Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie

Tobias Ried

10. März 2011

Aufgabe 1 (Messbarkeit der Komposition zweier Abbildungen). Seien (X,\mathfrak{A}) , (Y,\mathfrak{B}) und (Z,\mathfrak{C}) Messräume und $f:(X,\mathfrak{A})\to (Y,\mathfrak{B}),\ g:(Y,\mathfrak{B})\to (Z,\mathfrak{C})$ messbar. Zeigen Sie, dass dann auch $f\circ g:(X,\mathfrak{A})\to (Z,\mathfrak{C})$ messbar ist.

Lösung. Sei $C\in\mathfrak{C}$ beliebig. Dann ist wegen der Messbarkeit von g die Menge $B:=g^{-1}(C)\in\mathfrak{B}$. Aus der Messbarkeit von f folgt dann sofort

$$f^{-1}(B) = f^{-1}(g^{-1}(C)) = (f \circ g)^{-1}(C) \in \mathfrak{A}$$

und damit $f \circ g$ messbar.

Aufgabe 2 (Messbarkeit wichtiger Funktionen). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge messbarer Funktionen. Zeigen Sie, dass dann auch $\sup_{n\in\mathbb{N}} f_n$ und $\inf_{n\in\mathbb{N}} f_n$ messbar sind.

Lösung. Nach Vorlesung ist die Messbarkeit einer Funktion $f:(X,\mathfrak{A}) \to (Y,\mathfrak{B})$ äquivalent zur Messbarkeit der Menge $\{f \leq \alpha\}$ bzw. $\{f \geq \alpha\}$ für alle $\alpha \in \mathbb{Q}$, also ist zu zeigen, dass $\{f \leq \alpha\} \in \mathfrak{A} \ \forall \ \alpha \in \mathbb{Q}$.

Sei nun $f := \sup_{n \in \mathbb{N}} f_n$. Es gilt

$$\left\{ \sup_{n \in \mathbb{N}} f_n \le \alpha \right\} = \bigcap_{n \in \mathbb{N}} \{ f_n \le \alpha \}.$$

Nun sind aber die Mengen $\{f_n \leq \alpha\} \in \mathfrak{A} \, \forall \, n \in \mathbb{N}$ wegen der Messbarkeit von f_n . Aus der Definition einer σ -Algebra folgt dann insbesondere, dass $\bigcap_{n \in \mathbb{N}} \{f_n \leq \alpha\} \in \mathfrak{A}$ und damit die Messbarkeit von f.

Für die Funktion $\tilde{f} := \inf_{n \in \mathbb{N}} f_n$ geht man ähnlich vor: es ist nun

$$\left\{\inf_{n\in\mathbb{N}} f_n \ge \alpha\right\} = \bigcap_{n\in\mathbb{N}} \{f_n \ge \alpha\},\,$$

wobei die Mengen $\{f_n \geq \alpha\}$ messbar sind wegen der Messbarkeit aller f_n . Daraus folgt wie oben $\{\inf_{n \in \mathbb{N}} f_n \geq \alpha\} \in \mathfrak{A}$ und somit \tilde{f} messbar.

Aufgabe 3 (Monotone Konvergenz). Zeigen Sie: Für alle $f \in E^*$ gilt:

$$\lim_{n \to \infty} n \int \log \left(1 + \frac{1}{n} f \right) d\mu = \int f d\mu$$

HINWEIS: Warum gilt $\left(1 + \frac{1}{n}f\right)^n \uparrow_n \exp(f)$?

 $L\ddot{o}sung.$ Idee: Wende den Satz zur monotonen Konvergenz auf die Folge $f_n := n \log \left(1 + \frac{1}{n}f\right) = \log \left(1 + \frac{1}{n}f\right)^n$ an. Es gilt

$$\left(1 + \frac{1}{n}f\right)^n \uparrow \exp(f),$$

denn für alle $x \in \mathbb{R}$ ist

$$\left(1 + \frac{1}{n}f(x)\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{(f(x))^k}{n^k} \quad \uparrow_n \quad \sum_{k=0}^\infty \frac{(f(x))^k}{k!} = \exp(f(x))$$

(hierbei wurde verwendet: $\binom{n}{k}\frac{1}{n^k}\uparrow\frac{1}{k!}$). Wegen der Monotonie und Stetigkeit des Logarithmus $(f\in E^*)$ gilt dann aber auch $f_n \uparrow f$, denn

$$\lim_{n\to\infty}\log\left(\left(1+\frac{1}{n}f\right)^n\right)=\log\left(\lim_{n\to\infty}\left(1+\frac{1}{n}f\right)^n\right)=\log\left(\exp(f)\right)=f$$

Nach dem Satz zur monotonen Konvergenz ist also

$$\lim_{n \to \infty} n \int \log \left(1 + \frac{1}{n} f \right) d\mu = \int \lim_{n \to \infty} n \log \left(1 + \frac{1}{n} f \right) d\mu = \int f d\mu$$

Aufgabe 4 (Integral auf $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$). Betrachten Sie den Maßraum $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$ mit dem Zählmaß μ . Darauf sei eine messbare Funktion $f : \mathbb{N} \to \mathbb{R}$, $f(n) =: f_n$ definiert.

1. Begründen Sie

$$\int f \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} f(n) = \sum_{n \in \mathbb{N}} f_n.$$

- 2. Formulieren Sie für obiges Integral auf $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$ den Satz zur majorisierten Konvergenz (ausgedrückt für Reihen).
- 3. Sei nun auf $(\mathbb{N}, \mathfrak{P}(\mathbb{N}))$ ein anderes Maß ν definiert durch $\nu(\{n\}) := 4^{-n}$ $\forall n \in \mathbb{N}$ und die Funktion $f : \mathbb{N} \to \mathbb{R}$, $f_n = f(n) = (-3)^n$ gegeben. Ist ν normiert, also $\nu(\mathbb{N}) = 1$? Warum ist f integrierbar? Berechnen Sie

$$\int f \, \mathrm{d}\nu, \quad \int 1_{2\mathbb{N}} f \, \mathrm{d}\nu$$

Lösung. 1. Wir beweisen die Beziehung gemäß der Lebesgueschen Leiter zunächst für Elementarfunktionen E. Im Falle $(\Omega, \mathfrak{A}, \mu) = (\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$ sind Elementarfunktionen Folgen mit nur endlich vielen von Null verschiedenen Gliedern. Sei also $a \in E$ in Normaldarstellung, dann besitzt a die Darstellung

$$a = \sum_{k \in \mathbb{N}} a_k \mathbf{1}_{\{k\}}.$$

Man bemerke dass es sich bei der Summe $\sum_{k\in\mathbb{N}}$ tatsächlich um eine endliche Summe handelt (wegen der Definition von a). Nun ist es aber leicht, das Integral anzugeben:

$$\int a \, \mathrm{d}\mu = \sum_{k \in \mathbb{N}} a_k \underbrace{\mu(\{k\})}_{-1} = \sum_{k \in \mathbb{N}} a_k,$$

womit die Aussage für Elementarfunktionen bewiesen wäre.

Jetzt betrachten wir monotone Limites von Elementarfunktionen. Da für jede positive Folge $a \in [0, \infty)^{\mathbb{N}}$ gilt $\mathbf{1}_{\{1,\dots,N\}}a \quad \uparrow_N \quad a$, ist $E^* = [0, \infty)^{\mathbb{N}}$. Damit ist für $a \in E^*$

$$\int a \, d\mu = \lim_{N \to \infty} \int \mathbf{1}_{\{1,...,N\}} a \, d\mu = \lim_{N \to \infty} \sum_{k=1}^{N} a_k = \sum_{k=1}^{\infty} a_k$$

Wegen $f=f^+-f^-$ mit $f^\pm\in E^*$ gilt nun

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$
$$= \sum_{n \in \mathbb{N}} f_n^+ - \sum_{n \in \mathbb{N}} f_n^- = \sum_{n \in \mathbb{N}} (f_n^+ - f_n^-)$$
$$= \sum_{n \in \mathbb{N}} f_n$$

f ist integrierbar genau dann, wenn $\int |f| d\mu = \sum_{n \in \mathbb{N}} |f_n| \leq \infty$, d.h. wenn $\sum_{n \in \mathbb{N}} f_n$ absolut konvergent ist.

2. Der Satz zur majorisierten Konvergenz lautet hier: Seien $(a_n), (a_n^{(k)})$ Folgen in \mathbb{R} $(k, n \in \mathbb{N})$ mit $\lim_{k \to \infty} a_n^{(k)} = a_n$ punktweise, und existiere eine summierbare Folge (b_n) in \mathbb{R} , $b_n \geq 0 \ \forall n \in \mathbb{N}$ mit

$$|a_n^{(k)}| \le b_n \quad \forall k \in \mathbb{N} \text{ (punktweise)}.$$

Dann sind $a_n^{(k)}$ und a_n summierbar $\forall k \in \mathbb{N}$ und es gilt

$$\sum_{n \in \mathbb{N}} a_n = \lim_{k \to \infty} \sum_{n \in \mathbb{N}} a_n^{(k)}$$

3. Es ist

$$\nu(\mathbb{N}) = \int \mathbf{1}_{\mathbb{N}} d\nu = \sum_{k \in \mathbb{N}} \nu(\{k\}) = \sum_{k=1}^{\infty} 4^{-1} = \frac{1}{4} \frac{1}{1 - \frac{1}{4}} = \frac{1}{3}$$

und damit ν nicht normiertes Maß.

Weiter ist f integrierbar, denn

$$\int |f| \, \mathrm{d}\nu = \sum_{n \in \mathbb{N}} |f_n| \, \nu(\{n\}) = \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n = \frac{3}{4} \frac{1}{1 - \frac{3}{4}} = 3 < \infty$$

und damit

$$\int f \, d\nu = \sum_{n \in \mathbb{N}} f_n \, \nu(\{n\}) = \sum_{n=1}^{\infty} \left(-\frac{3}{4} \right)^n = -\frac{3}{4} \frac{1}{1 + \frac{3}{4}} = -\frac{3}{7}$$

$$\int \mathbf{1}_{2\mathbb{N}} f \, d\nu = \sum_{n \in 2\mathbb{N}} f_n \, \nu(\{n\}) = \sum_{n=1}^{\infty} \left(-\frac{3}{4} \right)^{2n} = \frac{9}{16} \frac{1}{1 - \frac{9}{16}} = \frac{9}{7}$$

Aufgabe 5 (Integrierbarkeit). Zeigen Sie, dass die Funktion $f:[0,\infty)\to\mathbb{R}$,

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathbf{1}_{[n-1,n)}(x)$$

nicht Lebesgue-integrierbar ist. Wie ist dann die Gleichung

$$\int_0^\infty f(x) \mathrm{d}x = \log 2$$

zu verstehen?

HINWEIS: Wie sieht der Graph von f aus? Finden Sie einen einfachen Ausdruck für |f| und zeigen Sie, dass |f| nicht Lebesgue-integrierbar ist. Warum ist dann f nicht Lebesgue-integrierbar?

 $L\ddot{o}sung$. Der Graph von f ist in Abbildung 1 gezeigt. Die Funktion besteht

Abbildung 1: Graph der Funktion f.

also aus Balken der Fläche $\frac{(-1)^{n+1}}{n}.$ Man würde erwarten, dass der Wert des Integrals

$$\int_0^\infty f(x) dx = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = \log 2$$

ist. Dies ist jedoch nur der Fall, wenn man das Integral als uneigentliches Regelintegral

$$\int_0^\infty f(x) dx = \lim_{b \to \infty} \int_0^b f(x) dx$$

auffasst.

Im Rahmen der Lebesgueschen Theorie ist f nicht integrierbar, denn

$$|f| = \sum_{n=1}^{\infty} \frac{1}{n} \mathbf{1}_{[n-1,n)}$$

und mit monotoner Konvergenz (bei *)

$$\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n} \mathbf{1}_{[n-1,n)} \quad \uparrow_{N} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathbf{1}_{[n-1,n)}(x)$$

gilt

$$\int |f| \, \mathrm{d}\lambda = \int \sum_{n=1}^{\infty} \frac{1}{n} \mathbf{1}_{[n-1,n)} \, \mathrm{d}\lambda \stackrel{*}{=} \sum_{n=1}^{\infty} \int \frac{1}{n} \mathbf{1}_{[n-1,n)} \, \mathrm{d}\lambda = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Damit ist |f| nicht integrierbar, und wegen $|f| = f^+ + f^-$ ist f^+ oder f^- nicht integrierbar und daher per Konstruktion des Integrals $f = f^+ - f^-$ nicht integrierbar.

Aufgabe 6 (Integration bezüglich Maßen mit Dichten und Bildmaßen). Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \sqrt{x^2 + y^2}$ und $\mu := f(\lambda^2)$ das Bilmaß des 2-dimensionalen Lebesgue-Maßes unter f.

- 1. Warum ist f messbar?
- 2. Berechnen Sie $\mu([a,b])$ für $a,b \in \mathbb{R}, a \leq b$.
- 3. Bestimmen Sie eine Dichte ρ , sodass $\rho \lambda^1([a,b]) = \mu([a,b]) \ \forall a,b \in \mathbb{R}, a \leq b.$
- 4. Wie lautet die Radon-Nikodym Ableitung von μ bezüglich λ^1 ?

Lösung. 1. f ist stetig und daher messbar.

2. Es ist für $a, b \in \mathbb{R}$, $a \leq b$:

$$\mu([a,b]) = \lambda^2(f^{-1}([a,b])) = \lambda^2(\{(x,y) \in \mathbb{R}^2 : a \le \sqrt{x^2 + y^2} \le b\})$$

$$= \lambda^2(\{x \in \mathbb{R}^2 : ||x|| \in [a,b]\}) = \begin{cases} 0, & b \le 0 \\ \pi(b^2 - a^2), & 0 \le a \le b \\ \pi b^2, & a \le 0 \le b \end{cases}$$

3. Für die Dichte $\rho:\mathbb{R}\to\mathbb{R}$ muss $\forall\,a\leq b$ gelten

$$\mu([a,b]) = (\rho \lambda^1)([a,b]) = \int_{[a,b]} \rho \, d\lambda^1 = \int_a^b \rho(x) \, dx$$

mit $\mu([a,b])$ aus (2). Ableiten der Gleichung nach b liefert

$$\rho(b) = \begin{cases} 0, & b \le 0\\ 2\pi b, & b \ge 0 \end{cases}$$

Die Dichte $\rho(x) = \max\{0, 2\pi x\}$ erfüllt also $(\rho \lambda^1)([a, b]) = \mu([a, b])$ $\forall a, b \in \mathbb{R}, a \leq b.$

4. Nach dem Satz von Radon-Nikodym ist die Radon-Nikodym-Ableitung von μ bzgl. λ^1 gerade die Dichte ρ , also

$$\frac{\mathrm{d}\mu}{\mathrm{d}\lambda^1} = \rho$$

Aufgabe 7 (Integration bezüglich Maßen mit Dichten und Bildmaßen). Sei $f: \mathbb{R} \to \overline{\mathbb{R}}, f(x) = \log |x|, f(0) := -\infty.$

- 1. Warum ist f messbar?
- 2. Sei $\mu := f(\lambda^1)$. Berechnen Sie $\mu([a, b])$ für $a, b \in \mathbb{R}$, $a \leq b$.
- 3. Sei $\rho: \mathbb{R} \to \mathbb{R}$, $\rho(x) = 2e^x$. Zeigen Sie: $\rho \lambda^1 = \mu$.
- 4. Wie lautet die Radon-Nikodym Ableitung von μ bezüglich λ^1 ?

Lösung. 1. f ist messbar, denn

$$\{f \le a\} = f^{-1}([-\infty, a]) = \{x \in \mathbb{R} : \log|x| \le a\} = \{x \in \mathbb{R} : |x| \le e^a\}$$
$$= [-e^a, e^a]$$

ist ein abgeschlossenes Intervall und daher $\{f \leq a\} \in \mathcal{B}$.

2. Für $a, b \in \mathbb{R}$, $a \leq b$ gilt

$$\mu([a,b]) = \lambda^1(f^{-1}([a,b])) = \lambda^1(\{x \in \mathbb{R} : a \le \log|x| \le b\})$$

$$= \lambda^1(\{x \in \mathbb{R} : e^a \le |x| \le e^b\}) = \lambda^1(\{x \in \mathbb{R} : |x| \in [e^a, e^b]\})$$

$$= 2(e^b - e^a)$$

3. Es ist

$$\rho \lambda^{1}([a,b]) = \int_{[a,b]} \rho \, d\lambda^{1} = 2(e^{b} - e^{a}) = \mu([a,b])$$

für alle $a, b \in \mathbb{R}$, $a \leq b$. Damit stimmen μ und $\rho \lambda^1$ auf allen abgeschlossenen Intervallen, also einem Erzeuger der Borel-Algebra \mathcal{B} , überein und müssen daher euf ganz \mathcal{B} gleich sein.

4. Wie in Aufgabe 6.4. ist

$$\frac{\mathrm{d}\mu}{\mathrm{d}\lambda^1} = \rho$$

Aufgabe 8 (Integrierbarkeit mit Fubini). Zeigen Sie mithilfe des Satzes von Fubini, dass die Funktion

$$f(x,y) = \frac{x-y}{(x+y)^3}, \quad x,y > 0$$

nicht λ^2 -integrierbar über der Menge $B = [0, 1]^2$ ist.

Lösung. Für die iterierten Integrale gilt

(i)

$$\int_{0}^{1} \left(\int_{0}^{1} f(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y = \int_{0}^{1} \left(\int_{0}^{1} \frac{x - y}{(x + y)^{3}} \, \mathrm{d}x \right) \, \mathrm{d}y$$

$$\stackrel{[1]}{=} \int_{0}^{1} \left(\int_{y}^{1 + y} \frac{\xi - 2y}{\xi^{3}} \, \mathrm{d}\xi \right) \, \mathrm{d}y = \int_{0}^{1} \left(\int_{y}^{1 + y} \frac{1}{\xi^{2}} \, \mathrm{d}\xi - 2y \int_{y}^{1 + y} \frac{1}{\xi^{3}} \, \mathrm{d}\xi \right) \, \mathrm{d}y$$

$$= \int_{0}^{1} \left(\left[-\frac{1}{\xi} \right]_{y}^{1 + y} + y \left[\frac{1}{\xi^{2}} \right]_{y}^{1 + y} \right) \, \mathrm{d}y = \int_{0}^{1} \frac{-1}{(1 + y)^{2}} \, \mathrm{d}y$$

$$= \left[\frac{1}{1 + y} \right]_{0}^{1} = -\frac{1}{2}$$

wobei bei [1] die Substitution $\xi = x + y$ verwendet wurde.

(ii)

$$\left(\int_{0}^{1} f(x,y) \, \mathrm{d}y\right) \, \mathrm{d}x = \int_{0}^{1} \left(\int_{0}^{1} \frac{x-y}{(x+y)^{3}} \, \mathrm{d}y\right) \, \mathrm{d}x$$

$$\stackrel{[2]}{=} \int_{0}^{1} \left(\int_{x}^{1+x} \frac{2x-\eta}{\eta^{3}} \, \mathrm{d}\eta\right) \, \mathrm{d}x = \int_{0}^{1} \left(2x \int_{x}^{1+x} \frac{1}{\eta^{3}} \, \mathrm{d}\eta - \int_{x}^{1+x} \frac{1}{\eta^{2}} \, \mathrm{d}\eta\right) \, \mathrm{d}x$$

$$= \int_{0}^{1} \left(-x \left[\frac{1}{\eta^{2}}\right]_{x}^{1+x} + \left[\frac{1}{\eta}\right]_{x}^{1+x}\right) \, \mathrm{d}x = \int_{0}^{1} \frac{1}{(1+x)^{2}} \, \mathrm{d}y$$

$$= \left[\frac{-1}{1+x}\right]_{0}^{1} = \frac{1}{2}$$

wobei bei [2] die Substitution $\eta = x + y$ verwendet wurde.

Die Ergebnisse stimmen also nicht überein, d.h. der Satz von Fubini gilt nicht für die Funktion f. Das ist nur möglich, wenn f nicht λ^2 -integrierbar über $[0,1]^2$ ist, also

$$\int_{[0,1]^2} f \, \mathrm{d}\lambda^2 = \infty.$$

Aufgabe 9 (Ebene Polarkoordinaten und Integrierbarkeit). Das 2-dim. Lebesgue-Maß λ^2 werde einer Transformation in ebene Polarkoordinaten unterworfen.

- 1. Geben Sie die Transformation Ψ (Definitionsbereich mit Begründung) samt Jacobimatrix $D\Psi$ und Funktionaldeterminante an.
- 2. Wie transformiert sich λ^2 ?
- 3. Gegeben sei nun zusätzlich eine messbare und beschränkte Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f = \mathcal{O}(\|x\|^{\alpha})$ für $\|x\| \to \infty$. Zeigen Sie mit obiger Transformation, dass f integrierbar ist, falls $\alpha < -2$. Argumentieren Sie sauber, indem Sie die an den jeweiligen Stellen relevanten Sätze nennen!
- Lösung. 1. $\Psi: U \to V$, $U, V \subset \mathbb{R}^2$ offen, muss ein \mathcal{C}^1 -Diffeomorphismus sein, also Ψ bijektiv und Ψ , Ψ^{-1} stetig differenzierbar. Wähle nun als Abbildungsvorschrift $\Psi: (0, \infty) \times (0, 2\pi) \to \mathbb{R}^2 \setminus \{(x, 0) \in \mathbb{R}^2 : x \geq 0\}$,

$$\Psi(r,\varphi) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi \end{pmatrix}.$$

Dann sind U und V offen, Ψ bijektiv und stetig differenzierbar und wegen

$$D\Psi(r,\varphi) = \begin{pmatrix} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{pmatrix}, \quad |\det D\Psi(r,\varphi)| = r$$

invertierbar für alle $(r, \varphi) \in (0, \infty) \times (0, 2\pi)$ mit stetig differenzierbarer Umkehrarbbildung (es gilt $D\Psi^{-1}(x, y) = (D\Psi(\Psi^{-1}(x, y)))^{-1}$).

U und V sind dabei bis auf λ^2 -Nullmengen gleich \mathbb{R}^2 .

2. Es gilt

$$\psi(\lambda_U^2) = |\det D\Psi^{-1}| \lambda_V^2 = \frac{1}{|\det D\Psi(\Psi^{-1}(x,y))|} \lambda_V^2 = \frac{1}{\sqrt{x^2 + y^2}} \lambda_V^2$$

3. Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ messbar und beschränkt, $f = \mathcal{O}(\|x\|^{\alpha})$ für $\|x\| \to \infty$. Letzteres bedeutet, dass $\exists C, R > 0$, sodass

$$|f(x)| \le C||x||^{\alpha} \quad \forall ||x|| \ge R. \tag{1}$$

Aus der Beschränktheit von f folgt sofort dass $f\mathbf{1}_{\overline{U_R(0)}}$ integrierbar ist. Wegen 1 folgt die Integrierbarkeit von f dann aus der Integrierbarkeit von $g := C \|x\|^{\alpha} \mathbf{1}_{\mathbb{R}^2 \setminus \overline{U_R(0)}}$ (integrierbare Majorante nach 1). g ist

integrierbar, denn

$$\begin{split} \int_{\mathbb{R}^2} g \, \mathrm{d}\lambda^2 &\stackrel{[1]}{=} \int_U (g \circ \Psi) \left| \det D\Psi \right| \mathrm{d}\lambda_U^2 = \int_U g(\Psi(r,\varphi)) \, r \, \mathrm{d}r \mathrm{d}\varphi \\ &\stackrel{[2]}{=} \int_R^\infty \int_0^{2\pi} C r^\alpha r \, \mathrm{d}\varphi \mathrm{d}r = 2\pi C \int_R^\infty r^{\alpha+1} \, \mathrm{d}r \\ &= 2\pi C \left[\frac{r^{\alpha+2}}{\alpha+2} \right]_R^\infty \stackrel{[3]}{=} -\frac{2\pi C R^{\alpha+2}}{\alpha+2} \in (0,\infty). \end{split}$$

Dabei wurde bei [1] der Transformationssatz samt der Tatsache, dass U bis auf eine Nullmenge gleich \mathbb{R}^2 ist, verwendet. Bei [2] wird der Satz von Tonelli verwendet. Dieser wird im Nachhinein gerechtfertigt, denn [3] ist nur möglich, falls $\alpha < -2$ ist, nur dann ist der Ausdruck $< \infty$.

Aufgabe 10 (Transformation des Lebesgue-Maßes). Zeigen Sie: Für eine lineare Transformation $f: \mathbb{R}^d \to \mathbb{R}^d$, die bezüglich der Standardbasis des \mathbb{R}^d dargestellt werde durch die Matrix $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_d)$ mit $\alpha_1, \ldots, \alpha_d \in \mathbb{R} \setminus \{0\}$, ist

$$f(\lambda^d) = |\alpha_1 \cdot \dots \cdot \alpha_d|^{-1} \lambda^d.$$

- 1. elementar durch Auswerten an Quadern (HINWEIS: Definition des Bildmaßes).
- 2. mithilfe des Transformationssatzes.

Lösung. 1. f ist linear und damit messbar. Sei $[a,b]\subset\mathbb{R}^d$ ein abgeschlossener Quader, dann ist

$$A\lambda^{d}([a,b]) = \lambda^{d}(A^{-1}[a,b]) = \lambda^{d}\left(\frac{1}{\alpha_{1}}[a_{1},b_{1}] \times \frac{1}{\alpha_{2}}[a_{2},b_{2}] \times \cdots \times \frac{1}{\alpha_{d}}[a_{d},b_{d}]\right)$$
$$= \frac{1}{|\alpha_{1}| \dots |\alpha_{d}|} \lambda^{d}([a,b])$$

für alle $a, b \in \mathbb{R}^d$, $a \leq b$. Damit ist $f(\lambda^d) = |\alpha_1 \cdots \alpha_d|^{-1} \lambda^d$ gezeigt auf einem Erzeuger der Borel-Algebra \mathcal{B}^d , woraus die Gleichheit auf ganz \mathcal{B}^d folgt.

2. Es ist $D(A^{-1}) = A^{-1}$. Nach dem Transformationssatz gilt dann

$$A(\lambda^d) = |\det(DA^{-1})|\lambda^d = |\det A|^{-1}\lambda^d = |\alpha_1 \cdot \dots \cdot \alpha_d|^{-1}\lambda^d$$

woraus die Behauptung folgt.