

Objetivos de aprendizagem

- 1. Criar implementações eficientes para problemas computacionalmente difíceis;
- 2. Planejar e projetar sistemas de computação de alto desempenho, escolhendo as tecnologias mais adequadas para cada tipo de aplicação;
- 3. Utilizar recursos de computação multi-core para melhorar o desempenho de programas sequenciais;
- 4. Implementar algoritmos ingenuamente paralelizáveis em GPU;
- 5. Analisar resultados de desempenho levando em conta complexidade computacional e tecnologias usadas na implementação.

Insper

Recursos computacionais

- GCC 8.0 (ou superior) -- C++11
- Linux (Ubuntu 18.04 ou superior)
- Monstrão (containers/VMs)
 - ambiente de testes padrão

Problemática

- Algoritmos complexos são aplicados em diversas situações para orientar decisões de negócios e para otimizar a alocação/distribuição de recursos
- Um determinado algoritmo é atualmente considerado lento demais
- E agora?

O que é uma solução de alto desempenho?

- 1. Algoritmos eficientes
- 2. Implementação eficiente
 - o Cache, paralelismo de instrução
 - Linguagem de programação adequada
- 3. Paralelismo

Insper

Paralelismo

Insper

6

Resolução no acesso a recursos

Supercomputação sob demanda

7

Escalabilidade

- É a habilidade de um sistema lidar com o aumento da carga de processamento sem apresentar uma degradação significante em seu desempenho
- Há duas formas de se obter a escalabilidade:
 - Escalabilidade vertical scale-up
 - Fazer upgrade na infra existente (+ memória, por exemplo)
 - Escalabilidade horizontal scale-out
 - Adicionar novas máquinas ao parque computacional
 - Distribuir os dados e o trabalho de processamento em diversas máquinas

Escalabilidade horizontal

- Podemos fazer uso de um **cluster** de máquinas
- Os dados são armazenados em um sistema de arquivos distribuído (e.g., HDFS)
- Cada arquivo é divido em blocos de tamanho fixos
- Cada bloco é **replicado** em diversos nós do cluster

Cluster

Insper

10`

Supercomputador

Insper

11

Lei de Amdahl

- Numa aplicação existe sempre uma parte que não pode ser paralelizada
- Seja S a parte do trabalho sequêncial, 1-S é a parte susceptível de ser paralelizada
- Mesmo que a parte paralela seja perfeitamente escalável, o aumento do desempenho (speedup) está limitado pela parte sequêncial

n = número de processadores

$$\mathbf{Speedup} = \frac{1}{S + \frac{(1 - S)}{n}}$$

Speedup

 Se 10% das operações de um código precisam ser feitas sequencialmente, então o speedup não pode ser maior do que 10, independente do número de processadores

$$S = \frac{1}{0.1 + \frac{0.9}{10}} \cong 5.3$$

$$S = \frac{1}{0.1 + \frac{0.9}{\infty}} = 10$$

$$p = 10 \text{ processors}$$

$$p = \infty \text{ processors}$$

Imagem: Wikipedia

E o Big Data?

• Gartner:

Big Data faz referência ao grande volume, variedade e velocidade de dados que **demandam formas** inovadoras e rentáveis de processamento da informação, para melhor percepção e tomada de decisão.

E o Big Data?

• Gartner:

Big Data faz referência ao grande volume, variedade e velocidade de dados que **demandam formas** inovadoras e rentáveis de processamento da informação, para melhor percepção e tomada de decisão.

Atividade prática

Comparando soluções para um problema

- Medir tempo de execução de programas usando Python
- Ordenar implementações de acordo com sua eficiência
- Discutir custo benefício de diferentes métodos de resolução de um problema.

Discussão

• Discussão 1: o quanto um bom algoritmo faz diferença?

Discussão – o algoritmo importa!

Insper

www.insper.edu.br

Discussão

 Discussão 2: o quanto paralelismo faz diferença?

Discussão 2 – Paralelismo importa

Insper

20)

Discussão

• Discussão 3: paralelizar é a solução para algoritmos ruins?

Paralelizar nem sempre é a (única) solução

Insper

www.insper.edu.br

Visão Geral da Disciplina

Insper

23

Obrigado