

Real-time Analytics

Christoph.Koch@epfl.ch -- EPFL DATA Lab

The Fail Whale

Twitter is over capacity.

Please wait a moment and try again. For more information, check out Twitter Status.

Bahasa Indonesia Bahasa Melayu Deutsch English Español Filipino Français Italiano Nederlands Português Türkçe Русский हिन्दी 日本語 简体中文 繁體中文 한국어 © 2012 Twitter About Help Status

Real-time Analytics on Big Data

- Big Data 3V: Volume, Velocity, Variety
 - This talk focuses on velocity and volume
- Continuous data analysis
 - Stream monitoring & mining; enforcing policies/security.
- Timely response required (low latencies!)
- Performance: high throughput and low latencies!

Comp. Arch. not to the rescue

- Current data growth outpaces Moore's law.
- Sequential CPU performance does not grow anymore (already for three Intel processor generations).
 - Logical states need time to stabilize.
- Moore's law to fail by 2020: Only a few (2?) die shrinkage iterations left.
 - Limitation on number of cores.
- Dennard scaling (the true motor of Moore's law) has ended
 - Energy cost and cooling problems!
 - More computational power will always be more expensive!

Parallelization is no silver bullet

- Computer architecture
 - Failure of Dennard's law: Parallelization is expensive!
- Computational complexity theory
 - There are inherently sequential problems: NC<PTIME
- Fundamental impossibilities in distributed computing:
 - Distributed computation requires synchronization.
 - Distributed consensus has a minimum latency dictated by spatial distance of compute nodes (and other factors).
 - msecs in LAN, 100s of msecs in WAN. Speed of light!
 - Max # of synchronous computation steps per second, no matter how much parallel hardware available.

Paths to (real-time) performance

- Small data (seriously!)
- Incrementalization (online/anytime)
- Parallelization
- Specialization

Sampling: Basics

- Idea: A small random sample S of the data often wellrepresents all the data
 - For a fast approximate answer, apply "modified" query to S
 - Example: select agg from R where R.e is odd

Data stream: 9 3 5 2 7 1 6 5 8 4 9 1 (n=12)

Sample S: 9 5 1 8

If <u>agg</u> is <u>avg</u>, return average of odd elements in S

answer: 5

- If agg is count, return average over all elements e in S of
 - n if e is odd

answer: 12*3/4 =9

0 if e is even

Unbiased: For expressions involving count, sum, avg: the estimator is unbiased, i.e., the expected value of the answer is the actual answer

Probabilistic guarantees

- Example: Actual answer is 5 ± 1 with prob ≥ 0.9
- <u>Hoeffding's Inequality:</u> Let X1, ..., Xm be independent random variables with 0 <= Xi <= r. Let $\overline{X} = \frac{1}{m} \sum_i X_i$ and μ be the expectation of \overline{X} . Then, for any $\varepsilon > 0$,

$$\Pr(|\overline{X} - \mu| \ge \varepsilon) \le 2 \exp^{\frac{-2m\varepsilon^2}{r^2}}$$

- Application to avg queries:
 - m is size of subset of sample S satisfying predicate (3 in example)
 - r is range of element values in sample (8 in example)
- Application to count queries:
 - m is size of sample S (4 in example)
 - r is number of elements n in stream (12 in example)

Queries on samples

- Generalize this to queries with joins.
- Problems:
 - How to efficiently sample from a large database?
 - Error-bounding is very hard. Requires difficult statistics for joins; open for more general SQL/analytics.
- Online aggregation: incrementally compute queries as we see a growing sample from the database.
 - Incremental operators: ripple joins!

Ripple joins: Incremental

```
Schema: R(A), S(A)
q = R natural join S;
```


Ripple joins: Incremental

```
Schema: R(A), S(A)
q = R natural join S;
```


Ripple joins: Incremental

```
Schema: R(A), S(A)
q = R natural join S;
```


Queries on stream windows

- Windows can get large too! (particularly time-bounded windows)
- Symmetric hash-join with expiration. ~Ripple join
 - Incremental!

SELECT L.state, T.month, AVG(S.sales) OVER W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state
ORDER BY T.month
RANGE BETWEEN INTERVAL '1' MONTH PRECEDING
AND INTERVAL '1' MONTH FOLLOWING)

Paths to (real-time) performance

- Small data (seriously!)
- Incrementalization (online/anytime)
- Parallelization
- Specialization

Time to understand incrementality!

Iteration vs. updates to base data!

- Iteration: incremental once-off (seminaive datalog, gradient descent etc.)
- Updates: Incremental view maintenance (IVM).
 - Special cases (!):
 - Online aggregation
 - Window-based stream processing

Datalog example

Transitive closure of a graph:

T		
	1	2
	2	3
	3	2
	1	3
	2	2

3 | 3

Fixpoint computation: Apply rules until fixpoint is reached.

Bottom-up: Naive Evaluation

Given an EDB:

- Start with all IDB relations empty
- Instantiate (with constants)
 variables of all rules in all
 possible ways.
 If all subgoals become true,
 then infer that the head is true.
- Repeat (2) in rounds, as long as new IDB facts can be inferred

$$\frac{T:}{1} \qquad G(1,2) \text{ is TRUE!}$$

3

$$T(1,2) :- G(1,2)$$

 $T(x,y) :- G(x,z), T(z,y)$

Bottom-up: Seminaive

- More efficient approach to evaluating rules
- Idea: If at round i a fact is inferred, then we must have used a rule in which one or more subgoals were instantiated to facts that were inferred on round i-1.
- For each IDB predicate p, keep both the relation P and a relation ΔP;
 the latter represents the new facts for p inferred on the most recent round.

Seminaive evaluation example

T(x,y) :-
$$G(x,y)$$

T(x,y) :- $G(x,z)$, $T(z,y)$

1. Initialize IDB

$T_{_}$		
1	Ī	2
2	ĺ	3
3		

2. Initialize ΔIDB

3.a.ii $\Delta T := \Delta T \setminus T$

3.a.i $\Delta T(x,y) := G(x,z), \Delta T(z,y)$ 3.b.i $\Delta T(x,y) := G(x,z), \Delta T(z,y)$

3.b.ii $\Delta T := \Delta T \setminus T$

T	
1	2
2	3
3	1
1	3
2	1
3	2
1	1
2	2
3	3

Incremental graph algorithms

- Now we talk of incrementality under updates.
- E.g. Trans. closure. Update can be done non-iteratively.
- Single-edge insert (a,b).
 TC(x,y) :- TC_old(x,a), TC_old(b,y).
 (here: reflexive TC)
- Edge delete. Possible! Represent spanning forest.
- [Patnaik and Immerman, DynFO]

Incremental analytics

- Analyzing/mining streams.
- Not by reduction to small data (samples, synopses, windows).

- Anytime algorithms.
 - Update streams.
 - Combine stream with database/historical data.
 - Can express window semantics if we want to.
- The power of algebra: orders of magnitude improvements.

Materialized Views

- SQL Views are usually intensional. Compute lazily, when needed.
- Materialized views: Do not recompute the view from scratch every time it is used.
 - Compute eagerly & store in DB.

CREATE MATERIALIZED VIEW empdep REFRESH FAST ON COMMIT AS SELECT empno, ename, dname FROM emp e, dept d WHERE e.deptno = d.deptno;

(Example in Oracle)

- Incremental view maintenance:
 - Given a DB update, perform the minimal amount og work needed to update the view.
 - (1) Determine the change to the view; (2) apply it.

Delta queries example

- Materialized view V:
 select * from R natural join S
- Delta query on inserting DeltaR into R:
 select * from DeltaR natural join S
- Efficient view update:
 on insert into R tuples DeltaR do
 insert into V (select * from DeltaR natural join S)
- Faster than replacing view by select * from (R union DeltaR) natural join S

Deletions

- Materialized view V:
 select * from R natural join S
- Delta query on deleting DeltaR into R:
 select * from DeltaR natural join S
- Efficient view update:
 on delete from R tuples DeltaR do
 delete from V (select * from DeltaR natural join S)
- Pitfall: It's not as easy as it looks: the delta queries for inserts and deletes are generally not the same!

Self-join example

- Materialized view V (self-join / bag intersect):
 select * from R natural join R
- Delta query dV on inserting DeltaR into R:

Correct:

```
on insert into R tuples DeltaR do insert into V dV
```

Incorrect (!!!):on delete from R tuples DeltaR do delete from V dV

Explanation

- Incorrect (!!!):
 on delete from R tuples DeltaR do delete from V dV
- Assume that |R| = 2 and |dR| = 1. Then |V| = 4 and |dV| = 5
 - We try to delete more tuples than there are!

- Analogy (with corrected deletion delta):
 - $(x + dx)^2 = x^2 + (2x*dx + dx^2)$
 - $(x dx)^2 = x^2 (2x*dx dx^2)$

Intuitively, a natural join behaves like a * and a union behaves like a +.

Sets vs. multisets (bags)

- One might come to believe that the problems discussed are just due to multiset semantics, but that's not true.
- Updates and set semantics clash, we absolutely need bags.
- In set semantics, R + (R R) does not equal (R + R) R.
 - What do sequences of updates mean in the absence of associativity? How can we optimize?
- SQL and every relational DBMS use bag semantics.

Algebra reminder

- A semigroup is a structure (S, op) where op: S x S => S is
 an associative binary operation on set S.
- A group is a semigroup
 - with a neutral element e (for each a in S, a op e = e op a = a)
 - where every a in S has an inverse –a (a op –a = -a op a = e).
- Commutativity: a op b = b op a; comm. (semi)groups
- A ring is a structure (S, +, *) where (S, +) is a commutative group, (S, *) is a semigroup, and the distributive law holds:
 - a*(b+c) = a*b+a*c (a+b)*c = a*c+b*c
 - Comm. ring: (S, *) is commutative

Cleaning up relational queries

- A generalization of relations
 - Symmetrical + operation: addition and subtraction.
 - One clean framework for insertions and deletions.
- The most important query operation: joins.
 - Still behave as expected on joins.
- A ring whose ops generalize union and join would solve all our problems.
 - A ring completely determines delta processing for its two operations.

Generalized Multiset Relations

$$\begin{array}{c|cccc} R & A & B \\ \hline & 1 & \mapsto -1 \\ 2 & 3 & \mapsto 2 \end{array}$$

- Tuple multiplicities come from a ring, such as the integers.
 - Capture databases, insertions and deletions.
- Generalize union to a group.
 - First step: make it a total operation.
 - Be able to union any two relations, regardless of schema.

Generalized Multiset Relations

$$\begin{array}{c|cccc} R & A & B \\ \hline & 1 & \mapsto -1 \\ 2 & 3 & \mapsto & 2 \end{array}$$

- ightharpoonup A (typed) tuple $\mathbb T$ is a *partial* function from of vocabulary of column names to data values.
- ▶ Let A be a commutative ring with 1 (such as \mathbb{Z} , \mathbb{Q} , \mathbb{R}).
- ▶ A generalized multiset relation (gmr) is a function $R: \mathbb{T} \to A$ such that $R(\vec{t}) \neq 0^A$ for at most a finite number of tuples \vec{t} .

A ring of relations

For $R, S \in A[\mathbb{T}]$,

$$R+S$$
 : $\vec{x}\mapsto (R(\vec{x})+S(\vec{x}))$

$$R * S : \vec{x} \mapsto \sum_{\{\vec{x}\}=\{\vec{a}\}\bowtie\{\vec{b}\}} R(\vec{a}) * S(\vec{b})$$

A ring of relations

For $R, S \in A[\mathbb{T}]$,

$$R+S$$
 : $\vec{x}\mapsto (R(\vec{x})+S(\vec{x}))$

$$R * S : \vec{x} \mapsto \sum_{\{\vec{a}\} \bowtie \{\vec{b}\}} R(\vec{a}) * S(\vec{b})$$

A ring of relations

 $ightharpoonup A[\mathbb{T}]$ is a commutative ring with 1.

$$(-R): \vec{x} \mapsto (-R(\vec{x}))$$
 $1: \vec{x} \mapsto \left\{ \begin{array}{ccc} 1 & \dots & \vec{x} = \langle \rangle \\ 0 & \dots & \vec{x} \neq \langle \rangle \end{array} \right.$ $0: \vec{x} \mapsto 0$

- $ightharpoonup \mathbb{Z}[\mathbb{T}]$ is the smallest ring such that
 - all relations (set or bag-semantics) are elements and
 - + and * generalize union and natural join.

" \mathbb{Z} -relations"

Polynomials

- Polynomial ring: expressions behave exactly like we expect it from polynomials.
 - Variables: relation names.
 - Constants: constant relations (elements of the ring).
- Example: x^2 + 2xy + 5y + 3
 R^2 + CRS + DS + E.
 - R, S updatable relations (multivariate polynomial)
 - C,D,E constant relations.
 - R²: self-join

Deltas

Deltas follow from the ring axioms (*: distributivity!)

$$\Delta(\alpha + \beta) := ((\alpha + \Delta\alpha) + (\beta + \Delta\beta)) - (\alpha + \beta)
= (\Delta\alpha) + \Delta\beta
\Delta(\alpha * \beta) := (\alpha + \Delta\alpha) * (\beta + \Delta\beta) - \alpha * \beta
= (\Delta\alpha) * \beta + \alpha * (\Delta\beta) + (\Delta\alpha) * \Delta\beta
\Delta(-\alpha) := -\Delta\alpha$$

 For polynomials of degree >0, taking the delta reduces the degree by 1! => efficiency of IVM!

Summary

- A ring of data(base relations).
- Addition generalizes union (of relational algebra).
 - Total operator: can add any two relations (typed tuples).
 - Ring (integer) multiplicities: addition is a group.
 - Databases, inserts, deletes are all the same thing: ring elements!
- Multiplication generalizes the natural join.
 - Polynomials are a useful query language.
- We get deltas for free, and they behave well!

Rings and Polynomials

- Ring: Algebraic structure with two associative operations + and *
- + is a group (there is an additive inverse).
 - One clean framework for changes (insertions and deletions)
- Powerful multiplicative operation to make queries interesting.
 - Joins, matrix multiplication
- Distributivity: query optimization and polynomials
- In a ring, we have polynomials: "gueries"
 - variables = changeable data sources,
 e.g. relations, invertible matrices
- Notion of degree captures complexity of polynomials.
- Deltas follow from the ring axioms.
- Taking the delta reduces the degree by 1! => efficiency of IVM!

$$deg(\alpha * \beta) := deg(\alpha) + deg(\beta)$$

$$\deg(\alpha + \beta) := \max(\deg(\alpha), \deg(\beta))$$

$$deg(-\alpha) := deg(\alpha)$$

$$\deg(R(\vec{x})) := 1.$$

$$\Delta(\alpha + \beta) := ((\alpha + \Delta\alpha) + (\beta + \Delta\beta)) - (\alpha + \beta)$$
$$= (\Delta\alpha) + \Delta\beta$$

$$\Delta(\alpha * \beta) := (\alpha + \Delta\alpha) * (\beta + \Delta\beta) - \alpha * \beta$$

$$= (\Delta \alpha) * \beta + \alpha * (\Delta \beta) + (\Delta \alpha) * \Delta \beta$$

$$\Delta(-\alpha) := -\Delta\alpha$$

Recursive incremental processing

Given a function f, let

$$\Delta f(x) := f(x+1) - f(x).$$

On increment x += 1: $f(x) += \Delta f(x)$.

If f is a polynomial, then $deg(\Delta f(x)) = max(0, deg(f(x)) - 1)$. So there is a k such that $\Delta^k f = 0$.

Recursive incremental processing

Given a function f, let

$$\Delta f(x) := f(x+1) - f(x).$$

On increment x += 1: $f(x) += \Delta f(x)$.

If f is a polynomial, then $deg(\Delta f(x)) = max(0, deg(f(x)) - 1)$. So there is a k such that $\Delta^k f = 0$.

X	$g(x) = 3x^2$	$\Delta g(x) = 6x + 3$	$\Delta^2 g(x) = 6$	$\Delta^3 g(x) = 0$
0	0	3	6	0
1	3	9	6	0
2	12	15	6	0
3	27	21	6	0
4	48	27	6	0

Compiling incremental view maintenance

Aggressive recursive incremental view maintenance: maintain $Q, \Delta Q, \Delta^2 Q, \Delta^3 Q, \dots$

Compile(query Q):

To incrementally maintain a materialized view of Q,

- 1. Compute ΔQ for tuple insertion/deletion.
- 2. The incremental view maintenance code is $Q \pm = \Delta Q$.
- 3. Recursively compile ΔQ .

Requirements on the query language L:

- ▶ L must be closed under taking deltas: if $Q \in L$, then $\Delta Q \in L$.
- ▶ For all $Q \in L$, there is a k such that $\Delta^k Q = 0$.

A query language for recursive IVM

CK: Incremental query evaluation in a ring of databases. PODS 2010: 87-98

- Generalized multiset relations (GMRs)
 - Integer multiplicities. Symmetrical + operation: addition and subtraction.
 - One clean framework for insertions and deletions.
 - Generalizes relational union: negative multiplicities mean delete.
 - Multiplication: generalizes the natural join operation.
 - This ring exists and is essentially unique!
- Create a useful query language that is as close as possible to the ring "language" (relations, +, *)
 - Projection/aggregation is essentially +, selection * of a GMR and a condition
 - "Aggregation Calculus"

Recursive IVM Example, SQL

```
Schema: R(A), S(A)
q = select count(*) from R natural join S;
```

S							
R		a	a	b	b	b	С
	a						
	a						
	a						
	b						
	b						
	С						

Count = **13**

```
qR A # qS A #
a 2
b 3
c 1
c 1
```

Recursive IVM Example, SQL

```
Schema: R(A), S(A)
q = select count(*) from R natural join S;
```


Recursive IVM Example, SQL

```
Schema: R(A), S(A)
q = select count(*) from R natural join S;
```


qR	Α	#	qS	Α	#
	a	3		a	4
	b	3		b	2
	С	1		С	1

Aggregation Calculus (AGCA)

$$\alpha$$
 ::- $\alpha * \alpha \mid \alpha + \alpha \mid -\alpha \mid \operatorname{Sum}(\alpha) \mid R(\vec{x}) \mid f \mid x \mid (\alpha \theta 0)$
ring operations

```
q = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;
    = Sum(O * LI * P * XCH)

deg(q) = 2
```

Deltas of AGCA queries; closure

$$egin{array}{lll} \Delta(lpha+eta) &:= (\Deltalpha)+\Deltaeta \ \Delta(lpha*eta) &:= (\Deltalpha)*eta+lpha*(\Deltaeta)+(\Deltalpha)*\Deltaeta \ \Delta(-lpha) &:= (\Deltalpha)*eta+lpha*(\Deltalpha)+(\Deltalpha)*\Deltaeta \ \Delta(lpha) &:= (\Deltalpha)*eta=0 \ \Delta(lpha) &:= ((lpha+\Deltalpha))*eta=0 \ \Delta(lpha) &:= ((lpha+\Deltalpha))*eta=0 \ \Delta(lpha) &:= (lpha)*eta=0 \ \Delta(lpha) &:= (lpha)*\eta=0 \ \Delta(lpha) &:= (lpha$$

AGCA is closed under taking deltas!

 $\Delta_{+R(\vec{t})}f := 0$ (f built-in/constant)

Degrees of deltas; high deltas are independent of the database

```
\deg(lpha * eta) := \deg(lpha) + \deg(eta)
\deg(lpha + eta) := \max(\deg(lpha), \deg(eta))
\deg(-lpha) := \deg(lpha)
\deg(\operatorname{Sum}(lpha)) := \deg(lpha)
\deg(t \, \theta \, 0) := \deg(t)
\deg(R(\vec{x})) := 1.
```

An AGCA condition $t \theta 0$ is simple if $\Delta t = 0$ for all update events. This is in particular true if t does not contain Sum subterms.

THEOREM 5.5. For any AGCA term or formula α with simple conditions only, $\deg(\Delta\alpha) = \max(0, \deg(\alpha) - 1)$.

Why compile (DBToaster) IVM code?

- Really incremental code is low-level
 - Recursive incremental view maintenance takes the idea of incrementalization to an extreme.
- Inline deltas into the query code.
- Eliminate overheads of dynamic representations of queries and interpretation. Improve cache-locality.
- Dead code elimination: Some features of the engine may not be needed. Only certain patterns of use arise.

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;
```

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;

+O(xOK, xCK, xD, xXCH) q[] +=
    select sum(LI.P * O.XCH)
    from {<xOK, xCK, xD, xXCH>} O, LineItem LI
    where O.OK = LI.OK;

+LI(yOK, yPK, yP) q[] += ...
```

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;

+O(xOK, xCK, xD, xXCH) q[] +=
    select sum(LI.P * xXCH)
    from LineItem LI
    where xOK = LI.OK;

+LI(yOK, yPK, yP) q[] += ...
```

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;

+O(xOK, xCK, xD, xXCH) q[] += xXCH *

    select sum(LI.P)
    from LineItem LI
    where xOK = LI.OK;

+LI(yOK, yPK, yP) q[] += ...
```

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;

+O(xOK, xCK, xD, xXCH) q[] += xXCH * qO[xOK];
+LI(yOK, yPK, yP) foreach xOK: qO[xOK] +=
    select sum(LI.P)
    from {<yOK, yPK, yP>} LI
    where xOK = LI.OK;

+LI(yOK, yPK, yP) q[] += ...
```

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;

+O(xOK, xCK, xD, xXCH) q[] += xXCH * qO[xOK];
+LI(yOK, yPK, yP) foreach xOK: qO[xOK] +=
    select yP

where xOK = yOK;
+LI(yOK, yPK, yP) q[] += ...
```

```
q[] = select sum(LI.P * O.XCH)
    from Order O, LineItem LI
    where O.OK = LI.OK;

+O(xOK, xCK, xD, xXCH) q[] += xXCH * qO[xOK];
+LI(yOK, yPK, yP) qO[yOK] += yP;
+LI(yOK, yPK, yP) q[] += yP * qLI[yOK];
+O(xOK, xCK, xD, xXCH) foreach yOK: qLI[yOK] +=
    select xXCH

where xOK = yOK;
```

- The triggers for incrementally maintaining all the maps run in constant time!
- No nonincremental algorithm can do that!

DBToaster Trigger Programs

- This is (real-time) analytics, but it behaves like an OLTP workload!
- Triggers are relatively low-level: compile!

```
select sum(L.revenue), P.partcat, D.year
from Date D, Part P, LineOrder L
where D.datekey = L.datekey
and P.partkey = L.partkey
group by P.partcat, D.year;
```

```
foreach pc, y: q[pc, y] =
select sum(L.revenue)
from Date D, Part P, LineOrder L
where D.datekey = L.datekey
and P.partkey = L.partkey
and P.partcat = pc
and D.year = y;
```

```
+L(xDK, xPK, xRev) foreach pc, y: q[pc, y] +=
    select    sum(L.revenue)
    from         Date D, Part P, {<xDK, xPK, xRev>} L
    where         D.datekey = L.datekey
    and         P.partkey = L.partkey
    and         P.partcat = pc
    and         D.year = y;
```

Factorization

```
select sum(t*t') from (Q x Q') =
   (select sum(t) from Q) * (select sum(t') from Q')
if no overlap in variables.
```

```
+L(xDK, xPK, xRev) foreach pc, y: q[pc, y] +=
           xRev *
           (select
                     sum (1)
                    Date D
            from
                                       m1[xDK,y]
            where
                    D.datekey = xDK
            and D.year = y) *
           (select sum(1)
            from
                    Part P
                                       m2[xPK,pc]
            where P.partkey = xPK
                     P.partcat = pc);
            and
```

```
+L(xDK, xPK, xRev) foreach pc, y: q[pc, y] +=
    xRev * m1[xDK, y] * m2[xPK, pc]

m1[dk, y] = (select sum(1)
    from Date D
    where D.datekey = dk
    and D.year = y) *

m2[pk pc] = (select sum(1)
    from Part P
    where P.partkey = pk
    and P.partcat = pc);
```

Connection to query decompositions

- Recursive delta computation computes decompositions.
 - A delta computation step removes one hyperedge from the query hypergraph.

DBToaster Theory Summary

CK: Incremental query evaluation in a ring of databases. PODS 2010: 87-98

The compiled programs have surprising properties

- lower complexity than any non-incremental algorithm
- constant time for each aggregate value maintained.
- admits embarrassing parallelism: purely push-based parallel processing that sends minimal amount of data.

The DBToaster System

http://www.dbtoaster.org

In this example:

- The triggers for incrementally maintaining all the maps run in constant time!
- No nonincremental algorithm can do that!
- Classical IVM takes linear time.
- Triggers are really low-level: compile!
 - Aggressive inlining of deltas
 - Use algebraic laws, partial evaluation for code simplification.
 - Eliminate overheads of dynamic representations of queries and interpretation.
 Improve cache-locality.

CK, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei, Amir Shaikhha: DBToaster: higher-order delta processing for dynamic, frequently fresh views. VLDB J. 23(2): 253-278 (2014)

DBToaster rev.2525 (2012), 1core

Yanif Ahmad, Oliver Kennedy, Christoph Koch, Milos Nikolic: DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views. PVLDB 5(10): 968-979 (2012)

Paths to (real-time) performance

- Small data (seriously!)
- Incrementalization (online/anytime)
- Parallelization
- Specialization

DBToaster

- Single-core, TPC-H & algorithmic trading benchmarks
 - 4-5 orders of magnitude speedup from re-evaluation
 - 25k-70k view refreshes per second.
- Minibatching on Spark
 - latency ~0.5sec

For comparison (1-core version):

r.2525(2012): 26k/sec

r.2827(2014): 127k/sec

Low latency infrastructure

- DBToaster refresh rate, TPCH3:
 - 1-core: 127,000/s
 - Spark: 2/s -- also Spark Streaming is no streaming at all
- Twitter/Apache Storm
 - ZeroMQ: >1,000,000 msgs/s/node
 - No batching, a priori no synch
- Squall -- https://github.com/epfldata/squall
 - SQL on top of Storm. Very low latencies.
 - New skew-resistant, scalable online operators (joins)

Reminder: Two-Phase Commit

Coordinator

Subordinate

Send prepare

Force-write prepare record

Send yes or no

Wait for all responses

Force-write commit or abort

Send commit or abort

Force-write abort or commit

Send ACK

Wait for all ACKs

Write end record

The cost of synchronization

Low-latency stream processing?

But: no free lunch – distributed computation needs synchronization.

Consensus>= 2-phase commit.

Minimum latency two network roundtrips.

Lausanne-Shenzhen: 9491km * 4; 126ms@speed of light.

Does streaming/message passing defeat the 2PC lower bound?

- Assume we compute each statement once.
- Different machines handle statements
- Don't compute until you have received all the msgs you need.

- Works!
- But requires synchronized ts on input stream.
 - One stream source or synch of stream sources!

Does streaming/message passing defeat the 2PC lower bound?

- Repeatedly compute values.
- Each msgs has a (creation) epoch timestamp
- Multiple msg can share timestamp.

- Works in this case!
- Computes only sums of two objects. We know when we have received all the msgs we need to make progress!

Does streaming/message passing defeat the 2PC lower bound?

- Repeatedly compute values.
- Each msgs has a (creation) epoch timestamp
- Multiple msg can share timestamp.
- Notify when no more messages of a particular ts are to come from a sender.
- Requires to wait for notify() from all sources.
- Synch again!
- If there is a cyclical dep (same vals read as written),
 2PC is back!

Streaming+Iteration: Structured time [Naiad]

Paths to (real-time) performance

- Small data (seriously!)
- Incrementalization (online/anytime)
- Parallelization
- Specialization
 - Hardware: ASIC conflict with economies of scale; FPGA
 - Software: compilation

Compilation

- "Lampson's law": "Every" problem in computer science can be solved by another level of indirection.
 - Modularization, layering; abstract data types clean, manageable software design by abstraction
- The reverse is also ~ true: "Every" performance problem can be solved by removing a level of indirection.
 - Compilers are software for automatically eliminating levels of indirection/abstraction.

```
class Record(fields: Array[String], schema: Array[String]) {
  def apply(key: String) = fields(schema indexOf key)
def processCSV() = {
  val lines = FileReader("data.csv")
 val schema = lines.next().split(",")
    while (lines.hasNext) {
      val fields = lines.next().split(",")
      val record = new Record(fields, schema)
      if (record("Flag") == "yes")
          println(record("Name"))
                                                 Name, Value, Flag
                                                 A, 7, no
                                                 B, 2, yes
```

```
class Record(fields: Rep[Array[String]], schema: Array[String]) {
  def apply(key: String) = fields(schema indexOf key)
def processCSV() = {
  val lines = FileReader("data.csv")
  val schema = lines.next().split(",")
  run {
    val lines1 = staticData(lines);
    while (lines1.hasNext) {
      val fields = lines1.next().split(",")
      val record = new Record(fields, schema)
      if (record("Flag") == "yes")
          println(record("Name"))
                                                 Name, Value, Flag
                                                 A, 7, no
                                                 B, 2, yes
```

```
def processCSV() = {
  val lines = FileReader("data.csv")
  val schema = lines.next().split(",")
  // 'run' block: dynamically specialized wrt schema
  val lines1 = lines;
  while (lines1.hasNext) {
    val fields = lines1.next().split(",")

    if (fields(2) == "yes")
        println(fields(0))
    }
        Name, Value, Flag
    A, 7, no
    B, 2, yes
}
```

- Removed the schema lookup and the record abstraction.
- >10x speedup in Java/Scala!
 - Object creation/destruction (boxing/unboxing) in JVM.
 - schema.indexof is costly.

```
class Record(fields: Rep[Array[String]], schema: Array[String]) {
    def apply(key: String) = fields(schema indexOf key)
}

def processCSV() = {
    val lines = FileReader("data.csv")
    val schema = lines.next().split(",")
    run {
      val lines1 = staticData(lines);
      while (lines1.hasNext) {
        val fields = lines1.next().split(",")
        val record = new Record(fields, schema)
        if (record("Flag") == "yes")
            println(record("Name"))
      }
    }
}
```

```
def processCSV() = {
  val lines = FileReader("data.csv")
  val schema = lines.next().split(",")

  val lines1 = lines;
  while (lines1.hasNext) {
    val fields = lines1.next().split(",")

    if (fields(2) == "yes")
        println(fields(0))
  }
}
```

Domain-specific opt. examples

Deforestation

myCollection.map(f).map(g) => myCollection.map(f; g)

Data structure specialization

- Map relation, matrix, etc. abstraction to implementation.
- E.g. fixed-sized size array, hash table, tree, queue.
- Good data structure implementations are imperative and low-level. Hard for automatic program analysis!
- General-purpose compilers can't do it.

Compilation

- Our goals:
 - Leverage the full power of software specialization...
 - But make it easy to do: high productivity.
- Develop analytics engines in a high level programming language.
- Have the compiler produce highly optimized code.
- This requires a compiler to be enriched with the knowledge of an expert systems programmer.
- Needs a suitable compiler framework.

The S-Store OLTP System

Joint work with Mohammad Dashti, Thierry Coppey, Vojin Jovanovich, EPFL DATA Lab

- A main-mem OLTP system that compiles transaction programs.
- Built in Scala.
- Compiler = LMS + DS opt.

TPC-C transaction	Version	Mutable record manipulation	Inlining	Common subexpr. elim.	Data structure specialization	Automatic indeintroduction	Deforestation	Loop inversion
NewOrder	S-Store Hand-written	··· / ··	√ ×	√	··· / ··	X	√	√
Payment	S-Store Hand-written	√ √	√ X		√ √	×		X
OrderStatus	S-Store Hand-written	X	√ X	√ -	√ √	×	√ X	X
Delivery	S-Store Hand-written	√ √	√	√	√ √	.√ 	√	✓
StockLevel	S-Store Hand-written	X	√ X	√ -	√ √	×	√	✓

The LegoBase System

Y. Klonatos, CK, T. Rompf, H. Chafi, "LegoBase: Building Efficient Query Engines in a High-Level Language", SIGMOD 2014.

- An OLAP execution engine. Joint work with Oracle Labs.
- Takes Oracle TimesTen (main mem eng.) query plans (supports all plans).
- Entire engine built in Scala.
- Compiled using LMS.
 - Uses cutting-edge compiler technology: generative metaprogramming/staging; just-in-time compilation.
- Compiles to C or Scala. Optionally deployed on LLVM.

LegoBase: Effort vs. Speedup

	Coding Effort	Scala LOC	Average Speedup
Operator Inlining	_	0	2.07×
Push Engine Opt.	1 Week	$\sim \! 400^{[6]}$	$2.26 \times$
Data Structure Opt.	4 Days	259	$2.16 \times$
Change Data Layout	3 Days	102	$1.81 \times$
Other Misc. Opt.	3 Days	124	_10
LegoBase Operators	1 Month	428	_
LMS Modifications	2 Months	3953	_
Various Utilities	1 Week	538	_
Total	∼4 Months	5831	7.7×

LegoBase on TPC-H

- Average speedup to DBX: 7.7x
 - Cache locality: 30% avg. improvement
 - Branch prediction: 154% avg. improvement
- Avg. speedup of C vs. Scala: 2.5x. Scala:
 - 30-140% more branch mispredictions
 - 10-180% more cache misses.
 - 5.5x more instructions executed.
- Same optimizations can't be obtained by compilation of low-level code too nonlocal!

Summary

- Real-time analytics has to embrace incrementality!
- Incrementalization can give asymptotic efficiency improvements. By many orders of magnitude in practice.
- Incrementalization lowers the code => compilation.
- Distributed computation at low latencies has fundamental limits.
 - Interesting tradeoffs; Special cases (embarassing parallelism)
 - Spark is by far not the final word in Big Data infrastructure:
 - Very hard systems problems, huge design space to explore.