

Disciplina: Avaliação de Desempenho de Sistemas

Aula 1 – INTRODUÇÃO À ADS

Prof. JVictor - jvictor@unifesspa.edu.br

Ementa (PPC)

Avaliação de Desempenho de Sistemas		Carga Horária (h)				
		TIPO	TÉORICA	PRÁTICA	EXTENSÃO	TOTAL
		Semanal Semestral	4 68	0	0	4
				0	0	68
Caráter: Obrigatório	Código: XXXXXXX	Período:	Módulo VII		Oferta:	E

Ementa:

Motivação à avaliação de desempenho de sistemas computacionais distribuídos: finalidade, aplicabilidade, parâmetros considerados (dados de entrada e medidas de desempenho). Taxonomia das técnicas de avaliação de desempenho: aferição e modelagem. Técnicas de modelagem: redes de filas, redes de Petri e statcharts. Soluções analíticas: visão geral dos processos estocásticos; processos markovianos (cadeias de Markov a tempo discreto e a tempo contínuo); teoria de filas (definições, notações, distribuições de probabilidades, casos particulares M/M/1, redes de Jackson, BCMP, decomposição hierárquica e limites de desempenho). Solução por simulação: natureza discreta e contínua; orientações a atividades, a eventos e a processos; etapas de uma simulação; linguagens e ferramentas para simulação; simulação distribuída (protocolos otimistas e conservativos). Estudos de casos.

Objetivos:

Compreender as técnicas necessárias para realizar a avaliação do desempenho de sistemas.

Bibliografia Básica:

- JAIN, Raj. The Art of Computer systems performance analysis: techniques for experimental design, measurement, simulation e modeling. New York: John Wiley, 1991.
- BOLCH, Gunter; GREINER, Stefan; MEER, Hermann de; TRIVEDI, Kishor S. Queuing networks and markov Chains: modeling and performance evaluation with computer science applications. Hoboken: ew York: Wiley-Interscience, 2006.
- ALLEN, Arnold O. Probability, statistics, and queueing theory with computer science. Boston: Academic

Bibliografia Utilizada

- R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363 (Winner of the "1992 Best Computer Systems Book" Award from Computer Press Association")
- •FORTIER, P. J.; MICHEL, H. E. (org.). Computer systems performance evaluation and prediction. 1. ed. Digital Press, 2003. 544p. (Disponível online em http://www.sciencedirect.com/science/book/9781555582609)
- •[JOHNSON, T.; MARGALHO, M.. Avaliação de desempenho de sistemas computacionais. 1. ed. Rio de Janeiro: LTC, 2011. 200p

Objetivos do Curso

- Compreender a arte da análise de desempenho
- Utilizar medidas, modelagem estatística, design experimental, simulação e teoria de filas
- Como evitar erros comuns na análise de performance

Habilidades a serem adquiridas:

- Especificar requisitos de desempenho
- Avaliar alternativas de design
- Comparar dois ou mais sistemas
- Determinar o melhor valor de um parâmetro (system tunning)
- Identificar gargalos no desempenho do sistema (bottleneck identification)
- Caracterizar a carga de um Sistema (workload characterization)
- Determinar o número e o tamanho de componentes (capacity planning)

DESEMPENHO!!!

 Maneira como atua ou se comporta alguém ou algo, avaliada em termos de eficiência, de rendimento. [3]

Item	Medição	O que comparar
Automóvel	Velocidade máxima; aceleração; consumo: combustível gasto/km rodado.	Qual carro é mais rápido. Qual carro gasta menos combustível.
Caixa de banco	Clientes atendidos por minuto.	Qual funcionário é mais produtivo
Restaurante	Mesas ou clientes servidos por hora.	Qual garçom / cozinheiro é mais produtivo.
Pedágio na rodovia	Carros por minuto.	Frequência na rodovia em diversos horários.
Companhia aérea	Pouso ou decolagem por hora; check-in realizados por hora.	Qual horário é mais ocupado.

AVALIAÇÃO DE DESEMPENHO!!!

- Avaliação de desempenho inclui tudo o que é possível mensurar quantitativamente, mas também permite avaliações qualitativas
- Ex.: Pode-se avaliar a satisfação de um usuário quanto:
 - A utilização de um software
 - A prestação de serviço
 - A transmissão de dados em uma rede de computadores

Tipo de sistema	Medição	O que comparar		
Software cliente	Tempo de inicialização, requisições atendidas por minuto.	Uso do software em diferentes computadores.		
Redes de computadores	Utilização de banda, vazão de pacotes.	Link de rede mais rápido.		
Bancos de dados	Consultas atendidas por minuto, tempo de aten- dimento de consulta.	Qual melhor servidor de banco de dados.		
Sistemas de arquivos e memória	Taxa de transferência de blocos/páginas.	Melhor sistema operacional para operações físicas.		

3 Técnicas Comuns Usados em ADS

- Modelagem
- Simulação, e
- Medição

Cada técnica possui vantagens e desvantagens e devem ser escolhidas segundo alguns critérios que serão vistos a seguir, mas, na prática, o avaliador usa a técnica com a qual sente-se mais familiarizado.

Termos Básicos:

- Sistema: Qualquer conjunto de software, hardware e firmware. Por exemplo, um software, uma CPU, um sistema de banco de dados, um servidor de rede ou a rede de vários computadores
- Métricas: Critério utilizado para avaliar o desempenho do sistema ou componentes do sistema
- Workload: Requisições feitas por usuários do sistema, carga de tráfego na rede

- Usuários de sistemas computacionais, administradores e desenvolvedores são interessados na avaliação de desempenho, cujo objetivo é obter ou prover o melhor desempenho em um menor custo
- Avaliação de desempenho é requerida em todo o estágio do ciclo de vida de um componente do sistema, incluindo:
 - O design; A manufatura; Promoções e Vendas;
 Utilização e atualização do componente ou dispositivo

- A avaliação de desempenho é requerida quando:
 - Um desenvolvedor de sistema computacional quer comparar o número de alternativas de design e encontrar a melhor alternativa
 - Um administrador de sistema quer decidir qual sistema é melhor para um determinado grupo de aplicações
- A avaliação da performance de um sistema computacional atual ajuda a determinar como está o desempenho do sistema e quando é necessário fazer qualquer melhoria no sistema,

EXEMPLOS DE PROBLEMAS A SEREM RESOLVIDOS:

Exemplo 1: Quais métricas de desempenho devem ser usadas para comparar o desempenho dos seguintes sistemas:

- Duas unidades de disco?
- Dois sistemas de processamento de transações?
- Dois algoritmos de retransmissão de pacotes?

Técnicas de Medidas e Ferramentas

Exemplo 2: Qual tipo de monitor (software ou hardware) seria mais adequado para medir cada uma das seguintes quantidades:

- O número de instruções executadas por um processador?
- O grau de multiprogramação em um sistema de tempo compartilhado?
- O tempo de resposta dos pacotes em uma rede?

Teoria de Probabilidade e Estatística

Exemplo 3: O número de pacotes descartado em dois links foi medido para quatro tamanhos de arquivo, conforme mostrado abaixo:

File Size	Link A	Link B
1000	5	10
1200	7	3
1300	3	0
50	0	1

– Qual é o melhor link?

A ARTE DA ADS

Dadas as informações abaixo, dois analistas podem interpretá-las de maneira diferente.

Exemplo: As taxas de transferência de dois sistemas A
 e B em transações por segundo são as seguintes:

System	Workload 1	Workload 2
A	20	10
$_{\mathrm{B}}$	10	20

A ARTE DA ADS

- ✓ Possíveis soluções:
- √ Comparar as médias:

System	Workload 1	Workload 2
A	20	10
В	10	20

A ARTE DA ADS

- ✓ Possíveis soluções:
- √ Compare a relação com o sistema B como base

System	Workload 1	Workload 2
A		
В	_	_

System	Workload 1	Workload 2
A	20	10
В	10	20

A ARTE DA ADS

- ✓ Possíveis soluções:
- √ Compare a relação com o sistema B como base

System	Workload 1	Workload 2	Average
A	2	0.5	1.25
В	1	1	1

✓ Conclusão: O sistema A é melhor do que o sistema B

A ARTE DA ADS

✓ Possíveis soluções:

√ Compare a relação com o sistema A como base

System	Workload 1	Workload 2
A		
В		

System	Workload 1	Workload 2
A	20	10
В	10	20

A ARTE DA ADS

- ✓ Possíveis soluções:
- ✓ Compare a relação com o sistema B como base

System	Workload 1	Workload 2	Average
A	1	1	1
В	0.5	2	1.25

✓ Conclusão: O sistema B é melhor do que o sistema A

A ARTE DA ADS

- ✓ Requisitos:
- ✓ Estatística:
 - ✓ Média, variância, moda, quartil
 - ✓ Distribuição normal
 - √ Coeficiente de variação
 - √ Correlação de coeficiente

Técnicas de Medidas e Ferramentas

Exemplo 2: Qual tipo de monitor (software ou hardware) seria mais adequado para medir cada uma das seguintes quantidades:

- O número de instruções executadas por um processador?
- O grau de multiprogramação em um sistema de tempo compartilhado?
- O tempo de resposta dos pacotes em uma rede?

Técnicas de Medidas e Ferramentas

Exemplo 2: Qual tipo de monitor (software ou hardware) seria mais adequado para medir cada uma das seguintes quantidades:

- O número de instruções executadas por um processador?
- O grau de multiprogramação em um sistema de tempo compartilhado?
- O tempo de resposta dos pacotes em uma rede?

- Mais exemplos aplicados a avaliação de desempenho
 - Verificar o desempenho de um mecanismo de chamada de procedimento remoto (RPC) usado em um sistema distribuído
 - Medir e comparar o desempenho de sistemas Windows que executam dois sistemas de Inteligência Artificial (IA).
 Distribuição normal
 - Simular e comparar a performance de duas redes de interconexão de processadores

Exercício

Tabela 1. Vazão (Consultas por segundo)

Sistema	Workload 1	Workload 2
Α	30	10
В	10	30

- 1. Compare a performance dos dois sistemas e mostre que:
 - a. O sistema A é melhor que B
 - b . O sistema B é melhor que A

Resolva considerando a média, e faça seguindo o exemplo anterior, tomando A como base, e depois B como base