Sampling with unequal probabilities of selection (WOR)

Week 8 (6.4)

Stat 260, St. Clair

1 / 24

Horvitz-Thompson Estimator

- You take a (one-stage) random sample where:
 - $\circ \ t_i =$ "response" in PSU i
 - $\circ n = PSU$ sample size (or unique PSU sampled)
 - $\circ \ \pi_i = ext{sample} \ ext{inclusion prob for PSU} \ i$
 - $\circ \ w_i = 1/\pi_i =$ number of population units represented by PSU i
- The Horvitz-Thompson estimator is

$$\hat{t}_{HT} = \sum_{i=1}^n w_i t_i$$

2 / 24

Horvitz-Thompson Estimator

$$\hat{t}_{HT} = \sum_{i=1}^n w_i t_i$$

 For any design (with or without replacement), the H-T estimator is an unbiased estimator of population total t.

$$E(\hat{t}_{\;HT})=t=\sum_{i=1}^{N}t_{i}$$

Horvitz-Thompson Estimator

- All total estimates so far, except for ratio estimates, have been HT estimators
 - \circ SRS: $w_i=N/n$
 - \circ Stratified: $w_{hj}=N_h/n_h$
 - $\circ~$ One-stage cluster: $w_{ij}=N/n$
- For these designs, the total estimator SE's can be derived from a general variance calculation
 - using the fact that without replacement designs leads to dependence among units being sampled

$$Var(\hat{t}_{HT}) = \sum_{i=1}^{N} rac{1-\pi_i}{\pi_i} t_i^2 + 2 \sum_{i=1}^{N} \sum_{k=1}^{N} rac{\pi_{ik} - \pi_i \pi_k}{\pi_i \pi_k} t_i t_k$$

Horvitz-Thompson Estimator

$$Var(\hat{t}_{HT}) = \sum_{i=1}^{N} rac{1-\pi_i}{\pi_i} t_i^2 + 2 \sum_{i=1}^{N} \sum_{k=1}^{N} rac{\pi_{ik} - \pi_i \pi_k}{\pi_i \pi_k} t_i t_k$$

• We need to compute the joint inclusion probability

$$\pi_{ik} = \pi_{ki} = P(\text{both } i, k \text{ included in the sample})$$

• What is π_{ik} for a SRS?

Horvitz-Thompson Estimator

- All designs covered so far have used a SRS
 - \circ Definition: each sample of size n is equally likely
 - \circ Implication: each PSU is equally likely (equal π_i for all i)
- What if we don't use a SRS?
 - o Take a random sample of PSU without replacement
 - \circ Let inclusion probs π_i vary (unequal π_i)
- ullet Our unbiased total estimate is still \hat{t}_{HT}
- Our variance is computed using π_i and π_{ik} !

Horvitz-Thompson Estimator

• SRS: We measure $t_i=y_i$ for each unit and $\hat{t}_{HT}=Nar{y}$.

$$\pi_i = rac{inom{N-1}{n-1}}{inom{N}{n}} = rac{n}{N} \qquad \pi_{ik} = rac{inom{N-2}{n-2}}{inom{N}{n}} = rac{n(n-1)}{N(N-1)}$$

• **SRS**: variance is then

$$egin{align} Var(\hat{t}_{HT}) &= \sum_{i=1}^N rac{1-rac{n}{N}}{rac{n}{N}} y_i^2 + 2\sum_{i=1}^N \sum_{k=1}^N rac{n(n-1)}{N(N-1)} - rac{n}{N} rac{n}{N}}{rac{n}{N} rac{n}{N}} y_i y_k \ & \ldots ext{lots of algebra.} \ldots \ &= N^2 (1-rac{n}{N}) rac{S^2}{n} \end{aligned}$$

5 / 24

Example: Unequal inclusion probabilities

• Supermarkets estimate total sales t for N=4 stores.

 $t_i = \text{total sales (thousands of dollars)}$ at store i

- Design: Random sample WOR with probability proportional to physical store size
- Here's our population:

Store	t_i	Size m^2
A	11	100
В	20	200
С	24	300
D	245	1000
total	t=300	1600

Example: Unequal inclusion probabilities

Design: Random sample WOR with probability proportional to physical store size

 $\psi_i = \text{probability of selecting store } i \text{ on your first draw}$

Store	t_i	Size m^2	ψ_i
A	11	100	
В	20	200	
C	24	300	
D	245	1000	
total	t=300	1600	1

Example: Unequal inclusion probabilities

Design: Random sample WOR with probability proportional to physical store size

 $\psi_i = \text{probability of selecting store } i \text{ on your first draw}$

- Catch: WOR, probabilities for the second draw are not equal to ψ_i
 - $\circ \ \pi_i$ is the probability that store i is one of the two stores sampled, and not equal to ψ_i

9 / 24

Example: Unequal inclusion probabilities

• Draw 1: we sample store B

$$\psi_{i|B} = P(ext{draw 2 is } i \mid ext{draw 1 is } B)$$

Store	Size m^2	$\psi_{i B}$
A	100	1/14
В		0
C	300	3/14
D	1000	10/14
total	1400	1

Example: Unequal inclusion probabilities

- Use the **individual PSU** selection probs (draw to draw) to compute the **joint inclusion** prob for each pair
- π_{AB} : the probability that both A and B are included is

Example: Unequal inclusion probabilities

• π_A : the probability that store A is included is the sum of all probs of samples that contain that PSU

$$\pi_A = \pi_{AB} + \pi_{AC} + \pi_{AD}$$

Example: Unequal inclusion probabilities

- The matrix below gives joint probs π_{ik} in the body and single PSU probs in the margins

	A	В	С	D	π_i
A		0.0173	0.0269	0.1458	0.1900
В	0.0173		0.0556	0.2976	0.3705
C	0.0269	0.0556		0.4567	0.5393
D	0.1458	0.2976	0.4567		0.9002
π_i	0.1900	0.3705	0.5393	0.9002	n=2

· Note that

$$\sum_{i=1}^N \pi_i = n$$

13 / 24

Example: Unequal inclusion probabilities

• Suppose you sampled stores C and D

Store	Size m^2	π_i	w_i	t_i
С	300	0.5393	1.854	24
D	1000	0.9002	1.111	245

Estimated total:

Example: Unequal inclusion probabilities

• Variance of \hat{t}_{HT} is

$$egin{aligned} Var(\hat{t}_{HT}) &= \left(rac{1-0.1900}{0.1900}11^2 + \cdots + rac{1-0.9002}{0.9002}245^2
ight) \ &+ 2\left(rac{0.0173 - (0.1900)(0.3705)}{(0.1900)(0.3705)}(11)(20) +
ight. \ &\cdots + rac{0.4567 - (0.5393)(0.9002)}{(0.5393)(0.9002)}(24)(245)
ight) = 4383.6 \end{aligned}$$

- The estimated total sales is \$316.67 thousand with a SE of \$66.2 thousand.
- How does this compare to a SRS of n=2 stores?

Example: Unequal inclusion probabilities

- Suppose stores C and D were selected from an SRS.
- SRS Estimated total: \$538 thousand

$$\hat{t}_{SRS} = Nar{y} = 4rac{24+245}{2} = 538$$

• SRS Variance of \hat{t}_{SRS} is

$$Var(\hat{t}_{HT}) = 4^2(1-rac{2}{4})rac{12874}{2} = 51496$$

where
$$S^2=rac{1}{N-1}\sum_{i=1}^N(t_i-ar t_{\mathcal U})=12874$$

```
pop <- c(11,20,24,245)
var(pop)
## [1] 12874</pre>
```

Example: Unequal inclusion probabilities

- **Probability proportional to size:** The estimated total sales is \$316.67 thousand with a SE of \$66.2 thousand.
- SRS: The estimated total sales is \$538 thousand with a SE of \$226.9 thousand.
- One important reason for selecting PSU with unequal probabilities:
 - \circ can reduce SE (compared to SRS) when selection probability π_i is positively associated with the response t_i
 - called **probability proportional to size (pps)** sampling
 - \circ most samples will contain large t_i making variation in \hat{t}_{pps} less than when a small t_i is just as likely as a large

17 / 24

Example: Unequal inclusion probabilities

- One important reason for ${f not}$ selecting PSU with unequal probabilities:
 - $\circ~$ if some PSU have very small π_i , then they have very high weight w_i
 - \circ can cause imprecise **estimates of** $Var(\hat{t}_{HT})$ because of these high weights

Estimating HT variance

$$Var(\hat{t}_{HT}) = \sum_{i=1}^{N} rac{1-\pi_i}{\pi_i} t_i^2 + 2 \sum_{i=1}^{N} \sum_{k=1}^{N} rac{\pi_{ik} - \pi_i \pi_k}{\pi_i \pi_k} t_i t_k$$

- To estimate variance, treat the summations as population totals
 - estimate the total with a HT-estimator!
 - \circ weight sampled values by w_i 's

Estimating HT variance

- There are three commonly used estimates of $Var(\hat{t}_{HT})$
- **Horvitz-Thompson (HT)**: unbiased and often the default software version (as in survey), but can be negative for samples with small inclusion probs

$$\hat{V}_{HT}(\hat{t}_{|HT}) = \sum_{i=1}^{n} rac{1-\pi_i}{\pi_i^2} t_i^2 + 2 \sum_{i} \sum_{\substack{k \ i < k}} rac{\pi_{ik} - \pi_i \pi_k}{\pi_{ik}} rac{t_i}{\pi_i} rac{t_k}{\pi_k}$$

Estimating HT variance

• Sen-Yates-Grundy (SYG): unbiased and more stable than HT version

$$\hat{V}_{SYG}(\hat{t}_{HT}) = \sum_{\substack{i \ i < k}} \sum_{k} rac{\pi_i \pi_k - \pi_{ik}}{\pi_{ik}} igg(rac{t_i}{\pi_i} - rac{t_k}{\pi_k}igg)^2$$

• With Replacement: is a biased estimate that overestimates the variance, but it doesn't require joint inclusion probs!

$$\hat{V}_{WR}(\hat{t}_{\;HT}) = rac{n}{n-1} \sum_{i=1}^n \left(rac{t_i}{\pi_i} - rac{\hat{t}_{\;HT}}{n}
ight)^2$$

21 / 24

Example: Estimating HT variance

Sample \mathcal{S}	$P(\mathcal{S})$	\hat{t}_{HT}	$\hat{V}_{HT}(\hat{t}_{ HT})$	$\hat{V}_{SYG}(\hat{t}_{HT})$
A,B	0.01726	111.87	-14,691.5	47.1
A,C	0.02692	102.39	-10,832.1	502.8
A,D	0.14583	330.06	4,659.3	7,939.8
B,C	0.05563	98.48	-9,705.1	232.7
B,D	0.29762	326.15	5,682.8	5,744.1
C,D	0.45673	316.67	6,782.8	3,259.8

- If we happen to sample two small stores, our HT estimate of variance is negative!
- But both are unbiased estimators of the true variance.

What about estimating populuation mean?

$$\sum_{all~elements} w_i$$

- Summing sampling weights over all **elements** sampled will give
 - actual population size (of elements) when weights are equal for all elements and number of elements per PSU is constant
 - o an unbiased estimated population size (of elements)
- The Horvitz-Thompson estimate of population mean (per element) is

$$\hat{ar{y}}_{HT} = rac{\hat{t}_{HT}}{\sum_{all~elements} w_i}$$

- The survey package uses this when you run svymean
 - \circ gives \hat{t}_{HT} when you run svytotal