Fourier Analysis

Note Title Review. Let fe R [-11, 17] f * Pr(x) -> f(x) if f is cts at It f is cts everywhere, the limit is unif. \$2.5. Application to the heat equation on the unit disc. Let $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ In polar coordinates (r, 0) $D = \{ (Y, \emptyset) : o < Y < I \}$ Let f∈ R[-T, T] Define $u = u(r,0) = f * P_r(0), \quad (r,0) \in D$ Thm (1) $U \in C^2(D)$ and $\Delta U = \frac{\partial^2 u}{\partial r^2} u + \frac{\partial u}{r \cdot dr} + \frac{\partial^2 u}{r^2 \cdot dr^2}$ (2) If f is cts at O, then $\lim_{r \to 1} U(r, 0) = f(0)$ If f is cts everywhere, the limit is unif.

(3) If f is cts on the circle, then
$$u = u(r, \theta)$$
 satisfies $\Delta u = 0$

Moreover, u is the unique solution of $\Delta U = 0$ satisfying both () and (2).

Pf. (1) Notice that

$$U(r,\theta) = \sum_{n=-\infty}^{\infty} r^{[n]} \widehat{f}(n) e^{in\theta}$$

 $|\hat{f}(n)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| dx, \forall n \in \mathbb{Z}$

Moveover, for any o< P<1, the series

> rtnt f(n) eino,

In ar (rinifing)

S = 0 (rint f(n) eino)

Converge unif on { (r,0): 0≤r<p}

So U is diff on D. (Indeed U is infinite diff on D)

(ii) If o is a continuity pt of f, then $U(r, 0) \rightarrow f(0)$ as $r \rightarrow 1$

which is an approcation of the convergence Thm.

(iii)
$$\Delta u = \frac{\partial^{2}u}{\partial r^{2}} + \frac{\partial u}{r \partial r} + \frac{\partial^{2}u}{\gamma^{2} \partial \theta^{2}}$$

$$= \sum_{n=-\infty}^{\infty} \Delta \left(r^{1n} \hat{f}(n) e^{in\theta} \right)$$

$$= 0$$
(e.g. $\Delta \left(r^{3} e^{i3\theta} \right) = 6r e^{i3\theta} + 3r e^{i3\theta}$

$$+ (i3)^{2} \cdot r e^{i3\theta}$$

$$= 0$$
To prove the uniqueness result, let
$$V = V(r, \theta) \text{ be another solution}$$
of $\Delta v = 0$ statisfying 0 and 0 .

For a fixed $0 < r < 1$, write
$$V(r, \theta) \sim \sum_{n=-\infty}^{\infty} a_{n}(r) e^{in\theta}$$
where $a_{n}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} v(r, \theta) e^{-in\theta} d\theta$

Recall that
$$\frac{\partial^2 V}{\partial V^2} + \frac{1}{V} \frac{\partial V}{\partial V} + \frac{\partial^2 V}{V^2 \partial \theta^2} = 0$$

Let
$$n \in \mathbb{Z}$$
. Taking integration gives

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{\partial^{2} v}{\partial \gamma^{2}} + \frac{1}{\gamma} \frac{\partial v}{\partial \gamma} + \frac{\partial^{2} v}{\gamma^{2} \partial \theta^{2}} \right) e^{-in\theta} d\theta$$

$$\Rightarrow \Omega_{n}(r)'' + \frac{1}{\gamma} \Omega_{n}(r)' + \frac{(ni)^{2}}{\gamma^{2}} \Omega_{n}(r) = 0$$

$$:= -\frac{n^{2}}{\gamma^{2}} \Omega_{n}(r)$$

However, the general solution of the above ODE is

$$\Omega_{n}(r) = \left\{ A \gamma^{[n]} + B \gamma^{[n]} \right\}, \quad n \in \mathbb{Z} \setminus \{0\}$$

$$A + B \log r, \qquad n = 0$$

Notice $\Omega_{n}(r)$ is fodd in $\left\{ o < r < 1 \right\}$, hence $B = 0$.

Hence
$$V = V(r, \theta) \sim \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} = e^{in\theta}.$$

As $V(r, \cdot)$ is C^{2} , $N = -\infty$
we have $V(r, \theta) = \sum_{n=-\infty}^{\infty} A_{n} \gamma^{[n]} = e^{in\theta}.$

Notice $V(r, \theta) \Rightarrow f(\theta)$ as $r \to 1$

So for any given $n \in \mathbb{Z}$,
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} V(r, \theta) e^{-in\theta} d\theta \Rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta$$
as $r \to 1$.

That is, An $r^{|n|} \rightarrow \widehat{f}(n)$ ous $r \rightarrow 1$ Hence $A_n = \widehat{f}(n)$. $V(r,0) = \sum_{n=0}^{\infty} f(n) r^{|n|} e^{in\theta}$ = u(r, 0)Chap3. Convergence of Founier Senies. §3.1 Recall: If f is cts on the circle so that $-\sum_{n=1}^{\infty}|\widehat{f}(n)|<\infty$ then Suf(x) => f(x) on the Circle. In this chapter, we present some more general results on the convergence of Fourier Series. D Mean square convergence. Thm 1: Let $f \in \mathbb{R}[-1, 1]$, then $\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(x) - S_N f(x) \right|^2 dx \rightarrow 0 \text{ as } N \rightarrow \infty$ ([2 - convergena)

2 Pointwise Convergence. Thm2. Let $f \in \mathbb{R}[-\Pi, \Pi]$ Assume that f is diff. at xo. Then $S_N f(x_0) \rightarrow f(x_0)$ as $N \rightarrow \infty$ (3)Examples of continuous functions on the Circle with divergent Founer Senes. \$32 Inner product spaces. Def. Let V be a vector space on C An inner product on V over C is a map $\langle \cdot, \cdot \rangle : \bigvee \times \bigvee \rightarrow \mathbb{C}$ so that (1) $\langle x,y \rangle = \langle y,x \rangle$ (conjugate symmetry) $(2) \langle \lambda x + \beta y, Z \rangle = \lambda \langle x, z \rangle + \beta \langle y, z \rangle,$ V d, B E C $(3) \quad \langle x, x \rangle \geqslant 0.$

Def.
$$\|x\| = \sqrt{\langle x, x \rangle}$$
, $\forall x \in V$.

Thm: Let V be an inner product space over \mathbb{C} .

① (Pythagorean Thm)

If $\langle x, y \rangle = 0$, then
$$\|x + y\|^2 = \|x\|^2 + \|y\|^2$$
.
② (Cauchy - Schwartz inequality)
$$|\langle x, y \rangle| \leq \|x\| \cdot \|y\|$$
.
③ (triangle inequality)
$$\|x + y\| \leq \|zc\| + \|y\|$$
.

$$|x + y\|^2 = \langle x + y, x + y \rangle$$

$$= \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle$$

$$= \|x\|^2 + \|y\|^2$$
(2) Let x, y in V .
Let $Y = |\langle x, y \rangle|$.
WINGER, assume that $Y > 0$, otherwise we have nothing to prove.

```
Then \langle x, y \rangle = r e^{i\theta} for some \theta \in [0, 2\pi).
    Let te R define
          f(t) = \| x + te^{i\theta}y \|^2
                = \langle x + te^{i\theta}y, x + te^{i\theta}y \rangle
                = ||x||^2 + t^2 ||y||^2 + \langle x, te^{i\theta} y \rangle
                                          + < telly x>
               = ||x||^2 + t^2 ||y||^2 + 2rt.
  Hence f is a quadratic poly taking non-negative values.
  It follows that
                  (2r)^2 \le 4 \cdot ||x||^2 ||y||^2
   Equivalently
                     r < 1/21/1411.
(3)
          ||x+y||^2 = \langle x+y, x+y \rangle
                    = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle
                    < ||x||2+ ||y||2+ 2 ||x||-||y||
                                                    ( using the Cauchy -
Schwarz)
                    =(\|x\|+\|y\|)^2
       So ||x+x|| \le ||x|| + ||y||.
                                                        M
```

