

Monte Carlo of Molecular Systems

MSSE Bootcamp

August 13, 2020

Monte Carlo Connection to Molecular Systems

According to **statistical mechanics**

We can use MC to evaluate this integral!

$$\langle Q \rangle = \int_{V} Q(r^{N}) \rho(r^{N}) dr^{N}$$

- ${\it Q}$ quantity which depends on atomic coordinates (r^N)
- (Q) average value of quantity Q (square brackets denote average)
- r^N atomic coordinates with N dimensions
- $ho(r^N)$ probability density based on thermodynamic properties (beyond scope of this course)

Monte Carlo Connection to Molecular Systems

In order to evaluate this integral we have some special considerations

$$\langle Q \rangle = \int_{V} Q(r^{N}) \rho(r^{N}) dr^{N}$$

Because we have so many possible states, it is not effective to sample points with a uniform distribution.

Consider our 10 particles in a box.

This
configuration
(particles
stacked) is high
energy and not
likely to occur

The Metropolis Monte Carlo Method

- No longer using a uniform distribution for coordinate generation.
- Instead, generate configurations with distribution $\rho(r^N)$ the probability density based on thermodynamic properties.

Then, we can evaluate the integral as the average of the generated configurations:

$$\langle Q \rangle = \frac{1}{N} \sum_{i=1}^{N} Q(r_i^N)$$

Generate an initial state *m* and calculate its energy.

Choose an atom with uniform probability

Attempt a random translation within a maximum distance.

Calculate the energy of the new state, n.

Accept or reject new state according to the Metropolis criterion

The Metropolis Criterion

Accept move based on the energy change resulting from moving the particle and system temperature.

$$P_{acc}(m \rightarrow n) = \min[1, e^{-\Delta U/T}]$$

This means we will always accept moves which result in a decrease in energy ($-\Delta U$), and sometimes accept moves which are zero or positive.

In practice, we will generate a random number on the range zero to 1. If our calculated P_{acc} is greater than our generated number, we accept the configuration.

