Currents: an Interview

Giovanni Canarecci

Department of Mathematics and Statistics University of Helsinki

18/05/2016

Who do I study?

I study **Currents** = linear functionals from the space of differential forms $\mathcal{D}^k(M)$ to the real line.

$$S: \mathcal{D}^k(M) \to \mathbb{R}$$

 $\varphi \mapsto S(\varphi)$

where a differential form φ is a map

$$\varphi: \mathcal{T}(M) \to \mathbb{R}$$

How do I study them?

We consider only those currents to whom we can associate a good set!

Observation

Any good S set S can be seen as a current S:

$$\underbrace{S}: \varphi \in \mathcal{D}^k(M) \longrightarrow \int_{\widehat{S}} \langle \overrightarrow{S}(x), \varphi \rangle \mu(x) d\mathcal{H}^k \in \mathbb{R}$$

And we call these currents "Rectifiable Currents".

^{- 1} - 4 ロ ト 4 目 ト 4 目 ト 4 目 ・ 9 Q (で

¹oriented k-dim rectifiable

Where do I study them?

In the Heisenberg Group:

$$\mathbb{H}^1 := (\mathbb{R}^3, *)$$

that is \mathbb{R}^3 with a strange product:

$$(x_1, y_1, t_1)*(x_2, y_2, t_2) = (x_1 + x_2, y_1 + y_2, t_1 + t_2 - 2(x_1y_2 - x_2y_1)).$$

Clear? ... maybe a picture would help!

Unit ball of the Heisenberg group

What do I study with them? The Plateau Problem!

Definition (Plateau Problem)

Given a **boundary** with some kind of regularity, the Plateau Problem consists in finding the **minimal surface** that fits that boundary.

Giovanni Canarecci

Who do I study? How do I study them? Where do I study them? What do I study with them? WHY?

Why?

A complete answer for this question is currently object of research.

Kiitos paljon! Thank you! Grazie mille!

