Dimensional Analysis &

D Buckingham TI Hearem:

→ No of TT (erms (N) = K-R where the flow phenomenon depends on K-parameters with R-basic dimension

1) Identify K parameters
2) Express K parameters in terms of (MLT) (FLT)
3) Identify R value

all basic dimensions

-> Each parameter must les independent 5) Select one additional parameter and

Start Johning titoring

Frequently Used Non-dimensional Nontes.

-> Reynolds Number = DVI

-> Euler Number - OP
pv 2

-> Fioude Number = V

→ Weller Numbr= Pv²P

-> Mach Number = V

- s Strahal Number = wl (w= freq)

-> Pros coeff, = F Lift cos = 29v2l2 Similitude and Modelling

Irriotational 7 XV=0, Incomprenible 7 V=0

$$2\overline{w} = \Omega = \nabla x \overline{v}$$
 $\frac{\partial \phi}{\partial x} = v$ $\frac{\partial \phi}{\partial y} = v$

$$\frac{\partial \Psi}{\partial y} = u - \frac{\partial \Psi}{\partial z} = v$$

$$\frac{\partial \Psi}{\partial y} = \sqrt{2}$$

$$\frac{\partial \Psi}{\partial y} = \sqrt{2}$$

$$\frac{\partial \Psi}{\partial y} = \sqrt{2}$$

$$\frac{\partial \Psi}{\partial z} = \sqrt{2}$$

$$\frac{\partial \Psi}$$

Vax-udy-20 -streamline

Basic Flows

D Rectilinear Flows:

$$V = u\hat{y} + v\hat{y}$$

$$V = u\hat{y} + v\hat{y}$$

$$V = u\hat{y} + v\hat{y} + c\hat{y}$$

$$V = u\hat{y} + v\hat{y} + c\hat{y}$$

$$V = \frac{\Lambda}{2\pi} \theta = \frac{\Lambda}{2\pi} lw$$

$$V_{91} = \frac{\Lambda}{2\pi 91}$$

For a Sink:

$$\psi = -\frac{\Lambda}{2\pi} \theta = \frac{\Lambda}{2\pi} \ln \pi \sqrt{n = -\Lambda}$$

$$\frac{1}{2\pi} \ln \pi \sqrt{n} = \frac{-\Lambda}{2\pi}$$

Source and Sink:

, P(XIY)

(Source) (Sink)

$$\Psi_{A-B} = \frac{\Lambda}{2T} + \sin\left(\frac{2by}{x^2+y^2-b^2}\right)$$

Doublet.
$$b \rightarrow 0 \rightarrow 0$$
 $\lambda \rightarrow 0$ $\lambda \rightarrow 0$

$$\psi = -uy + \frac{\chi_{sin0}}{\eta}$$

$$\psi = -u\eta_{sin0} + \frac{\chi_{sin0}}{\chi_{sin0}}$$

$$\psi = -\eta_{sin0} \left(u - \frac{\chi_{sin0}}{\eta^2}\right)$$

$$\psi = -\eta_{sin0} \left(u - \frac{\chi_{sin0}}{\eta^2}\right)$$

$$\psi = 0 \quad \text{when}$$

$$\psi = -u \sin \theta \left(\frac{97 - x}{u - x} \right)$$

$$V=-usino\left(91-\frac{a^2}{71}\right)$$

Vorten How

Restilinear, Doublet, Vorten.

$$\Psi = -u \sin \theta \eta + u a^2 + \frac{\Gamma}{2\pi} \ln \eta$$

$$\frac{\partial t}{\partial r} - \sqrt{0} = -u \sin\theta \left(1 + \frac{a^2}{4l^2}\right) + \frac{\Gamma}{2m}$$

$$\int_{\gamma} \frac{1}{\sqrt{2}} \sqrt{3} = \frac{1}{2} \left(\frac{1}{2} - \frac{\alpha^2}{2} \right)$$

$$91=a$$

$$V_{0}=0$$

$$V_{0}=-2u\sin\theta+\Gamma$$

$$2\pi a$$

Pao 4 -2usin0+ Fx=0 antidockwise meg

2) Source Sink

m= 27791 Varp

 $\dot{m} = man$ flow rate $\Lambda = Volume$ flow rate $\dot{K} = strengh = \frac{\dot{m}}{2\pi g} = \frac{\Lambda}{2\pi}$

20/21

リカニーサ

70 - 39 39

$$\psi = \frac{m}{2\pi \rho} \theta + C_1 = \frac{\Lambda}{2\pi} \theta + C_1$$

No: 1 30

$$\phi = \frac{\Lambda}{2T} \ln \left(\frac{9}{C_2} \right)$$

