Excerpt from: Cornep, Leiserson, River, Steix Introduction to Algorithms (2001).

The Edmonds-Karp algorithm

The bound on FORD-FULKERSON can be improved if we implement the computation of the augmenting path p in line 4 with a breadth-first search, that is, if the augmenting path is a *shortest* path from s to t in the residual network, where each edge has unit distance (weight). We call the Ford-Fulkerson method so im-

plemented the *Edmonds-Karp algorithm*. We now prove that the Edmonds-Karp algorithm runs in $O(VE^2)$ time.

The analysis depends on the distances to vertices in the residual network G_f . The following lemma uses the notation $\delta_f(u, v)$ for the shortest-path distance from u to v in G_f , where each edge has unit distance.

Lemma 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow augmentation.

Proof We will suppose that for some vertex $v \in V - \{s, t\}$, there is a flow augmentation that causes the shortest-path distance from s to v to decrease, and then we will derive a contradiction. Let f be the flow just before the first augmentation that decreases some shortest-path distance, and let f' be the flow just afterward. Let v be the vertex with the minimum $\delta_{f'}(s,v)$ whose distance was decreased by the augmentation, so that $\delta_{f'}(s,v) < \delta_f(s,v)$. Let $p = s \leadsto u \to v$ be a shortest path from s to v in $G_{f'}$, so that $(u,v) \in E_{f'}$ and

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) - 1. \tag{26.7}$$

Because of how we chose v, we know that the distance label of vertex u did not decrease, i.e.,

$$\delta_{f'}(s, u) \ge \delta_f(s, u) . \tag{26.8}$$

We claim that $(u, v) \notin E_f$. Why? If we had $(u, v) \in E_f$, then we would also have

$$\delta_f(s, v) \leq \delta_f(s, u) + 1$$
 (by Lemma 24.10, the triangle inequality)
 $\leq \delta_{f'}(s, u) + 1$ (by inequality (26.8))
 $= \delta_{f'}(s, v)$ (by equation (26.7)),

which contradicts our assumption that $\delta_{f'}(s, v) < \delta_f(s, v)$.

How can we have $(u, v) \not\in E_f$ and $(u, v) \in E_{f'}$? The augmentation must have increased the flow from v to u. The Edmonds-Karp algorithm always augments flow along shortest paths, and therefore the shortest path from s to u in G_f has (v, u) as its last edge. Therefore,

$$\begin{array}{rcl} \delta_f(s,v) & = & \delta_f(s,u)-1 \\ & \leq & \delta_{f'}(s,u)-1 & \text{(by inequality (26.8))} \\ & = & \delta_{f'}(s,v)-2 & \text{(by equation (26.7))} \end{array},$$

which contradicts our assumption that $\delta_{f'}(s, v) < \delta_f(s, v)$. We conclude that our assumption that such a vertex v exists is incorrect.

The next theorem bounds the number of iterations of the Edmonds-Karp algorithm.

Theorem 26.9

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(VE).

Proof We say that an edge (u, v) in a residual network G_f is **critical** on an augmenting path p if the residual capacity of p is the residual capacity of (u, v), that is, if $c_f(p) = c_f(u, v)$. After we have augmented flow along an augmenting path, any critical edge on the path disappears from the residual network. Moreover, at least one edge on any augmenting path must be critical. We will show that each of the |E| edges can become critical at most |V|/2-1 times.

Let u and v be vertices in V that are connected by an edge in E. Since augmenting paths are shortest paths, when (u, v) is critical for the first time, we have

$$\delta_f(s, v) = \delta_f(s, u) + 1$$
.

Once the flow is augmented, the edge (u, v) disappears from the residual network. It cannot reappear later on another augmenting path until after the flow from u to v is decreased, which occurs only if (v, u) appears on an augmenting path. If f' is the flow in G when this event occurs, then we have

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1.$$

Since $\delta_f(s, v) \leq \delta_{f'}(s, v)$ by Lemma 26.8, we have

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1$$

$$\geq \delta_{f}(s, v) + 1$$

$$= \delta_{f}(s, u) + 2.$$

Consequently, from the time (u, v) becomes critical to the time when it next becomes critical, the distance of u from the source increases by at least 2. The distance of u from the source is initially at least 0. The intermediate vertices on a shortest path from s to u cannot contain s, u, or t (since (u, v)) on the critical path implies that $u \neq t$). Therefore, until u becomes unreachable from the source, if ever, its distance is at most |V| - 2. Thus, (u, v) can become critical at most (|V|-2)/2 = |V|/2-1 times. Since there are O(E) pairs of vertices that can have an edge between them in a residual graph, the total number of critical edges during the entire execution of the Edmonds-Karp algorithm is O(VE). Each augmenting path has at least one critical edge, and hence the theorem follows.

Since each iteration of FORD-FULKERSON can be implemented in O(E) time when the augmenting path is found by breadth-first search, the total running time

of the Edmonds-Karp algorithm is $O(VE^2)$. We shall see that push-relabel algorithms can yield even better bounds. The algorithm of Section 26.4 gives a method for achieving an $O(V^2E)$ running time, which forms the basis for the $O(V^3)$ -time algorithm of Section 26.5.