Máquina Norma

Teoria da Computação

INF05501

A Máquina Norma

- Norma é um acrônimo para Number theOretic Register MAchine
- Possui como memória um conjunto infinito de registradores naturais
- Três instruções sobre cada registrador:
 - Adição de um ao valor armazenado (incremento)
 - Subtração de um do valor um armazenado (decremento)
 - Teste se o valor armazenado é zero

A Máquina Norma (cont.)

- N[∞] denota o conjunto de todas as tuplas com infinitos (mas contáveis) componentes sobre o conjunto dos números naturais
- Para evitar subscritos, as componentes das tuplas são denotadas por letras maiúsculas como A, B, X, Y, ..., as quais representam os registradores da Máquina Norma

Definição Formal da Máquina Norma

Supondo que K é um registrador, a Máquina Norma N é uma heptupla do tipo:

$$N = (\mathbb{N}^{\infty}, \mathbb{N}, \mathbb{N}, ent, sai, \{ad_K, sub_K\}, \{zero_K\})$$

onde:

- \mathbb{N}^{∞} é o conjunto de valores de memória, sendo que cada um de seus elementos descreve uma configuração de um dos infinitos registradores, denotados por A, B, X, Y, ...
- $ent: \mathbb{N} \to \mathbb{N}^{\infty}$ é a função de entrada, a qual resulta no armazenamento do valor de entrada no registrador identificado por X e inicializa todos os demais registradores com zero

Definição Formal da Máquina Norma (cont.)

- $sai: \mathbb{N}^{\infty} \to \mathbb{N}$ é a função de saída, a qual retorna o valor armazenado no registrador denotado por Y
- $\{ad_K, sub_K\}$ é conjunto de interpretações de operações, as quais são indexadas por registradores, de forma que, para cada registrador $K \in \{A, B, X, Y, ...\}$, tem-se que:
 - $-ad_K: \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$ incrementa a componente correspondente ao registrador K sem alterar as demais (notação simplificada: K := K + 1)
 - $-sub_K: \mathbb{N}^{\infty} \to \mathbb{N}^{\infty}$ decrementa a componente correspondente ao registrador K sem alterar as demais (notação simplificada: K := K-1)

Definição Formal da Máquina Norma (cont.)

- $\{zero_K\}$ é conjunto de interpretações de testes, os quais são index-ados por registradores, de forma que, para cada registrador $K \in \{A, B, X, Y, ...\}$, tem-se que:
 - $zero_K : \mathbb{N}^{\infty} \to \{verdadeiro, falso\}$ resulta em verdadeiro se a componente correspondente ao registrador K for zero e falso, caso contrário (notação simplificada: K = 0?)

Máquina Norma como Máquina Universal

- Apesar de ser uma máquina extremamente simples, seu poder computacional é, no mínimo, igual ao de qualquer computador moderno
- Reforça esta ideia a possibilidade de simularem-se características de máquinas reais usando a Máquina Norma
- Inclusive, pode-se considerar apenas programa monolíticos, pois mecanismos como a recursão podem ser simulados usando fluxogramas na Máquina Norma
- A seguir, veremos como simular algumas características usando a Máquina Norma

Simulação de Operações e Testes

 Atribuição de valor zero a um registrador A: Obtida através do seguinte programa iterativo:

até
$$A=0$$
 faça $(A:=A-1)$

- Pode-se representar tal programa como uma **macro** A := 0
- A partir da definição desta macro, pode-se definir operações de atribuição de qualquer valor a um registrador

- Atribuição de um valor natural a um registrador: Generalizando-se a macro definida anteriormente, tem-se a macro A := n, a qual representa a atribuição de um valor natural n a um registrador A
- **Programa iterativo** para a aplicação da macro para n=3:

```
A := 0;

A := A + 1;

A := A + 1;

A := A + 1
```

- Adição de dois registradores: Podemos denotar a adição do valor de um registrador B a um registrador A através da macro A := A + B
- Programa iterativo correspondente à macro:

```
até B=0 faça (A:=A+1;B:=B-1)
```

Note: esta operação faz com que o registrador B seja zerado

• Adição de dois registradores, preservando B: Para preservarmos o valor B após a adição, precisamos usar um **registrador auxiliar** C, resultado na macro $A := A + B \ usando \ C$:

```
C:=0; até B=0 faça (A:=A+1;C:=C+1;B:=B-1); até C=0 faça (B:=B+1;C:=C-1)
```

 Note: o registrador C escolhido não pode ser usado em outra parte do programa que utiliza esta macro

• Atribuição de conteúdo de um registrador: A atribuição do valor armazenado em um registrador B para um registrador A também se utiliza de um registrador auxiliar, resultando na macro $A := B \ usando \ C$:

```
A := 0;

A := A + B \quad usando \quad C
```

• Multiplicação de dois registradores: Requer dois registradores auxiliares para a aplicação da macro $A := A \times B \ usando \ C, D$:

```
C:=0; até A=0 faça (C:=C+1;A:=A-1); até C=0 faça (A:=A+B \ usando \ D;C:=C-1)
```

• Teste se valor de um registrador é primo: Utiliza-se a macro $teste_primo(A)\ usando\ C$:

```
(se A=0 então falso senão C:=A; C:=C-1; (se C=0 então verdadeiro senão (até teste\_mod(A,C) faça (C:=C-1)); C:=C-1; (se C=0 então verdadeiro senão falso)))
```

• Atribuição do n-ésimo número primo a um registrador: Utiliza-se a macro $A := primo(B) \ usando \ D$:

```
A := 1; D := B; até D = 0 faça (D := D - 1; A := A + 1; até teste\_primo(A) usando C faça (A := A + 1)
```

Representação de Números: Inteiros

- Um **número inteiro** *m* pode ser representado como um par ordenado (s,|m|), onde:
 - s define o **sinal** de m, sendo que, se m < 0, então s = 1 (negativo), senão s = 0 (positivo)
 - |m| descreve o valor absoluto de m (magnitude)
- Note que pares ordenados podem ser representados em Norma conforme a codificação de n-uplas de naturais vista na aula passada ou usando dois registradores

Representação de Números: Inteiros (cont.)

- Representação de números inteiros com dois registradores: Supõe-se que o registrador inteiro A é representado pelo **par ordenado de registradores naturais** (A_1, A_2) , onde A_1 armazena o sinal do valor armazenado em A e A_2 , a sua magnitude
- Esta representação é chamada de sinal-magnitude
- A fim de trabalhar com esta representação e executar operações inteiras, precisamos de três programas em Norma, um para cada operação elementar

Representação de Números: Inteiros (cont.)

• Para A := A + 1, temos o seguinte programa iterativo:

```
(se A_1=0 então A_2:=A_2+1 senão A_2:=A_2-1; (se A_2=0 então A_1:=A_1-1 senão \checkmark))
```

Exercícios

- 1. Qual é o programa iterativo que corresponde à operação inteira A := A 1 utilizando a representação de inteiros por dois registradores?
- 2. E para a operação inteira A=0, qual o programa iterativo correspondente?

- Um **número racional** r pode ser representado como um par ordenado de naturais (a, b), tal que b > 0 e r = a/b
- Note que esta representação não é unívoca, pois um mesmo valor pode ter mais de um par que o represente
- \bullet Por exemplo, o número 0.75 pode ser representado, entre outros, por (3,4) ou (6,8)
- Portanto, esta representação cria classes de equivalência de pares ordenados naturais

$$(a,b) + (c,d) =$$
 $(a,b) - (c,d) =$
 $(a,b) \times (c,d) =$
 $(a,b)/(c,d) =$
 $(a,b) = (c,d)$

$$(a,b) + (c,d) = (a \bullet d + b \bullet c, b \bullet d)$$

$$(a,b) - (c,d) =$$

$$(a,b) \times (c,d) =$$

$$(a,b)/(c,d) =$$

$$(a,b) = (c,d)$$

$$(a,b) + (c,d) = (a \bullet d + b \bullet c, b \bullet d)$$

$$(a,b) - (c,d) = (a \bullet d - b \bullet c, b \bullet d)$$

$$(a,b) \times (c,d) =$$

$$(a,b)/(c,d) =$$

$$(a,b) = (c,d)$$

$$(a,b) + (c,d) = (a \bullet d + b \bullet c, b \bullet d)$$

$$(a,b) - (c,d) = (a \bullet d - b \bullet c, b \bullet d)$$

$$(a,b) \times (c,d) = (a \bullet c, b \bullet d)$$

$$(a,b)/(c,d) =$$

$$(a,b) = (c,d)$$

$$(a,b) + (c,d) = (a \bullet d + b \bullet c, b \bullet d)$$

$$(a,b) - (c,d) = (a \bullet d - b \bullet c, b \bullet d)$$

$$(a,b) \times (c,d) = (a \bullet c, b \bullet d)$$

$$(a,b)/(c,d) = (a \bullet d, b \bullet c) \text{ para } c \neq 0$$

$$(a,b) = (c,d)$$

$$(a,b) + (c,d) = (a \bullet d + b \bullet c, b \bullet d)$$

$$(a,b) - (c,d) = (a \bullet d - b \bullet c, b \bullet d)$$

$$(a,b) \times (c,d) = (a \bullet c, b \bullet d)$$

$$(a,b)/(c,d) = (a \bullet d, b \bullet c) \text{ para } c \neq 0$$

$$(a,b) = (c,d) \text{ sss } a \bullet d = b \bullet c$$

Representação de Cadeias de Caracteres

- A Máquina Norma também não possui um tratamento predefinido para o tipo de dado cadeia de caracteres (string)
- O tratamento da definição e da manipulação de cadeias de caracteres será realizado através de uma outra Máquina Universal, denominada Máquina de Turing, a qual prova-se, é equivalente à Norma

Representação de Dados Estruturados

- Representação de arranjos unidimensionais: Uma estrutura do tipo arranjo unidimensional da forma A(1), A(2), ... pode ser definida por um único registrador A usando a codificação de n-uplas naturais
- Note que não é necessário haver um tamanho máximo predefinido
- Em arranjos, podemos acessar cada posição através de índices
- A indexação de posições pode ser direta (número natural) ou indireta (conteúdo de um registrador)

- Em ambos os casos, precisamos definir as operações de incremento, decremento e teste de valor zero a fim de manter a coerência com a definição de Máquina Norma, tendo as seguintes definições iniciais:
 - Arranjo é implementado usando um registrador A
 - $-p_n$ denota o n-ésimo número primo
 - $teste_div(A, C)$ é um teste que retorna **verdadeiro** se o conteúdo de C é um divisor do conteúdo de A e falso, caso contrário
 - -A := A/C denota uma macro de divisão de registradores
 - Por simplicidade, na referência a uma macro definida anteriormente, é omitida a referência aos registradores usados (Ex.: $A:=A\times B$ $usando\ C,D$ é abreviada por $A:=A\times B$

Indexação direta

Programa iterativo $ad_A(n)$ usando C

$$C := p_n;$$

$$A := A \times C$$

Programa iterativo $sub_A(n)$ usando C

```
C := p_n; (se teste\_div(A,C) então A := A/C senão \checkmark)
```

Indexação direta (cont.)

Programa iterativo $zero_A(n)$ usando C

```
C := p_n;
(se teste\_div(A, C))
então falso
senão verdadeiro)
```

Indexação indireta

Programa iterativo $ad_A(B)$ usando C

```
C := primo(B);

A := A \times C
```

Programa iterativo $sub_A(B)$ usando C

```
\begin{split} C := primo(B); \\ (\text{se } teste\_div(A,C) \\ \text{então } A := A/C \\ \text{senão } \checkmark) \end{split}
```

Indexação indireta (cont.)

Programa iterativo $zero_A(B)$ usando C

```
C = primo(B);
(se teste\_div(A, C))
então falso
senão verdadeiro)
```

- Arranjo unidimensional × Norma com 2 registradores
 - Usando-se indexação direta, pode-se mostrar que os registradores X e Y são suficientes para realizar qualquer processamento
 - É suficiente usar-se X para armazenar um arranjo unidimensional onde cada posição corresponde a um registrador
 - Assim, para um determinado registrador K, as operações e teste de Norma ad_K , sub_K e $zero_K$ podem ser simulados pelas operações e teste indexados: $ad_X(k)$ usando Y, $sub_X(k)$ usando Y e $zero_X(k)$ usando Y, onde X(k) denota a k-ésima posição do arranjo em X

- Exemplo: Pilha
 - Base é fixa e representa a primeira posição
 - Topo é variável e determina a última posição ocupada
 - Operações são:
 - * *empilha*: **Adiciona** conteúdo de um registrador no topo da pilha
 - * desempilha: Retira valor do topo da pilha e o armazena em um registrador
 - Pilha pode ser simulada usando-se um arranjo e um registrador de índice (indexação indireta) que indica o topo da pilha

Endereçamento Indireto e Recursão

• Considere uma operação com **endereçamento indireto** da seguinte forma, onde A é um registrador:

```
r\colon faça F vá_para A
```

• Tal operação pode ser definida pelo programa monolítico

```
r\colon faça F vá_para End\_A
```

onde a macro End_A trata o endereçamento indireto de A e é representada pelo fluxograma a seguir

Endereçamento Indireto e Recursão (cont.)

• De forma análoga, é possível definir-se um teste com endereçamento indireto como segue, onde A e B são registradores:

```
r\colon se T então vá_para A senão vá_para B
```

Tarefa

Utilizando o simulador de Máquina Norma disponível no Moodle, crie os programas abaixo (submissão via Moodle até 26/04):

- 1. Fazer um programa par(n) em Norma que verifica se um número n é par, preservando os valores dos registradores
- 2. Crie um programa $mult_int(v1,v2)$ em Norma, o qual realiza a multiplicação dos valores inteiros v1 e v2
- 3. Apresente um programa $soma_A(k)$ em Norma que retorne a soma dos k primeiros valores de um arranjo unidimensional A