Combinatory Categorial Grammars

Lexicalized Semantically Guided Syntax

The People (a very abridged version)

Mark Steedman (Edinburgh)

Data and Parsers Theory

Jason Baldridge (Google)

Julia Hockenmaier (UIUC)

Weakly Supervised Parsing

Me!

Dan Garrette (Google)

Efficient Parsing

Mike Lewis (FAIR)

Mirella Lapata Adam Lopez Johan Boss Cem Bozsahin Michael White

2

Semantic Parsing

Yoav Artzi (Cornell)

Luke Zettlemoyer (UW)

Siva Reddy (McGill)

Stephen Clark (Cambridge) James Curran (Sydney)

Where is syntax?

- Hierarchical syntactic labels
- Where did the labels come from?
- Are all VPs the same? ...

- Semantic labels
- How do you represent long-distance effect?
- Are all languages really tree-structured?

Where is syntax?

Where is syntax?

Syntax as Functions

Function Application

5\N is a function that if applied to a N on the left returns an 5

Grammar:

Sally: N

ate: S\N

Every word is a function or an argument

Syntax as Functions

Functions returning functions

Grammar:

Sally: N

dinner: N

ate: S\N, (S\N)/N

Syntax as Functions

?: Takes in N (on right) and returns N N / N

Grammar:

Sally: N

dinner: N

ate: S\N, (S\N)/N

the: N/N

Syntax as Semantics

Function Composition

$$S/S$$
 (S/N)/N \rightarrow (S/N)/N

Recap

Grammar

Sally	N		
dinner	N		
the	N/N		
ate	S\N, (S\N)/N		
quickly	S/S		

Function Math

Application

$$X/Y \longrightarrow X$$
 $Y \longrightarrow X$

Composition

$$X/Y$$
 $Y/Z \longrightarrow X/Z$
 X/Y $Y \setminus Z \longrightarrow X \setminus Z$
 $Y \setminus Z$ $X \setminus Y \longrightarrow X/Z$
 $Y \setminus Z$ $X \setminus Y \longrightarrow X \setminus Z$

What is a relative clause?

A noun modifier

ran(Sally, home) ate(Sally, dinner)

Unification & Dependencies

ran(Sally, home)

Note: These are more fine-grained labels than nsubj/dobj

Coordination

CCG Dependency Grammar

Coordination

Dependency Grammar

CCG Dependency Grammar

Sally heard but John heard and saw the explosion

Coordination

$$X$$
 conj $\longrightarrow X$ [conj] conj X [conj]

Side note: Crossing Dependencies Are Real

I ate the red and yellow, apple and banana, respectively

What should apply to what?

Fill Arg 1 before Arg 2

Type-Raising

Lexicon & Rules

Grammar

Sally	N		
dinner	N		
the	N/N		
ate	S\N, (S\N)/N		
quickly	S/S		
and	conj		

Application

$$X/Y \longrightarrow X$$
 $Y \longrightarrow X$

Composition

$$X/Y$$
 $Y/Z \longrightarrow X/Z$
 X/Y $Y\setminus Z \longrightarrow X\setminus Z$
 $Y\setminus Z$ $X\setminus Y \longrightarrow X\setminus Z$
 $Y\setminus Z$ $X\setminus Y \longrightarrow X\setminus Z$

Conjunction

$$X \text{ conj} \longrightarrow X[\text{conj}]$$

 $X[\text{conj}] X \longrightarrow X$

Type-Raising

$$\begin{array}{ccc} N & \longrightarrow & S/(S\backslash N) \\ N & \longrightarrow & S\backslash(S/N) \end{array}$$

That's it! Just make up categories

Sweeping things under the rug

- It's really just S, N, and conj? Well... no
 NP, PP
- Ok, so 5 categories? Sorta...
 S[adj], S[dcl], S[b],... NP[nb], ...
- OK, but we did learn all the rules right?
 Ugh,... "Yes" ignore Type-Changing, it's not really real...
- Are you lying to make this formalism sound prettier then it really is?

The dirty ...

As I said, everything is perfect, there are no questions, everyone is happy with this result.

CCG is beautiful and perfect.

Why CCG?

Could be SQL, SPARQL, python, etc

Sally, who ran home, ate dinner

$$\lambda y.\lambda x.f(x, y)$$

```
ran (S\N)/N
ate (S\N)/N
who (N\N)/(S\N)
```

$$\lambda$$
y. λ x.run(x, y)
 λ y. λ x.eat(x, y)
 λ f.f

ran(Sally, home) ate(Sally, dinner)

Modeling

How should we define a probabilistic model?

Modeling Supertagging

Normal-form parsing for Combinatory Categorial Grammars with generalized composition and type-raising — Hockenmaier 2010

A* CCG Parsing with a Supertag-factored Model Lewis 2014 — http://4.easy-ccg.appspot.com/do_parse?sentence=Fruit+flies+like+a+banana&nbest=5

Supertag LSTM Analysis

		LSTM					
Supertag	F-For	Forward	Backward	bi-LSTM	+LM(g-train)	ss-train-1	ss-train-5
(NP\NP)/NP	90.00	88.89	81.91	92.09	92.18	91.72	92.31
$((S\NP)\(S\NP))/NP$	75.75	69.53	61.60	80.38	78.21	79.91	78.77
S[dcl]\NP	77.29	61.14	58.52	84.28	83.41	82.97	80.35
$(S[dcl]\NP)/NP$	91.39	56.58	69.86	92.34	92.46	92.46	92.82
$((S[dcl]\NP)/PP)/NP$	42.30	30.77	42.31	56.41	64.10	62.82	60.26
$(S[dcl]\NP)/(S[adj]\NP)$	86.80	22.84	83.25	87.31	88.83	87.82	86.80
$((S[dcl]\NP)/(S[to]\NP))/NP$	86.49	56.76	75.68	94.59	91.89	91.89	91.89

Modeling the Arguments

Induced Lexicons: Adjectives

English Adj Obj Big Ball N/N Arabic Adj Obj كبيرة كرة N\N (ball) (big)

Induced Lexicons: Verbs

SVO English The man a letter wrote (S\N)/N Child Directed Speech ØVO write a letter S/N Arabic V S O (S/N)/N (wrote) (the man) (a letter) 33

Induced Lexicons: Adpositions

Prepositions can be tricky

Is "to Boston" a modifier?

Stolen from Artzi ACL 2013

show	me	flights	\mathbf{to}	Boston	
$\frac{S/N}{\lambda f.f}$		\overline{N}	$\overline{PP/NP}$	\overline{NP}	
λf	$\cdot f$	$\lambda x.flight(x)$	$PP/NP \ \lambda y.\lambda x.to(x,y)$	BOSTON	
			$\lambda x.to(x,B)$	OSTON	
			$\lambda f.\lambda x.f(x) \wedge to($	$\overline{N}(x,BOSTON)$	
	$\lambda x.flight(x) \wedge to(x,BOSTON)$				
		$\lambda x.flight(x)$ /	$S \setminus to(x, BOSTON$)	

You parse so you can do something

How does a robot check if it's at the right location?

Weakly Supervised Learning of Semantic Parsers for Mapping Instructions to Actions — Artzi 2013

Query a knowledge base Who TARGET directed directed directed arg2 The Nutty Professor TARGET(x) \land directed.arg1(e, x) \land

(a) Who directed The Nutty Professor?

directed.arg2(e, TheNuttyProfessor)

UNIQUE(Austin) \land capital(Austin) \land capital.state(Austin) \land capital.of.arg1(e, Austin) \land capital.of.arg2(e, Texas)

(b) Austin is the state capital of Texas.

Where to learn more?

Semantic Parsing and Modeling

https://yoavartzi.com/tutorial/

Linguistics

Surface Structure and Interpretation

Mark Steedman

MARK STEEDMAN

Jazz

http://jazzparser.granroth-wilding.co.uk/Parser.html