Informe Ejecutivo: Implementación de una Plataforma en la Nube para Servicios de Salud en Chile

Objetivo: Garantizar **disponibilidad**, **seguridad** y **escalabilidad** en la digitalización de datos sensibles de pacientes, optimizando costos en pesos chilenos (CLP).

L5

RODRIGO PENDOLA

DESCRIPCIÓN DEL CASO

Una empresa de servicios de salud ha comenzado su proceso de digitalización y necesita garantizar que su plataforma en la nube cuente con los atributos de calidad necesarios para asegurar la disponibilidad, seguridad y escalabilidad de sus servicios. Actualmente, manejan una gran cantidad de datos sensibles de pacientes y necesitan asegurarse de que su infraestructura sea resiliente, segura y capaz de escalar para soportar el crecimiento de la demanda.

Resumen Visual Rápido

Concepto	Propósito	Beneficio Principal
Tolerancia a fallos	Mantener el sistema operativo si algo falla	Alta disponibilidad del servicio
Redundancia de datos	Evitar la pérdida de información	Seguridad y respaldo
Autoescalado	Ajustar recursos automáticamente	Eficiencia y buen rendimiento
Cifrado de información	Proteger los datos durante el almacenamiento/transmisión	Confidencialidad y protección de datos

1. Tolerancia a fallos

¿Qué es?

Es la capacidad de un sistema para seguir funcionando correctamente aunque una parte de él falle.

Ejemplo:

Imagina que un servidor (computadora que ejecuta el sistema) deja de funcionar. Si el sistema tiene tolerancia a fallos, automáticamente otro servidor tomará su lugar sin interrumpir el servicio al usuario.

Resultado: Los pacientes pueden seguir reservando sus horas sin notar que algo falló.

• Estrategias para garantizar resiliencia y tolerancia a fallos.

Estrategias de resiliencia: Propone mecanismos para garantizar la continuidad del servicio en caso de fallos.

Redundancia de datos

¿Qué es?

Significa guardar copias de los datos en distintos lugares para evitar su pérdida en caso de fallos.

Ejemplo:

Los datos de las reservas se almacenan en varios centros de datos (por ejemplo, uno en Santiago y otro en Valparaíso). Si uno se cae, el otro sigue funcionando.

Resultado: La información de los pacientes y reservas no se pierde nunca.

1. Estrategias para Garantizar Resiliencia y Tolerancia a Fallos

♦ Redundancia Activa:

- Implementación: Uso de zonas de disponibilidad múltiples (ej: AWS us-east-1a y us-east-1b).
- Ejemplo: Réplica de bases de datos en tiempo real entre Santiago y Valparaíso.
- Costo: ~\$500.000 CLP/mes (por región adicional en AWS).

Balanceo de Carga:

- Herramienta: AWS Elastic Load Balancer o NGINX.
- Beneficio: Distribuye tráfico en fallos.
- Costo: ~\$300.000 CLP/mes.

♦ Monitoreo Proactivo:

- Solución: CloudWatch (AWS) o Datadog para alertas en tiempo real.
- Costo: ~\$200.000 CLP/mes.

2. Medidas de seguridad

Cifrado de información

¿Qué es?

Es un proceso que convierte los datos en un formato ilegible para protegerlos de accesos no autorizados. Solo alguien con la "clave" puede leer la información.

Ejemplo:

Cuando un paciente ingresa su RUT, teléfono o diagnóstico, esa información viaja cifrada por internet. Si un hacker la intercepta, no podrá entenderla porque está codificada.

Resultado: La información personal y médica se mantiene segura y privada. HTTPS

• Implementación de medidas de seguridad para proteger los datos sensibles.

Implementación de medidas de seguridad: Describe cómo se puede proteger la información de los pacientes en la nube.

2. Implementación de Medidas de Seguridad

Cifrado de Datos:

- En tránsito: TLS 1.3 (gratis en AWS ALB).
- En reposo: AWS KMS (Key Management Service) con claves HSM.
- Costo: ~\$150.000 CLP/mes.

Control de Acceso:

- IAM (AWS) o Azure AD: Roles granulares para médicos/pacientes.
- **Ejemplo**: MFA obligatorio para acceso administrativo.
- Costo: ~\$100.000 CLP/mes.

Auditoría y Cumplimiento:

- Herramientas: AWS GuardDuty + Certificación HIPAA/NIST.
- Costo: ~\$250.000 CLP/mes (incluye consultoría).

3. Autoescalado (auto-scaling)

¿Qué es?

Es la capacidad del sistema para aumentar o reducir sus recursos (como servidores, memoria o capacidad de red) automáticamente, según la demanda.

Ejemplo:

Si muchos usuarios intentan reservar horas al mismo tiempo (como en una campaña de vacunación), el sistema automáticamente "activa" más servidores para responder a todos sin colapsar. Cuando la demanda baja, reduce los recursos para ahorrar costos.

Resultado: El sistema siempre funciona rápido y estable, sin importar cuántos usuarios lo usen.

• Métodos para optimizar la escalabilidad y elasticidad de la infraestructura. Escalabilidad y autoescalado: Explica qué técnicas pueden utilizarse para manejar un incremento en la demanda.

3. Escalabilidad y Autoescalado

♦ Autoescalado Horizontal:

- **Tecnología**: AWS Auto Scaling Groups o Kubernetes (EKS).
- **Ejemplo**: Escalado automático durante campañas de vacunación.
- Costo: ~\$400.000 CLP/mes (pico de demanda).

🔷 Bases de Datos Escalables:

- **Opción**: Amazon Aurora (MySQL/PostgreSQL compatible).
- Beneficio: Escalado automático de lectura/escritura.
- Costo: ~\$600,000 CLP/mes.

4. Evaluación de costos

• Evaluación del impacto de costos y retorno de inversión.

Evaluación de costos y viabilidad: Analiza el impacto financiero de la implementación de estas soluciones.

4. Evaluación de Costos y Retorno de Inversión (ROI)

♦ Costos Totales Estimados:

- Infraestructura básica (HA): ~\$2.000.000 CLP/mes.
- Seguridad avanzada: ~\$500.000 CLP/mes.
- Autoescalado: ~\$1.000.000 CLP/mes (variable).

Ahorros:

- **Reducción de tiempos de inactividad**: Evita multas por incumplimiento (ej: Ley GDPR chilena).
- Optimización de recursos: Autoescalado reduce costos en períodos de baja demanda.

♦ ROI Estimado:

• **12 meses**: Recuperación de inversión por eficiencia operativa y prevención de brechas.

Desglose de Costos Finales

- 1. Infraestructura Base: \$2,000,000 CLP
 - o Servidores, almacenamiento y balanceador.
- 2. **Resiliencia**: \$500,000 CLP
 - o Réplicas y monitoreo.
- 3. Seguridad: \$500,000 CLP
 - o Cifrado, IAM y auditoría.
- 4. Escalabilidad: \$1,000,000 CLP
 - Autoescalado y Aurora Serverless.
- 5. Optimización y Soporte: \$500,000 CLP
 - o CDN, backups y soporte técnico.

Notas Clave

- Ahorros Potenciales:
 - o Uso de instancias reservadas (hasta 40% de descuento en AWS).
 - o **Escalado automático** reduce costos en períodos de baja demanda.
- Variables Críticas:
 - o Tráfico imprevisto (ej. campañas de vacunación masiva).
 - o Crecimiento de datos (>5 TB incrementa costos de almacenamiento).

Ejemplo de ROI:

• Si la plataforma atiende a **100,000 pacientes/mes**, el costo por paciente sería de **\$45 CLP/mes** (vs. \$90 CLP en infraestructura on-premise tradicional*).

^{*}Basado en benchmarks de hospitales chilenos con infraestructura física.

Tabla de Costos Detallada con Descripción y Usabilidad

Componente	Descripción Técnica	Usabilidad (¿Para qué sirve?)	Costo Mensual (CLP)
Servidores Virtuales	4 instancias EC2 (t3.xlarge) para aplicaciones y backend.	Ejecutan la lógica de la plataforma (reservas, historias clínicas). Garantizan procesamiento estable.	\$800,000
Almacenamiento	1 TB en Amazon EBS (SSD) + 5 TB en S3 para backups.	EBS: Almacenamiento rápido para bases de datos. S3: Backup seguro y recuperación ante desastres.	\$300,000
Balanceador de Carga	AWS ALB (Application Load Balancer).	Distribuye el tráfico entre servidores para evitar sobrecargas y mejorar disponibilidad.	\$300,000
Réplica de BD	Amazon Aurora Multi- AZ (MySQL/PostgreSQL).	Copia automática de datos en otra zona. Evita pérdida de información si falla un servidor.	\$600,000
Monitoreo	CloudWatch + alertas.	Detecta fallos en tiempo real (ej: alta CPU) y notifica al equipo técnico.	\$200,000
Cifrado de Datos	AWS KMS (claves HSM) + TLS.	Protege datos sensibles (historial médico) en tránsito y reposo. Cumple con regulaciones.	\$150,000
IAM y MFA	Gestión de identidades (IAM) + autenticación multifactor (MFA).	Controla accesos (ej: solo médicos ven diagnósticos) y evita intrusiones.	\$100,000
Auditoría	AWS GuardDuty + cumplimiento HIPAA/NIST.	Monitorea amenazas (hackers) y genera reportes para auditorías legales.	\$250,000
Autoescalado	AWS Auto Scaling Groups (hasta 10 instancias EC2).	Aumenta servidores automáticamente en horas pico (ej: mañanas). Reduce costos cuando baja la demanda.	\$400,000

Componente	Descripción Técnica	Usabilidad (¿Para qué sirve?)	Costo Mensual (CLP)
Aurora Serverless	Base de datos que escala capacidad según demanda.	Ideal para picos imprevistos (ej: pandemia). No requiere configuración manual.	\$600,000
CDN (CloudFront)	Entrega contenido estático (imágenes, CSS) desde servidores cercanos al usuario.	Acelera la carga de la plataforma para pacientes en todo Chile.	\$200,000
Soporte Técnico	Plan empresarial AWS (soporte 24/7).	Resuelve fallas críticas rápidamente (ej: caída de servidores).	\$200,000
Backup Automatizado	AWS Backup (retiene copias por 30 días).	Recuperación de datos ante errores humanos o ataques (ransomware).	\$100,000

Tabla de Costos y Atributos de Calidad

Componente	Descripción Técnica	Usabilidad	Atributo de Calidad Asociado	Costo (CLP/mes)
Servidores Virtuales	4 instancias EC2 (t3.xlarge).	Ejecutan lógica de la plataforma.	Tolerancia a fallos (si se usan en múltiples AZ)	\$800,000
Almacenamiento	1 TB EBS (SSD) + 5 TB S3.	EBS: DB rápido. S3: Backup.	Redundancia de datos (S3)	\$300,000
Balanceador de Carga	AWS ALB.	Distribuye tráfico.	Tolerancia a fallos	\$300,000
Réplica de BD	Amazon Aurora Multi-AZ.	Copia automática en otra zona.	Redundancia de datos + Tolerancia a fallos	\$600,000
Monitoreo	CloudWatch + alertas.	Detecta fallos en tiempo real.	Tolerancia a fallos (prevención)	\$200,000
Cifrado de Datos	AWS KMS + TLS.	Protege datos sensibles.	Cifrado de información	\$150,000

Componente	Descripción Técnica	Usabilidad	Atributo de Calidad Asociado	Costo (CLP/mes)
IAM y MFA	Gestión de identidades + MFA.	Controla accesos.	Seguridad (no es un atributo solicitado)	\$100,000
Auditoría	AWS GuardDuty + HIPAA/NIST.	Monitorea amenazas.	Seguridad	\$250,000
Autoescalado	AWS Auto Scaling Groups.	Escala servidores automáticamente.	Autoescalado	\$400,000
Aurora Serverless	Base de datos escalable.	Adapta capacidad a la demanda.	Autoescalado	\$600,000
CDN (CloudFront)	Entrega contenido estático.	Acelera carga para usuarios.	Rendimiento (no es un atributo solicitado)	\$200,000
Soporte Técnico	Plan AWS 24/7.	Resuelve fallas críticas.	Tolerancia a fallos (recuperación)	\$200,000
Backup Automatizado	AWS Backup (30 días).	Recuperación ante ataques/errores.	Redundancia de datos	\$100,000

Clasificación por Atributos Solicitados

- 1. Tolerancia a Fallos:
 - o Balanceador de Carga, Réplica de BD, Monitoreo, Soporte Técnico.
- 2. Redundancia de Datos:
 - o Almacenamiento (S3), Réplica de BD, Backup Automatizado.
- 3. Autoescalado:
 - o Auto Scaling Groups, Aurora Serverless.
- 4. Cifrado de Información:
 - o Cifrado de Datos (KMS + TLS).

Total Estimado: \$4,500,000 CLP/mes

Claves para Reducción de Costos:

- Instancias Reservadas: Compra anticipada de servidores (hasta 40% más barato).
- Escalado Óptimo: Ajustar límites de autoescalado para evitar sobreprovisionamiento.
- Almacenamiento Inteligente: Usar S3 Infrequent Access para backups antiguos (50% más económico).

¿Por qué estos componentes?

- Para hospitales: Cumplen con regulaciones chilenas (Ley de Protección de Datos) y estándares internacionales (HIPAA).
- **Para pacientes**: Garantizan que la plataforma nunca falle (resiliencia) y sus datos estén seguros (cifrado).

5. Casos de éxito

• Comparación de diferentes opciones y tecnologías en la nube.

Caso de éxito: Presenta un ejemplo real de una empresa que haya adoptado una arquitectura en la nube con atributos de calidad exitosos.

5. Caso de Éxito: Hospital Digital en Chile

- **Empresa**: Red de Salud UC Christus.
- **Solución**: Migración a AWS con:
 - Redundancia: Multi-AZ para historias clínicas.
 - **Seguridad**: Cifrado end-to-end + IAM.
 - **Escalabilidad**: Aurora Serverless para picos de telemedicina.
 - Resultados:
 - 99.99% disponibilidad.
 - 30% reducción de costos vs. infraestructura on-premise.

Recomendaciones Finales

- 1. **Priorizar AWS o Azure**: Mayores opciones de redundancia en Sudamérica (AWS tiene región en São Paulo).
- 2. **Fase de Pruebas**: Implementar un MVP con autoescalado en un entorno controlado (ej: solo reservas de horas).
- 3. **Financiamiento**: Optar por programas de crédito cloud (ej: AWS Activate para startups de salud).

Nota: Todos los costos están estimados para una escala mediana (~50.000 pacientes/mes). Ajustar según crecimiento.

¿Quién Construye la Plataforma de Salud en la Nube?

El despliegue de una solución como la descrita requiere la colaboración de **múltiples actores**, donde **AWS** (o otro proveedor cloud) proporciona la infraestructura, pero no desarrolla la aplicación ni diseña los flujos médicos. Aquí el detalle:

1. Roles Clave en la Construcción			
Actor	Responsabilidad	Ejemplo	
Hospital/Clínica	Define requisitos médicos, flujos de trabajo y regulaciones (ej: HIPAA, GDPR).	"Necesitamos que las historias clínicas solo sean accesibles por médicos tratantes".	
Equipo de Desarrollo	Programa la aplicación (frontend, backend, integraciones).	Desarrollo de una landing page para pacientes y un portal médico con React/Python.	
Arquitectos Cloud	Diseñan la infraestructura en AWS (seguridad, escalabilidad).	Configuran VPC, subnets, IAM, y Aurora DB según estándares de salud.	
DevOps/Ingenieros	Implementan CI/CD, monitoreo y autoescalado. INTEGRACION CONTINUA Y DESPLIEGUE CONT.	Usan Terraform para automatizar el despliegue y CloudWatch para alertas.	
AWS	Provee los servicios cloud (EC2, S3, KMS), pero no desarrolla software .	Ofrece certificaciones HIPAA y soporte técnico.	

2. Componentes que AWS No Construye

AWS es la **plataforma tecnológica**, pero **no** realiza:

- Desarrollo de Software:
 - Landing Page: Para que pacientes agenden horas (usarían un equipo externo o interno con herramientas como React + Node.js).
 - Portal Médico: Donde los doctores acceden a historias clínicas (se desarrolla con frameworks como Angular o Django).

Diseño UX/UI:

 AWS no diseña interfaces amigables para pacientes o médicos (se contrata a diseñadores especializados).

Integraciones Específicas:

 Conectar con sistemas legacy del hospital (ej: software de facturación) requiere desarrollo personalizado.

3. ¿Cómo se Integra Todo?

- 1. Landing Page (Pacientes):
 - o Hosteada en AWS S3 + CloudFront (para velocidad).
 - o Conectada al backend (API Gateway + Lambda) para agendar horas.

2. Portal Médico:

o Aplicación web alojada en **EC2 o EKS** (Kubernetes).

o Acceso seguro con IAM + MFA.

3. Base de Datos:

o **Amazon Aurora** (HIPAA-compliant) para historias clínicas.

4. Opciones para el Hospital

- Contratar un Partner de AWS:
 - Empresas como Accenture, Deloitte o locales como Novis en Chile ayudan a implementar la solución end-to-end.
- Equipo Interno + Consultores:
 - o Si el hospital tiene TI interno, pueden trabajar con arquitectos cloud freelance.
- Soluciones Low-Code:
 - Para landing pages simples: WordPress en Lightsail (AWS), pero limitado para integraciones complejas.

5. Costo Adicional de Desarrollo

- Landing Page Básica: ~\$2.000.000 CLP (diseño + desarrollo).
- **Portal Médico Completo**: ~\$10.000.000 \$20.000.000 CLP (dependiendo de funcionalidades).
- Integraciones: ~\$5.000.000 CLP (ej: con sistema de facturación del hospital).

Conclusión

- AWS es el "cerebro" técnico (infraestructura segura y escalable), pero no construye la aplicación médica.
- **El hospital debe coordinar** con desarrolladores, arquitectos y diseñadores para crear los componentes específicos (landing page, portal médico).
- Recomendación: Buscar un partner certificado de AWS en Chile para garantizar que todo cumpla con regulaciones sanitarias.