5.5 Сцинтилляционная γ -спектроскопия Северилов Павел

1 Теоретическое введение

В данной работе исследуются сцинтилляционные гамма - спектрометры на основе неорганического кристалла NaI(Tl) и органической сцинтиллирующей пластмассы. При прохождении гамма -квантов через материальную среду образуются электроны , возникающие за счет фотоэффекта, комптоновского рассеяния и рождения электрон-позитронных пар.

1.1 Фотоэффект

Процесс взаимодействия γ -кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$. Фотоэффект существенен для тяжелых атомов, где он идет с высокой вероятностью даже при высоких энергиях гамма-квантов.

1.2 Эффект Комптона

Упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию на 180 градусов и равна

$$E_{max} = \frac{\eta \omega}{1 + \frac{mc^2}{2\eta \omega}} \tag{1}$$

1.3 Процесс образования электрон-позитронных пар

Образование пары проходит вблизи электрона или ядра. При этом энергия образующегося ядра отдачи оказывается малой, так что энергия образования пары практически совпадает с энергией покоя электрона. Появившийся электрон теряет энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Далее есть три варианта развития событий:

- 1. оба кванта не вылетают из детектора, и тогда вся энергия первичного гаммакванта остается в детекторе
- 2. один из родившихся квантов покидает детектор
- 3. оба кванта покидают детектор

Таким образом, каждый происходящий процес вносит свой вклад в энергетический спектр излучения.

Энергии пиков максимальных энергий для комптоновского поглощения зависят от энергии пиков полного поглощения как

$$E_{max} = \frac{\hbar\omega}{1 + \frac{m_e c^2}{2\hbar\omega}} \tag{2}$$

Положение пика обратного поглощения вычисляется по формуле

$$E = \frac{\hbar\omega}{1 + \frac{2\hbar\omega}{m_e c^2}} \tag{3}$$

Форма сигнала ФЭУ имеет вид

$$U(t) = const \cdot \exp\left(-\frac{t}{RC}\right) \left(1 - \exp\left(-\frac{t}{\tau_0}\right)\right) \tag{4}$$

2 Экспериментальная установка

Рис. 4. Принципиальная блок-схема спектрометра

На этом рисунке: 1 – сцинтиллятор, 2 – Φ ЭУ, 3 – предусилитель импульсов,

4 — высоковольтный блок питания для Φ ЭУ, 5 — блок преобразования аналоговых импульсов с Φ ЭУ в цифровой код (АЦП), 6 — компьютер для сбора данных, их обработки и хранения.

3 Ход работы

- 1. Подготовили приборы к измерениям
- 2. Провели измерения для Cs, Co, Eu, Na, Am. Для каждого материала находили положение фотопика. Сначала мы определяли положение пиков приближенно, подводя репер к максимуму и снимая с него координату. Затем, каждый пик аппроксимировали гауссианом и уже из математической функции определяли положение максимума, а также ширину фотопика. Результаты измерений занесли в таблицу:
- 3. Построим калибровочный график на основе полученных данных

Элемент	I пик, кан	II пик, кан	ІГ пик, кан	Δ I, кан	ШΓпик, кан	Δ II, кан
Eu-152	128,7	224,1	129,55	43,2	224,21	39,6
Am-241	112,8	154,8	113,17	27,9	153,09	43,7
Cs-137	843,1	_	844,095	124,8	_	_
Na-22	670,5	1516,3	670,43	122,9	1512,3	139
Co-60	1422,1	1586,2	1417,51	119,6	1586,30	152,7

Таблица 1: Таблица результатов

Рис. 1: Калибровочный график

Элемент	I пик, кан	ΔI , кан	Е, МэВ	ΔE , Мэ B	R	E_{exp} , МэВ	E_{theor} , МэВ	E_{inv} , МэІ
Eu-152	129,55	43,2	0,0189	_	_	_	_	0.0176
Am-241	113,17	27,9	0,004	_	_	_	_	0.0039
Cs-137	844,095	124,8	0,666	0,0146	0.022	0,444	0,483	0.185
Na-22	670,43	122,9	0,509	0,0129	0.025	0,309	0,341	0.170
Co-60	1417,51	119,6	1,185	0,0099	0.0083	1,0	0,978	0.210

Таблица 2: Таблица результатов в пересчете

- 4. Приведем результаты пересчета энергии из единиц "каналов"в МэВ
- 5. Построим график зависимости теоретического значения комптоновского края от экспериментального:
- 6. Построим график зависимости энергетического разрешения спектрометра от обратной энергии.
- 7. Построим график зависимости энергии обратного пика рассеяния от энергии:

Рис. 2: Комптоновские края

Рис. 3: Разрешение

Рис. 4: Энергии обратного пика рассеяния от энергии

4 Вывод

В данной работе мы исследовали гамма-линии спектров для 5 различных образцов с помощью сцинтиллятора, энергию края комптоновского поглощения – теоретические выкладки очень хорошо легли на экспериментальные расчеты.

Рис. 5: Спектр ^{60}Co

Рис. 6: Спектр ^{137}Cs

Рис. 7: Спектр ^{241}Am

Рис. 8: Спектр ^{152}Eu

Рис. 9: Спектр ^{22}Na