QUANTUM TIC TAC TOE

Results Report

Protocol Reference:

Sagole, Sai & Dey, Anurit & Behera, Bikash & Panigrahi, Prasanta. (2019). Quantum Tic-Tac-Toe: A Hybrid of Quantum and Classical Computing. 10.13140/RG.2.2.18883.76320.

Rules of Measurement:

setup()	Protocol 3 Quantum Move
The Protocol:	qmove()
 Creates the quantum circuit with nine quantum bits and nine classical bits 	The Protocol: Stores target position and control position of the
Adds a Hadamard gate to each of the nine qubits Prints Legal Moves and Rules	move in a variable so that cmove() could use it. • Prints 'control move' and 'target move' linked
turn()	cmove()
The Protocol:	The Protocol:
Checks and prints whether it is Player X's turn or	 Calls the Aer() function in qiskit library
Player O's turn	 Simulates the circuit on qasm simulator
 Asks the user to choose between quantum move and classical move 	 Checks if the given position is already a control position for any quantum move
 Calls function cmove() if user inputs 'c' and qmove if user inputs 'q' 	 Then adds a CNOT or Anti CNOT gate de- pending on the input from qmove()
Asks the user to enter the position of the move	 Measures the position entered by the user and stores in a variable called 'result'
	 Fixes the qubit's state according to the result of the simulation

Results:

```
PROBABILITY OF FIRST PLAYER WINNING THE GAME = 0.584582
PROBABILITY OF SECOND PLAYER WINNING THE GAME = 0.288597
[PROBABILITY OF THE GAME ENDING IN A DRAW= 0.126821

PROBABILITY OF THE GAME ENDING IN 5 MOVES= 0.095032
PROBABILITY OF THE GAME ENDING IN 6 MOVES= 0.087945
PROBABILITY OF THE GAME ENDING IN 7 MOVES= 0.264327
PROBABILITY OF THE GAME ENDING IN 8 MOVES= 0.200652
PROBABILITY OF THE GAME ENDING IN 9 MOVES (WIN)= 0.225223
PROBABILITY OF THE GAME ENDING IN 9 MOVES (DRAW)= 0.126821

PROBABILITY OF FIRST PLAYER WINNING THE GAME (P(terminal position reached in 5, 7, 9 moves))= 0.584582
PROBABILITY OF SECOND PLAYER WINNING THE GAME (P(terminal position reached in 6, 8 moves))= 0.288597
TOTAL PROBABILITY = 1.000000
```

Simulation over 10000 games:

In a random implementation of the classical game when the first player starts over 10000 runs:

```
PROBABILITY OF FIRST PLAYER WINNING THE GAME = 0.582290
PROBABILITY OF SECOND PLAYER WINNING THE GAME = 0.289630
PROBABILITY OF THE GAME ENDING IN A DRAW= 0.128080

Image 2
```

In our implementation of quantum tic-tac-toe when first player starts the game:

```
PROBABILITY OF FIRST PLAYER WINNING THE GAME = 0.485893
PROBABILITY OF SECOND PLAYER WINNING THE GAME = 0.483638
PROBABILITY OF THE GAME ENDING IN A DRAW= 0.030469
Image 3
```

We see that while in classical tic-tac-toe, the first player is usually at an advantage if it occupies a corner or central position, this advantage isn't as apparent in the quantum version of the game.