Analysis 1

Jiaqi Wang

December 7, 2023

Contents

1 Sets, Spaces and Function

1.1 Metric Space

Definition 1.1.1 – distance Let X be a set. A function $d: X \times X \to X$ is called a *distance* on X if it satisfies the following properties:

- (i) Positivity: For all $a, b \in X$, it holds that $d(a, b) \ge 0$.
- (ii) Non-degeneracy: For all $a, b \in X$, if d(a, b) = 0, then a = b.
- (iii) Symmetry: For all $a, b \in X$, it holds that d(a, b) = d(b, a).
- (iv) Triangle inequality: For all $a,b,c \in X$, it holds that $d(a,c) \le d(a,b) + d(b,c)$.
- (v) Reflexivity: For all $a \in X$, it holds that d(a,a) = 0.

Usually conditions (ii) and (v) are combined into one condition: For all $a, b \in X, d(a, b) = 0$ if and only if a = b.

Definition 1.1.2 – metric space A metric space is a pair (X, dist), where X is a set and dist is a distance function $dist : X \times X \to \mathbb{R}$ on X.

Example 1.1.3 Let $X = \{ \text{Die Hard, Barbie, Oppenheimer} \}$

d	Die Hard	Barbie	Oppenheimer
Die Hard	0	5	2
Barbie	5	0	3
Oppenheimer	2	3	0

Then d is a distance function on X

Definition 1.1.4 – ball in a metric space Let (X,d) be a metric space. Let $c \in X$ and $r \in \mathbb{R}$. The ball of radius r centered at c is the set

$$B(c,r) = \{x \in X | d(c,x) < r\}$$

Example 1.1.5 If $(X,d) = (\mathbb{R}, d_{\mathbb{R}})$, then $B(1,3) = (-2,4) = \{x \in \mathbb{R} \mid |x-1| < 3\}$

Example 1.1.6 Let $X := \{ \text{Die Hard, Barbie, Oppenheimer} \}$, with distance defined before. Then $B(\text{Barbie, 4}) = \{ \text{Barbie, Oppenheimer} \} = \{ x \in X \mid d(x, Barbie) < 3 \}$.

1.2 Normed Vector Spaces

Definition 1.2.1 – norm Let V be a vector space over \mathbb{R} . A norm on V is a function $\|\cdot\|: V \to \mathbb{R}$ such that

- Positivity: for all $u, v \in V$ we have $||u|| \ge 0$ and ||u|| = 0 if and only if u = 0.
- Non-degeneracy: for all $u \in V$ if ||u|| = 0 then u = 0.
- Absolute Homogeneity: for all $u \in V$ and for all $\lambda \in \mathbb{R}$ we have $||\lambda u|| = |\lambda|||u||$.
- Triangle inequality: for all $u, v \in V$ we have $||u + v|| \le ||u|| + ||v||$.

Example 1.2.2 Let $V = \mathbb{R}^n$. Then $\|\cdot\|_2 : \mathbb{R}^n \to \mathbb{R}$ defined by $\|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$ is a norm on \mathbb{R}^n .

Proposition 1.2.3 – Let $(V, \|\cdot\|)$ be a normed vector space. Then the function $d: V \times V \to \mathbb{R}$ defined by $d(u, v) = \|u - v\|$ is a distance on V. And (V, d) is a metric space.

Remark 1.2.4 (Notation for Euclidean distance on \mathbb{R}^d and \mathbb{R}). We will usually write $\mathrm{dist}_{\mathbb{R}^d}$ instead of $\mathrm{dist}_{\|\cdot\|_2}$ for the standard (Euclidean) distance on \mathbb{R}^d . In particular, if $d \geq 2$, we have

$$\operatorname{dist}_{\mathbb{R}^d}(v, w) = \|v - w\|_2 = \sqrt{\sum_{i=1}^d (v_i - w_i)^2}$$

and if d = 1 we just have

$$dist_{\mathbb{R}} = |v - w|$$

And if there is no room for confusion, we will just leave out the subscript altogether and write dist instead of $\operatorname{dist}_{\mathbb{R}^d}$.

1.3 The reverse triangle inequality

Lemma 1.3.1 – Reverse triangle inequality Let $(V, \|\cdot\|)$ be a normed vector space. Then for all $u, v \in V$ we have,

$$|||v|| - ||w||| \le ||v - w||$$

2 Real Numbers

2.1 What are the real numbers?

Definition 2.1.1 – Real numbers The real numbers are a complete totally ordered field.

2.2 The completeness axiom

Definition 2.2.1 – Upper and Lower bound We say a number $M \in \mathbb{R}$ is an *upper bound* for a set $A \subseteq \mathbb{R}$ if

$$\forall a \in A[a \leq M].$$

We say a number $m \in \mathbb{R}$ is a *lower bound* for a set $A \subseteq \mathbb{R}$ if

$$\forall a \in A[a \ge M].$$

Given the definition of upper and lower bounds, we define what it means for a set to be bounded from above, bounded from below and just bounded.

Definition 2.2.2 – bounded from above, bounded from below, bounded A set $A \subseteq \mathbb{R}$ is *bounded from above* if there exists an upper bound for A.

A set $A \subseteq \mathbb{R}$ is *bounded from below* if there exists a lower bound for A.

A set $A \subseteq \mathbb{R}$ is *bounded* if it is bounded from above and bounded from below.

Definition 2.2.3 – Least upper bound (supremum) Precisely, *M* is a *least upper bound* of a subset *A* if both

- 1. *M* is an upper bound of *A*.
- 2. For every upper bound $L \in \mathbb{R}$ of A, it holds that $M \leq L$.

Proposition 2.2.4 – Suppose both M and W are a least upper bound of a subset $A \subseteq \mathbb{R}$. Then M = W.

Axiom 2.2.5 – Completeness axiom We say that a totally ordered field \mathbf{R} satisfies the *completeness axiom* if every nonempty subset of \mathbf{R} that is bounded from above has a least upper bound.

Lemma 2.2.6 – Every non-empty subset of the real line that is bounded from below has a *largest lower bound*.

Definition 2.2.7 – infimum We usually call the largest lower bound of a non-empty set $A \subseteq \mathbb{R}$ that is bounded from below the *infimum* of A, and we denote it by $\inf A$.

2.3 Alternative characterizations of suprema and infima

Proposition 2.3.1 – alternative characterizationa of supremum Let $A \subseteq \mathbb{R}$ be non-empty and bounded from above. Let $M \in \mathbb{R}$. Then M is the supremum of A if and only if

- 1. *M* is an upper bound for *A*,
- 2. and

for all
$$\varepsilon > 0$$
,
there exists $a \in A$,
 $a > M - \varepsilon$.

Proposition 2.3.2 – alternative characterizationa of infimum Let $A \subseteq \mathbb{R}$ be non-empty and bounded from below. Let $m \in \mathbb{R}$. Then m is the infimum of A if and only if

- 1. m is a lower bound for A,
- 2. and

for all
$$\varepsilon > 0$$
,
there exists $a \in A$,
 $a < m + \varepsilon$.

These alternative characterizations of the supremum and infimum really provide a standard way to determining the supremum and infimum of subsets of the real line.

2.4 Maxima and minima

Definition 2.4.1 – maximum and minimum Let $A \subseteq \mathbb{R}$ be a subset of the real numbers. We say that $y \in A$ is the *maximum* of A, and write $y = \max A$, if

for all
$$a \in A$$
, $a \le y$.

We say that $x \in A$ is the *minimum* of A, and write $x = \min A$, if

for all
$$a \in A$$
, $a \ge x$.

Remark 2.4.2. Even if a set $A \subseteq \mathbb{R}$ is non-empty and bounded, it may not have a maximum or minimum. For example, the set (0,1) has no maximum or minimum.

Proposition 2.4.3 – Let A be a subset of \mathbb{R} . If A has a maximum, then A is non-empty and bounded from above, and $\sup A = \max A$. If A has a minimum, then A is non-empty and bounded from below, and $\inf A = \min A$.

Proposition 2.4.4 Let A be a subset of \mathbb{R} . Assume that A is non-empty and bounded from above. If $\sup A \in A$ then A has a maximum and $\max A = \sup A$.

Proposition 2.4.5 – Let A be a subset of \mathbb{R} . Assume that A is non-empty and bounded from below. If $\inf A \in A$ then A has a minimum and $\min A = \inf A$.

2.5 The Archimedean property

Proposition 2.5.1 – Archimedeean property For every real number $x \in \mathbb{R}$ there exists a natural number $n \in \mathbb{N}$ such that x < n.

Given this proposition, we can define the ceiling function.

Definition 2.5.2 – ceiling function The *ceiling function* $\lceil \cdot \rceil : \mathbb{R} \to \mathbb{Z}$ is defined as follows. For $x \in \mathbb{R}$, $\lceil x \rceil$ denotes the smallest integer $z \in \mathbb{Z}$ such that $x \leq z$.

Proposition 2.5.3 – For every two real numbers $a, b \in \mathbb{R}$ with a < b there exists a $q \in \mathbb{Q}$ with a < q < b.

2.6 Computation rules for suprema

In the proposition below, we use the defintions

$$A + B = \{a + b \mid a \in A, b \in B\}$$

and

$$\lambda A = \{ \lambda a \mid a \in A \}$$

for subsets $A, B \subseteq \mathbb{R}$ and a scalar $\lambda \in \mathbb{R}$.

Proposition 2.6.1 – Let A, B, C, D be non-empty subsets of \mathbb{R} . Assume that A and B are bounded from above and C and D are bounded from below. Then

- 1. $\sup(A+B) = \sup A + \sup B$.
- 2. $\inf(C+D) = \inf C + \inf D$.
- 3. For all $\lambda \geq 0$, $\sup(\lambda A) = \lambda \sup A$.
- 4. For all $\lambda \leq 0$, $\sup(\lambda A) = \lambda \inf A$.
- 5. $\sup(-C) = -\inf C$.
- 6. $\inf(-C) = -\sup C$.

2.7 Bernoulli's inequality

Proposition 2.7.1 – Bernoulli's inequality Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then

- 1. If $x \ge -1$, then $(1+x)^n \ge 1 + nx$.
- 2. If $x \ge 0$ and $n \ge 2$, then $(1+x)^n \ge 1 + nx$.

3 Sequences

3.1 Sequence

Definition 3.1.1 – Sequence A sequence is a function for which the domain is \mathbb{N} .

$$a: \mathbb{N} \to Y$$

Y can be any set.

Example 3.1.2 Here are some functions that are sequences:

- 1. $a: \mathbb{N} \to \mathbb{Q}$
- 2. $b: \mathbb{N} \to (\mathbb{N} \to Y)$
- 3. $c: \mathbb{N} \to \mathbb{N}$

And some functions that are not sequences:

- 1. $d: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
- 2. $e: \mathbb{Q} \to \mathbb{N}$

3.2 Terminology around sequences

3.2.1 Bounded sequences

Definition 3.2.2 – bouneded sequence Let (X, dist) be a metric space. We say a sequence $a : \mathbb{N} \to X$ is bounded if

```
there exists q \in X,
there exists M > 0,
for all n \in \mathbb{N},
\operatorname{dist}(a_n, q) \leq M.
```

In a normed linear space, we can use a simpler criterion to check whether a sequence is bounded. That is the content of the following proposition.

Proposition 3.2.3 – Let $(V, \|\cdot\|)$ be a normed vector space. Let $a : \mathbb{N} \to V$ be a sequence. The sequence a is bounded if and only if

there exists
$$M > 0$$
,
for all $n \in \mathbb{N}$,
 $||a_n|| \le M$.

3.3 Convergence of sequences

Definition 3.3.1 – Convergence of sequences Let (X, dist) be a metric space. We say that a sequence $a : \mathbb{N} \to X$ converges to a point $p \in X$ if

for all
$$\varepsilon > 0$$
,
there exists $N \in \mathbb{N}$,
for all $n \ge N$,
 $\operatorname{dist}(a_n, p) < \varepsilon$.

We sometimes write

$$\lim_{n\to\infty}a_n=p$$

to express that the sequence (a_n) converges to p.

Definition 3.3.2 – Divergence of sequences Let (X, dist) be a metric space. A sequence $a : \mathbb{N} \to X$ is called *divergent* is it is not convergent.

3.4 Examples and limits of simple sequences

Proposition 3.4.1 – The constant sequence Let (X, dist) be a metric space. Let $p \in X$ and assume that the sequence (a_n) is given by $a_n = p$ for every $n \in \mathbb{N}$. We also say that (a_n) is a constant sequence. Then $\lim_{n\to\infty} = p$.

Example 3.4.2 A standard limit Let $a : \mathbb{N} \to \mathbb{R}$ be a real-valued sequence such that $a_n = 1/n$ for $n \ge 1$. Then $a : \mathbb{N} \to \mathbb{R}$ converges to 0.

Proof. Let $\varepsilon > 0$. Choose $N = \lceil 1/\varepsilon \rceil + 1$. Take $n \ge N$. Then

$$\operatorname{dist}_{\mathbb{R}}(a_n, 0) = |a_n - 0| = |1/n| = 1/n \le 1/N < \varepsilon.$$

3.5 Uniqueness of limits

Proposition 3.5.1 – Uniqueness of limits Let (X, dist) be a metric space and let $a : \mathbb{N} \to \mathbb{R}$ be a sequence in X. Assume that $p, q \in X$ and assume that

$$\lim_{n\to\infty} = p \text{ and } \lim_{n\to\infty} a_n = q$$

Then p = q.

3.6 More properties of convergent sequences

Proposition 3.6.1 – Let (X, dist) be a metric space and suppose that $a : \mathbb{N} \to X$ is a sequence. Let $p \in X$. Then the sequence $a : \mathbb{N} \to X$ converges to p if and only if the real-valued sequence

$$n \mapsto \operatorname{dist}(a_n, p)$$

converges to 0 in \mathbb{R} .

Proposition 3.6.2 – Convergent sequences are bounded Let (X, dist) be a metric space. Let $a : \mathbb{N} \to X$ be a sequence in X converging to $p \in X$. Then the sequence $a : \mathbb{N} \to X$ is bounded.

Proposition 3.6.3 – Let (X, dist) be a metric space and let $a : \mathbb{N} \to X$ and $b : \mathbb{N} \to X$ be two sequences. Let $p \in X$ and suppose that $\lim_{n \to \infty} a_n = p$. Then $\lim_{n \to \infty} b_n = p$ if and only if

$$\lim \operatorname{dist}(a_n,b_n)=0$$

Corollary 3.6.4 – Eventually equal sequences have the same limit Let (X, dist) be a metric space and

let $a : \mathbb{N} \to X$ and $b : \mathbb{N} \to X$ be two sequences such that there exists an $N \in \mathbb{N}$ such that for all $n \ge N$,

$$a_n = b_n$$

Then the sequence $a: \mathbb{N} \to X$ converges if and only if the sequence $b: \mathbb{N} \to X$ converges. If the sequences converge, they have the same limit.

3.7 Limit theorems for sequences taking values in a normed vector space

Theorem 3.7.1 – Let $(V, \|\cdot\|)$ be a normed vector space and let $a : \mathbb{N} \to V$ and $b : \mathbb{N} \to V$ be two sequences. Assume that the $\lim_{n\to\infty} a_n$ exists and is equal to $p \in V$ and that the $\lim_{n\to\infty} b_n$ exists and is equal to $q \in V$. Let $\lambda : \mathbb{N} \to \mathbb{R}$ be a real-valued sequence. Let $\mu \in \mathbb{R}$. Assume that $\lim_{n\to\infty} \lambda_n = \mu$. Then

- 1. The $\lim_{n\to\infty}(a_n+b_n)$ exists and is equal to p+q.
- 2. The $\lim_{n\to\infty}(\lambda_n a_n)$ exists and is equal to μp .

3.8 Index shift

Proposition 3.8.1 – Index shift Let (X, dist) be a metric space and let $a : \mathbb{N} \to X$ be a sequence. Let $k \in \mathbb{N}$ and $p \in X$. Then the sequence $a : \mathbb{N} \to X$ converges to p if and only if the sequence $(a_{n+k})_n$ (i.e. the sequence $n \mapsto a_{n+k}$) converges to p.

4 Real-valued sequences

4.1 Terminology

Definition 4.1.1 – increasing, decreasing and monotone sequences We say a sequence (a_n) is

- 1. *increasing* if for every $n \in \mathbb{N}$, $a_{n+1} \ge a_n$
- 2. *strictly increasing* if for every $n \in \mathbb{N}$, $a_{n+1} > a_n$
- 3. *decreasing* if for every $n \in \mathbb{N}$, $a_{n+1} \leq a_n$
- 4. *strictly decreasing* if for every $n \in \mathbb{N}$, $a_{n+1} < a_n$
- 5. monotone if it is either increasing or decreasing
- 6. strictly monotone if it is either strictly increasing or strictly decreasing

Definition 4.1.2 – upper bound and lower bound for a sequence We say that a number $M \in \mathbb{R}$ is an *upper bound* for a sequence $a : \mathbb{N} \to \mathbb{R}$ if

for all
$$n \in \mathbb{N}$$

$$a_n \leq M$$

We say that a number $m \in \mathbb{R}$ is a *lower bound* for a sequence $a : \mathbb{N} \to \mathbb{R}$ if

for all
$$n \in \mathbb{N}$$

$$a_n \geq m$$

Definition 4.1.3 – bounded sequence We say that a sequence $a : \mathbb{N} \to \mathbb{R}$ is *bounded above* if there exists an $M \in \mathbb{R}$ such that M is an upper bound for a.

We say that a sequence $a : \mathbb{N} \to \mathbb{R}$ is *bounded below* if there exists an $m \in \mathbb{R}$ such that m is a lower bound for a.

Proposition 4.1.4 – Let $a : \mathbb{N} \to \mathbb{R}$ be a sequence. Then $a : \mathbb{N} \to \mathbb{R}$ is bounded if and only if it is both bounded above and bounded below.

4.2 Monotone, bounded sequences and convergent

Theorem 4.2.1 – Let (a_n) be an increasing sequence that is bounded from above. Then (a_n) convergent and

$$\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n \quad (= \sup\{a_n \mid n\in\mathbb{N}\})$$

Theorem 4.2.2 – Let (a_n) be a decreasing sequence that is bounded from below. Then (a_n) is convergent and

$$\lim_{n\to\infty}a_n=\inf_{n\in\mathbb{N}}a_n\quad (=\inf\{a_n\mid n\in\mathbb{N}\})$$

4.3 Limit theorems

Theorem 4.3.1 – Limit theorems for real-valued sequences Let $a: \mathbb{N} \to \mathbb{R}$ and $b: \mathbb{N} \to \mathbb{R}$ be two converging sequences, and let $c, d \in \mathbb{R}$ be real numbers such that

$$\lim_{n\to\infty}a_n=c \text{ and } \lim_{n\to\infty}b_n=d.$$

Then

- 1. The $\lim_{n\to\infty} (a_n+b_n)$ exists and is equal to c+d.
- 2. The $\lim_{n\to\infty}(a_nb_n)$ exists and is equal to $c\cdot d$.
- 3. If $d \neq 0$, then $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right)$ exists and is equal to $\frac{c}{d}$.
- 4. For every non-negative integer $m \in \mathbb{N}$, the limit $\lim_{n \to \infty} (a_n)^m$ exists and is equal to c^m .
- 5. If for every $n \in \mathbb{N}$, the number a_n is non-negative, then for every positive integer $k \in \mathbb{N} \setminus \{0\}$, the limit $\lim_{n \to \infty} (a_n)^{\frac{1}{k}}$ exists and is equal to $c^{\frac{1}{k}}$.

4.4 The squeeze theorem

Theorem 4.4.1 – The squeeze theorem Let $a,b,c: \mathbb{N} \to \mathbb{R}$ be three sequences. Suppose that there exists an $N \in \mathbb{N}$ such that for every $n \ge N$, we have

$$a_n \leq b_n \leq c_n$$

and assume $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n - L$ for some $L \in \mathbb{R}$. Then $\lim_{n\to\infty} b_n$ exists and is equal to L.

4.5 Divergence to ∞ and $-\infty$

Definition 4.5.1 – We say a sequence $a: \mathbb{N} \to \mathbb{R}$ diverges to ∞ and write

$$\lim_{n\to\infty}=\infty$$

if

for all $M \in \mathbb{R}$, there exists $N \in \mathbb{N}$, for all $n \ge N$, $a_n > M$.

Similarly, we say a sequence (a_n) diverges to $-\infty$ and write

$$\lim_{n\to\infty}a_n=-\infty$$

if

for all $M \in \mathbb{R}$, there exists $N \in \mathbb{N}$, for all $n \ge N$, $a_n < M$. **Proposition 4.5.2** – Let $a : \mathbb{N} \to \mathbb{R}$ be a sequence such that

$$\lim_{n\to\infty}a_n=\infty.$$

Then the sequence (a_n) is bounded from below. Similarly, let $b : \mathbb{N} \to \mathbb{R}$ be a sequence such that

$$\lim_{n\to\infty}b_n=-\infty.$$

Then the sequence (b_n) is bounded from above.

4.6 Limit theorems for improper limits

Theorem 4.6.1 – Limit theorems for improper limits Let $a,b,c,d:\mathbb{N}\to\mathbb{R}$ be four sequences such that

$$\lim_{n\to\infty} a_n = \infty$$
 and $\lim_{n\to\infty} c_n = -\infty$

the sequence (b_n) is bounded from below and the sequence (d_n) is bounded from above. Let $\lambda : \mathbb{N} \to \mathbb{R}$ be a sequence bounded below by some $\mu > 0$. Then

i.
$$\lim_{n\to\infty}(a_n+b_n)=\infty$$

ii.
$$\lim_{n\to\infty}(c_n+d_n)=-\infty$$

iii.
$$\lim_{n\to\infty}(\lambda_n a_n)=\infty$$

iv.
$$\lim_{n\to\infty}(\lambda_n c_n)=-\infty$$

Proposition 4.6.2 Let $a: \mathbb{N} \to \mathbb{R}$ and $b: \mathbb{N} \to (0, \infty)$ be two sequences. Then

- 1. $\lim_{n\to\infty} a_n = \infty$ if and only if $\lim_{n\to\infty} (-a_n) = -\infty$.
- 2. $\lim_{n\to\infty} b_n = \infty$ if and only if $\lim_{n\to\infty} \frac{1}{b_n} = 0$.

4.7 Standard sequences

4.7.1 Geometric sequence

Proposition 4.7.2 – Standard limit of of geometric sequence Let $q \in \mathbb{R}$. The sequence (a_n) defined by $a_n := q^n$ for $n \in \mathbb{N}$

- converges to 0 if $q \in (-1,1)$
- converges to 1 if q = 1
- diverges to ∞ if q > 1
- diverges, but not to ∞ or $-\infty$ if $q \le -1$

4.7.3 The n^{th} root of n

Proposition 4.7.4 – Standard limit of the n^{th} **root of** n The sequence (a_n) defined by $a_n := \sqrt[n]{n}$ for $n \in \mathbb{N}$ converges to 1.

Corollary 4.7.5 – Let a > 0. Then the sequence (b_n) defined by $b_n := \sqrt[n]{a}$ converges to 1.

4.7.6 The number e

First let's define the sequence (a_n) by

$$a_n := \left(1 + \frac{1}{n}\right)^n$$
.

We show that (a_n) is increasing and bounded from above by 3. Hence (a_n) converges to some $e \in \mathbb{R}$ by the monotone convergence theorem.

Lemma 4.7.7 – The sequence (a_n) defined by $a_n := \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N} \setminus \{0\}$ and $a_0 = 1$ is increasing.

Lemma 4.7.8 – The sequence (a_n) defined by $a_n := (1 + \frac{1}{n})^n$ for $n \in \mathbb{N} \setminus \{0\}$ and $a_0 = 1$ is bounded from above by 3.

By these two lemmas, the sequence

$$n \mapsto \left(1 + \frac{1}{n}\right)^n$$

converges.

Definition 4.7.9 – (**Standard limit of** e) We define the number e by

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

4.7.10 Exponentials beat powers

- 5 Series
- 5.1 Geometric series
- **5.2** The harmonic series
- 5.3 The hyperharmonic series
- 5.4 Only the tail matters for convergence
- 5.5 Divergence test
- 5.6 Limit laws for series

6 Series with positive terms

- 6.1 Comparison test
- 6.2 Limit comparison test
- 6.3 Ratio test
- 6.4 Root test

- 7 Series with general terms
- 7.1 Series with real terms: the Leibniz test
- 7.2 Series charactersization of completeness in normed vector space
- 7.3 The Cauchy product

- 8 Subsequences, lim sup and liminf
- 8.1 Index sequences and subsequences
- 8.2 (Sequential) accumulation points
- 8.3 Subsequences of a converging sequence
- **8.4** lim sup
- **8.5** liminf
- 8.6 Relations between lim, lim sup and liminf

- 9 Point-set topology of metric spaces
- 9.1 Open sets
- 9.2 Closed sets
- 9.3 Cauchy sequences
- 9.4 Completeness
- 9.5 Series characterization of completeness in normed vector spaces

- 10 Compactness
- 10.1 Boundedness and total boundedness
- 10.2 Alternative characterization of compactness

11 Limits and continuity

- 11.1 Accumulation points
- 11.2 Limit in an accumulation point
- 11.3 Uniqueness of limits
- 11.4 Sequential characterization of limits
- 11.5 Limit laws
- 11.6 Continuity
- 11.7 Sequential characterization of continuity
- 11.8 Rules for continuous functions
- 11.9 Images of compact sets under continuous functions are compact
- 11.10 Uniform continuity

12 Real-valued functions

- 12.1 More limit laws
- 12.2 Building of standard functions
- 12.3 Continuity of standard functions
- 12.4 Limits from the left and from the right
- 12.5 The extended real line
- 12.6 Limits to ∞ or $-\infty$
- 12.7 Limits at ∞ and $-\infty$
- 12.8 The Intermediate Value Theorem
- 12.9 The Extreme Value Theorem
- 12.10 Equivalence of norms
- 12.11 Bounded linear maps and operator norms

13 Differentiability

- 13.1 The derivative as a function
- 13.2 Constant and linear maps are differentiable
- 13.3 Bases and coordinates
- 13.4 The matrix representation
- 13.5 The chain rule
- 13.6 Sum, product and quotient rules
- 13.7 Differentiability of components
- 13.8 Differentiability implies continuity
- 13.9 Derivative vanishes in local maxima and minima
- 13.10 The Mean Value Theorem

14 Differentiability of standard functions

- 14.1 Global context
- 14.2 Polynomials and rational functions are differentiable
- 14.3 Differentiability of the standard functions

15 Directional and partial derivatives

- 15.1 A recurring and very important construction
- 15.2 Directional derivatives
- 15.3 Partial derivatives
- 15.4 The Jacobian of a map
- 15.5 Linearization and tangent planes
- 15.6 The gradient of a function

- 16 The Mean-Value Inequality
- 16.1 The mean-value inequality for functions defined on an interval
- 16.2 The mean-value inequality for functions on general domains
- 16.3 Continuous partial derivatives imply differentiability

17 Higher order derivatives

- 17.1 Multilinear maps
- 17.2 Relation to *n*-fold directional derivatives
- 17.3 A criterion for higher differentiability
- 17.4 Symmetry of second order derivatives
- 17.5 Symmetry of higher-order derivatives

- 18 Polynomials and approximation by polynomials
- **18.1** Homogeneous polynomials
- 18.2 Taylor's theorem
- 18.3 Taylor approximations of standard functions

19 Banach fixed point theorem

20 Implicit function theorem

- 20.1 The objective
- 20.2 Notation
- 20.3 The implicit function theorem
- **20.4** The inverse function theorem

21 Function sequences

- 21.1 Point-wise convergence
- 21.2 Uniform convergence
- 21.3 Preservation of continuity under uniform convergence
- 21.4 Differentiability theorem
- 21.5 The normed vector space of bounded functions

- 22 Function series
- 22.1 The Weierstrass M-test
- 22.2 Conditions for differentiation of function series

- 23 Power series
- 23.1 Convergence of power series
- 23.2 Standard functions defined as power series
- 23.3 Operations with power series
- 23.4 Differentiation of power series
- 23.5 Taylor series

24 Riemann integration in one dimension

- 24.1 Riemann integrable functions and the Riemann integral
- 24.2 Sums, products of Riemann integrable functions
- 24.3 Continuous functions are Riemann integrable
- 24.4 The fundamental theorem of calculus

25 Riemann integration in multiple dimensions

- 25.1 Partitions in multiple dimensions
- **25.2** Riemann integral on rectangles in \mathbb{R}^n
- 25.3 Properties of the multidimensional Riemann integral
- 25.4 Continuous functions are Riemann integrable
- 25.5 Fubini's theorem
- 25.6 The (topological) boundary of a set
- 25.7 Jordan content
- 25.8 Integration over general domains
- 25.9 The volume of bounded sets

- **26** Change-of-variables Theorem
- **26.1** Polar coordinates
- 26.2 Cylindrical coordinates
- **26.3** Spherical coordinates