MATH 220 DISCRETE MATHEMATICS AND CRYPTOGRAPHY

Tutorial 4

Week starting 17 March 2020

- **1.** Calculate $\phi(1001)$ and $\phi(1000)$.
- **2.** Show that, for any positive integers n and m,

$$\phi(n^m) = n^{m-1}\phi(n).$$

Hint. Use the prime decomposition of n.

- **3.** Use the previous question to calculate $\phi(1000)$ again.
- 4. Write 110 in binary notation and use fast exponentiation to calculate

$$9^{110} \mod 19$$
.

Check your result using Fermat's Little Theorem.

- **5.** Find the discrete logarithm of each element in \mathbb{Z}_{11}^* to the base 2. What would happen if you tried base 3?
- **6.** An RSA cipher is set up with the public keys n = 12091 (the modulus) and r = 3 (the exponent). The plaintext is m = 2107.
 - (a) Encrypt m.
 - (b) Find the decryption key for the cipher.
 - (c) The ciphertext is c=9812. Decrypt it.
- 7. Alice chooses primes p = 149 and q = 317, and encryption exponent e = 71. What public modulus does she publish? What is her decryption exponent?
- 8. Alice and Alicia each set up an RSA cryptosystem with the same modulus n, but different encryption exponents e_1 and e_2 . Bob encrypts the same message, sending $c_1 \equiv m^{e_1} \mod n$ to Alice and $c_2 \equiv m^{e_2} \mod n$ to Alicia. If e_1 and e_2 are relatively prime, show that knowing c_1 and c_2 is sufficient for Eve to find m.
- 9. You and a friend are using the Rabin cipher system with n = 713 as your public key. You have received the ciphertext c = 200. What is the corresponding plaintext? Hint. The result $13^2 \equiv 14 \mod 31$ may be useful!

- **10.** A Rabin cipher is set up with the public key n=65. The plaintext message is m=17.
 - (a) Show that m is encrypted to c = 29.
 - (b) Decrypt the ciphertext c = 29 to find the four possible values of m.
- **11.** Let p and q be primes, and let n = pq. Show that, for all $a, b \in \mathbb{Z}$, we have $a \equiv b \mod n$ if and only if $a \equiv b \mod p$ and $a \equiv b \mod q$.
- **12.** Let p be a prime such that $p \equiv 3 \mod 4$. Show that if a is square $\mod p$, then $x = a^{\frac{p+1}{4}}$ is a square root of $a \mod p$. Why is p x also a square root of $a \mod p$?

Hint. Use Fermat's Little Theorem.