Pre-appello di Elettrotecnica, Ingegneria Chimica, 31 Maggio 2018

Cognome e nome:_____

	Matricola:		
Sezione I			
Applicare il teorema di sovrapp combinazione lineare $i_{x}=aE_{1}$	osizione degli effetti per determi bE_2+cI	nare i coefficienti <i>a, b, c</i> della	
$E_1 \stackrel{+}{\underset{i_x}{\longrightarrow}} k_R$	E_2 R		
Soluzione per determinare a	Soluzione per determinare b	Soluzione per determinare c	

Determinare il circuito equivalente di Thevenin visto ai morsetti a,b				
$ \begin{array}{c c} a & b \\ R & I \\ \hline I_x & R & R \\ \hline I_$	$R = 2\Omega$, $I = 2A$, $\alpha = 3$			
Soluzione in forma letterale e numerica	Disegnare il circuito equivalente di Thevenin			

Scrivere il sistema di equazioni risolutive del circuito secondo il metodo delle tensioni nodali (nodo di riferimento e numerazione dei nodi sono assegnate)

Il circuito rappresentato in figura si trova in condizione di regime permanente. Calcolare in forma letterale e numerica:

- L'andamento temporale della corrente $i_x(t)$
- ullet La potenza attiva assorbita dalla resistenza R_1

• Le potenze attive e reattive erogate dal generatore di tensione

Il circuito si trova a regime sinusoidale alla frequenza di 1 kHz ed il valore dell'induttanza L_1 è tale da mandare in risonanza il parallelo *C-L*₁. Calcolare (con soluzione letterale e numerica): \overline{R} L $R = 2\Omega$ $\sqrt{\sqrt{}}$ 00000 $C = 100 \mu F$ L = 1mH $\dot{I} = 0.5A$ La corrente nel ramo serie R-L Il valore efficace delle correnti negli elementi risonanti L'energia elettromagnetica media immagazzinata nei suddetti elementi

Sezione II

Un carico ohmico-capacitivo e uno ohmico-induttivo hanno lo stesso fattore di pote sempre che: Le impedenze sono complesse coniugate I carichi assorbono la stessa potenza attiva Gli angoli delle rispettive impedenze sono uguali e opposti	nza. Ne segue
Il rifasamento di un carico ohmico-induttivo consente di ☐ Diminuire la corrente assorbita dal carico a parità di potenza attiva ☐ Diminuire la potenza reattiva assorbita dal carico a parità di potenza reattiva generatore ☐ Diminuire la corrente erogata dal generatore a parità di potenza attiva	ı erogata dal
 Un bipolo è "con memoria" se e solo se □ Il legame fra tensione v e corrente i ai morsetti del bipolo ad un generico ista non dipende dai valori di v e/o i ad altri istanti di tempo □ Il legame fra tensione v e corrente i ai morsetti del bipolo ad un generico ista dipende anche dai valori di v e/o i ad altri istanti di tempo □ Il legame fra tensione v e corrente i ai morsetti del bipolo dipende dal tempo 	ante di tempo t
Se la potenza assorbita da un generatore ideale di corrente continua risulta essere p La tensione ai capi del generatore è negativa con i riferimenti non associati La tensione ai capi del generatore è positiva con i riferimenti non associati Il segno della tensione ai capi del generatore dipende dal resto del circuito	oositiva
La potenza reattiva assorbita da un bipolo	

Sezione III

Di un trasformatore ideale monofase sono noti i seguenti dati: $P_n=100kVA$, $V_{1n}=20kV$, $V_{2n}=400V$, $f=50Hz$, $N_2=65$. Calcolare:		
• Il numero di spire N_1		
• Il valore massimo Φ_M del flusso		
magnetico nel nucleo		
• Le correnti nominali I_{1n} ed I_{2n}		
 Il modulo dell'impedenza di carico Z_c che assorbe la corrente nominale. 		
che assorbe la corrente nominale.		

Un motore asincrono trifase i cui dati di targa sono: $V_n=500V$, f=50Hz, p=4 (paia di poli), $P_n=10.5kW$ (con statore collegato a stella), è rappresentato dal suo circuito equivalente monofase approssimato, di cui sono noti i seguenti parametri

Il motore è alimentato alla sua tensione nominale; calcolare (Soluzione letterale e numerica):

- Il modulo della corrente complessivamente assorbita dallo statore
- la velocità di rotazione e la coppia fornita all'asse.

Di un generatore sincrono trifase è noto il suo circuito equivalente monofase secondo Behn-Eschemburg, in cui la reattanza sincrona di armatura vale $X_{sa}=2\Omega$ (le fasi sono collegate a stella). In determinate condizioni di funzionamento, la tensione di linea ai suoi capi vale $V_{l}=0$				
1.2kV, ed eroga una potenza attiva pari a $P=40kW$ su un carico puramente resistivo. Determinare (riportando svolgimento e valori numerici):				
il valore del generatore E_0 di tensione del circuito equivalente monofase e l'angolo di coppia	la potenza reattiva complessivamente impegnata nelle reattanze sincrone del generatore la potenza reattiva complessivamente impegnata nelle reattanze sincrone del generatore			
La corrente di eccitazione in una macchina sincrona: Deve avere la stessa frequenza della rete a cui è collegata la macchina E' una corrente sinusoidale che crea un campo magnetico rotante E' una corrente continua che crea un campo magnetico statico				
In un motore in corrente continua la forza elettromotrice di armatura Coincide con la tensione di alimentazione E' direttamente proporzionale alla velocità di rotazione del rotore E' direttamente proporzionale al flusso prodotto dagli avvolgimenti di rotore				