Regression Models Project - Mauricio Vargas S.

Short summary:

Does automatic transmission (among other variables) explain MPG in different car models?. To provide some light about this I have worked with R's cars database named Mtcars that contains different car models characteristics. In this report I can conclude that weight and cylinders are important variables and those (and not transmission) explain MPG in different car models. To answer this question I have used ANOVA which allows to determine if a variable can be dropped in a multivariated model.

1st Step: Load data and determine principal variables:

```
library(datasets) #This library provides free databases
data(mtcars) #The database I will use
str(mtcars) #str displays variables names and displays basic information
```

There are several variables in this dataset. ANOVA (analysis of variance) will be used to determine whose variables are relevant apart from transmission type. I will proceed from general to particular, so I won't lose generality after dropping variables.

ANOVA

ANOVA explains the sources of variance so it can help to determine which variables have significant effects (statistically speaking). According to wikipedia: "In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are equal".

```
analysis <- aov(mpg ~ ., data = mtcars) #I run ANOVA
summary(analysis) #this returns a summary containing relevant statistics</pre>
```

```
##
               Df Sum Sq Mean Sq F value
                                            Pr(>F)
## cyl
                   817.7
                           817.7 116.425 5.03e-10 ***
## disp
                1
                    37.6
                            37.6
                                    5.353
                                           0.03091 *
## hp
                     9.4
                             9.4
                                    1.334
                                           0.26103
                1
## drat
                    16.5
                            16.5
                                    2.345
                                           0.14064
                1
                    77.5
## wt
                1
                            77.5
                                  11.031
                                           0.00324
                     3.9
                             3.9
                                    0.562
## qsec
                1
                                           0.46166
## vs
                1
                     0.1
                             0.1
                                    0.018 0.89317
## am
                1
                    14.5
                             14.5
                                    2.061
                                           0.16586
                             1.0
## gear
                     1.0
                                    0.138
                                           0.71365
                1
                                    0.058 0.81218
## carb
                1
                     0.4
                             0.4
## Residuals
                   147.5
                             7.0
               21
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

This analysis suggest I have to include CYL, DISP and WT within a linear model as those are significant variables.

2nd Step: Model's specification

I considered the following model (I provide the details and numbers at the end of the document) as I need to determine transmission and significant varibles effects over MPG:

```
lm <- lm(mpg ~ cyl + wt + am, data = mtcars)
summary(lm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cyl + wt + am, data = mtcars)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -4.1735 -1.5340 -0.5386 1.5864 6.0812
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                           2.6415 14.923 7.42e-15 ***
## (Intercept) 39.4179
               -1.5102
                           0.4223
                                   -3.576 0.00129 **
## cyl
## wt
               -3.1251
                           0.9109
                                   -3.431 0.00189 **
## am
                0.1765
                           1.3045
                                    0.135 0.89334
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.612 on 28 degrees of freedom
## Multiple R-squared: 0.8303, Adjusted R-squared: 0.8122
## F-statistic: 45.68 on 3 and 28 DF, p-value: 6.51e-11
```

AM is not significant and has a large p-value, but it is not possible to reject the hypothesis that the coefficient of AM is 0.

3rd step: Box plot and residual plots

Automatic transmission versus manual transmission related to MPG (the question is to determine is transmission is a relevant variable to explain MPG). The residual is the difference between the observed data of the dependent variable MPG and the fitted values \widehat{MPG} .

As the boxes in the plot do not superpose it means automatic and manual cars are different.

4th: Conclusion

AM, WT and CYL are relevant variables that explain MPG. The R^2 is 0,83 so the model has a desirable goodness of fit and we can explain MPG related to the model's variables. AM by its own cannot explain MPG but is an important variable that explains (partially) car's performance.

APPENDIX: Descriptive statistics

In order to obtain an idea of how to proceed I considered the statistical momentums (mean, median, quartiles and variance-covariance matrix)

summary(mtcars) #mean, median and quatiles

```
##
         mpg
                           cyl
                                             disp
                                                                hp
    {\tt Min.}
                                               : 71.1
##
           :10.40
                             :4.000
                                       Min.
                                                         Min.
                                                                 : 52.0
                      Min.
##
    1st Qu.:15.43
                      1st Qu.:4.000
                                       1st Qu.:120.8
                                                         1st Qu.: 96.5
##
    Median :19.20
                      Median :6.000
                                       Median :196.3
                                                         Median :123.0
##
    Mean
            :20.09
                      Mean
                             :6.188
                                       Mean
                                               :230.7
                                                         Mean
                                                                 :146.7
##
    3rd Qu.:22.80
                      3rd Qu.:8.000
                                       3rd Qu.:326.0
                                                         3rd Qu.:180.0
##
    Max.
            :33.90
                      Max.
                              :8.000
                                               :472.0
                                                         Max.
                                                                 :335.0
##
                            wt
         drat
                                             qsec
                                                         ٧S
                                                                 am
##
            :2.760
                                               :14.50
                                                         0:18
                                                                 0:19
    Min.
                      Min.
                              :1.513
                                       Min.
##
    1st Qu.:3.080
                      1st Qu.:2.581
                                       1st Qu.:16.89
                                                         1:14
                                                                 1:13
    Median :3.695
                      Median :3.325
                                       Median :17.71
##
    Mean
            :3.597
                             :3.217
##
                      Mean
                                       Mean
                                               :17.85
##
    3rd Qu.:3.920
                      3rd Qu.:3.610
                                       3rd Qu.:18.90
            :4.930
                             :5.424
                                               :22.90
##
    Max.
                      Max.
                                       Max.
##
                           carb
         gear
##
    Min.
            :3.000
                      Min.
                              :1.000
##
    1st Qu.:3.000
                      1st Qu.:2.000
##
    Median :4.000
                      Median :2.000
##
    Mean
            :3.688
                      Mean
                             :2.812
##
    3rd Qu.:4.000
                      3rd Qu.:4.000
##
            :5.000
                             :8.000
    Max.
                      Max.
```

var(mtcars) #variance-covariance matrix

```
##
                             cyl
                                         disp
                                                       hp
                                                                   drat
                mpg
                      -9.1723790
                                  -633.09721 -320.732056
## mpg
          36.324103
                                                             2.19506351
                                   199.66028
## cyl
          -9.172379
                       3.1895161
                                               101.931452
                                                           -0.66836694
## disp -633.097208 199.6602823 15360.79983 6721.158669 -47.06401915
        -320.732056 101.9314516
                                  6721.15867 4700.866935 -16.45110887
## hp
## drat
           2.195064
                      -0.6683669
                                   -47.06402
                                               -16.451109
                                                             0.28588135
##
          -5.116685
                      1.3673710
                                   107.68420
                                                44.192661
                                                           -0.37272073
           4.509149
                      -1.8868548
                                   -96.05168
                                               -86.770081
                                                             0.08714073
##
  qsec
## vs
           2.017137
                      -0.7298387
                                   -44.37762
                                               -24.987903
                                                             0.11864919
## am
           1.803931
                      -0.4657258
                                   -36.56401
                                                -8.320565
                                                             0.19015121
##
   gear
           2.135685
                      -0.6491935
                                   -50.80262
                                                -6.358871
                                                             0.27598790
          -5.363105
                       1.5201613
                                    79.06875
                                                83.036290
                                                           -0.07840726
##
  carb
##
                 wt
                             qsec
                                             ٧s
                                                           am
                                                                     gear
                                    2.01713710
## mpg
         -5.1166847
                       4.50914919
                                                  1.80393145
                                                                2.1356855
          1.3673710
                      -1.88685484
                                   -0.72983871
                                                 -0.46572581
                                                               -0.6491935
##
   cyl
## disp 107.6842040 -96.05168145 -44.37762097 -36.56401210 -50.8026210
         44.1926613 -86.77008065 -24.98790323
                                                 -8.32056452
## hp
                                                               -6.3588710
## drat
         -0.3727207
                      0.08714073
                                    0.11864919
                                                  0.19015121
                                                                0.2759879
          0.9573790
                      -0.30548161
                                   -0.27366129
                                                 -0.33810484
## wt
                                                               -0.4210806
         -0.3054816
                      3.19316613
                                    0.67056452
                                                 -0.20495968
                                                               -0.2804032
## qsec
                                    0.25403226
## vs
         -0.2736613
                      0.67056452
                                                  0.04233871
                                                                0.0766129
         -0.3381048
                     -0.20495968
                                    0.04233871
                                                  0.24899194
                                                                0.2923387
## am
```

```
-0.4210806 -0.28040323
                                  0.07661290
                                                 0.29233871
                                                              0.5443548
## gear
                     -1.89411290 -0.46370968
## carb
          0.6757903
                                                 0.04637097
                                                              0.3266129
##
               carb
       -5.36310484
## mpg
## cyl
         1.52016129
## disp 79.06875000
## hp
        83.03629032
## drat -0.07840726
## wt
         0.67579032
## qsec -1.89411290
## vs
        -0.46370968
         0.04637097
## gear 0.32661290
## carb 2.60887097
```

APPENDIX: Model specification

If I take this model direct from ANOVA data:

```
lm <- lm(mpg ~ cyl + disp + wt + am, data = mtcars)
summary(lm)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ cyl + disp + wt + am, data = mtcars)
##
## Residuals:
##
     Min
             1Q Median
                            ЗQ
                                  Max
                        1.354
## -4.318 -1.362 -0.479
                               6.059
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 40.898313
                           3.601540 11.356 8.68e-12 ***
## cyl
              -1.784173
                           0.618192
                                    -2.886 0.00758 **
## disp
               0.007404
                           0.012081
                                     0.613 0.54509
## wt
               -3.583425
                           1.186504
                                    -3.020 0.00547 **
## am1
               0.129066
                           1.321512
                                     0.098 0.92292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.642 on 27 degrees of freedom
## Multiple R-squared: 0.8327, Adjusted R-squared: 0.8079
## F-statistic: 33.59 on 4 and 27 DF, p-value: 4.038e-10
```

Then DISP is not significant, so there is evidence that the model can be improved by dropping variables as it is done with the final specification considered in this report.