

FPGA Digital Track Training

Final Project: Implementing 3x3 Matrix multiplier using different implementations

(FSMD, NIOS II SoC, and ARM Cortex M0)

Submitted To:

Dr. Ihab Adly

Submitted By:

- 1. Ahmed Adel Abd Elmonem
- 2. Shady Shokri Ramzy
- 3. Mostafa Hassanien Ahmed

Table of Contents 1 FSMD 3 2 NIOS II SoC 6 3 ARM Cortex M0 8 4 Observation 9 5 Hardware Test Outputs 10 6 Appendices 11 6.1 NIOS II C Code 11 6.2 ARM Cortex M0 C Code 12
Figure 1: State Machine Diagram
Figure 2: Top Level RTL Schematic
Figure 3: FSM RTL Schematic 3 Figure 4: Datapath RTL Schematic 4
Figure 5: Functional Simulation
Figure 6: Timing Simulation
Figure 7: FSMD Resources
Figure 9: Functional Simulation6
Figure 10: NIOS II SoC Resources
Figure 11: ARM Cortex M0 Schematic 8 Figure 12: ARM Cortex M0 Functional Simulation 8
Figure 13: ARM Cortex M0 Resources
Figure 14: Hardware Test Output 1
Figure 16: Hardware Test Output 3
Figure 17: Hardware Test Output 4
Figure 18: Hardware Test Output 5
Figure 20: Hardware Test Output 7
Figure 21: Hardware Test Output 8
Figure 22: Hardware Test Output 9
Table 1: Comparison between different implementations: FSMD, NIOS II, and Cortex M09

1 FSMD

Figure 1: State Machine Diagram

Figure 2: Top Level RTL Schematic

Figure 3: FSM RTL Schematic

Figure 4: Datapath RTL Schematic

Figure 5: Functional Simulation

Figure 6: Timing Simulation

Figure 7: FSMD Resources

Note:

- Only the output matrix RAM memory is inferred to BRAM resources of the FPGA. The other two input matrices RAM memories are uninferred due to inappropriate RAM size.
- Additionally, multipliers are uninferred to the embedded multiplier 9-bit elements due to inappropriate multiplier size.

2 NIOS II SoC

Figure 8: NIOS II Microcontroller Schematic

Figure 9: Functional Simulation

Flow Summary

<<Filter>>

Flow Status Successful - Mon Oct 04 21:25:57 2021

Quartus Prime Version 18.1.0 Build 625 09/12/2018 SJ Lite Edition

Revision Name soc_nios_fpga
Top-level Entity Name soc_nios_fpga
Family Cyclone IV E
Device EP4CE22F17C6

Timing Models Final

Total logic elements 1,876 / 22,320 (8 %)

Total registers 1046

Total pins 11 / 154 (7 %)

Total virtual pins 0

Total memory bits 404,480 / 608,256 (66 %)

Embedded Multiplier 9-bit elements 0 / 132 (0 %)
Total PLLs 0 / 4 (0 %)

Figure 10: NIOS II SoC Resources

3 ARM Cortex M0

Figure 11: ARM Cortex M0 Schematic

Figure 12: ARM Cortex M0 Functional Simulation

Flow Summary		
•		< <filter>></filter>
Flow Status	Successful - Tue Oct 05 00:15:47 2021	
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition	
Revision Name	cmsdk_mcu	
Top-level Entity Name	cmsdk_mcu	
Family	Cyclone IV E	
Device	EP4CE22F17C6	
Timing Models	Final	
Total logic elements	18,711 / 22,320 (84 %)	
Total registers	10614	
Total pins	40 / 154 (26 %)	
Total virtual pins	0	
Total memory bits	0 / 608,256 (0 %)	
Embedded Multiplier 9-bit elements	6 / 132 (5 %)	
Total PLLs	0/4(0%)	

Figure 13: ARM Cortex M0 Resources

4 Observation

	FSMD	NIOS II	Cortex M0
Number of Cycles	128	180, 604	268
Total Logic Elements	82	1,876	18,711
Total Registers	39	1,046	10,614
Total Memory bits	128	404,480	0
Embedded Multiplier 9-bit elements	0	0	6

Table 1: Comparison between different implementations: FSMD, NIOS II, and Cortex MO

Obviously, FSMD is the fastest implementation regarding execution time followed by ARM Cortex M0. In contrast, NIOS II is the slowest implementation. Additionally, Cortex M0 uses a lot of resources and this why it has less execution time than NIOSS II processor.

	FSMD	NIOS Func	NIOS HW	Cortex Func	Cortex HW
Group 10	Done	Done	Done	Done	Done

5 Hardware Test Outputs

Figure 24: Hardware Test Output 1

Figure 35: Hardware Test Output 2

Figure 46: Hardware Test Output 3

Figure 57: Hardware Test Output 4

Figure 68: Hardware Test Output 5

Figure 79: Hardware Test Output 6

Figure 20: Hardware Test Output 7

Figure 21: Hardware Test Output 8

Figure 22: Hardware Test Output 9

6 Appendices

6.1 NIOS II C Code

```
# include <system.h>
# include <altera_avalon_pio_regs.h>
#include <stdio.h>
int main (void){
    //inputing the two 3x3 matrices
    int a[9] = \{1,2,3,5,0,1,2,3,7\};
    int b[9] = \{3,2,0,0,1,0,5,6,4\};
    int c[9];
    int en = 1;
        int i;
        int j;
        int x;
        //multiplication loops
    for( i = 0; i < 3; i++){
        for( j = 0; j < 3; j++){
            c[3*i + j] = 0;
            for(x = 0; x < 3; x++){
                 c[3*i + j] = c[3*i + j] + (a[3*i + x] * b[j + 3*x]);
            }
        }
    }
    for ( int k = 0; k < 9; ++ k )
      en = IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE);
      while(en)
      {
          en = IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE);
      while (en == 0)
        IOWR_ALTERA_AVALON_PIO_DATA(PIO_0_BASE, c[k] );
        en = IORD_ALTERA_AVALON_PIO_DATA(PIO_1_BASE);
      }
    }
    return 0;
}
```

6.2 ARM Cortex M0 C Code

```
#ifdef CORTEX_M0
#include "CMSDK CM0.h"
#include "core cm0.h"
#endif
#ifdef CORTEX MOPLUS
#include "CMSDK CM0plus.h"
#include "core_cm0plus.h"
#endif
#include <stdio.h>
int main (void){
    //inputing the two 3x3 matrices
    int a[9] = \{1,2,3,5,0,1,2,3,7\};
    int b[9] = \{3,2,0,0,1,0,5,6,4\};
    int c[9];
        int i;
        int j;
        int x;
        int o;
        //initializing GPI00
        CMSDK_GPIO0->OUTENABLESET = 0xFFFF;
        CMSDK GPIO0->ALTFUNCCLR = 0xFFFF;
        //multiplication loops
    for( i = 0; i < 3; i++){
        for( j = 0; j < 3; j++){
            c[3*i + j] = 0;
            for(x = 0; x < 3; x++){
                 c[3*i + j] = c[3*i + j] + (a[3*i + x] * b[j + 3*x]);
 //outputing value of the array element on LEDs connected to GPIO0 first 9 pins
                         CMSDK GPIO0->DATA = c[3*i + j];
           for( o = 0; o < 50000000; o++){}
        }
    }
    return 0;
}
```