Saisonale Integration und Cointegration für Monatsdaten

Ratmir Miftachov

Deutsche Bundesbank

18. Juli 2018

Inhalt

- Einleitung
- Methodik
 - HEGY Test für Monatsdaten
 - EGHL Test für Monatsdaten
- 3 Ergebnisse
- 4 Einschränkungen
- 6 Ausblick

Einleitung

Was bedeutet saisonale Kointegration?

- Zwei Zeitreihen sind kointegriert zur Nullfrequenz, wenn sie einem langfristigen gemeinsamen Verlauf unterliegen.
- Zwei Zeitreihen sind kointegriert auf einer saisonalen Frequenz, wenn der saisonale Effekt einem gemeinsamen Verlauf unterliegt.
- Voraussetzung: Beide Zeitreihen sind zur jeweiligen Frequenz von gleicher Ordnung integriert und es besteht eine stationäre Linearkombination.

Einleitung

Einordnung

- Bevor auf Kointegration getestet wird, muss überprüft werden, ob die Zeitreihen jeweils saisonale Integration aufweisen.
- Dafür lässt sich der Test von Hylleberg, Engle, Granger und Yoo (1990) für Quartalsdaten benutzen (HEGY).
 - → Erweitert von Beaulieu & Miron (1993) für Monatsdaten.
- Für Kointegration lässt sich bei Quartalsdaten der Test von Engle, Granger, Hylleberg und Lee (1993) anwenden (EGHL).
 - ightarrow Für Monatsdaten findet sich keine Erweiterung des EGHL Tests in der Literatur.
- Der EGHL Test wurde demnach für Monatsdaten erweitert und in R in Form eines Packages implementiert.

Einleitung

Testvorgehen

- HEGY Test für X zu allen 12 Frequenzen.
- 2 HEGY Test für Y zu allen 12 Frequenzen.
- EGHL Test für X und Y zur 0 Frequenz.
- **4** EGHL Test für X und Y zur $\frac{6}{12}$ Frequenz.
- EGHL Test für X und Y zu allen 5 paarweisen Frequenzen.

Saisonale Frequenzen

Sinuskurven

18.

Saisonale Frequenzen

Sinuskurven

Saisonale Frequenzen

Frequenz	Zyklen pro Jahr	Periodenlänge in Monaten
$\frac{6}{12}$	6	2
$\left\{\frac{3}{12}, \frac{9}{12}\right\}$	3	4
$\{\frac{4}{12}, \frac{8}{12}\}$	4	3
$\{\frac{2}{12},\frac{10}{12}\}$	2	6
$\{\frac{5}{12}, \frac{7}{12}\}$	5	2.5
$\{\frac{1}{12}, \frac{11}{12}\}$	1	12

- Nullfrequenz durchgeht einen Zyklus nach einer unendlichen Anzahl an Monaten.
- Ein Zyklus entspricht einem Durchgang im Einheitskreis und damit einem Peak.
- Periodenlänge entspricht der Anzahl an Monaten zwischen zwei aufeinander folgenden Peaks.

HEGY Test für Monatsdaten

Beaulieu & Miron (1993)

Regression

$$y_{13t} = \sum_{s=1}^{12} \pi_s y_{s,t-1} + \text{Augmentationen} + \epsilon_t,$$

- $y_{s,t} \cong$ Gefilterte Zeitreihe, welche auf alle Frequenzen gefiltert wurde, bis auf die uns Interessierende.
- Augmentationen $\hat{=}$ Ausgewählte Lags von $y_{13,t}$, welche in ϵ_t weißes Rauschen herbei führen.

Regressoren 1-4

$$\begin{aligned} y_{1t} &= (1 + L + L^2 + L^3 + L^4 + L^5 + L^6 + L^7 + L^8 + L^9 + L^{10} + L^{11})X_t \\ y_{2t} &= -(1 - L + L^2 - L^3 + L^4 - L^5 + L^6 - L^7 + L^8 - L^9 + L^{10} - L^{11})X_t \\ y_{3t} &= -(L - L^3 + L^5 - L^7 + L^9 - L^{11})X_t \\ y_{4t} &= -(1 - L^2 + L^4 - L^6 + L^8 - L^{10})X_t \end{aligned}$$

- L ist definiert als der Lag Operator, d.h. $LX_t = X_{t-1}$, $L^2X_t = X_{t-2}$ usw.
- Regressoren $\{y_{1t}, y_{2t}, y_{3t}, y_{4t}\}$ werden mit den Frequenzen $\{0, \frac{6}{12}, \frac{3}{12}, \frac{9}{12}\}$ assoziiert.

Regressoren 5-8

$$y_{5t} = -\frac{1}{2}(1 + L - 2L^2 + L^3 + L^4 - 2L^5 + L^6 + L^7 - 2L^8 + L^9 + L^{10} - 2L^{11})X_t$$

$$y_{6t} = \frac{\sqrt{3}}{2}(1 - L + L^3 - L^4 + L^6 - L^7 + L^9 - L^{10})X_t$$

$$y_{7t} = \frac{1}{2}(1 - L - 2L^2 - L^3 + L^4 + 2L^5 + L^6 - L^7 - 2L^8 - L^9 + L^{10} + 2L^{11})X_t$$

$$y_{8t} = -\frac{\sqrt{3}}{2}(1 + L - L^3 - L^4 + L^6 + L^7 - L^9 - L^{10})X_t$$

• Regressoren $\{y_{5t}, y_{6t}, y_{7t}, y_{8t}\}$ werden mit den Frequenzen $\{\frac{4}{12}, \frac{8}{12}, \frac{2}{12}, \frac{10}{12}\}$ assoziiert.

Regressoren 9-12

$$\begin{aligned} y_{9t} &= -\frac{1}{2} \big(\sqrt{3} - L + L^3 - \sqrt{3}L^4 + 2L^5 - \sqrt{3}L^6 + L^7 - L^9 + \sqrt{3}L^{10} - 2L^{11} \big) X_t \\ y_{10t} &= \frac{1}{2} \big(1 - \sqrt{3}L + 2L^2 - \sqrt{3}L^3 + L^4 - L^6 + \sqrt{3}L^7 - 2L^8 + \sqrt{3}L^9 - L^{10} \big) X_t \\ y_{11t} &= \frac{1}{2} \big(\sqrt{3} + L - L^3 - \sqrt{3}L^4 - 2L^5 - \sqrt{3}L^6 - L^7 + L^9 - \sqrt{3}L^{10} + 2L^{11} \big) X_t \\ y_{12t} &= -\frac{1}{2} \big(1 + \sqrt{3}L + 2L^2 + \sqrt{3}L^3 + L^4 - L^6 - \sqrt{3}L^7 - 2L^8 - \sqrt{3}L^9 - L^{10} \big) X_t \\ y_{13t} &= \Delta_{12} x_t = (1 - L^{12}) x_t \end{aligned}$$

• Regressoren $\{y_{9t}, y_{10t}, y_{11t}, y_{12t}\}$ werden mit den Frequenzen $\{\frac{5}{12}, \frac{7}{12}, \frac{1}{12}, \frac{11}{12}\}$ assoziiert.

HEGY Testverfahren

Beaulieu & Miron (1993)

Linksseitiger t-Test zur 0 und $\frac{6}{12}$ Frequenz

$$H_0: \pi_s = 0$$
 vs. $H_1: \pi_s < 0$ für $s = 1, 2$

partieller F-Test zu den paarweisen Frequenzen $(\frac{3}{12}, \frac{9}{12}), (\frac{4}{12}, \frac{8}{12}), (\frac{2}{12}, \frac{10}{12}), (\frac{5}{12}, \frac{7}{12}), (\frac{1}{12}, \frac{11}{12})$

$$H_0: \pi_s = \pi_{s+1} = 0$$
 vs. $H_1: \text{nicht } H_0 \text{ für } s = 3, 5, 7, 9, 11$

- Unter H_0 ist die Zeitreihe integriert zur jeweiligen Frequenz.
- Teststatistiken werden mit kritischen Werten aus der jeweils simulierten Nullverteilung verglichen.

Faktorisierung des Polynoms

$$(1 - L^{12}) = \underbrace{(1 - L)(1 + L)(1 + L^{2})}_{0} \underbrace{\frac{\frac{3}{12}, \frac{9}{12}}{\frac{12}{12}, \frac{4}{12}, \frac{8}{12}}}_{12} \times \underbrace{(1 - L + L^{2})(1 + L^{2})(1 + L^{2})}_{0} \underbrace{(1 - L + L^{2})(1 + \sqrt{3}L + L^{2})}_{0} \underbrace{(1 - \sqrt{3}L + L^{2})}_{0} \underbrace{(1 - \sqrt{3}L + L^{2})}_{0}$$

- Die ersten zwei Terme besitzen jeweils eine Einheitswurzel als Lösung.
- Die restlichen fünf Terme besitzen jeweils zwei Einheitswurzeln als Lösung.
- Einheitswurzeln können bestimmt werden und zu einer Frequenz zugeordnet werden.

EGHL Test

Analoges Vorgehen zu Beenstock et al. (1999)

EGHL Filter 1-4

$$\Theta_{1} = (1+L)(1+L^{2})(1+L+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})
\Theta_{2} = -(1-L)(1+L^{2})(1+L+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})
\Theta_{3} = -(1-L)(1+L)(1+L+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})
\Theta_{4} = -(1-L)(1+L)(1+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})$$

• Filter $\Theta_1, \Theta_2, \Theta_3, \Theta_4$ werden mit den Frequenzen $\{0; \frac{6}{12}; (\frac{3}{12}, \frac{9}{12}); (\frac{4}{12}, \frac{8}{12}); (\frac{2}{12}, \frac{10}{12})\}$ assoziiert.

EGHL Test

Analoges Vorgehen zu Beenstock et al. (1999)

EGHL Filter 5-7

$$\begin{split} \Theta_5 &= -(1-L)(1+L)(1+L^2)(1+L+L^2)(1+\sqrt{3}L+L^2)(1-\sqrt{3}L+L^2) \\ \Theta_6 &= -(1-L)(1+L)(1+L^2)(1+L+L^2)(1-L+L^2)(1-\sqrt{3}L+L^2) \\ \Theta_7 &= -(1-L)(1+L)(1+L^2)(1+L+L^2) \\ &\times (1-L+L^2)(1+\sqrt{3}L+L^2)(1-\sqrt{3}L+L^2) \\ \Theta_8 &= (1-L)(1+L)(1+L^2)(1+L+L^2)(1-L+L^2) \\ &\times (1+\sqrt{3}L+L^2)(1-\sqrt{3}L+L^2) \\ &= (1-L^{12}) \end{split}$$

• Filter Θ_5 , Θ_6 , Θ_7 werden mit den Frequenzen $\{(\frac{2}{12}, \frac{10}{12}); (\frac{5}{12}, \frac{7}{12}); (\frac{1}{12}, \frac{11}{12})\}$ assoziiert.

EGHL Test

Analoges Vorgehen zu Beenstock et al. (1999)

EGHL Filter 1-4

$$\Theta_{1} = \underbrace{(1+L)(1+L^{2})(1+L+L^{2})(1-L+L^{2})(1+L+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})}_{\Theta_{2} = -(1-L)(1+L)(1+L+L^{2})(1-L+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})$$

$$\Theta_{3} = -(1-L)(1+L)(1+L+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})$$

$$\Theta_{4} = -(1-L)(1+L)(1+L^{2})(1-L+L^{2})(1+\sqrt{3}L+L^{2})(1-\sqrt{3}L+L^{2})$$

• Filter Θ_1 , Θ_2 , Θ_3 , Θ_4 werden mit den Frequenzen $\{0; \frac{6}{12}; (\frac{3}{12}, \frac{9}{12}); (\frac{4}{12}, \frac{8}{12}); (\frac{2}{12}, \frac{10}{12})\}$ assoziiert.

EGHL Test auf Kointegration zur Frequenz Null

Analoges Vorgehen zu Beenstock et al. (1999)

Testregressionen

- a) $\Theta_1 Y_t = \alpha_1 + \beta_1 \Theta_1 X_t + u_t$
- b) $(1-L)\hat{u}_t = \lambda_1\hat{u}_{t-1} + \text{Augmentationen} + e_t$

Linksseitiger t-Test

$$H_0: \lambda_1 = 0$$
 vs. $H_1: \lambda_1 < 0$

- Wird H_0 abgelehnt, sind die Residuen I(0) und es liegt Cointegration zur Frequenz Null vor.
- Teststatistik wird mit kritischen Werten aus der simulierten Nullverteilung verglichen.

EGHL Test auf Kointegration zur Frequenz $\frac{6}{12}$ Analoges Vorgehen zu Beenstock et al. (1999)

Testregressionen

- a) $\Theta_2 Y_t = \alpha_2 + \beta_2 \Theta_2 X_t + v_t$
- b) $(1+L)\hat{v}_t = -\lambda_2\hat{v}_{t-1} + \text{Augmentationen} + c_t$

Linksseitiger t-Test

$$H_0: \lambda_2 = 0$$
 vs. $H_1: \lambda_2 < 0$

- Wird H_0 abgelehnt, sind die Residuen I(0) und es liegt Cointegration zur Frequenz $\frac{6}{12}$ vor.
- Teststatistik wird mit kritischen Werten aus der simulierten Nullverteilung verglichen.

EGHL Test auf Kointegration zu paarweisen Frequenzen

Analoges Vorgehen zu Beenstock et al. (1999)

Testregressionen

a)
$$\Theta_k Y_t = \alpha + \beta_1 \Theta_k X_t + \beta_2 \Theta_k X_{t-1} + w_t$$
 für $k = 3, 4, 5, 6, 7$

b)
$$-\frac{\Theta_8}{\Theta_k}\hat{w}_t = -\lambda_1\hat{w}_{t-2} - \lambda_2\hat{w}_{t-1} + \text{Augmentationen} + z_t$$
 für $k = 3, 4, 5, 6, 7$

F-Test zu den paarweisen Frequenzen

$$\{\left(\frac{3}{12},\frac{9}{12}\right);\left(\frac{4}{12},\frac{8}{12}\right);\left(\frac{2}{12},\frac{10}{12}\right);\left(\frac{5}{12},\frac{7}{12}\right);\left(\frac{1}{12},\frac{11}{12}\right)\}$$

$$H_0: \lambda_1 = \lambda_2 = 0$$
 vs. $H_1:$ nicht H_0 für $k = 3, 4, 5, 6, 7$

- Wird H_0 abgelehnt, sind die Residuen I(0) und es liegt Cointegration zur jeweiligen Frequenz vor.
- Teststatistik wird mit kritischen Werten aus der simulierten Nullverteilung verglichen.

EGHL Test auf Kointegration zu paarweisen Frequenzen

Analoges Vorgehen zu Beenstock et al. (1999)

Testregressionen

a)
$$\Theta_k Y_t = \alpha + \beta_1 \Theta_k X_t + \beta_2 \Theta_k X_{t-1} + w_t$$
 für $k = 3, 4, 5, 6, 7$

b)
$$-\frac{\Theta_8}{\Theta_k}\hat{w}_t = -\lambda_1\hat{w}_{t-2} - \lambda_2\hat{w}_{t-1} + \text{Augmentationen} + z_t$$
 für $k = 3, 4, 5, 6, 7$

F-Test zu den paarweisen Frequenzen

$$\big\{\big(\tfrac{3}{12},\tfrac{9}{12}\big);\big(\tfrac{4}{12},\tfrac{8}{12}\big);\big(\tfrac{2}{12},\tfrac{10}{12}\big);\big(\tfrac{5}{12},\tfrac{7}{12}\big);\big(\tfrac{1}{12},\tfrac{11}{12}\big)\big\}$$

$$H_0: \lambda_1 = \lambda_2 = 0$$
 vs. $H_1:$ nicht H_0 für $k = 3, 4, 5, 6, 7$

- Wird H_0 abgelehnt, sind die Residuen I(0) und es liegt Cointegration zur jeweiligen Frequenz vor.
- Teststatistik wird mit kritischen Werten aus der simulierten Nullverteilung verglichen.

Augmentationen

Grundidee

- Hilfregression gelingt es oft nicht, weißes Rauschen in den Residuen zu erzeugen.
- D.h. es verbleiben oft signifikante Lags in der ACF der Residuen.
- Augmentationen beheben dieses Problem.
- Augmentationen $\hat{=}$ ausgewählte Lags des Regressanden der Hilfsregression.

Augmentationen

Lag Auswahl innerhalb des HEGY und des EGHL Tests

- Führe Schätzung mit 24 Lags des Regressanden durch.
- Bestimme die insignifikanteste Augmentation anhand des p-Wertes und entferne diese.
- 3 Führe Schätzung erneut durch.
- Wiederhole 2 und 3 bis entweder keine Augmentationen mehr übrig sind oder nur noch signifikante Augmentationen übrig sind.

Frequency

Saisonbereinigter Umsatz und saisonbereinigter Umsatz + weißes Rauschen Integration

	Frequency	r-value	integration
	0	0.99	present
	6/12	0	not present
	3/12 and 9/12	0	not present
Х	4/12 and 8/12	0	not present
	2/12 and 10/12	0	not present
	5/12 and 7/12	0	not present
	1/12 and 11/12	0	not present
	0	0.99	present
	6/12	0	not present
	3/12 and 9/12	0	not present
Υ	4/12 and 8/12	0	not present
	2/12 and 10/12	0	not present
	5/12 and 7/12	0	not present
	1/12 and 11/12	0	not present
	Frequency	P-Value	Cointegration
	0	0	present
	6/12	0.67	not present
	'	0.63	-
v v	3/12 and 9/12		not present
X, Y	4/12 and 8/12	0.29	not present
	2/12 and 10/12		not present
	5/12 and 7/12	0.01	(present)
	1/12 and 11/12	0.75	not present

P-Value

Auftragseingang und Auftragseingang + weißes Rauschen

6/12 0.17 3/12 and 9/12 0.30 X 4/12 and 8/12 0.25 2/12 and 10/12 0.17 5/12 and 7/12 0 1/12 and 11/12 0.001	present
X	
X 4/12 and 8/12 0.25 2/12 and 10/12 0.17 5/12 and 7/12 0 1 1/12 and 11/12 0.001	present
2/12 and 10/12 0.17 5/12 and 7/12 0 1 1/12 and 11/12 0.001	oresent
5/12 and 7/12 0 1/12 and 11/12 0.001	oresent
1/12 and 11/12 0.001	oresent
, ,	not present
	not present
0 0.99	oresent
6/12 0.26	oresent
3/12 and 9/12 0.13	present
Y 4/12 and 8/12 0.04	not present
2/12 and 10/12 0.07	oresent
5/12 and 7/12 0	not present
1/12 and 11/12 0.01	not present
Erogueney B Value	

	Frequency	P-Value	Cointegration
	0	0	present
	6/12	0.59	not present
	3/12 and 9/12	0.03	present
X, Y	4/12 and 8/12	0.60	not present
	2/12 and 10/12	0.04	present
	5/12 and 7/12	0.52	not present
	1/12 and 11/12	0.43	not present

Ausgaben und Eurocheques in Spanien

	Frequency	P-Value	Integration
	0	0.38	present
	6/12	0.19	present
	3/12 and 9/12	0.28	present
Х	4/12 and 8/12	0.14	present
	2/12 and 10/12	0.21	present
	5/12 and 7/12	0.06	present
	1/12 and 11/12	0.98	present
	0	0.45	present
	6/12	0.01	not present
	3/12 and 9/12	0.01	not present
Υ	4/12 and 8/12	0.01	not present
	2/12 and 10/12	0.27	present
	5/12 and 7/12	0.11	present
	1/12 and 11/12	0.92	present
	•		

	Frequency	P-Value	Cointegration
	0	1	not present
	6/12	0.92	not present
	3/12 and 9/12	0.03	(present)
X, Y	4/12 and 8/12	0.09	not present
	2/12 and 10/12	0.04	present
	5/12 and 7/12	0.15	not present
	1/12 and 11/12	0.43	not present

Einschränkungen

Asymmetrie

- Der EGHL Test ist asymmetrisch.
 - ightarrow Ob in der Hauptregression X auf Y oder Y auf X regressiert wird kann in unterschiedlichen Testentscheidungen resultieren.

Mögliche Erklärung

- Hauptregression führt zu deutlich unterschiedlichen Residuen.
 - \rightarrow Dadurch unterschiedliche Teststatistiken von λ .
- Zusätzlich kann es dazu kommen, dass unterschiedliche Augmentationen gewählt werden.
 - ightarrow Dadurch werden unterschiedliche Teststatistiken von λ verstärkt.

Ausgaben Spanien und Ausgaben Österreich

Frequency

Ausgaben Spanien und Ausgaben Österreich

P-Value

Integration

	$X \stackrel{\wedge}{=}$	Ausgaben	Spanien	und	$Y \stackrel{\triangle}{=}$	Ausgaben	Österreich
--	--------------------------	----------	---------	-----	-----------------------------	----------	------------

$X \stackrel{\triangle}{=} $ Ausgaben Ö	sterreich und	$Y \stackrel{\triangle}{=} Ausgab$	en Spanier
---	---------------	------------------------------------	------------

P-Value

Frequency

	Frequency	r-value	Integration		Frequency	r-value	integration
	0	0.36	present		0	0.43	present
	6/12	0.17	present		6/12	0.03	not present
	3/12 and 9/12	0.26	present		3/12 and 9/12	0.04	not present
Х	4/12 and 8/12	0.12	present	Х	4/12 and 8/12	0.08	present
	2/12 and 10/12	0.22	present		2/12 and 10/12	0.67	present
	5/12 and 7/12	0.06	present		5/12 and 7/12	0.25	present
	1/12 and 11/12	0.97	present		1/12 and 11/12	0.04	not present
	0	0.43	present		0	0.36	present
	6/12	0.03	not present		6/12	0.17	present
	3/12 and 9/12	0.04	not present		3/12 and 9/12	0.26	present
Υ	4/12 and 8/12	0.08	present	Υ	4/12 and 8/12	0.12	present
	2/12 and 10/12	0.67	present		2/12 and 10/12	0.22	present
	5/12 and 7/12	0.25	present		5/12 and 7/12	0.06	present
	1/12 and 11/12	0.04	not present		1/12 and 11/12	0.97	present
	Frequency	P-Value	Cointegration		Frequency	P-Value	Cointegration
	0	1	not present	-	0	1	not present
	6/12	1	not present		6/12	0	(present)
	3/12 and 9/12	0.02	(present)		3/12 and 9/12	0.02	(present)
X, Y	4/12 and 8/12	0.91	not present	X, Y	4/12 and 8/12	0.02	present
	2/12 and 10/12	0.67	not present		2/12 and 10/12	0.20	not present
	5/12 and 7/12	0.73	not present		5/12 and 7/12	0.04	present
	1/12 and 11/12	0.06	not present		1/12 and 11/12	0.06	not present
					< □ > < □ >	₹ ()	

Integration

Frequency

Ausgaben Spanien und Ausgaben Österreich

P-Value

Integration

$X \stackrel{\triangle}{=} $ Ausgaben Spanien	und $Y\stackrel{ riangle}{=}$ Ausgaben	Österreich
---	--	------------

 $X\stackrel{\triangle}{=} \mathsf{Ausgaben}$ Österreich und $Y\stackrel{\triangle}{=} \mathsf{Ausgaben}$ Spanien

P-Value

Integration

Frequency

	0	0.36	present		0	0.43	present
	6/12	0.17	present		6/12	0.03	not present
	3/12 and 9/12	0.26	present		3/12 and 9/12	0.04	not present
Х	4/12 and 8/12	0.12	present	X	4/12 and 8/12	0.08	present
	2/12 and 10/12	0.22	present		2/12 and 10/12	0.67	present
	5/12 and 7/12	0.06	present		5/12 and 7/12	0.25	present
	1/12 and 11/12	0.97	present		1/12 and 11/12	0.04	not present
	0	0.43	present		0	0.36	present
	6/12	0.03	not present		6/12	0.17	present
	3/12 and 9/12	0.04	not present		3/12 and 9/12	0.26	present
Υ	4/12 and 8/12	0.08	present	Y	4/12 and 8/12	0.12	present
	2/12 and 10/12	0.67	present		2/12 and 10/12	0.22	present
	5/12 and 7/12	0.25	present		5/12 and 7/12	0.06	present
	1/12 and 11/12	0.04	not present		1/12 and 11/12	0.97	present
	Frequency	P-Value	Caintagration		Frequency	P-Value	Caintaguatian
	rrequency	r-value	Cointegration		Frequency	P-value	Cointegration
	0	1	not present		0	1	not present
	0 6/12	1 1			-		
	0	1	not present		0	1	not present
	0 6/12	1 1	not present not present	X, Y	0 6/12	1 0	not present (present)
Х, Ү	0 6/12 3/12 and 9/12	1 1 0.02	not present not present (present)	X, Y	0 6/12 3/12 and 9/12	1 0 0.02	not present (present) (present)
X, Y	0 6/12 3/12 and 9/12 4/12 und 8/12	1 1 0.02 0.91	not present not present (present) not present		0 6/12 3/12 and 9/12 4/12 and 8/12	1 0 0.02 0.02	not present (present) (present) present
х, ү	0 6/12 3/12 and 9/12 4/12 und 8/12 2/12 and 10/12	1 1 0.02 0.91 0.67	not present not present (present) not present not present	X, Y	0 6/12 3/12 and 9/12 4/12 and 8/12 2/12 and 10/12	1 0 0.02 0.02 0.02	not present (present) (present) present not present

Ausblick

- Gibt es eine Möglichkeit mit der Asymmetrie des EGHL Tests sinnvoll umzugehen?
- Wie genau sehen die Unterschiede in den Residuen der Testregression
 a) des EGHL Tests aus?
- Kann ein saisonaler Kointergationstest für Monatsdaten überhaupt im Detail zwischen den saisonalen Frequenzen unterscheiden?

Literatur

- Beaulieu, J. J. Miron, J. A. (1993): Seasonal unit roots in aggregate U.S. data. Journal of Econometrics 55, 305-328.
- Beenstock, M.; Goldin, E. Nabot, D. (1999): The demand for electricity in Isreal. Energy Economics 21, 168-183.
- Engle, R. F.; Granger, C. W. J.; Hylleberg, S. Lee, H. S. (1993): Seasonal Cointegration. The Japanese Consumption Function. Journal of Econometrics 55 (1), 275-298.
- Hylleberg, S.; Engle, R. F.; Granger, C. W. Yoo, B. S. (1990): Seasonal integration and cointegration. Journal of Econometrics 44 (1), 215-238.
- Rodrigues, P. Osborn, D. (2010): Performance of seasonal unit root tests for monthly data. Journal of Applied Statistics 26, 985-1004.

Vielen Dank für Ihre Aufmerksamkeit!