Ideas of mathematical proof. Practical class week 25

Note that solutions must be by the methods specified in the problems – even if you can see another solution, even if an easier one.

- **7.1.** Prove by contradiction that $\sqrt[3]{3} \notin \mathbb{O}$.
- **7.2.** Let P(x,y) be the predicate x>y, and Q(x,y) the predicate $x^2< y^2$, with universe of discourse $\mathcal{U} = \mathbb{R}$.
 - (a) What is the truth value of $P(x,y) \Rightarrow Q(x,y)$
 - (1) for x = -3, y = 2?
- (2) for x = 2, y = -1?
- (b) What is the truth value

 - (1) of $\forall x \forall y (P(x,y) \Rightarrow Q(x,y))$? (2) of $\forall y \exists x (P(x,y) \Rightarrow Q(x,y))$?
- **7.3.** Let x denote a student in UoL, and y a song of Beatles. Let P(x,y) denote the predicate "x likes y".
 - (a) Express in symbolic form using quantifiers the statement "Some students in UoL do not like any of Beatles' songs".
 - (b) Apply the rules for negations of quantified statements to express the negation of the expression obtained in part (a) so that negation sign is not before quantifiers.
 - (c) Translate into natural language the formula obtained in part (b).
- **7.4.** Let $\mathcal{U} = \mathbb{R}$. Determine which of these statements are true:
 - (a) $\forall x \forall y (x^2 < 2xy)$;
 - (b) $\exists x \, \forall y \, (x^2 < 2xy);$
 - (c) $\forall x \exists y (x^2 \leqslant 2xy)$;
 - (d) $\forall y \exists x (x^2 < 2xy)$.
- 7.5. Recall the theorem that \aleph_0 is the smallest infinite cardinal; in other words: if there is an injective mapping $B \to A$ and $|A| = \aleph_0$, then B is countable. Use this theorem to show that any set consisting of pairwise disjoint discs in \mathbb{R}^2 (each of radius > 0) is countable.

[Hint: see the solution of question 5.5 in Practical W22 and use the fact that $|\mathbb{Q} \times \mathbb{Q}| = \aleph_0.$