

机器学习&深度学习

支撑向量机 SVM

高飞 Fei Gao gaofei@hdu.edu.cn

目录

- 间隔与支持向量
- 对偶问题
- 核函数
- 软间隔与正则化
- 支持向量回归
- 核方法

线性模型: 在样本空间中寻找一个超平面,将不同类别的样本分开.

-Q:将训练样本分开的超平面可能有很多,哪一个好呢?

-Q:将训练样本分开的超平面可能有很多,哪一个好呢?

- A:应选择"正中间",容忍性好,鲁棒性高,泛化能力最强.

间隔与支持向量

超平面方程:

$$\boldsymbol{w}^{\top}\boldsymbol{x} + b = 0$$

支持向量机基本型

• 最大间隔: 寻找参数 $oldsymbol{w}$ 和 b , 使得 γ 最大.

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,max}} \frac{2}{\|\boldsymbol{w}\|}$$
s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

支持向量机基本型

• 最大间隔: 寻找参数 $oldsymbol{w}$ 和 b , 使得 γ 最大.

- 拉格朗日乘子法
 - 第一步: 引入拉格朗日乘子 $\alpha_i \geq 0$ 得到拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^{m} \alpha_i \left(y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) - 1 \right)$$

- 拉格朗日乘子法
 - 第一步: 引入拉格朗日乘子 $\alpha_i \geq 0$ 得到拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} ||\boldsymbol{w}||^2 - \sum_{i=1}^{m} \alpha_i \left(y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) - 1 \right)$$

• 第二步: 令 $L(\boldsymbol{w},b,\boldsymbol{\alpha})$ 对 \boldsymbol{w} 和 b 的偏导为零可得

$$\boldsymbol{w} = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i, \quad \sum_{i=1}^{m} \alpha_i y_i = 0.$$

- 拉格朗日乘子法
 - 第一步: 引入拉格朗日乘子 $\alpha_i \geq 0$ 得到拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^{m} \alpha_i \left(y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) - 1 \right)$$

• 第二步: 令 $L(\boldsymbol{w},b,\boldsymbol{\alpha})$ 对 \boldsymbol{w} 和 b 的偏导为零可得

$$\boldsymbol{w} = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i, \quad \sum_{i=1}^{m} \alpha_i y_i = 0.$$

■ 第三步:回代

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\top} \boldsymbol{x}_j - \sum_{i=1}^{m} \alpha_i$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \ \alpha_i \ge 0, \ i = 1, 2, \dots, m.$$

解的稀疏性

• 最终模型:

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i^{\top} \boldsymbol{x} + b$$

• KKT条件:

$$\begin{cases} \alpha_i \ge 0, \\ y_i f(\boldsymbol{x}_i) \ge 1, \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1) = 0. \end{cases}$$

解的稀疏性

最终模型:

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i^{\top} \boldsymbol{x} + b$$

KKT条件:

$$\begin{cases} \alpha_i \ge 0, \\ y_i f(\boldsymbol{x}_i) \ge 1, \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1) = 0. \end{cases}$$

$$y_i f(\boldsymbol{x}_i) > 1$$
 $\boldsymbol{\alpha}_i = 0$

$$\alpha_i = 0$$

支持向量机解的稀疏性

训练完成后,大部分的训练样本都不需保留,最终模型仅与支持向量有关.

求解方法 - SMO

- 基本思路:不断执行如下两个步骤直至收敛.
 - 第一步: 选取一对需更新的变量 α_i 和 α_j .
 - 第二步: 固定 α_i 和 α_j 以外的参数, 求解对偶问题更新 α_i 和 α_j

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\top} \boldsymbol{x}_j - \sum_{i=1}^{m} \alpha_i$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \ \alpha_i \ge 0, \ i = 1, 2, \dots, m.$$

• 仅考虑 α_i 和 α_j 时, 对偶问题的约束变为

$$\alpha_i y_i + \alpha_j y_j = -\sum_{k \neq i, j} \alpha_k y_k, \quad \alpha_i \geq 0, \quad \alpha_j \geq 0. \qquad \longleftarrow \quad \begin{cases} \alpha_i \geq 0, \\ y_i f(\boldsymbol{x}_i) \geq 1, \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1) = 0. \end{cases}$$

$$\begin{cases} \alpha_i \ge 0, \\ y_i f(\boldsymbol{x}_i) \ge 1, \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1) = 0. \end{cases}$$

用一个变量表示另一个变量, 回代入对偶问题可得一个单变量的二次规划, 该问题具有闭式解.

偏移项 b: 通过支持向量来确定.

线性不可分

- Q:若不存在一个能正确划分两类样本的超平面,怎么办?
- A:将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间内线性可分.

核支持向量机

・ 设样本 $m{x}$ 映射后的向量为 $\phi(m{x})$,划分超平面为 $f(m{x}) = m{w}^ op \phi(m{x}) + b$

原始问题

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\top} \phi(\boldsymbol{x}_i) + b) \ge 1, i = 1, 2, \dots, m.$

对偶问题

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j) - \sum_{i=1}^{m} \alpha_i$$

s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \ \alpha_i \ge 0, \ i = 1, 2, \dots, m.$$

只以内积的形式出现

预测

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{m} \alpha_i y_i \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}) + b$$

• 基本想法: 不显式地设计核映射, 而是设计核函数.

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j)$$

• 基本想法: 不显式地设计核映射, 而是设计核函数.

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j)$$

• Mercer定理(充分非必要): 只要一个对称函数所对应的核矩阵半正定,则它就能作为核函数来使用.

• 基本想法: 不显式地设计核映射, 而是设计核函数.

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j)$$

- Mercer定理(充分非必要): 只要一个对称函数所对应的核矩阵半正定,则它就能作为核函数来使用.
- 常用核函数:

名称	表达式	参数
线性核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{ op} \boldsymbol{x}_j$	·
多项式核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = (oldsymbol{x}_i^ op oldsymbol{x}_j)^d$	$d \ge 1$ 为多项式的次数
高斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2}{2\delta^2}\right)$	$\delta > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ }{\delta}\right)$	$\delta > 0$
Sigmoid核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\beta \boldsymbol{x}_i^{\top} \boldsymbol{x}_j + \theta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

图 7: 核函数映射示意

《支持向量机通俗导论:理解SVM 的三层境界》

http://scikit-learn.org/stable/modules/svm.html

说明了SVM 使用非线性分类器的优势,而Logistic 模式以及决策树模式都是使用了直线方法。

图 11: 分类器例子: 圈养

软间隔与正则化

软间隔

- Q:
 - 现实中,很难确定合适的 核函数使得训练样本在特 征空间中线性可分;
 - 同时一个线性可分的结果 也很难断定是否是有过拟 合造成的.
- A:引入"软间隔"的概念,
 - 允许支持向量机在一些样本上不满足约束.

0/1损失函数

• 基本想法: 最大化间隔的同时, 让不满足约束的样本应尽可能少.

$$\min_{\boldsymbol{w},b} \ \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^m l_{0/1} \left(y_i(\boldsymbol{w}^\top \phi(\boldsymbol{x}_i) + b) - 1 \right)$$

其中 $l_{0/1}$ 是" 0/1损失函数"

$$l_{0/1} = \begin{cases} 1 & z < 0 \\ 0 & otherwise \end{cases}$$

• 存在的问题: 0/1损失函数非凸、非连续,不易优化!

替代损失函数数学性质较好,一般是0/1损失函数的上界

软间隔支持向量机

• 原始问题

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j) - \sum_{i=1}^{m} \alpha_i$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, \ i = 1, 2, \dots, m.$$

软间隔支持向量机

• 原始问题

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\top} \phi(\boldsymbol{x}_j) - \sum_{i=1}^{m} \alpha_i$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, \ i = 1, 2, \dots, m.$$

• 对偶问题

$$\min_{\boldsymbol{w}, b} \ \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{m} \max \left(0, 1 - y_i(\boldsymbol{w}^{\top} \phi(\boldsymbol{x}_i) + b)\right)$$

根据KKT条件可推得最终模型仅与支持向量有关,也即 Hinge损失函数依然保持了支持向量机解的稀疏性.

• 支持向量机学习模型的更一般形式

结构风险,描述模型的 某些性质 经验风险,描述模型与训练数据的契合程度

- 通过替换上面两个部分,可以得到许多其他学习模型
 - 对数几率回归(Logistic Regression)
 - 最小绝对收缩选择算子(LASSO)
 - **.....**

支持向量回归

支持向量回归

• 特点: 允许模型输出和实际输出间存在 2ϵ 的偏差.

• 落入中间 2ϵ 间隔带的样本不计算损失,从而使得模型获得稀疏性.

• 原始问题

• 对偶问题

• 预测

$$\min_{\boldsymbol{w},b,\xi_{i},\hat{\xi}_{i}} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{m} (\xi_{i} + \hat{\xi}_{i})$$
s.t.
$$y_{i} - \boldsymbol{w}^{\top} \phi(\boldsymbol{x}_{i}) - b \leq \epsilon + \xi_{i},$$

$$y_{i} - \boldsymbol{w}^{\top} \phi(\boldsymbol{x}_{i}) - b \geq -\epsilon - \hat{\xi}_{i},$$

$$\xi_{i} \geq 0, \ \hat{\xi}_{i} \geq 0, \ i = 1, 2, \dots, m.$$

$$\min_{\boldsymbol{\alpha}, \hat{\boldsymbol{\alpha}}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} (\alpha_i - \hat{\alpha}_i)(\alpha_j - \hat{\alpha}_j) \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) + \sum_{i=1}^{m} (\alpha_i (\epsilon - y_i) + \hat{\alpha}_i (\epsilon + y_i))$$
s.t.
$$\sum_{i=1}^{m} (\alpha_i - \hat{\alpha}_i) = 0,$$

$$0 \le \alpha_i \le C, \ 0 \le \hat{\alpha}_i \le C.$$

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{m} (\hat{\alpha}_i - \alpha_i) y_i \kappa(\boldsymbol{x}_i, \boldsymbol{x}) + b$$

总结

Take Home Message

- 支持向量机的"最大间隔"思想
- 对偶问题及其解的稀疏性
- 通过向高维空间映射解决线性不可分的问题
- 引入"软间隔"缓解特征空间中线性不可分的问题
- 将支持向量的思想应用到回归问题上得到支持向量回归
- 将核方法推广到其他学习模型

成熟的SVM软件包

LIBSVM
 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

LIBLINEAR
 http://www.csie.ntu.edu.tw/~cjlin/liblinear/

SVMlight SVMperf SVMstruct
 http://svmlight.joachims.org/svm_struct.html

Pegasos
 http://www.cs.huji.ac.il/~shais/code/index.html

附:在线的jupyter notebook环境
 https://www.cocalc.com/app

- FashionMNIST 是一个替代 MNIST 手写数字集 [1] 的图像数据集。
 - 由 Zalando(一家德国的时尚科技公司)旗 下的研究部门提供。
 - 其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。
- FashionMNIST
 - 大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。
 - 60000/10000 的训练测试数据划分,
 - 28x28 的灰度图片。

Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. Han Xiao, Kashif Rasul, Roland Vollgraf. arXiv: TBA

FashionMN

- 数据可视化
 - t-SNE

https://zhuanlan.zhihu.com/p/28841880

- 数据可视化
 - t-SNE:
 - Fashion-MNIST

https://zhuanlan.zhihu.com/p/28841880

- 数据可视化
 - t-SNE:
 - Fashion-MNIST
 - 局部放大

research	Benchmark	Fashion MNIST	Original MNIST	Side-by-Side	• Repository	
Filter 129 resu	ults by Name, Pa	rameter				
Name	me Parameter				Accuracy (mean)	
SVC		{"C":100,"kernel	:"sigmoid"}			0.703
SVC		{"C":100,"kernel":"linear"}			0.833	
SVC		{"C":1,"kernel":"p	ooly"}			0.874
SVC		{"C":1,"kernel":"I	near"}			0.841
SVC		{"C":1,"kernel":"s	igmoid"}			0.712
SVC		{"C":10,"kernel":	'sigmoid"}			0.703
SVC		{"C":10,"kernel":	'linear"}			0.836
SVC		{"C":1,"kernel":"r	bf"}			0.884
SVC		{"C":10,"kernel":	'rbf"}			0.896
SVC		{"C":100,"kernel	{"C":100,"kernel":"rbf"}			0.893
SVC		{"C":10,"kernel":"poly"}			0.897	
Sebsite.eu-ce	entral-1.amazo	onaws.com/#ernel	:"poly"}			0.896

http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/#emel":"poly"

MNIST

research Benchmark	Fashion MNIST Original MNIST Side-by-Side	
Filter 129 results by Name,	Parameter	
Name	Parameter	Accuracy (mean)
SVC	{"C":1,"kernel":"poly"}	0.957
SVC	{"C":1,"kernel":"linear"}	0.929
SVC	{"C":10,"kernel":"rbf"}	0.973
SVC	{"C":100,"kernel":"poly"}	0.978
SVC	{"C":10,"kernel":"sigmoid"}	0.873
SVC	{"C":1,"kernel":"rbf"}	0.966
SVC	{"C":10,"kernel":"linear"}	0.927
SVC	{"C":100,"kernel":"linear"}	0.926
SVC	{"C":100,"kernel":"rbf"}	0.972
SVC	{"C":100,"kernel":"sigmoid"}	0.868
SVC	{"C":1,"kernel":"sigmoid"}	0.898
.s3 ^{S-We} bsite.eu-central-1.ar	nazonaws.com/#el":"poly"}	0.976

杭电计算机学院 44

机器学习&深度学习

作业: FashionMNIST + SVM

FashionMNIST:

- . 10 种类别, 共7万个图片, 训练集/测试集划分: 6:1
- · 28x28 的灰度图片
- 实验设置: (采用FashionMNIST子集)
 - · 10种类别;
 - . 每个类别随机选择700个图片;
 - . 训练集/测试集划分: 6000/1000;
 - . 输入为图片灰度值(或梯度方向直方图等图像特征);
 - · 分类器为SVM(也推荐测试线性分类器、决策树);
 - 测试分类方法数目 ≧ 小组成员数/3
 - . 统计在测试集上的分类精度;
 - . 分析不同参数设置对于性能的影响;
- 提交代码及技术报告,择优进行PPT报告;截止日期: 2021年12月12日。

http://scikit-learn.org/