

Generalizing Speech Emotion Recognition: A Multi-Model and Multi-Dataset Approach

Group 15: Sweta Patel (100915164) Vallika Kasibhatla (100928820) Date: 10th June

ENGR 5510G: Foundations of

Software Engineering

Instructor: Dr. Sanaa Alwidian

TABLE OF CONTENTS

01

Introduction

02

Research Gaps and Proposed Solution

03

Datasets

04

Data Preprocessing

05

Model Building

06

Future Works

KEYWORDS

X

Speech Emotion Recognition

Support Vector Machine (SVM)

Random Forest (RF)

Neural Networks

Identifying and Analyzing the emotions through the voice of the speaker

It is a model that generates a decision boundary

It operates by constructing a multitude of decision trees

It is a machine learning model that learns complex patterns by making neuron structures

Random Forest

O1 INTRODUCTION

Emotion Detection Through Speech

Emotion Detection has become an emerging research subject.

- → Human emotions are challenging to guess
- → Analyzing an audio note has high complexity
- Understanding sentiments of humans can improve productivity and efficiency

O2 RESEARCH GAPS AND PROPOSED SOLUTION

Research

Ref	Datasets Used	Pre-Processing and Feature Extraction	Model	Results Of the Papers
[2]	IEMOCAP	MEL coefficients	DNN, CNN, LSTM	64.78%
[3]	EEG Signals	Feature fusion from Deep Belief Network and Electro-Dermal Activity (EDA), Photoplethysmogram (PPG), and Zygomaticus Electromyography (EMG) sensors.	Fine Gaussion SVM	'Happy' Emotion-100% 'Neutral' Emotion-53%
[4]	RAVEDESS	MFCCs, MEL Spectrograms, Chroma, Tonnetz	MLP, SVM	MLP-79% SVM-72%
[5]	TESS	MFCC, MEL Spectrograms, Chroma, Tonnetz	KNN, Decision Trees, Extra Tree Classifier	KNN-98% Extra Tree Classifier-99% Decision Trees-92%
[6]	RAVEDESS , TESS	MFCCs	CNN, AlexNet, ResNet50	RAVEDESS-80% with CNN TESS- 96% CNN
[7]	EMODB RAVEDESS TESS IEMOCAP	STFT, Feature extracted using Multi-Time Scale (MTS) versions of learned kernel	CNN	EMODB-70.97% RAVEDESS-55.85% TESS-53.05% IEMOCAP-55.01%
[8]	IEMOCAP, MELD	Low-Level Descriptors BoAW	RNN	IEMOCAP 60.87%
[9]	Berlinemodb	Spectrogram Generation FFT	CNN, AlexNet model	84.3%
[10]	SAVEE	MFCC, MSF	CNN	83.61%
[11]	RAVDESS, TESS	MFCC STFT	SVM, HMM, ELM, LSTM, CNN	CNN - 85%
[12]	RAVDESS	MFCC	LSTM	84.81%
[13]	EmoDB VAD RED MFCC SBS		SVM, LDA	EmoDB: LDA: 78%, SVM: 80% RED: LDA: 71%, SVM: 73%

Research Gaps

- Having speakers only of English descent, can create a bias while training and testing
- Using single datasets while training
- Mixed emotions or rapid emotions switching wouldn't be detected.
- Speaker diarization
- Papers have highlighted misclassifications but havent explored them
- The classification models used are highly focused on neural networks, maybe it's too complex.
- Difficulty in finding the best feature extraction steps

Proposed Solution

Generalizability by including through analyzing

Focusing on Simpler Classification Models

Ensemble Learning

O3 DATASETS

DATASETS

O1 RAVDESS

840 audio files (8 emotions: Angry, Surprised, Disgust, Neutral, Happiness, Sadness, Calm)

O4 TESS

2800 audio files Canadian Speaker (7 emotions: Sad, Surprise, Angry, Neutral, Happy, Fear, Disgust)

O2 CREMA-D

7442 audio files (6 emotions: Anger, Disgust, Fear, Happy, Neutral, and Sad)

O5 EMODB

535 audio files German Speakers (7 emotions: Angry, boredom, disgust, neutral, fear, happiness, sadness)

O3 SAVEE

480 audio files (7 emotions: Anger, Disgust, Fear, Happiness, Sad, Surprise, Neutral)

12097 Audio Files Anger, Happy, Sad, Fear, Disgust and Neutral

O4 DATA PREPROCESSING

Steps

	AudioPath	Label
	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	calm
3	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	neutral
4	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	happy
5	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	sad
3	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	neutral
7	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	calm
3	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	sad
9	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	neutral
0	/content/drive/MyDrive/SoftwareAudio/RAVEDESS/Actor_20/03-01-	happy

Before Extraction: Audio files are stored as raw files on disk, with their paths and labels recorded in a DataFrame.

After Extraction: Features are extracted and stored in NumPy arrays, which can be used directly for model training or further analysis.

2

Data Augmentation:

- Noise Addition
- Time Stretching
- Pitch
- Shifting

Feature extraction

3

Feature Extraction:

- Zero Crossing Rate
- Chroma Feature
- MFCC
- Root Mean Square Energy
- Spectral Rolloff, Centroid, Contrast, Bandwidth
- Tonnets

1	2	3	4	5	Label
0.017605	-0.03897	-0.05874	0.016288	0.010934	happy
0.0065	-0.0394	0.009756	0.000769	0.003263	happy
0.015879	-0.04392	-0.05527	0.019473	0.000833	happy
0.034252	-0.05858	-0.05576	0.014269	-0.00525	neutral
0.008455	-0.0629	-0.01463	0.000269	-0.00231	neutral
0.036998	-0.0514	-0.04058	0.007093	-0.0107	neutral
0.000923	-0.00513	0.039073	-0.00357	0.029264	sad
0.000713	-0.01462	0.044512	-0.00361	0.018366	sad
0.009619	-0.02456	0.034347	0.005985	0.027446	sad
0.019868	-0.01268	-0.0049	0.001143	0.013344	calm
0.019661	-0.00816	0.024284	0.001049	0.011365	calm
0.02126	-0.02695	-0.00691	-0.00487	0.002568	calm

MFCC

Chroma

Tonnets

O5 MODEL BUILDING

COMPARISONS

 With a large number of trees can be complex Robust to overfitting interpret Reduces overfitting, especially in high-dimensional spaces. 	Random Forest	Support Vector Machines
 Less sensitive to hyperparameters Sensitive to hyperparameters 	 large datasets Can handle missing values and outliers more With a large number of trees can be complex 	 SVMs do not handle missing values and outliers well Result in a single decision boundary so simpler to interpret Reduces overfitting, especially in

Improved Generalization
Enhanced Performance
Reduced Variance and Bias
Robustness to Different Data
Characteristics

X Ensemble Learning

To aggregate multiple models to obtain a combined model that outperforms every single model in it.

Bagging

Boosting

Results on Individual Datasets

RAVDESS

Accuracy (Boos	sted SVM and	RF): 0.8	460648148148
	precision	recall	f1-score
angry	0.87	0.91	0.89
calm	0.79	0.94	0.86
disgust	0.84	0.84	0.84
fearful	0.88	0.83	0.86
happy	0.81	0.84	0.82
neutral	0.83	0.78	0.80
sad	0.83	0.73	0.78
surprised	0.90	0.88	0.89
accuracy			0.85
macro avg	0.85	0.84	0.84
weighted avg	0.85	0.85	0.85

CREMA-D

Accuracy (Boo	sted SVM and	RF): 0.7	33766233766
	precision	recall	f1-score
angry	0.74	0.88	0.80
disgust	0.74	0.66	0.70
fear	0.78	0.61	0.69
happy	0.73	0.72	0.72
neutral	0.71	0.70	0.71
sad	0.70	0.82	0.76
accuracy			0.73
macro avg	0.74	0.73	0.73
weighted avg	0.74	0.73	0.73

SAVEE

Accuracy (Boosted SVM an	d RF): 0.8	5763 <mark>8888888</mark>
	precision	recall	f1-score
ang	er 0.82	0.72	0.77
disgu	0.86	0.84	0.85
fe	ar 0.77	0.83	0.80
happine	ss 0.65	0.83	0.73
neutr	al 0.94	0.99	0.96
sadne	ss 0.92	0.92	0.92
surpri	se 0.93	0.72	0.81
accura	су		0.86
macro a	vg 0.84	0.83	0.83
weighted a	vg 0.86	0.86	0.86

TESS

Accuracy (Boost	ed SVM and	RF): 0.9	9444444444
F	recision	recall	f1-score
angry	1.00	0.98	0.99
disgust	0.99	1.00	0.99
fear	0.99	1.00	1.00
happy	0.99	0.99	0.99
neutral	1.00	1.00	1.00
sad	1.00	1.00	1.00
accuracy			0.99
macro avg	0.99	0.99	0.99
weighted avg	0.99	0.99	0.99

EMODB

Accuracy	(Boosted	SVM and	RF): 0.8	78504672897
	pred	ision	recall	f1-score
anı	gry	0.89	0.95	0.92
bore		0.89	0.92	0.90
disg	ust	0.86	0.76	0.81
fe	ear	0.76	0.97	0.85
haj	рру	0.89	0.73	0.80
neuti	ral	0.89	0.88	0.88
;	sad	0.96	0.81	0.88
accura	асу			0.88
macro a	avg	0.88	0.86	0.87
weighted a	avg	0.88	0.88	0.88

Results on Combined Dataset

Random Forest

SVM

Random Forest+SVM

Insights

Traditional Models with Proper Tuning:

- **Hyperparameter Optimization**: Enhanced performance by fine-tuning model parameters.
- **Ensemble Learning**: Leveraged multiple models to reduce individual weaknesses and improve prediction accuracy.

Performance:

- **Accuracy**: Comparable to advanced deep learning models (e.g., CNN, RNN).
- **Complexity**: Simplified model architecture while maintaining high performance.

Robustness:

- **Speaker Diversity**: Age, gender, accents, languages, recording environments, noise levels, audio quality.
- Generic Applicability: Effective across combined and individual datasets for Speech Emotion Recognition (SER).

(Boo	sted SVM and	RF): 0.8	05067950169	98754
	precision	recall	f1-score	support
gry	0.82	0.91	0.86	1267
ust	0.77	0.75	0.76	1135
ear	0.85	0.74	0.79	1217
рру	0.81	0.77	0.79	1204
ral	0.80	0.82	0.81	1078
sad	0.78	0.83	0.80	1163
acy			0.81	7064
avg	0.81	0.80	0.80	7064
avg	0.81	0.81	0.80	7064
	gry ust ear ppy ral sad acy avg	precision gry	precision recall gry 0.82 0.91 ust 0.77 0.75 ear 0.85 0.74 ppy 0.81 0.77 ral 0.80 0.82 sad 0.78 0.83 acy avg 0.81 0.80	gry 0.82 0.91 0.86 ust 0.77 0.75 0.76 ear 0.85 0.74 0.79 ppy 0.81 0.77 0.79 ral 0.80 0.82 0.81 sad 0.78 0.83 0.80 acy avg 0.81 0.80 0.80

Unlike in previous research papers, here, all emotions have good individual f1-score.

Limiting bias.

06 FUTURE WORKS

Future Works

01

Add more Data
Augmentation
techniques such as
Shifting and Pitch
change

02

Comparison with Deep Learning Models

Classification	report for precision		Recognition f1-score
0	0.82	0.85	0.84
1	0.75	0.69	0.72
2	0.77	0.73	0.75
3	0.75	0.73	0.74
4	0.74	0.81	0.77
5	0.72	0.74	0.73
accuracy			0.76
macro avg	0.76	0.76	0.76
weighted avg	0.76	0.76	0.76

03

Nuanced understanding of feelings based on probabilistic emotion expression

Threats of Validity

Internal	External
 Selection Bias Overfitting Labelling Errors Data Augmentation 	 Might not reflect real world scenarios Confounding Variables (quality of audio, speaker health) Interaction Effects

Conclusion

- Reviewed 12 papers and focused on the various models and datasets used
- Found research gaps as the model was built on single dataset leading to the issue of lack of generalizability.
- The approach to improve this was by multi-dataset and combination of simple classification models rather than deep learning models
- Merged 5 datasets, 12k entries and 6 emotions
- Through Ensemble learning, combining the strengths of SVM and RF, achieved an accuracy of 81% and an 80% classification rate for each emotion
- In the future, we would want to explore more on hyperparameter tuning and introducing more languages and emotions

Thank You!! Any questions?