TÓM TẮT LÝ THUYẾT TOÁN HỌC 12

CHƯƠNG 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VỀ ĐỒ THỊ HÀM SỐ Bài 1. Sự đồng biến, nghịch biến của hàm số

1. Các kiến thức cần nhớ

Định nghĩa:

Cho hàm số y=f(x) xác định trên K (K có thể là một khoảng, đoạn hoặc nửa khoảng)

- Hàm số y=f(x) được gọi là đồng biến trên K nếu \forall x1,x2 ∈ K:x1
- Hàm số y=f(x) được gọi là nghịch biến trên K nếu \forall x1,x2 \in K:x1 f(x2)

Định lý:

Cho hàm số y=f(x) xác định và có đạo hàm trên K

- a) Nếu f'(x)>0, $\forall x \in K$ thì hàm số y=f(x) đồng biến trên K
- b) Nếu f(x)<0, $\forall x \in K$ thì hàm số y=f(x) nghịch biến trên K

Định lý mở rộng:

Giả sử hàm số y=f(x) có đạo hàm trên K

- a) Nếu $f(x)\ge 0$, $\forall x \in K$ và f(x)=0 f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến trên K
- b) Nếu $f(x) \le 0$, $\forall x \in K$ và f(x) = 0 f(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số nghịch biến trên K

2. Một số dạng toán thường gặp

Dạng 1: Tìm các khoảng đơn điệu của hàm số.

Phương pháp:

- Bước 1: Tìm TXĐ của hàm số.
- Bước 2: Tính đạo hàm f(x)f(x), tìm các điểm x1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.
- Bước 3: Xét dấu đạo hàm và nêu kết luận về khoảng đồng biến, nghịch biến của hàm số.
- + Các khoảng mà f(x)>0 là các khoảng đồng biến của hàm số.
- + Các khoảng mà f(x)<0 là các khoảng nghịch biến của hàm số.

Ví dụ 1: Tìm khoảng đồng biến, nghịch biến của hàm số $y=2x^4+1$

Ta có:

 $y'=8x^3$, $y'>0 \Leftrightarrow x>0$ nên hàm số đã cho đồng biến trên $(0;+\infty)(0;+\infty)$

 $y'<0 \Leftrightarrow x<0$ nên hàm số đã cho nghịch biến trên $(-\infty;0)$

Một số trường hợp đặc biệt:

Trang 1

$ \begin{array}{c cccc} x & a & b & c \\ \hline f'(x) & + & 0 & + \\ \hline f(x) & & & & \\ \end{array} $	Hàm số đồng biến trên (a;c)
$ \begin{array}{c cccc} x & a & b & c \\ \hline f'(x) & - & 0 & - \\ \hline f(x) & & & & \\ \hline f(b) & & & & \\ \end{array} $	Hàm số nghịch biến trên (a;c)
x a b c f'(x) + +	Hàm số đồng biến trên các khoảng (a;b) và (b;c) Kết luận sai: Hàm số đồng biến trên (a;c) hoặc hàm số đồng biến trên (a;b) \cup (b;c).
x a b c f'(x)	Hàm số nghịch biến trên các khoảng (a;b) và (b;c) Kết luận sai: Hàm số nghịch biến trên (a;c) hoặc hàm số nghịch biến trên (a;b) \cup (b;c).

Dạng 2: Tìm giá trị của m để hàm số đơn điệu trên R.

Phương pháp:

- $Bu\acute{o}c$ 1: Tinh f(x)
- Bước 2: Nêu điều kiện của bài toán:
- + Hàm số y=f(x) đồng biến trên R⇔y'=f(x) \geq 0, \forall x ∈ R và y'=0 tại hữu hạn điểm.
- + Hàm số y=f(x)nghịch biến trên $R\Leftrightarrow y'=f(x)\leqslant 0, \forall x\in R$ và y'=0 tại hữu hạn điểm.
- Bước 3: Từ điều kiện trên sử dụng các kiến thức về dấu của nhị thức bậc nhất, tam thức bậc hai để tìm m.

Ví dụ 2: Tìm tất cả các giá trị thực của tham số m sao cho hàm số $y=(\frac{1}{3})x^3-(m+1)x^2-(2m+3)x+2017$ đồng biến trên R.

Giải: Hàm số đã cho đồng biến trên RR \Leftrightarrow y'=x2-2(m+1)x-(2m+3) \geq 0 \Leftrightarrow y'=x2-2(m+1)x-(2m+3) \geq 0 \forall x \in R. \forall x \in R.

 $\Leftrightarrow \Delta' = (m+1)2 + (2m+3) \le 0 \Leftrightarrow \Delta' = (m+1)2 + (2m+3) \le 0 \Leftrightarrow m2 + 4m + 4 \le 0 \Leftrightarrow m = -2$

- Cho hàm số $f(x)=ax2+bx+c(a\neq 0)f(x)=ax2+bx+c(a\neq 0)$. Khi đó:
- $\bullet \quad f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \leqslant 0, \forall \ x \in R \Leftrightarrow \{a < 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \leqslant 0, \forall \ x \in R \Leftrightarrow \{a < 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x) \geqslant 0, \forall \ x \in R \Leftrightarrow \{a > 0 \Delta \leqslant 0 \\ f(x)$

Dạng 3: Tìm m để hàm số đơn điệu trên miền D cho trước.

Phương pháp:

- **Bước 1:** Nêu điều kiện để hàm số đơn điệu trên D:
- + Hàm số y=f(x)y=f(x) đồng biến trên $D\Leftrightarrow y'=f(x)\geqslant 0, \forall x\in DD\Leftrightarrow y'=f(x)\geqslant 0, \forall x\in D.$

Trang 2

- + Hàm số y=f(x)y=f(x) nghịch biến trên D \Leftrightarrow y'=f'(x) \leqslant 0, \forall x \in DD \Leftrightarrow y'=f'(x) \leqslant 0, \forall x \in D.
- Bước 2: Từ điều kiện trên sử dụng các cách suy luận khác nhau cho từng bài toán để tìm mm.

Dưới đây là một trong những cách hay được sử dụng:

- Rút mm theo xx sẽ xảy ra một trong hai trường hợp: $m \geqslant g(x)$, $\forall x \in D m \geqslant g(x)$, $\forall x \in D$ hoặc $m \leqslant g(x)$, $\forall x \in D m \leqslant g(x)$, $\forall x \in D$.
- Khảo sát tính đơn điệu của hàm số y=g(x)y=g(x) trên DD.
- $-\text{ K\'{e}t lu\^an: } m \geqslant g(x), \forall \ x \in D \Rightarrow m \geqslant \max Dg(x) \\ m \leqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \geqslant \max Dg(x) \\ m \leqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x) \\ m \geqslant g(x), \forall \ x \in D \Rightarrow m \leqslant \min Dg(x)$
- Bước 3: Kết luận.

Dạng 4: Tìm m để hàm số y=ax+bcx+dy=ax+bcx+d đồng biến, nghịch biến trên khoảng $(\alpha;\beta)(\alpha;\beta)$

- Bước 1: Tính y'y'.
- Bước 2: Nêu điều kiện để hàm số đồng biến, nghịch biến:
- $+ \operatorname{H\grave{a}m} s\acute{o} \operatorname{d\grave{o}ng} bi\acute{e}n \operatorname{trên}(\alpha;\beta) \Leftrightarrow \{ \{ y'=f(x)>0, \forall x \in (\alpha;\beta) \operatorname{dc}^{\notin}(\alpha;\beta)(\alpha;\beta) \Leftrightarrow \{ y'=f(x)>0, \forall x \in (\alpha;\beta) \operatorname{dc}^{\notin}(\alpha;\beta) \} \}$
- Bước 3: Kết luận.