

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Inf	s regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 2012		3. DATES COVERED 00-00-2012 to 00-00-2012					
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
PQIS 2012 Annual	5b. GRANT NUM	MBER					
	5c. PROGRAM E	ELEMENT NUMBER					
6. AUTHOR(S)	5d. PROJECT NU	JMBER					
				5e. TASK NUME	BER		
				5f. WORK UNIT NUMBER			
Petroleum Quality	ZATION NAME(S) AND AE Information Systen ,8725 John J. Kingn	0 0	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	ABILITY STATEMENT ic release; distributi	ion unlimited					
13. SUPPLEMENTARY NO	TES						
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	ATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	187	RESPONSIBLE PERSON				

Report Documentation Page

Form Approved OMB No. 0704-0188 A CD-ROM is included with the 2012 Petroleum Quality Information System (PQIS) Annual Report (see inside back cover). The CD-ROM contains the following features:

- The 2012 PQIS Annual Report
- All historical PQIS Annual Reports
- Abridged copies of PQIS databases (stripped of sensitive material)
- Detail Specification sheets for various products
- The DLA Energy Mission video and a Sandy Relief Effort video
- Web-links to the Defense Logistics Agency website and the Defense Logistics Agency Energy Energy Source magazine
- A Feedback/Comments screen

DEFENSE LOGISTICS AGENCY

ENERGY 8725 JOHN J. KINGMAN ROAD FORT BELVOIR, VIRGINIA 22060-6222

PETROLEUM QUALITY INFORMATION SYSTEM 2012 ANNUAL REPORT

DLA Energy is pleased to provide you with the 2012 edition of the "Petroleum Quality Information System (PQIS)." PQIS is an annual publication which is managed by the Quality / Technical Support office of DLA Energy. DLA Energy, in conjunction with the services, is pleased to continue providing fuel quality data for procured alternative fuels utilizing multiple processing techniques. This analysis, an early look at the quality of advanced alternative fuel processing techniques, represents the fuel used by the services to certify and approve their use in Military equipment. We are pleased to announce continued growth in the variety of products which are featured in this publication. This year, analysis is provided for one additional alternative fuel, ATJ8, as well as additional reporting for HRD76 and HRJ5. Analysis of the following products is continued from previous years:

- Aviation Fuels: JAA, JA1, JP4, JP5, JP8, JPTS and TS1
- Marine Fuels: Fuel Naval Distillate (F76), Marine Gas Oil (MGO), Intermediate Fuel Oil (RME180)
- Propellants: High Density Synthetic Hydrocarbon (JP10), and Rocket Grade Kerosene (RP1 and RP2).
- Lubricants: LTL, LO6, and LA6
- Alternative Fuels: Hydrotreated Renewable Jet (HRJ5, HRJ8 and HRD76)
- Additive: Fuel System Icing Inhibitor

We would like to thank the Quality Assurance Representatives (QARs) of DLA Energy and the representatives from the suppliers under our DLA Energy Contracts who have worked with the PQIS Team to ensure complete representation of purchased product. The result is the only worldwide comprehensive data repository of test results for refined fuel, lubricant, and fuel additive properties.

In our continued effort to provide you with reliable, accurate information, we would appreciate any feedback noting updates or suggestions on improving this book. Please contact Mr. Douglas Martin at Commercial (703) 767-8382, e-mail douglas.martin@dla.mil, with any questions or to obtain additional copies of this report or the CD-ROM.

PAMELA SERINO

Jamele In Souto

Director, Quality Technical Support Office Defense Logistics Agency Energy

1. Executive Summary	1
Contacts	2
Quality/Technical Support Directorate (DLA Energy-Q)	3
2. Introduction	5
2012 PQIS Report Information	6
Reporting Overview	8
Figure 2-1: Petroleum Administration for Defense Districts	8
Table 2-1: 12 Reporting Defense Regions and Areas of Responsibility	9
Figure 2-2: Map of the 12 Reporting Defense Regions	9
Table 2-2: 8-Year Breakdown by Product Grade by Volume	
Represented in PQIS	10
Figure 2-3: 2012 Percentage of Volume by Product Processed in PQIS	
Figure 2-4: 2012 Transportation Mode by Percentage Volume	
Figure 2-5: 2011 Transportation Mode by Percentage Volume	
Summary by Region	
Table 2-3: 2012 Breakdown of Total Number of Analysis Reports	12
Processed in PQIS by Product and Region	12
Table 2-4: 12-Year Batch Analysis Reports Processed by Region	
Table 2-5: Annual Volume of Fuel Processed by Product by Region in	12
PQIS, 2010–2012	13
1 010, 2010–2012	13
3. Product Data	15
Product Specifications	
JAA—2012 Data Summary	
Table 3-1: Jet A Turbine Fuel, Aviation, ASTM D 1655 (JAA),	10
2012 Source Inputs	18
Table 3-2: Jet A Turbine Fuel, Aviation, ASTM D 1655 (JAA),	10
2012 Test Results	10
JP4—2012 Data Summary	
Table 3-3: Turbine Fuel, Aviation, Grade JP4 (NATO	20
F-40), 2012 Source Inputs	20
Table 3-4: Turbine Fuel, Aviation, Grade JP4 (NATO	20
	21
F-40), 2012 Test Results	
JPTS—2012 Data Summary	22
Table 3-5: Turbine Fuel, Aviation, JPTS,	00
2012 Source Inputs	22
Table 3-6: Turbine Fuel, Aviation, JPTS,	00
2012 Test Results	
RP1—2012 Data Summary	24
Table 3-7: Propellant, Rocket Grade Kerosene, Grade RP-1,	
2012 Test Results	
HRJ5—2012 Data Summary	
Table 3-8: Hydrotreated Renewable JP5, 2012 Test Results	
ATJ8—2012 Data Summary	
Table 3-9: Neat Alcohol-to-Jet (ATJ8), 2012 Test Results	
HRD76—2012 Data Summary	27
Table 3-10: Hydrotreated Renewable Marine Diesel (HRD76),	
2012 Test Results	27

LTL—2012 Data Summary	28
Table 3-11: Lubricating Oil, Steam Turbine and Gear,	
Moderate Service (LTL), 2012 Test Results	28
LO6—2012 Data Summary	29
Table 3-12: Lubricating Oil, Shipboard Internal Combustion Engine,	
High-Output Diesel (LO6), 2012 Test Results	29
LA6—2012 Data Summary	30
Table 3-13: Lubricating Oil, Jet Engine, Grade 1010 (LA6),	
2012 Test Results	30
FSII—2012 Data Summary	31
Table 3-14: Inhibitor, Icing, Fuel System, High Flash	
NATO Code Number S-1745 (FSII), 2012 Test Results	31
2012 Product Detailed Assessment Reporting	32
4. JP8 Data	33
JP8—2012 Data Summary	34
Table 4-1: Data Summary, Turbine Fuel, Aviation, Kerosene Types,	
NATO F34 (JP8), 2012 Source Inputs	34
Table 4-2: Data Summary, Turbine Fuel, Aviation, Kerosene Types,	
NATO F34 (JP8), 2012 Test Results	35
JP8—2012 Regional Data Summary	
Table 4-3: Region 1 Summary	
Table 4-4: Region 2 Summary	
Table 4-5: Region 3 Summary	
Table 4-6: Region 4 Summary	
Table 4-7: Region 5 Summary	
Table 4-8: Region 6 Summary	
Table 4-9: Region 7 Summary	
Table 4-10: Region 8 Summary	
JP8—Assessment Summary	
Table 4-11: JP8 Additives and Associated MSEP Ratings	
Figure 4-1: Total Acid Number (mg KOH/g), maximum 0.015	
Figure 4-2: Total Acid Number (mg KOH/g), 12-Year Trend,	
maximum 0.015	45
Figure 4-3: Aromatics (vol %), maximum 25.0	
Figure 4-4: Sulfur Mercaptan (mass %), maximum 0.002	
Figure 4-5: Sulfur, Total (mass %), maximum 0.30	
Figure 4-6: Sulfur, Total (mass %), 12-Year Trend, maximum 0.30	
Figure 4-7: Distillation Initial Boiling Point (°C), Report	
Figure 4-8: Distillation 10% Recovered (°C), maximum 205	
Figure 4-9: Distillation 20% Recovered (°C), Report	
Figure 4-10: Distillation 50% Recovered (°C), Report	
Figure 4-11: Distillation 90% Recovered (°C), Report	
Figure 4-11: Distillation Final Boiling Point (°C), maximum 300	
Figure 4-13: Distillation Residue (vol %), maximum 1.5	
Figure 4-14: Distillation Loss (vol %), maximum 1.5	
Figure 4-15: Flash Point (°C), minimum 38	
Figure 4-16: Flash Point (°C), 12-Year Trend, minimum 38	
i igure 4-10. Flash Folint (C), 12-1ear Hend, Illillillidin 30	52

Figure 4-17. Density (kg/L @ 15 °C), minimum 0.775, maximum 0.640	. ၁၁
Figure 4-18: Density (kg/L @ 15 °C), 12-Year Trend, minimum 0.775,	ΕO
maximum 0.840 Figure 4-19: Freezing Point (°C), maximum –47	
Figure 4-20: Freezing Point (°C), 112-Year Trend, maximum –47	
Figure 4-21: Viscosity (mm²/s @ –20 °C), maximum 8.0	
Figure 4-22: Viscosity (mm²/s @ –20 °C), 12-Year Trend, maximum 8.0	
Figure 4-23: Net Heat of Combustion (MJ/kg), minimum 42.8	
Figure 4-24: Calculated Cetane Index, Report	
Figure 4-25: Hydrogen Content (mass %), minimum 13.4	
Figure 4-26: Hydrogen Content (mass %), 12-Year Trend, minimum 13.4	
Figure 4-27: Smoke Point (mm), minimum 25.0	
Figure 4-28: Smoke Point (mm), 12-Year Trend, minimum 25.0	
Figure 4-29: Naphthalene (vol %), maximum 3.0	
Figure 4-30: Naphthalene (vol %), 12-Year Trend, maximum 3.0	
Figure 4-31: Thermal Stability, Change in Pressure Drop (mm Hg @	
275 °C), maximum 25	60
Figure 4-32: Thermal Stability, Change in Pressure Drop (mm Hg @	
260 °C), maximum 25	60
Figure 4-33: Existent Gum (mg/100 mL), maximum 7.0	. 61
Figure 4-34: Particulate Matter (mg/L), maximum 1.0	. 61
Figure 4-35: Filtration Time (minutes), maximum 15	. 62
Figure 4-36: Water Separation Index (rating), minimum 70	. 62
Figure 4-37: Fuel System Icing Inhibitor (vol %), minimum 0.10,	
maximum 0.15	
Figure 4-38: Water Content—2012	
Figure 4-39: Water Content, January–June 2012	
Figure 4-40: Water Content, July–December 2012	. 64
5. JP5 Data	. 65
JP5—2012 Data Summary	. 66
Table 5-1: Data Summary, Turbine Fuel, Aviation,	
Grade JP5 (NATO Code F-44), 2012 Source Inputs	. 66
Table 5-2: Data Summary, Turbine Fuel, Aviation,	
Grade JP5 (NATO Code F-44), 2012 Test Results	
JP5—2012 Regional Data Summary	
Table 5-3: Region 3 Summary	
Table 5-4: Region 5 Summary	
Table 5-5: Region 7 Summary	
Table 5-6: Region 8 Summary	
JP5—Assessment Summary	
Table 5-7: JP-4 and JP-5 Additives and Associated MSEP Ratings	
Figure 5-1: Total Acid Number (mg KOH/g), maximum 0.015	. /3
Figure 5-2: Total Acid Number (mg KOH/g), 12-Year Trend, maximum	70
0.015Figure 5-3: Aromatics (vol %), maximum 25.0	
Figure 5-3: Aromatics (vol %), maximum 25.0	
Figure 5-5: Sulfur, Total (mass %), maximum 0.30	
1 19410 0-0. Dullul, 1 Olai (111400 70), 1114111111111 0.00	. , ,

	Figure 5-6: Sulfur, Total (mass %), 12-Year Trend, maximum 0.30	. 75
	Figure 5-7: Sulfur, Mercaptan (mass %), maximum 0.002	. 76
	Figure 5-8: Distillation Initial Boiling Point (°C), Report	. 76
	Figure 5-9: Distillation 10% Recovered (°C), maximum 205 ⁽¹⁸⁶⁾	
	(method D2887 limits in parentheses, °C)	. 77
	Figure 5-10: Distillation 10% Recovered (°C), 12-Year Trend, maximum	
	205 ⁽¹⁸⁶⁾ (method D2887 limits in parentheses, °C)	. 77
	Figure 5-11: Distillation 20% Recovered (°C), Report	. 78
	Figure 5-12: Distillation 50% Recovered (°C), Report	. 78
	Figure 5-13: Distillation 90% Recovered (°C), Report	. 79
	Figure 5-14: Distillation End Point (°C), maximum 300 ⁽³³⁰⁾ (method	
	D2887 limits in parentheses, °C)	. 79
	Figure 5-15: Distillation Residue (vol %), maximum 1.5	. 80
	Figure 5-16: Distillation Loss (vol %), maximum 1.5	. 80
	Figure 5-17: Flash Point (°C), minimum 60	. 81
	Figure 5-18: Flash Point (°C), 12-Year Trend, minimum 60	. 81
	Figure 5-19: Density (kg/L @ 15 °C), minimum 0.788, maximum 0.845	. 82
	Figure 5-20: Density (kg/L @ 15 °C), 12-Year Trend, minimum 0.788,	
	maximum 0.845	. 82
	Figure 5-21: Freezing Point (°C), maximum –46	. 83
	Figure 5-22: Freezing Point (°C), 12-Year Trend, maximum –46	. 83
	Figure 5-23: Viscosity (mm ² /s @ -20 °C), maximum 8.5	. 84
	Figure 5-24: Viscosity (mm²/s @ -20 °C), 12-Year Trend, maximum 8.5	. 84
	Figure 5-25: Heat Value, Heat of Combustion (MJ/kg), minimum 42.6	. 85
	Figure 5-26: Cetane Index (Calculated), Report	. 85
	Figure 5-27: Hydrogen Content (mass %), minimum 13.4	. 86
	Figure 5-28: Hydrogen Content (mass %), 12-Year Trend, minimum 13.4	. 86
	Figure 5-29: Smoke Point (mm), minimum 19.0	. 87
	Figure 5-30: Thermal Stability, Change in Pressure Drop (mm Hg @	
	275 °C), maximum 25	. 87
	Figure 5-31: Existent Gum (mg/100 mL), maximum 7.0	. 88
	Figure 5-32: Particulate Matter (mg/L), maximum 1.0	. 88
	Figure 5-33: Filtration Time (minutes), maximum 15	. 89
	Figure 5-34: Filtration Time (minutes), 12-Year Trend, maximum 15	. 89
	Figure 5-35: Micro Separometer (rating), minimum 70	. 90
	Figure 5-36: Fuel System Icing Inhibitor (vol %), minimum 0.10,	
	maximum 0.15	. 90
	IAA Dete	
_	IA1 Data	-
1.	—2012 Data Summary	. 92
	Table 6-1: Data Summary, Jet A–1 Turbine Fuel, Aviation, Defence	
	Standard 91–91, 2012 Source Inputs	. 92
	Table 6-2: Data Summary, Jet A–1 Turbine Fuel, Aviation, Defence	
	Standard 91–91, 2012 Test Results	
1	—2012 Regional Data Summary	
	Table 6-3: Region 6 Summary	
	Table 6-4: Region 7 Summary	
	Table 6-5: Region 8 Summary	
1	-Assessment Summary	. 97

6. JA

JA

JA

	Figure 6-1: Total Acid Number (mg KOH/g), maximum 0.015	98
	Figure 6-2: Total Acid Number (mg KOH/g), 9-Year Trend,	
	maximum 0.015	98
	Figure 6-3: Aromatics (vol %), maximum 25.0	99
	Figure 6-4: Aromatics (vol %), 9-Year Trend, maximum 25.0	99
	Figure 6-5: Sulfur, Total (mass %), maximum 0.30	100
	Figure 6-6: Sulfur, Total (mass %), 9-Year Trend, maximum 0.30	100
	Figure 6-7: Sulfur Mercaptan (mass %), maximum 0.003	101
	Figure 6-8: Distillation Initial Boiling Point (°C), Report	101
	Figure 6-9: Distillation 10% Recovered (°C), maximum 205.0	102
	Figure 6-10: Distillation 10% Recovered (°C), 9-Year Trend,	
	maximum 205.0	102
	Figure 6-11: Distillation 50% Recovered (°C), Report	103
	Figure 6-12: Distillation 90% Recovered (°C), Report	103
	Figure 6-13: Distillation Final Boiling Point (°C), maximum 300.0	104
	Figure 6-14: Distillation Final Boiling Point (°C), 9-Year Trend,	
	maximum 300.0	104
	Figure 6-15: Distillation Residue (vol %), maximum 1.5	105
	Figure 6-16: Distillation Loss (vol %), maximum 1.5	106
	Figure 6-17: Distillation Loss (vol %), 9-Year Trend, maximum 1.5	106
	Figure 6-18: Flash Point (°C), minimum 38.0	107
	Figure 6-19: Flash Point (°C), 9-Year Trend, minimum 38.0	
	Figure 6-20: Density (kg/m³ @ 15 °C), minimum 775, maximum 840	108
	Figure 6-21: Density (kg/m³ @ 15 °C), 7-Year Trend, minimum 775,	
	maximum 840	108
	Figure 6-22: Freezing Point (°C), maximum –47	109
	Figure 6-23: Freezing Point (°C), 9-Year Trend, maximum –47	
	Figure 6-24: Viscosity (mm²/s @ −20 °C), maximum 8.0	
	Figure 6-25: Viscosity (mm²/s @ −20 °C), 9-Year Trend, maximum 8.0	110
	Figure 6-26: Net Heat of Combustion (MJ/kg), minimum 42.80	111
	Figure 6-27: Smoke Point (mm), minimum 25.0	
	Figure 6-28: Naphthalene (vol %), maximum 3.0	112
	Figure 6-29: Thermal Stability, Change in Pressure Drop (mm Hg @	
	260 °C), maximum 25	
	Figure 6-30 Existent Gum (mg/100 mL), maximum 7.0	
	Figure 6-31: Particulate Contamination (mg/L), maximum 1.0	
	Figure 6-32: Water Separation Index (rating), minimum 70	114
	Figure 6-33: Water Separation Index (rating), 9-Year Trend,	
	minimum 70	114
7	E76 Data	115
	F76 Data	
Г/	6—2012 Data Summary	110
		116
	2012 Source Inputs	110
	2012 Test Results	117
F7	6—2012 Regional Data Summary	
Γ/	o—2012 Regional Data Summary	
	Table 1-0. Neglott 3 Suttituary	110

Table 7-4: Region 5 Summary	119
Table 7-5: Region 6 Summary	120
Table 7-6: Region 7 Summary	121
Table 7-7: Region 8 Summary	122
Table 7-8: Region 9 Summary	123
F76—Assessment Summary	124
Figure 7-1: Acid Number (mg KOH/g), maximum 0.30	125
Figure 7-2: Acid Number (mg KOH/g), 12-Year Trend,	
maximum 0.30	125
Figure 7-3: Sulfur Content (wt. %), maximum 0.5	126
Figure 7-4: Sulfur Content (wt. %), 9-Year Trend, maximum 0.5	126
Figure 7-5: Distillation 10% Point (°C), Report	127
Figure 7-6: Distillation 50% Point (°C), Report	127
Figure 7-7: Distillation 90% Point (°C), maximum 357	128
Figure 7-8: Distillation End Point (°C), maximum 385	128
Figure 7-9: Distillation Residue + Loss (vol %), maximum 3.0	129
Figure 7-10: Flash Point (°C), minimum 60	130
Figure 7-11: Flash Point (°C), 12-Year Trend, minimum 60	130
Figure 7-12: Density (kg/m³ @ 15 °C), maximum 876	
Figure 7-13: Density (kg/m³ @ 15 °C), 12-Year Trend, maximum 876	
Figure 7-14: Viscosity (mm²/s @ 40 °C), minimum 1.7, maximum 4.3	
Figure 7-15: Viscosity (mm²/s @ 40 °C), 12-Year Trend, minimum 1.7,	
maximum 4.3	132
Figure 7-16: Cetane Index (Calculated), minimum 43	133
Figure 7-17: Hydrogen Content (wt. %), minimum 12.5	133
Figure 7-18: Cloud Point (°C), maximum –1	134
Figure 7-19: Cloud Point (°C), 9-Year Trend, maximum –1	134
Figure 7-20: Pour Point (°C), maximum –6	135
Figure 7-21: Pour Point (°C), 9-year Trend, maximum –6	
Figure 7-22: Ash (wt. %), maximum 0.005	
Figure 7-23: Particulate Contamination (mg/L), maximum 10	
Figure 7-24: Particulate Contamination (mg/L), 12-Year Trend,	
maximum 10	137
Figure 7-25: Carbon Residue on 10% Bottoms: D-524 (wt. %),	
maximum 0.20	
Figure 7-26: Carbon Residue on 10% Bottoms: D-189 and D-4530 (wt. 9	%),
maximum 0.14	
Figure 7-27: Demulsification (minutes @ 25 °C), maximum 10	
Figure 7-28: Storage Stability: D-2274 (mg/100 mL), maximum 1.5	
Figure 7-29: Storage Stability: D-5304 (mg/100 mL), maximum 3.0	140
8. MGO Data	141
MGO—2012 Data Summary	
Table 8-1: Data Summary, ISO-8217, Marine Gas Oil,	_
Grade DMA Requirements, 2012 Source Inputs	142
Table 8-2: Data Summary, ISO-8217, Marine Gas Oil,	
Grade DMA Requirements, 2012 Test Results	142
MGO—2012 Regional Data Summary	

Table 8-3: Region 1 Summary	143
Table 8-4: Region 2 Summary	143
Table 8-5: Region 3 Summary	144
Table 8-6: Region 5 Summary	144
Table 8-7: Region 8 Summary	145
Table 8-8: Region 9 Summary	145
Table 8-9: Region 10 Summary	146
MGO—Assessment Summary	147
Figure 8-1: Cetane Index (calculated), minimum 40	149
Figure 8-2: Cetane Index (calculated), 12-Year Trend, minimum 40	149
Figure 8-3: Flash Point (°C), minimum 60	150
Figure 8-4: Pour Point (°C), maximum –6 (winter quality)	
or 0 (summer quality)	150
Figure 8-5: Kinematic Viscosity (mm ² /s @ 40 °C), minimum 2.000,	
maximum 6.000	151
Figure 8-6: Kinematic Viscosity (mm ² /s @ 40 °C), 12-Year Trend,	
minimum 2.000, maximum 6.000	151
Figure 8-7: Density (kg/m³ @ 15 °C), maximum 890	152
Figure 8-8: Density (kg/m³ @ 15 °C), 12-Year Trend, maximum 890	152
Figure 8-9: Carbon Residue (10% Bottoms), D-4530 (mass %),	
maximum 0.30	153
Figure 8-10: Ash (mass %), maximum 0.010	153
Figure 8-11: Sulfur (mass %), maximum 1.0	154
Figure 8-12: Sulfur (mass %), 12-Year Trend, maximum 1.0	154
Figure 8-13: Acid Number (mg KOH/g), maximum 0.5	155
Figure 8-14: Oxidation Stability (mg/100 mL), maximum 25	155
Figure 8-15: Lubricity, corrected wear scar diameter @ 60 °C (μm),	
maximum 520	156
Figure 8-16: FAME (vol %), maximum 0.5	156
In-Line Sampling Program	157
Figure 8-17: In-Line Sampling Program Activity, Total Samples Proces	sed,
CY 2005-CY 2012	157
Figure 8-18: MGO In-Line Sampling Program, Characteristic Failure	
Occurrences, MIL-DTL-16884 Requirements, CY 2012	158
Figure 8-19: MGO In-Line Sampling Program, Characteristic Failure	
Occurrences, ISO-8217, Marine Gas Oil, Grade DMA	
Requirements, CY 2012	158
9. TS1 Data	150
TS1—2012 Data Summary	
Table 9-1: Data Summary, Turbine Fuel, Aviation, TS1 Russian	100
Grade, 2012 Source Inputs	160
Table 9-2: Data Summary, Turbine Fuel, Aviation, TS1 Russian	100
Grade, 2012 Test Results	161
TS1—Assessment Summary	
Figure 9-1: Density (kg/m³ @ 20 °C), minimum 775	
Figure 9-2: Fractional Composition (Distillation), Temperature at Start	103
(Initial Boiling Point) (°C), maximum 150	163
(initial boiling Foility (b), maximum 100	100

Figure 9-3: Fractional Composition (Distillation), 10% Recovered (°C),	
maximum 165	. 164
Figure 9-4: Fractional Composition (Distillation), 50% Recovered (°C),	
maximum 195	. 164
Figure 9-5: Fractional Composition (Distillation), 90% Recovered (°C),	
maximum 230	. 165
Figure 9-6: Fractional Composition (Distillation), 98% Recovered (°C),	
maximum 250	. 165
Figure 9-7: Viscosity (mm ² /s [cSt] @ 20 °C), minimum 1.25	. 166
Figure 9-8: Viscosity (mm ² /s [cSt] @ -40 °C), Report	. 166
Figure 9-9: Viscosity (mm ² /s [cSt] @ -20 °C), maximum 8.0	. 167
Figure 9-10: Estimate of Heat Value (kJ/kg), minimum 42,900	. 167
Figure 9-11: Height of Non-Smoking Flame (mm), minimum 25.0	. 168
Figure 9-12: Acidity (mg KOH/100cm ³), maximum 0.7	. 168
Figure 9-13: Flash Point (°C), minimum 28.0	. 169
Figure 9-14: Temperature of Crystallization (°C), maximum –50	. 169
Figure 9-15: Aromatics (vol %), maximum 22.0	. 170
Figure 9-16: Concentration of Resins (mg/100cm ³), maximum 5	. 170
Figure 9-17: Sulfur, Mercaptan (mass %), maximum 0.003	. 171
Figure 9-18: Sulfur, Total (mass %), maximum 0.25	. 171

1. Executive Summary

1. Executive Summary

Contacts

For reports and requests for information from the Petroleum Quality Information System (PQIS) database, please contact:

Defense Logistics Agency Energy, DLA Energy-QT

ATTN: Mr. Douglas Martin 8725 John J. Kingman Road Fort Belvoir, VA 22060-6222

Telephone: (703) 767-8382 (DSN 427-8382) Facsimile: (703) 767-8747 (DSN 427-8747)

E-mail: Douglas.Martin@dla.mil

For Defense Logistics Agency Energy and Product Technology and Standardization Division (DLA Energy–QT) questions, please contact:

Defense Logistics Agency Energy, DLA Energy-QT

ATTN: Mr. Daniel Baniszewski

Chief, Product Technology and Standardization Division

Room 2915

Telephone: (703) 767-8740

Quality/Technical Support Directorate (DLA Energy-Q)

DLA Energy–Q (comprising QT, QA, and QR) provides quality and technical support in certification, quality assurance, and emerging research for supplying DLA Energy customers with fuel and energy-related products.

Product Technology and Standardization Division (DLA Energy–QT)

DLA Energy–QT acts as the principal technical adviser to the Director of DLA Energy for technical matters on petroleum, missile fuels, coal, and related products and services. It maintains specification and measurement contract clauses and represents DLA Energy at industry standardization groups to ensure that product specification changes do not adversely impact end-user applications. The division reviews and approves all cataloging changes for both petroleum and aerospace energy products and serves as the lead standardization activity for petroleum products in the Department of Defense (DoD). QT provides technical support for the introduction of new supply lines such as alternative fuels and for resolving problems in storage tanks, transportation, and handling systems caused by fuel chemistry. In addition, QT maintains the PQIS database.

Quality Operations Division (DLA Energy-QA)

DLA Energy–QA acts as the principal adviser and assistant to the Director for developing, monitoring, coordinating, publishing, and implementing quality policies and programs for DLA Energy–supplied commodities. It provides quality assurance (QA) and quality surveillance (QS) support to DoD and civilian agencies as defined in interservice support agreements and directives.

Quality Research Division (DLA Energy-QR)

DLA Energy–QR is the research and development (R&D) arm of DLA Energy–Q, which seeks out R&D solutions for renewable energy initiatives as well as alternative and synthetic fuels to meet military service needs while reducing DoD's carbon footprint. These solutions help secure installation energy, reduce petroleum need and consumption, and deliver fuel more efficiently and economically.

1. Executive Summary

2. Introduction

2012 PQIS Report Information

Terminology

Spectender. A complete specification analysis report of a product being offered for acceptance by the U.S. Government. It is the written report of results for full specification testing of a designated batch of product offered for acceptance.

Batch Analysis. Reflects one spectender series of test results (batch), regardless of how many shipments are made from the source tank or whether more than one tank is involved in a total loading or product movement.

Volume. For the purposes of this report, volume is expressed in millions of U.S. gallons, unless otherwise indicated.

Region. A grouping of states or countries into defined geographical areas, affording a more specific or focused data analysis for a particular area of interest. It is based on the U.S. Department of Energy–designated Petroleum Administration for Defense Districts (PADDs), cited here to provide a standard industry reference for comparative study. These do not correlate with the Defense Fuel Regions or Offices. Because shipments can originate and terminate in different regions, the determination of the region is based on the refinery location, rather than on the receipt location.

Mean. The test result of each batch analysis added and divided by the number of batches. This average is based on occurrences of test values.

Example: Batch A, representing 1,000,000 U.S. gallons with a flash point of $46.0\,^{\circ}$ C, and Batch B, representing 500,000 U.S. gallons with a flash point of $43.5\,^{\circ}$ C.

Calculation: $(46.0 + 43.5)/2 = \text{mean or average flash point of } 44.75 \,^{\circ}\text{C}$.

Weighted Mean. The volumetrically weighted average, based on volumes of product represented by test values.

Example: Batch A, representing 1,000,000 U.S. gallons with a flash point of 46.0 °C, and Batch B, representing 500,000 U.S. gallons with a flash point of 43.5 °C.

Calculation: $[(46.0 \times 1,000,000) + (43.5 \times 500,000)]/1,500,000$ = (67,750,000/1,500,000) = weighted mean flash point of 45.17 °C.

Note: Here, the two averaging methods differ by 0.42 °C. Each uses a different basis to calculate the average. Means are provided for each property characteristic for total product

procurements in this report. Weighted means are provided as well and are used for histograms and trends.

NR. Not reported or recorded. Used in charts to indicate that no value was used in that instance.

NP. Not procured during the reporting period.

Data Reporting

The data presented in this report have been carefully evaluated for accuracy and completeness. A CD-ROM, which includes abridged copies of PQIS databases stripped of sensitive material, is available to all users. The results of our analyses may have been affected by data in the unabridged version, so your analyses could produce slightly different results.

Although some reporting inconsistencies are inevitable, every effort has been made for complete accountability in collecting, analyzing, and presenting the data in this report. Data shortfalls range from inapplicability because of processing or the test methods employed to exemption in particular contracts or purchase orders. Logistical and data collection challenges also affect the process. The statistics presented are carefully selected and, where possible, weighted against volumetric validations.

Only analysis data from the associated spectender (batch) are used for the completed delivery amounts received during the calendar year. When data fall short or limited procurements reduce the volume of data available, only essential data are charted in summary tables for informational purposes. For instance, see the tables provided in the Product Data section.

In the larger fuel sections included in the report (JP8, JP5, etc.), source inputs tables specify the volume of fuel and the number of reports on which a fuel characteristic was analyzed. Tables show statistical summaries of minimum, maximum, average, and volumetrically weighted means for test results by properties. When applicable, statistical summaries for test properties also are segregated by geographic source of procurement. Histograms chart the distribution of 2012 test results to the volume of fuel, except for TS1, which bases the histograms on the count of batch analyses, as volumes were not recorded for this fuel.

Note: In histograms, the far left bar represents the percent volume of fuel associated with the minimum data value. Any other bar represents the percent volume of fuel greater than the data value of the bar to the immediate left of it and up to and including the value of that bar.

2. Introduction

Reporting Overview

Defense Fuel Region and Petroleum Administration for Defense Districts

DoD has 12 regions in the reporting structure. Regions 1 through 5—designated as PADDs—handle CONUS procurements (Figure 2-1). Regions 6 through 12 handle OCONUS procurements. Table 2-1 (page 9) lists all Defense Fuel Regions and their areas of responsibility, and Figure 2-2 (page 9) shows their locations worldwide. These regional designations are used throughout the report to identify the procurement source by geographic area and to outline CONUS and OCONUS bulk procurement acceptance responsibilities and PQIS activity processed by geographic location.

Table 2-2 (page 10) displays an 8-year breakdown by product grade by volume represented in the PQIS database. All bulk products are illustrated for 2012 by percentage of volume by fuel in Figure 2-3 (page 10). Volumes in Table 2-2 and volumes and percentages in Figure 2-3 do not represent what is procured by DLA Energy, but what is processed through the PQIS database through received test reports. Figures 2-4 and 2-5 (page 11) summarize the present and previous reporting year transportation methods used in support of the accepted procurements.

Figure 2-1: Petroleum Administration for Defense Districts

Region	Title	PADDs	State or Countries
1	East Coast	ı	ME, VT, NH, MA, RI, CT, NY, PA, NJ, DE, MD, VA, WV, NC, SC, GA, FL
2	East Central		ND, SD, MN, IA, NE, WI, MI, OH, KY, TN, IN, IL, MO, KS, OK
3	Gulf Coast	III	AL, MS, AR, LA, TX, NM
4	West Central	IV	MT, ID, WY, UT, CO
5	West Coast	V	WA, OR, CA, NV, AZ
6	Middle East		Kuwait, Bahrain, Pakistan, United Arab Emirates
7	European		Europe, Israel, Turkey
8	Pacific		Korea, Japan, HI, AK, Australia, Russia, Singapore, China
9	Caribbean		Coastal Aruba, Bermuda, Bahamas, Barbados, British Virgin Islands, Cuba, Dominican Republic, Jamaica, Grand Cayman, Martinique, Puerto Rico, Virgin Is- lands
1 10	Central & South America		Belize, Columbia, Curacao, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Peru
11	Canada		Canada
12	Africa		Cape Verde, Ghana

Table 2-1: 12 Reporting Defense Regions and Areas of Responsibility

Figure 2-2: Map of the 12 Reporting Defense Regions

2. Introduction

8-Year	8-Year Breakdown by Product Grade by Volume (millions of gallons)										
Product	2005	2006	2007	2008	2009	2010	2011	2012			
AN8	3.52	3.60	NR	NR	NR	4.62	NP	NP			
JA1	178.63	233.15	326.32	339.20	506.55	302.96	467.90	470.02			
JAA	NP	NP	NP	NP	12.01	82.50	55.11	172.90			
JP4	0.74	0.69	1.30	0.99	0.83	1.66	0.92	1.33			
JP5	588.63	565.17	502.26	481.92	562.86	509.01	532.06	468.27			
JP8	2,861.96	2,603.10	2,286.62	2,364.57	1,968.27	1,958.43	1,839.24	1,746.03			
JPTS	3.32	1.41	3.89	4.46	3.52	1.92	14.78	3.63			
F76	563.38	539.67	565.48	597.01	514.67	507.77	610.24	500.07			
RME	11.94	NR	NR	NR	5.12	NR	6.05	NR			
MGO	6.51	2.19	5.53	4.45	1.39	4.88	6.71	3.27			
Totals	4,218.63	3,948.98	3,691.40	3,792.59	3,575.23	3,373.74	3,533.01	3,365.51			

Table 2-2: 8-Year Breakdown by Product Grade by Volume Represented in PQIS (millions of gallons)

Note: Although other products were procured in 2012, such as TS1, RP1, alternative fuels, lubricants, and fuel system icing inhibitor, either volumes were not reported for these fuels or these fuels were procured in limited amounts. In such instances, products were not included in Table 2-2.

Bulk Products Represented by Percent Volume Total 2012 U.S. Gallons—3,365,507,266

Figure 2-3: 2012 Percentage of Volume by Product Processed in PQIS

2012—Transportation Method by Percent Volume Total 3,362,238,371 U.S. Gallons

Figure 2-4: 2012 Transportation Mode by Percentage Volume

2011—Transportation Method by Percent Volume Total 3,526,301,297 U.S. Gallons

Figure 2-5: 2011 Transportation Mode by Percentage Volume

Note: Transportation modes are not captured for Marine Gas Oil (MGO) in the PQIS database. MGO volume totals are not included in Figures 2-4 and 2-5.

2. Introduction

Summary by Region

Table 2-3 breaks down the number of analysis reports processed in the PQIS by product and individual region in 2012. Clause E40.05, Material Inspection and Receiving Report, cited in DLA Energy contracts, requires fuel contractors to submit a copy of the complete laboratory test report from each shipping tank used for shipments to DLA Energy customers. For many fuels in the product sections, source inputs tables detail the volume and number of reports used in calculating product test values. For products with limited batch reports and for region summary tables, only the total test results and volume for the product or region are provided. Analysis and volume totals are not provided for each fuel characteristic in these instances.

	PQIS Batch Analysis Reports Processed by Region—2012												
Fuel	1	2	3	4	5	6	7	8	9	10	11	12	Total
AN8	_	_	_	_	_	_	_	_	_	_	_		_
JA1	_	_	_	_	_	16	156	5	_	_	_	_	177
JAA	12	28	49	9	85	_	_	_	_	_	_	_	183
JP4	_	_	_	_	_	_	_	137	_	_	_	_	137
JP5	_	_	79	_	61	_	12	21	_	_	_	_	173
JP8	7	316	534	127	149	75	20	145	_	—	_	_	1,373
JPTS	_	_	37	_	_	_	_	7	_	_	_	_	44
JP10	_	_	_	_	_	_	_	_	_	_	_	_	_
F76	_	_	29	_	20	17	10	29	11	_	_	_	118
MGO	29	14	2	_	6	_	_	11	13	36	_	_	111
RDF	_	_	_	_	_	8	_	_	_	_	_	_	8
RP1	_	_	20	_	_	_	_	_	_	_	_	_	20
RP2	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
TS1	_	_	_	_	_	_	_	84	_	_	_	_	84
Totals	48	358	750	136	321	116	198	439	24	36	_	_	2,428

Table 2-3: 2012 Breakdown of Total Number of Analysis Reports Processed in PQIS by Product and Region

	and by Froduction Region												
	12-Year Batch Analysis Reports Processed by Region												
Year	1	2	3	4	5	6	7	8	9	10	11	12	Totals
2001	73	504	1,050	225	439	36	184	362	20		_	_	2,893
2002	113	411	1,025	193	464	95	193	290	18	_	_	_	2,802
2003	82	335	866	166	412	174	225	317	24	_	_	_	2,601
2004	6	486	1,121	152	525	195	229	296	14	_	_	_	3,024
2005	131	316	1,200	172	444	195	194	264	53	49	4	2	3,024
2006	18	301	1,111	147	436	261	122	415	43	11	1	_	2,866
2007	118	265	800	131	413	286	138	336	26	26	_	1	2,540
2008	77	315	934	130	426	292	180	327	41	23	2	4	2,751
2009	31	353	922	129	337	121	116	220	7	5	1	_	2,242
2010	52	344	918	134	363	106	117	433	35	50	3	3	2,558
2011	76	379	837	94	416	134	316	382	15	38	1	_	2,689
2012	48	358	750	136	321	116	198	439	24	36	_	_	2,428

Table 2-4: 12-Year Batch Analysis Reports Processed by Region

Note: The region was not recorded for two F76 samples in 2012, but these samples are still included in the 2012 total number of samples in Tables 2-3 and 2-4. One MGO sample with no region assigned is included in the 2011 total.

The values in Table 2-4 represent the PQIS availability of possible spectender analysis reports for individual batches processed by region for calendar years 2001–2012.

Table 2-5 shows a 3-year history of volume by product by region processed in the PQIS.

Although other products were procured in 2012, such as TS1, RP1, alternative fuels, lubricants, and fuel system icing inhibitor, volumes either were not reported for these fuels or these fuels were procured in limited amounts. For these reasons, all products are not included in Table 2-5.

PQ	IS A	nnua	l Volu	me by	Proc	duct b	y Regi	on, 20	010-20	012 (ı	nillio	ons	of ga	allons)
Year	Fuel	1	2	3	4	5	6	7	8	9	10	11	12	Totals
	AN8	_	-	_	_	_	_	_	4.62	_	_	_		4.62
	JA1	_	_	_	_	_	66.59	196.50	51.86	_	_	_	_	314.95
	JAA	_	1.55	55.83	_	23.86	_	_	_	_	_	_	_	81.24
	JP4	_	_	_	_	_	_	_	1.58	_	_	_	_	1.58
2010	JP5	_	6.96	249.50	_	131.08	9.88	22.80	62.11	_	_	 	_	482.33
	JP8	13.72	197.21	739.44	69.04	290.91	185.54	166.43	265.76	_	_	_	_	1,928.05
	JPTS	_	_	1.77	_	_	_	_	NR	_	_	_	_	1.77
	F76	_	_	123.93	_	54.30	97.97	59.97	163.17	_	_	_	_	499.34
	MGO	0.55	0.40	0.02	_	0.39	_	_	1.11	0.50	1.46	0.06	0.08	4.58
	AN8	_	1	_	_	_	_	_	1	_	_	_		NP
	JA1	_	_	_	_	_	210.36	257.54	NR	_	_	_	_	467.90
	JAA	NR	3.09	18.49	_	33.63	_	_	_	_	_	_	_	55.20
	JP4	_	_	_	_	_	_	_	0.93	_	_	_	_	0.93
2011	JP5	_	0.48	235.85	_	99.90	73.87	62.38	56.64	_	_	_	_	529.12
	JP8	8.11	228.70	692.81	47.23	312.52	189.09	201.91	145.88	_	_	_	_	1,826.26
	JPTS	_	_	4.28	_	_	_	_	NR	_	_	_	_	4.28
	F76	_	_	100.16	_	83.86	65.14	111.10	238.20	_	_	_	_	598.46
	MGO	0.86	0.62	0.04	_	0.54		_	2.76	0.34	1.53	0.02	_	6.71
	AN8	_	_	_	_	_	_	_	_	_	_	_	_	NP
	JA1	_	_	_	_	_	192.55	190.96	63.57	_	_	_	_	447.07
	JAA	13.34	24.27	67.92	4.03	44.53	_	_	_	_	_	_	_	154.09
	JP4	_	_	_	_	_	_	_	1.83	_	_	_	_	1.83
2012	JP5	_	_	234.76	_	106.52	_	24.07	53.15	_	_	_	_	418.50
	JP8	11.59	193.48	675.20	77.55	325.83	152.78	74.04	213.01	_	_	_	_	1,723.48
	JPTS	_	_	3.49	_	_	_	_	NR	_	_	_	_	3.49
	F76	_	_	129.28	_	50.42	129.73	40.37	157.24	NR	_	_	_	507.04
	MGO	0.53	0.28	0.03	_	0.34	_	_	0.69	0.22	1.17	_	_	3.27

Table 2-5: Annual Volume of Fuel Processed by Product by Region in PQIS, 2010–2012 (millions of gallons)

Note: The region was not recorded for one MGO sample in 2011, but the volume for this sample is still included in the 2011 total volume for MGO in Table 2-5. The two F76 samples with no region assigned also had no volume entered, so these samples do not impact the total volume for F76 in 2012.

2. Introduction

3. Product Data

3. Product Data

Product Specifications

The following products are represented in PQIS:

AN8. MIL-DTL-83133 Clause Turbine Fuel, Aviation, AN8

ATJ8. Neat Alcohol-to-Jet Fuel

F76. MIL-DTL-16884 Fuel, Naval Distillate (DFM/NATO Code F-76)

FSII. MIL-DTL-85470, Inhibitor, Icing, Fuel System, High Flash NATO Code Number S-1745

HRD76. Hydrotreated Renewable Marine Diesel

HRJ5. Hydrotreated Renewable JP5

HRJ8. Hydrotreated Renewable JP8

JA1. Turbine Fuel, Aviation, Defence Standard 91-91

JAA. Jet A Turbine Fuel, Aviation, ASTM D 1655 (F-24)

JP4. MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP4, NATO Code F-40

JP5. MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP5, NATO Code F-44

JP8. MIL-DTL-83133 Turbine Fuel, Aviation, JP8, NATO Code F-34

JP10. MIL-DTL-87107 Propellant, High Density Synthetic Hydrocarbon Type, Grade JP-10

JPTS. MIL-DTL-25524 (USAF) Turbine Fuel, Aviation, Thermally Stable

LA6. MIL-PRF-6081, Lubricating Oil, Jet Engine, Grade 1010

LO6. MIL-PRF-009000, Lubricating Oil, Shipboard Internal Combustion Engine, High-Output Diesel

LTL. MIL-PRF-17331, Lubricating Oil, Steam Turbine and Gear, Moderate Service

MGO. ISO-8217, Marine Gas Oil, Grade DMA

MUM. ASTM D4814 Automotive Gasoline, Unleaded, Mid-Grade

PF1. MIL-DTL-87173 (USAF) Propellant, Priming Fluid, ALCM Engine, Grade PF-1

RDF. GOST 305-82, Russian Diesel Fuel

RME180. ISO-8217, Marine Residual Fuel, Grade RME-180

RP1. MIL-DTL-25576 Propellant, Rocket Grade Kerosene, Grade RP-1

RP2. MIL-DTL-25576 Propellant, Rocket Grade Kerosene, Grade RP-2

TS1. GOST 10227-86, Russian Jet Fuel, Grade TC-1, first Category of Quality

The specifications for these products govern the compositions of the fuels procured for DoD. In most tables, this report summarizes only specification properties that have measurable and definitive requirements in the specification. Some exceptions include Cetane index (report) and water content for JP8.

The reporting of select values for properties and characteristics is included where data were recorded in PQIS but not required by specification—for example, various distillation ranges. In most instances, specification properties that involve an assigned rating are not summarized. Data for properties not reported are available on request from DLA Energy–QT.

Various options may apply to product testing, and not all tests are performed on each batch equally for the purpose of data extraction and comparative analysis—for example, the net heat of combustion requirement. Contractors have a choice of test methods or units of measurement for reporting. In the case of performing mercaptan sulfur testing, if the doctor test is negative, a mercaptan test need not be performed. Reporting of mercaptan sulfur results is not consistent with the number of batches. Many providers perform and report both results. In such instances, on the basis of these variables, the number of results selected from the total available analysis by batch may differ for individual test parameters for a given product.

Volume of fuel and the number of analyses used to determine each histogram are included in the source inputs table at the beginning of each product data section. Specification criteria are listed in all test results tables and histograms.

When limited procurements do not support a comprehensive review of a particular fuel, data are presented in a pair of tables, noting the region, volume of fuel, number of batch analyses, minimum value, maximum value, mean, and weighted mean. JAA, JP4, and JPTS are reported for 2012 in this manner. Data for propellants (RP1), alternative fuels (HRJ5, ATJ8, and HRD76), lubricants (LTL, LO6, and LA6), and FSII are summarized in a single table displaying the minimum value, maximum value, and mean for fuel characteristics. Weighted means also are provided for RP1, HRJ5, lubricants, and FSII, as volumes were reported for these products.

JAA-2012 Data Summary

Tables 3-1 and 3-2 display JAA results for the 2012 reporting period, during which Regions 1 through 5 processed JAA procurements. In 2012, 183 analyses were queried from the PQIS, representing 154.09 million U.S. gallons. All batches met specification requirements for all fuel properties measured in 2012.

For JAA, when the smoke point result is below 25 mm, the product is acceptable so long as the naphthalene content is below 3.0 percent and the smoke point is equal to or greater than the

Jet A Turbine Fuel, Aviation	on, ASTM C	1655 (JAA)		
Property	2012 Source Inputs				
	Region	Volume	Analysis		
Total Acid Number: (mg KOH/g)	All	127.80	171		
Aromatics: (vol %)	All	131.88	172		
Sulfur Mercaptan: (mass %)	All	NR	4		
Sulfur, Total: (mass %)	All	132.00	172		
Distillation:					
Initial Boiling Point (IBP) (°C)	All	NR	4		
10% Recovered, (°C)	All	151.99	182		
50% Recovered, (°C)	All	151.99	182		
90% Recovered, (°C)	All	151.99	182		
Final Boiling Point (FBP), (°C)	All	151.99	182		
Residue, (vol %)	All	143.58	179		
Loss, (vol %)	All	143.02	178		
Flash Point: (°C)	All	151.48	180		
Density: (kg/m³ @ 15 °C)	All	57.59	63		
Freezing Point: (°C)	All	150.94	181		
Viscosity: (mm²/s @ -20 °C)	All	130.11	173		
Net Heat of Combustion: (MJ/kg)	All	125.70	172		
Smoke Point: (mm)	All	134.10	175		
Naphthalene: (vol%)	All	124.04	152		
Thermal Stability:					
Change in pressure drop, (mm Hg @ 275 °C)	All	38.87	66		
Change in pressure drop, (mm Hg @ 260 °C)	All	85.78	107		
Existent Gum: (mg/100 mL)	All	126.75	174		
Water Separation Characteristics: (rating)	All	138.34	173		

Table 3-1: Jet A Turbine Fuel, Aviation, ASTM D 1655 (JAA), 2012 Source Inputs (volume in millions of gallons)

minimum of 18 mm. All 2012 naphthalene values are below 3.0 percent, and all smoke point values are equal to or greater than 18 mm. Therefore, all smoke point values for 2012 are acceptable.

For JAA, the water separation characteristics rating is a minimum of 85 with no electrical conductivity additive and a minimum of 70 with an electrical conductivity additive.

Jet A Turbine Fuel, Aviation, ASTM D 1655 (JAA)								
Property		Specification Limits		2012 Test Results				
	Min	Max	Min	Max	Mean	Wt Mean		
Total Acid Number: (mg KOH/g)		0.10	0.0000	0.0400	0.0051	0.0069		
Aromatics: (vol %)		25.0	8.16	21.20	17.47	17.31		
Sulfur Mercaptan: (mass %)		0.003	0.0008	0.0011	0.0009	NR		
Sulfur, Total: (mass %)		0.30	0.0010	0.1900	0.0944	0.0869		
Distillation:								
Initial Boiling Point (IBP) (°C)		ort	141.80	157.80	151.50	NR		
10% Recovered,1 (°C)		205 ⁽¹⁸⁵⁾	162.50	193.72	172.23	175.33		
50% Recovered, (°C)	Rej	ort	185.00	218.90	200.67	204.16		
90% Recovered, (°C)	Rej	ort	212.30	268.00	243.15	246.42		
Final Boiling Point (FBP),1 (°C)		300 ⁽³⁴⁰⁾	226.90	297.00	269.60	270.99		
Residue, (vol %)		1.5	0.00	1.50	1.08	1.06		
Loss, (vol %)		1.5	0.00	1.50	0.72	0.81		
Flash Point: (°C)	38		40.0	110.0	49.23	47.55		
Density: (kg/m³ @ 15 °C)	0.775	0.840	0.7882	0.8164	0.8077	0.8079		
Freezing Point: (°C)		-40	-79.0	-41.0	-51.6	-49.8		
Viscosity: (mm²/s @ -20 °C)		8.0	3.200	5.920	4.222	4.549		
Net Heat of Combustion: (MJ/kg)	42.8		43.100	44.000	43.218	43.211		
Smoke Point: (mm)	25.0		18.0	30.0	22.34	21.71		
Naphthalene: (vol%)		3.0	0.14	2.60	1.69	1.51		
Thermal Stability:								
Change in pressure drop, (mm Hg @ 275 °C)		25	0.00	12.70	0.78	0.74		
Change in pressure drop, (mm Hg @ 260 °C)		23	0.00	7.60	0.22	0.11		
Existent Gum: (mg/100 mL)		7.0	0.00	4.00	1.08	1.13		
Water Separation Characteristics: (rating)	70		82	100	97.1	97.3		

Table 3-2: Jet A Turbine Fuel, Aviation, ASTM D 1655 (JAA), 2012 Test Results

Note 1: Test method D2887 limits in parentheses (°C).

JP4-2012 Data Summary

Tables 3-3 and 3-4 display JP4 results for the 2012 reporting period, during which only Region 8 processed JP4 procurements. One hundred thirty-seven analyses were queried from the PQIS, representing 1.83 million U.S. gallons. Twenty-nine test results were below the minimum specification limit for "Distillation, 50% Recovered." A waiver was granted allowing JP4 to be produced to an older version of the specification, and all values were

MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP4 (NATO F-40)								
Property	2012 Source Inputs							
	Region	Volume	Analysis					
Total Acid Number: (mg KOH/g)	8	1.83	137					
Aromatics: (vol %)	8	1.83	137					
Sulfur, Mercaptan: (mass %)	8	1.83	137					
Sulfur, Total: (mass %)	8	1.83	137					
Distillation:								
Initial Boiling Point (IBP) (°C)	8	1.83	137					
10% Recovered, (°C)	8	1.83	137					
20% Recovered, (°C)	8	1.83	137					
50% Recovered, (°C)	8	1.83	137					
90% Recovered, (°C)	8	1.83	137					
End Point, (°C)	8	1.83	137					
Residue, (vol %)	8	1.83	137					
Loss, (vol %)	8	1.83	137					
Density: (API @ 60 °F)	8	1.83	137					
Vapor Pressure: (kPa @ 37.8°C)	8	1.83	137					
Freezing Point: (°C)	8	1.83	137					
Heating Value, Heat of Combustion: (MJ/kg)	8	1.83	137					
Hydrogen Content: (mass %)	8	1.83	137					
Smoke Point: (mm)	8	NR	NR					
Thermal Stability:								
Change in pressure drop, (mm Hg @ 275 °C)	8	1.83	137					
Change in pressure drop, (mm Hg @ 260 °C)	8	NR	NR					
Existent Gum: (mg/100 mL)	8	1.83	137					
Particulate Matter: (mg/L)	8	1.83	137					
Filtration Time: (minutes)	8	1.83	137					
MSEP: (rating)	8	1.83	137					
Fuel System Icing Inhibitor (FSII): (vol %)	8	1.83	137					

Table 3-3: MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP4 (NATO F-40), 2012 Source Inputs (volume in millions of gallons)

within the limits allowed by the waiver.

The specification criterion listed for Micro Separometer (MSEP) is presented as the lowest acceptable by specification. The threshold lower limit on MSEP ratings varies from 70 to 90 on the basis of additives and additive combinations.

MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP4 (NATO F-40)									
Property		ication nits	2012 Test Results						
	Min	Max	Min	Max	Mean	Wt Mean			
Total Acid Number: (mg KOH/g)		0.015	0.004	0.011	0.006	0.006			
Aromatics: (vol %)		25.0	13.1	18.0	15.79	15.85			
Sulfur, Mercaptan: (mass %)		0.002	0.0003	0.0008	0.0005	0.0005			
Sulfur, Total: (mass %)		0.40	0.006	0.018	0.012	0.012			
Distillation:									
Initial Boiling Point (IBP) (°C)	Rep	ort	25.8	75.5	51.1	51.0			
10% Recovered, (°C)	Rep	ort	107.7	115.9	113.4	113.5			
20% Recovered, (°C)	100		114.0	120.8	118.1	118.2			
50% Recovered, (°C)	125		122.1	129.3	126.1	126.1			
90% Recovered, (°C)	Rep	ort	137.7	144.9	141.4	141.4			
End Point, (°C)		270	169.7	217.3	184.6	184.0			
Residue, (vol %)		1.5	0.5	1.5	1.29	1.30			
Loss, (vol %)		1.5	0.0	1.5	1.13	1.11			
Density: (API @ 60 °F)	45.0	57.0	52.8	54.3	53.21	53.20			
Vapor Pressure: (kPa @ 37.8°C)	14	21	16.17	20.40	17.22	17.24			
Freezing Point: (°C)		-58	-79.2	-58.0	-65.9	-66.5			
Heating Value, Heat of Combustion: (MJ/kg)	42.8		43.2	43.3	43.24	43.24			
Hydrogen Content: (mass %)	13.5		15.40	15.70	15.52	15.52			
Smoke Point: (mm)	20.0		NR	NR	NR	NR			
Thermal Stability:									
Change in pressure drop, (mm Hg @ 275 °C)		25	0.00	1.00	0.33	0.32			
Change in pressure drop, (mm Hg @ 260 °C)			NR	NR	NR	NR			
Existent Gum: (mg/100 mL)		7.0	1.00	3.00	1.18	1.18			
Particulate Matter: (mg/L)		1.0	0.24	0.92	0.44	0.43			
Filtration Time: (minutes)		10	2	3	2.91	2.89			
MSEP: (rating)	70		87	100	95.1	95.1			
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.11	0.14	0.132	0.133			

Table 3-4: MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP4 (NATO F-40), 2012 Test Results

JPTS-2012 Data Summary

Tables 3-5 and 3-6 display JPTS results for the 2012 reporting period. Forty-four analyses were queried from the PQIS, representing 3.49 million U.S. gallons. Regions 3 and 8 processed JPTS procurements for this reporting period, but volumes were only recorded for Region 3. All batches met specification requirements for all fuel properties measured in 2012.

MIL-DTL-25524 (USAF) Turbine F	uel, Aviatio	n, Therma	lly Stable			
Property	2012 Source Inputs					
	Region	Volume	Analysis			
Total Acid Number: (mg KOH/g)	All	3.49	44			
Aromatics: (vol %)	All	3.49	44			
Sulfur, Mercaptan: (mass %)	All	NR	NR			
Sulfur, Total: (mass %)	All	3.49	44			
Distillation:						
Initial Boiling Point (IBP) (°C)	All	3.49	44			
10% Recovered, (°C)	All	3.49	44			
50% Recovered, (°C)	All	3.49	44			
90% Recovered, (°C)	All	3.49	44			
End Point, (°C)	All	3.49	44			
Residue, (vol %)	All	3.49	44			
Loss, (vol %)	All	3.49	44			
Flash Point: (°C)	All	3.49	44			
Density: (API @ 60 °F)	All	3.39	41			
Freezing Point: (°C)	All	3.49	44			
Viscosity: (cSt @ -40 °C)	All	3.49	44			
Net Heat of Combustion: (BTU/lb)	All	3.39	43			
Hydrogen Content: (mass %)	All	3.49	44			
Smoke Point: (mm)	All	3.49	44			
Thermal Stability:						
Change in pressure drop, (mm Hg @ 335 °C)	All	3.49	44			
Existent Gum: (mg/100 mL)	All	3.49	44			
Particulate Matter: (mg/L)	All	3.49	44			
Water Separation Characteristics: (rating)	All	3.49	44			

Table 3-5: MIL-DTL-25524 (USAF) Turbine Fuel, Aviation, JPTS, 2012 Source Inputs (volume in millions of gallons)

For JPTS, a hydrogen content minimum of 14.00 or a smoke point minimum of 25 mm is acceptable. The sulfur, mercaptan limit or a negative doctor test result is acceptable to meet the specification requirement. For distillation values, test method D2887 limits are in parentheses under the specification limits columns in Table 3-6.

MIL-DTL-25524 (USAF) Turbine Fuel, Aviation, Thermally Stable									
Property		Specification Limits		2012 Test Results					
	Min	Max	Min	Max	Mean	Wt Mean			
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0080	0.0051	0.0054			
Aromatics: (vol %)	5.0	20.0	8.0	14.9	11.99	12.14			
Sulfur, Mercaptan: (mass %)		0.001	NR	NR	NR	NR			
Sulfur, Total: (mass %)		0.30	0.0001	0.0080	0.0030	0.0035			
Distillation (D2887 limits in parentheses):									
Initial Boiling Point (IBP), ¹ (°C)	157 ⁽¹⁰⁵⁾		157.5	174.0	163.7	164.6			
10% Recovered,1 (°C)		193 ⁽¹⁷⁴⁾	164.0	182.0	170.8	172.0			
50% Recovered, ¹ (°C)		204 ⁽²⁰⁷⁾	171.5	192.0	183.7	185.8			
90% Recovered,1 (°C)		238 ⁽²⁵⁰⁾	199.0	226.0	216.5	219.2			
End Point,1 (°C)		260 ⁽²⁸⁸⁾	218.5	248.0	237.8	241.2			
Residue, (vol %)		1.5	0.3	1.5	1.07	1.08			
Loss, (vol %)		1.5	0.0	1.4	0.48	0.46			
Flash Point: (°C)	43		44.0	61.0	50.86	51.91			
Density: (API @ 60 °F)	46.0	53.0	47.1	51.0	49.7	50.0			
Freezing Point: (°C)		-53	-73.5	-53.9	-59.9	-57.6			
Viscosity: (cSt @ -40 °C)		12.0	4.00	7.90	6.11	6.36			
Net Heat of Combustion: (BTU/lb)	18,400		18,640	18,763	18,711	18,724			
Hydrogen Content: (mass %)	14.00		14.03	14.50	14.28	14.32			
Smoke Point: (mm)	25.0		26.0	28.0	26.80	26.96			
Thermal Stability:									
Change in pressure drop, (mm Hg @ 335°C)		25	0.00	7.00	1.27	1.46			
Existent Gum: (mg/100 mL)		5.0	0.20	1.00	0.63	0.55			
Particulate Matter: (mg/L)		0.3	0.03	0.29	0.16	0.15			
Water Separation Characteristics: (rating)	Re	port	67	96	83.3	84.7			

Table 3-6: MIL-DTL-25524 (USAF) Turbine Fuel, Aviation, JPTS, 2012 Test Results

Note 1: Test method D2887 limits in parentheses (°C).

3. Product Data

RP1-2012 Data Summary

Table 3-7 displays RP1 results for the 2012 reporting period, during which only Region 3 processed RP1 procurements. Twenty analyses were queried from the PQIS, representing 271.16 thousand U.S. gallons. All batches met specification requirements for all fuel properties measured in 2012.

MIL-DTL-25576, Propel	lant, l	Rocket	Grade k	(erosene	e, Grade	RP-1	
Property		fication nits	2012 Test Results				
	Min	Max	Min	Max	Mean	Wt Mean	
Aromatics: (vol %)		5.0	5.0	5.0	5.0	5.0	
Mercaptan-sulfur: (mg/kg)		3	3.000	3.000	3.000	3.000	
Sulfur, Total: (mg/kg)		30	0.000	1.200	0.960	0.988	
Specific Gravity: (kg/L @ 15 °C)	0.799	0.815	0.8074	0.8106	0.8093	0.8092	
Distillation:							
Initial Boiling Point (IBP) (°F)	Re	port	355.0	366.1	362.3	362.5	
Fuel Evaporated, 10%, (°F)	365	410	381.2	388.2	385.5	385.8	
Fuel Evaporated, 50%, (°F)	Re	port	410.9 416.0 414.0 413				
Fuel Evaporated, 90%, (°F)	Re	port	458.7	466.2	462.8	462.8	
End Point, (°F)		525	488.2	499.5	495.1	495.3	
Residue, (vol %)		1.5	1.2	1.4	1.2	1.2	
Loss, (vol %)		1.5	0.3	1.4	0.7	0.7	
Flash Point: (°F)	140		144.0	158.0	153.3	152.4	
Hydrogen Content: (mass %)	13.8		14.29	14.50	14.33	14.34	
Freezing Point: (°F)		-60	-107.0	-76.0	-83.4	-84.2	
Viscosity: (cSt @ -30 °F)		16.5	9.229	11.180	9.791	9.660	
Thermal Value, Net Heat of Combustion: (BTU/lb)	18,500		18,592	19,033	18,699	18,688	
Particulate: (mg/L)		1.0	0.00	1.00	0.16	0.14	
Olefins: (vol %)		2.0	0.30	1.10	0.44	0.44	
Existent Gum: (mg/100 mL)		1	0.00	1.00	0.95	0.96	
Copper Strip Corrosion		1	1	1	1	1	

Table 3-7: MIL-DTL-25576, Propellant, Rocket Grade Kerosene, Grade RP-1, 2012 Test Results

HRJ5-2012 Data Summary

Table 3-8 displays Hydrotreated Renewable JP5 (HRJ5) results for the 2012 reporting period. Seven analyses were queried from the PQIS, representing 31.53 thousand U.S. gallons.

Hydrotreated Renewa	Hydrotreated Renewable Jet (HRJ5) for Navy							
Property	Specifi Lim		2	2012 Test Results				
	Min	Max	Min	Max	Mean	Wt Mean		
Total Acid Number: (mg KOH/g)		0.015	0.004	0.011	0.0053	0.0044		
Sulfur Content: (ppm)		15	0.050	1.000	0.190	0.056		
Distillation:								
Initial Boiling Point (IBP), (°C)	Rep	ort	176.5	190.5	179.6	177.7		
10% (T10), (°C)		205	190.0	202.1	193.4	192.0		
50% (T50), (°C)	Rep	ort	220.0	236.0	232.5	234.3		
90% (T90), (°C)	Rep	ort	247.6	275.0	270.6	274.3		
Final Boiling Point (FBP), (°C)		300	256.4	282.0	277.6	281.2		
Residue, (vol %)		1.5	1.1	1.4	1.2	1.1		
Loss, (vol %)		1.5	0.2	0.9	0.7	8.0		
T90-T10, (°C)	25		45.5	82.5	77.1	82.3		
Flash Point: (°C)	60		62.0	72.0	65.0	63.6		
Density: (kg/L @ 15 °C)	0.760	0.845	0.7657	0.7692	0.7676	0.7672		
Freezing Point: (°C)		-46	-53.0	-48.9	-52.4	-53.0		
Kinematic Viscosity: (mm²/s @ -20 °C)		8.5	6.374	8.194	7.720	7.903		
Heating Value: (MJ/kg)	42.6		43.990	47.068	44.470	44.032		
Cetane Number: (calculated)	40		56.6	61.4	59.4	59.6		
Total Water: (ppm)		75	10	44	16.3	12.0		
Nitrogen Content: (ppm)		10	0.100	0.400	0.143	0.100		
Thermal Stability:								
Pressure Difference, mm Hg @ 280 °C		25	0.00	0.00	0.00	0.00		
Tube Deposit Rating		3	1	1	1	1		
Metals: (ppm)		0.5	0.01	0.10	0.03	0.01		
Alkali Metals and Metalloids: (ppm)		1.0	0.01	0.11	0.04	0.03		
Hydrocarbon Composition:								
Paraffins (normal and iso), (mass %)	Balance		90.0	97.0	96.00	97.00		
Cyclo Paraffins, (mass %)		15.0	3.0	9.0	3.86	3.00		
Total Aromatics, (mass %)		0.5	0.2	0.3	0.23	0.22		
Particulate: (mg/L)		1.0	0.00	0.10	0.050	0.052		
Filtration Time: (minutes)		15	5	15	7.14	5.80		
MSEP: (rating)	85		83	96	87.9	86.4		

Table 3-8: Hydrotreated Renewable JP5, 2012 Test Results

3. Product Data

ATJ8-2012 Data Summary

Table 3-9 displays Neat Alcohol-to-Jet (ATJ8) results for the 2012 reporting period. Three analyses were queried from the PQIS, but volumes were not recorded.

Neat Alcohol-to-Jet (ATJ8) Fuel						
Property	Specification Limits		2012 Test Results			
, ,	Min	Max	Min	Max	Mean	
Water: (mg/kg)		75	5	23	11.3	
Total Acid Number: (mg KOH/g)		0.015	0.004	0.006	0.0047	
Distillation						
Initial Boiling Point, (°C)	Rep	ort	173.0	173.8	173.4	
10% Recovered, (°C)		205	174.9	175.4	175.2	
50% Recovered, (°C)	Rep	ort	177.5	177.8	177.6	
90% Recovered, (°C)	Rep	ort	200.7	205.3	202.3	
Final Boiling Point, (°C)		300	252.1	258.2	254.5	
T90-T10, (°C)	22		25.3	30.4	27.1	
Flash Point: (°C)	38		50.0	50.5	50.2	
Thermal Stability:						
Change in pressure drop, mm Hg @ 325 °C		25	0.00	1.00	0.33	
Heater tube deposit, visual rating		<3	0	5	2.0	

Table 3-9: Neat Alcohol-to-Jet (ATJ8), 2012 Test Results

HRD76-2012 Data Summary

Table 3-10 displays Hydrotreated Renewable Marine Diesel (HRD76) results for the 2012 reporting period. Two analyses were queried from the PQIS, but volumes were not recorded. All batches met specification requirements for all fuel properties measured in 2012.

Hydrotreated Renewable Marine Diesel (HRD76)						
Property		ication nits	2012	2012 Test Results		
	Min	Max	Min	Max	Mean	
Flash Point: (°C)	60		72.0	72.5	72.3	
Density: (kg/L @ 15 °C)	0.774	0.876	0.7850	0.7850	0.7850	
Total Water: (ppm)		200	44.0	87.0	65.5	
Particulate: (mg/L)		1.0	0.00	0.10	0.05	
Kinematic Viscosity: (mm²/s @ 40 °C)	1.7	4.3	3.249	3.249	3.249	
Cetane Number: (calculated)	42	80	56.6	71.8	64.2	
Distillation						
Initial Boiling Point (IBP), (°C)	Rej	oort	144.4	190.5	167.5	
10% (T10), (°C)	191	290	202.1	272.6	237.4	
50% (T50), (°C)	Rej	oort	220.0	286.9	253.5	
90% (T90), (°C)	290	357	292.6	292.6	292.6	
Final Boiling Point (FBP), (°C)	300	385	306.0	306.0	306.0	
Residue + Loss, (vol %)		3.0	1.6	1.6	1.6	
T50-T10, (°C)	Rej	oort	14.3	17.9	16.1	
T90-T10, (°C)	20		20.0	45.5	32.8	
Heating Value: (MJ/kg)	43.0		43.748	43.890	43.819	
MSEP Diesel Cap:	85		96	100	98.0	
Acid Number: (mg KOH/g)		0.08	0.000	0.011	0.006	
Antioxidant: (ppm)	17.2	24.0	NR	NR	NR	
Sulfur Content: (ppm)		15	1.000	1.000	1.000	
Nitrogen Content: (ppm)		10	0.400	0.400	0.400	
Metals: (ppm)		0.5 total	0.10	0.10	0.10	
Alkali Metals and Metalloids: (ppm)		1 total	0.10	0.10	0.10	

Table 3-10: Hydrotreated Renewable Marine Diesel (HRD76), 2012 Test Results

3. Product Data

LTL-2012 Data Summary

Table 3-11 displays LTL results for the 2012 reporting period. One hundred eleven analyses were queried from the PQIS, representing 620.58 thousand U.S. gallons. Aside from 26 water measurements that exceeded the maximum specification limit, all batches met specification requirements for all fuel properties measured in 2012.

For foaming sequences, individual batch results can be viewed in the database on the CD.

MIL-PRF-17331, Lubricating Oil, Steam Turbine and Gear, Moderate Service								
Property		Specification Limits		2012 Test Results				
, ,	Min	Max	Min	Max	Mean	Wt Mean		
Sulfur: (%)	Rep	ort	0.000	0.535	0.176	0.175		
Acid Number: (mg KOH/g oil)		0.3	0.060	0.300	0.237	0.238		
Corrosion (in presence of salt water)	No	None		None	None	None		
Copper Strip Corrosion Test @ 100 °C: (appearance)		1	1	1	1	1		
Water: (%)	No	ne	0.0000	0.0032	0.0003	0.0004		
Gravity: (API)	Re	port	28.60	32.20	31.00	31.00		
Flash Point: (°C)	204		245.0	276.0	262.0	262.1		
Pour Point: (°C)		-6	-33.0	-6.0	-19.1	-19.3		
Viscosity:								
Centistokes @ 4.4 °C		870	744.2	861.7	793.3	793.4		
Centistokes @ 40 °C	74	97	75.05	81.98	78.63	78.61		
Centistokes @ 100 °C	8.0		9.333	10.290	9.878	9.871		
Oxidation by rotating bomb:	Report		200.0	712.0	386.2	383.0		
Cleanliness: (mg/100 mL)		4.0	0.00	1.90	0.43	0.44		

Table 3-11: MIL-PRF-17331, Lubricating Oil, Steam Turbine and Gear, Moderate Service (LTL), 2012 Test Results

LO6-2012 Data Summary

Table 3-12 displays LO6 results for the 2012 reporting period. Thirty-three analyses were queried from the PQIS, representing 187.61 thousand U.S. gallons. All batches met specification requirements for all fuel properties measured in 2012.

For foaming sequences, individual batch results can be viewed in the database on the CD.

MIL-PRF-009000, Lubricating Oil, Shipboard Internal Combustion Engine, High-Output Diesel							
Property	Specifi Lim		2012 Test Results				
	Min	Max	Min	Max	Mean	Wt Mean	
Ash, sulfated: (%)	Report		0.000	1.840	1.036	1.071	
Copper Strip Corrosion Test @ 100 °C: (appearance)		1b	NR	NR	NR	NR	
Flash Point: (°C)	225		260.0	278.0	268.5	268.5	
Gravity: (degree API)	Rep	ort	25.80	29.50	27.22	27.25	
Pour Point: (°C)		-12	-39.0	-15.0	-22.7	-22.9	
Sulfur:	Rep	ort	0.317	0.848	0.720	0.714	
Total Base Number: (mg KOH/g)	12		12.10	14.34	12.86	12.86	
Viscosity Index:	90		94.0	112.0	102.3	102.4	
Viscosity: (cSt @ 100 °C)	12.5	16.3	12.88	14.15	13.53	13.52	

Table 3-12: MIL-PRF-009000, Lubricating Oil, Shipboard Internal Combustion Engine, High-Output Diesel (LO6), 2012 Test Results

3. Product Data

LA6-2012 Data Summary

Table 3-13 displays LA6 results for the 2012 reporting period. Twenty-three analyses were queried from the PQIS, representing 83.43 thousand U.S. gallons. All batches met specification requirements for all fuel properties measured in 2012.

MIL-PRF-6081, Lubricating Oil, Jet Engine, Grade 1010							
Property		fication nits	2012 Test Results				
	Min Ma		Min	Max	Mean	Wt Mean	
Acid Number (T.A.N): (mg KOH/g)		0.10	0.000	0.084	0.029	0.027	
Viscosity:							
cs @ 37.8 °C	10.0		11.030	11.520	11.221	11.246	
cs @ -40 °C		3,000	1,956.0	2,181.0	2,089.4	2,096.6	
Viscosity Stability cs: (% Change @ 3 hours)							
−40 °C		2	0.00	0.50	0.23	0.21	
Flash Point: (°C)	132		134.0	138.0	136.1	136.1	
Pour Point: (°C)		-57	-69.0	-63.0	-64.9	-64.9	
ASTM Color:		No. 5.5	1.5	1.5	1.5	1.5	
Copper Strip Corrosion: (@ 100 ± °C)		1	1	1	1	1	
Trace Sediment: (mL/200 mL of oil)		0.005	0.001	0.005	0.001	0.001	

Table 3-13: MIL-PRF-6081, Lubricating Oil, Jet Engine, Grade 1010 (LA6), 2012 Test Results

FSII—2012 Data Summary

Table 3-14 displays FSII results for the 2012 reporting period. Four hundred one analyses were queried from the PQIS, representing 1.95 million U.S. gallons. All batches met specification requirements for all fuel properties measured in 2012.

MIL-DTL-85470, Inhibitor, Icing, Fuel System, High Flash NATO Code Number S-1745 (FSII)							
Property	Specification Limits		2012 Test Results				
	Min	Max	Min	Max	Mean	Wt Mean	
Acid Number: (mg KOH/g)		0.09	0.001	0.030	0.012	0.012	
Color: (platinum cobalt)		10	1.00	7.00	3.76	3.73	
Distillation:							
Initial Point (°C)	191.0		191.7	193.9	192.9	192.9	
Dry Point (°C)		198.0	194.6	197.9	196.1	196.1	
Ethylene Glycol: (% by weight)		0.5	0.000	0.200	0.091	0.089	
pH of 25% solution in water: (25+/-2 ° C)	5.5	7.5	6.20	7.50	7.07	7.06	
Relative Density: (20/20 °C)	1.021	1.025	1.021	1.022	1.021	1.021	
Water: (mass %)		0.1	0.0040	0.0400	0.0184	0.0182	
Flash Point: (°C)	85		88.0	109.0	96.0	95.9	

Table 3-14: MIL-DTL-85470, Inhibitor, Icing, Fuel System, High Flash NATO Code Number S-1745 (FSII), 2012 Test Results

2012 Product Detailed Assessment Reporting

Product detailed assessments provide minimum, maximum, mean, and volumetrically weighted mean values for each fuel property of the specified grade. These values are presented in table form, providing volumes processed through the PQIS database and regional sources. Also provided are histograms. When significant trending is observed, trend charts based on weighted mean values are presented.

The conformance tables in this report are illustrative in nature and may not represent 100 percent of the particular fuel characteristic, but they delineate sufficient data points to provide an accurate representation. The arithmetic means are based on "occurrence averages"—for example, averaging on submitted data for the characteristic. The tables reflect the number of reports constituting the data set and the corresponding volume in millions of gallons.

Comments noting observed trends are included in the assessment summary for each product where appropriate. These data reflect "Level A procurement quality test data" and do not include values throughout the distribution cycle.

The Level A data reflecting the spectender terminal source or refinery testing set the baseline in fuel quality considerations downstream. Various transport mediums (pipelines, tankers, and tank trucks) and storage conditions can affect product quality.

Batch integrity also may be compromised during the process. DLA Energy–QT can provide transportation data for first-, second-, and third-tier bulk deliveries, but not information on distribution or what constitutes an individual allotment.

Test properties reported in the following sections are specific to JP8, JP5, JA1, F76, MGO, and TS1. Trends noted in these sections are general in nature. Tables showing regional statistics also are provided. Most fuels met all specification requirements. In the few batches where test results were off specification, they were waived, reported incorrectly by the refiner, or transcribed incorrectly into the database.

4. JP8 Data

4. JP8—2012 Data Summary

MIL-DTL-83133 Turbine Fuel, Aviation (JP8)	Kerosene	Types, NA	TO F34
Property	201	2 Source Inpu	ıts
	Region	Volume	Analysis
Total Acid Number: (mg KOH/g)	All	1,677.76	1,265
Aromatics: (vol %)	All	1,669.61	1,264
Sulfur Mercaptan: (mass %)	All	1,453.91	1,160
Sulfur, Total: (mass %)	All	1,669.11	1,263
Distillation:			
Initial Boiling Point (IBP), (°C)	All	1,716.70	1,365
10% Recovered, (°C)	All	1,721.80	1,372
20% Recovered, (°C)	All	1,721.62	1,368
50% Recovered, (°C)	All	1,721.80	1,372
90% Recovered, (°C)	All	1,721.80	1,372
Final Boiling Point (FBP), (°C)	All	1,721.71	1,371
Residue, (vol %)	All	1,355.45	1,129
Loss, (vol %)	All	1,350.33	1,126
Flash Point: (°C)	All	1,721.34	1,370
Density: (kg/L @ 15 °C)	All	1,319.16	969
Freezing Point: (°C)	All	1,716.59	1,371
Viscosity: (mm²/s @ -20 °C)	All	1,673.75	1,264
Net Heat of Combustion: (MJ/kg)	All	1,659.81	1,256
Cetane Index: (calculated)	All	1,660.56	1,349
Hydrogen Content: (mass %)	All	1,667.41	1,258
Smoke Point: (mm)	All	1,673.22	1,266
Naphthalene: (vol %)	All	1,269.04	849
Thermal Stability:			
Change in pressure drop, mm Hg @ 275°C	All	1,618.88	1,232
Change in pressure drop, mm Hg @ 260°C	All	13.91	16
Existent Gum: (mg/100 mL)	All	1,686.58	1,364
Particulate Matter: (mg/L)	All	1,712.68	1,368
Filtration Time: (minutes)	All	1,707.95	1,368
Water Separation Index: (rating)	All	1,677.23	1,259
Fuel System Icing Inhibitor (FSII): (vol %)	All	679.75	617

Table 4-1: Data Summary, MIL-DTL-83133 Turbine Fuel, Aviation, Kerosene Types, NATO F34 (JP8), 2012 Source Inputs

4. JP8-2012 Data Summary

MIL-DTL-83133 Turbine Fuel, Aviation Kerosene Types, NATO F34 (JP8)							
Property	Specifi Lim			2012 Test Results			
. roporty	Min	Max	Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.000	0.020	0.006	0.006	
Aromatics: (vol %)		25.0	9.0	24.9	16.43	17.13	
Sulfur Mercaptan: (mass %)		0.002	0.0000	0.0020	0.0009	0.0009	
Sulfur, Total: (mass %)		0.30	0.000	0.290	0.055	0.067	
Distillation:							
Initial Boiling Point (IBP), (°C)	Rep	ort	91.7	193.0	148.7	150.7	
10% Recovered, (°C)		205	105.0	202.0	172.5	172.4	
20% Recovered, (°C)	Rep	ort	164.3	206.6	180.2	180.2	
50% Recovered, (°C)	Rep	ort	181.0	248.0	200.2	201.2	
90% Recovered, (°C)	Rep	ort	200.0	294.5	239.4	243.4	
Final Boiling Point (FBP), (°C)		300	215.0	310.0	264.7	268.8	
Residue, (vol %)		1.5	0.00	1.50	1.05	1.06	
Loss, (vol %)		1.5	0.00	1.50	0.78	0.80	
Flash Point: (°C)	38		38.0	69.0	48.9	47.6	
Density: (kg/L @ 15 °C)	0.775	0.840	0.7858	0.8370	0.8034	0.8022	
Freezing Point: (°C)		-47	-83.0	-47.0	-52.8	-51.3	
Viscosity: (mm²/s @ -20 °C)		8.0	1.400	7.640	4.325	4.399	
Net Heat of Combustion: (MJ/kg)	42.8		42.800	43.600	43.240	43.241	
Cetane Index: (calculated)	Rep	ort	30.2	51.4	42.8	43.3	
Hydrogen Content: (mass %)	13.4		13.40	14.80	13.86	13.85	
Smoke Point:2 (mm)	25.0		18.00	30.00	23.58	22.81	
Naphthalene: (vol %)		3.0	0.00	2.88	1.24	1.24	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275°C		25	0.00	21.00	0.52	0.52	
Change in pressure drop, mm Hg @ 260°C			0.00	3.00	0.56	0.11	
Existent Gum: (mg/100 mL)		7.0	0.00	7.00	0.99	1.12	
Particulate Matter: (mg/L)		1.0	0.00	1.00	0.34	0.35	
Filtration Time: (minutes)		15	1	13	5.88	6.11	
Water Separation Index: (rating)	70		70	107	93.2	93.5	
Fuel System Icing Inhibitor (FSII): ³ (vol %)	0.10	0.15	0.10	0.15	0.121	0.127	

Table 4-2: Data Summary, MIL-DTL-83133 Turbine Fuel, Aviation, Kerosene Types, NATO F34 (JP8), 2012 Test Results

Note 1: Either the sulfur mercaptan limit or a negative doctor test result is acceptable to meet the specification requirement.

Note 2: When the smoke point result is below 25 mm, the product is acceptable so long as the naphthalene content is below 3.0 percent and the smoke point is above the minimum of 19 mm. Waivers were granted for the smoke point values below 19 mm.

Note 3: In September 2012, FSII specification limits changed to 0.07-0.10 vol % because of the publication of MIL-DTL-83133 with amendment 1, but contracts through the end of 2012 all fell under the MIL-DTL-83133H (without amendment 1) revision.

MIL DTL 00400 Turking Fuel	A	us IV.s.		T	NATO	E0.4
MIL-DTL-83133 Turbine Fuel, A	Aviatio (JP8)	on Kei	osene	Types	, NATO	F34
	Total \	/olume	11.59			
	Batch Analysis		7			
Property		Specification Limits		Regi	on 1	
	Min	Max	Min	Max	Mean	Wt Mean
Total Acid Number: (mg KOH/g)		0.015	0.0020	0.0110	0.005	0.005
Aromatics: (vol %)		25.0	10.3	18.8	15.7	15.5
Sulfur Mercaptan: (mass %)		0.002	0.0010	0.0020	0.0016	0.0016
Sulfur, Total: (mass %)		0.30	0.1960	0.2340	0.209	0.209
Distillation:						
Initial Boiling Point (IBP), (°C)	Re	ort	151.3	152.6	152.2	152.3
10% Recovered, (°C)		205	169.6	172.9	170.7	170.8
20% Recovered, (°C)	Re	ort	175.9	178.8	177.0	177.1
50% Recovered, (°C)	Re	ort	192.8	196.4	194.5	194.5
90% Recovered, (°C)	Re	ort	227.4	235.5	233.4	233.2
Final Boiling Point (FBP), (°C)		300	253.3	261.8	258.4	258.2
Residue, (vol %)		1.5	0.60	1.20	1.00	1.00
Loss, (vol %)		1.5	0.70	1.20	0.93	0.93
Flash Point: (°C)	38		42.0	44.0	42.6	42.6
Density: (kg/L @ 15 °C)	0.775	0.840	0.7910	0.7940	0.7925	0.7924
Freezing Point: (°C)		-47	-52.0	-48.0	-49.6	-49.6
Viscosity: (mm²/s @ -20 °C)		8.0	3.373	4.012	3.732	3.749
Net Heat of Combustion: (MJ/kg)	42.8		43.240	43.385	43.282	43.286
Cetane Index: (calculated)	Rej	ort	44.2	45.5	44.9	44.9
Hydrogen Content: (mass %)	13.4		13.86	14.18	13.95	13.96
Smoke Point: (mm)	25.0		22.0	28.0	23.4	23.3
Naphthalene: (vol %)		3.0	0.91	2.05	1.42	1.38
Thermal Stability:						
Change in pressure drop, mm Hg @ 275 °C			0.00	1.00	0.29	0.30
Change in pressure drop, mm Hg @ 260 °C		25	NR	NR	NR	NR
Existent Gum: (mg/100 mL)		7.0	1.00	5.00	2.14	2.12
Particulate Matter: (mg/L)		1.0	0.20	0.55	0.30	0.29
Filtration Time: (minutes)		15	5	9	7.86	7.92
Water Separation Index: (rating)	70		NR	NR	NR	NR
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.12	0.14	0.133	0.133

Table 4-3: Region 1 Summary

MIL-DTL-83133 Turbine Fuel, A	Aviatio (JP8)	on Ker	osene	Types	, NATO	F34	
	Total \	/olume	193.48				
_		Batch Analysis		316			
Property	Specif Lin	ication nits		Regi	ion 2		
	Min	Max	Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0094	0.004	0.004	
Aromatics: (vol %)		25.0	9.5	22.0	15.6	15.5	
Sulfur Mercaptan: (mass %)		0.002	0.0000	0.0019	0.0007	0.0008	
Sulfur, Total: (mass %)		0.30	0.0000	0.1870	0.047	0.052	
Distillation:							
Initial Boiling Point (IBP), (°C)	Re	ort	91.7	190.5	129.8	136.2	
10% Recovered, (°C)		205	105.0	200.1	171.4	175.1	
20% Recovered, (°C)	Re	ort	166.0	206.6	182.8	185.4	
50% Recovered, (°C)	Re	ort	190.8	248.0	207.0	207.5	
90% Recovered, (°C)	Re	ort	209.5	294.5	246.4	244.5	
Final Boiling Point (FBP), (°C)		300	235.5	310.0	276.0	271.6	
Residue, (vol %)		1.5	0.20	1.50	1.09	1.14	
Loss, (vol %)		1.5	0.00	1.50	0.63	0.65	
Flash Point: (°C)	38		41.0	68.0	51.6	51.7	
Density: (kg/L @ 15 °C)	0.775	0.840	0.7879	0.8110	0.8034	0.8032	
Freezing Point: (°C)		-47	-59.3	-47.2	-52.0	-52.0	
Viscosity: (mm²/s @ -20 °C)		8.0	1.400	6.780	4.785	4.893	
Net Heat of Combustion: (MJ/kg)	42.8		42.800	43.600	43.260	43.265	
Cetane Index: (calculated)	Rej	ort	41.2	51.0	44.5	44.5	
Hydrogen Content: (mass %)	13.4		13.57	14.06	13.83	13.83	
Smoke Point: (mm)	25.0		20.0	27.0	23.9	23.8	
Naphthalene: (vol %)		3.0	0.09	2.13	1.27	1.21	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	17.90	0.67	0.66	
Change in pressure drop, mm Hg @ 260 °C		23	0.00	0.00	0.00	0.00	
Existent Gum: (mg/100 mL)		7.0	0.00	4.90	0.82	0.86	
Particulate Matter: (mg/L)		1.0	0.00	1.00	0.32	0.29	
Filtration Time: (minutes)		15	1	12	5.12	5.35	
Water Separation Index: (rating)	70		73	107	93.1	93.2	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.10	0.15	0.117	0.117	

Table 4-4: Region 2 Summary

BALL DTL 02422 Turking Fuel Assistion Kanagana Turner NATO F24						
MIL-DTL-83133 Turbine Fuel, Aviation Kerosene Types, NATO F34 (JP8)						
Total Volume Batch Analysis		675.20				
				534		
Property	Specification Limits Min Max		Region 3			
			Min	Max	Mean	Wt Mean
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0150	0.006	0.006
Aromatics: (vol %)		25.0	9.0	23.9	15.4	16.8
Sulfur Mercaptan: (mass %)		0.002	0.0000	0.0020	0.0011	0.0010
Sulfur, Total: (mass %)		0.30	0.0000	0.1818	0.054	0.063
Distillation:						
Initial Boiling Point (IBP), (°C)	Re	ort	137.8	187.3	156.4	153.0
10% Recovered, (°C)		205	161.0	193.2	175.3	174.2
20% Recovered, (°C)	Re	ort	166.0	197.5	181.5	182.0
50% Recovered, (°C)	Rep	ort	181.0	223.0	197.9	202.4
90% Recovered, (°C)	Report		200.0	274.1	231.1	241.6
Final Boiling Point (FBP), (°C)		300	215.0	290.7	254.0	265.2
Residue, (vol %)		1.5	0.10	1.50	1.02	1.07
Loss, (vol %)		1.5	0.00	1.50	0.84	0.87
Flash Point: (°C)	38		38.9	66.0	50.5	49.9
Density: (kg/L @ 15 °C)	0.775	0.840	0.7865	0.8244	0.8020	0.8029
Freezing Point: (°C)		-47	-71.0	-47.0	-53.8	-50.7
Viscosity: (mm²/s @ -20 °C)		8.0	2.390	7.640	4.257	4.564
Net Heat of Combustion: (MJ/kg)	42.8		43.000	43.500	43.284	43.267
Cetane Index: (calculated)	Rej	ort	34.2	51.4	43.6	44.4
Hydrogen Content: (mass %)	13.4		13.40	14.80	13.95	13.94
Smoke Point: (mm)	25.0		19.0	30.0	24.4	23.1
Naphthalene: (vol %)		3.0	0.00	2.63	1.14	1.32
Thermal Stability:						
Change in pressure drop, mm Hg @ 275 °C		25	0.00	14.40	0.40	0.44
Change in pressure drop, mm Hg @ 260 °C		20	0.00	3.00	1.75	0.69
Existent Gum: (mg/100 mL)		7.0	0.00	7.00	0.93	1.22
Particulate Matter: (mg/L)		1.0	0.00	0.95	0.32	0.30
Filtration Time: (minutes)		15	2	13	5.30	4.98
Water Separation Index: (rating)	70		70	100	92.6	94.1
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.10	0.14	0.118	0.117

Table 4-5: Region 3 Summary

MIL-DTL-83133 Turbine Fuel, Aviation Kerosene Types, NATO F34 (JP8)							
	Total Volume			77.55 127			
_		Batch Analysis					
Property	Specification Limits		Region 4				
			Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0140	0.004	0.004	
Aromatics: (vol %)		25.0	9.9	24.9	17.1	17.3	
Sulfur Mercaptan: (mass %)		0.002	0.0000	0.0019	0.0006	0.0006	
Sulfur, Total: (mass %)		0.30	0.0000	0.10443	0.021	0.022	
Distillation:							
Initial Boiling Point (IBP), (°C)	Re	port	110.0	193.0	158.2	154.6	
10% Recovered, (°C)		205	157.0	202.0	177.9	174.4	
20% Recovered, (°C)	Re	port	165.0	206.0	184.6	181.5	
50% Recovered, (°C)	Report		183.0	219.4	201.8	200.9	
90% Recovered, (°C)	Report		218.0	253.9	237.1	239.7	
Final Boiling Point (FBP), (°C)		300	238.0	278.0	261.5	263.3	
Residue, (vol %)		1.5	0.00	1.50	0.94	0.97	
Loss, (vol %)		1.5	0.00	1.30	0.52	0.51	
Flash Point: (°C)	38		38.0	69.0	49.4	47.0	
Density: (kg/L @ 15 °C)	0.775	0.840	0.7945	0.8105	0.8005	0.8007	
Freezing Point: (°C)		-47	-65.0	-47.3	-52.6	-51.4	
Viscosity: (mm²/s @ -20 °C)		8.0	2.600	6.499	4.438	4.286	
Net Heat of Combustion: (MJ/kg)	42.8		43.000	43.500	43.219	43.212	
Cetane Index: (calculated)	Re	port	39.3	46.6	42.6	42.6	
Hydrogen Content: (mass %)	13.4		13.48	14.10	13.78	13.76	
Smoke Point: (mm)	25.0		20.0	29.0	25.0	23.9	
Naphthalene: (vol %)		3.0	0.209	1.51	0.93	0.93	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C			0.00	21.00	0.61	0.50	
Change in pressure drop, mm Hg @ 260 °C		25	0.00	1.00	0.25	0.26	
Existent Gum: (mg/100 mL)		7.0	0.00	6.00	1.26	1.23	
Particulate Matter: (mg/L)		1.0	0.00	0.98	0.40	0.33	
Filtration Time: (minutes)		15	4	12	7.17	6.38	
Water Separation Index: (rating)	70		71	100	94.8	96.5	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.10	0.15	0.118	0.117	

Table 4-6: Region 4 Summary

MIL-DTL-83133 Turbine Fuel,	Aviati	on Ker	osene	Types,	NATO	F34	
(JP8)							
	Total Volume		325.83				
Property		Batch Analysis		149			
Тюрену		ication nits	Region 5				
	Min Max		Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0010	0.0100	0.004	0.004	
Aromatics: (vol %)		25.0	10.0	23.2	16.6	17.0	
Sulfur Mercaptan: (mass %)		0.002	0.0000	0.0020	0.0008	0.0008	
Sulfur, Total: (mass %)		0.30	0.0000	0.1900	0.053	0.052	
Distillation:							
Initial Boiling Point (IBP), (°C)	Re	port	147.0	175.0	155.7	155.3	
10% Recovered, (°C)		205	159.0	191.0	174.2	176.5	
20% Recovered, (°C)	Re	port	167.9	199.0	181.8	185.0	
50% Recovered, (°C)	Report		186.3	216.2	203.3	207.2	
90% Recovered, (°C)	Re	port	224.0	260.1	248.0	249.3	
Final Boiling Point (FBP), (°C)		300	244.3	291.0	274.5	275.7	
Residue, (vol %)		1.5	0.10	1.50	1.15	1.08	
Loss, (vol %)		1.5	0.00	1.50	0.70	0.66	
Flash Point: (°C)	38		41.0	61.0	48.4	47.9	
Density: (kg/L @ 15 °C)	0.775	0.840	0.8043	0.8370	0.8294	0.8268	
Freezing Point: (°C)		-47	-83.0	-47.5	-55.0	-52.4	
Viscosity: (mm²/s @ -20 °C)		8.0	3.300	6.100	4.694	4.862	
Net Heat of Combustion: (MJ/kg)	42.8		42.900	43.284	43.116	43.146	
Cetane Index: (calculated)	Re	port	30.2	45.8	38.6	41.0	
Hydrogen Content: (mass %)	13.4		13.40	14.50	13.62	13.71	
Smoke Point: (mm)	25.0		18.0	25.0	20.2	20.1	
Naphthalene: (vol %)		3.0	0.12	2.24	0.93	1.01	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	1.00	0.12	0.01	
Change in pressure drop, mm Hg @ 260 °C		20	NR	NR	NR	NR	
Existent Gum: (mg/100 mL)		7.0	0.00	3.00	1.06	1.04	
Particulate Matter: (mg/L)		1.0	0.00	1.00	0.29	0.30	
Filtration Time: (minutes)		15	3	13	6.39	6.81	
Water Separation Index: (rating)	70		81	100	92.9	91.2	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.11	0.15	0.134	0.147	

Table 4-7: Region 5 Summary

MIL-DTL-83133 Turbine Fuel, Aviation Kerosene Types, NATO F34 (JP8)							
Total Volume			152.78				
		Batch Analysis		75			
Property	Specification Limits Min Max		Region 6				
			Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0100	0.0110	0.010	0.010	
Aromatics: (vol %)		25.0	17.2	21.1	19.5	19.5	
Sulfur Mercaptan: (mass %)		0.002	0.0005	0.0011	0.0008	0.0009	
Sulfur, Total: (mass %)		0.30	0.0150	0.0640	0.031	0.030	
Distillation:							
Initial Boiling Point (IBP), (°C)	Rei	port	147.0	150.0	148.2	148.0	
10% Recovered, (°C)	110	205	160.0	165.0	161.8	161.6	
20% Recovered, (°C)	Report		165.0	172.0	167.3	167.1	
50% Recovered, (°C)		port	182.5	192.0	188.0	187.8	
90% Recovered, (°C)	Report		236.0	250.0	244.6	245.2	
Final Boiling Point (FBP), (°C)		300	263.0	288.0	278.3	278.2	
Residue, (vol %)		1.5	1.10	1.30	1.19	1.19	
Loss, (vol %)		1.5	1.00	1.00	1.00	1.00	
Flash Point: (°C)	38		38.0	40.0	39.2	39.3	
Density: (kg/L @ 15 °C)	0.775	0.840	0.7883	0.7910	0.7898	0.7898	
Freezing Point: (°C)		-47	-51.0	-49.5	-50.5	-50.4	
Viscosity: (mm²/s @ -20 °C)		8.0	3.110	3.540	3.379	3.372	
Net Heat of Combustion: (MJ/kg)	42.8		43.284	43.392	43.325	43.325	
Cetane Index: (calculated)	Re	port	41.2	44.7	43.2	43.2	
Hydrogen Content: (mass %)	13.4		13.83	14.01	13.90	13.90	
Smoke Point: (mm)	25.0		25.0	25.0	25.0	25.0	
Naphthalene: (vol %)		3.0	NR	NR	NR	NR	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	2.00	2.00	2.00	2.00	
Change in pressure drop, mm Hg @ 260 °C		25	NR	NR	NR	NR	
Existent Gum: (mg/100 mL)		7.0	1.00	1.00	1.00	1.00	
Particulate Matter: (mg/L)		1.0	0.42	0.85	0.63	0.64	
Filtration Time: (minutes)		15	11	13	11.93	11.98	
Water Separation Index: (rating)	70		90	97	94.2	94.5	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.12	0.12	0.120	0.120	

Table 4-8: Region 6 Summary

MIL-DTL-83133 Turbine Fuel, Aviation Kerosene Types, NATO F34							
	(JP8)	Volume	74.04				
		Batch		20			
Property	Analysis Specification Limits Min Max		Region 7				
			Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0090	0.006	0.006	
Aromatics: (vol %)		25.0	14.0	21.1	16.1	15.8	
Sulfur Mercaptan: (mass %)		0.002	0.0000	0.0019	0.0013	0.0013	
Sulfur, Total: (mass %)		0.30	0.0000	0.2900	0.171	0.183	
Distillation:							
Initial Boiling Point (IBP), (°C)	Re	port	148.0	181.2	153.0	152.3	
10% Recovered, (°C)		205	163.0	194.2	167.8	167.1	
20% Recovered, (°C)	Re	port	170.0	197.1	174.0	173.4	
50% Recovered, (°C)	Re	port	184.9	210.1	192.0	191.5	
90% Recovered, (°C)	Report		223.2	241.0	234.7	234.7	
Final Boiling Point (FBP), (°C)		300	248.5	264.0	256.6	257.1	
Residue, (vol %)		1.5	0.80	1.30	1.14	1.14	
Loss, (vol %)		1.5	0.20	1.30	0.92	0.89	
Flash Point: (°C)	38		39.0	60.0	45.3	44.9	
Density: (kg/L @ 15 °C)	0.775	0.840	0.7858	0.8209	0.7933	0.7926	
Freezing Point: (°C)		-47	-80.0	-49.0	-56.6	-55.3	
Viscosity: (mm²/s @ -20 °C)		8.0	3.269	4.657	3.535	3.531	
Net Heat of Combustion: (MJ/kg)	42.8		43.050	43.370	43.292	43.299	
Cetane Index: (calculated)	Re	port	39.1	45.9	42.8	42.8	
Hydrogen Content: (mass %)	13.4		13.59	14.10	13.99	14.00	
Smoke Point: (mm)	25.0		21.0	26.0	24.4	24.6	
Naphthalene: (vol %)		3.0	0.26	0.35	0.30	0.30	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	5.00	1.60	1.72	
Change in pressure drop, mm Hg @ 260 °C		23	0.00	0.00	0.00	0.00	
Existent Gum: (mg/100 mL)		7.0	0.40	2.00	1.74	1.73	
Particulate Matter: (mg/L)		1.0	0.10	0.75	0.49	0.49	
Filtration Time: (minutes)		15	4	13	5.84	5.69	
Water Separation Index: (rating)	70		83	99	94.6	95.3	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.10	0.14	0.123	0.126	

Table 4-9: Region 7 Summary

MIL-DTL-83133 Turbine Fuel, Aviation Kerosene Types, NATO F34 (JP8)							
	Total Volume		213.01				
Barranta		Batch Analysis		145			
Property	Specification Limits		Region 8				
			Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0004	0.0200	0.013	0.007	
Aromatics: (vol %)		25.0	14.1	23.0	19.1	18.4	
Sulfur Mercaptan: (mass %)		0.002	0.0001	0.0012	0.0007	0.0007	
Sulfur, Total: (mass %)		0.30	0.0100	0.1800	0.096	0.113	
Distillation:							
Initial Boiling Point (IBP), (°C)	Re	port	135.1	155.2	145.8	149.4	
10% Recovered, (°C)		205	158.2	173.2	164.7	167.1	
20% Recovered, (°C)	Re	port	164.3	180.6	172.2	173.9	
50% Recovered, (°C)	Re	port	188.0	202.8	197.0	195.9	
90% Recovered, (°C)	Report		231.0	258.2	246.1	242.8	
Final Boiling Point (FBP), (°C)		300	252.7	288.7	267.1	266.7	
Residue, (vol %)		1.5	0.20	1.50	1.05	0.90	
Loss, (vol %)		1.5	0.00	1.50	0.86	0.71	
Flash Point: (°C)	38		38.0	48.0	42.7	44.0	
Density: (kg/L @ 15 °C)	0.775	0.840	0.7881	0.8161	0.8069	0.8017	
Freezing Point: (°C)		-47	-55.0	-47.0	-49.6	-50.1	
Viscosity: (mm²/s @ -20 °C)		8.0	3.339	4.5781	4.036	3.837	
Net Heat of Combustion: (MJ/kg)	42.8		43.000	43.400	43.140	43.216	
Cetane Index: (calculated)	Re	port	37.4	47.1	40.4	42.5	
Hydrogen Content: (mass %)	13.4		13.44	14.03	13.81	13.77	
Smoke Point: (mm)	25.0		20.0	26.0	21.5	22.7	
Naphthalene: (vol %)		3.0	0.10	2.88	1.98	1.51	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	3.30	0.24	0.20	
Change in pressure drop, mm Hg @ 260 °C		25	NR	NR	NR	NR	
Existent Gum: (mg/100 mL)		7.0	0.00	3.00	1.12	0.93	
Particulate Matter: (mg/L)		1.0	0.03	1.00	0.31	0.43	
Filtration Time: (minutes)		15	3	12	4.94	5.11	
Water Separation Index: (rating)	70		78	100	94.4	93.0	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.10	0.15	0.123	0.121	

Table 4-10: Region 8 Summary

4. JP8—Assessment Summary

Overview:

In 2012, 1,373 reported analyses, representing 1,723.48 million U.S. gallons of JP8, were processed by Regions 1–8. This represents a decrease from the 1,544 reported analyses and 1,826.26 million U.S. gallons gueried from the PQIS in 2011.

Significant Trending:

Flash Point. The weighted mean decreased 1.0 °C from 2009 to 2012.

Freezing Point. The weighted mean increased 1.1 °C from 2011 to 2012 after having decreased 1.6 °C from 2009 to 2011.

Viscosity. The weighted mean increased 0.065 mm 2 /s @ -20 °C from 2011 to 2012 after having decreased 0.082 mm 2 /s @ -20 °C from 2009 to 2011.

Smoke Point. The weighted mean decreased 0.53 mm from 2010 to 2012.

JP8 Observations:

All batches met specification requirements in 2012.

For **Total Acid Number**, a waiver was granted for a 0.020 mg KOH/g maximum limit for locations in Alaska. Seventy-nine measurements from Alaska were greater than the maximum specification limit of 0.015 mg KOH/g, but all met the specification limit set by the waiver. These data are included in the data tables and figures.

Six **Smoke Point** values were less than the minimum JP8 specification limit of 19.0 mm (when naphthalene values are less than 3.0 volume percent). Waivers were granted for these values. These data points are included in the data tables and figures.

In September 2012, **FSII** specification limits changed to 0.07-0.10 vol % because of the publication of MIL-DTL-83133 with amendment 1, but contracts through the end of 2012 all fell under the MIL-DTL-83133H (without amendment 1) revision.

For Water Separation Index, all JP8 batches met specification requirements. The impact of additives provides for a wide variation (see Table 4-11). Batches were not separated by type of additives or group of additives for this reporting. The minimum Micro Separometer (MSEP) rating shall be as follows:

JP8 Additives	MSEP Rating, min
Antioxidant (AO), Metal Deactivator (MDA)	90
AO, MDA, and Fuel System Icing Inhibitor (FSII)	85
AO, MDA, and Corrosion Inhibitor/Lubricity Improver (CI/LI)	80
AO, MDA, FSII and CI/LI	70

Table 4-11: JP8 Additives and Associated MSEP Ratings

Total Acid Number—2012

Figure 4-1: Total Acid Number (mg KOH/g), maximum 0.015

Total Acid Number 12-Year Trend—Weighted Mean

Figure 4-2: Total Acid Number (mg KOH/g), 12-Year Trend, maximum 0.015

4. JP8 Data

Aromatics—2012

Figure 4-3: Aromatics (vol %), maximum 25.0

Sulfur Mercaptan—2012

Figure 4-4: Sulfur Mercaptan (mass %), maximum 0.002

Sulfur, Total—2012

Figure 4-5: Sulfur, Total (mass %), maximum 0.30

Sulfur, Total 12-Year Trend—Weighted Mean

Figure 4-6: Sulfur, Total (mass %), 12-Year Trend, maximum 0.30

4. JP8 Data

Distillation Initial Boiling Point—2012

Figure 4-7: Distillation Initial Boiling Point (°C), Report

Distillation 10% Recovered—2012

Figure 4-8: Distillation 10% Recovered (°C), maximum 205

Distillation 20% Recovered—2012

Figure 4-9: Distillation 20% Recovered (°C), Report

Distillation 50% Recovered—2012

Figure 4-10: Distillation 50% Recovered (°C), Report

Distillation 90% Recovered—2012

Figure 4-11: Distillation 90% Recovered (°C), Report

Distillation Final Boiling Point—2012

Figure 4-12: Distillation Final Boiling Point (°C), maximum 300

Note: Six values were greater than the maximum limit of 300, but all were acceptable as these six values were procured under a prior specification and did not exceed the old D2887 maximum limit.

Distillation Residue—2012

Figure 4-13: Distillation Residue (vol %), maximum 1.5

Distillation Loss—2012

Figure 4-14: Distillation Loss (vol %), maximum 1.5

Flash Point—2012

Figure 4-15: Flash Point (°C), minimum 38

Flash Point 12-Year Trend—Weighted Mean

Figure 4-16: Flash Point (°C), 12-Year Trend, minimum 38

Density-2012

Figure 4-17: Density (kg/L @ 15 °C), minimum 0.775, maximum 0.840

Density 12-Year Trend—Weighted Mean

Figure 4-18: Density (kg/L @ 15 °C), 12-Year Trend, minimum 0.775, maximum 0.840

Freezing Point—2012

Figure 4-19: Freezing Point (°C), maximum -47

Freezing Point 12-Year Trend—Weighted Mean

Figure 4-20: Freezing Point (°C), 12-Year Trend, maximum -47

Viscosity—2012

Figure 4-21: Viscosity (mm²/s @ -20 °C), maximum 8.0

Viscosity 12-Year Trend—Weighted Mean

Figure 4-22: Viscosity (mm²/s @ -20 °C), 12-Year Trend, maximum 8.0

4. JP8 Data

Net Heat of Combustion—2012

Figure 4-23: Net Heat of Combustion (MJ/kg), minimum 42.8

Calculated Cetane Index—2012

Figure 4-24: Calculated Cetane Index, Report

Hydrogen Content—2012

Figure 4-25: Hydrogen Content (mass %), minimum 13.4

Hydrogen Content 12-Year Trend—Weighted Mean

Figure 4-26: Hydrogen Content (mass %), 12-Year Trend, minimum 13.4

Smoke Point—2012

Figure 4-27: Smoke Point (mm), minimum 25.0

Smoke Point 12-Year Trend—Weighted Mean

Figure 4-28: Smoke Point (mm), 12-Year Trend, minimum 25.0

Note: When the smoke point result is below 25 mm, the product is acceptable so long as the naphthalene content is below 3.0 percent and the smoke point is above the minimum of 19 mm. Waivers were granted for the smoke point values below 19 mm.

Naphthalene—2012

Figure 4-29: Naphthalene (vol %), maximum 3.0

Naphthalene 12-Year Trend—Weighted Mean

Figure 4-30: Naphthalene (vol %), 12-Year Trend, maximum 3.0

Thermal Stability (JFTOT @ 275 °C)—2012

Figure 4-31: Thermal Stability, Change in Pressure Drop (mm Hg @ 275 °C), maximum 25

Thermal Stability (JFTOT @ 260 °C)—2012

Figure 4-32: Thermal Stability, Change in Pressure Drop (mm Hg @ 260 °C), maximum 25

Existent Gum—2012

Figure 4-33: Existent Gum (mg/100 mL), maximum 7.0

Particulate Matter—2012

Figure 4-34: Particulate Matter (mg/L), maximum 1.0

4. JP8 Data

Filtration Time—2012

Figure 4-35: Filtration Time (minutes), maximum 15

Water Separation Index—2012

Figure 4-36: Water Separation Index (rating), minimum 70

Fuel System Icing Inhibitor—2012

Figure 4-37: Fuel System Icing Inhibitor (vol %), minimum 0.10, maximum 0.15

Water Content—2012

Figure 4-38: Water Content—2012

4. JP8 Data

Figure 4-39: Water Content, January-June 2012

Figure 4-40: Water Content, July-December 2012

5. JP5 Data

5. JP5—2012 Data Summary

MIL-DTL-5624 Turbine Fuel, Aviat	ion, Grade J	P5 (NATO	Code F-44)			
	2012 Source Inputs					
Property	Region	Volume	Analysis			
Total Acid Number: (mg KOH/g)	All	407.12	171			
Aromatics: (vol %)	All	407.12	171			
Sulfur, Total: (mass %)	All	407.12	171			
Sulfur, Mercaptan: (mass %)	All	302.15	112			
Distillation Temperature:						
Initial Boiling Point, (°C)	All	409.64	172			
10% Recovered, (°C)	All	409.64	172			
20% Recovered, (°C)	All	409.64	172			
50% Recovered, (°C)	All	409.64	172			
90% Recovered, (°C)	All	409.64	172			
End Point, (°C)	All	409.64	172			
Residue, (vol %)	All	179.13	95			
Loss, (vol %)	All	179.13	95			
Flash Point: (°C)	All	409.64	172			
Density: (kg/L @ 15 °C)	All	407.54	171			
Freezing Point: (°C)	All	409.64	172			
Viscosity: (mm²/s @ -20 °C)	All	407.12	171			
Heating Value, Heat of combustion: (MJ/kg)	All	392.26	167			
Cetane Index: (calculated)	All	407.12	171			
Hydrogen Content: (mass %)	All	392.78	159			
Smoke Point: (mm)	All	407.12	171			
Thermal Stability:						
Change in pressure drop, mm Hg @ 275 °C	All	407.12	171			
Existent Gum: (mg/100 mL)	All	409.64	172			
Particulate Matter: (mg/L)	All	409.64	172			
Filtration Time: (minutes)	All	409.64	172			
MSEP: (rating)	All	407.54	171			
Fuel System Icing Inhibitor (FSII): (vol %)	All	60.14	24			

Table 5-1: Data Summary, MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP5 (NATO Code F-44), 2012 Source Inputs

5. JP5—2012 Data Summary

MIL-DTL-5624 Turbine Fuel, A	viatior	, Grac	de JP5	(NATO	Code	F-44)	
Property		Specification Limits		2012 Test Results			
Troporty	Min	Max	Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0010	0.0200	0.0052	0.0054	
Aromatics: (vol %)		25.0	9.4	24.0	18.13	18.23	
Sulfur, Total:1 (mass %)		0.30	0.0010	0.1910	0.090	0.103	
Sulfur, Mercaptan:2 (mass %)		0.002	0.0000	0.0016	0.0012	0.0012	
Distillation Temperature:							
Initial Boiling Point, (°C)	Rep	oort	136.0	187.0	163.0	158.5	
10% Recovered, ³ (°C)		205 ⁽¹⁸⁶⁾	168.0	200.0	184.1	181.2	
20% Recovered, (°C)	Rep	ort	179.0	206.0	193.0	191.0	
50% Recovered, (°C)	Rep	oort	193.0	226.0	213.3	212.5	
90% Recovered, (°C)	Rep	ort	217.8	256.0	243.8	244.5	
End Point, ³ (°C)		300 ⁽³³⁰⁾	233.9	277.0	264.4	265.6	
Residue, (vol %)		1.5	0.5	1.4	1.0	1.0	
Loss, (vol %)		1.5	0.2	1.5	1.0	1.0	
Flash Point: (°C)	60		61.0	68.0	63.2	63.3	
Density: (kg/L @ 15 °C)	0.788	0.845	0.7964	0.8299	0.8137	0.8123	
Freezing Point: (°C)		-46	-80.0	-46.3	-50.7	-50.1	
Viscosity: (mm²/s @ -20 °C)		8.5	3.749	6.980	5.299	5.182	
Heating Value, Heat of combustion: (MJ/kg)	42.6		43.000	43.354	43.142	43.145	
Cetane Index: (calculated)	Rep	oort	39.22	48.60	44.2	44.4	
Hydrogen Content: (mass %)	13.4		13.40	14.68	13.95	14.01	
Smoke Point: (mm)	19.0		20.0	27.0	22.0	22.3	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	2.00	0.16	0.12	
Existent Gum: (mg/100 mL)		7.0	0.0	3.6	1.03	1.02	
Particulate Matter: (mg/L)		1.0	0.00	0.90	0.24	0.24	
Filtration Time: (minutes)		15	2	7	3.47	3.33	
MSEP: (rating)	70		73	100	91.3	90.5	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.100	0.150	0.116	0.117	

Table 5-2: Data Summary, MIL-DTL-5624 Turbine Fuel, Aviation, Grade JP5 (NATO Code F-44), 2012 Test Results

Note 1: The clause for procurement states a maximum of 0.20 mass % for sulfur, total, for JP5, but the specification limit for sulfur, total, is a maximum of 0.30 mass %.

Note 2: The sulfur, mercaptan limit or negative doctor test result is acceptable to meet the specification requirement.

Note 3: Test method D2887 limits in parentheses (°C).

MIL-DTL-5624 Turbine Fuel	, Aviati	on, Gra	de JP5	(NATC) Code I	F-44)	
		Volume	234.76				
		itch llysis	79				
Property	•	fication nits		Reg	ion 3		
	Min Max		Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0020	0.0120	0.0060	0.0060	
Aromatics: (vol %)		25.0	14.5	20.4	18.53	18.54	
Sulfur, Total: (mass %)		0.30	0.0910	0.1848	0.135	0.135	
Sulfur, Mercaptan: (mass %)		0.002	0.00078	0.0016	0.0013	0.0013	
Distillation Temperature:							
Initial Boiling Point, (°C)	Re	port	136.0	181.0	142.6	142.2	
10% Recovered, (°C)		205 ⁽¹⁸⁶⁾	168.0	195.0	172.2	171.9	
20% Recovered, (°C)	Re	port	179.0	202.0	185.0	184.8	
50% Recovered, (°C)	Re	port	193.0	219.0	212.4	212.3	
90% Recovered, (°C)	Re	port	244.0	256.0	249.9	249.9	
End Point, (°C)		300 ⁽³³⁰⁾	264.0	277.0	270.8	270.8	
Residue, (vol %)		1.5	1.0	1.2	1.1	1.1	
Loss, (vol %)		1.5	1.3	1.4	1.4	1.3	
Flash Point: (°C)	60		61.0	67.0	63.9	63.8	
Density: (kg/L @ 15 °C)	0.788	0.845	0.8033	0.8162	0.8107	0.8108	
Freezing Point: (°C)		-46	-56.7	-46.3	-49.1	-49.1	
Viscosity: (mm²/s @ -20 °C)		8.5	3.749	5.874	5.000	4.997	
Heating Value, Heat of combustion: (MJ/kg)	42.6		43.066	43.354	43.146	43.143	
Cetane Index: (calculated)	Re	port	39.22	48.60	44.9	44.8	
Hydrogen Content: (mass %)	13.4		13.74	14.68	14.18	14.18	
Smoke Point: (mm)	19.0		20.0	27.0	22.8	22.8	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	1.00	0.04	0.04	
Existent Gum: (mg/100 mL)		7.0	0.0	2.0	1.03	1.04	
Particulate Matter: (mg/L)		1.0	0.03	0.64	0.15	0.15	
Filtration Time: (minutes)		15	2	7	3.10	3.11	
MSEP: (rating)	70		73	98	87.5	88.0	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	NR	NR	NR	NR	

Table 5-3: Region 3 Summary

MIL-DTL-5624 Turbine Fuel,	Aviati	on, Gra	ide JP5	(NAT	O Code	F-44)	
	Total \	/olume	106.52				
		tch lysis	61				
Property		Specification Limits		Reg	ion 5		
	Min	Max	Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0010	0.0120	0.0044	0.0046	
Aromatics: (vol %)		25.0	9.4	19.7	16.88	16.79	
Sulfur, Total: (mass %)		0.30	0.0100	0.0600	0.031	0.031	
Sulfur, Mercaptan: (mass %)		0.002	0.0010	0.0010	0.0010	0.0010	
Distillation Temperature:							
Initial Boiling Point, (°C)	Rej	oort	174.0	186.0	180.6	180.6	
10% Recovered, (°C)		205(186)	193.0	200.0	195.4	195.4	
20% Recovered, (°C)	Rej	oort	199.0	206.0	202.2	202.2	
50% Recovered, (°C)	Rej	oort	210.0	226.0	218.3	218.3	
90% Recovered, (°C)	Rej	oort	232.0	253.0	242.6	242.3	
End Point, (°C)		300 ⁽³³⁰⁾	252.0	272.0	262.7	262.6	
Residue, (vol %)		1.5	0.5	1.2	1.0	1.0	
Loss, (vol %)		1.5	0.2	1.5	1.0	0.9	
Flash Point: (°C)	60		61.0	68.0	62.2	62.1	
Density: (kg/L @ 15 °C)	0.788	0.845	0.8115	0.8299	0.8214	0.8215	
Freezing Point: (°C)		-46	-56.0	-47.0	-50.4	-50.6	
Viscosity: (mm²/s @ -20 °C)		8.5	5.280	6.980	6.014	6.010	
Heating Value, Heat of combustion: (MJ/kg)	42.6		43.000	43.300	43.121	43.120	
Cetane Index: (calculated)	Rej	oort	40.20	45.90	43.1	43.1	
Hydrogen Content: (mass %)	13.4		13.50	14.00	13.74	13.73	
Smoke Point: (mm)	19.0		20.0	23.0	20.5	20.5	
Thermal Stability: Change in pressure drop, mm Hg @ 275 °C		25	0.00	1.00	0.18	0.14	
Existent Gum: (mg/100 mL)		7.0	0.0	3.6	0.95	0.91	
Particulate Matter: (mg/L)		1.0	0.00	0.80	0.22	0.24	
Filtration Time: (minutes)		15	3	4	3.41	3.41	
MSEP: (rating)	70		89	100	96.7	96.6	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	NR	NR	NR	NR	

Table 5-4: Region 5 Summary

69

MIL-DTL-5624 Turbine Fuel,	Aviati	on, Gra	ide JP5	(NATO	Code	F-44)	
	Total \	/olume	24.07				
		tch lysis	12				
Property		ication nits		Regio	on 7		
	Min Max		Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0010	0.0060	0.0036	0.0041	
Aromatics: (vol %)		25.0	17.7	24.0	21.26	21.91	
Sulfur, Total: (mass %)		0.30	0.0010	0.0345	0.013	0.017	
Sulfur, Mercaptan: (mass %)		0.002	0.0000	0.0003	0.0003	0.0003	
Distillation Temperature:							
Initial Boiling Point, (°C)	Re	oort	180.8	187.0	183.1	182.5	
10% Recovered, (°C)		205 ⁽¹⁸⁶⁾	189.0	199.0	193.8	192.8	
20% Recovered, (°C)	Rep	oort	192.1	201.0	196.3	195.2	
50% Recovered, (°C)	Rep	oort	199.5	212.0	206.1	204.4	
90% Recovered, (°C)	Rep	oort	217.8	239.6	230.4	227.8	
End Point, (°C)		300(330)	233.9	261.0	247.2	245.3	
Residue, (vol %)		1.5	1.0	1.4	1.2	1.2	
Loss, (vol %)		1.5	0.8	1.5	1.2	1.1	
Flash Point: (°C)	60		63.0	67.0	64.6	64.8	
Density: (kg/L @ 15 °C)	0.788	0.845	0.8090	0.8243	0.8159	0.8141	
Freezing Point: (°C)		-46	-80.0	-60.0	-69.1	-66.9	
Viscosity: (mm²/s @ -20 °C)		8.5	4.000	5.675	4.913	4.725	
Heating Value, Heat of combustion: (MJ/kg)	42.6		43.000	43.100	43.085	43.089	
Cetane Index: (calculated)	Rep	oort	40.50	42.50	41.2	41.2	
Hydrogen Content: (mass %)	13.4		13.40	13.79	13.62	13.64	
Smoke Point: (mm)	19.0		21.0	22.0	21.5	21.5	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C		25	0.00	2.00	0.45	0.57	
Existent Gum: (mg/100 mL)		7.0	1.0	2.1	1.47	1.47	
Particulate Matter: (mg/L)		1.0	0.10	0.40	0.27	0.31	
Filtration Time: (minutes)		15	3	6	4.55	4.55	
MSEP: (rating)	70		75	98	89.9	89.5	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.100	0.150	0.118	0.119	

Table 5-5: Region 7 Summary

MIL-DTL-5624 Turbine Fuel,	Aviati	on, Gra	ide JP5	(NATO) Code	F-44)	
	Total \	/olume	53.15				
		tch lysis	21				
Property		ication nits		Reg	ion 8		
	Min	Max	Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0010	0.0200	0.0050	0.0048	
Aromatics: (vol %)		25.0	17.1	20.1	18.67	18.72	
Sulfur, Total: (mass %)		0.30	0.0720	0.1910	0.136	0.130	
Sulfur, Mercaptan: (mass %)		0.002	0.0006	0.0016	0.0012	0.0012	
Distillation Temperature:							
Initial Boiling Point, (°C)	Re	port	174.6	181.7	178.5	178.7	
10% Recovered, (°C)		205(186)	188.9	197.9	191.0	190.7	
20% Recovered, (°C)	Re	port	192.4	201.9	194.8	194.4	
50% Recovered, (°C)	Re	port	202.0	214.8	205.4	204.3	
90% Recovered, (°C)	Re	port	227.0	249.0	231.4	230.1	
End Point, (°C)		300 ⁽³³⁰⁾	246.4	266.4	253.9	254.5	
Residue, (vol %)		1.5	1.0	1.4	1.1	1.0	
Loss, (vol %)		1.5	0.6	1.5	1.0	1.0	
Flash Point: (°C)	60		61.0	66.0	62.9	62.9	
Density: (kg/L @ 15 °C)	0.788	0.845	0.7964	0.8239	0.8012	0.7996	
Freezing Point: (°C)		-46	-49.2	-46.5	-48.4	-48.3	
Viscosity: (mm²/s @ −20 °C)		8.5	4.107	5.8259	4.533	4.462	
Heating Value, Heat of combustion: (MJ/kg)	42.6		43.029	43.289	43.234	43.243	
Cetane Index: (calculated)	Re	port	40.90	47.40	46.3	46.5	
Hydrogen Content: (mass %)	13.4		13.50	13.90	13.79	13.83	
Smoke Point: (mm)	19.0		20.0	26.0	24.0	24.1	
Thermal Stability: Change in pressure drop, mm Hg @ 275 °C		25	0.00	2.00	0.39	0.28	
Existent Gum: (mg/100 mL)		7.0	0.6	2.6	1.09	1.00	
Particulate Matter: (mg/L)		1.0	0.21	0.90	0.60	0.60	
Filtration Time: (minutes)		15	3	7	4.43	3.78	
MSEP: (rating)	70		76	97	90.4	89.8	
Fuel System Icing Inhibitor (FSII): (vol %)	0.10	0.15	0.104	0.126	0.116	0.116	

Table 5-6: Region 8 Summary

5. JP5—Assessment Summary

Overview:

In 2012, 173 reported analyses, representing 418.50 million U.S. gallons of JP5, were processed by Regions 3, 5, 7, and 8. This represents a decrease from the 238 reported JP5 analyses and 529.11 million U.S. gallons of JP5 queried from the PQIS in 2011.

Significant Trending:

Total Acid Number. The weighted mean increased 0.0018 mg KOH/g from 2010 to 2012.

Sulfur, **Total**. The weighted mean increased 0.020 mass % from 2011 to 2012.

Distillation, **10% Recovered**. The weighted mean decreased 5.1 °C from 2011 to 2012 after having increased 3.9 °C from 2008 to 2011.

Hydrogen Content. The weighted mean increased 0.26 mass % from 2009 to 2012.

JP5 Observations:

All batches met specification requirements in 2012.

For **Total Acid Number**, a waiver was granted for one Region 8 measurement greater than the maximum specification limit of 0.015 mg KOH/g. This measurement met the specification limit set by the waiver. This measurement is included in the data tables and figures.

For **Sulfur**, **Total**, the clause for procurement states a maximum of 0.20 mass % for JP5, but the specification limit for sulfur, total, is a maximum of 0.30 mass %.

For **MSEP**, all JP5 batches met specification requirements. The impact of additives provides for a wide variation (see Table 5-7). Batches were not separated by type of additives or group of additives for this reporting.

Product	Additives ¹	MSEP Rating, min
JP-4 and JP-5	Antioxidant (AO), Metal Deactivator (MDA)	90
JP-4 and JP-5	AO, MDA, and FSII	85
JP-4 and JP-5	AO, MDA, and Corrosion Inhibitor/Lubricity Improver (CI/LI)	80
JP-4 and JP-5	AO, MDA, CI/LI, and FSII	70

Table 5-7: JP-4 and JP-5 Additives and Associated MSEP Ratings

Note 1: Samples submitted for specification conformance testing shall contain the same additives present in the refinery batch. Regardless of which minimum the refiner elects to meet, the refiner shall report the MSEP rating on a laboratory hand blend of the fuel with all additives required by the specification.

Total Acid Number—2012

Figure 5-1: Total Acid Number (mg KOH/g), maximum 0.015

Total Acid Number 12-Year Trend—Weighted Mean

Figure 5-2: Total Acid Number (mg KOH/g), 12-Year Trend, maximum 0.015

Aromatics—2012

Figure 5-3: Aromatics (vol %), maximum 25.0

Aromatics 12-Year Trend—Weighted Mean

Figure 5-4: Aromatics (vol %), 12-Year Trend, maximum 25.0

Sulfur, Total—2012

Figure 5-5: Sulfur, Total (mass %), maximum 0.30

Sulfur, Total 12-Year Trend—Weighted Mean

Figure 5-6: Sulfur, Total (mass %), 12-Year Trend, maximum 0.30

5. JP5 Data

Sulfur, Mercaptan—2012

Figure 5-7: Sulfur, Mercaptan (mass %), maximum 0.002

Distillation Initial Boiling Point—2012

Figure 5-8: Distillation Initial Boiling Point (°C), Report

Distillation 10% Recovered—2012

Figure 5-9: Distillation 10% Recovered (°C), maximum 205⁽¹⁸⁶⁾ (method D2887 limits in parentheses, °C)

Distillation 10% Recovered 12-Year Trend— Weighted Mean

Figure 5-10: Distillation 10% Recovered (°C), 12-Year Trend, maximum 205⁽¹⁸⁶⁾ (method D2887 limits in parentheses, °C)

5. JP5 Data

Distillation 20% Recovered—2012

Figure 5-11: Distillation 20% Recovered (°C), Report

Distillation 50% Recovered—2012

Figure 5-12: Distillation 50% Recovered (°C), Report

Distillation 90% Recovered—2012

Figure 5-13: Distillation 90% Recovered (°C), Report

Distillation End Point—2012

Figure 5-14: Distillation End Point (°C), maximum $300^{(330)}$ (method D2887 limits in parentheses, °C)

5. JP5 Data

Distillation Residue—2012

Figure 5-15: Distillation Residue (vol %), maximum 1.5

Distillation Loss—2012

Figure 5-16: Distillation Loss (vol %), maximum 1.5

Flash Point—2012

Figure 5-17: Flash Point (°C), minimum 60

Flash Point 12-Year Trend—Weighted Mean

Figure 5-18: Flash Point (°C), 12-Year Trend, minimum 60

Density—2012

Figure 5-19: Density (kg/L @ 15 °C), minimum 0.788, maximum 0.845

Density 12-Year Trend—Weighted Mean

Figure 5-20: Density (kg/L @ 15 °C), 12-Year Trend, minimum 0.788, maximum 0.845

Freezing Point—2012

Figure 5-21: Freezing Point (°C), maximum -46

Freezing Point 12-Year Trend—Weighted Mean

Figure 5-22: Freezing Point (°C), 12-Year Trend, maximum -46

Viscosity—2012

Figure 5-23: Viscosity (mm²/s @ -20 °C), maximum 8.5

Viscosity 12-Year Trend—Weighted Mean

Figure 5-24: Viscosity (mm²/s @ -20 °C), 12-Year Trend, maximum 8.5

Heat Value, Heat of Combustion—2012

Figure 5-25: Heat Value, Heat of Combustion (MJ/kg), minimum 42.6

Cetane Index (Calculated)—2012

Figure 5-26: Cetane Index (Calculated), Report

Hydrogen Content—2012

Figure 5-27: Hydrogen Content (mass %), minimum 13.4

Hydrogen Content 12-Year Trend—Weighted Mean

Figure 5-28: Hydrogen Content (mass %), 12-Year Trend, minimum 13.4

Smoke Point—2012

Figure 5-29: Smoke Point (mm), minimum 19.0

Thermal Stability (JFTOT @ 275 °C)—2012

Figure 5-30: Thermal Stability, Change in Pressure Drop (mm Hg @ 275 °C), maximum 25

5. JP5 Data

Existent Gum—2012

Figure 5-31: Existent Gum (mg/100 mL), maximum 7.0

Particulate Matter—2012

Figure 5-32: Particulate Matter (mg/L), maximum 1.0

Filtration Time—2012

Figure 5-33: Filtration Time (minutes), maximum 15

Filtration Time 12-Year Trend—Weighted Mean

Figure 5-34: Filtration Time (minutes), 12-Year Trend, maximum 15

5. JP5 Data

Micro Separometer (MSEP)—2012

Figure 5-35: Micro Separometer (rating), minimum 70

Fuel System Icing Inhibitor—2012

Figure 5-36: Fuel System Icing Inhibitor (vol %), minimum 0.10, maximum 0.15

6. JA1 Data

6. JA1—2012 Data Summary

Jet A-1 Turbine Fuel, Aviation,	Defence S	Standard 9	1-91	
Property	2012 Source Inputs			
	Region	Volume	Analysis	
Total Acid Number: (mg KOH/g)	All	407.38	153	
Aromatics: (vol %)	All	407.38	153	
Sulfur, Total: (mass %)	All	384.78	152	
Sulfur Mercaptan: (mass %)	All	404.66	153	
Distillation:				
Initial Boiling Point (IBP), (°C)	All	434.41	176	
10% Recovered, (°C)	All	434.41	176	
50% Recovered, (°C)	All	434.41	176	
90% Recovered, (°C)	All	434.41	176	
Final Boiling Point (FBP), (°C)	All	434.41	176	
Residue, (vol %)	All	400.79	158	
Loss, (vol %)	All	400.79	158	
Flash Point: (°C)	All	434.41	176	
Density: (kg/m³ @ 15 °C)	All	434.41	176	
Freezing Point: (°C)	All	418.69	174	
Viscosity: (mm²/s @ -20 °C)	All	407.34	153	
Net Heat of Combustion: (MJ/kg)	All	407.38	153	
Smoke Point: (mm)	All	399.61	151	
Naphthalene: (vol %)	All	107.33	109	
Thermal Stability:				
Change in pressure drop, mm Hg @ 275 °C	All	NR	NR	
Change in pressure drop, mm Hg @ 260 °C	All	390.70	151	
Existent Gum: (mg/100 mL)	All	409.74	169	
Particulate Contamination: (mg/L)	All	432.16	173	
Water Separation Index: (rating)	All	419.37	173	

Table 6-1: Data Summary, Jet A-1 Turbine Fuel, Aviation, Defence Standard 91-91, 2012 Source Inputs

6. JA1—2012 Data Summary

Jet A-1 Turbine Fuel, Avia	ation,	Defen	ce Stai	ndard 9	91-91		
Property		Specification Limits		2012 Test Results			
	Min	Max	Min	Max	Mean	Wt Mean	
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0120	0.0030	0.0037	
Aromatics: (vol %)		25.0	14.20	24.70	17.91	17.63	
Sulfur, Total: (mass %)		0.3	0.0000	0.2900	0.093	0.099	
Sulfur Mercaptan:1 (mass %)		0.003	0.0000	0.0029	0.0012	0.0012	
Distillation:							
Initial Boiling Point (IBP), (°C)	Rep	ort	141.9	162.0	149.9	148.6	
10% Recovered, (°C)		205.0	152.6	177.7	168.3	165.9	
50% Recovered, (°C)	Rep	ort	175.3	203.6	195.0	192.6	
90% Recovered, (°C)	Rep	ort	205.5	247.0	234.0	235.8	
Final Boiling Point (FBP), (°C)		300.0	221.0	280.0	257.1	259.2	
Residue, (vol %)		1.5	0.6	1.5	1.2	1.1	
Loss, (vol %)		1.5	0.0	1.5	0.5	0.8	
Flash Point: (°C)	38.0		38.0	49.0	41.5	40.6	
Density: (kg/m³ @ 15 °C)	775.0	840.0	784.7	811.0	798.6	795.0	
Freezing Point: (°C)		-47	-68.50	-48.00	-53.04	-52.72	
Viscosity: (mm²/s @ -20 °C)		8.0	2.773	4.394	3.694	3.589	
Net Heat of Combustion: (MJ/kg)	42.80		43.060	44.800	43.256	43.285	
Smoke Point: ² (mm)	25.0		20.00	27.00	23.69	24.72	
Naphthalene: (vol %)		3	0.15	2.56	1.12	1.34	
Thermal Stability:							
Change in pressure drop, mm Hg @ 275 °C			NR	NR	NR	NR	
Change in pressure drop, mm Hg @ 260 °C		25	0.00	25.00	1.48	0.75	
Existent Gum: (mg/100 mL)		7.0	0.40	6.00	1.25	1.38	
Particulate Contamination: (mg/L)		1.0	0.01	0.90	0.25	0.34	
Water Separation Index:3 (rating)	70		70	105	95.9	97.7	

Table 6-2: Data Summary, Jet A–1 Turbine Fuel, Aviation, Defence Standard 91–91, 2012 Test Results

Note 1: Either the sulfur mercaptan limit or a negative doctor test result is acceptable to meet the specification requirement.

Note 2: When the smoke point result is below 25 mm, the product is acceptable so long as the naphthalene content is below 3.0 percent and the smoke point is above the minimum of 19 mm.

Note 3: The minimum MSEP rating with SDA is 70. The minimum MSEP rating without SDA is 85.

Jet A-1 Turbine Fuel, Aviation, Defence Standard 91-91						
	Total	Volume	192.55			
		ntch Ilysis		1	16	
Property		fication nits		Reg	ion 6	
	Min	Max	Min	Max	Mean	Wt Mean
Total Acid Number: (mg KOH/g)		0.015	0.0010	0.0090	0.0034	0.0035
Aromatics: (vol %)		25.0	14.29	18.68	16.68	16.79
Sulfur, Total: (mass %)		0.3	0.0000	0.1634	0.070	0.073
Sulfur Mercaptan: (mass %)		0.003	0.00006	0.0014	0.0006	0.0006
Distillation:						
Initial Boiling Point (IBP), (°C)	Re	port	145.0	151.0	147.6	147.7
10% Recovered, (°C)		205.0	160.0	171.0	163.8	163.9
50% Recovered, (°C)	Re	port	182.0	200.0	189.9	190.3
90% Recovered, (°C)	Re	port	216.0	247.0	236.1	237.0
Final Boiling Point (FBP), (°C)		300.0	232.0	280.0	259.5	261.0
Residue, (vol %)		1.5	1.0	1.5	1.0	1.0
Loss, (vol %)		1.5	1.0	1.5	1.1	1.0
Flash Point: (°C)	38.0		38.0	42.0	39.8	39.8
Density: (kg/m³ @ 15 °C)	775.0	840.0	784.7	796.9	790.5	790.8
Freezing Point: (°C)		-47	-61.00	-49.50	-53.11	-52.70
Viscosity: (mm²/s @ -20 °C)		8.0	3.090	4.170	3.482	3.503
Net Heat of Combustion: (MJ/kg)	42.80		43.260	43.430	43.344	43.340
Smoke Point: (mm)	25.0		25.00	27.00	25.87	25.79
Naphthalene: (vol %)		3	NR	NR	NR	NR
Thermal Stability:						
Change in pressure drop, mm Hg @ 275 °C		0F	NR	NR	NR	NR
Change in pressure drop, mm Hg @ 260 °C		25	0.00	1.00	0.21	0.16
Existent Gum: (mg/100 mL)		7.0	0.40	3.00	1.11	1.07
Particulate Contamination: (mg/L)		1.0	0.10	0.76	0.48	0.47
Water Separation Index: (rating)	70		96	100	98.9	99.0

Table 6-3: Region 6 Summary

Jet A-1 Turbine Fuel, Avia	ation,	Defenc	e Stan	dard 9	91-91	
	Total \	Total Volume		190.96		
Parameter.		tch lysis		15	56	
Property		Specification Limits		Regi	on 7	
	Min	Max	Min	Max	Mean	Wt Mean
Total Acid Number: (mg KOH/g)		0.015	0.0000	0.0120	0.0029	0.0036
Aromatics: (vol %)		25.0	14.20	24.70	18.03	18.28
Sulfur, Total: (mass %)		0.3	0.0001	0.2900	0.094	0.119
Sulfur Mercaptan: (mass %)		0.003	0.0000	0.0029	0.0013	0.0015
Distillation:						
Initial Boiling Point (IBP), (°C)	Re	oort	141.9	162.0	150.1	149.0
10% Recovered, (°C)		205.0	152.6	177.7	168.8	167.7
50% Recovered, (°C)	Re	port	175.3	203.6	195.7	195.8
90% Recovered, (°C)	Re	port	205.5	245.4	233.8	236.2
Final Boiling Point (FBP), (°C)		300.0	221.0	273.9	257.0	259.8
Residue, (vol %)		1.5	0.6	1.5	1.3	1.2
Loss, (vol %)		1.5	0.0	1.4	0.4	0.6
Flash Point: (°C)	38.0		38.0	49.0	41.65	41.1
Density: (kg/m³ @ 15 °C)	775.0	840.0	785.3	811.0	799.5	799.4
Freezing Point: (°C)		-47	-68.50	-48.00	-53.02	-52.45
Viscosity: (mm²/s @ -20 °C)		8.0	2.773	4.394	3.724	3.703
Net Heat of Combustion: (MJ/kg)	42.80		43.060	44.800	43.245	43.224
Smoke Point: (mm)	25.0		20.00	26.00	23.39	23.37
Naphthalene: (vol %)		3	0.15	2.56	1.12	1.34
Thermal Stability:						
Change in pressure drop, mm Hg @ 275 °C		25	NR	NR	NR	NR
Change in pressure drop, mm Hg @ 260 °C			0.00	25.00	1.67	1.59
Existent Gum: (mg/100 mL)		7.0	1.00	6.00	1.23	1.35
Particulate Contamination: (mg/L)		1.0	0.01	0.90	0.23	0.24
Water Separation Index: (rating)	70		70	105	95.5	96.7

Table 6-4: Region 7 Summary

Jet A-1 Turbine Fuel, Av	iation,	Defen	ce Sta	ndard	91-91	
	Total Volume		63.57			
	-	Batch Analysis		į	5	
Property		Specification Limits		Reg	ion 8	
	Min	Max	Min	Max	Mean	Wt Mean
Total Acid Number: (mg KOH/g)		0.015	0.0030	0.0080	0.0044	0.0045
Aromatics: (vol %)		25.0	17.30	21.68	18.30	18.35
Sulfur, Total: (mass %)		0.3	0.0368	0.2209	0.140	0.138
Sulfur Mercaptan: (mass %)		0.003	0.0009	0.0024	0.0020	0.0019
Distillation:						
Initial Boiling Point (IBP), (°C)	Rej	Report		154.0	150.2	150.2
10% Recovered, (°C)		205.0		170.0	166.4	166.3
50% Recovered, (°C)	Report		182.0	194.0	190.0	189.9
90% Recovered, (°C)	Re	port	228.0	238.0	231.0	231.1
Final Boiling Point (FBP), (°C)		300.0	235.0	270.0	252.0	252.2
Residue, (vol %)		1.5	0.8	1.4	1.0	1.0
Loss, (vol %)		1.5	0.5	1.0	0.7	0.7
Flash Point: (°C)	38.0		39.0	44.0	41.8	41.8
Density: (kg/m³ @ 15 °C)	775.0	840.0	788.4	797.5	794.0	793.9
Freezing Point: (°C)		-47	-56.00	-51.00	-53.60	-53.56
Viscosity: (mm²/s @ -20 °C)		8.0	3.460	3.610	3.540	3.541
Net Heat of Combustion: (MJ/kg)	42.80		43.230	43.340	43.286	43.285
Smoke Point: (mm)	25.0		25.00	25.00	25.00	25.00
Naphthalene: (vol %)		3	NR	NR	NR	NR
Thermal Stability: Change in pressure drop, mm Hg @ 275 °C Change in pressure drop, mm Hg @		25	NR	NR	NR	NR
260 °C			0.00	1.00	0.20	0.20
Existent Gum: (mg/100 mL)		7.0	1.20	3.20	2.28	2.26
Particulate Contamination: (mg/L)		1.0	0.20	0.53	0.29	0.30
Water Separation Index: (rating)	70		96	99	97.6	97.6

Table 6-5: Region 8 Summary

6. JA1—Assessment Summary

Overview:

JA1 was first featured in the 2004 report because of increasing annual procurements. In 2012, 177 reported analyses, representing 447.07 million U.S. gallons of JA1, were processed by Regions 6, 7, and 8. This was a decrease from the 248 reported JA1 analyses and the 467.90 million U.S. gallons of JA1 queried from the PQIS in 2011.

Trending:

Aromatics. The weighted mean decreased 0.84 vol % from 2010 to 2012.

Sulfur, **Total**. The weighted mean decreased 0.059 mass % from 2011 to 2012.

Distillation, **10% Recovered**. The weighted mean decreased 2.3 °C from 2010 to 2012.

Distillation Final Boiling Point. The weighted mean decreased 5.2 °C from 2010 to 2012.

Distillation Loss. The weighted mean increased 0.3 vol % from 2010 to 2012.

Density. The weighted mean decreased 2.0 kg/m³ @ 15 °C from 2010 to 2012.

Viscosity. The weighted mean decreased 0.249 mm²/s @ -20 °C from 2010 to 2012.

Water Separation Index. The weighted mean increased 1.7 from 2010 to 2012.

JA1 Observations:

All batches met specification requirements for 2012.

Particulate Contamination is included in the JA1 tables and a histogram also has been added for this fuel property for 2012.

The minimum rating for **Water Separation Index** with SDA is 70. The minimum Water Separation Index rating without SDA is 85.

Total Acid Number—2012

Figure 6-1: Total Acid Number (mg KOH/g), maximum 0.015

Total Acid Number 9-Year Trend—Weighted Mean

Figure 6-2: Total Acid Number (mg KOH/g), 9-Year Trend, maximum 0.015

Aromatics—2012

Figure 6-3: Aromatics (vol %), maximum 25.0

Aromatics 9-Year Trend—Weighted Mean

Figure 6-4: Aromatics (vol %), 9-Year Trend, maximum 25.0

Sulfur, Total—2012

Figure 6-5: Sulfur, Total (mass %), maximum 0.30

Sulfur, Total 9-Year Trend—Weighted Mean

Figure 6-6: Sulfur, Total (mass %), 9-Year Trend, maximum 0.30

Sulfur Mercaptan—2012

Figure 6-7: Sulfur Mercaptan (mass %), maximum 0.003

Distillation Initial Boiling Point—2012

Figure 6-8: Distillation Initial Boiling Point (°C), Report

Distillation 10% Recovered—2012

Figure 6-9: Distillation 10% Recovered (°C), maximum 205.0

Figure 6-10: Distillation 10% Recovered (°C), 9-Year Trend, maximum 205.0

Distillation 50% Recovered—2012

Figure 6-11: Distillation 50% Recovered (°C), Report

Distillation 90% Recovered—2012

Figure 6-12: Distillation 90% Recovered (°C), Report

Distillation Final Boiling Point—2012

Figure 6-13: Distillation Final Boiling Point (°C), maximum 300.0

Distillation Final Boiling Point 9-Year Trend— Weighted Mean

Figure 6-14: Distillation Final Boiling Point (°C), 9-Year Trend, maximum 300.0

Distillation Residue—2012

Figure 6-15: Distillation Residue (vol %), maximum 1.5

Distillation Loss—2012

Figure 6-16: Distillation Loss (vol %), maximum 1.5

Distillation Loss 9-Year Trend—Weighted Mean

Figure 6-17: Distillation Loss (vol %), 9-Year Trend, maximum 1.5

Flash Point—2012

Figure 6-18: Flash Point (°C), minimum 38.0

Flash Point 9-Year Trend—Weighted Mean

Figure 6-19: Flash Point (°C), 9-Year Trend, minimum 38.0

Density-2012

Figure 6-20: Density (kg/m³ @ 15 °C), minimum 775, maximum 840

Density 7-Year Trend—Weighted Mean

Figure 6-21: Density (kg/m³ @ 15 °C), 7-Year Trend, minimum 775, maximum 840

Freezing Point—2012

Figure 6-22: Freezing Point (°C), maximum -47

Freezing Point 9-Year Trend—Weighted Mean

Figure 6-23: Freezing Point (°C), 9-Year Trend, maximum -47

Viscosity—2012

Figure 6-24: Viscosity (mm²/s @ -20 °C), maximum 8.0

Viscosity 9-Year Trend—Weighted Mean

Figure 6-25: Viscosity (mm²/s @ -20 °C), 9-Year Trend, maximum 8.0

Net Heat of Combustion—2012

Figure 6-26: Net Heat of Combustion (MJ/kg), minimum 42.80

Smoke Point—2012

Figure 6-27: Smoke Point (mm), minimum 25.0

Note: When the smoke point result is below 25 mm, the product is acceptable so long as the naphthalene content is below 3.0 percent and the smoke point is above the minimum of 19 mm.

Naphthalene—2012

Figure 6-28: Naphthalene (vol %), maximum 3.0

Thermal Stability (JFTOT @ 260 °C)—2012

Figure 6-29: Thermal Stability, Change in Pressure Drop (mm Hg @ 260 °C), maximum 25

Existent Gum-2012

Figure 6-30: Existent Gum (mg/100 mL), maximum 7.0

Particulate Contamination—2012

Figure 6-31: Particulate Contamination (mg/L), maximum 1.0

Water Separation Index—2012

Figure 6-32: Water Separation Index (rating), minimum 70

Note: The minimum Water Separation Index rating with SDA is 70. The minimum Water Separation Index rating without SDA is 85.

Water Separation Index 9-Year Trend—Weighted Mean

Figure 6-33: Water Separation Index (rating), 9-Year Trend, minimum 70

7. F76 Data

7. F76—2012 Data Summary

MIL-DTL-16884 Fuel, Naval Distillate (NATO Code F-76)							
Property	2	2012 Source In	puts				
	Region	Volume	Batches				
Acid Number: (mg KOH/g)	All	428.47	112				
Sulfur Content: (wt. %)	All	428.47	112				
Distillation:							
10% Point, (°C)	All	437.56	115				
50% Point, (°C)	All	437.56	115				
90% Point, (°C)	All	437.56	115				
End Point, (°C)	All	437.56	115				
Residue + Loss, (vol %)	All	437.56	115				
Flash Point: (°C)	All	442.39	116				
Density: (kg/m³ @ 15 °C)	All	427.47	113				
Viscosity: (mm²/s @ 40 °C)	All	428.47	112				
Cetane Index: (calculated)	All	394.48	96				
Hydrogen Content: (wt. %)	All	428.47	98				
Cloud Point: (°C)	All	428.47	102				
Pour Point: (°C)	All	428.47	112				
Ash: (wt. %)	All	428.47	112				
Particulate Contamination: (mg/L)	All	442.39	112				
Carbon Residue on 10% Bottoms:							
D-524 (wt. %)	All	183.87	54				
D-189 & D-4530 (wt. %)	All	250.61	60				
Demulsification: (minutes @ 25 °C)	All	389.66	103				
Color:	All	478.49	110				
Storage Stability:							
D-2274 (mg/100mL)	All	144.05	41				
D-5304 (mg/100mL)	All	284.43	71				
Calcium: (ppm)	All	428.47	112				
Lead: (ppm)	All	420.82	110				
Sodium + Potassium: (ppm)	All	428.47	112				
Vanadium: (ppm)	All	428.47	112				

Table 7-1: Data Summary, MIL-DTL-16884 Fuel, Naval Distillate (NATO F-76), 2012 Source Inputs

7. F76—2012 Data Summary

MIL-DTL-16884 Fuel	, Naval	Distill	ate (NA	ATO Cod	de F-76)	
Property	Specification Limits		2012 Test Results			
	Min	Max	Min	Max	Mean	Wt Mean
Acid Number: (mg KOH/g)		0.30	0.001	0.290	0.109	0.103
Sulfur Content: ¹ (wt. %)		0.5	0.0009	0.4900	0.243	0.258
Distillation:						
10% Point, (°C)	Rep	oort	190.2	266.0	217.5	218.6
50% Point, (°C)	Rep	ort	227.8	295.0	271.0	273.8
90% Point, (°C)		357	296.0	354.0	330.2	332.3
End Point, (°C)		385	317.0	382.0	358.4	360.5
Residue + Loss, (vol %)		3.0	0.1	2.9	1.99	1.93
Flash Point: (°C)	60		60.0	89.0	69.76	70.22
Density: (kg/m³ @ 15 °C)		876	823.7	868.2	848.4	845.8
Viscosity: (mm²/s @ 40 °C)	1.7	4.3	1.912	4.193	2.919	3.005
Cetane Index: (calculated)	43		43.50	58.30	49.59	50.62
Hydrogen Content: (wt. %)	12.5		12.50	15.31	13.35	13.49
Cloud Point: (°C)		-1	-37.0	-1.0	-10.5	-8.4
Pour Point: (°C)		-6	-48.0	-6.0	-17.4	-15.1
Ash: (wt. %)		0.005	0.0000	0.0050	0.0011	0.0011
Particulate Contamination: (mg/L)		10	0.10	8.80	2.75	2.57
Carbon Residue on 10% Bottoms:						
D-524 (wt. %)		0.20	0.010	0.190	0.120	0.120
D-189 & D-4530 (wt. %)		0.14	0.000	0.120	0.033	0.027
Demulsification: (minutes @ 25 °C)		10	1.00	10.00	3.62	3.44
Color:		3	0.50	3.00	1.09	1.02
Storage Stability:						
D-2274 (mg/100mL)		1.5	0.00	1.40	0.48	0.50
D-5304 (mg/100mL)		3.0	0.10	11.20	1.78	1.30
Calcium: (ppm)		1.0	0.00	1.00	0.13	0.14
Lead: (ppm)		0.5	0.00	0.50	0.11	0.11
Sodium + Potassium: (ppm)		1.0	0.00	1.00	0.21	0.23
Vanadium: (ppm)		0.5	0.00	0.50	0.09	0.09

Table 7-2: Data Summary, MIL-DTL-16884 Fuel, Naval Distillate (NATO F-76), 2012 Test Results

Note 1: The MIL-DTL-16884 Sulfur Content maximum limit was changed to 0.1 mass % in August 2012. Eighty-nine measurements exceeded this limit in 2012.

MIL-DTL-16884 Fuel	, Naval	Distill	ate (NA	ATO Cod	de F-76)	1	
	Total V	olume/	129.28				
Parameter	Ba ^r Anal	tch lysis	29				
Property	Specification Limits			Region 3			
	Min	Max	Min	Max	Mean	Wt Mean	
Acid Number: (mg KOH/g)		0.30	0.001	0.230	0.117	0.122	
Sulfur Content: (wt. %)		0.5	0.0849	0.4330	0.275	0.266	
Distillation:							
10% Point, (°C)	Rep	ort	196.8	223.4	209.1	209.2	
50% Point, (°C)	Rep	ort	236.5	277.0	264.0	264.7	
90% Point, (°C)		357	304.0	340.8	331.7	331.8	
End Point, (°C)		385	345.8	366.2	358.9	359.1	
Residue + Loss, (vol %)		3.0	1.3	2.7	2.19	2.23	
Flash Point: (°C)	60		60.0	73.0	64.38	64.39	
Density: (kg/m ³ @ 15 °C)		876	828.5	865.5	853.0	851.7	
Viscosity: (mm²/s @ 40 °C)	1.7	4.3	2.100	3.151	2.635	2.668	
Cetane Index: (calculated)	43		43.50	52.80	45.41	45.97	
Hydrogen Content: (wt. %)	12.5		12.50	14.50	12.89	12.95	
Cloud Point: (°C)		-1	-20.0	-4.0	-11.5	-11.2	
Pour Point: (°C)		-6	-25.0	-9.0	-17.7	-17.3	
Ash: (wt. %)		0.005	0.0000	0.0040	0.0011	0.0011	
Particulate Contamination: (mg/L)		10	1.50	8.80	3.56	3.34	
Carbon Residue on 10% Bottoms:							
D-524 (wt. %)		0.20	0.060	0.170	0.132	0.126	
D-189 & D-4530 (wt. %)		0.14	0.100	0.100	0.100	0.100	
Demulsification: (minutes @ 25 °C)		10	1.00	10.00	4.90	4.88	
Color:		3	0.50	1.50	1.33	1.27	
Storage Stability:							
D-2274 (mg/100mL)		1.5	0.00	1.40	0.46	0.40	
D-5304 (mg/100mL)		3.0	0.40	2.80	1.75	1.77	
Calcium: (ppm)		1.0	0.00	0.40	0.12	0.11	
Lead: (ppm)		0.5	0.00	0.40	0.10	0.09	
Sodium + Potassium: (ppm)		1.0	0.00	0.40	0.18	0.17	
Vanadium: (ppm)		0.5	0.00	0.40	0.11	0.10	

Table 7-3: Region 3 Summary

MIL-DTL-16884 Fuel	l, Naval	Distill	ate (NA	ATO Cod	de F-76))	
	Total \	olume/	50.42				
	Batch A	nalysis	20				
Property	Specification Limits		Region 5				
	Min	Max	Min	Max	Mean	Wt Mean	
Acid Number: (mg KOH/g)		0.30	0.002	0.161	0.041	0.045	
Sulfur Content: (wt. %)		0.5	0.0009	0.4710	0.064	0.085	
Distillation:							
10% Point, (°C)	Rep	ort	190.2	232.9	214.7	215.1	
50% Point, (°C)	Rep	ort	227.8	287.9	258.7	260.7	
90% Point, (°C)		357	296.0	330.0	311.9	313.4	
End Point, (°C)		385	317.0	352.6	339.8	341.3	
Residue + Loss, (vol %)		3.0	1.3	2.9	2.29	2.23	
Flash Point: (°C)	60		61.0	82.0	72.10	71.74	
Density: (kg/m ³ @ 15 °C)		876	845.1	868.2	859.2	859.6	
Viscosity: (mm²/s @ 40 °C)	1.7	4.3	1.912	3.420	2.698	2.735	
Cetane Index: (calculated)	43		49.50	53.30	50.80	51.02	
Hydrogen Content: (wt. %)	12.5		13.00	14.80	13.35	13.41	
Cloud Point: (°C)		-1	-37.0	-11.0	-26.6	-24.1	
Pour Point: (°C)		-6	-48.0	-15.0	-34.5	-32.1	
Ash: (wt. %)		0.005	0.0000	0.0020	0.0005	0.0005	
Particulate Contamination: (mg/L)		10	0.48	7.50	2.19	2.28	
Carbon Residue on 10% Bottoms:							
D-524 (wt. %)		0.20	0.010	0.190	0.124	0.108	
D-189 & D-4530 (wt. %)		0.14	0.020	0.020	0.020	NR	
Demulsification: (minutes @ 25 °C)		10	2.00	5.00	3.65	3.59	
Color:		3	0.50	1.00	0.68	0.68	
Storage Stability:							
D-2274 (mg/100mL)		1.5	0.10	1.40	0.51	0.52	
D-5304 (mg/100mL)		3.0	0.10	2.20	0.75	0.23	
Calcium: (ppm)		1.0	0.10	1.00	0.19	0.20	
Lead: (ppm)		0.5	0.10	0.50	0.14	0.15	
Sodium + Potassium: (ppm)		1.0	0.10	1.00	0.30	0.30	
Vanadium: (ppm)		0.5	0.10	0.50	0.14	0.15	

Table 7-4: Region 5 Summary

MIL-DTL-16884 Fuel	l, Naval	Distill	ate (NA	ATO Cod	de F-76)		
	Total V	/olume	129.73				
	Batch A	nalysis	17				
Property	Specif Lin	ication nits	Region 6				
	Min	Max	Min	Max	Mean	Wt Mean	
Acid Number: (mg KOH/g)		0.30	0.020	0.290	0.125	0.151	
Sulfur Content: (wt. %)		0.5	0.140	0.432	0.336	0.292	
Distillation:							
10% Point, (°C)	Rep	oort	191.0	209.0	201.3	204.2	
50% Point, (°C)	Rep	oort	265.0	281.0	273.6	275.7	
90% Point, (°C)		357	330.0	346.0	339.5	337.2	
End Point, (°C)		385	363.0	382.0	375.2	371.6	
Residue + Loss, (vol %)		3.0	1.1	2.0	1.89	2.00	
Flash Point: (°C)	60		62.0	74.0	66.87	68.60	
Density: (kg/m ³ @ 15 °C)		876	823.7	833.3	828.6	829.9	
Viscosity: (mm ² /s @ 40 °C)	1.7	4.3	2.541	3.111	2.833	2.929	
Cetane Index: (calculated)	43		53.30	58.30	55.89	55.85	
Hydrogen Content: (wt. %)	12.5		12.90	13.70	13.46	13.40	
Cloud Point: (°C)		-1	-4.0	-1.0	-1.8	-2.3	
Pour Point: (°C)		-6	-12.0	-6.0	-8.4	-7.5	
Ash: (wt. %)		0.005	0.0010	0.0050	0.0013	0.0010	
Particulate Contamination: (mg/L)		10	2.20	7.70	4.14	4.85	
Carbon Residue on 10% Bottoms:							
D-524 (wt. %)		0.20	0.020	0.140	0.053	NR	
D-189 & D-4530 (wt. %)		0.14	0.020	0.020	0.020	0.020	
Demulsification: (minutes @ 25 °C)		10	1.00	6.00	2.80	2.00	
Color:		3	1.00	1.50	1.38	1.37	
Storage Stability:							
D-2274 (mg/100mL)		1.5	NR	NR	NR	NR	
D-5304 (mg/100mL)		3.0	0.40	2.40	1.33	1.22	
Calcium: (ppm)		1.0	0.10	0.80	0.16	0.10	
Lead: (ppm)		0.5	0.10	0.40	0.20	0.27	
Sodium + Potassium: (ppm)		1.0	0.10	0.98	0.19	0.10	
Vanadium: (ppm)		0.5	0.10	0.38	0.12	0.10	

Table 7-5: Region 6 Summary

MIL-DTL-16884 Fuel	l, Naval	Distill	ate (NA	ATO Cod	de F-76)		
	Total V	olume/	40.37				
	Batch A	nalysis	10				
Property		ication nits	Region 7				
	Min	Max	Min	Max	Mean	Wt Mean	
Acid Number: (mg KOH/g)		0.30	0.020	0.270	0.170	0.144	
Sulfur Content: (wt. %)		0.5	0.094	0.490	0.277	0.276	
Distillation:							
10% Point, (°C)	Rep	ort	195.6	238.4	223.9	219.3	
50% Point, (°C)	Rep	ort	268.0	283.1	278.3	277.0	
90% Point, (°C)		357	336.0	346.0	340.7	341.2	
End Point, (°C)		385	365.9	375.3	369.8	370.3	
Residue + Loss, (vol %)		3.0	0.1	2.5	1.28	1.43	
Flash Point: (°C)	60		62.0	85.0	66.80	66.86	
Density: (kg/m ³ @ 15 °C)		876	835.2	860.3	850.9	849.2	
Viscosity: (mm ² /s @ 40 °C)	1.7	4.3	2.754	4.193	3.386	3.318	
Cetane Index: (calculated)	43		47.10	52.10	49.47	49.81	
Hydrogen Content: (wt. %)	12.5		13.01	15.31	13.63	13.82	
Cloud Point: (°C)		–1	-5.0	-1.0	-2.5	-2.7	
Pour Point: (°C)		-6	-18.0	-6.0	-9.3	-10.1	
Ash: (wt. %)		0.005	0.0010	0.0050	0.0027	0.0025	
Particulate Contamination: (mg/L)		10	1.50	4.80	3.09	2.97	
Carbon Residue on 10% Bottoms:							
D-524 (wt. %)		0.200	NR	NR	NR	NR	
D-189 & D-4530 (wt. %)		0.140	0.030	0.120	0.074	0.072	
Demulsification: (minutes @ 25 °C)		10	2.00	5.00	3.00	3.37	
Color:		3	0.50	1.50	1.10	1.10	
Storage Stability:							
D-2274 (mg/100mL)		1.5	0.55	0.80	0.68	0.67	
D-5304 (mg/100mL)		3.0	0.60	2.70	1.79	1.60	
Calcium: (ppm)		1.0	0.00	0.10	0.03	0.04	
Lead: (ppm)		0.5	0.00	0.20	0.05	0.06	
Sodium + Potassium: (ppm)		1.0	0.07	0.70	0.30	0.26	
Vanadium: (ppm)		0.5	0.00	0.10	0.03	0.04	

Table 7-6: Region 7 Summary

MIL-DTL-16884 Fuel	l, Naval	Distill	ate (NA	ATO Cod	de F-76)			
	Total V	/olume	157.24					
	Batch A	nalysis	29					
Property		Specification Limits		Region 8				
	Min	Max	Min	Max	Mean	Wt Mean		
Acid Number: (mg KOH/g)		0.30	0.020	0.248	0.096	0.071		
Sulfur Content: (wt. %)		0.5	0.163	0.470	0.279	0.291		
Distillation:								
10% Point, (°C)	Rep	ort	196.9	266.0	235.7	233.4		
50% Point, (°C)	Rep	oort	265.8	295.0	283.7	284.0		
90% Point, (°C)		357	320.0	354.0	332.6	334.8		
End Point, (°C)		385	345.2	379.5	358.7	361.1		
Residue + Loss, (vol %)		3.0	1.0	2.5	1.85	1.67		
Flash Point: (°C)	60		60.0	89.0	76.28	76.04		
Density: (kg/m³ @ 15 °C)		876	833.7	858.8	843.8	843.6		
Viscosity: (mm ² /s @ 40 °C)	1.7	4.3	2.757	4.060	3.383	3.349		
Cetane Index: (calculated)	43		46.50	55.60	52.58	52.63		
Hydrogen Content: (wt. %)	12.5		13.15	14.50	13.71	13.95		
Cloud Point: (°C)		–1	-12.0	-1.0	-5.4	-4.8		
Pour Point: (°C)		-6	-18.0	-6.0	-11.6	-12.1		
Ash: (wt. %)		0.005	0.0000	0.0010	0.0008	0.0009		
Particulate Contamination: (mg/L)		10	0.10	4.20	1.01	0.99		
Carbon Residue on 10% Bottoms:								
D-524 (wt. %)		0.200	0.100	0.100	0.100	0.100		
D-189 & D-4530 (wt. %)		0.140	0.000	0.058	0.015	0.015		
Demulsification: (minutes @ 25 °C)		10	1.00	5.00	2.91	2.67		
Color:		3	0.50	1.50	0.71	0.67		
Storage Stability:								
D-2274 (mg/100mL)		1.5	0.00	1.30	0.43	0.51		
D-5304 (mg/100mL)		3.0	0.70	1.00	0.94	0.95		
Calcium: (ppm)		1.0	0.00	0.80	0.14	0.21		
Lead: (ppm)		0.5	0.00	0.10	0.06	0.06		
Sodium + Potassium: (ppm)		1.0	0.00	0.70	0.21	0.30		
Vanadium: (ppm)		0.5	0.00	0.30	0.05	0.07		

Table 7-7: Region 8 Summary

MIL-DTL-16884 Fuel, Naval Distillate (NATO Code F-76)							
	Total \	/olume	NR				
	Batch A	nalysis	11				
Property	Specification Limits		Region 9				
	Min	Max	Min	Max	Mean	Wt Mean	
Acid Number: (mg KOH/g)		0.30	0.100	0.230	0.163	NR	
Sulfur Content: (wt. %)		0.5	0.141	0.324	0.257	NR	
Distillation:							
10% Point, (°C)	Rep	ort	210.3	222.9	215.0	NR	
50% Point, (°C)	Rep	oort	262.1	276.7	269.7	NR	
90% Point, (°C)		357	329.4	333.8	332.2	NR	
End Point, (°C)		385	355.2	361.4	358.8	NR	
Residue + Loss, (vol %)		3.0	1.3	2.6	1.91	NR	
Flash Point: (°C)	60		66.0	74.0	68.82	NR	
Density: (kg/m³ @ 15 °C)		876	852.6	861.3	857.5	NR	
Viscosity: (mm²/s @ 40 °C)	1.7	4.3	2.486	3.100	2.737	NR	
Cetane Index: (calculated)	43		43.70	49.60	45.36	NR	
Hydrogen Content: (wt. %)	12.5		NR	NR	NR	NR	
Cloud Point: (°C)		-1	-11.0	-8.0	-10.0	NR	
Pour Point: (°C)		-6	-21.0	-15.0	-17.7	NR	
Ash: (wt. %)		0.005	0.0010	0.0010	0.0010	NR	
Particulate Contamination: (mg/L)		10	0.80	8.70	5.34	NR	
Carbon Residue on 10% Bottoms:							
D-524 (wt. %)		0.200	NR	NR	NR	NR	
D-189 & D-4530 (wt. %)		0.140	0.010	0.080	0.045	NR	
Demulsification: (minutes @ 25 °C)		10	2.00	6.00	3.40	NR	
Color:		3	1.50	3.00	2.60	NR	
Storage Stability:							
D-2274 (mg/100mL)		1.5	NR	NR	NR	NR	
D-5304 (mg/100mL)		3.0	1.50	11.20	3.77	NR	
Calcium: (ppm)		1.0	0.10	0.10	0.10	NR	
Lead: (ppm)		0.5	0.10	0.10	0.10	NR	
Sodium + Potassium: (ppm)		1.0	0.10	0.20	0.15	NR	
Vanadium: (ppm)		0.5	0.10	0.10	0.10	NR	

Table 7-8: Region 9 Summary

7. F76—Assessment Summary

Overview:

In 2012, 118 reported analyses, representing 507.04 million U.S. gallons of F76, were processed by Regions 3, 5, 6, 7, 8, and 9. This represents an increase from the 110 reported F76 analyses in 2011, but a decrease in volume from the 598.46 million U.S. gallons queried from the PQIS in 2011.

Significant Trending:

Acid Number. The weighted mean increased 0.0226 mg KOH/g from 2011 to 2012.

Sulfur Content. The weighted mean decreased 0.03 wt. % from 2011 to 2012 after having increased 0.08 wt. % from 2010 to 2011.

Flash Point. The weighted mean increased 1.9 °C from 2010 to 2012.

Density. The weighted mean increased 3.2 kg/m 3 @ 15 °C from 2011 to 2012 after having decreased 1.4 kg/m 3 @ 15 °C from 2009 to 2011.

Viscosity. The weighted mean increased 0.195 mm 2 /s @ 40 °C from 2010 to 2012 after having decreased 0.354 mm 2 /s @ 40 °C from 2008 to 2010.

Cloud Point. The weighted mean decreased 1.3 °C from 2011 to 2012 after having increased 4.6 °C from 2010 to 2011.

Particulate Matter. The weighted mean increased 0.78 mg/L from 2011 to 2012 after having decreased 0.72 mg/L from 2009 to 2011.

F76 Observations:

The MIL-DTL-16884 **Sulfur Content** maximum limit was changed to 0.1 mass % in August 2012. Eighty-nine measurements exceeded this limit in 2012. No F76 measurements exceeded the previous maximum limit of 0.5 mass % in 2012.

Four **Storage Stability (test method ASTM D-2274)** measurements exceeded the maximum specification limit of 3.0 mg/100mL.

Acid Number—2012

Figure 7-1: Acid Number (mg KOH/g), maximum 0.30

Acid Number 12-Year Trend—Weighted Mean

Figure 7-2: Acid Number (mg KOH/g), 12-Year Trend, maximum 0.30

7. F76 Data

Sulfur Content—2012

Figure 7-3: Sulfur Content (wt. %), maximum 0.5

Sulfur Content 9-Year Trend—Weighted Mean

Figure 7-4: Sulfur Content (wt. %), 9-Year Trend, maximum 0.5

Note: The MIL-DTL-16884 Sulfur Content maximum limit was changed to 0.1 mass % in August 2012. Eighty-nine measurements exceeded this limit in 2012. No F76 measurements exceeded the previous maximum limit of 0.5 mass % in 2012.

Distillation 10% Point—2012

Figure 7-5: Distillation 10% Point (°C), Report

Distillation 50% Point—2012

Figure 7-6: Distillation 50% Point (°C), Report

7. F76 Data

Distillation 90% Point—2012

Figure 7-7: Distillation 90% Point (°C), maximum 357

Distillation End Point—2012

Figure 7-8: Distillation End Point (°C), maximum 385

Distillation Residue + Loss—2012

Figure 7-9: Distillation Residue + Loss (vol %), maximum 3.0

7. F76 Data

Flash Point—2012

Figure 7-10: Flash Point (°C), minimum 60

Flash Point 12-Year Trend—Weighted Mean

Figure 7-11: Flash Point (°C), 12-Year Trend, minimum 60

Density-2012

Figure 7-12: Density (kg/m³ @ 15 °C), maximum 876

Density 12-Year Trend—Weighted Mean

Figure 7-13: Density (kg/m³ @ 15 °C), 12-Year Trend, maximum 876

7. F76 Data

Viscosity—2012

Figure 7-14: Viscosity (mm²/s @ 40 °C), minimum 1.7, maximum 4.3

Viscosity 12-Year Trend—Weighted Mean

Figure 7-15: Viscosity (mm 2 /s @ 40 °C), 12-Year Trend, minimum 1.7, maximum 4.3

Cetane Index (Calculated)—2012

Figure 7-16: Cetane Index (Calculated), minimum 43

Hydrogen Content—2012

Figure 7-17: Hydrogen Content (wt. %), minimum 12.5

7. F76 Data

Cloud Point—2012

Figure 7-18: Cloud Point (°C), maximum -1

Cloud Point 9-Year Trend—Weighted Mean

Figure 7-19: Cloud Point (°C), 9-Year Trend, maximum -1

Pour Point—2012

Figure 7-20: Pour Point (°C), maximum -6

Pour Point 9-Year Trend—Weighted Mean

Figure 7-21: Pour Point (°C), 9-year Trend, maximum -6

7. F76 Data

Ash-2012

Figure 7-22: Ash (wt. %), maximum 0.005

Particulate Contamination—2012

Figure 7-23: Particulate Contamination (mg/L), maximum 10

Particulate Contamination 12-Year Trend— Weighted Mean

Figure 7-24: Particulate Contamination (mg/L), 12-Year Trend, maximum 10

7. F76 Data

Carbon Residue on 10% Bottoms—2012 (Method ASTM D-524)

Figure 7-25: Carbon Residue on 10% Bottoms: D-524 (wt. %), maximum 0.20

Carbon Residue on 10% Bottoms—2012 (Methods ASTM D-189 and D-4530)

Figure 7-26: Carbon Residue on 10% Bottoms: D-189 and D-4530 (wt. %), maximum 0.14

Demulsification—2012

Figure 7-27: Demulsification (minutes @ 25 °C), maximum 10

Figure 7-28: Storage Stability: D-2274 (mg/100 mL), maximum 1.5

7. F76 Data

Figure 7-29: Storage Stability: D-5304 (mg/100 mL), maximum 3.0

8. MGO Data

8. MGO-2012 Data Summary

Sulfur: (mass %)

FAME: (vol %)

Acid Number: (mg KOH/g)

diameter @ 60 °C: (µm)

Oxidation Stability: (mg/100mL)

Lubricity, corrected wear scar

(ISO-8217, Marine Gas Oil, Grade DMA)								
Property	2012 Source Inputs							
roperty	Region	Volume	Batch					
Cetane Index: (calculated)	All	3.269	111					
Flash Point: (°C)	All	3.269	111					
Pour Point: (°C)	All	3.269	111					
Kinematic Viscosity: (mm²/s @ 40 °C)	All	3.269	111					
Density: (kg/m³ @ 15 °C)	All	3.269	111					
Carbon Residue (10% Bottoms), D-4530: (mass %)	All	3.269	111					
Ash: (mass%)	All	3.269	111					

ΑII

ΑII

ΑII

ΑII

ΑII

3.269

3.269

3.269

3.269

3.269

111

111

111

111

111

Commercial Marine Gas Oil Minimum Specification Requirements

Table 8-1: Data Summary, ISO-8217, Marine Gas Oil, Grade DMA Requirements, 2012 Source Inputs

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)						
Property		fication nits	2012 Test Results			
	Min	Max	Min	Max	Mean	Wt Mean
Cetane Index: (calculated)	40		40.1	56.6	48.2	49.3
Flash Point: (°C)	60		47.0	109.0	67.9	69.2
Pour Point:1 (°C)		-6, 0	-21.0	0.0	-17.5	-16.8
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.167	5.418	2.854	2.878
Density: (kg/m³ @ 15 °C)		890	827.4	867.5	848.2	846.0
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.200	0.0239	0.0230
Ash: (mass%)		0.010	0.000	0.004	0.0009	0.0009
Sulfur: (mass %)		1.0	0.00038	0.4660	0.083	0.081
Acid Number: (mg KOH/g)		0.5	0.010	0.150	0.102	0.103
Oxidation Stability: (mg/100mL)		25	0.0	6.4	0.98	1.18
Lubricity, corrected wear scar diameter @ 60 °C:² (μm)		520	180.0	610.0	394.7	386.1
FAME: (vol %)		0.5	0.01	3.48	0.15	0.12

Table 8-2: Data Summary, ISO-8217, Marine Gas Oil, Grade DMA Requirements, 2012 Test Results

Note 1: Pour Point winter quality maximum limit equals –6 °C, while the summer quality maximum limit equals 0 °C.

Note 2: Requirement is applicable to fuels with sulfur content below 0.050 mass %.

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)								
	Total '	Volume		0.5	31			
Drawartu		atch Ilysis		2	9			
Property		fication mits		Region 1				
	Min	Max	Min	Max	Mean	Wt Mean		
Cetane Index: (calculated)	40		45.3	52.5	47.5	47.4		
Flash Point: (°C)	60		47.0	68.0	62.5	61.6		
Pour Point: (°C)		-6, 0	-21.0	-18.0	-20.8	-20.8		
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.327	3.251	2.581	2.563		
Density: (kg/m³ @ 15 °C)		890	827.4	862.0	846.7	846.7		
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.200	0.0297	0.0409		
Ash: (mass%)		0.010	0.000	0.004	0.0013	0.0014		
Sulfur: (mass %)		1.0	0.00059	0.3410	0.0216	0.0269		
Acid Number: (mg KOH/g)		0.5	0.010	0.150	0.100	0.102		
Oxidation Stability: (mg/100mL)		25	0.0	2.2	0.80	0.82		
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	195.0	590.0	375.2	372.3		
FAME: (vol %)		0.5	0.01	3.48	0.37	0.44		

Table 8-3: Region 1 Summary

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)							
	Total \	Volume	0.278				
Property		itch Ilysis		1	4		
		fication nits		Regi	ion 2		
	Min	Max	Min	Max	Mean	Wt Mean	
Cetane Index: (calculated)	40		42.7	46.4	44.8	45.1	
Flash Point: (°C)	60		55.0	73.0	64.6	65.7	
Pour Point: (°C)		-6, 0	-21.0	-21.0	-21.0	-21.0	
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.167	2.903	2.516	2.506	
Density: (kg/m³ @ 15 °C)		890	839.5	860.0	852.1	851.1	
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.040	0.0150	0.0124	
Ash: (mass%)		0.010	0.000	0.001	0.0008	0.0007	
Sulfur: (mass %)		1.0	0.00038	0.0239	0.0032	0.0041	
Acid Number: (mg KOH/g)		0.5	0.100	0.100	0.100	0.100	
Oxidation Stability: (mg/100mL)		25	0.2	1.5	0.49	0.48	
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	190.0	575.0	444.9	442.7	
FAME: (vol %)		0.5	0.01	0.07	0.03	0.03	

Table 8-4: Region 2 Summary

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)								
	Total '	Volume		0.0	33			
		itch Ilysis		2	2			
Property		fication nits		Regi	ion 3			
	Min	Max	Min	Max	Mean	Wt Mean		
Cetane Index: (calculated)	40		46.7	47.0	46.9	46.8		
Flash Point: (°C)	60		65.0	67.0	66.0	66.1		
Pour Point: (°C)		-6, 0	-21.0	-21.0	-21.0	-21.0		
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.680	2.730	2.705	2.708		
Density: (kg/m³ @ 15 °C)		890	849.9	850.4	850.2	850.1		
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.060	0.130	0.0950	0.0914		
Ash: (mass%)		0.010	0.001	0.004	0.0025	0.0023		
Sulfur: (mass %)		1.0	0.0010	0.0018	0.0014	0.0014		
Acid Number: (mg KOH/g)		0.5	0.100	0.100	0.100	0.100		
Oxidation Stability: (mg/100mL)		25	0.1	0.3	0.20	0.21		
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	440.0	520.0	480.0	475.8		
FAME: (vol %)		0.5	0.08	0.11	0.10	0.10		

Table 8-5: Region 3 Summary

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)							
	Total \	Volume		0.344			
		itch Ilysis		(6		
Property		Specification Limits Region 5					
	Min	Max	Min	Max	Mean	Wt Mean	
Cetane Index: (calculated)	40		40.1	55.2	48.0	49.0	
Flash Point: (°C)	60		63.0	70.0	67.3	65.9	
Pour Point: (°C)		-6, 0	-21.0	-15.0	-19.0	-18.6	
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.194	2.887	2.534	2.539	
Density: (kg/m³ @ 15 °C)		890	829.2	859.6	844.6	841.9	
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.050	0.0183	0.0146	
Ash: (mass%)		0.010	0.000	0.001	0.0008	0.0007	
Sulfur: (mass %)		1.0	0.00091	0.0156	0.0049	0.0031	
Acid Number: (mg KOH/g)		0.5	0.100	0.100	0.100	0.100	
Oxidation Stability: (mg/100mL)		25	0.2	1.4	0.60	0.60	
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	290.0	540.0	419.2	430.1	
FAME: (vol %)		0.5	0.01	0.05	0.02	0.02	

Table 8-6: Region 5 Summary

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)								
	Total '	Volume	0.690					
		atch Ilysis		1	1			
Property		Specification Limits			Region 8			
	Min	Max	Min	Max	Mean	Wt Mean		
Cetane Index: (calculated)	40		50.1	56.6	51.4	52.0		
Flash Point: (°C)	60		61.0	109.0	84.5	78.3		
Pour Point: (°C)		-6, 0	-21.0	-18.0	-20.7	-20.5		
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.451	3.687	3.025	2.872		
Density: (kg/m³ @ 15 °C)		890	829.0	849.2	842.4	839.9		
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.020	0.0109	0.0106		
Ash: (mass%)		0.010	0.000	0.002	0.0007	0.0006		
Sulfur: (mass %)		1.0	0.00065	0.0054	0.0013	0.0014		
Acid Number: (mg KOH/g)		0.5	0.100	0.110	0.101	0.100		
Oxidation Stability: (mg/100mL)		25	0.0	1.0	0.41	0.38		
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	200.0	610.0	375.9	341.8		
FAME: (vol %)		0.5	0.01	0.05	0.04	0.04		

Table 8-7: Region 8 Summary

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)							
	Total \	Volume	0.223				
_		itch Ilysis		1	3		
Property		fication nits		Regi	ion 9		
	Min	Max	Min	Max	Mean	Wt Mean	
Cetane Index: (calculated)	40		44.5	55.3	48.3	51.6	
Flash Point: (°C)	60		52.0	84.0	65.8	74.5	
Pour Point: (°C)		-6, 0	-21.0	-3.0	-18.5	-11.0	
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.322	4.048	2.806	3.393	
Density: (kg/m³ @ 15 °C)		890	840.5	858.0	847.2	845.0	
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.040	0.0146	0.0132	
Ash: (mass%)		0.010	0.000	0.001	0.0005	0.0008	
Sulfur: (mass %)		1.0	0.0006	0.4020	0.0606	0.1143	
Acid Number: (mg KOH/g)		0.5	0.100	0.100	0.100	0.100	
Oxidation Stability: (mg/100mL)		25	0.2	6.4	1.22	3.55	
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	240.0	610.0	433.2	422.9	
FAME: (vol %)		0.5	0.01	2.31	0.24	0.28	

Table 8-8: Region 9 Summary

Commercial Marine Gas Oil Minimum Specification Requirements (ISO-8217, Marine Gas Oil, Grade DMA)								
	Total '	Volume		1.1	169			
		itch Ilysis		3	6			
Property		fication nits		Regio	on 10			
	Min	Max	Min	Max	Mean	Wt Mean		
Cetane Index: (calculated)	40		45.2	56.4	49.4	49.3		
Flash Point: (°C)	60		57.0	80.0	69.3	68.2		
Pour Point: (°C)		-6, 0	-21.0	0.0	-11.8	-12.4		
Kinematic Viscosity: (mm²/s @ 40 °C)	2.000	6.000	2.322	5.418	3.231	3.118		
Density: (kg/m³ @ 15 °C)		890	827.5	867.5	850.7	849.2		
Carbon Residue (10% Bottoms), D-4530: (mass %)		0.30	0.010	0.080	0.0269	0.0272		
Ash: (mass%)		0.010	0.000	0.003	0.0009	0.0009		
Sulfur: (mass %)		1.0	0.0158	0.4660	0.2127	0.1892		
Acid Number: (mg KOH/g)		0.5	0.100	0.150	0.105	0.106		
Oxidation Stability: (mg/100mL)		25	0.1	5.1	1.52	1.74		
Lubricity, corrected wear scar diameter @ 60 °C: (μm)		520	180.0	600.0	373.9	382.4		
FAME: (vol %)		0.5	0.01	0.24	0.04	0.03		

Table 8-9: Region 10 Summary

8. MGO—Assessment Summary

Overview:

MGO is continued for 2012, providing a detailed summary of test data by region. Histograms are provided for 2012 data only and were obtained solely from the PQIS database. Where significant trends were noted in weighted mean values, trend graphs were developed, providing a previous 12-year review.

The Coast Guard In-Line Sampling Program data represent dockside and vessel sampling for Ships' Bunkers program deliveries and open market purchases of MGO from various worldwide locations. Data provided were compared with ISO-8217 Grade DMA requirements and MIL-DTL-16884 criteria. The In-Line Sampling Program figures featured are based on these correlations and represent total analysis by year and the range of test failure occurrences for Calendar Year (CY) 2012 compared with these standards.

Significant Trending:

Cetane Index (calculated). The weighted mean increased 2.0 from 2007 to 2012.

Density. The weighted mean decreased 8.3 kg/m 3 @ 15 °C from 2007 to 2012.

Sulfur. The weighted mean increased 0.025 mass % from 2011 to 2012. However, despite increases from 2009 to 2010 and from 2011 to 2012, the weighted mean has decreased 0.203 mass % since 2006.

MGO Observations:

The following review applies only to In-Line Sampling Program activity critical test failure occurrences compared with ISO-8217 Grade DMA requirements and any additional Commercial Marine Gas Oil Minimum Specification requirements:

Cetane Index. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Flash Point. Nine failure occurrences were noted during CY 2012. This represents an 8.1 percent failure rate on the basis of the 111 samples tested.

8. MGO—Assessment Summary

Pour Point. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Kinematic Viscosity. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Density. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Carbon Residue, 10% btm (ASTM D4530). Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Ash. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Sulfur. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Acid Number. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Appearance. Six failure occurrences were noted during CY 2012. This represents a 5.4 percent failure rate on the basis of the 111 samples tested.

Oxidation Stability. Zero failure occurrences were noted during CY 2012. This represents a 0.0 percent failure rate on the basis of the 111 samples tested.

Lubricity. Twelve failure occurrences were noted during CY 2012. This represents a 10.8 percent failure rate on the basis of the 111 samples tested.

Fatty Acid Methyl Esthers (FAME). Five failure occurrences were noted during CY 2012. This represents a 4.5 percent failure rate on the basis of the 111 samples tested.

The ISO-8217 Grade DMA requirements specify a 1.5 mass % maximum limit for sulfur and a 0.1 vol % maximum limit for FAME. Per Commercial Marine Gas Oil Minimum Specification Requirements (DLA Energy, October 2010), the maximum limit for sulfur is 1.0 mass %. For FAME, the DLA Energy MGO clause has raised the maximum allowable contamination to 0.5 vol % as a result of a Navy test program.

Cetane Index (Calculated)—2012

Figure 8-1: Cetane Index (calculated), minimum 40

Cetane Index 12-Year Trend—Weighted Mean

Figure 8-2: Cetane Index (calculated), 12-Year Trend, minimum 40

Flash Point—2012

Figure 8-3: Flash Point (°C), minimum 60

Pour Point—2012

Figure 8-4: Pour Point (°C), maximum –6 (winter quality) or 0 (summer quality)

Kinematic Viscosity—2012

Figure 8-5: Kinematic Viscosity (mm²/s @ 40 °C), minimum 2.000, maximum 6.000

Kinematic Viscosity 12-Year Trend—Weighted Mean

Figure 8-6: Kinematic Viscosity (mm²/s @ 40 °C), 12-Year Trend, minimum 2.000, maximum 6.000

Density-2012

Figure 8-7: Density (kg/m³ @ 15 °C), maximum 890

Density 12-Year Trend—Weighted Mean

Figure 8-8: Density (kg/m³ @ 15 °C), 12-Year Trend, maximum 890

Carbon Residue (10% Bottoms), ASTM D4530—2012

Figure 8-9: Carbon Residue (10% Bottoms), D-4530 (mass %), maximum 0.30

Ash-2012

Figure 8-10: Ash (mass %), maximum 0.010

Sulfur—2012

Figure 8-11: Sulfur (mass %), maximum 1.0

Sulfur 12-Year Trend—Weighted Mean

Figure 8-12: Sulfur (mass %), 12-Year Trend, maximum 1.0

Note: Per Commercial Marine Gas Oil Minimum Specification Requirements (DLA Energy, October 2010), the Sulfur maximum limit is 1.0 mass %.

Acid Number—2012

Figure 8-13: Acid Number (mg KOH/g), maximum 0.5

Oxidation Stability—2012

Figure 8-14: Oxidation Stability (mg/100 mL), maximum 25

Lubricity—2012

Figure 8-15: Lubricity, corrected wear scar diameter @ 60 °C (μm), maximum 520

Note: The lubricity requirement is applicable to fuels with sulfur content below 0.050 mass %.

FAME—2012

Figure 8-16: FAME (vol %), maximum 0.5

Note: The ISO-8217 Grade DMA requirements specify a 0.1 vol % maximum limit for FAME. The DLA Energy MGO clause has raised the maximum allowable contamination to 0.5 vol % as a result of a Navy test program.

8. MGO—In-Line Sampling Program

Overview:

A total of 111 samples were processed through the Coast Guard In-Line Sampling Program during CY 2012. The majority of these samples included test measurement values for a wide range of fuel characteristics.

All 111 samples included tests performed for the following fuel properties: Appearance, Ash, Cloud Point, Copper Corrosion (@ 100 °C), Density (@ 15 °C), Distillation 90% Point, Distillation End Point, Distillation Residue + Loss, Flash Point, Cetane Index, Sulfur, Kinematic Viscosity (@ 40 °C), Acid Number, Demulsification (@ 25 °C), Particulate Contamination, Pour Point, Storage (Oxidation) Stability, Lead, Sodium + Potassium, Vanadium, Carbon Residue (test method D-4530), Lubricity, and FAME.

Calcium and Color values were not included for all 111 In-Line Sampling Program samples in CY 2012. Only 110 samples included test measurements for Calcium, while 53 samples included measurements for Color.

In-Line Sampling Program Activity Total Samples Processed by Calendar Year (2005–2012)

Figure 8-17: In-Line Sampling Program Activity, Total Samples Processed, CY 2005–CY 2012

8. MGO—In-Line Sampling Program

MGO In-Line Sampling Program

Characteristic Failure Occurrences
MIL-DTL-16884 Requirements (Calendar Year 2012)

Figure 8-18: MGO In-Line Sampling Program, Characteristic Failure Occurrences, MIL-DTL-16884 Requirements, CY 2012

Note: The number of Sulfur failure occurrences in the figure is measured against the previous MIL-DTL-16884 limit of 0.5 mass %. The Sulfur maximum limit was changed to 0.1 mass % in August 2012. Thirty-five MGO Sulfur measurements exceeded this limit in 2012.

MGO In-Line Sampling Program

Characteristic Failure Occurrences ISO-8217, Marine Gas Oil, Grade DMA Requirements (Calendar Year 2012)

Test Performed

Figure 8-19: MGO In-Line Sampling Program, Characteristic Failure Occurrences, ISO-8217, Marine Gas Oil, Grade DMA Requirements, CY 2012

Note: The ISO-8217 Grade DMA requirements specify a 1.5 mass % maximum limit for sulfur and a 0.1 vol % maximum limit for FAME. Per Commercial Marine Gas Oil Minimum Specification Requirements (DLA Energy, October 2010), the maximum limit for sulfur is 1.0 mass %. For FAME, the DLA Energy MGO clause has raised the maximum allowable contamination to 0.5 vol % as a result of a Navy test program.

9. TSI Data

9. TS1—2012 Data Summary

Turbine Fuel, Aviation, TS1 Rus	ssian Gr	ade, GOST	10227-86			
Property		2012 Source Inputs				
	Region	Volume	Batch			
Density:						
kg/m³ @ 20 °C	8	NR	83			
kg/m³ @ 15 °C	8	NR	NR			
Fractional Composition: (Distillation)						
Temperature at Start (IBP), (°C)	8	NR	83			
10% Recovered, (°C)	8	NR	83			
50% Recovered, (°C)	8	NR	83			
90% Recovered, (°C)	8	NR	83			
98% Recovered, (°C)	8	NR	80			
Viscosity:						
mm ² /s (cSt) @ 20 °C	8	NR	82			
mm ² /s (cSt) @ -40 °C	8	NR	14			
mm ² /s (cSt) @ -20 °C	8	NR	54			
Estimate of Heat Value: (kJ/kg)	8	NR	67			
Height of Non-smoking Flame: (mm)	8	NR	68			
Acidity: (mg KOH/100cm³)	8	NR	83			
Flash Point: (°C)	8	NR	83			
Temperature of Crystallization: (°C)	8	NR	81			
Aromatics: (vol%)	8	NR	66			
Concentration of Resins: (mg/100cm³)	8	NR	6			
Sulfur, Mercaptan: (mass %)	8	NR	35			
Sulfur, Total: (mass %)	8	NR	68			
Ash Quantity: (mass %)	8	NR	NR			

Table 9-1: Data Summary, Turbine Fuel, Aviation, TS1 Russian Grade, GOST 10227-86, 2012 Source Inputs

9. TS1—2012 Data Summary

Turbine Fuel, Aviation, TS1 Russian Grade, GOST 10227-86						
Property		Specification Limits (TC-1)		2012 Test Results		
	Min	Max	Min	Max	Mean	
Density:						
kg/m³ @ 20 °C	775		785.0	798.0	791.5	
kg/m³ @ 15 °C	Re	port	NR	NR	NR	
Fractional Composition: (Distillation)						
Temperature at Start (IBP), (°C)		150	132.5	154.0	141.6	
10% Recovered, (°C)		165	154.0	171.0	163.5	
50% Recovered, (°C)		195	175.0	199.0	190.2	
90% Recovered, (°C)		230	202.0	239.0	221.3	
98% Recovered, (°C)		250	213.0	265.0	242.6	
Viscosity:						
mm ² /s (cSt) @ 20 °C	1.25		1.330	1.637	1.513	
mm ² /s (cSt) @ -40 °C	Re	port	4.859	6.645	5.965	
mm ² /s (cSt) @ -20 °C		8.0	2.830	3.779	3.473	
Estimate of Heat Value: (kJ/kg)	42,900		43,175	43,493	43,266	
Height of Non-smoking Flame: (mm)	25.0		25.0	28.0	25.3	
Acidity: (mg KOH/100cm ³)		0.7	0.020	0.610	0.203	
Flash Point: (°C)	28.0		29.0	45.0	38.6	
Temperature of Crystallization: (°C)		-50	-64.0	-50.0	-56.5	
Aromatics: (vol%)		22.0	11.00	18.30	15.89	
Concentration of Resins: (mg/100cm ³)		5	1.00	4.00	3.17	
Sulfur, Mercaptan: (mass %)		0.003	0.0001	0.0018	0.0008	
Sulfur, Total: (mass %)		0.25	0.0003	0.0380	0.012	
Ash Quantity: (mass %)		0.003	NR	NR	NR	

Table 9-2: Data Summary, Turbine Fuel, Aviation, TS1 Russian Grade, GOST 10227-86, 2012 Test Results

9. TS1—Assessment Summary

Overview:

Turbine Fuel, Aviation, TS1, Russian Grade was a newly featured product reported for the 2006 procurement year. Due to a lack of reporting, TS1 was not included in the 2008 and 2009 PQIS annual reports, but it was once again incorporated in the 2010 and 2011 reports. For the 2012 procurement year, 84 batches were reported by Region 8 and recorded in the PQIS. The USSR State Standard Jet Fuels specification, GOST 10277-86, Grade TC-1, First Category of Quality, governs the procurement parameters for TS1 and they are presented accordingly.

The results presented in this chapter in the form of histograms correlate to the minimum and maximum table of specifications consistent with the previously described standard.

TS1 is being supplied in Afghanistan for the operational sustainment of forces committed in the region. TS1 is procured "neat" (containing no additives). Russian additives are not approved for use in U.S. aircraft and equipment. Approved additives may be added downstream as required or appropriate for end use.

Product quantities for TS1 were not recorded in the 2012 procurement year. For this reason, weighted mean results for this product cannot be shown.

TS1 Observations:

All batches met specification requirements for 2012.

Although some distillation temperatures fell outside of the specification limits, waivers have been issued throughout the year to accept Jet A-1 specification fuel in lieu of TS1 at certain locations. In addition, DLA Energy has accepted RT (PT in Russian) grade fuel for some locations. Distillation point values above the maximum specification limits are all covered under waivers.

Note: When reading the histograms for TS1, the far left bar represents the percentage of analyses associated with the minimum data value. Any other bar represents the percentage of analyses greater than the data value of the bar to the immediate left of it, up to and including the value of that bar.

Density @ 20 °C-2012

Figure 9-1: Density (kg/m³ @ 20 °C), minimum 775

Distillation Initial Boiling Point—2012

Figure 9-2: Fractional Composition (Distillation), Temperature at Start (Initial Boiling Point) (°C), maximum 150

Distillation 10% Recovered—2012

Figure 9-3: Fractional Composition (Distillation), 10% Recovered (°C), maximum 165

Distillation 50% Recovered—2012

Figure 9-4: Fractional Composition (Distillation), 50% Recovered (°C), maximum 195

Distillation 90% Recovered—2012

Figure 9-5: Fractional Composition (Distillation), 90% Recovered (°C), maximum 230

Distillation 98% Recovered—2012

Figure 9-6: Fractional Composition (Distillation), 98% Recovered (°C), maximum 250

Viscosity @ 20 °C-2012

Figure 9-7: Viscosity (mm²/s [cSt] @ 20 °C), minimum 1.25

Viscosity @ -40 °C-2012

Figure 9-8: Viscosity (mm²/s [cSt] @ -40 °C), Report

Viscosity @ -20 °C-2012

Figure 9-9: Viscosity (mm²/s [cSt] @ -20 °C), maximum 8.0

Estimate of Heat Value—2012

Figure 9-10: Estimate of Heat Value (kJ/kg), minimum 42,900

9. TSI Data

Height of Non-Smoking Flame—2012

Figure 9-11: Height of Non-Smoking Flame (mm), minimum 25.0

Acidity-2012

Figure 9-12: Acidity (mg KOH/100cm³), maximum 0.7

Flash Point—2012

Figure 9-13: Flash Point (°C), minimum 28.0

Temperature of Crystallization—2012

Figure 9-14: Temperature of Crystallization (°C), maximum -50

Aromatics—2012

Figure 9-15: Aromatics (vol %), maximum 22.0

Concentration of Resins—2012

Figure 9-16: Concentration of Resins (mg/100cm³), maximum 5

Sulfur, Mercaptan—2012

Figure 9-17: Sulfur, Mercaptan (mass %), maximum 0.003

Sulfur, Total—2012

Figure 9-18: Sulfur, Total (mass %), maximum 0.25

DLA ENERGY VISION

Our Customers' first choice for energy solutions

DLA ENERGY MISSION

To provide the Department of Defense and other government agencies with comprehensive energy solutions in the most effective and economical manner possible

Petroleum Quality Information System Defense Logistics Agency Energy - DLA Energy QT 8725 John J. Kingman Road Ft. Belvoir, VA 22060-6222 Tel: 703-767-8740 (DSN: 427-8740) DLA Energy QT email: pqis@dla.mil

All photos are courtesy of the Department of Defense.