

DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Session: Autumn 2016-17

Exam: Midterm Exam

No. of Students: 670

Subject No.: CY11001

Subject Name: Chemistry

Time: 2hrs.

Full Marks: 40

PLEASE READ THE INSTRUCTIONS GIVEN BELOW BEFORE ANSWERING THE PAPER

(This question paper contains 4 pages, including this page)

- 1. This Question Paper has <u>TWO</u> parts (i.e., PART-A and PART-B). Make sure that each of you have received both, PART-A and PART-B of the Question Paper.
- 2. Answer ALL questions.
- 3. <u>ALL QUESTIONS OF PART- A and PART-B SHOULD BE ANSWERED SERIALLY.</u>
- 4. ANSWERS OF PART-A MUST BE WRITTEN TOGETHER.
- 5. <u>LEAVE A PAGE BLANK IN THE ANSWER SCRIPT IN BETWEEN</u> THE ANSWERS OF PART-A and THE ANSWERS OF PART-B.
- 6. ANSWER SCRIPTS SUBMITTED WITHOUT FOLLOWING THE INSTRUCTION No.3, No. 4 and No. 5 MAY NOT BE EVALUATED

- 1. All symbols used in the question paper have their usual meaning
- 2. Mention the sign convention used.
- 3. Clearly state whether you are using reduction or, oxidation potential in electrochemistry.
- 4. No credit will be given without workout being shown wherever necessary.

[Supplied Data: $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$; $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; $1 \text{ bar} = 1 \times 10^5 \text{ Pa}$; $1 \text{ Faraday} = 96,500 \text{ C mol}^{-1}$; 1 atm = 760 Torr]

Q1. Write the correct option (a/b/c/d) in the Answer Script

 $....(1 \times 10 = 10)$

(i) Chemical potential μ_i of a component i in a homogeneous mixture can be defined as:

(a)
$$\mu_i = \left(\frac{\partial G}{\partial n}\right)_{T,P,n_i}$$
; (b) $\mu_i = \left(\frac{\partial H}{\partial n}\right)_{T,P,n_i}$; (c) $\mu_i = \left(\frac{\partial A}{\partial n}\right)_{T,P,n_i}$; (d) $\mu_i = \left(\frac{\partial U}{\partial n}\right)_{T,P,n_i}$

(ii) What will be the activity for 'm' molal solution of an AB₂ electrolyte?

- (a) $(\gamma_{\pm} m^3)$;
- (b) $(\gamma_{\pm} m)^3$; (c) $4(\gamma_{\pm} m)^3$;
- (d) $(\gamma_{\pm} m_{+}^{3})$

(iii) Which of the following statements is always true for a liquid mixture of two components A and B in equilibrium with a mixture of their vapours?

(a) $\mu_A(1) = \mu_B(1)$ and $\mu_A(g) = \mu_B(g)$;

(b) $\mu_A(1) = \mu_A(g) = \mu_B(1) = \mu_B(g)$

(c) $\mu_A(1) = \mu_A(g)$ and $\mu_B(1) = \mu_B(g)$;

(d) $\mu_{A}(1) \neq \mu_{A}(g) \neq \mu_{B}(1) \neq \mu_{B}(g)$

(iv) Which of the following is a reversible process?

(a) Melting of ice at 0°C and 1 atm.;

- **(b)** Melting of ice at 25°C and 1 atm.;
- (c) Evaporation of water at 25°C and 1 atm.
- (d) Freezing of water at -10° C and 1 atm.

(v) At inversion temperature of a gas, the value of Joule-Thomson coefficient (μ_{JT}) will be:

- (a) $\mu_{JT} = 0$;
- (b) $\mu_{JT} > 0$;
- (c) $\mu_{JT} < 0$;

(d) $\mu_{JT} \approx \infty$

(vi) What will happen to the chemical potential of O₂ when 1.0 mole of O₂ gas is added to a container that already contained 1.0 mole of O₂ gas?

- (a) μ (O₂) will increase;
- (b) μ (O₂) will decrease;
- (c) μ (O₂) will remain unchanged

(vii) Which one is the correct condition for spontaneous reaction in an electrochemical cell

(a) $\Delta G_{T.P} < 0$, $E_{cell} > 0$;

(b) $\Delta G_{T,P} > 0$, $E_{cell} < 0$

(c) $\Delta G_{T,V} < 0$, $E_{cell} < 0$;

(d) $\Delta G_{T.P} = 0$, $E_{cell} = 0$

(viii) What fraction of the total quantity of heat (q_h) taken from the source that is at temperature T_h can be converted into work in a reversible cyclic process? (ΔT is the temperature difference between the source and the sink)

- (a) $\Delta T \times T_h$;
- **(b)** $\Delta T / T_h$;
- (c) zero;
- (d) $T_h / \Delta T$.

(ix) Which one of the following fundamental equations is/ are applicable for any open system?

(a) dG = VdP - SdT;

- **(b)** $dG = VdP SdT + \Sigma \mu_i dn_i$;
- (c) $dG = PdV + TdS + \Sigma \mu_i dn_i$;
- (d) $dG = PdV SdT + \Sigma \mu_i dn_i$

(x) $\Delta S > 0$ is a condition for spontaneity for which of the following systems:

- (a) Closed system;
- **(b)** Open system:
- (c) Isolated system;
- (d) All systems

ANSWERS OF Part B should begin on new Page in the Answer Script

Q2. (a) Show that:

$$U = G - P \left(\frac{\partial G}{\partial P} \right)_{T} - T \left(\frac{\partial G}{\partial T} \right)_{P}$$

- **(b)** Prove the following relation: $\left(\frac{\partial H}{\partial V}\right)_T = -V^2 \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial (T/V)}{\partial V}\right)_P$
- (c) Two moles of an ideal gas at 45 °C are compressed adiabatically and reversibly from 75.0 litres to 20.0 litres. Calculate q, w, ΔU , and ΔH for the process. [Given: $C_V = 2.5 R$ for the gas].

$$\dots[2+3+5=10]$$

Q3. (a) From the given T-S diagram (ABCD) of a reversible Carnot engine shown below, find the

- (i) Net work delivered by the engine in each cycle
- (ii) Heat taken from the source in each cycle
- (iii) ΔS_{sink} in each cycle

$$\dots[1+1+2=4]$$

- (b) Calculate the following for a liquid whose vapour pressure (in **Torr**) between 15 °C and 35 °C fits the expression: $\log(p_i) = 8.750 \frac{1625}{T}$.
- (i) The enthalpy of vaporization (in kJ mol⁻¹) of the liquid; (ii) The normal boiling point (in K)[2+2=4]
- (c) Label the points (p, q, r, s) shown in the phase diagram of a one component system

....
$$\left[\frac{1}{2} \times 4 = 2\right]$$

- Q4. (a) For the following reaction at 25 $^{\circ}$ C and 1 atm, the Gibbs energy change is + 2.90 kJ mol⁻¹. C (s, graphite) \rightarrow C (s, diamond)

 Densities of graphite and diamond at 25 $^{\circ}$ C are 2.25 and 3.51 g cm⁻³ respectively.
 - (i) Will increase in pressure favour the conversion of graphite to diamond? Justify your answer.
 - (ii) If your answer in part (i) is yes, then calculate the maximum pressure necessary to make this reaction spontaneous at 25 $^{\circ}$ C.[2 + 2 = 4]
 - (b) For the galvanic cell: $Pt \mid H_2(g, P_{H2}) \mid HCl(aq, a_{H+}) \mid O_2(g, P_{O2}) \mid Pt$
 - (i) Write the half-cell as well as complete cell reactions.
 - (ii) If the standard state Gibbs energy of formation ($\Delta_f G^o$) of $H_2O(I)$ is -237.13 kJ mol⁻¹. Calculate the EMF of the cell in the standard state.
 - (iii) Calculate the equilibrium constant of the overall cell reaction at 298 K.[2 + 2 + 2 = 6]

S. Sondeme algor

Dey

Shakak