#### Internship defense

Development of an automatic tool for defect detection on ultrasonic testing images

Presented by El Houssaini Youness

### Outline:

- Context
- Data collection
- Data cleaning
- Segmentation
- 3D reconstruction
- Perspective

## Context?

#### Company:



**Materials** 

#### Motivation:

- Casting and forging processes of rotor discs lead to manufacturing defects (blowhole, shrinkage cavity, non metallic inclusion)
- Currently forging defects are assessed as equivalent sharp cracks by fracture conservative mechanics methods
- Consideration of the crack initiation phase should help to improve lifetime prediction

#### Project:

Lifetime:  $N = ?_{Nuc} + ?_{FCG}$ 



#### Objective:



#### Overview



## Data collection













#### Validation

Preprocessed image

Detection algorithm

Postprocessed data







# Data cleaning

#### Data cleaning

Preprocessed image

Detection algorithm

Postprocessed data



- More noise defects: + 6
- Less detected points: 36/40













```
defect
```

```
get_defect_intensity(imgray,defect)
```

```
array([218, 217, 217, 217], dtype=uint8)
```





More noise defects:



Less detected defects:

36/40



## Segmentation





Watershed

Preprocessed image

Detection algorithm

Postprocessed data













#### Correction

Preprocessed image

Detection algorithm

Postprocessed data

#### Different confidence ellipses for the case study defect



$$\left(\frac{X}{\sigma_x}\right)^2 + \left(\frac{Y}{\sigma_y}\right)^2 = S$$

$$P(s<5.991)=1-0.05=0.95$$

length, width = 
$$2\sqrt{\lambda_i * S}$$

$$\alpha = \arctan\left(\frac{V_1(y)}{V_1(x)}\right)$$







$$\left(\frac{X}{\sigma_x}\right)^2 + \left(\frac{Y}{\sigma_y}\right)^2 + \left(\frac{Z}{\sigma_z}\right)^2 = S$$

$$P(s < 7.815) = 1 - 0.05 = 0.95$$

length, widths = 
$$2\sqrt{\lambda_i * S}$$







## Perspective

#### Perspective

- Finding the optimal key parameters (e.g. local kernal, error certainty..)
- Performance enhancement (i.e. 2min)
- GUI enhancement



# Thank you for your attention!

#### Sources:

- https://www.qualitymag.com/gdpr-policy?url=https%3A%2F%2Fwww.qualitymag.com%2Farticles %2F92425-machine-vision-image-processing https://www.bmwi.de/Navigation/FR/Home/home.html

### Appendice:



## Appendice:



#### Semester project context:



#### Semester project context:



| ₩P3 - Internship def             |  |  |  |  |   |   |  |   |  |   |   |     | 90%   |
|----------------------------------|--|--|--|--|---|---|--|---|--|---|---|-----|-------|
| WP2.1-Report                     |  |  |  |  |   |   |  |   |  |   |   |     |       |
| WS 2.1 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WP2.2 - Presentation             |  |  |  |  |   |   |  |   |  |   |   |     |       |
| MS 2.2 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 80%   |
| ₩P4 - GUI developm               |  |  |  |  |   |   |  |   |  |   |   |     | 50%   |
| WP2.1-Widgets+geome              |  |  |  |  |   |   |  |   |  |   |   |     |       |
| WS 2.1 - Results                 |  |  |  |  |   |   |  | - |  |   |   |     | 100%  |
| WP2.2 -Events & callbac          |  |  |  |  |   |   |  |   |  |   |   |     |       |
| MS 2.2 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 50%   |
| ₩P5 - Segmentation               |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WP2.1-Cleaning                   |  |  |  |  |   |   |  |   |  |   |   |     |       |
| WS 2.1- Hesults<br>WP2.2-Extrema |  |  |  |  | i | • |  |   |  |   |   |     | 100%  |
| MS 2.2 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WP3.2 -Clustering                |  |  |  |  |   |   |  |   |  |   |   |     | 10071 |
| MS 3.2 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| ₩P6 - Ellipse estimat            |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WP2.1-Data processing            |  |  |  |  |   |   |  |   |  |   | i |     | 100/. |
| WS 2.1-Results                   |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WP2.2 -Covarience confi          |  |  |  |  |   |   |  |   |  |   |   |     |       |
| MS 2.2 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| ₩P7 - Outputs                    |  |  |  |  |   |   |  |   |  |   |   |     | 400.  |
| WP2.1-3D reconstruction          |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WS 2.1 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| WP2.2 - Discussions              |  |  |  |  |   |   |  |   |  |   |   |     | 100%  |
| MS 2.2 - Results                 |  |  |  |  |   |   |  |   |  |   |   |     |       |
| MD 2.2 - Results                 |  |  |  |  |   |   |  |   |  | 1 | 1 | . ( | 100%  |

#### **Gradient 1D**



#### Test objects, coordinate system 0-point

#### Characteristics:

- Test head: 3.5L16-A3
- 0.25 mm gap (PK and component)
- Test head spring-mounted
- 0-point: center PK component corner



#### UT imaging result



#### Mannual solution



