[HW4_prob2]_Resnet_Quantization_aware_train_2bits

October 30, 2022

```
[2]: import argparse
     import os
     import time
     import shutil
     import torch
     import torch.nn as nn
     import torch.optim as optim
     import torch.nn.functional as F
     import torch.backends.cudnn as cudnn
     import torchvision
     import torchvision.transforms as transforms
     from models import *
     global best_prec
     use_gpu = torch.cuda.is_available()
     print('=> Building model...')
     batch_size = 128
     model_name = "Resnet_quant_2"
     model = resnet20_quant()
     print(model)
     normalize = transforms.Normalize(mean=[0.491, 0.482, 0.447], std=[0.247, 0.243,
     →0.262])
     train_dataset = torchvision.datasets.CIFAR10(
         root='./data',
         train=True,
         download=True,
```

```
transform=transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    1))
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,_
→shuffle=True, num_workers=2)
test_dataset = torchvision.datasets.CIFAR10(
    root='./data',
    train=False,
    download=True,
    transform=transforms.Compose([
        transforms.ToTensor(),
        normalize.
    ]))
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,_u
⇒shuffle=False, num workers=2)
print_freq = 100 # every 100 batches, accuracy printed. Here, each batch ∪
→ includes "batch_size" data points
# CIFAR10 has 50,000 training data, and 10,000 validation data.
def train(trainloader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    model.train()
    end = time.time()
    for i, (input, target) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)
        input, target = input.cuda(), target.cuda()
        # compute output
        output = model(input)
        loss = criterion(output, target)
        # measure accuracy and record loss
```

```
prec = accuracy(output, target)[0]
        losses.update(loss.item(), input.size(0))
        top1.update(prec.item(), input.size(0))
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        if i % print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec {top1.val:.3f}% ({top1.avg:.3f}%)'.format(
                   epoch, i, len(trainloader), batch_time=batch_time,
                   data_time=data_time, loss=losses, top1=top1))
def validate(val_loader, model, criterion ):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    # switch to evaluate mode
    model.eval()
    end = time.time()
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            input, target = input.cuda(), target.cuda()
            # compute output
            output = model(input)
            loss = criterion(output, target)
            # measure accuracy and record loss
            prec = accuracy(output, target)[0]
            losses.update(loss.item(), input.size(0))
            top1.update(prec.item(), input.size(0))
```

```
# measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if i % print_freq == 0: # This line shows how frequently print out_
\rightarrow the status. e.g., i%5 => every 5 batch, prints out
                print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec {top1.val:.3f}% ({top1.avg:.3f}%)'.format(
                   i, len(val_loader), batch_time=batch_time, loss=losses,
                   top1=top1))
    print(' * Prec {top1.avg:.3f}% '.format(top1=top1))
    return top1.avg
def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)
    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))
    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res
class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()
    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0
    def update(self, val, n=1):
        self.val = val
```

```
self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count
def save_checkpoint(state, is_best, fdir):
    filepath = os.path.join(fdir, 'checkpoint.pth')
    torch.save(state, filepath)
    if is best:
        shutil.copyfile(filepath, os.path.join(fdir, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch):
     """For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120_{\sqcup}
 ⇔epochs"""
    adjust_list = [150, 225]
    if epoch in adjust_list:
        for param_group in optimizer.param_groups:
             param_group['lr'] = param_group['lr'] * 0.1
#model = nn.DataParallel(model).cuda()
#all params = checkpoint['state dict']
#model.load_state_dict(all_params, strict=False)
#criterion = nn.CrossEntropyLoss().cuda()
#validate(testloader, model, criterion)
=> Building model...
ResNet Cifar(
  (conv1): QuantConv2d(
    3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
    (weight_quant): weight_quantize_fn()
  (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
  (relu): ReLU(inplace=True)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): QuantConv2d(
        16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (conv2): QuantConv2d(
        16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
```

```
(relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    (1): BasicBlock(
      (conv1): QuantConv2d(
        16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (conv2): QuantConv2d(
        16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (2): BasicBlock(
      (conv1): QuantConv2d(
        16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (conv2): QuantConv2d(
        16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): QuantConv2d(
        16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (conv2): QuantConv2d(
        32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (relu): ReLU(inplace=True)
```

```
(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (downsample): Sequential(
        (0): QuantConv2d(
          16, 32, kernel size=(1, 1), stride=(2, 2), bias=False
          (weight_quant): weight_quantize_fn()
        (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): QuantConv2d(
        32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (conv2): QuantConv2d(
        32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    (2): BasicBlock(
      (conv1): QuantConv2d(
        32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (conv2): QuantConv2d(
        32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (bn1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): QuantConv2d(
        32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
```

```
(conv2): QuantConv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=True)
      (downsample): Sequential(
        (0): QuantConv2d(
          32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False
          (weight_quant): weight_quantize_fn()
        )
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): QuantConv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (conv2): QuantConv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    )
    (2): BasicBlock(
      (conv1): QuantConv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      (conv2): QuantConv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        (weight_quant): weight_quantize_fn()
      )
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
      (relu): ReLU(inplace=True)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
    )
```

```
(avgpool): AvgPool2d(kernel_size=8, stride=1, padding=0)
      (fc): Linear(in_features=64, out_features=10, bias=True)
    Files already downloaded and verified
    Files already downloaded and verified
[]: # This cell won't be given, but students will complete the training
     lr = 5e-2
     weight_decay = 1e-4
     epochs = 160
     best_prec = 0
     #model = nn.DataParallel(model).cuda()
     model.cuda()
     criterion = nn.CrossEntropyLoss().cuda()
     optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, __
     →weight_decay=weight_decay)
     \#cudnn.benchmark = True
     if not os.path.exists('result'):
         os.makedirs('result')
     fdir = 'result/'+str(model_name)
     if not os.path.exists(fdir):
         os.makedirs(fdir)
     for epoch in range(0, epochs):
         adjust_learning_rate(optimizer, epoch)
         train(trainloader, model, criterion, optimizer, epoch)
         # evaluate on test set
         print("Validation starts")
         prec = validate(testloader, model, criterion)
         # remember best precision and save checkpoint
         is_best = prec > best_prec
         best_prec = max(prec,best_prec)
         print('best acc: {:1f}'.format(best_prec))
         save_checkpoint({
             'epoch': epoch + 1,
             'state dict': model.state dict(),
             'best_prec': best_prec,
             'optimizer': optimizer.state_dict(),
         }, is_best, fdir)
```

```
[ ]: # HW
     # 1. Train with 4 bits for both weight and activation to achieve >90% accuracy
     # 2. Find x_int and w_int for the 2nd convolution layer
     # 3. Check the recovered psum has similar value to the un-quantized original \Box
     ⊶psum
           (such as example 1 in W3S2)
[3]: PATH = "result/Resnet_quant_2/model_best.pth.tar"
     checkpoint = torch.load(PATH)
     model.load_state_dict(checkpoint['state_dict'])
     device = torch.device("cuda")
     model.cuda()
     model.eval()
     test loss = 0
     correct = 0
     with torch.no_grad():
         for data, target in testloader:
             data, target = data.to(device), target.to(device) # loading to GPU
             output = model(data)
             pred = output.argmax(dim=1, keepdim=True)
             correct += pred.eq(target.view_as(pred)).sum().item()
     test_loss /= len(testloader.dataset)
     print('\nTest set: Accuracy: {}/{} ({:.0f}%)\n'.format(
             correct, len(testloader.dataset),
             100. * correct / len(testloader.dataset)))
    Test set: Accuracy: 8173/10000 (82%)
[]:
[]:
[]:
[]:
```