Suizhong Qin
Smith impedance chart Student ID: 17018962

(a) The normalised impedance for load is:

Normalised impedance =
$$\frac{ZL}{Z_0} = \frac{17.5 + j30.0}{50.0} = 0.35 + j0.6$$

The 0.35+jo.6 is plotted on the Smith Chart.

(b) The voltage standing wave ratio (VSWR) is equal to 4, draw this circle on the Smith chart. The normalised admittance y_L is obtained by rotating $\frac{ZL}{ZO}$ by 180°

Then plotting the matched condition circle (G=1).

Rotating y_L with a distance of to intercept with G=1 circle,

There will be two intercepts, You and Yd2

For
$$d_1$$
: $d_1 = 0.5\lambda - 0.342\lambda + 0.324\lambda$
= 0.482 λ

For
$$d_2$$
: $d_2 = 0.5\lambda - 0.342\lambda + 0.176\lambda$

$$= 0.334 \lambda$$

Since
$$\lambda = \frac{C}{f} = \frac{3 \times 10^8 \text{ ms}^{-1}}{1.5 \times 10^9 \text{ Hz}} = 0.2 \text{ m} = 20 \text{ cm}$$

$$d_1 = 0.482 \times 20 \text{ cm} = 9.64 \text{ cm}$$

$$dz = 0.334 \times 20cm = 6.68cm$$

Since $d_1 = 9.64$ cm which is greater than 8 cm, the d should be 9.64 cm.

Therefore, the yd=1-j1.5, and d=9.64cm.

(c) Yin = Ys + Yd

Since yin = 1, yd = 1 - j1.5

 $y_S = y_{in} - y_{ol}$

= 1 - (1 - j1.5)

= j1.5

The ys is moving from the end of stub to j1.5.

The required stub = $0.156\lambda + 0.25\lambda = 0.406\lambda$

The length = 0.406 x 20cm = 8.12cm