AKAD
Bachelor of Science (Wirtschaftsinformatik)
Modulzusammenfassung

BWL06

Formelsammlung

Daniel Falkner Rotbach 529 94078 Freyung daniel.falkner@akad.de 28. September 2013

Inhaltsverzeichnis

L	Inve	stitionsrechnung bei sicheren Erwartungen 1	
	1.1	statische Verfahren	-
		1.1.1 gebundenes Kapital	-
		1.1.2 kalkulatorische Zinsen	-
		1.1.3 Kalkulatorische Abschreibungen	-
	1.2	Gewinnvergleichsrechnung	-
		1.2.1 Gewinn	-
	1.3	Rentabilitätsvergleichsrechnung	
		1.3.1 Rentabilität	
	1.4	statische Amortisationsrechnung	
		1.4.1 Amortisationsdauer	
		1.4.2 Amortisationsdauer Durchschnittsmethode	
		1.4.3 Amortisationsdauer Kummulationsmethode)
	1.5	dynamisiche Verfahren)
		1.5.1 gewogener Kapitalkostensatz)
		1.5.2 Eigenkapitalkosten)
	1.6	Kapitalwertmethode)
		1.6.1 Ermittlung von Kapitalwerten)
	1.7	Annuitätenmethode)
		1.7.1 Annuitätenfaktor)
		1.7.2 Annuität Gesamtformel	,

1 Investitionsrechnung bei sicheren Erwartungen

1.1 statische Verfahren

1.1.1 gebundenes Kapital

$$\oslash$$
 gebundenes Kapital = $\frac{Anschaffungswert + Restwert}{2}$

1.1.2 kalkulatorische Zinsen

 \oslash kalkulatorische Zinsen = Kalkulationszinssatz * \oslash gebundenes Kapital

1.1.3 Kalkulatorische Abschreibungen

$$\mbox{Kalkulatorische Abschreibungen} = \frac{Anschaffungswert - Restwert}{Nutzungsdauer}$$

1.2 Gewinnvergleichsrechnung

121 Gewinn

 $Gewinn = Erl\ddot{o}s - Kosten$

1.3 Rentabilitätsvergleichsrechnung

1.3.1 Rentabilität

$$\mbox{Rentabilit"at} = \frac{ \oslash Gewinn + \oslash kalkulatorische Zinsen }{ \oslash gebundenes Kaputal} * 100\%$$

1.4 statische Amortisationsrechnung

1.4.1 Amortisationsdauer

$$\mbox{Amortisations dauer} = \frac{Urpr \ddot{u}nglich\ eingesetztes\ Kapital}{j\ddot{a}hrliche\ Kapital wieder gewinnung\ aus\ Zahlungsbersch \ddot{u}ssen}$$

1.4.2 Amortisationsdauer Durchschnittsmethode

$$\label{eq:amortisations} \textbf{Amortisations dauer} = \frac{Urpr\ddot{u}nglicheingesetztesKapital}{\oslash Gewinn + \oslash kalkulatorischeEK - Zinsen + \oslash Abschreibungen}$$

1.4.3 Amortisationsdauer Kummulationsmethode

Amortisationsdauer = Anzahl der Jahre vor der vollständigen Amortisation +

zur Amortisation fehlender Betragam Ende der letzten Periodeohne vollständige Amortisation

Nettozahlung im Jahr der Amortisation

Formal
$$n^* = (n^+ - 1) + \frac{A_0 + \sum_{t=1}^{n^+ - 1} E - A}{(E - A)_{n^+}}$$

1.5 dynamisiche Verfahren

1.5.1 gewogener Kapitalkostensatz

gewogener Kapitalkostensatz =
$$\frac{EK*i_{EK} + FK*i_{FK}}{EK + FK}$$

 $mit\ EK = Eigenkapital,\ FK = Fremdkapital,\ i_{EK} = Zinssatz\ f\"ur\ das\ EK\ (=Mindestrenditeforderung\ des\ Eigenkapitalgebers)\ und\ i_{FK} = Zinssatz\ f\"ur\ das\ FK\ (=Kosten\ des\ Fremdkapitals)$

1.5.2 Eigenkapitalkosten

Eigenkapitalkosten = risikoloser Zins + Risikoprämie

1.6 Kapitalwertmethode

1.6.1 Ermittlung von Kapitalwerten

$$C_0 = \sum_{t=1}^n (E_t - A_t) * (1+i)^{-1} \text{ bzw.}$$

$$C_0 = -A_0 + \sum_{t=1}^n (E_t - A_t) * (1+i)^{-1}$$

$$C_0 = \sum_{t=1}^n \frac{Z_t}{(1+i)^t}$$

$$C_0 = Z_0 + \sum_{t=1}^n \frac{Z_t}{(1+i)^t}$$

 ${\rm C}>0$ Ertrag der Investition übersteigt den Kalkulationszinssatz = Vermögenszuwachs bezogen auf t_0

 $\mathcal{C}<0$ Ertrag der Investition liegt unter dem Kalkulationszinssatz = Vermögensabnahme bezogen auf t_0

1.7 Annuitätenmethode

1.7.1 Annuitätenfaktor

$$\frac{i*(1+1)^n}{(1+i)^n-1}$$

1.7.2 Annuität Gesamtformel

$$g = C_0 * \frac{i * (1+1)^n}{(1+i)^n - 1}$$