برقی ادوار

خالد خان يوسفز کی کامسيٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

v																												7	اد يباج	ب	بلی کتا.	ی پی	مير
1																										ات	مساوا	نرقی.	ىيادە ت ى	ول۔	رجدا	,	1
2																													نمونه		1.1		
13									_/	بوا	ب	ر کید	ر زر تر	تاو	سمد	ىكى	برال	ميا.	ب۔	طله	ئىم	زياؤ	بومية	کاج.	y'	=	f	(x,	<i>y</i>)		1.2	2	
22																							وات	مسا	ز قی	ده تفا	ئىسا	ليحد	قابلء		1.3	3	
39																					(تكمل	, • 7.	ناور	وان) مسا	نفرق	باده آ	قطعی په	•	1.4	ļ	
52																															1.5	5	
69																															1.6	5	
73																															1.7	7	
79																										ات	مساوا	نرقی.	ماده تغ	وم	ر جه د	,	2
79																						ت	ساوار	تى م					متجانس				
89																													ایک ^م				
96																													 مستقر				

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں کی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب2

در جه دوم ساده تفرقی مساوات

کئ اہم میکانی اور برقی مسائل کو خطی دو درجی تفرقی مساوات سے ظاہر کیا جا سکتا ہے۔ خطی دو درجی تفرقی مساوات میں تمام خطی تفرقی مساوات کا حل نسبتاً آسان ہوتا ہے للمذا اس باب میں اس پر پہلے غور کرتے ہیں۔ اگلے باب کا موضوع تین درجی مساوات ہے۔

تفرقی مساوات کو خطی اور غیر خطی گروہوں میں تقسیم کیا جاتا ہے۔غیر خطی تفرقی مساوات کے حل کا حصول مشکل ثابت ہوتا ہے جبکہ خطی مساوات حل کرنے کے کئی عمدہ ترکیب پائے جاتے ہیں۔اس باب میں عمومی حل اور ابتدائی معلومات کی صورت میں مخصوص حل کا حصول دکھایا جائے گا۔

2.1 متجانس خطی دودرجی تفرقی مساوات

یک درجی مساوات پر پہلے باب میں غور کیا گیا۔اس باب میں دو درجی مساوات پر غور کیا جائے گا۔یہ مساوات میکانی اور برقی ارتعاش 1 ، متحرک امواج، منتقلی حرارتی توانائی اور طبیعیات کے دیگر شعبوں میں کلیدی کردار ادا کرتے ہیں۔

oscillations

اییا دو درجی تفرقی مساوات جس کو

(2.1)
$$y'' + p(x)y' + q(x)y = r(x)$$

صورت میں لکھا جا سکے خطبی 2 کہلاتا ہے ورنہ اس کو غیر خطبی 2 کہتے ہیں۔

متجانس اور غیر متجانس دو درجی مساوات کی تعریف ہو بہو ایک درجی متجانس اور غیر متجانس مساوات کی تعریف کی متجانس اور غیر متجانس دو درجی مساوات کی تعریف کی طرح ہے جس پر حصہ 1.5 میں تبصرہ کیا گیا۔یقیناً r(x)=0 آ جہاں زیر غور تمام x پر حصہ 1.5 میں مساوات 2.1 درج ذیل کھی جائے گی

(2.2)
$$y'' + p(x)y' + q(x)y = 0$$

جو متجانس ہے۔اگر $r(x) \not\equiv 0$ ہو تب مساوات 2.1 غیر متجانس کہلائے گا۔

متجانس خطی تفرقی مساوات کی مثال درج ذیل ہے

$$xy'' + 2y' + y = 0$$
, جو کو معیاری صورت میں کھتے ہیں $y'' + \frac{2y'}{x} + \frac{y}{x} = 0$

جبکه غیر متجانس خطی تفرقی مساوات کی مثال

$$y'' + x^2y = \sec x$$

ہے۔آخر میں غیر خطی مساوات کی تین مثال پیش کرتے ہیں۔

$$(y'')^3 + xy = \sin x$$
, $y'' + xy' + 4y^2 = 0$, $yy'' - xy' = 0$

linear²
nonlinear³
standard form⁴
identically zero⁵
nonhomogenous⁶

تفاعل p اور q مساوات 2.2 کے عددی سو 7 کہلاتے ہیں۔

دو در جی مساوات کے حل کی تعریف عین ایک در جی مساوات کے حل کی مانند ہے۔ نفاعل y = h(x) کو کھلے وقفہ I پر اس صورت خطی (یا غیر خطی) دو در جی تفر قی مساوات کا حل تصور کیا جاتا ہے جب اس پورے فاصلے پر y' ، h' ، h(x) اور y' ، h' یائے جاتے ہوں اور تفر تی مساوات میں y' کی جگہ y' ، h' ، h(x) کی جگہ h'' ، h' پر کرنے سے مساوات کے دونوں اطراف بالکل کیسال صورت اختیار کرتے ہوں۔ چند مثال جلد پیش کرتے ہیں۔

متجانس خطی تفرقی مساوات

اس باب کے پہلے جھے میں متجانس خطی مساوات پر غور کیا جائے گا جبکہ بقایا باب میں غیر متجانس خطی مساوات پر غور کیا جائے گا۔

خطی تفرقی مساوات حل کرنے کے نہایت عمدہ تراکیب پائے جاتے ہیں۔ متجانس مساوات کے حل میں اصول خطیت⁸ یا اصول نفاذ⁹ کلیدی کردار ادا کرتا ہے جس کے تحت متجانس مساوات کے مختلف حل کو آپس میں جمع کرنے یا انہیں متقل سے ضرب دینے سے دیگر حل حاصل کئے جا سکتے ہیں۔

مثال 2.1: اصول نفاذ $y_2 = \sin 2x$ اور $\sin 2x$ اور $\sin 2x$ بین $y_2 = \sin 2x$ اور $\sin 2x$ اور $\sin 2x$ بین $\sin 2x$ مثام $\sin 2x$ اور $\sin 2x$ اور $\sin 2x$ بین $\sin 2x$ اور $\sin 2x$ او

ان حل کی در سی ثابت کرنے کی خاطر انہیں دیے گئے مساوات میں پر کرتے ہیں۔ پہلے $y_1 = \cos 2x$ کو درست حل ثابت کرتے ہیں۔ چونکہ $y_1 = -4\cos 2x$ کے مساوات میں پر کرتے ہیں۔ پہلے

$$y'' + 4y = (\cos 2x)'' + 4(\cos 2x) = -4\cos 2x + 4\cos 2x = 0$$

coefficients⁷ linearity principle⁸ superposition principle⁹

ملتا ہے۔اسی طرح $y_2 = \sin 2x$ کو پر کرتے ہوئے

$$y'' + 4y = (\sin 2x)'' + 4(\sin 2x) = -4\sin 2x + 4\sin 2x = 0$$

ملتا ہے۔ ہم دیے گئے حل سے نئے حل حاصل کر سکتے ہیں۔ یوں ہم $\cos 2x$ کو کسی متعقل مثلاً 2.73 سے ضرب دیتے ہوئے اور sin 2x کو 1.25 سے ضرب دیتے ہوئے ان کا مجموعہ

$$y_3 = 2.73\cos 2x - 1.25\sin 2x$$

لتے ہوئے توقع کرتے ہیں کہ یہ بھی دیے گئے تفرقی میاوات کا حل ہو گا۔آئس نئے حل کو تفرقی میاوات میں پر کرتے ہوئے اس کی درنتگی ثابت کریں۔

$$y'' + 4y = (2.73\cos 2x - 1.25\sin 2x)'' + 4(2.73\cos 2x - 1.25\sin 2x)$$
$$= 4(-2.73\cos 2x + 1.25\sin 2x) + 4(2.73\cos 2x - 1.25\sin 2x)$$
$$= 0$$

اس مثال میں ہم نے دیے گئے حل y_1 اور y_2 سے نیا حل

(2.4)
$$y_3 = c_1 y_1 + c_2 y_2$$
, $(y_1 = c_2)$

حاصل کیا۔ اس کو اور اور اور اور کا خطبی میل 10 کہتے ہیں۔اس مثال سے ہم مسئلہ خطبی میل بیان کرتے ہیں جے عموماً اصول خطبت یا اصول نفاذ کہا جاتا ہے۔

مسئلہ 2.1: مسئلہ خطی میل کھلے وقفہ I پر متجانس خطی دو درجی تفرقی مساوات کے دو عدد حل کا خطی میل بھی I پر اس مساوات کا حل ہو گا۔ مالخصوص ان حل کو مستقل مقدار سے ضرب دینے سے بھی مساوات کے حل حاصل ہوتے ہیں۔

ثبوت: تصور کریں کہ متحانس مساوات 2.2 کے دو حل u_1 اور u_2 پائے جاتے ہیں للذا

(2.5)
$$y_1'' + py_1' + qy_1 = 0$$
$$y_2'' + y_2' + qy_2 = 0$$

linear combination¹⁰

ہو گا۔ خطی میل سے نیا حل $y_3=c_1y_1+c_2y_2$ حاصل کرتے ہیں۔اس کا ایک درجی تفرق اور دو درجی تفرق درجی خرج ذیل ہیں۔

$$y_3' = c_1 y_1' + c_2 y_2'$$

$$y_3'' = c_1 y_1'' + c_2 y_2''$$

یں پر کرتے ہیں y_3'' اور y_3'' کو متجانس مساوات کے بائیں ہاتھ میں پر کرتے ہیں

$$y_3'' + py_3' + qy_3 = (c_1y_1'' + c_2y_2'') + p(c_1y_1' + c_2y_2') + q(c_1y_1 + c_2y_2)$$

= $c_1(y_1'' + py_1' + qy_1) + c_2(y_2'' + py_2' + qy_2)$
= 0

جہاں مساوات 2.5 سے آخری قدم پر دونوں قوسین صفر کے برابر پر کئے گئے ہیں۔یوں مساوات کا بایاں ہاتھ اور دایاں ہاتھ دایاں ہاتھ کا بایاں ہاتھ اور دایاں ہاتھ برابر ہیں للذا ثابت ہوتا ہے کہ ہور بھی مساوات 2.2 کا حل ہے۔

یہاں یاد رہے کہ مسلہ 2.1 صرف متجانس مساوات کے لئے قابل استعال ہے۔ غیر متجانس مساوات کے دیگر حل اس مسلط سے حاصل نہیں کئے جا سکتے ہیں۔

 $y_3=y_1$ مثال 2.2: تصور کریں کہ y_1 اور y_2 غیر متجانس مساوات 2.1 کے حل ہیں۔ ثابت کریں کہ c_1 مثال c_2 اور c_2 مستقل مقدار ہیں۔ c_1 حال نہیں ہے جہاں c_2 اور c_2 مستقل مقدار ہیں۔

حل: y_1 اور y_2 غیر متجانس مساوات کے حل ہیں لہذا انہیں متجانس مساوات میں پر کرنے سے مساوات کے دونوں اطراف برابر حاصل ہوتے ہیں یعنی

(2.6)
$$y_1'' + py_1' + qy_1 = r y_2'' + py_2' + qy_2 = r$$

y₃ کو مساوات کے بائیں ہاتھ میں پر کرتے ہیں

$$y_3'' + py' + qy = (c_1y_1 + c_2y_2)'' + p(c_1y_1 + c_2y_2)' + q(c_1y_1 + c_2y_2)$$

$$= (c_1y_1'' + c_2y_2'') + p(c_1y_1' + c_2y_2') + q(c_1y_1 + c_2y_2)$$

$$= c_1(y_1'' + py_1' + qy_1) + c_2(y_2'' + py_2' + qy_2)$$

$$= (c_1 + c_2)r$$

جہاں آخری قدم پر مساوات 2.6 کا استعمال کیا گیا۔ اس سے $(c_1+c_2)r$ حاصل ہوتا ہے جبکہ متجانس مساوات کا دایاں ہاتھ r کے برابر ہے لہذا y_3 متجانس مساوات پر پورا نہیں اترتا۔ یوں y_3 متجانس مساوات کا حل نہیں ہے۔

مشق 2.1: غير متجانس خطى مساوات

ورج ذیل خطی غیر متجانس مساوات میں $y = 2 - \cos x$ اور $y = 2 - \sin x$ کو پر کرتے ہوئے ثابت کریں کہ یہ مساوات کے حل ہیں۔ ثابت کریں کہ ان کا مجموعہ مساوات کا حل نہیں ہے۔ اسی طرح ثابت کریں کہ $-7(2 - \sin x)$ یا $-7(2 - \sin x)$ مساوات کے حل نہیں ہیں۔

$$y'' + y = 2$$

مثق 2.2: درج ذیل مساوات میں y=1 اور x^3 یر کرتے ہوئے ثابت کریں کہ یہ دونوں تفرقی مساوات کے حل ہیں۔ ثابت کریں کہ ان کا مجموعہ تفرقی مساوات کا حل نہیں ہے نا ہی $y=-x^3$ حل ہے۔ اس کا مطلب یہ ہوا کہ حل کو $y=-x^3$ خرب دے کر نیا حل نہیں حاصل کیا جا سکتا ہے۔

$$yy'' - 2x^2y' = 0$$

ابتدائی قیمت مسائل اساس عمومی حل

باب 1 میں ابتدائی قیمت درجہ اول سادہ تفرقی مساوات پر غور کیا گیا۔ درجہ اول سادہ تفرقی مساوات اور ابتدائی معلومات $y(x_0)=y_0$ معلومات کہلاتے ہیں۔ ابتدائی قیمت کو استعال کرتے ہوئے درجہ اول سادہ تفرقی مساوات کے عومی حل کا واحد اختیاری مستقل c حاصل کرتے ہوئے مخصوص یکتا حل حاصل کر جہ اس تصور کو دو درجی سادہ تفرقی مساوات تک بڑھاتے ہیں۔ کیا جاتا ہے۔ اس تصور کو دو درجی سادہ تفرقی مساوات تک بڑھاتے ہیں۔

دو درجی متجانس خطی ابتدائی قیمت مسکلے سے مراد متجانس مساوات 2.2 اور درج ذیل ابتدائی معلومات ہیں۔ $y(x_0)=K_0, \quad y'(x_0)=K_1$

اور K_1 کھلے وقفہ پر نقطہ χ پر بالترتیب نقطہ عمومی حل اور حل کے تفرق (یعنی ڈھلوان) کی قیمتیں ہیں۔ K_0

ماوات 2.7 میں دیے گئے ابتدائی قیمتوں سے عمومی حل

$$(2.8) y = c_1 y_1 + c_2 y_2$$

ے اختیار کی مستقل y_1 اور y_2 کی قیمتیں حاصل کی جاتی ہیں۔یہاں y_1 اور y_2 مساوات y_3 کے حل y_4 اور جس کی ڈھلوان اس نقطے پر y_4 ہیں۔یوں مخصوص حل حاصل کیا جاتا ہے جو نقطہ y_4 (y_4) سے گزرتا ہے اور جس کی ڈھلوان اس نقطے پر y_4 ہوتی ہے۔

مثال 2.3: ورج ذیل ابتدائی قیمت دو در جی ساده تفرقی مساوات کو حل کریں۔ $y''+4y=0, \quad y(0)=5, \quad y'(0)=-3$

طل: پہلا قدم: اس مساوات کے حل $y_1=\cos 2x$ اور $y_2=\sin 2x$ بیں (مثال 2.1 سے رجوع کریں) لہذا اس کا موزوں عمومی حل

 $y = c_1 \cos 2x + c_2 \sin 2x$ $y = c_1 \cos 2x + c_2 \sin 2x$ $y = c_1 \cos 2x + c_2 \sin 2x$

شكل 2.1: مثال 2.3 كالمخصوص حل _

دوسرا قدم: مخصوص حل حاصل کرتے ہیں۔ عمومی حل کا تفرق $y' = -2\sin 2x + 2c_2\cos x$ ہے۔ ابتدائی قیمتیں استعال کرتے ہوئے

$$y(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 = 5$$

 $y'(0) = -2 \sin 0 + 2c_2 \cos 0 = 2c_2 = -3, \quad c_2 = -1.5$

حاصل ہوتے ہیں للذا مخصوص حل

$$y = 5\cos 2x - 1.5\sin 2x$$

ہو گا۔ شکل 2.1 میں مخصوص حل و کھایا گیا ہے۔ نقطہ x=0 پر اس کی قیمت y(0)=5 ہے جبکہ اس نقطے y'(0)=5 ہیں مخصوص حل و کھایا گیا ہے۔ ممال x=5 ممال x=5 ممال x=5 ممال x=5 ممال کور کو دھلوان (ممال)

$$y = c_1 \cos 2x + c_2 k \cos 2x = (c_1 + c_2 k) \cos 2x = c_3 \cos 2x$$

عمومی حل کھتے ہیں۔اس مساوات میں ایک عدد اختیاری مستقل c_3 پایا جاتا ہے جو دونوں ابتدائی قیتوں پر پورا اترنے کے لئے ناکافی ہے۔یوں ہم دیکھتے ہیں کہ عمومی حل کھتے ہوئے ایسے موزوں حل کا خطی میل لیا جاتا ہے جو آپس میں راست تناسی نہ ہوں۔

آپ نے ہیے بھی دیکھ لیا ہو گا کہ عمومی حل میں استعال ہونے والے موزوں حل y_1 اور y_2 انفرادی طور پر دونوں ابتدائی معلومات پر پورا اترتا ہے۔ یہی عمومی حل کی اہمیت کی وجہ ہے۔

عمومی حل، اساس اور مخصوص حل کے تعریف

کھے وقفہ I پر سادہ تفرقی مساوات 2.2 کا عمو کی حل مساوات 2.9 دیتا ہے جہاں I پر I اور I مساوات I کے وقفہ I پر ساوات I ور I مساوات I ور I ور I مساوات I ور I ور

کھلے وقفہ 1 پر سادہ تفر تی مساوات 2.2 کا مخصوص حل مساوات 2.9 میں c_1 اور c_2 کی جگہ مخصوص قیمتیں پر کرنے سے حاصل ہوتا ہے۔

کھے وقفہ کی تعریف حصہ 1.1 میں دی گئی ہے۔ y_1 اور y_2 اس صورت تناسی تصور کئے جاتے ہیں جب پورے y_1 کے وقفہ کی تعریف حصہ 1.1 میں دی گئی ہے۔ y_1 اور y_2

$$(2.10) (a) y_1 = ky_2 (b) y_2 = ly_1$$

ہو، جہاں k اور l اعداد ہیں جو صفر تھی ہو سکتے ہیں۔(یہاں توجہ رکھیں: a اس صورت b کے مترادف p جہاں $k \neq 0$ ہو۔)

آئیں اساس کی تعریف ذرہ مختلف اور عمومی اہمیت کے حامل طریقے سے بیان کریں۔ وقفہ I پر معین y_1 اور y_2 وقفہ I پر اس صورت خطبی طور غیر تابع 12 کہلاتے ہیں جب یورے وقفے پر y_2

$$(2.11) k_1 y_1 + k_2 y_2 = 0$$

سے مراد

(2.12)
$$k_1 = 0 \\ k_2 = 0$$

ہو۔ k_1 اور k_2 میں سے کم از کم ایک کی قیمت صفر کے برابر نہ ہونے کی صورت میں مساوات 2.11 پر پورا اترتے ہوئے حل y_1 اور y_2 خطی طور تابع y_3 کہلاتے ہیں۔اگر y_3 ہو تب ہم مساوات y_4 کو الرقے ہوئے حل

hasis 11

linearly independent¹²

linearly dependent¹³

 k_1 کی صورت $k_2 \neq 0$ کی صورت $k_2 \neq 0$ کی صورت $k_2 \neq 0$ کی صورت k_1 کی صورت $k_2 \neq 0$ کی صورت میں میں $k_2 = \frac{k_1}{k_1} y_2$ کی صورت میں میں $k_2 = \frac{k_1}{k_2} y_3$ کی صورت میں $k_2 = \frac{k_1}{k_2} y_3$ کی صورت میں $k_2 = \frac{k_1}{k_2} y_3$ کی صورت میں مصاوات k_1 کی $k_2 = \frac{k_1}{k_2} y_3$ کی صورت میں کر سکتے للذا تناسمی رشتہ حاصل نہیں کیا جا سکتا۔ اس طرح اساس کی (درج زیل) قدر مختلف تعریف حاصل ہوتی ہے۔

اساس کی قدر مخلف تعریف کھلے وقفی I پر مساوات 2.11 کا خطی طور غیر تابع حل مساوات 2.11 کے حل کا امساس ہے۔

اگر کسی کھلے وقفے I پر مساوات کے عددی سر p اور p استمراری تفاعل ہوں تب اس وقفے پر مساوات کے کا عمومی حل پایا جاتا ہے۔مساوات 2.7 میں دیے ابتدائی معلومات استعال کرتے ہوئے اس عمومی حل سے مخصوص حل حاصل ہو گا۔ وقفہ I پر مساوات کے تمام حل یہی عمومی مساوات دے گا لہذا الیمی صورت میں مساوات کا کوئی نادر 14 حل نہیں پایا جاتا (نادر حل کو عمومی حل سے حاصل نہیں کیا جا سکتا ہے۔ یہاں سوال $^{1.16}$ سے رجوع کریں)۔ ان تمام حقائق کی وضاحت جلد کی جائے گی۔

مثال 2.4: اساس، عمومی اور مخصوص حل مثال 2.4: اساس، عمومی اور مخصوص حل مثال 2.4 y'' + 4y = 0 اور y'' + 4y = 0 تام x بر مثال 2.3 کے تفرقی مساوات x مشتقل ہے۔اس مثال میں ابتدائی معلومات مثال کئے ہے کہ x ور x و

y''-4y=0 سادہ تفرقی مساوات $y_2=e^{-2x}$ اور $y_2=e^{-2x}$ سادہ تفرقی مساوات $y_1=e^{2x}$ مثال 2.5: پر کرتے ہوئے ثابت کریں کہ تمسیلے کو حل کریں۔

$$y'' - 4y = 0$$
, $y(0) = 2$, $y'(0) = 1$

 $singular solution^{14}$

 $y_2''-4y_2=(e^{-2x})''-1$ اور $y_1''-4y_1=(e^{2x})''-4e^{2x}=4e^{2x}-4e^{2x}=0$ على: چونکہ $y_1''-4y_1=(e^{2x})''-4e^{2x}=4e^{2x}-4e^{2x}=0$ اور $y_2''-2e^{2x}=4e^{2x}-4e^{2x}=0$ اور $y_2''-2e^{2x}=1$ اور $y_2''-2e^{2$

$$y = c_1 e^{2x} + c_2 e^{-2x}$$

 $y(0)=c_1e^0+c_2e^0=c_1+c_2=2,$ $y'=2c_1e^{2x}-2c_2e^{-2x},$ $y'(0)=2c_1-2c_2=1$ $y'=c_1e^0+c_2e^0=c_1+c_2=2,$ $y'=2c_1e^{2x}-2c_2e^{-2x},$ $y'(0)=2c_1-2c_2=1$ وو عدد ہمزاد مساوات $c_1=\frac{3}{4}$ اور $c_1=\frac{3}{4}$ کو آپی میں حل کرتے ہوئے $c_1=\frac{3}{4}$ اور $c_2=\frac{3}{4}$ $c_3=\frac{3}{4}$ $c_4=\frac{3}{4}$ $c_5=\frac{5}{4}$ $c_5=\frac{3}{4}$

2.2 ایک حل معلوم ہونے کی صورت میں اساس دریافت کرنا۔ تخفیف درجہ

بعض اوقات ایک حل با آسانی حاصل ہو جاتا ہے۔دوسرا خطی طور غیر تابع حل یک درجی سادہ تفرقی مساوات کے حل سے حاصل کیا جا سکتا ہے۔ اس کو تخفیف درجہ 15 کی ترکیب ¹⁶ کہتے ہیں۔ اس ترکیب کی مثال دیکھنے کے بعد اس کی عمومی اطلاق پر غور کرتے ہیں۔

مثال 2.6: ایک حل جانتے ہوئے تخفیف درجہ۔اساس درج ذیل سادہ تفرقی مساوات کے اساس حل دریافت کریں۔

$$x^2y'' - xy' + y = 0$$

reduction of order 15

¹⁶ يه تركيب يوسف لو كي كيگريخ (1813-1736) نے دريانت كى۔

کل: دیے گئے مساوات کے معائنے سے ایک حل $y_1=x$ ککھا جا سکتا ہے چونکہ یوں $y_1''=0$ ہو گا لہذا تفرقی مساوات کا پہلا جزو صفر ہو جاتا ہے اور $y_1'=1$ ہو گا جس سے مساوات کے دوسرے اور تیسرے اجزاء کا مجموعہ صفر ہو جاتا ہے۔ اس ترکیب میں دوسرے حل کو $y_2=uy_1$ ککھ کر دیے گئے تفرقی مساوات میں

$$y_2 = uy_1 = ux$$
, $y_2' = u'x + u$, $y_2'' = u''x + 2u'$

پر کرتے ہیں۔

$$x^{2}(u''x + 2u') - x(u'x + u) + ux = 0$$

درج بالا کو ترتیب دیتے ہوئے xu اور xu اور xu آپی میں کٹ جاتے ہیں اور $xu''+x^2u''+x^2u''=0$ رہ جاتا xu کو ترتیب دیتے ہوئے xu کرتے ہوئے

$$xu'' + u' = 0$$

ماتا ہے۔اس میں u'=v پر کرتے ہوئے ایک درجی مساوات حاصل ہوتی ہے جس کو علیحدگی متغیرات کے ترکیب سے حل کرتے ہیں۔

$$xv' + v = 0$$
, $\frac{\mathrm{d}v}{v} = -\frac{\mathrm{d}x}{x}$, $v = \frac{1}{x}$

اس میں واپس v=u' پر کرتے ہوئے کمل سے u حاصل کرتے ہیں۔

$$v = u' = \frac{1}{x}, \quad u = \ln|x|$$

یوں $y_2=x\ln|x|$ عاصل ہوتا ہے۔ چونکہ y_1 اور y_2 کا حاصل نقسیم مستقل نہیں ہے للذا یہ حل خطی طور غیر تابع ہیں اور یوں اساس حل $y_1=x\ln|x|$ ، $y_1=x$ ہوئے کمل کا مستقل نہیں لکھا گیا چونکہ ہمیں اساس درکار ہے۔ عمومی مساوات لکھتے وقت مستقل لکھنا ضروری ہو گا۔

اس مثال میں ہم نے تخفیف درجہ کی ترکیب متجانس خطی سادہ تفرقی مساوات

(2.13)
$$y'' + p(x)y' + q(x)y = 0$$

پر استعال کی۔درج بالا مساوات کو معیاری صورت میں کھا گیا ہے جہاں پہلا جزو y'' ہے جس کا عددی سر اکائی 2 برابر ہے۔ نیچے اخذ کلیات مساوات کی معیاری صورت کے لئے حاصل کئے گئے ہیں۔ تصور کریں کہ کھلے وقفہ 1

I پر ہمیں مساوات 2.13 کا ایک عدد حل y_1 معلوم ہے اور ہم حل کا اساس جاننا چاہتے ہیں۔ اس کی خاطر ہمیں پر خطی طور غیر تابع دوسرا حل y_2 درکار ہے۔ دوسرا حل حاصل کرنے کی خاطر ہم

 $y = y_2 = uy_1$, $y' = y_2' = u'y_1 + uy_1'$, $y'' = y_2'' = u''y_1 + 2u'y_1' + uy_1''$

کو مساوات 2.13 میں پر کرتے ہوئے

 $(u''y_1 + 2u'y_1' + uy_1'') + p(u'y_1 + uy_1') + q(uy_1) = 0$

"u' ، u' اور س کے عددی سر اکٹھے کرتے ہیں۔

 $u''y_1 + u'(2y_1' + py_1') + u(y_1'' + py_1' + qy_1) = 0$

چونکہ اللہ اللہ عادات 2.13 کا حل ہے المذا آخری قوسین صفر کے برابر ہے المذا

 $u''y_1 + u'(2y_1' + py_1') = 0$

حاصل ہوتا ہے۔ اس کو y_1 سے تقسیم کرتے ہوئے v'=v پر کرنے سے تخفیف شدہ y_1 ایک درجی مساوات حاصل ہوتی ہے۔

$$v' + \left(\frac{2y_1'}{y_1} + p\right)v = 0$$

علیحد گی متغیرات کے بعد تکمل لینے سے

$$\frac{\mathrm{d}v}{v} = -\left(\frac{2y_1'}{y_1} + p\right)\mathrm{d}x, \quad \ln|v| = -2\ln|y_1| - \int p\,\mathrm{d}x$$

لعني

$$(2.14) v = \frac{1}{y_1^2} e^{-\int p \, \mathrm{d}x}$$

ملتا ہے۔ چونکہ v=u' کے برابر ہے للذا دوسرا حل

$$(2.15) y_2 = y_1 u = y_1 \int v \, \mathrm{d}x$$

 $\rm reduced^{17}$

 y_2 اور y_1 اور v>0 ہو گا۔ حاصل تقسیم v>0 ہو گا۔ حاصل تقسیم $y_1=u=\int p\,\mathrm{d}x$ ہو گا۔ حاصل تقسیم اساس عل ہیں۔

متجانس خطی رو در جی مساوات سے ایک در جی مساوات کا حصول ہم دیکھ چکے۔ آئیں تخفیف درجہ کے دو مثال دیکھیں جو خطی مساوات اور غیر خطی مساوات پر لا گو کی جا سکتی ہیں۔

مثال 2.7: دو درجی خطی یا غیر خطی مساوات F(x,y,y',y'') میں y صریحاً نہیں پایا جاتا۔ اس سے ایک درجی مساوات حاصل کریں۔

حل: چونکہ y صریحاً نہیں پایا جاتا للذا اس کو F(x,y',y'') کھ سکتے ہیں جس میں y عرتے ہوئے ایک درجی مساوات y عاصل ہو گا۔ y عاصل ہو گا۔

مثال 2.8: دو درجی خطی یا غیر خطی مساوات F(x,y,y',y'') میں x صریحاً نہیں پایا جاتا۔ اس سے ایک درجی مساوات حاصل کر س۔

$$\frac{\mathrm{d}z}{\mathrm{d}y} = \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{y''}{z}$$

لعيني

$$y'' = z \frac{\mathrm{d}z}{\mathrm{d}y}$$

کھا جا سکتا ہے۔ z اور z_y کو دیے مساوات میں پر کرتے ہوئے ایک درجی مساوات z ملتی ہے جس کا آزاد متغیرہ z ہے۔

chain rule of differentiation 18

سوالات

سوال 2.1 تا سوال 2.7 سے ایک درجی مساوات حاصل کرتے ہوئے حل کریں۔

سوال 2.1:

y'' - y' = 0

 $y=c_1e^x+c_2: \mathfrak{S}$

سوال 2.2:

xy'' + y' = 0

 $y = c_1 \ln|x| + c_2$ جواب:

سوال 2.3:

xy'' - 2y' = 0

 $y = c_1 x^3 + c_2$:واب

سوال 2.4:

 $yy'' - (y')^2 = 0$

 $y=c_2e^{c_1x}:=c_2e^{c_1x}$

سوال 2.5:

 $y'' - (y')^3 \cos y = 0$

 $\cos y + c_1 y = x + c_2$ جواب:

سوال 2.6:

$$y'' - (y')^2 \cos y = 1$$

 $y = \ln \sec(x + c_1) + c_2$ جواب:

سوال 2.7:

$$x^2y'' - 2xy' + 2y = 0, \quad y_1 = x^2$$

 $y = c_1 x^2 + c_2 x$: e^{-x}

قابل تخفیف سادہ تفرقی مساوات کے استعال سوالات 2.8 تا سوال 2.11 دیتے ہیں۔

سوال 2.8: منحنی

کار تیسی محدد کے محور سے گزرتی منحنی y'' + y' = 0 کی مرکز پر ڈھلوان اکائی کے برابر ہے۔ منحنی کی مساوات حاصل کریں۔

 $y = 1 - e^{-x}$:واب

سوال 2.9: ليزم

دو مقررہ نقاط سے لگی ہوئی زنجیری ڈوری سے بننے والا خم لیزم $y''=k\sqrt{1+y'^2}$ مساوات $y''=k\sqrt{1+y'^2}$ اور حل سے حاصل کیا جاتا ہے۔ مستقل k کی قیمت ڈوری کی تناو اور کمیت پر منحصر ہے۔ ڈوری نقطہ k=1 اور k=1 سے حاصل کریں۔ k=1 سے لگی ہوئی ہے۔ k=1 تصور کرتے ہوئے لیزم کی مساوات حاصل کریں۔

جواب: زنجیر کے وسط یعنی x=0 پر ڈھلوان صفر کے برابر ہے۔یوں $y=-1+\cosh x$ حاصل ہوتا ہے۔

سوال 2.10: حركت

ایک جھوٹی جسامت کی چیز سیدھی کلیر پر یوں حرکت کرتی ہے کہ اس کی اسراع اور رفتار میں فرق ایک مثبت مستقل ایک جھوٹی جسامت کی چیز سیدھی کلیر پر یوں حرکت کرتی ہے کہ اس کی اسراع اور رفتار منحصر ہے؟ k

 ${\rm catenary}^{19}$

$$y = (k+u)e^t + (y_0 - u) - k(t+1)$$
 يواب:

سوال 2.11: حركت

ایک تھیوٹی جسامت کی چیز سید تھی لکیر پر یوں حرکت کرتی ہے کہ اس کی اسراع کی قیمت رفتار کی قیمت کے مربع کے برابر رہتی ہے۔فاصلے کی عمومی مساوات حاصل کریں۔

 $t = c_1 - \ln(t + c_2)$ جواب:

سوال 2.12 تا سوال 2.15 میں ثابت کریں کہ دیے گئے تفاعل خطی طور غیر تابع ہیں اور یوں یہ حل کی اساس ہیں۔ان ابتدائی قیت سوالات کے حل کھیں۔

سوال 2.12:

$$y'' + 9y = 0$$
, $y(0) = 5$, $y'(0) = -2$; $\cos 3x \sin 3x$

$$y = 5\cos 3x - \frac{2}{3}\sin 3x :$$

سوال 2.13:

$$y'' - 2y' + y = 0$$
, $y(1) = 0$, $y'(1) = 1$; e^x , xe^x

$$y = e^{x-1}(x-1)$$
 جواب:

سوال 2.14:

$$x^2y'' - xy' + y = 0$$
, $y(1) = 3.2$, $y'(1) = -1.5$; $x, x \ln x$

$$y = \frac{16}{5}x - \frac{47}{10}x \ln x :$$

سوال 2.15:

$$y'' + 2y' + 3y = 0$$
, $y(0) = 2$, $y'(0) = -3$; $e^{-x} \cos \sqrt{2}x e^{-x} \sin \sqrt{2}x$

$$y = e^{-x} (2\cos\sqrt{2}x - \frac{1}{\sqrt{2}}\sin\sqrt{2}x)$$
 جاب:

2.3 مستقل عددي سروالے متجانس خطی سادہ تفرقی مساوات

اب ایسے دو در جی متجانس تفر قی مساوات پر بات کرتے ہیں جن کے عددی سر a اور b مستقل مقدار ہیں۔ y'' + ay' + b = 0

یہ مساوات میکانی اور برتی ارتعاش میں اہم کردار اوا کرتی ہے۔ قوت نمائی تفاعل $y=e^{-kx}$ کے تفرق سے y'+ky=0 کا y'+ky=0 کا y'+ky=0 کا y'+ky=0 کا y'+ky=0 کا y'+ky=0 کا حل $y=e^{-kx}$ کا حل $y=e^{-kx}$ کا حل کے جہم دیکھنا چاہتے ہیں کہ آیا مساوات 2.16 کا حل

$$(2.17) y = e^{\lambda x}$$

 $y=e^{\lambda x}$ اور اس کے تفرق $y'=\lambda e^{\lambda x}$ ممکن ہے یا نہیں۔ یہ جاننے کی خاطر $y'=\lambda e^{\lambda x}$, $y''=\lambda^2 e^{\lambda x}$

کو مساوات 2.16 میں پر کرتے ہیں۔

$$(\lambda^2 + a\lambda + b)e^{\lambda x} = 0$$

کسی بھی محدود قیت کے λ اور x کے لئے $e^{\lambda x}$ صفر نہیں ہو گا لہذا اس مساوات کے دونوں اطراف صرف اس صورت برابر ہو سکتے ہیں جب λ امتیازی مساوات 20

کا جذر ہو۔اس دو درجی الجبرائی مساوات²¹کو حل کرتے ہیں۔

(2.19)
$$\lambda_1 = \frac{-a + \sqrt{a^2 - 4b}}{2}, \quad \lambda_2 = \frac{-a - \sqrt{a^2 - 4b}}{2}$$

یوں مساوات 2.16 کے حل

$$(2.20) y_1 = e^{\lambda_1 x}, y_2 = e^{\lambda_2 x}$$

ہوں گے۔انہیں مساوات 2.16 میں پر کرتے ہوئے آپ ثابت کر سکتے ہیں کہ یہی تفرقی مساوات کے حل ہیں۔

رو در جی الجبرائی مساوات (\mp) کے جذر کی تین مکنہ قیتیں ہیں جو a^2-4b کی علامت (\mp) پر منحصر ہیں۔

characteristic equation²⁰ quadratic equation²¹

- $a^2-4c>0$ پہلی صورت: دو منفرد حقیقی جذر •
- $a^2-4c=0$ ووسرى صورت: دوهرا حقیقی جذر •
- $a^2 4c < 0$ تیسری صورت: جوڑی دار مخلوط جذر •

آئیں ان تین صور توں پر باری باری غور کریں۔

پهلي صورت: دومنفر د حقیقي حذر

اس صورت میں، چونکہ y_1 اور ان کا حاصل تقسیم متقل قیت نہیں ہوں اور حقیقی ہیں) اور ان کا حاصل تقسیم متقل قیت نہیں ہے لہذا کسی بھی وقفے پر مساوات 2.16 کے حل کا اساس

$$(2.21) y_1 = e^{\lambda_1 x}, y_2 = e^{\lambda_2 x}$$

ہو گا۔ یوں تفرقی مساوات کا عمومی حل درج ذیل ہو گا۔

 $(2.22) y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$

مثال 2.9: وو حقیقی منفرو جذر منفرو جذر معاوات $\lambda^2 - 4 = 0$ معاوات $\lambda^2 - 4 = 0$ معاوات کا طل حاصل کرتے ہیں۔اس کا امتیازی مساوات $\lambda^2 - 4 = 0$ ہماوات کا عمومی منفرو قیمتیں ہیں۔یوں حل کا اساس $\lambda^2 = e^{-2x}$ اور $\lambda^2 = e^{-2x}$ وو منفرو قیمتیں ہیں۔یوں حل کا اساس $\lambda^2 = e^{-2x}$ اور $\lambda^2 = e^{-2x}$ وو منفرو قیمتیں ہیں۔یوں حل کا اساس $\lambda^2 = e^{-2x}$ اور $\lambda^2 = e^{-2x}$ وو منفرو قیمتیں ہیں۔یوں حل کا اساس کی اساوات کا عمومی حل $\lambda^2 = e^{-2x}$ کھا جا سکتا ہے۔

مثال 2.10: ابتدائی قیمت مسئله۔دو حقیقی منفرد جذر درج ذیل ابتدائی قیمت مسئلے کو حل کریں۔

$$y'' + y' - 6 = 0$$
, $y(0) = -4$, $y'(0) = 5$

حل: امتيازي مساوات لکھتے ہیں

$$\lambda^2 + \lambda - 6 = 0$$

جس کے حذر

$$\lambda_1 = \frac{-1 + \sqrt{1 + 24}}{2} = 2, \quad \lambda_2 = \frac{-1 - \sqrt{1 + 24}}{2} = -3,$$

یں۔ان سے اساس حل $y_1=e^{-3x}$ ، $y_1=e^{2x}$ ماتا ہے جس سے عمومی حل حاصل ہوتا ہے۔ $y=c_1e^{2x}+c_2e^{-3x}$

ابتدائی قیمتیں پر کرتے ہوئے مستقل حاصل کرتے ہیں۔چونکہ $y'=2c_1e^{2x}-3c_2e^{-3x}$ ہندا

$$y(0) = c_1 + c_2 = -4$$

$$y'(0) = 2c_1 - 3c_2 = 5$$

کھا جائے گا۔ان ہمزاد مساوات کو حل کرتے ہوئے $c_1=-rac{7}{5}$ اور $c_2=-rac{13}{5}$ ملتا ہے جن سے مخصوص حل کھتے ہیں۔

$$y = -\frac{7}{5}e^{2x} - \frac{13}{5}e^{-3x}$$

مخصوص حل کو شکل 2.2 میں دکھایا گیا ہے جو ابتدائی قیمتوں پر پورا اترتا ہے۔

دوسری صورت: دوهراحقیقی جذر

اگر ما $\lambda_1=\lambda_2=-rac{a}{2}$ ماتا ہے جو واحد طل $y_1=e^{-rac{a}{2}x}$

شكل 2.2: مثال 2.10 كالمخصوص حل _

ویتا ہے۔ ہمیں اساس کے لئے دو حل درکار ہیں۔دوسرا حل تحفیف درجہ کی ترکیب سے حاصل کیا جائے گا۔اس ترکیب پر بحث ہو چکی ہے۔یوں ہم دوسرا حل $y_2=uy_1$ تصور کرتے ہیں۔مساوات 2.16 میں

$$y_2 = uy_1$$
, $y_2' = u'y_1 + uy_1'$, $y'' = u''y_1 + 2u'y_1' + uy_1''$

پر کرتے

$$(u''y_1 + 2u'y_1' + uy_1'') + a(u'y_1 + uy_1') + b(uy_1) = 0$$

ہوئے "u' ، u' اور س کے عددی سر اکٹھے کرتے ہیں۔

$$(2.23) u''y_1 + u'(2y_1' + ay_1) + u(y_1'' + ay_1' + by_1) = 0$$

چونکہ y_1 تفرقی مساوات کا حل ہے الہذا آخری قوسین صفر کے برابر ہے۔اب پہلی قوسین پر غور کرتے ہیں۔چونکہ $y_1=e^{-rac{a}{2}x}$ لہذا $y_1=e^{-rac{a}{2}x}$ ہو گا۔ان قیمتوں کو پہلی قوسین میں پر کرتے

$$2y_1' + ay_1 = 2(-\frac{a}{2}y_1) + ay_1 = 0$$

u''=0 ہوئے یہ قوسین بھی صفر کے برابر حاصل ہوتی ہے۔ یوں مساوات 2.23 سے $u''y_1=0$ لینی $u=c_1x+c_2$ حاصل ہوتا ہے۔ دو مرتبہ تکمل لیتے ہوئے $u=c_1x+c_2$ حاصل ہوتا ہے۔ دو مرتبہ تکمل لیتے ہوئے $c_1=0$ اور $c_2=0$ چن سکتے ہیں جن سے $c_1=0$ اور $c_2=0$ حاصل کرتے ہوئے ہم $c_1=0$ اور حاصل کردہ $c_2=0$ کا حاصل تقسیم مستقل مقدار نہیں ہے لہذا یہ دونوں قطی

طور غیر تابع ہیں اور انہیں اساس لیا جا سکتا ہے۔یوں دوہرے جذر کی صورت میں کسی بھی وقفے پر مساوات 2.16 کے حل کا اساس

$$y_1 = e^{-\frac{a}{2}x}, \quad y_2 = xe^{-\frac{a}{2}x}$$

اور عمومی حل درج ذیل ہو گا۔

$$(2.24) y = (c_1 + c_2 x)e^{-\frac{a}{2}x}$$

مثال 2.11: دوہر ہے جذر کی صورت میں عمومی حل $\lambda^2 + 10\lambda + 25 = 0$ دوہر ہے جذر کی صورت میں عمومی حل سادہ تفرقی مساوات $\lambda^2 + 10\lambda + 25 = 0$ کا امتیازی مساوات $\lambda^2 + 10\lambda + 25 = 0$ کا اساس $\lambda^2 + 10\lambda + 25 = 0$ کا اساس $\lambda^2 + 10\lambda + 25 = 0$ کا اساس $\lambda^2 + 10\lambda + 25 = 0$ کا اساس $\lambda^2 + 10\lambda + 25 = 0$ کا اساس $\lambda^2 + 10\lambda + 25 = 0$ کا اساس کا عمومی حل $\lambda^2 + 10\lambda + 25 = 0$ ہے۔ $\lambda^2 + 10\lambda + 25 = 0$ کا اساس کا عمومی حل $\lambda^2 + 10\lambda + 25 = 0$ ہے۔ $\lambda^2 + 10\lambda + 25 = 0$ کا اساس کا عمومی حل $\lambda^2 + 10\lambda + 25 = 0$ ہے۔

مثال 2.12: دوہرے جذر کی صورت میں مخصوص حل کا حصول دیے گئے تفرقی مساوات کا مخصوص حل دریافت کریں۔

$$y'' + 0.2y' + 0.01y = 0$$
, $y(0) = 10$, $y'(0) = -4$

 $\lambda_1=\lambda_2=-0.1$ حل: امتیازی مساوات $\lambda_1=\lambda_2=0$ کی گئی میاوات $\lambda_1=\lambda_2=0$ مساوات $\lambda_1=\lambda_2=0$ کی استی المحت بین و وہرا جذر حاصل ہوتا ہے جس سے عمومی حل کھتے ہیں۔

$$y = (c_1 + c_2 x)e^{-0.1x}$$

عمومی حل کا جذر لکھتے ہیں جو مخصوص حل کے حصول میں درکار ہے۔

$$y' = c_2 e^{-0.1x} - 0.1(c_1 + c_2 x)e^{-0.1x}$$

شكل 2.3: مثال 2.12 كالمخصوص حل _

 c_2 اور عمومی حل کے تفرق میں ابتدائی قیمتیں پر کرتے ہوئے c_1 اور عمومی حل کے تفرق میں ابتدائی عمومی حل کے ہیں۔

$$y(0) = c_1 = 10$$

 $y'(0) = c_2 - 0.1c_1 = -4$, $c_2 = -3$

يوں مخصوص حل درج ذيل ہو گا۔

$$y = (10 - 3x)e^{-0.1x}$$

مخصوص حل کو شکل 2.3 میں دکھایا گیا ہے۔

تیسری صورت: مخلوط جوڑی دار جذر

 $\lambda=-rac{a}{2}\mp i\omega$ امتیازی مساوات 2.18 میں a^2-4c کی قیمت منفی ہونے کی صورت میں مخلوط جوڑی دار جذر $\omega^2=b-rac{a^2}{4}$ میں جہاں $\omega^2=b-rac{a^2}{4}$ میں جہاں جہاں کے برابر ہے۔ان سے مخلوط اساس لکھتے ہیں۔

(2.25)
$$y_{m1} = e^{\left(-\frac{a}{2} + i\omega\right)x}, \quad y_{m2} = e^{\left(-\frac{a}{2} - i\omega\right)x}$$

اس مخلوط اساس سے حقیقی اساس حاصل کیا جائے گا۔ایسا کرنے کی خاطر ریاضی کے چند کلیات پر غور کرتے ہیں۔نفاعل z=x+iy ، جہال z=x+iy ، جہال z=x+iy ، جہال کا عدد ہے جبکہ z=x+iy ، ورج دیل کھا جا سکتا ہے۔

$$e^z = e^{x+iy} = e^x e^{iy}$$

کی مکلارن تسلسل 22 کی مکلارن تسلسل 22 کی اجزاء اور خیالی اجزاء کو علیحدہ علیحدہ قوسین میں اکٹھے کرتے ہیں۔ یہاں $i^4=1$ ، $i^3=-i$ ، $i^2=-1$

$$e^{iy} = 1 + \frac{iy}{1!} + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \frac{(iy)^4}{4!} + \frac{(iy)^5}{5!} \cdots$$

$$= \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - + \cdots\right) + i\left(\frac{y}{1!} - \frac{y^3}{3!} + \frac{y^5}{5!} - + \cdots\right)$$

$$= \cos y + i \sin y$$

آخری قدم پر آپ تیلی کر لیں کہ پہلی توسین cos y کی مکارن تسلسل دیتی ہے جبکہ دوسری قوسین sin y کی مکاران تسلسل دیتی ہے۔ آپ اس کتاب میں آگے پڑھیں گے کہ درج بالا تسلسل میں اجزاء کی ترتیب بدلی جاسکتی ہے۔ یوں ہم یولو مساوات²³

$$(2.26) e^{iy} = \cos y + i \sin y$$

حاصل کرنے میں کامیاب ہوئے ہیں۔آپ دیکھ سکتے ہیں کہ

(2.27)
$$e^{-iy} = \cos(-y) + i\sin(-y) = \cos y - i\sin y$$

مساوات 2.26 اور مساوات 2,27 کو جمع اور تفریق کرتے ہوئے درج ذیل کلبات حاصل ہوتے ہیں۔

(2.28)
$$\cos y = \frac{e^{iy} + e^{-iy}}{2}, \quad \sin y = \frac{e^{iy} - e^{-iy}}{2i}$$

ہو گا۔ بیر سب جاننے کے بعد آئیں مساوات 2.25 میں دیے مخلوط اساس پر دوبارہ غور کریں۔

$$y_{m1} = e^{(-\frac{a}{2} + i\omega)x} = e^{-\frac{a}{2}x}e^{i\omega x} = e^{-\frac{a}{2}x}(\cos \omega x + i\sin \omega x)$$
$$y_{m2} = e^{(-\frac{a}{2} - i\omega)x} = e^{-\frac{a}{2}x}e^{-i\omega x} = e^{-\frac{a}{2}x}(\cos \omega x - i\sin \omega x)$$

چونکہ اساس کے اجزاء کو مستقل (حقیقی یا خیالی یا مخلوط) سے ضرب دے کر جمع کرتے ہوئے نیا حل حاصل کیا جا سکتا ہے المذا ہم درج بالا دونوں اجزاء کو مستقل $\frac{1}{2}$ سے ضرب دے کر جمع کرتے ہوئے ایک نیا اور حقیقی حل y_1

Maclaurin series²² Euler equation²³

دریافت کرتے ہیں۔

$$y_1 = \frac{1}{2}y_{m1} + \frac{1}{2}y_{m2} = e^{-\frac{a}{2}x}\cos\omega x$$

ای طرح مخلوط اساس کے پہلے جزو کو مستقل $\frac{1}{2i}$ اور دوسرے جزو کو مستقل $-\frac{1}{2i}$ سے ضرب دیتے ہوئے جمع کر کے نیا اور حقیق حل y_2 حاصل کرتے ہیں۔

$$y_2 = \frac{1}{2i} y_{m1} - \frac{1}{2i} y_{m2} = e^{-\frac{a}{2}x} \sin \omega x$$

درج بالا حاصل كرده حقيقى تفاعل

(2.29)
$$y_1 = e^{-\frac{a}{2}x} \cos \omega x \quad y_2 = e^{-\frac{a}{2}x} \sin \omega x$$

کو از خود حل کا اساس تصور کیا جا سکتا ہے۔ یہاں غور کریں کہ ہم نے مخلوط جذر $\lambda = (-\frac{a}{2} \mp i\omega)x$ سے حقیق اساس (مساوات 2.29) حاصل کیا ہے۔ اس حقیق اساس کو استعال کرتے ہوئے عمومی حل کھتے ہیں۔

$$(2.30) y = e^{-\frac{a}{2}x}(c_1\cos\omega x + c_2\sin\omega x)$$