

Arthur Charpentier

Université du Québec à Montréal

freakonometrics & freakonometrics.hypotheses.org

Modélisation prédictive, Science actuarielle, Économie mathématique, Risque, Inégalités, Économétrie, statistiques, apprentissage automatique Modélisation du climat. Extrêmes. Équité

Risk Transfert

"Insurance is the contribution of the many to the misfortune of the few"

Risk Transfert

Risk Sharing & Networks

Def Consider two random variables X and Y, $X \leq_{CX} Y$ if $\mathbb{E}[h(X)] \leq \mathbb{E}[h(Y)]$ for any convex function h

- \iff Y is a mean-preserving spread of X, i.e. $Y \stackrel{\mathcal{L}}{=} X + Z$, where $\mathbb{E}[Z|X] = 0$.
- $\iff \mathbb{E}[(X-s)_+] \leq \mathbb{E}[(Y-s)_+] \text{ for all } s \in \mathbb{R}.$
- $\implies \mathbb{E}[X] = \mathbb{E}[Y] \text{ and } Var[X] \prec Var[Y].$
- ⇔ Pigou-Dalton transfert, majorization order, etc

Following Denuit and Dhaene (2012) and Carlier et al. (2012),

Def Consider two random vectors $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ and $\boldsymbol{X} = (X_1, \dots, X_n)$ on \mathbb{R}^n . $\boldsymbol{\xi}$ is a risk-sharing scheme of \boldsymbol{X} if $X_1 + \cdots + X_n = \xi_1 + \cdots + \xi_n$ almost surely.

Def Consider two random vectors $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ and $\boldsymbol{X} = (X_1, \dots, X_n)$ on \mathbb{R}^n_{\perp} . $\boldsymbol{\xi} \prec_{CCX} \boldsymbol{X}$ if $\xi_i \prec_{CX} X_i$.

Risk Sharing & Networks

Peer-to-peer insurance is a risk sharing network where a group of individuals pool their premiums together to insure against a risk. Peer-to-Peer Insurance mitigates the conflict that inherently arises between a traditional insurer and a policyholder when an insurer keeps the premiums that it doesn't pay out in claims

- التكافل Takaful ▶
- ▶ Wakalah هَ كَالَة
- مشاركة Musharakah
- ► Xiang Hu Bao 相互保
- Parimutuel

Let
$$\xi_j = \frac{1}{n} \sum_{i=1}^n X_i, \ \forall j$$

Risk sharing

$$\xi_1 + \dots + \xi_n = X_1 + \dots + X_n$$

Componentwise convex-order

$$\xi_j \preceq_{CX} X_j, \ \forall j$$

More generally, consider some linear risk sharing $\boldsymbol{\xi} = M\boldsymbol{X}$, for some $n \times n$ matrix

$$M = \begin{bmatrix} \mathbf{M}_1 & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_2 & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{M}_k \end{bmatrix}, \ \mathbf{M}_k = \frac{1}{n_k} \mathbf{1}_k$$

where $\mathbf{1}_k$ is the $n_k \times n_k$ matrix full of 1's.

Regular graph vs. star shaped graph (low variance vs. large variance on D)

Pigou-Dalton transferts (Dalton (1920)),

$$\mathbf{y}^{(1)} \preceq \mathbf{y}^{(2)} \longleftarrow egin{cases} y_i^{(2)} = y_i^{(1)}, & \forall i \neq j, k \\ y_j^{(2)} = y_j^{(1)} + h, \\ y_k^{(2)} = y_k^{(1)} - h, & y_j^{(2)} > y_j^{(1)} \end{cases}$$

see martingale property of mean-preserving spread. $Y^{(2)} = Y^{(1)} + Z$. where $\mathbb{E}[Z|Y^{(1)}]=0.$

- \triangleright Y_i loss of insured i, $Z_i = \mathbf{1}(Y_i > 0)$
- $\triangleright V_i$ is the set of friends of insured i, $d_i = \text{Card}(V_i)$
- s deductible of insurance contracts
- \triangleright γ is the maximum amount shared between i and j (reciprocal contracts)

$$\xi_{i} = Z_{i} \cdot \min\{s, Y_{i}\}$$

$$+ \sum_{j \in \mathcal{V}_{i}} Z_{j} \min\left\{\gamma, \frac{\min\{s, Y_{j}\} - \delta}{d_{j}}\right\}$$

$$-Z_{i} \cdot \min\{d_{i}\gamma, \min\{s, Y_{i}\} - \delta\}$$

$$0 \quad 20 \quad 40 \quad 60$$

80

Standard Deviation of the degrees

Optimization of the Risk Sharing Mechanism

$$egin{cases} \max \left\{ \sum_{(i,j) \in \mathcal{E}} \gamma_{(i,j)}
ight\} \ ext{s.t.} \ \gamma_{(i,j)} \in [0,\gamma], \ orall (i,j) \in \mathcal{E} \ \sum_{j \in \mathcal{V}_i} \gamma_{(i,j)} \leq s, \ orall i \in \mathcal{V} \end{cases}$$

Given losses
$$\mathbf{X} = (X_1, \dots, X_n)$$
, define contributions $C_{i \to j}^{\star} = \min \left\{ \frac{\gamma(i,j)}{\sum_{i \in \mathcal{V}_i} \gamma_{(i,j)}^{\star}} \cdot X_j, \gamma_{(i,j)}^{\star} \right\}$,

and

$$\xi_i^{\star} = X_i + \sum_{i \in \mathcal{V}} [Z_j C_{i \to j}^{\star} - Z_i C_{j \to i}^{\star}]$$

is a risk sharing, called optimal risk sharing.

Sharing Risks with Friends, and Friends of Friends

We can also consider friends of friends

$$\begin{cases} \gamma_1^{\star} = \operatorname{argmax} \left\{ \sum_{(i,j) \in \mathcal{E}^{(1)}} \gamma_{(i,j)} \right\} \\ \operatorname{s.t.} \ \gamma_{(i,j)} \in [0,\gamma_1], \ \forall (i,j) \in \mathcal{E}^{(1)} \\ \sum_{j \in \mathcal{V}_i^{(1)}} \gamma_{(i,j)} \leq s, \ \forall i \end{cases}$$

$$\begin{cases} \gamma_2^{\star} = \operatorname{argmax} \left\{ \sum_{(i,j) \in \mathcal{E}^{(2)}} \gamma_{(i,j)} \right\} \\ \operatorname{s.t.} \ \gamma_{(i,j)} \in [0,\gamma_2], \ \forall (i,j) \in \mathcal{E}_{\gamma_1^{\star}}^{(2)} \\ \sum_{j \in \mathcal{V}_i^{(1)}} \gamma_{1:(i,j)}^{\star} + \sum_{j \in \mathcal{V}_i^{(2)}} \gamma_{(i,j)} \leq s, \ \forall i \end{cases}$$

References

- Barabási, A. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):509-512.
- Carlier, G., Dana, R.-A., and Galichon, A. (2012). Pareto efficiency for the concave order and multivariate comonotonicity. Journal of Economic Theory, 147(1):207-229.
- Charpentier, A., Kouakou, L., Löwe, M., Ratz, P., and Vermet, F. (2021). Collaborative insurance sustainability and network structure. arXiv. 2107.02764.
- Dalton, H. (1920). The measurement of the inequality of incomes. The Economic Journal, 30(119):348-361.
- Denuit, M. and Dhaene, J. (2012). Convex order and comonotonic conditional mean risk sharing. Insurance: Mathematics and Economics, 51(2):265–270.
- Watts, D. and Strogatz, S. (1998). Collective dynamics of 'small-world' networks. Nature, 398:440-442