ECON675: Assignment 2

Anirudh Yadav

October 1, 2018

1 Question 1: Kernel Density Estimation

1.1 Density derivatives

I follow the derivation in Hansen's notes. We are interested in estimating

$$f^{(s)}(x) = \frac{d^s}{dx^s} f(x).$$

The natural estimator is

$$\hat{f}^{(s)}(x) = \frac{d^s}{dx^s} \hat{f}(x)$$

Now, we know that $\hat{f}(x) = \frac{1}{nh} \sum_{i} K\left(\frac{X_i - x}{h}\right)$. Thus,

$$\hat{f}^{(1)}(x) = \frac{-1}{nh^2} \sum_{i=1}^n K^{(1)} \left(\frac{X_i - x}{h} \right),$$

$$\hat{f}^{(2)}(x) = \frac{1}{nh^3} \sum_{i=1}^n K^{(2)} \left(\frac{X_i - x}{h} \right),$$

:

$$\hat{f}^{(s)}(x) = \frac{(-1)^s}{nh^{1+s}} \sum_{i=1}^n K^{(s)} \left(\frac{X_i - x}{h} \right).$$

Now,

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\frac{(-1)^{s}}{h^{1+s}} K^{(s)} \left(\frac{X_{i} - x}{h}\right)\right]$$

$$= \mathbb{E}\left[\frac{(-1)^{s}}{h^{1+s}} K^{(s)} \left(\frac{X_{i} - x}{h}\right)\right], \text{ since } X_{i} \text{ are iid.}$$

$$= \int_{-\infty}^{\infty} \frac{(-1)^{s}}{h^{1+s}} K^{(s)} \left(\frac{z - x}{h}\right) f(z) dz$$

Next, we want to use integration by parts: $\int u dv = uv - \int v du$. Define

$$dv = \frac{(-1)^s}{h^s} \frac{1}{h} K^{(s)} \left(\frac{z - x}{h} \right) \implies v = \frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z - x}{h} \right)$$

And

$$u = f(z) \implies du = f^{(1)}(z).$$

Thus,

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \left[\frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z)\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z) dz.$$

$$= -\int_{-\infty}^{\infty} \frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z) dz$$

Repeating this s times give

$$\mathbb{E}[\hat{f}^{(s)}(x)] = (-1)^s \int_{-\infty}^{\infty} \frac{(-1)^s}{h} K\left(\frac{z-x}{h}\right) f^{(s)}(z) dz$$
$$= \int_{-\infty}^{\infty} \frac{1}{h} K\left(\frac{z-x}{h}\right) f^{(s)}(z) dz$$

Next, use the following change of variables: $u = \frac{z-x}{h}$, which implies $z = x + hu \implies dz = hdu$. Thus,

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \int_{-\infty}^{\infty} K(u)f^{(s)}(x+hu)du \tag{1}$$

The next step is to take a Taylor expansion of $f^{(s)}(x + hu)$ around x + hu = x, which is valid if $h \to 0$. We get

$$f^{(s)}(x+hu) = f^{(s)}(x) + f^{(s+1)}(x)hu + \frac{1}{2}f^{(s+2)}(x)h^2u^2 + \dots + \frac{1}{P!}f^{(s+P)}(x)h^Pu^P + o(h^P).$$

Substituting this expression back into (1), integrating over each term, and using the fact that $\int_{-\infty}^{\infty} K(u)du = 1$ and the notation

$$\mu_{\ell}(K) = u^{\ell}K(u)$$

gives

$$\mathbb{E}[\hat{f}^{(s)}(x)] = f^{(s)}(x) + f^{(s+1)}(x)h\mu_1(K) + \frac{1}{2}f^{(s+2)}(x)h^2\mu_2(K) + \dots + \frac{1}{P!}f^{(s+P)}(x)h^P\mu_P(K) + o(h^P).$$

Finally, noting that since K is a P-order kernel, $\mu_{\ell}(K) = 0$ for all $\ell < P$, gives the desired result

$$\mathbb{E}[\hat{f}^{(s)}(x)] = f^{(s)}(x) + \frac{1}{P!}f^{(s+P)}(x)h^P\mu_P(K) + o(h^P).$$