课程名称: _____高等数学 B1 (__A_卷) 专业年级: _______

参考答案及得分要点	评分标准(得分)
$-$, 1. $\underline{3}$; 2. $\underline{\ln 2dx}$; 3. \underline{dx}	
4. $\frac{e^{-x}}{2\sqrt{x}}$; 5. $\frac{5\pi}{16}$	
二、1.A 2.B 3.C 4.C 5.C	
$\equiv 1. \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{2\sin 2x}$	2 分
$= \lim_{x \to 0} \frac{e^x + e^{-x}}{4\cos 2x}$	4 分
$=\frac{1}{2}$	4分6分
2. $\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^{x+3} = \lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$	2 分
$=\lim_{x\to\infty}\left[\left(1+\frac{2}{x}\right)^{\frac{x}{2}}\right]^2$	4分 6分
$=e^2$	6分
四、 1. $y' = 2x \arctan x + 1$	
$y'' = 2\arctan x + \frac{2x}{1+x^2}$	3 分
$2. \ln y = \sin x \ln x$	6分
$\frac{1}{y}y' = \cos x \ln x + \frac{\sin x}{x}$	1分
	5 分
$y' = x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right)$	6分
$ \exists 1. \qquad 2x + 2yy' - y - xy' = 0 $	2 分
	3 分

$y' = \frac{y - 2x}{2y - x}$	4分
$k = y'_{(1,0)} = 2$ 切线方程: $y = 2(x-1)$ 法线方程: $y = -\frac{1}{2}(x-1)$	6分
$f'(x) = 3x^2 - 6x - 9$ $f''(x) = 6x - 6, \diamondsuit f''(x) = 0, 得 x = 1$	1分 3分
$x \in (-\infty,1)$ 时, $f''(x) < 0$, 凸区间: $(-\infty,1]$ $x \in (1,+\infty)$ 时, $f''(x) > 0$, 凹区间: $[1,+\infty)$ 拐点: $(1,3)$	5分 7分 8分
七、由题意可设三边分别为: $x,2x,\frac{36}{x^2}$	1分 2分
$s = 4\left(x^2 + \frac{54}{x}\right), (0 < x < 72)$ $s' = \frac{8\left(x^3 - 27\right)}{x^2}, \Leftrightarrow s' = 0 \Rightarrow x = 3$	5分 6分
\therefore 三边分别为: $3cm,4cm,6cm$ 时,表面积最小。	4分 6分 2分
$2. \int_{0}^{\pi} x \cos \frac{x}{2} dx = 2 \int_{0}^{\pi} x d \sin \frac{x}{2}$ $= 2 \left(x \sin \frac{x}{2} \Big _{0}^{\pi} - \int_{0}^{\pi} \sin \frac{x}{2} dx \right)$	4分 6分
$= 2\pi - 4$ $= 2\pi - 4$ $= 2\pi - 4$ $A = \int_{0}^{2} dA = \int_{0}^{2} x^{2} dx = \frac{8}{3}$	4分

$V = \int_{0}^{2} dv = \pi \int_{0}^{2} x^{4} dx = \frac{32\pi}{5}$	8分
	1分
$1+x^2$	2 分
$f'(x) = \frac{2x^2}{(1+x^2)^2}$	
当 $x > 0$ 时, $f'(x) > 0$,又: $f(x)$ 在 $[0, +\infty)$ 上连续,: $f(x)$ 在 $[0, +\infty)$ 单调上升	4分
$\therefore \stackrel{}{=} x > 0 $ 时, $f(x) > f(0) = 0 \Rightarrow \arctan x - \frac{x}{1 + x^2} > 0$	6分
⇒ $\arctan x > \frac{x}{1+x^2}$, 得证。	