1 Question 1

The optimal parameters depend on the embedding that is considered. We give two examples below.

• Let us assume that the embedding of the digit k is a vector of dimension $h_1 = 10$, whose first k components are ones, and the other $d_1 - k$ are zeros.

Set $W_1 = tI_{10}$, W_2 the 1×10 matrix filled with ones, and $b_1 = b_2 = 0$. Then:

$$f(X) = \sum_{i=1}^{m} \sum_{i=1}^{10} \tanh(t\mathbf{1}_{j \le x_i}) \xrightarrow[t \to +\infty]{} \sum_{i=1}^{m} \sum_{i=1}^{10} \mathbf{1}_{j \le x_i} = \sum_{i=1}^{m} x_i, \text{ using that } \tanh(x) \xrightarrow[x \to +\infty]{} 1.$$

So for t large enough, the obtained DeepSets architecture works well.

• Let us assume that the embedding is the identity (so $h_1 = 1$). Then, for t > 0, set $W_1 = t$, $W_2 = 1/t$, $b_1 = b_2 = 0$.

We then have
$$f(X) = \frac{1}{t} \sum_{i=1}^m \tanh(tx_i) \underset{t\to 0^+}{\sim} \frac{1}{t} \sum_{i=1}^m tx_i = \sum_{i=1}^m x_i$$
, using that $\tanh(x) \underset{x\to 0}{\sim} x$.

So for t > 0 small enough, the obtained DeepSets architecture works well.

If we do not use embedding nor tanh, we could simply have biases equal to 0, and weights equal to identity.

2 Question 2

Once again, this depends on the embedding that is used.

We see that when summing the two vectors in X_1 , and summing the two vectors in X_2 , we get the same results.

However, due to the embedding, and the non-linearity, we can easily have different results.

For instance, if the embedding is the identity, $W_1 = I_2$, $b_1 = 0$, then:

- For X_1 , $\phi(x_1) = \tanh([1.2, -0.7]^T) \approx [0.83, -0.60]^T$, $\phi(x_2) = \tanh([-0.8, 0.5]^T) \approx [-0.66, 0.46]^T$, so $\phi(x_1) + \phi(x_2) \approx [0.17, -0.14]^T$.
- For X_2 , $\phi(x_1) = \tanh([0.2, -0.3]^T) \approx [0.20, -0.29]^T$, $\phi(x_2) = \tanh([0.2, 0.1]^T) \approx [0.20, 0.10]^T$, so $\phi(x_1) + \phi(x_2) \approx [0.39, -0.19]^T$.

Then, we can simply use $W_2 = (1\ 1), b_2 = 0$, and then $f(X_1) \approx 0.03, f(X_2) \approx 0.20$.

3 Question 3

DeepSets takes sets as inputs, while a GNN takes graphs as inputs.

However, a set can simply be seen as a graph without edges.

Therefore, given a set S, we set the adjacency matrix A = 0, then $A = I_n$, and this can be fed to a GNN (with the feature of each node equal to the vector this node represents).

Because non-diagonal coefficients of \tilde{A} are 0, the result of each node is only computed using itself (and not the other features), as is the case with DeepSets when applying ϕ .

Therefore, DeepSets architecture can indeed be seen as a submodule of GNN.

4 Question 4

In Erdős–Rényi random graphs with n nodes, the maximum number of edges is $\binom{n}{2} = \frac{n(n-1)}{2}$. Each edge has a probability p of effectively being present in the graph, so the expected number of edges is $\binom{n}{2} = \frac{n(n-1)}{2}$.

Each edge has a probability p of effectively being present in the graph, so the expected number of edges is $\frac{pn(n-1)}{2}$.

As for the variance, by independence it is the sum of the variances for each edge, which is p(1-p), so the total variance is $\frac{p(1-p)n(n-1)}{2}$.

For n=15, p=0.2, we have an expected number of edges of 21, and a variance of 16.8. For n=15, p=0.4, we have an expected number of edges of 42, and a variance of 25.2.