

Distance or Similarity Measures

- Many data mining and analytics tasks involve the comparison of objects and determining in terms of their similarities (or dissimilarities)
 - Clustering
 - Nearest-neighbor search, classification, and prediction
 - Characterization and discrimination
 - Automatic categorization
 - Correlation analysis
- Many of todays real-world applications rely on the computation similarities or distances among objects
 - Personalization
 - Recommender systems
 - Document categorization
 - Information retrieval
 - Target marketing

Similarity and Dissimilarity

• Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]

• Dissimilarity (e.g., distance)

- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Proximity refers to a similarity or dissimilarity

Distance or Similarity Measures

Measuring Distance

- In order to group similar items, we need a way to measure the distance between objects (e.g., records)
- Often requires the representation of objects as "feature vectors"

An Employee DB

ID	Gender	Age	Salary
1	F	27	19,000
2	М	51	64,000
3	М	52	100,000
4	F	33	55,000
5	М	45	45,000

Feature vector corresponding to Employee 2: <M, 51, 64000.0>

Term Frequencies for Documents

	T1	T2	T 3	T4	T5	T6
Doc1	0	4	0	0	0	2
Doc2	3	1	4	3	1	2
Doc3	3	0	0	0	3	0
Doc4	0	1	0	3	0	0
Doc5	2	2	2	3	1	4

Feature vector corresponding to Document 4: <0, 1, 0, 3, 0, 0>

Distance or Similarity Measures

• Properties of Distance Measures:

- for all objects A and B, $dist(A, B) \ge 0$, and dist(A, B) = dist(B, A)
- for any object A, dist(A, A) = 0
- \rightarrow dist(A, C) \leq dist(A, B) + dist (B, C)

• Representation of objects as vectors:

- Each data object (item) can be viewed as an n-dimensional vector, where the dimensions are the attributes (features) in the data
- Example (employee DB): Emp. ID $2 = \langle M, 51, 64000 \rangle$
- Example (Documents): DOC2 = <3, 1, 4, 3, 1, 2>
- The vector representation allows us to compute distance or similarity between pairs of items using standard vector operations, e.g.,
 - Cosine of the angle between vectors
 - Manhattan distance
 - Euclidean distance
 - Hamming Distance

Data Matrix and Distance Matrix

Data matrix

- Conceptual representation of a table
 - Cols = features; rows = data objects
- \triangleright *n* data points with *p* dimensions
- Each row in the matrix is the vector representation of a data object

Distance (or Similarity) Matrix

- n data points, but indicates only the pairwise distance (or similarity)
- A triangular matrix
- Symmetric

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Proximity Measure for Nominal Attributes

- If object attributes are all nominal (categorical), then proximity measure are used to compare objects
- Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- Method 2: Convert to Standard Spreadsheet format
 - For each attribute A create M binary attribute for the M nominal states of A
 - Then use standard vector-based similarity or distance metrics

Jaccard coefficient

Normalizing or Standardizing Numeric Data

Z-score:

- x: raw value to be standardized, μ : mean of the population, σ : standard deviation
- the distance between the raw score and the population mean in units of the standard deviation
- negative when the value is below the mean, "+" when above

$z = \frac{x - \mu}{\sigma}$

Min-Max Normalization

$$x'_{i} = \frac{x_{i} - \min x_{i}}{\max x_{i} - \min x_{i}} (new \max - new \min) + new \min$$

ID	Gender	Age	Salary
1	F	27	19,000
2	М	51	64,000
3	М	52	100,000
4	F	33	55,000
5	М	45	45,000

ID	Gender	Age	Salary
1	1	0.00	0.00
2	0	0.96	0.56
3	0	1.00	1.00
4	1	0.24	0.44
5	0	0.72	0.32

Common Distance Measures for Numeric Data

- Consider two vectors
 - Rows in the data matrix

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

- Common Distance Measures:
 - Manhattan distance:

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Euclidean distance:

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Distance can be defined as a dual of a similarity measure

$$dist(X,Y) = 1 - sim(X,Y)$$

Example: Data Matrix and Distance Matrix

Data Matrix

point	attribute1	attribute2
<i>x1</i>	1	2
<i>x</i> 2	3	5
<i>x</i> 3	2	0
<i>x4</i>	4	5

Distance Matrix (Manhattan)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
x1	0			
<i>x</i> 2	5	0		
<i>x3</i>	3	6	0	
<i>x4</i>	6	1	7	0

Distance Matrix (Euclidean)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x</i> 3	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

- where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)
- Note that Euclidean and Manhattan distances are special cases
 - h = 1: (L₁ norm) Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

h = 2: (L₂ norm) Euclidean distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Vector-Based Similarity Measures

- In some situations, distance measures provide a skewed view of data
 - E.g., when the data is very sparse and 0's in the vectors are not significant
 - In such cases, typically vector-based similarity measures are used
 - Most common measure: Cosine similarity

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

Dot product of two vectors:

$$sim(X,Y) = X \bullet Y = \sum_{i} x_{i} \times y_{i}$$

- Cosine Similarity = normalized dot product
- the norm of a vector X is: $||X|| = \sqrt{\sum_{i} x_i^2}$

$$||X|| = \sqrt{\sum_{i} x_i^2}$$

the cosine similarity is:

$$sim(X,Y) = \frac{X \bullet Y}{\|X\| \times \|y\|} = \frac{\sum_{i} (x_{i} \times y_{i})}{\sqrt{\sum_{i} x_{i}^{2}} \times \sqrt{\sum_{i} y_{i}^{2}}}$$

Example Application: Information Retrieval

- Documents are represented as "bags of words"
- Represented as vectors when used computationally
 - A vector is an array of floating point (or binary in case of bit maps)
 - Has direction and magnitude
 - Each vector has a place for every term in collection (most are sparse)

Document Ids

<u> </u>	nova	galaxy	heat	actor	film	role
A	1.0	0.5	0.3			
В	0.5	1.0				
C		1.0	0.8	0.7		
D		0.9	1.0	0.5		
E				1.0		1.0
F					0.7	
G	0.5		0.7			0.9
H		0.6		1.0	0.3	0.2
I			0.7	0.5		0.3

$$D_{i} = w_{d_{i1}}, w_{d_{i2}}, ..., w_{d_{it}}$$
 $Q = w_{q1}, w_{q2}, ..., w_{qt}$
 $w = 0$ if a term is absent

Documents & Query in n-dimensional Space

- Documents are represented as vectors in the term space
 - Typically values in each dimension correspond to the frequency of the corresponding term in the document
- Queries represented as vectors in the same vector-space
- Cosine similarity between the query and documents is often used to rank retrieved documents

Example: Similarities among Documents

Consider the following document-term matrix

	T1	T2	Т3	T4	T5	T6	T7	T8
Doc1	0	4	0	0	0	2	1	3
Doc2	3	1	4	3	1	2	0	1
Doc3	3	0	0	0	3	0	3	0
Doc4	0	1	0	3	0	0	2	0
Doc5	2	2	2	3	1	4	0	2

Dot-Product(Doc2,Doc4) =
$$\langle 3,1,4,3,1,2,0,1 \rangle * \langle 0,1,0,3,0,0,2,0 \rangle$$

 $0 + 1 + 0 + 9 + 0 + 0 + 0 + 0 = 10$

Norm (Doc2) =
$$SQRT(9+1+16+9+1+4+0+1) = 6.4$$

Norm (Doc4) = $SQRT(0+1+0+9+0+0+4+0) = 3.74$

Cosine(Doc2, Doc4) =
$$10 / (6.4 * 3.74) = 0.42$$

Correlation as Similarity

- In cases where there could be high mean variance across data objects (e.g., movie ratings), Pearson Correlation coefficient is the best option
- Pearson Correlation

$$corr(x, y) = \frac{cov(x, y)}{stdev(x) \cdot stdev(y)}$$

$$COV(x,y) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$n - 1$$

 Often used in recommender systems based on Collaborative Filtering

KNN and Collaborative Filtering

Collaborative Filtering Example

- A movie rating system
- Ratings scale: 1 = "hate it"; 7 = "love it"
- Historical DB of users includes ratings of movies by Sally, Bob, Chris, and Lynn
- Karen is a new user who has rated 3 movies, but has not yet seen "Independence Day"; should we recommend it to her?

	Sally	Bob	Chris	Lynn	Karen
Star Wars	7	7	3	4	7
Jurassic Park	6	4	7	4	4
Terminator II	3	4	7	6	3
Independence Day	7	6	2	2	?

Will Karen like "Independence Day?"

Collaborative Filtering

(k Nearest Neighbor Example)

	Star Wars	Jurassic Park	Terminator 2	Indep. Day	Average	Cosine	Distance	Euclid	Pearson
Sally	7	6	3	7	5.33	0.983	2	2.00	0.85
Bob	7	4	4	6	5.00	0.995	1	1.00	0.97
Chris	3	7	7	2	5.67	0.787	11	6.40	-0.97
Lynn	4	4	6	2	4.67	0.874	6	4.24	-0.69

Karen	7	1	2	2	4.67	1.000	Λ	0.00	1.00
Naieii		4	3	f	4.67	1.000	U	0.00	1.00

K	Prediction
1	6
2	6.5
3	5

K is the number of nearest neighbors used in to find the average predicted ratings of Karen on Indep. Day.

Example computation:

Pearson(Sally, Karen) =
$$((7-5.33)*(7-4.67) + (6-5.33)*(4-4.67) + (3-5.33)*(3-4.67))$$

/ SQRT($((7-5.33)^2 + (6-5.33)^2 + (3-5.33)^2) * ((7-4.67)^2 + (4-4.67)^2 + (3-4.67)^2)) = 0.85$

