Documentation

Lucas Guesser Targino da Silva February 3, 2023

Contents

1	Share Market 5		
	1.1	Basic Definitions	
	1.2	Problem Definitions	
		1.2.1 Definitions	
	1.3	Problem Description	
	1.4	Solution - Dynamic Programming	
		1.4.1 Initial State	
		1.4.2 Optimal Substructure	
	1.5	Solution - Simple	
2	Sun	of the Range	
	2.1	Problem Definition	
		2.1.1 Input	
		2.1.2 Output	
	2.2	Example	
	2.3	Solution Naive	
	2.4	Solution Optimized	
3	Lon	gest Increasing Subsequence 13	
	3.1	Basic Definitions	
	3.2	Problem Definition	
	_	3.2.1 Input	
		3.2.2 Output	
		3.2.3 Goal	
	2 2	Naive Algorithm	

4 CONTENTS

Chapter 1

Share Market

1.1 Basic Definitions

Definition 1 (Natural). Given $v \in \mathbb{N}$, we define:

$$\mathbb{N}_v = \{ n \in \mathbb{N} : n \geqslant v \} \tag{1.1}$$

Definition 2 (Range). Given $n \in \mathbb{N}_2$, we define the **Range of** n as:

$$[[n]] = \{0, \dots, n-1\} = \{i \in \mathbb{N} : i < n\}$$

$$(1.2)$$

Definition 3 (Square). Given $n \in \mathbb{N}_2$, we define the **Square of** n as:

$$sq(n) = [[n]] \times [[n]] \tag{1.3}$$

1.2 Problem Definitions

You are given an array in which the ith element is the price of a given stock on the day i. You are permitted to complete at most 1 transaction (i.e. buy once and sell once). What is the maximum profit you can gain?

Notice that you cannot sell a stock before buying it.

1.2.1 Definitions

Definition 4 (Price Tuple). Given $n \in \mathbb{N}_2$, a **Price Tuple** p is a positive real tuple with n elements:

$$p = \langle p_0, \dots, p_{n-1} \rangle \in \mathbb{R}^n_+ \tag{1.4}$$

Definition 5 (Operation Pair). Given $n \in \mathbb{N}_2$, an **Operation Pair** ω is a pair:

$$\omega = \langle b(\omega), s(\omega) \rangle \in sq(n) \quad , b < s \tag{1.5}$$

when the context is clear enough, we will simply write $\omega = \langle b(\omega), s(\omega) \rangle = \langle b, s \rangle$.

Definition 6 (Ascending Operation Pair). Given $n \in \mathbb{N}_2$ and a Price Tuple p, an Operation Pair $\omega = \langle b, s \rangle$ is said to be **Ascending** when:

$$p_b \leqslant p_{b+1} \leqslant \dots \leqslant p_{s-1} \leqslant p_s \tag{1.6}$$

Definition 7 (Maximal Operation Pair). Given $n \in \mathbb{N}_2$ and a Price Tuple p, we say that an Ascending Operation Pair $\omega = \langle b, s \rangle$ is a **Maximal Operation Pair**, or simply that ω is **Maximal**, when it is Ascending and it satisfies the conditions:

$$p_s - p_b \geqslant p_{s+1} - p_b$$
 , if $s + 1 < n$ (1.7)

$$p_s - p_b \geqslant p_s - p_{b-1}$$
 , if $b - 1 > 0$ (1.8)

Theorem 1. Given $n \in \mathbb{N}_2$ and a Price Tuple p, an Operation Pair $\omega = \langle b, s \rangle$ is Maximal if and only if the following conditions are satisfied:

$$p_s \geqslant p_{s+1}$$
 , if $s+1 < n$ (1.9)

$$p_b \leqslant p_{b-1}$$
 , if $b-1 > 0$ (1.10)

Proof. It comes directly from the inequalities of the Definition 7.

Definition 8 (Independent Operation Pairs). Given two Operation Pairs ω, ω' , we say that ω, ω' are **Independent** when:

$$s(\omega) < b(\omega') \lor s(\omega') < b(\omega) \tag{1.11}$$

moreover, given a set of Operation Pairs $S = \{\omega_0, \dots, \omega_{m-1}\}$, we say that S is independent when it satisfies:

$$\forall \omega \forall \omega' (\omega \in S \land \omega' \in S \to \omega, \omega' \text{ are independent})$$
 (1.12)

i.e. all Operation Pairs $\omega, \omega' \in S$ are pairwise Independent.

Definition 9 (Operation Set). Given $n \in \mathbb{N}_2$, an **Operation Set** $S \subseteq sq(n)$ is a set which satisfies:

- 1. $\forall \omega (\omega \in S \to \omega \text{ is an Operation Pair})$
- 2. S is independent

Moreover, we denote the set of all possible Operations Set by:

$$\Omega_n = \{ S \subseteq sq(n) : S \text{ is an Operation Set} \}$$
 (1.13)

Definition 10. Given an $n \in \mathbb{N}_2$, a Price Tuple p, and an Operation Set $S \in \Omega_n$, the price $\rho(S)$ of S is:

$$\rho(S) = \sum_{\omega \in S} p_{s(\omega)} - p_{b(\omega)}$$
(1.14)

Lemma 1. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, if a Operation Set $S^* \in \Omega_n$ is has optimal price, then all Operation Pairs of S^* are Maximal, i.e.:

$$\rho\left(S^{*}\right) = \max_{S \in \Omega_{n}} \left[\rho\left(S\right)\right] \to \forall \omega \left(\omega \in S^{*} \to \omega \text{ is Maximal}\right)$$

$$(1.15)$$

Proof. Suppose $S^* \in \Omega_n$ is a Operation Set with optimal price. Suppose by contradiction that $\exists \omega \, (\omega \in S^* \wedge \omega \text{ is not Maximal})$, and let $\omega = \langle b, s \rangle$ be such Operation Pair. By Theorem 1, one of the following cases must be true:

- 1. $p_s < p_{s+1}$, if s+1 < n
- 2. $p_b > p_{b-1}$, if b-1 > 0

Case 1

Suppose that $p_s < p_{s+1}, s+1 < n$.

Case 1.1

Suppose in addition that $\omega' = \langle b, s+1 \rangle$ is independent of all $\omega \in S^* \setminus \{\omega\}$. Let $S' = (S^* \setminus \{\omega\}) \cup \{\omega'\}$. Notice that

$$\rho(\omega) = p_{s(\omega)} - p_{b(\omega)} < p_{s(\omega')} - p_{b(\omega')} = \rho(\omega')$$
(1.16)

Therefore $\rho(S^*) < \rho(S')$ (because S^* and S' differ only in the elements above), contradicting the optimality of S^* .

Case 1.2

Suppose in addition that $\exists \omega'(\omega' \in S^* \land b(\omega') = s+1)$, and let $\omega' = \langle s+1, s' \rangle$ be such Operation Pair. Let $\omega'' = \langle b, s' \rangle$ and $S'' = (S^* \cup \omega'') \setminus \{\omega, \omega'\}$. Notice that

$$\rho(\omega) + \rho(\omega') =$$

$$(p_{s(\omega)} - p_{b(\omega)}) + (p_{s(\omega')} - p_{b(\omega')}) =$$

$$(p_s - p_b) + (p_{s'} - p_{s+1}) =$$

$$(p_{s'} - p_b) + (p_s - p_{s+1}) <$$

$$p_{s'} - p_b =$$

$$\rho(\omega'')$$

$$(1.17)$$

Therefore $\rho(S^*) < \rho(S'')$ (because S^* and S' differ only in the elements above), contradicting the optimality of S^* .

Case 1 - Conclusion

The hypothesis $p_s < p_{s+1}$, s+1 < n leads to a contradiction. Therefore, if S^* is optimal, then $p_s \ge p_{s+1}$, s+1 < n, as we wanted to prove.

Case 2

Suppose that $p_b > p_{b-1}, b-1 > 0$. The proof of this case is similar to the proof of the Case 1.2.1, but this uses b and b-1 instead of s and s-1.

Definition 11. Given an $n \in \mathbb{N}_2$, let $\omega = \langle b, s \rangle \in sq(n)$ be an Operation Pair. We say that i is included in ω , and denote by $i \triangleright \omega$, when $b \leqslant i \leqslant s$.

Definition 12. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, we say that an Operation Set $S \in \Omega_n$ is Great when:

$$\forall i ((i \in [[n-1]] \land p_i < p_{i+1}) \to (\exists \omega (\omega \in S \land i \triangleright \omega \land (i+1) \triangleright \omega)))$$

$$(1.18)$$

i.e. the indices of all ascending pairs of p are included in ω .

Lemma 2. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, if a Operation Set $S^* \in \Omega_n$ is has optimal price, then S^* is Great.

Proof. Suppose by contradiction that S^* is not Great, i.e.

$$\exists i \big((i \in [[n-1]] \land p_i < p_{i+1}) \land (\nexists \omega \, (\omega \in S \land i \triangleright \omega \land (i+1) \triangleright \omega)) \big)$$

$$\tag{1.19}$$

and let i be such value.

Case 1

Suppose that $i \triangleright \omega \land \neg (i+1 \triangleright \omega)$ for some $\omega \in S^*$. If $i+1 \triangleright \omega'$ for some ω' , then join ω and ω' to get an Operation Set with cost greater than S^* . If that is not the case, extend ω to include i+1 to get an Operation Set with cost greater than S^* . In all cases, the original hypothesis contradicts the optimality of S^* .

Case 2

Suppose that $\neg(i \triangleright \omega) \land i + 1 \triangleright \omega$ for some $\omega \in S^*$. This case is similar to the previous one, except that the Operation Pair has to be extended backwards instead of forwards.

Case 3

Suppose that $\forall \omega (\omega \in S^* \to (\neg(i \triangleright \omega) \land \neg(i+1 \triangleright \omega)))$. Create a new Operation Set $S' = S^* \cup \{\langle i, i+1 \rangle\}$, which has greater cost, contradicting the optimality of S^* .

Conclusion

The cases above cover all possible cases. Therefore, the lemma has been proven by contradiction.

Lemma 3. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, if an Operation Set $S^* \in \Omega_n$ satisfy:

- 1. $\forall \omega \ (\omega \in S^* \to \omega \ is \ Maximal)$
- 2. S^* is Great

then S has optimal price, i.e $\rho(S) = \max_{S' \in \Omega} [\rho(S')].$

It is tiresome to write this proof so I won't.

Theorem 2. Given an $n \in \mathbb{N}_2$ and a Price Tuple p, an Operation Set $S^* \in \Omega_n$ has optimal price if and only if it satisfies:

- 1. $\forall \omega \ (\omega \in S^* \to \omega \ is \ Maximal)$
- 2. S^* is Great

Proof. Lemmas 1 and 2 prove the \Rightarrow part. Lemma 3 proves the \Leftarrow .

1.3 Problem Description

Input a Price Tuple p

Output a value $z \in \mathbb{R}$

Goal $\max z$

1.4 Solution - Dynamic Programming

Given that you buy on a day i, while the value does not decrease, you keep it. If it will drop the next day, you sell it.

9

1.4.1 Initial State

Find the first pair $\langle b, s \rangle$ for which the price increases, i.e. the first pair of consecutive indices for which $p_s - p_b > 0$.

1.4.2 Optimal Substructure

Let:

- 1. $\langle b_l, s_l \rangle$ be the last operation;
- 2. p_{s_l} be the price of the last sell;
- 3. i the index of the current day;
- 4. p_i the stock price of the current day;
- 5. p_{i-1} the stock price of the previous day;

Cases:

- 1. if $(s_l == i 1) \land (p_{s_l} \leq p_i)$
 - (a) replace $\langle b_l, s_l \rangle$ by $\langle b_l, i \rangle$
 - (b) rationale: if the stock price is increasing, you keep it;
- 2. if $(s_l < i 1) \land (p_{i-1} \leqslant p_i)$
 - (a) add $\langle i-1,i\rangle$
 - (b) rationale: if you have no stock and it will increase, you buy and sell it;
- 3. the others are cases in which the stock price drops, and there is nothing to do;

Complexity: $\mathcal{O}(n)$

1.5 Solution - Simple

Algorithm 1 Simple-Algoruithm

- 1: $\Delta p \leftarrow [\langle p_{i+1} p_i \rangle \ for \ i \in \{0, \dots, n-2\}]$
- 2: $\Delta p \leftarrow filter(\Delta p, (>=0))$
- 3: $r \leftarrow sum(\Delta p_{>})$
- 4: return r

The filter takes care of removing the drops on the price, while the sum of the differences computes the gains.

Complexity: $\mathcal{O}(n)$

Chapter 2

Sum of the Range

2.1 Problem Definition

2.1.1 Input

- 1. two natural numbers $m, n \in \mathbb{N}$
- 2. an array of values $v \in \mathbb{R}^n$
- 3. an set of queries $Q = \{\langle i, j \rangle : i, j < n\}^m$

2.1.2 Output

The output $a:Q\to\mathbb{R}^m$ is the answer function of all queries Q. The answer a(q) to a query $q=\langle i,j\rangle$ is given by:

$$a(q) = \sum_{k=i}^{j} v[k] \tag{2.1}$$

2.2 Example

$$n = 6 (2.2)$$

$$m = 3 (2.3)$$

$$v = \langle 1, -2, 3, 10, -8, 0 \rangle \tag{2.4}$$

$$q = \langle \langle 0, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 3 \rangle \rangle \tag{2.5}$$

$$a = \langle 2, 3, 10 \rangle = \langle 1 - 2 + 3, -2 + 3 + 10 - 8, 10 \rangle$$
 (2.6)

2.3 Solution Naive

Algorithm 2 Naive

```
Require: m \in \mathbb{N}, n \in \mathbb{N}, v \in \mathbb{R}^n, Q = \{\langle i, j \rangle : i, j < n\}^m

1: a = zeros(m)

2: for k \in \{0, \dots, m-1\} do

3: \langle i, j \rangle \leftarrow Q[k]

4: a[k] \leftarrow sum(\langle v[i], \dots, v[j] \rangle)

5: return a
```

2.4 Solution Optimized

Notice that:

$$a(\langle i,j\rangle) = \begin{cases} a(\langle 0,j\rangle) - a(\langle 0,i-1\rangle) &, & \text{if } i > 0\\ a(\langle 0,j\rangle) &, & \text{if } j = 0 \end{cases}$$
 (2.7)

The algorithm is then: compute all values $a(\langle 0, j \rangle), \forall j \in \{0, \dots, n-1\}$ and then answer all queries using the formula above.

Algorithm 3 Opt

```
Require: m \in \mathbb{N}, n \in \mathbb{N}, v \in \mathbb{R}^n, Q = \{\langle i, j \rangle : i, j < n\}^m

1: \Delta s \leftarrow \operatorname{zeros}(n+1)

2: \operatorname{for} i \in \{0, \dots, n-1\} \operatorname{do}

3: \Delta s[i+1] \leftarrow \Delta s[i] + v[i]

4: a = \operatorname{zeros}(m)

5: \operatorname{for} k \in \{0, \dots, m-1\} \operatorname{do}

6: \langle i, j \rangle \leftarrow Q[k]

7: a[k] = \Delta s[j+1] - \Delta s[i]

8: \operatorname{return} a
```

Chapter 3

Longest Increasing Subsequence

3.1 Basic Definitions

Definition 13 (Sequence). A **Sequence** is a function f from the subset $I \subseteq \mathbb{N}$ of the Natural Numbers into a Codomain Cd:

$$f: I \to Cd$$
 (3.1)

Denote by S(I, Cd) the set of all sequences of I into Cd:

$$S(n, Cd) = \{f : I \to Cd\}$$
(3.2)

Definition 14 (Successor). Let $I \subseteq \mathbb{N}$ be a set. The successor is a bijective function:

$$\sigma_I: I \setminus \max(I) \to I \setminus \min(I)$$
 (3.3)

$$i \mapsto \min \left\{ j \in I : j > i \right\} \tag{3.4}$$

Definition 15 (Increasing Sequence). Given sets $I \subseteq \mathbb{N}$ and Cd, a sequence $f \in \mathcal{S}(I, Cd)$ is said to be **increasing** when the values of the sequence increase, i.e.:

$$f$$
 is an increasing sequence $\leftrightarrow \forall i (i \in I \setminus \max(I) \to f(i) \leqslant f(\sigma_I(i)))$ (3.5)

Definition 16 (Length of a Sequence). Given sets $I \subseteq \mathbb{N}$ and Cd, and a sequence $f \in \mathcal{S}(I, Cd)$, the length of the sequence f, denoted by $\mathfrak{L}(f)$ is the cardinality (number of elements) of its domain I:

$$\mathfrak{L}(f) = |I| \tag{3.6}$$

Definition 17 (Subsequence). Let $f \in \mathcal{S}(I, Cd)$ be a sequence from $I \subseteq \mathbb{N}$ into a Codomain Cd. A sequence $g \in \mathcal{S}(I', Cd')$ is called a subsequence of f, and denoted by $g \leq f$, when $I' \subseteq I$ and $Cd' \subseteq Cd$:

$$\forall f (f \in \mathcal{S}(I, Cd) \to \forall q (q \in \mathcal{S}(I', Cd') \to (q \prec f \leftrightarrow (I' \subset I \land Cd' \subset Cd)))) \tag{3.7}$$

Moreover, denote by:

- 1. $\mathfrak{s}(f)$ the set of all subsequences of the sequence f;
- 2. $\mathfrak{d}(g) \subseteq I$ the domain of a subsequence $g \preceq f$;

3.2 Problem Definition

3.2.1 Input

- 1. a natural number $n \in \mathbb{N}$;
- 2. A sequence $v \in \mathcal{S}(\{0,\ldots,n-1\},\mathbb{R})$

3.2.2 Output

Define $\mathcal{I}(v) = \{s \in \mathfrak{s}(v) : s \text{ is increasing}\}\$ the set of all increasing subsequences of v. An output is any element $s \in \mathcal{I}(v)$.

3.2.3 Goal

Find the longest increasing subsequence of v:

$$s^* = \underset{s \in \mathcal{I}(v)}{\arg \max} \ \mathfrak{L}(s) \tag{3.8}$$

3.3 Naive Algorithm

Algorithm 4 Naive

Require: $n \in \mathbb{N}, v \in \mathbb{R}^n$

- 1: $S \leftarrow \text{generate_all_subsequences}(v)$
- 2: $S' \leftarrow \text{filter(is_increasing_sequence}, s)$
- 3: $s^* \leftarrow \arg\max \mathfrak{L}(s)$
- 4: return s^*