Computer Architecture, 2017 Fall

Homework 4 report

DUE DATE: NOVEMBER 20, 2017

學號: b03902129 系級: 資工四 姓名: 陳鵬宇

1 Coding Environment

Operating System: macOS High Sierra, version: 10.13.1

compile:

iverilog -o [output.txt][*.v]

run:

vvp [output.txt]

2 Module Implementation Explanation

We use testbench.v to see the output.

- **PC.v**: Read the pc_i from $Add_PC.data_o$ to output the pc_o to $inst_addr$.
- Registers.v: Store the value and address of RS, RT and RD.
- Instuction_Memory.v: Get the instructions from $inst_addr$.
- CPU.v: An important CPU unit states all the connections between each module.
- Adder.v: Simply add data1_i and data2_i, then assign the value to data_o.
- Control.v: Determine RegDst_o, ALUOp_o, ALUSrc_o and RegWrite_o by the 6 bits of Op i.
- ALU_Control.v: Determine ALUCtrl o by funct i and ALUOp i.
- **Sign_Extend.v**: Get the 16 bit *data_i*, then extend the value to 32 bit *data_o* according to the first bit of *data_i*.
- **ALU.v**: Do the following operation:

$$data \quad o = data1 \quad i[ALUCtrl \quad i]data2 \quad i.$$

- MUX32.v: Choose the data_o(ALU.data2_i) from data1_i(Registers.RTdata_o) or data2_i(Sign_Extend.data_o) according to select_i(Control.ALUSrc_o).
- MUX5.v: Choose the $data_o(\text{Registers.RDaddr}_i)$ from $data1_i(\text{inst}[20:16])$ or $data2_i(\text{inst}[15:11])$ according to $select_i(\text{Control.RegDst}_o)$.