

Fig. 10.5. Flow graph.

LOCAL BS

(a) Before

t₆ := 4*i x := a[t₆] t₈ := 4*j t₉ := a[t₈]

a[t₆] := t₉ a[t₈] := x

goto B_2

(b) After

Fig. 10.6. Local common subexpression elimination.

Fig. 10.7. B_5 and B_6 after common subexpression elimination.

Fig. 10.9. Strength reduction applied to 4*j in block B_3 .

Fig. 10.10. Flow graph after induction-variable elimination.

Fig. 10.13. Flow graph.

Fig. 10.14. Dominator tree for flow graph of Fig. 10.13.

Fig. 10.21. Data-flow equations for reaching definitions.

Fig. 10.27. Flow graph for illustrating reaching definitions.

BLOCK B	Initial		Pass 1		Pass 2	
	in [B]	out [B]	in [B]	out[B]	in [B]	out [B]
$ \begin{array}{c} B_1 \\ B_2 \\ B_3 \\ B_4 \end{array} $	000 0000 000 0000 000 0000	111 0000 000 1100 000 0010 000 0001	000 0000 111 0001 00() 1100 00() 1110	111 0000 001 1100 000 1110 00&0111	000 0000 111 0111 001 1110 001 1110	111 0000 001 1110 000 1110 001 0111

Fig. 10.28. Computation of in and out.

```
in[B_1] := \emptyset;
   out[B_1] := e\_gen[B_1]; /* in and out never change for the initial node, B_1 */
  for B \neq B_1 do out[B] := U - e\_kill[B]; /* initial estimate is too large */
  while change do begin
        change := false;
       for B \neq B_1 do begin
            in[B] := \bigcap out[P];
                     P a prede-
           oldout := out[B];
           out[B] := e\_gen[B] \cup (in[B] - e\_kill[B]);
           if out[B] ≠ oldout then change := true
      end
end
```

Fig. 10.32. Available expressions computation.