А. Перекрёстная проверка

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

> ввод: стандартный ввод вывод: стандартный вывод

Разбейте множество из N объектов, каждый из которых принадлежит к одному из M классов, на K частей. Каждый объект должен попасть ровно в одну часть так, чтобы размеры частей, а также распределение классов по этим частям было сбалансировано. Формально, пусть cnt(x, c) — число объектов с классом c попавших в часть x, тогда должно выполняться

$$\forall x, y, c : |cnt(x, c) - cnt(y, c)| \le 1 \text{ in } \forall x, y : \left| \sum_{c} cnt(x, c) - \sum_{c} cnt(y, c) \right| \le 1.$$

Входные данные

Первая строка: три целых числа N, M, K ($1 \le N \le 10^5$, $1 \le M$, $K \le N$) — число объектов, классов и частей.

Вторая строка: N целых чисел C_i ($1 \le C_i \le M$) — класс i-го объекта.

Выходные данные

Выведите K строк. Каждая строка x начинается с целого числа S — размера части x. Далее идут S целых чисел — номера объектов попавших в часть x. Объекты нумеруются с единицы.

Пример

входные данные 10 4 3 1 2 3 4 1 2 3 1 2 1 выходные данные 4 1 4 9 10 3 2 3 5 3 6 7 8 Скопировать

Примечание

В первой части содержится четыре объекта, два из них первого класса, один второго и один четвёртого. Во второй и третьей части по три объекта первых трёх классов.

В. F-мера

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

> ввод: стандартный ввод вывод: стандартный вывод

В результате эксперимента по классификации на K классов была получена матрица неточностей (Confusion matrix) CM, где CM[c,t] — число объектов класса c, которые были классифицированы как t. Посчитайте по данной матрице неточностей средневзвешенную по классам макро и микро F-меру.

Входные данные

Первая строка содержит целое число K — число классов ($1 \le K \le 20$). Далее идёт K строк — описание матрицы неточностей. Каждая строка c содержит K целых чисел — c-я строка матрицы неточностей. $\forall c, t : 0 \le CM[c, t] \le 100$ и $\exists c, t : CM[c, t] \ge 1$.

Выходные данные

Выведите два вещественных числа с плавающей точкой — взвешенно усреднённую по классам макро и микро F-меру. Абсолютная погрешность ответа не должна превышать 10^{-6} .

Примеры

входные данные	Скопировать
2 0 1 1 3	
выходные данные	Скопировать
0.6 0.6	
входные данные	Скопировать
3 3 1 1 3 1 1 1 3 1	
выходные данные	Скопировать
0.326860841 0.316666667	

Примечание

В первом примере классы распределены как 1:4. Точность (precision), полнота (recall) и F-мера первого класса равны 0, а второго 0.75. При этом средняя точность, полнота и F-мера равны 0.6.

С. Непараметрическая регрессия

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Реализуйте алгоритм непараметрической регрессии, который бы поддерживал различные функции расстояний, ядер и окон. Описание ядер можно найти здесь: https://en.wikipedia.org/w/index.php?oldid=911077090. Обратите внимание, что определение Прямоугольного ядра в данной задаче отличается.

Входные данные

Первая строка содержит два целых числа N и M — число объектов и признаков ($1 \le N \le 100, 1 \le M \le 10$).

Далее идёт N строк — описание набора данных. Каждая строка i содержит M+1 целое число $d_{i,j}$ ($-100 \le d_{i,j} \le 100$) — описание i-го объекта. Первые M из этих чисел признаки i-го объекта, а последнее — его целевое значение.

Следующая строка описывает объект запроса q. Она состоит из M целых чисел $d_{q,j}$ ($-100 \le d_{q,j} \le 100$) — признаки объекта q.

Далее идут три строки состоящих из строчных латинских букв.

Первая из них — название используемой функции расстояния: manhattan, euclidean, chebyshev.

Вторая — название функции ядра: uniform, triangular, epanechnikov, quartic, triweight, tricube, gaussian, cosine, logistic, sigmoid.

Третья — название типа используемого окна: fixed — окно фиксированной ширины, variable — окно переменной ширины.

Последняя строка содержит параметр окна: целое число h ($0 \le h \le 100$) — радиус окна фиксированной ширины, либо целое число K ($1 \le K \le N$) — число соседей учитываемое для окна переменной ширины.

Выходные данные

Выведите одно вещественное число с плавающей точкой — результат запроса. Допустимая абсолютная и относительная погрешность 10⁻⁶.

Примеры

```
ВХОДНЫЕ ДАННЫЕ

3 2
0 2 1
1 1 0
2 0 1
0 0
euclidean
uniform
fixed
2

ВЫХОДНЫЕ ДАННЫЕ

0.0000000000
```

Входные данные 3 2 0 2 1 1 1 0 2 0 1 0 0 euclidean gaussian variable 2 Выходные данные Скопировать

Примечание

В случае неопределённости, когда в окно не попало ни одного объекта, требуется вывести значение по умолчанию для задачи регрессии — среднее значение целевой переменной по всем объектам из обучающей выборки.

D. Линейная регрессия

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Найдите коэффициенты уравнения прямой по заданному набору данных.

Входные данные

Первая строка содержит два целых числа N ($1 \le N \le 10^4$) — число объектов в обучающем множестве, и M ($1 \le M \le \min(N, 1000)$) — число признаков у объектов исключая зависимую переменную.

Следующие N строк содержат описание объектов. i-я из этих строк содержит описание i-го объекта, M+1 целых чисел. Первые M из этих чисел: $X_{i,j}$ ($\left|X_{i,j}\right| \leq 10^9$) — признаки i-го объекта, а последнее Y_i ($\left|Y_i\right| \leq 10^9$) — значение его зависимой переменной.

Выходные данные

Выведите M+1 вещественных чисел с плавающей точкой A_i — коэффициенты прямой из уравнения

$$Y = A_0 \cdot X_0 + A_1 \cdot X_1 + \cdots + A_{M-1} \cdot X_{M-1} + A_M$$

Система оценки

Целевая функция ошибки SMAPE вычисленная на скрытом множестве данных. $SMAPE(Y, \hat{Y}) = \frac{1}{|Y|} \sum_{i} \frac{|Y_i - Y_i|}{|Y_i| + |\hat{Y}_i|}$, где Y и \hat{Y} — вектор предсказанных и реальных значений целевой переменной.

Пусть $Score = 100 \cdot \frac{B-S}{B-J}$, где S — SMAPE вашего решения, J — SMAPE решения эталона с запасом $\approx 1\%$, B — SMAPE наивного решения с запасом $\approx 2\%$.

Тогда Verdict =
$$\begin{cases} Ok & Score ≥ 100 \\ PartiallyCorrect & 0 ≤ Score < 100 \\ WrongAnswer & Score < 0 \end{cases}$$

Примеры

входные данные	Скопировать
2 1 2015 2045 2016 2076	
выходные данные	Скопировать
31.0 -60420.0	

входные данные

Скопировать

- 4 1
- 1 0
- 1 2 2
- 2 4

выходные данные

Скопировать

2.0

Примечание

He стоит «дудосить» тестирующую систему для подбора оптимальных параметров алгоритма! Их следует настраивать локально используя следующие наборы данных: https://drive.google.com/file/d/1D2xJ6ujn4qR73suNJ64DGosfUlb-xmqD

Эти наборы данных отличаются от тех, на которых будет тестироваться ваше решение, но они получены тем же самым методом генерации. Каждый набор данных начинается с целого положительного числа M ($1 \le M \le 1000$) — число признаков. Далее следуют два множества объектов: тренировочное и тестовое. Каждое множество начинается с целого положительного числа N_t ($1 \le N_t \le 10^4$) — число объектов в множестве. Далее следуют N_t объектов в формате, который соответствует формату задачи на codeforces.

Е. Метод опорных векторов

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Найдите коэффициенты λ_i опорных векторов и сдвиг b, для классификации по формуле $class(x) = sign(\sum_i y_i \cdot \lambda_i \cdot k(x, x_i) + b)$, где x — это векторное описание запрашиваемого объекта, а k — функция ядра.

Входные данные

В первой строке находится целое число N ($1 \le N \le 100$) — число объектов в обучающем множестве.

Следующие N строк содержат описание объектов по одному объекту на строке. i-й объект описывается N+1 целым числом: первые N из них $K_{i,j}$ ($\left|K_{i,j}\right| \leq 10^9$) — значение функции ядра между i-м и j-м объектом, последнее Y_i ($Y_i = \pm 1$) — класс i-го объекта.

Далее идёт строка содержащая целое число C ($1 \le C \le 10^5$) — ограничение на коэффициенты λ_i .

Выходные данные

Выведите N+1 число с плавающей точкой: первые N чисел — коэффициенты λ_i ($0 \le \lambda_i \le C$, $\sum \lambda_i \cdot Y_i = 0$) соответствующие объектам из тренировочного множества, последнее число b ($|b| \le 10^{12}$) — коэффициент сдвига.

Система оценки

Пусть $Score = 100 \cdot \frac{F-B}{J-B}$, где $F - F_1$ -мера вашего решения, $J - F_1$ -мера решения эталона с запасом $\approx 1\%$, $B - F_1$ -мера наивного решения с запасом $\approx 2\%$.

Тогда
$$Verdict = \begin{cases} Ok & Score \ge 100 \\ PartiallyCorrect & 0 \le Score < 100 \\ WrongAnswer & Score < 0 \end{cases}$$

```
Скопировать
входные данные
5 4 6 9 11 10 -1
4 5 6 9 10 11 -1
6 6 8 12 14 14 -1
9 9 12 18 21 21 1
11 10 14 21 25 24 1
10 11 14 21 24 25 1
выходные данные
                                                                                                      Скопировать
0.0
0.0
1.0
1.0
0.0
0.0
-5.0
```

Реализуйте наивный байесовский классификатор.

Априорные вероятности классов оцениваются обыкновенным частотным методом.

Для оценки вероятности встречи слов в каждом классе используется модель Бернулли с аддитивным сглаживанием (сглаживание Лапласа) $p(x) = \frac{count(x) + a}{\sum_{1 \le x \ne 0} count(y) + a \cdot |Q|}$, где x — рассматриваемое событие, а Q — множество всех событий.

Каждое слово это отдельный признак с двумя возможными событиями встретилось / не встретилось.

Входные данные

В первой строке содержится целое положительное число K ($1 \le K \le 10$) — число классов.

Во второй строке содержится K целых положительных чисел λ_C ($1 \le \lambda_C \le 10$) — штрафы за ошибки классификации сообщений соответствующих классов.

В третьей строке содержится целое положительное число α ($1 \le \alpha \le 10$) — интенсивность аддитивного сглаживания.

Следующая строка содержит целое положительное число N (1 ≤ N ≤ 200) — число сообщений в обучающей выборке.

Следующие N строк содержат описания соответствующих сообщений из обучающей выборки. Каждое сообщение в ней начинается с целого положительного числа C_i ($1 \le C_i \le K$) — класса к которому относится i-е сообщение. Далее следует целое положительное число L_i ($1 \le L_i \le 10^4$) — число слов в i-м сообщении. Затем следует содержание сообщения — L_i слов состоящих из маленьких латинских букв.

Далее в отдельной строке содержится целое положительное число M (1 ≤ M ≤ 200) — число сообщений в проверочной выборке.

Следующие M строк содержат описания соответствующих сообщений из проверочной выборки. Каждое сообщение в ней начинается с целого положительного числа L_j ($1 \le L_j \le 10^4$) — число слов в j-м сообщении. Затем следует содержание сообщения — L, слов состоящих из маленьких латинских букв.

Гарантируется, что сумма длин всех сообщений в обучающей и проверочной выборках меньше чем 2 · 10⁶.

Выходные данные

входные данные

Выведите M строк — результаты мягкой классификации оптимального наивного байесовского классификатора соответствующих сообщений из проверочной выборки. Допустимая абсолютная и относительная погрешность 10⁻⁴.

Каждый ј-й результат мягкой классификации должен содержать К чисел p_C — вероятности того, что ј-е сообщение относится к классу C.

Скопировать

Пример

```
111
1
1 2 ant emu
2 3 dog fish dog
3 3 bird emu ant
1 3 ant dog bird
2 emu emu
5 emu dog fish dog fish
5 fish emu ant cat cat
2 emu cat
1 cat
                                                                                                      Скопировать
выходные данные
0.4869739479 0.1710086840 0.3420173681
0.1741935484 0.7340501792 0.0917562724
0.4869739479 0.1710086840 0.3420173681
0.4869739479 0.1710086840 0.3420173681
0.4869739479 0.3420173681 0.1710086840
```

Примечание

В примере условные вероятности выглядят следующим образом:

$$p(w_x|c_y)$$
 ant bird dog emu fish c_1 3/4 1/2 1/2 1/2 1/4 c_2 1/3 1/3 2/3 1/3 2/3 c_3 2/3 2/3 1/3 2/3 1/3

Слово сат не рассматривается, так как оно ни разу не встретилось в обучающей выборке.

Для первого запроса
$$X$$
: $p(c_1) \cdot p(X \mid c_1) = \frac{2}{4} \cdot \left(1 - \frac{3}{4}\right) \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{4}\right)$ и $p(c_1 \mid X) = \frac{3/256}{3/256 + 1/243 + 2/243}$

G. Дерево принятия решений

ограничение по времени на тест: 1.5 секунд ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Постройте дерево принятия решений.

Входные данные

Первая строка содержит три целых положительных числа M ($1 \le M \le 100$) — число признаков у объектов (исключая класс), K ($1 \le K \le 20$) — число классов и H ($1 \le H \le 10$) — максимальная глубина (в рёбрах) дерева принятия решений.

Вторая строка содержит целое положительное число N (1 < N < 4000) — число объектов в обучающей выборке.

Следующие N строк содержат описания объектов в обучающей выборке. В i-й из этих N строк перечислено M+1 целое число: первые M чисел $A_{i,j}$ ($|A_{i,j}| \le 10^9$) — признаки i-го объекта, последнее число C_i ($1 \le Ci \le K$) — его класс.

Выходные данные

Выведите построенное дерево принятия решений.

В первой строке выведите целое положительное число S ($1 \le S \le 2^{11}$) — число вершин в дереве.

В следующих S строках выведите описание вершин дерева. В у-й из этих строк выведите описание у-й вершины:

- Если v-я вершина узел, выведите через пробел: заглавную латинскую букву 'Q', целое положительное число f_v (1 ≤ f_v ≤ M) индекс признака по которому происходит проверка в данном узле, вещественное число с плавающей точкой b_v константа с которой происходит сравнения для проверки, два целых положительных числа l_v и r_v (v < l_v r_v ≤ S) индекс вершины дерева в которую следует перейти, если выполняется условие A[f_v] < b_v , и индекс вершины дерева в которую следует перейти, если условие не выполняется.
- Если у-я вершина лист, выведите через пробел: заглавную латинскую букву 'C' и целое положительное число D_V (1 ≤ D_V ≤ K) класс объекта попавшего в данный лист.

Вершины нумеруются с единицы. Корнем дерева считается первая вершина.

Система оценки

Решение будет проверено на секретном наборе данных. На основании предсказанных и реальных классов вычисляется усреднённая по классам микро F_1 -мера.

Пусть $Score = 100 \cdot \frac{F-B}{J-B}$, где $F - F_1$ -мера вашего решения, $J - F_1$ -мера решения эталона с запасом $\approx 1\%$, $B - F_1$ -мера наивного решения с запасом $\approx 2\%$.

Tогда Verdict =
$$\begin{cases} Ok & Score \ge 100 \\ PartiallyCorrect & 0 \le Score \le 100 \\ WrongAnswer & Score \le 0 \end{cases}$$

```
ВХОДНЫЕ ДАННЫЕ

2 4 2
8
1 2 1
2 1 1
3 1 2
4 2 2
3 4 3
4 3 3
1 3 4
2 4 4

Выходные данные

7
0 1 2.5 2 5
0 2 2.5 3 4
C 1
C 4
0 2 2.5 6 7
C 2
```

Н. Логическое выражение

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод; стандартный ввод вывод; стандартный вывод

Постройте искусственную нейронную сеть, вычисляющую логическую функцию (, заданную таблицей истинности.

Входные данные

Первая строка содержит целое число M ($1 \le M \le 10$) — число аргументов f. Следующие 2^M строк содержат значения f в таблице истинности (0 - ложь, 1 - истина). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

$$M = 1$$
 $M = 2$ $M = 3$
 $f(0)$ $f(0,0)$ $f(0,0,0)$
 $f(1)$ $f(1,0)$ $f(1,0,0)$
 $f(0,1)$ $f(0,1,0)$
 $f(1,1)$ $f(1,1,0)$
 $f(0,0,1)$
 $f(1,0,1)$
 $f(0,1,1)$

Выходные данные

В первой строке выведите целое положительное число D (1 < D < 2) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \le n_i \le 512$ и $n_D = 1$) — число искусственных нейронов на i-м слое. Предполагается, что $n_0 = M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на i-м слое. Каждый искусственный нейрон описывается строкой состоящей из n_{i-1} вещественных чисел с плавающей точкой w_j и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_i \cdot x_i + b$. Предполагается, что после каждого вычисления линейной зависимости к её

результату применяется функция ступенчатой активации $a(Y) = \begin{cases} 1 & Y > 0 \\ 0 & Y < 0 \end{cases}$. Обратите внимание, что в нуле данная функция не

определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

Примеры

входные данные

```
2

0

1

0

1

Выходные данные

Скопировать

2

2

1

1.0 -1.0 -0.5

1.0 1.0 -1.5

1 1 -0.5
```

Скопировать

1.0 1.0 -1.5 1 1 -0.5 ВХОДНЫЕ ДАННЫЕ Скопировать Выходные данные Скопировать Скопировать 2 2 1 1.0 -1.0 -0.5 -1.0 1.0 -0.5 1 1 -0.5

Примечание

Во втором примере в результате получается следующая сеть:

Матричная функция

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод; стандартный ввод вывод: стандартный вывод

Вычислите матричную функцию и её производную по заданному графу вычислений.

Входные данные

В первой строже содержится три целых положительных числа N, M, K ($1 \le M$, $K \le N \le 50$) — число вершин в графе вычислений, число входных параметров (вершин). Далее следует N строк — описание вершин графа вычислений. i-я из этих строк содержит описание i-й вершины:

- var r c (1 ≤ r, c ≤ 25) входной параметр функции, матрица состоящая из r строк и c столбцов.
- tnh x (1 ≤ x ≤ i) матрица из значений гиперболического тангенса вычисленного от соответствующих компонент матрицы полученной из x-й вершины графа вычислений.
- rlu α⁻¹ x (1 ≤ α⁻¹ ≤ 100, 1 ≤ x ≤ i) матрица из значений функции параметрического линейного выпрямителя с параметром α
 вычисленной от соответствующих компонент матрицы полученной из x-й вершины графа вычислений. α⁻¹ целое число.
 Производная в нуле равна единице.
- mul a b (1 ≤ a, b ≤ i) произведение матриц полученных из a-й b-й вершины графа вычислений соответственно.
- sum $len u_1 u_2 ... u_{len} (1 \le len \le 10, \forall_{1 \le j \le len} : 1 \le u_j \le i)$ сумма матриц полученных из вершин $u_1, u_2, ..., u_{len}$ графа вычислений.
- had len u₁ u₂ ... u_{ten} (1 ≤ len ≤ 10, ∀_{1 ≤ j ≤ len}: 1 ≤ u_j < i) произведение Адамара (покомпонентное) матриц полученных из вершин u₁, u₂, ..., u_{ten} графа вычислений.

Гарантируется, что первые *М* вершин и только они имеют тип **var**. Последние *К* вершин считаются выходными. Гарантируется, что размеры матриц аргументов для каждой вершины согласованны.

Далее следует описание M матриц — входных параметров соответствующих вершин графа вычислений в порядке возрастания их индексов.

Затем следует описание К матриц — производных функции по соответствующим выходным вершинам в порядке возрастания их индексов. Обратите внимание, что производные вычислены только из некоторых скрытых вершин. Если какая-та выходная вершина зависит от другой выходной вершины, то соответствующую производную нужно досчитать.

Каждая строка, каждой матрицы расположена на отдельной строке. Матрицы состоят из целых чисел по модулю не превышающих 10

Выходные данные

входные данные

Выведите *К* матриц — значение параметров соответствующих выходных вершин графа вычисления в порядке возрастания их индексов. Затем выведите *М* матриц производных функции по соответствующим входным вершинам в порядке возрастания их индексов. Допустимая абсолютная и относительная погрешность 10⁻⁴.

Скопировать

Пример

```
6 3 1
var 1 3
var 3 2
var 1 2
mul 1 2
sum 2 4 3
rlu 10 5
-2 3 5
4 2
-2 0
2 1
4 -2
-1 1
выходные данные
                                                                                                           Скопировать
0.0 -0.1
-3.8 2.0 -1.9
2.0 -0.2
-3.0 0.3
-5.0 0.5
-1.0 0.1
```

Примечание

В примере вычисляется функция $ReLU_{a=0.1} \begin{pmatrix} -2 & 3 & 5 \end{pmatrix} \times \begin{pmatrix} 4 & 2 \\ -2 & 0 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 4 & -2 \end{pmatrix}$, а $\begin{pmatrix} -1 & 1 \end{pmatrix}$ производная по её выходу.

Свёрточная сеть

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Посчитайте значение выхода свёрточной сети и пересчитайте её производную.

Входные данные

В первой строже содержится описание входа свёрточной сети, трёхмерной матрицы. Высота этой матрицы совпадает с её шириной. Первое число N_0 ($1 \le N_0 \le 40$) — высота и ширина входной трёхмерной матрицы, второе число D_0 ($1 \le D_0 \le 10$) — её глубина. Следующие $D_0 \times N_0 \times N_0$ чисел — описание трёхмерной матрицы, значения её ячеек выписанных в порядке: глубина, высота, ширина.

Следующая строка содержит одно число L ($1 \le L \le 10$) — число слоёв (преобразований) в сети.

Следующие L строк содержат описания соответствующих преобразований:

- relu a^{-1} ($1 \le a^{-1} \le 100$) функции параметрического линейного выпрямителя с параметром a.
- bias $B_1, B_2, ..., B_D$ ($|B_i| \le 10$) операция сдвига, прибавляющая к каждой ячейке матрицы на глубине i значение B_i , D глубина матрицы до и после преобразования.
- спут H K S P $A_{1,1,1,1}, A_{1,1,1,2}, ..., A_{H,D,K,K}$ $(1 \le H \le 10, \ 1 \le K \le 5, \ 1 \le S \le K, \ 0 \le P \le K, \ \left|A_i\right| \le 10)$ свёртка с ядром A размера $H \times D \times K \times K$ с шагом S с зеркальным заполнением рамки размера P, где D глубина матрицы до преобразования. H глубина матрицы после преобразования. Значения ячеек A выписаны в порядке: глубина полученной матрицы, глубина исходной матрицы, высота ядра, ширина ядра.
- \bullet cnve H K S P $A_{1,1,1,1}, A_{1,1,1,2}, ..., A_{H,D,K,K}$ свёртка с расширением границы. Аналогична предыдущей.
- cnvc H K S P A_{1,1,1,1}, A_{1,1,1,2}, ..., A_{H,D,K,K} свёртка с заполнением с циклическим сдвигом. Аналогична предыдущей.

Гарантируется, что размеры всех многомерных матриц согласованы с соответствующими гипер-параметрами преобразований.

В последней строке записана производная по выходу сети.

Все числа во входных данных целые.

Выходные данные

Выведите значение выходной трёхмерной матрицы.

Далее выведите производную по входу сети.

Затем для каждого слоя сдвига и свёртки в возрастающем порядке номера слоя выведите производную по его параметрам.

Выходные матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность 10^{-4} .

Пример

Примечание

Пример заполнения угла рамки для свёрточного слоя:

cnvm	18	17	16	15	16	17	18	19	cnve	0	0	0	0	1	2	3	4	cnvc	12	13	14	10	11	12	13	14
	13	12	11	10	11	12	13	14		0	0	0	0	1	2	3	4		17	18	19	15	16	17	18	19
	8	7	6	5	6	7	8	9		0	0	0	0	1	2	3	4		22	23	24	20	21	22	23	24
	3	2	1	0	1	2	3	4		0	0	0	0	1	2	3	4		2	3	4	0	1	2	3	4
	8	7	6	5	6	7	8	9		5	5	5	5	6	7	8	9		7	8	9	5	6	7	8	9
	13	12	11	10	11	12	13	14		10	10	10	10	11	12	13	14		12	13	14	10	11	12	13	14
	18	17	16	15	16	17	18	19		15	15	15	15	16	17	18	19		17	18	19	15	16	17	18	19
	23	22	21	20	21	22	23	24		20	20	20	20	21	22	23	24		22	23	24	20	21	22	23	24

К. LSTM сеть

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод; стандартный ввод вывод: стандартный вывод

Дана сеть LSTM для обработки последовательностей.

Каждый блок этой сети вычисляет результат по формулам: $f_t = \sigma(W_t x_t + U_t h_{t-1} + b_t)$, $i_t = \sigma(W_t x_t + U_t h_{t-1} + b_t)$, $o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o}), \ c_{t} = f_{t} * c_{t-1} + i_{t} * tanh(W_{c}x_{t} + U_{c}h_{t-1} + b_{c}) \text{ if } h_{t} = o_{t} * c_{t}. \text{ Таде } x_{t} - \text{вход } t\text{-го блока, } h_{t} \text{ if } c_{t} - \text{векторы}$ краткосрочной и долгосрочной памяти, о, — выход t-го блока, а * - произведение Адамара.

Входные данные

В первой строке находится число N ($1 \le N \le 20$) — размер векторов LSTM.

Далее перечислены соответствующие матрицы и вектора W_h U_h B_h W_v U_h B_v W_o , U_o , B_o , W_c , U_c , B_c

Затем следует число M (1 ≤ M ≤ 20) — число элементов последовательности обрабатываемой LSTM сетью.

Далее следуют два вектора h_0 и c_0 , а также M векторов x_i .

Затем следует вектора производных сети по выходным векторам h_M и c_M, а также M векторов производных по выходам о, в обратном порядке $o_{M}, o_{M-1}, ..., o_{1}$.

Все вектора записаны N числами разделёнными пробелами на отдельной строке, а матрицы N векторами размера N. Все элементы векторов и матриц целые числа по модулю не превосходящие 10.

Выходные данные

Сперва выведите М векторов выходов сети о,.

Далее выведите два последних вектора памяти h_M и c_M .

Затем выведите М векторов производных сети по входам х, в обратном порядке.

Далее выведите два вектора производных сети по h_0 и c_0 .

После выведите производные по соответствующим матрицам и векторам параметров LSTM: W_B, U_F, B_F, W_C, U_F, D_F, U_F, U_F, U_F, U_F, U_F, U_F, U_F, U_F, U_F, U_c B_c

Выходные вектора и матрицы могут содержать числа с плавающей точкой. Допустимая абсолютная и относительная погрешность 10^{-6} .

Скопировать

Пример

входные данные

1.233945759863131E-4

-2.875857041962763E-5 -0.23306186831759548

-0.37692699674663843 0.21113860108361812

-0.047420021082055105 0.27102651105684017

0.13551325552842008 0.13551325552842008 0.159905268234481

0.0799526341172405 0.0799526341172405 1.8924865599381104F-4

9.462432799690552E-5 9.462432799690552E-5 -0.10011198258925587

-0.050055991294627934 -0.050055991294627934

L. Коэффициент корреляции Пирсона

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Посчитайте корреляцию Пирсона двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — корреляцию Пирсона двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

-0.500000000

входные данные	Скопировать	
5		
1 4		
2 5		
3 1		
4 2		
5 3		
выходные данные	Скопировать	

М. Коэффициент ранговой корреляции Спирмена

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Посчитайте ранговую корреляцию Спирмена двух численных признаков.

Входные данные

Первая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x_1 и x_2 ($-10^9 \le x_1, x_2 \le 10^9$) — значения первого и второго признака описываемого объекта. Гарантируется, что все значения каждого признака различны.

Выходные данные

Выведите одно вещественное число с плавающей точкой — коэффициент ранговой корреляции Спирмена двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

-0.500000000

входные данные	Скопировать
5	
1 16	
2 25	
3 1	
4 4	
5 9	
выходные данные	Скопировать

N. Расстояния

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

> ввод: стандартный ввод вывод: стандартный вывод

Посчитайте зависимость категориального признака Y от числового X по внутриклассовому и межклассовому расстоянию:

- Внутриклассовое расстояние = $\sum_{i,j:y_i=y_j} \left| x_i x_j \right|$
- Межклассовое расстояние = $\sum_{i,j:y_i \neq y_j} \left| x_i x_j \right|$

Входные данные

Первая строка содержит одно целое положительное число K ($1 \le K \le 10^5$) — максимальное число различных значений Y второго признака.

Следующая строка содержит одно целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых числа x и y ($|x| \le 10^7, 1 \le y \le K$) — значения первого и второго признака описываемого объекта.

Выходные данные

В первой строке выведите одно целое число — внутриклассовое расстояние.

Во второй строке выведите одно целое число — межклассовое расстояние.

входные данные	Скопировать
2	
4	
1 1 2 2	
3 2	
4 1	
выходные данные	Скопировать
8	
12	

О. Условная дисперсия

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Вычислите критерий связи двух признаков категориального X и числового Y на основе математического ожидания условной дисперсии D(Y|X). Вероятности для X оцениваются обыкновенным частотным методом.

Входные данные

Первая строка содержит одно целое положительное число K ($1 \le K \le 10^5$) — максимальное число различных значений признака X.

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K$, $|y| \le 10^9$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной дисперсии. Допустимая абсолютная и относительная погрешность 10^{-6} .

Пример

1.25

входные данные	Скопировать
2	
4	
1 1	
2 2	
2 3	
1 4	
выходные данные	Скопировать

Р. Хи-квадрат

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Посчитайте зависимость двух категориальных признаков согласно критерию хи-квадрат (критерий согласия Пирсона).

Входные данные

Первая строка содержит два целых положительных числа K_1 и K_2 ($1 \le K_1$, $K_2 \le 10^5$) — максимальное число различных значений первого и второго признака.

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x_1 и x_2 ($1 \le x_1 \le K_1$, $1 \le x_2 \le K_2$) — значения первого и второго признака описываемого объекта.

Выходные данные

Выведите одно вещественное число с плавающей точкой — критерий хи-квадрат зависимости двух признаков у заданных объектов. Допустимая абсолютная и относительная погрешность 10⁻⁶.

Пример

входные данные	Скопировать
2 3	
5 1 2	
2 1	
1 1	
2 2 1 3	
выходные данные	Скопировать
0.83333333	

Примечание

В примере реальное число наблюдений наблюдений выглядит как 1	1	1	1, а ожидаемое число наблюдений	1	1.2	1.2	0.6.
2	1	1	0	2	0.8	0.8	0.4

1 2 3

Q. Условная энтропия

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Вычислите критерий связи двух категориальных признаков X и Y на основе математического ожидания условной энтропии H(Y|X). Вероятности оцениваются обыкновенным частотным методом. При расчётах используйте натуральный логарифм ln(x), либо логарифм идентичный натуральному $\log_e(x)$.

Входные данные

Первая строка содержит два целых положительных числа K_x и K_y ($1 \le K_x$, $K_y \le 10^5$) — максимальное число различных значений признаков X и Y.

Следующая строка содержит целое положительное число N ($1 \le N \le 10^5$) — число объектов.

Следующие N строк содержат описания соответствующих объектов. Каждая из этих N строк содержит описание одного объекта: два целых положительных числа x и y ($1 \le x \le K_x$, $1 \le y \le K_y$) — значения признаков X и Y.

Выходные данные

Выведите одно вещественное число с плавающей точкой — математическое ожидание условной энтропии. Допустимая абсолютная и относительная погрешность 10^{-6} .

входные данные	Скопировать
2 3	
5	
1 2	
2 1	
1 1	
2 2	
1 3	
выходные данные	Скопировать
0.9364262454248438	