- Margen de variación en los coeficientes de la función objetivo
- Sensibilidad de los recursos disponibles

- Estudia el efecto que tendrían sobre la solución óptima encaso de que prevalecieran otras condiciones.
 - Variación en los parámetros de un modelo
- Permite evaluar la robustez de la solución y entender el impacto de incertidumbres en los datos del modelo

Parámetros de Análisis

- **❖ Coeficientes del objetivo (c₁):** Impacto de cambios en los coeficientes de la función objetivo.
- Coeficientes de las Restricciones (aij): Variaciones en los coeficientes de las restricciones.
- ❖ Términos independientes (b_i): Efecto de modificar los recursos disponibles o límites de las restricciones.

Para iniciar el análisis de sensibilidad al menos uno de los **parámetros** será modificado.

Análisis de Sensibilidad – Coeficientes de la Función Objetivo (c_{ij})

- Rango de sensibilidad para c₁ es encontrar el intervalo de valores dentro del cual el coeficiente c₁ puede variar sin cambiar la solución básica óptima
- Como Obtener los Limites?

Maximizar

$$Z = 3x_1 + 5x_2$$

s.a.

$$4x_1 + 3x_2 \le 15$$
 $x_1, x_2 \ge 0$

Punto	x1	x2	Z
A (0 0)	0	0	0
B (0 4)	0	4	20
C(1.2, 3.4)	1.2	17/5	20.6
D (3.75 0)	3 3/4	0	11.25

Ejercicio empleando MS

Maximizar
$$Z = 3x_1 + 5x_2$$

s. a.:
 $x_1 + 2x_2 \le 8$
 $4x_1 + 3x_2 \le 15$
 $x_1 \ge 0, x_2 \ge 0$

- 1. Formular el problema en su formato
- 2. estandarizado:

$$Z=3x_1+5x_2+0s_1+0s_2$$

$$x_1 + 2x_2 + S_1 = 8$$

 $4x_1 + 3x_2 + S_2 = 15$

2. Revisar la Solución Básica Factible Inicial

•
$$x_1 = 0$$
 • $s_1 = 8$
• $x_2 = 0$ • $s_2 = 15$ • Z=0

3. Primera Tabla Simplex

$$Z-3x_1-5x_2-0s_1-0s_2=0$$

			V	VD		В	
VB	R	Z	X1	X2	S1	S2	RHS
	R0	1_	-3	-5	0	0	0
s1	R1	0	1	2	1	0	8
s2	R2	0	4	3	0	1	15

4. Iteraciones

• Ve: X2

• Vs: CM → s1

CM: **8/2= 4**; 15/3=5

3. Tabla Simplex Original

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	R0	1	-3	-5	0	0	0
x2	R1	0	1	2	1	0	8
s2	R2	0	4	3	0	1	15

- R0=RP*5+R0
- RP=R1/2
- R2=RP*(-3)+R3

$$Z=3x_1+5x_2+0s_1+0s_2$$

$$x_1 + 2x_2 + S_1 = 8$$

 $4x_1 + 3x_2 + S_2 = 15$

4.1 Primera Iteración

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	R0	1	-1/2	0	5/2	0	20
x2	R1	0	1/2	1	1/2	0	4
s2	R2	_0_	5/2	0	-3/2	_1_	_3_

- X1: 0
- X2: 4
- Z:20

- s1:0
- s2: 3

4. Iteraciones

- Ve: X1
- Vs: CM → s2

CM: 4/2=2 ; **6/5=1.2**

3. **Tabla Primera Iteracion**

			V	VD		В	
VB	R	Z	X1	X2	S1	S2	RHS
	RO	1	-1/2	0	5/2	0	20
x2	R1	0	1/2	1	1/2	0	4
x1	R2	0	5/2	0	-3/2	1	3

$$Z=3x_1+5x_2+0s_1+0s_2$$

$$x_1 + 2x_2 + S_1 = 8$$
• R0=RP *(1/2)+R0
$$4x_1 + 3x_2 + S_2 = 15$$

4.1 Segunda Iteración

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	R0	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

• X1: 1.2

• X2: 3.4

• Z:20.6

• s1: 0

• s2:0

Maximizar
$$Z = 3x_1 + 5x_2$$

s. a.:
 $x_1 + 2x_2 < 8$

<i>7</i> C 1	$1 2 n_2 = 0$
$4x_1$	$+3x_2 \le 15$
	$x_1 \ge 0, x_2 \ge 0$

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	RO	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

• X1: 1.2

• X2: 3.4

• Z:20.6

• s1:0

• s2:0

Variables

básicas:

x1, x2

Variables NO

básicas: S1,

S2

$$(Z_j - c_j)_{\text{nuevo}} = (Z_j - c_j)_{\text{actual}} + (c_1^{\text{nuevo}} - c_1^{\text{actual}}) \cdot a$$

$$(Z_{s1} - c_{s1})_{nuevo} = (Z_{s1} - c_{s1})_{actual} + (c_1^{nuevo} - c_1^{actual}) a$$

 a es el coeficiente de la variable x1 en VNB

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	RO	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

- X1: 1.2
- X2: 3.4
- Z:20.6
 - s1:0
- s2:0

Evaluación sobre la variable no básica s1

$$(Z_{s1} - c_{s1})_{nuevo} = (Z_{s1} - c_{s1})_{actual} + \left(c_1^{nuevo} - c_1^{actual}\right)a \le 0 \ (en\ Maximizacion)$$

$$(Z_{s1} - c_{s1})_{actual} = 11/5$$
 $c_1^{actual} = 3$ $a = -3/5$

$$(Z_{s1} - c_{s1})_{nuevo} = 11/5 + (c_1^{nuevo} - 3)(-\frac{3}{5}) \le 0$$

 $Maximizar Z = 3x_1 + 5x_2$ *s.a.*: $x_1 + 2x_2 \le 8$ $4x_1 + 3x_2 \le 15$ $x_1 \ge 0, x_2 \ge 0$

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	RO	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

- X1: 1.2
- X2: 3.4
- Z:20.6
 - s1:0
- s2:0

$$(Z_{s1} - c_{s1})_{nuevo} = (Z_{s1} - c_{s1})_{actual} + (c_{1}^{nuevo} - c_{1}^{actual})a \le 0 \text{ (en Maximizacion)}$$

$$(Z_{s1} - c_{s1})_{nuevo} = 11/5 + (c_{1}^{nuevo} - 3)(-\frac{3}{5}) \le 0$$

$$(c_{1}^{nuevo} - 3)(-\frac{3}{5}) \le -11/5$$

$$-\frac{3}{5}c_{1}^{nuevo} \le -\frac{11}{5} - \frac{9}{5}$$

$$c_{1}^{nuevo} \ge \frac{20}{5} * \frac{5}{2}$$

$$c_{1}^{nuevo} \ge \frac{20}{5} * \frac{5}{2}$$

$$c_1^{nuevo} \geq \frac{20}{3} \approx 6.67$$

Evaluación sobre la variable no básica s2

Maximizar
$$Z = 3x_1 + 5x_2$$

s.a.:
 $x_1 + 2x_2 \le 8$
 $4x_1 + 3x_2 \le 15$
 $x_1 \ge 0, x_2 \ge 0$

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	RO	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

$$(Z_{s2} - c_{s2})_{nuevo} = (Z_{s2} - c_{s2})_{actual} + \left(c_1^{nuevo} - c_1^{actual}\right)a \le 0 \ (en\ Maximizacion)$$

$$(Z_{s1} - c_{s1})_{actual} = 1/5$$
 $c_1^{actual} = 3$

$$c_1^{actual} = 3$$

$$a = 2/5$$

$$(Z_{s2} - c_{s2})_{nuevo} = 1/5 + (c_1^{nuevo} - 3)(\frac{2}{5}) \le 0$$

Evaluación sobre la variable no básica s2

Maximizar $Z = 3x_1 + 5x_2$ s.a.: $x_1 + 2x_2 \le 8$ $4x_1 + 3x_2 \le 15$ $x_1 \ge 0, x_2 \ge 0$

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	RO	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

$$(Z_{s2} - c_{s2})_{nuevo} = (Z_{s2} - c_{s2})_{actual} + (c_1^{nuevo} - c_1^{actual})a \le 0 \text{ (en Maximizacion)}$$

$$(Z_{s1} - c_{s1})_{nuevo} = 1/5 + (c_1^{nuevo} - 3)(\frac{2}{5}) \le 0$$

$$(c_1^{nuevo} - 3) (\frac{2}{5}) \le -1/5$$

$$\frac{2}{5} c_1^{nuevo} \le -\frac{1}{5} + \frac{6}{5}$$

$$c_1^{nuevo} \leq \frac{5}{2} \approx 2.5$$

$$c_1^{nuevo} \leq 1^* \frac{5}{2}$$

$$x_1 + 2x_2 \le 8$$

 $4x_1 + 3x_2 \le 15$
 $x_1 \ge 0, x_2 \ge 0$

			VD		VB		
VB	R	Z	X1	X2	S1	S2	RHS
	R0	1	0	0	11/5	1/5	20.6
x2	R1	0	0	1	4/5	-1/5	17/5
x1	R2	0	1	0	-3/5	2/5	6/5

$$c_1^{nuevo} \geq \frac{20}{3} \approx 6.67$$

$$c_1^{nuevo} \leq \frac{5}{2} \approx 2.5$$

• Para que s1 no entre a la base:

- Para que s2 no entre a la base:
- La solución básica actual: x1=6/5, x2=17/5 Z = 20.6, solo es válida si c1=3
- No hay ningún rango de sensibilidad permitido, porque las dos condiciones son incompatibles.
- La solución actual es muy sensible a cambios en c1.

Análisis Post-óptimo

Precios Sombra

Precio Sombra

- El precio sombra mide cuánto se incrementaría el beneficio (o se reduciría el costo) si se aumenta la disponibilidad de un recurso escaso en una unidad.
- Cambio en el valor óptimo de la función objetivo por unidad adicional de recurso disponible

Utilidad

- Decisiones en la asignación de recursos
- Evaluación de la eficiencia de los Recuersos
- Miden el valor marginal de los recursos (yi*)
- Análisis de sensibilidad

Ejemplo

- Una empresa produce dos Productos galletas y queques (P1, P2). Las ganancias que generan estos productos por unidad son: primer producto Bs. 30, mientras que el segundo genera una ganancia de Bs. 20.
- Los datos de recursos disponibles y los requerimientos por producto son los siguientes:

Recurso	Producto 1	Producto 2	Cantidad Disponible
Ganancia por unidad (Bs)	30	20	50
Horas de Trabajo (Hrs)	2	4	120
Material (Kg)	3	1	90

Construcción del modelo

```
Max Z = 30 P1 + 20 P2
```

Sujeto a:

- Horas de trabajo: 2 P1 +4P2≤120
- Material: 3 **P1** +1**P2** ≤90
- No negatividad: P1, P2 ≥0

Sol. Met. Grafico

Horas de trabajo: 2 P1 +4P2≤120

Material: 3 P1 + 1P2 ≤ 90

No negatividad: P1, P2 ≥0

$$Max Z = 30 P1 + 20 P2$$

R	P1	P2	Z	
Hrs	0	30	600	
Hrs	30	0	900	
Kg	24	18	1080	*

Análisis de Precio Sombra

Análisis del precio Sombra

Paso 1: Resolución del Sistema con Ajuste de Horas de Trabajo

- Se incrementan las horas de trabajo a 121, y se resuelve el sistema de ecuaciones
- Restricción con la hora extra

Despejamos las variables con estos valores y con los valores de P1 y P2 se calcula la ganancia óptima ajustada.

Modelo Original

Max Z = 30 P1 + 20 P2

Sujeto a:

• Horas de trabajo: 2 P1 +4P2≤120

• Material: 3 P1 +1P2 ≤90

• No negatividad: P1, P2 ≥0

- R1 : 2 P1 + 4 P2=121
- R2 : 3 P1 + 1 P2=90
- R1 : 2 P1 + 4 P2=121
- R2*4:12 P1 + 4 P2=360
- R2-R1: 10P1 + 0 = 239
- P1 = 23.9
- P2: (121-2*23.9)/4
- P2= 18.3
 - Nuevo punto de intersección: P1=23.9 y P2=18.3

Horas de Trabajo

Modelo Ajustado

$$Max Z = 30 P1 + 20 P2$$

Sujeto a:

- Horas de trabajo: 2 P1 +4P2≤121
- Material: 3 **P1** +1**P2** ≤90
- No negatividad: P1, P2 ≥0
- ☐ Nuevo punto de intersección:P1=23.9 y P2=18.3
- ☐ Nueva ganancia máxima:Z=1083
- Diferencia de ganancia : Zorg = 1080 $\Delta Z = 3$

<u>Cada hora adicional</u> de trabajo incrementa la ganancia óptima en Bs. 3

Análisis del precio Sombra

Paso 2: Resolución del Sistema con Ajuste de Material

- Se incrementa el material a 90, y se resuelve el sistema de ecuaciones
- Restricción con el material extra

Calculamos la nueva intersección y con los nuevos valores calculamos la FO nueva.

Paso 2: Resolución del Sistema con Ajuste de

Material (de 90 a 91)

Modelo Ajustado

Max Z = 30 P1 + 20 P2

Sujeto a:

- Horas de trabajo: 2 **P1** +4**P2**≤120
- Material: 3 P1 +1P2 ≤91
- No negatividad: P1, P2 ≥0
- ☐ Nuevo punto de intersección:P1=24.4 y P2=17.8
- ☐ Nueva ganancia máxima:Z=1088
- Diferencia de ganancia : Zopt = 1080 $\Delta Z = 8$

Cada Kg de material adicional incrementa la ganancia óptima en Bs. 8

Análisis Final

- Convendría aumentar primero el material, ya que por cada unidad adicional se genera 8 unidades de ganancia, en contraposición del incremento de hora de trabajo que genera unidades de ganancia.
- Si es posible aumentar horas de trabajo o material, estas unidades adicionales agregan valor hasta un punto específico, después del cual ya no se justifica el incremento.

• Es explorar los cambios en los coeficientes de la función objetivo y en las disponibilidades de los recursos y como estos cambios afectan la solución óptima y la ganancia.

- Función Objetivo: Maximizar Z = 30 P1+20 P2
- Restricciones:

```
√ Horas de trabajo: 2 P1 +4 P2≤120
```

✓ Material: 3 P1 +1 P2≤90

✓ No negatividad: P1, P2 ≥0

Solución óptima inicial, que maximiza la ganancia:

```
\checkmark(P1,P2)=(24, 18)
```

✓Z=1080 (ganancia)

Paso 1: Coeficientes de la FO

Cambios en los Coeficientes de la Función Objetivo

Maximizar Z = 30 P1 + 20 P2

- Analizar el impacto de 30 y 20 es analizar el impacto en la ganancia por unidad producida.
- Evaluaremos como altera la ganancia si cambiamos estos coeficientes

Paso 1: Coeficientes de la FO

Cambios en los Coeficientes de la Función Objetivo

Maximizar Z = 30 P1+20 P2

P2 = - 30/20 P3

✓ Horas de trabajo: 2 P1 +4 P2≤120

✓ Material:
3 P1 +1 P2≤90

✓ No negatividad: P1, P2 ≥0

P2= 30 - 1/2 P1

P2 = 90 - 3 P1

Para que el punto óptimo siga siendo (24,18) la relación entre los coeficientes de la FO debe estar en el rango de 0, 5 a 3. Esto implica que:

- •Cuando C1=30, entonces C2 puede variar entre 10 y 60.
- •Cuando C2=20 entonces C1 puede variar entre 10 y 60.

Esta comparación asegurará que el punto óptimo no se desplace fuera de la región factible al ajustar los coeficientes de *P*1 y *P*2.

$$-3 \le -\frac{30}{20} \le -\frac{1}{2}$$

Pendientes

$$\mathbf{0}, \mathbf{5} \le \frac{30}{20} \le \mathbf{3}$$

$$0.5 \le \frac{C1}{C2} \le 3$$

Paso 2: Análisis de las Restricciones

 Se aplica el análisis de los precios sombra (calculados anteriormente) para ver el grado de impacto en la ganancia óptima por cada unidad adicional de recursos.

```
Horas de trabajo: 2 P1 +4P2≤ (120 +1)
```

Material : $3 P1 + 1P2 \le (90 + 1)$

- <u>Cada Kg de material adicional</u> incrementa la ganancia óptima en Bs. 8
- <u>Cada hora adicional</u> de trabajo incrementa la ganancia óptima en Bs. 3

Análisis Final

1. Coeficientes de la Función Objetivo:

La ganancia por unidad de P1 y P2 puede variar dentro de 10 y 60 sin cambiar el plan de producción óptimo.

Esto ayuda en la toma de decisiones de precios de productos.

2. Disponibilidad de Recursos:

Los precios sombra indican el valor de recursos adicionales.

Preguntas

