```
# 구글 드라이브 연결
from google.colab import drive
drive.mount('/content/drive/')
     Mounted at /content/drive/
# 폴더 변경
import os
os.chdir("/content/drive/MyDrive/4-2MachineLearning/CNN과제/")
# CNN을 하는데, 필요한 라이브러리들 import
import numpy as np
import pandas as pd
from pathlib import Path
import os.path
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
import tensorflow as tf
from sklearn.metrics import confusion_matrix, classification_report
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.models import *
from tensorflow.keras.preprocessing.image import *
from tensorflow.keras.callbacks import
from tensorflow.keras.applications.efficientnet import *
# 이미지의 폴더경로
image dir = Path('/content/drive/MyDrive/4-2MachineLearning/CNN과제/Images')
# filepaths : 모든 이미지들의 경로
filepaths = list(image_dir.glob(r'**/*.jpg'))
# 각 파일 경로에서 라벨을 추출, '/' 로 분할하여, 상위 폴더(라벨)을 추출
labels = list(\texttt{map}(lambda \ x: \ os.path.split(os.path.split(x)[0])[1], \ filepaths))
# 파일의 경로와 라벨을 pandas series로 변환, 저장
filepaths = pd.Series(filepaths, name='Filepath').astype(str)
labels = pd.Series(labels, name='Label')
# 파일 경로와, 라벨을 하나의 데이터 프레임으로 합침
image_df = pd.concat([filepaths, labels], axis=1)
image_df
                                                                \blacksquare
                                            Filepath Label
          /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
          /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
       1
       2
           /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
       3
          /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
           /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
       4
       ...
      301
          /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
      302
          /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
      303 /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
      304 /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
      305 /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
     306 rows × 2 columns
# 데이터 프레임을 셔플
# 모든 행들이 무작위로 섞임
image_df = image_df.sample(frac=1).reset_index(drop = True)
# 인덱스를 섞은후 처음부터 0으로 다시 라벨링 해줌
```

image_df

```
\overline{\Pi}
                                                                                                                                          Filepath Label
                                  /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
                      1
                                  /content/drive/MyDrive/4-2MachineLearning/CNN ¬... Rockets
                                  /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
                      2
                      3
                                   /content/drive/MyDrive/4-2MachineLearning/CNN ¬... Carrots
                      4
                                   /content/drive/MyDrive/4-2MachineLearning/CNN \( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\teti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texict{\texict{\texi{\texi{\texi{\texi{\texicl{\texict{\texi}\tilint{\texit{\texi{\texi{\texi{\texi{\texit{
                   301
                                 /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
                                  /content/drive/MyDrive/4-2MachineLearning/CNN¬... Carrots
                   302
                   303
                                  /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
                   304
                                 /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
                   305 /content/drive/MyDrive/4-2MachineLearning/CNN¬... Rockets
                306 rows × 2 columns
# 3x5 그리드 형태의 서브플롯 생성
# subplot_kw는 각 서브플롯의 설정을 지정한다.
fig, axes = plt.subplots(nrows=3, ncols=5, figsize=(15, 7),
                                                                             subplot_kw={'xticks': [], 'yticks': []})
# 서브플롯에 이미지를 표시하는 반복
for i, ax in enumerate(axes.flat):
            ax.imshow(plt.imread(image_df.Filepath[i]))
             # 라벨을 제목으로 설정
             ax.set_title(image_df.Label[i])
# 서브플롯간의 간격 조정
plt.tight_layout()
plt.show()
```



```
# train set 과, test set을 split, test set의 크기는 0.9, random seed 는 10
train_df, test_df = train_test_split(image_df, train_size=0.9, shuffle=True, random_state=10)
train_df.shape
(275, 2)
```

데이터 전처리, ImageDataGenerator 는 데이터 증강 함수임
train_generator = tf.keras.preprocessing.image.ImageDataGenerator(
픽셀의 값을 0~1 로 rescaling // 정규화, 경사하강법의 안정성, 오버플로우 및 언더플로우 방지, 알고리즘의 수렴성 향상을 꾀함1

```
rescale=1./255,
   # 이미지를 수평으로 뒤집는 데이터 증강
   horizontal flip=True,
   # 이미지를 무작위로 회전 / -40도 ~ 40도
   rotation_range=40,
   # 이미지를 무작위로 가로로 이동 / 이미지 폭의 ~ 20%
   width_shift_range=0.2,
   # 이미지를 무작위로 세로로 이동 / 이미지 높이의 ~ 20%
   height shift range=0.2,
   # 이미지를 무작위로 변형
   shear_range=0.2,
   # 이미지를 무작위로 확대
   zoom range=0.2,
   # validation set는 train set의 20%
   validation_split=0.2
# 테스트 데이터의 이미지를 전처리 한느 ImageDataGenerator를 생성
# train data는 증강처리까지 하고, test data는 스케일링만 실행
test_generator = tf.keras.preprocessing.image.ImageDataGenerator(
   rescale=1./255)
# train data 제너레이터록 생성
train_images = train_generator.flow_from_dataframe(
   dataframe=train_df, # 훈련 데이터 지정
   x_{col}='Filepath', # 이미지 파일 경로가 저장된 열
   y col='Label', # 라벨 정보가 저장된 열
   target_size=(224, 224), # 이미지 크기 조정
   color_mode='rgb', # 컬러이미지 rgb 사용
   class_mode='categorical', # 다중 클래스 분류 -> categorical
   batch_size=32, # 미니 배치 사이즈 지정
   shuffle=True, # 데이터 무작위로 섞기
   seed=30, # 난수 발생시드
   subset='training'# 훈련데이터 서브셋을 사용 , 훈련데이터 생성
val_images = train_generator.flow_from_dataframe(
   dataframe=train_df, # 훈련 데이터 프레임 지정
   x_{col}='Filepath', # 이미지 파일 경로 지정
   y_col='Label',
   target size=(224, 224),
   color_mode='rgb',
   class_mode='categorical',
   batch_size=32,
   shuffle=True,
   seed=30,
   subset='validation' #'validation' 서브셋을 사용하여 검증 데이터 생성
test_images = test_generator.flow_from_dataframe(
   dataframe=test_df, # 테스트 데이터프레임 지정
   x col='Filepath'
   y col='Label',
   target_size=(224, 224),
   color_mode='rgb',
   class mode='categorical',
   batch_size=32,
   shuffle=False, # 데티어를 섞지 않음, test와 다름
   seed = 30 # 난수 발생 시드
    Found 220 validated image filenames belonging to 2 classes.
    Found 55 validated image filenames belonging to 2 classes.
    Found 31 validated image filenames belonging to 2 classes.
train_images.class_indices
    {'Carrots': 0, 'Rockets': 1}
# Train Data 를 학습할 신경망 쌓기
inputs = tf.keras.Input(shape=(224, 224, 3)) # 이미지의 크기카 224 x 224 이고, rgb 이므로, 224 x 224 x 3
# 1번 레이어, 32개의 필터, 필터의 크기는 3x3, 활성화 함수는 relu
x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(inputs)
# 2번 레이어, 2x2 크기의 맥스 풀링 레이어 추가
x = tf.keras.layers.MaxPool2D(2,2)(x)
# 3번 레이어, 64개의 필터, 필터이 크기는 3x3, 활성화 함수는 relu
x = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu')(inputs)
# 4번 레이어, 2x2 크기의 맥스 풀링 레이어 추가
x = tf.keras.layers.MaxPool2D(2,2)(x)
# 5번 레이어, 128개의 필터, 필터의 크기는 3x3, 활성화 함수는 relu
x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu')(inputs)
# 6번 레이어, 2x2 크기의 맥스 풀링 레이어
x = tf.keras.lavers.MaxPool2D(2.2)(x)
# 20% 의 드롭 아웃 비율을 가진, 레이어 추가
 = tf.keras.layers.Dropout(0.2)(x)
# 다차원 데이터를 Flatten -> 1차원
```

```
x = tf.keras.layers.Flatten()(x)
# Fully connected Layer1 : 256개의 뉴런을 가진, 완전 연결 레이어 추가, 활성화 함수는 relu
x = tf.keras.layers.Dense(256, activation='relu')(x)
# Fully connected Layer2 : 256개의 뉴런을 가진, 완전 연결 레이어 추가, 활성화 함수는 relu
x = tf.keras.layers.Dense(256, activation='relu')(x)
# 결과는, 2개의 뉴런을 가진 출력 레이어, 활성화 함수는 시그모이드
outputs = tf.keras.layers.Dense(2, activation='sigmoid')(x)
# 모델 생성.
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(
  optimizer='adam', # 최적화 알고리즘 : adam
   loss='categorical_crossentropy', # 손실함수 : crossentropy
   metrics=['accuracy'] # 모델을 평사할 지표 : accuracy
checkpoint_path = 'models/models/Mymodel.h5'
callbacks = [
   # 손실(cal_loss)을 모니터링, 손실이 10 에폭 동안 줄어들지 않으면,훈련 조기 종료
   EarlyStopping(monitor='val_loss', mode='min', patience=10, verbose=1),
   # ReduceLROnPlateau 콜백: 검증 데이터의 손실(val_loss)을 모니터링하며, 손실이 5 에폭 동안 감소하지 않으면 학습률을 0.1배로 감소시킴.
   ReduceLROnPlateau(monitor='val_loss', mode='min', factor=0.1, patience=5, min_lr=0.000001, verbose=1),
   # ModelCheckpoint 콜백: 검증 데이터의 손실(val_loss)을 모니터링하며, 손실이 가장 낮을 때 모델의 가중치를 저장, 모델의 가중치만 저장하지 않음
   # 가장 좋은 성능을 보인 모델만 저장
   ModelCheckpoint(monitor='val loss', mode='min', filepath=checkpoint path, verbose=1, save best only=True, save weights only=False)
# 모델을 fit 하기 시작
history = model.fit(
  train_images, # train image를 사용
   validation_data=val_images, # validation 은 val_image 사용
   epochs=20, # 20에포크 실행
  callbacks=callbacks # 콜백 함수 리스트
)
   Epoch 7/20
   Epoch 7: val_loss did not improve from 0.16289
   7/7 [=========] - 5s 734ms/step - loss: 0.2199 - accuracy: 0.9045 - val_loss: 0.1792 - val accuracy
   Epoch 8/20
   7/7 [=========== ] - ETA: 0s - loss: 0.2143 - accuracy: 0.9182
   Epoch 8: val_loss did not improve from 0.16289
   7/7 [============] - 5s 723ms/step - loss: 0.2143 - accuracy: 0.9182 - val loss: 0.1630 - val accuracy
   Epoch 9/20
   Epoch 10/20
   7/7 [=========] - ETA: 0s - loss: 0.1913 - accuracy: 0.9364
   Epoch 10: val_loss did not improve from 0.15294
   7/7 [===========] - 5s 743ms/step - loss: 0.1913 - accuracy: 0.9364 - val loss: 0.1687 - val accuracy
   Epoch 11/20
                7/7 [======
   Epoch 11: val_loss improved from 0.15294 to 0.12048, saving model to models/models/Mymodel.h5
   7/7 [==========] - 25s 4s/step - loss: 0.1673 - accuracy: 0.9409 - val loss: 0.1205 - val accuracy: (
   Epoch 12/20
   Epoch 12: val loss did not improve from 0.12048
   7/7 [=========] - 5s 726ms/step - loss: 0.1528 - accuracy: 0.9500 - val_loss: 0.1979 - val_accuracy
```

```
EPOCN 19: ReduceLkOnFlateau reducing learning rate to 0.000100000004/49/4513.
```

```
Epoch 19: val_loss did not improve from 0.11953
    7/7 [=========] - 5s 772ms/step - loss: 0.1257 - accuracy: 0.9591 - val_loss: 0.1618 - val_accuracy
    Epoch 20/20
    7/7 [=========] - ETA: 0s - loss: 0.1419 - accuracy: 0.9409
    Epoch 20: val_loss did not improve from 0.11953
    7/7 [=========] - 6s 814ms/step - loss: 0.1419 - accuracy: 0.9409 - val loss: 0.1983 - val accuracy
results = model.evaluate(test_images, verbose=0)
print(" Test Loss: {:.5f}".format(results[0])) # 테스트 데이터의 손실(loss) 출력
print("Test Accuracy: {:.2f}%".format(results[1] * 100)) # 테스트 데이터의 정확도 출력
       Test Loss: 0.35267
    Test Accuracy: 83.87%
pred = model.predict(test_images) # test 데이터 예측 시작
pred = np.argmax(pred,axis=1) # 각 예측에 대해, 확률값이 가장 높은 클래스의 인덱스 선택
labels = (train_images.class_indices) # 클래스 레이블 사이의 매핑을 가져옴
labels = dict((v,k)) for k,v in labels.items()) # 매핑된 클래스 레이블을 딕셔너리로 변환
pred = [labels[k] for k in pred] # 예측된 클래스 인덱스를 클래스 로 변환
```

1/1 [=====] - 0s 430ms/step

print(f'The first 5 predictions: {pred[:5]}')

The first 5 predictions: ['Carrots', 'Rockets', 'Carrots', 'Rockets', 'Rockets']

from sklearn.metrics import classification_report y_test = list(test_df.Label) # 실제 테스트 데이터의 클래스 레이블을 리스트로 가져옴 print(classification_report(y_test, pred)) # 분류 모델의 성능 보고서 출력

	precision	recall	f1-score	support
Carrots Rockets	0.75 0.93	0.92 0.78	0.83 0.85	13 18
accuracy macro avg weighted avg	0.84 0.86	0.85 0.84	0.84 0.84 0.84	31 31 31

from sklearn.metrics import confusion_matrix
import seaborn as sns

```
cf_matrix = confusion_matrix(y_test, pred, normalize='true') # 혼동 행렬을 계산.
plt.figure(figsize = (10,6)) # 크기 선택
sns.heatmap(cf_matrix, annot=True, xticklabels = sorted(set(y_test)), yticklabels = sorted(set(y_test))) # 히트맵으로 시각화
plt.title('Normalized Confusion Matrix') # 제목
plt.show()
```


fig, loss_ax = plt.subplots()

```
acc_ax = loss_ax.twinx()
# 손실 그래프 그리기
loss_ax.plot(history.history['loss'], 'y', label = 'train loss')
loss_ax.plot(history.history['val_loss'], 'r', label = 'val loss')
# 정확도 그래프 그리기
acc_ax.plot(history.history['accuracy'], 'b', label = 'train accuracy')
acc_ax.plot(history.history['val_accuracy'], 'g', label = 'val accuracy')
# x축과 y축에 레이블 추가
loss_ax.set_xlabel('epoch')
loss_ax.set_ylabel('loss')
acc_ax.set_ylabel('loss')
acc_ax.set_ylabel('accuracy')
# 손실과 정확도에 대한 범례 추가.
loss_ax.legend(loc = 'upper left')
acc_ax.legend(loc = 'lower left')
plt.show()
```


True: Carrots

Predicted: Carrots

 \Box

