Generalized minimum distance functions for linear codes

Alexandra Seceleanu

and

Susan Cooper, Stefan Tohăneanu, Maria Vaz Pinto, Rafael Villarreal

2018 CMS Winter Meeting

Linear codes and Hamming distance

Let K be an arbitrary field (usually finite in practice).

Definition

A **linear code** C of length s and dimension n+1 is the image of an injective K-linear map

$$K^{n+1} \rightarrow K^s$$
.

Definition

The weight of a codeword is $||x|| = \#\{i \mid x_i \neq 0\}.$

The **minimum Hamming distance** of *C* is

$$d(C) = \min\{||x|| \mid x \in C, x \neq 0\}.$$

Points from generating matrices

Then

$$C = \operatorname{Image}\left(K^{n+1} \to K^{s}\right) = \operatorname{Row}(G),$$

where G is a $(n+1) \times s$ matrix called a **generating matrix** for C.

Points from generating matrices

Then

$$C = \operatorname{Image}\left(K^{n+1} \to K^{s}\right) = \operatorname{Row}(G),$$

where G is a $(n+1) \times s$ matrix called a **generating matrix** for C.

Take the columns of G and turn them into points:

Define **the set of points associated to** *C* to be

$$\mathbb{X}_{C} = \{P_1, \dots, P_s\} \subset \mathbb{P}^n$$
, where

 P_i is the point with coordinates given by the *i*-th column of G.

Example - the Hamming $[7, 4, 3]_2$ -code

Example

The code C = Row(G) with generating matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

has

- length 7, dimension 4
- Hamming distance d(C) = 3.

Example - the Hamming $[7, 4, 3]_2$ -code

Example

The code C = Row(G) with generating matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

has

- length 7, dimension 4
- Hamming distance d(C) = 3.

The set of points associated to C is

$$X_C = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7\},\$$

where P_2, P_3, P_4, P_5 lie on the hyperplane $t_1 = 0$.

Hamming distance and hyp-functions

Definition

For a finite set X, let hyp(X) denote the maximum number of points of X contained in a hyperplane.

Proposition [Tohăneanu-van Tuyl]

$$d(C) = |\mathbb{X}_C| - \mathsf{hyp}(\mathbb{X}_C)$$

Hamming distance and hyp-functions

Definition

For a finite set \mathbb{X} , let hyp(\mathbb{X}) denote the maximum number of points of \mathbb{X} contained in a hyperplane.

Proposition [Tohăneanu-van Tuyl]

$$\begin{split} d(C) &= |\mathbb{X}_C| - \mathsf{hyp}(\mathbb{X}_C) \\ &= \mathsf{deg}(\mathbb{X}_C) - \mathsf{max}\{\mathsf{deg}(\mathbb{X}_C \cap H) \mid H \text{ a hyperplane}\} \\ &= \mathsf{deg}(S/I(\mathbb{X}_C)) - \mathsf{max}\{\mathsf{deg}(S/(I(\mathbb{X}_C),F) \mid F \in S_1\}. \end{split}$$

Generalized minimum distance (GMD)

Definition

For any homogeneous ideal $I \subset S$, the family of **generalized** minimum distance functions is defined by

$$\delta_I(d,r) := \deg(S/I) - \max\{\deg(S/(I,\underline{F})) | \, \underline{F} \in \mathcal{F}_{d,r} \}$$

where $\mathcal{F}_{d,r}$ is the set of all r-tuples of forms of degree d in S that are linearly independent over K modulo the ideal I.

Definition

The generalized hyp function is

$$\mathsf{hyp}_I(d,r) := \mathsf{max}\{\mathsf{deg}(S/(I,\underline{F}))|\,\underline{F} \in \mathcal{F}_{d,r}\}.$$

Example

I = reduced complete intersection of type (2,3).

Let X_C be a reduced set of points corresponding to a linear code C.

• $\delta_{I(\mathbb{X}_C)}(1,1)$ recovers the Hamming distance of C

Let X_C be a reduced set of points corresponding to a linear code C.

- $\delta_{I(\mathbb{X}_C)}(1,1)$ recovers the Hamming distance of C
- $\delta_{I(\mathbb{X}_C)}(d,1)$ is the Hamming distance of a Reed-Muller code C', where $\mathbb{X}_{C'} = V_d(\mathbb{X}_C)$ is the image of C under a Veronese map

Let X_C be a reduced set of points corresponding to a linear code C.

- $\delta_{I(\mathbb{X}_C)}(1,1)$ recovers the Hamming distance of C
- $\delta_{I(\mathbb{X}_C)}(d,1)$ is the Hamming distance of a Reed-Muller code C', where $\mathbb{X}_{C'} = V_d(\mathbb{X}_C)$ is the image of C under a Veronese map
- $\delta_{I(\mathbb{X}_C)}(1,r)$ measures the the size of the smallest support of an r-dimensional linear subcode of C

Let X_C be a reduced set of points corresponding to a linear code C.

- $\delta_{I(\mathbb{X}_C)}(1,1)$ recovers the Hamming distance of C
- $\delta_{I(\mathbb{X}_C)}(d,1)$ is the Hamming distance of a Reed-Muller code C', where $\mathbb{X}_{C'} = V_d(\mathbb{X}_C)$ is the image of C under a Veronese map
- $\delta_{I(\mathbb{X}_C)}(1,r)$ measures the the size of the smallest support of an r-dimensional linear subcode of C
- $\delta_{I(\mathbb{X}_C)}(d,r)$ measures the smallest degree of a residual subscheme

$$\delta_{I(\mathbb{X}_C)}(d,r) = \min\{\deg(S/I:(\underline{F})) \mid \underline{F} \in \mathcal{F}_{d,r}\}$$

Monotonicity of the GMD functions

Example

Let $I = (t_1^3, t_2 t_3) \subset S = K[t_1, t_2, t_3]$. We obtain:

The regularity and the degree of S/I are 3 and 6.

Monotonicity of the GMD functions

Example

Let $I = (t_1^3, t_2 t_3) \subset S = K[t_1, t_2, t_3]$. We obtain:

The regularity and the degree of S/I are 3 and 6.

Theorem (CSTVV)

Let I be unmixed. Then

- $\delta_I(d,r)$ is non-decreasing as a function of r stabilizing to $\deg(S/I)$ for $r \geq H_I(d)$
- $\delta_I(d,r)$ is non-increasing as a function of d stabilizing to 1.

Bounding GMD functions

Singleton bound

Theorem (CSTVV)

If I is unmixed, $\dim(S/I)=1$, all associated primes of I are generated by linear forms and there exists $h\in S_1$ regular on S/I then

$$\delta_I(d,1) \le \deg(S/I) - H_I(d) + 1$$
, for $d \ge 1$.

Bounding GMD functions

Cayley-Bacharach type conjecture

Conjecture

Let $I \subset S$ be a complete intersection of type (d_1, \ldots, d_c) with $\dim(S/I) = 1$ and the associated primes of I generated by linear forms. Then

$$\delta_l(d) \geq (d_{k+1} - \ell)d_{k+2} \cdots d_c \quad \text{if} \quad 1 \leq d \leq \sum_{i=1}^{c} (d_i - 1) - 1,$$

where $0 \le k \le c-1$ and ℓ are integers such that

$$d=\sum_{i=1}^k \left(d_i-1
ight)+\ell$$
 and $1\leq \ell \leq d_{k+1}-1.$

The regularity of the δ function

Theorem (CSTVV)

Let I be an unmixed graded ideal whose associated primes are generated by linear forms. Then $\delta_I(d,1)=1$ for

$$d \ge \min\{\alpha((I : \mathfrak{p})/I) \mid \mathfrak{p} \in \mathrm{Ass}(I)\}.$$

In particular, if I is level, then $\delta_I(d,1) = 1$ for

$$d \ge \operatorname{reg}(S/I)$$
.

Thank You!

