

Recent developments in the Regional Coupled Suite

JuanMa Castillo, Ségolène Berthou, Alex Arnold, Huw Lewis, Sana Mahmood, Claudio Sanchez

UK domain (1.5km):

Numerical weather prediction: A/O/W

- **Deterministic** forecast
- **Ensembles** (Case studies)

Climate: Atmosphere-Ocean

Under development:

- Modelled river outflow into the ocean (Lewis et al. 2021)
- Biogeochemistry: **ERSEM**

SEDIMENTS/BIOGEOCHEM: ERSEM

Outline

1. Operational improvements:

- Better wave and storm surge forecast from ocean/wave 1.5km coupled system
- Improvements of summer/autumn land temperature forecasts by using SST prediction from the ocean model
- Improvements to winter storm wind forecasting (atmosphere-wave coupling), resulting in changes to the atmospheric drag scheme

2. Better understanding of our environment:

- Reduction in tropical cyclone intensity from atmosphere-ocean coupling, coupled system enabling a more rigorous treatment of the near-surface energy budget
- Dampening of UK heatwaves by tidal processes over the northwest European shelf
- Effects of marine diurnal cycle on the diurnal cycle of convection over the maritime continent

- Integrated hydrology
- Compound event ensemble forecasting demonstrator
- Effect of ocean/wave coupling on biogeochemistry
- Atmosphere/ocean climate runs at km-scale over the Northwest European self

1. Operational improvements: ocean/wave operational coupled system

- Regional wave-ocean coupled system operational since 2020 [PS44]
- Direct pull-through from REP research coupling infrastructure, experiments + evaluation activities
- Beneficial impacts, especially during storms and in near-coastal regions

1. Operational improvements: Sea Surface Temperature from marine forecast

- Regional operational ocean(-wave) forecast SST used as lower boundary in deterministic and ensemble UK NWP since 2022 [PS45]
- Direct pull-through from REP research technical + evaluation activities
- Reduces evolving cold bias over 5-day simulation, improved mean/max temperatures, improved sea fog prediction

Fallmann et al., 2019, QJRMS

Mahmood et al. 2021, Met. Apps.

1. Operational improvements: atmosphere/wave coupling impact on wind

Wave coupling reduces high wind speeds in mid-latitude winter storms: young, growing wind waves reduce the wind speed by increasing the seasurface aerodynamic roughness

⇒ Operational implementation of new drag parameterisation COARE 4.0 parametrization with the Donelan (2018) cap and drag reduction

10-m Wind speed [m s⁻¹]

Outline

1. Operational improvements:

- Better wave and storm surge forecast from ocean/wave 1.5km coupled system
- Improvements of summer/autumn land temperature forecasts by using SST prediction from the ocean model
- Improvements to winter storm wind forecasting (atmosphere-wave coupling), resulting in changes to the atmospheric drag scheme

2. Better understanding of our environment:

- Reduction in tropical cyclone intensity from atmosphere-ocean coupling, coupled system enabling a more rigorous treatment of the near-surface energy budget
- Dampening of UK heatwaves by tidal processes over the northwest European shelf
- Effects of marine diurnal cycle on the diurnal cycle of convection over the maritime continent

- Integrated hydrology
- Compound event ensemble forecasting demonstrator
- Effect of ocean/wave coupling on biogeochemistry
- Atmosphere/ocean climate runs at km-scale over the Northwest European self

Met Office

2. Better understanding: tropical cyclones

ATM

- First-order impact captured with 1D mixed layer KPP, but neglects influence of (e.g. coastal) currents
- Coupling 'enables' simulation with frictional heating

Outline

1. Operational improvements:

- Better wave and storm surge forecast from ocean/wave 1.5km coupled system
- Improvements of summer/autumn land temperature forecasts by using SST prediction from the ocean model
- Improvements to winter storm wind forecasting (atmosphere-wave coupling), resulting in changes to the atmospheric drag scheme

2. Better understanding of our environment:

- Reduction in tropical cyclone intensity from atmosphere-ocean coupling, coupled system enabling a more rigorous treatment of the near-surface energy budget
- Dampening of UK heatwaves by tidal processes over the northwest European shelf
- Effects of marine diurnal cycle on the diurnal cycle of convection over the maritime continent

- Integrated hydrology
- Compound event ensemble forecasting demonstrator
- Effect of ocean/wave coupling on biogeochemistry
- Atmosphere/ocean climate runs at km-scale over the Northwest European self

3. On-going research / future implementation: integrated hydrology

Lewis & Dadson (2021) Hydro. Proc.

First time that river routing has been implemented online

Test sensitivity to
JULES set-up
Test inclusion of
groundwater scheme
from HydroJULES

3. On-going research / future implementation: impact of ocean/wave coupling on biogeochemistry modelling

Impact of wave-ocean coupling on biogeochemistry:

- Delayed spring bloom
- More summer variability in chlorophyll

OCEAN: NEMO

3. On-going research / future implementation: climate simulations

Evaluation of the sea surface temperature of 5-year coupled runs (atmosphere-ocean, 2007-2012)

No evident drift in coupled runs

Most seasons are close to observations, but the SST is too cool in late summer.

This version of the Regional Atmosphere is too cloudy – now testing a newer configuration.

3. On-going research / future implementation: LFRic/River routing

Coupling of the new atmospheric model LFRic to river routing model

This approach eliminates the need for multiple regridding, as it is done by OASIS

Summary

1. Operational improvements:

- Better wave and storm surge forecast from ocean/wave 1.5km coupled system
- Improvements of summer/autumn land temperature forecasts by using SST prediction from the ocean model
- Improvements to winter storm wind forecasting (atmosphere-wave coupling), resulting in changes to the atmospheric drag scheme

2. Better understanding of our environment:

- Reduction in tropical cyclone intensity from atmosphere-ocean coupling, coupled system enabling a more rigorous treatment of the near-surface energy budget
- Dampening of UK heatwaves by tidal processes over the northwest European shelf
- Effects of marine diurnal cycle on the diurnal cycle of convection over the maritime continent

- Integrated hydrology
- Compound event ensemble forecasting demonstrator
- Effect of ocean/wave coupling on biogeochemistry
- Atmosphere/ocean climate runs at km-scale over the Northwest European self
- New wave/ocean coupling exchanges

