

FIG. 2

FIG. 3

F1G, 4

VIDEO SPLICING 151 DETERMINE THE LAST DTS/PTS OF THE FIRST CLIP (DTSL1) 152 DETERMINE THE TIME OF ARRIVAL (Te) OF THE LAST BYTE OF THE FIRST CLIP 153 ADD ONE FRAME INTERVAL TO DIS 11 TO FIND THE DESIRED FIRST DTS LOCATION FOR THE SELOND CLIP $(D7S_{F1}=D7S_{L1}+1/FR)$ KEEPING THE DTS-PCR. RELATION UNALTERED FOR THE SECOND CLIP, FIND THE TIME INSTANT To AT WHICH THE FIRST BYTE OF THE CLIP SHOULD SECOND ARRIVE (TSTART = DTS F2-PCRe2) $(T_S = DTS_{F1} - TSTART)$

FIG. 5

FIG. 11 (PRIOR ART)

HASH TABLE	3	00	HASH LISTS		
/		Cindex	XXXX	XXXX	× ′′ ′ X
0	7 [xxxx	××××	XXXX	XIIIX
. 0	7 [XXXX	xxxx	xxx	XIIX
3		Cindex	Cindex	Cindex	XIIIX
2	▔┡┥	Cindex	Cindex	xxxx	× 11 18
0		XXXX	XXXX	××××	X /K
		Cindex	* * * *	xxxx	- 1,1,X
0	-	xxxx	xxxx	XXXX	* 7.77

FIG. /8

FIG. 19

	READ	WRITE
Copy of the asset with all the data	EMPEG2	EMPEG2
Copy only the main asset	RAW	MPEG2
Archive	EMPEG2	EMPEG2
Play	MPEG2	
Record		MPEG2

FIG. 27

FIG. 28

FIG. 30

FIG. 35

DETERMINE THE COEFFICIENT BIT
RATE REDUCTION FACTOR (RF) FOR A
REDUCTION FROM AN MPEG SOURCE HAVING
A KNOWN CONSTANT BIT RATE

-581

DETERMINE THE OFFSET
RATE (S) OF BITS IN
THE ORIGINAL-QUALITY
MPEG SOURCE THAT ARE
NOT BITS OF THE
AC DOT COEFFICIENTS

.582

COMPUTE THE COEFFICIENT
BIT RATE REDUCTION FACTOR
(RF) FROM THE KNOWN

CONSTANT BIT RATE
(BO) AND PADDING (PD) OF THE
ORIGINAL-QUALITY MPEG SOURCE,
THE OFFSET RATE (S),
AND THE DESIRED REDUCED

RATE (BR) OF THE
REDUCED -QUALITY
MPEG PATA

 $RF = \frac{BR - S}{BO - PD - S}$

RETURN

FIG. 36

REDUCTION FACTOR (RF) FOR A REDU	
I FROM AN MPEG SOURCE HAVING AN UNK	NOWN)
OR VARIABLE BIT RATE	
	591
DETERMINE VIDEO FRAME SIZE	
IN BITS (VS)	
	592
DETERMINE A MOVING AVERAGE	
VIDEO FRAME SIZE OVER THE	
LAST N. FRAMES (VAVS)	
, 5	593
CALCULATE A TARGET AVERAGE	\ 1
VIDEO FRAME SIZE (VRAVS	
FROM AN ACCURACY RATE CONTROL FACTOR (AR), THE	
DESIRED REDUCED RATE (BA	1
OF THE REDUCED - QUALITY	7
MPEG DATA, AND THE VIDEO	
FRAME RATE (FR)	_
VRAVS = AR * BR/FR	
4	594
DETERMINE NO. OF BITS (BS)	
IN THE FRAME THAT ARE	
NOT BITS OF THE AC DET	
COEFFICIENTS	
	95
COMPUTE THE COEFFICIENT BIT	
RATE REDUCTION FACTOR (RF)	_
RF= VRAUS/VAUS	
(RETURN)	FIG. 37
	•

FIG. 38