Binary Tree: out most I children node, (left & right)

Tree Traversal

Bolomed: height of the last 8 vight submers of every node differ by ≤ 1 .

If a tree has n nodes, & is bolomized.

then its height = $O(\log_2 n)$.

If not bolomized, height = O(n).

Completed: every level (except the <u>last</u>) is completely - filled, as far as left possible.

if complete, must be balanced.

Intuition: home to get value for a problem w/ size n.
recursion: some problem of rize n-1.
example: gertleight().

Q1: Is a tree bollomed? Subtrees height differ by I or less.

Base: null - true.

remsion: if diff > 1, false.

return is bolanced (left) but is Bolanced (right)

Analysis:

IB (is Balanced)

each level: O(n)

(evel: O(logn).

Total: O(nlogn).

Q2. Judge of a BST is symmetric.

check both 6ft & right. is Symmetria (L, R).

Base: #1. L=mil && R= mil -> true

#2. L= mil 11 R= mil -> false.

#3. L. vol != R. vol -> false.

remion: Verm is Symmy (L.L. R.R).

S& ISCL.R. R.L.1.

analysis: Time: O(n/2) -- O(n).

Spane: O(height)

Iteratrie nay: Quane. At add 2 roots. & while (! Q. is Empty 11).

poil 2 wodes.

check base cases.

add NI. left & nz. right.

add NI. vight & nz. (eft.

Q3, if some Structure (omisted). Todo.

Q4. Reterrine if a BST is valid.

Valid: left only contains modes or/keys less than itself.

right -- grewer than

keth left & right subtrees also BST

Solm 0: #1 invoder traversal and store
#12 iterate & check ArrIi] < Arr Ii+1].

Printing but bond in space consumption.

Som O betrer: inorder traversal. When print new.

Solul: Sex min & max boundary for each lawrer (level)

whenever

Assurption: NO Duplicanes Go down to the Left: updare MAX: Go down to the right: updare MIN

Base: root == null -> true.

Remajon: if root.val & (min, max) - s false.

return remajon (root, left, min, root, va))

Il remain (root, right, root, and , max)

Note: function signature (not min, int max).

assume Integer. MIN or MAX_VALUE is not key.

IF NO SUCH ASSUMPTION 8.

use (Integer min, Integer max) and pass (mill, mil) to handle edge cases.

Nove: Recusion in Tree.

1. pars value from top to bottom and then pars back from bottom to top eng: validate BST.

2. Only pass values from bottom to top.

eg: gerHeighrii

is Balanced ii

is Symmetric()

Assign the value of each mode to be the total

of modes that belong to its loft subnee.

Q5. Prima BST keys in the given rounge (Unique Koys).

AKA: Trim a binony Tree. Liven low & high.

Keep the releasie order of the subtree.

Notes: instead of returning boolean. need to our off nodes that one not [Low, high].

BST might NOT be valid. Strictly.

Devernine which direction to go.

if root > loner: go down left. Within range. print if root < upper: go down right

If he navor to Trim the tice.

first, need to locate a node that's within the range.

if voot > high: root -> root.left

if root < low: root -> root.right

return root (within range)

Cut of Struction:

if root == null. Vetan null

if root < low, return remain (root. right)

if foot > high. Vetan remain (root. left).

Divide into small problems: (once ne found a node in range)

then deremine directions to go.

Go left: if root > low

root. laft = recursion (root. laft. low. high)

Go right: if root = high.

root. right = recusion (root, right. low. high)

At last return root (restructured)