

Análise e síntese de circuitos combinatórios básicos

Sistemas Digitais

Pedro Salgueiro pds@uevora.pt

Sumário

- · Circuito combinatório
- Análise
- Síntese
- Circuito integrado

Circuito combinatório

Circuito combinatório

O que é

- Circuito lógico com n entradas e p saídas
- O valor das saídas depende exclusivamente do valor das entradas no mesmo instante

Análise de um circuito

O que é

 Inferir do logigrama as expressões mais simples usando ANDs, ORs e NOTs que relacionam as entradas com as saídas

Como

- Levantamento de equações, ou
- Escrita da tabela de verdade

Levantamento de equações

Levantamento de equações

Escrita da tabela de verdade

Α	В	С	T1	T2	T3	T4	T5	T6	T7	F	G
0	0	0	0	1	0	0	0	1	1	1	0
0	0	1	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0
0	1	1	0	0	0	0	1	0	0	0	1
1	0	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	1	0	0	0	0	1
1	1	0	0	0	1	0	0	0	0	0	1
1	1	1	1	0	1	1	1	0	0	1	1

Síntese de um circuito

O que é

- Desenhar o logigrama que satisfaz o enunciado

Como?

- 1. Definir o nº de entradas e saídas
- 2. Obter a tabela de verdade para cada saída
- 3. Obter as expressões lógicas simplificadas
- 4. Desenhar o logigrama do circuito

Restrições

- Portas NAND
 - Usar a forma normal disjuntiva
- Portas NOR
 - Usar a forma normal conjuntiva

Exemplo 1

 Sintetize com portas NAND um circuito de três entradas que toma o valor 1 quando a maioria das entradas tomar o valor 1

Α	В	D	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Exemplo 1

 Sintetize com portas NAND um circuito de três entradas que toma o valor 1 quando a maioria das entradas tomar o valor 1

Α	В	D	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Exemplo 1

 Sintetize com portas NAND um circuito de três entradas que toma o valor 1 quando a maioria das entradas tomar o valor 1

Α	В	D	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F = \overline{AB + AC + BC}$$
$$F = \overline{AB \cdot \overline{AC} \cdot \overline{BC}}$$

Exemplo 1

 Sintetize com portas NAND um circuito de três entradas que toma o valor 1 quando a maioria das entradas tomar o valor 1

Α	В	D	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Exemplo 2

 Os sócios de uma companhia possuem as percentagens de capital A=40%, B=30%, C=20% e D=10%. As resoluções são votadas por maioria de 60% referentes ao capital. Cada sócio tem um botão que prime para votar a favor. Projete o circuito de forma a acender uma lâmpada no caso de uma moção merecer aprovação. Sempre que uma moção seja aceite ou rejeitada por unanimidade deverá acender uma segunda lâmpada.

Exemplo 2

Α	В	С	D	М	U
0	0	0	0	0	1
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	0
1	1	1	1	1	1

AB	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	1	1	1	1
10	0	0	1	1

AB	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	0	0	1	0
10	0	0	0	0

$$M = AB + AC + BCD$$

$$U = \overline{A} \overline{B} \overline{C} \overline{D} + ABCD$$

Exemplo 2

Circuito integrado

CI com portas lógicas simples

- Existem diversas tecnologias
 - TTL
 - CMOS: mais lenta que TTL mas consome menos
 - É a tecnologia em mais rápido crescimento, devido a ganhos de velocidade conseguidos recentemente, a sua grande capacidade de integração e o seu baixo consumo energético
 - ECL: É a tecnologia mais rápida, mas de consumo muito elevado

TTL

7404: 6 portas NOT

7400: 4 portas NAND

7402: 4 portas NOR

7408: 4 portas AND

7432: 4 portas OR

- ...

Tarefas até à próxima aula prática

- Ficha 05 Introdução ao simulador Logisim
 - 1a); 1b); 1c)
 - 3a); 3b); 3c); 3d)