Définition 6.16 - ensemble $\ell^1(E)$

Si E est un \mathbb{K} -espace vectoriel normé, on note $\ell^1(E)$ l'ensemble des suites de $E^{\mathbb{N}}$ dont la série associée absolument convergente. L'application suivante est alors une norme de $\ell^1(E)$:

$$N_1: \ell^1(E) \longrightarrow \mathbb{R}_+$$

 $u \longmapsto \sum_{n=0}^{+\infty} ||u_n||_E$

Définition 6.19 - série géométrique en algèbre normée unitaire

Soit \mathcal{A} une algèbre normée unitaire de dimension finie. Pour tout élément u de \mathcal{A} tel que $||u||_{\mathcal{A}} < 1$, la série $\sum_n u^n$ est appelée série géométrique. Cette série est absolument convergente et sa somme vaut :

$$\sum_{n=0}^{+\infty} u^n = (1_{\mathcal{A}} - u)^{-1}$$

Définition 6.22 - série exponentielle

Soit \mathcal{A} une algèbre normée unitaire de dimension finie. Pour tout élément u de \mathcal{A} , la série $\sum_{n} \frac{u^{n}}{n!}$ est absolument convergente et appelée série exponentielle. On note sa somme :

$$\exp(u) = \sum_{n=0}^{+\infty} \frac{u^n}{n!}$$

Définition 6.26 - série alternée

On appelle série alternée tout série $\sum_n u_n$ dont le terme général s'écrit $u_n = (-1)^n a_n$, où $(a_n)_{n \in \mathbb{N}}$ est une suite de signe constant.

Théorème 6.27 - critère spécial des séries alternées

Soit $\sum_{n} u_n$ une série alternée. Si $(|u_n|)_{n\in\mathbb{N}}$ est décroissante et converge vers 0, alors la série $\sum_{n} u_n$ converge.

Définition 6.30 - produit de Cauchy de suites

Soit \mathcal{A} une \mathbb{K} -algèbre normée unitaire de dimension finie. On appelle produit de Cauchy $u \star v$ de deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ de $\mathcal{A}^{\mathbb{N}}$ la suite $(w_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{i+j=n} u_i v_j$$

bien dans $\mathcal{A}^{\mathbb{N}}$, qui est alors muni d'une structure de \mathbb{K} -algèbre.

Proposition 6.32 - convergence du produit de Cauchy de STP

Soit $\sum_n u_n$ et $\sum_n v_n$ deux séries réelles à termes positifs. Si $\sum_n u_n$ et $\sum_n v_n$ convergent, alors il en est de même pour la série de terme général $(u \star v)_n$. De plus :

$$\sum_{n=0}^{+\infty} \sum_{i+j=n} u_i v_j = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

Proposition 6.32 - convergence du produit de Cauchy de séries d'élements d'une algèbre normée

Soit \mathcal{A} une \mathbb{K} -algèbre normée unitaire de dimension finie. Soit $\sum_n u_n$ et $\sum_n v_n$ deux séries à termes dans \mathcal{A} . Si $\sum_n u_n$ et $\sum_n v_n$ convergent absolument, alors il en est de même pour la série de terme général $(u \star v)_n$. De plus :

$$\sum_{n=0}^{+\infty} \sum_{i+j=n} u_i v_j = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

Théorème 6.34 - propriété fondamentale de l'exponentielle

Soit \mathcal{A} une \mathbb{K} -algèbre normée unitaire de dimension finie. Si u et v sont deux éléments de \mathcal{A} qui commutent, alors :

$$\exp(u+v) = \exp(u) \star \exp(v)$$