Photomultiplier Tubes Photodiodes Electron Multipliers

Introduction

This catalog provides information on RCA's current line of **photomulti- pliers**, **electron multipliers**, and **gas** and **vacuum photodiodes**. The types described indicate RCA's broad capabilities; they do **not** comprise the **entire** line.

Variants of the listed types are available having -

- 1. different window and photocathode materials,
- different spectral responses with peaks at selected or specified wavelengths,
- 3. different configurations, and
- other special characteristics, e.g., non-magnetic construction, more rugged design.

You are invited to review your photodetector requirements with your nearest RCA Distributor or Sales Representative. See page 82.

Additional data and information on photomultipliers and on some of the electron multipliers are available in technical bulletins for each individual type or family. It is to be noted that data, especially for developmental types, are subject to change. Product bulletins as well as current information on the different photodetectors, may be obtained from your Sales Representative or may be requested from Commercial Engineering, RCA Corporation, Harrison, N.J. 07029. Please specify the types in which you are interested.

The cover symbol, as delineated above, portrays the extraordinary increases in photocathode sensitivities effected by RCA in the last few years due to new materials and new processing techniques.

Sufficient information is given in this catalog on gas and vacuum photodiodes for equipment design purposes. Individual data sheets are generally not available for these devices.

State-of-the-Art Advances

Revolutionary developments in photodetector design and manufacture over the past several years have resulted in unprecedented performance improvements for these products. RCA is the leader in these developments. From high efficiency secondary emitters such as gallium phosphide to photocathodes such as ERMA, ERBA, gallium arsenide, gallium arsenide phosphide, and most recently — gallium indium arsenide, the trend is clearly established: the marriage of solid-state and vacuum-tube technology, to provide the best of both, in QUANTACON photomultipliers.

Earlier claims of performance for phototubes made with III/V secondary emitters and/or photocathodes have been borne out in commercial and developmental RCA products. Some of these are:

I. GaP Secondary Emitters

- A. First dynode only (e.g., 8850, 8851, 8852, 8853, and 8854)
 - Higher secondary-emission ratio
 - Better electron resolution
 - Lower noise in signal current

The performance of the tubes listed above has been established to be even better than anticipated — and at a reasonable price.

- B. All dynodes (e.g., the C31024 family)
 - Subnanosecond rise time, less than 800 picosecond for single electrons
 - Convenient, simplified, small-size configuration, four to six stages provide performance and gain capability comparable to phototubes having twice as many stages
 - High electron resolution capability

II. III/V Photocathodes

As exemplified by the graph above, extraordinary strides have been made in cathode sensitivity since the introduction of the first III/V photocathodes. A premium version of one of these tubes, the C31034A — an 11-stage, head-on photomultiplier having a gallium-arsenide photocathode — has the highest photocathode sensitivity over the UV to the near-IR range of any known commercially available photoemissive device in the world: luminous photocathode sensitivities of over 1000 μ A/Im have been obtained!!!

Recent RCA effort has been directed toward GaInAs photocathodes which will provide response further into the near IR range, up to 1100 nm, with Q.E. levels four to five times better than S-1 photocathodes, and with at least an order of magnitude improvement in dark current.

These newly-evolving photocathodes show promise of even better performance.

III. Integrated Photodetection Assemblies -I.P.A.

RCA now introduces compact I.P.A.s which include a photomultiplier; solid-state power supply, voltage multiplier, and signal-conditioning amplifier (optional); optical filter (optional); magnetic shield; and all necessary connectors and cables. With these assemblies, the designer need only specify his light input and desired signal output to be assured of the performance he needs. Performance, compactness, and economy — RCA leads in photomultiplier state-of-the-art.

A Guide to the Contents of this Catalog

Type numbers with prefix letter "C" identify developmental types suitable for engineering evaluation. The number and identifying data are subject to change. Before specifying any of these types in production equipment, please contact RCA. No obligation is assumed by RCA as to future manufacture of developmental types unless otherwise arranged.

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

Glossary of Terms

A -angstrom: 10 angstroms (A) = 1 nanometer (nm) = 1×10^{-9} meter (m)

Anode — An electrode through which a principal stream of electrons leaves the interelectrode space.

Anode Dark Current — The current, in a photomultiplier tube, measured in complete darkness. It is defined as that component of the output current remaining when ionizing radiation and optical photons are absent. Dark current and resulting noise are critical factors in limiting the lower level of light detection.

Anode-Pulse Rise Time — The time difference between the 10 and 90 per cent amplitude points on the output waveform for full-cathode illumination and delta-function excitation. Anodepulse rise time is measured with a repetitive delta-function light source and a sampling oscilloscope. The trigger signal for the oscilloscope may be derived from the device output pulse, so that light sources such as a scintillator light source may be employed.

Be-O (Cu-Be) — Beryllium oxide secondary emitting surface, copper-beryllium substrate.

Bialkali Photocathode (K-Cs-Sb) — A photocathode having a spectral response similar to S-11, but having the advantage of lower dark noise at room temperature, higher peak quantum efficiency and the ability to withstand somewhat higher temperature than other photocathodes.

Bialkali Photocathode (Na-K-Sb) — A photocathode having a spectral response similar to that of the K-Cs-Sb Bialkali photocathode but with the ability to withstand extremely high operating temperatures (up to 150° C).

Circular Cage (C) — A focused multiplier configuration in a circular arrangement; it permits a compact layout and good time response.

Cs-Sb — Cesium antimony

Cs-Te — Cesium telluride

Current Amplification (Gain) — The ratio of 1) the signal output current to 2) the photoelectric signal current from the photocathode.

Dark Current — See Anode dark current.

Dark Pulses — Pulses observed at the output electrode when the photomultiplier is operated in total darkness. These pulses are due primarily to electrons originating at the photocathode.

Delta Function Light Source — A light source whose rise time, fall time, and FWHM are no more than one-third of the corresponding parameters of the photomultiplier's output pulse.

Dynode — A secondary-electron emitting electrode.

Equivalent Anode Dark Current Input (EADCI) — The quotient of the anode dark current by a stated anode luminous sensitivity value.

Equivalent Noise Input (ENI) — That value of incident flux which when modulated in a stated manner produces an rms output current equal to the rms noise current with a specified bandwidth.

ERBA — An acronym for Extended Red BiAlkali photocathode

ERMA — An acronym for Extended Red MultiAlkali photocathode.

Full Width at Half Maximum (FWHM) — The full width of a distribution measured at half the maximum ordinate. For a normal distribution it is equal to 2 (2 ln 2) $^{1/2}$ times the standard deviation (σ).

Ga-As - Gallium arsenide

Ga-As-P — Gallium arsenide phosphide

Gain - See Current Amplification

Ga-In-As — Gallium indium arsenide

Hysteresis, Photomultiplier Tube — A temporary anodecurrent instability exhibited when light levels are first applied, especially after a change in voltage. The time required to reach a stable anode current may vary from a few seconds to a minute or more. This effect is not observed in all PMT's.

In-Line Cage (I) — A focused, or non-focused, multiplier configuration in a linear structure; it permits more dynodes than the circular cage configuration. Note: a venetian-blind cage is non-focused.

IR - Infrared

Multialkali Photocathode (Na-K-Cs-Sb) — A photocathode sensitive from the ultraviolet to the red and near infrared regions of the spectrum. Compared with the cesium-antimony photocathode, it has improved response in the red region.

Noise — The random output which limits the minimum observable signal from the phototube.

Non-Magnetic Photomultiplier Tube — A photomultiplier using a structure having a minimum of ferro-magnetic materials. The ferro-magnetic materials that are present are usually limited to short lengths of Kovar or Dumet wire located in the glass stem of the tube.

No. of Stages — Equivalent to the number of dynodes used.

Opaque Photocathode (Reflection-Mode Photocathode)

A photocathode wherein photoelectrons are emitted from the same surface as that on which the photons are incident.

Optical Photons — Photons with energies corresponding to wavelengths between 120 to 1800 nanometers.

Photocathode — An electrode used for obtaining photoelectric emission.

Photocathode Blue Response — The photoemission current produced by a specified luminous flux from a tungsten-filament lamp operated at a color temperature of 28540 K when the flux is filtered by a C.S. No.5-58 blue filter of half-stock thickness. This parameter is useful in characterizing response to scintillation counting sources.

PHR — See pulse height resolution

PMT — An abbreviation for photomultiplier tube.

Pulse Height Resolution (PHR) — The fractional full width at half maximum of the pulse height distribution curve (FWHM/A1), where A1 is the pulse height corresponding to the maximum of the distribution curve. In scintillation spectroscopy, it is customary to state PHR as a percentage.

QUANTACON — The RCA designation for photomultiplier tubes employing group III/V compounds as secondary emitters and/or photocathodes. A typical III/V secondary emitting compound is Ga-P; a typical III/V photocathode compound is Ga-As.

Quantum Efficiency — The average number of photoelectrons emitted from the photocathode per incident photon. Quantum efficiency in per cent at any given wavelength can be calculated from the following formula:

$$QE = \frac{\sigma (1239.5) (100)}{\lambda}$$

where, λ is the wavelength in nm and

 σ is the cathode radiant sensitivity in A/W at λ

Red-to-White Ratio — The quotient of the anode current (measured using a specified red filter interposed between a tungsten-filament lamp and the tube) by the anode current measured with the filter removed.

S/N — Signal-to-noise ratio

S & V - Shock and vibration

Scintillation — The optical photons emitted as a result of the incidence of a particle or photon of ionizing radiation on a scintillator.

Scintillation Counter — The combination of a scintillator. phototube, and associated circuitry for detection and measurement of ionizing radiation.

Sensitivity, Anode Luminous —Same as sensitivity, cathode luminous but referred to anode.

Sensitivity, Anode Radiant - Same as sensitivity, cathode radiant but referred to anode.

Sensitivity, Cathode Luminous — The quotient of photoelectric emission current from the photocathode by the incident luminous flux under specified conditions of illumination. Because cathode luminous sensitivity is not an absolute characteristic but depends on the spectral distribution of the incident flux, the term is commonly used to designate the sensitivity to radiation from a tungsten-filament lamp operated at a color temperature of 28540 K. Cathode luminous sensitivity is usually measured with a beam at near normal incidence.

Sensitivity, Cathode Radiant — The quotient of the photoelectric emission current from the photocathode by the incident radiant flux at a given wavelength under specified conditions of irradiation. Cathode radiant sensitivity is usually measured with a beam at near normal incidence.

Single Electron Rise Time (SERT) — The anode-pulse rise time associated with single electrons originating at the photocathode. Measurement of SERT requires a photomultiplier having an adequate gain so that the single electron event may be viewed on a sampling oscilloscope.

Time Jitter — See transit time spread.

Time Resolution — See transit time spread.

Transit Time Spread — The FWHM of the time distribution of a set of pulses each of which corresponds to the photomultiplier transit time for that individual event.

Transmission-Mode Photocathode — A photocathode in which radiant flux incident on one side produces photoelectric emission from the opposite side.

UV - Ultraviolet

Venetian Blind Cage (V) — A non-focused linear multiplier structure. It has slower time response than focused multiplier structures and is characterized by large dynode areas.

Typical Photodetector Applications

The many and varied requirements of equipment designers and experimenters preclude RCA from suggesting a single photodetector as the optimum tube for any given application. In most applications, trade-offs must be made in electrical characteristics; tube size must be considered; the environment in which the device is to be operated is a factor; and, of course, tube cost is important. Each of these limitations is known only to the individual designer or experimenter. Accordingly, the tube types indicated for the different applications should be considered as representative of those which are used in that area.

General Application Description	General Function	Typical Application Areas	Frequently Used Photodetectors
Densitometry	The measurement of optical density of photographic negatives, neutral density filters, and similar materials.	Film processing, film manufacture, chemical industry, atomic energy laboratories, and university laboratories.	1P21 4473 931A 4552 934 8571 4471 C7075J
Colorimetry	The quantitative color comparison of surfaces (reflectance) and solutions (transmission).	Industrial, clinical, and scientific establishments concerned with paints and finishes, blood and tissue analysis, and chemical reactions producing color changes.	1P21 4472 1P22 4473 1P39 4552 931A 8571 934 C31025B 4471 C34001
Photometry	The measurement of illumination and/or brightness (luminance).	Photography and astronomy	1P21 7102 931A 8571 4471 C7164R 4472 C31025B 4473
Radiometry	The measurement of irradiance and/or radiance.	Space programs and astronomy	1P21 7102 1P28 8571 1P28A 8645 1P28/V1 C31022 1P28A/V1 C31025C PF1011 C31034, A
Spectrophotometry Specific types of pectrophotometers are listed below)	The measurement of radiant power in narrow wavelength regions of the radiation spectrum. Photomultipliers are useful in the 120 to 1200 nanometer range.	Extremely widespread usage in many scientific and industrial laboratories, Used in process control, element identification, and in all kinds of chemical and metallurgical analysis.	
Emission Spectrophotometers	The measurement of wavelength and intensity of characteristic spectral emission lines of elements when an electric spark, arc, or glow discharge is used for excitation.	Useful in qualitative and quantitative chemical analysis. An example is rapid "on-line" analysis of alloying elements and impurities in steel production.	1P21
Absorption Spectrophotometers	The measurement of distinct transmission and absorption bands in transparent solutions and gases, or translucent suspensions, emulsions, or slices of tissue. Also used in reflection mode for opaque materials.	Widely used in biological research, food industry and organic chemical production.	1P28 1P28A 1P28/V1 1P28/V1 931A
Atomic-Absorption Spectrophotometers	By vaporizing the sample in flame, the elements in the sample are ionized and absorb energy in narrow spectral lines, rather than in spectral bands. This type of instrument is sometimes called a Flame Spectrophotometer.	Useful for qualitative and quantitative chemical analysis. Generally more sensitive than emission spectrophotometry but requires use of light sources (discharge lamps) having spectral output at the absorption wave lengths.	7102 8571 C7151U, W, Y, and Z C31022 C31025B, C, and J C31034, A C70128
Fluorescence Spectrophotometers	By producing fluorescence in the sample (usually by UV excitation), detection of certain contaminants or impurities at extremely low concentrations is practical.	Useful in synthetic polymer research. For example, fluorescence analysis is used for detecting, identifying and measuring an additive, plasticizer, or impurity in polymer films.	C/0128
Raman Spectrophotometers	Provides information on molecular structure and bonding energy by measuring the amount of wavelength shift of scattered photons from a highly monochromatic source such as a laser.	Scientific and industrial laboratories	7326 C7164R 8850 C31025B, C 8852 C31034, A 8853 C70042K, R C7151W PF1011 PF1012
Photon Counting	A method of detecting photons by counting single photoelectrons released from the photocathode.	Astronomy and scientific laboratories	8575 8852 8850 8853 8854 C31034, A
High Speed nspection	Small objects such as fruits, vegetables, seeds, candy, toys, paper products and even glass, metal, and other industrial parts can be examined for color and defects as they move past one or more photomultiplier tubes at high speed. An airblast can be used, for example, to separate the defective items from the acceptable ones.	Food processing plants, agricultural experiment stations, and manufacturing plants	1P21 6199 931A 6342A 4517 7102 7767
Process Control	The measurement of transmitted or reflected light in continuous flow processes using solids, liquids, or gases. Detects flaws, improper marking, and changes in color and optical density. By using scintillators and radioactive sources, photomultipliers can be used for weight and thickness control of opaque materials.	Steel mills, paper mills, chemical plants, oil refineries, and glass factories	931A 8054 4517 8055 4518 8575 4523 8850 4524 C7151AA 4525 C31000AJ 6199 C31016G 6342A C70042S 8053

General Application Description	General Function	Typical Application Areas	Frequently Us Photodetector	
Imaging Devices	A cathode-ray tube or moving mirrors can be used as a light source to sequentially illuminate a film positive or negative, or a printed page. This system is used in (1) optical character recognition, (2) scanning of printed or written material for transmission by telephone (3) parts inspection, and (4) reproduction of motion pictures, slides, and educational material on a TV receiver (color or black and white). This latter application is referred to as a Video Playback System.	Office equipment, accounting equipment, military equipment, home entertainment, education, and manufacturing plants.	931A 2020 4463 4555 6199 6342A 8053	8054 8055 C7151W C7164R, S C31028
Laser Detection	Lasers provide unique light sources; they are spectrally pure and produce very narrow collimated beams. They can be very intense, and can be made to produce light pulses of extremely short time duration. The PMT provides time resolution in the nanosecond and subnanosecond ranges and is capable of detecting very low light levels such as those received from weak reflected laser light pulses.	Construction companies, machine tool manufacturers, military (range finders), space exploration, communications, chemical industry, and universities.	4526 7102 7265 8644 8645 8575 8850 8852 8853 C7151W	C7164R C31004A C31025K, M, and N C31034, A, B C, and D C70007A C700042K C70102B
Scintillation Counting	Under Normal Environmental Conditions The measurement of nuclear radiation by detecting light emitted from a scintillating material receiving nuclear radiation. Used for radiological survey instruments and the identification of radio-isotopes.	Atomic energy laboratories, atomic power plants, hospitals, clinics, research laboratories, and universities.	4516 4517 4518 4522 4523 4524 4525 6199	6342A 8053 8054 8055 8575 8850 8854 4802
	Under Severe Environmental Conditions The measurement of nuclear radiation by detecting light emitted from a scintillating material receiving nuclear radiation. Used for radiological survey instruments and	High-Temperature Applications Deep oil-well logging or geological exploration, and steel mills.	C7151AA C31000AJ C31016G C70042S	1002
	the identification of radio-isotopes.	Mechanical Applications Space programs, extraterrestrial radiation detection.	4460 4461 8664 8575 C7151N, Q C31009, A, B, and C	C31012, A, B, and C C31016F C70102E, M C70114F C70132B
Fime Weasurement	In nuclear experiments the "time of flight" of nuclear particles is important. Photomultipliers permit time measurement down to a fraction of a nanosecond.	Atomic-energy laboratories and universities.	8575 8850 C31024 C70045C, D	
Pollution Monitoring	The analysis of the level and the nature of contaminants in solutions, gases, and other waste materials.	General industrial plants, waste treatment plants, governmental agencies, and university laboratories.	4507 4518 4526 7265 8575	8853 C7164R, S C31000B C31025B, C
Thermoluminescent Dosimetry (TLD)	The direct determination of X-, Gamma-, and Beta-radiation doses to afford personnel protection and to determine routine dosage levels in medical and biological treatments and studies. Energy stored in TLD's is proportional to dosage over a very wide range.	Hospitals, governmental agencies and laboratories, atomic power plants, industrial and biological laboratories	4507 4518 8575	

Voltage-Distribution Considerations

The voltage distributions specified for the individual tube types are typical average distributions which are used to measure the tabulated characteristic values.

A complete discussion of all phases of voltage-divider design is contained in the RCA Photomultiplier Manual, PT-61. A few salient considerations are described below.

Interstage voltages for the tube electrodes may be supplied by individual sources but are usually obtained from resistive voltage-divider networks placed across the high-voltage supply. The power ratings of the individual resistors making up the network should be approximately twice that of the calculated dissipation values for circuit safety reasons. Resistors having tolerances of about 5% are satisfactory in most systems for circular-cage and focused in-line photomultipliers. Resistors having 10% tolerances may be used with venetian-blind tubes.

The voltage-divider arrangement should be located so that it will not affect tube operating temperature. Head-on type photomultipliers sometimes use zener diodes between cathode and dynode No.1 to provide constant voltage when tube sensitivity is varied by adjustment of supply voltage.

An important consideration is that the voltage-divider current should be maintained at a value of at least 10 times that of the expected average value of anode current. If this consider-

ation is not observed, deviation from linearity and limitations on anode-current response to pulsed light may occur. The latter effect may be reduced by connecting capacitors between the tube socket terminals for the last 3 or 4 dynode stages and anode return. The values of the capacitors will depend upon the shape and the amplitude of the anode-current pulse, and the time duration of the pulse, or train of pulses. When the output pulse is assumed to be rectangular in shape, the following formula applies:

$$C = 100 \frac{i \cdot t}{V}$$

where C is in farads, i is the amplitude of the anode current in amperes, V is the voltage across the capacitor in volts, and t is the time duration of the pulse in seconds.

This formula applies for the anode-to-final dynode capacitor. The factor 100 is used to limit the voltage change across the capacitor to 1% maximum during a pulse. Capacitor values for preceding stages should take into account the smaller values of dynode currents in these stages. Conservatively, a factor of approximately 2 per stage is used. Capacitors are not required across those dynode stages where the dynode current is less than 1/10 of the current through the voltage-divider network.

Typical Voltage-Divider Arrangement for Fast Pulse Response and High Peak Current Systems. Anode Return at Ground Potential.

Typical Voltage-Divider Arrangement for Scintillation Counting Systems. Photocathode at Ground Potential.

Note:

In modern photomultipliers, the focusing electrode is normally connected to dynode No.1. In older tube types, the focusing electrode may be connected to the arm of a potentiometer, between cathode and dynode No.1, to permit adjustment for maximum anode current.

Cathode-to-Anode Voltage Distribution Chart

Distribution Code	Number of Stages	Voltage Distribution K, Dy1, Dy2, Dy3,P
A	5	2, 1, 1, 0.5, 0.83 [♣] , and 0.18 [▲]
В	6	2, 1, 1, 1, 1, and 1
С	9	1, 1, 1, 1, 1, 1, 1, and 1
D	10	2, 1, 1, 1, 1, 1, 1, 1, and 1
E		1.2, 1.2, 1.7, 1, 1, 1, 1, 1, and 1
F		1.1, 1.2, 1.7, 1, 1, 1, 1, 1, and 1
G		1.7 1.3, 1.3, 1, 1, 1, 1, 1, 1, and 1
H		1.8, 1.4, 1.5, 1.2, 1, 1, 1, 1, 1, and 1
J		2, 1.4, 1, 1, 1, 1, 1, 1, and 1
K		3, 1, 1, 1, 1, 1, 1, 1, and 1
L	11	1, 1.4, 1, 1, 1, 1, 1, 1, 1, and 1
M	12	1.2, 1.2, 1.7, 1, 1, 1, 1, 1, 1, 1, and 1
N		2, 1, 1, 1, 1, 1, 1, 1, 1, 1, and 1
P		1, 1, 1.7, 1, 1, 1, 1, 1, 1, 1, and 1
Q		2, 1.4, 1, 1, 1, 1, 1, 1, 1, 1, and 1
R		4, 1, 1.4, 1, 1, 1, 1, 1, 1, 1, and 1
S		6, 1, 1.4, 1, 1, 1, 1, 1, 1, 1, and 1
T		660*, 1, 1.4, 1, 1, 1, 1, 1, 1, 1, and 1
U		3, 1, 1, 1, 1, 1, 1, 1, 1, 1, and 1
V		2, 1, 1.4, 1, 1, 1, 1, 1, 1, 1, and 1
W	14	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.25, 1.5, 1.75, and 2
X		3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, and 1
Y		See technical data sheet for voltage distribution

 [■] Between dynode No.5 and suppressor grid

[▲] Between suppressor grid and ground

^{★ 660} volts

K, cathode; Dy, dynode; and P, anode

Photomultipliers with Integral Voltage-Divider Networks and Integral Voltage-Divider Networks and Shields (Special Line Series)

Almost all RCA photomultipliers can be supplied with integral electrostatic-magnetic shielding and/or voltage-divider networks. Those shown below are typical examples. Photomultipliers of the Special-Line Series supplied without shielding are classified as configuration 1, those with shielding as configuration 2. Three basic voltage-divider arrangements are available and are classified as arrangement A, arrangement B, and arrangement C. Arrangement A provides a voltage-divider network current of approximately 20μ A; B, 100μ A; and C, 1000μ A. The average values of anode current drawn from the tube should be 1/10 of these values. Capacitors are connected across the latter stages of the tubes. These voltage-divider distributions can be modified, on special request, to meet specific customer needs.

Tubes Without Shielding

Configuration 1

1A — Integral voltage-divider network only. Uses high value resistors in network and is recommended for applications requiring minimum power-supply drain. The average anode current drawn from the tube should be $2 \mu A$, or less.

Tubes With Shielding Configuration 2

2A — Integral voltage-divider network and shielding. Uses high value resistors in network and is recommended for applications requiring minimum power-supply drain. The average anode current drawn from the tube should be $2 \mu A$, or less.

1B — Integral voltage-divider network only. Uses intermediate value resistors in network and is recommended for most applications. The average anode current drawn from the tube should be 10 μ A, or less.

2B — Integral voltage-divider network and shielding. Uses intermediate value resistors in network and is recommended for most applications. The average anode current drawn from the tube should be $10~\mu\text{A}$, or less.

As examples, the designation 7767/2C defines an RCA type 7767 having an integral shield and a voltage-divider arrangement providing a divider network current of 1000 μ A. The designation 7767/1A defines a 7767 having a voltage-divider arrangement only which provides a divider network current of 20 μ A.

Basing Variants

RCA Photomultiplier Tubes are provided in the following basing configurations:

(1) Permanent Base Types

(2) Temporary Base Types

(3) Semiflexible Lead Types

Basing Variants of the basic configurations are available upon request. Specify the type number and one of the following modification (M) numbers:

M1 - Remove base; leads tinned (change to configuration 3)

M2 — Drop base to a minimum of 2" (change to configuration 2)

M5 — Remove base; leads untinned (change to configuration 3)

M7 - Base attached, but not cemented

M8 - Base attached, but not cemented; leads tinned close to tube

M9 - Remove base and ship with tube (change to configuration 3)

M9 - Remove base and ship with tube (change to configuration 3)

M10 - Attach base permanently (change to configuration 1)

M3 - Attach permanent base (change to configuration 1)

M4 - Solder additional wires to existing leads

M6 - Attach temporary base (change to configuration 2)

Key to Terminal Connection Diagrams

Diagrams show terminals viewed from the base end of the tube.

FLEXIBLE ENVELOPE
TERMINAL

SMALL PIN

ENVELOPE

CRIGID ENVELOPE TERMINAL

ORIENTATION SYMBOL

OTHER THAN KEY

C_b - Balancing capacitance

DY - Dynode

G — Grid

IC — Internal connection (do not use)

NC - No connection

P - Anode

K - Photocathode

U - Unit

Gas-type tube

Key to Socket and Shield Manufacturers

Socket Manufacturers

AL = Alden Products Company, 112 North Main Street, Brockton, MA 02403

AM = Amphenol Corporation, Amphenol Industrial Division, 1830 S. 54th Ave., Chicago, IL 60650

C = Cinch Manufacturing Company, 1501 Morse Ave., Elk Grove Village, IL 60007

E = Hugh H. Eby Co., 4701 Germantown Ave., Philadelphia, PA 19144

G = Garlock Inc., 602 North 10th St., Camden, NJ 08102

. = Loranger Manufacturing Corp., Box 948, Warren, PA 16365

RCA = RCA Corporation, Photomultiplier Marketing, Lancaster, PA 17604

Shield Manufacturers

J = JAN Hardware Manufacturing Company, Inc., 47–27 36th St., Long Island City, NY 11101

M = Jámes Millen Mfg. Co., Inc., 150 Exchange St., Malden, MA 02148

P = Magnetic Shield Division, Perfection Mica Company, 740 Thomas Drive, Bensenville, IL 60106

RCA Auxiliary Assemblies and Components

Assemblies

An assembly composed of a selected RCA QUANTACON photomultiplier type 8852 (ERMA III photocathode), an annular permanent magnet affixed to the tube's faceplate, and a magnetic shield. This assembly, in effect, provides a photodetector having a useful photocathode diameter of only 2.5 mm and extremely low dark noise, yet retains all the attendant high-performance characteristics of the 2"-diameter 8852. This assembly has a typical dark noise count rate of only 2 cps at -20° C and is designed for Raman spectroscopy, astronomy, laser detection, and other single photon counting applications.

PF1012

This assembly is identical in construction to the PF1011 but it employs an RCA photomultiplier type 8850 (Bialkali photocathode). This assembly has a maximum dark noise count rate of 50 cps at 22° C, and is intended for star-tracking, astronomy, low level photon counting, and other applications requiring high sensitivity in the blue region of the spectrum in conjunction with extremely low noise.

AJ2175

An auxiliary assembly designed to provide the best possible time response from the 5-stage RCA QUANTACON photomultiplier type C31024. The assembly is composed of a teflon socket and a resistive voltagedivider arrangement housed in a metal container. The AJ2175 is supplied fitted with a coaxial signal output connector and a high voltage connector. Variants with additional signal connectors are available.

AJ2203

An auxiliary assembly designed to provide peak linear anode pulse currents of 100 mA, or more, from the C31024. This assembly is similar to the AJ2175 except for the voltage-divider network and the inclusion of network capacitors. Variants with additional signal connectors are available.

Sockets

AJ2144

A teflon socket designed for use with all 12-stage RCA photomultipliers employing the RCA 21-pin base. This socket is supplied with an unattached clamp ring which fits to either the top or bottom of its socket body to allow chassis mounting but may be discarded for other desired mounting arrangements.

AJ2145

A teflon socket designed specifically for the chassis mounting of all 12stage RCA photomultipliers employing the RCA 21-pin base.

AJ2180

A light-tight teflon socket that is similar to the AJ2145. This socket is for use with all 12-stage RCA photomultipliers employing the RCA 21-

pin base.

A teflon socket designed for chassis mounting of the 5-stage QUANTA-CON photomultiplier type C31024. The AJ2100 is supplied with the C31024.

AJ2101

AJ2100

A teflon socket intended for chassis as well as any other desired mounting of the C31024. It is similar to the AJ2144. The AJ2101 can be supplied with the C31024, rather than the AJ2100, if requested.

Connectors

AJ2102

An anode cable assembly consisting of approximately 6" of RG174/U cable fitted with a GR874 connector on one end and a coaxial signal output connector (AJ2103) on the other end. The AJ2102 is designed for and supplied with the C31024.

Socket Adapters

AJ2132 A teflon socket, voltage divider and capacitor network, and a JEDEC

> No.B20-102 base assembly that allows the replacement of 14-stage photomultipliers such as the 56AVP, 6810A, or 7264 by the highperformance 12-stage photomultiplier types 8575 or 8850.

A teflon socket, voltage divider and capacitor network, and a JEDEC AJ2143

No.B20-102 base assembly that allows the replacement of the 58AVP

by the photomultiplier types 4522 or 8854.

This adapter is identical with the AJ2143 but capacitors are not em-AJ2143A

ployed in the voltage divider network.

Faceplate Adapters

AJ2142

An acrylic plastic faceplate adapter (or light pipe) which allows efficient optical coupling between the curved faceplates of the 4522 or 8854 and flat surfaces.

Integrated Photodetection Assemblies

PF1023—Series Multipurpose, self-contained photodetection systems featuring a 2"diameter, 10-stage photomultiplier having an ERMA II photocathode. Each assembly includes a regulated, high stability-remotely programmable and self limiting for PMT protection. The entire assembly package is only 2.6" max. dia. by 8.0" max. length and weighs less than 2 pounds. Power input is provided from a bipolar ± 12 volt power source. Temperature compensation, hermetic sealing, magnetic and electrostatic shielding, and the ability to withstand shock and vibration permit operation under severe environmental conditions. Optical filter and/or aperture and signal conditioning amplifier may be customer specified. Complete external interface is achieved through a single connector.

For Photomultipliers by Spectral Response

	Nominal		1		F.04			n Ratings			Sensit	ivity			Anode Dark
Spectral	Tube		Viewing		RCA	Page	Supply	Average						Current	Current n/A @ Anode
Response	Diameter	Of Stages	Configu-	Struc-	Type No.	No.	Voltage (E)	Anode	Voltage	Had	iant	Lui	minous	Amplifi- cation	Luminous
	Inches	Stages	Tation	ture	110.		(E)	m/A	·	Anode	Cathode	Anode	Cathode	(Approx.)	Sensitivity
							7	, 110/A		A/W	mA/W		uA/Im	× 10 ⁶	A/Im
404/0.41	0/4	1.0	1.1	1	C70102B	38	1500	0.01	1250	310	2.8	3.3	30	0.11	800@4
101(S-1)	3/4 1-1/8	10 9	, H S	Ċ	C31004A	26	1500	0.01	1250	235	1.9	2.5	20	0.125	300@2
	1-1/8	10	Н	Č	7102	42	1500	0.01	1250	660	2.8	7	30	0.23	1900@4
	2	12	H		C70007A	54	2000	0.01	1250	940	2.8	10	30	0.33	400@4
102(S-4)	1/2	9	S	C	8571	24	1250	0.02	1000	73,000	34	75	35	2.1	2@20
	1-1/8	9	S	C	1P21	26	1250	0.1	1000	120,000	40	120	40	3	1@20
		9	S	. C	931A	26	, 1250	1.0	1000	80,000	40	80	40	2	5@20
		9	S	С	4471	26	1250	1.0	1000	100,000	40	100	40	2.5	5@20
		9	S	C	4472	26	1250	1.0	1000	100,000	40	100	40	2.5	5@20
		9	S	C	4473	26	1250	0.1	1000	160,000	40	160	40	4	1@20
		9	S	С	6328	26	1250	0.1	1000	35,000	<u></u>	35			
		9	: S	C	7117 C7075J	26	1250	0.1	1000	35,000	40	35 80	40	2	5@20
103	1 1/0	9	S	C	1P28/V1	26 28	1250 1250	0.5	1000	160,000	48	200	60	3.3	2@40
103	1-1/8	9	S	C	1P28A/V1	28	1250	0.5	1000	160,000	48	200	60	3.3	2@40
104(S-5)	1/2	9	S	C	C70129H	24	1250	0.02	1000	44,000	44	35	35	1	20@20
.5-(0-5)	1-1/8	9	S	C	1P28	28	1250	0.5	1000	125,000	50	100	40	2.5	5@20
	,,	9	S	C	1P28A	28	1250	0.5	1000	250,000	50	200	40	5	5@20
105(S-8)	1-1/8	9	S	Ĉ	1P22	28	1250	1.0	1000	7500	2.3	10	3	3.3	6@0.8
106(S-10)	2	10	Н	С	6217	52	1250	0.75	1000	50,000	20	100	40	2.5	28@20
107(S-11)	3/4	6	Н	1	7764	36	1500	0.5	1200	480	48	0.6	60	0.01	2@0.3
		10	Н	. I	4460	38	1500	0.5	1250	6000	48	7.5	60	0.125	6@7.5
		10	Н	1	7767	36	1500	0.5	1250	13,000	48	16	60	0.27	4@7.5
		10	H		C70102E	38	1500	0.5	1250	8800	56	11	70	0.16	1.4@7.5 200@200
	4.46	12	H		4802	36	2000	0.5	1500	160,000 36,000	60	200 45	75 45	2.7	4.5@20
	1-1/2	10	H	C	2060 2067	42 44	1250 1250	0.75 0.75	1000	16,200	60	20	74	0.27	2.6@20
		10	Н	C	4438	44	1250	0.75	1000	21,600	36	27	45	0.6	16@20
		10	H	C	4439	44	1250	0.75	1000	21,600	36	27	45	0.6	16@20
		10	Н	C	4440	44	1250	0.75	1000	21,600	36	27	45	0.6	16@20
		10	H	C	4441	46	1250	0.75	1000	21,600	36	27	45	0.6	16@20
		10	Н	C	4441A	46	1250	0.75	1000	21,600	36	27	45	0.6	16@20
		10	Н	С	4461	46	1500	1.0	1250	8000	48	10	60	0.17	5@10
		10	H	C	6199	42	1250	0.75	1000	36,000	36	45	45	1	4.5@20
		10	Н	С	C7151N	48	1600	0.5	1500	57,000	70	70	85	0.82	0.8@20
	Antonia and	10	H	С	C70132B	48	1600	0.5	1500	57,000	70	70	85 50	0.82	0.8@20 4@20
	2	10	H	C	2020	52 50	1500 1500	2.0	1250 1250	4800	40 64	6	80	0.12	4@20
		10	Н	V	2061 2063	62	2000	2.0	1500		56		70	; — ; —	-
		10	H	C	5819	52	1250	0.75	1000	80,000	40	100	50	2	6@20
		10	H	C	6342A	50	1500	2.0	1250	25,000	64	31	80	0.39	4@20
		10	H	č	6655A	52	1250	0.75	1000	96,000	61	120	76	1.6	6@20
		10	Н	Î	7746	54	2500	2.0	2000	960,000	56	1200	70	17	250@230
		10	H	V	8053	62	2000	2.0	1500	34,000	56	42	70	0.6	4@9
		12	H	1	7850	54	2600	2.0	1800	510,000	56	640	70	9.1	64@160
		14	Н	1	6810A	54	2400	2.0		3,000,000	56	3800	70	54	1000@2000
	3	10	H	V	2064B	64	2000	2.0	1500	-	64	<u> </u>	80	-	
		10	Н	V	8054	64	2000	2.0	1500	35,000		43	80	0.54	4@9
	5	10	H	V	2065	68	2000	2.0	1500	25.000	88	14	110	-	160
10010 101		10	H	V	8055	68 52	2000	2.0	1500	35,000	; 88 ; 48	90	110	1.5	4@9 10@20
108(S-13) 109(S-19)	1-1/8	10	H S	C	6903 7200	28	1250	0.75	1000	72,000		90 40	40	1.5	4@20
110(S-19)	3/4	10	H		8644	34	2100	0.5	1500	6900		16	150	0.11	3@30
	1	10	H		8645	34	1800	0.1	1500	6900		16	150	0.11	3@30
	1-1/2	10	Н	: C	C70114C	46	1800	1.0	1500	10,800	77	25	180	0.14	4@10
	2	10	Н	V	4463	62	2500	1.0	2000	11,000	68	25	160	0.16	4.8@12
		10	Н	1 1	7326	54	2400	1.0	1800	37,500	64	88	150	0.59	3@20
		14	H		7265	54	3000	1.0	2400	3,100,000	64	7200	150	48	50@1000
	3	10	Н	V	4464	64	2500	1.0	2000	11,000		25	160	0.16	4.8@12
	5	10	Н	V	4465	68	2500	1.0	2000	11,000		25	160	0.16	4.8@12
111	1-1/2	10	DW	С	4526	32	2000	0.1	1250	4400		15	300	0.05	2@20
112	3	14	S		C70045C	32	6000	1.0	5000	770,000	60	700	140	5	500@1000
113	2	12	Н		C31000A	60	3000	1.0	2000	270,000		700	200	3.5	5@200
114	3/4	12	H		C31000B	60	3000	1.0 0.5	1500	270,000		700 10	200	3.5 0.071	5@200 6@30

A maximum supply-voltage value within the specified range is supplied with each C31024.

^{*} The values 0.9 and 9 are the ratios of the anode current by the light flux value that is incident on a Corning C.S. No. 5-58 filter (1/2 stock thickness). The filter is interposed between a 2870° K light source and the tube.

a See bar graphs on pages 83 and 84 and spectral-response characteristic curves on page 85.

b Viewing configuration: H, head-on; S, side-on; and DW, dormer-window.

c' Cage structures: C, circular-cage; I, in-line; and V, venetian-blind.

							Maximu	m Ratings	Ту	pical Chara		at the Spe	cified Sup	ply Voltage	
	Nominal	Number	Viewing	Cage	RCA	D	Supply	Average	Supply		Sensi	livity		Current	Anode Dark Current n/A
Spectral Response	Tube Diameter	of	Configu- ration	Struc-	Туре	Page No.	Voltage	Anode	Voltage	Rad	iant	; Lu	minous	Amplifi-	@ Anode
	Inches	Stages	ration	ture	No.		(E) V	Current m/A	V	Anode	Cathode	: Anode	Cathodo	(Approx.)	Luminous Sensitivity
										A/W	mA/W		uA/Im	× 10 ⁶	A/Im
115	3/4	10	Н	1	4516	36	1800	0.5	1500	56,000	7.1		60	0.8	0.2@7
	1	10	H	-	C70102M	38	1800	0.5	1500	32,000	79	27	67	0.4	0.2@7
	1-1/2	10	H	C	C31016F 4517	40 42	1500 1800	0.02	1250 1500	36,000 56,000	79 79	30	67	0.45	0.5@7 0.2@7
	, 2	10	H	C	C7151Q	48	1800	0.5	1500	39,000	79	33	67	0.49	0.3@7
		10	Н	С	C70114F	46	1800	0.5	1500	39,000	79	33	67	0.49	0.3@7
	2	10	H	С	C70132A	48	1800	0.5	1500	65,000	79	55	67	0.82	0.4@6.7
	2	5	П	1	C31024	58	2750 to	0.1	3000	430,000	87	360	73	5	-
		10	Н	С	4518	50	4500 & 2000	0.5	1500	39,000	79	: 33	67	0.49	0.24@7
		10	Н	V	4518	62	2500	0.5	1500	32,000	71	27	60	0.49	0.5@13
	3	10	H	V	4524	64	2500	0.5	1500	32,000	71	27	60	0.45	1@13
	5	10	Н	V	4525	68	2500	0.5	1500	32,000	80	27	67	0.4	1.5@13
		10 12	H	Ň	C31027 C31029	70 70	2000 2500	0.5 0.5	1500 1750	13,000	88	11.5	77	0.15 1.5	2@0.9* 20@9*
116	2	12	Н	1	4507	60	2500	0.2	1500	180,000	97	160	85	1.9	0.2@50
		12	Н	1	8575	60	3000	0.2	2000	970,000	97	850	85	10	1@200
		12	H	j.	8850	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
447	11.1/0	12 10	H	C	8851	58 46	3000	0.2	2000	710,000	97	620	85	7.3 0 .49	0.6@200
117	II-1/2 3	14	S	i	C70114J C70045D	32	1800 6000	1.0	1500 5000	39,000	79 72	33	67	10	0.3@7 1000@10,000
118	2	12	Н	i	C31000N	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
		12	Н	1	C31000Z	60	3000	0.2	2000	970,000	97	850	85	10	1@200
	5	14	Н	1	4522	68	3000	0.5		2,600,000	88	2300	77	30	60@2000
119	2	14 12	H	1	8854 8852	68 58	3000 2500	0.5 1.0	1500	3,500,000 16,000	88	3100	230	40 0.43	60@2000 10@100
119	2	12	H	1	8853	58	2500	1.0	1500	16,000	37	100	230	0.43	10@100
120	2	10	Н	V	8664	62	2000	2.0	1500	18,000	69	17	67	0.25	1@7.5
		10	"H	V	8664/V1	62	2000	2.0	1500	18,000	69	17	67	0.25	1@7.5
	3	10	H	V	C31009	66	2000	2.0	1500	17,000	77 77	17	75	0.22	1@7.5
		10	H H	V	C31009A C31009B	66 66	2000	2.0	1500 1500	17,000 17,000	77	17	75 75	0.22 0.22	1@7.5 1@7.5
		10	H	V	C31009C	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		10	H	V	C31012	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		10	H	V V	C31012A	66 66	2000	2.0	1500 1500	17,000 17,000	77	17	75 75	0.22 0.22	1@7.5 1@7.5
		10	H	V	C31012B C31012C	66	2000	2.0	1500	17,000	. 77	. 17	75	0.22	1@7.5
121	3/4	12	H	i	C31005	36	2500	0.5	2100	9200	9.2	1 -	-	1	0.1@
										min. @ 253.7	min. @ 253.7			min.	3000A/W
400	2	10			4504	0.4	2000	٥٢	1500	nm	nm	. 10	. 00	0.22	207 5
122 123	3 1/2	10	H	V C	4521 C70129G	64 24	2000 1250	0.5 0.02	1500 1000	19,000 21,000	87	18	83	0.22 0.67	2@7.5 8@15
120	1-1/8	9	Ś	C	C31022	28	1250	0.1	1000	160,000	48	200	60	3.3	2@40
124	3/4	10	H	Ĭ	C70102N	38	1500	0.5	1250	4800	72	6	90	0.067	2@7.5
125	3/4	12	Н	1	C70128	36	1800	0.5	1500	3000 @253.7	15 @253.7	1 -	· –	0.2	0.5@ 3000A/W
										nm	nm				
127	1-1/2	10	H	C	C7151U	44	1250	0.75	1000	8200	25	20	60	0.33	10@40
128	1-1/8	9	S	С	C31025C	30 56	1500 2000	0.01	1250 1500	2700 41,000	61 68	300	450	0.045	0.3@10 3@100
		11	H		C31034 C31034A	56	2000	0.01	1500	62,000	155	400	1000	0.4	3@100
129	1-1/8	9	S	C	C31025B	30	1800	0.01	1250	2000	48	7	170	0.041	0.4@10
131	3/4	10	Ĥ	1	C70042K	34	2100	0.5	1500	3600	45	20	250	0.08	6@30
122	3/4	12	H	1	C31026	40 34	2200	0.5 0.5	1800 1500	26,000 5500	43	150	250	0.6 0.125	40@50 2@30
132	1-1/2	10	Н	C	C70042R C7151W	42	1500	0.5	1250	10,000	40	50	200	0.125	1@20
	2	10	Ĥ	С	C7164R	50	1500	0.5	1250	20,000	40	100	200	0.5	30@150
		10	H	Ċ	C7164S	50	1500	0.5	1250	20,000	40	100	200	0.5	30@150
133	2	12	H	1	C31000M	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
134	1-1/8	12	H Š	C	C31000AH C31025J	60 30	3000 1500	0.2	2000 1250	970,000 2700	97	850	85 400	10 0.05	1@200 0.3@10
136	1-1/8	9	S	C	4552	28	1250	0.5	1000	84,000	54	100	65	1.5	0.8@20
		9	S	С	4555	28	1250	0.5	1000	170,000	54	į –		3	0.8@800V
137	1-1/2	10	H	С	C7151Y	44	1500	0.5	1250	2400	40	12	200	0.06	3@10 10@40
138 139	1-1/2 3/4	10 10	H	C	C7151Z C70042S	44 38	1500 1800	0.5 0.5	1250 1500	30,000 15,000	73 60	70	170	0.41	1@10
138	1	10	Н	C	C70042S C31016G	40	1800	0.5	1500	12,000	60	17	80	0.2	0.5@20
	1-1/2	10	Н	С	C7151AA	42	1800	0.5	1500	19,000	60	25	80	0.31	0.4@10
	2	12	Ĥ	1	C31000AJ	60	2500	0.2	2000	64,000	60	; 85	80	1.2	3@50
140	1-1/8	9	S H	C	C31025K C31034B	30 56	1500 2000	0.01	1250 1500	1700 14,000	43	100	300	0.04 0.25	1@5 10@100
141	1-1/8	9	S	C	C31034B C31025M	30	1500	0.01	1250	1900	31	. 12	200	0.25	1@5
	2	11	Н	1	C31034C	56	2000	0.01	1500	16,000	47	100	300	0.33	10@100
142	1-1/8	9	S	С	C31025N	30	1500	0.01	1250	1700	30	6	100	0.06	1@5
	2	11	Н		C31034D	56	2000	0.01	1500	17,000	42	60	150	0.4	10@50

For Photomultipliers by Diameter (Size)

Nominal Tubes																
Nominate Viewing Core Viewing Core Viewing Core Viewing Core View										Tvr	oical Chara	cteristics a	the Spe	cified Sup	ply Voltage a	and 22° C
Company Control Company Control Cont								Maximur	m Ratings	2.7.7	Jiodi Olidid			Ciriod Odp	bry vortage (
Title Property Stock Configer Stock Property Stock Property Configer	Nominal		Number	Viousina	Como	RCA			an an arrange of	Cupply						
Dimenser Responser Stagest Tellicon Long Stagest Tellicon Long Stagest Tellicon Tell	Tube	Spectral			-		Page				Rac	liant	Lu	minous		
1/2 1025-41 3 5 C 65/1 24 1250 0.02 1000 73/000 34 73 35 2.1 2920 2020	Diameter	Response		Configu-	Struc-			3								
1/2 1025-4 9 S C S71 24 1230 0.02 1000 44000 44 35 35 51 1065-8 9 5 C C701798 24 1230 0.02 1000 44000 44 35 35 55 1 20870 1230 24 1015-11 10 H 1 C701078 24 1230 0.02 1000 44000 44 35 35 35 35 3 3 20 20 20 20 20 20			Stages	ration"	ture	INO.			Current	\vee					cation	Luminous
102 102 103	11101103							V	m/A		Anode	Cathode	Anode	Cathode	(Approx.)	Sensitivity
102 102 103											A/W	mA/W	A/Im	uA/Im	× 10 ⁶	A/Im
106/58-9	1/2	100/0 //	0			8571	24	1250	0.00	1000	. 72.000	24	75	25		
173	1/2															
1015-11 0																20@20
107(S-11) S					C			1250	0.02	1000	21,000	31	20	30	0.67	8@15
10	3/4	101(S-1)	10	Н	L		38	1500	0.01	1250	310	2.8	3.3	30	0.11	800@4
10		107(S-11)	6	Н	1		36	1500	0.5	1200	480	48	0.6	60	0.01	2@0.3
10			10	Н	1	4460	38	1500	0.5	1250	6000	48	7.5	60		
10						7767										
105.70 10 H					i	C70102E										
110S-20 10					0 - ez											
114 10		110/0 00														
114		110(5-20)			ļ									150		3@30
115								1800	0.1	1500	6900	64	16	150	0.11	3@30
10		114	10	Н	1		34	2100	0.5	1500	4300	60	10	140	0.071	6@30
10		115	10	Н	1	4516	36	1800	0.5	1500	56,000	71	47	60	0.8	0.2@7
121 12			10	Н		C70102M	38	1800	0.5	1500		79				
124		121			1	C31005										
124 10								2000	0.0	2100						
124															, , , , , , , , , , , , , , , , , , , ,	5000/1/14
124																
125		124	10	Н	1	C70102N	38	1500	0.5	1250			6	90	0.067	2@7.5
131 10		a construe a sum and			-	C70128								<u> </u>		
131								, ,,,,,,,	0.0	,000					0.2	
131 10																, 5000/1/1/
132		131	10	Н		C70042K	34	2100	0.5	1500			20	250	0.08	രെദവ
139					1	C70042R										
1 1115						C70042S										
131	4															
14:89 100 H C C C310166 40 18:00 0.02 18:00 10:200 60 17:5 80 0.5 0.5 000 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 13:00 14:00 12:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:00 14:00 12:00 14:0	1												30		0.45	0.5@7
1-1/8 101 s-1)				Н			40	2200	0.5	1800	26,000	43	150	250	0.6	40@50
1-1/8 101(s-1) 9 S C C31004A 26 1500 0.01 1250 235 1.9 2.5 20 0.125 300@2		139	10	Н	C		40	1800	0.02	1500	12,000	60	17	80	0.2	0.5@20
102(S-4) 9 S C 1921 26 1250 0.1 1000 120,000 40 120 40 3 1 20 20 20 20 20 20 20	1-1/8	101(S-1)	9	S	С	C31004A	26	1500	0.01	1250	235	1.9	2.5	20	0.125	
9 S C 4471 28 1250 1.0 1000 80,000 40 80 40 2 5620 9 S C 4473 26 1250 1.0 1000 100,000 40 100 40 2.5 5620 9 S C 4473 26 1250 1.1 1000 100,000 40 100 40 2.5 5620 9 S C 4473 26 1250 1.1 1000 150,000 40 160 40 4 1620 9 S C 5328 26 1250 0.1 1000 35,000 - 35		102(S-4)	9	S	С	1P21	26									
9 S C 4471 26 1250 1.0 1000 100,000 40 100 40 2.5 5@20 9 S C 4472 26 1250 1.0 1000 100,000 40 100 40 2.5 5@20 9 S C 4473 26 1250 0.1 1000 35,000 - 35						931A										
9 S C 4473 26 1250 1.0 1000 100,000 40 100 40 2.5 5620 9 S C 6328 26 1250 0.1 1000 35,000 - 35						4471										
9 S C 4473 26 1250 0.1 1000 160,000 40 160 40 4 1920 9 S C 7117 26 1250 0.1 1000 35,000 - 35																
9 S C 6328																
9 S C 7117 26 1250 0.1 1000 35,000 - 35 103 9 S C C7075 26 1250 0.1 1000 35,000 - 35 103 9 S C 1P28/VI 28 1250 0.5 1000 160,000 48 200 60 3.3 2@40 9 S C 1P28A/VI 28 1250 0.5 1000 160,000 48 200 60 3.3 2@40 104(S-5) 9 S C 1P28 28 1250 0.5 1000 160,000 50 100 40 2.5 5@20 9 S C 1P28 28 1250 0.5 1000 125,000 50 100 40 2.5 5@20 105(S.8) 9 S C 1P28 28 1250 0.5 1000 7500 50 200 40 5 5@20 105(S.8) 9 S C 7200 28 1250 1.0 1000 7500 2.3 10 3 3.3 6@0.8 109(S-19) 9 S C 31022 28 1250 0.5 1000 65,000 65 40 40 1 4@20 123 9 S C 31022 28 1250 0.1 1000 65,000 65 40 40 1 4@20 128 9 S C 31025 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 129 9 S C 31025 30 1800 0.01 1250 2700 61 20 450 0.045 0.3@10 134 9 S C 31025 30 1500 0.01 1250 2700 64 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 140 9 S C 31025K 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 140 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 141 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 141 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 141 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 141 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 142 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 140 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 141 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 54 3 0.8@20 144 9 S C 31025K 30 1500 0.01 1250 170.00 36 6 100 0.06 1@5 144 9 S C 31025K 30 1500 0.01 1250 170.00 36 6 100 0.06 1@5 144 9 S C 31025K 30 1500 0.01 1250 170.00 36 6 57 45 0.6 16@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4438 44 1250 0.75 1												40		40	4	1@20
9 S C C7075J 26 1250 0.1 1000 80,000 40 80 40 2 5520 103 9 S C 1P28/V1 28 1250 0.5 1000 160,000 48 200 60 3.3 2940 9 S C 1P28/V1 28 1250 0.5 1000 160,000 48 200 60 3.3 2940 104(S-5) 9 S C 1P28 28 1250 0.5 1000 125,000 50 100 40 2.5 5620 105(S-8) 9 S C 1P28 28 1250 0.5 1000 250,000 50 100 40 2.5 5620 105(S-8) 9 S C 1P28 28 1250 0.5 1000 250,000 50 100 40 2.5 5620 105(S-9) 9 S C 7200 28 1250 1.0 1000 7500 65,000 65 40 40 1 4620 123 9 S C C31022 28 1250 0.1 1000 160,000 48 200 60 3.3 2940 128 9 S C C31022 28 1250 1.0 1000 7500 65,000 65 40 40 1 4620 128 9 S C C31025 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 129 9 S C C31025 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 134 9 S C C31025 30 1500 0.01 1250 2700 64 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 40 9 S C C31025 30 1500 0.01 1250 2700 64 20 400 0.05 0.3@10 140 9 S C C31025 30 1500 0.01 1250 2700 64 20 400 0.05 0.3@10 141 9 S C C31025 30 1500 0.01 1250 1700 64 20 400 0.65 1.5 0.8@20 140 9 S C C31025 30 1500 0.01 1250 1700 64 20 400 0.05 0.3@10 141 9 S C C31025 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025 30 1500 0.01 12							26	1250	0.1	1000	35,000		35		_	-
103 9 S C 1P28/V1 28 1250 0.5 1000 160,000 48 200 60 3.3 2@40 104(s-5) 9 S C 1P28/Z 28 1250 0.5 1000 160,000 48 200 60 3.3 2@40 105(s-8) 9 S C 1P28/Z 28 1250 0.5 1000 125,000 50 100 40 2.5 5@20 105(s-8) 9 S C 1P28/Z 28 1250 0.5 1000 250,000 50 200 40 5 5@20 105(s-8) 9 S C 1P28/Z 28 1250 0.5 1000 250,000 50 200 40 5 5@20 105(s-8) 9 S C 7200 28 1250 0.5 1000 65,000 65 40 40 1 4@20 123 9 S C 73102Z 28 1250 0.1 1000 160,000 48 200 60 3.3 2@40 128 9 S C 73102Z 28 1250 0.1 1000 160,000 48 200 60 3.3 2@40 128 9 S C 73102S 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 129 9 S C 73102S 30 1500 0.01 1250 2700 61 20 450 0.05 0.3@10 134 9 S C 73102S 28 1250 0.5 1000 85,000 54 20 400 0.05 0.3@10 134 9 S C 73102S 28 1250 0.5 1000 85,000 54 20 400 0.05 0.3@10 134 9 S C 73102S 28 1250 0.5 1000 85,000 54 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 85,000 54 20 400 0.05 0.3@10 140 9 S C 73102S 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 140 9 S C 73102S 30 1500 0.01 1250 1700 30 65 1.5 0.0@20 9 S C 4552 28 1250 0.5 1000 170,000 54 - 3 0.0@20 140 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.04 1056 141 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.04 1056 141 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.06 1056 142 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.06 1056 142 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.06 1056 142 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.06 1056 144 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.06 1056 144 9 S C 73102S 30 1500 0.01 1250 1700 30 6 100 0.06 1056 145 10 H C 7438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 7451 44 6 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 7451 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C 77151 8 8 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 100 H C 77151 8 8 1600 0.5 1500 57,			9	S	С		26	1250	0.1	1000	35,000		35		-	_
103			9	S	С	C7075J	26	1250	0.1	1000	80,000	40	80	40	2	5@20
9 S C 1P28		103	9	S	С	1P28/V1	28	1250	0.5							
104(S-5)			9			1P28A/V1										
105(S-8) 9 S C 1P28A 28 1250 0.5 1000 250,000 50 200 40 5 5@20		104(S-5)				1P28										
105(S-8) 9 S C 1P22 28 1250 1.0 1000 7500 2.3 10 3 3.3 6@0.8 109(S-19) 9 S C 7200 28 1250 0.5 1000 65,000 65 40 40 1 4@20 123 9 S C C310225 28 1250 0.1 1000 160,000 48 200 60 3.3 2@40 128 9 S C C31025E 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 129 9 S C C31025B 30 1800 0.01 1250 2700 64 20 450 0.045 0.3@10 134 9 S C C31025B 30 1800 0.01 1250 2700 64 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.6@20 136 9 S C 4555 28 1250 0.5 1000 84,000 54 100 65 1.5 0.6@20 140 9 S C C31025K 30 1500 0.01 1250 1700 30 60 1.5 141 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 144 9 S C		1011007														
199(S-19) 9 S C C 37022 28 1250 0.5 1000 65,000 65 40 40 1 4020 123 9 S C C 31025C 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 129 9 S C C 31025C 30 1500 0.01 1250 2700 48 7 170 0.041 0.4@10 134 9 S C C 31025J 30 1500 0.01 1250 2700 48 7 170 0.041 0.4@10 136 9 S C C 31025L 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 136 9 S C C 4555 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 9 S C 4555 28 1250 0.5 1000 170,000 54 - 3 0.8@20 140 9 S C C 31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@6 141 9 S C C 31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@6 141 9 S C C C31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@6 142 9 S C C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 147 101(S-1) 10 H C 7102 42 1500 0.01 1250 1700 30 6 100 0.06 1@5 1-1/2 101(S-1) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 45 1 4.5@20 10 H C 4438 44 1250 0.75 1000 16,200 60 20 74 0.27 2.6@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C 70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 100 H C C 70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C 70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20		105(0.0)														
123 9 S C C31025C 30 1500 0.01 1250 2700 61 20 450 0.045 0.3@10 129 9 S C C31025B 30 1800 0.01 1250 2700 61 20 450 0.045 0.3@10 134 9 S C C31025J 30 1500 0.01 1250 2700 64 7 170 0.041 0.4@10 134 9 S C C31025J 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 9 S C 4555 30 1500 0.01 1250 2700 54 - 3 0.8@200 140 9 S C C31025J 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025M 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025M 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 142 9 S C C31025M 30 1500 0.01 1250 1700 31 12 200 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 4438 44 1250 0.75 1000 16,200 60 20 74 0.27 2.6@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 31,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 31,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 31,600 36 27 45 0.6 16@20 10 H C 4441 46 12															3.3	
128 9 S C C31025C 30 1500 0.01 1250 2700 61 20 450 0.045 0.30e10 129 9 S C C31025B 30 1800 0.01 1250 2700 48 7 170 0.041 0.40e10 134 9 S C C31025B 30 1500 0.01 1250 2700 54 20 400 0.05 0.30e10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.80e20 9 S C 4555 28 1250 0.5 1000 84,000 54 100 65 1.5 0.80e20 9 S C 4555 28 1250 0.5 1000 170,000 54 - 3 0.80e800V 140 9 S C C31025M 30 1500 0.01 1250 170,000 54 - 3 0.80e800V 141 9 S C C31025M 30 1500 0.01 1250 170,000 54 - 3 0.80e800V 141 9 S C C31025M 30 1500 0.01 1250 1700 43 12 300 0.04 106 125 142 9 S C C31025M 30 1500 0.01 1250 1700 30 6 100 0.06 105 142 9 S C C31025M 30 1500 0.01 1250 1700 30 6 100 0.06 105 142 142 9 S C C31025M 30 1500 0.01 1250 1700 30 6 100 0.06 105 142 107(S-11) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 190004 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.50e20 10 H C 4438 44 1250 0.75 1000 36,000 36 27 45 0.6 160e20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 160e20 10 H C 4441 46 1250 0.75 1000 21,600 36									0.5	1000	65,000	65	40	40	1	4@20
128 9 S C C31025B 30 1800 0.01 1250 2700 61 20 450 0.045 0.3@10 134 9 S C C31025B 30 1800 0.01 1250 2000 48 7 170 0.041 0.4@10 134 9 S C C31025J 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 9 S C 4555 28 1250 0.5 1000 170,000 54 - 3 0.8@800V 140 9 S C C31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025K 30 1500 0.01 1250 1700 43 12 200 0.06 1@5 142 9 S C C31025K 30 1500 0.01 1250 1700 31 12 200 0.06 1@5 142 9 S C C31025K 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 101(S-1) 10 H C 7102 42 1500 0.01 1250 1700 30 6 100 0.02 1900 10 H C 2067 44 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1600 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27							28	1250	0.1	1000	160,000	48	200	60	3.3	2@40
129 9 S C C31025B 30 1800 0.01 1250 2000 48 7 170 0.041 0.4@10 134 9 S C C31025J 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 136 9 S C 4555 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 9 S C 4555 28 1250 0.5 1000 170,000 54 -		128	9	S	C		30	1500	0.01	1250	2700	61	20	450		
134 9 S C C31025J 30 1500 0.01 1250 2700 54 20 400 0.05 0.3@10 136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 9 S C 4555 28 1250 0.5 1000 170,000 54 - 3 0.8@800V 140 9 S C C31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025M 30 1500 0.01 1250 1700 31 12 200 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 1-1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 24438 44 1250 0.75 1000 16,200 60 20 74 0.27 2.6@20 10 H C 44439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 67151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C 670132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C 670132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C 670132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20		129	9	S	C	C31025B	30	1800	0.01	1250	2000	48				
136 9 S C 4552 28 1250 0.5 1000 84,000 54 100 65 1.5 0.8@20 9 S C 4555 28 1250 0.5 1000 170,000 54 — 3 0.8@800V 140 9 S C C31025M 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025M 30 1500 0.01 1250 1700 31 12 200 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 142 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 6701328 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C701328 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C701328 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20		134	9			C31025J										
9 S C 4555 28 1250 0.5 1000 170,000 54 — — — 3 0.8@200V 140 9 S C C31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025M 30 1500 0.01 1250 1900 31 12 200 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 1-1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 24438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 67151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10						4552										
140 9 S C C31025K 30 1500 0.01 1250 1700 43 12 300 0.04 1@5 141 9 S C C31025M 30 1500 0.01 1250 1900 31 12 200 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 1-1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 31,600 36 36 36 36 36 36 36 36 36 36 36 36 36		.00											100	60		
141 9 S C C31025M 30 1500 0.01 1250 1900 31 12 200 0.06 1@5 142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 1-1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 2067 44 1250 0.75 1000 16,200 60 20 74 0.27 2.6@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10		140														
142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 1-1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 24438 44 1250 0.75 1000 16,200 60 20 74 0.27 2,6@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20														300	0.04	1@5
142 9 S C C31025N 30 1500 0.01 1250 1700 30 6 100 0.06 1@5 1.1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 64461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 67151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20									0.01	1250	1900	31	12	200	0.06	1@5
1-1/2 101(S-1) 10 H C 7102 42 1500 0.01 1250 660 2.8 7 30 0.23 1900@4 107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 2067 44 1250 0.75 1000 16,200 60 20 74 0.27 2.6@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 64461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20			9	S	C		30	1500	0.01	1250	1700	30	6	100	0.06	
107(S-11) 10 H C 2060 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C 2067 44 1250 0.75 1000 16,200 60 20 74 0.27 2.6@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 44439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10	1-1/2	101(S-1)	10	Н	С		42	1500	0.01	1250						
10 H C 2067 44 1250 0.75 1000 16,200 60 20 74 0.27 2,6@20 10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4661 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10		107(S-11)	10	Н	C	2060				Annual of the Applications						
10 H C 4438 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4439 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441A 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10						2067										
10 H C 4449 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10																
10 H C 4440 44 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10																
10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441A 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10											21,600	36	27	45	0.6	16@20
10 H C 4441 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4441A 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10							44	1250	0.75	1000	21,600	36	27	45	0.6	16@20
10 H C 4441A 46 1250 0.75 1000 21,600 36 27 45 0.6 16@20 10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10			10	Н	С		46	1250	0.75	1000						
10 H C 4461 46 1500 1.0 1250 8000 48 10 60 0.17 5@10 10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10			10	Н	С	4441A	46									
10 H C 6199 42 1250 0.75 1000 36,000 36 45 45 1 4.5@20 10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10			10			4461										
10 H C C7151N 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10						6199										
10 H C C70132B 48 1600 0.5 1500 57,000 70 70 85 0.82 0.8@20 110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10																
110(S-20) 10 H C C70114C 46 1800 1.0 1500 10,800 77 25 180 0.14 4@10																
111 100 0.14 4610		110/0 00	and a commence of													
111 10 DW C 4526 32 2000 0.1 1250 4400 89 15 300 0.05 2@20								1800		1500	10,800	77	25	180	0.14	4@10
		111	10	DW	C	4526	32	2000	0.1	1250	4400	89	15	300	0.05	

[•] A maximum supply-voltage value within the specified range is supplied with each C31024.

^{*} The values 0.9 and 9 are the ratios of the anode current by the light flux value that is incident on a Corning C.S. No. 5-58 filter (1/2 stock thickness). The filter is interposed between a 2870° K light source and the tube.

^a See bar graphs on pages 83 and 84 and spectral-response characteristic curves on page 85.

 $[\]label{eq:problem} \textbf{b} \ \ \textbf{Viewing configuration:} \qquad \textbf{H, head-on;} \qquad \textbf{S, side-on;} \qquad \text{and DW, dormer-window.}$

Cage structures: C, circular-cage; I, in-line; and V, venetian-blind.

									_						0 -
							Maximun	n Ratings	Ty	pical Charac	teristics a Sensit		cified Sup	ply Voltage	and 22° C Anode Dark
Nominal		Number	Viewing	Cage	RCA	0	Supply	Average	Supply			IVILY		Current	Current n/A
Tube Diameter	Spectral Response ^a	of	Configu-	Struc-	Type	Page No.	Voltage	Anode	Voltage	Rad	iant	Lu	minous	Amplifi-	@ Anode
Inches	rresponse	Stages	ration	ture ^{c}	No.	140,	(E)	Current	V					cation	Luminous
							V	m/A		Anode	Cathode		Cathode	(Approx.)	Sensitivity
										A/W	mA/W		uA/Im	× 10 ⁶	. A/Im
1-1/2	115	10	Н	С	4517 C7151Q	42	1800	0.5	1500	56,000	79	47	67	0.7	0.2@7
(Cont'd)		10 10	H H	C C	C70114F	48	1800 1800	0.5 0.5	1500 1500	39,000 39,000	79 79	33 33	67 67	0.49 0.49	0.3@7 0.3@7
		10	Н	Č	C70132A	48	1800	0.5	1500	65,000	79	55	67	0.43	0.4@6.7
	117	10	Н	С	C70114J	46	1800	0.5	1500	39,000	79	33	67	0.49	0.3@7
	127	10	Н	С	C7151U	44	1250	0.75	1000	8200	25	20	60	0.33	10@40
	132	10	Н	С	C7151W C7151Y	42	1500	0.5	1250	10,000	40	50	200	0.25	1@20
	137 138	10 10	H	C C	C71517	44	1500 1500	0.5 0.5	1250 1250	2400 30,000	40 73	12 70	200 170	0.06 0.44	3@10 10@40
Provide	139	10	Н	c	C7151AA	42	1800	0.5	1500	19,000	60	25	80	0.31	0.4@10
2	101(S-1)	12	Н	I	C70007A	54	2000	0.01	1250	940	2.8	10	30	0.33	400@4
	106(S-10)	10	Н	С	6217	52	1250	0.75	1000	50,000	20	100	40	2.5	28@20
	107(S-11)	10 10	H	C C	2020 2061	52 50	1500	2.0	1250	4800	40 64	6	50	0.12	4@20
		10	Н	V	2063	62	1500 2000	2.0	1250 1500		56		80 70	<u></u>	La management a comme
		10	H	С	5819	52	1250	0.75	1000	80,000	40	100	50	2	6@20
		10	Н	С	6342A	50	1500	2.0	1250	25,000	64	31	80	0.39	4@20
		10	Н	С	6655A	52	1250	0.75	1000	96,000	61	120	76	1.6	6@20
		10 10	H H	\ \ \	7746 8053	54	2500 2000	2.0	2000	960,000	56	1200	70	17	250@230
		12	Н	V	7850	62 54	2600	2.0	1500 1800	34,000 510,000	56 56	42 640	70	0.6 9.1	4@9 64@160
		14	H	1	6810A	54	2400	2.0		3,000,000	56	3800	70	54	1000@2000
	108(S-13)	10	Н	С	6903	52	1250	0.75	1000	72,000	48	90	60	1.5	10@20
	110(S-20)	10	Н	V	4463	62	2500	1.0	2000	11,000	68	25	160	0.16	4.8@12
		10	H	ļ	7326 7265	54	2400	1.0	1800	37,500	64	88	150	0.59	3@20
	113	14 12	H		C31000A	54 60	3000	1.0 1.0	2000	3,100,000 270,000	64 77	7200 700	150 200	48 3.5	50@1000 5@200
	110	12	H	į	C31000B	60	3000	1.0	2000	270,000	77	700	200	3.5	5@200
	115	5	Н	1	C31024	58	2750	0.1	3000	430,000	87	360	73	5	-
							to 4500 								
		10	Н	С	4518	50	2000	0.5	1500	39,000	79	33	67	0.49	0.24@7
		10	Н	V	4523	62	2500	0.5	1500	32,000	71	27	60	0.45	0.5@13
	116	12	Н		4507	60	2500	0.2	1500	180,000	97	160	85	1.9	0.2@50
		12 12	H H	ļ	85 7 5 885 0	60 58	3000	0.2 0.2	2000	970,000 710,000	97 97	850 620	85 85	7.3	1@200
		12	Н		8851	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
	118	12	Н	1	C31000N	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
	4 4000400000000000000000000000000000000	12	Н		C31000Z	60	3000	0.2	2000	970,000	97	850	85	10	1@200
	119	12 12	H H	} <u> </u>	8852 8853	58 58	2500	1.0 1.0	1500 1500	16,000 16,000	37 37	100 100	230	0.43	10@100 10@100
	120	10	Н	V	8664	62	2500 2000	2.0	1500	18,000	69	17	67	0.43	1@7.5
		10	Н	V	8664/V1	62	2000	2.0	1500	18,000	69	17	67	0.25	1@7.5
	128	11	Н		C31034	56	2000	0.01	1500	41,000	68	300	500	0.6	3@100
	4.00	11	H	1	C31034A	56	2000	0.01	1500	62,000	155	400	1000	0.4	3@100
	132	10 10	H	C	C7164R C7164S	50 50	1500 1500	0.5 0.5	1250 1250	20,000 20,000	40 40	100 100	200	0.5	30@150 30@150
	133	12	Н	<u> </u>	C31000M	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
		12	Н	1	C31000AH	60	3000	0.2	2000	970,000	97	850	85	10	1@200
	139	12	Н	1	C31000AJ	60	2500	0.2	2000	64,000	60	85	80	1.2	3@50
	140	11 11	H	<u> </u>	C31034B	56 56	2000	0.01	1500 1500	14,000 16,000	57 47	100 100	400 300	0.25	10@100 10@100
	141	11	Н		C31034C	56	2000	0.01	1500	17,000	42	60	150	0.33	10@50
3	107(S-11)	10	Н	V	2064B	64	2000	2.0	1500		64	-	80		
		10	Н	V	8054	64	2000	2.0	1500	35,000	. 64	43	80	0.54	4@9
	110(S-20)	10	Н	V	4464 C70045C	64	2500	1.0	2000	11,000	68	25 —	160 140	0.16 5	4.8@12 500@1000
	112 115	14 10	S H	V	4524	32 64	6000 2500	1.0 0.5	5000 1500	32,000	60 71	_ 27	60	0.45	1@13
	117	14	S	i	C70045D	32	6000	1.0	5000		72	_	<u> </u>	10	1000@10,000
	120	10	Н	V .	C31009	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		10	Н	V	C31009A	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		10	Н	V	C31009B C31009C	66	2000	2.0	1500	17,000 17,000	77 77	17 17	75 75	0.22 0.22	1@7.5 1@7.5
		10 10	H	V	C31009C	66 66	2000	2.0	1500 1500	17,000	77	17	75	0.22	1@7.5
		10	Н	V	C31012A	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		10	Н	V	C31012B	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		10	Н	V	C31012C	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
5	122	10 10	H H	V	4521 2065	64 68	2000	0.5 2.0	1500 1500	19,000	87 88	18 —	83 110	0.22	2@7.5
5	107(S-11)	10	Н	V	8055	68	2000	2.0	1500	35,000	88	44	110	0.4	4@9
	110(S-20)	10	H	٠٧	4465	68	2500	1.0	2000	11,000	68	25	160	0.16	4.8@12
	115	10	H	V	4525	68	2500	0.5	1500	32,000	80	27	67	0.4	1.5@13
		10	Н	V	C31027 C31029	70	2000	0.5	1500	13,000	88 88	11.5 115	77	0.15 1.5	2@0.9*
	118	12 14	H	V	4522	70 68	2500 3000	0.5	1750 2000	130,000	88	2300	77	30	60@2000
	.,,	14	Н	<u></u>	8854	68	3000	0.5		3,500,000	88	3100	77	40	60@2000

For Photomultipliers by Number of Stages (Gain)

							Maximum	Ratings	ТУРІ	car Charac			en led Sup	ply Voltage	Anode Dark
	Nominal								0 1		Sensiti	vity		Current	Current n/A
Number	Tube	Spectral	Viewing	Cage	RCA	Page	Supply	Average	Supply	Radi	iant	Lui	minous	Current	
of	ž.	Response	Configu-	Struc-	Type	No.	Voltage	Anode	Voltage					Amplifi-	@ Anode
Stages	Diameter	response	ration b	ture ^C	No.	140,	(E)	Current	V					cation	Luminous
	Inches						3 V	m/A		Anode			Cathode	(Approx.)	Sensitivity
										A/W	mA/W	A/Im	uA/Im	x 10 ⁶	A/Im
***	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			·	024024	58	2750	0.1	3000	430,000	87	360	73	5	-
5	2	115	Н	1	C31024	50	to	0.1	3000	450,000	0,		1		
							4500₺			Anni					
č	2/4	107(S-11)	Н		7764	36	1500	0.5	1200	480	48	0.6	60	0.01	2@0.3
6	3/4				8571	24	1250	0.02	1000	73,000		75	35	2.1	2@20
9	1/2	102(S-4)	S	С				0.02	1000	44,000		35	35	1	20@20
		104(S-5)	S	С	C70129H	24	1250			21,000		20	30	0.67	8@15
		123	S	С	C70129G	24	1250	0.02	1000			2.5	20	0.125	300@2
	1-1/8	101(S-1)	S	С	C31004A	26	1500	0.01	1250	235			40	3	1@20
		102(S-4)	S	С	1P21	26	1250	0.1	1000	120,000		120			5@20
			S	С	931A	26	1250	1.0	1000	80,000		80	40	2	
			S	C	4471	26	1250	1.0	1000	100,000		100	40	2.5	5@20
			S	С	4472	26	1250	1.0	1000	100,000		100	40	2.5	5@20
			S	С	4473	26	1250	0.1	1000	160,000	40	160	40	4	1@20
			S	С	6328	26	1250	0.1	1000	35,000	· –	35		1 -	
			S	c	7117	26	1250	0.1	1000	35,000	- "	35		1 -	<u> </u>
			. S	c	C7075J	26	1250	0.1	1000	80,000		80	40	2	5@20
		103	S	Č	1P28/V1	28	1250	0.5	1000	160,000		200	60	3.3	2@40
		103	S	C	1P28A/V		1250	0.5	1000	160,000		200	60	3.3	2@40
		100/0 =			1P28A/V		1250	0.5	1000	125,000		100	40	2.5	5@20
		104(S-5)	S	С		28			1000	250,000		200	40	5	5@20
			S	С	1P28A	28	1250	0.5				10	3	3.3	6@0.8
		105(S-8)		С	1P22	28	1250	1.0	1000	7500				1	4@20
		109(S-19)		С	7200	28	1250	0.5	1000	65,000		40	40		2@40
		123	S	С	C31022	28	1250	0.1	1000	160,000		200	60	3.3	
		128	S	С	C31025C	30	1500	0.01	1250	2700		20	450	0.045	0.3@10
		129	S	С	C31025B	30	1800	0.01	1250	2000	48	7	170	0.041	0.4@10
		134	S	С	C31025J	30	1500	0.01	1250	2700	54	20	400	0.05	0.3@10
		136	S	С	4552	28	1250	0.5	1000	84,000) 54	100	65	1.5	0.8@20
		100	S	Č	4555	28	1250	0.5	1000	170,000	54		_	3	0.8@800V
		140	S	C	C31025K		1500	0.01	1250	1700		12	300	0.04	1@5
				C	C31025M		1500	0.01	1250	1900		12	200	0.06	1@5
		141	S					0.01	1250	1700		6	100	0.06	1@5
A 161		142	S	C	C31025N	30	1500			310		3.3		0.11	800@4
10	3/4	101(S-1)	Н		C70102B	38	1500	0.01	1250					0.125	6@7.5
		107(S-11			4460	38	1500	0.5	1250	6000		7.5	60	0.125	4@7.5
			Н		7767	36	1500	0.5	1250	13,000		16			
			Н.	1	C70102E	38	1500	0.5	1250	8800		11	70	0.16	1.4@7.5
		110(S-20) H	1	8644	34	2100	0.5	1500	6900		16	150	0.11	3@30
			Н	1	8645	34	1800	0.1	1500	6900		16	150	0.11	3@30
		114	Н	I	C70042D	34	2100	0.5	1500	4300		10	140	0.071	6@30
		115	Н	1	4516	36	1800	0.5	1500	56,000	71	47	60	0.8	0.2@7
			Н		C70102N	38	1800	0.5	1500	32,000	79	27	67	0.4	0.2@7
		124	Н	L	C70102N				1250	4800	72	6	90	0.067	2@7.5
		131	H		C70042K				1500	3600	0 45	20	250	0.08	6@30
		132	H	i	C70042R				1500	5500		25	200	0.125	2@30
		139	Н	i	C70042S	38			1500	15,000		20	80	0.25	1@10
	1	115	Н	ċ	C31016F				1250	36,000		30	67	0.45	0.5@7
				C	C31016G				1500	12,000		17	80		0.5@20
	2" 4" 72	139	. Н						1250	660		7	30		1900@4
	1-1/2			С	7102	42						45	45	1	4.5@20
		107(S-11		C	2060	42			1000	36,000					2.6@20
			H	C	2067	44			1000	16,200		20	74		
			H	С	4438	44			1000	21,60		27	45		16@20
			Н	С	4439	44			1000	21,60		27	45		16@20
			H H	С	4440	44			1000	21,60		27	45		16@20
			Н	C	4441	46	1250	0.75	1000	21,60	0 36	27	45		16@20
			Ĥ.	С	4441A	46	1250	0.75	1000	21,60	0 36	27	45		16@20
			H	С	4461	46		1.0	1250	800	0 48	10	60	0.17	5@10
			H	Ċ	6199	42			1000	36,00	0 36	45	45	1	4.5@20
									1500	57,00		70	85		0.8@20
			H	C	C7151N	48									
			Н	С	C70132B				1500	57,00		70	85		0.8@20
		110(S-20		С	C701140				1500	10,80		25	180		4@10
		111	DW	С	4526	32			1250	440		15_	300		2@20
		115	Н	С	4517	42	1800	0.5	1500	56,00	0 79	47	67	0.7	0.2@7
			Н	С	C7151Q	48			1500	39,00	0. 79	33	67	0.49	0.3@7
			H"	c	C70114F				1500	39,00		33	67		0.3@7
			H	C	C70132A				1500	65,00		55	67		0.4@6.7
		117	Н	C	C70114J				1500	39,00		33	67		0.3@7
		.117	П	: 0	20701143	-40	, 1000	, 0.0	1300	- 50,00	0 25	20	60		10@40

A maximum supply-voltage value within the specified range is supplied with each C31024.

^{*} The values 0.9 and 9 are the ratios of the anode current by the light flux value that is incident on a Corning C.S. No. 5-58 filter (1/2 stock thickness). The filter is interposed between a 2870° K light source and the tube.

⁸ See bar graphs on pages 83 and 84 and spectral-response characteristic curves on page 85.

h Viewing configuration: H, head-on; S, side-on; and DW, dormer-window.

c Cage structures: C, circular-cage; I, in-line; and V, venetian-blind.

	Nami						Maximun	n Ratings	Ty	picai Charac	steristics a Sensit		ciriled Sup	ply Voltage	Anode Da
Number	Nominal	Constral	Viewing	Cage	RCA	Door	Supply	Average	Supply	Rad			minous	Current	Current n.
of	Tube	Spectral Response ^a	Configu-	Struc-	Type	Page	: Voltage	Anode	Voltage	nau	Idiil	, Lu	minous	Amplifi-	@ Anode
Stages	Diameter	Response	ration b	ture	No.	No.	(E)	Current	V					cation	Luminou
	Inches						V	m/A		Anode	Cathode	Anode	Cathode	(Approx.)	Sensitivit
										A/W	mA/W	A/Im	uA/Im	× 10 ⁶	A/Im
10	1-1/2	132	Н	С	C7151W	42	1500	0.5	1250	10,000	40	50	200	0.25	1@20
	(Cont'd)	137	Н	C	C7151Y	44	1500	0.5	1250	2400	40	12	200	0.06	3@10
(OOM G	, (50 4,	138	Н	C	C7151Z	44	1500	0.5	1250	30,000	73	70	170	0.41	10@40
		139	Н	Ç	C7151AA	42	1800	0.5	1500	19,000	60	25	80	0.31	0.4@10
	2	106(S-10)	Н	Ć	6217	52	1250	0.75	1000		20	100	40	2.5	
	2				2020					50,000					28@20
		107(S-11)	H	C		52	1500	2.0	1250	4800	40	6	50	0.12	4@20
			Н	C	2061	50	1500	2.0	1250	-	64	-	80	2000	-
			Н	V	2063	62	2000	2.0	1500		56	i –	70		
			Н	С	5819	52	1250	0.75	1000	80,000	40	100	50	2	6@20
			Н	С	6342A	50	1500	2.0	1250	25,000	64	€ 31	80	0.39	4@20
			Н	C	6655A	52	1250	0.75	1000	96,000	61	120	76	1.6	6@20
			Н	1	7746	54	2500	2.0	2000	960,000	56	:1200	70	17	250@23
			Н	V	8053	62	2000	2.0	1500	34,000	56	42	70	0.6	4@9
		108(S-13)	Н	C	6903	52	1250	0.75	1000	72,000	48	90	60	1.5	10@20
		110(S-20)	Н	V	4463	62	2500	1.0	2000	11,000	68	25	160	0.16	4.8@12
			Ĥ		7326	54	2400	1.0	1800	37,500	64	88	150	0.59	3@20
		115	Н	C	4518	50	2000	0.5	1500	39,000	79	33	67	0.49	0.24@7
			Н	V	4523	62	2500	0.5	1500	32,000	71	27	60	0.45	0.5@13
		120	H	V	8664	62	2000	2.0	1500	18,000	69	17	67	0.45	1@7.5
		120		V							69	17		0.25	
		100	Н		8664/V1	62	2000	2.0	1500	18,000			67		1@7.5
		132	H	С	C7164R	50	1500	0.5	1250	20,000	: 40	100	200	0.5	30@150
		10515	Н	С	C7164S	50	1500	0.5	1250	20,000	40	100	200	0.5	30@150
	3	107(S-11)	Н	V	2064B	64	2000	2.0	1500		64	_	80	-	
			H	V	8054	64	2000	2.0	1500	35,000	64	43	80	0.54	4@9
		110(S-20)	Н	V	4464	64	2500	1.0	2000	11,000	. 68	25	160	0.16	4.8@12
		115	Н	V	4524	64	2500	0.5	1500	32,000	71	27	60	0.45	1@13
		120	Н	V	C31009	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			Н	V	C31009A	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			Н	V	C31009B	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			Н	V	C31009C	66	2000	2.0	1500	17,000	: 77	17	75	0.22	1@7.5
			Н	V	C31003C	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			H	V	C31012	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
											77	17	75	0.22	1@7.5
			Н	V	C31012B	66	2000	2.0	1500	17,000					
			H	V	C31012C	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
		122	Ĥ	V	4521	64	2000	0.5	1500	19,000	87	18	83	0.22	2@7.5
	5	107(S-11)	Н	V	2065	68	2000	2.0	1500	_	: 88	· -	110	-	
			Н	V	8055	68	2000	2.0	1500	35,000	. 88	44	110	0.4	4@9
		110(S-20)	Н	V	4465	68	2500	1.0	2000	11,000	: 68	25	160	0.16	4.8@12
		115	H	V	4525	68	2500	0.5	1500	32,000	80	27	67	0.4	1.5@13
			Н	V	C31027	70	2000	0.5	1500	13,000	88	11.5	77	0.15	2@0.9*
11	2	128	Н	- 1	C31034	56	2000	0.01	1500	41,000	- 68	300	500	0.6	3@100
			Н	ï	C31034A	56	2000	0.01	1500	62,000	155	400	1000	0.4	3@100
		140	Н	Ĩ	C31034B	56	2000	0.01	1500	14,000	57	100	400	0.25	10@100
		141	Н	ĭ	C31034C	56	2000	0.01	1500	16,000	47	100	300	0.33	10@100
		142	H	1	C31034D	56	2000	0.01	1500	17,000	42	60	150	0.4	10@50
12	3/4	107(S-11)				36	2000	0.5	1500	160,000	60	200	75	2.7	200@20
12	3/4	107(5-11)	H		4802 C31005	36	2500	0.5	2100	9200	9.2	200	: -	1	0.1@
		121			C31005	30	2300	0.5	2100	min. @ 253.7	min. @ 253.7			min.	3000A/\
										nm	nm				
		125	Н	1	C70128	36	1800	0.5	1500	3000	15	: -	-	0.2	0.5@
										@253.7	@253.7 nm				3000A/\
	4	121	1.1		024000	40	2200	0.5	1900	nm 26,000	43	: 150	250	0.6	40@50
	1	131	Н	1	C31026	40			1800			: 10	30	0.6	40@50
	2	101(S-1)	H	-	C70007A	54	2000	0.01	1250	940	2.8				64@160
		107(S-11)	Н		7850	54	2600	2.0	1800	510,000	56	640	70	9.1	
		113	Н		C31000A	60	3000	1.0	2000	270,000	77	700	200	3.5	5@200
			Н	1	C31000B	60	3000	1.0	2000	270,000	77	700	200	3.5	5@200
		116	H	1	4507	60	2500	0.2	1500	180,000	97	160	85	1.9	0.2@50
			Н		8575	60	3000	0.2	2000	970,000	97	850	85	10	1@200
			Н	1	8850	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@20
			Н	1	8851	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@20
		118	Н	- 1	C31000N	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@20
			Н	1	C31000Z	60	3000	0.2	2000	970,000	97	850	85	10	1@200
		119	Н	1	8852	58	2500	1.0	1500	16,000	37	100	230	0.43	10@100
			Н	1	8853	58	2500	1.0	1500	16,000	37	100	230	0.43	10@100
		133	Н	1	C31000M	58	3000	0.2	2000	710,000	97	620	. 85	7.3	0.6@20
		100						0.2		970,000	97	850	85	10	1@200
		100	Н		C31000AH		3000		2000						3@50
		139	Н	1	C31000AJ	60	2500	0.2	2000	64,000	60	85	80	1.2	
	5	115	Н	V	C31029	70	2500	0.5	1750	130,000	88	115	77	1.5	20@9*
14	2	107(S-11)	Н	1	6810A	54	2400	2.0		3,000,000	56	3800	70	54	1000@20
		110(S-20)	Н	1.	7265	54	3000	1.0	2400	3,100,000	64	7200	150	48	50@100
	3	112	S	1	C70045C	32	6000	1.0	5000		. 60	-	140	5	500@100
		117	S		C70045D	32	6000	1.0	5000	_	72	-	_	10	1000@10,0
		118	Н	i	4522	68	3000	0.5		2,600,000	88	2300	. 77	30	60@200
	5														

For Photomultipliers by Anode Pulse Rise Time

Anode Pulse											Sensit	ivity		Current	Anode Dark
Rise Time at Maximum	Nominal Tube	Spectral	Number	Viewing	RCA	Page	Supply Voltage	Average Anode	Supply	Rac	liant		ninous	Amplifi-	Current n/A @ Anode
Supply Voltage ns	Diameter Inches	Response ^a	of Stages	Configu- ration b	Type No.	No.	(E) V	Current mA	Voltage V	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	(Approx.) x 106	Luminous Sensitivity A/Im
≤ 0.5	3	112	14	S	C70045C	32	6000	1.0	5000	_	60	_	140	5	500@1000
		117	14	S	C70045D	32	6000	1.0	5000		72		-	10	1000@10,000
≤ 1.0 □	2	115	5	Н	C31024	58	2750 to 4500	0.1	3000	430,000	87	360	73	5	-
≤ 1.5	1/2	102(S-4)	9	S	8571	24	1250	0.02	1000	73,000	34	75	35	2.1	2@20
	1 ''-	104(S-5)	9	S	C70129H	24	1250	0.02	1000	44,000	44	35	35	1	20@20
		123	9	S	C70129G	24	1250	0.02	1000	21,000	31	20	30	0.67	8@15
	3/4	107(S-11)	6	Н	7764	36	1500	0.5	1200	480	48	0.6	60	0.01	2@0.3
		110(S-20)	10	Н	8644	34	2100	0.5	1500	6900	64	16	150	0.11	3@30
		114	10	Н	C70042D	34	2100	0.5	1500	4300	60	10	140	0.071	6@30
		121	12	Н	C31005	36	2500	0.5	2100	9200 min. @ 253.7 nm	9.2 min. @ 253.7 nm	-	-	min.	0.1@ 3000A/W
		131	10	Н	C70042K	34	2100	0.5	1500	3600	45	20	250	0.08	6@30
		132	10	Н	C70042R	34	2100	0.5	1500	5500	44	25	200	0.125	2@30
	1	115	10	Н	C31016G	40	1500	0.02	1250	36,000	79	30	67	0.45	0.5@7
		139	10	Н	C31016F	40	1800	0.02	1500	12,000	60	17	80	0.2	0.5@20
	1-1/8	101(S-1)	9	S	C31004A	26	1500	0.01	1250	235	1.9	2.5	20	0.125	300@2
		128	9	S	C31025C	30	1500	0.01	1250	2700	61	20	450	0.045	0.3@10
		129 134	9	S	C31025B	30	1800	0.01	1250	2000	48	7	170 400	0.041	0.4@10
		140	9	S	C31025J	30	1500 1500	0.01	1250 1250	2700 1700	54 43	20 12	300	0.05	0.3@10 1@5
		141	9	S	C31025K C31025M	30	1500	0.01	1250	1900	31	12	200	0.04	1@5
		142	9	S	C31025N	30	1500	0.01	1250	1700	30	6	100	0.06	1@5
€ 2	3/4	101(S-1)	10	Н	C70102B	38	1500	0.01	1250	310	2.8	3.3	30	0.11	800@4
		107(S-11)	10	Н	4460	38	1500	0.5	1250	6000	48	7.5	60	0.125	6@7.5
			10	Н	7767	36	1500	0.5	1250	13,000	48	16	60	0.27	4@7.5
			10	Н	C70102E	38	1500	0.5	1250	8800	56	11	70	0.16	1.4@7.5
			12	Н	4802	36	2000	0.5	1500	160,000	60	200	75	2.7	200@200
		110(S-20)	10	Н	8645	34	1800	0.1	1500	6900	64	16	150	0.11	3@30
		115	10	H	4516	36	1800	0.5	1500	56,000	71	47	60	0.8	0.2@7
			10	H	C70102M	38	1800	0.5	1500	32,000	79	27	67	0.4	0.2@7
		124	10	H	C70102N	38	1500	0.5	1250	4800	72	6	90	0.067	2@7.5
		139 125	10	H	C70042S	38 36	1800 1800	0.5 0.5	1500 1500	15,000 3000@	60 15@	20	80	0.25	1@10 0.5@
	\$7/4077(7770)40-1	123	. 12		C70128		\$ 1800	, 0.5	1500	253.7 nm	253.7 nm			0.2	3000A/W
	1	131	12	Н	C31026	40	2200	0.5	1800	26,000	43	150	250	0.6	40@50
	1-1/8	102(S-4)	9	S	1P21	26	1250	0.1	1000	120,000	40	120	40	3	1@20
			9	S	931A	26	1250	1.0	1000	80,000	40	80	40	2	5@20
			9 9	S S	4471	26	1250	1.0	1000	100,000	40	100	40	2.5	5@20
			9	S	4472 4473	26 26	1250 1250	1.0 0.1	1000	100,000	40 40	100	40 40	2.5 4	5@20 1@20
			9	S	6328	26	1250	0.1	1000	35,000	-	35	40	-	-
			9	S	7117	26	1250	0.1	1000	35,000	· —	35	_	! —	_
			9	S	C7075J	26	1250	0.1	1000	80,000	40	80	40	2	5@20
		103	9	S	1P28/V1	28	1250	0.5	1000	160,000	48	200	60	3.3	2@40
			9	S	1P28A/V1	28	1250	0.5	1000	160,000	48	200	60	3.3	2@40
		104(S-5)	9	S	1P28	28	1250	0.5	1000	125,000	50	100	40	2.5	5@20
		105/0.01	9	S	1P28A	28	1250	0.5	1000	250,000	50	200	40	5	5@20
		105(S-8)	9	S	1P22	28	1250	1.0	1000	7500	2.3	10	3	3.3	6@0.8
		109(S-19) 123	9	S S	7200	28	1250 1250	0.5 0.1	1000	65,000 160,000	65 48	200	40 60	3.3	4@20 2@40
		136	9	S	C31022 4552	28	1250	0.1	1000	84,000	54	100	60	1.5	0.8@20
			9	S	4555	28	1250	0.5	1000	170,000	54	1 -	-	3	0.8@800V
	1-1/2	110(S-20)	10	Н	C70114C	46	1800	1.0	1500	10,800	77	25	180	0.14	4@10
		111	10	DW	4526	32	2000	0.1	1250	4400	89	15	300	0.05	2@20
		115	10	H	4517	42	1800	0.5	1500	56,000	79	47	67	0.7	0.2@7
			10	H	C7151Q	48	1800	0.5	1500	39,000	79	33	67	0.49	0.3@7
			10	H	C70114F	46	1800	0.5	1500	39,000	79	33	67	0.49	0.3@7
		445	10	Н	C70132A	48	1800	0.5	1500	65,000	79	55	67	0.82	0.4@6.7
		117	10	H	C70114J	46	1800	0.5	1500	39,000	79	33	67	0.49	0.3@7
	2	139	10	H	C7151AA	42	1800	0.5	1500	19,000	60	25	80	0.31	0.4@10
	2	107(S-11)	10	H	7746	54	2500	2.0	2000	960,000	56	1200	70	17	250@230
			12	Н	7850	54	2600	2.0	1800	510,000	56	640	70	9.1	64@160

 $^{^{\}mathbb{C}_{-}}$ Single electron anode pulse rise time at 3500 volts.

A maximum supply-voltage value within the specified range is supplied with each C31024.

^{*} The values 0.9 and 9 are the ratios of the anode current by the light flux value that is incident on a Corning C.S. No. 5-58 filter (1/2 stock thickness). The filter is interposed between a 2870° K light source and the tube.

^a See bar graphs on pages 83 and 84 and spectral-response characteristic curves on page 85.

 $b_{-\mbox{\scriptsize Viewing}}$ configurations: H, head-on; S, side-on; and DW, dormer window.

							Maximui	m Ratings	Ty	ypical Charac	teristics a	t the Spe	cified Sup	ply Voltage a	and 22°C
Anode Pulse Rise Time at Maximum Supply Voltage	Nominal Tube Diameter Inches	Spectral Response ⁸	Number of Stages	Viewing Configu- ration b	RCA Type No.	Page No.	Supply Voltage (E)	Average Anode Current mA	Supply Voltage V	Had	diant	tivity Lur Anode A/Im	minous Cathode μΑ/Im	Current Amplifi- cation (Approx.) x 106	Anode Dark Current n/A @ Anode Luminous Sensitivity
ns	1-1/2	101(S-1)	10		7400	40	1500	0.04	4050						A/Im
≤2.5	1-1/2	107(S-1)	10 10	H	7102 2060	42 42	1500 1250	0.01	1250	660	2.8	7	30	0.23	1900@4
		107(5-11)	10	H	2060	42		0.75	1000	36,200	36	45	45	1	4.5@20
			10	Н	4438	44	1250 1250	0.75	1000	16,200	60	20	74	0.27	2.6@20
			10	Н	4439	44	1250	0.75	1000	21,600 21,600	36 36	27 27	45	0.6	16@20
			10	H	4440	44	1250	0.75	1000	21,600	36	27	45 45	0.6 0.6	16@20 16@20
			10	н	4441	46	1250	0.75	1000	21,600	36	27	45	0.6	16@20
			10	Н	4441A	46	1250	0.75	1000	21,600	36	27	45	0.6	16@20
			10	Н	4461	46	1500	1.0	1250	8000	48	10	60	0.17	5@10
			10	Н	6199	42	1250	0.75	1000	36,000	36	45	45	1	4.5@20
			10	Н	C7151N	48	1600	0.5	1500	57,000	70	70	85	0.82	0.8@20
			10	Н	C70132B	48	1600	0.5	1500	57,000	70	70	85	0.82	0.8@20
		127	10	Н	C7151U	44	1250	0.75	1000	8200	25	20	60	0.33	10@40
		132	10	Н	C7151W	42	1500	0.5	1250	10,000	40	50	200	0.25	1@20
	,	137 138	10	H	C7151Y	44	1500	0.5	1250	2400	40	12	200	0.06	3@20
	2	101(S-1)	12	Н	C7151Z C70007A	44 54	1500 2000	0.5	1250	30,000	73 2.8	70	170	0.41	10@40
	2	110(S-20)	10	Н	7326	54	2400	1.0	1250 1800	37,500	64	10 88	30 150	0.33	400@4
		113	12	Н	C31000A	60	3000	1.0	2000	270,000	77	700	200	0.59 3.5	3@20 5@200
			12	Н	C31000B	60	3000	1.0	2000	270,000	77	700	200	3.5	5@200
		115	10	Н	4518	50	2000	0.5	1500	39,000	79	33	67	0.49	0.24@7
	1	116	12	Н	4507	60	2500	0.2	1500	180,000	97	160	85	1.9	0.2@50
			12	Н	8575	60	3000	0.2	2000	970,000	97	850	85	10	1@200
			12	Н	8850	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
	4		12	Н	8851	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
		118	12	Н	C31000N	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
		the gray of a second second	12	Н	C31000Z	60	3000	0.2	2000	970,000	97	850	85	10	1@200
	*	119	12	Н	8852	58	2500	1.0	1500	16,000	37	100	230	0.43	10@100
	9	128	12 11	H	8853 C31034	58 56	2500 2000	1.0 0.01	1500	16,000	37	100	230	0.43	10@100
	*	120	11	Н	C31034A	56	2000	0.01	1500 1500	41,000 62,000	68 155	300 400	1000	0.6	3@100 3@100
	٠	133	12	н	C31000M	58	3000	0.2	2000	710,000	97	620	85	7.3	0.6@200
			12	н	C31000AH	X X	3000	0.2	2000	970,000	97	850	85	10	1@200
	*	139	12	Н	C31000AJ	60	2500	0.2	2000	64,000	60	85	80	1.2	3@50
	*	140	11	H	C31034B	56	2000	0.01	1500	14,000	57	100	400	0.25	10@100
	The same	141	11	Н	C31034C	56	2000	0.01	1500	16,000	47	100	300	0.33	10@100
	Berney	142	- 11	H]	C31034D	56	2000	0.01	1500	17,000	42	60	150	0.4	10@50
€ 3	2	106(S-10)	10	Н	6217	52	1250	0.75	1000	50,000	20	100	40	2.5	28@20
		107(S-11)	10	Н	2020	52	1500	2.0	1250	4800	40	6	50	0.12	4@20
			10	Н	2061	50	1500	2.0	1250	-	64		80		-
			10	Н	5819	52	1250	0.75	1000	80,000	40	100	50	2	6@20
			10	H	6342A	50	1500	2.0	1250	25,000	64	31	80	0.39	4@20
		108(S-13)	10	H H ?	6655A 6903	52 52	1250 1250	0.75 0.75	1000	96,000 72,000	61 48	120 90	76	1.6	6@20
		100(S-20)	14	Н	7265	54	3000	1.0	2400	3,100,000	64	7200	60 150	1.5 48	10@20 50@1000
		132	10	Н	C7164R	50	1500	0.5	1250	20,000	40	100	200	0.5	30@150
			10	н	C7164S	50	1500	0.5	1250	20,000	40	100	200	0.5	30@150
	5	118	14	H	4522	68	3000	0.5		2,600,000	88	2300	77	30	60@2000
			14	Н	8854	68	3000	0.5		3,500,000	88	3100	77	40	60@2000
≤ 3.5	2	107(S-11)	14	H	6810A	54	2400	2.0		3,000,000	56	3800	70	54	1000@2000
≤ 10	2	107(S-11)	10	Н	2063	62	2000	2.0	1500		56		70	-	-
			10	Н	8053	62	2000	2.0	1500	34,000	56	42	70	0.6	4@9
		110(S-20)	10	Н	4463	62	2500	1.0	2000	11,000	68	25	160	0.16	4.8@12
		115	10	Н	4523	62	2500	0.5	1500	32,000	71	27	60	0.45	0.5@13
		120	10	H	8664	62	2000	2.0	1500	18,000	69	17	67	0.25	1@7.5
< 15	2	107/6 44	10	Н	8664/V1	62	2000	2.0	1500	18,000	69	17	67	0.25	1@7.5
≤ 15	3	107(S-11)	10 10	H	2064B	64	2000	2.0	1500	25 000	64	- 40	80	- 054	400
		110(S-20)	10	H	8054 4464	64 64	2000 2500	2.0	1500	35,000	64	43	80	0.54	4@9 4.8@12
	20	115	10	H "	4524	64	2500	0.5	1500	11,000 32,000	68 71	25 27	160	0.16	1@13
		120	10	H	C31009	66	2000	2.0	1500	17,000	77	17	75	0.45	1@7.5
			10	Н	C31009A	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			10	н	C31009B	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			10	H	C31009C	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			10	н	C31012	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			10	Н	C31012A	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			10	Н	C31012B	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
			10	Н	C31012C	66	2000	2.0	1500	17,000	77	17	75	0.22	1@7.5
	100	122	10	Н 🐧	4521	64	2000	0.5	1500	19,000	87	18	83	0.22	2@7.5
≤ 20	5	107(S-11)	10	Н	2065	68	2000	2.0	1500		88		110	-	-
			10	H	8055	68	2000	2.0	1500	35,000	88	44	110	0.4	4@9
	16	110(S-20)	10	Н	4465	68	2500	1.0	2000	11,000	68	25	160	0.16	4.8@12
		115	10	Н	4525	68	2500	0.5	1500	32,000	80	27	67	0.4	1.5@13
			10	H	C31027	70	2000	0.5	1500	13,000	88	11.5	77	0.15	2@0.9*
			12	Н	C31029	70	2500	0.5	1750	130,000	88	115	77	1.5	20@9*

For Ruggedized Photomultipliers by Diameter (Size)

Nominal Tube	Spectral	Number	Viewing	Cage	RCA	Military	Quality Confor-	Environm	ental Testing ^f		Tempera-
Diameter Inches	Response	of Stages	Config- uration b	Struc- ture	Type Number	Specifi- cation ^d	mance Inspec- tion	Shock	Vibration	Acceleration	ture Cycling
1/2	102(S-4) 104(S-5)	9 9	S S	C C	8571 C70129H		Design	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 g's 5 to 2000Hz 1-1/2 hrs total 6 sweeps per axis	15 g's 5 min per axis	-45 to +75 to -45°C 8 hrs total
3/4	101(S-1)	10	Н	Approximate T	C70102B	MIL-E- § 5272C	Design	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	Auditori
	107(S-11)	10	H	To an analysis of the state of	4460	MIL-E- 5272C	100%	30 ±3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	-	- Control of the Cont
							Design	water	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	· ·
		10	\$ H	ì	C70102E ;	MIL-E- §	100% on special order	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	-	
							Design	— The second control of the second control o	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	-
	115 124	10	H H	Walada Walani	C70102M C70102N		100%	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	_	— Monas
							Design	en e	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	
	139	10	Н	!	C70042S	MIL-E- 5272C	100% on special order	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	-	
							Design [§]	-	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	**************************************
1	115 139	10 10	H H	C	C31016F C31016G	MIL-STD- 810B	Design	75 ± 7 g's 11 ± 1 ms 4 impact shocks per axis	20.7 g's 50 to 2000Hz 1-1/2 hrs total 1 sweep per axis	100 ± 10 g's	**************************************

^a See bar graphs on pages 83 and 84 and spectral-response characteristic curves on page 85.

Cage structure: C, circular-cage; I, in-line; and V, venetian-blind.

d A: MIL-E-5272C, 13 April 1959 Amendment 1, 5 January 1960. B: MIL-STD 810B, 15 June 1967

⁶ Quality Conformance Inspection: 100%, every tube tested; Sample, some tubes tested from each lot; and Design, initial tubes only have been tested. Vibration: Cycling ranges from minimum to maximum to minimum; time is total time for vibration in three axes (equal time for each axis).

f For detailed information on environmental testing, request a technical data sheet on the specific type.

Nominal Tube Diameter	Spectral	Number	Viewing Config-	Cage Struc-	RCA	Military	Quality Confor- mance	Environme	ntal Testing ^f	A northern of	Tempera
Inches	Response	Stages	Config- uration	ture	Type Number	Specifi- cation ^d	Inspec-	Shock	Vibration	Acceleration	ture Cycling
1-1/2	107(S-11)	10	Н	С	4441	MIL-E- 5272C	Design	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	-
		10 10	H H	C C	4441A 4461	MIL-E- 5272C	100%	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	-	_
							Design	-	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	
		10 10	H H	C C	C7151N C70132B	MIL-E- 5272C	100%	-	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	-	-
							Design	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	-
	110(S-20)	10	Н	С	C70114C	MIL-E- 5272C	D _ø sign	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	-
	117	10 10 10	Н Н Н	C C C	C7151Q C70114F C70132A	MIL-E- 5272C	Design	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	-
		10	Н	С	C70114J	MIL-E- 5272C	100% on special order	30 ± 3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000Hz 15 min total 1 sweep per axis	-	-
		10					Design	_	20 ± 2 g's 20 to 2000Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis	-
2	120	10 10	H H	V V	8664 8664/V1	-	Sample	150 ± 15 g's 11 ± 2 ms 6 impact shocks per axis	60 g's 48 to 3000Hz 15 min total 1 sweep per axis	-	-
								1500 ± 150 g's 0.20 ± 0.05 ms 6 impact shocks per axis	_	_	_
							Design	=	60 g's 48 to 3000Hz 6 hrs total 2 sweeps per axis	150 ± 10 g's 2 min per axis	~~
3	120	10 10 10 10	H H H H	V V V	C31009 C31009A C31009B C31009C C31012	-	Design	150 ± 15 g's 11 ± 2 ms 2 impact shocks per axis	60 g's 48 to 3000Hz 6 hrs total 2 sweeps per axis	150 ± 10 g's 2 min per axis	-
		10 10 10	H H H	V V V	C31012A C31012B C31012C			1500 ± 150 g's 0.20 ± 0.05 ms 2 impact shocks per axis	-	-	-
5	115	10 12	H	V V	C31027 C31029	-	Design	150 g's 11 ms	60 g's 48 to 3000Hz	-	_

1/2"-Diameter Side-On Types Ruggedized and Non-Ruggedized Tubes Electrostatic-Focus, Circular-Cage Dynode Structure

		Med	hanical						Électric	cal						
					rimum rtings		Typica	l Characte	ristics at Itage dis	specified of	operating su and 22°C	ipply voltage	÷,			
Spec-	1	No.	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity		Gain	Anode Dark	Anode			
tral	RCA Type	Stages	dary	Volt-	Anode	Supply	Rad	Radiant d		Luminous ^e		Current nA@	Pulse Rise	Remarks 9		
Re- sponse	No.	Cage Struc- ture	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶		Luminous Sensitivity	Luminous Sensitivity	Time ^f ns	
102 (S-4)	8571	9 C	Cs-Sb	1250	10.02	1000 C	73,000	34	75	35	2.1	2 @ 20	≤1.5	Parent type. Ruggedized. Designed to withstand shock, vibration, acceleration, and temperature cycling.		
104 (S-5)	[¢] 70129H ⁴	9 C	Cs-Sb	1250	0.02	1000 C	44,000	44	35	35	1	20 @ 20	≤ 1.5	Variant of 8571 having UV- transmitting glass window.		
123	C70129G ⁴	9 C	Cs-Sb	1250	**************************************	1000 C	21,000	§ 31	20	30	0.67	8 @ 15	€ 1.5	Non-ruggedized variant of 8571 having metal envelope and UV-grade sapphire window providing extended UV- response.		

▲ Objective Data

Typical Photocathode Spectral Response Characteristics

a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.

b Averaged over any interval of 30 seconds maximum.

c For voltage distribution, see page 9.

d At wavelength of maximum response of the spectral response characteristic.

e With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.

f At the maximum rated supply voltage. The photocathode is fully illuminated.

⁹ See Glossary of Terms, pages 4 and 5.

The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

8571

Basing (Bottom View)

Socket**

Not required. Type has semiflexible leads

Magnetic Shield** P - 07P13V1

C70129H*

* Type is supplied with a modified B11-88 base attached to semiflexible leads.

Basing (Bottom View)

AM - 78S11T

Socket**

Magnetic Shield** P - 07P13V1

C70129G*

* Type is supplied with a modified B11-88 base attached to semiflexible leads.

Basing (Bottom View)

With temporary base attached With temporary base removed

Socket**

AM - 78S11T

Magnetic Shield** P - 07P13V1

RCA	Military	Quality	Tests			
Type No.	Specifica- tion ^a	Conformance Inspectionb	Shock	Vibration	Acceler-	Temperature Cycling
8571 C70129H	- Prince	Design	30±3 g's 11±1 ms 6 impact shocks per axis	5 to 2000 Hz 1-1/2 hrs	15 g's 5 min per axis	-45 to +75 to -45° C 8 hrs total

- a None
- b Quality Conformance Inspection for ruggedized types: 100% — each tube tested

Sample – some tubes tested
Design – initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1-1/8"-Diameter Side-On Types Electrostatic-Focus, Circular-Cage Dynode Structure

		Mec	hanical						Electric	cal				
					cimum itings		Typica			specified o		upply voltage	9,	
Spec-		No. of	Dynode Secon-	Supply	Average b	Oper- ating	· Control of the cont	Sensi	tivity			Anode Dark	Anode	
tral	RCA Type	Stages	dary	Volt-	Anode	Supply Volts	Rad	iant d	ant d Luminous ^e		Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution [©]	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f	Helliat 65 a
102 (S-4)	931A	9 C	Cs-Sb	1250	1.0	1000 C	80,000	40	80	40	2	5 @ 20	≤ 2	Parent type. Popular, low-cost, general-purpose tube.
102 (S-4)	4471	9 C	Cs-Sb	1250	1.0	1000 C	100,000	40	100	40	2.5	5 @ 20	≤ 2	Variant of 931A having guaranteed red-to-white ratio of 5% minimum.
102 (S-4)	4472	9 C	Cs-Sb	1250	1.0	1000 C	100,000	40	100	40	2.5	5 @ 20	≤ 2	Variant of 931A having guaranteed red-to-white ratio of 7% minimum.
102 (S-4)	C7075J	9 C	Cs-Sb	1250	0.1	1000 C	80,000	40	80	40	2	5 @ 20	≤ 2	Variant of 931A having "anti-hysteresis" design.
102 (S-4)	1P21	9 C	Cs-Sb	1250	0.1	1000 C	120,000	40	120	40	3	1 @ 20	≤ 2	Premium type combining he photosensitivity and low dark current.
102 (S-4)	4473	9 C	Cs-Sb	1250	0.1	1000 C	160,000	40	160	40	4	1 @ 20	≤ 2	Variant of 1P21 having hig anode sensitivity and guar- anteed red-to-white ratio o 7% minimum.
102 (S-4)	6328	9 C	Cs-Sb	1250 Peak AC or DC	0.1	1000 C	35,000	_	35	_	_		≤ 2	Variant of 931A having shorter overall length. Designed for AC operation
102 (S-4)	7117	9 C	Cs-Sb	1250	0.1	1000 C	35,000	-	35	-	-		≤ 2	Variant of 931A having shorter overall length.
101 (S-1)	C31004A	9 C	Be-O	1500	0.01	1250 C	235	1.9	2.5	20	0.125	300 @ 2	≤ 1.5	Variant of 931A designed specifically for near IR systems.

- ^a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

931A 4471 4472 C7075J 1P21 4473 C31004A

BULB T9
PHOTOCATHOOE

94 MIN.

1.31 MIN.

1.94 MAX.

JEDEC No. BII-88

1.31 MAX.
DIA.

92LS - 37/10

* This dimension for type C7075J is 1.99" ± .09".

Basing (Bottom View)

Socket** AM - 78S11T

Magnetic Shield**

J - S-1562 M - 80801B P - 13P32V1

6328 7117

Basing (Bottom View)

Socket** AM - 78S11T

Magnetic Shield** M - 80801G P - 13P28V1

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1-1/8"-Diameter Side-On Types (cont'd) Electrostatic-Focus, Circular-Cage Dynode Structure

		Med	hanical		on.com.eeccomecenoocco.gegood.ucc	ofeteer content a second second	-vo-onnewsores-construction	references of Mr. Self amorten community	Electric	cal				
					kimum atings		Typica			specified tribution,		upply voltage	e,	
Spec-	D04	No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	itivity			Anode Dark	Anode	
tral Re-	RCA Type	Stages	dary	Volt- age	Anode Current	Supply	Supply Radii Volts		diant ^d Luminous ^e		Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	V	mA	and Distri- bution [©]	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
104 (S-5)	1P28	9 C	Cs-Sb	1250	0.5	1000 C	125,000	50	100	40	2.5	5 @ 20	≤ 2	Variant of 931A having a UV- transmitting glass window.
103	1P28/V1	9 C	Cs-Sb	1250	0.5	1000 C	160,000	48	200	60	3.3	2 @ 40	≤ 2	Variant of 1P28 having "anti- hysteresis" design.
104 (S-5)	1P28Å	9 C	Cs-Sb	1250	0.5	1000 C	250,000	50	200	40	5	5 @ 20	≤ 2	Variant of 1P28 having a guar anteed red-to-white ratio of 7% minimum.
103	1P28A/V1	9 C	Cs-Sb	1250	0.5	1000 C	160,000	48	200	60	3.3	2 @ 40	≤ 2	Variant of 1P28A having "anti-hysteresis" design.
105 (S-8)	1P22	9 C	Cs-Sb	1250	1.0	1000 €	7500	2.3	10	3	3.3	6 @ 0.8	≤ 2	Variant of 931A having S-8 response. When used with Wratten No. 102 and No. 4 filters has spectral response approximating that of eye.
109 (S-19)	7200	9 C	Cs-Sb	1250	0.5	1000 C	65,000	65	40	40	1	4 @ 20	≤ 2	Variant of 931A having fused silica window providing extended UV-response.
123	C31022	9 C	Cs-Sb	1250	0.1	1000 C	160,000	48	200	60	3.3	2 @ 40	≤ 2	Metal envelope type having a UV-grade sapphire window for extended UV response. Has "anti-hysteresis" design.
136	4552	9 C	Cs-Sb	1250	0.5	1000 C	84,000	54	100	65	1.5	0.8 @ 20	≤ 2	Type has a bialkali photocathode and stiff lead duodecar base.
136	4555	9 C	Cs-Sb	1250	0.5	1000 C	170,000	54	_	4.5h	3	0.8 @ 800 V	≤ 2	Variant of 4552 designed specifically for flying-spot scanning using blue light sources.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- \boldsymbol{d} . At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- h The sensitivity shown is in μ A per lumen incident on a blue filter combination (JENA UG-5 and JENA BG-12) from a tungsten-filament lamp operated at a color temperature of 2870° K. This source approximates the spectral distribution of a P16 phosphor.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

1P28 1P28/V1 1P28A 1P28A/V1 1P22

BULB T9
PHOTO CATHODE

.94 MIN.

.94 MIN.

.94 MIN.

.94 MAX.

.1.94*

JEDEC No. BII-88

* This dimension for types 1P28/V1 and 1P28A/V1 is 1.99" ±.09".

Basing (Bottom View)

Socket** AM - 78S11T

Magnetic Shield**
J — S-1562
M — 80801B
P — 13P32V1

7200

Basing (Bottom View)

Socket** AM - 78S11T

Magnetic Shield** M - 80801L P - 13P52V1

C31022

Basing (Bottom View)

Socket** AM - 78S11T

Magnetic Shield**
P - Foil or Tape

4552 4555

Basing (Bottom View)

Socket**

C - 12CS-M

Magnetic Shield**
P — Foil or Tape

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1-1/8"-Diameter QUANTACON Side-On Types Ga-As, Ga-As-P, and Ga-In-As Photocathodes Electrostatic-Focus, Circular-Cage Dynode Structure

		Mecl	hanical						Electric	al				
					timum tings		Typica			specified ribution, a		ipply voltagi	e,	
Spec-		No.	Dynode	Supply	Average b	Oper- ating		Sensi	tivity		XX	Anode Dark	Anode	
tral	RCA	Stages	Secon- dary	Volt-	Anode	Supply	Rad	liant d	Lum	inous e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	Type No.	and Cage Struc- ture	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	\$ continues to the continues of the cont
128	C31025C	9 C	Be-O	1500	0.01	1250 C	2700	61	20	450	0.045	0.3 @ 10	≤ 1.5	Ga-As photocathode, UV- transmitting-glass window type. Has essentially "flat" sensitivity through- out its spectral range of 200 to 930 nanometers.
129	C31025B	9 C	Be-O	1800	0.01	1250 C	2000	48	7	170	0.041	0.4 @ 10	≤ 1.5	Ga-As-P photocathode, UV- transmitting-glass window type. Has high sensitiv- ity throughout its spec- tral range of 200 to 800 nanometers.
134	C31025J [▲]	9 C	Be-O	1500	0.01	1250 C	2700	54	20	400	0.05	0.3 @ 10	00 ≤ 1.5	Variant of C31025C having a ceramic envelope and a UV-grade sapphire window. Has a spectral response range of 150 to 930 nanometers.
140	C31025K [▲]	9 C	Be-O	1500	0.01	1250 C	1700	43	12	300	0.04	1 @ 5	33355 € 1.5	Variant of C31025C having a Ga-In-As Type I photo- cathode and a UV-trans- mitting glass window. Has a spectral response range extending from 200 to 980 nanometers.
141	C31025M ⁴	9 C	Be-O	1500	0.01	1250 C	1900	31	12	200	0.06	1 @ 5	≤ 1.5	Variant of C31025K having a Ga-In-As Type II photo- cathode. Has a spectral response range from about 200 to 1030 nanometers.
142	C31025N ⁴	9 C	Be-O	1500	0.01	1250 C	1700	30	6	100	0.06	1 @ 5	≤ 1.5	Variant of C31025K having a Ga-In-As Type III photocathode. Has a spectral range extending from about 200 to 1100 nanometers.

▲ Objective Data

- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- **9** See Glossary of Terms, pages 4 and 5.

a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.

C31025C C31025B C31025K C31025M C31025N

BULB DIA.

BULB DIA.

A PHOTO-CATHODE AMAX.

JEDEC No. BII-88

Basing (Bottom View)

Basing (Bottom View)

Magnetic Shield **
J — S-1562
M — 80801B
P — 13P32V1

Socket**

AM - 78S11T

C31025B C31025C C31025M C31025K C31025N

A .31 Min. B .94 Min.

.2 Min.

Socket** C -- 12CS-M

Magnetic Shield**
P - Foil or Tape

C31025J

WAVELENGTH - NANOMETERS

Dimensions in inches

- ** For key to socket and shield manufacturers and for key to terminal connections, see page 11.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

1-1/2" and 3"-Diameter Special Side-On Types Electrostatic-Focus, Circular-Cage and In-Line Dynode Structures

		Mec	hanical											
					imum itings		Typica							
Spec-	***************************************	No. of Stages	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity	egintatura wa awanto totococco		Anode Dark	Anode	
tral	RCA Type		dary	Volt-	Anode	Supply Volts	Rad	liant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	, Remarks 9
Re- sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution [©]	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time f ns	
111	4526	10 C	Be-O	2000	0.1	1250 D	4400	89	15	300	0.05	2 @ 20	≤ 2	Dormer-window type having a multialkali photocathode de- posited on a reflective sub- strate. Excellent for applications where back- ground illumination is relatively high.
112	; C70045C	14 I	Be-O	6000	**************************************	5000 Y	Prognation (-)-(-)-(-)	40000000000000000000000000000000000000	**Validiporoson	140	5	500 @ 1000	< 0.5	Has extremely fast rise time capability. in conjunction wit high gain. Multialkali photocathode and UV transmitting glass window.
117	; C70045D	14 I	Be-O	6000	1.0	5000 Y		72	effection consists or	***************************************	10	1000 @ 10,000	€ 0.5	Variant of C70045C having a bialkali photocathode.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics®

4526*

Basing (Bottom View)
With temporary
base attached

Magnetic Shield** M - 80802M P - 17P33V1

Socket** C - 3M12 E - 9058

With temporary base removed

DY₁₀ DY₈

(B) 9) DY₆

DY₉ (S) (D) DY₆

DY₇ (A) (C) DY₄

DY₇ (A) (C) DY₆

DY₇ (B) DY₈

DY₇ (B) DY₈

METAL FLANCE

* Type is supplied with a B12-43 base attached to semiflexible leads.

Basing

See technical bulletin

Socket** AL - 435SBA

Magnetic Shield**
P — Foil or Tape

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

3/4" -Diameter Head-On Types Electrostatic-Focus, In-Line Dynode Structure

		Mec	hanical						Electric	al				
					cimum atings		Typica			specified or ribution, a		upply voltage	e,	
Spec-		No. of	Dynode	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA	Stages	Secon- dary	Volt-	Anode	Supply Volts	Rac	liant d	Luminous ^e		Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	Type No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
110 (S-20)	8644	Abbitrophytissis	Be-O	2100	0.5	1500 F	6900	64	16	150	0.11	3 @ 30	< 1.5	Parent type. Has multialkali photocathode providing response to about 800 nanometer Intended for red and near IR applications.
110 (S-20)	8645	10 I	Be-O	1800	0.1	1500 F	6900	64	16	150	0.11	3 @ 30	≤ 2	Type 8644 with integral voltage-divider network encapsulated in magnetic shield.
114	C70042D	10 I	Be-O	2100	0.5	1500 E	4300	60	10	140	0.071	6 @ 30	≤ 1.5	Multialkali photocathode type having fused-silica window for extended UV response.
131	C70042K▲	10 I	Be-O	2100	0.5	1500 E	3600	45	20	250	0.08	6 @ 30	€ 1.5	Variant of 8644 having an ERMA III photocathode pro- viding response to about 930 nanometers.
132	C70042R▲	10	Be-O	2100	0.5	1500 E	5500	44	25	200	0.125	2 @ 30	≤ 1.5	Variant of 8644 having an ERMA II photocathode providing response to about 880 nanometers.

▲ Objective Data

- a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

8644* C70042D* C70042K* C70042R*

Types are supplied with a B12-43 attached to semiflexible leads.

♦ This dimension for type C70042D is 0.81" max.

Basing (Bottom View) With temporary base attached

With temporary base removed

Socket**

AM - 59-402 AL - 212FTSC C - 3M12 - 9058

Magnetic Shield**

M - 80801N P - 10P40

8645

.5 MIN. PHOTOCATHODE MAGNETIC SHIELD 4.50±.05 55 DIA.

92LS-3047RI

Basing (Bottom View)

Socket**

Not required. Type has semiflexible leads.

Magnetic Shield **

Integral with tube and connected to photocathode.

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

3/4" -Diameter Head-On Types (cont'd) Electrostatic-Focus, In-Line Dynode Structure

		Mec	hanical				000000000000000000000000000000000000000		Electric	al				
					timum itings		Typica	l Characte vo	ristics at Itage dist	specified or ribution, a	operating su and 22°C	ipply voltage	,	
Spec-		No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity		C - 1-	Anode Dark	Anode	
tral	RCA Type	Stages and	dary	Volt-	Anode	Supply Volts	Rad	iant d	Lum	inous ⁰	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	Cage Struc- ture	Emitting Surface Material	age V	Current mA	and Distri- bution [©]	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
107 (S-11)	7767	10 I	Be-O	1500	0.5	1250 E	13,000	48	16	60	0.27	4 @ 7.5	≤ 2	Parent type. Designed primarily for compact scintillation counting systems and general applications.
107 (S-11)	7764	6 1	Be-O	1500	0.5	1200 B	480	48	0.6	60	0.01	2 @ 0.3	≤ 1.5	Variant of 7767 having 6 stages and stiff-lead stem.
107 (S-11)	4802	12 I	Be-O	2000	0.5	1500 M	160,000	60	200	75	2.7	200 @ 200	≤ 2	12-stage variant of 7767 having higher gain capability.
115	4516	10 I	Be-O	1800	0.5	1500 E	56,000	71	47	60	0.8	0.2 @ 7	≪ 2	Variant of 7767 having bialkali photocathode.
121	C31005	12 I	Be-O	2500	0.5	2100 N	9200 min. @ 253.7 nm	9.2 min. @ 253.7 nm			1 min	0.1 @ 3000 A/W	≤ 2	Type is designed for UV detection within the spectral range from 180 to 355 nanometers. Has cesium-telluride photocathode and UV-grade sapphire window.
125	C70128	12 I	Be-O	1800	0.5	1500 M	3000 @ 253.7 nm	15 @ 253.7 nm	_		0.2	0.5 @ 3000 A/W	€ 2	Type is designed for UV detection within the spectral range from 105 to 355 nanometers. Has cesium-telluride photocathode and lithium fluoride window.

- a Cage Structure: C, circular-cage; 1, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

* Type is supplied with a B20-102 base attached to semiflexible leads.

7767 4516 4802 3.94 Max. 3.80 Max 3.50+.06 В 3.51±.18 C .30 Max 28 Max D .38 Max. .30 Max 1.5 Min. .75 Min.

DY7(4) DY 5 3

Basing (Bottom View) 7767, 4516

4802 AL - 220FTC C - 20-PM

Socket**

Magnetic Shield** M - 80801N P - 10P40

Basing (Bottom View) 4802

With temporary base attached

7764

Type 4802 has 14 semiflexible leads.

92LS-3983

Basing (Bottom View)

Socket** G - 69005 - 7957

Magnetic Shield ** - 80801M - 10P25

C31005*

Type is supplied with a B20-102 base attached to semiflexible leads.

14 SEMIFLEXIBLE LEADS

Basing (Bottom View)

With temporary base attached

With temporary base removed

Socket**

AL - 220FTC C - 20-PM

Magnetic Shield **

- 80801N - 10P40

C70128*

Type is supplied with a B20-102 base attached to semiflexible leads.

Basing (Bottom View)

With temporary base attached

With temporary

Socket**

AL - 220FTC C - 20-PM

Magnetic Shield ** - 80801N - 10P40

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

3/4" -Diameter Ruggedized Head-On Types Electrostatic-Focus, In-Line Dynode Structure

		Med	hanical						Electric	cal				
					cimum atings		Typica			specified tribution,		ipply voltage	э,	
Spec-	***************************************	No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA Type	Stages	dary	Volt-	Anode	Supply	Rad	liant d	Lum	inous e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks9
Re- sponse	No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode μΑ/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f	nemarks 9
107 (S-11)	4460	10 I	Be-O	1500	0.5	1250 D	6000	48	7.5	60	0.125	6 @ 7.5	≤ 2	Parent type. Subjected to 100% testing for shock and vibration per MIL-E-5272C. Design tests for vibration and acceleration.
101 (S-1)	C70102B	10	Be-O	1500	0.01	1250 E	310	2.8	3.3	30	0.11	800 @ 4	≤ 2	Variant of 4460 having S-1 response and design tests for shock, vibration and acceleration.
107 (S-11)	C70102E	10	Be-O	1500	0.5	1250 E	8800	56	11	70	0.16	1.4 @ 7.5	≤ 2	Variant of 4460 having "non-magnetic" construction
115	C70102M	10	Be-O	1800	0.5	1500 E	32,000	79	27	67	0.4	0.2 @ 7	≤2	Variant of 4460 having a bialkali photocathode.
124	C70102N	10	Be-O	1500	0.5	1250 E	4800	72	6	90	0.067	2 @ 7.5	≤ 2	Variant of 4460 having a UV transmitting glass window.
139	C70042S	10	Be-O	1800	0.5	1500 E	15,000	60	20	80	0.25	1 @ 10	≤ 2	Has high-temperature bialkal (Na-K-Sb) photocathode whi permits tube operation at temperatures as high as +150° C. Has design tests for shock, vibration, and acceleration.

[▲] Objective Data

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

4460 C70102B* C70102E* C70102M* C70102N*

* Types are supplied with a B12-43 base attached to semiflexible leads.

92LS-3986

Basing (Bottom View) C70102E, C70102M, C70102N With temporary base attached

C70102B With temporary base removed

Socket**

AM - 59-402 AL - 212FTSC C - 3M12

E - 9058

Magnetic Shield**

M — 80801N - 10P40

4460, C70102B^A, C70102E^A, C70102M^A, C70102N^A

▲ With temporary base removed

With temporary

base removed

Basing (Bottom View)

C70042S*

* Type is supplied with a B12-43 base attached to semiflexible leads.

FACEPLATE MAX. DIA. S. MIN. DIA. BEFLECTIVE BAND UNDER LIGHT SHIELD LIGHT SHIELD LIGHT SHIELD WAFER MAX. 12 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 12 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 13 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 14 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 15 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 16 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 17 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 18 SEMIFLEXIBLE PLATED LEADS 228 ± 704 DIA. 25 SEMIFLEXIBLE PLATED LEADS 26 SEMIFLEXIBLE PLATED LEADS 26 SEMIFLEXIBLE PLATED LEADS 26 SEMIFLEXIBLE PLATED LEADS 27 SEMIFLEXIBLE 27 SEMIFLEXIBLE PLATED LEADS 27 SEMIFLEXIBLE 27 S

DY9 6 7 DY8
DY7 9 9 9 9 DY6
DY7 9 9 9 DY6
DY7 9 9 9 DY6
DY5 3 9 DY6
DY5 3 1511

With temporary

base attached

Socket**

AM - 59-402 AL - 212FTSC

C - 3M12 E - 9058

Magnetic Shield **

M - 80801N P - 10P40

Environmental Testing RCA Type No. Military Quality Tests Specification^a Conformance Shock Vibration Acceleration Inspectionb 4460 MIL-E-5272C 100% 30 ± 3 g's 20 ± 2 g's C70102M 11 ± 1 ms 20 to 2000 Hz C70102N 6 impact shocks per axis 15 min total 1 sweep per axis Design 20 ± 2 g's 100 ± 10 g's 20 to 2000 Hz 1 min per axis 6 hrs total 2 sweeps per axis C70042S MIL-5272C 100% on 30 ± 3 g's 20 ± 2 g's C70102E special order 11 ± 1 ms 20 to 2000 Hz 6 impact shocks per axis 15 min total 1 sweep per axis 20 to 2 g's Design 100 ± 10 g's 20 to 2000Hz 1 min per axis 6 hrs total 2 sweeps per axis C70102B MIL-E-5272C 30 ± 3 q's 20 ± 2 q's 100 ± 10 g's Design 20 to 2000 Hz 11 ± 1 ms 1 min per axis 6 impact shocks per axis 6 hrs total 2 sweeps per axis

92LS-4022

- a MIL-E-5272C, 13 April 1959 Amendment 1, 5 January 1960.
- **b** Quality Conformance Inspection for ruggedized types:

100% - each tube tested

Sample – some tubes tested
Design – initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1" -Diameter Head-On Types Ruggedized and Non-Ruggedized Tubes Electrostatic-Focus, Circular-Cage and In-Line Dynode Structures

		Mec	hanical						Electric	al				
					timum tings		Typica			specified or ribution, a		upply voltage	€,	
Spec-		No. of	Dynode	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA Type	Stages	Secon- dary	Volt-	Anode	Supply Volts	Rad	iant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re-	No.	Cage Struc- ture	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f	, , , , , , , , , , , , , , , , , , ,
115	C31016F	10 C	Be-O	1500	0.02	1250 K	36,000	79	30	67	0.45	0.5 @ 7	≤ 1.5	Very short, bialkali photo- cathode type having design tests for shock, vibration, and acceleration per MIL-STD 810B.
139	C31016G [▲]	10 C	Be-O	1800	0.02	1500 K	12,000	60	17	80	0.2	0.5 @ 20	≤ 1.5	Variant of C31016F having a high-temperature bialkali (Na-K-Sb) photocathode which permits tube operation at temperatures as high as +150° C.
131	C31026	12 	Be-O	2200	0.5	1800 P	26,000	43	150	250	0.6	40 @ 50	≤ 2	Has an ERMA III photocatho Type is designed primarily for red and near IR laser detection applications.

▲ Objective Data

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

C31016F* C31016G*

* Types are supplied with a B12-43 base

attached to semiflexible leads.

Basing (Bottom View) With temporary base attached

With temporary base removed

Socket**

AM - 59-402 AL - 212FTSC C - 3M12 E - 9058

Magnetic Shield** P - Foil or Tape

C31026*

* Type is supplied with a B20-102 base attached to semiflexible leads.

Basing (Bottom View) With temporary base attached

With temporary base removed

Socket** AL - 220FTC C - 20-PM

Magnetic Shield ** P - Foil or Tape

RCA Type No.	Military	Quality	Tests		
	Specification ^a	Conformance Inspection ^b	Shock	Vibration	Acceleration
C31016F C31016G	MIL-STD-810B	Design	75 ±7 g's 11 ±1 ms 4 impact shocks per axis	20.7 g's 50 to 2000 Hz 1-1/2 hrs total 1 sweep per axis	100 ± 10 g's

Dimensions in inches

- ** For key to socket and shield manufacturers and for key to terminal connections, see page 11.
- MIL-STD-810B, 15 June 1967
- Quality Conformance Inspection for ruggedized types: 100% - each tube tested Sample - some tubes tested Design — initial production tubes only tested

1-1/2" -Diameter Head-On Types Electrostatic-Focus, Circular-Cage Dynode Structure

		Mecl	nanical						Electric	al	w 27			
					imum tings		Typica	l Character vol	ristics at tage dist	specified ribution,	operating su and 22°C	pply voltage	e,	
Spec-	*	No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity		0	Anode Dark	Anode	
tral	RCA	Stages	dary	Volt-	Anode	Supply Volts	Rad	iant d	Lum	inous e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	Type No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
107 (S-11)	6199	10 C	Cs-Sb	1250	0.75	1000 D	36,000	36	45	45	1	4.5 @ 20	≤ 2.5	Parent type. Designed primarily for scintillation counting systems and general applications.
101 (S-1)	7102	10 C	Be-O	1500	0.01	1250 D	660	2.8	7	30	0.23	1900 @ 4	≤ 2.5	Variant of 6199 for red and near-IR detection systems.
107 (S-11)	2060	10 C	Cs-Sb	1250	0.75	1000 D	36,000	36	45	45	1	4.5 @ 20	≤ 2.5	Variant of 6199 supplied with base attached to semi-flexible leads.
115	4517	10 C	Be-O	1800	0.5	1500 G	56,000	79	47	67	0.7	0.2 @ 7	≤ 2	Variant of 6199 having a bialkali photocathode.
132	C7151W	10 C	Be-O	1500	0.5	1250 G	10,000	40	50	200	0.25	1 @ 20	≤ 2.5	Variant of 6199 having an ERMA II photocathode. Type is designed for red and near IR applications.
139	C7155AA [▲]	10 C	Be-O	1800	0.5	1500 G	19,000	60	25	80	0.31	0.4 @ 10	≤ 2	Variant of 6199 having a high-temperature bialkali (Na-K-Sb) photocathode which permits tube operation at temperatures as high as +150° C.

[▲] Objective Data

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

6199 7102 4517 C7151W C7151AA

Basing (Bottom View)

Socket**

AM - 59-402 AL - 212FTSC - 3M12 - 9058 С Е

Magnetic Shield**

J - S-1561 M - 80802C P - 17P45

2060*

Basing (Bottom View) With temporary base attached

With temporary base removed

Socket**

AM-59-402 AL - 212FTSC C - 3M12 E - 9058

Magnetic Shield **

J - S-1561 M - 80802C P - 17P45

* Type is supplied with a B12-43 base attached to semiflexible leads.

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1-1/2" -Diameter Head-On Types (cont'd) Electrostatic-Focus, Circular-Cage Dynode Structure

		Mec	hanical						Electric	al				
					timum itings		Туріса			specified tribution,		upply voltage	е,	
Spec-	A CONTRACTOR OF THE CONTRACTOR	No.	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	itivity		Coin	Anode Dark	Anode	
tral	RCA Type	Stages	dary	Volt-	Anode	Supply	Rac	diant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f	
127	C7151U	10 C	Cs-Sb	1250	0.75	1000 G	8200	25	20	60	0.33	10 @ 40	≤ 2.5	Similar to 6199 but has 1"- diameter minimum Ag-O-Cs-Bi cathode and UV-transmitting glass window. Spectral range from 200 to 760 nanometers.
137	C7151Y	10 C	Be-O	1500	0.5	1250 G	2400	40	12	200	0.06	3 @ 10	≤ 2.5	Variant of C7151U having an ERMA II photocathode, an ultr violet transmitting glass window, and copper-beryllium dynodes. Has a spectral range of 200 to 880 nanometers.
138	C7151Z	10 C	Cs-Sb	1500	0.5	1250 G	30,000	73	70	170	0.41	10 @ 40	≤ 2.5	Variant of C7151U having an ERMA I photocathode. Has a multialkali photocathode peaks in the blue region of the spectrum.
107 (S-11)	4438	10 C	Cş-Sb	1250	0.75	1000 G	21,600	36	27	45	0.6	16 @ 20	≤ 2.5	Sturdy type for compact scint- tillation counting systems. Has semiflexible leads.
107 (S-11)	4439	10 C	Cs-Sb	1250	0.75	1000 G	21,600	36	27	45	0.6	16 @ 20	≤ 2.5	Variant of 4438 supplied with temporary base attached to semiflexible leads.
107 (S-11)	4440	10 C	Cs-Sb	1250	0.75	1000 D	21,600	36	27	45	0.6	16 @ 20	≤ 2.5	Variant of 4439 supplied with permanently attached base.
107 (S-11)	2067	10 C	Cs-Sb	1250	0.75	1000 D	16,200	60	20	74	0.27	2.6 @ 20	≤ 2.5	Has a hemispherical faceplate which allows collection of radiation over a solid angle of greater than 2π steradians.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- ${f c}$ For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- $^{\rm e}$ With a tungsten-filament lamp operated at a color temperature of $2870^{\circ}\,\rm K$. Future data for RCA photomultipliers will be measured using a color temperature of $2854^{\circ}\,\rm K$.
- At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

C7151U C7151Y C7151Z

FACEPI ATE ...

T12 BULB -

12 SEMIFLEXIBLE LEADS MIN, LENGTH = 1,5

Basing (Bottom View)

Socket**

AM - 59-402 AL - 212FTSC C - 3M12 - 9058

Magnetic Shield**

J - S-1561 M - 80802C P - 17P45

4438 4439*

* Type is supplied with a B12-43 base attached to semiflexible leads.

Basing (Bottom View) 4439 With temporary

With temporary base removed

3.91 MAX

Basing (Bottom View)

Socket**

AM - 59-402 AL - 212FTSC C - 3M12 E - 9058

Magnetic Shield **

P - 17P30

4440

Basing (Bottom View)

Socket**

AM - 59-402 AL - 212FTSC C - 3M12 - 9058

Magnetic Shield **

P - 17P30

2067*

* Type is supplied with a B12-43 base attached to semiflexible leads.

Basing (Bottom View)

With temporary base attached

With temporary base removed

Socket**

AM - 59-402 AL - 212FTSC C - 3M12 E - 9058

Magnetic Shield **

P - Foil or Tape

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1-1/2" -Diameter Ruggedized Head-On Types Electrostatic-Focus, Circular-Cage Dynode Structure

		Mec	hanical						Electric	al				
					timum itings		Typica	al Characte vo	ristics at Itage dist	specified o	operating su and 22°C	upply voltage	∍,	
Spec-	504	No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi			Gain	Anode Dark	Anode	
tral	RCA Type	Stages	dary	Volt-	Anode	Supply Volts	Rac	liant d	Lum	inous ⁰	(Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution ⁶	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
107 (S-11)	4441A	10 C	Cs-Sb	1250	0.75	1000 D	21,600	36	27	45	0.6	16 @ 20	≤ 2.5	Parent type. Each tube is subjected to 100% testing for shock and vibration per MIL-E-5272C. Design tests for vibration and acceleration.
107 (S-11)	4441	10 C	Cs-Sb	1250	0.75	1000 D	21,600	36	27	45	0.6	16 @ 20	≤ 2.5	Variant of 4441A having design tests for shock, vibration, and acceleration per M1L-E-5272C.
107 (S-11)	4461	10 C	Be-O	1500	1.0	1250 D	8000	48	10	60	0.17	5 @ 10	≤ 2.5	Variant of 4441A having copper-beryllium dynodes. Each tube is subjected to 100% testing for shock and vibration per MIL-E-5272C. Design tests for vibration and acceleration.
110 (S-20)	C70114C	10 C	Be-O	1800	1.0	1500 G	10,800	77	25	180	0.14	4 @ 10	≤ 2	Variant of 4461 having S-20 response. Has design tests for shock, vibration, and acceleration per MIL-E-52720
115	C70114F	10 C	Be-O	1800	0.5	1500 G	39,000	79	33	67	0.49	0.3 @ 7	≤ 2	Variant of C70114C having a bialkali photocathode, Has design tests for shock, vibration, and acceleration per MIL-E-5272C.
117	C70114J	10 C	Be-O	1800	0.5	1500 G	39,000	79	33	67	0.49	0.3 @ 7	≤ 2	Variant of C70114F having a UV-transmitting glass window is 100% tested for shock and vibration per MIL-E-5272C o special order.

- ${\bf a}$ -Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- **d** At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- g See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

4441A 4441 4461 C70114C* C70114F* C70114J*

attached to semiflexible leads.

Basing (Bottom View) 4441A, 4441, 4461

_(i)DY6 (II) DYA (12) DY2

C70114C With temporary base removed

Basing (Bottom View) C70114C, C70114F, C70114J

With temporary base attached

C70114F, C70114J

With temporary base removed

AL - 212FTSC C - 3M12 E - 9058

AM-59-402

Socket**

Magnetic Shield ** P - 17P30

RCA Type No.	Military	Quality	Tests		
	Specification ^a	Conformance Inspection ^b	Shock	Vibration	Acceleration
4441A 4461	MIL-E-5272C	100%	30 ±3 g's 11 ±1 ms 6 impact shocks per axis	20 ±2 g's 20 to 2000 Hz 15 min total 1 sweep per axis	-
		Design	-	20 ± 2 g's 20 to 2000 Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis
C70114J	MIL-E-5272C	100% on special order	30 ±3 g's 11 ±1 ms 6 impact shocks per axis	20 ±2 g's 20 to 2000 Hz 15 min total 1 sweep per axis	-
		Design	-	20 ±2 g's 20 to 2000 Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis
4441 C70114C C70114F	MIL-E-5272C	Design	30 ±3 g's 11 ± 1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000 Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis

a MIL-E-5272C, 13 April 1959 Amendment 1, 5 January 1960.

b Quality Conformance Inspection for ruggedized types: 100% - each tube tested

Sample — some tubes tested
Design — initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

1-1/2" -Diameter Ruggedized Head-On Types (cont'd) Electrostatic-Focus, Circular-Cage Dynode Structure

		Mec	hanical				20000000000000000000000000000000000000	00000000000000000000000000000000000000	Electric		~:************************************	***************************************		
					imum itings		Typica	il Characte vol	ristics at tage dist	specified or ribution, a	operating su and 22°C	ipply voltage	е,	
Acient		No.	Dynode	0	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
Spec- tral	RCA	Stages	Secon- dary	Supply Volt-	Average	Supply	Rad	liant d	Lum	inous e	Gain (Approx.)	Current nA@	Pulse :	Remarks 9
Re- sponse	Type No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	, , , , , , , , , , , , , , , , , , ,
107 (S-11)	C7151N	10 C	Be-O	1600	0.5	1500 G	57,000	70	70	85	0.82	0.8 @ 20	< 2.5	Type is subjected to 100% testing for vibration per MIL-E-5272C. Design tests for shock, vibration, and acceleration. "Non-magnetic construction employed.
115	C7151Q	10 C	Be-O	1800	0.5	1500 G	39,000	79	33	67	0.49	0.3 @ 7	*sunccoordinate CEP Suncia	Variant of C7151N having a bialkali photocathode. Has design tests for shock, vibra- tion, and acceleration per MIL-E-5272C.
107 (S-11)	C70132B	10 C	Be-O	1600	0.5	1500 G	57,000	70	70	85	0.82	0.8 @ 20		Ruggedized variant of 2067. Each tube is 100% tested fo vibration per MIL-E-5272C. Design tests for shock, vi- bration, and acceleration.
115	C70132A	10 C	Be-O	1800	0.5	1500 G	65,000	79	55	67	0.82	0.4 @ 6.7	v. recipionises	Variant of C70132B having bialkali photocathode. Has design tests for shock, vibration, and acceleration per MIL-E-5272C.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- **d** At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- **f** At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

C7151N* C7151Q*

Basing (Bottom View) C7151N, C7151Q

With temporary base attached

With temporary

C7151Q

DY76 DY5(5)_

C7151N With temporary

C70132B

DY76

DY_I3

DY5(5)

With temporary

(12)DY4

base removed

* Types are supplied with a B12-43 base attached to semiflexible leads.

C70132B* C70132A*

Basing (Bottom View) C70132B, C70132A

With temporary base attached

C70132A With temporary base removed

Socket **

Socket**

AM-59-402 AL - 212FTSC C - 3M12 E - 9058

Magnetic Shield**

P - Foil or tape

AM-59-402 AL - 212FTSC C - 3M12 - 9058

Magnetic Shield**

P - Foil or tape

*	Types a	re si	upplied	with	а	B1	12-43	base
	attached	l to	semifle	exible	le	ac	ls.	

RCA Type No.	Military	Quality	Tests		
	Specification ^a	Conformance Inspection ^b	Shock	Vibration	Acceleration
C7151N C70132B	MIL-E-5272C	100%	-	20 ±2 g's 20 to 2000 Hz 15 min total 1 sweep per axis	
		Design	30 ±3 g's 11 ±1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000 Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis
C7151Q C70132A	MIL-E-5272C	Design	30 ±3 g's 11 ±1 ms 6 impact shocks per axis	20 ± 2 g's 20 to 2000 Hz 6 hrs total 2 sweeps per axis	100 ± 10 g's 1 min per axis

- a MIL-E-5272C, 13 April 1959 Amendment 1, 5 January 1960.
- Quality Conformance Inspection for ruggedized types: 100% - each tube tested

Sample - some tubes tested

Design - initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

2" -Diameter Head-On Types Electrostatic-Focus, Circular-Cage Dynode Structure

		Mec	hanical						Electric	al				
					timum itings		Typica	al Characte vo	ristics at Itage dist	specified a	operating su and 22°C	pply voltage	€,	
•		No.	Dynode	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
Spec- tral	RCA	Stages	Secon- dary	Volt-	Anode	Supply	Rac	liant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	Type No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	Tishid R35
107 (S-11)	6342A	10 C	Be-O	1500	2.0	1250 D	25,000	64	31	80	0.39	4 @ 20	≤ 3.0	Parent type. Designed for scintillation counting systems and general purpose applications.
107 (S-11)	2061	10 C	Be-O	1500	2.0	1250 D	*vavonosiis/dis/dis/	64	-	80			≤ 3.0	Variant of 6342A having semi- flexible leads attached to temporary base.
115	4518	10 C	Be-O	2000	0.5	1500 H	39,000	79	33	67	0.49	0.24 @ 7	≤ 2.5	Variant of 6342A having a bialkali photocathode.
132	C7164S	10 C	Be-O	1500	0.5	1250 H	20,000	40	100	200	0.5	30 @ 150	≤ 3.0	Variant of 6342A having an ERMA II photocathode. Designed for red and near IR detection applications.
132	C7164R	10 C	Be-O	1500	0.5	1250 H	20,000	40	100	200	0.5	30 @ 150	≪ 3.0	Variant of C7164S having shorter overall length.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- **b** Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- **d** At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

6342A 4518 C7164S C7164R

	A	В
6342A 4518	5.81 Max.	4.87 ±.19
C7164S	;	-2-4596384454444444444444444444444444444444444
C7164R	5.2 Max.	4.25 ± .19

Basing (Bottom View)

Socket**

AM-59-417 C = 3M14 E = 9709-7- 2274

Magnetic Shield**

J - S-2004 M - 80802B - 25P50

2061*

* Type is supplied with a B14-38 base

I,68 MIN. FACEPLATE -4.38 ±.25 TIG BULB -I SEMIFLEXIBLE ,020 ± .005 DIA. MIN. LENGTH = 2.5 92LS - 3209 RI

Basing (Bottom View)

With temporary With temporary base attached base removed

Socket**

AM-59-417 C - 3M14 E - 9709-7

- 2274

Magnetic Shield **

J - S-2004 M - 80802B P - 25P50

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

2" -Diameter Head-On Types (cont'd) Electrostatic-Focus, Circular-Cage Dynode Structure

		Mec	hanical						Electric	al				
					timum itings		Typica	al Characte vo	ristics at tage dist	specified a	operating st and 22°C	ipply voltag	e,	
6	· ·	No.	Dynode	Supply	Average b	Oper- ating	***************************************	Sensi	tivity			Anode Dark	Anode	PORTAGONIS
Spec- tral	RCA Type	Stages	Secon- dary	Supply Volt-	Anode	Supply	Rac	liant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode μΑ/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	, indicate the second s
107 (S-11)	6655A	10 C	Cs-Sb	1250	0.75	1000 D	96,000	61	120	76	1.6	6 @ 20	3.0	Similar to 6342A except has Cs-Sb dynodes.
108 (S-13)	6903	* 5 10 C	Cs-Sb	1250	0.75	1000 D	72,000	48	90	60	1.5	10 @ 20	3.0	Variant of 6655A having S-13 response.
107 (S-11)	2020	10 C	Be-O	1500	2.0	1250 D	4800	40	6	50	0.12	4 @ 20	≤ 3.0	Has photocathode deposited o grating of conductive strips allowing high peak cathode current capability.
107 (S-11)	5819	10 C	Cs-Sb	1250	0.75	1000 D	80,000	40	100	50	2	6 @ 20	≤ 3.0	Parent type. Intended for general-purpose applications.
106 (S-10)	6217	10 C	Cs-Sb	1250	0.75	1000 D	50,000	20	100	40	2.5	28 @ 20	≤ 3.0	Variant of 5819 having S-10 response. Intended primarily for color densitometers, color comparators, and spectro- meters.

- $^{\mathbf{a}}$ Cage Structure: C, circular-cage; 1, in-line; and V, venetianblind.
- **b** Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- \boldsymbol{d} . At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics■

6655A 6903

* *	
6655A	6903
A 5.81 Max.	6-9/16 Max.
B 4.87 ±0.19	5-5/8 ±3/16
C 2.00 ± 0.06 Dia.	2 ±5/32 Dia.
D 1.68 Min. Dia.	1-5/8 Min. Dia.
F Curved	Flat

Basing (Bottom View)

Socket**

 $\begin{array}{lll} \mathsf{AM} - 59\text{-}417 \\ \mathsf{C} & -3\mathsf{M}14 \\ \mathsf{E} & -9709\text{-}7 \\ \mathsf{L} & -2274 \end{array}$

Magnetic Shield **

J - S-2003 M - 80802E P - 25P50

2020

Basing (Bottom View)

Socket**

AM - 59-417 C - 3M14 E - 9709-7 L - 2274

Magnetic Shield **

J - S-2003 M - 80802E P - 25P50

5819 6217

Basing (Bottom View)

Socket**

AM - 59-417 C - 3M14 E - 9709-7 L - 2274

Magnetic Shield**

J - S-2004 M - 80802B P - 25P50

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

2" -Diameter Head-On Types Electrostatic-Focus, In-Line Dynode Structure

		Mecl	nanical						Electric	aı				
					cimum itings		Typica	l Characte vo	ristics at Itage dist	specified o	operating su and 22°C	upply voltage	9,	
Spec-		No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA Type	Stages	dary	Volt-	Anode	Supply	Rad	iant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	and Cage Struc- ture	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f	nemarks*
107 (S-11)	6810A	**************************************	Be-O	2400	2.0	2000 W	3,000,000	56	3800	70	54	1000 @ 2000	≤ 3.5	Parent type. Intended for scintillation counting systems and general-purpo applications.
110 (S-20)	7265	14 I	Be-O	3000	1.0	2400 W	3,100,000	64	7200	150	48	50 @ 1000	≤ 3.0	Variant of 6810A having S-20 response. Intended for red and near IR syster
110 (S-20)	7326	10 I	Be-O	2400	1.0	1800 D	37,500	64	88	150	0.59	3 @ 20	≤ 2.5	Variant of 7265 having 10-stages.
107 (S-11)	7850	12 	Be-O	2600	2.0	1800 Q	510,000	56	640	70	9.1	64 @ 160	≤ 2.0	Parent type. Intended for scintillation counting and general-purpose applications.
107 (S-11)	7746	10 I	Be-O	2500	2.0	2000 J	960,000	56	1200	70	17	250 @ 230	≤ 2.0	Variant of 7850 having 10 stages.
101 (S-1)	C70007A	12 I	Be-O	2000	0.01	1250 Q	940	2.8	10	30	0.33	400 @ 4	≤ 2.5	Variant of 7850 having S-1 response. Intended for red and near IR systems.

- ${\bf a}$ -Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- **b** Averaged over any interval of 30 seconds maximum.
- For voltage distribution, see page 9.
- **d** At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

6810A 7265

Basing (Bottom View) 6810A

Basing (Bottom View)

Socket**

AL - 220FTC C - 20-PM

Magnetic Shield**

- S-2002

- 80802E - 21P55V1, 22P60

7326

Basing (Bottom View)

Socket**

- 3M14 - 9709-7 С -2274

Magnetic Shield**

M - 80802N P - 21P45V1

7850 C70007A 7746

7850

	7850	4	7746
	C70007A		
Α	6.31 Max.		6.12 Max
В	5.50 ± .19		5.18 ± .1
Dane	D20 102		D44 20

Basing (Bottom View) 7850, C70007A

Basing (Bottom View) 7746

Socket**

7746

Socket**

7850, C70007A

Magnetic Shield** 7850, C70007A

AL - 220FTC

C - 20-PM

P - 22P60

AM-59-417 - 3M14 - 9709-7

- 2274

Magnetic Shield **

7746 P - 25P50

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

2" -Diameter QUANTACON Head-On Types Ga-As and Ga-In-As Photocathodes Electrostatic-Focus, In-Line Dynode Structure

		Mecl	nanical	BOOLEAN					Electric	al				
					timum itings		Typica			specified of		pply voltage	€,	
Spec-	Autor	No.	Dynode	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA Type	Stages	Secon- dary	Volt-	Anode	Supply	Rad	liant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	and Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
128	C31034	11 1	Be-O	2000	0.01	1500 L	41,000	68	300	500	0.6	3 @ 100	Proposition for the constraint of the constraint	Variant of 8575 having 11 stages, a Ga-As photo-cathode, and a UV-transmitting glass window. The photocathode surface of this tube has a minimum sensitive area of 4 x 10 mm Its spectral range extends from about 200 to 930 nm
128	C31034A [▲]	11	Be-O	2000	0.01	1500 L	62,000	155	400	1000	0.4	3 @ 100	≤ 2.5	Variant of C31034 having extremely high sensitivity.
140	C31034B▲	111 1	Be-O	2000	0.01	1500 L	14,000	57	100	400	0.25	10 @ 100	≤ 2.5	Variant of C31034 having a Ga-In-As Type I photo- cathode. Its spectral range extends from about 200 to 980 nanometers.
141	C31034C▲	11	Be-O	2000	0.01	1500 L	16,000	47	100	300	0.33	10 @ 100	≤ 2.5	Variant of C31034 having a Ga-In-As Type II photo- cathode. Has a spectral response range from about 200 to 1030 nanometers.
142	C31034D [▲]	11	Be-O	2000	0.01	1500 L	17,000	42	60	150	0.4	10 @ 50	≤ 2.5	Variant of C31034 having a Ga-In-As Type III photo- cathode. Has a spectral response range from about 200 to 1100 nanometers.

[▲] Objective Data

a Cage Structure: C, circular-cage; I, in-line; and V, venetian-

b Averaged over any interval of 30 seconds maximum.

c For voltage distribution, see page 9.

d At wavelength of maximum response of the spectral response characteristic.

With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.

 $^{{\}bf f}$ At the maximum rated supply voltage. The photocathode is fully illuminated.

⁹ See Glossary of Terms, pages 4 and 5.

C31034 C31034A C31034B C31034C C31034D

Basing (Bottom View)

Socket** RCA[♦] – AJ2144 AJ2145 AJ2180

Magnetic Shield** P - 22P40

Dimensions in inches

- ** For key to socket and shield manufacturers and for key to terminal connections, see page 11.
- See pages 12 and 13 for description of these accessories.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

2" -Diameter QUANTACON Head-On Types Ga-P First Dynode or All Ga-P Dynode Material Electrostatic-Focus, In-Line Dynode Structure

		Mec	hanical						Electric					
					imum tings		Typica	l Characte vo	ristics at Itage dist	specified or ribution, a	operating su and 22°C	pply voltage	θ,	
Span		No.	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity	ye a se sounday a condection	Gain	Anode Dark	Anode	
Spec- tral	RCA Type	Stages	dary	Volt-	Anode	Supply Volts	Rad	iant d	Lum	inous ^e	(Approx.)	Current nA@	Rise	Remarks 9
Re- sponse	No.	Cage Struc- ture	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
116	8850	. 12 I	Dyl- Ga-P Dy2-12 Be-O	3000	0.2	2000 T	710,000	97	620	85	7.3	0.6 @ 200	≤ 2.5	Parent type. Has a Ga-P first dynode and a bialkali photocathode. A premium tube for photon and low- energy counting applications.
116 ***	8851	12	Dyl- Ga-P Dy2-12 Be-O	3000	0.2	2000 T	710,000	97	620	85	7.3	0.6 @ 200	≤ 2.5	Variant of 8850 having a spherical-section face-plate.
119	8852	12 	Dyl- Ga-P Dy2-12 Be-O	2500	1.0	1500 S	16,000	37	100	230	0.43	10 @ 100	≤ 2.5	Variant of 8850 having an ERMA III photocathode. An excellent tube for laser detection and Raman spectroscopy.
119	8853	12	Dyl- Ga-P Dy2-12 Be-O	2500	1.0	1500 S	16,000	37	100	230	0.43	10 @ 100	€ 2.5	Variant of 8852 having a spherical-section face-plate.
118	C31000N ^J	12	Dyl- Ga-P Dy2-12 Be-O	3000	0.2	2000 T	710,000	97	620	85	7.3	0.6 @ 200	≤ 2.5	Variant of 8850 having a UV-transmitting glass window providing a spectral response range from about 200 to 660 nanometers.
133	C31000M ^J	12	Dyl- Ga-P Dy2-12 Be-O	3000	0.2	2000 T	710,000	97	620	85	7.3	0.6 @ 200	≤ 2.5	Variant of 8850 having a fused-silica window providing a spectral response range from about 180 to 660 nanometers.
115	C31024		Ga-P	2750 to 4500 ^k	0.1m	3000 A	430,000	87	360	73	5		≤1.0 @ 3500V	A 5-stage type employing a bialkali photocathode and all Ga-P dynodes. This tube has a single-electron anode-pulse rise time of 0.8 nanoseconds and is designed for nuclear physics and other applications requiring subnanosecond time response.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- **d** At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- **f** At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- j Type is available with a spherical-section faceplate.
- A maximum voltage value within this range is supplied with each C31024.
- m Averaged over any interval of 0.1 second.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Dimensions in inches

- ** For key to socket and shield manufacturers and for key to terminal connections, see page 11.
- See pages 12 and 13 for description of these accessories.

1000

SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE

2000

3000 3500

500

2" -Diameter Head-On Types Electrostatic-Focus, In-Line Dynode Structure

		Med	hanical	***************************************	ASACCASCOCIOCACIONAL VALORANISCAS			**************************************	Electric	cal				
					ximum atings		Туріс			specified tribution,		upply voltag	e,	
Spec-	chica ea	No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA Type	Stages and	dary	Volt-	Anode	Supply Volts	Rac	liant d	Lum	inous ^a	Gain (Approx.)	Current nA@	Pulse Rise	Remarks9
Re- sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode μΑ/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f	Homars
116	8575	12	Be-O	3000	0.2	2000 R	970,000	97	850	85	10	1 @ 200	≤ 2.5	Parent type. A superior tube for pulse counting applications. Has a bialkali photocathode.
116	4507	12	Be-O	2500	0.2	1500 V	180,000	97	160	85	1.9	0.2 @ 50	≤ 2.5	Variant of 8575 having a spherical section faceplate. Designed for environmental monitoring applications.
113	C31000A	12	Be-O	3000	1.0	2000 R	270,000	77	700	200	3.5	5 @ 200	≤ 2.5	Variant of 8575 having a multialkali photocathode. Intended for red and near-IR systems.
113	C31000B	12 I	Be-O	3000	1.0	2000 R	270,000	77	700	200	3.5	5 @ 200	≤ 2.5	Variant of C31000A having a spherical-section faceplate.
118	C31000Z ^j	12 	Be-O	3000	0.2	2000 R	970,000	97	850	85	10	1 @ 200	≤ 2.5	Variant of 8575 having an ultraviolet-transmitting glass window providing a spectral response range from about 200 to 660 nm.
133	C31000AH ^j	12 	Be-O	3000	0.2	2000 R	970,000	97	850	85	10	1 @ 200	≤ 2.5	Variant of 8575 having a fused-silica window providing a spectral response range from about 180 to 660 nanometers.
139	C31000AJ	12 I	Be-O	2500	0.2	2000 R	64,000	60	85	80	1.2	3 @ 50	≤ 2.5	Variant of 8575 having a high-temperature bialkali (Na-K-Sb) photocathode which permits tube operation at temperatures as high as + 150° C.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- J Type is available with a spherical-section faceplate.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

8575 C31000A C31000Z C31000AJ C31000AH

Basing (Bottom View)

Socket**
RCA[♦] — AJ2144
AJ2145
AJ2180

Magnetic Shield** P - 22P50

8575, C31000A C31000AJ	, C31000Z	C31000AH
5.71 Max.	5.71 Max.	6.43 Max.
4.98 ±.08	4,98 ± .08	5.70 ± .08
1.80 Min.	1.70 Min.	1.70 Min.

4507 C31000B

3000 3500

2000

Basing (Bottom View)

ABC

Socket**
RCA[♦] - AJ2144
AJ2145
AJ2180

Magnetic Shield**
P = 22P50

Dimensions in inches

- ** For key to socket and shield manufacturers and for key to terminal connections, see page 11.
- See pages 12 and 13 for description of these accessories.

1000

SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE

500

2" -Diameter Head-On Types Ruggedized and Non-Ruggedized Tubes Venetian-Blind Dynode Structure

		Mec	hanical						Electric	al				
					imum tings		Typica			specified o		ipply voltage	е,	
Spec-		No.	Dynode	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
tral	RCA	Stages	Secon- dary	Volt-	Anode	Supply	Rad	iant d	Lum	inous ^e	Gain (Approx.)	Current	Pulse	
Re- sponse	Type No.	and Cage Struc- ture	Emitting Surface Material	age V	Current mA	Volts and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	nA@ Anode Luminous Sensitivity A/Im	Rise Time ^f ns	Remarks 9
107 (S-11)	8053	10 V	Be-O	2000	2.0	1500 D	34,000	56	42	70	0.6	4 @ 9	≤ 10	Parent type. Intended for scintillation counting systems and general applications.
107 (S-11)	2063	10 V	Be-O	2000	2.0	1500 D		56		70			≤ 10	Variant of 8053 having semi- flexible leads attached to a temporary base.
110 (S-20)	4463	10 V	Be-O	2500	1.0	2000 D	11,000	68	25	160	0.16	4.8 @ 12	≤ 10	Variant of 8053 having S-20 spectral response. Useful in photometry and flying-spot scanning systems.
115	4523	10	Be-O	2500	0.5	1500 D	32,000	71	27	60	0.45	0.5 @ 13	≤ 10	Variant of 8053 having a bialkali photocathode. Intended for scintillation counting systems.
120	8664	10 V	Be-O	2000	2.0	1500 K	18,000	69	17	67	0.25	1 @ 7.5		Features a bialkali photo- cathode, sapphire window, a stacked ceramic-to-metal brazed construction. Sample tested for shock and vibra- tion. Design tested for vibration and acceleration. Useful in applications where severe environmental condi- tions exist.
120	8664/V1	10 V	Be-O	2000	2.0	1500 K	18,000	69	17	67	0.25	1 @ 7.5	≤ 10	Variant of the 8664 having a integral crystal holder and voltage-divider network.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- **b** Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

* Type is supplied with a B14-38 base attached to semiflexible leads.

Line separates physical variants

Basing (Bottom View)

8053. 2063^A 4463, 4523

2063

With temporary base removed

▲ With temporary base attached

DY48 9 DY 4 K (3)

Magnetic Shield**

P - 25P50

Socket**

C - 3M14 E - 9709-7

- 2274

8664 8664/V1*

* Type has integral voltage divider

8664/V1 8664 STAINLESS STEEL CRYSTAL HOLDER — 2.352 ± .005 FACEPLATE PHOTOCATHODE 1.075 EXHAUST TIP COVERS GUARD RING 1.80 MAX. DIA - 2.00 DIA

Line separates physical variants

Basing (Bottom View) 8664/V1

Socket** 8664 Not employed. Make connections

to flanges.

Magnetic Shield** 8664

P - Foil or tape

Socket** 8664/V1

Type is supplied with flexible leads.

Magnetic Shield ** 8664/V1

P - Foil or tape

	10-7			_	,					_	_
	8						TRAN			-	
	6			T	RAN	SIT	TRANSIT TIME	(A) —		1	7
	4						- (8)				\exists
	•										7
	2									+	-1
SOF		1				, ,	ISE TIME (A)				
TIME - SECONDS	10-8					R	SE TIME (B)				
S	8										=
TIME	6										=
										+	\dashv
	4										1
											1
	2	РНОТ	OCAT	HOD	E ELI	113	'ILLUMINATED			-	_
		A - 2 B - 2	"-DIAI	METE	R, 1	0-ST	AGE, VENETIAN-BI AGE, VENETIAN-BI	LIND, 8	3053-SERIES		
	10							,			
	10-9	500				10	000	20	00	3000	3500
			SUF	PPLY	VOL	TS (E) BETWEEN ANOD	E AND	CATHODE		

Typical Time Response Characteristics for 2"-Diameter, 10-Stage Venetian-Blind Photomultipliers.

RCA	Military	Quality	Tests		
Type No.	Specifica- tion ^a	Conform- ance Inspectionb	Shock	Vibration	Acceleration
8664 8664/V.1	-	Sample	150 ± 15 g's 11 ± 2 ms 6 impact shocks per axis	60 g's 48 to 3000 Hz 15 min total 1 sweep per axis	
		Mill and control with the desired control of the co	1500 ± 150 g's 0.20 ± 0.05 ms 6 impact shocks per axis	Consideration and the state of	The state of the s
		Design	-	60 g's 48 to 3000 Hz 6 hrs total 2 sweeps per axis	150 ± 10 g's 2 min per axis

- Quality Conformance Inspection for ruggedized types:

100% - each tube tested Sample - some tubes tested

Design - initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

3" -Diameter Head-On Types Venetian-Blind Dynode Structure

		Mec	hanical						Electric	al					
					timum tings		Typica			specified or		pply voltage	·,		
Spec-		No.	Dynode	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode		
tral	RCA Type	Stages and	Secon- dary	Volt-	Anode	Supply Volts	Rac	liant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9	
Re- sponse	No.	Cage Struc- ture	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode Cathode A/Im µA/Im		x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns		
107 (S-11)	8054	10 V	Be-O	2000	2.0	1500 D	35,000	64	43	80	0.54	4 @ 9	≤ 15	Parent type. Intended pri- marily for use in scintillation counting systems and general- purpose applications.	
107 (S-11)	20648	10 V	Be-O	2000	2.0	1500 D	-	64	-	80		-	≤ 15	Variant of 8054 having semiflexible leads attached to a temporary base.	
110 (S-20)	4464	10 V	Be-O	2500	1.0	2000 D	,11,000	68	25	160	0.16	4.8 @ 12	≤ 15	Variant of 8054 having S-20 response.	
115	4524	10 V	Be-O	2500	0.5	1500 D	32,000	71	27	60	0.45	1 @ 13	≤ 15	Variant of 8054 having a bialkali photocathode. Intended for scintillation counting applications.	
122	4521	10 V	Be-O	2000	0.5	1500 K	19,000	87	18	83	0.22	2 @ 7.5		Variant of 8054 having a bialkali photocathode, an aluminum-oxide window, and a metal envelope. Tube structure provides a minimum of radioactive background. Intended for nuclear particle detection and gamma-ray spectroscopy.	

- a Cage Structure: C, circular-cage; I, in-line; and V, venetian-blind.
- Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- d At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870°K. Future data for RCA photomultipliers will be measured using a color temperature of 2854°K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

2,59 MIN. USEFUL DIA

FACEPLATE

PHOTOCATHODE METAL ENVELOPE

> 1.96 ±.03 2.40 ~ MAX. DIA.

13 GOLD-PLATED SEMIFLEXIBLE LEADS .030±.005 DIA. MIN. LENGTH = 2.5

Basing (Bottom View)

Socket**

AM-59-417 - 3M14 - 9709-7 -2274

Magnetic Shield ** - 23P55X32

4521*

* Type is supplied with a B14-45 base attached to semiflexible leads.

Basing (Bottom View)

4,86 ±.25

2064B

FACEPLATE

1.9 ±.1

2.00 ±.06 DIA

J24 BULB

13 SEMIFLEXIBLE LEADS .020 ± .005 DIA. MIN. LENGTH = 2.5

4.73 ±.25

With temporary base removed

Socket**

AM-59-417 C - 3M14 - 9709-7 - 2274

Magnetic Shield** P - Foil or tape

2064B* 4464

2064B

* Type is supplied with a B14-38 base attached to semiflexible leads.

4464

Socket** AM -- 59-417

- 3M14 - 9709-7 -2274

Magnetic Shield** 4464 - P - 35P70 2064B - P - Foil or tape

Basing (Bottom View) 2064B

With temporary base attached

With temporary base removed

Dimensions in inches

Line separates physical variants

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

3" -Diameter Ruggedized Head-On Types Venetian-Blind Dynode Structure

		Mec	hanical						Electric	cal				
					cimum atings		Typica			specified tribution,		upply voltage	₽,	
Spec-	RCA	No.	Dynode Secon-	Supply	Average b	Oper- ating		Sensitivity				Anode Dark	Anode	
tral Re-	tral Type	Stages	dary	Volt-	Anode	Supply	Radiant d		Luminous ^e		Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
sponse	No.	Cage Struc- ture ^a	Emitting Surface Material	age V	Current mA	and Distri- bution ^c	Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	x 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	, Hondiks
120	C31009	10 V	Be-O	.2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Parent type. Ruggedized tube having a bialkali photocathode a 2-mm thick sapphire window and stacked ceramic-to-metal brazed construction. Kovar metal used in envelope. Is design tested for shock and vibration. Intended for general scintillation counting applications.
120	C31009B	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Variant of C31009 using non- ferro-magnetic material in the envelope.
120	C31009A	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Variant of C31009 having a 1 mm-thick sapphire window. Designed for the detection of Cerenkov radiation.
120	C31009C	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Variant of C31009A using non ferro-magnetic material in the envelope.
120	; C31012	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Similar to the C31009 except has tabs on flanges rather than notches. Has a 2-mm thick sapphire window and a structure providing a minimum of radioactive background. Intended for nuclear particle detection and gamma-ray spectrophotometry.
120	C31012B	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Variant of C31012 using non- ferro-magnetic material in the envelope.
120	C31012A	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Variant of C31012 having a 1 mm thick sapphire window. Designed for the detection of Cerenkov radiation.
120	C31012C	10 V	Be-O	2000	2.0	1500 K	17,000	77	17	75	0.22	1 @ 7.5	≤ 15	Variant of C31012A using non-ferro-magnetic material in the envelope.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- ${f d}$ At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

C31009 C31009B C31009A C31009C

	C31009	C31009E	C31009A	C31009C
Α	4.50 Max.	4.55 Max	c. 4.82 Max	4.87 Max.
В	1.88	1.88	2.28	2.30
С	0.08	0.08	0.39	0.39

Socket**

Not employed. Make electrical connections to flange indentations.

Magnetic Shield**
P — Foil or tape

C31012 C31012B C31012A C31012C

	C31012	C31012B	C31012A	C31012C
A	4.50 Max.	4.55 Max.	4.82 Max.	4.87 Max.
В	1.96	1.98	2.28	2.30
C	0.08	0.08	0.39	0.39

Socket**

Not employed. Make electrical connections to flange tabs.

Magnetic Shield**
P — Foil or tape

RCA Type No.	Military	Quality	Tests						
	Specification ^a	Conformance Inspection ^b	Shock	Vibration	Acceleration				
C31009 C31009A C31009B C31009C	1	Design	150 ± 15 g's 11 ± 2 ms 2 impact shocks per axis	60 g's 48 to 3000 Hz 6 hrs total 2 sweeps per axis	150 ± 10 g's 2 min per axis				
C31012 C31012A C31012B C31012C			1500 ± 150 g's 0.20 ± 0.05 ms 2 impact shocks per axis	_	-				

- a None
- Quality Conformance Inspection for ruggedized types: 100% — each tube tested
 Sample — some tubes tested
 Design — initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

5" -Diameter Head-On Types In-Line Electrostatic-Focus and Venetian-Blind Dynode Structure

		Med	chanical						Electric	cal				
Spec- tral					cimum itings	Typical Characteristics at specified operating supply voltage, voltage distribution, and 22°C								
		No. of	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	tivity			Anode Dark	Anode	
	RCA Type	Stages	dary	Volt-	Anode	Supply	Rad	iant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	Surface V IIIA	Anode A/Im	Cathode µA/Im	x 10 ⁶ Anode Luminous Sensitivity A/Im	Time ^f	10000							
118	4522	14 	Be-O	3000	0.5	2000 X	2,600,000	88	2300	77	30	60 @ 2000	≤ 3	Parent type. Electrostatic- focus type having bialkali photocathode. Designed for nuclear physics applications where a high degree of time definition required.
118	8854	14 I	Dyl- GaP Dy2-Dy14 Be-O	3000	0.5	2000 X	3,500,000	88	3100	77	40	60 @ 2000	≤ 3	QUANTACON. Variant of 452: having a GaP first dynode. A superior 5"-diameter tube for nuclear physics.
107 (S-11)	8055	10 V	Be-O	2000	2.0	1500 D	35,000	88	44	110	0.4	4 @ 9	≤ 20	Parent type. Intended for scintillation counting systems and general applications.
107 (S-11)	2065	10 V	Be-O	2000	2.0	1500 D	-	88	_	110	-	-	≤ 20	Variant of 8055 having semi- flexible leads attached to a temporary base.
115	4525	10 V	:Be-O	2500	0.5	1500 D	32,000	80	27	67	0.4	1.5 @ 13	≤ 20	Variant of 8055 having a bialkali photocathode. Intended for scintillation counting applications.
110 (S-20)	4465	10 V	Be-O	2500	1.0	2000 D	11,000	68	25	160	0.16	4.8 @ 12	≤ 20	S-20 variant of 8055. Especially useful for photometry and flying spot scanning.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- c For voltage distribution, see page 9.
- **d** At wavelength of maximum response of the spectral response characteristic.
- e With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- 9 See Glossary of Terms, pages 4 and 5.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

4522 8854

Basing (Bottom View)

Socket**

RCA - AJ2144 AJ2145 AJ2180

Magnetic Shield**
P - 32P100X55

* Type is supplied with a B14-38 base attached to semiflexible leads.

Basing (Bottom View) 4465

Basing (Bottom View) 8055, 2065⁴, 4525

▲With temporary base attached

Socket**

C - 3M14 E - 9709-7 L - 2274

Magnetic Shield** 8055, 2065, 4525 M — 80805M P — 23P68X57

4465

P - 30P67X57

2065

Dimensions in inches

- ** For key to socket and shield manufacturers and for key to terminal connections, see page 11.
- See pages 12 and 13 for description on these accessories.

Typical Time Response Characteristics for 5"-Diameter, 10-Stage Photomultipliers

5" -Diameter Ruggedized Head-On Types Venetian-Blind Dynode Structure

		Mecl	hanical						Electric					
				Maximum Ratings			Typical Characteristics at specified operating supply voltage, voltage distribution, and 22°C							
Spec-		No.	Dynode Secon-	Supply	Average b	Oper- ating		Sensi	itivity		0	Anode Dark	Anode	
tral	tral Type	Stages	dary	Volt-	Anode	Supply Volts and Distri- bution ^c	Rad	iant d	Lum	inous ^e	Gain (Approx.)	Current nA@	Pulse Rise	Remarks 9
Re- sponse	No.	Cage Surface	Emitting Surface Material	age V	Current mA		Anode A/W	Cathode mA/W	Anode A/Im	Cathode µA/Im	× 10 ⁶	Anode Luminous Sensitivity A/Im	Time ^f ns	
115	C31027	10 V	Be-O	2000	0.5	1500 K	13,000	88	11.5	77	0.15	2 @ 0.9 ⁿ	≤ 20	Parent type. Ruggedized tube having a bialkali photocathode and a stacked ceramic-to-metal brazed structure. Design tested for shock and vibration.
115	C31029	12 V	Be-O	2500	0.5	1750 U	130,000	£ 88	115	*** 77	1.5	20 @ gn	≤ 20	Variant of C31027 having 12 stages.

- a Cage Structure: C, circular-cage; I, in-line; and V, venetianblind.
- b Averaged over any interval of 30 seconds maximum.
- ${f c}$ For voltage distribution, see page 9.
- \boldsymbol{d} . At wavelength of maximum response of the spectral response characteristic.
- With a tungsten-filament lamp operated at a color temperature of 2870° K. Future data for RCA photomultipliers will be measured using a color temperature of 2854° K.
- f At the maximum rated supply voltage. The photocathode is fully illuminated.
- g See Glossary of Terms, pages 4 and 5.
- The values 0.9 and 9 are the ratios of the anode current by the light flux that is incident on a Corning C. S. No. 5-58 filter (1/2 stock thickness). The filter is interposed between a 2870° K light source and the tube.
- The values of radiant sensitivity shown in the graph for each spectral response designation are typical and may or may not apply for the tube types shown on this page. See page 82 for method of obtaining sensitivities, at any wavelength, for any given tube.

Typical Photocathode Spectral Response Characteristics

C31027

Socket**

Not employed. Make electrical connection to flanges.

Magnetic Shield**

P - Foil or tape

C31029

Socket**

Not employed. Make electrical connection to flanges.

Magnetic Shield**

P - Foil or tape

RCA Type No.	Military	Quality	Tests	a verteilite (1850-1950) van verteilite fertei operation van te efter in des oorspronge.	
	Specification ^a	Conformance Inspection ^b	Shock	Vibration	Acceleration
C31027 C31029		Design	150 g's 11 ms	60 g's 48 to 3000 Hz	****
			1500 g's 0.20 ms	——————————————————————————————————————	-

- None
- Quality Conformance Inspection for ruggedized types: 100% — each tube tested
 Sample — some tubes tested
 Design — initial production tubes only tested

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

RCA Electron Multipliers

Electron multiplier structures are identical to those used in photomultiplier tubes. Electron multipliers are intended for use in vacuum systems in the detection and measurement of electrons, ions and other charged particles, as well as X-radiation and vacuum ultraviolet radiation. The maximum average anode current (30 second average) for all structures listed in the chart below is 10 microamperes.

- For Particle and Radiation Detection
- For Use in a Vacuum System of 10⁻⁵ Torr, or Lower
- Broad Selection of Mechanical and Electrical Characteristics
- Various Types Feature an Integral Voltage Divider
- High Stability Copper-Beryllium Dynodes

RCA	Out-	RCA	Cage	Number	Outer	Radiation	TYPICAL V	ALUES
Dev. Type No.	into, ittotoma, otrastars		of Dynodes	Structure	Opening Inches	Voltage, Anode to Dynode No. 1, Volts (equal volts) per stage)	Current Amplification at Typical Conditions	
C7.075D	1	931A	Circular Cage	10	11 flexible leads sealed in bulb	.31 × .94	2000-3000	1 x 10 ⁵
C7187J	2	6810A	In-Line		Glass stem, (19) flexible leads (B20-102 base supplied)	.375 ± .010 x .375 ± .010	3000-4000	1 to 10 x 10 ⁶
C7187K	2	6810A	In-Line	14	Flange, glass stem, (19) flexible leads (B20-102 base supplied)	.375 ± .010 × .375 ± .010	3000-4000	1 to 10 x 10 ⁶
C31017	4	8664	Venetian Blind	14	Stacked ceramic and Kovar construc- tion, ring terminals, flange mount- ing, shipped with sealed flange	.900 x .730	3000-4000	1 to 10 x 10 ⁶
C31017A	4	8664	Venetian Blind	10	Same as C31017 above	.900 x .730	2500-3500	1 to 10 x 10 ⁵
C31017B	4	8664	Venetian Blind	10	Stacked ceramic and non-magnetic material construction, ring terminals, flange mounting	.900 x .730	2500-3500	1 to 10 x 10 ⁵
C31017C	4	8664	Venetian Blind	10	Stacked ceramic and Kovar construction, ring terminals, flange mounting	.900 × .730	2500-3500	1 to 10 x 10 ⁵
C31019	3	4460	In-Line	14	Kovar flange, glass stem, (16) flexible leads, shipped in plastic bag	.250 ± .005 D.	3900-4500	5 x 10 ⁵
C31019A	8	4460	In-Line	**************************************	Glass stem, (16) flexible leads, unsealed in bulb	.250 ± .005 D.	3900-4500	5 x 10 ⁵

C31019B

C31017 C31017A C31017B C31017C

C7075D

RCA	Out-	RCA	Cage	Number	Outer	Radiation	TYPICAL V	'ALUES
Dev. Type No.	line, Bas- ing Dia- gram	Photomul- tiplier Tube With Similar Dynode Structure	Structure (CuBe Dynodes)	of Dynodes	Structure	Opening Inches	Voltage, Anode to Dynode No. 1, Volts (equal volts per stage)	Current Amplifica- tion at Typical Conditions
C31019B	5	4460	In-Line	14	Support brackets, integral divider, (3) flexible leads, shipped in plastic bag	.250 ± .005 D.	3900-4500	5 x 10 ⁵
C31019C	6	4460	In-Line	. 10	Integral divider, (3) flexible leads, shipped in plastic bag	.250 ± .005 D.	3000-3500	1 x 10 ⁵
C31021	3	4460	In-Line	12	Kovar flange, glass stem, (14) flexible leads, shipped in plastic bag	.250 ± .005 D.	3400-4000	2.5 x 10 ⁵
C31021A	8	4460	In-Line	12	Glass stem, (14) flexible leads, shipped unsealed in bulb	.250 ± .005 D.	3400-4000	2.5 × 10 ⁵
C70102F	8	4460	In-Line	10	Glass stem, (12) flexible leads, shipped sealed in bulb	.250 ± .005 D.	3000-3500	1 × 10 ⁵
C70102H	3	4460	In-Line	10	Kovar flange, glass stem, (12) flexible leads, shipped in plastic bag	.250 ± .005 D.	3000-3500	1 × 10 ⁵
C70102K	8	4460	In-Line	10	Glass stem, (12) flexible leads, shipped unsealed in bulb	.250 ± .005 D.	3000-3500	1 to 5 x 10 ⁵
C70120E	7	8053	Venetian Blind	14	(16) rod terminals, shipped in plastic bag	.800 ± .010 D.	3000-4000	1 to 10 × 10 ⁶
C70129D	9	8571	Circular Cage	10	Glass stem, (11) flexible leads, shipped unsealed in bulb	.06 x .375	2000-3000	1 x 10 ⁵
C70131	10	7850	In-Line	14	(15) rod terminals, shipped in plastic bag	.375 ± .005 D.	3000-4000	2.5 x 10 ⁵

RCA Electron Multipliers

Dimensional Outlines

1. C7075D

2. C7187J C7187K

3. C70102H C31021 C31019

	C70I02H
A	3.000 ± .005

C31021

C70I02H	C31021	C31019
3.000 ± .005	3.300 ±.005	3.600 ± .005

C31019

4. C31017 C31017A C31017B C31017C

	A	В	С	Flange
C31017	4.01		1.27	E
C31017A	3.75	2.75	1.27	E
C31017B	3.25	2.00	1.31	D
C31017C	3.25	2.00	1.31	D

Note: Types C31017A, C31017B, and C31017C have 10 dynodes

5. C31019B

6. C31019C

7. C70120E

8. C70102F C70102K C31021A C31019A

C70102F C70102K

C70102F,K

2.31 Max

1.93 +.06

-.12

C31021A

C31021A

2.61 Max.

2.24 +.06

-.12

|--|

9. C70129D

10. C70131

C31019A

2.53 +.06

-.12

A

В

RCA Photodiodes

Gas-Filled Types

						9	920		9	2/		, I	P29		1P41
				Maximun	n Ratings			Characte	ristics a	22° C					• 000000000
Type	Out- line, Bas- ing Dia-	Spec- tral Re- sponse	Inter- elec- trode Capac- itance	Anode Supply Voltage DC or peak AC	Average Cathode- Current Density	Average Cathode Current ^a	Amb- ient Temp.	Anode Supply Voltage V DC	Lumin Sensiti at 287 µA/Im	vity 0° K	egyptotekkolassa-kett tälisketti toi	Max. Gas Amp- lifica- tion Fac-	Max, Anode Dark Current	Win- dow b Ma- terial	Cathodo Materia
	gram		pF	٧	μA/in ²	μА	°C		Min.	Тур.	Max.	tor			
Side-O	n Types														
1P29	6	S-3	3.0	100	25 c	5 c	100	90	20	40	75	9.0	0.1	0800	Ag-O-R
1P37	6	S-4	3.0	100	25 c	5 c	75	90	75	135	250	5.5	0.05	0800	Cs-Sb
1P40	7	S-1	2.4	90	30 d	3 d	100	90	90	135	250	10.0	-	0800	Ag-O-C
868	6	S-1	3.0	100	25 c	5 c	100	90	50	90	170	8.0	0.1	0800	Ag-O-C
918	6	S-1	3.0	90	25 d	5 d	100	90	120	150	250	10.5	0.1	0080	Ag-O-C
923 927	3	S-1	2.0	90	30 d	3 d	100	90	75	135	250	10.0	0.1	0080	Ag-O-C
930	2 7	S-1 S-1	2.0 2.4	90 . 90	30 d	2d 3d	100	90	75	125	205	10.0	0.1	R6	Ag-O-C
4409	7	S-1	2.4	100	30 °	3 c	100 75	90 90	90 75	135 135	250 205	10.0	0.1 0.05	0800	Ag-O-Cs Cs-Sb
5581	7	S-4	2.4	100	30 c	3c	75	90	75 75	135	250	5.5	0.05	0080	Cs-Sb
5583	2	S-4	2.0	100	20 c	2c	75 75	90	75 75	135	250	5.5	0.05	R6	Cs-Sb
6405/	5	S-1	2.6	90	25 d	5 d	100	50	17.5	35	70	2.5	0.03	0080	Ag-O-Cs
1640															en e
6953	7	S-1	3.0	90	30 d	3 d	100	90	140	200	350	10.0	0.1	0080	Ag-O-Cs
Side-O	n Cartric	dge Types	3												
921	8	S-1	1.0	90	30 d	3 d	100	90	75	135	250	10.0	_	0080	Ag-O-C
5582	8	S-4	2.2	100	20 c	2 ^c	75	90	80	120	250	5.5	0.05	0800	Cs-Sb
Side-O	n Twin-l	Jnit Type	es												
920	4	S-1	1.6 ^e	90	15 d	2 (each unit)	100	90	50	100	200	9.0	0.1	0800	Ag-O-C
Head-C	n Types	3													
1P41	1	S-1	1.8	90	20 d	1.5 d	100	90	50	90	167	8.5	0.1	R6	Ag-O-Cs
	•			30	20	1.0	130	30	30	30	107	0.0	0.1	NO	Ag-U-U

a Averaged over any interval of 30 seconds maximum.
Window Material: 0080, Corning Lime Glass; R6, Kimble Standard Flint.
May be doubled when anode supply voltage is limited to 80 volts.
May be doubled when anode supply voltage is limited to 70 volts.
Cathode-to-anode, each unit, with the other unit grounded.

DIRECTION OF RADIATION

1/8 MAX.

92CS-8229

DIRECTION OF RADIATION

92CM-456IR4

Typical Photocathode Spectral Response Characteristics

13/16 MAX.

Base JEDEC No.	Socket	Base JEDEC No.	Socket	Base JEDEC No.	Socket	
A4-26	AM-77MIP4T	B5-10	AM- 77MIP8T	A3-1	AM - 78S3S	
	C - 2154 L - 2093		C - 9875 E - 9729-127 L - 1935	A4-5 Special (Car- tridge) 921,	L - 2093	
		ethol collections were not in the characteristic and collections are considered and collections and collections are considered and collections are collections and collections are collections and collections are collections	OPP CONTRACTOR (AND AND CONTRACTOR CONTRACTO	5582	AL - 446PC	

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

DIRECTION OF RADIATION

921

5582

MAX.

92CS-470R5

5582

5/8" Min.

RCA Photodiodes

Vacuum Types

					917		5652			935		1P42	2	922
				Maximum	Ratings			Characte	ristics a	at 22° C				
Type was	Out- line, Bas- ing Dia- gram	Spec- tral Re- sponse	Interelectrode Capacitance	Anode Supply Voltage DC or peak AC	Average Cathode- Current Density µA/in ²	Average Cathode- Current ^a	Ambient Temper- ature-	Anode Supply Voltage V DC	Lumi Sensiat 28° µA/Ir	tivity 70° K n	Max.	Max. Anode Dark Current µA	Window b Material	Cathode Material
Side-On 1			, ,		, ,	, , , , , , , , , , , , , , , , , , , ,			*	3 . 4				
Side-Oil		*	M	***		£ _	***			4				
1P39	1	S-4	2.6	250	25	8	75	250	25	52	100	0.005	0800	Cs-Sb
917 ^c	9	S-1 S-1	1.6	500	30 30	10 10	100	250 250	12	20	50 50	0.005	0080	Ag-O-Cs Ag-O-Cs
919 ^c	9	S-1	2.0	500 250	30	5	100	250	12	20	40	0.005	0080	Ag-O-Cs
925	ა 1	S-1	2.6	250	25	5	75	250	25	52	100	0.0125	0080	Cs-Sb
929 934	5	S-4	1.5	250	30	4	75	250	19	30	75	0.0123	R6	Cs-Sb
934	7	S-5	0.6	250	30	10	75	250	18	35	70	0.0005	9741	Cs-Sb
2022	3	S-1	1.6	250	30	5	100	250	12	20	40	0.0125	0080	Ag-O-Cs
5653	1	S-4	2.6	250	25	5	75	250	20	45	100	0.25	0080	Cs-Sb
6570	8	S-1	3.0	500	25	5	100	250	20	35	50	0.013	0080	Ag-O-Cs
C34001	6	_	2.0	250	3.0	0.5	85	90	70	90	<u> </u>	0.0001	0080	Ga-As-P
Side-On	Cartridge	e Types												
922	10	S-1	1.0	500	30	5	100	250	12	20	50	0.005	0080	Ag-O-Cs
926	10	S-3	1.0	500	30	5	100	250	4	6.5	15	0.005	0080	Ag-O-Rb
Side-On	Composi	ite Anode	Types											
5652	2	S-4	1.0	250	30 q	4 (each unit)	75	250	19	45	100	0.01	0800	Cs-Sb
Head-On	Types													
1P42	4	S-9	0.9	180	25	0.4	75	180	20	37	70	0.005	7052	Cs-Sb

Averaged over any interval of 30 seconds maximum.

Window Material: 0080 Corning Lime Glass; R6, Kimble Standard Flint; 9741, Corning Ultraviolet Transmitting Glass; 7052, Corning Borosilicate Glass, or equivalent materials.

The 917 and 919 are alike except that 917 has the anode connected to the top cap, whereas the 919 has the cathode connected to the top cap. d For either electrode.

Dimensions in inches

** For key to socket and shield manufacturers and for key to terminal connections, see page 11.

Photomultipliers and Electron Multipliers Replacement Information

		1100	naccine in its	· · · · · · · · · · · · · · · · · · ·			
Type To Be Replaced	RCA Replacement	Type To Be Replaced	RCA Replacement Type	Type To Be Replaced	RCA Replacement		
Amperex, Philips an	d Valvo PMT	Hamamatsu (cont'd)	EMI	ЕМІ		
XP1000 XP1001 XP1002 XP1004 XP1005	6342A*, 8053 ^{††} 6342A*, 8053 ^{††} 4463 6903 C70007A	7102 7696 PM49 R106 R136	7102* 6342A ^{††} 7200 7200 C7151U	6255B 6255S 9514B 9514S 9558B	8575 8575 8575 8575 7265, C31000B		
XP1010 XP1011 XP1015 XP1020 XP1021	6199 ^{††} 4440 4461 8575 8575	R197 R208 R209 R212 R256	C7075D 6903 6217 1P28 8571	9594B 9600 9609B 9634B 9634QB	6810A* 2067 8571 8575 8575		
XP1023 XP1030 XP1031 XP1040 XP1110	C31000AH 8054 ^{††} 8054 ^{††} 4522 7767 ^{††}	FW130	PF1011, C31034	9635B 9637B 9637KB 9638B 9656KB	8575 7764 7764 2067 8053*		
XP1111 XP1113 XP1115 XP1116 XP1117	7767 ^{††} 7764 4460 C70102B 8644	Dumont 6292 6363 6364 6365 7064	8053 8054 8055 7764* 8053	9656KS 9656QKB 9660B 9661B	4523* 6903 1P28 1P28*, 1P28A*, 1P28/VI*, 1P28A/VI* 7200		
XP1121 XP1123 XP1131 XP1210 50AVP	C70131 C70131 C70131 C70045D 6199 ^{††}	7065 K1295 K1303 K1305 K1306	6199 8053 4460 6217 6903	9665B 9684B 9698B 9698QB 9708B	7200 7102 8644 C70042D 8054		
52AVP 53AVP 54AVP 56AVP 56AVP	7767 6342A ^{††} 8055 ^{††} 8575 8575	K1322 K1361 K1390 K1391 K1404	4438, 6199, 6199, 4441 8054 8055 8644	9708KB 9708KR 9708R 9708S 9709B	8054 4525 4525 4524 8055		
56CVP 56DVP 56TVP 58AVP 150AVP	C70007A 8575 C31000A 4522 6199 ^{††} 7102	K1427 K1428 K1430 K1447 K1485	6903 7746, 8053 80 54 4463, 7326 4464	9709KB 9709R 9701B 9710KB 9710TB	8055 4525 C70007A C70007A 4464		
Hamamatsu		K1500 K1519	8053, 7746, 6342A 6217	9726B 9726KB	2067 2067		
1P21 1P28 931A 6199	1P21* 1P28* 931A* 6199*	K1716 K1717	8645 8645				

The replacement type may require circuit modifications to handle different maximum ratings and/or typical operating characteristics.

All RCA types designated with the key (*) are direct replacements.

For improved cathode quantum efficiency and lower dark current, the following RCA bialkali cathode tubes should be considered:

For 7767 consider 4516 For 8053 consider 4523

For 6199 consider 4517 For 8054 consider 4524

For 6342A consider 4518 For 8055 consider 4525

Index by Types

						II ICC	A D	y iypc	
Type No.	Product*	Page	Type No.	Product*	Page	Type No.	Produ	o+*	Page
**					_				_
	PMT		4802	PMT		C31009			66
1P22	PMT	. 28	5581		. 76	C31009A	PMT		66
1P28	PMT	. 28	5582		. 76	C31009B	PMT		66
1P28A	PMT	. 28	5583		. 76	C31009C			66
1P28/V1			5652	PD	78	C31012			
		. 20			. 70				00
1P28A/V1	DAAT	20	5653	PD	70	C31012A	DAAT		00
				PAT	. /0	C31012A	PIVII		66
1P29			5819			C31012B	PMI		66
1P37			6199			C31012C			
1P39			6217			C31016F			
1P40	PD	. 76	6328	PMT	. 26	C31016G	PMT		40
1P41	PD	. 76	6342A	PMT	. 50	C31017	EM .		72
1P42	PD	78	6405/1640			C31017A			
868		76	6570	PD		C31017B			
						C31017C			
917			6655A		. 52				
918	PD	. /6	6810A	PMT	. 54	C31019	EIVI .		12
919			6903		. 52	C31019A	EM .		72
920			6953	PD	. 76	C31019B	EM .		73
921	PD	. 76	7102		. 42	C31019C	EM .		73
922			7117		. 26	C31021	EM		73
923	PD	76	7200			C31021A	EM		73
		. , ,			. 20		- IVI .		, 0
925	PD	70	7265	PMT	E4	C31022	PMT		20
026	PD	. 70			. 54	C31024			
			7326						
927	PD	. 76	7746		. 54	C31025B			
929			7764			C31025C			
930	PD	. 76	7767	PMT	. 36	C31025J	PMT		30
931A	PMT	. 26	7850	PMT	. 54	C31025K	PMT		30
934	PD	78	8053		. 62	C31025M			
935	PD		8054			C31025N			
2020			8055			C31026			
2022	PD	. /8	8571	PIVIT	. 24	C31027	PIVII		70
2000	DATE	40	9E3E	DMT	00	C21020	DAAT		70
			8575			C31029	PIVII		70
2061			8644			C31034	PIVI		56
2063	PMT	. 62	8645			C31034A			56
2064B	PMT	. 64	8664	PMT	. 62	C31034B			
	PMT		8664/V1	PMT	. 62	C31034C	PMT		56
2067	PMT	44	8850	PMT	. 58	C31034D	PMT		56
4409			8851			C34001			
			8852			C70007A			
4439	DAAT	. 44	8853	DNAT	. 58		DAAT		24
4440	PMT	. 44	8854	PMT	. 68	C70042K	PIVI		34
						0700407			
4441	PMT	. 46	C7075D			C70042R			
4441A	PMT	. 46	C7075J			C70042S			
4460	PMT	. 38	C7151N	PMT	. 48	C70045C			
4461				PMT		C70045D	PMT		32
4463				PMT		C70102B			
	1 1411	. 02.							
4464	PMT	64	C7151W	PMT	. 42	C70102E	PMT		38
						C70102F			
4465	PIMIT	. 68		PMT					73
4471	PMT	. 26	C7151Z			C70102H			
4472	PMT	. 26	C7151AA			C70102K			
4473	PMT	. 26	C7164R	PMT	. 50	C70102M	PMT		38
4507	PMT	. 60	C7164S	PMT	. 50	C70102N			
4516			C7187J	EM	. 72	C70114C	PMT		46
4517				EM		C70114F	PMT		46
4518			C31000A			C70114J			
4521			C31000B			C70120E			
7021	T 1VI 1	. 04	0010000	1 IVII	. 00	0.01202.1			
4500	DATE	00	C21000M	DAAT	EO	C70128	DIAT		26
4522			C31000M			C70129D	EM		73
4523			C31000N						
4524			C31000Z						
4525			C31000AH			C70129H			
4526	PMT	. 32	C31000AJ	PMT	. 60	C70131	EM .		/3
					0.0	0704004	DAAT		40
4552			C31004A			C70132A			
4555	PMT	. 28	C31005	PMT	. 36	C70132B	PMT		48

HOW TO USE THE SPECTRAL RESPONSE BAR GRAPHS AND SPECTRAL RESPONSE CURVES

The numbers in each bar are typical photocathode sensitivity values in milliamperes per watt, at the specified wavelengths, of an arbitrarily selected RCA photomultiplier having a given spectral response. The peak value is shown in the red area of the bar. To obtain typical radiant sensitivities, at any wavelength, of other photomultipliers having the same response but different peak values, take the ratio of the tube's specified cathode radiant sensitivity at the wavelength of maximum response to the number shown in the red area, and multiply by the numbers shown in the bar. For example, type 7767 has spectral response 107 (S-11). It has a typical peak cathode sensitivity at 440 nm of 48 mA/W. The typical peak sensitivity value shown in the 107 (S-11) bar is 56 mA/W at 440 nm. Accordingly, the sensitivity to be expected from the 7767 at 500 nm and at 600 nm would be:

48/56 x 47 \approx 41 mA/W at 500 nm and 48/56 x 11 \approx 9.4 mA/W at 600 nm

To obtain typical cathode quantum efficiency of the 7767 at 500 and 600 nm, multiply the values obtained above by the factors shown in the second column of chart at 500 and 600 nm, i.e.,

41 x 0.248 \approx 10% QE at 500 nm and 9.4 x 0.207 \approx 1.9% QE at 600 nm

The spectral response ranges of the different bars have been terminated at the short wavelength near the cutoff limits established by the transmission characteristics of the window materials , and at the long wavelengths arbitrarily near the 1% point of the maximum value shown in red.

Tick marks at each bar value allow the use of a straight edge to quickly select the spectral response or responses providing highest sensitivity at any selected wavelength. Typical emitters of radiant energy are shown for reference purposes.

Typical Transmission Characteristics of Window Materials

REAL Electronic Components

Sales Offices

(Contact the office nearest you)

DOMESTIC			
CaliforniaLos Angeles	6363 Sunset Blvd., Hollywood, CA 90028	(213) 46	61-9171
San Francisco(D)	420 Taylor Street, Suite 401-408, San Francisco, CA 94102	(415) 44	41-2200
	4546 El Camino Real, Los Altos, CA 94022	(415) 94	48-8996
ColoradoDenver(D)	2785 N. Speer Blvd., Room 346, Denver, CO 80211	(303) 43	33-8841
FloridaPalm Beach	2828 Broadway, (Riviera Beach, FL 33404(D) (305) 84 E) (305) 84	42-2171 42-1577
GeorgiaAtlanta(D	RCA Bldg., 14 Executive Park Drive, N.E. Atlanta, GA 30329	(404) 63	
IllinoisChicago	446 E. Howard Ave., Des Plaines, IL 60018	(312) 82	27-0033
IndianaFort Wayne	Maplewood Plaza, Suite 207, 6012 Stellhorn Rd., Ft. Wayne, IN 46805		85-9683
Indianapolis	2511 E. 46th St., Suite Q1, Atkinson Sq., (Indianapolis, IN 46205		
MassachusettsBoston(D	360 First Ave., Singer Bldg., Needham Heights, MA 02194	(617) 44	44-8490
(E)	150 A Street, Needham Heights, MA 02194	(617) 44	44-7200
MichiganDetroit(D)			57-7555
MinnesotaMinneapolis(D)			
Kansas City	5750 W. 95th St., Suite 111, Overland Park, KS 66207	O) (913) 64 E) (913) 64	
New JerseyMetro,Phila(E)	1998 Springdale Rd., Cherry Hill, NJ 08034	(609) 42	24-4773
North Jersey	Central and Terminal Avenues, Clark, NJ 07066	(201) 48	85-3900
New YorkMetro.NYC	Central and Terminal Avenues, Clark, NJ 07066	(201) 48	85-3900
Syracuse	731 James St., Room 206, Syracuse, NY 13203(D) (315) 47 E) (315) 47	74-6234 74-8221
OhioCleveland	1621 Euclid Ave., 1600 Keith Bldg., Cleveland, OH 44115		
Dayton	224 N. Wilkinson St., Dayton, OH 45402		

TexasDallas	RCA Center, 8700 Stemmons Freeway, Dallas, TX 75247	(214) 638-6200
Houston(D)	2727 Allen Parkway, Suite 2121, American General Bldg., Houston, TX 77019	(713) 529-7601
VirginiaMetro.Washington, D.C. and Baltimore	1901 N. Moore St., (D) Arlington, VA 22209(E)	(703) 558-4262 (703) 558-4161
WashingtonSeattle(D)	2246 First Avenue S., Seattle, WA 98134	(206) 622-8350

INTERNATIONAL		
EUROPE, MIDDLE EAST AND AFRICA		
SwitzerlandGeneva	RCA International Marketing, SA 2-4, rue du Lievre, Geneva, 1227 Switzerland	43 58 00
FAR EASTHong Kong	RCA International Limited, 1927 Prince's Bldg., Chater Rd., Hong Kong	23 41 81
CENTRAL AMERICA		
MexicoMexico City	RCA S.A. do C.V., Apartado 6–905, Mexico D.F.	533-6040
NORTH AMERICA		
U.S.ANew York	International Marketing, P.O. Box 270, Harrison, NJ 07029(201)485-3900
CanadaMontreal	21001 No. Service Rd., Trans-Canada Highway Ste, Anne de Bellevue, 810 Quebec	453-9000
SOUTH AMERICA		
ArgentinaBuenos Aires		70-4171/5
BrazilSao Paulo	RCA S.A., Caixa Postal 8460, Sao Paulo, Brazil	36-6951
UNITED KINGDOM		
EnglandSunbury	RCA Limited, Lincoln Way, Windmill Rd., Sunbury-on-Thames, Middlesex, England	85511
(0) 0::		

Typical Photocathode Spectral Response Characteristics

HOW TO USE THE SPECTRAL RESPONSE BAR GRAPHS AND SPECTRAL RESPONSE CURVES

The numbers in each bar are typical photocathode sensitivity values in milliamperes per watt, at the specified wavelengths, of an arbitrarily selected RCA photomultiplier having a given spectral response. The peak value is shown in the red area of the bar. To obtain typical radiant sensitivities, at any wavelength, of other photomultipliers having the same response but different peak values, take the ratio of the tube's specified cathode radiant sensitivity at the wavelength of maximum response to the number shown in the red area, and multiply by the numbers shown in the bar. For example, type 7767 has spectral response 107 (S-11). It has a typical peak cathode sensitivity at 440 nm of 48 mA/W. The typical peak sensitivity value shown in the 107 (S-11) bar is 56 mA/W at 440 nm. Accordingly, the sensitivity to be expected from the 7767 at 500 nm and at 600 nm would be:

48/56 x 47 \approx 41 mA/W at 500 nm and 48/56 x 11 \approx 9.4 mA/W at 600 nm

To obtain typical cathode quantum efficiency of the 7767 at 500 and 600 nm, multiply the values obtained above by the factors shown in the second column of chart at 500 and 600 nm, i.e.,

41 x 0.248 \approx 10% QE at 500 nm and 9.4 x 0.207 \approx 1.9% QE at 600 nm

The spectral response ranges of the different bars have been terminated at the short wavelength near the cutoff limits established by the transmission characteristics of the window materials, and at the long wavelengths arbitrarily near the 1% point of the maximum value shown in red.

Tick marks at each bar value allow the use of a straight edge to quickly select the spectral response or responses providing highest sensitivity at any selected wavelength. Typical emitters of radiant energy are shown for reference purposes.

Typical Transmission Characteristics of Window Materials

Electronic Components

Sales Offices

(Contact the office nearest you)

DOMESTIC						
California	Los Angeles	6363 Sunset Bivd., Hollywood, CA 90028		(213)	461-9171	
	San Francisco(D)	420 Taylor Street, Suite 401-408, San Francisco, CA 94102		(415)	441-2200	
	(E)	4546 El Camino Real, Los Altos, CA 94022		(415)	948-8996	
Colorado	Denver(D)	2785 N. Speer Blvd., Room 346, Denver, CO 80211		(303)	433-8841	
Florida	Palm Beach	2828 Broadway, (I Riviera Beach, FL 33404(I			842-2171 842-1577	
Georgia	Atlanta(D)	RCA Bldg., 14 Executive Park Drive, N.E. Atlanta, GA 30329		(404)	634-6131	
Illinois	Chicago	446 E. Howard Ave., Des Plaines, IL 60018		(312)	827-0033	
Indiana	Fort Wayne	Maplewood Plaza, Suite 207, 6012 Stellhorn Rd., Ft. Wayne, IN 46805		(219)	485-9683	
	Indianapolis	2511 E. 46th St., Suite Q1, Atkinson Sq., (Indianapolis, IN 46205	D) ((317) (317)	545-7697 546-4001	
Massachusetts	.Boston(D)	360 First Ave., Singer Bldg., Needham Heights, MA 02194		(617)	444-8490	
	(E)	150 A Street, Needham Heights, MA 02194		(617)	444-7200	
Michigan	.Detroit(D)	28840 Southfield Rd., Lathrup Village, MI 48076		(313)	557-7555	
Minnesota	.Minneapolis(D)	6750 France Ave. S., Suite 122, Minneapolis, MN 55435		(612)	929-0676	
Kansas,	Kansas City	5750 W. 95th St., Suite 111, (Overland Park, KS 66207				
New Jersey	.Metro.Phila(E)	1998 Springdale Rd., Cherry Hill, NJ 08034		(609)	424-4773	
	North Jersey	Central and Terminal Avenues, Clark, NJ 07066		(201)	485-3900	
New York	.Metro.NYC	Central and Terminal Avenues, Clark, NJ 07066		(201)	485-3900	
	Syracuse	Syracuse, NY 13203	D) E)	(315) (315)	474-6234 474-8221	
Ohio	.Cleveland	1621 Euclid Ave., 1600 Keith Bldg., Cleveland, OH 44115		(216)	241-7900	
	Dayton	224 N. Wilkinson St., Dayton, OH 45402		(513)	461-5420	

TexasDallas	RCA Center, 8700 Stemmons Freeway, Dallas, TX 75247	(214) 638-6200
Houston	(D) 2727 Allen Parkway, Suite 2121, American General Bldg.,	(713) 529-7601
VirginiaMetro.Washington,	1001111, 1110010 0111,) (703) 558-4262
WashingtonSeattle		(206) 622-8350

INTERNATIONAL		
EUROPE, MIDDLE EAST AND AFRICA		
SwitzerlandGeneva	RCA International Marketing, SA 2-4, rue du Lievre, Geneva, 1227 Switzerland	43 58 00
FAR EASTHong Kong	RCA International Limited, 1927 Prince's Bldg., Chater Rd., Hong Kong	23 41 8
CENTRAL AMERICA		
MexicoMexico City	RCA S.A. do C.V., Apartado 6–905, Mexico D.F.	533-6040
NORTH AMERICA		
U.S.ANew York	International Marketing, P.O. Box 270, Harrison, NJ 07029(201)485-3900
CanadaMontreal	21001 No. Service Rd., Trans-Canada Highway Ste, Anne de Bellevue, 810 Quebec(514)	453-900
SOUTH AMERICA		
ArgentinaBuenos Aires	RCA S.A.I.C., Casilla de Correo 4400, Buenos Aires, Argentina	70-4171/
BrazilSao Paulo	RCA S.A., Caixa Postal 8460, Sao Paulo, Brazil	36-695
UNITED KINGDOM		
EnglandSunbury	RCA Limited, Lincoln Way, Windmill Rd., Sunbury-on-Thames, Middlesex, England	8551
(D) Distributor (E) Equipment		

Spectral Response Bar Graphs

			Spectral Res	sponse Bar Gr	apns		
		-Bi Ag-Bi-O-Cs	Cs-Sb	Na-K-Sb High Temp.	Bialkali Types K-Cs-Sb	Multialkali Types Na-K-Cs-Sb ERMA III III	Ga-As-P Ga-As Ga-In-As Ag-O-Cs
Avelength Wavelength Wavelength Tagginary Pactor for Optaining Output Pactor for Optaining Output Avelength Wavelength			glass glass glass) (0080) (9741) (9741) n	V- (ade p- hire SiO 2 Boro- sili- cate Core (7056) (0080) (7056) 23 109 139 136 115	mit-rnit- ting ting phire glass giass () (7740) (9823) (9741)	Lime (1080) Continue Contin	Navel
Nd: YAG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.3 0.5 1.5 1.5 1.5 2.5 4 7 7 3 5.5 11 1 7 11 19 18 26 35 40 48 53 3 17 24 18 18 19 20 18 18 17 20 18 18 13 14 12 0.5 11 13 14 12 0.1	0.8 0.8 1.4 1.3 1.4 15 4.5 4.5 11 14 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 26 35 26 2 2 2 2 33 33 33 33 33 33 34	Color Colo	0.6 0.5 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.7 0	C	4 5 24 11 3.2 2 920 32 25 26 12 3.5 2.3 880 52 44 27 13 3.8 2.5 860 67 54 29 14 4.7 2.8 840 68 54 29 15 53 2.8 800 4 67 54 31 17 7 2.8 780 9.5 67 53 32 18 7.5 2.7 760 14 66 53 33 19 8.5 2.6 740 18 66 53 35 21 11 2.3 700 21 66 53 35 21 11 2.3 700 25 65 52 37 24 14 1.9 660 27 65 52 37 24 14 1.9

Technical Publications

RCA Photomultiplier Manual PT-61

Spectral Response Wall Chart PIT-701B

Commercial and Developmental Data Sheets

Application Notes

Selected data are given in this catalog for preliminary tube selection. Complete data are given in Commercial and Developmental data sheets. Single copies are free on request. Other publications, such as those illustrated, are also available on request.

For copies of RCA Technical Publications, contact your RCA Distributor, your RCA Sales Representative, or write: RCA Commercial Engineering, Harrison, NJ 07029.

RCA Phototubes and Electron Multipliers are available from your RCA Industrial Tube Distributor

