

### **Pre-Algebra Concepts & Vocab**

Updated March 2020



## **Arithmetic Properties**



# Order of Operations

#### **Key Vocabulary**

**Order of operations** is the order in which arithmetic operations need to be performed to arrive at the correct answer. It follows the acronym **PEMDAS:** 

- 1. P(arenthesis): always perform operations within parentheses first
- **2. E**(xponents): powers and roots come next
- **3. M/D:** multiplication and division rank equally, and should be performed from left to right
- **4. A/S**: addition and subtraction rank equally, and should be performed from left to right



# Properties of Addition and Multiplication

#### **Key Properties**

Let a, b and c be any numbers. Then the following properties hold true:

#### Properties of Addition

- **1. Commutative** property of addition: a + b = b + a
- **2. Associative** property of addition: (a + b) + c = a + (b + c)
- 3. **Identity** property of addition: a + 0 = a
- **4. Distributive** property:  $a \times (b + c) = a \times b + a \times c$

#### Properties of Multiplication

- **5.** Commutative property of multiplication:  $a \times b = b \times a$
- **6. Associative** property of multiplication:  $(a \times b) \times c = a \times (b \times c)$
- 7. **Identity** property of multiplication:  $a \times 1 = a$
- **8. Distributive** property:  $a \times (b + c) = a \times b + a \times c$



## **Exponents and Radicals**



# Definition of an Exponent

#### **Key Vocabulary**

**Positive integer exponent:** If b is any number and n is a positive integer then,

$$b^n = b \cdot b \cdot b \cdot b \cdot \cdots b$$

n times

where n is the **exponent.** 

**Negative integer exponent:** If b is any non-zero number and n is a positive integer, then

$$b^{-n} = 1 / b^n$$

**Zero exponent:** If b is any non-zero number, then

$$b^0 = 1$$

**Rational exponent:** A rational exponent is one in the form  $b^{(m \, / \, n)}$  and is equivalent to

$$b^{(m / n)} = (b^{(1/n)})^m = (b^m)^{(1/n)}$$

I.e.  $(b^m)^{(1/n)}$  is the **nth root of b**<sup>m</sup>



### Properties of Exponents

#### **Key Properties**

Let a and b be any numbers and n and m be positive integers, then we have the following properties:

- $\rightarrow$   $b^nb^m = b^{n+m}$
- $\rightarrow$  (b<sup>n</sup>)<sup>m</sup> = b<sup>nm</sup>
- ⇒  $b^n / b^m = b^{n-m} = 1 / b^{m-n}$ , where  $b \neq 0$
- $\rightarrow$  (ab)<sup>n</sup> = a<sup>n</sup>b<sup>n</sup>
- →  $(a / b)^n = a^n / b^n, b \neq 0$
- $\rightarrow$  (a / b)<sup>-n</sup> = (b / a)<sup>n</sup> = b<sup>n</sup> / a<sup>n</sup>, a  $\neq$  0
- $\rightarrow$  (ab)<sup>-n</sup> = 1 / (ab)<sup>n</sup>, a  $\neq$  0, b  $\neq$  0
- $\rightarrow$  1 /  $a^{-n} = a^n$
- $\rightarrow$   $a^{-n} / b^{-m} = b^{m} / a^{n}, a \neq 0$
- $\rightarrow$   $(a^nb^m)^k = a^{nk}b^{mk}$
- →  $(a^n / b^m)^k = a^{nk} / b^{mk}, b \neq 0$

### Common Mistakes -Exponents

#### Common Mistakes

It is only the quantity that is immediately to the left of the exponent that gets the power, unless there are parentheses.

- → Example 1
  - $(-2)^4 \neq -2^4$
- → Example 2
  - Correct:  $ab^{-2} = a / b^2$
  - Incorrect:  $ab^{-2} \neq 1 / ab^2$
- → Example 3
  - Correct:  $1 / (3a^{-5}) = (1 / 3) (1 / a^{-5}) = (1 / 3) (a^{5})$
  - Incorrect:  $1/(3a^{-5}) \neq (3a)^5$

Be careful not to confuse negative exponents with rational exponents:

- $\rightarrow$  Correct:  $b^{-n} = 1 / b^n$
- → Incorrect:  $b^{-n} \neq b^{(1/n)}$

# Definition of a Radical

#### **Key Vocabulary**

If n is a positive integer that is greater than 1 and b is a real number, then

$$^{n}\sqrt{b} = b^{(1/n)}$$

Where n is called the **index**, b is called the **radicand**, and the symbol  $\sqrt{\ }$  is called the **radical.** The left side is often called the **radical form** and the right side is called the **exponent form** 

Note: the index is required EXCEPT in the case of the square root, where the index is often dropped such that

$$^{2}\sqrt{b} = \sqrt{b}$$

Note: evaluating the square root of a number actually has two answers:

$$\sqrt{16} = 4 \text{ AND} \sqrt{16} = -4$$

# Properties of Radicals

#### **Key Properties**

If n is a positive integer greater than 1 and both a and b are positive real numbers, then

- $\rightarrow$   $\sqrt[n]{a^n} = a$
- $\rightarrow$   $\sqrt{ab} = \sqrt{a} \sqrt{b}$

A radical is said to be in **simplified radical form** if each of the following is true:

- 1. All exponents in the radicand must be less than the index
- 2. Any exponents in the radicand can have no factors in common with the index
- 3. No fractions appear under a radical
- 4. No radicals appear in the denominator of a fraction



### Common Mistakes -Radicals

#### Common Mistakes

You can't "break-up" sums and differences under a radical, i.e.

$$\sqrt{a+b} \neq \sqrt{a+b}$$

$$\sqrt{a-b} \neq \sqrt{a-b}$$

You can only add / subtract radicals if they have the same number / expressions underneath the radical sign. Example:

$$4\sqrt{x} + 9\sqrt{x} = (4 + 9)\sqrt{x} = 13\sqrt{x}$$

You CAN, however, multiply and divide two radicals with different number / expressions underneath the radical sign:

$$\int a \sqrt{b} = \sqrt{ab}$$

$$\int a / \sqrt{b} = \sqrt{a/b}$$

# Rationalizing the Denominator

#### **Problem Solving**

An radical expression in simplified radical form does not have any radicals in the denominator of a fraction. The process to get rid of the radicals in the denominator is called **rationalizing the denominator**.

Example: Simplify 1 /  $(3 - \sqrt{x})$ 

Using the property that  $(a + b)(a - b) = a^2 - b^2$ , we can do the following to get rid of the radical in the denominator:

$$\frac{1}{3-\sqrt{x}} = \frac{1}{(3-\sqrt{x})} \frac{(3+\sqrt{x})}{(3+\sqrt{x})} = \frac{3+\sqrt{x}}{(3-\sqrt{x})} \frac{3+\sqrt{x}}{(3+\sqrt{x})} = \frac{3+\sqrt{x}}{9-x}$$

# Polynomials



# Definition of a Polynomial

#### Key Vocabulary

**Polynomials in one variable** are algebraic expressions that consist of terms in the form  $\mathbf{ax}^{\mathbf{n}}$ 

- → n is the exponent and must be a non-negative integer
- → a is the **coefficient** and is a real number
- → The **degree** of a polynomial is the largest exponent in the polynomial

**Polynomials in two variables** are algebraic expressions that consist of terms in the form  $ax^ny^m$ 

→ The **degree** of a polynomial in two variables is equal to the largest of the sums of the exponents in each term of the polynomial

A **monomial** is a polynomial that consists of one term, a **binomial** is a polynomial that consists of two terms and a **trinomial** is a polynomial that consists of three terms



# Working with Polynomials

#### **Problem Solving**

#### Adding / Subtracting Polynomials

- → When adding or subtracting polynomials, add any like terms together (like terms are those whose variables AND their exponents match exactly)
- $\rightarrow$  This often requires use of the **distributive property:** a(b + c) = ab + bc
- $\rightarrow$  Example: Add  $6x^5 + 3x^2 + 2$  and  $2x^5 9x + 4$ 
  - Use the distributive property to add together coefficients of like terms: (6  $+ 2)x^5 + 3x^2 9x + 2 + 4$
  - Simplify:  $8x^5 + 3x^2 9x + 6$

#### Multiplying / Dividing Polynomials

- When multiplying terms in a polynomial, you multiply coefficients and add exponents. Ex:  $3x^2 \cdot 2x^5 = 6x^7$ . When dividing, you divide coefficients and subtract exponents. Ex:  $6x^3 / 2x^2 = 3x$
- → This also often requires use of the **distributive property** and **FOIL** (**First, Outer, Inner, Last**)
- $\rightarrow$  Example: Multiply (3x + 5)(2x + 1)
  - Use FOIL:  $6x^2 + 3x + 10x + 5$
  - Simplify by adding like terms:  $6x^2 + 13x + 5$



### **Additional Resources**



### Pre-Algebra

#### Additional Resources

- → <a href="https://www.khanacademv.org/math/pre-algebra">https://www.khanacademv.org/math/pre-algebra</a>
- → <a href="https://www.mathplanet.com/education/pre-algebra">https://www.mathplanet.com/education/pre-algebra</a>
- → <a href="http://www.usd417.net/pages/uploaded-files/PrealgebraParentStudyGuide.pdf">http://www.usd417.net/pages/uploaded-files/PrealgebraParentStudyGuide.pdf</a>
- → <a href="http://www.ppstest2.com/PreAlgebraBook.pdf">http://www.ppstest2.com/PreAlgebraBook.pdf</a>
- → <a href="https://www.ptechnyc.org/site/handlers/filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx?moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid=179&Filedownload.ashx.moduleinstanceid=199&dataid
- → <a href="http://www.mycompasstest.com/study-guide/pre-algebra/">http://www.mycompasstest.com/study-guide/pre-algebra/</a>
- → <a href="http://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx">http://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx</a>
- → <a href="http://www.evergreenusd.com/files/Pre-Algebra%20Study%20Guide.pdf">http://www.evergreenusd.com/files/Pre-Algebra%20Study%20Guide.pdf</a>

