Arithmetic

D.N.Rakhmatov

Adopted (with modifications) from:

R. Bryant, CMU

B. Leahy, Georgia Tech

D. Patterson, UC-Berkeley

C. Hamacher et al, Computer Organization, 6/E, © 2011 McGraw-Hill

UVic - CENG 355 - Arithmetic

Fall 2016

N-Bit Number Ranges

NUMBER:	FROM:	<u>고</u> :
Unsigned	0	2 ^N - 1
Signed Magnitude	$-(2^{N-1}-1)$	1) $+(2^{N-1}-1)$
Two's Complement	- (2 ^{N-1})	$+(2^{N-1}-1)$
Biased (Bias = B)	a I	$2^{N} - 1 - B$

Fall 2016

UVic - CENG 355 - Arithmetic

Example

Z	& II					ı	
Щ	Binary	Unsigned	Signed One's Magn Compl	One's Compl	Two's Compl	Biased 127	Biased 128
888	00000000 00000001 00000010	0 1 0	0 1 0	010	010	-127 -126 -125	- <mark>128</mark> -127 -126
1001	 01111111 10000000 10000001	127 128 129	127 -0 -1	127 -127 -126	127 -128 -127	.040	
11 11	 11111110 11111111	254 255	-126 -127	-1 -0	 -2 -1	127 128	126 127
Numi Sto.	Number Stored		UVic - CENG	Number Number Represented	oer ented		

Key Point

- The same bit pattern can mean different things to hardware depending on software
- The computer just manipulates bits as instructed
- Different representations used internally are based on typical time-space tradeoff considerations
- Example:

```
/* prints 65 */
                           *
                         /* prints
           printf(" %d \n", c);
printf(" %c \n", c);
char c = 65;
```

UVic - CENG 355 - Arithmetic

Fall 2016

ASCII

a a	1																
Value	NOT		0	1		~	II		ď	Д		ď	д		\$	DEL	
Binary	00000000		0011000	00110001		00111100	00111101		01000001	01000010		01100001	01100010		0111110	0111111	UVic - CENG 355 - Arithmetic
Hex	000		030	031		030	030		041	042		061	0 62		07E	07F	UVic - CE
Octal	000		090	0 61		074	075		101	102		141	142		176	177	
Decimal	000	:	048	049	:	090	061	:	0.65	990	:	097	860	:	126	127	
																	Fall 2016

Special Cases

```
E = 255
                                                                                          Not
a
Number
xxxxxxxxxxxxxxxxxxxx
         mantissa (significand)
                                                        0 < E < 255
                             *
                                                                     Powers
                                                                                          Ordinary
FP
                                                                                                       Numbers
                           E-127
                                                                           of
Mo
                           2
                                                                                          Denormalized: (-1)<sup>S</sup> 2<sup>-126</sup> 0.M
                                                                                                       (Underflow)
                                                         E = 0
                             *
                                                                          0
                           (-1)^{s}
XXXXXXX
          exponent
                                                                                                0= |
|
| Wi
                                                                         M=0
                            pч
```

Fall 2016

UVic - CENG 355 - Arithmetic

Examples

```
2(-149) (denormalized positive, leading 0)
                             = +Infinity
                                              = -Infinity
                                                                                                                                                                                              0101010101010101010101010
00000000000000000000000 00000000
              1010101010101010101010101
                                                                                        = -1*2^{(1-127)}*1.0 = -2^{(-126)}
                                                                                                      = +1*2^{(127-127)}*1.1 = 1.5
                                                                                                                                    = +1*2^{(254-127)}*1.0 = 2^{127}
             00000000
                                                          0 11111111
                                                                                                                      0
```

UVic - CENG 355 - Arithmetic Fall 2016

Converting from IEEE-754

```
0 01101000 10101010100001101000010
```

- Sign: 0 (positive number)
- Exponent:
- \blacksquare 01101000 = 104
- 127 Bias adjustment: 104
- Significand:
- $= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22}$
- = 1.0 + 0.666115...
- $1.666115*2^{-23} \sim 1.986*10^{-7}$

Fall 2016

UVic - CENG 355 - Arithmetic

Converting to IEEE-754

```
0.25 + 0.0625 + 0.015625 + 0.00390625
                                                                                                           = 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 +
                                                                                                                                           = 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + 2^{-10} +
                                                                                                                                                                                                          = 1.0101010101... _2 * _2-2
                                                                                                                                                                          0.0101010101... 2 * 2^{\circ}
                                                                           + 0.0009765625 + ...
1/3 = 0.333333..._{10}
```

- Sign: 0
- Exponent: $-2 + 127 = 125_{10} = 01111101_2$
- Significand: 0101010101...

0 01111101 0101010101010101010101010

UVic - CENG 355 - Arithmetic Fall 2016

IEEE-754 Double Precision

UVic - CENG 355 - Arithmetic

Special Cases

Fall 2016

UVic - CENG 355 - Arithmetic

a Number Ŋ

Ordinary FP Numbers

Denormalized: (-1)^S 2⁻¹⁰²² 0.M

0=iW

(Underflow)

of Mo

0

0=W

Floating-Point Add/Subtract

Example

- = 18.9375**18.75 + 0.1875**
- Match the exponents:

2

 \blacksquare 18.75₁₀ = 10010.11₂ = 1.001011

= 18.9375

18.75 + 0.1875

Example

 $= (-1)^0 * 2^{(131-127)} * 1.001011$

- 0 10000011 1001011000000000000000000
 - 000000011000000000000000 0 10000011
- Add:

 $0.1875_{10} = 0.0011_2 = 1.1 * 2^{-3}$

 $2^{(124-127)} * 1.1$

 $= (-1)^0 *$

Don't forget implicit 1:

- 0 10000011 100101111000000000000000
- Sum is already normalized (leading 1)
- Actual bits stored:
- 0 10000011 00101111000000000000000
- Actual meaning:
- 0 10000011 00101111000000000000000
 - $2^{(131-127)} * 1.18359375 = 18.9375$

- 01111100 = 00000111

Next: match the exponents before addition!

The difference: 10000011

Need to right-shift the smaller number by 7 bits

UVic - CENG 355 - Arithmetic

Fall 2016

Fall 2016

UVic - CENG 355 - Arithmetic

Signed Adder/Subtractor

Two's Complement

- 2's complement: negation = bitwise inversion + 1
 - Example:
- -01011110 = 10100001+1 = 10100010
- Example: adding two two's complement numbers 010110012
 - -51_{10} 11001101_2
 - 3810 100100110₂
- Note:
- Overflow with 2's complements: positive + positive = negative,
- or negative + negative = positive
 Overflow occurs when carry-in to sign bit position is NOT equal to carry-out
- When there is no overflow, carry-out can be ignored

Fall 2016

UVic - CENG 355 - Arithmetic

0001 0000 0001 0000 0001 0000 0000 1000 0000 0100 0000 0010 0000 0010 0000 0010 0000 0010 0000 0010 0000 0010 0010 0000 0010 0000 0010 0000 UVic - CENG 355 - Arithmetic Quotient S 0000 0001 0000 0001 0000 0001 Remainder 1111 0111 0000 0111 0000 0111 0000 0111 0000 011. <u>-</u> 6 0000 011 0000 011 Example: 7 0000 0000 Fall 2016

Quotient Dividend Q Shift left : q_{n-1} Add/Subtract UVic - CENG 355 - Arithmetic Sequential Divider I m_0 a_0 Divisor M m_{n-1} 0 Fall 2016

Sequential Divider II

				First cycle						Second cycle					Third cycle				Fourth cuela	romm cycle				
ı	_		_				_	_			_	_	_				_	_	_	_	_			
	1 0 0 0		0 0 0			•	0 0 0 0	0 0 0				0 0 0 0	0 0 0			_	0 0 0	0 0 1		•	0 0 1 0		Quotient	UVic - CENG 355 - Arithmetic
	0 0 0 0 0	0 0 0 1 1	0 0 0 0 1	1 1 1 0 1	1 1 1 0	1 1	0 0 0 0 1	0 0 0 1 0	1 1 1 0 1	01111	1 1	0 0 0 1 0	0 0 1 0 0	1 1 1 0 1	0 0 0 0 1		0 0 0 1 0	1 1 1 0 1	1 1 1 1	_	0 0 0 1 0	$\left. \right $	Remainder	UVic - CEN
	Initially		Shift	Subtract	Set q ₀	Restore		Shift	Subtract	Set q ₀	Restore		Shift	Subtract	Set q ₀		Shift	Subtract	Set q ₀	Restore				
																								Fall 2016

Integer to Float to Integer

```
*
         *
                                                                                            = 1073742079
         complement
                                                    *
                                                    1073742080
/* IEEE-754
                                                                    *
                                                                    0
         2,8
                                                                     II
                 ٠.
                                                     II
                                                                    j/į
                 *
        *
                                                    ·н
                  ٠,
ښ
                                                    { /* never executed,
                                                                    never executed,
                   II
                                    (signed int) E;
                  ·D
                 i = 1073742079;
                                                                               Loss of precision:
                           (float) i;
                                             <u>(</u>
                                                             (j/i ===
         int i, j;
 float f;
                                                                                                        float:
                                             ·건
                                                                                            int:
                                            Ή
                                                             įĖ
```

IEEE-754 Rounding

- Round towards +infinity
- -2.001 რ ↑ ALWAYS round up: 2.001
- Round towards -infinity
- ALWAYS round down: 1.999 → 1, -1.999 →
- Truncate
- Drop the last bits (round towards 0)
- Round to (nearest) even
- **■** $2.5 \rightarrow 2, 3.5 \rightarrow 4$
- Ensures fairness of calculations on tie
- · Half the time we round up, the other half time we round down
- This is the default rounding mode

UVic - CENG 355 - Arithmetic Fall 2016

Example

- Ariane-5 launcher (1996)
- Exploded 37 sec after liftoff
- Automatic self-destruction
- Cargo worth \$500 million
- Why? Premature optimization
- Software converted 64-bit floating-point horizontal acceleration to 16-bit signed integer
- Worked OK for Ariane-4, but overflowed for faster Ariane-5
- Ariane-5 reused the software from Ariane-4, assuming it was bug-free
- Voverflow caused an exception in the Inertial Reference System, which was not programmed to catch it and hence crashed A After crashing, the Inertial Reference System started writing diagnostic data on the internal bus, which continued to be interpreted as valid navigational data, thus leading to erratic maneuvering and explosion

UVic - CENG 355 - Arithmetic Fall 2016

59

UVic - CENG 355 - Arithmetic

Fall 2016