

Generation of possible single-nucleotide variants with a given effect on protein-coding sequence

Student: Oxana Kolpakova

Supervisors: Yuri Barbitov, Institute of Bioinformatics,

Mikhail Skoblov, Research Center for Medical Genetic

Introduction

- Public databases such as ClinVar and OMIM collect data on clinically relevant SNPs that show associations between genome and phenotype changes.
- SNPs in the coding regions of the human genome, especially missense substitutions, are the most common cause of genetic pathology.
- However, not all significant SNPs have been identified and described.
 This complicates the identification of the molecular cause of a genetic disorder in people with a suspected hereditary disease.

Aim

- Create a tool generate to pathogenic and benign SNPs for OMIM genes by substitution of 1 nucleotide codon resulting in the same amino acid substitution.
- Our tool expands the list of SNPs for OMIM genes and can be used to improve the molecular genetic diagnosis of hereditary diseases.

Workflow:

Annotation of ClinVar, GRCh38 by VEP with flags: --cache --refseq –canonical SNPs: 12858671

OMIM genes extraction by ID SNPs: 1503663

Filter: missense and canonical variants only **SNPs: 432379**

Create new missense variants encoding the same amino acid **SNPs: 63383**

our Python script
public soft

Extraction of clinically significant SNPs:
Pathogenic, Likely Pathogenic (2420, 2750)/
Benign, Likely Benign (1510, 2367) /
Other(54336)

Annotation of the clinically significant SNPs by **VEP**

with flags: --cache --af_gnomad -canonical

Descriptive Statistics block for Pathogenic, Likely Pathogenic and Benign, Likely Benign SNPs

Results

- The script work accuracy was validated on coordinates of reference SNPs by Integrative Genomics Viewer, IGV; the script works correctly.
- Generated pathogenic and benign SNPs were not previously described in OMIM and ClinVar DBs (Tab.1)

Table 1. Descriptive statistics for sets of clinically relevant SNPs

generated	benign	likely	pathogeni	likely
SNPs		benign	С	pathogenic
number	815	1609	876	994
with gnomAD	14%	17%	11%	10%
freq				
gnomAD freq	0.035	0.05	0.005	0.0001
mean				
std	0.13	0.13	0.007	0.0002
max	0.62	0.71	0.023	0.002

Conclusions

- We created a tool to generate pathogenic and benign SNPs by substitution of 1 nucleotide codon resulting in the same amino acid substitution.
- Generated pathogenic and benign SNPs were not previously described in OMIM and ClinVar DBs
- Generated pathogenic and benign SNPs could increase the accuracy of molecular genetic diagnosis
- This tool can be used to create missense SNPs for other gene lists, not just OMIM.

Expand the capabilities of the tool:

- o add status gnomAD >0.05
- consider exon/intron boundaries, DNA strand
- evaluate the effects of SNPs at splicing boundaries
- Apply the script to real medical data to identify new pathogenic SNPs.

