

Europäisches
PatentamtEuropean
Patent OfficeOffice européen
des brevets

REC'D 08 DEC 2004

WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03079171.9

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 03079171.9
Demande no:

Anmeldetag:
Date of filing: 23.12.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

UNILEVER N.V.
Weena 455
3013 AL Rotterdam
PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Edible barrier

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State>Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

A23L3/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT RO SE SI SK TR LI

23. 12. 2003

(90)

FIELD OF THE INVENTION

5 The invention relates to a barrier. More in particular the invention relates to an edible moisture or flavour barrier suitable for use in food products, comprising a cross-linked biopolymer and a lipid material.

10

BACKGROUND OF THE INVENTION

Migration of moisture and flavour in food products forms a serious problem because it negatively affects the appearance, taste, freshness, shelf life and consumer satisfaction. In 15 order to prevent such migration, edible barrier materials have been proposed. Currently available edible moisture barrier technology is not suitable for effectively stopping moisture migration in composite food products during shelf life. Lipid material based moisture barriers lack physical strength and 20 flexibility and cannot withstand elevated temperatures during processing. Hydrocolloid-based edible films potentially have better tensile strength, but are not very effective because of their hydrophilic nature. Upon drying, hydrocolloid films tend to become rather brittle and hence lose their superior physical 25 properties. Combinations of hydrocolloid and lipid films have been applied in alternating layers (laminates) to take advantage of both systems, but require complex and expensive processing.

Thus, there is still a need for alternative or improved edible 30 barrier suitable for use in food products.

It is therefore an object of the invention to provide an edible barrier suitable for use in food products, which does not have one or more of the above mentioned drawbacks.

5 It was now surprisingly found that the above object of the invention may be achieved by the edible barrier of the invention, which is suitable for use in food products, and comprises a cross-linked biopolymer and a lipid material, said edible barrier having a thickness of about 2 to 1,500
10 micrometer. Preferably, the biopolymer is a cross-linked pectin, chitosan or starch.

Moreover, the temperature stability of the barrier was found to be excellent, they are stable from -20°C tot 150°C, freeze thaw
15 stable and cooking and frying stable.

WO02/071870 (Unilever) discloses a foamed product wherein cross-linked pectin is homogeneously incorporated, as in food product such as mousse or an ice cream.

20

PCT/EP03/05976 (Unilever) (unpublished) discloses a method of preparing stable oil in water emulsions wherein a ferulyolated compound is at least partly oxidized during or after formation of the oil in water emulsion.

25

DEFINITION OF THE INVENTION

According to a first aspect of the invention, there is provided an edible barrier suitable for use in food products, comprising
30 a cross-linked biopolymer and a lipid material, said edible barrier having a thickness of about 2 to 1,500 micrometer.

According to a second aspect of the invention, there is provided a composite food product comprising parts having different water activities (aw), separated by the barrier material according to the invention.

5

DETAILED DESCRIPTION OF THE INVENTION

The edible barrier according to the present invention comprises a cross-linked biopolymer and a lipid material, said edible 10 barrier having a thickness of about 2 to 1,500 micrometer. The barrier forms a film that can be used to prevent migration of moisture or flavour from one part of a food product to another part. It has been found that films comprising such cross-linked biopolymers have a high physical strength. If the biopolymers 15 are hydrocolloids, the films have surprisingly good adhering properties to a wide range of food matrices. The hydrocolloid films form effective aroma barriers. Barrier films with a high lipid content are very effective in inhibiting moisture migration. The lipid binding capacity of the film can be 20 further enhanced by hydrophobic modification, i.e. by attaching hydrophobic groups to the cross-linked polymers.

It was found to be especially attractive to apply enzymatic cross-link technology to stop water and/or flavour migration 25 from ingredients. In this technique, ferulyolated pectin or ferulyolated biopolymers or vanillin attached biopolymers such as chitosan-vanillin are covalently cross-linked.

It was found to be possible to enhance the physical strength of 30 the edible barrier film via cross-linking of the hydrocolloid polymers and to exploit this increased strength in combination with a high lipid binding capacity of the film due to strong interactions between the hydrocolloid network and lipids.

Moreover, the chemical properties of the hydrocolloids allow strong adherence to a wide range of ingredient surfaces.

Certain biopolymers containing ferulic acid groups attached to 5 their backbone are known to be gellable by oxidation. An example of these polymers is pectin from a limited number of plant sources. The gelling may be achieved by addition of an appropriate amount of an enzyme of the oxidase type, e.g. laccase or peroxidase. The ingredients of the application may 10 contain these enzymes which allows the process to occur without addition of exogeneous enzymes. Moisture barriers can play an important role to enhance product quality during storage of composite food products. Thermodynamic instability of small molecules in different compartments of the composite food 15 product drives migration into other compartments. The resulting migration of moisture, flavour and colour causes deterioration of the sensory properties of the different parts of the composite food product. Application of the new barrier technology at the surface of ingredients inhibits water, 20 flavour and colour migration resulting in a better consistency of the ingredients and hence overall quality of the product.

	film forming properties	physical strength	lipid binding capacity	moisture barrier properties	aroma barrier properties
Hydrocolloids	++	-	-	-	+
Cross-linked hydrocolloids	+++	+++	+	-	++
Entangled lipids	++	++		+++	-
Covalently linked lipids	++	++	+++	+	-
Covalently linked + entangled lipids	++	++	+++	++++	-

The invention regards the composition and preparation of an edible moisture barrier material. Such barrier consists of a network of at least (covalently) coupled hydrocolloids.

- 5 Covalent coupling can be accomplished by means of cross-linking agents like epichlorohydrin. Alternatively, covalent coupling can be achieved via an oxidation reaction of polyphenolic groups (e.g. ferulic acid residues) which leads to gel formation or at least increased viscosity of the aqueous phase.
- 10 The gel forming capacity of e.g. pectins is for example described in WO-A-98/22513 and WO-A-00/40098 and WO-A-96/03440.

Ferulic acid groups (4-hydroxy-3-methoxy-cinnamyl - groups) are known to be capable of cross-linking in the presence of certain oxidants (e.g. Oosterveld et al; oxidative cross-linking of pectic polysaccharides from sugar beet pulp, Carbohydrate Research 328; 199-207, 2000). The 4-hydroxyl-3-methoxy-benzene part is the functional moiety of ferulic acid that is involved in the oxidative cross-linking reaction. And hence cross-links can be established between molecules with this type of (ortho-methoxy-) phenolic group. In the oxidation process a new covalent bond is formed between two individual ferulic or other phenolic groups.

- 25 The term oxidant is used to indicate an oxidising agent, which can be either a chemical oxidising agent or an enzyme. An enzyme can be used alone or in combination with a co-oxidant such as hydrogen peroxide.
- 30 The compound comprising ferulyolated (or similar ortho-mentoxy-phenolic) groups is preferably a polymer, more preferably a polysaccharide. Examples of suitable polymers include pectin, chitosan, arabinan, galactan, cellulose derivatives,

galactomannans such as guar gum, locust bean gum, starches or other polymers comprising hydroxyl groups which can be esterified to a ferulic acid group. Alternatively ortho-methoxy-phenolic can be covalently coupled to the carbohydrate backbone. The polymers comprising ferulic acid groups can be naturally occurring or synthesised polymers. Examples of naturally occurring polymers with ferulic acid groups are sugar beet pectin and arabinoxylanes isolated from cereals. Synthetic processes to prepare polymers with ferulic acid groups generally include esterification of ferulic acid to a free hydroxyl group situated on the polymer backbone or on a sugar substituent.

Alternatively, a phenolic group can be introduced in the polymer chain via an imine bond between an amine group in the polymer and an aldehyde function in the phenolic compound, as in e.g. chitosan and vanillin.

In a highly preferred embodiment, the ferulyolated compound is a pectin, even more preferred sugar beet pectin. The principal building units of pectin are smooth homogalacturonic regions and rhamnified hairy regions in which most neutral sugars are located. Arabinose is the predominant neutral sugar. Galactose is present in rhamnogalacturonan. 50-55% of the ferulic acid groups are linked to arabinose units and about 45-50% of the ferulic acid groups are linked to galactose residues.

Preferably, 15 to 80 % of all ferulic acid groups are oxidised in the final emulsion, after oxidation.

It is preferred that the majority of ferulic acid groups is not oxidised before the oxidation during gel formation. Even more preferred before gel formation at most 10% of all ferulic acid groups are oxidised.

In another preferred embodiment the polymer is chitosan with covalently coupled vanillin moieties. The coupling of vanillin to the chitosan backbone can be achieved via a Schiff base.

5

In yet another embodiment, the polymer is cross-linked starch. It is also possible to use a cross-linked protein, or a cross-linked combination of one or more proteins and one or more carbohydrates.

10

The edible barrier according to the invention includes a lipid material and the oxidation of the ferulyolated polymers leads to network formation whereby the dispersed lipid phase is trapped as an o/w emulsion-layer. The lipid composition is 15 dependent on the type of product and its processing conditions. The lipid material can be any edible oil fat or wax and is preferably selected from the group comprising sunflower oil, coconut oil, butter fat, rapeseed oil, olive oil, peanut oil or oils extracted from plant or flower material such as rose oil, 20 and combinations thereof. Also fractionated oils and waxes are encompassed in the invention.

The oxidation may be accomplished by the action of a powerful chemical oxidant such as potassium periodate, potassium 25 permanganate, or potassium ferricyanide.

Alternatively, the oxidation can be accomplished by use of an oxidising enzyme such as a peroxidase, a polyphenol oxidase e.g. catechol oxidase, tyrosinase, or a laccase. Peroxidases 30 can be divided into those originating from plants, such as tomato peroxidase, fungi or bacteria and those originating from a mammalian source. Laccases are obtainable from a variety of microbial sources notably bacteria and fungi (including

filamentous fungi and yeasts), and suitable examples of laccases include those obtainable from strains of *Aspergillus*, *Neurospora* (e.g. *N. crassa*), *Prodospora*, *Botrytis*, *Collybia*, *Fomes*, *Lentinus*, *Pleurotus*, *Trametes* [some species/strains of 5 which are known by various names and/or have previously been classified within other general], *Polyporus*, *Rhizoctonia*, *Coprinus*, *Psatyrella*, *Myceliophthora*, *Schytalidium*, *Phlebia* or *Coriolus*.

10 Preferred enzymes are selected from the group consisting of tomato peroxidase, horseradish peroxidase, soy bean peroxidase and laccases that show a redox potential of preferably more than 450 mV as described in E. Solomon et al, Chem Rev, 1996, p 2563-2605.

15

In case an enzymatic oxidising system is applied, the enzyme is preferably added in the form of a solution or a dispersion in an aqueous buffer system. The enzymes cited above are suitable enzymes. Some enzymes, such as peroxidases require the presence 20 of a co-oxidant such as hydrogen peroxide for their activity. The co-oxidant is preferably added separately from the enzyme that requires its presence.

The amount of enzyme added is expressed in terms of activity 25 units. Preferably, the enzyme is present in excess. The amount of enzyme added is preferably such that fast cross-linking occurs. For a peroxidase the amount of enzyme added is preferably from 10 to 100,000 units ABTS activity per ml of liquid. In some food ingredients like e.g. fruits and 30 vegetables, the enzyme is endogeneously present and needs lower or no external addition.

The oxidation is preferably carried out at a temperature of from -20°C to 80°C, preferably 4°C to 70°C. It will be appreciated that the best temperature depends on the oxidation system that has been chosen.

5

According to another embodiment the oxidising agent is added to the aqueous phase which already comprises ferulyolated compound, while the enzyme is endogenously present.

- 10 The amount of ferulyolated compound is preferably from 0.5 to 2 wt% (g ferulic acid per 100g pectin). The amount of ferulyolated compound as a stock solution which is used for a barrier is preferably from 6 to 10 wt% (g ferulyolated compound per 100ml solvent). The solution can be sprayed or applied as
15 such at the surface of the ingredient / product. Alternatively the ferulyolated compound is first applied and secondly a layer of enzyme/ oxidising agent is added. Preferably, the layer is dried in an oven or grill after the solution (barrier) is applied and before the ingredients are used for the final
20 product. The barrier can also be applied as dry powder which is a mixture of ferulyolated compound and oxidising agent(s). Hydrogen peroxide can be added in solution or can be generated in situ by means of glucose/ glucose oxidase addition.
25 Food products wherein the barrier may suitably be used are preferably selected from the group consisting of leaking (moisture or flavour or oil) ingredients such as vegetables (tomato, salad), fruit, bread, fish and meat. The format of the ingredient can range from native to pulp, dried gelled etc.

30

The barrier may further comprises optional ingredients such as protein, salt, flavour, anti-microbials, components,

colourants, emulsifiers, acidifying agents, (co)-oxidants such as hydrogen peroxide, and the like.

In order to achieve effective moisture barrier properties, the 5 barrier contains a lipid material, such as lipids entangled in the matrix. The hydrophobicity of the barrier may also be increased by attaching lipid molecules to the polymer backbone. Attaching lipid moieties can be accomplished by covalent 10 linkage of glycerol moieties containing one or two fatty acid chains and a ferulic acid, esterified to one of the glycerol hydroxyl groups to the polymer backbone. Alternatively, gossypol can be attached to the polymer backbone via oxidative coupling. Fatty acids can be directly bound to the polymer backbone by esterification (cf esterified starch). 15 Alternatively, the hydrophobic moiety can be covalently coupled to the polysaccharide backbone by any covalent coupling reaction known in the art (e.g. Schiff base coupling).

A higher lipid content of the film can be achieved by 20 incorporation of lipid material in the hydrophobically modified polymer as described above.

The invention will be further illustrated in the following non-limiting examples.

25

Example 1

Moisture barrier films

Materials:

Sugar beet pectin was obtained CP Kelco, GmbH, batch genu β 30 pectin. Chitosan and sodium caseinate were obtained from van Erven BV. Soybean peroxidase and vanillin were obtained from Quest. Peroxidase is a non-GM, food grade Biobake Wheat from Quest, the Netherlands. The cofactor hydrogen peroxide used is

30% solution of Merck, Germany. Glucose oxidase, non-GM, food grade from Amano in combination with glucose and Biobake wheat were used for some examples. Novozym 435 lipase and pectinex ultra SP-L were obtained from Novozymes. Beeswax, carnauba wax 5 and ethylferulate were obtained from Sigma Aldrich Chemicals. Solid fats MGLA41, coco nut oil, P058 flakes, and RPLE70 were obtained from W.T. Hogervorst, SCC, URDV. All other chemicals used were obtained from Merck.

10 Film components: Chitosan modified with vanillin (Chitosan-V)

Synthesis A

Vanillin was dissolved in 97% Ethanol and chitosan powder was added to this solution. The resulting suspension was incubated 15 for 1 hour up to 7 days at 65°C, 200 rpm. The ratio chitosan: vanillin (w/w) varied in a range between 2:1 up to 500:1 and the amount of ethanol used, was adjusted to maintain a moving suspension. After the incubation, the suspension was filtered and the filtrate was washed with ethanol to remove free 20 vanillin. Finally the filtrate was dried on air.

Synthesis 2

Chitosan (0.8 g) was dissolved in 90 ml of 2% acetic acid-methanol (1:2, v/v). A solution of 2,75 g vanillin in 10 ml 25 methanol was added and the mixture was incubated for 24 hours at room temperature to obtain a yellow hydrogel. The gel was dried and washed with water and methanol several times to remove free vanillin.

30 Analysis: The degree of vanillin substitution was calculated via the average molecular mass of a chitosan-monomer based on a total N-determination. The following formulas were used:

$$N \text{ (g/g)} = M_N / M_{\text{polymer}}$$

N (g/g) is experimentally determined and M_N is known
 → calculate M_{polymer}

5

$$M_{\text{polymer}} = (v * M_{\text{chitosan monomer}} + M_{\text{vanillin}}) / v$$

M_{vanillin} and unmodified $M_{\text{chitosan monomer}}$ are known → calculate v
 (degree of vanilisation)

10

$$v = M_{\text{vanillin}} / (M_{\text{polymer}} - M_{\text{chitosan monomer}})$$

Besides an element analysis, modified chitosan was also
 15 unsuccessfully analysed by MALDI-TOF MS. The chitosan molecules
 were too large and molecular weights were too divers to obtain
 reliable results.

Sodium caseinate modified with vanillin (Na-cas-V).

20 200g sodium-caseinate was added to a solution of 7g vanillin in
 4 litre demineralised water, pH adjusted to 7.5. The solution
 was cooled to -80°C and freeze dried for approximately 10 days
 at 100 mbar. Yellow powder was obtained and subsequently
 dissolved in 2l demineralised water. Then 2l ethanol was added
 25 to the solution to precipitate the protein and separate it from
 free vanillin. The resulting suspension was centrifuged for 20
 minutes at 4,500 rpm. If the supernatant was still turbid after
 centrifugation, the pH was further decreased to pH 4 and
centrifugation was repeated. After centrifugation the pellet
 30 (modified protein) was cooled to -80°C and freeze-dried for
 another 2 days to obtain dry product.

Feruoylated triglycerides (FG)

35 Synthesis: 40 g of sunflower seed oil and 3.5 g ethylferulate
 were dried for approximately 16 hours on blue silica. After
 this drying step, ethylferulate was dissolved in the dried

sunflower seed oil and 3.5 g lipase (Novozyme 435) was suspended into this solution. The mixture was sealed and incubated at 65°C, 200 rpm for 7 days. Subsequently the mixture was separated on a silica gel 60 extra pure (Merck) column with 5 an eluens increasing in polarity. The first fractions were eluted with petroleum ether: diethyl ether (v/v) 4:1 followed by ratios 7:3, 3:2 and finally only diethylether was used. In total 12 fractions of each approximately 200 ml were collected and the eluens was evaporated to obtain concentrated fractions 10 for analysis.

Analysis:

TLC: 10 µl of each fraction was analysed on TLC. The samples were pipetted on a silica glass plate and eluted with 15 toluene:diethylether (v/v) 4:1. The silica plate was dried on air and components containing ferulic groups were identified by UV fluorescence.

HPLC: Fractions were analysed on a C18 HPLC column with an 20 isocratic flow of 40/60 (v/v) acetone (containing 1% glacial acetic acid) / acetonitrile. Samples were prepared by dissolving 10 µl of each fraction in 1 ml acetone and remove all solid particles by filtration over a silica gel 60 extra pure column. As a control, HPLC spectra of ferulic acid, 25 ethylferulate, oleic acid and glycerol were recorded. The presence of ferulic residues was monitored by UV-detection at 325nm and the presence of lipid components was monitored at 360nm. A reference (detection of components) was monitored at 450nm. All fractions that contained the feruoylated glycerides 30 were combined.

LC-MS-MS: All measurements were performed by the CAS department and carried out on the Quattro-II using HPLC-MS and MS-MS in positive electrospray mode. To support the ionisation, ammonium acetate was added post-column. More details are given in

5 Appendix I.

Activity assay (ABTS assay)

Add 100 µl 20 mM ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) stock solution made in indicated buffer)

10 to 880 µl 25 mM phosphate buffer, pH 6.0. Incubate for 5' at 30°C. Add 10 µl 100 mM hydrogen peroxide. Start the reaction by addition of 10 µl enzyme (diluted in such a way that a linear curve could be measured). Measure the formation of ABTS radical at 414nm using a spectrophotometer. Specific activity is
15 defined as: µmol ABTS oxidised per minute per mg protein at pH 6.0

Polymer modified with feruoylated glycerides

Synthesis

20 The amount of feruoylated glycerides that was used for the coupling reaction to the polymer could be varied in different molar ratios. The following formulas were used for calculating these molar ratios:

25 $\text{Chitosan-V (g)} / M_{\text{polymer}} = \text{Chitosan-V (mol)}$

$$\text{Chitosan-V (mol)} / v = \text{bound vanillin (mol)}$$

$$\text{Ratio FG:vanillin} * \text{bound vanillin (mol)} = \text{FG (mol)}$$

30 The desired amount of FG's was dissolved in ethanol and slowly added to the stirred polymer solution. Subsequently enzyme was added, also during mixing and finally peroxide to start the cross-linking reaction. Amounts of enzyme and peroxide are
35 dependent on the nature and concentration of the polymer and

are described in more detail in paragraph 3.2. When the modified polymer was used as an emulsifier, the final percentage of pectin had to be lower than 1% and chitosan-V had to be lower than 0.25% to prevent gelation of the solution.

5

Analysis

TLC analysis was used to monitor the coupling reaction. Before and after addition of the peroxide, 15 µl sample was analysed on a silica plate. Spots were eluted with toluene:diethylether 10 (v/v) 4:1 and the disappearance of free FG spots was used as an indicator for a successful coupling reaction.

Fatty acid analysis was used to examine the coupling product of the polymer and the modified triglycerides. After the coupling 15 reaction, 0.75 ml of the reaction product was separated from any free FG left on TLC with eluens toluene:diethylether. (v/v) 4:1. The lowest spot containing the modified polymer was extracted from the silica in a acetic acid buffer pH 5.5 and 0.01 g lipase (Novozyme 435) was added. After incubation for 2 20 hours at 65°C, 900 rpm, the mixture was centrifuged. The supernatant was concentrated by evaporation and a free fatty acid analysis NEFA-C, ACS-ACOD method (Wako) was performed.

Functional test

25 Emulsifying properties of the modified polymer were used as a functional test to check whether the FG was successfully coupled to the polymer backbone. For this analysis 10µl FG was dissolved in 1 ml EtOH and added to a 3ml chitosan-V solution to finally obtain a 0.125% chitosan-V, 25% EtOH, 0.0625% acetic 30 acid solution. During mixing, 2.5 10µl pox was added and finally 10µl peroxide to start the cross-linking reaction. The mixture was incubated for 5 minutes at room temperature and subsequently 1ml of the solution was added to 2ml sunflower

seed oil containing 1% β -carotene. The mixture was vortexed for 1 minute at maximum speed and the stabilisation of the resulting emulsion was monitored during 48 hours. Emulsions were analysed at various intervals with Light Microscopy (LM).

5

Films

Film synthesis

All films were based on a cross-linked gel that was cast onto a Teflon coated glass plate, or a plastic weighing cup. These 10 cast gels were dried into an incubator at 50°C, an air oven or at room temperature. Gel synthesis of three types of films, (cross-linked, hydrophobic entangled and hydrophobic covalent modification) will be described in the following three paragraphs.

15

Cross-linked films

Pectin solutions were made by dissolving pectin in water (max 9% w/w) and adjusting the pH during stirring with 1 M NaOH to pH 5.5. Chitosan-V was dissolved in 1% acetic acid (max 2% w/w) 20 and the pH was also adjusted with NaOH to pH 5-5.5. An amount of soybean peroxidase (enzyme) was added to the polymer solution during stirring and finally the peroxide was added to start the cross-linking reaction.

25_Hydrophobic_entangled_gels

Hydrophobic entangled gels were synthesised by adding the hydrophobic component to the polymer solution and turrax the mixture for 1 minute to obtain a homogeneous emulsion. If a solid fat or wax was used, the mixture was heated in a water 30 bath before turraxing, to melt the solid component. Solutions containing protein, sterols, ethanol, glycerol (1% gel volume) or emulsifiers (tween 80, span 80, lecithin 1% gel volume) were also added to the polymer solution/emulsion during turraxing.

An overview of used hydrophobic components is shown in table 2.1. When all components were mixed, enzyme was added and finally peroxide to start the cross-linking reaction. Denatured protein films were obtained by heating the protein containing gel at 95°C for 30 minutes to denature present proteins. Some films contained digested chitosan-V polymer. For this purpose, the polymer was incubated with pectinex, a pectinase enzyme, for 2 hrs at 37°C.

10 **Table 2.1 Overview of various hydrophobic components in hydrophobic entangled films**

Polymer	Liquid oil	Solid fat (fatty acid)	Wax	Protein solution	Sterol
Chitosan-V 10:5 0.5 - 2%	Sunflower seed oil Olive oil	MGLA41 Coco nut oil PO58 Flakes RPLE70 Oleic oil Lauric acid	Beeswax Carnauba wax	Na-caseinate -(V) egg protein	γ-oryzanol β-sitosterol
Chitosan-V 10:1 0.5 - 2%	Sunflower seed oil	Oleic acid	Beeswax	-	γ-oryzanol β-sitosterol
Pectin 2 - 4%	Sunflower seed oil Olive oil	Coco nut oil PO58 Flakes RPLE70 Oleic oil	Beeswax Carnauba wax	Na-caseinate -(V) egg protein	γ-oryzanol β-sitosterol
Chitosan-V 10:5 Pectinex digested	Sunflower seed oil	Coco nut oil PO58 Flakes RPLE70	Beeswax	Na-caseinate	-

Covalently coupled gels

Covalently modified polymer gels were synthesised according to
 5 the same protocols as hydrophobic entangled films, only the
 solution/mixture added to the polymer during turrax contained a
 component with a phenolic group that could be recognised by the
 soybean peroxidase. In table 2.2, three components are listed
 that were used in covalently modified films and various
 10 combinations.

Table 2.2 Overview of covalently coupled hydrophobic components in films

Compound	Solvent	In combination with
Na-caseinate-V	H ₂ O (pH 7.5)	Lipid, fat, Feruoylated Glycerides
γ-oryzanol	Ethanol	Lipid
Feruoylated glycerids	Ethanol	Lipid, fat, wax, Na-caseinate (V)

15

Film characterisation

After film synthesis, all intact, smooth films were analysed by a water vapour permeability assay. Films that gave good results
 20 were subsequently tested for their solubility and swelling percentage and finally some films were analysed with light microscopy. Protocols for these assays are described in the following part.

25 Water Vapour Permeability (WVP) assay

The water vapour permeability was determined by gravimetrical analysis. Cups with a diameter of 2 cm² were filled with 10 ml demineralised water and sealed with a piece of film. The films were completely sealed to the cup with parafilm and were
 30 weighted to determine initial weight. Cups were places in a dessicator filled with dried blue silica to create a relative humidity gradient of 0% in the dessicator up to 100% within the

cups. During 4-5 days, weight loss of the sealed cups was determined and plotted against time. Slopes of these weight loss curves (g/day) were compared to the slope of the unsealed cup and this number was considered as relative water vapour 5 permeability. Experiments showed that this slope did not changed significantly between day 2 to 5. After 5 days, slopes decreased because of a saturation of the silica.

Thickness

- 10 Film thickness was measured with a digital thickness measurement (Mitutoyo) to the nearest 0.01mm at 10 random positions. An average of the 10 values was used to calculate film thickness.
- 15 *Film swelling and solubility test*
A piece of film sized 1 cm x 1 cm was cut and dried in an oven at 90 °C for 3 hours and weighted to obtain the initial dry weight. The piece of film was placed into a Falcon test tube, containing 10 ml demineralised water. The tube was incubated at 20 37 °C, 100 rpm for 24 hours. After incubation, the content of the test tube was filtered and total weight of the pre-weighted filter and film was determined to obtain a total swelling percentage according to the following formula:

$$25 \quad Sw\% = [(weight\ wet\ film + filter - weight\ wet\ filter)/initial\ weight\ film] . 100\%$$

Subsequently, the wet filter and film were dried in an air oven at 90°C for 3 hours and weighted again. Total film solubility 30 was determined according to the following formula:

Sol% = [(dry weight film+filter - dry weight filter)/initial weight film]. 100%

Microscopy

5 Films and emulsions were examined with light microscopy. Film samples were prepared by cutting a piece of film sized 2.5 mm x 2.5 mm, placing it on an object glass and sealing the cover glass with colourless nailpolish. For the emulsion samples, 0.1 ml of the stable emulsion was pipetted onto the object glass 10 and sealed with a cover glass. Both samples were examined with enlargements of 10x, 20x and 40x.

Films

Film synthesis

15 Films were synthesised as described above with various components in different combinations and concentration ranges. In table 3.5 applied enzyme and peroxide concentrations are mentioned that were used for the various polymer solutions. Higher concentrations of peroxide were used for chitosan cross- 20 linking, because more covalent bonds could be formed between the vanillin side chains (reaction mechanism 1.2.1). On the contrary, enzyme concentrations were lower compared to pectin cross-linking because of a higher rate of chitosan gel formation. Besides amounts, the order of component addition 25 appeared to be very important. Various experiments had indicated that it was crucial to add enzyme before peroxide during chitosan cross-linking. If peroxide was added before the enzyme, polymer gelation did not occur. In table 3.6 an overview is given of concentration ranges of various film 30 components that were found to result in stable films.

Table 3.5 Overview of polymer solutions and enzyme and peroxide concentrations in gels

Polymer solution	Concentration stable gel and dried film	10% Enzyme solution ($\mu\text{l}/\text{ml}$ gel)	1 M H_2O_2 ($\mu\text{l}/\text{ml}$ gel)
Chitosan-V (10:5)*	0.5%-2%	0.1	5-20
Chitosan-V (10:1)	0.5%-2%	0.1	5-20
Chitosan-V (10:0.2)	0.5%-2%	0.1	5-20
Pectin	2%-4%	1	0.5-8

* w/w ratio chitosan:vanillin during chitosan-V synthesis

5

Table 3.6 Overview of concentration ranges of various components to obtain stable films

Polymer	Liquid oil % gel volume	Fatty acid % gel volume	Solid fat % dr wt film	Wax % dr wt film	Protein solution % dr wt film	Ethanol % gel volume
Chitosan-V 10:5 0.5 - 2%	0 - 30%	0 - 30%	0 - 80%	0 - 80%	0 - 80%	0 - 67%
Chitosan-V 10:1 0.5 - 2%	0 - 5%	0 - 5%	0 - 80%			0 - 67%
Pectin 2 - 4%	0 - 5%	0 - 5%	0 - 80%	0 - 80%	0 - 80%	0 - 67%
Chitosan-V 10:5 Pectinex digested	0 - 5%	0 - 5%	0 - 80%	0 - 80%		0 - 67%

10

Various synthesised films were divided into films containing entangled components and films that were covalently modified.

3.2.2 Film properties

- 15 In the introduction paragraph 1.3, three ways were described to obtain a water barrier film using cross-linking technology. The same format will be used to describe results of water barrier properties of various synthesised films. Hydrophobic components

were added and finally hydrophobic components were covalently bound to the polymer backbone to increase hydrophobicity.

Hydrophobic entanglement

- 5 Several films with hydrophobic entangled components like oil, fats and waxes were synthesised and analysed in a water vapour permeability assay and solubility test. Besides film thickness, the concentration of hydrophobic component was also crucial for the water vapour permeability properties of the tested films.
- 10 When the concentration hydrophobic entangled component was increased, the water barrier properties were increased significantly.

In table 4 an overview is given of some water vapour
 15 permeability assays in which pectin and chitosan films with or without hydrophobic entangled components were tested. In the table a the large difference between normal polymer films and films containing entangled oil is shown. A water vapour permeability value of almost zero was reached with pectin films
 20 containing oleic acid, having a thickness around 1 mm. The same trend was observed for films containing entangled wax and/or solid fat. It is also clear that the wax/fat and oil containing films obtained very similar barrier properties.

25

Table 4
Overview WVP analysis

- NB. - Percentages are v/v gel volume
 - Ratio's are w/w dry weight film
 30 - Films are based on 20 ml 2% polymer gel
 - Unless mentioned different addition FG: 0.5 ml

Film Composition	Thickness	relative water vapour permeability
------------------	-----------	------------------------------------

pectin	0.060	1.0000
chitosan-vanillin	0.060	1.0000
pectin, 10% SO	0.915	0.1154
pectin, 20% SO	1.313	0.0385
pectin, 10% SO	0.419	0.2642
pectin, 10% SO	0.915	0.2264
pectin, 7.5% SO	0.434	0.2639
pectin, 2.5% SO	0.437	0.2500
Chit-V 10% SO	0.612	0.2639
Chit-V	0.696	0.1944
Chit-V 30% SO	0.324	0.2778
Chit-V 20% SO + 0.12 emulsifier	0.313	0.2786
pectin 1% SO + oryzanol 16:1	0.207	0.2556
Chit-V 20% SO + 20% EtOH	0.337	0.2556
Chit-V + 20% SO + beta-sitosterol 16:1 dry wt	0.337	0.2778
Chit-V + 20% SO + beta-sitosterol 16:1 dry wt	0.444	0.2778
pectin + carnauba dry wt 1:2	0.437	0.2444
Chit-V 1% SO + beeswax dry wt 2:1	0.311	0.2360
chit-V 1% SO + 20% EtOH	0.177	0.2809
Chit-V 1% SO + oryzanol 16:1 dry wt	0.178	0.2697
Chit-V 1% SO + oryzanol 10.6:1 dry wt	0.202	0.2584
Chit-V 1% SO + 2.5 ml 3% NA-cas-V	0.215	0.2809
Chit-V 1% SO + 1 ml 3% NA-cas-V	0.19	0.2921
Chit-V 1% SO + 5 ml 3% NA-cas-V	0.232	0.2809
Chit-V 1% SO + 2.5 ml 3% NA-cas-V	0.282	0.2921
pectin + 9% SO + 1 ml 3% Na-cas-V + 20% EtOH	0.207	0.2035
pectin+ 10% OO + 20% EtOH	0.15	0.2124
pectin+ 10% SO + 20% EtOH	0.217	0.1947
pectin+ 10% SO	0.205	0.1858
Chit-V + 20% SO	0.424	0.2475
Chit-V + 20% SO + FG	0.464	0.2574
Chit-V+0.4 g coco (EtOH) +10% SO	0.236	0.2482
Chit-V+0.4 gr BW+ 2.5 ml EtOH+10%SO	0.321	0.2774
Chit-V+0.4gr PO50+ETOH+10%SO	0.297	0.2628
Chit-V+ 1 g BW + tween	0.177	0.2828
Chit-V + 2.5 g BW + FG	0.4	0.2727
Pectin + 10% oleic acid	1.457	0.0149
Pectin + 7.5% oleic acid	0.948	0.0373
Chit-V + 1.25 g BW + 1.25g PO58 + FG (1ml)	0.36	0.2462
Chit-V + 2.5g BW + FG (1 ml)	0.528	0.2462
Chit-V + 2.5g coco + FG (1.5 ml)	0.416	0.1791

Results of solubility analyses.

A large difference was observed between chitosan and pectin films. Pectin films showed high solubility compared to chitosan films. When hydrophobic components were added, a decrease was 5 observed in film solubility. This effect was the same for both polymer films, only chitosan films reached significantly lower solubility values. Addition of protein had the opposite effect; in general film solubility was increased when protein concentration increased.

10

Example 2**Cheese - Yeast extract**

A new savoury spread, consisting of cheese and yeast extract or vegetable protein hydrolysate, with an original two coloured 15 appearance was developed. Over time, however, colour migration caused serious appearance problem. Water migration occurred from the high water containing cheese ($aw = +/- 0.8$) to the low water containing yeast extract ($aw = 0.2-0.4$). Besides water migration, also the dark brown yeast extract colour migrates 20 into the cheese phase, leading to one large brown coloured transition layer between the two components. An edible layer was used to prevent dye and water migration. Chitosan films containing up to 50% lipid appeared to be very successful.

Based on these results, it can be concluded that chitosan with 25—a high-lipid-content—can prevent water migration between two components with different water activities.

The Method for preparation of Chitosan-Vanillin films:

Chitosan-vanillin film containing 20% (v/v) sunflower seed oil:

30 5 ml sunflower seed oil was added to 20 ml 2% Chitosan-vanillin solution in 1% acetic acid. The solution was emulsified with an ultra-turrax T25 (9,500 min⁻¹) for 5 minutes and during mixing add 2 μ l enzyme (soy peroxidase). When the enzyme was

homogeneously distributed 20 µl 1M H₂O₂ was added. The solution was immediately cast on a Teflon-coated glass plate. The film is dried at 50°C and peeled off from the glass plate.

- 5 The lipid content can vary from 0% up to 50%.

Instead of sunflower seed oil, films were also synthesised containing various amounts of olive oil and oleic acid.

Additives:

- 10 To make the film more flexible, glycerol 400µl or 800µl glycerol was added before turraxing. To promote formation of the emulsion, emulsifiers were added to the reaction mixture before turraxing. Various amounts of mono/di glycerides and lecithin were used as emulsifiers. To decrease the water vapour
15 permeability of the films, additional hydrophobic compounds were added to the chitosan-vanillin solution before turraxing. For example films were made containing β-sitosterol and γ-oryzanol. The last compound is a mixture of sterols esterified to ferulic acid. These compounds could also be cross-linked by
20 the enzyme to the chitosan network and increase the hydrophobicity and network complexity, thereby decreasing the water vapour permeability. In addition, ferulic acid trans-esterified to triglycerid (mono or di ferulic glycerides) can also be covalently cross-linked to the polymer network to
25 increase the hydrophobicity and water vapour permeability.

Example 3

Salami sausages

- Due to its adhering properties it is not possible to form a
30 homogeneous layer covering the complete sausage surface with non-cross-linked pectin. The use of cross-linked pectin, however, resulted in a film with amazingly good surface adherence properties, probably due to covalent interaction

between pectin molecules and tyrosine groups of proteins located on the sausage surface.

The pectin layer was applied on the sausage by dipping it into
5 a 4% pectin solution containing enzyme (1ml/100ml) and 25% ethanol. Ethanol will decrease drying time and at the same time increase solution viscosity, which promotes the adherence of the gel onto the sausage. Subsequently the dipped sausage was sprayed with a solution containing 1 mM peroxide and 2% pectin
10 (maximum concentration for spraying device) and dried in a hot air oven for 4 hrs at 40°C. The appearance of the pectin coated sausage is the same as the uncoated one.

The coated and uncoated sausages were tested on their
15 lipid/water release at room temperature and after 10 minutes incubation at 100°C.

Example 4

20 Edible coating on biscuits

Biscuits were coated with cross-linked pectin-films and cross-linked chitosan films containing lauric acid. Samples were placed in a dessicator at RT containing a saturated NaCl solution (80% RH). The weight increase due to water adsorption
25 was measured as a function of time. During the first 6 days, the weight increase of chitosan-coated biscuit (squares) was significantly lower than the weight increase of the pectin coated biscuit (triangles).

Coated biscuit 80% RH, RT

23. 12. 2003

CLAIMS

1. Edible barrier suitable for use in food products, comprising a cross-linked biopolymer and a lipid material, said edible barrier having a thickness of about 2 to 1,500 micrometer.
2. Barrier according to claim 1, wherein the biopolymer is a hydrocolloid based biopolymer.
3. Barrier according to claim 2, wherein the hydrocolloid based biopolymer contains ortho-methoxy-phenolic groups.
4. Barrier according to claim 3, wherein the hydrocolloid based biopolymer contains ferulic acid groups.
5. Barrier according to any one of the preceding claims, wherein the biopolymer is a pectin.
6. Barrier according to any one of the preceding claims, having a thickness of about 10 to 500 micrometer.
7. Barrier according to claim 6, having a thickness of about 50 to 200 micrometer.
8. Barrier according to any one of the preceding claims, wherein the cross-linked biopolymer is hydrophobically modified.
9. Barrier according to any one of the preceding claims, wherein the compound is a modified polymer which contains ferulic acid and one or two fatty acid chains coupled to a

vanillin coupled polymer as e.g. chitosan.

10. Composite food product comprising parts having different water activities (aw), separated by the barrier according to any one of the preceding claims.
11. Food product comprising an edible barrier according to claims 1-9, covering a food ingredient selected from the group consisting of vegetables, fruit, bread, and fish.
12. Process for the preparation of a food product, wherein parts having different water activities (aw), are separated by the barrier according any one of claims 1-9.
13. Process according to claim 12, wherein the oxidation is carried out by an enzyme or enzymatic system.
14. Process according to claim 13, this enzyme system is already present in situ, e.g. tomato peroxidase in tomatoes.

23. 12. 2003

30

(6)

ABSTRACT

An edible barrier suitable for use in food products, comprising a cross-linked biopolymer and a lipid material, said edible barrier having a thickness of about 2 to 1500 micrometer, effectively reduces migration of moisture and flavour in food products.
