Project #2

Michael Schoen, Abdirahman Osman, Illya Starikov

Due Date: November 8th, 2016

For our project, we have decided to implement a memory matching game. The game will start off by enabling a single light. If the user correctly presses said light, the user will move onto the next level and enable a light sequence. For every successive level, an additional light have to be kept in mind (i.e. for the n^{th} level, there will be n lights that will have to be pressed).

This will continue for 15 games, where upon a successful finish, a special light sequence and a song will asynchronously play. From here, the user can choose to play another game if they so choose.

1 Explanation

Below we will take a more in-depth look into the implementation of our project.

1.1 Random Number Generation

Because we want our game to be different every round, we have to have some form of random number generation. Initially, we had tried to implement a *linear congruential generator*; unfortunately, we were unsuccessful. We instead went with a different implementation.

Both implementations require a seed value (and to have different results, we need a different seed value) — we "cheat" to get this. During our input, we not only check to see if the user initiated a game, but we also increment the register the seed is stored in. This way, there is only a ½55 chance the user will get the same game¹.

¹Although this is a significant value (0.39%), it serves well for demo purposes.

Failed Attempt

The basic summary is as follows: beginning with a seed value (named X_n), a new linear, psuedo-random number can be calculated via:

$$X_{n+1} = (aX_n + c) \mod m \tag{1}$$

where the follow conditions hold

- 1. $a, X_n, c, m \in \mathbb{Z}^+$
- 2. $0 \le X_n, c < m$
- 3. 0 < a < m
- 4. $m \neq 0$

The issue we face is it is *highly* recommended that m be quite large (most popular implementations range from 2^{31} to 2^{48}); unfortunately, we only have 2^{8} available to us. Because of this, we either get a cycle roughly every 10 iterations or the same number produced. As one might imagine, this is a game-breaking bug; we decided to go with something different.

Our failed attempt for a linear congruential generator is as follows.

```
; Check writeup for how this works
; For now, the formula is
; X_n+1 = aX_n + c mod m
; For our purposes, a = 7, c = incrementor, m = 72
; for our purposes, incrementor can't be a multiple of 7
; X_n is stored in R7, incrementor in R6
```

; Result will be stored in A RNG:

MOV A, R7 MOV B, #7D DIV AB MOV A, B

JNZ SKIP1 INC R6 MOV A, SKIP1: #7D MOV B, R7 MUL AB ; $A = aX_n$ ADD A, R6 MOV B, #72D DIV AB MOV R7, B MOV A, B MOV B, #10D DIV AB MOV A, B RET

Successful Attempt

For our successful attempt, we ported a random number generating from an open source code base². It similar to the linear congruential generator in the sense that it linearly produces a psuedo-random number; however, it is a different formula (one that can't be eloquently described in an equation).

1.2 Music

We know the frequency of the Philips P89LPC932A1 to be 7.373 MHz, with 2 cycles per machine cycle. Therefore,

$$\frac{\text{2 cycles}}{\text{machine cycle}} \cdot \frac{\text{1 Period}}{7.373\,\text{MHz}} = 0.271\,26\,\text{$^{\mu s}/_{mc}$} \tag{2}$$

We use this calculation as the base of our music.

²https://www.pjrc.com/tech/8051/

2 Future Work

3 Work Effort

- Michael Schoen
 - Programmed binary counter.

- Programmed game logic.
- Osman Abdirahman
 - Programmed initial beep.
 - Programmed song implementation.
- Illya Starikov
 - Programmed initial beep.
 - Programmed random number renerator.
 - Programmed light sequence.