Regular Expressions

Syntax

REs include

- each $\sigma \in \Sigma$
- 6
- Ø

If R and S are REs then so are

$$\bullet$$
 (R·S)

$$\bullet$$
 (R*)

Semantics

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \ \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

$$\bullet \ \ \overline{\llbracket\varnothing\rrbracket} = \{\}$$

$$\bullet \ [\![(R \cdot S)]\!] = [\![R]\!] \cdot [\![S]\!]$$

(Kleene star) •
$$\llbracket (R^*) \rrbracket = \llbracket R \rrbracket^*$$

Generalized Regular Expressions

Syntax

GREs include

- each $\sigma \in \Sigma$
- 6
- Ø

If R and S are GREs then so are

•
$$(R \cdot S)$$
 (concatenation)

- (R+S)
- \bullet (R*)
- (R&S)
- \bullet $(\overline{\mathbf{R}})$ (complement)

Semantics

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \quad \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

$$\bullet \ \llbracket\varnothing\rrbracket = \{\}$$

$$\bullet \ \left[(R \cdot S) \right] = \left[R \right] \cdot \left[S \right]$$

$$(concatenation) \qquad \bullet \quad [(R \cdot S)] = [R] \cdot [S]$$

$$(union) \qquad \bullet \quad [(R+S)] = [R] \cup [S]$$

(Kleene star) •
$$\llbracket (R^*) \rrbracket = \llbracket R \rrbracket^*$$

$$(intersection) \qquad \bullet \quad \llbracket (R\&S) \rrbracket = \llbracket R \rrbracket \cap \llbracket S \rrbracket$$

$$\bullet \quad \overline{[R]} = \Sigma^* - \overline{[R]}$$

Generalized Regular Expressions

Syntax

Semantics

GREs include

- each $\sigma \in \Sigma$
- 6
- Ø

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \quad \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

$$\bullet \quad \llbracket \varnothing \rrbracket = \{\}$$

If R and S are GREs then so are

- (R·S)
- (R+S)
- \bullet (R*)
- (R&S)
- \bullet $(\overline{\mathbf{R}})$ (complement)

- $\bullet \| (R \cdot S) \| = \| R \| \cdot \| S \|$
- $(concatenation) \qquad \bullet \quad [(R \cdot S)] = [R] \cdot [S]$ $(union) \qquad \bullet \quad [(R+S)] = [R] \cup [S]$
 - (Kleene star) $[(R^*)] = [R]^*$
 - $(intersection) \qquad \bullet \quad \overline{[(R\&S)]} = \overline{[R]} \cap \overline{[S]}$
 - $\bullet \quad \overline{[R]} = \Sigma^* \overline{[R]}$

Adding intersection and complement does not increase power of REs!

Cat-Union Expressions

Syntax

CUEs include

- each $\sigma \in \Sigma$
- 6
- Ø

If R and S are CUEs then so are

- \bullet (R·S)
- (R+S)
- \bullet (R*)
- \bullet $(\overline{\mathbf{R}})$

Semantics

- $\bullet \ \|\sigma\| = \{\sigma\}$
- $\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

$$\bullet \ [(R \cdot S)] = [R] \cdot [S]$$

$$(union) \qquad \bullet \quad \llbracket (R+S) \rrbracket = \llbracket R \rrbracket \cup \llbracket S \rrbracket$$

$$(Kleene \ star) \qquad \bullet \ \llbracket (R^*) \rrbracket = \llbracket R \rrbracket^*$$

•
$$(R\&S)$$
 $(intersection)$ • $[(R\&S)] = [R] \cap [S]$

$$\bullet \quad \overline{|R|} = \Sigma^* - \overline{|R|}$$

(concatenation)

(complement)

Cat-Union Expressions

Syntax

Semantics

CUEs include

- each $\sigma \in \Sigma$
- 6
- Ø

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \quad \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

 $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

If R and S are CUEs then so are

• (R·S)

(concatenation)

• (R+S)

• (R)

(complement)

- $\|(R \cdot S)\| = \|R\| \cdot \|S\|$
- $(union) \qquad \bullet \quad \llbracket (R+S) \rrbracket = \llbracket R \rrbracket \cup \llbracket S \rrbracket$
- (R&S) (intersection) • $[(R\&S)] = [R] \cap [S]$
 - $\bullet \quad \overline{\mathbb{R}} = \Sigma^* \mathbb{R}$

Theorem: $\llbracket \text{CUE} \rrbracket = \{ L \subseteq \Sigma^* \mid |L| \text{ is finite} \} \subsetneq \llbracket \text{RE} \rrbracket = \llbracket \text{GRE} \rrbracket$

Star-Free Regular Expressions

Syntax

SFEs include

- each $\sigma \in \Sigma$
- 6
- Ø

If R and S are SFEs then so are

•
$$(R \cdot S)$$
 (concatenation)

- (R+S)
- (Kleene star) $\llbracket (R^*) \rrbracket = \llbracket \overline{R} \rrbracket^*$ \bullet (R*)
- (R&S)
- \bullet $(\overline{\mathbf{R}})$ (complement)

Semantics

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \quad \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

$$\bullet \ \llbracket\varnothing\rrbracket = \{\}$$

$$\bullet \ [(R \cdot S)] = [R] \cdot [S]$$

$$(union) \qquad \bullet \quad \llbracket (R+S) \rrbracket = \llbracket R \rrbracket \cup \llbracket S \rrbracket$$

$$\bullet \ \left[\left(R^* \right) \right] = \left[R \right]^*$$

$$(intersection) \qquad \bullet \quad \overline{[(R\&S)]} = \overline{[R]} \cap \overline{[S]}$$

$$\bullet \ \llbracket \overline{\mathbf{R}} \rrbracket = \Sigma^* - \llbracket \mathbf{R} \rrbracket$$

Star-Free Regular Expressions

Syntax

Semantics

SFEs include

- each $\sigma \in \Sigma$
- *E*
- Ø

 $\bullet \|\sigma\| = \{\sigma\}$

 $\bullet \quad \llbracket \epsilon \rrbracket = \{ \epsilon \}$

 $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

If R and S are SFEs then so are

$$\bullet$$
 (R·S)

 \bullet (R*)

• (R&S)

 \bullet $(\overline{\mathbf{R}})$

(complement)

(concatenation) • $\|(\mathbf{R}\cdot\mathbf{S})\| = \|\mathbf{R}\|\cdot\|\mathbf{S}\|$

 $(Kleene \ star) \qquad \bullet \ \llbracket (R^*) \rrbracket = \llbracket R \rrbracket^*$

(intersection) • $\llbracket (R\&S) \rrbracket = \llbracket R \rrbracket \cap \llbracket S \rrbracket$

 $\bullet \quad \overline{\mathbb{R}} = \Sigma^* - \overline{\mathbb{R}}$

Theorem: $[SFE] \subseteq [RE] = [GRE]$

Expression Summary

Finite Languages

concatenation union

Star-Free Languages

concatenation union

 $\mathbf{complement}$

(intersection)

Regular Languages

concatenation union

Kleene star

(complement) (intersection)

Expressivity ———