Generation and Maintenance of 2-hop Labels for Accelerating Group Steiner Tree Search on Graphs

The road map of this supplement is as follows.

- In Section S1, we provide proofs that are omitted in the main contents.
- In Section S2, we provide detailed discussions on complexities of algorithms.

S1. PROOFS

Theorem 1. A set of 2-hop labels that satisfies the GST-customized 2-hop cover constraint supports the query of a shortest path between every pair of a vertex $v \in V$ and a candidate vertex group $g \in \Gamma_{all}$.

Proof. We show that we can query the shortest distance/path between every pair of a vertex $v \in V$ and a candidate vertex group $g \in \Gamma_{all}$ using a set L of 2-hop labels that satisfies the above constraint as follows. There are two different cases:

- 1. Case 1: there is a path between v and g on the original graph. Since each mock edge weight M is larger than the total weight of all non-mock edges, a shortest path between v and v_g on the transformed graph contains a shortest path between v and g on the original graph. Since $|\{v,v_g\}\cap D|<2$, there is a common hub vertex $u\in C(v)\cap C(v_g)$ in a shortest path between v and v_g . Thus, we can use L to query the shortest distance between v and v_g , which is smaller than 2M and equals the shortest distance between v and g on the original graph plus M. Hence, equivalently, we can use L to query the shortest distance between v and g. Furthermore, since there is no mock vertex in the middle of a shortest path between v and v_g on the transformed graph, we can also iteratively query the shortest path between v and v_g on the original graph by adding predecessors into labels.
- 2. Case 2: there is no path between v and g on the original graph. Thus, v and v_g are not properly connected, and there may not be a common hub vertex $u \in C(v) \cap C(v_g)$. If there is no common hub vertex $u \in C(v) \cap C(v_g)$, then we can directly deduce that there is no path between v and g on the original graph. If there is a common hub vertex $u \in C(v) \cap C(v_g)$, then since v and v_g are not properly connected on the transformed graph, there must be at least one mock vertex in the middle of any path between v and v_g , and as a result the queried distance of any path between v and v_g is no smaller than 2M, which still indicates that there is no path between v and v on the original graph.

Hence, this theorem holds.

Theorem 2. A set of 2-hop labels that has the GST-customized canonical property is minimal for meeting the GST-customized 2-hop cover constraint.

Proof. Consider a set *L* of 2-hop labels that has the GST-customized canonical property. For every pair of properly connected vertices v_i and v_j such that $|\{v_i, v_j\} \cap D| < 2$, let v_k be the vertex with the highest rank in all shortest paths between v_i and v_j . We have $v_k \notin D$ and $v_k \in C(v_i) \cap C(v_j)$, since v_k has the highest rank in all shortest paths between v_i and v_k , as well as between v_j and v_k , and no vertices in these shortest paths can be hubs of v_k , except itself. Thus, *L* meets the GST-customized 2-hop cover constraint. Moreover, consider an arbitrary label $(v_i, d_{v_i v_j}) \in L(v_j)$. We have (i) v_i and v_j are properly connected; (ii) $|\{v_i, v_j\} \cap D| < 2$; and (iii) the rank of v_i is the highest among all vertices in all shortest paths between v_i and v_j . As a result, there is no other vertex $v_k \in C(v_i) \cap C(v_j)$ in a shortest path between v_i and v_j , which means that deleting this arbitrary label makes *L* not satisfy the GST-customized 2-hop cover constraint any more. Hence, this theorem holds. □

Theorem 3. The set L of 2-hop labels generated by HL4GST has the GST-customized canonical property, and thus is minimal for meeting the GST-customized 2-hop cover constraint.

Proof. Let L^{can} be the set of labels that has the GST-customized canonical property. We prove that every label in L^{can} is also in L as follows.

Consider an arbitrary label $(u, d_{vu}) \in L^{can}(v)$. We observe that (i) u and v are properly connected; (ii) $|\{u, v\} \cap D| < 2$; and (iii) the rank of u is the highest among all vertices in all

shortest paths between u and v. Thus, we have $d_{vu} < 2M$, and the generation of the above label cannot be pruned by GST-customized pruning technique in Line 11 of HL4GST. Further consider the labeling process for hub u in HL4GST. HL4GST generates labels with hub u by spreading u to other vertices, starting from u, via a Dijkstra-style process. Suppose that the spread of hub u to v along a shortest path between u and v stops at a middle vertex v' due to the query pruning technique in Line 6 of HL4GST. This means that, before inserting $(u, d_{v'u})$ into L'(v'), the queried distance between u and v' is no larger than $d_{v'u}$. As a result, there must be a common hub vertex $z \in C(u) \cap C(v')$ such that z is in a shortest path between u and v', and r(z) > r(u). This contradicts with the fact that the rank of u is the highest among all vertices in all shortest paths between u and v'. Consequently, the spread of hub u to v along a shortest path between u and v cannot stop at a middle vertex, and as a result HL4GST inserts (u, d_{vu}) into L'(v).

We further show that HL4GST also inserts (u, d_{vu}) into L(v) as follows. When it checks $(u, d_{vu}) \in L'(v)$ in Line 18 during the cleaning process, it computes d'(u, v) using $L'_{>r(u)}(v)$ and L'(u). If $d'(u, v) \leq d_{vu}$, then there must be a common hub vertex $z \in C(u) \cap C(v)$ such that z is in a shortest path between u and v, and r(z) > r(u). This contradicts with the fact that the rank of u is the highest among all vertices in all shortest paths between u and v. Consequently, $d'(u, v) > d_{vu}$ and HL4GST also inserts (u, d_{vu}) into L(v). Hence, every label in L^{can} is also in L.

We further prove that every label not in L^{can} is not in L as follows. Suppose that there is a label $(u, d_{vu}) \in L(v) \setminus L^{can}(v)$. We observe that (i) u and v are not properly connected; or (ii) $|\{u, v\} \cap D| = 2$; or (iii) the rank of u is not the highest among all vertices in all shortest paths between u and v. If u and v are not properly connected or $|\{u, v\} \cap D| = 2$, then $d_{vu} \ge 2M$, and the generation of the above label will be pruned by GST-customized pruning technique in Line 11 of HL4GST, which means that $(u, d_{vu}) \notin L(v)$. Otherwise, we consider the case where the rank of u is not the highest among all vertices in all shortest paths between u and v as follows. Let z be the vertex with the highest rank in all shortest paths between u and v. We have $(z, d_{zv}) \in L'_{>r(u)}(v)$ and $(z, d_{zu}) \in L'(u)$. As a result, HL4GST computes d'(u, v) as a larger value than d_{vu} in Line 19, and does not insert (u, d_{vu}) into L. Hence, every label not in L^{can} is not in L. In conclusion, we have $L^{can} = L$. By Theorem 2, this theorem holds.

Theorem 4. Given a graph and a corresponding set of 2-hop labels that satisfies the GST-customized 2-hop cover constraint, after a batch of edge insertions and edge weight decreases, the maintained set of labels by BatchM4GST-Insert satisfies the above constraint for the updated graph.

Proof. Consider a pair of vertices s and t, we use p'(s,t) to denote a shortest path between s and t after the change. Let u' be the vertex with the highest rank in all shortest paths between s and t after the change, and $u' \in p'(s,t)$. Also let d'(s,t) be the shortest distance between s and t after the change. Suppose that $|\{s,t\} \cap D| < 2$ and d'(s,t) < 2M, *i.e.*, s and t are properly connected after the change.

Let $E_{in} = \{(a_1,b_1),...,(a_i,b_i)\}$ be the set of changed edges on p'(s,t), i.e., $E_{in} \subseteq E_c$. Notably, E_{in} could be empty. Without loss of generality, suppose that a_x is closer to s than b_x along p'(s,t) for each $x \in [1,i]$, and u' is between (a_k,b_k) and (a_{k+1},b_{k+1}) , as illustrated in Figure S1. Since there are only edge insertions and edge weight decreases, $p'(u',b_k)$ is a shortest path between u' and b_k both before and after the change, and u' has the highest rank in all shortest paths between u' and b_k both before and after the change. We also have $|\{u',b_k\} \cap D| < 2$ and $d'(u',b_k) < 2M$.

Suppose that u' is not a hub of b_k before the maintenance. Since the given set of 2-hop labels satisfies the GST-customized 2-hop cover constraint, to correctly query $d'(u',b_k)$, there must be a vertex z such that $z \in C(u') \cap C(b_k)$, r(z) > r(u'), and z is in a shortest path between u' and b_k . This contradicts with the assumption that u' has the highest rank in all shortest paths between u' and b_k . Thus, $(u',d'(b_k,u')) \in L(b_k)$, and further $(u',d'(a_{k+1},u')) \in L(a_{k+1})$, before the maintenance. BatchM4GST-Insert calls DIFFUSE to re-spread hub u' from b_k to s, and from a_{k+1} to t, along p'(s,t). Thus, $(u',d'(s,u')) \in L(s)$, and similarly $(u',d'(t,u')) \in L(t)$, after the maintenance. Hence, for every pair of properly connected vertices v_i and v_j such that $|\{v_i,v_j\}\cap D|<2$, there is a common hub vertex $u\in C(v_i)\cap C(v_j)$ on a shortest path between v_i and v_j , i.e., the maintained set of labels by BatchM4GST-Insert still satisfies the GST-customized 2-hop cover constraint. This theorem holds.

Theorem 5. Given a graph and a corresponding set of 2-hop labels that satisfies the GST-customized 2-hop cover constraint, after a batch of edge deletions and edge weight increases, the maintained set of labels by BatchM4GST-Delete satisfies the above constraint for the updated graph.

Fig. S1. A illustration for the correctness proofs of the proposed maintenance algorithms.

Proof. We use the notations in the proof of Theorem 4. Consider an arbitrary label $(z, d(z, y)) \in L(y)$ before the change. If this label corresponds to a path that passes through a changed edge, *i.e.*, $d'(z, y) \ge d(z, y)$, then BatchM4GST-Delete must call $SPREAD_1$ to set L(y)[z] to ∞ .

Subsequently, consider a pair of vertices s and t such that $|\{s,t\} \cap D| < 2$ and d'(s,t) < 2M, i.e., s and t are properly connected after the change. We use p'(s,t) to denote a shortest path between s and t after the change. Let u' be the vertex with the highest rank in all shortest paths between s and t after the change, and $u' \in p'(s,t)$.

Before the maintenance, let x be the vertex farthest to u' along $p'(u', b_k)$ such that u' is a hub of x, and the corresponding label-contained distance value is d'(u', x). Let y be the neighbor of x along $p'(u', b_k)$ such that u' is not a hub of y, or u' is a hub of y but the corresponding label-contained distance value is not d'(u', y).

If u' is a hub of y but the corresponding label-contained distance value is not d'(u', y) before the maintenance, then we must have d'(u', y) > d(u', y). In this case, BatchM4GST-Delete must call $SPREAD_1$ to set L(y)[u'] to ∞ , and then call $SPREAD_2$ and $SPREAD_3$ to re-spread hub u' from x to y, and ultimately to s, along p'(s,t), i.e., to generate a new label $(u', d'(u', s)) \in L(s)$.

If u' is not a hub of y before the maintenance, then there must be a vertex z such that $z \in C(u') \cap C(y)$, r(z) > r(u'), and z is in a shortest path between u' and y, and $u' \in PPR[y,z]$ and $y \in PPR[u',z]$ before the maintenance. Since u' is the vertex with the highest rank in all shortest paths between u' and y after the change, z is not in a shortest path between u' and y after the change. To meet this condition, either L(u')[z] or L(y)[z] increases after the graph change. Thus, BatchM4GST-Delete must call $SPREAD_1$ to set either L(u')[z] or L(y)[z] to ∞ . In either case, using the above PPR, BatchM4GST-Delete performs $SPREAD_2$ and $SPREAD_3$ to re-spread hub u' from x to y, and ultimately to s, along p'(s,t), i.e., to generate a new label $(u', d'(u', s)) \in L(s)$.

Therefore, in either case, we have $(u',d'(u',s)) \in L(s)$, and similarly $(u',d'(u',t)) \in L(t)$ after the maintenance. Hence, for every pair of properly connected vertices v_i and v_j such that $|\{v_i,v_j\}\cap D|<2$, there is a common hub vertex $u\in C(v_i)\cap C(v_j)$ on a shortest path between v_i and v_j , *i.e.*, the maintained set of labels by BatchM4GST-Delete still satisfies the GST-customized 2-hop cover constraint. This theorem holds.

S2. TIME AND SPACE COMPLEXITIES

Complexities of HL4GST: The time complexity of HL4GST is

$$O(|E| \cdot \delta \cdot (\delta + \log |V|))$$

in a single thread environment, where δ is the average number of labels associated with each vertex. The details are as follows. First, the labeling process in Lines 1-14 takes $O(|E| \cdot \delta \cdot (\delta + \log |V|))$ time. The reason is that for each label inserted into L'(v) in Line 8, it may insert |N(v)| elements into Q in Line 12, and for each element in Q, it takes $O(\log |V|)$ time to pop it out in Line 5 (e.g., using Fibonacci heap [1]) and $O(\delta)$ time to query a distance in Line 6. Second, the sorting process in Lines 15-16 takes $O(|V| \cdot \delta \cdot \log \delta)$ time. Since we generally have $|E| \gg |V|$, the above complexity is covered by that of the labeling process. Third, the cleaning process in Lines 17-21 takes $O(|V| \cdot \delta^2)$ time, given that a distance query that costs $O(\delta)$ is required for cleaning each label

Complexities of BatchM4GST-Insert: BatchM4GST-Insert has a time complexity of

$$O(|E_c| \cdot \delta^2 + \Upsilon \cdot (\log \Upsilon + d_a \cdot \delta))$$

in a single thread environment, where Υ is the number of update labels, and d_a is the average degree of vertices. The details are as follows. First, populating CL in Lines 1-18 takes $O(|E_c| \cdot \delta^2)$ time, since each distance query in Lines 5 and 13 costs $O(\delta)$. Second, DIFFUSE takes $O(|E_c| \cdot \delta + \Upsilon \cdot (\log \Upsilon + d_a \cdot \delta))$ time. The reason is that, since $O(|CL|) = O(|E_c| \cdot \delta)$, the initialization steps in Lines 21-23 takes $O(|E_c| \cdot \delta)$ time. Moreover, DIFFUSE pops $O(\Upsilon)$ elements out of the priority queue. Each pop operation takes $O(\log \Upsilon)$ times. After each pop, it searches $O(d_a)$ neighbors,

and a distance query that costs $O(\delta)$ may be conducted in each search. On the other hand, due to the cost of *PPR*, the space complexity of BatchM4GST-Insert is $O(|E| \cdot \delta)$.

Complexities of BatchM4GST-Delete: BatchM4GST-Delete has a time complexity of

$$O(|E_c| \cdot \delta + \Upsilon \cdot (\log \Upsilon + d_a \cdot \delta + \kappa \cdot (d_a + \delta)))$$

in a single thread environment, where κ is the average number of PPR elements of each vertex-hub pair. The details are as follows. First, it pushes labels into AL_1 in Lines 2-8 in $O(|E_c| \cdot \delta)$ time. Then, it performs $SPREAD_1$ in $O(\Upsilon \cdot d_a)$ time, since there are $O(\Upsilon)$ labels deactivated, and each deactivation is followed by $O(d_a)$ neighbor searches. Subsequently, it performs $SPREAD_2$ in $O(\Upsilon \cdot \kappa \cdot (d_a + \delta))$ time, since for each of $O(\Upsilon)$ tuples in AL_2 , it checks $O(\kappa)$ PPR elements in Line 19, while checking each PPR element takes $O(d_a + \delta)$ time, due to the cost of $O(d_a)$ for computing d1(x,t) and d1(t,x) in Lines 21 and 28, and the cost of $O(\delta)$ for querying distances in Lines 23 and 30. After that, similar to D1FFUSE in BatchM4GST-Insert, it performs $SPREAD_3$ in $O(\Upsilon \cdot (\log \Upsilon + d_a \cdot \delta))$ time, given that $O(|AL_3|) = O(\Upsilon)$. In the end, due to the cost of PPR, the space complexity of BatchM4GST-Delete is $O(|E| \cdot \delta)$.

Fig. S2. The label numbers of mock vertices.

Fig. S3. maintenance time (1 column * 2 line); non hop

Fig. S4. maintenance time (1 column * 2 line); hop (fixed K)

REFERENCES FOR THE SUPPLEMENT

1. M. L. Fredman and R. E. Tarjan, "Fibonacci heaps and their uses in improved network optimization algorithms," Journal of the ACM **34**, 596–615 (1987).