HWI Review

(2) $K_{n} \Rightarrow \frac{1}{4}$ pure $\frac{1}{4} \Rightarrow \frac{1}{4}$ Let E > 0 $\lim_{n \to 1} \frac{1}{n} = \frac{1}{|x_{n}|} = \frac{1}{|x_{n}|$

3 ps by contradication

suppose X<0 |Xn-X|= Xn-X > |Xl|

Sunctions Monday

M=R B(Z,R)

B(Z, R) > {x: |x-2| < R } = {x: -R< [x-2|< R\$ = {x: 2-R < x < 2+R} $\frac{-intral(z-R,Z+R)}{B(z,Z)=(z-R,Z+R)}$

M=Q $D_{3}(z,z)=B(z,z)?$ $D_{3}(x,y)=|x-y|^{2} \text{ a metric in }R?$ $D_{3}(x,y)=|x-y|^{2} - ... ?$

O REQ \Rightarrow B(Z, R) = B(Z, R)