PROGRAMME DE COLLES

SUP MPSI 1

Semaine 19

Du 19 au 23 février 2024.

MECANIQUE 1:

Mécanique 4 MOUVEMENTS DE PARTICULES CHARGEES DANS DES CHAMPS ELECTRIQUES ET MAGNETIQUES UNIFORMES ET STATIONNAIRES

EN TD UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.4. Mouvement de particules chargées da uniformes et stationnaires	ans des champs électrique et magnétostatique,
Force de Lorentz exercée sur une charge ponctuelle ; champs électrique et magnétique.	Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.
Puissance de la force de Lorentz.	Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.
Mouvement d'une particule chargée dans un champ électrostatique uniforme.	Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant. Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.
Mouvement d'une particule chargée dans un champ magnétostatique uniforme dans le cas où le vecteur vitesse initial est perpendiculaire au champ magnétostatique.	Déterminer le rayon de la trajectoire et le sens de parcours.

ARCHITECTURE DE LA MATIERE:

Structure Mat 1

CLASSIFICATION PERIODIQUE DES ELEMENTS

EN COURS ET TD.

Notions et contenus	Capacités exigibles
Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.
	Positionner dans le tableau périodique et reconnaître les métaux et non métaux.

STRUCTURE ELECTRONIQUE DES MOLECULES

EN COURS ET TD.

Notions et contenus	Capacités exigibles	
4.2.1 Structure des entités chimiques		
Modèle de la liaison covalente Liaison covalente localisée. Schéma de Lewis d'une molécule ou d'un ion monoatomique ou d'un ion polyatomique pour les éléments des blocs s et p.	Citer les ordres de grandeur de longueurs et d'énergies de liaisons covalentes. Déterminer, pour les éléments des blocs s et p, le nombre d'électrons de valence d'un atome à partir de la position de l'élément dans le tableau périodique. Établir un schéma de Lewis pertinent pour une molécule ou un ion. Identifier les écarts à la règle de l'octet.	
Géométrie et polarité des entités chimiques Électronégativité : liaison polarisée, moment dipolaire, molécule polaire.	Associer qualitativement la géométrie d'une entité à une minimisation de son énergie. Comparer les électronégativités de deux atomes à partir de données ou de leurs positions dans le tableau périodique.	
	Prévoir la polarisation d'une liaison à partir des électronégativités comparées des deux atomes mis en jeu. Relier l'existence ou non d'un moment dipolaire permanent à la structure géométrique donnée d'une molécule. Déterminer direction et sens du vecteur moment dipolaire d'une liaison ou d'une molécule de géométrie donnée.	

Structure Mat 3 FORCES INTERMOLECULAIRES; SOLVANTS

EN COURS ET TD.

Notions et contenus	Capacités exigibles
4.2.2. Relations structure des entités - propriétés physiques macroscopiques	
Interaction entre entités Interactions de van der Waals. Liaison hydrogène ou interaction par pont hydrogène.	Citer les ordres de grandeur énergétiques des interactions de van der Waals et de liaisons hydrogène. Interpréter l'évolution de températures de changement d'état de corps purs moléculaires à l'aide de l'existence d'interactions de van der Waals ou par pont hydrogène.
Solubilité ; miscibilité. Grandeurs caractéristiques et propriétés de solvants moléculaires : moment dipolaire, permittivité relative, caractère protogène. Mise en solution d'une espèce chimique moléculaire ou ionique.	Associer une propriété d'un solvant moléculaire à une ou des grandeurs caractéristiques. Interpréter la miscibilité ou la non-miscibilité de deux solvants. Interpréter la solubilité d'une espèce chimique moléculaire ou ionique.

Interaction de Van Der Waals:

Nature des forces de Van Der Waals ; La liaison de Van Der Waals ; Conséquences des forces de Van Der Waals.

Liaison hydrogène:

Définition ; Nature de la liaison hydrogène ; Conséquences.

Les solvants

Les semblables dissolvent les semblables ; Classification des solvants ; Le solvant eau ; Solvants et chimie verte.

TOURNER SVP!

Mécanique 5

LE MOMENT CINETIQUE

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.5. Moment cinétique	
Moment cinétique d'un point matériel par rapport à un point et par rapport à un axe orienté.	Relier la direction et le sens du vecteur moment cinétique aux caractéristiques du mouvement.
Moment cinétique d'un système discret de points par rapport à un axe orienté.	Utiliser le caractère algébrique du moment cinétique scalaire.
Moment d'une force par rapport à un point ou un axe orienté.	Calculer le moment d'une force par rapport à un axe orienté en utilisant le bras de levier.
Théorème du moment cinétique en un point fixe dans un référentiel galiléen. Conservation du moment cinétique.	Identifier les cas de conservation du moment cinétique.

Moment cinétique d'un pont matériel.

Par rapport à un point O; Par rapport à un axe Δ .

Moment cinétique d'un système de points matériels.

Moment d'une force \vec{F} . Par rapport à un point O; Par rapport à un axe Δ ; Notion de bras de levier.

Théorème du moment cinétique en référentiel galiléen :

Théorème du moment cinétique en un point fixe O (énoncé + démonstration).

Théorème du moment cinétique en projection sur un axe fixe (énoncé + démonstration).

Application au pendule simple / point et / à un axe.

Mécanique 7 MOUVEMENT DANS UN CHAMP DE FORCES CENTRALES - CAS NEWTONIEN

EN COURS UNIQUEMENT.

Notions et contenus	Capacités exigibles
2.6. Mouvements dans un champ de force ce	
Point matériel soumis à un champ de force centrale.	Établir la conservation du moment cinétique à partir du théorème du moment cinétique. Établir les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.
Point matériel soumis à un champ de force centrale conservatif Conservation de l'énergie mécanique. Énergie potentielle effective. État lié et état de diffusion.	Exprimer l'énergie mécanique d'un système conservatif ponctuel à partir de l'équation du mouvement. Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective. Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné du mouvement radial à la valeur de l'énergie mécanique. Capacité numérique : à l'aide d'un langage de programmation, obtenir des trajectoires d'un point matériel soumis à un champ de force centrale conservatif.

Forces centrales conservatives:

Définitions et exemples.

Propriétés des forces centrales conservatives.

Conservation du moment cinétique et conséquences (Conservation du moment cinétique ; Planéité du mouvement ; Loi des aires).

Propriétés énergétiques (L'énergie potentielle associée ne dépend que de *r* ; Conservation de l'énergie mécanique ; Energie potentielle effective ; Discussion graphique).

ATTENTION, le chapitre n'est pas terminé. Les interactions newtoniennes n'ont pas encore été traitées. Seules les forcées centrales (générales) ont été vues.