Customer Churn Prediction for a Telecom Company

Group4:
Jasvitha
Buggana
Krupa Shah
Manan
Upadhyay
Preksha Shah
Shivani Agrawal

Agenda

1	Problem Context and Research Questions
2	Dataset Description
3	Pre-Processing Done & Initial Exploration
4	What we have done
5	Analysis and Results

6	Comparison of different models
7	Conclusion & Recommendations

Problem Context & Research

Current Churn

• 14 % churn rate

Company Services

- Vast Coverage (all states)
- Customer Support

Features of Talk Plans

- International
- Voicemails, Day, Night,

Problems to Identify

Are there any particular plans like day, eve, and night which are facing higher churns?

Are there any states where the churn rate is higher?

How is our customer service team performing?

Is there any specific geography where the customer team is not doing well, and hence customers are churning?

What is the main pain point?

Data Set Description

The Data set consists of 3333 rows and 21 Columns

Source:

https://platform.stratascratch.com/data-pis/customer-churn-prediction

Data columns (total 21 columns):							
#	Column	Non-Null Count	Dtype				
0	state	3333 non-null	object				
			int64				
1	account_length	3333 non-null	725 at 183 at				
2	area_code	3333 non-null	int64				
3	phone_number	3333 non-null	object				
4	international_plan	3333 non-null	object				
5	voice_mail_plan	3333 non-null	object				
6	number_vmail_messages	3333 non-null	int64				
7	total_day_minutes	3333 non-null	float64				
8	total_day_calls	3333 non-null	int64				
9	total_day_charge	3333 non-null	float64				
10	total_eve_minutes	3333 non-null	float64				
11	total_eve_calls	3333 non-null	int64				
12	total_eve_charge	3333 non-null	float64				
13	total_night_minutes	3333 non-null	float64				
14	total_night_calls	3333 non-null	int64				
15	total_night_charge	3333 non-null	float64				
16	total_intl_minutes	3333 non-null	float64				
17	total_intl_calls	3333 non-null	int64				
18	total_intl_charge	3333 non-null	float64				
19	customer_service_calls		int64				
20	churn	3333 non-null	int64				
	dtypes: float64(8), int64(9), object(4)						
memory usage: 546.9+ KB							
memory usage: 54015+ Kb							

Pre-processing & Initial Exploration

- Changed Outcome Variable: Churn from Text to 0/1, State, International_plan, Voice_mail_plan
- Mumerical Data: int, float
- Non-Numerical: String / Object

- Stripped space from the original variable names.
- Account Length became account_length

VISUALIZATION(Preprocessing and Initial Analysis)

• The Heat-map does not provide relevant information about the collinearity so we move towards Box-plot Analysis.

 Those who churned engaged in more extensive conversations and made relatively higher payments

compared to those who did not charge.

• Customers who churned experienced significantly higher

volumes of customer service calls, indicating that the issues

raised during these calls were not adequately

addressed

Daytime charges were higher despite an equal call count, suggesting that churned individuals had longer conversations and made greater payments.

Daytime witnessed the longest call

durations throughout the day for the

Despite whose the counts for both

churned and non-churned customers, daytime callers, especially among those

who churned, had lengthier conversations.

Other telecom companies may offer unlimited plans for extended calls at a fixed price, while our company charges based on minutes.

High churning: NJ, AL, AZ, WI, WA, DC.
Low churning: KS, OK, IA, MT, ME.
Resolved issues in OK and RI led to low churning
despite more calls. Likely unmet needs in AZ,
AL, WI, WA, DC, TN led to higher churning.

The scatter plot confirms issues predominantly arise with customers who engage in extended daytime conversations, particularly heavy daytime users.

What Have We Done?

Data Set

KNN

Base Model

Second Model with Best K

Third KNN model with a few predictors only (parsimonious KNN Model)

Decision Trees

Base Model

Another Model using Grid Search

Random Forest (Best)

Boosting

Logistic Regression Base model

Model with important predictors only

Analysis & Results K-NN model Performance

Consider 70% of training data and 30% of validation data.

K-NN Model without 'State' Column:

- Accuracy: 88.9% on Validation Data, True Positive accuracy: 38\(\)
- · Removal of 'state' might have affected model sensitivity to certain patterns.

K-NN Model with 'State' Column:

- Accuracy: 86% on Validation Data, True Positive accuracy: 15%
- Accuracy decrease after including 'state.'
- Impact: Dimensionality, feature relevance, or noise introduced by 'state.'

Parsimonious Model (7 Predictors) and best K at K = 9:

- Accuracy: 90.1% on Validation Data, True Positive accuracy: 40⁶
- Feature selection and model simplicity led to improved accuracy.

```
Confusion Matrix (Accuracy 0.8890)

Prediction
Actual 0 1
0 834 21
1 90 55
```


Confusion Matrix (Accuracy 0.9010)

Prediction

Actual

Analysis & Results Decision Tree

Performance
Mentioning about the best and parsimonious model.

Random Forest

- Accuracy: 95% on Validation Data, True Positive accuracy: 72%
- Also got to know the important featured which we used to make the parsimonious model.
- Parsimonious Model (Top 5 Predictors):
 - Accuracy: 88% on Validation Data, True Positive accuracy: 44%

total day charge

customer service calls

Analysis & Results Logistic Reg. Performance

Base Model with all predictors

- AIC: 1392
- Accuracy 85% on Validation Data
- True Positive accuracy: 14%

Parsimonious Model (7 Predictors) and best K at K = 9:

- AIC: 1301
- Accuracy: 84% on Validation Data
- True Positive accuracy: 4%

```
Confusion Matrix (Accuracy 0.8463)

Prediction
Actual 0 1
0 1120 16
1 189 9
```

Comparison of All Models

Model	Description	Overall_Accuracy	Sensitivity	Specificity
KNN	All Variable(k=3)	88%	97%	38%
	All Variable (k=5)	89%	98%	37%
	All Variable (Including State) (k=3)	86%	99%	15%
	Selected variables (Different Combinations) (k=3)	89%	97%	43%
	Selected Variable 7 (k=9)	90%	98%	41%
	Base Model(depth 7)	92%	97%	70%
	Grid Search	93%	97%	72%
Decision tree	Random Forest (BEST)	95%	98%	72%
	Boosting	95%	98%	74%
	Parsimonious Model (Importance feature)	88%	96%	44%
	Base Model	85%	96%	23%
Logit	Model with important predictors	84%	98%	5%

Recommendation & Conclusion

Launch daytime
unlimited calling plans
for heavy users to
mitigate churning
caused by high charges
associated with
extended talk time.

Promote off-peak calling with discounts, flexible packages, and awareness campaigns for optimized network use.

Enhance customer service in states with unmet needs through agent training and implement a robust feedback system for improved issue resolution.