

AGE-RELATED CHANGES IN UPPER BODY GRIP STRENGTH AND LOWER EXTREMITY POWER IN HEALTHY ADULTS AGED 18-70 YEARS

SUMMARY

In this study, I investigated age-related changes in upper body grip strength and lower extremity power among healthy adults aged 18–70. My primary objectives were to assess differences across age bands, identify the peak ages for strength and power, and evaluate how well age predicts these physical attributes. To support this, I recoded the age variable into distinct bands and computed an age-squared variable, ensuring the model could capture both linear and curvilinear trends.

The analysis involved five hypothesis tests—two group comparisons, two curvilinear regressions, and one correlation—each carried out with comprehensive assumption checks to validate the approach. Findings confirmed statistically significant variations between age bands, with strength and power peaking in early adulthood before declining, as captured through both linear and curvilinear models.

Results are presented in APA-styled tables and figures, providing clear, visually supported insights into the relationship between aging and physical performance. The curvilinear model especially highlights the accelerated decline in strength and power with advancing age, reflecting the nuances of age-related changes in physical capability.

HYPOTHESIS TESTING

 H_1 : There are differences in power between age bands.

Before performing the comparison test, the assumption of normality was tested using the Kolmogorov-Smirnov test.

Table 1 *Tests of Normality*

	Age_bands	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.	
	18-29	.095	73	.168	.965	73	.038	
	30-39	.088	49	$.200^{*}$.970	49	.250	
@1minpower	40-49	.065	51	$.200^{*}$.978	51	.444	
	50-59	.117	50	.084	.957	50	.065	
	60-70	.110	51	.178	.973	51	.300	

^{*.} This is a lower bound of the true significance.

Table above presents the *Kolmogorov-Smirnov* test, which indicates that there is no statistically significant deviation from normality for none of the participants categories, regarding the variable that measures power. The histograms presenting the distribution curve are available below as well. Given the result, *One-Way ANOVA* test was performed.

Figure 1Distribution curve for the variable power – all age group

a. Lilliefors Significance Correction

 Table 2

 Descriptives statistics – variable power

Age_bands	N	Mean	Std.	Std. Error	95% Confidence Interval for		Minim	Maxi
			Deviation	·	Me	ean	um	mum
					Lower Bound	Upper Bound		
18-29	73	553.1932	180.62393	21.14043	511.0505	595.3358	253.17	940.29
30-39	49	610.3347	146.50227	20.92890	568.2543	652.4151	370.82	982.23
40-49	51	594.3204	130.13004	18.22185	557.7207	630.9201	215.87	944.26
50-59	50	544.8874	150.07719	21.22412	502.2359	587.5389	316.02	947.65
60-70	51	482.3818	142.89962	20.00995	442.1906	522.5729	169.96	867.01
Total	274	556.3711	158.44051	9.57174	537.5273	575.2149	169.96	982.23

Table above presents the mean and standard deviation for the all age-bands of the hypothesis. For the age group of 18-29 the mean of the variable is M = 553.19, and the standard deviation is SD = 180.62. For the age group of 30-39 the mean of the variable is M = 610.33, and the standard deviation is SD = 146.50. For the age group of 40-49 the mean of the variable is M = 594.32, and the standard deviation is SD = 130.13. For the age group of 50-59 the mean of the variable is M = 544.88, and the standard deviation is SD = 150.07. For the age group of 60-70 the mean of the variable is M = 482.38, and the standard deviation is SD = 142.89.

Table 3

Test of Homogeneity of Variances.

Test of Homogenetry of variances								
Levene	df1		df2	Sig.				
Statistic								
3.763		4	269	.005				

Table 3 presents the Levene's test of Homogeneity of Variances which is statically significant, p < .05. This means that we can not assume that there is homogeneity of variances, as this assumption is violated, and we can not interpret the ANOVA overall result, therefor we are going to proceed with Welch and Brown-Forsythe tests presented below.

Table 4 *Robust Tests of Equality of Means*

	Statistica	df1	df2	Sig.
Welch	6.142	4	131.575	.000
Brown-Forsythe	5.562	4	266.299	.000

 $a.\ A symptotically\ F\ distributed.$

In *Table 4* both tests, *Welch* and *Brown-Forsythe*, show statistical significance, p < .05. Therefor we can translate this to having statistically significant differences between age groups, being able to proceed further and interpret the post-hoc tests.

Table 5 *Multiple Comparisons – Games-Howell*

(I) Age_bands	(J) Age_bands	Mean	Std. Error	Sig.	95% Confidence Interva	
		Difference			Lower Bound	Upper Bound
		(I-J)				
	30-39	-57.14154	29.74788	.312	-139.5814	25.2983
18-29	40-49	-41.12724	27.90974	.582	-118.4106	36.1561
16-29	50-59	8.30575	29.95632	.999	-74.7027	91.3142
	60-70	70.81139	29.10869	.114	-9.8103	151.4330
	18-29	57.14154	29.74788	.312	-25.2983	139.5814
30-39	40-49	16.01430	27.74986	.978	-61.1448	93.1734
30-39	50-59	65.44729	29.80741	.190	-17.4101	148.3047
	60-70	127.95293*	28.95543	.000	47.4730	208.4328
40-49	18-29	41.12724	27.90974	.582	-36.1561	118.4106
4U-4 7	30-39	-16.01430	27.74986	.978	-93.1734	61.1448

	50-59	49.43299	27.97319	.399	-28.3335	127.1995
	60-70	111.93863*	27.06352	.001	36.7393	187.1379
	18-29	-8.30575	29.95632	.999	-91.3142	74.7027
50-59	30-39	-65.44729	29.80741	.190	-148.3047	17.4101
30-39	40-49	-49.43299	27.97319	.399	-127.1995	28.3335
	60-70	62.50564	29.16953	.211	-18.5547	143.5660
	18-29	-70.81139	29.10869	.114	-151.4330	9.8103
30-39	-127.95293*	28.95543	.000	-208.4328	-47.4730	
60-70	40-49	-111.93863*	27.06352	.001	-187.1379	-36.7393
	50-59	-62.50564	29.16953	.211	-143.5660	18.5547

^{*.} The mean difference is significant at the 0.05 level.

Table above shows the results of the analysis, and it can be concluded that *power* differs among the participants, based on age. The *Games-Howell post-hoc* additional testing, has shown that there are statistically significant differences between participants in the age group of 30-39 and participants in the age group of 60-70, when it comes to power, p = .00, the first group manifesting more power the second group. Another statistically significant difference has been observed between participants in the age group of 40-49 and participants in the age group of 60-70, p = .00, once again the first group manifesting more power the second group. There are no other differences that are statistically significant between age groups regarding power.

Figure 2

Power mean values (M) – all age group

To conclude, the obtained results reject the null hypothesis. $Hypothesis H_1$ is accepted and valid.

 H_2 : There are differences in strength between age bands.

Before performing the comparison test, the assumption of normality was tested using the Kolmogorov-Smirnov test.

Table 6 *Tests of Normality – variable strength*

	Age_bands	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.
	18-29	.087	73	.200*	.975	73	.157
	30-39	.121	49	.072	.947	49	.029
Mean Grip strength	40-49	.089	51	$.200^{*}$.962	51	.098
	50-59	.154	50	.005	.915	50	.002
	60-70	.152	51	.005	.902	51	.000

^{*.} This is a lower bound of the true significance.

Table above presents the *Kolmogorov-Smirnov* test, which indicates that there are statistically significant deviations from normality for some of the participants categories, regarding the variable that measures strength. The histograms presenting the distribution curve are available below as well.

Figure 3Distribution curve for variable strength – all age group

a. Lilliefors Significance Correction

As the assumption of normality of distribution was not met, the non-parametric Kruskal Wallis test was performed.

Table 7 Ranks

	Age_bands	N	Mean Rank
	18-29	73	148.71
	30-39	49	164.65
Mana Cain at an and la	40-49	51	172.41
Mean Grip strength	50-59	50	110.53
	60-70	51	86.90
	Total	274	

Table 8 *Test Statistics*^{a,b}

1 cor Stettistics	
	Mean Grip
	strength
Chi-Square	43.699
df	4
Asymp. Sig.	.000

a. Kruskal Wallis Test

Table 7 and Table 8 present the results of the Kruskal Wallis test which shows statistical significance, p < .05. We can translate this to having statistically significant differences between age groups.

Figure 4

Power mean (M) – all age group

Pairwise Comparisons of Age_bands

b. Grouping Variable: Age_bands

Table 9 *Kruskal Walls – group differences*

Each node shows the sample average rank of Age_bands.

Sample1-Sample2	Test Statistic		Std. Test Statistic	Sig.	Adj.Sig.
60-70-50-59	23.628	15.770	1.498	.134	1.000
60-70-18-29	61.804	14.462	4.274	.000	.000
60-70-30-39	77.751	15.851	4.905	.000	.000
60-70-40-49	85.510	15.692	5.449	.000	.000
50-59-18-29	38.175	14.546	2.624	.009	.087
50-59-30-39	54.123	15.929	3.398	.001	.007
50-59-40-49	61.882	15.770	3.924	.000	.001
18-29-30-39	-15.948	14.634	-1.090	.276	1.000
18-29-40-49	-23.706	14.462	-1.639	.101	1.000
30-39-40-49	-7.759	15.851	489	.625	1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. Asymptotic significances (2-sided tests) are displayed. The significance level is .05.

Table above shows the results of the analysis, and it can be concluded that strength differs among the participants, based on age group, and the significant differences are between the following groups:

- participants in the age group of 50-59, have statistically significant lower power compared to participants in the age group of 30-39 (p = 00), and participants in the age group of 40-49 (p = 00).
- participants in the age group of 60-70, have statistically significant lower power compared to participants in the age group of 18-29 (p = 00), and participants in the age group of 30-39 (p = 00), and participants in the age group of 40-49 (p = 00).

To conclude, the obtained results reject the null hypothesis. $Hypothesis H_2$ is accepted and valid.

 H_3 : There is a statistically significant correlation between age and power.

Before performing the correlation test, the assumption of normality was tested using the Kolmogorov-Smirnov test.

Table 10 *Tests of Normality*

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
@1minpower	.064	274	.009	.990	274	.055
Age	.130	274	.000	.923	274	.000

a. Lilliefors Significance Correction

Table above presents the Kolmogorov-Smirnov test, which indicates that there is a statistically significant deviation from normality for both power, D(274) = .064, p = .009 and age D(274) = .130, p = .000.

Figure 5Distribution curve for the variable power

Figure 6Distribution curve for the variable age

As the assumption of normality of distribution was not met, the *Spearman's Rank Order* correlation test was performed.

Table 11 *Correlations*

			Age	@1minpower
		Correlation Coefficient	1.000	155 [*]
	Age	Sig. (2-tailed)		.010
G		N	274	274
Spearman's rho	@1minpower	Correlation Coefficient	155*	1.000
		Sig. (2-tailed)	.010	
		N	274	274

^{*.} Correlation is significant at the 0.05 level (2-tailed).

A *Spearman's Rank-order* correlation was run to determine the relationship between age and power. There is a negative correlation between the two variables, which is statistically significant, $r_s(274) = -.15$, p = .0101, yet the resulted effect size coefficient is weak.

The obtained results reject the null hypothesis. $Hypothesis H_3$ is accepted and valid, as there is a negative correlation that is statistically significant between Age and Power. This

means that as *Age* increases, *Power* decreases, and the relatioship between the two is available in reverse as well.

 H_4 : Age-related changes influences strength in healthy adults.

The hypothesis above is intended to be verified through a *Curvilinear Regression*, testing a quadratic effect, having *Age* as the predictor variable and *Strength* as the outcome variable.

Before performing the *Curvilinear Regression*, the data needs to meet the required assumptions that qualifies the data as being proper for the design.

The approach used is through a hierarchical multiple regression technique which requires the squaring of the predictor variable, being the first step taken in the analysis.

Table 12Descriptive Statistics

	Mean	Std.	N
		Deviation	
Maan Cuin atnonath	36.04975669	11.52227064	274
Mean Grip strength	0997555	1601190	274
Age	41.99	16.060	274
Age_Squared	2019.74	1367.004	274

Table above presents the mean and standard deviation for the both variables of the hypothesis. For variable *Strength*, the mean is M = 36.04, and the standard deviation is SD = 11.52. For variable Age, the mean is M = 41.99, and the standard deviation is SD = 16.06.

Table 13 *Model Summary*

Model	R	R	Adjusted	Std. Error of	Change Statistics				
		Square	R Square	the Estimate	R Square	F Change	df1	df2	Sig. F Change
					Change				
1	.241ª	.058	.055	11.202500561	.058	16.808	1	272	.000
1	.241	.036	.033	696842	.038	10.808	1	212	.000
2	.348 ^b	.121	.115	10.840935973	.063	19.446	1	271	.000
<i>L</i>	.546	.121	.113	709874	.003	19.440	1	2/1	.000

a. Predictors: (Constant), Age

b. Predictors: (Constant), Age, Age_Squared

Table 13 presents the Model 1's R Square, showing a value of .058 which is a good fit. This means that our linear model explains 5.8% of the variance of the dependent variable, which is statistically significant p = .00. The Model 2's R Square, which is the curvilinear model, shows a value of .121 cumulated with Model 1's, which is also statistically significant, p = .00. The same table confirms that the curvilinear model contributes to the whole percentage of the variance with 6.3%, which is even more than the linear model. This implies that, there is indeed a non-linear trend in our regression.

Table 14 *ANOVA*^a

Mod	lel	Sum of	Sum of df		F	Sig.
		Squares				
	Regression	2109.306	1	2109.306	16.808	.000 ^b
1	Residual	34134.917	272	125.496		
	Total	36244.223	273			
	Regression	4394.706	2	2197.353	18.697	$.000^{c}$
2	Residual	31849.517	271	117.526		
	Total	36244.223	273			

a. Dependent Variable: Mean Grip strength

The ANOVA tests the null hypothesis that the slope of the line is 0. We do have a significant finding here, p < .05, so we reject the null hypothesis, for both models.

Table 15 *Coefficients*^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	. Correlations	
			Std. Error	Beta			Zero-	Partial Part
							order	
1	(Constant)	43.317	1.897		22.830	.000		
1	Age	173	.042	241	-4.100	.000	241	241241
	(Constant)	22.619	5.040		4.488	.000		
2	Age	.979	.264	1.364	3.702	.000	241	.219 .211
	Age_Squared	014	.003	-1.625	-4.410	.000	277	259251

b. Predictors: (Constant), Age

c. Predictors: (Constant), Age, Age_Squared

Table 15 further confirms that the independent variable age did make a significant contribution to the dependent variable strength, p = .00. The negative $\beta = -1.625$, along with the quadratic semi-partial correlation equal to -.251, of $Model\ 2$, implies that the bend in the regression line is going downward after a certain point.

Table 16 *Model Summary and Parameter Estimates*

Equation		Mode	el Summa		Parameter Estimates			
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Quadratic	.121	18.697 2 27		271	.000	22.619	.979	014

The independent variable is Age.

Table 16 confirms the contribution of the quadratic model significance. Also, the negative b2 confirms once again, that past certain point, increased age would actually decrease strength.

Based on the *Law of diminishing returns*, the **saturation point** was calculated using the saturation effect formula: $b1/(2 \times b2) = .979/(2 \times .014) = 34.96$.

Figure 7

Quadratic and linear line for regression where the blue line represents the point where strength peaks

A Curvilinear Regression was run to identify if Age-related changes influences strength in healthy adults. This variable **did** statistically significantly influence the level of Strength, F(2,271) = 18.697, p = .00, $R^2 = .121$. We accept the alternative hypothesis. Hypothesis H_4 is valid.

*H*₅: Age-related changes influences power in healthy adults.

The hypothesis above is intended to be verified through a *Curvilinear Regression*, testing a quadratic effect, having *Age* as the predictor variable and *Power* as the outcome variable.

Before performing the *Curvilinear Regression*, the data needs to meet the required assumptions that qualifies the data as being proper for the design.

The approach used is through a hierarchical multiple regression technique which requires the squaring of the predictor variable, which was a step already performed earlier.

Table 17Descriptive Statistics

Bescriptive Sten	torres		
	Mean	Std.	N
		Deviation	
@1minpower	556.3711	158.44051	274
Age	41.99	16.060	274
Age_Squared	2019.74	1367.004	274

Table above presents the mean and standard deviation for the both variables of the hypothesis. For variable *Power*, the mean is M = 556.37, and the standard deviation is SD = 158.44. For variable Age, the mean is M = 41.99, and the standard deviation is SD = 16.06.

Table 18 *Model Summary*

Mode	R	R	Adjusted R	Std. Error		Change S	Statist	ics	
1		Square	Square	of the	R Square	F Change	df1	df2	Sig. F
				Estimate	Change				Change
1	.146	.021	.018	157.04074	.021	5.888	1	272	.016

	.225						
2	.223 b	.051	.044 154.94505	.029	8.408	1 271	.004

a. Predictors: (Constant), Age

Table 18 presents the Model 1's R Square, showing a value of .021 which is a good fit. This means that our linear model explains 2.1% of the variance of the dependent variable, which is statistically significant p = .01. The Model 2's R Square, which is the curvilinear model, shows a value of .051 cumulated with Model 1's, which is also statistically significant, p = .00. The same table confirms that the curvilinear model contributes to the whole percentage of the variance with 2.9%, which is more than the linear model's contribution itself. This implies that, there is indeed a non-linear trend in our regression.

Table 19 *ANOVA*^a

Mode	el	Sum of	df	Mean Square	F	Sig.
		Squares		1		
	Regression	145219.170	1	145219.170	5.888	.016 ^b
1	Residual	6708007.928	272	24661.794		
	Total	6853227.098	273			
	Regression	347067.300	2	173533.650	7.228	.001°
2	Residual	6506159.799	271	24007.970		
	Total	6853227.098	273			

a. Dependent Variable: @Iminpower

The ANOVA tests the null hypothesis that the slope of the line is 0. We do have a significant finding here, p < .05, so we reject the null hypothesis, for both models.

Table 20 *Coefficients*^a

0 0 0,500									
Model		Unstan	dardized Standardized		t	Sig.	Corr	elations	
		Coeff	ficients	Coefficients	_				
		В	Std. Error	Beta	_		Zero-order	Partial	Part
1	(Constant)	616.668	26.598		23.185	.000			

b. Predictors: (Constant), Age, Age_Squared

b. Predictors: (Constant), Age

c. Predictors: (Constant), Age, Age_Squared

	Age	-1.436	.592	146	-2.427 .016	146	146	146
	(Constant)	422.150	72.035		5.860 .000			
2	Age	9.389	3.779	.952	2.485 .014	146	.149	.147
	Age_Squa red	129	.044	-1.111	-2.900 .004	170	173	172

a. Dependent Variable: @1minpower

Table 20 further confirms that the independent variable age did make a significant contribution to the dependent variable strength, p = .00. The negative $\beta = -1.111$, along with the quadratic semi-partial correlation equal to -.172, of $Model\ 2$, implies that the bend in the regression line is going downward after a certain point, once again.

Table 21 *Model Summary and Parameter Estimates - Dependent Variable*

Equation		Mode	el Summa	Parameter Estimates				
	R Square	F	df1	df2	Sig.	b2		
Quadratic	.051	7.228	2	271	.001 422.150 9		9.389	129

The independent variable is Age.

Table 21 confirms the contribution of the quadratic model significance. Also, the negative b2 confirms once again, that past certain point, increased age would actually decrease strength.

Based on the *Law of diminishing returns*, the **saturation point** was calculated using the saturation effect formula of $b1/(2 \times b2) = 9.389/(2 \times .129) = 36.39$.

Figure 8

Quadratic and linear line for regression where the blue line represents the point where power peaks

A *Curvilinear Regression* was run to identify if *Age-related changes* influences *power* in healthy adults. This variable **did** statistically significantly influence the level of *Power*, F(2,271) = 7.228, p = .00, $R^2 = .051$. We accept the alternative hypothesis. *Hypothesis* H_5 is valid.