Homework 2

Problem 1 (7.4.4). Assume R is commutative. Prove that R is a field if and only if 0 is a maximal ideal.

Proof. Assume that R is a field. Then then only ideals are 0 and R. Since 0 is contained in no proper ideal other than itself, it must be maximal. Conversely, suppose 0 is a maximal ideal. We know that an ideal M is maximal if and only if R/M is a field. Thus $R/0 \cong R$ is a field.

Problem 2 (7.4.5). Prove that if M is an ideal such that R/M is a field then M is a maximal ideal (do not assume R is commutative).

Proof. Let R/M be a field and suppose to the contrary that M is not maximal so that there exists some ideal M' with $M \subseteq M' \subseteq R$. Let $\varphi : R/M \to R/M'$ be a function defined by $\varphi(r+M) = r+M'$. Then

$$\varphi((r+M) + (s+M)) = \varphi(r+s+M) = r+s+M' = (r+M') + (s+M') = \varphi(r+M) + \varphi(s+M)$$

and

$$\varphi((r+M)(s+M)) = \varphi(rs+M) = rs+M' = (r+M')(s+M') = \varphi(r+M)\varphi(s+M)$$

so φ is a homomorphism. Note that since M is strictly smaller than M', φ can't be injective. But this is a contradiction because R/M is a field and any homomorphism from a field to another ring must be an injection. Therefore M must be a maximal ideal.

Problem 3 (7.4.7). Let R be a commutative ring with 1. Prove that the principle ideal generated by x in the polynomial ring R[x] is a prime ideal if and only if R is an integral domain. Prove that (x) is a maximal ideal if and only if R is a field.

Proof. We know that (x) is a prime ideal if an only if R[x]/(x) is an integral domain. The problem is then reduced to showing $R[x]/(x) \cong R$. Let $\varphi: R[x]/(x) \to R$ be the function which takes $p(x)+(x) \in R[x]$ to the constant term of p(x). It's clear that φ is a ring homomorphism since adding and multiplying two polynomials will add or multiply their constant terms respectively. Let $p(x) = r_n x^n + \cdots + r_0$ and $q(x) = s_n x^n + \cdots + s_0$. Then

$$p(x) + (x) = r_n x^n + \dots + r_0 + (x) = (r_n x^n + (x)) + \dots + (r_0 + (x)) = 0 + \dots + r_0 + (x).$$

In the same way, $q(x) + (x) = s_0 + (x)$ and we see that two elements of R[x]/(x) are equal precisely when their constant terms are the same. Thus, if we assume $p(x) \neq q(x)$, then $r_0 \neq s_0$ and $\varphi(p(x) + (x)) = r_0 \neq s_0 = \varphi(q(x) + (x))$. Therefore, φ is injective. It's clear that φ is surjective since φ applied to a constant is just the identity function. Thus, φ is a bijection from R[x]/(x) to R so $R[x]/(x) \cong R$. Therefore (x) is a prime ideal if and only if R is an integral domain.

As before, we know that (x) is a maximal ideal if and only if R[x]/(x) is a field. But we've just shown that $R[x]/(x) \cong R$ so (x) is a maximal ideal if and only if R is a field.

Problem 4 (7.4.10). Assume R is commutative. Prove that if P is a prime ideal of R and P contains no zero divisors then R is an integral domain.

Proof. Let $a, b \in R$ be two elements such that ab = 0. Since P is an ideal, $0 \in P$ and so either $a \in P$ or $b \in P$. But since P contains no zero divisors, we must have a = 0 or b = 0. Thus R is an integral domain. \square

Problem 5 (7.4.13). Let $\varphi: R \to S$ be a homomorphism of commutative rings.

- (a) Prove that if P is a prime ideal of S then either $\varphi^{-1}(P) = R$ or $\varphi^{-1}(P)$ is a prime ideal of R. Apply this to the special case when R is a subring of S and φ is the inclusion homomorphism to deduce that if P is a prime idea of S then $P \cap R$ is either R or a prime ideal of R.
- (b) Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give an example to show that this need not be the case if φ is not surjective.

Homework 2

Proof. (a) Let P be a prime ideal of S. We've already shown that $\varphi^{-1}(I)$ is an ideal of R for any ideal I of S. It's possible that $\varphi^{-1}(P) = R$, in which case we're done, so assume otherwise. Now let $ab \in \varphi^{-1}(P)$. Then $\varphi(ab) \in P$ so $\varphi(a)\varphi(b) \in P$. Since P is prime, either $\varphi(a) \in P$ or $\varphi(b) \in P$, which means either $a \in \varphi^{-1}(P)$ or $b \in \varphi^{-1}(P)$. Thus $\varphi^{-1}(P)$ is prime.

In the special case that φ is an inclusion homomorphism, φ is the identity on R, so $\varphi^{-1}(P)$ consists of elements of R which are also elements of P. That is, $\varphi^{-1}(P) = P \cap R$ and by the above proof, we know this is now either R itself, or a prime ideal of R.

(b) Let M be a maximal ideal of S and suppose that φ is surjective. We know that $\varphi^{-1} \neq R$ since $M \neq S$ and φ is surjective. Suppose there exists some ideal M' such that $\varphi^{-1}(M) \subseteq M' \subseteq R$. Since φ is surjective, $\varphi(M')$ is an ideal of S and $M\subseteq\varphi(M')$. Since M is maximal, we either have $M=\varphi(M')$ or $\varphi(M')=S$. Suppose the former and let $x \in M'$. Then $\varphi(x) \in \varphi(M')$ so $\varphi(x) \in M$. Then $x \in \varphi^{-1}(M)$ and we have $M' \subseteq \varphi^{-1}(M)$. This shows $M' = \varphi^{-1}(M)$. Secondly, suppose $\varphi(M') = S$ and let $x \in R$. Then $\varphi(x) \in S$ and $\varphi(x) \in \varphi(M')$. Thus there exists $y \in M'$ such that $\varphi(x) = \varphi(y)$. Then we have $\varphi(x) - \varphi(y) = \varphi(x - y) = 0$ so $x-y \in \ker \varphi$. Note that $\ker \varphi = \varphi^{-1}(0) \subseteq M'$. Therefore x=y+(x-y) is in M' which shows $R \subseteq M'$ and R = M'. In all cases we either have $M' = \varphi^{-1}(M)$ or M' = R so $\varphi^{-1}(M)$ is maximal in R.

Problem 6 (7.4.16). Let $x^4 - 16$ be an element of the polynomial ring $E = \mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x]/(x^4-16)$.

- (a) Find a polynomial of degree ≤ 3 that is congruent to $7x^{13} 11x^9 + 5x^5 2x^3 + 3$ modulo $(x^4 16)$.
- (b) Prove that $\overline{x-2}$ and $\overline{x+2}$ are zero divisors in \overline{E} .

Proof. (a) We need to find a polynomial with degree less than or equal to 3 which has the same remainder as $7x^{13} - 11x^9 + 5x^5 - 2x^3 + 3$ when divided by $x^4 - 16$. Note that $(7x^{13} - 11x^9 + 5x^5 - 2x^3 + 3)/(x^4 - 16)$ has remainder $-2x^3 + 25936x + 3$. This remainder is then a polynomial which cannot be reduced by dividing by $x^4 - 16$ and so it serves as its own remainder. Thus $7x^{13} - 11x^9 + 5x^5 - 2x^3 + 3 \equiv -2x^3 + 25936x + 3$ $\pmod{x^4 - 16}$.

(b) Note that $x^4 - 16 = (x - 2)(x + 2)(x^2 + 4)$. Thus

$$(\overline{x-2})(\overline{x^3+2x^2+4x+8}) = \overline{0}$$

and

$$(\overline{x+2})(\overline{x^3-2x^2+4x-8}) = \overline{0}.$$

Since x+2, x-2, x^3-2x^2+4x-8 and x^3+2x^2+4x+8 all have degree less than or equal to three, they can't be equal to 0 in \overline{E} . Thus, they are all zero divisors.

Problem 7 (7.4.17). Let $x^3 - 2x + 1$ be an element of the polynomial ring $E = \mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x]/(x^3-2x+1)$. Let $p(x)=2x^7-7x^5+4x^3-9x+1$ and let $q(x) = (x-1)^4$.

- (a) Express each of the following elements of \overline{E} in the form $\overline{f(x)}$ for some polynomial f(x) of degree ≤ 2 : $\overline{p(x)}$, $\overline{q(x)}$, $\overline{p(x)} + \overline{q(x)}$ and $\overline{p(x)}q(x)$.
- (b) Prove that \overline{E} is not an integral domain.
- (c) Prove that \overline{x} is a unit in \overline{E} .

Proof. (a) As in part (a) of Problem 6, we note that p(x) is congruent to it's remainder when divided by $x^3 - 2x + 1$ modulo $x^3 - 2x + 1$. If these remainders have degree less than or equal to 2, then we're done. Dividing and looking at the remainders gives the following equalities. We have $\overline{p(x)} = \overline{-x^2 - 11x + 3}$, $\overline{q(x)} = 8x - 5$, $\overline{p(x) + q(x)} = 7x^2 - 24x + 8$ and $\overline{p(x)q(x)} = 146x - 90$.

- (b) We see that $x^3 2x + 1 = (x 1)(x^2 + x 1)$ and so $\overline{x 1}$ is a zero divisor. (c) Note that $\overline{x^3 2x} + \overline{1} = \overline{0}$ and so $\overline{1} = -x^3 + 2x$. Thus $\overline{x} x^2 + 2 = -x^3 + 2x = \overline{1}$ and \overline{x} is a unit. \Box

Problem 8 (7.6.3). Let R and S be rings with identities. Prove that every ideal of $R \times S$ is of the form $I \times J$ where I is an ideal of R and J is an ideal of S.

Kris Harper MATH 25800 January 22, 2010

Homework 2

Proof. Let K be an ideal of $R \times S$ and write $K \subseteq I \times J$ where I is the subset of R which makes up the left components of K and J is the subset of S which makes up the right components. Let $a, b \in I$ and $c, d \in J$ such that $(a, c), (b, d) \in K$. Note that (a, c) - (b, d) = (a - b, c - d) so $a - b \in I$ and (a, c)(b, d) = (ab, cd) so $ab \in I$. Furthermore, for $r \in R$ we have $(a, c)(r, c) = (ar, c^2)$ and $(r, c)(a, c) = (ra, c^2)$ so I is closed under left and right multiplication by elements of R. This shows that I is an ideal of R and similarly, that I is an ideal of S.

Finally, let (a,c) be an arbitrary element of $I \times J$. This means there exists some $(a,c') \in K$ and since K is closed under multiplication by elements from $R \times S$, we have (a,c')(1,0) = (a,0) is an element of K as well. Similarly, $(0,c) \in K$. But now (a,c) = (a,0) + (0,c) and so $(a,c) \in K$ since K is closed under addition. Therefore $I \times J \subseteq K$ and $K = I \times J$ where I is an ideal of K and $K = I \times J$ where K is an ideal of K.