Q1

171044098 Akif KARTAL

- Represent the graphs above using adjacency lists. Draw the corresponding data structure.

Represent the graphs above using an adjacency matrix. Draw the corresponding data structure.

	0	1	2	3	4	5	6
0		1.0		1.0	1.0	1.0	
1	1.0		1.0	1.0	1.0		1.0
2		1.0		1.0		1.0	1.0
3	1.0	1.0	1.0		1.0	1.0	1.0
4	1.0	1.0		1.0		1.0	
5	1.0		1.0	1.0	1.0		1.0
6		1.0	1.0	1.0		1.0	

	0	1	2	3	4	5	6
0		1.0			1.0		
1	1.0		1.0	1.0			
2		1.0					1.0
3		1.0				1.0	
4	1.0						
5				1.0			
6			1.0				

The **density** of a graph is

$$D = rac{|E|}{inom{|V|}{2}} = rac{2|E|}{|V|(|V|-1)}$$

$$D = \frac{2x16}{7(7-1)} = \frac{32}{42} = 0.76$$

Dense graph is a graph in which the number of edges is close to the maximal number of edges. Here number of edges is usually $O(n^2)$ where n is the number of vertices. Therefore, adjacency matrix is preferred.

Sparse graph is a graph in which the number of edges is close to the minimal number of edges. Sparse graph can be a disconnected graph. Usually the number of edges is in O(n) where n is the number of vertices. Therefore, adjacency lists are preferred since they require constant space for every edge.

As a result since our graph is dense graph, adjacency matrix are preferred.

The **density** of a graph is

$$D = rac{|E|}{inom{|V|}{2}} = rac{2|E|}{|V|(|V|-1)}$$

$$D = \frac{2x6}{7(7-1)} = \frac{12}{42} = 0.28$$

Dense graph is a graph in which the number of edges is close to the maximal number of edges. Here number of edges is usually $O(n^2)$ where n is the number of vertices. Therefore, adjacency matrix is preferred.

Sparse graph is a graph in which the number of edges is close to the minimal number of edges. Sparse graph can be a disconnected graph. Usually the number of edges is in O(n) where n is the number of vertices. Therefore, adjacency lists are preferred since they require constant space for every edge.

As a result since our graph is sparse graph, adjacency lists are preferred.

Draw DFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest).

Discovery (Visit) order: 2, 6, 5, 4, 3, 1, 0

Finish order: 0, 1, 3, 4, 5, 6, 2

Discovery (Visit) order:

2, 6, 1, 3, 5, 0, 4

Finish order:

6, 5, 3, 4, 0, 1, 2

DFS Tree

Draw BFS tree starting from vertex 2 and traversing the vertices adjacent to a vertex in descending order (largest to smallest).	

Visit sequence:

2, 6, 5, 3, 1, 4, 0

BFS Tree

Visit sequence:

2, 6, 1, 3, 0, 5, 4

BFS Tree

