

L^2 is not the right loss for PINN when solving high dimensional nonlinear PDE

Chuwei Wang, Shanda Li, Di He, Liwei Wang Peking University

Outline

- 1. Introduction
- 2. Definition of Stability
- 3. Bounds on the Stability of PINN for HJB Equation
- 4. New Algorithms
- 5. Conclusion & Future Direction

Outline

- 1. Introduction
- 2. Theoretical Analysis for the Validity of PINN
- 3. Failure of PINN for High Dimensional HJB Equation
- 4. New Algorithm for High Dimensional HJB Equation
- 5. Conclusion & Future Direction

Preliminary: Partial Differential Equation

Partial Differential Equation (PDE) is a ubiquitous tool in mathematical modeling of physics, control, and finance.

- Solving PDE is important for understanding these systems.
- Designing an accurate and efficient PDE solver is very challenging.

Preliminary: Deep Learning

Deep Learning has achieved huge successes in computer vision, natural language processing, and graph-based learning.

Can we use deep learning to solve PDE?

Formulation of Partial Differential Equation

Partial Differential Equation involves an unknown multi-variable function u(x) and partial derivatives of the unknown function.

$$\begin{cases} \mathcal{L}u(x) = \varphi(x) & x \in \Omega \subset \mathbb{R}^n \\ \mathcal{B}u(x) = \psi(x) & x \in \partial\Omega, \end{cases}$$

L: partial differential operator.

B: boundary condition.

PINN: solving PDE with deep learning

Physics-informed Neural Networks (PINN):

- Solving PDE as a function approximate problem.
- Training an NN to express the PDE solution with L^2 Physics-Informed Loss.

$$\begin{cases} \mathcal{L}u(x) = \varphi(x) \\ \mathcal{B}u(x) = \psi(x) \end{cases} \qquad \qquad \ell_{\Omega}(u) = \|\mathcal{L}u(x) - \varphi(x)\|_{L^{2}(\Omega)}^{2},$$

$$\ell_{\partial\Omega}(u) = \|\mathcal{B}u(x) - \psi(x)\|_{L^{2}(\partial\Omega)}^{2}.$$

Neural Network: $u_{\theta}(x)$ with x as the input and θ as the parameters.

PINN is straightforward and successful. Can we use it to solve high-dimensional PDEs?

- Conventional methods fail due to the curse of dimensionality.
- Neural networks do well in representing high-dimensional mappings.

PINN is straightforward and successful. Can we use it to solve high-dimensional PDEs?

• PINN's **accuracy** is not satisfactory on high-dimensional non-linear PDEs.

Outline

- 1.Introduction
- 2. Definition of Stability
- 3. Failure of PINN for High Dimensional HJB Equation
- 4. New Algorithm for High Dimensional HJB Equation
- 5. Conclusion & Future Direction

Theoretical Analysis for the Validity of PINN

$$\ell_{\Omega}(u) = \|\mathcal{L}u(x) - \varphi(x)\|_{L^{2}(\Omega)}^{2},$$

$$\ell_{\partial\Omega}(u) = \|\mathcal{B}u(x) - \psi(x)\|_{L^{2}(\partial\Omega)}^{2}.$$

- PINN uses L^2 Physics-Informed Loss by default. Zero Training Loss \Leftrightarrow Learned solution is exactly accurate
- But practically we only obtain small but non-zero losses.

Does a learned solution with a small loss always corresponds to a good approximator of the exact solution?

A closer look at the learned solution

A learned solution $u_{\theta}(x)$ is the solution to a perturbed PDE:

$$\begin{cases} \mathcal{L}u(x) = \varphi(x) + (\mathcal{L}u_{\theta}(x) - \varphi(x)) & x \in \Omega \subset \mathbb{R}^n \\ \mathcal{B}u(x) = \psi(x) + (\mathcal{B}u_{\theta}(x) - \psi(x)) & x \in \partial\Omega \end{cases}$$

The scale of the perturbation can be characterized by the **Physics-Informed Loss**:

$$\ell_{\Omega}(u) = \|\mathcal{L}u(x) - \varphi(x)\|_{L^{2}(\Omega)}^{2},$$

$$\ell_{\partial\Omega}(u) = \|\mathcal{B}u(x) - \psi(x)\|_{L^{2}(\partial\Omega)}^{2}.$$

Stability of PDEs

The accuracy of PINN is closely related to the *stability* of PDE.

In PDE literature, we say an equation is *stable* if the solution of the perturbed PDE converges to the exact solution as the perturbations approach zero (measured by certain norm).

$$\begin{cases} \mathcal{L}u(x) = \varphi(x) + (\mathcal{L}u_{\theta}(x) - \varphi(x)) \\ \mathcal{B}u(x) = \psi(x) + (\mathcal{B}u_{\theta}(x) - \psi(x)) \end{cases} \qquad \qquad \begin{cases} \mathcal{L}u(x) = \varphi(x) \\ \mathcal{B}u(x) = \psi(x) \end{cases}$$
Approximation Ground truth

Stability of PDEs

$$\begin{cases} \mathcal{L}u(x) = \varphi(x) & x \in \Omega \subset \mathbb{R}^n \\ \mathcal{B}u(x) = \psi(x) & x \in \partial\Omega, \end{cases}$$

[Definition] We say a PDE is (Z_1, Z_2, Z_3) -stable, if

$$||u^*(x) - u(x)||_{Z_3} = O(||\mathcal{L}u(x) - \varphi(x)||_{Z_1} + ||\mathcal{B}u(x) - \psi(x)||_{Z_2})$$

as $\|\mathcal{L}u(x) - \varphi(x)\|_{Z_1}$, $\|\mathcal{B}u(x) - \psi(x)\|_{Z_2} \to 0$, where Z_1, Z_2, Z_3 are three Banach spaces and u^* is the exact solution.

• Loss functions corresponding to $||\cdot||_{Z_1}$ and $||\cdot||_{Z_2}$ help to obtain u_θ that is *provably* close to the exact solution.

Stability of PDEs

[**Definition**] We say a PDE is (Z_1, Z_2, Z_3) -stable, if

$$||u^*(x) - u(x)||_{Z_3} = O(||\mathcal{L}u(x) - \varphi(x)||_{Z_1} + ||\mathcal{B}u(x) - \psi(x)||_{Z_2})$$

as $\|\mathcal{L}u(x) - \varphi(x)\|_{Z_1}$, $\|\mathcal{B}u(x) - \psi(x)\|_{Z_2} \to 0$, where Z_1, Z_2, Z_3 are three Banach spaces and u^* is the exact solution.

• PINN training with L^2 Physics-Informed Loss is suitable only when a PDE is (L^2, L^2, Z) -stable for some Banach space Z.

$$\ell_{\Omega}(u) = \|\mathcal{L}u(x) - \varphi(x)\|_{L^{2}(\Omega)}^{2},$$

$$\ell_{\partial\Omega}(u) = \|\mathcal{B}u(x) - \psi(x)\|_{L^2(\partial\Omega)}^2.$$

Outline

- 1. Introduction
- 2. Theoretical Analysis for the Validity of PINN
- 3. Bounds on the Stability of PINN for HJB Equation
- 4. New Algorithm for High Dimensional HJB Equation
- 5. Conclusion & Future Direction

[Theorem1] (informal) A large class of *n*-dimensional HJB Equation is $(L^p, L^q, W^{1,1})$ -stable if p > n, q > kn (k depends on the equation).

[Theorem2] (informal) A large class of *n*-dimensional HJB Equation is $not(L^p, L^q, W^{1,1})$ -stable if p < n/4.

HJB Equation: Hamilton-Jacobi-Bellman Equation

• The class of PDE we study is representative in high-dimensional non-linear PDEs. Power-law trading cost in optimal execution problem, Linear-Quadratic-Gaussian control and Merton's portfolio model are all special cases of this form.

$$\begin{cases} \mathcal{L}_{\mathrm{HJB}}u := \partial_t u(x,t) + \frac{1}{2}\sigma^2 \Delta u(x,t) - \sum_{i=1}^n A_i |\partial_{x_i} u|^{c_i} = \varphi(x,t) & (x,t) \in \mathbb{R}^n \times [0,T] \\ \mathcal{B}_{\mathrm{HJB}}u := u(x,T) = g(x) & x \in \mathbb{R}^n \end{cases}$$

• We consider $W^{1,1}$ -stability here because both u and ∇u is important in application.

[Theorem1] (informal) A large class of n-dimensional HJB Equation is $(L^p, L^q, W^{1,1})$ -stable if p > n, q > kn (k depends on the equation).

Theorem 4.3. For $p, q \ge 1$, let $r_0 = \frac{(n+2)q}{n+q}$. Assume the following inequalities hold for p, q and r_0 :

$$p \ge \max\left\{2, \left(1 - \frac{1}{\bar{c}}\right)n\right\}; \ q > \frac{(\bar{c} - 1)n^2}{(2 - \bar{c})n + 2}; \ \frac{1}{r_0} \ge \frac{1}{p} - \frac{1}{n},\tag{7}$$

where $\bar{c} = \max_{1 \leq i \leq n} c_i$ in Eq. (6). Then for any $r \in [1, r_0)$ and any bounded open set $Q \subset \mathbb{R}^n \times [0, T]$, Eq. (6) is $(L^p(\mathbb{R}^n \times [0, T]), L^q(\mathbb{R}^n), W^{1,r}(Q))$ -stable for $\bar{c} \leq 2$.

[Theorem1] (informal) A large class of *n*-dimensional HJB Equation is $(L^p, L^q, W^{1,1})$ -stable if p > n, q > kn (k depends on the equation).

Theorem 4.3. For $p, q \ge 1$, let $r_0 = \frac{(n+2)q}{n+q}$. Assume the following inequalities hold for p, q and r_0 :

$$p \geq \max\left\{2, \left(1 - \frac{1}{\bar{c}}\right)n\right\}; \ q > \frac{(\bar{c} - 1)n^2}{(2 - \bar{c})n + 2}; \ \frac{1}{r_0} \geq \frac{1}{p} - \frac{1}{n},$$
 (7)
$$\text{where } \bar{c} = \max_{1 \leq i \leq n} c_i \text{ in Eq. (6). Then } r \text{ any } r \in [1, r_0) \text{ and } \text{ sy bounded open set } Q \subset \mathbb{R}^n \times [0, T],$$

$$Eq. (6) \text{ is } (L^p(\mathbb{R}^n \times [0, T]), L^q(\mathbb{R}^n) \text{ } V^{1,r}(Q)) \text{-stable for } i \leq 2.$$

$$\mathsf{O}(n) \text{ } \mathsf{O}(n)$$

[Theorem2] (informal) A large class of *n*-dimensional HJB Equation is *not* (L^p , L^q , $W^{1,1}$)-stable if p < n/4.

Theorem 4.4. There exists an instance of Eq. (6), whose exact solution is u^* , such that for any $\varepsilon > 0, A > 0, r \ge 1, m \in \mathbb{N}$ and $q \in \left[1, \frac{n}{4}\right]$, there exists a function $u \in C^{\infty}(\mathbb{R}^n \times (0, T])$ which satisfies the following conditions:

- $\|\mathcal{L}_{HJB}u \varphi\|_{L^q(\mathbb{R}^n \times [0,T])} < \varepsilon$, $\mathcal{B}_{HJB}u = \mathcal{B}_{HJB}u^*$, and $\sup(u u^*)$ is compact, where \mathcal{L}_{HJB} and \mathcal{B}_{HJB} are defined in Eq. (6).
- $||u u^*||_{W^{m,r}(\mathbb{R}^n \times [0,T])} > A$.

[Theorem2] (informal) A large class of *n*-dimensional HJB Equation is not (L^p , L^q , $W^{1,1}$)-stable if p < n/4.

Theorem 4.4. There exists an instance of Eq. (6), whose exact solution is u^* , such that **for any** $\varepsilon > 0$, A > 0, $r \ge 1$, $m \in \mathbb{N}$ and $p \in \left[1, \frac{n}{4}\right]$, there **exists a function** $u \in C^{\infty}(\mathbb{R}^n \times (0, T])$ which satisfies the following conditions:

- $\|\mathcal{L}_{HJB}u \varphi\|_{L^p(\mathbb{R}^n \times [0,T])} < \varepsilon$, $\mathcal{B}_{HJB}u = \mathcal{B}_{HJB}u^*$, and $\sup(u u^*)$ is compact, where \mathcal{L}_{HJB} and \mathcal{B}_{HJB} are defined in Eq. (6).
- $||u u^*||_{W^{m,r}(\mathbb{R}^n \times [0,T])} > A$.
- Set m = 0, then Sobolev norm becomes L^r -norm.
- The distance between u_{θ} and u^* , ∇u_{θ} and ∇u^* could be arbitrarily large even though the L^2 loss is small!

Empirical results (100-dimensional HJB)

Table 6: Error/loss-vs-time result of original PINN for Eq. (12).

Iteration	1000	2000	3000	4000	5000
L^2 Loss	0.098	0.088	0.070	0.584	0.041
L^1 Relative Error	6.18%	5.36%	3.86%	3.94%	3.47%
$W^{1,1}$ Relative Error	17.53%	17.67%	14.83%	14.40%	11.31%

• L^2 loss drops very quickly, while relative error remains high.

Outline

- 1. Introduction
- 2. Theoretical Analysis for the Validity of PINN
- 3. Failure of PINN for High Dimensional HJB Equation
- 4. New Algorithm for High Dimensional HJB Equation
- 5. Conclusion & Future Direction

Recap: theoretical analysis

[Theorem1] (informal) A large class of *n*-dimensional HJB Equation is $(L^p, L^q, W^{1,1})$ -stable if p > n, q > kn (k depends on the equation).

[Theorem2] (informal) A large class of *n*-dimensional HJB Equation is not (L^p , L^q , $W^{1,1}$)-stable if p < n/4.

 L^2 Loss is not suitable for high-dimensional HJB Equation. L^p Loss (p>>1 or $p=\infty$) can be a better choice!

Experiments: Naïvely minimizing L^p loss

• Naïvely minimizing L^p loss with large but finite p does not lead to satisfactory results.

Method	Error			
	Domain	Boundary		
L^4 Loss	2.42%	13.64%		
L^8 Loss	53.55%	23.78%		
L^{16} Loss	113.24%	80.68%		

Experiments: Naïvely minimizing L^p loss

- Naïvely minimizing L^p loss with large but finite p does not lead to satisfactory results.
- Possible reasons:

Large pStiff landscape \rightarrow Optimization difficulty

Minimizing L^{∞} Physics-Informed Loss

New training objective: L^{∞} Physics-Informed Loss

$$\ell_{\infty}(u) = \sup_{x \in \Omega} |\mathcal{L}u(x) - \varphi(x)| + \lambda \sup_{x \in \partial\Omega} |\mathcal{B}u(x) - \psi(x)|$$

Algorithm: adversarial-training-like min-max optimization.

- Inner loop: gradient-based methods to obtain data points with large point-wise loss to approximate supremum.
- Outer loop: fix the generated data points and calculate the gradient g to learn the network parameters.

L^{∞} training for Physics-Informed Neural Networks

Algorithm 1 L^{∞} Training for Physics-Informed Neural Networks

Input: Target PDE (Eq. (1)); neural network u_{θ} ; initial model parameters θ

Output: Learned PDE solution u_{θ}

Hyper-parameters: Number of total training iterations M; number of iterations and step size of inner loop K, η ; weight for combining the two loss term λ

```
1: for i = 1, \dots, M do
              Sample x^{(1)}, \dots, x^{(N_1)} \in \Omega and \tilde{x}^{(1)}, \dots, \tilde{x}^{(N_2)} \in \partial \Omega
                                                                                                                                                                                                          3-7:computing
3:
              for i=1,\cdots,K do
                      for k=1,\cdots,N_1 do
4:
                                                                                                                                                                                                          supremum
                              x^{(k)} \leftarrow \operatorname{Project}_{\Omega} \left( x^{(k)} + \eta \operatorname{sign} \nabla_x \left( \mathcal{L} u_{\theta}(x^{(k)}) - \varphi(x^{(k)}) \right)^2 \right)
5:
                      for k=1,\cdots,N_2 do
6:
                             \tilde{\boldsymbol{x}}^{(k)} \leftarrow \operatorname{Project}_{\partial\Omega} \left( \tilde{\boldsymbol{x}}^{(k)} + \eta \operatorname{sign} \nabla_{\boldsymbol{x}} \left( \mathcal{B} u_{\theta}(\tilde{\boldsymbol{x}}^{(k)}) - \psi(\tilde{\boldsymbol{x}}^{(k)}) \right)^{2} \right)
7:
```

 $\mathbf{g} \leftarrow \nabla_{\theta} \left(\frac{1}{N_1} \sum_{i=1}^{N_1} \left(\mathcal{L}u_{\theta}(x^{(i)}) - \varphi(x^{(i)}) \right)^2 + \lambda \cdot \frac{1}{N_2} \sum_{i=1}^{N_2} \left(\mathcal{B}u_{\theta}(\tilde{x}^{(i)}) - \psi(\tilde{x}^{(i)}) \right)^2 \right)$

 $\theta \leftarrow \text{Optimizer}(\theta, q)$ 9:

10: return u_{θ}

(gradient ascend for data points)

8-9: optimization (gradient descent for NN parameters)

Experiments: High-dimensional HJB Equation

Mathad	n = 100		n = 250	
Method	Domain	Boundary	Domain	Boundary
Original PINN [23]	3.47%	19.59%	6.74%	23.25%
Adaptive time sampling [30]	3.05%	15.37%	7.18%	23.66%
Learning rate annealing [29]	11.09%	17.73%	6.94%	25.10%
Curriculum regularization [15]	3.40%	16.41%	6.72%	22.67%
Adversarial training (ours)	0.27%	0.63%	0.95%	0.48%

10x more accurate compared with baseline methods!

Experiments: High-dimensional HJB Equation

• Visualization of the learned solution of PINN and our method.

Experiments: High-dimensional HJB Equation

• Visualization of the *gradient* norm of the learned solution of PINN and our method.

Outline

- 1. Introduction
- 2. Theoretical Analysis for the Validity of PINN
- 3. Failure of PINN for High Dimensional HJB Equation
- 4. New Algorithm for High Dimensional HJB Equation
- 5. Conclusion & Future Direction

Conclusion

- In our work, we prove that for general L^p loss function, it is suitable for high dimensional HJB equation only if p is sufficiently large.
- Based on the theoretical results, we propose a novel PINN training algorithm to minimize the L^{∞} loss for HJB equation in a similar spirit to adversarial training.

Future Direction

- Analyzing the stability properties of other important PDEs.
- Designing more efficient algorithms of L^{∞} training for Physics-Informed Neural Networks.

