## EM360-B – Termodinâmica I

## **Teste 2.5**

| RA: | <b>Nome:</b> | Assin.: |
|-----|--------------|---------|
|-----|--------------|---------|

Considere o sistema de refrigeração ideal mostrado, e os seguintes dados:

- fluido refrigerante: R-134a
- pressão no evaporador e entrada do compressor:  $p_{ec} = 1,4$  bar
- temperatura na entrada do compressor:  $T_{ec} = -10$  °C
- pressão no condensador e saída do compressor:  $p_{sc} = 7.0$  bar
- saída do condensador: líquido saturado

## Responda:

- 1. qual é a temperatura na saída do compressor?  $T_{sc} =$ \_\_\_\_\_^{\circ}C
- 2. qual é a temperatura na saída do condensador?  $T_{cond} =$ \_\_\_\_\_oC
- 3. qual é a temperatura na entrada do evaporador?  $T_{evap} =$ \_\_\_\_\_^{o}C
- 4. quais os valores das seguintes entalpias?

entrada do compressor:  $h_{ec} =$ \_\_\_\_\_kJ/kg

saída do compressor:  $h_{sc} =$ \_\_\_\_\_kJ/kg

saída do condensador:  $h_{cond} =$ \_\_\_\_kJ/kg

entrada do evaporador:  $h_{evap} =$ \_\_\_\_\_kJ/kg

5. quais os valores das seguintes interações energéticas?

trabalho específico de compressão:  $w_{comp} =$ \_\_\_\_\_kJ/kg

calor transmitido para o ambiente quente:  $q_q =$ \_\_\_\_kJ/kg

calor transmitido do ambiente frio:  $q_f =$ \_\_\_\_\_kJ/kg

\* o coeficiente de desempenho  $\eta_{ref}$ :  $q_f / w_{comp} =$ 

## Faça um gráfico T vs. s para este ciclo.

