- පරමාණුව පිළිබඳ **බෝර් ආකෘතිය** හා එහි උපකල්පන
 - බෝර් ආකෘතිය උපකල්පන තුනක් මත පදනම් වේ.
 - 1. හයිඩුජන් පරමාණුවේ ඉලෙක්ටෝන යම් ශක්තිවලට අනුරූප නිශ්චිත අරය වලින් යුතු කක්ෂ වල පවතී.
 - 2. අනුදත් කක්ෂයක පවතින ඉලෙක්ටෝනයකට නිශ්චිත ශක්තියක් ඇති අතර අනුදත් ශක්ති අවස්ථාවක පවතී. අනුදත් ශක්ති අවස්ථාවක ඇති $(E=mc^2)$ ඉලෙක්ටෝනයක් ශක්තිය නිකුත් නොකරන බැවින් එය සර්පිලාකාර පථයක ගමන් කර නෘෂ්ටියට නොවැටේ.
 - 3. එය අනුදත් ශක්ති අවස්ථාවක සිට වෙනත් අවස්ථාවකට සංකුමණය වීමේ දී පමණක් ඉලෙක්ටෝනය විසින් ශක්ති අවශෝෂණය හෝ වීමෝචනය හෝ කෙරේ. මෙම ශක්තිය අවශෝෂණය හෝ වීමෝචනය හෝ කෙරෙන්නේ ෆෝටෝන (photon) වශයෙනි.

පුශ්න සහ විසඳුම්

- 1. (2015) පරමාණුක වනූහයේ ප්ලම් පුඩින් ආකෘතිය ඉදිරිපත් කරන ලද්දේ?
 - (1) ජෝන් ඩෝල්ටන් විසිනි
- (2) පේ. පේ. තොම්සන් විසිනි
- (3) ග්ලේන් සීබෝග් විසිනි
- (3) අර්නස්ට් රදර්ෆඩ් විසිනි
- (4) රොබටි මිලිකන් විසිනි

පිළිතුර - (2)

- 2. (2014) නියුටෝනය සොයා ගන්නා ලද්දේ
 - (1) නීල්ස් බෝර් විසිනි
- (2) අර්නස්ට් රදර්ෆඩ් විසින
- (3) පේම්ස් චැඩ්වික් විසිනි
- (4) ඇල්බට් අයින්ස්ටයින් විසිනි
- (5) ඉයුජන් ගෝල්ඩ්ස්ටයින් විසිනි

පිළිතුර - (3)

• මෙම විෂය කොටසින් විතාග පුශ්න පතුයේ ඔබට හමුවන්නේ පළමු බහුවරණ පුශ්ණයයි. සැබැවින්ම මෙය සාමානෳ දැනීමය. සාමානෳ පෙළ සිසුවෙකුට වුව ද ඉතා පහසුවෙන් පිළිතුරු සැපයිය හැක. කෙසේ වෙතත් ඉහත පුශ්න සඳහා නිවැරදි පිළිතුරු සපයා තිබුනේ 80 % කට ආසන්න පුතිශතයකි. ඒකකය 01.2

පරමාණුක වුපුහය - 2

- පරමාණුවේ වූදුහය නීර්ණය කිරීමේදී එහි අඩංගු උප පරමාණුක අංශු වල ස්වාභාවය නීර්ණය කිරීම පුධාන ස්ථානයක් ගනියි.
- ඒ අනුව පරමාණුවේ අඩංගු ඉලෙක්ටෝන වල පිහිටීම (ඉලෙක්ටෝන විනඍසය) නීර්ණය කිරීම ඉතා වැදගත් සන්ධිස්ථානයකි. ඒ සඳහා පාදක වූ මූලධර්ම නම්,
 - ං පරමාණුක වර්ණාවලි, හා
 - ං මූලදුවාමය අයණිකරණ ශක්ති මට්ටම්, ය.

• විදුපුත් චුම්භක වර්ණාවලිය

- අභනාවකාශය හරහා ශක්තිය සම්පේෂණය වන්නේ විදුපුත් චුම්බක තරංග ලෙසට
 යි.
- ඒවාට විදුපුත් කේෂ්තුයක් හා චුම්බක කේෂ්තුයක් ඇත. එම කේෂ්තු දෙක එකිනෙකට ලම්බ ව පිහිටයි.
- සියලු විදසුත් චුම්බක තරංග රික්තයක දී ගමන් කරන වේගය, ආලෝකයේ පුවේගයට සමාන වේ.
 - $3 \times 10^8 \, m \, s^{-1}$
- o තරංග ආයම<mark>ය හා ස</mark>ංඛ<mark>නාතය ව</mark>න විට විදුසුත් චුම්බක තරංගයක පුවේගය,
 - $\mathbf{r} = \mathbf{r} \mathbf{r}$ යන සමීකරණයෙන් ලැබේ.
- o විදසුත් චුම්බක<mark> තරංග</mark>යක ශක්තිය,
 - ullet E = hv (E යනු එක් ෆෝටෝනයක ශක්තිය යි.)
 - මෙහි h යනු නියතයකි. එය ප්ලාන්ක් නියතය නම් වේ.
 - ullet ප්ලාන්ක් නියතය $= 6.624 \times 10^{-34} \, Js$
 - lacksquare මෙ මඟින්, $E=rac{hc}{\lambda}$
- සංඛනාතය ආරෝහණය වන පිළිවෙළට විදුයුත් චුම්බක තරංග පෙළ ගැස්වීමෙන් ලැබෙන සටහන විදුයුත් චුම්බක වර්ණාවලිය වේ.

- (උසස් පෙළ) රසායන විදනව
 - ං විදුපුත් චුම්බක වර්ණාවලියේ විවිධ පරාසවලට අයත් කිරණවල පුයෝජන
 - රේඩියෝ තරංග : රූපවාතිනී, ගුවන් විදුලි මාධ්‍ය ඔස්සේ සන්නිවේදන කටයුතු සඳහා යෙදේ.
 - රේඩාර් තරංග : ගුවන් හා නාවික පද්ධතිවල භාවිත කෙරේ.
 - ක්ෂුළ තරංග : ක්ෂුළ තරංග උඳුන්වල ක්‍රියාකාරීත්වය මෙ මඟින් සිදු වේ.
 ප්ංගම දුරකථනවල භාවිත වේ.
 - අධෝරක්ත තරංග : භෞත චිකිත්සක ප්‍රතිකාර කටයුතුවල දී යෙදේ. ප්‍රරස්ථ පාලක සංඥා නිකුත් කිරීමේ දී හා වර්ණාවලික්ෂ කුම මඟින් කෙරෙන විශ්ලේෂණ කටයුතුවල දී භාවිත කෙරේ.
 - දෘශෳ තරංග : දෘෂ්ටිය, ඡායාරූප ශිල්පය මෙම පරාසයේ තරංග උැසුරින් සිදු වේ. වර්ණමිතික විශ්ලේෂණයේ දී යෙදේ.
 - පාරජම්බුල තරංග : විෂබීජ නැසීමට, මුදල් නෝට්ටු ආදියේ යොදා ඇති රහසෘ සංකේත කියවීමට යෙදේ. වර්ණාවලීක්ෂ විශ්ලේෂණවල දී භාවිත කෙරේ.
 - X කි්රණ : X කි්රණ ජායාරූප ගැනීම හා ස්ඵටික ආදියේ වුසුහ හැදෑදරීමේ දී භාවිත කෙරේ.
 - γ කිරණ : පිළිකා සඳහා පුතිකාර කිරීමේ දී භාවිත කෙරේ.
 - අනුයාත අයනීකරණ ශක්ති පුස්තාර
 - පරමාණුවල ඉලෙක්ටෝන පධාන ශක්ති මට්ටම්වල හා උප මට්ටම්වල පැවැත්ම පිළිබඳ සාක්ෂෘ ඉදිරිපත් කරයි.
 - o කාබන්, ඔක්සිජන් හා ෆොස්ෆරස් යන මුලළවෳවල අනුයාත අයනීකරණ ශක්ති පුස්තාරය

මෙම මූලදිව පවතින සියලු ම අනුයාත අයනීකරණ ශක්ති රූපයේ පෙන්වා ඇත.