1)
$$M = AB' + A'B$$

2)
$$M = (A+B) \cdot (A+B)$$

3)
$$M = AC + AB + BC$$

4) $M = (A+B)(A+C)(A+B+C)$
 $B+C$
5) $E_1 = AC' + BC'D' + ABD' = E_2 = A'C + A'B'D + BCD$
 $AB = AB = BC'D' + ABD' = CAB = CAB = CAB'D + BCD'$
 $CAB = CAB = CAB = CAB = CAB'D + ABCD + ABCD'$
 $CAB = CAB = CAB = CAB'C + A'BC'D + ABCD + ABCD'$
 $CAB = CAB = CAB + CAB'C + A'BC'D + ABCD + ABCD'$
 $CAB = CAB + CAB'C + A'BC'D + ABCD + ABCD'$
 $CAB = CAB + CAB'C + CAB'C + A'BC'D + ABCD + ABCD'$
 $CAB = CAB + CAB'C + CAB'C + A'BC'D + ABCD + ABCD'$
 $CAB = CAB + CAB'C + CAB'C + A'BC'D + ABCD + ABCD'$

$$\Sigma_1$$
, $M = (A+B)(C'+D')(B+C')(A+D')(A+C')$

$$Z_{2}, M = (C+D)(A'+B')(A'+D)(B'+C)(A'+C)$$

$$\nabla_3$$
, $M = (A+C')(A'+C)(B'+D)(B+D')$

7,8 Multiplexer

$$M = \chi_0 s' + \chi_1 s$$

$$M = (x_0 + s)(x_1 + s')$$

9) Mux 4:1

$$\gamma_0(s_1's_0') + \gamma_1(s_1's_0) + \gamma_2(s_1s_0') + \gamma_3(s_1s_0)$$