Probabilistic Graphical Models Lecture 9: MAP Inference

Matthew Walter

TTI-Chicago

May 5, 2020

ullet Thus far, we have focused on inference in the context of conditional probability queries, i.e., $P(m{Y} \,|\, m{E} = m{e})$

- Thus far, we have focused on inference in the context of conditional probability queries, i.e., $P(\boldsymbol{Y} \,|\, \boldsymbol{E} = \boldsymbol{e})$
- Often, we are instead interested in the most likely assignment to non-evidence variables (e.g., speech recognition or channel decoding)

$$\begin{split} \boldsymbol{y}^* &= \arg\max_{\boldsymbol{y}} \, P(\boldsymbol{Y} = \boldsymbol{y} \,|\, \boldsymbol{E} = \boldsymbol{e}) \\ &= \arg\max_{\boldsymbol{y}} \, \frac{P(\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{E} = \boldsymbol{e})}{P(\boldsymbol{E} = \boldsymbol{e})} \\ &= \arg\max_{\boldsymbol{y}} \, P(\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{E} = \boldsymbol{e}) \end{split}$$

- Thus far, we have focused on inference in the context of conditional probability queries, i.e., $P(\boldsymbol{Y} \,|\, \boldsymbol{E} = \boldsymbol{e})$
- Often, we are instead interested in the most likely assignment to non-evidence variables (e.g., speech recognition or channel decoding)

$$\begin{split} \boldsymbol{y}^* &= \arg\max_{\boldsymbol{y}} \, P(\boldsymbol{Y} = \boldsymbol{y} \,|\, \boldsymbol{E} = \boldsymbol{e}) \\ &= \arg\max_{\boldsymbol{y}} \, \frac{P(\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{E} = \boldsymbol{e})}{P(\boldsymbol{E} = \boldsymbol{e})} \\ &= \arg\max_{\boldsymbol{y}} \, P(\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{E} = \boldsymbol{e}) \end{split}$$

- ullet This is a max over all factors consistent with $oldsymbol{E}=e$ and thus, a function of $oldsymbol{E}$ (and a factor itself)
- Map inference is an optimization problem (e.g., energy minimization of negative (log-)likelihood)

MAP Inference: Computational Complexity

• The following decision problem (BN-MAP-DP) is NP-Complete:

Given a Bayesian network $\mathcal B$ over $\mathcal X$ and a number τ , the **BN-MAP-DP** problem is to decide whether an assignment x to $\mathcal X$ exists such that $P(x) > \tau$

The following decision problem is NP-Hard:

Given a polytree Bayesian network $\mathcal B$ over $\mathcal X$, a subset $\mathbf Y\subset \mathcal X$, and a number τ , decide whether there exists an assignment $\mathbf Y=\mathbf y$ such that $P(\mathbf y)>\tau$

$$y^* = \underset{Y_1,...,Y_n}{\arg \max} \sum_{X_1,...,X_n} P(Y_1,...,Y_n,X_1,...,X_n)$$

Results in a factor that is exponential in n

• Consider MAP inference in the context of a Gibbs factorization

$$\underset{\boldsymbol{x}}{\text{arg max}}\ P(\boldsymbol{x}),\quad \text{where}\ P(\boldsymbol{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c)$$

• Consider MAP inference in the context of a Gibbs factorization

$$\arg\max_{{\boldsymbol x}} P({\boldsymbol x}), \quad \text{where } P({\boldsymbol x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c({\boldsymbol x}_c)$$

• Since the normalization term is constant, this is equivalent to

$$\arg\max_{\boldsymbol{x}} \ \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c)$$

• This is called the max-product inference task

Consider MAP inference in the context of a Gibbs factorization

$$\arg\max_{{\boldsymbol x}} P({\boldsymbol x}), \quad \text{where } P({\boldsymbol x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c({\boldsymbol x}_c)$$

Since the normalization term is constant, this is equivalent to

$$\arg\max_{\boldsymbol{x}} \ \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c)$$

- This is called the max-product inference task
- In log-space: $\theta_c(x_t) = \log \phi_c(x_c)$, this is equivalent to max-sum (or min-sum if we negate the terms as a form of energy minimization)

$$\arg\max_{\boldsymbol{x}} \ \sum_{c \in \mathcal{C}} \theta_c(\boldsymbol{x}_c)$$

Consider MAP inference in the context of a Gibbs factorization

$$\arg\max_{\boldsymbol{x}} P(\boldsymbol{x}), \quad \text{where } P(\boldsymbol{x}) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c)$$

Since the normalization term is constant, this is equivalent to

$$\arg\max_{\boldsymbol{x}} \ \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c)$$

- This is called the max-product inference task
- In log-space: $\theta_c(x_t) = \log \phi_c(x_c)$, this is equivalent to max-sum (or min-sum if we negate the terms as a form of energy minimization)

$$\arg\max_{\boldsymbol{x}} \ \sum_{c \in \mathcal{C}} \theta_c(\boldsymbol{x}_c)$$

• In general, this is an NP-hard problem

Marginal MAP Inference

- In some cases, we may be interested in MAP inference over a subset of the variables
- This requires marginalizing out the other variables

$$\begin{split} \boldsymbol{x}^* &= \arg\max_{\boldsymbol{x}} P(\boldsymbol{x}) \\ &= \arg\max_{\boldsymbol{x}} \sum_{\boldsymbol{z}} P(\boldsymbol{x}, \boldsymbol{z}) \\ &= \arg\max_{\boldsymbol{x}} \sum_{\boldsymbol{z}} \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c) \end{split}$$

Involves a max, a sum, and a product (even harder)

 Compare sum-product and max-product (equivalently max-sum in log space) problems:

$$\begin{array}{ll} \mathsf{sum\text{-}product} & & \displaystyle \sum_{\boldsymbol{x}} \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c) \\ \\ \mathsf{max\text{-}sum} & & \displaystyle \max_{\boldsymbol{x}} \sum_{c \in \mathcal{C}} \theta_c(\boldsymbol{x}_c) \end{array}$$

- We can exchange operators $(+, \times)$ for $(\max, +)$ and, because both satisfy associativity and commutativity, we can apply variable elimination and belief propagation
- Gives rise to "max-product variable elimination" and "max-product belief propagation"

• Consider a simple chain A-B-C-D, and suppose that we want to find the MAP assignment

$$\max_{a,b,c,d} \phi_{AB}(a,b)\phi_{BC}(b,c)\phi_{CD}(c,d)$$

• Consider a simple chain A-B-C-D, and suppose that we want to find the MAP assignment

$$\max_{a,b,c,d} \phi_{AB}(a,b)\phi_{BC}(b,c)\phi_{CD}(c,d)$$

Just as with sum-product VE, we can push maximizations inside

$$\max_{a,b} \phi_{AB}(a,b) \cdot \max_{c} \phi_{BC}(b,c) \cdot \max_{d} \phi_{CD}(c,d)$$

or equivalently for max-sum,

$$\max_{a,b} \theta_{AB}(a,b) + \max_{c} \theta_{BC}(b,c) + \max_{d} \theta_{CD}(c,d)$$

• Consider a simple chain A-B-C-D, and suppose that we want to find the MAP assignment

$$\max_{a,b,c,d} \phi_{AB}(a,b)\phi_{BC}(b,c)\phi_{CD}(c,d)$$

Just as with sum-product VE, we can push maximizations inside

$$\max_{a,b} \phi_{AB}(a,b) \cdot \underbrace{\max_{c} \phi_{BC}(b,c)}_{\psi(c)} \cdot \underbrace{\max_{d} \phi_{CD}(c,d)}_{\psi(c)}$$

or equivalently for max-sum,

$$\max_{a,b} \theta_{AB}(a,b) + \underbrace{\max_{c} \theta_{BC}(b,c)}_{} + \underbrace{\max_{d} \theta_{CD}(c,d)}_{}$$

• Just as with sum-product VE, each max results in a new factor

• Consider a simple chain A-B-C-D, and suppose that we want to find the MAP assignment

$$\max_{a,b,c,d} \phi_{AB}(a,b)\phi_{BC}(b,c)\phi_{CD}(c,d)$$

Just as with sum-product VE, we can push maximizations inside

$$\max_{a,b} \phi_{AB}(a,b) \cdot \underbrace{\max_{c} \phi_{BC}(b,c)}_{\psi(c)} \cdot \underbrace{\max_{d} \phi_{CD}(c,d)}_{d}$$

or equivalently for max-sum,

$$\max_{a,b} \theta_{AB}(a,b) + \underbrace{\max_{c} \theta_{BC}(b,c)}_{} + \underbrace{\max_{d} \theta_{CD}(c,d)}_{}$$

- Just as with sum-product VE, each max results in a new factor
- We find the actual maximizing assignment by traceback

- ullet Consider a function $f: \mathsf{Val}(oldsymbol{X}) o \mathbb{R}$
- ullet The max-marginal of a function f relative to variables $Y\subseteq X$ is

$$\mathsf{MaxMarg}_f(\boldsymbol{y}) = \max_{\boldsymbol{\xi} \langle \boldsymbol{Y} \rangle = \boldsymbol{y}} f(\boldsymbol{\xi})$$

(where $\xi\langle Y
angle=y$ restricts ξ to subsets for which Y=y)

- Consider a function $f: \mathsf{Val}(\boldsymbol{X}) \to \mathbb{R}$
- ullet The max-marginal of a function f relative to variables $Y\subseteq X$ is

$$\mathsf{MaxMarg}_f(\boldsymbol{y}) = \max_{\boldsymbol{\xi} \langle \boldsymbol{Y} \rangle = \boldsymbol{y}} f(\boldsymbol{\xi})$$

(where $\xi\langle Y
angle=y$ restricts ξ to subsets for which Y=y)

ullet For example, if $f= ilde{P}_{\Phi}$, then MaxMarg $_{ ilde{P}_{\Phi}}(oldsymbol{y})$ is the (unnormalized) probability of the most likely assignment consistent with $oldsymbol{Y}=oldsymbol{y}$

- Consider a function $f: \mathsf{Val}(\boldsymbol{X}) \to \mathbb{R}$
- ullet The max-marginal of a function f relative to variables $Y\subseteq X$ is

$$\mathsf{MaxMarg}_f(\boldsymbol{y}) = \max_{\boldsymbol{\xi} \langle \boldsymbol{Y} \rangle = \boldsymbol{y}} f(\boldsymbol{\xi})$$

(where $\xi\langle Y
angle=y$ restricts ξ to subsets for which Y=y)

- For example, if $f=\tilde{P}_{\Phi}$, then $\mathsf{MaxMarg}_{\tilde{P}_{\Phi}}(\boldsymbol{y})$ is the (unnormalized) probability of the most likely assignment consistent with $\boldsymbol{Y}=\boldsymbol{y}$
- Consider the Bayesian network: $A \rightarrow B$

$$\max_{a,b} P(a,b) = \max_{a,b} P(a)P(b \mid a)$$
$$= \max_{a} P(a) \max_{b} P(b \mid a)$$
$$= \max_{a} P(a)\phi(a)$$

- Consider a function $f: \mathsf{Val}(\boldsymbol{X}) o \mathbb{R}$
- ullet The max-marginal of a function f relative to variables $Y\subseteq X$ is

$$\mathsf{MaxMarg}_f(\boldsymbol{y}) = \max_{\boldsymbol{\xi} \langle \boldsymbol{Y} \rangle = \boldsymbol{y}} f(\boldsymbol{\xi})$$

(where $\xi\langle Y
angle=y$ restricts ξ to subsets for which Y=y)

- For example, if $f=\tilde{P}_{\Phi}$, then $\mathsf{MaxMarg}_{\tilde{P}_{\Phi}}(\boldsymbol{y})$ is the (unnormalized) probability of the most likely assignment consistent with $\boldsymbol{Y}=\boldsymbol{y}$
- Consider the Bayesian network: $A \rightarrow B$

$$\max_{a,b} P(a,b) = \max_{a,b} P(a)P(b \mid a)$$
$$= \max_{a} P(a) \max_{b} P(b \mid a)$$
$$= \max_{a} P(a)\phi(a)$$

• Just like sum-product, MAP becomes an operation on factors

Factor Maximization

• Given a set of variables X and $Y \notin X$ with a factor $\phi(X,Y)$. The factor maximization of Y in ϕ is a new factor $\psi(X)$:

$$\psi(\boldsymbol{X}) = \max_{Y} \phi(\boldsymbol{X}, Y)$$

• For example, $\psi(A,C) = \max_{B} \phi(A,B,C)$ is a factor maximization

a^1	b^1	c^1	0.25	K					
a^1	b^1	c^2	0.35	\ <u>`</u>	\				
a^1	b^2	c^1	0.08	\vdash	\searrow	\			
a^1	b^2	c^2	0.16	<u> </u>	_ ~	\sim	a^1	c^1	0.25
a^2	b^1	c^1	0.05	_	_	_	a^1	c^2	0.35
a^2	b^1	c^2	0.07	-		>	> a ²	c^1	0.05
a^2	b^2	c^1	0	<u> </u>		>	- a ²	c^2	0.07
a^2	b^2	c^2	0	<u> </u>		_	a^3	c^1	0.15
a^3	b^1	c^1	0.15	<u> </u>		۷	$=a^3$	c^2	0.21
a^3	b^1	c^2	0.21	H	-	/			
a^3	b^2	c^1	0.09						
a^3	b^2	c^2	0.18						

- Gives rise to max-product variable elimination
 - Replace sum with max
 - Traceback to recover the most likely sequence

Algorithm 13.1 Variable elimination algorithm for MAP. The algorithm can be used both in its max-product form, as shown, or in its max-sum form, replacing factor product with factor addition.

```
Procedure Max-Product-VE (
         \Phi. // Set of factors over X

∠ // Ordering on X

        Let X_1, \dots, X_k be an ordering of X such that
           X_i \prec X_i \text{ iff } i < j
           for i = 1, ..., k
           (\Phi, \phi_{X_i}) \leftarrow \text{Max-Product-Eliminate-Var}(\Phi, X_i)
           x^* \leftarrow \text{Traceback-MAP}(\{\phi_{X_i} : i = 1, ..., k\})
           return x^*, \Phi // \Phi contains the probability of the MAP
        Procedure Max-Product-Eliminate-Var (
            Φ. // Set of factors
               // Variable to be eliminated
           \Phi' \leftarrow \{\phi \in \Phi : Z \in \mathit{Scope}[\phi]\}\
           \Phi'' \leftarrow \Phi - \Phi'
           \psi \leftarrow \prod_{\phi \in \Phi'} \phi
           \tau \leftarrow \max_Z \psi
           return (\Phi'' \cup \{\tau\}, \psi)
        Procedure Traceback-MAP (
            \{\phi_{X_i} : i = 1, ..., k\}
           for i = k, ..., 1
              u_i \leftarrow (x_{i+1}^*, \dots, x_k^*) \langle Scope[\phi_{X_i}] - \{X_i\} \rangle
                 // The maximizing assignment to the variables eliminated after
4
              x_i^* \leftarrow \arg \max_x \phi_X (x_i, u_i)
                 // x* is chosen so as to maximize the corresponding entry in
                    the factor, relative to the previous choices u_i
            return x*
```

Let's revisit a simplified version of the Student example from the text

$$\underset{S,I,D,L,G}{\operatorname{arg\ max}}\ P(S,I,D,L,G)$$

Let's revisit a simplified version of the Student example from the text

$$\underset{S,I,D,L,G}{\operatorname{arg\ max}}\ P(S,I,D,L,G)$$

Max-product variable elimination proceeds as

Step	Variable	Factors	Intermediate	New
	eliminated	used	factor	factor
1	S	$\phi_S(I, S)$	$\psi_1(I, S)$	$\tau_1(I)$
2	I	$\phi_I(I), \phi_G(G, I, D), \tau_1(I)$	$\psi_2(G, I, D)$	$\tau_2(G, D)$
3	D	$\phi_D(D)$, $\tau_2(G, D)$	$\psi_3(G, D)$	$\tau_3(G)$
4	L	$\phi_L(L, G)$	$\psi_4(L, G)$	$\tau_4(G)$
5	G	$\tau_4(G), \tau_3(G)$	$\psi_5(G)$	$\tau_5(\emptyset)$

 The evaluation of the computational complexity of max-product VE is identical to that of sum-product VE

Let's revisit a simplified version of the Student example from the text

$$\underset{S,I,D,L,G}{\operatorname{arg max}} P(S,I,D,L,G)$$

Max-product variable elimination proceeds as

Step	Variable	Factors	Intermediate	New
	eliminated	used	factor	factor
1	S	$\phi_S(I, S)$	$\psi_1(I, S)$	$\tau_1(I)$
2	I	$\phi_I(I), \phi_G(G, I, D), \tau_1(I)$	$\psi_2(G, I, D)$	$\tau_2(G, D)$
3	D	$\phi_D(D)$, $\tau_2(G, D)$	$\psi_3(G, D)$	$\tau_3(G)$
4	L	$\phi_L(L, G)$	$\psi_4(L, G)$	$\tau_4(G)$
5	G	$\tau_4(G), \tau_3(G)$	$\psi_5(G)$	$\tau_5(\emptyset)$

- The evaluation of the computational complexity of max-product VE is identical to that of sum-product VE
- But, how do we recover $\{S,I,D,L,G\}^* = \underset{S,I,D,L,G}{\operatorname{arg\ max}} P(S,I,D,L,G)$?

Decoding

- We are interested in **decoding**: Finding the most likely assignment
- As we eliminated variables, we can only determine their "conditional" maximizing value as a function of non-eliminated variables
- The result of max-product variable elimination is the max-marginal over the last variable X_i , MaxMarg $_{\tilde{P}_{\sigma}}(X_i)$
- This corresponds to the probability of the most likely assignments consistent with $X_i = x_i$
- We can select the most likely assignment x_i^* and work backwards (i.e., "trace it back"), without needing to revisit the decision
- This process is referred to as traceback
- Traceback is linear in the number of variables (i.e., no added expense)

Variable Elimination for Marginal MAP

$$\begin{split} \boldsymbol{y}^* &= \arg\max_{\boldsymbol{y}} \ P(\boldsymbol{y}) \\ &= \arg\max_{\boldsymbol{y}} \ \sum_{\boldsymbol{z}} P(\boldsymbol{y}, \boldsymbol{z}) \\ &= \arg\max_{\boldsymbol{y}} \ \sum_{\boldsymbol{z}} \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c) \end{split}$$

- Similarly involves summations and maximizations over factors
- Might suggest that we can use the same tricks as before
- However, max and sum operations do not commute and we have to perform all summations before maximizations
- Constrains the legal variable elimination orderings
- ullet Use sum-product algorithm to marginalize out Xackslash Y
- ullet Use max-product to maximize over $oldsymbol{Y}$

Max-product Belief Propagation in Clique Trees

- ullet Suppose that we have a clique tree ${\mathcal T}$ with cliques ${m C}_1,\dots {m C}_k$
- Max-product belief propagation proceeds just like sum-product BP, just with different messages

$$m_{i \to j}(\boldsymbol{S}_{i,j}) = \max_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \left\{ \psi_i(\boldsymbol{C}_i) \cdot \prod_{k \in \mathsf{Nb}_i - \{j\}} m_{k \to i} \right\}$$

Upon calibration, we have the single node max-marginals

$$eta_i(oldsymbol{c}_i) = \mathsf{MaxMarg}_{ ilde{P}_\Phi}(oldsymbol{c}_i)$$

• Similar to sum-product BP, the tree is max-calibrated when

$$\max_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \beta_i = \max_{\boldsymbol{C}_j - \boldsymbol{S}_{i,j}} \beta_j = \mu_{i,j}(\boldsymbol{S}_{i,j})$$

ullet If the MAP assignment x^* is **unique** (i.e., no ties), we can find it by locally decoding each max-marginal

$$x_i^* = \underset{x_i}{\operatorname{arg}} \max_{x_i} \mathsf{MaxMarg}_{\tilde{P}_{\Phi}}(X_i)$$

Exact MAP Inference Beyond Clique Trees

Consider an MRF with unary and pairwise potentials

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{i,j} \phi_{ij}(x_i, x_j) \cdot \prod_i \phi_i(x_i)$$

- ullet The treewidth (optimal induced width) of an $n \times n$ Ising model is n
- Thus, exact (MAP) inference is exponential in n, which is intractable for practical values of n

Exact MAP Inference Beyond Clique Trees

MAP inference corresponds to a discrete optimization problem

$$\underset{\boldsymbol{x}}{\operatorname{arg max}} \sum_{i \in V} \theta_i(x_i) + \sum_{c \in \mathcal{C}} \theta_c(\boldsymbol{x}_c)$$

where we include unary terms without loss of generality

• As framed, this is a general discrete optimization problem, which can be used to express many hard combinatorial optimization problems (e.g., 3-SAT)

Consider the MAP problem for a pairwise Markov random field

$$\mathsf{MAP}(\boldsymbol{\theta}) = \max_{\boldsymbol{x}} \ \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

• MAP is a hard (i.e., combinatorial) optimization problem

Consider the MAP problem for a pairwise Markov random field

$$\mathsf{MAP}(\boldsymbol{\theta}) = \max_{\boldsymbol{x}} \ \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

- MAP is a hard (i.e., combinatorial) optimization problem
- Pushing the maximizations inside the sums only increases the value

$$\mathsf{MAP}(\boldsymbol{\theta}) \leq \sum_{i \in V} \max_{x_i} \theta_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \theta_{ij}(x_i, x_j)$$

• Unlike MAP, the optimizations on the righthand side are easy

Consider the MAP problem for a pairwise Markov random field

$$\mathsf{MAP}(\boldsymbol{\theta}) = \max_{\boldsymbol{x}} \ \sum_{i \in V} \theta_i(x_i) + \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

- MAP is a hard (i.e., combinatorial) optimization problem
- Pushing the maximizations inside the sums only increases the value

$$\mathsf{MAP}(\boldsymbol{\theta}) \leq \sum_{i \in V} \max_{x_i} \theta_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \theta_{ij}(x_i, x_j)$$

- Unlike MAP, the optimizations on the righthand side are easy
- Key insight: Construct a dual function $L(\delta) \geq \mathsf{MAP}(\theta)$, and solve for δ that minimizes $L(\delta)$

• Consider the following reparameterization

$$\begin{split} \tilde{\theta}_i(x_i) &= \theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \\ \tilde{\theta}_{ij}(x_i, x_j) &= \theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \end{split}$$

Consider the following reparameterization

$$\begin{split} \tilde{\theta}_i(x_i) &= \theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \\ \tilde{\theta}_{ij}(x_i, x_j) &= \theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \end{split}$$

It is easy to verify that

$$\sum_{i} \theta_{i}(x_{i}) + \sum_{ij \in E} \theta_{ij}(x_{i}, x_{j}) = \sum_{i} \tilde{\theta}_{i}(x_{i}) + \sum_{ij \in E} \tilde{\theta}_{ij}(x_{i}, x_{j}) \quad \forall \mathbf{X}$$

Consider the following reparameterization

$$\tilde{\theta}_i(x_i) = \theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i)$$

$$\tilde{\theta}_{ij}(x_i, x_j) = \theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j)$$

It is easy to verify that

$$\sum_{i} \theta_{i}(x_{i}) + \sum_{ij \in E} \theta_{ij}(x_{i}, x_{j}) = \sum_{i} \tilde{\theta}_{i}(x_{i}) + \sum_{ij \in E} \tilde{\theta}_{ij}(x_{i}, x_{j}) \quad \forall X$$

Thus, we have

$$\mathsf{MAP}(\boldsymbol{\theta}) = \mathsf{MAP}(\tilde{\boldsymbol{\theta}}) \leq \sum_{i \in V} \max_{x_i} \tilde{\theta}_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

Consider the following reparameterization

$$\tilde{\theta}_i(x_i) = \theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i)$$

$$\tilde{\theta}_{ij}(x_i, x_j) = \theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j)$$

It is easy to verify that

$$\sum_{i} \theta_{i}(x_{i}) + \sum_{ij \in E} \theta_{ij}(x_{i}, x_{j}) = \sum_{i} \tilde{\theta}_{i}(x_{i}) + \sum_{ij \in E} \tilde{\theta}_{ij}(x_{i}, x_{j}) \quad \forall X$$

Thus, we have

$$\mathsf{MAP}(\boldsymbol{\theta}) = \mathsf{MAP}(\tilde{\boldsymbol{\theta}}) \leq \sum_{i \in V} \max_{x_i} \tilde{\theta}_i(x_i) + \sum_{ij \in E} \max_{x_i, x_j} \tilde{\theta}_{ij}(x_i, x_j)$$

- ullet Each value of δ gives a different upper bound on the MAP value
- \bullet We get the **tightest** upper bound by minimizing the RHS with respect to δ

ullet Consider a general factorization over unary potentials and factors F

$$\mathsf{MAP}(\boldsymbol{\theta}) = \max_{\boldsymbol{x}} \sum_{i \in V} \theta_i(x_i) + \sum_{f \in F} \theta_f(\boldsymbol{x}_f)$$

- Let x_i^f be the copy of x_i used by factor f, and let $x_f^f = \{x_i^f\}_{i \in f}$ be the set of variables used by factor f
- We can express the optimization problem equivalently as

$$\max \sum_{i \in V} \theta_i(x_i) + \sum_{f \in F} \theta_f(\boldsymbol{x}_f^f)$$

s.t. $\boldsymbol{x}_i^f = x_i \quad \forall f, i \in f$

 Without the constraints, we would have independent maximizations over each factor, an easy optimization problem

Consider a simple pairwise MRF with unary and pairwise factors

$$\bigvee_{X_4}^{X_2} \phi_b(X_2, X_4) \qquad \mathsf{MAP}(\boldsymbol{\theta}) = \max_{\boldsymbol{x}} \sum_{i \in V} \theta_i(x_i) + \sum_{f \in F} \theta_f(\boldsymbol{x}_f)$$

We can formulate the objective as a constrained optimization over individual factors

$$\phi_{a}(X_{1}^{a}, X_{2}^{a})$$

$$X_{1}^{a} \longrightarrow X_{2}^{a}$$

$$\downarrow X_{1}^{d} = X_{1}$$

$$X_{2}^{d} = X_{2}^{d}$$

$$\downarrow \phi_{b}(X_{2}^{b}, X_{4}^{b})$$

$$X_{3}^{d} = X_{3}$$

$$\downarrow X_{4}^{d} = X_{4}^{b}$$

$$\downarrow X_{4}^{c} \longrightarrow X_{4}^{c}$$

$$\downarrow X_{3}^{c} \longrightarrow X_{4}^{c}$$

$$\downarrow X_{4}^{c} \longrightarrow X_{4}^$$

The need to maintain agreement among factors is what makes the problem difficult

We can reformulate this optimization via Lagrangian relaxation

$$L(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{x}^F) = \sum_{i \in V} \theta_i(x_i) + \sum_{f \in F} \theta_f(\boldsymbol{x}_f^f)$$
$$+ \sum_{f \in F} \sum_{i \in f} \sum_{\hat{x}_i} \delta_{fi}(\hat{x}_i) \left(\mathbb{1}[x_i = \hat{x}_i] - \mathbb{1}[x_i^f = \hat{x}_i] \right)$$

where $\delta = \{\delta_{fi}(x_i) : f \in F, i \in f, x_i\}$ are Lagrange multipliers and $L(\delta, x, x^F)$ is the Lagrangian

We can reformulate this optimization via Lagrangian relaxation

$$\begin{split} L(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{x}^F) &= \sum_{i \in V} \theta_i(x_i) + \sum_{f \in F} \theta_f(\boldsymbol{x}_f^f) \\ &+ \sum_{f \in F} \sum_{i \in f} \sum_{\hat{x}_i} \delta_{fi}(\hat{x}_i) \left(\mathbb{1}[x_i = \hat{x}_i] - \mathbb{1}[x_i^f = \hat{x}_i] \right) \end{split}$$

where $\delta = \{\delta_{fi}(x_i) : f \in F, i \in f, x_i\}$ are Lagrange multipliers and $L(\delta, x, x^F)$ is the Lagrangian

• The following is equivalent to that on the previous slide

$$\max_{\boldsymbol{x}, \boldsymbol{x}^F} L(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{x}^F)$$
s.t. $x_i^f = x_i \quad \forall f, i \in f$

To make this problem tractable, ignore the equality constraints

$$L(\boldsymbol{\delta}) = \max_{\boldsymbol{x}, \boldsymbol{x}^F} L(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{x}^F)$$

$$= \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{f: i \in f} \delta_{fi}(x_i) \right) + \sum_{f \in F} \max_{\boldsymbol{x}_f^f} \left(\theta_f(\boldsymbol{x}_f^f) - \sum_{i \in f} \delta_{fi}(x_i^f) \right)$$

To make this problem tractable, ignore the equality constraints

$$\begin{split} L(\boldsymbol{\delta}) &= \max_{\boldsymbol{x}, \boldsymbol{x}^F} L(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{x}^F) \\ &= \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{f: i \in f} \delta_{fi}(x_i) \right) + \sum_{f \in F} \max_{\boldsymbol{x}_f^f} \left(\theta_f(\boldsymbol{x}_f^f) - \sum_{i \in f} \delta_{fi}(x_i^f) \right) \end{split}$$

- $L(\boldsymbol{\delta})$ maximizes over a larger space (since \boldsymbol{x} and \boldsymbol{x}^F may differ)
- ullet Consequently, $\mathsf{MAP}(oldsymbol{ heta}) \leq L(oldsymbol{\delta})$

To make this problem tractable, ignore the equality constraints

$$L(\boldsymbol{\delta}) = \max_{\boldsymbol{x}, \boldsymbol{x}^F} L(\boldsymbol{\delta}, \boldsymbol{x}, \boldsymbol{x}^F)$$

$$= \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{f: i \in f} \delta_{fi}(x_i) \right) + \sum_{f \in F} \max_{\boldsymbol{x}_f^f} \left(\theta_f(\boldsymbol{x}_f^f) - \sum_{i \in f} \delta_{fi}(x_i^f) \right)$$

- ullet $L(oldsymbol{\delta})$ maximizes over a larger space (since $oldsymbol{x}$ and $oldsymbol{x}^F$ may differ)
- ullet Consequently, $\mathsf{MAP}(oldsymbol{ heta}) \leq L(oldsymbol{\delta})$
- The *dual problem* is to find the tightest upper bound by optimizing the Lagrange multipliers

$$\min_{\boldsymbol{\delta}} L(\boldsymbol{\delta})$$

Dual Decomposition: Reparameterization

ullet As we saw earlier, we can reparameterize the parameters $oldsymbol{ heta}$ as $ilde{ heta}$:

$$\tilde{\theta}_i^{\delta}(x_i) = \theta_a(x_i) + \sum_{f:i \in f} \delta_{fi}(x_i)$$
$$\tilde{\theta}_f^{\delta}(x_f) = \theta_f(x_f) - \sum_{i \in f} \delta_{fi}(x_i)$$

where δ is a set of dual variables

Dual Decomposition: Reparameterization

ullet As we saw earlier, we can reparameterize the parameters $oldsymbol{ heta}$ as $ilde{ heta}$:

$$\tilde{\theta}_i^{\delta}(x_i) = \theta_a(x_i) + \sum_{f:i \in f} \delta_{fi}(x_i)$$
$$\tilde{\theta}_f^{\delta}(x_f) = \theta_f(x_f) - \sum_{i \in f} \delta_{fi}(x_i)$$

where δ is a set of dual variables

ullet We can then rewrite $L(oldsymbol{\delta})$ as

$$L(\boldsymbol{\delta}) = \sum_{i \in V} \max_{\boldsymbol{x}_i} \left(\theta_i(\boldsymbol{x}_i) + \sum_{f:i \in f} \delta_{fi}(\boldsymbol{x}_i) \right) + \sum_{f \in F} \max_{\boldsymbol{x}_f^f} \left(\theta_f(\boldsymbol{x}_f^f) - \sum_{i \in f} \delta_{fi}(\boldsymbol{x}_i^f) \right)$$
$$= \sum_{i \in V} \max_{\boldsymbol{x}_i} \tilde{\theta}_i^{\boldsymbol{\delta}}(\boldsymbol{x}_i) + \sum_{f \in F} \max_{\boldsymbol{x}_f} \tilde{\theta}_f^{\boldsymbol{\delta}}(\boldsymbol{x}_f)$$

Dual Decomposition

- Let's revisit the pairwise Markov random field example from Slide 17
- The Lagrangian becomes

$$L(\boldsymbol{\delta}) = \sum_{i \in V} \max_{x_i} \left(\theta_i(x_i) + \sum_{ij \in E} \delta_{j \to i}(x_i) \right)$$

+
$$\max_{x_i, x_j} \left(\theta_{ij}(x_i, x_j) - \delta_{j \to i}(x_i) - \delta_{i \to j}(x_j) \right)$$

This results in the dual objective

$$\mathsf{DUAL\text{-}LP}(\boldsymbol{\theta}) = \max_{\boldsymbol{\delta}} L(\boldsymbol{\delta})$$

• This provides an upper-bound on the MAP assignment

$$MAP(\theta) \le DUAL-LP(\theta) \le L(\delta)$$

• How do we find a setting for δ that provides tight bounds?

Solving the Dual Objective

- $L(\delta)$ is convex and continuous, but is non-differentiable at points δ where $\tilde{\theta}_i^{\delta}(x_i)$ and $\tilde{\theta}_f^{\delta}(x_f)$ have multiple optima
- There are many methods for optimizing non-differentiable objectives
 - Subgradient algorithms
 - Block coordinate descent algorithms

Solving the Dual Objective: Subgradient Methods¹

• A subgradient of $L(\delta)$ is a vector g_{δ} such that

$$L(\boldsymbol{\delta}') \ge L(\boldsymbol{\delta}) + g_{\boldsymbol{\delta}} \cdot (\boldsymbol{\delta}' - \boldsymbol{\delta})$$
 for all $\boldsymbol{\delta}'$

- \bullet A subgradient approach alternates between computing the subgradients (maximizing subproblems) and updating the dual parameters δ via the subgradients
- An iteration of the subgradient descent procedure follows as

$$\delta_{fi}^{t+1}(x_i) = \delta_{fi}^t(x_i) - \alpha_t g_{fi}^t(x_i)$$

where $oldsymbol{g}^t$ is a subgradient of $L(oldsymbol{\delta})$ and $lpha_t$ is a step-size

• Converges when $\lim_{t\to\infty}\alpha_t=0$ and $\sum_{t=0}^\infty \alpha_t=\infty$ (e.g., $\alpha_t=\frac{1}{t}$)

¹See Komodakis et al., "MRF energy minimization and beyond via dual decomposition." PAMI 2010

Solving the Dual Objective: Block Coordinate Descent

- Basic idea: Fix all but a set of dual variables and then minimize the objective with respect to this set
- Questions:
 - 1 Which set of variables do we update?
 - 2 How do we update these variables?
- Coordinate descent methods are local, easy to implement, and converge faster than subgradient methods
- However, there are cases in which they do not converge

Solving the Dual Objective: MPLP Algorithm

The Max Product Linear Programming (MPLP) algorithm is a coordinate descent algorithm that fixes all δ except $\delta_{fi}(x_i)$ for a specific f and for all i

Algorithm Max Product Linear Programming Algorithm

Require:
$$\{\theta_i(x_i), \theta_{ij}(x_i, x_j)\}\ \forall i, j$$

1: Initialize
$$\delta_{i\to j}(x_j)=0, \delta_{j\to i}(x_i)=0 \quad \forall i,j\in E, x_i, x_j$$

- 2: **while** change in $L(\boldsymbol{\delta})$ is not small enough ${f do}$
- 3: **for** each edge $i, j \in E$ **do**

4:
$$\delta_{j\to i}(x_i) = -\frac{1}{2}\delta_i^{-j}(x_i) + \frac{1}{2}\max_{x_j} \left(\theta_{ij}(x_i, x_j) + \delta_j^{-i}(x_j)\right) \ \forall x_i$$

5:
$$\delta_{i \to j}(x_j) = -\frac{1}{2}\delta_j^{-i}(x_j) + \frac{1}{2}\max_{x_i} \left(\theta_{ij}(x_i, x_j) + \delta_i^{-j}(x_i)\right) \ \forall x_j$$
where $\delta_i^{-j}(x_i) = \theta_i(x_i) + \sum_{i,k \in E} \sum_{k \neq j} \delta_{k \to i}(x_i)$

- 6: end for
- 7: end while
- 8: **return** $x_i \in \max_{\hat{x}_i} \tilde{\theta}_i^{\delta}(\hat{x}_i)$

Dual Decomposition: Experimental Results

A comparison of different block coordinate descent algorithms on a 10×10 Ising model

MSD Node-adjacent updates MPLP Edge updates

Dual Decomposition: Experimental Results

An evaluation on a stereo vision inference task

(Courtesy Sontag et al., 2011)