Data Mining: Concepts and Techniques

Slides for Textbook —Chapter 6 —

© Jiawei Han and Micheline Kamber
Intelligent Database Systems Research Lab
School of Computing Science
Simon Fraser University, Canada
http://www.cs.sfu.ca

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

What Is Association Mining?

- Association rule mining:
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- Applications:
 - Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc.
- Examples.
 - Rule form: "Body → Head [support, confidence]".
 - buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") $^$ takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]

Association Rule: Basic Concepts

- Given: (1) database of transactions, (2) each transaction is a list of items (purchased by a customer in a visit)
- Find: <u>all</u> rules that correlate the presence of one set of items with that of another set of items
 - E.g., 98% of people who purchase tires and auto accessories also get automotive services done
- Applications
 - *
 — Maintenance Agreement (What the store should do to boost Maintenance Agreement sales)
 - Home Electronics ⇒ * (What other products should the store stocks up?)
 - Attached mailing in direct marketing
 - Detecting "ping-pong"ing of patients, faulty "collisions"

Rule Measures: Support and Confidence

Find all the rules $X \& Y \Rightarrow Z$ with minimum confidence and support

- support, s, probability that a transaction contains {X ∩ Y ∩ Z}
- confidence, c, conditional probability that a transaction having {X ∩ Y} also contains Z

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Let minimum support 50%, and minimum confidence 50%, we have

- $A \Rightarrow C$ (50%, 66.6%)
- $C \Rightarrow A (50\%, 100\%)$

Association Rule Mining: A Road Map

- <u>Boolean vs. quantitative associations</u> (Based on the types of values handled)
 - buys(x, "SQLServer") $^$ buys(x, "DMBook") \rightarrow buys(x, "DBMiner") [0.2%, 60%]
 - age(x, "30..39") $^{\circ}$ income(x, "42..48K") $^{\circ}$ buys(x, "PC") [1%, 75%]
- Single dimension vs. multiple dimensional associations (see ex. Above)
- Single level vs. multiple-level analysis
 - What brands of beers are associated with what brands of diapers?
- Various extensions
 - Correlation, causality analysis
 - Association does not necessarily imply correlation or causality
 - Maxpatterns and closed itemsets
 - Constraints enforced
 - E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Mining Association Rules—An Example

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Min. support 50%

Min. confidence 50%

Frequent Itemse	Support
{A}	75%
{B}	50%
{C}	50%
{A,C}	50%

For rule $A \Rightarrow C$:

support = support($\{A \cap C\}$) = 50%

confidence = support($\{A \cap C\}$)/support($\{A\}$) = 66.6%

The Apriori principle:

Any subset of a frequent itemset must be frequent

Mining Frequent Itemsets: the Key Step

- Find the *frequent itemsets*: the sets of items that have minimum support
 - A subset of a frequent itemset must also be a frequent itemset
 - i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Use the frequent itemsets to generate association rules.

The Apriori Algorithm

 C_k : Candidate itemset of size k

- Join Step: C_k is generated by joining L_{k-1}with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:

```
L_k: frequent itemset of size k

L_1 = \{ \text{frequent items} \}; 

for (k = 1; L_k! = \emptyset; k++) do begin

C_{k+1} = \text{candidates generated from } L_k; 

for each transaction t in database do

increment the count of all candidates in C_{k+1}

that are contained in t

L_{k+1} = \text{candidates in } C_{k+1} with min_support end

return \bigcup_k L_k;
```

The Apriori Algorithm — Example

Da	ta	base D			itemse	tsup	. ,	items	set	sup.]
TI	D	Items		C_1	{1}	2	L_1	{1}		2	i
10	00	1 3 4		D	{2}	3		{2}		3	
20	00	235	50	can D	{3}	3		{3}		3	
30	00	1235	5		{4}	1		{5}	•	3	
40	00	2 5			{5}	3		(O)			
				C_2	itemset	sup		C_2	ite	<mark>mset</mark>	
L_2	i	temset	sup		{1 2}	1	Scar	ı D	_	1 2}	
_		{1 3}	2		{1 3}	2	•		{	1 3}	
		{2 3}	2	←	{1 5}	1			{	1 5}	
		{2 5}	3		{2 3}	2			{2	2 3}	
		{3 5}	2		{2 5}	3			{2	2 5}	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(0 0)]	{3 5}	2			{(3 5}	
\rightarrow	C_3 itemset C_3 itemset C_3 itemset C_3										

Han: Association Rules

{2 3 5}

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}

```
insert into C_k select p.item_{1}, p.item_{2}, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item_{1} = q.item_{1}, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
```

Step 2: pruning forall *itemsets c in C_k* do forall *(k-1)-subsets s of c* do if (s is not in L_{k-1}) then delete c from C_k

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Example of Generating Candidates

- $L_3=\{abc, abd, acd, ace, bcd\}$
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L₃
- $C_4 = \{abcd\}$

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

Generating Rules from Frequent **Itemsets**

For each set S belonging to the frequent itemset: generate rules that contain all the items in S and test if they satisfy the confidence constraint:

Approach: Generate all possible rules (approach described in Han's book); e.g. for {D,E,F} the following candidate rules are created: E→DF, $D \rightarrow EF$, $F \rightarrow ED$, $DF \rightarrow E$, $EF \rightarrow D$, $ED \rightarrow F$

Visualization of Association Rule Using Plane Graph

Visualization of Association Rule Using Rule Graph

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Multiple-Level Association Rules

- Items often form hierarchy.
- Items at the lower level are expected to have lower support.
- Rules regarding itemsets at appropriate levels could be quite useful.
- Transaction database can be encoded based on dimensions and levels
- We can explore shared multilevel mining

Mining Multi-Level Associations

- A top_down, progressive deepening approach:
 - First find high-level strong rules:

```
milk \rightarrow bread [20%, 60%].
```

- Then find their lower-level "weaker" rules: 2% milk → wheat bread [6%, 50%].
- Variations at mining multiple-level association rules.
 - Level-crossed association rules:

```
2% milk → Wonder wheat bread
```

Association rules with multiple, alternative hierarchies:

2% milk → Wonder bread

Multi-level Association: Uniform Support vs. Reduced Support

- Uniform Support: the same minimum support for all levels
 - + One minimum support threshold. No need to examine itemsets containing any item whose ancestors do not have minimum support.
 - Lower level items do not occur as frequently. If support threshold
 - too high ⇒ miss low level associations
 - too low ⇒ generate too many high level associations
- Reduced Support: reduced minimum support at lower levels
 - There are 4 search strategies:
 - Level-by-level independent
 - Level-cross filtering by k-itemset
 - Level-cross filtering by single item
 - Controlled level-cross filtering by single item

Uniform Support

Multi-level mining with uniform support

Level 2 min_sup = 5%

Back

Reduced Support

Multi-level mining with reduced support

Level 1 min_sup = 5%

Level 2 min_sup = 3%

Back

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Multi-Dimensional Association: Concepts

- Single-dimensional rules:
 - $buys(X, "milk") \Rightarrow buys(X, "bread")$
- Multi-dimensional rules: 2 dimensions or predicates
 - Inter-dimension association rules (no repeated predicates)

```
age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")
```

- hybrid-dimension association rules (repeated predicates) age(X,"19-25") ∧ buys(X, "popcorn") ⇒ buys(X, "coke")
- Categorical Attributes
 - finite number of possible values, no ordering among values
- Quantitative Attributes
 - numeric, implicit ordering among values

Techniques for Mining MD Associations

- Search for frequent k-predicate set:
 - Example: {age, occupation, buys} is a 3-predicate set.
 - Techniques can be categorized by how age are treated.
- 1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- 2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into "bins"based on the distribution of the data.
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

Static Discretization of Quantitative Attributes

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans.
- Data cube is well suited for mining.
- The cells of an n-dimensional cuboid correspond to the predicate sets.
- Mining from data cubes can be much faster.

Quantitative Association Rules

- Numeric attributes are dynamically discretized
 - Such that the confidence or compactness of the rules mined is maximized.

<20K

- 2-D quantitative association rules: $A_{quan1} \wedge A_{quan2} \Rightarrow A_{cat}$
- Cluster "adjacent" association rules to form general rules using a 2-D grid.

 $age(X,"30-34") \wedge income(X,"24K -$ 48K")

 \Rightarrow buys(X,"high resolution TV")

ARCS (Association Rule Clustering System)

How does ARCS work?

1. Binning

2. Find frequent predicateset

3. Clustering

4. Optimize

Limitations of ARCS

- Only quantitative attributes on LHS of rules.
- Only 2 attributes on LHS. (2D limitation)
- An alternative to ARCS
 - Non-grid-based
 - equi-depth binning
 - clustering based on a measure of partial completeness.
 - "Mining Quantitative Association Rules in Large Relational Tables" by R. Srikant and R. Agrawal.

Mining Distance-based Association Rules

Binning methods do not capture the semantics of interval

data

	Equi-width	Equi-depth	Distance-
Price(\$)	(width \$10)	(depth 2)	based
7	[0,10]	[7,20]	[7,7]
20	[11,20]	[22,50]	[20,22]
22	[21,30]	[51,53]	[50,53]
50	[31,40]		
51	[41,50]		
53	[51,60]		

- Distance-based partitioning, more meaningful discretization considering:
 - density/number of points in an interval
 - "closeness" of points in an interval

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Interestingness Measurements

- Objective measuresTwo popular measurements:
 - support; and
 - confidence
- Subjective measures (Silberschatz & Tuzhilin, KDD95)
 - A rule (pattern) is interesting if
 - it is unexpected (surprising to the user);
 and/or
 - actionable (the user can do something with it)

Criticism to Support and Confidence

- Example 1: (Aggarwal & Yu, PODS98)
 - Among 5000 students
 - 3000 play basketball
 - 3750 eat cereal
 - 2000 both play basket ball and eat cereal
 - play basketball ⇒ eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.
 - play basketball ⇒ not eat cereal [20%, 33.3%] is far more accurate, although with lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

35

Criticism to Support and Confidence (Cont.)

- Example 2:
 - X and Y: positively correlated,
 - X and Z, negatively related
 - support and confidence of X=>Z dominates

X	1	1	1	1	0	0	0	0
Y	1	1	0	0	0	0	0	0
Z								

 We need a measure of dependent or correlated events

$$corr_{A,B} = \frac{P(A \cup B)}{P(A)P(B)}$$

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37.50%	75%

36

 P(B|A)/P(B) is also called the lift of rule A => B

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Constraint-Based Mining

- Interactive, exploratory mining giga-bytes of data?
 - Could it be real? Making good use of constraints!
- What kinds of constraints can be used in mining?
 - Knowledge type constraint: classification, association, etc.
 - Data constraint: SQL-like queries
 - Find product pairs sold together in Vancouver in Dec.'98.
 - Dimension/level constraints:
 - in relevance to region, price, brand, customer category.
 - Rule constraints
 - small sales (price < \$10) triggers big sales (sum > \$200).
 - Interestingness constraints:
 - strong rules (min_support ≥ 3%, min_confidence ≥ 60%).

Rule Constraints in Association Mining

- Two kind of rule constraints:
 - Rule form constraints: meta-rule guided mining.
 - $P(x, y) \land Q(x, w) \rightarrow takes(x, "database systems").$
 - Rule (content) constraint: constraint-based query optimization (Ng, et al., SIGMOD'98).
 - sum(LHS) < 100 ^ min(LHS) > 20 ^ count(LHS) > 3 ^ sum(RHS) > 1000
- 1-variable vs. 2-variable constraints (Lakshmanan, et al. SIGMOD'99):
 - 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
 - 2-var: A constraint confining both sides (L and R).
 - sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS)</p>

Constrained Association Query Optimization Problem

- Given a CAQ = $\{ (S_1, S_2) / C \}$, the algorithm should be :
 - sound: It only finds frequent sets that satisfy the given constraints C
 - complete: All frequent sets satisfy the given constraints C are found
- A naïve solution:
 - Apply Apriori for finding all frequent sets, and then to test them for constraint satisfaction one by one.
- Our approach:
 - Comprehensive analysis of the properties of constraints and try to push them as deeply as possible inside the frequent set computation.

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Why Is the Big Pie Still There?

- More on constraint-based mining of associations
 - Boolean vs. quantitative associations
 - Association on discrete vs. continuous data
 - From association to correlation and causal structure analysis.
 - Association does not necessarily imply correlation or causal relationships
 - From intra-trasanction association to inter-transaction associations
 - E.g., break the barriers of transactions (Lu, et al. TOIS'99).
 - From association analysis to classification and clustering analysis

E.g, clustering association rules

Summary

- Association rule mining
 - probably the most significant contribution from the database community in KDD
 - A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction
 - Association analysis in other types of data: spatial data, multimedia data, time series data, etc.

References

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. In Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 2000.
- R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93, 207-216, Washington, D.C.
- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94 487-499, Santiago, Chile.
- R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14, Taipei, Taiwan.
- R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle, Washington.
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97, 265-276, Tucson, Arizona.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97, 255-264, Tucson, Arizona, May 1997.
- K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD'99, 359-370, Philadelphia, PA, June 1999.
- D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating technique. ICDE'96, 106-114, New Orleans, LA.
- M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries efficiently. VLDB'98, 299-310, New York, NY, Aug. 1998.

References (2)

- G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00, 512-521, San Diego, CA, Feb. 2000.
- Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. KDOOD'95, 39-46, Singapore, Dec. 1995.
- T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96, 13-23, Montreal, Canada.
- E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, 277-288, Tucson, Arizona.
- J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database.
 ICDE'99, Sydney, Australia.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431, Zurich, Switzerland.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00, 1-12, Dallas, TX, May 2000.
- T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of ACM, 39:58-64, 1996.
- M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. KDD'97, 207-210, Newport Beach, California.
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.

References (3)

- F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98, 582-593, New York, NY.
- B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97, 220-231, Birmingham, England.
- H. Lu, J. Han, and L. Feng. Stock movement and n-dimensional inter-transaction association rules.
 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'98), 12:1-12:7, Seattle, Washington.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules.
 KDD'94, 181-192, Seattle, WA, July 1994.
- H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1:259-289, 1997.
- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96, 122-133, Bombay, India.
- R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.
- R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. SIGMOD'98, 13-24, Seattle, Washington.
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99, 398-416, Jerusalem, Israel, Jan. 1999.

References (4)

- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, 175-186, San Jose, CA, May 1995.
- J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. DMKD'00, Dallas, TX, 11-20, May 2000.
- J. Pei and J. Han. Can We Push More Constraints into Frequent Pattern Mining? KDD'00. Boston, MA. Aug. 2000.
- G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, 229-238. AAAI/MIT Press, 1991.
- B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.
- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, 175-186, San Jose, CA.
- S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association rules. VLDB'98, 368-379, New York, NY..
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98, 343-354, Seattle, WA.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95, 432-443, Zurich, Switzerland.
- A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of customer transactions. ICDE'98, 494-502, Orlando, FL, Feb. 1998.

References (5)

- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98, 594-605, New York, NY.
- R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407-419, Zurich, Switzerland, Sept. 1995.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD'96, 1-12, Montreal, Canada.
- R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73,
 Newport Beach, California.
- H. Toivonen. Sampling large databases for association rules. VLDB'96, 134-145, Bombay, India,
 Sept. 1996.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A
 generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.
- K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear regions for association rules. KDD'97, 96-103, Newport Beach, CA, Aug. 1997.
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. Data Mining and Knowledge Discovery, 1:343-374, 1997.
- M. Zaki. Generating Non-Redundant Association Rules. KDD'00. Boston, MA. Aug. 2000.
- O. R. Zaiane, J. Han, and H. Zhu. Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. ICDE'00, 461-470, San Diego, CA, Feb. 2000.