GIẢI TÍCH 2 BÀI 5

CHƯƠNG III. TÍCH PHÂN BỘI A. TÍCH PHÂN HAI LỚP (TÍCH PHÂN KÉP)

3.0. Tính thể tích bằng tích phân lặp

• Đã biết công thức tính thể tích vật thể trong Giải tích I: $V = \int_{a}^{b} S(x) dx$ (0.1)

• Diện tích tiết diện thẳng S(x) được tính như sau:

$$S(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$
 (0.2)

• Thay (0.2) vào (0.1) ta có

$$V = \int_{a}^{b} \left(\int_{y_1(x)}^{y_2(x)} f(x, y) dy \right) dx = \int_{a}^{b} dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

Ví dụ 1. Tính tích phân lặp $I = \int_{0}^{1} \left(\int_{x^{2}}^{x} 2y dy \right) dx$

Ví dụ 2. Sử dụng tích phân lặp tính thể tích tứ diện giới hạn bởi các mặt phẳng toạ độ và mặt phẳng

$$x + y + z = 1$$

3.1. Tích phân hai lớp trên hình chữ nhật đóng

3.1.1. Định nghĩa

a) Phân hoạch π chia hình chữ nhật $R = [a \; ; b] \times [c \; ; d]$ thành hữu hạn các hình chữ nhật đóng, đôi một không có phần trong chung và có $|R| = \sum_{i=1}^{n} \Delta R_i$,

 ΔR_i là diện tích hình chữ nhật thứ i, |R| là diện tích hình chữ nhật R; d_i là đường chéo hình chữ nhật ΔR_i , $d(\pi) = \max_{i=1,n} d_i$

b) Tổng tích phân

$$\sigma = \sigma(f, \pi, p_1, ..., p_n) = \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta R_i, p_i(\xi_i, \eta_i),$$

Hàm f(x,y) xác định và bị chặn trên R

c) Các tổng Đacbu

• Tổng Đacbu dưới: $s(\pi) = \sum_{i=1}^{n} m_i \Delta R_i$

• Tổng Đacbu trên: $S(\pi) = \sum_{i=1}^{\infty} M_i \Delta R_i$, ở đó

$$m_i = \inf_{\Delta R_i} f(x, y), M_i = \sup_{\Delta R_i} f(x, y),$$

thì có

$$m|R| \le s(\pi) \le \sigma(f, \pi, p_1, ..., p_n) \le S(\pi) \le M|R|$$

d) Tổng trên không tăng, tổng dưới không giảm

- Ta bảo phân hoạch π' mịn hơn π nếu mỗi hình chữ nhật trong phân hoạch π' luôn nằm trong hình chữ nhật nào đấy của phân hoạch π
- Khi π' mịn hơn π , ta có $s(\pi) \leq s'(\pi) \leq S'(\pi) \leq S(\pi)$.

e) Dãy chuẩn tắc các phép phân hoạch

Cho $\{\pi_n\}$ là dãy các phân hoạch hình chữ nhật R. Dãy $\{\pi_n\}$ được gọi là chuẩn tắc nếu $\lim_{n\to\infty} d(\pi_n) = 0$.

f) Định nghĩa tích phân kép

Cho f xác định trên hình chữ nhật đóng R, Nếu có $\lim_{n\to\infty} \sigma(f,\pi,p_1,...,p_n) =$

$$\lim_{n\to\infty}\sum_{i=1}^{p_n}f(\xi_i,\eta_i)\Delta R_i=I \text{ (số thực hữu hạn) với mọi dãy chuẩn tắc}$$

$$\{\pi_n\}: \pi_n = \{\Delta R_1, \Delta R_2, ..., \Delta R_{p_n}\},\$$

với mọi cách chọn điểm $p_i = (\xi_i; \eta_i) \in \Delta R_i$, thì ta có hàm f khả tích trên R và viết $\iint f(x,y) dx dy = I.$

3.1.2. Điều kiên khả tích

Định lí 1. Hàm f khả tích trên R đóng $\Rightarrow f$ bị chặn

Định nghĩa. $\{\pi_n\}$ là dãy chuẩn tắc bất kì. Ta gọi $\lim_{n\to\infty} s(\pi_n)$ ($\lim_{n\to\infty} S(\pi_n)$) là tích

phân dưới hai lớp (tích phân trên hai lớp) và kí hiệu là $\iint_{R} f(x,y) dx dy$

$$(\overline{\iint_{R} f(x,y) dx dy})$$

Đinh lí 2. Ta có

1°/
$$s(\pi) \le \iint_R f(x,y) dx dy \le \iint_R f(x,y) dx dy \le S(\pi)$$

1°/
$$s(\pi) \le \iint_{\underline{R}} f(x,y) dx dy \le \iint_{R} f(x,y) dx dy \le S(\pi)$$

2°/ $\sup_{P(R)} s(\pi) = \iint_{\underline{R}} f(x,y) dx dy$, $\inf_{P(R)} S(\pi) = \iint_{R} f(x,y) dx dy$,

P(R) là tập tất cả các phân hoạch của R.

Định lí 3.

Cho f bị chặn trên \overline{R} . Khi đó f khả tích trên R

$$\Leftrightarrow \iint_{R} f(x,y) dx dy = \overline{\iint_{R} f(x,y) dx dy}$$

Định lí 4. Cho f bị chặn trên \overline{R} . Khi đó f khả tích trên $R \Leftrightarrow \forall \ \varepsilon > 0$, bé tuỳ ý, \exists phân hoạch π của R sao cho $S(\pi) - S(\pi) < \varepsilon$

Định lí 5. f liên tục trên \overline{R} thì f khả tích trên R.

Định lí 6. f xác định và bị chặn trên \overline{R} , có f liên tục trên $R \setminus E$, ở đó $E \subset R$ và |E| = 0 $\Rightarrow f$ khả tích trên R.

3.2. Độ đo Peanno – Jourdan

• Độ đo. Tìm lớp $M \subset \mathbb{R}^2$ để $\forall A \subset M$ có độ đo là m(A) thoả mãn:

1°/
$$0 \le m(A) \le +\infty$$

2°/ Mọi hình chữ nhật $\Delta \in M$ và có $m(\Delta) = |\Delta|$

3°/ Mọi $A, B \in M$, rời nhau thì có

$$m(A \cup B) = m(A) + m(B)$$

• Độ đo Peanno – Jordan. Cho $A \subset \mathbb{R}^2$, ta gọi độ đo ngoài của nó là $m^*(A) = \inf \left\{ \sum_{i=1}^n |\Delta_i| : \bigcup_{i=1}^n \Delta_i \supset A \right\}$, ở đó Δ_i là những hình chữ nhật.

Nếu $A \subset \Delta_0$ nào đó thì ta gọi độ đo trong của nó là

$$m_*(A) = |\Delta_0| - m^*(\Delta_0 \setminus A).$$

Tập A được gọi là đo được $\Leftrightarrow m^*(A) = m_*(A)$ và khi đó ta định nghĩa $m(A) = m^*(A) = m_*(A)$

Đô đo Peanno-Jordan thoả mãn các tiên đề về đô đo.

3.3. Tích phân hai lớp trên tập hợp bị chặn

a) Định nghĩa. R là hình chữ nhật đóng, tập bị chặn $D \subset R$, hàm f gọi là xác định trên D, và

$$f_0(x,y) = \begin{cases} f(x,y), (x,y) \in D \\ 0, (x,y) \in R \setminus D \end{cases}$$

Nếu f_0 khả tích trên R thì ta bảo f khả tích trên D và định nghĩa

$$\iint_{D} f(x, y) dx dy = \iint_{R} f_{0}(x, y) dx dy$$

Định lí 7. D giới nội trong R, f bị chặn, $f \ge 0$ trên D. Nếu f khả tích trên D thì tập

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in D, 0 \le z \le f(x, y) \right\} \text{ (vật thể hình trụ)}$$

đo được theo nghĩa Jordan trong \mathbb{R}^3 và thể tích của A là $|A| = \iint_D f(x, y) dx dy$

Định lí 8. Tập D giới nội trong \mathbb{R}^2 , $X_D(x, y) = 1$, $(x, y) \in D$. Tập D đo được theo nghĩa Jordan $\Leftrightarrow X_D$ khả tích trên D, khi đó ta có $|D| = \iint_D X_D(x, y) dx dy = \iint_D dx dy$

Hệ quả 1. Tập D bị chặn trong \mathbb{R}^2 thì D đo được theo nghĩa Jordan $|\partial D| = 0$ **Hệ quả 2.** Hàm số $f: [a; b] \to \mathbb{R}$ khả tích trên đoạn [a; b] thì đồ thị Γ của f có diện tích 0.

Hệ quả 3. D giới nội trong \mathbb{R}^2 , ∂D là hợp của hữu hạn cung được xác định bởi các hàm số liên tục thì D là tập hợp đo được.

Miền giới nội trong \mathbb{R}^2 thoả các điều kiện của Hệ quả 3 được gọi là miền chính quy trong \mathbb{R}^2

b) Tính chất

1º/ Cộng tính. $D = D_1 \cup D_2$ bị chặn trong \mathbb{R}^2 , $|D_1 \cap D_2| = 0$, f khả tích trên D_1 , $D_2 \Rightarrow f$ khả tích trên D và có

$$\iint_{D} f(x, y) dx dy = \iint_{D_{1}} f(x, y) dx dy + \iint_{D_{2}} f(x, y) dx dy$$

2°/ Tuyến tính. D bị chặn trong \mathbb{R}^2 , f, g khả tích trên $D \Rightarrow \alpha f + \beta g$ khả tích trên D và có $\iint \left[\alpha f(x,y) + \beta g(x,y) \right] dx dy$

$$= \alpha \iint_{D} f(x, y) dx dy + \beta \iint_{D} g(x, y) dx dy, \ \alpha, \beta \in \mathbb{R}$$

3°/ Bảo toàn thứ tự. Hai hàm f, g khả tích trên tập bị chặn $D \subset \mathbb{R}^2$, và có $f(x, y) \leq g(x, y)$, $\forall (x, y) \in D$. Khi đó

$$\iint_D f(x,y) dx dy \leq \iint_D g(x,y) dx dy.$$

Hệ quả 4. Nếu $m \le f(x, y) \le M$, $\forall (x, y) \in D$, thì có

$$m|D| \leq \iint_D f(x, y) dx dy \leq M|D|$$

Hệ quả 5.
$$\left| \iint_D f(x,y) dx dy \right| \leq \iint_D |f(x,y)| dx dy$$

4°/ Khả tích.

Định lí 9. D là tập đo được trong \mathbb{R}^2 , f liên tục, bị chặn trên $D \Rightarrow f$ khả tích trên D. Định lí 10.

$$|D| = 0$$
, f bị chặn trên $D \Rightarrow \iint_D f(x, y) dx dy = 0$.

Định lí 11.
$$g$$
 bị chặn trên D , f khả tích trên D , $|E| = 0$, $E \subset D$, $g(x, y) = f(x, y)$, $\forall (x, y) \in D \setminus E \Rightarrow g$ khả tích trên D và có $\iint_D g(x, y) dx dy = \iint_D f(x, y) dx dy$

5°/ Các định lí giá trị trung bình

Định lí 12. D là tập hợp đo được, f khả tích trên D và có $m \le f(x, y) \le M$, $\forall (x, y) \in D$.

Khi đó
$$\exists \ \mu \in [m, M]$$
 sao cho $\iint_D f(x, y) dx dy = \mu |D|$

Định lí 13. Cho D đóng, đo được, liên thông, f liên tục trên $D \Rightarrow \exists p(\xi, \eta) \in D$ sao cho

$$\iint_{D} f(x, y) dx dy = f(p)|D|.$$

HAVE A GOOD UNDERSTANDING!