Лабораторная работа 2.6

Определение энергии активации по температурной зависимости вязкости жидкости.

Жарков Андрей 495

14 октября 2016 г.

Цель работы:1) измерение скорости падения шариков при разной температуре жидкости, 2) вычисление вязкости жидкости по закону Стокса и расчет энергии активации.

В работе испольуются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; микроскоп; мелкие стеклянные и стальные шарики(диаметром около 1 мм)

Теория. Молекулы, медленно перемещаясь внутри жизкости, пребывая часть времени около определённых мест равновесия и образуя картину меняющейся со временем пространственной решётки. Для перехода в новое состояние, молекула должна преодолеть участки с большой потенциальной энергией, превышающей среднюю энергию молекул. Для этого тепловая энергия молекул должна увеличиться на величину W, называемую энергией активации.

$$\eta \sim Aa^{W/kT}$$
 (1)

Энергию активации молекулы жидкости можно получить, отложив $ln\eta(\frac{1}{T})$ как угловой коэффициент получившейся прямой.

Для исследования температурной зависимотси вязкости жидкости используется метод Стокса, основанный на измерении скорости свободного падения шарика в жидкости.

При ламинарном обтекании шарика безграничной жидкостью, сила сопротивления выражается как:

$$F = 6\pi \eta r v$$
 (2)

На шарик действуют три силы: сила тяжести, архимедова сила, сила вязкости, зависящая от скорости. Тогда уравнение движения шарика в жидкости по второму закону Ньютона выглядит как:

$$Vg(\rho - \rho_{liquid}) - 6\pi \eta r v = V \rho \frac{dv}{dt}$$
 (3)

Отсюда находим:

$$v(t) = v_{stable} - [v_{stable} - v(0)]e^{-t/\tau}$$
(4)

 Γ де v(0) - скорость шарика в момент начала его движения

$$v_{st} = \frac{Vg(\rho - \rho_l)}{6\pi \eta r v} = \frac{2}{9}gr^2 \frac{(\rho - \rho_l)}{\eta}$$
(5)

$$\tau = \frac{V\rho}{6\pi\eta rv} = \frac{2r^2\rho}{9\eta}$$
(6)

Как видно из (4), скорость шарика экспоненциально приближается к установившейся скорости. Установление скорости определяется величиной τ , имеющей размерность времени и называющейся временем релаксации. Если вре мя падения в несколько раз больше времени релаксации, процесс установления скорости можно считать закончившимся.

Измеряя на опыте установившуюся скорость, можно определить вязкость жидкости по формуле:

$$\eta = \frac{2}{9}gr^2\frac{(\rho - \rho_l)}{v_{st}}$$
(7)

Более точная формула также учитавает радиус сосуда R:

$$\eta = \frac{2}{9}gr^2 \frac{(\rho - \rho_l)}{[1 + 2.4(r/R)]v_{st}}$$
(8)

Экспериментальная установка

Рис. 1: Схема установки

Применимость формулы Стокса

Формула Стокса выводится для шара и обтекания ламинарного характера, но так как шарик круглее мы не сделаем, то определим характер обтекания:

 $Re = \frac{vr_l}{\eta}$ (9)

Обтекание является ламинарным при Re < 0.5

Определим также допустимое расстояние между границей жидкости и верхней меткой:

$$S = v_s t \tau \left(\frac{t}{\tau} - 1 + e^{-t/\tau}\right) \tag{10}$$

Откуда следует что $S\gg \tau v_s t$ при $t\gg \tau$

Выполнение работы

Будем бросать в жидкость шарики с известной плотностью у которых мы померили радиус. Измерив время прохождения участка длинны L=9,8cm посчитаем установившуюся скорость шариков. Используя это, вычислим вязкость по формуле (7) - η и (8) - η_2 и число рейнольдса $Re=\frac{\rho_{\text{ж}}v_{\text{уст}}\tau}{\eta}$, а также время релаксации τ (по формуле (6)) и путь релаксации $S=v_{\text{уст}}\tau$ для каждого из шариков.

Погрешности при измерении: $\sigma_T = 0, 1K, \, \sigma_r = 0, 02mm, \, \sigma_t = 0, 3c$

Vº	T, °C	t, c	ρ, r/cm ³	r, mm	V _{yct} , MM/c	ρ _{жидк} , г/см ³	η, Па*с	ση, Па*с	η ₂ , Πa*c	σ _η , Πa*c	Re	τ, мc	S, MKM
1	25,4	12,44	2,50	2,08	7,88	1,257	1,49	0,04	1,25	0,03	0,02	1,93	15,18
2	25,4	12,63	2,50	2,02	7,76	1,257	1,42	0,04	1,20	0,03	0,02	1,89	14,66
3	25,4	12,45	7,80	0,88	7,87	1,257	1,40	0,07	1,30	0,06	0,01	1,04	8,15
4	30,0	11,31	2,50	2,10	8,66	1,255	1,38	0,04	1,16	0,03	0,02	2,12	18,37
5	30,0	11,45	2,50	2,04	8,56	1,255	1,32	0,03	1,11	0,03	0,02	2,08	17,84
6	30,0	12,89	7,80	0,74	7,60	1,255	1,03	0,06	0,96	0,05	0,01	0,99	7,51
7	35,0	8,73	2,50	2,12	11,23	1,253	1,09	0,03	0,91	0,03	0,03	2,75	30,82
8	35,0	8,11	2,50	2,04	12,08	1,253	0,94	0,03	0,79	0,02	0,04	2,94	35,50
9	35,0	8,51	7,80	0,86	11,52	1,253	0,92	0,05	0,85	0,04	0,01	1,51	17,40
10	40,0	6,54	2,50	2,14	14,98	1,251	0,83	0,03	0,69	0,02	0,06	3,67	54,92
11	40,0	6,02	2,50	2,06	16,28	1,251	0,71	0,03	0,60	0,02	0,07	3,96	64,42
12	40,0	13,83	7,80	0,52	7,09	1,251	0,54	0,04	0,52	0,04	0,01	0,90	6,40
13	45,0	5,11	2,50	2,08	19,18	1,248	0,62	0,03	0,52	0,02	0,10	4,66	89,33
14	45,0	4,83	2,50	2,02	20,29	1,248	0,55	0,03	0,46	0,02	0,11	4,91	99,52
15	45,0	6,34	7,80	0,76	15,46	1,248	0,53	0,03	0,50	0,03	0,03	2,01	31,06
16	50,0	3,64	2,50	2,08	26,92	1,246	0,44	0,03	0,37	0,02	0,19	6,53	175,77
17	50,0	2,84	2,50	2,06	34,51	1,246	0,34	0,02	0,28	0,02	0,31	8,35	288,29
18	50,0	5,40	7,80	0,62	18,15	1,246	0,30	0,02	0,29	0,02	0,05	2,33	42,29

Как видим η вообще говоря, зависит от ρ , поэтому в расчётах будем использовать η_2 , вычисленное по формуле (8).

Построим график $ln\eta(\frac{1}{T})$

1/T, 1/K	In(η), In(Pa)	$\sigma_{1/T}$, 1/K	σ _{In} , In(Pa)
0,003350	0,221	0,000001	0,025
0,003299	0,073	0,000001	0,026
0,003245	-0,165	0,000001	0,030
0,003193	-0,506	0,000001	0,036
0,003143	-0,709	0,000001	0,044
0,003095	-1,164	0,000001	0,058

Разброс точек достаточно заметный, это может быть связано с на самом деле далеко не шараобразной формой шариков.

Найденный коэффициент наклона $\alpha=(50\pm4)*100$, тогда Энергия активации $W=\alpha k=(6,9\pm0,5)*10^{-20}$ Дж