Models of Computation: DFAs & NFAs

Models of Computation: DFAs & NFAs

Deterministic/Non-deterministic Finite Automata

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Week 2 - 29/01/2019

Mindmap

Decision problems

Models of Computation

Language recognition
Terminology

DFAs

Example
Informal definition
Important rules
JFLAP

Formal definition
Formal description

NIEA-

NFAS

JFLAP Formal description

Models of Computation: DFAs & NFAs

Mindmap

Decision

Models of

Language recognition
Terminology

DFAs

Informal definition Important rules JFLAP Formal definition

JFAs

Example
JFLAP

- Tedious but doable: **exhaustive search**.
- lacktriangle ightarrow decision problem: given data, decide if it has a certain property.
- Can divide all possible instances of the problem into yes instances and no instances.
- Simplify the way we describe the problems that machines will solve.
 - Turn *search* problems into *decision* problems

Mindmap

Decision problems

Models of Computation

Language recognition Terminology

DFAs

Example
Informal definition
Important rules
JFLAP
Formal definition

NFAs

Example
JFLAP
Formal description

Models of Computation

- Want to think more precisely about **problems** and **computation**.
- → categorise them by the **type of computation** which resolves them.
- → idea of **models** of computation
- We introduce simple, theoretical machines and study their limits.
 - Far simpler than Von Neumann Machines. . . .
 - ... but some have greater power than Von Neumann machines, ...
 - ...but cannot be created in reality!

- Alphabet: a, b, c, \ldots, x, y, z (plus spaces, punctuation, etc.)
- However, not all strings over this alphabet are members of the language.
- → English is a subset of "all possible strings over its alphabet."

In general:

- A problem instance can be represented as a string of symbols.
- Instances which yield yes are said to belong to the corresponding language for the problem.
- Instances which yield **no** (including invalid strings) do not belong to the language.

Mindmap

Decision problems

Models of Computation

Concept of language Language recognition

DFAs

Example
Informal definition
Important rules
JFLAP
Formal definition

NFAs

Example

JFLAP

Concept of language

Decision problems can be encoded as problems of language recognition.

Evenness problem

Instance: an integer *n* (represented in binary).

Question: is *n* even?

- n can be represented as a string in binary using only two symbols: 0, 1.
- Can write a decision procedure to decide if this string belongs to the language of yes instances.

Here:

$$\textit{Integers} = \{0, 1, 10, 11, 100, 101, 110, 111, 1000, \ldots\}$$

$$\textit{Even} = \{0, 10, 100, 110, 1000, \ldots\}$$

and

Models of Computation: DFAs & NFAs

Mindmap

Decision Problems

Computation

Concept of language

Language recognition

(i.e. is it divisible by 2?)

DFAs

xample
iformal definition
inportant rules
FLAP

Formal descripti

NFAs

Example FLAP Formal description

Language recognition

Evenness problem

Instance: an integer *n* (represented in binary).

Question: is n even?

Example

■ Given $n = 12_{10} = 1100_2$, the answer is **ves** because $12 = 2 \times 6$.

In general:

1: $b \leftarrow$ least significant bit of n.

2. if b = 0 then

return yes

4: else

return no

6: end if

Models of Computation: DFAs & NFAs

(i.e. is it divisible by 2?)

Language recognition

Terminology

- Languages are defined over an **alphabet**, denoted by Σ .
- Σ is the set of allowable symbols for the language. ("Sigma")
- Σ^* : set of all possible strings over Σ , whose **length is finite**. ("Sigma star")
- A language can be regarded as "a subset of Σ^* ."

Example

If $\Sigma = \{0, 1\}$ then

$$\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, \ldots \}$$

Language of even numbers *Even* $\subset \Sigma^*$ is:

 $Even = \{0.00, 10.000, 010, 100, \ldots\}$

Models of

Computation: DFAs & NFAs

Terminology

The **Deterministic Finite Automaton** (DFA) model

Example (Is a given binary number even?)

Models of Computation: DFAs & NFAs

Example

The **Deterministic Finite Automaton** (DFA) model

A **directed and labelled graph** which describes how a string of symbols from an alphabet will be processed.

- Each vertex is called a state.
- Each directed edge is called a **transition**.
 - The edges are labelled with symbols from the alphabet.
- Each state must have **exactly one** transition defined for **every** symbol.
- One state is designated as the **start state**.
- <u>Some</u> states are designated as **accept states**.
- A string is processed symbol by symbol, following the respective transitions:
 - At the end, if we land on an accept state then the string is accepted,
 - otherwise it is rejected.

Mindmap

Decision problems

Models of Computation

Language recognition Terminology

DFAs

Example Informal definition

mportant rules JFLAP

Formal definition
Formal description

NFAs

Example JFLAP

Formal description

Important rules for DFAs

- Each state must have exactly one transition defined for each symbol.
- There must be **exactly one start state**.
- There may be multiple accept states.
- There may be more than one symbol defined on a single transition.

Models of Computation: DFAs & NFAs

Important rules

JFLAP simulation time!

Example

Let us build DFAs over the alphabet {0, 1} to recognize strings that:

- begin with 0;
- end with 1;
- either begin or end with 1;
- begin with 1 and contain at least one 0.

Models of Computation: DFAs & NFAs

JELAP

Formal definition of DFAs

Formal definition of a DFA

A Deterministic Finite Automaton (DFA) is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ where:

- Q is a finite set called the set of states.
- \blacksquare Σ is a finite set called the **alphabet**.
- \bullet $\delta: Q \times \Sigma \to Q$ is a total function called the **transition function**.
- **q**_{start} is the unique **start state**.
- **F** is the set of accepting states.

 $(q_{\text{start}} \in Q)$

 $(F \subset Q)$

Formal definition

Models of

Computation: DFAs & NFAs

Recall:

- **Total function** means it is defined for "all its inputs."
- Σ, δ : Sigma, delta. (Greek letters)
- $\blacksquare \in \subseteq$ "element of a set", "subset of a set, or equal". (Set notation)

Example (Formal specification of a DFA)

This DFA is defined by the 5-tuple $(Q, \Sigma, \delta, q_{start}, F)$ where

$$\blacksquare$$
 $Q = \{A, B, C\}$

 \bullet δ (*state*, *symbol*) is given by the table:

		a	b
\rightarrow	Α	Α	В
*	В	В	C
	С	C	A

- → indicates the start state
- * the accept state(s).
- $\blacksquare q_{start} = A$
- $F = \{B\}$

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition

DFAs

Example
Informal definition
Important rules
JFLAP

Formal description

Formal description

NFAs

Example
JFLAP

rmal description

Notation

- $\delta \colon \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q}$ means that:
 - the function δ takes a pair (q, s) as input where:
 - q is a state from Q
 - \blacksquare s is an alphabet symbol from Σ ,
 - and returns a state from Q as the result.

This is usually given as a table, e.g.

	а	b
$\rightarrow q_0$	q 0	q ₁
* q 1	q_0	q 2
:	:	:

We put " \rightarrow " next to the start state, and " \ast " next to the accept states.

This means that:

$$\delta(q_0, a) = q_0
\delta(q_0, b) = q_1
\vdots = \vdots$$

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition

DFAs

xample
iformal definition
inportant rules
FLAP

mal definition

Formal description

NFAs

Informal description
Example

JFLAP

Formal description

Models of Computation: DFAs & NFAs

Mindmap

Decision problems

Models of Computation

Language recognition

DFAs

[break]

Example

nformal definition mportant rules

mal definition

Formal description

NFAs

Informal description

JFLAP

Formal description

DFA: every state has **one and only one outward transition** defined **for each symbol**.

NFA: zero or more transition(s) defined for each symbol.

Formally:

DFA: $\delta: Q \times \Sigma \rightarrow Q$ is a **total** function.

- 1 δ is defined for *every* pair (q, s) from $Q \times \Sigma$
- 2 δ sends (q, s) to a **state** from Q. (exactly one state, no more, no less)

NFA: $\delta: Q \times \Sigma \to 2^Q$ is a **partial** function

- 1 δ is not necessarily defined for every pair (q, s) from $Q \times \Sigma$.
- δ sends (q, s) to a **subset of** Q. (many, one, or no states)

Mindmap

Decision problems

Concept of langu

)FAs

xample iformal definition inportant rules

AP
nal definition

IFAs

Informal description

Example

JFLAP Formal description

aby: $0 \neq \Sigma = O \text{ is a total function.}$ $0 \neq \Sigma = O \text{ is a total function.}$ $0 \neq \Sigma = 0 \text{ is a total function of } O \neq \Sigma$ $0 \neq S = 0 \text{ is sent } (a; a) = s \text{ state from } O = 0 \text{ is a state for$

The Nondeterministic Finite Automaton (NFA) model

From the design point of view: NFAs are almost the same as DFAs.

DFA: every state has one and only one outward transition defined for each

NEA: zero or more transition(s) defined for each symbol

The Nondeterministic Finite Automaton (NFA) model

Recall:

2^Q is the **set of all subsets of Q**

(called: the **power set of** Q)

Example

If
$$Q = \{A, B, C\}$$
 then

$$\mathbf{2}^{Q} = \{ \underbrace{\emptyset}_{\mathsf{Empty set}}, \{ A \}, \{ B \}, \{ C \}, \{ A, B \}, \{ A, C \}, \{ B, C \}, \underbrace{\{ A, B, C \}}_{Q} \}.$$

It has 8 elements = $2^{\text{size of }Q} = 2^{\#Q} = 2^3 = 8$.

NFA example

Q	а	b
$ ightarrow q_0$	$\{q_0, q_1\}$	{ <i>q</i> ₀ }
<i>q</i> ₁	Ø	$\{q_2\}$
* q 2	{ q ₂ }	$\{q_2\}$

Models of Computation: DFAs & NFAs

Language recognition

JELAP

Example

JELAP

NFA example

Q	а	b
$ ightarrow q_0$	$\{q_1, q_2\}$	Ø
<i>q</i> ₁	{ q ₃ }	Ø
q_2	Ø	{ q ₅ }
q ₃	Ø	$\{q_4\}$
* q 4	{ q ₄ }	$\{q_4\}$
9 5	{ q ₆ }	Ø
* 9 6	{ q ₆ }	{ q ₆ }

Models of Computation: DFAs & NFAs

Mindmap

Decision oroblems

Models of Computation

Language recognition
Terminology

DFAs

Example
Informal definition
Important rules
JFLAP
Formal definition

Formal descr

FAs

Informal description

Example

JFLAP Formal description

JFLAP simulation time!

Models of Computation: DFAs & NFAs

JELAD

Example

Let us build DFAs over the alphabet {0, 1} to recognize strings that:

- begin with 0;
- end with 1;
- either begin or end with 1;
- begin with 1 and contain at least one 0.

Formal description of NFAs

Definition of an NFA

A Nondeterministic Finite Automaton (NFA) is defined by the 5-tuple $(Q, \Sigma, \delta, q_{\text{start}}, F)$ where

- Q is a finite set called the set of states
- ∑ is a finite set called the alphabet
- $\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$ is a partial function called the **transition function**
- q_{start} is the unique start state.
- F is the set of accepting states.

 $(q_0 \in Q)$ $(F \subset Q)$

Surprise: NFAs recognize exactly the same language as DFAs! (Next week...)

Models of Computation: DFAs & NFAs

Formal description