Deep Learning for Business

Deep Learning Computing
Systems & Software

ILSVRC (ImageNet

Large Scale Visual

Recognition Challenge)

ILSVRC ImageNet Challenge

ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

- Annual contest started in 2010
- Object category classification & detection
- 3 main challenges used to benchmark large-scale object recognition capability
 - 1 Object localization (top-5)
 - 2 Object Detection challenges
 - √ Images & Videos

1. Object Localization (top-5)

- The original competition of ILSVRC
 - √ The other two Object Detection challenges were included into ILSVRC recently
- Training data set: 1.2 million images
- Labeled object categories: 1,000 categories
- Test image set: 150,000 photographs
- Each competing program lists its top 5 confident labels based on each test image in decreasing order of confidence and bounding boxes for each class label

ILSVRC ImageNet Challenge

1. Object Localization (top-5)

- Evaluated based on accuracy of the program's localization labeling results, the test image's ground truth labels, and object in the bounding boxes
- Program with the minimum average error is the winner

ILSVRC top-5 Example

 ILSVRC Object localization challenge (top-5) example

 Top-5 selections for each image listed with probability histograms

ILSVRC ImageNet Challenge

2. Object Detection - Images

- Each program attempts identification of 200 basic-level categories
- Test image data set has fully annotated labels (for each bounding boxed object) on each image
- Winner is the program with the highest accuracy in annotated class labels, confidence scores, and bounding boxes

3. Object Detection - Videos

- Contender program attempts identification of 30 basic-level categories
 - ✓ Subset of the 200 basic-level categories
- Each program will produce a set of annotations of frame number, class labels, confidence scores, and bounding boxes for the video clip
- Winner is the program with the highest accuracy on the most object categories

ILSVRC ImageNet Challenge

Participant's Program Requirements

- Each team is allowed 2 submissions per week
- No regulation on the number of neural network layers
- Learning scheme and parameters
 have to be based only on the training set

ILSVRC Annual Results

 Significant improvements in performance have been seen since Deep Learning has been used in 2012

ILSVRC ImageNet Challenge

2012 Winner AlexNet

- Created by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (University of Toronto)
- Results
 - 2011 Xerox → 2012 AlexNet 74.2% 83.6%
 - Significant 9.4% improvement in the performance in the Object Localization (top-5) competition

2012 Winner AlexNet

- System Characteristics
 - DL (Deep Learning) was used for the first time
 - 8 layer DL neural network
 - 5 convolution layers
 - 3 fully connected layers
 - 60 million parameters
 - Trained for 6 days
 - Used two Nvidia GTX-580 with 3GB memory

ILSVRC ImageNet Challenge

2014 Winner GoogleNet (Inception-v1)

- Results
 - 93.3% accuracy in the Object Localization (top-5) competition
 - 90% accuracy exceeded for the first time
- System Characteristics
 - 22 layer DL neural network with5 million parameters
 - Trained for 1 week on the Google DistBelief cluster

2015 Winner Microsoft ResNet

- Results
 - 96.5% accuracy in the Object Localization (top-5) competition
 - 94.9% human accuracy level exceeded for the first time
- System Characteristics
 - 152 layer DL neural network
 - Trained for approximately 3 weeks on 4 NVIDIA Tesla K80 GPUs using a combined processing capability of 11.3 BFLOPs

Deep Learning for Business

ILSVRC ImageNet Challenge

References

References

- ILSVRC2017 [Online]. Available: http://image-net.org/challenges/LSVRC/2017
- Cortana Intelligence and Machine Learning [Online]. Available: https://blogs.technet.microsoft.com/machinelearning/2016/11/15/imagenet-deep-neural-network-training-using-microsoft-r-server-and-azure-gpu-vms/
- Int. J. Comput. Vis., 2015, ImageNet Large Scale Visual Recognition Challenge
- NIPS 2012, ImageNet Classification with Deep Convolutional Neural Networks
- CVPR 2015, Going Deeper with Convolution
- CVPR 2015, Deep Residual Learning for Image Recognition
- · Wikipedia, www.wikipedia.org