B.E. (Information Technology) Fourth Semester (C.B.S.) Algorithm & Data Structure

AHK/KW/19/2148

Tin	ne : Three Hours			Max, Marks : 80	
	Note	s: 1. 2. 3. 4. 5. 6. 7. 8. 9.	All questions carry marks as indicated. Solve Question 1 OR Questions No. 2. Solve Question 3 OR Questions No. 4. Solve Question 5 OR Questions No. 6. Solve Question 7 OR Questions No. 8. Solve Question 9 OR Questions No. 10. Solve Question 11 OR Questions No. 12. Assume suitable data whenever necessary. Illustrate your answers whenever necessary		
1.5	a)	Define	data, data types and data structure. Elaborate es.	on the classification of data 5	
	b)	i) C	ecursive functions in C for, emputation of factorial of a number, anding sum of digits of n – digit number.	35	
2.	a)	Big-c	re asymptotic notations? Elaborate with def mega notations; giving behavioral representa to the input n.		
	b)	Define	algorithm. And explain about the essential cl	haracteristics of an algorithm.	
3.	(a)	infix ex	n algorithm to convert infix expression to propression into prefix using stack. • C – (D/E) • G) • H	efix form. And convert the following 7	
	b)	Also w i) In ii) D	the concept of circular queue. rite 'C' function for the following in circular sertion eletion splay	queue. 6	
4.	a)	i) Po ii) Po	the concept of stack. Also write 'C' function	ns for the following in stack: 7	
	B) 5	i) D ii) Pr	hort note on, buble ended queue, iority queue, oplication of stack.	A 35	
	AHK/K	W/19/21	18 1	A 2320 P.T.O	

5. a) Write a C function to find the length singly linked list

- b) Write an algorithm or 'C' functions for the following operations on singly linked list,
 - i) insert node at begin ()
 - ii) insert node at end ()
 - iii) delete node from begin ()
 - iv) delete node from end ()

OR

6. a) Explain sparse matrix with example. Also write its application.

5

b) State & explain the concept of following.

8

- i) Circular linked list.
- ii) Doubly linked list
- iii) Circular doubly linked list.

4

a) Explain the representation of Binary Tree with suitable example.

.

b) Draw all possible binary trees if number of nodes are given as 1, 2, 3.

*

c) Draw the Binary Tree if the traversal sequence are given as:

6

In order	4	7	2	8	5	1	6	9	3
Pre order	1	2	4	7	5	8	3	6	9

Also find the post order traversal sequence for the obtained binary tree.

a) Write an algorithm or 'C' functions for the following.

6

- i) Pre -order traversal of binary tree.
 - ii) Post- order traversal of binary tree.
 - iii) In -order traversal of binary tree.

J)

b) Write short note on AVL tree.

3

 Draw the Binary search Tree (BST) for the following nodes. {36, 28, 14, 4, 9, 11,98, 75, 36, 82, 18, 54, 26}

5

a) Explain Dijkstra's algorithm for finding shortest path between vertices.

- 7
- Find the DFS and BFS traversal sequence of the following graph starting at node A.
- 7

- 10. a) For the following graph obtain.
 - i) Indegree and outdegree of each node.
 - ii) Adjacency matrix representation.
 - iii) Adjacency list representation.
 - iv) Adjacency multi list representation.

Fig.: Directed Graph

 For the given graph draw minimum cost spanning tree using Kruskal's algorithm. Also find the total minimum cost of the tree (MCST)

fig: undirected, weighted graph

- a) Write a program to implement binary search algorithm. Also state the complexity of algorithm.
- 8

5

b) Give the algorithm for bubble sort and trace the steps by using the following list. List = {5, 6, 15, 0, 4, 8,}. Sort the list in ascending order. Also give total number of swappings in each iteration.

OR

12. a) Explain quick sort algorithm with example.

6

 Using division remainder method of hashing for table size 13. Store the following numbers in hash table

Number = {25, 42, 96, 101, 102, 162, 197, 201, 208}

Use linear probing, quadratic probing and bucket - chaing method for collision handling.
