CS612 Algorithms for Electronic Design Automation

Floorplanning

Mustafa Ozdal

SOME SLIDES ARE FROM THE BOOK:

VLSI Physical Design: From Graph Partitioning to Timing Closure

MODIFICATIONS WERE MADE ON THE ORIGINAL SLIDES

Chapter 2 – Netlist and System Partitioning

Original Authors:

Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu

Floorplanning

- Circuit modules obtained through partitioning
 - either automatic or manual partitioning
- □ Floorplanning: Assign shapes and locations for all circuit modules.

Example

Given: Three blocks with the following potential widths and heights

Block A: w = 1, h = 4 or w = 4, h = 1 or w = 2, h = 2

Block *B*: w = 1, h = 2 or w = 2, h = 1

Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Example

Given: Three blocks with the following potential widths and heights

Block A: w = 1, h = 4 or w = 4, h = 1 or w = 2, h = 2

Block *B*: w = 1, h = 2 or w = 2, h = 1

Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Example

Given: Three blocks with the following potential widths and heights

Block A: w = 1, h = 4 or w = 4, h = 1 or w = 2, h = 2

Block *B*: w = 1, h = 2 or w = 2, h = 1Block *C*: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Solution:

Aspect ratios

Block A with w = 2, h = 2; Block B with w = 2, h = 1; Block C with w = 1, h = 3

This floorplan has a global bounding box with minimum possible area (9 square units).

Optimization Objectives

- □ Minimize the area of the global bounding box
 - Aspect ratio constraints due to packaging and manufacturing limitations (e.g. a square chip)

- □ Minimize the total wirelength between blocks
 - Long connections increase signal delays (lower performance)
 - More wirelength can degrade routability
 - More wirelength increases power (due to wire capacitances)

Objective Function: Example

□ Combination of area(F) and total wirelength L(F) of floorplan F

Minimize
$$\alpha \cdot area(F) + (1 - \alpha) \cdot L(F)$$

where the parameter $0 \le \alpha \le 1$ gives the relative importance between area(F) and L(F)

Floorplan Representations

- □ A floorplan can be represented based on the locations of the blocks
 - → Complicates generation of new overlap-free floorplans
- □ Typical floorplanning algorithms are iterative in nature
 - Local search and iterative improvement heavily used
- □ Topological representations based on relative block positions
 - The represented floorplan guaranteed to be overlap free
 - Easy to evaluate and make incremental changes

- A rectangular dissection is a division of the chip area into a set of blocks or non-overlapping rectangles.
- A slicing floorplan is a rectangular dissection
 - Obtained by repeatedly dividing each rectangle, starting with the entire chip area, into two smaller rectangles
 - Horizontal or vertical cut line.
- A slicing tree or slicing floorplan tree is a binary tree with k leaves and k 1 internal nodes
 - Each leaf represents a block
 - Each internal node represents a horizontal or vertical cut line.

Slicing floorplan and two possible corresponding slicing trees

Polish expression

- Bottom up: V → * and H → +
- Length 2n-1 (n = Number of leaves of the slicing tree)

Algorithm

slide from M. D. F. Wong, "On Simulated Annealing in EDA", ISPD 2012

Non-slicing floorplans (wheels)

Floorplan tree: Tree that represents a hierarchical floorplan

- Horizontal division
 (objects to the top and bottom)

 Vertical division
 (objects to the left and right)
- Wheel (4 objects cycled around a center object)

Terminology: Vertical Constraint Graph

 In a vertical constraint graph (VCG), node weights represent the heights of the corresponding blocks.

Two nodes v_i and v_j , with corresponding blocks m_i and m_j , are connected with a directed edge from v_i to v_i if m_i is below m_i .

Terminology: Horizontal Constraint Graph

- In a horizontal constraint graph (HCG), node weights represent the widths
 of the corresponding blocks.
 - Two nodes v_i and v_j , with corresponding blocks m_i and m_j , are connected with a directed edge from v_i to v_j if m_i is to the left of m_j .

Longest Path in a VCG

- What does the longest path in the VCG correspond to?
 - → The minimum required floorplan height

Longest Path in HCG

- What does the longest path in the HCG correspond to?
 - → The minimum required floorplan width

- In a vertical constraint graph (VCG), node weights represent the heights of the corresponding blocks.
 - Two nodes v_i and v_j , with corresponding blocks m_i and m_j , are connected with a directed edge from v_i to v_i if m_i is below m_i .
- In a horizontal constraint graph (HCG), node weights represent the widths
 of the corresponding blocks.
 - Two nodes v_i and v_j , with corresponding blocks m_i and m_j , are connected with a directed edge from v_i to v_i if m_i is to the left of m_i .
- The longest path(s) in the VCG / HCG correspond(s) to the minimum vertical / horizontal floorplan span required to pack the blocks (floorplan height / width).
- A constraint-graph pair is a floorplan representation that consists of two directed graphs – vertical constraint graph and horizontal constraint graph – which capture the relations between block positions.

VLSI Physical Design: From Graph Partitioning to Timing Closure

Horizontal Constraint Graph

Sequence pair

- Two permutations represent geometric relations between every pair of blocks
- Example: (ABDCE, CBAED)

Horizontal and vertical relations between blocks A and B:

$$(... A ... B ..., ... A ... B ...) \rightarrow A$$
 is left of B
 $(... B ... A ..., ... A ... B ...) \rightarrow A$ is below B
 $(... A ... B ..., ... B ... A ...) \rightarrow A$ is above B
 $(... B ... A ..., ... B ... A ...) \rightarrow A$ is right of B

Sequence pair

- Two permutations represent geometric relations between every pair of blocks
- Example: (ABDCE, CBAED)
 - → A is above B

Horizontal and vertical relations between blocks A and B:

 $(\dots A \dots B \dots, \dots A \dots B \dots) \rightarrow A$ is left of B

 $(\dots B \dots A \dots, \dots A \dots B \dots) \rightarrow A$ is below B

 $(\dots A \dots B \dots , \dots B \dots A \dots) \rightarrow A$ is above B

 $(...B...A...,...B...A...) \rightarrow A$ is right of B

Sequence pair

- Two permutations represent geometric relations between every pair of blocks
- Example: (ABDCE, CBAED)
 - → B is left of D

Horizontal and vertical relations between blocks A and B:

 $(... A ... B ..., ... A ... B ...) \rightarrow A$ is left of B $(... A ... B ..., ... B ... A ...) \rightarrow A$ is above B

 $(\ldots\,B\ldots\,A\ldots\,,\ldots\,A\ldots\,B\ldots)\to A$ is below B

 $(\dots B \dots A \dots, \dots B \dots A \dots) \rightarrow A$ is right of B

Sequence Pair: Intuition

Sequence 1: ABDCE

Sequence 2: CBAED

Sequence Pair: Intuition

Sequence 1: ABDCE

Sequence 2: CBAED

3.4 Floorplan Representations

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
 - 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
 - 3.6 Pin Assignment
 - 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

Horizontal and Vertical Constraints

If
$$x_A + w_A \le x_B$$
 and ! $(y_A + h_A \le y_B)$ or $y_B + h_B \le y_A$

 \rightarrow A is left of B

If
$$y_A + h_A \le y_B$$
 and ! $(x_A + w_A \le x_B)$ or $x_B + w_B \le x_A$

 \rightarrow A is below B

3.4.1 Floorplan to a Constraint-Graph Pair

 Create nodes for every block. In addition, create a source node and a sink one.

b

е

3.4.1 Floorplan to a Constraint-Graph Pair

- Create nodes for every block. In addition, create a source node and a sink one.
- Add a directed edge (A,B) if Block A is to the left of Block B. (HCG)

3.4.1 Floorplan to a Constraint-Graph Pair

- Create nodes for every block. In addition, create a source node and a sink one.
- Add a directed edge (A,B) if Block A is to the left of Block B. (HCG)
- Remove the redundant edges that cannot be derived from other edges by transitivity.

Floorplan to a Sequence Pair

Step 1: Consider the constraints related to HCG

 $(\ldots A \ldots B \ldots, \ldots A \ldots B \ldots) \rightarrow A$ is left of B

Constraints for SP 1

Constraints for SP 2

Floorplan to a Sequence Pair

Step 2: Consider the constraints related to VCG

Floorplan to a Sequence Pair

Step 3: Create the sequence pairs based on the constraints

$$(\ldots A \ldots B \ldots, \ldots A \ldots B \ldots) \rightarrow A$$
 is left of B

$$(\ldots B \ldots A \ldots, \ldots A \ldots B \ldots) \rightarrow A \text{ is below } B$$

Constraints for SP 1

Sequence 1: bacefd

Constraints for SP 2

Sequence 2: abdefc

Sequence Pair to a Floorplan

□ Method 1 (simpler):

- 1. Create constraint graphs: HCG and VCG
- 2. Pack the blocks based on HCG and VCG (next slides)

Complexity: $O(n^2)$

□ Method 2

Pack the blocks based on the sequence pair directly

Complexity: O(nlgn)

Constraint Graph Pair to a Floorplan

□ Given an HCG and a VCG, we can compute a packing solution that satisfies all the constraints.

□ Basic idea:

- Compute the longest path on HCG
- The coordinate computed for each vertex will be the x-coordinate of the corresponding block in the packed floorplan.
- Compute the longest path on VCG
- The coordinate computed for each vertex will be the y-coordinate of the corresponding block in the packed floorplan.

Reminder: Longest Path Algorithm

LONGEST-PATH (G)

for each vertex u in G

$$coord[u] = 0$$

for each vertex u in G in topological order

for each edge $(u \rightarrow v)$ in G do

coord[v] = max (coord[v], coord[u]+wt(u))

Compute HCG and VCG for the sequence pair:

$$S1 = bdcefa$$

$$S2 = dbaefc$$

$$(\dots A \dots B \dots, \dots A \dots B \dots) \rightarrow A$$
 is left of B

$$(\ldots B \ldots A \ldots, \ldots A \ldots B \ldots) \rightarrow A \text{ is below } B$$

Example: HCG for sequence pair

$$S1 = bdcefa$$

$$S2 = dbaefc$$

Example: VCG for Sequence Pair

$$S1 = bdcefa$$

$$S2 = dbaefc$$

Example: Longest Path in HCG

Example: Longest Path in VCG

$$y(s) = 0$$

 $y(a) = 0$
 $y(d) = 0$
 $y(b) = 3$
 $y(e) = 6$
 $y(f) = 6$
 $y(c) = 12$
 $y(t) = 15$

Example: Packing

Mustafa Ozdal Computer Engineering Department, Bilkent University

Example: Summary

The sequence pair:

$$S1 = bdcefa$$
 $S2 = dbaefc$

corresponds to the packed floorplan:

Example: Perturbation

The original sequence pair:

$$S1 = bdcefa$$
 $S2 = dbaefc$

What happens if we swap the positions of a and d in both sequences?

i.e.
$$S1 = bacefd$$
 $S2 = abdefc$

Example: Longest Path in HCG after Perturbation

Example: Longest Path in VCG

$$y(s) = 0$$

 $y(a) = 0$
 $y(d) = 0$
 $y(b) = 6$
 $y(e) = 3$
 $y(f) = 3$
 $y(c) = 9$
 $y(t) = 12$

Example: Packing

Example: Summary

The original sequence pair:

$$S1 = bdcefa$$
 $S2 = dbaefc$ 12

Swap positions of a and d in both sequences:

$$S1 = bacefd$$
 $S2 = abdefc$

Sequence Pair to a Floorplan

- □ Method 1 (simpler):
 - 1. Create constraint graphs: HCG and VCG
 - 2. Pack the blocks based on HCG and VCG (next slides)

Complexity: O(n²)

□ Method 2

Pack the blocks based on the sequence pair directly

Complexity: O(nlgn)

Reminder: A Common Subsequence

 \Box Given two sequences X and Y:

Z is a *common subsequence* of X and Y if Z is a subsequence of both X and Y.

□ Example:

$$X = bdcefa$$
 $Y = dbaefc$

$$Z = bef$$
 (a common subsequence of X and Y)

because
$$X = bdcefa$$
 $Y = dbaefc$

Reminder: Longest Common Subsequence (LCS)

- □ Each element in the sequence can have a weight defined
- □ Example:

Elements: a b c d e f

Weights: 3 3 4 4 2 2

□ *Longest common subsequence (LCS)* of two sequences is the common sequence with the maximum weight

$$X = bdcefa$$
 $Y = dbaefc$

LCS
$$(X, Y) = def$$
 with weight = $4 + 2 + 2 = 8$

LCS of a Sequence Pair

$$(\ldots A \ldots B \ldots, \ldots A \ldots B \ldots) \rightarrow A$$
 is left of B

Sequence pair: X = bdcefa Y = dbaefc

Let the weights defined as the block widths

What does the LCS(X, Y) correspond to?

$$LCS(X, Y) = def$$

the maximum horizontal span of the floorplan

LCS of a Sequence Pair

$$(\ldots B \ldots A \ldots, \ldots A \ldots B \ldots) \rightarrow A$$
 is below B

Sequence pair: X = bdcefa Y = dbaefc

Let the weights defined as the block heights

What does the $LCS(X^R, Y)$ correspond to?

$$LCS(X^R, Y) = aec$$

the maximum vertical span of the floorplan

Sequence Pair to a Floorplan

- How to find the x-coordinate of block b?
 - \blacksquare Consider the location of b in the sequence pair (X,Y)

$$X = X_1 b X_2 \qquad Y = Y_1 b Y_2$$

- What does LCS (X_1, Y_1) correspond to?
 - > the max horizontal span of the blocks **left** of b
- \blacksquare x-coord (b) = LCS(X₁, Y₁)

$$(\ldots A \ldots B \ldots, \ldots A \ldots B \ldots) \rightarrow A$$
 is left of B

Sequence Pair to a Floorplan

- How to find the y-coordinate of block b?
 - \blacksquare Consider the location of b in the sequence pair (X,Y)

$$X = X_1 b X_2 Y = Y_1 b Y_2$$
$$X^R = X_2^R b X_1^R$$

- What does LCS (X_2^R, Y_1) correspond to?
 - > the max vertical span of the blocks below b
- **v-coord**(b) = LCS(X₂^R, Y₁)

$$(\ldots B \ldots A \ldots, \ldots A \ldots B \ldots) \rightarrow A$$
 is below B

Sequence Pair to a Floorplan using an LCS Algorithm

□ **Find-LCS**: Given two sequences X and Y consisting of n blocks, return the length of the LCS before each block b i.e. Return length of LCS(X_1, Y_1) for each block b for which $X = X_1 b X_2$ and $Y = Y_1 b Y_2$

Inputs:

Block a b c d e f Weight 3 3 4 4 2 2 X = bdcefa

Y = dbaefc

Output:

LCS length before

4 0 4 0 4 6

Sequence Pair to a Floorplan using an LCS Algorithm

FIND-LCS is solvable in O(nlgn) time

Tang, X. Tian, R. and Wong, D.F., "Fast Evaluations of Sequence Pair in Block Placement by Longest Common Subsequence Computations", DATE 2000

Sequence pair (X,Y) to a packed floorplan:

```
x-coords = FIND-LCS (X, Y, widths)
```

y-coords = FIND-LCS
$$(X^R, Y, heights)$$

Sequence pair: X = bdcefa Y = dbaefc

x-coords
FIND-LCS (bdcefa, dbaefc, widths)

x-coords = 4 0 4 0 4 6

Sequence pair: X = bdcefa Y = dbaefc

y-coords
FIND-LCS (afecdb, dbaefc, heights)

y-coords = 0 3 12 0 6 6

Sequence pair:

X = bdcefa

Y = dbaefc

How will the floorplan change if we swap a and d in sequence X?

3.5 Floorplanning Algorithms

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
- → 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
 - 3.6 Pin Assignment
 - 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

Common Goals

 To minimize the total length of interconnect, subject to an upper bound on the floorplan area

or

To simultaneously optimize both wire length and area

Floorplan Sizing

- □ Each block has the following constraints:
 - Area constraint: w_{block} . $h_{block} \ge area_{block}$
 - Lower bound constraints: $w_{block} \ge w_{LB}$ and $h_{block} \ge h_{LB}$
 - Discrete w_{block} and h_{block} options
- □ *Min-area floorplan*: For a given slicing floorplan, compute the locations and shapes to obtain the min floorplan area.

Is this problem NP-hard?

No, it's polynomial time solvable!

Shape functions

 $h^* w \ge A$

Block with minimum width and height restrictions

Shape functions

Discrete (h,w) values

Hard library block

3.5.1 Floorplan Sizing

Corner points

3.5.1 Floorplan Sizing

Algorithm

This algorithm finds the **minimum floorplan area** for a given slicing floorplan in polynomial time. For non-slicing floorplans, the problem is NP-hard.

- Construct the shape functions of all individual blocks
- Bottom up: Determine the shape function of the top-level floorplan from the shape functions of the individual blocks
- Top down: From the corner point that corresponds to the minimum top-level floorplan area, trace back to each block's shape function to find that block's dimensions and location.

3.5.1 Floorplan Sizing – Example

Step 1: Construct the shape functions of the blocks

3.5.1 Floorplan Sizing – Example

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (horizontal)

Minimimum top-level floorplan with horizontal composition

Step 3: Find the individual blocks' dimensions and locations

Horizontal composition

Step 3: Find the individual blocks' dimensions and locations

Horizontal composition

Step 3: Find the individual blocks' dimensions and locations

Floorplan Sizing

- ☐ Iteratively compose nodes in the tree bottom-up.
- □ At the root, choose the best solution.
- Backtrace the compositions

3.5.2 Cluster Growth

- Iteratively add blocks to the cluster until all blocks are assigned
- Only the different orientations of the blocks instead of the shape / aspect ratio are taken into account
- Linear ordering to minimize total wirelength of connections between blocks

3.5.2 Cluster Growth – Linear Ordering

- New nets have no pins on any block from the partially-constructed ordering
- Terminating nets have no other incident blocks that are unplaced
- Continuing nets have at least one pin on a block from the partially-constructed ordering and at least one pin on an unordered block

3.5.2 Cluster Growth – Linear Ordering

• Gain of each block *m* is calculated:

 $Gain_m = (Number of terminating nets of m) - (New nets of m)$

The block with the maximum gain is selected to be placed next

3.5.2 Cluster Growth – Linear Ordering (Example)

Given:

Netlist with five blocks A, B, C, D, E and six nets

$$N_1 = \{A, B\}$$

 $N_2 = \{A, D\}$
 $N_3 = \{A, C, E\}$
 $N_4 = \{B, D\}$
 $N_5 = \{C, D, E\}$
 $N_6 = \{D, E\}$

Initial block: A

Task: Linear ordering with minimum netlength

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3		-3	
			<u> </u>		

Initial block

 $Gain_A = (Number of terminating nets of A) - (New nets of A)$

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3		-3	
1	В	N_4	N_1	0	
	C	N_5		<u>-</u>	N_3
	D	$N_4, N_5, N_6 $ N_5, N_6	N_2	-2	
	Ε	N_5, N_6		-2	N_3

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3	1	-3	
1	B C D E	$N_4 \\ N_5 \\ N_4, N_5, N_6 \\ N_5, N_6$	N ₁ N ₂ 	0 -1 -2 -2	 N ₃ N ₃
2	C D E	N_{5} N_{5}, N_{6} N_{5}, N_{6}	 N ₂ ,N ₄ 	102	N ₃ N ₃

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3		-3	
1	B C D E	$N_4 \ N_5 \ N_4, N_5, N_6 \ N_5, N_6$	N ₁ N ₂	0 -1 -2 -2	 N ₃ N ₃
2	C D E	N_{5} N_{5}, N_{6} N_{5}, N_{6}	 N ₂ ,N ₄ 	-1 0 -2	N ₃ N ₃
3	C E		 N ₆	0	$N_3, N_5 N_3, N_5$
4	С		N_3, N_5	2	

3.5.2 Cluster Growth – Linear Ordering (Example)

3.5.2 Cluster Growth – Algorithm

set of all blocks M, cost function C

Input:

3.5.2 Cluster Growth

Analysis

- The objective is to minimize the total wirelength of connections blocks
- Though this produces mediocre solutions, the algorithm is easy to implement and fast.
- Can be used to find the initial floorplan solutions for iterative algorithms such as simulated annealing.

Introduction

- Simulated Annealing (SA) algorithms are iterative in nature.
- Begins with an initial (arbitrary) solution and seeks to incrementally improve the objective function.
- During each iteration, a local neighborhood of the current solution is considered. A new candidate solution is formed by a small perturbation of the current solution.
- Unlike greedy algorithms, SA algorithms can accept candidate solutions with higher cost.

What is annealing?

- Definition (from material science): controlled cooling process of hightemperature materials to modify their properties.
- Cooling changes material structure from being highly randomized (chaotic) to being structured (stable).
- The way that atoms settle in low-temperature state is probabilistic in nature.
- Slower cooling has a higher probability of achieving a perfect lattice with minimum-energy
 - Cooling process occurs in steps
 - Atoms need enough time to try different structures
 - Sometimes, atoms may move across larger distances and create (intermediate) higher-energy states
 - Probability of the accepting higher-energy states decreases with temperature

Simulated Annealing

- Generate an initial solution S_{init} , and evaluate its cost.
- Generate a new solution S_{new} by performing a random walk
- S_{new} is accepted or rejected based on the temperature T
 - Higher T means a higher probability to accept S_{new} if $COST(S_{new}) > COST(S_{init})$
 - T slowly decreases to form the final solution
- Boltzmann acceptance criterion, where r is a random number [0,1)

$$e^{\frac{COST(S_{curr})-COST(S_{new})}{T} > r}$$

3.5.3 Simulated Annealing – Algorithm

3.5.3 Simulated Annealing – Algorithm

Input: initial solution *init_sol* Output: optimized new solution curr_sol $T = T_0$ // initialization i = 0curr sol = init sol curr_cost = COST(curr_sol) while $(T > T_{min})$ **while** (stopping criterion is not met) i = i + 1 $(a_i,b_i) = SELECT_PAIR(curr_sol)$ // select two objects to perturb trial sol = TRY MOVE (a_i, b_i) // try small local change *trial_cost* = COST(*trial_sol*) $\Delta cost = trial_cost - curr_cost$ if $(\triangle cost < 0)$ // if there is improvement, // update the cost and curr cost = trial cost // execute the move $curr_sol = MOVE(a_i, b_i)$ else r = RANDOM(0,1)// random number [0,1] if $(r < e^{-\Delta cost/T})$ // if it meets threshold, *curr cost* = *trial cost* // update the cost and $curr_sol = MOVE(a_i, b_i)$ // execute the move

 $T = \alpha \cdot T$

 $// 0 < \alpha < 1$, T reduction

Simulated Annealing – Animation

Source: http://www.biostat.jhsph.edu/~iruczins/teaching/misc/annealing/animation.html

Simulated Annealing - Notes

- Practical tuning needed for good results:
 - > How to choose the T values and how to update it?
 - > Should we spend more iterations with high T or low T?
 - > High T: More non-greedy moves accepted
 - ➤ Low T: Accepts mostly greedy moves, but can get stuck
 - > Quality of initial solution should also be considered

Simulated Annealing - Notes

□ For floorplanning:

- > Definition of move depends on the representation used
 - > e.g. Polish expression, sequence pair, etc.
- > Cost evaluation of a move may involve:
 - > packing (e.g. based on horizontal/vertical constraints)
 - block sizing
 - > wirelength estimation