Thursday, January 24, 2019

11:13 PM

INTER-VLAN ROUTING P1

Inter-VLAN Routing P1

Trunk: Info from VLANs between devices: L3 process required for traffic to move from 1 network segment to other

Inter-VLAN routing: Process of fwding traffic from 1 VLAN to another using routing

VLANS	 Segments switched networks: L2 switch [4096 VLANs]: Limited IPv4/6 function L2 switch: NO routing function: No dynamic routing [only static]
	 VLANs: Broadcast domains: Separate VLANs: Unable to communicate w/out routing
	device
	 L3 multilayer switches/routers perform functions

Legacy Inter-VLAN Routing

1st solution: Not implemented anymore in switched networks: As # of VLANs increases: Exhausts physical int capacity

- Router w/multiple physical ints: Each int connected to separate network/config'd w/distinct subnet
- Routing performed by connecting different physical router ints to different physical switch ports Switch ports connected? Access mode: Each physical int assigned different VLAN
 - Each router int: Accept traffic from VLAN associated w/switch connected
 - Traffic: Router to other VLANs connected to other ints

More

- · Multiple physical ints: Routes by having each physical int connected to unique VLAN
- Each int config'd w/IP for subnet associated w/a VLAN
- Config IP on physical ints: Devices connect to each VLAN: Communicates w/router using physical int connected on same vlan
- Network devices: Can use router as gateway to access devices connected to other VLANs

	t devices. Can de leater de gatemay te desces devices sermicised to ethic. VE inte
How?	 Source device: Determines if dest local/remote to local subnet: Compares source/dest IP against mask
	When destination IP determined to be on remote network
	Source ID's where to fwd packet to reach destination
	Source examines routing table: Determines where data sent
	 Devices use gateway as L2 destination for all traffic
	■ IP of router int on local subnet acts as gateway for sending
	Gateway: Route devices use when no defined route to destination network
	When source determines packet must travel through local router int on connected VLAN:
	Source sends ARP request to determine MAC of local router int
	 Router sends ARP reply back: Source uses MAC to finish framing packet before sending unicast
	If eth0 frame has destination MAC of router int:
	Switch knows port to fwd unicast traffic out of to reach router int for VLAN
	When frame arrives at router:
	 Router removes source/dest MAC info to examine dest IP of packet Router compares dest to entries in routing table to determine where to fwd
	·

data for final destination

If router determines network locally connected [w/inter-vlan routing]:

- o Router sends ARP request out int physically connected to destination VLAN
- o Dest device responds to router w/MAC: Router uses to frame packet
- o Router sends unicast to switch: Fwds out port where destination device connected

Switch Config:

Create VLANs vlan vlan_id [global config]

Assign switch ports to appropriate VLANs switchport access vlan vlan_id [int config]

switch(config)# vlan 10

switch(config-vlan)# vlan 30

switch(config-vlan)# int f0/11

switch(config-if)# switchport access vlan 10

switch(config-if)# int f0/4

switch(config-if)# switchport access vlan 10

switch(config-if)# int f0/6

switch(config-if)# switchport access vlan 30

switch(config-if)# int f0/5

switch(config-if)# switchport access vlan 30

switch(config-if)# end

Router config: Similar to VLAN ints on switches: Repeat for all router ints: Each int must be assigned to unique subnet

router(config)# int g0/0

router(config-if)# ip address 172.17.10.1 255.255.255.0

router(config-if)# no shutdown

router(config-if)# int g0/1

router(config-if)# ip address 172.17.30.1 255.255.255.0

router(config-if)# no shutdown

router(config-if)# end

Check routing table show ip route

C Indicates route local for connected int: Also ID'd in route entry

Router-on-a-Stick: More common implementation of inter-VLAN routing

 SW may permit config router int as trunk link: Only 1 physical int on router/switch to route packets between multiple VLANs

Single physical int routes traffic between multiple VLANs on network

- · Router int config'd to act as trunk link: Connected to switch port config'd in trunk mode
- Router performs inter-VLAN by accepting VLAN-tagged traffic on trunk int coming from adjacent switch
- Internally routes between VLANs using subinterfaces: Fwds traffic
- VLAN-tagged for destination VLAN: Out of same physical int used to receive traffic

Subinterfaces: SW based virtual ints: Associated w/single physical int

- Each subint independently config'd w/IP/VLAN assignment
- · Config'd for diff subnets w/VLAN assignment: Logical routing
- After decision made based on destination VLAN: Data frames VLAN-tagged: Sent back out physical int

Advantages: Using trunk links/subints decreases # of router/switch ports used: Saves money/reduces

complexity/scalable

How?

VLAN trunking with subints:

- Allows single physical router int to route traffic for multiple VLANs
- Uses virtual subints on router to overcome HW limits: SW-based virtual ints
- Assigned to physical ints
- Each subint config'd independently w/own IP/mask
- Allows single physical int to simultaneously be part of multiple logical networks

When using router-on-stick:

- Physical int of router must be connected to trunk link on adjacent switch
- On router: Subints created for each unique VLAN
- Each subint assigned IP/specific to its subnet/VLAN/to tag frames for that VLAN
- Router can keep traffic from each subint separated as traverses trunk link back to switch

Config Switch

- Start by enabling trunking on switch port connected to router If router doesn't support DTP (Dynamic Trunking Protocol):
 - Following cmds can't be used: switchport mode dynamic auto | switchport mode dynamic desirable

switch(config)# vlan 10
switch(config-vlan)# vlan 30
switch(config-vlan)# int f0/5
switch(config-if)# switchport mode trunk
switch(config-if)# end

Config Router: Different compared to legacy

- Each subint created using int int_id subint_id [global config]
- Subint # Configurable: Reflects VLAN #
- Before assigning IP to subint: encapsulation dot1q vlan_id
- Native keyword option: Can appended to cmd to set IEEE 802.1Q native VLAN
- Each router subint must be assigned IP on unique subnet
- Physical int disabled? All subints disabled

router(config)# int g0/0.10 router(config-subif)# encapsulation dot1q 10 router(config-subif)# ip address 172.17.10.1 255.255.255.0 router(config-subif)# int g0/0.30 router(config-subif)# encapsulation dot1q 30 router(config-subif)# ip address 172.17.30.1 255.255.255.0 router(config)# int g0/0 router(config)# no shutdown

show vlan show vlan br show route show ip route

Multilayer Switch

Router-on-stick: Requires 1 physical int on router: 1 int on switch: Simple cabling

- Other implementations don't require dedicated router
- Multilayer switch: Can perform L2/3 functions
- · Supports dynamic routing: Inter-VLAN routing

To enable switch to perform routing functions: Switch must have IP routing enabled

- More scalable: Routers have limited #'s of ports to connect to
- · For ints config'd as trunk line: Limited amts of traffic accommodated on line at once

Traffic routed internally to switch device: Packets not filtered down single trunk to obtain new VLAN tag info

- Doesn't replace router (they don't implement security measures/controls routers do)
- L2 device w/some routing capabilities

2960 Catalyst switch: Enable routing functionality

switch(config)# sdm prefer lanbase-routing [Catalyst 3560 supports EIGRP/OSPF/BGP]

Ping / tracert

Ping	 Sends ICMP echo requests to destination address Host receives ICMP echo request Responds w/ICMP echo reply to confirm received Calculates time using difference between time echo request sent/reply received Elapsed time tests latency
Tracert	 Good for confirming routed path taken between devices Displays list of ingress router ints ICMP echo requests reached UNIX: traceroute ICMP determines path w/specific TTL values defined on frame TTL value: Determines how many hops ICMP echo can reach 1st ICMP: Sent w/TTL value that expires at 1st router on destination ICMP echo request times out 1st route ICMP msg sent from router to originating device Device records response from router Sends another ICMP echo request: Greater TTL Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router to reach 2nd device Rinse/Repeat Allows request to bypass 1st router Rinse/Repeat Allows request to bypass 1st router Rinse/Repeat Rinse/Repeat Rinse/Repeat Rinse/Repeat Rinse/Repeat Rinse/Repeat Rinse/Repea