МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Факультет микроприборов и технической кибернетики Кафедра высшей математики №1

Димаков Владислав Сергеевич

Бакалаврская работа по направлению 01.03.04 «Прикладная математика»

Обнаружение и слежение за объектами в реальном времени на основе самообучающегося классификатора

Научный руководитель: к.ф.-м.н., доцент кафедры ВМ-1 Козлитин Иван Алексеевич

Актуальность.

- Системы обработки и анализа видеоинформации все более интенсивно применяются в различных областях человеческой деятельности. Наиболее широкое распространение они получили при создании бортовых и стационарных систем обнаружения, слежения и сопровождения объектов.
- Одной из актуальных задач, требующих решения при создании подобных систем, является задача долгосрочного слежения, предполагающая корректную работу в условиях изменения окружающей обстановки сцены, перекрытия объекта слежения другими объектами или же в случае исчезновения отслеживаемого объекта из области видимости.

Цель работы.

Цель: разработка и реализация метода, способного решать задачу долгосрочного слежения, предполагающего наличие минимальной начальной информации.

Предлагаемый метод долгосрочного слежения.

Основная идея предлагаемого метода: интеграция детектора, основанного на самообучающемся классификаторе, в метод трекинга на основе вычитания фонового изображения.

Задачи трекера: сегментация кадров, вычисление пространственных параметров объектов и отслеживание траекторий их движения.

Задача детектора: поиск отслеживаемого объекта в случае сбоя трекера.

Основная идея используемого метода трекинга: выполнение сегментации кадров видеопоследовательности с помощью построения изображения фона с последующим его вычитанием из изображения текущего кадра.

Сегментация на основе вычитания изображения фона.

Среднее фоновое изображение:

$$B_t = \left(1 - \frac{1}{N}\right) \cdot B_{t-1} + \frac{1}{N} \cdot S[I_t]$$

Изображение средних абсолютных отклонений:

$$D_{t} = \left(1 - \frac{1}{N}\right) \cdot D_{t-1} + \frac{1}{N} \cdot S[|I_{t} - B_{t}|]$$

$$S[I_t(x,y)] = \begin{cases} I_t(x,y), & |I_t(x,y) - B_{t-1}(x,y)| \leq k_1 \cdot D_{t-1}(x,y) \\ B_{t-1}(x,y) \text{ или } D_{t-1}(x,y), & \text{в противном случае} \end{cases}$$

Бинарное изображение:

$$BIN_t(x,y) = \left\{ egin{array}{ll} 0, & |I_t(x,y) - B_t(x,y)| \leq k_2 \cdot D_t(x,y) \\ 1, & ext{в противном случае} \end{array} \right., \qquad k_2 > k_1 \geq 1$$

 D_t

 BIN_{t}

Использование порога фоновой части.

$$B\widetilde{IN}_t(x,y) = \begin{cases} BIN_t(x,y), & |I_t(x,y) - B_t(x,y)| \geq \omega \\ 0, & |I_t(x,y) - B_t(x,y)| < \omega \end{cases}$$
 $|I_t(x,y) - B_t(x,y)| \leq M$ $|I_t(x,y) - B_t(x,y)| \leq M$

Компенсация движений камеры.

Использован метод оценки параметров геометрических преобразование на основе опорных элементов:

- Опорные элементы угловые особые точки, найденные детектором Харриса.
- Оценка смещений опорных элементов осуществлялась с помощью вычисления оптического потока методом Лукаса-Канаде.

Компенсация движений камеры.

Изменение положений опорных элементов при движении камеры

Результат компенсации движений камеры

 B_t BIN_t 6/12

Классификатор на основе случайного леса.

$$f_t: X_t \to \{0,1\}$$

 f_t выбирается так, чтобы обеспечить в каждой подвыборке S_{t_i} максимальное число прецедентов одного класса.

На каждом шаге рекурсивного разбиения выборки используются не все N признаков вектора \mathbf{x}_i , а только их случайное число $M=\sqrt{N}$.

Обучение в режиме реального времени.

При обучении в режиме реального времени последовательно поступающие данные моделируются при помощи распределения Пуассона.

Вероятность ошибочной классификации.

OOB — метод оценки вероятности ошибочной классификации, основанный на классификации некоторого вектора $\mathbf{x} \in D$, используя только те деревья случайного леса, которые строились по выборкам, не содержащим \mathbf{x} .

Зависимость вероятности ошибочной классификации от числа деревьев в ансамбле при обучении на однородных примерах

Зависимость производительности алгоритма классификации от числа деревьев в ансамбле

Результаты обучения классификатора.

Рост вероятности ошибочной классификации при изменении обстановки окружающей сцены, вызванной изменением освещенности

Изменение вероятности ошибочной классификации при длительном периоде работы классификатора

Результаты использования детектора, выводы.

Разработанный метод долгосрочного слежения показал устойчивость к изменениям окружающей обстановки сцены, перекрытию объекта слежения другими объектами и исчезновению отслеживаемого объекта из области наблюдения. Данные результаты обусловлены интеграцией детектора, основанного на самообучающемся классификаторе, в алгоритм обнаружения и слежения.

Разработанный метод показал более высокую точность определения координат отслеживаемого объекта по сравнению с классическими методами обнаружения и слежения.

Спасибо за внимание!