Thought about SupCP

Jiaxin Hu

May 21, 2021

1 SupCP covariance

Consider the observation $\mathcal{Y} \in \mathbb{R}^{d \times d \times d}$, the covariance $\mathbf{X} \in \mathbb{R}^{d \times R}$. Recall the SupCP model,

$$\mathcal{Y} = [\![\boldsymbol{A}_1, \boldsymbol{A}_2, \boldsymbol{A}_3]\!] + \mathcal{E}, \quad \boldsymbol{A}_1 = \boldsymbol{X}\boldsymbol{B} + \mathcal{E}',$$

where $\mathbf{A}_k \in \mathbb{R}^{d \times R}$, $\mathbf{B} \in \mathbb{R}^{p \times R}$ is the coefficient matrix, $\mathcal{E} \in \mathbb{R}^{d \times d \times d}$ has *i.i.d.* entries from $N(0, \sigma_e^2)$, and $\mathcal{E}' \in \mathbb{R}^{d \times R}$ has *i.i.d.* rows from $\mathcal{N}(0, \Sigma)$.

Note that

$$\operatorname{vec}(\mathcal{Y}) = [XB \odot A_2 \odot A_3] \mathbf{1_R} + [\mathcal{E}' \odot A_2 \odot A_3] \mathbf{1_R} + \operatorname{vec}(\mathcal{E}'),$$

where \odot is the column-wise Kronecker product. Since \mathcal{E}' is independent with \mathcal{E} and $\operatorname{cov}(\operatorname{vec}(\mathcal{E})) = I_{d^3}$, we only need to calculate $\operatorname{cov}([\mathcal{E}' \odot A_2 \odot A_3] \mathbf{1}_{\mathbf{R}})$. Note that

$$[\mathcal{E}' \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3] \mathbf{1}_{\mathbf{R}} = \begin{bmatrix} (\mathcal{E}_1' \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3) \mathbf{1}_{\mathbf{R}} \\ & \cdots \\ (\mathcal{E}_d' \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3) \mathbf{1}_{\mathbf{R}} \end{bmatrix}, \text{ and } \mathcal{E}_i' \perp \mathcal{E}_j', i \neq j \in [d],$$

where $\mathcal{E}_i' \in \mathbb{R}^{1 \times R}$ refers to the *i*-th row of \mathcal{E}' . Therefore, we know that $\operatorname{cov}([\mathcal{E}' \odot \mathbf{A}_2 \odot \mathbf{A}_3] \mathbf{1}_{\mathbf{R}})$ is block-wise diagonal with diagonal elements $\operatorname{cov}((\mathcal{E}_i' \odot \mathbf{A}_2 \odot \mathbf{A}_3) \mathbf{1}_{\mathbf{R}}), i \in [d]$. Also notice that

$$(\mathcal{E}_i'\odot oldsymbol{A}_2\odot oldsymbol{A}_3)\mathbf{1_R} = \sum_{k=1}^R \mathcal{E}_{ik}'\otimes oldsymbol{A}_{2k}\otimes oldsymbol{A}_{3k} = [oldsymbol{A}_2\odot oldsymbol{A}_3]\mathcal{E}_i'^T.$$

Therefore, we have

$$cov([\mathcal{E}_i' \odot \mathbf{A}_2 \odot \mathbf{A}_3] \mathbf{1}_{\mathbf{R}}) = cov([\mathbf{A}_2 \odot \mathbf{A}_3] \mathcal{E}_i'^T) = [\mathbf{A}_2 \odot \mathbf{A}_3] \Sigma [\mathbf{A}_2 \odot \mathbf{A}_3]^T,$$

and thus the whole covariance matrix $\operatorname{cov}(\operatorname{vec}(\mathcal{Y}))$ is

$$\begin{aligned} & \operatorname{cov}(\overline{\operatorname{vec}(\mathcal{Y})}) = \operatorname{cov}(\operatorname{vec}(\mathcal{E})) + \operatorname{cov}([\mathcal{E}' \odot A_2 \odot A_3] \mathbf{1_R}) \\ & = I_{d^3} + \begin{bmatrix} [A_2 \odot A_3] \Sigma [A_2 \odot A_3]^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} & \operatorname{assume} = \\ \mathbf{0} & \mathbf{0} & [A_2 \odot A_3] \overline{\Sigma} [A_2 \odot A_3]^T \end{bmatrix} \mathbf{I} \end{aligned}$$

2 SupCP performance the second part in terms of normal tensor ensemble.
Y = MVN(0, Sigma_1, Sigma_2, Sigma_3), where Sigma_k is mode-k

In this note, we consider the Cavissian Cata and all the matrices are full rank. Let $\mathcal{Y} \in \mathbb{R}^{d \times d \times d}$, $\mathbf{X}_k \in \mathbb{R}^{d \times p}$, $k \in [3]$. Consider the tucker rank $\mathbf{r} = (r, r, r)$ and CP rank R. The dimension of \mathbf{M}_k can be obtained by the context. What is Sigma_k, i=1,2,3 in this case? Dimension? Intuition?

2.1 Without supervision

Recall the STD and SupCP models without the supervision.

$$STD$$
 : $\mathcal{Y} = \mathcal{C} \times \{M_1, M_2, M_3\} + \mathcal{E}$
 $SupCP$: $\mathcal{Y} = [A_1, A_2, A_3] + \mathcal{E}$.

The fitted value $vec(\mathcal{Y})$ for STD and SupCP lie in

$$\mathcal{P}_{STD} = \{ C(\boldsymbol{M}_1 \otimes \boldsymbol{M}_2 \otimes \boldsymbol{M}_3) \mid \boldsymbol{M}_k \in \mathbb{R}^{d \times r}, \boldsymbol{M}_k^T \boldsymbol{M}_k = \boldsymbol{I}_r \},$$

$$\mathcal{P}_{SupCP} = \{ C(\boldsymbol{A}_1 \odot \boldsymbol{A}_2 \odot \boldsymbol{A}_3) \mid \boldsymbol{A}_k \in \mathbb{R}^{d \times R} \},$$

respectively, where C(X) refers to the column space of the matrix X. Note that $\operatorname{rank}(M_1 \otimes M_2 \otimes M_3) = r^3$ and $\operatorname{rank}(A_1 \odot A_2 \odot A_3) = R$.

1. If the true signal is generated from STD, the fitted value for STD model is

$$\operatorname{vec}(\hat{\mathcal{Y}}_{STD}) \in C(\hat{M}_1 \otimes \hat{M}_2 \otimes \hat{M}_3), \text{ for some } \hat{M}_k^T \hat{M}_k = I_r.$$

If $R \leq r^3$, the space \mathcal{P}_{SupCP} may not cover the best estimation from the true model, $\text{vec}(\hat{\mathcal{Y}}_{STD})$. Because $\text{vec}(\hat{\mathcal{Y}}_{STD})$ is a combination of r^3 bases of \mathbb{R}^3 , and the $\hat{\mathcal{Y}}_{SupCP} \in \mathcal{P}_{SupCP}$ is a combination of R bases of \mathbb{R}^3 .

If $R > r^3$, we can expect the space \mathcal{P}_{SupCP} may cover the best estimation $\text{vec}(\hat{\mathcal{Y}}_{STD})$.

See the following figures for numerical results.

References

Figure 1: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider $\mathbf{r} = (1, 1, 1)$ with d = 10.

Figure 2: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider r = (3, 3, 3) with d = 10.

Figure 3: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider $\mathbf{r} = (7,7,7)$ with d = 10.

Figure 4: Error of CP model when data is generated from Tucker model. The dashed lines are errors of the STD estimation. Here we consider $\mathbf{r} = (9, 9, 9)$ with d = 10.