Disciplina: Projeto de Redes de Computadores Tecnologia em Sistemas para Internet - 5º Período

Prof. Marco Gromato

- ◆ 14. 1 Sistema Óptico de Comunicação
 - Para que a informação possa ser transmitida o sinal elétrico é convertido em sinal óptico;
 - Depois revertida em sinal elétrico;
 - A fibra não consegue transmitir qualquer tipo de luz;
 - Fifura 14-1 (página 223).

- 14.1.1 Tecnologia Óptica aplicada aos Sistemas de Comunicação
 - Bastante recente;
 - Primeiras implantações aconteceram na década de 70.

◆ 14.1.1.1 – Capacidade de Transmissão de Informação

 Oferecem mais Banda Passante do que o necessário para as aplicações atualmente disponíveis.

- ◆ 14.1.1.2 Baixa Perda
 - Baixa Perda de potência;
 - Possibilitando maiores distâncias de transmissão;
 - Cabos de cobre (link com limite de 100m); Cabos Ópticos (link com limite de 2000m).

- ◆ 14.1.1.3 Imunidade Eletromagnética
 - Fabricados com material dielétrico (não condutor de eletricidade);
 - Assim imunes a interferências eletromagnéticas;
 - Utilizados em ambientes de alta exposição eletromagnética.

- ◆ 14.1.1.4 Menor Peso
 - Pesam menos que os cabos de cobre (20% a 50% menos);
 - Bem mais fáceis de instalar.

◆ 14.1.1.5 – Menor Tamanho

Usam 15% menos espaço que os cabos de cobre.

- ◆ 14.1.1.6 Segurança
 - Não geram centelhas;
 - Imunes ao fogo.

- ◆ 14.1.1.7 Segurança das Informações
 - Não podem ser interceptadas;
 - Difícil de "grampear" sem ser percebido.

- ◆ 14.1.2 Os quatro mitos da Fibra Óptica
 - As fibras são frágeis;
 - É difícil trabalhar com fibras ópticas;
 - As fibras ópticas são caras; e
 - As fibras não devem ser usadas no desktop.

- ◆ 14.1.6 Tipos de Fibras Ópticas
 - Classificação de acorso com o número de modos de propagação (monomodo ou multimodo) e do perfil de índices de refração.
 - Figura 14-10 (vide página 233)

- ◆ 14.1.6 Tipos de Fibras Ópticas
 - 14.1.6.1 As Fibras Multimodo
 - Caracterizam-se pela grande abertura numérica. Nelas, a luz se propaga em milhares de modos distintos e têm, dessa forma, banda passante relativamente baixa.
 - Podem ser:
 - Multimodo Índice Degrau (1ª fibras aplicadas e difundidas)
 - Multimodo Índice Gradual (fabricação mais complexas e possuem menor atenuação e maior capacidade de transmissão)

- ◆ 14.1.6 Tipos de Fibras Ópticas
 - 14.1.6.1 As Fibras Monomodo
 - Caracterizam-se pelo fato da propagação da luz se dar em apenas um modo, o de menor ordem, quase que em linha reta;
 - Elas têm maior capacidade de transmissão e, por esse motivo, são muito usadas em aplicações de longa distância.
 - Podem ser:
 - Monomodo Índice Degrau (fabricada com sílica)
 - Monomodo Índice Parabólico Trangular (núcleo maior)

Proj. de Redes de Computadores Prof. Marco Gromato

- ◆ 14.4 Conectores
 - Realizam junção temporária ponto-a-ponto entre duas fibras ou nas extremidades das mesmas;
 - Vantagem em relação a emendas;
 - Utilizados em sistemas locais, tais como:
 - Interfaces com redes locais; conexões em enlaces ponto-a-ponto de curta distância entre prédios; painéis de distribuição de cabeamento óptico em prédios; conexões temporárias entre câmeras de vídeo móveis e equipamentos de gravação em estúdios; e aplicações militares portáteis.

- ♦ 14.4 Conectores
 - São características desejáveis dos conectores ópticos:
 - Baixas perdas por inserção e por reflexão; estabilidade das características face aos ciclos repetidos de conexão e desconexão; fácil construção e montagem; insensibilidade a fatores ambientais, como temperatura e poeira; baixo ruído de diafonia (*crosstalk*); durabilidade com ciclos repetitivos; padronização; baixo custo; e atenuação menor que 1dB por conexão.

- ◆ 14.4.1 Tipos de Conectores
 - Utilizados para fazer interface entre fibras e os dispositivos ópticos (ativos e passivos)
 - Tipos:
 - ST Baioneta 2,5mm
 - SMA (1º padrão utilizado na indústria)
 - FSD
 - SC
 - FC, D4 e Bicônico