Propositional Logic Properties

Mario Alviano

University of Calabria, Italy

A.Y. 2018/2019

Outline

- 1 Validity and satisfiability
- 2 Equivalence
- 3 Entailment
- 4 Exercises

Outline

- 1 Validity and satisfiability
- 2 Equivalence
- 3 Entailment
- 4 Exercises

valid if all interpretations are models of ϕ

- valid if all interpretations are models of ϕ
 - \blacksquare In this case ϕ is also called a ${\bf tautology}$

- lacktriangle valid if all interpretations are models of ϕ
 - \blacksquare In this case ϕ is also called a **tautology**
- lacktriangle invalid if not all interpretations are models of ϕ

- valid if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- lacktriangleright satisfiable if there exists an interpretation which is a model of ϕ

- valid if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- **satisfiable** if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if n_0 interpretation is a model of ϕ

- **valid** if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- **satisfiable** if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if **no** interpretation is a model of ϕ
 - In this case ϕ is also called a **contradiction**

A wff ϕ is

- **valid** if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- **satisfiable** if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if **no** interpretation is a model of ϕ
 - In this case ϕ is also called a **contradiction**

A wff ϕ is

- **valid** if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- **satisfiable** if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if **no** interpretation is a model of ϕ
 - In this case ϕ is also called a **contradiction**

Observations

Every tautology is satisfiable

A wff ϕ is

- **valid** if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- lacksquare satisfiable if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if **no** interpretation is a model of ϕ
 - In this case ϕ is also called a **contradiction**

- Every tautology is satisfiable
- Every contradiction is invalid

A wff ϕ is

- **valid** if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- **satisfiable** if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if **no** interpretation is a model of ϕ
 - In this case ϕ is also called a **contradiction**

- Every tautology is satisfiable
- Every contradiction is invalid
- 3 The converse of 1 and 2 does not hold in general

A wff ϕ is

- **valid** if all interpretations are models of ϕ
 - In this case ϕ is also called a **tautology**
- **invalid** if not all interpretations are models of ϕ
- **satisfiable** if there exists an interpretation which is a model of ϕ
- **unsatisfiable** if **no** interpretation is a model of ϕ
 - In this case ϕ is also called a **contradiction**

- Every tautology is satisfiable
- Every contradiction is invalid
- 3 The converse of 1 and 2 does not hold in general
- 4 Tautologies and contradictions form disjoint sets

Α	В	C	$\neg A$	$\neg A \lor B$	$\neg A \land C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

Α	В	C	$\neg A$	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

 $\blacksquare \neg A \lor B \rightarrow \neg A \land C$ is invalid

Α	В	C	$\neg A$	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

- $\blacksquare \neg A \lor B \rightarrow \neg A \land C$ is invalid
- $\blacksquare \neg A \lor B \rightarrow \neg A \land C$ is satisfiable

Α	В	C	$\neg A$	$\neg A \lor B$	$\neg A \wedge C$	$\neg A \lor B \to \neg A \land C$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

- $\blacksquare \neg A \lor B \rightarrow \neg A \land C$ is invalid
- $\blacksquare \neg A \lor B \rightarrow \neg A \land C$ is satisfiable
- $\neg A \lor B \rightarrow \neg A \land C$ is neither a tautology nor a contradiction

Identify tautologies and contradictions among the following formulas:

Identify tautologies and contradictions among the following formulas:

 $\blacksquare \phi \rightarrow \phi$

tautology

Identify tautologies and contradictions among the following formulas:

- $lacktriangledown \phi o \phi$ tautology
- \bullet $\phi \land \neg \phi$ contradiction

Identify tautologies and contradictions among the following formulas:

tautology

 $\blacksquare \phi \land \neg \phi$

contradiction

 $\blacksquare \phi \lor \neg \phi$

tautology

 $\ \ \, \ \, \ \, \phi \lor \top$

Identify tautologies and contradictions among the following formulas:

- $lacktriangledown \phi o \phi$ tautology
- $\blacksquare \phi \land \neg \phi$ contradiction
- $lack \phi \lor \top$ tautology
- $\blacksquare \hspace{0.1cm} \phi \wedge \bot$

Identify tautologies and contradictions among the following formulas:

 $lacktriangledown \phi o \phi$ tautology

 $\blacksquare \phi \land \neg \phi$ contradiction

 $lack \phi \lor \top$ tautology

 $lacktriangledown \phi \wedge \bot$ contradiction

Outline

- 1 Validity and satisfiability
- 2 Equivalence
- 3 Entailment
- 4 Exercises

• for each interpretation I we have $I(\phi) = I(\psi)$, i.e.

- for each interpretation I we have $I(\phi) = I(\psi)$, i.e.
- lacksquare ϕ and ψ have the same models, i.e.

- for each interpretation I we have $I(\phi) = I(\psi)$, i.e.
- lacktriangledown ϕ and ψ have the same models, i.e.
- $lacktriangledown \phi \leftrightarrow \psi$ is valid

- for each interpretation I we have $I(\phi) = I(\psi)$, i.e.
- lacktriangledown ϕ and ψ have the same models, i.e.
- $\bullet \phi \leftrightarrow \psi$ is valid

Equivalence of ϕ and ψ is denoted as $\phi \equiv \psi$

- for each interpretation I we have $I(\phi) = I(\psi)$, i.e.
- lacktriangledown ϕ and ψ have the same models, i.e.
- $\bullet \phi \leftrightarrow \psi$ is valid

Equivalence of ϕ and ψ is denoted as $\phi \equiv \psi$

- for each interpretation I we have $I(\phi) = I(\psi)$, i.e.
- lacktriangledown ϕ and ψ have the same models, i.e.
- $\bullet \phi \leftrightarrow \psi$ is valid

Equivalence of ϕ and ψ is denoted as $\phi \equiv \psi$

Observations

■ A wff ϕ is a tautology if and only if $\phi \equiv \top$

- for each interpretation I we have $I(\phi) = I(\psi)$, i.e.
- lacktriangledown ϕ and ψ have the same models, i.e.
- $\bullet \phi \leftrightarrow \psi$ is valid

Equivalence of ϕ and ψ is denoted as $\phi \equiv \psi$

- A wff ϕ is a tautology if and only if $\phi \equiv \top$
- A wff ϕ is a contradiction if and only if $\phi \equiv \bot$

- $\blacksquare \ \phi \wedge \psi \equiv \psi \wedge \phi$

- (commutativity)
- (commutativity)
- (commutativity)

(commutativity)

(commutativity)

(commutativity)

- $\bullet \land \psi \equiv \psi \land \phi$
- $\bullet \phi \lor \phi \equiv \phi$

(commutativity)

(commutativity)

(commutativity)

(idempotence)

(idempotence)

- $\quad \blacksquare \ \phi \lor \phi \equiv \phi$
- \bullet $\phi \lor \top \equiv \top$
- $\phi \wedge \bot \equiv \bot$

(commutativity)

(commutativity)

(commutativity)

(idempotence)

(idempotence)

- $\quad \blacksquare \ \phi \lor \bot \equiv \phi$

- $\blacksquare \phi \land \top \equiv \phi$

- (neutrality)
- (neutrality)

- $\phi \lor \bot \equiv \phi$
- $\bullet \phi \wedge \top \equiv \phi$

(neutrality)

- $\phi \lor \bot \equiv \phi$
- $\phi \wedge \top \equiv \phi$

(neutrality)

- $\phi \lor \bot \equiv \phi$
- $\blacksquare \phi \land \top \equiv \phi$
- $\phi \lor \neg \phi \equiv \top$

(neutrality)

- $\blacksquare \phi \lor \bot \equiv \phi$
- $\blacksquare \phi \land \top \equiv \phi$
- $\phi \lor \neg \phi \equiv \top$
- $\bullet \land \neg \phi \equiv \bot$
- $\neg \neg \phi \equiv \phi$

(neutrality)

- $\bullet \land \neg \phi \equiv \bot$
- $\neg \neg \phi \equiv \phi$

- (De Morgan)
- (De Morgan)

- $\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$
- $\neg (\phi \land \psi) \equiv \neg \psi \lor \neg \phi$

(De Morgan)

(De Morgan)

- $\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$
- $\neg (\phi \land \psi) \equiv \neg \psi \lor \neg \phi$
- $\phi \lor (\psi \lor \gamma) \equiv (\phi \lor \psi) \lor \gamma$

(De Morgan)

(De Morgan)

(associativity)

(associativity)

$$\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$$

(De Morgan)

$$\neg (\phi \land \psi) \equiv \neg \psi \lor \neg \phi$$

(De Morgan)

(associativity)

(associativity)

Outline

- 1 Validity and satisfiability
- 2 Equivalence
- 3 Entailment
- 4 Exercises

■ So far interpretations assigned truth values to wffs

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ , $I(\Gamma) = 1$ iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ , $I(\Gamma) = 1$ iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

Consider
$$I = \{A, B, D\}$$

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ , $I(\Gamma) = 1$ iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

Example

Consider $I = \{A, B, D\}$

$$\blacksquare I(\{A,B,C\to D,B\leftrightarrow C\}) =$$

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ , $I(\Gamma) = 1$ iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

Example

Consider $I = \{A, B, D\}$

$$I(\{A \leftrightarrow B \land D, \neg C\}) = 1$$

$$\blacksquare I(\{A,B,C\to D,B\leftrightarrow C\})=0$$

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ ,

$$I(\Gamma) = 1$$
 iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

Example

Consider $I = \{A, B, D\}$

- $I(\{A \leftrightarrow B \land D, \neg C\}) = 1$
- $I(\{A,B,C\to D,B\leftrightarrow C\})=0$

Warning!

 A set Γ of wffs could be seen as the conjunction of its formulas

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ , $I(\Gamma) = 1$ iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

Example

Consider $I = \{A, B, D\}$

- $I(\{A \leftrightarrow B \land D, \neg C\}) = 1$
- $I(\{A,B,C\to D,B\leftrightarrow C\})=0$

Warning!

- A set Γ of wffs could be seen as the conjunction of its formulas
- But this conjunction is not a wff in general!

- So far interpretations assigned truth values to wffs
- Can we extend interpretations to set of wffs?

Definition (Model of a set of wffs)

Given an interpretation I and a set of wffs Γ , $I(\Gamma) = 1$ iff for each $\phi \in \Gamma$ we have $I(\phi) = 1$

Example

Consider $I = \{A, B, D\}$

- $I(\{A \leftrightarrow B \land D, \neg C\}) = 1$
- $I(\{A,B,C\to D,B\leftrightarrow C\})=0$

Warning!

- A set Γ of wffs could be seen as the conjunction of its formulas
- But this conjunction is not a wff in general!
- Actually, it is a wff only if Γ
 has finite cardinality

Can we represent an interpretation *I* as a set Γ of wffs such that *I* is the only model of Γ?

Can we represent an interpretation I as a set Γ of wffs such that I is the only model of Γ? Yes!

```
For I = \{T_1, T_2, ...\}, consider \Gamma = \{T_1, T_2, ..., \neg F_1, \neg F_2, ...\}, where F_1, F_2, ... are the false variables according to I
```

Can we represent an interpretation I as a set Γ of wffs such that I is the only model of Γ? Yes!

```
For I = \{T_1, T_2, ...\}, consider \Gamma = \{T_1, T_2, ..., \neg F_1, \neg F_2, ...\}, where F_1, F_2, ... are the false variables according to I
```

■ We can thus define $\Gamma \models \phi$ for a set Γ of wffs and a wff ϕ

Can we represent an interpretation I as a set Γ of wffs such that I is the only model of Γ? Yes!

```
For I = \{T_1, T_2, ...\}, consider \Gamma = \{T_1, T_2, ..., \neg F_1, \neg F_2, ...\}, where F_1, F_2, ... are the false variables according to I
```

■ We can thus define $\Gamma \models \phi$ for a set Γ of wffs and a wff ϕ

Definition

 $\Gamma \models \phi$ if each model of Γ is also a model of ϕ

Can we represent an interpretation I as a set Γ of wffs such that I is the only model of Γ? Yes!

```
For I = \{T_1, T_2, ...\}, consider \Gamma = \{T_1, T_2, ..., \neg F_1, \neg F_2, ...\}, where F_1, F_2, ... are the false variables according to I
```

■ We can thus define $\Gamma \models \phi$ for a set Γ of wffs and a wff ϕ

Definition

 $\Gamma \models \phi$ if each model of Γ is also a model of ϕ

■ If $\Gamma \models \phi$ then we say that Γ entails ϕ

Can we represent an interpretation I as a set Γ of wffs such that I is the only model of Γ? Yes!

```
For I = \{T_1, T_2, ...\}, consider \Gamma = \{T_1, T_2, ..., \neg F_1, \neg F_2, ...\}, where F_1, F_2, ... are the false variables according to I
```

■ We can thus define $\Gamma \models \phi$ for a set Γ of wffs and a wff ϕ

Definition

 $\Gamma \models \phi$ if each model of Γ is also a model of ϕ

- If $\Gamma \models \phi$ then we say that Γ entails ϕ
- We also say that ϕ is a logical consequence of Γ

Can we represent an interpretation I as a set Γ of wffs such that I is the only model of Γ? Yes!

```
For I = \{T_1, T_2, ...\}, consider \Gamma = \{T_1, T_2, ..., \neg F_1, \neg F_2, ...\}, where F_1, F_2, ... are the false variables according to I
```

■ We can thus define $\Gamma \models \phi$ for a set Γ of wffs and a wff ϕ

Definition

 $\Gamma \models \phi$ if each model of Γ is also a model of ϕ

- If $\Gamma \models \phi$ then we say that Γ entails ϕ
- We also say that ϕ is a logical consequence of Γ

 $\models \phi$ if and only if ϕ is a tautology

- $\blacksquare \ \{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \ \{\phi \land \psi\} \models \phi \to \psi$

- $\blacksquare \ \{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \ \{\phi \land \psi\} \models \phi \to \psi$
- $\blacksquare \ \{\neg \phi\} \models \phi \rightarrow \psi$

Example

 $\blacksquare \{\phi\} \cup \Gamma \models \phi$

- $\blacksquare \{\phi, \psi\} \models \phi \to \psi$
- $\blacksquare \ \{\phi \wedge \psi\} \models \phi \rightarrow \psi$
- $\blacksquare \ \{\neg \phi\} \models \phi \rightarrow \psi$

- \blacksquare $\{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \ \{\neg \phi\} \models \phi \rightarrow \psi$

- $\blacksquare \{\phi, \psi\} \models \phi \to \psi$
- $\blacksquare \ \{\phi\} \models \phi \lor \psi$

Example

- $\blacksquare \ \{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \{\phi \land \psi\} \models \phi \to \psi$
- $\blacksquare \ \{\neg \phi\} \models \phi \rightarrow \psi$

- $\blacksquare \{\phi, \psi\} \models \phi \to \psi$
- $\blacksquare \{\phi\} \models \phi \lor \psi$

Note: We will often omit curly brackets

Example

- \blacksquare $\{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \{\phi \land \psi\} \models \phi \to \psi$
- $\blacksquare \{\neg \phi\} \models \phi \rightarrow \psi$

- $\blacksquare \{\phi, \psi\} \models \phi \to \psi$
- $\blacksquare \{\phi\} \models \phi \lor \psi$

Note: We will often omit curly brackets

Theorem (Monotonicity)

If
$$\Gamma \models \phi$$
 then $\Gamma, \psi \models \phi$

Example

- $\blacksquare \{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \{\phi \land \psi\} \models \phi \to \psi$
- $\blacksquare \{\neg \phi\} \models \phi \rightarrow \psi$

- $\blacksquare \{\phi, \psi\} \models \phi \to \psi$
- $\blacksquare \{\phi\} \models \phi \lor \psi$

Note: We will often omit curly brackets

Theorem (Monotonicity)

If
$$\Gamma \models \phi$$
 then $\Gamma, \psi \models \phi$

Deduction Theorem

$$\Gamma, \phi \models \psi$$
 if and only if $\Gamma \models \phi \rightarrow \psi$

Example

- \blacksquare $\{\phi\} \cup \Gamma \models \phi$
- $\blacksquare \{\phi \land \psi\} \models \phi \to \psi$
- $\blacksquare \ \{\neg \phi\} \models \phi \rightarrow \psi$

- $\blacksquare \{\phi, \psi\} \models \phi \to \psi$
- $\blacksquare \{\phi\} \models \phi \lor \psi$

Note: We will often omit curly brackets

Theorem (Monotonicity)

If
$$\Gamma \models \phi$$
 then $\Gamma, \psi \models \phi$

Deduction Theorem

 $\Gamma, \phi \models \psi$ if and only if $\Gamma \models \phi \rightarrow \psi$

Contraposition Theorem

$$\Gamma \models \phi \rightarrow \psi$$
 if and only if $\Gamma, \neg \psi \models \neg \phi$

Outline

- 1 Validity and satisfiability
- 2 Equivalence
- 3 Entailment

4 Exercises

Decide whether formula

$$X \vee \neg y \wedge \neg z$$

is satisfiable

Decide whether formula

$$\neg x \lor z \leftrightarrow y \land \neg z$$

is a tautology

3 Decide whether formula

$$X \leftrightarrow \neg Y \rightarrow \neg Z \wedge \neg X \vee Y$$

is a contradiction

END OF THE LECTURE