

Robot Locomotion - An Introduction

Softwaredevelopment for Industrial Robotics

Marcel Grotzke, Gabriel Kögler, Henri Hamann

Structure of presentation

- 1 Introduction to locomotion
- 2 Core issues of locomotion
 - 2.1 legged locomotion
 - 2.2 wheeled locomotion
 - 2.3 comparision of locomotion mechanisms
- 3 Outlook to locomotion research

Locomotion

- Environment fixed
- Robot is moved

Manipulation

- Robot fixed
- Object is moved

Salamandra

Meshworm

Mini Whegs

WildCat

Asimo

Pioneer

[B11]

Why do we need mobile robots?

Do things which static robots can not do!

Where do we need them?

• Daily life → e.g. home, medical facilities, nursing, entertainment

Where do we need them?

• Industry → e.g. carry heavy loads, logistics

Where do we need them?

• Extreme environments \rightarrow e.g. dangerous working places, disaster zones, war zones

Core issues of locomotion (1)

Major trade-off

Core issues to locomotion (2)

Legged Locomotion (1)

... series of point contacts between the robot and the ground

Quality of ground between point contacts do not matter

Properties:

- → Adaptability and maneuverability in rough terrain
- → Potential to manipulate objects in the environment
- → High power consumption and mechanical complexity

Important issues:

- → Maneuverability vs. energy, control and mass
- → Stability during walking

Atlas, bipedal robot, Boston Dynamics, 2013 [Q3]

Mantis hexapod walking machine, micromagic systems, 2009 [B17]

Legged Locomotion (2)

The leg

- Adding joints = adding degrees of freedom (DOF)
- Adding DOF =
 - → increasing maneuverability
 - → increasing power consumption and weight of the robot
 - → controlling becomes more complex
- <u>Minimum of 2 DOF</u> required for moving leg forward:
 - → a lift and a swing motion
- 3 DOF for each leg in most cases
 - → travel in rougher terrain
 - → do more complex manoeuvres

Example of a leg with 3 DOF [Q1]

Legged Locomotion (3)

Stability during walking - static/dynamic stability

- During walking some legs are lifted
 - -Thus loosing stability?
- The fewer legs the more complicated becomes locomotion
 - → At least 3 legs are required for static stability
- Static walking requires at least 6 legs
 - → more complex controlling,
 - → higher weight,
 - → higher power consumption
- Bipedal robots are just dynamically stable
 - → continuous balance-correcting is needed

Static walking with 6 legs [Q1]

Wheeled locomotion (1)

Basic

- Most appropiate solution for many applications
- Most popular locomotion mechanism
- Simple mechanical implementation
- Easy balance
- Very high efficiency ratings
- Size of wheels can compensate environmental constrains

Wheeled locomotion (2)

Stability

- 3 wheels always stable
- 2 wheels can be stable

Environment

- Biggest limitation → best on planar surfaces
- Wheel size compensate environmental contrains

Velocity

Fastest movement

Energy efficiency

Wheels use simple mechanics → best e.e., but limited to planar surf.

Degrees of fredom

- Omnidrive → 3DOFs
- Need more, need special mechanisms

Wheel types and DOF

- a) Standard wheel
 - 2DOFs: Rotation around wheel axe (1) and contact point (2)
- b) Castor wheel
 - 2 DOFs: Roation around wheel axe (1) and contact point (with offset)(2)
- c) Swedish wheel
 - 3 DOFs: Rotation around wheel axe (1), contact point (2) and rollers (3) → omnidirectional
- d) Ball / spherical wheel difficult technical realization → omnidirectional

Comparision walking ← rolling

Core issue	Walking	Rolling
Stability	-	+
Environment	++	
Velocity	_	++
Energy efficiency	_	+
Degrees of freedom	+	_

- Legs don't be limited to environement
- Wheels move faster (legs still on research)
- Energy efficiency depends on reference
- Legs can move upward (but complex)

Outlook to locomotion: Walking Robots from Boston Dynamics

BigDog

- Rough-terrain quadruped robot
- Runs at ~6.4km/h

- Climbs slopes up to 35 degrees
- Carries ~154kg
- Funded by DARPA

[removed video]

Outlook to locomotion: Omni-Crawler

- From Osaka University (2009)
- Active Omnidirectional movement
- Crawler → big load capacities

Normal Crawling Motion

[B19]

Outlook to locomotion: VelociRoACH

- University of California, Berkeley (2013)
- Closed kinematic chain
- → only one engine required!

Speed: 10km/h

Weight: 30g

Length: 10cm

→ 27 body length / sec

Many thanks for your attention!

www.ovgu.de

Sources

[Q1] Siegbart, Nourbakhsh: Introduction to Autonomous Mobile Robots. Massachusetts Institute of Technology, 2004.

[Q2] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter and the BigDog Team: BigDog, the Rough-Terrain Quaduped Robot. Boston Dynamics, Waltham.

[Q3] http://www.bostondynamics.com Stand: 25.10.2013

[Q4] Martin Buehler: Dynamic Locomotion with One, Four and Six-Legged Robots. ARL, Centre for Intelligent Machines, McGill University Montreal.

[Q5] Fukuda, Hasegawa, Sekiyama, Aoyama: Multi-Locomotion Robotic Systems. 2012.

[Q6] Sven Böttcher: Principles of robot locomotion.

[Q7] K. Tadakuma, R. Tadakuma, Nagatani, Yoshida, Iagnemma: Crawler Mechanism with Circular Section to Realize a Sideling Motion. IEEE/RSJ 2008.

[Q8] Haldane, Peterson, Bermudaz, Fearing: Animal-inspired Design and Aerodynamic Stabilization of a Hexapedal Millirobot.

Image sources

```
[B1] http://upload.wikimedia.org/wikipedia/commons/f/fe
/Fierce_Snake-Oxyuranus_microlepidotus.jpg
[B2] http://biorob.epfl.ch/files/content/users/179700/files/private
/imports/importInto_ContentContainerList_469885_20110110155706.JPG
[B3] http://l.bp.blogspot.com/-
R4EnpcDKpIE/Tvn3Qth8RvI/AAAAAAAACTQ/cXWhSaPwGQc/s1600/Raupe%2BSchwalbenschwanz.jpg
[B4] http://www.digitaltrends.com/wp-content/uploads/2012/08/meshworm.jpg
[B5] http://cdn.orkin.com/images/cockroaches/brown-cockroach-illustration_912x762.jpg
[B6] http://www.realclearscience.com/images/wysiwyg_images
/miniwhegs.png
[B7] http://www.australian-shepherd.kunstvirus.de
/fotos/aussietreffen/treffen0509/attend19.jpg
[B8] http://www.technocrazed.com/wp-content/uploads/2013/10/WildCat-Boston-Dynamics-Robot-Cat-
gallops-at-26-Km-per-hr-2.jpg
[B9] http://p4.focus.de/img/gen/B/X/HBBX16Ja_Pxgen_r_300xA.jpg
[B10] http://www.diseno-art.com/images/asimo-walk.jpg
[B11] http://www.cyberbotics.com/dvd/common/doc/webots/guide
/png/pioneer3at_real.png
```

Image sources

```
[B12] http://3.bp.blogspot.com/-OmYtY35FJ2w/T_Yd2RxtFol
/AAAAAAAAAQU/Ph-MTZCFZeM/s1600/iRobot-Roomba-532.jpg
```

[B13] http://www.eder-kommunal.de/export/sites/www.ederkommunal.de/images/gartentechnik/robomow_garten.jpg

[B14] http://www.volksstimme.de/_em_daten/_cache/image/vsm /0xUmFuZG9tSVYwMTlzNDU2N2PYf+iPAwGxSqUrvq0eJ0vaXlWreOoPl80Y2Y05M5xMmmpMwnOeDKdnP5sy3D9po7 NgY4aLTXfT2g9kfKYo9Vla87QITgW6MgWjgEFySKum.jpg

[B15] http://www.hizook.com/files/users/3 /kiva_systems_robot_warehouse_2.jpg

[B16] http://upload.wikimedia.org/wikipedia/commons/d/d8 /NASA_Mars_Rover.jpg

[B17] http://hackedgadgets.com/wp-content/uploads/2013/03/Mantis-Hexapod-Walking-Machine-by-Matt-Denton-_6.jpg Stand: 25.10.2013

[B18] http://www.kuka-omnimove.com/NR/rdonlyres/722C49C4-7E16-4407-9319-703ED52D6F9A/0/H_KUKA_omniMove_03.jpg

Stand: 27.10.2013

[B19] http://assets.inhabitat.com/wp-content/blogs.dir/1/files/2013/01/VelociRoACH-UC-Berkeley-Biomimetic-Millisystems-Lab-Duncan-Haldane-Robot-Close.jpg

Stand: 25.10.2013

[B20] http://www-hh.mech.eng.osaka-u.ac.jp/robotics/Omni-Crawler_e.html Stand: 25.10.2013

Appendix: swedish wheel

Omnidirectional, but passiv

