DDM00-034

I Claim:

1	1.	A method for training a plurality of line drivers in a communication system; each			
2		respective line driver of said plurality of line drivers being coupled with at least one			
3		respective communication line at at least one respective connection locus; each said at			
4		least one respective communication line being configured for communicating with			
5		respective subscriber equipment at a respective subscriber locus distal from said			
6		res	respective connection locus using at least one selected communication tone-set of a		
7		plı	plurality of communication tone-sets; the method comprising the steps of:		
8		(a)	a) selecting a test line driver from said plurality of line drivers;		
9		(b)	(b) selecting a first said respective communication line coupled with said test line		
10			driver as a test line;		
11		(c)	(c) establishing synchrony with said respective subscriber equipment on said test line;		
12		(d)	choosing a respective said at least one selected communication tone-set;		
13		(e)	applying a test signal to said test line using said respective at least one selected		
14			communication tone-set;		
15		(f)	determining noise experienced on said test line using said test signal;		
16		(g)	(g) effecting evaluation of quality of said test line using said test signal; said quality		
17			of said test line using said test signal being acceptable when said noise		
18			experienced on said test line plus a noise margin is within a predetermined value		
19			range;		
20		(h)	when said quality is not acceptable, selecting another respective said at least one		
21			selected communication tone-set and repeating steps (e) through (g);		
22		(i)	when said quality is acceptable, designating said respective at least one selected		
23			communication tone-set for operational employment by said test line;		
24		(j)	repeating steps (b) through (i) until a set of communication lines of said at least		
25			one respective communication line coupled with said test line driver has been		
26			evaluated; and		
27		(k)	repeating steps (a) through (j) until a set of line drivers of said plurality of line		
28			drivers has been evaluated.		

DDM00-034

- 1 2. A method for training a plurality of line drivers in a communication system as recited
- 2 in Claim 1 wherein said noise margin is predetermined based upon the number of
- 3 communication lines included in said at least one communication line.
- 1 3. A method for training a plurality of line drivers in a communication system as recited
- 2 in Claim 1 wherein said noise margin is predetermined based upon the total number
- 3 of communication lines in said at least one communication line for all line drivers of
- 4 said plurality of line drivers.
- 1 4. A method for training a plurality of line drivers in a communication system as recited
- 2 in Claim 1 wherein said noise margin is dynamically determined for each iteration of
- 3 method step (g).
- 5. A method for training a plurality of line drivers in a communication system as recited 1
- in Claim 4 wherein said noise margin is reset when said noise experienced on said test 2
- 3 line degrades beyond a predetermined value for a predetermined time duration.
- 6. A method for training a line driver in a communication system; said line driver being 1
- 2 coupled with at least one respective communication line at at least one respective
- 3 connection locus; each said at least one respective communication line being
- configured for communicating with respective subscriber equipment at a respective 4
- subscriber locus distal from said respective connection locus using at least one 5
- selected communication tone-set of a plurality of communication tone-sets; the 6
- 7 method comprising the steps of:
- (a) selecting a first said respective communication line coupled with said line driver 8
- 9 as a test line;
- (b) establishing synchrony with said respective subscriber equipment on said test line; 10
- 11 (c) choosing a respective said at least one selected communication tone-set;
- (d) applying a test signal to said test line using said respective at least one selected 12 13 communication tone-set;

DDM00-034

21

22

23

24

25

- (e) determining noise experienced on said test line using said test signal;
- 15 (f) effecting evaluation of quality of said test line using said test signal; said quality
 16 of said test line using said test signal being acceptable when said noise
 17 experienced on said test line plus a noise margin is within a predetermined value
 18 range;
- (g) when said quality is not acceptable, selecting another said selected communication
 tone-set and repeating steps (d) through (f);
 - (h) when said quality is acceptable, designating said respective at least one selected communication tone-set for operational employment by said test line; and
 - (i) repeating steps (a) through (h) until a set of communication lines of said at least one respective communication line coupled with said test line driver has been evaluated.
- A method for training a line driver in a communication system as recited in Claim 6
 wherein said noise margin is predetermined based upon the number of
 communication lines included in said at least one communication line.
- 8. A method for training a line driver in a communication system as recited in Claim 6
 wherein said noise margin is dynamically determined for each iteration of method
- 3 step (f).
- A method for training a plurality of line drivers in a communication system as recited
 in Claim 8 wherein said noise margin is reset when said noise experienced on said test
- 3 line degrades beyond a predetermined value for a predetermined time duration.
- 1 10. A method for achieving a desired signal-to-noise ratio for a plurality of
- 2 communication lines coupled with a plurality of line drivers in a communication
- 3 system; each respective line driver of said plurality of line drivers being coupled with
- 4 at least one respective communication line of said plurality of communication lines at
- 5 at least one respective connection locus; each said at least one respective

	DDM00-034	19		
6	communication	ine being configured for communicating with respective subscriber		
7	equipment at a re	spective subscriber locus distal from said respective connection		
8	locus using at le	st one selected communication tone-set of a plurality of		
9	communication	one-sets; the method comprising the steps of:		
10	(a) selecting a te	st line driver from said plurality of line drivers;		
11	(b) selecting a fi	st said respective communication line coupled with said test line		
12	driver as a te	t line;		
13	(c) establishing	ynchrony with said respective subscriber equipment on said test line;		
14	(d) choosing a re	spective said selected communication tone-set;		
15	(e) applying a te	t signal to said test line using said respective selected		
16	communicati	on tone-set;		
17	(f) determining	oise experienced on said test line using said test signal;		
18	(g) effecting eva	uation of quality of said test line using said test signal; said quality		
19	of said test li	e using said test signal being acceptable when said noise		
20	experienced of	n said test line plus a noise margin is within a predetermined value		
21	range of said	signal-to-noise ratio;		
22	(h) when said qu	lity is not acceptable, selecting another said respective selected		
23	communicati	on tone-set and repeating steps (e) through (g);		
24	(i) when said qu	lity is acceptable, designating said selected communication tone-set		
25	for operations	l employment by said test line;		
26	(j) repeating step	s (b) through (i) until a set of communication lines of said at least		
27	one respectiv	communication line coupled with said test line driver has been		
28	evaluated; an			
29	(k) repeating step	s (a) through (j) until a set of line drivers of said plurality of line		
30	drivers has be	en evaluated.		
1	11. A method for ach	eving a desired signal-to-noise ratio for a plurality of		
2	communication li	communication lines coupled with a plurality of line drivers in a communication		

communication lines coupled with a plurality of line drivers in a communication
system as recited in Claim 11 wherein said noise margin is predetermined based upon
the number of communication lines included in said at least one communication line.

- 1 12. A method for achieving a desired signal-to-noise ratio for a plurality of
 2 communication lines coupled with a plurality of line drivers in a communication
 3 system as recited in Claim 11 wherein said noise margin is predetermined based upon
 4 the total number of communication lines in said at least one communication line for
 5 all line drivers of said plurality of line drivers.
- 13. A method for achieving a desired signal-to-noise ratio for a plurality of
 communication lines coupled with a plurality of line drivers in a communication
 system as recited in Claim 11 wherein said noise margin is dynamically determined
 for each iteration of method step (g).
- 1 14. A method for achieving a desired signal-to-noise ratio for a plurality of
 2 communication lines coupled with a plurality of line drivers in a communication
 3 system as recited in Claim 13 wherein said noise margin is reset when said noise
 4 experienced on said test line degrades beyond a predetermined value for a
 5 predetermined time duration.