Lab meeting

Line Detection in Thermal Images

Contents

- Drone
- Line Detection (in thermal images)
- Super-Resolution
- Results
- Conclusion
- Future Tasks

Drone

[DJI Matrice 4T]

[Spec]

- Wide Camera
- Tele Camera
- Infrared Thermal Camera
- RTK module
- Intelligent Operations with AI

[DJI Mavic 3T]

[Spec]

- Wide Camera
- Tele Camera
- Infrared Thermal Camera
- RTK module

Drone

[DJI Matrice 4T]

Due to arrival time issues...

[DJI Mavic 3T]

Drone

[DJI Matrice 4T]

[DJI Mavic 3T]

Pixel Pitch	12 µm
Frame Rate	30 Hz
Lens	DFOV: 61° Format Equivalent: 40 mm Aperture: f/1.0 Focus: 5 m to ∞
Noise Equivalent Temperature Difference (NETD)	≤50 mK@F1.0
Temperature Measurement Method	Spot Meter, Area Measurement
Temperature Measurement Range	-20° to 150° C (-4° to 302° F, High Gain Mode) 0° to 500° C (32° to 932° F, Low Gain Mode)
Palette	White Hot/Black Hot/Tint/Iron Red/Hot Iron/Arctic/Medical/Fulgurite/Rainbow 1/Rain
Photo Format	JPEG (8-bit) R-JPEG (16-bit)
Video Resolution	640×512@30fps
Bitrate	6 Mbps
ver e	MD4/MDCC 4 M/C/II OCA

Base Line

- Used LSD
- Used Super-Resolution for Infrared Image (PSRGAN)

*Progressive Super-resolution Generative Adversarial Network

LSD: a Line Segment Detector

Rafael Grompone von ${\rm Gioi}^1,$ Jérémie Jakubowicz 2, Jean-Michel Morel 3, Gregory Randall 4

¹CMLA, ENS Cachan, France (grompone@cmla.ens-cachan.fr)
²TELECOM ParisTech, France (jakubowi@telecom-paristech.fr)
³CMLA, ENS Cachan, France (morel@cmla.ens-cachan.fr)
⁴HE, UdelaR, Uruguay (randall@fing.edu.uy)

Communicated by Lionel Moisan

Demo edited by Rafael Grompone

IEEE SIGNAL PROCESSING LETTERS, VOL. 28, 2021

Infrared Image Super-Resolution via Transfer Learning and PSRGAN

Yongsong Huang [®], Zetao Jiang, Rushi Lan [®], Shaoqin Zhang, and Kui Pi

Line Detection

Used LSD

Super-Resolution

• Used SR(ie.Super-Resolution) for Infrared Image

Results #1_Original

Results #1_Clahe

Results #1_SR

Results #1_Discussion

- Changed 2 parameters
 - Scale $0.8 \to 0.6$
 - Quant $2.0 \rightarrow 0.5$

```
# 파라미터 직접 지정
lsd = cv2.createLineSegmentDetector(
   refine=cv2.LSD REFINE NONE, # 후처리 X
   scale=0.8, # 스케일링 비율
sigma_scale=0.6, # 가우시안 블러
                       # 가우시안 블러 정도
   quant=2.0,
                       # 윤곽선 양자화 파라미터
                       # 각도 차 임계값
   ang th=22.5,
   log eps=0,
                       # 로그 eps 파라미터
   density th=0.7,
                       # 밀도 임계값
                       # 히스토그램 bin 갯수
   n bins=1024
lsd = cv2.createLineSegmentDetector(
   refine=cv2.LSD_REFINE_NONE, # 후처리 X
   scale=0.6,
sigma_scale=0.6,
                        # 스케일링 비율
                       # 가우시안 블러 정도
   quant=0.5,
                       # 윤곽선 양자화 파라미터
   ang th=22.5,
                       # 각도 차 임계값
   log_eps=0,
                       # 로그 eps 파라미터
                       # 밀도 임계값
   density_th=0.7,
   n bins=1024
                       # 히스토그램 bin 갯수
```


Results #1_SR(Changed)

Results #1_Clahe(Changed)

Results #2_Original

Results #2_Clahe

Results #2_SR (Changed)

Conclusion

• Using SR

Conclusion

• Comparing 3-results

 $[SR+LSD_{(changed)}]$

 $[SR+CL_{(ie.CLAHE)}+LSD]$

[CL+LSD]

Conclusion

• SR+LSD is the most!!

 $[SR+LSD_{(changed)}]$

 $[SR+CL_{(ie.CLAHE)}+LSD]$

[CL+LSD]

Future Tasks

Construct Indoor-Dataset with Drone

• Changing a Parameter (for Improved Pre-processing Results)

Line-Mapping using Thermal Image

Thank You for Listening

