Web Assembly

Sam Sartor

February 8, 2018

Mines Linux Users Group

Client Code

Introduction

JavaScript

On a dark and stormy night ...

The year is 1995. Netscape Communications Corporation is dying. In a frantic attempt to one-up Microsoft, the company decides to embed a scripting language into the Netscape browser.

They give **Brendan Eich** 10 days to make a prototype.

Eich dreams of Scheme. He wants his new language to be elegant, fast, and pure. **But it is too late.** The lawyers at Netscape have made a deal with Sun Microsystems.

It will be known as JavaScript.

The Result

This page uses 800 thousand lines of JavaScript

Emscripten

We need C

- People start writing games in JavaScript
- Why can't we use the Unity game engine?
- It's written in C
- Browsers don't run C
- Browsers only run JavaScript
- What if we compiled C to JavaScript?

Emscripten

Introducing...

It compiles things to JavaScript!

asm.js

```
int factorial(int n) {
                        function Z9factoriali($0) {
 if (n == 0)
                                \$0 = \$0|0:
  return 1:
                                var $1 = 0, $10 = 0, $2 = 0, $3 = 0, $4 = 0, $5 = 0, $6
  else
                                \rightarrow = 0, $7 = 0, $8 = 0, $9 = 0, label = 0, sp = 0;
                                sp = STACKTOP;
  return n *
   \hookrightarrow factorial(n-1);
                                STACKTOP = STACKTOP + 16 | 0; if ((STACKTOP | 0) >=
                                $2 = $0;
                                $3 = $2:
                                $4 = ($3|0) == (0):
                                if ($4) {
                                $1 = 1;
                                } else {
                                 $5 = $2:
                                 $6 = $2;
                                 $7 = ((\$6) - 1)|0;
                                 $8 = ( Z9factoriali($7)|0):
                                 $9 = Math_imul($5, $8)|0;
                                 $1 = $9;
                                }
                                $10 = $1;
                                STACKTOP = sp;return ($10|0);
```

That was a Bad Idea

JavaScript was designed for...

- √ Crazy people
- Humans
- × Computers

Why compile low-level \rightarrow high-level?

Why don't we have machine code for the web?

80483b4:	55		push
80483b5:	89	e5	mov
80483b7:	83	e4	and
80483ba:	83	ec	sub
80483bd:	c7	44	movl
80483c4:	00		
80483c5:	eb	11	jmp
80483c7:	c7	04	movl
80483ce:	e8	1d	call
80483d3:	83	44	addl
80483d8:	83	7c	cmpl
80483dd:	7e	e8	jle
80483df:	b8	00	mov
80483e4:	с9		leav
80483e5:	с3		ret
80483e6:	90		nop
80483e7:	90		nop
80483e8:	90		nop
80483e9:	90		nop
80483ea:	90	_	nop

Web Asssembly

Which Direction?

emscripten can compile your code to Web Assembly!

WASM Example

WASM Text

WASM Binary

20 00

04 7E

42 01

20 00

50

05

7D

7E

0B

```
int factorial(int n) {
  if (n == 0)
    return 1:
  else
   return n *
   \hookrightarrow factorial(n-1):
}
```

```
get_local 0
i64.eqz
if i64
   i64.const 1
else
    get_local 0
    get_local 0
                                 20 00
    i64.const 1
                                 42 01
    i64.sub
    call 0
                                 10 00
    i64.mul
end
```

Software in the Browser

Practical WASM

C/C++

Rust

stdweb

Copyright Notice

This presentation was from the **Mines Linux Users Group**. A mostly-complete archive of our presentations can be found online at https://lug.mines.edu.

Individual authors may have certain copyright or licensing restrictions on their presentations. Please be certain to contact the original author to obtain permission to reuse or distribute these slides.

Colorado School of Mines Linux Users Group