4. Finite hypothesis classes, PAC

Saturday, January 8, 2022 5:00 PM

How to analyze and pick good hypothesis classes H

Ex. §2.3.1 SS Finite hypothesis class, i.e., |H| < 00 (SO not axis-aligned rectangles: that had finite dimension)

Motivation: H= { all functions we can implement in 100 lines (80 char. wide) of C++ code }

or $H = \{$ axis-aligned rectangles in IR2, within a bounded set, and discretized (e.g. IEEE double precision float) $\}$

We're going to start with the assumption of realizability:

Assume Jh + e H s.t. LD, f (h+) = 0, i.e., H is large enough or our bias is harmless.

Q: could we find this h* via ERM? (let's restrict to binary classification) true labeling fraction $L_{D,f}(h) = P_{X\sim D}(h(x) \neq f(x))$

So $P(\hat{\lambda}_{S}(h^{*})=0) = \frac{m}{m} P(h^{*}(x_{i})=f(x_{i}))$ since itid $= \frac{m}{m} 1 = 1$

So $\hat{L}_s(h) = 0$ w.p. 1, and since $\hat{L}_s(h) > 0$ $\forall h$, this means, with probability 1, $h \neq \epsilon$ argmin $\hat{L}_s(h)$

... but, there may be more than 1 minimizer, so that's a problem. (it does tell us that if he ERM (S) then $\hat{L}_s(h) = 0$)

So we'll pick some $h_S \in ERM_{\mathcal{H}}(S) := argmin \hat{L}_S(h)$, which is a random variable. What kind if analysis can we do?

Can we hope to say $L_{D,f}(h_S) = 0$ or $L_{D,f}(h_S) \leq E$? No! It's random.

We're instead going to ask for a

probably, approximately correct (PAC) learner:

With probability $V \in S \in (0,1)$, w.p. $V \in S = S$ i.e., $V \in S \in S$ "PAC" sounds fancy but it's already common in Statistics, eg., a 95% confidence interval means S = 0.05and $V \in S \in S$ half the width of the confidence interval

Our first analysis a (specialized) analysis of when |H| < >