PHP 2500 Introduction to Biostatistics

Problem Set Five Solutions

1/ Chapter 9, #5

a.

cii 10 130 11.8

Variable	Obs	Mean	Std. Err.	[95% Conf.	<pre>Interval]</pre>
	10	130	3.731488	121.5588	138.4412

95% CI for the population mean is (121.6, 138.4).

h

We are 95% confident that the interval (121.6, 138.4) covers the true mean systolic blood pressure.

c.
. cii 10 84 9.1, level(90)

Variable	Obs	Mean	Std. Err.	[90% Conf.	<pre>Interval]</pre>
	10	84	2.877673	78.7249	89.2751

90% CI for the population mean is (78.7, 89.3).

d.

cii 10 84 9.1, level(99)

Variable	Obs	Mean	Std. Err.	[99% Conf.	<pre>Interval]</pre>
	10	84	2.877673	74.64804	93.35196

99% CI for the population mean is (74.6, 93.4).

e.

The 99% CI is wider than the 90% CI for the true mean diastolic blood pressure.

2/

Chapter 9, #8

a.

cii 12 4.49 .83

Variable	Obs	Mean	Std. Err.	[95% Conf.	<pre>Interval]</pre>
	12	4.49	.2396004	3.962643	5.017357

95% CI for the true population mean FVC is (3.962643,5.017357).

o. cii 12 4.49 .83, level(90)

 Mean Std.	 % Conf. Int	
 1.49 .239	 59705 4.	

90% CI for the true population mean FVC is (4.059705,4.920295).

cii 12 3.71 .62

Variable	Obs	Mean	Std. Err.	[95% Conf.	<pre>Interval]</pre>
	12	3.71	.1789786	3.316071	4.103929

95% CI for the true population mean FEV1 is (3.316071,4.103929).

We are assuming that the underlying distributions are Normal.

3/

Chapter 9, #9

cii 14 29.6 3.6

Variable	Obs	Mean	Std. Err.	[95% Conf.	<pre>Interval]</pre>
	14	29.6	.9621405	27.52142	31.67858

95% CI for the true population mean is (27.52, 31.68).

length= 31.68 - 27.52 = 4.16

Find n such that $2(1.96)(\sigma/sqrt(n))=3$ \rightarrow sqrt(n)=2(1.96)(3.6)/3 \rightarrow n= 22.13

Therefore, take n=23

Find n such that $2(1.96)(\sigma/\operatorname{sqrt}(n))=2$ \rightarrow sqrt(n)=2(1.96)(3.6)/2

 \rightarrow n= 49.79

Therefore, take n=50

4/

Chapter 9, #10

ci ibw

Variable	0bs	Mean	Std. Err.	[95% Conf.	Interval]
ibw	18	112.7778	3.39988	105.6047	119.9509

95% CI for true mean ideal body weight is (105.6, 120.0).

b.

No – the confidence interval does not contain the value 100. This implies that the population of insulindependent diabetics weighs on average more than their ideal body weight.

5/

Chapter 9, #11

ci calcium, level(90)

Variable	Obs	Mean	Std. Err.	[90% Conf.	Interval]
calcium	8	3.1425	.1805522	2.80043	3.48457

Therefore, the lower bound of the 95% one-sided interval is 2.80.

b.

```
. ci albumin, level(90)
```

Variable	Obs	Mean	Std. Err.	[90% Conf.	Interval]
albumin	8	40.375	1.068	38.35159	42.39841

Therefore, the lower bound of the 95% one-sided interval is 38.4.

c.

I believe that these patients have normal blood albumin levels (as the lower bound is in the normal range). However, the lower bound for calcium level is below normal levels.

6/

Chapter 14, #8

a. phat = 473/488 = .97

b. cii 488 473

	+ 488	 .9692623		.9498101	
Variable	Obs	Mean	Std. Err.		I Exact Interval]

95% CI for the true population proportion is (.9498,.9827)

c. We are 95% confident that the interval (.9498,.9827) covers the true population proportion p.

d.
cii 488 473,level(90)

	488	9692623	0078135	9530638	9809597
Variable	Obs	Mean	Std. Err.	[90% Conf.	Interval]
				Binomia	l Exact

90% CI for the true population proportion is (.953, .981)

e.

The 90% CI is more narrow than the 95% CI.

7/

Chapter 14, # 10

a.

```
prtesti 114 11 96 7, count
```

diff	:	.0383263		0515437	.0986928
-	.0729167	.0265361		.0209069	.1249265
	.0964912		3.48923	.0422904	.150692

Estimate of p1-p2 = .0235746

95% CI for the true difference in proportions is (-.05, .10).

Since the 95% CI contains the value 0, I am 95% confident that the doctor's advice was not effective.

Chapter 14,#11

prtesti 311 13 310 22,count

Two-sample test of proportion

x: Number of obs = 311 y: Number of obs = 310

Variable	Mean	Std. Err.	z	P> z	[95% Conf.	Interval]
х У	.0418006 .0709677	.0113485	3.68336 4.86627	0.0002 0.0000	.019558 .0423844	.0640433
diff	0291671 under Ho:	.0184789	-1.57586	0.1151	0653851	.0070509

Estimated Proportion of Patients who had visited a crisis center for those on prepaid plan = .0418

Estimated Proportion of Patients who had visited a crisis center for those on medicaid = .0710

prtesti 311 13 310 22,count level(90)

Two-sample test of proportion

x: Number of obs = 311 y: Number of obs = 310

Variable	Mean	Std. Err.				Interval]
х У	•	.0113485 .0145836	3.68336 4.86627	0.0002 0.0000	.023134	.0604673
diff	0291671 under Ho:	.0184789			0595622	.001228

prtesti 311 13 310 22,count level(99)

Two-sample test of proportion

x: Number of obs = 311 y: Number of obs = 310

Variable		Std. Err.	z	P> z	[99% Conf.	Interval]
х У	.0418006 .0709677		4.86627		.0125688 .0334029	.0710325 .1085326
		.0184789			0767656	.0184315

```
under Ho: .0185087 -1.57586 0.1151
```

- 90% CI for the true difference in proportions is (-.0596, .0012)
- 95% CI for the true difference in proportions (-0.065, .007)
- 99% CI for the true difference in proportions is (-0.0768, .0184)

c.

Since all of these intervals contain the value 0, I would conclude with 99% confidence that there is no difference in the proportion of people who visit a community crisis center for those on prepaid plan versus those on Medicaid.

9/

Chapter 11, #11

a.

 H_0 : $\mu_{nonsmpkers} = \mu_{smpkers}$ Ha: $\mu_{nonsmpkers} < \mu_{smpkers}$

b.

. ttesti 121 1.3 1.3 75 4.1 2.0, unequal

Two-sample t test with unequal variances

	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf	. Interval]
х У	121 75	1.3	.1181818	1.3	1.066008 3.639842	1.533992 4.560158
combined	196	2.371429	.1501613	2.102258	2.07528	2.667577
diff		-2.8	.259423		-3.313961	-2.286039

Satterthwaite's degrees of freedom: 113.052

Ho:
$$mean(x) - mean(y) = diff = 0$$

The p-value for the one-sided test is ~ 0 , therefore, we reject the null hypothesis that the difference in means is 0.

A 95% CI for the true difference in means between non-smokers and smokers is (-3.313961, -2.286039). Notice the interval does not contain 0. This too supports our conclusion that the means are different.

10/ Chapter 11,#12

ttesti 37 27.9 5.6 19 38.8 21.7, unequal

Two-sample t test with unequal variances

	Obs	Mean	Std. Err	. Std. Dev.	[95% Conf	. Interval]
x y	37 19	27.9 38.8	.9206343 4.978321	5.6 21.7	26.03287 28.34093	29.76713 49.25907
combined	 56	31.59821	1.898091	14.20401	27.79435	35.40207

A 95% CI for the true difference in means is (-21.5, -.31). This CI does not contain the value 0 and so we reject the null hypothesis that the population means are equal (at the 5% level). Notice that two-sided p-value from the above ttest would yield the same conclusion.

11/ Chapter 11,#10

a. ttesti 156 54.8 28.1 148 69.5 34.7, unequal

Two-sample t test with unequal variances

	 0bs	Mean	Std. Err.	. Std. Dev.	 . [95% Conf	. Interval]
х у	156 148	54.8 69.5	2.249801 2.852322	28.1 34.7	50.35577 63.86315	59.24423 75.13685
combined	304	61.95658	1.85161	32.28392	58.31294	65.60022
diff		-14.7	3.632815		-21.85077	-7.549226

Satterthwaite's degrees of freedom: 282.944

```
\label{eq:ho:mean} \text{Ho: mean(x)} - \text{mean(y)} = \text{diff} = 0 \label{eq:ha:diff} \text{Ha: diff} \sim = 0 \qquad \qquad \text{Ha: diff} > 0 \label{eq:ha:diff} \text{t} = -4.0464 \qquad \qquad \text{t} = -4.0464 \label{eq:ha:diff} \text{P} < \text{t} = 0.0000 \qquad \qquad \text{P} > |\text{t}| = 0.0001 \qquad \qquad \text{P} > \text{t} = 1.0000
```

A 95% CI for the true mean daily fat intake for husbands in the intervention group is (50.36, 59.24). A 95% CI for the true mean daily fat intake for husbands in the control group is (63.86, 75.14).

Since the intervals do not overlap, it is unlikely that the population means of the two groups are equal. c.

The 95% CI for the difference in mean daily fat intake for the two groups of husbands is (-21.85, -7.54). Since the interval does not contain 0, we reject the null hypothesis that the mean daily fat intake is the same for both groups of husbands (at the 5% level).

d.

Two-sample t test with unequal variances

diff	 	-13	7.90642		-28.55885	2.558845
combined	304	178.8289	3.962633	69.09087	171.0312	186.6267
У	148	185.5	5.671765	69	174.2913	196.7087
Х	156	172.5	5.508408	68.8	161.6188	183.3812
	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]

A 95% CI for the true difference in mean carbohydrate intake for husbands in the two treatment groups is (-28.6, 2.6). Since this interval contains the value 0, we cannot reject (at the 5% level) the null hypothesis that the means are the same.

					sqrt(p(1-		sample
length	z-score	confidence	р		p))	n	size
0.1	1.645	90		0.55	0.4974937	267.8965	268
0.1	1.645	90		0.2	0.4	173.1856	174
0.1	1.645	90		0.9	0.3	97.4169	97
0.1	1.96	95		0.55	0.4974937	380.3184	381
0.1	1.96	95		0.2	0.4	245.8624	246
0.1	1.96	95		0.9	0.3	138.2976	139
0.1	2.58	99		0.55	0.4974937	658.9836	659
0.1	2.58	99		0.2	0.4	426.0096	427
0.1	2.58	99		0.9	0.3	239.6304	240
0.05	1.645	90		0.55	0.4974937	1071.586	1072
0.05	1.645	90		0.2	0.4	692.7424	693
0.05	1.645	90		0.9	0.3	389.6676	390
0.05	1.96	95		0.55	0.4974937	1521.274	1522
0.05	1.96	95		0.2	0.4	983.4496	984
0.05	1.96	95		0.9	0.3	553.1904	554
0.05	2.58	99		0.55	0.4974937	2635.934	2636
0.05	2.58	99		0.2	0.4	1704.038	1705
0.05	2.58	99		0.9	0.3	958.5216	959
0.025	1.645	90		0.55	0.4974937	4286.344	4287
0.025	1.645	90		0.2	0.4	2770.97	2771
0.025	1.645	90		0.9	0.3	1558.67	1559
0.025	1.96	95		0.55	0.4974937	6085.094	6086
0.025	1.96	95		0.2	0.4	3933.798	3934
0.025	1.96	95		0.9	0.3	2212.762	2213
0.025	2.58	99		0.55	0.4974937	10543.74	10544
0.025	2.58	99		0.2	0.4	6816.154	6817
0.025	2.58	99		0.9	0.3	3834.086	3835

13/ See attached stata log for this problem.

- a. There is not a gender difference in either systolic blood pressure or heart rate at admission. In both cases, the p-values were quite large (p=0.4870 and 0=0.5784), and both 95% CIs on the gender difference included zero: -12.8 to 6.13 for sys and -9.9 to 5.54 for hra.
- b. Yes. Patients with chronic renal failure die at a rate of 42.1% versus 17.7% for those without. The p-value testing equal probability of death was p=0.0113 and the confidence interval on the difference in the probability of death was 47% to 1.5%.
- c. Yes. Patients who have surgery in the ICU are less likely to die (13.1% versus 27.9%) and the p-value testing equality was 0.0086 and the confidence interval for the difference was 3.8% to 25.9%.
- d. T-tests that assume equal variances give very close answers to the test for the difference in proportions. This is because the test for the difference in proportions (in stata!) uses the null assumption that the proportions are equal and pools to estimate that common proportion. Notice that when w t-test is preformed assuming unequal variances, the answer is quite different (for CRN it goes from significant to not-significant at the 5% level). This is a very important point. Make sure you understand what is going on here!