THE LNM INSTITUTE OF INFORMATION TECHNOLOGY JAIPUR, RAJASTHAN

End Semester Exam Part-A Name:		m	MATH-II, 26th April, 2016 Time: minutes, Maximum Marks: Roll No.:		
for cotreat	orrect answer and carry	a negative markin Use only the last pag	g of 2 mark for wro e of main answer sheet	ns. Each question carry 5 marks ng answer. Overwriting will be for rough work and calculation.	
1.	Let $V = \mathbb{R}^+$. Define a	ddition and scalar m	ultiplication in V by		
		$u\oplus v=u\cdot$	v , and $\alpha \odot u = u^{\alpha}$		
	for all $u, v \in V$ and α	$\in \mathbb{R}$. Then V is a ve	ctor space with additi-	ve identity equal to	
	(A) 0	(B) 1	(C) 1^{α}	(D) None of these	
2.	2. Let \mathbb{P}_{24} is set of all real polynomials of degree ≤ 24 . If $T: \mathbb{P}_{24} \to \mathbb{R}^{40}$ be a linear transformment then $R(T)$ can be a subspace of \mathbb{R}^{40} of dimension				
	(A) 30	(B) 40	(C) 26	(D) None of these	
3.		et u and v be two orthogonal vectors in an inner product space V such that $ u = 3$ and $ v = 4$. That exactly can we say about the distance between u and v ?			
	(A) 1	(B) 7	(C) 5	(D) None of these	
4.	An interval in which the Sol: $-\infty < t < 0$	$e \text{ IVP } xy' + 2y = 4x^2,$	y(-1) = 2 has unique	solution is	
5.	Third Picard's successions Sol: $x^2 + \frac{x^4}{2} + \frac{x^6}{6}$	ve approximation of	the IVP $y' = 2x(1+y)$,	y(0) = 0 is	
6.	Let $p(x)$, $q(x)$, $r(x)$ are continuous functions on an interval I . Further, suppose $y_1(x)$, $y_2(x)$ are any two solutions of the linear non-homogeneous equation $y'' + p(x)y' + q(x)y = r(x)$, $\forall x \in I$. Then $3ay_1 + 2by_2$ is also a solution for (Obtain conditions on the constants a and b) Sol: $3a + 2b = 1$				
7.	A particular solution f Sol: $-(1/3)x\cos 3x +$	for $y'' + 9y = \csc 3$ $(1/9) \sin 3x \ln(\sin 3x)$	<i>x</i> is		
8.	Inverse Laplace trasfor	rmation for $\ln(1 + \frac{9a^2}{s^2})$	² -) is	Sol: $\frac{2}{t}[1-\cos 3at]$	