- **1.** Reakcija formiranja MgO je Mg(s) + 1/2 O_{2(g)} \rightarrow MgO(s), Δ H_r° = -602 kJ/mol, Δ S_r° = -108 J/Kmol.
- (a) Izračunajte ΔG_r° za formiranje MgO(s) na 0°C. Da li je reakcija spontana na ovoj temperaturi?
- (b) Da li postoji temperatura na kojoj nastajanje MgO prestaje da bude spontan proces? Ako ne, objasnite zašto. Ako postoji, izračunajte je.

Rešenje:

$$\Delta G_r^o = \Delta H_r^o - T \cdot \Delta S_r^o = -602 \text{ kJ/mol} - 273 \text{K} \cdot (-0.108 \text{ kJ/Kmol}) = -602 \text{ kJ/mol} + 29.48 \text{ kJ/mol} = -572.52 \text{ kJ/mol}$$

Reakcija je spontana jer je $\Delta G_r^o < 0$

Kada $\Delta G_r^{\,o}$ prestane da bude manje od nule, nastajanje MgO više nije spontan process.

$$\Delta G_r^{\circ}=0=\Delta H_r^{\circ}-T\cdot\Delta S_r^{\circ}$$
 \Rightarrow $T=\Delta H_r^{\circ}/\Delta S_r^{\circ}=5574$ K

Na 5574 K sistem je u stanju ravnoteže, a na svakoj višoj temperaturi $\Delta G_r^{\circ} > 0$.

2. Razblaženi vodonik peroksid (najčešće 3%) se koristi kao antiseptik. U apotekama se obično priprema tako što se pomešaja 1L 30% H_2O_2 i 9L vode. Greškom je napravljen rastvor mešanjem 1L vode i 9L 30% H_2O_2 . Kako biste od dobijenog rastvora dobili rastvor koji se koristi kao antiseptik? Kao što sam vam napomenuo na testu, radite kao da svi rastvoti imaju $\rho=1$ kg/dm³.

Rešenje:

U 9L 30% H₂O₂ imamo 2.7 kg H₂O₂ i 6.3 kg vode. Kako smo pomešali sa 1L=1 kg vode, imaćemo 7.3 kg vode. Pošto želimo da dobijemo 3% H₂O₂, polazimo od toga da je 2.7 kg H₂O₂—3%, pa je po tome voda 97% odnosno 90kg. Kako smo već imali 7.3 kg vode, treba dodati još 82.7 kg.

3. Pokazati: a) kako jodidni jon katalizuje razgradnju vodonik peroksida, b) strukturu i formalna naelektrisanja svih atoma u azotnoj kiselini, tetrationatnom anjonu i ozonu.

Rešenje:

a) prvi korak:
$$H_2O_2 + I^- \rightarrow H_2O + I_2$$
 drugi korak: $I_2 + H_2O_2 \rightarrow H_2O + O_2 + I^-$

b)

4. Rastvor sadrži 0.050 M Ca^{2+} i 0.030 M Ag^+ . Može li se istaložiti 99% of Ca^{2+} u obliku sulfata, a da ne počne taloženje Ag^+ ? Koja će biti koncentracija Ca^{2+} kada Ag^+ počne da se taloži? Proizvod rastvorljivosti kalcijum sulfata je $2.4 \cdot 10^{-5}$, a srebro sulfata je $1.5 \cdot 10^{-5}$.

Rešenje:

 $Ksp(CaSO_4) = 2.4 \cdot 10^{-5} = [Ca^{2+}] \cdot [SO_4^{2-}] \Rightarrow [SO_4^{2-}] = 2.4 \cdot 10^{-5} / 0.05 = 4.8 \cdot 10^{-4}$, pri ovoj c (SO_4^{2-}) počinje taloženje

 $Ksp(Ag_2SO_4) = 1.5 \cdot 10^{-5} = [Ag^+]^2 \cdot [SO_4^{2-}] \Rightarrow [SO_4^{2-}] = 1.5 \cdot 10^{-5} / 0.03^2 = 1.67 \cdot 10^{-2}$, pri ovoj c(SO_4^{2-}) počinje taloženje

Može li se istaložiti 99% of Ca²⁺ u obliku sulfata, a da ne počne taloženje Ag⁺?

Kad se istaloži 99% Ca^{2+} preostaje $[Ca^{2+}] = 0.0005M$, pa je $[SO_4^{2-}] = 2.4 \cdot 10^{-5} / 0.0005 = 4.8 \cdot 10^{-2}$ što je više od $1.67 \cdot 10^{-2}$ kada počinje taloženje $Ag_2SO_4 \Rightarrow$ ne može istaložiti 99% of Ca^{2+} , a da ne počne taloženje Ag^+ .

Koja će biti koncentracija Ca²⁺ kada Ag⁺ počne da se taloži?

Ag⁺ počinje da se taloži pri $[SO_4^{2-}]=1.67\cdot10^{-2}$, pa će količina Ca^{2+} jona biti $[Ca^{2+}]=2.4\cdot10^{-5}/1.67\cdot10^{-2}=1.4\cdot10^{-3}$

5. Napisati sledece reakcije: a) Fe + $H_2SO_{4(razbl)}$, b) Fe + $H_2SO_{4(razbl)}$, c) Cu + $H_2SO_{4(razbl)}$, d) Cu + $H_2SO_{4(razbl)}$, d) Cu + $H_2SO_{4(razbl)}$

Rešenje:

 $Fe+H_2SO_{4(razb)} \rightarrow Fe_SO_4+H_2$

3Fe+8H₂SO_{4(konc)} → FeSO₄+Fe₂(SO₄)₃+4SO₂+8H₂O (priznavao sam i ako ste pisali da se dobijaju H₂ i SO₂, samo Fe³⁺...) Poenta je da je H₂SO_{4(konc)} oksidaciono sredstvo pa ćete dobiti Fe³⁺.

 $Cu+H_2SO_{4(razb)} \rightarrow nema reakcije$

 $Cu+2H_2SO_{4(konc)} \rightarrow CuSO_4++SO_2+2H_2O$

6. Imenovati, napisati elektronsku konfiguraciju, izomere, disocijaciju u vodenom rastvoru, prokomentarisati magnetne osobine i naci magnetni moment za sledece komplekse: K₃[Co(NO₂)₆], [Ni(NH₃)₆)]SO₄, [Cr(H₂O)₆]Cl₃. Napisati boju svakog od ovih kompleksa.

Rešenje:

 $K_3[Co(NO_2)_6]$

Kalijum-heksanitrokobaltat(III)

$$K_3[Co(NO_2)_6] \rightarrow 3K^+ + [Co(NO_2)_6]^{3-}$$

 $\mu = \sqrt{0} = 0 \mu_{\!\scriptscriptstyle B} \quad \text{Dijamagnetičan , žućkaste boje, vezivna izomerija}$

[Ni(NH₃)₆)]SO₄ heksaamminnikl(II)-sulfat [Ni(NH₃)₆)]SO₄ \rightarrow [Ni(NH₃)₆)]²⁺ + SO₄²⁻

$$[\text{Cr}(\text{H}_2\text{O})_6]\text{Cl}_3 \quad \text{heksaakvahrom(II)-hlorid} \quad [\text{Cr}(\text{H}_2\text{O})_6]\text{Cl}_3 \quad \Rightarrow [\text{Cr}(\text{H}_2\text{O})_6)]^{3+} + 3\text{Cl}^{-1}$$

$$\mu=\sqrt{3(3+2)}$$
 $\mu_B=\sqrt{15}$ Paramagnetičan , zelene boje, hidrataciona izomerija

7. Imenovati, napisati elektronsku konfiguraciju, izomere, disocijaciju u vodenom rastvoru i prokomentarisati da li je kompleks paramagnetičan ili dijamagnetičan(takodje, naci magnetni moment): $K_3[Fe(ox)_3]$, $K[Mn(acac)_2Cl_2]$, $[Ni(CO)_4]$.

Rešenje:

 $K_3[Fe(ox)_3]$ Kalijum-trisoksalatoferat(III), $K_3[Fe(ox)_3] \rightarrow 3K^+ + [Fe(ox)_3]^{3-}$

 $K[Mn(acac)_2Cl_2]$ Kalijum-bisacetilacetonatodihloromanganat(III), $K[Mn(acac)_2Cl_2] \rightarrow K^+ + [Mn(acac)_2Cl_2]^{3-1}$

$$\mu = \sqrt{4(4+2)} \mu_{\rm B} = \sqrt{24} \mu_{\rm B} \,, \, {\rm dijamagnetičan, \,\, cis \,\, trans \,\, izomerija}$$

[Ni(CO)₄] tetrakarbonilnikl(0) ne disosuje

$$\mu = \sqrt{0} = 0 \mu_{\!\scriptscriptstyle B} \text{, dijamagnetičan, nema izomera}$$

8. Izračunati pH rastvora koji nastaje kada se pomeša 183ml 10% H₂SO₄ (ρ=1.071 g/cm³) i 28cm³ 40% NaOH (ρ=1.429 g/cm³), a zatim ceo rastvor razblaži do 1dm³. <u>Zaokružiti brojeve molova na dve decimale</u>. K₂(H₂SO₄)=0.01 **Rešenje:**

 $n(H_2SO_4) = m/M = \rho \cdot V \cdot \omega/M = 1.071 \cdot 183 \cdot 0.1/98 = 0.19999 \approx 0.2 \\ mol \ n(NaOH) = 1.429 \cdot 28 \cdot 0.4/40 = 0.4001 \approx 0.4 \\ mol \ H_2SO_4 + 2NaOH \ \Rightarrow Na_2SO_4 + 2H_2O$

Natrijum hidroksid i sumporna kiselina će biti potpuno potrošeni i dobiće se 0.2 mol Na_2SO_4 . Pošto $K_2(H_2SO_4)$ nije preterano velika, $SO_4^{2^-}$ može da hidrolizuje: $SO_4^{2^-} + H2O \rightarrow HSO_4^{-} + OH^-$. $Kb=10^{-14}/K_2=10^{-12}$, odnosno, pošto je $[SO_4^{2^-}]=0.2 \text{ mol/dm}^3 \Rightarrow [OH^-]=V(10^{-12}\cdot 0.2)=0.447\cdot 10^{-6} \Rightarrow pošto je [OH^-]$ blizu 10^{-7} trebalo bi uzeti u obzir jonski proizvod vode pri računanju pH, mada bih priznao i ak ose ne uzme (kao što sam i na vežbama).

9. 2g smeše koja se sastoji od CaCO₃ i MgCO₃ je zagrevana pri čemu je došto do izdvajanja CO₂ i zaostalo je 1,042g smeše CaO i MgO. Koliki je maseni udeo CaCO₃ i MgCO₃ u prvobitnoj smeši? **Rešenje:**

Mr(CaCO₃)=100g/mol; Mr(MgCO₃)=84.3g/mol; Mr(CaCO₃)=56g/mol; Mr(MgO)=40.3g/mol

$$m(CaCO_3) + m(MgCO_3) = 2g = n_{CaCO_3} \cdot 100 + n_{MgCO_3} \cdot 84.3$$

$$m(\text{CaO}) + m(\text{MgO}) = 1.042 \text{ g} = n_{\text{CaO}} \cdot 56 + n_{\text{MgO}} \cdot 40.3 = n_{\text{CaCO}_3} \cdot 56 + n_{\text{MgCO}_3} \cdot 40.3$$

Imazte dve jednačine sa dve nepoznate ($n_{\rm CaCO_3}$ i $n_{\rm MgCO_3}$) iz kojih se zatim lako dobija maseni udeo CaCO₃ i MgCO₃.

10. Koliki je pH rastvora HCl: a) $c(HCl)=1\cdot10^{-5} mol/dm^3 b) c(HCl)=1\cdot10^{-7} mol/dm^3 c) c(HCl)=1\cdot10^{-9} mol/dm^3?$ Pomoć: Smo u jedno od tri slučaja zaista morate da rešavate kvadratnu jednačinu. Uvod: Jonski proizvod vode je: $K_w = [H^+] \cdot [OH^-] = 10^{-14}$. U čistoj vodi H^+ i OH^- joni nastaju autoprotolizom vode: $H_2O \iff H^+ + OH^-$ pa je $[H^+] = [OH^-] = 10^{-7}$. Kroz ovaj zadatak se vidi da da spoljni izvor H^+/OH^- jona treba uzeti u obzir zajedno sa jonima nastalim iz autoprotolize vode samo kada im je količina približna, tj. ~10-7 jer se inače ne pravi velika greška ako se uzme onaj koji je u višku.

Rešenje:

a)
$$[H^+] \cdot [OH^-] = 10^{-14} = ([H^+]_{HCl} + [H^+]_{H_2O}) \cdot [OH^-]_{H_2O} = ([H^+]_{HCl} + [H^+]_{H_2O}) \cdot [H^+]_{H_2O}$$

$$[H^{+}]_{H_{2}O}^{2} + [H^{+}]_{HCl} \cdot [H^{+}]_{H_{2}O} - 10^{-14} = 0 \Rightarrow [H^{+}]_{H_{2}O} = \frac{-[H^{+}]_{HCl} \pm \sqrt{[H^{+}]_{HCl}^{2} + 4 \cdot 10^{-14}}}{2}$$

c(HCl)=1·10⁻⁵mol/dm³ [H
$$^+$$
] $_{H_2O}=\frac{-10^{-5}\pm\sqrt{10^{-10}+4\cdot10^{-14}}}{2}\approx10^{-7}$

$$c(H^{+})=1\cdot10^{-5}+1\cdot10^{-7}=1.01\cdot10^{-5} \Rightarrow pH=4.996\approx5$$

Ovaj primer je urađen previse detaljno samo da se pokaže da H⁺ nastali autoprotolizom vode nisu morali da se uzimaju u obzir jer je H⁺ koji dolazi iz HCl u velikom višku.

b)
$$[H^+]_{H_2O} = \frac{-[H^+]_{HCl} \pm \sqrt{[H^+]_{HCl}^2 + 4 \cdot 10^{-14}}}{2} = \frac{-10^{-7} \pm \sqrt{10^{-7} + 4 \cdot 10^{-14}}}{2} \approx 0.618 \cdot 10^{-7}$$

$$c(H^+)=1\cdot 10^{-7}+0.618\cdot 10^{-7}=1.618\cdot 10^{-7} \Longrightarrow pH=6.79 \neq 7$$

Kako je količina H⁺ iz vode i HCl bila približna, ovde sm omorali uzeti u obzir oba doprinosa.

c)
$$[H^+]_{H_2O} = \frac{-10^{-9} \pm \sqrt{10^{-18} + 4 \cdot 10^{-14}}}{2} \approx 10^{-7}$$

 $c(H^+)=1\cdot10^{-7}+10^{-9}=1.01\cdot10^{-7}$ \Rightarrow pH=6.996 \approx 7 H⁺ iz HCl nisu morali da se uzimaju u obzir jer je H⁺ koji dolazi iz vode u velikom višku.

Dodatni zadatak:

o-hlorbenzoeva kiselina ima sastav od 53.8% C, 3.2% H, 20.4% O i 22.6% Cl. Uzorak od 0.1236 g ove kiseline rastvoren u 100 g vode daje a rastvor čija je tačka mržnjenja(TM) -0.0147 $^{\circ}$ C. Uzorak od 3,265 g o-hlorobenzoeve kiseline rastvorene u 60 g benzena daje rastvor čija je TM je 4,59 $^{\circ}$ C. Odredite molekulsku formulu o-hlorbenzoeve kiseline u ova dva rastvora i objasniti razliku u rezultatima. Benzen (TM=5.48 $^{\circ}$ C), K_f =5.12, Voda (TM=0 $^{\circ}$ C), K_f =1.86

 $0.1236g: 100g - 1.236g: 1000g \Rightarrow b=0.0147/1.86=0.0079 \Rightarrow Mr=156.4$ $3,265g: 60g - 54.4167g: 1000g \Rightarrow b=0.89/5.12=0.17383 \Rightarrow Mr=313$