

LMV321L, LMV358L, LMV324L

Low-power, general-purpose operational amplifiers

Datasheet - production data

Applications

- Battery-powered applications
- · Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The LMV321L, LMV358L, and LMV324L are single, dual, and quad operational amplifiers with rail-to-rail output capabilities. They are specifically designed to operate at low voltages (2.7 V to 5 V) with enhanced performances compared to the industry standard LM3xx series.

The LMV321L, LMV358L, and LMV324L are offered in tiny packages, allowing the devices to be used in small portable electronic applications and to be placed closer to the actual signal.

The LMV321L, LMV358L, and LMV324L are complete cost-effective solutions for application designs where cost is of primary importance.

Features

Low-power consumption: 250 μA max at 5 V

Low offset voltage: 7 mV max at 25 °C

Industrial temperature range: -40 °C to +125 °C

Low supply voltage: 2.7 V - 5.5 V
Gain bandwidth product: 1.3 MHz

Tiny packages

Contents

1	Pacl	kage pin connections	3
2	Abs	olute maximum ratings and operating conditions	4
3	Elec	trical characteristics	5
4	Арр	lication information	. 11
	4.1	Operating voltages	11
	4.2	Input common-mode range	
	4.3	Rail-to-rail output	11
	4.4	Input offset voltage drift over temperature	11
	4.5	PCB layouts	
	4.6	Macromodel	11
5	Pacl	kage information	. 12
	5.1	SC70-5 (SOT323-5) package information	. 13
	5.2	SOT23-5 package information	. 14
	5.3	MiniSO8 package information	. 15
	5.4	SO8 package information	. 16
	5.5	TSSOP8 package information	. 17
	5.6	TSSOP14 package information	. 18
	5.7	SO14 package information	. 19
6	Orde	ering information	. 20
7	Revi	ision history	. 20

1 Package pin connections

Out1 1 Vcc+ Vcc+ Out2 In1-Vcc-In1+ 6 In2-In-Vcc- 4 In2+ SC70-5/SOT23-5 MiniSO8/SO8/TSSOP8 Out1 Out4 In1-In4-In4+ In1+ Vcc+ Vccln3+ ln2+ ln3-In2-Out2 7 Out3 TSSOP14/SO14

Figure 1. Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	٧
V _{in}	Input pins (IN+ and IN- pins) voltage ⁽³⁾	V _{CC-} - 0.3 to V _{CC+} + 0.2	
I _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾		
	SC70-5	205	
	SOT23-5	250	
Б	MiniSO8	190	°C/W
R _{thja}	SO8	125	C/VV
	TSSOP8	120	
	TSSOP14	100	
	SO14	105	
Tj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4000	
ESD	MM: machine model ⁽⁸⁾	250	V
	CDM: charged device model ⁽⁹⁾	1300	
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltage, are with respect to network ground terminal
- 2. Differential voltage is the non-inverting input terminal with respect to the inverting input terminal
- 3. V_{CC} - V_{in} must not exceed 6 V, V_{in} must not exceed 6 V
- 4. Input current must be limited by a resistor in series with the inputs
- 5. Short-circuits can cause excessive heating and destructive dissipation
- 6. R_{th} are typical values
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two
 pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
 combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 5.5	V
V _{icm}	Common mode input voltage range	(V _{CC-}) - 0.2 to (V _{CC+}) - 1	V
T _{oper}	Operating free-air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 3. Electrical characteristics at V_{CC+} = 2.7 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit					
DC perforr	DC performance										
V _{io}	Input offset voltage			1	7	mV					
$\Delta V_{io}/\Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		5		μV/°C					
I _{io}	Input offset current	V - V /2		0.5	30	nA					
l _{ib}	Input bias current	$V_{\text{out}} = V_{\text{cc}}/2$		27	60	IIA					
CMRR	Common mode rejection ratio ⁽¹⁾	$V_{ic} = 0 V to V_{cc}-1 V, V_{out} = V_{cc}/2$	70	75		dB					
V	Output quing	R_L = 10 kΩ, high level	2.6	2.69		V					
Vo	Output swing	R_L = 10 kΩ, low level		65	180	mV					
I _{CC}	Supply current (per channel)	No load, V _{out} = V _{CC} /2		120	180	μA					
AC perform	nance										
GBP	Gain bandwidth product			1.3		MHz					
$\Phi_{\!\!\! m}$	Phase margin	$R_L > 1 M\Omega$, $C_L = 200 pF$		60		degrees					
G _m	Gain margin			10		dB					
SR	Slew rate	$R_L > 1 M\Omega$ $C_L = 200 pF$ $V_{out} = 0.5 V to V_{CC} - 0.5 V$		0.6		V/µs					
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		31 20		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$					
i _n	Equivalent input noise current	f = 1 kHz		0.30		<u>pA</u> √Hz					

^{1.} CMRR (dB) = 20 log ($\Delta V_{icm}/\Delta V_{io}$)

Table 4. Electrical characteristics at V_{CC+} = 5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perform	nance				•	
V	Input offset voltage			1	7	m\/
V_{io}	Input offset voltage	-40 °C < T< 125 °C			9	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift ⁽¹⁾	-40 °C < T< 125 °C		5		μV/°C
-	Input offset ourrent	$V_{out} = V_{cc}/2$		0.5	30	
I _{io}	Input offset current	-40 °C < T< 125 °C			50	nA
1	Input hige current	V _{out} = V _{cc} /2		27	60	IIA
l _{ib}	Input bias current	-40 °C < T< 125 °C			110	
CMRR	Common mode rejection ratio ⁽²⁾	$V_{ic} = 0 V to V_{cc}-1 V, V_{out} = V_{cc}/2$	72	75		
SVRR	Supply voltage rejection ratio	V _{cc} = 2.7 to 5 V	72	79		
A _{vd}	Large signal voltage gain	R_L = 2 k Ω , V_{out} = 0.5 V to (V_{CC} -0.5 V)	90	100		dB
		-40 °C < T< 125 °C	80			
	Output swing high level	R _L = 10 kΩ	4.90	4.99		
W		R _L = 10 kΩ, -40 °C < T< 125 °C	4.80			V
VOH		R _L = 2 kΩ	4.70	4.96		V
		R _L = 2 kΩ, -40 °C < T< 125 °C	4.60			
		R _L = 10 kΩ		65	180	
V	Output swing low level	$R_L = 10 \text{ k}\Omega, -40 \text{ °C} < T < 125 \text{ °C}$			280	mV
V_{OL}	Output swillig low level	R _L = 2 kΩ		120	300	IIIV
		R _L = 2 kΩ, -40 °C < T< 125 °C			400	
1	Output short circuit current	Sinking, V _{out} = V _{CC}	35	43		- mA
l _{out}	Output short circuit current	Sourcing, V _{out} = 0 V	60	70		III/A
1	Supply current (per channel)	No load, V _{out} = V _{CC} /2		130	250	
I _{CC}	Supply current (per charmer)	-40 °C < T< 125 °C			350	μA
AC perform	mance					
GBP	Gain bandwidth product			1.3		N 41 1-
F _u	Unity gain frequency	D > 1 MO C = 200 = F		1		MHz
$\Phi_{\!\!\!\!m}$	Phase margin	$R_L > 1 M\Omega C_L = 200 pF$		60		degrees
G _m	Gain margin			10		dB
SR	Slew rate	$R_L > 1 M\Omega C_L = 200 pF$ $V_{out} = 0.5 V to V_{CC} - 0.5 V$		0.7		V/μs

Table 4. Electrical characteristics at V_{CC+} = 5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		30 20		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
i _n	Equivalent input noise current	f = 1 kHz		0.30		<u>pA</u> √Hz

- 1. See Section 4.4: Input offset voltage drift over temperature
- 2. CMRR (dB) = 20 log ($\Delta V_{icm}/\Delta V_{io}$)

Figure 2. Supply current vs. supply voltage at $V_{icm} = V_{CC}/2$ 0.20 T=25°C T=85°C 0.15 **Supply Current (mA)**0.10
0.05 T=-40°C Vicm=Vcc/2 0.00 3.0 3.5 4.0 4.5 5.0 5.5 Supply Voltage (V)

Figure 3. Input offset voltage vs. input common mode voltage at $V_{CC} = 5 \text{ V}$ 1.0 0.9 0.8 0.7 0.6 0.6 0.5 0.4 0.3 0.2 T=125°C T=25°C T=-40°C 0.1 Vcc=5V 0.0 0.0 0.5 2.0 3.0 3.5 Input Common Mode Voltage (V)

Figure 4. Output current vs. output voltage at $V_{CC} = 2.7 \text{ V}$

57

Figure 8. Gain margin vs. load capacitor at $V_{CC} = 5 \text{ V}$

Figure 9. Phase margin vs. load capacitor at $V_{CC} = 5 \text{ V}$

4 Application information

4.1 Operating voltages

The LMV321L, LMV358L, and LMV324L can operate from 2.7 to 5.5 V. The devices' parameters are fully specified for 2.7 V and 5 V power supplies. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.

4.2 Input common-mode range

The LMV321L, LMV358L, and LMV324L have an input common-mode range that includes ground. The input common-mode range is extended from (V_{CC-}) - 0.2 V to (V_{CC+}) - 1 V, with no output phase reversal.

4.3 Rail-to-rail output

The operational amplifiers' output levels can go close to the rails: 180 mV maximum above and below the rail when connected to a 10 k Ω resistive load to $V_{CC}/2$.

4.4 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as follows.

$$\frac{\Delta \text{Vio}}{\Delta T} = \text{max} \left| \frac{\text{Vio}(T) - \text{Vio}(25^{\circ}C)}{T - 25^{\circ}C} \right|$$

for $T_{min} < T < T_{max}$.

4.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.6 Macromodel

Accurate macromodels of the LMV321L, LMV358L, and LMV324L are available on STMicroelectronics' web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the LMV321L, LMV358L, and LMV324L operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

477

5.1 SC70-5 (SOT323-5) package information

DIMENSIONS IN MM

SIDE VIEW

A2

GAUGE PLANE

O TOP VIEW

TOP VIEW

TOP VIEW

Figure 18. SC70-5 (SOT323-5) package mechanical drawing

Table 5. SC70-5 (or SOT323-5) package mechanical data

		Dimensions								
Ref		Millimeters		Inches						
	Min	Тур	Max	Min	Тур	Max				
Α	0.80		1.10	0.315		0.043				
A1			0.10			0.004				
A2	0.80	0.90	1.00	0.315	0.035	0.039				
b	0.15		0.30	0.006		0.012				
С	0.10		0.22	0.004		0.009				
D	1.80	2.00	2.20	0.071	0.079	0.087				
E	1.80	2.10	2.40	0.071	0.083	0.094				
E1	1.15	1.25	1.35	0.045	0.049	0.053				
е		0.65			0.025					
e1		1.30			0.051					
L	0.26	0.36	0.46	0.010	0.014	0.018				
<	0 °		8 °	0 °		8 °				

5.2 SOT23-5 package information

Figure 19. SOT23-5 package mechanical drawing

Table 6. SOT23-5 package mechanical data

	Dimensions									
Ref.		Millimeters		Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А	0.90	1.20	1.45	0.035	0.047	0.057				
A1			0.15			0.006				
A2	0.90	1.05	1.30	0.035	0.041	0.051				
В	0.35	0.40	0.50	0.014	0.016	0.020				
С	0.09	0.15	0.20	0.004	0.006	0.008				
D	2.80	2.90	3.00	0.110	0.114	0.118				
D1		1.90			0.075					
е		0.95			0.037					
Е	2.60	2.80	3.00	0.102	0.110	0.118				
F	1.50	1.60	1.75	0.059	0.063	0.069				
L	0.10	0.35	0.60	0.004	0.014	0.024				
K	0 °		10 °	0 °		10 °				

5.3 MiniSO8 package information

Figure 20. MiniSO8 package mechanical drawing

Table 7. MiniSO8 package mechanical data

		Dimensions								
Ref.		Millimeters		Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.1			0.043				
A1	0		0.15	0		0.006				
A2	0.75	0.85	0.95	0.030	0.033	0.037				
b	0.22		0.40	0.009		0.016				
С	0.08		0.23	0.003		0.009				
D	2.80	3.00	3.20	0.11	0.118	0.126				
E	4.65	4.90	5.15	0.183	0.193	0.203				
E1	2.80	3.00	3.10	0.11	0.118	0.122				
е		0.65			0.026					
L	0.40	0.60	0.80	0.016	0.024	0.031				
L1		0.95			0.037					
L2		0.25			0.010					
k	0 °		8 °	0 °		8 °				
ccc			0.10		_	0.004				

SO8 package information 5.4

₽ □ ccc C SEATING PLANE С 四

Figure 21. SO8 package mechanical drawing

Table 8. SO8 package mechanical data

		Dimensions								
Ref.		Millimeters		Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
Α			1.75			0.069				
A1	0.10		0.25	0.004		0.010				
A2	1.25			0.049						
b	0.28		0.48	0.011		0.019				
С	0.17		0.23	0.007		0.010				
D	4.80	4.90	5.00	0.189	0.193	0.197				
E	5.80	6.00	6.20	0.228	0.236	0.244				
E1	3.80	3.90	4.00	0.150	0.154	0.157				
е		1.27			0.050					
h	0.25		0.50	0.010		0.020				
L	0.40		1.27	0.016		0.050				
L1		1.04			0.040					
k	0 °		8 °	1 °		8 °				
ccc			0.10			0.004				

5.5 TSSOP8 package information

OJO Inch GAGE PLANE

PIN 1 IDENTIFICATION

Figure 22. TSSOP8 package mechanical drawing

Table 9. TSSOP8 package mechanical data

		Dimensions								
Ref.		Millimeters		Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.2			0.047				
A1	0.05		0.15	0.002		0.006				
A2	0.80	1.00	1.05	0.031	0.039	0.041				
b	0.19		0.30	0.007		0.012				
С	0.09		0.20	0.004		0.008				
D	2.90	3.00	3.10	0.114	0.118	0.122				
Е	6.20	6.40	6.60	0.244	0.252	0.260				
E1	4.30	4.40	4.50	0.169	0.173	0.177				
е		0.65			0.0256					
k	0°		8°	0°		8°				
L	0.45	0.60	0.75	0.018	0.024	0.030				
L1		1			0.039					
aaa		0.1			0.004					

5.6 TSSOP14 package information

Figure 23. TSSOP14 package mechanical drawing

Table 10. TSSOP14 package mechanical data

			Dime	nsions			
Ref.		Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0 °		8 °	0 °		8 °	
aaa			0.10			0.004	

5.7 SO14 package information

D hv45'

B A1

SEATING PLANE

GAGE PLANE

1

0

The seating plane

The

Figure 24. SO14 package mechanical drawing

Table 11. SO14 package mechanical data

	Dimensions							
Def	Millimeters			Inches				
Ref.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	1.35		1.75	0.05		0.068		
A1	0.10		0.25	0.004		0.009		
A2	1.10		1.65	0.04		0.06		
В	0.33		0.51	0.01		0.02		
С	0.19		0.25	0.007		0.009		
D	8.55		8.75	0.33		0.34		
E	3.80		4.0	0.15		0.15		
е		1.27			0.05			
Н	5.80		6.20	0.22		0.24		
h	0.25		0.50	0.009		0.02		
L	0.40		1.27	0.015		0.05		
k	8 ° (max.)							
ddd			0.10			0.004		

6 Ordering information

Table 12. Order codes for devices without shutdown feature

Order code	Temperature range	Package	Packing	Marking
LMV321LICT		SC70-5		K25
LMV321LILT		SOT23-5		K170
LMV358LIST		MiniSO8		K170
LMV358LIPT	-40 °C to +125 °C	TSSOP8	Tape and reel	V358L
LMV358LIDT		SO8		LMV358L
LMV324LIPT		TSSOP14		LMV324L
LMV324LIDT		SO14		LMV324L

7 Revision history

Table 13. Document revision history

Date	Revision	Changes
04-May-2012	1	Initial release.
19-Dec-2013	2	New template
09-Dec-2014	3	Added TSSOP8 package Table 6: updated some of the "inches" dimensions Table 12: added new order code LMV358LIPT

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

LMV324LIDT LMV324LIPT LMV321LICT LMV321LILT LMV358LIST LMV358LIDT LMV358LIPT