MAT300 Spring Notes

John J Li

March 25, 2021

Notes

The domain of R is:

$$Dom(R) = \{ a \in A | (a, b) \in R \}$$

Definition 5 Let R be a relation from A to B and let S be a relation from B to C. Then the composition of S and R is the relation $S\dot{R}$ from A to C.

$$S\dot{R} = \{(a,c) \in A \times C | \exists_{b \in B}(a,b) \in R \land (b,c) \in S\}$$

.

Properties of relations

Let R be a relation on A. $(R \in A \times A)$

R is called reflexive if for every $a \in A$.

aRa

 $\forall_{a \in A}(a, a) \in R$

R is called irreflexive if for every $a \in A$,

 $\neg aRa$

 $\forall_{a \in A}(a, a) \notin R$

R is called symmetric if for every $a,b\in A$

 $aRb \rightarrow bRa$

 $\forall_a \forall_b (a,b) \in R \to (b,a) \in R$

R is called asymmetric if for every $a, b, \in A$,

$$aRb \rightarrow \neg bRa$$

$$\forall_a \forall_b (a, b) \in R \to (b, a) \notin R$$

R is antisymmetric if for every $a, b \in A$,

$$(aRb \wedge bRa) \rightarrow (a=b)$$

$$\forall a \in A \forall_{b \in A} ((a, b) \in R \land (b, a))$$

R is called transitive if for every $a,b,c\in A,$

$$(aRb \wedge bRc) \rightarrow aRc$$

Examples

The relation of less than or equal to, \leq , on R.

1. reflexive: $\forall_{a \in \mathbb{R}} a = a$

2. symmetric: $\forall_{a,b\in\mathbb{R}} a = b \to b = a$

3. antisymmetric: $\forall_{a,b\in\mathbb{R}}(a=b\land b=a)\to a=b$

4. transitive

R on $z \times z$ (a, b)R(c, d) if a - c is even and 3|(b - d).

1. reflexive: Yes, let $(a,b) \in Z \times Z$. Then $a-a=0=0 \cdot 2$ is even and $b-b=0=0 \cdot 3; 3|(b-b)$.

March 2021 2