py[xlr8r] / Cellerator Arrow Comparison 1

Cellerator Form	py[xlr8r] format	Biochemical or ODE	Note
$\{\mathtt{S} \to \mathtt{P}, \mathtt{k}\}$	$[\mathtt{S-}>\mathtt{P},\mathtt{rates}[\mathtt{k}]]$	$S \xrightarrow{k} P$	a,f
$\{\mathtt{S} \stackrel{\mathtt{X}}{ ightarrow} \mathtt{P}, \mathtt{k}\}$	[S>P, mod[X], rates[k]]	$S + X \xrightarrow{k} P + X$	a,b,f
$\{\mathtt{S} \rightleftarrows \mathtt{P}, \mathtt{k1}, \mathtt{k2}\}$	$\boxed{ [\mathtt{S} < - > \mathtt{P}, \mathtt{rates}[\mathtt{k1}, \mathtt{k2}]] }$	$S \underset{k2}{\overset{k1}{\rightleftharpoons}} P$	f
$\{S \stackrel{X}{\rightleftharpoons} P, k1, k2, k3\}$	[S => P, mod[X], rates[k1, k2, k3]]	$X + S \underset{k2}{\overset{k1}{\rightleftharpoons}} XS \xrightarrow{k3} X + P$	b,f
$\left\{ \mathtt{S} \overset{\mathtt{X}}{\rightleftarrows} \mathtt{P}, \mathtt{k1}, \mathtt{k2}, \mathtt{k3}, \mathtt{k4} \right\}$	$\boxed{ [\mathtt{S} => \mathtt{P}, \mathtt{mod}[\mathtt{X}], \mathtt{rates}[\mathtt{k1}, \mathtt{k2}, \mathtt{k3}, \mathtt{k4}]] }$	$X + S \underset{k1}{\overset{k2}{\rightleftharpoons}} XS \underset{k4}{\overset{k3}{\rightleftharpoons}} X + P$	b,f
$\{\mathtt{S} \underset{\mathtt{Y}}{\overset{\mathtt{X}}{\rightleftharpoons}} \mathtt{P}, \mathtt{k1}, \mathtt{k2}, \ldots, \mathtt{k8}\}$	[S <=> P, mod[X, Y], rates[k1, k2,, k8]]	$X + S \stackrel{k1}{\rightleftharpoons} XS \stackrel{k3}{\rightleftharpoons} X + P$ $X + P \stackrel{k2}{\rightleftharpoons} XS \stackrel{k4}{\rightleftharpoons} X + P$ $Y + P \stackrel{k5}{\rightleftharpoons} YP \stackrel{k7}{\rightleftharpoons} X + S$ $k6 \qquad k8 \qquad k1 \qquad k3 \qquad k5$	f
$\{S \stackrel{x}{\rightleftharpoons} P, k1, k2, \dots, k6\}$	$\begin{tabular}{l} $[S:=>P,mod[X],rates[k1,k2,\ldots,k6]]$ \end{tabular}$	$X + S \rightleftharpoons XS \rightleftharpoons XP \rightleftharpoons X + P$	b,f
$\boxed{ \{ \texttt{X} \mapsto \texttt{Y}, \textit{type} [\texttt{a1}, \texttt{a2}, \dots, \texttt{an}] \} }$	$[\mathtt{X} ->\mathtt{Y}, type[\mathtt{a1},\mathtt{a2},\ldots,\mathtt{an}]]$	$type \in \{ ext{ Hill, GRN, SSystem,} $	е
$igl\{ \mathtt{X} \overset{\mathtt{E}}{\mapsto} \mathtt{Y}, extit{type} [\mathtt{a1}, \mathtt{a2}, \dots, \mathtt{an}] igr\}$	$ig [\mathtt{X} ig > \mathtt{Y}, \mathtt{mod}[\mathtt{E}], extit{type}[\mathtt{a1}, \mathtt{a2}, \ldots, \mathtt{an}] ig]$	NHCA, USER }	
$ \begin{array}{c} \{X \implies Y, MM[parameters]\} \\ \{X \stackrel{E}{\Longrightarrow} Y, MM[parameters]\} \end{array} $		MMH Equations, $\frac{S\mathcal{E}v_{\text{max}}}{K_M + S}$	c
$\left\{ \mathtt{S} \stackrel{\mathtt{E}}{\Longrightarrow} \mathtt{P}, \mathtt{MWC}[parameters] \right\}$	$[\mathtt{S} ==> \mathtt{P}, \mathtt{mod}[\mathtt{E}], \mathtt{MWC}[parameters]]$	MWC: $\frac{k\mathcal{E}(cLs(cs+1)^{n-1}+s(s+1)^{n-1})}{L(cs+1)^n+(s+1)^n}$	d
$\left\{ \mathtt{S} \overset{\mathtt{E}}{\underset{\{\mathtt{A},\mathtt{I}\}}{\Longrightarrow}} \mathtt{P}, \mathtt{MWC}[parameters] \right\}$	$[\mathtt{S} ==> \mathtt{P}, \mathtt{mod}[\mathtt{E}, [\mathtt{A}, \mathtt{I}]], \mathtt{MWC}[parameters]]$	$\frac{k\mathcal{E}\left(s(a+1)^n(s+1)^{n-1} + cLs(i+1)^n(cs+1)^{n-1}\right)}{(a+1)^n(s+1)^n + L(i+1)^n(cs+1)^n}$	
$ \begin{cases} \{\{\{A,B,C\},\{P,Q,R\}\} \\ \implies S, rational[]\} \end{cases} $	$ \begin{array}{c} [[[A,B,C],[P,Q,R]] ==> \\ \text{rational}[[a_0,],[d_0,],[m_1,,],[n_1,]] \end{array} $	$\frac{dS}{dt} = \frac{a_0 + a_1 A^{n_1} + B^{n_2} + \cdots}{d_0 + d_1 P^{m_1} + d_2 P^{m_2} + \cdots}$	

Notes: (a) When only a single rate constant is expected the rates keyword may be omitted. (b) When only a single modifier is expected the mod keyword may be omitted. (c) MMH = Michaelis-Menten-Henri. (d) MWC = Monod-Wyman-Changeaux. In the shorthand version, A and I are lists of zero or more species delimited by commas and enclosed by square brackets as in [A1,A2,A3]; an empty

list would be []. (e). Hill:
$$\frac{v\mathcal{E}(\sum T_i X_i + \alpha)^n}{+K^n + (\sum T_i X_i + \alpha)^n}$$
; GRN: $\frac{v}{1 + \exp\left(-h - \sum \beta_i X_i^{n_i}\right)}$; SSystem: $\frac{\left(k_+ \prod X_i^{C_i, +} - k_- \prod X_i^{C_i, -}\right)}{\tau}$; NHCA: $\frac{v(1 + T_+ X^n)^m}{k(1 + T_- X^n)^m + (1 + T_+ X^n)^m}$; USER: $vf(h + \sum T_i A_i^{n_i})$ (f) Uses mass-action kinetics

¹Version 6, March 26, 2012, BES