CIT 596: ALGORITHMS & COMPUTATION

Basic Augrettannes for Arithmetil Cestutores

Arithmetic on Big Numbers

- When we perform an arithmetic operation on numbers of bounded size or precision—like the Java primitives int or float—we count shat as a single computational step.
- Some applications, like cryptography and scientific computing, use larger or more precise numbers, where a single arithmetic operation may take much longer.
- operation may take much longer.

 In this context, we will analyze running time by counting the number of arithmetic operations on *individual digits*.
- Computers do this in binary, but we'll use base ten.
- We focus on positive integers, given as arrays of digits, indexed in reverse order.

Big Numbers as Arrays

An n-digit number x can be represented as an array

or just
$$x = \begin{bmatrix} x_{n-1}, x_{n-2}, \dots, x_1, x_0 \end{bmatrix}$$
, Assignment Project Exam Help or just $x = x_{n-1} \dots x_0$ for short, where https://tutores.com

We Chat: $\sum_{i=0}^{x_{n-1}} x_i \cdot 10^i$.

For example,

$$93751 = 9 \cdot 10^4 + 3 \cdot 10^3 + 7 \cdot 10^2 + 5 \cdot 10^1 + 1 \cdot 10^0.$$

We will always have $n = \Theta(\log x)$.

Grade-School Addition

Input: n-digit numbers $x = x_{n-1} \dots x_0$ and $y = y_{n-1} \dots y_0$.

Output: (n + 1)-digit number z = x + y.
Assignment Project Exam Help

$ADD(x, y)$ $c_0 = 0$	https://tuto	orcs.con	a 3	2	1	0
for $i = 0$ to $n - 1$	WeChat: o	estutores	8 0	1	1	0
$s = c_i + x_i + y_i$ $z_i = s \% 10$	x_i		5	3	3	4
$c_{i+1} = (s - z_i)/10$ $z_n = c_n$	y_i		7	5	9	6
return $z_n \dots z_0$	z_i	l	2	9	3	0

Correctness of ADD

Loop invariant: After iteration i of the **for** loop,

$$c_{i+1}z_i \dots z_0 = x_i \dots x_0 + y_i \dots y_0.$$

Initialization: In the $i = Assignment Project Exam Help y_0$.

Maintenance: Fix $1 \le i < n_{\text{parts}}$ suppose cs. com

$$c_i z_{i-1} \dots z_0 = x_{i-1} \dots x_0 + y_{i-1} \dots y_0$$

after iteration i-1. Then we set $C_{i+1}^{\text{hat:}} \subset S_{i}^{\text{tytores}} + x_i + y_i$ in iteration i, so

$$(c_{i+1}z_i - c_i) \cdot 10^i = (x_i + y_i) \cdot 10^i.$$

Adding these two equations together gives $c_{i+1}z_i \dots z_0 = x_i \dots x_0 + y_i \dots y_0$.

Termination: If $c_n z_{n-1} \dots z_0 = x_{n-1} \dots x_0 + y_{n-1} \dots y_0$ after iteration n-1, then setting $z_n = c_n$ gives the correct output.

Running Time of ADD

```
ADD(x, y)
c_0 = 0
for i = 0 to n - 1 Assignment Project Exam Help
s = c_i + x_i + y_i
z_i = s \% 10
c_{i+1} = (s - z_i)/10
z_n = c_n
return z_n \dots z_0
v_0 = 0
We Chat: cstutores
v_0 = 0
We Chat: cstutores
```

Could this be faster? Not asymptotically; it takes $\Theta(n)$ time just to read the inputs.

Grade-School Multiplication

Input: *n*-digit numbers $x = x_{n-1} \dots x_0$ and $y = y_{n-1} \dots y_0$.

Output: 2n-digit number $z = x \cdot y$.

https://tutorcs.com WeChat: cstutorcs χ_i 9 6 y_i 6 $t_{0,i}$ $t_{1,i}$ 8 0

z = 0
for $n-1$
c = 0
for $i = 0$ to $n - 1$
$p = c + (x_i \cdot y_j)$
$t_{j,i} = p \% 10$
$c = (p - t_{j,i})/10$
$t_{j,n}=c$
$z = z + (t_{j,n} \dots t_{j,0}) \cdot 10^{j}$
return z

MULT(x, y)

 $t_{2,i}$

Analysis of Mult

```
MULT(x, y)
                                            Loop invariant: After iteration j of the
   z = 0 outer for loop, for j = 0 to n - 1 Assignment Project Exam Help (y_j \dots y_0).
                              https://tutorcs.com
        for i = 0 to n - 1
            p = c + (x_i \cdot y_j) We Chat: cstutorcs t_{j,i} = p \% 10
                                                                 n \cdot O(n) =
            c = (p - t_{i,i})/10
                                                            Running time: O(n^2)
        t_{i,n} = c
        z = z + (t_{j,n} \dots t_{j,0}) \cdot 10^{j} \, \, \text{O(n)}
                                                               Could this be faster? Yes!
    return z
```