CORDIC-техника

Арифметические основы CORDIC

Алгоритм координатного вращения (COordinat Rotation Digital Computer) CORDIC

$$x_1 = x_0 \cos \theta - y_0 \sin \theta$$

$$y_1 = x_0 \sin \theta + y_0 \cos \theta$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

$$x_1 = A\cos(\alpha + \theta) = A(\cos\alpha \cdot \cos\theta - \sin\alpha \cdot \sin\theta) = x_0\cos\theta - y_0\sin\theta$$
$$y_1 = A\sin(\alpha + \theta) = A(\cos\alpha \cdot \sin\theta + \sin\alpha \cdot \cos\theta) = x_0\sin\theta + y_0\cos\theta$$

Арифметические основы CORDIC

$$\theta = \sum_{n=0}^{\infty} S_n \theta_n$$

$$S_n = \{-1; +1\}$$

$$z_{n+1} = z_n - S_n \theta_n$$

$$z_{n+1} = \theta - \sum_{i=0}^{n} S_i \theta_i$$

$$z_0 = \theta$$

Арифметические основы CORDIC

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} \cos \theta_n & -\sin \theta_n \\ \sin \theta_n & \cos \theta_n \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \cos \theta_n \begin{bmatrix} 1 & -\operatorname{tg} \theta_n \\ \operatorname{tg} \theta_n & 1 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix} \qquad \qquad \theta_n = \operatorname{arctg} 2^{-n}$$

Ряд
$$\theta = \sum_{n=0}^{\infty} S_n \theta_n$$
 сходится для $\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

при соответствующем выборе угла поворота *Sn*

Подставляя
$$\operatorname{tg} \theta_n = \operatorname{tg}(\operatorname{arctg} 2^{-n}) = 2^{-n}$$

получим
$$\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = \cos \theta_n \begin{bmatrix} 1 & -S_n 2^{-n} \\ S_n 2^{-n} & 1 \end{bmatrix} \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

где
$$\cos \theta_n = \cos(\operatorname{arctg} 2^{-n}) = const$$

Это позволяет исключить масштабирование на каждой итерации алгоритма, и выполнить его только на завершающем шаге. Общий **масштабирующий коэффициент** алгоритма *К* определяется

$$K = \prod_{n=0}^{\infty} \cos(\arctan 2^{-n}) \approx 0.6072529350$$

Величина
$$P=rac{1}{K}pprox 1.64676$$
 называется радиусом вращения

Последовательность *Sn* определяет направление поворота вектора на каждой итерации. Значения этой последовательности определяются в ходе вычислений, поэтому алгоритм *CORDIC* называют *алгоритмом с динамическим выбором направления вращения*.

Формы алгоритма

ПРЯМАЯ $(z \rightarrow 0)$

$$S_n = \begin{cases} +1, z_n \ge 0 \\ -1, z_n < 0 \end{cases}$$

$$\begin{cases} x_{n+1} = x_n - mS_n 2^{-n} y_n \\ y_{n+1} = y_n + S_n 2^{-n} x_n \\ z_{n+1} = z_n - S_n \varepsilon_n \end{cases}$$

ИНВЕРСНАЯ $(y \rightarrow 0)$

$$S_n = \begin{cases} +1, y_n \ge 0 \\ -1, y_n < 0 \end{cases}$$

$$\begin{cases} x_{n+1} = x_n + mS_n 2^{-n} y_n \\ y_{n+1} = y_n - S_n 2^{-n} x_n \\ z_{n+1} = z_n + S_n \varepsilon_n \end{cases}$$

Параметр **m** определяет тип функции CORDIC, а **En** – набор (обычно таблица) заранее вычисленных констант, определяемых типом функции.

Функции алгоритма CORDIC

Тригонометрические:

$$m = 1$$

$$\varepsilon_n = \operatorname{arctg} 2^{-n}$$

$$K = \prod_{n=0}^{\infty} \cos(\operatorname{arctg} 2^{-n}) \approx 0.6072529350$$
 $K = \prod_{n=0}^{\infty} \cosh(\operatorname{arcth} 2^{-n}) \approx 1.2051$

$$P = \frac{1}{K} \approx 1.64676$$

$$n = 0 \dots i$$

Гиперболические:

$$m = -1$$

$$\varepsilon_n = \operatorname{arcth} 2^{-n}$$

$$K = \prod_{n=0}^{\infty} \cosh(\operatorname{arcth} 2^{-n}) \approx 1.2051$$

$$P = \frac{1}{K} \approx 0.8299$$

$$n = 1 ... i$$

Линейные:
$$m=0$$
; $\varepsilon_n=2^{-n}$; $K=1$; $P=1$; $n=1...i$

Преобразования алгоритма в общем виде

$$[x, y, z] \rightarrow [x', y', z']$$

Применение алгоритма CORDIC

Тригонометрические функции

Прямая форма

$$[x, y, z] \rightarrow [P(x\cos z - y\sin z), P(y\cos z + x\sin z), 0]$$

Частные случаи прямой формы

$$[K,0,a] \rightarrow [\cos a, \sin a, 0]$$

$$[x, 0, z] \rightarrow [Px \cos z, Px \sin z, 0]$$

Инверсная форма

$$[x, y, z] \rightarrow \left[P\sqrt{x^2 + y^2}, 0, z + \operatorname{arctg}^{y} / \chi \right]$$

Частные случаи инверсной формы

$$[1, a, 0] \rightarrow \left[P\sqrt{1 + a^2}, 0, \operatorname{arctg} a \right]$$

$$[x, y, 0] \rightarrow \left[P\sqrt{x^2 + y^2}, 0, \operatorname{arctg}^{y} / \chi \right]$$

Применение алгоритма CORDIC

Гиперболические функции

Прямая форма

$$[x, y, z] \rightarrow [P(x \cosh z + y \sinh z), P(y \cosh z + x \sinh z), 0]$$

Частные случаи прямой формы

$$[K, 0, a] \rightarrow [\cosh a, \sinh a, 0]$$

$$[K, K, a] \rightarrow [\exp a, \exp a, 0]$$

Инверсная форма

$$[x, y, z] \rightarrow \left[P\sqrt{x^2 - y^2}, 0, z + \operatorname{arcth}^{y}/\chi \right]$$

Частные случаи инверсной формы

$$[1, a, 0] \rightarrow \left[P\sqrt{1 - a^2}, 0, \operatorname{arcth} a \right]$$

$$[x, y, 0] \rightarrow \left[P\sqrt{x^2 - y^2}, 0, \operatorname{arcth}^{y}/\chi \right]$$

$$[a+1,a-1,0] \rightarrow \left[2P\sqrt{a},0,\frac{\ln a}{2}\right]$$

$$\left[a + \left(\frac{K}{2}\right)^2, a - \left(\frac{K}{2}\right)^2, 0\right] \rightarrow \left[\sqrt{a}, 0, \frac{\ln\left(a \times \left(\frac{2}{K}\right)^2\right)}{2}\right]$$

$$\left[a + \left(\frac{K}{2}\right)^2, a - \left(\frac{K}{2}\right)^2, -\ln\left(\frac{K}{2}\right)\right] \to \left[\sqrt{a}, 0, \frac{\ln a}{2}\right]$$

Применение алгоритма CORDIC

Линейные функции

Прямая форма

$$[x, y, z] \rightarrow [x, y + x \times z, 0]$$

Частный случай прямой формы

$$[x,0,z] \rightarrow [x,x \times z,0]$$

Инверсная форма

$$[x, y, z] \rightarrow \left[x, 0, z + \frac{y}{x}\right]$$

Частный случай инверсной формы

$$[x, y, 0] \rightarrow \left[x, 0, \frac{y}{x}\right]$$

Структура вычислителя CORDIC (ядро – CORE)

Структура вычислителя CORDIC (блок аппаратного сдвига)

Содержимое постоянной памяти арктангенсов ROM вычисляется заранее любым доступным методом. При переходе к конечной разрядной сетке значение арктангенса умножается на коэффициент, который равен 2^{k-1} , где k – выбранная разрядность. Множитель учитывает знак числа.

Пример содержимого *ROM* для 16-разрядного представления арктангенса приведен в **таблице**.

В этом случае угол величиной π радиан соответствует коду 2^{15} =32768.

Таблица

N	Арктангенс(рад)	Dec	Hex
0	0.7853981634	8192	0x2000
1	0.4636476090	4836	0x12E4
2	0.2449786631	2555	0x09FB
3	0.1243549945	1297	0x0511
4	0.0624188100	0651	0x028B
5	0.0312398334	0325	0x0145
6	0.0156237286	0162	0x00A2
7	0.0078123411	0081	0x0051
8	0.0039062301	0040	0x0028
9	0.0019531225	0020	0x0014
10	0.0009765622	0010	0x000A
11	0.0004882812	0005	0x0005
12	0.0002441406	0002	0x0002
13	0.0001220703	0001	0x0001
14	0.0000610352	0000	0x0000
15	0.0000305176	0000	0x0000

Полная структура вычислителя CORDIC

Отображение исходного вектора в правую координатную полуплоскость (коррекция Z), в соответствии с областью сходимости ряда θ , ограниченной интервалом $\pm \pi/2$.

Вращение вектора. Для тригонометрических функций следует учитывать радиус вращения Р≈1.64676, что требует дополнительного разряда в арифметических блоках. При необходимости, коррекция результатов вычислений

Предобработка CORDIC

Прямая форма

Вариант 1

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \quad \frac{\pi}{2} < \theta < \pi \qquad z_0 = \theta - \frac{\pi}{2}$$

$$z_0 = \theta$$

$$x_0 = x$$

$$y_0 = y$$

Вариант 2

$$\frac{\pi}{2} < \theta < \pi$$

$$z_0 = \theta - \frac{\pi}{2}$$

$$x_0 = -y$$

$$y_0 = x$$

Вариант 3

$$-\pi < \theta < -\frac{\pi}{2} \qquad z_0 = \theta + \frac{\pi}{2}$$

$$x_0 = y$$

$$y_0 = -x$$

Предобработка CORDIC

Инверсная форма

Вариант 1

$$z_0 = 0$$

$$x_0 = x$$

$$y_0 = y$$

Вариант 2

$$x < 0, y > 0$$
 $z_0 = \frac{\pi}{2}$

$$x_0 = y$$

$$y_0 = -x$$

Вариант 3

$$x < 0, y < 0$$
 $z_0 = -\frac{\pi}{2}$

$$x_0 = -y$$

$$y_0 = x$$

Исходные данные:

$$\rho = 0.999, \varphi = -\pi/3$$

Переход в 16-разрядную сетку:

$$\rho = [0.999 \times 2^{14}] = 16367$$

$$\varphi = \left[(-\pi/3) \times \frac{2^{15}}{\pi} \right] = -10922$$

Инициализация вычислений:

$$x_0 = \rho, y_0 = 0, z_0 = \varphi$$

Значения переменных на итерациях алгоритма показаны в **таблице**, процесс вычислений управляется по знаку переменной z (прямая форма).

Таблица

n	z _n	X _n	y _n	S _n
0	-10922	16367	0	-1
1	-2730	16367	-16367	-1
2	2106	8183	-24550	1
3	-449	14321	-22505	-1
4	848	11507	-24295	1
5	197	13026	-23576	1
6	-128	13763	-23169	-1
7	34	13400	-23384	1
8	-47	13583	-23280	-1
9	-7	13492	-23333	-1
10	13	13446	-23359	1
11	3	13469	-23346	1
12	-2	13481	-23340	-1
13	0	13475	-23343	1
14	-1	13478	-23342	-1
15	-1	13476	-23342	-1

CORDIC Пример 1. Перевод полярных координат в декартовы (2)

Графическое представление поворота вектора

Интерпретация результатов:

$$x = 13476 \times K/2^{14} = \frac{13476 \times 0.607253}{16384} = 0.499471$$
$$y = -23342 \times K/2^{14} = \frac{-23342 \times 0.607253}{16384} = -0.865142$$

Проверка:

$$\rho\cos\varphi = 0.999 \times \cos\left(-\frac{\pi}{3}\right) = 0.999 \times 0.5 = 0.499500 \approx x$$
$$\rho\sin\varphi = 0.999 \times \sin\left(-\frac{\pi}{3}\right) = 0.999 \times (-0.866) = -0.865159 \approx y$$

Вычислительная ошибка:

$$\Delta x = |0.499500 - 0.499471| = 0.000029$$

 $\Delta y = |-0.865159 - (-0.865142)| = 0.000017$

CORDIC Пример 2. Перевод декартовых координат в полярные (1)

Исходные данные:

$$x = 0.99, y = 0.49$$

Переход в 16-разрядную сетку:

$$x = [0.99 \times 2^{14}] = 16220$$

$$y = [0.49 \times 2^{14}] = 8028$$

Инициализация вычислений:

$$x_0 = x, y_0 = y, z_0 = 0$$

Значения переменных на итерациях алгоритма показаны в таблице, управление сумматорами — по знаку переменной **у** (инверсная форма).

Таблица

n	Уn	X _n	z _n	s _n
0	8028	16220	0	1
1	-8192	24248	8192	-1
2	3932	28344	3356	1
3	-3154	29327	5911	-1
4	511	29722	4614	1
5	-1346	29753	5265	-1
6	-417	29796	4940	-1
7	48	29803	4778	1
8	-184	29803	4859	-1
9	-68	29804	4819	-1
10	-10	29805	4799	-1
11	19	29806	4789	1
12	5	29806	4794	1
13	-2	29806	4796	-1
14	1	29807	4795	1
15	0	29807	4795	1

CORDIC Пример 2. Перевод декартовых координат в полярные (2)

Графическое представление поворота вектора

Интерпретация результатов:

$$\rho = x = 29807 \times K/2^{14} = \frac{29807 \times 0.607253}{16384} = 1.104760$$

$$\varphi = y = 4796 \times \pi/2^{15} = \frac{4795 \times \pi}{32768} = 0.459715$$

Проверка:

$$\sqrt{x^2 + y^2} = \sqrt{0.99^2 + 0.49^2} = 1.104627 \approx \rho$$

$$\arctan \frac{y}{x} = \arctan \frac{0.49}{0.99} = \arctan 0.4949949 = 0.459599 \approx \varphi$$

Вычислительная ошибка:

$$\Delta \rho = |1.104627 - 1.104760| = 0.000133$$

$$\Delta \varphi = |0.459599 - 0.459715| = 0.000116$$

0.000116 радиан = 0.00667 градуса = 0.4 минуты