ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия»

УДК 004.852

СОГЛАСНОВАНО	УТВЕРЖДАЮ
Руководитель,	Академический руководителн
доцент департамента	образовательной программь
программной инженерии	«Программная инженерия»
факультета компьютерных наук,	профессор департамента программной
канд. техн. наук	инженерии, канд. техн. наук
И.В. Иванов	B.B. Шилов
«»20г.	«»20г

Отчет

по исследовательскому курсовому проекту

на тему «Обучение с подкреплением для задач распределения ресурсов в облаке» по направлению подготовки бакалавров 09.03.04 «Программная инженерия»

Выполнил: Студент группы БПИ204 образовательной программы 09.03.04 «Программная инженерия» Пеганов Никита Сергеевич

1 Реферат

Перечень ключевых слов: обучение с подкреплением, reinforcement learning, RL, распределение ресурсов в облаке, облачные технологии, облачные ресурсы.

Краткое описание объекта исследования: особенности выделения ресурсов при работе с облачными сервисами.

Краткое описание предмета исследования: применимость обучения с подкреплением для задачи распределения ресурсов в облаке.

Цель проекта: исследование применимости обучения с подкреплением в задачах распределения облачных ресурсов. Сравнение данного подхода с другими методами решения задачи.

Метод или методология проведения работы: метод эксперимента.

Результаты проекта:

Апробация результатов:

2 Содержание

Содержание

1	Реферат	2
2	Содержание	3
3	Основные термины, определения и сокращения	4
4	Введение	5
5	Обзор и анализ источников	6
6	Выбор методов, алгоритмов, моделей для решения поставленных задач	7
7	Описание выбранных или предлагаемых методов, алгоритмов, моделей, методик	8
8	Описание эксперимента	9
9	Анализ и оценка полученных результатов	10
10	Заключение	11
11	Перспективы дальнейших исследований по данной тематике	12
Cı	писок использованных источников	13
12	Приложения	14

3 Основные термины, определения и сокращения

IT (произносится ай-ти, сокращение от англ. Information Technology) — информационные технологии RL (англ. reinforcement learning) — обучение с подкреплением

4 Введение

Актуальность

Облачные технологии позволяют обеспечить круглосуточную и бесперебойную работу интернет-сервисов, что делает их востребованными во всех сферах ІТ-индустрии. Облачными вычислениями занимаются Amazon, Google, Huawei и другие крупнейшие информационные компании[1][2]. В 2020 году мировой рынок облачных вычислений оценивается в 289.25 миллиардов долларов[3]. Распределение облачных ресурсов — одна из важнейших задач облачных вычислений.

Предмет исследования

Возможность использования обучения с подкреплением для решения задачи распределения ресурсов облака.

Методы исследования

Экспериментальное сравнение показателей RL в ходе решения задачи распределения облачных ресурсов с иными используемыми на практике способами. Для наглядности в работе также решена близкая задача: автоматическая игра в "Тетрис"с помощью обучения с подкреплением.

Цели и задачи работы

Определение эффективность обучения с подкреплением в задаче распределения ресурсов в облаке.

Новизна и достоверность полученных результатов

Теоретическая значимость

Практическая ценность

В случае превосходства RL над другими методами в рамках решения задачи распределения облачных ресурсов применение данного способа машинного обучения способно сократить нагрузку на сервера, предоставляющие доступ к облачным сервисам. Это позволит уменьшить расходы компаний на поддержку их работоспособности, а также расходы на производство при сокращении количества серверов. Проект имеет практическую ценность для экологии: уменьшение расходов электроэнергии приведет к уменьшению углеродного следа компаниий.

5 Обзор и анализ источников

Первая часть курсовой работы посвящена автоматической игре в "Тетрис"с помощью обучения с подкреплением. Рассмотрим исследования данной задачи и ее решения. В статье "Tetris is Hard, Even to Approximate" [4] доказывается, что игра Тетрис является NP-полной задачей. Это одна из причин схожести данной игры с распределением ресурсов в облаке [5]. В статье Playing the Original Game Boy Tetris Using a Real Coded Genetic Algorithm [6] используется генетический алгоритм для симуляции игры в тетрис. В данной работе метриками успеха автор считает максимальное число удаленных строк до поражения и среднее число удаленных строк у запущенного несколько раз алгоритма. Обе метрики значительно уступают роевым оптимизациям, продемонстрированным в работах Apply ant colony optimization to tetris [7] и Swarm tetris: Applying particle swarm optimization to tetris [8]. Примером использования RL для игры в Тетрис является статья A deep reinforcement learning bot that plays tetris [9].

6	Выбор	методов,	алгоритмов,		для	решения	поставленных
				задач			

7 Описание выбранных или предлагаемых методов, алгоритмов, моделей, методик

8 Описание эксперимента

9 Анализ и оценка полученных результатов

10 Заключение

11 Перспективы дальнейших исследований по данной тематике

Список использованных источников

- [1] Arif Mohamed (2018) A history of cloud computing // Сайт Computerweekly.com. 9 апреля (https://www.computerweekly.com/feature/A-history-of-cloud-computing) Просмотрено: 11.12.2021.
- [2] Matt Kapko (2021) Can Huawei 'Reinvent Itself' as a Cloud Leader? // Сайт Sdxcentral.com. 26 апреля (https://www.sdxcentral.com/articles/news/can-huawei-reinvent-itself-as-a-cloud-leader/2021/04/) Просмотреню: 11.12.2021
- [3] Laura Wood(2021)Global Cloud Computing Market (2020)2026) Service, to24 Deployment, Application Type, End-user and Region Businesswire.com. августа (https://www.businesswire.com/news/home/20210824005585/en/Global-Cloud-Computing-Market-2020-to-2026—by-Service-Deployment-Application-Type-End-user-and-Region—ResearchAndMarkets.com) Просмотрено: 11.12.2021
- [4] Erik D. Demaine, Susan Hohenberger, David Liben-Nowell (2002) Tetris is Hard, Even to Approximate // Сайт Arxiv.org. 21 октября (https://arxiv.org/abs/cs/0210020) Просмотрено: 11.12.2021
- [5] Harvinder Sinah.AnshuBhasin, Parag Ravikant Kaveri (2021)QRAS: efficient resource allocation for task scheduling $_{
 m in}$ cloud computing Сайт Researchgate.net. Апрель (https://www.researchgate.net/publication/350192028 QRAS efficient resource allocation for task scheduling in cloud computing) Просмотрено: 11.12.2021
- [6] Renan SamueldaSilva, RafaelStubsParpinelli(2017)Playing Game Boy TetrisUsing a Real Coded Genetic Algorithm Сайт Researchgate.net. Октрябрь (https://www.researchgate.net/publication/322321608 Playing the Original Game Boy Tetris Using a Real Coded Genetic Algorithm) Просмотрено: 11.12.2021
- [7] X. Chen, H. Wang, W. Wang, Y. Shi, and Y. Gao (2009) Apply ant colony optimization to tetris // Сайт Dl.acm.org. 8 июля (https://dl.acm.org/doi/10.1145/1569901.1570136) Просмотрено: 11.12.2021
- [8] L. Langenhoven, W. S. van Heerden, and A. P. Engelbrecht (2010) Swarm tetris: Applying particle swarm optimization to tetris // Сайт Ieeexplore.ieee.org. 18-23 июля (https://ieeexplore.ieee.org/document/5586033) Просмотрено: 11.12.2021
- [9] nuno-faria, nlinker (Nick Linker) (2019) A bot that plays tetris using deep reinforcement learning. // Сайт Github.com. 7 сентября (https://github.com/nuno-faria/tetris-ai) Просмотрено: 11.12.2021

12 Приложения