Acid-Base Reactions

Arrhenius definition

Acid-Produces Ht(ag) ions in solution

Base-Produces OH (ag) ions in solution

Acid + Base = Water + Salt

	Name of Acid	Formula	Name of Base	Formula	
Strongacids lonize completely	 Hydrochloric acid 	HCI	Sodium hydroxide	NaOH	Strong bases lonize completel
	Hydrobromic acid	HBr	Lithium hydroxide	LiOH	
	Hydroiodic acid	н	Potassium hydroxide	кон	
	Nitric acid	HNO ₃	Calcium hydroxide	Ca(OH) ₂	
	Sulfuric acid	H ₂ SO ₄	Barium hydroxide	Ba(OH) ₂	
	Perchloric acid	HCIO ₄	Ammonia*	NH ₃ (weak base)	
Don't { ionize completely	Formic acid	HCHO ₂ (weak acid)			
	Acetic acid	HC ₂ H ₃ O ₂ (weak acid)			
	Hydrofluoric acid	HF (weak acid)			

Weak Acid-Strong Base Reaction

Molecular Equation

Complete (or Total) Ionic Equation

Net Ionic Equation

Simple Gas Laws

Volume and Pressure-Boyle's Law

$$P_1V_1 = P_2V_2$$

Pressure-Volume Relationship for a Gas

Simple Gas Laws

Volume and Temperature-Charles' Law VaT at constant P and number of moles

As temperature increases.

As temperature increases.

V.
$$\frac{V_2}{T_1} = \frac{V_2}{T_2}$$

V=0 \Rightarrow Absolute zero $\frac{1}{25}$

Absolute zero of temperature $\frac{1}{25}$

No mole cular motion

As temperature increases.

 $\frac{1}{7}$

Absolute zero of temperature $\frac{1}{7}$

No mole cular $\frac{1}{7}$
 $\frac{1}{7}$

Simple Gas Laws

Volume and Quantity (moles)-Avagadro's Law Van at constant Tand P

$$\frac{V}{\Omega} = constant$$

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

Ideal Gas Law

$$\begin{cases}
 \sqrt{\alpha} \frac{1}{P} \\
 \sqrt{\alpha} \frac{1}{P}
 \end{cases}
 V = \frac{RnT}{P}
 \begin{cases}
 \frac{1 \text{deal gas constant}}{0.08206 \text{ Latm}} \\
 \frac{1 \text{deal gas constant}}{K \text{ mol}}
 \end{cases}$$

$$PV = nRT
 \text{at constant } n: \frac{P_1 V_1}{T_1} = \frac{P_2 V_1}{T_2}
 \end{cases}$$

*Always use T in K

Applications of the Ideal Gas Law

Molar Volume of a Gas at STP

STP = Standard temperature and pressure
$$T = 0^{\circ}C = 273.15 \text{ K}$$

$$P = 1 \text{ atm}$$

$$V(1 \text{ mol } \Theta \text{ STP}) = \frac{nRT}{P} = \frac{1 \text{ mol } \cdot 0.08206 \text{ Latm/Kmol} \cdot 273.15 \text{ K}}{1 \text{ atm}}$$

$$= 22.4 \text{ L}$$

Applications of the Ideal Gas Law

Calculate the density of NO₂ gas at 1.00 atm pressure and 35°C. mm=46 g/mol

$$D = \frac{\text{mass}}{V} \qquad P = 1 \text{ atm}$$

$$V = \frac{nRT}{P}$$

$$V = \frac{1 \text{ mol} \cdot 0.08206 \text{ Latm/k mol} \cdot 308.15 \text{ K}}{1 \text{ atm}} = 25.29 \text{ L}$$

$$D = \frac{469}{25.29 \text{ L}} = 1.829 \text{ JL}$$

Applications of the Ideal Gas Law

 $\int_{0}^{C_1N_2}$

A 1.003 sample of cyanogen (a highly toxic gas) occupies 0.500 L at 25°C and 750 torr.

$$mm = \frac{mass}{n} = \frac{la}{n}$$