

Report No:CCISE170604404

FCC REPORT

(WIFI)

Applicant: LAVA INTERNATIONAL (H.K) LIMITED

Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST,

JORDAN KL, HK

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: R2

Trade mark: LAVA

FCC ID: 2AEE8LAVAR2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Jun., 2017

Date of Test: 08 Jun., to 10 Jul., 2017

Date of report issued: 12 Jul., 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	12 Jul., 2017	Original

Tested by: Mike. OU Date: 12 Jul., 2017

Test Engineer

Reviewed by: 2 Man Lee Date: 12 Jul., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
- 5		IERAL INFORMATION	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT ANDMODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS ANDMEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	19
	6.5	Power Spectral Density	28
	6.6	BAND EDGE	
	6.6.1	Conducted Emission Method	33
	6.6.2		
	6.7	Spurious Emission	53
	6.7.1	Conducted Emission Method	53
	6.7.2	Radiated Emission Method	62
7	TES	T SETUP PHOTO	70
8	FUT	CONSTRUCTIONAL DETAILS	71

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK
Manufacturer:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Manufacturer:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	R2
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2700mAh
AC adapter:	Model: CLV-15 Input: AC100-240V 50/60Hz 0.15A Output: DC 5.0V, 1A

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment andmode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen ZhongjianNanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen ZhongjianNanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen ZhongjianNanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of

Shenzhen ZhongjianNanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170604404

Report No: CCISE170604404

testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen ZhongjianNanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.7 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018

Cond	ucted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Project No.:CCISE1705047

Report No: CCISE170604404

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFiantenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is1dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2014				
TestFrequencyRange:	150kHz to 30MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	Z			
Limit:	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the log				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test setup:		Reference Plane	<u> </u>		
	AUX Equipment Test table/Insula Remark E U.T: Equipment Under LISN Line Impédence St. Test table height=0 8m	E.U.T EMI Receiver	ilter — AC power		
Test Instruments:	Refer to section 5.6 for d	etails			
Test mode:	Refer to section 5.3 for d	letails			
Test results:	Passed	Passed			

Page 11 of 71

Measurement Data:

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Smart phone EUT Model : R2

Test Mode : Wifi mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Mike

:	Pood	LICH	Coblo		Limit	Orrar	
Freq					Line		Remark
MHz	dBu₹	₫B	d₿	dBu∀	dBu₹	dB	
0.151	28.72	0.12	10.78	39.62	55.96	-16.34	Average
0.154	45.31	0.12	10.78	56.21	65.78	-9.57	QP
0.206	39.16	0.15	10.76	50.07	63.36	-13.29	QP
0.406	38.77	0.23	10.72	49.72	57.73	-8.01	QP
0.415	30.66	0.23	10.73	41.62	47.55	-5.93	Average
0.505	36.94	0.24	10.76	47.94	56.00	-8.06	QP
0.510	27.89	0.25	10.76	38.90	46.00	-7.10	Average
0.665	24.51	0.31	10.77	35.59	46.00	-10.41	Average
0.984	22.39	0.26	10.87	33.52	46.00	-12.48	Average
1.172	21.68	0.26	10.89	32.83	46.00	-13.17	Average
1.317	35.20	0.26	10.91	46.37	56.00	-9.63	QP
1.819	35.32	0.26	10.95	46.53	56.00	-9.47	QP
	MHz 0. 151 0. 154 0. 206 0. 406 0. 415 0. 505 0. 510 0. 665 0. 984 1. 172 1. 317	MHz dBuV 0.151 28.72 0.154 45.31 0.206 39.16 0.406 38.77 0.415 30.66 0.505 36.94 0.510 27.89 0.665 24.51 0.984 22.39 1.172 21.68 1.317 35.20	MHz dBuV dB 0.151 28.72 0.12 0.154 45.31 0.12 0.206 39.16 0.15 0.406 38.77 0.23 0.415 30.66 0.23 0.505 36.94 0.24 0.510 27.89 0.25 0.665 24.51 0.31 0.984 22.39 0.26 1.172 21.68 0.26 1.317 35.20 0.26	MHz dBuV dB dB 0.151 28.72 0.12 10.78 0.154 45.31 0.12 10.78 0.206 39.16 0.15 10.76 0.406 38.77 0.23 10.72 0.415 30.66 0.23 10.73 0.505 36.94 0.24 10.76 0.510 27.89 0.25 10.76 0.665 24.51 0.31 10.77 0.984 22.39 0.26 10.87 1.172 21.68 0.26 10.89 1.317 35.20 0.26 10.91	MHz dBuV dB dB dBuV 0.151 28.72 0.12 10.78 39.62 0.154 45.31 0.12 10.78 56.21 0.206 39.16 0.15 10.76 50.07 0.406 38.77 0.23 10.72 49.72 0.415 30.66 0.23 10.73 41.62 0.505 36.94 0.24 10.76 47.94 0.510 27.89 0.25 10.76 38.90 0.665 24.51 0.31 10.77 35.59 0.984 22.39 0.26 10.87 33.52 1.172 21.68 0.26 10.89 32.83 1.317 35.20 0.26 10.91 46.37	MHz dBuV dB dB dBuV dBuV 0.151 28.72 0.12 10.78 39.62 55.96 0.154 45.31 0.12 10.78 56.21 65.78 0.206 39.16 0.15 10.76 50.07 63.36 0.406 38.77 0.23 10.72 49.72 57.73 0.415 30.66 0.23 10.73 41.62 47.55 0.505 36.94 0.24 10.76 47.94 56.00 0.510 27.89 0.25 10.76 38.90 46.00 0.984 22.39 0.26 10.87 33.52 46.00 1.172 21.68 0.26 10.89 32.83 46.00 1.317 35.20 0.26 10.91 46.37 56.00	MHz dBuV dB dB dBuV dBuV dB 0.151 28.72 0.12 10.78 39.62 55.96 -16.34 0.154 45.31 0.12 10.78 56.21 65.78 -9.57 0.206 39.16 0.15 10.76 50.07 63.36 -13.29 0.406 38.77 0.23 10.72 49.72 57.73 -8.01 0.415 30.66 0.23 10.73 41.62 47.55 -5.93 0.505 36.94 0.24 10.76 47.94 56.00 -8.06 0.510 27.89 0.25 10.76 38.90 46.00 -7.10 0.665 24.51 0.31 10.77 35.59 46.00 -10.41 0.984 22.39 0.26 10.87 33.52 46.00 -12.48 1.172 21.68 0.26 10.89 32.83 46.00 -13.17 1.317 35.20 0.26

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Site

Condition

EUT Model : R2

Test Mode : Wifi mode

Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa Test Engineer: Mike

Remark

NCMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	₫B	dBu∀	dBuV	₫B	<u> </u>
1	0.154	44.44	0.14	10.78	55.36	65.78	-10.42	QP
2	0.154	27.13	0.14	10.78	38.05	55.78	-17.73	Average
3	0.206	40.43	0.15	10.76	51.34	63.36	-12.02	QP
4	0.206	25.38	0.15	10.76	36.29	53.36	-17.07	Average
5	0.406	40.41	0.24	10.72	51.37	57.73	-6.36	QP
6	0.415	27.27	0.24	10.73	38.24	47.55	-9.31	Average
7	0.505	39.61	0.24	10.76	50.61	56.00	-5.39	QP
8	0.513	24.93	0.25	10.76	35.94	46.00	-10.06	Average
1 2 3 4 5 6 7 8 9	0.661	21.54	0.31	10.77	32.62	46.00	-13.38	Average
10	1.317	36.48	0.28	10.91	47.67	56.00	-8.33	QP
11	1.819	37.41	0.31	10.95	48.67	56.00	-7.33	QP
12	1.819	21.53	0.31	10.95	32.79	46.00		Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
Test CIT	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dDin)	Nesult
Lowest	16.96	14.32	13.86	13.00		
Middle	16.48	15.28	15.24	13.16	30.00	Pass
Highest	15.89	14.93	15.20	13.17		

Test plot as follows:

Test mode:802.11b

Lowest channel

Highest channel

Highest channel

Highest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		6dB Emission	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iz)	Nosuit
Lowest	9.28	15.28	15.36	35.52		
Middle	9.28	15.84	15.48	35.52	>500	Pass
Highest	9.20	15.60	15.24	35.84		
Test CH		99%Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Nesult
Lowest	12.56	16.32	17.44	36.16		
Middle	12.56	16.40	17.60	35.68	N/A	N/A
Highest	12.56	16.40	17.60	35.84		

Test plot as follows:

6dB EBW

Date: 28.JUN.2017 16:17:39

Lowest channel

Date: 28.JUN.2017 16:18:45

Middle channel

Date: 28.JUN.2017 16:19:34

Highest channel

Date: 28.JUN.2017 16:20:48

Lowest channel

Date: 28.JUN.2017 16:22:22

Middle channel

Date: 28.JUN.2017 16:23:28

Highest channel

Date: 28.JUN.2017 16:24:45

Lowest channel

Date: 28.JUN.2017 16:25:37

Middle channel

Date: 28.JUN.2017 16:27:50

Highest channel

Date: 28.JUN.2017 16:12:08

Lowest channel

Date: 28.JUN.2017 16:13:20

Middle channel

Date: 28.JUN.2017 16:16:00

Highest channel

99% OBW

Date: 28.JUN.2017 16:29:10

Lowest channel

Date: 28.JUN.2017 16:29:50

Middle channel

Date: 28.JUN.2017 16:30:19

Highest channel

Date: 28.JUN.2017 16:30:48

Lowest channel

Date: 28.JUN.2017 16:31:07

Middle channel

Date: 28.JUN.2017 16:32:26

Highest channel

Date: 28.JUN.2017 16:32:48

Lowest channel

Date: 28.JUN.2017 16:33:07

Middle channel

Date: 28.JUN.2017 16:33:28

Highest channel

Date: 28.JUN.2017 16:34:31

Lowest channel

Date: 28.JUN.2017 16:35:02

Middle channel

Date: 28.JUN.2017 16:35:31

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		Power Spec	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Elithit (dBitt)	Result
Lowest	7.30	2.82	2.70	-0.84		
Middle	7.83	4.06	4.10	-0.95	8.00	Pass
Highest	7.54	3.63	3.81	-1.18		

Test plot as follows:

Date: 28.JUN.2017 16:39:22

Lowest channel

Date: 28.JUN.2017 16:39:45

Middle channel

Date: 28.JUN.2017 16:40:41

Highest channel

Date: 28.JUN.2017 16:41:13

Lowest channel

Date: 28.JUN.2017 16:41:43

Middle channel

Date: 28.JUN.2017 16:42:09

Highest channel

Date: 28.JUN.2017 16:42:42

Lowest channel

Date: 28.JUN.2017 16:43:17

Middle channel

Date: 28.JUN.2017 16:43:37

Highest channel

Date: 28.JUN.2017 16:37:36

Lowest channel

Date: 28.JUN.2017 16:36:53

Middle channel

Date: 28.JUN.2017 16:36:20

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.2	209 and 15.205			
Test Method:	ANSI C63.10: 2013and KDB 558074v03r05 section 12.1					
TestFrequencyRange:	2.3GHz to 2.5GHz					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW Remark		Remark
	Above 1GHz	Peak	1MHz		MHz	Peak Value
119	Frequenc	RMS			Average Value Remark	
Limit:	•		54.00			verage Value
	Above 1GHz		74.00 Pea			Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data sheet. 					
Test setup:	150cm	AE EUT (Turntable)	Ground Reference Plane	rn Antenna	Antenna Tox	wer
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

802.11b

Test channel:Lowest

Horizontal:

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone

Model : R2

Test mode : 802.11b-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

		Antenna Factor						Remark
MHz	dBu∜	$\overline{dB/m}$	<u>dB</u>	<u>db</u>	dBuV/m	dBuV/m	dB	
2390.000 2390.000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen ZhongjianNanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.:CCISE1705047

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

Model : R2

Test mode : 802.11b-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

IIIWIA		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000	19.17	23.68	4.69	0.00	47.54	74.00	-26.46	Peak
2	2390.000	19.17	23.68	4.69	0.00	47.54	54.00	-6.46	Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone

Model R2

: 802.11b-H mode Test mode Power Rating : AC 120V / 60Hz Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike

REMARK

		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen ZhongjianNanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart phone

: R2 Model

Test mode : 802.11b-H mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

ron,	II.								
		Read	Antenna	Cable	e Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500	21.38	23.70	4.81	0.00	49.89	74.00	-24.11	Peak
)	2483, 500	9.59	23.70	4.81	0.00	38, 10	54.00	-15.90	Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g Test channel:Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

Model : R2

Test mode : 802.11g-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

		Read	ReadAntenna		Preamp		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB		
1	2390.000	20.61	23.68	4.69	0.00	48.98	74.00	-25.02	Peak	
2	2390.000	10.46	23.68	4.69	0.00	38.83	54.00	-15.17	Average	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone

Model : R2

Test mode : 802.11g-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

THEY	an .								
	Free		Antenna Factor						
	rred	rever	Factor	T022	ractor	rever	Line	LIMIT	Kemark
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000	21.47	23.68	4.69	0.00	49.84	74.00	-24.16	Peak
2	2390, 000	10.58	23, 68	4.69	0.00	38, 95	54,00	-15.05	Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

: R2 Model

Test mode : 802.11g-H mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

	Freq	Read Freq Level		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>db</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

: R2 Model

Test mode : 802.11g-H mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

	Read	Antenna	Cable	Preamp		Limit	Over		
Freq		Factor						Remark	
MHz	dBu∜	dB/m	d₿	₫B	dBuV/m	dBuV/m	d₿		2
2483.500									
2483.500	12.34	23. 70	4.81	0.00	40.85	54.00	-13.15	Average	

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart phone EUT

Model : R2

Test mode : 802.11n20-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

LINUL		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000	26.48	23.68	4.69	0.00	54.85	74.00	-19.15	Peak
2	2390,000	10.30	23.68	4.69	0.00	38.67	54.00	-15.33	Average

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart phone

: R2 Model

Test mode : 802.11n20-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

ar	cv :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
	2390.000	23.46	23.68	4.69	0.00	51.83	74.00	-22.17	Peak
	2390, 000	10.67	23, 68	4.69	0.00	39, 04	54,00	-14.96	Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart phone

Model : R2 Test mode : 802.11n20-H mode

Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

SIIMIO	3	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		Remark
	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	āB	
1 2	2483.500 2483.500					56.49 41.63			Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

: R2 Model

Test mode : 802.11n20-H mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

CIIICATO		Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	31.32	23.70	4.81	0.00	59.83	74.00	-14.17	Peak
2	2483.500	16.16	23.70	4.81	0.00	44.67	54.00	-9.33	Average
3	2484.057	32.38	23.70	4.81	0.00	60.89	74.00	-13.11	Peak
4	2484.057	16.82	23.70	4.81	0.00	45.33	54.00	-8.67	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smart phone

Model : R2

: 802.11n40-L mode Test mode Power Rating: AC 120V / 60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

W)	un.								
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	d₿	
	2390.000 2390.000								

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smart phone

Model : R2

Test mode : 802.11n40-L mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

m		Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	dB	
	2390.000	31.27	23.68	4.69	0.00	59.64	74.00	-14.36	Peak
	2390.000	18.08	23.68	4.69	0.00	46.45	54.00	-7.55	Average

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Smart phone EUT

Model R2

: 802.11n40-H mode Test mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBu∜/m	dB	
	2483.500	26.40	23.70	4.81	0.00	54.91	74.00	-19.09	Peak
)	2483 500	10 65	23 70	4 81	0.00	30 16	54 00	-14.84	Amerage

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart phone

: R2 Model

Test mode : 802.11n40-H mode Power Rating : AC 120V / 60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

'III'ATU'T			Antenna Factor				Limit	Over	Remark
	1100	Level	ractor	LUSS	ractor	Tevel	LINE	LIMIL	Kemark
-	MH2	dBu∀	dB/m	dB	₫B	dBuV/m	dBuV/m	₫B	
1	2483.500	29.66	23.70	4.81	0.00	58.17	74.00	-15.83	Peak
2	2483.500	14.01	23.70	4.81	0.00	42.52	54.00	-11.48	Average
2	2484.057	31.58	23.70	4.81				-13.91	
4	2484.057	14.82	23.70	4.81	0.00	43.33	54.00	-10.67	Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmittercomplies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Project No.:CCISE1705047

Test plot as follows:

Test mode: 802.11b

Date: 28.JUN.2017 18:09:33

30MHz~25GHz

Date: 28.JUN.2017 18:09:53

Date: 28.JUN.2017 18:27:03

Test mode: 802.11g Lowest channel

Date: 28.JUN.2017 18:27:32

30MHz~25GHz

Date: 28.JUN.2017 18:28:04

Date: 28.JUN.2017 18:28:46

Test mode: 802.11n(H20)

Date: 28.JUN.2017 18:29:16

30MHz~25GHz

Date: 28.JUN.2017 18:29:48

Date: 28.JUN.2017 18:30:24

Test mode: 802.11n(H40)

Lowest channel

Date: 28.JUN.2017 18:31:05

30MHz~25GHz

Date: 28.JUN.2017 18:31:57

Date: 28.JUN.2017 18:32:28

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15	.209 a	nd 15.205			
Test Method:	ANSI C63.10:201	13					
TestFrequencyRange:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3	3m				
Receiver setup:	Frequency	Detec	ctor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-p	peak	120KHz	300KHz		Quasi-peak Value
	Above 1GHz	Peal		1MHz	3MHz		Peak Value
		RMS		1MHz		ЛHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value uasi-peak Value
	216MHz-960MHz 46.0 Quasi-peak V						
	960MHz-1GHz 54.0 Quasi-peak Vali						
	Above 1GHz	<u>:</u>		54.0		- /	Average Value
Test Procedure:	1. The EUT wa	s placed	d on the	74.0 e top of a rot	ating	table 0	Peak Value 0.8m(below
	chamber.Th position of the EUT was antenna, who tower. 3. The antennathe ground to Both horizor make the med. 4. For each succase and the meters and to find the med. 5. The test-reconspecifiedBa. 6. If the emission the limitspect of the EUT whave 10dB reconstructions.	e table we he highest is set 3 michwas man height is o determental and versuremental and versuremental enthe rotata aximum eiver sysundwidth von level of cified, the wouldbe margin we	vas rotist radia meters mounted is varied in the vertical ent. emissi tenna reading tem with Moof the en testi reporter ould be	ation. away from the don the toped on the toped from one remaximum on, the EUT was tuned from as set to Peak as set to Peak as ing could be the dot of the toped. Otherwise ere-tested or	he into of a value s of the was a height m 0 do ak De d Mode stoppe e the ne by	todete erferen variable to four of the fine ante arrange hts fror egrees tect Fu le. e was 1 ed and emissione us	rmine the ace-receiving e-height antenna a meters above field strength. enna are set to ed to its worst in 1 meter to 4 to 360 degrees

Page 62 of 71

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT Smart phone :

Model : R2

Test mode : Wifi mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	39.437	33.42	16.68	1.21	29.91	21.40	40.00	-18.60	QP
2	44.901	32.14	17.40	1.28		20.96			
2	106.385	36.99	10.58	2.01	29.48	20.10	43.50	-23.40	QP
4 5 6	191.074	38.42	9.75	2.81	28.89	22.09	43.50	-21.41	QP
5	385.281	32.52	15.40	3.09	28.72	22.29	46.00	-23.71	QP
6	968.934	30.31	22.41	4.31	27.61	29.42	54.00	-24.58	QP

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL

EUT : Smart phone

: K2
Test mode : Wifi mode
Power Rating : AC 120V / 60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

mener	•	020-0-10-00-00-0	100000000000000000000000000000000000000	1627-1010-1011	AND CONTRACTOR		120000000000000000000000000000000000000	125000000000	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
110	MHz	dBu∜	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	dB	
1	40.276	41.54	16.95	1.22	29.90	29.81	40.00	-10.19	QP
1 2 3	45.058	40.57	17.40	1.29	29.86	29.40	40.00	-10.60	QP
3	138.874	43.73	11.77	2.38	29.28	28.60	43.50	-14.90	QP
4	151.067	42.41	10.59	2.53	29.21	26.32	43.50	-17.18	QP
5	425.028	39.26	16.06	3.14	28.83	29.63	46.00	-16.37	QP
6	968 934	35, 64	22.41	4.31	27.61	34 75	54.00	-19.25	OP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.98	36.06	6.81	41.82	52.03	74.00	-21.97	Vertical
4824.00	51.03	36.06	6.81	41.82	52.08	74.00	-21.92	Horizontal
Test	mode: 802.	11b	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	41.47	36.06	6.81	41.82	42.52	54.00	-11.48	Vertical
4824.00	41.23	36.06	6.81	41.82	42.28	54.00	-11.72	Horizontal

Test	mode: 802.	11b	Te	st channel: M	/liddle	Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	50.18	36.32	6.85	41.84	51.51	74.00	-22.49	Vertical	
4874.00	49.88	36.32	6.85	41.84	51.21	74.00	-22.79	Horizontal	
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.52	36.32	6.85	41.84	41.85	54.00	-12.15	Vertical	
4874.00	39.98	36.32	6.85	41.84	41.31	54.00	-12.69	Horizontal	

Test	mode: 802.	11b	Tes	st channel: H	ighest	Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Loss Factor Level I		Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.70	36.58	6.89	41.86	50.31	74.00	-23.69	Vertical	
4924.00	49.78	36.58	6.89	41.86	51.39	74.00	-22.61	Horizontal	
Test	mode: 802.	11b	Test channel: Highest			Rem	nark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	38.70	36.58	6.89	41.86	40.31	54.00	-13.69	Vertical	
4924.00	39.39	36.58	6.89	41.86	41.00	54.00	-13.00	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	49.98	36.06	6.81	41.82	51.03	74.00	-22.97	Vertical	
4824.00	50.35	36.06	6.81	41.82	51.40	74.00	-22.60	Horizontal	
Test	t mode: 802.	11g	Test channel: Lowest			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	41.32	36.06	6.81	41.82	42.37	54.00	-11.63	Vertical	
4824.00	40.89	36.06	6.81	41.82	41.94	54.00	-12.06	Horizontal	

Test	t mode: 802.	11g	Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.98	36.32	6.85	41.84	51.31	74.00	-22.69	Vertical	
4874.00	49.89	36.32	6.85	41.84	51.22	74.00	-22.78	Horizontal	
Test	t mode: 802.	11g	Test channel: Middle			Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	40.26	36.32	6.85	41.84	41.59	54.00	-12.41	Vertical	
4874.00	39.97	36.32	6.85	41.84	41.30	54.00	-12.70	Horizontal	

Tes	t mode: 802.	11g	Tes	t channel: Hig	ghest	Re	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.89	36.58	6.89	41.86	50.50	74.00	-23.50	Vertical
4924.00	49.98	36.58	6.89	41.86	51.59	74.00	-22.41	Horizontal
Tes	t mode: 802.	11g	Test channel: Highest			Rem	ark: Avera	ige
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.64	36.58	6.89	41.86	41.25	54.00	-12.75	Vertical
4924.00	39.89	36.58	6.89	41.86	41.50	54.00	-12.50	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Pea	ık	
Frequency	Read	Antenna	Cable	Preamp	Level	LimitLine	Over	Dalas
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.
(1711 12)	(dBuV)	(dB/m)	(dB)	(dB)	(aba v/III)	(abav/iii)	(dB)	
4824.00	50.21	36.06	6.81	41.82	51.26	74.00	-22.74	Vertical
4824.00	50.69	36.06	6.81	41.82	51.74	74.00	-22.26	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Rem	ark: Avera	age
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.
(1011-12)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubu v/III)	(dB)	
4824.00	41.00	36.06	6.81	41.82	42.05	54.00	-11.95	Vertical
4824.00	40.89	36.06	6.81	41.82	41.94	54.00	-12.06	Horizontal

Test m	ode: 802.11	n(H20)	Te	st channel: M	/liddle	Re	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.96	36.32	6.85	41.84	51.29	74.00	-22.71	Vertical
4874.00	49.97	36.32	6.85	41.84	51.30	74.00	-22.70	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.97	36.32	6.85	41.84	40.30	54.00	-13.70	Vertical
4874.00	39.21	36.32	6.85	41.84	40.54	54.00	-13.46	Horizontal

Test m	ode: 802.11	n(H20)	Tes	st channel: H	ighest	Re	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.93	36.58	6.89	41.86	50.54	74.00	-23.46	Vertical
4924.00	49.96	36.58	6.89	41.86	51.57	74.00	-22.43	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.67	36.58	6.89	41.86	41.28	54.00	-12.72	Vertical
4924.00	39.72	36.58	6.89	41.86	41.33	54.00	-12.67	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	02.11n(H40)		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	50.23	36.06	6.81	41.82	51.28	74.00	-22.72	Vertical
4844.00	50.46	36.06	6.81	41.82	51.51	74.00	-22.49	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	41.26	36.06	6.81	41.82	42.31	54.00	-11.69	Vertical
4844.00	40.79	36.06	6.81	41.82	41.84	54.00	-12.16	Horizontal

Test m	ode: 802.11	n(H40)	Te	st channel: M	1iddle	Re	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.97	36.32	6.85	41.84	51.30	74.00	-22.70	Vertical
4874.00	49.89	36.32	6.85	41.84	51.22	74.00	-22.78	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Middle		Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.96	36.32	6.85	41.84	40.29	54.00	-13.71	Vertical
4874.00	39.29	36.32	6.85	41.84	40.62	54.00	-13.38	Horizontal

Test m	ode: 802.11	n(H40)	Tes	Test channel: Highest Remark: Peak		ak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	49.97	36.45	6.87	41.85	51.44	74.00	-22.56	Vertical
4904.00	49.53	36.45	6.87	41.85	51.00	74.00	-23.00	Horizontal
Test m	ode: 802.11	n(H40)	Test channel: Highest		Rem	ark: Avera	age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	39.72	36.45	6.87	41.85	41.19	54.00	-12.81	Vertical
4904.00	39.64	36.45	6.87	41.85	41.11	54.00	-12.89	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.