Master 2 Data Science, Univ. Paris Saclay

Optimization for Data Science

Stéphane Gaïffas

We want to minimize

$$F(x) = f(x) + g(x)$$

where f is goodness-of-fit

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$
 with $f_i(x) = \ell(b_i, \langle a_i, x \rangle)$

and g is penalization, where main examples are

$$g(x) = \frac{\lambda}{2} ||x||_2^2$$
 (ridge) $g(x) = \lambda ||x||_1$ (lasso)

At each iteration gradient descent (GD) methods use

$$\nabla f(x) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x),$$

while stochastic gradient descent (SGD) use

$$\nabla f_I(x)$$

where $I \in \{1, ..., n\}$ is chosen uniformly at random

Remark. $\nabla f_l(x)$ is an unbiased but very noisy estimate of the full gradient $\nabla f(x)$

Stochastic Gradient Descent

Input: starting point x_0 , steps (learning rates) η_t For $t = 1, 2, \ldots$ until *convergence* do

- Pick at random (uniformly) i_t in $\{1, \ldots, n\}$
- compute

$$x_t = x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$$

Return last x_t

Rate of convergence of GD versus SGD is

$$O\Big(\frac{n}{\mu}\log\big(\frac{1}{\varepsilon}\big)\Big) \qquad \text{versus} \qquad O\Big(\frac{1}{\mu\varepsilon}\Big)$$

if f is μ -strongly convex

Remarks.

- SGD is very fast in the early iterations
- SGD does n iterations while GD does nothing
- If ε small $1/\varepsilon\gg\log(1/\varepsilon)$ hard for SGD to converge to a precise solution

Why?

Stochastic gradients are unbiased but have a large variance

How to improve this?

• Use a variance reduction technique

Recent results improve this:

- Bottou and LeCun (2005)
- Shalev-Shwartz et al (2007, 2009)
- Nesterov et al. (2008, 2009)
- Bach et al. (2011, 2012, 2014, 2015)
- T. Zhang et al. (2014, 2015)

The problem.

- Put $X = \nabla f_I(x)$ with I uniformly chosen at random in $\{1, \ldots, n\}$
- In SGD we use $X = \nabla f_I(x)$ as an approximation of $\mathbb{E} X = \nabla f(x)$
- How to reduce var X ?

An idea

- Reduce it by finding C s.t. $\mathbb{E}C$ is "easy" to compute and such that C is highly correlated with X
- Put $Z_{\alpha} = \alpha(X C) + \mathbb{E}C$ for $\alpha \in [0, 1]$. We have

$$\mathbb{E} Z_{\alpha} = \alpha \mathbb{E} X + (1 - \alpha) \mathbb{E} C$$

and

$$\operatorname{var} Z_{\alpha} = \alpha^{2}(\operatorname{var} X + \operatorname{var} C - 2\operatorname{cov}(X, C))$$

• Standard variance reduction: $\alpha=1$, so that $\mathbb{E} Z_{\alpha}=\mathbb{E} X$ (unbiased)

Variance reduction of the gradient

In the iterations of SGD, replace $\nabla f_{i_t}(x_{t-1})$ by

$$\alpha(\nabla f_{i_t}(x_{t-1}) - \nabla f_{i_t}(\widetilde{x})) + \nabla f(\widetilde{x})$$

where \widetilde{x} is an "old" value of the iterate, namely use

$$x_t \leftarrow x_{t-1} - \eta \left(\alpha \left(\nabla f_{i_t}(x_{t-1}) - \nabla f_{i_t}(\widetilde{x}) \right) + \nabla f(\widetilde{x}) \right)$$

Several cases

- $\alpha = 1/n$: SAG (Bach et al. 2013)
- $\alpha = 1$: SVRG (T. Zhang et al. 2015, 2015)
- $\alpha = 1$: SAGA (Bach et al., 2014)

Stochastic Average Gradient

Input: starting point x_0 , learning rate $\eta > 0$ For t = 1, 2, ... until *convergence* do

- Pick uniformly at random i_t in $\{1, \ldots, n\}$
- Put

$$g_t(i) = egin{cases}
abla f_i(x_{t-1}) & ext{if } i = i_t \\ g_{t-1}(i) & ext{otherwise} \end{cases}$$

and compute

$$x_t = x_{t-1} - \frac{\eta}{n} \sum_{i=1}^n g_t(i)$$

Return last x_t

Stochastic Variance Reduced Gradient

Input: starting point x_0 , learning rate $\eta > 0$

Put
$$\widetilde{x}^1 \leftarrow x_0$$

For $k = 1, 2, \dots$ until convergence do

- Put $x_0^k \leftarrow \widetilde{x}^1$
- Compute $\nabla f(\widetilde{x}^k)$
- For t = 0, ..., m-1
 - Pick uniformly at random i in $\{1, ..., n\}$
 - Apply the step

$$x_{t+1}^k \leftarrow x_t^k - \eta(\nabla f_i(x_t^k) - \nabla f_i(\widetilde{x}^k) + \nabla f(\widetilde{x}^k))$$

Set.

$$\widetilde{x}^k \leftarrow \frac{1}{m} \sum_{t=1}^m x_t^k$$

Return last x_t^k

SAGA

Input: starting point x_0 , learning rate $\eta > 0$ Compute $g_0(i) \leftarrow \nabla f_i(x_0)$ for all i = 1, ..., nFor t = 1, 2, ... until *convergence* do

- Pick uniformly at random i_t in $\{1, \ldots, n\}$
- Compute $\nabla f_{i_t}(x_{t-1})$
- Apply

$$x_t \leftarrow x_{t-1} - \eta \Big(\nabla f_{i_t}(x_{t-1}) - g_{t-1}(i_t) + \frac{1}{n} \sum_{i=1}^n g_{t-1}(i) \Big)$$

• Store $g_t(i_t) \leftarrow \nabla f_{i_t}(x_{t-1})$

Return last x_t

Stochastic Variance Reduced Gradient

Phase size typically chosen as m = n or m = 2nIf F = f + g with g prox-capable, use

$$x_{t+1}^k \leftarrow \mathsf{prox}_{\eta g}(x_t^k - \eta(\nabla f_i(x_t^k) - \nabla f_i(\widetilde{x}^k) + \nabla f(\widetilde{x}^k)))$$

SAGA

If F = f + g with g prox-capable, use

$$x_t \leftarrow \text{prox}_{\eta g} \left(x_{t-1} - \eta \left(\nabla f_{i_t}(x_{t-1}) - g_{t-1}(i_t) + \frac{1}{n} \sum_{i=1}^n g_{t-1}(i) \right) \right)$$

Important remark

- In these algorithms, the step-size η is kept **constant**
- Leads to linearly convergent algorithms, with a numerical complexity comparable to SGD!

Theoretical guarantees

- Each f_i is L_i -smooth. Put $L_{\max} = \max_{i=1,...n} L_i$
- f is μ -strongly convex

For SAG

Take $\eta = 1/(16L_{\text{max}})$ constant

$$\mathbb{E}f(x_t) - f(x_*) \leq O\left(\frac{1}{n\mu} + \frac{L_{\mathsf{max}}}{n}\right) \exp\left(-t\left(\frac{1}{8n} \wedge \frac{\mu}{16L_{\mathsf{max}}}\right)\right)$$

The rate is typically faster than gradient descent!

For SVRG

Take η and m such that

$$ho = rac{1}{1-2\eta L_{\sf max}} \Big(rac{1}{{\it m}\eta\mu} + 2L_{\sf max}\eta\Big) < 1$$

Then

$$\mathbb{E}f(x^k) - f(x_*) \le \rho^k (f(x^0) - f(x_*))$$

[we will prove that later...]

In practice m=n and $\eta=1/L_{\sf max}$ works

In summary, about variance reduction

- Complexity O(d) instead of O(nd) at each iteration
- Choice of a **fixed** step-size $\eta > 0$ possible
- Much faster than full gradient descent!

Numerical complexities

- $O(nL/\mu \log(1/\varepsilon))$ for GD
- $O(1/(\mu n))$ for SGD
- $O((n + L_{\text{max}}/\mu) \log(1/\varepsilon))$ for SGD with variance reduction (SAG, SAGA, SVRG, etc.)

where L = Lipschitz constant of $\frac{1}{n} \sum_{i=1}^{n} f_i$. Note that typically

$$n rac{L}{\mu} \log(1/arepsilon) \gg \left(n + rac{L_{ ext{max}}}{\mu}
ight) \log(1/arepsilon)$$

Stochastic VS deterministic solvers

(This is what you will do next week)

- SAG and SAGA requires extra memory: need to save all the previous gradients!
- Actually no...

$$\nabla f_i(x) = \ell'(b_i, \langle a_i, x \rangle) a_i,$$

so only need to save $\ell'(b_i, \langle a_i, x \rangle)$

- Memory footprint is O(n) instead of O(nd). If $n = 10^7$, this is 76 Mo
- Same lazy updating trick as for SGD (last lecture)

- V-fold cross-validation
- Take V=5 or V=10. Pick a random partition I_1,\ldots,I_V of $\{1,\ldots,n\}$, where $|I_v|\approx \frac{n}{V}$ for any $v=1,\ldots,V$

How to do it with SGD type algorithms?

V-fold cross-validation

Simple solution

When picking a line i at random in the optimization loop, its fold number is given by i%V

- Pick *i* uniformly at random in $\{1, \ldots, n\}$
- Put v = i%V
- For v' = 1, ..., V with $v' \neq v$: update $\hat{x}^{(v')}$ using line i
- Update the testing error of $\hat{x}^{(v)}$ using line i

We want to minimize a sequence of objectives

$$f(x) + \lambda g(x)$$

for $\lambda = \lambda_1, \dots, \lambda_M$, and select the best using V-fold cross-validation

Idea

Use the fact that solutions $\hat{x}^{\lambda_{j-1}}$ and \hat{x}^{λ_j} are close when λ_{j-1} and λ_j are

Warm-starting

Put $x_0 = 0$ (I don't know where to start) For m = M, ..., 1

- Put $\lambda = \lambda_m$
- Solve the problems starting at x_0 for this value of λ (on each fold)
- Keep the solutions \hat{x} (test it, save it...)
- Put $x_0 \leftarrow \hat{x}$

This allows to solve much more rapidly the sequence of problems

[Convergence proof for SVRG on the blackboard]