

(5) Int. Cl.⁷:

G 08 G 1/16

B 60 K 31/00

19 BUNDESREPUBLIK **DEUTSCHLAND**

PATENT- UND MARKENAMT

Volkswagen AG, 38440 Wolfsburg, DE

(71) Anmelder:

® Off nlegungsschrift

_® DE 199 10 590 A 1

(21) Aktenzeichen:

199 10 590.1

② Anmeldetag:

10. 3. 1999

(4) Offenlegungstag:

14. 9.2000

(72) Erfinder:

Bäker, Wolfgang, 38114 Braunschweig, DE; Ruchatz, Thomas, 38165 Lehre, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> 42 09 047 C1 DE

> 198 11 585 A1 DE

42 00 694 A1 DE

DE 691 23 947 T2 691 00 568 T2 DE

WO 93 24 894 A1

JP Patent Abstracts of Japan:

0070262498 AA;

0070047863 AA;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(A) Verfahren und Vorrichtung zur Abstandsregelung für ein Fahrzeug

Die Erfindung betrifft ein Verfahren zur Abstandsregelung für ein Fahrzeug, bei dem eine Relativgeschwindig-

keit (vrel) und ein Relativabstand (a) zwischem dem Fahrzeug und einem vorausfahrenden Fahrzeug ermittelt und aus diesen Größen ein Regelsignal für eine Abstandsregelungseinrichtung des Fahrzeuges erzeugt wird. Erfindungsgemäß ist vorgesehen, daß aus der Relativgeschwindigkeit (v_{rel}) und dem Relativabstand (a) ein Gefahrenmaß (G) bestimmt wird, daß dieses Gefahrenmaß mit einem das individuelle Fahrverhalten des Fahrzeugführers des Fahrzeuges repräsentierenden, adaptiven Faktor (AF) gewichtet wird, und daß ein eine Verzögerung des Fahrzeuges einleitendes Regelsignal erzeugt wird, wenn das mit dem adaptiven Faktor gewichtete, fahrzeugführeradaptierte Gefahrenmaß (GF) einen definierten Schwellwert (S) unterschreitet.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Abstandsregelung für ein Fahrzeug, bei dem eine Relativgeschwindigkeit und ein Relativabstand zwischen dem Fahrzeug und einem vorausfahrenden Fahrzeug ermittelt und aus diesen Größen ein Regelsignal für eine Abstandsregelungseinrichtung des Fahrzeuges erzeugt wird, sowie eine Vorrichtung zur Durchführung des Verfahrens.

In der deutschen Offenlegungsschrift DE 42 00 694 A1 10 ist ein Verfahren zur Geschwindigkeits- und Abstandsregelung eines Fahrzeugs zu einem in Fahrtrichtung befindlichen Objekt beschrieben. Bei dem bekannten Verfahren wird der aktuelle Abstand sowie die momentane Geschwindigkeit erfaßt und daraus die Soll-Werte für den Abstand zu dem vor dem Fahrzeug befindlichen Objekt und für die Fahrgeschwindigkeit ermittelt und eingestellt.

Das Problem bei diesem Verfahren sowie bei sämtlichen anderen bekannten Verfahren, die eine abstandsgeregelte Fahrt eines Fahrzeuges ermöglichen, liegt dabei darin, daß 20 Abstandsregelungen als fahrerunterstützende Systeme konzipiert werden, deren Akzeptanz durch den Fahrzeugführer davon abhängt, wie sehr das Regelverhalten seinem eigenen Fahrverhalten, insbesondere bei der Einhaltung des Abstandes zum vorausfahrenden Fahrzeug, ähnelt.

In der Veröffentlichung "Abstandsregelung von Fahrzeugen mit Fuzzy-Control", Tagungsband der 3. Dortmunder Fuzzy-Tage, Reihe Informatik Aktuell, Springer Verlag, 1993, wird vorgeschlagen, anstelle eines fest vorgegebenen Sollabstandes ein Abstandsmodell zu bestimmen, das vom 30 Fahrertyp und der Witterung abhängt. Der Fahrertyp soll dabei über eine externe Sensorik ermittelt werden, wobei eine Möglichkeit zur zuverlässigen automatischen Fahrertyperkennung in der vorgenannten Veröffentlichung nicht angegeben wird.

In einer älteren Anmeldung der Anmelderin wird ein Verfahren zur Abstandsregelung für ein Fahrzeug beschrieben, bei dem zumindest in Abhängigkeit der Fahrgeschwindigkeit des Fahrzeuges der Sollabstand zu einem vorausfahrenden Fahrzeugs mittels einer Einrichtung zur Berechnung des 40 Sollabstands ermittelt wird, wobei die Einrichtung in ihrem Übertragungsverhalten an das individuelle Fahrverhalten eines Fahrzeugführers adaptiert wird, indem die individuelle Folgezeit des Fahrzeugführers zum vorausfahrenden Fahrzeug über die Ermittlung des Sollabstands eingehalten wird, 45 wobei die Einrichtung einen Fuzzy-Regler mit der Fahrgeschwindigkeit als Eingangsgröße und mindestens einer weiteren Eingangsgröße und dem Sollabstand als Ausgangsgröße darstellt, welcher Eingangs-Zugehörigkeitsfunktionen mit deren Wahrheitswerten linguistischer Werte zumin- 50 dest für die Eingangsgröße ermittelt werden. Desweiteren ist ein Regelwerk, in welchem aus den Wahrheitswerten für die Eingangsgrößen Wahrheitswerte für den Sollabstand bestimmt werden und eine Ausgangs-Zugehörigkeitsfunktion, mit welcher aus den Wahrheitswerten des Sollabstands der 55 einzuregelnde Sollabstand bestimmt wird, vorgesehen. Zur Durchführung dieser Regelung wird über den Wertebereich der Eingangsgrößen eine Anzahl von Klassen festgelegt und in einer Lernphase auftretende Wertekombinationen der Eingangsgrößen und der Abstandswerte erfaßt. In Abhängigkeit der erfaßten Wertekombinationen werden die festgelegten Klassen verändert, entfernt und/oder neue Klassen erzeugt und in Abhängigkeit der aktuellen Klassen angepaßte Zugehörigkeitsfunktionen angepaßte Regeln des Regelwerks erzeugt.

Ein derartiges Verfahren erlaubt zwar eine gute Adaption der Abstandsregelung an den Fahrzeugführer und erhöht somit die Akzeptanz eines derartigen Verfahrens; es besitzt jedoch den Nachteil, daß die hierbei einzusetzende Fuzzy-Logik relativ komplex und die Einrichtung daher aufwendig und teuer in der Herstellung ist.

Es ist daher Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur Abstandsregelung der eingangs genannten Art derart weiterzubilden, daß bei einem einfachen Aufbau das Regelverhalten des erfindungsgemäßen Verfahrens auf das Fahrverhalten des Fahrzeugführers abgestimmt werden kann.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß aus der Relativgeschwindigkeit und dem Relativabstand ein Gefahrenmaß bestimmt wird, daß dieses Gefahrenmaß mit einem das individuelle Fahrverhalten des Fahrzeugführers des Fahrzeugs repräsentierenden, adaptiven Faktor gewichtet wird, und daß ein eine Verzögerung des Fahrzeugs einleitendes Regelsignal erzeugt wird, wenn das mit dem adaptiven Faktor gewichtete, fahrzeugführeradaptierte Gefahrenmaß einen definierten Schwellwert überschreitet.

Durch die erfindungsgemäßen Maßnahmen wird in vorteilhafter Art und Weise ein Verfahren zur fahrzeugführeradaptiven Abstandsregelung eines Fahrzeuges geschaffen, welches sich durch sein akzeptanzförderndes Regelverhalten und seine einfache Umsetzbarkeit auszeichnet: In vorteilhafter Art und Weise ist die zur Ausführung des erfindungsgemäßen Verfahrens erforderliche Vorrichtung relativ einfach und wenig aufwendig. Außerdem sind keine komplizierten und, daher Zeit- und vorrichtungsaufwendigen Lernvorgänge mehr erforderlich, so daß das erfindungsgemäße Verfahren insbesondere zur Abstandsregelung bei Binschervorgängen, bei denen ein überholendes Fahrzeug das mit dem erfindungsgemäßen Abstandsregelungsverfahren ausgestattete Fahrzeug überholt und vor ihm einschert, einsetzbar ist.

Vorteilhafte Weiterbildungen der Erfindung sind Gegen-35 stand der Unteransprüche,

Weitere Einzelheiten und Vorteile der Erfindung sind dem Ausführungsbeispiel zu entnehmen, das im folgenden anhand der Figuren beschrieben wird. Es zeigen:

Fig. 1 eine schematische Darstellung eines Einschervorgangs und

Fig. 2 eine schematische Darstellung des Regelungskreises des Verfahrens.

In Fig. 1 ist nun eine typische Verkehrssituation bei einem Einschervorgang dargestellt, bei dem ein mit dem oben beschriebenen Verfahren ausgerüstetes Fahrzeug F1 von einem schnelleren Fahrzeug F2 überholt wird, wobei das schnellere Fahrzeug F2 in mehr oder minder großem Abstand a vor dem überholten Fahrzeug F1 einschert. Das Fahrzeug F1 bewegt sich mit einer Eigengeschwindigkeit ve, während sich das Überholende, nach dem Einschervorgang dem Fahrzeug F1 vorausfahrende Fahrzeug F2 mit einer Geschwindigkeit ve bewegt.

Das Fahrzeug F1 ist nun mit an und für sich bekannten und daher nicht mehr näher beschriebenen sowie in Fig. 1 nur schematisch dargestellten Sensoreinrichtungen 10 ausgestattet, durch die die Absolutgeschwindigkeit des Fahrzeugs F2 oder zumindest die Relativgeschwindigkeit v_{rel} = v_v-v_e zwischen den beiden Fahrzeugen F1 und F2 erfaßbar ist. Außerdem ist durch diese Sensoreinrichtung 10 der Abstand a zwischen den Fahrzeugen F1 und F2 ermittelbar. Die Sensoreinrichtung 10 erzeugt nun ein den Abstand a charakterisierendes Abstandssignal A und ein die Relativgeschwindigkeit v_{rel}, zwischen den Fahrzeugen F1 und F2 charakterisierendes Geschwindigkeitssignal vy bzw. - bei einer 65 Erfassung der Absolutgeschwindigkeit v_v - ein diese Absolutgeschwindigkeit des Fahrzeuges F2 charakterisierendes Geschwindigkeitssignal. Im folgenden wird davon ausgegangen, daß das Geschwindigkeitssignal die Relativgeschwindigkeit v_{rel} zwischen den beiden Fahrzeugen F1 und F2 repräsentiert. Dies schränkt der Allgemeinheit der folgenden Überlegungen nicht ein, da dem Fachmann klar ersichtlich ist, daß er für den Fall, daß das Geschwindigkeitssignal die Absolutgeschwindigkeit v_v des Fahrzeuges F2 repräsentiert, er aus der bekannten Momentangeschwindigkeit v_e des Fahrzeuges F1 einfach die Relativgeschwindigkeit v_{rel} bestimmen kann.

Die Ausgangssignale A und V der Sensoreinrichtung 10 werden nun - wie in Fig. 2 schematisch dargestellt - einer 10 Auswerteeinrichtung 1 zugeführt, die im einfachsten Fall der in der Mehrzahl der heutigen Fahrzeuge bereits vorhandene Bordcomputer ist. Die Auswerteeinrichtung 1 bestimmt nun ein Gefahrenmaß G, weiches durch das Produkt aus der Relativgeschwindigkeit v_{rel} und Abstand a festgelegt 15 ist $(G = v_{rel} \cdot a)$. Dieses Gefahrenmaß G wird nun in der Auswerteeinrichtung 1 mit einem das individuelle Fahrverhalten des Fahrzeugführers charakterisierenden, adaptiven Faktor AF gewichtet, wobei dieser Faktor eine konstante Größe sein kann, vom Fahrzeugführer individuell vorgege- 20 ben oder durch ein externes, fahrertyperkennendes System bestimmt werden kann. Wenn dieses durch die Gewichtung des Gefahrenmaßes G mit dem fahreradaptiven Faktor AF erzeugte, adaptierte Gefahrenmaß $GF = AF \cdot G$ kleiner als ein vordefinierter Schwellenwert S ist, erzeugt die Aus- 25 werteeinrichtung 1 ein Regelsignal RV, daß in an und für sich bekannter und daher nicht mehr näher beschriebenen Art und Weise eine Verzögerung des Kraftfahrzeuges, insbesondere einen Bremsvorgang, einleitet, indem eine Abstandsregelungseinrichtung 10 entsprechende Maßnahmen 30 initiiert.

Die vorstehend beschriebene Feststellung eines Gefahrenmaßes G bzw. GF besitzt den Vorteil, daß hierdurch eine detaillierte Fallunterscheidung für die bei einem Einscheren eines überholenden Fahrzeuges vorzunehmenden fahrdynasmischem Vorgänge ermöglicht wird. Ist z. B. die Relativgeschwindigkeit vrei positiv, was immer dann der Fall sein wird, wenn das überholende Fahrzeug F2 schneiler weiterfährt als das überholte Fahrzeug F1 und ist der Abstand a groß, so nimmt das (adaptive) Gefahrenmaß GF einen großen Wert an und liegt somit über dem vorgegebenen Schwellwert. Dies bedeutet, daß kein Verzögerungsvorgang des Fahrzeuges F1 erforderlich ist.

Ist hingegen bei einer positiven Relativgeschwindigkeit v_{rel} der Abstand a klein und unterschreitet das adaptive Ge- 45 fahrenmaß GF den Schwellenwert S. so erzeugt die Auswerteeinrichtung 1 das die Verzögerung des Fahrzeuges F1 initiierende Verzögerungssignal RV.

Wird eine extrem hohe positive Relativgeschwindigkeit v_{rel} ermittelt und ist der Abstand a klein, d. h., daß das Fahrzeug F2 das Fahrzeug F1 mit einer sehr hohen Relativgeschwindigkeit v_{rel} überholt und knapp vor dem Fahrzeug F1 einschert, dieses also "schneidet", so besitzt das Gefahrenmaß GF weiterhin bei einem hohen Wert und liegt über dem vorgegebenen Schwellenwert, so daß kein Verzögerungs- 55 vorgang initiiert wird.

Bremst jedoch das überholende Fahrzeug F2 nach dem Einscheren abrupt ab, so wird die Relativgeschwindigkeit v_{rel} negativ. Dies bedeutet, daß das Gefahrenmaß einen negativen Wert annimmt und somit unter dem vorgegebenen 60 Schwellwert S liegt, so daß unmittelbar ein Verzögerungsvorgang des Fahrzeuges F1 eingeleitet wird.

Zusammenfassend ist festzustellen, daß das beschriebene Verfahren zur Abstandsregelung eines Fahrzeuges F1 insbesondere dann vorteilhaft ist, wenn ein Fahrzeug F2 vor dem 65 Fahrzeug F1 einschert, da sich das beschriebene Verfahren durch seine einfache Umsetzbarkeit auszeichnet und ohne

ßes G ist mit einem den individuellen Fahrertyp charakterisierenden, adaptiven Faktor AF zur Erzeugung eines adaptiven Gefahrenmaßes GF besitzt den Vorteil, daß hierdurch in einfacher Art und Weise ein akzeptanzförderndes Regelverhalten des beschriebenen Verfahrens geschaffen wird.

Patentansprüche

- 1. Verfahren zur Abstandsregelung für ein Fahrzeug, bei dem eine Relativgeschwindigkeit (vrel) und ein Relativabstand (a) zwischen dem Fahrzeug (F1) und einem vorausfahrenden Fahrzeug (F2) ermittelt und aus diesen Größen ein Regelsignal (RV) für eine Abstandsregelungseinrichtung (10) des Fahrzeugs (F1) erzeugt wird, dadurch gekennzeichnet, daß aus der Relativgeschwindigkeit (vrel) und dem Relativabstand (a) ein Gefahrenmaß (G) bestimmt wird, daß dieses Gefahrenmaß (G) mit einem das individuelle Fahrverhalten des Fahrzeugführers des Fahrzeuges (F1) repräsentierenden, adaptiven Faktor (AF) gewichtet wird und daß ein eine Verzögerung des Fahrzeugs (F1) einleitendes Regelsignal (RV) erzeugt wird, wenn das mit dem adaptiven Faktor (AF) gewichtete, fahrzeugführeradaptierte Gefahrenmaß (GF) einen definierten Schwellwert (S) unterschreitet.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der adaptive Faktor (AF) eine konstante Größe ist, oder daß der Faktor (AF) vom Fahrzeugführer vorgegeben wird, oder daß der Faktor (AF) durch ein externes, fahrertyperkennendes System bestimmt wird.

 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Relativgeschwindigkeit (v_{rel}) und der Relativabstand (a) von einer Sensoreinrichtung (10) erfaßt wird.
- 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Relativgeschwindigkeit ($v_{\rm rel}$) aus der von der Sensoreinrichtung (10) erfaßten Absolutgeschwindigkeit (VA) des vorausfahrenden Fahrzeuges (F2) und der Eigengeschwindigkeit ($V_{\rm e}$) des überholten Fahrzeuges erfaßt wird.
- 5. Vorrichtung zur Abstandsregelung nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Auswerteeinrichtung (1), der die Relativgeschwindigkeit (v_{rel}) und der Relativabstand (a) zwischen den beiden Fahrzeugen (F1, F2) repräsentierende Signale (A, V) zuführbar ist.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 199 10 590 A1 G 08 G 1/16

14. September 2000

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 199 10 590 A1 G-08 G 1/1614. September 2000

FIG.