

Model Development Phase Template

Date	15 July 2024	
Team ID	740671	
Project Title	Telecom Customer Churn Prediction	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:


```
0]], dtype=int64)
   [54]: #logistic Regression
         from sklearn.linear_model import LogisticRegression
         model=LogisticRegression()
         model.fit(x_train,y_train)
         accuracy_score(model.predict(x_test),y_test)
   [54]: 0.807
56]: #Decision Tree classifier]
      from sklearn.tree import DecisionTreeClassifier
      classifier= DecisionTreeClassifier(criterion='entropy', random_state=42)
      classifier.fit(x train, y train)
      pred=classifier.predict(x_test)
      dtc_acc=accuracy_score(pred,y_test)
      dtc_acc
56]: 0.7835
8]:
    #random forest classifier
     from sklearn.ensemble import RandomForestClassifier
     rc=RandomForestClassifier(random_state=42)
     rc.fit(x train,y train)
     pred=rc.predict(x test)
     rfc acc=accuracy score(y test,pred)
     rfc_acc
3]: 0.864
```



```
#kNeighborsClassifier
[67]:
      from sklearn.neighbors import KNeighborsClassifier
      knn=KNeighborsClassifier()
      knn.fit(x_train,y_train)
[68]:
      ▼ KNeighborsClassifier
[68]:
      KNeighborsClassifier()
      knn_acc=accuracy_score(knn.predict(x_test),y_test)
[69]:
      knn acc
[69]: 0.8345
      #naive bayes classifier
[71]:
      from sklearn.naive_bayes import GaussianNB
      gnb = GaussianNB()
      gnb.fit(x_train, y_train)
      nb_acc=accuracy_score(gnb.predict(x_test),y_test)
      nb_acc
[71]: 0.8275
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix

svm	79	9
		[8]: confusion_patric(vm_pred,y_test) [8]: srey([[1555, 465],
Logistic regression	80	0
Decision Tree	Print(classification_report(model.predict(x_test),y_test))	<pre>[87]: confusion_matrix(pred,y_test)</pre>
Random Forest	[88]: print(classification_report(pred,y_test)) precision recall f1-score support 0 0.96 0.88 0.92 1733 1 0.49 0.75 0.60 267 accuracy 0.86 2000 macro avg 0.73 0.82 0.76 2000 weighted avg 0.90 0.86 0.88 2000	[61]: rfc_con=confusion_matrix(pred,y_test) rfc_con [61]: array([[1528, 205], [67, 200]], dtype=int64)

knn						
	[89]: print(classificati prec 0 1 accuracy macro avg weighted avg		f1-score 0.90 0.51 0.83 0.71			[70]: kom_consconfusion_matrix(knm.predict(x_test),y_test) kom_con [70]: array([[466, 232],
Naïve bayes	90]: print(classificati		DU2.LV: LUUS	N 0 4574))	82	
			f1-score			
	0 1	0.97 0.84 0.26 0.69	0.90 0.38	1846 154		
	accuracy macro avg weighted avg	0.62 0.77 0.92 0.83	0.83 0.64 0.86	2000 2000 2000		[72]: rb_comconfusion_matrix(gnb.predict(x.test),y_test) rb_com [72]: #rey([[1548, 208], [47, 107]), Utypeint64)