COCOMO Model

Outline of the talk

- COCOMO Model
- Types of COCOMO Model
- COCOMO II

The Constructive Cost Model (COCOMO)

Constructive Cost model (COCOMO)

Detailed

Model proposed by
B. W. Boehm's
through his book
Software Engineering Economics in 1981

Mode	Projectsize	Nature of Project	Innovation	Deadline of the project	Development Environment
Organic	Typically 2-50 KLOC	Small size project, experienced developers in the familiar environment. For example, pay roll, inventory projects etc.	Little	Not tight	Familiar & In house
Semi detached	Typically 50-300 KLOC	Medium size project, Medium size team, Average previous experience on similar project. For example: Utility systems like compilers, database systems, editors etc.	Medium	Medium	Medium
Embedded	Typically over 300 KLOC	Large project, Real time systems, Complex interfaces, Very little previous experience. For example: ATMs, Air Traffic Control etc.	Significant	Tight	Complex Hardware/ customer Interfaces required

Table 4: The comparison of three COCOMO modes

Basic Model

Basic COCOMO model takes the form

$$E = a_b (KLOC)^{b_b}$$

$$D = c_b(\mathbf{E}) d_b$$

where E is effort applied in Person-Months, and D is the development time in months. The coefficients a_b , b_b , c_b and d_b are given in table 4 (a).

Software Project	a _b	b _b	C _b	d _b
Organic	2.4	1.05	2.5	0.38
Semidetached	3.0	1.12	2.5	0.35
Embedded	3.6	1.20	2.5	0.32

Table 4(a): Basic COCOMO coefficients

When effort and development time are known, the average staff size to complete the project may be calculated as:

Average staff size
$$(SS) = \frac{E}{D}Persons$$

When project size is known, the productivity level may be calculated as:

Productivity
$$(P) = \frac{KLOC}{E} KLOC / PM$$

Example: 4.5

Suppose that a project was estimated to be 400 KLOC. Calculate the effort and development time for each of the three modes i.e., organic, semidetached and embedded.

Solution

The basic COCOMO equation take the form:

$$E = a_b (KLOC)^{b_b}$$
$$D = c_b (KLOC)^{d_b}$$

$$D = c_b (KLOC)^{d_b}$$

Estimated size of the project = 400 KLOC

Organic mode

$$E = 2.4(400)^{1.05} = 1295.31 \text{ PM}$$

$$D = 2.5(1295.31)^{0.38} = 38.07 \text{ MONTHS}$$

(ii) Semidetached mode

$$E = 3.0(400)^{1.12} = 2462.79 \text{ PM}$$

$$D = 2.5(2462.79)^{0.35} = 38.45 \text{ MONTHS}$$

(iii) Embedded mode

$$E = 3.6(400)^{1.20} = 4772.81 \text{ PM}$$

$$D = 2.5(4772.8)^{0.32} = 38 \text{ MONTHS}$$

Example: 4.6

A project size of 200 KLOC is to be developed. Software development team has average experience on similar type of projects. The project schedule is not very tight. Calculate the effort, development time, average staff size and productivity of the project.

Solution

The semi-detached mode is the most appropriate mode; keeping in view the size, schedule and experience of the development team.

Hence
$$E = 3.0(200)^{1.12} = 1133.12 \text{ PM}$$

$$D = 2.5(1133.12)^{0.35} = 29.3 MONTHS$$

$$(SS) = \frac{E}{D}Persons$$

$$=\frac{1133.12}{29.3}=38.67 Persons$$

Productivity
$$= \frac{KLOC}{E} = \frac{200}{1133.12} = 0.1765 \, KLOC / PM$$

$$P = 176 LOC/PM$$

Intermediate Model

Cost drivers

- (i) Product Attributes
 - Required s/w reliability
 - Size of application database
 - Complexity of the product
- (ii) Hardware Attributes
 - Run time performance constraints
 - Memory constraints
 - Virtual machine volatility
 - Turnaround time

(iii) Personal Attributes

- Analyst capability
- Programmer capability
- Application experience
- Virtual m/c experience
- Programming language experience

(iv) Project Attributes

- Modern programming practices
- Use of software tools
- Required development Schedule

Multipliers of different cost drivers

Cost Drivers	RATINGS					
	Very low	Low	Nominal	High	Very high	Extra high
Product Attributes						
RELY	0.75	0.88	1.00	1.15	1.40	
DATA		0.94	1.00	1.08	1.16	
CPLX	0.70	0.85	1.00	1.15	1. <mark>30</mark>	1.65
Computer Attributes					-34	
TIME			1.00	1.11	1.30	1.66
STOR			1.00	1.06	1.21	1.56
VIRT		0.87	1.00	1.15	1.30	
TURN		0.87	1.00	1.07	1.15	

Cost Drivers	RATINGS					
	Very low	Low	Nominal	High	Very high	Extra high
Personnel Attributes						
ACAP	1.46	1.19	1.00	0.86	0.71	
AEXP	1.29	1.13	1.00	0.91	0.82	
PCAP	1.42	1.17	1.00	0.86	0.70	a Az
VEXP	1.21	1.10	1.00	0.90		4
LEXP	1.14	1.07	1.00	0.95	302	12-01-00-00-00-00-00-00-00-00-00-00-00-00-
Project Attributes						
MODP	1.24	1.10	1.00	0.91	0.82	
TOOL	1.24	1.10	1.00	0.91	0.83	-
SCED	1.23	1.08	1.00	1.04	1.10	

Table 5: Multiplier values for effort calculations

Intermediate COCOMO equations

$$E = a_i (KLOC)^{b_i} * EAF$$
$$D = c_i (E)^{d_i}$$

Project	a _i	b _i	C _i	d _i
Organic	3.2	1.05	2.5	0.38
Semidetached	3.0	1.12	2.5	0.35
Embedded	2.8	1.20	2.5	0.32

Table 6: Coefficients for intermediate COCOMO

Detailed COCOMO Model

each phase

Development Phase

Plan / Requirements

EFFORT : 6% to 8%

DEVELOPMENT TIME : 10% to 40%

% depend on mode & size

Design

Effort : 16% to 18%

Time : 19% to 38%

Programming

Effort : 48% to 68%

Time : 24% to 64%

Integration & Test

Effort : 16% to 34%

Time : 18% to 34%

Principle of the effort estimate

Size equivalent

As the software might be partly developed from software already existing (that is, re-usable code), a full development is not always required. In such cases, the parts of design document (DD%), code (C%) and integration (I%) to be modified are estimated. Then, an adjustment factor, A, is calculated by means of the following equation.

$$A = 0.4 DD + 0.3 C + 0.3 I$$

The size equivalent is obtained by

$$S (equivalent) = (S x A) / 100$$

$$E_p = \mu_p E$$

$$D_p = \tau_p D$$

Lifecycle Phase Values of

 μ_p

Mode & Code Size	Plan & Requirements	System Design	Detailed Design	Module Code & Test	Integration & Test
Organic Small S≈2	0.06	0.16	0.26	0.42	0.16
Organic medium S≈32	0.06	0.16	0.24	0.38	0.22
Semidetached medium S≈32	0.07	0.17	0.25	0.33	0.25
Semidetached large S≈128	0.07	0.17	0.24	0.31	0.28
Embedded large S≈128	0.08	0.18	0.25	0.26	0.31
Embedded extra large S≈320	0.08	0.18	0.24	0.24	0.34

Table 7: Effort and schedule fractions occurring in each phase of the lifecycle

Lifecycle Phase Values of

, p

Mode & Code Size	Plan & Requirements	System Design	Detailed Design	Module Code & Test	Integration & Test
Organic Small S≈2	0.10	0.19	0.24	0.39	0.18
Organic medium S≈32	0.12	0.19	0.21	0.34	0.26
Semidetached medium S≈32	0.20	0.26	0.21	0.27	0.26
Semidetached large S≈128	0.22	0.27	0.19	0.25	0.29
Embedded large S≈128	0.36	0.36	0.18	0.18	0.28
Embedded extra large S≈320	0.40	0.38	0.16	0.16	0.30

Table 7: Effort and schedule fractions occurring in each phase of the lifecycle

Distribution of software life cycle:

- 1. Requirement and product design
 - (a) Plans and requirements
 - (b) System design
- 2. Detailed Design
 - (a) Detailed design
- 3. Code & Unit test
 - (a) Module code & test
- 4. Integrate and Test
 - (a) Integrate & Test

Example: 4.7

A new project with estimated 400 KLOC embedded system has to be developed. Project manager has a choice of hiring from two pools of developers: Very highly capable with very little experience in the programming language being used

Or

Developers of low quality but a lot of experience with the programming language. What is the impact of hiring all developers from one or the other pool?

Solution

This is the case of embedded mode and model is intermediate COCOMO.

Hence
$$E = a_i (KLOC)^{d_i}$$

= 2.8 (400)^{1.20} = 3712 PM

Case I: Developers are very highly capable with very little experience in the programming being used.

EAF =
$$0.82 \times 1.14 = 0.9348$$

E = $3712 \times .9348 = 3470 \text{ PM}$
D = $2.5 (3470)^{0.32} = 33.9 \text{ MONTHS}$

Case II: Developers are of low quality but lot of experience with the programming language being used.

EAF =
$$1.29 \times 0.95 = 1.22$$

$$E = 3712 \times 1.22 = 4528 PM$$

D =
$$2.5 (4528)^{0.32} = 36.9 \text{ MONTHS}$$

Case II requires more effort and time. Hence, low quality developers with lot of programming language experience could not match with the performance of very highly capable developers with very litter experience.

Example: 4.8

Consider a project to develop a full screen editor. The major components identified are:

- I. Screen edit
- II. Command Language Interpreter
- III. File Input & Output
- IV. Cursor Movement
- V. Screen Movement

The size of these are estimated to be 4k, 2k, 1k, 2k and 3k delivered source code lines. Use COCOMO to determine

- Overall cost and schedule estimates (assume values for different cost drivers, with at least three of them being different from 1.0)
- 2. Cost & Schedule estimates for different phases.

Solution

Size of five modules are:

Screen edit = 4 KLOC

Command language interpreter = 2 KLOC

File input and output = 1 KLOC

Cursor movement = 2 KLOC

Screen movement = 3 KLOC

Total = 12 KLOC

Let us assume that significant cost drivers are

- i. Required software reliability is high, i.e.,1.15
- ii. Product complexity is high, i.e.,1.15
- iii. Analyst capability is high, i.e.,0.86
- iv. Programming language experience is low,i.e.,1.07
- v. All other drivers are nominal

$$EAF = 1.15x1.15x0.86x1.07 = 1.2169$$

(a) The initial effort estimate for the project is obtained from the following equation

$$E = a_i (KLOC)^{bi} x EAF$$

= 3.2(12)^{1.05} x 1.2169 = 52.91 PM

Development time

$$D = C_i(E)^{di}$$

= 2.5(52.91)^{0.38} = 11.29 MONTHS

(b) Using the following equations and referring Table 7, phase wise cost and schedule estimates can be calculated.

$$E_p = \mu_p E$$

$$D_p = \tau_p D$$

Since size is only 12 KLOC, it is an organic small model. Phase wise effort distribution is given below:

System Design = $0.16 \times 52.91 = 8.465 \text{ PM}$

Detailed Design = $0.26 \times 52.91 = 13.756 \text{ PM}$

Module Code & Test $= 0.42 \times 52.91 = 22.222 \text{ PM}$

Integration & Test = $0.16 \times 52.91 = 8.465 \text{ Pm}$

Now Phase wise development time duration is

System Design $= 0.19 \times 11.29 = 2.145 \text{ M}$

Detailed Design = $0.24 \times 11.29 = 2.709 \text{ M}$

Module Code & Test $= 0.39 \times 11.29 = 4.403 \text{ M}$

Integration & Test $= 0.18 \times 11.29 = 2.032 \text{ M}$

COCOMO-II

The following categories of applications / projects are identified by COCOMO-II and are shown in fig. 4 shown below:

Fig. 4: Categories of applications / projects

Stage No	Model Name	Application for the types of projects	Applications
Stage I	Application composition estimation model	Application composition	In addition to application composition type of projects, this model is also used for prototyping (if any) stage of application generators, infrastructure & system integration.
Stage II	Early design estimation model	Application generators, infrastructure & system integration	Used in early design stage of a project, when less is known about the project.
Stage III	Post architecture estimation model	Application generators, infrastructure & system integration	Used after the completion of the detailed architecture of the project.

Table 8: Stages of COCOMO-II

Application Composition Estimation Model

Fig.5: Steps for the estimation of effort in person months

- Assess object counts: Estimate the number of screens, reports and 3 GL components that will comprise this application.
- ii. Classification of complexity levels: We have to classify each object instance into simple, medium and difficult complexity levels depending on values of its characteristics.

Number of views contained	# and sources of data tables		
	Total < 4 (< 2 server < 3 client)	Total < 8 (2 – 3 server 3 – 5 client)	Total 8 + (> 3 server, > 5 client)
< 3	Simple	Simple	Medium
3 – 7	Simple	Medium	Difficult
> 8	Medium	Difficult	Difficult

Table 9 (a): For screens

Number of sections contained	# and sources of data tables			
	Total < 4 (< 2 server < 3 client)	$Total < 8$ $(2 - 3 \ server$ $3 - 5 \ client)$	Total 8 + (> 3 server, > 5 client)	
0 or 1	Simple	Simple	Medium	
2 or 3	Simple	Medium	Difficult	
4 +	Medium	Difficult	Difficult	

Table 9 (b): For reports

iii. Assign complexity weight to each object: The weights are used for three object types i.e., screen, report and 3GL components using the Table 10.

Object	Complexity Weight		
Type	Simple	Medium	Difficult
Screen	1	2	3
Report	2	5	8
3GL Component	_	_	10

Table 10: Complexity weights for each level

- iv. Determine object points: Add all the weighted object instances to get one number and this known as object-point count.
- v. Compute new object points: We have to estimate the percentage of reuse to be achieved in a project. Depending on the percentage reuse, the new object points (NOP) are computed.

NOP are the object points that will need to be developed and differ from the object point count because there may be reuse.

vi. Calculation of productivity rate: The productivity rate can be calculated as:

Productivity rate (PROD) = NOP/Person month

Developer's experience & capability; ICASE maturity & capability	PROD (NOP/PM)	
Very low	4	
Low	7	
Nominal	13	
High	25	
Very high	50	

Table 11: Productivity values

vii. Compute the effort in Persons-Months: When PROD is known, we may estimate effort in Person-Months as:

Example: 4.9

Consider a database application project with the following characteristics:

- I. The application has 4 screens with 4 views each and 7 data tables for 3 servers and 4 clients.
- II. The application may generate two report of 6 sections each from 07 data tables for two server and 3 clients. There is 10% reuse of object points.

The developer's experience and capability in the similar environment is low. The maturity of organization in terms of capability is also low. Calculate the object point count, New object points and effort to develop such a project.

Solution

This project comes under the category of application composition estimation model.

Number of screens = 4 with 4 views each

Number of reports = 2 with 6 sections each

From Table 9 we know that each screen will be of medium complexity and each report will be difficult complexity.

Using Table 10 of complexity weights, we may calculate object point count.

$$= 4 \times 2 + 2 \times 8 = 24$$

$$24 * (100 - 10)$$
NOP = - - - - - = 21.6

Table 11 gives the low value of productivity (PROD) i.e. 7.

Assignment

Explain COCOMO Model in detail

Research Work

Cost Models for Future Software
 Life Cycle Processes: COCOMO 2

