

## Basic Algorithm Analysis (1)

Running Time, Growth of Function, and Asymptotic Notation DAA Term 2 2023/2024



### Computational Tractability

- A computational problem is said to be tractable or easy if there exists an efficient algorithm for it.
  - Mathematically, the problem can be solved in polynomial time.
  - It is said to be **intractable** or **hard** if it is solvable by super polynomial time algorithm (i.e. cannot be bounded above by any polynomial)



### Computational Tractability

- An algorithm is said to be polynomial time if it satisfy the following scaling property:
  - Desirable scaling property: When the input size doubles, the algorithm should slow down by at most some multiplicative constant factor c.

There exist constants c > 0 and d > 0 such that, for every input of size n, the algorithm performs  $\leq cN^d$  primitive computational steps.

#### • Illustration:

- Suppose an algorithm runs in cN<sup>d</sup> for N input size
- Increase the input size to 2N, then it runs in  $c(2N)^d = c2^dN^d$
- It slows down by a factor of 2<sup>d</sup> (it is constant since d is a constant)



### Analyzing Algorithm

- Analyzing algorithms involves thinking about how their resource requirements (the amount of time and space they use) will scale with increasing input size.
  - Efficiency in running time: we want algorithms that run quickly, but it is important that algorithms be efficient in their use of memory as well.
- Also includes predicting the resources (computing time, memory, communication bandwidth, etc) that the algorithm requires.
  - Most often it is the computing time that we want to measure.

# Random-Access Machine (RAM) and Running Time



- We use a generic on processor **RAM model computation** and implement our algorithms as computer programs on that machine.
- Suppose the RAM model contains such instructions: arithmetic, data movement (copy, load, store), control (conditional and unconditional branch, subroutine, return).
- Now we are going to analyze the **running time** of an algorithm: the number of **primitive computational steps** executed.
  - It depends on the input size and the characteristics of the input (e.g. sorted or not)



### Running Time Computation

• Example 1

```
public static int sum( int n )
{
    1 int partialSum;

2 partialSum = 0;
    3 for( int i = 1; i <= n; i++ )
    4    partialSum += i * i * i;
    5 return partialSum;
}</pre>
```

| Line 1     | 0    |  |  |
|------------|------|--|--|
| Line 2     | 1    |  |  |
| Line 3     | 2n+2 |  |  |
| Line 4     | 4n   |  |  |
| Line 5     | 1    |  |  |
| Total time | 6n+4 |  |  |



### Running Time Computation

• Example 2

```
public static int sum( int n )
{
    1 int partialSum;

2 partialSum = 0;
    3 for( int i = 1; i <= n; i++ )
    4    partialSum += i * i * i;
    5 return partialSum;
}</pre>
```

| Line 1     | <b>c</b> <sub>1</sub>         | 0   |  |  |  |
|------------|-------------------------------|-----|--|--|--|
| Line 2     | c <sub>2</sub>                | 1   |  |  |  |
| Line 3     | C <sub>3</sub>                | n+1 |  |  |  |
| Line 4     | C <sub>4</sub>                | n   |  |  |  |
| Line 5     | <b>C</b> <sub>5</sub>         | 1   |  |  |  |
| Total time | $c_2 + c_3(n+1) + c_4n + c_5$ |     |  |  |  |

$$T(n) = (c_3 + c_4)n + (c_2 + c_3 + c_5)$$



### Running Time

What to consider in analyzing the running time of an algorithm?

- Best Case Condition (never)
- Average Case Condition (sometimes) → Obtain bound on running time of algorithm on random inputs as a function of input size n.
  - It is hard (or impossible) to accurately model the real instance by a random distribution.
  - When an algorithm tuned for a certain distribution may perform poorly on other inputs.
- Worst Case Condition (usually) → Obtain bound on the largest possible running time of algorithm on input of a given size n.
  - It occurs often
  - Worst case running time describes the upper bound running time
  - The average case sometimes as bad as the worst case



### Running Time

**Table 2.1** The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10<sup>25</sup> years, we simply record the algorithm as taking a very long time.

|               | п       | $n \log_2 n$ | $n^2$   | $n^3$        | 1.5 <sup>n</sup> | 2 <sup>n</sup>  | n!              |
|---------------|---------|--------------|---------|--------------|------------------|-----------------|-----------------|
| n = 10        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | < 1 sec         | 4 sec           |
| n = 30        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | < 1 sec          | 18 min          | $10^{25}$ years |
| n = 50        | < 1 sec | < 1 sec      | < 1 sec | < 1 sec      | 11 min           | 36 years        | very long       |
| n = 100       | < 1 sec | < 1 sec      | < 1 sec | 1 sec        | 12,892 years     | $10^{17}$ years | very long       |
| n = 1,000     | < 1 sec | < 1 sec      | 1 sec   | 18 min       | very long        | very long       | very long       |
| n = 10,000    | < 1 sec | < 1 sec      | 2 min   | 12 days      | very long        | very long       | very long       |
| n = 100,000   | < 1 sec | 2 sec        | 3 hours | 32 years     | very long        | very long       | very long       |
| n = 1,000,000 | 1 sec   | 20 sec       | 12 days | 31,710 years | very long        | very long       | very long       |





- Worst Case Polynomial Time
  - Recall that: an easy or efficient algorithm runs in polynomial time
    - It usually works in practice since a polynomial time algorithms almost always have low constants and low exponents.
  - It would be useless in practice if a polynomial time algorithm has high constants or exponents, e.g: 6.02 x 10<sup>23</sup> x n<sup>20</sup>
    - However, such algorithm does exist and widely used because the worstcase instance seem to be rare. Example: simplex method, unix grep



### The order of growth

- A more simplifying abstraction to ease analysis and focus on important features.
- As the value of n becomes larger, we only need to focus on the highest order.
- Only consider the leading term of the formula for running time.
  - Drop lower order terms
  - Ignore the constant coefficient in the leading term
- Example:  $T(n) = (c_3 + c_4)n + (c_2 + c_3 + c_5)$ 
  - T(n) = an + b (by abstracting away the actual statement costs)  $\rightarrow T(n) = an$  (by dropping the lower order terms)  $\rightarrow T(n) = n$  (by ignoring the constant coefficient in the leading term). Then the corresponding algorithm grows like n





Faster growth means less efficiency







- To describe the running times or asymptotic efficiency of algorithms
- It applies to functions (that characterize the running times of algorithms, in this case)
- Which running time we want to express?
  - The worst-case running time?
  - Running time that covers all input?

Objective: To express running time in a right asymptotic notation!







$$f(n) = O(g(n))$$
 means:  
  $g(n)$  is an **asymptotic upper bound** for  $f(n)$ 

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \}$$
  
such that  $0 \le f(n) \le c g(n)$  for all  $n \ge n_0 \}$ .

as n grows larger, f(n) grows slower than cg(n)

It is also acceptable to write f(n) is O(g(n)) or  $f(n) \in O(g(n))$ 





#### Example (1)

- Show that  $f(n) = n^2 + 2n + 1$  is  $O(n^2)$ 
  - Find c and  $n_0$  such that  $0 \le f(n) \le cn^2$  for all  $n \ge n_0$
  - How do we find c and  $n_0$ ?
    - We know that  $n^2+2n+1 \le n^2+n^2+n^2=3n^2$  because for  $n \ge 2$ ,  $2n \le n^2$  and  $1 \le n^2$ . Therefore, we choose c=3 and  $n_0=2$ .
    - Sometimes it is better to choose a large enough value of  $n_0$  or c. For example, we can set c=100 for every  $n\geq 1$
  - For the <u>complete proof</u>, we can use mathematical induction to show that  $n^2 + 2n + 1 \le cn^2$  for all  $n \ge n_0$  based on the value of c and  $n_0$  that have been chosen.





#### Example (1) cont'd

- Show that  $f(n) = n^2 + 2n + 1$  is  $O(n^2)$ 
  - For the <u>complete proof</u>, we can use mathematical induction to show that  $n^2 + 2n + 1 \le cn^2$  for all  $n \ge n_0$  based on the value of c and  $n_0$  that have been chosen.

### Big Oh (O) notation

#### Example (2)

- Show that  $6n^3 \neq O(n^2)$ 
  - Proof by contradiction?

• (True or False?)  $2^{n+1} = O(2^n)$ 

• (True or False?)  $2^{2n} = O(2^n)$ 









$$f(n) = \Omega(g(n))$$
 means:  
  $g(n)$  is an asymptotic lower bound for  $f(n)$ 

$$\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \}$$
  
such that  $0 \le c \ g(n) \le f(n) \text{ for all } n \ge n_0 \}.$ 

as n grows larger, f(n) grows faster than cg(n)

$$f(n) = \Omega(g(n))$$
 if and only if  $g(n) = O(f(n))$ 

### Big Omega $(\Omega)$ notation

#### **Example**

• Show that  $8n^3 + 5n^2 + 7 = \Omega(n^3)$ 

• Show that  $\sqrt{n} = \Omega(\lg n)$ 









$$f(n) = \Theta(g(n))$$
 means:  
  $g(n)$  is an **asymptotic tight bound** for  $f(n)$ 

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \}$$
  
such that  $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$ 

If 
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$$
 for some constant  $0 < c < \infty$ , then  $f(n)$  is  $\Theta(g(n))$ 

### Big Theta (9) notation

#### **Example**

• Show that  $\frac{1}{2}n^2 - 3n = \Theta(n^2)$ 



### Properties of the "Big Notations"



- $f(n) = \Theta(g(n)) \rightarrow f(n) = O(g(n))$
- $\Theta(g(n)) \subseteq O(g(n))$
- $f(n) = \Theta(g(n))$  if and only if f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$
- Transitivity Property
  - If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
- Additivity Property
  - If f(n) = O(h(n)) and g(n) = O(h(n)), then (f + g)(n) = O(h(n))

Transitivity and Additivity properties apply on  $\Omega$  and  $\Theta$  as well.

#### Exercise



• Show that  $n^2 + 4n + 17 = O(n^3)$  but that  $n^3$  is not  $O(n^2 + 4n + 17)$ 

• Show that  $3n^2 + 8n \log n = O(n^2)$ 

• Express the following running time in different asymptotic notations.

$$T(n) = 32n^2 + 17n + 32$$





- Example:
  - $2n^2 = O(n^2)$  is asymptotically tight
  - $2n = O(n^2)$  is not asymptotically tight
- Little oh (o) notation is used to denote a not asymptotically tight upper bound.
  - A function grows at a significantly slower rate than another
  - $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

(This proposition also works for Big Oh notation)

• Which one is true?  $2n^2 = o(n^2)$  or  $2n = o(n^2)$ ?



### Little Omega ( $\omega$ ) notation

- Little omega notation is used to denote a <u>not asymptotically tight lower bound.</u>
- $f(n) = \omega(g(n))$  if and only if g(n) = o(f(n))
- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$  or  $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

(This proposition also works for Big Omega notation)

- Example:
  - $\frac{n^2}{2} = \omega(n)$   $\frac{n^2}{2} \neq \omega(n^2)$



#### Discussion

- Explain why the statement "The running time of an algorithm is at least  $O(n^2)$ " is meaningless!
- What is the difference of following statements?
  - The worst-case running time of an algorithm is  $O(n^2)$
  - The worst-case running time of an algorithm is  $\Theta(n^2)$
- Explain why the following statements are equivalent.
  - The running time of an algorithm is  $O(n^2)$
  - The worst-case running time of an algorithm is  $O(n^2)$





#### For a function:

- Big Oh (O) denotes the **upper bound**
- Big Theta (Θ) denotes the **tight bound**
- Big Omega ( $\Omega$ ) denotes the **lower bound**
- Little Oh (o) denotes the not tight upper bound
- Little Omega ( $\omega$ ) denotes the **not tight lower bound**



### Summary 2

- We use **Big Oh to represent the worst-case running time** of an algorithm. It means for other cases it is possible for this algorithm to run faster (this condition is covered by Big Oh notation).
  - If we use Big Theta to represent the worst-case running time of an algorithm, note that it does not cover the running time for other cases.
- We use **Big Omega to represent the best-case running time** of an algorithm, it covers the running time in other cases.



### Some Functions and Notations

#### Logarithmic

$$\lg n = \log_2 n$$
 (binary logarithm)  
 $\ln n = \log_e n$  (natural logarithm)  
 $\lg^k n = (\lg n)^k$  (exponentiation)  
 $\lg\lg n = \lg(\lg n)$  (composition)  
 $\lg n + k = (\lg n) + k$ 

For all real 
$$a > 0, b > 0, c > 0$$
, and  $n$ ,
$$a = b^{\log_b a}$$

$$\log_c (ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b (1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$



#### Some Functions and Notations

#### Functional Iteration

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0, \\ f(f^{(i-1)}(n)) & \text{if } i > 0. \end{cases}$$

For example, if f(n) = 2n, then  $f^{(i)}(n) = 2^{i}n$ .

#### The Iterated Logarithm Function

$$\lg^* n = \min \{ i \ge 0 : \lg^{(i)} n \le 1 \}$$

The iterated logarithm is a *very* slowly growing function:



#### Some Functions and Notations

#### Factorial

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0. \end{cases}$$

- The weak upper bound for factorial function is  $n! \leq n^n$
- Stirling's Approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

• From Stirling's Approximation, we obtain  $\lg(n!) = O(n \lg n)$ . (This conclusion will be used in the analysis of the lower bound for comparison-based sorting)



#### References

- Lecturer Slides by Bapak L. Yohanes Stefanus
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.
- https://www.cs.princeton.edu/~wayne/kleinbergtardos/pdf/02AlgorithmAnalysis.pdf