

VORHERSAGE COVID-19 KENNZAHLEN

Anwendung und Vergleich von Machine Learning und Deep Learning Algorithmen

Machine Learning Innovationsprojekt
CAS Artificial Intelligence/Kunstliche Intelligenz HSLU

Jonas Furrer & Marco Amrein 18. Januar 2022

AGENDA

- Ziel des Projekts
- Methodik / Organisation
- Umsetzung
- Demo
- Resultate
- Diskussion der Resultate
- Erkenntnisse
- Fragen

ZIEL DES PROJEKTS

- Vergleich von verschiedenen Modellen zur Vorhersage der Covid-19 Fallzahlen
- Pro Modell Mean Squared Error (MSE), Dauer für Training und Prediction messen und vergleichen

METHODIK / ORGANISATION

- Code Verwaltungssystem: https://github.com/maggi71/ml-corona
- Entwicklungsumgebung: Visual Studio Code mit Anaconda Environment (Remote)
- Kommunikation: Wöchentliche Videokonferenzen
- Qualitätssicherung: Gegenseitige Code Reviews

UMSETZUNG

- Download der Daten von Opendata Swiss https://opendata.swiss/de/dataset/covid-19-schweiz als CSV Dateien
- Datenanalyse
- Aufbereitung und Bereinigung der Daten
- Implementierung der Modelle
 - Polynomiale Regression
 - Convolutional Neural Network (CNN)
 - Long short-term memory (LSTM)
- Optimierung der Hyperparameter mittels GridSearch und Cross Validation

HYPERPARAMETER

- Regression: Grad des Polynoms (n=2, n=3, ..., n=12)
- CNN: n_filter, n_kernel, n_epoches, n_batch, pool_size, activation_conv, activation_dense, optimizer
- LSTM: (n_layers), n_neurons, n_epoches, n_batch, optimizer

DEMO

- Demo des LSTM Modells
 - Trainieren des Netzwerks
 - Prediction
 - Vergleich Prediction mit Ground Truth

RESULTATE

Algorithmus	Performance (MSE)	Laufzeit für Training	Laufzeit für Prediction
Polynomiale Regression	0.0266	0.0030s	0.0116s
CNN	0.0427	15.9702s	0.0747s
LSTM	0.0205	57.6358s	0.1137s

DISKUSSION DER RESULTATE

- Reihenfolge Performance
 - I. LSTM
 - 2. Polynomiale Regression
 - 3. CNN
- Reihenfolge Laufzeit
 - I. Polynomiale Regression
 - 2. CNN
 - 3. LSTM

Gute Datenqualität kostet Zeit

Rechenleistung für Training und Optimierung ist nicht zu unterschätzen

Python ist eine effiziente Programmiersprache für Data Science

Aufgrund des Datenschutzes waren Daten aus dem Geschäftsumfeld nicht möglich

Praxisbeispiel zeigt Komplexität von Machine Learning auf, im Vergleich zu konstruierten Beispielen

ERKENNTNISSE

FRAGEN

Danke fürs Zuhören