Studente: Michele Delli Paoli

Matricola: 0522500797

ESERCITAZIONE 2

1 - Specifiche della macchina

• Processore: Intel Core i7-8550U;

• Velocità processore: 2 GHz;

Memoria: 16 GB;Numero di core: 4.

2 – Algoritmi implementati

Gli algoritmi implementati effettuano il prodotto di una Matrice **A** di dimensione m*n per un Vettore **v** di dimensione n, ottenendo come risultato un Vettore **w** di dimensione m.

Essi sono:

- algoritmo sequenziale (il cui file è chiamato **prodMatVetSeq.c**); (PUNTO FACOLTATIVO)
- algoritmo parallelo che implementa la strategia a BLOCCHI di COLONNE (prodMatVetCol.c).

N.B.

- 1) L' algoritmo sequenziale utilizza la funzione **MPI_Wtime()** per l'acquisizione dei tempi d'inizio e di fine della computazione.
- 2) L'algoritmo parallelo che implementa la strategia a blocchi di colonne funziona anche per una matrice A **rettangolare**, con **m != n**.

3 - Valutazione dello Speedup e dell'Efficienza

3.1 - Algoritmo parallelo che implementa la strategia a BLOCCHI di RIGHE

Di seguito sono riportate le tabelle dei tempi d'esecuzione dell'algoritmo parallelo per il prodotto Matrice Vettore che implementa la **strategia** a **BLOCCHI DI RIGHE**, per P=2 e P=4 processori.

P=2

m	n	Tempo Sequenziale (s)	Tempo Parallelo (s)	Sp	Ер
1000	1000	0,0026	0,0012	2,16	1,08
2000	1000	0,0054	0,0025	2,16	1,08
2000	2000	0,01	0,0051	1,96	0,9
4000	2000	0,0202	0,0104	1,94	0,97
4000	4000	0,0405	0,0207	1,95	0,97

P=4

m	n	Tempo Sequenziale (s)	Tempo Parallelo (s)	Sp	Ер
1000	1000	0,0026	0,0006	4,33	1,08
2000	1000	0,0054	0,0014	3,85	0,96
2000	2000	0,01	0,0026	3,84	0,96
4000	2000	0,0202	0,0057	3,54	0,88
4000	4000	0,0405	0,012	3,37	0,84

A seguire, vengono riportati i grafici che rappresentano lo Speedup e l'Efficienza dell'algoritmo parallelo che implementa la strategia a BLOCCHI DI RIGHE per il prodotto Matrice Vettore, per P=2 e P=4 processori.

3.2 - Algoritmo parallelo che implementa la strategia a BLOCCHI di COLONNE

Di seguito sono riportate le tabelle dei tempi d'esecuzione dell'algoritmo parallelo per il prodotto Matrice Vettore che implementa la **strategia** a **BLOCCHI DI COLONNE**, per P=2 e P=4 processori.

P=2

m	n	Tempo Sequenziale (s)	Tempo Parallelo (s)	Sp	Ер
1000	1000	0,0026	0,0013	2	1
2000	1000	0,0054	0,0027	2	1
2000	2000	0,01	0,0054	1,85	0,92
4000	2000	0,0202	0,0107	1,88	0,94
4000	4000	0,0405	0,0216	1,87	0,93

P=4

m	n	Tempo Sequenziale (s)	Tempo Parallelo (s)	Sp	Ер
1000	1000	0,0026	0,0007	3,71	0,93
2000	1000	0,0054	0,0014	3,85	0,96
2000	2000	0,01	0,0028	3,57	0,89
4000	2000	0,0202	0,0055	3,67	0,91
4000	4000	0,0405	0,0122	3,31	0,82

A seguire, vengono riportati i grafici che rappresentano lo Speedup e l'Efficienza dell'algoritmo parallelo che implementa la strategia a BLOCCHI DI COLONNE per il prodotto Matrice Vettore, per P=2 e P=4 processori.

