

Cryptographie et sécurité

Cours 6: codes détecteurs et correcteurs

Mickaël Bettinelli (mickael.bettinelli@univ-smb.fr)

Prérequis et objectifs

Compétences nécessaire pour ce cours:

- Comprendre le fonctionnement des chiffrements asymétriques
- Effectuer des opérations sur Z/nZ

Compétences maîtrisées à la fin du cours:

- Connaître le fonctionnement d'une infrastructure de gestion de clés
- Comprendre les codes détecteurs et correcteurs
- Savoir comment stocker des mots de passe

Sommaire

- 1. Codes détecteurs
 - a. CRC
- 2. Codes correcteurs
 - a. Bit de parité
 - b. Codage de hamming

Des erreurs peuvent se glisser dans les message:

- Comment les détecter ?
- Comment les localiser?
- Comment les corriger ?

Approche naïve: la redondance d'information

Bob envoie un message contenant 3 fois son message initial

Le bon message est celui qui existe en double exemplaire.

Inconvénients: risque d'erreur si l'erreur intervient deux fois d'affilées au même endroit du message (1110101 1110101 1110001)

Autre solution (également naïve):

- Ajouter de la redondances aux messages des utilisateurs:
 - Exemple: pour envoyer HELLO -> "H comme Hélice, E comme Ecran, L comme Laure,
 L comme Laure, O comme Orange"
 - Si mauvaise réception: "T comme Hélice, E comme Edfan, L coeme Laure, L comme Laure, O comme Prange", on peut quand même reconstituer le message

La redondance semble être une solution pratique, mais peu fiable.

Autre solution (un peu plus efficace):

- Code à contrôle de parité: on ajoute des bits en fin de message (binaire) pour que le nombre de 1 soit pair ou impair.
 - Exemple:

Lettre	Code ASCII	Parité paire	Parité impaire
Α	1000001	1000001 <mark>0</mark>	10000011
В	1000010	1000010 <mark>0</mark>	10000101
С	1000011	10000111	10000110

Lettre	Code ASCII	Parité paire	Parité impaire
A	1000001	1000001 <mark>0</mark>	10000011
В	1000010	1000010 <mark>0</mark>	10000101
С	1000011	1000011 <mark>1</mark>	10000110

Inconvenients:

- Impossible à détecter en cas de double erreurs
- Simple détection sans possibilité de correction

Autre solution (moins intuitive):

- Codes polynômiaux:
 - Aussi appelé Code à Redondance Cyclique ou CRC
 - On utilise un polynôme G(x) connu à l'avance par l'émetteur et le récepteur pour coder et décoder la séquence de bits à transmettre.
 - Une séquence de n bits est représenté comme un polynôme à n termes de x^0 à x^{n-1} (10101 -> x^4 + x^2 + 1)

Principe. Soit M le message à envoyer et G(X) un polynôme générateur dont le plus grand terme est k.

L'algorithme pour coder M est le suivant:

- 1. Calculer M(x) le polynôme correspondant à M
- 2. Calculer $P(x) = M(x) * x^k$

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$

Principe. Soit M le message à envoyer et G(X) un polynôme générateur dont le plus grand terme est k.

L'algorithme pour coder M est le suivant:

- 3. Diviser P(x) par G(x), le reste de la division est appelé R(x)
- 4. Calculer M'(x) = P(x) + R(x)
- 5. Reformer le message M'
- 6. Transmettre M' à la place de M

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division **modulo 2** de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^7 + x^5 + x^3$$
 | $x^3 + x + 1$

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^7 + x^5 + x^3$$
 | $x^3 + x + 1$
 $x^7 + x^5 + x^4$ | x^4

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^{7} + x^{5} + x^{3}$$
 | $x^{3} + x + 1$
 $x^{7} + x^{5} + x^{4}$ | x^{4}

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^{7} + x^{5} + x^{3}$$
 | $x^{3} + x + 1$
 $x^{7} + x^{5} + x^{4}$ | x^{4}
 $x^{4} + x^{3}$
 $x^{4} + x^{2}$ | x

Exemple. M = 10101, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^{7} + x^{5} + x^{3}$$
 | $x^{3} + x + 1$
 $x^{7} + x^{5} + x^{4}$ | x^{4}
 $x^{4} + x^{3}$
 $x^{4} + x^{2}$ | x^{4}
 $x^{3} + x^{4}$ | x^{4}

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^{7} + x^{5} + x^{3}$$
 $x^{3} + x + 1$
 $x^{7} + x^{5} + x^{4}$
 $x^{4} + x^{3}$
 $x^{4} + x^{2}$
 $x^{3} + x^{2}$
 $x^{3} + x + 1$
 x^{4}
 x^{4}
 x^{5}
 x^{4}
 x^{4}
 x^{5}
 x^{4}
 x^{4}
 x^{5}
 x^{4}
 x^{5}
 x^{4}
 x^{5}
 x^{4}
 x^{5}
 x^{4}
 x^{5}
 x^{5}

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^{7} + x^{5} + x^{3}$$
 $x^{7} + x^{5} + x^{4}$
 $x^{4} + x^{3}$
 $x^{4} + x^{2}$
 $x^{3} + x^{2}$
 $x^{3} + x^{4}$
 $x^{4} + x^{2}$
 $x^{2} + x + 1$
 $x^{2} + x + 1$

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

Le reste est : $x^2 + 1$

Exemple. M = 10101, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x):
 - a. À chaque étape on élimine le terme le plus élevé du numérateur
 - b. La division s'arrête lorsqu'il est impossible d'éliminer ce terme

$$x^{7} + x^{5} + x^{3}$$
 $x^{3} + x + 1$
 $x^{7} + x^{5} + x^{4}$
 $x^{4} + x^{3}$
 $x^{4} + x^{2} + x$
 $x^{3} + x^{2} + x$
 $x^{3} + x + 1$
 $x^{2} + 1$

Exemple.
$$M = 10101$$
, $G(x) = x^3 + x + 1$

- 1. $M(x) = x^4 + x^2 + 1$
- 2. $P(x) = M(x) * x^3 = x^7 + x^5 + x^3$
- 3. Division de P(x) par G(x): le reste R(x) est égal à $x^2 + x + 1$
- 4. $M'(x) = P(x) + R(x) = x^7 + x^5 + x^3 + x^2 + x + 1$
- 5. M' = 10101111
- 6. Transmettre M'!

Principe.

- Calculer le polynôme M'(x) à partir de M'
- 2. Diviser M'(x) par G(x)
- 3. Si le résultat vaut 0, alors il n'y a pas d'erreur détectée
- 4. Sinon, il y a une erreur

Exemple. Nous recevons M' = 10101111 et, $G(x) = x^3 + x + 1$

- 1. $M'(x) = x^7 + x^5 + x^3 + x^2 + x + 1$
- 2. Division de M'(x) par $G(x) \rightarrow le$ reste est 0

Résultat: pas d'erreur détectée!

CRC - choisir le générateur

La qualité de la détection dépend du polynôme générateur.

Quel polynôme générateur choisir ?

- Plus le générateur a un degré élevé, plus la probabilité de laisser passer une erreur est faible
- Plus le générateur a un degré élevé, plus il est coûteux en temps et en énergie de coder et décoder les messages

Détecter des erreurs en groupes

Activité de groupe. 40 minutes (25 exercice + 15 correction)

- 1. Formez des groupes de 3 (déplacez vous si nécessaire) (3mn)
- 2. L'un des groupes doit encoder un message de 4 bits avec CRC et le transmettre avec une erreur ou pas à l'autre groupe (10mn max)
- 3. Trouvez un autre groupe de 3 avec qui travailler (2mn)
- 4. L'autre groupe doit le décoder et dire s'il y a (ou non) une erreur (**10mn max**).

A la fin des 25 minutes:

- 1. 2 groupes descendent pour montrer comment ils ont coder leur message
- 2. Leur 2 partenaires viennent le décoder

Générateur à utiliser:

-
$$G(x) = x^3 + x + 1$$

Approche naïve:

- Renvoie du message après la détection de l'erreur

Approche naïve:

- Renvoie du message après la détection de l'erreur

Inconvénient: pas sûr que le second message n'aura pas d'erreur

Code de Hamming

Une autre solution plus fiable est le code de Hamming.

- Présentation:
 - Mathématicien américain récompensé par le prix Turing en 1968
 - Le code de Hamming est inventé en 1948

- Principe général:
 - ajouter un nombre de bits de contrôle dans le message pour détecter et corriger les erreurs

Fonctionnement

Le fonctionnement général est le suivant:

- 1. Préparer des emplacements pour les bits de contrôle sur les emplacements de puissances de 2 (..., 8, 4, 2, 1)
- 2. Compléter le message sur les emplacements non réservés aux bits de contrôle
- 3. Calculer la valeur des bits de contrôle en fonction du message
- 4. Insérer les bits de contrôle dans le message

Exemple. Message = 1010

bit	controle	1	0	1	controle	0	controle	controle
index	8	7	6	5	4	3	2	1

Comment calculer les bits de contrôle ?

- 1. Faire une matrice bits message (seulement les bits à 1) / bits de contrôle
- 2. Remplir la matrice en décomposant les positions en poids

Exemple. Message = 1010

Poids / Positions	8	4	2	1
5	0	1	0	1
7	0	1	1	1

Comment calculer les bits de contrôle ?

1. Tracer les colonnes et calcul du bit de parité (impaire)

Exemple. Message = 1010

Poids / Positions	8	4	2	1
5	0	1	0	1
7	0	1	1	1
Bit de controles	1	1	0	1

Dernière étape: on remplit les bits de contrôle avec ceux que l'on vient de calculer

Positions	8	4	2	1	
5	0	1	0	1	
7	0	1	1	1	
Bit de controles	1	1	0	1	

bit	1	1	0	1	1	0	0	1
index	8	7	6	5	4	3	2	1

Message initial = 1010

Message encodé à transmettre = 11011001

bit	1	1	0	1	1	0	0	1
index	8	7	6	5	4	3	2	1

Le fonctionnement est le suivant:

Numérotation des bits dans le message

bit	1	1	0	1	1	0	0	1
index	8	7	6	5	4	3	2	1

Le fonctionnement est le suivant:

- Faire une matrice bits à 1 / numéro des bits de contrôle

Poids / Positions	8	4	2	1
1	0	0	0	1
4	0	1	0	0
5	0	1	0	1
7	0	1	1	1
8	1	0	0	0

Le fonctionnement est le suivant:

- Vérifier la cohérence de la parité des colonnes (parité impaire)

Poids / Positions	8	4	2	1
1	0	0	0	1
4	0	1	0	0
5	0	1	0	1
7	0	1	1	1
8	1	0	0	0
Bit de parité	OK	ОК	ОК	OK

Attention:

- Si une erreur est détectée alors il y a bien une erreur !
- Si aucune erreur n'est détectée, il peut quand même y en avoir une!

Voici le même message que précédemment avec l'ajout d'une erreur sur à l'index 4.

	bit	1	1	1	1	1	0	0	1
i	index	8	7	6	5	4	3	2	1

On reconstruit la matrice

Poids / Positions	8	4	2	1
1	0	0	0	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0

Et on re-calcule les bits de parités.

On sait qu'il y a au moins une erreur dans le message.

Poids / Positions	8	4	2	1
1	0	0	0	1
4	0	1	0	0
5 0		1	0	1
6	6 0		1	0
7	0	1	1	1
8 1		0	0	0
Bit de parité	ОК	PAS OK	PAS OK	ОК

Pour déterminer où se trouve l'erreur il faut calculer la somme des indices des bits de contrôle où une erreur se trouve. Ici 4 + 2 = 6

Poids / Positions	8	4	2	1
1	0	0	0	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
Bit de parité	ОК	PAS OK	PAS OK	ОК

Poids / Positions	8	4	2	1	
1	0	0	0	1	
4	0	1	0	0	
5 0		1 0	0	1	
6	0		1	0	
7	0	1	1	1	
8	1	0	0	0	
Bit de parité OK		PAS OK	PAS OK	ОК	

bit	1	1	1 -> 0	1	1	0	0	1
index	8	7	6	5	4	3	2	1

Hamming permet de:

- Détecter jusqu'à deux erreurs simultanées dans un message
- Corriger un maximum d'une erreur

Identifier les apprentissages

Quels sont les concepts à retenir de ce cours ?

Activité 1, 2, Tous:

- Réfléchissez individuellement à cette question pendant 3mn
- Comparez vos idées avec l'un de vos voisins, convainquez-le que vous avez raison! - 3mn
- Mise en commun des réponses, des binômes sont interrogés 2mn

Identifier les apprentissages

Ressources complémentaires

- https://en.wikipedia.org/wiki/Hash_function
- https://www.youtube.com/watch?v=KyUTuwz_b7Q&ab_channel=Comput erScience
- Distributed Systems, Marteen Van Steen, 2023 (chapitre 9: cybersécurité)

