Self-learning Neural Network Based Traffic Signal Controller for an Isolated Intersection and Construction of a New Clustering Algorithm in Unsupervised Machine Learning

Ravil Mussabayev

April 26, 2018

Problem statement

Build an adaptive traffic signal controller for an isolated intersection. In prospect, it will be extended to a transport network of arbitrary size.

Solution method

Reinforcement learning (RL) has been used to solve the problem.

Basic elements of reinforcement learning:

- 1. The agent and the actions
- 2. The environment and its states
- 3. An action selection policy
- 4. A reward signal

Objective: through successive interaction with the environment train the agent to take actions that maximize the total reward it receives over the long run.

State space

$$NS \doteq D10 + D30$$

 $WE \doteq D40 + D20$
 $S \doteq (NS, WE)$

The state space: $\mathcal{S} \doteq \{(s_0, s_1) \mid s_0, s_1 \in \mathbb{Z}^+\}$

Action space

There are 3 actions:

- 1. $a_0 \doteq (0,0)$ do nothing
- 2. $a_1 \doteq (+dt, -dt)$ extend the NS green phase and shorten the WE green phase
- 3. $a_2 \doteq (-dt, +dt)$ shorten the NS greed phase and extend the WE green phase

The action space: $\mathcal{A} \doteq \{a_0, a_1, a_2\}$

Reward formula

Throughout the proposed algorithm the following exlusive <u>continuous</u> reward formula has been used:

$$S_t = (NS, WE) \to S_{t+1} = (NS', WE')$$
 (1)

$$R(S_{t}, S_{t+1}) = \mu \left(|NS - WE| - |NS' - WE'| \right) + + (1 - \mu) \left(NS + WE - \left(NS' + WE' \right) \right)$$
 (2)

 $\mu \in [0,1]$ is the trade-off between queue reduction and equilibrium terms.

The reward space: $\mathcal{R} \doteq \{R(S_0, S_1) \mid S_0, S_1 \in \mathcal{S}\}$

Markov decision process (MDP)

Discrete time steps: $t = 0, 1, 2, 3, \dots$

At each time step the agent-environment interaction is:

$$S_t \xrightarrow{A_t} (R_{t+1}, S_{t+1}),$$

where $S_t, S_{t+1} \in \mathcal{S}, A_t \in \mathcal{A}, R_{t+1} \in \mathcal{R}$.

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$

Return and policy

The return:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots, \ 0 \le \gamma \le 1$$
 (3)

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots)$$

$$= R_{t+1} + \gamma G_{t+1}$$
(4)

The policy $\pi: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$:

$$\pi(a|s) \doteq \Pr\{A_t = a \mid S_t = s\} \tag{5}$$

State value function

Given π , the state value function:

$$v_{\pi}(s) \qquad \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')] \qquad (6)$$

State-action value function

Given π , the state-action value function:

$$q_{\pi}(s, a) \qquad \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$$
(7)

The goal

Let $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s), \ \forall s \in \mathcal{S}$$
 (8)

$$q_*(s, a) \doteq \max_{\pi} q_{\pi}(s, a), \ \forall s \in \mathcal{S} \text{ and } \forall a \in \mathcal{A}(s)$$
 (9)

Bellman optimality: $v_*(s) = \max_{a \in \mathcal{A}(s)} q_*(s, a)$.

The greedy policy is one of the optimal ones:

$$\pi_*(s) \doteq \operatorname*{argmax}_{a} q_*(s, a) \tag{10}$$

Shallow Q-Network (SQN)

We approximate the true $q_*(s,a)$ by $\hat{q}(s,a,w)$.

At each time t the cost function is the squared error:

$$J_t(w_t) \doteq \frac{1}{2} \left(q_*(S_t, A_t) - \hat{q}(S_t, A_t, w_t) \right)^2 \tag{11}$$

We don't know $q_*(S_t, A_t)$, so we estimate it:

$$q_*(S_t, A_t) \approx U_t(S_t, A_t) \doteq R_{t+1} + \gamma \max_{a' \in A} \hat{q}(S_{t+1}, a', w_t)$$
 (12)

Shallow Q-Network (SQN)

$$J_t(w_t) \doteq \frac{1}{2} \left(U_t(S_t, A_t) - \hat{q}(S_t, A_t, w_t) \right)^2 \tag{13}$$

$$\nabla J_t(w_t) = (U_t(S_t, A_t) - \hat{q}(S_t, A_t, w_t)) \, \nabla_w \hat{q}(S_t, A_t, w_t)$$
 (14)

Update the weights by the gradient descent:

$$w_{t+1} \doteq w_t - \alpha \nabla J_t(w_t) \tag{15}$$

 $abla J_t(w_t)$ is computed by the backpropagation algorithm. lpha is the learning rate.

Shallow Q-Network (SQN). Implementation

- ▶ ε -greedy policy ($\varepsilon = 0.1$): choose action $\operatorname{argmax}_a \hat{q}(S_t, a, w_t)$ with probability 0.9, and a random action with probability 0.1
- Discounting factor $\gamma = 0.6$
- No-library Python 2-25-3 NN implementation. ReLU activation function in the hidden layer. Gradient descent with $\alpha=0.001$, 5 iterations with regularization $\lambda=0.03$
- ► Feature scaling and mean normalization ([-1,1])
- ▶ 1000 cycles of SUMO simulation

Why clustering?

Apply an efficient clustering algorithm to a history of occured states to obtain a good discretization of the state space.

Clustering. Problem statement

Let the data $D \doteq \{(x_i, y_i)\}_{i=1}^N$ be given.

Objective: identify groups of points that are in some sense similar to each other.

The new clustering algorithm should:

- address the problem of clusters of various densities
- be able to identify clusters of complex shapes

Local density function

$$f(x,y) \doteq \sum_{(x_i,y_i)\in D} e^{-\lambda((x-x_i)^2 + (y-y_i)^2)}$$

$$I = \begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} 1 + f_x^2 & f_x f_y \\ f_x f_y & 1 + f_y^2 \end{pmatrix}$$

$$II = \begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} -f_{xx} & -f_{xy} \\ -f_{xy} & -f_{yy} \end{pmatrix}$$

Mean curvature:

$$H = \frac{EN + GL - 2FM}{2(EG - F^2)}$$

Hypothesis

My conjecture: shift the points along the gradient of the mean curvature in order to obtain a skeletonization of each cluster.

Classification of a new point: classify to the cluster the skeleton of which is nearest to the point.

Conclusion

Yet I have not devised the way to distinguish among clusters.