AAG00

Analisando o DataSet

Segundo o artigo consultado foram coletadas medidas de distância de 1 a 20 metros a cada metro usando o FTM (Fine Time Measurement) especificado na IEEE 802.11.

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        df = pd.read_csv("../DataSet/outdoor40.csv")
        df.head()
```

Out[1]:		actualDist	rttRaw	estDistRaw	rttEst	estDistEst	meanRss
	0	1	5	0.749481	0	0.0	-66.0
	1	1	5	0.749481	0	0.0	-66.0
	2	1	5	0.749481	0	0.0	-66.0
	3	1	4	0.599585	0	0.0	-66.0
	4	1	4	0.599585	0	0.0	-66.0

In [2]: df.describe()

Out[2]: actualDist rttRaw estDistRaw rttEst estDistEst meanRss

count	3139.000000	3139.000000	3139.000000	3139.000000	3139.000000	3139.000000
mean	10.372730	78.619943	11.784833	60.804715	9.114397	-80.112394
std	5.728561	41.412703	6.207608	37.910268	5.682606	6.587537
min	1.000000	3.000000	0.449689	0.000000	0.000000	-90.333333
25%	5.000000	43.000000	6.445538	28.000000	4.197094	-85.375000
50%	10.000000	79.000000	11.841802	59.000000	8.843878	-81.500000
75%	15.000000	114.000000	17.088170	90.000000	13.490661	-77.750000
max	20.000000	162.000000	24.283189	136.000000	20.385887	-57.000000

Descrição dos Campos

- actualDist: Distância real
- rttRaw: Tempo de viagem bruto (RTT)
- estDistRaw: Distância estimada usando o tempo bruto (RTT)
- rttEst: Tempo estimado pelo ESP32
- estDistEst: Distância estimada pelo ESP32
- meanRss: Média do valor de RSS (intensidade do sinal)

Gráfico correlacionando distância real e intensidade do sinal

Usado para avaliar a correlação entre as medidas

```
import matplotlib.pyplot as plt

max_dist = df['actualDist'].max()
min_dist = df['actualDist'].min()

plt.figure(figsize=(8, 4))
plt.scatter(df['actualDist'], df['meanRss'], alpha=0.5)
plt.xlabel('Distância Real (m)')
plt.ylabel('Intensidade do Sinal (dBm)')
plt.title('Gráfico da Intensidade de Sinal x Distância')

# Ajustar a escala do eixo x para ticks de 1 em 1 e rótulos de 2 em 2
ticks = range(int(min_dist), int(max_dist) + 1)
labels = [str(i) if i % 2 == 0 else '' for i in ticks]
plt.xticks(ticks, labels)

plt.show()
```

Gráfico da Intensidade de Sinal x Distância

Fazendo o calculo da correlação entre as variáveis

$$r = rac{\sum (X_i - ar{X})(Y_i - ar{Y})}{\sqrt{\sum (X_i - ar{X})^2 \sum (Y_i - ar{Y})^2}}$$

```
In [4]: df['actualDist'].corr(df['meanRss'])
Out[4]: -0.7998984140898491
```

Podemos notar que há correlação inversa entre elas.

Gráfico das Distâncias Estimadas

Usado para avaliar a precisão e acurácia das medidas estimadas pelos dois métodos.

```
In [5]:
        # Prompt: Preciso de um gráfico de pontos que mostre actualDist no eixo x e estD
        # Criar o gráfico de pontos
        plt.figure(figsize=(8, 4))
        plt.scatter(df['actualDist'] - 0.1, df['estDistRaw'], label='Dist. Estimada Brut
            alpha=0.5, marker='|')
        plt.scatter(df['actualDist'] + 0.1, df['estDistEst'], label='Dist. Estimada ESP3
            alpha=0.5, marker='|')
        # Linha representando a distância real
        max dist = df['actualDist'].max()
        min_dist = df['actualDist'].min()
        plt.plot([min_dist, max_dist], [min_dist, max_dist], linestyle='--', color='gray
        # Adicionar título e rótulos aos eixos
        plt.title('Gráfico das Distâncias Estimadas x Distância Real')
        plt.xlabel('Distância Real (m)')
        plt.ylabel('Distância Estimada (m)')
        plt.legend()
        # Ajustar a escala do eixo x para ticks de 1 em 1 e rótulos de 2 em 2
        ticks = range(int(min_dist), int(max_dist) + 1)
        labels = [str(i) if i % 2 == 0 else '' for i in ticks]
        plt.xticks(ticks, labels)
        # Mostrar o gráfico
        plt.show()
```


OBS: Fiz um pequeno deslocamento dos dados para esquerda e direita da distância para facilitar a visão das duas opções de coleta. Esta visualização me permitiu identificar um padrão na leitura dos dados avaliar a possibilidade de criar um novo método para melhorar a acurácia do FTM.

Podemos notar um offset nas duas estimativas, curiosamente uma deu sempre uma medida um pouco maior e a outra um pouco menor que a real

Agora vamos verificar se existem outras correlações.

```
In [6]: # mapa de calor da matriz de correlação dos dados numéricos
plt.figure(figsize=(8, 4))
sns.heatmap(df.corr(), annot=True, cmap='cividis', annot_kws={"size": 8})
plt.title("Mapa de Calor das Correlações")
plt.xticks(fontsize=9)
plt.yticks(fontsize=9)
plt.show()
```


Como esperado, a correlação total entre o RTT e a distância estimada pois esta é calculada a partir do RTT.

Podemos observar que existe correlação muito forte entre as estimativas de distância e a distância real.

Exite correlação inversa mais fraca entre o RSS e a distância Real.