23.3 **Exercises**

Exercise 23.1

410

Plot the complex numbers in the complex plane.

(a)
$$4 + 2i$$
 (b) $-3 - 5i$ (c) $6 - 2i$ (d) $-5 + i$ (e) $-2i$ (f) $\sqrt{2} - \sqrt{2}i$ (g) 7 (h) i (i) 0 (j) $2i - \sqrt{3}i$

f)
$$\sqrt{2} - \sqrt{2}i$$
 g) 7

$$j)^{\prime} 2i - \sqrt{3}$$

Exercise 23.2

Add, subtract, multiply, and divide as indicated.

a)
$$(5-2i)+(-2+6i)$$
 b) $(-9-i)-(5-3i)$ (3 + 2i) \cdot (4 + 3i) d) $(-2-i)\cdot(-1+4i)$ e) $\frac{2+3i}{2+i}$ f) $(5+5i)\div(2-4i)$

Find the absolute value |a+bi| of the given complex number, and simplify your answer as much as possible.

(a)
$$|4+3i|$$
 (b) $|6-6i|$ (c) $|-3i|$ (d) $|-2-6i|$ (e) $|\sqrt{8}-i|$ (f) $|-2\sqrt{3}-2i|$ (g) $|-5|$ (h) $|-\sqrt{17}+4\sqrt{2}i|$

Convert the complex number into polar form $r(\cos(\theta) + i\sin(\theta))$.

(a)
$$2+2i$$
 (b) $4\sqrt{3}-4i$ (d) $-7+7\sqrt{3}i$ (d) $-5-5i$ (e) $8-8i$ (f) $-8+8i$ (g) $-\sqrt{5}-\sqrt{15}i$ (h) $\sqrt{7}-\sqrt{21}i$ (l) $-5-12i$ (l) $-\sqrt{3}+3i$

Exercise 23.5

Convert the complex number into the standard form a + bi.

(a)
$$6(\cos(150^\circ) + i\sin(150^\circ))$$
 (b) $10(\cos(315^\circ) + i\sin(315^\circ))$
(c) $2(\cos(90^\circ) + i\sin(90^\circ))$ (d) $\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})$
(e) $\frac{1}{2}(\cos(\frac{7\pi}{6}) + i\sin(\frac{7\pi}{6}))$ (f) $6(\cos(-\frac{5\pi}{12}) + i\sin(-\frac{5\pi}{12}))$

411

Exercise 23.6

Multiply the complex numbers and write the answer in standard form a + bi.

$$\checkmark$$
a) $4(\cos(27^\circ) + i\sin(27^\circ)) \cdot 10(\cos(123^\circ) + i\sin(123^\circ))$

$$7(\cos(182^\circ) + i\sin(182^\circ)) \cdot 6(\cos(43^\circ) + i\sin(43^\circ))$$

b)
$$7(\cos(182^{\circ}) + i\sin(182^{\circ})) \cdot 6(\cos(43^{\circ}) + i\sin(43^{\circ}))$$

c) $(\cos(\frac{13\pi}{12}) + i\sin(\frac{13\pi}{12})) \cdot (\cos(\frac{7\pi}{12}) + i\sin(\frac{7\pi}{12}))$
d) $8(\cos(\frac{3\pi}{7}) + i\sin(\frac{3\pi}{7})) \cdot 1.5(\cos(\frac{4\pi}{7}) + i\sin(\frac{4\pi}{7}))$

d)
$$8(\cos(\frac{3\pi}{7}) + i\sin(\frac{3\pi}{7})) \cdot 1.5(\cos(\frac{4\pi}{7}) + i\sin(\frac{4\pi}{7}))$$

e)
$$0.2(\cos(196^\circ) + i\sin(196^\circ)) \cdot 0.5(\cos(88^\circ) + i\sin(88^\circ))$$

f)
$$4(\cos(\frac{7\pi}{8}) + i\sin(\frac{7\pi}{8})) \cdot 0.25(\cos(\frac{-5\pi}{24}) + i\sin(\frac{-5\pi}{24}))$$

Exercise 23.7

Divide the complex numbers and write the answer in standard form a+bi.

$$\frac{7(\cos(\frac{11\pi}{15}) + i\sin(\frac{11\pi}{15}))}{3(\cos(\frac{\pi}{15}) + i\sin(\frac{\pi}{15}))} \qquad \text{d}) \quad \frac{\cos(\frac{8\pi}{5}) + i\sin(\frac{8\pi}{5})}{2(\cos(\frac{\pi}{10}) + i\sin(\frac{\pi}{10}))}$$

e)
$$\frac{42(\cos(\frac{7\pi}{4}) + i\sin(\frac{7\pi}{4}))}{7(\cos(\frac{5\pi}{12}) + i\sin(\frac{5\pi}{12}))}$$
 f)
$$\frac{30(\cos(-175^\circ) + i\sin(-175^\circ))}{18(\cos(144^\circ) + i\sin(144^\circ))}$$