ICMA151 Statistics for Science I

Name:	ID:

Quiz 6 (5%) 40 points (10 points each)

Problem

1. Due to his high blood pressure, Sam watches the sodium content of the foods that he eats. Five samples for each of four brands of canned turkey (97% fat free) were tested for sodium content, measured in milligrams of sodium per 2-ounce serving.

Brand 1	Brand 2	Brand 3	Brand 4
250	175	175	200
251	185	180	210
260	175	180	210
255	180	170	195
245	165	190	205
	250 251 260 255	250 175 251 185 260 175 255 180	250 175 175 251 185 180 260 175 180 255 180 170

The following summary table and ANOVA were generated by statistical software as shown below:

SUMMARY TABLE						
Groups	Count	Sum	Average	Variance		
Brand 1	5	1261	252.2	31.7		
Brand 2	5	880	176	55		
Brand 3	5	895	179	55		
Brand 4	5	1020	204	42.5		

ANOVA TABLE

Source of Variation	df	SS	MS	F	P-value	F crit
Brand	3	18632.4	6210.8	134.871	0.000	3.23887
Error	16	736.8	46.05			
Total	19	19369.2				

Use the p-value approach to test whether there is a significant difference in mean amount of sodium in the four brands. Let $\alpha = 0.05$.

Can you reject the r	ull hypothesis?
0	f the brands of canned turkey has a significantly different mean sodium
content from the oth	iers.

2. Physicians depend on laboratory test results when managing medical problems such as diabetes or epilepsy. In a uniformity test for glucose tolerance, three different laboratories were each sent *nt* = 5 identical blood samples from a person who had drunk 50 milligrams (mg) of glucose dissolved in water. The laboratory results (in mg/dl) are listed here:

Lab 1	Lab 2	Lab 3
121.3	99.5	104.2
111.9	113.2	109.7
110.1	108.9	102.3
105.4	109.1	111.2
101.6	100.4	106.6

Do the data indicate a difference in the average readings for the three laboratories? Use Tukey's method for paired comparisons to rank the three treatment means. Use $\alpha = 0.05$.

What is the F-stat	istic?
What is the <i>p</i> -value	ue?
Can you reject the	null hypothesis?
There	sufficient evidence to indicate a difference in the treatment means.

3. A professor of economics wants to study the relationship between income (y in \$1000s) and education (x in years). A random sample eight individuals is taken and the results are shown below.

Education	16	11	15	8	12	10	13	14
Income	58	40	55	35	43	41	52	49

Determine the coefficient of determination.

$R^2 =$

Discuss what its value tells you about the two variables.

Calculate the Pearson correlation coefficient.

$$r =$$

Why does it have the sign it has?

What is the equation of the estimated regression line?

Is there a linear relationship between education and income? Explain?

4.	A study was conduced to determine the effect of extra help sessions attended on students ability
	to avoid mistakes on a 20- multiple choice test. The data shown below represent the number of
	extra help sessions attended (x) and the average number of mistakes (y) recorded.

χ	1	2	3	4	5	6
y	6.1	5.1	5.0	4.2	3.7	3.2

Use the regression formulas to find the least-squares line for the data.

^		
$\mathbf{i}_{i} =$		
y		

Plot the six points and graph the line.

Does the line appear to provide a good fit to the data points?

Use the least-Squares line to predict the value of y when x = 3.5.

Do the data provide sufficient evidence to indicate that y and x are linearly related at the 1% level of significance?

p-value:

Conclude:

<i>y</i> and <i>x</i>	linearly related.
Calculate the coef	e coefficient of determination. nation does this value give about the usefulness of the linear model?
$r^2 = $	<u> </u>
What information	loes this value give about the usefulness of the linear model