V101

Das Drehmoment

 $\begin{array}{ccc} \text{David Rolf} & \text{Jonah Blank} \\ \text{david.rolf@tu-dortmund.de} & \text{jonah.blank@tu-dortmund.de} \end{array}$

Durchführung: 28.11.2017 Abgabe: 05.12.2017

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Aufbau	3
4	Durchführung	3
5	• • • • •	4
6	Diskussion	5

1 Zielsetzung

2 Theorie

$$\sqrt{\frac{a}{\ln b}} = e^c \cdot d_{\rm f} \tag{1}$$

Formel(1)

$$m = 0.035 \,\mathrm{m} \tag{2}$$

3 Aufbau

4 Durchführung

5 Auswertung

5.1 Die Drillachse

5.1.1 Die Winkelrichtgröße

Um die Winkelrichtgröße D der Drillachse zu bestimmen wird Gleichung verwendet. Die benötigten werte für die Kraft F, den Radius r und den Winkel ϕ lassen sich der Tabelle entnehmen.

$$D = (0.0256 \pm 0.0006) \,\mathrm{J}$$

Tabelle 1: Messdaten zur Winkelrichtgrößenbestimmung

F/N	r/m	ϕ/rad
0,12	0,119	0,524
$0,\!19$	0,119	0,873
$0,\!38$	0,059	0,873
$0,\!16$	$0,\!190$	1,047
0,20	0,170	1,222
0,30	0,110	1,396
0,28	0,139	1,571
$0,\!27$	$0,\!159$	1,745
0,30	$0,\!170$	2,094
0,22	0,239	2,269

5.1.2 Eigendrehmoment

Zur Bestimmung des Eigendrehmoments werden zwei Zylinder mit dem Durchmesser $d=0.035\,\mathrm{m}$, der Höhe $h=0.03\,\mathrm{m}$ und der Masse $m=0.2218\,\mathrm{kg}$ benutzt.

Die Verbindungsstange wird als masselos angenommen und wird daher nicht berücksichtigt. Die Werte für das Quadrat der Periodendauer T und des Abstands a aus Tabelle

Abbildung 1: Graph der Messdaten zur Bestimmung des Eigendrehmoments der Drillachse

sind im Graph gegeneinander aufgetragen. Mit Gleichung ergibt sich für das Drehmoment $I_{\rm D}$ der Drillachse:

$$I_{\rm D} = (0.01026 \pm 0.00004) \,\mathrm{kg} \,\mathrm{m}^2$$

Tabelle 2: Messdaten zur Eigendrehmomentbestimmung

r/m	T/s
0,045	2,5525
0,065	2,86
0,085	3,2675
$0,\!105$	3,63
$0,\!125$	4,065
0,145	4,575
$0,\!165$	5,06
$0,\!185$	5,6
0,205	6,06
$0,\!225$	$6,\!53$

5.2 Das Drehmoment einer Kugel

6 Diskussion