# **STAR** Laboratory of Advanced Research on Software Technology

## Test Generation based on Finite State Models

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas
ewong@utdallas.edu
http://www.utdallas.edu/~ewong

## Speaker Biographical Sketch

- Professor & Director of International Outreach Department of Computer Science University of Texas at Dallas
- Guest Researcher
   Computer Security Division
   National Institute of Standards and Technology (NIST)



- Vice President, IEEE Reliability Society
- Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)
- Principal Investigator, NSF TUES (Transforming Undergraduate Education in Science, Technology, Engineering and Mathematics) Project
  - Incorporating Software Testing into Multiple Computer Science and Software Engineering Undergraduate Courses
- Founder & Steering Committee co-Chair for the SERE conference (*IEEE International Conference on Software Security and Reliability*) (http://paris.utdallas.edu/sere13)

## **Learning Objectives**

- What are Finite State Machines (FSM)?
- The W method for test generation
- The Wp method for test generation
- Automata theoretic versus control-flow based test generation
- What are Extended Finite State Machines (EFSM)?
- What are Communicating Extended State Machines (CEFSM)?
  - Architectural design in SDL
- EFSM-based test generation
- CEFSM-based test generation

#### Where Are These Methods Used?

- Conformance testing of communications protocols
  - Finite state machines are widely used in modeling of different kinds of systems.
  - Testing of any system/subsystem modeled as a finite state machine, e.g. elevator designs, automobile components (locks, transmission, stepper motors, etc.), steam boiler control, etc.
  - Generation of tests from FSM assists in testing the conformance of implementations to the corresponding FSM model
- White box-based coverage testing for SDL design specifications, EFSMs, CFEMSs, reachability graphs, etc.

#### What is an Finite State Machine?

- A finite state machine, abbreviated as FSM, is an abstract representation of behavior exhibited by some systems.
- An FSM is derived from application requirements. For example, a network protocol could be modeled using an FSM.
- Not all aspects of an application's requirements are specified by an FSM. For example, <u>real time requirements</u> and <u>performance requirements</u> cannot be specified by an FSM.

#### Requirements Specification or Design Specification?

- An FSM could serve as a *specification* of the required behavior or as a *design* artifact according to which an application is to be implemented.
  - The role assigned to an FSM depends on whether it is a part of the *requirements specification* or of the *design specification*.
  - FSMs are part of UML 2.0 design notation.

#### **Finite State Machines with Output**

- Mealy Machine (due to G. H. Mealy -1955 publication)
  - Outputs corresponds transitions between states.
- Moore Machine (due to E. F. Moore -1956 publication)
  - Outputs are determined only by the states

### **Mealy Machine (1)**

- A Mealy machine  $M = \{S, I, O, f, g, s_o\}$ 
  - S: a finite set of states
  - $-S_0$ : the start state (a.k.a. initial state) contained in S
  - I: a finite input alphabet
  - O: a finite output alphabet
  - f: a transition function that maps a state/input pair to the next state  $(S \times I \rightarrow S)$
  - g: an output function that maps a state/input pair to an output (S x I  $\rightarrow$  O)

### **State Diagram Representation of a Mealy FSM**

- A state diagram is a *directed graph* where each node is a state and each edge is a transition between states
- Each transition from a state can be triggered by an input and produce an output
  - Input x Current State → Output x Next State

#### **Tabular Representation of a Mealy FSM**

- A table is often used as an alternative to the state diagram
- The table consists of two sub-tables that consist of one or more columns each.
  - The left sub-table is the *input* sub-table.
  - The rows are labeled by the states of the FSM.
  - The right sub-table is the *output* sub-table.

### **Mealy Machine (2)**

• An example of a Mealy machine

| TABLE                 |                       |                       |              |   |  |  |  |
|-----------------------|-----------------------|-----------------------|--------------|---|--|--|--|
|                       | f Input 0 1           |                       | g            |   |  |  |  |
| State                 |                       |                       | Input<br>0 1 |   |  |  |  |
| <i>S</i> <sub>0</sub> | <i>S</i> <sub>1</sub> | <i>s</i> <sub>0</sub> | 1            | 0 |  |  |  |
| $s_1$                 | s <sub>3</sub>        | $s_0$                 | 1            | 1 |  |  |  |
| $s_2$                 | $s_1$                 | $s_2$                 | 0            | 1 |  |  |  |
| <i>S</i> 3            | s <sub>2</sub>        | $s_1$                 | 0            | 0 |  |  |  |



The state diagram for the FSM shown in the table

#### **Mealy Machine (3)**

• A Mealy machine that outputs 1 if and only if the input string read so far ends with 111. This machine is a *language recognizer*.



#### **Moore Machine (1)**

- A Moore machine  $M = \{S, I, O, f, g, s_o\}$ 
  - S: a finite set of states
  - $-S_0$ : the start state (a.k.a. initial state) contained in S
  - I: a finite input alphabet
  - O: a finite output alphabet
  - f: a transition function that maps a (current) state/input pair to the next state  $(S \times I \rightarrow S)$
  - g: an output function that maps a state to an output  $(S \rightarrow O)$

#### **Moore Machine (2)**

- In a Moore machine, the output at each transition is only dependent on the *state*, rather than a state/input pair
- In other words, the output after transition is determined solely by the final state of the transition.





#### **Deterministic versus Nondeterministic**

- A deterministic finite automaton: For each pair of state and input value, there is a unique next state given by the transition function.
- A nondeterministic finite automaton: There may be *several possible* next states for each pair of state and input value.
  - If the language L is recognized by a nondeterministic finite state automaton  $\mathcal{M}_1$ , then L is also recognized by a deterministic finite state automaton  $\mathcal{M}_2$ .

#### **Properties of FSM**

- Completely specified: An FSM  $\mathcal{M}$  is said to be completely specified if from each state in  $\mathcal{M}$  there exists a transition for each input symbol.
- Strongly connected: An FSM  $\mathcal{M}$  is considered strongly connected if for each pair of states  $(s_i s_j)$  there exists an input sequence that takes  $\mathcal{M}$  from state  $s_i$  to  $s_j$ .

#### V-Equivalence of Two States

- V-equivalence: Let  $\mathcal{M}_1$ =(I, O, S<sub>1</sub>, s<sup>1</sup><sub>0</sub>, f<sub>1</sub>, g<sub>1</sub>) and  $\mathcal{M}_2$ =(I, O, S<sub>2</sub>, s<sup>2</sup><sub>0</sub>, f<sub>2</sub>, g<sub>2</sub>) be two FSMs (Mealy Machines). Let V denote a set of non-empty strings over the input alphabet I, that is, V $\subseteq$  I<sup>+</sup>.
- Let  $s_i$  and  $s_j$ ,  $i \neq j$ , be two states of machines  $\mathcal{M}_1$  and  $\mathcal{M}_2$ , respectively.  $s_i$  and  $s_j$  are considered *V-equivalent* if  $g_1(s_i, v) = g_2(s_j, v)$  for all v in V.
- Stated differently, states  $s_i$  and  $s_j$  are considered *V-equivalent* if  $\mathcal{M}_1$  and  $\mathcal{M}_2$ , when excited in states  $s_i$  and  $s_j$ , respectively, yield *identical output sequences*.

### **Equivalence of Two States**

- States  $s_i$  and  $s_j$  are said to be *equivalent* if  $g_1(s_i, v) = g_2(s_j, v)$  for any set V
  - If  $s_i$  and  $s_j$  are not equivalent then they are said to be *distinguishable*
- We write  $s_i = s_j$  if states  $s_i$  and  $s_j$  are equivalent, and  $s_i \neq s_j$  when they are distinguishable

#### **Equivalence of Two FSMs**

- Machines  $\mathcal{M}_1$  and  $\mathcal{M}_2$  are said to be **equivalent** if
  - For each state  $\alpha$  in  $\mathcal{M}_1$  there exists a state  $\alpha$ ' in  $\mathcal{M}_2$  such that  $\alpha$  and  $\alpha$ ' are equivalent
  - For each state  $\beta$  in  $\mathcal{M}_2$  there exists a state  $\beta$ ' in  $\mathcal{M}_1$  such that  $\beta$  and  $\beta$ ' are equivalent
- Machines that are not equivalent are considered distinguishable.
- If  $\mathcal{M}_1$  and  $\mathcal{M}_2$  are strongly connected, then they are equivalent if their respective initial states,  $s_0^1$  and  $s_0^2$ , are equivalent
- We write  $\mathcal{M}_1 = \mathcal{M}_2$  if machines  $\mathcal{M}_1$  and  $\mathcal{M}_2$  are equivalent, and  $\mathcal{M}_1 \neq \mathcal{M}_2$  when they are distinguishable

#### **K-Equivalence**

- States  $s_i \in S_1$  and  $s_j \in S_2$  are considered *k-equivalent* if when excited by any input of length *k*, yield identical output sequences
  - States that are not k-equivalent are considered k-distinguishable
- It is also easy to see that if two states are k-distinguishable for any k>0 then they are also distinguishable for any  $n \ge k$

#### **Minimal Machine**

• An FSM  $\mathcal{M}$  is considered *minimal* if the number of states in  $\mathcal{M}$  is less than or equal to any other FSM equivalent to  $\mathcal{M}$ .

#### **Faults in Implementation**

- An FSM serves to specify the correct *requirement* or *design* of an application. Hence tests generated from an FSM target faults related to the FSM itself.
- What faults are targeted by the tests generated using an FSM?

### Fault Model (1)



### Fault Model (2)





Extra state error

Missing state error

Test Generation using the W Method

#### **Assumption**

- M is completely specified, minimal, connected, and deterministic
- M starts in a fixed initial state
- M can be *reset accurately to the initial state*. A *null* output is generated during the reset operation
- M and the implementation under test have the same input alphabet

#### **Steps of the W Method**

- Step 1: Estimate the maximum number of states (m) in the correct implementation of the given FSM  $\mathcal{M}$
- Step 2: Construct the characterization set W for M
- Step 3: (1) Construct the *testing tree* for M and
  (2) Generate the transition cover set P from the testing tree
- Step 4: Construct set **Z** from W and *m*
- Step 5: Test generation and execution

Step 1: Estimation of *m* 

#### Estimation of m

• This is based on a knowledge of the implementation. In the absence of any such knowledge, let m = |S| (number of states in the given FSM)

#### Step 2: Construction of W

Step 2.1: Construction of the *K*-Equivalence Partitions

Step 2.2: Derivation of the Characterization Set

#### What is a Characterization Set?

- Let  $\mathcal{M}=(I, O, S, s_0, f, g)$  be a *minimal* and *complete* FSM
- W is a finite set of input sequences that distinguish the behavior of any pair of states in  $\mathcal{M}$ .
  - Each input sequence in W is of finite length
- Given states  $s_i$  and  $s_j \in S$ , W contains a string  $\alpha$  such that  $g(s_i, \alpha) \neq g(s_j, \alpha)$

### An Example of W

- For the following  $\mathcal{M}$ , we have W={baaa,aa,aaa}
- For example, baaa distinguishes state  $s_1$  from  $s_2$  as  $g(s_1, baaa) \neq g(s_2, baaa)$ More precisely,  $g(s_1, baaa) = 1101$  and  $g(s_2, baaa) = 1100$



Step 2.1: Construction of the K-Equivalence Partitions

#### What is a k-equivalence partition of S?

- Given an FSM  $\mathcal{M}=(I, O, S, s_0, f, g)$  <u>k-equivalence partition</u> of S, denoted as  $P_k$ , is a collection of n finite sets  $\Sigma_{k1}, \Sigma_{k2} \dots \Sigma_{kn}$  such that
  - $\cup_{i=1}^n \Sigma_{ki} = S$
  - states in  $\Sigma_{ki}$  for  $1 \le i \le n$  are *k*-equivalent
  - If state u is in  $\Sigma_{ki}$  and v in  $\Sigma_{kj}$  for  $i \neq j$ , then u and v are k-distinguishable

### **Construction of One-Equivalence Partition (1)**

- Computing the one-equivalence partition, P<sub>1</sub>, for the following FSM
- Start with a tabular representation of  $\mathcal{M}$



| Current state | Output |   | Next state |    |
|---------------|--------|---|------------|----|
|               | a      | b | a          | b  |
| s1            | 0      | 1 | s1         | s4 |
| s2            | 0      | 1 | s1         | s5 |
| s3            | 0      | 1 | s5         | s1 |
| s4            | 1      | 1 | s3         | s4 |
| s5            | 1      | 1 | s2         | s5 |

#### **Construction of One-Equivalence Partition (2)**

• Group states identical in their *output* entries. This gives us 1-partition  $P_1$  consisting of  $\Sigma_1 = \{s_1, s_2, s_3\}$  and  $\Sigma_2 = \{s_4, s_5\}$ 

| Σ | Current state | Output |   | Next state |    |
|---|---------------|--------|---|------------|----|
|   |               | a      | b | a          | b  |
| 1 | s1            | 0      | 1 | s1         | s4 |
|   | s2            | 0      | 1 | s1         | s5 |
|   | s3            | 0      | 1 | s5         | s1 |
| 2 | s4            | 1      | 1 | s3         | s4 |
|   | s5            | 1      | 1 | s2         | s5 |

P<sub>1</sub> Table

• We have the one-equivalence partition as follows

$$-P_1 = \{1, 2\}$$

- Group 
$$1 = \Sigma_{11} = \{s_1, s_2, s_3\}$$

- Group 
$$2 = \Sigma_{12} = \{s_4, s_5\}$$

## **Construction of Two-Equivalence Partition (1)**

• Rewrite  $P_1$  Table. Remove the output columns. Replace a state entry  $s_i$  by  $s_{ij}$  where j is the group number in which lies state  $s_i$ 



## **Construction of Two-Equivalence Partition (2)**

- Construct  $P_2$  Table. Group all entries with <u>identical second subscripts</u> under the *next state column*. This gives us the  $P_2$  table.
  - Note the change in second subscripts
  - We have three groups in the P<sub>2</sub> table

| Σ | Current state | Next s            | state | P <sub>2</sub> Table               |
|---|---------------|-------------------|-------|------------------------------------|
|   |               | a                 | b     |                                    |
| 1 | s1            | s1 <mark>1</mark> | s43   | state s <sub>5</sub> is in group 3 |
|   | s2            | s1 <mark>1</mark> | s53   | state s <sub>5</sub> is in group 3 |
| 2 | s3            | s53               | s11   |                                    |
| 3 | s4            | s32               | s43   |                                    |
|   | s5            | s21               | s53   |                                    |

P Table

## **Construction of Three-Equivalence Partition**

- Construct  $P_3$  Table. Group all entries with <u>identical second subscripts</u> under the next state column. This gives us the  $P_3$  table.
  - Note the change in second subscripts
  - We have four groups in the P<sub>3</sub> table

| Σ | Current state | Nex | t state                       |       |
|---|---------------|-----|-------------------------------|-------|
|   |               | a   | b                             |       |
| 1 | s1            | s11 | s43                           |       |
|   | s2            | s11 | s54                           |       |
| 2 | s3            | s54 | s11                           |       |
| 3 | s4            | s32 | s43                           |       |
| 4 | s5            | s21 | s54                           |       |
|   |               |     | 1                             |       |
|   |               | :   | state s <sub>5</sub> is in gr | oup 4 |

Test Generation based on Finite State Models (© 2014 Professor W. Eric Wong, The University of Texas at Dallas)

P<sub>a</sub> Table

## **Construction of Four-Equivalence Partition**

- Construct P<sub>4</sub> Table. Continuing with regrouping and re-labeling
  - Note the change in second subscripts
  - We have five groups in the P<sub>4</sub> table

| Σ | Current state | Next | ate |
|---|---------------|------|-----|
|   |               | a    | b   |
| 1 | s1            | s11  | s44 |
| 2 | s2            | s11  | s55 |
| 3 | s3            | s55  | s11 |
| 4 | s4            | s33  | s44 |
| 5 | s5            | s22  | s55 |

state  $s_5$  is in group 5

P. Table

## k-equivalence partition: Convergence

- The process is guaranteed to converge
- When the process converges, and the machine is minimal, each state will be in a separate group
- The next step is to obtain the *distinguishing strings for each state*

## Step 2.2: Using the W-Procedure to derive the Characterization Set W

A procedure to derive W from a set of partition tables constructed at Step 2.1

## The W-Procedure (1)

- Let  $\mathcal{M}=\{S, I, O, f, g, s_o\}$  be the FSM for which  $P = \{P_1, P_2, ..., P_n\}$  is the set of k-equivalence partition tables for k = 1, 2, ..., nInitialize  $W = \emptyset$
- Traverse the *k*-equivalence partitions in reverse order to obtain distinguishing sequence for each pair of states

## Finding the distinguishing sequences (1)

- Let us find a distinguishing sequence for states s<sub>1</sub> and s<sub>2</sub>
- Find Tables  $P_i$  and  $P_{i+1}$  such that  $(s_1, s_2)$  are in the same group in  $P_i$  and different groups in  $P_{i+1}$ . We get  $P_3$  and  $P_4$
- Initialize  $z=\varepsilon$ . Find the input symbol that distinguishes  $s_1$  and  $s_2$  in  $P_3$ . This symbol is b. We update z to z.b. Hence z now becomes b.

## Finding the distinguishing sequences (2)

- The next states for  $s_1$  and  $s_2$  on b are, respectively,  $s_4$  and  $s_5$ .
- We find that  $s_4$  and  $s_5$  are in the same group in  $P_2$  and different groups in  $P_3$ .
- We move to the P<sub>2</sub> table and find the input symbol that distinguishes s<sub>4</sub> and s<sub>5</sub>. Let us select a as the distinguishing symbol. Update z which now becomes ba.
- Refer to Table  $P_2$ , the next states for states  $s_4$  and  $s_5$  on symbol a are, respectively,  $s_3$  and  $s_2$ . These two states are distinguished in  $P_1$  by a and b (i.e.,  $s_2$  and  $s_3$  are in the same group in  $P_1$  and different groups in  $P_2$ ). Let us select a. We update z to baa.

## Finding the distinguishing sequences (3)

- Refer to Table  $P_1$ . The next states for  $s_2$  and  $s_3$  on a are, respectively,  $s_1$  and  $s_5$ .
- We find that  $s_1$  and  $s_5$  are in the same group in the original table and different groups in  $P_1$ .
- Moving to the original state transition table we obtain a as the distinguishing symbol for  $s_1$  and  $s_5$
- We update z to baaa. This is the *farthest we can go backwards* through the various tables. baaa is the desired distinguishing sequence for states  $s_1$  and  $s_2$ . Check that  $g(s_1, baaa) = 1101$  and  $g(s_2, baaa) = 1100$ . We have  $g(s_1, baaa) \neq g(s_2, baaa)$

## Finding the distinguishing sequences (4)

- Using the procedure analogous to the one used for  $s_1$  and  $s_2$ , we can find the distinguishing sequence for each pair of states. This leads us to the following characterization set for our FSM
- We have the distinguishing sequences as follows

$$-s_1, s_2 \rightarrow baaa$$

$$s_2, s_4 \rightarrow a$$

$$-s_1, s_3 \rightarrow aa$$

$$s_2, s_5 \rightarrow a$$

$$-s_1, s_4 \rightarrow a$$

$$s_3, s_4 \rightarrow a$$

$$-s_1, s_5 \rightarrow a$$

$$s_3, s_5 \rightarrow a$$

$$-s_2, s_3 \rightarrow aa$$

$$s_4, s_5 \rightarrow aaa$$

This gives  $W=\{a, aa, aaa, baaa\}$ 

#### Where Are We?

- Step 1: Estimate the maximum number of states (m) in the correct implementation of the given FSM  $\mathcal{M}$
- Step 2: Construct the characterization set W for M
- Step 3: (a) Construct the *testing tree* for  $\mathcal{M}$  and (b) generate the transition cover set P from the testing tree
- Step 4: Construct set **Z** from W and *m*
- Step 5: Desired test se is P.Z

Step 3.1: Construction of the Testing Tree for  $\mathcal{M}$ 

## **Tree Construction (1)**

- A testing tree of an FSM,  $\mathcal{M}=\{S, I, O, f, g, s_o\}$ , is a tree *rooted at the initial state*. It contains at least one path from the initial state to the remaining states in  $\mathcal{M}$ .
- Construction procedure
  - State  $s_0$ , the initial state, is the root of the testing tree. Suppose that the testing tree has been constructed until level kThe (k+1)<sup>th</sup> level is built as follows
  - Select a node n at level k.
    If n appears at any level from 1 through k, then n is a leaf node and is not expanded any further.
    If n is not a leaf node then we expand it by adding a branch from node n to a new node m if f(n, α)=m for α ∈ I.

This branch is labeled as  $\alpha$ .

This step is repeated for all nodes at level k.

## **Tree Construction (2)**



## **Tree Construction (3)**

- The testing tree is initialized with the initial state  $s_1$  as the root node.
- This is level 1 of the tree.
- We note that  $g(s_1, a) = s_1$  and  $g(s_1, b) = s_4$ . Hence, we create two nodes at the next level and label them as  $s_1$  and  $s_4$ .
- The branches from  $s_1$  to  $s_1$  and  $s_4$  are labeled, respectively, a and b.
- As  $s_1$  is the only node at level 1, we now proceed to expand the tree to form level 2.
- At level 2, we first consider the node labeled s<sub>1</sub>. However, another mode labeled s<sub>1</sub> already appears at level 1; hence, this node becomes a leaf node and is not expanded any further.
- Next, we examine the node labeled  $s_4$ . We note that  $g(s_4, a) = s_3$  and  $g(s_4, b) = s_4$ . We, therefore, create two new nodes at level 3 and label these as  $s_3$  and  $s_4$  and label the corresponding branches as a and b, respectively.

Step 3.2: Generation of the transition cover set P from the testing tree

### Find The Transition Cover Set from a Testing Tree

- A transition cover set P is a set of all strings *representing sub-paths*, starting at the root, *in the testing tree*.
  - A sub-path is a path starting from the root of the testing tree and terminating in any node of the tree.
  - Concatenation of the labels along the edges of a sub-path is a string that belongs to P.
  - The empty string  $(\varepsilon)$  also belongs to P.



 $P=\{\varepsilon, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa\}$ 

## Why is it called a Transition Cover Set?

- Exciting an FSM in s<sub>0</sub>, the initial set, with an element of P, forces the FSM into some state.
- After the FSM has been excited with all elements of P, each time starting in the initial state, the FSM has reached every state.
- Thus, exciting an FSM with elements of P ensures that *all states are reached* and *all transitions have been traversed at least once*.
  - The empty input sequence does not traverse any branch but is useful in constructing some desired test sequence.

Step 4: Construction of Z from W and m

#### Construction of Z from W and m

- Given that I is the input alphabet and W the characterization set. Suppose that the number of states estimated to be in the implementation under test is m, and the number of states in the design specification is n, m > n.
- We compute Z as

$$Z = (I^{0}.W) \cup (I^{1}.W) \cup \dots (I^{m-1-n}.W) \cup (I^{m-n}.W)$$

- Recall that  $I^0 = \{\epsilon\}$ ,  $I^1 = I$ ,  $I^2 = I$ . I, and so on, where (.) denotes string concatenation.
- For m = n, we get  $Z = I^0.W=W$
- For m < n, we use Z = IW

Step 5.1: Test Generation

#### Generation of a Test Set from P and Z

- The test inputs based on the given FSM  $\mathcal{M}$  can now be derived as T=P.Z
- Let's use the same example. Suppose m = n = 5. We also have  $I = \{a, b\}$  and W (the characterization set) =  $\{a, aa, aaa, baaa\}$  (see slide 46)
  - Concatenating P with Z, we obtain the desired test set as follows
    - $\square$  Z = I<sup>0</sup>.W ={a, aa, aaa, baaa} (Note: I<sup>0</sup> = { $\varepsilon$ } see slide 56)
    - $\Box$  T = P . Z = { $\epsilon$ , a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa} . {a, aa, aaa, baaa}
- If we assume that the implementation has one extra state, that is, m = 6, then we have
  - $\square Z = I^0.W \cup (I^1.W) = \{\underline{a, aa, aaa, baaa, baaa, aaa, aaaa, abaaa, baaa, baa, baaa, ba$

Step 5.2: Test Execution

#### **Execution of the Generated Test Set**

- To test the given implementation against its specification M, we do the following for each test input
  - Find the expected response to each element of T
  - Generate test cases for the application. Note that even though the application is modeled by  $\mathcal{M}$ , there might be variables to be set before it can be exercised with elements of T.
  - Execute the application and check if the response matches.
     Reset the application to the initial state after each test.
    - □ A mismatch between the expected and the actual response does not necessarily imply an error in the implementation.
      - > Is the specification error free?
      - > Are the expected and actual responses determined without any error?
      - > Is the comparison between them correct?

If the answer is YES to all these questions, then a mismatch implies an error in the implementation.

## Example One (1): n = m = 5



(a) Correct design



(b) Transfer error in state s<sub>2</sub>

(b) Transfer error in state  $s_2$  and operation error in state  $s_5$ 

## **Example One (2):** n = m = 5

- To test  $\mathcal{M}_1$  against  $\mathcal{M}$ , we apply each test t from the set P.Z and compare  $\mathcal{M}(t)$  with  $\mathcal{M}_1(t)$ .
  - We find that when t = baaaaaa,  $\mathcal{M}(t) = 1101000$  and  $\mathcal{M}_1(t) = 1101001$ . Hence, the input sequence baaaaaa reveals the transfer error in  $\mathcal{M}_1$ .
- Similarly, to test  $\mathcal{M}_2$  against  $\mathcal{M}$ , we apply each test t from the set P.Z and compare  $\mathcal{M}(t)$  with  $\mathcal{M}_2(t)$ .
  - We find that when t = baaba,  $\mathcal{M}(t) = 11011$  and  $\mathcal{M}_2(t) = 11001$ . Hence, the input sequence baaba reveals the transfer error in  $\mathcal{M}_2$ .

## Example Two (1): n = 5 & m = 6



(a) Correct design



## Example Two (2): n = 5 & m = 6

- To test  $\mathcal{M}_3$  against  $\mathcal{M}$ , we apply each test t from the set P.Z and compare  $\mathcal{M}(t)$  with  $\mathcal{M}_3(t)$ .
  - We find that when t = baaba,  $\mathcal{M}(t) = 11011$  and  $\mathcal{M}_3(t) = 11001$ . Hence, the input sequence baaba reveals the transfer error in  $\mathcal{M}_3$ .
- Similarly, to test  $\mathcal{M}_4$  against  $\mathcal{M}$ , we apply each test t from the set P.Z and compare  $\mathcal{M}(t)$  with  $\mathcal{M}_4(t)$ .
  - We find that when t = baaa,  $\mathcal{M}(t) = 1101$  and  $\mathcal{M}_4(t) = 1100$ . Hence, the input sequence baaa reveals the transfer error in  $\mathcal{M}_4$ .

## **Test Sets Generated Using the W-Method**

- The W-method is used for *constructing a test set* from a given FSM M.
- The test set so constructed is *a finite set of sequences* that can be input to a *program* whose *control structure is modeled by M*.
- The tests can also be input to a\_design to test its correctness with respect to some specification.
- Most software systems *cannot be modeled 100% accurately* using an FSM. However, the *global control structure* of a software system cam be modeled by an FSM.
- Tests generated using the W-method, or any other method based exclusively on a finite-state model of an implementation is likely to *reveal only certain types of faults*. (see slide 4)

# Automata Theoretical versus Control-Flow-Based Techniques

#### Question

- The W method is an *automata theoretic* method for test generation.
- In contrast, many books on software testing mention *control flow-based techniques* for test generation.
- What is the difference between the two types of techniques and their fault detection abilities?

## **Control-Flow-Based Techniques (1)**

- State cover: A test set T is considered adequate with respect to the *state* cover criterion for an FSM  $\mathcal{M}$  if the execution of  $\mathcal{M}$  against each element of T causes each state in  $\mathcal{M}$  to be visited at least once
- Transition cover: A test set T is considered adequate with respect to the branch/transition cover criterion for an FSM  $\mathcal{M}$  if the execution of  $\mathcal{M}$  against each element of T causes each transition in  $\mathcal{M}$  to be taken at least once
- Switch cover: A test set T is considered adequate with respect to the *1-switch cover* criterion for an FSM  $\mathcal{M}$  if the execution of  $\mathcal{M}$  against each element of T causes each pair of transitions  $(tr_1, tr_2)$  in  $\mathcal{M}$  to be taken at least once, where for some input substring ab  $tr_1$ :  $f(s_j, a) = s_i$  and  $tr_2$ :  $f(s_i, b) = s_k$

## **Control-Flow-Based Techniques (2)**

- Boundary interior cover: A test set T is considered adequate with respect to the *boundary-interior cover* criterion for an FSM  $\mathcal{M}$  if the execution of  $\mathcal{M}$  against each element of T causes *each loop* (a self-transition) across states to be traversed zero times and at least once.
  - Exiting the loop upon arrival covers the "boundary" condition
  - Entering it and traversing the loop at least once covers the "interior" condition

• The following examples illustrate weaknesses of the state cover, branch/transition cover, switch cover and the boundary-interior cover test-adequacy criteria.

## **Control-Flow-Based Techniques (3)**

- Consider the following machines, a correct one  $(\mathcal{M}_1)$  and one with a transfer error  $(\mathcal{M}_1)$
- t=abba *covers all states* but does not reveal the error. Both machines generate the same output which is 0111.
- Will the tests generated by the W method reveal this error?
  - Check it out!



## **Control-Flow-Based Techniques (4)**

- Consider the following machines, a correct one  $(\mathcal{M}_2)$  and one with a transfer error  $(\mathcal{M}_2')$
- There are 12 branch pairs, such as  $(tr_1, tr_2)$ ,  $(tr_1, tr_3)$ ,  $tr_6$ ,  $tr_5$ )
- Consider the test set: {bb, baab, aabb, aaba, abbaab}
  - Does it cover all branches?YesT also satisfies the 1-switch cover criterion
  - Does it reveal the error?No
  - Are the states in M<sub>2</sub> 1-distinguishable?
     YES

For each pair of states  $(s_i, s_j)$ ,  $i \neq j$ , there exists a string of length 1 that distinguishes  $s_i$  from  $s_j$ 



Refer to Example 3.38

## **Control-Flow-Based Techniques (5)**

- Consider the following machines, a correct one  $(\mathcal{M}_3)$  and one with a transfer error  $(\mathcal{M}_3')$ 
  - There are two loops in  $\mathcal{M}_3$  one in state  $s_2$  and the other in  $s_3$
- Consider  $T=\{t_1: aab, t_2: abaab\}$ 
  - T is adequate with respect to the boundary-interior cover criterion
  - t<sub>1</sub> causes both loops to exit without looping in either s<sub>2</sub> or s<sub>3</sub>
  - t<sub>2</sub> causes each loop to be traversed once



$$-g_{\mathcal{M}}(s_1, t_1) = g_{\mathcal{M}3}(s_1, t_1) = 000$$

$$- g_{\mathcal{M}3}(s_1, t_2) = g_{\mathcal{M}'3}(s_1, t_2) = 00010$$

- T cannot distinguish  $\mathcal{M}_3$  from  $\mathcal{M}_3$  and hence does not reveal the error



## **Summary**

- Behavior of a large variety of applications can be modeled using finite state machines (FSM)
- The W method is an automata theoretic method to generate tests from a given FSM model
- Tests generated by using the W method are guaranteed to detect all operation errors, transfer errors, and missing/extra state errors in the implementation given that the FSM representing the implementation is complete, connected, and minimal.
  - What happens if it is not?
- Automata theoretic techniques generate tests superior in their fault detection ability than their control-theoretic counterparts