1,9 APLIKÁCIE BERNOULLIHO ROVNICE

1. Akou veľkou rýchlosťou vyteká voda z výstupného otvoru priehrady, ak je otvor 20 metrov pod voľnou hladinou? g=10 ms⁻².

2. Porovnajte veľkosti rýchlosti vytekania vody v hĺbkach a) 10 cm b) 20 cm c) 30 cm d) 40 cm a e) 50 cm pod voľnou hladinou. g = 9.81 ms^{-2}

[a) $v = 1,40 \text{ ms}^{-1}$, b) $v = 1,98 \text{ ms}^{-1}$, c) $v = 2,43 \text{ ms}^{-1}$, d) $v = 2,80 \text{ ms}^{-1}$, e) $v = 3,13 \text{ ms}^{-1}$]

- 3. V akej hĺbke od voľnej hladiny sa nachádza výtok, ak rýchlosť vody výtoku je 6 ms⁻¹? [h₂ = 1,83 m]
- 4. Akou rýchlosťou prúdi voda v potrubí, ak rozdiel výšok jej hladín v manometrických trubiciach v zariadení pre meranie rýchlosti vody je 10 cm? g = 9,81 ms⁻²

Zápis: Riešenie: $\begin{array}{l} \text{h = 10 cm = 0,1 m} \\ \text{g = 9,81 ms}^{-2} \\ \text{p = 1000 kgm}^{-3} \end{array} \qquad \begin{array}{l} \frac{1}{2} \times \rho \times v^2 + \rho \times g \times h_1 = \rho \times g \times h_2 \\ v = \sqrt{\frac{2 \times (\rho \times g \times h_2 - \rho \times g \times h_1)}{\rho}} \\ v = \sqrt{\frac{2 \times \rho \times g \times (h_2 - h_1)}{\rho}} \\ v = \sqrt{\frac{2 \times 1000 \times 9,81 \times 0,1}{1000}} \\ v = 1,40 \ ms^{-1} \end{array}$

- 5. Vypočítajte do akej výšky vystúpi ortuť v druhej manometrickej trubici, ak prúdi rýchlosťou 3 ms⁻¹, a v prvej trubici vystúpila do výšky 15 cm. g = 9.81 ms^{-2} [$h_2 = 60.87 \text{ cm}$]
- 6. Vypočítajte rýchlosť prúdenia ortuti ak tlak v druhej manometrickej trubici je 2,8krát väčší ako v prvej, a v prvej trubici vystúpila do výšky 6 cm. Počítajte s g = 9,81 ms⁻², ρ = 13530 kgm⁻³ [v = 1,46 ms⁻¹]
- Vypočítajte aký bude tlak v prvej manometrickej trubici, ak tam prúdi voda rýchlosťou 2,25 ms⁻¹ a v druhej trubici voda vystúpila do výšky 33,6 cm. g = 9,81 ms⁻².
 [p = 327 kPa]

- 8. Vypočítajte koľkokrát sa zmenší tlak pudiacej kvapaliny, ak sa jej rýchlosť v zúženom priereze vzhľadom na rýchlosť prúdenia v širšom priereze zdvojnásobí. [p = 327 kPa]
- 9. Ako sa zmení rýchlosť vytekania kvapaliny, ak by sme ju nerátali na Zemi ale na a) Mesiaci (g = 1,62 ms⁻²) b) Marse (g = 3,69 ms⁻²)? [Rýchlosť vytekania kvapaliny na Mesiaci bude 0,41 pôvodnej Rýchlosť vytekania kvapaliny na Marse bude 0,61 pôvodnej]
- 10. Vysvetlite rozdiel pohybu telesa pri dolnej a pri hornej rotácii telesa.

	Dolná rotácia	Horná rotácia
Väčšia rýchlosť voči vzduchu	NAD telesom	POD telesom
Ťahané do nižšieho tlaku vzduch	NAHOR	NADOL
Dĺžka letu	ďaleký	krátky
Odraz	nízky a krátky	vysoký

Teleso môže mať aj bočnú rotáciu, ktorá sa využíva na zmenenie trajektórie.