ĐẠI HỌC BÁCH KHOA HÀ NỘI TRƯỜNG ĐIỆN – ĐIỆN TỬ

----- &o 🖺 cs -----

BÁO CÁO BÀI TẬP LỚN

Môn: Lý thuyết mạch

Đề tài: Thiết kế mạch còi cảnh sát

Giảng viên hướng dẫn: PGS. Nguyễn Hữu Phát

Nhóm sinh viên thực hiện:

STT Họ và tên MSSV
1 Đỗ Chí Công 20223888
2 Nguyễn Công Thái Bình 20223879

Hà Nội, năm 2024

MỤC LỤC

MŲC LŲC	2
TIMELINE	3
PHÂN CÔNG CÔNG VIỆC	3
I. Ý tưởng	4
II. Chỉ tiêu kỹ thuật	4
III. Thiết kế sơ đồ khối	5
1. Sơ đồ khối toàn thể	5
2. Chi tiết từng khối	5
2.1. Khối nguồn	5
2.1.1. Chức năng – Yêu cầu	5
2.1.2. Giải pháp	5
2.2. Khối xử lý tín hiệu	6
2.2.1. Chức năng – Yêu cầu	6
2.2.2. Giải pháp	7
2.3. Khối loa	11
IV. Triển khai – Hoàn thiện	12
TÀI LIÊU THAM KHẢO	14

TIMELINE

Công việc	Thời gian
-Thảo luận về ý tưởng, chủ đề. -Đưa ra tiêu chí cho sản phẩm.	Tuần 8
-Phân công nhiệm vụ, mua linh kiện.	Tuần 9
-Lắp mạch, thảo luận thêm về các quy trình sau.	Tuần 10
-Lắp mạch, thảo luận thêm về các quy trình sau.	Tuần 11
-Test sản phẩm, viết báo cáo phần này.	Tuần 12
-Họp, thảo luận thuyết trình.-Tổng kết dự án, kết luận.	Tuần 13

PHÂN CÔNG CÔNG VIỆC

Thành viên	Công việc
	-Leader, thiết kế sơ đồ khối,
Đỗ Chí Công	mô phỏng mạch, lắp ráp
	mạch, test mạch, làm slide.
	-Tìm hiểu về NE555, mua
Nguyễn Công Thái Bình	linh kiện, lắp ráp mạch, test
	mạch, đánh giá kết quả.

I. Ý TƯỞNG

- Còi cảnh sát là thiết bị tạo âm thanh lớn báo hiệu sự hiện diện của xe cảnh sát hoặc tình huống khẩn cấp.
- Sử dụng trên xe cảnh sát, xe cứu hỏa, xe cứu thương và các phương tiện khẩn cấp khác.
- Có thể được chế tạo từ các linh kiện cơ bản: IC 555, loa, transistor, điện trở, tụ điện, v.v. Có thể được sử dụng trong các dự án khác nhau: robot, hệ thống báo động, nhà thông minh, v.v.

II. CHỈ TIỀU KỸ THUẬT

Chu kì còi phát ra	12 - 15 chu kỳ/phút	Chu kỳ có thể thay đổi
		bằng cách thay đổi giá
		trị linh kiện ngoài
Dòng điện/Công suất	$6-24V \sim 20-100W$	Điện áp tiêu thụ thấp,
tiêu thụ		phù hợp với thiết bị
		nhỏ
Âm lượng cao nhất	30-60dB	Âm thanh đủ lớn và
		phải có âm giống còi
		hú cảnh sát

Nguồn [1]: https://www.thietbibaotrom.net/san-pham-moi-nhat/coi-hu-amply-100w-xe-canh-sat-sqd-305b/

III. THIẾT KẾ SƠ ĐỒ KHỐI

1. Sơ đồ khối toàn thể

2. Chi tiết từng khối

2.1. Khối nguồn

2.1.1. Chức năng – Yêu cầu

- Cung cấp điện áp ổn định: Đảm bảo cung cấp điện áp ổn định cho các thiết bị điện tử.
- Công suất đủ lớn: Đáp ứng đủ công suất để vận hành thiết bị mà không bị sụt áp hoặc quá tải.
- > Tính tiện lợi, linh hoạt: Dễ sử dụng, thay thế.

2.1.2. Giải pháp

	Tiêu chí đánh giá		
Phương án	Tính di động	Chi phí	Khả năng sử dung
\$	-Cung cấp nguồn điện liên tục.	-Chi phí ban đầu có	-Thích hợp cho thiết bị có nguồn điện ổn định sử dụng liên tục
Nguồn DC	-Cần phải có ổ cắm điện.		-Không phù hợp với thiết bị di động nhỏ gọn.

Pin AAA

- -Kích thước nhỏ, nhẹ; dễ sử dụng.
- -Thời gian sử dụng hạn chế, cần phải thay thể.
- Chi phí thấp, dễ tiếp cận.
- -Sử dung trong thiết bi nhỏ.
- -Khả năng cung cấp nguồn điện liên tục han chế.
- Sử dụng pin 3 pin AAA 3V vì mạch nhỏ, không có nhiều khối cần nguồn điện.

2.2. Khối xử lý tín hiệu 2.2.1. Chức năng – Yêu cầu

- Chức năng:
 - O Tạo dao động: Sản xuất tín hiệu dao động (sóng vuông) với tần số phù hợp để điều khiển còi cảnh sát.
 - O Điều chỉnh tần số: Có thể điều chỉnh tần số của tín hiệu dao động để tạo ra các kiểu âm thanh dài – ngắn khác nhau.

➤ Yêu cầu:

- O Chu kỳ chính xác theo tính toán.
- o Có khả năng điều chỉnh tần số.
- o Thiết kế nhỏ gọn.

2.2.2. Giải pháp

	Tiêu chí đánh giá				
Phương án	Kích thước – Độ	Khả năng điều chỉnh tần số			
NE555	phức tạp -Đơn giản và nhỏ gọn, dễ dàng tích hợp vào các mạch nhỏ. -Chỉ có một bộ dao động, phù hợp cho yêu cầu một kênh thời gian.	-Dễ thay đổi, tính toán hơn do bộ đếm độc lập.			
NE556	 -Tích hợp hai bộ dao động. -Kích thước lớn hơn, khó khăn trong việc sửa chữa và thay thế. 	- Khó thay đổi, tính toán hơn do là bộ tích hợp.			

- ⇒ Chọn NE555 vì dễ điều chỉnh tần số hơn.
- ♣NE555: Là bộ đếm giúp tạo ra độ trễ hay giao động về thời gian.

∔Thông số:

Điện áp đầu vào	4,5 ~ 16V
Dòng điện cung cấp	$10\text{mA} \sim 15\text{mA}$
Dải tần số hoạt động	500kHz - 2MHz
Công suất lớn nhất	600mW
Nhiệt độ hoạt động	0 ~ 70°C

♣Datasheet:

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
V	V The shall be lived by I	V _{CC} = 15V	8.8	10	11.2	V
V_{TH}	Threshold voltage level	V _{CC} = 5V	2.4	3.3	4.2	V
I_{TH}	Threshold current (Note 8)	_	_	30	250	nA
		V _{CC} = 15V	4.5	5	5.6	
V_{TR}	Trigger voltage level	V _{CC} = 5V	1.1	1.67	2.2	V
I _{TR}	Trigger current	TRIG at 0V	_	0.5	2	μΑ
V_{RST}	RESET voltage level		0.3	0.7	1	V
•	DECET assessed	RESET at V _{CC}	_	0.1	0.4	^
I _{RST}	RESET current	RESET at 0V	_	-0.4	-1.5	mA
I _{DIS}	DISCH switch off-state current	_	_	20	100	nA
\ /	DISCH saturation voltage with output	V _{CC} = 15V, I _{DIS} = 15mA	_	180	480	\/
V_{DIS}	low (Note 9)	V _{CC} = 5V, I _{DIS} = 4.5mA	_	80	200	mV
	CONT voltage (open circuit)	V _{CC} = 15V	9	10	11	V
V _{CON}		V _{CC} = 5V	2.6	3.3	4	

Nguồn [2]:

https://www.diodes.com/assets/Datasheets/NE555_SA555_NA555.pdf

→Để tạo ra xung vuông bằng NE555, ta sử dụng trạng thái Astable (Đa hài không bền) của IC bằng cách bổ sung 3 linh kiện bên ngoài: 2 trở R1, R2 và tụ C. Sơ đồ mắc như dưới:

Nguồn [3]: https://www.electronics-tutorials.ws/waveforms/555_oscillator.html

∔Chu trình hoạt động:

- Trong mỗi chu kỳ, tụ điện sạc qua điện trở R1 và R2, tăng từ 0 lên tới 2/3 của nguồn điện (Vcc), sau đó xả qua R2 khiến điện áp tụ giảm xuống 1/3 Vcc, kích hoạt flip-flop bị RESET.
- Khi tụ điện sạc, điện áp trên tụ tăng theo hàm mũ, điện áp ngõ ra ở chân 3 cao; khi tụ xả, điện áp trên tụ giảm theo hàm mũ và ngõ ra thấp.
- Dạng sóng ngõ ra là chuỗi xung hình chữ nhật, đại diện cho quá trình sạc và xả của tụ điện.

Các công thức

tính:

ightharpoonup Chu kỳ đầu ra: T = $t_1 + t_2 = 0.693(R_1 + 2R_2)$.C

ightharpoonup Tần số đầu ra: $f = \frac{1}{T} = \frac{1.44}{(R_1 + 2R_2)}$

> Tỷ lệ chu kỳ làm việc: $\frac{T_{ON}}{T_{ON} + T_{OFF}} = \frac{R_1 + R_2}{R_1 + 2R_2}$. 100%

 \clubsuit Đầu tiên mắc mạch Astable thứ nhất vào, sẽ tạo ra mạch phát ra xung có tần số $f_2 = 481 \text{ Hz}$

Sau đó để tạo ra xung có 2 tần số khác nhau, ta mắc thêm mạch Astable có output nối vào chân Control của mạch kia, làm cho tần số của mạch 2 tăng giảm liên tục và tạo ra âm thanh còi khi đi vào loa. Mạch này như là mạch điều khiển tần số của mạch 2 và có tần số $f_1 = 0.215$ Hz.

Ở đây ta lắp thêm 1 tụ C1 mà output R nạp vào rồi tụ xả vào chân control để cho tiếng được tăng-giảm dần.

Nguồn [4]: https://elonics.org/police-siren-circuit-using-555-ic/

♣Đồ thị xung vuông ra:

- ightharpoonup Chu kỳ dao động của mạch chính là tần số của mạch 1 (mạch điều khiển) và có chu kỳ/phút: $f_1.60 = 0.125.60 = 12.9$ (chu kỳ/phút).
- Có thể điều chỉnh tần số mạch bằng cách thay đổi các giá trị trở R, R2, R4.

2.3. Khối loa

Sử dụng loa $8\Omega-0.5W$, nhỏ gọn, phù hợp với mạch.

IV. Triển khai – Hoàn thiện

Linh kiện	Số lượng	Giá
IC NE555	2	4k
Loa $8\Omega - 0.5W$	1	9.9k
Dây nối 2 đầu đực	20	7k
Bo mạch trắng	1	6.9k
Tụ 1000μf, 100μf, 10μf, 100nf	4	7k
Điện trở 100K, 33K, 2,2K, 10K,1K	6	10.8k
Công tắc KCD1	1	2k
Đế pin 3A	1	3.5k
Tổng	36	51.1k

Hình ảnh sản phẩm sau khi hoàn thiện

♣Đo đạc :

Lần đo	Khoảng cách đo	Clay levy/colovit	Tần số cao	– thấp nhất
Lan do	(m)	Chu kỳ/phút	Min	Max
1	0.5	14	46.5	54.6
2	0.5	13	46.3	55.2
3	1	15	43.5	53.9
4	1	13	44	55.1
5	1.5	14	38.7	47.4
6	2	13	35.1	43.3

- \Rightarrow Khoảng cách có thể nghe rõ nhất là 0,5 1,5m
- ⇒ Đúng với lý thuyết và yêu cầu đưa ra.

TÀI LIỆU THAM KHẢO

- [1] https://www.thietbibaotrom.net/san-pham-moi-nhat/coi-hu-amply-100w-xe-canh-sat-sqd-305b/
- [2] https://www.diodes.com/assets/Datasheets/NE555_SA555_NA555.pdf
- [3] https://www.electronics-tutorials.ws/waveforms/555_oscillator.html
- [4] https://elonics.org/police-siren-circuit-using-555-ic/