UNIVERSIDADE FEDERAL DE GOIÁS – UFG CAMPUS CATALÃO – CaC DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO – DCC

Bacharelado em Ciência da Computação Projeto Final de Curso

Estudo de um compilador sob a perspectiva de um sistema online de programação

Autor: Nélio Carneiro Júnior

Orientador: Ms. Thiago Jabur Bittar

Nélio Carneiro Júnior

Estudo de um compilador sob a perspectiva de um sistema online de ${\tt programa} {\tt ç\tilde{a}o}$

Monografia apresentada ao Curso de Bacharelado em Ciência da Computação da Universidade Federal de Goiás Campus Catalão como requisito parcial para obtenção do título de Bacharel em Ciência da Computação

Área de Concentração: Compiladores **Orientador:** Ms. Thiago Jabur Bittar

Carneiro, Nélio

Estudo de um compilador sob a perspectiva de um sistema online de programação/Ms. Thiago Jabur Bittar- Catalão - 2011

Número de paginas: 55

Projeto Final de Curso (Bacharelado) Universidade Federal de Goiás, Campus Catalão, Curso de Bacharelado em Ciência da Computação, 2011.

Palavras-Chave: 1. Compilador. 2. Sistemas Web. 3. Linguagem de Programação

Nélio Carneiro Júnior

Estudo de um compilador sob a perspectiva de um sistema online de ${\bf programa} {\bf \tilde{ao}}$

Monografia apresentada e aprovada em de
Pela Banca Examinadora constituída pelos professores.
Ms. Thiago Jabur Bittar – Presidente da Banca
Professor 1
Professor 2

Dedico este trabalho a minha mãe Lúcia Maria Rosa, ao meu pai Nélio Carneiro Rosa e a minha irmã Natália Rosa

AGRADECIMENTOS

Agradeço primeiramente a Deus por estar sempre presente em minha vida, sendo minha fonte de energia diante os obstáculos enfrentados.

Agradeço aos meus pais Nélio Carneiro Rosa e Lúcia Maria pelo carinho a mim dedicado, pelo apoio sempre presente e pelo esforço para o meu sucesso.

Agradeço a minha irmã Natália Rosa pelo companheirismo de sempre.

Agradeço aos meus avós que sempre me ajudaram na luta por um futuro bom.

Agradeço aos meus amigos Gustavo Almeida e Mario Nesralla que buscaram sempre me ajudar nos momentos que mais precisei, sendo suas presenças indispensáveis para meu sucesso.

Agradeço aos colegas de graduação sempre presentes durante os momentos de alegria e também de tristeza ao longo do curso. Em especial os colegas Allan Oliveira, Carla Fernandes, Elaine Aires, Laísa Rodovalho, Leandro Guimarães e Salviano Ludgério.

Agradeço a todos os mestres da graduação e em especial ao meu orientador professor Ms. Thiago Jabur Bittar, por acreditar em mim e tornar possivel a realização deste trabalho. Agradeço a todos os tios e tias, primos e primas por pelo apoio incondicional.

Por fim, agradeço a todos que de forma direta ou indireta que cotribuíram para a minha formação.

"Você nem sempre terás o que desejas, mas enquanto estiveres ajudando aos outros encontrarás os recursos de que precise."

Francisco Cândido Xavier

RESUMO

Carneiro, Nélio Estudo de um compilador sob a perspectiva de um sistema

online de programação. Curso de Ciência da Computação, Campus Catalão, UFG,

Catalão, Brasil, 2011, 55p.

Usuários de computadores estão cada vez mais conectados à internet. Necessitam

então que as ferramentas por eles utilizadas estejam também dispostas de maneira online,

para que possam ser acessadas de qualquer computador ou dispositivo computacional.

Uma ferramenta bastante utilizada entre programadores e profissionais da área de

computação é o compilador. Mas para a criação de programas é sempre necessário que

o computador utilizado tenha instalado ferramentas específicas. No entanto pode ocorrer

de se usar um computador que não tenha tais ferramentas. É baseado nesse problema

que este trabalho propõe a criação de um compilador e um sistema online de programação

para a linguagem Portugol, visando facilitar a programação, deixando-a independente de

sistemas ou dispositivos computacionais.

Estudando as técnicas para a implementação de compiladores, bem como a criação de

um sistema online, o protótipo conseguiu obter bons resultados de desempenho e facilidade

por parte do uso dos usuários. O protótipo chamado PortugOn mostrou ser uma solução

viável para a programação através de navegadores.

Palavras-Chaves: Compilador, Sistemas Web, Linguagem de Programação

i

Sumário

In	trod	ução		1
1	Cor	npilado	ores	3
	1.1	Introd	ução	3
	1.2	Modelo	o de Compilação de Análise e Síntese	4
	1.3	Anális	e	5
		1.3.1	Tokens, Padrões e Lexemas	7
		1.3.2	Expressões Regulares	7
		1.3.3	Análise Léxica	7
		1.3.4	Análise Sintática	9
	1.4	Síntese	e ou Geração de Código	12
		1.4.1	Geração de Código Intermediário	12
		1.4.2	Geração de Código	13
	1.5	Conclu	ısão	15
2	Por	tugol		16
	2.1	Introd	ução	16
	2.2	Estrut	ura da Linguagem	16
		2.2.1	Comentários	16
		2.2.2	Tipos básicos	16
		2.2.3	Variáveis e Identificadores	18
		2.2.4	Declaração de variáveis	18
		2.2.5	Atribuição	18
		2.2.6	Operadores	19
		2.2.7	Estrutura Sequencial	20
		2.2.8	Estruturas Condicionais	20
		2.2.9	Estruturas de Repetição	21
		2.2.10	Funções	22
	2.3	Conclu	ısão	22

3	Esta	ado da Arte	23
	3.1	Introdução	23
	3.2	Compiladores	23
	3.3	Trabalhos Relacionados	25
		3.3.1 Codepad	25
		3.3.2 Ideone	27
		3.3.3 CodeSchool	28
		3.3.4 Rails for Zombies	29
	3.4	Conclusão	29
4	Met	todologia e Análise do Protótipo Proposto	30
	4.1	Introdução	30
	4.2	Compilador	31
		4.2.1 Análise Léxica	31
		4.2.2 Análise Sintática	31
		4.2.3 Análise Semântica	32
		4.2.4 Backend	33
	4.3	Sistema de Programação Web	33
5	Test	te e Análise dos Resultados	37
	5.1	Testes	37
	5.2	Plano de Testes	37
	5.3	Documentação do Plano de Testes	38
		5.3.1 Planejamento para a Execução dos Testes	38
		5.3.2 Recursos	38
	5.4	Documentação da Especificação dos Casos de Testes	39
		5.4.1 Testes de Unidade	39
		5.4.2 Testes Funcionais	39
		5.4.3 Testes de Integração	41
	5.5	Testes com Usuários	43
	5.6	Conclusão	43
Co	onsid	lerações Finais	44
$\mathbf{R}_{\mathbf{c}}$	eferê	ncias	46
		ices	46

\mathbf{A}	Cód	igo Fonte											47
	A.1	Compilado	r	 	 		 	 				 	47
		A.1.1 Lex	er	 	 		 	 				 	47
		A.1.2 Par	ser	 	 		 	 				 	49
		A.1.3 Pri	ncipal .	 	 		 	 				 	51
	A.2	PortugOn		 	 		 	 				 	51
		A.2.1 Co.	ntrollers	 	 		 	 	 			 	51

Lista de Figuras

1.1	Estrutura do Compilador [Rangel, 1999]	5
1.2	Posição do gerador de código intermediário [Aho et al., 1995]	13
1.3	Posição do gerador de código intermediário [Aho et al., 1995]	13
3.1	Um Compilador [Aho et al., 1995].	23
3.2	Tela do compilador online CodePad. codepad.org	26
3.3	Tela do compilador online Ideone	27
3.4	Tela de exercícios do compilador CodeSchool	28
3.5	Tela do editor e compilador da página Rails for Zombies	29
4.1	NFA que representa as palavras reservadas da linguagem	32
4.2	NFA que representa os comentários de linha da linguagem	32
4.3	Página inicial do sistema PortugOn	33
4.4	Página de cadastro de usuário do sistema PortugOn	34
4.5	Pagina Home do usuário do sistema PortugOn	35
4.6	Página Home do usuário, com código compilado	35
4.7	Página Programas. Lista os programas já efetuados pelo usuário	35
4.8	Página Exercícios. Lista os exercícios criados pelo usuário	36
4.9	Página Alunos. Lista os alunos criados pelo usuário	36
5.1	Código de testes unitários para a classe Aluno	40
5.2	Teste unitário da classe Aluno sendo executado	40
5.3	Código dos testes funcionais do controller 'Exercise'	41
5.4	Testes funcionais realizados e aprovados no controller 'Exercise'	42
5.5	Código dos testes de integração para realização do $login$ do usuário	42
5.6	Teste de integração sendo realizado	43

Introdução

É evidente o crescente número de usuários conectados à internet ao longo do tempo. Percebe-se também que esses usuários estão cada vez mais necessitados de que suas ferramentas, antes usadas em seus desktops, fiquem disponíveis online, de prontidão, sempre que se fizer necessário, mesmo estando conectados longe de casa. Fez-se então necessário que o desenvolvimento de softwares caminhasse neste mesmo sentido.

Um aspecto interessante desse processo a ser analisado são as aplicações que dependem de um compilador, ou seja, programas que quando instalados na máquina sempre fazem uso de um compilador ou então, são eles mesmos, compiladores. Um exemplo desse tipo de software seria um compilador para Portugol. Como iria se comportar tal compilador ao ser usado na internet? Como se daria a implementação deste compilador? Quais aspectos a serem tratados? E como seria o sistema na web que necessitasse desse compilador?

O objetivo principal deste trabalho é analisar o comportamento de um compilador feito para a linguagem Portugol, trabalhando sob um sistema de progamação na Web. A proposta é fazer um estudo detalhado da implementação desse compilador, tendo assim uma base sólida para o desenvolvimento do mesmo, visando na prática tecer conclusões à respeito das técnicas utilizadas.

Este trabalho também tem como objetivo desenvolver uma aplicação Web que irá utilizar o compilador. A aplicação é um editor o qual o usuário faz seus programas em Portugol, tendo de imediato a resposta do compilador. A intenção é analisar como irá se comportar o compilador, bem como, verificar a viabilidade de uso de tal aplicação, ao se implementar utilizando as técnicas descritas ao longo deste trabalho. A aplicação tem um caráter educativo, no qual o usuário faz programas e, ele e seus trabalhos, podem ser acompanhados por um instrutor, visando assim verificar os passos realizados pelo usuário, bem como a maneira pela qual o compilador tem sido usado.

Uma grande vantagem da criação de tal sistema será o fato dele poder ser acessado de qualquer lugar e qualquer máquina, independente do sistema operacional, bastando apenas um navegador. Como exemplo, podemos citar uma faculdade que possui bastantes máquinas e algumas inclusives com sistemas operacionais diferentes. Outro fator são as atualizações. Tendo um compilador online, basta atualizar em um só lugar e a mudança ocorrerá para todos, diferente de um compilador instalado em máquinas locais.

No capítulo 1 são abordados os conceitos de compiladores, as técnicas utilizadas na criação do compilador e como se dará o seu funcionamento diante uma aplicação Web.

No capítulo 2 é feita uma apresentação da linguagem do compilador: o Portugol. Suas características e o embasamento para a criação do compilador baseado nesta linguagem também fará parte deste capítulo

No capítulo 3 pode-se observar um levantamento sobre o estado da arte dos compiladores e como tem sido o uso destes em aplicações na Web. Neste também irei citar casos em que editores/compiladores foram colocados na Web.

No capítulo 4 é discorrido sobre a metodologia proposta para o desenvolvimento do protótipo de editor/compilador Web.

No capítulo 5 é abordado todo o processo de testes, além de ser realizado uma análise dos resultados. Por fim há uma conclusão do trabalho realizado, levantando os objetivos alcançados, pontos positivos, pontos negativos, dificuldades e trabalhos futuros.

Ainda é possível encontrar o código fonte do compilador e da aplicação Web criada no apêndice desta monografia.

Capítulo 1

Compiladores

1.1 Introdução

Criado por volta dos anos 50, o nome Compilador se refere ao processo de composição de um programa através da reunião de várias rotinas de bibliotecas. O processo de tradução (de uma linguagem fonte para uma linguagem objeto), considerado hoje a função central de um compilador, era então conhecido como programação automática [Rangel, 1999].

Definido em [Aho et al., 1995], um compilador é um programa que lê outro programa escrito em uma linguagem — a linguagem de origem — e o traduz em um programa equivalente em outra linguagem — a linguagem de destino. Como uma importante parte no processo de tradução, o compilador reporta ao seu usuário a presença de erros no programa origem.

Ao longo dos anos 50, os compiladores foram considerados programas notoriamente difíceis de escrever. O primeiro compilador Fortran, por exemplo, consumiu 18-homens ano para implementar [Backus, 1957]. Desde então, foram descobertas técnicas sistemáticas para o tratamento de muitas das mais importantes tarefas desenvolvidas por um compilador.

A variedade de compiladores nos dias de hoje é muito grande. Existem inúmeras linguagens fontes, as quais poderiam ser citadas em várias páginas deste trabalho. Isso se deve principalmente ao fato de que com o aumento do uso dos computadores, aumentou também, as necessidades de cada indivíduo, sendo essas específicas, exigindo por sua vez linguagens de programação diferentes. Este processo — juntamente com a evolução da tecnologia de desenvolvimento de compiladores — levou à criação de várias técnicas diferentes para a construção de um compilador, ou seja, passou a existir diferentes maneiras de se implementar um compilador. No entanto, a despeito dessa aparente complexidade, as tarefas básicas que qualquer compilador precisa realizar são essencialmente as mesmas.

A grande maioria dos compiladores de hoje fazem uso da técnica chamada: tradução dirigida pela sintaxe. Nessa técnica as regras de contrução do programa fonte são utilizadas para guiar todo o processo de compilação. Algumas das técnicas mais antigas utilizadas na contrução dos primeiros compiladores (da linguagem Fortran) podem ser obtidas em [Rosen, 1967].

1.2 Modelo de Compilação de Análise e Síntese

Ainda segundo [Rangel, 1999], existem duas tarefas triviais a serem executadas por um compilador nesse processo de tradução:

- análise, em que o texto de entrada (na linguagem fonte) é examinado, verificado e compreendido;
- síntese, ou geração de código, em que o texto de saída (na linguagem objeto) é gerado, de forma a corresponder ao texto de entrada.

Em [Aho et al., 1995], a *análise* é colocada como uma tarefa que divide o programa fonte nas partes constituintes e cria uma representação intermediária do mesmo. A *síntese* constrói o programa alvo desejado, a partir da representação intermediária.

Geralmente, pensamos nessas tarefas como fases que ocorram durante o processo de compilação. No entanto, não se faz totalmente necessário que a análise de todo o programa seja realizada antes que o primeiro trecho de código objeto seja gerado. Ou seja, estas duas fases podem ser intercaladas.

Pode-se ter como exemplo que o compilador pode analisar cada comando do programa de entrada e então gerar de imediato o código de saída correspondente ao respectivo comando. Ou ainda, o compilador pode esperar pelo fim da análise de cada bloco de comando — ou unidade de rotina (rotina, procedimentos, funções) — para então gerar o código correspondente ao bloco. Para aproveitar melhor a memória durante a execução, compiladores costumavam ser divididos em várias etapas, executados em sequência. Cada etapa constitui uma parte do processo de tradução, transformando assim o código fonte em alguma estrutura intermediária adequada, cada vez mais próxima do código objeto final.

É natural que a análise retorne como resultado uma representação do programa fonte que contenha informação necessária para a geração do programa objeto que o corresponda. Quase sempre, essa representação (conhecida como representação intermediária [Rangel, 1999]) tem como complemento tabelas que contêm informações adicionais sobre o programa fonte. Pode ter casos em que a representação intermediária toma a forma de um programa em

uma linguagem intermediária, deixando assim mais fácil a tradução para a linguagem objeto desejada.

Não importando a maneira pela qual se toma a representação intermediária, ela tem de conter necessariamente toda a informação para a geração do código objeto. Uma das características da representação intermediária é que as estruturas de dados implementadas devem dar garantia de acesso eficiente as informações.

Figura 1.1: Estrutura do Compilador [Rangel, 1999]

Segundo [Rangel, 1999], uma das formas mais comuns de tabela utilizada nessa representação intermediária é a *tabela de símbolos*, em que se guarda para cada identificador(*símbolo*) usado no programa as informações correspondentes.

Há também um modelo possível em [Ullman et al., 1977], o qual se faz a separação total entre o *front-end*, encarregado da fase de análise, e o *back-end*, encarregado pela geração de código. Com isso tem-se que:

- frontend e backend se comunicam apenas da representação intermediária;
- o frontend depende exclusivamente da linguagem fonte
- o backend depende exclusivamente da linguagem objeto.

Essa idéia tem como objetivo simplificar a implementação de diferentes linguagens de programação para diferentes máquinas. Basta-se então escrever um frontend para cada linguagem e um backend para cada máquina. Ou seja, se deseja implementar x linguagens para y máquinas, precisa-se fazer x frontends e y backends. Esse esquema se torna mais fácil de aplicar quando há semelhança entre as máquinas e o mesmo acontece com as linguagens.

1.3 Análise

É normal associar a sintaxe a idéia de forma, em oposição a semântica que se associa a significado, conteúdo. Tem-se então que a sintaxe de uma linguagem de programação

deve descrever todos os aspectos relativos à forma de construção de programas corretos na linguagem, enquanto a semântica deve descrever o que acontece quando o programa é executado. Portanto, toda análise está relacionada com sintaxe, e a semântica deveria corresponder apenas à geração de código, que deve preservar o significado do programa fonte, contruindo um programa objeto com o mesmo significado [Rangel, 1999]

É necessário ressaltar uma diferença existente entre a teoria e a prática. Quando falamos em teoria, somente os programas corretos pertencem à linguagem, não havendo interesse nos programas incorretos. O fato é que um programa ou é da linguagem (está correto) ou não é da linguagem (está incorreto). No entanto, em se tratando de prática, no momento em que decide-se que um programa está incorreto, um bom compilador deve ser capaz de avisar sobre tal erro e de alguma forma, ajudar o usuário a corrigí-lo. Se faz necessário que o tratamento de erros inclua mensagens informativas e uma recuperação, para que a análise possa continuar e assim outros erros sejam sinalizados.

Em [Aho et al., 1995] vemos que a análise se constitui em 3 fases:

- Análise Linear Análise Léxica, na qual um fluxo de caracteres constituindo um programa é lido da esquerda para a direita e agrupado em tokens, que são sequências de caracteres tendo um significado coletivo.
- Análise Hierárquica Análise Sintática, na qual os caracteres ou tokens são agrupados hierarquicamente em coleções aninhadas com significado coletivo.
- Análise Semântica, na qual certas verificações são realizadas a fim de se assegurar que os componentes de um programa se combinam de forma significativa.

Sabe-se da possibilidade de total representação da sintaxe de uma linguagem de programação através de uma gramática sensível ao contexto [Wijngaarden, 1969]. No entanto, não há algoritmos práticos para tratar estas gramáticas, fazendo com que haja preferência em usar gramáticas livres de contexto. Sendo assim, fica claro que a separação entre análise sintática e análise semântica é dependente da implementação.

Sendo assim, a análise léxica tem como finalidade separar e identificar os elementos componentes do programa fonte, o qual estes geralmente, são especificados através de expressões regulares. A análise sintática deve reconhecer a estrutura global do programa, descrita através de gramáticas livre de contexto. A análise semântica se encarrega da verificação das regras restantes. Essas regras tratam quase sempre da verificação de que os objetos são usados no programa da maneira prevista em suas declarações, por exemplo verificando que não há erros de tipos [Rangel, 1999].

Não há ainda um modelo matemático que se adeque inteiramente na função de descrever o que deve ser verificado durante a análise semântica, ao contrário do que ocorre nas outras duas fases. No entanto, alguns mecanismos, como gramática de atributos, tem

sido utilizados com sucesso no processo de simplificação da construção de analisadores semânticos.

1.3.1 Tokens, Padrões e Lexemas

É necessário que antes de começar a falar de análise léxica tenha-se bem definido o significado de *tokens*, padrões e lexemas.

Tokens são símbolos terminais na gramática de uma linguagem. Falando em linguagens de programação, na maioria delas, as seguintes construções são tratadas como tokens: palavras-chave, operadores, identificadores, constantes, cadeias, literais(strings), e símbolos de pontuação como parênteses, vírgulas e pontos.

Padrão (pattern constitui-se em uma regra que define o conjunto de lexemas representam um token na linguagem. Normalmente tais regras são descritas na forma de expressões regulares.

Lexemas são sequências de caracteres descritas por um padrão de um *token*. Lexema é então o valor do *token*, aparecendo na maioria das vezes como um atributo a ser utilizado nas fases seguintes de compilação. Enquanto o analisador léxico faz a procura por *tokens*, temos que na geração de código os lexemas para produzir significado.

1.3.2 Expressões Regulares

Como já foi dito a análise léxica é responsável por gerar uma lista de tokens tendo como base o código fonte original. Dessa forma um meio de representarmos o que a linguagem aceita, ou não, pode ser neste primeiro passo de abstração representado através de Expressões Regulares.

Expressões Regulares são uma forma muito interessante de descrever padrões, especialmente aqueles que consistem em cadeias de caracteres. Através destas expressões podemos especificar que seqüências de caracteres são aceitas em um token, especificando caracteres opcionais e o número de repetições aceitos.

Segundo [Rigo, 2008] as Expressões Regulares são muito eficientes no que tange a representação ou especificação de tokens. Sendo assim neste primeiro momento o uso destas expressões são suficientemente boas para podermos representar os tokens que são aceitos pela linguagem em questão.

1.3.3 Análise Léxica

Segundo [Aho et al., 1995], o analisador léxico é a primeira fase de um compilador. Sua tarefa principal é a de ler os caracteres de entrada e produzir uma sequência de tokens que o parser utiliza para a análise sintática. Essa interação é comumente implementada

Tipo do token	Valor do token
palavra reservada if	if
identificador x	X
operador maior	>
literal numérico	0
palavra reservada then	then
identificador	modx
operador de atribuição	:=
identificador	X
palavra reservada else	else
identificador	modx
operador de atribuição	:=
delimitador abre parêntese	(
operador menos unário	-
identificador	X
delimitador fecha parenteses)

Tabela 1.1: Sequência de tokens identificados após a análise

fazendo com que o analisador léxico seja uma subrotina do *parser*. Ao receber do *parser* um comando 'obter o próximo *token*', o analisador léxico lê os caracteres de entrada até que possa identificar o próximo *token*.

Já em [Ullman et al., 1977], vemos que a análise léxica é responsável por separar e identificar os elementos componentes do código fonte. A análise léxica também elimina os elementos considerados 'decorativos' ou mesmo desnecessários para este processo, tais como espaços em branco, marcas de formatação de texto e comentários.

Em [Rangel, 1999] temos o seguinte exemplo em Pascal:

Após a análise léxica, a sequência de tokens identificadas é:

Normalmente os tipos dos *tokens* (na primeira coluna) são representados por valores de um tipo de enumeração ou por códigos numéricos apropriados.

O que se vê na grande maioria das vezes é que a implementação de um analisador léxico é baseada em um autômato finito capaz de reconhecer as diversas construções.

1.3.4 Análise Sintática

As linguagens de programação possuem regras que descrevem a estrutura sintática dos programas bem-formados. Dessa maneira, a partir da sequência de *tokens* gerada pelo analisador léxico, o analisador sintático realiza o seu trabalho, verificando se esta sequência pode ser gerada pela gramática da linguagem-fonte.

A análise sintática envolve o agrupamento dos *tokens* do programa fonte em frases gramaticais, que são usadas pelo compilador, a fim de sintetizar a saída. Usualmente, as frases gramaticais do programa fonte são representadas por uma árvore gramatical [Aho et al., 1995].

Já em [Rangel, 1999] tem-se que a análise sintática deve reconhecer a estrutura global do programa, por exemplo, verificando que programas, comandos, declarações, expressões, etc têm as regras de composição respeitadas.

Tem-se o exemplo:

Caberia a análise sintática reconhecer a estrutura deste trecho, reconhecendo de que se trata de um < comando>, que no caso é um < comando-se>, composto pela palavra reserva se, seguido de uma < expressão>, seguida também de uma palavra reservada entao, e assim por diante.

Ainda segundo [Rangel, 1999], quase universalmente, a sintaxe das linguagens de programação é descrita por gramáticas livres de contexto, em uma notação chamada BNF (Forma de Backus-Naur ou ainda Forma Normal de Backus, ou em alguma variante ou extensão dessa notação. Essa notação foi introduzida por volta de 1960, para a descrição da linguagem Algol [Naur, 1963].

Existem três tipos gerais de analisadores sintáticos. Os métodos universais de análise sintática, tais como o algoritmo de *Cocke-Younger-Casami* e o de *Earley*, podem tratar qualquer gramática. Esses métodos, entretanto, são muito ineficientes para se usar num compilador de produção. Os métodos mais comumentes usados nos compiladores são classificados como *top-down* ou *bottom-up*. Como indicado por seus nomes, os analisadores sintáticos *top-down* constroem árvores do topo (raiz) para o fundo (folhas), enquanto que os *bottom-up* começam pelas folhas e trabalham árvore acima até a raiz. Em ambos os casos, a entrada é varrida da esquerda para a direita, um símbolo de cada vez [Aho et al., 1995].

Os métodos de análise sintática mais eficientes, tanto top-down quanto bottom-up,

trabalham somente em determinadas subclasses de gramáticas, mas várias dessas subclasses, como as das grámaticas LL e LR, são suficientemente expressivas para descrever a maioria das construções sintáticas das linguagens de programação. Os analisadores implementados manualmente trabalham frequentemente com gramáticas LL. Os da classe mais ampla das gramáticas LR são usualmente contruídos através de ferramentas automatizadas [Aho et al., 1995].

Tratamento dos Erros de Sintaxe

Seria muito mais fácil e simples se um compilador tivesse que processar apenas programas corretos. No entanto, frequentemente os programadores escrevem programas errados que necessitam ser corrigidos e, um bom compilador deve ajudar a encontrá-los. Porém, [Aho et al., 1995] cita que a maioria das linguagens de programação não descreve como um compilador deveria responder aos erros, deixando tal tarefa para o projetista do compilador. O planejamento do tratamento de erros exatamente desde o início poderia tanto simplificar a estrutura de um compilador quanto melhorar sua resposta aos erros.

Os programas podem conter erros em níveis diferentes. Por exemplo:

- Léxicos, tais como errar a grafia de um identificador ou palavra-chave;
- Sintáticos, tais como uma expressão aritmética com parênteses não fechados;
- Lógicos, tais como uma entrada em um looping infinito.

Em [Aho et al., 1995] temos que boa parte da detecção e recuperação de erros num compilador gira em torno da fase de análise sintática. Isto porque os erros ou são sintáticos por natureza ou são expostos quando o fluxo de *tokens* proveniente do analisador léxico desobedece às regras gramaticas que definem a linguagem de programação. Outra razão está na precisão dos modernos métodos de análise sintática, sendo estes capazes de detectar muito eficientemente a presença de erros sintáticos num programa.

Pode-se concluir que o tratamento de erros em um analisador sintático tem metas simples de serem estabelecidas:

- Relatar de maneira clara e objetiva qualquer presença de erros
- Recuperar-se o mais rápido possível de algum erro para que assim, possa detectar erros subsequentes
- E por fim, não deve atrasar de maneira significativa o processamento de programas corretos.

Realizar efetivamente tais metas não constitui em uma tarefa fácil.

Felizmente, o que se vê é que os erros frequentes são simples e na maioria das vezes basta um método de tratamento de erros relativamente direto. Em alguns casos, porém, pode acontecer de um erro ter ocorrido antes mesmo de que sua presença fosse detectada e identificar precisamente a sua natureza pode ser muito difícil. Não é raro que em alguns casos difíceis, o tratador de erros tenha que adivinhar a idéia do programador quando o programa foi escrito.

Vários métodos de análise sintática, tais como os métodos LL e LR, detectam os erros tão cedo quanto possível. Mais precisamente, possuem a *propriedade do prefixo viável*, significando que detectam que um erro ocorreu tão logo tenham examinado um prefixo da entrada que não seja o de qualquer cadeia da linguagem.

Com o intuito de se conhecer os tipos de erros que ocorrem na prática, vamos examinar os erros que [Ripley and Druseikis, 1978] encontraram em uma amostra de programa Pascal de estudantes.

[Ripley and Druseikis, 1978] descobriram que os erros não ocorrem com tanta frequência. 60% dos programas compilados estavam semântica e sintaticamente corretos. Mesmo quando os erros ocorriam de fato, eram um tanto dispersos. 80% dos enunciados contendo erros possuíam apenas um, 13% dois. Finalmente, a maioria constituia de erros triviais. 90% eram erros em um único token.

Ainda segundo [Ripley and Druseikis, 1978], muitos dos erros poderiam ser classificados simplificadamente. 60% eram erros de pontuação, 20% de operadores e operandos, 15% de palavras-chave e os 5% restantes de outros tipos. O grosso dos erros de pontuação girava em torno do uso incorreto do ponto e vírgula.

Gramáticas Livres de Contexto

Tradicionalmente, gramáticas livres de contexto têm sido utilizadas para realizar a análise sintática de linguagens de programação. Nem sempre é possível representar neste tipo de gramática restrições necessárias a algumas linguagens – por exemplo, exigir que todas as variáveis estejam declaradas antes de seu uso ou verificar se os tipos envolvidos em uma expressão são compatíveis. Entretanto, há mecanismos que podem ser incorporados às ações durante a análise – por exemplo, interações com tabelas de símbolos – que permitem complementar a funcionalidade da análise sintática.

A principal propriedade que distingüe uma gramática livre de contexto de uma gramática regular é a auto-incorporação. Uma gramática livre de contexto que não contenha auto-incorporação pode ser convertida em uma gramática regular.

Segundo [Wirth, 1996], o termo livre de contexto deve-se a Chomsky e indica que a substituição do símbolo à esquerda da pela seqüência derivada da direita é sempre

permitida, independente do contexto em que o símbolo foi inserido. Esta restrição de liberdade de contexto é aceitável e desejável para linguagens de programação.

Várias linguagens de programação apresentam estruturas que são por sua natureza recursivas e podem ser definidas por gramáticas livres de contexto. Podem-se dar como exemplo uma declaração condicional definida por uma regra como:

```
1 se E entao
2 S1
3 senao
4 S2
5 fimsenao
```

Tal forma de declaração condicional não pode ser escrita por uma expressão regular. No entanto, utilizando uma variável sintática *cmd* com função de atribuir a classe da declaração e *expr* para denotar a classe de expressões, pode-se então expressar a declaração condicional como:

```
1 stmt -> se expr então stmt senão stmt fimsenao
```

1.4 Síntese ou Geração de Código

Em um compilador a fase final é a geração do código alvo, que consiste em código de montagem ou código de máquina relocável. Nesta fase acontece a tradução para a linguagem de máquina da máquina alvo ou para a linguagem destino. Algumas das tarefas do gerador de código são:

- Gerenciamento de memória;
- Seleção de instruções;
- Alocação de registradores.

1.4.1 Geração de Código Intermediário

Segundo [Aho et al., 1995], no modelo de análise e síntese de um compilador, os módulos da vanguarda traduzem o programa fonte numa representação intermediária, a partir da qual os módulos da retaguarda geram o código alvo. Na medida do possível, os detalhes da linguagem alvo são confinados ao máximo nos módulos da retaguarda. Apesar de se poder traduzir o programa fonte diretamente na linguagem alvo, alguns dos benefícios em se usar uma forma intermediária independente da máquina são:

• O redirecionamento é facilitado: Um compilador para uma máquina diferente pode ser criado atrelando-se à vanguarda existente uma retaguarda para a nova máquina.

• Um otimizador de código independente da máquina pode ser aplicado à representação intermediária.

Na figura a seguir é possível ver a posição do gerador de código intermediário no processo de compilação:

Figura 1.2: Posição do gerador de código intermediário [Aho et al., 1995]

1.4.2 Geração de Código

A fase final de um compilador é o gerador de código. Esse recebe como entrada a representação intermediária do programa fonte e produz como saída um programa alvo equivalente, como indicado na figura 1.2.

Figura 1.3: Posição do gerador de código intermediário [Aho et al., 1995]

As exigências tradicionalmente impostas a um gerador de código são severas. O código de saída precisa ser correto e de alta qualidade, significando que o mesmo deve tornar efetivo o uso dos recursos da máquina alvo. Sobretudo, o próprio gerador de código deve rodar eficientemente [Aho et al., 1995].

Matematicamente, o problema de se gerar um código ótimo não pode ser solucionado. Na prática, deve-se contentar com técnicas heurísticas que geram um código bom, mas não necessariamente ótimo. A escolha dos métodos heurísticos é importante, na medida em que um algoritmo de geração de código cuidadosamente projetado pode produzir um código que seja várias vezes mais rápido do que aquele que produzido por um algoritmo concebido às pressas [Aho et al., 1995].

Cabe ao projetista do gerador de código decidir como implementar a geração de código de maneira a fazer bom uso dos recursos disponíveis na máquina. Cabe também ao projetista decidir se a geração do código deve ser feita com cuidado, gerando diretamente código de qualidade aceitável, ou se é preferível usar um esquema mais simples de geração de código, seguido por uma 'otimização' do código depois de gerado [Rangel, 1999].

Entrada para o Gerador de Código

O gerador de código recebe como entrada a representação intermediária do programa fonte, que foi produzida anteriormente pela vanguarda do compilador, em conjunto com informações presentes na tabela de símbolos, que tem como finalidade determinar os endereços, em tempo de execução, dos objetos de dados, os quais são denotados pelos nomes na representação intermediária.

Assumi-se que a geração prévia de código, a partir da vanguarda do compilador, analisou léxica e sintaticamente o programa fonte, bem como o traduziu numa forma razoavelmente detalhada de representação intermediária, de forma que os nomes que figuram na linguagem intermediária possam ser representados por quantidades que a máquina alvo possa diretamente manipular. Também assumimos que a necessária verificação de tipos já teve lugar, de forma que os operadores de conversão de tipo já foram inseridos onde quer que fossem necessários e que os erros semânticos óbvios já foram detectados. A fase de geração de código pode, por conseguinte, prosseguir na suposição de que sua entrada está livre de erros. Em alguns compiladores, esse tipo de verificação semântica é feito junto com a geração de código [Aho et al., 1995].

Programas Alvo

A saída do gerador de código é o programa alvo. Como o código intermediário, essa saída pode assumir uma variedade de formas: linguagem absoluta de máquina, linguagem relocável de máquina ou linguagem de montagem.

Como saída, a produção de um programa em linguagem absoluta de máquina possui a vantagem do mesmo poder ser carregado numa localização fixa de memória e executado imediatamente. Um pequeno programa pode ser compilado e imediatamente executado [Aho et al., 1995].

A produção de um programa em linguagem de montagem como saída torna o processo de geração de código um tanto mais fácil. Podemos gerar instruções simbólicas e usar as facilidades de processamento de macros do montador para auxiliar a geração de código. O preço pago está no passo de montagem após a geração de código. Como a produção do código de montagem não duplica toda a tarefa do compilador, essa escolha é outra alternativa razoável, especialmente para uma máquina com uma memória pequena, onde

o compilador precisa realizar diversas passagens [Aho et al., 1995].

1.5 Conclusão

A história dos compiladores se confunde com a história da computação, visto que esta é a maneira de se comunicar com os computadores de maneira fácil e eficiente. A medida que a tecnologia vai avançando os computadores também o vão, bem como as técnicas e ferramentas utilizadas na construção do mesmo.

É fato então que os compiladores são ferramentas muito importantes para o mundo da computação e, seu estudo se faz necessário, visto a grande necessidade que temos hoje - devido ao aumento dos inúmeros dispositivos tecnológicos e das linguagens de programação - de comunicação com os computadores.

Capítulo 2

Portugol

2.1 Introdução

O Portugol como linguagem não é tão bem definida, ficando muito mais sujeita a uma linguagem de aprendizado, voltada para o ensino e não para projetos de grande porte. Algumas vezes é somente uma tradução simplificada de Pascal para o português.

O Portugol aqui definido é baseado em [Farrer, 1999]. O Livro utilizado para o estudo de algoritmos e de introdução a programação é perfeito para este trabalho. O compilador desenvolvido, bem como o sistema Web, visa estudar como o processo de compilação online se dará, sendo necessário uma linguagem simples que não tome o foco do objetivo principal.

Nas seções subsequentes é possível ver como o portugol foi proposto para este compilador. Suas características, sua sintaxe e a estrutura da linguagem.

2.2 Estrutura da Linguagem

2.2.1 Comentários

Mais de uma forma de comentar o código será aceito, estimulando o seu uso em todo o código. O // usado em linguagens como C e Java e também a # (cerquilha), utilizada em linguagens como o Ruby são aceitos como comentários de uma só linha. Os (colchetes) são a única forma aceita de comentários para várias linhas ou comentários de bloco.

2.2.2 Tipos básicos

Os tipos básicos são simples e restritos, pois visam o ensino da lógica de programação. Isso promove também a independência de linguagem e de máquina.

Numérico

O tipo numérico resume todos os tipos para o cálculo aritmético. Não existe distinção entre números inteiros ou números reais (ponto flutuante). Caso haja a necessidade de que algum algoritmo utilize uma propriedade específica de algum destes tipos, deverá esta ser obtida através de funções. A vírgula é o símbolo utilizado para a separação da parte decimal. Não se escrevem os separadores de milhar.

Literal

Este tipo é responsável por armazenar sequências de letras e símbolos — em muitas linguagens é o tipo *String*.

Lógico

Responsável pelo armazenamento das constantes verdadeiro e falso. Este tipo é muito importante em projetos de linguagens de programação, visto que ele é bastante utilizado, sendo o tipo de retorno de várias operações.

Vetores e Matrizes

É permitida a criação de vetores e matrizes de quaisquer tipos básicos. As operações realizadas com matrizes e vetores deverão ser realizadas de forma condizente com a linguagem Portugol. As operações básicas deste tipo seguem as mesmas permitidas em seus tipos básicos. A palavra-chave *matriz* é reservada para este tipo. O número inicial dos índices é sempre 1.

Exemplo:

```
1 a matriz numérico [30] // Cria uma matriz 30x1
2 b matriz lógico [3][3] // Cria uma matriz 3x3
```

Registros

É sempre definido pela palavra reservada **registro**. Representa um bloco composto por declarações de variáveis. Se encerra com a palavra **fimregistro**.

Exemplo:

```
1 registro
2 num1, num2 numérico
3 estaPresente lógico
4 endereco literal
5 fimregistro
```

2.2.3 Variáveis e Identificadores

As variáveis são parte importante de uma linguagem. Qualquer identificador, sendo este válido, tem como primeiro símbolo uma letra. Números e _ (sublinha) são aceitos após o primeiro caractere. O tamanho máximo válido é definido em 32 caracteres.

É necessário lembrar que alguns símbolos, normalmente ignorados ou proibidos em outras linguagens, são aceitos em Portugol. Símbolos estes presentes na língua portuguesa, como por exemplo, os acentos: á, ê, í, à, õ, ..., ç.

Vale ressaltar da diferença existente entre variáveis declaradas com acento e variáveis sem acento. Ou seja, a variável 'pé' é diferente da variável 'pe'.

2.2.4 Declaração de variáveis

Não existe um local específico para declaração de variáveis, mas fica a recomendação de que esta seja feita no início de uma seção, seja o programa principal ou um procedimento/função. A palavra-chave **declare** será utilizada para declarar variáveis em Portugol. É possível declarar variáveis de mesmo tipo em uma mesma linha, nunca variáveis de tipos diferentes.

Exemplo:

```
1 declare num1, num2, num3 numérico
2 declare palavra literal
3 declare a, b, c lógico
4 declare r registro
5 dia, mes numérico
6 nome literal
7 estaPresente lógico
8 fimregistro
```

Exemplo de declaração inválida:

```
1 declare num1 numérico, palavra literal
```

A visibilidade de uma palavra segue o mesmo padrão de outras conhecidas linguagens, ou seja, é dependente do escopo a qual foi definida.

2.2.5 Atribuição

A atribuição de valores a uma variável será denotada pelo símbolo ":=". Será permitido apenas a atribuição de um valor por vez. Uma atribuição será válida quando possuir um identificador válido do lado esquerdo e uma expressão válida e, do mesmo tipo, do lado direito.

Exemplo:

```
1 declare num1, num2 numérico
2 declare palavra literal
3
4 num1 = 3
5 num2 = 1,5
6 palavra = "Olá Mundo"
```

2.2.6 Operadores

Operadores Aritméticos

Os operadores são:

Tabela 2.1 - Operadores Aritméticos

Operação	Símbolo
Adição	+
Subtração	-
Multiplicação	*
Divisão	/

Operadores Lógicos

Os Operadores são:

Tabela 2.2 - Operadores Lógicos

Operação	Símbolo
inversão - não	não
junção	е
disjunção	ou

Operadores Relacionais

Os Operadores são:

Tabela 2.3 - Operadores Relacionais

Operação	Símbolo
Igualdade	=
Maior	>
Menor	<
Maior ou Igual	<u>></u>
Menor ou Igual	<u> </u>
Diferença	!= ou <>

Operadores Relacionais

Os Operadores são:

Tabela 2.4 - Operadores Literais

Operação	Símbolo					
Concatenação	+					
Igualdade	=					
Maior	>					
Menor	<					
Maior ou Igual	<u> </u>					
Menor ou Igual	\leq					
Diferença	!= ou <>					

2.2.7 Estrutura Sequencial

O programa tem início com a palavra **programa** e tem fim com a palavra **fimprograma**. Caso queira importar outros módulos, estes devem ser feitos através de comando, após a declaração do programa.

Em Portugol não se faz necessária a utilização de algum símbolo especial ou visual para marcar o fim de linha. Basta que o "Retorno" — mais conhecido pela tecla "ENTER" — seja pressionado. Este símbolo é definido na posição 13 da tabela ASCII.

Qualquer que seja o símbolo ou comando declarado fora do escopo do programa, será considerado erro. Funções e procedimentos devem ser declarados externamente e então, importados pelo programa que necessite utilizá-los. Isto fará com que se estimule a modularização de código, bem como a criação de arquivos de menor tamanho e mais fáceis de entender.

2.2.8 Estruturas Condicionais

São definidas duas: **se** e o **caso**.

O se é utilizado quando se quer avaliar uma condição ou expressão lógica e retorna obrigatoriamente um valor lógico. Conforme o retorno a execução passa para o bloco então — caso seja verdadeiro — ou para o bloco senão — caso seja falso.

É definido também em Portugol o **fimentão** e o **senão**, responsáveis pelo fechamento dos blocos **então** e **senão** respectivamentes.

Exemplo:

```
4 senão num2 = 2
5 fimsenão
6 fimse
```

A estrutura **caso** permite avaliar vários valores e admite váriavel dos tipos lógicos, numérico e literal.

```
1 caso tamanho
2 10: i := 10
3 11: i := 11
4 12: i := 12
5 fimcaso
```

2.2.9 Estruturas de Repetição

Três estruturas são definidas em Portugol: faça, enquanto, repita.

O faça é similar ao for de outras linguagens. Sua construção é demonstrada abaixo:

```
1 faça i de 1 até 10
2 <instruções>
3 fimfaça
```

O bloco acima irá executar as instruções dez vezes, incrementando o valor do "i" de 1 até 10. É recomendável como boas práticas de programação que a váriavel de controle — no bloco acima é o "i" — não tenha seu valor alterado pelas instruções internas. O valor do "i" é incrementado em 1 sempre quando se chega ao "fimfaça". O valor do "i" após o "fimfaça" é igual ao valor máximo estipulado no início, no caso 10.

O enquanto substitui o while de outras linguagens de programação. Exemplo:

```
1 enquanto num1 > num2
2 <instruções >
3 fimenquanto
```

A estrutura de repetição **enquanto** executa o bloco de código até que a condição seja falsa. Pode acontecer das instruções nem serem executadas, caso a condição seja falsa logo de início.

A estrutura **repita** tem como característica o fato de ser básica. A verificação e a interrupção do bloco de código é livre, sendo especificada pelo comando **interrompa**. Veja:

```
1 repita
2 <comandos>
3 interrompa
4 fimrepita
```

Após a leitura do interrompa, a execução do programa se dará para o trecho de código abaixo do "fimrepita".

Como pode ser observado, a maioria das estruturas definidas são fechadas sempre utilizando o "fim estrutura". A não utilização de tal comando acarretará em um erro de código, podendo ser este léxico ou sintático.

2.2.10 Funções

As funções aqui definidas seguem as mesmas regras de um programa, não podendo apenas importar módulos.

A declaração de uma função pode ser vista abaixo:

```
1 funcao soma(a numerico, b numerico)
2 <comandos>
3 fimfuncao
```

Assim como ocorre em outras linguagens de programação, as variáveis declaradas em uma determinada função são internas a ela, possuindo assim escopo local.

Decidi por não utilizar uma estrutura do tipo procedimento - estrutura esta existente em outras linguagens - pelo fato de simplificar o uso da linguagem, visto que ela se designa ao ensino de programação. O mesmo se faz irrelevante neste trabalho, já que a principal diferença entre uma função e um procedimento é que a função retorna um resultado.

2.3 Conclusão

A linguagem Portugol é por sua própria natureza simples. Na maioria das vezes em que é utilizada a finalidade é sempre o aprendizado de programação de computadores. O Portugol utilizado para a construção deste trabalho também tem a simplicidade em sua essência, no entanto, oferece as condições necessárias para uma introdução a programação, além de também atender ao propósito deste trabalho de final de curso.

É importante deixar claro que tomando como base este trabalho e a linguagem Portugol em si, é perfeitamente possível a criação de uma linguagem de programação mais poderosa e robusta que contenha uma estrutura muito mais complexa. Ou então é também possível, a criação de uma DSL (Domain Specific Language), mas este seria um assunto para um outro projeto.

Capítulo 3

Estado da Arte

3.1 Introdução

A contrução de compiladores, bem como o estudo do mesmo é algo antigo que acontece desde os primórdios da computação, visto que desde sempre, fez-se necessário a comunicação com as máquinas e, a evolução dos compiladores e também das linguagens de programação se baseou no estudo de técnicas que visavam melhorar tal comunicação.

Posto de forma simples, um compilador é um programa fonte que lê um programa escrito numa linguagem - a linguagem - fonte e o traduz em um programa equivalente em uma outra linguagem - a linguagem alvo (como visto na figura abaixo) [Aho et al., 1995].

Figura 3.1: Um Compilador [Aho et al., 1995].

3.2 Compiladores

Conforme Knuth e Trabb [KP80], o termo compilador não era ainda utilizado nessa época. Na verdade falava-se sobre programação automática. No início da programação em linguagem de máquina foram desenvolvidas subrotinas de uso comum para entrada e saída, para aritmética de ponto flutuante e funções transcendentais. Junto com a idéia de um endereçamento realocável - pois tais subrotinas seriam usadas em diferentes partes de um programa - foram criadas rotinas de montagem para facilitar a tarefa de uso das subrotinas e de endereçamento relativo, idéia desenvolvida por Maurice V. Wilkes. Para

isso foi inventada uma pseudo linguagem de máquina. Uma rotina interpretativa iria processar essas instruções, emulando um computador hipotético. Esse é o sentido do termo 'compilador' até aqui usado [Filho, 2007].

Nos primórdios dos computadores, programar era uma tarefa extremamente complicada e, de certa forma, extenuante. Aos programadores era exigido um conhecimento detalhado das instruções, registos e outros aspectos ligados com a unidade de processamento central (CPU) do computador onde era escrito o código. Os programas consistiam numa série de instruções numéricas, denominadas por código binário. Posteriormente, desenvolveram-se algumas mnemónicas que resultaram no designado assembly [Henriques, 2000].

O AUTOCODE foi o primeiro 'compilador' real, que tomava uma declaração algébrica e a traduzia em linguagem de máquina. Seu desconhecido autor, Alick E. Glennie, das forças armadas da Inglaterra, declarava em Cambridge, em 1953, sua motivação para elaborá-lo: 'A dificuldade da programação tornou-se a principal dificuldade para o uso das máquinas. Aiken expressou sua opinião dizendo que a solução para esta dificuldade deveria ser buscada pela construção de uma máquina especial para codificar(...) Para tornar isso fácil deve-se elaborar um código compreensível. Tal coisa somente pode ser feita melhorando-se a notação da programação'.

John Backus discute essa distinção que Knuth faz, citando J. Halcomb Laning, Jr. e Niel Zierler como os inventores do primeiro 'compilador' algébrico, para o computador Whirlwind. Como esta, são muitas as discussões ainda hoje sobre quem foi o pioneiro no assunto. De qualquer maneira esses primeiros sistemas denominados genericamente de programação automática (acima citada) eram muito lentos e não fizeram muito sucesso, embora tivessem sido fundamentais para preparar a base do desenvolvimento que se seguiu [Filho, 2007].

Este veio com o A-0, agora sim o primeiro compilador propriamente dito, desenvolvido por Grace Murray Hopper e equipe, aprimorado para A-1 e A-2 subseqüentemente. O próximo passo seria o A-3, desenvolvido em 1955, produzido ao mesmo tempo com o tradutor algébrico AT-3, mais tarde chamado MATH-MATIC [Filho, 2007].

Em 1952 a IBM construía o computador 701 e em 1953 foi montada uma equipe liderada por John Backus para desenvolver um código automático que facilitasse a programação. O resultado foi o Speedcoding. Backus tornou-se uma das principais figuras na história da evolução das linguagens de programação, tendo um papel fundamental no desenvolvimento dos grandes compiladores que viriam a partir do ano de 1955 como o FORTRAN e o ALGOL, além do estabelecimento da moderna notação formal para a descrição sintática de linguagens de programação, denominada BNF, Backus Normal Form [Filho, 2007].

No período entre 1954-1957 uma equipa de 13 programadores liderados por John

Backus desenvolveu uma das primeiras linguagens de alto nível para o computador IBM 704, o FORTRAN (FORmula TRANslation). O objetivo deste projecto era produzir uma linguagem de fácil interpretação, mas ao mesmo tempo, com uma eficiência idêntica à linguagem assembly [Henriques, 2000].

A linguagem Fortran foi ao mesmo tempo revolucionária e inovadora. Os programadores libertaram-se assim da tarefa extenuante de usar a linguagem assembler e passaram a ter oportunidade de se concentrar mais na resolução do problema. Mas, talvez mais importante, foi o fato dos computadores passarem a ficar mais acessíveis a qualquer pessoa com vontade de despender um esforço mínimo para conhecer a linguagem Fortran. A partir dessa altura, já não era preciso ser um especialista em computadores para escrever programas para computador [Henriques, 2000].

3.3 Trabalhos Relacionados

Existem alguns trabalhos semelhantes a este. Uns mais, outro menos, mas todos com a proposta de colocar um compilador disponível de maneira online, por meio apenas de um navegador. A questão a ser discutida sempre é sobre a proposta do trabalho, ou seja, qual o motivo de tê-lo, é isto que muda a perspectiva do trabalho e maneira de implementá-lo. Com certeza o projeto que mais se parece com este, o qual tem uma ótima proposta e foi muito bem feito é o *CodeSchool*. O ponto que é o difere é a proposta de venda de informação, através de cursos online, sendo o compilador uma parte de um todo.

O grande diferencial do trabalho aqui proposto é que ainda não existe um compilador online para a linguagem de programação Portugol, sendo este o primeiro que se tem notícia.

Vejamos agora nas seções abaixo alguns trabalhos relacionados.

3.3.1 Codepad

O [codepad, 2011] é um compilador e interpretador online, além de ser uma simples ferramenta de colaboração. Tem a função de *pastebin** que executa código para o usuário. O usuário cola o código e o [codepad, 2011] o compila, dando ao usuário um URL que você pode usar para compartilhar o resultado com outros. O usuário pode também, simplesmente, colocar algum código e compilar, quando este não estiver com um compilador instalado em seu computador. O [codepad, 2011] funciona em alguns celulares e *tablets*.

O [codepad, 2011] foi escrito(e ainda é mantido) por Steven Hazel. O site [codepad, 2011] foi escrito em *Python*, usando *Pylons* e *SQLAlchemy*.

O [codepad, 2011] possui suporte a várias linguagens. São elas(com seus respectivos compiladores):

• C: gcc 4.1.2

• C++: g++ 4.1.2

• D: Digital Mars D Compiler v1.026

• Haskell: Hugs, Setembro 2006

• Lua: Lua 5.1.3

• OCaml: Objective Caml version 3.10.1

• PHP: PHP 5.2.5

• Perl: Perl v5.8.0

• Python Python 2.5.1

• Ruby: Ruby 1.8.6

• Scheme: MzScheme v372 [cgc]

• Tcl: tclsh 8.4.16

Na figura abaixo podemos ver a tela inicial do [codepad, 2011]:

Figura 3.2: Tela do compilador online CodePad. codepad.org

Nessa tela o usuário seleciona a linguagem a qual ele irá utilizar e então coloca o código no campo em branco. Após isso o usuário clica em 'submit' e tem a resposta do compilador.

3.3.2 Ideone

Este é um dos mais completos e robustos compiladores online. Possui uma grande variedade de linguagens suportadas (até a data deste trabalho, mais de 40), e inclusive, marcação de sintaxe(sintax highlight), funcionando como um bom editor de programação. Ele também pode ser utilizado como um pastebin, mas é muito mais do que isso, funcionando muitas vezes até como um debugger.

Suas características principais são:

- Compartilhamento de código;
- Compilar código diretamente do navegador em mais de 40 linguagens de programação;
- Possui uma API para que o usuário possa construir seu próprio compilador online;
- Oferece a possibilidade de gerenciar programas já feitos através de um cadastro anterior.

Abaixo a tela do Ideone:

Figura 3.3: Tela do compilador online Ideone.

Essa tela é similar a tela anterior. O usuário deve selecionar a linguagem a ser utilizada e então clicar em 'submit' para que o compilador retorne com a resposta.

3.3.3 CodeSchool

Este é mais do que apenas um compilador online, o Code School tem um objetivo diferente. Ele não é apenas um campo de texto no qual o usuário digita seu código e tudo é compilado, ele é mais do que isso. O Code School é uma plataforma de ensino, no qual o usuário pode ler textos, ver vídeos e programar na prática determinada linguagem, facilitando seu aprendizado. Abaixo um trecho dos criadores sobre o Code School:

'A maioria das pessoas não aprendem programação e design para a web lendo livros. Aprendizados verdadeiros acontecem quando você começa a experimentar o código no navegador e usa conceitos de design em um website. Na nossa opinião, a melhor maneira de aprender é fazendo. Code School abre as portas para uma nova maneira de aprendizado, combinando vídeos, codificação no navegador e jogos para fazer o aprendizado de uma nova tecnologia divertido'.

Code School foi criado pelos cientistas da *Envy Labs*, uma equipe de desenvolvedores de software web. Abaixo uma imagem da tela do Code School:

Figura 3.4: Tela de exercícios do compilador CodeSchool.

Nessa página o usuário é capaz de digitar o código e receber a resposta do compilador.

3.3.4 Rails for Zombies

Este é o mais alternativo de todos acima apresentado. Sua intenção é a de ensinar o Ruby on Rails por meio de uma metodologia simples e bem humorada, através de uma interface diferente, com vídeos divertidos e tudo muito bem feito. O Rails for Zombies foi feito para quem está começando com programação. O usuário vai passando por níveis a medida que codifica os exercícios da maneira correta. O seu editor é bem simples e fácil de usar e, o compilador, responde de maneira muito rápida.

Este website ficou muito famoso devido a sua técnica utilizada para o ensino e também por causa da velocidade que seu compilador apresentava, ficando fácil e rápido escrever o código dentro dele.

Abaixo uma imagem da tela do Rails for Zombies:

Figura 3.5: Tela do editor e compilador da página Rails for Zombies

3.4 Conclusão

Pode-se concluir que esta área é ainda nova, mas que se apresenta interessante e vários profissionais da área de computação vêm mostrando que ela é importante. O fato é que para vários fins, se faz necessário a presença de um compilador online, pois esse poderá ser acessado de qualquer lugar, indepedente da máquina.

Capítulo 4

Metodologia e Análise do Protótipo Proposto

4.1 Introdução

A criação de um compilador que realiza comunicação com um navegador e realiza suas operações pela internet não é tão trivial de se fazer. Os compiladores tem como característica o fato de poderem demorar em uma determinada compilação, dependendo é claro da complexidade do algoritmo criado. Já o os navegadores de internet devem sempre ter uma resposta imediata e rápida na medida do possível. Faz-se então necessário que um compilador online deva manter uma forma simples e limpa, para que facilite esse processo e seja então viável.

Este trabalho propõe uma metodologia de compilador online, ou seja, um sistema que funcione em um navegador para a internet, compilando determinado trecho de código e retornando o resultado para o usuário.

Basicamente o protótipo proposto é baseado em dois módulos principais, sendo eles o compilador e o sistema web. Entre estes módulos existe portanto uma comunicação, ou seja, o usuário acessa o sistema através da internet e insere o seu código. O sistema então enviará esse código para a compilação e então, depois de compilado, o compilador retorna a resposta para sistema web que apresentará a mesma ao usuário.

O compilador foi criado utilizando a linguagem C++, visto que tal linguagem apresentouse fácil para a construção do mesmo, além de possuir uma documentação vasta e ser bastante robusta. Para o processo de *backend* foi utilizado o NASM (Netwide Assembler)

4.2 Compilador

Como visto no capítulo 1, o compilador apresenta fases da compilação, sendo elas a fase de análise e fase de síntese. Cada uma destas fases são dividas em outras fases menores, sendo cada uma delas responsáveis por tarefas durante todo o processo. Na fase de análise (também conhecida como *frontend*) o processo se divide em três, análise léxica, sintática e semântica. Tais fases são responsáveis por identificar e informar a grande maioria dos erros por parte do programador.

4.2.1 Análise Léxica

A analise léxica é o primeira módulo do frontend de um compilador e basicamente este módulo é responsável por receber um arquivo de entrada (programa fonte) e "quebrálo" em palavras conhecidas como tokens. Os analisadores léxicos também têm a função de descartar coisas que não terão importância para a compilação de um arquivo fonte tais como: Espaços em branco e comentários.

Como resultado um analisador léxico verifica se um determinado código é ou não válido de acordo com a gramática da linguagem regular descrita e gera uma lista de tokens que será repassada para os outros módulos do processo de compilação A implementação de um analisador léxico requer logicamente que a linguagem regular (a qual o analisador léxico ira obedecer as regras) seja descrita formalmente e para isto faz-se necessário o uso de algumas estruturas de representação desta linguagem tais como as Expressões Regulares que será a base para a construção de um NFA(Autômato Finito Não Determinístico) e a partir deste NFA é contruído um DFA (Autômato Finito Determinístico) que representa a linguagem gramaticamente e é a base para a codificação usando uma linguagem de programação do analisador léxico para uma determinado linguagem regular.

Na figura 4.1 vê-se um NFA que tem como função representar os operadores da linguagem.

Já na figura 4.2 temos um outro NFA, responsável por representar os comentários de linha.

4.2.2 Análise Sintática

Terminada a etapa de análise léxica do nosso compilador, passamos agora para a segunda etapa de construção do mesmo: A análise Sintática. A etapa de análise sintática ou em inglês parser recebe como entrada uma sequência de tokens do analisador léxico e determina se a string pode ser gerada através da linguagem fonte. Para este compilador foi criado um analisadore sintático do tipo LALR(1).

O analisador sintático preditivo é um algoritmo simples, capaz de fazer o parsing de

Figura 4.1: NFA que representa as palavras reservadas da linguagem

Figura 4.2: NFA que representa os comentários de linha da linguagem

algumas linguagens. Neste tipo de analisador cada produção da linguagem fonte torna-se uma cláusula em uma função recursiva, tendo-se uma função para cada não-terminal da produção. Como visto, cada função relativa a um não-terminal precisa conter um cláusula para cada produção. Desta forma faz-se necessário saber escolher qual a produção mais apropriada para tal. Esta escolha é feita baseando-se no próximo token. E isto é feito através da predictive parsing table.

A maioria das linguagens de programação é LALR(1), sendo esta técnica o tipo mais usado em geradores automáticos de parsers, foi usado então um analisador LALR(1) para a linguagem Portugol.

4.2.3 Análise Semântica

A análise semântica é o ultimo módulo do frontend de um compilador. Como já foi visto a análise léxica é responsável por quebrar a entrada em palavras conhecidas como tokens. Já a análise sintática que é o segundo módulo do frontend, tem o objetivo de analisar a estrutura de frases de um programa e verificar também se determinada string pode ser gerada pelas derivações da gramática em questão. Por fim a análise sintática calcula o "significado" do programa realizando verificações de tipos e de declarações e seus respectivos usos.o

4.2.4 Backend

Após o processo de análise, o compilador gera código em assembly para, então, usar o NASM (Netwide Assembler) como *backend* para montar e criar um executável válido. Consequentemente, não existe etapa de linkagem. A fase de otimização de código também não foi implementada.

Para usar esse recurso, é nescessário que o NASM esteja instalado no sistema. Ele pode ser encontrado em [NASM, 2011].

4.3 Sistema de Programação Web

Como segundo módulo do protótipo proposto, tem-se a criação do Sistema de Programação Web que funciona com um editor de programas e também realiza a comunicação com o compilador. O sistema tem como nome 'PortugOn'.

O sistema foi criado utilizando a linguagem de programação Ruby, juntamente com o framework Rails, pois é uma linguagem de alto nível, capaz de realizar tarefas com menos linhas de código que várias outras linguagens, sendo esta também a linguagem a qual sou mais fluente. Foi escrito também código JavaScript, para facilitar na interação com o usuário. O banco de dados utilizado para a aplicação foi o MySQL, por ser um banco popular, de fácil integração com o Ruby on Rails e também por ser de fácil manuseio.

O PortugOn é dividido em telas, as quais cada uma tem as propriedades. A princípio temos a tela inicial (como pode ser observado na figura 4.3), que tem como finalidade apresentar o sistema através de algumas de suas características e também, contém um formulário de *login* para que o usuário possa realizar sua autenticação no sistema. Caso o usuário ainda não tenha cadastro ele pode clicar em 'Cadastre-se' e aí partir para uma outra tela, a de novo cadastro.

Figura 4.3: Página inicial do sistema PortugOn

Se então o usuário que acessar o sistema ainda não tiver cadastro, ele deverá realizar um novo. Ao clicar em 'Cadastre-se' na página inicial, o usuário irá para uma nova página (figura 4.4). Nessa nova página o usuário deverá preencher todos os campos pedidos e então clicar 'Cadastrar'. Após isso o usuário será cadastrado no banco de dados e poderá realizar o *login*. Caso o usuário não queira realizar seu cadastro ele pode clicar em 'Cancelar' e voltar à pagina inicial.

Figura 4.4: Página de cadastro de usuário do sistema PortugOn

Após o usuário efetuar o seu cadastro e entrar no sistema, ele irá para a página 'Home' (figura 4.5). Nesta página ele irá encontrar um menu no topo, podendo navegar pelos links lá visualizados. Nessa mesma página encontra-se o editor onde o usuário deve entrar com o código Portugol. Ao entrar com o código do programa e clicar em 'Submit', o código será compilado e o retorno poderá ser observado na coluna ao lado, a coluna 'Resultado' (figura 4.6). O usuário receberá a mensagem relacionada ao seu programa, se tudo correu bem, será uma mensagem de acerto, caso contrário o usuário receberá um aviso de erro e a respectiva mensagem do compilador.

Cada vez que o usuário compila determinado programa, este fica salvo no banco de dados. O usuário pode então acessar tais programas clicando no menu 'Programas' (figura 4.7). Essa tela mostra os programas já feitos com a sua respectiva, data, podendo o usuário editar o programa ou excluí-lo.

Caso o usuário ao realizar seu cadastro tenha escolhido o seu vínculo como 'Professor', este terá em sua página o menu 'Exercícios'. Ao acessar tal menu, o usuário será capaz de criar um exercício à ser aplicado e também, listar todos os seus exercícios já criados (figura 4.8). As operções de editar e excluir podem também serem utilizadas nessa seção.

Se o usuário for do tipo 'Professor', aparecerá também no seu menu, o link 'Alunos'.

Figura 4.5: Pagina Home do usuário do sistema PortugOn

Figura 4.6: Página Home do usuário, com código compilado

Figura 4.7: Página Programas. Lista os programas já efetuados pelo usuário

Figura 4.8: Página Exercícios. Lista os exercícios criados pelo usuário

Ao acessar este link o usuário irá para a página responsável por listar os alunos atrelados aquele professor. Será possível também cadastrar um novo aluno, bem como excluir os já existentes (figura 4.9). O usuário pode também, clicar nos exercícios de cada aluno para poder ver a resposta do aluno para o determinado exercício.

Figura 4.9: Página Alunos. Lista os alunos criados pelo usuário

Ao encerrar as atividades no sistema, o usuário deve fazer o *logout*, ou seja, encerrar sua sessão no sistema. Para isso, basta que ele clique em 'Sair', no menu ao lado direito.

Capítulo 5

Teste e Análise dos Resultados

5.1 Testes

O desenvolvimento de um *software* envolve uma gama de atividades nas quais a possibilidade de ocorrerem falhas humanas é enorme [Molinario, 2008]. E é por estas razões que o desenvolvimento de um *software* deve ser sempre acompanhado por atividades de testes que visam garantir a qualidade do software. Os testes são indispensáveis para remover defeitos e para avaliar o grau de qualidade do *software* [Delamaro et al., 2007].

5.2 Plano de Testes

O ato de planejar testes é um dos mecanismos mais efetivos na prevenção de erros em um *software* [Beizer, 1995]. Um plano de testes é um forte instrumento estratégico no desenvolvimento de um *software*, isso se deve pelo fato de que é ele que irá guiar e representar todo o processo de teste através de documentos e quanto mais bem documentado o plano estiver, melhor ele representará a realidade [Delamaro et al., 2007].

Segundo [Molinario, 2008], existem vários padrões internacionais, além de um nacional que são padrões específicos para a elaboração e uso do plano de testes, como forma de sistematizar a produção de documentos relativos aos testes realizados na produção de um software, dentre estes padrões destaca-se as Normas IEEE (Institute of Eletrical and Eletronics Engineers), o padrão QAI (Quality Assurance Institute) e o padrão ABNT NBR 12207.

As normas IEEE (*Institute of Eletrical and Eletronics Engineers*), são padrões estabelecidos pelo *Software Engineering Standarts Comittee* e têm como objetivo básico ser ponto de apoio para o desenvolvimento de diversas atividades industriais de *software*, sugerindo que essas normas sejam um guia para as definições dos processos envolvidos.

O QAI (Quality Assurance Institute) é um instituto internacional de certificações e

padrões em qualidade de *software* e tem uma proposta própria de padronização do plano de testes.

A ABNT NBR 12207 é o único padrão nacional existente no que tange a teste de software. Porém, na prática não é muito seguida [Molinario, 2008].

Ainda segundo [Molinario, 2008], para testes o padrão mais importante e bem é reconhecido o IEEE STD 829-1998. Esta norma foi criada em 1998 e tem como objetivo prover uma forma mais organizada de montar uma documentação eficaz para testes, sempre visando alcançar uma maior qualidade de *software*. Segundo dados do IEEE, este documento descreve oito sugestões de documentação, não sendo necessário porém, utilizar todos eles, o ideal é que o projetista de testes utilize o que mais adequar a sua necessidade. Dentre os oito documentos sugeridos pela norma, os que serão produzidos por este trabalho como forma de documentar e nortear os testes serão:

- Plano de Testes: apresenta o planejamento para a execução do teste;
- Especificação dos Casos de Testes: Definir os casos de teste, incluindo dados de entrada e resultados esperados;
- Relatório-Resumo de Teste: apresenta os resultados das atividades de testes e prover avaliações baseadas nestes resultados;

5.3 Documentação do Plano de Testes

5.3.1 Planejamento para a Execução dos Testes

Ao se realizar programas em Ruby on Rails ele fornece três estruturas: os models, os controllers e as views. Os models são responsáveis pela comunicação com o banco de dados, sendo na verdade objetos que representam uma determinada tabela do banco de dados. As views são a parte responsável pela estrutura e layout do sistema, sendo o local onde fica o código html, ou seja, a parte vista pelo usuário. E por fim, os controllers são responsáveis pela comunicação entre estas partes e também pela lógica do negócio. Este é o chamado modelo MVC.

5.3.2 Recursos

Os principais recursos utilizados na realização dos testes foram: um microcomputador com o sistema operacional *Linux Fedora 15* instalado, 3GB de memória RAM, Disco rígido com capacidade de 250GB e um processador Intel *Core 2 Duo* 64bits.

5.4 Documentação da Especificação dos Casos de Testes

Ao realizar testes de uma aplicação é necessário realizar testes com as três estruturas. Recomenda-se que se inicie pelos *models* - **testes unitários**, depois pelos *controllers* - **testes funcionais** - e por fim um teste de integração que envolva as três estruturas - **testes de integração**.

5.4.1 Testes de Unidade

O sistema Portug On apresenta 4 *models* que representam a tabela do banco de dados respectiva. Cada um destes apresenta características específicas relacionadas às suas funções. Os 4 *models* são:

- Aluno: Representa o cadastro da entidade 'aluno' no banco de dados;
- Exercise: Representa o cadastro da entidade 'exercício' no banco de dados. Quando um novo exercício é cadastrado, a busca pelo mesmo acontece através deste *model*;
- Program: Cada programa criado por determinado usuário pode ser recuperado acessando esta classe;
- User: model que representa um usuário do sistema que não é do tipo 'aluno'.

Como demonstração dos testes realizados, toma-se a classe Aluno como a classe utilizada nos testes. Evita-se assim repetições desnecessárias. Os testes com as outras classes são bem similares aos realizados com as outras classes.

Os testes unitários realizados com o *model* aluno presume que o mesmo não possa ser cadastrado sem um nome, um email e uma senha. Portanto os testes foram escritos para que se um desses atributos não estiver presente, deve ser retornado um erro.

Abaixo na figura 5.1 é possível ver como o teste foi escrito. No primeiro método tentase criar um aluno sem qualquer atributo e o mesmo retorna uma mensagem de erro. Já no segundo é passado os atributos necessários e o usuário é criado com sucesso.

Já na figura 5.2 é possível ver os testes sendo executados. Caso o teste seja aprovado, apenas um ponto na tela é mostrado. No caso, os testes passaram com sucesso.

5.4.2 Testes Funcionais

Os testes funcionais tem como objetivo testar os *controllers* da aplicação. Os *controllers* são responsáveis pela comunicação com os *models* e *views*. Também são responsáveis

```
aluno_test.rb (~/rails/portugon/test/unit) - GVIM
Arquivo Editar Ferramentas Sintaxe Buffers Janela Netrw DrChip Plugin Ajuda
 2
 3 class AlunoTest < ActiveSupport::TestCase
 4
 5
       aluno = Aluno.create(:name => nil, :email => nil, :password => nil)
 6
       assert invalid aluno, "Aluno nao pode ser criado"
 7
 8
 9
10
11
       aluno = Aluno.create(:name => "Teste", :email => "teste@teste.com", :password => "senha")
12
       assert_valid aluno, "Aluno criado com sucesso!"
13
14 end
```

Figura 5.1: Código de testes unitários para a classe Aluno.

Figura 5.2: Teste unitário da classe Aluno sendo executado.

pela lógica do sistema, pelos redirecionamentos de cada página e por executar determinadas ações de acordo com a interação do usuário. Aí entram os testes funcionais. Verificam para cada ação do *controller* se a mesma está sendo executada de maneira correta.

Na figura 5.3 é possível observar o código escrito para a realização dos testes no controller 'Exercise. Cada método refere-se a determinada ação do controller (com exceção

do primeiro que é responsável pela criação da variável global a ser utilizada ao longo dos testes).

O método 'get index' é o mais simples, verificando apenas se ao renderizar a página 'index' através de uma requisição 'get', ele irá chamar a ação 'index'. O método 'get new' ocorre de maneira similar. Já o método 'create exercise' verifica se ao chamar a ação 'create' ela irá passar como argumento, através de uma requisição 'post', os parâmetros para a criação de um novo exercício e então, redirecionar para o exercício criado. O método 'show exercise' verifica se uma requisição 'get' à ação 'show', passando como argumento o 'id' do exercício, irá redirecionar à página do determinado exercício. O método 'get edit' verifica se a ação 'edit' é chamada através de requisição 'get' pela página. O método 'update exercise' verifica se determinado exercício pode ser atualizado. E por fim, o método 'destroy exercise' testa se determinado exercício pode ser excluído.

Figura 5.3: Código dos testes funcionais do controller 'Exercise'.

Na figura 5.4 é possível ver os testes sendo executados e então aprovados.

5.4.3 Testes de Integração

Os testes de integração são utilizados quando se tem relacionamentos entre *controllers*. Tais relacionamentos podem acontecer com frequência, sendo necessário verificar se estes acontecem de maneira correta, retornando a resposta correta, ou então, redirecionando

Figura 5.4: Testes funcionais realizados e aprovados no controller 'Exercise'.

para a página correta. Na figura 5.5 é possível ver um código de teste para verificar o relacionamento entre o controller 'User' e o controller responsável pelo login no sistema.

```
user_login_test.rb (~/rails/portugon/test/integration) - GVIM
Arquivo Editar Ferramentas Sintaxe Buffers Janela Netrw DrChip Plugin Ajuda
 2
 3 class UserLoginTest < ActionDispatch::IntegrationTest
     fixtures :all
 5
 6
 7
 8
       assert_response :success
9
10
      post_via_redirect "/login", :username => users(:avs).email, :password => users(:avs).password
11
12
       assert_equal "/users/#{users(:avs)}", path
       assert_equal 'Bem vindo!', flash[:notice]
13
14
15
       get "/home/index"
16
       assert_response :success
17
18 end
```

Figura 5.5: Código dos testes de integração para realização do login do usuário.

Na figura 5.6 é possível observar os testes sendo executados com sucesso.

Figura 5.6: Teste de integração sendo realizado.

5.5 Testes com Usuários

Foram realizados testes com usuários reais, possibilitando verificar o funcionamento do sistema em um ambiente real. O sistema PortugOn foi hospedado em um servidor web com o sistema operacional Ubuntu, sendo possível seu acesso através da internet.

O sistema PortugOn recebeu o cadastro de 20 usuários, sendo destes 18 do tipo aluno e os outros 2 usuários comuns. Todos os 20 realizaram atividades no sistema, possibilitando verificar se havia erros em alguma função do programa, ou então do banco dados.

5.6 Conclusão

Através da realização dos testes foi possível verificar a integridade do sistema, das suas funções e do banco de dados que o acompanha. Tais verificações são de suma importância para que o sistema possa ser utilizado em ambientes reais, detectando assim a grande maioria dos erros, podendo então evitá-los.

Considerações Finais

Novas tecnologias estão sempre surgindo no cenário computação, tanto a nível de software quando de hardware. Todo o processo de compilação tende a evoluir e mudar a cada dia, a partir do momento que novos algoritmos são construídos e implementados. A compilação depende muito da estrutura física da máquina e, com a evolução da mesma, a compilação ficará mais rápida.

O processo de compilação pela internet é algo que ainda não apresenta grande disceminação, mas tudo indica que irá se tornar comum daqui há uns anos. Os cursos de programação online estão crescendo, cursos a distância também e tais cursos necessitam um acompanhamento de atividades, e também, de que os usuários acessem seus trabalhos e os faça de qualquer lugar que estejam, independente de máquina ou plataforma.

Este trabalho apresentou um estudo das técnicas de compilação, visando ter uma base para a construção do mesmo e então, poder utilizar deste compilador para a construção de um sistema online de programação. O compilador foi desenvolvido para a linguagem Portugol, utilizando-se da linguagem C++ para a construção do mesmo.

Este trabalho também criou um protótipo de sistema online de programação, chamado PortugOn (abreviatura de Portugol Online). O sistema foi desenvolvido utilizando a linguagem Ruby, linguagem esta robusta, que facilitou o desenvolvimento do sistema.

Contribuições foram produzidas durante o desenvolvimento deste trabalho, uma delas é o estudo sobre compiladores e principalmente sobre a implementação do mesmo diante um sistema online de programação. Tal estudo é relativamente novo, não havendo muito material sobre este. Para a linguagem Portugol não existem um compilador online, sendo este o primeiro.

Dentre as dificuldades encontradas para a realização deste trabalho pode-se citar a dificuldade de encontrar público alvo para a realização dos testes. Isso ficou evidente pelo fato de demandar um pouco de tempo por parte do usuário para a realização do cadastro no sistema e utilização do mesmo. A escolha de uma linguagem de programação adequada para o desenvolvimento do protótipo também não foi uma tarefa das mais fáceis, tendo em vista a grande possibilidade de escolhas possíveis. A bibliografia também pode ser considerada outra dificuldade, já que a construção de compiladores para sistemas online de programação ainda é uma área de pesquisa em desenvolvimento, sendo essa muito mais

comuns em empresas privadas do que em instituições públicas.

Um ponto bastante positivo deste trabalho foi o fato do mesmo conseguir apresentar um ótimo tempo de resposta para o usuário. A velocidade com a qual ocorre o processo de compilação e resposta é rápida, não havendo grande espera do usuário. Isso contribui para que o seu uso seja disceminado.

Outro ponto positivo observado foi que o protótipo desenvolvido pode ser acessado de qualquer dispositivo, mostrando a sua robustez. O seu acesso através de *tablets* e *smartphones* contribui para que o mesmo possa ser utilizado por um número maior de pessoas. É sem dúvida alguma, uma grande vantagem poder compilar programas de computadores sem a necessidade de estar usando um computador.

Para trabalhos futuros têm-se a perspectiva de criar um compilador online para uma linguagem de maior porte, já que Portugol é uma linguagem relativamente simples, focada no aprendizado de programação. Uma linguagem de maior porte poderia aumentar a utilização do mesmo.

Outra intenção de trabalho futuro seria a de criar uma IDE para programação online, facilitando a programação, aumentando a produtividade e também aproximando o compilador online de outras IDEs, como o Eclipse para a linguagem Java.

Referências

- Aho, A. V., Sethi, R., and Ullman, J. D. (1995). Compilers, Principles, Techniques and Tools. Company, Reading, Massachusetts, USA.
- Backus, J. W. (1957). *The FORTRAN Automatic Coding System*. Western joint computer conference: Techniques for reliability, Los Angeles, California, USA.
- Beizer, B. (1995). Black-Box Testing. Wiley-Interscience.
- Delamaro, M., Maldonado, J., and M.Jino (2007). *Introdução ao Teste de Software*. Editora Campus.
- Farrer, H. (1999). Algoritmos Estruturados: Programação Estruturada de Computadores. LTC GRUPO GEN.
- Filho, C. F. (2007). História da Computação. EDIPUCRS, Porto Alegre, RS, Brasil.
- Henriques, A. A. R. (2000). Breve história da linguagem Fortran. Disponível em: http://paginas.fe.up.pt/ aarh/pc/PC-capitulo2.pdf.
- Molinario, L. (2008). Testes Funcionais de Software. Visual Books, 1° edição.
- Naur, P. (1963). Revised report on the algorithmic language Algol 60. Comm. ACM, USA.
- Rangel, J. L. (1999). Compiladores. PUC-Rio, Rio de Janeiro, RJ, Brasil.
- Rigo, S. (2008). Análise Léxica. Unicamp, Campinas, SP, Brasil.
- Ripley, G. and Druseikis, F. (1978). A Statistical Analysis of Syntax Errors. J. Computer Languages, Vol. 3, USA.
- Rosen, S. (1967). Programming Systems and Languages. USA.
- Ullman, J. D., Aho, A. V., and Sethi, R. (1977). Compilers, Principles, Techniques and Tools. Company, Reading, Firs Edition, Massachusetts, USA.
- Wirth, N. (1996). A Statistical Analysis of Syntax Errors. Addison-Wesley Pub, Zurich, Suiça.

Apêndice A

Código Fonte

A.1 Compilador

A.1.1 Lexer

```
#ifndef INC_PortugolLexer_hpp_
    #define INC_PortugolLexer_hpp_
    #include <antlr/config.hpp>
    /* $ANTLR 2.7.7 (2006-11-01): "lexer.g" -> "PortugolLexer.hpp"$ */
    #include <antlr/CommonToken.hpp>
    #include <antlr/InputBuffer.hpp>
    #include <antlr/BitSet.hpp>
    #include "PortugolTokenTypes.hpp"
10
11
    // Include correct superclass header with a header statement for example:
    // header "post_include_hpp" {
13 // #include "UnicodeCharScanner.hpp"
14
   // }
    // Or....
    // header {
16
17
    // #include "UnicodeCharScanner.hpp"
18
19
      #include "GPTDisplay.hpp"
21
      #include <string>
^{22}
      #include <sstream>
      #include <iostream>
24
25
      #include <ctype.h>
      #include <antlr/TokenStreamSelector.hpp>
26
            #include "UnicodeCharBuffer.hpp"
#include "UnicodeCharScanner.hpp"
27
28
      #include <stdlib.h>
29
30
      using namespace antlr;
32
      using namespace std;
33
    class CUSTOM_API PortugolLexer : public UnicodeCharScanner, public PortugolTokenTypes
34
35
36
    public:
37
      PortugolLexer(ANTLR_USE_NAMESPACE(std)istream& in, TokenStreamSelector* s)
38
             : UnicodeCharScanner(new UnicodeCharBuffer(in),true),
         selector(s)
40
41
42
         initLiterals();
43
44
      void uponEOF()
45
```

```
47
         if(!nextFilename.empty()) {
 48
           GPTDisplay::self()->setCurrentFile(nextFilename);
 49
            selector->pop();
           selector->retry();
 50
 51
 52
 53
       void setNextFilename(string str) {
 54
 55
        nextFilename = str;
 56
 57
 58
     private:
 59
       string nextFilename;
 60
       TokenStreamSelector* selector;
       bool hasLatim;
 61
 62
     private:
             void initLiterals();
 63
     public:
 64
              bool getCaseSensitiveLiterals() const
 65
 66
 67
                      return true:
 68
 69
     public:
             PortugolLexer(ANTLR_USE_NAMESPACE(std)istream& in);
 70
              PortugolLexer(ANTLR_USE_NAMESPACE(antlr)InputBuffer& ib);
 71
             PortugolLexer(const ANTLR_USE_NAMESPACE(antlr)LexerSharedInputState& state);
 72
              ANTLR_USE_NAMESPACE(antlr)RefToken nextToken();
 73
             public: void mT_BIT_OU(bool _createToken);
 74
 75
             public: void mT_BIT_XOU(bool _createToken);
             public: void mT_BIT_E(bool _createToken);
 76
             public: void mT_BIT_NOT(bool _createToken);
 77
 78
              public: void mT_IGUAL(bool _createToken);
 79
             public: void mT_DIFERENTE(bool _createToken);
              public: void mT_MAIOR(bool _createToken);
 80
 81
              public: void mT_MENOR(bool _createToken);
             public: void mT_MAIOR_EQ(bool _createToken);
 82
 83
             public: void mT_MENOR_EQ(bool _createToken);
 84
             public: void mT_MAIS(bool _createToken);
             public: void mT_MENOS(bool _createToken);
 85
             public: void mT_DIV(bool _createToken);
 86
             public: void mT_MULTIP(bool _createToken);
 87
             public: void mT_MOD(bool _createToken);
 88
             public: void mT_ABREP(bool _createToken);
             public: void mT_FECHAP(bool _createToken);
 90
 91
             public: void mT_ABREC(bool _createToken);
             public: void mT_FECHAC(bool _createToken);
             public: void mT_INT_LIT(bool _createToken);
 93
 94
              protected: void mT_OCTAL_LIT(bool _createToken);
             protected: void mT_HEX_LIT(bool _createToken);
 95
             protected: void mT_BIN_LIT(bool _createToken);
 96
              protected: void mT_INTEGER_LIT(bool _createToken);
 97
             protected: void mT_DIGIT(bool _createToken);
98
              protected: void mT_LETTER_OR_DIGIT(bool _createToken);
99
100
             public: void mT_CARAC_LIT(bool _createToken);
             protected: void mESC(bool _createToken);
101
             public: void mT_STRING_LIT(bool _createToken);
102
103
             public: void mT_ATTR(bool _createToken);
             public: void mT_SEMICOL(bool _createToken);
104
             public: void mT_COLON(bool _createToken);
105
             public: void mT_COMMA(bool _createToken);
106
107
             public: void mT_WS_(bool _createToken);
             public: void mSL_COMMENT(bool _createToken);
108
             public: void mML_COMMENT(bool _createToken);
109
110
              protected: void mT_ID_AUX(bool _createToken);
111
             protected: void mT_LETTER(bool _createToken);
             public: void mT_IDENTIFICADOR(bool _createToken);
112
             protected: void mT_INVALID(bool _createToken);
113
     private:
114
115
             static const unsigned long _tokenSet_0_data_[];
116
             static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_0;
117
118
             static const unsigned long _tokenSet_1_data_[];
119
             static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_1;
             static const unsigned long _tokenSet_2_data_[];
120
```

```
static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_2;

static const unsigned long _tokenSet_3_data_[];

static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_3;

static const unsigned long _tokenSet_4_data_[];

static const unsigned long _tokenSet_4_data_[];

static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_4;

};

**Hodif /*INC_PortugolLexer_hpp_*/*
```

A.1.2 Parser

```
#ifndef INC_PortugolParser_hpp_
    #define INC_PortugolParser_hpp_
    #include <antlr/config.hpp>
    /* $ANTLR 2.7.7 (2006-11-01): "parser.g" -> "PortugolParser.hpp"$ */
    #include <antlr/TokenStream.hpp>
6
    #include <antlr/TokenBuffer.hpp>
    #include "PortugolParserTokenTypes.hpp"
9
    \ensuremath{//} Include correct superclass header with a header statement for example:
10
    // header "post_include_hpp" {
11
    // #include "BasePortugolParser.hpp"
12
13
    // }
    // Or....
14
    // header {
15
16
    // #include "BasePortugolParser.hpp"
    // }
17
18
19
20
21
      #include "BasePortugolParser.hpp"
22
       #include "PortugolAST.hpp"
      #include "GPTDisplay.hpp"
23
24
    class CUSTOM_API PortugolParser : public BasePortugolParser, public PortugolParserTokenTypes
25
26
27
      public:
28
29
        RefPortugolAST getPortugolAST()
30
31
          return returnAST:
32
33
    public:
            void initializeASTFactory( ANTLR_USE_NAMESPACE(antlr)ASTFactory& factory );
34
35
    protected:
            PortugolParser(ANTLR_USE_NAMESPACE(antlr)TokenBuffer& tokenBuf, int k);
36
37
             PortugolParser(ANTLR_USE_NAMESPACE(antlr)TokenBuffer& tokenBuf);
38
39
    protected:
40
            PortugolParser(ANTLR_USE_NAMESPACE(antlr)TokenStream& lexer, int k);
41
    public:
            PortugolParser(ANTLR_USE_NAMESPACE(antlr)TokenStream& lexer);
42
             PortugolParser(const ANTLR_USE_NAMESPACE(antlr)ParserSharedInputState& state);
43
             int getNumTokens() const
44
45
             {
                     return PortugolParser::NUM_TOKENS;
46
            }
47
48
             const char* getTokenName( int type ) const
49
             {
                     if( type > getNumTokens() ) return 0;
50
                     return PortugolParser::tokenNames[type];
51
52
53
             const char* const* getTokenNames() const
54
             {
                     return PortugolParser::tokenNames;
55
56
            }
57
            public: void algoritmo();
             public: void declaracao_algoritmo();
58
            public: void var_decl_block();
             public: void stm_block();
60
61
             public: void func_decls();
```

```
62
             public: void var_decl();
 63
              public: void var_more();
              public: void tp_prim();
 64
             public: void tp_matriz();
 65
 66
              public: void dimensoes();
              public: void tp_prim_pl();
 67
             public: void stm_list();
 68
             public: void lvalue();
 70
             public: void stm_attr();
 71
             public: void fcall();
             public: void stm_ret();
             public: void stm_se();
 73
             public: void stm_enquanto();
 74
             public: void stm_repita();
 75
             public: void stm_para();
 76
 77
              public: void expr();
 78
             public: void array_sub();
             public: void passo();
 79
              public: void expr_e();
 80
             public: void expr_bit_ou();
 81
 82
              public: void expr_bit_xou();
 83
             public: void expr_bit_e();
             public: void expr_igual();
 84
             public: void expr_relacional();
             public: void expr_ad();
 86
             public: void expr_multip();
 87
             public: void expr_unario();
 88
             public: void op_unario();
 89
             public: void expr_elemento();
 90
             public: void literal();
 91
             public: void fargs();
 92
 93
              public: void fparams();
 94
             public: void rettype();
              public: void fvar_decl();
 95
 96
              public: void fffvar_decl();
             public: void fparam();
97
 98
     public:
              ANTLR_USE_NAMESPACE(antlr)RefAST getAST()
99
100
              {
101
                      return ANTLR_USE_NAMESPACE(antlr)RefAST(returnAST);
102
103
     protected:
104
             RefPortugolAST returnAST;
105
106
     private:
              static const char* tokenNames[];
107
     #ifndef NO_STATIC_CONSTS
108
             static const int NUM_TOKENS = 91;
109
     #else
110
              enum {
111
                      NUM_TOKENS = 91
112
113
              };
     #endif
114
115
              static const unsigned long _tokenSet_0_data_[];
116
117
              static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_0;
              static const unsigned long _tokenSet_1_data_[];
118
              static const ANTLR_USE_NAMESPACE(antlr)BitSet _tokenSet_1;
119
120
121
     #endif /*INC_PortugolParser_hpp_*/
122
```

A.1.3 Principal

A.2 PortugOn

A.2.1 Controllers

```
class AlunosController < ApplicationController</pre>
      layout "admin"
      # GET /alunos
5
      # GET /alunos.xml
6
      def index
        @alunos = Aluno.all
9
        respond_to do |format|
10
          format.html # index.html.erb
11
           format.xml { render :xml => @alunos }
        end
13
14
      end
15
      # GET /alunos/1
16
17
      # GET /alunos/1.xml
      def show
18
        @aluno = Aluno.find(params[:id])
19
21
        respond_to do |format|
          format.html # show.html.erb
22
          format.xml { render :xml => @aluno }
        end
24
25
      end
26
      # GET /alunos/new
27
28
      # GET /alunos/new.xml
      def new
29
30
        @aluno = Aluno.new
        respond_to do |format|
32
33
          format.html # new.html.erb
          format.xml { render :xml => @aluno }
34
        end
35
37
      # GET /alunos/1/edit
38
      def edit
       @aluno = Aluno.find(params[:id])
40
41
42
      # POST /alunos
43
44
      # POST /alunos.xml
      def create
45
        @aluno = Aluno.new(params[:aluno])
46
        respond_to do |format|
48
49
          if @aluno.save
             format.html { redirect_to(@aluno, :notice => 'Aluno was successfully created.') }
50
            format.xml { render :xml => @aluno, :status => :created, :location => @aluno }
51
            format.html { render :action => "new" }
53
            format.xml { render :xml => @aluno.errors, :status => :unprocessable_entity }
54
        end
56
57
      end
58
      # PUT /alunos/1
59
60
      # PUT /alunos/1.xml
      def update
61
        @aluno = Aluno.find(params[:id])
62
        respond_to do |format|
64
           if @aluno.update_attributes(params[:aluno])
65
```

```
66
             format.html { redirect_to(@aluno, :notice => 'Aluno was successfully updated.') }
67
             format.xml { head :ok }
68
             format.html { render :action => "edit" }
69
70
             format.xml { render :xml => @aluno.errors, :status => :unprocessable_entity }
71
72
        end
73
      end
74
75
      # DELETE /alunos/1
       # DELETE /alunos/1.xml
76
      def destroy
77
        @aluno = Aluno.find(params[:id])
78
79
        @aluno.destroy
80
81
        respond_to do |format|
82
          format.html { redirect_to(alunos_url) }
           format.xml { head :ok }
83
84
85
      end
86
    end
    class ApplicationController < ActionController::Base</pre>
 1
 2
      protect_from_forgery
3
    end
    class ExercisesController < ApplicationController</pre>
 2
 3
      layout "admin"
 4
      # GET /exercises
 5
 6
      # GET /exercises.xml
      def index
        @exercises = Exercise.all
 8
10
       respond_to do |format|
11
          format.html # index.html.erb
12
          format.xml { render :xml => @exercises }
        end
13
14
      end
15
      # GET /exercises/1
16
17
      # GET /exercises/1.xml
      def show
18
        @exercise = Exercise.find(params[:id])
19
20
21
        respond to do |format|
22
           format.html # show.html.erb
          format.xml { render :xml => @exercise }
23
24
        end
25
26
27
      # GET /exercises/new
      # GET /exercises/new.xml
28
29
      def new
30
        @exercise = Exercise.new
31
        respond_to do |format|
32
          format.html # new.html.erb
           format.xml { render :xml => @exercise }
34
35
        end
36
      end
37
       # GET /exercises/1/edit
38
      def edit
39
        @exercise = Exercise.find(params[:id])
40
41
42
      # POST /exercises
43
      # POST /exercises.xml
44
      def create
45
        @exercise = Exercise.new(params[:exercise])
46
47
        respond_to do |format|
48
```

```
49
           if @exercise.save
50
             format.html { redirect_to(@exercise, :notice => 'Exercise was successfully created.') }
             format.xml { render :xml => @exercise, :status => :created, :location => @exercise }
52
            format.html { render :action => "new" }
53
            format.xml { render :xml => @exercise.errors, :status => :unprocessable_entity }
54
55
           end
        end
56
      end
57
58
      # PUT /exercises/1
60
      # PUT /exercises/1.xml
61
      def update
        @exercise = Exercise.find(params[:id])
62
63
64
        respond_to do |format|
65
           if @exercise.update_attributes(params[:exercise])
             format.html { redirect_to(@exercise, :notice => 'Exercise was successfully updated.') }
66
             format.xml { head :ok }
68
            format.html { render :action => "edit" }
69
70
             format.xml { render :xml => @exercise.errors, :status => :unprocessable_entity }
71
           end
72
        end
73
      end
74
      # DELETE /exercises/1
75
      # DELETE /exercises/1.xml
76
77
      def destroy
        @exercise = Exercise.find(params[:id])
78
79
        @exercise.destroy
80
81
        respond_to do |format|
          format.html { redirect_to(exercises_url) }
82
83
           format.xml { head :ok }
84
        end
85
       end
    class HomeController < ApplicationController</pre>
      def index
2
3
      end
 4
    end
5
    class ProgramsController < ApplicationController</pre>
1
2
3
      layout "admin"
4
      # GET /programs
5
6
      # GET /programs.xml
      def index
        @programs = Program.all
9
10
        respond_to do |format|
11
          format.html # index.html.erb
12
          format.xml { render :xml => @programs }
13
        end
14
15
      # GET /programs/1
16
       # GET /programs/1.xml
17
      def show
18
19
        @program = Program.find(params[:id])
20
21
        respond_to do |format|
22
           format.html # show.html.erb
          format.xml { render :xml => @program }
23
24
        end
25
26
27
      # GET /programs/new
28
      # GET /programs/new.xml
29
      def new
```

```
30
         @program = Program.new
31
        respond_to do |format|
32
          format.html # new.html.erb
33
           format.xml { render :xml => @program }
34
35
        end
36
       end
37
       # GET /programs/1/edit
38
39
       def edit
        @program = Program.find(params[:id])
40
41
       end
42
       # POST /programs
43
       # POST /programs.xml
44
45
       def create
46
        @program = Program.new(params[:program])
47
        respond_to do |format|
48
49
           if Oprogram.save
             format.html { redirect_to(@program, :notice => 'Program was successfully created.') }
50
51
             format.xml { render :xml => @program, :status => :created, :location => @program }
52
53
            format.html { render :action => "new" }
            format.xml { render :xml => @program.errors, :status => :unprocessable_entity }
54
55
           end
        end
56
57
      end
58
       # PUT /programs/1
59
60
       # PUT /programs/1.xml
61
       def update
62
         @program = Program.find(params[:id])
63
64
        respond_to do |format|
           if @program.update_attributes(params[:program])
65
             format.html { redirect_to(@program, :notice => 'Program was successfully updated.') }
66
             format.xml { head :ok }
67
68
            format.html { render :action => "edit" }
69
70
            format.xml { render :xml => @program.errors, :status => :unprocessable_entity }
           end
71
72
         end
73
       end
74
       # DELETE /programs/1
75
76
       # DELETE /programs/1.xml
77
       def destroy
        @program = Program.find(params[:id])
78
        @program.destroy
79
80
        respond_to do |format|
81
          format.html { redirect_to(programs_url) }
82
83
           format.xml { head :ok }
84
        end
85
       end
86
    end
    class UsersController < ApplicationController</pre>
1
      layout "admin", :only => [:show]
4
      # GET /users
5
      # GET /users.xml
      def index
7
        @users = User.all
 8
        respond_to do |format|
10
11
          format.html # index.html.erb
          format.xml { render :xml => @users }
12
13
        end
14
       end
15
      # GET /users/1
```

```
# GET /users/1.xml
17
18
      def show
        @user = User.find(params[:id])
19
20
21
        respond_to do |format|
           format.html # show.html.erb
22
          format.xml { render :xml => @user }
23
24
        end
      end
25
26
      # GET /users/new
      # GET /users/new.xml
28
29
      def new
        @user = User.new
30
31
32
        respond_to do |format|
33
          format.html # new.html.erb
          format.xml { render :xml => @user }
34
35
       end
36
37
38
       # GET /users/1/edit
      def edit
39
40
        @user = User.find(params[:id])
41
42
      # POST /users
43
      # POST /users.xml
44
45
      def create
        @user = User.new(params[:user])
46
47
48
        respond_to do |format|
49
           if @user.save
            format.html { redirect_to(@user, :notice => 'User was successfully created.') }
50
51
             format.xml { render :xml => @user, :status => :created, :location => @user }
52
            format.html { render :action => "new" }
53
             format.xml { render :xml => @user.errors, :status => :unprocessable_entity }
55
           end
56
        end
57
      end
58
      # PUT /users/1
       # PUT /users/1.xml
60
61
      def update
        @user = User.find(params[:id])
63
64
        respond_to do |format|
           if @user.update_attributes(params[:user])
65
            format.html { redirect_to(@user, :notice => 'User was successfully updated.') }
66
67
            format.xml { head :ok }
68
            format.html { render :action => "edit" }
69
70
             format.xml { render :xml => @user.errors, :status => :unprocessable_entity }
71
           end
72
        end
73
       end
74
75
      # DELETE /users/1
76
       # DELETE /users/1.xml
77
      def destroy
        @user = User.find(params[:id])
78
        @user.destroy
79
80
        respond_to do |format|
81
          format.html { redirect_to(users_url) }
82
83
          format.xml { head :ok }
84
        end
85
       end
    end
```