3a Avaluació Global Nom i cognoms:	Física	2n Batxillerat Data: Qualificació:
espai, indiqueu-ho clarament en aque		ervir la cara posterior si necessiteu més es respostes i mostrar el procés per tal cre parèntesis.
ons/hora mentre que en una	fusta actual hem obtingut 700 desir e del qual es va obtenir la fusta va	tòrica hem obtingut 90 desintegraci- ntegracions/hora. Calculeu el temps a morir, suposant que el període de
	tud d'ona de de Broglie d'un vehicl (Dades: $h=6,626\cdot 10^{-34}Js$)	le de massa $m=1000kg$ que es mou
un període de semidesintegra	ació de 3,64 dies. Es demana:	10^8 àtoms d'un isòtop de Ra , que té va d'aquest isòtop i l'activitat inicial

(b) (1,25 pts) Calculeu el nombre d'àtoms presents a la mostra al cap de 10,92 dies.

4.	Suposeu que el treball d'extracció del sodi és de $2,5eV$ i il·luminem una mostra amb llum monocro-
	màtica de longitud d'ona $2, 0 \cdot 10^{-7} m$. Es demana:

(a) (1,25 pts) Calculeu la freqüència llindar del sodi.

(b) (1,25 pts) Feu els càlculs necessaris per decidir si es produirà efecte fotoelèctric i en cas afirmatiu calculeu l'energia cinètica màxima dels fotoelectrons emesos.

(Dades: $1 \, eV = 1,602 \cdot 10^{-19} \, J; \, h = 6,626 \cdot 10^{-34} \, Js; \, c = 2,998 \cdot 10^8 \, m/s$)

5. **(1,25 pts)** Donades les espècies ${}^{16}_{8}O$, ${}^{56}_{26}Fe$, ${}^{27}_{13}Al$, calculeu la seva energia d'enllaç per nucleó (en MeV) per tal d'esbrinar quina és més estable. Quina ho és menys? (Dades: $m_{{}^{16}O} = 15,99491 \, u$, $m_{{}^{56}Fe} = 55,92066$, $m_{{}^{27}_{13}Al} = 26,9815 \, u$, $m_p = 1,007276 \, u$, $m_n = 1,008665$, $1 \, u = 931,494 \, MeV$)

6. (1,25 pts) Escriviu les reaccions que governen els processos de desintegració α , β^- i β^+ per un àtom genèric $_Z^A X$.