1. Protolytické reakcie (acidobázické, neutralizačné)

- protolyt
 - elektrolyt schopný vo vhodnom rozpúšťadle odštiepiť resp. viazať protón
- Arrheniova teória elektrolytickej disociácie
 - kyselina
 - látka, ktorá je vo vodnom roztoku schopná odštiepiť H⁺
 - o zásada
 - látka, ktorá je vo vodnom roztoku schopná odštiepiť OH⁻
 - o soli
 - vznikajú neutralizáciou kyselín so zásadami

Brönsted

- o definuje kyseliny a zásady bez ohľadu na rozpúšťadlo
- kyselina
 - látka odštepujúca protón (HBr, NH₄⁺, PH₃...)
- zásada
 - látka schopná protón viazať (NH₃, H₂O...)
- kyselina = zásada + protón
- amfolyt
 - látka vystupujúca aj ako kyselina aj ako zásada
- protón nie je v roztoku voľný, viaže ho rozpúšťadlo
- protolytická reakcia vždy obsahuje členy 2 konjugovaných párov
 - o konjugovaný pár zlúčenina, ktorej vzorec sa líši o 1 protón
 - $O HCl + H_2O \longrightarrow H_3O^+ + Cl^-$ konjugované páry: HCl/Cl^- a H_3O^+/H_2O
- na disociáciu kyselín a zásad má vplyv charakter rozpúšťadla
 - o podľa jeho chovania k protónom sa rozpúšťadlá delia na:
 - amfiprotné podliehajú autoprotolýze
 - *vyrovnané* (H₂O, KOH)
 - protofilné (DMF dimetylformamid)
 - protogénne (CH₃COOH)
 - aprotogénne
 - protón len prijímajú (pyridín, DMSO, dietyléter)
 - inertné
 - protón neuvoľňujú ani neprijímajú (benzén, hexán, CCl₄)
 - kyseliny a zásady v nich nedisociujú
- sila kyselín a zásad závisí od rozpúšťadla
 - čím viac je rozpúšťadlo zásaditejšie, tým viac podporuje disociáciu kyseliny (silu kyseliny)

Disociácia vody, sila kyselín a zásad

• najčastejšie rozpúšťadlo v analytickej chémii je voda, ktorá disociuje v malej miere: $2H_2O \rightleftharpoons OH^- + H_3O^+$ al. zjednodušene $H_2O \rightleftharpoons OH^- + H^+$

•
$$(K_{H_2O})_a = \frac{a_{OH} - a_{H_3O}}{a_{H_2O}^2}$$
 $a_{H_2O} = 1$

$$(K_{H_2O})_a = a_{OH^-} \cdot a_{H_3O^+} = K_v$$

- $K_{H_2O} = [H^+][OH^-] = K_v = 10^{-14}$ pri t=22°C
- $K_{H_2O} = [H^+]^2 = [OH^-]^2$ $[H^+] = [OH^-] = \sqrt{K_v} = 10^{-7}$ \circ v kyslých roztokoch $[H^+] > [OH^-]$
- podľa Sörensena pH je exponent vodíkových iónov

$$o \quad pOH = -\log[OH^{-}] \qquad pOH = -\log a_{OH^{-}}$$

$$\circ$$
 $-\log[H^+] = -\log[OH^-] = pH = pOH = 7$

• potom
$$pH + pOH = pK_{H_2O} = 14$$

- o kyslé roztoky $[H^+] > [OH^-]$ pH < 7
- o zásadité roztoky $[H^+] < [OH^-]$ pH > 7
- o neutrálne roztoky pH = 7
- kvantitatívnym parametrom sily kyselín a zásad je disociačná konštanta K_A (K_B)

$$\circ \quad HA + H_2O \rightleftharpoons H_3O^+ + A^- \quad \text{al. } HA \rightleftharpoons H^+ + A^-$$

$$\qquad K_A = \frac{[H^+][A^-]}{[HA]}$$

- o pre disociačnú konštantu kyseliny a jej konjugovanej zásady platí:
 - $K_A.K_B=K_v$
 - $PK_A + pK_B = pK_v = 14$
- o čím menšia je hodnota pK_A, tým je kyselina silnejšia

Výpočet pH

• silná kyselina (vo vode úplne disociovaná)

o jednosýtna
$$c_{HCl} = c_{H^+} = [H^+]$$

o dvojsýtna
$$2c_{H_2SO_A} = c_{H^+}$$

$$o$$
 $pH = -\log c_{H^+}$

silná zásada

$$\circ \quad pOH = -\log c_{OH^-}$$

$$o$$
 $pH = 14 - pOH$

• slabá kyselina

$$\circ$$
 $HA \rightleftharpoons H^+ + A^-$

$$\circ \quad K_A = \frac{[H^+][A^-]}{[HA]} \qquad [H^+] = \alpha. \, c \quad \text{(c-pôvodná analytická koncentrácia)}$$

$$\circ$$
 $K_A = \frac{[H^+]^2}{c - [H^+]}$ $[H^+] = [A^-]$ $[HA] = c - [H^+]$ $[H^+] \ll c$

$$\circ K_A = \frac{[H^+]^2}{c} [H^+] = \sqrt{K_A \cdot c}$$

$$o \quad pH = \frac{1}{2}(pK_A - \log c)$$

slabá zásada

$$o \quad pOH = \frac{1}{2}(pK_B - \log c)$$

$$\circ$$
 $pH = 14 - pOH$

• ak je c < 5. $\mathbf{10}^{-7} M$, treba brať do úvahy aj vplyv vody $[H^+] = \frac{c_A}{2} + \sqrt{\frac{c_A^2}{4} + K_V}$

Hydrolýza

- je reakcia soli s vodou za vzniku kyseliny a zásady (Arrhenius)
 - o soľ + voda = kyselina + zásada $CH_3COONa + H_2O = CH_3COOH + NaOH \\ NH_4Cl + H_2O = NH_3 + HCl$
 - o reakcia v závislosti od typu soli: zásaditá, kyslá, neutrálna
 - o roztoky solí silných zásad a silných kyselín sú neutrálne nehydrolyzujú (NaCl)
- je reakcia iónov s molekulami vody, ktorej podliehajú katióny slabých zásad (konjugované kyseliny), anióny slabých kyselín (konjugované zásady) (Brönsted)
 - soľ slabej zásady a silnej kyseliny (NH₄Cl)
 - $NH_4Cl + H_2O = NH_3 + HCl$
 - $B^+ + H_2O = BOH + H^+$ (katión podlieha hydrolýze) $A^- + H_2O = A^- + H_2O$ (anión hydrolýze nepodlieha, pretože silná kyselina ihneď disociuje)

$$\bullet \quad K_{h,B} = \frac{[BOH][H^+]}{[B^+]} = \frac{[H^+]^2}{c - [H^+]} = \frac{[H^+]^2}{c} \qquad K_{h,B} = \frac{K_v}{K_B}$$

$$\blacksquare \quad [H^+] = \sqrt{K_{h,B} \cdot c} = \sqrt{\frac{K_v}{K_B} \cdot c}$$

$$pH = -\frac{1}{2}(\log K_v + \log c - \log K_B) = \frac{1}{2}(pK_v - \log c - pK_B)$$

$$pH = \frac{1}{2}(14 - \log c - pK_B)$$

- o soľ silnej zásady a slabej kyseliny (CH₃COONa)
 - $CH_3COONa + H_2O = CH_3COOH + NaOH$
 - $B^+ + H_2O = B^+ + H_2O$ (katión nepodlieha hydrolýze, pretože silná zásada ihneď hydrolyzuje)

$$A^- + H_2O = HA + OH^-$$
 (anión hydrolýze podlieha)

•
$$K_{h,A} = \frac{[HA][OH^-]}{[A^-]} = \frac{[OH^-]^2}{c - [OH^-]} = \frac{[OH^-]^2}{c}$$
 $K_{h,A} = \frac{K_v}{K_A}$

•
$$pOH = -\frac{1}{2}(\log K_v + \log c - \log K_A) = \frac{1}{2}(pK_v - \log c - pK_A)$$

$$POH = \frac{1}{2}(14 - \log c - pK_A)$$

- o soľ slabej kyseliny a slabej zásady
 - hydrolýze podlieha aj katión aj anión

$$PH = \frac{1}{2}(14 + pK_A - pK_B)$$

Tlmivé roztoky

- roztoky, ktoré udržiavajú hodnotu pH približne konštantnú
- v analytickej chémii je potrebná príprava roztokov s definovanou hodnotou pH
 - je možné pripraviť roztoky s presným pH v oblasti 0-3 a 12-14
 - v oblasti 3-12 nie je vhodné riedenie (vplyv CO₂ vzrast pH), preto sa používajú tlmivé roztoky
- je to zmes voľnej slabej kyseliny a jej soli so silnou zásadou (resp. slabej zásady a jej soli so silnou kyselinou)

○
$$NH_3 + H^+ \rightleftharpoons NH_4^+$$

 $NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$
○ $CH_3COO^- + H^+ \rightleftharpoons CH_3COOH$
 $CH_3COOH + OH^- \rightleftharpoons CH_3COO^- + H_2O$

o disociácia kyseliny je potlačená prítomnosťou soli na minimum $[HA] = c_A \quad [A^-] = c_S \quad c_S - \text{koncentrácia soli } c_A - \text{celková analytická koncentrácia}$ $K_A = \frac{[H^+][A^-]}{[HA]} = \frac{[H^+].c_S}{c_A}$ $[H^+] = \frac{K_A.c_A}{c_S}$

o Henderson-Hasselbachova rovnica

$$pH = pK_A + \log\frac{c_S}{c_A}$$

analogicky

$$pH = 14 - pK_B + \log\frac{c_S}{c_B}$$

- tlmivá schopnosť sa kvantitatívne vyjadruje tlmivou kapacitou β
 - o $\beta = \frac{dc}{dpH}$ (zmena koncentrácie soli k zmene pH po prídavku kyseliny alebo zásady) najvyššia tlmivá kapacita ak pH = pK_A a c_A = c_S

Disociácia viacsýtnych kyselín

• uplatnenie disociácie v niekoľkých stupňoch

$$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+$$

 $H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$
 $HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+$
 $K_{A1} \gg K_{A2} \gg K_{A3}$

Amfolyty

výpočet pH čiastočne zneutralizovaných viacsýtnych kyselín (zásad)

$$NaHCO_3 \rightleftharpoons Na^+ + HCO_3^-$$

 $HCO_3^- \rightleftharpoons H^+ + CO_3^2 - [H^+] = [CO_3^{2-}]$
 $HCO_3^- + H^+ \rightleftharpoons H_2CO_3 [H^+] = [H_2CO_3]$
 $\circ [H^+] = [H^+]_1 - [H^+]_2$
 $\circ pH = \frac{1}{2}(pK_{A1} - pK_{A2})$
 $pOH = \frac{1}{2}(pK_{B1} - pK_{B2})$

2. Oxidačno-redukčné reakcie

- oxidácia
 - o dej, pri ktorom atóm/ión stráca elektrón (zvyšuje sa kladné mocenstvo)
- redukcia
 - dej, pri ktorom atóm/ión prijíma elektrón (znižuje sa kladné mocenstvo)
- oxidovadlo
 - o látka schopná prijímať valenčný elektrón (O₂, HNO₃)
- redukovadlo

- o látka schopná odovzdať valenčný elektrón (I. II. podskupina)
- $Hg^{2+} + Sn^{2+} = Hg^0 + Sn^{4+}$ $Hg^{2+} + 2e^{-} = Hg^{0}$ $Sn^{2+} - 2e^- = Sn^{4+}$
- $Red = Ox + ne^-$ (oxidačno-redukčný pár látky, ktoré sa líšia počtom valenčných e)
- oxidačná (redukčná) schopnosť látky je charakterizovaná oxidačno-redukčným potenciálom
- kvantitatívne popísanie redoxných procesov Nernst-Petersova rovnica

$$\circ \quad E = E^0 + \frac{R.T}{n.F} \ln \frac{a_{ox}}{a_{red}}$$

E⁰ – štandardný oxidačno-redukčný potenciál

R – plynová konštanta (8,314 J.K⁻¹.mol⁻¹)

F – Faradayova konštanta (9650 J.V⁻¹.mol⁻¹)

n – počet vymenených elektrónov

o pri výpočtoch:
$$E = E^0 + \frac{0,059}{n} \log \frac{[A_{ox}]}{[A_{red}]}$$

absolútna hodnota E – relatívna škála H₂ elektróda

o
$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$
 (manganometria)

$$E = E_{MnO_4^-/Mn^{2+}}^0 + \frac{0,059}{5} \log \frac{[MnO_4^-][H^+]}{[Mn^{2+}]}$$

Nernstova rovnica

$$M^{n+} + ne^- = M^0$$

$$E = E^0 + \frac{R.T}{n.F} \ln a_{M^{n+}}$$

3. Zrážacie reakcie

- reakcie, pri ktorých vznikajú málo rozpustné zlúčeniny zrazeniny, napr. $\otimes AgCl \ AgCl$
- nasýtený roztok (T,p) rovnovážny stav medzi rozpustenou látkou a jej zrazeninou (charakterizovaný rovnovážnou konštantou)

$$\bullet \quad AB = A^+ + B^- \qquad AgCl = Ag^+ + Cl^-$$

$$\circ K_a = \frac{a_{A^+} \cdot a_{B^-}}{a_{AB}} = a_{A^+} \cdot a_{B^-} = (K_S)_a - \text{súčin rozpustnosti}$$

o
$$K_S = [A^+][B^-]$$
 resp. $(K_S)_a = K_S \cdot \gamma_S$ $\gamma_S = 1 \Rightarrow (K_S)_a = K_S$

všeobecne:

$$A_m B_n = mA^{n+} + nB^{m-}$$

$$K_S = [A^{n+}]^m [B^{m-}]^n$$

$$\circ pK_S = -\log K_S$$

mólová rozpustnosť

$$O [A_m B_n] = \sqrt[m+n]{\frac{K_S}{m^n + n^m}}$$

o napr.
$$\underline{Ag_2CrO_4} = 2Ag^+ + CrO_4^{2-}$$

c 2c c
 $K_S = [Ag^+]^2[CrO_4^{2-}] = (2c)^2. c = 4c^3$

$$K_S = [Ag^+]^2 [CrO_4^{2-}] = (2c)^2 \cdot c = 4c^3$$

mólová rozpustnosť
$$\underline{Ag_2CrO_4}$$
 vo vode: $c = \sqrt[3]{\frac{K_S}{4}}$

zrazenina vznikne, ak sa prekročí hodnota jej súčinu rozpustnosti