Mathematical Induction

LOGIC I Benjamin Brast-McKie October 6, 2023

Continuing from Last Time...

- **Task 1:** Let $\mathcal{I}^+(\alpha) = 1$ for every sentence letter α in SL. Show that $\mathcal{V}_{\mathcal{I}^+}(\varphi) = 1$ for every SL sentence φ that does not include negation.
- **Task 2:** Every tree has a finite number of branches.
- **Task 3:** Show that for every SL sentence φ , if Simple(φ), then there are SL interpretations \mathcal{I} and \mathcal{J} where $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ and $\mathcal{V}_{\mathcal{J}}(\varphi) = 0$.
- **Task 4:** For any SL sentences φ , ψ , χ and SL sentence letter α , if $\vDash \varphi \equiv \psi$, then $\vDash \chi_{[\varphi/\alpha]} \equiv \chi_{[\psi/\alpha]}$.
- **Task 5:** Every tree can be completed in a finite number of steps.

Recursive Definitions

Length: For any SL tree X, we define Length(X) to be the number of resolution rules that have been applied.

- Length(X) = 0 for any root X.
- For any SL tree X, if Length(X) = n and X' is the result of resolving a sentence in exactly one branch in X, then Length(X') = n + 1.

Constituents: We define $[\varphi]$ to be the set of sentence letters that occur in φ .

- If $Comp(\varphi) = 0$, then $[\varphi] = {\varphi}$.
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:

$$(\neg)$$
 $[\neg \varphi] = [\varphi]$; and (\star) $[\varphi \star \psi] = [\varphi] \cup [\psi]$.

Simplicity: We define $\mathtt{Simple}(\varphi)$ to hold just in case the SL sentence φ has at most one occurrence of each sentence letter in SL.

- If $Comp(\varphi) = 0$, then $Simple(\varphi)$.
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:
 - (\neg) Simple $(\neg \varphi)$ if Simple (φ) ; and
 - (\star) Simple $(\varphi \star \psi)$ if Simple (φ) , Simple (ψ) , and $[\varphi] \cap [\psi] = \emptyset$.

Substitution: We define $\varphi_{[\chi/\alpha]}$ to be the result of replacing every occurrence of the sentence letter α in φ with χ .

- $\bullet \ \ \text{If } \mathrm{Comp}(\varphi) = 0 \text{, then } \varphi_{[\chi/\alpha]} = \begin{cases} \chi & \text{if } \varphi = \alpha, \\ \varphi & \text{otherwise}. \end{cases}$
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:

$$(\neg) \ (\neg \varphi)_{[\chi/\alpha]} = \neg (\varphi_{[\chi/\alpha]});$$
 and

$$(\star) \ (\varphi \star \psi)_{[\chi/\alpha]} = \varphi_{[\chi/\alpha]} \star \psi_{[\chi/\alpha]}.$$

Resolution: We define $Res(\varphi)$ to be the maximum number of times that we may resolve φ and any of its descendants.

- $Res(\varphi) = 0$ if φ is a literal.
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:

$$(\neg) \operatorname{Res}(\neg \neg \varphi) = \operatorname{Res}(\varphi) + 1$$
; and

$$(\star) \operatorname{Res}(\varphi \star \psi) = \operatorname{Res}(\varphi) + \operatorname{Res}(\psi) + 1.$$

$$(\star) \operatorname{Res}(\neg(\varphi \star \psi)) = \operatorname{Res}(\neg\varphi) + \operatorname{Res}(\neg\psi) + 1.$$

Set Binary: We extend the definition of Res to sets of sentences as follows:

$$\operatorname{Res}(\Gamma) = \sum_{\varphi \in \Gamma} \operatorname{Res}(\varphi).$$

Unresolved: We define [X] to be the set of unresolved sentences in the SL tree X.

- $\varphi \in [X]$ if X is a root and φ occurs in X.
- For any SL tree X' which results from resolving $\varphi \in [X]$ on every open branch in X in which φ occurs:

$$(\neg) [X'] = ([X]/\{\varphi\}) \cup \{\psi\} \text{ if } \varphi = \neg \neg \psi;$$

$$(+) [X'] = ([X]/\{\varphi\}) \cup \{\psi,\chi\} \text{ if } \varphi \in \{\psi \land \chi, \psi \lor \chi\};$$

$$(-) [X'] = ([X]/\{\varphi\}) \cup \{\neg \psi, \neg \chi\} \text{ if } \varphi \in \{\neg (\psi \land \chi), \neg (\psi \lor \chi)\};$$

$$(\supset) [X'] = ([X]/\{\varphi\}) \cup \{\neg \psi, \chi\} \text{ if } \varphi = \psi \supset \chi;$$

$$(\not\supset) [X'] = ([X]/\{\varphi\}) \cup \{\psi, \neg \chi\} \text{ if } \varphi = \neg(\psi \supset \chi);$$

$$(\equiv) [X'] = ([X]/\{\varphi\}) \cup \{\psi, \chi, \neg \psi, \neg \chi\} \text{ if } \varphi \in \{\psi \equiv \chi, \neg (\psi \equiv \chi)\}.$$

Resolvable: Letting \mathbb{L} be the set of SL literals, we define $X_U = [X]/\mathbb{L}$ to be the set of SL sentences in X that can be resolved.

Task 5

Proof: Given any SL tree X, let X_U be the set of resolvable sentences in X. The proof goes by induction on Res (X_U) for any SL tree X.

Base Case: Let X be an SL tree where $Res(X_U) = 0$. By definition, every branch is complete, and so the tree is complete. Accordingly, X can be completed in a finite number of steps, namely 0.

Hypothesis: Assume that for every SL tree X, if $Res(X_U) \le n$, then X can be completed in a finite number of steps.

Induction: Let X be an SL tree where $\text{Res}(X_U) = n + 1$. Thus there is some $\varphi \in X_U$. Letting X' be the SL tree that results from resolving φ on every open branch in X, we may observe that $\varphi \notin X'_U$. Consider the following cases where $\star \in \{\land, \lor, \supset, \equiv\}$ is a binary connective:

Case 1: If $\varphi = \neg \neg \psi$ and $\operatorname{Res}(\psi) \neq 0$, then $X'_U = (X_U / \{\varphi\}) \cup \{\psi\}$. If instead $\operatorname{Res}(\psi) = 0$, then $X'_U = X_U / \{\varphi\}$. Since $\operatorname{Res}(\psi) = \operatorname{Res}(\varphi) - 1$, it follows either way that $\operatorname{Res}(X'_U) \leq \operatorname{Res}(X_U) - 1 = n$.

Case 2: If $\varphi = \psi \star \chi$ and $\operatorname{Res}(\psi) \neq 0$ and $\operatorname{Res}(\chi) \neq 0$, then we know that $X'_U = (X_U/\{\varphi\}) \cup \{\psi,\chi\}$. Since $\operatorname{Res}(\psi) + \operatorname{Res}(\chi) = \operatorname{Res}(\varphi) - 1$, it follows that $\operatorname{Res}(X'_U) = \operatorname{Res}(X_U) - 1 = n$. If instead $\operatorname{Res}(\psi) = 0$ or $\operatorname{Res}(\chi) = 0$, then $\operatorname{Res}(X'_U)$ will be even smaller, and so $\operatorname{Res}(X'_U) \leq n$.

Case 3: If $\varphi = \neg(\psi \star \chi)$ and $\operatorname{Res}(\neg \psi) \neq 0$ and $\operatorname{Res}(\neg \chi) \neq 0$, then $X'_U = (X_U/\{\varphi\}) \cup \{\neg\psi, \neg\chi\}$. Since $\operatorname{Res}(\neg\psi) + \operatorname{Res}(\neg\chi) = \operatorname{Res}(\varphi) - 1$, it follows that $\operatorname{Res}(X'_U) = \operatorname{Res}(X_U) - 1 = n$. If instead $\operatorname{Res}(\neg\psi) = 0$ or $\operatorname{Res}(\neg\chi) = 0$, then $\operatorname{Res}(X'_U)$ will be even smaller, and so $\operatorname{Res}(X'_U) \leq n$.

Since in all cases $\operatorname{Res}(X'_U) \leq n$, it follows by hypothesis that X' can be completed in a finite number of steps. We know by **Task 2** that X' is the result of resolving φ in at most a finite number of branches in X. Since the sum of finite numbers is finite, we may conclude that X may be completed in a finite number of steps. Thus it follows by induction that every tree X can be completed in a finite number of steps.