DEVOIR À LA MAISON Nº 8

Problème 1 —

On donne $e \approx 2,72, \, \frac{1}{\sqrt{e}} \approx 0,61, \, \sqrt{2} \approx 1,41 \,\, \mathrm{et} \, \ln(3) \approx 1,10.$

Partie I – Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}

$$\forall x \in \mathbb{R}, \ f(x) = 3xe^{-x^2} - 1$$

- 1. Étudier les variations de f sur \mathbb{R} ainsi que les limites aux bornes du domaine de définition. Donner le tableau de variations de f. Préciser les branches infinies de la courbe représentative \mathcal{C}_f de f ainsi qu'une symétrie de celle-ci.
- 2. Donner l'équation de la tangente à C_f au point d'abscisse 0. Etudier la position de la courbe de C_f par rapport à cette tangente.
- 3. Donner l'allure de la courbe \mathcal{C}_f . On fera également figurer les asymptotes et la tangente des questions précédentes.
- 4. a. Justifier que f admet un développement limité en 0 à tout ordre.
 - b. Donner le développement limité de f en 0 à l'ordre 5.

Partie II – Étude d'une équation différentielle

Soient $n \in \mathbb{N}^*$ et E_n l'équation différentielle $xy' - (n - 2x^2)y = n - 2x^2$. On note H_n l'équation différentielle homogène associée à E_n .

- 1. Résoudre H_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- **2.** En déduire les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 3. Donner toutes les fonctions de classe \mathcal{C}^1 sur \mathbb{R} solutions de E_n sur \mathbb{R} . On distinguera les cas n=1 et $n\geqslant 2$.

Partie III – Étude de deux suites

On suppose désormais dans cette partie que $n \ge 2$. Soit f_n la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \ f_n(x) = 3x^n e^{-x^2} - 1$$

- 1. Quel est le signe de $f_n(0)$ et de $f_n(1)$?
- 2. Étudier les variations de f_n sur \mathbb{R}_+ . Donner la limite de f_n en $+\infty$. En déduire que f_n s'annule exactement deux fois sur \mathbb{R}_+ en deux réels notés u_n et v_n vérifiant $u_n < 1 < v_n$.
- **3.** Quelle est la limite de $(v_n)_{n\geqslant 2}$?
- 4. a. Exprimer $e^{-u_n^2}$ en fonction de u_n^n .
 - **b.** En déduire le signe de $f_{n+1}(u_n)$.
 - c. Déduire de ce qui précède la monotonie de $(u_n)_{n\geqslant 2}$.
 - **d.** Montrer que la suite $(u_n)_{n\geqslant 2}$ est convergente. On note l sa limite.

5. Soit g_n définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \ g_n(x) = \ln(3) + n \ln(x) - x^2$$

- $\mathbf{a.}$ Soit $t \in \mathbb{R}_+^*.$ Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0.$
- $\mathbf{b.}$ On suppose $l \neq 1.$ Trouver une contradiction en utilisant ce qui précède. Conclusion ?
- c. Soit la suite $(w_n)_{n\geqslant 2}$ définie par

$$\forall n \geqslant 2, \ w_n = u_n - 1$$

Trouver en utilisant un développement limité de $g_n(1+w_n)=g_n(u_n)$ un équivalent simple de w_n .