Archipiélago de San Andrés Providencia y Santa... 88 85 Casanare 52 Nariño Atlántico 8 15 Boyacá 23 Córdoba Bolívar 13 70 Sucre 47 Magdalena 44 La Guajira 76 Buenaventura D.E. 27 Chocó 91 Amazonas 18 Caquetá Putumayo 86 81 Arauca 97 Vaupés 94 Guainía 99 Vichada 95 Guaviare

GC-F -005 V. 05

Guardado

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Convertir a CSV la dimensión "DM_CIUDAD"

```
'IDCIUDAD':data['DIVIPOLA'],
  'NOMBRE':data['CIUDAD']
DM_CIUDAD=pd.DataFrame(DA)
DM_CIUDAD.drop_duplicates(inplace=True)
DM_CIUDAD.set_index('IDCIUDAD', inplace=True)
# mostrar DataFrame resultante
print(DM_CIUDAD)
DM_CIUDAD.to_csv('C:/borrar/DM_CIUDAD.csv')
print('Guardado')
```

```
NOMBRE
IDCIUDAD
             Bogotá D.C.
11001
76111 Guadalajara de Buga
       Medellín
5001
5360
                  Itagüí
13001 Cartagena de Indias
68176
                  Chima
                Riofrío
76616
             Angelópolis
50318
                 Guamal
                   Sucre
[937 rows x 1 columns]
```

Convertir a CSV la dimensión "DM_FECHA"

```
DM_FECHA=pd.DataFrame(data['FECHA'])
DM FECHA.drop_duplicates(inplace=True)
DM_FECHA['IDFECHA'] = range(1, len(DM_FECHA) + 1)
DM_FECHA.set_index('IDFECHA', inplace=True)
# mostrar DataFrame resultante
print(DM_FECHA)
DM_FECHA.to_csv('C:/borrar/DM_FECHA.csv')
```


Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

```
FECHA
IDFECHA
       2020-03-02T00:00:00.000
       2020-03-06T00:00:00.000
3
       2020-03-07T00:00:00.000
4
       2020-03-09T00:00:00.000
5
       2020-03-10T00:00:00.000
     2020-07-18T00:00:00.000
145
147
        2020-07-22T00:00:00.000
148
        2020-07-31T00:00:00.000
149
        2020-07-25T00:00:00.000
[149 rows x 1 columns]
```

Crea la función fn_dimension para encontrar el ID de una dimensión dada

```
def fn_dimension(modelo,clave,valor):
 x=modelo[modelo[clave]==valor]
  if len(x)>0:
    return x.index[0]
  else:
    return -1
print(fn_dimension(DM_ATENCION,'NOMBRE','Casa'))
```


Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Remplazar datos de las tablas dimensiones en la tabla de hecho

```
lumns = data.columns.str.replace('TIPO', 'IDTIPO') # renombrar la columna TIPO por IDTIPO
lata['IDTIPO']=data.IDTIPO.str.replace('Importado','1',regex=False) #cambio en valor Importado por 1
data['IDTIPO']=data.IDTIPO.str.replace('Relacionado','2',regex=False) #cambio en Relacionado por 2
lata.columns = data.columns.str.replace('ESTADO', 'IDESTADO') #Cambio el nombre de la columna
fata.columns = data.columns.str.replace('DIVIPOLA', 'IDCIUDAD') #Cambio el nombre de la columna
iata['IDESTADO']=data.IDESTADO.str.replace('Leve','1',regex=False) ) #cambio en Leve por 1
ata['IDESTADO']=data.IDESTADO.str.replace('Asintomático','2',regex=False) ) #cambio en 'Asintomático'por 2
lata.columns = data.columns.str.replace('ATENCION', 'IDATENCION') #Cambio el nombre de la columna
data['IDATENCION']=data.IDATENCION.str.replace('Recuperado','1',regex=False) ) #cambio Recuperado por 1
lata['IDATENCION']=data.IDATENCION.str.replace('Fallecido','2',regex=False) ) #cambio Fallecido por 2
data['IDATENCION']=data.IDATENCION.str.replace('NA','3',regex=False) ) #cambio NA por 3
ata['IDATENCION']=data.IDATENCION.str.replace('Casa','4',regex=False) ) #cambio Casa por 4
fata['IDATENCION']=data.IDATENCION.str.replace('UCI','5',regex=False) ) #cambio UCI por 5
data['IDATENCION']=data.IDATENCION.str.replace('Hospital','6',regex=False) ) #cambio Hospital por 6
fata.set_index('ID', inplace=True) # coloco ID como columna index
fata['DEPARTAMENTO']=data['IDCIUDAD']//1000 # tomo los dos dígitos de IDCIUDAD
data.columns = data.columns.str.replace('DEPARTAMENTO', 'IDDPTO') # renombro la columna
el(data['CIUDAD']) #Borro la columna CIUDAD
data.to_csv('C:/borrar/TH_COVID19.csv') #Creo el archivo CSV
```

Revisamos los subniveles

cols_cat=['PAIS','CIUDAD','SEXO','IDTIPO','IDESTADO','IDATENCION','DEPARTAMENTO'] for col in cols_cat: print(f'Columna {col}: {data[col].nunique()} subniveles')

Columna PAIS: 49 subniveles
Columna CIUDAD: 871 subniveles
Columna SEXO: 2 subniveles
Columna IDTIPO: 3 subniveles
Columna IDESTADO: 5 subniveles
Columna IDATENCION: 5 subniveles
Columna DEPARTAMENTO: 37 subniveles

Cargo los dataframe

data=pd.read_csv('c:/borrar/TH_COVID19.csv')
pais=pd.read_csv('c:/borrar/DM_PAIS.csv')

Busco el id del país

z1=pais['IDPAIS'] #cargo la columna idpais z2=pais['NOMBRE'] #cargo la columna del nombre del pais

for idpais, nombre in zip(z1,z2): # recorro y empaqueto los dos vectores data['PAIS']=data.PAIS.str.replace(nombre,str(idpais),regex=False) #remplazo el nombre del pais con el idpais

data

Creamos la tabla de hechos

data.columns = data.columns.str.replace('PAIS', 'IDPAIS') # se renombra el pais data.set_index('ID', inplace=True) data.to_csv('C:/borrar/TH_COVID19.csv') # escribir el CSV de la tabla de hecho

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

MODELO ESTRELLA COVID19

Cargar los datos generados en una base de datos MySQL llamada "COVID19", mediante un programa Python, de acuerdo al modelo relacional presentado.

Creamos la tabla DM PAIS en la base de datos COVID19 en MySQL

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Crear la tabla "DM_PAIS"

mysql> CREATE TABLE DM_PAIS(ID_PAIS INT PRIMARY KEY AUTO_INCREMENT, NOMBRE TEXT); Query OK, 0 rows affected (0.03 sec)

Construir la sentencia LOAD DATA INFILE así:

LOAD DATA INFILE 'c:/Borrar/DM_PAIS.csv' INTO TABLE DM_PAIS

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\r\n'

IGNORE 1 LINES

(ID_PAIS,NOMBRE);

Verificamos el cargue de los datos

select * from DM_PAIS;

La actividad a realizar cargue todos las dimensiones y la tabla de hecho como se explico con la tablas DM PAIS.

EVIDENCIA(S) A ENTREGAR:

Aplicar las técnicas y métodos de limpieza de datos utilizando un DATASET propuesto por el instructor (SB11-20121-RGSTRO-CLFCCN-V1-0-txt).

Se desea comprobar lo siguiente:

- Quienes se destacaron mas en matemáticas, si las mujeres o los hombres, teniendo en cuenta:
 - o La ciudad
 - Edad de acuerdo al tipo de documento de identidad
 - Tipo de colegio (Oficial, Privado) y caracterización del colegio (ACADEMICO, TECNICO, etc.)
 - o Qué nivel de ingles
 - Nacionalidad

Entregue los datos solicitados mediante tablas y graficas; no olvide adjuntar el código en Python y el informe de desarrollo que debe contener:

- **Encabezado**: título del informe, nombre del instructor, autor del informe (nombres y apellidos completos), nombre del programa formativo, así como la fecha de realización.
- Introducción: describa el tema abordado.
- **Desarrollo**: corresponde al cuerpo del trabajo, donde se explica con detalle el desarrollo de los aspectos que se mencionan en la introducción. En este apartado deberá incluir:
 - Informe argumentado, el desarrollo del caso de estudio propuesto.
 - Pantallazos que demuestren las acciones.
 - Acta de cambios, eliminaciones o adiciones al DATASET.
 - Código en Python utilizado.
- **Conclusiones**: presente las conclusiones a las que llegó luego de haber realizado el taller y el caso propuesto.

of f y D www.se

Centro de Gestión de Mercados, Logística y Tecnologías de la Información.

Lineamientos generales para la entrega de la evidencia:

- Productos a entregar: un documento que incluya lo solicitado para el desarrollo del caso de estudio propuesto en el taller.
- Formato: PDF.
- Para hacer el envío de la evidencia remítase al área de la actividad correspondiente y acceda al espacio de evidencias del LMS.

CONTROL DEL DOCUMENTO

	Nombre	Cargo	Dependencia	Fecha
Autor (es)	José Fernando Galindo Suarez	Instructor	CGMLTI- Teleinformática	13/05/2023

CONTROL DE CAMBIOS (diligenciar únicamente si realizan ajustes al taller)

	Nombre	Cargo	Dependencia	Fecha	Razón del Cambio
Autor (es)	José Fernando Galindo Suarez	Instructor	CGMLTI Teleinformática	29/05/2023	Correcciones generales

Autor: José Fernando Galindo Suárez jgalindos@sena.edu.co 2023

∅ f y □

www.sena.edu.co