Laboratorium 5 - Hybrydowe algorytmy ewolucyjne

Autorzy: Michał Pawlicki, Mateusz Noworolnik

Opis zadania

Celem zadania jest zaimplementowanie hybrydowych algorytmów ewolucyjnych dla problemu komiwojażera. Zaimplementowano dwie wersje algorytmu: z użyciem lokalnego przeszukiwania w każdej iteracji i bez. Algorytmy zostały uruchomione na instancjach problemu kroA200 i kroB200.

Opis algorytmów i funkcji pomocniczych

Hybrydowy algorytm ewolucyjny

```
Wczytaj zbiór danych
Wylosuj populację początkową o rozmiarze k poprzez uruchomienie algorytmu
przeszukiwania lokalnego z losowym rozwiązaniem początkowym
Powtarzaj do osiągnięcia warunku stopu:
    Wylosuj parę rodziców
    Stwórz potomka przez zastosowanie operatora krzyżowania
    Jeśli flaga lokalnego przeszukiwania jest ustawiona:
        Wykonaj przeszukiwanie lokalne strategią stromą
    Jeśli funkcja celu potomka jest rózna od funkcji celu wszystkich
osobników w populacji:
        Dodaj potomka do populacji
        Usuń z populacji osobnika o najgorszej funkcji celu
Zwróć najlepsze rozwiązanie z populacji
```

Operator krzyżowania

```
Skopiuj rozwiązanie rodzica 1 do potomka
Dla każdego wierzchołka w potomku:
   Jeśli krawędź stworzona przez wierzchołek i jego następnika lub
poprzednika nie istnieje w rozwiązaniu rodzica 2:
   Usuń ten wierzchołek z potomka
Stwórz rozwiązanie poprzez uruchomienie algorytmyrozbudowy cyklu na
pozoostałych wierzchołkach
```

Wyniki eksperymentów

KroA

Konfiguracja	Wartość	Czas (ms)	Liczba iteracji
	funkcji celu		

Konfiguracja	Wartość funkcji celu	Czas (ms)	Liczba iteracji
MSLS	38142.1 (37208 - 38848)	1049876 (992299 - 1495519)	1000
ILS - Mała perturbacja	38362.4 (35666 - 41470)		11426.3 (11393 - 11456)
ILS - Repair-Destroy wersja bez lokalnego przeszykiwania w każdej iteracji	31905.4 (30975 - 32592)		2650.9 (2640 - 2656)
ILS - Repair-Destroy wersja z lokalnym przeszukiwaniem w każdej iteracji	31101.2 (30660 - 31612)		1254.3 (1210 - 1313)
Hybrydowy algorytm ewolucyjny bez lokalnego przeszukiwania	34263.75 (32887 - 35723)		590004.8 (389611 - 703333)
Hybrydowy algorytm ewolucyjny z lokalnym przesukiwaniem	34114 (33158 - 35489)		17571.25 (14033 - 20057)

Wersja bez lokalnego przeszukiwania

Wersja z lokalnym przeszukiwaniem

KroB

Konfiguracja	Wartość funkcji celu	Czas (ms)	Liczba iteracji
MSLS	38611.7 (37989 - 39124)	995968.8 (985277 - 1000642)	1000
ILS - Mała perturbacja	38053.7 (35657 - 41156)		11435.2 (11363 - 11473)
ILS - Repair-Destroy wersja bez lokalnego przeszykiwania w każdej iteracji	31642.8 (30973 - 32789)		2650.8 (2641 - 2658)
ILS - Repair-Destroy wersja z lokalnym przeszykiwaniem w każdej iteracji	31166.2 (30645 - 31445)		1344.8 (1287 - 1412)
Hybrydowy algorytm ewolucyjny bez lokalnego przeszukiwania	35546.5 (33019 - 36546)		314795.5 (165666 - 462877)
Hybrydowy algorytm ewolucyjny z lokalnym przesukiwaniem	34215 (33258 - 34978)		18449 (16613 - 19294)

Wersja bez lokalnego przeszukiwania

Wersja z lokalnym przeszukiwaniem

Wnioski

Hybrydowy algorytm ewolucyjny z lokalnym przeszukiwaniem osiągał podoobne wyniki do wersji bez lokalnego przeszukiwania jednak wykonwał znacząco mniej iteracji. Wartści funkcji celu jakie otrzymywał były zauważalnie gorsze od wyników uzyskanych przez najlepsze algorytmy z poprzednich laboratoriów, jednak liczba iteracji jakie wykonywał była większa.

Laboratorium 6 - Testy globelnej wypukłości

Podobieństwo do najlepszego rozwiązania (ILS - Repair-Destroy wersja z lokalnym przeszukiwaniem w każdej iteracji)

Miara podobieństwa: liczba wspólnych wierzchołków

Współczynnik korelacji: 0.016

Miara podobieństwa: liczba wspólnych krawędzi

Współczynnik korelacji: -0.11

Średnie podobieństwo do wszystkich rozwiązań

Miara podobieństwa: liczba wspólnych wierzchołków

Współczynnik korelacji: -0.32

Miara podobieństwa: liczba wspólnych krawędzi

Współczynnik korelacji: -0.45

6/7

Kod programu

https://github.com/michal-pawlicki/inteligentne-metody-optymalizacji/tree/main/Lab5