Trabalho Nº1 - MRAC Direto

COE603 - Controle Adaptativo

Caio Cesar Leal Verissimo - 119046624 Leonardo Soares da Costa Tanaka - 121067652 Lincoln Rodrigues Proença - 121076407 Engenharia de Controle e Automação - UFRJ Rio de Janeiro, Rio de Janeiro, Brasil Maio de 2025

Conteúdo

1	Resumo das equações do sistema			
	1.1	Equaçõ	ões do Algoritmo MRAC Direto	3
	1.2	Estabil	lidade do Algoritmo MRAC Direto	4
2	Dia	gramas	s de blocos	5
3	Res	ultados	s das simulações	6
	3.1	Simula	ção #1	7
		3.1.1	Configuração do experimento:	7
		3.1.2	Resultados da simulação:	7
		3.1.3	Comentários:	8
	3.2	Simula	ção #2	9
		3.2.1	Configuração do experimento:	9
		3.2.2	Resultados da simulação:	9
		3.2.3	Comentários:	10
	3.3	Simula	ção #3	11
		3.3.1	Configuração do experimento:	11
		3.3.2	Resultados da simulação:	11
		3.3.3	Comentários:	12
	3.4	Simula	ção #4	13
		3.4.1	Configuração do experimento:	13

\mathbf{A}	Dec	ompos	ição de Matrizes: Parte Simétrica e Antissimétrica	27
		3.10.3	Comentários:	26
			Resultados da simulação:	25
			Configuração do experimento:	25
	3.10		ção #10	25
		3.9.3	Comentários:	24
		3.9.2	Resultados da simulação:	23
		3.9.1	Configuração do experimento:	23
	3.9	Simula	ção #9	23
		3.8.3	Comentários:	22
		3.8.2	Resultados da simulação:	21
		3.8.1	Configuração do experimento:	21
	3.8	Simula	ção #8	21
		3.7.3	Comentários:	20
		3.7.2	Resultados da simulação:	19
		3.7.1	Configuração do experimento:	19
	3.7	Simula	ção #7	19
		3.6.3	Comentários:	18
		3.6.2	Resultados da simulação:	17
		3.6.1	Configuração do experimento:	17
	3.6	Simula	ção #6	17
		3.5.3	Comentários:	16
		3.5.2	Resultados da simulação:	15
		3.5.1	Configuração do experimento:	15
	3.5	Simula	ção #5	15
		3.4.3	Comentários:	14
		3.4.2	Resultados da simulação:	13

1 Resumo das equações do sistema

Neste experimento, simulamos o algoritmo MRAC Direto para o caso:

• n = 1 (ordem da planta)

• $n^* = 1$ (grau relativo)

• $n_p = 2$ (número de parâmetros)

1.1 Equações do Algoritmo MRAC Direto

A Tabela 1 resume as equações fundamentais do algoritmo MRAC (Model Reference Adaptive Control) na forma direta, considerando uma planta de primeira ordem (n = 1), grau relativo igual a 1 $(n^* = 1)$ e número de parâmetros $n_p = 2$.

Descrição	Equação	Ordem
Planta	$\dot{y} = a_p y + k_p u$	1
Modelo	$\dot{y}_m = -a_m y_m + k_m r$	1
Erro da saída	$e_0 = y - y_m$	
Lei de controle	$u = \theta^T \omega$	
Regressor	$\omega^T = \begin{bmatrix} y & r \end{bmatrix}$	
Lei de adaptação	$\dot{\theta} = -\operatorname{sign}(k_p)\Gamma\omega e_0$	2

Tabela 1: Resumo do Algoritmo MRAC Direto

A Figura 1 ilustra o diagrama de blocos do sistema em malha fechada, juntamente com a verificação da equivalência com o modelo de referência. Este diagrama mostra como a combinação dos ganhos adaptativos θ_1^* e θ_2^* pode transformar o comportamento da planta para que ela imite o modelo de referência.

Figura 1: Diagrama de blocos e verificação da equivalência com o modelo de referência

As expressões ideais para os parâmetros θ_1^* e θ_2^* que garantem essa equivalência são apresentadas a seguir. Esses parâmetros são obtidos por identificação direta, com base nas constantes do modelo e da planta.

$$\theta_1^* = -\frac{a_p + a_m}{k_p}$$

$$\theta_2^* = \frac{k_m}{k_p}$$

Essas equações representam os valores ideais dos parâmetros adaptativos para que a planta controlada siga o comportamento especificado pelo modelo de referência. Na prática, o algoritmo de adaptação busca aproximar esses valores ao longo do tempo.

1.2 Estabilidade do Algoritmo MRAC Direto

1. Forma vetorial e definições Escrevendo em forma vetorial:

$$\boldsymbol{\theta}^* = \begin{bmatrix} \theta_1^* \\ \theta_2^* \end{bmatrix}, \quad \boldsymbol{\omega} = \begin{bmatrix} y \\ r \end{bmatrix} \implies u^* = \boldsymbol{\theta}^{*T} \boldsymbol{\omega}.$$
 (1)

Analogamente, a lei de controle é

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad \Longrightarrow \quad u = \boldsymbol{\theta}^T \, \boldsymbol{\omega}. \tag{2}$$

2. Dinâmica do erro Definimos o erro de saída:

$$e = y - y_m. (3)$$

Subtraindo as dinâmicas da planta e do modelo:

$$\dot{e} = \dot{y} - \dot{y}_m = (a_p y + k_p u) - (-a_m y_m + k_m r)
= -a_m (y - y_m) + (a_p + a_m) y + k_p u - k_m r + \underbrace{(a_m y) - (a_m y)}_{=0}
= -a_m e + k_p \Big[\frac{a_p + a_m}{k_p} y + u - \frac{k_m}{k_p} r \Big]
= -a_m e + k_p \Big[u - \theta_1^* y - \theta_2^* r \Big]
= -a_m e + k_p \Big[u - u^* \Big].$$
(4)

3. Erro paramétrico Definimos o vetor de erro de parâmetro:

$$\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} - \boldsymbol{\theta}^* \implies \dot{e} = -a_m e + k_p \, \tilde{\boldsymbol{\theta}}^T \boldsymbol{\omega}.$$
 (5)

4. Função de Lyapunov Escolhemos

$$V(e, \tilde{\boldsymbol{\theta}}) = \frac{1}{2}e^2 + \frac{1}{2}|k_p|\tilde{\boldsymbol{\theta}}^T \Gamma^{-1}\tilde{\boldsymbol{\theta}}.$$
 (6)

Calculando sua derivada:

$$\dot{V} = e \,\dot{e} + |k_p| \,\tilde{\boldsymbol{\theta}}^T \,\Gamma^{-1} \,\dot{\tilde{\boldsymbol{\theta}}}
= -a_m e^2 + k_p \,\tilde{\boldsymbol{\theta}}^T \,\boldsymbol{\omega} \,e + |k_p| \,\tilde{\boldsymbol{\theta}}^T \,\Gamma^{-1} \,\dot{\tilde{\boldsymbol{\theta}}}.$$
(7)

Para garantir $\dot{V} \leq 0$, adotamos a lei de adaptação

$$\dot{\boldsymbol{\theta}} = -\Gamma \operatorname{sign}(k_p) \,\boldsymbol{\omega} \, e. \tag{8}$$

5. Conclusões de estabilidade Com essa escolha,

$$\dot{V} = -a_m e^2 \le 0, \quad \Longrightarrow \quad e(t), \ \tilde{\boldsymbol{\theta}}(t) \in \mathcal{L}_{\infty}. \tag{9}$$

Como $r(t) \in \mathcal{L}_{\infty} \Rightarrow y_m(t) \in \mathcal{L}_{\infty}$ e

$$\dot{V} \le 0 \implies V(t) \le V(0),\tag{10}$$

segue que

$$\int_0^t e^2(\tau) \, d\tau < \infty \quad \Longrightarrow \quad e \in \mathcal{L}_2. \tag{11}$$

Finalmente, aplicando o lema de Barbalat,

$$e \in \mathcal{L}_2, \quad \dot{e} \in \mathcal{L}_\infty \quad \Longrightarrow \quad \lim_{t \to \infty} e(t) = 0.$$
 (12)

2 Diagramas de blocos

Nesta seção, apresentamos os principais diagramas de blocos que descrevem o funcionamento do controle adaptativo modeloreferência (MRAC) na sua forma direta. Cada figura ilustra uma parte fundamental do sistema, desde a estrutura geral até os componentes individuais como a planta, o modelo de referência e a malha de adaptação.

Figura 2: Diagrama de blocos geral do controle MRAC direto.

A Figura 2 mostra a arquitetura geral do controlador MRAC direto. O objetivo do sistema é ajustar os parâmetros do controlador de modo que a saída da planta acompanhe a saída do modelo de referência para qualquer entrada r(t). O sinal de erro $e = y - y_m$ é utilizado para atualizar os parâmetros adaptativos.

Figura 3: Malha de adaptação dos parâmetros θ .

Na Figura 3, destacamos a malha de adaptação, responsável por ajustar os parâmetros do controlador θ com base no erro de seguimento. Essa adaptação ocorre conforme uma lei de atualização derivada da função de Lyapunov, garantindo estabilidade do sistema.

Figura 4: Componentes individuais do sistema MRAC.

A Figura 4 agrupa os blocos fundamentais do sistema MRAC. À esquerda, o modelo de referência define a dinâmica desejada para o sistema. Ao centro, está a planta controlada, que deve seguir essa referência. À direita, o sinal de referência r(t) atua como entrada comum para ambos os blocos, sendo a base para comparação entre o comportamento ideal e o real.

3 Resultados das simulações

Cada subseção a seguir apresenta a configuração do experimento, espaço reservado para os dados obtidos em cada simulação e comentários sobre o desempenho do MRAC Direto.

3.1 Simulação #1

3.1.1 Configuração do experimento:

• Planta: $P(s) = \frac{k_p}{s - a_p} = \frac{1}{s - 2}$

• Modelo de referência: $M(s) = \frac{k_m}{s + a_m} = \frac{1}{s + 1}$

• Condições iniciais: $y_p(0) = 0, y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s=0,\,\omega_s=5$ rad/s

 Ganho de matching ótimo: $\theta^* = \left[-(a_p + a_m)/k_p; k_m/k_p\right] = [-3;1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.1.2 Resultados da simulação:

Figura 5: Resultado da simulação (Script: simu01.m)

3.1.3 Comentários:

A simulação do MRAC Direto apresentou os seguintes comportamentos, conforme a variação do ganho de adaptação Γ:

- Erro de rastreamento (e_0): Para $\Gamma = 100I$, o erro converge mais rapidamente com menor overshoot. Já para $\Gamma = 2I$, a convergência é mais lenta e com maiores oscilações, só que uma menor frequência de oscilação.
- Ganho de adaptação (θ): Ambos os casos não convergem para o valor ótimo $\theta^* = [-3; 1]$. Porque o sinal de entrada que é um sinal DC igual a 1, o que não auxilia na convergência do ganho de adaptação.
- Resposta do sistema $(y_p \ e \ y_m)$: O rastreamento da referência é mais eficiente para $\Gamma = 100I$, apresentando menor erro e resposta mais rápida.
- Sinal de controle (u): Ambos os casos convergem para o valor adequado em regime permanente. Com $\Gamma = 100I$, o controle atua de forma mais intensa no início, mas estabiliza mais rapidamente.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Para $\Gamma = 2I$, a trajetória é mais lenta e ampla; para $\Gamma = 100I$, há convergência rápida com órbitas mais fechadas.

Conclusão: Aumentar o ganho de adaptação Γ melhora significativamente a velocidade de convergência do sistema, tanto para o erro quanto para os parâmetros adaptativos, ao custo de maior agressividade no transiente.

3.2 Simulação #2

3.2.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2 (constante), $A_s=1,\,\omega_s=5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-3; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.2.2 Resultados da simulação:

Figura 6: Resultado da simulação (Script: simu02.m)

3.2.3 Comentários:

Nesta simulação, foi utilizado um sinal de referência composto por uma componente DC e uma senoidal, o que introduz maior oscilação no sistema. Os principais resultados observados foram:

- Erro de rastreamento (e_0): O erro apresenta comportamento oscilatório permanente devido à componente senoidal do sinal de referência. Com $\Gamma = 100I$, o erro é mais suavizado e acompanha melhor a referência.
- Ganho de adaptação (θ): Ambos os casos convergem para valores próximos de θ^* , com maior rapidez e menor variação para $\Gamma = 100I$.
- Resposta do sistema (y_p, y_m, r) : A resposta com $\Gamma = 100I$ segue melhor a referência, com menor defasagem e melhor rastreamento da componente senoidal.
- Sinal de controle (u): Oscilatório em ambos os casos, com maior intensidade e frequência no início. A escolha de Γ mais alto permite estabilização mais rápida, porém com maior ação de controle.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Com $\Gamma = 100I$, as trajetórias convergem de forma mais concentrada em torno da origem, indicando melhor desempenho adaptativo.

Conclusão: A presença da componente senoidal no sinal de referência exige maior capacidade adaptativa do sistema. O ganho de adaptação elevado ($\Gamma = 100I$) proporciona resposta mais precisa, embora com maior esforço de controle.

3.3 Simulação #3

3.3.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 3$, $y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s = 0$, $\omega_s = 5$, rad/s

• Ganho de matching ótimo: $\theta^* = [-3; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.3.2 Resultados da simulação:

Figura 7: Resultado da simulação (Script: simu03.m)

3.3.3 Comentários:

Nesta simulação, a planta parte de uma condição inicial não nula $(y_p(0) = 3)$, enquanto o modelo inicia em zero. O sinal de referência é constante (DC = 1). Os principais resultados observados foram:

- Erro de rastreamento (e_0): O erro converge rapidamente para zero, sendo mais eficiente para $\Gamma = 100I$. A presença do offset inicial é corrigida com maior rapidez neste caso.
- Ganho de adaptação (θ): Os parâmetros adaptativos se ajustam rapidamente e não estabilizam em torno de θ^* , com menor oscilação e adaptação mais rápida para maior ganho de adaptação.
- Resposta do sistema: O sistema com $\Gamma = 100I$ segue o modelo de referência com mais precisão, apresentando menor tempo de acomodação e sobre-elevação.
- Sinal de controle (u): O controle é inicialmente intenso devido à diferença nas condições iniciais. Para $\Gamma = 100I$, observa-se maior esforço de controle, mas com resposta mais eficaz.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: As trajetórias convergem rapidamente para a origem, especialmente para $\Gamma = 100I$, indicando uma adaptação eficiente mesmo com condições iniciais desfavoráveis.

Conclusão: A diferença nas condições iniciais evidencia a importância do ganho de adaptação. Valores maiores de Γ resultam em respostas mais rápidas e precisas, compensando rapidamente desvios iniciais.

3.4 Simulação #4

3.4.1 Configuração do experimento:

• Planta: $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 3$, $y_m(0) = 0$

• Sinal de referência: DC = 2 (constante), $A_s=1,\,\omega_s=5,\mathrm{rad/s}$

• Ganho de matching ótimo: $\theta^* = [-3; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.4.2 Resultados da simulação:

Figura 8: Resultado da simulação (Script: simu04.m)

3.4.3 Comentários:

Nesta simulação, a planta inicia novamente em $y_p(0) = 3$, mas o sinal de referência inclui uma componente senoidal além da parte DC (DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s). Isso introduz um regime permanente oscilatório. Os principais pontos observados são:

- Erro de rastreamento (e₀): O erro não converge para zero devido à presença do componente harmônico no sinal de referência. No entanto, para Γ = 100I, o erro apresenta menor amplitude de oscilação, indicando melhor desempenho de rastreamento.
- Ganho de adaptação (θ): Os parâmetros adaptativos não convergem para valores constantes, pois o sistema está em regime oscilatório. Ainda assim, os ganhos oscilam em torno de valores próximos de θ^* no caso de $\Gamma = 2I$, com maior oscilação observada para $\Gamma = 100I$.
- Resposta do sistema: O sistema com maior ganho de adaptação responde mais rapidamente e com menor erro de seguimento da referência. Entretanto, a presença de altas frequências exige maior esforço adaptativo.
- Sinal de controle (u): O controle apresenta oscilações significativas para ambas as configurações, mas mais intensas para $\Gamma = 100I$, refletindo a tentativa de acompanhar a componente senoidal do sinal de referência.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: As trajetórias não convergem para a origem, como esperado em um regime não estacionário. Os ciclos fechados no plano de fase revelam a persistência da oscilação e o comportamento quase-periódico da adaptação.

Conclusão: A introdução da componente senoidal no sinal de referência impossibilita a convergência do erro para zero. Ainda assim, o aumento do ganho de adaptação melhora o desempenho de rastreamento, ao custo de maior esforço de controle e maiores oscilações nos parâmetros adaptativos.

3.5 Simulação #5

3.5.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+10}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s = 0$, $\omega_s = 5$, rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+10)/1; 1/1] = [-12; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.5.2 Resultados da simulação:

Figura 9: Resultado da simulação (Script: simu05.m)

3.5.3 Comentários:

Nesta simulação, o modelo de referência foi modificado para $M(s) = \frac{1}{s+10}$, ou seja, com constante de tempo menor devido ao aumento de a_m de 1 para 10. O sinal de referência é puramente constante (DC = 1), sem componente senoidal, o que permite avaliar o comportamento do sistema em regime estacionário. Os principais pontos observados são:

- Erro de rastreamento (e₀): Em Figura 9(a), erro converge para zero em ambos os casos. Para Γ = 2I, observa-se um pico inicial mais acentuado. Já com Γ = 100I, a convergência é mais rápida e uma pequena ondulação em torno de t ≈ 1 s, com menor overshoot.
- Ganho de adaptação (θ): Em Figura 9(b), os parâmetros adaptativos convergem para valores constantes em ambos os casos, aproximando-se de θ* = [-12, 1]. A configuração com Γ = 100I apresenta convergência mais rápida, com oscilações transitórias ligeiramente maiores. Para Γ = 2I, a convergência é mais lenta e apresenta maior oscilação inicial.
- Resposta do sistema: Em Figura 9(c), a resposta com $\Gamma = 100I$ é mais rápida e atinge o valor de regime de forma mais direta. Já para $\Gamma = 2I$, o sistema apresenta overshoot antes de se estabilizar.
- Sinal de controle (u): Em Figura 9(d), o controle apresenta um pico mais elevado no caso de Γ = 2I, chegando a aproximadamente -90, enquanto para Γ = 100I o pico é menor (em torno de -10 e 10). Após o regime transitório, ambos convergem para valores próximos.
- Diagrama de fase (e₀ × θ̃): Em Figura 9(e), As trajetórias no plano de fase convergem para a origem em ambos os casos, indicando estabilidade e boa adaptação. Para Γ = 2I, os ciclos iniciais são mais amplos e com espirais mais prolongadas. Já com Γ = 100I, a convergência é mais direta e rápida.

Conclusão: O aumento do ganho de adaptação ($\Gamma=100I$) acelera a convergência do erro e dos parâmetros adaptativos, com menor overshoot e menor esforço de controle durante o transitório, entretanto com um comportamento mais oscilatório. Ganhos menores ($\Gamma=2I$) resultam em comportamento mais lento e maior pico de controle, apesar de também garantir rastreamento preciso. Em ambos os casos, o controlador estabiliza a planta instável $P(s)=\frac{1}{s-2}$ e segue adequadamente o modelo de referência $M(s)=\frac{1}{s+10}$.

3.6 Simulação #6

3.6.1 Configuração do experimento:

• Planta: $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+10}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+10)/1; 2/1] = [-12; 2]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.6.2 Resultados da simulação:

Figura 10: Resultado da simulação (Script: simu06.m)

3.6.3 Comentários:

Nesta simulação, o modelo de referência é $M(s) = \frac{1}{s+10}$ (com $a_m = 10$), e o sinal de referência possui componente senoidal sobreposta à parte DC (DC = 2, $A_s = 1$, $\omega_s = 5 \,\text{rad/s}$). Dessa forma, o sistema entra em regime permanente oscilatório. Os principais pontos observados são:

- Erro de rastreamento (e₀): Em Figura 10(a), o erro não converge para zero devido à presença da componente harmônica no referencial. Para Γ = 2I (azul), as oscilações iniciais de e₀ são maiores e demoram mais a se estabilizar; já para Γ = 100I (laranja), o erro atinge menor amplitude e adquire regime permanente oscilatório mais rapidamente, indicando melhor desempenho de seguimento.
- Ganho de adaptação (θ): Em Figura 10(b), ambos os parâmetros θ_1 e θ_2 não convergem a constantes fixas, pois permanecem oscilando para acompanhar o referencial senoidal. Para $\Gamma = 100I$, as oscilações transitórias em θ são mais intensas e a adaptação entra em regime oscilatório mais cedo, enquanto para $\Gamma = 2I$ a variação é mais lenta, mas também menos amortecida.
- Resposta do sistema (y, y_m, r): Em Figura 10(c), a saída de referência r(t) = 2 + sin(5 t) (linha preta tracejada) é seguida pela saída do modelo y_m (rosa). Para Γ = 100I, y(t) (laranja) aproxima-se de y_m com menor defasagem e amplitude de erro reduzida, entrando rapidamente em regime permanente. Para Γ = 2I, y(t) (azul) segue y_m com overshoot maior e mais defasagem, levando mais tempo até estabilizar no padrão oscilatório.
- Sinal de controle (u): Em Figura 10(d), observa-se que Γ = 100I (laranja) gera um pico de controle inicial maior (na ordem de ±5), mas as oscilações em regime permanente têm amplitude menor. Para Γ = 2I (azul), o pico inicial é mais baixo, porém as oscilações de u(t) em regime permanente permanecem de maior amplitude, refletindo a dificuldade de acompanhar plenamente a parte harmônica.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Em Figura 10(e), as trajetórias não convergem para a origem, pois o erro e o vetor de erro de parâmetros $\tilde{\theta} = \theta \theta^*$ permanecem oscilando em torno de valores médios. Para $\Gamma = 2I$ (azul), as espirais no plano de fase são mais amplas e demoram mais para adotar um padrão quase-periódico; já para $\Gamma = 100I$ (laranja), a trajetória atinge rapidamente um ciclo quase-periódico de menor amplitude, indicando regime oscilatório mais estável.

Conclusão: A inclusão da componente senoidal no sinal de referência impede a convergência do erro para zero. O ganho de adaptação mais alto ($\Gamma=100I$) resulta em melhor desempenho de rastreamento em regime permanente (menor amplitude de erro e de oscilações nos parâmetros), porém exige maior esforço inicial de controle e gera oscilações mais rápidas em θ . O ganho menor ($\Gamma=2I$) leva a oscilações iniciais mais amplas e maior defasagem, ainda que com menor agressividade no sinal de controle. Em ambos os casos, o controlador adaptativo estabiliza a planta instável $P(s)=\frac{1}{s-2}$ e acompanha adequadamente o modelo de referência $M(s)=\frac{1}{s+10}$ em regime oscilatório.

3.7 Simulação #7

3.7.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{10}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1, $A_s = 0$, $\omega_s = 5 \text{ rad/s}$

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1; 10/1] = [-3; 10]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.7.2 Resultados da simulação:

Figura 11: Resultado da simulação (Script: simu07.m)

3.7.3 Comentários:

Nesta simulação, o modelo de referência é dado por $M(s) = \frac{10}{s+1}$, ou seja, uma planta de primeira ordem com ganho estático maior (10) e constante de tempo igual a 1, mantendo o comportamento mais lento comparado a simulações com valores maiores de a_m . O sinal de referência é um degrau constante (DC = 1) sem componente senoidal, focando na resposta em regime permanente. Os principais aspectos observados são:

- Erro de rastreamento (e₀): Conforme mostrado na Figura 11(a), o erro converge para zero nas duas configurações de ganho de adaptação. Para Γ₁ = 2I, o pico inicial do erro é maior e a convergência é mais lenta. Com Γ₂ = 100I, o erro diminui mais rapidamente, embora com uma leve oscilação inicial em torno de t ≈ 1 s.
- Ganho de adaptação (θ): Na Figura 11(b), os parâmetros adaptativos não convergem exatamente para os valores ótimos $\theta^* = [-3; 10]$ em nenhum dos casos. A maior taxa de adaptação ($\Gamma_2 = 100I$) provoca uma convergência mais rápida, porém com oscilações transitórias mais evidentes. Para $\Gamma_1 = 2I$, a adaptação é mais lenta e com menor oscilação.
- Resposta do sistema: A Figura 11(c) mostra que, com $\Gamma_2 = 100I$, a resposta do sistema atinge o regime de forma mais rápida e suave. Para $\Gamma_1 = 2I$, observa-se um overshoot maior e tempo de acomodação maior.
- Sinal de controle (u): Na Figura 11(d), o controle apresenta maior pico para $\Gamma_1 = 2I$, refletindo um esforço inicial maior para compensar a planta instável. Já para $\Gamma_2 = 100I$, o controle é mais moderado e mais rapidamente estabilizado.
- Diagrama de fase (e₀ × θ̂): Conforme Figura 11(e), as trajetórias no plano de fase não convergem para a origem em nenhum dos casos, mas a configuração com Γ₁ = 2I apresenta uma aproximação maior da origem do que a com Γ₂ = 100I, indicando maior estabilidade relativa.

Conclusão: A simulação confirma que o aumento do ganho de adaptação acelera a convergência do erro, apesar dos parâmetros adaptativos não atingirem os valores ótimos. O ganho maior reduz o overshoot e o esforço de controle em regime transitório, porém com maior oscilação inicial e menor proximidade da origem no diagrama de fase. Ganhos menores apresentam comportamento mais conservador, com maior esforço de controle inicial e aproximação melhor da estabilidade no plano de fase. Em ambos os casos, o controlador estabiliza a planta instável $P(s) = \frac{1}{s-2}$ e segue adequadamente o modelo de referência proposto.

3.8 Simulação #8

3.8.1 Configuração do experimento:

• Planta: $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{10}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1; 10/1] = [-3; 10]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.8.2 Resultados da simulação:

Figura 12: Resultado da simulação (Script: simu08.m)

3.8.3 Comentários:

Nesta simulação, o modelo de referência mantém-se em $M(s) = \frac{10}{s+1}$, com constante de tempo 1 e ganho estático 10, porém o sinal de referência agora inclui um componente senoidal além do degrau: DC = 2, amplitude senoidal $A_s = 1$ e frequência $\omega_s = 5$ rad/s. Essa configuração permite avaliar a capacidade do controlador em seguir sinais compostos e dinâmicos. Os principais pontos observados são:

- Erro de rastreamento (e₀): Na Figura 12(a), o erro apresenta oscilações permanentes devido à componente senoidal da referência. Com Γ₂ = 100I, o erro tem amplitude menor e convergência mais rápida no valor médio, enquanto para Γ₁ = 2I as oscilações são maiores e a convergência mais lenta.
- Ganho de adaptação (θ): Conforme Figura 12(b), os parâmetros adaptativos não convergem exatamente para
 os valores ótimos θ* = [-3;10] em ambos os casos, devido à natureza do sinal de referência. O ganho maior (Γ₂)
 proporciona convergência mais rápida, porém com maior oscilação transitória.
- Resposta do sistema: Na Figura 12(c), a saída do sistema segue adequadamente o sinal de referência composto, com melhor desempenho em amplitude e fase para $\Gamma_2 = 100I$. Para $\Gamma_1 = 2I$, observa-se atraso maior e amplitude reduzida nas oscilações.
- Sinal de controle (u): Conforme Figura 12(d), o controle com $\Gamma_1 = 2I$ apresenta picos maiores e maior esforço durante o transiente, enquanto para $\Gamma_2 = 100I$ o controle é mais suave e estabiliza mais rapidamente.
- Diagrama de fase (e₀ × θ̃): Na Figura 12(e), as trajetórias não convergem para a origem, refletindo a presença das oscilações permanentes. A configuração com Γ₁ = 2I mostra maior proximidade da origem em relação a Γ₂ = 100I, indicando comportamento menos oscilatório.

Conclusão: A inclusão do componente senoidal no sinal de referência introduz oscilações permanentes no erro e nos parâmetros adaptativos, impedindo a convergência exata para os valores ótimos. Ganhos maiores aceleram a adaptação e reduzem a amplitude do erro médio, mas aumentam as oscilações transitórias. Ganhos menores resultam em resposta mais conservadora, com maior esforço inicial de controle e menor oscilação, porém com erro médio maior. Em ambos os casos, o controlador é capaz de estabilizar a planta instável $P(s) = \frac{1}{s-2}$ e seguir o modelo de referência com o sinal de entrada composto.

3.9 Simulação #9

3.9.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1, $A_s = 0$, $\omega_s = 5 \text{ rad/s}$

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1; 1/1] = [-3; 1]$

• Ganho de adaptação:

$$\Gamma_1 = 2 \begin{bmatrix} 1 & 0.35 \\ -0.35 & 1 \end{bmatrix}, \quad \Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ -0.35 & 1 \end{bmatrix}$$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.9.2 Resultados da simulação:

Figura 13: Resultado da simulação (Script: simu09.m)

3.9.3 Comentários:

Nesta simulação, utilizando ganhos de adaptação matriciais com valores diferentes de identidade, observou-se o seguinte:

- Erro de rastreamento (e_0): O erro apresenta convergência semelhante aos casos anteriores, com oscilações iniciais mais amortecidas para $\Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ -0.35 & 1 \end{bmatrix}$, evidenciando resposta mais rápida e suave.
- Ganho de adaptação (θ): A evolução dos parâmetros adaptativos mostra convergência próxima do valor ótimo $\theta^* = [-3; 1]$, com maior rapidez para o ganho maior Γ_2 .
- Resposta do sistema $(y_p \ e \ y_m)$: O rastreamento do modelo de referência é eficiente em ambos os casos, com desempenho superior para o ganho de adaptação maior.
- Sinal de controle (u): O controle inicial é mais agressivo para Γ_2 , estabilizando mais rapidamente.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Mostra trajetórias que convergem rapidamente próxima à origem, especialmente para Γ_2 , só que mais perto da origem para Γ_1 .

Conclusão: A escolha do ganho de adaptação matricial com termos fora da diagonal não compromete a estabilidade e pode melhorar a resposta dinâmica do sistema, aproximando os parâmetros adaptativos dos valores ótimos mais rapidamente.

3.10 Simulação #10

3.10.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1;;1/1] = [-3;;1]$

• Ganho de adaptação:

$$\Gamma_1 = 2 \begin{bmatrix} 1 & 0.35 \\ -0.35 & 1 \end{bmatrix}, \quad \Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ -0.35 & 1 \end{bmatrix}$$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.10.2 Resultados da simulação:

Figura 14: Resultado da simulação (Script: simu10.m)

3.10.3 Comentários:

Nesta simulação, com sinal de referência composto por uma componente DC maior e componente senoidal, foram observados os seguintes comportamentos:

- Erro de rastreamento (e_0): O erro apresenta oscilações permanentes devido à senoidal, mas o ganho de adaptação maior suaviza o comportamento e acelera a convergência.
- Ganho de adaptação (θ): Os parâmetros adaptativos convergem para valores próximos do ideal, com maior velocidade para Γ_2 .
- Resposta do sistema (y_p, y_m) : O sistema consegue acompanhar a referência com boa precisão, especialmente para o ganho maior.
- Sinal de controle (u): Oscilatório, com maior intensidade e frequência inicial para Γ_2 , porém com estabilização mais rápida.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Evidencia convergência dos parâmetros adaptativos, com trajetórias mais fechadas para Γ_2 .

Conclusão: Ganhos de adaptação matriciais altos continuam promovendo melhor desempenho e velocidade de convergência, mesmo em sinais de referência mais complexos.

A Decomposição de Matrizes: Parte Simétrica e Antissimétrica

Uma matriz Γ pode ser decomposta como a soma de uma parte simétrica Γ_s e uma parte antissimétrica A_{as} :

$$\Gamma = \Gamma_s + A_{as} \tag{13}$$

Considerando uma matriz simétrica da forma:

$$\Gamma_s = \begin{bmatrix} b & 0 \\ 0 & b \end{bmatrix}, \quad a, b \in \mathbb{R}^+$$
(14)

Seja um vetor linha $\mathbf{v} = [x \ y]$, com $x, y \in \mathbb{R}$, temos:

$$\mathbf{v} \cdot \Gamma \cdot \mathbf{v}^T > 0 \tag{15}$$

Expandindo:

$$\mathbf{v} \cdot \Gamma \cdot \mathbf{v}^T = \mathbf{v} \cdot \Gamma_s \cdot \mathbf{v}^T + \mathbf{v} \cdot A_{as} \cdot \mathbf{v}^T \tag{16}$$

Vamos agora considerar uma matriz antissimétrica:

$$A_{as} = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} \tag{17}$$

Multiplicando:

$$\mathbf{v} \cdot A_{as} \cdot \mathbf{v}^T = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 (18)

$$= a \cdot \begin{bmatrix} -y & x \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \tag{19}$$

$$= a \cdot (-yx + xy) = 0 \tag{20}$$

Portanto, a contribuição da parte antissimétrica na forma quadrática $\mathbf{v} \cdot \Gamma \cdot \mathbf{v}^T$ é nula, ou seja:

$$\mathbf{v} \cdot A_{as} \cdot \mathbf{v}^T = 0 \tag{21}$$

Conclui-se que a parte simétrica da matriz Γ é a única que contribui para a positividade da forma quadrática.