/00/02/10/12





# Service Manual

#### **INHALTSVERZEICHNIS**

|                                                          | Seite                         |
|----------------------------------------------------------|-------------------------------|
| Technische Daten                                         | 1                             |
| Warnungen                                                | 2                             |
| Anmerkungen                                              | 2                             |
| Erlauterung zur Reparaturmethode                         | 2                             |
| Anweisungen zur Mechanik                                 | 2                             |
| Bildeinstellungen                                        | 3                             |
| Einstellschema fur Fernsehteil                           | 4                             |
| Abgleicharbeiten am Fernsehteil                          | 5                             |
| Abgleicharbeiten am Rundfunkteil                         | 5                             |
| Einstellschema fur Rundfunkteil                          | 5                             |
| Mechanische Stuckliste                                   | 6                             |
| Elektrische Stuckliste                                   | 6 + 7                         |
| Diverse Printplatten                                     | 8 bis 14                      |
| Verdrahtungsplan                                         | 15                            |
| Halbleiter-Anschlusse                                    | 16                            |
| Uebersicht uber die Versorgungs-<br>spannungen           | 16+17                         |
| Fehlersuchbaum                                           | 18                            |
| Verzeichnis der Symbole                                  | 19+20                         |
| Anhang<br>Prinzipschaltbild A<br>Prinzipschaltbilt B + C | <b>CS</b> 71 793<br>CS 71 794 |
| i ilizipadilallullu i d                                  | 0011194                       |

Documentation Technique Servicio Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Servicio







#### **TECHNISCHE DATEN**

Fernsehnorm

: CCIR-PAL

Versorgungsspannung

: 220 V~, 50 Hz

12 V----

Leistungsaufnahme

: 40 W bei 220 V

45 W bei 12 V

Ausgangsimpedanz,

Tonwiedergabe

: 8Ω

Ausgangsleistung,

Tonwiedergabe

: 0,6 W

Antennen-Eingangsimpedanz

: 75  $\Omega$  - Koax.

Magnetische Ablenkung

270 mm



276 mm



329 mm



10 kg

Elektrostatische Fokussierung

Automatische Entmagnetisierung

Automatisches Sendersuchsystem

76° - Bildröhre - 10"

Fernsehteil:

ZF-Tonträger

: 33,4 MHz

FM-Ton ZF-Chrominanz : 5,5 MHz : 34,47 MHz

ZF-Luminanz

: 34,47 MHz

Hilfsträger

: 4,43 MHz

Rundfunkteil:

AM-ZF

: 468 kHz : 10,7 MHz

FM-ZF

. , ,

VHF: 48 - 301 MHz UHF: 470 - 892 MHz

FM: 87,5 - 108 MHz MW: 510 - 1605 kHz



#### **WARNUNGEN**

- Die Sicherheitsvorschriften erfordern, dass sich das Gerät nach einer Reparatur in seiner Originallage befindet und dass die benutzten Bauteile und die aufgeführten Bauteile identisch sind,
- Damit Beschädigungen an Integrierten Schaltungen und Transistoren verhütet werden, muss jeder Hochspannungsüberschlag unterdrückt werden.
   Für die Kontrolle der Hochspannung ist ein geeignetes Messinstrument zu benutzen.
   Entladen der Bildröhre darf nur in der Weise, wie in Bild 1 dargestellt, erfolgen.
- 3. Während der Messung am Hochspannungsteil und an der Bildröhre ist grosse Vorsicht geboten.
- Bauteile sind niemals bei eingeschaltetem Gerät auszutauschen.
- 5. Gemäss Vorschrift ist bei Austausch der Bildröhre eine Sicherheitsbrille zu tragen.
- Zum Abgleichen sind Kunststoff- statt Metallwerkzeuge zu benutzen. Dadurch wird vermieden, dass ein Kurzschluss entsteht oder dass eine bestimmte Schaltung instabil wird.
- Die Möglichkeit besteht, dass bei bestimmten Spannungsmessungen die Speisung ein Mal "schluckt". Sie sollen damit rechnen, dass demzufolge Programm 1 eingeschaltet wird.



#### **ANMERKUNGEN**

- 1. Die Gleichspannungen und Oszillogramme sind gegenüber einem möglichst nahen Erdungspunkt zu messen.
- 2. Die Gleichspannungen sind unter folgenden Umständen zu messen: Kein Antennensignal, Mindest-Helligkeit und Höchst-Sättigung.
- 3. Die Oszillogramme sind unter folgenden Umständen zu messen:
  - a. Als Eingangssignal ein Farbbalkenmuster (PM5509 oder PM5519) benutzen.
  - Ein Oszilloskop (Stellung 0,1 V/div. -DC) über einen Abschwächerkopf (10:1) an Punkt 7 von IC401-2B anschliessen,
  - c. Die Helligkeitsregelung so einstellen, dass das Niveau des Schwarzbalkens im Videosignal auf 6 V liegt (siehe Bild 2). Mit dem Kontrasteinsteller R426 die Amplitude des Videosignals auf 1 V<sub>SS</sub> einstellen. Die Sättigungsregelung auf 5,5 V Gleichspannung an Punkt 2 von IC801 einstellen.
- 4. Für die Codierung von Spulen wurde im Manual der Buchstabe "S", in der servicezwecklichen Bedruckung jedoch der Buchstabe "L" eingesetzt.
- Für die Codierung von Transistoren wurden im Manual die Buchstaben "TS", in der servicezwecklichen Bedruckung jedoch der Buchstabe "Q" eingestezt.
- In der servicezwecklichen Bedruckung der Rundfunkplatine wurde zu der Codierung der Bauteile der Buchstabe "A" zusätzlich vermerkt, also Widerstand 57 = RA57.



Bild 2

#### REPARATURMETHODE

Diese Anleitung enthält eine Reparaturmethode in Form eines Fehlersuchbaums.

Diese Methode bezieht sich nur auf den Digitalteil des Geräts. Es wird dem Techniker, der mit dem Gerät unausreichende Erfahrungen gesammelt hat, ermöglicht, Fehler im Gerät rasch und zweckmässig zu orten. Er benötigt dazu ein Antennen- oder Generatorsignal und ein Universalmessinstrument.

#### Anmerkung:

Im allgemeinen zeigt der Fehlersuchbaum nich den Weg zum schadhaften Bauteil, sondern zu einer schadhaften Schaltung.

#### Anweisungen zur Mechanik

#### 1. Abnahme der Rückwand (siehe Bild 3)

Die Rückwand lässt sich rückwärts schieben, nachdem die Schrauben "A" gelöst worden sind. Um die Rückwand vollständig abnehmen zu können, müssen die beiden Stecker "B" an U1244 unbedingt herausgezogen werden.



Bild 3

- 2. Ausbau der Rundfunkplatine (siehe Bild 4)
- Knöpfe der Abstimmung und der Toneinstellung abziehen.
- Dann die Schrauben "C" lösen.
- Die Rundfunkplatine lässt sich nun nach hinten abnehmen.



Bild 4

#### **BILDEINSTELLUNGEN**

#### Bemerkung:

Die nachstehend beschriebenen Farbreinheits- und Konvergenzeinstellungen müssen nur durchgeführt werden, wenn eine vollständig neue Einstellung notwendig ist oder wenn eine neue Bildröhre eingebaut worden ist. In anderen Fällen, z.B. nach Ersatz der Ablenkeinheit, wird es meistens nicht nötig sein, die Gummikeile (E in Bild 5) zu entfernen. Es brauchen dann nur Korrekturen mit der Multipoleinheit vorgenommen zu werden.

#### I. Farbreinheit (siehe Bild 5)

- Die richtige Stelle sämtlicher Bauteile am Hals der Bildröhre prüfen.
- Das Gerät mit der Vorderseite nach Osten oder Westen anordnen und einschalten.
   Ein Gittermuster zuführen und Kontrast auf Minimum einstellen. Die Helligkeit auf Maximum einstellen und das Gerät 15 Minuten anheizen lassen.
- 3. Mit den Lippen "B" und "D" die statische Konvergenz einstellen (siehe nötigenfalls Punkt II).
- SK501 an U1240 für die vertikale Zentrierung in Mittelstellung drehen.
- R831 (Grün-Einstellung) und R835 (Blau-Einstellung) an U1239 linksherumdrehen.
   R828 (Rot-Einstellung) an U1239 rechtsherumdrehen, bis ein Rotrester entsteht.
- Die Befestigungsschraube "C" der Ablenkeinheit lösen.
- Die Ablenkeinheit an die Multipoleinheit ziehen und Befestigungsschraube "C" so anziehen, dass sich die Ablenkeinheit mehr oder weniger schwer verschieben lässt.
- Mit den Lippen "A" die Farbreinheitsringe verdrehen, wodurch die vertikale rote Bahn so gut wie möglich in die Schirmmitte gebracht wird; dabei muss auch die mittlere Horizontallinie so gerade wie möglich sein.
- Die Ablenkeinheit verschieben, bis die ganze Bildfläche gleichmässig rot ist; dabei ist zu beachten, dass sich das Bild nicht zu viel in Vertikalrichtung verschiebt.
- Die Farbreinheit für Grün prüfen indem R828 (Rot-Einstellung) maximal linksherumgedreht und R831 (Grün-Einstellung) rechtsherumgedreht wird, bis ein Grünraster entsteht.
- Die Farbreinheit für Blau prüfen indem R831 (Grün-Einstellung) maximal linksherumgedreht und R835 (Blau-Einstellung) rechtsherumgedreht wird, bis ein Blauraster entsteht.
- Etwaige Korrekturen lassen sich vornehmen indem die Farbreinheitsringe "A" ein wenig verdreht und/ oder die Ablenkeinheit ein wenig verschoben wird.
- 13. Befestigungsschraube "C" kräftig anziehen.
- Mit SK501 an U1240 die vertikale Zentrierung einstellen.
- Den Sperrpunkt der Bildröhre erneut einstellen.
   Den Grauton erneut einstellen.
   Diese Einstellungen siehe Seite 5.
- 16. Mit der statischen und anschliessend der dynamischen Konvergenzeinstellung weiterfahren.

#### II. Statische Konvergenz (siehe Bild 5)

- Gittermuster zuführen und Gerät 15 Minuten anheizen lassen.
- Durch Verdrehen der Vierpolringe mit den Lippen "B" werden das rote und blaue Gittermuster in der Schirmmitte zur Deckung gebracht.
- Durch Verdrehen der Sechspolringe mit den Lippen "D" wird das grüne Gittermuster in der Schirmmitte mit dem roten und blauen Gittermuster zur Deckung gebracht.

#### III. Dynamische Konvergenz

#### Bemerkung:

Die dynamische Konvergenz wird erzielt, indem man die Ablenk-Unit in vertikale und in horizontale Richtung kantelt. Um die richtige Stellung der Ablenk-Unit zu fixieren, hat man drei Gummikeile zwischen dem Glas des Bildröhren-Konus und er Ablenk-Unit angebracht. (siehe Abb. 6d oder 7d). Diese Keile sind in zwei Dicken lieferbar: ein Keil mit einer Dicke von 7 mm ist unter Codenummer 4822 462 40356 und einer mit einer Dicke von 11 mm ist unter Codenummer 4822 462 40357 lieferbar.

- Erst die Farbreinheit und die statische Konvergenz kontrollieren.
- 2. Gittermuster zuführen.
- 3. Die Kreuzung der mittleren horizontalen blauen und roten Linie und die Kreuzung der mittleren vertikalen blauen und roten Linie beheben, indem die Ablenk-Unit in vertikale Richtung gekantelt wird. Steht die Ablenk-Unit in der richtigen Stellung dann den Gummikeil (1), von dem der Papierstreifen nicht entfernt worden ist, an der Oberseite (Abb. 6a) oder der Unterseite (Abb. 7a) anbringen. Abb. 6a zeigt die Situation, in der die Ablenk-Unit nach oben gekantelt wurde und Abb. 7a gibt an, dass die Unit nach unten gekantelt wurde.
- 4. Dadurch, das die Ablenk-Unit in horizontale Richtung gekantelt wird, werden nun sowohl die horizontalen blauen und roten Linien oben und unten im Bild sowie die vertikalen blauen und roten Linien links und rechts im Bild zur Deckung gebracht. Steht die Ablenk-Unit in der richtigen Stellung, dann Keile 2 und 3, von dem der Papierstreifen entfernt worden ist, anbringen (siehe Abb. 6b oder 7b). Das Leimstück fest gegen das Glas der Bildröhre drücken.
- 5. Keil 4 anbringen (siehe Abb. 6c oder 7c) und das Leimstück fest andrücken.
- Keil 1 entfernen, so dass die Situation gemäss Abb.
   6d oder 7d entsteht.















#### ABGLEICHARBEITEN AM FERNSEHTEIL

#### 1. +115 V-Speisespannung

Voltmeter (Stellung DC) zwischen TP702 und Chassis anschliessen und Kontrast, Helligkeit und Sättigung auf Minimum einstellen.

- a. Bei 220 V∼ Speisespannung mit R714 an U1240 die Spannung auf 115 V einstellen.
- b. Bei 12 V .... Speisespannung mit R783 an U1274 die Spannung auf 115 V einstellen.

#### 2. HF-AVR

Ein Generatorsignal mit einer Amplitude von ± 3 mV zuführen. Generator in Stellung "Grauskala" bringen. Kontrast auf Maximum einstellen und die Helligkeit so einstellen, dass sich sämtliche Graustufen unterscheiden lassen.

Nach Rechtsherumdrehen von R217 an U1240 wird Rausch im Bild sichtbar.

Nach Linksumdrehen von R217 verlagert sich das Bild und wird es dunkler.

R217 so einstellen, dass sich das Bild nicht verlagert und keinen Rausch zeigt.

#### 3. Sperrpunkt der Bildröhre

- a. Ein Generatorsignal zuführen und Generator in Stellung "Grauskala" bringen.
- TP402 und TP403 miteinander verbinden.
   TP404 und TP405 miteinander verbinden.
- c. R833 und R837 an U1239 in deren Mittelstellung bringen.
  - R828, R831 und R835 an U1239 linksherum an den Anschlag bringen.
- d. Kontrast und Helligkeit auf Maximum einstellen.
- e. Nun R626 an U1240 rechtsherumdrehen, bis eine horizontale Linie gerade sichtbar wird.
- f. R828, R831 und R835 so einstellen, dass jede Farbe gerade sichtbar wird.
  - Weist jedoch die horizontale Linie nach der Justierung in Punkt e eine blaue Farbe auf, dann nur R828 und R831 einstellen. Weist die Linie nach der Justierung in Punkt e eine rote Farbe auf, dann nur R831 und R835 einstellen.
  - Weist die Linie nach der Justierung in Punkt e eine grüne Farbe auf, dann nur R828 und R835 einstellen.
- g. R626 linksherumdrehen, bis die horizontale Linie gerade verschwindet.
- h. Die Durchverbindungen beheben.

#### 4. Strahlstromeinstellung

- a. Ein Generatorsignal zuführen und Generator in Stellung "Grauskala" bringen.
- b. Helligkeit und Kontrast auf Maximum einstellen.
- c. Voltmeter (Stellung DC) zwischen TP603 und TP604 (+ an TP604) anschliessen.
- d. R411 so einstellen, dass das Voltmeter 0,415 V anzeigt.

#### 5. Grautoneinstellung

- a. Ein Generatorsignal zuführen und Generator in Stellung "Grauskala" bringen.
- R833 und R837 so regeln, dass der verlangte Weisston erscheint.

#### 6. Lautstärke-Mindesteinstellung

- a. Gerät in Stellung "TV" bringen.
- Lautstärkeregelung am Bedienungsfeld auf Minimum einstellen.
- c. R1052 so regeln, dass gerade kein Ton hörbar ist.

#### 7. Tondetektor TV

- a. Ein Generatorsignal zuführen und Generator in Stellung "MOD" für Ton bringen.
- b. HF-Amplitude auf 10 mV einstellen.
- c. Oszilloskop an Stift SA2 and U1244 anschliessen.
- d. Die Lautstärkeregelung am Bedienungsfeld so regeln, dass das Bild am Oszilloskop eine Amplitude von  $3\ V_{ss}$  zeigt.
- e. U301 an U1240 so regeln, dass die Tonwelle am Oszilloskop maximal und symmetrisch ist.

#### 8. Horizontal-Synchronisation

- a. TP601 und TP602 an U1240 miteinander verbinden.
- b. R609 so einstellen, dass das Bild stillsteht.
- c. Durchverbindung beheben.

#### 9. Vertikal-Synchronisation

R504 an U1240 so justieren, dass das Bild stillsteht.

#### 10. Chrominanz

- a. Ein Generatorsignal mit einer Amplitude von etwa 3 mV zuführen.
- Kontrast auf Maximum und Helligkeit auf Minimum einstellen.
- c. Sättigung in Mittelstellung bringen.
- d. Generator in Stellung "Matrix" bringen und T802 an U1239 so regeln, dass der Jalousie-Effekt verschwindet.
- e. Generator in Stellung "DELAY" bringen und R812 an U1239 so regeln, dass der Jalousie-Effekt verschwindet.
- f. Generator in Stellung "PHASE" bringen und T801 an U1239 so regeln, dass sowohl auf der Oberseite als auch auf der Unterseite des Bildes die gleichen Farben erhalten werden.

|                      | <b>®</b>                            | $\Diamond$ |           | Ø.        |            | (I) .  |
|----------------------|-------------------------------------|------------|-----------|-----------|------------|--------|
| MW<br>via 1 μF, 63 V | 468 kHz<br>+ 1 kHz                  | <b>(A)</b> | Min. cap. | U2<br>CF2 |            | B Max. |
| MW                   | 510 kHz<br>+ 1 kHz                  |            | Max. cap. | Т3        |            |        |
|                      | 1650 kHz<br>+ 1 kHz                 |            | Min. cap. | С30ь      |            | B Max. |
|                      | 520 kHz<br>+ 1 kHz                  |            |           | S4        |            | â      |
|                      | 1500 kHz<br>+ 1 kHz                 |            | <b>-</b>  | C24b      |            | B Max. |
| FM                   | 10,7 MHz<br>∆f ± 180 kHz<br>(50 Hz) | <b>(</b>   | Min. cap. | U1        | <b>₽</b> 1 |        |
|                      | via 10 nF                           |            | www.cap.  | U4        | ⟨F⟩ 2      |        |
| FM<br>AFC = Off      | 87,1 MHz<br>+ 1 kHz                 |            | Max. cap. | S3        |            | Ì      |
|                      | 109 MHz<br>+ 1 kHz                  | (E)        | Min. cap. | C14b      |            |        |
|                      | 88 kHz<br>+ 1 kHz                   |            |           | S1        |            | F Max. |
|                      | 108 MHz<br>+ 1 kHz                  |            | <b>—</b>  | C5b       |            |        |

# ‡ Wiederholen

- 1 Abgleichen auf Symmetrie und maximale Höhe der Durchlasskurve.
- 2 Abgleichen auf Symmetrie und maximale Steilheit der "S"-Kurve.
- \* In Deutschland sind die folgenden Eckfrequenzen einzuhalten: UKW bereich 87,5 MHz 108 MHz.

| -55-<br>-MODULE-                           |                                                    |
|--------------------------------------------|----------------------------------------------------|
| U0127:<br>versions 02-10<br>versions 00-12 | 4822 267 10064<br>4822 267 20186                   |
| U0128:<br>versions 00-02-12                | 4822 210 40183                                     |
| versions 10                                | 4822 210 40185                                     |
| U1241                                      | 4822 212 20857                                     |
| U1242                                      | 4822 212 20858                                     |
| U1243                                      | 4822 212 20859                                     |
| U1244                                      | 4822 214 50214                                     |
| U1245                                      | 4822 214 50215                                     |
| U1246<br>U1274                             | 4822 212 20932<br>4822 265 30202<br>4822 212 20861 |
| Liter<br>IC<br>Primp                       |                                                    |
| HA 11251                                   | 4822 209 80597                                     |
| IX0037 CE                                  | 4822 209 80595                                     |
| IX0040 TA                                  | 4822 209 80703                                     |
| IX0043 CE                                  | 4822 209 80704                                     |
| IX0064 CE                                  | 4822 209 80705                                     |
| IX0062 CE<br>IX0065 CE<br>IX0118 CE        | 4822 209 80743<br>4822 209 80706                   |
| IX0118 CE                                  | 4822 209 80707                                     |
| IX0129 CE                                  | 4822 209 80698                                     |
| IX0133 CE                                  | 4822 209 80699                                     |
| IX0134 CE                                  | 4822 209 80701                                     |
| IX0135 CE                                  | 4822 209 80702                                     |
| TC4001 BP                                  | 5322 209 14045                                     |
| TC4081 BP                                  | 5322 209 14054                                     |
| ₩                                          |                                                    |
| 2SA1015 G                                  | 4822 130 41504                                     |
| 2SA1015 Y                                  | 4822 130 41505                                     |
| 2SC458 D                                   | 4822 130 41501                                     |
| 2SC460 B                                   | 4822 210 10213                                     |
| 2SC461 B                                   | 4822 210 10213                                     |
| 2SC535 B                                   | 4822 130 41503                                     |
| 2SC1627 Y                                  | 4822 130 41507                                     |
| 2SC1815 GW                                 | 4822 130 41513                                     |
| 2SC1815 YW                                 | 4822 130 41514                                     |
| 2SC1827                                    | 4822 130 41508                                     |
| 2SC2120 Y                                  | 4822 130 41416                                     |
| 2SC2199                                    | 4822 130 41509                                     |
| 2SC2216                                    | 4822 130 41512                                     |
| 2SC2229 O                                  | 4822 130 41511                                     |
| 2SC2236 Y                                  | 4822 130 41348                                     |
| 2SC2365 P                                  | 4822 130 41515                                     |
| 2SD897 A                                   | 4822 130 41516                                     |
| +                                          |                                                    |
| DX0048 CE                                  | 4822 130 31286                                     |
| DX0055 CE                                  | 4822 130 31287                                     |
| DX0073 CE                                  | 4822 130 31288                                     |
| DX0086 TA                                  | 4822 130 31289                                     |
| DX0101 CE                                  | 4822 130 31291                                     |
| DX0107 TA                                  | 4822 130 31292                                     |
| DX0115 CE                                  | 4822 130 31293                                     |
| DX0118 CE                                  | 4822 130 31294                                     |
| DX0125 CE                                  | 4822 130 31295                                     |
| DX0128 CE                                  | 4822 130 31296                                     |
| IN34A                                      | 4822 130 30191                                     |
| IK 60R                                     | 4822 210 20306                                     |
| IS 2076                                    | 4822 130 31304                                     |
| IS 2790                                    | 4822 130 31228                                     |
| 03P4MG (Thyristor)                         | 4822 130 20089                                     |
| EX0022 TA                                  | 4822 130 31297                                     |
| EX0024 CE                                  | 4822 130 31298                                     |
| EX0048 CE                                  | 4822 130 31299                                     |
| EX0051 CE                                  | 4822 130 31301                                     |
| EX0069 CE                                  | 4822 130 31302                                     |
| EX0074 CE E                                | 4822 130 31303                                     |

| R217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                                                                                          |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| R411 100 kΩ 4822 101 10256 R425 10 kΩ 4822 101 10257 R504 5 kΩ 4822 101 10263 R511 150 Ω 1 W 4822 101 10263 R511 150 Ω 1 W 4822 101 10263 R525 220 Ω 4822 101 10264 R620 39 Ω 1 W 5322 116 55063 R623 15 Ω 2 W 4822 116 51093 R629 1 kΩ 5 W 4822 116 51093 R629 1 kΩ 5 W 4822 116 51093 R701 6.8 Ω 5 W 4822 116 51093 R701 6.8 Ω 5 W 4822 116 51093 R706 39 Ω 1 W 4822 116 51093 R706 39 Ω 1 W 4822 116 55063 R714 470 Ω 4822 101 10254 R812 1 kΩ 4822 101 10253 R812 1 kΩ 4822 101 10253 R812 1 kΩ 4822 101 10253 R813 3 κΩ 4822 101 10253 R813 3 κΩ 4822 101 10253 R838.840 12 kΩ 1 W 4822 116 51291 R833 300 Ω 4822 101 10255 R831 5 kΩ 4822 101 10255 R831 5 kΩ 4822 101 10255 R831 3 kΩ 4822 101 10255 R838.840 12 kΩ 1 W 4822 116 51291 R8365 8.2 MΩ 0.5 W 4822 111 50419 R1065 22 kΩ 1 W 4822 116 51291 R5106 15 kΩ 1 W 4822 116 51291 R51 100 Ω 1 W 4822 116 51294 R51 100 Ω 1 W 4822 116 51291 R51 100 Ω 1 W 4822 111 50419 R51 100 Ω 1 W 4822 112 50538 R57 5 kΩ 1 W 4822 112 50538 R57 5 kΩ 1 W 4822 112 50538 R57 5 kΩ 1 W 4822 112 50538 R50 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                          |                                                                      |
| R504         5         kΩ         4822 101 10263           R511         150         Ω         1 W         4822 101 10263           R516         100         Ω         4822 101 10262           R609         4.7 kΩ         4822 101 10254           R620         39         Ω         1 W         5322 116 55063           R623         15         Ω         2 W         4822 116 51093           R629         1         kΩ         0.5 W         4822 116 51093           R701         6.8         Ω         5 W         4822 116 51093           R705         100         Ω         1 W         4822 116 51093           R706         39         Ω         1 W         4822 116 51098           R706         39         Ω         1 W         4822 101 10253           R812         1         kΩ         4822 101 10253           R828         3         kΩ         4822 101 10253           R828         3         kΩ         4822 101 10253           R828         3         kΩ         4822 101 10253           R831         3         kΩ         4822 101 10253           R833         300         Ω         4822 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R411<br>R425                 | $100~~k\Omega$ $10~~k\Omega$                                                                             | 4822 101 10256<br>4822 101 10257                                     |
| R609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R511<br>R516                 | $\begin{array}{ccc} 150 & \Omega & 1 \text{ W} \\ 100 & \Omega & \end{array}$                            | 4822 101 10263<br>4822 116 51142<br>4822 101 10258                   |
| R629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R609<br>R620                 | $4.7 \text{ k}\Omega$ $39 \Omega 1 \text{ W}$                                                            | 4822 101 10254<br>5322 116 55063                                     |
| R706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R629<br>R701                 | $\begin{array}{ccc} 1 & k\Omega & 0.5 \text{ W} \\ 6.8 & \Omega & 5 \text{ W} \end{array}$               | 4822 116 51235<br>4822 113 80251                                     |
| R812 1 kΩ 4822 101 10253 R828 3 kΩ 4822 100 10316 R831 3 kΩ 4822 100 10316 R833 300 Ω 4822 101 10259 R835 3 kΩ 4822 101 10259 R836 3 kΩ 4822 101 10259 R837 300 Ω 4822 101 10259 R838840 12 kΩ 1 W 4822 116 51289 R841 5 kΩ 4822 101 10264 R855 8.2 MΩ 0.5 W 4822 111 50419 R1045 12 kΩ 2 W 5322 116 55197 R1052 22 kΩ 4822 101 10255 R1056 15 kΩ 1 W 4822 116 51291 R51 100 Ω 1 W 4822 116 51291 R51 100 Ω 1 W 4822 116 51098 R57 5 kΩ 4822 101 30401  -II  C211 100 nF - 50 V 4822 121 50639 C220 2 pF - 50 V 4822 121 40504 C221 47 nF - 50 V 4822 122 31446 C221 47 nF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31446 C303 4 4.7 μF - 35 V 4822 124 10244 C304 4.7 μF - 35 V 4822 124 10245 C507 3.3 μF - 50 V 4822 124 10245 C501 33 nF - 50 V 4822 124 10245 C511 15 μF - 16 V 5322 124 10450 C601 0.22 μF - 50 V 4822 121 50639 C604 6.8 nF - 50 V 4822 121 50639 C605 100 nF - 50 V 4822 121 50639 C600 6.8 nF - 50 V 4822 121 50639 C600 6.8 nF - 50 V 4822 121 50639 C600 6.8 nF - 50 V 4822 121 50639 C600 6.8 nF - 50 V 4822 121 50639 C600 6.8 nF - 50 V 4822 121 50639 C601 0.72 μF - 50 V 4822 121 50639 C602 3.3 nF - 1600V 4822 121 40285 C621 470 nF - 250 V 4822 121 50639 C603 100 nF - 50 V 4822 121 50639 C702 10 nF - 1400V 4822 121 40253 C703 10 nF - 1400V 4822 121 40253 C704 10 nF - 50 V 4822 121 50639 C705 100 μF - 50 V 4822 121 50639 C706 22 μF - 400 V 4822 121 40253 C707 220 n F - 200 V 4822 121 50647 C711 39 n F - 50 V 4822 121 50647 C711 39 n F - 50 V 4822 121 50647 C711 39 n F - 50 V 4822 121 50647 C711 39 n F - 50 V 4822 121 50647 C711 39 n F - 50 V 4822 121 50647 C711 39 n F - 50 V 4822 121 50647 C715 10 μF - 350 V 4822 121 50647 C716 22 μF - 50 V 4822 124 40298 C707 220 n F - 200 V 4822 121 50647 C715 10 μF - 350 V 4822 124 40298 C707 220 n F - 50 V 4822 124 40298 C707 220 n F - 50 V 4822 124 40298 C707 220 n F - 50 V 4822 124 50649 C716 22 μF - 50 V 4822 124 40298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R706<br>R714                 | $\begin{array}{ccc} \textbf{39} & \Omega & \textbf{1} \ \textbf{W} \\ \textbf{470} & \Omega \end{array}$ | 4822 116 51098<br>5322 116 55063                                     |
| R833 300 $\Omega$ 4822 101 10259 R835 3 $\kappa\Omega$ 4822 101 10259 R837 300 $\Omega$ 4822 101 10259 R838840 12 $\kappa\Omega$ 1 W 4822 111 50259 R838840 12 $\kappa\Omega$ 1 W 4822 111 50419 R855 8.2 $\kappa\Omega$ 0.5 W 4822 111 50419 R1045 12 $\kappa\Omega$ 2 W 5322 116 55197 R1052 22 $\kappa\Omega$ 4822 101 10255 R1056 15 $\kappa\Omega$ 1 W 4822 116 51291 R51 100 $\Omega$ 1 W 4822 116 51291 R51 100 $\Omega$ 1 W 4822 116 51098 R57 5 $\kappa\Omega$ 4822 101 30401 $\Omega$ 1 W 4822 101 30401 $\Omega$ 1 W 4822 101 30401 $\Omega$ 1 W 4822 116 51098 R57 $\Omega$ 47 $\Omega$ 47 $\Omega$ 4822 121 50639 $\Omega$ 4822 121 40504 $\Omega$ 4822 122 31446 $\Omega$ 4822 123 1446 $\Omega$ 4822 124 10246 $\Omega$ 4822 124 10246 $\Omega$ 4822 124 10246 $\Omega$ 4822 124 10246 $\Omega$ 4822 125 10533 $\Omega$ 4822 124 10246 $\Omega$ 4822 125 105639 $\Omega$ 4822 125 105639 $\Omega$ 4822 127 105639 $\Omega$ 4822 128 31446 $\Omega$ 47 $\Omega$ 5 $\Omega$ 4822 122 31446 $\Omega$ 5 $\Omega$ 5 $\Omega$ 4822 122 14464 $\Omega$ 6.8 $\Omega$ 7 $\Omega$ 7 $\Omega$ 6.8 $\Omega$ 7 $\Omega$ 7 $\Omega$ 822 122 140504 $\Omega$ 7 $\Omega$ 822 $\Omega$ 823 $\Omega$ 824 $\Omega$ 825 $\Omega$ 826 $\Omega$ 827 $\Omega$ 828 $\Omega$ 829 $\Omega$ 82 | R812<br>R828                 | $\begin{array}{ccc} 1 & k\Omega \\ 3 & k\Omega \end{array}$                                              | 4822 101 10253<br>4822 100 10316                                     |
| R841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R833<br>R835<br>R837         | $\begin{array}{ccc} 300 & \Omega \\ & 3 & k\Omega \\ 300 & \Omega \end{array}$                           | 4822 101 10259<br>4822 100 10316<br>4822 101 10259                   |
| R1052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R841<br>R855                 | $\begin{array}{ccc} 5 & k\Omega \\ 8.2 & M\Omega & 0.5 & W \end{array}$                                  | 4822 101 10264<br>4822 111 50419                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R1052<br>R1056               | $\begin{array}{ccc} 22 & \mathbf{k}\Omega \\ 15 & \mathbf{k}\Omega & 1 \ \mathbf{W} \end{array}$         | 4822 101 10255<br>4822 116 51291                                     |
| C211 100 nF - 50 V 4822 121 50639 C220 2 pF - 50 V 4822 122 31446 C221 47 nF - 50 V 4822 121 40504 C224 10 μF - 35 V 4822 124 10244 C229 2 pF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31448 C304 4.7 μF - 35 V 4822 124 10246 C307 6.8 nF - 50 V 4822 121 50647 C507 3.3 μF - 35 V 4822 124 10245 C501 33 nF - 50 V 4822 121 50647 C507 3.3 μF - 35 V 4822 124 10245 C511 15 μF - 16 V 5322 124 14164 C601 0.22 μF - 50 V 4822 121 50538 C603 100 nF - 50 V 4822 121 50639 C604 6.8 nF - 50 V 4822 121 50639 C609 68 nF - 50 V 4822 121 50645 C620 3.3 nF -1600V 4822 121 50645 C620 3.3 nF -1600V 4822 121 41297 C622 270 nF - 200 V 4822 121 40428 C623 27 nF - 200 V 4822 121 40428 C623 27 nF - 200 V 4822 121 40253 C702 10 nF -1400V 4822 121 40253 C703 10 nF -1400V 4822 121 40253 C704 10 nF - 50 V 4822 121 40253 C706 22 μF - 400 V 4822 121 40253 C706 22 μF - 400 V 4822 121 50645 C707 220 nF - 400 V 4822 121 50645 C709 68 nF - 50 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50645 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C713 33 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 122 31455 C715 10 μF - 35 V 4822 124 40298 C777 220 nF - 400 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C713 33 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C715 10 μF - 35 V 4822 124 40296 C776 22 μF - 160 V 4822 124 50979 C776 22 μF - 160 V 4822 124 40296 C776 22 μF - 160 V 4822 124 40297 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 50 V 4822 124 20979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R57                          | 5 kΩ                                                                                                     |                                                                      |
| C220 2 pF - 50 V 4822 122 31446 C221 47 nF - 50 V 4822 121 40504 C224 10 μF - 35 V 4822 124 10244 C229 2 pF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31446 C307 6.8 nF - 50 V 4822 121 50538 C501 33 nF - 50 V 4822 121 50647 C507 3.3 μF - 35 V 4822 124 10245 C511 15 μF - 16 V 5322 124 14164 C601 0.22 μF - 50 V 4822 121 50538 C601 0.22 μF - 50 V 4822 121 50639 C609 68 nF - 50 V 4822 121 50639 C609 68 nF - 50 V 4822 121 50645 C620 3.3 nF -1600V 4822 121 41269 C621 470 nF -250 V 4822 121 41297 C622 270 nF - 200 V 4822 121 41297 C622 270 nF - 200 V 4822 121 41296 C627 100 nF - 50 V 4822 121 40428 C623 27 nF - 200 V 4822 121 40253 C703 10 nF -1400V 4822 121 41296 C627 100 nF - 50 V 4822 121 41296 C627 100 nF - 50 V 4822 121 40253 C704 10 nF -500 V 4822 121 4134 C705 100 μF - 350 V 4822 121 40253 C704 10 nF -500 V 4822 121 40253 C704 10 nF -500 V 4822 121 40253 C706 22 μF - 400 V 4822 121 40253 C706 22 μF - 400 V 4822 121 40258 C710 33 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C715 10 μF - 35 V 4822 124 40296 C774 0.22 μF - 50 V 4822 124 50979 C776 22 μF - 160 V 4822 124 50979 C776 22 μF - 160 V 4822 124 50979 C776 22 μF - 160 V 4822 124 50979 C776 22 μF - 50 V 4822 124 50979 C776 22 μF - 160 V 4822 124 20979 C776 C796 100 nF - 50 V 4822 124 50979 C776 C796 100 nF - 50 V 4822 124 50979 C776 C774 0.22 μF - 50 V 4822 124 20979 C776 C774 0.22 μF - 50 V 4822 124 20979 C776 C774 0.22 μF - 50 V 4822 124 20979 C776 C774 0.22 μF - 50 V 4822 124 20979 C776 C774 0.22 μF - 50 V 4822 124 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | →⊩                           |                                                                                                          |                                                                      |
| C229 2 pF - 50 V 4822 122 31446 C302 7 pF - 50 V 4822 122 31448 C304 4.7 μF - 35 V 4822 124 10246 C307 6.8 nF - 50 V 4822 121 50538 C501 33 nF - 50 V 4822 121 50647 C507 3.3 μF - 35 V 4822 124 10245 C511 15 μF - 16 V 5322 124 14164 C601 0.22 μF - 50 V 4822 121 50638 C605 100 nF - 50 V 4822 121 50639 C609 68 nF - 50 V 4822 121 50639 C621 470 nF - 250 V 4822 121 41297 C622 270 nF - 200 V 4822 121 41297 C622 270 nF - 200 V 4822 121 40428 C623 27 nF - 200 V 4822 121 40263 C703 10 nF - 1400 V 4822 121 41296 C627 100 nF - 50 V 4822 121 40253 C703 10 nF - 1400 V 4822 121 41296 C702 10 nF - 1400 V 4822 121 4134 C705 100 μF - 350 V 4822 121 4134 C705 100 μF - 350 V 4822 124 40295 C706 22 μF - 400 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C716 22 μF - 50 V 4822 124 40296 C774 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50979 C824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C220<br>C221                 | 2 pF - 50 V<br>47 nF - 50 V                                                                              | 4822 122 31446<br>4822 121 40504                                     |
| C304 4.7 μF - 35 V 4822 124 10246 C307 6.8 nF - 50 V 4822 121 50538 C501 33 nF - 50 V 4822 121 50647 C507 3.3 μF - 35 V 4822 124 10245 C511 15 μF - 16 V 5322 124 14164 C601 0.22 μF - 50 V 4822 121 50638 C605 100 nF - 50 V 4822 121 50639 C609 68 nF - 50 V 4822 121 50639 C622 270 nF - 200 V 4822 121 41297 C622 270 nF - 200 V 4822 121 41297 C622 270 nF - 200 V 4822 121 41296 C627 100 nF - 50 V 4822 121 40428 C623 27 nF - 200 V 4822 121 40263 C703 10 nF - 1400V 4822 121 40253 C703 10 nF - 1400V 4822 121 4134 C705 100 μF - 350 V 4822 124 4134 C705 100 μF - 350 V 4822 124 40295 C706 22 μF - 400 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50645 C711 39 nF - 50 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50645 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C715 10 μF - 350 V 4822 122 31455 C712 15 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C716 22 μF - 50 V 4822 121 50647 C716 22 μF - 50 V 4822 124 40296 C774 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50979 C824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C229                         | 2 pF - 50 V                                                                                              | 4822 122 31446                                                       |
| C511 15 μF - 16 V 5322 124 14164 C601 0.22 μF - 50 V 4822 124 20979 C604 6.8 nF - 50 V 4822 121 50538 C605 100 nF - 50 V 4822 121 50639 C609 68 nF - 50 V 4822 121 50645 C620 3.3 nF -1600V 4822 121 41269 C621 470 nF - 250 V 4822 121 41297 C622 270 nF - 200 V 4822 121 40298 C627 100 nF - 50 V 4822 121 40296 C627 100 nF - 1400V 4822 121 40253 C703 10 nF -1400V 4822 121 40253 C703 10 nF -1400V 4822 121 40253 C703 10 nF -500 V 4822 121 4134 C705 100 μF - 350 V 4822 121 4134 C705 100 μF - 350 V 4822 124 40295 C706 22 μF - 400 V 4822 121 40428 C709 68 nF - 50 V 4822 121 50645 C710 33 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C711 39 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C714 33 nF - 50 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C715 10 μF - 35 V 4822 121 50647 C716 22 μF - 50 V 4822 124 40296 C774 0.22 μF - 50 V 4822 124 20979 C776 22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 50639 C804 0.22 μF - 50 V 4822 124 20979 C824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C304<br>C307<br>C501         | 4.7 μF - 35 V<br>6.8 nF - 50 V<br>33 nF - 50 V                                                           | 4822 124 10246<br>4822 121 50538<br>4822 121 50647                   |
| C604         6.8         nF · 50 V         4822 121 50538           C605         100         nF · 50 V         4822 121 50639           C609         68         nF · 50 V         4822 121 50645           C620         3.3         nF · 1600V         4822 121 41297           C621         470         nF · 250 V         4822 121 40297           C622         270         nF · 200 V         4822 121 4028           C623         27         nF · 200 V         4822 121 4028           C627         100         nF · 50 V         4822 121 40253           C702         10         nF · 1400V         4822 121 40253           C703         10         nF · 1400V         4822 121 40253           C704         10         nF · 500 V         4822 121 40253           C705         100         μF · 350 V         4822 121 40295           C706         22         μF · 400 V         4822 121 40298           C707         220         nF · 400 V         4822 121 40428           C710         33         nF · 50 V         4822 121 50645           C711         39         nF · 50 V         4822 121 50647           C711         39         nF · 50 V         4822 121 50647 </td <td>C511</td> <td>15 μF - 16 V</td> <td>5322 124 14164</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C511                         | 15 μF - 16 V                                                                                             | 5322 124 14164                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C604<br>C605                 | 6.8 nF - 50 V<br>100 nF - 50 V                                                                           | 4822 121 50538<br>4822 121 50639                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C621<br>C622                 | 470 nF - 250 V<br>270 nF - 200 V                                                                         | 4822 121 41297<br>4822 121 40428                                     |
| C703         10         nF -1400V         4822 121 40253           C704         10         nF -500 V         4822 121 41134           C705         100         μF -350 V         4822 124 40295           C706         22         μF -400 V         4822 124 40298           C707         220         nF -400 V         4822 121 40428           C709         68         nF - 50 V         4822 121 50645           C710         33         nF - 50 V         4822 121 50647           C711         39         nF - 50 V         4822 122 31455           C712         15         nF - 50 V         5322 122 34073           C713         33         nF - 50 V         4822 121 50647           C714         33         nF - 50 V         4822 121 50647           C715         10         μF - 35 V         4822 124 10244           C770         2500         μF - 25 V         4822 124 40296           C774         0.22 μF - 50 V         4822 124 40297           C796         100         nF - 50 V         4822 124 40297           C796         100         nF - 50 V         4822 124 20979           C804         0.22 μF - 50 V         4822 124 20979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C627                         | 100 nF - 50 V                                                                                            | 4822 121 50639                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C703<br>C704<br>C705         | 10 nF -1400V<br>10 nF -500 V<br>100 μF - 350 V                                                           | 4822 121 40253<br>4822 121 41134<br>4822 124 40295                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C707<br>C709                 | 220 nF - 400 V<br>68 nF - 50 V                                                                           | 4822 121 40428<br>4822 121 50645                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C711<br>C712                 | 39 nF - 50 V<br>15 nF - 50 V                                                                             | 4822 122 31455<br>5322 122 34073                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C714                         |                                                                                                          |                                                                      |
| C824 10 µF - 160 V 4822 124 20981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C770                         | 2500 μF - 25 V                                                                                           | 4822 124 40296                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C770<br>C774<br>C776<br>C796 | 2500 μF - 25 V<br>0.22 μF - 50 V<br>22 μF - 160 V<br>100 nF - 50 V                                       | 4822 124 40296<br>4822 124 20979<br>4822 124 40297<br>4822 121 50639 |

| <del></del>                                                                                                                                                 |                                                                                                                                                                                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b> 1                                                                                                                                                  |                                                                                                                                                                                                        | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C854<br>C1001<br>C1002<br>C1023<br>C1024<br>C1034<br>C1041<br>C1049<br>C1050<br>C07<br>C08<br>C16<br>C17<br>C20<br>C29<br>C42<br>C44<br>C59<br>C05,14,24,30 | 10 nF -1400V 10 nF x6 10 nF x6 1.2 nF - 50 V 56 nF - 50 V 47 nF - 50 V 68 nF - 50 V 12 nF - 50 V 5 pF - 50 V 4 pF - 50 V 7 pF - 50 V 30 pF - 50 V 15 nF - 50 V 15 nF - 50 V 27 nF - 50 V Variable cap. | 4822 121 41273 4822 122 31442 4822 122 31442 4822 121 50729 4822 121 50646 4822 124 20978 4822 121 50641 4822 121 50641 4822 122 31453 4822 122 31454 4822 122 31454 4822 122 31451 4822 122 31451 4822 121 50641 4822 121 50647 4822 121 50667 4822 122 31456                                                                                                                                                                                                                                                                              |
| Picture tube                                                                                                                                                |                                                                                                                                                                                                        | 4822 131 20052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -⊗ <b>⊅</b><br>D10011012<br>LA01                                                                                                                            | PXE0012 CE                                                                                                                                                                                             | 4822 130 31305<br>4822 134 40413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SK501<br>SK601<br>SK701<br>SK10011005<br>SK0204                                                                                                             |                                                                                                                                                                                                        | 4822 276 10787<br>4822 276 10787<br>4822 276 10789<br>4822 276 10788<br>4822 277 10529                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VL601<br>VL701<br>VL702<br>VL770                                                                                                                            | F 0.63 A<br>T 2 A<br>T 2 A<br>T 5 A                                                                                                                                                                    | 4822 253 30018<br>4822 253 20023<br>4822 253 20023<br>4822 253 20027                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VL//0                                                                                                                                                       | 15 A                                                                                                                                                                                                   | 4822 293 20027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SP1 S01 U01 BPF01 CF01 S02 U02 CF02 S03 T03 S04 U04 S05 S201 U201 CF201 U202 CF202 S203 S204 S205 S204 S205 S207 S301 U301 CF301 S302 T302 S303 S304        | Loudspeaker 8 $\Omega$                                                                                                                                                                                 | 4822 240 30159 4822 153 10327 4822 156 20865 4822 153 60106 4822 242 70343 4822 156 30716 4822 242 70342 4822 153 10326 4822 156 30715 4822 156 30715 4822 156 20866 4822 157 51093 5322 158 10343 4822 154 50175 4822 242 70341 4822 154 50176 4822 242 70339 5322 158 10346 5322 158 10311 5322 158 10311 5322 158 1038 4822 157 51089 5322 158 10283 4822 157 51089 5322 158 10283 4822 157 51094 4822 242 70338 5322 158 10272 5322 158 10272 4822 140 60237 5322 158 10272 5322 158 10272 5322 158 10272 5322 158 10272 5322 158 10272 |

| S401                                     | 5322 158 10308                                     |
|------------------------------------------|----------------------------------------------------|
| TD401                                    | 4822 320 40053                                     |
| S601                                     | 5322 158 10243                                     |
| T601                                     | 4822 142 40262                                     |
| FB601                                    | 4822 526 10164                                     |
| S602                                     | 5322 158 14018                                     |
| T602                                     | 4822 140 10173                                     |
| S604                                     | 4822 157 51086                                     |
| S605                                     | 4822 157 51087                                     |
| S606                                     | 5322 158 10222                                     |
| S607                                     | 5322 158 10222                                     |
| S608                                     | 4822 157 51091                                     |
| 5701                                     | 5322 158 10283                                     |
| T701                                     | 4822 148 30108                                     |
| FB701                                    | 4822 526 10163                                     |
| \$702                                    | 5322 158 10222                                     |
| FB702                                    | 4822 526 10163                                     |
| \$703                                    | 5322 158 10222                                     |
| FB703                                    | 4822 526 10164                                     |
| S705                                     | 5322 158 10275                                     |
| \$707                                    | 5322 158 10283                                     |
| \$709                                    | 5322 158 10272                                     |
| \$712                                    | 5322 158 10283                                     |
| S770                                     | 5322 158 10284                                     |
| T770                                     | 4822 142 40262                                     |
| FB770                                    | 4822 526 10164                                     |
| S771                                     | 5322 158 10275                                     |
| T771                                     | 4822 148 30109                                     |
| S772                                     | 4822 157 51115                                     |
| S790 T790 version 02 T790 other versions | 5322 158 10308<br>4822 145 30216<br>4822 145 30221 |
| FB790                                    | 4822 526 10163                                     |
| FB791                                    | 4822 526 10163                                     |
| S801                                     | 5322 158 10283                                     |
| T801                                     | 4822 154 10034                                     |
| TD801                                    | 4822 320 40052                                     |
| S802                                     | 4822 157 51092                                     |
| T802                                     | 4822 154 10035                                     |
| S803                                     | 5322 158 14051                                     |
| S805                                     | 5322 158 14004                                     |
| \$1001                                   | 4822 157 51091                                     |
| \$1002                                   | 5322 158 10222                                     |
| \$1003                                   | 5322 158 10222                                     |
| U1212                                    | 4822 210 20305                                     |
| Multipole                                | 4822 526 10165                                     |
| Crystal KT801                            | 4822 242 70337                                     |
| Spark gaps SG851-855                     | 4822 252 60086                                     |
| Fuse holder                              | 4822 256 30173                                     |
| CRT socket                               | 4822 255 70178                                     |
| Mains plug                               | 4822 267 40374                                     |
| Earphone socket J301                     | 4822 267 10063                                     |
| AC cord                                  | 4822 321 10252                                     |
| DC cord                                  | 4822 321 20419                                     |
| Ext. antenna                             | 4822 158 60435                                     |
|                                          |                                                    |
|                                          |                                                    |
|                                          |                                                    |
|                                          |                                                    |
|                                          |                                                    |
|                                          |                                                    |
|                                          |                                                    |
|                                          | CC 72 221                                          |

CS 72 231

| S-T-IC | S401.IC1005              | .T801,IC801,TD401,IC401.100 | 6.S801 T802,TD801,S802,IC10                 | 04 IC1003.5003S                    | 001. IC1007, 1001               |
|--------|--------------------------|-----------------------------|---------------------------------------------|------------------------------------|---------------------------------|
| D - TS | TS1012, 1014,401, D4     | .02D405,10301032,TS801,1    | 008.D401.407.1027.TS10071009.802.D1019      | 1.1020.TS803.1010.1001 D1062.1025. | 1021,TS1015,10021004. D10141018 |
| R      | 846 844 814<br>10641066. |                             |                                             | 821840<br>10481060 10891091        | 10851087 10151040,1001,1012     |
| С      | 825                      | 415 414 401412<br>1053      | 827, 804817,802,801.<br>10591056,1054 10341 | 818,,824<br>050 1025,.1027 10      | 0281032 10131024 1002 1001      |



| IC1001. 1007. \$1001\$1003.IC100         | IC1004, S802, TD801, T802 S                           | 5801. IC1006. 401. TD401.IC801, T801.IC1005, 5401        | IC-T-S   |
|------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------|
| D10181014. TS10041002.1015. D10211025.10 | 2 . TS1001.1010.803. D1019.1020.TS802.1007.1009. D102 | 27.401 .401.TS1006.801.D1032.1030.405.402TS401.1014.1012 | TS - D   |
| 804821                                   | 842.804802.813806,416401.423                          | 419. 431. 820814 844 846                                 |          |
| 10121001 10401015 10871085 10911089 1    | 0601048 10461041 10721068 10761074                    | 1078 1079 1081 1083 1066.:.1064                          | <u> </u> |
| 824818                                   | 801.802.817804 827                                    | 412401 414 415 825                                       |          |
| 1001 1002 10241013 10321028              | 10271025 10501034 1054.10561059                       | 1053                                                     |          |



| [ | - T- | - IC | S606, 707, 712 | . 508       | 502 .    | 607 T602           |               | 05.604.70 |          |                | 7201.202.10 |             | 5201,IC201,S2   |          |               | \$702,705,IC301  |
|---|------|------|----------------|-------------|----------|--------------------|---------------|-----------|----------|----------------|-------------|-------------|-----------------|----------|---------------|------------------|
| [ | - 1  | TS   | D602.704706    | TS 201      | .206 ZD2 | 701.702 D724       | D201TS602.    | 701703    | D702706  | . 709 . 501.50 | 2. 504.505  | ZD601 TS60  | 01. 603 . 503 . | 504 D203 | . 302 .501504 | 603              |
|   |      |      |                |             |          |                    |               | 2         | 01       | 204            | 225 228.229 | )           | 301310          | 315.316  | 319, 320      |                  |
| L |      |      |                | 510,613 618 | 620      | <u> 527 629533</u> | 701716 739.74 | 501       | 517 6    | 01,609 611     | 617         |             | 731             | 738 722  | 713           |                  |
| 1 |      |      |                | 201,        | 208 236  | 238                |               | 216 21    | 19 2     | 0 213 214 220. | 235 301,    | 303,305,308 | 310 31231       | 5 364    | ****          |                  |
| L |      | [    | 701 704 712    | 716 504 6   | 11613    | 519 522 62         | 9 631634 748  | 623       | 524528 5 | 30532 534      | 703 705     | 711,742.749 | 501,503 505     | 51952    | 3 501610.614. | .618,620 635,636 |



| IC301, 705, S702 601, S301 304, S203207, IC201, S201 | 302. IC201.T201.202 T7          | 01 S605. 604. 703   | T602 607              | 7. 602 S608.712.707.606   | IC-T-S   |
|------------------------------------------------------|---------------------------------|---------------------|-----------------------|---------------------------|----------|
| D603 501504. 302 . 203 TS 601. 603. 503. 504         | ZD601 D505.504.502.501 709 70   | 2706 TS701703 . 602 | D201 724 ZD701.       | 702 TS 201206 D704706.60  | 2 TS - D |
| 320. 319 316. 315 310 301                            | 229. 228 225 204                | 201                 |                       |                           |          |
| 317 722 738 731                                      | 617611 609601                   | 517501 740 . 73     | 9.716701 633629 62    | 7620 618.613.610          |          |
| 364 . 315312 . 31030                                 | 3.305.303301 235220 214.213.210 | 219 . 216           | 238                   | . 236 . 208 201           |          |
| 636.635 620.618614.610601 523519505.503501 7         | 49.247.711705 703 534 532350 5  | 28524 623 74        | 48 634631 629 622 619 | 613611 504 716712 704 701 |          |



ONLY USED IN VERSION /10 31 ONLY USED IN VERSION/12
1) NOT USED IN VERSION /02 41 NOT USED IN VERSION/02
2) NOT USED IN VERSION /12 5) ONLY USED IN VERSION/02













| S-T-IC | T771, S771. |      | S770.77 | 2.   | T7       | 770.                       |
|--------|-------------|------|---------|------|----------|----------------------------|
| D-TS   | D770.775.   |      |         | D771 | . 772.77 | 75. TS770772. ZD770. D773. |
|        |             | 770. |         | 771. | 787.     | 780.778772. 786781.779.    |
| , _    |             |      |         |      |          | 788, 791.                  |
| _      |             |      |         |      | 7707     | 773                        |
| ٦ -    |             | 777. | 776.    |      |          | 774, 775, 778.             |



| T 771. \$771 |     |      |      | S 770. 77 | '2     | T 770  |       |               | IC-T-S |
|--------------|-----|------|------|-----------|--------|--------|-------|---------------|--------|
| D770. 775    |     |      | [    | 771.772   | 2.775. | TS770  | 772.  | ZD770. D773.  | D-TS   |
|              | 770 |      | 771  | 787       | 7      | 80.778 | .772. | 786781. 779.  |        |
|              |     |      |      |           |        | 788    | 7     | '91           | 7 °    |
|              |     |      |      | 7         | 70     | 773    |       |               |        |
|              |     | 777. | 776. |           |        |        |       | 774.775. 778. | 7 0    |









811 817 844 818 819 826 827 840 851 852 853

31 ONLY USED IN VERSION /12 41 NOT USED IN VERSION /10 51 ONLY USED IN VERSION /02

HONTATO SOLO NELLA VERSIONE/12 NON MONTATO NELLA VERSIONE/10 MONTATO SOLO NELLA VERSIONE/12















|                                                                  |                         | Voltag | e/Spani | nung |       |      |     |       |     |      |      |     |      |      |      |      |     |     |    |
|------------------------------------------------------------------|-------------------------|--------|---------|------|-------|------|-----|-------|-----|------|------|-----|------|------|------|------|-----|-----|----|
| Circuit<br>Schaltung                                             |                         | 18 kV  | 5 kV    | +300 | +115a | +115 | +45 | +21,5 | +18 | +18a | +18ь | +16 | +13a | +13b | +13c | +13d | +12 | +10 | -9 |
| Aerial input<br>Antennen-<br>eingang                             | U1239                   |        |         |      |       |      |     |       |     |      |      |     |      |      | •    |      |     |     |    |
| Channel selec-<br>tor<br>Kanalwähler                             | U0128                   |        |         |      |       |      |     |       |     |      |      |     | •    |      |      |      |     |     |    |
| RF-amplifier<br>HF-Verstärker                                    | TS207                   |        |         |      |       |      |     |       |     |      |      |     | •    |      |      |      |     |     |    |
| IF-AGC<br>ZF-AVR                                                 | R227                    |        |         |      |       |      |     |       |     |      |      |     |      | •    |      |      |     |     |    |
| RF-AGC<br>HF-AVR                                                 | R216                    |        |         |      |       |      |     |       |     |      |      |     | •    |      |      |      |     |     | -  |
| RF-AGC am-<br>plifier<br>HF-AVR<br>Verstärker                    | TS208                   |        |         |      |       |      |     |       |     |      |      |     | •    |      |      |      |     |     |    |
| Saturation<br>control<br>Sättigungs-<br>regler                   | TS801                   |        |         |      |       |      |     |       |     |      |      |     |      |      | •    | •    |     |     |    |
| Burst key-<br>pulse ampl.<br>Burst-Austast-<br>impulsverst.      | TS401                   |        |         |      |       |      |     |       |     |      |      |     |      |      | •    |      |     |     |    |
| Colour ampli-<br>fiers<br>Farbenver-<br>stärker                  | TS802<br>TS803<br>TS804 |        |         |      | •     |      |     |       |     |      |      |     |      |      |      |      |     |     |    |
| Synchronisa-<br>tion<br>Synchronisie-<br>rung                    |                         |        |         |      |       |      |     |       |     | •    |      | •   |      |      |      |      |     |     |    |
| Frame output<br>Vertikalend-<br>stufe                            |                         |        |         |      |       |      | •   |       |     |      |      |     |      |      |      |      |     |     |    |
| Line output<br>Horizontalend-<br>stufe                           |                         |        |         |      |       | •    |     |       | •   |      |      |     |      |      |      |      |     |     |    |
| Degaussing<br>control<br>Demagnetisie-<br>rungregler             | TS701                   |        |         |      |       |      |     |       |     |      |      |     | •    |      |      |      |     |     |    |
| Sound detec-<br>tor<br>Ton-Demo-<br>dulator                      | IC301                   |        |         |      |       |      |     |       | •   |      |      |     |      |      |      |      |     |     |    |
| Sound output<br>Ton-endstufe                                     | IC302                   |        |         |      |       |      |     |       |     |      |      |     |      |      |      |      | •   |     |    |
| Video blanking<br>pulse ampl.<br>Video-Austast-<br>impuls Verst. | TS503<br>TS504          |        |         |      |       |      |     |       |     | •    |      |     |      |      |      |      |     |     |    |
| EHT connect.<br>picturetube<br>Hochspannung<br>Bildröhre         |                         | •      |         |      |       |      |     |       |     |      |      |     |      |      |      |      |     |     |    |
| Focus anode picture tube Fokusanode Bildröhre                    |                         |        | •       |      |       |      |     |       |     |      |      |     |      |      |      |      |     |     |    |

| Circuit                                                                    |                            | Voltage/Spannung |      |      |       |      |     |       |     |      |      |     |      |      |      |      |     |     |    |
|----------------------------------------------------------------------------|----------------------------|------------------|------|------|-------|------|-----|-------|-----|------|------|-----|------|------|------|------|-----|-----|----|
| Schaltung                                                                  |                            | 18 kV            | 5 kV | +300 | +115a | +115 | +45 | +21,5 | +18 | +18a | +18b | +16 | +13a | +13b | +13c | +13d | +12 | +10 | -9 |
| P.S.M. power<br>supply<br>P.S.B Spei-<br>sung                              |                            |                  |      |      |       |      |     |       |     |      | •    |     |      |      |      |      |     |     |    |
| S.S.M. power<br>supply<br>S.S.BSpei-<br>sung                               |                            |                  |      | •    |       |      |     |       |     |      |      |     |      |      |      |      |     |     |    |
| Radio power<br>supply<br>Radio-Speise-<br>spannung                         | TS790                      |                  |      |      |       |      |     | •     |     |      |      |     | 9    |      |      |      |     |     |    |
| Radio<br>Radio                                                             |                            |                  |      |      |       |      |     |       |     |      |      |     |      |      |      |      | •   |     |    |
| Voltage<br>synthesizer<br>control<br>Spannung-<br>Synthesizer<br>steuerung | IC1001                     |                  |      |      |       |      |     |       |     |      |      |     |      |      |      |      |     | •   |    |
| Memory<br>Speicher                                                         | IC1003                     |                  |      |      |       |      |     |       |     |      |      |     |      |      |      |      |     | •   | •  |
| Memory con-<br>trol<br>Speicher-<br>steuerung                              | IC1004                     |                  |      |      |       | •    |     |       |     |      |      |     |      |      | •    |      |     | •   |    |
| Tuning voltage<br>circuitry<br>Abstimmspan-<br>nungskreis                  | IC1002                     |                  |      |      |       | •    |     |       |     |      |      |     |      |      |      |      |     |     | •  |
| Picture carrier<br>detector<br>Bildträger-<br>Detector                     | TS1001<br>TS1002           |                  |      |      |       |      | -   |       |     |      |      |     |      |      |      |      |     | •   |    |
| Band position<br>switches<br>Bandumschal-<br>ter                           |                            |                  |      |      |       |      |     |       |     |      |      |     | •    |      |      |      |     | •   | •  |
| Right tuning detector Detector für richtige abstimmung                     | TS1003<br>TS1004           |                  |      |      |       | •    |     |       |     |      |      |     |      |      |      |      |     | •   |    |
| Display gene-<br>rator<br>Anzeige gene-<br>rator.                          | IC1005<br>IC1006<br>IC1007 |                  |      |      |       |      |     |       |     |      |      |     |      |      | •    |      |     | •   |    |



# SYMBOLERLÄUTERUNG

| M         | Programmwahl nach oben<br>funktioniert nicht | 6              | Generator anschliessen                |
|-----------|----------------------------------------------|----------------|---------------------------------------|
|           | Programmwahl nach unten funktioniert nicht   | M              | Suchlaufabstimmung funktioniert nicht |
|           | Spannungsmessungen ausführen                 | п<br>i         | Knopf eindrücken                      |
| =         | Keine Abweichung                             | 0 <b>→</b> 10∨ | Spannung springt von 0 bis 10 V       |
| <b>≠</b>  | Abweichung                                   | 0 <b></b> 5v   | Spannung schwankt zwischen 0 und 5 V  |
| <u>vถ</u> | Schaltung von und kontrollieren              | $\boxtimes$    | Anzeigebalken nicht sichtbar          |
| 7         | Antennensignal zuführen                      | 131            | Speicherung funktioniert nicht        |

21 638 E12

|                  | ERKLARUNGEN DER IN DEN PRINZIPSCHAL | LIBILDEN                 | A DENOTE LENGTH DOLL             |
|------------------|-------------------------------------|--------------------------|----------------------------------|
| $\triangleright$ | Verstärker                          | TH.                      | Testverhaltnis-Regelkreis        |
|                  | Mischstufe                          | 1:2                      | Teiler                           |
| $\square$        | Automatisch geregelter Verstärker   |                          | Begrenzer                        |
| <b>(%</b>        | Oszillator                          | $\mathbb{X}$             | Tonregelung                      |
| 6                | Sagezahnoszillator                  | MUTE                     | Stummschaltung                   |
| 5.5 MHz          | Sperrfilter                         | وع                       | Recorderanschluss                |
| æ<br>5.5MHz      | Durchlassfilter                     | IF<br>AGC                | ZF-AVR-Schaltung                 |
| T                | Spannungsstabilisator               | RF<br>AGC                | HF-AVR-Schaltung                 |
| XX               | FM- oder Synchron-Detektor          | AFC                      | AFC-Schaltung                    |
| XX               | Phasendiskriminator                 | BLACK<br>LEVEL<br>CLAMP  | Schwarzpegelklemmschaltung       |
| B-Y ►            | Demodulator (B-Y)                   | BLANKING                 | Rückschagunterdrückungsschaltung |
|                  | Netzgleichrichter                   | COLOUR<br>AGC            | Farb-AVR-Schaltung               |
| ₩<br>36,9MHz     | Abgestimmter Kreis (38,9 MHz)       | GATE                     | Torschaltung                     |
| 90*              | 90°-Phasenverdrehungsnetzwerk       | G-Y<br>MATRIX            | Matrix (G-Y)                     |
| 1.6              | Schwarzpegelschaltung               | FF<br>H/2                | H/2 Flipflop                     |
| +                | Addierschaltung                     | COLOUR                   | Farbkillerschaltung              |
| 6thsec           | Verzögerungsleitung                 | IDENTI-<br>FICATION      | Identifikationsschaltung         |
|                  | Umformer, allgemein                 | CONTRAST                 | Kontrastbegrenzer                |
| ^_               | Störstrennstufe                     | PEAK<br>WHITE<br>LIMITER | Weissspitzenbegrenzer            |
|                  | Sync-Trennstufe                     | PULSE<br>SHAPERS         | Impulsformer                     |
| <u> </u>         | Stromversorgung                     | CLAMP                    | Klemmschaltung                   |
|                  | Elektronischer Schalter             | LEVE L<br>LIMITER        | Pegelbegrenzer                   |

|                                                                                                                                              | $\wedge$                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| SPRING RESISTOR                                                                                                                              | -II- SAFETY CAPACITOR                                   |
| SAFETY RESISTOR                                                                                                                              | △★<br>————————————————————————————————————              |
| 0.33 $W \le 1MΩ 5 \%$<br>(CR25) > $1MΩ 10 \%$                                                                                                | •• <del>*</del>  - POLYESTER FLAT FILM                  |
| $- \underbrace{\begin{array}{ccc} 0.5  \text{W} & \leq 1 \text{M}\Omega & 5  \% \\ (\text{CR37}) & > 1 \text{M}\Omega & 10  \% \end{array}}$ | "*  - POLYESTER MEPOLESCO                               |
| $- \frac{0.67W}{(CR52)} \leq \frac{1M\Omega}{5\%} $                                                                                          | ° <del>X</del> 0 <b>⊢</b> SINGLE ELCO                   |
| 1.15W $\leq$ 1.6MΩ 5% (CR68) > 1.6MΩ 10%                                                                                                     | * a = 2.5V                                              |
| -+ 0.5W HIGH VOLTAGE (VR37) RESISTOR                                                                                                         | c = 6.3V j = 100V u = 400V<br>d = 10V l = 125V v = 500V |
| - 4W WIRE WOUND (WR0617) RESISTOR                                                                                                            | e = 16V m = 150V w = 630V<br>f = 25V q = 200V x = 1000V |
| 7W WIRE WOUND (WR0825) RESISTOR                                                                                                              | y = 1600V                                               |
| 11W WIRE WOUND (WR0842) RESISTOR                                                                                                             | → AC                                                    |
|                                                                                                                                              | → <del>&gt;&gt;</del> DC                                |

19233B17

# **SCHEMATIC DIAGRAM (2/2)**

#### IMPORTANT SAFETY NOTICE

Component marked with the International Hazard Symbol must, if changed, be replaced by an approved type and must be mounted as the original. This will ensure that the safety standards adhered to during manufacture will be maintained following any servicing procedure.

## OBSERVATION OF VOLTAGES AND WAVEFORMS

- 1. Voltage readings were obtained using a high impedance digital voltmeter.
- 2. (-) or ground lead of instruments should be connected to the ground marked ( $\perp$ ) in the shematic on checking Non-isolated circuit surrounded by mark but should be connected to the points marked ( ++ ) on checking isolated circuit.
- The voltage readings may vary as much as ±20%.
   Check that the Tuning, A.F.C., Brightness, Contrast and Colour controls are adjusted for the best picture, making sure that the Contrast, Brightness and Colour controls are set near to their mid-positions.
- 5. The waveforms were taken using a standard colour bar signal and were observed using a wide band oscilloscope via a low capacity probe.

## NOTES:

1. This circuit diagram is subject to change without notice.

#### **EXPRESSION**

## VALUE OF RESISTOR, CAPACITOR and INDUCTOR

- 1. Resistance is shown in ohm, k=1,000, M=1,000,000.
- 2. Unless otherwise noted in schematic, all capacitor values less than 1 are expressed in µF and the values more than 1 in pF.
- 3. Unless otherwise noted in schematic, all inductor values more than 1 are expressed in  $\mu\,H,$  and the values less than 1 in H.

#### GROUNDING SYMBOL

1 1: Non isolated ground, # Isolated ground.

U101 PIF BOARD PB1526-1 UG01 IGR BOARD PB1526-2 •12V-2 •12V-2 SA) L AUDIO PG01 (SP) treble reference voltage PG02 ICG03 TA7337P 5.5MHz DET

Prefixed t Car

Oxid Ins.

RESIST

Cemen.

# RESISTORS

#### Prefixed to values:

| TYPE                | MARK    |
|---------------------|---------|
| Carbon Comp.        | s       |
| Oxide Metal Film    | R       |
| Ins. Carbon Film    | Р       |
| Wire Wound          | w       |
| Cement covered W.W. | NO MARK |
| Fusible Res.        | FR      |

#### Suffixes to values:

| TOLERANCE | MARK |
|-----------|------|
| ±1%       | (F)  |
| ± 2%      | (G)  |

# Suffixes to VR values:

| LAW                      | MARK |
|--------------------------|------|
| Linear                   | (B)  |
| 'C' Curve Characteristic | (C)  |

#### Rating Markings:

| WATTAGE | MARK | WATTAGE |
|---------|------|---------|
| 1/6W    |      | 3 W     |
| 1/4W    |      | 5W      |
| 1/400   |      | 10%     |
| 1/2W    |      | 15W     |
| 1 W     |      | 20W     |
| 2W      | 2    | 25 W    |
|         |      | L       |

## CAPACITORS

# Rating Markings:

| Туре                      | Mark         |
|---------------------------|--------------|
| Ceramic Disc 50V Only     | ٦F           |
| Electrolytic              | 년<br>부       |
| Electrolytic<br>Non-Polar | -0 D<br>-111 |
| Variable Capacitor        | #            |
| Other                     | 41-          |

# F BOARD PB1526-1

ssed in

ssed in





PIN (2)-(6) PIN (4)-(6) PIN (7) (8) - (6) U903C POWER-2 BOARD PB1451-3 U903A POWER-1 BOARD PB1451-1 L901 A TSB2329AR DEGUSS.COIL \_\_\_\_ C801 △ -\_\_\_ 0.11AC250V1 ⚠ T803
CONVERTER TRANS.
47317550 C806 4700 (AC250V) D841 152462 D842 152462 LF84 TLN2026 0 0 0 0 0 0 0 0 CFB2 DF80 04AZ12Z OF UZ12BSC C835 100(SL) C832 1000µ(25V) R815 P220 R817 1/2R0.39 LF83 TLN2026 R822 P39 C833 330P500V I CF83 250553Y 5V REGU C834 2200<sub>#</sub>50V D812 UZ13BSC or DF81 UZ5.68SB or 04AZ5.6Y CF84 1 D830 TLP621 (GR) 9817 BC547B STAND-BY REG



U904A DPC BOARD PB1963-1 10Vp-p(V)



# SCHEMATIC DIAGRAM (1/2)







