# CIE - I

| Date        | 19 June 2024                   | Maximum Marks | 50     |
|-------------|--------------------------------|---------------|--------|
| Course Code | ME242AT                        | Duration      | 90 Min |
| Course Name | Material Science for Engineers | USN:          |        |

| #/ | Questions                                                                                           | M  | BT  | CO |
|----|-----------------------------------------------------------------------------------------------------|----|-----|----|
| 1a | Describe energy bands for metals, Semiconductors, and insulators with a neat sketch.                | 04 | 3   | 1  |
| 1b | With the help of neat sketches explain all the primary bonds with examples.                         | 06 | 3   | 1  |
| 2a | Calculate Atomic packing factor for BCC unit cell.                                                  | 04 | 4   | 1  |
| 2b | Enumerate the types of point defects using appropriate sketches                                     | 06 | 3   | 1  |
| 3a | Explain the dislocation mechanisms: Slip and Twinning                                               | 06 | 2   | 1  |
| 3b | Highlight the properties and applications of polymers giving examples.                              | 04 | 2   | 1  |
| 4  | List and explain different thermoelectric effects and state their applications                      | 10 | 1,2 | 2  |
| 5  | With the help of a neat, labelled stress-strain diagram illustrate properties in the plastic region | 10 | 3   | 2  |

### BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

| N/ 1                  | Parti | culars | CO1 | CO2 | СОЗ | CO4 | L1 | L2 | L3 | L4 | L5 | L6 |
|-----------------------|-------|--------|-----|-----|-----|-----|----|----|----|----|----|----|
| Marks<br>Distribution | TEST  | Marks  | 30  | 20  | -   | -   | 05 | 15 | 26 | 4  |    |    |

\*\*\*\*\*

| #/ | Questions                                                                                                                                                                                                                      | M  | BT  | CO |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 1a | Describe energy bands for metals, Semiconductors, and insulators with a neat                                                                                                                                                   |    |     |    |
|    | sketch.                                                                                                                                                                                                                        |    |     |    |
|    | Sketch 2m                                                                                                                                                                                                                      |    |     |    |
|    | Explanation of bands with energy gaps 2m                                                                                                                                                                                       |    |     |    |
|    | CONDUCTION BAND  E <sub>g</sub> = 0  E <sub>g</sub> = 1.1 eV  CONDUCTION BAND  VALENCE BAND  (a) Insulator  (b) Semiconductor  (c) Conductor  Fig. 1 Energy band diagram of (a) Insulator, (b) Semiconductor and (c) Conductor | 04 | 3   | 1  |
| 1b | With the help of neat sketches explain all the primary bonds with examples.  Brief explanation of Primary Interatomic Bonds with examples  Covalent: CH <sub>4</sub> , H <sub>2</sub> Ionic: NaCl, MgO.  Metallic: Cu          | 06 | 3   | 1  |
| 2a | Calculate Atomic packing factor for BCC unit cell.  Figure 1m  Equation writeup and calculation 3m                                                                                                                             | 04 | 4   | 1  |
| 2b | Enumerate the types of point defects using appropriate sketches Writing the classification 1m Sketches 2m Explanation 3m                                                                                                       | 06 | 3   | 1  |
| 3a | Explain the dislocation mechanisms: Slip and Twinning Sketch 3m Explanation 3m                                                                                                                                                 | 06 | 2   | 1  |
| 3b | Highlight the properties and applications of polymers giving examples.  Properties (any 2) with example 2m  Applications (any 2) with example 2m                                                                               | 04 | 2   | 1  |
| 4  | List and explain different thermoelectric effects and state their applications Seebeck, Peltier and Thomson effects Listing 1m                                                                                                 | 10 | 1,2 | 2  |

|   | Sketches 6m                                                                          |    |   |  |
|---|--------------------------------------------------------------------------------------|----|---|--|
|   | Applications 3m                                                                      |    |   |  |
| 5 | With the help of a neat, labelled stress-strain diagram illustrate properties in the |    |   |  |
|   | plastic region.                                                                      | 10 | 2 |  |
|   | Diagram 4m                                                                           | 10 | 3 |  |
|   | Properties 6m ( UTS, Fracture strength, toughness)                                   |    |   |  |

## CIE – II

| Date        | 22nd July 2024                 | Maximum Marks | 50 +10  |
|-------------|--------------------------------|---------------|---------|
| Course Code | ME242AT                        | Duration      | 120 Min |
| Course Name | Material Science for Engineers | USN:          |         |

| Q. No. | PART A                                                                                    | M | BT | CO |
|--------|-------------------------------------------------------------------------------------------|---|----|----|
| 1      | Photodiodes serve asin optical communication systems.                                     | 1 | 1  | 2  |
| 2      | A light controlled variable resistor, whose resistance decreases with increasing incident | 1 | 1  | 2  |
|        | light intensity is known as                                                               |   |    |    |
| 3      | Name the fundamental semiconductor devices that act as amplifiers or switch.              | 1 | 1  | 2  |
| 4      | The insulating materials having ability to store and support the transmission of electric | 1 | 1  | 2  |
|        | charge without conducting it are known as                                                 |   |    |    |
| 5      | Name the alloying element mainly responsible for the high corrosion resistance property   | 1 | 1  | 2  |
|        | in stainless steel.                                                                       |   |    |    |
| 6      | Mention two advantage of non-ferrous alloys over the ferrous alloys                       | 2 | 1  | 2  |
| 7      | The process involves shaping a material by forcing it through a die to create a specific  | 1 | 1  | 2  |
|        | cross-sectional shape is known as                                                         |   |    |    |
| 8      | Name the type of polymer which become soft upon heating and become hard and rigid         | 1 | 1  | 2  |
|        | on cooling also do not have cross linking and branching.                                  |   |    |    |
| 9      | Give an example of natural composites.                                                    | 1 | 1  | 2  |

| Q. No.     | PART B                                                                                                                                               | M        | BT  | CO |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----|
| 1          | Illustrate the working principle and state the applications of the following optoelectronic devices: i) LED ii) Photo resistor iii) photo transistor | 10       | 3   | 2  |
| 2a.<br>2b. | List any five common dielectric materials along with their applications. Explain the effects of different alloying elements on steel.                | 05<br>05 | 2 3 | 2  |
| 3.         | Explain the properties and applications of following materials with examples.  i) Polymers ii) Metal matrix composites                               | 10       | 3   | 2  |
| 4.         | Illustrate the properties and applications of four types of cast iron.                                                                               | 10       | 3   | 2  |
| 5a         | Explain the metal casting process. Write the advantages and disadvantages of any two casting processes.                                              | 05       | 3   | 2  |
| 5b         | Write the properties and applications of bio-materials.                                                                                              | 05       | 2   |    |

# **BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks**

|              |      |            |     | •   |     |     |    |    |    |    |    |    |
|--------------|------|------------|-----|-----|-----|-----|----|----|----|----|----|----|
|              | P    | articulars | CO1 | CO2 | CO3 | CO4 | L1 | L2 | L3 | L4 | L5 | L6 |
| Maiks        | TEST | Marks      | -   | 50  | -   | -   |    | 10 | 40 |    |    |    |
| Distribution | QUIZ |            |     | 10  |     |     | 10 |    |    |    |    |    |

\*\*\*\*\*\*



# **CIE - II SCHEME and SOLUTION**

| Date        | 22nd July 2024                 | Maximum Marks | 50     |
|-------------|--------------------------------|---------------|--------|
| Course Code | ME242AT                        | Duration      | 90 Min |
| Course Name | Material Science for Engineers | USN:          |        |

| Q.         | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M        | BT  | СО |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----|
| No.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |    |
| 1          | Illustrate the working principle and state the applications of the following optoelectronic devices: i) LED ii) Photo resistor iii) photo transistor  Explaining working principle 2m  Applications 1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10       | 3   | 2  |
| 2a.<br>2b. | List any five common dielectric materials along with their applications.  Capacitors, Insulation in Electrical Systems, Dielectric Resonators, Microwave  Devices, Dielectric Heating, Dielectric Constant Measurement, Elastomers, Dielectric  Coatings any five.  Explain the effects of different alloying elements on steel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     | 2  |
|            | <ul> <li>Manganese contributes to strength and hardness; dependent upon the carbon content. Increasing the manganese content decreases ductility and weldability. Manganese has a significant effect on the hardenability of steel.</li> <li>Phosphorus increases strength and hardness and decreases ductility and notch impact toughness of steel. The adverse effects on ductility and toughness are greater in quenched and tempered higher-carbon steels.</li> <li>Sulfur decreases ductility and notch impact toughness especially in the transverse direction. Weldability decreases with increasing sulfur content. Sulfur is found primarily in the form of sulfide inclusions.</li> <li>Silicon is one of the principal deoxidizers used in steelmaking. Silicon is less effective than manganese in increasing as-rolled strength and hardness. In low-carbon steels, silicon is generally detrimental to surface quality.</li> <li>Copper in significant amounts is detrimental to hot-working steels. Copper can be detrimental to surface quality. Copper is beneficial to atmospheric corrosion resistance when present in amounts exceeding 0.20%.</li> <li>Nickel is a ferrite strengthener. Nickel does not form carbides in steel. It remains in solution in ferrite, strengthening and toughening the ferrite phase. Nickel increases the hardenability and impact strength of steels.</li> <li>Molybdenum increases the hardenability of steel. It enhances the creep strength of low-alloy steels at elevated temperatures.</li> </ul> | 05<br>05 | 2 3 |    |
| 3.         | Explain the properties and applications of following materials with examples.  i) Polymers ii) Metal matrix composites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10       | 3   | 2  |



|    | Listing minin      | num five properties and five                         | e applications                               |                                   |       | <u> </u> | Ī            |
|----|--------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------|-------|----------|--------------|
|    | 1                  | each material)                                       | фричин                                       |                                   |       |          |              |
| 4. | `                  | properties and applications                          | of four types of cas                         | t iron.                           |       |          |              |
|    | 1                  | ı, Malleable cast iron, Nodu                         |                                              |                                   | 10    | 3        | 2            |
|    | 1 1                | ies and applications                                 | ,                                            |                                   |       |          |              |
| 5a |                    |                                                      | the advantages and                           | disadvantages of any two ca       | sting |          |              |
|    | processes.         |                                                      | C                                            | Ç ,                               |       |          |              |
|    | Explaining ge      | eneral casting process 2m                            |                                              |                                   |       |          |              |
|    | Writing advar      | ntages and disadvantages 3r                          | n                                            |                                   |       |          |              |
|    | Different (        | Casting Processes                                    |                                              |                                   |       |          |              |
|    | Process            | Advantages                                           | Disadvantages                                | Examples                          |       |          |              |
|    | Sand               | many metals, sizes, shapes, cheap                    | poor finish & tolerance                      | engine blocks,<br>cylinder heads  |       |          |              |
|    | Shell mold         | better accuracy, finish, higher production rate      | limited part size                            | connecting rods, gear housings    |       |          |              |
|    | Expendable pattern | Wide range of metals, sizes, shapes                  | patterns have low<br>strength                | cylinder heads, brake components  |       |          |              |
|    | Plaster mold       | complex shapes, good surface finish                  | non-ferrous metals, low production rate      | prototypes of mechanical parts    |       |          |              |
|    | Ceramic mold       | complex shapes, high accuracy, good finish           | small sizes                                  | impellers, injection mold tooling |       |          |              |
|    | Investment         | complex shapes, excellent finish                     | small parts, expensive                       | jewellery                         |       |          |              |
|    | Permanent mold     | good finish, low porosity, high production rate      | Costly mold, simpler shapes only             | gears, gear housings              | 0.5   |          |              |
| 5b | Die                | Excellent dimensional accuracy, high production rate | costly dies, small parts, non-ferrous metals | gears, camera bodies, car wheels  | 05    | 3        |              |
|    | Centrifugal        | Large cylindrical parts, good                        | Expensive, few shapes                        | pipes, boilers, flywheels         | 05    | 2        |              |
|    | Write the proj     | perties and applications of b                        | pio-materials.                               | Hywheeis                          | 03    | 2        |              |
|    | ·                  | npatible chemical compos                             | sition to avoid adv                          | erse tissue                       |       |          |              |
|    | reactions          |                                                      |                                              |                                   |       |          |              |
|    |                    | nt resistance to degradation                         |                                              |                                   |       |          |              |
|    |                    | r resistance to biological                           |                                              |                                   |       |          |              |
|    |                    | ble strength to sustain cyc                          |                                              | ed by the joint                   |       |          |              |
|    | A low me           | odulus to minimize bone r                            | esorption                                    |                                   |       |          |              |
|    | □ High wea         | ar resistance to minimize                            | wear debris gene                             | ration                            |       |          |              |
|    | 1.Orthopedics      | S                                                    |                                              |                                   |       |          |              |
|    | 2.Cardiovasco      | ular Applications                                    | • Hear                                       |                                   |       |          |              |
|    | 3.Ophthalmic       | es .                                                 |                                              | al Implants                       |       |          |              |
|    | 4.Dental App       | lications                                            |                                              | ocular Lenses<br>ular Grafts      |       |          |              |
|    |                    |                                                      | - vasc                                       | uidi Gidits                       |       |          | $oxed{oxed}$ |

|   | A £      |   | 1 |
|---|----------|---|---|
|   | Any five |   | 1 |
|   | inj nie  |   | 1 |
| 1 |          | I | 1 |
|   |          |   | 1 |

# $BT-Blooms\ Taxonomy,\ CO-Course\ Outcomes,\ M-Marks$

| Marks<br>Distribution | Particulars |       | CO1 | CO2 | CO3 | CO4 | L1 | L2 | L3 | L4 | L5 | L6 |
|-----------------------|-------------|-------|-----|-----|-----|-----|----|----|----|----|----|----|
|                       | TEST        | Marks | -   | 50  | -   | -   |    | 10 | 40 |    |    |    |

\*\*\*\*\*



## **CIE – IMPROVEMENT**

| Date        | August 2024                    | Maximum Marks | 50 +10  |
|-------------|--------------------------------|---------------|---------|
| Course Code | ME242AT                        | Duration      | 120 Min |
| Course Name | Material Science for Engineers | USN:          |         |

| Q. No. | PART A                                                                            | M | BT | CO |
|--------|-----------------------------------------------------------------------------------|---|----|----|
| 1      | Name a critical electronics manufacturing process primarily used in surface-mount | 1 | 1  | 3  |
|        | technology.                                                                       |   |    |    |
| 2      | Write two key advantages of RTP in Semiconductor manufacturing.                   | 2 | 1  | 3  |
| 3      | What are the two basic purposes of tempering.                                     | 2 | 1  | 3  |
| 4      | The crystal structure of martensite is                                            | 1 | 1  | 3  |
| 5      | Mention the cause of warpage in heat treatment of mechanical structure.           | 1 | 1  | 3  |
| 6      | Mention a property of a material which significantly defer from bulk material to  | 1 | 1  | 4  |
|        | nanomaterial.                                                                     |   |    |    |
| 7      | CVD technique used for synthesis of a nanomaterial is a type of approach.         | 1 | 1  | 4  |
| 8      | How nanoFRP is different from FRP.                                                | 1 | 1  | 4  |

| Q. No. | PART B                                                                                  | M  | BT | CO |
|--------|-----------------------------------------------------------------------------------------|----|----|----|
| 1a     | Describe the steps followed in thermal oxidation process for the post processing heat   | 5  | 3  | 3  |
|        | treatment of electronic devices.                                                        |    |    |    |
| 1b     | Highlight the factors affecting thermal oxidation process of electronic devices.        | 5  | 2  |    |
| 2      | Highlight the advantages, disadvantages and microstructures of following heat treatment | 10 | 2  | 3  |
|        | processes for eutectoid steels                                                          |    |    |    |
|        | i) Annealing, ii) Normalizing and iii) hardening                                        |    |    |    |
| 3a     | Describe the process of construction of Time Temperature Transformation (TTT) curves    | 5  | 3  | 3  |
|        | of eutectoid steel.                                                                     |    |    |    |
| 3b     | Explain the induction hardening process with a neat sketch                              | 5  | 3  |    |
| 4a     | Define and classify nanomaterials with examples.                                        | 5  | 2  | 4  |
| 4b     | Illustrate the synthesis of nanopowder using sol-gel method.                            | 5  | 3  |    |
| 5a     | Describe the properties and applications of carbon nanotubes and nano fabrics.          | 5  | 3  | 4  |
| 5b     | Illustrate the working principle of Scanning Electron Microscope (SEM) for the          | 5  | 3  |    |
|        | characterisation of nanocomposites.                                                     |    |    |    |

## **BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks**

|         | Particulars |       | CO1 | CO2 | CO3 | CO4 | L1 | L2 | L3 | L4 | L5 | L6 |
|---------|-------------|-------|-----|-----|-----|-----|----|----|----|----|----|----|
| TVICINS | TEST        | Marks | -   | -   | 30  | 20  |    | 20 | 30 |    |    |    |
|         | QUIZ        |       |     |     | 7   | 3   | 10 |    |    |    |    |    |

\*\*\*\*\*

Go, change the world°