Ecrit du jeudi 28 octobre 2021

Durée : 1h30 – Sans document, avec calculatrice de type collège

L'épreuvre comporte deux exercices.

EXERCICE 1: COMPENSATION D'UNE INSTALLATION TRIPHASEE

On s'intéresse à une installation électrique triphasée 400 V/690 V 50 Hz comportant :

- 3 lampes chauffantes infrarouge 2000 W / 400 V
- un moteur triphasé de puissance mécanique nominale $P_{m\acute{e}ca}=18~kW$, facteur de puissance $\cos\varphi=0.6$ et rendement $\eta=90~\%$,
- 1 charge composée de 3 impédances \underline{Z} montées en triangle, avec $\underline{Z} = 40 + j.30 \Omega$.
- Q1. 1 Représenter le principe de raccordement des différentes charges.
- Q1. 2 Calculer la puissance active, la puissance réactive, la puissance apparente et le facteur de puissance de l'installation.
- Q1. 3 Calculer l'intensité des courants de ligne.
- Q1. 4 On veut relever le facteur de puissance à une valeur de 0.9 avec une batterie de condensateurs couplés en triangle. Calculer la valeur des capacités à utiliser. Calculer la nouvelle valeur de l'intensité des courants de ligne.

EXERCICE 2: HACHEUR ABAISSEUR-ELEVATEUR DE TENSION (BUCK-BOOST)

Figure 1 : Schéma d'un hacheur abaisseur-élévateur de tension

La Figure 1 donne le schéma de principe d'un hacheur abaisseur-élévateur de tension. Les interrupteurs K1 et K2 constituent une cellule de commutation dont la période de fonctionnement est T. K1 est fermé pendant l'intervalle $[0, \alpha T]$ et ouvert pendant l'intervalle $[\alpha T, T]$. On place en sortie un condensateur de capacité C assez grande pour que les variations temporelles de la tension de sortie v_s puissent être négligeables et considérées comme nulles. Le dispositif est alimenté par une source de tension U. On étudie le fonctionnement du convertisseur en régime permanent.

- Q2. 1 Représenter le schéma électrique pendant l'intervalle $[0, \alpha T]$. Vérifier que les règles d'association source de tension / source de courant sont respectées.
- Q2. 2 Représenter le schéma électrique pendant l'intervalle [αT , T[. Vérifier que les règles d'association source de tension / source de courant sont respectées.
- Q2. 3 Déterminer les valeurs de v_{K1} , v_{K2} et v_L sur les intervalles [0, αT [et [αT , T[.
- Q2. 4 Calculer $\langle v_L \rangle$. En déduire que le rapport de transformation vaut $\frac{v_s}{v_e} = -\frac{\alpha}{1-\alpha}$. Calculer la valeur de ce rapport de transformation pour $\alpha=0.25$; $\alpha=0.5$ et $\alpha=0.75$. Que remarquez-vous ?
- Q2. 5 On suppose que U=20~V. Calculer le rapport cyclique α nécessaire pour obtenir $v_s=-40~V$. Pour cette valeur de α , tracer les chronogrammes des tensions v_{K1} , v_{K2} et v_L .
- Q2. 6 On note i_0 la valeur du courant i_L à t=0. Etablir l'expression du courant i_L sur une période de fonctionnement. Que vaut l'ondulation de courant de i_L ?
- Q2. 7 Pour la valeur de α obtenue à la Q2. 5, tracer les chronogrammes des trois courants i_L , i_e et i_s .
- Q2. 8 On garde la valeur de α obtenue à la Q2. 5. On suppose que la charge est une résistance $R=20\Omega$. Calculer la valeur moyenne des courants $\langle i_s \rangle$, $\langle i_L \rangle$ et $\langle i_e \rangle$. En déduire les puissance d'entrée P_e et de sortie P_s . Sont-elles égales ? Pourquoi ?
- Q2. 9 Tracer le lieu des points de fonctionnement "tension-courant" des interrupteurs K1 et K2. En déduire le type de composant qu'il faut choisir pour chaque interrupteur.