

Version:0.2

WQVGA(240x432) driver for LTPS

1. General Description

The D54E4PA7551B is a driver for LTPS panel with timing controller, RAM, internal 5V booster.

Realizing WIDE-QVGA (WQVGA) display with one chip is possible with this driver just adding gate control circuits and its HV power circuit in LTPS panel.

For the portable system like a cellular phone which needs to switch the display performance, this driver adopts the software commands to control the functions like standby other than Normal display operation to minimize the power consumption of the mobile device.

120 channel source output ports are embedded and the display data levels are outputted in the order of programming by SSD method (Shared Source Driving).

The display data is written to internal RAM from external controller so that the 64 gray-level driving per color is available.

2. Features

- Panel driving
 - 120 source output (SX1~SX120), 6SSD(Shared Source Driving) method
 - 260 thousand color (6 bit = 64 gray color)
 - · Output pitch : straight array : 56um(min), source : 67um
 - · vertical 320 ~ 432 line selectable
 - panel control signal generation (gate driver / SSD switch, panel booster control signals)
 - · Precharge ON / OFF by command
 - · SSD driving sequence selection.
 - · inversion of left / right / up / down

Interface

· CPU I/F: Parallel I/F I80 system / BUS-width 18/16/9/8 bit selection available.

Internal EEPROM

16-bit built-in EEPROM for VCOM (VCOMH, VCOML) set Internal EEPROM for manufacture (Trimming for MagnaChip use, it is forbidden for users)

Others

- RAM control : internal RAM 1,866,240-bit (240x432x18-bit) = 233,280-byte Window access, partial display, screen scroll mode
- Standby mode (RAM and register data are kept during Standby mode)
- · Auto Sequence by command (Standby IN and Standby OUT function)
- Noise canceller on RESET line (discarded less than 2us)
- internal oscillator 1.15 MHz ± 8%

Ver.0.2 2009/08/10 - 1 -

- Low power consumption function
 - 1 or 2-screen partial display + scan skip mode on non display partial area.
 - · refresh rate control with 60 Hz and 30 Hz
 - · driving power control for channel AMP by register setting
- Power circuits to drive LCD
 - 2 or 3 times booster(1)

Controlled by register setting and the output detecting method circuits are adopted.

Output voltage range: 4.7 ~ 5.4 V / 100mV step controllable

Load current: 2mA Power for source driver

Regulator for gamma circuits: $4.6 \sim 5.3 \text{ V} / 100 \text{ mV}$ step controllable

· 2 or 3 times booster(2)

Controlled by register setting and the output detecting method circuits are adopted.

Output voltage range: 4.7 ~ 5.4V / 100 mV step controllable

Load current: 2mA

Power for Panel control level shifters Power for VCOM related circuits

VCOM driver (3 kinds of driving is possible)

VCOMH-VCOML switching method VCOM-GND DC bias method

DC method

VCOMH regulator: $3\sim5V$ (depends on VGM voltage) / 20mV step controllable VCOML/COMDC regulator: $0.2\sim3.2~V$ / 20mV step

- Power
 - analog power = 2.7V~3.4V
 - IO power = $1.6 \sim 3.4 \text{V}$
- Gray output
 - · Fixed gamma method (independent blue gamma)
 - · 6-bit DAC
- Source driver ability

source load : R=5kΩ、C=30pF
settling time : 2.5us (Max)
variation : 15mV (middle gray)

Operating temperature : -30 to +85°C

Package : Bare Chip / Bumped chip
 CMOS technology (P-type silicon substrate)

- 2 -

3. Block diagram

3.1. Top block diagram

Ver. 0.2

3.2. Block Diagram of Power circuits (1)

- 4 - 2009/8/10 Ver.0.2

3.3. Block Diagram of Power circuits (2)

Ver. 0.2 - 5 -

3.4. Block diagram of Power circuits (3)

- 6 -

3.5. Chart of Power structure

Notice) VCOMH 0.5 x VGM VCOMH 1.208 x VGM and VCOMH VROUT-0.2

3.6. Power On/Off Timing Chart

Ver. 0.2

4 . PAD assignment

All of PAD position and/or shape information described in this section are viewed from TOP (PAD) side.

PAD assignment (Left side of Chip PAD view)

Dummy PADs are opened electrically.

Bump size and space of drive side

Bump size and space of interface side

(*1) Space only between VREF and VDDC is 30um.

- 8 - 2009/8/10 Ver.0.2

PAD assignment (Right side of Chip PAD view)

D54E4PA7551 PAD DIMENSIONS

U	N	II	Γ:	un

ITEMS	REMARK / PAD NO.	SI	ZE		
TILIVIS	REMARK / FAD NO.	X	Y		
	With scribe lane (110 um)	16,110	1,710		
Chip size	Without scribe lane	16,000	1,600		
	After sawing (typical)	16,060	1,660		
PAD pitch / space	Drive pads pitch	20,31,42,57	7(see Page8)		
(bump)	Interface pads	Interface pads 15,25,30(see Page			
PAD open size	Driver sides	7	56		
(2 open/1 bump)	Interface sides	7	56		
PAD size(bump)	Driver sides	36	70		
PAD size(builip)	Interface sides	36	70		
BUMP height	All pads	1	.5		

ALIGN MARK DESIGN

Align marks coordinates

LEFT TOP – center coordinates X = -7934, Y = 695.5

RIGHT TOP – center coordinates X = 7934, Y = 695.5

Ver. 0.2

5 . PADs coordinates

Chip size $16,060 \times 1,660 \mu m$ (without SL, chip center = 0:0)

					Cnip) size 10,0	00 × 1,000	μπ (wi	thout SL, chip	Center -	0.07
PAD No.	Pin name	X(µm)	Y(µm)	PAD No.	Pin name	X (µm)	Y (μm)	PAD No.	Pin name	X ((m)	Y ((m)
1	DCK	-7782	-730	51	VDDC	-5142	-730	101	VGM	-2512	-730
2	DCK	-7731	-730	52	VDDC	-5091	-730	102	VGM	-2461	-730
3	DCK	-7680	-730	53	VDDC	-5040	-730	103	VGM	-2410	-730
4	DCKB	-7619	-730	54	VDDC	-4989	-730	104	VCOMH	-2349	-730
5	DCKB	-7568	-730	55	C3+	-4928	-730	105	VCOMH	-2298	-730
6	DCKB	-7517	-730	56	C3+	-4877	-730	106	VCOMH	-2247	-730
7	C1+	-7456	-730	57	C3+	-4826	-730	107	VCOMH	-2196	-730
8	C1+	-7405	-730	58	C3+	-4775	-730	108	VCOMH	-2145	-730
9	C1+	-7354	-730	59	C3+	-4724	-730	109	VCOMH	-2094	-730
10	C1+	-7303	-730	60	C3+	-4673	-730	110	VCOM	-2033	-730
11	C1+	-7252	-730	61	C3-	-4612	-730	111	VCOM	-1982	-730
12	C1+	-7201	-730	62	C3-	-4561	-730	112	VCOM	-1931	-730
13	C1-	-7140	-730	63	C3-	-4510	-730	113	VCOM	-1880	-730
14	C1-	-7089	-730	64	C3-	-4459	-730	114	VCOM	-1829	-730
15	C1-	-7038	-730	65	C3-	-4408	-730	115	VCOM	-1778	-730
16	C1-	-6987	-730	66	C3-	-4357	-730	116	VCOML	-1717	-730
17	C1-	-6936	-730	67	C4+	-4296	-730	117	VCOML	-1666	-730
18	C1-	-6885	-730	68	C4+	-4245	-730	118	VCOML	-1615	-730
19	C2+	-6824	-730	69	C4+	-4194	-730	119	VCOML	-1564	-730
20	C2+	-6773	-730	70	C4+	-4143	-730	120	VCOML	-1513	-730
21	C2+	-6722	-730	71	C4+	-4092	-730	121	VCOML	-1452	-730
22	C2+	-6671	-730	72	C4+	-4041	-730	122	VCOML	-1401	-730
23	C2+	-6620	-730	73	C4-	-3980	-730	123	VCOML	-1350	-730
24	C2+	-6569	-730	74	C4-	-3929	-730	124	VCOML	-1299	-730
25	C2-	-6508	-730	75	C4-	-3878	-730	125	VCOML	-1248	-730
26	C2-	-6457	-730	76	C4-	-3827	-730	126	GNDA	-1187	-730
27	C2-	-6406	-730	77	C4-	-3776	-730	127	GNDA	-1136	-730
28	C2-	-6355	-730	78	C4-	-3725	-730	128	GNDA	-1085	-730
29	C2-	-6304	-730	79	VSOUT	-3664	-730	129	GNDA	-1034	-730
30	C2-	-6253	-730	80	VSOUT	-3613	-730	130	GNDA	-983	-730
31	VROUT	-6192	-730	81	VSOUT	-3562	-730	131	GNDA	-932	-730
32	VROUT	-6141	-730	82	VSOUT	-3511	-730	132	GNDA	-881	-730
33	VROUT	-6090	-730	83	VSOUT	-3460	-730	133	GNDA	-830	-730
34	VROUT	-6039	-730	84	VSOUT	-3409	-730	134	GNDA	-779	-730
35	VROUT	-5988	-730	85	VSIN	-3348	-730	135	GNDA	-728	-730
36	VROUT	-5937	-730	86	VSIN	-3297	-730	136	GNDA	-677	-730
37	VRIN	-5876	-730	87	VSIN	-3246	-730	137	GNDA	-626	-730
38	VRIN	-5825	-730	88	VSIN	-3195	-730	138	VDDCORE	-565	-730
39	VRIN	-5774	-730	89	VSIN	-3144	-730	139	VDDCORE	-514	-730
40	VRIN	-5723	-730	90	VSIN	-3093	-730	140	VDDCORE	-463	-730
41	VRIN	-5672	-730	91	VSRU	-3032	-730	141	VDDCORE	-412	-730
42	VRIN	-5621	-730	92	VSRU	-2981	-730	142	VDDCORE	-361	-730
43	GNDDC	-5560	-730	93	VSRU	-2930	-730	143	VDDCORE	-310	-730
44	GNDDC	-5509	-730	94	VSRU	-2879	-730	144	VDDCORE	-259	-730
45	GNDDC	-5458	-730	95	VSRU	-2828	-730	145	V18OUT	-198	-730
46	GNDDC	-5407	-730	96	VSRU	-2777	-730	146	V18OUT	-147	-730
47	GNDDC	-5356	-730	97	VGM	-2716	-730	147	V18OUT	-96	-730
48	GNDDC	-5305	-730	98	VGM	-2665	-730	148	V18OUT	-45	-730
49	VDDC	-5244	-730	99	VGM	-2614	-730	149	V18OUT	6	-730
50	VDDC	-5193	-730	100	VGM	-2563	-730	150	V18OUT	57	-730
50	1000	21/3	150	100	1 0111	2505	150	150	, 10001	J 1	150

^{*} The dummy port is opened electrically.

- 10 - 2009/8/10 Ver.0.2

chip size 16,060×1,660 μ m (without SL, chip center = 0:0)

PAD	Pin name	X(µm)	Y(µm)	PAD	Pin name	X (μm)	Y (μm)	PAD	Pin name	X (μm)	Υ (μm)
No.				No.				No.			•
151	V18OUT	108	-730	201	D16	2823	-730	251	CLKSEL	5613	-730
152	GNDD	169	-730	202	D16	2874	-730	252	CLKSEL	5664	-730
153	GNDD	220	-730	203	D15	2935	-730	253	EXCLK	5725	-730
154	VREF	281	-730	204	D15	2986	-730	254	EXCLK	5776	-730
155	VREF	332	-730	205	D14	3047	-730	255	RESETB	5837	-730
156	VDDC	398	-730	206	D14	3098	-730	256	RESETB	5888	-730
157	VDDC	449	-730	207	D13	3159	-730	257	BATIN	5949	-730
158	VDDC	500	-730	208	D13	3210	-730	258	BATIN	6000	-730
159	VDDC	551	-730	209	D12	3271	-730	259	BWS1	6061	-730
160	VDDC	602	-730	210	D12	3322	-730	260	BWS1	6112	-730
161	SDIN+	663	-730	211	D11	3383	-730	261	BWS0	6173	-730
162	SDIN+	714	-730	212	D11	3434	-730	262	BWS0	6224	-730
163	GNDD	775	-730	213	D10	3495	-730	263	C86	6285	-730
164	GNDD	826	-730	214	D10	3546	-730	264	C86	6336	-730
165	SDIN-	887	-730	215	D9	3607	-730	265	CMDS	6397	-730
166	SDIN-	938	-730	216	D9	3658	-730	266	CMDS	6448	-730
167	GNDD	999	-730	217	D8	3719	-730	267	MSBSEL	6509	-730
168	GNDD	1050	-730	218	D8	3770	-730	268	MSBSEL	6560	-730
169	STRB+	1111	-730	219	D7	3831	-730	269	SCLEG1	6621	-730
170	STRB+	1162	-730	220	D7	3882	-730	270	SCLEG1	6672	-730
171	GNDD	1223	-730	221	D6	3943	-730	271	SCLEG0	6733	-730
172	GNDD	1274	-730	222	D6	3994	-730	272	SCLEG0	6784	-730
173	STRB-	1335	-730	223	D5	4055	-730	273	MDDISEL	6845	-730
174	STRB-	1386	-730	224	D5	4106	-730	274	MDDISEL	6896	-730
175	GNDD	1447	-730	225	D4	4167	-730	275	VSYNCO	6957	-730
176	GNDD	1498	-730	226	D4	4218	-730	276	VSYNCO	7008	-730
177	SELCORE	1559	-730	227	D3	4279	-730	277	TEST	7069	-730
178	SELCORE	1610	-730	228	D3	4330	-730	278	TEST	7120	-730
179	VDDIO	1671	-730	229	D2	4391	-730	279	ECK	7181	-730
180	VDDIO	1722	-730	230	D2	4442	-730	280	ECK	7232	-730
181	VDDIO	1773	-730	231	D1	4503	-730	281	ECS	7293	-730
182	VDDIO	1824	-730	232	D1	4554	-730	282	ECS	7344	-730
183	VDDIO	1875	-730	233	D0	4615	-730	283	EDO	7405	-730
184	VDDIO	1926	-730	234	D0	4666	-730	284	EDO	7456	-730
185	VDDIO	1977	-730	235	WRBSCL	4727	-730	285	EDI	7517	-730
186	VDDIO	2028	-730	236	WRBSCL	4778	-730	286	EDI	7568	-730
187	VDDIO	2079	-730	237	RDB	4839	-730	287	VPP	7629	-730
188	VDDIO	2130	-730	238	RDB	4890	-730	288	VPP	7680	-730
189	GNDD	2191	-730	239	RS	4951	-730	289	VPP	7731	-730
190	GNDD	2242	-730	240	RS	5002	-730	290	VPP	7782	-730
191	GNDD	2293	-730	241	CSBSCS	5063	-730	291	DCON2	-7782	730
192	GNDD	2344	-730	242	CSBSCS	5114	-730	292	DCON2	-7726	730
193	GNDD	2395	-730	243	VSYNC	5175	-730	293	DCON1	-7655	730
194	GNDD	2446	-730	244	VSYNC	5226	-730	294	DCON1	-7599	730
195	GNDD	2497	-730	245	GNDD	5287	-730	295	RCK2	-7528	730
196	GNDD	2548	-730	246	GNDD	5338	-730	296	RCK2	-7472	730
197	GNDD	2599	-730	247	GNDD	5389	-730	297	RCK1	-7401	730
198	GNDD	2650	-730	248	GNDD	5440	-730	298	RCK1	-7345	730
199	D17	2711	-730	249	PSX	5501	-730	299	SW1	-7274	730
200	D17	2762	-730	250	PSX	5552	-730	300	SW1	-7218	730

^{*} The dummy port is opened electrically.

Ver. 0.2 - 11 -

chip size $16,060 \times 1,660 \mu m$ (without SL, chip center = 0:0)

					стр	512C 10,00	JUN1,000		tnout SL, cn	ip center	0.0)
PAD No.	Pin name	X((m)	Y((m)	PAD No.	Pin name	X ((m)	Y ((m)	PAD No.	Pin name	X ((m)	Y ((m)
301	SW2	-7147	730	351	dummy	-3832	730	401	SX16	-456	730
302	SW2	-7091	730	352	dummy	-3765	730	402	SX17	-389	730
303	SW3	-7020	730	353	dummy	-3698	730	403	SX18	-322	730
304	SW3	-6964	730	354	dummy	-3631	730	404	SX19	-255	730
305	SW4	-6893	730	355	dummy	-3564	730	405	SX20	-188	730
306	SW4	-6837	730	356	dummy	-3497	730	406	SX21	-121	730
307	SW5	-6766	730	357	dummy	-3430	730	407	SX22	-54	730
308	SW5	-6710	730	358	dummy	-3363	730	408	SX23	13	730
309	SW6	-6639	730	359	dummy	-3296	730	409	SX24	80	730
310	SW6	-6583	730	360	dummy	-3229	730	410	SX25	147	730
311	VRIN	-6512	730	361	dummy	-3162	730	411	SX26	214	730
312	VRIN	-6456	730	362	dummy	-3095	730	412	SX27	281	730
313	dummy	-6378	730	363	dummy	-3028	730	413	SX28	348	730
314	dummy	-6311	730	364	dummy	-2961	730	414	SX29	415	730
315	dummy	-6244	730	365	dummy	-2894	730	415	SX30	482	730
316	dummy	-6177	730	366	dummy	-2827	730	416	SX31	549	730
317	dummy	-6110	730	367	dummy	-2760	730	417	SX32	616	730
318	dummy	-6043	730	368	dummy	-2693	730	418	SX33	683	730
319	dummy	-5976	730	369	dummy	-2626	730	419	SX34	750	730
320	dummy	-5909	730	370	dummy	-2559	730	420	SX35	817	730
321	dummy	-5842	730	371	dummy	-2492	730	421	SX36	884	730
322	dummy	-5775	730	372	dummy	-2425	730	422	SX37	951	730
323	dummy	-5708	730	373	dummy	-2358	730	423	SX38	1018	730
324	dummy	-5641	730	374	dummy	-2291	730	424	SX39	1085	730
325	dummy	-5574	730	375	dummy	-2224	730	425	SX40	1152	730
326	dummy	-5507	730	376	dummy	-2157	730	426	SX41	1219	730
327	dummy	-5440	730	377	dummy	-2090	730	427	SX42	1286	730
328	dummy	-5373	730	378	dummy	-2023	730	428	SX43	1353	730
329	dummy	-5306	730	379	dummy	-1956	730	429	SX44	1420	730
330	dummy	-5239	730	380	dummy	-1889	730	430	SX45	1487	730
331	dummy	-5172	730	381	dummy	-1822	730	431	SX46	1554	730
332	dummy	-5105	730	382	dummy	-1755	730	432	SX47	1621	730
333	dummy	-5038	730	383	dummy	-1688	730	433	SX48	1688	730
334	dummy	-4971	730	384	dummy	-1621	730	434	SX49	1755	730
335	dummy	-4904	730	385	dummy	-1554	730	435	SX50	1822	730
336	dummy	-4837	730	386	SX1	-1461	730	436	SX51	1889	730
337	dummy	-4770	730	387	SX2	-1394	730	437	SX52	1956	730
338	dummy	-4703	730	388	SX3	-1327	730	438	SX53	2023	730
339	dummy	-4636	730	389	SX4	-1260	730	439	SX54	2090	730
340	dummy	-4569	730	390	SX5	-1193	730	440	SX55	2157	730
341	dummy	-4502	730	391	SX6	-1126	730	441	SX56	2224	730
342	dummy	-4435	730	392	SX7	-1059	730	442	SX57	2291	730
343	dummy	-4368	730	393	SX8	-992	730	443	SX58	2358	730
344	dummy	-4301	730	394	SX9	-925	730	444	SX59	2425	730
345	dummy	-4234	730	395	SX10	-858	730	445	SX60	2492	730
346	dummy	-4167	730	396	SX11	-791	730	446	SX61	2559	730
347	dummy	-4100	730	397	SX12	-724	730	447	SX62	2626	730
348	dummy	-4033	730	398	SX13	-657	730	448	SX63	2693	730
349	dummy	-3966	730	399	SX14	-590	730	449	SX64	2760	730
350	dummy	-3899	730	400	SX15	-523	730	450	SX65	2827	730

^{*} The dummy port is opened electrically.

- 12 - 2009/8/10 Ver.0.2

chip size $16,060 \times 1,660 \mu m$ (without SL, chip center = 0:0)

					enip	5120 10,00	01,000,		hout SL, chi	p center	0.0 /
PAD No.	Pin name	X(µm)	Y(µm)	PAD No.	Pin name	X (μm)	Y (μm)	PAD No.	Pin name	X (μm)	Y (µm)
451	SX66	2894	730	501	SX116	6244	730				
452	SX67	2961	730	502	SX117	6311	730				
453	SX68	3028	730	503	SX118	6378	730				
454	SX69	3095	730	504	SX119	6445	730				
455	SX70	3162	730	505	SX120	6512	730				
456	SX71	3229	730	506	dummy	6583	730				
457	SX72	3296	730	507	dummy	6639	730				
458	SX73	3363	730	508	VRIN	6710	730				
459	SX74	3430	730	509	VRIN	6766	730				
460	SX75	3497	730	510	GOE	6837	730				
461	SX76	3564	730	511	GOE	6893	730				
462	SX77	3631	730	512	GUD	6964	730				
463	SX78	3698	730	513	GUD	7020	730				
464	SX79	3765	730	514	INIT	7091	730				
465	SX80	3832	730	515	INIT	7147	730				
466	SX81	3899	730	516	GCK2	7218	730				
467	SX82	3966	730	517	GCK2	7274	730				
468	SX83	4033	730	518	GCK1	7345	730				
469	SX84	4100	730	519	GCK1	7401	730				
470	SX85	4167	730	520	GSP	7472	730				
471	SX86	4234	730	521	GSP	7528	730				
472	SX87	4301	730	522	FR	7599	730				
473	SX88	4368	730	523	FR	7655	730				
474	SX89	4435	730	524	BATOUT	7726	730				
475	SX90	4502	730	525	BATOUT	7782	730				
476	SX91	4569	730			7.00					
477	SX92	4636	730								
478	SX93	4703	730								
479	SX94	4770	730								
480	SX95	4837	730								
481	SX96	4904	730								
482	SX97	4971	730								
483	SX98	5038	730								
484	SX99	5105	730								
485	SX100	5172	730								
486	SX101	5239	730								
487	SX102	5306	730								
488	SX103	5373	730								
489	SX104	5440	730								
490	SX105	5507	730								
491	SX106	5574	730								
492	SX107	5641	730								
493	SX108	5708	730								
494	SX109	5775	730								
495	SX110	5842	730								
496	SX111	5909	730								
497	SX112	5976	730						Align marl	center coor	dinates
498	SX113	6043	730						Left top	-7934	695.5
499	SX114	6110	730						Right top	7934	695.5
500	SX115	6177	730						o-n top	. , , ,	2,0.0
										1	

^{*} The dummy port is opened electrically.

Ver. 0.2 - 13 -

6. PADS and Functions

No.	Items	Name	I/O	Description	Power
1		BWS1	I	BUS width select.	
2		BWS0	I	BUS width select.	
3		PSX	I	Use this pin connected to "L"level.	
4		C86	I	I/F select. (L: I80 system CPU mode, H: setting forbidden)	
5		CMDS	I	RS function select	
				(L: Display RAM/Address Data, H: Address Data)	_
6		MSBSEL	I	Parallel BUS MSB bit setting (L: DB17=MSB, DB0=LSB, H: DB0=MSB, DB17=LSB)	
7		DC	I	Display RAM/ Address Data select	
7		RS	1	(Address/Data selection)	
8		CSBSCS	I	CPU BUS chip select	
9		RDB	I	Read (Enable)	
10		WRBSCLK	I	CPU BUS write signal	
11		DB17			
12		DB16			
13		DB15			
14		DB14			VDDIO
15	TT .	DB13			
16	Host	DB12			
17	related	DB11			
18	ports	DB10			
19		DB9	1/0	D . DIIG	
20		DB8	I/O	Data BUS	
21		DB7			
22		DB6			
23		DB5			
24		DB4			
25		DB3			
26		DB2			
27		DB1			
28		DB0			
29		SCLEG1	I	Tie to "L"level or "H"level.	
30		SCLEG0	I	Tie to "L"level or "H"level.	1
31		SDIN+	-	Tie to GNDDC.	
32		SDIN-	-	Tie to GNDDC.	VDDC
33		STRB+	-	Use this pin open.	VDDC
34		STRB-	-	Use this pin open.	
35		MDDISEL	I	Tie to "L"level.	VDDIO
36		RESB	I	System reset	
27	System	DATENI	т -	Reset is needed whenever recover from standby mode	_
37	related	BATIN	I	LCD control input pin (unused: Tie to "H" Level)	-
38		EXCLK	I	Clock input (unused : Tie to H or L)	VDDIO
39	D:- 1	CLKSEL	I	Input clock select(L: internal CR oscillator/ H:EXCLK)	-
40	Display control	VSYNC	I	External VSYNC (Enable/Disable is disignated by register) Unused: Tie to H or L	
41	related	VSYNCO	О	Output port for internal VSYNC signal (active H).	

- 14 - 2009/8/10 Ver.0.2

Νıα	Teams	Nome	I/O	Description	Down				
No.	Items	Name	I/O	Description LCD control output signal	Power				
42		BATOUT	-	LCD control output signal					
43		FR	-	Timing signal of VCOM					
44		GSP		Gate control signal (Gate start pulse)					
45		GCK1,2		Gate control signal(Gate clock)s, 2 ports					
46		GOE		Gate control signal(Gate output enable signal)					
47	Panel	GUD		Gate control signal(Gate Scan direction UP or DOWN)					
48	control	INIT	0	LCD panel initialize	VRIN				
49	related	ASW[1:6]		Source driver selection signals for panel, 6 ports	, ,				
50		DCON1		Control signal for internal power of panel (charge)					
51		DCON2		Control signal for internal power of panel (discharge)					
52		RCK1							
53		RCK2		Control signal for internal power circuitry of panel					
54		DCK		(booster clock and etc)					
55		DCKB							
56	Source outputs	SX[1:120]	О	Output of source driver	VSIN				
57		ECK	О	Dummy Pin. (recommend : OPEN)					
58	Dammer	ECS	0	Dummy Pin. (recommend : OPEN)	ADDIO				
59	Dummy	EDO	О	Dummy Pin. (recommend : OPEN)	VDDIO				
60		EDI	I	Dummy Pin. (Tie to "L" Level)					
61		VDDCORE	Power	Power for digital: 1.7~1.9V	-				
62				Power for IO: 1.6V~3.4V	-				
63			Power		-				
64		V18OUT	Power		VDDC				
	ъ			Digital 1 8V salact					
65	Power	SELCORE	Power	(L:external input, H: internal 1.8V regulator)	VDDIO				
66	related	GNDD	Power		-				
67				Analog GND	-				
68			Power	-	-				
				Power for internal OTP when write in.(Except for write					
69		VPP	Power	in, keep this pin open).	-				
70	6014	VCOMH	Power		VRIN				
71	COM	COM		Common AC output port	VCOMH				
72	related			VCOML regulator output (0.2~3.2V)	VRIN				
				Booster output port for panel and panel control circuits					
73		VROUT	Power	(4.7~5.4V)	VDDC				
74		VRIN	Power	VR input port	_				
75			Power	Capacitor + port for generation VR	-				
76			Power	<u> </u>	_				
77			Power	<u> </u>	_				
78	DCDC		Power	Capacitor - port for generation VR	-				
79	related		Power	Booster output port for gamma and source block $(4.7 \sim 5.4 \text{V})$	VDDC				
80		VSIN	Power	VS input port	_				
81			Power	* *					
82			Power						
83		C4+	Power	· · · ·					
84			Power		-				
85				Regulator output of gamma (4.6~5.3V)	VSIN				
86	Regulator		Power		VSIN				
87	related	VREF	Power	Reference output ports	VDDC				
_	ТЕСТ		1 OWEI	* *					
88	TEST	TEST		Test pin (OPEN or L)	VDDIO				

Ver. 0.2 - 15 -

7. CPU Interface

7. 1 General description

CPU control LCD by accessing register and display RAM. Interface for accessing is parallel interface. This IC supports the two access methods of parallel interface by the treatment of RS port.

- BUS width, Bit length is selectable.
 Parallel I/F BUS widths are selectable from 18, 16, 9, 8 bit.
- · Register values and display RAM data are able to Read / Write.
- This IC supports I80 system CPU.

7.2 I/O Port

The explanations of the ports related CPU I / F.

Table 7.1 : CPU interface ports Table.

Port symbol	Port Name	I/O	explanation
BWS[1:0]	BUS width select	I	BUS width select
RSX	Mode select		H : Setting forbidden.
KSX	Mode Select	'	L : Use this pin fix to L.
C86	Interface mode		H : Setting forbidden.
C60	interrace mode	'	L: I80 system CPU interface
RS	Data / Register select	I	Data, Register
CSB	Chip select		Chip select
RDB	Read	- 1	Read clock
WRBSCLK	Write	I	Write clock
DB[17:0]	Data BUS	I/O	Data BUS
CCI EC [4.0]	United input pip		This input pin can not be use.
SCLEG [1:0]	Unused input pin	1	Use this pin keep "L" or "H".
CMDS	RS function select	I	H : Address data

- 16 - 2009/8/10 Ver.0.2

7.3 Register list related CPU interface

Explanation of Internal register related CPU interface.

Table 7.2 Register list of CPU interface.

ADR	Bit	Symbol	Description	Reflection	Default
0411	D2	BTSEL	This register set six-bit 3-times Data transfer using by DB[5:0] or DB[7:2].	40	0011
01H	D1	DTX2	This register select the transfer method of 1pixel Data	AO	00H
	D0	DTX1	number.(Refer to Table 7.7 Transfer method).		
02H	D0	RREN	This register select the read operation in CMDS=0(RS function : Display RAM/Command/Data). <rren=0> Write operation <rren=1> Read operation At RREN=1, only this register can be write operation.</rren=1></rren=0>	АО	00Н
03H	-	RAMDT	Effectively at only CMDS=1. This function effective by accessing this address and Data has no mean. (RS function: In Index/ Data, read / write display RAM data).	AO	00Н

7.4 Function/Operation

7.4.1 Select BUS-width / Bit-length

The pins related BUS-selection, BUS-width and BUS-length are PSX, BSW[1:0] and CMDS.

- The BUS-width of parallel I/F can be select 18,16, 9 and 8 bit.
- The BUS-width can be select by BSW0 and BSW1.
- · Please use by PSX pin fix "L".
- Notice of changing pin state in operation.
 In case of switching CMDS, BWS0, BWS1 and C86, do not CPU access.
 The operation is not guaranteed.

Table 7.3 BUS-width select of CPU interface

PSX	BWS0	BWS1	CMDS	Mode	CSB	RS	RDB	WRB	C86	DB[17:16]	DB[15:9]	DB[8]	DB[7:0]
	L	L		18bit parallel	CSB	RS	RDB	WRB	C86		DB[17:0]	
١.	L	I	V	16bit parallel	CSB	RS	RDB	WRB	C86	Hi-Z		DB[15:0]	
-	Н	L	^	9bit parallel	CSB	RS	RDB	WRB	C86	Hi-Z	Hi-Z	DB	8:0]
	Н	Н		8bit parallel	CSB	RS	RDB	WRB	C86	Hi-Z	Hi-Z	Hi-Z	DB[7:0]

X : Don't care

Hi-Z: High impedance

Ver. 0.2 - 17 -

7.4.2 RS port function

Explanation the kind of access by setting RS port.

The contents of access by setting RS port are change by each CMDS setting.

Table7.4 RS function table

PSX	CMDS	RS Function						
		H Access to display RAM						
l .	L	L Access to Index ^(*1) and its Register.						
L	Н	H Access to display RAM or Register (*3)						
		L Access to Index(Register) (*2) (*3)						

- (*1) Index indicate Register's address.

 In this spec, borth word of Index and address can be use by circumstances of the expression, the meaning of these words indicate same in all.
- (*2) When you access to Index $02_{H^{\times}}$ 03_{H} , you can appoint the contents of the next data. 02_{H} indicate register value, 03_{H} indicate display RAM data (register function)
- (*3) The access to display RAM can be permit after accessing to RAMDT in Index $03_{\rm H.}$

- 18 - 2009/8/10 Ver.0.2

7.4.3 CPU parallel I/F mode

This LSI support I80 system CPU.

C86=L: I80 system CPU mode. C86=H: Do not use in this condition.

Table 7.5 Explanation of C86pin setting

C86	Mode	RDB(E)	WPB (RWB)	BWS0	BWS1	DB[17:16]	DB[15:9]	DB[8]	DB[7:0]
	100			L	L		DB[1	7:0]	
	180 -	RDB	WRB	L	Н	Hi-Z		DB[15:0]	
-	system	KDB	WKD	Н	L	Hi-Z	Hi-Z	DB	[8:0]
	CPU			Η	Н	Hi-Z	Hi-Z	Hi-Z	DB[7:0]

180-system CPU can read / write operation in following Table.

Table 7.6 I80-system CPU Read / Write operation.

I80-syst	em CPU	Function
RDB	WRB	1 diletion
L	Н	Read operation
Н	L	Write operation

Ver. 0.2 - 19 -

· I80-system parallel I/F

At the time of parallel data transfer select, the data write to this device on rising time of WRB signal. The timing between BUS and the rise position of WRB clock is refer to AC timing. The data output to data BUS during RDB signal is Low.

Because content is different, please refer to an access method and the content by a case from case to .

- 20 -

7.4.4 Data writing to display RAM

- The data bit number of 1 pixel are 8, 9, 12, 16, 18bit. And data transfer mode are 3 kinds of 1-time, 2-times, 3-times.
- Data transfer number of 1 pixel can be select using register DTX1,DTX2.
- Regarding to Data format, please refer to "Write data format (CPU→Display RAM)".

PSX	BWS0	BWS1	CMDS	Mode	DTX1	DTX2	Data number of 1pixel	Data transfer method of 1pixel
	L	L		18 bit parallel	Х	Х	18 bit	18 bit 1time transfer
		Н		16 bit	Х	L	18 bit	16 bit+2 bit 2times transfer
	L			parallel	^	Н	16 bit	16 bit 1time transfer
					L	L	18 bit	9 bit +9 bit 2times transfer
	Н	L		9bit	L	Н	16 bit	8 bit +8 bit 2times transfer
	П	L	L	parallel	Н	L	12 bit	8 bit +4 bit 2times transfer
					Н	Н	9 bit	9bit 1time transfer
				8bit	L	L	18 bit	6 bit+6 bit +6 bit 3times transfer (*1)
	Н	Н		parallel	L	Η	16 bit	8 bit +8 bit 2 times transfer
				parallel	Н	L	12 bit	8 bit +4 bit 2 times transfer
					Н	Н	8 bit	8 bit 1time transfer
					L	Ш	18 bit	18 bit 1times transfer
1	1	ı		18 bit	L	Ι	16 bit	8 bit +8 bit 2times transfer
-	_	L		parallel	Н	L	18 bit	16 bit +2 bit 2 times transfer
					Н	Ι	16 bit	16 bit 1time transfer
					L	L	18 bit	16 bit +2 bit 2 times transfer
				16 bit	L	Н	16 bit	16 bit 1 time transfer
	L	Н		parallel	Н	L	18 bit	6 bit +6 bit +6 bit 3times transfer (*1)
			Н		Н	Ι	16 bit	8 bit + 8 bit 2 times transfer
					L	Ш	18 bit	9 bit +9 bit 2 times transfer
	н	ı		9bit	L	Ι	16 bit	8 bit + 8 bit 2 times transfer
	П	_		parallel	Н	L	12 bit	8 bit +4 bit 2 times transfer
					Н	Н	9 bit	9bit 1time transfer
					L	L	18 bit	6 bit +6 bit +6 bit 3times transfer
	Н	Н		8bit	L	Н	16 bit	8 bit + 8 bit 2 times transfer
	''	''		parallel	Н	L	12 bit	8 bit +4 bit 2 times transfer
					Н	Н	8 bit	8 bit 1time transfer

(*1) In register (BITSEL) setting is "L", 3 times Data transfer case is used by DB[5:0] (Low side BUS). And in register (BITSEL) setting is "H", 3 times Data transfer case is used by DB[7:2] (Upper side BUS).

Ver. 0.2 - 21 -

7.4.5 Read out data from display RAM.

In read operation, RAM data (1pixel 18 bits) can read out . (The data supplemented by write operation read out too.)

On 18 bit parallel mode, 18bit RAM Data is read out by 1 time CPU access.

But, when on 18 bit parallel mode, CMDS=H and DTX1=1, 18 bit RAM Data is read out by 2 times CPU access. (16bit +2bit).

And, when on 18 bit parallel mode, CMDS=H, DTX1=L and DTX2=H, 18bit RAM Data is read out by 3 times CPU access. (6 bit +6 bit +6 bit).

 On 16 bit parallel mode, 18 bit RAM Data is read out by 2 time CPU access. (16bit + 2bit).

But, when on 18bit parallel mode, CMDS=H and DTX1=H, 18 bit RAM Data is read out by 3 times CPU access. (6 bit +6 bit).

- · On 9 bit parallel mode, 18 bit RAM data is read out by 2 times. (9 bit+ 9Bit)
- · On 8 bit parallel mode, 18 bit RAM Data is read out by

Regarding to Data format, refer to Read Data format. (Display RAM->CPU).

PSX	BWS0	BWS1	CMDS	Mode	DTX1	DTX2	RAM Data r	ead out method
	L	L		18 bit parallel	Χ	Х	18 bit	1 time Read out
	L	Η		16 bit parallel	Χ	Х	16 bit +2 bit	2 times Read out
	Н	L	L	9 bit parallel	Χ	Χ	9 bit+ 9 bit	2 times Read out
	Н	Ι		8 bit parallel	Χ	Χ	6 bit+ 6 bit+ 6bit	3 times Read out (*2)
					L	L	18 bit	1 time Read out
L	L	L		18 bit parallel	L	Н	6 bit+ 6 bit+ 6bit	3 times Read out (*2)
					Η	Х	16 bit +2 bit	2 times Read out
	ı	Н	Н	16 bit parallel	L	Х	16 bit +2 bit	2 times Read out
	L			10 bit parallel	Ι	Χ	6 bit+ 6 bit+ 6bit	3 times Read out (*2)
	Н	Ĺ		9 bit parallel	Χ	Х	9 bit+ 9 bit	2 times Read out
	Н	Η		8 bit parallel	Χ	Х	6 bit+ 6 bit+ 6bit	3 times Read out (*2)

(*2) Register, BTSEL= L and RAM data perform the reading of three times from RAM data at 6 bits with DB[5:0](bottom 6 bits). In addition, register, BTSEL=H perform the reading of RAM data of three times of 6 bits using DB[7:2](upper part 6 bits).

- 22 - 2009/8/10 Ver.0.2

7.4.6 Data Format

7.4.6.1 Write data format (CPU Display RAM)

Table 7.9 18 bit Parallel I/F (18 bit 1 time transfer)

iabioi	.0 1	OBIL	aran	01 1/1	(10, 51		io traj	10101)									
							CF	PU BI	US da	ata							
								1 st	18bit								
DB17	DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0															DB0	
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		RD/	ATA					GD/	ATA					BD	ATA		
								1	Pixel								

Table 7.10 18 bit Parallel I/F (CMDS=H,DTX1=H,DTX2=L) (16bit+2bit 2 times transfer)

					٠.		,	,		/ . \.					,		
							CF	PU BI	US da	ata							
							1 st	16bit								2 nd	2bit
DB15	B15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB1 DB0																
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		RD/	AΤΑ					GD/	ATA					BD/	ATA		
								1	Pixel								

Table 7.11 18 bit Parallel I/F (CMDS=H,DTX1=H, DTX2=H) (16 bit 1 time transfer)

				, .	, •		.,, .	,		/. /			, a.	,			
							CF	PU B	US da	ata							
								1 st	16bit								
DB15	DB15 DB14 DB13 DB12 DB11 - DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 -															-	
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D 0
		RD/	AΤΑ					GD/	ATA					BD/	ATA		
								1	Pixel								

Display RAM data D12,D0 are supplement from CPU BUS data DB15,DB4.

Table 7 12 18 bit Parallel I/F (CMDS=H, DTX1=L, DTX2=H) (8 bit+ 8Bit 2 times transfer)

					\		,	,		/ .\					/		
							CF	PU BI	US da	ata							
			1	1 st 8b	it							2	nd 8b	it			
DB7	DB6	DB5	DB4	DB3	-	DB5	DB4	DB3	DB2	DB1	DB0	-					
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	00
		RD/	ATA					GD/	ATA					BD/	ATA		
								1	Pixel								

Display RAM data D12,D0 are supplement from CPU BUS data DB7 transferred at 1st time, DB4 transferred at 2nd time.

Table 7.13 16 bit Parallel I/F (16 bit+2 bit 2 times transfer)

					, - ;					,							
							CF	PU BI	US da	ata							
							1 st	16bit								2 nd	2bit
DB15	B15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0															DB1	DB0
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		RD/	ATA					GD/	ATA					BD/	AΤΑ		
								1	Pixel								

Table 7.14 16 bit Parallel I/F (16 bit 1 time transfer)

Iable	1.14	10 Dit	Гага	IÉI 1/1	(10	טונ ו נו	iiiie ii	عاراما	1)								
							CF	PU BI	US d	ata							
								1 st	16bit								
DB15	B15 DB14 DB13 DB12 DB11 - DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 -															-	
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D 0
		RD/	AΤΑ					GD/	ATA					BD	ATA		
								1	Pixel								

Display RAM data D12,D0 are supplement from CPU BUS data DB15,DB4

Ver. 0.2

Table 7.15 16 bit Parallel I/F(CMDS=H,DTX1=H, DTX2=L) (6bit+6bit 3times transfer) (BTSEL=L)

							CF			ata							
		1 st	6bit					2 nd	6bit					3 rd	6bit		
DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0
	RAM data																
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
D17	D16	D15 RDA		D13	D12	D11	D10	D9		D7	D6	D5	D4	D3 BD/		D1	D0

Table 7.16 16 bit Parallel I/F(CMDS=H, DTX1=H, DTX2=L) (6bit+6bit+6bit 3times transfer) (BTSEL=H)

							CF			ata							
		1 st	6bit					2 nd	6bit					3 rd	6bit		
DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2
	DAM data																
	RAM data																
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		RD/	AΤΑ					GD/	ATA					BD	ATA		
								1	Pixel								

Table 7.17 16 bit Parallel I/F(CMDS=H, DTX1=H, DTX2=H) (8bit+8bit 2 times transfer)

	_			•	•		-		, ,					,			
							CF	PU BI	US da	ata							
				1 st 8b	it							2	e nd 8b	it			
DB7	DB6	DB5	DB4	DB3	-	DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	-
	RAM data																
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D 0
		RD/	ATA					GDA	ATA					BD/	ATA		
								1	Pixel								
												- 4				a al	

Display RAM data D12,D0 are supplement from CPU BUS data DB7 transferred at 1st time, DB4 transferred at 2nd time.

Table 7.18 9 bit Parallel I/F(9bit+9bit 2times transfer)

		·	a. ao.	"· (CD													
							CF	PU B	US da	ata							
	1 st 9bit 2 nd 9bit																
DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		RD/	ATA					GD/	ATA					BD/	ATA		
								1	Pixel								

Table 7.19 9 bit Parallel I/F(8bit+4bit 2times transfer)

OPUL PUR ALL													
CPU BUS data													
1 st 8bit 2 nd 8bit													
DB7 DB6 DB5 DB4 DB3 - DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 D	B0 -												
RAM data													
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D	D0												
RDATA GDATA BDATA													
1 Pixel													

Display RAM data D12,D0 are supplement from CPU BUS data DB7 transferred at 1st time, DB4 transferred at 2nd time.

Table7.20 9bit Parallel I/F (8bit+4bit 2times transfer)

Table	1.20	JUIL I 6	arailei	1/1 (OL	ULT T ŲII	201110	3 lian	راعاد									
	CPU BUS data																
					1 st	8bit								2 nd	4bit		
DB7	B7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB3 DB2 DB1 DB0																
	RAM data																
D17	D16	D15	D14	D13	D 12	D11	D10	D9	D8	D 7	D 6	D5	D4	D3	D2	D 1	_D0
		RD/	ATA					GD/	ATA					BD	ATA		
	1 Pixel																

Display RAM data D[13:12],D[7:6], D[1:0] are supplement from CPU BUS data DB[7:6], DB[3:2] transferred at 1st time, DB[3:2] transferred at 2nd time.

- 24 - 2009/8/10 Ver.0.2

Table7.21 9bit Parallel I/F (9 bit 1 time transfer)

							CI	PU BI	US d	ata							
								1 st	9bit								
DB8	DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0																
								RAM	data								
D17	D16	D15	D14	D 13	D12	D11	D10	D9	D 8	D7	D6	D5	D4	D3	D2	D1	D0
		RD/	ATA					GD/	ATA					BD/	ATA		
	1 Pixel																

Display RAM data D[14:12],D[8:6], D[2:0] are supplement from CPU BUS data DB[8:0].

Table7.22 8 bit Parallel I/F(6bit+6bit+6bit 3times transfer) (BTSEL=L)

					V					- / (- 7	,					
							CF			ata							
		1 st	6bit					2 nd	6bit					3 rd	6bit		
DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	RDATA GDATA BDATA																
	1 Pixel																

Table7.23 8bit Parallel I/F (6bit+6bit+6bit 3times transfer) (BTSEL=H)

							CF		US d	ata							
		1 st	6bit					2 nd	6bit					3 rd	6bit		
DB7 DB6 DB5 DB4 DB3 DB2 DB7 DB6 DB5 DB4 DB3 DB2 DB7 DB6 DB5 DB4 DB3 DB2													DB2				
	RAM data																
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	RDATA GDATA BDATA																
	1 Pixel																

Table7.24 8bit Parallel I/F (8bit+8bit 2times transfer)

								,									
							CF	PU B	US da	ata							
				1 st 8b	it							2	e nd 8b	it			
DB7	DB6	DB5	DB4	DB3	-	DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	-
								RAM	data								
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	0
		RD/	ATA								BD/	ATA					
	1 Pixel																

Table 7.25 8bit Parallel I/F (8 bit+4bit 2times transfer)

IUDIC	.20	ODIL	aran	C1 1/1	(O Dit	THOIL	2111110	3 trui	3101)								
							CF	PU B	US da	ata							
					1 st	8bit								2 nd	4bit		
DB7	DB6	DB5	DB4	-	-	-	DB3	DB2	DB1	DB0	-	-					
7																	
	RAM data																
D17	D16	D15	D14	D 13	D 12	D11	D10	D9	D8	D 7	D 6	D5	D4	D3	D2	D 1	_D0
		RD/	ATA						BD/	ATA							
	1 Pixel																

Display RAM data D[13:12],D[7:6], D[1:0] are supplement from CPU BUS data DB[7:6], DB[3:2] transferred at 1st time, DB[3:2] transferred at 2nd time.

Table7.26 8bit Parallel I/F (8bit 1time transfer)

Table	1.20	ODIT	aran	C1 1/1	(ODIT	Tunne	trans	101)									
							CF	PU B	US d	ata							
	1 st 8bit																
DB7	DB7 DB6 DB5 - - - DB4 DB3 DB2 - - - DB1 DB0 - - - -																
								RAM	data								
D17	D16	D15	D14	D 13	12	D11	D10	D9	D8	D 7	D6	D5	D4	D 3	D2	D1	_D0
		RD/	ATA					GD/	ATA					BD	ATA		
								1	Pixel								

Display RAM data D[14:12],D[8:6], D[3:0] are supplement from CPU BUS data DB[7:0] .

Ver. 0.2 - 25 -

7.4.6.2 Read data format (Display RAM CPU)

Table7.27 18bit Parallel I/F (18bit 1time transfer)

								RAM	l data								
	1 Pixel																
	RDATA GDATA BDATA																
D17	D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0																
							CF	PU B	US d	ata							
	1 st 18bit																
DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

Table7.28 18bit Parallel I/F (CMDS=H,DTX1=H) (16bit+2bit 2 times transfer)

							-							•			
								RAM	l data								
								1	Pixel								
ĺ	RDATA GDATA BDATA																
D17	D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0																
							CF	PU B	US d	ata							
	1 st 16bit 2 nd												2bit				
DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB1	DB0

Table7.29 18bit Parallel I/F (CMDS=H,DTX1=L, DTX2=H) (6bit+6bit+6bit 3 times transfer) (BTSEL=L)

	RAM data																
	1 Pixel																
		RD/	ATA					GD/	ATA					BD	ATA		
D17	D17 D16 D15 D14 D13 D12					D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 6bit							2 nd	6bit					3 rd	6bit		
DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0

Table7.30 18bit Parallel I/F (CMDS=H,DTX1=L, DTX2=H) (6bit+6bit+6bit 3 times transfer) (BTSEL=H)

										. / , \						/,\	
	RAM data																
	1 Pixel																
		RD/	AΤΑ					GD/	ATA					BD/	ATA		
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
1 st 6bit								2 nd	6bit					3 rd	6bit		
DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2

Table 7.31 16bit Parall I/F (16bit+2bit 2 times transfer)

Table	able 7.51 Tobit Farall (Tobit Fable 2 times transfer)																
	RAM data																
	1 Pixel																
	RDATA GDATA BDATA																
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 16bit												1 st	2bit			
DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB1	DB0

Table7.32 16bit Parallel I/F (CMDS=H, DTX1=H) (6bit+6bit+6bit 3 times transfer) (BTSEL=L)

Iable	able 1.52 Tobit Talallel I/T (ONDS-11, DTX1-11) (obit+obit+obit 5 times transfer) (DTSEL-E)																
	RAM data																
	1 Pixel																
		RD/	AΤΑ					GD/	ATA					BD/	ATA		
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 6bit							2 nd	6bit					3 rd	6bit		
DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0

- 26 - 2009/8/10 Ver.0.2

Table7.33 16bit Parallel I/F(CMDS=H,DTX1=H) (6bit+6bit+6bit 3 times transfer) (BTSEL=H)

	RAM data																
	1 Pixel																
	RDATA							GD/	ATA					BD	ATA		
D17	D17 D16 D15 D14 D13 D12					D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 6bit							2 nd	6bit					3 rd	6bit		
DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2

Table7.34 9bit Parallel I/F(9bit+9bit 2 times transfer)

	RAM data																
	1 Pixel																
	RDATA GDA								ATA					BD/	ATA		
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 9bit												1 st 9b	it			
DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

Table7.35 8bit Parallel I/F (6bit+6bit+6bit 3times transfer) (BTSEL=L)

	RAM data																
	1 Pixel																
		RD/	AΤΑ					GD/	ATA					BD	ATA		
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 6bit							2 nd	6bit					3 rd	6bit		
DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0	DB5	DB4	DB3	DB2	DB1	DB0

Table7.36 8bit Parallel I/F (6bit+6bit+6bit 3times transfer) (BTSEL=H)

		0.0.1	G. G	· ., .	(55.0												
	RAM data																
	1 Pixel																
	RDATA							GD/	ATA					BD	ATA		
D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	CPU BUS data																
	1 st 6bit							2 nd	6bit					3 rd	6bit		
DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2	DB7	DB6	DB5	DB4	DB3	DB2

Ver. 0.2

7.4.7 Access Sequence

7.4.7.1. Parallel I/F (PSX=L)

7.4.7.1.1 Function of RS(Display RAM / Register value) and contents of access (CMDS=L)

At the setting port CMDS=L, function of RS port is setting that data on CPU BUS access to register or display RAM.

1)Access of Register

16/18bit Parallel I/F

· Write operation (at the time register RREN=L)

Data of DB[17:16] is invalid processing, data of DB[15:8] is Index(register address), data of DB[7:0] is register value. As below chart, Register (Include Index)can be write by 1 time access of CPU.

At the time of writing, please make CSB "H" between WRB and next WRG by all means. In IC, Data is written in synchronize at CSB.

· Read operation (Only available read at the time of register RREN=H)

DB[15:8] is Index, DB[7:0] is register value.

After setting register RREN=H, at 1st time write Index, read operation after this write operation read out register value correspond 1st Index..

9/8bit Parallel I/F

· write operation

At the time of operation setting Register RREN=L. Index/Register value write by DB[7:0], data of DB[8] is invalid processing. At the time of 1st write operation, write Index (Register address) and at the time of 2nd write operation, write register value corresponding 1st Index.

· Read operation (Readable only RREN=H)

DB[7:0] are Index and its register value, and DB[8]is invalid data.

After setting Index and register for RREN(RREN=H), write Index at 1st write operation and read out register value corresponding 1st write Index.

In the case of write operation after read operation, return RREN from H to L. This value is not return automatically.

At the time register RREN=H, writable register is only RREN.

Ver. 0.2 - 29 -

2) Access to Display RAM

- At the time of <u>RS=H</u>, access to display RAM can be done.
 (03_H: RAM access can be done without Register RAMDT.)
- At the write operation, 1 pixel access can be done by select transfer times.
- · At the read operation, RAM data can be read (1 pixel 18bit).

16/18bit Parallel I/F

At the time of 2 times transfer, register value of XA[7:0] and YA[8:0] are not change in continues writing to display RAM, and only inside counter value change(same to read out counter)(Auto increment). In the case of writing to specific address, write in Window mode or write after setting XA[7:0] and YA[8:0].

· Read operation

In the case of continues read access to display RAM, the value of XA[7:0] and YA[8:0] are not change, and only inside counter value change(same to read out counter)(Auto increment). In the case of reading to specific address, read in Window mode or read after setting XA[7:0] and YA[8:0].

- 30 -

7.4.7.1.2 Function of RS(Index/Display RAM · Register value) and Contents of access (port CMDS=H)

1) Access to Register

16/18bit Parallel I/F

· Write operation

DB[7:0] is Index(Register address) or Register value and, Remaining DB[17(15):8] is invalid processing. At 1st writing, write Index and at next write register value correspond to 1st Index (Address).

(02_H: Access do regardless of register RREN. However, in the case of the designated address of the index is 03H: RAMDT, access is done to SRAM. Refer to "Access to display RAM"

· Read operation

DB[7:0] is Index(Register address) or Register value and, Remaining DB[17(15):8] is invalid processing. At 1st writing, write Index and at next read time, register value correspond to 1st Index (Address) is output. (02_H : Access do regardless of register RREN.)

Ver. 0.2 - 31 -

9/8bit Parallel I/F

· Write operation

DB[7:0] is Index(Register address) or Register value and, Remaining DB[8] is invalid processing. At 1st writing, write Index and at next write register value correspond to 1st Index (Address). (02_H: Access to register do regardless of register RREN.)

Read Operation

DB[7:0] is Index(Register address) or Register value and, Remaining DB[8] is invalid processing. At 1st writing, write Index (Address) and at next read time, register value correspond to 1st Index is output. (02_H: Access to register do regardless of register RREN.)

- 32 -

2) Access to display RAM

- By access to register RAMDT, display RAM can be read / write. (Address of display RAM are auto increment.)
- · At the write operation, 1 pixel access can be done by select transfer times.
- At the read operation, RAM data can be read (1 pixel 18bit).

16/18bit Parallel I/F

Write operation

Access to Index (03H) means that the next access data become the data of the display RAM, without relations setting register value.

. Write or read operations are determined by only the signal of WRB and RDB.

· Read operation

Access to Index (03H) means that the next access data become the data of the display RAM, without relations setting register value.

Write or read operations are determined by only the signal of WRB and RDB.

Ver. 0.2 - 33 -

9/8bit Parallel I/F

· Write operation

Access to Index (03H) means that the next access data become the data of the display RAM, without relations setting register value.

Write or read operations are determined by only the signal of WRB and RDB.

· Read operation

Access to Index (03H) means that the next access data become the data of the display RAM, without relations setting register value.

Write or read operations are determined by only the signal of WRB and RDB.

8. RAM Access Specification

8.1. Size Setting

8.1.1. Register list

Register Address	Register Name	Description
10н	MPSX[7:0]	This sets the panel size (X direction line numbers)
11н,12н	MPSY[8:0]	This sets the panel size (Y direction line numbers)
13н	WXMIN[7:0]	This sets the drawing window size (X direction origin) in Window access mode
14н,15н	WYMIN[8:0]	This sets the drawing window size (Y direction origin) in Window access mode.
16н	WXMAX[7:0]	This sets the drawing window size (X direction end point) in Window access mode.
17н,18н	WYMAX[8:0]	This sets the drawing window size (Y direction end point) in Window access mode.
19н	WAS	This selects Window access mode. 0: Normal access mode 1: Window access mode

· Panel size (SRAM area) setting constraints

1 MPSX 240 320 MPSY 432

Exceptional operation

(The operations when the constraints above are not met.)

When setting MPSX = $0 \rightarrow MPSX = 240$. When setting 241 MPSX $\rightarrow MPSX = 240$.

When setting MPSY = $0 \rightarrow MPSY = 432$. When setting 433 MPSY $\rightarrow MPSY = 432$.

· Window access mode setting constraints

0 WXMIN WXMAX MPSX-1 0 WYMIN WYMAX MPSY-1

If the constraints above are not met, the mode doesn't make the shift to Window access mode.

- RAM Write is written RAM every time 1 pixel is written from the host. The constraints, like 2-pixel each or 8-pixel each, are not set. This is applied to all modes like Window access mode.
- When in RAM Write and RAM Read, the address will be automatically incremented. The address continues to the origin address after the end point address of (Fig.8-1).
- In Window access mode, the same operation will be done within the setting.

Ver. 0.2 - 35 -

(Fig. 8-1) The outline drawing of the register setting related to RAM

Source output port

The mode of window access is made enable by the register WAS(index : 19H) setting.

Recommended setting order of Window access mode

Setting of MPSX[7:0] and MPSY[8:0]

- → Setting of WXMIN[7:0], MYMIN[8:0], WXMAX[7:0] and WYMAX[8:0]
- \rightarrow Setting of WAS \rightarrow (Setting of XA[7:0] and YA[8:0])
- \rightarrow Acssess of the data

The pointer is moved to the origin of the window when setting the Window mode.

- 36 -

8.1.2. Operation of the pointer

Address	Register Name	Description
1AH	XA[7:0]	Set X-address
1Вн,1Сн	YA[8:0]	Set Y-address

The pointer can be moved to the arbitrary point of RAM by XA[7:0] and YA[8:0] register settings. And then RAM Write and RAM Read become possible. The pointer of RAM Write and RAM Read is in common.

The address will be automatically incremented from that point after moving the pointer. However the movement will continue to the origin address (Not XA[7:0] and XY[8:0]) when it comes to the end address.

The value set in the previous time can be read when reading XA[7:0] and YA[8:0] register values. Register value is not subordinated by the pointer. The origin point and the end point will be different from Normal Display in Window access mode.

· Setting constraints

Except in Window access mode

0 XA MPSX-1

0 YA MPSY-1

In Window access mode

0 XA WXMAX-WXMIN

0 YA WYMAX-WYMIN

If the constraints above are not satisfied, the pointer should be returned to the origin.

- · Write(Read)pointer moves only in the following 4 cases.
 - 1. When changing XA[7:0] and YA[8:0] registers,
 - \rightarrow The pointer moves to (XA[7:0] and YA[8:0]).
 - 2. The pointer moves to the origin when resetting the hardware.
 - \rightarrow The pointer moves to (0.0).
 - 3. When setting the mode of window (Enable of WAS)
 - → The pointer moves to (WXMIN[7:0], WYMIN[8:0]).
 - 4. When accessing to ADX, ADY and index related to INC (address)
 - → The pointer moves to the origin.

R	egiste	r	Normal mode		Window mode	
INC	ADY	ADX	X pointer	Y pointer	X pointer	Y pointer
0	0	0	0	0	WXMIN[7:0]	WYMIN[8:0]
0	0	1	MPSX[7:0]-1	0	WXMAX[7:0]	WYMIN[8:0]
0	1	0	0	MPSY[8:0]-1	WXMIN[7:0]	WYMAX[8:0]
0	1	1	MPSX[7:0]-1	MPSY[8:0]-1	WXMAX[7:0]	WYMAX[8:0]
1	0	0	0	0	WXMIN[7:0]	WYMIN[8:0]
1	0	1	MPSX[7:0]-1	0	WXMAX[7:0]	WYMIN[8:0]
1	1	0	0	MPSY[8:0]-1	WXMIN[7:0]	WYMAX[8:0]
1	1	1	MPSX[7:0]-1	MPSY[8:0]-1	WXMAX[7:0]	WYMAX[8:0]

Refer to the next page, 'Memory access order' for the direction of operation.

Ver. 0.2

8.2. Memory access order

8.2.1. Register list

Address	Register Name Description	
		This sets the addressing direction of X address when accessing Display RAM.
	ADX	0 : Normal (increment) direction
		1 : Inversion (decrement) direction
		This sets the addressing direction of Y address when
		accessing Display RAM.
1DH	ADY	0 : Normal (increment) direction
		1 : Inversion (decrement) direction
		This sets the increment direction of address when
	INC	accessing Display RAM.
	INC	0 : X address · increment
		1: Y address · increment

Examples of Memory access order

The original address and Memory access order are shown below for the panel of 3x3 pixels(1 ~ 9 pixel shown below) when setting each function by ADX,ADY,INC register. In Window access mode, the same operation is done in the setting area.

1	2	3
4	5	6
7	8	9

INC	ADY	ADX	Original address	Memory access order
0	0	0	1	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9$
0	0	1	3	$3\rightarrow2\rightarrow1\rightarrow6\rightarrow5\rightarrow4\rightarrow9\rightarrow8\rightarrow7$
0	1	0	7	$7\rightarrow 8\rightarrow 9\rightarrow 4\rightarrow 5\rightarrow 6\rightarrow 1\rightarrow 2\rightarrow 3$
0	1	1	9	$9 \rightarrow 8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$
1	0	0	1	$1 \rightarrow 4 \rightarrow 7 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 3 \rightarrow 6 \rightarrow 9$
1	0	1	3	$3 \rightarrow 6 \rightarrow 9 \rightarrow 2 \rightarrow 5 \rightarrow 8 \rightarrow 1 \rightarrow 4 \rightarrow 7$
1	1	0	7	7-4-1-8-5-2-9-6-3
1	1	1	9	96-3-8-5-2-7-4-1

- 38 - 2009/8/10 Ver.0.2

(Fig.8-2) Outline Fig. of the register setting

Ver. 0.2 - 39 -

8.3. RAM Addressing

Maximum panel size: 240 RGBx432 (MPSX[7:0]=240, MPSY[8:0]=432)

RAM Read to the panel is always executed in following order of the absolute address of RAM as the (Fig.9-3) below. However the virtual address of Write, Read and Auto increment from the host to RAM will change like X-address and Y-address in the Fig by setting ADX and ADY. Herewith flip horizontal writing and flip vertical writing in the previous page become possible. X-address and Y-address are allocated in the setting area in Window access mode.

(Fig.8-3) RAM addressing

When ADX=0,

When ADX=1,

- 40 -

9. Partial setting

9.1. Register list

Address		Description	
		This selects Partial Display functions.	
		00 : Normal Display	
30н	PTLON[1:0]	01: Partial Display, Display area A	
		10 : Partial Display, Display area B	
		11: Partial Display, Both Display area A and Display area B.	
64н	TPNREF[3:0]	Refresh frequency setting	
04H	TREF[2:0]	Refresh frequency setting of Non-display area	
36н,37н	PTLAS[8:0]	The start line of Display area A in Partial Display.	
38н,39н	38н,39н PTLAE[8:0] The end line of Display area A in Partial Display.		
ЗАн,ЗВн	ЗАн,3Вн PTLBS[8:0] The start line of Display area B in Partial Display.		
3Cн,3Dн	PTLBE[8:0] The end line of Display area B in Partial Display.		

· Partial-related register constraints

a: 0 PTLAS PTLAE MPSY-1 b: 0 PTLBS PTLBE MPSY-1

When PTLON=01, Partial Display will not be done if a is not satisfied. When PTLON=10, Partial Display will not be done if b is not satisfied.

When PTLON=11, Partial Display will be done only when both a and b are satisfied.

There is no constraint for the hierarchical relation or overlapping of Display area A and Display area B.

When two areas are successive or overlapped, they will be displayed as one successive area.

· Other constraints

Partial display mode and Screen scroll function have the priority order and only higher function will be displayed. Even though the higher function is in operation, the value can be entered to the register. When the higher function is OFF, the set value will be applied in Display.

Partial Display mode has higher priority than Screen scroll.

There is no RAM Read to any panel parts except the set area because Partial Display mode aims the electrical power saving.

Ver. 0.2 - 41 -

(Fig.9-1) Register setting outline Fig. PTLAS Display area PTLAE Non display area Non display area PTLON PTLON **PTLAS** Display area MagnaChip: MagnaChip* PTLAE Non display area **PTLAS** Display area PTLAE Non display area PTLAS Display area PTLAE Non display area **PTLBS** Display area Magna Chip* PTLBE

Display area B can be set to the upper position than Display area A.

- 42 - 2009/8/10 Ver.0.2

10. Screen scroll

10.1. Register list

Address	Register Name	Description
20н,21н	SSL[8:0]	This sets the start line of the scroll area in Scroll function.
22н,23н	SEL[8:0]	This sets the end line of the scroll area in Scroll function.
24н,25н	SST[8:0]	This sets the step numbers of scroll in Scroll function.

- Scroll Display is started when the value is entered to SST[8:0]register.
- Scroll Display is the display whose upper and under sides of the image in the scroll area, set by SSL[8:0] and SEL[8:0], are connected and that image will move upward according to the number of steps already set. (Image on the display appears to move upward as the address moves downward.), the part run off the edge from the scroll area appears from the bottom.
- When 0 is entered to SST[8:0] register, Normal Display is started.
- · Scroll-related register constraints
 - 0 SSL[8:0] < SEL[8:0] MPSY[8:0]-1
 - 0 SST[8:0] < SEL[8:0] SSL[8:0]+1

When setting other than these constraints, scrolling will not be implemented.

· Other constraints

Partial display mode and Screen scroll function have the priority order and the only higher function will be displayed. Even though the higher function is in operation, the value can be entered to the register. When the higher function is OFF, the set value will be reflected in Display.

The priority of Screen scroll function is lower than Partial display mode.

Ver. 0.2 - 43 -

(Fig. 10-1): Register setting outline Fig. Scroll definition example Scroll example SRAM Gate Number Y-Address SSL 00HScroll area SSL→ 210 211 is a suitable drive IC fo The D54E4PA755 WQVGA LCD panel 250 251 Resolution:240RGBx432 is a suitable drive IC fo $\frac{300}{301}$ 12Вн 12Сн **WQVGA LCD** panel Magna Chip* SEL Resolution:240RGBx43 SEL-18Fн 190н SSL MagnaChip* 1AF H SSL=D2H(211line) Scroll area SEL=18FH(400line) SST=0 H(0step) SEL 00HThe WQVGA LCD panel. Non-Scroll area Resolution:240RGBx432 Magna Chips - $\stackrel{210}{\sim}$ 211 SSLis a suitable drive IC fo $\frac{250}{251}$ 12Вн 12Сн WQVGA LCD panel Non-Scroll area 15Dн 15Eн Resolution:240RGBx43 18Fн D2н The D54E4PA7551 SEL → F9н 190н SSL MagnaChip* 1AF H is a suitable drive IC fo SSL=D2H(211line) Scroll area WQVGA LCD panel. SEL=18FH(400line) SST=3 H(50step) Resolution:240RGBx432 MagnaChip* **SEL** Non-Scroll area SSL→ 210 211 SSL **WQVGA LCD** panel 250 251 Resolution:240RGBx43 is a suitable drive IC fo Scroll area $\frac{300}{301}$ 18Fн D2н WQVGA LCD panel The D54E4PA755 350 351 F9H FAH Resolution:240RGBx432 is a suitable drive IC fo SEL -SEL 12Вн 190н 400 401 MagnaChip* Non-Scroll area Magnalhip* 1AF_H SSL=D2H(211line) SEL=18FH(400line) SST=6 H(100step)

- 44 - 2009/8/10 Ver.0.2

11. Configuration of Gamma circuits

11.1. Outline

The 64-gray scale voltage is generated by the gamma resistance ratio between VGM-VGML (GND).

The Blue gamma function is available. The blue gamma is generated by selecting the same gamma resistance for Red/Green gamma's. And it actualizes the gamma function for Blue. Gamma resistance is set the positive/negative pole respectively. Gamma resistance configuration is explained below.

Ver. 0.2 - 45 -

11.2. Gamma resistance ratio table

Reg/Green Gamma and Blue Gamma have some value in this case.

They have difference circuit for each and their value describe on each column.

		Ratio of R	esistance		Gray voltage at VGM=4.8V			
Gray	Positive	(VCOM=L)	Negative(\	VCOM=H)		VCOM=L)	Negative(\	/COM=H)
Level	RED/	/	RED/		RED/		RED/	<u>· </u>
LCVCI	GREEN	BLUE	GREEN	BLUE	GREEN	BLUE	GREEN	BLUE
1	208	208	394	394	1.9968	1.9968	3.7824	3.7824
2	258	258	344	344	2.4768	2.4768	3.3024	3.3024
3	288	288	314	314	2.7648	2.7648	3.0144	3.0144
4	300	300	302	302	2.8800	2.8800	2.8992	2.8992
5	305	305	297	297	2.9280	2.9280	2.8512	2.8512
6	310	310	292	292	2.9760	2.9760	2.8032	2.8032
7	313	313	289	289	3.0048	3.0048	2.7744	2.7744
9	315 317	315 317	287 285	287 285	3.0240 3.0432	3.0240 3.0432	2.7552 2.7360	2.7552 2.7360
10	320	320	282	282	3.0720	3.0720	2.7072	2.7072
11	322	322	280	280	3.0912	3.0912	2.6880	2.6880
12	324	324	278	278	3.1104	3.1104	2.6688	2.6688
13	326	326	276	276	3.1296	3.1296	2.6496	2.6496
14	328	328	274	274	3.1488	3.1488	2.6304	2.6304
15	331	331	271	271	3.1776	3.1776	2.6016	2.6016
16	333	333	269	269	3.1968	3.1968	2.5824	2.5824
17	335	335	267	267	3.2160	3.2160	2.5632	2.5632
18 19	337 339	337 339	265 263	265 263	3.2352 3.2544	3.2352 3.2544	2.5440 2.5248	2.5440 2.5248
20	341	341	261	261	3.2736	3.2736	2.5056	2.5056
21	343	343	259	259	3.2928	3.2928	2.4864	2.4864
22	345	345	257	257	3.3120	3.3120	2.4672	2.4672
23	347	347	255	255	3.3312	3.3312	2.4480	2.4480
24	349	349	253	253	3.3504	3.3504	2.4288	2.4288
25	351	351	251	251	3.3696	3.3696	2.4096	2.4096
26	353	353	249	249	3.3888	3.3888	2.3904	2.3904
27	355	355	247	247	3.4080	3.4080	2.3712	2.3712
28	357	357	245	245	3.4272	3.4272	2.3520	2.3520
29 30	359 361	359 361	243 241	243 241	3.4464 3.4656	3.4464 3.4656	2.3328 2.3136	2.3328 2.3136
31	363	363	239	239	3.4848	3.4848	2.2944	2.2944
32	365	365	237	237	3.5040	3.5040	2.2752	2.2752
33	367	367	235	235	3.5232	3.5232	2.2560	2.2560
34	370	370	232	232	3.5520	3.5520	2.2272	2.2272
35	373	373	229	229	3.5808	3.5808	2.1984	2.1984
36	375	375	227	227	3.6000	3.6000	2.1792	2.1792
37	377	377	225	225	3.6192	3.6192	2.1600	2.1600
38 39	380 383	380	222 219	222 219	3.6480	3.6480	2.1312	2.1312
40	386	383 386	216	219	3.6768 3.7056	3.6768 3.7056	2.1024 2.0736	2.1024 2.0736
41	389	389	213	213	3.7344	3.7344	2.0448	2.0448
42	391	391	211	211	3.7536	3.7536	2.0256	2.0256
43	394	394	208	208	3.7824	3.7824	1.9968	1.9968
44	397	397	205	205	3.8112	3.8112	1.9680	1.9680
45	400	400	202	202	3.8400	3.8400	1.9392	1.9392
46	403	403	199	199	3.8688	3.8688	1.9104	1.9104
47	405	405	197	197	3.8880	3.8880	1.8912	1.8912
48 49	408	408	194 191	194 191	3.9168	3.9168	1.8624	1.8624
50	411 415	411 415	191	191	3.9456 3.9840	3.9456 3.9840	1.8336 1.7952	1.8336 1.7952
51	419	419	183	183	4.0224	4.0224	1.7568	1.7568
52	423	423	179	179	4.0608	4.0608	1.7184	1.7184
53	427	427	175	175	4.0992	4.0992	1.6800	1.6800
54	431	431	171	171	4.1376	4.1376	1.6416	1.6416
55	436	436	166	166	4.1856	4.1856	1.5936	1.5936
56	441	441	161	161	4.2336	4.2336	1.5456	1.5456
57	446	446	156	156	4.2816	4.2816	1.4976	1.4976
58	452	452	150	150	4.3392	4.3392	1.4400	1.4400
59	458	458	144	144	4.3968	4.3968	1.3824	1.3824
60	465 472	465	137	137	4.4640	4.4640	1.3152	1.3152
61 62	472 479	472 479	130 123	130 123	4.5312 4.5984	4.5312 4.5984	1.2480 1.1808	1.2480 1.1808
63	489	489	113	113	4.6944	4.6944	1.0848	1.0848
64	499	499	103	103	4.7904	4.7904	0.9888	0.9888
							•	
全体比		ð	00			V (5 M)	@4.8∀	
T-1.5.0		V	**			1 4111	W 11V 1	

- 46 - 2009/8/10 Ver.0.2

11.3. Graph of GAMMA resistance

Ver. 0.2

12. VCOM Output circuit

The configurations of VCOM output using VGM as the reference and using VRIN as the power supply.

Refer to "Power supply circuits (3) Block diagram" and following 12.1 VCOM Output Voltage".

12.1. VCOM Output Voltage

Output Voltage of VCOMH and VCOML are designated by register VCOMH(68h) and VCOML(69h).

VGM voltage works as reference voltage for VCOMH and VCOML.

The actual output voltage of VCOM and VCOML are related with VGM and both registers VCOMH(68h) and VCOML(69h).

	Min and Max value of registers	Output voltage rage	Output voltage at VGM=4.8V
VCOMH	07H ~ B8H	VGM×0.5 ~	2.40V ~ VRIN-0.2V (Note)
		VGM×1.208	
VCOML	07H ~ B8H	VGM×0.036 ~	0.20V ~ 3.571V(Note)
		VGM×0.744	

Note) The output voltage which disiganated by register is different from actual output voltage.

Actual voltage is limited by following formulas.

VCOMH VRIN-0.2V

VCOML 0.2V

VCOMH Output Voltage

VCOMH(V) = VGMx[0.500+0.004x(VCOMH-07h)]

Output voltage example at VGM = 4.8V VRIN=5.1V

VCOMH[7:	VCOMHoutput	VCOMH[7:	VCOMHoutput voltage
0]	voltage	0]	
07H	2.400V	70H	4.416V
10H	2.573V	71H	4.435V
20H	2.880V	72H	4.454V
30H	3.187V	73H	4.474V
40H	3.494V	74H	4.493V
50H	3.802V	75H	4.512V
60H	4.109V	76H	4.531V
68H	4.262V	77H	4.550V
69H	4.282V	78H	4.570V
6AH	4.301V	80H	4.723V
6BH	4.320V	88H	4.877V
6CH	4.339V		
6DH	4.358V		
6EH	4.378V		
6FH	4.397V		

- 48 - 2009/8/10 Ver.0.2

VCOML Output Voltage

VCOML(V) = VGMx[0.036+0.004x(VCOML-07h)]

Output voltage example at VGM = 4.8V VRIN=5.1V

VCOML[7:0	VCOMLoutput	VCOML[7:0	VCOMLoutput voltage
]	voltage]	
09H	0.211V	60H	1.882V
10H	0.346V	61H	1.901V
20H	0.653V	62H	1.920V
2DH	0.902V	63H	1.939V
2EH	0.922V	64H	1.958V
2FH	0.941V	65H	1.978V
30H	0.960V	66H	1.997V
31H	0.979V	67H	2.016V
32H	0.998V	68H	2.035V
33H	1.018V	69H	2.054V
34H	1.037V	6AH	2.074V
35H	1.056V	6BH	2.093V
36H	1.075V	6CH	2.112V
37H	1.094V	6DH	2.131V
40H	1.267V	70H	2.189V
50H	1.574V	80H	2.496V

12.2. VCOM OUTPUT MODE

This VCOM output circuit has 3 kinds mode which is designated by COM_MODE[1:0](Address=6AH).

COM_MODE1	COM_MODE0	VCOM Output mode
0	0	mode 1-1
0	1	mode 1-2
1	0	mode 2
1	1	mode 3

In each mode, internal equivalent circuit and external circuit are below. By setting COM_MODE[1:0], VCOM AMP operation change.

Output MODE 1-1 and 1-2 The timing of VCOM rising & falling position are difference between MODE1-1 and 1-2. Internal circuit is same.

Ver. 0.2 - 49 -

Output mode 2

Output mode 3

13 . Register map and summary

ADD	Symbol	D7	D6	D5	D4	D3	D2	D1	D0	Description	Default	AppI.
00H	NOP	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	ID[7:0] : Device code	37	-
01H	TRFMODE	-	-	-	-	-	BTSEL	DTX2	DTX1	BTSEL: 5-bit data allocation setting DTX[2:1]: Specify the transfer mode	00	AO
02H	RREN	-			-	-		-	RREN	RREN : Register Read/Write selection		AO
03H	RAMDT	-	-		-	_	-	-	RAMDT	RAMDT: RAM Read/Write selection		AO
07H	SYSCTL	-	-	-	-	-	BATDET	OSCDIV	CRON	BAT_DET: battery detection enable OSCDIV: Built-in CR oscillation 2 frequencies dividing setting	01	AO
08H	MEMCTL	•	•	1	-	RBI	COL8WR	NWB	REVWR	CRON: Oscillator circuit ON/OFF RBI: Data exchange setting of Red/Blue COL8WR: 8-color Write NWB: Normal White/Black REVWR: Image data inversion Write	02	AO
10H	MPSX	MPSX7	MPSX6	MPSX5	MPSX4	MPSX3	MPSX2	MPSX1	MPSX0	MPSX[7:0] : PANEL X Size	F0	AO
11H	MPSY1	MPSY7	MPSY6	MPSY5	MPSY4	MPSY3	MPSY2	MPSY1	MPSY0	MPSY[8:0]: PANEL Y Size	90	AO
12H	MPSY2	-	-	-	-	-	-	-	MPSY8	MF31[0.0] . FANEL 1 312e	01	٨٥
13H	NIMXW	WXMIN7	WXMIN6	WXMIN5	WXMIN4	ENIMXW	WXMIN2	WXMIN1	WXMINO	WXMIN[7:0]Window mode X start point	00	AO
14H	WYMIN1	WYMIN7	WYMIN6	WYMIN5	WYMIN4	WYMIN3	WYMIN2	WYM I N1	WYMINO	WOMINET - 0.1Window - node - V - 44-44 - nint	00	40
15H	WYMIN2	-	-		-		-	-	WYMIN8	WYMIN[7:0]Window-mode Y start point	00	AO
16H	WXMAX	WXMAX7	WXMAX6	WXMAX5	WXMAX4	WXMAX3	WXMAX2	WXMAX1	WXMAXO	WXMAX[7:0] : Window mode X end point	00	AO
17H	WYMAX1	WYMAX7	WYMAX6	WYMAX5	WYMAX4	WYMAX3	WYMAX2	WYMAX1	WYMAX0	WALL VIT OIL WILL IN THE VITE OF THE VITE	00	40
18H	WYMAX2	-	-		-	-	-	-	WYMAX8	WYMAX[7:0] : Window mode Y end point	00	A0
19H	WAS	_	_	-	_	-	-	_	WAS	Window Access mode enable	00	AO
1AH	XA	XA7	XA6	XA5	XA4	XA3	XA2	XA1	XAO	XA[8:0]: RAM write X address	00	AO
1BH	YA1	YA7	YA6	YA5	YA4	YA3	YA2	YA1	YAO			
1CH	YA2	-	-	-	-	-	-	-	YA8	YA[8:0]: RAM write Y address	00	AO
1DH	RAMCTL	SCANUD (VS)					ADX (VA)	ADY (VA)	INC (VA)	SCANUD:Memory scan direction ADX:X address INC/DEC setting ADY:Y address INC/DEC setting INC:INC X/Y direction setting	00	VS AO
1EH	TVGLN	-	TVGLN6	TVGLN5	TVGLN4	TVGLN3	TVGLN2	TVGLN1	TVGLNO	TVGLN[6:0]:Display line numbers	50	VA
20H	SSL1	SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSL0			
21H	SSL2	-	-	-	-	-	-	-	SSL8	-SSL[8:0]: Scroll start line	00	VA
22H 23H	SEL1 SEL2	SEL7	SEL6	SEL5	SEL4	SEL3	SEL2	SEL1	SEL0 SEL8	SEL[8:0]: Scroll end line	00	VA
24H	SST1	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0	SST[8:0]: Scroll step numbers		
25H	SST2	SSTD		-	-	-	-	-	SST8	SSTD: Scroll direction setting	00	VA
30H	DSPCTL1	UD	INITON	MODE	-	PTLON1	PTLONO	-	DEN	UD: Gate scan direction INITON: LCD panel Initialization MISTON: Select the register for use PTLON[1:0]: Partial Display DEN: Select the Display data	80	VS
31H	VALTRAN	-	-	-	-	-	-	-	VALGO	VALGO: Vertical synchronizing flag	00	VS
33H 34H	DSPCTL2 TGCTL1	-	FROFF	- SSIGOFF	- GSIGOFF	- GOEOFF	- DCKOFF	DENCOL	COMOFF	DENCOL: Non-Display data color GSIGOFF:Gate control system output OFF control SSIGOFF:Source control system output OFF control GCEOFF: GOE output OFF control GCKOFF: GCK output OFF control COMOFF: COM output OFF control	00	AO
	TGCTL2							FRINV	GCKINV	DCKINV:DCK and DCKB out polarity RCKINV: RCK output polarity GUDINV: GUD output polarity SSMINV: ASW output polarity GSPINV: GSP output polarity GOEINV: GOE output polarity FRINV: FR output polarity GCKINV: GCK output polarity	00	AO
	PTLAS1	PTLAS7	PTLAS6	PTLAS5	PTLAS4	PTLAS3	PTLAS2	PTLAS1	PTLAS0		00	VA
37H		-	-	-	-	-	-	-	PTLAS8	:partial area(A)start line		***
38H 39H		PTLAE7	PTLAE6	PTLAE5	PTLAE4	PTLAE3	PTLAE2	PTLAE1	PTLAE0 PTLAE8	PTLAE[8:0] :partial area(A)end line	00	VA
_		DTI DC7	DTI DCC	DTI DOF	PTLBS4	PTLBS3	DTI DCO	DTI DC4		1 11		
	PTLBS2	PTLBS7	PTLBS6	PTLBS5	-	-	PTLBS2 -	PTLBS1	PTLBS8	PTLBS[8:0] :partial area(B)start line	00	VA
3CH 3DH		PTLBE7	PTLBE6	PTLBE5	PTLBE4	PTLBE3	PTLBE2	PTLBE1	PTLBE0 PTLBE8	PTLBE[8:0] :partial area(B)end line	00	VA
3EH	SEQCTL	-	-	-	-	-	-	AUTOFF	AUTON	AUTOFF: Auto OFF sequence start	00	AO
	EXVSCTL	-	-	-	-	-	-	-		AUTON : Auto ON sequence start EXVSON: External VSYNC control	00	AO
ЭГП	LAVOUIL	-	•	-	_	-	-	_	EVAOON	EAVOUR. EXTERNAL VOING CONTINU	UU	AU

Ver. 0.2 - 51 -

ADD	Symbol	D7	D6	D5	D4	D3	D2	D1	DO	Description	Defaul	Appl.
40H	TPARAM1	TVBK 1LINE	TVBK GCK	TVBK GOE	TVBK COM2	TVBK COM1	TVBK COMO	TVBK SX1	TVBK SX0	TVBK1LINE: 1 line output before/after valid line TVBKGCK: Blanking GCK output TVBKCOE: Blanking GOE output TVBKSOM[2:0]:Blanking COM output TVBKSX[1:0]:Blanking source output	00	VS
42H	TVFPSIZE	-	TVFP6	TVFP5	TVFP4	TVFP3	TVFP2	TVFP1	TVFP0	TVFP[6:0]: Vertical front porch	33	VS
43H	TVBLNK	-	-	-	-	-	TVBP2	TVBP1	TVBP0	TVBP[2:0]: Vertical back porch number	01	VS
44H	THCNT	-	-	THCNT5	THCNT4	THCNT3	THCNT2	THCNT1	THCNTO	THCNT[5:0]: Horizontal scan term	09	VS
45H	TGSPWD	-	-	-	TGSPST3	TGSPST2	TGSPST1	TGSPST0	TGSPWD	TGSPST[3:0]: GSP output starting position setting TGSPWD: GSP output active width	02	VS
46H	TGCKST	-	-	-	-	TGCKST3	TGCKST2	TGCKST1	TGCKSTO	TGCKST[3:0]:GCK output starting point setting	06	VS
48H	TCOMST	_	_	-	-	_	TCOMST2	TCOMST1	TCOMSTO	TCOMST[2:0]:COM output position	01	VS
4AH	TSSWCTL1	•	•	•	FRCINV	THPCH CTL	TVBK ASW1	TVBK ASW0	SWDAREV	setting FRCINV: COM phase inversion setting THPCH_CTL: Horizontal pre-charge output setting TVBK_ASW[1:0]: Blanking term ASW SWDAREV: SSD output pixel inversion	00	VS
4BH	TSSWCTL2	TYPE1	TYPE0	RB	PIX	FREV1	FREVO	LREV1	LREV0	TYPE[1:0]: SSD output order setting RB: SSD output RB inversion PIX: SSD output Pixel inversion FREV[1:0]:SSD output frame inversion LREV[1:0]:SSD output line setting	00	VS
4CH	TASWST	-	-	-	TASWST4	TASWST3	TASWST2	TASWST1	TASWST0	TASWST[4:0]: AS output starting position setting	06	VS
4DH	TPCDCTL	PREST3	PREST2	PREST1	PRESTO	PREWD3	PREWD2	PREWD1	PREWD0	PREST[3:0]: Pre-charge starting position setting PREWD[3:0]: Pre-charge ASW pulse width	01	VS
4FH	TPTLREF1	-	TVPTL AWS11	TVPTL AWS10	TVPTLCOM12	TVPTLCOM11	TVPTLCOM10	TVPTL SX11	TVPTL SX10	TVPTLASW1[1:0]: Partial ASW setting TVPTLCOMM[2:0]: Partial COM setting TVPTLSX1[1:0]: Partial setting	00	VS
50H	TPTLREF2	-	-	-	-	-	-	TPTL 1LINE	TPTL GOE	TPTL1LINE: Partial Non-Display output setting TPTLGOE: Partial Non-Display GOE setting	00	VS
51H	TVPTLCOM2	-	-	-	-	-	TVPTLC0M22	TVPTLCOM21	TVPTLCOM20	COM setting at Partial Mode	00	VS
52H	TASWST	-	_	-	TASWST4	TASWST3	TASWST2	TASWST1	TASWST0	TASWST[4:0]:	01	VS
53H	TASWASX	-	-	-	TASWSX	TASWWD3	TASWWD2	TASWWD1	TASWWDO	ASW simultaneous enable start TASWSX: ASW simultaneous enable source output TASWWD[2:0]: ASW simultaneous enable pulse width	01	VS
54H	TPHPARAM	-	-	-	-	-	THBKSX1	THBKSX0	TPCHLVL	THBKSX[1:0]:Blanking source output TPCHLVL:horizontal pre-charge output	02	VS
5AH	BATNZDET	-	-		-	-	-	BATNZDET1	BATNZDET0	BATNZDET[1:0]:batty detect period	00	A0
5BH	MPWSTEP1	MPSTP8	MPSTP7	MPSTP6	MPSTP5	MPSTP4	MPSTP3	MPSTP2	MPSTP1	Manual operation of each power	00	A0
5CH	MPWSTEP2	-	-	-	-	-	-	MPSTP10	MPSTP9	manual operation of each power step	00	AO
60H	DRVCTL1	CHGSON	LPWRON	•	COMREV	•	-	-	-	CHGSHRON:Charge share enable LPWRON:Low current control COMREV:COM output control	00	VA
61H	DRVCTL2	CHGSWD4	CHGSWD3	CHGSWD2	CHGSWD1	CHGSWDO	CHGSST2	CHGSST1	CHGSST0	CHGSWD[4:0]:Charge share period CHGSST[2:0]: Charge share start	00	VS
62H	TASW2	-	TSWWD3	TSWWD2	TSWWD1	TSWWD0	TSWSP2	TSWSP1	TSWSP0	TSWWD[3:0]:ASW pulse width TSWSP[2:0]:ASW pulse width	29	VS
63H	TRDRVB1	-	_	_	_	-	SDRVT2	SDRVT1	SDRVTO	SDRVST[2:0]:Low current drive	00	VA
										period PTLNDR[3:0]:partial no-Display		
64H	TREFCTL1	-	PTLNDR3	PTLNDR2	PTLNDR1	PTLNDRO	PTLDR2	PTLDR1	PTLDR0	Area refresh ratio setting PTLDR[2:0]:Display area refresh ratio	00	VA
65H	TBTAS1	-	-	-	-	OBIAS3	OBTAS2	OBIAS1	OBTASO	OBIAS[3:0]:Gamma bias current VGAMH[2:0]:Gamma Amp H Voltage	02	AO
66H 68H	VGAMH1 VCOMH1	VCOMH7	VCOMH6	VCOMH5	- VCOMH4	VCOMH3	VGAMH2 VCOMH2	VGAMH1 VCOMH1	VGAMHO VCOMHO	VCOMH[6:0]:VCOMH voltage	03	AO AO
69H	VCOML1	VCOML7	VCOML6	VCOML5	VCOML4	VCOML3	VCOML2	VCOML1	VCOMLO	VCOML[7:0]:VCOML voltage	07	AO
6Ан	COM_MODE	-	-	-	-	-	-	COMMODE1	COMMODEO	COM OUTPUT mode	02	AO
6BH	CB	-	-	-	-	-	-	CB1	CB0	For Control	02	A0
70H 76H	DRVCTL3 VGAMH2									Low current drive mode registers same function as DRVCTL1-VGAMH1		

- 52 - 2009/8/10 Ver.0.2

ADD	Symbol	D7	D6	D5	D4	D3	D2	D1	D0	Description	Default	Appl.
80H	POWCTL	V18M	ANAGOFF	VSR	VGMR	VCOMR	DCDC2	DCDDC1	APWRS	V18M:1.8V core Regulator control ANAGOFF:ANALOG CONTROL VSR:source power Regulator VGMR:VGM Regulator control VCOMR:VCOM Regulator control DCDC2:DCDC2 booster control DCDC1:DCDC1 booster control APWRS:AUto sequence control	81	AO
81H	DCDCCLK	-	DC2CK2	DC2CK1	DC2CK0	-	DC1CK2	DC1CLK1	DC1CK0	DC2CK[2:0]:DCDC2 boost clock frequency DC1CK[2:0]:DCDC1 boost clock frequency	44	AO
82H	PNLCKCT L	-	-	DCKST1	DCKST0	RCKSKW1	RCKSKWO	DCKD I V1	DCKDIVO	DCST[1:0]:DCK(B) skew RCK_SKW[1:0]:GCK/RCK Skew setting DCKDIV[1:0]:DCK divide	15	AO
83H	DC1CNT	-	DC1MD1	DC1MD0	DC1DRV1	DC1DRV0	DC10UT2	DC10UT1	DC10UT0	DC1MD[1:0]:DCDC1 operation mode DC1DRV[1:0]:DCDC1 drivability DC10UT[2:0]:DCDC1 output voltage	3C	AO
84H	DC1SET	-	-	-	RD10N	DC1SET3	DC1SET2	DC1SET1	DC1SET0	RD10N:RD0N Timing DC1SET[3:0]:DCDC1 Clock Timing	17	AO
85H	DC2CNT	-	DC2MD1	DC2MD0	DC2DRV1	DC2DRV0	DC20UT2	DC20UT1	DC20UT0	DC2MD[1:0]:DCDC2 operation mode DC2DRV[1:0]:DCDC2 drivability DC2OUT[2:0]:DCDC2 output voltage	20	AO
86H	DC2SET	-	-	-	RD20N	DC2SET3	DC2SET2	DC2SET1	DC2SET0	RD20N:RD0N Timing VDCDC2SET[3:0]:DCDC2Clock Timing	17	AO
90H	VPON1	DSTVR1	DSTVRO	PDC20N1	PDC20N1	PDC10N1	PDC10N0	PDCUP1	PDCUPO	DSTVR[1:0]:VR Start-up wait time PDC20N[1:0]:DCDC Start-up time PDC10N[1:0]:DCDC Start-up time PDCUP[1:0]:Panel DCS start-up time	15	AO
91H	VP0N2	-	-	-	-	-	SXDISP	STDISP1	STD1SP0	SXDISP:Non-Display data setting STDISP[1:0]:No-Display period	01	AO
92H	VP0FF1	-	-	EDDCON1	EDDCONO	EDCOM1	EDCOMO	EDDISP1	EDD1SP0	EDDCON[1:0]:DCDC stable time EDCOM[1:0]:COM stable time EDDISP[1:0]:Display stable time	15	AO
CO	ET1CTL	-	-	-	-	-	-	EPDUSE	ET1WR	EPDUSE:VCOM EEPROM or register select ET1WR:VCOM EEPROM write	02	AO
DO	EPCOMH									VCOMH EEPROM read register	-	AO
D1	EPCOML	EPCOML7	EPCOML6	EPCOML5	EPCOML4	EPCOML3	EPCOML2	EPCOML1	EPCOMLO	VCOML EEPROM read register	-	AO

(Notes)

(1) To the register set "-" in the register map, please set "0" when accessing. "0" will be read out when reading. And also to the register set "0" or "1", please set (overwrite) that value when accessing.

(2) About the application

Application type	Symbol	Application point
Instant application	AO	It will be applied soon after the register value Write at Host interface/EEPROM interface. (However some registers require the maximum master clock to synchronization internally.)
Simultaneous application (VALGO is necessary.)	VA	The contents of VALGO system register will be applied to LCD interface simultaneously at next vertical synchronizing signal by VALGO treatment (VALGObit="1"setting).
Simultaneous application (VALGO is not necessary.)	VS	It will be applied to the register simultaneously and automatically at the timing of Vsync.

(3) Do not access the address other than the one in the spec.

Ver. 0.2 - 53 -

13.1 . Register description

ID (Read Only)

00н	D7	D6	D5	D4	D3	D2	D1	D0
Name	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Default	0	0	1	1	0	1	1	1

ID [7:0]: Rev. No. of D54E4PA7551B can be read out.

Writing to this register will be ignored. This operation can be used as NOP.

TRF MODE

01н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	BTSEL	DTX2	DTX1
Default	0	0	0	0	0	0	0	0

BTSEL: Specify the bit position of the 6-bit in three times transfer mode.

'0': DB[5:0] '1': DB[7:2]

DTX[1:0]: Specify the image data transfer mode.

Specify the transfer bit-width and transfer times of 1 pixel data.

Refer to" Table 7.7 Transfer mode" of "7.4.4 Writing the data to Display RAM"

RREN

02н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	RREN
Default	-	-	-	-	-	-	-	

RREN: Select Read/Write when CMDS='L' (command mode).

'0': Register write operation '1': Register read operation Do NOT read out this register.

In case of set to "1", it is in Read operation, only this register can be written.

RAMDT

03н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	RAMDT
Default	-	-	-	-	-	-	-	-

RAMDT: RAM data access command when PSX='L' (parallel I/F) & CMDS='H' (index/data mode)

The access to this access can be used for start accessing RAM.

Please refer to "2) Display RAM access" at Page 34.

SYSCTL

07н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	BATDE	OSCDI	CRON
						T	V	
Default	0	0	0	0	0	0	0	1

BATDET: Battery detecting emulation

'0': Normal operation

'1': Detecting operation emulation.

The same operation as an external terminal BATIN="L".

OSCDIV: OSC frequency divide control

This register is valid for the external clock mode as well.

'0': System clock without clock divide.

'1': Internal/External clock is divided into two for system clock.

CRON: CR oscillator control

'0': CR oscillator disable '1': CR oscillator enable

MEMCTL

08н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	RBI	COL8W	NWB	REVW
						R		R
Default	0	0	0	0	0	0	0	0

RBI: Switch the data of RED and BLUE. (Available at only write time)

'0': Normal Write mode

'1': The RED data is switched to the Blue one when writing to RAM.

COL8WR: 8-color data writing

'0': Normal Write mode

'1': 8-color subtractive color processing is used when writing Display RAM.

NWB: Setting of Normal White/Black

'0': Normal Black LCD mode

'1': Normal White LCD mode

(It will be inverted when both writing and reading the RAM data.)

There is no difference of the outer apparent operation about RAM read/write as the following fig.

When writing in RAM When reading out DATA[5:0] → DATA[5:0]

Ver. 0.2 - 55 -

REVWR: Write the inverted image data

'0': Normal Write mode

'1': When writing Display RAM, it writes the inverted bit data.

Inverted data will be read out when reading out because the data is inverted only when writing in.

When writing in RAM When reading out DATA[5:0] → /DATA[5:0]

The relationship of NWB and REVWR is shown below.

NWB	REV	When writing in	RAM	When reading out
	WR			
0	0	DATA[5:0] →	DATA[5:0]	→ DATA[5:0]
0	1	DATA[5:0] — →	/DATA[5:0]	→ /DATA[5:0]
1	0	DATA[5:0]	/DATA[5:0]	DATA [5:0]
1	1	DATA[5:0]	DATA[5:0]	/DATA[5:0]

MPSX

10H	D7	D6	D5	D4	D3	D2	D1	D0
Name	MPSX7	MPSX6	MPSX5	MPSX4	MPSX3	MPSX2	MPSX1	MPSX0
Default	1	1	1	1	0	0	0	0

MPSX[7:0]: Set the number of pixels for X direction of the panel size.

Do not write any values other than F0H (240) as the line number of X direction is fixed in 240.

Please be aware that the value range 1 PSX 240 can be written in, but the value other than 240 will not be operated normally because the writing restriction as the hard ware is MPSX=240 when PSX=0 or MPSX >240.

MPSY1

11H	D7	D6	D5	D4	D3	D2	D1	D0
Name	MPSY7	MPSY6	MPSY5	MPSY4	MPSY3	MPSY2	MPSY1	MPSY0
Default	1	0	0	1	0	0	0	0

MPSY2

12H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	MPSY8
Default	0	0	0	0	0	0	0	1

MPSY[8:0]: Set the line number of the panel size for Y direction.

Set at 320 MPSY[8:0] 432

When MPSY[8:0] < 320, MPSX[8:0]=320 will be set. When MPSY[8:0] > 432, MPSY[8:0]=432 will be set. Line number of the Display depends on this setting.

- 56 - 2009/8/10 Ver.0.2

WXMIN

13н	D7	D6	D5	D4	D3	D2	D1	D0
Name	WXMIN							
	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0

WXMIN[7:0]: Set the start point of X direction in Window mode.

Write with the condition of '0 WXMIN[7:0] WXMAX[7:0]'.

The window access mode does NOT work in case of violating the above prerequisite.

WYMIN1

14H	D7	D6	D5	D4	D3	D2	D1	D0
Name	WYMIN							
	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0

WYMIN2

15H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	WYMIN
								8
Default	0	0	0	0	0	0	0	0

WYMIN[8:0]: Set the start point of Y direction in Window mode.

Write with the condition of '0 WYMIN[8:0] WYMAX[8:0]'.

The window access mode does NOT work in case of violating the above prerequisite.

WXMAX

16H	D7	D6	D5	D4	D3	D2	D1	D0
Name	WXMA							
	X7	X 6	X5	X4	Х3	X2	X1	X0
Default	0	0	0	0	0	0	0	0

WXMAX[7:0]: Set the ending point of X direction in Window mode.

Write with the condition of WXMIN[7:0] WXMAX[7:0] MSPX-1'.

The window access mode does NOT work in case of violating the above prerequisite.

Ver. 0.2 - 57 -

WYMAX1

17H	D7	D6	D5	D4	D3	D2	D1	D0
Name	WYMAX							
	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0

WYMAX2

18H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	WYMAX
								8
Default	0	0	0	0	0	0	0	0

WYMAX [8:0]: Set the end point of Y direction in Window mode.

Write with the condition of WYMIN[8:0] WYMAX[8:0] MSPY[8:0]-1'.

The window access mode does NOT work in case of violating the above prerequisite.

WXMIN[7:0],WXMAX[7:0],WYMIN[8:0] and WYMAX[8:0] should be set satisfying the conditions below.

- 0 WXMIN[7:0] WXMAX[7:0] MSPX[7:0]-1
- 0 WYMIN[8:0] WYMAX[8:0] MSPY[8:0]-1

The window access mode does NOT work in case of violating the above prerequisite even though the window access mode registers below are set.

WAS

19н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	WAS
Default	0	0	0	0	0	0	0	0

WAS: Operation setting of Window access mode.

'0': Start the normal access mode

'1': Start Window access mode

Conditions

- 0 WXMIN[7:0] WXMAX[7:0] MSPX[7:0]-1
- 0 WYMIN[8:0] WYMAX[8:0] MSPY[8:0]-1

If 1'is written in the register when the above prerequisites are not satisfied, that writing will be ignored and "0" will be read out.

XΑ

	1Ан	D7	D6	D5	D4	D3	D2	D1	D0
Ī	Name	XA7	XA6	XA5	XA4	XA3	XA2	XA1	XA0
Ī	Default	0	0	0	0	0	0	0	0

XA[7:0]: X address for RAM Writing and Reading

This register value will not be changed even if the data is written to RAM successively. Only the internal pointer will be changed.

- 58 - 2009/8/10 Ver.0.2

YA1

1Вн	D7	D6	D5	D4	D3	D2	D1	D0
Name	YA7	YA6	YA5	YA4	YA3	YA2	YA1	YA0
Default	0	0	0	0	0	0	0	0

YA2

1Сн	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	YA8
Default	0	0	0	0	0	0	0	0

YA[8:0]: RAM write Y address

Read/Write of the memory is possible by specifying arbitrary RAM address by XA [7:0] and YA [8:0] register. The address of RAM pointer is increased by Read/Write operation, but the initial set value will be read out when reading this register.

Note) In WINDOW access mode, the address origin of pointer is set as (WXMIN[7:0], WXMAX[8:0]).

Note) Setting constraints are different between in Normal mode and in Window access mode.

· In Normal mode,

Other than 0 XA[7:0] MPSX[7:0]-1 : if XA[7:0]>MPSX[7:0]-1 \rightarrow XA[7:0]=0 Other than 0 YA[8:0] MPSY[8:0]-1 : if YA[8:0]>MPSY[8:0]-1 \rightarrow YA[8:0]=0

In Window access mode,

Other than 0 XA[7:0] (WXMAX[7:0]-WXMIN[7:0]) : if XA[7:0]>(WXMAX[7:0]-WXMIN[7:0]) \rightarrow XA[7:0]=0 Other than 0 YA[8:0] (WYMAX[8:0]-WYMIN[8:0]) : if XY[8:0]>(WYMAX[8:0]-WYMIN[8:0]) \rightarrow XA[8:0]=0

RAMCTL

_									
	1DH	D7	D6	D5	D4	D3	D2	D1	D0
	Name	SCANU	-	-	-	-	ADX	ADY	INC
		D							
	Default	0	0	0	0	0	0	0	0

SCANUD: Set the Read out direction of Memory scan (when transferring to the panel)

'0': Normal direction scan

'1': Memory reverse order scan

When reading out the display data, the data is read out from the end point of the memory executing the flip vertical display. It is not connected to writing.

ADX, ADY and INC are the registers which are available when writing the memory. Refer to '8.2. Memory access order.

ADX: Increment setting of X address

'0': Increment of X address

'1': Decrement of X address

ADY: Increment setting of Y address

'0': Increment of Y address

'1': Decrement of Y address

INC: Increment (decrement), specify X/Y direction

'0': X direction increment (decrement)

'1': Y direction increment (decrement)

Ver. 0.2 - 59 -

TVGLN

1EH	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	TVGLN6	TVGLN5	TVGLN4	TVGLN3	TVGLN2	TVGLN1	TVGLN0
Default	0	1	0	1	0	0	0	0

TVGLN [6:0]: Set the vertical display line number

The setting value of this register affects the scan read out address of the memory and other signals like GCK1, GCK2, GOE and ASW [1:6].

Display line number can be set within the range of 320 ~ 432 lines.

Please set the value 0 TVGLN[6:0] 112(D) as the display line number = 320(D) when TVGLN[6:0]=0.

If TVGLN [6:0] =112(D), the display line number=432.

Display line number =320 + TVGLN[6:0]

When setting TVGLN[6:0] > 113(D), TVGLN be set to 112(D) automatically.

SSL₁

20н	D7	D6	D5	D4	D3	D2	D1	D0
Name	SSL7	SSL6	SSL5	SSL4	SSL3	SSL2	SSL1	SSL0
Default	0	0	0	0	0	0	0	0

SSL₂

_									
	21н	D7	D6	D5	D4	D3	D2	D1	D0
	Name	-	-	-	-	-	-	-	SSL8
	Default	0	0	0	0	0	0	0	0

SSL [8:0]: Set the start line of the scroll area.

When writing 0 to this register, the scroll function is OFF.

Refer to the description of 10. Scroll of screen'.

0 SSL[8:0] < SEL[8:0]

The scroll operation will not be executed with the conditions other than above.

SEL1

22H	D7	D6	D5	D4	D3	D2	D1	D0
Name	SEL7	SEL6	SEL5	SEL4	SEL3	SEL2	SEL1	SEL0
Default	0	0	0	0	0	0	0	0

SEL₂

23н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	SEL8
Default	0	0	0	0	0	0	0	0

SEL [8:0]: Set the end line of the scroll area.

Refer to the description of 10. Scroll of screen'.

0 SSL[8:0] < SEL[8:0] MPSY[8:0]-1

0 SST[8:0] < SEL[8:0] - SSL[8:0]+1

The scroll operation will not be executed with the conditions other than above.

- 60 -

SST1

24н	D7	D6	D5	D4	D3	D2	D1	D0
Name	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0
Default	0	0	0	0	0	0	0	0

SST2

_									
	25н	D7	D6	D5	D4	D3	D2	D1	D0
	Name	SSTD	-	-	-	-	-	-	SST8
	Default	0	0	0	0	0	0	0	0

SST[8:0]: Scroll step number setting

SSTD: Scroll direction setting

'0': Forward direction scroll
'1': Reverse direction scroll

Refer to the description of 10. Scroll of screen'.

0 SST[8:0] < SEL[8:0] - SSL[8:0]+1

The scroll operation will not be executed with the conditions other than above.

DSPCTL1

30н	D7	D6	D5	D4	D3	D2	D1	D0
Name	UD	INITON	MODE	-	PTLON1	PTLON0	-	DEN
Default	1	0	0	0	0	0	0	1

UD: Scan direction control

'0': Backward direction scan Output GUD='L'
'1': Forward direction scan Output GUD='H'

INITON: INIT signal control

'0': Output'L'by INIT terminal '1': Output'H'by INIT terminal

MODE: Low power consumption mode setting

Some registers can be set two kinds of resister settings which are the normal mode and the low power consumption mode. $(60H \sim 67H \text{ and } 70H \sim 77H)$

In Low power consumption mode, the registers operate with the register value related to the low power consumption(70H \sim 77H). And in Normal mode, the registers operate with the register value related to Normal register value (60H \sim 67H).

'0': Normal mode setting

'1': Low power consumption mode

D4: "0"Bit

"0" MUST be set at this bit.

PTLON[1:0]: Partial mode display setting Refer to '9. Partial setting.

PTLON1	PTLON0	Partial mode
0	0	Normal Display
0 1		Partial Display, Display area A
1	0	Partial Display, Display area B
1	1	Partial Display, Display area and B

Ver. 0.2 - 61 -

DEN: Select the output data.

This register selects if RAM data is displayed or White/Black monotone color is displayed in the effective display area.

"Non-display area" is set by 'DENCOL'register (ADR=33H bit1).

'0': Data display of Non display setting (RAM data is not displayed.)

'1': Output the display data of image memory (Default, normal operation)

VALGO

31н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	VALGO
Default	0	0	0	0	0	0	0	0

VALGO: Vertical synchronizing control is the reflection of the register value.

The data will be written in the registers which have the VAL attributes (VA and Display). The register value will be reflected at next VSYNC timing after 1'is written to this register concurrently and this VALGO register will return to 0' at the same time.

DSPCTL2

33н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	DENCO	-
							L	
Default	0	0	0	0	0	0	0	0

D2: must set to 0

DENCOL: Set the non-display color when 'DEN' (D0 of ADR=30H) = '0'.

'0': White (in Normal White), Black (in Normal Black)
'1': Black (in Normal White), White (in Normal Black)

Setti	ng of DEN=0	NWE	3 register		
DENCOL	VCOM output	0 (Normal Black)	1 (Normal White)		
1	L (positive pole)	V0(Black) Display (L level)			
,	H (negative pole)	V0(Black) Display (H level)			
0	L (positive pole)	V63(White)	Display (H level)		
(Default)	H (negative pole)	V63(White)	Display (L level)		

TGCTL1

C	CILI								
	34н	D7	D6	D5	D4	D3	D2	D1	D0
	Name	-	FROFF	SSIGOF	GSIGO	GOEOF	DCKOF	GCKOF	COMOF
				F	FF	F	F	F	F
	Default	0	0	0	0	0	0	0	0

FROFF: FR signal output control

'0': Normal output mode '1': Output OFF FR→"L"

SSIGOFF: Source output, control the source control terminal

'0': Normal output mode

'1': Output OFF SX[1:120] is Hi-Z, ASW[6:0] becomes 'L'.

GSIGOFF: Control of Gate control signal

'0': Normal output mode

'1': Gate control signals which become all'L'.

Gate control signals are DCON1, DCON2, INIT, ASW [6:1], GUD and GSP.

GOEOFF: GOE signal control

'0': Normal output mode '1': GOE becomes'L'.

- 62 -

DCKOFF: DCK signal control

'0': Normal output mode

'1': DCK, DCKB, RCK1 and RCK2 are fixed to L'.

GCKOFF: GCK signal control

'0': Normal output mode

'1': GCK1and GCK2 become'L'.

COMOFF: COM signal control

'0': Normal output mode '1': VCOM becomes'L'.

TGCTL2

35н	D7	D6	D5	D4	D3	D2	D1	D0
Name	DCKINV	RCKINV	GUDINV	SSWIN	GSPINV	GOEINV	FRINV	GCKIN
				V				
Default	0	0	0	0	0	0	0	0

DCKINV: This controls the inverse output of Signal DCK and DCKB for panels.

'0': Normal output of DCK and DCCKB '1': Inverse output of DCK and DCCK

DCKINV: This controls the inverse output of Signal RCK1 and RCK2 for panels.

'0': Normal output of RCK1 and RCK2 '1': Inverse output of RCK1 and RCK2

GUDINV: GUD output inverse control

'0': Normal output mode '1': GUD output inversion

SSWINV: Output inverse control of ASW[6:1]

'0': Normal output mode '1': ASW[6:1] output inversion

GSPINV: GSP inverse control

'0': Normal output mode '1': GSP output inversion

GOEINV: GOE inverse control

'0': Normal output mode '1': GOE output inversion

FRINV: FR inverse control

'0': Normal output mode, it is in-phase as COM.

'1': FR output inversion, it is reversed phase as COM.

GCKINV: GCK1 and 2 inverse control

'0': Normal output mode

'1': GCK1/GCK2 inverse output

Ver. 0.2 - 63 -

PTLAS1

36н	D7	D6	D5	D4	D3	D2	D1	D0
Name	PTLAS7	PTLAS6	PTLAS5	PTLAS4	PTLAS3	PTLAS2	PTLAS1	PTLAS0
Default	0	0	0	0	0	0	0	0

PTLAS2

37н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	PTLAS8
Default	0	0	0	0	0	0	0	0

PTLAS [8:0]: Start line setting of the partial area.

PTLAE1

38н	D7	D6	D5	D4	D3	D2	D1	D0
Name	PTLAE7	PTLAE6	PTLAE5	PTLAE4	PTLAE3	PTLAE2	PTLAE1	PTLAE0
Default	0	0	0	0	0	0	0	0

PTLAE2

39н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	PTLAE8
Default	0	0	0	0	0	0	0	0

PTLAE [8:0]: End line setting of the partial area.

PTLBS1

ЗАн	D7	D6	D5	D4	D3	D2	D1	D0
Name	PTLBS7	PTLBS6	PTLBS5	PTLBS4	PTLBS3	PTLBS2	PTLBS1	PTLBS0
Default	0	0	0	0	0	0	0	0

PTLBS2

3Вн	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	PTLBS8
Default	0	0	0	0	0	0	0	0

PTLBS [8:0]: Start line setting of the partial B area.

PTLBE1

3Сн	D7	D6	D5	D4	D3	D2	D1	D0
Name	PTLBE7	PTLBE6	PTLBE5	PTLBE4	PTLBE3	PTLBE2	PTLBE1	PTLBE0
Default	0	0	0	0	0	0	0	0

PTLBE2

3DH	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	PTLBE8
Default	0	0	0	0	0	0	0	0

PTLBE [8:0]: End line setting of the partial B area.

Partial area line setting should satisfy the conditions below.

0 PTLAS[8:0] < PTLAE[8:0] MPSY[8:0]-1

0 PTLBS[8:0] < PTLBE[8:0] MPSY[8:0]-1

- 64 -

About the two conditions above, it is necessary to satisfy the conditions below because of PTLON[1:0] (D3 and D2 of DSPCTL1(ADD=30H)).

0 PTLAS[8:0] < PTLAE[8:0] MPSY[8:0]-1 when PTLON[1:0]='01'

0 PTLBS[8:0] < PTLBE[8:0] MPSY[8:0]-1 when PTLON[1:0]='10'

Both 0 PTLAS[8:0] < PTLAE[8:0] MPSY[8:0]-1

and 0 PTLBS[8:0] < PTLBE[8:0] MPSY[8:0]-1 when PTLON[1:0]='11'

The Partial mode does not work if the conditions above are not satisfied.

SEQCTL

3Ен	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	AUTOFF	AUTON
Default	0	0	0	0	0	0	0	0

This resister executes the power-related ON/OFF sequence automatically.

AUTOFF: Auto OFF sequence execution

Auto OFF sequence is executed by setting this register to '1'. It returns to '0' automatically after the end of the sequence.

AUTON: Auto ON sequence execution

Auto ON sequence is executed by setting this register to '1'. It returns to '0' automatically after the end of the sequence.

EXVSCTL

3Fн	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	-	EXVSO
								N
Default	0	0	0	0	0	0	0	0

EXVSON: VSYNC mode setting

This mode is driven by using the external VSYNC (VSYNC terminal).

'0': Internal VSYNC mode

This mode uses SYNC (VSYNC, HSYC) synchronizing signals generated from internal Clock.

'1': External VSYNC mode

This mode uses the external VSYNC to be operated. HSYNC (Display) uses the internal signal to drive. If VSYNC period and the intervals of HSYNC are not matched, the treatment of Blanking or HSYNC (Display) are reset and displayed. The external VSYNC is taken priority rather than the internal signal.

Ver. 0.2 - 65 -

TPARAM1

40H	D7	D6	D5	D4	D3	D2	D1	D0
Name	TVBK1LI	TVBKG	TVBKG	TVBKCO	TVBKCO	TVBKCO	TVBKS	TVBKSX
	NE	CK	OE	M2	M1	MO	X1	0
Default	0	0	0	0	0	0	0	0

This is the register which sets the treatment of Source and Gate control-related signal within the Blanking intervals.

TVBK1LINE: Output selection of 1 line before and after the valid line

This operates the same drive as the normal output (Source, Gate control signal and so on) as a driver.

'0': Display Black (in Normal Black), output White.(in Normal White)

'1': Display White (in Normal Black), output Black.(in Normal White) Normal White and Normal Black are set by 'NWB' register.

TVBKGCK: Output setting of GCK terminal (GCK1, GCK2) in Vertical Blanking period

'0': Normal output

'1': GCK becomes the level of GND. GCK1,GCK2='L'after'valid line + 1H'.

GCK1 and GCK2 execute Normal operation (based on TGCKST[3:0] register) after next VSYNC falling edge (Active).

TVBKGOE: Output setting of GOE in Vertical Blanking period

'0': Normal output (Always'H'during operation)

'1': GOE becomes the level of GND.

GOE='L' after valid line + 1H'.

GOE becomes 'H'(valid) right after GSP is started up and additional delay of 2-clock.

TVBKCOM[2:0]: Output setting of COM in Vertical Blanking period

TVBKCOM	TVBKCOM	TVBKCOM	Output of COM
2	1	0	·
0	0	0	Normal output (alternative per 1 line)
0	0	1	It is fixed at the polarity of the last line.
			(However there is an inversion per frame.)
0	1	0	2 H alternative
0	1	1	4 H alternative
1	0	0	8 H alternative
1	0	1	16 H alternative
1	1	0	32 H alternative
1	1	1	64 H alternative

The setting especially for the partial mode is operated in priority to this register setting for the partial mode.

TVBKSX[1:0]: This is the register to set Source(SX1 ~ SX120) output in Vertical Blanking terms.

TVBKSX	TVBKSX	NWB					
1	0	0 (Normal Black)	1 (Normal White)				
0	0	Black output White output					
0	1	White output Black output					
1	0	Hi-Z					
1	1		Hi-Z				

- 66 - 2009/8/10 Ver.0.2

TVFPSIZE

42H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	TVFP6	TVFP5	TVFP4	TVFP3	TVFP2	TVFP1	TVFP0
Default	0	0	1	1	0	0	1	1

TVFP[6:0]: Setting the period of Vertical front porch (Setting by HSYNC)

The values of 1 ~ 127 are set as Vertical front porch.

When setting '0' and '1', both of them operate as the front porch operation for 1 HSYNC by the function of TVBK1LINE which outputs 1 line before and after the valid line.

TVBPSIZE

-									
	43н	D7	D6	D5	D4	D3	D2	D1	D0
	Name	-	-	-	-	-	TVBP2	TVBP1	TVBP0
	Default	0	0	0	0	0	0	0	1

TVBP[2:0]: Setting the period of Vertical back porch(Setting by HSYNC)

The values of 1 ~ 7 are set as Vertical back porch.

When setting '0' and '1', both of them operate as the back porch operation for 1 HSYNC by the function of TVBK1LINE which outputs 1 line before and after the valid line.

THCNT

44H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	THCNT5	THCNT4	THCNT3	THCNT2	THCNT1	THCNT0
Default	0	0	0	0	1	0	0	1

THCNT[5:0]: Setting of Horizontal scanning period (Setting by the internal clock)

	T	HCN	IT[5:0	0]		Decimal	Horizontal scanning period
0	0	0	0	0	0	0	32-clock
0	0	0	0	0	1	1	33-clock
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
0	0	1	0	0	1	9	41-clock (default)
0	0	1	0	1	0	10	42-clock
:	:	:	:	:	:	:	
:	:	:	:	:	:	:	:
1	1	1	1	1	0	62	94-clock
1	1	1	1	1	1	63	95-clock

0 THCNT[5:0] 63D(3FH) is used as the valid data.

Horizontal scanning period becomes 32-clock when setting 0'to this register and setting is possible within the range from 32-clock to 95-clock (when setting 3FH=63D).

Horizontal scanning period = 32+Decimal(THCNT[5:0])

THCNT=63D (3FH) is set when writing THCNT>63D (3FH), and Horizontal scanning period becomes 95-clock.

Ver. 0.2

TGSPWD

45н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	TGSPS	TGSPS	TGSPS	TGSPS	TGSPW
				T3	T2	T1	T0	D
Default	0	0	0	0	0	0	1	0

TGSPST[3:0] : Specify GSP output starting position (Setting by the internal clock) Specify within the range of $0 \sim 15$ -clock based on the first HSYNC from VSYNC.

T	GSP:	ST[3:	:0]	Decimal	GSP output starting position
0	0	0	0	0	0 clock (default)
0	0	0	1	1	1-clock
0	0	1	0	2	2-clock
0	0	1	1	3	3-clock
:	:	:	:	:	:
:	:	:	:	:	:
1	1	1	0	14	14-clock
1	1	1	1	15	15-clock

TGSPWD: Active width setting of GSP output (Setting by the internal clock)

'0': 1 HSYNC period active '1': 2 HSYNC period active

TGCKST

46н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	TGCKS	TGCKS	TGCKS	TGCKS
					T3	T2	T1	T0
Default	0	0	0	0	0	1	0	1

TGCKST[3:0] : Specify 2-start position, GCK1 and GCK2

Specify the start position of GCK1 and GCK2 within the range of 0 ~ 15-clock based on HSYNC.

T	GCK:	ST[3:	:0]	Decimal	Start position of GCK1 and GCK2
0	0	0	0	0	1-clock
0	0	0	1	1	1-clock
0	0	1	0	2	2-clock
0	0	1	1	3	3-clock
0	1	0	0	4	4-clock
0	1	0	1	5	5-clock (Default)
:	:	:	:	:	:
:	:	•	•	:	:
1	1	1	0	14	14-clock
1	1	1	1	15	15-clock

TCOMST

48н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	TCOMS	TCOMS	TCOMS
						T2	T1	T0
Default	0	0	0	0	0	0	0	1

TCOMST[2:0]: Specify the position of VCOM output

Output position of VCOM is specified 0 ~ 7-clock based on HSYNC.

- 68 - 2009/8/10 Ver.0.2

TSSWCTL1

4AH	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	FRCINV	THPCHC	TVBLKAS	TVBLKAS	SWDAR
					TL	W1	W0	EV
Default	0	0	0	0	0	0	0	0

FRCINV: Inversion control of FR output (Control based on VCOM)

'0': In-phase output as the same as VCOM '1': Reversed phase output of VCOM

THPCHCTL: Horizontal pre-charge output setting

'0': Pre-charge OFF

ASW [1:6] =OFF (GND). This register follows Source output=THBKSX [1:0] (D2 and D1 of ADD=54H).

'1': Pre-charge ON

ASW [1:6] =ON (pulse output). This register follows Source output=TPCHLVL (D0 of ADD=54H).

TVBKASW[1:0]: Operation selection in Vertical Blanking period, ASW[1:6]

TVBKAS	TVBKAS	ASW[1:6] output		
W1	WO			
0	0	Normal output		
0	1	Fixed to GND		
1	Х	ASW lump-sum ON		

SWDAREV: Switching only the order of ASW[1:6] output and the source pixel output

As the Fig. below, ASW [1:6] is outputted as the default setting and only Source output changes.

The order of ASW[1:6] is not affected.

Examples of Defaults output of TYPE[1:0]='00', PIX=0 and RB=0 when SWDAREV=1

Ver. 0.2 - 69 -

The register which is related to Panel control timing (Normal Display). -- 1

The register which is related to Panel control timing (Normal Display). --- 2

Ver. 0.2 - 71 -

TSSWCTL2

4Вн	D7	D6	D5	D4	D3	D2	D1	D0
Name	TYPE1	TYPE0	RB	PIX	FREV1	FREV0	LREV1	LREV0
Default	0	0	0	0	0	0	0	0

Following registers are not the valid lines. They orders the switching based on VSYNC and HSYNC.

TYPE[1:0]: Set the output order of Source terminals, SX[1:120] and ASW[1:6] together.

RB: The function which rules the output order of Source terminals, SX[1:120] and ASW[1:6], to switch RED/BLUE.

This switches the order of RED and BLUE based on the source output order.

PIX: The function which sets the output order of Source terminals SX[1:120] and ASW[1:6] together.

PIX	RB	TYPE1	TYPE0	Output order of the source terminal SX[1:120] and ASW[1:6]																				
				-	→ →	→ 	→ D0	→ -	→ 															
0	0	0	0	R1	G1	B1	R2	G2	B2															
				ASW1	ASW2	ASW3	ASW4	ASW5	ASW6															
0	0	0	1	R1	R2	G1	G2	B1	B2															
				ASW1	ASW4	ASW2	ASW5	ASW3	ASW6															
0	0	1	0	R1	G1	B1	B2	G2	R2															
				ASW1	ASW2	ASW3	ASW6	ASW5	ASW4															
0	0	1	1	R1	B1	G2	R2	B2	G1															
			·	ASW1	ASW3	ASW5	ASW4	ASW6	ASW2															
0	1	0	0	B1	G1	R1	B2	G2	R2															
		Ů	U	ASW3	ASW2	ASW1	ASW6	ASW5	ASW4															
0	1	0	1	B1	B2	G1	G2	R1	R2															
			Į.	ASW3	ASW6	ASW2	ASW5	ASW1	ASW4															
0	1	1	0	B1	G1	R1	R2	G2	B2															
U	ı		U	ASW3	ASW2	ASW1	ASW4	ASW5	ASW6															
0	1	1	1	B1	R1	G2	B2	R2	G1															
U			I			ı	1	ı	ASW3	ASW1	ASW5	ASW6	ASW4	ASW2										
1	0	0	0	0	0	0	0	0	R2	G2	B2	R1	G1	B1										
-	0								0	ASW4	ASW5	ASW6	ASW1	ASW2	ASW3									
1	0	0	0	0	1	R2	R1	G2	G1	B2	B1													
1	U			1	ASW4	ASW1	ASW5	ASW2	ASW6	ASW3														
1	0	1	1	1	1	1	1	4	1	1	1	1	1	1	1	1	1	0	R2	G2	B2	B1	G1	R1
1		'	0	ASW4	ASW5	ASW6	ASW3	ASW2	ASW1															
4	0	4	4	R2	B2	G1	R1	B1	G2															
1		1	1	1	ASW4	ASW6	ASW2	ASW1	ASW3	ASW5														
4	_	0	0	B2	G2	R2	B1	G1	R1															
1	1	1 0	0 0	ASW6	ASW5	ASW4	ASW3	ASW2	ASW1															
_	,	1 0	4	B2	B1	G2	G1	R2	R1															
1	1		1	ASW6	ASW3	ASW5	ASW2	ASW4	ASW1															
4		1		_	B2	G2	R2	R1	G1	B1														
1	1		0	ASW6	ASW5	ASW4	ASW1	ASW2	ASW3															
_	_	1 1		B2	R2	G1	B1	R1	G2															
1	1 1 1		1	ASW6	ASW4	ASW2	ASW3	ASW1	ASW5															

FREV[1:0] : Set the output order of the source terminal SX[1:120] and ASW[1:6]. It is switched per frame.

FREV1	FREV0	Source terminal SX [1:120] and ASW[1:6] order			
0	X	No frame switch			
1	0	Switch per frame			
1	1	Switch every 2-frame			

- 72 - 2009/8/10 Ver.0.2

LREV[1:0]: This sets the output order of source terminals, SX[1:120] and ASW[1:6]. It will be switched per line.

LREV 1	LREV 0	The order of Source terminals, SX [1:120] and ASW[1:6]
0	X	No line switching.
1	0	Switch per line.
1	1	Switch every 3-line.

Inversion will be executed per pixel for both the frame switching and line switching.

Ver. 0.2 - 73 -

TASWST

4Сн	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	TASWST	TASWST	TASWST	TASWST	TASWST
				4	3	2	1	0
Default	0	0	0	0	1	0	0	0

TASWST[4:0]: This specifies ASW[1:6] output starting and the source output starting position.

It can be specified from 1 to 31-clock.

'1'will be operated when setting '0' or'1'.

TPCDCTL

4DH	D7	D6	D5	D4	D3	D2	D1	D0
Name	TPREST	TPREST	TPREST	TPREST	TPREW	TPREW	TPREW	TPREW
	3	2	1	0	D3	D2	D1	D0
Default	0	0	0	0	0	0	0	1

TPREST[3:0]: This specifies the pre-charge starting position

It can be specified within 2 ~ 15-clock. Either '0' or '1' does not be guaranteed.

TPREWD[3:0]: This specifies the pre-charge ASW pulse width

It can be specified within 1 ~ 15-clock '1'will be operated when setting '0' or'1'.

TPTLREF1

4FH	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	TPTLASW1	TPTLASW	TVPTLCO	TVPTLCO	TVPTLCO	TPTLSX11	TPTLSX10
		1	10	M12	M11	M10		
Default	0	0	0	0	0	0	0	0

There are 2 kinds of screens which are Normal screen and the partial mode screen.

It is possible to thin out the refresh frame and that rate can be selected when in the partial mode. (Refer to the register of 'TREF [2:0], TPNREF [3:0]'.)

There are three kinds of refresh control functions shown below per frame.

Display area at the refresh frame in the partial mode.

Non-Display area at the refresh frame in the partial mode.

'Display+ non-Display area at the non-refresh frame in the partial mode.

This is the register for each refresh frame control in the partial mode.

This defines the setting at the refresh frame in Non-Display area.

TPTLASW1[1:0]: This sets the operation of ASW[1:6] in the partial non-Display area at the refresh frame.

TPTLASW1[1]	TPTLASW1[0]	ASW[1:6] operation
0	0	Normal operation
0	1	Fix to GND
1	0	^(*1) ASW lump-sum ON
1	1	Fix to High

(*1) Another control register will be applied for ASW lump-sum ON.

- 74 - 2009/8/10 Ver.0.2

TVPTLCOM1[2:0]: This register controls COM operation at non-display area of refresh-frame

TV	PTLCOM1[2:0]		COM operation			
0	0	0	Normal(line inversion, default)			
0	0	1	Last line polarity fix			
0	1	0	2H inversion			
0	1	1	4H inversion			
1	0	0	8H inversion			
1	0	1	16H inversion			
1	1	0	32H inversion			
1	1	1	64H inversion			

TPTLSX[1:0]: This register sets Source output operation of Partial non-display area (the remaining area other than the display area and also one line which is right after the display area) at the refresh frame.

TPLSX1[1]	TPTLSX1[0]	Source outp	out operation
IF LOX I[1]	TETLOXITO	NBW=0	NBW=1
0	0	Black	White
0	1	White	Black
1	X	H	i-z

TPTLREF2

50н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	TPTL1LIN E	TPTLGOE
Default	0	0	0	0	0	0	0	0

This is the register for the refresh frame control in the partial mode.

Define the setting of non-Display area at the refresh frame.

TPTL1LINE: This is the setting register of the source output of the first line in non-Display area right after the Display area.

TPTI 1I INF	NWE	3 register
IFILILINE	0 (Normal Black)	1 (Normal White)
0	Black output	White output
1	White output	Black output

TPTLGOE: This sets GOE operation in the non-refresh frame display area except the first line right after the Display area.

'0': Fix GOE to H
'1': Fix GOE to L

This register fixes to L after the second line in Non-Display area. The first line of non-Display area right after the Display area will execute Normal operation.

Ver. 0.2 - 75 -

Control registers in Normal mode

Partial mode 1 (Display/non-Display area at the refresh frame) in partial mode

Partial mode 2 (Display/non-Display area at the non-refresh frame) in partial mode

Partial mode 3 (Display area=Refresh non-Display area=non-refresh frame)

Ver. 0.2 - 77 -

TVPTLCOM2

52н	D7	D6	D5	D4	D3	D2	D1	D0
Name -		_	TASWAST	TASWAST	TASWAST	TASWAST	TASWAST	
Name	-	_	_	4	3	2	1	0
Default	0	0	0	0	0	0	0	1

In Partial mode operation, this register controls COM operation at the non-display area of non-refresh frame.

TVF	PTLCOM2[2:0)]	COM operation
0	0	0	Normal(line inversion, default)
0	0	1	Last line polarity fix
0	1	0	2H inversion
0	1	1	4H inversion
1	0	0	8H inversion
1	0	1	16H inversion
1	1	0	32H inversion
1	1	1	64H inversion

TASWAST

52н	D7	D6	D5	D4	D3	D2	D1	D0
Name -			TASWAST	TASWAST	TASWAST	TASWAST	TASWAST	
Name	1	ī	•	4	3	2	1	0
Default	0	0	0	0	0	0	0	1

Operation controlled by this register will be executed in the partial non-Display area when specifying ASW lump-sum ON (when TPTLASW1[1:0]='10') in Horizontal Blanking period.

TASWAST[4:0]: Specify the start point when ASW lump-sum ON.

It can be specified within 0 ~ 31 clock.

'1'will be operated when setting '0' or'1'.

TASWASX

53н	D7	D6	D5	D4	D3	D2	D1	D0
Name	ı	ı	ı	TASWASX	TASWAW D3	TASWAWD 2	TASWAWD 1	TASWAW D0
Default	0	0	0	0	0	0	0	1

Operation-related register of ASW simultaneously active in the partial non-Display area in Horizontal Blanking period.

TASWASX: Specify the source output when ASW simultaneously active.

TASWASX	NWB register					
IASWASA	0 (Normal Black)	1 (Normal White)				
0	Black output	White output				
1	White output	Black output				

TASWAWD [3:0]: These bits specify the pulse width of ASW [1:6] output when ASW simultaneously active.

It can be specified within 0 ~ 15 clock.

'1'will be operated when setting '0' or'1'.

- 78 - 2009/8/10 Ver.0.2

TPHPARAM

54н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	THBKSX1	THBKSX0	TPCHLVL
Default	0	0	0	0	0	0	1	0

THBKSX [1:0]: Source output setting in Horizontal Blanking period

THBKSX[1]	THBKSX[0]	Source	output			
		NWB=0	NWB=1			
0	0	through (source last data output)				
0	1	Black output (default)	White output			
1 0		White output	Black output			
1	1	Hi-Z output				

TPCHLVL: Horizontal pre-charge level selection

TPCHI VI	NWB register					
IFCIILVL	0 (Normal Black)	1 (Normal White)				
0	Black output	White output				
1	White output	Black output				

Ver. 0.2 - 79 -

When Horizontal Blanking/in the partial non-Display area Registers of the panel control timing and the relationship in ASW lump-sum ON operation

BATNZDET

5Ан	D7	D6	D5	D4	D3	D2	D1	D0
Name		-	1	-	-	-	BATNZDE T1	BATNZDET 0
Default	0	0	0	0	0	0	0	0

BATNZDET[1:0]: This register sets the valid cycle of the sample signal for Battery Detection. It samples the BATIN terminal by the clock to detect the signal if there is a battery and BATIN is considered as 'valid' if'L(valid)'is continued during the specified clock.

	BATNZDET[1]	BATNZDET[0]	Source output				
	0 0 0 1 1 1 1 1 1		No Battery Detection function(Default)				
			Samples for 2-clock				
			Samples for 4-clock				
			Samples for 8-clock				

Buttery detection will be operated as below by each timing.

Ver. 0.2 - 81 -

MPWSTEP1

5Вн	D7	D6	D5	D4	D3	D2	D1	D0
Name	MPSTP8	MPSTP7	MPSTP6	MPSTP5	MPSTP4	MPSTP3	MPSTP2	MPSTP1
Default	0	0	0	0	0	0	0	0

MPWSTEP2

5Сн	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	MPSTP10	MPSTP9
Default	0	0	0	0	0	0	0	0

The same operation as the execution of Auto Sequence can be executed step by step by manual using this register. Each bit will operate as follows.

MPSTP1 = PSTVR [1:0] Manual Sequence start

MPSTP2 = PDC2ON [1:0]

MPSTP3 = PDC1ON [1:0]

MPSTP4 = PDCUP [1:0]

MPSTP5 = STDISP [1:0]

MPSTP6 = Normal Operation

MPSTP7 = EDDISP [1:0] Auto OFF Sequence start

MPSTP8 = EDCOM [1:0]

MPSTP9 = EDDCCON [1:0]

MPSTP10 = Standby

It is necessary to set one by one bit in order to take steps. And also 0 Write is necessary when finishing. Auto ON \rightarrow display \rightarrow Auto OFF are treated as one sequence. Therefore write order will be as follows.

Example) 00_0000_0001B
$$\rightarrow$$
 00_0000_0011B \rightarrow 00_0000_0111B \rightarrow 00_0000_1111B \rightarrow 00_0001_1111B \rightarrow 00_0001_1111B \rightarrow 00_0011_1111B \rightarrow 00_0111_1111B \rightarrow 00_0000_0000B

MODE(D5) register of DSPCTL1 (ADR=30H) selects which register value is applied until TCOMDC1(69H) and TCOMDC2(79H) after this register.

MODE = '0' (Normal mode)

The register ADR = 6XH is applied.

MODE = '1' (Low power consumption mode)

The register ADR = 7XH is applied.

DRVCTL1

Selected by MODE(D5)register of DSPCTL1

(ADR=30H)

60н	D7	D6	D5	D4	D3	D2	D1	D0
Name	CHGSON	LPWRO	-	COMRE	-	-	-	-
		N		V				
Default	0	0	0	0	0	0	0	0

DRVCTL3

70н	D7	D6	D5	D4	D3	D2	D1	D0
Name	CHGSONL	LPWRO	-	COMRE	-	-	-	-
		NL		V				
Default	0	0	0	0	0	0	0	0

CHGSON: Charge share function ON/OFF setting

'0': Charge share OFF

'1': Charge share ON

When turning ON Charge share function, the register to set the timing of that Charge share will select Normal mode setting or Low consumption current mode setting(by MODE register of DSPCTL1) and executes Charge share function.

LPWRON: This sets the Low current drive mode (approx.75% (TBD)) related to the source and the gamma.

'0': Low current drive OFF

'1': Low current drive ON

COMREV: This sets the cycle of VCOM signal inversion

'0': Line inversion
'1': Frame inversion

DRVCTL2

(ADR=30H)

Select by MODE(D5)register of DSPCTL1

61н	D7	D6	D5	D4	D3	D2	D1	D0
Name	CHGSW	CHGSW	CHGSW	CHGSW	CHGSW	CHGSS	CHGSS	CHGSS
	D4	D3	D2	D1	D0	T2	T1	T0
Default	0	0	0	0	0	0	0	0

DRVCTL4

I	71н	D7	D6	D5	D4	D3	D2	D1	D0
	Name	CHGSW	CHGSW	CHGSW	CHGSW	CHGSW	CHGSS	CHGSS	CHGSS
		DL4	DL3	DL2	DL1	DL0	TL2	TL1	TL0
	Default	0	0	0	0	0	0	0	0

CHGSWD[4:0]: Charge share period setting

This sets the Charge share active period from 1 to 31 clocks.

'1'will be operated when setting'0'or'1'.

CHGSST[2:0]: Charge share start setting

This sets Charge share starting position from 1 to 7 clocks.

'1'will be operated when setting'0'or'1'.

TASW2

Selected by MODE(D5) register of DSPCTL1 (ADR=30H)

62н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	TSWWD	TSWWD	TSWWD	TSWWD	TSWSP	TSWSP	TSWSP
		3	2	1	0	2	1	0
Default	0	0	0	0	0	0	0	0

TASW3

72н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	TSWWD	TSWWD	TSWWD	TSWWD	TSWSP	TSWSP	TSWSP
		L3	L2	L1	L0	L2	L1	L0
Default	0	0	0	0	0	0	0	0

TSWWD[3:0]: This sets 'H' pulse width of ASW[1:6].

This Specifies from 1 to 15-clocks.

In case of setting'0'or'1', it works as "1".

TSWSP[2:0]: This sets the pulse width of ASW[1:6].

This Specifies from 1 to 7-clocks.

In case of setting'0'or'1', it works as "1".

TSDRVT1

Selected by MODE(D5) register of DSPCTL1

(ADR=30H)

63н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	SDRVT2	SDRVT1	SDRVT0
Default	0	0	0	0	0	0	0	0
TSDRVT2								

73н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	SDRVTL2	SDRVTL1	SDRVTL0
Default	0	0	0	0	0	0	0	0

Ver. 0.2

SDRVT[3:0]: This specifies Low current drive starting position of the source output. This is available when the register of LPWRON (ADR=60H) is enable. This specifies Normal drive area before switching to the Low current drive.

RDRVB2	RDRVB1	RDRVB 0	Normal drive period			
0	0	0	1-clock			
0	0	1	1.5-clock			
0	1	0	2-clock			
0	1	1	2.5-clock			
1	0	0	3-clock			
1	0	1	3.5-clock			
1	1	0	4-clock			
1	1	1	4.5-clock			

Drive method:

TREFCTL1

Selected by MODE(D5)register of DSPCTL1 (ADR=30H)

64н	D7	D6	D5	D4	D3	D2	D1	D0	
Name	-	PTLNDR	PTLNDR	PTLNDR	PTLNDR	PTLDR2	PTLDR1	PTLDR0	
		3	2	1	0				
Default	0	0	0	0	0	0	0	0	

TREFCTL2

74н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	PTLNDRL	PTLNDR	PTLNDR	PTLNDR	PTLDRL	PTLDRL	PTLDRL
		3	L2	L1	L0	2	1	0
Default	0	0	0	0	0	0	0	0

PTLNDR [3:0]: Partial non-Display area refreshes interval setting

This sets the cycle for the refresh frame in the display area not per VSYNC (per display color).

PTLNDR3	PTLNDR2	PTLNDR1	PTLNDR0	Refresh cycle
0	0	0	0	Refresh per frame
0	0	0	1	1/2 frame refresh
0	0	1	0	1/3 frame refresh
	:	:	:	:
1	1	0	1	1/14 frame refresh
1 1		1	0	1/15 frame refresh
1	1	1	1	1/16 frame refresh

PTLDR [2:0]: Partial Display area refreshes interval setting

PTLDR	PTLDR	PTLDR	Defreeb evels
PILDR	PILDK	PILDK	Refresh cycle
2	2 1 0		
0	0 0 0		Refresh per frame
0	0	1	Refresh every 2 frame
0	1	0	Refresh every 3 frame
:	:	:	:
1	0	1	Refresh every 6 frame
1	1 1 0		Refresh every 7 frame
1	1	1	Refresh every 8 frame

- 84 -2009/8/10 Ver.0.2

TBIAS1 Selected by MODE (D5) register of DSPCTL1 (ADR=30H)

65н	D7	D6	D5	D4	D3	D2	D1	D0		
Name	-	-	-	-	OBIAS3	OBIAS2	OBIAS1	OBIAS0		
Default	0	0	0	0	0	0	1	0		

TBIAS2

75H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	OBIASL	OBIASL	OBIASL	OBIASL
					3	2	1	0
Default	0	0	0	0	0	0	1	0

OBIAS [2:0]: This register sets the source output AMP and the bias current of gamma AMP.

OBIAS3	OBIAS2	OBIAS1	OBIAS0	AMP bias current
0	0	0	0	Minimum
0	0	0	1	:
0	0	1	0	: (default)
0	0	1	1	:
:	:	:	:	:
1	1	0	1	:
1	1	1	0	:
1	1	1	1	Maximum

VGMH1 Selected by MODE(D5) register of DSPCTL1 (ADR=30H)

66H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	VGMH2	VGMH1	VGMH0
Default	0	0	0	0	0	0	0	0

VGMH2

76H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	VGMHL2	VGMHL1	VGMHL0
Default	0	0	0	0	0	0	0	0

Ver. 0.2 - 85 -

VGMH [2:0]: This sets the Gamma high voltage.

VGAMH	VGAMH1	VGAMH0	Gamma AMP output
2			voltage
0	0	0	4.6 V
0	0	1	4.7 V
0	1	0	4.8 V
0	1	1	4.9 V
1	0	0	5.0 V
1	0	1	5.1 V
1	1	0	5.2 V
1	1	1	5.3 V

VCOMH1

68H	D7	D6	D5	D4	D3	D2	D1	D0
Name	VCOMH7	VCOMH6	VCOMH5	VCOMH4	VCOMH3	VCOMH2	VCOMH1	VCOMH0
Default	0	0	0	0	0	1	1	1

VCOMH [7:0]: This sets VCOMH output voltage. This voltage will be used as the power supply to drive VCOM. Default value of this register is 07H. However the default value from built-in EEPROM is applied to the VCOMH circuit when in power sequence. But the register value is not changed.

Please set the 'EPDUSE' register to '0' using this register when adjusting VCOMH.

Setting range of this register is

07H VCOMH[7:0] B8H

And following conditions are set when setting other than above range.

VCOMH [7:0] =07H when VCOMH [7:0] < 07H

VCOMH [7:0] =B8H when VCOMH [7:0] > B8H

Output voltage of VCOMH is calculated by the following formula based on VGM as the standard voltage.

VCOMH output voltage=VGM*[0.500+0.004*(VCH-7))]

Refer to [12. VCOM output circuit] for more detail of output spec.

VCOMI 1

69H	D7	D6	D5	D4	D3	D2	D1	D0
Name	VCOML7	VCOML6	VCOML5	VCOML4	VCOML3	VCOML2	VCOML1	VCOML0
Default	0	0	0	0	0	1	1	1

VCOML [7:0]: This sets VCOML output voltage. This voltage will be used as the power supply to drive VCOM. Default value of this register is 07H. However the default value from built-in EEPROM is applied to the VCOML circuit when in power sequence. But the register value is not changed.

Please set the 'EPDUSE' register to'0' using this register when adjusting VCOML.

Setting range of this register is

07H VCOML[7:0] B8H

And following conditions are set when setting other than above range.

VCOML [7:0] =07H when VCOML [7:0] < 07H

VCOML [7:0] =B8H when VCOML [7:0] > B8H

Output voltage of VCOML is calculated by the following formula based on VGM as the standard voltage.

VCOML output voltage=VGM*[0.036+0.004*(VCL-7)]

Refer to [12. VCOM output circuit] for more detail of output spec.

- 86 - 2009/8/10 Ver.0.2

COM MODE

6Ан	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	COM_MO	COM_MO
							DE1	DE0
Default	-	-	-	-	-	-	0	0

This sets the output mode of VCOM.

Refer to [12. VCOM output circuit] for more detail of each mode.

COM_MODE1	COM_MODE0	VCOM output mode
0	0	Output mode 1-1
0	1	Output mode 1-2
1	0	Output mode 2
1	1	Output mode 3

СВ

OB								
6Вн	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	CB1	CB0
Default	-	-	-	-	-	-	1	0

This register is prepared for internal purpose.

DO NOT change the value.

POWCTL

80н	D7	D6	D5	D4	D3	D2	D1	D0
Name	V18M	ANAGOF F	VSR	VGMR	VCOMR	DCDC2	DCDC1	APWRS
Default	1	0	0	0	0	0	0	1

Other internal power supply circuits except the internal power supply regulator for 1.8V can be started up respectively regardless of Auto sequence. [When setting Do (APWRS) = '0']

V18M: This controls the internal power supply regulator for 1.8V.

"0" = Regulator OFF

"1"= Regulator ON

V18M is not controlled by Auto sequence.

Be sure to turn on it before Auto sequence is executed.

Note 1) When this register is turned OFF, it becomes the stand-by mode. Therefore set this bit to "1".

All register accesses, except the stand-by release, are forbidden. The operation is not guaranteed if other bits are accessed during the stand-by mode.

Note 2) It takes 100 usec to stabilize the power supply until other registers can be accessed when releasing the stand-by mode by setting this bit.

Note 3) When recover from standby (V18 is OFF), previously it must be needed to reset.

ANAGOFF: This controls analog circuit.

"0"= analog circuit is ON

"1"= analog circuit is OFF

VSR: This controls Source power supply regulator (spare).

"0" = Source power supply regulator OFF

"1"= Source power supply regulator ON

This regulator is implemented as a spare circuit. It doesn't work. don't turn ON.

Please

VGMR: This controls VGM Regulator control for Gamma

"0" = Regulator for Gamma is OFF.

"1" = Regulator for Gamma is ON.

VCOMR: This controls the regulators related to VCOM (VCOMH and VCOML).

"0" = VCOMH and VCOML Regulator OFF

"1"= VCOMH and VCOML Regulator ON

Ver. 0.2

DCDC2: This controls DCDC2 (DC/DC converters for the power supply of Source and Gamma circuits).

"0"= Step-up circuit DCDC2 OFF
"1"= Step-up circuit DCDC2 ON

DCDC1: This controls DCDC1 (DCDC converters for the regulator power supply of VCOMH and VCOML)

"0"= Step-up circuit DCDC1 OFF
"1"= Step-up circuit DCDC1 ON

APWRS: This brings the power supply mode following AUTO POWER sequence under enable control.

"0"= this brings the power supply mode following AUTO sequence under Disable.

Setting of registers, VSR, VGMR, VCOMR, DCDC2 and DCDC1 become valid. It is possible to control each power supply respectively.

"1"= this brings the power supply mode following AUTO sequence under Enable.

This register is controlled by the AUTO sequence control when setting '1'. Setting here does not influence the operation. Settings of Registers, VSR, VGMR, VCOMR, DCDC2 and DCDC1 become invalid.

Regulators for 1.8V are not controlled by Auto sequence. D7is not influenced by this D0.

DCCKS

81н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	DC2CK2	DC2CK1	DC2CK0	-	DC1CK2	DC1CK1	DC1CK0
Default	0	1	0	0	0	1	0	0

This sets the timing of making clocks for two Step-up circuits. Basically it operates using HSYNC as synchronous and generates Step-up clock using Starting-up of ASW and numbers of clocks.

DC2CK[2:0]: This sets the clock input of Step-up circuit DCDC2.

This operates Step-up based on HSYNC or ASW signal.

DC2CK2	DC2CK1	DC2CK0	Step-up clock frequency dividing rate
0	0	0	Starting-up@(per HSYNC and every 2 ASW)
0	0	1	Starting-up@(per HSYNC and every 3 ASW)
0	1	0	Starting-up@(per HSYNC and every 10-clock)
0	1	1	Starting-up@(per HSYNC and every 20-clock)
1	0	0	Starting-up@(per HSYNC)
1	0	1	Starting-up@(per 2HSYNC)
1	1	0	Starting-up@(per 3HSYNC)
1	1	1	Starting-up@(per 4HSYNC)

DC1CK[2:0]: This sets the clock input of Step-up circuit DCDC1.

This operates Step-up based on HSYNC or ASW signal.

DC1CK2	DC1CK1	DC1CK0	Step-up clock frequency dividing rate
0	0	0	Starting-up@(per HSYNC and every 2 ASW)
0	0	1	Starting-up@(per HSYNC and every 3 ASW)
0	1	0	Starting-up@(per HSYNC and every 10-clock)
0	1	1	Starting-up@(per HSYNC and every 20-clock)
1	0	0	Starting-up@(per HSYNC)
1	0	1	Starting-up@(per 2HSYNC)
1	1	0	Starting-up@(per 3HSYNC)
1	1	1	Starting-up@(per 4HSYNC)

- 88 - 2009/8/10 Ver.0.2

PNLCKCTL

82н	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	DCKST1	DCKST0	RCKSK	RCKSK	DCKDIV	DCKDIV
					W1	W0	1	0
Default	0	0	0	1	0	1	0	1

DCKST[1:0]: This sets the skew value of clock signals, DCK and DCKB, for panel. The skew values set here are based on the HSYNC.

DCKST1	DCKST0	Skew value
0	0	2-clock
0	1	3-clock (Defaults)
1	0	4-clock
1	1	5-clock

RCKSKW[1:0]: This sets the skew value of clock signals, RCK1 and RCK2, for panel.

The skew values set here are based on the DCK (DCKB) and set RCK1 and RCK2.

RCKSKW1	RCKSKW0	Skew value
0	0	1.0-clock
0	1	1.5-clock
1	0	2.0-clock
1	1	prohibit

DCKDIV[1:0]: This sets DCK/DCKB frequency (based on internal HSYNC).

DCKDIV1	DCKDIV0	DCK/DCKB frequency
0	0	1/2H width
0	1	1H width(defaults)
1	0	2H width
1	1	4H width

If the clock during the term of HSYNC width is odd when DCKDIV[1:0] is '00', do division and round down to the nearest 1. HSYNC part operates synchronizing HSYNC.

1 cycle of DCK output (from starting-up to starting-up) is the width of 1HSYNC. Refer to the figure in next page for setting and waveforms.

Ver. 0.2

DC1CNT

83H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	DC1MD1	DC1MD0	DC1DRV	DC1DRV	DC1OUT	DC1OUT	DC1OUT
				1	0	2	1	0
Default	0	0	1	1	1	1	0	0

DC1MD[1:0]: DCDC1 output ability setting

DC1MD1	DC1MD0	DCDC1 operation mode
0	0	X2 times step-up Single mode
0	1	X2 times step-up Dual mode
1	X	X3 times step-up

DC1DRV[1:0]: DCDC1 output ability setting

DC1DRV1	DC1DRV0	DCDC1 output ability
0	0	X1
0	1	X3
1	0	X2
1	1	X4

DC1OUT[2:0] : DCDC1 output voltage setting

DC1OUT2	DC1OUT1	DC1OUT0	DCDC1 output voltage
0	0	0	4.7V
0	0	1	4.8V
0	1	0	4.9V
0	1	1	5.0V
1	0	0	5.1V
1	0	1	5.2V
1	1	0	5.3V
1	1	1	5.4V

DC1SET

84H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	RD10N	DC1SET3	DC1SET2	DC1SET1	DC1SET0
Default	0	0	0	1	0	1	1	1

This register is for adjustment. Write in the designated value.

DC1SET[3:0] : DCDC1 clock timing setting

RD1ON: RDON timing setting

- 90 -

DC2CNT

85H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	DC2MD1	DC2MD0	DC2DRV	DC2DRV	DC2OUT2	DC2OUT1	DC2OUT0
				1	1			
Default	0	0	1	0	0	0	0	0

DC2MD[1:0]: DCDC2 output ability setting

DC2MD1	DC2MD0	DCDC2 operation mode
0	0	X2 times step-up Single mode
0	1	X2 times step-up Dual mode
1	Х	X3 times step-up

DC2DRV[1:0]: DCDC2 output ability setting

DC2DRV1	DC2DRV0	DCDC2 output ability
0	0	X1
0	1	X3
1	0	X2
1	1	X4

DC2OUT[2:0] : DCDC2 output voltage setting

DC2OUT2	DC2OUT1	DC2OUT0	DCDC2 output voltage
0	0	0	4.7V
0	0	1	4.8V
0	1	0	4.9V
0	1	1	5.0V
1	0	0	5.1V
1	0	1	5.2V
1	1	0	5.3V
1	1	1	5.4V

DC2SET

86H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	RD2ON	DC2SET3	DC2SET2	DC2SET1	DC2SET0
Default	0	0	0	1	0	1	1	1

This register is for adjustment. Write in the designated value.

DC2SET[3:0]: DCDC2 clock timing setting

RD2ON: RDON timing setting

Ver. 0.2 - 91 -

VPON1

90H	D7	D6	D5	D4	D3	D2	D1	D0
Name	PSTVR1	PSTVR0	PDC2ON	PDC2ON	PDC10N	PDC10	PDCUP1	PDCUP0
			1	0	1	N0		
Default	0	0	0	1	0	1	0	1

Parameter for Power ON sequence timing setting Refer to "Power ON/OFF sequence" in next page for the timing set by each register.

PSTVR[1:0]: VR OUT Start-up waiting time setting

PSTVR1	PSTVR0	VR OUT Start-up waiting time
0	0	0.25 x Vsync(default)
0	1	0.5 x Vsync
1	0	0.75 x Vsync
1	1	1 x Vsync

PDC2ON[1:0]: Panel DCDC2 Start-up time setting

PDC2ON1	PDC2ON0	DCDC2 Start-up time
0	0	1 x Vsync
0	1	1.25 x Vsync(default)
1	0	1.5 x Vsync
1	1	1.75 x Vsync

PDC1ON[1:0]: Panel DCDC1 Start-up time setting

PDC10N1	PDC1ON0	DCDC1 Start-up time
0	0	1 x Vsync
0	1	1.25 x Vsync(default)
1	0	1.5 x Vsync
1	1	1.75 x Vsync

PDCUP[1:0]: PANEL DCDC Start-up time

ST_DC1	ST_DC0	PANEL DCDC Start-up time
0	0	1 x Vsync
0	1	1.25 x Vsync(default)
1	0	1.5 x Vsync
1	1	1.75 x Vsync

By this register setting, a Start-up timing of VCOM is fixed. In the Setting of 1.25v, a timing before 1ms is a start timing of VCOM.

- 92 - 2009/8/10 Ver.0.2

Power ON/OFF sequence

Ver. 0.2 - 93 -

VPON2

91H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	SXDISP	STDISP1	STDISP0
Default	0	0	0	0	0	0	0	1

SXDISP: ON/OFF sequence Display data

SXDISP	NWB				
SADISE	0(Normal Black)	1(Normal White)			
0	Black output	White output			
1	White output	Black output			

STDISP[1:0]: Display starting time

STDISP1	STDISP0	Display starting time
0	0	1 x Vsync
0	1	2 x Vsync
1	0	3 x Vsync
1	1	4 x Vsync

VPOFF1

92H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	EDDCON	EDDCON	EDCOM1	EDCOM0	STDISP1	STDISP0
			1	0				
Default	0	0	0	1	0	1	0	1

Parameter for Power OFF sequence timing setting Refer to "Power ON/OFF sequence" in previous page for the timing set by each register.

EDDCON[1:0]: Display down time

EDDCON1	EDDCON0	Display stop time
0	0	1 x Vsync
0	1	1.25 x Vsync
1	0	1.5 x Vsync
1	1	1.75 x Vsync

EDCOM[1:0]: COM down time

EDCOM1	EDCOM0	COM stop time
0	0	1 x Vsync
0	1	2 x Vsync
1	0	3 x Vsync
1	1	4 x Vsync

EDDISP[1:0]: Display stop time

EDDISP1	EDDISP0	Display stop time
0	0	1 x Vsync
0	1	2 x Vsync
1	0	3 x Vsync
1	1	4 x Vsync

ET1CTL

C0H	D7	D6	D5	D4	D3	D2	D1	D0
Name	-	-	-	-	-	-	EPDUSE	ET1WR
Default	0	0	0	0	0	0	1	0

EPDUSE: Select data for VCOMH/L

- 94 - 2009/8/10 Ver.0.2

"0" = Register data are used for VCOMH/L output voltage

"1" = EEPROM data are used for VCOMH/L output voltage

ET1WR: Write the built-in EEPROM for VCOM adjustment

"0" = Normal mode

"1" = Write EEPROM data

Writing the data is executed controlling the external PIN and following the Write sequence of EEPROM.

EPCOMH

_									
	D0H	D7	D6	D5	D4	D3	D2	D1	D0
	Name	EPCOMH							
		7	6	5	4	3	2	1	0
	Default	-	-	-	-	-	-	-	-

EPCOMH[7:0]: VCOMH EEPROM data

EEPROM data for VCOMH can be read through this register.

EPCOML ADD=D1H

D1H	D7	D6	D5	D4	D3	D2	D1	D0
Name	EPCOML							
	7	6	5	4	3	2	1	0
Default	-	-	-	-	-	-	-	-

EPCOML[7:0]: VCOML EEPROM data

EEPROM data for VCOML can be read through this register.

Ver. 0.2 - 95 -

ACCESS Prohibition Register (MagnaChip Only)

ADR	D7	D6	D5	D4	D3	D2	D1	D0
C1H	-	-	-	-	E2PVCOMH3	E2PVCOMH2	E2PVCOMH1	E2PVCOMH0
C2H	-	-	-	-	E2PVCOML3	E2PVCOML2	E2PVCOML1	E2PVCOML0
C4H	-	-	-	-	-	-	MCREAD	MCERITE
C5H	-	-		-	-	UNDEFINE2	UNDEFINF1	UNDEFINE0
C6H	-	-		-	VREF3	VREF2	VREF1	VREF0
C7H	-	-	-	OSCCTRL4	OSCCTRL3	OSCCTRL2	OSCCTRL1	OSCCTRL0
C8H	-	-	•	-	•	-	•	REPAIRBA48
	REPAIRBA47	REPAIRBA46	REPAIRBA45	REPAIRBA44	REPAIRBA43	REPAIRBA42	REPAIRBA41	REPAIRBA40
CAH	-	-	•	-	•	-	•	REPAIRBA38
CBH	REPAIRBA37	REPAIRBA36	REPAIRBA35	REPAIRBA34	REPAIRBA33	REPAIRBA32	REPAIRBA31	
CCH	-	-	-	-	-	-	-	REPAIRBA28
	REPAIRBA27	REPAIRBA26	REPAIRBA25	REPAIRBA24	REPAIRBA23	REPAIRBA22	REPAIRBA21	REPAIRBA20
CEH	-	-	-	-	-	-	-	REPAIRBA18
CFH	REPAIRBA17	REPAIRBA16	REPAIRBA15	REPAIRBA14	REPAIRBA13	REPAIRBA12		REPAIRBA10
D2H	_	_	_	_	_	E2PUNDEFIN		
						E2	E1	E0
D3H	-	-	-	-	E2PVREF3	E2PVREF2	E2PVREF1	E2PVREF0
D4H	_	_	_			E2POSCCTR		
				L4	L3	L2	L1	L0
D5H	_	-	-	_	-	_	-	E2PREPAIRB
		=========		=========		=======================================		A48
D6H						E2PREPAIRB		
	A47	A46	A45	A44	A43	A42	A41	A40 E2PREPAIRB
D7H	-	-	-	-	-	-	-	
	FODDEDAIDD	FORDEDAIDS	FORDERAIDS	FORDEDAIDS	FORDEDAIDS	E2PREPAIRB		A38
D8H								
	A37	A36	A35	A34	A33	A32	A31	A30 E2PREPAIRB
D9H	-	-	-	-	-	-	-	A28
	EODDEDAIDD	EODDEDAIDD	EODDEDAIDD	ESDDEDAIDD	EODDEDAIDD	E2PREPAIRB	EODDEDAIDD	
DAH	A27	A26	A25	A24	A23	A22	A21	A20
	AZI	AZU	723	724	AZS	AZZ	721	E2PREPAIRB
DBH	-	-	-	-	-	-	-	A18
	E2DREDAIRR	E2DREDAIRR	E2DREDAIRR	E2DREDAIRR	E2DREDAIRR	E2PREPAIRB	E2DREDAIRR	
DCH	A17	A16	A15	A14	A13	A12	A11	A10
E1H	A17	-	- 713	-	EADJH3	EADJH2	EADJH1	EADJH0
E2H					EADJII3	EADJH2 EADJL2	EADJH1	EADJH0 EADJL30
LZI I			-		LADJEJ	LADJLZ	LADJLI	LADJE30

- 96 - 2009/8/10 Ver.0.2

14. EEPROM Write Sequence

EEPROM Write Sequence for VCOM is as following.

Item	Symbol	MIN	TYP	MAX	Unit
Vpp	Vvpp	19.6	19.7	19.8	V
Wait Time for VPP after Reset Release	Trv	300	-	-	Usec
Wait Time for Start Writing after VPP	Tvpw	10	•	-	Usec
Wait Time for Writing Completion (maintain Vpp)	Tvpph	40	50	60	msec
Vpp Voltage(Absolute Max)	Vvppm	-	-	20.0	V
VDC vs. VPP SetupTime ^(note)	Tvs	-10	-	10	Usec
VDC vs. VPP HoldTime ^(note)	Tvh	-10	-	10	Usec
VDC when Writing	Vpvdc	3.3	3.5	3.7	V
Guaranteed Writing times	Twite	10	•	-	times

(Note) It is needed to set VDC as 3.5V(±0.2V) simultaneously with VPP forcing. Although ±10µsec is written in the table, recommendation is the same time. For your information, there are other settings than VCOM, but those are only for usage of MagnaChip.

EEPROM Block diagram

Ver. 0.2

EEPROM Write Flow Chart

15.ELECTRICAL CHARACTRISTICS

15.1. Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power Supply Voltage	VDDC	-0.5 ~ +6.0	V
Input Voltage 1 (except VPP,VDDCORE)	VIN	-0.5 ~ VDDIO+0.5	V
Input Voltage 2 (apply to VPP)	VIN	-0.5 ~ 20.0	V
Input Voltage 3 (apply to VDDCORE)	VIN	-0.5 ~ 2.2	V
Input current	IIN	±10	mA
Output current	IOUT	±10	mA
Operation Ambient temperature	Ta	-30 ~ 85	
Storage Temperature	Tstg	-50 ~ 125	

 $\label{eq:gnda} \mbox{GNDD=GNDA=GNDDC = 0 V , V D D C } \mbox{ V D D I O}$

Caution: Product quality may be suffered if the absolute maximum rating exceeds the specified value even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

15.2. Recommended Operating Conditions (GNDD=GNDA=GNDDC=0V)

F	Parameter	Symbol	Terminals	MIN	TYP	MAX	Unit	Note
Power Supply	Logic(I/O)	Vddio	VDDIO	1.6	1.8	3.4	V	
	Logic(core)	Vddcore	VDDCORE	1.7	1.8	1.9	V	
Supply	Analog	Vdc	VDDC	2.7	3.0	3.4	V V V	
Operating a	ambient temperature	Та		-30		+85		

Ver. 0.2 - 99 -

15.3. DC Electrical Characteristics Conditions

15.3.1. Input/Output pin Characteristic

 $(VDDIO = 1.6 \sim 3.4V, VDDC = 2.7 \sim 3.4V, Ta = -30 \sim 85$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Note
High Level Input voltage	VIH	VDDIO	0.8*VDDI			V	
Low Level Input voltage	VIL	VDDIO			0.8*VDDIO	V	
Output H voltage 1	VOH1	VDDIO output	0.8*VDDDI	-	-	V	1
Output L voltage 1	VOL1	VDDIO output	1	-	0.2*VDDDI O	V	1
Output H voltage 2	VOH2	Panel Control signals	0.8*VS	-	-	V	2
Output L voltage 2	VOL2	ranei Control signais	-	-	0.2*VS	V	2
Input Pin Leakage Current	IIL	VDDIO	-1		1	uA	
VCOM Output Voltage 1	Vcom 1	IOH=- 3mA,VCOM=4.8V	4.7	4.8	4.85V	V	
VCOM Output Voltage 2	Vcom2	IOL= 3mA,VCOM=0.3V	0.25	0.3	0.4V	V	

Note 1) VDDIO output DB17-DB0,VSYNCO,ECK,ECS,EDO

Note 2) Panel Control signals

GSP,GCK1,GCK2,GOE,INIT,ASW1 ~ 6,FR,RCK1,RCK2,DCON1,DCON2

15.3.2. Source Drive Output

 $(VCC = 1.6 \sim 3.4V, VDC = 2.7 \sim 3.4V, Ta = -30 \sim 85)$

Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit	Note
Output Voltage Range	VSX	VGM=4.6 ~ 5.3	BV	0.2		VS- 0.2	V	1
Voltage		0 ~ 64 gray output	Gray1 ~ 43	-15		15		
(absolute	VDEF(1)	VDEF(1)=Pos - target	Gray44 ~ 54	-20		20	mV	1
value)	value)	VDEF(1)=Neg - target	Gray55 ~ 64	-25		25		
Voltage		(_)	Gray1 ~ 43	-8		8		
Variation	VDEF(2)		Gray44 ~ 54	-10		10	mV	1
(amplitude)		average of all pins	Gray55 ~ 64	-13		13		
pin-to-pin		0 ~ 64 gray output amplitude=Pos-Neg	Gray1 ~ 43	-15		15		
variation	VDEF(3)	VDEF3=difference	Gray44 ~ 54	-20		20	mV	1
		amplitude between next pins	Gray55 ~ 64	-30		30		

Note1 : SX1 ~ SX120、 source output Load R=5k Ω / C=30pF

- 100 - 2009/8/10 Ver.0.2

15.3.3. Power circuits

($VDDIO = 1.6 \sim 3.4V$, $VDDC = 2.7 \sim 3.4V$, $Ta = -30 \sim 85$)

Parameters	Symbol	Pins	MIN	TYP	MAX	Unit	Note
VS Output Voltage	VS	lo=-2mA VDDC=2.7 ~ 3.3V VS target=5.1V	5.0	5.1	5.2	٧	1
VR Output Voltage	VR	lo=-2mA VDD=2.7 ~ 3.3V VR target=5.1V	5.0	5.1	5.2	V	1
VGM output Range	VGM(1)	VS=4.7 ~ 5.4V			VS-0.2	V	2
VGM output Voltage	VGM(2)	lo= 0.1mA VGM target=4.8V	4.75	4.8	4.85	V	2
VCOMH output range	VCOMH(1)	VR=4.7 ~ 5.4V VGM=4.8V	2.5	-	VR-0.2	V	2
VCOMH voltage	VCOMH(2)	lo= 0.1mA VCOMH target 4.8V	4.75	4.8	4.85	٧	2
VCOML Output range	VCOML(1)	VR=4.7 ~ 5.4V	0.2	-	3.6	V	2
VCOML output voltage	VCOML(2)	lo= 0.1mA VCOML target=0.3V	0.25	0.3	0.35	V	2

注1: DC-DC Output voltage 注2: Voltage regulator output

Ver. 0.2 - 101

15.3.4. Power Consumption

 $(VDDIO = 1.6 \sim 3.4V, VDDC = 2.7 \sim 3.4V, Ta = 25)$

			(V D D I O = 1.0 0.7 V,	VDDC		J. T V 、	1u – 2	. ,
Parameters	Symbols	Pins	Conditions	MIN	TYP	MAX	Unit	Note
Operating current(1)	IDDop1io	VDDIO	VDDC=VDDIO=3V、 Fosc=1.15Hz、60Hz Line Inversion		1		uA	1
	IDDop1vd c	VDDC	Non-RAM access Check Pattern		5.5		uA	
Operating current(2)	IDDop2io	VDDIO	VDDC=VDDIO=3.0V, Fosc=1.15Hz, 60Hz RAM Access 10MHz		350		uA	
	IDDop2vd c	VDDC	Check Pattern		6		mA	
0	IDDstio	VDDIO	DC/DC、OSC OFF		1	10	uA	
Stand-by current	IDDstvdc	VDDC	1.8V stand-by Regulator ON		10	25	uA	

Standby Out recommended sequence

Register	Data	Comment
80h	81h	Deep standby Out
wait 10us		
80h	01h	Deep standby In
wait	10us	
80h	81h	Deep standby Out
wait	10us	
80h	01h	Deep standby In
wait	10us	
Hardward	e RESET	Low pulse width = 10msec
wait 1msec		
Initial	setting	write all register

15.3.5. Oscillator

(VDDIO = $1.6 \sim 3.4$ V, VDDC = $2.7 \sim 3.4$ V, Ta = $-30 \sim 85$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Note
Frequency	osc	VDDIO=1.6 ~ 3.4V VDDC=2.7 ~ 3.4V	-8%	1.15	+8%	MHz	

- 102 - 2009/8/10 Ver.0.2

15.4. AC Electrical Characteristics Conditions

15.4.1. Level Shifter

(VDDIO = $1.6 \sim 3.4V$, VDDC = $2.7 \sim 3.4V$, Ta = $-30 \sim 85$) Parameter Symbol Conditions MIN TYP MAX Unit Note Panel Control(1) 100 tr,tf 10% ~ 90% ns 1 Panel Control(2) 10% ~ 90% 100 2 tr,tf

Note1 GSP、GCK1、GCK2、GOE、INIT、ASW1~6、FR、RCK1、RCK2、DCON1、DCON2

Note2 DCCK, DCCKB ports

Ver. 0.2 - 103

15.4.2. Source Output

(VDDIO = $1.6 \sim 3.4V$, VDDC = $2.7 \sim 3.4V$, Ta = $-30 \sim 85$)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Note
Settling time	tDSO	1% ~ 99% Source output Max4.4V			2.5	us	1

Note.1 Each source output pins

Load model of source output

Source Load value

Source load	R-panel (kΩ)	C-panel (pF)
MAX	5.0	30.0
MIN	2	10
ASW OFF	0.3	3

- 104 - 2009/8/10 Ver.0.2

15.4.3. COM Output

$(VDDIO = 1.6 \sim 3.4V,$	VDDC :	= 2.7 ~ 3	3.4V、Ta	a = -30	~ 85)
Condition	MIN	TYP	MAX	Unit	Note	
100/ 000/						l

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Note
Settling time	tCOM	10% ~ 90% COM voltage Max4.8V			6	us	1

COM output Load model

15.4.4. Reset enable

 $(VDDIO = 1.6 \sim 3.4V, VDDC = 2.7 \sim 3.4V, Ta = -30 \sim 85)$

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit	Note
Minimum Pulse width	tRESW		10			us	
Rejected Pulse width	RESCN				2	us	

- 105 Ver. 0.2

15.4.5. CPU Interface

ACtiming(i80)

The read or write operation starts when both of the /CS and /WR(/RD) are low. (TA=25 $^{\circ}$ C, GND=0V, VDDC=VDDIO=Recommended Operating Conditions)

Parameter	Symbol	Condition		MIN	TYP	MAX	Unit
enable Setup Time	tES	CSE	BCS,RS	10			ns
enable Hold Time	tEH	CSE	BCS,RS	40			ns
		Write	Register	80			ns
		Write	Memory	110			ns
		Read Register	VDDIO>=2.2V	125			ns
		CL=10pF	VDDIO<2.2V	160			ns
Clock Cycle Period	tCYC	Read Register	VDDIO>=2.2V	180			ns
Clock Cycle Period	tere	CL=30pF	VDDIO<2.2V	240			ns
		Read Memory CL=10pF	VDDIO>=2.2V	225			ns
			VDDIO<2.2V	240			ns
		Read Memory	VDDIO>=2.2V	255			ns
		CL=30pF	VDDIO<2.2V	300			ns
		Write Register/Memory		40			ns
		Read Register	VDDIO>=2.2V	85			ns
		CL=10pF	VDDIO<2.2V	120			ns
		Read Register	VDDIO>=2.2V	140			ns
Clock Low Width	tCL	CL=30pF	VDDIO<2.2V	200			ns
		Read Memory	VDDIO>=2.2V	155			ns
		CL=10pF	VDDIO<2.2V	170			ns
		Read Memory	VDDIO>=2.2V	185			ns
		CL=30pF	VDDIO<2.2V	230			ns
Ole als Himb Mint	4011	Write/Re	Write/Read Register				ns
Clock High Width	tCH	Write/Re	ead Memory	70			ns
Write Data Setup Time	tDIS	D	0-D17	40			ns
Write Data Hold Time	tDIH	D	0-D17	30			ns

- 106 - 2009/8/10 Ver.0.2

Parameter	Symbol	Con	dition	MIN	TYP	MAX	Unit
		D0-D17	VDDIO>=2.2V			75	ns
Bogister Assess Delay	tACCReg	CL=10pF	VDDIO<2.2V			100	ns
Register Access Delay		D0-D17 CL=30pF	VDDIO>=2.2V			130	ns
			VDDIO<2.2V			190	ns
	tACCMem	D0-D17	VDDIO>=2.2V			135	ns
Memory Access Delay		CL=10pF	VDDIO<2.2V			150	ns
Wellioty Access Delay	D (COMOIN	D0-D17	VDDIO>=2.2V			165	ns
		CL=30pF	VDDIO<2.2V			210	ns
Read Data(Register) Hold Time	tDOHReg	D0-D17		30			ns
Read Data(Memory) Hold Time	tDOHMem	D0-D17		tCH+30			ns
Rising/Falling Time	tr,tf	Alls	ignals			15	ns

15.4.6 VSYNCO

Output terminal: The VSYNCO output has synchronized with "Internal HSYNC and Internal VSYNC". It shows internal display timing.

Ver. 0.2 - 107