Основы ускорения вычислений на GPU в Matlab

Докладчик: к.т.н., доцент кафедры радиотехнических и телекоммуникационных устройств, ИРТСУ ЮФУ г. Таганрог.

Ведущий инженер АО «Региональный межотраслевой центр информации и технологий», г. Ростов-на-Дону.

Михаил Потипак

E-mail: potipak@sfedu.ru

Основы параллельных вычислений

GPGPU

General-Purpose Graphics Processing Units (2003 г.) – («GPU общего назначения») – техника использования графического процессора видеокарты для общих (неграфических) вычислений, которые обычно проводит центральный процессор.

Применение GPGPU:

- Вычислительная математика
- Вычислительная биология
- Вычислительная экономика
- Моделирование в физике
- Обработка сигналов...

Классификация по Флинну

	Одиночный поток команд (single instruction)	Множество потоков команд (multiple instruction)
Одиночный поток данных (single data)	SISD (ОКОД) SISD Instruction Pool	MISD (МКОД) MISD Instruction Pool PU PU
Множество потоков данных (multiple data)	SIMD (ОКМД) SIMD Instruction Pool PU PU PU	MIMD (МКМД) MIMD Instruction Pool PU + PU

Требования к оборудованию

• Память оптимизирована под Память оптимизирована под минимальную латентность (система максимальную пропускную способность. "кэшей"). Большая часть транзисторов для • Много транзисторов "управления" вычислений. (предсказание ветвлений, • Архитектура оптимизирована для планировщики и пр.). программ с большим объемом вычислений • Архитектура оптимизирована для (параллелизм по данным типа SIMD). программ со сложным управлением Латентность скрывается вычислениями (эффективная обработка ветвлений). во время запросов к памяти. Control ALU ALU ALU ALU Cache DRAM DRAM **GPU CPU**

GPU

демонстрируют хорошие результаты в параллельной обработке данных:

- с одной и той же последовательностью действий, применяемых к большому объёму данных (многопоточные вычисления), что подразумевает меньшие требования к управлению исполнением,
- с высокой плотностью арифметики высоким отношением числа арифметических операций к числу обращений к памяти, что означает возможность покрытия латентности памяти вычислениями.

CUDA

Compute Unified Device Architecture (2007 г.) - новая программно-аппаратная архитектура NVIDIA для параллельных вычислений на GPU, предоставляющая средства (toolkit) для организации вычислений общего назначения на GPU

Присутствует в GPU NVidia:

- GeForce 8800 и выше,
- Quadro FX 5600/4600 и выше,
- Tesla серии 10,
- Tesla серии 20 (Fermi).

http://www.nvidia.ru/object/cuda home new ru.html

CUDA Toolkit

- компилятор nvcc;
- библиотеки CuFFT и CuBLAS;
- профилировщик;
- отладчик gdb для GPU;
- API высокого уровня (CUDA Runtime) и API низкого уровня (CUDA Driver);
- руководство по программированию;
- CUDA Developer SDK (исходный код, утилиты и документация).

http://developer.nvidia.com/object/cuda 3 2 downloads.html

Parallel Computing Toolbox

lets you solve computationally and data-intensive problems using multicore processors, GPUs, and computer clusters. High-level constructs - parallel for-loops, special array types, and parallelized numerical algorithms let you parallelize MATLAB applications without CUDA or MPI programming. You can use the toolbox with Simulink to run multiple simulations of a model in parallel.

The toolbox provides eight workers (MATLAB computational engines) to execute applications locally on a multicore desktop. Without changing the code, you can run the same application on a computer cluster or grid (using MATLAB Distributed Computing Server).

http://www.mathworks.com/products/parallel-computing/

Поддержка GPU в Parallel Computing Toolbox

- NVIDIA GPUs с вычислительной способностью 1.3 или выше
 - включая Tesla 10-серий
 и 20-серий
 (напр., NVIDIA Tesla C2075 GPU:
 448 процессоров, 6 Гб памяти)

- Почему требуется вычислительная способность 1.3
 - Поддерживает doubles (базовый тип данных в MATLAB)
 - Операции соответствуют стандарту IEEE
 - Поддержка кроссплатформенности

Возможности увеличения производительности

Спектрограмма показывает 50ти кратное увеличение скорости вычислений на GPU кластере

Ускорение MATLAB на GPU

http://www.nvidia.com/object/tesla-matlab-accelerations.html

Возможности при использовании GPUs

Проще в использовании

Использование интерфейса GPU array со встроенными функциями MATLAB

Запуск пользовательских функций над элементами GPU array

Создание ядер из существующего кода CUDA и PTX файлов

Больше контроля

Спасибо за внимание!