Problema di geolocalizzazione

Per geolocalizzare un ricevitore sulla superficie terrestre ($r_T=6371~\mathrm{km}$) vengono utilizzati 4 satelliti. I 4 satelliti inviano le proprie coordinate sferiche (θ, φ, r) e l'istante di invio del segnale t_S al ricevitore. I dati inviati sono:

	heta	arphi	<i>r_S</i> (km)	t_S (sec)
$\overline{S_1}$	$\pi/6$	$\pi/6$	42168	0.0
S_2	$2\pi/9$	$\pi/3$	42168	10^{-4}
S_3	$5\pi/36$	$\pi/2$	42168	$2 \cdot 10^{-4}$
S_4	$\pi/3$	$2\pi/3$	42168	$5\cdot 10^{-5}$

Il ricevitore riceve i segnali dei vari satelliti nei seguenti istanti:

dal satellite	t_R (sec)		
S_1	$t_{R_1} = 0.1203312573558543$		
S_2	$t_{R_2} = 0.1219281015231533$		
S_3	$t_{R_3} = 0.1255843020645584$		
S_4	$t_{R_4} = 0.1364331045023147$		

La distanza reale tra ogni satellite ed il ricevitore sarebbe

$$d_S = c \cdot (t_R - t_S)$$

dove c=299792 km/sec è la velocità della luce nel vuoto. In realtà i tempi t_R e t_S sono affetti da un errore (incognito) di misurazione e quindi

$$d_S = c \cdot ((t_R + \delta_R) - (t_S + \delta_S)) = c \cdot (t_R - t_S) + c\delta.$$

 $\delta = \delta_{R} - \delta_{S}$ è incognito.

La posizione (x_R, y_R, z_R) del ricevitore e l'errore δ sono calcolati mediante la risoluzione del sistema di equazioni non lineari

$$\begin{cases} \sqrt{(x_{S_1} - x_R)^2 + (y_{S_1} - y_R)^2 + (z_{S_1} - z_R)^2} = c(t_{R_1} - t_{S_1}) + c\delta \\ \sqrt{(x_{S_2} - x_R)^2 + (y_{S_2} - y_R)^2 + (z_{S_2} - z_R)^2} = c(t_{R_2} - t_{S_2}) + c\delta \\ \sqrt{(x_{S_3} - x_R)^2 + (y_{S_3} - y_R)^2 + (z_{S_3} - z_R)^2} = c(t_{R_3} - t_{S_3}) + c\delta \\ \sqrt{(x_{S_4} - x_R)^2 + (y_{S_4} - y_R)^2 + (z_{S_4} - z_R)^2} = c(t_{R_4} - t_{S_4}) + c\delta, \end{cases}$$

dove $(x_{S_i}, y_{S_i}, z_{S_i})$ sono le coordinate cartesiane del satellite S_i .

Consegna

Dopo aver scelto un punto iniziale $\mathbf{x}^{(0)}$ opportuno, calcolare la soluzione del sistema con il metodo di Broyden, con una tolleranza $\varepsilon=10^{-9}$ e numero massimo di iterazioni pari a kmax=100.

Conversione da coordinate sferiche a coordinate cartesiane

$$\begin{cases} x = r \sin(\theta) \cos(\varphi) \\ y = r \sin(\theta) \sin(\varphi) \\ z = r \cos(\theta) \end{cases}$$

Svolgimento

- convertire le coordinate sferiche dei satelliti in coordinate cartesiane,
- definire la funzione vettoriale di cui bisogna calcolare la radice,
- definire gli altri input per il metodo di Broyden (fare il download di paola-gervasio.unibs.it/CS/MATLAB/broyden.m),
- richiamare Broyden
- rappresentare graficamente i risultati

Per rappresentare una sfera: