02 FEB 2005



# 日本 国 特 許 庁 JAPAN PATENT OFFICE

26.08.03

REC'D 10 OCT 2003

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月11日

出 願 番 号 Application Number: 特願2003-291191

[ST. 10/C]:

[JP2003-291191]

出 願 人 Applicant(s):

キヤノン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)



2003年 9月26日

特許庁長官 Commissioner, Japan Patent Office 今井康





【提出日】平成15年 8月11日【あて先】特許庁長官殿【国際特許分類】H05B 33/00

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 鈴木 幸一

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 齊藤 章人

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 山田 直樹

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 川合 達人

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 笠原 麻紀

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【氏名】 妹尾 章弘

【特許出願人】

【識別番号】 000001007

【氏名又は名称】 キヤノン株式会社

【代理人】

【識別番号】 100096828

【弁理士】

【氏名又は名称】 渡辺 敬介【電話番号】 03-3501-2138

【選任した代理人】

【識別番号】 100110870

【弁理士】

 【氏名又は名称】
 山口
 芳広

 【電話番号】
 03-3501-2138

【先の出願に基づく優先権主張】

【出願番号】 特願2002-246600 【出願日】 平成14年 8月27日

【手数料の表示】

【予納台帳番号】 004938 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【包括委任状番号】 0101029



# 【請求項1】

下記一般式 [I] で示されることを特徴とする縮合多環化合物。

#### 【化1】

$$Ar_1$$
 $R_1$ 
 $Ar_2$ 
 $Ar_3$ 
 $Ar_4$ 

(式中、R<sub>1</sub>は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。A<sub>r1</sub>~A<sub>r5</sub>は、置換あるいは無置換の縮合多環芳香族基または置換あるいは無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。)

## 【請求項2】

Ar1~Ar5のうち少なくとも一つが、下記一般式 [III] で示される縮合多環芳香族 基であることを特徴とする請求項1に記載の縮合多環化合物。

## 【化2】

$$R_3$$
  $R_4$  [III]

(式中、R2は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。R3およびR4は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、同じであっても異なっていてもよい。)

#### 【請求項3】

下記構造式で示されることを特徴とする請求項2に記載の縮合多環化合物。

# 【化3】

## 【請求項4】

 $Ar_1 \sim Ar_5$ のうち少なくとも一つが、下記一般式  $[IV] \sim [VII]$  のいずれかで示される縮合多環芳香族基であることを特徴とする請求項1に記載の縮合多環化合物。



[ I V]

$$R_6$$
 [V]



(式中、 $R_5 \sim R_8$ は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。)

## 【請求項5】

下記一般式 [II] で示されることを特徴とする縮合多環化合物。

【化5】

$$Ar_{6}$$

$$Ar_{11}$$

$$Ar_{7}$$

$$Ar_{10}$$

$$Ar_{10}$$

$$Ar_{10}$$

(式中、Ar6~Ar11は、置換あるいは無置換の縮合多環芳香族基または置換あるいは 無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。)

## 【請求項6】

Ar6~Ar11のうち少なくとも一つが、下記一般式 [III] で示される縮合多環芳香族基であることを特徴とする請求項5に記載の縮合多環化合物。

【化6】





(式中、R2は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のア ラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換ア ミノ基、シアノ基またはハロゲン原子を表わす。R3およびR4は、水素原子、置換あるい は無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリ ール基または置換あるいは無置換の複素環基を表わし、同じであっても異なっていてもよ N3°)

## 【請求項7】

下記構造式で示されることを特徴とする請求項6に記載の縮合多環化合物。

# 【化7】

# 【請求項8】

A r 1~A r 5のうち少なくとも一つが、下記一般式 [IV] ~ [VII] のいずれかで示 される縮合多環芳香族基であることを特徴とする請求項5に記載の縮合多環化合物。



[ I V]

[V]

$$R_7$$

[VI]

[VII]

(式中、R5~R8は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換 のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置 換アミノ基、シアノ基またはハロゲン原子を表わす。)

#### 【請求項9】

陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化 合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少な くとも一層が請求項1~4に記載のいずれかの縮合多環化合物の少なくとも一種を含有す ることを特徴とする有機発光素子。

#### 【請求項10】

陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化 合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少な くとも一層が請求項5~8に記載のいずれかの縮合多環化合物の少なくとも一種を含有す ることを特徴とする有機発光素子。

#### 【請求項11】

前記有機化合物を含む層のうち少なくとも電子輸送層または発光層が、前記縮合多環化合 物の少なくとも一種を含有することを特徴とする請求項9または10に記載の有機発光素 子。

### 【請求項12】

前記有機化合物を含む層のうち少なくとも発光層が、前記縮合多環化合物の少なくとも一 種と、下記一般式 [VIII] で示されるフルオレン化合物を含有することを特徴とする 請求項9または10に記載の有機発光素子。

(式中、R9およびR10は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR9同士、R10同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR9およびR10は、同じであっても異なっていてもよい。R11およびR12は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR11同士、R12同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR11およびR12は、同じであっても異なっていてもよい。Ar12、Ar13、Ar14およびAr15は、置換あるいは無置換の結合多環芳香族基または置換あるいは無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。Ar12およびAr13、Ar14およびAr15は、互いに結合し環を形成してもよい。nは、1乃至10の整数を表す。)

#### 【請求項13】

前記有機化合物を含む層のうち少なくとも発光層が、前記縮合多環化合物の少なくとも一種と、下記一般式 [IX] で示されるフルオレン化合物を含有することを特徴とする請求項9または10に記載の有機発光素子。

# 【化10】

$$Ar_{18}$$
  $N-Ar_{16}$   $R_{13}$   $R_{14}$   $Ar_{17}-N$   $Ar_{20}$   $Ar_{21}$   $R_{15}$   $R_{16}$   $R_{16}$ 

(式中、R13およびR14は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR13同士、R14同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR13およびR14は、同じであっても異なっていてもよい。R15およびR16は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアリール基、置換あるいは無置換のアルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR15およびR16は、同じであっても異なっていてもよく、同じフルオレン基に結合するR15およびR16は、同じであっても異なっていてもよい。Ar16およびAr17は、2価の置換あるいは無置換の芳香族基または置換あるいは無置換の複素環基を表し、同じであっても異なっていてもよい。G1にであっても異なっていてもよい。G1にであっても異なっていてもよい。Ar18、Ar19、Ar20およびAr21は、置換あるいは無置換の結合多環複素環基を表わし、同じであっても異なっていてもよい。M方至10の整数を表す。)

# 【書類名】明細書

【発明の名称】縮合多環化合物及びそれを用いた有機発光素子

## 【技術分野】

## [0001]

本発明は、新規な有機化合物およびそれを用いた有機発光素子に関する。

# 【背景技術】

## [0002]

有機発光素子は、陽極と陰極間に蛍光性有機化合物または燐光性有機化合物を含む薄膜 を挟持させて、各電極から電子およびホール(正孔)を注入することにより、蛍光性化合 物または燐光性化合物の励起子を生成させ、この励起子が基底状態にもどる際に放射され る光を利用する素子である。

## [0003]

1987年コダック社の研究(非特許文献1)では、陽極にITO、陰極にマグネシウ ム銀の合金をそれぞれ用い、電子輸送材料および発光材料としてアルミニウムキノリノー ル錯体を用い、ホール輸送材料にトリフェニルアミン誘導体を用いた機能分離型2層構成 の素子で、10V程度の印加電圧において1000cd/m²程度の発光が報告されてい る。関連の特許としては、特許文献1~3等が挙げられる。

### [0004]

また、蛍光性有機化合物の種類を変えることにより、紫外から赤外までの発光が可能で あり、最近では様々な化合物の研究が活発に行われている。例えば、特許文献4~11等 に記載されている。

# [0005]

近年、燐光性化合物を発光材料として用い、三重項状態のエネルギーをEL発光に用い る検討が多くなされている。プリンストン大学のグループにより、イリジウム錯体を発光 材料として用いた有機発光素子が、高い発光効率を示すことが報告されている(非特許文 献 2 )。

#### [0006]

さらに、上記のような低分子材料を用いた有機発光素子の他にも、共役系高分子を用い た有機発光素子が、ケンブリッジ大学のグループ(非特許文献3)により報告されている 。この報告ではポリフェニレンビニレン(PPV)を塗工系で成膜することにより、単層 で発光を確認している。

#### [0007]

共役系高分子を用いた有機発光素子の関連特許としては、特許文献12~16等が挙げ られる。

# [0008]

このように有機発光素子における最近の進歩は著しく、その特徴は低印加電圧で高輝度 、発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることから、 広汎な用途への可能性を示唆している。

## [0009]

しかしながら、現状では更なる高輝度の光出力あるいは高変換効率が必要である。また 、長時間の使用による経時変化や酸素を含む雰囲気気体や湿気などによる劣化等の耐久性 の面で未だ多くの問題がある。さらにはフルカラーディスプレイ等への応用を考えた場合 の色純度の良い青、緑、赤の発光が必要となるが、これらの問題に関してもまだ十分でな 6.1

### [0010]

電子輸送層や発光層などに用いる蛍光性有機化合物として、芳香族化合物や縮合多環芳 香族化合物が数多く研究されている。例えば、特許文献17~25などが挙げられるが、 発光輝度や耐久性が十分に満足できるものは得られていない。

## [0011]

【特許文献1】米国特許4,539,507号明細書

【特許文献2】米国特許4,720,432号明細書

【特許文献3】米国特許4,885,211号明細書

【特許文献4】米国特許5,151,629号明細書

【特許文献 5】米国特許 5, 4 0 9, 7 8 3 号明細書

【特許文献6】米国特許5,382,477号明細書

【特許文献7】特開平2-247278号公報

【特許文献8】特開平3-255190号公報

【特許文献9】特開平5-202356号公報

【特許文献10】特開平9-202878号公報

【特許文献11】特開平9-227576号公報

【特許文献12】米国特許5,247,190号明細書

【特許文献13】米国特許5,514,878号明細書

【特許文献14】米国特許5,672,678号明細書

【特許文献15】特開平4-145192号公報

【特許文献16】特開平5-247460号公報

【特許文献17】特開平4-68076号公報

【特許文献18】特開平5-32966号公報

【特許文献19】特開平6-228552号公報

【特許文献20】特開平6-240244号公報

【特許文献21】特開平7-109454号公報

【特許文献22】特開平8-311442号公報

【特許文献23】特開平9-241629号公報

【特許文献24】特開2000-26334号公報

【特許文献25】特開2000-268964号公報

【非特許文献1】Appl. Phys. Lett. 51, 913 (1987)

【非特許文献2】 Nature, 395, 151 (1998)

【非特許文献3】Nature, 347, 539 (1990)

#### 【発明の開示】

## 【発明が解決しようとする課題】

#### [0012]

本発明の目的は、新規な縮合多環化合物を提供することにある。

#### [0013]

また本発明の目的は、特定な縮合多環化合物を用い、極めて高効率で高輝度な光出力を 有する有機発光素子を提供することにある。

#### [0014]

また、極めて耐久性のある有機発光素子を提供することにある。

#### [0015]

さらには製造が容易でかつ比較的安価に作成可能な有機発光素子を提供する事にある。

#### 【課題を解決するための手段】

## [0016]

即ち、本発明の縮合多環化合物は、下記一般式 [I] または [II] で示されることを特徴とする。

#### [0017]

#### 【化1】

$$Ar_1$$
 $R_1$ 
 $Ar_2$ 
 $Ar_3$ 
 $Ar_4$ 

出証特2003-3079340

[0018]

(式中、R1は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。Ar1~Ar5は、置換あるいは無置換の縮合多環芳香族基または置換あるいは無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。)

[0019]



(式中、Ar6~Ar11は、置換あるいは無置換の縮合多環芳香族基または置換あるいは 無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。)

# [0021]

また、本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層が上記縮合多環化合物の少なくとも一種を含有することを特徴とする。

# 【発明の効果】

[0022]

一般式 [I] または一般式 [II] で示される縮合多環化合物を用いた有機発光素子は、低い印加電圧で高輝度な発光が得られ、耐久性にも優れている。特に本発明の縮合多環化合物を含有する有機層は、電子輸送層として優れ、かつ発光層としても優れている。

[0023]

さらに、素子の作成も真空蒸着あるいはキャステイング法等を用いて作成可能であり、 比較的安価で大面積の素子を容易に作成できる。

【発明を実施するための最良の形態】

[0024]

以下、本発明を詳細に説明する。

[0025]

まず、本発明の縮合多環化合物について説明する。

[0026]

本発明の縮合多環化合物は、上記一般式[I]または[II]で示される。

[0027]

ここで、Ar1~Ar5のうち少なくとも一つまたはAr6~Ar11のうち少なくとも一つが、下記一般式 [III] で示される縮合多環芳香族基であることが好ましい。

【0028】 【化3】



[0029]

(式中、R2は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のア ラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換ア ミノ基、シアノ基またはハロゲン原子を表わす。R3およびR4は、水素原子、置換あるい

出証特2003-3079340



は無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリ ール基または置換あるいは無置換の複素環基を表わし、同じであっても異なっていてもよ (°,4

[0030]

更には、下記いずれかの構造式で示されることがより好ましい。

[0031]

【化4】

[0032] 【化5】

[0033]

また、Ar1~Ar5のうち少なくとも一つまたはAr6~Ar11のうち少なくとも一つ が、下記一般式  $[IV] \sim [VII]$  のいずれかで示される縮合多環芳香族基であること が好ましい。

[0034]



[IV]

$$R_6$$

[V]

$$R_7$$

[VI]



[VII]

[0035]

(式中、R<sub>5</sub>~R<sub>8</sub>は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。)

[0036]

上記一般式 [I] ~ [VII] における置換基の具体例を以下に示す。

[0037]

アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、ter-ブチル基、オクチル基などが挙げられる。

[0038]

アラルキル基としては、ベンジル基、フェネチル基などが挙げられる。

[0039]

アリール基としては、フェニル基、ビフェニル基、ターフェニル基などが挙げられる。

[0040]

複素環基としては、チエニル基、ピロリル基、ピリジル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、ターチエニル基などが挙げられる。

[0041]

置換アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、 ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基などが挙げられる。

[0042]

ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素などが挙げられる。

[0043]



縮合多環芳香族基としては、フルオレニル基、ナフチル基、フルオランテニル基、アン スリル基、フェナンスリル基、ピレニル基、テトラセニル基、ペンタセニル基などが挙げ られる。

# [0044]

縮合多環複素環基としては、キノリル基、ジアザフルオレニル基、アクリジニル基、フ ェナントロリニル基などが挙げられる。

# [0045]

上記置換基が有してもよい置換基としては、メチル基、エチル基、プロピル基などのア ルキル基、ベンジル基、フェネチル基などのアラルキル基、フェニル基、ビフェニル基な どのアリール基、チエニル基、ピロリル基、ピリジル基などの複素環基、ジメチルアミノ 基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、 ジアニソリルアミノ基などのアミノ基、メトキシル基、エトキシル基、プロポキシル基、 フェノキシル基などのアルコキシル基、シアノ基、フッ素、塩素、臭素、ヨウ素などのハ ロゲン原子などが挙げられる。

# [0046]

次に、本発明の縮合多環化合物の代表例を以下に挙げるが、本発明はこれらに限定され るものではない。

【化7】

$$Ar_{1}$$

$$Ar_{2}$$

$$Ar_{3}$$

$$Ar_{4}$$

$$\begin{bmatrix} 0 & 0 & 4 & 8 \end{bmatrix}$$

【化8】

[0049]



# 【化12】

## [0053]

本発明の縮合多環化合物は、一般的に知られている方法で合成でき、例えば、パラジウム触媒を用いたsuzuki coupling法(例えばChem. Rev. 1995,95,2457-2483)、ニッケル触媒を用いたYamamoto法(例えばBull. Chem. Soc. Jpn. 51,2091,1978)、アリールスズ化合物を用いて合成する方法(例えばJ. Org. Chem.,52,4296,1987)などの合成法で得ることができる。

#### [0054]

本発明の縮合多環化合物は、従来の化合物に比べ電子輸送性、発光性および耐久性の優れた化合物であり、有機発光素子の有機化合物を含む層、特に、電子輸送層および発光層として有用であり、また真空蒸着法や溶液塗布法などによって形成した層は結晶化などが起こりにくく経時安定性に優れている。

#### [0055]

次に、本発明の有機発光素子について詳細に説明する。

#### [0056]



#### [0057]

本発明の有機発光素子は、有機化合物を含む層のうち少なくとも電子輸送層または発光層が、前記縮合多環化合物の少なくとも一種を含有することが好ましい。

## [0058]

本発明の有機発光素子においては、上記一般式 [I] または一般式 [II] で示される縮合多環化合物を真空蒸着法や溶液塗布法により陽極及び陰極の間に形成する。その有機層の厚みは $10\mu$ mより薄く、好ましくは $0.5\mu$ m以下、より好ましくは $0.01\sim0$ .  $5\mu$ mの厚みに薄膜化することが好ましい。

## [0059]

また、本発明の有機発光素子は、前記有機化合物を含む層のうち少なくとも発光層が、前記縮合多環化合物の少なくとも一種と、下記一般式 [VIII] または [IX] で示されるフルオレン化合物を含有することを好ましい態様として含むものである。

# 【0060】 【化13】

## [0061]

(式中、 $R_9$ および $R_{10}$ は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合する $R_9$ 同士、 $R_{10}$ 同士は、同じであっても異なっていてもよく、同じフルオレン基に結合する $R_9$ および $R_{10}$ は、同じであっても異なっていてもよい。 $R_{11}$ および $R_{12}$ は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合する $R_{11}$ および $R_{12}$ 同士は、同じであっても異なっていてもよく、同じフルオレン基に結合する $R_{11}$ および $R_{12}$ は、同じであっても異なっていてもよい。 $A_{12}$ 、 $A_{13}$ 、 $A_{14}$ および $A_{15}$ は、置換あるいは無置換の若素環基、置換あるいは無置換の縮合多環芳香族基または置換あるいは無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。 $A_{12}$ および $A_{13}$ 、 $A_{14}$ および $A_{15}$ は、互いに結合し環を形成してもよい。 $R_{14}$ 10の整数を表す。)

# 【0062】 【化14】

$$Ar_{18}$$
  $N-Ar_{16}$   $R_{13}$   $R_{14}$   $Ar_{17}-N$   $Ar_{20}$   $Ar_{21}$   $R_{15}$   $R_{16}$   $R_{16}$ 

#### [0063]

(式中、R<sub>13</sub>およびR<sub>14</sub>は、水素原子、置換あるいは無置換のアルキル基、置換あるいは



[0064]

一般式 [VIII]、 [IX] における置換基の具体例は、上記一般式 [I] ~ [VII] における場合と同様である。以下に、一般式 [VIII] または [IX] で示されるフルオレン化合物の代表例を挙げるが、本発明はこれらに限定されるものではない。

【0065】 【化15】

$$Ar_{12}$$
 $Ar_{13}$ 
 $R_{11}$ 
 $R_{12}$ 
 $R_{12}$ 
 $R_{12}$ 
 $R_{12}$ 

[VIII]

[0066]

FL-6 
$$H_3C$$
  $H_3C$   $CH_3$   $CH_3$   $CH_3$   $CH_3$ 

【0068】 【化18】

$$Ar_{18}$$
  $N-Ar_{16}$   $R_{13}$   $R_{14}$   $Ar_{17}-N$   $Ar_{21}$   $R_{15}$   $R_{16}$   $R_{16}$ 

[0069]

FL-11 
$$H_3C$$
  $CH_3$   $CH_3$   $CH_3$ 

FL-12 
$$H_3C$$
  $F$   $F$   $H_3C$   $CH_3$   $F$   $F$   $CH_3$   $F$   $F$   $F$   $CH_3$ 

FL-13 
$$H_2C, CH_2$$

FL-14 
$$NC$$
 $CH_3$ 
 $H_3C$ 
 $CN$ 

[0070]

$$H_3C$$
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

#### [0071]

図1~図6に本発明の有機発光素子の好ましい例を示す。

#### [0072]

図1は、本発明の有機発光素子の一例を示す断面図である。図1は、基板1上に、陽極2、発光層3及び陰極4を順次設けた構成のものである。ここで使用する発光素子は、それ自体でホール輸送能、エレクトロン輸送能及び発光性の性能を単一で有している場合や、それぞれの特性を有する化合物を混ぜて使う場合に有用である。

#### [0073]

図2は、本発明の有機発光素子における他の例を示す断面図である。図2は、基板1上に、陽極2、ホール輸送層5、電子輸送層6及び陰極4を順次設けた構成のものである。この場合は、発光物質はホール輸送性かあるいは電子輸送性のいずれか、あるいは両方の機能を有している材料をそれぞれの層に用い、発光性の無い単なるホール輸送物質あるいは電子輸送物質と組み合わせて用いる場合に有用である。また、この場合、発光層3は、ホール輸送層5あるいは電子輸送層6のいずれかから成る。

# [0074]



# [0075]

図4は、本発明の有機発光素子における他の例を示す断面図である。図4は、図3に対して、ホール注入層7を陽極2側に挿入した構成であり、陽極2とホール輸送層5の密着性改善あるいはホールの注入性改善に効果があり、低電圧化に効果的である。

## [0076]

図5および図6は、本発明の有機発光素子における他の例を示す断面図である。図5および図6は、図3および図4に対してホールあるいは励起子(エキシトン)を陰極4側に抜けることを阻害する層(ホールブロッキング層8)を、発光層3、電子輸送層6間に挿入した構成である。イオン化ポテンシャルの非常に高い化合物をホールブロッキング層8として用いる事により、発光効率の向上に効果的な構成である。

#### [0077]

ただし、図1~図6はあくまで、ごく基本的な素子構成であり、本発明の化合物を用いた有機発光素子の構成はこれらに限定されるものではない。例えば、電極と有機層界面に 絶縁性層を設ける、接着層あるいは干渉層を設ける、ホール輸送層がイオン化ポテンシャ ルの異なる2層から構成される、など多様な層構成をとることができる。

# [0078]

本発明に用いられる一般式 [I] または一般式 [II] で示される縮合多環化合物は、従来の化合物に比べ電子輸送性、発光性および耐久性の優れた化合物であり、図1~図6のいずれの形態でも使用することができる。

#### [0079]

本発明は、電子輸送層または発光層の構成成分として一般式 [I] または一般式 [II] で示される縮合多環化合物を用いるものであるが、これまで知られているホール輸送性化合物、発光性化合物あるいは電子輸送性化合物などを必要に応じて一緒に使用することもできる。

#### [0080]

以下にこれらの化合物例を挙げる。

#### [0081]

# 【化21】 ホール輸送性化合物

m-MTDATA

H<sub>3</sub>C

DTDPFL



Pc-M M: Cu, Mg, AlCl, TiO, SiCl<sub>2</sub>, Zn, Sn, MnCl, GaCl, etc

$$H_3C$$
 $H_3C$ 
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 

[0082]

【化22】 電子輸送性発光材料



M:Al, Ga



M:A1, Ga



M:Zn , Mg , Be

M: Zn, Mg, Be



M: Zn, Mg, Be



M: Zn, Mg, Be



M: Zn, Mg, Be



M:Al, Ga

[0083]

【化23】 発光材料



【化24】 発光層マトリックス材料および電子輸送材料

[0085]

出証特2003-3079340

【化25】 ポリマー系ホール輸送性材料

$$(CH-CH_2)_{n} - (CH-CH_2)_{n} + (C-CH_2)_{n}$$

$$(CH_3)_{n} + (C-CH_2)_{n}$$

$$(CH_3)_{n$$

## 【化26】

## ポリマー系発光材料および電荷輸送性材料

#### [0087]

本発明の有機発光素子において、一般式 [I] または一般式 [II] で示される縮合多環化合物を含有する層および他の有機化合物を含有する層は、一般には真空蒸着法あるいは、適当な溶媒に溶解させて塗布法により薄膜を形成する。特に塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成することもできる。

#### [0088]

上記結着樹脂としては、広範囲な結着性樹脂より選択でき、たとえばポリビニルカルバ ゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチ レン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂 、ジアリルフタレート樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリスル ホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これら は単独または共重合体ポリマーとして1種または2種以上混合してもよい。

#### [0089]

陽極材料としては、仕事関数がなるべく大きなものがよく、例えば、金、白金、ニッケル、パラジウム、コバルト、セレン、バナジウム等の金属単体あるいはこれらの合金、酸化錫、酸化亜鉛、酸化錫インジウム(ITO),酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は単独で用いてもよく、複数併用することもできる。

### [0090]

一方、陰極材料としては、仕事関数の小さなものがよく、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金として用いることができる。酸化錫インジウム(ITO)等



## [0091]

本発明で用いる基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜などを用いて発色光をコントロールする事も可能である。

## [0092]

なお、作成した素子に対して、酸素や水分等との接触を防止する目的で保護層あるいは 封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒 化物等の無機材料膜、フッ素樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、 ポリスチレン樹脂等の高分子膜、さらには、光硬化性樹脂等が挙げられる。また、ガラス 、気体不透過性フィルム、金属などをカバーし、適当な封止樹脂により素子自体をパッケ ージングすることもできる。

## 【実施例】

## [0093]

以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。

#### [0094]

<合成例1> [例示化合物No.1およびNo.11の合成]

[0095]

【化27】

#### [0096]

500m1三ツロフラスコに、ヘキサブロモベンゼン [1] 1. 4g (2. 54mmo 1)、9,9-ジメチルフルオレン-2-ボロン酸 [2] 6. 0g (25. 4mmo 1)、5mmo 1)、5mmo 1、5mmo 2 5mmo 3 5mmo 2 5mmo 3 5mmo 2 5mmo 2 5mmo 3 5mmo 2 5mmo 3 5mmo 3 5mmo 2 5mmo 3 5mmo 2 5mmo 3 5mmo 2 5mmo 3 5mmo 3 5mmo 2 5mmo 3 5mmo 4 5mmo 3 5mmo 3 5mmo 3 5mmo 4 5mmo 3 5mmo 4 5mmo 3 5mmo 3 5mmo 4 5mmo 3 5mmo 3 5mmo 3 5mmo 4 5mmo 3 5mmo 4 5mmo 3 5mmo 4 5mmo 5 5mmo 6 5mmo 6 5mmo 6 5mmo 8 5mmo 9 5mmo 9

[0097]

<合成例2> [例示化合物No. 2の合成]

【0098】 【化28】

No.2

## [0099]

## [0100]

<実施例1>

図2に示す構造の素子を作成した。

#### [0101]

基板1としてのガラス基板上に、陽極2としての酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜したものを透明導電性支持基板として用いた。これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後、乾燥した。さらに、UV/オゾン洗浄したものを透明導電性支持基板として使用した。

#### [0102]

透明導電性支持基板上に下記構造式で示される化合物のクロロホルム溶液をスピンコート法により30nmの膜厚で成膜しホール輸送層5を形成した。

# 【0103】 【化29】

#### [0104]

さらに例示化合物No. 11で示される縮合多環化合物を真空蒸着法により50nmの 膜厚で成膜し、電子輸送層6を形成した。蒸着時の真空度は1.0×10<sup>-4</sup> Pa、成膜速



[0105]

次に、陰極4として、アルミニウムとリチウム(リチウム濃度1原子%)からなる蒸着材料を用いて、上記有機層の上に真空蒸着法により厚さ50nmの金属層膜を形成し、さらに真空蒸着法により厚さ150nm0アルミニウム層を形成した。蒸着時の真空度は $1.0\times10^{-4}$  Pa、成膜速度は $1.0\sim1.2nm$ /secの条件で成膜した。

[0106]

さらに、窒素雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で封止した。 【0107】

この様にして得られた素子に、ITO電極(陽極 2)を正極、Al-Li 電極(陰極 4)を負極にして、10Vの直流電圧を印加すると  $12.0mA/cm^2$ の電流密度で電流が素子に流れ、 $2800cd/m^2$ の輝度で青色の発光が観測された。

[0108]

さらに、電流密度を $10.0 \, \text{mA/c} \, \text{m}^2$ に保ち $100 \, \text{時間電圧を印加したところ、初期輝度} 2200 \, \text{cd/m}^2$ から $100 \, \text{時間後} 2000 \, \text{cd/m}^2$ と輝度劣化は小さかった。

[0109]

<実施例2~10>

例示化合物No. 11に代えて、表1に示す例示化合物を用いた他は実施例1と同様に素子を作成し、同様な評価を行った。結果を表1に示す。

[0110]

< 比較例1~5>

例示化合物 No. 11 に代えて、下記構造式で示される化合物を用いた他は実施例 1 と同様に素子を作成し、同様な評価を行った。結果を表 1 に示す。

[0111]

【化30】 比較化合物No. 1

$$H_3C$$
 $CH_3$ 
 $H_3C$ 
 $CH_3$ 
 $CH_3$ 

[0112]

【化31】

比較化合物No. 3

比較化合物No. 4

比較化合物No. 5

[0113]

Ar:

# 【表1】

| 例 No. | 例示化合物 | 初期   |            | 耐久       |                      |               |
|-------|-------|------|------------|----------|----------------------|---------------|
|       | No.   | 印加電圧 | 輝度         | 電流密度     | 初期輝度                 | 100 時間後<br>輝度 |
|       |       | (V)  | $(cd/m^2)$ | (mA/cm²) | (cd/m <sup>2</sup> ) | $(cd/m^2)$    |
| 実施例 1 | 11    | 10   | 2800       | 10.0     | 2200                 | 2000          |
| 2     | 1     | 10   | 2600       | 10.0     | 1900                 | 1600          |
| 3     | 3     | 10   | 3000       | 10.0     | 2400                 | 2000          |
| 4     | 6     | 10   | 1900       | 10.0     | 1400                 | 1100          |
| 5     | 8     | 10   | ,1800      | 10.0     | 1500                 | 1300          |
| 6     | 9     | 10   | 2000       | 10.0     | 1500                 | 1200          |
| 7     | 12    | 10   | 2400       | 10.0     | 1900                 | 1500          |
| 8     | 14    | 10   | 950        | 10.0     | 800                  | 700           |
| 9     | 17    | 10   | 1700       | 10.0     | 1400                 | 1300          |
| 10    | 21    | 10   | 2200       | 10.0     | 1900                 | 1500          |
| 比較例 1 | 比較1   | 10   | 150        | 10.0     | 140                  | 発光せず          |
| 2     | 比較 2  | 10   | 170        | 10.0     | 150                  | 発光せず          |
| 3     | 比較 3  | 10   | 300        | 10.0     | 250                  | 30            |
| 4     | 比較 4  | 10   | 250        | 10.0     | 240                  | 90            |
| 5     | 比較 5  | 10   | 450        | 10.0     | 420                  | 150           |

#### [0114]

<実施例11>

図3に示す構造の素子を作成した。

[0115]

実施例1と同様に、透明導電性支持基板上にホール輸送層5を形成した。

#### [0116]

さらに例示化合物 No. 1 で示される縮合多環化合物を真空蒸着法により 20 n m の 膜厚で成膜し、発光層 3 を形成した。蒸着時の真空度は 1 .  $0 \times 10^{-4}$  Pa、成膜速度は 0 .  $2 \sim 0$  . 3 n m / s e c の条件で成膜した。

## [0117]

さらにアルミニウムトリスキノリノールを真空蒸着法により 40 n m の膜厚で成膜し、電子輸送層 6 を形成した。蒸着時の真空度は  $1.0\times10^{-4}$  P a、成膜速度は  $0.2\sim0$  . 3 n m / s e c の条件で成膜した。

#### [0118]

次に、実施例1と同様にして陰極4を形成した後に封止した。

#### [0119]

この様にして得られた素子に、ITO電極(陽極 2)を正極、Al-Li 電極(陰極 4)を負極にして、8Vの直流電圧を印加すると  $14.0mA/cm^2$ の電流密度で電流が素子に流れ、 $5800cd/m^2$ の輝度で青色の発光が観測された。

#### [0120]

さらに、電流密度を $10.0 \, \text{mA/c} \, \text{m}^2$ に保ち $100 \, \text{時間電圧を印加したところ、初期輝度} 4500 \, \text{cd/m}^2$ から $100 \, \text{時間後} 4200 \, \text{cd/m}^2$ と輝度劣化は小さかった。

# [0121]

<実施例12~20>

例示化合物No. 1に代えて、表 2に示す例示化合物を用いた他は実施例 1 1と同様に素子を作成し、同様な評価を行った。結果を表 2に示す。

#### [0122]

<比較例6~10>

例示化合物 No. 1に代えて、比較化合物 No. 1~5を用いた他は実施例 11と同様に素子を作成し、同様な評価を行った。結果を表 2に示す。

[0123]

## 【表2】

| 例 No.  | 例示化合物 | 初期   |         | 耐久       |                      |                      |  |
|--------|-------|------|---------|----------|----------------------|----------------------|--|
|        | No.   | 印加電圧 | 輝度      | 電流密度     | 初期輝度                 | 100 時間後<br>輝度        |  |
|        | _     | (γ)  | (cd/m²) | (mA/cm²) | (cd/m <sup>2</sup> ) | (cd/m <sup>2</sup> ) |  |
| 実施例 11 | 1     | 8    | 5800    | 10.0     | 4500                 | 4200                 |  |
| 12     | 2     | 8    | 5300    | 10.0     | 4200                 | 4000                 |  |
| 13     | 4     | 8    | 2900    | 10.0     | 2200                 | 2000                 |  |
| 14     | 7     | 8    | 4200    | 10.0     | 3400                 | 3200                 |  |
| 15     | 10    | 8    | 3000    | 10.0     | 2400                 | 2000                 |  |
| 16     | 13    | 8    | 3100    | 10. 0    | 2200                 | 2000                 |  |
| 17     | 15    | 8    | 3600    | 10. 0    | 2800                 | 2300                 |  |
| 18     | 18    | 8    | 3700    | 10. 0    | 2700                 | 2500                 |  |
| 19     | 20    | 8    | 2800    | 10. 0    | 2400                 | 2100                 |  |
| 20     | 22    | 8    | 3200    | 10. 0    | 2500                 | 2200                 |  |
| 比較例 6  | 比較1   | 8    | 350     | 10. 0    | 300                  | 発光せず                 |  |
| 7      | 比較 2  | 8    | 400     | 10. 0    | 350                  | 発光せず                 |  |
| . 8    | 比較3   | 8    | 1000    | 10. 0    | 850                  | 100                  |  |
| 9      | 比較 4  | 8    | 750     | 10. 0    | 650                  | 50                   |  |
| 10     | 比較 5  | 8    | 1500    | 10.0     | 1100                 | 350                  |  |

#### [0124]

<実施例21>

図3に示す構造の素子を作成した。

#### [0125]

実施例1と同様な透明導電性支持基板上に、下記構造式で示される化合物のクロロホルム溶液をスピンコート法により20nmの膜厚で成膜し、ホール輸送層5を形成した。

# [0126]

#### [0127]

さらに例示化合物No. 11で示される縮合多環化合物および例示化合物No. FL-6で示されるフルオレン化合物(重量比100:1)を真空蒸着法により20nmの膜厚で成膜し、発光層3を形成した。蒸着時の真空度は $1.0\times10^{-4}$  Pa、成膜速度は $0.2\sim0.3$  nm/s e c の条件で成膜した。

### [0128]

さらにアルミニウムトリスキノリノールを真空蒸着法により40nmの膜厚で成膜し、電子輸送層6を形成した。蒸着時の真空度は $1.0\times10^{-4}$  Pa、成膜速度は $0.2\sim0$ 

. 3 n m / s e c の条件で成膜した。

[0129]

次に、実施例1と同様にして陰極4を形成した後に封止した。

[0130]

この様にして得られた素子に、ITO電極(陽極 2)を正極、Al-Li 電極(陰極 4)を負極にして、8Vの直流電圧を印加すると  $13.0mA/cm^2$ の電流密度で電流が素子に流れ、 $13000cd/m^2$ の輝度で青色の発光が観測された。

[0131]

[0132]

<実施例22~40>

例示フルオレン化合物 N o. F L - 6 に代えて、表 3 に示す例示フルオレン化合物を用いた他は実施例 2 1 と同様に素子を作成し、同様な評価を行った。結果を表 3 に示す。

[0133]

<比較例11~15>

例示化合物 No. 11に代えて、比較化合物 No. 1~5を用いた他は実施例 21と同様に素子を作成し、同様な評価を行った。結果を表 3に示す。

[0134]



| [改5]   |       |                 |      |            |            |            |               |
|--------|-------|-----------------|------|------------|------------|------------|---------------|
| 例 No.  | 例示化合物 | 例示7/dt/ン<br>化合物 | 初期   |            | 耐久         |            |               |
|        | No.   | No.             | 印加電圧 | 輝度         | 電流密度       | 初期輝度       | 100 時間後<br>輝度 |
|        |       |                 | (V)  | $(cd/m^2)$ | $(A/cm^2)$ | $(cd/m^2)$ | $(cd/m^2)$    |
| 実施例 21 | 11    | FL-6            | 8    | 13000      | 10.0       | 10000      | 9000          |
| 22     | 11    | FL-1            | 8    | 11000      | 10.0       | 8500       | 8000          |
| 23     | 11    | FL-2            | 8    | 11000      | 10.0       | 8000       | 7000          |
| 24     | 11    | FL-3            | 8    | 8500       | 10.0       | 7500       | 6500          |
| 25     | 11    | FL-4            | 8    | 13000      | 10.0       | 9500       | 7500          |
| 26     | 11    | FL-5            | 8    | 12000      | 10.0       | 9000       | 7000          |
| 27     | 11    | FL-7            | 8    | 7000       | 10.0       | 6000       | 5500          |
| 28     | 11    | FL-8            | 8    | 7500       | 10.0       | 6500       | 6000          |
| - 29   | 11    | FL-9            | 8    | 12000      | 10.0       | 10000      | 9000          |
| 30     | 11    | FL-10           | 8    | 6500       | 10.0       | 6000       | 5500          |
| 31     | 11    | FL-11           | 8    | 15000      | 10.0       | 12000      | 11000         |
| 32     | 11    | FL-12           | 8    | 9000       | 10.0       | 8000       | 6500          |
| 33     | 11    | FL-13           | 8    | 7000       | 10.0       | 6500       | 6000          |
| 34     | 11    | FL-14           | 8    | 8000       | 10.0       | 6500       | 5500          |
| 35     | 11    | FL-15           | 8    | 11000      | 10.0       | 9000       | 8000          |
| 36     | 11    | FL-16           | 8    | 16000      | 10.0       | 13000      | 11000         |
| 37     | 11    | FL-17           | 8    | 13000      | 10.0       | 11000      | 9500          |
| 38     | 11    | FL-18           | 8    | 9500       | 10.0       | 8000       | 6500          |
| 39     | 11    | FL-19           | 8    | 7500       | 10.0       | 6000       | 5000          |
| 40     | 11    | FL-20           | 8    | 6500       | 10.0       | 6000       | 5000          |
| 比較例 11 | 比較1   | FL-6            | 8    | 2500       | 10.0       | 2000       | 300           |
| 12     | 比較 2  | FL-6            | 8    | 2000       | 10.0       | 1500       | 発光せず          |
| 13     | 比較3   | FL-6            | 8    | 3000       | 10.0       | 2500       | 600           |
| 14     | 比較4   | FL-6            | 8    | 2500       | 10.0       | 2000       | 400           |
| 15     | 比較 5  | FL-6            | 8    | 3500       | 10.0       | 3000       | 1000          |

[0135]

<実施例41>

図3に示す構造の素子を作成した。

[0136]

実施例1と同様な透明導電性支持基板上に、下記構造式で示される化合物のクロロホルム溶液をスピンコート法により20nmの膜厚で成膜し、ホール輸送層5を形成した。

[0137]

### [0138]

さらに例示化合物 No. 2 で示される縮合多環化合物および下記構造式で示される化合物 (重量比 100:5) を真空蒸着法により 20 n m の 膜厚で 成膜 し、発光層 3 を 形成 した。蒸着時の 真空度は  $1.0\times10^{-4}$  Pa、成膜速度は  $0.2\sim0.3$  n m/secの条件で 成膜 した。

## [0139]

### 【化34】



### [0140]

さらにバソフェナントロリン(BPhen)を真空蒸着法により40nmの膜厚で成膜し、電子輸送層6を形成した。蒸着時の真空度は $1.0\times10^{-4}$ Pa、成膜速度は $0.2\sim0.3$ nm/secの条件で成膜した。

#### [0141]

次に、実施例1と同様にして陰極4を形成した後に封止した。

#### [0142]

この様にして得られた素子に、ITO電極(陽極 2)を正極、Al-Li電極(陰極 4)を負極にして、8Vの直流電圧を印加すると 9.  $5mA/cm^2$ の電流密度で電流が素子に流れ、 $7000cd/m^2$ の輝度で緑色の発光が観測された。

#### [0143]

さらに、電流密度を 7.  $0 \, \text{mA/c} \, \text{m}^2$  に保ち  $1 \, 0 \, 0$  時間電圧を印加したところ、初期輝度  $5 \, 0 \, 0 \, 0 \, \text{c} \, \text{d/m}^2$  から  $1 \, 0 \, 0$  時間後  $4 \, 5 \, 0 \, 0 \, \text{c} \, \text{d/m}^2$  と輝度劣化は小さかった。

### [0144]

<実施例42~50>

例示化合物No.2に代えて、表4に示す例示化合物を用いた他は実施例41と同様に素子を作成し、同様な評価を行った。結果を表4に示す。

### [0145]

<比較例16~20>

例示化合物No. 2に代えて、比較化合物No. 1~5を用いた他は実施例41と同様に素子を作成し、同様な評価を行った。結果を表4に示す。

### [0146]



| 例 No.  | 例示化合物 | 初期   |         | 耐久       |            |               |
|--------|-------|------|---------|----------|------------|---------------|
|        | No.   | 印加電圧 | 輝度      | 電流密度     | 初期輝度       | 100 時間後<br>輝度 |
|        |       | (A)  | (cd/m²) | (mA/cm²) | $(cd/m^2)$ | (cd/m²)       |
| 実施例 41 | 2     | 8    | 7000    | 7.0      | 5000       | 4500          |
| 42     | 3     | 8    | 6500    | 7.0      | 5000       | 4000          |
| 43     | 5     | 8    | 8000    | 7.0      | 6500       | 6000          |
| 44     | 6     | 8    | 7000    | 7.0      | 6000       | 5000          |
| 45     | 13    | 8    | 6000    | 7.0      | 5000       | 4500          |
| 46     | 15    | 8    | 8500    | 7.0      | 7500       | 6500          |
| 47     | 16    | 8    | 7000    | 7.0      | 6500       | 6000          |
| 48     | 19    | 8    | 4500    | 7.0      | 4000       | 3500          |
| 49     | 20    | 8    | 5000    | 7.0      | 4000       | 3000          |
| 50     | 22    | 8    | 6500    | 7.0      | 5500       | 4500          |
| 比較例 16 | 比較 1  | 8    | 900     | 7.0      | 800        | 100           |
| 17     | 比較 2  | 8    | 650     | 7.0      | 600        | 発光せず          |
| 18     | 比較3   | 8    | 1500    | 7.0      | 1000       | 300           |
| 19     | 比較 4  | 8    | 1000    | 7.0      | 850        | 100           |
| 20     | 比較 5  | 8    | 2000    | 7.0      | 1500       | 550           |

#### [0147]

<実施例51>

図1に示す構造の素子を作成した。

### [0148]

実施例1と同様な透明導電性支持基板上に、例示化合物No.1で示される縮合多環化合物を0.050gおよびポリーNービニルカルバゾール(重量平均分子量=63,000)1.00gをクロロホルム80mlに溶解した溶液をスピンコート法(回転数=200rpm)により120nmの膜厚に成膜し有機層(発光層3)を形成した。

#### [0149]

次に、実施例1と同様にして陰極4を形成した後に封止した。

#### [0150]

この様にして得られた素子に、ITO電極 (陽極 2) を正極、Al-Li電極 (陰極 4) を負極にして、10 Vの直流電圧を印加すると7.7  $mA/cm^2$ の電流密度で電流が素子に流れ、1400  $cd/m^2$ の輝度で青色の発光が観測された。

#### [0151]

さらに、窒素雰囲気下で電流密度を 5.0 m A / c  $m^2$  に保ち 100 時間電圧を印加したところ、初期輝度 950 c d /  $m^2$  から 100 時間後 900 c d /  $m^2$  と輝度劣化は小さかった。

#### [0152]

<実施例52~55>

例示化合物 No. 1に代えて、表 5 に示す例示化合物を用いた他は実施例 5 1 と同様に素子を作成し、同様な評価を行った。結果を表 5 に示す。

#### [0153]

<比較例21~25>

例示化合物 No. 1に代えて、比較化合物 No. 1~5を用いた他は実施例 51と同様に素子を作成し、同様な評価を行った。結果を表 5に示す。

#### [0154]

## 【表5】

| 例 No.  | 例示化合物 | 初期   |            | 耐久       |            |               |
|--------|-------|------|------------|----------|------------|---------------|
|        | No.   | 印加電圧 | 輝度         | 電流密度     | 初期輝度       | 100 時間後<br>輝度 |
|        |       | (A)  | $(cd/m^2)$ | (mA/cm²) | $(cd/m^2)$ | (cd/m²)       |
| 実施例 51 | 1     | 10   | 1400       | 5.0      | 950        | 900           |
| 52     | 2     | 10   | 1200       | 5.0      | 900        | 800           |
| 53     | 11    | 10   | 1500       | 5.0      | 1200       | 1100          |
| 54     | 17    | 10   | 1400       | 5.0      | 1000       | 950           |
| 55     | 19    | 10   | 1300       | 5.0      | 1000       | 850           |
| 比較例 21 | 比較 1  | 10   | 250        | 5.0      | 200        | 発光せず          |
| 22     | 比較 2  | 10   | 150        | 5.0      | 100        | 発光せず          |
| 23     | 上較3   | 10   | 350        | 5.0      | 300        | 発光せず          |
| 24     | 比較 4  | 10   | 300        | 5.0      | 250        | 発光せず          |
| 25     | 比較 5  | 10   | 550        | 5.0      | 450        | 100           |

### 【図面の簡単な説明】

[0155]

- 【図1】本発明における有機発光素子の一例を示す断面図である。
- 【図2】本発明における有機発光素子の他の例を示す断面図である。
- 【図3】本発明における有機発光素子の他の例を示す断面図である。
- 【図4】本発明における有機発光素子の他の例を示す断面図である。
- 【図5】本発明における有機発光素子の他の例を示す断面図である。
- 【図6】本発明における有機発光素子の他の例を示す断面図である。

#### 【符号の説明】

[0156]

- 1 基板
- 2 陽極
- 3 発光層
- 4 陰極
- 5 ホール輸送層
- 6 電子輸送層
- 7 ホール注入層
- 8 ホール/エキシトンプロッキング層





【図2】



【図3】



【図5】







【要約】

【課題】 新規な縮合多環化合物を提供し、この縮合多環化合物を用いて、極めて高効率で、高輝度な光出力を有し、極めて耐久性のある有機発光素子を提供する。

【解決手段】 下記一般式 [ I ] で示される縮合多環化合物。

【化1】

$$Ar_{2}$$
 $Ar_{3}$ 
 $Ar_{4}$ 
 $Ar_{5}$ 
 $Ar_{5}$ 

(式中、R<sub>1</sub>は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。Ar<sub>1</sub>~Ar<sub>5</sub>は、置換あるいは無置換の縮合多環芳香族基または置換あるいは無置換の縮合多環複素環基を表わし、同じであっても異なっていてもよい。)

【選択図】

なし

ページ: 1/E

## 認定・付加情報

特許出願の番号 特願2003-291191

受付番号 50301328515

書類名 特許願

担当官 第四担当上席 0093

作成日 平成15年 8月14日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001007

【住所又は居所】 東京都大田区下丸子3丁目30番2号

【氏名又は名称】 キヤノン株式会社

【代理人】 申請人

【識別番号】 100096828

【住所又は居所】 東京都千代田区有楽町1丁目4番1号 三信ビル

2 2 9 号室

【氏名又は名称】 渡辺 敬介

【選任した代理人】

【識別番号】 100110870

【住所又は居所】 東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】 山口 芳広

# 特願2003-291191

# 出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名 キヤノン株式会社