

BH001-2 : System Solution

Multimedia Systems

Renesas Design Vietnam Co., Ltd.

Hieu Nguyen Tuoi Dang

Oct 29, 2013

AGENDA

- Audio signal processing & Audio codec
- Video signal processing & Video codec
- Example of SoC architecture

Trends of AV signal processing technology

AV equipments have migrated from analog technology to digital technology

Typical Consumer Products

Multimedia Processing in Renesas's SoC

Audio signal processing & Audio codec

Content

- Introduction
- Basic technique of Audio Coding (Loosy & Lossless)
- Basic technique of LOOSY Audio Coding (Psych-acoustic Model)

Trends of Audio processing

Digital signal of audio and voice

Frequency of audio and voice signal

Variety of sound signal processing

Forming waves Filter Processing

- Equalizer
- Noise Canceller
- Rate Conversion

Data Compression

Standard Coding

- Voice Codec standard
- Audio Coding standard

Filter processing

Example Equalizer

Adjust Treble or Bass

Format of digital audio

Basic principle of Audio Coding

- (1) Utilize Time Frequency transformation
 - Fourier transformation(MDCT Modifed Discrete CosineTransform)
- (2) Utilize the property of correlation between Audio data
 - Stereo Coding
- (3) Utilize the probability of data appearance
 - Entropy Coding(Huffman Coding)

Basic block diagram of audio codec

Basic block diagram of audio codec

Time-Frequency transformation

Audio signal can be transferred to frequency domain by using QMF Filter Bank or MDCT

MDCT transformation

Basic block diagram of audio codec

MS-Stereo (Stereo coding)

Use correlation between Left and Right channel in stereo audio data

MS(Middle/Side) Stereo

Sum of 2ch component M=(L+R)

Difference of 2ch component S=(L-R)

Suppose the difference between L-ch and R-ch is very small, S close to 0. It contribute decrease the quantity of data.

Intensity stereo (Stereo coding)

Use correlation between Left and Right channel in stereo audio data

Intensity Stereo

Common Signal Ratio of L/R

is ratio

→ For high frequency signal, Amplitude of each channel are important compare with the Signal phase difference.

Joint stereo (Combination of stereo coding)

_	MS stereo	Intensity stereo	
Lch	Component M	Component S	
Rch	Component S	Component position	

Basic block diagram of audio codec

Quantization

Basic block diagram of audio codec

Huffman coding

Provide short length code for the symbol which appear frequently. Use probability of appearance

ACBDAAACAAEBBAAB

	probability	symbol	code
	† 1/2	A	0
	1/4	В	10
High Probabili	1/8	C	110
Probabili	^{ty} 1/16	D	1110
	1/16	E	1111

Basic technique for lossy audio coding (Introduction to psychoacoustics – 1)

9

Loudness contours from Fletcher and Munson

The hearing sensation that corresponds to sound levels is the loudness of the sound (Fig. right)

→Hearing range and hearing threshold are exist

ATH: Absolute Threshold Level

We can delete the information that we can't hear

Basic technique for lossy audio coding (Introduction to psychoacoustics – 2a)

The sensitivity of the human being is not constant for the frequency of the signals.

Basic technique for lossy audio coding (Introduction to psychoacoustics – 2b)

When a big sound exists, there is "masking" effect around the that sound.

Basic technique for lossy audio coding (Introduction to psychoacoustics – 2c)

MPEG Audio Standard

The history of MPEG Audio standards is shown in the figure below. Standardization started from MPEG1 until MPEG4 as follows.

MPEG Audio Standard

MPEG Audio and MPEG Audio/BC coding are standardized by ISO ISO/IEC 11172(MPEG1) or 13818(MPEG2)

Basic features are as follows

Layer	Layer 1	Layer 2	Layer 3(MP3)	
Mapping	Sub Band mapping	Sub band Mapping	Hybrid (sub band+DCT)	
Bit Rate	32 to 448Kbps/ch	32 to 384kbps/ch	32 to 320kbps/ch	
Target Bit Rate	128 to 192Kbps/ch	96 to 128kbps/ch	64 to 128kbps/ch	
Sampling Frequency	48/44.1/32 KHz (and 24/22.05/16 KHz for MPEG2 half rate)			
Modes	Stereo/Joint Stereo/Dual/Single (and Multi channel up to 7.1ch for MPEG2)			

Note: Multiple stream can be multiplexed to make one stream. Layer 1 & 2are based on "MUSICAM".

Layer I & II processing flow

Dolby digital (AC-3) processing flow

Renesas Design Vietnam Co., Ltd.

© 2007. Renesas Electronics Corporation. All rights reserved. © 2012. Renesas Design Vietnam Co., Ltd. All rights reserved.