

Class-Agnostic Self-Supervised Learning for Image Angle Classification

Hyeonseok Kim, Yeejin Lee*

Department of Electrical and Information Engineering,

Seoul National University of Science and Technology,

Seoul, 01811, Korea (khslab@seoultech.ac.kr, yeejinlee@seoultech.ac.kr*)

Introduction

To train the prediction of image angles…

Build new datasets

Require substantial resources and time

2. Use existing benchmark datasets

Introduction

When using existing datasets, the directionality issue arises.

Introduction

We propose a class-agnostic self-supervised angle prediction learning framework.

The structure of the proposed network.

2.1 Directionality Categorization

We construct a dataset for angle prediction.

Existing dataset

$$D_{tr} = \left\{ X_{tr}^{j}, Y_{tr}^{j} \right\}_{j=1}^{N_{tr}}$$

New dataset

$$D_r = \{X_r^j, k^j\}_{j=1}^{N_r}$$

$$k: [0, 90, 180, 270]$$

To learn discriminative features based on rotation angles...

Cross-entropy loss

$$\mathcal{L}_{cls}^{D} = -\frac{1}{N_r} \sum_{j=1}^{N_r} \sum_{i=1}^{4} k_i^j \log \left(M_D \left(X_r^j \right) \right), \tag{1}$$

$$k: [0 \circ, 90 \circ, 180 \circ, 270 \circ]$$

 N_r : the number of training samples

 k_i^J : the rotated degree

 M_D : the directionality categorization network

 X_r^j : the training sample

To clarify the difference between features…

Triplet loss

$$\mathcal{L}_{tri}^{D} = \sum_{j=1}^{N_r} \max \left\{ \left\| f_{x_r^j}^{D} - f_p^{D} \right\|^2 - \left\| f_{x_r^j}^{D} - f_n^{D} \right\|^2 + \alpha, 0 \right\},$$

 N_r : the number of training samples

 $f_{x_r^j}^D$: the extracted feature vector of the input x_r^j

 $f_p^{\dot{D}}$: the feature vector of a positive input

 f_n^D : the feature vector of a negative input

 α : the margin

(2)

Total loss function.

$$\mathcal{L}_{total}^{D} = \mathcal{L}_{cls}^{D} + \lambda_1 \mathcal{L}_{tri}^{D}, \tag{3}$$

 λ_1 : the weighting coefficient

To distinguish the directionality of samples...

Cosine similarity
$$Similarity == \frac{f_{x_r^j}^D \cdot f_r}{\left\| f_{x_r^j}^D \right\| \cdot \left\| f_r \right\|}, \tag{4}$$

Similarity > T : Non-directionality
Similarity <= T : Directionality</pre>

2.2 Rotation Categorization

We obtain a filtered dataset from the directionality categorization network.

New dataset

$$D_r = \{X_r^j, k^j\}_{j=1}^{N_r}$$

$$k: [0, 90, 180, 270]$$

Filtered dataset

$$D_f = \left\{ X_f^j, k^j \right\}_{j=1}^{N_f}$$

Learning is similar to the directionality categorization network..

$$\mathcal{L}_{total}^{A} = \mathcal{L}_{cls}^{A} + \lambda_2 \mathcal{L}_{tri}^{A}, \tag{5}$$

$$\mathcal{L}_{cls}^{A} = -\frac{1}{N_f} \sum_{j=1}^{N_f} \sum_{i=1}^{4} k_i^j \log \left(M_A \left(X_f^j \right) \right), \quad (6)$$

$$\mathcal{L}_{tri}^{A} = \sum_{j=1}^{N_f} \max \left\{ \left\| f_{x_f^j}^A - f_p^A \right\|^2 - \left\| f_{x_f^j}^A - f_n^A \right\|^2 + \beta, 0 \right\}.$$
(7)

Results

Comparison of classification accuracy (%)

Object Types	STL-10		CIFAR-100	
	Acurracy	ΔAcc	Acurracy	ΔAcc
All	72.4	-	58.2	-
Directional	74.0	+1.6	63.6	+5.4

