BIOS621 Session 2

Levi Waldron

Welcome and outline - session 2

- brief overview of multiple regression (Chapter 4)
- ► Linear Regression as a Generalized Linear Model (Chapter 5)
- Statistical inference for logistic regression

Learning objectives - session 2

- define generalized linear models (GLM)
- define linear and logistic regression as special cases of GLMs
- distinguish between additive and multiplicative models
- define Pearson and deviance residuals
- ▶ additional familiarity with R, including dplyr and ggplot2

Multiple Linear Regression Model

Systematic component:

$$E[y|x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- \triangleright x_p are the predictors or independent variables
- ▶ *y* is the outcome, response, or dependent variable
- ▶ E[y|x] is the expected value of y given x
- \triangleright β_p are the regression coefficients

Multiple Linear Regression Model

Systematic plus random component:

$$\begin{aligned} y_i &= E[y|x] + \epsilon_i \\ y_i &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \epsilon_i \\ \text{Assumption: } \epsilon_i &\stackrel{\textit{iid}}{\sim} \textit{N}(0, \sigma_{\epsilon}^2) \end{aligned}$$

- Normal distribution
- Mean zero at every value of predictors
- Constant variance at every value of predictors
- Values that are statistically independent

Generalized Linear Models

- ► Linear regression is a special case of a broad family of models called "Generalized Linear Models" (GLM)
- ► This unifying approach allows to fit a large set of models using maximum likelihood estimation methods (MLE) (Nelder & Wedderburn, 1972)
- ► Can model many types of data directly using appropriate distributions, e.g. Poisson distribution for count data
- ► Transformations of Y not needed

Components of GLM

- Random component specifies the conditional distribution for the response variable
 - doesn't have to be normal
 - can be any distribution in the "exponential" family of distributions
- Systematic component specifies linear function of predictors (linear predictor)
- ▶ Link [denoted by g(.)] specifies the relationship between the expected value of the random component and the systematic component
 - can be linear or nonlinear

Linear Regression as GLM

The model:

$$y_i = E[y|x] + \epsilon_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi} + \epsilon_i$$

- ▶ Random component of y_i is normally distributed: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$
- ► **Systematic component** (linear predictor): $\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi}$
- ▶ Link function here is the *identity link*: g(E(y|x)) = E(y|x). We are modeling the mean directly, no transformation.

Logistic Regression as GLM

► The model:

$$Logit(P(x)) = log\left(\frac{P(x)}{1 - P(x)}\right) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi}$$

- ► Random component: *y_i* follows a Binomial distribution (outcome is a binary variable)
- Systematic component: linear predictor

$$\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi}$$

▶ Link function: logit (log of the odds that the event occurs)

$$g(P(x)) = logit(P(x)) = log\left(\frac{P(x)}{1 - P(x)}\right)$$

$$P(x) = g^{-1} (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_p x_{pi})$$

logit function

Inverse logit function

Additive vs. Multiplicative models

- Linear regression is an additive model
 - e.g. for two binary variables $\beta_1 = 1.5$, $\beta_2 = 1.5$.
 - If $x_1 = 1$ and $x_2 = 1$, this adds 3.0 to E(y|x)
- ▶ Logistic regression is a multiplicative model
 - If $x_1 = 1$ and $x_2 = 1$, this adds 3.0 to $log(\frac{P}{1-P})$
 - ▶ Odds-ratio $\frac{P}{1-P}$ increases 20-fold: exp(1.5+1.5) or exp(1.5) * exp(1.5)

Motivating example: contraceptive use data

From http://data.princeton.edu/wws509/datasets/#cuse

```
##
            education wantsMore
                                notUsing
                                                usi
      age
##
   <25 :4
           high:8 no:8
                             Min. : 8.00
                                            Min.
   25-29:4 low:8 yes:8
##
                             1st Qu.: 31.00
                                            1st Qu.
   30-39:4
                             Median : 56.50
                                            Median
##
   40-49:4
##
                             Mean : 68.75
                                            Mean
##
                             3rd Qu.: 85.75
                                            3rd Qu.
##
                             Max.
                                   :212.00
                                            Max.
```

Motivating example: contraceptive use data

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Null deviance: 165.772 on 15 degrees of freedom ## Residual deviance: 29.917 on 10 degrees of freedom

(Dispersion parameter for binomial family taken to be 1)

Number of Fisher Scoring iterations: 4

No interactions:

##

##

##

ATC: 113.43

```
fit1 <- glm(cbind(using, notUsing) ~ age + education + wantsMore,
         data=cuse, family=binomial("logit"))
summary(fit1)
##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
     family = binomial("logit"), data = cuse)
##
## Deviance Residuals:
     Min
             10 Median 30
                                    Max
## -2.5148 -0.9376 0.2408 0.9822 1.7333
##
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8082 0.1590 -5.083 3.71e-07 ***
## age25-29 0.3894 0.1759 2.214 0.02681 *
## age30-39 0.9086 0.1646 5.519 3.40e-08 ***
## age40-49 1.1892 0.2144 5.546 2.92e-08 ***
## wantsMoreves -0.8330 0.1175 -7.091 1.33e-12 ***
## ---
```

Pearson residuals for logistic regression

Take the difference between observed and fitted values (on probability scale 0-1), and divide by the standard deviation of the observed value.

- Let \hat{y}_i be the best-fit predicted probability for each data point, i.e. $g^{-1}(\beta_0 + \beta_1 x_{1i} + ...)$
- \triangleright y_i is the observed value, either 0 or 1.

$$r_i = \frac{y_i - \hat{y}_i}{\sqrt{Var(\hat{y}_i)}}$$

Summing the squared Pearson residuals produces the *Pearson Chi-squared statistic*:

$$\chi^2 = \sum_i r_i^2$$

Deviance residuals for logistic regression

- Deviance residuals and Pearson residuals converge for high degrees of freedom
- Deviance residuals indicate the contribution of each point to the model likelihood
- Definition of deviance residuals:

$$d_i = s_i \sqrt{-2(y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i))}$$

Where $s_i = 1$ if $y_i = 1$ and $s_i = -1$ if $y_i = 0$.

▶ Summing the deviances gives the overall deviance: $D = \sum_i d_i^2$

Model likelihood and deviance

- ► The *likelihood* of a model is the probability of the observed outcomes given the model, sometimes written as:
 - $L(\theta|data) = P(data|\theta).$
- Deviance residuals and the difference in log-likelihood between two models are related by:

$$\Delta(\mathrm{D}) = -2*\Delta(\log \, \mathrm{likelihood})$$

Likelihood Ratio Test

- Use to assess whether the reduction in deviance provided by a more complicated model indicates a better fit
- ► It is equivalent of the nested Analysis of Variance is a nested Analysis of Deviance
- ▶ The difference in deviance under H_0 is *chi-square distributed*, with df equal to the difference in df of the two models.

Likelihood Ratio Test (cont'd)

```
fit0 <- glm(cbind(using, notUsing) ~ -1, data=cuse,
           family=binomial("logit"))
anova(fit0, fit1, test="LRT")
## Analysis of Deviance Table
##
## Model 1: cbind(using, notUsing) ~ -1
## Model 2: cbind(using, notUsing) ~ age + education + wantsMore
##
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
          16
                 389.85
      10 29.92 6 359.94 < 2.2e-16 ***
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Wald test for individual regression coefficients

► Can use partial Wald test for a single coefficient:

$$\begin{array}{l} \blacktriangleright \ \, \frac{\hat{\beta}}{\sqrt{\mathit{var}(\hat{\beta})}} \sim t_{n-1} \\ \blacktriangleright \ \, \frac{\left(\hat{\beta} - \beta_0\right)^2}{\mathit{var}(\hat{\beta})} \sim \chi_{df=1}^2 \ \, \text{(large sample)} \end{array}$$

- Wald CI for β : $\hat{\beta} \pm t_{1-\alpha/2,n-1} \sqrt{var(\hat{\beta})}$
- Wald CI for odds-ratio: $e^{\hat{eta}\pm t_{1-lpha/2,n-1}\sqrt{var(\hat{eta})}}$

Note: Wald test confidence intervals on coefficients can provide poor coverage in some cases, even with relatively large samples

Lab Exercises

- 1. What is the mean fraction of women using birth control for each age group? Each education level? For women who do or don't want more children?
 - ► Hint: look at the "data wrangling" cheat sheet functions mutate, group_by, and summarize
- Based on fit1, write on paper the model for expected probability of using birth control. Don't forget the logit function.
- Based on fit1, what is the expected probability of an individual 25-29 years old, with high education, who wants more children, using birth control? Calculate it manually, and using predict(fit1)
- 4. Based on fit1: Relative to women under 25 who want to have children, what is the predicted increase in odds that a woman 40-49 years old who does *not* want to have children will be taking birth control?
- taking birth control?

 5. Using a likelihood ratio test, is there evidence that a model with interactions improves on fit1 (no interactions)?