2D Convolutions

$$(f * h)(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y')h(x - x', y - y')dx'dy'$$

$$(f * h)[r, c] = \sum_{c'=-\infty}^{\infty} \sum_{c'=-\infty}^{\infty} f[r', c']h[r - r', c - c']$$

2D Convolution is commutative

2D Convolution is associative

Best use of associativity in separable filters

$$h(x,y) = h_1(x)h_2(y)$$

$$f(x,y) \star h(x,y) = (f(x,y) \star h_1(x)) \star h_2(y)$$

$$\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} [+1 & 0 & -1]$$

The 2D Fourier Transform

2D Fourier Transform

$$f(x,y) \leadsto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j(\omega_x x + \omega_y y)} dx dy$$

$$F(\omega_x, \omega_y) \leadsto \left(\frac{1}{2\pi}\right) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\omega_x, \omega_y) e^{j(\omega_x x + \omega_y y)} d\omega_x d\omega_y$$

Example: 1D-cosine as an image

$$f(x,y) = \cos(\omega_0 x)$$
 $f(x,y) \leadsto \frac{1}{2} (\delta(\omega_x - \omega_0) + \delta(\omega_x + \omega_0)).\delta(\omega_y)$

Separable functions

$$f(x,y) = f_1(x)f_2(y) \leadsto \int_{-\infty}^{\infty} f_1(x)e^{-j\omega_x x} dx \int_{-\infty}^{\infty} f_2(y)e^{-j\omega_y y} dy = F_1(\omega_x)F_2(\omega_y)$$

$$f(x,y) = \cos(\omega_1 x)\cos(\omega_2 y)$$

$$\frac{1}{2}(\delta(\omega_x - \omega_1) + \delta(\omega_x + \omega_1))\frac{1}{2}(\delta(\omega_y - \omega_2) + \delta(\omega_y + \omega_2))$$

Separable functions

$$f(x,y) = \cos(\omega_1 x)\cos(\omega_2 y)$$

$$\frac{1}{2}(\delta(\omega_x-\omega_1)+\delta(\omega_x+\omega_1))\frac{1}{2}(\delta(\omega_y-\omega_2)+\delta(\omega_y+\omega_2))$$

Shift Theorem in 2D

$$f(x-x_0,y-y_0) \longrightarrow F(\omega_x,\omega_y)e^{-j(\omega_xx_0+\omega_yy_0)}$$

If we know the phases of two 1D signals we can recover their relative displacement?

But can we do that for 2D images?

2D rotation

2D rotation

2D Fourier of a box

How do we model other periodic patterns?

Clue about orientation of edges

Clue about periodicity

Clues about contrast

Fourier and Spatial Frequency FAQ

DTFT (CFT) vs DFT (FFT)

DTFT:
$$f[n] \hookrightarrow F(\omega) = \sum_{n=0}^{L-1} f[n]e^{-i\omega n}$$

periodic with period 2π

DFT:
$$f[n] \hookrightarrow F[k] = \sum_{n=0}^{L-1} f[n]e^{-i\frac{2\pi k}{L}n}$$
 length L because period is L

The same as matlab but $n \to n-1$ and $k \to k-1$.

Matlab help screenshot:

$$Y(k) = \sum_{j=1}^{n} X(j) W_n^{(j-1)(k-1)}$$

$$X(j) = \frac{1}{n} \sum_{k=1}^{n} Y(k) W_n^{-(j-1)(k-1)},$$

where

$$W_n = e^{(-2\pi i)/n}$$

Intrepreting the FFT

n = [0:19]; fcos = cos(2*pi*n/10);

Without fftshift

With fftshift, equivalent to

Side effects of DFT (FFT) assumption of periodicity

```
n = [0:19];
fcos = cos(2*pi*n/15);
```


Because DFT assumes periodicity

This is not anymore a pure cosine

Padding fft(f,32)

Why do we get here vertical and horizontal frequencies?

Because of the replication!

Fourier of the box is Fourier of rect(x)rect(y)

Middle row

But here no horizontal or vertical components

Fourier Transform


```
ftim = fft2(im);
imagesc(log(abs(fftshift(ftim))));
```

Sobel in x-direction

Fourier of the Sobel filter in x-direction

```
\begin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}
```

```
ftsobelx = fft2(sobelx,256,256);
figure(21);
imagesc(log(abs(fftshift(ftsobelx))));colormap(gray);axis image;
|
```

2D Convolutions

$$(f * h)(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y')h(x - x', y - y')dx'dy'$$

$$(f * h)[r, c] = \sum_{c'=-\infty}^{\infty} \sum_{c'=-\infty}^{\infty} f[r', c']h[r - r', c - c']$$

2D Convolution is commutative

2D Convolution is associative

Best use of associativity in separable filters

$$h(x,y) = h_1(x)h_2(y)$$

$$f(x,y) \star h(x,y) = (f(x,y) \star h_1(x)) \star h_2(y)$$

$$\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} [+1 & 0 & -1]$$