MVSG_CMC: V1.1.0

Updates from V1.0.0

10 July 2018

Ujwal Radhakrishna Prof. Antoniadis Group MIT

List of updates in V1.1.0 from V.1.0.0

The following updates and bug fixes have been made in V1.1.0 from the V1.0.0 release:

- 1. Two op-point additions
- 2. Source and drain terminal swapping correction for Source and drain access regions (SAR and DAR)
- 3. "Type" factor correction in access regions
- 4. Implementation of capacitive sub-circuit based g_m -dispersion models
- 5. OMI and aging parameter list

OP-point additions

Two op-points are added to the op-point list, namely:

1. Threshold voltage variable that accounts for drain-induced barrier lowering (DIBL): V_{tdibli}

$$V_{tdibli} = V_{t0} - \left(\delta_1 - \frac{\delta_2 |V_{DS}|}{\left(1 + (\frac{|V_{DS}|}{DIBSAT})^{\beta}\right)^{1/\beta}}\right) |V_{DS}|$$

2. The second parameter pertains to the drain-to-source saturation voltage V_{dsat1i} which governs the V_{DS} at the onset of drain-current saturation. This is given by:

$$V_{dsat1i} = V_{dsats1}(1 - FF) + 2n\phi_T FF \text{ where } V_{dsats1} = v_{x0} L/\mu_0 [\sqrt{(1 + 2\frac{Q_{inv}}{C_g v_{x0} L/\mu_0}}) - 1]$$

Changes in the code:

```
`OPP(vti, "V", "internal threshold voltage including DIBL")

Lines 604 and 605

OPP(vdsati, "V", "internal drain-source saturation voltage")

vti = vtdibli;

vdsati = vdsat1i;
```

Terminal-voltage swapping in SAR and DAR [bug fix]

The V_{GS} and V_{GD} of SAR and DAR transistor elements are referenced to the lowest terminal voltage. This would be source-voltage (V_S) in forward mode and drain-voltage (V_D) in reverse mode. The referencing is necessary since the implicit-gate-voltage, V_{IG} is computed from surface-states that is referenced to vacuum-level as

$$\left(V_{IG} = V_{TOrs(d)} + \frac{1}{r_{sh} c_{grs(d)} mu_0}\right)$$

From this equation, it is clear that the gate-voltage is not referenced to any-terminal voltage. Therefore the lowest-voltage-reference becomes necessary as it ensures relative terminal-voltage-computation for the access regions. This ensures that the scenarios of raising or lowering external terminal-voltages (V_D, V_G, V_S, V_B) by the same amount will have no impact on the device-currents. The following if-statements check the mode of operation:

Forward- or reverse-mode is checked: $if(type V(src, d) \le type V(src, s))$

V_{GS} assignment in forward-mode: $V_{gsrs} = V_{igs} - V(src, s)$ V_{GS} assignment in reverse-mode: $V_{gsrs} = V_{igs} - V(src, d)$

Changes in the code:

Impact on device characteristics:

The bug-correction ensures I_{DS}-saturation in reverse mode, as can be seen in the figure.

"Type" factor correction [bug-fix]

The parameter "type" is now included in the branch voltage assignment to access regions. The inclusion of the parameter in the computation of V_{DS} , V_{GS} , and V_{GD} of SAR and DAR transistors ensures the support of both N-type (electron-gas) and P-type (hole-gas) GaN HEMTs.

Example code-line in branch voltage assignment: $if(type V(src, d) \le type V(src, s))$

Impact on device characteristics:

The changes give symmetric NFET and PFET behavior with sign-flipped for I_{DS} for V_{GS} and V_{DS} of same magnitudes and opposite signs.

Capacitive-implementation of g_m-dispersion model

The second-order transfer function of drain-current response to an RF-V_{GS} signal that incorporates dispersion (excess phase) effect is based on the sub-circuit shown and is given by:

The two state-variables in the above expression can be expressed as a capacitive-resistive sub-circuit following the approach in [1] and computed as:

$$I_{ds} = I_{dsrf} + s\tau_{gmrf} (I_{dsrf} + s\tau_{gmrf}I_{dsrf}/3)$$

$$V(xt1) = (I_{dsrf} + s\tau_{gmrf}I_{dsrf}/3)$$

$$V(xt2) = I_{dsrf}$$

[1] McAndrew et. al., JSSC, 2009

Changes in the code:

```
idsrf
                      = V(xt2);
if (gmdisp==0) begin
V(xt1)
            <+ 0;
V(xt2)
            <+0;
I(di,si)
                 <+ ids + gmin * V(di.si);
end else begin
           <+ ids - V(xt2) - ddt(taugmrf * V(xt1));
I(xt1)
           <+ V(xt1) - V(xt2) - ddt((taugmrf/3.0) * V(xt2));
I(xt2)
                 <+ idsrf + gmin * V(di,si);</pre>
I(di,si)
                                                                                   Lines 901 to 910
end
```

OMI parameter list

The following parameter list has been provided to include all possible aging effects.

```
// Model paraneters
                      4. 00e-03,
                                 "F/m^2",
                                              "Gate cap/area")
    MPRoz (cg,
                                 "Ohns/Sq",
                                              "2-DEG Sheet Resistance")
   `MPRcz(rsh,
                      150. 0,
   `MPRcz(rcs,
                      800e-6,
                                 "Ohms*m",
                                              "Source contact resistance * Wdth")
   MPRcz(rcd,
                                 "Ohns * m'.
                                              "Drain contact resistance * Wdth")
                      800e-6,
                                 "m/s",
"m^2/Vs",
                      3. 0e5,
                                              "Source injection velocity")
    MPRoz(vx0,
                                              "Low-field mobility")
   MPRoz (mu0,
                      0. 135,
                                 "V",
   `MPRnb(vto,
                                              "Threshold voltage")
                      - 2. 72,
   `MPRoz(ss,
                                 "V/dec",
                                              "Sub-threshold slope")
                      0. 120,
                                 11 11
   `MPRcz(delta1,
                      16e-3.
                                              "DIBL Coefficient 1")
                                 ""'
   `MPRcz(nd,
                                              "Punchthrough factor for subth slope")
                      0. 0.
// Source access region parameters
                      5. 0e-3,
                                 "F/m^2",
                                              "SAR gate-cap/area")
    MPRoz(cgrs,
                                 "m/s",
                                              "SAR source injection velocity")
    MPRoz(vx0rs,
                      100e3,
                                             "SAR low field mobility")
"SAR DIBL Coefficient")
                                 "m^2/Vs",
    MPRoz (mu0rs,
                      100e-3,
    MPRcz(delta1rs,
                      100e-3,
   `MPRoz(srs,
                                 "V/dec",
                                              "SAR Sub-threshold slope")
                      0. 100,
                                              "SAR punchthrough factor for subth slope")
   `MPRcz(ndrs,
                      0. 0,
// Drain access region parameters
                                 "F/m^2",
                                              "DAR gate-cap/area")
    MPRoz(cgrd,
                      4. 3e-3,
                                 "m/s",
                                              "DAR source injection velocity")
   `MPRoz(vx0rd,
                      100e3,
                                 "m^2/Vs",
                                              "DAR low-field´mobility")
   `MPRoz(mu0rd,
                      100e-3,
                                              "DAR DIBL Coefficient")
    MPRcz(del ta1rd,
                      0.35,
                                 "V/dec",
                                              "DAR Sub-threshold slope")
    MPRoz(srd,
                      0. 3,
   `MPRcz(ndrd,
                                              "DAR punchthrough factor for subth slope")
                      3. 8,
// Field-Plate 1 parameters
                                 "V",
    MPRnb(vt of p1,
                                              "FP threshold voltage")
                      - 44. 5,
                                 "F/m^2",
   `MPRoz(cgf p1,
                      2. 0e-4,
                                              "FP gate-cap/area")
                                 "m/s",
   `MPRoz(vx0f p1,
                                              "FP source injection velocity")
                      1. 2e5,
    MPRoz (mu0f p1,
                                 "m^2/Vs",
                      0. 2,
                                              "FP low-field mobility")
                                              "FP DIBL Coefficient")
    MPRcz (del ta1f p1, 0.0,
                                 "V/dec",
                                              "FP Sub-threshold slope")
    MPRoz(sfp1,
                      3. 2,
                                              "FP punchthrough factor for subth slope")
   `MPRcz(ndf p1,
                      0.0,
// Field-Plate 2 parameters
                                 "V"
                                              "FP threshold voltage")
    MPRnb(vt of p2,
                      - 74. 5,
                                 "F/m^2",
   `MPRoz(cgf p2,
                      1. 0e-4,
                                              "FP gate-cap/area")
                                 "m/s",
                                              "FP source injection velocity")
   `MPRoz(vx0f p2,
                      1. 2e5,
```

```
"m^2/Vs",
   `MPRoz(mu0f p2,
                                               "FP low-field mobility")
                      0. 2,
                                               "FP DIBL Coefficient")
   `MPRcz(del ta1f p2, 0. 0,
                                  "V/dec",
   `MPRoz(sfp2,
                      3. 2,
                                               "FP Sub-threshold slope")
   `MPRcz(ndf p2,
                                               "FP punchthrough factor for subth slope")
                      0.0,
// Field-Plate 3 parameters
                                  "V"
                                               "FP threshold voltage")
    MPRnb(vt of p3,
                       - 44. 5,
                                  v,
"F/m^2",
                                               "FP gate-cap/area")
    MPRoz (cgf p3,
                       2. 0e-4,
                                  "m/s",
                                               "FP source injection velocity")
   `MPRoz(vx0f p3,
                      1. 2e5,
                                  "m^2/Vs",
                                               "FP low-field mobility")
   `MPRoz(mu0f p3,
                      0. 2,
                                               "FP DIBL Coefficient")
   `MPRcz(del ta1f p3, 0. 0,
                                  "V/dec",
                                               "FP Sub-threshold slope")
   `MPRoz(sfp3,
                       3. 2,
                                               "FP punchthrough factor for subth slope")
   `MPRcz(ndf p3,
                      0.0,
// Field-Plate 4 parameters
                      - 44. 5,
2. 0e- 4,
                                               "FP threshold voltage")
    MPRnb(vt of p4,
                                  "F/m^2",
                                               "FP gate-cap/area")
    MPRoz (cgf p4,
                                  "m/s",
                                               "FP source injection velocity")
   `MPRoz(vx0f p4,
                      1. 2e5,
                                               "FP low field mobility")
                                  "m^2/Vs",
   `MPRoz(mu0f p4,
                      0. 2,
                                               "FP DIBL Coefficient")
   `MPRcz(del ta1f p4, 0. 0,
                                  "V/dec",
                                               "FP Sub-threshold slope")
   `MPRoz(sfp4,
                      3. 2.
                                               "FP punchthrough factor for subth slope")
   `MPRcz(ndfp4,
                      0.0,
// Gate leakage parameter
                                               "G-S something like 1/eta*Vt")
"G-S reverse leakage current normalized to width")
"G-D something like 1/eta*Vt")
                                  "1/V",
    MPRcz(pg_parans, 1.00,
                                  "Ā́/mˈ,
    MPRcz(ijs,
                       1. 00e-12,
                                  "1<sup>'</sup>/V",
   `MPRcz(pg_paramd, 1.00,
   `MPRcz(ijd,
                                  "À/m",
                                               "G-D reverse leakage current normalized to width")
                      1. 00e- 12,
   `MPRcz(pgsrecs,
                      0. 5.
                                               "G-S something like 1/eta for reverse recombination")
                                  "A/m",
                                               "G-S reverse leakage current normalized to width")
                      1. 0e-18,
   `MPRcz(irecs.
                                               "G-D something like 1/eta for reverse recombination")
   `MPRcz(pgsrecd,
                      0. 8,
   `MPRcz(i recd,
                      2e-5,
                                  "A/m",
                                               "G-D reverse leakage current normalized to width")
// Trapping nodel parameters
                                 for Ron increase
                                  "V",
"s",
    MPRcz(vttrap,
                      230,
                                               "Trapping stress threshold voltage")
                                               "Trap time constant")
"Trap coefficient 1 on bias stress")
    MPRcz(taut,
                       3e-5,
   `MPRcz(al phat 1,
                      1e-4,
                                               "Trap coefficient 2 on bias stress")
   `MPRoz(al phat 2,
// Noise nodel parameters
                                 11 11
    MPRcz(shs,
                                               "G-S shot noise parameter")
                      3. 0,
                                 ""'
                      3. 0,
                                               "G-D shot noise parameter")
    MPRcz(shd,
   MPRcz(kf,
                                               "Flicker noise coefficient")
                      1. 0e-4.
```

Acknowledgements

We would like to thank the feedback form the MVSG_CMC working group. Credits to Rob Jones, and Scott Harris for detecting the implicit-transistor model for S/D swap and type-parameter assignment. Thanks to Slobodan Mijalkovic for pointing out the g_m-dispersion model, Samuel Mertens and Geoffrey Coram for op-point requests and special thanks to Colin Shaw for hosting the feedback meetings and version release.