Boyi Guo and Nengjun Yi

Department of Biostatistics University of Alabama at Birmingham

August 8th, 2022

Background

"It is extremely unlikely that the true (effect) function f(X) (on the outcome) is actually linear in X."

— Hastie, Tibshirani, and Friedman (2009) PP. 139

Question

How to model nonlinear effects for survival outcome in **high-dimensional** setting?

Following all necessary assumptions, a Cox proportional hazards model with event time t_i and predictors x_{ij} , j = 1, ..., p, is expressed as

$$h(t_i) = h_0(t_i) \exp(\sum_{j=1}^{p} B_j(x_{ij})), \quad i = 1, \ldots, n.$$

Spline functions

Background

$$B(x) = \sum_{k=1}^{K} \beta_k b_k(x) \equiv \boldsymbol{X}^T \boldsymbol{\beta}$$

 $b_k(x)$ are the *basis functions*, possibly truncated power basis and b-spline basis. (Wood 2017)

Function Smoothing

- ► Smoothing penalty pen_{λ}($B_i(X_i)$) = $\lambda \int B''(X)^2 dx = \lambda \beta^T S\beta$
 - ▶ The smoothing penalty matrix **S** is known given **X**
 - ▶ **S** is symmetric and positive semi-definite
- Penalized Partial Likelihood Function

$$pl(\beta) = \sum_{i=1}^{n} d_i \log \frac{\exp(\beta^T \mathbf{x}_i)}{\sum_{i' \in R(t_i)} \exp(\beta^T b s x_{i'})} - \sum_{j=1}^{p} \operatorname{pen}_{\lambda}(B_j(X_j)),$$

lacktriangle The smoothing parameter λ is a tuning parameter, selected via cross-validation

High-dimensional Additive Cox Model

Primary Challenges:

- Jointly model signal sparsity versus function smoothness
 - Smooth penalty only overfits the model
 - Sparsity penalty only overshinks the coefficients
 - Damage predictive performance
- Adaptive shrinkage
 - Global shrinkage assumes similar function smoothness
- Bi-level selection that simultaneously answers
 - if a variable is predictive to the outcome, $B_j(X_j) = 0$
 - ightharpoonup if a variable has a nonlinear relationship with the outcome, $B_j(X_j)=\beta_jX_j$

Bayesian Hierarchical Additive Model

- Two-part spike-and-slab LASSO prior for spline functions
 - Variable selection via inclusion indicator
 - ▶ Bi-level selection accounting for effect hierarchy
 - Adaptive shrinkage via Bayesian regularization
- EM-Coordinate Descent algorithm
 - Expedited computation
 - Seamless variable selection via sparse solution

Two-part Spike-and-slab LASSO (SSL) Prior

Follow Marra and Wood (2011), a spline function $B(X) = \mathbf{X}^T \boldsymbol{\beta}$ can be decomposed to linear and nonlinear components with respect to the smoothing penalty matrix S

$$\boldsymbol{X}^{T}\boldsymbol{\beta} = X^{0}\boldsymbol{\beta} + \boldsymbol{X}^{*}\boldsymbol{\beta}^{*}$$

Two-part spike-and-slab LASSO prior

$$egin{aligned} eta_j | \gamma_j, s_0, s_1 &\sim \mathsf{DE}(0, (1 - \gamma_j) s_0 + \gamma_j s_1) \ eta_{jk}^* | \gamma_j^*, s_0, s_1 &\stackrel{\mathsf{iid}}{\sim} \mathsf{DE}(0, (1 - \gamma_j^*) s_0 + \gamma_j^* s_1), k = 1, \dots, K - 1 \end{aligned}$$

- $ightharpoonup \gamma_i$ controls the inclusion of linear component
- $\triangleright \gamma_i^*$ controls the inclusion of nonlinear component

Effect hierarchy assumes lower-order effects are more likely to be active than higher-order effects

lacktriangle Structured prior on latent indicators γ_j and γ_j^*

$$\gamma_j | heta_j \sim extit{Bin}(\gamma_j | 1, heta_j), \quad \gamma_j^* | \gamma_j, heta_j \sim extit{Bin}(1, \gamma_j heta_j),$$

Simplification via analytic integration

$$\gamma_j^* | \theta_j \sim \textit{Bin}(1, \theta_j^2),$$

Adaptive shrinkage

$$\theta_i \sim \text{Beta}(a, b)$$

EM-Cooridante Descent Algrithm

We are interested in estimating $\Theta = \{\beta, \theta\}$ using optimization based algorithm for scalability purpose

- ightharpoonup Treat γ s as the "missing data" in the EM procedure
 - Construct the conditional expectation of the posterior density function
- Decompose the posterior density function to two pieces
 - $ightharpoonup L_1$ penalized partial likelihood function of eta
 - **Posterior density function of** θ
- Maximize the two pieces independently
 - ightharpoonup Optimize β with coordinate descent algorithm
 - ightharpoonup Optimize θ with beta-binomial conjugate relationship

- $ightharpoonup n_{train} = 500, \ n_{test} = 1000$
- p = 4, 10, 50, 100, 200
- Survival and censoring time follow Weibull distribution
 - ► Censoring rate is controlled at {0.15, 0.3, 0.45}

Prediction Performance

A Scalable and Flexible Cox Proportional Hazards Model for High-Dimensional Survival Prediction and Eunctional Selection

Emory Cardiovascular Biobank

- All-cause mortality among patents undergoing cardiac catheterization
- Sample size N=454 and number of features p=200
- 5-knot cubic spline

Conclusion

- ▶ A scalable and flexible Cox Model for high-dimensional survival data analysis
 - Two-part spike-and-slab LASSO prior for spline functions
 - ▶ Jointly model signal sparsity and function smoothness with adaptive regularization
 - ▶ Bi-level selection that accounts the effect hierarchy principle
 - EM-Coordinate Descent algorithm
 - Computation advantage and sparse solution
- R package: BHAM
 - Ancillary functions for high-dimensional formulation
 - ► Model summary and variable selection
 - Website via boyiguo1.github.io/BHAM

References

References I

- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer Science & Business Media.
- Marra, Giampiero, and Simon N Wood. 2011. "Practical Variable Selection for Generalized Additive Models." *Computational Statistics & Data Analysis* 55 (7): 2372–87.
- Wood, Simon N. 2017. Generalized additive models: An introduction with R, second edition. https://doi.org/10.1201/9781315370279.