CONVEXIDAD Y OPTIMIZACIÓN

ENTREGA 1

Christian Limbert Paredes Aguilera

Latex Source: https://github.com/soyfode/matematicas/blob/master/investmat/src/convexOpt/tareas/entrega1.tex

Ejercicio 1. Demuestra que la envoltura convexa de un conjunto $S \subset \mathbb{R}^n$ es la intersección de todos los conjuntos convexos de \mathbb{R}^n que contienen a S.

Demostración.- Sean $co(S)^1$ la envoltura convexa del conjunto S e I como la intersección de todos los conjuntos convexos que contienen a S. En si lo que vamos a querer demostrar es:

$$co(S) = I$$
.

En otras palabras, queremos demostrar que

$$co(S) \subseteq I \land I \subseteq co(S).$$

Notemos que $co(S)^1$ es un conjunto convexo que contiene a S. Esto significa que cualquier otro conjunto convexo que contenga a S debe ser al menos tan grande como co(S), y debe contener a co(S). Por lo que cualquier conjunto convexo que contenga a S debe contener también a co(S). De esta manera, I debe contener al menos a co(S). Es decir,

$$co(S) \subseteq I$$
.

Para demostrar la otra inclusión, supondremos que

$$co(S) \not\subseteq I$$
.

De lo que notamos que existe al menos un punto $x \in C$ tal que $x \notin co(S)$. Por definición de envoltura¹, esta x no puede ser escrito como una combinación convexa² de puntos en S.

Luego, x esta en I e I es la intersección de todos los conjuntos convexos que contienen a S. Por lo que, x debe estar en cada conjunto convexo que contiene a S. Y dado que I es la intersección de todos los conjuntos convexos que contiene a S, se sigue que I es un conjunto convexo S que contiene a S.

 $^{^1}$ Se llama **envoltura convexa** de S al menor conjunto convexo que contienen a S, denotado por $\mathrm{co}(S)$. También es equivalente a decir que: $\mathrm{co}(S)=\{\mathrm{Combinación \, convexa} \, \mathrm{de} \, \mathrm{puntos} \, \mathrm{de} S\}$.

²Sean $x_1, x_2, \ldots, x_k \in \mathbb{R}^n$ y $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ tales que $\lambda_i \geq 0$ y $\sum_{i=1}^k \lambda_i = 1$. Al vector $\sum_{i=1}^k \lambda_i x_i = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_k x_k$ se le llama **combinación convexa** de los puntos $\{x_1, \ldots, x_k\}$.

³**Demostrar que la intersección de conjuntos convexos es convexo.** Demostremos por contradicción. Sean C_1 y C_2 dos conjuntos convexos. Y sea $C = C_1 \cap C_2$. no convexo. Esto significa que existen x e y tales que $\{\lambda x + (1-\lambda)y : \lambda \in \mathbb{R}\} \nsubseteq C$. Supongamos ahora que x e y están en C. Cómo ambos C_1 y C_2 son convexos, el segmento definido debe estar en ambos conjuntos. Es decir, $\{\lambda x + (1-\lambda)y : \lambda \in \mathbb{R}\} \subseteq C$. Lo que contradice nuestra suposición inicial. Por lo tanto, C es convexo.

Por el hecho de que $x \in I$, x debe ser una combinación convexa de puntos en S. Pero esto contradice el hecho de que x no puede ser escrito como una combinación convexa de puntos en S. Así concluimos que $I \subseteq co(S)$. Y por lo tanto,

$$co(S) = I. \blacksquare$$

Ejercicio 2. La descripción de semiespacios de Voronoi: Sean a y b dos puntos distintos de \mathbb{R}^n . Demuestra que el conjunto de todos los puntos que están más cerca de a (en la distancia Euclídea) que de b, i.e., $\{x \in \mathbb{R}^n : \|x-a\|_2 \le \|x-b\|_2\}$, es un semiespacio. Descríbelo explícitamente como una desigualdad de la forma $c^T \cdot x \le d$ (donde c es un vector columna de \mathbb{R}^n). Haz una representación gráfica de la situación.

Demostración.- Primero, representemos gráficamente la situación.

Ahora, con algunas manipulaciones algebraicas llegaremos a la desigualdad

$$c^T \cdot x < d$$
.

Que es la forma estándar de un semiespacio⁴.

(Por convención diremos que los vectores x, a y b son vectores columna en \mathbb{R}^n). Dado que tenemos la desigualdad en término de normas (términos no negativos). Podemos elevar al cuadrado sin cambiar el orden de los elementos. Es decir,

$$||x - a||_2 \le ||x - b||_2 \implies ||x - a||_2^2 \le ||x - b||_2^2.$$

Luego, por la definición de norma Euclídea⁵ y la propiedad conmutativa de producto interno, tenemos

$$(x-a)^T(x-a) \leq (x-b)^T(x-b)$$

$$\downarrow \downarrow$$

$$x^Tx - 2a^Tx + a^Ta \leq x^Tx - 2b^Tx + b^Tb.$$

Después, por la sustracción de vectores podemos simplificar la desigualdad como:

$$2b^Tx - 2a^Tx < b^Tb - a^Ta.$$

Que es equivalente a,

$$(b-a)^T x \le \frac{1}{2} \left(b^T b - a^T a \right).$$

⁴Todo **hiperplano** $H = \{x : a^Tx = 0, a \neq 0\}$, define dos semiespacios $\{x \in \mathbb{R}^n : a^Tx \leq 0\}$, $\{x \in \mathbb{R}^n : a^Tx \geq 0\}$. Más generalmente, $\{x \in \mathbb{R}^n : a^Tx \leq b\}$, $\{x \in \mathbb{R}^n : a^Tx \leq b\}$. son las soluciones de dos sistemas lineales de desigualdades.

 $^{||}x||_{2}^{2} = x^{T}x$.

Podemos definir c = b - a y $d = \frac{1}{2} (b^T b - a^T a)$, para obtener la desigualdad

$$c^T x \leq d$$
.

Por lo tanto, el conjunto de todos los puntos que están más cerca de a que de b en la distancia euclídea es un semiespacio. \blacksquare

Ejercicio 3. Demuestra que si A y B son conjuntos convexos de \mathbb{R}^n entonces su intersección $A \cap B$ y su suma de Minkowsky A + B son conjuntos convexos de \mathbb{R}^n .

Demostración.- Primero, demostraremos que la intersección $A \cap B$ es convexa. Sabemos por hipótesis que A y B son conjuntos convexos en \mathbb{R}^n . Tomemos ahora, dos puntos cualesquiera $x,y \in A \cap B$. Dado que $x,y \in A$. Entonces, para todo $\lambda \in [0,1]$, se tiene:

$$\lambda x + (1 - \lambda)y \in A.6$$

De manera similar, dado que $x,y \in B$. Entonces, por definición de convexidad para todo $\lambda \in [0,1]$, también tenemos:

$$\lambda x + (1 - \lambda)y \in B^6$$
.

Por lo tanto,

$$\lambda x + (1 - \lambda)y \in A \cap B$$
,

lo que implica que la intersección de conjuntos convexos es convexa. Esto también se puede demostrar con $\binom{3}{2}$.

Ahora, demostraremos que si A y B son conjuntos convexos. Entonces, A+B es convexo. Sean dos puntos cualesquiera α , $\beta \in A+B$, por la suma de Minkowsky,⁷, existen $a_1, a_2 \in A$ y $b_1, b_2 \in B$ tales que

$$\alpha = a_1 + a_1$$
 y $\beta = a_2 + b_2$.

La idea es mostrar que para cualquier $\lambda \in [0,1]$,

$$\lambda \alpha + (1 - \lambda)\beta \in A + B$$
.

Tenemos que

$$\lambda \alpha + (1 - \lambda)\beta = \lambda (a_1 + b_1) + (1 - \lambda)(a_2 + b_2)$$
$$= [\lambda a_1 + (1 - \lambda)a_2] + [\lambda b_1 + (1 - \lambda)b_2].$$

Como A y B son conjuntos convexos⁶, sabemos que

$$\lambda a_1 + (1 - \lambda)a_2 \in A$$

$$\lambda b_1 + (1 - \lambda)b_2 \in B.$$

Por lo tanto,

$$\lambda \alpha + (1 - \lambda)\beta \in A + B$$
.

Así, A + B es convexo, como se quería demostrar. Esto completa la demostración.

⁶Un conjunto *C* en un espacio vectorial es **convexo**, si para cada par de puntos x,y ∈ C y para cada número real λ en el intervalo [0,1], se cumple que: $\lambda x + (1 - \lambda)y ∈ C$.

⁷La **suma de Minkowski** es la operación de conjuntos; es decir, si $A, E \subseteq \mathbb{R}^n$. Entonces, $A = x_0 + E = \{x_0 + e : e \in E\}$ o $E = A - x_0 = \{a - x_0 : a \in A\}$.