МИНОБРНАУКИ РОССИИ

РГУ нефти и газа (НИУ) имени И.М. Губкина Факультет разработки нефтяных и газовых месторождений Кафедра разработки и эксплуатации нефтяных месторождений

Анализ работы скважины и скважинного оборудования с учетом неопределенности в исходных данных для условий месторождений Западной Сибири

Студент группы РНМ-19-05 Кобзарь О.С. Научный руководитель к.т.н., доцент, Хабибуллин Р.А.

Постановка задачи

Проблема: недостаточное количество качественной информации и большие неопределенности при принятии решений

Цель: повышение эффективности эксплуатации скважин с УЭЦН в условиях неопределенности

Задача: создание новой методики по подбору ЭЦН к скважине в условиях неопределенности работы пласта

Метод Монте-Карло

Определение детерминированной модели притока с поправкой Вогеля Задание распределений входных параметров с учетом наличия информации

Получение оценки работы пласта с учетом неопределенности

Модель скважины и скважинного оборудования

Открытый модуль инженерных расчетов Unifloc

- PVT корреляции: Стендинг
- Многофазный поток: Ансари
- Модель ЭЦН: поправка на вязкость, газосодержание, плотность ГЖС

Методика подбора ЭЦН с учетом неопределенности

- 1. Определение неопределенности в пластовом давлении $P_{\Pi\Pi}$ и коэффициенте продуктивности $K_{\Pi p o g}$ с помощью нормального распределения $\mathcal{N}(\mu, \sigma^2)$
- 2. Расчет распределения дебита, определяемого возможностями пласта по методу Монте-Карло ($N=10^5$)
- 3. Подбор нескольких типоразмеров ЭЦН из БД (Количество ЭЦН: 3500) по распределению дебита (К=9)
- 4. Определение нескольких напоров (L=3) для каждого выбранного ЭЦН
- 5. Расчет модели скважины с каждым ЭЦН ($N=10^3$) и определение распределений дебита и прочих параметров
- 6. Агрегирование распределений по средним значениям и дисперсии для формирования рейтинга на основе комбинирования коэффициента эффективности
- 7. Составление сводного рейтинга и выбор наиболее оптимальной компоновки с учетом неопределенности

Методика подбора ЭЦН с учетом неопределенности

Распределения рабочих параметров дают представление о возможной работе ЭЦН

Метод ранжирования рассматриваемых ЭЦН

$$K_{\mathfrak{I}} = K_{\eta}^{\text{норм}} \cdot K_{Q}^{\text{норм}} \cdot K_{\text{HHO}}^{\text{норм}}$$

- $m K_{
 m 3}$ общий коэффициент эффективности работы ЭЦН
- $K_{\eta}^{\text{норм}}$ коэффициент эффективности по КПД, учитывающий энергоэффективность работы каждого насоса
- $K_{
 m HHO}^{
 m Hopm}$ коэффициент, учитывающего снижение наработки на отказ
- $K_Q^{\mathrm{норм}}$ коэффициент, учитывающий возможный рабочий режим по дебиту

$$M(\eta) = \sum_{i} \eta \frac{1}{N}$$
 $K_{\eta_k}^{\text{норм}} = \frac{M(\eta)_{\text{ЭЦН}_k}}{M(\eta)_{\text{ЭЦH}}^{max}}$

$$\sigma(\eta) = \sum \frac{\left(\eta_i - \eta_{\rm cp}\right)^2}{N} \qquad \sigma_{\eta_k}^{\rm hopm} = \frac{\sigma(\eta)_{\rm 3 L\!H}_k}{\sigma(\eta)_{\rm 3 L\!H}^{max}}$$

Учет снижения наработки на отказ ЭЦН

$$K_{\eta}^{\text{дегр}} = \frac{\eta}{\eta_{max}}$$

 η — КПД ЭЦН на текущем режиме работы с учетом влияние вязкости, газосодержания

 η_{max} - максимальный КПД ЭЦН для исходной напорно-расходной характеристики

$$K_{\text{HHO}} = f(K_{\eta}^{\text{Дегр}}) = 1 - (1 - K_{\eta}^{\text{Дегр}})^2$$

Метод ранжирования рассматриваемых ЭЦН

Количественная оценка эффективности работы ЭЦН с учетом риска

Краткая информация о месторождении Х

Параметры	Размерность	БС ₉	БС ₁₀
Относительная плотность газа	д.ед.	0,7	0,71
Плотность нефти	кг/м3	844	845
Плотность воды	кг/м3	1,014	1,011
Газосодержание	м3/м3	85,54	74,52
Давление насыщения	МПа	12,3	10,9
Температура пласта	С	86	84
Объемный коэффициент нефти	м3/м3	1,166	1,138
Вязкость нефти	мПа*с	1,01	1,09
Содержание серы в нефти	%	0,46	0,68
Содержание парафина в нефти	%	3,9	2,3
Коэффициент пористости	доли ед.	0,18	0,17
Проницаемость	MKM ²	0,022	0,013
Начальное пластовое давление	МПа	28,2	27,7

- Расположено в Западной Сибири
- Основные запасы расположены в двух пластах EC_9 и EC_{10}^2
- На 3 стадии разработки
- Безводные добывающие скважины отсутствуют
- Применяется система ППД с закачкой воды
- Механизированный способ добычи ЭЦН
- Применяемые методы интенсификации добычи: ГРП, РИР, бурение горизонтальных скважин, забуривание боковых стволов

Тестирование алгоритма на скважине Ү

Параметр	Размерность	3начение	
Относительная		0.7	
плотность газа	д.ед.	0,7	
Плотность нефти	кг/м3	844	
Плотность воды	кг/м3	1,014	
Газосодержание	m3/m3	85,54	
Давление насыщения	МПа	12,3	
Температура пласта	С	86	
Объемный коэффициент нефти	m3/m3	1,166	
Вязкость нефти	мПа*с	1,01	
Глубина ВДП	M	2776	
Глубина спуска ЭЦН	M	2661	
Диаметр НКТ	M	0,0678	
Диаметр ОК	М	0,159	
Дебит жидкости	м3/сут	101,04	
Обводненность	%	22	
Газовый фактор	м3/м3	85,54	
Коэффициент продуктивности	м3/сут/МПа	9	
Пластовое давление на ВДП	МПа	18,8	
Буферное давление	МПа	1,5	
Давление на приеме	МПа	5,7	
Забойное давление	МПа	6,5	

- Наклонно-направленная скважина
- ЭЦН5-80-2800
- Адаптация по давлению на приеме

Тестирование алгоритма на скважине Ү

Влияние неопределенности на итоговое решение

Заключение

- Предложена новая методика по подбору погружного оборудования с учетом неопределенности в исходных данных
- Подтверждена ценность алгоритма в качестве продвинутого и автоматического анализа чувствительности
- Установлено изменение итогового решения при изменении степени уверенности во входных данных при тестировании алгоритма на скважине Y месторождения X в Западной Сибири
- Предложенная методика может быть расширена с помощью уточнения физической модели скважины, возможности задания распределений для других параметров
- Для модели сохраняются большие требования по скорости вычислений и плотной интеграции с промысловыми базами данных для оценки разброса в неопределенности для исследуемых параметров

Спасибо за внимание!

Приложение

Влияние неопределенности на итоговое решение

Приложение

