Analysis and Design of Algorithms - Laboratory Programs Summary

Program Overview Table

Here's a brief explanation of each formula:

Selection Sort: Finds minimum element by comparing with current minimum index

Topological Sort: Reduces in-degree and adds vertices with zero in-degree to processing stack

Merge Sort: Classic divide-and-conquer recurrence relation

Quick Sort: Partitioning logic that separates elements around pivot

0/1 Knapsack: Dynamic programming recurrence for optimal substructure

Floyd's Algorithm: Relaxation formula considering all intermediate vertices

Warshall's Algorithm: Transitive closure condition using logical AND

Prim's Algorithm: Greedy selection of minimum weight edge from visited to unvisited vertices

Kruskal's Algorithm: Union-Find condition to avoid cycles in MST Dijkstra's Algorithm: Relaxation condition for shortest path updates

N-Queens: Conflict detection for same row/column and diagonal attacks

Key observations:

Sorting algorithms (Selection, Merge, Quick) work on integer arrays with varying time complexities Graph algorithms (Topological, Floyd's, Warshall's, Prim's, Kruskal's, Dijkstra's) use adjacency/cost matrices Dynamic Programming (Knapsack) optimizes resource allocation problems Backtracking (N-Queens) explores all possible solutions systematically

S.No	Program/Algorithm Name	Time Complexity	Input Type	Output	Main Formula/Condition
1	Selection Sort	O(n²)	Array of	Sorted array +	<pre>if (array[j] <</pre>
			integers	execution time	array[min]) min = j
2	Topological Sort	O(V + E)	Adjacency matrix	Topological sequence	<pre>indegree[v]; if(indegree[v]==0) add to stack</pre>
3	Merge Sort	O(n log n)	Array of integers	Sorted array + execution time	T(n) = 2T(n/2) + O(n)
4	Quick Sort	O(n log n) avg, O(n²) worst	Array of integers	Sorted array + execution time	<pre>partition: while(a[i] <= a[key]) && while(a[j] > a[key])</pre>
5	0/1 Knapsack (DP)	O(nW)	Items with profit & weight + capacity	Selected items + max profit	<pre>dp[i][w] = max(dp[i-1] [w], p[i] + dp[i-1][w- weight[i]])</pre>
6a	Floyd's Algorithm	O(V³)	Weighted adjacency matrix	Shortest distances between all pairs	<pre>dist[i][j] = min(dist[i] [j], dist[i][k] + dist[k] [j])</pre>
6b	Warshall's Algorithm	O(V³)	Adjacency matrix	Path matrix (transitive closure)	<pre>if(path[i][k]==1 && path[k][j]==1) then path[i][j]=1</pre>
7	Prim's Algorithm (MST)	O(V²)	Cost adjacency matrix	Minimum spanning tree + cost	<pre>min_edge = min(cost[i] [j]) where visited[i]!=0 && visited[j]==0</pre>
8	Kruskal's Algorithm (MST)	O(E log E)	Cost adjacency matrix	Minimum spanning tree + cost	<pre>if(find(u) != find(v)) then union(u,v)</pre>
9	Dijkstra's Algorithm	O(V²)	Cost matrix + source vertex	Shortest paths from source	<pre>dist[w] = min(dist[w], dist[u] + cost[u][w])</pre>
10	N-Queens Problem	O(N!)	Number of queens (N)	All possible solutions	<pre>conflict = (a[i]==a[pos]) OR (abs(a[i]-a[pos])==abs(i-pos))</pre>

1. Selection Sort Algorithm

- 1. Find the minimum element in the unsorted portion of the array
- 2. Swap it with the first element of the unsorted portion
- 3. Move the boundary of the unsorted portion one position to the right
- 4. Repeat steps 1-3 until the entire array is sorted
- 5. The algorithm maintains two portions: sorted (left) and unsorted (right)

2. Topological Sort Algorithm

- 1. Calculate the in-degree of all vertices in the directed graph
- 2. Initialize a stack with all vertices having in-degree 0
- 3. Pop a vertex from stack, add it to the topological order
- 4. Reduce in-degree of all adjacent vertices by 1
- 5. If any adjacent vertex's in-degree becomes 0, push it to stack; repeat until stack is empty

3. Merge Sort Algorithm

- 1. Divide the array into two halves recursively until single elements remain
- 2. Conquer by merging the divided subarrays in sorted order
- 3. Compare elements from both subarrays and place smaller element first
- 4. Continue merging until all elements are combined in sorted order
- 5. The algorithm follows divide-and-conquer paradigm with guaranteed O(n log n) performance

4. Quick Sort Algorithm

- 1. Choose a pivot element (usually the first element)
- 2. Partition the array such that elements smaller than pivot are on left, larger on right
- 3. Place the pivot in its correct sorted position
- 4. Recursively apply quick sort to the left and right subarrays
- 5. The algorithm is in-place but performance depends on pivot selection

5. 0/1 Knapsack (Dynamic Programming) Algorithm

- 1. Create a 2D table where dp[i][w] represents maximum profit using first i items with weight limit w
- 2. For each item, decide whether to include it or not based on maximum profit
- 3. If item weight > current capacity, exclude the item
- 4. Otherwise, take maximum of (include item + remaining capacity profit) or (exclude item profit)
- 5. Backtrack through the table to find which items were selected for optimal solution

6a. Floyd's Algorithm (All-Pairs Shortest Path)

- 1. Initialize distance matrix with direct edge weights (infinity for no direct path)
- 2. For each vertex k, consider it as an intermediate vertex
- 3. For each pair of vertices (i,j), check if path through k is shorter
- 4. Update distance[i][j] = min(distance[i][j], distance[i][k] + distance[k][j])
- 5. After considering all vertices as intermediates, matrix contains shortest paths between all pairs

6b. Warshall's Algorithm (Transitive Closure)

- 1. Initialize path matrix same as adjacency matrix
- 2. For each vertex k, consider it as an intermediate vertex
- 3. For each pair of vertices (i,j), check if there's a path from i to j through k
- 4. If path[i][k] = 1 AND path[k][j] = 1, then set path[i][j] = 1
- 5. Final matrix shows reachability between all pairs of vertices

7. Prim's Algorithm (Minimum Spanning Tree)

- 1. Start with any vertex and mark it as visited
- 2. Find the minimum weight edge connecting visited to unvisited vertex
- 3. Add this edge to MST and mark the new vertex as visited
- 4. Repeat step 2-3 until all vertices are included in MST
- 5. The algorithm grows the MST one vertex at a time using greedy approach

8. Kruskal's Algorithm (Minimum Spanning Tree)

- 1. Sort all edges in ascending order of their weights
- 2. Initialize each vertex as a separate set (using Union-Find data structure)
- 3. For each edge in sorted order, check if it connects vertices from different sets
- 4. If yes, add edge to MST and union the two sets
- 5. Continue until MST has (V-1) edges, ensuring no cycles are formed

9. Dijkstra's Algorithm (Single-Source Shortest Path)

- 1. Initialize distance to source as 0 and all other vertices as infinity
- 2. Mark all vertices as unvisited and source as current vertex
- 3. Find unvisited vertex with minimum distance and mark it as visited
- 4. Update distances of all unvisited neighbors if shorter path is found
- 5. Repeat steps 3-4 until all vertices are visited or shortest path to destination is found

10. N-Queens Problem (Backtracking)

- 1. Place queens one by one in different columns starting from leftmost column
- 2. For each queen, check if placement conflicts with previously placed queens
- 3. Check for conflicts in same row, column, and both diagonals
- 4. If conflict exists, backtrack and try next position for current queen
- 5. If all queens are placed successfully, record the solution; continue to find all solutions