DUC EITE CORT

AFWAL-TR-88-3026 VOLUME I

AD-A201 273

DURABILITY AND DAMAGE TOLERANCE OF BISMALEIMIDE COMPOSITES

VOLUME I: TECHNICAL REPORT

S.T. TYAHLA AND P.S. MCCLELLAN JR.

McDonnell Aircraft Company McDonnell Douglas Corporation P.O. Box 516 St. Louis, Missouri 63166

JUNE 1988

Final Report for Period 13 September 1985 - 15 January 1988

Approved for public release, distribution is unlimited

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

MACHIT APPRINCIPLA

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

HOWARD J. STERR, JR, 2nd Lt, USAF

Project Engineer

TONY (C. GERARDI, ACTING CHIEF Structural Integrity Branch

Structures Division

FOR THE COMMANDER

FREDERICK L. DIETRICH, Colonel, USAF

Chief, Structures Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIBEC W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPO	RT DOCUM	ENTATION P	AGE		
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS			
UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT			
		Approved fo			tribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		is unlimite			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING C	ORGANIZATION R	EPORT NUMBER	(5)
		AFWAL-TR-88			
	FICE SYMBOL applicable)	7a. NAME OF MO Air Force W Flight Dyna	right Aeron	autical La	boratories /FIBEC)
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City			
P.O. Box 516 St. Louis, Missouri 63166		Wright-Patt	erson AFB 0)H 45433-6	553 .
	FICE SYMBOL	9. PROCUREMENT	INSTRUMENT IO	ENTIFICATION N	UMBER
ORGANIZATION (IF	applicable)	Contract F3	3615-85-C-3	1212	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBER	RS	
,		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT
		62201F	2401	01	94
S. Timothy Tyahla and Paul S. McCle 13a. TYPE OF REPORT Final FROM Sep 85 16. SUPPLEMENTARY NOTATION	το Jan 88			1 172	
FIELD GROUP SUB-GROUP CONT. TOU. 13 13 Sta 19. ABSTRACT (Continue on reverse if necessary and identifications).	iposite Mate igh Resins / itic Strengt entify by block n	Stre h <u>Low</u> umber)	naleimide ess Analysi: Energy Impa	Fractur s, act Damage.	Tolerance
This program was the evaluation of durability and damage tolerance of bismaleimide of (8MI) composites. 8MI resins have been developed for structural applications in 350°F to 450°F environments.—This represents an improvement over epoxy resin capability of approximately 100°F. In Task I of this program, we experimentally evaluated two second generation BMI systems (IM6/3100 and IM6/F650) and compared their performances with those of the baseline systems AS1/3501-6 and T300/V378A. The intermediate modulus fiber IM6 was chosen as the common fiber for both material systems because its high strength and stiffness are properties that are important for future fighter design. In Task II, basic material properties were determined. The data included moisture absorption, glass transition temperature, thermal spike susceptibility, lamina properties, and interlaminar fracture toughness test results. Lamina properties and fracture toughness test data were used to correlate laminate behavior exhibited in Task III. (cont.) 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT One of the baseline of the bas					
220. NAME OF RESPONSIBLE INDIVIDUAL	COLOTIC USERS	226 TELEPHONE	Include Area Cod		
Lt. H. Joseph Storr DD FORM 1473, 84 MAR SJAPRedite	on may be used ur	(513) 255-	6104	AFWAL/I	FIBEC

UNCLASSIFIED

19. abstract (cont.)

In Task III laminate structural characterizations of IM6/3100 and IM6/F650 were completed. Tests were performed on coupons that represented configurations found in typical aircraft designs. Specimens were fabricated and tested in notched and unnotched conditions to represent design applications.

In Task IV the better system (IM6/3100) was chosen to fabricate stiffened panels for evaluation of the bismaleimide's durability and damage tolerance in a structural configuration. Static and fatigue tests were performed on panels with and without impact damage.

FOREWORD

The work reported herein was performed by the McDonnell Aircraft Company (MCAIR) of the McDonnell Douglas Corporation (MDC), St. Louis, Missouri, under Air Force Contract F33615-85-C-3212, "Durability and Damage Tolerance of Bismaleimide Composites", for the Air Force Wright Aeronautical Laboratories, Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. Lt. David L. Graves (AFWAL/FIBEC) and Lt. H. Joseph Storr (AFWAL/FIBEC) were the Air Force Project Engineers. The work described was conducted during the period 13 September 1985 through 15 January 1988.

The work was managed by the MCAIR Structural Research Department with Harold D. Dill as Program Manager and S. Timothy Tyahla as Principal Investigator. Program testing was conducted under the direction of Paul S. McClellan, Jr., MCAIR Nonmetallics and Chemical Processes Laboratory.

Acces	sion for
DTIC Unan	GRAMI TAB Counced Ification
	ribution/
Dist	Avail and/or Special
A-1	

TABLE OF CONTENTS

Section										Page
1.	INTRO	DUCTIO	N							1
2.	TASK	I: MA	TERIAL SEL	ECTION						5
	2.1			ria for Car	•					_
	2.2.	Fiber/	ties Bismaleimi		Selection	on	• •	• •	• •	5 11
3.	TASK	II: E	NVIRONMENT	AL MATERIAL	. ALLOWAB	LES				13
	3.1 3.2			lusions .						13
	3,2		•	uation						14
		3.2.1	Moisture	Absorption						15 16
		3.2.4		nsition Tem pike Suscer						
				chanical Pr						
			3.2.5.1 3.2.5.2	0° Tension 90° Tension						24 26
			3.2.5.3	0° Compress						
			3.2.5.4	0° Compress	ion Sand	wich Be	am Te	st		
				Results . Intralamina						
			3.2.5.6	Comparison Systems	with Base	aline H	ateri	al		
		3.2.6		nar Fractus						39
					_					
			3.2.6.2	Specimen De Strain Ener	gy Releas	se Rate				·
				Formulation						
				Mode I Data						
				Mixed Mode						
				Node II Dat						50
				Statke Tent						53
				Patigue Tes		,				59
			3.2.6.8	Fractograph	lic Invest	tigatio	n .	• •	• •	65
4.	TASK	III:	Laminate s	TRUCTURAL C	HARACTER:	KOITASI		• •		73
	4.1	Summer	v and Conc	lusions .						73
	4.2			uation					• •	74
		4.2.1								74
		4.2.2	Unnotched	Laminate S	catic St	rength		• •	• •	76

TABLE OF CONTENTS (Concluded)

Section						Page
			4.2.2.1 Test Results			77 83
		4.2.3	Unloaded Hole Static Strength	,		88
			4.2.3.1 Test Results			88 93
		4.2.4	Unloaded Hole Fatigue Life			95
			4.2.4.1 Test Results			96 101
		4.2.5	Loaded Hole Static Strength			105
			4.2.5.1 Test Results			
		4.2.6	Loaded Hole Fatigue Life (Hole Wear)			109
			4.2.6.1 Data Reduction			
		4.2.7	Low Velocity Impact Damage/Residual Compression Strength	• • (119
			4.2.7.1 Test Results			119
5.	TASK	IV: 57	RUCTURAL ELEMENT DESIGN AND TESTING	• • :	• • •	129
	5.1 5.2 5.3	Bismal	and Conclusions			129
			Panel Pabrication			
		5.3.2	Test Matrix			133 135 135
		5.3.4 5.3.5 5.3.6	Introduction of Impact Damage	• • •	• • •	137 144
£	MALIN	5.3.7	Discussion of Results			151 153
6.			ARD RECOGNISIONIZORS			

LIST OF FIGURES

Figures	<u>1</u>	Page
1.	First Generation BMI (V378A) is More Susceptible to Low Velocity Impact Damage than Epoxy (3501-6)	2
2.	Second Generation BMI (3100) Shows Improved Low Velocity Impact Damage Tolerance Compared to First Generation BMI (V378A)	2
3.	Advanced Fighter Wingbox Design	3
4.	Representative Task III Test Specimens	4
5.	Assessment of Second Generation Bismaleimide Resins	6
6.	Resin Properties Necessary to Improve Laminate Properties	7
7.	Candidate Carbon Fiber Materials	8
8.	Low Modulus Carbon Fiber Bismaleimide Composite Property Comparison	9
9.	Intermediate Modulus Carbon Fiber Bismaleimide Composite Property Comparison	10
10.	Resin Related Properties of BMI and Epoxy Resins	11
11.	Fiber/Resin Haterials Selected for the Program	12
12.	Task II Test Matrix	15
13.	Moisture Absorption Test Matrix	16
14.	Diffusivity as a Function of Temperature	17
15.	Equilibrium Hoisture Content vs. Relative Humidity	18
16.	End-of-Life Hoisture Contents in F-15 Wing Skins After 20-year Exposures	19
17.	Glass Transition Temperature Test Matrix	19
18.	Glass Transition Temperature Determined by Thermal Mechanical Analysis	20
19.	Variation of Glass Transition Temperature with Absorbed Moisture Content	21

Figures		Page
20.	Elevated Temperature/Wet Test Conditions Determined from End-of-Life Moisture Level	21
21.	Thermal Spike Temperature and Time Schedules	22
22.	Thermal Spike Test Matrix	23
23.	Lamina Mechanical Property Test Matrix	23
24.	Unidirectional O° Tension Test Specimen	24
25.	Failed 0° Tensile Specimen	24
26.	Unidirectional O° Tension Test Results	25
27.	Unidirectional 90° Tension Test Specimen	26
28.	Failed 90° Tensile Specimen	27
29.	Unidirectional 90° Tension Test Results	27
30.	Unidirectional O* Compression Coupon Test Specimen	28
31.	Compression Test Fixture	29
32.	Unidirectional O* Compression Coupon Test Results	30
33.	Failed O* Compression Coupon	31
34.	Unidirectional O' Compression Sandwich Beam Test Arrangement	31
35.	Pailed O' Compression Sandwich Beam Specimen	32
36.	Unidirectional O° Compression Sandwich Beam Test Results	32
37.	245° Intralaminar Shear Test Specimen	34
38.	Pailed ±45° Shear Specimen	34
39.	Intralaminar Shear Test Results	35
40.	IM6/3100 Intralaminar Shear Mechanical Behavior	35
41.	IM6/F650 Intralaminar Shear Mechanical Behavior	36
42.	Intralaminar Shear Test Data	37

<u>Figures</u>		Page
43.	Strain State in ±45° Intralaminar Shear Test Specimen	38
44.	Interfacial Stresses in ±45° Intralaminar Shear Test Specimen	39
45.	Lamina Property Comparison: Baseline Material Systems vs. Second Generation BMIs	40
46.	Interlaminar Fracture Toughness Test Matrix	40
47,	Double Cantilever Beam (Mode I) Fracture Toughness Specimen	41
48.	End Notched Flexure (Mode II) Fracture Toughness Specimen	42
49.	Cracked Lap shear (Mixed Hods) Fracture Toughness Specimen	42
50.	Specimens Required to Determine Fracture Toughness Interaction	43
51.	Typical Mode I Test Data	45
52.	In DCB Specimens the Natural Crack Length is 0.5 Inches Shorter than the Experimental Crack Length	46
53.	Mode I Toughness Increases with Grack Length	47
54.	In CLS Specimens the Natural Crack Length is 1.5 Inches Shorter than the Experimental Crack Length	47
55.	Hixed Hode Compliance Varies Linearly with Crack Length	48
56.	Critical Load of Mixed Hode Specimen Varies with Crack Length	49
57.	Mixed Node Toughness Varies with Crack Length	50
58.	Mode II Toughness is Independent of Crack Length	52
59.	Critical Strain Energy Release Rates for CTD Conditions	53
60.	Critical Strain Energy Release Rates for RTD Conditions	54
61.	Critical Strain Energy Release Rates for ETW Conditions	55

Figures		Page
62.	Fracture Toughness Interaction Envelopes for CTD Conditions	57
63.	Fracture Toughness Interaction Envelopes for RTD Conditions	58
64.	Fracture Toughness Interaction Envelopes for ETW Conditions	60
65.	Fracture Toughness Comparison: Baseline Material Systems vs. Second Generation BMIs	61
66.	Compliance vs. Crack Length Parameters	61
67.	Crack Growth Parameters	63
68.	Mode I Static Fracture Surfaces for Three Environments	66
69.	Effects of Crack Growth Rate on Surface Appearance	67
70.	Variation in IM6/3100 Fracture Surface Due to Variation in Fracture Mode	68
71.	Variation in IM6/F650 Fracture Surface Due to Variation in Fracture Hode	70
72.	ETW Conditions Produce Cleaner Fiber Pullout in IM6/F650 than in IM6/3100	71
73.	Task III Test Matrix	75
74.	Unnotched Laminate Static Test Matrix	76
75.	Unnotched Static Test Specimens	77
76.	Failed Unnotched Tension Specimen	78
77.	Failed Unnotched Compression Specimen	78
78.	Unnotched Laminate Tension Strength Data	79
79.	Unnotched Laminate Compression Strength Data	80
80.	Unnotched 50/40/10 Laminate Tension Strength Test Results	81
81.	Unnotched 50/40/10 Laminate Compression Strength Test Results	82

<u>Figures</u>		Page
82.	Unnotched 10/80/10 Laminate Compression Strength Test Results	. 83
83.	IM6/3100 Laminate Moduli	. 83
84.	IM6/P650 Laminate Moduli	. 84
85.	Laminate Compression Moduli	. 84
86.	Prediction of Laminate Ply Failure Sequence	. 85
87.	Prediction of IM6/3100 50/40/10 Laminate Strengths	. 86
88.	Prediction of IN6/F650 50/40/10 Laminate Strengths	. 87
89.	Prediction of 10/80/10 Laminate Compression Strengths	. 87
90.	Unloaded Hole Static Test Matrix	. 88
91.	Unloaded Hole Tension and Compression Static Test Specimen	. 88
92.	Pailed Unloaded Hole Static Tension Specimen	. 89
93.	Failed Unloaded Hole Static Compression Specimen	. 89
94.	Unloaded Hole Tension Test Data	. 90
95.	Unloaded Hole Compression Test Data	. 90
96.	Notched Laminate Tensile Strength Reduction	. 91
97.	Notched Laminate Compression Strength Reduction	. 92
98.	Bolted Joint Stress Field Model	. 93
99.	Determination of R Values for Unloaded Hole Strength Prediction	. 94
100.	R Values Used to Predict Unloaded Hole Laminate Strengths	. 95
101.	Unloaded Hole Fatigue Test Matrix	. 95
102.	Unloaded Hole Fatigue Test Specimen	. 96
103.	Failed Unloaded Hole Fatigue Specimen	. 96

Figures		Page
104.	Progression of Unloaded Hole Fatigue Damage (Enhanced X-ray)	97
105.	Unloaded Hole Fatigue Data for CTD Conditions	98
106.	Unloaded Hole Fatigue Data for RTD Conditions	99
107.	Unloaded Hole Fatigue Data for ETW Conditions	100
108.	Unloaded Hole Fatigue Test Results for CTD Conditions	102
109.	Unloaded Hole Fatigue Test Results for RTD Conditions	103
110.	Unloaded Hole Fatigue Test Results for ETW Conditions	104
111.	Loaded Hole Static Test Matrix	105
112.	Loaded Hole Static Test Specimen	105
113.	Loaded Hole Test Setup	106
114.	Failed Loaded Hole Static Specimen	106
115.	Loaded Hole Static Test Data	107
116.	Loaded Hole (Rearing) Strength Test Results	108
117.	R Values Used to Predict Unloaded and Loaded Hole Laminate Strengths	109
118.	Loaded Hole Fatigue Test Matrix	109
119.	Hole Elongation Determined by Shift in Load Displacement Curve	110
120.	Loaded Hole Elongation Measurements Show Rapid Increase Near End of Life	111
121.	Loaded Hole Fatigue Test Specimen	112
122.	Failed Loaded Hole Fatigue Specimens	113
123.	Progression of Loaded Hole Fatigue Damage (Enhanced X-ray)	114
124.	Loaded Hole Fatigue Test Data for RTD Conditions	115
125.	Loaded Hole Fatigue Test Data for ETW Conditions	116
126.	Loaded Hole Fatigue Test Results for RTD Conditions	117

<u>Figures</u>	<u> </u>	age
127.	Loaded Hole Fatigue Test Results for ETW Conditions 1	18
128.	Low-Velocity Impact Test Matrix	.20
129.	Low-Velocity Impact Test Specimen Instrumented for Residual Compression Strength Testing	.21
130.	Low-Velocity Impact Damage Test Setup 1	21
131.	Maximum Non-Visible Damage Data for RTD Conditions 1	22
132.	Maximum Non-Visible Damage Data for ETW Conditions 1	23
1 3 3.	Thin Laminate Damage Data for RTD Conditions 1	24
134.	Thin Laminate Damage Data for ETW Conditions	25
135.	Visible Damage Data for RTD Conditions	26
136.	Visible Damage Data for ETW Conditions	127
137.	Residual Compression Strength in 10/80/10 Laminates 1	28
138.	Residual Compression Strength in 50/40/10 Laminates 1	28
139.	Test Panel Configuration	31
140.	Hat Stiffener Cross-Section	132
141.	Blade Stiffener Cross-Section	1.12
142.	Task IV Test Matrix	135
143.	Panel Test Setup	134
144.	RTD Fatigue Test Schedule	135
145.	Environmental Chamber for ETW Tests	136
146.	Outer Mold Line Impact Locations and Energy Levels 1	137
147.	Stiffened Panel Failure Including Stiffener Crippling and Separation	138
148.	Ultimate Loads for Static Panel Tests	139
149.	Nondimensional Crippling Curves for No-Edge-Free and One-Edge-Free Elements	140

LIST OF FIGURES (Concluded)

<u>Figures</u>		Page
150.	RTD and ETW Crippling Analyses of Hat Stiffener Modeled with 6 Elements	141
151.	Column Strength Correction Results	142
152.	Impact Damage Referenced to Longitudinal Hat Stiffeners .	143
153.	Crippling Load Predictions for Undamaged and Damaged Panels	144
154.	Panel Fatigue Test Results	144
155.	Strain Gage Locations	145
156.	Damage as Viewed from Outer Mold Line of Panel #3	146
157.	Damage as Viewed from Outer Mold Line of Panel #8	146
158.	Strain Surveys of Strain Gages 1 and 2 of Panel #3	147
159.	Strain Surveys of Strain Gages 4 and 5 of Panel #3	148
160.	Strain Surveys of Strain Gages 6 and 7 of Panel #3	148
161.	Strain Surveys of Strain Gages 1 and 2 of Panel #8	149
162.	Strain Surveys of Strain Gages 4 and 5 of Panel #8	150
163.	Strain Surveys of Strain Gages 6 and 7 of Panel #8	150
164.	Summary of Static and Fatigue Results	151

SECTION 1.

INTRODUCTION

The subject of this program is evaluation of the durability and damage tolerance of bismaleimide (BMI) composites. BMI resin systems have been developed for structural applications in 350°F to 450°F environments. represents an improvement over epoxy resin capability of approximately 100°F. First generation BMI resins achieved the increased temperature capability at the expense of toughness. Figure 1 shows C-scans of low-velocity impact damage in two panels of identical geometry. The first panel is made with 3501-6 epoxy resin and the second one is made with V378A BMI resin. Both panels were impacted with similar energy levels at similar locations. The predominance of damage (indicated by unshaded area) in the BMI panel compared to the damage in the epoxy panel illustrates the inferior toughness of the Second generation BMI resins have been developed to improve toughness while retaining the high temperature capability. The improvement is illustrated in Figure 2 where a decrease in damage is evident in the panel made with second generation BMI 3100 (compared to the panel made with the first generation EMI V378A). In this program we experimentally evaluated two second generation Bul systems.

In Task I of the program we surveyed candidate material systems and chose IM6/3100 and IM6/F650 for evaluation. The IM6 intermediate modulus fiber system was chosen as the common fiber for both material systems. common fiber was chosen so that differences in performance could be attributed to the BMI resin. The high strength and stiffness of the IM6 fiber are properties that are important for future fighter designs. The resin systems were chosen for their superior toughness/temperature characteristics. The 3100 resin produced by American Cyanamid was credited as having superior toughness. The F650 resin produced by Hexcel was credited as having superior temperature capability. Evaluation of both systems allowed an assessment of the relative importance of the contradictory properties of toughness and temperature capability.

Figure 1. First Generation BMI (V378A) is Moro Susceptible to Low Velocity Impact Damage Than Epoxy (3501-8)

Figure 2. Second Generation BMI (3100) Shows improved Low Velocity Impact Damage Tolerance Compared to First Generation BMI (V378A)

In Task II basic material properties were determined. The data included moisture absorption, glass transition temperature, thermal spike susceptibility, lamina properties, and interlaminar fracture toughness test results. Moisture absorption and glass transition temperature data were used to define elevated temperature/wet conditions for testing that followed. Lamina properties and fracture toughness test data were used to correlate laminate behavior exhibited in Task III.

In Task III laminate structural characterizations of IM6/3100 and IM6/F650 were completed. Tests were performed on coupons that represented configurations found in typical aircraft designs. Figure 3 shows an advanced fighter wingbox design that includes a variety of structural configurations. The mechanically fastened upper skin in the design includes laminates of different thicknesses, different layups, and different notch conditions. To evaluate the performance of the two bismaleimide composite systems, specimens were fabricated and tested in notched and unnotched conditions to represent design applications shown in Figure 4.

Figure 3. Advanced Fighter Wingbox Design

Figure 4. Representative Task III Test Specimens

In Task IV the better system (IM6/3100) was chosen to fabricate stiffened panels for evaluation of the bismaleimide's durability and damage tolerance in a structural configuration. Static and fatigue tests were performed on panels with and without impact damage.

Finally, comments were made as to the applicability of damage tolerance requirements to bismaleimide composites. Also, recommendations were made for future efforts in the area of impact damage analysis development.

SECTION 2.

TASK I: MATERIAL SELECTION

- 2.1 <u>Assessment Criteria for Carbon/Bismaleimide Properties</u> Bismaleimide systems were assessed on the basis of both physical and mechanical properties. This assessment included:
 - (a) production status
 - (b) manufacturing qualities
 - (c) handling qualities
 - (d) resin chemistry
 - (e) physical and mechanical property data at room and elevated temperature
 - (f) moisture absorption characteristics
 - (g) dry and wet glass transition temperatures
 - (h) solvent resistance
 - (i) fiber/resin compatibility

The assessment of the physical qualities of the eight resins identified as applicable to this program is shown in Figure 5. Assessment of suppliers' resin data shows that wet glass transition temperatures range from 350°F to 450°F. Since different suppliers use different methods to evaluate wet glass transition temperature there was uncertainty associated with quantitative comparisons of this characteristic. Therefore, this data was used as a qualitative indicator of temperature capabilities of the materials in order to insure that the two resins chosen for the program exhibited characteristics associated with resins from opposite ends of the wet glass transition temperature range.

Assessment of the mechanical properties identified specific fiber and resin combinations which were expected to exhibit improved laminate mechanical properties. These include increased strain capability, and improved damage tolerance (increased toughness) without loss of stiffness or compressive strength over those of earlier carbon/bismaleimide material systems. The baseline material systems used for comparison included T300/V378A carbon/bismaleimide and AS/3501-6 carbon/epoxy.

Criteria	Hitco XV388	Hitco XV398C	Fiberite X86	Cyanamid 3100	Hexcel F650	Ciba-Geigy R6451	Avce 130B	Narmeo 5250-2
Production Status	Experimental	Experimental	Experimental	Available	Available	Available	Available	Available
Manufacturing	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Acceptable	Unacceptable*
Handleability	Unknown	Unknown	Unknown	Good	Good	Unknown	Moderate	Unknown
Resin Chemistry	Addition	Addition	Addition	Addition	Addition	Addition	Addition	Addition
Moisture Absorption	Unknown	Unknown	Unknown	Epoxy Like	Epoxy Like	Unknown	Unknown	Unknown
Dry Glass Transition Temperature	>650°F	>650°F	>600°F	>600°F	>600°F	>600°F	>600°F	>600°F
Solvent Resistance	Good	Good	Good	Good	Good	Good	Good	Good

^{*}Due to extended post-cure

GP43-0086-4-T

Figure 5. Assessment of Second Generation Bismaleimide Resins

Selection of two carbon fiber/bismaleimide resin system combinations for use in Tasks II through IV was performed using a two step procedure for evaluating constituent fiber and resin properties. The first step of this procedure utilizes basic resin stiffness and strength properties obtained from neat resin tests to predict composite performance. Initial resin modulus, strength, strain to failure and strain energy are key material assessment parameters.

A graphical representation of the resin categorization procedure is shown in Figure 6. Strength and moduli axes are normalized with respect to a baseline material strength, $S_{\rm o}$, and modulus $E_{\rm o}$, respectively. Four parameters are used to define upper and lower bounds for the region where overall composite structural efficiency improvements can be expected. These parameters are: normalized resin tensile strength, normalized resin strain energy, normalized resin strain to failure, and normalized resin modulus.

These normalized resin-related parameters bound the resin properties which will result in improved laminate transverse strength, transverse modulus, strain energy (toughness) and global matrix (resin) cracking as shown in Figure 6.

Lower bounds for composite material improvement are determined by resin strength, toughness, and strain-to-failure (Figure 6). Increasing the resin strength relative to a baseline (S > S_0) is predicted to increase lamina transverse strength and intralaminar shear strongth. Increasing the resin strain energy (toughness) increases laminate impact resistance. As compared to a brittle resin, increases in laminate toughness are shown in Figure 6 by a lower bound S > S_0 $\sqrt{E/E_0}$.

Global matrix cracking is controlled by resin strain allowables. Cyclic loading for laminates above the matrix cracking strain level has been associated with rapid decrease in fatigue life (Reference 1). Therefore, composite durability is predicted to increase for resin systems in which S/E is greater than S/E (Figure 6).

Figure 6. Resin Properties Necessary to Improve Laminate Properties

The upper bound on composite material compressive performance is determined by resin modulus. Longitudinal compression properties are improved with higher resin modulus ($E>E_0$) due to greater fiber stabilization. Potentially large benefits may be gained in toughness through resin formulations, but at the expense of lower resin stiffness. This results in lower longitudinal compression strength compared to the baseline material.

The region where all laminate properties are improved can be expressed by:

$$E > E_{o}$$

 $S > S_{o} \frac{E}{E_{o}}$

as shown in Figure 6.

The second step of the mechanical property assessment procedure involved evaluation of fiber constituent properties and fiber/resin compatibility. The next generation fighter aircraft will require fibers with greater stiffness than used in current production aircraft. Intermediate modulus carbon fiber properties are compared to current fiber and high strain fibers in Figure 7. Candidate intermediate modulus fibers for evaluation in this program included Hercules IM-6 and IM-7, Union Carbide T-40, and Hitco Hitex 42. The T-40 fiber was not available in production quantities. The IM-7 fiber was a proprietary system not yet commercially available in other manufactures resin systems.

Figure 7. Candidate Carbon Fiber Materials

The mechanical properties of candidate carbon fibers and bismaleimide resins were assessed. Mechanical property data that were available for various fiber/bismaleimide resin combinations for 35 msi and 42 msi modulus fibers are shown in Figures 8 and 9 respectively. Included in these figures are baseline T300/V378A data.

Property			Hitco V-378A T300	Hitco XV388 AS-4	Fiberite X86 T300	Narmco 5250-2 T300	Cyanamid 3100 T300	Hexcel F650 T300	Ciba-Geigy R6451 T300	Avco 1308 T300
0° Tensile Propertie	s									
Strength	(ksi)	R.T. 350°F	230 210	297 281	227	_		251	230 181	_
Modulus	(msi)	R.T.	20.1	19.5	20.4		_	21.5	19.0	-
Failure Strain (μin./in.)	350°F R.Y. 350°F	22.1 10,500 9,800	19.3 13,800 13,500	10,800	_	-	11.700	19.0	_
00.00		330°F	9,000	13,300	_	_	_	_	_	_
0° Flexure Propertion Strength	es (ksi)	R.T. 350°F 350°F Wat	225 171	-	_	292 228	242 208 149	288 230 153	280 229 180	272 266 166
Modulus	(msi)	R.T. 350°F 350°F Wet	17.2 15.6	-		19.0 19.1	16.0 17.9 16.1	18.4 17.9 17.7	18.0 17.0 17.0	17.9 17.9 16.7
0° Compressive Pro	perties					•				
Strength	(ksi)	R.T. 350°F 350°F Wet	192 162	229 174	245 173 ⁽¹⁾	320 ·	منت خبت منبه	238 181 130		
Modulus	(msi)	R.T. 350°F 350°F Wei	19.8 23.4		د است ست معبد			une une		نب سبد . نبد
Interlaminar Shear Strength	(ksi)	R.T. 350°F 350°F Wet	15.0 10.0 7.9	14.9 10.4 6.5	19.8 11.4 ⁽¹⁾		19.3 11.5 8.8	20.2 12.4 8.2	16.3 11.6 7.8	16.8 11.3 7.1
Edge Delamination 1 ((± 25) ₂ , 90),	Tension.				•					
Stress at First Cra	ack (ksi)	R.T.	15.0	-		advak	40.9	32.6	***	

^{(1) 375°}F

-

Figure 8. Low Modulus Carbon Fiber Bismatelmide Composite Property Comparison

Property			Hitco V-378A Hitex 42	Hitco XV388 Hitex 46	Hitce XV396C Hitex 46	Fiberite X86 IM5 (G)	Cyanamid 3100 IM5 (G)	Hexce! F650 IM6 (8)
0° Tensile Properti	85					- •		,
Strength	(ksi)	R.T. 350°F	327 	407	415 420	362 —	370	_
Modulus	(msi)	R.T. 350°F	22.9	25.8	25.8 25.5	24.3	23.1	_
Failure Strain (μin./in.)	R.T. 350°F	13,100	14,800	15,000 15,400	14,600	16,300	_
0° Flexure Properti	es						•	
Strength	(ksi)	R.T. 350°F 350°F Wet	_	_	273 220 176	<u>-</u>	228 196 135	-
Modulus	(msi)	R.T. 350°F 350°F Wet	 7	-	21.5 21.5 20.9	-	18.6 19.2 18.3	_
0° Compressive Pri	operties							•
Strength	(ksi)	R.T. 350°F 350°F Wat		227 162	270 170 160	225- 159 ⁽¹⁾ 164 ⁽¹⁾	-	
Modulus	(msi)	R.T. 350°F 350°F Wet		100A	23.2 23.9 24.2		-	- Sena
Interlaminar Shear Strength	(ksi)	R.T, 350°F 350°F Wel	13.6 10.5 7.1	15.4 10.4 6.3	21.9 15.1 10.6	17.3 11.3 ⁽¹⁾ 7.7 ⁽¹⁾	16.8 11.4 7.7	17,1 12.9 6.5
Edge Delamination ((±25) ₂ , 90) ₄	Tension,						· · ·.	
Stress at First Cr	ack (ksi)	R.T.	17.0	26.0	36.9	_	26.4	23.0

^{111 3754}

07050000 43 T

Figure 9. Intermediate Modulus Carbon Fiber Bismaleimide Composite Property Comparison

Based on the resin-related failure data available, these materials were correlated with the resin selection criteria envelope in Figure 10. The properties presented in Figure 10 are normalized to the baseline Hitco V378A resin system. As seen in this figure, all second generation bismaleimides, with the exception of Avco 130, were expected to show an overall improvement in laminate structural and damage tolerance properties. However, none were expected to reach the performance of current epoxy systems.

^{(2) 3174. 43%} RH

Figure 10. Resin Related Properties of BMI and Epoxy Resins

2.2 <u>Fiber/Bismaleimide Material Selection</u> - The assessment of the aveilable data for bismaleimide resin material systems was used to select two systems for use in Tasks II through IV. These resin systems were American Cyanamid's Cycom 3100 and Hexcel's F650. Selection was based on resin mechanical and physical properties, processibility, availability and compatibility with the Hercules IN6 fiber. The Hercules IN6 fiber was selected for evaluations with these resins because of its high strength and stiffness properties. A common fiber was chosen so that differences in performance could be attributed to the BHI resin.

Both Cycom 3100 and Hexcel F650 have improved interlaminar fracture toughness and improved interlaminar shear strength over the current carbon/bismaleimide system. Both of these systems have excellent handling characteristics, similar to epoxies. The assessment showed these materials should maximize structural performance, including higher strains to failure (reducing microcracking), improved transverse lamina strength, retention of stiffness and unidirectional compression strengths at elevated temperature, and improved toughness.

The Cycom 3100 system has a hot/wet service temperature capability of 350°F while the Hexcel F650 system has a hot/wet service temperature in the 400°F range. The increased service temperature capability of F650 sacrifices some toughness and damage tolerance. Selection of the two bismaleimide resins permitted an assessment of new second generation materials with a range of temperatures and improvements in toughness that may encompass requirements of future aircraft. The two material systems selected for use in this program are summarized in Figure 11.

Material System Fiber/Resin	Fiber Manufacturer	Fiber Strain Capability (µin./in.)	Resin Manufacturer	Resin Description (Hot/Wet Service Temperature)
A) IM6/3100	Hercules	18,000	American Cyanamid	350 - 375
B) IM6/F650	Hercules	16,000	Hexcel	425 - 450

GP430088-1

Figure 11. Fiber/Resim Materials Selected for the Program

SECTION 3.

TASK II: ENVIRONMENTAL MATERIAL ALLOWABLES

3.1. <u>Summary and Conclusions</u> - IM6/3100 and IM6/F650 specimens were tested to determine moisture absorption characteristics, glass transition temperatures, susceptibility to thermal spiking, lamina mechanical properties, fracture toughness, and crack growth characteristics. These properties were compared to available data for baseline epoxy (AS1/3501-6) and BMI (T300/V378A) material systems.

Moisture absorption tests were performed to determine how much and how fast water is absorbed. The quantity of water that could be absorbed was determined from test results that show IM6/3100 achieved a saturation level of 1.34 percent which is 87 percent of the saturation level of T300/V378A. IM6/F650 achieved a saturation level of 1.28 percent which is 84 percent of the T300/V378A level. The rate at which water is absorbed was determined from diffusivity ($D_{\rm g}$) tests that showed IM6/3100 and IM6/F650 bounded by AS1/3501-6 and T300/V378A. At $100\,^{\circ}$ F, the diffusivity of T300/V378A is approximately two times as great as for IM6/F650, two and one-half times as great as for IM6/3100, and ten times as great as for AS1/3501-6.

Glass transition temperature (T_g) tests were performed to determine how moisture affects the T_g of the two material systems. Test results show that the T_g of IM6/3100 decreases linearly with moisture content and that the T_g of IM6/F650 decreases nonlinearly with moisture content. Also, at moisture contents in excess of 1.1 percent, the T_g of IM6/3100 exceeds the T_g of IM6/F650. The T_g test results were used to define the elevated temperature/wet test conditions for later tasks.

Thermal spike tests were performed to determine the susceptibility of IN6/3100 and IM6/F650 to matrix microcracking or delamination caused by rapid changes in temperature. Tests showed that IM6/3100 did not exhibit microcracks or delaminations for either dry or wet laminates. IM6/F650 exhibited microcracking only in wet laminates.

Lamina property test results show that 0° properties of IM6/3100 and IM6/F650 compare favorably with baseline systems AS1/3501-6 and T300/V378A. This quality is attributable to the superiority of the IM6 fiber compared to either AS1 or T300 fibers. In contrast, the 90° properties of IM6/3100 and IM6/F650 were not as good as the 90° properties of the baseline materials. The shear properties of IM6/3100 exceeded those of T300/V378A but fell short of those of AS1/3501-6; while the shear properties of IM6/F650 matched those of T300/V378A and also fell short of those of AS1/3501-6.

Fracture toughness and crack growth testing was performed to determine the Mode I, Mode II, and interaction characteristics. IM6/3100 was found to be tougher than IM6/F650. IM6/3100 showed equal toughness at cold temperature/dry (CTD), room temperature/dry (RTD), or elevated temperature/wet (ETW) conditions. IM6/F650 exhibited degraded toughness at ETW conditions compared to its CTD or RTD toughness. Results show that Mode I fracture toughness increases with crack length. This behavior has been attributed to fiber bridging. Mode II fracture toughness was found to be independent of crack length. It was found that IM6/3100 is generally tougher than AS1/3501-6 and T300/V378A, and IM6/F650 is generally not as tough as the baseline materials.

For both materials the mode with the greatest crack growth rate under CTD and RTD conditions was mixed mode with 83 percent Mode II. Under ETW conditions, crack growth was greatest in Mode I for IM6/3100. IM6/F650 showed significant increases in crack growth for all modes at ETW conditions. The results from Mode II IM6/F650 testing indicate that resin weakened by ETW conditions caused unstable crack growth.

3.2 <u>Testing and Evaluation</u> - The objective of the test program was to define the environmental material allowables for the bismaleimide composites IM6/3100 and IM6/F650. Data was recorded to determine environmental effects, basic lamina material properties, toughness, and crack growth characteristics.

- 3.2.1 Overview In this program, 162 static tests and 72 fatigue tests were performed under cold temperature dry (CTD), room temperature dry (RTD), and elevated temperature wet (ETW) conditions. The tests were conducted to determine:
 - o moisture absorption properties
 - o glass transition temperatures
 - o susceptibility to thermal spike damage
 - o unidirectional lamina material properties
 - o fracture toughness interaction characteristics
 - o interlaminar crack growth behavior

according to the matrix in Figure 12.

Test Types	Number of Tests
Moisture Absorption	36
Glass Transition Temperature	24
Thermal Spiking	16
Lamina Mechanical Property	90
Fracture Toughness	144
Total	310
	QP73-0343-

Figure 12. Task II Test Matrix

3.2.2 Moisture Absorption - Figure 13 shows the environmental conditions imposed during the tests. For the first three conditions, the relative humidity (RH) was held constant and temperature was varied in order to determine the diffusivity ($D_{\rm x}$) of the material as a function of temperature. The results in Figure 14 show the diffusivities of IM6/3100 and IM6/F650 are bounded by the diffusivities of AS/3501-6 and T300/V378A. At 100° F, the diffusivity of T300/V378A is approximately two times as great as for IM6/F650, two and one-half times as great as for IM6/3100 and ten times as great as for AS1/3501-6.

Absorption Envi	ronment	Number	Total		
Temperature (°F)	R.H. (%)	IM6/3100	IM6/F650		
100	75	3	3	6	
140	75	3	3	6	
180	75	3	3	6	
160	50	3	3	6	
160	75	3	3	6	
160	95	3	3	6	
				36	

GP73-0343-4

Figure 13. Moisture Absorption Test Matrix

Figure 14. Diffusivity as a Function of Temperature

In the last three conditions of Figure 13, the temperature was held constant and RH varied to determine the moisture content at equilibrium ($M_{\rm eq}$) as a function of RH. Figure 15 shows a comparison of $M_{\rm eq}$ for T300/V378A, IM6/3100, and IM6/F650 with resin contents (RC) of 30.2 percent, 30.1 percent, and 31.4 percent respectively. The RC of the test laminate is important because $M_{\rm eq}$ is directly proportional to RC as shown in Equation 1.

$$M_{eq} = A * (ZRC/100) * (ZRH/100)^B$$
 (1)

The M $_{\rm eq}$ of T300/V378A at 100 percent RH is 1.534 percent. For IM6/3100 the M $_{\rm eq}$ at 100 percent RH is 1.341 percent (87 percent of the T300/V378A value) and for IM6/F650 the M $_{\rm eq}$ at 100 percent RH is 1.281 percent (84 percent of the T300/V378A value).

Figure 15. Equilibrium Moisture Content vs Relative Humidity

After the moisture absorption characteristics of both material systems were determined, analyses were performed in order to define an end-of-life moisture content for a representative composite structure exposed to a 20-year basing scenario. Weather data composed of temperatures and relative humidities for various Air Force bases, along with the moisture absorption test results discussed previously, were used as input to a one-dimensional moisture diffusion model called WETLAM. WETLAM was used to model a 1/4 inch thick laminate representing a section of an F-15 wing skin. Weather data for European, American, and Far Eastern basing scenarios were used to determine the most critical exposure. Figure 16 summarizes the results of the investi-The most critical exposure for both material systems was the gation. European basing scenario resulting in end-of-life moisture contents of 0.712 percent for IM6/3100 and 0.714 percent for IM6/F650. These moisture levels were used later with glass transition temperature test results to determine ETW test conditions for future testing in this program.

20-Year	% Moistur Predicted b	re Content by WETLAM
Basing Scenario	IM6/3100	IM6/F650
Europe	0.712	0.714
Far East	0.699	0.679
United States	0.644	0.639

GP73-0343-10

Figure 16. End-of-Life Moisture Contents in F-15 Wing Skins
After 20-Year Exposures

3.2.3 Glass Transition Temperature - Glass transition temperatures (T_g) limit usage temperatures. Tests were performed on dry and wet laminates to measure T_g , as shown in the test matrix in Figure 17. Thermal Mechanical Analysis (TMA) was used to measure T_g for both bismaleimide systems. The TMA measures thermal expansion dimensional changes as a function of temperature. The T_g of each material is the point on the expansion versus temperature plot where the coefficient of thermal expansion (i.e. slope of expansion versus temperature plot) changes, as shown in Figure 18. The T_g decreases as moisture content increases.

At it is a contact	Number	Total	
Moisture Content	IM6/3100	IM6/F650	1018
Dry	3	3	6
Level 1	3	3	6
Level 2	3	3	6
Level 3	3	3	6
		·	24

GP43-0089-43-T

Figure 17. Glass Transition Temperature Test Matrix

Figure 18. Glass Transition Temperature Determined by Thermal Mechanical Analysis

In Figure 19, T_g as a function of moisture content is shown for both material systems. The T_g of IM6/3100 decreases linearly with increasing moisture content. The T_g of IM6/F650 decreases nonlinearly with increasing moisture content. It is interesting to note that for high moisture contents, the T_g of IM6/F650 is lower than the T_g of IM6/3100.

The T_g vs. moisture content relationships shown in Figure 19 were used with previously determined end-of-life moisture contents to define the upper use temperatures for both BMI systems. For IM6/3100 at a moisture content of 0.712 percent the T_g is predicted to be 408°F. To insure that the degradation associated with the T_g was not encountered, a buffer of approximately 50°F was applied, resulting in an upper use temperature of 360°F for IM6/3100. In a similar manner the upper use temperature for IM6/F650 was defined as 410°F. The ETW test conditions for both materials are shown in Figure 20.

Figure 19. Variation of Glass Transition Temperature With Absorbed Moisture Content

Material	% Moisture Content Predicted by WETLAM	Glass Transition Temperature (°F)	Elevated Test Temperature (°F)
IM6/3100	0.712	408	360
IM6/F650	0.714	465	410

QP73-0343-11

Figure 20. Elevated Temperature/Wet Test Conditions Determined From End-of-Life Moisture Level

3.2.4 Thermal Spike Susceptibility - Thermal spike tests were performed in order to evaluate the susceptibility to matrix microcracking or delamination due to rapid changes in temperature. Each material system cycled from -65°F to its upper use temperature and back to -65°F, five times, as shown in Figure 21. The rate of temperature change was 1°F/sec, which is representative of the rate with supersonic dash conditions. Both dry and wet specimens were tested as shown in Figure 22. Each test involved a test specimen and a rider specimen. The test specimen was sectioned and polished for micrographic investigation. The rider specimen was instrumented with a thermocouple to monitor the temperature vs. time schedule. Wet laminates were tested to see if entrapped moisture would promote delaminations or microcracking in severe hot or cold environments.

Figure 21. Thermal Spike Temperature and Time Schedules

Spike	Moisture	Nun of T	Number of		
Range (°F)	Condition	IM6/3100	IM6/F650	Specimens	
-65 - T _{up} a	Dry	2 b	2 ^b	8	
– 65 – T _{up}	Wet	2 b	2 ^b	8	
Total				16	

Notes:

GP73-0343-16

Figure 22. Thermal Spike Test Matrix

For both dry and wet conditions, IM6/3100 showed no sign of microcracking or delamination. Also, dry IM6/F650 laminates showed no signs of cracking or delamination. In contrast, wet IM6/F650 laminates did exhibit microcracking. The microcracks occurred in the 90° ply that was sandwiched between two 0° plies of a 20-ply 50/40/10 laminate.

3.2.5 <u>Lamina Mechanical Properties</u> - <u>Lamina mechanical property tests</u> were performed as shown in the test matrix, Figure 23.

	11	W8/3100)	1	M&/F65	0	Number of	
	CTD	RTD	ETW	CTD	ATD	ETW	Tests	
0° Tension	3	3	3	3	3	3	18	
90° Tension	3	3	3	3	3	3	18	
0° Compression	6	8	6	6	6	6	36	
±45° Shear	3	3	3	3	3	3	18	
Total							90	

GP734343-17

Figure 23. Lamina Mechanical Property Test Matrix

a Tup = 360 for IM6/3100

a Tup = 410 for IM6/F650

b Each test involved one test specimen and one rider specimen

3.2.5.1 <u>O° Tension Test Results</u> - The test specimen configuration is shown in Figure 24. Figure 25 shows a typical failed specimen. Test data are tabulated in Figure 26. These test results indicate the ability of the BMI resin to transfer the strain capability of the fiber (16,000 μ n/in) to the composite laminate.

Figure 24. Unidirectional 0° Tension Test Specimen

Figure 25. Failed 0° Tensile Specimen

Material	Environment	Specimen	Thickness	Width	Feilure Laad		Stress si)		Strain ./in.)		elus al)	Poisson' Ratio
System		Number	(ia.)	(in.)	(Ib)	Ind	Ave	ind	Ave	ind	Avg	· Name
		1-4-10	0.088	0.491	15,⊋00	390.5		16,100		23.02		0.317
	CTD	1-4-11	0.089	0.506	16,900	402.2	382.3	15.720	15.347	23.68	23.19	0.319
		1-4-12	0.089	0.507	14,900	354.4		14,220		22.87		0.277
		1-4-13	0.089	0.506	16.860	401.9				_		
IM6/3100	ATD	1-4-14	0.089	0.508	15,750	373.8	382.6	14,840	14.940	22.96	23.02	0.311
		1-4-15	0.089	0.508	15.690	372.2		15.040		23.09		0.299
		1-4-16	0.088	0 510	8.520	208.6		8.570		24.43		0.317
	ETW	1-4-17	0.088	0.508	10.320	245.0	231,2	10.800	10.083	20.95	22.13	0.288
		1-4-18	0.088	0.509	10,140	240.1		10.880		21.01		9.307
		2-4-10	0.088	0.501	14,300	343.9		13,150		23.46		0.270
	CTD	2-4-11	0.087	0.505	13.230	315 6	330.8	13,150	12,833	23.42	23.17	0 322
		2-4-12	680 0	0.503	13.900	332.9		12,200		22.61		9.306
		2-4-13	0 085	0.503	12.330	295.3		11.270		23.53		0 307
IM6/F650	ATO	2.4.14	0.088	0.505	12.390	295.6	280.6	13.600	13,290	23.60	23,38	0 299
		2.4.15	0.088	0 504	10.500	251.0		15.000		23.00		0.309
		2:4:16	0.088	0 506	9.200	219.1		10.130		22.41		0 275
	etw	2:4:17	0.087	0.509	9.120	215.9	205.3	9.810	9.332	22.37	22.42	0.335
	_	2-4-18	0.088	0 506	7.600	181 0		8.055		22.50		0 324

hose. Notice reministra to \$3% fiber whime becides with a remark by thickness of \$552 to

62734545.5

Figure 26. Unidirectional 0° Tension Test Results

IN6/3100 showed a 40 percent loss in strength under ETW conditions. The CTD and RTD strengths of IN6/3100 were equal.

In the case of IM6/F650, the RTD strength was 15 percent lower than the CTD strength. The IM6/F650 ETW strength was 38 percent lower than the CTD strength. The decrease in strength with increasing temperature is a reflection of a decrease in load/strain transfer capability of the matrix material.

3.2.5.2 90° Tension Test Results - The test specimen configuration is shown in Figure 27. Figure 28 shows a typical failed specimen. Test data are tabulated in Figure 29. These test results indicate the susceptibility of the resins to environmental degradation. IM6/3100 showed gradual strength reduction with increasing temperature. The RTD strength was 5 percent less than the CTD strength. The ETW strength was 70 percent lower than the CTD strength.

Figure 27. Unidirectional 90° Tension Test Specimen

GP83-0089-24

Figure 28. Failed 90° Tensile Specimen

Material	Environment	Specimen Number	Thickness	Width (in.)	Failure Load		Stress si)		Strain ./in.)		lulus (\$1)	Poisson's
System		HRUSTEI	(in.)	1111.)	(16)	ind	Avg	Ind	Avg	Ind	Avg	- Ratio
		1.4.1	0 087	1 000	410	4 94		3.400		1.41		0.018
	CTO	1.4.2	0 089	1 001	577	6 95	5 86	4.500	3.853	1 56	1.50	0 019
		1.4.3	0 089	1.002	473	5.69		3 660		1 54		0.016
		1.4.4	0 090	1 002	447	5 37		3,740		1 45		0 050
IM6/3100	RTD	1-4-5	0 089	1 002	476	5 72	5.59	3 980	3.877	1.45	1.46	0 021
		1-4-6	0 089	1 002	471	5 66		3.910		1 48		0 020
		1.4.7	880 0	1 004	Name of the last	-		¥5.4		-met		— 4
	ETW	1.4 8	0 088	1 003	132	1 59	1 76	2.500	2.930	0 69	0.65	0 052
		1:4-9	980 0	1 004	162	1 94		3.360		0 62		0.041
		2-4-1	980 0	0 998	252	3 04		1.870		1 56		0 019
	ÇTD	2:4 2	0 080	0 998	452	5 46	4 25	3.610	2.740	1 54	1 55	0.020
		2.4.3	880 0	0 996	1942	-		E-84		54		ena.
		2.4.4	0 087	1 007	554	6 63		5,100		1.31		0.017
IM6/F650	RTO	2.4.5	880 0	1 004	473	5 68	6.28	4 220	4,673	1 38	1 36	0.020
		2-4-6	0 088	0 994	540	6 55		4,700		1 41		0 018
		24.7	0 988	0 995	or.	0 36		6:6		0 59		0 019
	EfW	2.4 8	0 088	1.007	81	0 97	0 74	1 428	1.097	0 68	0 66	0 017
		2.4.9	0 087	1 007	73	0 87		1,248		0 70		0 015

Note: Results normalized to 63% fiber volume fraction with a nominal ply thickness of .0052 in.

Figure 29. Unidirectional 90° Tension Test Results

In contrast to IM6/3100, IM6/F650 showed maximum strength under RTD conditions. The CTD strength was 32 percent lower than the RTD strength. Apparently the CTD condition embrittled the F650 resin resulting in fragile material that was very susceptible to bending loads. One specimen of this group (Spec. 2-4-3) actually broke prior to testing as it was being positioned into the load frame. The ETW strength was 88 percent lower than the RTD strength. This drastic strength reduction in IM6/F650 under ETW conditions correlates with the microcracking that occurred in wet IM6/F650 during thermal spike testing. As the wet laminates were spiked to elevated temperatures, the matrix tension strength diminished and matrix cracks formed.

3.2.5.3 <u>O° Compression Test Results</u> - O° compression mechanical properties were determined using both unidirectional coupons and unidirectional sandwich beams. The O° compression coupon test specimen configuration is shown in Figure 30. Two coupon configurations were used to determine stiffness and strength. The configuration without tabs was instrumented to measure modulus and Poisson's ratio. The tabbed specimen was used to determine strength. The unsupported specimen length was chosen so that the buckling strength would exceed compression strength. Due to the short gage length these tabbed specimens could not be instrumented.

Figure 30. Unidirectional 0° Compression Coupon Test Specimen

Specimens were tested in the loading fixture shown in Figure 31. This test fixture includes two vertical alignment pins assuring loading directly along the axis of the specimen precluding eccentric loading and premature buckling of the specimen. Blocks at the grip ends provided lateral support. Compression loading was introduced on the ends of the specimen.

Figure 31. Compression Test Fixture

Test data from 0° compression coupon tests are tabulated in Figure 32. The results include strengths that correspond to a variety of failure modes. In addition to true fiber compression failures, there were through-the-thickness shear failures and end failures. Figure 33 shows a typical 0° compression coupon failure. The shear and end failures were premature, and did not give a true representation of the compressive capability of the BMI systems.

Material	Environment	Specimen	Thickness	Width	Failura Load		Stress si)		lulus Isi)	Poisson's
System		Number	(in.)	(in.)	(lb)	Ind	Avg	Ind	Aad	Ratio
	· · · · · · · · · · · · · · · · · · ·	1-4-19	0.088	0.503				22.29		0.286
	CTD	1-4-20	0.088	0.505				22.31	22.03	
		1-4-21	0.088	0.506				21.50		0.309
		1-4-28	0.089	0.507	7,250	172.3				
	CTD	1-4-29	0.089	0.507	8,740	207.7	184.3			
		1-4-30	0.089	0.507	7,275	172.9				
		1-4-22	0.088	0.507				21.24		0.333
	RTD	1-4-23	0.089	0.519				21.95	22.32	0.345
		1-4-24	0.088	0.511				23.78		0.332
IM6/3100		1-4-31	0.090	0.507	8,125	193.1				
	RTD	1-4-32	0.089	0.507	8,250	196.1	194.0			
		1-4-33	0.089	0.512	8,190	192.7				
		1-4-25	0.088	0.506				22.91		0.417
	ETW	1-4-26	0.089	0.507				23.77	23.63	0.400
		1-4-27	0.089	0.506				24.20		0.420
		1-4-34	0.090	0.505	6,130	146.2		•		
	ETW	1-4-35	0.089	0.506	4,750	113.1	137.1			
		1-4-36	0.089	0.506	6,380	151.9				
· · · · · · · · · · · · · · · · · · ·		2-4-19	0.088	0.503				23.61		0.385
	CTD	2-4-20	0.088	0.503				22.81	23.17	0.381
		2-4-21	0.088	0.502				23.09		0.350
		2-4-28	0.088	0.500	7,150	172.3				
	CTD	2-4-29	0.088	0.508	6,630	157.2	163.5			
		2-4-30	0.087	0.508	6,790	161.0				
		2-4-22	0.088	0.503				22.66		0.364
	RTD	2-4-23	0.088	0.503				23.02	22.89	0.396
		2-4-24	0.088	0.502			•	22.99		0.389
IM6/F650		2-4-31	0.088	0.513	7,250	170.3				
	RTD	2-4-32	0.087	0.505	8,230	198.3	176.7			
		2-4-33	0.087	0.507	6,880	163.5				
		2-4-25	0.088	0.503				21.64		0.473
	ETW	2-4-26	0.088	0.504				23.28	22.83	
		2-4-27	0.088	0.503				23.56		0.443
		2-4-34	0.087	0.492	4,000	98.0				-
	ETW	2-4-35	0.088	0.489	4,030	99.3	96.7			
		2-4-36	0.088	0.499	3,840	92.7				

Note: Results normalized to 63% fiber volume fraction with a nominal ply thickness of .0052 in.

Figure 32. Unidirectional 0° Compression Coupon Test Results

GP83-0089-25

Figure 33. Failed 0° Compression Coupon

3.2.5.4 <u>0° Compression Sandwich Beam Test Results</u> - In order to determine more representative compression properties, unidirectional sandwich beam tests were performed. The test specimen configuration is shown in Figure 34. Figure 35 shows a typical 0° compression sandwich beam failure. Test data from 0° compression sandwich beam tests are tabulated in Figure 36.

Composite Skin:

1.00 in. Wide; 22.0 in. Long; 6 Plies Thick

Metal Skin:

1.00 in. Wide; 22.0 in. Long; 0.125 in. Thick; 6AI-4V Annealed Titanium

Aluminum Honeycomb: 1.25 in. Wide; 22.0 in. Long; 1.50 in. Thick

Data Reduction:

$$\sigma = \frac{P L}{2 w t (C + t + T)}$$

Where: σ = Uniaxial Compression Stress

P = Applied Load

w = Composite Skin Width (1.00 in.)

t = Nominal Composite Skin Thickness (6 Piles)

C = Honeycomb Core Height (1.50 in.) T = Metal Skin Thickness (0.125 in.)

L = Moment Arm Between Applied Load and Reaction Support (8.0 in.)

Figure 34. Unidirectional 0° Compression Sandwich Beam Test Arrangement

GP83-0089-26

Figure 35. Failed 0° Compression Sandwich Beam Specimen

Material System	Environment	Specimen Number	Thickness	Width (in.)	Failure Load		Stress (si)		Strain ./in.)		odulus msi)
System		Manther	(in.)	(m.) .	(ib)	Ind	Avg	Ind	Avg	ind	Avg
		1:0-1	0.035	1.014	3,530	284.7		14,400		23.57	
	CTD	1-0-2	0.036	1.005	3,740	304.3	283.9	15,720	14,327	24.41	24.07
		1-0-3	0.037	1.005	3,230	262.8		12,860		24.22	
		1-0-4	0.037	1.001	2,960	241.8		11,890		22.98	
IM6/3100	RTD	1-0-5	9.037	.1:008	2,740	222.3	242.5	10,200	11,790	24.22	23.39
		1-0-6	0.036	1.003	3,230	263.3		13,280		22.96	
		1-0-7	0.038	1.005	1,390	113.1		4,900		24.05	
	ETW	1-0-8	0.037	1.009	1,670	135.3	122.6	6,250	5,540	23.12	23.57
		1-0-9	0.035	1.007	1,470	119.4		5,470		23.54	
		2-0-1	0.033	0.964	3,290	279.1		14,200		23.81	
	CTD	2-0-2	0.034.	1,018	3,540	284.3	291.6	14,580	15,110	23.84	23.94
		2-0-3	0.034	0.908	3,800	311.3		16,550		24.18	
		2-0-4*	0.034	0.996	3,540	290.6		15,560		23.72	
IM6/F650	RTD	2-0-5*	0.034	1.002	3,460	282.4	283.0	14,570	14,500	24.09	24.04
		2-0-6	D.034	1.001	3,380	276.1		13,370		24.32	
	•	2-0-7*	0.034	0.998	1,420	116.3		4,880		24.88	
	ETW	2-0-8*	0.034	0.992	1,470	121.2	118.5	5,450	5,150	24.73	24.97
		2.0.9*	0.034	1.012	1,460	118.0		5,130		25.29	

^{*}Failure occurred outs-de load introduction points

Note: Results normalized to 63% fiber volume/traction with a nominal pty thickness of .0052 in.

Figure 36. Unidirectional 0° Compression Sandwich Beam Test Results

Results from these tests show that as temperature and moisture content increase, the 0° compression strength decreases. This is due to the decreased fiber support of softened matrix material.

The RTD strength of IM6/3100 was 15 percent lower than its CTD strength. The ETW strength was 57 percent lower than its CTD strength.

The compression strengths of IM6/F650 covered a wider range than the strengths of IM6/3100. IM6/F650 was stronger than IM6/3100 for CTD and RTD conditions and was virtually equal in strength for ETW conditions. The RTD strength of IM6/F650 was 3 percent lower than its CTD strength. The ETW strength was 59 percent lower than its CTD strength.

Five IM6/F650 sandwich beam tests had failures occur outside of the load introduction points where shear load exists in addition to the compression skin load. In the RTD cases where specimen 2-0-6 failed inside the loading points and specimens 2-0-4 and 2-0-5 failed outside the loading points, there is no significant difference in compression strengths. The 0° compression strengths obtained by sandwich beam tests were more representative of the material systems' compression strengths and were used to predict laminate strengths in Task III.

3.2.5.5 <u>Intralaminar Shear Test Results</u> - Intralaminar shear mechanical behavior was evaluated using the ±45° test specimen shown in Figure 37. Figure 38 shows a typical failed ±45° shear specimen. Test results are summarized in Figure 39. Complete shear stress-strain curves for both BMI systems are shown in Figures 40 and 41.

IM6/3100 showed less shear strength environmental degradation than did IM6/F650. The RTD strength of IM6/3100 was slightly less (3 percent) than the CTD strength. The ETW strength was 18 percent lower than the CTD strength. The ETW strength reduction was accompanied by an ETW modulus that was 57 percent lower than the CTD modulus.

Grip Tabs
6 Plies 7781 Glass Fabric
Bond With FM400 Adhesive
Typical 4 Places

GP73-0349-21

Figure 37. ± 45° Intralaminar Shear Test Specimen

GP83-0089-27

Figure 38. Failed ±45° Shear Specimen

Material	Environment	Specimen	Thickness	Width	Failure Sh (p	ear Stress	Fallure Shear Strain		Modulus isi)
System		Number	(in.)	(in.)	Ind	Avg	· (μ in./in.) -	Ind	Avg
		1-5-1	0.0893	1.006	13,140		16,950	1.035	
	CTD	1-5-2	0.0908	1.005	13,570	13,440	16,500	1.021	1.026
		1-5-3	0.0902	1.007	13,610		17,700	1.021	
		1-5-4	0.0901	1.008	13,060		22,370	0.837	
IM6/3100	RTD	1-5-5	0.0902	1.012	13,020	13,060	30,000	0.770	0.818
		1-5-6	0.0909	1.004	13,110		23,200	0.846	
		1-5-7	0.0900	1.009	11,470		>32,000	0.524	
	ETW	1-5-8	0.0901	1.008	10,680	10,960	>32,000	0.426	0.441
		1-5-9	0.0901	1.009	10,720		>32,000	0.372	
		2-5-1	0.0870	1.006	10,180		11,480	1.024	
	CTD	2-5-2	0.0877	1.006	10,470	10,110	12,160	1.039	1.011
		2-5-3	0.0876	1.006	9,680		11,120	0.969	
		2-5-4	0.0873	1.007	10,560		15,120	0.865	
IM6/F650	RTQ	2-5-5	0.0867	1.006	10,390	10,200	15,440	0.864	0.867
		2-5-6	0.0865	1.008	9,660		13,180	0.873	
		2-5-7	0.0863	1.005	6,100		>32,000	0.375	
	ETW	2-5-8	0.861	1.005	6,100	5,950	>32,000	0.325	0.339
		2-5-9	0.0862	1.005	5,650		>32,000	0.316	

Note: Results normalized to 63% fiber volume fraction with a nominal ply thickness of .0052 in.

Figure 39. intralaminar Shear Test Results

Figure 40. IM6/3100 Intralaminar Shear Mechanical Behavior

Figure 41. IM6/F650 intralaminar Shear Mechanical Behavior

The CTD strength and RTD strength of IM6/F650 were virtually equal. The CTD strength was 1 percent lower than the RTD strength. The ETW strength of the IM6/F650 was 42 percent lower than the RTD strength. The ETW strength reduction was accompanied by an ETW modulus that was 66 percent lower than the CTD modulus.

Shear stress-strain mechanical behavior was determined from measurements of load versus longitudinal and transverse strain using the following relations (Reference 2):

$$G_{12} = \sigma_{x}/2(\varepsilon_{x} - \varepsilon_{y})$$

$$\tau_{12} = \sigma_{x}/2$$
(2)
(3)

$$\tau_{12} = \sigma_0^2/2 \tag{3}$$

$$\gamma_{12} = \varepsilon_{x} - \varepsilon_{y} \tag{4}$$

There are two important approximations inherent with this test and data reduction procedure (Reference 3). One approximation is caused by the lack of a pure shear stress or strain state in each ply of the ±45° test specimen. From test results, e.g., Figure 42 it is shown that the laminate Poisson's ratio is not unity. Since the longitudinal strain is not quite equal to the negative of the transverse strain, the strain state in each ply at 45° to the laminate axes is not quite pure shear. If laminate strains are plotted on a Mohr's strain circle, results shown in Figure 43 are obtained. Small tensile strains exist in addition to the relatively large shear strains in the principal directions of the lamina. The tensile strains across the transverse direction of the lamina result in a slightly reduced shear modulus and contribute to laminate failure.

Specimen	Thickness	Width	Step Number	Load	$\sigma_{\rm g}$	Ex	ęž	e _y	Pay	712	γ12	e ₁₂
1-5-4	0.0901	1.008	1	300	3,580	2.96	1,209	930	0.769	1,790	2,139	0.837
			2	600	7,150	2.95	2,418	1,860	0.769	3,575	4,278	0.835
			3	900	10,730	2.75	3,720	2,790	0.750	5,365	6,510	0.802
			4	1,200	14,310	2.57	5,115	3,908	0.764	7,155	9,021	0.713
			5	1,500	17,890	2.26	6,696	5,115	0.764	8, 94 5	11,811	0.642
			6	2,190	26,110	1.44	12,415	9,951	0.801	13,055	22,366	0.389

QP73-0343-30

Figure 42. Intralaminar Shear Test Data

Figure 43. Strain State in ±45° intralaminar Shear Test Specimen

The second approximation is due to the existence of large free edge stresses in the region near the boundary of the $\pm45^{\circ}$ test specimen. Predictions of free edge stresses in $\pm45^{\circ}$ laminates have been discussed in the literature (Reference 4). Results are reproduced in Figure 44. Failure of the $\pm45^{\circ}$ intralaminar shear test specimen is influenced by damage growth caused by these large free edge stresses. Damage growth is primarily a Mode II fracture due to the interlaminar shear stress state at the laminate free edge. The toughness of the IM6/3100 resin system inhibits growth of this free edge damage and accounts for its high shear strength relative to the IM6/F650 strength, as measured using the $\pm45^{\circ}$ est specimen. Recognizing the limitations of the $\pm45^{\circ}$ test method for measuring lamina shear mechanical properties, lamina shear strength test results and hence laminate strength predictions will in general be conservative.

Figure 44, Interfacial Stresses in ±45° Intralaminar Shear Test Specimen

- 3.2.5.6 <u>Comparison with Baseline Haterial Systems</u> Figure 45 summarizes the lamina properties of IH6/3100 and IH6/F650. The baseline material systems' lamina properties are also included.
- 3.2.6 <u>Interlaminar Fracture Toughness</u> Fracture toughness tests were performed to determine critical strain energy release rates (from static tests) and crack growth rates (from fatigue tests) as shown in the test matrix in Figure 46.

		AS1/3	501-6	1	30/V378	Ą		M6/3100)		IM6/	F650
		R.T.	250°F	R.T.	250°F	350°F	-65°F	R.T.	ETW(1)	-65°F	R.T.	ETW(2)
0° Tension	F ^{lu} (ksi)	274	267	193	217	191	382	383	231	331	281	205
	E ^l (msi)	20.8	20.3	21.6	19.9	20.4	23.2	23.0	22.1	23.2	23.4	22.4
	$\epsilon_1^{ ext{lu}}$ (μ in./in.)	12,440	12,735	9.580	10,480	9,570	15,350	14,940	10.080	12,830	13,290	9.330
90° Tension	F ^{lu} (ksi)	9.5	9.1	7.8	6.3	5.1	5.9	5.6	1.8	4.2	6.3	0.7
	E ₂ (msi)	1.9	1.6	1.7	1.4	1.3	1.5	1.5	۹.0	1.6	1.4	0.7
	$\epsilon_2^{ m lu}$ (μ in./in.)	5.380	6,125	4.760	4.870	4,630	3.850	3,880	2,930	2,740	4,670	1,100
0° Compression	F ^{cu} (ksi)	280	227	142		103	284	242	123	292	283	118
	Ec (insi)	18.6	18.6	18.6	_	23.5	22.0	22.3	23.6	23.2	22.9	22.8
	$\epsilon_1^{ m cu}$ (μ in./in.)	18,180	12,965	8,190	-	4,780	14.330	11,790	5.540	15.110	14,500	5,150
Shear	F ^u ₁₂ (ksi)	17.3		10.4		8.8	13.4	13.1	11.0	10.1	10.2	6.0
	G ₁₂ (msi)	0.85		0.86		0.73	1.03	0.82	0.44	1.01	0.87	0.34
	$\gamma_{12}^{\rm u}$ (μ in./in.)	69,000	_	18.500	_	32,100	17.050	25,190	> 32.000	11,590	14,580	>32.00

Notes (1) ETW - 360°F 0 71% MC (2) ETW - 410°F, 0 71% MC

GPT3-0343-30

Figure 45. Lamina Property Comparison: Baseline Material Systems vs Second Generation BMIs

	1	M6/3:0	0		IM8/F	50	. Number of
	CTD	RTD	ETW	CTD	RTD	EIW	- Number of Teats
Double Can	tilever B	leam		·			
Static	3	3	3	3	3	3	18
Fatigue	3	3	3	3	3	3	18
Cracked La	p Shear	(a)					
Static	3	3	3	3	3	3	18
Fatigue	3	3	3	3	3	3	18
Cracked La	p Shear	(b)	**	10-7-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
Static	3	3	3	3	3	3	18
Fatigue	3	3	3	3	3	3	18
End Notche	d Flexu	'e					
Static	3	3	3	3	3	3	18
Fatigue	3	3	3	3	3	3	18
						Total	144

0775434347

Figure 46. Interlaminar Fracture Toughness Test Matrix

3.2.6.1 Specimen Description - Interaction envelopes for strain energy release rates of IM6/3100 and IM6/F650 were developed. The interaction characteristics were determined by testing different specimen configurations that exhibited different mixtures of Mode I and Mode II fracture. Double cantilever beam (DCB) specimens were tested to determine pure Mode I behavior (Figure 47). End notched flexure (ENF) specimens were tested to determine pure Mode II behavior (Figure 48). To determine intermediate points in the interaction envelope, cracked lap shear (CLS) specimens were tested (Figure 49).

Figure 47. Double Cantilever Beam (Mode i) Fracture Toughness Specimen

Figure 48. End Notched Flexure (Mode II) Fracture Toughness Specimen

Figure 49. Cracked Lap Shear (Mixed Mode) Fracture Toughness Specimen

By varying the number of continuous and discontinuous plies in the CLS specimen, the proportions of Mode I and Mode II fracture can be changed. The specimen identification scheme used in this program was:

CLS-XY

X = total number of plies
Y = number of continuous plies .

The CLS configurations used in this program were CLS-63 and CLS-82. The CLS-63 specimens exhibited 30 percent Mode I and 70 percent Mode II fracture behavior. The CLS-82 specimens exhibited 17 percent Mode I and 83 percent Mode II fracture behavior. These proportions were determined by finite element analyses in the Navy program, "Delamination Failure Criteria for Composite Structures", (Reference 5). The interaction curves determined by the test results were in the form shown in Figure 50.

Figure 50. Specimens Required to Determine Fracture Toughness Interaction

3.2.6.2 <u>Strain Energy Release Rate Formulation</u> - Critical strain energy release rates were obtained from measurements of crack length, failure load, deflection, and compliance. The data was used with the following formula to calculate the strain energy release rate of the composite system.

$$G = \frac{P^2}{2W} * \frac{dC}{da}$$
 (5)

In the formula, P is the failure load, W is the specimen width, and dC/da is the change in specimen compliance with change in crack length.

3.2.6.3 <u>Mode I Data Reduction</u> - Several tests were performed on each DCB specimen. Displacement was applied to initiate crack growth in the starter film and increased until the crack extended some distance from the loading blocks. For each test measurement, displacement was applied to start crack growth, and the displacement was increased until the crack propagated some arbitrary distance along the specimen. Crack length measurements were taken visually on the specimen edge with a traveling microscope.

To compute G_{TC} from test results, the Compliance Calibration Method

$$G_{TC} = 3A_1A_2^2/2W$$
 (6)

This relationship is obtained by describing C and P_c by the equations,

$$C = \delta/P = A_1 a^3 \tag{7}$$

$$P_{c} = A_{2}a^{-1} (8)$$

C ≡ compliance

 $P_{\rm c}$ = critical load (to initiate crack growth) and substitution into Equation (5). The data indicated however, that the compliance was not a cubic function of crack length (a), and critical load was not an inverse function of crack length. Typical data is shown in Figure 51 where compliance varies with crack length to the power of 3.35 and critical load varies with crack length to the power of -0.9695. In the general case Equations (7) and (8) are:

$$C = \delta/P = A_1 a^N \tag{9}$$

$$P_{c} = A_{2}a^{-M} \tag{10}$$

Substitution of Equations (9) and (10) into Equation (5) gives the general equation:

$$G_{IC} = NA_1 A_2^2 a^{N-1-2M}/2W$$
 (11)

For the conditions described in Figure 51 Equation (11) becomes:

$$G_{IC} = 1.915a^{0.411}$$
 (12)

Figure 51. Typical Mode I Test Data

Equation (12) is in terms of the experimental crack length referenced to the applied load axis that is 0.5 inch into the Teflon insert (See Figure 52). To evaluate the effects of crack length on apparent toughness, $G_{\rm IC}$ values were calculated for a = 0.5 inch and 2.5 inch which represent 0.0 inch and 2.0 inch of natural crack length, respectively. The relationship defined by Equation 12 is shown in Figure 53. For natural crack lengths of 0.0 inch (artificial crack length of 0.5 inch) and 2.0 inch the values of $G_{\rm IC}$ are 1.44 and 2.79 respectively. The variation of $G_{\rm IC}$ has been attributed to fiber bridging along the natural crack surface. The effects of fiber bridging have also been seen in mixed mode CLS specimen tests. However, fiber bridging effects have not be observed in Mode II ENF specimen tests. Apparently fiber bridging affects the Mode I component of toughness and not the Mode II component. To indicate the magnitude of fiber bridging effects for various conditions, $G_{\rm C}$ values are summarized for natural crack lengths of 0.0 inch (i.e. no fiber bridging) and 2.0 inches.

Figure 52. In DCB Specimens the Natural Crack Length is 0.5 inch Shorter
Than the Experimental Crack Length

Figure 53. Mode i Toughness Increases With Crack Length

3.2.6.4 <u>Mixed Mode Data Reduction</u> - As with Mode I, the mixed mode toughness varied with crack length. Similar efforts were made to define the variation in terms of natural crack length. Figure 54 shows that for the CLS specimen configuration, the natural crack length is 1.5 inches shorter than the experimental crack length.

Figure 54. In CLS Specimens The Natural Crack Length is 1.5 inches Shorter Than The Experimental Crack Length

Several tests were performed on each CLS specimen. Both critical load and compliance as functions of crack length were determined. Figure 55 shows typical compliance versus crack length data. The data indicates that dC/da (the slope of the plot in Figure 55) is constant. To compute $G_{\mathbb{C}}$ from test results the constant value of dC/da was substituted into Equation (5) resulting in,

$$G_c = \frac{P_c^2}{2W} * 2.094E-06$$
 (13)

Figure 55. Mixed Mode Compliance Varies Linearly With Crack Length

Figure 56 shows that critical load varied with crack length. Using the critical load vs. crack length data from Figure 56 and Equation (13), $G_{\rm C}$ as a function of crack length was determined as shown in Figure 57. For natural crack lengths of 0.0 inch (experimental crack length of 1.5 inch) and 2.0 inch the values of $G_{\rm C}$ are 1.31 and 1.67 respectively. This variation has been attributed to the effects of fiber bridging on the opening mode of CLS specimens.

Figure 56. Critical Load of Mixed Mode Specimen Varies With Crack Length

Figure 57. Mixed Mode Toughness Varies With Crack Length

3.2.6.5 Mode II Data Reduction - ENF specimens exhibited no Mode I (opening) behavior which is appropriate for this type of specimen. It was discovered that the lack of opening prevented crack length measurement once the crack started to grow from the Teflon tip. To solve this problem, compliance vs. crack length functions were experimentally determined for each specimen prior to performing several fracture toughness tests on each specimen. The crack (Teflon) tip of the undamaged specimen was visible through microscopic observation. Compliance scans were done by loading the ENF specimen to subcritical levels, unloading the specimen, and repositioning the crack tip (simulated by a Teflon insert) to establish various crack lengths. Crack length could then be defined through compliance measurements.

In contrast to Mode I and Mixed Mode tests, Mode II tests showed that crack length did not affect the measured value of critical strain energy release rate. To calculate $G_{\mbox{\footnotesize IIC}}$ the following formulation was used. The compliance is given by beam theory as:

$$C = \frac{2L^3 + 3a^3}{8Ebh^3} \tag{14}$$

where,

L ≡ half-span (2.0 inch)

a = crack length

E ≡ Modulus

b ≡ width

h ≡ specimen half-thickness

This definition of compliance in turn defines:

$$\frac{g_{a}^{2}}{8Ebh^{3}}$$
 (15)

Solving Equation (14) for the quantity 8Ebh³, and substituting into Equation (15), gives:

$$dC/da = \frac{9a^2C}{2L^3 + 3a^3} \tag{16}$$

Substitution of Equation (16) into Equation (5) gives the final formula for $G_{\rm IIC}$ as:

$$G_{IIC} = \frac{9P_c^2a^2c}{2b * (2L^3 + 3a^3)}$$
 (17)

This formulation has been reported previously by Russel and Street (Reference 7).

To determine Mode II fracture toughness, each ENF specimen was loaded in 3-point bending to the critical load level where the crack grew to the midspan location and stopped. During the loading event, compliance data was recorded. The previously determined compliance vs. crack length relationship was then used to determine the crack length corresponding to the measured compliance. The critical load, compliance, crack length, specimen width, and half-span length were then entered in Equation (17) to calculate G_{IIC}. After each loading, the specimen was repositioned with the crack tip away from the midspan location. The loading and repositioning process was repeated several times to obtain multiple fracture toughness values from each specimen. The values were averaged to define the specimen fracture toughness. Typical test results are shown in Figure 58.

3.2.6.6 Static Test Summary - The critical strain energy release rate data are tabulated in Figures 59 through 61. The data has been separated by environment. Each table includes data for all four specimen types (DCB, CLS-63, CLS-82, and ENF). Data is reported for natural crack lengths of 0.0 inch and 2.0 inch to indicate the effectiveness of fiber bridging on measured fracture toughness. Note that for ENF specimens the toughness average is a weighted average of specimen averages. The number of tests performed on each ENF specimen is included in parentheses after the data.

Fracture Toughness Test Results
CTD Conditions

Material	Specimen Type	Specimen Number	G _c (a = 0.0	in.)	(a = 2.)	in.)
	.,,,,,	I TEN HEADY	Ind	QVA	ind	Avg
		1-6-4	1.16		2.25	
IM6/3100	DCB	1-6-5	2.03	1.61	2,44	2.43
		1-6-6	1.65		2.59	
		1-7-4	1.76		3.15	
IMB/31CO	CLS-63	1.7.5	2000	1.39	mig .	2.31
		1-7-6	1.02		1,45	
,		1-8-4	2.08		2.28	
IM6/3100	CLS-82	1-8-5	1.57	1.79	1,39	2.11
		1-8-6	1.74		2.19	
		1.9.4	3.07(4)		3.07(4)	
IM6/3100	ENF	1.95	2.90(4)	2.98*	2.90(4)	2.98
	· .	1.9.6	2.98(4)		2.98(4)	
		264	0.79		1.92	
IM8/F650	OCB	2-8-5	1.57	1.14	2.58	2.29
		2-6-6	1.06		2.38	
	<u>.</u>	2.74	1.30		1.71	
IMB/F650	CLS-63	2-7-5	1.87	1.53	1.89	1.85
		2.7.8	1.62		1.98	
-		2-8-4	0.88		1.18	-
IME/F650	CLS 82	2-8-5	1.96	1.37	2.26	1.71
	•	2-8-6	1 27		1.69	
		2-9-4	2.32(5)		2.32(5)	
IM6/F650	ENF	2.9 ₹	1.86(4)	2.0A*	1.86(4)	2.06
-		2.98	1.93(4)		1.93(4)	

"Weighted inverage - Individual values are averages of different numbers of tests indicated in parenthises.

GP134345-W

Figure 59. Critical Strain Energy Release Rates for CTD Conditions

Fracture Toughness Test Results RTD Conditions

· Material	Specimen Type	Specimen Number	G _c (a = 0.0) in.)	G _c (a = 2.0	j in.)
	1,700		Ind	Avg	Ind	Avg
		1-6-1	1.44		2.79	
IM6/3100	DCB	1-6-2	0.91	1.19	3.09	2.99
		1-6-3	1.23		3.08	
		1-7-1	1.58		3.00	
IM6/3100	CLS-63	1-7-2	1.48	1.46	2.10	2.43
		1-7-3	1.32		2.17	
		1-8-1	1.36		1.79	
IM6/3100	CLS-82	1-8-2	1.31	1.23	1.67	1.65
		1-8-3	1.02		1.47	
		1-9-1	3.53(2)		3.53(2)	
IM6/3100	ENF	1-9-2	3.25(5)	3.15*	3.25(5)	3.15*
		1-9-3	2.95(6)		2.95(8)	
		2-6-1	0.76		1.94	
IM6/F650	DCB	2-6-2	0.58	0.72	2.64	2.23
		2-6-3	0.82		2.12	
		2-7-1	0.80		1.63	
IM6/F650	CLS-63	2.7.2	1.39	0.88	2.12	1.50
		2-7-3	0.46		0.74	
		2-8-1	1,15		2.14	•
IM6/F650	CLS-82	2-8-2	1.12	1.22	1.50	1.83
		2-8-3	1.39		1.84	
		2-9-1	2.10(4)		2.10(4)	
IM6/F650	ENF	2-9-2	2.09(6)	2.061	2.09(6)	2.06*
		2-9-3	2.01(6)		2.01(8)	

^{*}Weighted average – individual values are averages of different numbers of tests indicated in parentheses.

QP73-0343-40

Figure 60. Critical Strain Energy Release Rates for RTD Conditions

Fracture Toughness Test Results ETW Conditions

Material	Specimen Type	Specimen Number	G _C (a = 0.0 in.)		G _C (a = 2.0 in.)	
			Ind	Avg	Ind	Avg
		1-6-7	2.66		2.49	
IM6/3100	DCB	1-8-8	1.78	2.07	2.81	2.87
		1-6-9	1.78		3.32	
IM6/3100		1-7-7	2.38		2.94	
	CLS-63	1-7-8	1.25	1.92	1.60	2.36
		1-7-9	2.13		2.54	
IM6/3100		1-8-7	1,45		1.81	
	CLS-82	1-8-8	1,89	1.60	2.13	1.90
		1-8-9	1.45		1.75	
IM6/3100		1-9-7	3.30(6)		3.30(6)	
	ENF	1-9-8	3.20(5)	3.19*	3.20(5)	3.191
		1-9-9	3.06(6)		3.06(6)	
IM8/F650		2-8-7	0.69		1,14	
	DCB	2-6-8	0.35	0.58	1.53	1.26
		2-6-9	0.63		1.11	
IM6/F650		2.7.7	0.97	-	1,44	
	CLS-63	2-7-8	1.15	0.87	1.65	1.37
		2.7.9	0.48		1.01	
IM6/F650		2-8-7	0.78		1.41	
	CLS-62	2-8-8	0.78	0.74	1.51	1.33
		2-8-9	0.65		1.08	
IM6/F650		2.9.7	1.78(6)		1.78(6)	
	ENF	2.9.8	1.73(6)	1.75*	1.73(6)	1.75
		2-9-9	1.74(5)		1.74(5)	

[&]quot;Weighted everage - individual values are everages of different numbers of tests indicated in parentheses.

QP73-0343-C0

Figure 61. Critical Strain Energy Release Rates for ETW Conditions

The average values tabulated in Figures 59 through 61 are plotted in Figures 62 through 64. Each figure shows a comparison of both IM6/3100 and IM6/F650 interaction envelopes at a single environment.

The test data indicates that the fracture toughness interaction boundaries are more accurately defined by a function that is linear on stress rather than linear on strain energy release rate. The stress based boundaries are defined as the sum of the square roots of Mode I and Mode II fractional components, set equal to unity (see Eq. (18)).

$$\sqrt{\frac{G_{I}}{G_{IC}}} + \sqrt{\frac{G_{II}}{G_{IIC}}} = 1$$
 (18)

The test results show that Mode I fracture toughness of both material systems increases with crack length. As mentioned previously, this increase has been attributed to fiber bridging of the fracture surface. As the crack grows, more fracture surface develops and more fiber bridging occurs, raising the lead and energy required to grow the crack further. In Figures 62 through 64 the interaction boundaries are shown for initial toughness values (crack length = 0.0 inch) and a subsequent toughness value (crack length = 2.0 inch). In all cases the Mode I components of toughness increase with crack length resulting in an expansion of the interaction boundary. Note that the pure Mode II results were independent of crack length.

Figure 62 shows the interaction boundaries for IM6/3100 and IM6/F650 at CTD conditions. The IM6/3100 is generally tougher than the IM6/F650. The Mode I toughness of IM6/3100 increased by a factor of 1.5 with 2 inches of crack growth and the IM6/F650 Mode I toughness increased by a factor of 2.

Figure 63 shows the interaction boundaries for IM6/3100 and IM6/F650 at RTD conditions. The IM6/3100 is again generally tougher than the IM6/F650. The Mode I toughness of IM6/3100 increased by a factor of 2.5 with 2 inches of crack growth and the IM6/F650 Mode I toughness increased by a factor of 3.

Figure 62. Fracture Toughness Interection Envelopes for CTD Conditions

Figure 63. Fracture Toughness Interaction Envelopes for RTD Conditions

Figure 64 shows the interaction boundaries for IM6/3100 and IM6/F650 at ETW conditions. Again the IM6/3100 is generally tougher than the IM6/F650. The data indicates that the IM6/3100 at ETW conditions is just as tough as at RTD conditions and tougher than at CTD conditions. In contrast, the IM6/F650 at ETW conditions is less tough than at either CTD or RTD conditions.

Figure 65 shows a comparison of second generation BMI toughness and baseline material toughness. IM6/3100 is generally tougher than the baseline systems while IM6/F650 is generally not as tough.

3.2.6.7 <u>Fatigue Test Summary</u> - Crack growth characteristics were determined for both material systems at CTD, RTD and ETW conditions. Fatigue tests were performed with compliance measurements recorded between cycle blocks for each specimen. Tests were run under displacement control so that stable crack growth occurred. The minimum and maximum displacements were held constant during fatigue testing, resulting in a decrease in load (and energy) as the crack propagated in the specimen.

Fatigue data is presented as crack growth (da/dn vs. AG) plots. Change in crack length (da) was determined by evaluating the compliance of each specimen before and after each block of a specified number (dn) of fatigue cycles. Then compliances were translated into crack lengths through compliance vs. crack length relationships. In cases where it was possible to determine the compliance vs. crack length function for a specimen without affecting its fatigue response, compliance surveys were run on each specimen prior to testing. This was possible for ENF specimens under dry (CTD & RTD) conditions. In all other cases, the compliance vs. crack length functions were determined from static tests of other specimens, under the same environmental conditions. A summary of the compliance vs. crack length relationships is shown in Figure 66. The change in crack length divided by dn fatigue cycles in that block gives the crack growth rate, da/dn.

Figure 64. Fracture Toughness Interaction Envelopes for ETW Conditions

	AS1/3501-6	T300/V378A	IM6/3100	IM6/F650
	С	old Temperatur	e/Dry	
G _{IC}	0.70*	0.77*	1.61	1.14
GIIC	3.17**	-	2.98	2.06
	Ro	om Temperatu	re/Dry	
G _{IC}	0.75*	0.85*	1.19	0.72
GIIC	2.58**	_	3.15	2.06

^{*}Reference 6

GP63-0069-65-T

Figure 65. Fracture Toughness Comparison: Baseline Material System vs Second Generation BMIs

		CT	'D	RT	Ö	ET	W
		IM6/3100	IM6/F650	IM6/3100	IM6/F850	IM6/3100	IM6/F650
DCB	Α	4.46E-04	1.14E-03	4.35E-04	1.03E-03	1.67E-03	1.40E-03
C = A a B	В	3.65	2.89	3.75	3.10	2.54	2.59
CLS-63	-						
On the second of the second	Co	1.02E-05	1.11E-05	1.03E-05	1.13E-05	1.12E-05	1.09E-05
C = C ₀ + dc/da a	dc/da	1.23E-06	1.38E-06	1.12E-06	1.09E-06	9.80E-07	1.05E-06
CLS-82							
Maria Maria di Adalahan da	Co	1.02E-05	8.33E-06	1.12E-05	7.05E-06	7.70E-08	9.91E-06
$C = C_0 + dc/da$ a	dc/da	2.19E-06	2.50E-06	2.00E-06	2.91E-06	2.53E-06	2.02E-06
ENF							
C = C ₀ + Aa ⁸	Co	3.93E-04	3.63E-04	4.20E-04	4.29E-04	4.03E-04	3.72E-04
·	Ā	6.83E-05	6.57E-05	7.03E-05	8.02E-05	7.47E-05	9.09E-05
	в	3.00	2.69	2.90	2.89	2.95	2.86

GP73434344

Figure 68. Compliance vs Crack Length Parameters

^{**}Reference 7

The variation in strain energy release rate (ΔG) during cycling was calculated with the equation:

$$\Delta G = \frac{P_{\text{mean}}^2}{2W} * (1 - R^2) * \frac{\Delta C}{\Delta a}$$
 (19)

where,

Pmean ≡ average of initial and final maximum cyclic loads for each block

W ≡ specimen width (1.0 inch)

R = fatigue ratio (0.1)

ΔC ≡ difference in compliance before and after each block

Δa ≡ difference in crack lengths corresponding to compliances that determine ΔC

Each block of fatigue cycling then produced a da/dn and AG data pair. The data for each specimen was then plotted on log-log scales to determine a crack growth curve in the form,

$$da/dn = D * (\Delta G)^{K}$$
 (20)

for each specimen. A summary of the D and K parameters for each test condition is shown in Figure 67. Each test condition included a replication of three specimens. The values of D and K (shown in Figure 67) are averages of the three replications and were used to plot a crack growth curve through all the data generated by the three specimens at each condition. The plots for each of 24 test conditions (i. e. combinations of 2 materials * 4 specimen types * 3 environments) are shown in the Appendix volume of this report.

Crack Growth Data $da/dn = D (\Delta G)^K$

	CTD		RTD		ETW		
	D	K	D	K	D	K	
DCB	4.175E-09	19.50	2.014E-08	19.00	2.919E-03	3.37	
CLS-63	1.780E-06	15.10	2.403E-05	8.27	5.845E-04	5.92	
CLS-82	2.346E-04	7.37	2.535E-04	9.69	5.653E-04	6.88	
ENF	1.679E-09	15.00	1.682E-07	9.53	1.124E-05	6.47	
			IM6/3100				
	CTD		RYD		ETW		
	D	K	D	K	D	K	
DCB	7.078E-07	14.30	8.253E-07	16.40	7.876E-02	5.32	
CLS-63	9.078E-05	15.80	2.147E-04	10.60	2.703E-03	8.85	
CLS-82	6.558E-04	12.40	2.134E-04	8.86	2.917E-02	10.10	
ENF	1.590E-06	12.20	1.957E-06	16.50	-	_(1)	
			IMS/F650	••			

Note: (1) Critical value of $\Delta G \approx 1.47$ in Helin.² No growth for $\Delta G \ll 1.47$, unatistic growth at $\Delta G = 1.47$.

GP63-008647-T

Flaure 67. Crack Growth Parameters

Interpretation of the crack growth curves involves observation of two characteristics of each curve. The first is the location of the lower and (i.e. low crack growth rates) of each curve. Threshold strain energy release rate increases as the lower end of the curve moves to the right, to higher energy conditions. Systems with higher thresholds resist crack growth until relatively high strain energy release rates are developed. Another way of identifying the relative locations of the lower end of various curves is to observe the intercept value of each curve. The intercept value (the D parameter in Equation (26)) defines the crack growth rate of each condition for a 4G value equal to 1. Tougher systems will have lower intercept crack growth rate values.

The second characteristic to be observed is the slope of the curve (the K parameter in Equation (20)). As the slope of the curve decreases, the ductility increases. A relatively shallow slope indicates a gradual increase in crack growth rate with an increase in strain energy release rate. In contrast, a steep slope represents a more rapid increase in crack growth rate as strain energy release rate increases. In the limiting case of a vertical da/dn vs. ΔG curve, the system would exhibit no crack growth until the critical energy level was established. At that level, failure would occur instantaneously without warning, in terms of crack initiation and growth.

Figure 67 shows the crack growth parameters for both systems. IM6/3100 was generally tougher than IM6/F650. The superior toughness of IM6/3100 was previously shown in static fracture toughness test results.

Under RTD and CTD conditions, mixed mode crack growth rate intercept values are two to three orders of magnitude higher than Mode I or Mode II intercepts as evidenced by the values reported in Figure 67. Of the two mixed mode configurations tested, the mixture exhibiting the greater Mode II component (CLS-82) generally exhibited the higher crack growth rate intercept value. The critical mode of crack growth, for RTD and CTD conditions, was the mixed mode with 83 percent Mode II, behavior as compared to the mixed mode with 70 percent Mode II behavior.

In contrast, under ETW conditions, Mode I crack growth appears to be the critical mode for IM6/3100. Whereas the mixed mode intercept values were greatest under CTD and RTD conditions, the Mode I intercept was greatest under ETW conditions. IM6/F650 showed significant degradation for all configurations tested at ETW conditions.

Another interesting result of ETW crack growth testing is the behavior of IM6/F650 during Mode II testing. During these tests it was found that the da/dn vs. ΔG curve was vertical. Under ETW conditions the F650 resin was weakened resulting in unstable crack growth at the critical ΔG level. The critical value of ΔG (1.47 in-1bs/in²) was included as a note in Figure 67.

3.2.6.8 <u>Fractographic Investigation</u> - The fracture surfaces of static and fatigue fracture toughness specimens were investigated to determine environmental and fracture mode effects on the failure process. Results from the investigation have been compared with results from similar investigations of the baseline materials (AS1/3501-6 and T300/V378A). The baseline materials were investigated by Law and Wilkins (Reference 5). These observations might be used to qualitatively evaluate the type of fracture that occurred in a failed structure.

As temperature and moisture content increased, the matrix material weakened. The weakened material provided less fiber support, allowing fibers to be pulled out of the surface and broken. In addition, the weakened matrix exhibited more ductility, resulting in a rougher fracture surface than in the case of colder, drier conditions. Both broken fibers and roughness due to ductility cause the surfaces to be more dull. This effect is shown in Figure 68 where the dullness of the Mode I static specimen surfaces increases as conditions vary from CTD to ETW. Figure 68 also shows that under all three environmental conditions the IM6/F650 specimens experienced more fiber pullout than the IM6/3100 specimens, and therefore are more dull. This variation in surface appearance with environment has also been documented for AS1/3501-6 and T300/V378A (Reference 5).

The effects of crack growth rate have also been recorded. Figure 69 shows mixed mode (CLS-63) RTD fracture surfaces for both systems at two crack growth rates. For IM6/3100, increasing the crack growth rate decreases the density of surface features. In contrast, for IM6/F650 the crack growth rate does not appear to affect the density of surface features.

The fracture mode effects can be seen in Figures 70 and 71. In Figure 70 the variation in the IM6/3100 fracture surface is shown as the proportion of Mode II fracture increases. The DCB specimen exhibits broken fibers that are expected from pullout during out-of-plane loading. The surface of the CLS-63 specimen (70 percent Mode II) shows hackles and ridges formed by resolved tension stresses in shear strain fields created in mixed mode and Mode II specimens (Reference 5). The surface of the CLS-82 specimen (83 percent Mode II) and the ENF specimen (100 percent Mode II) also show ridges and hackles, but not to the extent shown in the CLS-63 surface.

Cold Temparature/Dry

Room Temperature/Dry

Elevated Yemperature/West

Figure 68. Mode I Static Fracture Surfaces for Three Environments

Figure 69. Effects of Crack Growth Rate on Surface Appearance

Figure 70. Variation in IM6/3100 Fracture Surface Due to Variation in Fracture Mode

In Figure 71 the variation in the IM6/F650 fracture surface is shown. In contrast to IM6/3100, which showed the most roughness in the CLS-63 configuration, IM6/F650 surfaces gradually increase in roughness as the proportion of Mode II fracture increases. Beginning with the DCB configuration, missing fibers due to fiber pullout are apparent. Progressing to the CLS-63 surface, hackles and ridges are exhibited. Finally the CLS-82 and ENF surfaces exhibit the most roughness.

The susceptibility to fiber/resin interfacial failure is seen in Figure 72. The fractographs are from CLS-82 specimens, which produce only 17 percent Mode I behavior. Even this relatively small amount of pullout behavior causes clean fiber/resin separation in IM6/F650 when conditions are changed from RTD to ETW. In contrast, the IM6/3100 did not show this tendency as obviously as did IM6/F650.

Figure 71. Variation in IM6/F650 Fracture Surface Due to Variation in Fracture Mode

GP83-0089-35

Figure 72. ETW Conditions Produce Cleaner Fiber Pullout in IM6/F650 Than in IM6/3100

SECTION 4.

TASK III: LAMINATE STRUCTURAL CHARACTERIZATION

4.1 <u>Summary and Conclusions</u> - IM6/3100 and IM6/F650 were tested to determine unnotched laminate strengths, notched strengths and fatigue lives, loaded hole (bearing) strengths and fatigue lives, and low-velocity impact damage tolerance. Low-velocity impact tests were performed to evaluate the non-visible damage threshold, thin laminate damage behavior, and visible damage energy levels of both systems.

Unnotched laminate tests showed that IM6/3100 had the greatest properties under CTD conditions. IM6/F650, on the other hand, showed the greatest properties under RTD conditions. Classical lamination theory accurately predicted laminate moduli. Laminate strength predictions for 50/40/10 layups were made using Tsai-Hill and maximum stress failure criteria. Tsai-Hill predictions were generally conservative while maximum stress predictions were generally unconservative. Strength predictions of 10/80/10 laminates were generally conservative. This was attributed to the conservative shear strength values determined in Task II lamina property tests.

Unloaded hole static strength tests showed that the notched tensile strength degradation (from unnotched strengths) of IM6/3100 was approximately 40 percent and that of IM6/F650 was approximately 30 percent. The notched compression strengths of both materials showed 30 percent to 40 percent degradation at CTD and RTD conditions. Under ETW conditions, the notched compression strengths of both systems were less than half the unnotched compression strengths.

Unloaded hole fatigue testing showed that for IM6/3100 compression-only (R = 10) cycling produced longer fatigue lives than reversed (R = -1) cycling. It was hypothesized that IM6/3100 fatigue behavior is controlled by matrix cracking. IM6/F650 showed no R ratio effect. It was hypothesized that IM6/F650 fatigue behavior is controlled by delamination growth. ETW fatigue test results indicated that the specimens dried due to the relatively

high diffusivity of BMIs (compared to epoxies). The data showed large scatter because as specimens dried, they were strengthened and lasted longer, increasing the opportunity for further drying and even further life extension.

Loaded hole static (bearing) strength test results showed that the bearing strength of both systems gradually decreased with increasing temperature and moisture content. The ETW bearing strength of IM6/3100 was 62 percent of its CTD strength. The ETW bearing strength of IM6/F650 was 49 percent of its CTD strength.

Loaded hole fatigue testing was performed to determine the fatigue life to 0.02 inch hole elongation. The systems were compared on the basis of the stress level corresponding to a fatigue life of 10,000 cycles. Under ETW conditions, IM6/3100 must be cycled at 79 percent (55 ksi vs 70 ksi) of the stress level required for a 10,000 cycle life at RTD conditions. The corresponding value for IM6/F650 was 75 percent (45 ksi vs 60 ksi).

Low-velocity impact tests determined that the maximum non-visible damage energy threshold of IM6/F650 was consistently lower than that of IM6/3100. The residual compression strength of IM6/F650 in the non-visible damage condition was also consistently lower than that of IM6/3100.

Visible impact damage tests showed that the impact energy/dent depth relationships of IM6/3100 and IM6/F650 were similar. Residual compression strength data showed that after visible damage was produced, IM6/3100 was stronger than IM6/F650.

Thin laminate impact damage testing also showed that the residual compression strength of IM6/3100 was greater than that of IM6/F650.

- 4.2 <u>Testing and Evaluation</u> The objective of the test program was to characterize the laminate structural performance of IM6/3100 and IM6/F650.
- 4.2.1 Overview In this program, 318 static tests and 186 fatigue tests were performed under cold temperature dry (CTD), room temperature dry

(RTD), and elevated temperature wet (ETW) conditions. The tests were conducted to determine:

- o unnotched laminate strength
- o unloaded hole static strength
- o unloaded hole fatigue life
- o loaded hole static strength
- o loaded hole fatigue life
- o threshold energy for non-visible impact damage
- o thin laminate impact response
- o energy level for visible (0.1 inch dent) impact damage
- o residual compression strength after impact

as summarized in Figure 73.

Test Types	Number of Tests
Unnotched	48
Unicaded Hole (Static) Unicaded Hole (Fatigue)	36 130
Loaded Hole (Static) Loaded Hole (Fatigue)	18 56
Non-Visible Impact Damage Threshold Thin Laminate Impact Damage Visible Impact Damage	72 72 72
Total	504
	QP73-0422-

Figure 73. Task III Test Matrix

Both fiber and matrix dominated layups were used in Task III testing. Laminate stacking sequences were:

where the integer n takes the values of 1, 2, or 4 depending on the thickness of the laminate.

For thin laminate impact tests the stacking sequences were:

where the integer n takes the value of 1, 2, or 3 depending on the thickness of the laminate.

The following sections describe test results and correlation of analytical predictions with test results.

4.2.2 Unnotched Laminate Static Testing - Unnotched laminate mechanical property tests were performed to determine the undamaged strength and stiffness of fiber dominated and matrix dominated BMI laminates. Tension and compression tests were performed in CTD, RTD, and ETW environments as shown in the test matrix in Figure 74. The cold temperature for CTD testing was -65°F. For IM6/3100 the ETW conditions were 360°F and 0.71 percent (by weight) moisture content. For IM6/F650 the ETW conditions were 410°F and 0.71 percent moisture content.

	Layup	Loading	En	vironm	ent	Atumbas of		
Specimen Type		Static (1)	CTD	ATO	ETW	Number of Tests Per Material		
Unnotched	50/40/10	T	1 0			3		
		T		-		3		
		Ť			•	3		
		C	•			3		
		C		•		3		
		Ċ			**	3		
	10/80/10	C		-		3		
		C			100	3		

Notes.

GP73062368-R

Figure 74. Unnotched Laminate Static Test Matrix

⁽¹⁾ T - Tension

C - Compression

4.2.2.1 <u>Test Results</u> - The test specimen configurations are shown in Figure 75. Figure 76 shows a typical failed tension specimen. A failed compression specimen is shown in Figure 77. The data for unnotched laminate tension and compression tests are tabulated in Figures 78 and 79 respectively.

b) Unnotched Laminate: Compression Specimen

Note: All dimensions are in inches.

QP73-0523-64-R

Figure 75. Unnotched Static Test Specimens

Figure 76. Failed Unnotched Tension Specimen

Figure 77. Falled Unnotched Compression Specimen

Material	Layup	Specimen	Thickness	Width	Failure Load		Failure Stress (ksi)		Strain ./in.)		iulus 184)	Poisson's Ratio
System		Number	Number (in.)	(in.)	(lb)	ind	yverage	ind	Average	Ind	Average	MANDG
					Cold Tempe	rature Dry						
IM6/3100	50/40/10	1-10A-4 1-10A-5 1-10A-6	0.2216 0.2224 0.2247	1.510 1.509 1.509	61,400 65,000 69,300	195.5 207.1 220.8	207.8	14,640 14,520 15,840	15,000	13.31 13.57 13.77	13.55	0.379 0.383 0.423
IM6/F650	50/40/10	2-10A-4 2-10A-5 2-10A-6	0.2198 0.2186 0.2179	1.510 1.510 1,509	59,000 56,900 57,400	187.9 181.2 182.9	184.0	13,200 13,500 14,100	13.600	13.66 13.08 13.28	13.34	0.389 0.399 - 0.400
					Recer Yemps	rature Dry						
iM6/3100	50/40/10	1-10A-1 1-10A-2 1-10A-3	0.2239 0.2252 0.2244	1,509 1.510 1.508	60,509 64,000 64,700	192.8 203.8 206.3	201.0	13.920 14,300 14,580	14,270	13.36 13.74 14.05	13.73	0.406 0.440 0.416
IM6/F650	50/40/10	2-10A-1 2-10A-2 2-10A-3	0.2169 0.2188 0.2194	1.509 1.509 1.509	57,700 59,400 63,900	183.8 189.2 203.6	192.2	13,500 12,240 13,920	13,220	13.57 13.75 14.16	13.83	0.409 0.403 0.418
				ε	leveled Temp	Hersture W	el.					
IME/3100	50/40/10	1-10A-7 1-10A-8 1-10A-9	0.2257 0.2233 0.2235	1.510 1.509 1.510	53,800 57,100	171,4 181.8	176.6	14.310 13.260	13,790	13.84 12.62 12.67	13.04	0.501 0.488 0.500
IM6/F650	50/40/10	2-10A-7 2-10A-8 2-10A-9	0,2177 0,3189 0,2163	1.508 1.508 1.509	57,400 60,400 61,100	183.0 192.6 194.7	190.1	13,920 14,220 14,100	14,080	12.50 13.39 13.22	13.64	0.463 0.455 0.481

GP734623-4

Figure 78. Unnotched Laminate Tension Strength Date

Material System	Layup	Specimen Number	Thickness (in.)	Width (in.)	Fallure Load (Ib)		Stress si) Average		Strain ./in.) Average		lulus 12i) Averaga	Poisson's Ratio
					Cold Temper	rature Dry	 				·	
		1-10B-4	0.2268	1.506	43.050	137.4		12,300		13.03	·	_
IM6/3100	50/40/10	1-108-5	0 2261	1.505	48,323	154.4	143.7	13,900	12,700	13.42	13.29	_
		1-108-6	0.2274	1.500	43,490	139.4		11,900		13.41		_
		2-10B-4	0.2213	1,524	30,830	97.3		9,850		12.88		0.273
M6/F630	50/40/10	2-108-5	0.2208	1.526	31,040	97.8	111.1	8,250	10,330	13.35	13.12	0.258
·		2-108-6	0.2205	1.512	43,480	138.3		12,900	· · · · · · · · · · · · · · · · · · ·	13.14	· · · · · · · · · · · · · · · · · · ·	0.293
					Reem Tempe	rature Dry						
		1-10B-1	0.2266	1.507	35.570	113.5		10.020		12.27		0.394
M6/3100	50/40/10	1-108-2	0.2278	1 508	41,830	133.4	123.4	11,400	10,770	12.33	12.40	0.360
		1.108.3	0.2285	1.507	38.640	123.3		10,900		12.61		0.365
		1-11-1	0.2242	1.480	21,410	69.5		15,720		5,27		2 552
M6/3100	10/80/10	1-11-2	0.2253	1 471	21.380	69.9	70.3	15,590	16,010	5.33	5.27	0.538
		1-11-3	0.2241	1.491	22.190	71.6		16.420		5.21		0.521
		2-100-1	0.2206	1.508	43,380	138.5		13,580		12.13		0.340
M6/F650	50/46/1C	2-108-2	0.2210	1.503	42,180	134.9	t37.1	12,950	13,110	12.42	12.39	0 354
		2-108-3	0.2221	1.305	43,160	137.9		12.810		12.61		0.398
		2-11-1	0.2149	1.504	18,660	59.6		13,440		5.17		0.522
145/F650	10/80/10	2-11-2	0.2153	1.503	19.870	63.6	61.1	14,630	13.880	5.16	5.16	0.499
		2-11-3	0.2157	1.506	18.780	60.0		13,580		5.16		0.498
				· E	Seveled Yemp	Stature Wi	ıł		,			
		1-108-7	0.2268	1.496	30,780	98.9		,	and the contract of the contra	13.39		0.417
U6/3100	50/40/10	1-108-8	0.2258	1.506	36.800	117.5	107.3	10,400	9,660	13.39	13.31	0.448
		1-108-9	0.2253	1.504	33,010	105.5		6,910		13.15	·	0.417
		1-11-4	0.2231	1 497	15,050	48.3		12,015		4 91		0.530
M6/3100	10/80/10	14115	0 2237	1.497	21,090	67.7	54.2	14.085	12,950	5 21	5,16	0.508
		1-11-6	0 2245	1 500	14.570	45.7		12,760		5.35		0.559
		2-108-7	0.2215	1 510	***			-		-		
W6/F650	50/40/10	2-108-4	0.2210	1 509	31,590	100.6	103.6	8.640	8,520	13.11	13.10	0 386
		2-108-9	0.2208	1.506	33.390	106.6		9.000		13.08		0 394
		2-11-4	0 2156	1 505	14,580	47.5		11.200		4 84		0 532
46/F650	10/\$0/10	2-11-5	0.2152	1.504	14,860	47.5	45.9		11,400	4.87	4.88	0 522
		2-11-8	0.2160	1 504	13.320	42 6		11,610	;	4.94	-	0 536

GP720472.0

Figure 79. Unnotched Laminate Compression Strength Data

The tension strengths of 50/40/10 laminates are summarized in Figure 80. The strength of IM6/3100 gradually decreased with increasing temperature and moisture content. The ETW strength was 85 percent of the CTD strength.

Figure 80 also shows that the tension strength of IM6/F650 50/40/10 laminates is not as significantly affected by environment as the strength of IM6/3100. The range of IM6/F650 tensile strengths was only 4 percent compared to 15 percent for IM6/3100.

Figure SC. Unnotched 50/40/10 Laminete Tenelon Strength Test Results

The compression strengths of 50/40/10 laminates are summarized in Figure 81. Again, increasing temperature and moisture content resulted in gradual degradation of IM6/3100 strength. The ETW strength was 75 percent of the CTD strength.

In contrast to IM6/3100, the greatest IM6/F650 compression strength occurred under RTD conditions. The ETW strength was 76 percent of the RTD strength.

Figure 61. Unnotched 50/40/10 Laminate Compression Strength Test Results

Figure 82 summarizes the compression strengths of 10/80/10 laminates. The ETW compression strength of IM6/3100 was 77 percent of the RTD compression strength. For IM6/F650 the ETW strength was 75 percent of the RTD strength. These strengths were used as baseline values for comparisons with residual compression strengths after low-velocity impact.

Figure 82. Unnotched 10/60/19 Laminate Compression Strength Test Results

4.2.2.2 <u>Analysis</u> - Classical lamination theory was used to predict the moduli of 50/40/10 and 10/80/10 laminates. Figures 83 through 85 show the correlation of predicted moduli with test data. Predicted values are generally within 6 percent of the test values.

Figure 83. IM6/3100 Laminate Moduli

OP73003340-D

Figure 84. IM6/F650 Laminate Moduli

Figure 85. Luminate Compression Moduli

QP73-0523-71-D

Unnotched laminate stresses were also computed with classical lamination theory. Laminate failure was pradicted by comparing elastic stresses with material failure criteria on a ply-by-ply basis. The maximum stress and Tsai-Hill failure criteria were evaluated in correlating predicted strength with test results. The maximum stress failure criteria evaluates three stress components independently:

$$\frac{\sigma_1}{F_1} = 1,$$
 $\frac{\sigma_2}{F_2} = 1,$ $\frac{\tau_{12}}{F_{12}} = 1$

When any of these ratios reach unity, failure is predicted. The Tsai-Hill failure criteria evaluates the stress components interactively:

$$\frac{\sigma_1^2}{F_1} + \frac{\sigma_2^2}{F_2} + \frac{r_{12}^2}{F_{12}} - \frac{\sigma_1\sigma_2}{F_1^2} = 1$$

Prediction of laminate strength was done on a last ply failure basis. Figure 86 shows an example of predictions, by the Tsai-Hill and maximum stress criteria, of the series of ply failures leading to ultimate failure. The 90° plies are predicted to fail first due to weak transverse (matrix) strength. The \pm 45° plies then experience shear failure. Finally, fibers in the 0° plies fail.

Figure 86. Prediction of Laminete Ply Fellure Sequence

Correlation of unnotched laminate tension and compression strength test results with predicted last ply failure is shown in Figures 87 through 89. In general, predictions made with the Tsai-Hill failure criteria were conservative and those made with the maximum stress criteria were higher and unconservative. This difference is an indication of the interactive nature of the Tsai-Hill criteria and the noninteractive nature of the maximum stress criteria.

All predictions for 10/80/10 laminate strengths were conservative. This is due to the conservative shear strengths determined in lamina property testing, in Task II (Reference 8). Since the 10/80/10 laminates contained a higher percentage of \pm 45° plies than the 50/40/10 laminates, the conservative lamina shear properties are more apparent.

Figure 87. Prediction of M66/3100 50/40/10 Laminate Strengths

Figure 88. Prediction of IMS/F650 50/40/10 Laminate Strengths

Figure 89. Prediction of 10/80/10 Laminete Compression Strengths

4.2.3 <u>Unloaded Hole Static Strength</u> - Unloaded hole static strength tests were performed to determine the notch sensitivity of the two BMI systems. Fiber dominated 50/40/10 laminates were tested in tension and compression at three environmental conditions as shown in Figure 90.

	Layup	Loading	En	vironm	ent	Mumbes of
Specimen Type		Static (1)	CTD	RTD	ETW	Number of Tests Per Materia
Unloaded Hole	50/40/10	Ţ	~			3
		T		•		3
		T			-	3
		C	100			3
		C		•		3
		C			10	3

Figure 90. Unloaded Hole Static Test Matrix

GP73-0523-60-R

C - Compression

4.2.3.1 <u>Test Results</u> - The unloaded hole test specimen configuration is shown in Figure 91. Typical tension and compression specimen failures are shown in Figures 92 and 93. The data for unloaded hole tension and compression static tests are tabulated in Figure 94 and 95 respectively.

Figure 91. Unloaded Hole Tension and Compression Static Test Specimen

GP83 0089-16

Figure 92. Falled Unloaded Hole Static Tension Specimen

Figure 93. Failed Unloaded Hole Static Compression Specimen

Material System	Environment	Specimen Number	Thickness (in.)	Width (in.)	Hole Diameter (in.)	Failure Load (lb)		Stress (si) Average		Strain ./in.) Average	Modulus (msi)
	 	1-10A-13	0.2246	1.510	0.25	38,500	122.6	····	8,320		13.61
IM6/3100	CTD	1-10A-14	0.2249	1.509	0.25	39,850	127.0	123.6	8.360	8,240	13.56
	V. u	1-10A-15	0.2231	1.509	0.25	38,000	121.1	.20.5	8,040	0,2 10	14.42
		2-10A-13	0.2176	1.507	0.25	42,900	136.9		9.360		13.63
IM6/F650	CTD	2-10A-14	0.2165	1.510	0.25	37,050	118.0	125.3	8,480	8,800	12.98
		2-10A-15	0.2162	1.510	0.25	38,050	121.1		8.560		13.32
		1-10A-10	0.2243	1.510	0.25	36,350	115.7		7,830		13.72
IM6/3100	RTD	1-10A-11	0.2243	1.510	0.25	37,850	120.5	114.8	8,340	7,930	13.61
		1-10A-12	0.2233	1.510	0.25	34,000	108.3		7.620		13.40
		2-10A-10	0.2193	1.508	0.25	44,050	140.4		9.300		14.76
IM6/F650	ATO	2-10A-11	0.2201	1.506	0.25	42,500	135.7	136.0	9.260	9.090	13.71
		2-10A-12	0.2196	1.507	0.25	41,300	131.8		8.700		14.99
		1-10A-16	0.2217	1.509	0.25	33,500	106.7		7,385		13.79
IM6/3100	ETW	1-10A-17	0.2149	1.510	0.25	35,400	112.7	114.2	7,245	7,640	14.73
		1-10A-18	0.2231	1.499	0.25	38.400	123.2		8.295		14,19
		2-10A-16	0.2170	1.509	0.25	41,200	131,3		8.595		13.05
IM6/F650	ETW	2-1QA-17	0.2163	1.508	0.25	41,600	132.6	131.5	8.260	8.480	14.54
. •••	-	2-10A-18	0.2157	1.508	0.25	41.000	130.7		8,580		13.37

QP73-0123-48

Figure 94. Unloaded Hole Tension Test Data Layup 50/40/10

Majorial Majorial	Environment	Specimen	Yhickness	With	Hele Distrator	Fellury Land		e Street kai)	fabora Strain (p.in./in.)		Medulus
System		Number	(ia.)	(io .)	(10,)	(10)	ind	Average	la (Average	(mai)
		1-10A-22	0.2226	1 497	0.25	24,900	80.0		6.000		13.78
IM6/3100	CŦD	ES-AUI-I	⊕ 5553	1 495	0.25	25,700	82.6	84.8	5,190	5.340	14.23
		1-10A-24	0 2244	1.503	0.25	28.700	91.6		7.830	•	14.15
	•	2-10A-22	0 21 6 4	1 510	0.25	26,500	84.4		6.210		13.32
HAU/F650	CTO	5-10A-53	0 2163	1.510	Ģ.25	28.550	90.9	60.0	6.750	5.080	13.84
		2-10A-24	0.2180	1 510	0.25	20,350	64.8		5,280		13.61
19. C		1-10A-19	0 2238	1 498	0.25	23,900	76.7		6.690		13.66
IM8/3100	RYD	1-1CA-20	0 2245	1 496	0 25	22,700	73.0	75.6	6,120	6,500	13 65
		1-10A-21	0 2245	1 496	0.25	24.000	77.1		6,690		13 65
		2-10A-19	0 2177	1 508	0.25	20,650	65.8		5.310		13.68
IM6/F650	RIO	2-10A-20	0.2187	1 509	0.25	22,550	71.6	69.6	4,830	5.010	13.73
		2-10A-21	0.2196	1.510	0 25	22,350	71.2		4.900		13.96
		1-13A-25	0 2236	1 506	0.25	13,350	42.6		3.220		13.39
IM6/3100	ETW	1-1GA-25	0.2217	1 499	0 25	14,140	45.4	15.2	3,000	3,320	14 25
	-	1-10A-27	0.2226	1 503	0.25	14.920	47.7		3.725		13 29
		2-10A-25	0 2190	1 509	0.25	14,900	47.5		3.660		13 41
IM6/F650	EIW	2-10A-25	0 2189	1.510	0.25	14,200	45.2	46.4	3.600	1.630	13 13
		2-10A-27	0.2198	1.508	0.25	14,550	46.4		3,615		13.61

0773463349

Figure 95. Unloaded Hole Compression Test Data Layup 50/40/10

Figure 96 summarizes the tensile strength reduction caused by the fastener hole in both IM6/3100 and IM6/F650 laminates. The notched tensile strength of IM6/3100 was approximately 40 percent less than the unnotched strength. The notched tensile strength of IM6/F650 was approximately 30 percent less than the unnotched strength.

Figure 96. Notched Laminate Tenelle Strength Reduction

Similarly, Figure 97 summarizes the compression strength reduction caused by the fastener hole. The notched compression strength of IM6/3100 and IM6/F650 at CTD and RTD conditions was generally 30 percent to 40 percent less than the unnotched compression strengths. At ETW conditions, the notched compression strengths of IM6/3100 and IM6/F650 were less than half (approximately 43 percent) of the unnotched strengths.

Figure 97. Notched Laminete Compression Strength Reduction

4.2.3.2 Analysis - Unloaded hole strength predictions were performed using the "Bolted Joint Stress Field Model" (BJSFM) (Reference 9), outlined in Figure 98. This methodology is based upon classical lamination plate theory and anisotropic theory of elasticity to obtain laminate stress and strain distributions, and a characteristic dimension ($R_{\rm c}$) failure hypothesis. Unidirectional (lamina) stiffness and strength data were used with an empirical value of $R_{\rm c}$ to predict stress distributions, critical plies, failure location, and failure load.

Input Data

- · Unidirectional Mechanical Properties
- Geometries
- Loadings

Output Data

- Stress/Strein Distributions
- Fallure Analysis

Figure 98. Boited Joint Stress Field Model

Both the Tsai-Hill and maximum stress failure criteria were used to predict unloaded hole strengths. The strengths were predicted with the last ply failure analysis, as previously used to predict unnotched strengths. As plies were predicted to fail due to matrix tension or shear, the modulus corresponding to the failure mode was reduced by a factor of 1000 to represent the lack of load carrying capability. The analysis was continued, until finally the 0° fibers were predicted to fail near the side of the hole. The Tsai-Hill and maximum stress failure criteria predicted equal ultimate strengths and similar failure modes. This was due to the analytic removal of matrix and shear load capability that would have distinguished the interactive Tsai-Hill predictions from the noninteractive maximum stress predictions.

Figure 99 illustrates the variation of predicted notched strength with $R_{\rm c}$ value. Under CTD conditions, the $R_{\rm c}$ value of 0.036 inch correctly predicts the notched tension strength of 124 ksi. To correctly predict the notched compression strength of 85 ksi, the $R_{\rm c}$ value of 0.029 inch must be used.

Figure 99. Determination of Rc Values for Unloaded Hole Strength Prediction

Figure 100 summarizes the results for IM6/3100 and IM6/F650 at three environments. Under RTD conditions no reasonably small value of $R_{\rm C}$ correlated with the IM6/F650 tension strength of 136 ksi. The $R_{\rm C}$ value of 0.28 inch is too large to consider the failure correlation point as being close to the edge of a 0.25 inch hole. Under ETW conditions, tension strengths for IM6/3100 and IM6/F650 were not predicted for any value of $R_{\rm C}$.

			IM6/3100			IM6/FG50			
			CTD	RTD	ETW	CTD	RYD	ETW	
Tanalan	Rc	(in.)	0.036	0.029	Large	0.072	0.280	Large	
Tension	Ftu	(ksi)	123.6	114.8	114.2	125.3	136.0	131.5	
0	R _c	(in.)	0.029	0.032	0.063	0.023	0.018	0.087	
Compression	Fcu	(ksi)	84.8	75.6	45.2	80.0	69.6	46.4	

QP73-0623-77-F

Figure 100. R_c Values Used to Predict Unloaded Hole Laminate Strengths

4.2.4 <u>Unloaded Hole Fatigue Life</u> - Unloaded hole fatigue tests were performed to determine the durability of the two BMI systems. Fiber dominated 50/40/10 laminates were tested in compression-compression (R = 10) and reversed loading (R = -1) fatigue cycling at three environmental conditions as shown in Figure 101.

		Los	ding	E	nvir on ma	at	
Specimen Type		Fatigue					Number of
	Layup	Stress Ratio	Stress Level	- CTD	OTA OT	ETW	Tests Per Material
Unloaded Hole	50/40/10	-1.0	L ₁	10			5+1(1)
		-1.0	L,		•		5+2(1)
•		-1.0	L,			-	5+1(1)
		-1.0	L ₂	•			5
		1.0	L,		•		5
		- 1.0	را			***	5
	:	10.0	L,	خسيا			5
		10.0	L,		***		5+1(1)
		10.0	L,			••	5
		10.0	l,	منو			5
		10.0	رُبا		***		5
•		10.0	L,			-	5

Note: (1) TBE enhanced x-rays to be taken at W. W. W total life.

OP73062361-R

Figure 101. Unloaded Hole Fatigue Test Matrix

4.2.4.1 Test Results - The unloaded hole fatigue test specimen configuration is shown in Figure 102. A typical failure is depicted in Figure 103. Figure 104 shows the progression of damage that precedes unloaded hole fatigue failure. The enhanced X-rays show that matrix cracking initially occurs along fibers, as evidenced by vertical and ±45° lines near the hole edge. Next the cracks coalesce into delaminations which show up as white cloudy areas. The delaminations occur both at the hole edge and at the outer edges of the specimen. The unloaded hole fatigue life data are tabulated in Figures 105 through 107. The data are plotted in Figures 108 through 110. Each plot shows the static compression strength plotted at a life of 1 cycle.

Figure 102. Unloaded Hole Fatigue Test Specimen

Figure 103. Failed Unloaded Hole Fatigue Specimen

Figure 104. Progression of Unloaded Hole Fatigue Damage (Enhanced X-Rays)

Matarial System	åpecimen Number	Stress Ratio	Load Level (kips)	Stress Level (ksi)	Thickness (in.)	Width (in.)	Hole Diameter (in.)	Life (Cycles)	Log Mean Life (Cycles)
IM6/3100	1-10A-44U 1-10A-45U 1-10A-46U 1-10A-47U 1-10A-48U	10.0	23.8	76.3	0.225 0.225 0.224 0.225 0.225	1.510 1.509 1.510 1.511 1.509	0.250 0.250 0.250 0.250 0.250	200 301 91 46 3,910	250
IM6/3100	1-108-8U 1-108-9U 1-108-10U 1-108-11U 1-108-12U	10.0	20.4	65.4	0.227 0.226 0.226 0.225 0.226	1.503 1.501 1.509 1.510 1.509	0.250 0.250 0.250 0.250 0.250	77,400 73,764 7,741 210,000+ 11,219	40.134
IM6/3100	1-10A-11U 1-10A-12U 1-10A-13U 1-10A-14U 1-10A-15U	-1.0	22.6	72.5	0.225 0.223 0.223 0.225 0.225	1.508 1.508 1.507 1.506 1.509	0.250 0.250 0.250 0.250 0.250	1,222 97 1,559 6,595 2,829	1,281
IM6/31/00	1-10A-25U 1-10A-26U 1-10A-27'' 1-10A-28U 1-10A-29U	-1.0	20.4	65.4	0.225 0.222 0.223 0.225 0.224	1.501 1.503 1.504 1.501 1.510	0.250 0.250 0.250 0.250 0.250	34,554 12,740 9,752 50,508 4,216	15,567
IM6/F650	2-10A-41U 2-10A-42U 2-10A-43U 2-10A-44U 2-10A-45U	10.0	20.4	65.4	0.217 0.219 1.219 0.220 0.221	1.509 1.510 1.509 1.507 1.508	0.250 0.250 0.250 0.250 0.250	190 1,352 522 271 1,984	591
IM6/F650	2-108-5U 2-108-6U 2-108-7U 2-108-8U 2-108-9U	10.0	19.3	62.0	0.220 J.220 0.221 0.221 0.221	1.506 1.506 1.505 1.500 1.510	0.250 0.250 0.250 0.250 0.250	49,032 17,294 7,273 9,145 1,158	9,180
IM6/F650	2-10A-9U 2-10A-10U 2-10A-11U 2-10A-12U 2-10A-13U	~1.0	20.4	65.4	0.219 0.220 0.220 0.220 0.219	1.509 1.508 1.509 1.509 1.509	0.250 0.250 0.250 0.250 0.250	7,124 449 3,909 493 2,151	1,677
IM6/F650	2-10A-25U 2-10A-26U 2-10A-27U 2-10A-28U 2-10A-29U	1.0	19.3	62.0	0.219 0.219 0.215 0.221 0.220	1 307 1,507 1,507 1,506 1,507	0.250 0.250 0.250 0.250 0.250	21,340 10,333 1,789 2,868 67	2,376

GP73-0622-60-R

Figure 105. Unloaded Hole Fatigue Data for C1D Conditions

Material System	Specimen Number	Stress Ratio	Load Level (kips)	Stress Level (ksi)	Thickness (in.)	Width (in.)	Hole Dismeter (in.)	Life (Cycles)	Log Mean Life (Cycles)
IM6/3100	1-10A-41U 1-10A-42U 1-10B-21U 1-10A-43U 1-10B-4U	10.0	21.2	68.0	0.225 0.225 0.227 0.223 0.227	1.508 1.511 1.513 1.512 1.503	0.250 0.250 0.250 0.250 0.250	4,954 8,860 13,476 10,226 1,634	6,295
IM6/3100	1-10A-1U 1-10A-2U 1-10A-3U 1-10B-5U 1-10B-6U 1-10B-7U	10.0	20.4	65.4	0.223 0.223 0.225 0.227 0.226 0.226	1.508 1.510 1.512 1.502 1.502 1.504	0.250 0.250 0.250 0.250 0.250 0.250	12,578 4,581 9,931 34,508 272,890 4,477	16,998
IM6/3100	1-10A-4U 1-10A-5U 1-10A-6U 1-10A-7U 1-10A-8U	-1.0	21.2	68.0	0.225 0.223 0.224 0.225 0.225	1.512 1.511 1.511 1.510 1.510	0.250 0.250 0.250 0.250 0.250	3,724 6,753 906 1,493 2,296	2,391
IM6/3100	1-10A-20U 1-10A-21U 1-10A-22U 1-10A-23U 1-10A-24U	-1.0	19.3	62.0	0.225 0.225 0.222 0.223 0.226	1.503 1.488 1.501 1.503 1.500	0.250 0.250 0.250 0.250 0.250	58,788 20,256 2,569 28,869 3,998	12,870
IM6/F650	2-10A-38U 2-10A-40U 2-10B-21U 2-10B-22U	10.0	20.4	65.4	0.219 0.217 0.221 0.220	1.485 1.509 1.525 1.525	0.250 0.250 0.250 0.250	1,111 1,019 859 525	845
IM6/F650	2-10A-51U 2-10B-1U 2-10B-2U 2-10B-3U 2-10B-4U	10.0	19.3	62.0	0.215 0.218 0.220 0.220 0.220	1.507 1.508 1.505 1.506 1.507	0.250 0.250 0.250 0.250 0.250	352 583 1,029 964 5,268	1,014
IM6/F650	2-10A-1U 2-10A-2U 2-10A-3U 2-10A-4U 2-10A-5U	-1.0	20.4	65.4	0.216 0.218 0.219 0.220 0.219	1.503 1.508 1.509 1.508 1.507	0.250 0.250 0.250 0.250 0.250	833 1,675 4,258 199 4,947	1,323
IM6/F650	2-10A-20U 2-10A-21U 2-10A-22U 2-10A-23U 2-10A-24U	-1.0	19.3	62.0	0.219 0.220 0.218 0.218 0.218	1.506 1.508 1.508 1.506 1.507	0.250 0.250 0.250 0.250 0.250	18,088 8,493 7,584 4,519 3,824	7,257

QP73-0423-41-4

Figure 106. Unloaded Hole Fatigue Data for RTD Conditions

Material System	Specimen Number	Stress Ratio	Load Level (kips)	Stress Level (ksi)	Thickness (in.)	Width (in.)	Hoia Diameter (in.)	Life (Cycles)
IM6/3100	1-10B-1U 1-10B-2U	10.0	14.3 14.3	45.8 45.8	0.223 0.226	1.504 1.499	0.250 0.250	68,440 1
IM6/3100	1-10A-49U 1-10A-50U 1-10A-51U	10.0	14.2 14.2 14.2	45.5 45.5 45.5	0.224 0.222 0.221	1.510 1.510 1.508	0.250 0.250 0.250	10 170 3,860
IM6/3100	1-10B-13U 1-10B-14U 1-10A-33U 1-10A-34U	10.0	14.0 14.0 14.0 14.0	44.9 44.9 44.9 44.9	0.226 0.226 0.223 0.220	1.507 1.507 1.509 1.508	0.250 0.250 0.250 0.250	5,980 756,000+ 19,890 90
IM6/3100	1-10A-32U 1-10B-15U 1-10B-16U 1-10B-17U	-1.0	12.4 12.4 12.4 12.4	39.7 39.7 39.7 39.7	0.225 0.227 0.228 0.225	1.510 1.506 1.505 1.506	0.250 0.250 0.250 0.250	5,880 8,610 10,750 2,070
IM6/3100	1-10A-17U 1-10A-18U	-1.0	11.1 11.1	35.6 35.6	0.221 0.223	1.511 1.499	0.250 0.250	108,040 410,000+
IM6/3100	1-10A-29U	-1.0	10.5	33.7	0.224	1.510	0.250	.40
IM6/3100	1-10A-30U 1-10A-31U	-1.0	10.0 10.0	. 32.1 32.1	0.224 0.225	1.509 1.509	0.250 0.250	3,080 238,170
IM6/F650	2-10A-47U 2-10A-48U 2-10A-4 9 U 2-10A-50U	10.0	14.5 14.5 14.5 14.5	46.5 46.5 46.5 46.5	0.219 0.217 0.216 0.217	1.506 1.504 1.504 1.504	0.250 0.250 0.250 0.250	150 120 10 7,700
IM6/F650	2-10B-13U 2-10B-14U 2-10A-46U	10.0	14.3 14.3 14.3	45.8 45.8 45.8	0.221 0.218 0.221	1.508 1.524 1.50 6	0.250 0.250 0.250	86,180 858,000 + 430,250
IM6/F650	2-10A-14U 2-10A-34U 2-10B-10U 2-10B-11U 2-10B-12U	10.0	13.9 13.9 13.9 13.9 13.9	44.6 44.6 44.6 44.6 44.6	0.217 0.217 0.221 0.221 0.222	1.509 1.508 1.507 1.508 1.508	0.250 0.250 0.250 0.250 0.250	7.670 67.090 148.280 710.200+ 748,240+
IM6/F650	2-10A-33U	10.0	13.8	44.2	0.218	1.507	0.250	700.000+
IM6/F650	2-10A-15U	10.0	13.5	43.3	0.218	1.509	0.250	705,000 +
IM6/F650	2-10A-30U 2-10A-31U 2-10A-32U 2-10B-30U 2-10B-31U	-1.0	14.4 14.4 14.4 14.4 14.4	46.2 46.2 46.2 46.2 48.2	0.219 0.218 0.219 0.220 0.219	1.506 1.508 1.503 1.505 1.508	0.250 0.250 0.250 0.250 0.250	1,000 210 1,870 25,270 - 250
IM6/F650	2-10A-28U 2-10A-29U 2-10B-32U 2-10B-33U 2-10B-34U	-1.0	14.0 14.0 14.0 14.0 14.0	44.9 44.9 44.9 44.9 44.9	0.221 0.220 0.219 0.218 0.217	1.506 1.507 1.503 1.507 1.508	0.250 0.250 0.250 0.250 0.250	3,060 567,990 + 2,010 14,810 12,920

GP73-0523-63-R

Figure 107. Unloaded Hole Fatigue Data for ETW Conditions

The CTD and RTD fatigue data in Figures 108 and 109 are plotted in terms of the log mean life centered in its 90 percent confidence interval. Each figure includes two fatigue data plots. The first plot shows data for R=10 and the second shows data for R=-1. Comparing the plots in each figure indicates that IM6/3100 experienced longer lives during compression-only (R=10) cycling than reversed (R=-1) cycling. One explanation for this behavior is that IM6/3100 is matrix crack dominated in fatigue. Under compression-only conditions, matrix cracks will not reduce life, whereas under reversed loading, matrix cracks grow due to tensile loading thus reducing life.

In contrast to the behavior of IM6/3100, IM6/F650 showed no extension of life during compression-only cycling compared to reversed cycling. IM6/F650 sustained equal peak compression loads for both R=10 and R=-1 cycling. Perhaps, life was controlled by delamination growth with compression loading. Failure would then occur when delaminations driven by peak compression loading grew to a critical size.

In Figure 110 the ETW fatigue data are plotted as individual points because of the large life scatter that occurred. The increased scatter is attributed to the loss of moisture in the specimens during elevated temperature testing. The high diffusivity of the EMI materials resulted in rapid desiccation of the specimens. Specimens that did not fail early (in less than 4000 cycles) survived longer-than-appropriate lives because of the increased strength in the dry condition.

4.2.4.2 Analysis - The fatigue data for CTD and RTD conditions was analyzed to determine the log mean life and its 90 percent confidence interval for each stress level. A statistical analysis was performed on the fatigue data to determine the 90 percent confidence interval for each set of data. There is 90 percent probability that the mean life of specimens testad at the indicated stress level will be within the range defined by the 90 percent confidence interval.

Figure 108. Unloaded Hole Fatigue Test Results for CTD Conditions

Figure 109. Unloaded Hole Fatigue Test Results for RTD Conditions

Figure 110. Unloaded Hole Fatigue Test Results for ETW Conditions

- 4.2.5 <u>Loaded Hole Static Strength</u> Loaded hole static strength tests were performed to determine the fastener bearing strength of the BMI systems. Fiber dominated 50/40/10 laminates were tested at three environmental conditions as shown in Figure 111.
- 4.2.5.1 <u>Test Results</u> The loaded hole test specimen is shown in Figure 112. The loaded hole test setup is shown in Figure 113. With this setup, the bearing load is introduced in double shear to obtain uniform bearing stress through the thickness of the laminate. A typical failed specimen is shown in Figure 114. Test data for loaded hole static tests are tabulated in Figure 115.

		Loading	En	Aķosu	ent	Number of			
Specimen Type	Layup	Static (1)	CTD	ATD	ETW	Tests Per Material			
Loaded Hole	50/40/10	T	<i>y</i>	· · · · · · · · · · · · · · · · · · ·		3			
		T				3			
		T				3			

icles.

(1) T - Tension

C - Compression

GP73642343-R

Figure 111. Loaded Hole Static Test Matrix

Figure 112. Loaded Hole Static Test Specimen

Figure 113. Loaded Hole Test Setup

Figure 114. Failed Loaded Hole Static Specimen

Material System	FAWITADEAN)	Specimen Number		Width (in.)	Hele Diameter	Fallure Load (lb)	Gress Failure Stress (ksi)		Failure Stress, P/dt (ksi)		Fallure Strain (µin./in.)	
					(in.)	(40)	ind	Avg	ind	Avg	lad	Avg
IM6/3100	CTD	1-108-4L 1-108-5L 1-108-6L	0.2284 0.2287 0.2282	2.255 2.255 2.255	0.375 0.375 0.375	9,450 9,260 9,090	20.1 19.7 19.4	19.7	121.2 118.7 116.5	118.8	1,380 1,404 1,344	1,376
IM6/F650	CTD	2-108-4L 2-108-5L 2-108-6L	0.2205 0.2209 0.2215	2.253 2.254 2.252	0.375 0.375 0.375	8,650 7,670 7,850	18.5 16.4 16.8	17,2	110.9 98.3 100.6	103.3	1,236 1,164 1,200	1,200
IM6/3100	RTD	1-108-1L 1-108-2L 1-108-3L	0.2268 0.2273 0.2284	2.255 2.256 2.256	0.375 0.375 0.375	7.800 9,140 8,960	16.6 19.5 19.1	18.4	100.0 117.2 114.9	110.7	1,164 1,440 1,368	1.324
IM6/F650	RTO	2-108-1L 2-108-2L 2-108-3L	0.2183 0.2201 0.2205	2.249 2.253 2.255	0.375 0.375 0.375	7,380 7,700 8,160	15.8 16.4 17.4	16.5	94.6 98.7 104.6	99.3	1,188 1,212 1,308	1,235
IM6/3100	ETW	1-108-7L 1-108-8L 1-108-9L	0.2270 0.2295 0.2288	2.251 2.252 2.244	0.375 0.375 0.375	5.700 5.970 5.600	12.2 12.7 12.0	12,3	73.1 76.5 71.8	73,8	870 852 792	838
IM6/F650	ETW	2-108-7L 2-108-8L 2-108-9L	0.2209 0.2205 0.2209	2.254 2.254 2.254	0.375 0.375 0.375	2,930 4,730 4,080	6.25 10.1 8.70	8.35	37.6 69.6 52.3	50.2	372 696 552	540

00773413434

Figure 115. Loaded Hole Static Test Data Pure Bearing Test Results Layup: 50/40/10

The bearing strengths of both systems are summarized in Figure 116. Bearing strength gradually decreased with increasing temperature and moisture content. The RTD bearing strength of IM6/3100 was 93 percent of the CTD bearing strength. Under ETW conditions the bearing strength of IM6/3100 was 62 percent of the CTD strength. The RTD and ETW bearing strengths of IM6/F650 were 96 percent and 49 percent of the CTD strength, respectively.

Figure 116. Loaded Hole (Bearing) Strength Test Results

4.2.5.2 <u>Analysis</u> - Loaded hole strength predictions were made using BJSFH. The analyses predicted that initially the laminate experienced matrix compression and shear failures of all plies. Ultimately, the loaded hole laminate was predicted to experience fiber compression failure of 245° plies at locations 40° from the load line.

Figure 117 summarizes the $R_{_{\rm C}}$ values used to predict the loaded hole strengths. The data is included along with the unleaded hole $R_{_{\rm C}}$ values already reported. In general, the $R_{_{\rm C}}$ value for predicting loaded hole strength is greater than the $R_{_{\rm C}}$ value for predicting unloaded hole strength.

		IM6/3100				IM6/F650	
		CTD	RTD	ETW	CTD	RTD	ETW
Tension	R _c (in.)	0.036	0.029	Large	0.072	0.280	Large
	F ^{tu} (ksi)	123.6	114.8	114.2	125.3	136.0	131.5
0	R _c (in.)	0.029	0.032	0.063	0.023	810.0	0.087
Compression	F ^{cu} (ksi)	84.8	75.6	45.2	80.0	69.6	46.4
Bearing	R _c (in.)	0,075	0.089	0.134	0.048	0.047	0.078
	Ebru	118.8	110.7	73.8	103.3	99.3	50.2

GP73-0623-83-R

Figure 117. R_c Values Used to Predict Unloaded and Loaded Hole Laminate Strengths

4.2.6 <u>Loaded Hole Fatigue Life (Hole Wear)</u> - Loaded hole fatigue tests were performed to determine the hole wear characteristics of the two BMI systems. Fiber dominated 50/40/10 laminates were tested in compression-only (R = 10) and reversed loading (R = -1) fatigue cycling at two environmental conditions as shown in Figure 118.

		Lo	iding		Environa		
Specimen Type	Layup	Fa	ligue	•	··		Number of
	Stress Stress CTD RTG Hatte Lovel	ATO	ETW	Tests Per Materia			
Loaded Hole	50/40/10	-1.0	L,		10		3+2(1)
		-1.0	L ₁			-	3+1(1)
		-1.0	ريا ۔		•		3
		-1.0	L2			***	3
		10.0	L,		-		3+1(1)
		10.0	1.			-	3
		10.0	L,		200		3
		10.0	را			•	3

Note: (1) TBE enhanced x-rays to be taken at 14, 1/2, 14 total life.

UP73-0523-00-R

Figure 118. Loaded Hole Fatigue Test Matrix

4.2.6.1 <u>Data Reduction</u> - Loaded hole fatigue failure was defined as the accumulation of 0.02 inch hole elongation. Stiffness and deflection was monitored periodically during each test. Hole elongation measurements were obtained using the data reduction procedure shown in Figure 119. Typical accumulation of hole elongation with istigue cycling is shown in Figure 120. For much of the specimen life, little or no hole elongation was observed, until there was a rapid increase man the end of life.

Figure 119. Hole Elongation Determined by Shift in Load Displacement Curve

Figure 120. Loaded Hole Elongation Measurements Show Rapid Increase Near End of Life

4.2.6.2 Test Results - The same specimen configuration that was used in static tests was used in fatigue tests (Figure 121). Typical failed specimens are shown in Figure 122. For RTD conditions, stress ratio effects were not apparent. Compression-only (R = 10) cycling and reversed (R = -1) cycling produced failures only on one side of the hole, like that shown in Figure Under ETW conditions, however, stress ratio effects were evident where R = 10 cycling produced one-sided hole wear and R = -1 cycling produced two-sided hole wear as shown in Figure 122b. Figure 123 shows the progression of damage that leads to loaded hole fatigue failure. Loaded hole fatigue failure is preceded by local matrix crushing at the bearing surfaces of the hole. The X-rays show that the area of crushed matrix gradually grows until the hole wears out (0.02 inch elongation). Data for the loaded hole fatigue tests are tabulated in Figures 124 and 125. The data are plotted in Figures 126 and 127. Each plot shows the static bearing strength plotted at a life of one cycle.

Figure 121. Loaded Hole Fatigue Test Specimen

Figure 122. Falled Loaded Hole Fatigue Specimens

Figure 123. Progression of Loaded Hole Fatigue Damage (Enhanced X-Rays)

Material System	Specimen Number	Stress Ratio	Load Lavei (lb)	Bearing Stress Lavel (ksi)	Thickness (in.)	Width (in.)	Hole Diameter (in.)	Life (Cycles) (1)	Log Mean Life (Cycles)
IM6/3100	1-10B-32 1-10B-33 1-10B-34	10	5,530	70.9	0.224 0.227 0.227	2.254 2.255 2.248	0.375 0.375 0.375	8,600 8,380 5,960	7,550
IM6/3100	1-108-25 1-108-26 1-108-27	10	6,210	79.6	0.226 0.226 0.228	2.255 2.256 2.255	0.375 0.375 0.375	1,070 3.920 2,390	2,160
IM6/3100	1-108-19 1-108-20 1-108-21	-1	5.620	. 72.1	0.228 0.228 0.228	2.254 2.252 2.252	0.375 0.375 0.375	4,940 4,990 3,830	4,550
IM6/3100	1-108-10 1-108-11 1-108-12	-1	6,000	76.9	0.228 0.229 0.228	2.254 2.254 2.253	0.375 0.375 0.375	1,490 1,690 2,120	1,750
IM6/F650	2-108-32 2-108-33 2-108-34	10	4,790	61.4	0.222 0.221 0.221	2.258 2.258 2.252	0.375 0.375 0.375	9,600 11,320 13,260	11,300
IM6/F650	2-108-25 2-108-26 2-108-27	10	5,410	69.4	0.221 0.222 0.223	2.255 2.256 2.257	0.375 0.375 0.375	4,230 1,500 3,570	2,830
IM6/F650	2-108-13 2-108-14 2-108-21	-1	4,520	57.9	0.220 0.220 0.221	2.254 2.254 2.253	0.375 0.375 0.375	19,999 21,830 11,610	17,180
IM6/F650	2-108-10 2-108-11 2-108-12	-1	5,420	69.5	0,221 0,222 0,219	2.248 2.245 2.253	0.375 0.375 0.375	2,090 3,000 1,010	1,850

Note: (1) Life to 0.02 in: of hole elongation

GP43-0089-70-R

Figure 124. Loaded Hole Fatigue Test Data for RTD Conditions

Material System	Specimen Number	Stress Ratio	Load Levei (ib)	Bearing Stress Level (ksi)	Thickness (in.)	Width (in.)	Hole Diameter (in.)	Life (Cycles) (1)
IM6/3100	1-10B-35 1-10B-36	10	4,750 4,200	60.9 53.8	0.228 0.228	2.256 2.258	0.375 0.375	1,470 33,200
	1-10B-37		4,200	53.8	0.226	2.255	0.375	4,650
	1-10B-29		5,000	64.1	0.226	2.254	0.375	990
IM6/3100	1-10B-30	10	5,200	66.7	0.227	2.255	0.375	620
	1-10B-31		5,200	66.7	0.226	2.254	0.375	100
	1-10B-22		3,800	48.7	0.228	2.252	0.375	139,000+
IM6/3100	1-10B-23	-1	4,100	52.6	0.226	2.253	0.375	30,000+
	1-10B-24		4,250	54.5	0.226	2.252	0.375	7,430
	1-10B-15		4,320	55.4	0.227	2.251	0.375	190
IM6/3100	1-10B-16	-1	4,320	55.4	0.227	2.252	0.375	260
	1-10B-17		4.320	55.4	0.226	2.251	0.375	3,650
	2-10B-29		3,600	46.2	0.222	2.257	0.375	3,880
IM6/F650	2-10B-30	10	3,600	46.2	0.222	2.257	0.375	7,600
	2-10B-31		3,600	46.2	0.222	2.257	0.375	77,000+
	2-10B-35		4,000	51.3	0.222	2.257	0.375	3,330
IM6/F650	2-108-36	10	3,200	41.0	0.221	2.257	0.375	5,230
	2-10B-37		3,200	41.0	0.222	2.256	0.375	69,700+
	2-108-24		2,730	35.0	0.220	2.254	0.375	82,100
IM6/F650	2·108-S10	-1	2,900	37.2	0.220	2.258	0.375	272,500+
	2-108-511		3,100	39.7	0.221	2.256	0.375	107,200
	2-10B-16		3,520	45.1	0.222	2.253	0.375	60
IM6/F650	2-108-512	-1	3,500	44,9	0.219	2.257	0.375	250
	2-108-513		3,500	44.9	0.222	2.259	0.375	170

Note: (1) Life to 0.02 in. of hole elongation.

GP63-0088-71-R

Figure 125. Loaded Hole Fatigue Test Data for ETW Conditions

The data in Figure 126 is for RTD testing. The data is plotted in terms of the log mean life surrounded by its 90 percent confidence interval determined for each data set. The data show that under RTD conditions there is no stress ratio (R) effect on fatigue life. Compression-only (R = 10) and reversed (R = -1) cycling resulted in similar lives for both materials. An explanation for this behavior is that the failure mode was dominated by localized matrix crushing due to bearing loads. Once hole wear initiated in the brittle matrix, damage progressed rapidly. The sense of the loading, whether it was tension or compression, was irrelevant.

Figure 126. Loaded Hole Fatigue Test Results for RTD Conditions

The data in Figure 127 is plotted as individual points. Under ETW conditions, the loaded hole fatigue specimens dried out, resulting in large life scatter. The data show that for a loaded hole fatigue life of 10,000 cycles, the permissible bearing stress level for IM6/3100 is 79 percent (55 ksi vs 70 ksi) of the stress level for RTD conditions. The value for IM6/F650 is 75 percent (45 ksi vs 60 ksi).

Figure 127. Loaded Hole Fatigue Test Results for ETW Conditions

- Low-Velocity Impact Damage/Residual Compression Strength Low-velocity impact tests were performed to determine the strength of damaged bismaleimide panels. The test program is outlined in Figure 128. Impact tests were performed to determine the maximum energy level that a panel could sustain without showing signs of surface damage. Tests were performed on thin panels, less than 0.080 inch thick, to investigate the impact response of very thin skins. Visible damage tests were performed on thicker panels to determine the strength degradation due to impacts with energies (not to exceed 100 ft-lbs.) sufficient to create a 0.1 inch dent.
- 4.2.7.1 Test Results The impact specimen configuration is shown in Figure 129. The 7 inch by 11 inch panels were constrained such that there was a 5 inch by 5 inch unsupported area as shown in Figure 130. All panels were impacted with 1 inch diameter impactor. Prior to impact, the specimen was instrumented with a strain gage on the back side directly under the impact site. This gage was used to monitor panel response during impact. After impact, the panel was instrumented with five strain gages as shown in Figure 129. Back-to-back pair 1,2 was located adjacent to surface damage. Two back-to-back pairs (1,2 and 3,4) were used to monitor delamination buckling response during residual compression strength testing. The single gage (5) was used to monitor far field panel response.

In addition to strain gaging, instrumentation was provided to measure acceleration (and hence loads) during impact. Approach and rebound velocities were measured with optical sensors. Data summarized in Figures 131 through 136 include impact energy, dent depth, and residual compression strength for the 216 impact tests. More data is presented in the Appendix volume of this report.

Maximum non-visible damage was defined as a dent depth of approximately 0.01 inch. This damage was discernible under close inspection, but was not severe enough to be detected during a walk-around inspection of an aircraft. The data in Figures 131 and 132 show that the energy threshold for non-visible damage in fiber dominated 50/40/10 laminates is generally one and one-half to two times as great as the energy threshold for comparable matrix

dominated 10/80/10 laminates. IM6/3100 had higher energy thresholds for non-visible damage than IM6/F650. Residual compression strengths of IM6/3100 were also higher than those of IM6/F650.

		T	T.		Number of
Damage	Layup	Nominal	Enviro	nment	Residual Strength
Туре		Thickness	RTD	ETW	Compression Tests Per Material
Maximum	10/80/10	0.104	"		3
Non-Visible Damage				_	3
- Semago		0.208	-		3 3
		0.416	_	_	3
					3
	50/40/10	0.104			3
		0.000			3
		0.208	_	_	3 3
		0.416			3
	•			س ا	3
Thin Laminate	0/100/0	0.021	1		3
Damage				"	3
		0.042	_		3
		0.062	اما		3 3
		0.002		.	3
· .	50/0/50	0.021	س .		3
				10	. 3
		0.042	-		3 3
		0.062	0		3
		0.000	*	-	3
Visible Damage	10/80/10	0.104	10	1	3
(0.1 in. Dent)	1			w	3
		0.298	•		3
·		0.416		خد	3
		U.410			3
	50/40/10	0.104	خعد		3
		·		•	3
	·	0.268	ا. مو	1	3
		0.416	ا ا	_	3
		0.410			3
	Total Nu	mber of Tests	Per Ma	inist	108
		i Tests (2 M			216
	104	(1 (ENS (C IN	- HET 142 13		210

OFFICE AND AND AND

Figure 128. Low-Velocity Impact Test Matrix

Figure 129. Low-Velocity Impact Test Specimen Instrumented for Residual Compression Strength Testing

Figure 130. Low-Velocity Impact Damage Test Setup

Material	Specimen Number	- AUIIN	INCHASES	Impact Energy (ft-lb)	Dent Depth (in.)	Residual Compression Strength (kei)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(·····			Ind	Avg
IM6/3100	1-12-1 1-12-2 1-12-3	10/80/10	0.114 0.114 0.114	8 8 8	0.005 0.005 0.005	31.7 32.1 30.4	31.4
IM6/3100	1-11-1 1-11-2 1-11-3	10/80/10	0.223 0.221 0.222	14 14 14	0.008 0.009 0.009	27.7 26.8 26.8	27.1
1M6/3100	1-13-1 1-13-2 1-13-3	10/80/10	0.451 0.452 0.450	17.5/23 17.5/23 17.5/23	0.004/0.008 0.001/0.007 0.005/0.010	29.2 34.5 27.0	30.2
IM6/3100	1-14-1 1-14-2 1-14-3	50/40/10	0.109 0.110 0.10 9	14 14 14	0.006 0.006 0.006	37.1 38.5 34.3	36.6
IM6/3100	1-20-1 1-20-2 1-20-3	50/40/10	0.224 0.224 0.223	23 23 23	0.010 0.011 0.012	32.7 30.8 30.7	31.4
IM6/3100	1-15-1 1-15-2 1-15-3	50/40/10	0.455 0.453 0.451	42 42 42	0.012 0.012 0.011	36.2 36.2 35.6	36.0
IM8/F650	2-12-1 2-12-2 2-12-3	10/80/10	0.107 0.106 0.108	6 6	0.007 0.007 0.007	23.0 21.4 22.2	22.2
IM6/F650	2-11-1 2-11-2 2-11-3	10/80/10	0.215 0.21 5 0.216	7 7 7	0.009 0.011 0.010	22.1 22.1 21.2	21.8
IM8/F650	2-13-1 2-13-2 2-13-3	10/80/10	0.436 0.438 0.440	20 20 20	0.012 0.010 0.013	22.5 22.6 21.8	22.3
IM6/F650	2-14-1 2-14-2 2-14-3	50/40/10	0.111 0.112 0.111	14 14 14	0.007 0.006 0.007	32.0 28.4 27.8	29.4
IM6/F650	2-20-1 2-20-2 2-20-3	50/40/10	0.218 0.219 0.219	10 10 10	0.012 0.012 0.009	26.7 28.1 26.2	27.0
IM6/F650	2-15-1 2-15-2 2-15-3	50/40/10	0.433 0.443 0.440	35 35 35	0.017 0.017 0.015	26.3 26.5 26.4	26.4

0/13-0123-06-R

Figure 131. Maximum Non-Visible Damage Data for ATD Conditions

Material .	Specimen Number		Thickness (in.)	impact Energy	Dent Depth (in.)	Residual Compression Strength (ksi)	
	110111001		····y	(ft-lb)		Ind	Avg
IM6/3100	1-12-4 1-12-5 1-12-6	10/80/10	0.114 0.114 0.114	8 8 8	0.005 0.005 0.005	22.9 22.0 23.3	22.7
IM6/3100	1-11-4 1-11-5 1-11-8	10/80/10	0.222 0.222 0.223	14 14 14	0.009 0.009 0.009	23.7 21.2 24.4	23.1
IM6/3100	1-13-4 1-13-5 1-13-6	10/80/10	0.449 0.454 0.454	23 23 23	0.006 0.004 0.006	24.8 24.6 26.8	25.4
IM6/3100	1-14-4 1-14-5 1-14-6	50/40/10	0.110 0.110 0.110	14 14 14	0.005 0.006 0.006	32.6 33.0 29.9	31.8
IM6/3100	1-20-4 1-20-5 1-20-6	50/40/10	0.225 0.223 0.223	23 23 23	0.008 0.012 0.012	25.4 25.2 25.9	25.5
IM6/3100	1-15-4 1-15-5 1-15-6	50/40/10	0.451 0.445 0.448	17.5/23 17.5/23 17.5/23	0.006/0.010 0.008/0.010 0.007/0.011	28.5 33.0 25.2	28.9
IM6/F650	2-12-4 2-12-5 2-12-8	10/80/10	0.107 0.106 0.106	6 6 6	0.00 6 0.007 0.00 6	17.9 17.5 16.7	17.4
IM:6/F650	2-11-4 2-11-5 2-11-8	10/80/10	0.216 0.216 0.216	7 7 7	0.011 0.011 0.011	18.5 17.2 17.5	17.7
IM6/F650	2-13-4 2-13-5 2-13-6	10/80/10	0.438 0.436 0.438	20 15 15	0.012 0.010 0.011	18.5 17.1 17.5	_
IM6/F650	2-14-4 2-14-5 2-14-8	50/40 <i>i</i> 10	0.112 0.111 0.112	14 14 14	0.007 0.006 0.006	24.2 23.5 22.0	23.2
IM6/F650	2-20-4 2-20-5 2-20-8	50/40/10	0.219 0.217 0.218	10 10 10	0.012 0.012 0.011	21.6 19.1 21.7	20.8
IM6/F650	2-15-4 2-15-5 2-15-8	50/40/10	0.441 0.440 0.442	35 35 35	0.016 0.016 0.017	18.9 17.8 19.7	18.8

Figure 132. Maximum Non-Visible Damage Data for ETW Conditions

Impact tests were performed on thin (less than 0.080 inch thick) laminates to obtain data that would be representative of thin skin structure. All thin laminate tests were performed with impact energies of 5 ft-lbs. The data in Figures 133 and 134 show that IM6/3100 retained higher residual compression strengths than IM6/F650.

Material	Specimen Number		Thickness (in.)	Impact Energy	Dent Depth (In.)	Residual Compression Strength (ksi)	
				(tt-ip)		Ind	Avg
IM6/3100	1-16-1 1-16-2 1-16-3	0/100/0	0.024 0.024 0.024	5 5 5	0.002 0.001 0.001	10.9 11.5 11.5	11.3
IM6/3100	1-12A-1 1-12A-2 1-12A-3	0/100/0	0.045 0.045 0.045	5 5 5	0.004 0.005 0.004	17.0 17.9 16.6	17.2
IM6/3100	1-17-1 1-17-2 1-17-3	u/100/0	0.068 0.068 0.069	5 5 5	0.004 0.004 0.004	20.7 20.8 21.5	21.0
IM6/3100	1-18-1 1-18-2 1-18-3	50/0/50	0.025 0.025 0.025	5 5 5	0.025 0.030 <0.001	15.5 17.1 18.5	17.0
IM6/3100	1-14A-1 1-14A-2 1-14A-3	50/0/50	0.046 0.047 0.046	5 5 5	0.004 0.004 0.004	23.4 23.5 23.5	23.5
IM6/3100	1-19-1 1-19-2 1-19-3	50/0/50	0.065 0.065 0.065	5 5 5	0.004 0.004 0.004	24.1 28.6 28.9	27.2
IM6/F650	2-16-1 2-16-2 2-16-3	0/100/0	0.022 0.022 0.021	5 5 5	0.011 0.001 0.001	9.1 9.4 9.0	9.2
IM6/F650	2-12A-1 2-12A-2 2-12A-3	0/100/0	0.044 0.044 0.043	5 5 5	0.005 0.005 0.004	13.7 14.6 12.8	13.7
IM6/F650	2-17-1 2-17-2 2-17-3	0/100/0	0.084 0.084 0.084	5 5 5	0.004 0.005 0.005	15.8 16.5 17.3	16.5
IMS/F650	2-18-1 2-18-2 2-18-3	50/0/50	0.023 0.023 0.022	5 5 5	<0.001 <0.001 <0.001	11.3 11.0 11.5	11.3
!M6/F650	2-14A-1 2-14A-2 2-14A-3	50/0/50	0,043 0,044 0,044	5 5 5	0.005 0.004 0.005	20.3 20.7 20.7	20.6
IMB/F650	2-19-1 2-19-2 2-19-3	50/0/50	0.063 0.064 0.064	5 5 5	0.004 0.005 0.005	18.2 19.2 24.6	20.7

GF43-0000-00-T

Figure 133. Thin Laminate Damage Data for RTD Conditions

Material	Specimen Number	- Cavin	Thickness (in.)	Impact Energy (ft-lb)	Dent Depth (in.)	Residual Compression Strength (ksi)	
			(····)			Ind	Avg
IM6/3100	1-16-4 1-16-5 1-16-6	0/100/0	0.024 0.025 0.024	5 5 5	<0.001 <0.001 0.001	8.9 9.3 8.8	9.0
IM6/3100	1-12A-4 1-12A-5 1-12A-6	0/100/0	0.044 0.045 0.045	5 5 5	0.004 0.004 0.003	12.3 12.5 11.6	12.1
IM6/3100	1-17-4 1-17-5 1-17-6	0/100/0	0.069 0.069 0.069	5 5 5	0.004 0.004 0.004	13.3 12.1 11.2	12.2
IM6/3100 _.	1-18-4 1-18-5 1-18-6	50/0/50	0,025 0.025 0.025	5 5 5	0.020 <0.001 0.002	16.3 20.5 19.6	18.8
IM6/3100	1-14A-4 1-14A-5 1-14A-6	50/0/50	0.04 6 0.047 0.046	5 5 5	0.004 0.003 0.004	27:2 24.5 26.4	23.5
IM6/3100	1-19-4 1-19-5 1-19-6	50/0/50	0.066 0.065 0.068	5 5 5	0.004 0.004 0.004	20.5 18.7 13.7	17.6
IM8/F650	2-16-4 2-16-5 2-16-6	0/100/0	0.021 0.022 0.021	5 5 5	0.001 0.001 0.001	6.1 6.1 8.1	6.8
IM6/F650	2-12A-4 2-12A-5 2-12A-6	0/100/0	0.043 0.044 0.043	5 5 5	0.004 0.004 0.004	9.3 9.1 9.9	9.4
IM6/F650	2-17-4 2-17-5 2-17-6	0/100/0	0.063 · 0.085 0.064	5 5 5	0.005 0.005 0.005	9.2 10.3 9.7	9.7
IM6/F650	2-18-4 2-18-5 2-18-6	50/0/50	0.022 0.022 0.022	5 5 5	0.015 0.015 0.010	10.6 11.7 12.5	11.6
IM6/F650	2-14A-4 2-14A-5 2-14A-8	50/0/50	0.044 0.044 0.043	5 5 5	0.005 0.004 0.005	18.9 20.0 21.7	20.2
IM8/F850	2-19-4 2-19-5 2-19-6	50/0/50	0.062 0.062 0.062	5 5 5	0.004 0.004 0.004	16.0 14.4 16.6	15.7

QP63-0009-61-Y

Figure 134. Thin Laminate Damage Data for ETW Conditions

The final category of impact testing was visible damage. In this set of tests, panels were impacted with energy sufficient to cause a 0.1 inch dent, but not exceeding 100 ft-1bs. The data in Figures 135 and 136 show that under similar impact conditions both IM6/3100 and IM6/F650 exhibited similar dent depths. The residual compression strength of IM6/3100 was superior to IM6/F650 for all cases.

Material	Specimen Number	T I SVIID	Thickness (in.)	Impact Energy	Dent Depth	Residual Compression Strengti (ksi)	
	110111201		(····)	(ft-lb)	(in.)	ind	Avg
IM6/3100	1-12-7 1-12-8 1-12-9	10/80/10	0.115 0.113 0.115	60 60 45	0.145 0.200 0.112	17.4 20.1 19.6	
iM6/3100	1-11-7 1-11-8 1-11-9	10/80/10	0.223 0.222 0.223	100 100 100	0.080 0.083 0.091	15.4 16.3 16.4	16.0
IM6/3100	1-13-7 1-13-8 1-13-9	10/80/10	0.450 0.448 0.451	100 100 100	0.016 0.017 0.018	19.4 20.2 20.3	20.0
IM6/3100	1-14-7 1-14-8 1-14-9	50/40/10	0.110 0.110 0.110	45 45 45	0.120 0.100 0.118	27.3 29.8 28.1	28.4
IM6/3100	1-20-7 1-20-8 1-20-9	50/40/10	0.223 0.224 0.224	100 100 100	0.087 0.103 0.110	21.8 23.0 22.1	22.3
IM6/3100	1-15-7 1-15-8 1-15-9	50/40/10	0.453 0.452 0.449	100 100 100	0.020 0.018 0.021	28.6 27.3 27.9	27.9
IM6/F650	2-12-7 2-12-8 2-12-9	10/80/10	0.107 0.106 0.107	55 55 55	0.110 0.095 0.096	10.8 11.2 9.9	10.6
IM6/F650	2-11-7 2-11-8 2-11-9	10/80/10	0.216 0.216 0.216	100 100 100	0.049 0.078 0.072	9.8 10.3 12.0	10.7
IM6/F650	2-13-7 2-13-8 2-13-9	10/80/10	0.436 0.437 0.440	100 100 100	0.028 0.030 0.021	13.9 14.0 14.4	14.1
IM6/F650	2-14-7 2-14-8 2-14-9	50/40/10	0.111 0.112 0.112	45 45 45	0.105 0.090 0.085	19.9 18.8 23.4	20.7
IM6/F650	2-20-7 2-20-8 2-20-9	50/40/10	0.218 0.219 0.220	100 100 100	0.049 0.040 0.087	16.9 18.0 17.3	17.4
IM6/F650	2-15-7 2-15-8 2-15-9	50/40/10	0.441 0.439 0.440	100 100 100	0.027 0.030 0.030	20.0 19.8 20.4	20.1

QP73-04E3-100-R

Figure 135. Visible Damage Data for RTD Conditions

Material	Specimen Number	Specimen Layup	Thickness (in.)	impact Energy (ft-lb)	Dent Depth	Residual Compression Strength (ksi)	
			(····)		(in.)	Ind	Avg
IM6/3100	. 1-12-10 1-12-11 1-12-12	10/80/10	0.114 0.114 0.114	100 60 60	Hole 0.130 0.130	14.2 14.5 14.4	-
IM6/3100	1-11-10 1-11-11 1-11-12	10/80/10	0.222 0.223 0.223	100 100 100	0.093 0.0 96 0.091	13.6 15.0 14.7	14.4
IM6/3100	1-13-10 1-13-11 1-13-12	10/80/10	0.452 0.452 0.452	100 100 100	0.019 0.015 0.017	15.5 15.8 14.9	15.4
IM6/3100	1-14-10 1-14-11 1-14-12	50/40/10	0.109 0.109 0.109	45 45 45	0.101 0.120 0.122	20.9 21.8 26.3	23.0
IM6/3100	1-20-10 1-20-11 1-20-12	50/40/10	0.222 0.225 0.224	100 100 100	0.094 0.090 0.086	22.4 18.1 16.2	18.9
IM6/3100	1-15-10 1-15-11 1-15-12	50/40/10	0.454 0.452 0.448	100 100 100	0.020 0.020 0.021	22.2 21.7 24.3	22.7
IM6/F650	2·12·10 2·12·11 2·12·12	10/80/10	0.107 0.106 0.108	100 45/45 45/45	Hole 0.067/0.110 0.080/0.130	10.2 9.2 11.0	-
IM6/F650	2-11-10 2-11-11 2-11-12	10/80/10	0.215 0.217 0.216	100 100 100	0.047 0.045 0.085	10.1 9.4 7.9	9.1
IM6/F650	2-13-10 2-13-11 2-13-12	10/80/10	0.437 0.431 0.438	100 100 100	0.026 0.027 0.029	10.9 11.8 11.0	11.2
IM6/F650	2-14-10 2-14-11 2-14-12	50/40/10	0.111 0.110 0.110	45 45 45	0.085 0.086 0.083	18.7 17.3 15.3	17.1
IM8/F650	2-20-10 2-20-11 2-20-12	50/40/10	0.218 0.217 0.216	100 100 100	0.045 0.077 0.052	15.1 14.1 14.2	14.5
IM8/F650	2-15-10 2-15-11 2-15-12	50/40/10	0.440 0.438 0.438	100 100 100	0.027 0.028 0.027	15.6 15.5 16.1	15.7

QP63000042-T

Figure 138. Visible Damage Data for ETW Conditions

Figures 137 and 138 summarize the residual compression strengths of both material systems. In each figure, the maximum strength shown is the RTD unnotched strength. For 10/80/10 and 50/40/10 laminates the impact damage degradation is greater than environmental (ETW) degradation. Figure 138 shows that both non-visible and visible impact damage degradation is greater than the combination of environmental (ETW) and notched degradation; notched data was available from testing in this program only for 50/40/10 laminates.

Figure 137. Residual Compression Strength in 10/80/10 Laminates

Figure 138. Residual Compression Strength in 50/40/10 Laminates

SECTION 5.

TASK IV: STRUCTURAL ELEMENT DESIGN AND TESTING

5.1 <u>Summary and Conclusions</u> - In the earlier Tasks, the better bismaleimide composite was determined to be IM6/3100. This material was used to fabricate eight stiffened panels for static and fatigue testing. Four of the eight panels were impacted in three locations. Impact energies were sufficient to cause non-visible damage with surface dent depths of less than 0.01 inch.

Static test results showed that the non-visible impact damage reduced RTD compression strength to 74 percent of the undamaged RTD compression strength. Exposing a wet (0.71 percent moisture content) undamaged panel to elevated temperature (360°F) reduced the compression strength to 72 percent of the undamaged RTD compression strength. Impacting a panel, moisturizing it to 0.71 percent moisture content and testing it at 360°F reduced the compression strength to 56 percent of the undamaged RTD compression strength.

Fatigue test results showed that the non-visible impact damage did not grow significantly during fatigue cycling. This was illustrated by A-scans of damage area and strain gage data recorded between fatigue blocks. The lack of significant growth during fatigue cycles correlated with the crack growth data collected during Task II fracture toughness fatigue testing. That data showed that crack growth curves for IM6/3100 Mode I, mixed mode, and Mode II testing were steep. The threshold energy level was nearly equal to the critical energy level, indicating that delamination growth would not occur until critical energy levels were developed. This behavior was apparent as damaged fatigue panels failed during increases in maximum fatigue loads, during strain surveys between fatigue cycle blocks.

5.2 <u>Bismaleimide Material Selection</u> Based on test results from Task II and III, IM6/3100 was selected as the material for panel fabrication and testing in Task IV. Moisture absorption and glass transition temperature testing indicated that IM6/F650 would have 50°F more hot/wet temperature capability than IM6/3100. Testing both materials under this assumption has shown that IM6/3100 is superior to IM6/F650. The advantage of higher temperature capability attributed to IM6/F650 was not realized.

The resistance to microcracking due to thermal spiking was greater for IM6/3100 than for IM6/F650. Dry laminates for both material systems showed no resin microcracks after thermal spiking. Wet IM6/3100 laminates also showed no resin microcracks. In contrast, wet IM6/F650 laminates did show microcracks after thermal spiking.

Lamina mechanical properties of IM6/3100 at room temperature dry (RTD) and cold temperature dry (CTD) conditions were generally superior to IM6/F650. Under elevated temperature wet (ETW) conditions the IM6/3100 material system suffered less degradation than the IM6/F650 system. The IM6/3100 retained 51 percent of RTD 0° compression strength and IM6/F650 retained only 42 percent. The IM6/3100 retained 84 percent of RTD intralaminar shear strength and IM6/F650 retained only 59 percent.

The fracture toughness of IM6/3100 was superior to IM6/F650. Under CTD and RTD conditions IM6/3100 was approximately 1.5 times as tough as IM6/F650. Under ETW conditions the IM6/3100 toughness increased and the IM6/F650 toughness decreased resulting in an IM6/3100 toughness that was more than 2 times greater than IM6/F650.

Laminate property tests have shown that the superiority of IM6/3100 lamina properties has translated into superior laminate properties. The CTD unnotched tension strength of fiber dominated IM6/3100 laminates was 13 percent greater than that of IM6/F650. The RTD unnotched tension strength of IM6/3100 was 5 percent greater than that of IM6/F650.

The CTD unloaded hole compression strength of fiber dominated IM6/3100 laminates was 6 percent greater than that of IM6/F650. The RTD unloaded hole compression strength of IM6/3100 was 9 percent greater than that of IM6/F650. The superiority of IM6/3100 in this case has translated into improved fatigue capability and durability which has been observed during unloaded hole fatigue tests.

Low-velocity impact damage test results also showed the superiority of IM6/3100 to IM6/F650. Data from non-visible, thin laminate, and visible damage tests of fiber dominated laminates and matrix dominated laminates

showed that the residual compression strength of IM6/3100 was between 30 percent and 50 percent higher than that of IM6/F650.

- 5.3 <u>Testing and Evaluation</u> Eight tests to evaluate the effect of low velocity impact damage were performed. Four static tests determined residual compression strength of impacted panels. Four fatigue tests determined residual life of impacted panels.
- 5.3.1 <u>Panel Fabrication</u> The eight panels fabricated for Task IV testing were multibay and incorporated both longitudinal and transverse integral stiffeners as shown in Figure 139. Longitudinal stiffening simulating fuselage longerons was provided by integral hat stiffeners layed up as shown in Figure 140, at 6.5 inch centers. Transverse stiffening representing fuselage frames was provided by blade stiffeners layed up as shown in Figure 141, with 16 inch spacing. The skin bays were matrix dominated with a layup of (+45, -45, 0, 90, 0, -45, +45). The outer two +45° plies were cloth and the inner five plies were tape.

Figure 140. Hat Stiffener Cross-Section

Figure 141. Blade Stiffener Cross-Section

To stabilize the panels during longitudinal compression loading, the panels had end plates bonded onto the loading ends prior to testing.

5.3.2 <u>Test Matrix</u> - Eight panels were tested according to the test matrix in Figure 142. Static compression testing was conducted at two environmental conditions, RTD and ETW. One undamaged and one damaged panel was tested in each of the two environments to determine the strength reduction due to low velocity impact damage. Static testing was performed in a 100,000 lb. MTS machine. The test set up is shown in Figure 143.

Fatigue tests were conducted under constant amplitude (R = 10) compression loading at RTD conditions. Two undamaged and two damaged panels were tested to determine the life reduction due to low velocity impact damage. Each fatigue test was performed in blocks of 1,250 cycles with each block run at an increased load level to insure failure in the range of 1,000 to 10,000 cycles. The fatigue block load levels are summarized in Figure 144. The schedule in Figure 144 was determined by considering initial buckling of the undamaged static specimen, ultimate failure of the undamaged static specimen, and ultimate failure of the damaged static specimen. Initial buckling occurred at approximately 50 percent of the undamaged ultimate load. Failure of the damaged panel occurred at 74 percent of the undamaged ultimate load. After each block of cycling, A-scans of impact damaged areas were performed to document impact damage growth. Fatigue testing was also performed in a 100,000 lb. MTS machine.

Panel Number	Lo	ading	Enviro	riment	Damage
	Static	Fatigue	ATD	ETW	Condition
7	X		X	**********	Undamaged
6	X		×		Damaged
5	X .			X	Undemaged
1	X			X	Damaged
2 and 4		X	×		Undamaged
3 and 8		X	X		Damaged

Figure 142. Task IV Test Matrix

OFFICE AND A STATE OF THE PARTY OF THE PARTY

Figure 143. Panel Test Setup

Block Number	Cycles	P _{mex} (kips)	% Static Undamaged Strength
1	1,250	16.1	45
2	1,250	19.6	55
3	1,250	23.2	65
4	1,250	26.8	75
5	1,250	32.1	90

Load ratio, $R = \frac{P_{max}}{P_{min}} = 10$ (compression only)

Cycle frequency = 1 Hz

Static undamaged ultimate load = 35.7 kips

Static damaged ultimate load = 26.5 kips

QP63-0666-7-T

Figure 144. RTD Fatigue Test Schedule

5.3.3 Environmental Conditioning - Panels tested at the ETW condition were preconditioned to a moisture content of 0.71 percent by weight. The moisture level was predicted in Task II to be the end-of-life moisture content of an F-15 wing skin exposed to a 20 year basing scenario.

In Task II, glass transition temperature (T_g) tests determined that an IM6/3100 laminate with a moisture content of 0.71 percent had a T_g of 408°F. With a buffer of 50°F, the temperature for IM6/3100 ETW tests was 360°F. For environmental tests, an enclosing manifold was placed around the panel so that a controlled temperature was maintained during the test. The test setup with environmental chamber is shown in Figure 145.

5.3.4 Introduction of Impact Damage - Low velocity impact damage was induced on the outer mold line of four panels at three critical locations as shown in Figure 146. These locations were selected in order to investigate impact damage effects on thick structure (stiffener land) thin structure (skin bay), and transitional structure (stiffener-to-skin taper). The energy levels used for introducing impact damage into the panels were sufficient to create nonvisible damage (approximately 0.01 inch surface dent). This test program simulated the scenario in which fuselage structure is subjected to damage from debris kicked up during takeoff and landing but the damage is not severe enough to be visible during walk-around inspection.

Figure 145. Environmental Chamber for ETW Tests

136

Figure 146. Outer Mold Line Impact Locations and Energy Levels

5.3.5 Data Analysis (Static) - The panel design includes longitudinal stiffeners that were sized to carry a majority of the compression loading. As a result, the failure mode of the panels was stiffener crippling accompanied by stiffener separation as shown in Figure 147. Ultimate loads for the four static tests are summarized in Figure 148. In order to predict panel compression strength, the hat stiffener crippling strength was calculated. Because the slenderness ratio, L'/p, of the stiffener section was greater than 20, column behavior was accounted for and a correction to the predicted crippling strength was made using the Johnson-Euler equation. The damaged panel compression strength was predicted by accounting for the degree of delamination of the stiffener from the skin. In the case of impact damaged panels, A-scans of damage area determined the degree of stiffener delamination.

Figure 147. Stiffened Panel Failure Including Stiffener Crippling and Separation

Panel Number	Environment	impact Damage Condition	Ultimate Load (kips)	% RTD Undamaged Ultimate Load	
7	RTD	Undamaged	35.7	100	
6	RTD	Damaged	26.5	74	
5	ETW	Undamaged	25.7	72	
1	ETW	Damaged	20.1	56	

GP83-0089-8-T

Figure 148. Ultimate Loads for Static Panel Tests

The hat stiffener crippling strength was calculated using a technique developed at MCAIR. The calculation involves the summation of crippling strengths of elements contributing to the total stiffener crippling strength. The summation equation has the form,

$$\operatorname{Fcc} = \frac{\sum_{i=1}^{n} F_{i}^{cc} A_{i}}{\sum_{i=1}^{n} A_{i}}$$

where F^{CC} = section crippling strength

F, cc = element crippling strength

n = number of elements

A, = element area

Element crippling strengths were determined from crippling curves shown in Figure 149. The curves are for no-edge-free and one-edge-free elements. The crippling calculations are tabulated in Figure 150 for RTD and ETW conditions. In both cases, the hat stiffener was modeled with 6 elements. Laminate properties $(E_{\mathbf{x}}^{\mathbf{c}}, E_{\mathbf{y}}^{\mathbf{c}}, \text{ and } F_{\mathbf{x}}^{\mathbf{cu}})$ were calculated using lamina properties determined in Task II. $\tilde{\mathbf{E}}$ was determined by the equation:

$$\tilde{E} = \frac{12 (1 - v_{xy} v_{yx}) D_{11}}{t^3}$$

whore

v_{xy}, v_{yx} = laminate Poisson's ratios

D, . # flexibility term from laminate "ABD" matrix

t = laminate thickness

Figure 149. Nondimensional Crippling Curves for No-Edge-Free and One-Edge-Free Elements

RTD Crippling Analysis

Element b t (in.)		t	t F ^{cu}	E¢	Ec.	E, E	b Fx	E	F∝	E¢	F ^{cc}	pcc
		(in.) (kŝi)		(mši) (mši)		(msi)	$t\sqrt{\sqrt{E_x^c E_y^{cl}}}$	Ex Fx		Ē	(ksi)	(lb)
1	0.50	0.0836	66.5	6.14	7.98	6.04	0.57		0.	88	57.6	2,410
2	1.50	0.0992	62.9	5.80	10.66	5.78	1.35		0.	64	40.1	5,970
3	0.50	0.0836	66.5	6.14	7.98	6.04	0.57		0.	88	57.6	2,410
4	1.26	0.0384	88.8	8.23	4.07	5.39	2.66		0.	37	21.5	1,040
5	1.26	0.0384	88.8	8.23	4.07	5.39	2.66		0.	37	21.5	1,040
6	1.15	0.0904	177.7	16.44	3.00	11.26	1.38		0.	62	75.5	7,850
tal Area	= 0.433	lin. ²									Total	= 20,72

ETW Crippling Analysis

Element	b .	ıt.	t F _x cu	cu Ec	E¢,		b $\sqrt{F_x^{cu}}$	Ē	F F Ex	•	pcc	
ciement (in.) (in.)	(in.)) (ksi) ((msi) (msi)	(mai)	1 VELED	E _c	F	F _X ^{CU} E	(ksi)	(Ib)		
1	0.50	0.0836	29.3	5.61	7.66	5.43	0.39		1.0)0	28.4	1,190
2	1.50	0.0992	27.8	5.34	10.64	5.29	0.91		0.8	38	24.2	3,600
3	0.50	0.0836	29.3	5.61	7.66	5.43	0.39		1.0	00	28.4	1,190
4	1.26	0.0384	39.7	7.64	3.39	4.72	1.79		0.9	51	12.5	600
5	1.26	0.0384	39.7	7.64	3.39	4.72	1.79		0.	51	12.5	600
6	1.15	0.0904	87.9	16.91	2.26	11.23	1.01		0.6	31	47.3	4,920
otal Area	= 0.433	in. ²	7								Total	- 12,10

GP4304864

Figure 150. RTD and ETW Crippling Analyses of Hat Stiffener Modeled With 6 Elements

Corrections for column behavior were calculated with the Johnson-Euler Equation:

$$F^{c} = F^{cc} - \frac{(F^{cc})^2}{4\pi^2 E} (L'/\rho)^2$$

where

F^C = stiffener failing strength

F^{CC} = stiffener crippling strength

E = average stiffener modulus

L' = L/1.5 = effective stiffener length (assuming fixity (1.5) is half way between simply supported (1) and clamped (2)).

 ρ = radius of gyration

 L'/ρ = slenderness ratio

The results of the calculations are tabulated in Figure 151 for RTD and ETW conditions.

	pes (kal)	E (msi)	L'Ip	(kei)	pe (kips)
RTD	47.8	8.23	26.3	42.9	18.6
ETW	27.9	7.64	26.2	26.1	11.3

 $E_0 = E_{CC} - [(E_{CC})_3/4 \ \pi_3 E] (\Gamma_1/b)_5$

GP43-0448-74-R

Figure 151. Column Strength Correction Results

Under RTD conditions, the undamaged stiffener failing load was predicted to be 18,580 lbs. The total failing load for 2 stiffeners is 37,160 lbs. This prediction was 4 percent higher than the actual failing load of 35,700 lbs. The damaged panel failing load was predicted to be 23,970 lbs. by assuming elements 1, 2, and 3 of one stiffener and element 1 of the other stiffener did not contribute to the strength. This assumption was made based on A-scans of impact damage prior to compression testing. Figure 152 shows the damage area that was located across the width (flange-to-flange) of the left hat stiffener and over only one flange of the right hat stiffener. This prediction was 10 percent lower than the actual failing load of 26,500 lbs.

Figure 152. Impact Damage Referenced to Longitudinal Hat Stiffeners

Similar calculations were made for ETW tests of damaged and undamaged panels. The undamaged panel ultimate load prediction of 22,610 lbs. was 12 percent lower than the actual failing load of 25,700 lbs. The predicted damaged panel failing load of 15,440 lbs. was 23 percent lower than the actual failing load of 20,100 lbs. These results are summarized in Figure 153.

Figure 153. Crippling Load Predictions for Undamaged and Damaged Panels

5.3.6 <u>Data Analysis (Fatigue)</u> - As shown in Figure 144, fatigue testing was performed in blocks of 1,250 cycles. The first fatigue block was run at 45 percent of the undamaged ultimate load. The next three blocks were run at increasing increments of 10 percent up to 75 percent of the undamaged ultimate load. In the case of panel #4, a fifth block was started at 90 percent of the undamaged ultimate load. Fatigue lives for the four fatigue panels are summarized in Figure 154.

Panel Number	Impact Damage Condition	Cycles to Fallure	Comment
2	Undamaged	3,426	Failed 926 cycles into 3rd Fatigue Block With Maximum Load of 23.2 kips (65% of Ultimate)
4	Undamaged .	5,174	Failed 174 cycles into 5th Fatigue Block With Maximum Load of 32.1 kips (90% of Ultimate)
3	Demaged	3,750	Failed at 25.3 kips During the 4th Strain Survey to 26.8 kips (75% of Ultimate)
8	Demaged	2,500	Failed at 22.8 kips During the 3rd Strain Survey to 23.2 kips (65% of Ultimate)

Figure 154. Panel Fatigue Test Results

GP42-0566-37-T

Between cycle blocks, all the panels were strain surveyed in order to monitor changes in panel response due to fatigue. Gages were mounted on the panels as shown in Figure 155. All odd numbered gages were located on the outer mold line. All even numbered gages were located on the inner mold line.

Figure 155. Strain Gage Locations

In addition to being strain surveyed, impact damaged panels (Numbers 3 and 8) were A-scanned between cycle blocks to determine impact damage growth due to fatigue. Figures 156 and 157 show damage histories for Panel 3 and 8 respectively. Figures 156 and 157 show that the impact damage was located such that back-to-back gage pairs 1,2 and 4,5 were on or near delamination edges. Back-to-back gages 6,7 were closer to the center of a delamination. The figures also show that there was very little damage growth in Panel 3 and no damage growth in Panel 8 prior to failure. This behavior correlates with crack growth data from Task II. That data showed that the crack growth curves for both bismaleimides were steep, with the growth threshold nearly equal to the critical strain energy release rate.

Figure 156. Damage as Viewed From Outer Mold Line of Panel #3

Figure 157. Damage as Viewed From Outer Mold Line of Panel #8

Strain survey data also indicated that there was little change in the panel damage state prior to failure. Figures 158 through 160 show the strain surveys for each of the three back-to-back gage pairs (1,2 4,5 6,7) on Panel . The strain response of the panels was consistent from survey to survey. Slight deviations were evident for final surveys in which failure did occur. Note that the surveys in Figures 158 and 159 show less divergence than that in Figure 160. This can be explained by the fact that gages 6 and 7 (data in Figure 160) were located in the middle of a delamination where local buckling occurred and gage pairs 1,2 and 4,5 (data in Figures 158 and 159) were located at a delamination edge where buckling did not occur.

Figure 158. Strain Surveys of Strain Gages 1 and 2 of Panel No. 3

Figure 159. Strain Surveys of Strain Gages 4 and 5 of Panel No. 3

Figure 160. Strain Surveys of Strain Gages 6 and 7 of Panel No. 3

Panel 8 exhibited similar behavior. Figures 161 through 163 show the strain surveys for back-to-back pairs 1,2 4,5 and 6,7 on Panel 8. Again the surveys illustrate consistent behavior until slight deviations occur during the final survey. Also, buckling behavior was exhibited at gage pair 6,7 and not at pairs 1,2 and 4,5.

Figure 161. Strain Surveys of Strain Gages 1 and 2 of Panel No. 8

Figure 162. Strain Surveys of Strain Gages 4 and 5 of Panel No. 8

Figure 163. Strain Surveys of Strain Gages 6 and 7 of Panel No. 8

5.3.7 <u>Discussion of Results</u> - Static and fatigue test results are summarized in Figure 164. Static results show that the crippling/column analyses produced conservative predictions for all cases except the undamaged RTD test, where the analysis was unconservative by 4 percent. When either damage or ETW conditions were involved, the analysis was conservative by approximately 10 percent. When both damage and ETW conditions were involved the analysis was conservative by approximately 30 percent. The analysis was reasonably accurate except in the damage/ETW case. Apparently the crippling/column analysis was not rigorous enough to correctly account for both impact damage and ETW conditions.

_	_	_	
Sta	tie.		 Ite

		Ultimate Los	d (kips)	Δ%. Test-Predicte	
Damage	Environment	Predicted	Test	Prediction	
No	RTD	. 37.2	35.7	-4	
Yes	RTD	24.0	26.5	+10	
Νσ	ETW	22.6	25.7	+14	
Yes	ETW	15.4	20.1	+31	

Fatigue Results

Damage	Peak Load at Failure (kips)	% of Ultimate (Ultimate = 35.7 kips)	
No	23.2	65	
No	32.1	90	
Yes	26.8	75	(100% Damaged Ultimate)
Yes	23.2	65	(87% Damaged Ultimate)

GP63-0089-78-T

Figure 164. Summary of Static and Fatigue Results

Fatigue results show that, except for one case, the panels survived until peak loads were increased to approximately 90 percent of the undamaged ultimate load (or 90 percent of the damaged ultimate load in the case of damaged panels). The exception where an undamaged panel failed at peak loads of 65 percent of the ultimate load was noteworthy. The behavior reinforces questions of the reliability of cocured structure. The failure at 65 percent of ultimate may be a result of imperfect bonding of cocured stiffeners. Before cocured structures can be effective, more work must be done to develop effective analyses to determine the translaminar capability of composite laminates with cocured elements.

SECTION 6.

CONCLUSIONS AND RECOMMENDATIONS

In this program a large data base of material properties was developed for two second generation bismaleimide composite systems. The test program sufficiently defined the materials, and existing analytical techniques proved to be as effective for bismaleimide matrix composites as they were for epoxy matrix composites.

IM6/3100 was found to be tougher than IM6/F650. IM6/3100 exhibited toughness as great as the toughness of the baseline epexy system AS1/3501-6. Under similar conditions, impact damage in panels made with 3100 resin has been shown to be similar to damage in panels made with 3501-6 resin. While the test procedures used to determine toughness and impact damage response were effective, there is still a need for an effective analytical tool with which to predict impact damage response. It is expected that the toughness and instrumented impact data presented in this program will serve as a basis for the development of empirical and, eventually, analytical methods in the future.

The similarity in impact damage characteristics of epoxy and the second generation bismaleimide IM6/3100 indicates that damage tolerance requirements applicable to epoxy systems would also be applicable to IM6/3100. The similarity in impact damage performance is a reflection of the improvements in toughness that have been made in second generation bismaleimides compared to first generation bismaleimides such as V378A. At the start of this program, American Cyanamid's 3100 BMI resin was the toughest, most readily available candidate for evaluation. Since then, further improvements have been made in both BHIs and epoxies resulting in tougher systems than 3100 or 3501-6. As systems continue to evolve, the applicability of the draft Air Force durability and damage tolerance design requirements for composite aircraft structures must be investigated.

REFERENCES

- 1. Badaliance, R., and Dill, H. D., "Effects of Fighter Attack Spectrum on Composite Fatigue Life," AFWAL-TR-81-3001, March 1981.
- 2. Rosen, B. W., A Simple Procedure for Experimental Determination of the Longitudinal Shear Modulus of Unidirectional Composites, J. Composite Materials, Vol. 6, October 1972, p. 552.
- 3. Petit, P. H., A Simplified Method of Determining the Inplane Shear Stress-Strain Response of Unidirectional Composites, Composite Materials: Testing and Design, ASTM STP 460, American Society for Testing and Materials, 1969, pp 83-93.
- 4. Pipes, R. B. and Pagano, N. J., Intralaminar Stresses in Composite Laminates Under Uniform Axial Extension, J. Composite Materials, October 1970, pp 538-548.
- 5. Law, G. E., and Wilkins, D. J., "Delamination Failure Criteria for Composite Structures," Report No. NAV-GD-0053, May 1984.
- 6. Wilkins, D. J., "A Comparison of the Delamination and Environmental Resistance of a Graphite-Epoxy and a Graphite-Bismaleimide," Report No. NAV-GD-0037, September 1981.
- 7. Russell, A. J., and Street, K. N., "Factors Affecting the Interlaminar Fracture Energy of Graphite/Epoxy Laminates," Proceedings of the Fourth International Conference on Composite Materials, Tokyo, Japan, October 1982.
- 8. Task II Interim Technical Report, "Durability and Damage Tolerance of Bismaleimide Composites," Contract No. 33615-85-C-3212, July 31, 1987.
- 9. Garbo, S.P. and Ogonowski, J.M. "Effect of Variances and Manufacturing Tolerances on the Design Strength and Life of Mechanically Fastened Composite Joints," AFWAL-TR-81-3041, Volumes 1, 2 and 3, April 1981.