Anillos de Fracciones Addendum

Álgebra Moderna II, Agosto 2020

Anillos de Fracciones

1/12

¿Anillo o campo?

Recuerden que estamos pensando en un dominio entero R y un en subconjunto multiplicativo S. Anexo la definición de nuevo...

Definición.

Un subconjunto S de $D \setminus \{0\}$ es multiplicativo si

- lacktriangle para cada $a,b\in S$, $ab\in S$,
- **2** $1_D \in S$.

Entonces, lo que hacíamos era hallar un anillo que tuviera a R como subanillo y, más aún, donde los elementos de S tuvieran inverso multiplicativo. A tal anillo le llamamos $S^{-1}R$.

Anillos de Fracciones 2020-4 3 / 12

Los elementos de $S^{-1}R$ son formalmente fracciones [¡sí, fracciones!] cuyos numeradores son elementos de D y sus denominadores son elementos de S. Vimos que dos elementos de $S^{-1}R$ representan a la misma fracción si sus numeradores y denominadores satisfacen cierta ecuación en R... quiero decir:

$$\frac{d_1}{s_1} = \frac{d_2}{s_2}$$
 si y sólo si $d_1 s_2 = d_2 s_1$.

Les recuerdo las operaciones que hacen de $S^{-1}R$ un anillo:

Definición.

$$\begin{split} & + : S^{-1}D \times S^{-1}D \longrightarrow S^{-1}D & \frac{d_1}{s_1} + \frac{d_2}{s_2} := \frac{d_1s_2 + d_2s_1}{s_1s_2} \\ & \cdot : S^{-1}D \times S^{-1}D \longrightarrow S^{-1}D & \frac{d_1}{s_1} \cdot \frac{d_2}{s_2} := \frac{d_1d_2}{s_1s_2} \end{split}$$

Anillos de Fracciones 2020-4 4 / 12

Luego, demostramos el siguiente teorema:

Teorema 1

- \circ $S^{-1}D$ es un dominio entero.
- 2 La función $\iota: D \longrightarrow S^{-1}D$ dada por $\iota(d) = \frac{d}{10}$ es un homomorfimso inyetivo de anillos que manda el uno de D en el uno de $S^{-1}D$.
- **3** Para cada $s \in S$, $\iota(s) \cdot \frac{1}{s} = 1 = \frac{1}{s} \cdot \iota(s)$
- **4** Si A es un anillo conmutativo unitario y si $\varphi: D \longrightarrow A$ es un homomorfismo de anillos conmutativos unitarios tal que $\varphi(1_D) = 1_A$ y que que $\varphi(S) \subset \mathcal{U}(A)$, entonces existe exactamente un morfismo de anillos $\overline{\varphi}: S^{-1}D \longrightarrow A$ tal que el diagrama conmuta

La respuesta

Uno podría [ostentosamente] llamar "Teorema fundamental de la localización de dominios enteros" al humilde Teorema 1.

La respuesta a la pregunta que inaugura muestra primer transparencia está en el Teorema 1 y en el tamaño del conjunto S.

- -¿correcto?, ¿no?
- -Yo no tengo tan claro...
- -Bien, te lo pongo con detalle:

Corolario.

Si $S = R \setminus \{0\}$, $S^{-1}R$ es un campo.

Anillos de Fracciones 2020-4 6 / 12

Demostración.

Sea $\frac{d}{s} \in S^{-1}R$ que no sea la fracción cero. En este caso, $d \neq 0$ [pues de lo contrario tendríamos a la fracción cero]. Luego entonces, $d \in S$ y, por la **parte (3)** del Teorema 1, tenemos que $\frac{1}{d} \in S^{-1}D$.

De esta manera

$$\frac{d}{s} \cdot \frac{s}{d} = \left[\frac{d}{1_D} \cdot \frac{1_d}{s}\right] \cdot \left[\frac{1_D}{d} \cdot \frac{d}{1_D}\right] = 1 \cdot 1 = 1$$

Esto demuestra que, para cada $\frac{d}{s} \in S^{-1}R$ no cero, $\frac{d}{s} \in \mathcal{U}(S^{-1}R)$. Ergo, $S^{-1}R$ es un campo.

Definición.

Si D es un dominio entero, $|D| \ge 1$ y $S = D \setminus \{0\}$, el anillo $S^{-1}D$ recibe el nombre de campo de cocientes (o de fracciones) de D. Se suele denotar por Q(D)

7 / 12

Anillos de Fracciones 2020-4

Parte que faltó del Teorema 1

Para la demostración de la parte 4 del Teorema 1 suponemos un morfismo de anillo unitarios $\varphi:D\longrightarrow A$ tal que $\varphi(1_D)=1_A$. El paso siguiente es proponer un $\overline{\varphi}:S^{-1}D\longrightarrow A$ de la siguiente manera:

$$\overline{\varphi}\left(\frac{d}{s}\right) = \varphi(d)[\varphi(s)]^{-1}$$

Ya vimos que esta es una función de facto², que es un morfismo de anillos y que hace conmutar al diagrama, pero... !falta ver que esta es la única función con estas propiedades!. Para esto, ¿qué hacemos? pues, suponemos un otro morfismo de anillo unitarios $\psi: S^{-1}D \longrightarrow A$ que hace conmutar al diagrama.

Anillos de Fracciones 2020-4 8 / 12

²que no depende del representante de la fracción que escojam<u>o</u>s → ⟨≡⟩ → ⟨≡⟩ → ⟨□⟩

Como ψ hace al diagrama conmutar, tendríamos que

para cada
$$d \in D$$
, $\psi\left(\frac{d}{1_D}\right) = \varphi(d)$.

Además, si $s \in D$ tenemos que

$$\psi\left(\frac{1_D}{s}\right) = [\varphi(s)]^{-1}.$$

Esto ocurre pues,

$$\psi\left(\frac{1_D}{s}\right)\varphi(s) = \psi\left(\frac{1_D}{s}\right)\psi\left(\frac{s}{1_D}\right) = \psi\left(\frac{1_D}{s}\cdot\frac{s}{1_D}\right)$$
$$= \psi\left(\frac{1_D}{1_D}\right) = \varphi(1_D) = 1_A.$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

Anillos de Fracciones 2020-4 9 / 12

Finalement, para cada $\frac{d}{s} \in S^{-1}D$

$$\psi\left(\frac{d}{s}\right) = \psi\left(\frac{d}{1_D} \cdot \frac{1_D}{s}\right) = \psi\left(\frac{d}{1_D}\right)\psi\left(\frac{1_D}{s}\right)$$
$$= \varphi(d)[\varphi(s)]^{-1}.$$

Esto demuestra que ψ y $\overline{\varphi}$ coinciden.

La conclusión de todo este rollo es que $\overline{\varphi}$ es único con sus propiedades.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

10 / 12

Anillos de Fracciones 2020-4

Sigamos con un ejercicio para repasar esta construcción.

Proposición:

Si K es un campo, muestre que Q(K) es isomorfo a K.

Demostración.

Basta demostrar que el morfismo $\iota: K \to Q(K)$ es suprayectivo. Para esto notemos lo siguiente: Si $a \in K \setminus \{0\}$, entonces $\iota(a^{-1}) = \frac{1}{a}$. Esto es claro pues,

$$\iota(a^{-1}) \cdot \frac{a}{1_k} = \frac{a^{-1}}{1_K} \cdot \frac{a}{1_k} = \frac{1_K}{1_K} = 1.$$

Por lo tanto, si $\frac{a}{b} \in Q(K)$, entonces $\iota(ba^{-1}) = \frac{a}{b}$. Esto demuestra que ι es biyectiva y, por consiguiente, que es un isomorfismo de anillos que mapea 1_k en $1_{Q(K)}$.

11 / 12

Anillos de Fracciones 2020-4

Más ejercicios.

- ① Muestre que si D y \tilde{D} son isomorfos entonces, Q(D) y son $Q(\tilde{D})$ son isomorfos.
- ② Cualquier morfismo inyectivo $D \longrightarrow \tilde{D}$ se extiende a un correspondiente morfismo inyectivo $Q(D) \longrightarrow Q(\tilde{D})$.

Anillos de Fracciones 2020-4 12 / 12