信道编码大作业实验报告

夏志康 刘祥 芦迪 吴舒登 清华大学深圳国际研究生院信息科学与技术学部,深计研 19 班

日期: June 5, 2020

1 分工情况

2 构造射影平面 LDPC 码

基于射影平面构造的循环 LDPC 码其实就是利用射影平面的点线关联矩阵。考虑在有限域 $GF(2^s)$ 上的 m 维射影平面 $PG(m,2^s)$ 。这个平面包含有 n 个点,其中 $n=(2^{(m+1)s}-1)/(2^s-1)$ 。在 $PG(m,2^s)$ 中有 $J=((2^{ms}+\cdots+2^s+1)(2^{(m-1)s}+\cdots+2^s+1))/(2^s+1)$ 条直线,每条直线上包含有 2^s+1 个点,每个点上又有 $(2^{ms}-1)/(2^s-1)$ 条线交叉。伽罗华域 $GF(2^{(m+1)s})$ 是有限域 $GF(2^s)$ 的扩展,且可以看做是射影平面 $PG(m,2^s)$ 的一个实现。令 α 为 $GF(2^{(m+1)s})$ 的本原元,则 $GF(2^{(m+1)s})$ 中的非零元素 $\alpha^0,\alpha^1,\cdots,\alpha^{n-1}$ 组成了射影平面 $PG(m,2^s)$ 中的点。设 α^i,α^j 是射影平面 $PG(m,2^s)$ 中的两个线性独立的点,那么下面点的集合 $\{\alpha^i+\beta\alpha^j:\beta\in GF(2^s)\}$ 就是 $PG(m,2^s)$ 里通过点 α^i 的一条线。两条线没有交点就是平行的,如果有交点也只能有一个交点。

令 $PG(m,2^s)$ 中直线的关联矢量作为矩阵 $\mathbf{H}_{PG}^{(1)}(m,0,s)$ 的行,射影平面 $PG(m,2^s)$ 中的点对应于 $\mathbf{H}_{PG}^{(1)}(m,0,s)$ 的列。 $\mathbf{H}_{PG}^{(1)}(m,0,s)$ 行重为 $\rho=2^s+1$,列重为 $\gamma=(2^{ms}-1)/(2^s-1)$,密度为 $r=(2^{2s}-1)/(2^{(m+1)s}-1)$ 。对 $m\geq 2, s\geq 2$,r 非常小,因此 $\mathbf{H}_{PG}^{(1)}(m,0,s)$ 是一个低密度矩阵。它的零空间给出了一个长度为 n 的 LDPC 码 $\mathbf{C}_{PG}^{(1)}(m,0,s)$,其最小距离至少为 $(2^{ms}-1)/(2^s-1)+1$ 。实验要求构造 $q=32, n=q^2+q+1=1057$ 的 PG-LDPC 码。构造过程如下:

- 1) 由 $q = 2^s$, $n = (2^{(m+1)s} 1)/(2^s 10$ 得 m = 2, s = 5, 即要考虑有限域 $GF(2^5)$ 上的 2 维射影平面 $PG(2,2^5)$ 。 $PG(2,2^5)$ 中的点是有 $GF(2^{(m+1)s}) = GF(2^{15})$ 中的元素表示的,可以先构造伽罗华域 $GF(2^{15})$ 。 $GF(2^{15})$ 是由本原多项式 $P(x) = x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^5 + x^4 + x^3 + x^2 + x^1 + 1$ 生成的。由此,我们可以得到 $GF(2^{15})$ 。
- 2) 令 α 为 $GF(2^{15})$ 的一个本原元。令 $\beta = \alpha^n$,则 β 的阶为 $2^s 1$,{0,1, β , β^2 ,····, $\beta^{2^s 2}$ } 可以构成 $GF(2^5)$ 。令 $\Gamma = \{\alpha^0, \alpha^1, \alpha^2, \cdots, \alpha^{n-1}\}$,则 $\{\alpha^i, \beta\alpha^i, \beta^2\alpha^i, \cdots, \beta^{2^s 2}\alpha^i\}$ 可将 $GF(2^{15})$ 划分为 n 个不相交的子集。
- 3) 需要求出经过某一点的任意一条不过原点的直线上的所有其他点。取 $PG(2,2^5)$ 中的任意不同的两个点 α^i,α^j ,则通过这两个点的直线由 $\{\eta_1\alpha^i + \eta_2\alpha^j\}$ 这样形式的点组成,且有 $2^s + 1$ 即 33 个不同的点,只需选择 η_1 与 η_2 ,使得 (η_1,η_2) 不是另一个选择 $()\eta'_1,\eta'_2)$ 的倍数即可。简单起见,我们取 i=0,j=1,那么 $\alpha^i=1,\alpha^j=\alpha$ 。最终得到含有 33 个点的一条直线。
- 4) 得到直线后,由该直线求其关联矢量。该矢量由 n = 1057 个点组成。如果某点在直线上,

则关联矢量该点处值为 1,否则为 0. 由所得的关联矢量作为校验矩阵的第一行,对该矢量向右循环移位 1056 次,每次得到的矢量均作为校验矩阵的一行,就得到了长为 1057,信息位为 813 的二维射影平面 LDPC 码的校验矩阵。

3 总结

本次实验,安装部署了强化学习实验框架,阅读了一系列深度强化学习的论文,运行了一系列相关实验,可谓受益匪浅。强化学习确实是十分有趣的研究课题,但由于时间比较紧,很多算法细节仍然不甚了了,希望在以后的学习科研中能够继续深入了解。