Изучение свойств сборных графов – палиндромов и полупалиндромов

Assembly graphs that are palindromes and semi-palindromes, and their properties

Автор: Дмитрий Горохов, БПМИ231 Научный руководитель: Максаев Артем Максимович, к. ф.-м. н.

Цель и задачи

Цель:

Провести теоретическое исследование по дискретной математике. Задачи:

- Изучить литературу по теме проекта, изучить основные свойства и характеристики сборных графов, свойства и факты про палиндромы.
- Изучить класс полупалиндромов, их свойства и характеристики.
- Определить, верно ли, что любой палиндром/полупалиндром реализуем (имеет сборное число 1)? В целом, исследовать теоретически и экспериментально сборные числа палиндромов и полупалиндромов.

Сборный граф

Определение

Сборный граф — конечный связный граф, в котором все вершины имеют степени 1 или 4, а также для каждой вершины на множестве ребер, инцидентных ей, определен порядок.

Пример сборного графа

Трансверсаль

Определение

Трансверсаль $(v_0, e_1, v_1, e_2, \ldots, e_n, v_n)$ — путь, что каждая вершина встречается максимум два раза, все ребра различны, а ребра e_i и e_{i+1} не являются соседними в v_i .

Простой сборный граф

Определение

Простой сборный граф — сборный граф, содержащий эйлерову трансверсаль.

2-слово

Определение

Сборное слово или 2-слово — это слово в некотором алфавите $S = \{a_1, a_2, \dots\}$, что каждая буква a_i либо содержится в слове ровно два раза, либо не содержится вовсе.

Примеры

 $1\ 2\ 3\ 4\ 1\ 2\ 3\ 4$; $2\ 2\ 3\ 4\ 4\ 3\ 1\ 1$ — 2-слова на буквах $\{1,2,3,4\}$.

Биективное соответствие

Лемма

Классы эквивалентности 2-слов находятся в биективном соответствии с классами изоморфизма простых сборных графов.

2-слову 1 2 3 4 1 2 3 4 соответствует данный простой сборный граф.

Биективное соответствие

121021

Порядок возрастания

Определение

Слово записано в порядке возрастания, если каждая буква $oldsymbol{v}$ встречается первый раз только после того, как все буквы меньше $oldsymbol{v}$ уже встречались.

Примеры

2-слова в порядке возрастания: $1\ 2\ 3\ 4\ 1\ 2\ 3\ 4$; $1\ 2\ 2\ 3\ 1\ 4\ 4\ 3$.

2-слова не в порядке возрастания: 2 1 1 2; 1 3 2 2 3 1.

Эквивалентные им 2-слова в порядке возрастания: $1\ 2\ 2\ 1$; $1\ 2\ 3\ 3\ 2\ 1$.

Далее мы отождествляем класс эквивалентности 2-слов с его представителем, записанным в порядке возрастания.

Комбинаторные характеристики

Количество 2-слов

Лемма ([4, J. Touchard, 1952])

Мощность множества 2-слов на n буквах есть

$$W_n = (2n-1)!!$$

Неразложимое 2-слово

Определение

2-слово w — неразложимое, если оно не может быть записано как произведение w=uv двух 2-слов u,v.

Примеры

- 1 2 3 4 1 2 3 4 неразложимое.
- 1 2 2 1 3 4 4 3 разложимое.

Количество неразложимых 2-слов

Лемма ([2, J. Burns, T. Muche, 2013])

Количество неразложимых 2-слов на n буквах есть

$$I_1 = 1;$$

$$I_n = W_n - \sum_{k=1}^{n-1} W_k I_{n-k}$$

Сильно-неразложимое 2-слово

Определение

Сильно-неразложимое 2-слово — такое 2-слово, что оно не содержит никакого собственного 2-подслова.

Замечание

Сильно-неразложимое 2-слово является неразложимым.

Примеры

- 1 2 1 3 2 4 3 4 сильно-неразложимое.
- 1 2 3 3 2 1 неразложимое, но сильно-разложимое.

Количество сильно-неразложимых 2-слов

Лемма ([5, R. R. Stein, 1978])

Количество сильно-неразложимых 2-слов на n буквах есть

$$S_1 = 1;$$

$$S_n = (n-1)\sum_{i=1}^{n-1} S_i S_{n-i}$$

Палиндром

Определение

Палиндром — 2-слово, равное своему обратному.

Пример

 $v=1\ 2\ 3\ 3\ 1\ 2;\ v^R=2\ 1\ 3\ 3\ 2\ 1.$ В возрастающем порядке $v^R=1\ 2\ 3\ 3\ 1\ 2.\ v$ — палиндром.

Палиндром

Определение

Палиндром — 2-слово, равное своему обратному.

Пример

 $w=1\ 2\ 2\ 3\ 1\ 3;\ w^R=3\ 1\ 3\ 2\ 2\ 1.$ В возрастающем порядке $w^R=1\ 2\ 1\ 3\ 3\ 2.$ w — не палиндром.

Количество палиндромов

Лемма ([6, A. Stoimenow, 2000])

Количество палиндромов на n буквах есть

$$P_n = \sum_{k=\lfloor n/2 \rfloor}^n \binom{k}{n-k} \frac{n!}{k!}$$

Количество неразложимых палиндромов

Лемма ([2, J. Burns, T. Muche, 2013])

Количество неразложимых палиндромов на n буквах есть

$$J_1=1;$$

$$J_n = P_n - \sum_{k=1}^{\lfloor n/2 \rfloor} W_k J_{n-2k}$$

Количество сильно-неразложимых палиндромов

Лемма ([5, R. R. Stein, 1978])

Количество сильно-неразложимых палиндромов на n буквах есть

$$T_0 = -1; T_1 = 1;$$

$$T_n = (n-1)\sum_{i=1}^{n-2} T_i T_{n-i} + \sum_{i=1}^{\lfloor n/2 \rfloor} (2n - 4i - 1)S_i T_{n-2i}$$

Полупалиндром

Определение

2-слово w на n буквах в возрастающем порядке — полупалиндром, если $\forall i \in \{1,\ldots,2n\}: w_{2n-i+1}=n-w_i+1.$

Примеры

1 1 2 2; 1 2 1 2 — полупалиндромы.

1 2 2 1 — палиндром, но не полупалиндром.

Полупалиндром

Определение

2-слово w на n буквах в возрастающем порядке — полупалиндром, если $\forall i \in \{1,\ldots,2n\}: w_{2n-i+1}=n-w_i+1.$

Замечание

Полупалиндром является палиндромом.

Биективность симметричным ПСП

Определение

ПСП называется симметричной, если при развороте и замене закрывающих скобочек на открывающие, а открывающих на закрывающие получается она сама.

Предложение

Множество полупалиндромов на n буквах биективно множеству симметричных ПСП длины 2n.

Биективность симметричным ПСП

Биективное отображение f из множества симметричных ПСП в множество полупалиндромов таково: отдельно пронумеруем открывающиеся скобки в порядке возрастания, отдельно закрывающиеся в порядке возрастания и запишем это в строку.

Примеры

Заметим, что скобки, которые при анализе ПСП разбиваются на пары "открывающая-закрывающая" не соответствуют парам букв.

Биективность симметричным ПСП

Предложение

Пусть s — префикс полупалиндрома. Тогда s можно продолжить

- единственным способом, если каждая буква встречается в *s* дважды. Этот способ новая буква (следующая по возрастанию после наибольшей среди встречающихся).
- двумя способами, если существует буква, которая встречается в s один раз. Первый способ — новая буква (следующая по возрастанию после наибольшей среди встречающихся). Второй способ — наименьшая буква префикса, которая встречалась один раз.

Количество полупалиндромов

Предложение

Количество полупалиндромов на n буквах есть $SP_n = \binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Данная последовательность содержится в On-Line Encyclopedia of Integer Sequences с индексом A001405.

Связь неразложимых и сильно-неразложимых полупалиндромов

Предложение

Количество неразложимых полупалиндромов на n буквах равно количеству сильно-неразложимых полупалиндромов на n буквах.

Предложение

Количество сильно-неразложимых (просто неразложимых) полупалиндромов на n буквах есть $SPI_n = SP_{n-1} = \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}$.

Таблицы

n	Все слова W_n	Палиндромы P_n	Полупалиндромы SP_n
1	1	1	1
2	3	3	2
3	15	7	3
4	105	25	6
5	945	81	10
6	10395	331	20
7	135135	1303	35
8	2027025	5937	70
9	34459425	26785	126
10	654729075	133651	252
OEIS	A001147	A047974	A001405

Таблицы

n	Неразл. I_n	H еразл. палин. J_n	Неразл. полупалин. SPI_n
1	1	1	1
2	2	2	1
3	10	6	2
4	74	20	3
5	706	72	6
6	8162	290	10
7	110410	1198	20
8	1708394	5452	35
9	29752066	25176	70
10	576037442	125874	126
OEIS	A000698	A195186	A001405

Таблицы

n	Силнер. S_n	Силнер. пал. T_n	Силнер. полупал. SPI_n
1	1	1	1
2	1	1	1
3	4	2	2
4	27	7	3
5	248	22	6
6	2830	96	10
7	38232	380	20
8	593859	1853	35
9	10401712	8510	70
10	202601898	44940	126
OEIS	A000699	A004300	A001405

Полигональные пути, сборное число

Полигональный путь

Определение

Полигональный путь — путь $(v_0, e_1, v_1, e_2, \dots, e_n, v_n)$, что e_i и e_{i+1} — соседи для v_i для $i \in \{1, \dots, n-1\}$.

Сборное число

Определение

Сборное число простого сборного графа Γ определяется как $\mathrm{An}(\Gamma) = \min\{k | \text{ существует гамильтоново множество полигональных путей } \{\gamma_1, \ldots, \gamma_k\}$ в $\Gamma\}$.

Сборное число

Пример графа со сборным числом 3.

Реализуемость

Определение

Реализумый простой сборный граф — простой сборный граф, со сборным числом 1. Иначе — нереализуемый.

Определение

Минимальное реализующее число для натурального числа n определяется как $R_{\min}(n)=\min\{|\Gamma|: \mathrm{An}(\Gamma)=n\}$. Граф Γ , такой что $R_{\min}(n)=|\Gamma|$, — реализация $R_{\min}(n)$.

Предложение

Для любого натурального числа n $R_{\min}(n) \leq 3n-2$.

Минимальное реализующее число палиндромов

Определение

Аналогично R_{min} определим R_{min}^P — минимальное реализующее число палиндромов.

Предложение

В предположении, что $R_{min}(n)=3n-2$, R_{min}^{P} совпадает с R_{min} .

Реализуемость палиндромов и полупалиндромов

Предложение

Не у всех полупалиндромов сборное число равно единице.

Минимальное реализующее число полупалиндромов

Определение

Аналогично R_{min} определим R_{min}^{SP} — минимальное реализующее число полупалиндромов.

Предложение

Для любого натурального $n \ R_{min}^{SP}(n) \le 5n - 4$.

Минимальное реализующее число полупалиндромов

Программа

Программа

Была разработана библиотека на языке C++ для работы с 2-словами и представлении их в виде сборных графов.

Реализована функция draw_as_graph, использующая систему для визуализации графов Graphviz, которая изображает 2-слово в виде сборного графа.

Визуализация

A double occurrence word
Already in ascending order
Palindrome: yes
Semi-palindrome: yes
Irreducible: no
Strongly-irreducible: no
Assembly number: 2

Unrealizable

Алгоритм для поиска сборного числа.

Был реализован алгоритм для поиска сборного числа, имеющий асимптотику $\mathcal{O}(2^{2n}n\alpha(n))$, где $\alpha(n)$ — обратная функция Аккермана. Такой асимптотики удалось добиться благодаря использованию структуры данных «система непересекающихся множеств».

Библиография I

- [1] A. Angeleska, N. Jonoska, M. Saito DNA recombinations through assembly graphs // Discrete Applied Mathematics. 2009. №157. C. 3020-3037.
- [2] J. Burns, E. Dolzhenko, N. Jonoska, T. Muche, M. Saito Four-regular graphs with rigid vertices associated to DNA recombination // Discrete Applied Mathematics. 2013. №161. C. 1378-1394.
- [3] А. Э. Гутерман, Е. М. Крейнес, Н. В. Остроухова 2-слова: их графы и матрицы // Записки научных семинаров ПОМИ. 2019. №482. С. 45-72.
- [4] J. Touchard Sur un probleme de configurations et sur les fractions continues // Can. J. Math.. 1952. №4. C. 2-25.

Библиография II

- [5] R. R. Stein On a class of linked diagrams, I. Enumeration // Combin. Theory. - 1978. - №24. - C. 357-366.
- [6] A. Stoimenow On the number of chord diagrams // Disc. Math. 2000. №218. C. 209-233.