Calculabilité - complexité

0h45, sans document sauf une feuille A4, 22 avril 2022

Toutes les questions ont le même poids. Les réponses doivent être inscrites à la suite de chacune des questions, dans le cadre prévu à cet effet. Dans le cas (exceptionnel), où vous estimeriez qu'une question nécessite un développement plus important, utilisez une feuille séparée, en précisant le numéro de la question.

1. Calculablité

1. Comparer l'expressivité de TLA^+ et du langage C

- *TLA*⁺ est plus expressif que C car il contient des théories mathématiques évoluées (théorie des nombres, théorie des ensembles) non présentes dans C.
- C est un langage de programmation donc plus expressif que TLA^+ qui est un langage de spécification.
- Ils sont équivalents car Turing-complets tous les deux.
- TLA^+ est Turing-parfait, mais pas C.
- On ne sait pas, personne n'a envisagé de comparer les deux.

2. On considère le castor affairé (*busy beaver*) à 10 états. Lesquelles des propositions suivantes sont vraies (plusieurs choix possibles)

- Il existe un castor affairé à 9 états qui fait plus de transitions que lui.
- L'exécution du castor affairé prendrait plusieurs millénaires sur un ordinateur actuel.
- Il peut parfois écrire plus de 1 qu'il ne fait de transitions.
- On sait qu'il va s'arrêter un jour.
- Toute machine de Turing à 10 états qui s'arrête fait moins de transitions que ce castor affairé.
- Il ne sert à rien.

3. Savoir si deux codes calculent la même chose est indécidable. Savoir si deux étudiants ont rendu le même projet est :

- Indécidable
- Décidable pour un projet dans un langage de programmation, indécidable pour un langage de spécification de type TLA^+ .
- Décidable dans tous les cas.

4. Une machine de Turing universelle peut-elle simuler l'exécution d'une machine non détermiste? Justifier la réponse. 5. Savoir si une machine de Turing a un nombre pair d'états est-il décidable ? Si oui, donner le principe de l'algorithme; si non, argumenter (montrer une réduction ou une contradiction). 6. Savoir si une machine de Turing avec un argument a s'arrête en moins de t transitions est-il décidable? Si oui, donner le principe de l'algorithme; si non, argumenter (montrer une réduction ou une contradiction). 7. Savoir si une machine de Turing avec un argument a, si elle s'arrête, a effectué un nombre pair de transitions est-il décidable? 8. Étant donné une machine de Turing \mathcal{M} sur l'alphabet $\{0,1\}$, savoir si l'exécution de \mathcal{M} sur un ruban initialement vide écrit (au moins une fois) deux 1 consécutifs sur le ruban est-il décidable? Si oui, donner le principe de l'algorithme, sinon argumenter. 9. Existe-t-il des fonctions récursives primitives dont on ne peut pas prouver qu'elles terminent, ou est-on toujours sûr qu'elles finiront par donner un résultat ? Justifier la réponse. 10. Existe-t-il des fonctions récursives dont on ne peut pas prouver qu'elles terminent, ou est-on toujours sûr qu'elles finiront par donner un résultat ? Justifier la réponse.

2. Complexité

- 11. La complexité d'un problème dans P dépend du langage de programmation utilisé pour le résoudre.
- Oui, c'est pour cela que nous disposons de multiples langages de programmation, chacun étant plus efficace sur certains types de problèmes.
- Oui sauf si le problème est aussi dans **PSPACE**.
- Non, tous les modèles de calcul sont équivalents pour **P**.
- ullet Ça dépend si le problème est dans \mathbf{NP} ou pas.
- 12. Donner l'intuition qui justifie que l'opinion générale pense que $P \subseteq NP$.
- 13. Quelles propriétés doit satisfaire la classe des calculs "efficaces" en temps?
- 14. Est-il vrai que, comme SAT est NP-complet, tout problème de décision peut être résolu en le réduisant à SAT et en utilisant un solveur SAT?
- 15. Comment est définie la complexité en espace d'un algorithme ?
- 16. Quelle est la différence entre l'espace et le temps en tant que ressources à mesurer ?
- 17. Pourquoi peut-on parler de la classe LSPACE (espace logarithmique) alors que ça n'a pas de sens de parler d'une classe L (temps logarithmique)?
- 18. Existe-il des problèmes dans P qui nécessitent un nombre exponentiel de cases?
- 19. Existe-t-il des problèmes PSPACE-complets qui ne soient pas aussi NP-complets?

20. Un problème soluble en temps probabiliste polynomial (dans RP) peut ne pas avoir de solution déterministe polynomiale (pas dans P).

- Oui, c'est l'apport des tirages aléatoires.
- Non, on peut simuler un tirage aléatoire en visitant les deux cas.
- On ne sait pas mais on soupçonne que les deux classes sont égales.
- C'est l'inverse, il y a des problèmes solubles déterministiquement en temps polynomial et qui n'ont pas de solution polynomiale avec des tirages aléatoires car ceux-ci peuvent mener l'algorithme dans une mauvaise branche du calcul.