INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA MESTRADO EM ENGENHARIA INFORMÁTICA E DE COMPUTADORES MESTRADO EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA PROCESSAMENTO DE IMAGEM E BIOMETRIA

Semestre de inverno 2021/2022

Época Normal

4 de fevereiro de 2022, 19:00

- R1 Repetição do 1.º teste parcial, duração de 1:30, grupos 1, 2, 3, 4 e 5.
- R2 Repetição do 2.º teste parcial, duração de 1:30, grupos 6, 7, 8, 9 e 10.
- TG Teste Global, duração de 2:30, grupos 1, 4, 5, 7, 8, 9 e 10.

Justifique todas as respostas. Consulta: R1/R2 - 1 folha A4; TG - 2 folhas A4.

1. $\{R1||TG\}$ A imagem quadrada monocromática I, com n=7 bit/pixel, tem o histograma que se apresenta na tabela. Para os níveis de cinzento ausentes na tabela, não se registam ocorrências.

Nível de cinzento	5	10	20	30	40	50	60	m_x
Ocorrências	124	100	100	100	100	100	100	300

- (a) $\{1,25||1,0\}$ Indique a resolução espacial da imagem e o valor de m_x , sabendo que corresponde ao máximo de intensidade. Trata-se de uma imagem de elevado brilho e contraste?
- (b) $\{1,25||1,0\}$ Calcule a entropia, a energia, a potência e a intensidade média de I.
- (c) $\{1,25||1,0\}$ Apresente, na forma de tabela, o histograma da versão negativa desta imagem, designada por I_n . Compare o valor da entropia de I com o valor da entropia de I_n . Comente o resultado.
- 2. {R1} As seguintes questões referem-se ao funcionamento de sistemas biométricos.
 - (a) {1,25} Explique o significado dos seguintes conceitos: (i) failure to enroll; (ii) false accept rate; (iii) false reject rate.
 - (b) {1,5} Apresente um esboço da informação contida numa base de dados de registos de um sistema biométrico. Indique como esta informação é atualizada e utilizada nas fases de registo e verificação/identificação.
- 3. $\{R1\}$ As transformações de intensidade T_1, T_2 e T_3 , são definidas como

$$T_1[x] = \begin{cases} 2x, & 0 \le x \le 120 \\ 180, & 121 \le x \le 150 \\ x, & 151 \le x \le 255 \end{cases}, \quad T_2[x] = \begin{cases} 0, & 0 \le x \le 20 \\ 31, & 21 \le x \le 31 \end{cases} \quad \text{e} \quad T_3[x] = \begin{cases} x, & 0 \le x \le 100 \\ 0, & 101 \le x \le 127. \end{cases}$$

- (a) {1,5} Esboce as três funções. Para cada função, indique: a funcionalidade; a profundidade de imagem, em bit/pixel, para a qual se destina; a resolução de imagem para a qual se destina; se é invertível.
- (b) $\{1,5\}$ Considere a transformação T_3 sobre imagens de resolução espacial 5×5 . É possível que a aplicação desta transformação de intensidade gere uma imagem de saída com a mesma energia da imagem de entrada? Em caso afirmativo, apresente um exemplo dessa situação. Caso contrário, justifique a impossibilidade.
- (c) $\{1,5\}$ Seja a imagem I_3 definida como

$$I_3 = \left[\begin{array}{cccc} 34 & 4 & 1 & 2 \\ 0 & 12 & 88 & 10 \\ 11 & 10 & 76 & 0 \\ 40 & 0 & 0 & 10 \end{array} \right],$$

a qual resultou da aplicação de T_3 sobre a imagem I. Apresente uma possível imagem de entrada, I, sabendo que a energia desta é superior à de I.

4. {R1||TG} Sejam as janelas utilizadas na filtragem espacial, definidas por

$$w_1 = \begin{bmatrix} 2 & 2 & 2 \\ 2 & A & 2 \\ 2 & 2 & 2 \end{bmatrix} \quad \mathbf{e} \quad w_2 = \frac{2}{B} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

- (a) $\{1,5|1,0\}$ Determine o valor de A para que w_1 corresponda a uma janela de *sharpening*. Determine o valor de B para que w_2 seja uma janela de *smoothing* apropriada.
- (b) $\{1,5|1,0\}$ Sobre a janela w_2 , considere B=2 e uma imagem monocromática I com resolução 1024×512 , e profundidade de n=8 bit/pixel. Para a filtragem de I, através de w_2 , indique o número máximo de somas e multiplicações realizadas, no pior caso. Considerando otimizações, é possível realizar esta filtragem sem recurso a quaisquer multiplicações?
- (c) $\{1,5|1,0\}$ Considere A=B=2 e $w_3=w_1-w_2$. Seja a imagem monocromática I com resolução 512×512 , e profundidade de n=8 bit/pixel, tal que as primeiras 256 colunas têm conteúdo constante igual a 10 e as restantes 256 colunas têm conteúdo constante igual a 200. Descreva o conteúdo da imagem I_3 , a qual resulta da filtragem espacial de I, com a janela w_3 .
- 5. {R1||TG} Considere as seguintes questões sobre técnicas de processamento de imagem.
 - (a) {1,5||1,0} Em que consiste a técnica de especificação de histograma? Tipicamente, em que situações é aplicada com sucesso?
 - (b) {1,5||1,0} Quais as razões que levam ao sucesso do filtro de mediana na remoção de ruído impulsivo (*salt and pepper*)? Quais os critérios na escolha da máscara do filtro? Após aplicação deste filtro, é possível reverter o processo e obter exatamente a imagem original?
 - (c) {1,5||1,0} Quais as vantagens e desvantagens das técnicas de filtragem no domínio da frequência, relativamente às técnicas de filtragem espacial? Apresente dois exemplos de problemas que sejam bem resolvidos por cada uma destas técnicas.
- 6. {R2} As seguintes questões referem-se ao processamento digital de imagem, no domínio da frequência.
 - (a) $\{1,25||1,0\}$ Considere o algoritmo de filtragem de imagem de resolução espacial 256×256 , no domínio da frequência. Após a ação de *zero padding*, as dimensões da imagem *padded* são P=2M e Q=2N. Tendo em conta que $D[u,v]=\sqrt{(u-P/2)^2+(v-Q/2)^2}$, definem-se os filtros:

$$H_A[u,v] = \left\{ \begin{array}{ll} 1, & \text{se} \quad D[u,v] \leq 30 \\ 0, & \text{se} \quad 31 \leq D[u,v] \leq 60 \\ 0.5, & \text{se} \quad D[u,v] \geq 61 \end{array} \right. \quad \text{e} \quad H_B[u,v] = \left\{ \begin{array}{ll} 0, & \text{se} \quad D[u,v] \leq 80 \\ 0.5, & \text{se} \quad D[u,v] > 80. \end{array} \right.$$

Para os filtros definidos por $H_A[u,v]$, $H_B[u,v]$ e $H_C[u,v] = H_A[u,v] + H_B[u,v]$, indique o tipo de filtragem realizado e esboce cada filtro, na forma de imagem.

(b) {1,25} Considere o algoritmo que se descreve de seguida.

Input: Image f; High-pass filter H; Scalar a. Scalar b.
Output: Image g.

- 1. F[u,v] = DFT[f[m,n]];
- 2. M[u,v] = a + b*H[u,v];
- 3. g[m,n] = IDFT[M[u,v]*F[u,v]];
- 4. Return g[m,n].

Indique: a funcionalidade do algoritmo e uma situação de exemplo de aplicação do mesmo; o efeito das constantes 'a' e 'b' e como devem ser escolhidos os seus valores.

(c) {1,25} Descreva em que consiste a técnica de *homomorphic filtering* e quais os seus objetivos. Qual o modelo de formação de imagem que está subjacente à aplicação desta técnica?

- 7. {R2||TG} Considere as transformadas DFT e DCT.
 - (a) $\{1,25||1,0\}$ A imagem f[m,n] tem energia $E_f=43$ J e módulo de espetro não centrado $|F[u,v]|=\begin{bmatrix}25&1&1&1\\C&1&1&1\\1&1&1&1\\5&1&1&1\end{bmatrix}$. Determine o valor de C. Indique o valor da intensidade média de f[m,n].
 - (b) $\{1,5||1,0\}$ Seja $g[m,n]=\begin{bmatrix}4&4&1\\0&1&2\\4&2&4\end{bmatrix}$ e $G[u,v]=\mathrm{DCT}[g[m,n]]$. Sem usar a definição da DCT, determine o valor de G[0,0].
- 8. {R2||TG} As seguintes questões referem-se ao processamento digital de imagem a cores.
 - (a) {1,5||1,0} Considere que possui uma imagem colorida escura e contaminada com ruído Gaussiano no canal de cor B. Pretende-se realizar aumento da luminosidade da imagem. Indique, de forma detalhada, os procedimentos a efetuar para realizar esta operação.
 - (b) $\{1,5|1,0\}$ A partir do espaço de cor RGB com n=8 bit/pixel por componente, definiu-se o espaço de cores RGB', usando uma representação com n=6 bit/pixel, por componente. Indique: o número de cores distintas no espaço RGB'; o número de níveis de cinzento distintos no espaço RGB'; como se efetua a redução do espaço RGB para o espaço RGB'.
 - (c) {1,5||1,0} Considere que, sobre uma imagem representada no espaço HSI, se pretende aplicar a técnica *color slicing* sobre a cor *vermelho puro*. Apresente um esboço do algoritmo que efetua esta operação, explicitando os parâmetros de entrada e de saída.
- 9. {R2||TG} Tenha em conta as técnicas de processamento morfológico de imagem.
 - (a) {1,5||1,0} Explique em que consiste o elemento estruturante e quais os principais critérios a seguir na escolha do mesmo.
 - (b) $\{1,5||1,0\}$ A figura apresenta duas operações morfológicas aplicadas sobre a imagem I. Descreva as operações e o elemento estruturante que, a partir de I, conduzem às imagens I_1 e I_2 .

- (c) {1,5||1,0} Considere que sobre a imagem *I* se pretende eliminar o círculo mais pequeno e manter os restantes objetos. Indique como procederia para conseguir este objetivo, através de operações morfológicas.
- 10. {R2||TG} Considere as seguintes questões sobre o funcionamento de sistemas biométricos.
 - (a) {1,5||1,0} O reconhecimento biométrico de indivíduos através de impressão digital tem vasta aplicação, comparativamente com outras modalidades biométricas. Explique as principais razões que levam a esta vasta aplicação.
 - (b) {1,5||1,0} Considere que se utiliza um sistema biométrico com determinada modalidade, para ser usado por dois gémeos idênticos. Existe probabilidade de falha do sistema? A existir, essa falha depende da modalidade biométrica usada?
 - (c) {1,5||1,0} No reconhecimento de indivíduos através de impressão digital, recorre-se à filtragem setorizada de Gabor. Indique: em que consiste esta técnica; como o resultado da filtragem de Gabor é utilizado no sistema biométrico.