

Midterm 1 Review

Objects

- Sets and Subsets
- Strings and Permutations
- Graphs
- Trees and Rooted Trees

Skills

- Counting
 - strings/permutations over an alphabet
 - rearrangements of a word
 - inclusion-exclusion
- Graph Basics
 - drawing
 - finding walks/paths
 - connectivity
- Recurrence Relations
 - solving first order
 - setting them up

Note: Know the vocabulary from the course notes!

Strings

Theorem. If A is an alphabet with k symbols, there are k^n strings of size n over A for all $n \ge 0$.

Exercise: If A is a set of size a and B is a set of size b, how many functions are there from A to B?

Theorem. If A is an alphabet with k symbols, there are k! permutations over A.

Theorem. If n and k are positive integers with $0 \le k \le n$, the number of ways to choose k elements from a set of size n is equal to

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Exercise: Let A be a set of size a. How many functions from A to $\{0,1\}$ have the property that there are exactly k elements of A that map to 1?

Exercise: How many nonnegative solutions are there to the equation

$$x_1 + x_2 + \dots x_k = n?$$

Binomial Theorem. If x and y are variables and n is a positive integer:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Example: $(x + y)^3 =$

Multinomials. Let (n_1, n_2, \dots, n_k) be a sequence of k non-negative numbers summing to n. The number of strings over an alphabet of size k with content (n_1, n_2, \dots, n_k) is

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! \, n_2! \cdots n_k!}.$$

Exercise: How many ways can the letters of the word *SUSPENSE* be arranged?

Exercise: How many ways can the letters of this word be arranged so that they contain the substring PUN?

Exercise: How many functions from the set $\{1, 2, 3, 4, 5, 6, 7\}$ to $\{A, B, C\}$ have the property that there are exactly 3 elements mapping to A, 2 elements mapping to B, and 2 elements mapping to C?

Graphs

Exercise: Draw the graph G=(V,E) where $V=\{1,2,3,4,5\}$ and $E=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{1,5\},\{2,5\}\}.$

Questions about G

- 1. What is the order of *G*?
- 2. What is the size of G?
- 3. Is *G* connected?
- 4. How many subgraphs of *G* are cycles?
- 5. How many induced subgraphs does G have?
- 6. How many spanning subgraphs of G have exactly 3 edges?

Trees

Definition. A **tree** is a connected acyclic graph. A **forest** is an acyclic graph. Note: if G is a forest, every connected component of G is a tree.

Example:

Theorem. If T = (V, E) is a tree

- 1. There is a unique path between any two vertices of T.
- 2. If $|V| \ge 2$ there are at least 2 leaf vertices.
- 3. |V| = |E| + 1

Theorem. Let G = (V, E) be a graph and consider the following properties:

- 1. *G* is connected
- 2. *G* is acyclic
- 3. |V| = |E| + 1

If G has any two of these properties, then it has the third (and G is a tree)

Rooted Trees

Definition. A **rooted tree** is a pair (T, r) where T is a tree and $r \in V(T)$ is a distinguished vertex called the **root**.

Example:

Note: In the book rooted trees are developed using digraphs.

Exercise: Draw all ordered binary rooted trees with height 2.

Inclusion-Exclusion

A way of counting all elements that satisfy **none** of a list of properties.

Notation.

- Let S be the ground set (i.e. all possible elements) and assume |S| = N.
- Let C_1, \ldots, C_t be properties that elements of S may or may not satisfy.
- We let \overline{N} denote the number of elements of S satisfying none of the properties C_1, C_2, \ldots, C_t
- For a subset of properties, say $\{C_1, C_3, C_6\}$ we let $N(C_1C_3C_6)$ denote the number of elements of S that satisfy C_1 and C_3 and C_6 . For any $0 \le k \le t$ we define the number S_k as:

$$S_0 = N$$

 $S_k = \sum_{i_1 < i_2 \dots < i_k} N(C_{i_1} C_{i_2} \dots C_{i_k})$

Inclusion-Exclusion Theorem.

$$\overline{N} = \sum_{k=0}^{t} (-1)^k S_k = S_0 - S_1 + S_2 - S_3 \dots + (-1)^t S_t$$

Examples:

• For two conditions C_1, C_2 we have

$$\overline{N} = S_0 - S_1 + S_2$$

= $N - \left(N(C_1) + N(C_2)\right) + N(C_1C_2)$

• For three conditions C_1, C_2, C_3 we have

$$\overline{N} = S_0 - S_1 + S_2 - S_3
= N - \left(N(C_1) + N(C_2) + N(C_3) \right)
+ \left(N(C_1C_2) + N(C_1C_3) + N(C_2C_3) \right) - N(C_1C_2C_3)$$

Note: inclusion-exclusion problems come in two varieties:

- 1. There are few conditions and you must evaluate each term individually.
- 2. The terms contributing to each S_k are equal.

Example of type 1: How many numbers from 1 to 70 are not divisible by 2, not divisible by 5, and not divisible by 7.

Example of type 2: How many derangements are there of the set $\{1, 2, 3, 4, 5\}$?

Recurrence Relations

Definition. An infinite sequence a_0, a_1, a_2, \ldots of integers satisfies a **recurrence relation** of **order** k if there exist functions f and g so that the following equation holds for all $n \geq k$

$$f(a_n, a_{n-1}, \dots, a_{n-k}) = g(n)$$

(we will always assume that f is a polynomial)

Notation:

- **linear** means that *f* is a polynomial of degree 1
- **homogeneous** means the g(n) = 0
- **constant coefficients** means that the coefficients of the a_i 's in the function f are constants not depending on n.

Theorem. If a_0, a_1, \ldots is a sequence satisfying the first order recurrence relation

$$a_0 = A$$
$$a_n = da_{n-1}$$

Then we have $a_n = Ad^n$.

Exercise: Let s_n be the number of strings over the alphabet $\{A, B, C, D\}$ with the special property that every A is immediately followed by a B. Find a recurrence for the sequence s_0, s_1, \ldots

Exercise: Let t_n be the number of strings over the alphabet $\{A, B, C, D\}$ with the special property that every A is eventually followed by a B. Find a recurrence for the sequence t_0, t_1, \ldots