Neighbour-Joining Unit Tests

Hint: Many test values are taken from project Algorithms for Bioninformatics of Alexander Mattheis or the lectures.

Example from: https://en.wikipedia.org/wiki/Neighbor joining

Test 1

Input

D	а	b	С	d	е
а	0	5	9	9	8
b		0	10	10	9
С			0	8	7
d				0	3
е					0

Iteration 1

Step 1: Calculate neighbor-joining matrix D^* from $N \times N$ distance matrix D

 $D_{i,j}^* = (N-2) \cdot D_{i,j} - D_{i,J} - D_{I,j}$

where $D_{i,J} = \sum_{k=1}^{N} D_{i,k}$ is the total-distance (sum of distances from cluster i to all other clusters)

Step 1.1: Compute total distances

D	а	b	С	d	е	Σ
а	0	5	9	9	8	31
b	5	0	10	10	9	34
С	9	10	0	8	7	34
d	9	10	8	0	3	30
е	8	9	7	3	0	27
Σ	31	34	34	30	27	

Step 1.2: Calculate neighbor-joining matrix

D *	а	b	С	d	е
а		-50	-38	-34	-34
b			-38	-34	-34
С				-40	-40
d					-48
е					

first row:

$$D_{a,b}^* = (5-2) \cdot 5 - D_{a,B} - D_{A,b} = 3 \cdot 5 - 34 - 31 = -50$$

$$D_{a,c}^* = (5-2) \cdot 9 - D_{a,c} - D_{A,c} = 3 \cdot 9 - 34 - 31 = -38$$

$$D_{a,d}^* = (5-2) \cdot 9 - D_{a,D} - D_{A,d} = 3 \cdot 9 - 30 - 31 = -34$$

$$D_{a,e}^* = (5-2) \cdot 8 - D_{a,E} - D_{A,e} = 3 \cdot 8 - 27 - 31 = -34$$

second row:

$$D_{b,c}^* = (5-2) \cdot 10 - D_{b,c} - D_{B,c} = 30 - 34 - 34 = -38$$

$$D_{b,d}^* = (5-2) \cdot 10 - D_{b,D} - D_{B,d} = 30 - 30 - 34 = -34$$

$$D_{b,e}^* = (5-2) \cdot 9 - D_{b,E} - D_{B,e} = 27 - 27 - 34 = -34$$

third row:

$$D_{c,d}^* = (5-2) \cdot 8 - D_{c,D} - D_{c,d} = 24 - 30 - 34 = -40$$

$$D_{c,e}^* = (5-2) \cdot 7 - D_{c,e} - D_{c,e} = 21 - 27 - 34 = -40$$

fourth row:

$$D_{d,e}^* = (5-2) \cdot 3 - D_{d,E} - D_{D,e} = 9 - 27 - 30 = -48$$

Step 2: Find minimum element in D^* and create new cluster ij

D *	а	b	С	d	е
а		-50	-38	-34	-34
b			-38	-34	-34
С				-40	-40
d					-48
е					

$$D_{min} = D_{a,b} = -50$$
 and $ab = a \cup b$

D	ab	С	d	е
ab				
С				
d				
е				

Step 3: Recompute distances

Step 3.1: Pair-members and new cluster (distance in tree)

$$d(i,ij) = \frac{1}{2} (D_{i,j} - \Delta_{i,j}) = \frac{1}{2} (D_{i,j} - \frac{D_{i,j} - D_{i,j}}{N - 2})$$

$$d(j,ij) = \frac{1}{2} (D_{i,j} + \Delta_{i,j}) = D_{i,j} - d(i,ij)$$

where $\Delta_{i,j} = \frac{D_{i,j} - D_{I,j}}{N-2}$ is the ratio between the total difference and the remaining number of iterations

Hint: with these formulae you get better results than in UPGMA, because neighbor-joining does not assume the same evolution rate for both i.e. the branch lengths of merged taxa are different

$$d(a,ab) = \frac{1}{2} \left(D_{a,b} - \frac{D_{a,B} - D_{A,b}}{5 - 2} \right) = \frac{1}{2} \left(5 - \frac{34 - 31}{3} \right) = 2$$

$$d(b,ab) = \frac{1}{2} \left(D_{a,b} + \Delta_{a,b} \right) = \frac{1}{2} (5 + 1) = 3 = D_{a,b} - d(a,ab) = 5 - 2$$

Step 3.2: Remaining clusters and new node

$$D_{ij,k} = \frac{\left(D_{i,k} + D_{j,k} - D_{i,j}\right)}{2}$$

D	ab	С	d	е
ab	0	7	7	6
С		0	8	7
d			0	3
е				0

$$D_{ab,c} = \frac{1}{2} \left(D_{a,c} + D_{b,c} - D_{a,b} \right) = \frac{1}{2} (9 + 10 - 5) = 7$$

$$D_{ab,d} = \frac{1}{2} \left(D_{a,d} + D_{b,d} - D_{a,b} \right) = \frac{1}{2} (9 + 10 - 5) = 7$$

$$D_{ab,e} = \frac{1}{2} \left(D_{a,e} + D_{b,e} - D_{a,b} \right) = \frac{1}{2} (8 + 9 - 5) = 6$$

Iteration 2

D	ab	С	d	е
ab	0	7	7	6
С		0	8	7
d			0	3
е				0

Step 1: Calculate neighbor-joining matrix D^* from $N \times N$ distance matrix D

Step 1.1: Compute total distances

D	ab	С	d	е	Σ
ab	0	7	7	6	20
С	7	0	8	7	22
d	7	8	0	3	18
е	6	7	3	0	16
Σ	20	22	18	16	

Step 1.2: Calculate neighbor-joining matrix

D^*	ab	С	d	е
ab		-28	-24	-24
С			-24	-24
d				-28
е				

first row:

$$D_{ab,c}^* = (4-2) \cdot 7 - D_{ab,c} - D_{AB,c} = 14 - 20 - 22 = -28$$

$$D_{ab,d}^* = (4-2) \cdot 7 - D_{ab,D} - D_{AB,d} = 14 - 20 - 18 = -24$$

$$D_{ab,e}^* = (4-2) \cdot 6 - D_{ab,E} - D_{AB,e} = 12 - 20 - 16 = -24$$

second row:

$$D_{c,d}^* = (4-2) \cdot 8 - D_{c,D} - D_{c,d} = 16 - 18 - 22 = -24$$

$$D_{c,e}^* = (4-2) \cdot 7 - D_{c,E} - D_{c,e} = 14 - 16 - 22 = -24$$

third row:

$$D_{d,e}^* = (4-2) \cdot 3 - D_{d,E} - D_{D,e} = 6 - 16 - 18 = -28$$

Step 2: Find minimum element in D^* and create new cluster ij

D^*	ab	С	d	е
ab		-28	-24	-24
С			-24	-24
d				-28
е				

$$D_{min} = D_{ab,c} = -28$$
 and $abc = ab \cup c$

D	abc	d	е
abc			
d			
е			

Step 3: Recompute distances

Step 3.1: Pair-members and new cluster (distance in tree)

$$\begin{split} d(ab,abc) &= \frac{1}{2} \left(D_{ab,c} - \frac{D_{ab,c} - D_{AB,c}}{4 - 2} \right) = \frac{1}{2} \left(7 - \frac{22 - 20}{2} \right) = 3 \\ d(c,abc) &= \frac{1}{2} \left(D_{ab,c} + \Delta_{ab,c} \right) = \frac{1}{2} (7 + 1) = 4 = D_{ab,c} - d(ab,abc) = 7 - 3 \end{split}$$

Step 3.2: Remaining clusters and new node

D	abc	d	е
abc	0	4	3
d		0	3
е			0

$$D_{abc,d} = \frac{1}{2} \left(D_{ab,d} + D_{c,d} - D_{ab,c} \right) = \frac{1}{2} (7 + 8 - 7) = 4$$

$$D_{abc,e} = \frac{1}{2} (D_{ab,e} + D_{c,e} - D_{ab,c}) = \frac{1}{2} (6 + 7 - 7) = 3$$

Iteration 3

D	abc	d	е
abc	0	4	3
d		0	3
е			0

Step 1: Calculate neighbor-joining matrix D^* from $N \times N$ distance matrix D

Step 1.1: Compute total distances

D	abc	d	е	Σ
abc	0	4	3	7
d	4	0	3	7
е	3	3	0	6
Σ	7	7	6	

Step 1.2: Calculate neighbor-joining matrix

D *	abc	d	е
abc		-10	-10
d			-10
е			

first row

$$D_{abc,d}^* = (3-2) \cdot 4 - D_{abc,D} - D_{ABC,d} = 4-7-7 = -10$$

$$D_{abc,e}^* = (3-2) \cdot 3 - D_{abc,E} - D_{ABC,e} = 3-6-7 = -10$$

second row:

$$D_{d,e}^* = (3-2) \cdot 3 - D_{d,E} - D_{D,e} = 3-6-7 = -10$$

Step 2: Find minimum element in D^* and create new cluster ij

D^*	abc	d	е
abc		-10	-10
d			-10
е			

$$D_{min} = D_{abc,d} = -10$$
 and $abc = abcd \cup d$

D	abcd	е
abcd		
е		

Step 3: Recompute distances

Step 3.1: Pair-members and new cluster (distance in tree)

$$\begin{split} d(abc,abcd) &= \frac{1}{2} \left(D_{abc,d} - \frac{D_{abc,D} - D_{ABC,d}}{3-2} \right) = \frac{1}{2} \left(4 - \frac{7-7}{1} \right) = 2 \\ d(d,abcd) &= \frac{1}{2} \left(D_{abc,d} + \Delta_{abc,d} \right) = \frac{1}{2} (4+0) = 2 = D_{abc,d} - \frac{1}{2} (abc,abcd) = 4-2 \end{split}$$

Step 3.2: Remaining clusters and new node

D *	abcd	е
abcd	0	1
е		0

$$D_{abcd,e} = \frac{1}{2} \left(D_{abc,e} + D_{d,e} - D_{abc,d} \right) = \frac{1}{2} (3 + 3 - 4) = 1$$

Final matrix

D^*	abcde	
abcde	0	

Final-Output