MATH 137 Fall 2020: Practice Assignment on Chapter 5

Q01. Approximate $f(x) = x^{-1/2}$ with a Taylor polynomial of degree 2 centered at x = 4. Use Taylor's Theorem to get an upper bound on the error if $3.5 \le x \le 4.5$.

Solution. First calculate $f'(x) = -\frac{1}{2}x^{-3/2}$ and $f''(x) = \frac{3}{4}x^{-5/2}$. Then, $f(4) = 4^{-1/2} = \frac{1}{2}$, $f'(4) = -\frac{1}{2}4^{-3/2} = \frac{1}{16}$, and $f''(4) = \frac{3}{4}4^{-5/2} = \frac{3}{128}$. Then,

$$T_{2,4}(x) = f(4) + f'(4)(x-4) + \frac{1}{2}f''(4)(x-4)^2$$
$$= \frac{1}{2} + \frac{x-4}{16} + \frac{3(x-4)^2}{256}$$

Taylor's Theorem gives the error $R_{2,4}(x) = \frac{f^{(3)}(c)}{3!}(x-4)^3$ for some $c \in [3.5, 4.5]$. The third derivative of f is $-\frac{15}{8}x^{-7/2}$. This is strictly increasing (i.e. $f^{(4)} > 0$) and negative (i.e. $f^{(3)} < 0$), so the maximum $|f^{(3)}(c)|$ is at $|f^{(3)}(3.5)| \approx 0.02338$.

Thus,
$$|R_{2,4}(x)| \le \left| \frac{f^{(3)}(3.5)}{6}(0.5)^3 \right| \approx 4.87 \times 10^{-4}$$
.

Q02. Approximate $f(x) = \ln(1+2x)$ with a Taylor polynomial of degree 3 centered at x = 1. Use Taylor's Theorem to get an upper bound on the error if $0.5 \le x \le 1.5$.

Solution. We have $f'(x) = \frac{2}{1+2x}$, $f''(x) = -\frac{4}{(1+2x)^2}$, and $f^{(3)}(x) = \frac{16}{(1+2x)^3}$. Calculate $f(1) = \ln 3$, $f'(1) = \frac{2}{3}$, $f''(1) = -\frac{4}{9}$, and $f^{(3)}(1) = \frac{16}{27}$. The Taylor polynomial is

$$T_{3,1}(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 + \frac{1}{6}f^{(3)}(1)(x-1)^3$$
$$= \ln 3 + \frac{2}{3}(x-1) - \frac{2}{9}(x-1)^2 + \frac{8}{81}(x-1)^3$$

Taylor's Theorem gives the error $R_{3,1}(x) = \frac{f^{(4)}(c)}{4!}(x-4)^3$ for some $c \in [0.5, 1.5]$. The fourth derivative of f is $-\frac{48}{(1+2x)^4}$. We can conclude that $|f^{(4)}|$ reaches its max at c=0.5 through geometric argument, knowing the function is rational with one asymptote at $x=-\frac{1}{2}$ and no roots. We have $|f^{(4)}(0.5)|=6$.

Thus,
$$|R_{3,1}(x)| \le \left| \frac{f^{(4)}(0.5)}{24}(0.5)^4 \right| = 0.015625.$$

 $\mathbf{Q03}$. Here we approximate the value of $\ln 2$ in two ways.

(a) Find the degree 3 Taylor polynomial for $\ln(1+x)$ centred at x=0.

Solution. Let $f(x) = \ln(1+x)$. Then we have $f'(x) = \frac{1}{1+x}$, $f''(x) = -\frac{1}{(1+x)^2}$, and $f^{(3)}(x) = \frac{2}{(1+x)^3}$. Evaluating at x = 0, we have f(0) = 0, f'(0) = 1, f''(0) = -1, and $f^{(3)}(0) = 2$. Therefore, the Taylor polynomial $T_{3,0}(x)$ is

$$T_{3,0}(x) = \frac{f^{(3)}(x)}{3!}x^3 + \frac{f''(x)}{2!}x^2 + f'(x)x + f(x)$$
$$= \frac{1}{3}x^3 - \frac{1}{2}x^2 + x \qquad \Box$$

(b) Use x = 1 in your polynomial from part (a) to approximate the value of $\ln 2$.

Solution. Plug and chug:
$$T_{3,0}(1) = \frac{1}{3} - \frac{1}{2} + 1 = \frac{5}{6}$$
.

(c) Use $x = -\frac{1}{2}$ in your polynomial from part (a) to approximate the value of $\ln 2$. You will need to relate your answer to $\ln 2$ with log rules. Show that the upper bound on the error given by Taylor's Theorem is the same for your approximations from parts (b) and (c).

Solution. At $x = -\frac{1}{2}$, we have $f(x) = \ln(\frac{1}{2}) = -\ln 2$. Plugging and chugging, $T_{3,0}(-\frac{1}{2}) = \frac{1}{3}(-\frac{1}{8}) - \frac{1}{2}(\frac{1}{4}) - \frac{1}{2} = -\frac{2}{3}$. Therefore, our estimate is $\ln 2 \approx \frac{2}{3}$.

The error $|R_{3,0}|$ depends on the maximum value of $|f^{(4)}(x)| = \frac{6}{(1+x)^4}$. This value is decreasing everywhere, the maximum value is at x = 0 for [0,1] and $x = -\frac{1}{2}$ for $[-\frac{1}{2},0]$: $|f^{(4)}(0)| = 6$ and $|f^{(4)}(-\frac{1}{2})| = 96$.

Therefore, the error for part (b) is at least

$$|R_{3,0}(1)| \le \frac{6}{4!}(1)^4 = 0.25$$

and the error above is at least

$$|R_{3,0}(-0.5)| \le \frac{96}{4!}(0.5)^4 = 0.25$$

(d) Use a calculator to compare your approximations in part (b) and (c) with the actual value of ln 2. Which is actually closer, and why does this make sense?

Solution. Calculator gives $\ln 2 \approx 0.693147$.

Part (b) estimated $\frac{5}{6} \approx 0.833333$ which an error of about -0.140186 and part (c) estimated $\frac{2}{3} \approx 0.6666667$ which is off by 0.026480.

Part (c) was actually closer, and this makes sense because we are working closer to the center of the Taylor polynomial. \Box

Q04. Use Taylor's Theorem to find $n \in \mathbb{N}$ so that using $T_{n,0}(x)$ to approximate e^x at x = 0.1 has an error of at most 0.00001

Solution. Let $f(x) = e^x$. Recall that $f^{(n)}(x) = e^x$ for any $n \in \mathbb{N}$. Since e^x is increasing everywhere, the maximum on [0,0.1] will be at x = 0.1 Then, Taylor's Theorem gives

$$|R_{n,0}(x)| \le \frac{e^{0.1}}{(n+1)!} (0.1)^{n+1}$$

but we have $e^{0.1}$ stuck in there. We can give an upper bound by doing some shenanigans. $e^0.1$ is the tenth root of e. This is clearly less than the tenth root of 3. Now, $1.1^{10} \approx 2.6$ and $1.2^{10} \approx 6.2$, so we give $\sqrt[10]{e} < 1.2$. Then,

$$|R_{n,0}(x)| \le \frac{e^x}{(n+1)!} (0.1)^{n+1}$$
$$0.00001 \le \frac{1.2}{(n+1)!} (0.1)^{n+1}$$

and we find by Pain and AgonyTM that we need $n \geq 3$.

Q05. Let us revisit Newton's Method one more time using Taylor's Theorem. Suppose we are approximating the root r of the function f. Recall that from an initial approximation x_1 , we obtained the successive approximations using the recursive formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Use Taylor's Theorem (or inequality) with n = 1, $a = x_n$, and x = r to show that if f''(x) exists on an interval I containing r, x_n , and x_{n+1} , and $|f''(x)| \leq M$, $|f'(x)| \geq K$ for all $x \in I$, then

$$|x_{n+1} - r| \le \frac{M}{2K} |x_n - r|^2$$
.

(Note that this says that if the error at stage n is at most 10^{-m} , then the error at stage n+1 is at most $\frac{M}{2K}10^{-2m}$, or in other words, that successive iterations are accurate to approximately twice as many decimal places!)

Proof. We follow the instructions and do as we're told. Then, we have f(r) = 0, $f(r) = T_{1,x_n}(r) + R_{1,x_n}(r)$, and $T_{1,x_n}(r) = f'(r)(r - x_n) + f(r)$.

Substituting, $0 = f'(r)(r - x_n) + f(r) + R_{1,x_n}(r)$.

Then, we have $R_{1,x_n}(r) = -f(r) + f'(r)(x_n - r)$. We want $\frac{f(x_n)}{f'(x_n)}$ so we divide through by $f'(x_n)$ to get $\frac{R_{1,x_n}(r)}{f'(x_n)} = x_n - \frac{f(x_n)}{f'(x_n)} - r = x_{n+1} - r$. Therefore, $|\frac{R_{1,x_n}(r)}{f'(x_n)}| = |x_{n+1} - r|$. Since $f'(x_n) \ge K$, we have $|x_{n+1} - r| \le \frac{1}{K} |R_{1,x_n}(r)|$.

We can finally apply Taylor's Theorem and get that $|R_{1,x_n}(r)| = \frac{f''(c)}{2}|x_n - r|^2$. We know that $f''(c) \leq M$ so $|R_{1,x_n}(r)| \leq \frac{M}{2}|x_n - r|^2$.

Combining these, we have $|x_{n+1} - r| \leq \frac{M}{2K}|x_n - r|^2$.