

TECHNICAL REPORT NO. 3-666

PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 7

EXTENSION OF MOBILITY PREDICTION PROCEDURES TO RECTANGULAR-CROSS-SECTION TIRES IN COARSE-GRAINED SOIL

T. R. Patin

INFORMATION SERVICE

Sponsored by Directorate of Research, Development and Engineering U. S. Army Materiel Command

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

Destroy this report when no longer needed. Do not return it to the originator.

uin	WHITE S	ECTION	al	
		ECTION .		
ar exercises				
185 T.W 164 T.		ــر		
A-2000A-200			/	
67	AL-CALLEGE DESCRIPTION OF			
BETERRY	CE/FRANCIA	at last		
8881.	ATAM. mod/s	r Broši	al .	
-				,
/ N	. 1			

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Unclassified

Unclassified Security Classification			
DOCUM	MENT CONTROL DATA -		
(Security classification of title, body of abstract Deficient author) U. S. Army Engineer Waterways Experies Vicksburg, Mississippi		20. REPOR	AT SECURITY CLASSIFICATION DESIGNED
PERFORMANCE OF SOILS UNDER TIRE IN PROCEDURES TO RECTANGULAR-CROSS-SI			
4. DESCRIPTIVE NOTES (Type of report and inclueive da Report 7 of a series 5. AUTHORIS) (First name, middle initial, last name)	ntes)		
Thomas R. Patin			
6. REPORT DATE April 1972	78. TOTAL NO. 35	OF PAGES	76. NO. OF REFS
b. PROJECT NO. 1T062103A046	94. ORIGINATO Technica		No. 3-666, Report 7
c.Task 03	9b. OTHER RES	ORT NOIS) (A	iny other numbers that may be assigned
d. 10. DISTRIBUTION STATEMENT		·	
Approved for public release; dist	12. sponsomin Director Engineer	ate of R	esearch, Development and S. Army Materiel Command
The study reported herein was cond that had been developed for circul coarse-grained, air-dry soil could cross-section tires in the same or rectangular-section tires were tes sand from Yuma, Arizona, and a mor Mississippi. The data collected i developed from tests with circular test results showed that the exist performance of rectangular-section	ar-cross-section ti be used to predict a second coarse-gr ted in each of two tar-type sand from n these tests were e-section tires in a ling sand mobility n	res opens the perf ained, ai coarse-gr a river compared ir-dry Yuumber car	nting in a particular formance of rectangular- ir-dry soil. Five rained soils, a desert deposit near Vicksburg, with relations previously ma sand. Analysis of
DD POR 1473 REPLACES DO POR 14	79, 1 JAN 64, WHICH 18 18E.	Un	classified

Unclassified

14. KEY WORDS	LIN	K A	LIN	к в	LIN	K C
	ROLE	WT	ROLE	WT	ROLE	WT
Course grained soils	}	•				
Coarse-grained soils					1	
Mobility						
Sands						
Soil-wheel interaction						
Tire loads			11			
			ļ			
						1
						Ì
			İ			
:						
						İ
					, !	
					j	

Unclassified
Security Classification

TECHNICAL REPORT NO. 3-666

PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 7

EXTENSION OF MOBILITY PREDICTION PROCEDURES TO RECTANGULAR-CROSS-SECTION TIRES IN COARSE-GRAINED SOIL

Ьу

T. R. Patin

April 1972

Sponsored by Directorate of Research, Development and Engineering
U. S. Army Materiel Command
Project 1T062103A046, Task 03

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

ARMY-MRC VICKBBURG, MISS

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

FOREWORD

The study reported herein was conducted in 1968 and 1969 in furtherance of Department of the Army Project 1T062103A046, "Trafficability and Mobility Research," Task 03, "Mobility Fundamentals and Model Studies," being conducted by personnel of the Mobility Research Branch (MRB), Mobility and Environmental (M&E) Division, U. S. Army Engineer Waterways Experiment Station (WES). This project is under the guidance and sponsorship of the Research, Development and Engineering Directorate, U. S. Army Materiel Command.

This study was conducted under the general supervision of Messrs. W. G. Shockley, Chief, M&E Division, and S. J. Knight, Assistant Chief, M&E Division, and Chief, MRB, and Dr. K.-J. Melzer of the MRB; and under the direct supervision of Mr. T. R. Patin of the MRB, who also prepared this report.

COL Levi A. Brown, CE, and COL Ernest D. Peixotto, CE, were Directors of WES during this study and preparation of this report. Messrs.

J. B. Tiffany and F. R. Brown were Technical Directors.

CONTENTS

	Page
FOREWORD	lii
NOTTATION	vii
CONVERSION FACTORS, METRIC TO BRITISH UNITS OF MEASUREMENT	i x
SUMMARY	Уi
PART I: INTRODUCTION	1
Background	1 1 1 2
PART II: SOILS, TIRES, AND TEST PROCEDURES	3
Soils	2 1
PART III: PRESENTATION AND ANALYSIS OF DATA	5
Tests in Yuma Sand	5 5 8 10
PART IV: CONCLUSIONS AND RECOMMENDATIONS	10
Conclusions	12 13
LITERATURE CITED	۱۱ ل
TABLES 1-3	
Dr Amire 18	

NOTATION

- b Tire section width, cm
- d Tire diameter, cm
- D Penetration depth, cm
- D_{r} Relative density, percent
- G Soil penetration resistance gradient, MN/m^3
- h Tire section height, cm
- $^{\mathrm{M}}, ^{\mathrm{M}}_{20}$ Torque and torque at 20 percent slip, respectively, m-N
- P,P_{20} Pull and pull at 20 percent slip, respectively, N
 - PR Penetration resistance; numerical subscripts, e.g. PR_0 , PR_1 , etc., indicate equal depth intervals to depth of interest PR_D ; kN/m^2
 - $P_{\overline{T}}$ Towed force, N
 - ra Average active radius of tire, cm
 - W Vertical load, N
- 7, z₂₀ Sinkage and sinkage at 20 percent slip, respectively, cm
 - δ Tire deflection, cm

CONVERSION FACTORS, METRIC TO BRITISH UNITS OF MEASUREMENT

Metric units of measurement used in this report can be converted to British units as follows:

Multiply	By	To Obtain
centimeters	0.3937	inches
newtons	0.2248	pounds (force)
kilonewtons per square meter	0.1450	pounds per square Inch
meganewtons per cubic meter	3.684	pounds per cubic inch
meter-newtons	0.7375	foot-pounds
grams per subjectentimeter	(2.43	pounds per cubic foot

SUMMARY

The study reported herein was conducted to determine whether the sand mobility number that had been developed for circular-cross-section tires operating in a particular coarse-grained, air-dry soil could be used to predict the performance of rectangular-cross-section tires in the same or a second coarse-grained, air-dry soil.

Five rectangular-section tires were tested in each of two coarse-grained soils, a desert sand from Yuma, Arizona, and a mortar-type sand from a river deposit near Vicksburg, Mississippi. The data collected in these tests were compared with relations previously developed from tests with circular-section tires in air-dry Yuma sand.

Analysis of test results showed that the existing sand mobility number can be used to predict the performance of rectangular-section tires in both test sands.

PERFORMANCE OF SOILS UNDER TIRE LOADS

EXTENSION OF MOBILITY PREDICTION PROCEDURES TO RECTANGULAR-CROSS-SECTION TIRES IN COARSE-GRAINED SOIL

PART I: INTRODUCTION

Background

1. Tires with circular cross sections have been tested very extensively at the U. S. Army Engineer Waterways Experiment Station (WES) in one sand, an air-dry desert sand (Yuma sand); and empirical relations for predicting their performance have been developed on the basis of the results of these tests. 1,2,3 These relations did not necessarily apply to tires with rectangular cross sections, because the latter are geometrically and structurally different from the circular-section tires, nor to other sands. Therefore, rectangular-section tires needed to be tested on Yuma sand and at least one other sand to determine whether the existing sand mobility number could be used to predict performance of these tires, or whether new or revised numbers would have to be developed.

Purpose

2. The primary purpose of this study was to develop a performance prediction capability for rectangular-section tires in Yuma sand, either by using the existing sand mobility number established for circular-section tires in Yuma sand, by modifying it, or by developing an entirely new number, depending upon the test results. A secondary purpose was to investigate whether the applicable number for rectangular-section tires in Yuma sand also could be applied to performance of such tires in a different sand.

Scope

3. Forty programmed-slip and seven towed tests were conducted in

Yuma sand, and 16 programmed-slip tests were conducted in mortar sand; all were multiple-pass tests. Sand penetration resistance gradient G ranged from 0.86 MN/m³* to 6.08 MN/m³ for these tests. Five rectangular-section tires were used; each was tested at 15, 25, and 35 percent deflection. Loads ranged from 900 to 6000 N. The test data obtained from these tests were compared with curves established for circular-section tires, areas of agreement and disagreement were identified, and prediction curves for the rectangular-section tires were established when the circular-section tire curves were not applicable. All curves were visual lines of best fit.

Definitions

4. Most of the terms used in this study have been defined in earlier reports; 1,2,4 however, attention is called to one important change, i.e. the use of the more conventional symbol M instead of Q for torque. "Circular-section" or "rectangular-section" refers to the shape of the tire's cross section. The "average active radius r_a " of a tire is the undeflected radius minus one-half the maximum hard-surface deflection.

^{*} A table for converting metric to British units of measurements is given on page ix.

Soils

5. Tests were conducted in two coarse-grained, cohesionless soils, one a sand from the desert near Yuma, Arizona (Yuma sand), and the other a sand from the Big Black River bottom near Vicksburg, Missis-sippi (mortar sand). Grain-size distribution curves are shown in fr. 1. The moisture content of these sands was kept below 0.5 percent during all the tests. A more complete description of these two sands can be found in references 5 and 6.

Fig. 1. Gradation and soil property data for the test sands

Tires

6. The following five rectangular-section tires were tested in this study (fig. 2): 16x6.50-8, 2-PP; 16x11.50-6, 2-PP; 16x15.00-6, 2-PR; 26x16.00-10, 4-PR; and 31x15.50-13, 4-PP. The circular-section tires considered were the 4.00-7, 2-PR, and the 9.00-14, 2-PF. Pertinent characteristics of all these tires are given in table 1.

Fig. P. Rectangular-section tires tested

Test Procedures

7. The same basic procedures for multiple-pass programmed-slip and towed tests? **, ** were followed in all tests, except for one important improvement. The pull values recorded for all tests with both rectangular-section tires and circular-section tires were corrected for inertia effects ** that existed when the test carriage was gradually decelerated during the programmed-slip tests.

PART III: PRESENTATION AND ANALYSIS OF DATA

Data Used

- 8. The original intent was to compare performance data developed in this study for rectangular-section tires with prediction curves for circular-section tires developed in a previous study. This could not be done because of changes in test techniques and data acquisition, which led to improved data, i.e. the pull values were corrected for inertia effects (paragraph 7). The performance data used in this report for circular-section tires (table 2) are, therefore, from tests in which pull values were corrected: seven single-wheel one-pass tests with a 9.00-14 tire listed in reference 8, and a number of single-wheel multiple-pass tests with 9.00-14 and 4.00-7 tires listed in table 4 of reference 9. Tire and performance data for the rectangular-section tires are listed in table 3 herein.
- 9. In a number of tests, a negative pull was obtained at a positive 20 percent slip condition, and data from these tests were not used in the analysis, although they are listed in the data tables. Such a condition is possible only in the laboratory. Because of the physical setup (soil strength, wheel load, etc.) and the manner in which the tests are run in the laboratory, the wheel exerts a negative pull, i.e. the wheel is being pulled by the carriage, when the soil-wheel-load conditions are such that the force required to tow the wheel exceeds its forward thrust. If such a situation should occur with a vehicle, the result, of course, would be immobilization.

Tests in Yuma Sand

Sand mobility number

10. The sand mobility number N_s developed for circular-section tires in Yuma sand 2 is:

$$N_s = \frac{G(bd)^{3/2}}{W} \cdot \frac{\delta}{h}$$

G = cone penetration resistance gradient

b = maximum outside width of the cross section of the inflated, but unloaded, tire

d = outside diameter of the inflated, but unloaded, tire

W = the vertical load (force) applied to the tire through the axle

 δ = tire deflection, i.e. the difference between the section height and the loaded section height

h = tire section height, i.e. the distance from the lip of the rim flange to the periphery of the treadless tire, measured along the vertical center line of the cross section of the inflated, but unloaded, tire

The G value in the equation above is the average slope of the penetration resistance versus depth curve and is calculated by the following equation:

$$G = \frac{2}{D} \left(\frac{PR_0 + PR_1 + PR_2 \cdot \cdot \cdot PR_D}{\text{number of PR readings}} - PR_0 \right)$$

where

PR₀ = the penetration resistance reading when the base of the cone is flush with the soil surface, sometimes called surface or zero-depth reading

PR₁, PR₂...PR_D = penetration resistance readings taken at equal depth intervals down to a depth D

D = depth to which G values are to be taken

11. The relations between mobility number N and the pull coefficient P/W (pull/load), torque coefficient M/Wr (torque/load \times active radius), and sinkage coefficient z/d (sinkage/diameter), respectively, are shown in plate 1 for tests with the two circular-section tires (4.00-7 and 9.00-14). These performance curves form the basis for comparing the results of the tests with the rectangular-section tires with those with circular-section tires.

First-pass performance

12. Pull coefficient at 20 percent slip (P_{20}/W) . The curve from plate la for P_{20}/W versus the sand mobility number for circular-section tires is compared in plate 2a (dashed line) directly with a

similar relation for the P_{20}/W data for rectangular-section tires shown in table 3. This comparison shows that the circular-section tire curve can be used to predict the pulls of the rectangular-section tires for $N_{\rm S}$ below 15; but for $N_{\rm S}$ above 15, a new curve (solid line) fits the rectangular-section tire data better.

- 13. Torque coefficient at 20 percent slip (M_{20}/Wr_a) . The torque coefficient-sand mobility number data obtained from rectangular-section tire tests are plotted in plate 2b, together with the curve from plate 1b for circular-section tires. As is apparent, the same curve can be used to predict the performance of the rectangular-section tires and the circular-section tires.
- presented in plate 2c show that the curve for sinkage of circular-section tires from plate 1c (dashed line) does not predict rectangular-section tire sinkage very well. For sand mobility numbers less than 10, this curve would predict sinkages smaller than actual, whereas for the higher values, larger than actual sinkage values would be predicted. However, here again, while the previously developed curve for circular-section tires does not serve to predict sinkage of rectangular tires, a new curve (solid line in plate 2c) defines a good relation of sinkage and sand mobility number.
- 15. Towed force coefficient (P_{T}/W) . A curve for predicting towed force of circular-section tires in Yuma sand was not established because the data were limited, there being no towed force information available from reference 8 and results from only 10 tests with the 9.00-14 tire available from reference 9. Also, these 10 tests did not cover the full sand mobility number range.
- 16. The relation between the towed force coefficient $P_{\rm p}/{\rm W}$ and the sand mobility number for rectangular-section tires, shown in plate 3, indicates that the sand mobility number can be used to predict the performance of rectangular-section tires in Yuma sand, and the line of best fit for these data can be used as a prediction curve.

Multiple-pass performance

17. Election of 7 values to be used in analysis. There are

two choices in assigning values of penetration resistance gradient 3 for the characterization of sand strength in analysis of multiple-pass performance data: (a) use G values in the sand mobility number that have been measured before traffic, or (b) use G values measured before each pass. The first choice was used in this study because it is the only practical means of applying the sand mobility number to field conditions. To measure G before the passage of the second and third axles of a six-wheeled vehicle would be very difficult, if not impossible.

- 18. Pull coefficient at 20 percent slip (P₂₀/W). Prediction relations for second- and third-pass performance of circular-section tires are shown in plates 4a and 4c, respectively. These relations are plotted in plates 5a and 5c, together with the data obtained on the second and third passes with rectangular-section tires. The curves for the circular-section tires fit the data for the rectangular-section tires quite well, indicating that the circular-section tire curve can be used to predict pull performance of rectangular-section tires. The data scatter for the third pass is wider than that for the second pass, which, in turn, is wider than that for the first pass (plate 2a). The data from tests with the rectangular-section tires tend to show slightly more scatter than the data for the circular-section tires.
- 19. Torque coefficient at 20 percent slip (M_{20}/Wr_a) . When the torque performance curves for second- and third-pass data for circular-section tires from plates 4b and 4d, respectively, are plotted in plates 5b and 5d, together with similar data for the rectangular-section tires, the circular-section tire curves again fit the rectangular-section tire data quite well, although the data scatter in plates 5b and 5d is fairly wide. This indicates the circular-section tire curves can be used to predict torque performance of the rectangular-section tires.

Tests in Mortar Sand

Method of analysis

20. Mortar sand was not included in the previous WEN development

of the sand mobility number for circular-section tires; therefore, circular-section and rectangular-section tire performance in mortar sand could not be compared as has been done herein for Yuma sand. Thus, the analysis consisted of (a) determining whether the sand mobility number

 $\frac{G}{W} \cdot \frac{\delta}{h}$ could be used to collapse the data for rectangular-section tires in mortar sand, and if so, (b) developing prediction curves for this sand.

First-pass performance

- 21. Pull coefficient at 20 percent slip (P_{20}/W) . The results of tests with rectangular-section tires in mortar sand show that the previously developed mobility number can be used to predict the performance of these tires (solid line, plate 6a). When this curve is compared with the curve (dashed line) for Yuma sand from plate 2a, the Yuma sand produces higher P_{20}/W values for a given sand mobility number than does the mortar sand. Although different curves are needed for the two sands, each can be used for prediction for the pertinent sand.
- 22. Torque coefficient at 20 percent slip (M₂₀/Wr_a). Apparently, the Yuma sand mobility number can also be used to predict the torque of rectangular-section tires in mortar sand with reasonably acceptable accuracy, as shown in plate 6b (solid line). For a given sand mobility number, less torque is required in mortar sand than in Yuma sand (dashed line). Here again, although different curves are needed for the two sands, each curve predicts reasonably well for the pertinent sand.
- 23. Sinkage coefficient at 20 percent slip (z_{20}/d) . Sinkage of rectangular-section tires in mortar sand can be predicted by the sand mobility number (plate 6c); in fact, the same curve can be used for predicting sinkages in both Yuma and mortar sands.
- 24. Towed force coefficient at 20 percent slip (P_T/W). As in the other performance parameters, the towed force coefficient can also be predicted by the sand mobility number (plate 6d), and as in the sinkage coefficient at 20 percent slip, the same curve can be used to predict towed force coefficient in both Yuma and mortar sands.
 - 25. Comparison of Yuma and mortar sand test results. Yuma sand

and mortar sand test results for the four first-pass performance parameters are compared in plate 6. To predict both pull and torque at 20 percent slip (plates 6a and 6b, respectively), separate curves are needed for the two sands. On the other hand, sinkage and towed force (plates 6c and 6d, respectively) can be predicted for the two sands by the same curve.

Relative Density Consideration

- 26. Because different curves are needed for predicting pull in Yuma and mortar sands (plate 6a), it is likely that G alone may not be an adequate common denominator representing the strength in all sand conditions. In an attempt to arrive at a common denominator (at least for the two sands considered in this study), the work done by Melzer relating G to relative density D, was examined (plate 7).
- 27. It is hypothesized that the two sands would behave similarly when they were at the same relative density. To test this hypothesis, the G values for the various mortar sand tests were converted into "equivalent" G values of Yuma sand at the same relative density. (Example: In mortar sand a value of G = 2.0 corresponds to a relative density of 62 percent (plate 7b); that same relative density of 62 percent in Yuma sand corresponds to G = 1.4 (plate 7a); thus, a G value of 2.0 in mortar sand has an equivalent value of 1.4 in Yuma sand. This value of G = 1.4 is then used in the sand mobility number for plotting mortar sand test results.)

Pull coefficient at 20 percent slip (P₂₀/W)

^{28.} The data from plate 2a for the Yuma sand tests with rectangular-section tires are plotted in plate 8a, together with the Yuma sand equivalent values for the mortar sand, which were developed by using the procedures described in paragraph 27. When the converted values for the mortar sand are used, the curve for Yuma sand fits the mortar sand data quite well.

Torque coefficient at 20 percent slip (M_{20}/Wr_a)

29. As was done with the pull data the Yuma sand G equivalent was used to replot the mortar sand data in plate 8b, together with the Yuma sand data from plate 2b. The new plot shows that, after conversion, the torque at a given relative density required in mortar sand is still smaller than that required in Yuma sand (paragraph 22). A possible reason for this difference is discussed in paragraphs 30 and 31. Sinkage coefficient at 20 percent slip (z_{20}/d)

- Yuma sand G values (paragraph 27 and plate 7) and replotted (plate 8c), together with the data for Yuma sand tests from plate 2c, the relations seem to separate rather than collapse. For a given relative density, less sinkage is encountered in mortar sand than in Yuma sand. A possible qualitative explanation for this can be found by considering the compressibility of the two sands. A method by which the modulus of compressibility can be calculated, if the maximum, minimum, and initial void ratios of the sand are known, is explained in reference 10: except for cases of extremely low relative densities and depending on the void ratio and pressure, the Yuma sand is more compressible than the mortar sand.
- 31. Although compressibility assumes an elastic medium and may not represent the entire case for wheels on soft soils, qualitatively it could explain the reason for the deeper sinkage in Yuma sand at a given relative density. This, in turn, would explain why less torque is required in mortar sand than in Yuma sand for a given pull.

PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 32. Based on the study herein, the following conclusions were drawn.
 - First-pass pull coefficient at 20 percent slip in Yuma a. sand can be predicted reasonably well for sand mobility numbers below 15 by a common curve for circular-section and rectangular-section tires; but for mobility numbers above 15, separate curves are needed. On the other hand, multiple-pass pull coefficient for both rectangular- and circular-section tires can be predicted by the same curve. The sand mobility number previously developed with circular-section tires in the Yuma sand successfully collapsed the data for rectangular-section tires for the pull coefficient at 20 percent slip in mortar sand (plate 6a). Yuma sand produces a higher pull coefficient at 20 percent slip than does the mortar sand for a given sand mobility number; however, when a given G value for mortar sand at a certain relative density is converted to the G value for Yuma sand at the same relative density (paragraph 27), the test results for both sands fall along the same prediction curve (plate 8a).
 - b. Torque coefficient at 20 percent slip in Yuma sand for the first, second, and third passes (plates 2b, 4b, and 4d, respectively) can be represented by one performance curve for the two types of tires. The previously developed Yuma sand mobility number for circular-section tires apparently successfully collapses the data for the torque coefficient for rectangular-section tires in mortar sand (plate 6b). For both a given sand mobility number and a given relative density, less torque is required in mortar sand than in Yuma sand (plates 6b and 8b).
 - c. Separate curves are needed to predict first-pass sinkage coefficient at 20 percent slip in Yuma sand for circular-section tires and rectangular-section tires (plate 2d); but sinkage coefficient at 20 percent slip in mortar sand for rectangular-section tires can be predicted successfully by the Yuma sand mobility number developed with circular-section tires. Also, the curve used to predict sinkage of rectangular-section tires in Yuma sand can be used for mortar sand (plate 6c).
 - d. For a given relative density, more sinkage is encountered in Yuma sand than in mortar sand (plate 8c), which can be

- explained qualitatively by the fact that Yuma sand is more compressible than mortar sand (paragraph 30).
- e. First-pass towed force coefficient for rectangularsection tires in Yuma sand can be predicted by the Yuma
 sand mobility number (plate 3). Also, the towed force
 coefficient at 20 percent slip in mortar sand for
 rectangular-section tires can be predicted successfully
 by the Yuma sand mobility number developed with circularsection tires; in fact, the same curve can be used for
 rectangular-section tires in both Yuma and mortar sands
 (plates 6d).
- f. For rectangular-section tires, Yuma sand and mortar sand require separate prediction curves for pull and torque coefficients at 20 percent slip (plates 6a and 6b, respectively), whereas Yuma sand and mortar sand have a common curve for sinkage coefficient at 20 percent slip and for towed force coefficient (plates 6c and 6d, respectively).

Recommendations

- 33. It is recommended that tests be conducted:
 - a. With circular-section tires in Yuma sand in which the pull measurements are corrected for inertia. These tests should be designed to cover an adequately wide range of sand mobility numbers so that these data can replace the earlier test results in which no correction was made.
 - b. With a selected number of circular-section tires in mortar sand to adequately determine the performance characteristics of these tires in mortar sand.
 - <u>c</u>. In several additional sands so that the relative density approach described herein can be further verified. The pertinent characteristics of these sands should be considerably different from those of the Yuma and mortar sands.

LITERATURE CITED

- Freitag, D. R., "A Dimensional Analysis of the Performance of Pneumatic Tires on Soft Soils," Technical Report No. 3-688, Aug 1965,
 U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 2. Green, A. J., "Performance of Soils Under Tire Loads; Development and Evaluation of Mobility Numbers for Coarse-Grained Soils," Technical Report No. 3-666, Report 5, Jul 1967, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 3. Turnage, G. W. and Green, A. J., "Performance of Soils Under Tire Loads; Analysis of Tests in Sand from September 1962 through November 1963," Technical Report No. 3-666, Report 4, Feb 1966, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 4. McRae, J. L., Powell, C. J., and Wismer, R. D., "Performance of Soils Under Tire Loads; Test Facilities and Techniques," Technical Report No. 3-666, Report 1, Jan 1965, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- Green, A. J., Smith, J. L., and Murphy, N. R., Jr., "Measuring Soil Properties in Vehicle Mobility Research; Strength-Density Relations of an Air-Dry Sand," Technical Report No. 3-652, Report 1, Aug 1964, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 6. Melzer, K.-J., "Measuring Soil Properties in Vehicle Mobility Research; Relative Density and Cone Penetration Resistance," Technical Report No. 3-652, Report 4, Jul 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 7. Murphy, N. R., Jr., "Performance of Soils Under Tire Loads; Effects of Test Techniques on Wheel Performance," Technical Report No. 3-666, Report 6, Oct 1967, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 8. Melzer, K.-J., "Performance of Dual-Wheel Configurations in Coarse-Grained Soil," Technical Report M-71-8, Nov 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 9. Turnage, G. W., "Performance of Soils Under Tire Loads; Application of Test Results to Tire Selection for Off-Road Vehicles," Technical Report No. 3-666, Report 8 (in preparation), U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 10. Schultze, E. and Moussa, A., "Factors Affecting the Compressibility of Sand," Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris, Vol 1, 1961, pp 335-340.

Table 1
Characteristics of Test Tires

						Hard-Surface Dimensions, cm					
Tire	Load N	Section Width b	Ged Dimension Section Height h	Diameter d	Deflection 6	Active Radius r _a	Deflection 5/h				
			Circular-Se	ection Tires							
9.00-14, 2-PR	600 630 680 710 720 773 850 860	20.7 20.7 20.7 20.7 20.7 20.8 20.8 20.8	15.8 15.8 15.8 15.8 15.8 15.9 16.0	71.2 71.2 71.2 71.2 71.2 71.4 71.6 71.6	4.0 4.0 4.0 4.0 4.0 4.0	33.6 33.6 33.6 33.6 33.7 33.8 33.8	0.25 0.25 0.25 0.25 0.25 0.25 0.25				
	1050 1060 1070 1240 1290 1490 1530 1560	20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	16.0 16.0 16.0 16.0 16.0 16.0 16.0	71.6 71.6 71.6 71.6 71.6 71.6 71.6 71.6	4.0 4.0 4.0 4.0 4.0 4.0	33.8 33.8 33.8 33.8 33.8 33.8 33.8	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25				
	1600 2020 21470 2680 4290 5120 5310	20.9 21.0 21.0 21.0 21.0 21.1 21.1	16.0 16.0 16.0 16.2 16.2 16.3	71.6 71.6 71.6 72.0 72.0 72.2 72.2	4.0 4.0 4.0 4.0 4.0 4.1 4.1	33.8 33.8 33.8 34.0 34.0 34.0 34.0	0.25 0.25 0.25 0.25 0.25 0.25 0.25				
4.00-7, 2-PR	200 280 550 680 1000 1570 2000 2410	10.5 10.6 10.6 10.6 10.6 10.7 10.7	7.8 7.8 7.8 7.8 7.8 7.9 7.9	35.7 35.7 35.7 35.7 35.7 35.9 35.9 35.9	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	16.8 16.8 16.8 16.8 16.8 17.0 17.0	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25				
			Rectangular-	Section Tires							
16x6.50-8, 2-PR	1000 1560 1000 2980 3960 1000 2020	16.3 16.4 16.3 16.4 16.5 16.3	8.7 8.9 8.4 8.9 9.1 8.1 8.6	40.9 41.3 40.3 41.3 41.7 39.7 40.7	1.3 1.3 2.1 2.2 2.3 2.8 3.0	19.8 20.0 19.1 19.6 19.7 18.4 18.8	0.15 0.15 0.25 0.25 0.25 0.35				
16x11.50-6, 2-PR	1000 2020 3960 1000 2020 1000 3960 5720	28.2 28.3 28.2 28.2 28.2 28.2 28.2 28.2	13.4 14.0 14.7 13.0 13.4 12.8 13.7 14.0	43.9 45.1 46.5 43.1 43.3 42.1 44.5	2.0 2.1 2.2 3.2 3.4 4.5 4.8	21.0 21.5 22.2 20.0 20.2 19.1 19.8 20.1	0.15 0.15 0.15 0.25 0.25 0.25 0.35 0.35				
16x15.00-6. 2-PR	1000 1210 2020 1000 2020 3960 2020	38.6 38.6 38.6 39.6 38.6 38.6 38.6	13.2 13.2 13.5 12.6 13.2 13.6	hh.2 hh.2 hh.8 h3.0 hh.2 h5.0 h3.8	2.0 2.0 2.0 3.2 3.3 3.4 4.6	21.1 21.4 19.9 20.4 20.8 19.6	0.15 0.15 0.15 0.25 0.25 0.25 0.35				
26x16.00-10, 4-PR	2020 3960 2020 5720 3960 4540	41.0 41.0 40.9 41.0 40.9 40.9	15.4 15.6 15.2 15.6 15.2	61.8 62.2 61.4 62.2 61.4 61.4	2.3 2.3 3.8 3.9 5.3 5.3	29.8 30.0 26.8 29.2 28.0 28.0	0.15 0.15 0.25 0.25 0.35 0.35				
31x15.50-13, 4-PR	2020 14450 3960 5340 3960 6000	38.1 38.2 38.1 38.1 38.1 38.1	19.4 19.7 19.4 19.7 19.3 19.6	75.4 76.0 75.4 76.0 75.2 75.8	2.9 3.0 4.8 4.9 6.8 6.9	36.2 36.5 35.3 35.6 34.2 34.4	0.15 0.15 0.25 0.25 0.35 0.35				

Table 2
Results from Single-Wheel Tests Conducted at 20% Slip in Yuma Sand with Circular-Section Tires

		Penetration										
Test No.	Pass	Resistance Gradient G 0-16 cm MN/m ^{3*}	Deflec- tion 5/h	Load Design	W . N	Pull P	Pull Coeffi- cient P/W	Torque M , m-N	Torque Coeffi- cient M/Wr _a	Sinkage z, cm	Sinkage Coeffi- cient z/d	Sand Mobility Number
	N.			١.		0-14, 2-Ph						
1-65-50	1 2 3	5.37	0.25 0.25 0.25	1050 1050 1050	1070 1070 1050	490 430 400	0.458 0.402 0.377	209 186 179	0.578 0.514 0.500	0.0	0.000	72.6 72.6 73.3
-51	1 2 3	4.78	0.25 0.25 0.25	1560 1560 1560	1540 1530 1520	680 550 490	0.442 0.359 0.322	287 255 239	0.551 0.493 0.465	0.0	0.000	44.9 45.2 45.5
-52	1 2 3	3.69	0.25 0.25 0.25	1240 1240 1240	1200 1190 1180	530 440 400	0.442 0.370 0.339	225 203 194	0.555 0.505 0.486	0.0	G.000	44.5 44.9 45.3
-53	1 2 3	4.23	0.25 0.25 0.25	850 850 850	860 890 860	400 360 330	0.465 0.404 0.384	16 ⁵ 155 145	0.564 0.515 0.499	0.0	0.000	70.7 68.3 70.7
-54	1 2 3	2.99	0.25 0.25 0.25	600 600 600	600 620 610	270 250 240	0.450 0.403 0.393	118 113 104	0.585 0.542 0.507	0.8	0.011	70.5 68.2 69.3
-55	1 2 3	2.99	0.25 0.25 0.25	600 600 600	560 560 590	260 230 230	0.464 0.411 0.390	113 100 106	0.601 (.531 0.535	0.0	0.000	75.5 75.5 71.7
-56	1 2 3	3.04	0.25 0.25 0.25	770 770 770	780 780 781	360 310 290	0.462 0.392 0.372	152 141 136	0.579 0.530 0.517	0.0	0.000	55.8 55.1 55.8
-57	1 2 3	2.% i	0.25 0.25 0.25	720 720 720	750 740 710	340 300 280	0.453 0.465 0.394	148 133 124	0.384 0.538 0.521	0.0	0.01	55.8 56.6 59.0
-53	1 2 3	2.66	0.25 0.25 0.25	860 860 860	890 840 810	400 320 290	0.449 0.381 0.358	172 138 138	0.572 0.486 0.504	1.3	0.018	42.9 45.5 47.2
-59	1 2 3	3.28	0.25	1070 1070 1070	1020 1090 1040	420 400 360	0.412 0.367 0.346	186 179 167	0.540 0.486 0.475	0.5	0.007	46.5 43.5 45.6
-60	1 2 3	3.45	0.25 0.25 0.25	1530 1530 1530	1520 1520 1510	620 490 440	0.408 0.322 0.291	236 221	0.518 0.459 0.433	0.3	3.004 	32.8 32.8 33.1
-61	1 2 3	3.23	0.25 0.25 0.25	1490 1490 1490	1510 1520 1510	630 -60 460	0.417 0.329 0.305	266 235 224	0.521 0.457 0.439	1.0	0.014	31.0 39.8 31.0
-62	1 2 3	2.99	0.25 0.25 0.25	2470 2470 2470	2420 2390 2390	810 560 520	0.335 0.234 0.218	388 335 320	0.474 0.415 0.396	1.4	0.020	18.0 18.2 18.2
-63	1 2 3	7.15	0.25 0.25 0.25	2680 2680 2680	2660 2660 2620	830 590 550	0.312 0.222 0.210	407 363 346	0.450 0.401 0.388	1.6	p.022	17.4 17.4 17.7
-64	1 2 3	3.61	0.25 0.25 0.25	680 680 680	670 690 620	300 280 120	0.448 0.406 0.194	125 119 106	0.555 0.513 0.509	0.2	0.003	76.2 74.0 82.4
-65	1 2 3	3.20	0.25	630 630 630	640 600 600	280 250 240	0.438 0.417 0.400	115 108 98	0.535 0.536 0.486	1.2	0.017	70.7 75.4 75.4
-66	1 2 3	3.45	0.25 0.25 0.25	1060 1060 1060	1070 1040 1040	470 390 390	0.439 0.375 0.375	201 174 168	0.556 0.495 0.478	0.3	0.004	46.7 48.0 48.0
-67	1 2 3	3.15	0.25 0.25 0.25	1050 1050 1050	1070 1050 1020	490 390 340	0.458 0.371 0.333	202 175 164	0.559 0.493 0.476	0.3	0.004	42.6 43.4 44.7
-68	1 2 3	3.58	0.25 0.25 0.25	2880 2880 2880	2910 2800 2780	930 630 590	0.320	457 386 380	0.469 0.405 0.402	1.9	0.026	18.1 18.8 18.9
						(Continue	d)					

^{*} The values of G for each test series were measured before the first pass.

		Penetration Resistance Gradient G O-16 cm	Deflec-				Pull Coeffi-		Torque Coeffi- cienc		Sinkage Coeffi-	Sand Mobility Number
Test No.	Pass No.	MN/a ³	tion 6/h	Design	W , N	Pull P	eient P/W	M , m-N	M/Wr _a	Sinkage z, cm	cient z/d	N .
				2	.00-14, 2	P-PR Tire	(Continue	<u>•d)</u>				
1-65-69	1 2 3	2.80	0.25 0.25 0.25	3730 3730 3730	3560 3590 3510	680 520 540	0.247 0.145 0.154	548 466 442	0.453 0.382 0.370	2.7	0.038	11.6 11.5 11.7
-70	1 2 3	3.58	0.25 0.25 0.25	1600 1600 1600	1530 1510 1520	610 480 440	0.399 0.318 0.289	267 232 230	0.516 0.455 0.448	0.4	0.006	33.9 34.3 34.1
-n	1 2 3	2.63	0.25 0.25 0.25	1290 1290 1290	1270 1260 1240	510 380 350	0.402 0.302 0.282	225 198 190	0.524 0.465 0.453	1.0	0.014	30.0 30.2 30.7
-72	1 2 3	2.80	0.25 0.25 0.25	710 710 710	740 730 740	340 310 290	0.459 0.425 0.392	144 127 122	0.579 0.518 0.491	0.0	0.000	53.5 54.3 53.5
-73	1 2 3	2.99	0.25 0.25 0.25	5050 5050 5050	2000 1980 1930	750 520 480	0.375 0.263 0.249	342 290 273	0.506 0.433 0.418	1.1 	0.015	21.8 22.0 22.6
-74	1 2 3	2.99	0.25 0.25 0.25	5050 5050 5050	1980 2000 1980	750 560 490	0.379 0.280 0.247	331 287 264	0.495 0.425 0.394	0.8	0.011	22.0 21.7 22.0
1-66-47	1 2 3	2.28	0.25 0.25 0.25	14290 14250 14250	4260 4220 4150	640 450 500	0.150 0.107 0.120	511 517 504	0.353 0.360 0.357	4.3 I	0.060	7.9 7.9 8.1
-48	1 2 3	2,20	0.25 0.25 0.25	5310 5310 5310	5140 50% 5080	480 360 440	0.093 0.071 0.087	689 633 626	0.393 0.367 0.361	6.5	0.090	6.4 6.5 6.4
-49	1 2 3	1,44	0.25 0.25 0.25	5120 5120 5120	14880 14880 14840	180 330 400	0.037 0.068 0.083	681 652 613	0.409 0.392 0.371	9.4	0.130	14.14 14.15 14.14
D-69-0003-1 -0004-1 -0005-1 -0050-1 -0051-1 -0052-1 -0058-1	1 1 1 1 1 1 1	2.0 2.6 2.3 2.2 2.2 3.1 3.1	0.25 0.35 0.35 0.15 0.25 0.25 0.35	8180 8180 8180 4000 4000 8180 8180			-0.02 0.06 0.05 0.09 0.20 0.03 0.18 0.27	 	0.40 0.36 0.38 0.38 0.39 0.38 0.35 0.40	 	0.085 0.101 0.110 0.086 0.035 0.069 0.052 0.030	5.5 6.7 5.9 5.8 12.1 5.8 9.4 16.1
					4.0	XX-7, 2-PF	Tire					
1-66-30	1 2 3	4.59	0.25 0.25 0.25	1000 1000 1000	1040 1030 1010	200 70 60	0.192 0.068 0.059	69 54 53	0.394 0.311 0.311	1.9	0.053	8.1 8.2 8.4
-31	1 2 3	4.53	0.25 0.25 0.25	680 680 680	690 690 670	1.80 100 90	0.261 0.145 0.134	49 42 41	0.421 0.361 0.363	1.0	0.028	12.1 12.1 12.4
-32	1 2 3	4.91	0.25 0.25 0.25	550 550 550	520 600 600	160 110 110	0.308 0.183 0.183	41 38 38	0.468 0.376 0.376	1.4	0.039	17.4 15.1 15.1
-33	1 2 3	4.64	0.25 0.25 0.25	280 280 280	290 290 280	100 80 70	0.345 0.276 0.250	24 23 20	0.491 0.471 0.424	0.6	0.017	29.4 29.4 30.5
-3#	1 2 3	4.72	0.25 0.25 0.25	200 200 200	190 200 200	80 60 60	0.421 0.700 0.300	18 16 16	0.562 0.475 0.475	0.5	0.014	45.1 42.8 42.8
-35	1 2 3	4.29	0.25 0.25 0.25	1570 1570 1570	1550 1520 1520	180 20 -10	0.116 0.013 -0.007	91 91 95	0.346 0.353 0.369	2.3	0.064	5.2 5.3 5.3
-36	1 2 3	4.59	0.25 0.25 0.25	5000 5000 5000	2000 1950 1930	170 -30 -80	0.085 -0.015 -0.041	123 119 119	0.363 0.360 0.364	3.0	0.084	4.3 4.4 4.5
-37	1 2 3	4.40	0.25 0.25 0.25	2410 2410 2410	2380 2310 2290	-30 -140 -190	-0.013 -0.061 -0.083	133 137 137	0.332 0.352 0.355	4.0	0.111	3.5 3.6 3.6

Rable 3 Results from Single-Wieel, Programmed-Slip Tests in Yuma and Mortar Sands with Rectangular-Section Tires

				Penetration Resistance											Towed	Sand	1.
Tire	Test No.	Page No.	Test	Orationt of O-15 cm MOI/m3*	Deflection 8/h	Load W . N Design Test		Pull P C	Pull Coefficient P/W	Torque MM	Torque Coefficient M/Wr	Sinkage z cm	Sinkage Coefficient z/d	Towed Force	Force Coefficient Pq/W	Mobil:	er N :=
								Yune Sand									
16x6.50-8, 2-PR	A68-0061-1	H01 m	20% slip 20% slip 20% slip	155	2.2	1000	383	808	0.000	\$8£	0.355	6.0	0.147	111	111		111
	1-9900-894	H H Q 100	20% slip Toyed 20% slip 20% slip	EEE.	20.00	1000 1000 1000	1040 1040 970	8: 88 8: 88	0.208	8813	0.385	91111		1821	0.115 1.15	0000 0000	1111
	A68-0063-1	-1 es m	20% silp 20% silp 20% silp	2.69 2.69 2.69	0.15 0.15 0.15	1560 1560 1560	1490 1500 1510	800	0.067	£ 8.8	0.362	w 11	0.126	:::	111	977	111
	A68-0067-1	et et ov m	20% slip Towed 20% allp	£.37 £.37	2000	1000 1000 1000	860 1000 88	83188	0.424	ま!に8	0.328	8111	0.007	1811	0.030	18.6	4111
	A68-0064-1	Ham	20% alip 20% alip 20% alip	2.77 2.77 2.77	0.25	2985		-120	-0.041 -0.076 -0.073	227	0.381	411	0.150	:::	111	000	111
	A68-0069-1	r4 02	20% altp 20% altp	2.55	6.33	3960		-650	-0.167	339	0.142	10.6	0.254	11		0.0	11
	A68-0062-1	4400	20% alip Towed 20% alip 20% alip	11.68 8.88 8.66 8.66 8.66	0.33	1000 1000 1000 1000	1010 1020 1020 986 986	270	0.267	8148	0.408	5111	690; 111	1811	0.127	0,000	
	A68-0060-1	нат	20% allp 20% allp 20% allp	288	0.35	2020	1890 1890 1900	828	-0.168 -0.037 0.036	148 114 125	0.413	10.5	0.258	111	111	000	111
	A68-0068-1	et m	20% alip Towed 20% alip 20% alip	04.6 04.6 04.6 04.6	5.000	2020	2010 2000 2000 2000	9 : 9 8g 3 : 9 8g	0.160	188 141 122	0.480	8111	07.050	1811	0.040 1 1 1	16.3 16.3 16.4 16.4	1111
	A68-0069-1+ A68-0072-1+ A68-0073-1+ A68-0071-1+	r4 sr4 sr4 sr4	Towed Towed Towed Towed	21.2 21.84 21.84 31.84	22.55	1000 1560 2980 2020	950 1950 1910	1111	1111	1111	1111	::::	::::	370 1370 1370	0.240 0.463 0.463 0.777	4446 4446	1111
16x11.50-6, 2-PB	A68-0077-1	4400	20% slip Towed 20% slip 20% slip	11168 168888	0.15 0.15 0.15 0.15	1000 1000 1000 1000	8888	210	0.276 0.134 0.120	\$122	0.431 0.374 0.334	2:11	0.048	1811	0.125	8445°	1111
	A68-0075-1	H 01 10	20% alip 20% alip 20% alip	121 121 121	0.15 0.15 0.15	2020		889	-0.010	136	0.381	11.0	0.155	:::	111	0 mm	111
	A68-0080-1	H W M	20% alip 20% slip 20% slip	1.75	0.15 0.15 0.15	3360	3830	-160 -360 -380 -380	0.099	342 364 286	0.335	œ 11	0.189	111	111	m m m m m m	111
							9	Continued	0								

* The values of 6 for each test series were measured before the first pass. ** Applicable only to mortar sand 6 value (paragraph 27 of text). ** Applicable only to mortar sand; see sheet 4 of this table. Sand mobility number computed by using the Yuna sand equivalent of the mortar sand 6 value (paragraph 27 of text). ** Not a programmed-slip test; the tire was simply towed over the soil.

Table 3 (Continued)

(Constant)

Sand Mobility	N N N		1.11	111	1111	1111	1111	1111	1111	1111	1111	1111	1111	111	111
Say	Num Num		8.8.8 9.8.8	9.6.6	E.6.3 4.3 6.3 6.3 6.3	3,3,3,8	16.7 16.4 16.6 16.6	9,6,6,6	169.0 169.0 169.0	9666	36.1.3.1	9.00.00	7.7.7.7.	2.6.00	8.88
Towed	Coefficient Pr/W		111	11.1	0.115 	180.0	0.078	1.02.1	0.029	0.126	0.108	0.156	0.00	111	111
	Force Pr . N			111	13811	1811	1911	1811	1811	18211	1811	1811	1811		111
1	Coefficient z/d		0.098	0.158	0.062	%;::::	980.0	890.111	0.00	0.061	800.111	990:111	600.111	0.063	0.073
	Sinkage 2 cm		311	211	7:11	8111	91111	2111	8:11		3111	3111	5111	4.11	5.5
	Coefficient M/Wr		0.386	0.382	0.387	0.560	0.406	0.362 0.310 0.278	0.559	0.393	0.526	0.439	0.574	0.428	0.406
	W W W		\$E8	283	57: 484 148: 178	188 55 1881 55	F : 85	31%8	88:33	38:8	£ 25: 38	8 188	416 339 339 319	288	550 552 538
Ī	Coefficient P/W	Sand (Continued)	0.018 -0.013 -0.018	10.00	0.240	0.451	0.280	0.079	0.169	0.190 -127 0.106	0.372	0.193	0.455	0.18t 0.134 0.130	0.205
	Pull P	Sand (Co	888	-280 -250 -160	8198	8138	8138	8198	07 1 80 02T	0701 0857 0899	1240	98:98:0	98:386:	288	8888
	Lond W , N Design Test	Year	3930 3930	3920	2080 2080 2080 2080 2080 2080 2080 2080	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000 2000 2000 2000	38.53.88	58888 8888	\$688 8	38668	4550 4610 4520 4530	3000 3000 3000 3000 3000 3000 3000 300	4350 4340 4370	3840 3900 3900
	Lond		3380	9888	2020 2020 2020 2020	2020 2020 2020 2020	2020 2020 2020 2020	8888	2020	5720 5720 5720 5720	3360 3360 3360 3360 3360	2454 2454 2454 2454 2454	2020 2020 2020 2020	EFE EFE	3860
	Deflection 6/h		2000	0.23	9000 8888	0003	5555	5555	2000 2000 2000 2000 2000 2000 2000 200	0000 8888	0000 9888	0.000	0.00	0.15 0.15 0.15	2000
Penetration Resistance Gradient G	0-16 cm NN/m ³		888	1.28	1133	8888 8888	2222	8888	2224 2224	4444 4444	3.2888	66511	2222 2222	1.7	0.00 0.88 0.88
	Condition		20% alip 20% alip 20% silp	20% slip 20% slip 20% slip	20% allp Towed 20% allp 20% allp	of the	20% allp Towed 20% allp 20% allp	20% allp Towed 20% allp 20% allp	20% alth Towed " alth 20% alth	20% slip Towed 20% slip 20% slip	20% sup Towed 20% sup 20% sup	20% slip Towed 20% slip 20% slip	20% allp Towed 20% allp 20% allp	20% alip 20% alip 20% alip	20% slip 20% slip 20% slip
	Pass No.		нат	Heem	H H 01 M	ed ed 60 m	4400	4400	ннам	HHOM	et et en m	4 4 0 M	et et av m	Ham	= 01 m
	Test No.		A68-0091-1	A68-0090-1	A68-0089-1	A68-0094-1	A68-101-1	A68-0100-1	A68-0102-1	A68-0105-1	A68-0103-1	A68-0104-1	A68-0111-1	A68-0106-1	A68-0109-1
	Tire		16x15.00-6, 2-PR (Continued)			-	26x16.00-10, h-PR						31x15.50-13, 4-PR		

Table 3 (Continued)

ett		31x15,50-13, 4-PR (Continued)				16x6.50-8, 2-P8			21 10411.50-6, 2-14			-	16x15.00-6, 2-FR			26x16.00-10, 4-PR		•	31x15.50-13, 4-PR		
Test No.		A68-0107-1	A68-0110-1	A68-0108-1		A69-0022-2	A69-0023-2	A69-0024-2	A69-0019-2	A69-0033-2	A69-0000-2	Z-1200-69V	A69-0032-2	A69-0031-2	A69-0001-2	A69-0025-2	A69-0026-2	A69-0027-2	A69-0028-2	A69-0030-2	A69-0029-2
Page No.			ннию	HOM			et et			~ ~		-1 -1				-4 -4				-4 =4	
Test		20% allp Towed 20% allp 20% allp	20% allp Towed 20% allp 20% allp	20% slip 20% slip 20% slip		20% allp	20% alip Towed	20% slip . Towed	20% slip Towed	20% slip Towed	20% allp	20% slip Towed	20% allp Towed	20% slip Towed	20% allp Towed	Zowed Towed	20% slip Towed	20% slip Towed	20% slip Towed	20% slip Towed	20% slip Towed
Peretration Redstance Gradient G C-16 cm MS/m ³		9888 8888	8888 8888	0.09		3.47	56.4	6.08 6.08	2.09	3.83	75.6 6.6	3.97	3 3 °C	5.5	0.89	1.42	1.91	3.8	19.4	2.62	88.0
Deflection 4/h		8868	0.33	0.35		0.15	0.25	0.35	0.15	0.15	2.5	0.35	0.15	9.33	0.35	0.15	5.83	0.33	0.15	5.00	0.35
Load N . N Design Test		5340 5340 5340 5340	3388	0009		1000	1000	2020	1000	1000	2020	3960	1000	3360	2020	3960	5720	3960	2020	5340	0009
	Yuma	5360 5360 5380 5380	38888	5980 5990 5970	XI.	950	940 0001	1980 2050	960	88	1950	3950	966	3870	1990	3920	5500	3980	2000	5210	5970
Pull P	Sand (Continued)	1730	1740	1000 1320 1430	ortar San	120	540	250	150	윷!	g :	1020	330	040	38	560	910	1,440	830	1430	1080
Pull Coefficient PA	t[uned]	0.323 0.218 0.196	0.439	0.176	হা	0.126	0.255	0.263	091.0	0.280	0.174	0.238	0.240	290.0	0.176	990.0	0.165	0.362	0.415	1,274	0.186
Torque M M M-M-N		18 18 E	81.3 - 27.5 688	8838		64:	운!	145	51	æ:	747	339	F:	克:	161	410	579	69;	357	182	118
Torque Coefficient M/Wr		0.486	0.583	0.416 0.420 0.420		0.260	0.390	0.390	0.310	0.416	0.371	0.431	0.387	0.316	0.425	0.350	0.362	0.509	0.493	0.422	0.405
Sinkage z . cm		2111	å::::	911		1.2	3:1	0.0:	።	9.0	61.1	::	6.9	33:	3.5	s: 1	9:	0.0	0.0	0.:	5.5
Sinkage Coefficient z/d		0:030	500:0111	0.079		0.029	0.005	0.000	0.025	410.0	0.043	0.027	0.018	0.078	180.0	0.089	840.0	00.00	0.000	920.0	0.073
Towed Force P. N		1811	1811	111		181	12	:8	181	18	: 02	198	13	1 08	27.0	1 %	610	230	13	1%	1 869
Towed Force Coefficient P _T /W		1.0.058	1.0.1	111		660.0	0.070	0.039	0.103	0.063	0.100	0	0.040	0.236	0.134	0.233	0.109	0.058	0.020	0.048	0.116
Jand Mobility Musber		19.3 19.3 18.6 13.8	1.8.2 1.8.6 1.8.6	0.6.2		4.00	18.1	18.4	14.5 14.1	23.1	711	15.6	86.9	0,0,	10.9	6.9	11.5	35.3	53.2	19.6	9.0
and and and and and and and and and and		111/	1111	111		6.8	13.2	13.6	10.1	16.6	7.7	11.2	18.9	6.9	7.2	8.74	0.8.7	88.8	38.5	13.8	200

Table 3 (Concluded)

PLATE 2

LEGEND

TIRE

- O 16X6.50-8, 2-PR
- Δ 16XII.50-6, 2-PR
- □ 16 X15.00 6, 2 PR
- ∇ 26 X 16.00 10, 4 PR

 ♦ 31 X 15.50 13, 4 PR
- NOTE: CLOSED SYMBOLS REP-RESENT TOWED TESTS.

RELATION OF TOWED FORCE COEFFICIENT TO SAND MOBILITY NUMBER

RECTANGULAR-SECTION TIRES

FIRST PASS IN YUMA SAND, 20% SLIP

PLATE 4

PLATE 8