Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

LOS CONDUCTORES ELECTRICOS

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

¿Qué es conductor eléctrico?

- Este puede ser alambre o un conjunto de alambres retorcidos entre sí, un cable.
- Los materiales más utilizados en su fabricación son:
 - el cobre, en Baja Tensión
 - el aluminio, en Media y Alta tensión

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Partes de un conductor eléctrico

- Un conductor tiene las siguientes partes:
 - El alma conductora
 - El aislante
 - La cubierta protectora

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Partes de un conductor eléctrico El alma conductora

- Se fabrica de cobre o aluminio y su objetivo es servir de camino a la energía eléctrica.
 - Según su constitución puede ser:
 - Alambre.
 - · Cable.
 - Flexibles
 - Según el número de conductores:
 - Monopolar o monoconductor.
 - Multipolar o multiconductor.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

El Material conductor **El Cobre**

- El cobre constituye el elemento más usado en la fabricación por sus propiedades eléctricas y mecánicas. El cobre que se utiliza en la fabricación de conductores es el cobre electrolítico, cuya pureza es 99.99%.
- En función de su uso, el cobre se utiliza con los siguientes grados de dureza o temple:
 - Cobre duro

- Cobre semi duro
- Cobre blando o recocido.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Tipos de Cobre según su grado de dureza

Cobre de temple duro

- Conductividad del 97% respecto a la del cobre puro.
- Resistividad de 0.018 (Ω x mm²/ m) a 20 °C de temperatura.
- Capacidad de ruptura a la carga, oscila entre 37 a 45 Kg/ mm².
- Se usan en <u>líneas aéreas</u>, por su buena resistencia mecánica.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Tipos de Cobre según su grado de dureza

Cobre recocido o de temple blando

- Conductividad del 100%.
- resistividad de 0.01724 (Ω x mm²/ m) respecto del cobre puro, tomado este como patrón.
- Carga de ruptura media de 25 Kg/ mm².
- Es dúctil y se utiliza en la fabricación de conductores aislados.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Partes de un conductor eléctrico El Aislante

- El objetivo del aislamiento de un conductor es evitar que la energía eléctrica que circula por él, entre en contacto con las personas o con objetos.
- La selección del tipo de aislamiento del conductor eléctrico toma en cuenta el medio ambiente y las condiciones de canalización a que se verán sometidos los conductores.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Partes de un conductor eléctrico El Aislante

- Los materiales más usados en el aislamiento de conductores son:
 - El Cloruro de Polivinilo o PVC.

- El Polietileno, PE o XPLE
- El Caucho,
- El Algodón
- El Nylon.
- El material aislante limita la capacidad de corriente del conductor debido a que su temperatura de fusión debe ser mayor que la temperatura de operación del conductor.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO O

NTP 370.252.- CONDUCTORES ELÉCTRICOS. Cables aislados con compuesto termoplástico y termoestable para tensiones hasta e inclusive 450/750 V

COMPUESTO	NOMBRE	TEMPERATURA DE	TIPO	USO
		OPERACIÓN (°C)		
PVC	Polivinil	60°, 70°, 75° 80°, 90°,	Termoplástico	Aislamiento y
rvc	Cloruro	loruro 105°	Termopiastico	cubierta*
PE	Polietileno	75°	Termoplástico	Cubierta
XLPE	Polietileno	75° 00° (105°)	Termoestable	Aislamiento
	reticulado	75°, 90°, (105°)	Termoestable	
EVA			Termoplástico	Aislamiento y
(Estructura molecular	Etil Vinil	70°		cubierta
compuesta de C e H	Acetato	000	T 11	
similar al PE)		90°	Termoestable	Aislamiento

IEE 217 - SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Partes de un conductor eléctrico La Cubierta protectora

- Los conductores pueden poseer una cubierta de protección adicional a la del aislante.
 - Protección Mecánica.
 - Protección Eléctrica.
- Algunos conductores llevan una cubierta protectora con el fin de proteger la integridad del aislamiento y el alma conductora contra daños mecánicos (raspaduras, golpes, etc.)

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

La protección del conductor Eléctrico La Protección Mecánica

- Si las protecciones mecánicas son de acero, latón u otro material resistente, a ésta se le denomina "armadura" estas pueden ser de cinta, alambre o alambre trenzado y se encuentran debajo de la cubierta exterior.
- Por lo general, se utilizan en conductores enterrados para prevenir el ataque de roedores y daños mecánicos durante el cableado.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Tipos de Conductores Eléctricos

 Cable armado con la pantalla exterior de malla de alambre de cobre.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

El Calibre de los conductores

- La sección de un conductor se expresa de acuerdo a una designación o sistema:
 - Sistema métrico o IEC.
 - Sistema Americano.
 - Sistema AWS
 - Sistema MCM

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Calibre del conductor Designación Métrica o IEC

- Es el sistema oficial en nuestro país y debe ser utilizado en todos los documentos oficiales.
- El calibre se expresa mediante el área de la sección transversal equivalente expresada en mm²

4 mm², 10 mm², 50 mm², ...

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q.

Calibre del conductor Designación AWG

- Es el calibre americano de alambres American Wire Gauge.
- Los diversos calibres se identifican con un NUMERO desde el # 36 hasta el 4/0.
- Se fabrican calibres PARES.

IEE 217 – SISTEMAS ELÉCTRICOS

CIENCIAS E INGENIERÍA

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Calibre del conductor Designación MCM

- Designación usada en calibres mayores al 4/0.
 - 1 MIL = 0,001"
 - 1 CIRCULAR MIL (CM) es el área de un circulo de diámetro 1 Mil
 - 1 MIL CIRCULAR MIL o 1 MCM = 1000 CM
- Por ejemplo, un conductor de 350 MCM o 500 MCM

1 Circular Mil

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Calibres equivalentes AWG - Métrico IEC

Calibre AWG	Calibre IEC (mm ²)	Sección (mm²)
14	2,5	2,081
12	4	3,309
10	6	5,261
4	25	21,15
2/0 ó 00	70	67,43
400 MCM	185	202,7

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Normas técnicas de conductores en BT

- NTP 370.252:2007 (2008 2014), CONDUCTORES ELECTRICOS. Cables aislados con compuesto termoplástico y termoestable para tensiones hasta e inclusive 450/750 V. (Conductores de uso general)
- NTP 370.254:2005 Conductores Eléctricos. Cables para distribución aérea auto soportados aislados con XLPE para tensiones hasta e inclusive 0,6/1 kV.
- NTP IEC 60502-1:2010, Cables de energía con aislamiento extruido y sus accesorios para tensiones nominales desde 1 kV (Um=1,2) hasta 30 kV (Um = 36kV). Parte 1 Cables para tensiones nominales de 1 kV (Um = 1,2 kV) y 3 kV (Um = 3,6 kV)

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Identificación de conductores

- Un conductor es identificado mediante un código formado por una combinación de letras y su calibre.
- En CNE del Perú ha establecido las designaciones aceptadas para conductores aislados:
 - Conductores de uso general.
 - Conductores flexibles o para aparatos.
 - Cables de energía.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Tipos de Conductores Conductores de uso general

- Son los conductores usados en instalaciones cuya tensión nominal es menor de 600V.
- Los conductores aceptados se encuentran listados en el CNE utilización.
- Los tipos TW, THW, CPI son algunos de los conductores más usados entre los conductores de uso general

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO O

Tipos de Conductores Conductores de uso general

Conductor TW 16 mm²

- Conductor con aislante termoplástico, resistente a la humedad con temperatura máxima de operación de 60 (80) °C.
- Uso en lugares secos y mojados.
- Sección de 16 mm².

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Tipos de Conductores Conductores Flexibles

- Esta denominación incluye los conductores flexibles y aquellos que serán instalados en máquinas o aparatos cuya tensión de alimentación es menor de 600V.
- Este tipo de conductores incluyen:
 - Conductores vulcanizados.
 - Conductores Mellizos.
 - Cables para soldadoras.
 - Cables para planchas.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO O

Tipos de Conductores Conductores Flexibles

Conductor STO 3x6 mm²

- 3 conductores de cobre de 6 mm².
- Aislamiento, relleno y recubrimiento de protección de PVC.
- Resistente al aceite.
- Equipos sujetos a vibraciones o movimientos.

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Tipos de Conductores Cables de Energía

- Son los conductores usados en grandes alimentadores y en la distribución eléctrica a baja y media tensión.
- Los cables de energía más usados en nuestro país de los siguientes tipos:
 - Cables con aislamiento de papel y recubrimiento metálico, como el NKY, que ya no se utilizan, pero todavía están instalados.
 - Cables con aislamiento y recubrimiento termoplástico de PVC, como el NYY.
 - Cables con aislamiento de polietileno reticulado, como el N2XSY

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO Q

Tipos de Conductores Cables de Energía

- La codificación usada se basa en la norma IEC y VDE, y está relacionada con el aislamiento y la protección usada.
- Se definen letras y dígitos formando una identificación única.
 - NYY
 - N2XSY

Cortesía CEPER

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Tipos de Conductores Codificación Cables de Energía

- N Conductor normalizado de cobre
- NA Conductor normalizado de aluminio
- G Aislamiento y cubierta de Goma (Termoestable)
- YAislamiento y cubierta de PVC, PoliVinil Cloruro, (Termoplástico)
- 2Y Cubierta de PE (PoliEtileno termoplástico)
- 2X Aislamiento de XLPE (Cross=X Linked PoliEtileno) Polietileno reticulado (Termoestable)
- OH Aislamiento y cubierta libre (cero) de halógenos
- SPantalla de cobre
- SE Pantalla de cobre sobre cada conductor (multipolares)
- C Conductor concéntrico
- B Armadura de flejes de acero ó R Armadura de alambres de acero

N2XOH = Cu, aislamiento de XLPE, cubierta libre de halógenos

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica

AREA DE ELECTRICIDAD

Conductores libres de halógenos y baja emisión de humos

- RM No. 175-2008 MEM/DM Modificación del CNE Utilización
- Los conductores no deben ser propagadores de la llama.
- Los conductores, cables eléctricos y sus canalizaciones, instalados en locales con afluencia de público, deben del tipo no propagador del incendio, con baja emisión de humos y libre de halógenos y ácidos corrosivos.

IEE 217 – SISTEMAS ELÉCTRICOS

ING. RAUL DEL ROSARIO C

Locales de publica concurrencia Ejemplos

- Locales de pública concurrencia para espectáculos y actividades recreativas, tales como por ejemplo: cines, teatros, auditorios, estadios, pabellones deportivos, hipódromos, parques de atracciones y ferias, salas de fiesta, discotecas, salas de juegos de azar y similares;
- Locales de pública concurrencia para reuniones y trabajo, como por ejemplo: templos, salas de conferencias y congresos, restaurantes, establecimientos comerciales, centros comerciales, mercados, etc.

IEE 217 – SISTEMAS ELÉCTRICOS

FACULTAD DE CIENCIAS E INGENIERÍA Sección Electricidad y Electrónica AREA DE ELECTRICIDAD

NTP 370.252:2014 DESCRIPCIÓN Y USOS DE LOS CABLES CONTENIDOS EN ESTA NORMA					
Código de designación obligatoria	Según norma	Denominación opcional ¹⁾	Conductor Clase	Caracterís- ticas	Usos
60227 IEC 01	VII. 2000 - 0	TW	1, 2]	Instalaciones fijas dentro de tuberías, en bandejas, montantes, etc. en ambientes
60227 IEC 02	IEC 60227-3 NTP-IEC 60227-3	TWF	5	aislado con PVC 70° C	secos, no expuestos a la luz solar. Deben pasar el ensayo de retardancia a la llama de la NTP-IEC 60332-1-2
H07Z1-U		LSOH 70	1	1 conductor	Igual que los anteriores excepto que de
H07Z1-R	EN 50525-3-31	LSOR /0	2	aislado con LSOH 70	acuerdo a lo solicitado por el cliente se aplica el ensayo de retardancia a la llama Tipo 1, según NTP-IEC 60332-1-2 o Tipo 2, según NTP-IEC 60332-3-24
H07Z1-K	NTP 370.266-3-31	LSOHF 70	5	° C	
THW (90)			1, 2	1 conductor aislado con	Instalaciones fijas dentro de tuberías, en bandejas, montantes, etc. en ambientes
THWF (90)			5	PVC 90° C	secos y húmedos. En bandejas expuestas a la luz solar cuando se solicite
THWN-2 (90)	UL 83 NTP 370.252		1, 2	1 conductor aislado con PVC 90 ° C y cubierta de nylon	"Resistencia a la luz solar" debe pasar el ensayo de llama vertical de UL 2556. También puede solicitarse retardancia a la llama "VW-1" y para calibres de 50 mm² a más se puede solicitar retardancia a la llama en "bandeja vertical o FT4."
XHHW-2 (90)	UL 44 NTP 370.252		1, 2	1 conductor aislado con XLPE 90 ° C	Igual que los anteriores excepto que en lugar del ensayo de llama vertical se aplica el de llama horizontal.
IEE 217 - S	ISTEMAS ELÉCTR	lcos			ING. RAUL DEL ROSARIO Q.

Código de designación obligatoria	Según norma	Denominación opcional ¹⁾	Conductor Clase	Caracterís- ticas	Usos
H07Z-U	EN 50525-3-41 NTP 370.266-3-41	LSOHX 90	1	1 conductor aislado con LSOH 90° C	Igual que los de la serie H07Z1-U, R y K, excepto que se aplica el ensayo de retardancia a la llama de la NTP- IEC 60332-1-2
H07Z-R		Lisoin 50	2		
H07Z-K			5		
60227 IEC 10	IEC 60227-4 NTP-IEC 60227-4	TTR 70	1, 2	De 2 a 5 conductores aislados con PVC 70 ° C. Cubierta exterior de PVC.	Instalaciones fijas sobre paredes, principalmente cuando no se han previsto tuberías, en ambientes seco no expuestos a la luz solar. Deben pasar el ensayo de retardancia a la llama de la NTP-IEC 60332-1-2
TWT 70	NTP 370.252		1	De 2 a 3 conductores aislados con PVC 70 ° C conformación plana. Cubierta exterior de PVC.	Igual que el anterior.

Sección Electricidad y Electrónica

IEE 217 - SISTEMAS ELÉCTRICOS

AREA DE ELECTRICIDAD

NTP 370.252:2014 DESCRIPCIÓN Y USOS DE LOS CABLES CONTENIDOS EN ESTA NORMA Denominación Conductor designación obligatoria Según norma Características Usos opcional¹⁾ Clase De 2 a 3 Para conectar relojes eléctricos, lámparas conductores de mesa, extractores de jugos, etc. y lo permitido por el Código Eléctrico Nacional-Utilización. aislados con TFM 70 NTP 370.252 PVC 70° C conformación Deben pasar el ensayo de retardancia a la llama de laNTP- IEC 60332-1-2 plana. De 2 a 5 Para conectar aparatos fijos y móviles. conductores (Conformación circular): Lustradoras, aislados con aspiradoras, extensiones, etc. PVC 70 ° C, Para conectar aparatos fijos. IEC 60227-5 60227 IEC 53 TTRF 70 NTP-IEC 60227-5 conformación (Conformación plana). plana o circular. Deben pasar el ensavo de retardancia a la Cubierta exterior de PVC llama de la IEC 60332-1-2 Igual que el anterior. De 2 a 5 conductores aislados con EN 50525-3-11 H05Z1Z1-F LSOHRF 70 LSOH 70° C. NTP 370.266-3-11 Cubierta exterior de LSOH. Según NTP 370.252:2010

Videos complementarios

ING. RAUL DEL ROSARIO C

- Se recomienda revisar estos videos sobre conductores y sus características de la empresa AWC
 - Fundamentales https://youtu.be/gtAaZ2hFYTA
 - Códigos de los cables https://youtu.be/cuuBR64UCEA
 - Diseño de los cable https://youtu.be/djDVd96HkZ0
 - Aislamiento y cubiertas https://youtu.be/N4Ro-qb V9q
 - Cubiertas y armaduras de cables de potencia https://youtu.be/aHqwRVKFtqE
 - Generalidades de las canalizaciones y los cables https://youtu.be/QW-wZ1lt6Ek
 - Comparación entre conductors MTW vs THHN https://youtu.be/jCsEyVxQnjY
- Estos videos son cortesía de la empresa AWC Allied Wire & Cable (www.awcwire.com)

IEE 217 – SISTEMAS ELÉCTRICOS

Sección Electricidad y Electrónica **AREA DE ELECTRICIDAD**

TO STATE OF THE PARTY OF THE PA

Agradecimientos

- Ing. Sigfrido Nano NEXANS (INDECO)
- Ing. Miguel Román Primer Secretario del Comité Técnico de conductores.

IEE 217 – SISTEMAS ELÉCTRICOS