MIT 18.S096 Matrix Calculus (2023)

Ian Poon

November 2024

hmmm...here is nice online matrix calculator tool.

Contents

1	Overview and Motivation	1
2	Derivatives as Linear Operators	2
3	Jacobians of Matrix Functions	6
4	Finite Difference Approximations.	10
5	Derivatives in General vector spaces	10
6	Nonlinear Root finding, Optimization and Adjoint Differentiation	12
7	Derivtive of Matrix Determinant and Inverse(7)	12
8	Second Derivatives, Bilinear Maps and Hessian Matrices(12)	14

1 Overview and Motivation

Theorem 1 (Differential Product Rule)

Let A, B be two matrices then we have the differential product rule for AB

$$d(AB) = (dA)B + A(dB)$$

By the differential of the matrix, we think of it as a small(unconstrained) change in the matrix A

Proof. we will cover this in later lectures

Example 2

By the product rule we have

1.
$$d(u^T v) = (du)^T v + u^T (dv) = v^T du + u^T dv$$
 since dot products commute

2.
$$d(uv^T) = (du)v^T + u(dv)^T$$

We will cover more formal proofs for this kind of equations later

2 Derivatives as Linear Operators

Fact 3

Note the following notations

- derivative: f' note that df = f(x + dx) f(x) = f'(x)[dx]
- gradient: ∇f note that $df = \langle \nabla f, dx \rangle$
- difference: δx and $\delta f = f(x + \delta x) f(x)$ These are small but not infinitesimal changes in the input x and output f (depending implicitly on both x and δx). This is *not* a linear operator, instead is a just an element of a vector space
- differential: df and df = f(x + dx) f(x)These are small and infinitesimal(we drop higher order terms) changes in the input x and output f. Again this is an element of a vector space not a linear operator.
- partial derivative: $\boxed{\frac{\partial f}{\partial x}}$, f_x , $\partial_x f$ Note that $df = \frac{\partial f}{\partial x}[dx] + \frac{\partial f}{\partial y}[dy]$

Fact 4

We may write the directional derivative as

$$\frac{\partial}{\partial a} f(x + av)|_{a=0} = \lim_{\delta a \to 0} \frac{f(x + \delta av) - f(x)}{\delta a}$$

where we dropped higher terms in the limit of $\delta \to 0$ which gives

$$f(x + \underbrace{dav}_{dx}) - f(x) = f'[dx] = daf'(x)[v]$$

after factoring our da in the last step isnce f'(x) is a linear operator and so

$$\frac{\partial}{\partial a} f(x + av)|_{a=0} = f'(x)[v]$$

The point is here is that it is perfectly reasonable to write f'(x)[v] where v is not infinitesimal. So this term is not equal to df but instead simply a directional derivative

Fact 5

Now consider a scalar valued function f which takes in a column of vectors $x \in \mathbb{R}^n$ so we have

$$df = f(x + dx) - f(x) = f'(x)[dx] = \text{scalar}$$

because a scalar is produced it follows by the laws of matrix multiplication that df must be a row vector. We denote this row vector by

$$(\nabla f)^T$$

so that df is the dot product of dx with the gradient that is

$$df = \nabla f \cdot dx = \underbrace{(\nabla f)^{\mathsf{T}}}_{f'(x)} dx \text{ where } dx = \begin{pmatrix} dx_1 \\ dx_2 \\ \vdots \\ dx_n \end{pmatrix}$$

The point here is that we will always define ∇f to have the same shape as x so that df is dot product of dx with the gradient

Example 6

Consider $f(x) = x^T A x$ where $x \in \mathbb{R}^n$ and A is a square $n \times n$ matrix and thus $f(x) \in \mathbb{R}$. Compute $df, f'(x), \nabla f$

Solution. By definitions we have learnt previously we may write

$$df = f(x + dx) - f(x)$$

$$= (x + dx)^{T} A(x + dx) - x^{T} Ax$$

$$= x^{T} Ax + dx^{T} Ax + x^{T} A dx \underbrace{d^{T} A dx}_{\text{higher order}} - x^{T} Ax$$

$$= x^{T} (A + A^{T}) dx \Rightarrow \nabla f = (A + A^{T}) x$$

where we can cancelled out the higher terms and $x^T A x$ which cancels out in the summation. Finally in the last line we combined the two remaining terms noting that they are scalars so their transpose is the same.

Remark 7. Compare this if we used the noob way of doing $x^T A x = \sum_{ij} x_i A_{i,j} x_j$ to find $\frac{\partial f}{\partial x_k}$. So much more trouble ugh

Example 8

Consider the function f(x) = Ax where A is a constant $m \times n$ matrix. Then applying the distributive law for matrix-vector products we have

$$df = f(x + dx) - f(x) = A(x + dx) - Ax = Adx = f'(x)dx$$

Therefore f'(x) = A. Again see how quick this was

Let us consider some derivative rules

• Sum rule: given f(x) = g(x) + h(x) we get that

$$df = dg + dh \implies f'(x)dx = g'(x)dx + h'(x)dx$$

• **product rule** suppose f(x) = g(x)h(x) then

$$df = f(x + dx) - f(x)$$

$$= g(x + dx)h(x + dx) - g(x)h(x)$$

$$= (g(x) + g'(x)dx)(h(x) + h'(x)dx) - g(x)h(x)$$

$$= gh + dgh + gdh + \underbrace{dgdh}_{higher order} - gh$$

$$= dah + adh$$

where the second line follows since g(x + dx) - g(x) = dg so simple rearrangement yields our result

Now we revisit the 2 examples we encountered but this time applying our sum and product rules directly

Example 9

Let us revisit this same example. Consider the function f(x) = Ax where A is a constant $m \times n$ matrix. Then applying the distributive law for matrix-vector products we have

$$df = d(Ax) = Ax = 0 + Adx = Adx \Rightarrow f'(x) = A$$

Notice this time how we applied product rule directly. Notice we have dA = 0 since A is a constant with respect to x

Example 10

Let $f(x) = x^T A x$ (a mapping from $\mathbb{R}^n \to \mathbb{R}$) then

$$df = dx^{T}(Ax) + x^{T}d(Ax) = \underbrace{dx^{T}Ax}_{x^{T}A^{T}dx} + x^{T}Adx = x^{T}(A + A^{T})dx = (\nabla f)^{T}dx$$

where we could group terms since dx^TAx is a scalar so transpose same(we have done this before)! In particular these show that

$$(x^T(A+A^T))^T = (A+A^T)x = \nabla f$$

as we had derived before and this also simplifies to 2Ax if A is symmetric.

Now let's derive another familiar calculus rule that is relevant in the context of matrix calculus. No surprise

• Chain rule: let f(x) = g(h(x)) then

$$df = f(x + dx) - f(x) = g(h(x + dx)) - g(h(x))$$

$$= g'(h(x))(dh) = g'(h(x))[h(x + dx) - h(x)]$$

$$= g'(h(x))[h'(x)[dx]]$$

$$= g'(h(x))h'(x)[dx]$$

where g'(h(x))h'(x) is a composition of g' and h' as matrices. So we see that f'(x) = g'(h(x))h'(x) is a product composition of jacobians g'h'

To make sense of this "compositional product" consider the following examples

Example 11

Let $x \in \mathbb{R}^n$, $h(x) \in \mathbb{R}^p$ and $g(h(x)) \in \mathbb{R}^m$ then f(x) = g(h(x)) is a mapping from $\mathbb{R}^n \to \mathbb{R}^m$. The chain rule then states that f'(x) = g'(h(x))h'(x). Note that the order of multiplication matters. Simple dimensional analysis will show that g' is an $m \times p$ matrix while h' is a $p \times n$ matrix.

Figure 1: Importance of getting the order of matrix multiplication right: see that the 1st one is $O(n^2)$ but the latter is $O(n^3)$

Let see some exaples of matrix valued functions

Example 12

Let $f(A) = A^3$ where A is a square matrix. Compute df

Solution. here we apply the chain rule one step at a time

$$df = dAA^3 + AdAA + A^2dA = f'(A)[dA]$$

Remark 13. Notice that this is not equal to $3A^2$ (unless dA and A commute)

Example 14

Let $f(A) = A^{-1}$ where A is a square invertible matrix. Compute $df = d(A^{-1})$

Solution. Here we use a slight trick. Notice that $AA^{-1} = I$. Thus we can compute the differential using the product rule knowing that dI = 0 so

$$d(AA^{-1}) = dAA^{-1} + Ad(A^{-1}) = d(I) = 0 \Rightarrow d(A^{-1}) = -A^{-1}dAA^{-1}$$

3 Jacobians of Matrix Functions

Definition 15

The **vectorization** $\text{vec} A \in \mathbb{R}^{mn}$ of any $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$ is defined by simply stacking the columns of A from left to right into a column vector vec A. That is if we denote the n columns of A by m-component vectors $\vec{a}_1, \vec{a}_2, \ldots \in \mathbb{R}^m$ then

$$\operatorname{vec} A = \operatorname{vec} \underbrace{(\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n)}_{A \in \mathbb{R}^{m \times n}} = \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_n \end{pmatrix} \in \mathbb{R}^{mn}$$

is an mn component column vector containing all the entries of A

Example 16

For a 2×2 matrix

$$A = \begin{pmatrix} p & r \\ q & s \end{pmatrix}$$

the matrix square function is

$$f(A) = A^{2} = \begin{pmatrix} p & r \\ q & s \end{pmatrix} \begin{pmatrix} p & r \\ q & s \end{pmatrix} = \begin{pmatrix} p^{2} + qr & pr + rs \\ pq + qs & qr + s^{2} \end{pmatrix}$$

Now we want to write f in a "vectorized" form like so

$$\tilde{f}\begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix} = \begin{pmatrix} p^2 + qr \\ pq + qs \\ pr + rs \\ qr + s^2 \end{pmatrix}$$

To do we may use the operation "vec" like so

$$vec A = vec \begin{pmatrix} p & r \\ q & s \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix}$$

Recall that vec stacks columns now. Now consider

$$\operatorname{vec} f(A) = \operatorname{vec} \begin{pmatrix} p^2 + qr & pr + rs \\ pq + qs & qr + s^2 \end{pmatrix} = \begin{pmatrix} p^2 + qr \\ pq + qs \\ pr + rs \\ qr + s^2 \end{pmatrix}$$

Therefore we observe the following relations

$$\tilde{f}(\text{vec}A) = \text{vec}f(A) = \text{vec}(A^2)$$

We basically vectorized the input and output as tasked.

Definition 17

If A is an $m \times n$ matrix with entries $a_{i,j}$ and B is a $p \times q$ matrix then their Kronecker product $A \otimes B$ is defined by

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \Rightarrow \underbrace{A}_{m \times n} \otimes \underbrace{B}_{p \times q} = \underbrace{\begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}}_{mp \times nq}$$

so that $A \otimes B$ is an $mp \times nq$ matrix formed by "pasting in" in a copy of B mulliplying every element of A

Example 18

Order of multiplication matters

$$A \otimes B = \begin{pmatrix} pB & rB \\ qB & sB \end{pmatrix} = \begin{pmatrix} p\mathbf{a} & p\mathbf{c} & ra & rc \\ p\mathbf{b} & p\mathbf{d} & rb & rd \\ qa & qc & sa & sc \\ qb & qd & sb & sd \end{pmatrix} \neq B \otimes A = \begin{pmatrix} aA & cA \\ bA & dA \end{pmatrix} = \begin{pmatrix} \mathbf{a}p & ar & \mathbf{c}p & cr \\ aq & as & cq & cs \\ \mathbf{b}p & br & \mathbf{d}p & dr \\ bq & bs & dq & ds \end{pmatrix}$$

Problem 19

From the definition of the Kronecker product derive the following identities

- 1. $(A \otimes B)^T = A^T \otimes B^T$
- 2. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$
- 3. $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ (follows from property 2)
- 4. $A \otimes B$ is orthogonal if A and B are orthogonal (from properties 1 and 3)
- 5. $\det(A \otimes B) = \det(A)^m \det(B)^n$ where $A \in \mathbb{R}^{n,n}$ and $B \in \mathbb{R}^{m,m}$
- 6. $\operatorname{tr}(A \otimes B) = (\operatorname{tr} A)(\operatorname{tr} B)$
- 7. Given eigenvector/values $Au=\lambda u$ and $Bv=\mu v$ of A and B then $\lambda\mu$ is an eigenvalue of $A\otimes B$ with eigenvector $u\otimes v$

Proof. Most of them can be proven by dimensional analysis.

- 1. consider $(m \times n \otimes p \times q)^T = (mp \times nq)^T = (nq \times mp) = (n \times m) \otimes (q \times m) = A^T \otimes B^T$
- 2. consider $(A \otimes B)(C \otimes D) = (mp \times nq)(nq \times mp) = (mp \times mp)$ where $A = (m \times n)$, $C = (n \times m)$, $B = (p \times q)$ and $D = (q \times p)$. So the only other way to get that is $AC \otimes BD$ as desired
- 3. (3) follows from (2). Consider $(A \otimes B)(A^{-1} \otimes B^{-1}) = (AA^{-1} \otimes BB^{-1}) = I \otimes I = (nn \otimes mm) = (nm \times nm)$ identity matrix. Then we also know that

$$(A^{-1} \otimes B^{-1}) = (A \otimes B)^{-1} (I \otimes I) = (A \otimes B)^{-1}$$

as desired

- 4. (4) is obvious when you consider (1) and (3) and that orthogonal means inverse is the same as tranpose.
- 5. Consider $\det(A \otimes B) = \det(A \otimes I)(I \otimes B) = \det(nn \otimes mm)(nn \otimes mm) = \det(nm \times nm)$ but we also know by properties of determinant that

$$\det(A \otimes I)(I \otimes B) = \det(A \otimes I) \det(I \otimes B) = \det(A)^{m} \det(B)^{n}$$

because we multiplying block diagonals of A and B

- 6. Consider $tr(A \otimes B) = \sum_k \sum_j A_{kk} B_{jj} = tr A tr B$ as desired.(think about how their matrix product looks like to reason this out)
- 7. Finally recalling that $det(A \otimes B)$ is the product of eigenvalues while $tr(A \otimes B)$ is sum of eigenvalues. Their identities very clearly reflect that

$$(\lambda_i \nu_i), \quad i = 1, \ldots, n \quad j = 1, \ldots, m$$

since the new sum reflects $(\sum \lambda_i)(\sum \lambda_j) = \sum_{ij} \lambda_i \mu_j$. So does their product $\prod_i \lambda_i \prod \mu_j$.

Proposition 20

Given (compatibly sized) matrices A, B, C we have

$$(A \otimes B) \text{vec}(C) = \text{vec}(BCA^T)$$

We can thus view $A \otimes B$ as a vectorized equivalent of the linear operation $C \mapsto BCA^T$

Proof. First consider the case where either A or B is an identity matrix I (of the appropriate size). To start with suppose that A = I so that $BCA^T = BC$. Now let $\vec{c_1}, \vec{c_2}, \ldots$ denote the columns of C then recall that BC simply multiplies B on the left with each of the columns of C that is

$$BC = B(\vec{c}_1 \ \vec{c}_2 \ \ldots) = (B\vec{c}_1 \ B\vec{c}_2 \ \ldots) \Rightarrow \text{vec}(BC) = \begin{pmatrix} B\vec{c}_1 \\ B\vec{c}_2 \\ \vdots \end{pmatrix}$$

To get vec(BC) vector as something multpyling vecC we can can guess that we have

$$\operatorname{vec}(BC) = \begin{pmatrix} B\vec{c}_1 \\ B\vec{c}_2 \\ \vdots \end{pmatrix} = \underbrace{\begin{pmatrix} B & & \\ & B & \\ & & \ddots \end{pmatrix}}_{I \otimes B} \underbrace{\begin{pmatrix} \vec{c}_1 \\ \vec{c}_2 \\ \vdots \end{pmatrix}}_{\operatorname{vec}(C)}$$

so immediately we have verified that

$$(I \otimes B) \text{vec} C = \text{vec}(BC)$$

Now we need to somehow add in the A^T term. To that end we simplify to the case where B = I in which case

 $BCA^{T} = CA^{T}$. To vectorize this again we need to look at the columns. COnsider that

$$\operatorname{vec}(CA^{T}) = \begin{pmatrix} \sum_{j} a_{1j} \vec{c}_{j} \\ \sum_{j} a_{2j} \vec{c}_{j} \\ \vdots \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11}I & a_{11}I & \dots \\ a_{11}I & a_{11}I & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}}_{A \otimes I} \underbrace{\begin{pmatrix} \vec{c}_{1} \\ \vec{c}_{2} \\ \vdots \end{pmatrix}}_{\operatorname{vec} C}$$

and so similarly we have derived

$$(A \otimes I) \text{vec} C = \text{vec}(CA^T)$$

Our proof essentially relied on the concept that changes by A and B are independent of each other. So we isolate the effects and slightly perturb to figure out what goes on. Explicitly

$$(I \otimes I)$$
vec C

when I is replaced with B it appears on vec(BC) on the left while if the other I is replaced it appears as a transpose on the right of C. Therefore we have the proposition when both Is are replaced simultaneously as desired.

Remark 21. This is quite a common and effective method used in proofs. Great application!

Example 22

Let us use 20 to calculate the vectorized jacobian of $f(A) = A^2$. Consider that

$$df = f'(A)[dA] \Rightarrow \text{vec}(df) = \text{vec}(f'(A)[dA]) = \tilde{f}'(\text{vec}(A))[\text{vec}(dA)]$$

now consider

$$vec(df) = vec(AdA + dAA) = vec(AdA) + vec(dAA)$$
$$= (I \otimes A)vec(dA) + (A^{T} \otimes I)vec(dA)$$
$$= (I \otimes A + A^{T} \otimes I)[vec(dA)]$$

on comparison with above we immediately see that

$$(I \otimes A + A^T \otimes I) = \tilde{f}'(\text{vec}(A))$$

and so because our example is only 2×2 we can explicitly calculate to obtain

$$\underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{f} \otimes \underbrace{\begin{pmatrix} p & r \\ q & s \end{pmatrix}}_{A} \otimes \underbrace{\begin{pmatrix} p & q \\ r & 1s \end{pmatrix}}_{A^{T}} + \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{f} = \begin{pmatrix} 2p & r & q & 0 \\ q & p+s & 0 & q \\ r & 0 & p+s & r \\ 0 & r & q & 2s \end{pmatrix} = \tilde{f}'$$

Example 23

For the matrix cube function A^3 where A is an $m \times m$ square matrix compute the $m^2 \times m^2$ jacobian of the vectorized function $\text{vec}(A^3)$. Using the same way as above we obtain

$$(A^3)'[dA] = dAA^2 + AdAA + A^2dA$$

and so

$$\operatorname{vec}(dAA^2 + AdAA + A^2dA) = ((A^2)^T \otimes I + A^T \otimes A + I \otimes A^2)\operatorname{vec}(dX)$$

4 Finite Difference Approximations

5 Derivatives in General vector spaces

Definition 24

The **Frobenius inner product** of two $m \times n$ matrices A and B is

$$\langle A, B \rangle_F = \sum_{ij} A_{ij} B_{ij} = \text{vec}(A)^T \text{vec}(B) = \text{tr}(A^T B)$$

The above is basically pointwise multiplication. Given this inner product we also have the corresponding **Frobenius norm**

$$||A||_F = \sqrt{\langle A, A \rangle_F} = \sqrt{\operatorname{tr}(A^T A)} = ||\operatorname{vec} A|| = \sqrt{\sum_{i,j} |A_{i,j}|^2}$$

For the rest of the notes we will assume this to be our default matrix inner product and hence drop the F subscript

Example 25

Consider the function

$$f(A) = ||A||_F = \sqrt{\operatorname{tr}(A^T A)}$$

What is df?

Solution. Firstly by familiar scalar differentiation chain(2) and power rules we have that

$$df = \frac{1}{2\sqrt{\operatorname{tr}(A^T A)}} d(\operatorname{tr} A^T A)$$

Then note that by learity of trace we have

$$d(\operatorname{tr} B) = \operatorname{tr}(B + dB) - \operatorname{tr}(B) = \operatorname{tr}(B) + \operatorname{tr}(dB) - \operatorname{tr}(B) = \operatorname{tr}(dB)$$

that is we may interchange the differential with the trace function. Hence

$$df = \frac{1}{2||A||_F} \operatorname{tr}(d(A^T A))$$

$$= \frac{1}{2||A||_F} \operatorname{tr}(dA^T A + A^T dA)$$

$$= \frac{1}{||A||_F} (\operatorname{tr}(dA^T A) + \operatorname{tr}(A^T dA))$$

$$= \frac{1}{||A||_F} \operatorname{tr}(A^T dA) = \langle \frac{A}{||A||_F}, dA \rangle$$

where in the penultimate step we used the fact that $\operatorname{tr} B = \operatorname{tr} B^T$. Hence recall since $\nabla f \cdot dA = df$ we immediately conclude

$$\nabla f = \nabla ||A||_F = \frac{A}{||A||_F}$$

Example 26

Fix some constant $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$ and consider the function $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ given by

$$f(A) = x^T A y$$

What is ∇f ?

Solution. We have that

$$df = x^T dAy$$

= $tr(x^T dAy)$ (since trace of real number is itself)
= $tr(yx^T dA)$ (since $tr B = tr B^T$)
= $\langle xy^T, dA \rangle$

and immediately we similarly see that

$$xy^T = \nabla f$$

Fact 27

More generally for any scalar valued function f(A) from the definition of the Frobenius inner product it follows that

$$df = f(A + dA) - f(A) = \langle \nabla f, dA \rangle = \sum_{i,j} (\nabla f)_{i,j} dA_{i,j}$$

and hence the components of the gradient are exactly the elementwise derivatives

$$(\nabla f)_{i,j} = \frac{\partial f}{\partial A_{i,j}}$$

6 Nonlinear Root finding, Optimization and Adjoint Differentiation

Problem 28

Suppose that A(p) takes a vector $p \in \mathbb{R}^{n-1}$ and returns the $n \times n$ triadiagonal real symmetric matrix

$$A(p) = \begin{pmatrix} a_1 & p_1 \\ p_1 & a_2 & p_2 \\ & p_2 & a_3 & p_3 \\ & & p_3 & a_4 & p_4 \\ & & \ddots & \ddots & \ddots \\ & & & & a_{n-1} & p_{n-1} \\ & & & & p_{n-1} & a_n \end{pmatrix}$$

where $a \in \mathbb{R}^n$ is some constant vector. Now define a scalar valued function f(p) by

$$g(p) = (c^T A(p)b)^2$$

for some constant vectors b, $cin\mathbb{R}^n$. p, a are chosen such that A is invertible.

- 1. write down a formula for computing $\frac{\partial g}{\partial p_1}$
- 2. coding problem
- 3. coding problem

Solution. Consider

1. From the chain rule and the formula for the differential of a matrix inverse we have

$$dg = -2(c^{T}A^{-1}b)c^{T}A^{-1}dAA^{-1}b$$

but notice that $c^T A^{-1} b$ is a scalar

7 Derivtive of Matrix Determinant and Inverse(7)

Theorem 29

Given A is a square matrix we have

$$\nabla(\det A) = \operatorname{cofactor}(A) = (\det A)(A^{-1})^T = \operatorname{adj}(A^T) = \operatorname{adj}(A)^T$$

Furthermore we have

$$d(\det A) = \operatorname{tr}(\det(A)A^{-1}dA) = \operatorname{tr}(\operatorname{adj}(A)dA) = \operatorname{tr}(\operatorname{cofactor}(A)^T dA)$$

Proof. For the 1st line we have done it before in CS229 Stanford Intro to ML. Simply recall that

$$\frac{\partial \det A}{\partial A_{i,i}} = C_{i,j}$$

where $C_{i,j}$ as an element of the cofactor matrix C. Therefore we have that

$$\nabla(\det A) = C$$

As for the second line we may use linearization near the identity like so

$$\det(I + dA) - 1 = (1 + \lambda_1)(1 + \lambda_2) - 1 = \det dA + \operatorname{tr}(dA)$$

where λ_1 , λ_2 are the eigenvalues of dA. Recall why this makes sense from our knowledge of characteristic polynomials for n=2.Note that we dropped dA because the elements of dA are infinitesimally small and $\det dA$ is a product of its elements(in particular the eigenvalues). Therefore we have

$$d(\det(A)) = \det(A + A(A^{-1}dA)) - \det(A) = \det(A)\det(I + A^{-1}dA - 1)$$
$$= \det(A)\operatorname{tr}(A^{-1}dA) = \operatorname{tr}(\det(A)A^{-1}dA)$$
$$= \operatorname{tr}(\operatorname{adj}(A)dA)$$

Example 30

Let find $d(\det(xI - A))$

Solution. While this may be solved by writing this out as a product of eigenvalues then doing

$$\frac{d}{dx}\prod_{i}(x-\lambda_{i})=\sum_{i}\prod_{j\neq i}(x-\lambda_{j})=\prod_{i}(x-\lambda_{i})\left\{\sum_{i}(x-\lambda_{i})^{-1}\right\}$$

where the second line is essentially produce rule, that is for each i, differentiate $(x - \lambda_i)$ then hold the other brackets constant. Then sum up all the terms

$$\dots (x - \lambda_{i-1}) \underbrace{\frac{d}{dx}(x - \lambda_{i-1})}_{=1} (x - \lambda_{i-1}) \dots$$

Notice how the last term works. Essentially it sums up all products of brackets where each summand has bracket i excluded. However we could use our formula above to simplify this. Consider

$$d(\det(xI - A)) = \det(xI - A)\operatorname{tr}((xI - A)^{-1}d(xI - A)) = \det(xI - A)\operatorname{tr}(xI - A)^{-1}dx$$

Example 31

For another application consider that we may do

$$d(\log(\det(A))) = \frac{d(\det A)}{\det A} = \det(A^{-1})d(\det(A)) = \operatorname{tr}(A^{-1}dA)$$

8 Second Derivatives, Bilinear Maps and Hessian Matrices(12)

Definition 32

The **hessian** of f has entries

$$H_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j} = H_{j,i}$$

which is symmetric assuming $f \in C^2$. So $H = (\nabla f)'$

See that

$$d(\nabla f) = (\nabla f)'dx = Hdx$$

Fact 33

We first consider the quadratic approximation (2nd order taylor series)

$$f(x + \delta x) = f(x) + (\nabla f)^{\mathsf{T}} \delta x + \frac{1}{2} \delta x^{\mathsf{T}} H \delta x + o(||\delta x||^2)$$

To see why this makes sense consider dx (a column vector so each i in dx_i is a row so must take transpose to have valid matrix product). Considering individual values(that is dx_i , $H_{i,j}$, dx_j which are all scalars)

$$(dx_i)^T H_{i,j} dx_j \in \mathbb{R}$$

which will be familiar single dimensional taylor expansion. This is how the 2nd order taylor approximation makes sense. Also note that clearly both

$$(\nabla f)^T \delta x \in \mathbb{R}$$
 and $\frac{1}{2} \delta x^T H \delta x \in \mathbb{R}$

We would like to express this approximation as

$$f(x + \delta x) = f(x) + f'(x)[\delta x] + \frac{1}{2}f''(x)[\delta x'][\delta x]$$

as before we know that we have $f'(x) = (\nabla f)^T$ and from here it seems that we are implying

$$f''(x)[dx'][dx] = dx'^T H dx \in \mathbb{R}$$

But how does this representation make sense? First consider

Proposition 34

f''(x)[dx'][dx] is indeed a symmetric bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ as reflected by the hessian.

Proof. Consider

$$\underbrace{f''(x)[dx', dx]}_{df'(x)} = f'(x + dx')[dx] - f'(x)[dx]$$

$$= (f(x + dx' + dx)) + f(x + dx') - (f(x + dx) - f(x))$$

$$= f(x + dx + dx') + f(x) - f(x + dx) - f(x + dx')$$

$$= (f(x + dx + dx') - f(x + dx)) - (f(x + dx') - f(x))$$

$$= f'(x + dx)[dx'] - f'(x)[dx']$$

$$= f''(x)[dx, dx']$$

So our representation makes sense.

Example 35

Let $f(x) = x^T A x$ for $x \in \mathbb{R}^n$ and A an $n \times n$ matrix. As above, f

Solution. recall as computed in an earlier example we have

$$f' = (\nabla f)^T = x^T (A + A^T)$$

This implies that $\nabla f = (A + A^T)x$ therefore

$$H = (\nabla f)' = (A + A^T)$$

Fact 36

Note that we have a special relationship here in this case. Consider

$$f(x) = x^{T}Ax = (x^{T}Ax)^{T} \text{ since scalar=scalar}^{T}$$

$$= x^{T}A^{T}x$$

$$= \frac{1}{2}(x^{T}Ax + x^{T}A^{T}x) = \frac{1}{2}x^{T}(A + A^{T})x$$

$$= \frac{1}{2}x^{T}Hx = \frac{1}{2}f''[x, x]$$