SOLUTION TO FINAL PROBLEMS

WENHAN DAI

Problem 1. Show that a retract of a contractible space is contractible.

Proof. A space X is said to be contractible if it is homotopy equivalent to a point. Let $A \subset X$ be a retract of X, so there is a homotopy

$$h: X \times I \to X$$

 $(x,0) \mapsto x$
 $(a,t) \mapsto a$

for all $x \in X$, $a \in A$, and $t \in I$. Then for each $t \in I$ we get the induced map

$$h_t: X \to X$$

 $x \mapsto h(x, t).$

Since X is constructible, there is a deformation

$$H: X \times I \to X$$

 $(x,0) \mapsto x$
 $(x,1) \mapsto x_0$

for the fixed point $x_0 \in X$. Note that

$$f = (h_1 \circ H)|_{A \times I}$$

is a homotopy of A such that $f(a,0) = h_1(a) = a$ for all $a \in A$ and that $f(a,1) = h_1(x_0)$ is a constant point of A. Thus A is constructible.

Problem 2. If G is a simplicial group, considered as a fibrant simplicial set, show that any two choices of basepoint lead to naturally isomorphic $\pi_n(G)$.

Proof. First note that by definition, the homotopic equivalence relation can be rewritten as follows. Any two n-simplices, say g and $g' \in G_n$, are homotopic if

- (i) $g, g' \in \mathbb{Z}_n$, i.e., $d_i(g) = d_i(g')$ for $0 \le i \le n$;
- (ii) there is a simplex $h \in G_{n+1}$ such that $d_n(h) = g$, $d_{n+1}(h) = g'$, and $d_i(h) = s_{n-1}d_i(g) = s_{n-1}d_i(g')$ for $0 \le i \le n-1$.

So the definition of \sim is independent of the choice of *. Consider the following left (resp. right) action of G_0 on G via

$$(*,g) \mapsto *g := s_0^n(*)g \quad (\text{resp. } g* := gs_0^n(*))$$

Date: June 20, 2022.

WENHAN DAI

for $* \in G_0$ and $g \in G_n$. The constant map $\Delta[n] \to *$ (which we will also denote by *) represents the identity element in $\pi_n(G)$. Indeed, given $g \in G$ representing an element [g] of $\pi_n(G,*)$, the (n+1)-simplex $s_n(g)$ will have

$$d_{n+1}s_n(g) = d_n s_n(g) = g,$$

while for i < n,

2

$$d_i s_n(g) = s_{n-1} d_i(g) = *.$$

This realizes g = *g. Similarly, consideration of $s_{n-1}(g)$ gives g = g*. Hence the multiplicative action of G_0 on G induces a group automorphism of $\pi_n(G)$ (we will prove that it is actually a group). More precisely, the multiplication by the vertex g defines a group homomorphism

$$\pi_n(G,*) \to \pi_n(G,*g) \simeq \pi_n(G,g*)$$

with inverse defined by multiplication by g^{-1} . So any two choices of * lead to naturally isomorphic $\pi_n(G)$.

Remark 1. Since G is considered as a fibrant simplicial set, it satisfies the Kan condition. This is necessary for homotopy to be an equivalence relation. But we choose to omit the details here.

Problem 3. Show that B_n is a normal subgroup of Z_n , so that $\pi_n(G)$ is a group for all $n \ge 0$. Then show that $\pi_n(G)$ is abelian for $n \ge 1$.

Proof. Following the hint. For all $x \in Z_n$ and $y = s_n(z) \in N_{n+1}$ (with some $z \in G_n$), note that

$$d_n((s_{n-1}(x))y(s_{n-1}(x))^{-1}) = xd_n(y)x^{-1},$$

because of $d_n s_{n-1} = 1$. So $B_n = \operatorname{im} d_{n+1}$ is normal in Z_n . Thus for all $n \ge 0$ there are isomorphisms

$$\frac{\ker d_n}{\operatorname{im} d_{n+1}} \simeq \pi_n(G).$$

We are to show that this group structure coincides with the group structure on $\pi_n(G)$ induced from the multiplication on G. Recall the product on the homotopy groups is defined as follows. For $[x], [y] \in \pi_n(G)$ with $x, y \in G_n$, we can choose some $z \in G_{n+1}$ such that $d_i(z) = *$ for $0 \le i < n-1$, $d_{n-1}(z) = x$, and $d_{n+1}(z) = y$. Then $[x][y] := [d_n(z)]$ is well-defined, which is independent of the choice of z. It can be seen in the following table.

We now fix $x, y, z, w, t, u \in G_n$. By definition of the multiplication, we obtain the following.

	Input		$d_{n-2}(-)$	$d_{n-1}(-)$	$d_n(-)$	$d_{n+1}(-)$	Output
(1)	v_{n+1}	*	w	x	y	*	[y][w] = [x]
(2)	v_{n-1}	*	*	t	x	w	[t][w] = [x]
(3)	v_n	*	*	t	y	*	[t][*] = [t] = [y]

Here the relation (1) is deduced from (2) and (3). It can be checked that $v_n \in G_{n+1}$ satisfies the Kan condition. Again:

	Input		$d_{n-2}(-)$	$d_{n-1}(-)$	$d_n(-)$	$d_{n+1}(-)$	Output
(4)	v_n	*	w	*	y	z	[w][y] = [z]
(5)	v_{n-1}	*	w	*	t	*	[w][t] = [*]
(6)	v_{n+1}	*	*	t	y	z	[t][z] = [y]

Here the relation (4) is deduced from (5) and (6). It can be checked that $v_{n+1} \in G_{n+1}$ satisfies the Kan condition. Combining these to get the following result.

	Input		$d_{n-2}(-)$	$d_{n-1}(-)$	$d_n(-)$	$d_{n+1}(-)$	Output
(7)	v_{n+2}	*	w	x	y	z	[w][y] = [x][z]
(8)	v_{n-2}	*	t	*	*	w	[t][*] = [w]
(9)	v_{n-1}	*	t	*	u	x	[t][u] = [x]
(10)	v_{n+1}	*	*	u	y	z	[u][z] = [y]

Here (8), (9) are deduced from (4) and (10) is by definition of the multiplication. And finally, (7) is implied by (4), (8), (9), and (10). Therefore, for any fixed $x, y, z, w \in G_n$, we have [w][y] = [x][z]. In particular, by letting [z] = [*], the conditions (1) and (7) are read as

$$[y][w] = [x], \quad [w][y] = [x].$$

So [y][w] = [w][y] and $\pi_n(G)$ is abelian for all $n \ge 1$ (with $d_{-1} = d_{n-1}$).

Problem 4. If $G \to G$ is a surjection of simplicial groups with kernel G. Show that there is a short exact sequence of (not necessarily abelian) chain complex

$$1 \to NG' \to NG \to NG'' \to 1.$$

Proof. We will show that the functor $G \mapsto NG$ over simplicial groups is exact. By definition, $N_n(G) = \bigcap_{i \neq n} \ker(d_i : G_n \to G_{n-1})$. So the functor N exactly preserves kernels and is left-exact. It suffices to show the right-exactness, which boils down to prove the associated chain complex map $NG \to NG''$ is surjective in all degrees.

Given a commutative diagram of simplicial set maps

$$\Lambda_k^n \xrightarrow{\alpha} G
\downarrow \qquad \downarrow
\Delta[n] \xrightarrow{\beta} G''$$

Then there is a simplex $x \in G_n$ such that the image of x via $G \to G''$ is β . Also note that

$$x|_{\Lambda_k^n} - \alpha : \Lambda_k^n \longrightarrow G$$

factors through $G' = \ker(G \to G'')$, and so $x|_{\Lambda_k^n} - \alpha$ extends to an *n*-simplex $\widetilde{x} \in G'$ in the sense that there is a commutative diagram of simplicial set maps

4 WENHAN DAI

Then $(x-\widetilde{x})|_{\Lambda_k^n}=\alpha$ and the image of $x-\widetilde{x}$ via $G\to G''$ is β . Therefore, $G\to G''$ is a fibration of simplicial groups. So the induced map $N_n(G)\to N_n(H)$ is surjective for all $n\geqslant 1$. Therefore, the functor N(-) preserves epimorphisms. There is a short exact sequence

$$1 \rightarrow NG' \rightarrow NG \rightarrow NG'' \rightarrow 1.$$

This completes the proof.

School of Mathematical Sciences, Peking University, 100871, Beijing, China. $Email\ address$: daiwenhan@pku.edu.cn