南京航空航天大学

第1页 (共6页)

二〇二一 ~ 二〇二二 学年 第二学期 《计算方法》考试试题

考试日期: 2022 年 月 日 试卷类型: A 试卷代号:

	班号		学号	姓名			
题号	_	11	= ×	四	五	六	总分
得分			. KK 352-1				

本题分数	20 分
得 分	

一、(1)写出求解非线性方程 $f(\mathbf{x}) \equiv x'' \equiv a = 0$ 的牛顿迭代格式。(2)取 $\mathbf{e} = 10^{-5}$, $x_0 \equiv 0$,用牛顿法求 $\cos \mathbf{x} = \mathbf{x} \mathbf{e}^x \equiv 0$ 的最小正根(保留小数点后 5 位)。

本题分数	20分
得 分	

二、(1) 计算矩阵 A 的条件数 $||A||_1 \cdot ||A^{-1}||_1$, 其中 $A = \begin{pmatrix} 1 & 0.99 \\ 0.99 & 0.98 \end{pmatrix}$;

(2) 给定方程组 Ax = b, 其中 $A = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, 构造迭代法

 $x^{(k+1)} = x^{(k)} + a(b-Ax^{(k)}), k = 0,1,...$,如果此迭代法收敛,求a的取值范围。

_	
本题分数	17分
得 分	

三、给定	数据表		
x	0	3	6
f(x)	2	-4	14

(1)计算二次拉格朗日插值多项式 $L_2(x)$ 和二次牛顿插值多项式 $N_2(x)$;(2)计算 $L_2(x)$ \blacksquare $N_2(x)$ (最简形式)。

本题分数	20分
得 分	2074

四、(1) 用复合梯形公式 T_8 计算 $\int_0^{\frac{\pi}{2}} \sqrt{1-\frac{1}{2}\sin^2 x} dx$ (保留小数点后 4 位); (2) 给定

三个点 $x_{i=1},x_i,x_{i\neq 1}$ 及其对应的函数值 $y_{i=1},y_i,y_{i\neq 1}$,记步长

 $h \blacksquare x_i \blacksquare x_{i \blacksquare 1} \blacksquare x_{i \blacksquare 1} \blacksquare x_i$,写出二次拉格朗日插值多项式 $P_2(\mathbf{x})$,并计算 $P_2^{\bullet}(\mathbf{x}_{i+1})$ 的

值。

本题分数 17分

得 分 五、用梯形公式解常微分方程初值问题:

$$\begin{cases} y' = -y, \\ y(0) = 2, \end{cases}$$
 证明其数值解为 $y_i = 2\left(\frac{2-h}{2+h}\right)^i$ 。

本题分数	6分
得 分	

六、如果存在对称正定矩阵 P ,使得 $B = P - H^T P H$ 是对称正定矩阵,证明迭代法 $x^{(k+1)} = H x^{(k)} + b \quad k = 0,1,\cdots$,收敛。