Metodi Numerici dell'Informatica

Introduzione

Emanuele Rodolà rodola@di.uniroma1.it

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Emilian Postolache e TBD Codice, esercitazioni, supporto tecnico

• Docenti: Prof. Emanuele Rodolà

 Assistenti: Dr. Emilian Postolache e TBD Codice, esercitazioni, supporto tecnico

• Quando: Martedi 17:00–18:30 e Mercoledi 10:00–12:30

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Emilian Postolache e TBD Codice, esercitazioni, supporto tecnico
- Quando: Martedi 17:00-18:30 e Mercoledi 10:00-12:30
- **Dove:**Aula G0, RM 115 (complesso Regina Elena, Edificio G)

- Docenti: Prof. Emanuele Rodolà
- Assistenti: Dr. Emilian Postolache e TBD Codice, esercitazioni, supporto tecnico
- Quando: Martedi 17:00–18:30 e Mercoledi 10:00–12:30
- Dove:
 Aula G0, RM 115 (complesso Regina Elena, Edificio G)
- Ricevimento: Inviare una mail al docente o agli assistenti
- Sito del corso: https://erodola.github.io/NumMeth-s2-2023/ Controllare giornalmente per informazioni e materiale

Disclaimer

This is a new course (just at the second edition).

• All the material is new

Disclaimer

This is a new course (just at the second edition).

- All the material is new
- We will alternate between theoretical and lab classes

Disclaimer

This is a new course (just at the second edition).

- All the material is new
- We will alternate between theoretical and lab classes
- We may change the balance depending on your feedback

Recipe for success

Try to enjoy the course!

Take this as an opportunity to learn in depth.

Ask questions when in doubt.

Who am I?

- Had research positions at U Tokyo, TU Munich, U Lugano and visiting positions at Harvard, Stanford, Ecole polytechnique, Technion among others
- Fellow of ELLIS and the Young Academy of Europe
- Research: geometric and graph learning, ML for audio, applied AI
- Team: ~25 members from physics, engineering, computer science
 GLADIA group of Geometry, Audio, Learning and AI
- If you have ideas, approach us for projects / theses!

nature methods

Protein interaction fingerprinting using deep learning Improved 3D multicolor nanoscopy Cryo-ET-based structure determination Modeling intercellular communication

The Bioconductor project for single-cell analysis

Pre-requisites and reading material

"Numerical Algorithms" by Justin Solomon, CRC Press 2015.

Specific references will be given throughout the course in the form of book chapters and scientific articles.

Pre-requisites and reading material

"Numerical Algorithms" by Justin Solomon, CRC Press 2015.

Specific references will be given throughout the course in the form of book chapters and scientific articles.

Pre-requisites:

- Programming fundamentals. We will use Python
- Welcome (not mandatory): linear algebra, calculus

Midterm self-evaluation (not graded) When: first half of April

Midterm self-evaluation (not graded) When: first half of April

2 Choice between (i) Written exam and (ii) Project When: TBD

Midterm self-evaluation (not graded) When: first half of April

Choice between (i) Written exam and (ii) Project When: TBD

 \odot Optional: oral exam, contributing ± 3 points to the final grade

- Midterm self-evaluation (not graded) When: first half of April
- Choice between (i) Written exam and (ii) Project When: TBD
- **1** Optional: oral exam, contributing ± 3 points to the final grade

In class, be prepared:

- Download/print the slides beforehand
- Take notes: not everything will be on the slides
- Bring your laptop: we'll do live coding sessions

Overall objective

What will you get out of this course? (if you study)

 You will acquire solid fundamental skills for understanding, analyzing, and applying numerical methods and algorithms in diverse application scenarios

Overall objective

What will you get out of this course? (if you study)

- You will acquire solid fundamental skills for understanding, analyzing, and applying numerical methods and algorithms in diverse application scenarios
- You will be able to grasp and elaborate on more advanced topics in several other applied disciplines and scientific areas

Overall objective

What will you get out of this course? (if you study)

- You will acquire solid fundamental skills for understanding, analyzing, and applying numerical methods and algorithms in diverse application scenarios
- You will be able to grasp and elaborate on more advanced topics in several other applied disciplines and scientific areas
- You will get practical development expertise on applied problems

Aerodynamic simulation

3d model

Volumetric mesh