LITERATURE SURVEY

A recent development of machine learning techniques and data mining has led to an interest of implementing these techniques in various fields. The banking sector is no exclusion and the increasing requirements towards financial institutions to have robust risk management has led to an interest of developing current methods of risk estimation. Potentially, the implementation of machine learning techniques could lead to better quantification of the financial risks that banks are exposed to. Within the credit risk area, there has been a continuous development of the Basel accords, which provides frameworks for supervisory standards and risk management techniques as a guideline for banks to manage and quantify their risks. There are different risk measures banks consider in order to estimate the potential loss they may carry in future. One of these measures is the expected loss (EL) a bank would carry in case of a defaulted customer. One of the components involved in ELestimation is the probability if a certain customer will default or not. In this thesis, a set of machine learning methods will be investigated and studied in order to test if they can challenge the traditionally applied techniques.

A prediction is a statement about what someone thinks will happen in the future. People make predictions all the time. Some are very serious and are based on scientific calculations, but many are just guesses. Prediction helps us in many things to guess what will happen after some time or after a year or after ten years. Predictive analytics is a branch of advanced analytics that uses many techniques from data mining, statistics, modeling, machine learning, and artificial intelligence to analyze current data to make predictions. In addition to identifying factors that may influence loaned fault, there is also a need to build robust and effective machine learning models that can help capture important patterns in credit data. The choice of model so great importance as the chosen model plays a crucial role in determining accuracy, precision and efficiency of a prediction system. Numerous models have been used for loan default prediction and although there is no one optimal model, some models definitely do better than others. .SVM uses statistical learning model for classification of predictions.

Dataset from UCI repository with 21 attributes was adopted to evaluate the proposed method. Experimentations concluded that, rather than individual performances of classifiers (NB and SVM), the integration of NB and SVM resulted in an efficient classification of loan prediction. The major factors concentrated during the data analysis were annual income versus loan purpose, customer 's trust, loan tenure versus delinquent months, loan tenure versus credit category, loan tenure versus number of years in the current job, and chances for loan repayment versus the house ownership. Finally, the outcome of the present work was to infer the constraints on the customer who are applying for the loan followed by the prediction regarding the repayment. Further, results showed that, the customers were interested more on availing short-tenure loans rather than long-tenure loans.

In 2019, Supriya, Pavani, Saisushma, Vimala Kumari and Vikas [3] presented a ML based loan prediction model. Themodulesin the present approach were data collection and pre-processing, applying the ML models, training followed by testing the data. During the pre-processing stage, the detection and removal of outliers and imputation removal processing were carried out. In the present method, SVM, DT, KNN and gradient boosting models were employed to predict the possibilities of current status regarding the loan approval process. The conventional 80:20 rule was adopted to split the dataset into training and testing processes. Experimentation concluded that, DT has significantly higher loan prediction accuracy than the other models.

In 2017, Goyal and Kaur [4] presented a loan prediction model using several Machine Learning (ML) algorithms. The dataset with features, namely, gender, marital status, education, number of dependents, employment status, income, co applicant's income, loan amount, loan tenure, credit history, existing loan status, and property area, are used for determining the loan eligibility regarding the loan sanctioning process. This approach was implemented using Weka Tool and

considered a dataset with eight attributes, namely, g0ender, job, age, credit amount, credit history, purpose, housing, and class. Evaluating these models on the dataset, experimental results concluded that, J48 based loan prediction approach resulted in better accuracy than the other methods. The sub-processes include, Preprocessing (handling the missing values with KNN and data refinement using binning algorithm), Classification using NB approach and Updating the dataset frequently results in appropriate improvement in the loan prediction process. Experimentation put-forth the conclusion that, integration of KNN and binning algorithm with NB resulted in improved prediction of loan sanctioning process. . To fine tune the prediction accuracy, the pre-processing operation includes the following sub-processes: detection, ranking and removal of outliers, removal of imputation, and balancing of dataset by proportional bifurcation regarding testing and training process. Further, feature selection process improves the prediction accuracy. When evaluated, the DT model resulted in 94.3% prediction accuracy. The process of analyzing data from different perspectives and extracting useful knowledge from it. Tithe core of knowledge discovery process. The various steps involved in extracting knowledge from raw data. Different data mining techniques include classification, clustering, association rule mining, prediction and sequential patterns, neural networks, regression etc. Classification is the most commonly applied data mining technique, which employs a set of pre-classified examples to develop a model that can classify the population of records at large. Fraud detection and credit risk applications are particularly well suited to classification technique. This approach frequently employs Decision tree based classification Algorithm. In classification, a training set is used to build the model as the classifier which can classify the data items into its appropriate classes. A test set is used to validate the model.

REFERENCES

- [1]. S. Vimala, K.C. Sharmili, —Prediction of Loan Risk using NB and Support Vector Machinel, International Conference on Advancements in Computing Technologies (ICACT 2018), vol. 4, no. 2, pp. 110-113, 2018.
- [2]. Pidikiti Supriya, Myneedi Pavani, Nagarapu Saisushma, Namburi Vimala Kumari, K. Vikas, —Loan Prediction by using Machine Learning.
- [3]. X. Francis Jency, V.P.Sumathi, Janani Shiva Sri, —An Exploratory Data Analysis for Loan Prediction Based on Nature of the Clients, International Journal of Recent Technology and Engineering (IJRTE), Vol. 7, No. 48, pp. 176-179, 2018.
- [4]. Anchal Goyal, Ranpreet Kaur, —Loan Prediction Using Ensemble Techniquel, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 5, Issue 3, pp. 523 526, March 2016.
- [5]. Aboobyda Jafar Hamid and Tarig Mohammed Ahmed, —Developing Prediction Model of Loan Risk in Banks using Data Miningl, Machine Learning and Applications: An International Journal (MLAIJ), Vol.3, No.1, pp. 1-9, March 2016.
- [6]. Aditi Kacheria, Nidhi Shivakumar, Shreya Sawkar, Archana Gupta, Loan Sanctioning Prediction System, International Journal of Soft Computing and Engineering (IJSCE), vol. 6, no. 4, pp. 50-53, 2016.