

Reinforcement Learning

GongYing gong.ying@connect.umac.mo 2023.12.18

Contents

• PPO

PPO-penalty

PPO-clip

• GAIL

PPO

- PPO: Proximal Policy Optimization
- In TRPO, we use KL divergence to constrain the magnitude of the update.

Trust region methods, target: $\max_{\theta} J(\theta)$

- Trust region: $N(\theta_{now}) = \{\theta | \|\theta \theta_{now}\|_2 \le \Delta\}.$
- Construct function $L(\theta|\theta_{now})$, satisfying: $L(\theta|\theta_{now})$ is very close to $J(\theta)$, $\forall \theta \in N(\theta_{now})$
- $J(\theta)$ can be replaced by $L(\theta | \theta_{now})$ when $\theta \in N(\theta_{now})$

- PPO: Proximal Policy Optimization
- In TRPO, we use KL divergence to constrain the magnitude of the update.

Train

- **Approximate**
 - Present policy network parameter is θ_{now} . Use $\pi(a|s;\theta_{now})$ to control the agent, record trajectories: s_1 , a_1 , r_1 , s_2 , a_2 , r_2 , ..., S_n, a_n, r_n .
 - For all t, calculate u_t .
 - Approximate function: $\tilde{L}(\theta|\theta_{now}) = \frac{1}{n} \sum_{t=1}^{n} \frac{\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta_{now})} \cdot u_t$.
- **Maximize**

$$\theta_{new} = argmax_{\theta} \tilde{L}(\theta | \theta_{now}); \quad s.t. \|\theta - \theta_{now}\|_{2} \leq \Delta. \quad \text{constraint}$$

KL divergence
$$\left[\frac{1}{t}\sum_{i=1}^{t}\mathsf{KL}\Big[\piig(\cdot\mid s_i;oldsymbol{ heta}_{\mathrm{now}}ig)\,\Big\|\,\piig(\cdot\mid s_i;oldsymbol{ heta}ig)\,\Big]\,\leq\,\Delta$$

PPO

- PPO: Proximal Policy Optimization
- In TRPO, we use KL divergence to constrain the magnitude of the update.
- However, if we use gradient based optimization, it is difficult to deal with constraints.
- While in PPO, constraint is placed in the formula needed to be optimized:

$$\begin{cases} J_{PPO}(\theta | \theta') = J(\theta | \theta') - \beta \cdot KL(\theta, \theta') \\ J(\theta | \theta') = E_{(s_t, a_t) \sim \pi(\theta')} \left[\frac{\pi(a_t | s_t; \theta)}{\pi(a_t | s_t; \theta')} A(s_t, a_t; \theta') \right] \end{cases}$$

- KL divergence is now in target and it's easier to calculate.
- Note that KL divergence measures the similarity of probability distributions (actions) instead of parameters (θ and θ').

PPO

$$\begin{cases} J_{PPO}(\theta|\theta') = J(\theta|\theta') - \beta \cdot KL(\theta, \theta') \\ J(\theta|\theta') = E_{(s_t, a_t) \sim \pi(\theta')} \left[\frac{\pi(a_t|s_t; \theta)}{\pi(a_t|s_t; \theta')} A(s_t, a_t; \theta') \right] \end{cases}$$

In
$$TRPO$$
, $J(\theta) = E_S(V_{\pi}(S))$.

$$\frac{\pi(a|s;\theta)}{\pi(a|s;\theta_{now})} \frac{\pi(a|s;\theta)}{\pi(a|s;\theta_{now})} Q_{\pi}(s,a)$$

$$= E_{A} \sim \pi(\cdot|s;\theta_{now}) \left[\frac{\pi(A|s;\theta)}{\pi(A|s;\theta_{now})} Q_{\pi}(s,A) \right]$$

$$\vdots J(\theta) = E_S \left[E_{A} \sim \pi(\cdot|S;\theta_{now}) \left[\frac{\pi(A|S;\theta)}{\pi(A|S;\theta_{now})} Q_{\pi}(s,A) \right] \right]$$

PPO - penalty

- Target function: $J_{PPO}(\theta|\theta^k) = J(\theta|\theta^k) \beta \cdot KL(\theta,\theta^k)$
- In each iteration, use θ^k to interact with environment and sample (s_t, a_t) , and then update θ .
- Here the problem is how to set value of β .
- Adaptive KL divergence: adjust β dynamically.

Set a KL_{max} and a KL_{min} , if $KL(\theta, \theta^k) > KL_{max}$, it means $\beta \cdot KL(\theta, \theta^k)$ is too weak, then enlarge β (and vice versa).

$$\begin{cases} KL(\theta, \theta^{k}) > KL_{max}, & amplify \beta \\ KL(\theta, \theta^{k}) < KL_{max}, & diminish\beta \end{cases}$$

$$\begin{cases} J_{PPO}(\theta|\theta^{k}) = J(\theta|\theta^{k}) - \beta \cdot KL(\theta, \theta^{k}) \\ J(\theta|\theta') \approx \sum_{(s_{t}, a_{t})} \frac{\pi(a_{t}|s_{t}; \theta)}{\pi(a_{t}|s_{t}; \theta^{k})} A(s_{t}, a_{t}; \theta^{k}) \end{cases}$$

PPO - clip

- In PPO2, clipping is introduced instead of KL divergence.
- Target function:

$$= \sum_{(s_t, a_t)} \min(\frac{\pi(a_t|s_t; \theta)}{\pi(a_t|s_t; \theta^k)} A(s_t, a_t; \theta^k), clip\left(\frac{\pi(a_t|s_t; \theta)}{\pi(a_t|s_t; \theta^k)}, 1 - \varepsilon, 1 + \varepsilon\right) A(s_t, a_t; \theta^k))$$

$$\cdot \operatorname{clip()}: \operatorname{clip}\left(\frac{\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta^k)}, 1 - \varepsilon, 1 + \varepsilon\right) = \begin{cases} 1 - \varepsilon, \frac{\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta^k)} < 1 - \varepsilon \\ 1 + \varepsilon, \frac{\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta^k)} > 1 + \varepsilon \\ \frac{\pi(a_t|s_t;\theta)}{\pi(a_t|s_t;\theta^k)}, \operatorname{else} \end{cases}$$

PPO - clip

$$\cdot \ \, \operatorname{clip():} \ \, \operatorname{cl$$

裁剪函数的输出

PPO - clip

Target function:

$$J_{PPO2}(\theta|\theta^{k}) \approx \sum_{(s_{t},a_{t})} \min(\frac{\pi(a_{t}|s_{t};\theta)}{\pi(a_{t}|s_{t};\theta^{k})} A(s_{t},a_{t};\theta^{k}), clip\left(\frac{\pi(a_{t}|s_{t};\theta)}{\pi(a_{t}|s_{t};\theta^{k})}, 1-\varepsilon, 1+\varepsilon\right) A(s_{t},a_{t};\theta^{k}))$$

In brief, $\pi(a_t|s_t;\theta)$ is supposed to be close to $\pi(a_t|s_t;\theta^k)$, at the same time, if A>0, ignore the advantage caused by over-deviation (and vice versa).

- **GAIL** is based on **GAN** (generative adversarial network), which contains **generator** and **discriminator**.
 - Generator is used to generate fake samples.
 - Discriminator is used to determine wether a sample is fake or not.
- For example, generator generates a fake face picture, while discriminator determines whether it is generated by generator.
- In GAIL, data to be trained is the trajectories generated by human expert (imitated object):

$$\tau = [s_1, a_1, ..., s_m, a_m].$$

Data set contains k trajectories, denoted as:

$$\mathbf{X} = {\{\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(k)}\}}.$$

• Trajectory:

$$\tau = [s_1, a_1, ..., s_m, a_m].$$

Data set contains k trajectories, denoted as:

$$X = \{\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(k)}\}.$$

• Generator: $\pi(a|s; \theta)$,

Input: s,

Output: $\mathbf{f} = \pi(\cdot | s; \boldsymbol{\theta})$.

 $a_t \sim \pi(\cdot | s; \boldsymbol{\theta}), s_{t+1} \sim p(\cdot | s_t, a_t)$

• Trajectory:

$$\tau = [s_1, a_1, ..., s_m, a_m].$$

Data set contains k trajectories, denoted as:

$$X = \{\tau^{(1)}, \tau^{(2)}, \dots, \tau^{(k)}\}.$$

• Discriminator: $D(s, a; \phi)$,

Input: s,

Output: $\widehat{\boldsymbol{p}} = D(s, |\phi)$, element $\widehat{p_a} = D(s, a; \phi) \in (0,1), \forall a \in A$,

1 means real (human expert) and 0 means fake (generator).

Train:

- 1. Sample a trajectory from the training data set, denoted as:
- 2. Use $\pi(a|s;\theta_{now})$ to control the agent, getting a trajectory, denoted as:
- 3. Use Discriminator to determine if the actions of polity network is real:

$$u_t = lnD(s_t^{fake}, a_t^{fake}; \phi_{now}), \forall t = 1, ..., n.$$

4. Take τ^{fake} and u_t as input, update the parameter of generator (policy network), getting θ_{new} :

$$\theta_{new} = argmax_{\theta} \tilde{L}(\theta | \theta_{now}); s.t.dist(\theta_{now}, \theta) \leq \delta.$$

5. Take τ^{real} and τ^{fake} as input, update the parameter of discriminator, getting ϕ_{new} :

$$\begin{cases} \phi \leftarrow \phi - \eta \cdot \nabla_{\phi} F(\tau^{real}, \tau^{fake}; \phi) \\ F(\tau^{real}, \tau^{fake}; \phi) = \frac{1}{m} \sum_{t=1}^{m} \ln[1 - D(s_t^{real}, a_t^{real}; \phi)] + \frac{1}{n} \sum_{t=1}^{n} \ln D(s_t^{fake}, a_t^{fake}; \phi) \\ \text{Loss function} & \text{Smaller when D is larger} & \text{Smaller when D is smaller} \end{cases}$$

Thank you.

