Физические основы возникновения и распространения звуковых волн

Наумов Д.А.

Компьютерные музыкальные технологии и звуковой дизайн, 2014

Содержание лекции

- 🚺 Физика образования и распространения звуковых волн
 - Природа звуковой волны
 - Распространение звуковых волн
- 💿 Математическое представление звуковой волны
 - Уравнение звуковой волны
 - Графический способ отображения звуковых сигналов
 - Основные понятия гармонического анализа
 - Гармонический анализ реальных звуковых сигналов
 - Звуки различных источников

Понятие «звук» может быть рассмотрено с двух принципиально различных позиций.

• Звук как физическое явление — это волнообразно распространяющиеся колебания частиц упругой среды. Другими словами, звук есть результат колебательного процесса, распространяющегося в упругой среде, в частности — в воздушной среде.

Понятие «звук» может быть рассмотрено с двух принципиально различных позиций.

- Звук как физическое явление это волнообразно
 распространяющиеся колебания частиц упругой среды. Другими
 словами, звук есть результат колебательного процесса,
 распространяющегося в упругой среде, в частности в
 воздушной среде.
- Звук как физиологическое явление это специфическое ощущение, вызываемое действием звуковых волн, распространяющихся в воздушной среде, на орган слуха.

• Звук может распространяться только в упругой среде.

- Звук может распространяться только в упругой среде.
- Источником источником звука может служить любое тело, способное совершать упругие колебания.

- Звук может распространяться только в упругой среде.
- Источником источником звука может служить любое тело, способное совершать упругие колебания.
- Упругие периодические механические колебания источника звука вызывают колебания близлежащих к источнику частиц упругой среды, что приводит к периодическому сжатию (сгущению) и разрежению среды в этом месте.

- Звук может распространяться только в упругой среде.
- Источником источником звука может служить любое тело, способное совершать упругие колебания.
- Упругие периодические механические колебания источника звука вызывают колебания близлежащих к источнику частиц упругой среды, что приводит к периодическому сжатию (сгущению) и разрежению среды в этом месте.
- Избыточное давление воздействует («толкает») на соседние слои (элементы объема) упругой среды, которые, в свою очередь, сжимаются, и возникает избыточное давление, которое воздействует на соседний слой среды, и т.д.

- Звук может распространяться только в упругой среде.
- Источником источником звука может служить любое тело, способное совершать упругие колебания.
- Упругие периодические механические колебания источника звука вызывают колебания близлежащих к источнику частиц упругой среды, что приводит к периодическому сжатию (сгущению) и разрежению среды в этом месте.
- Избыточное давление воздействует («толкает») на соседние слои (элементы объема) упругой среды, которые, в свою очередь, сжимаются, и возникает избыточное давление, которое воздействует на соседний слой среды, и т.д.
- Продольная волна представляет собой чередование сгущений (уплотнений) и разрежений в упругой среде в направлении перемещения волны.
- Звуковые волны суть продольные волны.

09.01.2014

Звук, который мы слышим, — это сложное явление. Звуковая волна, создающая давление на барабанную перепонку уха, является результирующей звуковой волной от нескольких источников, звуковые волны которых накладываются друг на друга, отражаются, преломляются и поглощаются на своем пути.

- 🚺 интерференция
- ② отражение и преломление
- поглощение и рассеяние
- 🐠 волновое движение в замкнутом объеме
- Дифракция
- резонанс
- эффект Доплера

Явление интерференции во времени базируется на известном принципе суперпозиции волн, смысл которого сводится к следующему: если в среде одновременно распространяется система п различных волн, то каждая из волн распространяется независимо от других. При этом результирующие скорость, смещение, ускорение каждой частицы среды равны векторным суммам соответствующих величин, обусловленных каждой из волн порознь.

Сумма двух колебаний одинаковой частоты, амплитуды и фазы

Сумма колебаний одинаковой частоты и амплитуды и разностью фаз π

Биение

Отражение и преломление

Поглощение

Энергия звуковой волны в процессе ее распространения поглощается средой. Этот эффект называют поглощением звуковых волн. Существование эффекта поглощения обусловлено процессами теплообмена и межмолекулярного взаимодействия в среде, точнее — внутренним трением и теплопроводностью.

Рассеяние

Рассеяние звука возникает в результате взаимодействия звуковой волны со встречающимися на ее пути многочисленными препятствиями (встречные потоки воздуха, завихрения, ветер). В результате столкновения с этими препятствиями звуковая волна как бы «рассыпается» на множество волн, которые распространяются во всевозможных направлениях.

Звук, идущий от источника, расположенного в закрытом помещении, многократно ударяясь и отражаясь от стен помещения, воспринимается слушателем как звук, сопровождающийся специфическим гулом — реверберацией.

Дифракция

способность волн огибать малые препятствия.

Резонанс

эффект резкого возрастания амплитуды вынужденных колебаний какой-то упругой системы при близком приближении или полном совпадении частоты вынужденных колебаний с собственной частотой этой системы.

Эффект Доплера

зависимость частоты колебаний, воспринимаемых приемником, от скоростей движения источника волн и приемника по отношению к среде, в которой распространяется звуковая волна.

Звуковые колебания называются *периодическими*, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени — период колебания T. В непериодических звуковых колебаниях отсутствует отсутствует периодическая повторяемость физических величин, изменяющихся в процессе колебания.

Простейшее гармоническое колебание

$$y(t) = A\sin(\omega t + \varphi)$$

- y(t) обозначение физической величины, которая изменяется в функции времени по синусоидальному закону;
- A амплитуда колебания, т.е. максимальное значение функции (t);
- ullet $\omega=2\pi f=rac{2\pi}{T}$ угловая (циклическая) частота колебаний;
- f частота колебаний;
- ullet φ начальная фаза колебаний.

Спектр звукового сигнала

совокупность составляющих синусоидальных звуковых волн, в результате наложения которых получается исходная результирующая звуковая волна.

Совокупность (набор) значений амплитуд и частот составляющих синусоидальных волн называется соответственно спектром амплитуд и спектром частот.

Уравнение звуковой волны

описывает колебания всех частиц (точек) звуковой волны, расположенных на любых расстояниях по отношению к начальной точке.

$$y(t) = A\sin[2\pi(\frac{t}{T} - \frac{\Delta t}{T})] = A\sin[2\pi(\frac{t}{T} - \frac{x}{CT})] = A\sin[2\pi(\frac{t}{T} - \frac{x}{\lambda})]$$

где λ — длина звуковой волны.

401491471717

 Наумов Д.А.
 Звуковая волна
 09.01.2014
 15 / 34

Способ графического отображения звукового сигнала в виде значений его уровня (амплитуды) во времени называют *амплитудно-временным*.

Сигналлограмма

график, отображающий зависимость амплитуды текущего звукового сигнала в функции времени.

Если очертить сигналограмму сверху и снизу таким образом, что изображенные на ней колебания окажутся «вписанными» между очерчивающими их линиями, то в результате получится *график амплитудной огибающей сигнала*.

- Атака, подъем (от англ. ≪attack≫).
- Отабилизация (от англ. «hold»).
- Опад (от англ. «decay»).
- Удержание (от англ. «sustain»).
- Затухание (от англ. «release»).

40 40 40 40 40 000

Пример сигналлограммы короткого звука виолончели

График амплитудно-частотного спектра

график амплитудно-частотной зависимости, на котором по оси абсцисс откладываются частоты составляющих спектра, а по оси ординат — амплитуды соответствующих частотных составляющих.

Спектрограмма

псевдо-трехмерный график в прямоугольной системе координат, на котором по оси X откладывается время, по оси Y — частота, а амплитуды частотных составляющих изображаются в соответствующих точках графика насыщенностью цвета.

Трехмерное представление спектрограммы

Суть гармонического анализа

любое периодическое колебание с частотой ω можно представить в виде суммы гармонических колебаний, и наоборот, зная параметры отдельных гармоник (амплитуду, частоту и начальную фазу), можно с помощью их тригонометрического суммирования получить (или приближенно смоделировать) результирующее колебание.

Любую сложную периодическую функцию можно разложить в тригонометрический гармонический ряд (называемый рядом Фурье) и анализировать эту функцию при помощи гармонического анализа, т.е. анализа гармоник, составляющих эту результирующую функцию.

Ряд Фурье для временной периодической функции

$$y(t) pprox rac{a_0}{2} + \sum_{v=1}^{\infty} (a_v \cos(v\omega t) + b_v \sin(v\omega t)),$$

◆ロト ◆問 > ◆恵 > ◆恵 > ・恵 ・ 夕久○

• Сумма гармонических колебаний с периодами $T_1, \frac{1}{2}T_1, \frac{1}{3}T_1, ..., \frac{1}{v}T_1$, где $\frac{1}{v}T_1 = T_v$ — период v-ой гармоники дает результирующее колебание с периодом T_1 . Это правило относится и к частотам ω , а именно: сумма любого числа гармонических колебаний с частотами, кратными ω_1 , т.е. $\omega_1, 2\omega_1, 3\omega_1, ..., v\omega_1$ дает результирующее колебание с частотой ω_1 .

- Сумма гармонических колебаний с периодами $T_1, \frac{1}{2}T_1, \frac{1}{3}T_1, ..., \frac{1}{v}T_1$, где $\frac{1}{v}T_1 = T_v$ период v-ой гармоники дает результирующее колебание с периодом T_1 . Это правило относится и к частотам ω , а именно: сумма любого числа гармонических колебаний с частотами, кратными ω_1 , т.е. $\omega_1, 2\omega_1, 3\omega_1, ..., v\omega_1$ дает результирующее колебание с частотой ω_1 .
- Угловая частота $\omega_1=2\pi f_1$ называется *основной гармоникой* или *основной частотой*. Частоты $\omega_2=2\omega_1,\omega_3=3\omega_1,...,\omega_v=v\omega_1$ это *обертоны* или просто *гармоники* (говорят, «вторая гармоника», «третья гармоника» и т.д.).

- Сумма гармонических колебаний с периодами $T_1, \frac{1}{2}T_1, \frac{1}{3}T_1, ..., \frac{1}{v}T_1$, где $\frac{1}{v}T_1 = T_v$ период v-ой гармоники дает результирующее колебание с периодом T_1 . Это правило относится и к частотам ω , а именно: сумма любого числа гармонических колебаний с частотами, кратными ω_1 , т.е. $\omega_1, 2\omega_1, 3\omega_1, ..., v\omega_1$ дает результирующее колебание с частотой ω_1 .
- Угловая частота $\omega_1=2\pi f_1$ называется *основной гармоникой* или *основной частотой*. Частоты $\omega_2=2\omega_1,\omega_3=3\omega_1,...,\omega_v=v\omega_1$ это *обертоны* или просто *гармоники* (говорят, «вторая гармоника», «третья гармоника» и т.д.).
- Представление функции y(t) в виде суммы гармонических колебаний называется разложением функции в спектр.

Качество музыкального (и немузыкального) звука зависит от состава его частотного спектра и правильного выбора пропорций частот, входящих в этот спектр.

«Качество» определяется:

- относительным количеством различных гармоник в спектре звука;
- ② относительными значениями коэффициентов ряда Фурье, которые указывают, с ≪каким весом≫ каждая гармоника входит в общее колебание (т.е. в результирующую функцию).

Тембровая окраска звука

определяется распределением интенсивности обертонов (высших гармоник).

Камертон может обеспечить практически чистый тон. Все музыкальные и немузыкальные звуки, не говоря уже о звуковых шумах, имеют широкий частотный спектр. Один и тот же музыкальный тон, взятый на разных инструментах, будет иметь одну и ту же основную частоту, но разные частотные спектры, т.е. разный тембр.

• Для получения частотного спектра сигнала, описанного его дискретными значениями, применяют дискретное преобразование Фурье, или ДПФ, — специально созданную разновидность преобразования Фурье, предназначенную для спектрального разложения дискретных сигналов.

- Для получения частотного спектра сигнала, описанного его дискретными значениями, применяют дискретное преобразование Фурье, или ДПФ, — специально созданную разновидность преобразования Фурье, предназначенную для спектрального разложения дискретных сигналов.
- Чтобы сделать вычисления ДПФ в цифровой вычислительной технике более эффективными, был создан алгоритм, названный быстрым преобразованием Фурье, или БПФ (Fast Fourier Transform — FFT).

- Для получения частотного спектра сигнала, описанного его дискретными значениями, применяют дискретное преобразование Фурье, или ДПФ, специально созданную разновидность преобразования Фурье, предназначенную для спектрального разложения дискретных сигналов.
- Чтобы сделать вычисления ДПФ в цифровой вычислительной технике более эффективными, был создан алгоритм, названный быстрым преобразованием Фурье, или БПФ (Fast Fourier Transform — FFT).
- С использованием ДПФ звуковой сигнал, описанный дискретными численными значениями, может быть представлен в виде амплитудно-частотного спектра. Любой, даже самый сложный по форме сигнал (например, звук голоса человека), можно представить суммой простейших синусоидальных колебаний определенных частот и амплитуд.

Сигналограмма фрагмента музыкальной аудиозаписи продолжительностью 0.25с

Сигналограмма аудиофрагмента и график частичной суммы $\mathsf{S}(\mathsf{x},1)$

Сигналограмма аудиофрагмента и график частичной суммы $\mathsf{S}(\mathsf{x},2)$

Сигналограмма аудиофрагмента и график частичной суммы S(x,15)

Сигналограмма аудиофрагмента и график частичной суммы S(x,40)

Полный спектр анализируемого аудиофрагмента

Источник человеческого голоса, точнее — основной частоты голоса, — голосовые связки.

Сигналограмма звука "и"

Основные частоты различных по типу голосов:

- для баса: от 70 до 400 Гц;
- для баритона: от 110 до 440 Гц;
- для тенора: от 130 до 590 Гц;
- для контральто: от 175 до 780 Гц;
- для меццо-тинто: от 220 до 1050 Гц;
- для сопрано: от 350 до 1320 Гц.

4 D > 4 A > 4 B > 4 B > 9 Q Q

При формировании звуков речи и пения, осуществляемом системой природных резонаторов речевого аппарата, подчеркиваются те или иные группы близлежащих частот их спектра. Спектральных максимумов может быть четыре и больше, но распознавание каждого звука связано с одним или двумя первыми усиленными участками спектра —формантами.

Частотное размещение формантных областей

Для гласных звуков характерны форманты с дискретным спектром; для согласных — со сплошным.