

30-764

# Redes de Computadores I

MSc. Fernando Schubert



#### CAMADA DE ENLACE



- Algumas terminologias:
  - Hospedeiros e roteadores são nós
  - Canais de comunicação que conectam nós adjacentes ao longo do caminho de comunicação são enlaces
    - Enlaces com fio
    - Enlaces sem fio
    - LANs
  - Pacote de camada-2 é um quadro, encapsula o datagrama
  - Camada de enlace: camada de enlace tem a responsabilidade de transferir um datagrama de um nó para o nó adjacente sobre um enlace.





- Dois elementos fisicamente conectados podem incluir:
  - Host-roteador
  - Roteador-roteador
  - Host-host
- A unidade de dados utilizada nesse contexto é chamada de quadro (frame).









A Camada Física desempenha um papel-chave na comunicação entre computadores, mas seus esforços, sozinhos, não são suficientes. Cada uma de suas funções tem suas limitações. A Camada de Enlace trata dessas limitações.

| Camada 1                                                                                                                 | Camada 2                                              |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| não pode se comunicar com as camadas de nível superior                                                                   | Logical Link Control (LLC)                            |
| não pode nomear ou identificar computadores                                                                              | usa um processo de endereçamento                      |
| descreve apenas os fluxos de bits                                                                                        | usa o enquadramento para organizar ou agrupar os bits |
| não pode decidir que computador irá transmitir os dados binários de um grupo onde todos tentam transmitir ao mesmo tempo | Media Access Control (MAC)                            |



#### UNIDADES DE TRANSPORTE EM REDES





#### UNIDADES DE TRANSPORTE EM REDES - PACOTES

- Ao comunicar através de redes, é importante enviar e receber arquivos e informações. A unidade básica de comunicação entre uma origem e um destino em uma rede é um pacote.
- Os dados enviados pela rede são divididos em pacotes, que são recombinados pelos dispositivos de destino. Dividir os dados em pacotes permite que a rede gerencie diferentes larguras de banda, rotas e múltiplos dispositivos conectados que compartilham dados e recebem pacotes independentemente uns dos outros.
- Isso facilita a retransmissão de pedaços perdidos de dados ou interrompidos. Os pacotes são unidades de dados dentro da camada de rede no modelo OSI.
- Cada pacote contém um cabeçalho com os endereços IP de origem e destino, um campo para a especificação do protocolo, os dados, um trailer, a versão do protocolo, etc. O campo do trailer contém informações sobre correções de erro e outras bandeiras para a identificação.



#### UNIDADES DE TRANSPORTE EM REDES - PACOTES





# UNIDADES DE TRANSPORTE EM REDES - QUADROS (FRAMES)

- Assim como os pacotes, os quadros são partes pequenas de uma mensagem na rede. Eles ajudam a identificar dados e determinar a forma como devem ser decodificados e interpretados. A principal diferença entre um pacote e um quadro é a associação com as camadas OSI.
- Enquanto um pacote é a unidade de dados usada na camada de rede, um quadro é a unidade de dados usada na camada de enlace de dados do modelo OSI. Um quadro contém mais informações sobre a mensagem transmitida do que um pacote.
- Na rede, existem dois tipos de quadros: quadros de comprimento fixo e quadros de comprimento variável. No enquadramento de comprimento fixo, o tamanho do quadro funciona como delimitador. Portanto, não é necessário definir um limite para o quadro. No enquadramento de comprimento variável, é difícil determinar o início e o fim de um quadro. Portanto, é essencial definir o início e o fim de um quadro.



# UNIDADES DE TRANSPORTE EM REDES - QUADROS (FRAMES)





# UNIDADES DE TRANSPORTE EM REDES - DATAGRAMAS

- O datagrama representa uma unidade de transferência de dados em redes. Os dados transmitidos em uma rede são divididos em partes menores chamadas datagramas. Em um datagrama, dividimos os dados frequentemente e os transmitimos de origem para destino sem uma rota predefinida. Também não podemos garantir a ordem de entrega no destino.
- Enquanto o TCP usa pacotes em protocolos orientados à conexão, datagramas são usados no UDP, o que os torna carregarem menos informações, já que não precisam ter uma mensagem de resposta do destino. A camada de transporte usa datagrama como unidade de transferência de dados. Um datagrama é composto por um cabeçalho, os endereços IP de destino e origem, e os dados.
- O problema com datagramas é que eles não podem gerenciar comunicações subsequentes ou anteriores de dados. Além disso, para uma única transferência, um datagrama pode acomodar até 65535 bytes de dados, o que é muito pequeno.
- No caso de enviarmos um e-mail usando o protocolo UDP, não haverá pacotes, mas datagramas. A informação transmitida seria conforme a seguinte figura:



# UNIDADES DE TRANSPORTE EM REDES - DATAGRAMAS





# UNIDADES DE TRANSPORTE EM REDES - SEGMENTOS (Segment)

- Um segmento é um pedaço quebrado de um pacote com um cabeçalho TCP em cada um deles. Junto com as portas de origem e destino, ele contém o campo de checksum que garante a correção dos dados transmitidos pela rede. Os segmentos aumentam a eficiência do desempenho da rede e melhoram a segurança.
- Se enviássemos um e-mail com uma conexão TCP, então os dados que existem na camada de transporte para concluir a operação são um exemplo de um segmento. O pacote de e-mail então se tornaria:



# UNIDADES DE TRANSPORTE EM REDES - SEGMENTOS (Segment)



#### CAMADA DE ENLACE - CONTEXTO

- Datagrama transferido por protocolos de enlace diferentes sobre enlaces diferentes:
  - ex.: Ethernet no primeiro enlace, frame relay nos enlaces intermediários, 802.11 no último enlace.
- Cada protocolo de enlace provê serviços diferentes
  - ex.: pode ou não prover transferência confiável sobre o enlace
- Analogia do transporte
  - Viagem de Princeton até Lausanne
    - Carro: Princeton até JFK
    - Avião: JFK até Geneva
    - Trem: Geneva até Lausanne
  - Turista = datagrama
  - Segmento de transporte = enlace de comunicação
  - Modo de transporte = protocolo da camada de enlace
  - Agente de viagem = algoritmo de roteamento

### CAMADA DE ENLACE - SERVIÇOS

- Enquadramento:
  - Encapsula datagramas em quadros acrescentando cabeçalhos e trailer
- Acesso ao enlace:
  - Um único remetente e um destinatário (ponto- a- ponto)
    - Pode-se enviar sempre que enlace ocioso
  - Caso mais interessante > enlace compartilhado
    - Conhecido como enlace de broadcast.
- Entrega confiável entre dois equipamentos fisicamente conectados:
  - camada de enlace pode garantir que um datagrama seja transportado sem erros - > semelhante ao serviço oferecido pela camada de transporte •
  - Usado para enlaces com altas taxas de erros -> wireless
  - Raramente usado em enlaces com baixa taxa de erro (fibra, alguns tipos de par de fios trançados de cobre)

### CAMADA DE ENLACE - SERVIÇOS

- Controle de fluxo:
  - Os adaptadores têm capacidade limitada para armazenar quadros-
    - Buffer do receptor pode transbordar
  - Limitação da transmissão entre transmissor e receptor
- Detecção de erros:
  - Erros causados pela atenuação do sinal e por ruídos
  - Quem envia pacote deve adicionar bits para a detecção
  - Serviço geralmente implementado em hardware
  - O receptor detecta a presença de erros:
    - Avisa o transmissor para reenviar o quadro perdido
- Correção de erros:
  - O receptor identifica e corrige o bit com erro(s) sem recorrer à retransmissão
- Half- duplex e full- duplex
  - Com half-duplex, os nós em ambas as extremidades do enlace podem transmitir, mas não ao mesmo tempo

# COMUNICAÇÃO DE ADAPTADORES

- Camada de enlace implementada no "adaptador" (isto é, NIC)
  - Cartão Ethernet, cartão PCMCI, cartão 802.11
- Lado transmissor:
  - Encapsula o datagrama em um quadro
  - Adiciona bits de verificação de erro, pode existir um mecanismo de entrega confiável (num seqs, temporizadores, acks), controle de fluxo etc.
- Lado receptor
  - Procura erros, entrega confiável, controle de fluxo etc
  - Extrai o datagrama, passa para o lado receptor
- Adaptador toma decisão se uma quadro está OK e encaminha para remetente - > camada de rede

### TIPOS DE SERVIÇOS

- Os serviços fornecidos nas seguintes combinações são:
  - Serviços em conexão não confirmada;
  - Serviços em conexão confirmada;
  - Serviço orientado a conexão confirmada.



## O serviço sem conexão não confirmada.

- Conexão não é previamente estabelecida;
- A máquina emissora envia frames sem receber confirmação de recebimento da máquina receptora;
- Quadros perdidos são ignorados e tratados pelas camadas superiores;
- Apropriado para:
  - Aplicações onde a taxa de erro é muito baixa;
- Aplicações de tempo real onde dados atrasados são piores que dados ruins, como streaming de áudio.
- Serviço normalmente usado em LANs.



### O serviço sem conexão confirmada.

- Conexão é estabelecida previamente;
- Cada frame enviado é individualmente confirmado. Dessa forma, o emissor sabe se o frame foi recebido ou não e poderá enviá-lo novamente;
- A origem usa um mecanismo de temporização para reenviar quadros não confirmados;
- Útil para canais não confiáveis, como Wireless.



#### Serviço orientado a conexão confirmado

#### Serviço mais sofisticado:

- Emissor e receptor estabelecem conexão antes do envio dos dados;
- Cada frame enviado é numerado;
- Cada frame é recebido exatamente uma vez e todos os frames chegam em ordem;
- O serviço oferecido para a camada de rede é uma sequência de bits corretos.



### Considerações sobre os diferentes tipos de serviço:

Considerações sobre os diferentes tipos de serviço:

- 1. \*\*Serviço sem conexão não confirmada\*\*:
- Não requer estabelecimento prévio de conexão.
- Os frames são enviados sem confirmação de recebimento.
- Apropriado para aplicações onde a taxa de erro é baixa e tolerável.
- 2. \*\*Serviço em conexão confirmada\*\*:
  - Requer estabelecimento prévio de conexão.
  - Cada frame é confirmado individualmente.
  - Utilizado em canais não confiáveis, como em conexões wireless.

### Considerações sobre os diferentes tipos de serviço:

- 3. \*\*Serviço orientado a conexão confirmada\*\*:
  - Mais sofisticado, requer estabelecimento prévio de conexão.
  - Cada frame é numerado e recebido exatamente uma vez, garantindo ordem.
  - Oferece uma sequência de bits corretos para a camada de rede.

Essas considerações destacam a importância de escolher o tipo de serviço adequado dependendo das necessidades específicas da aplicação e das características da rede utilizada.



## Delimitação de quadros

- A camada física transmite uma sequência de bits (bitstream), que pode ser grande e conter erros;
- A camada de enlace deve detectar e, se necessário, corrigir os erros de transmissão;
- Inicialmente, a sequência de bits é quebrada em frames.



### Delimitação de quadros

- Os principais métodos para delimitação de quadros são:
  - Contagem de caracteres;
  - Caracteres de início e fim, com caractere de preenchimento;
  - Flags de início e fim, com caractere de preenchimento; e
  - Violação de código da camada física.



### Contagem de Caracteres

- Usa um campo no cabeçalho para indicar o número de caracteres no quadro;
- Problema: o caractere de contagem pode sofrer erro de transmissão, impossibilitando o reconhecimento do início do próximo quadro;
- Não é usado na prática para protocolos da camada de enlace.



### Contagem de Caracteres



Fluxo de bytes, (a) sem erro, (b) com erro.



#### Caracteres de início e fim

- Reconhecimento do início e do fim de um quadro através dos caracteres ASCII:
  - Início: DLE STX (Data Link Escape, Start of Text);
  - Fim: DLE ETX (Data Link Escape, End of Text);
  - Método usado em protocolos orientados a caracteres.



#### Caracteres de início e fim

- E se os caracteres para DLESTX e DLEETX ocorrem nos dados?
- Inserir um caractere DLE adicional antes de cada DLE nos dados (bytestuffing);
- Técnica presa ao código ASCII e a caracteres de 8 bits (caracteres de tamanho arbitrário).

#### UNIVERSIDADE REGIONAL INTEGRADA DO ALTO URUGUAI E DAS MISSÕES



- (a) Dado enviado pela camada de rede.
- (b) Dado após a inserção do DLE pela camada de enlace.
- (c) Dado repassado para a camada de rede no receptor.

## Flags de início e fim

- Permite codificar caracteres com um número arbitrário de bits por caractere;
- Usa padrão especial de bits (flag) para sinalizar início e fim do quadro;
- Sempre que 5 "uns" consecutivos são encontrados nos dados, o emissor insere um zero (bit stuffing);
- Quando o receptor encontra cinco "uns" seguidos por um zero, o stuff é retirado.



# Flags de início e fim

|          | Quadro Original         |          |          | Quadro Transmitido      |          |
|----------|-------------------------|----------|----------|-------------------------|----------|
| 01111110 | 0111111010110           | 01111110 | 01111110 | 011111 <b>0</b> 1010110 | 01111110 |
|          |                         |          |          |                         |          |
|          | Quadro Recebido         |          |          | Quadro Original         |          |
| 01111110 | 011111 <b>0</b> 1010110 | 01111110 | 01111110 | 0111111010110           | 01111110 |

## Violação de Código

- Método baseado em uma característica da camada inferior;
- Existem códigos de transmissão que possuem uma transição no meio do período de transmissão de um bit (Manchester);
- O início e fim de quadros são determinados por um código de transmissão inválido;
- Algumas LANs codificam um bit de dados usando dois bits físicos:
- Um bit 1 é codificado como um par alto-baixo;
- Um bit 0 é codificado como um par baixo-alto;
- Os pares alto-alto e baixo-baixo não são utilizados na codificação, então podem ser usados para a delimitação de quadros.
- Usado no padrão IEEE 802.



### Violação de Código



### **EXERCÍCIO**

slido.com with #2088733

#### Exercício

A codificação de caracteres a seguir é usada em um protocolo de enlace de dados:

• A: 01000111;

• B: 11100011;

• FLAG: 01111110;

DLE: 00010000;

STX: 00000010;

ETX: 00000011.

Mostre a sequência de bits transmitida (em binário) para o quadro de quatro caracteres: A B DLE FLAG quando é utilizado cada um dos métodos de enquadramento a seguir:

- (a) Contagem de caracteres.
- (b) Caracteres de início e de fim.
- (c) Flags de início e de fim.

### CONTROLE DE ERROS

- Como ter certeza de que todos os quadros transmitidos foram entregues à camada de rede do destino e na ordem correta?
- Qualquer transmissão está sujeita a problemas, como ruídos e atenuação;
- A camada de enlace de dados tem a função de realizar o tratamento dos possíveis erros;
- O controle de erro envolve duas etapas:
  - Detecção dos possíveis erros nos dados transmitidos;
  - Correção dos erros encontrados.

# DETECÇÃO DE ERROS

- O mecanismo de detecção de erro é semelhante ao esquema do dígito verificador largamente utilizado em códigos de barras, no CPF, etc.;
- O dígito verificador é gerado a partir dos números que compõem os números antecessores, utilizando-se de uma função previamente definida;



## DETECÇÃO DE ERROS

 Antes de enviar uma mensagem, o transmissor utiliza uma função para gerar um código de detecção de erro (CDE) a partir da mensagem a ser enviada, de forma a gerar uma espécie de dígito verificador. Esse código é adicionado ao quadro que será enviado.



# DETECÇÃO DE ERROS

- Bit de paridade;
- Checksum;
- Redundância Cíclica (CRC).

A detecção de erros com bit de paridade funciona da seguinte maneira:

- 1. Adição do bit de paridade: Um bit adicional, chamado de bit de paridade, é adicionado aos dados. Esse bit é calculado de forma que o número total de bits 1 nos dados, incluindo o bit de paridade, seja sempre par (paridade par) ou sempre ímpar (paridade ímpar).
- 2. Verificação: Após a transmissão dos dados, o receptor verifica se o número de bits 1, incluindo o bit de paridade, é par ou ímpar, dependendo do tipo de paridade utilizado.
- 3. Detecção de erro: Se o número de bits 1 não corresponder ao tipo de paridade esperado, isso indica que ocorreu um erro na transmissão dos dados.
- 4. \*\*Limitações\*\*: A detecção de erro com bit de paridade só pode detectar a ocorrência de um número ímpar de erros, pois um erro par não alteraria a paridade dos dados. Além disso, não é capaz de corrigir erros, apenas detectá-los.







Paridade bidimensional: os bits são divididos em i linhas e j colunas, e para cada linha e coluna é calculado um bit de paridade. Exemplo para um número par:



Possível fazer correção no caso de um erro, mas não em dois erros em linhas ou colunas consecutivas.



Paridade bidimensional: os bits são divididos em i linhas e j colunas, e para cada linha e coluna é calculado um bit de paridade. Exemplo para um número par:



Possível fazer correção no caso de um erro, mas não em dois erros em linhas ou colunas consecutivas.



Paridade bidimensional: os bits são divididos em i linhas e j colunas, e para cada linha e coluna é calculado um bit de paridade. Exemplo para um número par:



Possível fazer correção no caso de um erro, mas não em dois erros em linhas ou colunas consecutivas.

- Checksum: é usado para indicar um grupo de bits de verificação, independentemente de como são calculados.
- Um grupo de bits de paridade pode ser um exemplo de checksum.
- Porém, existem checksums mais robustos que os bits de paridade.
- Opera sobre palavras e não bits.
- Erros que passaram pelos bits de paridade podem ser encontrados.
- Exemplo: Protocolo IP soma de verificação de 16 bits.



- Transmissor:
  - Divide a mensagem em k segmentos de n bits;
  - Soma os k segmentos;
  - Forma o Checksum com o complemento da soma;
  - Envia a mensagem junto com o checksum;



#### Receptor:

- Divide a mensagem em k segmentos de bits;
- Soma os k segmentos;
- Forma o Checksum com o complemento da soma;
- Se o checksum for igual a zero, dados aceitos!

#### Exemplo:

- Mensagem recebida: 101010010011100100011101;
- Segmentos: 10101001 00111001 0011101;
- Soma: 10101001 + 00111001 + 0011101 = 111111111;
- Checksum: 00000000 (checksum é zero, mensagem aceita!);
- Mensagem decodificada: 1010100100111001 (o checksum enviado é descartado).