# Study of Wildfires in USA

**ECE 143: Final Project Presentation** 

**Group 20** 

Payal Agarwal

Leyan Zhu

Yujian Xiong

Aditya Sant

### Wildfires in the US



### Description of Problem





What is burning, why is it so large and why is it increasing?

### Dataset Description and Our Approach

#### Datasets sourced for 1992 - 2015

- 1. Wildfire Information
- 2. Surface Temperature
- Rainfall (mm/day)
- 4. Wind and Air Pressure
- 5. Vegetation NDVI Value
- 6. GHG Emissions in tons

#### Our Approach

- 1. Visualization Geographic scatter
- 2. Quantitative metric Correlation
- 3. Case Study Alaska
- 4. Feedback loop GHG Emission

### Wildfires Distribution for USA



Distribution of damaged area in hectares from 1992 - 2015

### Are Climate and Vegetation Responsible?



Reduced rainfall and very specific vegetation predominate here

#### **Correlation Scatter**

• Fire instances are highly centered where rain-fall is low

 Fire instances are increasing as temperature increasing





More clustering for rainfall shows that it plays a larger role

#### How about some numbers?

- Wild fire is positively with temperature
- Negatively correlated with rain-fall and air-pressure

Magnitude of correlation represents relative importance



### Wait, why Alaska?

- Alaska warms at a rate at least twice the global average
- 2004 Alaska fire season: Worst on record in terms of area burnt (6.5 million acres)
- Terrain and climate further restricts accessibility

Extremes of temperature and dried out vegetation cause frequent wildfires



Taylor Complex Fire (August 09 - September 12, 2004)

## Local Temperature Effects on Wildfires



Increased Summer temperatures in 2004 Alaska Fire Season

### Local Rainfall Effects on Wildfires



Minimal rainfall in 2004 responsible for 2004 Alaska Fire Season

### Temporal Analysis of Temperature/Rainfall in Alaska



Significant variations in weather conditions over a decade

# Temporal Analysis of Temperature/Rainfall in Alaska



### Greenhouse Gases: A Dangerous Feedback

- Highly correlated for CO<sub>2</sub>,
  HFC, NF<sub>3</sub>
- And negatively correlated with CH<sub>4</sub>, PFC, SF<sub>6</sub>





#### Conclusion

#### Where we are now?

- Human activities is primary cause (Ignition)
- Climate and vegetation affect wildfire size, location and scale (Fuel)
- Also showed GHG released as a result (Positive Feedback)

#### Where do we go from here?

- Prediction map: Sophisticated models beyond correlation
- How can human factors be quantified similar to climate factors

Reducing our carbon footprint will control these wildfires (obviously?)



#### Correlation in Alaska

 In Alaska, correlation with temperature increases

 In Alaska, correlation with rain-fall and air-pressure decreases



#### Correlation Scatter

 Fire instances are lightly centered where wind-speed is low  Fire instances are lightly centered where air-pressure is high



