## Adversarial Training with a Surrogate

Keane Lucas, Alec Jasen, Lujo Bauer





#### Adversarial Example Sets



**Perturbation set** P(x) - set of images formed by small changes to x in which all members have the same classification, according to humans

#### Recent Work

- Use classifier's first-order gradients to directly approach high loss regions
  - Fast Gradient Sign Method (FGSM)
  - Projected Gradient Descent (PGD)



(image from Knagg 2019)

## Adversarial Training Introduction

• Finding optimal parameters given a dataset X, Y:

$$\min_{\theta} \sum_{\{x,y\}\in\{X,Y\}} L(f(x,\theta),y)$$

Adversarial training modification:

$$\min_{\theta} \sum_{\{x,y\}\in\{X,Y\}} \max_{x'\in P(x)} L(f(x',\theta),y)$$

### Motivation



Perturbation set containing images of a `7' with changes in brightness and rotation.

### Estimating Harm with a Surrogate



Train a surrogate neural network to estimate **harm** h of applying a perturbation  $\psi$  to an input x

$$s:(X,\Psi)\to\mathbb{R}$$

## Estimating Harm with a Surrogate



Train a surrogate neural network to estimate **harm** h of applying a perturbation  $\psi$  to an input x

$$s:(X,\Psi)\to\mathbb{R}$$

Then... use the surrogate first-order gradients to directly approach effective adversarial examples



# Surrogate Viability

Harm of perturbations (rotations) on the MNIST digit '1' as classifier is trained



Classifier Trained by Surrogate

# Surrogate Viability

Harm of perturbations (rotations) on the MNIST digit '1' as classifier is trained



Classifier Trained by Surrogate



Estimated by Surrogate

# Surrogate Viability

Harm of perturbations (rotations) on the MNIST digit '1' as classifier is trained



Classifier Trained by Surrogate



Estimated by Surrogate

### **Baseline Heuristics**





# Surrogate Performance

#### Mean harm across perturbation set of rotations



# Surrogate Performance

#### Mean harm across perturbation set of rotations







#### Future Work

- Network architecture and methods optimization
- Outline perturbation sets this method is effective on
- Re-frame process as MDP and attempt RL
- Unsupervised clustering for feature learning

### Conclusion

Discussed problem with current paradigm

Outlined solution framework and method

Showed promising results

Detailed possible improvements

## Adversarial Training with a Surrogate

Keane Lucas, Alec Jasen, Lujo Bauer



