Cap. 16: Equilíbrios Ácido-Base e Equilíbrios de Solubilidade

Efeito do ião comum — desvio do equilíbrio causado pela adição de um composto que tem um ião comum com a substância dissolvida.

A presença de um ião comum suprime a ionização de um ácido fraco ou de uma base fraca.

Considere a mistura de CH₃COONa (electrólito forte) e CH₃COOH (ácido fraco):

$$CH_3COONa (s) \longrightarrow Na^+ (aq) + CH_3COO^- (aq)$$

$$CH_3COOH (aq) \longrightarrow H^+ (aq) + CH_3COO^- (aq)$$
ião comum

1

Sistema tampão acetato de sódio-ácido acético: CH₃COONa/CH₃COOH ou CH₃COO⁻/CH₃COOH

HCI
$$\longrightarrow$$
 H⁺ + CI⁻
HCI + CH₃COO⁻ \longrightarrow CH₃COOH + CI⁻

Uma solução tampão é uma solução de:

- 1. Um ácido fraco ou uma base fraca, e
- 2. O sal do ácido fraco ou da base fraca.

Devem estar ambos presentes!

Uma solução tampão tem a capacidade de resistir a variações de pH quando se adicionam pequenas quantidades quer de ácido quer de base fortes.

Considere uma mistura de CH₃COOH e CH₃COONa com quantidades molares semelhantes:

Adicione um ácido forte CH₃COOH (aq) H^+ (aq) + CH_3COO^- (aq)

Adicione uma base forte $OH^-(aq) + CH_3COOH(aq)$

2

Quais dos seguintes sistemas são sistemas tampão? (a) KF/HF, (b) KBr/HBr, (c) Na₂CO₃/NaHCO₃.

3

- a) Calcule o pH de um sistema tampão que contém NH₃ 0,30 M e NH₄CI 0,36 M.
 b) Qual é o pH depois da adição de 20,0 mL de NaOH 0,050 M a 80,0 mL de solução tampão? Ka=6,62x10⁻¹⁰
- NH_4^+ (aq) \longrightarrow H^+ (aq) + NH_3 (aq) a)

5

5

- 16- Que massa de cloreto de amónio (NH₄CI) deve adicionar a 500mL de NH₃ 0,32M para preparar um tampão de pH=8,50? $[Kb(NH_3) = 1.8x10^{-5}]$
- 17- Adicionaram-se 4,0mL de uma solução de HNO₃ 0,40M a 20,0mL de uma solução de NH₃ 0,20M. Determine o pH da solução resultante.
- 18- Explique como prepararia 1L de uma solução tampão de pH=4,50 a partir de uma solução 0,22M de ácido benzoico (C₆H₄COOH) (pKa=4,19) e benzoato de sódio(C₆H₄COONa).

14. b) Qual é o pH depois da adição de 20,0 mL de NaOH 0,050 *M* a 80,0 mL de solução tampão?

 $pK_a = 9.25$

 NH_4^+ (aq) \longrightarrow H^+ (aq) + NH_3 (aq)

6

6

Titulações

Numa titulação, uma solução de concentração cuidadosamente medida é gradualmente adicionada a outra solução de concentração desconhecida até que a reacção química entre as duas soluções se complete.

Ponto de equivalência — o ponto no qual a reacção se completa *Indicador* — substâncias que mudam de cor no (ou perto) do ponto de equivalência.

Adicione lentamente uma base ao ácido desconhecido ATÉ QUE o indicator mude de cor (cor-de-rosa)

7

Titulações Ácido Forte-Base Forte

Adição de 0.100 M NaOH a um Erlenmeyer contendo 25.0 mL of 0.100 M HCI

NaOH (aq) + HCl (aq)
$$\longrightarrow$$
 H₂O (l) + NaCl (aq)
OH⁻ (aq) + H⁺ (aq) \longrightarrow H₂O (l)

Titulações Ácido Forte-Base Fraca

$$HCI(aq) + NH_3(aq) \longrightarrow NH_4CI(aq)$$

 $H^+(aq) + NH_3(aq) \longrightarrow NH_4^+(aq)$

No ponto de equivalência (pH < 7):

$$NH_4^+$$
 (aq) + H_2O (I) \longrightarrow NH_3 (aq) + H_3O^+ (aq)

Titulações Ácido Fraco-Base Forte

CH₃COOH
$$(aq)$$
 + NaOH (aq) \longrightarrow CH₃COONa (aq) + H₂O (l)
CH₃COOH (aq) + OH⁻ (aq) \longrightarrow CH₃COO⁻ (aq) + H₂O (l)

No ponto de equivalência (pH > 7):

$$CH_3COO^-(aq) + H_2O(l) \longrightarrow OH^-(aq) + CH_3COOH(aq)$$

10

Exercício 15

Titularam-se exactamente 100 mL de $\rm HNO_2$ 0,10 M com uma solução de NaOH 0,10 M . Calcule o pH do ponto de equivalência?

 $K(NO_2^-)=2,2 \times 10^{-11}$

 $HNO_2(aq) + OH^-(aq) \longrightarrow NO_2^-(aq) + H_2O(I)$

12

11

Indicadores Ácido-Base (ácido ou base orgânico fraco que apresenta cores diferentes nas formas ácida e básica)

 $HIn (aq) \longrightarrow H^+ (aq) + In^- (aq)$

≥ 10 Predomina a cor do ácido (HIn)

≤ 10 Predomina a cor da base conjugada (In⁻)

16.1				
٤	Alguns Indicadores Ác	ido-Base Comun	s	
∢			Cor	
TABEL	Indicador	Em ácido	Em base	Gama de pH*
ĭ	Azul de timol	Vermelho	Amarelo	1,2-2,8
•	Azul de bromofenol	Amarelo	Púrpura-azulado	3,0-4,6
	Alaranjado de metilo	Laranja	Amarelo	3,1-4,4
	Vermelho de metilo	Vermelho	Amarelo	4,2-6,3
	Azul de clorofenol	Amarelo	Vermelho	4,8-6,4
	Azul de bromotimol	Amarelo	Azul	6,0-7,6
	Vermelho de cresol	Amarelo	Vermelho	7,2-8,8
	Fenolftaleina	Incolor	Rosa-avermelhado	8,3-10,0

*A gama de pH define-se como a gama em que a cor muda da cor ácida para a cor básica

13

15

13

Que indicador(es) usaria para uma titulação de HNO₂ com KOH ?

Ácido fraco titulado com uma base forte.

No ponto de equivalência, terá uma base conjugada de ácido fraco.

No ponto de equivalência, pH > 7

Utilizaria vermelho de cresol ou fenolftaleina

Ψ.				
16.1	Alguns Indicadores Ác	ido-Base Comun	s	
٩			Cor	
TABEL	Indicador	Em ácido	Em base	Gama de pH*
ĭ	Azul de timol	Vermelho	Amarelo	1,2-2,8
1	Azul de bromofenol	Amarelo	Púrpura-azulado	3,0-4,6
	Alaranjado de metilo	Laranja	Amarelo	3,1-4,4
	Vermelho de metilo	Vermelho	Amarelo	4,2-6,3
	Azul de clorofenol	Amarelo	Vermelho	4,8-6,4
	Azul de bromotimol	Amarelo	Azul	6,0-7,6
	Vermelho de cresol	Amarelo	Vermelho	7,2-8,8
	Fenolftaleina	Incolor	Rosa-avermelhado	8,3-10,0

*A gama de pH define-se como a gama em que a cor muda da cor ácida para a cor básica

Curva da titulação de um ácido forte com uma base forte

14

Equilíbrios de Solubilidade

$$AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

K_{ps} = constante de produto de solubilidade

$$MgF_2(s)$$
 \longrightarrow $Mg^{2+}(aq) + 2F^-(aq)$

$$K_{ps} = [Mg^{2+}][F^{-}]^{2}$$

$$Ag_2CO_3(s) \longrightarrow 2Ag^+(aq) + CO_3^{2-}(aq)$$
 $K_{ps} = [Ag^+]^2[CO_3^{2-}]$

$$K_{ps} = [Ag^+]^2[CO_3^{2-}]$$

$$Ca_3(PO_4)_2(s) \longrightarrow 3Ca^{2+}(aq) + 2PO_4^{3-}(aq) \quad K_{ps} = [Ca^{2+}]^3[PO_3^{3-}]^2$$

$$K_{0s} = [Ca^{2+}]^3[PO_3^{3-}]^2$$

Dissolução de um sólido iónico em água:

Solução insaturada

Não há precipitação $Q < K_{ps}$

 $Q = K_{ps}$ Solução saturada

Solução sobressaturada -> Ocorrerá precipitação $Q > K_{ps}$

Q- produto iónico

16

18

Composto	K _{ps}	Composto	K _{ps}
Brometo de cobre(I) (CuBr)	4.2×10^{-8}	Hidróxido de ferro(III) [Fe(OH) ₃]	1,1 × 10
Brometo de prata (AgBr)	7.7×10^{-13}	Hidróxido de magnésio [Mg(OH) ₂]	1,2 × 10
Carbonato de bário (BaCO ₃)	8.1×10^{-9}	Hidróxido de zinco [Zn(OH)2]	1,8 × 10°
Carbonato de cálcio (CaCO ₃)	$8,7 \times 10^{-9}$	Iodeto de chumbo(II) (PbI ₂)	$1,4 \times 10^{-1}$
Carbonato de chumbo(II) (PbCO3)	$3,3 \times 10^{-14}$	Iodeto de cobre(I) (CuI)	5,1 × 10
Carbonato de estrôncio (SrCO ₃)	$1,6 \times 10^{-9}$	Iodeto de prata (AgI)	8,3 × 10
Carbonato de magnésio (MgCO3)	4.0×10^{-5}	Sulfato de bário (BaSO4)	$1,1 \times 10^{\circ}$
Carbonato de prata (Ag ₂ CO ₃)	$8,1 \times 10^{-12}$	Sulfato de estrôncio (SrSO ₄)	$3.8 \times 10^{\circ}$
Cloreto de chumbo(II) (PbCl ₂)	$2,4 \times 10^{-4}$	Sulfato de prata (Ag ₂ SO ₄)	$1,4 \times 10^{\circ}$
Cloreto de mercúrio(I) (Hg2Cl2)	3.5×10^{-18}	Sulfureto de bismuto (Bi ₂ S ₃)	1,6 × 10
Cloreto de prata (AgCl)	$1,6 \times 10^{-10}$	Sulfureto de cádmio (CdS)	8,0 × 10
Cromato de chumbo(II) (PbCrO4)	2.0×10^{-14}	Sulfureto de chumbo(II) (PbS)	$3,4 \times 10^{-}$
Fluoreto de bário (BaF2)	1.7×10^{-6}	Sulfureto de cobalto(II) (CoS)	4,0 × 10
Fluoreto de cálcio (CaF ₂)	4.0×10^{-11}	Sulfureto de cobre(II) (CuS)	6.0×10^{-5}
Fluoreto de chumbo(II) (PbF ₂)	4.1×10^{-8}	Sulfureto de estanho(II) (SnS)	1,0 × 10
Fosfato de cálcio [Ca3(PO4)2]	1.2×10^{-26}	Sulfureto de ferro(II) (FeS)	$6.0 \times 10^{\circ}$
Hidróxido de alumínio [Al(OH) ₃]	1.8×10^{-33}	Sulfureto de manganês(II) (MnS)	$3.0 \times 10^{\circ}$
Hidróxido de cálcio [Ca(OH)]	8.0×10^{-6}	Sulfureto de mercúrio(II) (HgS)	4,0 × 10
Hidróxido de cobre(II) [Cu(OH)2]	$2,2 \times 10^{-20}$	Sulfureto de níquel(II) (NiS)	$1,4 \times 10$
Hidróxido de crómio(III) [Cr(OH) ₃]	3.0×10^{-29}	Sulfureto de prata (AgS)	6,0 × 10
Hidróxido de ferro(II) [Fe(OH)2]	$1,6 \times 10^{-14}$	Sulfureto de zinco (ZnS)	3,0 × 10

Kps – indica-nos a solubilidade do composto iónico em água

Solubilidade molar (mol/L) — número de moles de soluto em 1 L de solução saturada.

Solubilidade (g/L) — massa (grama) de soluto em 1 L de solução saturada.

17

1- Qual é a solubilidade do cloreto de prata em g/L ?

18

2- Adicionaram-se 2,00 mL de NaOH 0,200 $\it M$ a 1,00 L de CaCl $_2$ 0,100 $\it M$. Formar-se-á um precipitado?

19

3- Que concentração de Ag é necessária para precipitar APENAS AgBr numa solução que contém Br⁻ e Cl⁻ 0,02 *M*?

Efeito do Ião Comum e Solubilidade

A presença de um ião comum **diminui** a solubilidade de um sal.

4- Qual é a solubilidade molar de AgBr em (a) água pura e (b) 0,0010 M de NaBr?

NaBr (s)
$$\longrightarrow$$
 Na+ (aq) + Br-(aq)

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br⁻ (aq)

AgBr (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Br (aq)

21

22

21

pH e Solubilidade

- A presença de um ião comum diminui a solubilidade.
 Bases insolúveis dissolvem-se em soluções acídicas.
 Ácidos insolúveis dissolvem-se em soluções básicas

$$Mg(OH)_2$$
 (s) $\longrightarrow Mg^{2+}$ (aq) + $2OH^-$ (aq)

pH de uma solução saturada

$$K_{ps} = [Mg^{2+}][OH-]^2 = 1,2 \times 10^{-11}$$
 $K_{ps} = (s)(2s)^2 = 4s^3$
 $4s^3 = 1,2 \times 10^{-11}$
 $s = 1,4 \times 10^{-4} M$
 $[OH-] = 2s = 2,8 \times 10^{-4} M$
 $pOH = 3,55 \quad pH = 10,45$

A um pH menor do que 10,45

Baixa [OH-]

Aumenta a solubilidade de Mg(OH)₂

A um pH maior do que 10,45

Aumenta [OH-]

Diminui solubilidade de Mg(OH)₂ 23

5- A solubilidade molar de Mg(OH)₂ em água é de 1,4x10⁻⁴M, a 25°C. Qual é a sua solubilidade molar numa solução tampão de pH=12?

24

Equilíbrios de Complexação

lão complexo — ião contendo um catião metálico central ligado a uma ou mais moléculas ou iões.

$$\operatorname{Co}^{2+}(aq) + 4\operatorname{Cl}^{-}(aq) \longrightarrow \operatorname{CoCl}_{4}^{2-}(aq)$$

Constante de formação (K_t) (também chamada constante de estabilidade) — constante de equilíbrio de formação do ião complexo.

$$K_f = \frac{[CoCl_4^{2-}]}{[Co^{2+}][Cl^{-}]^4}$$

 Co^{2+} (aq) + 4Cl-(aq) ---> $CoCl_4^{2-}$

25

25

Exercício: Dissolveram-se 0,20 moles de CuSO₄ num litro de uma solução 1,20 M em NH₃. Qual a concentração de equilíbrio de iões Cu²⁺

 $K_f [Cu(NH_3)_4^{2+}] = 5.0 \times 10^{13}$

5				
-	Constantes de Formação de Iões Complexos Seleccionados em Água, a 25º0			
TABELA	lão Complexo	Expressão do Equilíbrio	Constante de Formação (<i>K</i> _f)	
	$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \Longrightarrow Ag(NH_3)_2^+$	1.5×10^{7}	
	Ag(CN)2	$Ag^+ + 2CN^- \rightleftharpoons Ag(CN)_2$	1.0×10^{21}	
	$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \Longrightarrow Cu(CN)_4^{2-}$	1.0×10^{25}	
	$Cu(NH_3)_4^{2+}$	$Cu^{2+} + 4NH_3 \Longrightarrow Cu(NH_3)_4^{2+}$	5.0×10^{13}	
	Cd(CN) ₄ ²⁻	$Cd^{2+} + 4CN^{-} \Longrightarrow Cd(CN)_4^{2-}$	7.1×10^{16}	
	CdI_4^{2-}	$Cd^{2+} + 4I^{-} \Longrightarrow CdI_4^{2-}$	2.0×10^{6}	
	HgCl ₄ ²⁻	$Hg^{2+} + 4Cl^{-} \rightleftharpoons HgCl_4^{2-}$	1.7×10^{16}	
	HgI_4^{2-}	$Hg^{2+} + 4I^{-} \rightleftharpoons HgI_4^{2-}$	2.0×10^{30}	
	$Hg(CN)_4^{2-}$	$Hg^{2+} + 4CN^{-} \Longrightarrow Hg(CN)_4^{2-}$	$2,5\times10^{41}$	
	Co(NH ₃) ₆ ³⁺	$Co^{3+} + 6NH_3 \Longrightarrow Co(NH_3)_6^{3+}$	5.0×10^{31}	
	$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \Longrightarrow Zn(NH_3)_4^{2+}$	2.9×10^{9}	

26

26

- 6- Calcular a concentração de amoníaco necessária para iniciar a precipitação de hidróxido de ferro(II) numa solução de FeCl₂ 0,0030M. [Kps Fe(OH)₂ = 1,6x10⁻¹⁴]
- **7-** Determinar se haverá formação de precipitado de Fe(OH) $_2$ quando 2,00mL de NH $_3$ 0,60M são adicionados a 1,0L de uma solução 1,0x10 3 M de FeSO $_4$.

27

28

27