Příklad (1.)

We know that the speed of sound is given by the formula $c = \sqrt{\frac{\partial p_{th}}{\partial \varrho}}(\varrho, \eta)$. Find the explicit formula for the speed of sound in the calorically perfect ideal gas, that is for the substance described by the equations from the previous homework.

Řešení (Z minulého roku)

Z přednášky máme $p_{th} = \varrho^2 \frac{\partial e}{\partial \rho}(\eta, \varrho)$. Ze sedmého domácího úkolu máme

$$e(\eta, \varrho) = \frac{c_{V,ref} \cdot \theta_{ref}}{\varrho_{ref}^{\gamma - 1}} \cdot \exp\left(\frac{\eta}{c_{V,ref}}\right) \cdot \varrho^{\gamma - 1} =: C(\eta) \cdot \varrho^{\gamma - 1}.$$

Tedy $c^2 = \frac{\partial p_{th}}{\partial \varrho}(\varrho, \eta) =$

$$=\frac{\partial\left(\varrho^2\cdot\frac{\partial C(\eta)\cdot\varrho^{\gamma-1}}{\partial\varrho}\right)}{\partial\varrho}=\frac{\partial\left(\varrho^2\cdot C(\eta)\cdot(\gamma-1)\varrho^{\gamma-2}\right)}{\partial\varrho}=(\gamma-1)\gamma\cdot C(\eta)\cdot\varrho^{\gamma-1}=(\gamma-1)\gamma\cdot e(\eta,\varrho).$$

Takže jsme vlastně vyjádřili c^2 jako funkci e (γ je konstanta), ale ze zadání pátého domácího úkolu také umíme e vyjádřit jako $e = e(\varrho, \theta) = c_{V,ref}\theta$. Tedy

$$c = \sqrt{(\gamma - 1)\gamma \cdot e(\eta, \varrho)} = \sqrt{(\gamma - 1)\gamma c_{v,ref}\theta}.$$

Příklad (2.)

We have seen that the product $\mathbb{T}:\mathbb{D}$ plays an important role in the formulation of the governing equation for the internal energy. Assume that the Cauchy stress tensor is given by the formula $\mathbb{T}=\mathbb{T}(\mathbb{B})$, where \mathbb{B} denotes the left Cauchy–Green tensor, and that the Cauchy stress tensor commutes with \mathbb{B} , that is $\mathbb{TB}=\mathbb{BT}$. Show that under these assumptions we can write $\mathbb{T}:\mathbb{D}=\mathbb{T}:\frac{d\mathbb{H}}{dt}$, where $\mathbb{H}:=\frac{1}{2}\ln\mathbb{B}$ denotes the Hencky strain tensor.

 $D\mathring{u}kaz$

Nejprve ukážeme $\mathbb{T}:\frac{d\mathbb{H}}{dt}:=\frac{1}{2}\mathbb{T}:\frac{d\ln\mathbb{B}}{dt}=\frac{1}{2}\mathbb{T}:\mathbb{B}^{-1}\frac{d\mathbb{B}}{dt}.$ Podle řetízkového pravidla je $\frac{d\ln\mathbb{B}}{dt}=\frac{d\ln\mathbb{B}}{d\mathbb{B}}:\frac{d\mathbb{B}}{dt}.$ Podle Daleckii–Krein je pro $\mathbb{B}=\sum_i\lambda_i\mathbb{P}_i$:

$$\frac{d \ln \mathbb{B}}{d \mathbb{B}} : \frac{d \mathbb{B}}{dt} = \sum_{i} \frac{1}{\lambda_{i}} P_{i} \frac{d \mathbb{B}}{dt} \mathbb{P}_{i} + \sum_{i \neq j} \frac{\ln(\lambda_{i}) - \ln(\lambda_{j})}{\lambda_{i} - \lambda_{j}} \mathbb{P}_{i} \frac{d \mathbb{B}}{dt} \mathbb{P}_{j}.$$

Jelikož $\mathbb B$ a $\mathbb T$ komutují, tak podle ekvivalentní charakterizace musí mít stejné vlastní vektory. Tedy $\mathbb T = \sum_i \tilde \lambda_i \mathbb P_i$. Takže když násobíme $\mathbb T$: druhý člen, vyjde nula, neboť $\mathbb P_i$ v zápise $\mathbb T$ se nikdy nebude zároveň rovnat $\mathbb P_i$ a $\mathbb P_j$ v druhém členu. Tedy zbývá první člen, kde nám hezky vyjde $\mathbb B^{-1} = \sum \frac{1}{\lambda_i} \mathbb P_i$ a $\frac{d\mathbb B}{dt}$.

Potom podle $\overline{\mathbb{B}} = \mathbb{O}$ a linearity tr je $\mathbb{T} : \frac{d\mathbb{H}}{dt} = \frac{1}{2}\mathbb{T} : \mathbb{B}^{-1}\frac{d\mathbb{B}}{dt} := \frac{1}{2}\left(\mathbb{T} : \mathbb{L}^T + \mathbb{T} : (\mathbb{B}^{-1}\mathbb{L}\mathbb{B})\right)$. Když si napíšeme druhý člen v indexech: $\mathbb{T}_{ij}(\mathbb{B}^{-1})_{ik}\mathbb{L}_{kl}\mathbb{B}_{lj}$, tak si můžeme všimnout, že vzhledem ke komutativitě \mathbb{T} a \mathbb{B} můžeme vyměnit indexy v \mathbb{T} a \mathbb{B} , čímž získáme to, že se \mathbb{B} bude maticově násobit s \mathbb{B}^{-1} , tedy $\mathbb{T} : (\mathbb{B}^{-1}\mathbb{L}\mathbb{B}) = \mathbb{T} : \mathbb{L}$.

Ale to už jsme hotovi, protože $\mathbb{T}: \frac{d\mathbb{H}}{dt} = \frac{1}{2} (\mathbb{T}: (\mathbb{L}^T + \mathbb{L})) =: \mathbb{T}: \mathbb{D}.$