

Prova de Trabalho e Energia - ITA

- 1 (ITA-12) Acredita-se que a colisão de um grande asteróide com a Terra tenha causado a extinção dos dinossauros. Para se ter uma idéia de um impacto dessa ordem, considere um asteróide esférico de ferro, com 2 km de diâmetro, que se encontra em repouso quase no infinito, estando sujeito somente à ação da gravidade terrestre. Desprezando as forças de atrito atmosférico, assinale a opção que expressa a energia liberada no impacto, medida em número aproximado de bombas de hidrogênio de 10 megatons de TNT.
- a) 1 b) 10 c) 500 d) 50.000 e) 1.000.000
- ${\bf 2}$ (ITA-10) A temperatura para a qual a velocidade associada à energia cinética média de uma molécula de nitrogênio; $N_2,$ é igual à velocidade de escape desta molécula da superfície da Terra é de, aproximadamente,
- A) 1.4×10^5 K. B) 1.4×10^8 K.
- C) $7.0 \times 10^{27} \text{ K}$. D) $7.9 \times 10^4 \text{ K}$
 - E) 8,4 x 10²⁸ K.
- **3** (ITA-10) Uma máquina térmica opera segundo o ciclo JKLMJ mostrado no diagrama T-S da figura. Podese afirmar que

- A) o processo JK corresponde a uma compressão isotérmica.
- B) o trabalho realizado pela máquina em um ciclo é $W=(T_2-T_1)(S_2-S_1)$.
- C) o rendimento da máquina é dado por η = 1- $\frac{T_2}{T_1}$.
- D) durante o processo LM uma quantidade de calor $Q_{LM} = T_1(S_2 S_1)$ é absorvida pelo sistema.
- E) outra máquina térmica que opere entre T_2 e T_1 poderia eventualmente possuir um rendimento maior que a desta.
- **4 -** (ITA-10) No processo de fotossíntese, as moléculas de clorofila do tipo o, nas plantas verdes apresentam um pico de absorção da radiação eletromagnética no

comprimento de onda λ = 6,80 x 10^{-7} m. Considere que a formação de glicose ($C_6H_{12}O_6$) por este processo de fotossíntese é descrita, de forma simplificada, pela reação:

$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Sabendo-se que a energia total necessária para que uma molécula de CO_2 reaja é de 2,34 x 10^{-18} J o numero de fótons que deve ser absorvido para formar 1 mol de glicose é

- A) 8. B) 24. C) 48. D) 120. E) 240.
- **5** (ITA-08) Um elétron e um pósitron, de massa m = 9,11 x 10^{-31} kg, cada qual com energia cinética de 1,20 MeV e mesma quantidade de movimento, colidem entre si em sentidos opostos. Neste processo colisional as partículas aniquilam-se, produzindo dois fótons γ_1 e γ_2 . Sendo dados: constante de Planck h = 6,63 x 10^{-34} J.s; velocidade da luz c = 3,00 x 10^8 m/s; 1 eV = 1,6 x 10^{-19} J; 1 femtometro = 1 fm = 1 x 10^{-15} m, indique os respectivos valores de energia E e do comprimento de onda dos fótons.
- A) E=1,20 MeV; λ = 2435 fm
- B) E =1,20 MeV; λ = 1035 fm
- C) E =1,71 MeV; λ =726 fm
- D) E = 1,46 MeV; λ = 0,28 x 10⁻² fm
- E) E = 1,71 MeV; λ = 559 fm
- **6** (ITA-06) Sejam o recipiente (1), contendo 1 mol de H_2 (massa molecular M=2) e o recipiente (2) contendo 1 mol de He (massa atômica M=4) ocupando o mesmo volume, ambos mantidos a mesma pressão. Assinale a alternativa correta:
- a) A temperatura do gás no recipiente 1 é menor que a temperatura do gás no recipiente 2.
- b) A temperatura do gás no recipiente 1 é maior que a temperatura do gás no recipiente 2.
- c) A energia cinética média por molécula do recipiente 1 é maior que a do recipiente 2.
- d) O valor médio da velocidade das moléculas no recipiente 1 é menor que o valor médio da velocidade das moléculas no recipiente 2.
- e) O valor médio da velocidade das moléculas no recipiente 1 é maior que o valor médio da velocidade das moléculas no recipiente 2.
- **7 -** (ITA-04) Num experimento que usa o efeito fotoelétrico, ilumina-se sucessivamente a superfície de um metal com luz de dois comprimentos de onda diferentes, λ_1 e λ_2 , respectivamente. Sabe-se que as

velocidades máximas dos fotoelétrons emitidos são, respectivamente, $\mathbf{v_1}$ e $\mathbf{v_2}$, em que $\mathbf{v_1}$ = $2\mathbf{v_2}$. Designando C a velocidade da luz no vácuo, e h constante de Planck, pode-se, então, afirmar que a função trabalho Ø do metal é dada por:

a)
$$\frac{(2\lambda_1 - \lambda_2)hC}{(\lambda_1\lambda_2)}$$

c)
$$\frac{(\lambda_2 - 4\lambda_1)hC}{(3\lambda_1\lambda_2)}$$

e)
$$\frac{(2\lambda_1 - \lambda_{21})hC}{(3\lambda_1\lambda_2)}$$

a)
$$\frac{(2\lambda_1 - \lambda_2)hC}{(\lambda_1\lambda_2)}$$
 c) $\frac{(\lambda_2 - 4\lambda_1)hC}{(3\lambda_1\lambda_2)}$ e) $\frac{(2\lambda_1 - \lambda_{21})hC}{(3\lambda_1\lambda_2)}$ b) $\frac{(\lambda_2 - 2\lambda_1)hC}{(\lambda_1\lambda_2)}$ d) $\frac{(4\lambda_1 - \lambda_2)hC}{(3\lambda_1\lambda_2)}$

d)
$$\frac{(4\lambda_1 - \lambda_2)hC}{(3\lambda_1\lambda_2)}$$

8 - (ITA-02) Um corpo de massa M, mostrado na figura, é preso a um fio leve, inextensível, que passa através de um orifício central de uma mesa lisa. Considere que inicialmente o corpo se move ao longo de uma circunferência, sem atrito. O fio é, então, puxado para baixo, aplicando-se uma força $\vec{\mathrm{F}}$, constante, a sua extremidade livre. **Podemos** afirmar que:

- a) O corpo permanecerá ao longo da mesma circunferência.
- b) A força F não realiza trabalho, pois é perpendicular à trajetória.
- c) A potência instantânea de \vec{F} é nula.
- d) O trabalho de \vec{F} é igual à variação da energia cinética do corpo.
- e) O corpo descreverá uma trajetória elíptica sobre a mesa.
- 9 (ITA-01) Uma bola cai, a partir do repouso, de uma altura h, perdendo parte de sua energia ao colidir com o solo. Assim, a cada colisão sua energia decresce de um fator k. Sabemos que após 4 choques com o solo, a bola repica até uma altura de 0,64 h. Nestas condições, o valor do fator k é

a)
$$\left(\frac{9}{10}\right)$$
 b) $\left(\frac{2\sqrt{5}}{5}\right)$ c) $\left(\frac{4}{5}\right)$ d) $\left(\frac{3}{4}\right)$ e) $\frac{5}{8}$

c)
$$\left(\frac{4}{5}\right)$$

d)
$$\left(\frac{3}{4}\right)$$

e)
$$\frac{5}{8}$$

10 - (ITA-98) Um relógio de pêndulo simples é montado no pátio de um laboratório em Novosibirsk na Sibéria, utilizando um fio de suspensão de coeficiente de dilatação 1 x 10^{-5} $^{\circ}C^{-1}$. O pêndulo é calibrado para

marcar a hora certa em um bonito dia de verão de 20 °C. Em um dos menos agradáveis dias do inverno, com a temperatura a – 40 °C, o relógio:

- a) adianta 52 s por dia. b) adianta 26 s por dia.
- c) atrasa 13 s por dia. d) atrasa 26 s por dia.
- e) atrasa 52 s por dia.

11 - (ITA-94) Na figura, o objeto de massa m quando lançado horizontalmente do ponto A com velocidade Va atinge o ponto B após percorrer quaisquer dos três caminhos contidos num plano vertical (ACEB, ACDEB, ACGFEB). Sendo g a aceleração gravitacional e μ o coeficiente de atrito em qualquer trecho; T₁, T₂, T₃ e V_{b1}, V_{b2}, V_{b3} os trabalhos realizados pela força de atrito e as velocidades no ponto B, correspondentes aos caminhos 1, 2, e 3 respectivamente podemos afirmar que:

a)
$$T_1 < T_2 < T_3$$
 e $V_{b1} > V_{b2} > V_{b3}$

b)
$$T_1 < T_2 < T_3 e V_{b1} = V_{b2} = V_{b3}$$

c)
$$T_1 = T_2 = T_3 e V_{b1} > V_{b2} > V_{b3}$$

d)
$$T_1 > T_2 > T_3$$
 e $V_{b1} < V_{b2} < V_{b3}$

e)
$$T_1 = T_2 = T_3$$
 e $V_{b1} = V_{b2} = V_{b3}$

12 - (ITA-93) Suponha uma partícula que se move sob ação de uma força conservativa. A variação da energia potencial (Ep) com respeito ao tempo (t) é mostrada na figura a seguir. Qual dos gráficos seguintes pode apresentar a energia cinética da partícula?

e) Mais de um gráfico mostrado anteriormente pode apresentar a energia cinética da partícula.

13 - (ITA-92) Na questão nº 1:

- a) Calcule o trabalho W realizado pela força F para fazer subir lentamente (v = 0) a massa M em termos da variação da energia potencial de M, desde a posição em que o fio está na vertical até a situação indicada no desenho.
- b) Verifique se é possível calcular esse trabalho como o produto de F, já calculada, pelo deslocamento d. (Na resolução do problema justifique a resposta b.)

a) b) a) a) 0,29 MgL Não. b) 0,13 MgL Sim. c) 0,50 MgL Não. d) 0,13 MgL Não. e) 0,29 MgL Sim.

14 - (ITA-89) Uma partícula de massa m presa a um bastante de comprimento L, é mantida em rotação num plano vertical. Qual deve ser a menor velocidade tangencial da pedra no topo da trajetória (v m) para que o barbante ainda se mantenha esticado? Qual será a tensão (T) no barbante quando a pedra estiver no ponto mais baixo da trajetória?

> $V_{\ m}$ Т A) √g L 6 mg B) mg C) 2 mg D) $2\sqrt{g}L$ $\sqrt{2 \text{ mg}}$ E) $\sqrt{g L}$

15 - (ITA-89) Um objeto de massa m = 1,0 kg é lançado de baixo para cima, na vertical, com velocidade \vec{V}_0 . Ao passar por uma posição y $_1$ ele está com velocidade \overrightarrow{V}_1 = 4,0 m/s e numa posição y 2 sua velocidade é \vec{V}_2 = 2,0 m/s.

Desprezada a resistência do ar, o trabalho realizado pela força da gravidade (W g) entre y 1 e y 2 e o deslocamento (y 2 - y 1) são respectivamente :

	$W_g(J)$	$Y_2 - Y_1 (m)$
A)	6,1	6,0
B)	-6,0	5,9.10 ⁻¹
C)	1,0	6,1.10 ⁻¹
D)	-1,0	1,0.10 ⁻¹
E)	-6.0	6,1.10 ⁻¹

16 - (ITA-89) O gráfico abaixo representa um ciclo de um sistema termodinâmico hipotético, num diagrama pressão versus volume. O trabalho produzido por esse gás é aproximadamente :

17 - (ITA-88) Um fio de comprimento L = 1,0 m tem fixo em uma das extremidades, um corpo de massa m = 2,0 kg, enquanto que a outra extremidade acha-se presa no ponto 0 de um plano inclinado, como mostra a figura. O plano inclinado forma um ângulo $\theta = 30^{\circ}$ com o plano horizontal. O coeficiente de atrito entre o corpo e a superfície do plano inclinado é $\mu = 0.25$. Inicialmente, o corpo é colocado no posição A, em que o fio está completamente esticado e paralelo ao plano horizontal. Em seguida abandona-se o corpo com velocidade inicial nula. Calcular a energia dissipada por atrito, correspondente ao arco AB, sendo B a posição mais baixa que o corpo pode atingir $g = 10 \text{ m/s}^2$.

19 - (ITA-88) Uma foca de 30 kg sobre um trenó de 5 kg, com uma velocidade inicial de 4,0 m/s inicia a descida de uma montanha de 60 m de comprimento e 12 m de altura, atingindo a parte mais baixa da montanha com a velocidade de 10,0 m/s. A energia mecânica que é transformada em calor será:

(Considere $g = 10 \text{ m/s}^2$)

() A. 8.400 J () B. 4.200 J () C. 2.730 J () D. 1.470 J

() E. Impossível de se determinar conhecimento do coeficiente de atrito cinético entre o trenó e a superfície da montanha.

20 - (ITA-88) Dois baldes cilíndricos idênticos, com as suas bases apoiadas na mesma superfície plana, contém água até as alturas h_1 e h_2 , respectivamente. A área de cada base é A. Faz-se a conexão entre as bases dos dois baldes com o auxílio de um fina mangueira. Denotando a aceleração da gravidade por q e a massa específica da água por $\,\rho$, o trabalho realizado pela gravidade no processo de equalização dos níveis será:

() A. $pAg(h_1 - h_2)/4$ () B. $pAg(h_1 - h_2)/2$

() C. nulo.

() D. $pAg(h_1 + h_2)/4$ () E. $pAg(h_1 + h_2)/2$

21 - (ITA-87) A figura representa uma pista sem atrito cuja secção vertical forma, a partir do ponto mais baixo A, uma semi-circunferência de raio R. Um objeto de massa m é abandonado a partir de uma altura h que é a mínima que ainda lhe permite atingir o ponto B situado na vertical de A Sendo T₁ o trabalho da força peso e T₂ o trabalho da reação da pista ao longo dessa trajetória CAB, podemos afirmar, a respeito de h, T_1 e T_2 que:

h = 5R/2; T_1 e T_2 só podem ser calculados conhecendo-se a forma detalhada da pista.

() B. h = 5R/2; $T_1 = mg R/2$; T_2 só pode ser calculado conhecendo-se a forma detalhada da pista.

() C. h = 3R/2; $T_1 = -mg R/2$; $T_2 = 0$

() D. h = 5R/2; $T_1 = mg R/2$; $T_2 = 0$

() E. h = 3R/2; $T_1 = mg R/2$; $T_2 = -mg R/2$

22 - (ITA-87) Um motor a explosão tem potência de 50 kW e recebe, por hora, através da combustão da gasolina, 2,1 x 10⁶ kJ. Seu rendimento e a potência dissipada por ele são respectivamente:

() A. 8,2% e $5,80 \times 10^2$ kW

() B. 9,4% e 50 kW

() C. 8,6% e 5,3 x 10^2 kW

() D. 9,4% e 5,3 x 10^2

() E. 91% e 50 kW

23 - (ITA-86) Um automóvel de massa m = 500 kg é acelerado uniformemente a partir do repouso até uma velocidade v $_0$ = 40 m.s $^{-1}$ em t $_0$ = 10 segundos. A potência desenvolvida por este automóvel ao completar estes 10 primeiros segundos será:

A) 160 kW

D) 20 kW

B) 80 kW

E) 3 kW

C) 40 kW

24 - (ITA-85) Uma queda d'água escoa 120 m ³ de água por minuto e tem 10,0 m de altura. A massa específica da água é de 1,00 g/cm 3 e a aceleração da gravidade é de 9,81 m/s². A potência mecânica da queda d'água é:

A) 2,00 W

B) 235 x 10 5 W

C) 196 kW

D) $3,13 \times 10^3 \text{ N}$

E) 1,96 x 10 ² W

25 - (ITA-85) Três blocos B $_1$, B $_2$, B $_1$ de mármore, de mesma massa específica ρ e mesma área de secção transversal A têm alturas respectivamente iguais a h 1, h_2 e h_3 , sendo $h_1 > h_2 > h_3$. Eles estão inicialmente no

solo horizontal, repousando sobre suas bases. Em seguida são empilhados, formando uma coluna de altura $h = h_1 + h_2 + h_3$. A aceleração da gravidade é g. Quanto ao trabalho realizado na operação de empilhamento podemos afirmar que :

- A) é nulo, porque a força peso é conservativa.
- B) é máximo se o bloco B $_{1}$ for colocado no alto, o bloco B $_{2}$ no meio e o bloco B $_{3}$ embaixo.
- C) é mínimo se o bloco B $_3$ estiver em cima, o bloco B $_1$ no meio e o bloco B $_2$ embaixo.
- D) é igual a $\frac{pgA}{2} \, \stackrel{-}{h^2} \left(h_1^2 + h_2^2 + h_3^2 \right)$
- E) é igual a $pgA\,h^2$

26 - (ITA-83) Na questão anterior, a energia cinética do elétron $\left(\frac{1}{2}\,\mathrm{m}\,\mathrm{v}^2\right)$ ao atingir a placa deve ser igual a:

(A)
$$\frac{1}{2} \text{ m v}_0^2 \left(1 + \frac{L^2}{d^2} \right)$$

(B)
$$\frac{1}{2} \, m \, v_0^{\ 2} + \frac{1}{2} \, q \, V$$

(C)
$$\frac{1}{2} q V \left(\frac{L}{d} + 1 \right)$$
 (D) $\frac{1}{2} m v_0^2 + q V$

GABARITO

1	D
2	Α
3	В
4	С
5	С
6	E
7	D
8	D
9	В
10	В
11	E
12	В
13	D
14	Α
15	Е
16	E
17	Α
18	С
19	С
20	SR
21	D
22	С
23	В
24	С
25	D
26	В