1

1

2

1

WHAT IS CLAIMED IS:

1	1. An optical switching system for switching one of a plurality of optical		
2	signals, the system comprising:		
3	an optical cross-connect apparatus;		
4	a control device coupled to the optical cross-connect apparatus;		
5	a multiplexing device coupled to the optical cross-connect apparatus;		
6	a trunk monitoring device disposed before the multiplexing device, the		
7	trunk monitoring device being coupled to at least a first fiber and a second fiber;		
8	a fiber switch coupled between the multiplexing device and the trunk		
9	monitoring device, the fiber switch being adapted to switch an optical signal from		
10	the first fiber to the second fiber.		

- 2. The system of claim 1 wherein the fiber switch is a two by two switch.
- 1 3. The system of claim 1 wherein the multiplexing device is a DWDM 2 device.
- 1 4. The system of claim 1 wherein the optical cross-connect apparatus comprises at least an array of 256 mirror devices.
 - 5. The system of claim 1 wherein the fiber switch is positioned after the trunk monitoring device.
- 1 6. The system of claim 1 wherein the first fiber is a primary fiber and the 2 second fiber is a back up fiber.
- 7. The system of claim 1 wherein the control device couples to the trunk
 monitoring device.
- 1 8. The system of claim 1 wherein the control device couples to the fiber 2 switch.
- 9. The system of claim 1 wherein the trunk monitoring device monitors
 defects selected from a fiber cut, a defective fiber, or other signal degrading causes.
 - 10. The system of claim 1 wherein the system is coupled to a second system.

1	11.	A method for monitoring and controlling optical signals through a long			
2	haul communication network, the method comprising:				
3		monitoring optical signals from a first optical path on a first fiber using a			
4	trunk monitor	ring device, the trunk monitoring device being disposed before a			
5	multiplexing device coupled to an input port of a switching system;				
6		detecting a defect in the optical signals using the trunk monitoring device;			
7		determining if the defect is from a selected defect being monitored;			
8		if the defect is a selected defect, initiating a process to switch the optical			
9	signals from the first path in the first fiber to a second path in a second fiber; and				
10		transferring the optical signals from the first path to the second path.			
1	12.	The method of claim 11 wherein the selected defect is a fiber cut, a			
2	degraded fibe	er, or other signal degrading causes.			
1	13.	The method of claim 11 wherein the transferring is provided by switching			
2	the optical sig	gnals from the first path to the second path.			
1	14.	The method of claim 11 wherein the transferring is provided by a fiber			
2	switch couple	ed to the multiplexing device and the trunk monitoring device.			
1	15.	The method of claim 14 wherein the fiber switching is between the fiber			
2	switch and th	e first fiber and the second fiber.			
1	16.	A method for monitoring and controlling optical signals through an optical			
2	communication	on network, the method comprising:			
3		monitoring optical signals from a first optical path on a first fiber using a			
4	trunk monitor	ring device, the trunk monitoring device being disposed before a			
5	multiplexing device coupled to an input port of a switching system;				
6		detecting a defect in the optical signals using the trunk monitoring device;			
7		determining if the defect is from a selected defect being monitored;			
8		if the defect is a selected defect, initiating a process to switch the optical			
9	signals from the first path in the first fiber to a second path in a second fiber;				
10		determining an available path for the second path from a pool of fibers, the			
11	pool	of fibers having a plurality of optical paths;			
12		selecting one of the available paths for the second path; and			

13		transferring the optical signals from the first path to the second path.	
1	17.	The method of claim 16 wherein the selected defect is a fiber cut, a	
2	degraded fiber	r, or other signal degrading causes.	
1	18.	The method of claim 16 wherein the transferring is provided by switching	
2	the optical sig	nals from the first path to the second path.	
1	19.	The method of claim 16 wherein the transferring is provided by a fiber	
2	switch couple	d to the multiplexing device and the trunk monitoring device.	
1	20.	The method of claim 19 wherein the fiber switching is between the fiber	
2	switch and the first fiber and the second fiber.		
1	21.	A method for monitoring and controlling optical signals through an optical	
2	communication network, the method comprising:		
3		monitoring optical signals from a first optical path on a first fiber using a	
4	trunk monitor	ing device, the trunk monitoring device being disposed before a	
5	multiplexing device coupled to an input port of a switching system;		
6		detecting a defect in the optical signals using the trunk monitoring device;	
7		determining if the defect is from a selected defect being monitored;	
8		if the defect is a selected defect, initiating a process to switch the optical	
9	signals from t	he first path in the first fiber to a second path in a second fiber based upon	
10	predetermined selection criteria;		
11		if the first optical path is for a first service level, suspending the process to	
12	switch the opt	ical signals from the first path to the second path;	
13		if the first optical path is for a second service level, transferring the optical	
14	signals from t	he first path to the second path.	