(a)
$$A - \{1\}$$

 $B - \{1, 2, 3\}$
 $C - \{3\}$
 $D - \{1, 2, 3\}$
 $E - \{2\}$
 $E - \{1, 3\}$
 $G - \{1, 3\}$

- (c) When we solve this question using the AC-3 algorithm, the domain of some of the variables becomes empty, hence, no consistent solution is possible.

 So, depending on which are, we choose in any order, the domains look like:
 - (A=1, B=1, C=2, D=(2,3), E=3, F=(), G=2.
 - 2 A=1, B=1, C=2, D=(2,3), E=3, F=2, G=().
 - 3 A=1, B=1, C=2, D=(3), E=3, F=2, G=().
 - @ A=1, B=1, C=2, D=(1,2,3), E=3, F=(), G=2.
 - (5) A=1, B=1, C=2, D=(1,2,3), E=3, F=2, G=().
 - in now we see that there is no outcome in which all variables have domains assigned without violating any constraints. Hence, there is no consistent solution for this problem.