Bioinformatics

Programming Assn 3

Kushagra Agarwal 2018113012

CODE USAGE

The code for the assignment is present in pairwise_aligner.py

Run: python3 pairwise_aligner.py

```
kushagra@kushagra:~/Documents/A2k20/Bioinformatics/Assign4/MyAligner$ python3 pairwise_aligner.py
This Pairwise Alignment code can perfome both:
1: Needleman-Wunch Algorithm
2: Smith-Waterman Algorithm
for both Protein and DNA sequences

Default Parameters used:
i) -10 for gap penalty
ii) Scoring Matrices: dnafull for DNA sequences and blossom62 for Proteins

Do you wish to use the default fasta files for alignment?
1) Yes
2) No
Enter your choice:
```

Press 1 to proceed with default sequences:

```
Using Default files:
DNA: DNA1.fasta (Accession ID: AF358259.1), DNA2.fasta (Accession ID: L03306.1)
Protein: Protein1.fasta (Accession ID: Q9BYF1), Protein2.fasta (AccessionID: Q5EGZ1)

Processing inputs and calculating alignments

Computing Global Alignment for DNA sequences ....
Done: Check output in GlobalAlignmentDNA.txt

Computing Local Alignment for DNA sequences ....
Done: Check output in LocalAlignmentDNA.txt

Computing Global Alignment for Protein sequences ....
Done: Check output in GlobalAlignmentProtein.txt

Computing Local Alignment for Protein sequences ....

Done: Check output in LocalAlignmentProtein.txt
```

Defaults used

Gap penalty:

- 1) -10 for Proteins
- 2) -10 for DNAs

Scoring matrices:

- 1) Blossom62 for Proteins
- 2) DNAfull for DNAs

DNA Sequences:

- 1) DNA1.fasta: AF358259.1 Homo sapiens glutaredoxin pseudogene 2
- 2) DNA2.fasta: L03306.1 Mus musculus core-binding factor mRNA

Protein Sequences:

- 1) Protein1.fasta: Q9BYF1 ACE2_HUMAN Angiotensin-converting enzyme 2
- 2) Protein2.fasta: Q5EGZ1 ACE2_RAT Angiotensin-converting enzyme 2

Comparing with EMBOSS NEEDLE

Parameters used in Options:

For protein

MATRIX		GAP OPEN		GAP EXTEND		END GAP PENALTY		END GAP OPEN		END GAP EXTEND	
BLOSUM62	*	10	v	10.0	*	true	*	10	*	10.0	*

For DNA

Protein1.fasta vs Protein2.fasta

Emboss: https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobld=emboss_needle-I20200916-095210-0643-418031-p1m

My output: (GlobalAlignmentProtein.txt)

```
ALIGNED SEQUENCES:

MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAED
MSSSCWLLLSLVAVATAQSLIEEKAESFLNKFNQEAED

Number of Matches: 664
Number of Mismatches: 141
Number of Gaps: 0

FINAL SCORE: 3594
```

DNA1.fasta vs DNA2.fasta

Emboss: https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobld=emboss_needle-l20200916-100144-0899-11843067-p1m

```
# # Aligned_sequences: 2
# 1: AF358259.1
# 2: L03306.1
# Matrix: EDNAFULL
# Gap_penalty: 10.0
# Extend_penalty: 10.0
#
# Length: 1608
# Identity: 795/1608 (49.4%)
# Similarity: 795/1608 (49.4%)
# Gaps: 193/1608 (12.0%)
# Score: -435.0
```

My output: (GlobalAlignmentDNA.txt)

Comparing with EMBOSS WATER

Parameters used in Options:

For protein

For DNA

Protein1.fasta vs Protein2.fasta

Emboss: https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobld=emboss_water-l20200916-100217-0638-47537074-p2m

```
# Aligned_sequences: 2
# 1: ACE2_HUMAN
# 2: ACE2_RAT
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 10.0
#
# Length: 805
# Identity: 664/805 (82.5%)
# Similarity: 725/805 (90.1%)
# Gaps: 0/805 (0.0%)
# Score: 3594.0
```

My output: (LocalAlignmentProtein.txt)

```
ALIGNED SEQUENCES:

1
MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAED
805
1
MSSSCWLLLSLVAVATAQSLIEEKAESFLNKFNQEAED
805
FINAL SCORE: 3594
```

DNA1.fasta vs DNA2.fasta

Emboss: https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobld=emboss_water-I20200916-100902-0844-75136608-p2m

Aligned_sequences: 2 # 1: AF358259.1 # 2: L03306.1 # Matrix: EDNAFULL

Gap_penalty: 10.0 # Extend_penalty: 10.0

Length: 265 # Identity: 149/265 (56.2%) # Similarity: 149/265 (56.2%) # Gaps: 31/265 (11.7%)

Score: 95.0

My output: (LocalAlignmentDNA.txt)

```
ALIGNED SEQUENCES:

294
ACAAG_ATTCAAGAT_TATTTGGAACA
553
270
AGAAGCAGGCAAGGTATACTT_GAA_G
508

FINAL SCORE: 95
```