Metoda konečných prvků – učební text

Jan Březina

Jan Stebel

13. ledna 2017

Obsah

1	Opakování analýzy a lineární algebry	2
2	Opakování plošných a křivkových integrálů2.1Křivkový integrál 1. druhu2.2Křivkový integrál 2. druhu2.3Plošný integrál 1. druhu2.4Plošný integrál 2. druhu2.5Integrační věty: Stokesova, Gaussova, Greenova	2 3 4 4 4
3	Zákony zachování, věta o transportu 3.1 Eulerovy rovnice	5
4	Odvození rovnice vedení tepla	6
5	Transportní procesy 5.1 Proudění v porézním prostředí	7 7 8
6	Vlnová rovnice (akustika)	8
7	Klasifikace PDR 7.1 Eliptické rovnice	9 9 9
8	Slabé řešení rovnice 8.1 Slabé řešení pro eliptické rovnice	10 10 11 12
9	Úvod do funkcionální analýzy 9.1 Normované lineární prostory 9.1.1 Konvergence 9.1.2 Úplnost 9.1.3 Množiny v normovaném lineárním prostoru 9.2 Prostory integrovatelných funkcí 9.3 Prostory s integrovatelnými derivacemi	12 13 14 15 16 16 18
10	Abstraktní teorie slabých řešení 10.1 Abstraktní variační úloha	20 20 20 20
	10.2.2 Anizotropní difúze	21

пе	alerkinova metoda
11	I.1 Abstraktní úloha
11	1.2 Příklad lineárních prvků v 1D
11	1.3 Lineární prvky ve vyšší dimenzi
12 D	riskrétní prostory konečných prvků
12	2.1 Kostrukce konečně prvkového prostoru
12	2.2 Příklad lineárních prvků ve 2d
12	2.3 Příklad kvadratických prvků ve 2d
12	2.4 Obecný konečný prvek
12	2.5 Vyhodnocení forem
	2.6 Numerická integrace

1 Opakování analýzy a lineární algebry

Vektorový prostor, lineární zobrazení, matice, inverzní matice, hodnost, soustava lin. rovnic, vlastní čísla a vektory. Diferenciální operátory: gradient, divergence, rotace. Skalární a vektorové funkce více proměnných. Derivace složených funkcí. Vektorový prostor funkcí.

2 Opakování plošných a křivkových integrálů

2.1 Křivkový integrál 1. druhu

Jaká je hmotnost vlasu? Představme si natažený vlas a předpokládejme, že takto natažený má konstantní hustotu. Na vlasu si zavedeme souřednici $t,\,t=0$ je začátek vlasu t=1 je konec vlasu. V konkrétním bodě t na vlasu má vlas průřez S(t). Pro malý přírůstek dt je hmotnost kousku vlasu d $m=\rho S(t)\,\mathrm{d}t$. Celková hmotnost pak je:

$$m = \int_0^1 \rho S(t) dt = \int_0^1 \rho_t(t) dt, \quad \rho_t(t) = \frac{dm}{dt} = \rho S(t)$$
 (2.1)

kde ρ_t je délková hustota. Když vlas pustíme, tak se trochu zkrátí a zkroutí do nějaké křivky v prostoru. Původní bod t má nyní v prostoru polohu $\varphi(t)$. Tím zkroucením se změní průřezy S, ale nezmění se délková hustota, takže hmotnost opět spočteme podle 2.1. Nyní si představme, že vlas je v tíhovém poli f(x), pro jednoduchost si představujeme, že tíha působí pouze v směru z a má skalární velikost f, která se ovšem mění ve všech směrech. Jaká na vlas působí celková síla? Pro natažený vlas podél osy x máme, $\mathrm{d}F = f(x)\,\mathrm{d}m$, a tedy:

$$F = \int_0^1 \rho_t(t) f[(t, 0, 0)] dt$$

a pro zkroucený vlas:

$$F = \int_{k} f \rho_{t} dk = \int_{0}^{1} f(\varphi(t)) \rho_{t}(t) dt$$

Nakonec si představme, že jde o zkamenělý vlas uvnitř skalního bloku, jehož hustota $\rho(x)$ je známá pro každý bod x. Přírůstek síly působící pouze na ten zkamenělý vlas je d $F = f(x)\rho(x)S(t)$ dl, kde

$$dl = \sqrt{dx^2 + dy^2 + dz^2} = \sqrt{(\varphi'_x)^2 + (\varphi'_y)^2 + (\varphi'_z)^2} dt = |\varphi'(t)| dt$$

je přírůstek délky křivky pro přírůstek parametru $\,\mathrm{d}t.$ Celková síla působící na vlas pak je:

$$F = \int_{k} f \rho \, dk = \int_{0}^{1} f(\varphi(t)) \rho(\varphi(t)) |\varphi'(t)| \, dt =$$

Derivace $\varphi'(t)$ je tečný vektor ke křivce k a jeho velikost je skutečný přírůstek v prostoru pro přírůstek dt. Tento typ integrálu nazýváme křivkový integrál 1. druhu ze skalárního pole f podél křivky k, která je dána parametricky:

$$k: \{\varphi(t); t \in (0,1)\}$$

Integrál je vlastně definován pomocí substituce $\mathbf{x} = \vec{\varphi}(t)$:

$$\int_{k} f(\boldsymbol{x}) \, \mathrm{d}k = \int_{0}^{1} f(\boldsymbol{\varphi}(t)) |\boldsymbol{\varphi}'(t)| \, \mathrm{d}t = \int_{0}^{1} f(\varphi_{x}, \varphi_{y}, \varphi_{z}) \sqrt{(\varphi'_{x})^{2} + (\varphi'_{y})^{2} + (\varphi'_{z})^{2}} \, \mathrm{d}t. \tag{2.2}$$

Integrál 1. druhu můžeme aplikovat i na vektorové pole, ale výsledkem pak bude vektor. Další (fyzikální) příklady použití křivkového integrálu prvního druhu.

• Moment síly (vůči počátku), $M(x) = F(x) \times x$. Celkový moment na ohnutém drátu:

$$M = \int_{k} \mathbf{F}(\mathbf{x}) \times \mathbf{x} \, dk = \int_{0}^{1} \mathbf{F}(\boldsymbol{\varphi}(t)) \times \boldsymbol{\varphi}(t) |\boldsymbol{\varphi}'(t)| \, dt$$

• Délka křivky je integrál (1. druhu) ze skalárního pole f(x, y, z) = 1, tj.

$$L = \int_{\alpha}^{\beta} |\varphi'(t)| \, \mathrm{d}t,$$

Průměrná teplota na poledníku k. Poledník je myšlená křivka na povrchu země a tiše předpokládáme,
 že je hladká.

$$T = \frac{1}{L} \int_{k} T(\boldsymbol{x}) dk = \frac{1}{L} \int_{0}^{1} T(\varphi(t)) |\varphi'(t)| dt,$$

kde L je (skutečná) délka poledníku (viz. bod 2.1).

• Hmota křivky nebo plochy je integrál (1. druhu) ze skalárního pole hustoty $\rho(x, y, z)$.

$$M = \int_{k} \rho(x, y, z) \, \mathrm{d}k$$

• Souřadnice těžiště křivky je vektor (T_x, T_y, T_z) integrálů (1. druhu) z vektoru skalárních funkcí $x\rho(x,y,z), y\rho(x,y,z), z\rho(x,y,z)$ dělený celkovou hmotou M. Např. pro plochu S:

$$T = \frac{1}{M} \int_{k} \boldsymbol{x} \rho(\boldsymbol{x}) \, \mathrm{d}k$$

• Moment setrvačnosti vzhledem k ose o je integrál (1. druhu) ze skalární funkce $f(x) = r^2 \rho(x)$, kde r je vzdálenost bodu x] od osy o. Ideální je transformovat křivku i osu tak aby osa byla jedna ze souředných os, např. pro o totožnou s osou z je

$$I_z = \frac{1}{M} \int_k (x_x^2 + x_y^2) \rho(\boldsymbol{x}) \, \mathrm{d}k$$

2.2 Křivkový integrál 2. druhu

Ve vektorovém zápisu je integrál (2. druhu) z vektorového pole \boldsymbol{F} podél křivky k:

$$\int_{k} \mathbf{F} \cdot \mathbf{t}_{k} \, \mathrm{d}k = \int_{0}^{1} \mathbf{F}(\boldsymbol{\varphi}(s)) \cdot \boldsymbol{\varphi}'(s) \, \mathrm{d}k$$
(2.3)

Zde je t_k tečný vektor. Přesněji pokud dk je velikost tečného vektoru jako pro integrál 1. druhu, tak t_k , je vlastně jednotkový tečný vektor. Ovšem stále je třeba výrazy vlevo v (2.2), (2.3), (2.4), (2.5) jsou pouze symboly (zkratky), pro to co stojí vpravo. Pro některé druhy operací stačí manipulovat se zkratkami, ale někdy je potřeba se ponořit do definice.

Příklady:

• Práce síly po křivce. Integrál 2. druhu z vektorové funkce síly.

2.3 Plošný integrál 1. druhu

Podobně jako v případě křivku je plocha dána zobrazením $\varphi(u, v)$ z množiny $M \subset \mathbb{R}^2$ do \mathbb{R}^3 . Normála N k ploše v bodě daném parametry (u, v), t.j, v bodě $\varphi(u, v)$ je dána vektorovým součinem tečných vektorů:

$$m{N} = m{t}_u imes m{t}_v, \quad m{t}_u = rac{\partial m{arphi}}{\partial u}, \quad m{t}_v = rac{\partial m{arphi}}{\partial v}.$$

Jednotková normála je pak n = N/|N|.

Integrál (1. druhu) ze skalárního pole f přes plochu $S = \{x = \varphi(u, v), (u, v) \in M\}$ je definován:

$$\int_{S} f \, dS = \iint_{M} f(\boldsymbol{\varphi}(u,v)) |\boldsymbol{N}(u,v)| \, du \, dv = \iint_{M} f(\varphi_{x}, \varphi_{y}, \varphi_{z}) \sqrt{(N_{x})^{2} + (N_{y})^{2} + (N_{z})^{2}} \, du \, dv, \qquad (2.4)$$

Pozor, pokud plocha není rovina, tak normála a tudíž i její velikost jsou funkcí parametrů u, v, [?] str. 151.

• Velikost povrchu P plochy M je integrál (1. druhu) ze skalárního pole f(x, y, z) = 1, tj.

$$P = \int_{M} 1 \, \mathrm{d}S = \int_{M} |\boldsymbol{n}(u, v)| \, \mathrm{d}u \, \mathrm{d}v.$$

• Hmota plochy je integrál (1. druhu) ze skalárního pole hustoty $\rho(x, y, z)$.

$$M = \int_{S} \rho(x, y, z) \, \mathrm{d}S$$

Souřadnice těžiště plochy je vektor T integrálů (1. druhu) z vektoru skalárních funkcí $x\rho(x)$ dělený celkovou hmotou M. Např. pro plochu S:

$$T = \frac{1}{M} \int_{S} x \rho(x) \, \mathrm{d}S$$

Moment setrvačnosti vzhledem k ose o je integrál (1. druhu) ze skalární funkce $f(x) = r^2 \rho(x)$, kde r je vzdálenost bodu [x, y, z] od osy o. Pro osu z:

$$I_z = \frac{1}{M} \int_S (x_x^2 + x_y^2) \rho(\boldsymbol{x}) \, \mathrm{d}S$$

Práce síly po křivce. Integrál 2. druhu z vektorové funkce síly. Tok kapaliny skrze plochu za jednotkový čas. Integrál 2. druhu z vektorového pole rychlosti.

2.4 Plošný integrál 2. druhu

Podobně lze integrál (2. druhu) vektorového pole F skrze plochu S napsat:

$$\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \int_{M} \mathbf{F}(\boldsymbol{\varphi}(u, v)) \cdot (\partial_{u} \boldsymbol{\varphi} \times \partial_{v} \boldsymbol{\varphi}) \, du \, dv$$
(2.5)

• Tento integrál má význam celkového toku pole skrz plochu. Například množství kapaliny, které proteče skrze plochu za jednotkový čas.

2.5 Integrační věty: Stokesova, Gaussova, Greenova

Greenova věta (integrace per partes): Pokud má oblast V hranici S, pak pro hladká skalární pole u a v platí:

$$\int_{V} \partial_{x} u v \, dV = \int_{S} u v n_{x} \, dS - \int_{V} u \partial_{x} v \, dV$$

kde n_x je složka jednotkové normály. Odtud pro hladké vektorové pole \boldsymbol{v} dostaneme:

$$\int_{V} (\nabla u) \cdot \boldsymbol{v} \, dV = \int_{S} u \boldsymbol{v} \cdot \boldsymbol{n} \, dS - \int_{V} u \, \operatorname{div} \boldsymbol{v} \, dV$$

Gaussova věta: Pro objem V ohraničený plochou S platí

$$\int_{V} \operatorname{div} \mathbf{F} \, \mathrm{d}V = \int_{S} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S.$$

Můžeme odvodit z Greenovy věty, použitím u = 1 a $\mathbf{v} = \mathbf{F}$:

$$0 = \int_{V} (\nabla 1) \cdot \mathbf{F} \, dV = \int_{S} 1 \mathbf{F} \cdot \mathbf{n} \, dS - \int_{S} 1 \operatorname{div} \mathbf{F} \, dV$$

Stokesova věta: Pro plochu S ohraničenou uzavřenou křivkou k platí

$$\int_{S} \operatorname{rot} \boldsymbol{F} \cdot \boldsymbol{n} \, dS = \int_{k} \boldsymbol{F} \cdot \boldsymbol{t} \, d\boldsymbol{k}.$$

Hranici oblasti Ω zapisujeme též jako $\partial\Omega$.

3 Zákony zachování, věta o transportu

Konzervativní veličina.

- Zachování hmoty
- Zachování hybnosti.
- Zachování momentu hybnosti.
- Zachování energie. Zachování vnitřní energie, tepla.

Natahovací pytlík s vodou se třpytkama. Hustota třpytek v bodě \boldsymbol{x} v čase t je $\rho(t, \boldsymbol{x})$. Pytlík v čase t, je oblast (otevřená jednoduše souvislá množina) Ω_t , takže ho můžeme různě deformovat. Počet třpytek v pytlíku je pořád stejný:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_t} \rho(t, \boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 0.$$

Popis deformace v čase. Bod x_0 v čase 0 je přesunut do bodu x_t v čase t.

$$\boldsymbol{x}_t = X(t, \boldsymbol{x}_0).$$

Rychlostní pole pak je $u(t, x_t) = \partial_t X(t, x_0)$

Věta 3.1 (Reynolds transport theorem). Nechť $q(t, \boldsymbol{x})$ je hladká skalární funkce na na oblasti Ω_t . Oblast Ω_t je dána hladkým zobrazením $X(t, \boldsymbol{X})$ a počáteční oblastí Ω_0 :

$$\Omega_t = \{ \boldsymbol{x}_t = \boldsymbol{X}(t, \boldsymbol{x}_0); \boldsymbol{x}_0 \in \Omega_0 \}.$$

Pak platí:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_t} q(t, \boldsymbol{x}_t) \, \mathrm{d}\boldsymbol{x}_t = \int_{\Omega_t} \partial_t q + \operatorname{div}(q\boldsymbol{u}) \, \mathrm{d}\boldsymbol{x}_t. \tag{3.1}$$

 $D\mathring{u}kaz$. Nechť χ_0 je hladká "klobouková" funkce nulová mimo Ω_0 a "skoro jednotková" uvnitř Ω_0 :

$$\chi_0(\boldsymbol{x}) = B(\operatorname{dist}(\boldsymbol{x}, \partial \Omega_0)),$$

kde vzdálenost dist je kladná uvnitř Ω_0 a záporná vně. Funkce B je nulová na $(-\infty,0)$, B=1 na (ϵ,∞) , a je hladká a rostoucí na $(0,\epsilon)$. Tuto funkci necháme "unášet"rychlostním polem \boldsymbol{u} , takže se v čese t zdeformuje:

$$\chi(t, \boldsymbol{X}(t, \boldsymbol{x}_0)) = \chi_0(\boldsymbol{x}_0).$$

Pro materiálovou derivaci funkce $\chi(t, \boldsymbol{X})$ platí:

$$\frac{\mathrm{d}}{\mathrm{d}t}\chi(t,\boldsymbol{X}) = \frac{\mathrm{d}}{\mathrm{d}t}\chi(t,\boldsymbol{X}(t,\boldsymbol{x}_0)) = \partial_t\chi(t,\boldsymbol{X}) + \sum_i \partial_{X_i}\chi(t,\boldsymbol{X})\partial_tX_i(t,\boldsymbol{x}_0) = \partial\chi + \boldsymbol{u}\cdot\nabla\chi$$

Nyní spočítáme :

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_{\star}} q\chi \, \mathrm{d}\boldsymbol{x} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^{3}} q\chi \, \mathrm{d}\boldsymbol{x} = \int_{\mathbb{R}^{3}} (\partial_{t}q)\chi + q(\partial_{t}\chi) \, \mathrm{d}\boldsymbol{x} = \int_{\mathbb{R}^{3}} (\partial_{t}q)\chi - q(\boldsymbol{u} \cdot \nabla \chi) \, \mathrm{d}\boldsymbol{x} = \int_{\Omega_{\star}} \left[\partial_{t}q + \mathrm{div}(q\boldsymbol{u}) \right] \chi \, \mathrm{d}\boldsymbol{x}$$

Klobouková funkce χ může být libovolně blízko *charakteristické funkci* oblasti Ω_t z čehož plyne důsledek věty.

Např. zákon zachování hmoty můžeme napsat jako:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_t} \rho(t, \boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\Omega_t} \partial_t \rho + \mathrm{div}(\rho \boldsymbol{u}) \, \mathrm{d}\boldsymbol{x} = 0$$

kde \boldsymbol{u} je rychlost plynu a ρ jeho hustota.

A jelikož toto platí pro libovolnou Ω_t , pak pro hladké ρ a \boldsymbol{u} platí:

$$\partial_t \rho + \operatorname{div}(\rho \boldsymbol{u}) = 0$$

což je rovnice kontinuity pro hustotu stlačitelného plynu.

3.1 Eulerovy rovnice

Uvažujme materiál (tekutinu, nebo elastickou pevnou látku) s rychlostním polem u. Ze zákona zachování hybnosti ρu plyne použitím rovnice kontinuity:

$$\partial_t(\rho \boldsymbol{u}_i) + \operatorname{div}(\rho \boldsymbol{u}_i \boldsymbol{u}) = -\nabla P,$$

kde P je tlak, a jeho záporný gradient je hustota síly, která způsobuje změnu hybnosti podle 2. Newtonova zákona. Tato rovnice spolu s rovnicí kontinuity pro plyn:

$$\partial_t \rho + \operatorname{div}(\rho \boldsymbol{u}) = 0$$

tvoří systém tzv. Eulerových rovnic popisujících proudění neviskózní stlačitelné tekutiny.

4 Odvození rovnice vedení tepla

Rovnice kontinuity platí za předpokladu, že "pohyb veličiny" q je způsoben unášením v rychlostním poli u. Přirozená interpretace je, že se jedná o rychlostní pole média, např. tekutiny. To ovšem obecně neplatí. Například pro koncentaci soli v roztoku platí také zákon zachování a sůl se pohybuje i v (makroskopicky) stacionárním objemu vody pomocí difúze. Je tedy třeba u interpretovat jinak.

Definujeme plošný tok j veličiny q jako množství veličiny, které projde jednotkovou elementární plochou za jednotku času. Tedy uvažujeme nekonečně malou plošku ΔS v bodě x s normálou $n=e_i$ (bázový vektor) a nekonečně malou zmenu času Δt . Pokud mezi časy t a $t+\Delta t$ projde skrz ΔS množství ΔQ veličiny q, platí

$$j_i(t, \boldsymbol{x}) = \frac{\Delta Q}{\Delta S \Delta t}$$

Pro pevnou oblast Ω je pokles množství veličiny q v Ω roven celkovému toku veličiny ven z Ω přes její hranici:

$$-\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} q \, \mathrm{d}x = \int_{\partial\Omega} \boldsymbol{j} \cdot \boldsymbol{n} \, \mathrm{d}S = \int_{\Omega} \mathrm{div} \, \boldsymbol{j}$$

Odtud dostaneme bodovou formu obecné rovnice kontinuity:

$$\partial_t q + \operatorname{div} \mathbf{j} = 0.$$

Ke stejnému výsledku dojdeme pokud použijeme Reynoldsovu větu pro rychlostní pole u = j/q.

Tok j(t, x) je obecně nějakou funkcí závislou na lokálním chování veličiny q na okolí bodu (t, x), může tedy záviset na q, ∇q , na $\partial_t q$ a případně na vyšších prostorových a časových derivacích. Může také záviset na nějakých dalších veličinách, jako například na rychlosti média, viz. případ j = qu.

Nyní uvažujme specuálně zákon zachování pro energii pevného tělesa. Energie elementárního objemu ΔV je dána jeho teplotou jako:

$$\Delta E = C \rho T \Delta V$$

kde C [J/K/kg] je tepelná kapacita a T [K] je teplota. Teplený tok \boldsymbol{j} $[W/m^2]$ je v nejjednodušší podobě dán Fourierovým zákonem:

$$\boldsymbol{j} = -k\nabla T$$

přičemž tepelná vodivost k [W/m/K] může být případně funkcí teploty k(T). Dostáváme tak rovnici vedení tepla:

$$\partial_t (C\rho T) - \operatorname{div}(k\nabla T) = 0$$

Pokud budou v materiálu nějaké objemové teplné zdroje f [W/m^3] dostaneme:

$$\partial_t (C\rho T) - \operatorname{div}(k\nabla T) = f$$

Pokud by se jednalo o vedení tepla v kapalině, musíme do j zarnout i transport kapalinou:

$$\partial_t (C\rho T) + \operatorname{div}(C\rho T \boldsymbol{u}) - \operatorname{div}(k\nabla T) = f.$$

5 Transportní procesy

Rovnice vedení tepla odvozená v předchozí kapitole je jedním z příkladů transportních procesů, které popisují transport nějaké veličiny a jsou odvozené ze zákona jejího zachování. Uvedeme pár dalších příkladů.

5.1 Proudění v porézním prostředí

Uvažujme porézní prostředí, kde podíl pórů v referenčním objemu je ν [-]. Tuto bezrozměrnou veličinu nazýváme porozita. Podíl tekutiny (vody) v referenčním objemu θ [-] se nazývá saturace (opět bezrozměrná). Saturace se pohybuje od nějaké minimální (reziduální) saturace θ_r po saturovaný podíl tekutiny θ_s obvykle rovný porozitě ν . Pro tekutinu se zachovává její hmota, resp. hustota v prostoru $\rho_V = \rho\theta$, kde ρ je hustota tekutiny. V nejjednodušším případě uvažujeme nestlačitelnou kapalinu, plně saturovné porézní prostředí a uvažujeme malé tlaky. V tom případě je ρ i θ konstanta. Pak z obecné rovnice kontinuity dostaneme:

$$-\operatorname{div}\boldsymbol{j}=f,$$

kde \boldsymbol{j} [$kg/m^2/s$] je hustota toku tekutiny a f [$kg/m^3/s$] je hustota objemových zdrojů tekutiny. Podobně jako v případě tepla je nejjednodušší vztah pro \boldsymbol{j} dán gradientem tlaku p [Pa] = [kgm^2/s] pomocí tzv. Darcyho zákona:

$$\mathbf{j} = -\rho k \mathbb{K} \nabla p.$$

Zde $k=\kappa/\mu$ je hydraulická vodivost daná permeabilitou κ [m^2], která je vlastností porézního média, a viskozitou μ [Pa.s], která je vlastností tekutiny. Tenzor $\mathbb K$ je jednotkový v případě izotropního prostředí, ale v případě anisotrpního prostředí je to obecně symetrický pozitivně definitní tenzor. Pokud má porézní materiál nějak orientované mikroskopické kapiláry, bude v jednom směru mít větší vodivost než ve směrech kolmých. Obecně může mít materiál tři různé vodivosti ve třech různých směrech k_x , k_y , k_z a nakonec tento materiál může být libovolně natočen v prostoru pomocí matice rotace Q:

$$\mathbb{K} = \mathbb{Q}^T \mathbb{D} \mathbb{Q}, \quad \mathbb{D} = \begin{pmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & k_z \end{pmatrix}$$

Vodivosti v hlavních směrech jsou vlastní čísla matice \mathbb{K} , musí být kladné. Matice rotace \mathbb{Q} je tvořena (ortogonálními) vlastními vektory. Zde máme příklad anisotropie hydrulické vodivosti. Podobně existují materiály s anisotropní tepelnou vodivostí, nebo anisotropní pevností etc.

Dále můžeme uvažovat stlačitelnou tekutinu, resp. stlačitelný materiál okolo pórů. Pro použití rovnice kontinuity pořebujeme spočítat derivaci hustotu hmoty tekutiny v prostoru podle času:

$$\partial_t \rho_V = \left(\frac{\partial \rho}{\partial p} + \frac{\partial \theta}{\partial p}\right) \partial_t p = S \partial_t p.$$

Veličina $S\left[kg/m^3/Pa\right]$ se nazývá storativita a zahrnuje jak stlačitelnost tekutiny $\partial_p \rho$ tak stlačitelnost prostředí $\partial_p \theta$. Pro nasycené, stlačitelné porézní prostředí tedy máme rovnici:

$$S\partial_t p - \operatorname{div}\left(\rho k \mathbb{K} \nabla p\right) = f$$

Pro nenasycené prostředí pak dostáváme záporné (sací) tlaky p a pro ně saturaci $\theta_r \leq \theta(p) \leq \theta_s$, která je funkcí tlaku. Navíc i vodivost k, klesá s klesajícím nasycením, je tedy $k(\theta)$ funkcí saturace. Dohromady dostaneme tzv. Richardsovu rovnici:

$$\partial_t \theta(p) - \operatorname{div}\left(\rho k(\theta(p)) \mathbb{K} \nabla p\right) = f$$

kde funkce $\theta(p)$ a $k(\theta)$ jsou obecně nelineární a dostáváme tak nelineární parciální diferenciální rovnici.

5.2 Transport chemických látek

$$\partial_t(\rho_i c_i) + \operatorname{div}(\rho_i c_i \frac{\boldsymbol{u}}{\nu}) - \operatorname{div}(\mathbb{D}\nabla c_i) = r_{ij}. \tag{5.1}$$

6 Vlnová rovnice (akustika)

Odvodíme rovnici pro kmitání struny. Stav struny v čase t a poloze x je dán výchylkou struny u(t,x). Pro zjendodušení si představujeme, že struna může kmitat jen v jednom směru. Na element daný intervalem (a,b) působí síly v koncových bodech:

$$\boldsymbol{F}(t,a) = -T(t,a)\boldsymbol{t}(t,a), \quad \boldsymbol{F}(t,b) = T(t,b)\boldsymbol{t}(t,b)$$

kde T je napětí ve struně a t je tečný vektor $t(t,x) = (1, \partial_x u(t,x))$. Jelikož v horizontálním směru se struna nepohybuje můsí být horizontální složka součtu sil rovna nule:

$$T(t,b) - T(t,a) = 0$$

a jelikož jsme body a a b volili libovolně, je napětí ve struně nazávislé na poloze: T(t,x) = T(t). Proto pro vertikální složku síly platí

$$F_{y} = F_{y}(t, a) + F_{y}(t, b) = T(t) (\partial_{x} u(t, b) - \partial_{x} u(t, a))$$

Nyní použijeme 2. Newtonův zákon:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a}^{b} \rho(x) \partial_{t} u(t,x) \, \mathrm{d}x = F_{y}(t,x) = T(t) \left(\partial_{x} u(t,b) - \partial_{x} u(t,a) \right) = T(t) \int_{a}^{b} \partial_{xx} u(t,x) \, \mathrm{d}x$$

A jelikož a a b jsou libovolné, dostáváme bodovou rovnici:

$$\rho(x)\partial_{tt}u(t,x) = T(t)\partial_{xx}u(t,x)$$

Pokud předpokládáme konstantní hustotu $\rho(x) = \rho_0$ a zanedbáme změnu napětí struny při malé výchylce $T(t) = T_0$ dostaneme vlnovou rovnici ve tvaru:

$$\partial_{tt}u(t,x) = c^2 \partial_{xx}u(t,x)$$

kde

$$c = \sqrt{\frac{T_0}{\rho_0}}$$

je rychlost šíření vlny. Mírně kompplikovanější je odvození vlnové rovnice pro změny (akustického) tlaku v prostoru:

$$\partial_{tt} p(t, \boldsymbol{x}) = c^2 \Delta p(t, \boldsymbol{x})$$

kde pro rychlost zvuku c platí:

$$c = \sqrt{\frac{B}{\rho_0}}, \quad B = \rho_0 \frac{\partial P}{\partial \rho}$$

přičemž B je objemová stlačitelnost při adiabatické expanzi. Pro vzduch máme $B=1.45\times 10^5~Pa$ a hustotu $\rho_0=1.2kg/m^3$ a dostáváme rychlost zvuku:

$$c = 347 \sqrt{\frac{kg.m/s^2/m^2}{kg/m^3}} = 1251km/h$$

Tabulková hodnota je 340m/s.

7 Klasifikace PDR

7.1 Eliptické rovnice

Základním příkladem je Laplaceova rovnice:

$$\Delta u(\boldsymbol{x}) = 0$$

respektive Poisonova rovnice

$$\Delta u(\boldsymbol{x}) = f(\boldsymbol{x}).$$

Dalšími příklady je stacionární rovnice vedení tepla:

$$\operatorname{div}(k\nabla T(\boldsymbol{x})) = f(\boldsymbol{x}),$$

resp. stacionární rovnice Darcyho proudění:

$$\operatorname{div}(\mathbb{K}\nabla p(\boldsymbol{x})) = f(\boldsymbol{x}).$$

Obecná rovnici druhého řádu:

$$\operatorname{div}\left(\mathbb{A}\nabla u(\boldsymbol{x})\right) + \boldsymbol{b}\nabla u(\boldsymbol{x}) + cu(\boldsymbol{x}) = f(\boldsymbol{x})$$

je eliptická, pokud $\mathbb A$ je symetrická pozitivně definitní matice.

Pro eliptické rovnice platí (za jistých omezeních pro \boldsymbol{b} a c) tzv. princip maxima. Pokud u je řešením eplitické rovnice na oblasti Ω pak

$$\max_{\boldsymbol{x}\in\Omega}u(\boldsymbol{x})\leqslant \max_{\boldsymbol{x}\in\partial\Omega}u(\boldsymbol{x}).$$

Podobně pro minimum:

$$\min_{\boldsymbol{x}\in\Omega}u(\boldsymbol{x})\geqslant \min_{\boldsymbol{x}\in\partial\Omega}u(\boldsymbol{x}).$$

7.2 Parabolické rovnice rovnice

Příkladem je nestacionární rovnice vedení tepla:

$$\partial_t T - \operatorname{div}(k\nabla T) = f$$

Vlastnosti řešení:

- I zde platí princip maxima vzhledem k okrajové podmínce.
- Pokles řešení v čase:

$$\max_{\boldsymbol{x} \in \Omega} u(t, \boldsymbol{x}) \leqslant \max_{\boldsymbol{x} \in \Omega} u(s, \boldsymbol{x}), \quad \text{pro } t \geqslant s.$$

Rovnice "zhlazuje" počáteční podmínku. Nekonečná rychlost šíření změn.

7.3 Hyperbolické rovnice

Příklad je vlnová rovnice:

$$\partial_{tt} p(t, \boldsymbol{x}) = c^2 \Delta p(t, \boldsymbol{x})$$

Transportní rovnice (rovnice kontinuity), např. pro rozpuštěnou látku:

$$\partial_t(\rho c) + \operatorname{div}((\rho c)\boldsymbol{u}) = 0$$

Eulerovy rovnice:

$$\partial_t \rho + \operatorname{div}(\rho \boldsymbol{u}) = 0$$

$$\partial_t(\rho \boldsymbol{u}_i) + \operatorname{div}(\rho \boldsymbol{u}_i \boldsymbol{u}) = -\nabla P,$$

Kvalitativní vlastnosti řešení:

- Konečná rychlost šíření (vln).
- Nezhlazuje.
- Nesplňuje princip maxima, řešení se může akumulovat v bodě (náraz vlny na pobřeží).

8 Slabé řešení rovnice

Uvažujme transportní rovnici na nekonečné oblasti $\Omega = \mathbb{R}$ (pro x):

$$\partial_t u(t,x) + v \partial_x u(t,x) = 0 \tag{8.1}$$

kde v je konstantní rychlost. Řešením je posunutá počáteční podmínka $u_0(x)$:

$$u(t,x) = u_0(x - vt)$$

pro libovolnou diferencovatelnou funkci u_0 máme:

$$\partial_t u + v \partial_x u = u_0'(x - vt)(-v) + v u_0'(x - vt) = 0$$

Zdá se logické, že by toto mělo platit pro libovolnou počáteční podmínku u_0 , ale rovnice je formulována tak, že to platí jen pokud je u_0 diferencovatelná. Zkusme se vrátit k tomu jak jsme transportní rovnici odvodili. Pomocí Raynoldsovy věty jsme dostali:

$$\int_{\Omega_t} \partial_t u + \operatorname{div}(vu) \, \mathrm{d}x = \int_{\Omega_t} \partial_t u + v \partial_x u \, \mathrm{d}x = 0$$

pro libovolnou oblast Ω_t . A bodovou rovnici (8.1) jsme dostali za předpokladu, že vnitřek integrálu je spojitý, tedy u je spojitě diferencovatelná v prostoru i čase. Tedy požadavek na diferencovatelnost je ve skutečnosti umělý a i bez něj platí:

$$\int_{\mathbb{R}} \varphi(\partial_t u + \partial_x(vu)) \, \mathrm{d}x = 0$$

pro libovolnou hladkou funkci φ s kompaktním nosičem. Nosič funkce je množina, kde je funkce nenulová:

$$\operatorname{supp}\varphi = \{x, \ \varphi(x) > 0\}$$

a v našem případě jsou kompaktní všechny omezené a uzavřené intervaly. Jde tedy o to, že φ musí být směrem~k~nekonečnu nulová.

Nyní však nevíme co je $\partial_t u$ pokud je u_0 nespojitá, např. $u_0(x) = \operatorname{sgn}(x)$. Abychom se tohoto problému zbavili použijeme Greenovu větu (zde vlastně jen integraci per partes):

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \varphi(t, x) (\partial_t u + \partial_x (vu)) \, dx \, dt = \int_{\mathbb{R}} \int_{\mathbb{R}} -\partial_t \varphi u - \partial_x \varphi vu \, dx \, dt = 0$$

pro libovolnou hladkou funkci $\varphi(t,x)$ s kompaktním nosičem na $\mathbb{R} \times \mathbb{R}$. Tato rovnice již skutečně platí pro libovolnou integrovatelnou počáteční podmínku u_0 .

8.1 Slabé řešení pro eliptické rovnice

Budeme řešit rovnici

$$-\operatorname{div}(\mathbb{K}\nabla u) + \operatorname{div}(\boldsymbol{v}u) = f + \sigma_f(u_f - u) \quad \text{na } \Omega.$$
(8.2)

Rovnice popisuje ustálené rozložení teploty v médiu, které se pohybuje rychlostním polem \boldsymbol{v} a má obecně anisotropní tensor teplené vodivosti \mathbb{K} . Tento tenzor zahrnuje jak difúzi tepla, tak např. disperzi, t.j. zvýšenou vodivost ve směru proudění. Na levé straně máme postupně difúzní člen a konvektivní člen. Na pravé straně je hustota objemových zdrojů tepla f a kontaktní zdroj tepla. Kontaktní sdroj modeluje například přenos tepla z tělesa, které se dotýká kovového plátu. Zde je u_f teplota tělesa a $\sigma_f \geqslant 0$ koeficient přestupu tepla z tělesa na plát. Tento člen však může modelovat také přenost tepla z horniny do podzemní vody.

Eliptickou rovnici na omezené oblasti Ω je třeba doplnit okrajovými podmínkami na celé hranici $\partial\Omega$. Základní tři typy podmínek jsou:

Dirichletova okrajová podmínka.

$$u(\boldsymbol{x}) = u_d(\boldsymbol{x})$$
 na Γ_d

předepisuje teplotu u_d na části hranice Γ_d . Pevná teplota na hranici modeluje situaci, kdy se těleso Ω dokonale vodivě dotýká termostatu - tělesa z velkou teplenou kapacitou.

Neumannova okrajová podmínka.

$$(-\mathbb{K}\nabla u + \boldsymbol{v}u) \cdot \boldsymbol{n} = q_n \text{ na } \Gamma_n.$$

Člen vlevo se nazývá normálový teplený tok, který je předepsán jako q_n . V teorii se obvykle uvažuje jako kladný tok ve směru ven z oblasti (vnější normála), nicmáně z důvodu konzistence s objemovými zdroji se v praxi používá raději opačná konvence. Fyzikálně relevantní je případ kdy je hranice pevná $\mathbf{v} = 0$ a teplený tok je dán např. výkonem topidla na hranici.

Robinova (Newtonova) okrajová podmínka.

$$(-\mathbb{K}\nabla u + \boldsymbol{v}u) \cdot \boldsymbol{n} = \sigma_r(u - u_r)$$
 na Γ_r .

Opět je releventní především případ v = 0, kdy podmínka modeluje realistický přenost tepla s koeficientem $\sigma_r \ge 0$ z tělesa o teplotě u_r . Zde je opět n vnější normála, tedy vlevo je tok ven z oblasti, který je kladný pokud je $u > u_r$ což souhlasí se znaménkem na pravé straně.

Mimo tyto základní podmínky se v reálných úlohách objevují nejrůznější další podmínky. Například pokud na části hranice vtéká do oblasti voda o dané teplotě U, bude, půjde o Neumannovu podmínku s $\mathbf{v} \neq 0$ a $q_n = U\mathbf{v} \cdot \mathbf{n}$. Pro výtok z oblasti však potřebujeme podmínku $q_n = u\mathbf{v} \cdot \mathbf{n}$, což lze považovat za Robinovu podmínku s $u_r = 0$ a $\sigma_r = \mathbf{v} \cdot \mathbf{n}$. Ovšem rychlost \mathbf{v} nemusí být na hranici dopředu známa, může být výsledkem řešení nějaké rovnice proudění, proto je obvykle tuto podmínku chýpat jako zvláštní typ. V praxi se také objevuje například kombinace Neumannovy a Robinovy okrajové podmínky:

$$(-\mathbb{K}\nabla u + \boldsymbol{v}u) \cdot \boldsymbol{n} = \sigma_r(u - u_r) + q_n$$

Z hlediska teorie lze obvykle tyto zvláštní případy popsat pomocí předchozích tří typů, ale jsou užitečné pro praxi.

Dále předpokládáme, že množiny Γ_d , Γ_n , a Γ_r jsou navzájem diskjunktní (nemají průnik) a jejich sjednocení (respektive sjednocení jejich uzávěrů) je hranice $\partial\Omega$.

8.2 Slabá formulace eliptické úlohy

V této kapitole odvodíme slabou formulaci rovnice vedení tepla, spolu s aplikací klasických okrajových podmínek.

Prvně přenásobíme rovnici (8.2) libovolnou hladkou testovací funkcí $\varphi(x) \in C^{\infty}(\overline{\Omega})$ (hladá až do hranice) a integrujeme přes Ω :

$$\int_{\Omega} \varphi \Big(-\operatorname{div}(\mathbb{K}\nabla u - \boldsymbol{v}u \Big) \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} \varphi \Big(f + \sigma_f(u_f - u) \Big) \, \mathrm{d}\boldsymbol{x}.$$

Dále v na levé straně použijeme Greenovu větu k přehození divergence na testovací funkci:

$$\int_{\Omega} \nabla \varphi \cdot (\mathbb{K} \nabla u - \boldsymbol{v} u) \, d\boldsymbol{x} + \int_{\partial \Omega} -\varphi (\mathbb{K} \nabla u - \boldsymbol{v} u) \cdot \boldsymbol{n} \, ds = \int_{\Omega} \varphi \Big(f + \sigma_f (u_f - u) \Big) \, d\boldsymbol{x}.$$
 (8.3)

Než přistoupíme k aplikaci okrajových podmínek, zamysleme se jaké vlastnosti musí mít funkce u, aby tato rovnice vůbec měla smysl. Pokud budeme předpokládat, že všechny ostatní parametry jsou hladké, musí mít funkce u alespoň integrovatelné derivace $(\partial_{x_i}u \in L_1(\Omega))$. Každopádně funkce u nemůže být libovolná, ale patří do nějakého vektorového prostoru funkcí $H^1(\Omega)$, který si přesně zavedeme až později, ale již víme, že jeho funkce mají integrovatelnou derivaci.

Pro začátek předpokládejme pouze homogenní Dirichletovu okrajovou podmínku $u_d=0$. Pak je řešení u ve skutečnosti z podprostoru:

$$V_0 = \{ u \in H^1(\Omega), u(x) = 0 \text{ na } \Gamma_d \}$$

Jelikož už známe hodnotu řešení na hranici Γ_d nepotřebujeme (8.3) na této části hranice a proto se můžeme omezit na testovací funkce, které jsou na Γ_d nulové, t.j.

$$\varphi \in \mathcal{D}_0 = \{ \varphi \in C^{\infty}(\overline{\Omega}), \ \varphi(\boldsymbol{x}) = 0 \text{ na } \Gamma_d \}.$$

Nyní rozdělíme hraniční integrál na integrály přes části hranice odpovídající jednotlivým typům okrajových podmínek: Na Γ_d je $\varphi = 0$ příslušná člen je tedy nulový:

$$\int_{\Gamma_d} -\varphi(\mathbb{K}\nabla u - \boldsymbol{v}u) \cdot \boldsymbol{n} \, \mathrm{d}s = 0$$

Na Γ_n je tok roven q, máme tedy:

$$\int_{\Gamma_n} -\varphi(\mathbb{K}\nabla u - \boldsymbol{v}u) \cdot \boldsymbol{n} \, \mathrm{d}s = \int_{\Gamma_n} \varphi q \, \mathrm{d}s.$$

Podobně známe tok na Γ_r :

$$\int_{\Gamma_r} -\varphi(\mathbb{K}\nabla u - \boldsymbol{v}u) \cdot \boldsymbol{n} \, \mathrm{d}s = \int_{\Gamma_n} \varphi \sigma_r(u - u_r) \, \mathrm{d}s.$$

Dostáváme tak slabou formulaci rovnice (8.2). Slabým řešením bude každá funkce u z prostoru V_0 , který splňuje

$$A(u,\varphi) := \int_{\Omega} (\mathbb{K}\nabla u - \boldsymbol{v}u) \cdot \nabla \varphi + \sigma_f u \varphi \, d\boldsymbol{x} + \int_{\Gamma} \sigma_r u \varphi \, ds$$
 (8.4)

$$= \int_{\Omega} \left(f + \sigma_f u_f \right) \varphi \, d\mathbf{x} + \int_{\Gamma_r} \sigma_r u_r \varphi \, ds + \int_{\Gamma_n} -q \varphi \, ds =: \langle F, \varphi \rangle$$
 (8.5)

pro všechna $\varphi \in \mathcal{D}$.

Nyní uvažujme případ s obecnou dirichletovou okrajovou podmínkou $u_d \neq 0$. Budeme předpokládat, že u_d lze prodloužit dovnitř oblasti Ω . Tedy, že existuje funkce \tilde{u}_d z prostoru $H^1(\Omega)$ taková, že $\tilde{u}_d = u_d$ na Γ_d a jinak je \tilde{u}_d libovolná. Pak řešení s obecnou Dirichletovou podmínkou lze napsat jako $u = \tilde{u}_d + u_0$, kde u_0 je na Γ_d nulová funkce, t.j. u_0 je z prostoru V_0 . Funkce u_0 představuje neznámou část řešení, kterou dostaneme řešením problému:

$$A(u_0, \varphi) = \langle F, \varphi \rangle - A(\tilde{u}_d, \varphi) = \langle \tilde{F}, \varphi \rangle$$

8.3 Odvození klasické formulace ze slabé

Je třeba ověřit, že slabá formulace je ekvivalentní se silnou formulací v případě, že řešení je dostatečně hladké. Předpokládejme tedy, že $u \in C^2(\Omega)$. Použijeme v (8.4) testovací funkci s nosičem uvnitř Ω , t.j. φ je nulová na hranici. Dále použijeme Greenovu větu, hraniční integrály budou nulové a dostaneme:

$$\int_{\Omega} -\operatorname{div}(\mathbb{K}\nabla u - \boldsymbol{v}u)\varphi \,d\boldsymbol{x} = \int_{\Omega} \left(f + \sigma_f(u_f - u) \right) \varphi \,d\boldsymbol{x}. \tag{8.6}$$

Odtud plyne splnění bodové rovnice (8.2) v každém bodě uvnitř Ω .

Dále potřebujeme odvodit splnění okrajových podmínek. Dirichletova podmínka je splněna přímo, jelikož $u=\tilde{u}_d+u_0$ a u_0 je nulová na Γ_d . Pro odvození Neumannovy a Robinovy okrajové podmínky uvažujeme libovolnou (hladkou) testovací funkci ψ s nosičem uvnitř $\Gamma_{nr}=\Gamma_n\cup\Gamma_r$. Dále tuto funkci hladc prodloužíme dovnitř Ω a dostaneme (hladkou) testovací funkci $\varphi_\epsilon\in\mathcal{D}_0$, která má na Γ_{nr} hodnotu ψ a je nenulová pouze na tenkém proužku do vzdálenosti ϵ od hranice. Nyní v (8.4) použijeme testovací funkci φ_ϵ a použijeme Greenovu větu, dostaneme:

$$\int_{\Omega} X(u)\varphi_{\epsilon} \, \mathrm{d}\boldsymbol{x} + \int_{\Gamma_{nr}} (\mathbb{K}\nabla u - \boldsymbol{v}u) \cdot \boldsymbol{n}\varphi_{\epsilon} \, \mathrm{d}s = \int_{\Gamma_{r}} \sigma_{r}(u_{r} - u)\varphi_{\epsilon} \, \mathrm{d}s + \int_{\Gamma_{n}} -q\varphi_{\epsilon} \, \mathrm{d}s$$

kde první člen obsahuje všechny členy z předchozí rovnice (8.6). Nyní provedeme limitu $\epsilon \to 0$. V této limitě se první intergál bude blížit nule, jelikož φ_{ϵ} je nenulová na množině velikosti $\epsilon \times |\Gamma_n r|$, což konverguje k nule. Naproti tomu ve zbylých hraničních integrálech je $\varphi_{\epsilon} = \psi$, což na ϵ nezávisí, tedy dostaneme:

$$\int_{\Gamma_{nr}} -(\mathbb{K}\nabla u - \boldsymbol{v}u) \cdot \boldsymbol{n}\psi \, \mathrm{d}s = \int_{\Gamma_r} \sigma_r(u - u_r)\psi \, \mathrm{d}s + \int_{\Gamma_n} q\psi \, \mathrm{d}s$$

a odtud obě okrajové podmínky.

9 Úvod do funkcionální analýzy

V této kapitole se budeme zabývat prostory funkcí, v nichž je vhodné hledat slabé řešení. Teorie těchto abstraktních prostorů je poměrně obsáhlá, pro zájemce o hlubší poznatky odkazujeme na knihu [2].

9.1 Normované lineární prostory

Pojmy skalární součin a norma lze zavést na různých množinách, např. na množině matic nebo reálných funkcí.

Definice 9.1. Nechť V je vektorový prostor.

(i) Řekneme, že zobrazení $l:V\to\mathbb{R}$ je lineární forma na V, pokud pro každé $u,v\in V$ a $\alpha,\beta\in\mathbb{R}$ platí:

$$l(\alpha u + \beta v) = \alpha l(u) + \beta l(v).$$

(ii) Zobrazení $a: V \times V \to \mathbb{R}$ nazveme bilineární formou, pokud a je lineární v obou proměnných, tj.

$$a(u, \alpha v + \beta w) = \alpha a(u, v) + \beta a(u, w),$$
 $a(\alpha u + \beta v, w) = \alpha a(u, v) + \beta a(v, w)$

pro každé $u, v, w \in V \ a \ \alpha, \beta \in \mathbb{R}$.

(iii) Bilineární forma a se nazývá symetrická, pokud

$$\forall u, v \in V : a(u, v) = a(v, u).$$

(iv) Skalární součin je symetrická bilineární forma a, která splňuje

$$\forall v \in V, \ v \neq \vec{0}: \ a(v, v) > 0.$$

(v) Norma indukovaná skalárním součinem a je definována výrazem

$$||v||_a := (a(v,v))^{1/2}, v \in V.$$

Pro indukovanou normu platí Cauchyova-Schwarzova nerovnost:

$$\forall v, w \in V : |a(v, w)| \le ||v||_a ||w||_a.$$

Norma obecně nemusí být indukovaná skalárním součinem, musí však splňovat následující vlastnosti.

Definice 9.2. Funkce $\|\cdot\|: V \to \mathbb{R}$ se nazývá norma na vektorovém prostoru V, pokud pro každé $u, v \in V$ a $\alpha \in \mathbb{R}$ platí:

- (i) $||u|| = 0 \Leftrightarrow u = \vec{0}$,
- (ii) $\|\alpha u\| = |\alpha| \|u\|$,
- (iii) $||u + v|| \le ||u|| + ||v||$.

 $\emph{Je-li na} \ V \ definována norma, nazývá se <math display="inline">V$ normovaný lineární prostor.

Z definice normy vyplývá, že může nabývat jen nezáporných hodnot (dokažte!).

Příklad 9.3. Na množině \mathbb{R}^n , $n \in \mathbb{N}$, lze zavést normu $\|(x_1,\ldots,x_n)\|_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$, $p \in [1,\infty)$, nebo $\|(x_1,\ldots,x_n)\|_{\infty} := \max_{i=1,\ldots,n} |x_i|$. Norma $\|\cdot\|_2$ je indukovaná standardním skalárním součinem vektorů.

V dalším textu bude Ω oblast (otevřená souvislá množina) v \mathbb{R}^d , $d \in \{1,2,3\}$. Pro zjednodušení některých úvah také budeme předpokládat, že Ω je omezená. Hranici Ω budeme značit symbolem $\partial \Omega$ a uzávěr symbolem $\overline{\Omega} := \Omega \cup \partial \Omega$.

Příklad 9.4. Na prostoru spojitých funkcí $C(\overline{\Omega})$ definujeme skalární součin

$$(u,v) := \int_{\Omega} u(x)v(x) dx$$

a jím indukovanou normu

$$||u||_2 := \sqrt{(u,u)} = \left(\int_{\Omega} u^2(x) \ dx\right)^{1/2}.$$

Lze také zavést normu

$$||u||_{\infty} := \max_{x \in \overline{\Omega}} |u(x)|.$$

Příklad 9.5. Na prostoru spojitě diferencovatelných funkcí

$$C^{1}(\overline{\Omega}) := \left\{ u \in C(\overline{\Omega}); \ \forall i = 1, \dots, d \ \frac{\partial u}{\partial x_{i}} \in C(\overline{\Omega}) \right\}$$

definujeme skalární součin

$$((u,v)) := (u,v) + \sum_{i=1}^{d} (\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i}),$$

který indukuje normu

$$||u||_{1,2} := \sqrt{((u,u))} = \left(\int_{\Omega} u^2 + \sum_{i=1}^d \left|\frac{\partial u}{\partial x_i}\right|^2 dx\right)^{1/2}.$$

Mimo to existuje také norma

$$||u||_{1,\infty} := \max \left\{ ||u||_{\infty}, ||\frac{\partial u}{\partial x_1}||_{\infty}, \dots, ||\frac{\partial u}{\partial x_d}||_{\infty} \right\}.$$

Příklad 9.6. Uvažujme funkci

$$u(x) := \begin{cases} 10\sin(1000\pi x) & \textit{pro } x \in \left[0, \frac{1}{1000}\right] \\ 0 & \textit{jinak} \end{cases}.$$

Snadno lze spočítat:

$$||u||_{2} = \sqrt{\int_{0}^{1/1000} 100 \sin^{2}(1000\pi x) dx} = \sqrt{100 \left[\frac{x}{2} - \frac{\sin(2000\pi x)}{4000\pi}\right]_{x=0}^{1/1000}} = \frac{1}{2\sqrt{5}} \doteq 0,224,$$
$$||u||_{\infty} = \max_{x \in [0,1/1000]} |10 \sin(1000\pi x)| = 10.$$

Norma $\| \|_{\infty}$ se zdá být v jistém smyslu přirozenější, neboť měří maximální odchylku hodnot dvou spojitých funkcí. Přesto existují důvody, proč je vhodné používat normu $\| \|_2$. Předně, $\| \|_2$ byla zavedena pomocí skalárního součinu. Skalární součin hraje v některých úlohách důležitou roli. Lze ukázat, že na množině spojitých funkcí nelze zavést skalární součin s rozumnými vlastnostmi, který by indukoval normu $\| \cdot \|_{\infty}$. Dalším důvodem je, že v mnoha aplikacích nevystačíme se spojitými funkcemi. Není snadné rozšířit normu $\| \cdot \|_{\infty}$ na obecnější třídu funkcí, zatímco rozšíření normy $\| \cdot \|_2$ je velmi jednoduché a vede přirozeně k vytvoření tzv. prostoru L^2 .

9.1.1 Konvergence

Definice 9.7. Nechť V je normovaný lineární prostor. Řekneme, že posloupnost $\{u_n\}_{n\in\mathbb{N}}$ prvků z V konverguje k $u \in V$ v normě, jestliže

$$\lim_{n \to \infty} \|u_n - u\| = 0.$$

 \check{R} íkáme, že u je limita posloupnosti $\{u_n\}$ a píšeme

$$u = \lim_{n \to \infty} u_n \text{ ve } V, \text{ nebo } u_n \to u \text{ ve } V.$$

Pro limitu v normovaném lineárním prostoru platí obdobná tvrzení jako pro limitu v \mathbb{R}^n známá ze základních kurzů matematiky. Např. každá posloupnost má nejvýše jednu limitu. Pokud posloupnost spojitých funkcí $\{u_n\}$ konverguje k u v normě $\|\ \|_2$ nebo $\|\ \|_{\infty}$, pak prvek u se skoro všude shoduje s bodovou limitou, tj.

$$(\lim_{n\to\infty} u_n)(x) = \lim_{n\to\infty} (u_n(x)).$$

Pro zjišťování konvergence posloupnosti funkcí je tedy vhodné nejprve zjistit, zda existuje bodová limita.

Příklad 9.8. Uvažujme posloupnost funkcí $\{u_n\}$,

$$u_n(x) := \begin{cases} 10\sin(n\pi x) & pro \ x \in [0, \frac{1}{n}] \\ 0 & jinak \end{cases}$$

v prostoru C([0,1]). Pro ověření, zda má daná posloupnost limitu, nejprve potřebujeme vhodného "kandidáta". Spočteme proto nejprve bodovou limitu. Zřejmě $\lim u_n(0) = 0$. Je-li $x \in (0,1]$, pak lze najít číslo $n_0 \in \mathbb{N}$ takové, že $x > \frac{1}{n_0}$, takže pro $n \ge n_0$ platí $u_n(x) = 0$, a proto musí být $\lim u_n(x) = 0$. Bodová limita posloupnosti je tedy nulová funkce. Lze ukázat, že

$$\|u_n-0\|_2=\sqrt{\frac{50}{n}},\ tak\check{z}e\ \lim\|u_n-0\|_2=0,$$

a tedy

 $\lim u_n = 0$ v prostoru C([0,1]) s normou $\| \|_2$.

Dále platí

$$||u_n - 0||_{\infty} = 10,$$

z čehož plyne, že v prostoru C([0,1]) s normou $\| \|_{\infty}$ není nulová funkce limitou posloupnosti $\{u_n\}$ (ve skutečnosti posloupnost není v tomto prostoru konvergentní).

Uvedený příklad poukazuje na to, že existence limity v metrickém prostoru závisí na tom, jakou uvažujeme metriku.

Definice 9.9. Nechť $\| \ \|_A \ a \ \| \ \|_B$ jsou normy na prostoru V. Jestliže existují konstanty $\alpha, \beta > 0$ takové, že pro každé $u \in V$ platí

$$\alpha \|u\|_A \leqslant \|u\|_B \leqslant \beta \|u\|_A,$$

pakříkáme, že $\|\ \|_A\ a\ \|\ \|_B$ jsou na Vekvivalentní.

Jsou-li normy $\| \ \|_A$ a $\| \ \|_B$ ekvivalentní, pak platí

$$u_n \to u \text{ ve } (V, \| \|_A) \quad \Leftrightarrow \quad u_n \to u \text{ ve } (V, \| \|_B).$$

Příklad 9.8 ukazuje, že normy $\| \ \|_2$ a $\| \ \|_{\infty}$ nejsou na prostoru $C(\overline{\Omega})$ ekvivalentní.

9.1.2 Úplnost

Skutečnost, že daná posloupnost v metrickém prostoru je konvergentní, závisí nejen na zvolené metrice, ale také na prostoru samotném. Existují například posloupnosti racionálních čísel, které mají za limitu iracionální číslo, tzn., že jsou konvergentní v prostoru $\mathbb R$, ale nejsou konvergentní v $\mathbb Q$. Množina $\mathbb Q$ tedy v jistém smyslu není úplná.

Pojem úplnost souvisí s cauchyovskými posloupnostmi.

Definice 9.10. Posloupnost $\{u_n\}$ v normovaném lineárním prostoru V se nazývá cauchyovská, jestliže

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \in \mathbb{N} : \ m, n > N \Rightarrow \|u_m - u_n\| < \varepsilon.$$

Cauchyovská posloupnost obecně nemusí mít limitu. Avšak každá konvergentní posloupnost je nutně cauchyovská.

Definice 9.11. Normovaný lineární prostor V se nazývá úplný (nebo také Banachův prostor), jestliže každá cauchyovská posloupnost má v tomto prostoru limitu. Úplný prostor se skalárním součinem se nazývá Hilbertův prostor.

Příklad 9.12. Prostory \mathbb{R}^n , $n \in \mathbb{N}$, s normami $\| \|_p$, $p \in [1, \infty]$ jsou úplné (díky Bolzanově-Cauchyově podmínce). Prostor \mathbb{Q} není úplný (např. posloupnost $\{(1+\frac{1}{n})^n\}$ je v něm cauchyovská, ale její limita $e \notin \mathbb{Q}$).

Příklad 9.13. Uvažujme posloupnost $\{u_n\}$ na prostoru C([-1,1]) s normou $\|\cdot\|_2$, danou vztahem

$$u_n(x) := \sqrt[2n+1]{x}$$
.

 $Bodová\ limita\ posloupnosti\ je\ {\rm sgn}\ x,\ co\ z\ je\ nespojit\ funkce,\ a\ proto\ posloupnost\ nen\ v\ dan\ em\ prostoru\ konvergentn\ .$ Platí ale

$$||u_n - \operatorname{sgn}||_2 = \sqrt{\frac{2}{(n+1)(2n+3)}}, \quad a \ tedy \quad ||u_n - \operatorname{sgn}||_2 \to 0,$$

což znamená, že $\{u_n\}$ je cauchyovská posloupnost. Prostor C([-1,1]) s normou $\|\ \|_2$ proto není úplný. Zůstává otázka, zda existuje nějaký větší prostor s normou $\|\ \|_2$, ve kterém by byla posloupnost $\{u_n\}$ konvergentní.

Věta 9.14. Prostor $C(\overline{\Omega})$ s normou $\| \|_{\infty}$ je úplný, s normou $\| \|_{2}$ není úplný.

9.1.3 Množiny v normovaném lineárním prostoru

Podobně jako u euklidovské vzdálenosti v \mathbb{R}^n , lze definovat pojmy jako koule, okolí nebo otevřená množina pomocí normy.

Definice 9.15. Nechť X je normovaný lineární prostor s normou $\| \cdot \|$.

• Koule se středem $x \in X$ a poloměrem r > 0 je množina

$$B_r(x) := \{ y \in X; \|x - y\| < r \}.$$

- Množina M se nazývá otevřená, pokud pro každý bod $x \in M$ existuje koule se středem x, která leží v M.
- Množina se nazývá uzavřená, pokud její doplněk v X je otevřený.

Příklad 9.16. Koule v prostoru \mathbb{R}^2 se středem v počátku souřadné soustavy má tvar

- a) čtverce, jehož vrcholy leží na souřadných osách a těžiště v počátku, uvažujeme-li normu | | | | | 1;
- b) kruhu se středem v počátku, uvažujeme-li euklidovskou normu | | ||₂;
- c) čtverce, jehož strany jsou rovnoběžné se souřadnými osami a těžiště leží v počátku, uvažujeme-li maximovou normu $\| \cdot \|_{\infty}$.

Definice 9.17. Nechť X je normovaný lineární prostor, $x \in X$ a $M \subset M$.

- Bod x je vnitřním bodem množiny M, pokud existuje poloměr r > 0 takový, že $B_r(x) \subset M$. Množinu všech vnitřních bodů M budeme značit Int M.
- Bod x je hraničním bodem množiny M, pokud každá koule se středem v x obsahuje alespoň jeden bod z M a alespoň jeden bod z $X\backslash M$. Množina všech hraničních bodů M se nazývá hranice M a značí se ∂M .
- $Uz\acute{a}v\check{e}r\ mno\check{z}iny\ M\ je\ mno\check{z}ina\ \overline{M}:=M\cup\partial M.$

Mezi právě definovanými množinami platí mnoho vztahů. Např.:

Int
$$M \subset M \subset \overline{M}$$
, Int $M \cap \partial M = \emptyset$,

9.2 Prostory integrovatelných funkcí

V následující části zavedeme prostor funkcí, který obsahuje spojité funkce a zároveň je úplný vzhledem k normě $\| \ \|_2$, generované skalárním součinem (,).

Definice 9.18. Prostorem $L^2(\Omega)$ rozumíme množinu funkcí

$$L^2(\Omega) := \left\{ u: \Omega \to \mathbb{R}; \ \left| \int_\Omega u(x) \ dx \right| < \infty, \ \|u\|_2 < \infty \right\}.$$

Spolu s normou $\| \|_2$ tvoří $L^2(\Omega)$ normovaný lineární prostor.

Z definice plyne, že každá spojitá funkce v $\overline{\Omega}$ patří do prostorů $L^2(\Omega)$. Do těchto prostorů ovšem patří i mnoho dalších funkcí, které mohou být nespojité nebo neomezené.

Poznamenejme, že pro správnost některých tvrzení je třeba uvažovat integrály v Definici 9.18 v tzv. Lebesgueově smyslu. Požadavek na integrovatelnost funkce u je splněn pro většinu "kulturních" funkcí (např. pro spojité funkce). Existují však tzv. neměřitelné funkce, jejichž druhá mocnina je integrovatelná, zatímco funkce samotná ne.

Příklad 9.19. Uvažujme funkce

$$u(x) := \frac{1}{\sqrt{x}} \quad a \quad v(x) := \frac{1}{\sqrt[3]{x}}$$

na intervalu $\Omega := (0,1)$. Platí:

$$||u||_2 = \sqrt{\int_0^1 \frac{1}{x} dx} = +\infty,$$

$$||v||_2^2 = \int_0^1 |v(x)|^2 dx = \int_0^1 \frac{1}{\sqrt[3]{x^2}} dx = 3.$$

Proto $u \notin L^2(0,1)$ a $v \in L^2(0,1)$.

Příklad 9.20. Funkce

$$\operatorname{sgn} x := \begin{cases} -1 & \operatorname{pro} x < 0\\ 0 & \operatorname{pro} x = 0\\ 1 & \operatorname{pro} x > 0 \end{cases}$$

je prvkem prostoru $L^2(-1,1)$, neboť

$$\int_{-1}^{1} |\operatorname{sgn} x|^2 \ dx = \int_{-1}^{0} |\operatorname{sgn} x|^2 \ dx + \int_{0}^{1} |\operatorname{sgn} x|^2 \ dx = \int_{-1}^{0} 1 \ dx + \int_{0}^{1} 1 \ dx = 2,$$

 $a \ tedy \| \operatorname{sgn} x \|_2 = \sqrt{2}$. Podobně funkce

$$u(x) := \begin{cases} 0 & pro \ x \neq 0 \\ 10 & pro \ x = 0 \end{cases}$$

patří do $L^2(-1,1)$ a její norma je $||u||_2 = 0$. Vidíme, že norma nezávisí na hodnotě funkce v bodě x = 0. Dokonce není nutné, aby byla funkce v bodě 0 definována.

Funkce, která je rovna nule všude až na hodnotu v jednom bodě, má nulovou normu a je v jistém smyslu ekvivalentní s nulovou funkcí. Obecněji postačí, když je funkce nulová všude v Ω mimo množinu míry nula. Mezi množiny s nulovou mírou patří např. všechny konečné a spočetné množiny.

Definice 9.21. Nechť funkce $u, v \in L^2(\Omega)$ jsou si v oblasti Ω rovny skoro všude, tj. všude mimo množinu míry nula (kde se buď jejich hodnoty liší nebo některá z funkcí není definována). Pak řekneme, že u a v jsou v prostoru $L^2(\Omega)$ ekvivalentní. Píšeme u = v v $L^2(\Omega)$.

Funkce u a v jsou tedy v tomto prostoru pokládány za sobě rovné. Dvě funkce u, v ekvivalentní v prostoru $L^2(\Omega)$ jsou charakterizovány vlastností

$$\int_{\Omega} |u(x) - v(x)|^2 dx = 0.$$

Věta 9.22. Prostor $L^2(\Omega)$ s normou $\| \|_2$ je Banachův prostor.

Tak jako $L^2(\Omega)$ je nejmenší úplný prostor s normou $\|\cdot\|_2$ obsahující $C(\overline{\Omega})$, lze zavést také prostor

$$L^{\infty}(\Omega) := \left\{ u : \Omega \to \mathbb{R}; \ \left| \int_{\Omega} u(x) \ dx \right| < \infty, \ \exists C > 0: \ |u(x)| \leqslant C \text{ skoro všude v } \Omega \right\}.$$

Norma na tomto prostoru je

$$||u||_{\infty} := \inf \{C > 0; |u(x)| \leq C \text{ skoro všude v } \Omega \}.$$

Pro spojité funkce tato definice splývá s původní definicí $\| \|_{\infty}$. Také $L^{\infty}(\Omega)$ je Banachův prostor.

Příklad 9.23. Poněkud specifickým případem je tzv. Dirichletova funkce

$$D(x) = \begin{cases} 1; & x \in \mathbb{Q}, \\ 0; & x \notin \mathbb{Q}. \end{cases}$$

Protože množina $\mathbb Q$ racionálních čísel je spočetná, D je skoro všude v $\mathbb R$ nulová. Proto

$$||D||_{\infty} = 0, \quad \int_{-\infty}^{\infty} D(x) \ dx = 0.$$

Na omezené oblasti Ω platí následující vztah mezi limitami.

Věta 9.24. Nechť Ω je omezená oblast v \mathbb{R}^d , $d \in \{1, 2, 3\}$, a $\{u_n\}$ je posloupnost funkcí definovaných v Ω . Pak platí:

- (i) Jestliže $u_n \to u \ v \ L^{\infty}(\Omega)$, pak $u_n \to u \ tak\acute{e} \ v \ L^{2}(\Omega)$.
- (ii) Jestliže $u_n \to u$ v $L^2(\Omega)$, pak $u_n(x) \to u(x)$ pro skoro všechna $x \in \Omega$.

9.3 Prostory s integrovatelnými derivacemi

Pro funkce z prostoru $L^2(\Omega)$ lze zavést pojem derivace. Uvažujme nejprve funkci $u \in C^1([0,1])$. Díky pravidlu per partes pak platí pro každé $v \in C^1([0,1])$, v(0) = v(1) = 0:

$$\int_0^1 u'(x)v(x) \ dx = \left[u(x)v(x)\right]_{x=0}^1 - \int_0^1 u(x)v'(x) \ dx = -\int_0^1 u(x)v'(x) \ dx. \tag{9.1}$$

Jestliže tedy pro nějakou funkci g platí:

$$\forall v \in C^1([0,1]), \ v(0) = v(1) = 0: \ \int_0^1 g(x)v(x) \ dx = -\int_0^1 u(x)v'(x) \ dx,$$

pak z (9.1) víme, že g = u'. Tento poznatek je východiskem pro zavedení tzv. zobecněné derivace, která je vhodná i pro funkce u, které nemají derivace v klasickém smyslu.

Definice 9.25. Nechť $u \in L^2(\Omega)$. Funkce $g \in L^2(\Omega)$ se nazývá zobecněná parciální derivace funkce u podle i-té proměnné, pokud pro každé $v \in C^1(\overline{\Omega})$, $v_{|\partial\Omega} = 0$, platí:

$$\int_{\Omega} gv = -\int_{\Omega} u \frac{\partial v}{\partial x_i}.$$

 $Pi\check{s}eme\ g = \frac{\partial u}{\partial x_i}\ v\ L^2(\Omega).$

Příklad 9.26. Spočtěme zobecněnou derivaci funkce u(x) := |x| na intervalu (-1,1). Pro $v \in C^1([-1,1])$, v(-1) = v(1) = 0 platí:

$$-\int_{-1}^{1} |x|v'(x) \ dx = -\int_{-1}^{0} (-x)v'(x) \ dx - \int_{0}^{1} xv'(x) \ dx$$
$$= \left[xv(x)\right]_{x=-1}^{0} - \int_{-1}^{0} v(x) \ dx - \left[xv(x)\right]_{x=0}^{1} + \int_{0}^{1} v(x) \ dx = \int_{-1}^{1} \operatorname{sgn} xv(x) \ dx.$$

Je tedy $u'(x) = \operatorname{sgn} x \ v \ L^2(-1, 1)$.

Příklad 9.27. *Uvažujme funkci* $u(x) = \operatorname{sgn} x$. *Pro* $v \in C^1([-1,1])$, v(-1) = v(1) = 0 platí:

$$-\int_{-1}^{1} u(x)v'(x) dx = -\int_{-1}^{0} (-v'(x)) dx - \int_{0}^{1} v'(x) dx$$
$$= [v(x)]_{x=-1}^{0} - [v(x)]_{x=0}^{1} = 2v(0) = 2\int_{-1}^{1} \delta_{0}(x)v(x) dx,$$

kde δ_0 se nazývá Diracova δ -funkce (ve skutečnosti to není funkce, ale tzv. distribuce). V jistém smyslu tedy platí $(\operatorname{sgn} x)' = 2\delta_0(x)$, nicméně $\delta_0 \notin L^2(\Omega)$.

Ne každá funkce z $L^2(\Omega)$ má zobecněnou derivaci v $L^2(\Omega)$.

Pro vektorové funkce $\boldsymbol{u}, \boldsymbol{v}: \Omega \to \mathbb{R}^d$ definujeme

$$\|\boldsymbol{u}\|_2 := \left(\sum_{i=1}^d \|u_i\|_2^2\right)^{1/2}, \quad (\boldsymbol{u}, \boldsymbol{v}) := \sum_{i=1}^d (u_i, v_i).$$

Prostor L^2 pro vektorové funkce budeme značit $L^2(\Omega; \mathbb{R}^d)$.

Definice 9.28. Prostor $H^1(\Omega)$ je množina

$$H^1(\Omega) := \left\{ u \in L^2(\Omega); \ \nabla u \in L^2(\Omega; \mathbb{R}^d) \right\}.$$

Na tomto prostoru je definována norma

$$||u||_{1,2} := (||u||_2^2 + ||\nabla u||_2^2)^{1/2}$$

a skalární součin

$$((u,v)) := (u,v) + (\nabla u, \nabla v).$$

Obrázek 1: Nespojitá funkce z prostoru $H^1(\Omega)$.

Věta 9.29. $H^1(\Omega)$ je Banachův prostor.

Příklad 9.30. Na oblasti $\Omega = B_1(0) \setminus \{(x,0); x \in (-1,0)\}$ uvažujme funkci

$$u(x,y) = \sqrt{r}\sin\frac{\theta}{2}, \ r = \sqrt{x^2 + y^2}, \ \theta = \arctan\frac{x}{y}.$$

 $Uk\acute{a}\check{z}eme,\ \check{z}e\ u\in H^1(\Omega)$:

$$\int_{\Omega} u^2 = \int_{-\pi/2}^{3/2\pi} \int_0^1 r^2 \sin^2\left(\frac{\theta}{2}\right) r \ dr \ d\theta = \frac{\pi}{4},$$

$$\nabla u(x,y) = \frac{1}{2} r^{-3/2} \begin{pmatrix} x \sin\frac{\theta}{2} + y \cos\frac{\theta}{2} \\ y \sin\frac{\theta}{2} - x \cos\frac{\theta}{2} \end{pmatrix},$$

$$\int_{\Omega} |\nabla u|^2 = \frac{1}{4} \int_{-\pi/2}^{3/2\pi} \int_0^1 dr \ d\theta = \frac{\pi}{2}.$$

Přitom podél úsečky $\{(x,0); x \in (-1,0)\}$ je u nespojitá (obr. 1). Pro tuto funkci u nelze jednoznačně definovat hodnoty na hranici $\partial\Omega$.

Aby bylo možné pro funkce z $H^1(\Omega)$ definovat jejich stopu, tj. hodnotu na hranici, omezíme se v dalším na oblasti s Lipschitzovskou hranici. Řekneme, že oblast Ω má Lipschitzovskou hranici, jestliže ji lze lokálně popsat jako spojitou funkci s omezenými derivacemi. Pro funkci $u \in C(\overline{\Omega})$ definujeme zobrazení tr : $u \mapsto u_{|\partial\Omega}$, kde $u_{|\partial\Omega}$ je tzv. stopa funkce u (hodnota na hranici). Na hranici oblasti Ω , resp. na její části, lze zavést prostor $L^2(\partial\Omega)$ s obdobnými vlastnostmi jako $L^2(\Omega)$. Normu a skalární součin na hranici budeme značit symbolem $\| \cdot \|_{2,\partial\Omega}$, resp. $(\cdot,\cdot)_{\partial\Omega}$.

Věta 9.31 (o stopách). Nechť Ω má Lipschitzovskou hranici. Pak existuje lineární zobrazení tr : $H^1(\Omega) \to L^2(\partial\Omega)$ s následujícími vlastnostmi:

$$\forall v \in C(\overline{\Omega}) : \operatorname{tr} v = v_{|\partial\Omega},$$

$$\forall v \in H^1(\Omega) : \|\operatorname{tr} v\|_{2,\partial\Omega} \leq C\|v\|_{1,2},$$

 $kde\ konstanta\ C>0\ z\'{a}vis\'{i}\ pouze\ na\ \Omega.$

Poznamenejme, že ne každá funkce z $L^2(\partial\Omega)$ je stopou funkce z $H^1(\Omega)$. Nyní můžeme zavést prostory funkcí s nulovou stopou:

Definice 9.32. Je-li Γ relativně otevřená část hranice $\partial\Omega$, pak definujeme

$$H^1_{\Gamma}(\Omega) := \{ u \in H^1(\Omega); \text{ tr } u_{|\Gamma} = 0 \}.$$

Speciálně pro $\Gamma = \partial \Omega$ značíme tento prostor jako $H_0^1(\Omega)$, tj.

$$H_0^1(\Omega) := \{ u \in H^1(\Omega); \text{ tr } u = 0 \text{ } na \text{ } \partial \Omega \}.$$

Věta 9.33 (Friedrichsova nerovnost). Nechť Ω má Lipschitzovskou hranici a Γ je relativně otevřená část $\partial\Omega$. Pak existuje konstanta $C = C(\Omega, \Gamma) > 0$ taková, že pro každé $u \in H^1(\Omega)$ platí nerovnost

$$||u||_{1,2} \leqslant C(||\nabla u||_2 + ||u||_{2,\Gamma}). \tag{9.2}$$

Speciálně pro $u \in H_0^1(\Omega)$ platí:

$$||u||_{1,2} \leqslant C||\nabla u||_2. \tag{9.3}$$

10 Abstraktní teorie slabých řešení

V této kapitole se budeme zabývat otázkou, jak správně zavést slabou formulaci tak, aby úloha byla jednoznačně řešitelná.

10.1 Abstraktní variační úloha

Nechť V je Hilbertův prostor se skalárním součinem (,) a normou $\|\ \|$, a a l je bilineární, resp. lineární forma na V. Úlohu

Najdi
$$u \in V$$
 takové, že $\forall v \in V : a(u, v) = l(v),$ (10.1)

budeme nazývat abstraktní variační úloha.

Věta 10.1 (Lax-Milgram). Nechť V je Hilbertův prostor, a je bilineární forma na V, pro niž existují konstanty $\alpha, \beta > 0$ takové, že

(i) a je omezená, tj.

$$\forall v, w \in V : \ a(v, w) \le \beta \|v\| \|w\|,$$

(ii) a je eliptická na V, tj.

$$\forall v \in V : \ \alpha \|v\|^2 \leqslant a(v, v),$$

a nechť l je omezená lineární forma na V, tj.

(iii) existuje konstanta $\gamma > 0$ taková, že

$$\forall v \in V: \ l(v) \leqslant \gamma ||v||.$$

Pak existuje právě jedno řešení $u \in V$ variační úlohy (10.1). Navíc platí odhad:

$$||u|| \leqslant \frac{\gamma}{\alpha}.$$

10.2 Aplikace na eliptické rovnice

10.2.1 Nehomogenní Dirichletova podmínka

Je dána oblast $\Omega \subset \mathbb{R}^d$ a skalární funkce f na Ω a u_d na $\partial\Omega$. Hledáme funkci $u:\overline{\Omega} \to \mathbb{R}$, která splňuje:

$$-\Delta u = f \quad \text{v } \Omega,$$
$$u = u_d \quad \text{na } \partial \Omega.$$

Protože je předepsána Dirichletova podmínka na $\partial\Omega$, prostor, ve kterém budeme hledat slabé řešení, je $V:=H^1_0(\Omega)$. Jelikož ale hodnota u na hranici je dána funkcí u_d , pak obecně $u\notin H^1_0(\Omega)$. Předpokládejme proto, že u_d lze rozšířit na celou oblast Ω tak, aby $u_d\in H^1(\Omega)$. Pak $u-u_d\in H^1_0(\Omega)$. Řešení budeme hledat ve tvaru $u=z+u_d\in H^1(\Omega)$, kde $z\in H^1_0(\Omega)$, a

$$\forall v \in H_0^1(\Omega) : a(z,v) = l(v),$$

kde

$$a(z,v) := (\nabla z, \nabla v)_{L^2(\Omega)},\tag{10.2}$$

$$l(v) := (f, v)_{L^{2}(\Omega)} - (\nabla u_{d}, \nabla v)_{L^{2}(\Omega)}. \tag{10.3}$$

Věta 10.2. Pro bilineární formu a definovanou v (10.2) platí:

$$\forall v, w \in H^1(\Omega): \ a(v, w) \leq ||v||_{1,2} ||w||_{1,2}.$$

Je-li navíc $f \in L^2(\Omega)$, pak existuje $\gamma := \|f\|_2 + \|\nabla u_d\|_2$ takové, že

$$\forall v \in H^1(\Omega): l(v) \leq \gamma ||v||_{1,2},$$

kde lineární forma l je definována v (10.3).

 $D\mathring{u}kaz.$ Omezenostaplyne přímo z Cauchyovy-Schwarzovy nerovnosti a faktu, že $\|\nabla v\|_2 \leqslant \|v\|_{1,2}.$ Dále

$$l(v) \leqslant \|f\|_2 \|v\|_2 + \|\nabla u_d\|_2 \|\nabla v\|_2 \leqslant (\|f\|_2 + \|\nabla u_d\|_2) \|v\|_{1,2}.$$

Věta 10.3. Bilineární forma a je eliptická na $H_0^1(\Omega)$ s konstantou $\alpha = 1/C^2$, kde $C = C(\Omega, \partial\Omega)$ je konstanta z Friedrichsovy nerovnosti (9.3).

 $D\mathring{u}kaz$. Je-li $v \in H_0^1(\Omega)$, pak

$$a(v,v) = (\nabla v, \nabla v)_{L^2(\Omega)} = \|\nabla v\|_2^2 \geqslant \frac{1}{C^2} \|v\|_{1,2}^2.$$

10.2.2 Anizotropní difúze

Uvažujme úlohu vedení tepla ve čtvercové desce, která je z jedné strany zahřívána infračervenými lampami tepelným tokem f a z druhé strany předehřívána ocelovou matricí s tepelnou vodivostí σ , která je dále vyhřívána soustavou kanálků s vodou o teplotě u_f . Na dvou stranách čtverce je tepelná izolace, na druhých dvou stranách je kostantní teplota u=0 (toto je nereálné, ale je to jen příklad). Deska je kompozitní materiál složený z polymerové pryskyřice (vodivost 1 W/mK) a uhlíkových vláken (vodivost 1000 W/mK) s preferovaným směrem, tepelná vodivost desky je proto anisotropní.

Formulujme nyní úlohu abstraktněji.

Mějme oblast $\Omega \subset \mathbb{R}^d$ (například čtverec d=2) s hranicí $\partial\Omega = \overline{\Gamma}_d \cup \overline{\Gamma}_n$, tedy s Dirichletovskou a Neumannovskou částí hranice. Na této oblasti hledáme teplotu $u:\overline{\Omega} \to \mathbb{R}$, která je řešením stacionární rovnice vední tepla:

$$-\operatorname{div}(\mathbb{K}\nabla u) = f + \sigma(u_f - u) \qquad \qquad \text{v }\Omega, \tag{10.4}$$

$$u = 0 na \Gamma_d, (10.5)$$

$$-\mathbb{K}\nabla u \cdot \boldsymbol{n} = q \qquad \text{na } \Gamma_n. \tag{10.6}$$

Zde $\mathbb{K}: \Omega \to \mathbb{R}^{d \times d}$ je maticová funkce pro tenzor tepelné vodivosti a f, σ , u_f jsou skalární funkce na Ω a q skalární funkce na Γ_n .

Aby byla splněna Dirichletova podmínka na Γ_d a formy a, l měly konečnou hodnotu, budeme hledat slabé řešení v prostoru

$$V := H^1_{\Gamma_d}(\Omega) = \{ \varphi \in H^1(\Omega), \ \varphi = 0 \text{ na } \Gamma_d \}$$

Nyní převedeme úlohu vedení tepla na abstraktní variační úlohu:

Najdi
$$u \in H^1_{\Gamma_d}(\Omega)$$
: $\forall v \in H^1_{\Gamma_d}(\Omega)$: $a(u, v) = l(v)$,

kde formy $a(\cdot, \cdot)$ a $l(\cdot)$ mají tvar:

$$a(u,v) := (\mathbb{K}\nabla u, \nabla v)_{L^2(\Omega)} + (\sigma u, v)_{L^2(\Omega)}, \tag{10.7}$$

$$l(v) := (f + \sigma u_f, v)_{L^2(\Omega)} - (q, v)_{L^2(\Gamma_n)}.$$
(10.8)

Pro použití Lax-Milgramova lemmatu potřebujeme ověřit omezenost forem a a l. To ovšem platí za nějakých předpokladů na další parametry úlohy. Konkrétně dokážeme následujícíc větu.

Věta 10.4. Nechť $\mathbb{K} \in L^{\infty}(\Omega; \mathbb{R}^{d \times d})$ a $\sigma \in L^{\infty}(\Omega)$. Pak existuje konstanta $\beta := \beta(\|\mathbb{K}\|_{\infty}, \|\sigma\|_{\infty})$ taková, že

$$\forall u, v \in H^1(\Omega): \ a(u, v) \leq \beta \|u\|_{1,2} \|v\|_{1,2},$$

kde bilineární forma a je definována v (10.7). Je-li navíc $f,u_f\in L^2(\Omega)$ a $q\in L^2(\Gamma_n)$, pak existuje $\gamma:=\gamma(\|f\|_2,\|\sigma\|_\infty,\|u_f\|_2,\|q\|_{2,\Gamma_n})$ takové, že

$$\forall v \in H^1(\Omega): \ l(v) \leqslant \gamma ||v||_{1,2},$$

kde lineární forma l je definována v (10.8).

 $D\mathring{u}kaz$. Nejprve odhadneme postupně všechny výrazy v a. S využitím Cauchyovy-Schwarzovy nerovnosti a faktu, že $||w_i||_2 \le ||w||_2$ dostaneme:

$$(\mathbb{K}\nabla v, \nabla w) = \sum_{i,j=1}^{d} \int_{\Omega} k_{ij}(x) \partial_{x_{j}} v(x) \partial_{x_{i}} w(x) \ dx$$

$$(ab \leqslant |a||b|)$$

$$\leqslant \sum_{i,j=1}^{d} \int_{\Omega} |k_{ij}||\partial_{x_{j}} v||\partial_{x_{i}} w| \ dx$$

$$(\text{předpoklad o } \mathbb{K}))$$

$$\leqslant \|\mathbb{K}\|_{\infty} \sum_{i,j=1}^{d} (|\partial_{x_{j}} v|, |\partial_{x_{i}} w|)_{L^{2}(\Omega)}$$

$$(\text{Cauchy-Schwarzova nerovnost})$$

$$\leqslant \|\mathbb{K}\|_{\infty} \left(\sum_{j=1}^{d} \|\partial_{x_{j}} v\|_{2}\right) \left(\sum_{i=1}^{d} \|\partial_{x_{i}} w\|_{2}\right)$$

$$(\|v_{i}\| \leqslant \|\boldsymbol{v}\|)$$

$$\leqslant \|\mathbb{K}\|_{\infty} \left(d\|\nabla v\|_{2}\right) \left(d\|\nabla w\|_{2}\right)$$

$$\leqslant d^{2} \|\mathbb{K}\|_{\infty} \|v\|_{H^{1}(\Omega)} \|w\|_{H^{1}(\Omega)},$$

Obdobně lze odhadnout

$$(\sigma v, w) \leqslant \|\sigma\|_{\infty}(|v|, |w|) \leqslant \|\sigma\|_{\infty}\|v\|_{2}\|w\|_{2} \leqslant \|\sigma\|_{\infty}\|v\|_{1,2}\|w\|_{1,2}.$$

V souhrnu jsme dokázali, že

$$a(v, w) \le (d \|\mathbb{K}\|_{\infty} + \|\sigma\|_{\infty}) \|v\|_{1,2} \|w\|_{1,2} =: \beta \|v\|_{1,2} \|w\|_{1,2}.$$

Nyní odhadneme výrazy ve formě l:

$$(f,v) \leqslant \|f\|_2 \|v\|_2 \leqslant \|f\|_2 \|v\|_{1,2},$$

$$(\sigma u_f,v) \leqslant \|\sigma\|_{\infty} \|u_f\|_2 \|v\|_2 \leqslant \|\sigma\|_{\infty} \|u_f\|_2 \|v\|_{1,2},$$

$$(q,v)_{\Gamma_n} \leqslant \|q\|_{2,\Gamma_n} \|v\|_{2,\Gamma_n} \leqslant \|q\|_{2,\Gamma_n} \|v\|_{2,\partial\Omega} \leqslant C \|q\|_{2,\Gamma_n} \|v\|_{1,2},$$

kde C je konstanta z věty o stopách. Platí tedy

$$l(v) \leq (\|f\|_2 + \|\sigma\|_{\infty} \|u_f\|_2 + C\|q\|_{2,\Gamma_n}) \|v\|_{1,2} =: \gamma \|v\|_{1,2}.$$

Věta 10.5. Nechť jsou splněny následující předpoklady:

(i) \mathbbm{K} je stejnoměrně pozitivně definitní na Ω , tj.

$$\exists k > 0 \ \forall x \in \Omega \ \forall q \in \mathbb{R}^d : \ \mathbb{K}(x)q \cdot q \geqslant k||q||^2;$$

(ii) σ je nezáporná funkce, tj.

$$\forall \boldsymbol{x} \in \Omega : \ \sigma(\boldsymbol{x}) \geqslant 0.$$

Pak bilineární forma a je eliptická na $H^1_{\Gamma_d}(\Omega)$ s konstantou $\alpha = \underline{k}/C^2$, kde $C = C(\Omega, \Gamma_d) > 0$ je konstanta z (9.2).

Důkaz.

$$a(v,v) = (\mathbb{K}\nabla v, \nabla v) + (\sigma v, v) \geqslant \underline{k} \|\nabla v\|_2^2 + \|\sqrt{\sigma}v\|_2^2 \geqslant \underline{k} \|\nabla v\|_2^2.$$

Díky Friedrichsově nerovnosti platí:

$$a(v,v) \ge \underline{k} \|\nabla v\|_2^2 \ge \frac{\underline{k}}{C^2} \|v\|_{1,2}^2.$$

10.2.3 Advekce-difúze

Je dána oblast $\Omega \subset \mathbb{R}^d$ s hranicí $\partial \Omega = \overline{\Gamma}_n \cup \overline{\Gamma}_r$, vektorové pole $\boldsymbol{q}: \Omega \to \mathbb{R}^d$ a skalární funkce σ_r , u_r na Γ_r . Hledáme funkci $u: \overline{\Omega} \to \mathbb{R}$, která splňuje:

$$-\Delta u + \operatorname{div}(\boldsymbol{q}u) = 0 \qquad \text{v } \Omega,$$

$$-\nabla u \cdot \boldsymbol{n} = 0 \qquad \text{na } \Gamma_n,$$

$$(-\nabla u + \boldsymbol{q}u) \cdot \boldsymbol{n} = \sigma_r(u - u_r) \quad \text{na } \Gamma_r.$$

Slabá formulace:

Najdi $u \in V := H^1(\Omega)$ takové, že $\forall v \in H^1(\Omega) : a(u, v) = l(v)$,

kde

$$a(u,v) := (\nabla u - \boldsymbol{q}u, \nabla v) + (\boldsymbol{q} \cdot \boldsymbol{n}u, v)_{\Gamma_n} + (\sigma_r u, v)_{\Gamma_r}, \tag{10.9}$$

$$l(v) := (\sigma_r u_r, v)_{\Gamma_r}. \tag{10.10}$$

Věta 10.6. Nechť $\mathbf{q} \in L^{\infty}(\Omega; \mathbb{R}^d)$, $\mathbf{q} \cdot \mathbf{n} \in L^{\infty}(\Gamma_n)$ a $\sigma_r \in L^{\infty}(\Gamma_r)$. Pak existuje konstanta

$$\beta := \beta(\|\boldsymbol{q}\|_{\infty}, \|\boldsymbol{q} \cdot \boldsymbol{n}\|_{\infty, \Gamma_n}, \|\sigma_r\|_{\infty, \Gamma_r})$$

taková, že

$$\forall v, w \in H^1(\Omega): \ a(v, w) \le \beta ||v||_{1,2} ||w||_{1,2},$$

kde bilineární forma a je definována v (10.9). Je-li navíc $u_r \in L^2(\Gamma_r)$, pak existuje $\gamma := \gamma(\|\sigma_r\|_{\infty,\Gamma_r}, \|u_r\|_{2,\Gamma_r})$ takové, že

$$\forall v \in H^1(\Omega): \ l(v) \leqslant \gamma ||v||_{1,2},$$

kde lineární forma l je definována v (10.10).

 $D\mathring{u}kaz$. Nejprve odhadneme postupně všechny výrazy v a. S využitím Cauchyovy-Schwarzovy nerovnosti a faktu, že $\|\partial_{x_i} w\|_2 \leq \|\nabla w\|_2$ dostaneme:

$$(\nabla v, \nabla w) \le ||v||_{1,2} ||w||_{1,2},$$

$$(\mathbf{q}v, \nabla w) \leq \sum_{i=1}^{d} (|q_{i}||v|, |\partial_{x_{i}}w|) \leq \|\mathbf{q}\|_{\infty} \sum_{i=1}^{d} (|v|, |\partial_{x_{i}}w|)$$

$$\leq \|\mathbf{q}\|_{\infty} \|v\|_{2} \sum_{i=1}^{d} \|\partial_{x_{i}}w\|_{2} \leq d\|\mathbf{q}\|_{\infty} \|v\|_{2} \|\nabla w\|_{2}$$

$$\leq d\|\mathbf{q}\|_{\infty} \|v\|_{1,2} \|w\|_{1,2},$$

Pro odhad hraničních členů použijeme navíc větu o stopách:

$$(\boldsymbol{q} \cdot \boldsymbol{n} v, w)_{\Gamma_n} \leq \|\boldsymbol{q} \cdot \boldsymbol{n}\|_{\infty, \Gamma_n} \|v\|_{2, \Gamma_n} \|w\|_{2, \Gamma_n} \leq C_1^2 \|\boldsymbol{q} \cdot \boldsymbol{n}\|_{\infty, \Gamma_n} \|v\|_{1,2} \|w\|_{1,2},$$

$$(\sigma_r v, w)_{\Gamma_r} \leq \|\sigma_r\|_{\infty, \Gamma_r} (|v|, |w|)_{\Gamma_r} \leq \|\sigma_r\|_{\infty, \Gamma_r} \|v\|_{2, \Gamma_r} \|w\|_{2, \Gamma_r}$$
$$\leq \|\sigma_r\|_{\infty, \Gamma_r} \|v\|_{2, \partial\Omega} \|w\|_{2, \partial\Omega} \leq C_2^2 \|\sigma_r\|_{\infty, \Gamma_r} \|v\|_{1, 2} \|w\|_{1, 2}.$$

Zde $C_1=C(\Omega,\Gamma_n)$ a $C_2=C(\Omega,\Gamma_r)$ jsou konstanty z Věty 9.31. V souhrnu jsme dokázali, že

$$a(v,w) \leqslant \left(1 + d\|\boldsymbol{q}\|_{\infty} + C_1^2\|\boldsymbol{q} \cdot \boldsymbol{n}\|_{\infty,\Gamma_n} + C_2^2\|\boldsymbol{\sigma}_r\|_{\infty,\Gamma_r}\right) \|v\|_{1,2} \|w\|_{1,2} =: \beta \|v\|_{1,2} \|w\|_{1,2}.$$

Nyní odhadneme formu l:

$$\begin{split} l(v) &= (\sigma_r u_r, v)_{\Gamma_r} \leqslant \|\sigma_r\|_{\infty, \Gamma_r} \|u_r\|_{2, \Gamma_r} \|v\|_{2, \Gamma_r} \\ &\leqslant \|\sigma_r\|_{\infty, \Gamma_r} \|u_r\|_{2, \Gamma_r} \|v\|_{2, \partial\Omega} \\ &\leqslant C_2 \|\sigma_r\|_{\infty, \Gamma_r} \|u_r\|_{2, \Gamma_r} \|v\|_{1,2} =: \gamma \|v\|_{1,2}. \end{split}$$

Věta 10.7. Nechť jsou splněny následující předpoklady:

- (i) \mathbf{q} má nulovou divergenci, $\mathbf{q} \cdot \mathbf{n} \ge 0$ na Γ_n a $\mathbf{q} \cdot \mathbf{n} \le 0$ na Γ_r ;
- (ii) existuje konstanta $\underline{\sigma}_r > 0$ taková, že

$$\forall \boldsymbol{x} \in \Gamma_r : \ \sigma_r(\boldsymbol{x}) \geqslant \underline{\sigma}_r \geqslant 0.$$

Pak bilineární forma a je eliptická na $H^1(\Omega)$ s konstantou $\alpha = \min\{1, \underline{\sigma}_r\}/(2C^2)$, kde C > 0 je konstanta z Věty 9.33.

 $D\mathring{u}kaz$. Jelikož div q=0 a $q\cdot n\leqslant 0$ na Γ_r , platí:

$$-(\boldsymbol{q}\boldsymbol{v},\nabla\boldsymbol{v}) = -(\boldsymbol{q},\nabla\frac{\boldsymbol{v}^2}{2}) = -\frac{1}{2}(\boldsymbol{q}\cdot\boldsymbol{n}\boldsymbol{v},\boldsymbol{v})_{\partial\Omega} + (\operatorname{div}\boldsymbol{q},\frac{\boldsymbol{v}^2}{2}) \geqslant -\frac{1}{2}(\boldsymbol{q}\cdot\boldsymbol{n}\boldsymbol{v},\boldsymbol{v})_{\Gamma_n},$$

a proto také

$$a(v,v) = \|\nabla v\|_{2}^{2} - (\boldsymbol{q}v,\nabla v) + (\boldsymbol{q}\cdot\boldsymbol{n}v,v)_{\Gamma_{n}} + (\sigma_{r}v,v)_{\Gamma_{r}}$$

$$\geq \|\nabla v\|_{2}^{2} + \frac{1}{2}(\boldsymbol{q}\cdot\boldsymbol{n}v,v)_{\Gamma_{n}} + (\sigma_{r}v,v)_{\Gamma_{r}}$$

$$\geq \|\nabla v\|_{2}^{2} + \underline{\sigma}_{r}\|v\|_{2,\Gamma_{r}}^{2}$$

$$\geq \min\{1,\underline{\sigma}_{r}\}(\|\nabla v\|_{2}^{2} + \|v\|_{2,\Gamma_{r}}^{2}).$$

Z nerovnosti $A^2 + B^2 \geqslant \frac{1}{2}(A+B)^2$ vyplývá, že

$$a(v,v) \geqslant \frac{1}{2} \min\{1,\underline{\sigma}_r\} (\|\nabla v\|_2 + \|v\|_{2,\Gamma_r})^2.$$

Díky Friedrichsově nerovnosti máme

$$a(v,v) \geqslant \frac{\min\{1,\underline{\sigma}_r\}}{2C^2} \|v\|_{1,2}^2.$$

11 Galerkinova metoda

(Viz. Johnson [1], kapitola 2)

Metoda konečných prvků pro řešení variační úlohy typu (10.1) se nazývá Galerkinova metoda. Její myšlenkou je nahradit prostor funkcí V vhodným podprostorem V_h konečné dimenze tak, aby bylo možné jednoduše zavést vhodnou bázi. Typicky se jedná o podprostory funkcí po částech polynomiálních. Metoda konečných prvků generuje báze které jsou téměř ortogonální, což výrazně zjednodušuje řešení vzniklé soustavy lineárních rovnic. Řešení variační úlohy na podprostoru V_h pak je aproximací slabého řešení a jeho odchylku lze kvantifikovat v závislosti na volbě podprostoru.

11.1 Abstraktní úloha

Uvažujme nejprve abstraktní úlohu (10.1) a nechť V_h je podprostor V s konečnou dimenzí $N := \dim V_h$. Místo úlohy (10.1) budeme řešit tzv. Galerkinovu úlohu:

Najdi
$$u_h \in V_h$$
: $\forall v_h \in V_h \ a(u_h, v_h) = l(v_h)$. (11.1)

Řešení u_h této úlohy se nazývá Galerkinova aproximace prvku u. Nechť $\varphi_1,...,\varphi_N$ je báze V_h . Pak lze prvek u_h zapsat ve tvaru

$$u_h = \sum_{j=1}^{N} \xi_j \varphi_j, \ \boldsymbol{\xi} = (\xi_1, ..., \xi_N)^{\top} \in \mathbb{R}^N.$$

Jelikož i každá testovací funkce v_h je lineární kombinací bázových funkcí $\{\varphi_i\}_{i=1}^N$, v Galerkinově úloze postačí za testovací funkce brát pouze tyto bázové funkce:

$$(11.1) \Leftrightarrow \forall i = 1, ..., N: \ a(u_h, \varphi_i) = \sum_{j=1}^{N} \xi_j a(\varphi_j, \varphi_i) = l(\varphi_i).$$

Vzniklá soustava N rovnic je lineární a neznámými jsou koeficienty $\xi_1,...,\xi_N$. Můžeme ji přepsat do maticového tvaru:

$$\mathbb{A}\boldsymbol{\xi} := \begin{pmatrix} a(\varphi_1, \varphi_1) & \dots & a(\varphi_N, \varphi_1) \\ & \dots & \\ a(\varphi_1, \varphi_N) & \dots & a(\varphi_N, \varphi_N) \end{pmatrix} \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_N \end{pmatrix} = \begin{pmatrix} l(\varphi_1) \\ \vdots \\ l(\varphi_N) \end{pmatrix} =: \boldsymbol{b},$$

kde prvek a_{ij} matice \mathbb{A} je roven $a(\varphi_j, \varphi_i)$ a prvek b_i vektoru \boldsymbol{b} je roven $l(\varphi_i), i, j = 1, ..., N$.

Lze snadno ověřit, že z vlastností formy a vyplývají obdobné vlastnosti matice \mathbb{A} : Např. je-li a symetrická, pak také \mathbb{A} je symetrická; je-li a eliptická, pak \mathbb{A} je pozitivně definitní, a tedy regulární, a soustava $\mathbb{A}\boldsymbol{\xi} = \boldsymbol{b}$ má právě jedno řešení.

Důležitá otázka je, zda u_h je dostatečně přesná aproximace u. Obecně platí následující věta:

Věta 11.1 (Céovo lemma). Nech jsou splněny předpoklady Laxovy-Milgramovy věty (Věta 10.1) a V_h je podprostor V. Pak pro řešení úloh (10.1) a (11.1) platí:

$$||u - u_h|| \le \frac{\beta}{\alpha} \inf_{v_h \in V_h} ||u - v_h||.$$
 (11.2)

Pokud $\alpha = \beta$, pak tato věta říká, že u_h je nejbližší prvek ku v podprostoru V_h . V tomto případě je tedy Galerkinova aproximace zároveň nejlepší aproximací v daném podprostoru. Obecně platí $\alpha < \beta$ a u_h je alespoň kvalitativně stejně dobré jako nejlepší aproximace. Pro konkrétní typy podprostorů V_h lze z (11.2) odvodit přesnější odhad chyby, když za v_h dosadíme vhodnou funkci (např. Lagrangeovu interpolantu funkce u).

 $D\mathring{u}kaz$ $V\check{e}ty$ 11.1. Nechť $w_h \in V_h$. Protože V_h je podprostor V, je také $w_h \in V$ a platí $a(u, w_h) = l(w_h)$ a $a(u_h, w_h) = l(w_h)$. Odečtením těchto rovností dostaneme vztah označovaný jako tzv. Galerkinova ortogonalita:

$$\forall w_h \in V_h: \ a(u - u_h, w_h) = 0. \tag{11.3}$$

Z elipticity a omezenosti formy a pak dostaneme pro $v_h := u_h + w_h \in V_h$:

$$\alpha \|u - u_h\|^2 \leqslant a(u - u_h, u - u_h) = a(u - u_h, u - v_h) + \underbrace{a(u - u_h, v_h - u_h)}_{=a(u - u_h, w_h) = 0} \leqslant \beta \|u - u_h\| \|u - v_h\|,$$

kde člen $a(u-u_h,v_h-u_h)$ vypadl díky (11.3). Vydělením celé nerovnice výrazem $\alpha \|u-u_h\|$ dostaneme

$$||u - u_h|| \leqslant \frac{\beta}{\alpha} ||u - v_h||.$$

Protože v_h je libovolný prvek z V_h , je tak (11.2) dokázáno.

11.2 Příklad lineárních prvků v 1D

Uvažujme okrajovou úlohu

$$-u'' = f v (0,1), \quad u(0) = u(1) = 0,$$

jejíž slabá formulace zní:

Najdi
$$u \in H_0^1(0,1)$$
 tak, aby $\forall v \in H_0^1(0,1)$: $a(u,v) := (u',v') = (f,v) =: l(v)$.

Jako podprostor V_h zvolíme množinu lineárních lomených funkcí na intervalu [0,1]. Rozdělme interval [0,1] pomocí bodů $x_0=0 < x_1 < x_2 < \ldots < x_{N+1}=1$ na intervaly $E_j:=(x_{j-1},x_j)$ o délce $h_j:=x_j-x_{j-1}$. Normu tohoto dělení zavedeme jako $h:=\max_{j=1,\ldots,N+1}h_j$. Definujeme

$$V_h := \{v_h \in C([0,1]); \ \forall j = 1,...,N : \ v_h \text{ je lineární na } E_i, \ v_h(0) = v_h(1) = 0\}.$$

Jelikož funkce z V_h jsou spojité a nulové v bodech 0 a 1, je automaticky V_h podprostorem $H^1_0(0,1)$. Každou funkci v_h z V_h jednoznačně určují její hodnoty v dělících bodech $\{x_j\}_{j=1}^N$. Dimenze podprostoru tedy je dim $V_h = N$. Pro metodu konečných prvků je klíčová volba báze. Zvolíme bázové funkce podprostoru V_h pomocí vztahů $\varphi_i(x_j) := \delta_{ij}$. Každá bázová funkce je tedy nenulová v právě jednom dělícím bodě (viz Obr. 2). Prvky matice $\mathbb{A} \in \mathbb{R}^{N \times N}$ a vektoru $\mathbf{b} \in \mathbb{R}^N$ mají tvar

Obrázek 2: Bázové funkce pro prostor po částech lineárních funkcí.

$$a_{ij} = \int_0^1 \varphi_j'(x)\varphi_i(x),$$
$$b_i = \int_0^1 f(x)\varphi_i(x) dx.$$

Je zřejmé, že a_{ij} je nulové, pokud se indexy i a j liší více než o 1, neboť v takovém případě je v každém bodě intervalu (0,1) alespoň jedna z funkcí φ_i , φ_j nulová. Matice $\mathbb A$ proto bude třídiagonální, a tedy řídká. Platí:

$$a_{jj} = \int_{x_{j-1}}^{x_j} \varphi_j'(x)^2 dx + \int_{x_j}^{x_{j+1}} \varphi_j'(x)^2 dx = \int_{x_{j-1}}^{x_j} \frac{1}{h_{j-1}^2} dx + \int_{x_j}^{x_{j+1}} \frac{1}{h_j^2} dx$$
$$= \frac{1}{h_{j-1}} + \frac{1}{h_j}, \ j = 1, ..., N,$$

$$a_{j,j-1} = a_{j-1,j} = \int_{x_{j-1}}^{x_j} \varphi'_{j-1}(x) \varphi'_j(x) \, \mathrm{d}x$$
$$= \int_{x_{j-1}}^{x_j} \frac{(-1)}{h_{j-1}^2} \, \mathrm{d}x = -\frac{1}{h_{j-1}}, j = 2, ..., N.$$

V případě ekvidistantního dělení $(h = h_j \ \forall j = 1, ..., N)$ máme

$$\mathbb{A} = \frac{1}{h} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{pmatrix}.$$

Protože bilineární forma (a, u, v) je symetrická a eliptická, je také \mathbb{A} symetrická a pozitivně definitní. Soustava $\mathbb{A}\boldsymbol{\xi} = \boldsymbol{b}$ má řešení pro každý vektor \boldsymbol{b} a řešením Galerkinovy úlohy je funkce $u_h(x) := \sum_{i=1}^N \xi_i \varphi_i(x)$. Hodnoty ξ_i jsou zároveň hodnotami funkce u_h v bodech x_i .

Podobně jako ve Větě 11.1 lze ukázat, že platí odhad chyby

$$\forall v_h \in V_h: \|u' - u_h'\|_2 \leqslant \|u' - v_h'\|_2, \tag{11.4}$$

takže u_h je zároveň nejlepší aproximace slabého řešení u v prostoru po částech lineárních funkcí. Zvolme nyní vhodnou funkci v_h , abychom odhad chyby (11.4) vyjádřili kvantitativně. Položíme $v_h := \tilde{u}_h$, kde \tilde{u}_h je interpolanta u (po částech lineární funkce taková, že $\tilde{u}_h(x_i) = u(x_i)$, i = 0, ..., N+1). Pak z teorie Lagrangeovy interpolace víme, že platí

$$|u'(x) - \tilde{u}'_h(x)| \le h \max_{y \in [0, 1]} |u''(y)| \ \forall x \in [0, 1].$$

Je-li funkce u třídy $C^2([0,1])$, pak dostáváme odhad

$$||u' - u_h'||_2 \le ||u' - \tilde{u}_h'||_2 \le h \max_{y \in [0,1]} |u''(y)|,$$

který říká, že chyba Galerkinovy aproximace měřená jako L^2 norma rozdílu derivací je řádu O(h).

11.3 Lineární prvky ve vyšší dimenzi

Pro oblasti v \mathbb{R}^2 a \mathbb{R}^3 se Galerkinova metoda liší v konstrukci podprostoru V_h . Předpokládejme, že oblast Ω je polygonální, resp. polyhedrální. Rozdělme Ω na nepřekrývající se trojúhelníky, resp. čtyřstěny (tzv. elementy). Označme h jako průměr největšího elementu. Množinu všech elementů (triangulace oblasti Ω) budeme značit \mathcal{T}_h .

Je-li slabá formulace zavedena v prostoru $V = H_0^1(\Omega)$, pak prostor V_h můžeme definovat jako množinu

$$V_h:=\{v_h\in C(\overline{\Omega});\ \forall E\in\mathcal{T}_h:\ v_h\ \text{je lineární na}\ E,\ v_h=0\ \text{na}\ \partial\Omega\}$$

všech spojitých po částech lineárních funkcí na $\overline{\Omega}$. Na jednom trojúhelníku, resp. čtyřstěnu, je lineární funkce jednoznačně určena svými hodnotami ve vrcholech $\{x_i\}_{i=1}^N$ uvnitř oblasti. Hodnoty ve všech těchto vrcholech pak tvoří stupně volnosti funkce z V_h . Bázové funkce $\{\varphi_i\}_{i=1}^N$ volíme tak, aby $\varphi_i(x_j) = \delta_{ij}$ (viz Obr. 3).

Obrázek 3: Příklad bázové funkce pro prostor po částech lineárních funkcí na 2D oblasti.

12 Diskrétní prostory konečných prvků

(Viz. Johnson [1], kapitola 3)

V předchozích kapitolách jsme odvodili aproximaci abstraktní eliptické pomocí Galerkinovy metody. Vycházeli jsme přitom z předpokladu, že nekonečný prostor řešení V (např. $H^1(\Omega)$) aproximujeme konečným prostorem V_h aniž bychom přesněji specifikovali jak se tento prostor konkrétně sestrojí. Volbu tohoto prostoru je nutno provést tak, aby bylo možno pro jeho funkce vyhodnotit formy $a(\cdot,\cdot)$ a $l(\cdot)$, což je nutné pro sestavení lineárního systému. Pro vyhodnocení forem je typicky potřeba počítat integrály přes Ω z funkcí v prostoru V_h a z jejich mocnin a derivací. Základní myšlenky metody konečných prvků jsou:

- 1. Rozdělit (složitou) oblast Ω na jednodušší podoblasti $K \in \mathcal{T}$ a vyhodnocovat integrál přes Ω jako součet integrálů přes podoblasti.
- 2. Na každé podoblasti K sestrojit prostor $V_h(K)$ z jednoduchých funkcí typicky z polynomů. Polynomy zůstávají polynomy při umocňování i derivování a na jednoduchých oblastech je lze integrovat přesně.
- 3. Sestrojit $V_h(\Omega)$ jako prostor po částech polynomiálních funkcí, zajistit spojitost (nebo i spojitost derivací) mezi podoblastmi pomocí stupňů volnosti.
- 12.1 Kostrukce konečně prvkového prostoru
- 12.2 Příklad lineárních prvků ve 2d
- 12.3 Příklad kvadratických prvků ve 2d
- 12.4 Obecný konečný prvek

Předchozí příklady můžeme shrnout do obecné definice konečného prvku.

Definice 12.1. Konečný prvek je trojice (K, P_K, Σ) , kde

1. K je konvexní podmnožina \mathbb{R}^n (úsečka, trojúhelních, čtyřúhelník, čtyřstěn, osmistěn, pyramida, hranol)

- 2. P_K je prostor funkcí na množině K (většinou polynomiální funkce, skalární nebo i vektorové).
- 3. Σ je množina lineárních forem na P_K (o velikosti $\dim(P_K)$) splňujících podmínku unisolventnosti:

Pokud je p funkce z
$$P_K$$
 a $\Phi(p) = 0$ pro každou formu $\Phi \in \Sigma$, pak je $p \equiv 0$.

12.5 Vyhodnocení forem

Demonstrujme vyhodnocení integrálů ve formách $a(\cdot,\cdot),\ l(\cdot)$ na následujícím integrálu, který vznikne slabou formulací Laplaceovy rovnice:

$$a(\varphi_i, \varphi_j) = \int_{\Omega} \nabla \varphi_i(\boldsymbol{x}) \cdot \nabla \varphi_j(\boldsymbol{x}) \, d\boldsymbol{x}$$

Po rozdělení integrace na elementy K z triangulace \mathcal{T} :

$$a(\varphi_i, \varphi_j) = \sum_{K \in \mathcal{T}} \int_K \nabla \varphi_i(\boldsymbol{x}) \cdot \nabla \varphi_j(\boldsymbol{x}) \, d\boldsymbol{x}$$

Každý prvek sítě K převedeme na referenční element \hat{K} pomocí substituce $\mathbf{x} = \mathbb{P}_K \hat{\mathbf{x}} + \mathbf{q}_K$, $d\mathbf{x} = |\mathbb{P}_K| d\hat{\mathbf{x}}$. Při této transformaci se zachovávají hodnoty funkcí, t.j.

$$\varphi(\boldsymbol{x}) = \varphi(\boldsymbol{x}(\hat{\boldsymbol{x}})) = \hat{\varphi}(\hat{\boldsymbol{x}})$$

ale mění se hodnoty derivací:

$$\frac{\partial \hat{\varphi}(\hat{\boldsymbol{x}})}{\partial \hat{x}_i} = \frac{\partial \varphi(\boldsymbol{x}(\hat{\boldsymbol{x}}))}{\partial \hat{x}_i} = \frac{\partial \varphi(\boldsymbol{x})}{\partial x_j} \frac{\partial x_j}{\partial \hat{x}_i}$$

neboli pro gradient $\nabla_{\hat{x}}\hat{\varphi} = \mathbb{P}_K \nabla_x \varphi$. Po substituci dostaneme tedy integrál:

$$a(\varphi_i, \varphi_j) = \sum_{K \in \mathcal{T}} \int_{\hat{K}} \left[\mathbb{P}_K^{-1} \nabla_{\hat{x}} \hat{\varphi}_i \right] \cdot \left[\mathbb{P}_K^{-1} \nabla_{\hat{x}} \hat{\varphi}_j \right] |\mathbb{P}_K| \, d\hat{x}.$$

Pro transformaci složitějších než simplexových elementů je transformace nelineární a tudíž matice \mathbb{P}_K a vektor posunutí \boldsymbol{q}_K jsou obecně závislé na \boldsymbol{x} resp. $\hat{\boldsymbol{x}}$. Použitím numerické integrace (viz. dále) na náš integrál pak dostaneme:

$$a(\varphi_i, \varphi_j) = \sum_{K \in \mathcal{T}} \sum_{q \in Q} \mathbf{D}_i(\mathbf{q}) \cdot \mathbf{D}_j(\mathbf{q}) J(\mathbf{q}) w_{\mathbf{q}},$$

kde $\boldsymbol{D}_i(\boldsymbol{q}) = \mathbb{P}_K^{-1}(\boldsymbol{q}) \nabla \hat{\varphi}_i(\boldsymbol{q}).$

12.6 Numerická integrace

Pro vyhodnocení integálů je výhodné použít numerickou integraci (kvadraturu). Pro polynomiální bázové funkce lze zvolit takovou kvadraturu, že jsou příslušné integrály spočteny přesně. Pokud jsou pod integrálem i jiné funkce, například vlivem koeficientů v rovnici nebo kvůli transformaci na referenční element poskytuje numerická kvadratura obvykle dobrou aproximaci. Konkrétní kvadratura na referenčním prvku \hat{K} je dána

- 1. množinou kvadraturních bodů $Q = \{ \mathbf{q} \in \hat{K} \},$
- 2. množinou jim příslušejících vah $w_{\mathbf{q}}$.

Integrál z funkce $f(\hat{x})$ je pak aproximován pomocí sumy:

$$\int_{\hat{K}} f(\hat{\boldsymbol{x}}) \, \mathrm{d}\hat{\boldsymbol{x}} \approx \sum_{\boldsymbol{q} \in Q} f(\hat{\boldsymbol{q}}) w_{\boldsymbol{q}}.$$

Pro integraci na reálném intervalu $K \subset \mathbb{R}$ lze použít Gaussovu kvadraturu, která má optimální řád chyby. Při použití n kvadraturních bodů integruje kvadrature přesně polynomy do řádu 2n-1. Pro vyhodnocení bilineární formy pro Laplaceovu rovnici a při použití prvků s polynomi řádu k, mají derivace řád k-1 a jejich součin řád 2(k-1) pro přesné vyhodnocení integrálů je tedy potřeba použít k-bodovou Gaussovu kvadraturu. Pro 2d a 3d prvky je situace komplikovanější, nicméně vhodné kvadratury existují pro všechny základní typy elementů.

13 Interpolační vlastnosti konečných prvků

Podle Johnson [1], kapitola 4, bez důkazů.

- Interpolační vlastnosti lineárních prvků ve 2D.
- Interpolační vlastnosti prvků vyšších řádů.
- Aplikace interpolačních odhadů v Ceově lemmatu.
- Regularita přesného slabého řešení (Kdy je možno použít prvky vyšších řádů?)
- Adaptivní metody, základní principy.

Reference

- [1] C. Johnson. Numerical solutions of partial differential equations by the finite element method. Cambridge University Press, 1987.
- [2] K. Rektorys. Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL, Praha, 1974.