Colle 12 \sim 6 janvier 2016 \sim Colleur : Isenmann \sim MP*1 \sim Trinôme :

Planche 1.

Exercice 1. Etudier la convergence des intégrales du type $\int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$ pour $\alpha \in \mathbb{R}$.

Exercice 2. Trouver un équivalent en $+\infty$ de $I_n = \int_0^1 (1-x)^n \sin(\pi x) dx$.

Planche 2.

Exercice 1. Calculer $I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt$. En utilisant $I'_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt$, calculer $I = \int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Exercice 2. Calculer $h(x) = \int_0^{+\infty} \exp(-(t^2 + x^2/t^2))dt$.

Planche 3.

Exercice 1. On pose $f(t) = \frac{\ln(1+t^{\alpha})}{t^{\beta}}$. Etudier l'intégrabilité sur $]0, +\infty[$ en fonction de α et β des réels.

Exercice 2. Calculer la limite de $(\frac{2}{\pi} \int_0^{\pi/2} (\sin(x))^{1/n} dx)^n$.

Solutions - Planche 1.			
	Question de cours.		
	Exercice 1.		

 $\textbf{Colle 12} \quad \bowtie \quad 6 \ \text{janvier 2016} \quad \bowtie \quad \text{perso.ens-lyon.fr/lucas.isenmann/}$

Exercice 2.

Solutions - Planche 2.		
Question de cours.		
Exercice 1.		
Exercice 2.		

 $\textbf{Colle 12} \quad \bowtie \quad 6 \ \text{janvier 2016} \quad \bowtie \quad \text{perso.ens-lyon.fr/lucas.isenmann/}$

S	olutions - Planche 3.
	Question de cours.
	Exercice 1.
	Exercice 2.

 $\textbf{Colle 12} \quad \bowtie \quad 6 \ \text{janvier 2016} \quad \bowtie \quad \text{perso.ens-lyon.fr/lucas.isenmann/}$