Experiments

Exp 1. How good is the last iteration of the MCEM

```
time = proc.time()
n_{sim} = 1000
n_{trees} = 10
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
p = proc.time()
for(i in 1:n_sim){
  est = sim.est(n_trees=n_trees,pars=c(0.8,0.1,40),seed=i)
  RP[i,] = est$real
 MP[i,] = est$est
get.time(time)
## elapsed
## 1067.92
get.time(time)
## elapsed
## 1067.975
dmea::par_est_vis(P=MP,par=1,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
\#\# [1] "0.003 proportion of data was excluded for vizualization purposes"
```


get.time(time)

elapsed ## 1072.548

summary(MP)

##	V1		V2		V3	
##	Min.	:0.3894	Min.	:0.04906	Min.	:24.74
##	1st Qu	.:0.7670	1st Qu	1.:0.09504	1st Qu	.:37.76
##	Median	:0.8542	Median	:0.10580	Median	:38.93
##	Mean	:0.8558	Mean	:0.10722	Mean	:39.04
##	3rd Qu	.:0.9468	3rd Qu	1.:0.11806	3rd Qu	.:40.13
##	Max.	:1.4390	Max.	:0.23574	Max.	:92.99

summary(RP)

##	V1		V2		V3	
##	Min.	:0.4521	Min.	:0.04611	Min.	:3.200e+01
##	1st Qu	.:0.7557	1st Qu	.:0.08961	1st Qu	:3.900e+01
##	Median	:0.8363	Median	:0.10023	Median	:4.000e+01
##	Mean	:0.8497	Mean	:0.10096	Mean	:2.314e+11
##	3rd Qu	.:0.9381	3rd Qu	.:0.11241	3rd Qu	.:4.100e+01
##	Max.	:1.3443	Max.	:0.18053	Max.	:2.314e+14

```
\mu_0 = 0.2
```

```
time = proc.time()
n_sim = 1000
n_{trees} = 10
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
p = proc.time()
for(i in 1:n_sim){
  est = sim.est(n_trees=n_trees,pars=c(0.8,0.2,40),seed=i)
  RP[i,] = est$real
  MP[i,] = est$est
get.time(time)
## elapsed
## 1865.548
get.time(time)
## elapsed
## 1865.562
dmea::par_est_vis(P=MP,par=1,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
                          0.75
                                           1.00
                                                           1.25
                                                                           1.50
          0.50
                            MLE from incomplete tree
                                                                                   1.5 -
     1.25 -
                                                                                   1.2 -
                                                                               MLE of complete tree
     1.00 -
<sup>۲</sup>۲
                                                                                   0.9 -
     0.75 -
                                                                                   0.6 -
     0.50
             0.50
                             0.75
                                             1.00
                                                             1.25
                                                                                       0 30 60 90
                                                                                         count
```

dmea::par_est_vis(P=MP,par=2,PR=RP) ## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. ## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. 0.2 0.1 0.3 MLE from incomplete tree 0.4 -MLE of complete tree 0.3 -0.3 -FC FC 0.2 -0.2 -0.1 0.2 0.3 0 50100150 $\hat{\mu}_{\mathsf{l}}$

dmea::par_est_vis(P=MP,par=3,PR=RP)

```
## [1] "0.0080000000000000 proportion of data was excluded for vizualization purposes"
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

count

summary(MP)

```
٧2
##
          V1
                                               VЗ
           :0.4618
                              :0.1268
##
    Min.
                      {\tt Min.}
                                        Min.
                                                : 4.876
    1st Qu.:0.8207
                      1st Qu.:0.1750
                                         1st Qu.:37.782
    Median :0.9204
                      Median :0.1892
                                         Median :39.754
                              :0.1924
    Mean
          :0.9190
                                        Mean
                      Mean
                                                :39.591
##
    3rd Qu.:1.0188
                      3rd Qu.:0.2060
                                         3rd Qu.:41.539
    Max.
            :1.4345
                      Max.
                              :0.3772
                                         Max.
                                                :54.987
```

summary(RP)

```
##
          V1
                           ٧2
                                             VЗ
           :0.4374
                           :0.1166
                                              :4.000e+00
##
   Min.
                     Min.
                                       Min.
   1st Qu.:0.7565
                     1st Qu.:0.1848
                                       1st Qu.:3.800e+01
  Median :0.8441
                     Median :0.2007
                                       Median :4.000e+01
   Mean
           :0.8570
                     Mean
                            :0.2023
                                       Mean
                                              :3.283e+11
   3rd Qu.:0.9517
                     3rd Qu.:0.2185
                                       3rd Qu.:4.200e+01
                            :0.3850
   Max.
           :1.4282
                     Max.
                                       Max.
                                              :1.040e+14
```

```
\mu_0 = 0.4
```

```
time = proc.time()
n_sim = 1000
n_trees = 10
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
```

```
p = proc.time()
for(i in 1:n_sim){
  est = sim.est(n_trees=n_trees,pars=c(0.8,0.4,40),seed=i)
  RP[i,] = est$real
  MP[i,] = est$est
get.time(time)
## elapsed
## 3232.704
get.time(time)
## elapsed
## 3232.716
dmea::par_est_vis(P=MP,par=1,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
                        0.75
         0.50
                                       1.00
                                                      1.25
                                                                     1.50
                           MLE from incomplete tree
     1.25 -
                                                                                1.25
                                                                            MLE of complete tree
ری 1.00-
     0.75 -
     0.50 -
                                                                                0.50
                          0.75
                                        1.00
                                                       1.25
                                                                      1.50
           0.50
                                                                                    0 255075
                                                                                      count
dmea::par_est_vis(P=MP,par=2,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
\#\# [1] "0.032 proportion of data was excluded for vizualization purposes"
```


summary(MP)

```
٧2
##
          V1
                                             VЗ
##
   Min.
           :0.4907
                     Min.
                            :0.2646
                                      Min.
                                             : 3.708
   1st Qu.:0.8770
                     1st Qu.:0.3304
                                       1st Qu.: 34.555
  Median :0.9805
                     Median :0.3543
                                      Median: 40.657
                                             : 39.822
         :0.9800
                           :0.3598
                                      Mean
   Mean
                     Mean
   3rd Qu.:1.0736
                     3rd Qu.:0.3839
                                       3rd Qu.: 45.265
##
   Max.
           :1.4950
                     Max.
                            :0.5893
                                       Max.
                                              :142.651
```

summary(RP)

```
##
          V1
                           ٧2
                                            VЗ
         :0.5317
                     Min. :0.2699
                                             :3.000e+00
##
   Min.
                                      Min.
   1st Qu.:0.8051
                     1st Qu.:0.3757
                                      1st Qu.:3.300e+01
  Median :0.8962
                     Median :0.4009
                                      Median :3.900e+01
           :0.9015
                     Mean
                            :0.4030
                                      Mean
                                             :1.679e+12
##
   3rd Qu.:0.9902
                     3rd Qu.:0.4285
                                      3rd Qu.:4.400e+01
   Max.
           :1.4230
                     Max.
                           :0.6124
                                      Max.
                                             :4.773e+14
```

more trees

```
time = proc.time()
n_sim = 1000
n_trees = 100
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
```

```
p = proc.time()
for(i in 1:n_sim){
  est = sim.est(n_trees=n_trees,pars=c(0.8,0.1,40),seed=i)
  RP[i,] = est$real
  MP[i,] = est$est
print(proc.time()-p)
##
       user
               system elapsed
                0.156 8045.623
## 8044.632
get.time(time)
## elapsed
## 8045.629
dmea::par_est_vis(P=MP,par=1,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
                                  0.75
                 0.50
                                                   1.00
                                                                    1.25
                            MLE from incomplete tree
                                                                                 1.4 -
     1.2 -
                                                                                 1.2
                                                                             MLE of complete tree
     1.0 -
                                                                                 1.0
<ځ
     0.8 -
                                                                                0.8
     0.6 -
                                                                                0.6
                                      8.0
                                                    1.0
                                                                  1.2
                        0.6
          0.4
                                                                                    0 255075100
                                                                                       count
dmea::par_est_vis(P=MP,par=2,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
## [1] "0.003 proportion of data was excluded for vizualization purposes"
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


count

summary(MP)

```
٧2
                                               VЗ
##
          V1
           :0.4042
##
    Min.
                      Min.
                             :0.04663
                                         Min.
                                                :30.23
    1st Qu.:0.7543
                      1st Qu.:0.09528
                                         1st Qu.:37.92
   Median :0.8295
                      Median :0.10581
                                         Median :39.20
           :0.8288
                             :0.10716
                                                :39.23
    Mean
                      Mean
                                         Mean
                      3rd Qu.:0.11774
##
    3rd Qu.:0.9107
                                         3rd Qu.:40.29
    Max.
           :1.2760
                      Max.
                             :0.21760
                                         Max.
                                                :93.36
```

summary(RP)

```
##
          V1
                           ٧2
                                              VЗ
           :0.4521
                           :0.04611
                                               :3.200e+01
##
    Min.
                     Min.
                                        Min.
                     1st Qu.:0.08961
                                        1st Qu.:3.900e+01
   1st Qu.:0.7557
  Median :0.8363
                     Median :0.10023
                                        Median :4.000e+01
    Mean
           :0.8497
                     Mean
                            :0.10096
                                        Mean
                                               :2.314e+11
##
    3rd Qu.:0.9381
                     3rd Qu.:0.11241
                                        3rd Qu.:4.100e+01
                            :0.18053
    Max.
           :1.3443
                     Max.
                                               :2.314e+14
```

more trees

```
time = proc.time()
n_{sim} = 1000
n_{trees} = 100
MP = matrix(nrow=n_sim,ncol=3)
RP = matrix(nrow=n_sim,ncol=3)
```

```
p = proc.time()
for(i in 1:n_sim){
  est = sim.est(n_trees=n_trees,pars=c(0.8,0.4,40),seed=i)
  RP[i,] = est$real
  MP[i,] = est$est
get.time(time)
## elapsed
## 27009.56
get.time(time)
## elapsed
## 27009.57
dmea::par_est_vis(P=MP,par=1,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
                       0.75
                                       1.00
                                                      1.25
                                                                     1.50
        0.50
                             MLE from incomplete tree
     1.25 -
                                                                                   1.25
                                                                               MLE of complete tree
o 1.00-
                                                                                   1.00 -
     0.75 -
                                                                                  0.75 -
     0.50 -
                                                                                   0.50
                         0.75
                                         1.00
                                                        1.25
                                                                       1.50
          0.50
                                                                                       0 255075
                                           \hat{\lambda}_{l}
                                                                                         count
dmea::par_est_vis(P=MP,par=2,PR=RP)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
## [1] "0.032 proportion of data was excluded for vizualization purposes"
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


get.time(time)

elapsed ## 27012.65

summary(MP)

##	V1	V2	V3	
##	Min. :0.5126	Min. :0.2577	Min. : 3.998	
##	1st Qu.:0.8771	1st Qu.:0.3310	1st Qu.: 34.887	
##	Median :0.9694	Median :0.3533	Median : 40.761	
##	Mean :0.9690	Mean :0.3596	Mean : 40.281	
##	3rd Qu.:1.0633	3rd Qu.:0.3837	3rd Qu.: 45.622	
##	Max. :1.5207	Max. :0.5664	Max. :165.823	

summary(RP)

##	1	<i>I</i> 1	7	V 2	I	<i>I</i> 3
##	Min.	:0.5317	Min.	:0.2699	Min.	:3.000e+00
##	1st Qu.	:0.8051	1st Qu	.:0.3757	1st Qu.	:3.300e+01
##	Median	:0.8962	Median	:0.4009	Median	:3.900e+01
##	Mean	:0.9015	Mean	:0.4030	Mean	:1.679e+12
##	3rd Qu.	:0.9902	3rd Qu	.:0.4285	3rd Qu.	:4.400e+01
##	Max.	:1.4230	Max.	:0.6124	Max.	:4.773e+14