

Trabalho Prático 2

Estudo do funcionamento de um processador

ARQUITETURA DE COMPUTADORES

DEPARTAMENTO DE ENGENHARIA ELETRÓNICA E DE TELECOMUNICAÇÕES E COMPUTADORES

1 Objetivos

Este trabalho tem como principal objetivo a compreensão do funcionamento de um processador, sendo abordados os seguintes tópicos: codificação de um conjunto de instruções, funcionamento de uma microarquitetura e codificação de programas em linguagem máquina. O ambiente de simulação Logisim é utilizado para consolidação do estudo.

2 Especificação do Exercício

Pretende-se completar o projeto de um processador, respeitando o seu modelo de programação e microarquitetura de ciclo único, bem como fazer a validação do projeto usando o ambiente de simulação Logisim e um pequeno programa de teste.

O processador considerado é de 8 bits e tem o seguinte modelo de programação:

- Espaço de endereçamento para código com 256 endereços;
- Espaço de endereçamento para dados também com 256 endereços;
- Quatro registos de uso geral, denominados r0, r1, r2 e r3;
- Um registo de estado, denominado CPSR (do inglês Current Program Status Register), que disponibiliza um bit que indica que a última operação realizada deu resultado zero (flag Z);
- O conjunto de instruções apresentado na Tabela 1.

Nas instruções apresentadas na Tabela 1, rd, rm e rn representam um dos registos de uso geral do processador, immn simboliza um número natural codificado com n bits, label identifica um endereço na vizinhança de ± 32 endereços da instrução de salto em causa e PC referencia o registo program counter.

A microarquitetura do processador está descrita no formato Logisim no ficheiro "ac 2122v tp2.circ", disponível na página de meta disciplina de AC na plataforma Moodle.

Instrução	Descrição	
b rn	Muda a execução para o endereço definido pelo conteúdo de rn.	$\mathtt{PC} \leftarrow \mathtt{rn}$
bzs label	Muda a execução para o endereço associado ao símbolo label quando a flag Z do registo CPSR apresenta o valor um.	$\begin{array}{l} \mathtt{CPSR.Z} == 1 \; ? \; \mathtt{PC} \leftarrow \mathtt{label} : \\ \mathtt{PC} \leftarrow \mathtt{PC} + 1 \end{array}$
ldr rd, [rn, #imm2]	Copia para rd o conteúdo da posição da memória de dados cujo endereço resulta da soma de rn com o valor da constante imm2.	$\texttt{rd} \leftarrow M[\texttt{rn} + \texttt{imm2}]$
mov rd, #imm4	Estabelece em rd o valor da constante imm4.	$\texttt{rd} \leftarrow \texttt{imm4}$
nor rd, rn, rm	Realiza a função lógica NOR entre os bits da mesma posição de rn e rm, colocando o resultado em rd e atualizando o registo CPSR com a infor- mação do bit Z gerada na ALU.	$\begin{array}{l} \texttt{rd} \leftarrow \overline{\texttt{rn} + \texttt{rm}} \\ \texttt{rd} \ == \ 0 \ ? \texttt{CPSR.Z} \ \leftarrow \ 1 \ : \\ \texttt{CPSR.Z} \ \leftarrow \ 0 \end{array}$
sub rd, rn, #imm2	Subtrai a rn o valor da constante imm2, colocando o resultado em rd e atualizando o registo CPSR com a informação do bit Z gerada na ALU.	$\begin{array}{l} \texttt{rd} \leftarrow \texttt{rn} - \texttt{imm2}; \\ \texttt{rd} == 0 ? \texttt{CPSR.Z} \leftarrow 1 : \\ \texttt{CPSR.Z} \leftarrow 0 \end{array}$
str rd, [rn, rm]	Copia o conteúdo de rd para a posição da memória de dados cujo endereço resulta da soma de rn com rm.	$M[exttt{rn} + exttt{rm}] \leftarrow exttt{rd}$
tst rn, rm	Realiza a função lógica AND entre os bits da mesma posição de rn e rm, atualizando o registo CPSR com a informação do bit Z gerada na ALU.	$\mathtt{rn} \cdot \mathtt{rm} == 0$? $\mathtt{CPSR.Z} \leftarrow 1$: $\mathtt{CPSR.Z} \leftarrow 0$

Tabela 1: Conjunto de instruções do processador

3 Trabalho a Realizar

3.1 Análise da microarquitectura

Considere a descrição da microarquitectura do processador disponibilizada no ficheiro "ac 2122v tp2.circ".

- 1. Comente a seguinte afirmação: "A microarquitetura do processador é do tipo von Neumann."
- 2. Indique a funcionalidade realizada pelo bloco Ext. Justifique a sua resposta com base no funcionamento das instruções bzs, mov, ldr e sub.
- 3. Identifique as operações realizadas pela Unidade Lógica e Aritmética (ALU) do processador e indique o valor do sinal OP associado a cada operação.

3.2 Codificação das instruções

Considere a utilização de um código de comprimento fixo e um esquema de codificação uniforme para a codificação do conjunto de instruções apresentado.

1. Apresente um mapa de codificação para o conjunto de instruções, tendo em conta o formato de codificação da instrução tst apresentado na Figura 1.

Figura 1: Formato de codificação da instrução tst

2. Indique um valor para o código de operação (opcode) de cada instrução. Justifique a sua resposta tendo em conta também o funcionamento da ALU.

3.3 Projeto do descodificador de instruções

Considere o subcircuito Instruction Decoder disponibilizado no ficheiro "ac_2122v_tp2.circ", que implementa o descodificador de instruções da microarquitectura proposta para o processador.

- 1. Usando uma tabela, apresente os valores das saídas deste bloco, em função dos seus sinais de entrada, para o conjunto de instruções apresentado. Explicite os casos de indiferença (don't care) e, se aplicável, as saídas obtidas diretamente do código da instrução.
- 2. Considerando uma implementação baseada, exclusivamente, numa ROM, determine o conteúdo dessa memória. Indique os valores dos endereços e conteúdos em notação hexadecimal.
- 3. Indique, em bits, a capacidade da memória ROM considerada no ponto 2.

3.4 Codificação de programas em linguagem máquina

Considere o troço de código apresentado na Listagem 1, escrito na linguagem assembly do processador.

- 1. Indique a funcionalidade do troço de código.
- 2. Traduza o troço de código para código máquina.
- 3. Pondera-se substituir a instrução str rd, [rn, rm] pela instrução str rd, [rn], que realiza a operação M[rn] = rd.

- (a) Indique, justificando, se é possível fazer esta alteração ao conjunto de instruções mantendo a organização da microarquitetura apresentada.
- (b) Discuta as vantagens e desvantagens desta alteração quanto aos seguintes aspetos: i) o endereçamento da memória de dados, ii) a densidade do código e iii) o impacto no desenho da microarquitetura.

```
r0, #0
     r1, [r0, #0]
ldr
nor
     r3, r0, r0
tst
         r3
bzs
     skip
    r2, [r0, #1]
ldr
     r1, r1, r1
nor
nor
     r2, r2, r2
nor
     r1, r1, r2
mov
     r3, #8
str
     r1, [r3, r0]
mov
     r2. #0xc
```

Listagem 1: Programa de teste.

3.5 Implementação e simulação no Logisim

Considere a descrição da microarquitectura do processador disponibilizada no ficheiro "ac_2122v_tp2.circ".

- 1. No Logisim, implemente o subcircuito Ext com base na análise apresentada no ponto 2 da secção 3.1.
- 2. No Logisim, implemente o subcircuito Interconnections tendo em conta o resultado indicado no ponto 1 da secção 3.2.
- 3. No Logisim, implemente o subcircuito Instruction Decoder com base no projeto apresentado no ponto 2 da secção 3.3.
- 4. No Logisim, programe a memória de código com o código máquina produzido no ponto 2 da secção 3.4. Programe também as primeiras duas posições da memória de dados com os valores três e dez, respetivamente.
- 5. No Logisim, execute o troço de código e, para cada uma das instruções, registe as alterações ocorridas nos registos do processador (r0 a r3, PC e CPSR) e na memória de dados.

4 Avaliação

O trabalho deve ser realizado em grupo e conta para o processo de avaliação da unidade curricular. Na entrega do trabalho, cada grupo deverá submeter na plataforma Moodle os seguintes elementos:

- Um relatório do trabalho realizado, com as respostas às perguntas formuladas no enunciado e as conclusões retiradas do trabalho realizado;
- Nova versão do ficheiro "ac_2122v_tp2.circ" com a implementação de todos os subcircuitos desenvolvidos;
- Ficheiros com o conteúdo das memórias de programa e dados para o programa de teste implementado.

A data limite para a entrega dos trabalhos é nove de maio de 2022. Após esta entrega, o docente responsável pela lecionação das aulas teórico-práticas combinará com cada grupo de alunos uma data e hora para a realização da apresentação do trabalho.