姓名: 学号: 同组人:

- 1. 实验目的
- 1) 熟悉电阻应变测量技术的基本原理和方法;
- 2) 测量纯弯曲梁、T型梁和工字梁截面上的应变,分析应变分布规律;
- 3) 验证梁纯弯曲理论;
- 2. 实验装置
- 1) 材料力学多功能实验台;
- 2) 接有应变片的实验件(纯弯曲梁、T型梁和工字梁);
- 3) 静态应变测试仪;
- 4) 游标卡尺和钢尺。

3. 实验原理与方法

1) 纯弯曲梁正应力实验

纯弯曲实验件材料为 45#钢调质处理,弹性模量 E=210GPa,屈服强度355MPa。 其横截面为矩形,梁的侧面沿与轴线平行的不同高度上粘贴单向应变片,如图所示。通过材料力学多功能试验装置等量逐级加载,载荷大小由数字载荷显示仪显示。

图1 纯弯曲梁正应力实验件示意图 (实际值见下表)

表1 应变片位置及截面尺寸

应变片至中性层距	距离 (mm)	梁的尺寸和有关参数			
Y_1 , Y_2	20	宽度 b	20mm		
Y ₃	15	高度 h	40mm		
Y ₄	10	跨度L	600mm		
Y ₅	0	载荷距离 a	192mm		
Y ₆	-10	弹性模量E	210GPa		
Y ₇	-15	惯性矩 Iz	$1.0667 \times 10^{-7} m^2$		
Y_8	-20				

在载荷 P 的作用下梁发生弯曲变形,截面上所承受的弯矩均为:

$$M = \frac{1}{2}aP$$

横截面上的正应力理论推导:

Bending stress variation 图2(From Pearson)

$$egin{align} M &= \int_A y dF = \int_A y \sigma dA = \int_A y \Big(rac{y}{c}\sigma_{ ext{max}}\Big) dA \ M &= rac{\sigma_{ ext{max}}}{c} \int_A y^2 dA = rac{\sigma_{ ext{max}}}{c} I_z \ rac{\sigma_{ ext{max}}}{c} &= rac{-\sigma}{y} \ \sigma &= -rac{My}{I_z} \ \end{pmatrix}$$

将梁上的各应变片以<u>1/4</u>桥路接入应变仪的通道中,<u>公用一个温度补偿片</u>。当梁在载荷**P**的作用下梁发生弯曲变形时,工作片的电阻随着梁的变形而发生变化,通过电阻应变仪可以分别测量出各对应位置的<u>应变</u>。根据胡克定律可计算出相应的应力值。

$$\sigma_e = E \cdot \varepsilon_e$$

实验最大加载设定为 4000N, 以试验件屈服强度为限定条件, 计算该情况下的安全系数 (5分):

理论值:

$$F.S = \frac{\sigma_{fail}}{\sigma_{allow}} = \frac{\sigma_{fail}}{\frac{My}{I_z}} = \frac{\sigma_{fail}}{\frac{1}{2}Pay} = \frac{355 \times 10^6}{\frac{1}{2} \times 4000 \times 0.192 \times 0.02} = 4.93$$

实验值:

取8号测点在4000N下的应变值(332×10⁻⁶)

$$F.S = \frac{\sigma_{fail}}{\sigma_{allow}} = \frac{\sigma_{fail}}{E\varepsilon} = \frac{355 \times 10^6}{210 \times 10^9 \times 332 \times 10^{-6}} = 5.09$$

2) T型梁四点弯曲实验

T型梁四点弯曲实验件材料为 45#钢调质处理,弹性模量 E=210GPa,屈服强度355MPa。其横截面为T型,梁的侧面沿与轴线平行的不同高度上粘贴单向应变片,如图所示。通过材料力学多功能试验装置等量逐级加载,载荷大小由数字载荷显示仪显示。

图3 T型梁四点弯曲实验件示意图

表2 1型梁头验应变片位置及截面尺	表2	会验应变片位置及截面尺寸
-------------------	----	--------------

应变片至底	面距离 (mm)	梁的尺寸和有关参数			
Y_1	40	宽度 b	20mm		
Y_2	33	高度 h	40mm		
Y ₃	27	跨度L	600mm		
Y_4	17	载荷距离 a	180mm		
Y ₅	0	弹性模量E	210GPa		
		T型处宽度	10mm		
		T型处高度	30mm		

在载荷 P 的作用下梁发生弯曲变形,截面上所承受的弯矩均为:

$$\begin{split} I_z = & \left[\frac{1}{12} \times 10 \times (30 - 7)^3 + 10 \times (30 - 7) \times \left(\frac{30 - 7}{2} \right)^2 \right] + \left[\frac{1}{12} \times 10 \times 7^3 + 10 \times 7 \times \left(\frac{7}{2} \right)^2 \right] \\ & + \left[\frac{1}{12} \times 20 \times 10^3 + 20 \times 10 \times \left(7 + \frac{10}{2} \right)^2 \right] = 72167 mm^4 = 7.2167 \times 10^{-8} m^2 \end{split}$$

3) 工字梁四点弯曲实验

工字梁四点弯曲实验件材料为 45#钢调质处理,弹性模量 E=210GPa,屈服强度355MPa。其横截面为工型,梁的侧面沿与轴线平行的不同高度上粘贴单向应变片,如图所示。通过材料力学多功能试验装置等量逐级加载,载荷大小由数字载荷显示仪显示。

图4 工字梁四点弯曲实验件示意图

	衣3 上子朵头短四发	月型直及俄囬八寸			
应变片至中性面	距离 (mm)	梁的尺寸和有关参数			
Y_1	20	宽度 b	20mm		
Y_2	7	高度 h	40mm		
Y ₃	0	跨度L	600mm		
Y ₄	7	载荷距离 a	180mm		
Y_5	20	弹性模量E	210GPa		
		工型中部宽度	10mm		
		工型中部高度	30mm		

表3 工字梁实验应变片位置及截面尺寸

在载荷 P 的作用下梁发生弯曲变形,截面上所承受的弯矩均为:

$$M = \frac{1}{2}aP$$

惯性矩

$$I_z = \frac{1}{12} \times 10 \times 30^3 + 2 \times \left(\frac{1}{12} \times 20 \times 5^3 + 20 \times 5 \times 17.5^2\right) = 84167mm^4 = 8.4167 \times 10^{-8}m^4$$

4. 实验步骤

- 1) 测量梁的截面尺寸、应变片位置参数及其它有关尺寸, \mathbb{Z} 2、3。预热 应变仪和载荷显示仪,计算中性轴位置及截面的惯性矩 \mathbb{Z} ,计算结果如下:
 - ① 纯弯曲梁实验

中性轴位置如右图所示, 轴对称位置

惯性距:

$$I_z = \frac{1}{12}bh^3 = \frac{1}{12} \times 0.02 \times 0.04^3 = 1.0667 \times 10^{-7}m^2$$

② T型梁四点弯曲实验

中性轴位置如右图所示,其中x = 7mm

惯性距:

$$I_z = 7.2167 \times 10^{-8} m^2$$
 (计算过程见上页)

应变片至中性面距离(mm)							
Y_1	23						
Y_2	16						
Y ₃	10						
Y_4	0						
Y ₅	17						

③ 工字梁四点弯曲实验

中性轴位置如右图所示, 轴对称位置

惯性距:

$$I_z = 8.4167 \times 10^{-8} m^4$$
 (计算过程见上页)

- 2) 检查各种仪器是否连接好,按顺序将各个应变片按 1/4 桥接法接入应变仪的 所选通道上,然后将应变仪的所选通道电桥调平衡。
- 3) 数值清零后,摇动多功能试验装置的加载机构。

对于纯弯曲梁实验,从500N开始,采用等量逐级加载(可取 $\Delta P = 500N$),最大加载 4000N:

对于T型和工字梁,从250N开始,采用等量逐级加载(可取 $\Delta P = 250N$),最大加载 2000N;

每加一级载荷,分别读出各相应电阻应变片的应变值。加载应保持缓慢、均匀、平稳。

4) 记录实验数据记录,见下表。

表4 纯弯曲梁应变测量记录表

$\varepsilon_{\rm e}(\mu)$ P(N)	504	998	1512	2006	2507	3017	3498	4001
1-1	11	25	36	49	60	72	83	95
2-2	-32	-70	-111	-151	-193	-235	-273	-314
3-3	-26	-56	-86	-116	-147	-177	-205	-236
4-4	-25	-47	-68	-89	-110	-130	-151	-172
5-5	0	0	1	1	1	2	2	3
6-6	21	43	64	84	105	126	147	167
7-7	32	65	97	127	159	191	222	253
8-8	41	84	126	167	208	250	291	332

表5 T型梁应变测量记录表

应变 载荷(N)	-251	-501	-750	-1002	-1253	-1500	-1750	-2003
1	-36	-69	-102	-136	-170	-204	-235	-273
2	-25	-49	-72	-96	-120	-144	-168	-193
3	-17	-31	-47	-62	-77	-93	-108	-125
4	0	0	-1	-1	-2	-3	-5	-6
5	23	48	73	96	123	147	172	198

表6 工字梁应变测量记录表

载荷 应变	250	500	750	1000	1250	1500	1750	2000
1	-26	-54	-83	-110	-139	-163	-193	-220
2	-10	-21	-31	-43	-53	-62	-72	-81
3	0	0	0	0	0	0	0	0
4	9	19	28	37	49	58	69	78
5	23	51	76	106	132	163	185	217

5) 整理仪器,结束实验。

5. 实验数据处理(数据处理图表整理、实验数据选取、参数计算等)

1) 纯弯曲梁正应力实验

根据 $t_{ij} = \frac{M_i y_j}{EI_z} = \frac{a}{2EI_z} P_i y_j$,计算实验测量的不同工况下的理论值(见下表) 表7 纯弯曲梁实验工况下应变理论值

	载荷(N) 应变	504	998	1512	2006	2507	3017	3498	4001
t	2-2	43	86	130	172	215	259	300	343
Ī	3-3	32	64	97	129	161	194	225	257
	4-4	22	43	65	86	107	129	150	171
Γ	5-5	0	0	0	0	0	0	0	0

(由于测点1和测点2位置y相同,测点6、7、8与测点2、3、4的位置成对称关系,故只计算2、3、4、5的理论数值,上述值为绝对值。)

表8 实验值与理论值偏差表

$\varepsilon_{\rm e}(\mu)$ P(N)	504	998	1512	2006	2507	3017	3498	4001
2-2	26%	18%	14%	12%	10%	9%	9%	8%
3-3	20%	13%	12%	10%	9%	9%	9%	8%
4-4	16%	10%	5%	4%	2%	1%	1%	O%
5-5								
6-6	3%	-1%	1%	2%	2%	3%	2%	3%
7-7	1%	-1%	O%	2%	1%	2%	1%	2%
8-8	5%	2%	3%	3%	3%	3%	3%	3%

平均偏差为4.29%, 最大偏差为25.93% (测点2在500N载荷下测量值)

实验值与理论值基本吻合,值得注意的是,梁上部分测点(测点2、3)实验值整体偏差比下部分大,后续处理异常数据时需优先考虑剔除。

为验证纯弯曲梁理论模型,使用经典误差分析方法进一步处理实验数据,如下图所示。

图6 验证性实验经典误差分析方法数据处理流程图

- 1) 检查是否有系统误差,设法消除。其中,梁中性轴处(y=0)应变理论值为 0,而由于零漂等系统误差,测量值一般是很小数值,应剔除该列数据; 处理过程中已剔除梁中性轴处测量值。
- 2) 计算测量值 u_{ij} 对应的理论值 t_{ij} 和判据值 c_k ,以及算数平均值 \bar{c} ,剩余误差 V_k 和均方根误差 σ 等;

$$t_{ij} = \frac{M_i y_j}{EI_z} = \frac{a}{2EI_z} P_i y_j$$
, $c_k = \frac{t_{ij}}{u_{ij}}$ 表9 理论值计算

並 並 並 並 数荷(N)	504	998	1512	2006	2507	3017	3498	4001
2-2	43	86	130	172	215	259	300	343
3-3	32	64	97	129	161	194	225	257
4-4	22	43	65	86	107	129	150	171
5-5	0	0	0	0	0	0	0	0

表10 判据值

判据值	504N	998N	1512N	2006N	2507N	3017N	3498N	4001N
2-2	0.7407	0.8183	0.8565	0.8782	0.8982	0.9087	0.9105	0.9156
3-3	0.8025	0.8729	0.8848	0.8995	0.9121	0.9126	0.9116	0.9175
4-4	1.1574	1.0989	1.0494	1.0352	1.0238	1.0054	1.0072	1.0031
5-5								
6-6	0.9722	1.0053	0.9877	0.9771	0.9773	0.9745	0.9806	0.9739
7-7	0.9877	1.0131	0.9979	0.9848	0.9866	0.9848	0.9872	0.9836
8-8	0.9491	0.9820	0.9722	0.9713	0.9680	0.9667	0.9706	0.9681

3) 使用 3S 准则发现异常数据,剔除后重复上一步,直到不存在可疑数据;

$$\bar{c} = 0.9882$$
 $\sigma = 0.02182$

所有数据 \in (0.9882 - 3 × 0.02182, 0.9982 + 3 × 0.02182) = (1.05366, 0.92274)

4) 计算均方根误差 $\sigma_{\bar{c}}$,得到c的测量结果;

$$\sigma_{\bar{c}} = \frac{\sigma}{\sqrt{k}} = 0.003984$$
 , $c = \bar{c} \pm 3\sigma_{\bar{c}} = 0.9882 \pm 3 \times 0.003984$

5) 是否满足 $1 \in (\bar{c} - 3\sigma_{\bar{c}}, \bar{c} + 3\sigma_{\bar{c}})$, 从而说明"纯弯曲梁理论"能否适用于实验模型;

$$\bar{c} + 3\sigma_{\bar{c}} = 0.9882 + 3 \times 0.003984 = 1.000152$$

$$\bar{c} - 3\sigma_{\bar{c}} = 0.9882 - 3 \times 0.003984 = 0.976248$$

 $\therefore 1 \in (\bar{c} - 3\sigma_{\bar{c}}, \bar{c} + 3\sigma_{\bar{c}})$ "纯弯曲梁理论"能适用于实验模型

2) T型梁四点弯曲实验

根据 $\varepsilon_{ij} = \frac{M_i y_j}{E I_z} = \frac{a}{2E I_z} P_i y_j$,计算实验测量的不同工况下的理论值(见下表) 表11 T型梁实验工况下应变理论值

载荷(N)	-251	-501	-750	-1002	-1253	-1500	-1750	-2003
1	34	68	102	137	171	205	239	274
2	24	48	71	95	119	143	166	190
3	15	30	45	60	74	89	104	119
4	0	0	0	0	0	0	0	0
5	25	51	76	101	126	151	177	202

实际实验中,应变片4所测数据依次为0、0、-1、-1、-2、-3、-5、-6,与其他测点的数 值相比,可以说明其处于中性面上。下表处理理论值与实验值偏差时,不考虑应变片4的 误差,否则会出现误差值大于100%的情况。

表12 实验值与理论值偏差表

应变 载荷(N)	-251	-501	-750	-1002	-1253	-1500	-1750	-2003
1	4.8%	0.8%	0.4%	0.6%	0.7%	0.4%	1.7%	0.2%
2	4.6%	2.8%	1.0%	0.8%	0.8%	1.0%	1.0%	1.4%
3	12.3%	4.0%	5.2%	4.0%	3.4%	4.2%	3.8%	4.8%
4								
5	10.2%	5.4%	3.7%	5.4%	2.8%	3.0%	2.7%	2.1%

图7 实验值与理论值对比图

3) 工字梁四点弯曲实验

根据 $\epsilon_{ij} = \frac{M_i y_j}{E I_z} = \frac{a}{2E I_z} P_i y_j$,计算实验测量的不同工况下的理论值(见下表) 表13 工字梁实验工况下应变理论值

载荷(N) 应变	250	500	750	1000	1250	1500	1750	2000
1	25	51	76	102	127	153	178	204
2	9	18	27	36	45	53	62	71
3	0	0	0	0	0	0	0	0

(由于工字梁为对称结构,中性面处y=0,应变为0,故只需计算1,2的理论数值,上述值为绝 对值。)

表14 实验值与理论值偏差表

载荷(N) 应变	250	500	750	1000	1250	1500	1750	2000
1	2%	6%	8%	7%	8%	6%	8%	7%
2	11%	15%	14%	17%	16%	14%	13%	12%
3			/					
4	1%	6%	5%	4%	9%	8%	10%	9%
5	11%	0.2%	-0.5%	4%	4%	6%	4%	6%

图8 实验值与理论值对比图

6. 误差分析

1) 纯弯曲梁正应力实验

由表8 实验值与理论值偏差表来看,实验值与理论值偏差较大的部分是测点2和测点3所得数据,且载荷越低该偏差越大,该误差来源可能是:测点2和测点3的应变片质量出现问题,较低载荷下的应变测量不准确;

理论计算带入的数值都十分精确,而实际实验只能将读数尽可能精确,比如:理论计算时选取的y值为20mm、15mm和10mm,但实际实验中应变片本身是有大小的,无法精确测量到固定y值位置上固定一点的应变,这就导致该实验中实验值与理论值普遍存在1~3%的偏差,但该误差<5%,这是可以接受的。

2) T型梁四点弯曲实验

由表12 实验值与理论值偏差表来看,实验值与理论值偏差较大的部分是测点3和测点5在251N载荷下所得数据,分别为12.3%和10.2%,该误差来源可能是:较低载荷下的应变测量不准确;

理论计算带入的数值精确到1mm,而实际实验只能将读数尽可能精确,比如:理论计算时选取的y值为23mm、16mm和10mm,但实际实验中应变片本身是有大小的,无法精确测量到固定y值位置上固定一点的应变,这就导致该实验中实验值与理论值普遍存在1~4%的偏差,但该误差<5%,这是可以接受的

3) 工字梁四点弯曲实验

由表14 实验值与理论值偏差表来看,实验值与理论值偏差较大的部分是测点2所得数据,为10%以上,其余部分的偏差小于10%,误差来源可能是:实验测量应变片位置y时,由于应变片处于凹槽内难以使用游标卡尺测量,故采用钢尺进行对位测量读数(如下图),测量结果不够准确:

图9 工字梁应变片位置测量方法

7. 实验结论

- ① 使用电阻应变测量技术测量纯弯曲梁矩形截面上8个测点的应变值,中性面处应变为0,向两端应变随距离线性增加,纯弯曲梁理论适用于实验模型。
- ② 使用电阻应变测量技术测量T型梁截面上5个测点的应变值,中性面处应变为0,向两端应变随距离线性增加。将理论值与实验值对比,误差在5%以内,实验结果可以接受。
- ③ 使用电阻应变测量技术测量工字梁截面上5个测点的应变值,应变基本成对称分布,中性面处(y=17mm)应变为0,向两端应变随距离线性增加。将理论值与实验值对比,由于测量应变片位置不够准确,实验误差在10%左右。
- ④ 根据 $\varepsilon_{ij} = \frac{M_i y_j}{\varepsilon I_z} = \frac{a}{2\varepsilon I_z} P_i y_j$,三种梁的区别在于 I_z 不同,相同位置相同载荷下,相同"矩形"截面的三种梁, $I_{z\underline{\mathcal{L}}\underline{\mathcal{E}}} > I_{z\underline{\mathcal{L}}z} > I_{z\underline{\mathcal{L}}\underline{\mathcal{E}}}$,对应的, $\varepsilon_{\underline{\mathcal{L}}\underline{\mathcal{E}}} < \varepsilon_{\underline{\mathcal{L}}z} < \varepsilon_{\underline{\mathcal{E}}\underline{\mathcal{E}}}$,在能够满足应变条件时,使用T型梁和工字梁能够节省材料。