タイトル 量子計算理論

著者 森前智行

訳者

出版日 2017/11/14

出版社 森北出版

ISBN10 4627854013

ISBN13 9784627854017

ページ数 183

言語 ja

内容 従来のコンピュータのしくみと何がどう違うのか?なぜ速いのか?気鋭の若手研究者が基 礎から最先端の話題までを幅広く解説.

版 1

刷 2

p6. 古典計算機の場合はベクトルの L1 ノルムが保存される—

- L1 ノルム x₁ + x₂
- L2 $/ \mathcal{N} \angle x_1^2 + x_2^2$

p12, 演習問題, チューリングマシーンで実際に足し算と―

motomu

p13, 演習問題, チューリングマシーンのテープのビット列が—

motomu

p14, 古典計算機の状態は 2^n 次元線形空間の—ということもできる。

ここはテンソル積を知らなければ理解できない。基底の数を次元と言い、n 次元線型空間と m 次元線型空間のテンソル積 $V\otimes V$ は $n\times m$ 次元線型空間となる。

例

2 次元線型空間 V の基底を e_1,e_2 とするとき $e_1\otimes e_1,e_1\otimes e_2,e_2\otimes e_1,e_2\otimes e_2$ は $V\otimes V$ の基底となる。ここではこれら基底を $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ と書いている。2 ビットの古典計算機

の状態は 22 次元線型空間の正規直交基底である!

p15, 演習問題

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} 1 \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right)$$

p16, 演習問題

$$T|a,b,c\rangle = |a,b,c \oplus ab\rangle$$

$$T := (I \otimes I - |11\rangle \langle 11|) \otimes I + |11\rangle \langle 11| \otimes X$$

$$T |a, b, c\rangle = (I |a\rangle \otimes I |b\rangle - |11\rangle \langle 11|a, b\rangle) \otimes I |c\rangle + |11\rangle \langle 11|a, b\rangle \otimes X |c\rangle$$

$$= |a, b, c\rangle + |11\rangle \langle 11|a, b\rangle \otimes (-|c\rangle + X |c\rangle)$$

ここで a, b が 11 以外であれば後ろの項は落ちる。11 であれば

$$|11,c\rangle - |11,c\rangle + |11,\neg c\rangle = |11,\neg c\rangle$$

より言える。

p19, 演習問題

 ψ を w を用いて $\sum_{w} c_{w} |w\rangle$ と書いておき、 $S |\psi\rangle$ を計算する。

$$S(\{p_{z',z}\}) := \sum_{z \in \{0,1\}^n} \sum_{z' \in \{0,1\}^n} p_{z',z} |z'\rangle \langle z|$$

であるから

$$\begin{split} S \left| \psi \right\rangle &= \sum_{z \in \{0,1\}^n} \sum_{z' \in \{0,1\}^n} \sum_{w \in \{0,1\}^n} p_{z',z} c_w \left| z' \right\rangle \left\langle z \right| w \right\rangle \\ &= \sum_{z,z',w} p_{z',z} c_w \delta_{zw} \left| z' \right\rangle \\ &= \sum_{z,z'} p_{z',z} c_z \left| z' \right\rangle \end{split}$$

ここで係数に注目すると、

$$\sum_{z} \left(\sum_{z'} p_{z',z} c_z \right) = \sum_{z} c_z \left(\sum_{z'} p_{z',z} \right) = \sum_{z} c_z = 1$$

より言えた。

p25. 演習問題

p19 の演習問題と同様にして

$$U |\psi\rangle = \sum_{z'} \sum_{z} p_{z',z} c_z |z'\rangle$$

を得る。下線部を新たに $c_{z'}$ と看做して、 $\sum_{z'} |c_{z'}|^2 = 1$ を示せば良い。

$$\sum_{z'} |c_{z'}|^2 = \sum_{z'} \sum_{\alpha} \sum_{\beta} p_{z',\alpha}^* c_{\alpha}^* p_{z',\beta} c_{\beta}$$
$$= \sum_{\alpha,\beta} \delta_{\alpha\beta} c_{\alpha}^* c_{\beta}$$
$$= \sum_{\alpha} |c_{\alpha}|^2 = 1$$

p25. よりシンプルな式と等価であることが分かる。

ユニタリー行列とは $U^\dagger U=I$ を満たすような行列である。ここで† はエルミート転置を表す *1 。行列 A を (i,j) 成分 a_{ij} を用いて (a_{ij}) と書くことがある。この記号を用いれば、 $A^\dagger=(a_{ij}^*)$ である *2 。したがって、

$$U^{\dagger}U = \left(\sum_{k} u_{ki}^* u_{kj}\right) = (\delta_{ij}) = I$$

である。演算子Uの定義を用いて $U^{\dagger}U$ を計算する。

$$\begin{split} U^{\dagger}U &= \sum_{\alpha \in \{0,1\}^n} \sum_{\beta \in \{0,1\}^n} p_{\alpha,\beta}^* \left| \beta \right\rangle \left\langle \alpha \right| \sum_{\alpha' \in \{0,1\}^n} \sum_{\beta' \in \{0,1\}^n} p_{\alpha',\beta'} \left| \alpha' \right\rangle \left\langle \beta' \right| \\ &= \sum_{\alpha,\beta,\alpha',\beta'} p_{\alpha,\beta}^* p_{\alpha',\beta'} \delta_{\alpha,\alpha'} \left| \beta \right\rangle \left\langle \beta' \right| \\ &= \sum_{\alpha,\beta,\beta'} p_{\alpha,\beta}^* p_{\alpha,\beta'} \left| \beta \right\rangle \left\langle \beta' \right| \end{split}$$

ここで式 (3.1) を用いると、

$$= \sum_{\beta,\beta'} \delta_{\beta,\beta'} |\beta\rangle \langle \beta'|$$
$$= \sum_{\beta} |\beta\rangle \langle \beta| = I$$

 $^{^{*1}}$ 物理ではエルミート転置に†を用いるが、数学では*を用いることが多い。エルミート共軛、エルミート随伴、エルミート共役、あるいは随伴行列とも呼ばれる。

^{*2} 物理では複素共役に*を用いるが、数学ではそのように上線で表すことが多い。

逆に $U^{\dagger}U = I$ を仮定すると

$$\sum_{\beta,\mu,\nu} p_{\beta,\mu}^* p_{\beta,\nu} |\mu\rangle \langle \nu| = I$$

を得るから、左から $\langle \alpha|$ を右から $|\gamma\rangle$ を掛けることで、式 (3,1) を導出することができる。 ちなみに $\sum_{\beta} |\beta\rangle \langle \beta| = I$ であるが、1 ビットの具体例を計算して見るとよく分かる。

$$\sum_{\beta \in \{0,1\}} |\beta\rangle \langle \beta|\psi\rangle = (|0\rangle \langle 0| + |1\rangle \langle 1|)(c_0 |0\rangle + c_1 |1\rangle) = c_0 |0\rangle + c_1 |1\rangle = |\psi\rangle$$

p27, 演習問題

$$|\psi\rangle = \sum_{y \in \{0,1\}^{n-1}} c_{1y} |1y\rangle + \sum_{y \in \{0,1\}^{n-1}} c_{0y} |0y\rangle$$