## Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

## SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.03.2013

Arbeitszeit: 120 min

| Name:           |                                           |          |          |                  |          |         |                |
|-----------------|-------------------------------------------|----------|----------|------------------|----------|---------|----------------|
| Vorname(n):     |                                           |          |          |                  |          |         |                |
| Matrikelnumme   | r:                                        |          |          |                  |          |         | Note:          |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 | Aufgabe                                   | 1        | 2        | 3                | 4        | Σ       | 1              |
|                 | erreichbare Punkte                        | 10       | 10       | 10               | 10       | 40      |                |
|                 |                                           | 10       | 10       | 10               | 10       | 10      | ]<br>]         |
|                 | erreichte Punkte                          |          |          |                  |          |         | ]              |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
|                 |                                           |          |          |                  |          |         |                |
| Div             |                                           |          |          |                  |          |         |                |
| ${\bf Bitte}\;$ |                                           |          |          |                  |          |         |                |
| tragen Sie      | Name, Vorname und                         | Matrik   | elnumr   | ner auf          | dem I    | )eckbla | tt ein,        |
| rechnen S       | ie die Aufgaben auf se                    | paratei  | n Blätte | ern, <b>ni</b> e | cht auf  | dem A   | Angabeblatt,   |
| beginnen        | Sie für eine neue Aufg                    | abe im   | mer au   | ch eine          | neue S   | Seite,  |                |
| geben Sie       | auf jedem Blatt den N                     | Vamen    | sowie d  | lie Mat          | rikelnu  | mmer a  | an,            |
| begründer       | n Sie Ihre Antworten a                    | usführ   | lich und | d                |          |         |                |
|                 | ie hier an, an welchen<br>ntreten können: | n der fo | olgende  | n Tern           | nine Sie | e nicht | zur mündlichen |
|                 | □ Fr., 15.3.2013                          | 3        |          | $\square$ N      | Io., 18. | 3.2013  |                |

1. Die durch den Wellengang hervorgerufene Schaukelbewegung eines Passagierschiffes wird oft mit Hilfe von stabilisierenden Flossen kompensiert. Abbildung 1 zeigt eine vereinfachte Darstellung eines solchen Stabilisierungssystems.



Abbildung 1: Schaukelbewegung eines Passagierschiffes.

Die Wellenbewegungen wirken als externes Moment  $M_w$  und verursachen dabei eine Auslenkung  $\phi$  von der vertikalen Normalstellung des Schiffes mit dem Trägheitsmoment J. Demgegenüber wirken ein winkelproportionales Moment  $M_\phi$  mit der Proportionalkonstanten  $k_1$  und ein von der Position  $s \geq 0$  der Flosse abhängiges Moment  $M_f = k_2 \omega \tanh(s)$ , wobei  $\omega = \dot{\phi}$  die Drehwinkelgeschwindigkeit des Schiffes bezeichnet. Hierbei wird durch das stabilisierende Moment  $M_f$  der effektive Einfluss beider Flossen berücksichtigt. Das Teilsystem Flosse wird als ein Masse-Dämpfer System mit einer auf die Masse m wirkenden Kraft F und einer geschwindigkeitsproportionalen Dämpfung mit der Dämpfungskonstanten d modelliert.

Lösen Sie die nachfolgenden Teilaufgaben:

a) Stellen Sie die Modellgleichungen mit geeigneten Zustandsgrößen **x** in der Form 3 P.

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u, \chi)$$
$$\mathbf{y} = \mathbf{g}(\mathbf{x}, u)$$

mit dem Eingang u = F, der Störung  $\chi = M_w$  und dem Ausgang  $\mathbf{y} = [\phi, s]^T$  dar.

- b) Berechnen Sie die allgemeine Ruhelage des Systems  $\mathbf{x}_R$  für  $M_w = 0$ . Wie viele 2 P.| Ruhelagen hat das System?
- c) Linearisieren Sie das mathematische Modell um eine allgemeine Ruhelage  $\mathbf{x}_R$  2 P.| und stellen Sie das linearisierte System in der Form

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b} \Delta u$$
$$\Delta \mathbf{y} = \mathbf{C} \Delta \mathbf{x} + \mathbf{d} \Delta u$$

dar. Ist die Ruhelage des linearisierten autonomen Systems asymptotisch stabil? Begründen Sie Ihre Antwort. *Hinweis*: Es gilt:  $\frac{d}{dx} \tanh(x) = 1 - \tanh^2(x)$ .

d) Angenommen, auf das Teilsystem Flosse mit dem Anfangszustand s(0) = 3 P. $\dot{s}(0) = 0$  wirkt die Kraft  $F(t) = F_v(\sigma(t) - \sigma(t - T_F))$  mit konstantem  $F_v > 0$ . Wie muss  $T_F$  gewählt werden, damit gilt  $\lim_{t\to\infty} s(t) = s_R \neq 0$ .

## 2. Gegeben ist das System

$$\dot{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 2 \\ 1 & -2 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 2 & 10 \end{bmatrix} \mathbf{x}.$$

- a) Berechnen Sie die Eigenwerte und die Eigenvektoren des Systems. 3 P.
- b) Untersuchen Sie, ob das System vollständig beobachtbar ist. 2 P.
- c) Die Linkseigenvektoren des Systems errechnen sich zu  $\mathbf{w}_1^T = [\frac{1}{4} \frac{3}{4}I, I, 1], 2 P.|$   $\mathbf{w}_2^T = [\frac{1}{4} + \frac{3}{4}I, -I, 1]$  und  $\mathbf{w}_3^T = [1, 0, 0]$ . Bestimmen Sie, unter welchen Bedingungen an die Parameter  $b_1$ ,  $b_2$  und  $b_3$  des rein reellen Eingangsvektors  $\mathbf{b}$  das System vollständig erreichbar ist.
- d) Beweisen Sie, dass für den Fall einer  $(2 \times 2)$ -Matrix **A** mit verschiedenen Eigenwerten  $\lambda_1$ ,  $\lambda_2$  die zugehörigen Eigenvektoren  $\mathbf{v}_1$ ,  $\mathbf{v}_2$  linear unabhängig sind. Hinweis: Führen Sie den Beweis durch Widerspruch.

Hinweis: Die Teilaufgaben a) - d) können unabhängig voneinander gelöst werden.

- 3. Die folgenden Aufgaben können unabhängig voneinander gelöst werden.
  - a) Gegeben ist das zeitdiskrete System

4 P.|

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}_k.$$

Entwerfen Sie einen Zustandsregler, welcher jede Anfangsauslenkung  $\mathbf{x}_0$  in höchstens 3 Schritten in  $\mathbf{0}$  überführt.

b) Gegeben ist das zeitdiskrete System

4 P.|

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ -2 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}_k.$$

Geben Sie die reguläre Zustrandstransformation  ${\bf V}$  an, welche das System in Steuerbarkeitsnormalform überführt. *Hinweis*: Nutzen Sie hierzu die Einzelschritte der Herleitung der Formel von Ackermann und beachten Sie den Zusammenhang  ${\bf \Phi}_R {\bf V} = {\bf V} {\bf \Phi}$  sowie die Struktur eines Systems in Steuerbarkeitsnormalform.

c) Zeigen Sie, dass die Eigenschaft der vollständigen Erreichbarkeit eines linearen 2 P. zeitinvarianten Systems invariant gegenüber regulären Zustandstransformationen der Form  $\mathbf{x} = \mathbf{V}\mathbf{z}$  ist.

## 4. Gegeben ist der in Abbildung 2 dargestellte Regelkreis mit



Abbildung 2: Regelkreis mit Vorsteuerung.

$$S(s) = \frac{s+2}{(s+a)(s+1)}$$

$$R(s) = k_R \frac{1+sT}{s}$$

$$V(s) = k_V.$$

- a) Geben Sie die Führungsübertragungsfunktion  $T_{r,y}(s)$  des Systems an. 2 P.
- b) Kann das System für  $a \le -1$  und T = 0 stabilisiert werden? Begründen Sie 2 P.| Ihre Antwort.
- c) Sei a=-1 und T=3. Geben Sie jenen Wertebereich von  $k_R$  an, dass das  $3 \, \text{P.}|$  System BIBO-stabil ist.
- d) Sei  $R(s) = k_R$ . Berechnen Sie für a > 0 und allgemeiner Reglerverstärkung  $k_R$  3 P.| jenen Verstärkungsfaktor  $k_V$ , für welchen bei stationärem Eingang  $r(t) = r_{stat}$  für den Ausgang y(t) die Beziehung

$$\lim_{t \to \infty} y(t) = r_{stat}$$

gilt.