Automorphic forms and L-functions for the unitary group*

Re-TEXed by Seewoo Lee[†]

Stephen Gelbart
Department of Mathematics
Cornell University
Ithaca, New York 14853/USA

and

Ilya Piatetski-Shapiro
Department of Mathematics
Yale University, New Haven, CT. 06520/USA
Tel Aviv University, Ramat-Aviv, Israel

Last updated: October 18, 2023

Introduction

Our purpose is to define and analyze L-functions attached to automorphic cusp forms on the unitary group $G = U_{2,1}$ and a six-dimensional representation

$$\rho: {}^LG \to \mathrm{GL}_6(\mathbb{C})$$

of its *L*-group.

^{*}Notes based on the lectures by S. G. at the University of Maryland Special Year on Lie Group Representations, 1982-83.

[†]seewoo5@berkeley.edu

The motivation for this work is three fold.

Firstly, we use these L-functions to analyze the lifting of cusp forms from $U_{1,1}$ to $U_{2,1}$; here the model for our work is Waldspurger's L-function theoretic characterization of the image of Shimura's map for modular forms of half-integral weight (cf. [Wald]).

A second motivation comes from the need to relate the poles of the L-functions for G, to integrals of cusp forms over cycles coming from $U_{1,1}$. The prototype here is the recent proof of Tate's conjecture for Hilbert modular surfaces due to Harder, Langlands, and Rapaport.

Thirdly, we view this work as a special contribution to the general program of constructing local L and ε factors of Langlands type for representations of arbitrary reductive groups. In [PS1], such a program was sketched generalizing classical methods of Heeke, Rankin–Selberg, and Shimura. Related developments are discussed in [Jacquet], [Novod], [PS2], and [PS3]. For the unitary group $U_{2,1}$ the present paper extends the developments initiated in [PS3].

Contents

Whittaker Models (Ordinary and Generalized)

3

Notation

- (i) F is a field (sometimes local, somtimes a global field), E is a quadratic extension of F with Galois involution $z \mapsto \bar{z}$.
- (ii) V is a 3-dimensional vector space over E, with basis $\{\ell_{-1}, \ell_0, \ell_1\}$. $(-, -)_V$ is a Hermitian form on V, with matrix

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

with respect to $\{\ell_{-1}, \ell_0, \ell_1\}$.

(iii) $G = U_{2,1} = U(V)$ is the unitary group for the form $(-,-)_V$. P=parabolic subgroup stabilizing the isotropic line through $\ell_{-1} = MN$ with

$$M = \left\{ \begin{bmatrix} \delta & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \bar{\delta}^{-1} \end{bmatrix} : \delta \in E^{\times}, \beta \in E^{1} = \{z : z\bar{z} = 1\} \right\}$$

and unipotent radical

$$N = \left\{ \begin{bmatrix} 1 & b & z \\ 0 & 1 & -\bar{b} \\ 0 & 0 & 1 \end{bmatrix} : z, b \in E, z + \bar{z} = -b\bar{b} \right\}.$$

The center of N is

$$Z = \left\{ \begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} : \bar{z} = -z \right\}$$

❖ Whittaker Models (Ordinary and Generalized)

Some kind of Whittaker model is needed in order to introduce *L*-functions on *G*.

Fix F local (not of characteristic two), and suppose (π, H_{π}) is an irreducible admissible representation of G. Naively, we should look for functionals on H_{π} which transform under N according to a one-dimensional representation. However, since such functionals need not exist in general, and since there are irreducible representations of N which are not 1-dimensional, it is natural to pursue a more general approach.

1.1

Recall N is the maximal unipotent subgroup of G and E is a quadratic extension of F. We fix, once and for all, an element i in E such that $\bar{i}=-i$, so $\Im(z)=(z-\bar{z})/2i$. Regarding E as a 2-dimensional symplectic space over F with skewform $\langle z_1,z_2\rangle=\Im(z_1\bar{z_2})$ we have

$$N = \left\{ \begin{bmatrix} 1 & b & z \\ 0 & 1 & -\bar{b} \\ 0 & 0 & 1 \end{bmatrix} : z, b \in E, z + \bar{z} = -b\bar{b} \right\} \simeq H(E),$$

the Heisenberg group attached to E over F. In particular, N is non-abelian, with commutator subgroup

$$[N,N] = \left\{ \begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\} = Z,$$

the center of N. The maximal abelian subgroup of N is

$$N' = \left\{ \begin{bmatrix} 1 & b & z \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{bmatrix} \in N : b \in F \right\}.$$

1.2

The irreducible representations of the $\underline{\text{Heisenberg group}}$, and hence those of N, are well known:

(i) σ is 1-dimensional.

In this case, σ must be trivial on

$$Z = [N, N]$$

and define a character of N/Z. So

$$N/Z \simeq \left\{ \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{bmatrix} \right\} \simeq E$$

implies σ corresponds to a character of E, i.e.

$$\sigma = \psi_N \begin{pmatrix} \begin{bmatrix} 1 & a & z \\ 0 & 1 & -\bar{a} \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} = \psi(\Im a)$$

with ψ a character of F.

(ii) σ is infinite-dimensional.

In this case (by the Stone-von Neumann uniqueness theorem), σ is completely determined by its "central" character. In particular, if

$$\sigma\left(\begin{bmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}\right) = \psi(\Im z)I$$

for some (additive) character ψ of F, then

$$\sigma = \rho_{\psi} = \operatorname{Ind}_{N'}^{N} \psi_{N'},$$

with $\psi_{N'}$ the character of (the maximal abelian subgroup) N' obtained by trivially extending ψ from Z to N'.

1.3

<u>Definition</u>. By a (generalized) Whittaker functional for (π, H_{π}) we understand N-map from N_{π} to some irreducible representation of (σ, L_{σ}) of N (possibly infinite dimensional).

1.4

Remark. The torus

$$T = \left\{ \begin{bmatrix} \delta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \bar{\delta}^{-1} \end{bmatrix} : \delta \in E^{\times} \right\}$$

acts by conjugation on N, taking

$$\begin{bmatrix} 1 & b & z \\ 0 & 1 & -\overline{b} \\ 0 & 0 & 1 \end{bmatrix} \quad \text{to} \quad \begin{bmatrix} 1 & \delta b & \delta \overline{\delta} z \\ 0 & 1 & -\overline{\delta b} \\ 0 & 0 & 1 \end{bmatrix}.$$

So if ψ_N denotes the 1-dimensional representation of N corresponding to the fixed character of F as in 1.2 (i), Pontrygin duality for $E \simeq N/Z$ implies that any other 1-dimensional representation is trivial or of the form

$$\psi_N^{\delta}(n) = \psi_N \left(\begin{bmatrix} \delta & & & \\ & 1 & & \\ & & \bar{\delta}^{-1} \end{bmatrix} n \begin{bmatrix} \delta & & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix}^{-1} \right)$$

for some $\delta \in E^{\times}$.

1.5

If σ is a one-dimensional representation of N of the form ψ_N , a given irreducible admissible representation (π, H_{π}) need <u>not</u> possess a nontrivial ψ_N -Whittaker functional \mathcal{L} . However, if it does, then by 1.4 it possesses a σ -Whittaker functional for any one-dimensional representation ψ_N^{δ} , given by the formula

$$\mathcal{L}^{\delta}(v) = \mathcal{L}\left(\pi\left(\begin{bmatrix} \delta & & \\ & 1 & \\ & & \bar{\delta}^{-1} \end{bmatrix}\right)v\right), \quad v \in H_{\pi}.$$

In this case, we call (π, H_{π}) non-degenerate. By a well-known theorem of Shalika and Gelfand-Kazhdan (cf. [Sha1]), the space of such σ -Whittaker functionals is

one-dimensional. In particular, the corresponding Whittaker models

$$\mathcal{W}(\pi, \psi) = \{ W(g) = \mathcal{L}(\pi(g)v) : v \in H_{\pi} \}$$

are unique.

1.6

$$R = \left\{ \begin{bmatrix} \delta & * & * \\ 0 & \beta & * \\ 0 & 0 & \delta \end{bmatrix} \in P : \delta, \beta \in E^1 \right\} \simeq (E^1 \times E^1) \ltimes N.$$

In particular, each irreducible infinite dimensional representation ρ_{ψ} of N extends to a like representation ρ_{ψ}^{α} of R with α a character of $E^1 \times E^1$.

Theorem (Existence and Uniqueness of Generalized Whittaker Models: [PS3).] Any (π, H_{π}) possesses a ρ_{ψ}^{α} -Whittaker functional for some choice of ρ_{ψ}^{α} ; moreover, the space of such functionals is at most one dimensional.

We shall discuss this result in more detail in the global context of §??.