

Approcci di Machine Learning per prevedere la destinazione dei nuovi iscritti statunitensi

Dario Carolla - 807547 Matteo Gaverini - 808101 Paolo Mariani - 800307

OVERVIEW

Airbnb

Piattaforma digitale per affittare camere

Obiettivo

Determinare la destinazione del viaggio dei nuovi clienti

Dati

Informazioni sugli utenti e log di sessione

WORKFLOW

train/test_user.csv

Train: 213451 osservazioni - 16 variabili Test: 62096 osservazioni - 14 variabili

countries.csv

sessions.csv

Attributi descrittivi riguardanti gli utenti che hanno effettuato la registrazione alla piattaforma (età, sesso, tipo dispositivo utilizzato etc.).

Intervallo temporale: 01-01-2010 —> 30-09-2014

- Date di iscrizione e primo utilizzo
- Dati anagrafici
- Dispositivi utilizzati
- Canale di contatto
- Variabile target

age_gender_bkts.csv

train/test_user.csv

Train: 213451 osservazioni - 16 variabili Test: 62096 osservazioni - 14 variabili

countries.csv

sessions.csv

Attributi descrittivi riguardanti gli utenti che hanno effettuato la registrazione alla piattaforma (età, sesso, tipo dispositivo utilizzato etc.).

Intervallo temporale: 01-01-2010 —> 30-09-2014

- Date di iscrizione e primo utilizzo
- Dati anagrafici
- Dispositivi utilizzati
- Canale di contatto
- Variabile target

age_gender_bkts.csv

train/test_user.csv

Train: 213451 osservazioni - 16 variabili Test: 62096 osservazioni - 14 variabili

countries.csv

sessions.csv

age_gender_bkts.csv

Attributi descrittivi riguardanti gli utenti che hanno effettuato la registrazione alla piattaforma (età, sesso, tipo dispositivo utilizzato etc.).

Intervallo temporale: 01-01-2010 —> 30-09-2014

- Date di iscrizione e primo utilizzo
- Dati anagrafici
- Dispositivi utilizzati
- Canale di contatto
- Variabile target

% NA 'age': 42.41%

train/test_user.csv

Train: 213451 osservazioni - 16 variabili Test: 62096 osservazioni - 14 variabili

countries.csv

sessions.csv

Attributi descrittivi riguardanti gli utenti che hanno effettuato la registrazione alla piattaforma (età, sesso, tipo dispositivo utilizzato etc.).

Intervallo temporale: 01-01-2010 —> 30-09-2014

- Date di iscrizione e primo utilizzo
- Dati anagrafici
- Dispositivi utilizzati
- Canale di contatto
- Variabile target

age_gender_bkts.csv

train/test_user.csv

Train: 213451 osservazioni - 16 variabili Test: 62096 osservazioni - 14 variabili

countries.csv

sessions.csv

age_gender_bkts.csv

Attributi descrittivi riguardanti gli utenti che hanno effettuato la registrazione alla piattaforma (età, sesso, tipo dispositivo utilizzato etc.).

Intervallo temporale: 01-01-2010 —> 30-09-2014

- Date di iscrizione e primo utilizzo
- Dati anagrafici
- Dispositivi utilizzati
- Canale di contatto
- Variabile target

% NA 'first_affiliate_tracked': 2.28 %

train/test_user.csv

Train: 213451 osservazioni - 16 variabili Test: 62096 osservazioni - 14 variabili

countries.csv

sessions.csv

age_gender_bkts.csv

Attributi descrittivi riguardanti gli utenti che hanno effettuato la registrazione alla piattaforma (età, sesso, tipo dispositivo utilizzato etc.).

Intervallo temporale: 01-01-2010 —> 30-09-2014

- Date di iscrizione e primo utilizzo
- Dati anagrafici
- Dispositivi utilizzati
- Canale di contatto
- Variabile target

ANALISI DATI

DATI FORNITI DA AIRBNB

Paesi di destinazione

11 osservazioni7 variabili

sessions.csv

age_gender_bkts.csv

Informazioni relative ai possibili paesi di destinazione:

- Posizione geografica
- Lingua ufficiale
- Superficie

countries.csv

10567737 osservazioni6 variabili

age_gender_bkts.csv

Attributi relativi ai log di utilizzo del sito da parte degli utenti registrati.

Intervallo temporale: 01-01-2014 —> 30-09-2014

- Tipologie di azioni svolte
- Dispositivo utilizzato
- Durata azione

countries.csv

10567737 osservazioni 6 variabili

age_gender_bkts.csv

Attributi relativi ai log di utilizzo del sito da parte degli utenti registrati.

Intervallo temporale: 01-01-2014 —> 30-09-2014

- Tipologie di azioni svolte
- Dispositivo utilizzato
- Durata azione

% NA 'action': 0.7 %

% NA 'action_type': 10.6 %

countries.csv

10567737 osservazioni6 variabili

age_gender_bkts.csv

Attributi relativi ai log di utilizzo del sito da parte degli utenti registrati.

Intervallo temporale: 01-01-2014 —> 30-09-2014

- Tipologie di azioni svolte
- Dispositivo utilizzato
- Durata azione

countries.csv

10567737 osservazioni 6 variabili

age_gender_bkts.csv

Attributi relativi ai log di utilizzo del sito da parte degli utenti registrati.

Intervallo temporale: 01-01-2014 —> 30-09-2014

- Tipologie di azioni svolte
- Dispositivo utilizzato
- Durata azione

% NA 'secs_elapsed': 1.2 %

Statistiche descrittive riguardo la popolazione di ogni destinazione suddivisa per range di età e genere.

countries.csv

sessions.csv

420 osservazioni5 variabili

train/test_user.csv

Variable Trasformation — → 'age': so

Per le date estrazione della stagionalità tramite seno e coseno.

'age': sostituzione dei valori corrispondenti all'anno di nascita con l'età al momento dell'iscrizione; sostituzione dei valori esterni all'intervallo [18,100] con valore costante '-1'.

Missing Replacement —

'age': sostituzione dei missing values con valore costante '-1'.

'first_affiliate_tracked': sostituzione condizionata dei missing values rispetto al valore di 'affiliate_channel'.

train/test_user.csv

sessions.csv

'action' : sostituzione NA con stringa *'message'* poiché per tali osservazioni il valore di *'action_type'* è sempre *'message_post'*.

'action_type': sostituzione condizionata degli NA con la moda che l'attributo assume in relazione a specifici valori di 'action'.

'secs_elapsed': sostituzione NA con mediana.

Variabili derivate

Il totale delle azioni effettuate, le azioni più frequenti ed il relativo conteggio, l'ultima azione effettuata in ordine cronologico.

Variabile binaria che indica se l'utente ha richiesto la traduzione di un contenuto.

Totale, minimo, massimo, media, dev. std. della durata delle azioni svolte. Scarto tra il tempo totale delle azioni dell'utente e la media dell'intero dataset.

Left join tra train/test_user e sessions su id dell'utente

Sostituzione NA generati con -1 per 140265 utenti

Feature categoriche:

- · One-hot ecoding per le variabili con meno di dieci possibili valori
- · Label encoding per per le variabili con più di dieci possibili valori

Feature numeriche:

Min/max scaling

Dataset finale:

55 variabili

275547 osservazioni

Diviso in train e test (Kaggle)

CREAZIONE DEL MODELLO

DEEP NEURAL NETWORK

Risorse utilizzate:
Google Colaboratory - Macchina virtuale
con 25 GB di RAM e 68 GB di Storage

DEEP NEURAL NETWORK

DEEP NEURAL NETWORK

Struttura della rete:

- Neuroni di input: 54
- Neuroni di output: 12
- Numero di strati nascosti: 3

DEEP NEURAL NETWORK

Funzione di Loss: Categorical Cross Entropy

- Classificazione multiclasse
- Appartenenza ad una sola classe

DEEP NEURAL NETWORK

Funzione di attivazione: Softmax

- Classificazione multiclasse
- Restituisce una distribuzione di probabilità

DEEP NEURAL NETWORK

Funzione di attivazione: Relu

DEEP NEURAL NETWORK

Ottimizzatore: Adam

- Computazionalmente efficiente
- Richiede poca memoria
- Adatto per problemi con elevato numero di parametri e dati

DEEP NEURAL NETWORK

Metrica: *Top-5 accuracy*

• L'esito corretto deve essere tra i primi cinque

DEEP NEURAL NETWORK

Fitting del modello:

- Batch size: 128
- Numero massimo di epoche: 200
- Callback: EarlyStopping
 - Per evitare Overfitting
 - Monitora il valore della validation loss
 - Massimo 8 iterazioni senza miglioramenti
 - Ripristina i pesi migliori

DEEP NEURAL NETWORK

Iperparametri ottimizzati

- *Dropout rate*: [0.05, 0.4]
- Learning rate: [0.001, 0.01]
- Numero di neuroni:
 - Primo strato nascosto: [1, 54]
 - Secondo strato nascosto: [1, 54]
 - Terzo strato nascosto: [1, 54]

$$DCG_k = \sum_{i=1}^k \frac{2^{rel_i} - 1}{\log_2(i+1)},$$

$$nDCG_k = \frac{DCG_k}{IDCG_k}$$

DEEP NEURAL NETWORK

Iperparametri ottenuti:

• Dropout rate: 0.1

• Learning rate: 0.004

• Numero di neuroni:

Primo strato nascosto: 30

Secondo strato nascosto: 16

Terzo strato nascosto: 3

NDCG per il miglior modello con 10-CV: 82.53 +/- 0.16

Forest

XGBoost

Sequenza di decision tree che tramite la procedura di gradient boosting permette di migliorare i risultati precedenti.

Iperparametri ottimizzati con AutoML:

- Learning Rate [0, 1] —> 0.37
- Numero di alberi [2, 10] —> 7
- Profondità massima [3, 10] —> 7
- Alpha regulizer [0, 1] —> 0.47
- Gamma regulizer [0, 2] —> 2

Random Forest

Iperparametri ottimizzati con AutoML:

- Numero di alberi [100, 500] —> 452
- Profondità massima [5, 30] —> 14

KNN

Distanza utilizzata: Minkowski

Iperparametri ottimizzati con AutoML:

• K [50, 200] —> 117

Ensemble Model

RISULTATI

Classificatore	Tempo	Cross Validation (NDCG +/- SD)	Kaggle Score (NDCG)
FCNN	1506	82.53 (+/- 0.16)	87.02%
XGBoost	842	82.85 (+/- 0.16)	87.37%
Random Forest	1557	82.81 (+/- 0.16)	87.42%
K-Nearest Neighbors	2451	81.48 (+/- 0.20)	86.05%
Ensemble	5942	82.64 (+/- 0.17)	87.14%

RISULTATI

Classificatore	Tempo	Cross Validation (NDCG +/- SD)	Kaggle Score (NDCG)
FCNN	1506	82.53 (+/- 0.16)	87.02%
XGBoost	842	82.85 (+/- 0.16)	87.37%
Random Forest	1557	82.81 (+/- 0.16)	87.42%
K-Nearest Neighbors	2451	81.48 (+/- 0.20)	86.05%
Ensemble	5942	82.64 (+/- 0.17)	87.14%

RISULTATI

Classificatore	Tempo	Cross Validation (NDCG +/- SD)	Kaggle Score (NDCG)
FCNN	1506	82.53 (+/- 0.16)	87.02%
XGBoost	842	82.85 (+/- 0.16)	87.37%
Random Forest	1557	82.81 (+/- 0.16)	87.42%
K-Nearest Neighbors	2451	81.48 (+/- 0.20)	86.05%
Ensemble	5942	82.64 (+/- 0.17)	87.14%

CONCLUSIONI

L'approccio Deep Learning non risulta essere il migliore in questo contesto.

I risultati sono fortemente influenzati dallo sbilanciamento dei dati.

CONCLUSIONI

L'approccio Deep Learning non risulta essere il migliore in questo contesto.

I risultati sono fortemente influenzati dallo sbilanciamento dei dati.

SVILUPPI FUTURI

Migliorare la classificazione delle label più rare cercando di eliminare l'effetto dello sbilanciamento del dataset.

Incrementare le risorse computazionali per poter aumentare il numero di iperparametri da ottimizzare.

