Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. Attorney Docket No. ONV-043.01(19768-4302)

UTILITY PATENT APPLICATION TRANSMITTAL

First Inventor or Application Identifier Mahanthappa, Nagesh K.

Neuroprotective Methods and Reagents

Paly for new nonprovisional applications under 37 C.F.R. § .53(b))

Express Mail Label No.

EL354728118US

か Assistant Commissioner for Patents **=** 0 APPLICATION ELEMENTS ADDRESS TO: **Box Patent Application** See MPEP chapter 600 concerning utility patent application contents. Washington, DC 20231 *Fee Transmittal Form (e.g. PTO/SB/17) (Submit an original and a duplicate for fee processing) 5. Microfiche Computer Program (Appendix) [Total pages Specification Nucleotide and/or Amino Acid Sequence Submission 2. 110 6. Х (preferred arrangement set forth below) (if applicable, all necessary) a. Computer Readable Copy - Descriptive title of the Invention - Cross References to Related Applications b. Paper Copy (identical to computer copy) - Statement Regarding Fed sponsored R & D c. Statement verifying identity of above copies - Reference to Microfiche Appendix - Background of the Invention ACCOMPANYING APPLICATION PARTS - Brief Summary of the Invention Unexecuted Assignment Papers - Brief Description of the Drawings (if filed) - Detailed Description 37 C.F.R. §3.73(b) Statement 8. (when there is an assignee) Attorney - Claim(s) - Abstract of the Disclosure 9. English Translation Document (if applicable) Information Disclosure Copies of IDS Citations Х 3. Drawing(s) (35 U.S.C. 113) [Total Sheets 10 Statement (IDS)/PTO-1449 Oath or Declaration [Total Sheets 11. Preliminary Amendment Return Receipt Postcard (MPEP 503) (Should be specifically itemized) Х Unexecuted (original or copy) 12. Х a. Copy from a prior application (37 C.F.R. §1.63(d)) 13. Small Entity Statement(s) (Statement filed in prior application. Status still proper and desired. (for continuation/divisional with Box 16 completed) DELETION OF INVENTOR(S) Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §1.63(d)(2) and 1.33(b). i. 14. Certified Copy of Priority Document(s) (if foreign priority is claimed) Check in the amount of \$ 15. Other: 1 & 13: IN ORDER TO BE ENTITLED TO PAY SMALL NTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON 16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary Continuation Divisional 1x Continuation-in-part Х of prior application 08 /883,656 and claims priority from Provisional Applications: For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts 17. CORRESPONDENCE ADDRESS Customer Number or Bar Code Label Correspondence address below (Insert Customer No. or Attach bar code label David P. Halstead, Ph.D. Name Foley, Hoad & Eliot, LLP One Post Office Square Address City Boston State MA Zip Code 02109 Country United States (617) 832-1000 (617) 832-7000 Telephone Fax

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner of Patents, Box Patent Application, Washington, DC 20231.

Registration No. (Attorney/Agent)

Date

P-44,735

October 14, 1999

Name (Print/Type)

Sianature

David P. Halstead

This application is a continuation-in-part of U.S. Patent Application No. 08/883,656, filed June 27, 1997, incorporated herein by reference in its entirety.

5

Background of the Invention

Stroke kills more than 150,000 people annually and accounts for about one of every 15 U.S. deaths. It is presently the third largest cause of death, ranking behind diseases of the heart and cancer, according to the National Center for Health Statistics.

10

On average, someone suffers a stroke in the United States every minute; every 3.4 minutes someone dies of a stroke. Based on the Framingham Heart Study, approximately 500,000 people suffer a new or recurrent brain attack each year. Approximately 3,890,000 stroke survivors are alive today. From 1984 to 1994, the death rate from stroke declined 19.8 percent, but the actual number of deaths from brain attack rose slightly.

15

20

25

Stroke is the leading cause of serious, long-term disability in the United States. Stroke accounts for half of all patients hospitalized for acute neurological disease. In 1991-92 one million Americans age 15 and older had disabilities resulting from stroke. According to the Framingham Heart Study, 31 percent of brain attack survivors needed help caring for themselves; 20 percent needed help walking; and 71 percent had an impaired ability to work when examined an average of seven years later. Sixteen percent had to be institutionalized. About 31 percent of people who have an initial stroke die within a year. This percentage is higher among people older than age 65. About two-thirds of men and women who have a brain attack die within 12 years; long-term survivorship is worse in men than in women. 407,000 males and 478,000 females were discharged from hospitals in 1994 after having a stroke. For statistics, see for example the homepage for the American Heart Association at http://www.amhrt.org/1997/ stats/Stroke.html

20

25

5

10

Stroke is defined as a sudden impairment of body functions caused by a disruption in, e.g., the supply of blood to the brain. For instance, a stroke occurs when a blood vessel bringing oxygen and nutrients to the brain is interrupted by any method including low blood pressure, clogging by atherosclerotic plaque, a blood clot, or some other particle, or when a blood vessel bursts.

Because of the blockage or rupture, part of the brain fails to get the blood flow that it requires. Brain tissue that receives an inadequate supply of blood is said to be ischemic. Deprived of oxygen and nutrients, nerve cells and other cell types within the brain begin to fail, creating an infarct (an area of cell death, or necrosis). As nerve cells (neurons) fail and die, the part of the body controlled by those neurons cannot function either. The devastating effects of ischemia are often permanent because brain tissue has very limited repair capabilities and lost neurons are not usually replaced.

Cerebral ischemia may be incomplete (blood flow is reduced but not entirely cut off), complete (total loss of tissue perfusion), transient or permanent. If ischemia is incomplete and persists for no more than ten to fifteen minutes, neural death might not occur. More prolonged or complete ischemia results in infarction. Depending on the site and extent of the infarction, mild to severe neurological disability or death will follow. Thus, the chain of causality leading to neurological deficit in stroke has two principal components: loss of blood supply, and cell damage and death.

Thrombosis is the blockage of an artery by a large deposit that usually results from the combination of atherosclerosis and blood clotting. Thrombotic stroke (also called cerebral thrombosis) results when a deposit in a brain or neck artery reaches occlusive proportions. Most strokes are of this type.

Embolism is the blockage of an artery or vein by an embolus. Emboli are often small pieces of blood clot that break off from larger clots. Embolic stroke (also called cerebral embolism) occurs when an embolus is carried in the bloodstream to a brain or neck artery. If the embolus reaches an artery that is too small for it to pass through, it plugs the artery and cuts off the blood supply to downstream tissues. Embolic stroke is the clinical expression of this event.

10

15

20

25

To a modest extent, the brain is protected against cerebral ischemia by compensatory mechanisms that include: collateral circulation (overlapping local blood supplies), and arteriolar auto-regulation (local smooth muscle control of blood flow in the smallest arterial channels). If compensatory mechanisms operate efficiently, slightly diminished cerebral blood flow produces neither tissue ischemia nor abnormal signs and symptoms. Usually, such mechanisms must act within minutes to restore blood flow if permanent infarction damage is to be avoided or reduced. Arteriolar auto-regulation works by shunting blood from noncritical regions to infarct zones.

Even in the face of systemic hypotension, auto-regulation may be sufficient to adjust the circulation and thereby preserve the vitality and function of brain tissue. Alternatively, ischemia may be sufficiently prolonged and compensatory mechanisms sufficiently inadequate that a catastrophic stroke results. With these as the extremes, the gradation of ischemic stroke are described below.

A transient ischemic attack (TIA) is conventionally described as a loss of neurologic function caused by ischemia, abrupt in onset, persisting for less than 24 hours, and clearing without residual signs. Most TIAs last only a few minutes. However, neurologic disability may persist for more than 24 hours before clearing. Such an event is called a reversible ischemic neurological disability (RIND).

An ischemic event that is sufficiently severe to cause persistent disability but that is short of a calamitous stroke, is called a partial nonprogressing stroke (PNS). The penultimate ischemic event, a completed stroke, produces major functional loss. The ultimate ischemic insult is death.

Focal cerebral ischemia must be distinguished from global cerebral hypoxia. In cerebral hypoxia the oxygen supply to the brain is diminished even though blood flow and blood pressure may be normal. Discriminating between diagnoses of patients with acute neurological deficit is critical because patient management takes disparate paths.

There are generally distinct clinical outcomes in stroke versus cerebral hypoxia, although both sets of patients may suffer death or permanent damage. Hypoxia patients who survive past an acute life-threatening period usually show few immediate symptoms of long term damage. Instead, clinical manifestations such as mental deterioration, urinary and fecal incontinence, gait

and speech disturbances, tremor and weakness are delayed for periods that may vary from days to weeks. However, as in stroke, progressive loss of neurons due to oxygen deprivation is believed to be a factor in such detrimental effects of hypoxia.

It is an objective of the present application to provide new drugs for treatment and prophylaxis of cerebral ischemia, such as stroke.

It is also an objective of the present application to provide new drugs for treatment and prophylaxis of cerebral hypoxia.

Summary of the Invention

One aspect of the present application relates to a method for limiting damage to neuronal cells by ischemic or epoxic conditions, e.g., such as may be manifest by a reduction in brain infarct volume, by administering to an individual a hedgehog therapeutic or ptc therapeutic in an amount effective for reducing cerebral infarct volume relative to the absence of administeration of the *hedgehog* therapeutic or *ptc* therapeutic.

In other embodiments, the subject method can be used for protecting cerebral tissue of a mammal against the repercussions of ischemia; for treating cerebral infarctions; for treating cerebral ischemia; for treatment of stroke; and/or for treating transient ischemia attacks. In embodiments wherein the patient is treated with a ptc therapeutic, such therapeutics are preferably small organic molecules which mimic hedgehog effects on patched-mediated signals.

Wherein the subject method is carried out using a hedgehog therapeutic, the hedgehog therapeutic preferably a polypeptide including a hedgehog portion comprising at least a bioactive extracellular portion of a hedgehog protein, e.g., the hedgehog portion includes at least 50, 100 or 150 amino acid residues of an N-terminal half of a hedgehog protein. In preferred embodiments, the hedgehog portion includes at least a portion of the hedgehog protein corresponding to a 19kd fragment of the extracellular domain of a hedgehog protein.

In preferred embodiments, the *hedgehog* portion has an amino acid sequence at least 60, 75, 85, or 95 percent identical with a hedgehog protein of any of SEQ ID Nos. 10-18, though sequences identical to those sequence listing entries are also contemplated as useful in the

15

20

25

5

10

15

20

25

present method. The *hedgehog* portion can be encoded by a nucleic acid which hybridizes under stringent conditions to a nucleic acid sequence of any of SEQ ID Nos. 1-9, e.g., the *hedgehog* portion can be encoded by a vertebrate *hedgehog* gene, especially a human *hedgehog* gene.

In other embodiments, the subject method can be carried out by administering a gene activation construct, wherein the gene activation construct is designed to recombine with a genomic *hedgehog* gene of the patient to provide a heterologous transcriptional regulatory sequence operatively linked to a coding sequence of the *hedgehog* gene.

In still other embodiments, the subject method can be practiced with the administration of a gene therapy construct encoding a *hedgehog* polypeptide. For instance, the gene therapy construct can be provided in a composition selected from a group consisting of a recombinant viral particle, a liposome, and a poly-cationic nucleic acid binding agent.

Where the subject method is carried out using a *ptc* therapeutic, the therapeutic can be, e.g., a molecule which binds to *patched* and mimics *hedgehog*-mediated *patched* signal transduction. For instance, the binding of the therapeutic to *patched* may result in upregulation of *patched* and/or gli expression.

In other embodiments, the *ptc* therapeutic mimics *hedgehog*-mediated *patched* signal transduction by altering the localization, protein-protein binding and/or enzymatic activity of an intracellular protein involved in a *patched* signal pathway.

In a preferred embodiment, the *ptc* therapeutic is a small organic molecule, e.g., less than 5 kd, more preferably less than 2.5 kd. For instance, the present invention contemplates the use of small organic molecules which interact with neuronal cells to mimic *hedgehog*-mediated *patched* signal transduction.

In a preferred embodiment, the *ptc* therapeutic is a PKA inhibitor. A variety of PKA inhibitors are known in the art, including both peptidyl and organic compounds. For instance, the *ptc* therapeutic can be a 5-isoquinolinesulfonamide, such as represented in the general formula:

15

5

wherein,

 R_1 and R_2 each can independently represent hydrogen, and as valence and stability permit a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m-R_8$, $-(CH_2)_m-OH$

R₁ and R₂ taken together with N form a heterocycle (substituted or unsubstituted);

 R_3 is absent or represents one or more substitutions to the isoquinoline ring such as a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m$ - R_8 , $-(CH_2)_m$ -OH, $-(CH_2)_m$ -O-lower alkyl, $-(CH_2)_m$ -O-lower alkenyl, $-(CH_2)_n$ -O-($-(CH_2)_m$ -R₈, $-(CH_2)_m$ -S-lower alkyl, $-(CH_2)_m$ -S-lower alkenyl, $-(CH_2)_n$ -S-($-(CH_2)_m$ -R₈;

R₈ represents a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and

n and m are independently for each occurrence zero or an integer in the range of 1 to 6.

Exemplary PKA inhibitors of this class include N-[2-((p-bromocinnamyl)amino)ethyl]-5isoquinoline-sulfonamide and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine. Other PKA
inhibitors which can be used in the subject method include KT5720; and PKA Heat Stable
Inhibitor (isoform α).

10

15

20

25

In yet other embodiments, the subject method can be carried out with a gene activation construct, which construct recombines with a genomic *hedgehog* gene of the patient, e.g., to form a chimeric gene, providing a heterologous transcriptional regulatory sequence operatively linked to a coding sequence of the *hedgehog* gene. The transcriptional regulatory sequence can provide for constitutive or inducible expression of the *hedgehog* gene.

The subject method can be used as part of a treatment for stroke, e.g., thrombotic stroke and/or embolic stroke.

The subject method can also be used to treat hypoxic conditions which otherwise result in cerebral hypoxia.

The subject method can be used prophylactically or as an ipso facto treatment. It can be used to treat patients who are hypotensive.

The subject method can also be used as part of a therapy including administering one or more of an anticoagulant, an antiplatelet agent, a thrombin inhibitor, and/or a thrombolytic agent, and/or in conjunction with vascular surgery, e.g., carotid endarterectomy.

In preferred embodiments, the subject method results in at least a 25%, 50%, 70%, 75%, or 90% reduction in cerebral infarct volumes relative to the absence of treatment with the therapeutic, e.g., as measured in a stroke model such as the MCAO model.

Brief Description of the Drawings

Figure 1 is a graph demonstrating the effect of systemic *hedgehog* treatment on cerebral infarction volume in rat models of middle cerebral artery occlusion.

The first first first than the same one of the first first

5

10

15

20

25

Detailed Description of the Invention

Stroke occurs when the flow of oxygen and nutrients to the brain is inhibited/interrupted due to any cause. Thus, in certain indications, stroke is a form interrupted of cardiovascular disease that affects the arteries of the central nervous system. For example, a stroke occurs when a blood vessel bringing oxygen and nutrients to the brain bursts or is clogged by a blood clot or some other particle. Because of this rupture or blockage, part of the brain doesn't get the flow of blood it needs. Deprived of oxygen, nerve cells in the affected area of the brain can't function and die within minutes. Depending on the part of the brain affected by the brain attack/stroke, there may be loss of normal function. Strokes are the third most common cause of death in United States. Stroke is the most common cause of disability of all conditions in adults.

In terms of treatment, once a patient experiences symptoms of a transient ischemic attack, the goal of therapy is prevention of stroke. If a stroke occurs, the goal of therapy changes to the limiting of damage. Preventing stroke and limiting the damage of stroke are currently carried out in the art through medication or surgery. In both cases, the treatment involves reducing or removing blocks, building up in blood vessels and preventing further cell death about neuronal populations. These treatments include the use of (a) anticoagulants, (b) antiplatelet agents, and (c) vascular surgery. For instance, anticoagulation drug therapy inhibits the coagulation process. Heparin, which inhibits enzymes and platelets that cause clots, is used in acute settings. For long term prevention, warfarin offers anticoagulation by stopping production of Vitamin K dependent coagulation factors. With both drugs, there runs a risk of hemorrhage and is only used for ischemic strokes. Strokes involving certain areas also do not warrant this therapy. Another therapy known in the art, antiplatelet therapy with aspirin, provides one of the most important preventive tools available. At low daily doses, aspirin has been shown to reduce the incidence of stroke. Specifically, low doses of aspirin block the production of a chemical called thromboxane. Thromboxane's function is to activate platelets to bind together and thus form blood clots. Finally, carotid endarterectomy is the surgical procedure where the plaque at the origin of the carotid artery is removed. This is the treatment of choice of patients with TIA's caused by embolism, low flow, and with minor strokes due to narrowing greater than 70% of the internal carotid.

20

25

10

I. Overview

The present application is directed to compositions and methods for the prevention and treatment of ischemic injury to the brain, such as resulting from stroke. The invention derives, at least in part, from the observation of a protective effect by the so called "hedgehog" proteins on animal stroke models. Briefly, as described in the appended examples, we investigated the neuroprotective potential of hedgehog proteins in a rat model of focal cerebral ischemia that used permanent occlusion of the middle cerebral artery. Intravenous infusion of vehicle (control) or Shh (sonic hedgehog) was administered for 3 hours beginning 30 minutes after occlusion, and resulted in about a 70 percent reduction in total infarct size (P=0.0039), relative to the control, when examined 24 hours post-occlusion. Measurements of arterial blood pressure, blood gases, glucose, hematocrit and osmolality revealed no difference among vehicle- and Shh-treated animals. These results show that the intravenous hedgehog protein reduces neuronal damage due to stroke. There was no apparent cytotoxicity associated with administration of the hedgehog polypeptide.

These results, in comparison to neuroprotective agents described in the art, suggest an unexpectedly good neuroprotective activity for *hedgehog* in the treatment of stroke. For example, the non-competitive antagonist of the NMDA receptor, MK-801, was typically reported to produce less than a 50% reduction in infarct volume. Work on MK-801 was halted because of significant safety concerns, mostly related to vacuolization seen in neurons of animal models. Moreover, MK-801 has a relatively short therapeutic window and must be given within a few hours of the ischemic attack.

Another neuroprotective agent presently being investigated for use in the treatment of stroke is basic fibroblast growth factor (bFGF). In one study, (Tatlisumak et al. (1996) *Stroke* 27:2292), bFGF (45 µg/kg/hr) or vehicle was infused intravenously for three hours beginning 30 minutes after permanent middle cerebral artery occlusion by intraluminal suture in mature Sprague-Dawley rats. After 24 hours, neurological deficit and infract volume were significantly improved (approximately 50% reduction in infarct volume) in the FGF group. Autoradiography following intravenous administration of radiolabeled bFGF showed that labeled FGF (confirmed

by immunoprecipitation) crossed the damaged blood brain barrier to enter the ischemic, but not the non-ischemic hemisphere.

A second model (Jiang et al. (1995) *Stroke* 26:1-40), utilized mature Wistar rates which underwent temporary occlusion of the middle cerebral artery by intra-arterial suture for two hours. At the time of reperfusion either bFGF (45 µg/kg/hr) or vehicle were infused intravenously over three hours. At seven days after ischemia, infarct volume was significantly reduced in the bFGF treated animals (approximately 40% reduction in infarct volume), and only the bFGF treated animals regained their weight after surgery.

In one aspect, the present invention provides pharmaceutical preparations and methods for preventing/treating cerebral ischemia and the like utilizing, as an active ingredient, a *hedgehog* polypeptide or a mimetic thereof.

The subject *hedgehog* treatments are effective on both human and animal subjects afflicted with these conditions. Animal subjects to which the invention is applicable extend to both domestic animals and livestock, raised either as pets or for commercial purposes. Examples are dogs, cats, cattle, horses, sheep, hogs and goats.

However, without wishing to be bound by any particular theory, the reduction in infarct size in the present studies may be due at least in part to the ability of *hedgehog* proteins to antagonize (directly or indirectly) *patched*-mediated regulation of gene expression and other physiological effects mediated by the *patched* gene. The *patched* gene product, a cell surface protein, is understood to signal through a pathway which regulates transcription of a variety of genes involved in neuronal cell development. In the CNS and other tissue, the introduction of *hedgehog* relieves (derepresses) this inhibition conferred by *patched*, allowing expression of particular gene programs.

Accordingly, the present invention contemplates the use of other agents which are capable of mimicking the effect of the *hedgehog* protein on *patched* signalling, e.g., as may be identified from the drug screening assays described below.

15

20

25

10

5

II. Definitions

For convience, certain terms employed in the specification, examples, and appended claims are collected here.

A "stroke" is a sudden loss of function caused by a cutoff in the blood supply to the brain. Stroke presents with different levels of severity ranging from "transient ischemic attack" or "TIA" (no permanent disability), to "partial nonprogressing stroke" (persistent but no calamitous damage), to "complete stroke" (permanent, calamitous neurological deficit). Ischemia (diminished or stopped blood flow) and infarction (cell damage and death within the zone of ischemia) are the pathologic processes in stroke that lead to neurologic deficits.

"Ischemic stroke" is caused by an obstruction of blood vessels supplying the brain. The primary subcategories of ischemic stroke are thrombotic stroke, embolic stroke and lacunar infarctions.

"Hemorrhagic stroke" is caused by the rupture of blood vessels supplying the brain. The primary subcategories of hemorrhagic stroke are subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH).

The term "ischemic damage" refers to a reduction in the biological capability of a neuronal cell, including cell death, induced by a reduced blood flow, or an otherwise reduced level of oxygen to the affected neuronal cells, whether it be the result of ischemic stroke, hemmorrhagic stroke, hypoxia or the like.

The term "hedgehog therapeutic" refers to various forms of hedgehog polypeptides, as well as peptidomimetics, which are neuroprotective for neuronal cells, and in particular, enhance the survival of neurons under ischemic and/or epoxic conditions. These include naturally occurring forms of hedgehog proteins, as well as modified or mutant forms generated by molecular biological techniques, chemical synthesis, etc. While in preferred embodiments the hedgehog polypeptide is derived from a vertebrate homolog, cross-sepcies activity reported in the literature supports the use of hedgehog peolypeptides from invertebrate organisms as well. Naturally and non-naturally occurring hedgehog therapeutics referred to herein as "agonists" mimic or potentiate (collectively "agonize") the effects of a naturally-occurring hedgehog protein

10

5

15

20

25

25

5

10

as a neuroprotective agent. In addition, the term "hedgehog therapeutic" includes molecules which can activate expression of an endogenous hedgehog gene. The term also includes gene therapy constructs for causing expression of hedgehog polypeptides in vivo, as for example, expression constructs encoding recombinant hedgehog polypeptides as well as trans-activation constructs for altering the regulatory sequences of an endogenous hedgehog gene by homologous recombination.

In particular, the term "hedgehog polypeptide" encompasses hedgehog proteins and peptidyl fragments thereof.

As used herein the term "bioactive fragment", with reference to portions of *hedgehog* proteins, refers to a fragment of a full-length *hedgehog* protein, wherein the fragment specifically agonizes neuroprotective events mediated by wild-type *hedgehog* proteins. The *hedgehog* bioactive fragment preferably is a soluble extracellular portion of a *hedgehog* protein, where solubility is with reference to physiologically compatible solutions. Exemplary bioactive fragments are described in PCT publications WO 95/18856 and WO 96/17924.

The term "ptc therapeutic" refers to agents which mimic the effect of naturally occurring *hedgehog* proteins on *patched* signalling. The ptc therapeutic can be, e.g., a peptide, a nucleic acid, a carbohydrate, a small organic molecule, or natural product extract (or fraction thereof).

A "patient" or "subject" to be treated by the subject method is a mammals, including a human.

A "therapeutically effective amount" of, e.g., a *hedgehog* or ptc therapeutic, with respect to the subject method of treatment, refers to an amount of the therapeutic (in a preparation) which when applied as part of a desired dosage regimen causes a decrease in ischemia- and/or hypoxia-induced neuronal cell death (i.e., a reduction in the volume/size of a cerebral infarct caused thereby) according to clinically acceptable standards for the treatment or prevention of those disorder.

By "protection from damage to neural tissue" it is meant reduction in the total stroke volume and/or infarct volume resulting from, e.g., ischemic or hypoxic conditions, preferably as manifested by less neurological and/or cognitive deficits.

20

25

5

10

"Homology" and "identity" each refer to sequence similarity between two polypeptide sequences, with identity being a more strict comparison. Homology and identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid residue, then the polypeptides can be referred to as identical at that position; when the equivalent site is occupied by the same amino acid (e.g., identical) or a similar amino acid (e.g., similar in steric and/or electronic nature), then the molecules can be referred to as homologous at that position. A percentage of homology or identity between sequences is a function of the number of matching or homologous positions shared by the sequences. An "unrelated" or "non-homologous" sequence shares less than 40 percent identity, though preferably less than 25 percent identity, with an AR sequence of the present invention.

The term "corresponds to", when referring to a particular polypeptide or nucleic acid sequence is meant to indicate that the sequence of interest is identical or homologous to the reference sequence to which it is said to correspond.

The terms "recombinant protein", "heterologous protein" and "exogenous protein" are used interchangeably throughout the specification and refer to a polypeptide which is produced by recombinant DNA techniques, wherein generally, DNA encoding the polypeptide is inserted into a suitable expression construct which is in turn used to transform a host cell to produce the heterologous protein. That is, the polypeptide is expressed from a heterologous nucleic acid.

A "chimeric protein" or "fusion protein" is a fusion of a first amino acid sequence encoding a *hedgehog* polypeptide with a second amino acid sequence defining a domain foreign to and not substantially homologous with any domain of hh protein. A chimeric protein may present a foreign domain which is found (albeit in a different protein) in an organism which also expresses the first protein, or it may be an "interspecies", "intergenic", etc. fusion of protein structures expressed by different kinds of organisms. In general, a fusion protein can be represented by the general formula $(X)_n$ - $(hh)_m$ - $(Y)_n$, wherein hh represents all or a portion of the *hedgehog* protein, X and Y each independently represent an amino acid sequences which are not naturally found as a polypeptide chain contiguous with the *hedgehog* sequence, m is an integer

20

25

5

10

greater than or equal to 1, and each occurrence of n is, independently, 0 or an integer greater than or equal to 1 (n and m are preferably no greater than 5 or 10).

As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. The term "expression vector" includes plasmids, cosmids or phages capable of synthesizing, for example, the subject *hedgehog* polypeptides encoded by the respective recombinant gene carried by the vector. Preferred vectors are those capable of autonomous replication and/expression of nucleic acids to which they are linked. In the present specification, "plasmid" and "vector" are used interchangeably as the plasmid is the most commonly used form of vector. Moreover, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.

"Transcriptional regulatory sequence" is a generic term used throughout the specification to refer to DNA sequences, such as initiation signals, enhancers, and promoters, as well as polyadenylation sites, which induce or control transcription of protein (or antisense) coding sequences with which they are operably linked. In preferred embodiments, transcription of a recombinant gene is under the control of a promoter sequence (or other transcriptional regulatory sequence) which controls the expression of the recombinant gene in a cell-type in which expression is intended. It will also be understood that the recombinant gene can be under the control of transcriptional regulatory sequences which are the same or which are different from those sequences which control transcription of the naturally-occurring form of the regulatory protein.

The term "operably linked" refers to the arrangement of a transcriptional regulatory element relative to another transcribable nucleic acid sequence, such that the transcriptional regulatory element can regulate the rate of transcription from the transcribable sequence(s).

III. Exemplary Applications of Method and Compositions

20

25

5

10

Central nervous system tissue is particularly vulnerable to damage caused by ischemic conditions. The subject method has wide applicability to the treatment or prophylaxis of ischemic or hypoxic damage marked by neuronal cell death. The instant treatment can be used to treat or prevent injury or disease to brain tissue resulting from ischemia, e.g., as caused from insufficient oxygen. The types of ischemia for which the subject method can be used as part of a treatment include, but are not limited to those which may last for only transient periods of time to those which may last for lengthy durations, as in stroke. In the regard, the subject method is useful for treatment and prevention of injury to the brain and spinal cord and edema due to head trauma, spinal trauma, stroke, hypotension, arrested breathing, cardiac arrest, Rey's syndrome, cerebral thrombosis, embolism, hemorrhage or tumors, encephalomyelitis, hydroencephalitis, and operative and postoperative brain injury.

In general, the method can be characterized as including a step of administering to an animal an amount of a *ptc* or *hedgehog* therapeutic effective to enhance the survival of neuronal cells under such ischemic or hypoxic conditions. The mode of administration and dosage regimens will vary depending on the severity of the ischemic or hypoxic attack, e.g., the dosage may be altered as between a transient ischemic attack, a partial nonprogressing stroke, and a complete stroke. In preferred embodiments, the *ptc* or hedeghog therapeutic is administered systemically initially (i.e., while the blood brain barrier is disrupted), then locally for medium to long term care.

When used to treat stroke, the clinician should not only define the level of stroke severity, but also the "pace" or "tempo" of the illness. This is because the pace of progression helps to dictate the urgency for evaluation and treatment. A patient who suffers a TIA in the morning has a higher risk for stroke in the afternoon than a patient who suffered a single TIA a month earlier. Where the risk of stroke remains high, the subject *hedgehog* and ptc therapeutics can be used prophylatically in order to minimize ischemic damage which may result from an eventual stroke. A patient who is worsening under supervision requires more urgent management than one who has been stable for a week or more.

The subject method may also find particular utility in treating or preventing the adverse neurological consequences of surgery. For example, coronary bypass surgery requires the use of heart-lung machines, which tend to introduce air bubbles into the circulatory system that may lodge in the brain. The presence of such air bubbles robs neuronal tissue of oxygen, resulting in anoxia and ischemia. Pre- or post-surgical administration of the *hedgehog* and/or *ptc* therapeutics of the present invention will treat or prevent the resulting ischemia. In a preferred embodiment, the subject therapeutics are administered to patients undergoing cardiopulmonary bypass surgery or carotid endarterectomy surgery.

In still other embodiments, the subject method can be used in the prevention and/or treatment of hypoxia, e.g., as a neuroprotective agent. For instance, the subject method can be used prophylactically to lessen the neuronal cell death caused by altitude-induced hypoxia.

A method which is "neuroprotective", in the case of cerebral ischemia, results in diminished infarct volume relative to that which would occur in the absence of treatment with a *hedgehog* or ptc therapeutic. That is a neuroprotective therapy is intended to maintain or rescue damaged nerve cells, preventing their death.

The treatment methods of the present invention can be combined with the use of (a) anticoagulants, (b) antiplatelet agents, and/or (c) vascular surgery. Co-administered with suitable anti-coagulant agents, antiplatelet agents, thrombin inhibitors, and/or thrombolytic agents, may afford an efficacy advantage over any of the agents alone, and may do so while permitting the use of lower doses of each. A lower dosage minimizes the potential of side effects, thereby providing an increased margin of safety. The two (or more) agents are administered in combination according to the invention. The term "in combination" in this context means that the drugs are given substantially contemporaneously, either simultaneously or sequentially. If given sequentially, at the onset of administration of the second agent, the first of the two agents is preferably still detectable at effective concentrations at the site of treatment.

The term "anti-coagulant agents" (or coagulation inhibitory agents), as used herein, denotes agents that inhibit blood coagulation. Such agents include warfarin, heparin, or low molecular weight heparin (LMWH), including pharmaceutically acceptable salts or prodrugs thereof. For reasons of efficacy, the preferable anti-coagulant agents are warfarin or heparin or LMWH. The warfarin employed herein, may be, for example, crystalline warfarin or amorphous

10

5

15

20

25

20

25

5

10

sodium warfarin. The heparin employed herein may be, for example, the sodium or sulfate salts thereof.

The term "anti-platelet agents" (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function such as by inhibiting the aggregation, adhesion or granular secretion of platelets. Such agents include the various known non-steroidal anti-inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, and piroxicam, including pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin (acetylsalicyclic acid or ASA), which has been well researched and widely used with good results, and piroxicam, which exerts its anti-platelet effect when dosed once daily, are preferred compounds, especially aspirin. Piroxicam is commercially available from Pfizer Inc. (New York, NY), as FELDANE TM. Other suitable anti-platelet agents include ticlopidine, including pharmaceutically acceptable salts or prodrugs thereof. Ticlopidine is also a preferred compound since it is known to be gentle on the gastro-intestinal tract in use. Still other suitable platelet inhibitory agents include thromboxane-A2-receptor antagonists and thromboxane-A2-synthetase inhibitors, as well as pharmaceutically acceptable salts or prodrugs thereof.

The phrase "thrombin inhibitors" (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin mediated processes, such as thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. Such inhibitors include boropeptides, hirudin and argatroban, including pharmaceutically acceptable salts and prodrugs thereof. Preferably the thrombin inhibitors are boropeptides. By boropeptides, it is meant, N-acetyl and peptide derivatives of boronic acid, such as C-terminal alpha -aminoboronic acid derivatives of lysine, ornithine, arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin.

The phrase "thrombolytic agents" or "fibrinolytic agents" or "thrombolytics" or "fibrinolytics", as used herein, denotes agents that lyse blood clots (thrombi). Such agents

20

25

5

10

include tissue plasminogen activator, anistreplase, urokinase or streptokinase, including pharmaceutically acceptable salts or prodrugs thereof. Tissue plasminogen activator (tPA) is commercially available from Genentech Inc., South San Francisco, Calif. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase activator complex, as described, for example, in European Patent Application No. 0 28 489, the disclosures of which are hereby incorporated herein by reference herein, in their entirety. Anistreplase is commercially available from the Beecham Group, Middlesex, England, under the trademark EMINASE TM. The term urokinase, as used herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase.

In yet other embodiments, the subject method can be carried out conjointly with the administration of growth and/or trophic factors. For instance, the trophic growth factor basic FGF has been demonstrated in the art to be useful in the functional recovery following experimental stroke. In experiments providing exogenous administration of bFGF after infarction, the early administration of bFGF was found to reduce infarct size. See, for example, Kawamata et al. (1997) Adv Neurol 73: 377-82. Likewise, progesterone has been shown to be neuroprotective after transient middle cerebral artery occlusion in male rats. Jiang et al. (1996) Brain Res 735:101-7. Other agents with which the subject hedgehog and ptc therapeutics can be coadministered include nitro-L-arginine, transforming growth factor-\$1 (TGF-beta 1) has been shown to rescue cultured neurons from excitotoxic and hypoxic cell death and to reduce infarct size after focal cerebral ischemia in mice and rabbits. In other instances, the combinatorial therapy can include a trophic factor such as nerve growth factor, cilliary neurotrophic growth factor, schwanoma-derived growth factor, glial growth factor, stiatal-derived neuronotrophic factor, platelet-derived growth factor, and scatter factor (HGF-SF). Antimitogenic agents can also be used, as for example, cytosine, arabinoside, 5-fluorouracil, hydroxyurea, and methotrexate.

Determination of a therapeutically effective amount and a prophylactically effective amount of a *hedgehog* or *ptc* therapeutic, e.g., to be adequately neuroprotective, can be readily made by the physician or veterinarian (the "attending clinician"), as one skilled in the art, by the use of known techniques and by observing results obtained under analogous circumstances. The

20

25

5

10

dosages may be varied depending upon the requirements of the patient in the judgment of the attending clinician, the severity of the condition being treated, the risk of further ischemic or hypoxic damage to the CNS, and the particular agent being employed. In determining the therapeutically effective neuroprotective amount or dose, and the prophylactically effective amount or dose, a number of factors are considered by the attending clinician, including, but not limited to: the specific cause of the ischemic or hypoxic state and its likelihood of recurring or worsening; pharmacodynamic characteristics of the particular agent and its mode and route of administration; the desired time course of treatment; the species of mammal; its size, age, and general health; the response of the individual patient; the particular compound administered; the bioavailability characteristics of the preparation administered; the dose regimen selected; the kind of concurrent treatment (i.e., the interaction of the *hedgehog* or *ptc* therapeutic with other co-administered therapeutics); and other relevant circumstances.

Treatment can be initiated with smaller dosages which are less than the optimum dose of the agent. Thereafter, the dosage should be increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired. A therapeutically effective antineoplastic amount and a prophylactically effective neuroprotective amount of a *hedgehog* polypeptide, for instance, is expected to vary from concentrations about 0.1 nanogram per kilogram of body weight per day (kg/day) to about 100 kg/day.

Potential *hedgehog* and *ptc* therapeutics, such as described below, can be tested by measuring the volume of cerebral infarction in animals receiving systemic injections. For instance, selected agents can be evaluated in the focal stroke model involving permanent middle cerebral artery occlusion (MCAO) in the spontaneously hypertensive rat. This procedure results in a reliably large neocortical infarct volume that is measured by means of vital dye exclusion in serial slices through the brain 24 hours after MCAO. Tamura et al. (1981) *J Cerebral Blood Flow and Metabolism* 1:53-60.

The middle cerebral artery is the cerebral blood vessel most susceptible to stroke in humans. In animals, coagulation, permanent ligation or permanent placement of an occluding thread in the artery produces a permanent focal stroke affecting the MCA territory. Transient

25

5

10

ligation or occlusion results in transient focal stroke. Both transient and permanent focal strokes result in varying degrees of edema and infarction in the affected brain regions. The ability of compounds to reduce the volumes of edema and infarction is considered a measure of their potential as anti-stroke treatment.

Compounds which are determined to be effective for the prevention or treatment of cerebral infarction and the like in animals, e.g., dogs, rodents, may also be useful in treatment of tumors in humans. Those skilled in the art of treating such disorders in humans will be guided, from the data obtained in animal studies, to the correct dosage and route of administration of the compound to humans. In general, the determination of dosage and route of administration in humans is expected to be similar to that used to determine administration in animals.

The identification of those patients who are in need of prophylactic treatment for ischemic or hypoxic states is well within the ability and knowledge of one skilled in the art. Certain of the methods for identification of patients which are at risk of cerebral infarction which can be treated by the subject method are appreciated in the medical arts, such as family history of the development of a particular disease state and the presence of risk factors associated with the development of that disease state in the subject patient. A clinician skilled in the art can readily identify such candidate patients, by the use of, for example, clinical tests, physical examination and medical/family history.

IV. Exemplary hedgehog therapeutic compounds.

The *hedgehog* therapeutic compositions of the subject method can be generated by any of a variety of techniques, including purification of naturally occurring proteins, recombinantly produced proteins and synthetic chemistry. Polypeptide forms of the *hedgehog* therapeutics are preferably derived from vertebrate *hedgehog* proteins, e.g., have sequences corresponding to naturally occurring *hedgehog* proteins, or fragments thereof, from vertebrate organisms. However, it will be appreciated that the *hedgehog* polypeptide can correspond to a *hedgehog* protein (or fragment thereof) which occurs in any metazoan organism.

25

30

5

10

The various naturally-occurring hedgehog proteins from which the subject therapeutics can be derived are characterized by a signal peptide, a highly conserved N-terminal region, and a more divergent C-terminal domain. In addition to signal sequence cleavage in the secretory pathway (Lee, J.J. et al. (1992) Cell 71:33-50; Tabata, T. et al. (1992) Genes Dev. 2635-2645; Chang, D.E. et al. (1994) Development 120:3339-3353), hedgehog precursor proteins naturally undergo an internal autoproteolytic cleavage which depends on conserved sequences in the Cterminal portion (Lee et al. (1994) Science 266:1528-1537; Porter et al. (1995) Nature 374:363-366). This autocleavage leads to a 19 kD N-terminal peptide and a C-terminal peptide of 26-28 kD (Lee et al. (1992) supra; Tabata et al. (1992) supra; Chang et al. (1994) supra; Lee et al. (1994) supra; Bumcrot, D.A., et al. (1995) Mol. Cell. Biol. 15:2294-2303; Porter et al. (1995) supra; Ekker, S.C. et al. (1995) Curr. Biol. 5:944-955; Lai, C.J. et al. (1995) Development 121:2349-2360). The N-terminal peptide stays tightly associated with the surface of cells in which it was synthesized, while the C-terminal peptide is freely diffusible both in vitro and in vivo (Lee et al. (1994) supra; Bumcrot et al. (1995) supra; Mart', E. et al. (1995) Development 121:2537-2547; Roelink, H. et al. (1995) Cell 81:445-455). Cell surface retention of the Nterminal peptide is dependent on autocleavage, as a truncated form of hedgehog encoded by an RNA which terminates precisely at the normal position of internal cleavage is diffusible in vitro (Porter et al. (1995) supra) and in vivo (Porter, J.A. et al. (1996) Cell 86, 21-34). Biochemical studies have shown that the autoproteolytic cleavage of the *hedgehog* precursor protein proceeds through an internal thioester intermediate which subsequently is cleaved in a nucleophilic substitution. It is suggested that the nucleophile is a small lipophilic molecule, more particularly cholesterol, which becomes covalently bound to the C-terminal end of the N-peptide (Porter et al. (1996) supra), tethering it to the cell surface.

The vertebrate family of *hedgehog* genes includes at least four members, e.g., paralogs of the single drosophila *hedgehog* gene (SEQ ID No. 19). Three of these members, herein referred to as Desert *hedgehog* (*Dhh*), Sonic *hedgehog* (*Shh*) and Indian *hedgehog* (*Ihh*), apparently exist in all vertebrates, including fish, birds, and mammals. A fourth member, herein referred to as tiggie-winkle *hedgehog* (*Thh*), appears specific to fish. According to the appended sequence listing, (see also Table 1) a chicken *Shh* polypeptide is encoded by SEQ ID No:1; a mouse *Dhh* polypeptide is encoded by SEQ ID No:3; a

mouse *Shh* polypeptide is encoded by SEQ ID No:4 a zebrafish *Shh* polypeptide is encoded by SEQ ID No:5; a human *Shh* polypeptide is encoded by SEQ ID No:6; a human *Ihh* polypeptide is encoded by SEQ ID No:7; and a zebrafish *Thh* is encoded by SEQ ID No. 8.

Table 1
Guide to hedgehog sequences in Sequence Listing

	Nucleotide	Amino Acid
Chicken Shh	SEQ ID No. 1	SEQ ID No. 10
Mouse Dhh	SEQ ID No. 2	SEQ ID No. 11
Mouse Ihh	SEQ ID No. 3	SEQ ID No. 12
Mouse Shh	SEQ ID No. 4	SEQ ID No. 13
Zebrafish Shh	SEQ ID No. 5	SEQ ID No. 14
Human Shh	SEQ ID No. 6	SEQ ID No. 15
Human <i>Ihh</i>	SEQ ID No. 7	SEQ ID No. 16
Zebrafish Thh	SEQ ID No. 8	SEQ ID No. 17
Drosophila HH	SEQ ID No. 9	SEQ ID No. 18

In addition to the sequence variation between the various *hedgehog* homologs, the *hedgehog* proteins are apparently present naturally in a number of different forms, including a pro-form, a full-length mature form, and several processed fragments thereof. The pro-form includes an N-terminal signal peptide for directed secretion of the extracellular domain, while the full-length mature form lacks this signal sequence.

As described above, further processing of the mature form occurs in some instances to yield biologically active fragments of the protein. For instance, *sonic hedgehog* undergoes additional proteolytic processing to yield two peptides of approximately 19 kDa and 27 kDa, the 19kDa fragment corresponding to an proteolytic N-terminal portion of the mature protein. In addition to proteolytic fragmentation, the vertebrate *hedgehog* proteins can also be modified post-translationally, such as by glycosylation and/or addition of cholesterol, though bacterially produced (e.g., unglycosylated/uncholesterolized) forms of the proteins still maintain certain of the bioactivities of the native protein. Bioactive fragments of *hedgehog* polypeptides of the

10

15

5

The first is a new times and the little of the first of t

15

20

25

5

10

present invention have been generated and are described in great detail in, e.g., PCT publications WO 95/18856 and WO 96/17924.

Moreover, mutagenesis can be used to create modified *hh* polypeptides, e.g., for such purposes as enhancing therapeutic or prophylactic efficacy, or stability (e.g., *ex vivo* shelf life and resistance to proteolytic degradation *in vivo*). Such modified peptides can be produced, for instance, by amino acid substitution, deletion, or addition. Modified *hedgehog* polypeptides can also include those with altered post-translational processing relative to a naturally occurring *hedgehog* protein, e.g., altered glycosylation, cholesterolization, prenylation and the like.

In one embodiment, the *hedgehog* therapeutic is a polypeptide encodable by a nucleotide sequence that hybridizes under stringent conditions to a *hedgehog* coding sequence represented in one or more of SEQ ID Nos:1-9. Appropriate stringency conditions which promote DNA hybridization, for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C, are known to those skilled in the art or can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50°C to a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C.

As described in the literature, genes for other *hedgehog* proteins, e.g., from other animals, can be obtained from mRNA or genomic DNA samples using techniques well known in the art. For example, a cDNA encoding a *hedgehog* protein can be obtained by isolating total mRNA from a cell, e.g., a mammalian cell, e.g., a human cell, including embryonic cells. Double stranded cDNAs can then be prepared from the total mRNA, and subsequently inserted into a suitable plasmid or bacteriophage vector using any one of a number of known techniques. The gene encoding a *hedgehog* protein can also be cloned using established polymerase chain reaction techniques.

Preferred nucleic acids encode a *hedgehog* polypeptide comprising an amino acid sequence at least 60% homologous, more preferably 70% homologous and most preferably 80% homologous with an amino acid sequence selected from the group consisting of SEQ ID Nos:10-

20

25

5

10

18. Nucleic acids which encode polypeptides at least about 90%, more preferably at least about 95%, and most preferably at least about 98-99% homology with an amino acid sequence represented in one of SEQ ID Nos:10-18 are also within the scope of the invention.

Hedgehog polypeptides preferred by the present invention, in addition to native hedgehog proteins, are at least 60% homologous, more preferably 70% homologous and most preferably 80% homologous with an amino acid sequence represented by any of SEQ ID Nos:10-18. Polypeptides which are at least 90%, more preferably at least 95%, and most preferably at least about 98-99% homologous with a sequence selected from the group consisting of SEQ ID Nos:10-18 are also within the scope of the invention. The only prerequisite is that the hedgehog polypeptide is capable of protecting neuronal cells against ischemic damage.

The term "recombinant protein" refers to a polypeptide of the present invention which is produced by recombinant DNA techniques, wherein generally, DNA encoding a *hedgehog* polypeptide is inserted into a suitable expression vector which is in turn used to transform a host cell to produce the heterologous protein. Moreover, the phrase "derived from", with respect to a recombinant *hedgehog* gene, is meant to include within the meaning of "recombinant protein" those proteins having an amino acid sequence of a native *hedgehog* protein, or an amino acid sequence similar thereto which is generated by mutations including substitutions and deletions (including truncation) of a naturally occurring form of the protein.

The method of the present invention can also be carried out using variant forms of the naturally occurring *hedgehog* polypeptides, e.g., mutational variants.

As is known in the art, *hedgehog* polypeptides can be produced by standard biological techniques. For example, a host cell transfected with a nucleic acid vector directing expression of a nucleotide sequence encoding the subject polypeptides can be cultured under appropriate conditions to allow expression of the peptide to occur. The polypeptide *hedgehog* may be secreted and isolated from a mixture of cells and medium containing the recombinant *hedgehog* polypeptide. Alternatively, the peptide may be retained cytoplasmically by removing the signal peptide sequence from the recombinant *hedgehog* gene and the cells harvested, lysed and the protein isolated. A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The recombinant *hedgehog* polypeptide can be isolated

from cell culture medium, host cells, or both using techniques known in the art for purifying proteins including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, and immunoaffinity purification with antibodies specific for such peptide. In a preferred embodiment, the recombinant *hedgehog* polypeptide is a fusion protein containing a domain which facilitates its purification, such as an *hedgehog*/GST fusion protein. The host cell may be any prokaryotic or eukaryotic cell.

Recombinant *hedgehog* genes can be produced by ligating nucleic acid encoding an *hedgehog* protein, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells, or both. Expression vectors for production of recombinant forms of the subject *hedgehog* polypeptides include plasmids and other vectors. For instance, suitable vectors for the expression of a *hedgehog* polypeptide include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

A number of vectors exist for the expression of recombinant proteins in yeast. For instance, YEP24, YIP5, YEP51, YEP52, pYES2, and YRP17 are cloning and expression vehicles useful in the introduction of genetic constructs into *S. cerevisiae* (see, for example, Broach *et al.* (1983) in *Experimental Manipulation of Gene Expression*, ed. M. Inouye Academic Press, p. 83, incorporated by reference herein). These vectors can replicate in *E. coli* due the presence of the pBR322 ori, and in *S. cerevisiae* due to the replication determinant of the yeast 2 micron plasmid. In addition, drug resistance markers such as ampicillin can be used. In an illustrative embodiment, an *hedgehog* polypeptide is produced recombinantly utilizing an expression vector generated by sub-cloning the coding sequence of one of the *hedgehog* genes represented in SEQ ID Nos:1-9 or 19.

The preferred mammalian expression vectors contain both prokaryotic sequences, to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNAI/amp, pcDNAI/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, pSVT7, pko-neo and pHyg derived vectors are examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate

The state of the s

15

5

10

20

25

In some instances, it may be desirable to express the recombinant *hedgehog* polypeptide by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the β-gal containing pBlueBac III).

When it is desirable to express only a portion of a *hedgehog* protein, such as a form lacking a portion of the N-terminus, i.e., a truncation mutant which lacks the signal peptide, it may be necessary to add a start codon (ATG) to the oligonucleotide fragment containing the desired sequence to be expressed. It is well known in the art that a methionine at the N-terminal position can be enzymatically cleaved by the use of the enzyme methionine aminopeptidase (MAP). MAP has been cloned from *E. coli* (Ben-Bassat et al. (1987) *J. Bacteriol.* 169:751-757) and *Salmonella typhimurium* and its *in vitro* activity has been demonstrated on recombinant proteins (Miller et al. (1987) *PNAS* 84:2718-1722). Therefore, removal of an N-terminal methionine, if desired, can be achieved either *in vivo* by expressing *hedgehog*-derived polypeptides in a host which produces MAP (e.g., *E. coli* or CM89 or *S. cerevisiae*), or *in vitro* by use of purified MAP (e.g., procedure of Miller et al., *supra*).

Alternatively, the coding sequences for the polypeptide can be incorporated as a part of a fusion gene including a nucleotide sequence encoding a different polypeptide. It is widely appreciated that fusion proteins can also facilitate the expression of proteins, and accordingly, can be used in the expression of the *hedgehog* polypeptides of the present invention. For example, *hedgehog* polypeptides can be generated as glutathione-S-transferase (GST-fusion) proteins.

The Train of the first state of

15

20

5

10

25

20

25

5

10

Such GST-fusion proteins can enable easy purification of the *hedgehog* polypeptide, as for example by the use of glutathione-derivatized matrices (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al. (N.Y.: John Wiley & Sons, 1991)). In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence, can be used to replace the signal sequence which naturally occurs at the N-terminus of the *hedgehog* protein (e.g., of the pro-form, in order to permit purification of the poly(His)-*hedgehog* protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase (e.g., see Hochuli et al. (1987) *J. Chromatography* 411:177; and Janknecht et al. *PNAS* 88:8972).

Techniques for making fusion genes are known to those skilled in the art. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al. John Wiley & Sons: 1992).

Hedgehog polypeptides may also be chemically modified to create hedgehog derivatives by forming covalent or aggregate conjugates with other chemical moieties, such as glycosyl groups, cholesterol, isoprenyl, myristyl, lipids, phosphate, acetyl groups and the like. Covalent derivatives of hedgehog proteins can be prepared by linking the chemical moieties to functional groups on amino acid sidechains of the protein or at the N-terminus or at the C-terminus of the polypeptide.

For instance, *hedgehog* proteins can be generated to include a moiety, other than sequence naturally associated with the protein, that binds a component of the extracellular matrix

10

15

20

25

and enhances localization of the analog to cell surfaces. For example, sequences derived from the fibronectin "type-III repeat", such as a tetrapeptide sequence R-G-D-S (Pierschbacher et al. (1984) *Nature* 309:30-3; and Kornblihtt et al. (1985) *EMBO* 4:1755-9) can be added to the *hedgehog* polypeptide to support attachment of the chimeric molecule to a cell through binding ECM components (Ruoslahti et al. (1987) *Science* 238:491-497; Pierschbacheret al. (1987) *J. Biol. Chem.* 262:17294-8.; Hynes (1987) *Cell* 48:549-54; and Hynes (1992) *Cell* 69:11-25).

In a preferred embodiment, the *hedgehog* polypeptide is isolated from, or is otherwise substantially free of, other cellular proteins, especially other extracellular or cell surface associated proteins which may normally be associated with the *hedgehog* polypeptide. The term "substantially free of other cellular or extracellular proteins" (also referred to herein as "contaminating proteins") or "substantially pure or purified preparations" are defined as encompassing preparations of *hedgehog* polypeptides having less than 20% (by dry weight) contaminating protein, and preferably having less than 5% contaminating protein. By "purified", it is meant that the indicated molecule is present in the substantial absence of other biological macromolecules, such as other proteins. The term "purified" as used herein preferably means at least 80% by dry weight, more preferably in the range of 95-99% by weight, and most preferably at least 99.8% by weight, of biological macromolecules of the same type present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 5000, can be present). The term "pure" as used herein preferably has the same numerical limits as "purified" immediately above.

As described above for recombinant polypeptides, isolated *hedgehog* polypeptides can include all or a portion of the amino acid sequences represented in any of SEQ ID Nos:10-18, or a homologous sequence thereto. Preferred fragments of the subject *hedgehog* proteins correspond to the N-terminal and C-terminal proteolytic fragments of the mature protein. Bioactive fragments of *hedgehog* polypeptides are described in great detail in PCT publications WO 95/18856 and WO 96/17924.

With respect to bioctive fragments of *hedgehog* polypeptide, preferred *hedgehog* therapeutics include at least 50 amino acid residues of a *hedgehog* polypeptide, more preferably at least 100, and even more preferably at least 150.

20

25

5

10

Another preferred *hedgehog* polypeptide which can be included in the *hedgehog* therapeutic is an N-terminal fragment of the mature protein having a molecular weight of approximately 19 kDa.

Preferred human *hedgehog* proteins include N-terminal fragments corresponding approximately to residues 24-197 of SEQ ID No. 15 and 28-202 of SEQ ID No. 16. By "corresponding approximately" it is meant that the sequence of interest is at most 20 amino acid residues different in length to the reference sequence, though more preferably at most 5, 10 or 15 amino acid different in length.

Still other preferred hedgehog polypeptides include an amino acid sequence represented by the formula A-B wherein: (i) A represents all or the portion of the amino acid sequence designated by residues 1-168 of SEQ ID No:19; and B represents at least one amino acid residue of the amino acid sequence designated by residues 169-221 of SEQ ID No:19; (ii) A represents all or the portion of the amino acid sequence designated by residues 24-193 of SEQ ID No:15; and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No:15; (iii) A represents all or the portion of the amino acid sequence designated by residues 25-193 of SEQ ID No:13; and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No:13; (iv) A represents all or the portion of the amino acid sequence designated by residues 23-193 of SEQ ID No:11; and B represents at least one amino acid residue of the amino acid sequence designated by residues 194-250 of SEQ ID No:11; (v) A represents all or the portion of the amino acid sequence designated by residues 28-197 of SEQ ID No:12; and B represents at least one amino acid residue of the amino acid sequence designated by residues 198-250 of SEQ ID No:12; or (vi) A represents all or the portion of the amino acid sequence designated by residues 29-197 of SEQ ID No:16; and B represents at least one amino acid residue of the amino acid sequence designated by residues 198-250 of SEQ ID No:16. In certain preferred embodiments, A and B together represent a contiguous polypeptide sequence of the designated sequence, A represents at least 25, 50, 75, 100, 125 or 150 amino acids of the designated sequence, and B represents at least 5, 10, or 20 amino acid residues of the amino acid sequence designated by corresponding entry in the sequence listing, and A and B together preferably represent a

20

25

5

10

contiguous sequence corresponding to the sequence listing entry. Similar fragments from other *hedgehog* proteins are also contemplated, e.g., fragments which correspond to the preferred fragments from the sequence listing entries which are enumerated above.

Isolated peptidyl portions of *hedgehog* proteins can be obtained by screening peptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such peptides. In addition, fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry. For example, a *hedgehog* polypeptide of the present invention may be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length. The fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments which can function as agonists of a wild-type (e.g., "authentic") *hedgehog* protein. For example, Román et al. (1994) *Eur J Biochem* 222:65-73 describe the use of competitive-binding assays using short, overlapping synthetic peptides from larger proteins to identify binding domains.

The recombinant *hedgehog* polypeptides of the present invention also include homologs of the authentic *hedgehog* proteins, such as versions of those protein which are resistant to proteolytic cleavage, as for example, due to mutations which alter potential cleavage sequences or which inactivate an enzymatic activity associated with the protein. *Hedgehog* homologs of the present invention also include proteins which have been post-translationally modified in a manner different than the authentic protein. Exemplary derivatives of *hedgehog* proteins include polypeptides which lack glycosylation sites (e.g., to produce an unglycosylated protein), which lack sites for cholesterolization, and/or which lack N-terminal and/or C-terminal sequences.

Modification of the structure of the subject *hedgehog* polypeptides can also be for such purposes as enhancing therapeutic or prophylactic efficacy, or stability (e.g., *ex vivo* shelf life and resistance to proteolytic degradation *in vivo*). Such modified peptides, when designed to retain at least one activity of the naturally-occurring form of the protein, are considered functional equivalents of the *hedgehog* polypeptides described in more detail herein. Such modified peptides can be produced, for instance, by amino acid substitution, deletion, or addition.

25

30

5

10

It is well known in the art that certain isolated replacements of amino acids, e.g., replacement of an amino acid residue with another related amino acid (i.e., isosteric and/or isoelectric mutations), can be carried out without major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are can be divided into four families: (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine, histidine; (3) nonpolar = alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar = glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenvlalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In similar fashion, the amino acid repertoire can be grouped as (1) acidic = aspartate, glutamate; (2) basic = lysine, arginine histidine, (3) aliphatic = glycine, alanine, valine, leucine, isoleucine, serine, threonine, with serine and threonine optionally be grouped separately as aliphatichydroxyl; (4) aromatic = phenylalanine, tyrosine, tryptophan; (5) amide = asparagine, glutamine; and (6) sulfur -containing = cysteine and methionine, (see, for example, Biochemistry, 2nd ed., Ed. by L. Stryer, WH Freeman and Co.: 1981). Whether a change in the amino acid sequence of a peptide results in a functional hedgehog homolog (e.g., functional in the sense that it acts to mimic or antagonize the wild-type form) can be readily determined by assessing the ability of the variant peptide to produce a response in cells in a fashion similar to the wild-type protein, or competitively inhibit such a response. Polypeptides in which more than one replacement has taken place can readily be tested in the same manner.

It is specifically contemplated that the methods of the present invention can be carried out using homologs of naturally occurring hedgehog proteins. In one embodiment, the invention contemplates using *hedgehog* polypeptides generated by combinatorial mutagenesis. methods, as are known in the art, are convenient for generating both point and truncation mutants, and can be especially useful for identifying potential variant sequences (e.g., homologs) that are functional in binding to a receptor for hedgehog proteins. The purpose of screening such combinatorial libraries is to generate, for example, novel hedgehog homologs which can act as neuroprotective agents. To illustrate, hedgehog homologs can be engineered by the present method to provide more efficient binding to a cognate receptor, such as patched, retaining neuroprotective activity. Thus, combinatorially-derived homologs can be generated to have an

20

25

5

10

increased potency relative to a naturally occurring form of the protein. Moreover, manipulation of certain domains of *hedgehog* by the present method can provide domains more suitable for use in fusion proteins, such as one that incorporates portions of other proteins which are derived from the extracellular matrix and/or which bind extracellular matrix components.

To further illustrate the state of the art of combinatorial mutagenesis, it is noted that the review article of Gallop et al. (1994) *J Med Chem* 37:1233 describes the general state of the art of combinatorial libraries as of the earlier 1990's. In particular, Gallop et al. state at page 1239 "[s]creening the analog libraries aids in determining the minimum size of the active sequence and in identifying those residues critical for binding and intolerant of substitution". In addition, the Ladner et al. PCT publication WO90/02809, the Goeddel et al. U.S. Patent 5,223,408, and the Markland et al. PCT publication WO92/15679 illustrate specific techniques which one skilled in the art could utilize to generate libraries of *hedgehog* variants which can be rapidly screened to identify variants/fragments which retained a particular activity of the *hedgehog* polypeptides. These techniques are exemplary of the art and demonstrate that large libraries of related variants/truncants can be generated and assayed to isolate particular variants without undue experimentation. Gustin et al. (1993) *Virology* 193:653, and Bass et al. (1990) *Proteins: Structure, Function and Genetics* 8:309-314 also describe other exemplary techniques from the art which can be adapted as means for generating mutagenic variants of *hedgehog* polypeptides.

Indeed, it is plain from the combinatorial mutagenesis art that large scale mutagenesis of hedgehog proteins, without any preconceived ideas of which residues were critical to the biological function, and generate wide arrays of variants having equivalent biological activity. Indeed, it is the ability of combinatorial techniques to screen billions of different variants by high throughout analysis that removes any requirement of *a priori* understanding or knowledge of critical residues.

To illustrate, the amino acid sequences for a population of *hedgehog* homologs or other related proteins are aligned, preferably to promote the highest homology possible. Such a population of variants can include, for example, *hedgehog* homologs from one or more species. Amino acids which appear at each position of the aligned sequences are selected to create a degenerate set of combinatorial sequences. In a preferred embodiment, the variegated library of

10

15

20

25

30

hedgehog variants is generated by combinatorial mutagenesis at the nucleic acid level, and is encoded by a variegated gene library. For instance, a mixture of synthetic oligonucleotides can be enzymatically ligated into gene sequences such that the degenerate set of potential hedgehog sequences are expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of hedgehog sequences therein.

As illustrated in PCT publication WO 95/18856, to analyze the sequences of a population of variants, the amino acid sequences of interest can be aligned relative to sequence homology. The presence or absence of amino acids from an aligned sequence of a particular variant is relative to a chosen consensus length of a reference sequence, which can be real or artificial.

In an illustrative embodiment, alignment of exons 1, 2 and a portion of exon 3 encoded sequences (e.g., the N-terminal approximately 221 residues of the mature protein) of each of the *Shh* clones produces a degenerate set of *Shh* polypeptides represented by the general formula:

C-G-P-G-R-G-X(1)-G-X(2)-R-R-H-P-K-K-L-T-P-L-A-Y-K-Q-F-I-P-N-V-A-E-K-T-L-G-A-S-G-R-Y-E-G-K-I-X(3)-R-N-S-E-R-F-K-E-L-T-P-N-Y-N-P-D-I-I-F-K-D-E-E-N-T-G-A-D-R-L-M-T-Q-R-C-K-D-K-L-N-X(4)-L-A-I-S-V-M-N-X(5)-W-P-G-V-X(6)-L-R-V-T-E-G-W-D-E-D-G-H-H-X(7)-E-E-S-L-H-Y-E-G-R-A-V-D-I-T-T-S-D-R-D-X(8)-S-K-Y-G-X(9)-L-X(10)-R-L-A-V-E-A-G-F-D-W-V-Y-Y-E-S-K-A-H-I-H-C-S-V-K-A-E-N-S-V-A-A-K-S-G-G-C-F-P-G-S-A-X(11)-V-X(12)-L-X(13)-X(14)-G-G-X(15)-K-X-(16)-V-K-D-L-X(17)-P-G-D-X(18)-V-L-A-A-D-X(19)-X(20)-G-X(21)-L-X(22)-X(23)-S-D-F-X(24)-X(25)-F-X(26)-D-R (SEQ ID No: 19),

wherein each of the degenerate positions "X" can be an amino acid which occurs in that position in one of the human, mouse, chicken or zebrafish *Shh* clones, or, to expand the library, each X can also be selected from amongst amino acid residue which would be conservative substitutions for the amino acids which appear naturally in each of those positions. For instance, Xaa(1) represents Gly, Ala, Val, Leu, Ile, Phe, Tyr or Trp; Xaa(2) represents Arg, His or Lys; Xaa(3) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(4) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(5) represents Lys, Arg, His, Asn or Gln; Xaa(6) represents Lys, Arg or His; Xaa(7) represents Ser, Thr, Tyr, Trp or Phe; Xaa(8) represents Lys, Arg or His; Xaa(9) represents Met, Cys, Ser or Thr; Xaa(10) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(11) represents Leu, Val, Met, Thr or Ser; Xaa(12) represents His, Phe, Tyr, Ser, Thr, Met or Cys; Xaa(13) represents Gln, Asn, Glu, or Asp; Xaa(14) represents His, Phe, Tyr, Thr, Gln, Asn, Glu or Asp; Xaa(15)

10

15

20

25

30

represents Gln, Asn, Glu, Asp, Thr, Ser, Met or Cys; Xaa(16) represents Ala, Gly, Cys, Leu, Val or Met; Xaa(17) represents Arg, Lys, Met, Ile, Asn, Asp, Glu, Gln, Ser, Thr or Cys; Xaa(18) represents Arg, Lys, Met or Ile; Xaa(19) represents Ala, Gly, Cys, Asp, Glu, Gln, Asn, Ser, Thr or Met; Xaa(20) represents Ala, Gly, Cys, Asp, Asn, Glu or Gln; Xaa(21) represents Arg, Lys, Met, Ile, Asn, Asp, Glu or Gln; Xaa(22) represent Leu, Val, Met or Ile; Xaa(23) represents Phe, Tyr, Thr, His or Trp; Xaa(24) represents Ile, Val, Leu or Met; Xaa(25) represents Met, Cys, Ile, Leu, Val, Thr or Ser; Xaa(26) represents Leu, Val, Met, Thr or Ser. In an even more expansive library, each X can be selected from any amino acid.

In similar fashion, alignment of each of the human, mouse, chicken and zebrafish hedgehog clones, can provide a degenerate polypeptide sequence represented by the general formula:

wherein, as above, each of the degenerate positions "X" can be an amino acid which occurs in a corresponding position in one of the wild-type clones, and may also include amino acid residue which would be conservative substitutions, or each X can be any amino acid residue. In an exemplary embodiment, Xaa(1) represents Gly, Ala, Val, Leu, Ile, Pro, Phe or Tyr; Xaa(2) represents Gly, Ala, Val, Leu or Ile; Xaa(3) represents Gly, Ala, Val, Leu, Ile, Lys, His or Arg; Xaa(4) represents Lys, Arg or His; Xaa(5) represents Phe, Trp, Tyr or an amino acid gap; Xaa(6) represents Gly, Ala, Val, Leu, Ile or an amino acid gap; Xaa(7) represents Asn, Gln, His, Arg or Lys; Xaa(8) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(9) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(11) represents Ser, Thr, Gln or Asn; Xaa(12) represents Met, Cys, Gly, Ala, Val, Leu, Ile, Ser or Thr; Xaa(13) represents Gly, Ala, Val, Leu, Ile or Pro; Xaa(14) represents Arg, His or Lys; Xaa(15) represents Gly, Ala, Val, Leu, Ile, Pro, Arg, His or Lys; Xaa(16) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Yaa(17) represents Arg, His or Lys; Xaa(18) represents Gly, Ala, Val, Leu, Ile, Ser or Thr; Yaa(17) represents Arg, His or Lys; Xaa(18) represents Gly, Ala, Val, Leu, Ile, Ser or Thr;

20

25

5

10

Xaa(19) represents Thr or Ser; Xaa(20) represents Gly, Ala, Val, Leu, Ile, Asn or Gln; Xaa(21) represents Arg, His or Lys; Xaa(22) represents Asp or Glu; Xaa(23) represents Ser or Thr; Xaa(24) represents Glu, Asp, Gln or Asn; Xaa(25) represents Glu or Asp; Xaa(26) represents Arg, His or Lys; Xaa(27) represents Gly, Ala, Val, Leu or Ile; Xaa(28) represents Gly, Ala, Val, Leu, Ile, Thr or Ser; Xaa(29) represents Met, Cys, Gln, Asn, Arg, Lys or His; Xaa(30) represents Arg, His or Lys; Xaa(31) represents Trp, Phe, Tyr, Arg, His or Lys; Xaa(32) represents Gly, Ala, Val, Leu, Ile, Ser, Thr, Tyr or Phe; Xaa(33) represents Gln, Asn, Asp or Glu; Xaa(34) represents Asp or Glu; Xaa(35) represents Gly, Ala, Val, Leu, or Ile; Xaa(36) represents Arg, His or Lys; Xaa(37) represents Asn, Gln, Thr or Ser; Xaa(38) represents Gly, Ala, Val, Leu, Ile, Ser, Thr, Met or Cys; Xaa(39) represents Gly, Ala, Val, Leu, Ile, Thr or Ser; Xaa(40) represents Arg, His or Lys; Xaa(41) represents Asn, Gln, Gly, Ala, Val, Leu or Ile; Xaa(42) represents Gly, Ala, Val, Leu or Ile; Xaa(43) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Ser, Thr or Cys; Xaa(44) represents Gly, Ala, Val, Leu, Ile, Thr or Ser; and Xaa(45) represents Asp or Glu.

There are many ways by which the library of potential *hedgehog* homologs can be generated from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be carried out in an automatic DNA synthesizer, and the synthetic genes then ligated into an appropriate expression vector. The purpose of a degenerate set of genes is to provide, in one mixture, all of the sequences encoding the desired set of potential *hedgehog* sequences. The synthesis of degenerate oligonucleotides is well known in the art (see for example, Narang, SA (1983) *Tetrahedron* 39:3; Itakura et al. (1981) *Recombinant DNA, Proc* 3rd Cleveland Sympos. Macromolecules, ed. AG Walton, Amsterdam: Elsevier pp273-289; Itakura et al. (1984) *Annu. Rev. Biochem.* 53:323; Itakura et al. (1984) *Science* 198:1056; Ike et al. (1983) *Nucleic Acid Res.* 11:477. Such techniques have been employed in the directed evolution of other proteins (see, for example, Scott et al. (1990) *Science* 249:386-390; Roberts et al. (1992) *PNAS* 89:2429-2433; Devlin et al. (1990) *Science* 249: 404-406; Cwirla et al. (1990) *PNAS* 87: 6378-6382; as well as U.S. Patents Nos. 5,223,409, 5,198,346, and 5,096,815).

A wide range of techniques are known in the art for screening gene products of combinatorial libraries made by point mutations, and for screening cDNA libraries for gene products having a certain property. Such techniques will be generally adaptable for rapid

10

15

20

25

screening of the gene libraries generated by the combinatorial mutagenesis of *hedgehog* homologs. The most widely used techniques for screening large gene libraries typically comprises cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates relatively easy isolation of the vector encoding the gene whose product was detected. Each of the illustrative assays described below are amenable to high through-put analysis as necessary to screen large numbers of degenerate *hedgehog* sequences created by combinatorial mutagenesis techniques.

In one embodiment, the combinatorial library is designed to be secreted (e.g., the polypeptides of the library all include a signal sequence but no transmembrane or cytoplasmic domains), and is used to transfect a eukaryotic cell that can be co-cultured with neuronal cells. A functional *hedgehog* protein secreted by the cells expressing the combinatorial library will diffuse to neighboring neuronal cells and induce a particular biological response, such as protection against cell death under oxygen-deprevation conditions (e.g., high CO₂ culture conditions). The pattern of detection of proliferation will resemble a gradient function, and will allow the isolation (generally after several repetitive rounds of selection) of cells producing *hedgehog* homologs active as neuroprotective agents with respect to neuronal cells.

To illustrate, target neuronal cells are cultured in 24-well microtitre plates. Other eukaryotic cells are transfected with the combinatorial *hedgehog* gene library and cultured in cell culture inserts (e.g., Collaborative Biomedical Products, Catalog #40446) that are able to fit into the wells of the microtitre plate. The cell culture inserts are placed in the wells such that recombinant *hedgehog* homologs secreted by the cells in the insert can diffuse through the porous bottom of the insert and contact the target cells in the microtitre plate wells. After a period of time sufficient for functional forms of a *hedgehog* protein to produce a measurable response in the target cells, such as neuroprotection, the inserts are removed and the effect of the variant *hedgehog* proteins on the target cells determined. Cells from the inserts corresponding to wells which score positive for activity can be split and re-cultured on several inserts, the process being repeated until the active clones are identified.

In yet another screening assay, the candidate *hedgehog* gene products are displayed on the surface of a cell or viral particle, and the ability of particular cells or viral particles to associate with a *hedgehog*-binding moiety (such as the *patched* protein or other *hedgehog* receptor) via this gene product is detected in a "panning assay". Such panning steps can be carried out on cells cultured from embryos. For instance, the gene library can be cloned into the gene for a surface membrane protein of a bacterial cell, and the resulting fusion protein detected by panning (Ladner et al., WO 88/06630; Fuchs et al. (1991) *Bio/Technology* 9:1370-1371; and Goward et al. (1992) *TIBS* 18:136-140). In a similar fashion, fluorescently labeled molecules which bind *hedgehog* can be used to score for potentially functional *hedgehog* homologs. Cells can be visually inspected and separated under a fluorescence microscope, or, where the morphology of the cell permits, separated by a fluorescence-activated cell sorter.

In an alternate embodiment, the gene library is expressed as a fusion protein on the surface of a viral particle. For instance, in the filamentous phage system, foreign peptide sequences can be expressed on the surface of infectious phage, thereby conferring two significant benefits. First, since these phage can be applied to affinity matrices at very high concentrations, large number of phage can be screened at one time. Second, since each infectious phage displays the combinatorial gene product on its surface, if a particular phage is recovered from an affinity matrix in low yield, the phage can be amplified by another round of infection. The group of almost identical *E.coli* filamentous phages M13, fd, and f1 are most often used in phage display libraries, as either of the phage gIII or gVIII coat proteins can be used to generate fusion proteins without disrupting the ultimate packaging of the viral particle (Ladner et al. PCT publication WO 90/02909; Garrard et al., PCT publication WO 92/09690; Marks et al. (1992) J. Biol. Chem. 267:16007-16010; Griffths et al. (1993) EMBO J 12:725-734; Clackson et al. (1991) Nature 352:624-628; and Barbas et al. (1992) PNAS 89:4457-4461).

In an illustrative embodiment, the recombinant phage antibody system (RPAS, Pharamacia Catalog number 27-9400-01) can be easily modified for use in expressing and screening *hedgehog* combinatorial libraries. For instance, the pCANTAB 5 phagemid of the RPAS kit contains the gene which encodes the phage gIII coat protein. The *hedgehog* combinatorial gene library can be cloned into the phagemid adjacent to the gIII signal sequence

15

5

10

20

20

25

5

10

such that it will be expressed as a gIII fusion protein. After ligation, the phagemid is used to transform competent *E. coli* TG1 cells. Transformed cells are subsequently infected with M13KO7 helper phage to rescue the phagemid and its candidate *hedgehog* gene insert. The resulting recombinant phage contain phagemid DNA encoding a specific candidate *hedgehog*, and display one or more copies of the corresponding fusion coat protein. The phage-displayed candidate *hedgehog* proteins which are capable of binding an *hedgehog* receptor are selected or enriched by panning. For instance, the phage library can be applied to cells which express the *patched* protein and unbound phage washed away from the cells. The bound phage is then isolated, and if the recombinant phage express at least one copy of the wild type gIII coat protein, they will retain their ability to infect *E. coli*. Thus, successive rounds of reinfection of *E. coli*, and panning will greatly enrich for *hedgehog* homologs, which can then be screened for further biological activities in order to differentiate agonists and antagonists.

Combinatorial mutagenesis has a potential to generate very large libraries of mutant proteins, e.g., in the order of 10^{26} molecules. Combinatorial libraries of this size may be technically challenging to screen even with high throughput screening assays such as phage display. To overcome this problem, a new technique has been developed recently, recrusive ensemble mutagenesis (REM), which allows one to avoid the very high proportion of nonfunctional proteins in a random library and simply enhances the frequency of functional proteins, thus decreasing the complexity required to achieve a useful sampling of sequence space. REM is an algorithm which enhances the frequency of functional mutants in a library when an appropriate selection or screening method is employed (Arkin and Yourvan, 1992, *PNAS USA* 89:7811-7815; Yourvan et al., 1992, *Parallel Problem Solving from Nature*, 2., In Maenner and Manderick, eds., Elsevir Publishing Co., Amsterdam, pp. 401-410; Delgrave et al., 1993, *Protein Engineering* 6(3):327-331).

The invention also provides for reduction of the *hedgehog* protein to generate mimetics, e.g., peptide or non-peptide agents, which are able to mimic the neuroprotective activity of a naturally-occurring *hedgehog* polypeptide. Thus, such mutagenic techniques as described above are also useful to map the determinants of the *hedgehog* proteins which participate in protein-protein interactions involved in, for example, binding of the subject *hedgehog* polypeptide to

20

25

30

5

10

other extracellular matrix components such as its receptor(s). To illustrate, the critical residues of a subject hedgehog polypeptide which are involved in molecular recognition of an hedgehog receptor such as patched can be determined and used to generate hedgehog-derived peptidomimetics which competitively bind with that moiety. By employing, for example, scanning mutagenesis to map the amino acid residues of each of the subject hedgehog proteins which are involved in binding other extracellular proteins, peptidomimetic compounds can be generated which mimic those residues of the *hedgehog* protein which facilitate the interaction. After distinguishing between agonist and antagonists, such agonistic mimetics may be used to mimic the normal function of a hedgehog protein in the treatment ischemia. For instance, nonhydrolyzable peptide analogs of such residues can be generated using benzodiazepine (e.g., see Freidinger et al. in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), azepine (e.g., see Huffman et al. in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), substituted gama lactam rings (Garvey et al. in Peptides: Chemistry and Biology, G.R. Marshall ed., ESCOM Publisher: Leiden, Netherlands, 1988), keto-methylene pseudopeptides (Ewenson et al. (1986) J Med Chem 29:295; and Ewenson et al. in Peptides: Structure and Function (Proceedings of the 9th American Peptide Symposium) Pierce Chemical Co. Rockland, IL, 1985), \(\beta\)-turn dipeptide cores (Nagai et al. (1985) Tetrahedron Lett 26:647; and Sato et al. (1986) J Chem Soc Perkin Trans 1:1231), and β-aminoalcohols (Gordon et al. (1985) Biochem Biophys Res Commun 126:419; and Dann et al. (1986) Biochem Biophys Res Commun 134:71).

Recombinantly produced forms of the *hedgehog* proteins can be produced using, e.g., expression vectors containing a nucleic acid encoding a hedgehog polypeptide, operably linked to at least one transcriptional regulatory sequence. Operably linked is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleotide sequence. Regulatory sequences are art-recognized and are selected to direct expression of a hedgehog polypeptide. Accordingly, the term transcriptional regulatory sequence includes promoters, enhancers and other expression control elements. Such regulatory sequences are described in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences, sequences that control the expression of a DNA sequence when operatively

20

25

5

10

linked to it, may be used in these vectors to express DNA sequences encoding *hedgehog* polypeptide. Such useful expression control sequences, include, for example, a viral LTR, such as the LTR of the Moloney murine leukemia virus, the early and late promoters of SV40, adenovirus or cytomegalovirus immediate early promoter, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage λ , the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast α -mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other proteins encoded by the vector, such as antibiotic markers, should also be considered.

In addition to providing a ready source of *hedgehog* polypeptides for purification, the gene constructs of the present invention can also be used as a part of a gene therapy protocol to deliver nucleic acids encoding either a neuroprotective form of a *hedgehog* polypeptide. Thus, another aspect of the invention features expression vectors for *in vivo* transfection of a *hedgehog* polypeptide in particular cell types so as to cause ectopic expression of a *hedgehog* polypeptide in neuronal tissue.

Formulations of such expression constructs may be administered in any biologically effective carrier, e.g., any formulation or composition capable of effectively delivering the recombinant gene to cells *in vivo*. Approaches include insertion of the *hedgehog* coding sequence in viral vectors including recombinant retroviruses, adenovirus, adeno-associated virus, and herpes simplex virus-1, or recombinant bacterial or eukaryotic plasmids. Viral vectors transfect cells directly; plasmid DNA can be delivered with the help of, for example, cationic liposomes (lipofectin) or derivatized (e.g., antibody conjugated), polylysine conjugates, gramacidin S, artificial viral envelopes or other such intracellular carriers, as well as direct injection of the gene construct or CaPO₄ precipitation carried out *in vivo*. It will be appreciated that because

20

25

5

10

transduction of appropriate target cells represents the critical first step in gene therapy, choice of the particular gene delivery system will depend on such factors as the phenotype of the intended target and the route of administration, e.g., locally or systemically. Furthermore, it will be recognized that the particular gene construct provided for *in vivo* transduction of *hedgehog* expression are also useful for *in vitro* transduction of cells, such as for use in the *ex vivo* tissue culture systems described below.

A preferred approach for *in vivo* introduction of nucleic acid into a cell is by use of a viral vector containing nucleic acid, e.g., a cDNA, encoding the particular form of the *hedgehog* polypeptide desired. Infection of cells with a viral vector has the advantage that a large proportion of the targeted cells can receive the nucleic acid. Additionally, molecules encoded within the viral vector, e.g., by a cDNA contained in the viral vector, are expressed efficiently in cells which have taken up viral vector nucleic acid.

Retrovirus vectors and adeno-associated virus vectors are generally understood to be the recombinant gene delivery system of choice for the transfer of exogenous genes in vivo, particularly into humans. These vectors provide efficient delivery of genes into cells, and the transferred nucleic acids are stably integrated into the chromosomal DNA of the host. A major prerequisite for the use of retroviruses is to ensure the safety of their use, particularly with regard to the possibility of the spread of wild-type virus in the cell population. The development of specialized cell lines (termed "packaging cells") which produce only replication-defective retroviruses has increased the utility of retroviruses for gene therapy, and defective retroviruses are well characterized for use in gene transfer for gene therapy purposes (for a review see Miller, A.D. (1990) Blood 76:271). Thus, recombinant retrovirus can be constructed in which part of the retroviral coding sequence (gag, pol, env) has been replaced by nucleic acid encoding a hedgehog polypeptide and renders the retrovirus replication defective. The replication defective retrovirus is then packaged into virions which can be used to infect a target cell through the use of a helper virus by standard techniques. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in <u>Current Protocols in</u> Molecular Biology, Ausubel, F.M. et al. (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14 and other standard laboratory manuals. Examples of suitable retroviruses include pLJ,

20

25

5

10

pZIP, pWE and pEM which are well known to those skilled in the art. Examples of suitable packaging virus lines for preparing both ecotropic and amphotropic retroviral systems include Crip, Cre, 2 and Am. Retroviruses have been used to introduce a variety of genes into many different cell types, including neuronal cells, in vitro and/or in vivo (see, for example, Eglitis, et al. (1985) Science 230:1395-1398; Danos and Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:6460-6464; Wilson et al. (1988) Proc. Natl. Acad. Sci. USA 85:3014-3018; Armentano et al. (1990) Proc. Natl. Acad. Sci. USA 87:6141-6145; Huber et al. (1991) Proc. Natl. Acad. Sci. USA 88:8039-8043; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381; Chowdhury et al. (1991) Science 254:1802-1805; van Beusechem et al. (1992) Proc. Natl. Acad. Sci. USA 89:7640-7644; Kay et al. (1992) Human Gene Therapy 3:641-647; Dai et al. (1992) Proc. Natl. Acad. Sci. USA 89:10892-10895; Hwu et al. (1993) J. Immunol. 150:4104-4115; U.S. Patent No. 4,868,116; U.S. Patent No. 4,980,286; PCT Application WO 89/07136; PCT Application WO 89/05345; and PCT Application WO 92/07573).

Furthermore, it has been shown that it is possible to limit the infection spectrum of retroviruses and consequently of retroviral-based vectors, by modifying the viral packaging proteins on the surface of the viral particle (see, for example PCT publications WO93/25234 and WO94/06920). For instance, strategies for the modification of the infection spectrum of retroviral vectors include: coupling antibodies specific for cell surface antigens to the viral *env* protein (Roux et al. (1989) *PNAS* 86:9079-9083; Julan et al. (1992) *J. Gen Virol* 73:3251-3255; and Goud et al. (1983) *Virology* 163:251-254); or coupling cell surface receptor ligands to the viral *env* proteins (Neda et al. (1991) *J Biol Chem* 266:14143-14146). Coupling can be in the form of the chemical cross-linking with a protein or other variety (e.g., lactose to convert the *env* protein to an asialoglycoprotein), as well as by generating fusion proteins (e.g., single-chain antibody/*env* fusion proteins). This technique, while useful to limit or otherwise direct the infection to certain tissue types, can also be used to convert an ecotropic vector into an amphotropic vector.

Moreover, use of retroviral gene delivery can be further enhanced by the use of tissue- or cell-specific transcriptional regulatory sequences which control expression of the *hedgehog* gene of the retroviral vector.

20

Another viral gene delivery system useful in the present method utilizes adenovirus-derived vectors. The genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. See for example Berkner et al. (1988) *BioTechniques* 6:616; Rosenfeld et al. (1991) *Science* 252:431-434; and Rosenfeld et al. (1992) *Cell* 68:143-155. Suitable adenoviral vectors derived from the adenovirus strain Ad type 5 dl324 or other strains of adenovirus (e.g., Ad2, Ad3, Ad7 etc.) are well known to those skilled in the art. Recombinant adenoviruses can be advantageous in certain circumstances in that they can be used to infect a wide variety of cell types, including neuronal cells (Rosenfeld et al. (1992) cited *supra*).

10

5

Furthermore, the virus particle is relatively stable and amenable to purification and concentration, and as above, can be modified so as to affect the spectrum of infectivity. Additionally, introduced adenoviral DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA). Moreover, the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Berkner et al. cited *supra*; Haj-Ahmand and Graham (1986) *J. Virol.* 57:267). Most replication-defective adenoviral vectors currently in use and therefore favored by the present invention are deleted for all or parts of the viral E1 and E3 genes but retain as much as 80% of the adenoviral genetic material (see, e.g., Jones et al. (1979) *Cell* 16:683; Berkner et al., *supra*; and Graham et al. in Methods in Molecular Biology, E.J. Murray, Ed. (Humana, Clifton, NJ, 1991) vol. 7. pp. 109-127). Expression of the inserted *hedgehog* gene can be under control of, for example, the E1A promoter, the major late promoter (MLP) and associated leader sequences, the E3 promoter, or exogenously added promoter sequences.

25

In addition to viral transfer methods, such as those illustrated above, non-viral methods can also be employed to cause expression of a *hedgehog* polypeptide in the tissue of an animal. Most nonviral methods of gene transfer rely on normal mechanisms used by mammalian cells for the uptake and intracellular transport of macromolecules. In preferred embodiments, non-viral gene delivery systems of the present invention rely on endocytic pathways for the uptake of the

20

25

5

10

hedgehog polypeptide gene by the targeted cell. Exemplary gene delivery systems of this type include liposomal derived systems, poly-lysine conjugates, and artificial viral envelopes.

In clinical settings, the gene delivery systems for the therapeutic *hedgehog* gene can be introduced into a patient by any of a number of methods, each of which is familiar in the art. For instance, a pharmaceutical preparation of the gene delivery system can be introduced systemically, e.g., by intravenous injection, and specific transduction of the protein in the target cells occurs predominantly from specificity of transfection provided by the gene delivery vehicle, cell-type or tissue-type expression due to the transcriptional regulatory sequences controlling expression of the receptor gene, or a combination thereof. In other embodiments, initial delivery of the recombinant gene is more limited with introduction into the animal being quite localized. For example, the gene delivery vehicle can be introduced by catheter (see U.S. Patent 5,328,470) or by stereotactic injection (e.g., Chen et al. (1994) *PNAS* 91: 3054-3057). A *hedgehog* expression construct can be delivered in a gene therapy construct to dermal cells by, e.g., electroporation using techniques described, for example, by Dev et al. ((1994) *Cancer Treat Rev* 20:105-115).

The pharmaceutical preparation of the gene therapy construct can consist essentially of the gene delivery system in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery system can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can comprise one or more cells which produce the gene delivery system.

In yet another embodiment, the *hedgehog* or *ptc* therapeutic can be a "gene activation" construct which, by homologous recombination with a genomic DNA, alters the transcriptional regulatory sequences of an endogenous gene. For instance, the gene activation construct can replace the endogenous promoter of a *hedgehog* gene with a heterologous promoter, e.g., one which causes constitutive expression of the *hedgehog* gene or which causes inducible expression of the gene under conditions different from the normal expression pattern of the gene. Other genes in the *patched* signaling pathway can be similarly targeted. A variety of different formats for the gene activation constructs are available. See, for example, the Transkaryotic Therapies,

Inc PCT publications WO93/09222, WO95/31560, WO96/29411, WO95/31560 and WO94/12650.

In preferred embodiments, the nucleotide sequence used as the gene activation construct can be comprised of (1) DNA from some portion of the endogenous *hedgehog* gene (exon sequence, intron sequence, promoter sequences, etc.) which direct recombination and (2) heterologous transcriptional regulatory sequence(s) which is to be operably linked to the coding sequence for the genomic *hedgehog* gene upon recombination of the gene activation construct. For use in generating cultures of *hedgehog* producing cells, the construct may further include a reporter gene to detect the presence of the knockout construct in the cell.

The gene activation construct is inserted into a cell, and integrates with the genomic DNA of the cell in such a position so as to provide the heterologous regulatory sequences in operative association with the native *hedgehog* gene. Such insertion occurs by homologous recombination, i.e., recombination regions of the activation construct that are homologous to the endogenous *hedgehog* gene sequence hybridize to the genomic DNA and recombine with the genomic sequences so that the construct is incorporated into the corresponding position of the genomic DNA.

The terms "recombination region" or "targeting sequence" refer to a segment (i.e., a portion) of a gene activation construct having a sequence that is substantially identical to or substantially complementary to a genomic gene sequence, e.g., including 5' flanking sequences of the genomic gene, and can facilitate homologous recombination between the genomic sequence and the targeting transgene construct.

As used herein, the term "replacement region" refers to a portion of an activation construct which becomes integrated into an endogenous chromosomal location following homologous recombination between a recombination region and a genomic sequence.

The heterologous regulatory sequences, e.g., which are provided in the replacement region, can include one or more of a variety elements, including: promoters (such as constitutive or inducible promoters), enhancers, negative regulatory elements, locus control regions, transcription factor binding sites, or combinations thereof. Promoters/enhancers which may be used to control the expression of the targeted gene *in vivo* include, but are not limited to, the

10

5

15

20

cytomegalovirus (CMV) promoter/enhancer (Karasuyama et al., 1989, *J. Exp. Med.*, 169:13), the human β-actin promoter (Gunning et al. (1987) *PNAS* 84:4831-4835), the glucocorticoid-inducible promoter present in the mouse mammary tumor virus long terminal repeat (MMTV LTR) (Klessig et al. (1984) *Mol. Cell Biol.* 4:1354-1362), the long terminal repeat sequences of Moloney murine leukemia virus (MuLV LTR) (Weiss et al. (1985) *RNA Tumor Viruses*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York), the SV40 early or late region promoter (Bernoist et al. (1981) *Nature* 290:304-310; Templeton et al. (1984) *Mol. Cell Biol.*, 4:817; and Sprague et al. (1983) *J. Virol.*, 45:773), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (RSV) (Yamamoto et al., 1980, *Cell*, 22:787-797), the herpes simplex virus (HSV) thymidine kinase promoter/enhancer (Wagner et al. (1981) *PNAS* 82:3567-71), and the herpes simplex virus LAT promoter (Wolfe et al. (1992) *Nature Genetics*, 1:379-384).

In an exemplary embodiment, portions of the 5' flanking region of the human Shh gene are amplified using primers which add restriction sites, to generate the following fragments

5'-gcgcgttcgaaGCGAGCCAGCGAGGGAGAGAGAGCGAGCGGGCGAGCCGGAGC-GAGGAAtcgatgcgcc (primer 1)

As illustrated, primer 1 includes a 5' non-coding region of the human Shh gene and is flanked by an AsuII and ClaI restriction sites. Primer 2 includes a portion of the 5' non-coding region immediately 3' to that present in primer 1. The *hedgehog* gene sequence is flanked by XhoII and BamHI restriction sites. The purified amplimers are cut with each of the enzymes as appropriate.

The vector pCDNA1.1 (Invitrogen) includes a CMV promoter. The plasmid is cut with with AsuII, which cleaves just 3' to the CMV promoter sequence. The AsuII/ClaI fragment of primer 1 is ligated to the AsuII cleavage site of the pcDNA vector. The ClaI/AsuII ligation destroys the AsuII site at the 3' end of a properly inserted primer 1.

The vector is then cut with BamHI, and an XhoII/BamHI fragment of primer 2 is ligated to the BamHI cleavage site. As above, the BamHI/XhoII ligation destroys the BamHI site at the 5' end of a properly inserted primer 2.

15

20

25

30

5

10

15

20

25

Individual colonies are selected, cut with AsuII and BamHI, and the size of the AsuII/BamHI fragment determined. Colonies in which both the primer 1 and primer 2 sequences are correctly inserted are further amplified, and cut with AsuII and BamHI to produce the gene activation construct:

GAATCCTTCCCCCACCACCATCACTTTCAAAAGTCCGAAAGAATCTGCTCCCTGCTTGTGTTTG GAGGTCGCTGAGTAGTGCGCGAGTAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTG CATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGC GTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCA TATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCC CCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGAC GTCAATGGGTGGACTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCA AGTACGCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGAC CTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGC GGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCAC CCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA CAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAG CTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTAATACGACTCACTATAGG GAGACCCAAGCTTGGTACCGAGCTCGGATCqatctqqqaaaqcqcaaqaqaqaqcqcacacqcac acacccgccgcgcactcgg

In this construct, the flanking primer 1 and primer 2 sequences provide the recombination region which permits the insertion of the CMV promoter in front of the coding sequence for the human *Shh* gene. Other heterologous promoters (or other transcriptional regulatory sequences) can be inserted in a genomic *hedgehog* gene by a similar method.

In still other embodiments, the replacement region merely deletes a negative transcriptional control element of the native gene, e.g., to activate expression, or ablates a positive control element, e.g., to inhibit expression of the targeted gene.

V. Exemplary ptc therapeutic compounds.

In another embodiment, the subject method is carried out using a *ptc* therapeutic composition. Such compositions can be generated with, for example, compounds which bind to *patched* and alter its signal transduction activity, compounds which alter the binding and/or enzymatic activity of a protein (e.g., intracellular) involved in *patched* signal pathway, and

20

25

5

10

compounds which alter the level of expression of a *hedgehog* protein, a *patched* protein or a protein involved in the intracellular signal transduction pathway of patched.

The availability of purified and recombinant *hedgehog* polypeptides facilitates the generation of assay systems which can be used to screen for drugs, such as small organic molecules, which are either agonists or antagonists of the normal cellular function of a *hedgehog* and/or *patched* protein, particularly in their role in the pathogenesis of neuronal cell death. In one embodiment, the assay evaluates the ability of a compound to modulate binding between a *hedgehog* polypeptide and a *hedgehog* receptor such as *patched*. In other embodiments, the assay merely scores for the ability of a test compound to alter the signal transduction activity of the *patched* protein. In this manner, a variety of *hedgehog* and/or *ptc* therapeutics, which will include ones with neuroprotective activity, can be identified. A variety of assay formats will suffice and, in light of the present disclosure, will be comprehended by a skilled artisan.

In many drug screening programs which test libraries of compounds and natural extracts, high throughput assays are desirable in order to maximize the number of compounds surveyed in a given period of time. Assays which are performed in cell-free systems, such as may be derived with purified or semi-purified proteins, are often preferred as "primary" screens in that they can be generated to permit rapid development and relatively easy detection of an alteration in a molecular target which is mediated by a test compound. Moreover, the effects of cellular toxicity and/or bioavailability of the test compound can be generally ignored in the *in vitro* system, the assay instead being focused primarily on the effect of the drug on the molecular target as may be manifest in an alteration of binding affinity with receptor proteins.

Accordingly, in an exemplary screening assay for *ptc* therapeutics, the compound of interest is contacted with a mixture including a *hedgehog* receptor protein (e.g., a cell expressing the *patched* receptor) and a *hedgehog* protein under conditions in which it is ordinarily capable of binding the *hedgehog* protein. To the mixture is then added a composition containing a test compound. Detection and quantification of receptor/*hedgehog* complexes provides a means for determining the test compound's efficacy at inhibiting (or potentiating) complex formation between the receptor protein and the *hedgehog* polypeptide. Moreover, a control assay can also be performed to provide a baseline for comparison. In the control assay, isolated and purified

5

10

15

20

25

hedgehog polypeptide is added to the receptor protein, and the formation of receptor/hedgehog complex is quantitated in the absence of the test compound.

Agonist and antagonists of neuroprotection can be distinguished, and the efficacy of the compound can be assessed, by subsequent testing with neuronal cells.

In an illustrative embodiment, the polypeptide utilized as a hedgehog receptor can be generated from the patched protein. Accordingly, an exemplary screening assay includes all or a suitable portion of the patched protein which can be obtained from, for example, the human patched gene (GenBank U43148) or other vertebrate sources (see GenBank Accession numbers U40074 for chicken patched and U46155 for mouse patched), as well as from drosophila (GenBank Accession number M28999) or other invertebrate sources. The patched protein can be provided in the screening assay as a whole protein (preferably expressed on the surface of a cell), or alternatively as a fragment of the full length protein which binds to hedgehog polypeptides, e.g., as one or both of the substantial extracellular domains (e.g., corresponding to residues Asn120-Ser438 and/or Arg770-Trp1027 of the human patched protein). For instance, the patched protein can be provided in soluble form, as for example a preparation of one of the extracellular domains, or a preparation of both of the extracellular domains which are covalently connected by an unstructured linker (see, for example, Huston et al. (1988) PNAS 85:4879; and U.S. Patent No. 5,091,513). In other embodiments, the protein can be provided as part of a liposomal preparation or expressed on the surface of a cell. The patched protein can derived from a recombinant gene, e.g., being ectopically expressed in a heterologous cell. For instance, the protein can be expressed on oocytes, mammalian cells (e.g., COS, CHO, 3T3 or the like), or yeast cells by standard recombinant DNA techniques. These recombinant cells can be used for receptor binding, signal transduction or gene expression assays. Marigo et al. (1996) Development 122:1225-1233 illustrates a binding assay of human hedgehog to chick patched protein ectopically expressed in Xenopus laevis oocytes. The assay system of Marigo et al. can be adapted to the present drug screening assays. As illustrated in that reference, Shh binds to the patched protein in a selective, saturable, dose-dependent manner, thus demonstrating that patched is a receptor for Shh.

20

25

5

10

Complex formation between the *hedgehog* polypeptide and a *hedgehog* receptor may be detected by a variety of techniques. For instance, modulation of the formation of complexes can be quantitated using, for example, detectably labelled proteins such as radiolabelled, fluorescently labelled, or enzymatically labelled *hedgehog* polypeptides, by immunoassay, or by chromatographic detection.

Typically, for cell-free assays, it will be desirable to immobilize either the *hedgehog* receptor or the *hedgehog* polypeptide to facilitate separation of receptor/*hedgehog* complexes from uncomplexed forms of one of the proteins, as well as to accommodate automation of the assay. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase/receptor (GST/receptor) fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the *hedgehog* polypeptide, e.g., an ³⁵S-labeled *hedgehog* polypeptide, and the test compound and incubated under conditions conducive to complex formation, e.g., at physiological conditions for salt and pH, though slightly more stringent conditions may be desired. Following incubation, the beads are washed to remove any unbound *hedgehog* polypeptide, and the matrix bead-bound radiolabel determined directly (e.g., beads placed in scintillant), or in the supernatant after the receptor/*hedgehog* complexes are dissociated. Alternatively, the complexes can be dissociated from the bead, separated by SDS-PAGE gel, and the level of *hedgehog* polypeptide found in the bead fraction quantitated from the gel using standard electrophoretic techniques.

Other techniques for immobilizing proteins on matrices are also available for use in the subject assay. For instance, soluble portions of the *hedgehog* receptor protein can be immobilized utilizing conjugation of biotin and streptavidin. For instance, biotinylated receptor molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with the *hedgehog* receptor but which do not interfere with *hedgehog* binding can be derivatized to the wells of the plate, and the receptor trapped in the wells by antibody conjugation. As above, preparations of a *hedgehog* polypeptide and a test compound are incubated in the

5

10

receptor-presenting wells of the plate, and the amount of receptor/hedgehog complex trapped in the well can be quantitated. Exemplary methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the hedgehog polypeptide, or which are reactive with the receptor protein and compete for binding with the hedgehog polypeptide; as well as enzymelinked assays which rely on detecting an enzymatic activity associated with the hedgehog polypeptide. In the instance of the latter, the enzyme can be chemically conjugated or provided as a fusion protein with the hedgehog polypeptide. To illustrate, the hedgehog polypeptide can be chemically cross-linked or genetically fused with alkaline phosphatase, and the amount of hedgehog polypeptide trapped in the complex can be assessed with a chromogenic substrate of the enzyme, e.g., paranitrophenylphosphate. Likewise, a fusion protein comprising the hedgehog polypeptide and glutathione-S-transferase can be provided, and complex formation quantitated by detecting the GST activity using 1-chloro-2,4-dinitrobenzene (Habig et al (1974) J Biol Chem 249:7130).

For processes which rely on immunodetection for quantitating one of the proteins trapped in the complex, antibodies against the protein, such as the anti-hedgehog antibodies described herein, can be used. Alternatively, the protein to be detected in the complex can be "epitope tagged" in the form of a fusion protein which includes, in addition to the hedgehog polypeptide or hedgehog receptor sequence, a second polypeptide for which antibodies are readily available (e.g., from commercial sources). For instance, the GST fusion proteins described above can also be used for quantification of binding using antibodies against the GST moiety. Other useful epitope tags include myc-epitopes (e.g., see Ellison et al. (1991) *J Biol Chem* 266:21150-21157) which includes a 10-residue sequence from c-myc, as well as the pFLAG system (International Biotechnologies, Inc.) or the pEZZ-protein A system (Pharamacia, NJ).

Where the desired portion of the *hedgehog* receptor (or other *hedgehog* binding molecule) cannot be provided in soluble form, liposomal vesicles can be used to provide manipulatable and isolatable sources of the receptor. For example, both authentic and recombinant forms of the *patched* protein can be reconstituted in artificial lipid vesicles (e.g., phosphatidylcholine liposomes) or in cell membrane-derived vesicles (see, for example, Bear et

20

al. (1992) *Cell* 68:809-818; Newton et al. (1983) *Biochemistry* 22:6110-6117; and Reber et al. (1987) *J Biol Chem* 262:11369-11374).

In addition to cell-free assays, such as described above, the readily available source of hedgehog proteins provided by the art also facilitates the generation of cell-based assays for identifying small molecule agonists of the neuroprotective activity of wild-type hedgehog proteins. Analogous to the cell-based assays described above for screening combinatorial libraries, neuronal cells which are sensitive to hedgehog-dependent protection against ischemic damage can be contacted with a hedgehog protein and a test agent of interest, with the assay scoring for anything from simple binding to the cell to modulation in hedgehog inductive responses by the target cell in the presence and absence of the test agent. As with the cell-free assays, agents which produce a statistically significant change in hedgehog activities (either inhibition or potentiation) can be identified.

In addition to characterizing cells that naturally express the *patched* protein, cells which have been genetically engineered to ectopically express *patched* can be utilized for drug screening assays. As an example, cells which either express low levels or lack expression of the *patched* protein, e.g., *Xenopus laevis* oocytes, COS cells or yeast cells, can be genetically modified using standard techniques to ectopically express the *patched* protein. (see Marigo et al., *supra*).

The resulting recombinant cells, e.g., which express a functional *patched* receptor, can be utilized in receptor binding assays to identify agonist or anatagonists of *hedgehog* binding. Binding assays can be performed using whole cells. Furthermore, the recombinant cells of the present invention can be engineered to include other heterologous genes encoding proteins involved in *hedgehog*-dependent signal pathways. For example, the gene products of one or more of *smoothened*, *costal-2* and/or *fused* can be co-expressed with *patched* in the reagent cell, with assays being sensitive to the functional reconstituion of the *hedgehog* signal transduction cascade.

Alternatively, liposomal preparations using reconstituted *patched* protein can be utilized. *Patched* protein purified from detergent extracts from both authentic and recombinant origins can be reconstituted in artificial lipid vesicles (e.g., phosphatidylcholine liposomes) or in cell

10

5

15

20

20

25

5

10

membrane-derived vesicles (see, for example, Bear et al. (1992) *Cell* 68:809-818; Newton et al. (1983) *Biochemistry* 22:6110-6117; and Reber et al. (1987) *J Biol Chem* 262:11369-11374). The lamellar structure and size of the resulting liposomes can be characterized using electron microscopy. External orientation of the *patched* protein in the reconstituted membranes can be demonstrated, for example, by immunoelectron microscopy. The *hedgehog* protein binding activity of liposomes containing *patched* and liposomes without the protein in the presence of candidate agents can be compared in order to identify potential modulators of the *hedgehog-patched* interaction.

The *hedgehog* protein used in these cell-based assays can be provided as a purified source (natural or recombinant in origin), or in the form of cells/tissue which express the protein and which are co-cultured with the target cells. As in the cell-free assays, where simple binding (rather than induction) is the *hedgehog* activity scored for in the assay, the protein can be labelled by any of the above-mentioned techniques, e.g., fluorescently, enzymatically or radioactively, or detected by immunoassay.

In addition to binding studies, functional assays can be used to identified modulators, i.e., agonists of *hedgehog* or *patched* activities. By detecting changes in intracellular signals, such as alterations in second messengers or gene expression in *patched*-expressing cells contacted with a test agent, candidate antagonists to *patched* signaling can be identified (e.g., having a *hedgehog*-like activity).

A number of gene products have been implicated in *patched*-mediated signal transduction, including *patched*, the transcription factor *cubitus interruptus* (ci), the serine/threonine kinase *fused* (fu) and the gene products of *costal-2*, *smoothened* and *suppressor of fused*.

The interaction of a *hedgehog* protein with *patched* sets in motion a cascade involving the activation and inhibition of downstream effectors, the ultimate consequence of which is, in some instances, a detectable change in the transcription or translation of a gene. Potential transcriptional targets of *patched* signaling are the *patched* gene itself (Hidalgo and Ingham, 1990 *Development* 110, 291-301; Marigo et al., 1996) and the vertebrate homologs of the drosophila cubitus interruptus gene, the *GLI* genes (Hui et al. (1994) *Dev Biol* 162:402-413).

20

25

5

10

Patched gene expression has been shown to be induced in cells of the limb bud and the neural plate that are responsive to Shh. (Marigo et al. (1996) PNAS, in press; Marigo et al. (1996) Development 122:1225-1233). The GLI genes encode putative transcription factors having zinc finger DNA binding domains (Orenic et al. (1990) Genes & Dev 4:1053-1067; Kinzler et al. (1990) Mol Cell Biol 10:634-642). Transcription of the GLI gene has been reported to be upregulated in response to hedgehog in limb buds, while transcription of the GLI3 gene is downregulated in response to hedgehog induction (Marigo et al. (1996) Development 122:1225-1233). By selecting transcriptional regulatory sequences from such target genes, e.g., from patched or GLI genes, that are responsible for the up- or down-regulation of these genes in response to patched signalling, and operatively linking such promoters to a reporter gene, one can derive a transcription based assay which is sensitive to the ability of a specific test compound to modify patched signalling pathways. Expression of the reporter gene, thus, provides a valuable screening tool for the development of compounds that act as antagonists of ptc, e.g., which may be useful as neuroprotective agents.

Reporter gene based assays of this invention measure the end stage of the above described cascade of events, e.g., transcriptional modulation. Accordingly, in practicing one embodiment of the assay, a reporter gene construct is inserted into the reagent cell in order to generate a detection signal dependent on *ptc* signaling. To identify potential regulatory elements responsive to *ptc* signaling present in the transcriptional regulatory sequence of a target gene, nested deletions of genomic clones of the target gene can be constructed using standard techniques. See, for example, <u>Current Protocols in Molecular Biology</u>, Ausubel, F.M. et al. (eds.) Greene Publishing Associates, (1989); U.S. Patent 5,266,488; Sato et al. (1995) *J Biol Chem* 270:10314-10322; and Kube et al. (1995) *Cytokine* 7:1-7. A nested set of DNA fragments from the gene's 5'-flanking region are placed upstream of a reporter gene, such as the luciferase gene, and assayed for their ability to direct reporter gene expression in *patched* expressing cells. Host cells transiently transfected with reporter gene constructs can be scored for the induction of expression of the reporter gene in the presence and absence of *hedgehog* to determine regulatory sequences which are responsive to *patched*-dependent signalling.

20

25

5

10

In practicing one embodiment of the assay, a reporter gene construct is inserted into the reagent cell in order to generate a detection signal dependent on second messengers generated by induction with *hedgehog* protein. Typically, the reporter gene construct will include a reporter gene in operative linkage with one or more transcriptional regulatory elements responsive to the *hedgehog* activity, with the level of expression of the reporter gene providing the *hedgehog*-dependent detection signal. The amount of transcription from the reporter gene may be measured using any method known to those of skill in the art to be suitable. For example, mRNA expression from the reporter gene may be detected using RNAse protection or RNA-based PCR, or the protein product of the reporter gene may be identified by a characteristic stain or an intrinsic activity. The amount of expression from the reporter gene is then compared to the amount of expression in either the same cell in the absence of the test compound (or *hedgehog*) or it may be compared with the amount of transcription in a substantially identical cell that lacks the target receptor protein. Any statistically or otherwise significant difference in the amount of transcription indicates that the test compound has in some manner altered the signal transduction of the *patched* protein, e.g., the test compound is a potential ptc therapeutic.

As described in further detail below, in preferred embodiments the gene product of the reporter is detected by an intrinsic activity associated with that product. For instance, the reporter gene may encode a gene product that, by enzymatic activity, gives rise to a detection signal based on color, fluorescence, or luminescence. In other preferred embodiments, the reporter or marker gene provides a selective growth advantage, e.g., the reporter gene may enhance cell viability, relieve a cell nutritional requirement, and/or provide resistance to a drug.

Preferred reporter genes are those that are readily detectable. The reporter gene may also be included in the construct in the form of a fusion gene with a gene that includes desired transcriptional regulatory sequences or exhibits other desirable properties. Examples of reporter genes include, but are not limited to CAT (chloramphenicol acetyl transferase) (Alton and Vapnek (1979), Nature 282: 864-869) luciferase, and other enzyme detection systems, such as beta-galactosidase; firefly luciferase (deWet et al. (1987), Mol. Cell. Biol. 7:725-737); bacterial luciferase (Engebrecht and Silverman (1984), PNAS 1: 4154-4158; Baldwin et al. (1984), Biochemistry 23: 3663-3667); alkaline phosphatase (Toh et al. (1989) Eur. J. Biochem. 182:

231-238, Hall et al. (1983) J. Mol. Appl. Gen. 2: 101), human placental secreted alkaline phosphatase (Cullen and Malim (1992) Methods in Enzymol. 216:362-368).

Transcriptional control elements which may be included in a reporter gene construct include, but are not limited to, promoters, enhancers, and repressor and activator binding sites. Suitable transcriptional regulatory elements may be derived from the transcriptional regulatory regions of genes whose expression is induced after modulation of a *patched* signal transduction pathway. The characteristics of preferred genes from which the transcriptional control elements are derived include, but are not limited to, low or undetectable expression in quiescent cells, rapid induction at the transcriptional level within minutes of extracellular stimulation, induction that is transient and independent of new protein synthesis, subsequent shut-off of transcription requires new protein synthesis, and mRNAs transcribed from these genes have a short half-life. It is not necessary for all of these properties to be present.

In yet other embodiments, second messenger generation can be measured directly in the detection step, such as mobilization of intracellular calcium, phospholipid metabolism or adenylate cyclase activity are quantitated, for instance, the products of phospholipid hydrolysis IP₃, DAG or cAMP could be measured. For example, recent studies have implicated protein kinase A (PKA) as a possible component of *hedgehog/patched* signaling (Hammerschmidt et al. (1996) *Genes & Dev* 10:647). High PKA activity has been shown to antagonize *hedgehog* signaling in these systems. Conversely, inhibitors of PKA will mimic and/or potentiate the action of *hedgehog*. Although it is unclear whether PKA acts directly downstream or in parallel with *hedgehog* signaling, it is possible that *hedgehog* signalling occurs via inhibition of PKA activity. Thus, detection of PKA activity provides a potential readout for the instant assays. In certain embodiments, a preferred *ptc* therapeutic inhibits PKA with a K_i less than 10 nM, preferably less than 1 nM, even more preferably less than 0.1 nM.

In a preferred embodiment, the *ptc* therapeutic is a PKA inhibitor. A variety of PKA inhibitors are known in the art, including both peptidyl and organic compounds. For instance, the *ptc* therapeutic can be a 5-isoquinolinesulfonamide, such as represented in the general formula:

10

5

15

25

15

5

wherein,

 R_1 and R_2 each can independently represent hydrogen, and as valence and stability permit a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m-R_8$, $-(CH_2)_m-OH$

 R_1 and R_2 taken together with N form a heterocycle (substituted or unsubstituted);

 R_3 is absent or represents one or more substitutions to the isoquinoline ring such as a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m$ - R_8 , $-(CH_2)_m$ -OH, $-(CH_2)_m$ -O-lower alkyl, $-(CH_2)_m$ -O-lower alkenyl, $-(CH_2)_n$ -O-($-(CH_2)_m$ - $-(CH_2)_m$ -R₈, $-(CH_2)_m$ -SH, $-(CH_2)_m$ -S-lower alkyl, $-(CH_2)_m$ -S-lower alkenyl, $-(CH_2)_n$ -S-($-(CH_2)_m$ -R₈;

R₈ represents a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and

n and m are independently for each occurrence zero or an integer in the range of 1 to 6.

In a preferred embodiment, the PKA inhibitor is N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H-89; Calbiochem Cat. No. 371963), e.g., having the formula:

In another embodiment, the PKA inhibitor is 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7; Calbiochem Cat. No. 371955), e.g., having the formula:

In still other embodiments, the PKA inhibitor is KT5720 (Calbiochem Cat. No. 420315), having the structure

The *hedgehog* pathway can be agonized by antagonizing the cAMP pathway, e.g., by using an agonist of cAMP phosphodiesterase, or by using an antagonist of adenylate cyclase, cAMP or protein kinase A (PKA). Compounds which may reduce the levels or activity of cAMP include prostaglandylinositol cyclic phosphate (cyclic PIP), endothelins (ET)-1 and -3,

norepinepurine, K252a, dideoxyadenosine, dynorphins, melatonin, pertussis toxin, staurosporine, G. agonists, MDL 12330A, SQ 22536, GDPssS and clonidine, beta-blockers, and ligands of Gprotein coupled receptors. Additional compounds are disclosed in U.S. Patent Nos. 5,891,875, 5,260,210, and 5,795,756.

Exemplary peptidyl inhibitors of PKA activity include the PKA Heat Stable Inhibitor (isoform α; see, for example, Calbiochem Cat. No. 539488, and Wen et al. (1995) J Biol Chem 270:2041).

In certain embodiments, a compound which is an agonist or antagonist of PKA is chosen to be selective for PKA over other protein kinases, such as PKC, e.g., the compound modulates the activity of PKA at least an order of magnitude more strongly than it modulates the activity of another protein kinase, preferably at least two orders of magnitude more strongly, even more preferably at least three orders of magnitude more strongly. Thus, for example, a preferred inhibitor of PKA may inhibit PKA activity with a K_i at least an order of magnitude lower than its K, for inhibition of PKC, preferably at least two orders of magnitude lower, even more preferably at least three orders of magnitude lower. In certain embodiments, a ptc therapeutic inhibits PKC with a K_i greater than 1 μM, greater than 100 nM, preferably greater than 10 nM.

Certain hedgehog receptors may stimulate the activity of phospholipases. Inositol lipids can be extracted and analyzed using standard lipid extraction techniques. Water soluble derivatives of all three inositol lipids (IP₁, IP₂, IP₃) can also be quantitated using radiolabelling techniques or HPLC.

The mobilization of intracellular calcium or the influx of calcium from outside the cell may be a response to *hedgehog* stimulation or lack there of. Calcium flux in the reagent cell can be measured using standard techniques. The choice of the appropriate calcium indicator, fluorescent, bioluminescent, metallochromic, or Ca⁺⁺-sensitive microelectrodes depends on the cell type and the magnitude and time constant of the event under study (Borle (1990) Environ Health Perspect 84:45-56). As an exemplary method of Ca⁺⁺ detection, cells could be loaded with the Ca⁺⁺sensitive fluorescent dye fura-2 or indo-1, using standard methods, and any change in Ca⁺⁺ measured using a fluorometer.

5

10

20

20

25

5

10

In certain embodiments of the assay, it may be desirable to screen for changes in cellular phosphorylation. As an example, the drosophila gene *fused* (fu) which encodes a serine/threonine kinase has been identified as a potential downstream target in *hedgehog* signaling. (Preat et al., 1990 *Nature* 347, 87-89; Therond et al. 1993, *Mech. Dev.* 44. 65-80). The ability of compounds to modulate serine/threonine kinase activation could be screened using colony immunoblotting (Lyons and Nelson (1984) *Proc. Natl. Acad. Sci. USA* 81:7426-7430) using antibodies against phosphorylated serine or threonine residues. Reagents for performing such assays are commercially available, for example, phosphoserine and phosphothreonine specific antibodies which measure increases in phosphorylation of those residues can be purchased from commercial sources.

In yet another embodiment, the *ptc* therapeutic is an antisense molecule which inhibits expression of a protein involved in a *patched*-mediated signal transduction pathway. To illustrate, by inhibiting the expression of a protein involved in *patched* signals, such as *fused*, *costal-2*, *smoothened* and/or *Gli* genes, or *patched* itself, the ability of the *patched* signal pathway(s) to alter the ability of a cell to withstand ischemic conditions can be altered, e.g., potentiated or repressed.

As used herein, "antisense" therapy refers to administration or *in situ* generation of oligonucleotide probes or their derivatives which specifically hybridize (e.g., bind) under cellular conditions with cellular mRNA and/or genomic DNA encoding a *hedgehog* protein, *patched*, or a protein involved in *patched*-mediated signal transduction. The hybridization should inhibit expression of that protein, e.g., by inhibiting transcription and/or translation. The binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix. In general, "antisense" therapy refers to the range of techniques generally employed in the art, and includes any therapy which relies on specific binding to oligonucleotide sequences.

An antisense construct of the present invention can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of the target cellular mRNA. Alternatively, the antisense construct is an oligonucleotide probe which is generated *ex vivo* and which, when introduced into the cell

25

5

10

causes inhibition of expression by hybridizing with the mRNA and/or genomic sequences of a target gene. Such oligonucleotide probes are preferably modified oligonucleotide which are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and is therefore stable *in vivo*. Exemplary nucleic acid molecules for use as antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Patents 5,176,996; 5,264,564; and 5,256,775). Additionally, general approaches to constructing oligomers useful in antisense therapy have been reviewed, for example, by Van der Krol et al. (1988) *Biotechniques* 6:958-976; and Stein et al. (1988) *Cancer Res* 48:2659-2668.

Several considerations should be taken into account when constructing antisense oligonucleotides for the use in the methods of the invention: (1) oligos should have a GC content of 50% or more; (2) avoid sequences with stretches of 3 or more G's; and (3) oligonucleotides should not be longer than 25-26 mers. When testing an antisense oligonucleotide, a mismatched control can be constructed. The controls can be generated by reversing the sequence order of the corresponding antisense oligonucleotide in order to conserve the same ratio of bases.

In an illustrative embodiment, the *ptc* therapeutic can be an antisense construct for inhibiting the expression of *patched*, e.g., to mimic the inhibition of *patched* by *hedgehog*. Exemplary antisense constructs include:

5'-GTCCTGGCGCCGCCGCCGCCGTCGCC

5'-TTCCGATGACCGGCCTTTCGCGGTGA

5'-GTGCACGGAAAGGTGCAGGCCACACT

VI. Exemplary pharmaceutical preparations of hedgehog and ptc therapeutics

The source of the *hedgehog* and ptc therapeutics to be formulated will depend on the particular form of the agent. Small organic molecules and peptidyl fragments can be chemically synthesized and provided in a pure form suitable for pharmaceutical/cosmetic usage. Products of natural extracts can be purified according to techniques known in the art. For example, the Cox et al. U.S. Patent 5,286,654 describes a method for purifying naturally occurring forms of a

į

Will Hall Hall Harry

5

20

25

secreted protein and can be adapted for purification of hedgehog polypeptides. Recombinant sources of hedgehog polypeptides are also available. For example, the gene encoding hedgehog polypeptides, are known, inter alia, from PCT publications WO 95/18856 and WO 96/17924.

Those of skill in treating neural tissues can determine the effective amount of an hedgehog or ptc therapeutic to be formulated in a pharmaceutical or cosmetic preparation.

The hedgehog or ptc therapeutic formulations used in the method of the invention are most preferably applied in the form of appropriate compositions. As appropriate compositions there may be cited all compositions usually employed for systemically or locally (such as intrathecal) administering drugs. The pharmaceutically acceptable carrier should be substantially inert, so as not to act with the active component. Suitable inert carriers include water, alcohol polyethylene glycol, mineral oil or petroleum gel, propylene glycol and the like.

To prepare the pharmaceutical compositions of this invention, an effective amount of the particular hedgehog or ptc therapeutic as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represents the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to

The first of the control of the first of the

liquid form preparations. In the compositons suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin.

It is especially advantageous to formulate the subject compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powders packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

The pharmaceutical preparations of the present invention can be used, as stated above, for the many applications which can be considered cosmetic uses. Cosmetic compositions known in the art, preferably hypoallergic and pH controlled are especially preferred, and include toilet waters, packs, lotions, skin milks or milky lotions. The preparations contain, besides the *hedgehog* or ptc therapeutic, components usually employed in such preparations. Examples of such components are oils, fats, waxes, surfactants, humectants, thickening agents, antioxidants, viscosity stabilizers, chelating agents, buffers, preservatives, perfumes, dyestuffs, lower alkanols, and the like. If desired, further ingredients may be incorporated in the compositions, e.g., antiinflammatory agents, antibacterials, antifungals, disinfectants, vitamins, sunscreens, antibiotics, or other anti-acne agents.

Examples of oils comprise fats and oils such as olive oil and hydrogenated oils; waxes such as beeswax and lanolin; hydrocarbons such as liquid paraffin, ceresin, and squalane; fatty acids such as stearic acid and oleic acid; alcohols such as cetyl alcohol, stearyl alcohol, lanolin alcohol, and hexadecanol; and esters such as isopropyl myristate, isopropyl palmitate and butyl stearate. As examples of surfactants there may be cited anionic surfactants such as sodium stearate, sodium cetylsulfate, polyoxyethylene laurylether phosphate, sodium N-acyl glutamate; cationic surfactants such as stearyldimethylbenzylammonium chloride and

20

25

15

5

10

15

20

25

stearyltrimethylammonium chloride; ampholytic surfactants such as alkylaminoethylglycine hydrocloride solutions and lecithin; and nonionic surfactants such as glycerin monostearate, sorbitan monostearate, sucrose fatty acid esters, propylene glycol monostearate, polyoxyethylene oleylether, polyethylene glycol monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene coconut fatty acid monoethanolamide, polyoxypropylene glycol (e.g., the materials sold under the trademark "Pluronic"), polyoxyethylene castor oil, and polyoxyethylene lanolin. Examples of humectants include glycerin, 1,3-butylene glycol, and propylene glycol; examples of lower alcohols include ethanol and isopropanol; examples of thickening agents include xanthan gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol and sodium carboxymethyl cellulose; examples of antioxidants comprise butylated hydroxytoluene, butylated hydroxyanisole, propyl gallate, citric acid and ethoxyquin; examples of chelating agents include disodium edetate and ethanehydroxy diphosphate; examples of buffers comprise citric acid, sodium citrate, boric acid, borax, and disodium hydrogen phosphate; and examples of preservatives are methyl parahydroxybenzoate, ethyl parahydroxybenzoate, dehydroacetic acid, salicylic acid and benzoic acid.

For preparing ointments, creams, toilet waters, skin milks, and the like, typically from 0.01 to 10% in particular from 0.1 to 5% and more in particular from 0.2 to 2.5% of the active ingredient, e.g., of the *hedgehog* or ptc therapeutic, will be incorporated in the compositions. In ointments or creams, the carrier for example consists of 1 to 20%, in particular 5 to 15% of a humectant, 0.1 to 10% in particular from 0.5 to 5% of a thickener and water; or said carrier may consist of 70 to 99%, in particular 20 to 95% of a surfactant, and 0 to 20%, in particular 2.5 to 15% of a fat; or 80 to 99.9% in particular 90 to 99% of a thickener; or 5 to 15% of a surfactant, 2-15% of a humectant, 0 to 80% of an oil, very small (< 2%) amounts of preservative, coloring agent and/or perfume, and water. In a toilet water, the carrier for example consists of 2 to 10% of a lower alcohol, 0.1 to 10% or in particular 0.5 to 1% of a surfactant, 1 to 20%, in particular 3 to 7% of a humectant, 0 to 5% of a buffer, water and small amounts (< 2%) of preservative, dyestuff and/or perfume. In a skin milk, the carrier typically consists of 10-50% of oil, 1 to 10% of surfactant, 50-80% of water and 0 to 3% of preservative and/or perfume. In the aforementioned preparations, all % symbols refer to weight by weight percentage.

20

25

5

10

Particular compositions for use in the method of the present invention are those wherein the *hedgehog* or ptc therapeutic is formulated in liposome-containing compositions. Liposomes are artificial vesicles formed by amphiphatic molecules such as polar lipids, for example, phosphatidyl cholines, ethanolamines and serines, sphingomyelins, cardiolipins, plasmalogens, phosphatidic acids and cerebiosides. Liposomes are formed when suitable amphiphathic molecules are allowed to swell in water or aqueous solutions to form liquid crystals usually of multilayer structure comprised of many bilayers separated from each other by aqueous material (also referred to as coarse liposomes). Another type of liposome known to be consisting of a single bilayer encapsulating aqueous material is referred to as a unilamellar vesicle. If water-soluble materials are included in the aqueous phase during the swelling of the lipids they become entrapped in the aqueous layer between the lipid bilayers.

Water-soluble active ingredients such as, for example, various salt forms of a *hedgehog* polypeptide, are encapsulated in the aqueous spaces between the molecular layers. The lipid soluble active ingredient of *hedgehog* or ptc therapeutic, such as an organic mimetic, is predominantly incorporated into the lipid layers, although polar head groups may protude from the layer into the aqueous space. The encapsulation of these compounds can be achieved by a number of methods. The method most commonly used involves casting a thin film of phospholipid onto the walls of a flask by evaporation from an organic solvent. When this film is dispersed in a suitable aqueous medium, multilamellar liposomes are formed. Upon suitable sonication, the coarse liposomes form smaller similarly closed vesicles.

Water-soluble active ingredients are usually incorporated by dispersing the cast film with an aqueous solution of the compound. The unencapsulated compound is then removed by centrifugation, chromatography, dialysis or other art-known suitable procedures. The lipid-soluble active ingredient is usually incorporated by dissolving it in the organic solvent with the phospholipid prior to casting the film. If the solubility of the material in the lipid phase is not exceeded or the amount present is not in excess of that which can be bound to the lipid, liposomes prepared by the above method usually contain most of the material bound in the lipid bilayers; separation of the liposomes from unencapsulated material is not required.

20

25

5

10

A particularly convenient method for preparing liposome formulated forms of *hedgehog* and ptc therapeutics is the method described in EP-A-253,619, incorporated herein by reference. In this method, single bilayered liposomes containing encapsulated active ingredients are prepared by dissolving the lipid component in an organic medium, injecting the organic solution of the lipid component under pressure into an aqueous component while simultaneously mixing the organic and aqueous components with a high speed homogenizer or mixing means, whereupon the liposomes are formed spontaneously.

The single bilayered liposomes containing the encapsulated hedgehog or ptc therapeutic can be employed directly or they can be employed in a suitable pharmaceutically acceptable carrier for localized administration. The viscosity of the liposomes can be increased by the addition of one or more suitable thickening agents such as, for example xanthan gum, hydroxypropyl cellulose, hydroxypropyl methylcellulose and mixtures thereof. The aqueous component may consist of water alone or it may contain electrolytes, buffered systems and other ingredients, such as, for example, preservatives. Suitable electrolytes which can be employed include metal salts such as alkali metal and alkaline earth metal salts. The preferred metal salts are calcium chloride, sodium chloride and potassium chloride. The concentration of the electrolyte may vary from zero to 260 mM, preferably from 5 mM to 160 mM. The aqueous component is placed in a suitable vessel which can be adapted to effect homogenization by effecting great turbulence during the injection of the organic component. Homogenization of the two components can be accomplished within the vessel, or, alternatively, the aqueous and organic components may be injected separately into a mixing means which is located outside the vessel. In the latter case, the liposomes are formed in the mixing means and then transferred to another vessel for collection purpose.

The organic component consists of a suitable non-toxic, pharmaceutically acceptable solvent such as, for example ethanol, glycerol, propylene glycol and polyethylene glycol, and a suitable phospholipid which is soluble in the solvent. Suitable phospholipids which can be employed include lecithin, phosphatidylcholine, phosphatydylserine, phosphatidylethanol-amine, phosphatidylinositol, lysophosphatidylcholine and phospha-tidyl glycerol, for example. Other lipophilic additives may be employed in order to selectively modify the characteristics of

The state of the s

the liposomes. Examples of such other additives include stearylamine, phosphatidic acid, tocopherol, cholesterol and lanolin extracts.

In addition, other ingredients which can prevent oxidation of the phospholipids may be added to the organic component. Examples of such other ingredients include tocopherol, butylated hydroxyanisole, butylated hydroxytoluene, ascorbyl palmitate and ascorbyl oleate. Preservatives such a benzoic acid, methyl paraben and propyl paraben may also be added.

Methods of introduction may also be provided by rechargeable or biodegradable devices. Various slow release polymeric devices have been developed and tested *in vivo* in recent years for the controlled delivery of drugs, including proteinacious biopharmaceuticals. A variety of biocompatible polymers (including hydrogels), including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of an *hh* at a particular target site. Such embodiments of the present invention can be used for the delivery of an exogenously purified *hedgehog* protein, which has been incorporated in the polymeric device, or for the delivery of *hedgehog* produced by a cell encapsulated in the polymeric device.

An essential feature of certain embodiments of the implant can be the linear release of the therapeutic, which can be achieved through the manipulation of the polymer composition and form. By choice of monomer composition or polymerization technique, the amount of water, porosity and consequent permeability characteristics can be controlled. The selection of the shape, size, polymer, and method for implantation can be determined on an individual basis according to the disorder to be treated and the individual patient response. The generation of such implants is generally known in the art. See, for example, *Concise Encylopedia of Medical & Dental Materials*, ed. by David Williams (MIT Press: Cambridge, MA, 1990); and the Sabel et al. U.S. Patent No. 4,883,666.

In another embodiment of an implant, a source of cells producing the therapeutic, e.g., secreting a soluble form of a *hedgehog* protein, is encapsulated in implantable hollow fibers or the like. Such fibers can be pre-spun and subsequently loaded with the cell source (Aebischer et al. U.S. Patent No. 4,892,538; Aebischer et al. U.S. Patent No. 5,106,627; Hoffman et al. (1990) *Expt. Neurobiol.* 110:39-44; Jaeger et al. (1990) *Prog. Brain Res.* 82:41-46; and Aebischer et al. (1991) *J. Biomech. Eng.* 113:178-183), or can be co-extruded with a polymer which acts to form

The same

15

5

10

20

a polymeric coat about the cells (Lim U.S. Patent No. 4,391,909; Sefton U.S. Patent No. 4,353,888; Sugamori et al. (1989) *Trans. Am. Artif. Intern. Organs* 35:791-799; Sefton et al. (1987) *Biotehnol. Bioeng.* 29:1135-1143; and Aebischer et al. (1991) *Biomaterials* 12:50-55).

Exemplification

The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.

Sonic Hedgehog (Shh) was evaluated in the focal stroke model involving permanent middle cerebral artery occlusion (MCAO) in the spontaneously hypertensive rat. Samples of the proteins were tested as a neuroprotective agent by measuring the volume of cerebral infarction, by means of vital dye exclusion, in animals receiving systemic injections. For review of the MCAO, see Tamura et al. (1981) J Cerebral Blood Flow and Metabolism 1:53-60.

Briefly, male Wistar rats, weighing about 270-300g were treated systemically with *Shh* at 500 µg/kg/hr for 3 hrs at 0.5 ml/hr. Control animals received buffer at same dilution as Shh stock for the same period of time and volumes.

Prior to administration of the *Shh* or control stocks, the MCAO animals were generated as follows: the rats were anesthesized, with 400 mg/ml chloral hydrate, and their femoral vein and artery were cannulated. Mean arterial blood pressure was monitered and blood samples taken for blood gas measurements. A half-hour later, the middle cereberal artery was occluded with a nylon monofilament suture inserted via carotid artery. Half-hour after onset of occlusion, having allowed animal to awake, infusion of Shh or buffer/vehicle was started. The catheters were removed, and the animals were returned to their cages. At 24 hours post-surgery, the animals sacrificed by decapitation. Their brains were removed and cut into 2 mm serial, coronal sections. The sections stained with TTC stain and then fixed in neutral buffered formalin. Infarct volumes measured by quantitative morphometry and expressed as a percentage of the total hemispheric

10

5

15

20

THE REPORT OF THE PARTY AND TH

5

10

15

volume (normalized against the contralateral hemisphere to correct for edema-associated swelling).

Figure 1 illustrates the results of the above-referenced experiments. A substantial decrease in the volume of the cerebral infarct was observed in the *hedgehog* treated rats relative to the control rats. While not shown in Figure 1, its was further observed that there was no statistically significant effect of *hedgehog* on blood pressure, pH, pO₂, or pCO₂.

All of the above-cited references and publications are hereby incorporated by reference.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

SEQUENCE LISTING

5	(2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1277 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear																
		(ii) MOI	LECU:	LE T	YPE:	cDNA	P									
15		(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11275															
20		(xi) SE	QUEN	CE DI	ESCR	[PTI	ON:	SEQ :	ID N	0:1:						
<u> </u>									AGA Arg								48
									CTG Leu 25								96
30 30									AAG Lys								144
35									AAG Lys								192
40									TCC Ser								240
45									TTT Phe								288
73									TGC Cys 105								336
50									CCC Pro								384
55									CAC His								432
60									ACG Thr								480

					CTG Leu												_	528
	5				TCC Ser 180													576
	10				GCG Ala													624
	15				CAT His													672
	20				CTG Leu													720
Hugh Hand	20				TTC Phe													768
Handing Hall	25				ACG Thr 260													816
STREET STREET STREET	30				TTT Phe													864
H HAT THE WAY	35				GGC Gly													912
	40				GTG Val													960
					GTC Val													1008
	45				CAG Gln 340													1056
	50				ATC Ile													1104
	55				GCT Ala													1152
	60	Ile 385	Pro	Thr	GCC Ala CGC	Ala	Thr 390	Thr	Thr	Thr	Gly	Ile 395	His	Trp	Tyr	Ser	Arg 400	1200
	00				Arg													1248

405 410 415 1277 CCG CTG GGC ATG GTG GCA CCG GCC AGC TG Pro Leu Gly Met Val Ala Pro Ala Ser 5 420 (2) INFORMATION FOR SEQ ID NO:2: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1190 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: cDNA (ix) FEATURE: 20 (A) NAME/KEY: CDS (B) LOCATION: 1..1191 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: ATG GCT CTG CCG GCC AGT CTG TTG CCC CTG TGC TGC TTG GCA CTC TTG ij Met Ala Leu Pro Ala Ser Leu Leu Pro Leu Cys Cys Leu Ala Leu Leu TU 30 GCA CTA TCT GCC CAG AGC TGC GGG CCG GGC CGA GGA CCG GTT GGC CGG į. Ala Leu Ser Ala Gin Ser Cys Gly Pro Gly Arg Gly Pro Val Gly Arg 1.4 CGG CGT TAT GTG CGC AAG CAA CTT GTG CCT CTG CTA TAC AAG CAG TTT 144 Arg Arg Tyr Val Arg Lys Gln Leu Val Pro Leu Leu Tyr Lys Gln Phe 40 GTG CCC AGT ATG CCC GAG CGG ACC CTG GGC GCG AGT GGG CCA GCG GAG 192 40 Val Pro Ser Met Pro Glu Arg Thr Leu Gly Ala Ser Gly Pro Ala Glu GGG AGG GTA ACA AGG GGG TCG GAG CGC TTC CGG GAC CTC GTA CCC AAC 240 Gly Arg Val Thr Arg Gly Ser Glu Arg Phe Arg Asp Leu Val Pro Asn 45 TAC AAC CCC GAC ATA ATC TTC AAG GAT GAG GAG AAC AGC GGC GCA GAC 288 Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Ser Gly Ala Asp 85 90 50 CGC CTG ATG ACA GAG CGT TGC AAA GAG CGG GTG AAC GCT CTA GCC ATC 336 Arg Leu Met Thr Glu Arg Cys Lys Glu Arg Val Asn Ala Leu Ala Ile 100 105 110 55 GCG GTG ATG AAC ATG TGG CCC GGA GTA CGC CTA CGT GTG ACT GAA GGC 384 Ala Val Met Asn Met Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly 115 120 TGG GAC GAG GAC GGC CAC CAC GCA CAG GAT TCA CTC CAC TAC GAA GGC 432 Trp Asp Glu Asp Gly His His Ala Gln Asp Ser Leu His Tyr Glu Gly

135

	5				ACG Thr					480
	٥				GTG Val					528
	10				CAC His					576
	15				TGC Cys					624
	20				GGG Gly 215					672
44 10 10 10 10 10 10 10 10 10 10 10 10 10	25				GCG Ala					720
Har day and					CTG Leu					768
H Hand The	30				CGC Arg					816
	35				CCA Pro					864
	40				CGT Arg 295					912
	45				GCG Ala					960
					CCG Pro					1008
	50				TGC Cys					1056
	55				CCT Pro					1104
	60				GTC Val 375					1152

											TTA Leu			TG				1190
	5	(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO:3	:								
	10		(i	(QUENCA) LI 3) T C) S' O) T	ENGTI YPE: PRANI	H: 1: nuc. DEDNI	281] leic ESS:	base aci boti	pai: d	rs							
	15		(ii) MOI	LECUI	LE T	YPE:	cDN	A									
	20		(ix)	(2	ATURI A) Ni 3) L(AME/I			1233									
£			(xi) SE	QUEN	CE DI	ESCR.	IPTI	: :NC	SEQ :	ID N	0:3:						
	25										CTG Leu 10							48
the term that	30										CGG Arg							96
Short are seen than	35										CGC Arg							144
	33										GAG Glu							192
100	40										AGC Ser							240
	45										ATC Ile 90							288
	50										CGC Arg							336
	55	TCA Ser	CTG Leu	GCC Ala 115	ATC Ile	TCT Ser	GTC Val	ATG Met	AAC Asn 120	CAG Gln	TGG Trp	CCT Pro	GGT Gly	GTG Val 125	AAA Lys	CTG Leu	CGG Arg	384
	55										CAT His							432
	60										ACC Thr							480

		145			150			155			160		
	5			GGA Gly								52	28
	10			TAC Tyr 180								5	76
	10			GCC Ala								62	24
	15			CTA Leu								6	72
	20			CGG Arg								72	20
21 (02	25			CTT Leu								7 (68
the first first flat	30			ATC Ile 260								81	16
hay man	50			CTG Leu								8 (64
	35			GCC Ala								91	12
	40			GGG Gly								96	60
	45			GTG Val								100	08
	50			GTG Val 340								105	56
				CTG Leu								110	04
	55			TGG Trp								115	52
	60			CTC Leu								120	00

	5 ·										GGA Gly 410		TGA	AGGG <i>I</i>	ACT (CTAA	CCACTO	G 1253
	5	CCC	rcct(GGA <i>I</i>	ACTG(CTGT	GC G'	rgga:	rcc									1281
1	10	(2)		ORMA:														
	15		(,	(I (I	A) LE B) T C) S	ENGTI YPE: IRANI OPOLO	H: 13 nucl DEDNI	313 k leic ESS:	base acid both	pai: d	rs							
			(ii)) MOJ	LECUI	LE T	YPE:	CDNA	P			,						
21 TO	20		(ix)		N = N	E: AME/I OCATI			1314									
** //**	25		(xi)) SE(QUENC	CE DE	ESCRI	IPTI(: :ис	SEQ I	ID NO	0:4:						
The time than the time	30															TCC Ser 15		48
																TTT Phe		96
2	35															CAG Gln		144
1, 21 1, 21 1, 22 2, 2 2, 2 2 2 2	40															TAT Tyr		192
2	45															CCC Pro		240
4	50															GCA Ala 95		288
•	50															GCC Ala		336
	55															GAG Glu		384
(50															GAG Glu		432

	5			GAC Asp												480
	3			CGC Arg												528
	10			GCT Ala 180												576
	15			TCC Ser												624
	20			GGC Gly												672
100 mm 10	25			GCT Ala												720
	23			GAC Asp												768
in the team trace	30			GAG Glu 260												816
	35			GCG Ala												864
	40			GCC Ala												912
	45	Glu	Arg	GGC Gly	Gly	Asp	Arg	Arg	Leu	Leu	Pro	Ala	Ala	Val		960
				CGA Arg												1008
	50			ATT Ile 340												1056
	55			CAC His												1104
	60			CTG Leu												1152

						ATC Ile												1200
	5					GCG Ala 405												1248
	10					CTG Leu												1296
	15		GTC Val			AGC Ser	TG											1313
	20	(2)				FOR CE CI												
State than			\ - <i>i</i>	(î (l	A) L1 B) T1 C) S1	ENGTI YPE: IRANI OPOL(H: 12 nucl DEDNI	256 H Leic ESS:	base acio both	pai:	cs							
	25		(ii)			LE T												
The Comment	30		(ix)	()		E: AME/I OCATI			1257									
ii iid iid	35		(xi)	SE	QUEN	CE DI	ESCR	[PTI	ON: S	SEQ I	ID NO):5:						
in an analysis of the state of	55					ACG Thr 5												48
: : : : : : : : : : : : : : : : : : :	40					GGA Gly												96
	45					AAG Lys												144
	50					GAG Glu												192
							mac.	GAG	AGA	TTT	AAA	GAA	CTT	ACT	CCA	AAT	TAC	240
	55					AAT Asn						Glu 75	Leu	Thr	Pro	Asn	Tyr 80	
	55	Lys 65 AAT	Ile	Thr GAC	Arg ATT		Ser 70 TTT	Glu AAG	Arg GAT	Phe GAG	Lys GAG	75 AAC	ACG	GGA	GCG	GAC	80 AGG	288

GTA ATG AAC CAC TGG CCA GGG GTT AAG CTG CGT GTG ACA GAG GGC TGG Val Met Asn His Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp GAT GAG GAC GGT CAC CAT TTT GAA GAA TCA CTC CAC TAC GAG GGA AGA Asp Glu Asp Gly His His Phe Glu Glu Ser Leu His Tyr Glu Gly Arg GCT GTT GAT ATT ACC ACC TCT GAC CGA GAC AAG AGC AAA TAC GGG ACA Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Lys Ser Lys Tyr Gly Thr CTG TCT CGC CTA GCT GTG GAG GCT GGA TTT GAC TGG GTC TAT TAC GAG Leu Ser Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu TCC AAA GCC CAC ATT CAT TGC TCT GTC AAA GCA GAA AAT TCG GTT GCT Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala GCG AAA TCT GGG GGC TGT TTC CCA GGT TCG GCT CTG GTC TCG CTC CAG 25 Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Leu Val Ser Leu Gln 21 F22 į, ,<u>4</u> GAC GGA GGA CAG AAG GCC GTG AAG GAC CTG AAC CCC GGA GAC AAG GTG ij Asp Gly Gly Gln Lys Ala Val Lys Asp Leu Asn Pro Gly Asp Lys Val 30 CTG GCG GCA GAC AGC GCG GGA AAC CTG GTG TTC AGC GAC TTC AIC ATG Leu Ala Ala Asp Ser Ala Gly Asn Leu Val Phe Ser Asp Phe Ile Met 35 TTC ACA GAC CGA GAC TCC ACG ACG CGA CGT GTG TTT TAC GTC ATA GAA Phe Thr Asp Arg Asp Ser Thr Thr Arg Arg Val Phe Tyr Val Ile Glu 1.4 ACG CAA GAA CCC GTT GAA AAG ATC ACC CTC ACC GCC GCT CAC CTC CTT Thr Gln Glu Pro Val Glu Lys Ile Thr Leu Thr Ala Ala His Leu Leu TTT GTC CTC GAC AAC TCA ACG GAA GAT CTC CAC ACC ATG ACC GCC GCG Phe Val Leu Asp Asn Ser Thr Glu Asp Leu His Thr Met Thr Ala Ala TAT GCC AGC AGT GTC AGA GCC GGA CAA AAG GTG ATG GTT GAT GAT Tyr Ala Ser Ser Val Arg Ala Gly Gln Lys Val Met Val Val Asp Asp AGC GGT CAG CTT AAA TCT GTC ATC GTG CAG CGG ATA TAC ACG GAG GAG Ser Gly Gln Leu Lys Ser Val Ile Val Gln Arg Ile Tyr Thr Glu Glu CAG CGG GGC TCG TTC GCA CCA GTG ACT GCA CAT GGG ACC ATT GTG GTC Gln Arq Gly Ser Phe Ala Pro Val Thr Ala His Gly Thr Ile Val Val GAC AGA ATA CTG GCG TCC TGT TAC GCC GTA ATA GAG GAC CAG GGG CTT Asp Arg Ile Leu Ala Ser Cys Tyr Ala Val Ile Glu Asp Gln Gly Leu

	5		CAT His															1104
	3		CTG Leu 370															1152
	10		AGG Arg															1200
	15		CTT Leu															1248
	20		AGC Ser	TG														1256
11		(2)	INFO	ORMA"	rion	FOR	SEQ	ID 1	NO:6:	:								
	25		(i)	(I (I	A) LI B) T C) S	ENGTI YPE: FRANI	H: 14 nucl DEDNI	CTERI 425 k Leic ESS: line	oase acio sino	pai:	cs.							
Man heart floor	30		(ii)					cDNA										
ii La			(ix)	FEA			KEY:	CDS										
	35							11	1425									
			(xí)	(I	3) L()CAT	ON:			SEQ I	ID NO):6:						
₩± 100 1100			(xi) CTG Leu	SE(B) LO QUENO CTG	CE DE	ion: Escri Aga	IPTIC TGT	ON: S	CTG	CTA	GTC						48
Will Have Many		Met 1 CTG	CTG	(I SEÇ CTG Leu TGC	DUENC CTG Leu TCG	CE DE GCG Ala 5	ESCRI AGA Arg CTG	IPTI(TGT Cys GCG	ON: S CTG Leu TGC	CTG Leu GGA	CTA Leu 10	GTC Val	Leu AGG	Val GGG	Ser TTC	Ser 15 GGG	Leu AAG	48 96
H. H	40	Met 1 CTG Leu AGG	CTG Leu GTA	(HECT) SEÇ CTG Leu TGC Cys	QUENC CTG Leu TCG Ser 20	CE DE GCG Ala 5 GGA Gly	ESCRI AGA Arg CTG Leu	TGT Cys GCG Ala	ON: S CTG Leu TGC Cys	CTG Leu GGA Gly 25	CTA Leu 10 CCG Pro	GTC Val GGC Gly	Leu AGG Arg TAC	Val GGG Gly AAG	Ser TTC Phe 30 CAG	Ser 15 GGG Gly	AAG Lys	
with the state of	40 45	Met 1 CTG Leu AGG Arg	CTG Leu GTA Val	CTG Leu TGC Cys CAC His 35 GTG	CTG Leu TCG Ser 20 CCC Pro	GCG Ala 5 GGA Gly AAA Lys	ESCRI AGA Arg CTG Leu AAG Lys	TGT Cys GCG Ala CTG Leu	CTG Leu TGC Cys ACC Thr 40 CTA	CTG Leu GGA Gly 25 CCT Pro	CTA Leu 10 CCG Pro TTA Leu	GTC Val GGC Gly GCC Ala	AGG Arg TAC Tyr	GGG Gly AAG Lys 45	TTC Phe 30 CAG Gln	Ser 15 GGG Gly TTT Phe	AAG Lys ATC Ile	96
	40 45 50	Met 1 CTG Leu AGG Arg CCC Pro	CTG Leu GTA Val AGG Arg	CTG Leu TGC Cys CAC His 35 GTG Val	CTG Leu TCG Ser 20 CCC Pro	CE DE GCG Ala 5 5 GGA Gly AAA Lys GAG Glu AAC	ESCRI AGA Arg CTG Leu AAG Lys AAG Lys	TGT Cys GCG Ala CTG Leu ACC Thr 55	CTG Leu TGC Cys ACC Thr 40 CTA Leu CGA	CTG Leu GGA Gly 25 CCT Pro GGC Gly	CTA Leu 10 CCG Pro TTA Leu GCC Ala	GTC Val GGC Gly GCC Ala AGC Ser	AGG Arg TAC Tyr GGA Gly 60 CTC	GGG Gly AAG Lys 45 AGG Arg	TTC Phe 30 CAG Gln TAT Tyr CCC	Ser 15 GGG Gly TTT Phe GAA Glu	AAG Lys ATC lle GGG Gly TAC	96 144

											-82								
		Asn	Pro	Asp	Ile	Ile 85	Phe	Lys	Asp	Glu	Glu 90	Asn	Thr	Gly	Ala	Asp 95	Arg		
	5											AAC Asn						336	
	10											CGG Arg						384	
	15											CTG Leu						432	
	13											CGC Arg 155						480	
g1 52	20											GAC Asp						528	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25											GCA Ala						576	
th the two	30											GCC Ala						624	
	35											AGC Ser						672	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30											TAC Tyr 235						720	
***	40											GTC Val						768	
	45											ACC Thr						816	
	50											GGG Gly						864	
	55											CTG Leu						912	
												GTG Val 315						960	
	60											GCT Ala						1008	

						325					330					335			
	5	CTA Leu	AGC Ser	GAG Glu	GAG Glu 340	GCC Ala	GCG Ala	GGC Gly	GCC Ala	TAC Tyr 345	GCG Ala	CCG Pro	CTC Leu	ACG Thr	GCC Ala 350	CAG Gln	GGC Gly	10)56
		ACC Thr	ATT Ile	CTC Leu 355	ATC Ile	AAC Asn	CGG Arg	GTG Val	CTG Leu 360	GCC Ala	TCG Ser	TGC Cys	TAC Tyr	GCG Ala 365	GTC Val	ATC Ile	GAG Glu	11	LO4
	10	GAG Glu	CAC His 370	AGC Ser	TGG Trp	GCG Ala	CAC His	cgg Arg 375	GCC Ala	TTC Phe	GCG Ala	CCC Pro	TTC Phe 380	CGC Arg	CTG Leu	GCG Ala	CAC His	11	152
	15	GCG Ala 385	CTC Leu	CTG Leu	GCT Ala	GCA Ala	CTG Leu 390	GCG Ala	CCC Pro	GCG Ala	CGC Arg	ACG Thr 395	GAC Asp	CGC Arg	GGC Gly	GGG Gly	GAC Asp 400	12	200
	20	AGC Ser	GGC Gly	GGC Gly	GGG Gly	GAC Asp 405	CGC Arg	GGG Gly	GGC Gly	GGC Gly	GGC Gly 410	GGC Gly	AGA Arg	GTA Val	GCC Ala	CTA Leu 415	ACC Thr	12	248
	25	GCT Ala	CCA Pro	GGT Gly	GCT Ala 420	GCC Ala	GAC Asp	GCT Ala	CCG Pro	GGT Gly 425	GCG Ala	GGG Gly	GCC Ala	ACC Thr	GCG Ala 430	GGC Gly	ATC Ile	1:	296
Win thin And Ho	20	CAC His	TGG Trp	TAC Tyr 435	Ser	CAG Gln	CTG Leu	CTC Leu	TAC Tyr 440	CAA Gln	ATA Ile	GGC Gly	ACC Thr	TGG Trp 445	CTC Leu	CTG Leu	GAC Asp	1	344
	30	AGC Ser	GAG Glu 450	GCC Ala	CTG Leu	CAC His	CCG Pro	CTG Leu 455	GGC Gly	ATG Met	GCG Ala	GTC Val	AAG Lys 460	Ser	AGC Ser	NNN Xaa	AGC Ser	1	392
	35	CGG Arg 465	Gly	GCC Ala	GGG Gly	GGA Gly	GGG Gly 470	Ala	CGG Arg	GAG Glu	GGG Gly	GCC Ala 475						1	425
The state of the s	40	(2)	INF	'ORMA	TION	FOR	. SEQ	ID	NO:7	:									
	45		(i	((QUEN A) L B) T C) S D) T	ENGT YPE: TRAN	H: 1 nuc IDEDN	622 leic ESS:	base aci bot	pai .d	rs								
	50		(ii	.) MC	LECU	ILE T	YPE:	CDN	IA										
	55		(ix	. (ATUR (A) N (B) I	IAME/	KEY:	CDS	.128	33									
			-		EQUEN														
	60	CAT	rcag(CCCA	CCAG	GAGA	ACC I	CGCC	CCGC	CG CI	CCCC	CGGG	G CTO	CCCC	GCC	ATG Met 1	TCT Ser		56

	5							CGA Arg										104
	5							GCA Ala 25										152
	10							CCA Pro										200
	15							CCC Pro										248
	20							CGC Arg										296
The State of the S	25							ATC Ile										344
								CAG Gln 105										392
No. Gen. Gen.	30							CAG Gln										440
min that with R	35							GGC Gly										488
HILL ALL	40							ATC Ile										536
	45							TTG Leu										584
								CAC His 185										632
	50	Ser 195	Ala	Ala	Ala	Lys	Thr 200	GGC Gly	Gly	Cys	Phe	Pro 205	Ala	Gly	Ala	Gln	Val 210	680
	55							CGT Arg										728
	60							GGG Gly										776

									GAG Glu 250									824
	5								CCA Pro									872
	10								AAT Asn									920
	15								GTG Val									968
	20								CCT Pro									1016
	20								GCC Ala 330									1064
	25								TCC Ser									1112
ľĽ	30								TGG Trp									1160
	35								GGG Gly									1208
The Amil II Br	40								CTC Leu									1256
ti saž	1 0								GGG Gly 410		TGAA	AAGG <i>i</i>	ACT (CCAC	CGCT	ЭC		1303
	45	CCT	CCTG	GAA (CTGC'	rgta(CT GO	GGTC	CAGA	A GC	CTCT	CAGC	CAG	GAGG	GAG (CTGG	CCCTGG	1363
		AAG	GGAC(CTG A	AGCT	GGGG	GA CA	ACTG(GCTC	C TGC	CCAT	CTCC	TCT	GCCAT	rga i	AGATA	ACACCA	1423
	50	TTGA	AGAC'	TTG A	ACTG	GGCA	AC A	CCAG	CGTC	c cc	CACCO	CGCG	TCG'	rggto	GTA (GTCA:	TAGAGC	1483
	50	TGC	AAGC:	rga (GCTG(GCGA	GG G(GATG	GTTGT	r TGA	ACCC	CTCT	CTC	CTAGA	AGA (CCTT	GAGGCT	1543
		GGC	ACGG(CGA (CTCC	CAAC!	rc ac	GCCT	GCTCT	r cac	CTACC	GAGT	TTT	CATAC	CTC :	rgcc:	rccccc	1603
	55	ATTO	GGGA	GGG (CCCA!	FTCC	C											1622
		(2)	TME	ADMA.	rt on	FOR	SEO	TD	JO - 8 -									

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1251 base pairs(B) TYPE: nucleic acid

					rani Opolo)						
	5	(ii)	MOI	LECUI	LE TY	PE:	CDNA	Ā							
	10	(ix)		A) NÆ	E: AME/F DCAT]			L248							
		(xi)	SEÇ	QUENC	CE DE	ESCR]	PTIC	ON: S	SEQ I	ED NO	8:				
	15				CTG Leu 5										48
	20				ACG Thr										96
	25				AGA Arg										144
21 R2	25				AAC Asn										192
To the the the true to the	30				ATC Ile										240
lä Lä	35				CCC Pro 85										288
## ## ## ## ## ## ## ## ## ## ## ## ##	40				ATG Met										336
	15				ATG Met										384
	45	 		-	GAG Glu										432
	50				GTG Val										480
	55				TCC Ser 165										528
	60				AAA Lys										576

								TTT Phe				624
	5							ATC Ile				672
	10							GGA Gly				720
	15							ACA Thr 250				768
	20							AAG Lys				816
# ## # ##	20							GCA Ala				864
	25							GAT Asp				912
The Name of the State of	30							ACA Thr				960
# ## #################################	35							GTC Val 330				1008
The Reserved of the State of th	40							TAC Tyr				1056
*, <u>"</u>	10			His	Ala	Phe		GTC Val	Leu			1104
	45							TCA Ser				1152
	50							CTG Leu				1200
	55							CTC Leu 410				1248
		TGA										1251

60 (2) INFORMATION FOR SEQ ID NO:9:

	5		(i)	(A (B (C) LE:) TY) ST:	E CH NGTH PE: : RAND POLO	: 14 nucl EDNE	16 b eic SS:	ase acid both	pair	s							
			(ii)	MOL	ECUL	E TY	PE:	cDNA										
	10		(ix)	FEA (A (B) NA	: ME/K CATI	EY: ON:	CDS 11	413									
	15		(xi)	SEQ	UENC	E DE	SCRI	PTIC	N: S	EQ I	D NC	9:9:						
		ATG Met 1	GAT Asp	AAC Asn	CAC His	AGC Ser 5	TCA Ser	GTG Val	CCT Pro	TGG Trp	GCC Ala 10	AGT Ser	GCC Ala	GCC Ala	AGT Ser	GTC Val 15	ACC Thr	48
19:40	20	TGT Cys	CTC Leu	TCC Ser	CTG Leu 20	GGA Gly	TGC Cys	CAA Gln	ATG Met	CCA Pro 25	CAG Gln	TTC Phe	CAG Gln	TTC Phe	CAG Gln 30	TTC Phe	CAG Gln	96
ā	25	CTC Leu	CAA Gln	ATC Ile 35	CGC Arg	AGC Ser	GAG Glu	CTC Leu	CAT His 40	CTC Leu	CGC Arg	AAG Lys	CCC Pro	GCA Ala 45	AGA Arg	AGA Arg	ACG Thr	144
He Sam Som South	30	CAA Gln	ACG Thr 50	ATG Met	CGC Arg	CAC His	ATT Ile	GCG Ala 55	CAT His	ACG Thr	CAG Gln	CGT Arg	TGC Cys 60	CTC Leu	AGC Ser	AGG Arg	CTG Leu	192
Bull Co	35	ACC Thr 65	TCT Ser	CTG Leu	GTG Val	GCC Ala	CTG Leu 70	CTG Leu	CTG Leu	ATC Ile	GTC Val	TTG Leu 75	CCG Pro	ATG Met	GTC Val	TTT Phe	AGC Ser 80	240
ing day and	40	CCG Pro	GCT Ala	CAC His	AGC Ser	TGC Cys 85	GGT Gly	CCT Pro	GGC Gly	CGA Arg	GGA Gly 90	TTG Leu	GGT Gly	CGT Arg	CAT His	AGG Arg 95	GCG Ala	288
	40	CGC Arg	AAC Asn	CTG Leu	TAT Tyr 100	CCG Pro	CTG Leu	GTC Val	CTC Leu	AAG Lys 105	CAG Gln	ACA Thr	ATT Ile	CCC Pro	AAT Asn 110	CTA Leu	TCC Ser	336
	45	GAG Glu	TAC Tyr	ACG Thr 115	Asn	AGC Ser	GCC Ala	TCC Ser	GGA Gly 120	Pro	CTG Leu	GAG Glu	GGT Gly	GTG Val 125	ATC Ile	CGT Arg	CGG Arg	384
	50	GAT Asp	TCG Ser 130	Pro	AAA Lys	TTC Phe	AAG Lys	GAC Asp 135	Leu	GTG Val	CCC Pro	AAC Asn	TAC Tyr 140	AAC Asn	AGG Arg	GAC Asp	ATC Ile	432
	55	CTT Leu 145	Phe	: CGT : Arg	GAC Asp	GAG Glu	GAA Glu 150	Gly	ACC Thr	GGA Gly	GCG Ala	GAT Asp 155	Gly	TTG Leu	ATG Met	AGC Ser	AAG Lys 160	480
	(0	CGC Arg	TGC Cys	: AAG : Lys	GAG Glu	AAG Lys 165	Leu	. AAC . Asn	GTG Val	CTG Leu	GCC Ala 170	Tyr	TCG Ser	GTG Val	ATG Met	AAC Asn 175	GAA Glu	528
	60	ጥርር	: ככר	: GGC	: ATC	CGG	CTO	CTG	GTC	ACC	GAG	AGC	TGG	GAC	GAG	GAC	TAC	576

		Trp	Pro	Gly	Ile 180	Arg	Leu	Leu	Val	Thr 185	Glu	Ser	Trp	Asp	Glu 190	Asp	Tyr	
	5						TCG Ser											624
	10						GAC Asp											672
	15						TTC Phe 230											720
	13						AAG Lys											768
g: set	20						GAG Glu											816
	25						CTC Leu											864
True done forth	30						GTC Val											912
nil ed girg	35						CAA Gln 310											960
	33						ACG Thr											1008
	40						ACG Thr											1056
	45						CGG Arg											1104
	50						GGC Gly											1152
	55						ACC Thr 390											1200
							AGT Ser											1248
	60						ACG Thr											1296

425 420 430 TTG CAC AGT TCG CCG AAG GTG GTG AGC TCG GCG CAG CAG CAG AAT GGC 1344 Leu His Ser Ser Pro Lys Val Val Ser Ser Ala Gln Gln Gln Asn Gly 5 435 440 445 ATC CAT TGG TAT GCC AAT GCG CTC TAC AAG GTC AAG GAC TAC GTG CTG 1392 Ile His Trp Tyr Ala Asn Ala Leu Tyr Lys Val Lys Asp Tyr Val Leu 455 460 10 CCG CAG AGC TGG CGC CAC GAT TGA 1416 Pro Gln Ser Trp Arg His Asp 15 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 425 amino acids 20 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: Met Val Glu Met Leu Leu Thr Arg Ile Leu Leu Val Gly Phe Ile **1** 30 Cys Ala Leu Leu Val Ser Ser Gly Leu Thr Cys Gly Pro Gly Arg Gly Ile Gly Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys 35 Gln Phe Ile Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg 40 Tyr Glu Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly 45 Ala Asp Arg Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu 105 Ala Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr 50 Glu Gly Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr 55 Glu Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val 60

Tyr Tyr Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn

i i Ü

I. ķâ

- res

180 185 Ser Val Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val 200 5 His Leu Glu His Gly Gly Thr Lys Leu Val Lys Asp Leu Ser Pro Gly 215 Asp Arg Val Leu Ala Ala Asp Ala Asp Gly Arg Leu Leu Tyr Ser Asp 10 235 230 Phe Leu Thr Phe Leu Asp Arg Met Asp Ser Ser Arg Lys Leu Phe Tyr 15 Val Ile Glu Thr Arg Gln Pro Arg Ala Arg Leu Leu Thr Ala Ala 265 His Leu Leu Phe Val Ala Pro Gln His Asn Gln Ser Glu Ala Thr Gly 20 Ser Thr Ser Gly Gln Ala Leu Phe Ala Ser Asn Val Lys Pro Gly Gln Arg Val Tyr Val Leu Gly Glu Gly Gly Gln Gln Leu Leu Pro Ala Ser 25 ļ.d. Val His Ser Val Ser Leu Arg Glu Glu Ala Ser Gly Ala Tyr Ala Pro ťÇ 道 30 Leu Thr Ala Gln Gly Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys Į. <u>......</u> Tyr Ala Val Ile Glu Glu His Ser Trp Ala His Trp Ala Phe Ala Pro 91 **13** 35 Phe Arg Leu Ala Gln Gly Leu Leu Ala Ala Leu Cys Pro Asp Gly Ala 14 1231 224 125 ŧ.,, Ile Pro Thr Ala Ala Thr Thr Thr Gly Ile His Trp Tyr Ser Arg 40 390 395 Leu Leu Tyr Arg Ile Gly Ser Trp Val Leu Asp Gly Asp Ala Leu His 405 410 Pro Leu Gly Met Val Ala Pro Ala Ser 45 420 (2) INFORMATION FOR SEQ ID NO:11: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 396 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 55 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

		Met 1	Ala	Leu	Pro	Ala 5	Ser	Leu	Leu	Pro	Leu 10	Cys	Cys	Leu	Ala	Leu 15	Leu
	5	Ala	Leu	Ser	Ala 20	Gln	Ser	Cys	Gly	Pro 25	Gly	Arg	Gly	Pro	Val 30	Gly	Arg
		Arg	Arg	Tyr 35	Val	Arg	Lys	Gln	Leu 40	Val	Pro	Leu	Leu	Tyr 45	Lys	Gln	Phe
	10	Val	Pro 50	Ser	Met	Pro	Glu	Arg 55	Thr	Leu	Gly	Ala	Ser 60	Gly	Pro	Ala	Glu
	15	Gly 65	Arg	Val	Thr	Arg	Gly 70	Ser	Glu	Arg	Phe	Arg 75	Asp	Leu	Val	Pro	Asn 80
	15	Tyr	Asn	Pro	Asp	Ile 85	Ile	Phe	Lys	Asp	Glu 90	Glu	Asn	Ser	Gly	Ala 95	Asp
	20	Arg	Leu	Met	Thr 100	Glu	Arg	Cys	Lys	Glu 105	Arg	Val	Asn	Ala	Leu 110	Ala	Ile
		Ala	Val	Met 115	Asn	Met	Trp	Pro	Gly 120	Val	Arg	Leu	Arg	Val 125	Thr	Glu	Gly
	25	Trp	Asp 130	Glu	Asp	Gly	His	His 135	Ala	Gln	Asp	Ser	Leu 140	His	Туг	Glu	Gly
G U	30	Arg 145	Ala	Leu	Asp	Ile	Thr 150	Thr	Ser	Asp	Arg	Asp 155	Arg	Asn	Ъуs	Tyr	Gly 160
id id	50	Leu	Leu	Ala	Arg	Leu 165	Ala	Val	Glu	Ala	Gly 170	Phe	Asp	Trp	Val	Tyr 175	Tyr
iá ing	35	Glu	Ser	Arg	Asn 180	His	Ile	His	Val	Ser 185	Val	Lys	Ala	Asp	Asn 190	Ser	Leu
		Ala	Val	Arg 195	Ala	Gly	Gly	Cys	Phe 200	Pro	Gly	Asn	Ala	Thr 205	Val	Arg	Leu
Street Street	40	Arg	Ser 210	Gly	Glu	Arg	Lys	Gly 215	Leu	Arg	Glu	Leu	His 220	Arg	Gly	Asp	Trp
	45	Val 225	Leu	Ala	Ala	Asp	Ala 230	Ala	Gly	Arg	Val	Val 235	Pro	Thr	Pro	Val	Leu 240
		Leu	Phe	Leu	Asp	Arg 245	Asp	Leu	Gln	Arg	Arg 250	Ala	Ser	Phe	Val	Ala 255	Val
	50	Glu	Thr	Glu	Arg 260	Pro	Pro	Arg	Lys	Leu 265	Leu	Leu	Thr	Pro	Trp 270	His	Leu
		Val	Phe	Ala 275	Ala	Arg	Gly	Pro	Ala 280	Pro	Ala	Pro	Gly	Asp 285	Phe	Ala	Pro
	55	Val	Phe 290	Ala	Arg	Arg	Leu	Arg 295	Ala	Gly	Asp	Ser	Val 300	Leu	Ala	Pro	Gly
	60	Gly 305	Asp	Ala	Leu	Gln	Pro 310	Ala	Arg	Val	Ala	Arg 315	Val	Ala	Arg	Glu	Glu 320
		Ala	Val	Gly	Val	Phe	Ala	Pro	Leu	Thr	Ala	His	Gly	Thr	Leu	Leu	Val

						325					330					335	
	5	Asn	Asp	Val	Leu 340	Ala	Ser	Cys	Tyr	Ala 345	Val	Leu	Glu	Ser	His 350	Gln	Trp
	3	Ala	His	Arg 355	Ala	Phe	Ala	Pro	Leu 360	Arg	Leu	Leu	His	Ala 365	Leu	Gly	Ala
	10	Leu	Leu 370	Pro	Gly	Gly	Ala	Val 375	Gln	Pro	Thr	Gly	Met 380	His	Trp	Tyr	Ser
		Arg 385	Leu	Leu	Tyr	Arg	Leu 390	Ala	Glu	Glu	Leu	Met 395	Gly				
	15	(2)	INF	ORMA'.	TION	FOR	SEO	ID 1	NO:12	2:							
	20	\ - <i>/</i>			SEQUE	ENCE LEI		RACTI : 413	ERIST 1 am:	FICS: ino a		5					
Half Hall	2.5		(:	ii) N	MOLE	CULE	TYPE	E: pi	rote:	in							
11:12 11:12 11:12	25		(2	xi) S	SEQUI	ENCE	DESC	CRIP	rion	: SE	Q ID	NO:	12:				
the time that	30	Met 1	Ser	Pro	Ala	Trp 5	Leu	Arg	Pro	Arg	Leu 10	Arg	Phe	Cys	Leu	Phe 15	Leu
ļ.# I		Leu	Leu	Leu	Leu 20	Leu	Val	Pro	Ala	Ala 25	Arg	Gly	Cys	Gly	Pro 30	Gly	Arg
in the the	35	Val	Val	Gly 35	Ser	Arg	Arg	Arg	Pro 40	Pro	Arg	Lys	Leu	Val 45	Pro	Leu	Ala
6F 1F B B	40	Tyr	Lys 50	Gln	Phe	Ser	Pro	Asn 55	Val	Pro	Glu	Lys	Thr 60	Leu	Gly	Ala	Ser
1, 29	10	Gly 65	Arg	Tyr	Glu	Gly	Lys 70	Ile	Ala	Arg	Ser	Ser 75	Glu	Arg	Phe	Lys	Glu 80
	45	Leu	Thr	Pro	Asn	Tyr 85	Asn	Pro	Asp	Ile	Ile 90	Phe	Lys	Asp	Glu	Glu 95	Asn
		Thr	Gly	Ala	Asp 100	Arg	Leu	Met	Thr	Gln 105	Arg	Cys	Lys	Asp	Arg 110	Leu	Asn
	50	Ser	Leu	Ala 115	Ile	Ser	Val	Met	Asn 120	Gln	Trp	Pro	Gly	Val 125	Lys	Leu	Arg
	55	Val	Thr 130	Glu	Gly	Arg	Asp	Glu 135	Asp	Gly	His	His	Ser 140	Glu	Glu	Ser	Leu
		His 145	Tyr	Glu	Gly	Arg	Ala 150	Val	Asp	Ile	Thr	Thr 155	Ser	Asp	Arg	Asp	Arg 160
	60	Asn	Lys	Tyr	Gly	Leu 165	Leu	Ala	Arg	Leu	Ala 170	Val	Glu	Ala	Gly	Phe 175	Asp

	Trp	Val	Tyr	Tyr 180	Glu	Ser	Lys	Ala	His 185	Val	His	Cys	Ser	Val 190	Lys	Ser
5	Glu	His	Ser 195	Ala	Ala	Ala	Lys	Thr 200	Gly	Gly	Cys	Phe	Pro 205	Ala	Gly	Ala
	Gln	Val 210	Arg	Leu	Glu	Asn	Gly 215	Glu	Arg	Val	Ala	Leu 220	Ser	Ala	Val	Lys
10	Pro 225	Gly	Asp	Arg	Val	Leu 230	Ala	Met	Gly	Glu	Asp 235	Gly	Thr	Pro	Thr	Phe 240
1.5	Ser	Asp	Val	Leu	Ile 245	Phe	Leu	Asp	Arg	Glu 250	Pro	Asn	Arg	Leu	Arg 255	Ala
15	Phe	Gln	Val	Ile 260	Glu	Thr	Gln	Asp	Pro 265	Pro	Arg	Arg	Leu	Ala 270	Leu	Thi
20	Pro	Ala	His 275	Leu	Leu	Phe	Ile	Ala 280	Asp	Asn	His	Thr	Glu 285	Pro	Ala	Ala
	His	Phe 290	Arg	Ala	Thr	Phe	Ala 295	Ser	His	Val	Gln	Pro 300	Gly	Gln	Tyr	۷a
25	Leu 305	Val	Ser	Gly	Val	Pro 310	Gly	Leu	Gln	Pro	Ala 315	Arg	Val	Ala	Ala	Va:
20	Ser	Thr	His	Val	Ala 325	Leu	Gly	Ser	Tyr	Ala 330	Pro	Leu	Thr	Arg	His 335	Gl
30	Thr	Leu	Val	Val 340	Glu	Asp	Val	Val	Ala 345	Ser	Cys	Phe	Ala	Ala 350	Val	Al
35	Asp	His	His 355		Ala	Gln	Leu	Ala 360		Trp	Pro	Leu	Arg 365	Leu	Phe	Pr
	Ser	Leu 370	Ala	Trp	Gly	Ser	Trp 375	Thr	Pro	Ser	Glu	Gly 380	Val	His	Ser	Ту
40	Pro 385		. Met	Leu	Tyr	Arg 390		. Gly	Arg	Leu	Leu 395	Leu	Glu	Glu	. Ser	Th 40
45	Phe	His	Prc	Leu	Gly 405		Ser	· Gly	Ala	. Gly 410	Ser					
	(2)	INE	ORMA	MOITA	I FOR	SEÇ	ID	NO:1	.3:							
50			(i)	(<i>F</i>	JENCE A) LE B) TY D) TO	NGTE PE:	l: 43 amir	37 am 10 ac	nino cid	: acid	ls					
55			(ii)	MOLE	ECULE	TYE	PE: p	orote	ein							
			()	CEOI	IENCI	ישרו י	CDT U	グルエル く	1. SE	70 TI) NO:	13.				

Met Leu Leu Leu Ala Arg Cys Phe Leu Val Ile Leu Ala Ser Ser

		1				5					10					15	
	5	Leu	Leu	Val	Cys 20	Pro	Gly	Leu	Ala	Cys 25	Gly	Pro	Gly	Arg	Gly 30	Phe	Gly
	3	Lys	Arg	Arg 35	His	Pro	Lys	Lys	Leu 40	Thr	Pro	Leu	Ala	Tyr 45	Lys	Gln	Phe
	10	Ile	Pro 50	Asn	Val	Ala	Glu	Lys 55	Thr	Leu	Gly	Ala	Ser 60	Gly	Arg	Tyr	Glu
		Gly 65	Lys	Ile	Thr	Arg	Asn 70	Ser	Glu	Arg	Phe	Lys 75	Glu	Leu	Thr	Pro	Asn 80
	15	Tyr	Asn	Pro	Asp	Ile 85	Ile	Phe	Lys	Asp	Glu 90	Glu	Asn	Thr	Gly	Ala 95	Asp
	20	Arg	Leu	Met	Thr 100	Gln	Arg	Cys	Lys	Asp 105	Lys	Leu	Asn	Ala	Leu 110	Ala	Ile
Llaw	20	Ser	Val	Met 115	Asn	Gln	Trp	Pro	Gly 120	Val	Arg	Leu	Arg	Val 125	Thr	Glu	Gly
	25	Trp	Asp 130	Glu	Asp	Gly	His	His 135	Ser	Glu	Glu	Ser	Leu 140	His	Туг	Glu	Gly
Æ		Arg 145	Ala	Val	Asp	Ile	Thr 150	Thr	Ser	Asp	Arg	Asp 155	Arg	Ser	Lys	Tyr	Gly 160
In the ten ten the	30	Met	Leu	Ala	Arg	Leu 165	Ala	Val	Glu	Ala	Gly 170	Phe	Asp	Trp	Val	Tyr 175	Tyr
	35	Glu	Ser	Lys	Ala 180	His	Ile	His	Cys	Ser 185	Val	Lys	Ala	Glu	Asn 190	Ser	Val
	33	Ala	Ala	Lys 195	Ser	Gly	Gly	Cys	Phe 200	Pro	Gly	Ser	Ala	Thr 205	Val	His	Leu
	40	Glu	Gln 210	Gly	Gly	Thr	Lys	Leu 215	Val	Lys	Asp	Leu	Arg 220	Pro	Gly	Asp	Arg
		Val 225	Leu	Ala	Ala	Asp	Asp 230		Gly	Arg	Leu	Leu 235	_	Ser	Asp	Phe	Leu 240
	45	Thr	Phe	Leu	Asp	Arg 245	Asp	Glu	Gly	Ala	Lys 250	Lys	Val	Phe	Tyr	Val 255	Ile
	50	Glu	Thr	Leu	Glu 260	Pro	Arg	Glu	Arg	Leu 265	Leu	Leu	Thr	Ala	Ala 270	His	Leu
		Leu	Phe	Val 275	Ala	Pro	His	Asn	Asp 280	Ser	Gly	Pro	Thr	Pro 285	Gly	Pro	Ser
	55	Ala	Leu 290	Phe	Ala	Ser	Arg	Val 295	Arg	Pro	Gly	Gln	Arg 300	Val	Tyr	Val	Val
		Ala 305	Glu	Arg	Gly	Gly	Asp 310	Arg	Arg	Leu	Leu	Pro 315	Ala	Ala	Val	His	Ser 320
	60	Val	Thr	Leu	Arg	Glu 325	Glu	Glu	Ala	Gly	Ala 330	Tyr	Ala	Pro	Leu	Thr 335	Ala

	His	Gly	Thr	Ile 340	Leu	Ile	Asn	Arg	Val 345	Leu	Ala	Ser	Cys	Tyr 350	Ala	Val
5	Ile	Glu	Glu 355	His	Ser	Trp	Ala	His 360	Arg	Ala	Phe	Ala	Pro 365	Phe	Arg	Leu
10	Ala	His 370	Ala	Leu	Leu	Ala	Ala 375	Leu	Ala	Pro	Ala	Arg 380	Thr	Asp	Gly	Gly
10	Gly 385	Gly	Gly	Ser	Ile	Pro 390	Ala	Ala	Gln	Ser	Ala 395	Thr	Glu	Ala	Arg	Gly 400
15	Ala	Glu	Pro	Thr	Ala 405	Gly	Ile	His	Trp	Tyr 410	Ser	Gln	Leu	Leu	Tyr 415	His
	Ile	Gly	Thr	Trp 420	Leu	Leu	Asp	Ser	Glu 425	Thr	Met	His	Pro	Leu 430	Gly	Met
20	Ala	Val	Lys 435	Ser	Ser											
25	(2)	INE	ORMAI	NOI	FOR	SEQ	ID 1	NO:1	4:							
23			(i) S	(A (B) LEI) TY	NGTH PE:	RACT: 41	8 am o ac	ino id		S					
30		(.	ii) [•		GY: E: p									
35		,	xl) ;	SEO!!	ENCE	DES	CRIP	TION	· SE	O TD	NO:	14:				
33	Met 1	Arg				Arg					Ser		Leu	Thr	Leu 15	Ser
40			Val	Ser 20			Ala	Cys	Gly 25	Pro	Gly	Arg	Gly	Tyr 30	Gly	Arg
4.5	Arg	Arg	His 35	Pro	Lys	Lys		Thr		Leu	Ala	Tyr	Lys 45	Gln	Phe	Ile
45	Pro	Asn 50		Ala	Glu	Lys	Thr 55		. Gly	Ala	Ser	Gly 60		Tyr	Glu	Gly
50	Lys 65		Thr	Arg	Asn	Ser 70		Arg	Phe	. Lys	Glu 75		Thr	Pro	Asn	Tyr 80
	Asn	Pro	Asp	Ile	Ile 85		e Lys	: Asp	Glu	Glu 90		Thr	Gly	Ala	Asp 95	Arg
55	Leu	n Met	Thr	Gln 100		g Cys	Lys	asp	Lys 105		ı Asn	Ser	Lev	ı Ala 110	Ile	: Ser
60	Val	. Met	115		Trp	Pro	o Gly	7 Val 120		. Leu	ı Arg	Val	Thr 125	Glu	ı Gly	Trp
00	Asp	Glu	ı Asp	Gly	His	His	s Phe	e Glu	ı Glu	ı Ser	Leu	His	туг	Glu	ı Gly	/ Arg

The first that the first of the first that the firs

			130					135					140				
	E	Ala 145	Val	Asp	Ile	Thr	Thr 150	Ser	Asp	Arg	Asp	Lys 155	Ser	Lys	Tyr	Gly	Thr 160
	5	Leu	Ser	Arg	Leu	Ala 165	Val	Glu	Ala	Gly	Phe 170	Asp	Trp	Val	Tyr	Tyr 175	Glu
	10	Ser	Lys	Ala	His 180	Ile	His	Cys	Ser	Val 185	Lys	Ala	Glu	Asn	Ser 190	Val	Ala
		Ala	Lys	Ser 195	Gly	Gly	Cys	Phe	Pro 200	Gly	Ser	Ala	Leu	Val 205	Ser	Leu	Gln
	15	Asp	Gly 210	Gly	Gln	Lys	Ala	Val 215	Lys	Asp	Leu	Asn	Pro 220	Gly	Asp	Lys	Val
	20	Leu 225	Ala	Ala	Asp	Ser	Ala 230	Gly	Asn	Leu	Val	Phe 235	Ser	Asp	Phe	Ile	Met 240
	20	Phe	Thr	Asp	Arg	Asp 245	Ser	Thr	Thr	Arg	Arg 250	Val	Phe	Tyr	Val	Ile 255	Glu
	25	Thr	Gln	Glu	Pro 260	Val	Glu	Lys	Ile	Thr 265	Leu	Thr	Ala	Ala	His 270	Leu	Leu
12		Phe	Val	Leu 275	Asp	Asn	Ser	Thr	Glu 280	Asp	Leu	His	Thr	Met 285	Thr	Ala	Ala
from the	30	Tyr	Ala 290	Ser	Ser	Val	Arg	Ala 295	Gly	Gln	Lys	Val	Met 300	Val	Val	Asp	Asp
	25	Ser 305		Gln	Leu	Lys	Ser 310	Val	Ile	Val	Gln	Arg 315	Tle	Tyr	Thr	Glu	Glu 320
	35	Gln	Arg	Gly	Ser	Phe 325	Ala	Pro	Val	Thr	Ala 330	His	Gly	Thr	Ile	Val 335	Va:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40	Asp	Arg	Ile	Leu 340		Ser	Cys	Tyr	Ala 345	Val	Ile	Glu	Asp	Gln 350	Gly	Lei
		Ala	His	Leu 355		Phe	Ala	Pro			Leu	Tyr	Tyr	Tyr 365	Val	Ser	Se:
	45	Phe	Leu 370		Pro	Lys	Thr	Pro 375		Val	. Gly	Pro	Met 380	Arg	Leu	Tyr	Ası
	50	Arg 385		Gly	Ser	Thr	Gly 390		Pro	Gly	ser Ser	Cys 395	His	Gln	. Met	Gly	Th:
	50	Trp	Leu	Leu	Asp	Ser 405		. Met	Leu	. His	Pro 410		Gly	Met	. Ser	Val 415	As
	55	Ser	Ser	•													

(2) INFORMATION FOR SEQ ID NO:15:

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 475 amino acids

```
(ii) MOLECULE TYPE: protein
   5
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
       Met Leu Leu Leu Ala Arg Cys Leu Leu Leu Val Leu Val Ser Ser Leu
  10
       Leu Val Cys Ser Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly Lys
  15
        Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe Ile
        Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu Gly
  20
        Lys Ile Ser Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr
1 12 E
        Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg
   25
1.4
        Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile Ser
19
30
        Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp
21
        Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly Arg
ļ, iš
   35
                                135
Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly Met
        Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu
   40
        Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala
   45
        Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val His Leu Glu
        Gln Gly Gly Thr Lys Leu Val Lys Asp Leu Ser Pro Gly Asp Arg Val
   50
        Leu Ala Ala Asp Asp Gln Gly Arg Leu Leu Tyr Ser Asp Phe Leu Thr
                                                 235
         Phe Leu Asp Arg Asp Asp Gly Ala Lys Lys Val Phe Tyr Val Ile Glu
   55
         Thr Arg Glu Pro Arg Glu Arg Leu Leu Leu Thr Ala Ala His Leu Leu
                                         265
```

Phe Val Ala Pro His Asn Asp Ser Ala Thr Gly Glu Pro Glu Ala Ser

60

(B) TYPE: amino acid
(D) TOPOLOGY: linear

				275					280					285			
	5	Ser	Gly 290	Ser	Gly	Pro	Pro	Ser 295	Gly	Gly	Ala	Leu	Gly 300	Pro	Arg	Ala	Leu
	3	Phe 305	Ala	Ser	Arg	Val	Arg 310	Pro	Gly	Gln	Arg	Val 315	Tyr	Val	Val	Ala	Glu 320
	10	Arg	Asp	Gly	Asp	Arg 325	Arg	Leu	Leu	Pro	Ala 330	Ala	Val	His	Ser	Val 335	Thr
		Leu	Ser	Glu	Glu 340	Ala	Ala	Gly	Ala	Tyr 345	Ala	Pro	Leu	Thr	Ala 350	Gln	Gly
	15	Thr	Ile	Leu 355	Ile	Asn	Arg	Val	Leu 360	Ala	Ser	Cys	Tyr	Ala 365	Val	Ile	Glu
	20	Glu	His 370	Ser	Trp	Ala	His	Arg 375	Ala	Phe	Ala	Pro	Phe 380	Arg	Leu	Ala	His
	20	Ala 385	Leu	Leu	Ala	Ala	Leu 390	Ala	Pro	Ala	Arg	Thr 395	Asp	Arg	Gly	Gly	Asp 400
	25	Ser	Gly	Gly	Gly	Asp 405	Arg	Gly	Gly	Gly	Gly 410	Gly	Arg	Val	Ala	Leu 415	Thr
14		Ala	Pro	Gly	Ala 420	Ala	Asp	Ala	Pro	Gly 425	Ala	Gly	Ala	Thr	Ala 430	Gly	Ile
fire the trees	30	His	Trp	Tyr 435	Ser	Gln	Leu	Leu	Tyr 440	Gln	Ile	Gly	Thr	Trp 445	Leu	Leu	Asp
	35	Ser	Glu 450	Ala	Leu	His	Pro	Leu 455	Gly	Met	Ala	Val	Lys 460	Ser	Ser	Xaa	Ser
	33	Arg 465	Gly	Ala	Gly	Gly	Gly 470	Ala	Arg	Glu	Gly	Ala 475					
A STATE OF THE STA	40	(2)	INF	ORMA'	TION	FOR	SEQ	ID :	NO:1	6:							
200				(i)	(В) LEI) TY	NGTH PE:	RACT: : 41 amin GY:	1 am.	ino id		S					
	45		(ii) 1	MOLE	CULE	TYP	E: p	rote	in							
			(xi)	SEQU:	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	16:				
	50	Met 1	Ser	Pro	Ala	Arg 5	Leu	Arg	Pro	Arg	Leu 10		Phe	Cys	Leu	Val 15	Leu
	55	Leu	Leu	Leu	Leu 20	Val	Val	Pro	Ala	Ala 25	Trp	Gly	Cys	Gly	Pro 30	Gly	Arg
	<i>JJ</i>	Val	Val	Gly 35	Ser	Arg	Arg	Arg	Pro 40	Pro	Arg	Lys	Leu	Val 45	Pro	Leu	Ala
	60	Tyr	Lys		Phe	Ser	Pro	Asn	Val	Pro	Glu	Lys	Thr		Gly	Ala	Ser

	Gly 65	Arg	Tyr	Glu	Gly	Lys 70	Ile	Ala	Arg	Ser	Ser 75	Glu	Arg	Phe	Lys	Glu 80
5	Leu	Thr	Pro	Asn	Tyr 85	Asn	Pro	Asp	Ile	Ile 90	Phe	Lys	Asp	Glu	Glu 95	Asn
	Thr	Gly	Ala	Asp 100	Arg	Leu	Met	Thr	Gln 105	Arg	Cys	Lys	Asp	Arg 110	Leu	Asn
10	Ser	Leu	Ala 115	Ile	Ser	Val	Met	Asn 120	Gln	Trp	Pro	Gly	Val 125	Lys	Leu	Arg
15	Val	Thr 130	Glu	Gly	Trp	Asp	Glu 135	Asp	Gly	His	His	Ser 140	Glu	Glu	Ser	Leu
13	His 145	Tyr	Glu	Gly	Arg	Ala 150	Val	Asp	Ile	Thr	Thr 155	Ser	Asp	Arg	Asp	Arg 160
20	Asn	Lys	Tyr	Gly	Leu 165	Leu	Ala	Arg	Leu	Ala 170	Vaì	Glu	Ala	Gly	Phe 175	Asp
	Trp	Val	Tyr	Tyr 180	Glu	Ser	Lys	Ala	His 185	Val	His	Cys	Ser	Val 190	Lys	Ser
25	Glu	His	Ser 195	Ala	Ala	Ala	Lys	Thr 200	Gly	Gly	Cys	Phe	Pro 205	Ala	Gly	Ala
30	Gln	Val 210	Arg	Leu	Glu	Ser	Gly 215	Ala	Arg	Val	Ala	Leu 220	Ser	Ala	Val	Arg
50	Pro 225	Gly	Asp	Arg	Val	Leu 230	Ala	Met	Gly	Glu	Asp 235	Gly	Ser	Pro	Thr	Phe 240
35	Ser	Asp	Val	Leu	Ile 245	Phe	Leu	Asp	Arg	Glu 250	Pro	His	Arg	Leu	Arg 255	Ala
	Phe	Gln	Val	Ile 260	Glu	Thr	Gln	Asp	Pro 265	Pro	Arg	Arg	Leu	Ala 270	Leu	Thr
40			275					280					285			Ala
45	Arg	Phe 290		Ala	Thr	Phe	Ala 295		His	Val	Gln	Pro 300	Gly	Gln	Tyr	Val
.5	Leu 305		Ala	Gly	Val	Pro 310		Leu	Gln	Pro	Ala 315	Arg	Val	Ala	Ala	Val 320
50	Ser	Thr	His	Val	Ala 325		Gly	Ala	Tyr	Ala 330		Leu	Thr	Lys	His 335	Gly
	Thr	Leu	. Val	Val 340		. Asp	Val	Val	Ala 345		Cys	Phe	Ala	Ala 350	Val	Ala
55	Asp	His	His 355		Ala	Gln	Leu	Ala 360		Trp	Pro	Leu	Arg 365		Phe	His
60	Ser	Leu 370		Trp	Gly	Ser	Trp 375		Pro	Gly	Glu	Gly 380	Val	His	Trp	Tyr
00	Pro	Gln	Leu	Leu	Tyr	Arg	Let	Gly	Arg	Let	Leu	Leu	ı Glu	Glu	Gly	ser ser

		385					390					395					400
	5	Phe	His	Pro :		Gly ! 405	Met	Ser	Gly .	Ala	Gly 410	Ser					
		(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:17	:							
	10		(i) S	EQUE (A) (B) (D)	LEN TYP	CHAR GTH: E: a OLOG	416 mino	ami aci	no a d	cids.						
	15		,	.i) M :i) S		ULE					חד מ	NO:1	7:				
		Mo+		(1) S Val										Leu	Cys	Phe	Ile
	20	мес 1	Asp	va⊥	ALG	5	1112	шец	БУБ	03.11	10				1	15	
	20	Ser	Leu	Leu	Leu 20	Thr	Pro	Cys	Gly	Leu 25	Ala	Cys	Gly	Pro	Gly 30	Arg	Gly
t 19 tante was	25	Tyr	Gly	Lys 35	Arg	Arg	His	Pro	Lys 40	Lys	Leu	Thr	Pro	Leu 45	Ala	Tyr	Lys
a that are		Gln	Phe 50	Ile	Pro	Asn	Val	Ala 55	Glu	Lys	Thr	Leu	Gly 60	Ala	Ser	Gly	Lys
ille thus not	30	Tyr 65	Glu	Gly	Lys	Ile	Thr 70	Arg	Asn	Ser	Glu	Arg 75	Phe	Lys	Glu	Leu	Ile 80
: ::	35	Pro	Asn	Tyr	Asn	Pro 85	Asp	Ile	Ile	Phe	Lys 90	Asp	Glu	Glu	Asn	Thr 95	Asn
1 D 21. The	33	Ala	Asp	Arg	Leu 100	Met	Thr	Lys	Arg	Cys 105	Lys	Asp	Lys	Leu	Asn 110	Ser	Leu
, 1001d, 1800d.	40	Ala	Ile	Ser 115	Val	Met	Asn	His	Trp 120	Pro	Gly	Val	Lys	Leu 125	Arg	Val	Thr
		Glu	Gly 130	Trp	Asp	Glu	Asp	Gly 135	His	His	Leu	Glu	Glu 140	Ser	Leu	His	Tyr
	45	Glu 145	Gly	Arg	Ala	Val	Asp 150	Ile	Thr	Thr	Ser	Asp 155	Arg	Asp	Lys	Ser	Lys 160
	50	Tyr	Gly	Met	Leu	Ser 165	Arg	Leu	Ala	Val	Glu 170	Ala	Gly	Phe	Asp	Trp 175	Val
	50	Tyr	Tyr	Glu	Ser 180		Ala	His	Ile	His 185	Cys	Ser	Val	Lys	Ala 190	Glu	Asr
	55	Ser	Val	Ala 195		Lys	Ser	Gly	Gly 200		Phe	Pro	Gly	Ser 205	Gly	Thr	Val
		Thr	Leu 210	Gly	Asp	Gly	Thr	Arg 215		Pro	Ile	Lys	Asp 220	Leu	Lys	Val	Gly
	60	Asp 225		y Val	Leu	Ala	Ala 230		Glu	Lys	Gly	Asn 235	Val	Leu	Ile	Ser	Asp 240

	Phe	Ile	Met	Phe	Ile 245	Asp	His	Asp	Pro	Thr 250	Thr	Arg	Arg	GIN	255	TTE
5	Val	Ile	Glu	Thr 260	Ser	Glu	Pro	Phe	Thr 265	Lys	Leu	Thr	Leu	Thr 270	Ala	Ala
10	His	Leu	Val 275	Phe	Val	Gly	Asn	Ser 280	Ser	Ala	Ala	Ser	Gly 285	Ile	Thr	Ala
10	Thr	Phe 290	Ala	Ser	Asn	Val	Lys 295	Pro	Gly	Asp	Thr	Val 300	Leu	Val	Trp	Glu
15	Asp 305	Thr	Cys	Glu	Ser	Leu 310	Lys	Ser	Val	Thr	Val 315	Lys	Arg	Ile	Туг	Thr 320
	Glu	Glu	His	Glu	Gly 325	Ser	Phe	Ala	Pro	Val 330	Thr	Ala	His	Gly	Thr 335	Ile
20	Ile	Val	Asp	Gln 340	Val	Leu	Ala	Ser	Cys 345	Tyr	Ala	Val	Ile	Glu 350	Asn	His
25	Lys	Trp	Ala 355	His	Trp	Ala	Phe	Ala 360	Pro	Val	Arg	Leu	Cys 365	His	Lys	Leu
25	Met	Thr 370		Leu	Phe	Pro	Ala 375	Arg	Glu	Ser	Asn	Val 380	Asn	Phe	Gln	Glu
30	Asp 385		· Ile	His	Trp	Tyr 390	Ser	Asn	Met	Leu	Phe 395	His	Ile	Gly	Ser	Trp 400
	Leu	Leu	Asp	Arg	Asp 405		Phe	His	Pro	Leu 410	Gly	Ile	Leu	. His	Leu 415	Ser
35	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:1	.8:							
40			(i)	SEQU (A (B (D) LE) TY	CHA NGTH PE: POLO	: 47	1 am	ino id	acid	ls					
				MOLE												
45				SEQU									. 7\] ~	Cor	. Wal	ጥኮሎ
	Met 1		o Asr	n His	Ser 5		· Val	. Pro	Trp	10	a Ser)	. Ala	l Alc	a ser	15	Thr
50	Суз	s Lei	ı Ser	Leu 20		cys	Glr	n Met	25 25	Glr	n Phe	e Gln	n Phe	∈ Glr 30	n Phe	: Gln
55	Lev	ı Glr	n Ile 35		ßer	Glu	ı Lev	4(ı Arq	g Lys	Pro	Ala 45	a Aro	g Arg	, Thr
55	Glr	n Th: 50		: Arg	y His	s Il€	e Ala 55		s Thi	c Glr	n Arg	60 60	Let)	ı Sei	r Arc	, Leu
60	Thi 6.5		r Leı	ı Val	Ala	a Leu 70		ı Lev	ı Ile	e Val	l Lei 75	ı Pro) Met	t Val	L Ph∈	e Ser 80

The first H is the first throw in the sense and the first fi

		Pro	Ala	His	Ser	Cys 85	Gly	Pro	Gly	Arg	Gly 90	Leu	Gly	Arg	His	Arg 95	Ala
	5	Arg	Asn	Leu	Tyr 100	Pro	Leu	Val	Leu	Lys 105	Gln	Thr	Ile	Pro	Asn 110	Leu	Ser
		Glu	Tyr	Thr 115	Asn	Ser	Ala	Ser	Gly 120	Pro	Leu	Glu	Gly	Val 125	Ile	Arg	Arg
	10	Asp	Ser 130	Pro	Lys	Phe	Lys	Asp 135	Leu	Val	Pro	Asn	Tyr 140	Asn	Arg	Asp	Ile
	15	Leu 145	Phe	Arg	Asp	Glu	Glu 150	Gly	Thr	Gly	Ala	Asp 155	Gly	Leu	Met	Ser	Lys 160
	10	Arg	Cys	Lys	Glu	Lys 165	Leu	Asn	Val	Leu	Ala 170	Tyr	Ser	Val	Met	Asn 175	Glu
	20	Trp	Pro	Gly	Ile 180	Arg	Leu	Leu	Val	Thr 185	Glu	Ser	Trp	Asp	Glu 190	Asp	Tyr
1 min		His	His	Gly 195	Gln	Glu	Ser	Leu	His 200	Tyr	Glu	Gly	Arg	Ala 205	Val	Thr	Ile
	25	Ala	Thr 210	Ser	Asp	Arg	Asp	Gln 215	Ser	Lys	Tyr	Gly	Met 220	Leu	Ala	Arg	Leu
des des de	30	Ala 225	Val	Glu	Ala	Gly	Phe 230	Asp	Trp	Val	Ser	Tyr 235	Val	Ser	Arg	Arg	His 240
The off		Ile	Tyr	Cys	Ser	Val 245	Lys	Ser	Asp	Ser	Ser 250	Ile	Ser	Ser	His	Val 255	His
an an an	35	Gly	Cys	Phe	Thr 260	Pro	Glu	Ser	Thr	Ala 265	Leu	Leu	Glu	Ser	Gly 270	Val	Arg
		Lys	Pro	Leu 275	Gly	Glu	Leu	Ser	Ile 280	Gly	Asp	Arg	Val	Leu 285	Ser	Met	Thr
W.	40	Ala	Asn 290	Gly	Gln	Ala	Val	Tyr 295	Ser	Glu	Val	Ile	Leu 300	Phe	Met	Asp	Arg
	45	Asn 305	Leu	Glu	Gln	Met	Gln 310	Asn	Phe	Val	Gln	Leu 315	His	Thr	Asp	Gly	Gly 320
		Ala	Val	Leu	Thr	Val 325	Thr	Pro	Ala	His	Leu 330	Val	Ser	Val	Trp	Gln 335	Pro
	50	Glu	Ser	Gln	Lys 340	Leu	Thr	Phe	Val	Phe 345	Ala	His	Arg	Ile	Glu 350	Glu	Lys
		Asn	Gln	Val 355	Leu	Val	Arg	Asp	Val 360	Glu	Thr	Gly	Glu	Leu 365	Arg	Pro	Gln
	55	Arg	Val 370	Val	Lys	Leu	Gly	Ser 375	Val	Arg	Ser	Lys	Gly 380	Val	Val	Ala	Pro
	60	Leu 385	Thr	Arg	Glu	Gly	Thr 390	Ile	Val	Val	Asn	Ser 395	Val	Ala	Ala	Ser	Cys 400
		Tyr	Ala	Val	Ile	Asn	Ser	Gln	Ser	Leu	Ala	His	Trp	Gly	Leu	Ala	Pro

						405					410					415		
	5	Met	Arg	Leu	Leu 420	Ser	Thr	Leu	Glu	Ala 425	Trp	Leu	Pro	Ala	Lys 430	Glu	Gln	
		Leu	His	Ser 435	Ser	Pro	Lys	Val	Val 440	Ser	Ser	Ala	Gln	Gln 445	Gln	Asn	Gly	
1	0	Ile	His 450	Trp	Tyr	Ala	Asn	Ala 455	Leu	Tyr	Lys	Val	Lys 460	Asp	Tyr	Val	Leu	
		Pro 465	Gln	Ser	Trp	Arg	His 470	Asp										
1	5	(2)	INFO	RMAT	TION	FOR	SEQ	ID N	10:19):								
2	0		(i)	(<i>F</i>		NGTE PE:		1 am	nino cid		ls							
1 16 11111			(ii)	MOI	LECUL	E TY	PE:	pept	ide									
2	5		(v)	FRA	AGMEN	Т ТҮ	PE:	inte	ernal	-								
ine finit			(xi)	SEÇ	QUENC	E DE	SCRI	PTIC)N: S	SEQ I	D NO):19:	:					
<u> </u>	0		Cys 1	s Gly	y Pro	Gly	Arg 5	Gly	/ Xaa	a Gly	7 Xaa	a Arq 10	g Arc	g His	s Pro) Lys	Lys 15	Lei
3	5		Thi	r Pro) Leu	Ala 20	туг	Lys	Glr	n Ph∈	25	e Pro) Asr	val	l Ala	a Glu 30	Lys	Thi
2			Leı	ı Gly	/ Ala 35	Ser	Gly	Arg	ј Туг	Glu 40	ı Gly	y Lys	3 Ile	e Xaa	a Arç 45	g Asn	ser	Glu
4	0		Aro	g Phe 50	e Lys	Glu	ı Lev	Thr	Pro 55	Asr	туі	c Ası	n Pro	60	o Ile	e Ile	Phe	Lys
			Asp 65	o Glu	ı Glu	Asr	Thr	Gly 70	7 Alá	a Asp	Arg	g Lei	1 Met 75	: Thi	c Glr	n Arç	g Cys	Lys 80
4	.5		Asp	D Lys	s Leu	ı Asr	хаа 85	Leu	ı Ala	a Ile	e Sei	r Val 90	Met	: Ası	n Xaa	a Trp	Pro 95	Gly
5	0		۷al	L Xaa	a Leu	100		Thr	Glu	ı Glş	7 Trp 105	_	o Glu	ı Asp	o Gly	7 His 110	His	Xaa
J	Ü		Glı	ı Glu	ı Ser 115		His	Tyr	Glu	120		g Ala	a Val	. Asp	125 125		Thr	Sei
5	5		Asp	2 Arg	_) Xaa	Ser	Lys	Tyr 135		/ Xaa	a Lei	ı Xaa	140		ı Ala	val	Glı
			Ala 145		y Phe	Asp	Trp	Val 150	_	туг	Glı	ı Sei	155		a His	3 Ile	e His	Cys 160
6	0		Sei	r Val	l Lys	: Ala	Glu 165		ı Ser	. Val	Alá	a Ala 170		Sei	c Gly	/ Gly	Cys 175	Phe

			Pro	Gly	Ser	Ala 180	Xaa	Val	Xaa	Leu	Xaa 185	Xaa	Gly	Gly	Xaa	Lys 190	Xaa	Val
	5		Lys	Asp	Leu 195	Xaa	Pro	Gly	Asp	Xaa 200	Val	Leu	Ala	Ala	Asp 205	Xaa	Xaa	Gly
	10		Xaa	Leu 210	Xaa	Xaa	Ser	Asp	Phe 215	Xaa	Xaa	Phe	Xaa	Asp 220	Arg			
		(2)	INFOR	RMATI	ON E	OR S	SEQ]	D NO	0:20	:								
	15		(i)	(A)	LEN TYE	IGTH PE: a	: 16	7 am: o ac:			s							
	20		(ii)	MOLI	ECULE	E TY	PE: p	pept	ide									
	20		(v)	FRAG	GMENT	r TY	PE:	inte	rnal									
	25		(xi)								D NO							
14	23		Cys 1	Gly	Pro	Gly	Arg 5	Gly	Xaa	Xaa	Xaa	Arg 10	Arg	Xaa	Xaa	Xaa	Pro 15	Lys
	30		Xaa	Leu	Xaa	Pro 20	Leu	Xaa	Tyr	Lys	Gln 25	Phe	Xaa	Pro	Xaa	Хаа 30	Xaa	Glu
			Xaa	Thr	Leu 35	Gly	Ala	Ser	Gly	Хаа 40	. Xaa	Glu	Gly	Xaa	Хаа 45	Хаг	Arg	Xaa
	35		Ser	Glu 50	Arg	Phe	Xaa	Хаа	Leu 55	Thr	Pro	Asn	Туг	Asn 60	Pro	Asp	Ile	Ile
11 22			Phe 65	Lys	Asp	Glu	. Glu	Asn 70	. Xaa	Gly	Ala	Asp	Arg 75	Leu	Met	Thr	Xaa	Arq 80
1,2	40		Cys	: Lys	Xaa	Xaa	. Xaa 85	Asn	ı Xaa	Leu	ı Ala	Ile 90	Ser	Val	. Met	. Asr	. Хаа 95	Trp
	45		Pro	Gly	· Val	Xaa 100		Arg	y Val	Thr	Glu 105	Gly	⁄ Хаа	Asp	Glu	Asp 110	Gly	7 His
			His	: Xaa	. Xaa 115		. Ser	Let	ı His	Tyr 120	Glu	Gly	Arg	Ala	125	Asp	o Il∈	e Thr
	50		Thr	s Ser 130		Arç	j Asp) Xaa	135	Lys 5	s Tyr	Gly	и Хаа	Let 14(ı Xaa	a Arç	g Lei	a Alá
	5.5		Val	L Glu	ı Ala	Gl	, Phe	e Asp 150		val	l Tyr	Tyr	Glu 155	Sei	: Xaa	a Xaa	a His	3 Xaa 160
	55		His	s Xaa	a Ser	. Val	L Lys 165		a Xaa	à								

15

20

We claim:

- A method for limiting damage to neuronal cells by ischemic or epoxic conditions,
 comprising administering to an individual a ptc therapeutic in an amount effective for reducing cerebral infarct volume relative to the absence of administration of the ptc therapeutic, wherein the ptc therapeutic inhibits PKC with a K_i greater than 1 μM.
 - 2. A method for protecting cerebral tissue of a mammal against the repercussions of ischemia which comprises administering to the mammal in need thereof a therapeutically effective amount of a *ptc* therapeutic therapeutic, wherein the *ptc* therapeutic inhibits PKC with a K, greater than 1 μM.
 - 3. A method for the treatment of cerebral infarctions which comprises administering to a patient in need thereof a therapeutically effective amount of a *ptc* therapeutic therapeutic, wherein the *ptc* therapeutic inhibits PKC with a K_i greater than 1 μ M.
 - 4. A method for the treatment of cerebral ischemia which comprises administering to a patient in need thereof a therapeutically effective amount of a *ptc* therapeutic therapeutic, wherein the *ptc* therapeutic inhibits PKC with a K_i greater than 1 μM.
 - 5. A method for the treatment of stroke which comprises administering to a patient in need thereof a therapeutically effective amount of a *ptc* therapeutic therapeutic, wherein the *ptc* therapeutic inhibits PKC with a K_i greater than 1 μM.
 - 6. A method for the treatment of transient ischemia attack which comprises administering to a patient in need thereof a therapeutically effective amount of a *ptc* therapeutic therapeutic, wherein the *ptc* therapeutic inhibits PKC with a K_i greater than 1 μ M.
- 7. The method of any of claims 1-6, wherein the *ptc* therapeutic binds to *patched* and mimics hedgehog-mediated patched signal transduction.
 - 8. The method of claim 7, wherein the ptc therapeutic is a small organic molecule.
 - 9. The method of claim 7, wherein the binding of the *ptc* therapeutic to *patched* results in upregulation of *patched* and/or *gli* expression.
- 10. The method of claim 8, wherein the *ptc* therapeutic is a small organic molecule which interacts with neuronal cells to mimic *hedgehog*-mediated *patched* signal transduction.
 - 11. The method of any of claims 1-6, wherein the *ptc* therapeutic mimics *hedgehog*-mediated *patched* signal transduction by altering the localization, protein-protein binding and/or enzymatic activity of an intracellular protein involved in a *patched* signal pathway.

15

20

5

- 12. The method of any of claims 1-6, wherein the *ptc* therapeutic alters the level of expression of a *hedgehog* protein, a *patched* protein or a protein involved in the intracellular signal transduction pathway of *patched*.
- 13. The method of claim 11, wherein the *ptc* therapeutic is a small organic molecule which binds to *patched* and regulates *patched*-dependent gene expression.
- 14. The method of claim 11, wherein the *ptc* therapeutic is an inhibitor of protein kinase A (PKA).
- 15. The method of claim 14, wherein the PKA inhibitor is a 5-isoquinolinesulfonamide.
- 16. The method of claim 15, wherein the PKA inhibitor is represented in the general formula:

wherein,

 R_1 and R_2 each can independently represent hydrogen, and as valence and stability permit a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl, a thiocarbonyl, an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, - $(CH_2)_m$ - R_8 , - $(CH_2)_m$ -O-lower alkyl, - $(CH_2)_m$ -O-lower alkenyl, - $(CH_2)_m$ -O-($CH_2)_m$ - R_8 , - $(CH_2)_m$ -SH, - $(CH_2)_m$ -S-lower alkyl, - $(CH_2)_m$ -S-lower alkenyl, - $(CH_2)_m$ -S- $(CH_2)_m$ -R₈, or

R₁ and R₂ taken together with N form a substituted or unsubstituted heterocycle;

 R_3 is absent or represents one or more substitutions to the isoquinoline ring such as a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, $-(CH_2)_m$ - R_8 , $-(CH_2)_m$ -O-lower alkyl, $-(CH_2)_m$ -O-lower alkenyl, $-(CH_2)_m$ -O-($-(CH_2)_m$ - $-(CH_2)_m$ -R₈, $-(CH_2)_m$ -S-lower alkyl, $-(CH_2)_m$ -S-lower alkenyl, $-(CH_2)_m$ -S-($-(CH_2)_m$ -R₈;

R₈ represents a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and

n and m are independently for each occurrence zero or an integer in the range of 1 to 6.

- 17. The method of claim 14, wherein the PKA inhibitor is selected from the group consisting of
 N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, KT5720, and PKA Heat
 Stable Inhibitor isoform α.
 - 18. The method of claim 5, wherein the stroke is a thrombotic stroke.
 - 19. The method of claim 5, wherein the stroke is an embolic stroke.
 - 20. The method of claim 1, wherein the conditions result in cerebral hypoxia.
- 10 21. The method of claim 1, wherein the conditions result in progressive loss of neurons due to oxygen deprivation.
 - 22. The method of any of claims 3-6, wherein the patient is treated prophylactically.
 - 23. The method of claim 1, wherein the individual is treated prophylactically.
 - 24. The method of claim 2, wherein the mammal is treated prophylactically.
- 15 25. The method of claim 1, wherein the patient is hypotensive.
 - 26. The method of any of claims 1-6, further comprising

administering one or more of an anticoagulant, an antiplatelet agent, a thrombin inhibitor, and/or a thrombolytic agent.

- 27. The method of any of claims 1-6, further comprising performing vascular surgery.
- 28. The method of claim 27, wherein the vascular surgery comprises carotid endarterectomy.
- 29. The method of any of claims 1-6, wherein treatment of the patient with the *ptc* therapeutic results in at least a 25% reduction in cerebral infarct volumes relative to absence of treatment with the *ptc* therapeutic.
- 25 30. The method of claim 29, wherein treatment of the patient with the *ptc* therapeutic results in at least a 50% reduction in cerebral infarct volumes relative to absence of treatment with the *ptc* therapeutic.

- 31. The method of claim 29, wherein treatment of the patient with the *ptc* therapeutic results in at least a 70% reduction in cerebral infarct volumes relative to absence of treatment with the *ptc* therapeutic.
- 32. The method of any of claims 1-6, wherein the *ptc* therapeutic inhibits the activity of PKA, cAMP, or adenylate cyclase.
 - 33. The method of any of claims 1-6, wherein the *ptc* therapeutc agonizes the activity of cAMP phosphodiesterase.
- 34. A therapeutic preparation of a small molecule antagonist of *patched*, which *patched* antagonist inhibits PKC with a K₁ greater than 100 nM and is provided in a pharmaceutically acceptable carrier and in an amount sufficient to provide protection against neuronal cell death under ischemic and/or hypoxic conditions.
- 35. The preparation of claim 34, which patched antagonist binds to patched.
- 36. The preparation of claim 34, wherein the *patched* antagonist is provided in an amount sufficient to produce, upon a dosage regimen of 7 days, at least a 70% decrease in infarct volume in an MCAO model relative to the absence of the *patched* antagonist.
- 37. The preparation of claim 34, wherein the *patched* antagonist is provided in an amount sufficient to produce, upon a dosage regimen of 3 days, at least a 70% decrease in infarct volume in an MCAO model relative to the absence of the *patched* antagonist.

of the state of th

5

10

Abstract of the Invention

One aspect of the present application relates to a method for limiting damage to neuronal cells by ischemic or epoxic conditions, e.g., such as may be manifest by a reduction in brain infarct volume, by administering to an individual a *hedgehog* therapeutic or *ptc* therapeutic in an amount effective for reducing cerebral infarct volume.

Figure 1

Attorney's Docket Number: ONV-043.02

Declaration, Petition and Power of Attorney For Patent Application

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled:

NEUROPROTECTIVE METHODS AND REAGENTS

the specification of which was filed in the U.S. Patent and Trademark Office on 14 October 1999.

I do not know and do not believe that the subject matter of this application was ever known or used in the United States before my invention thereof or patented or described in any printed publication in any country before my invention thereof or more than one year prior to the date of this application, and that said subject matter has not been patented or made the subject of an issued inventor's certificate in any country foreign to the United States on an application filed by me or my legal representatives or assigns more than twelve months prior to the date of this application; that I acknowledge my duty to disclose information of which I am aware which is material to the examination of this application, that no application for patent or inventor's certificate on the subject matter of this application has been filed by me or my representatives or assigns in any country foreign to the United States, except those identified below, and that I have reviewed and understand the contents of the specification, including the claims as amended by any amendment referred to herein.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

PRIORITY CLAIM

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed.

Check one:	$\underline{\mathbf{X}}$	no such applications have been filed.
		such applications have been filed as follows

EARLIEST FOREIGN APPLICATION(S), IF ANY FILED WITHIN 12 MONTHS (6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

Country	Application Number	Date of Filing (month,day,year)	Priority Under 3:	Claimed 5 USC 119
			_Yes	No _
			_Yes	No _
			_Yes	No _
			_Yes	No _
			_Yes	Ño

(6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION									
	1								

CLAIM FOR BENEFIT OF EARLIER U.S./PCT APPLICATION(S)

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application. As to subject matter of this application which is common to my earlier United States application, if any, described below, I do not believe that the same was ever known or used in the United States before my invention thereof or patented or described in any printed publication in any country before my invention thereof or more than one year prior to said earlier application, or in public use or on sale in the United States more than one year prior to said earlier application, that the said common subject matter has not been patented or made the subject of an inventor's certificate issued before the date of said earlier application in any country foreign to the United States on an application, filed by me or my legal representatives or assigns more than twelve months prior to said application and that no application for patent or inventor's certificate on said subject matter has been filed by me or my representatives or assigns in any country foreign to the United States except those identified herein.

(Application Serial No.)	(Filing Date)	(Status) (patented,pending,aband.)
(Application Serial No.)	(Filing Date)	(Status) (patented,pending,aband.)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

Donald W. Muirhead	Reg. No. 33,978	Charles H. Cella	Reg. No. 38,099
Beth E. Arnold	Reg. No. 35,430	John C. Gorecki	Reg. No. 38,741
Matthew P. Vincent	Reg. No. 36,709	Edward J. Kelly	Reg. No. 38,936
		Sayoko Blodgett-Ford	Reg. No. 40,516

Send Correspondence to:

Patent Group

Foley, Hoag & Eliot LLP One Post Office Square Boston, MA 02109

Direct Telephone Calls to: Matthew P. Vincent, Ph.D. (617) 832-1000

Wherefore I petition that letters patent be granted to me for the invention or discovery described and claimed in the attached specification and claims, and hereby subscribe my name to said specification and claims and to the foregoing declaration, power of attorney, and this petition.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor Nagesh K. Mahanthappa	
Inventor's signature	Date
Residence	
319 Columbia Street, Cambridge, Massachusetts 02141-1309 USA	
Citizenship	
USA	
Post Office Address (if different)	