CHM129

Manipulations of the Equilibrium Constant

1. Predict the equilibrium constant for:

 $CO_{2~(g)}$ + 3 $H_{2~(g)}$ \leftrightarrow $CH_{3}OH_{~(g)}$ + $H_{2}O_{~(g)}$ K_{1} = ? given the equilibrium constants for the following reactions.

$$K_2 = 1.0 \times 10^5$$

CO
$$_{(g)}$$
 + 2 $_{H2}$ $_{(g)}$ \longleftrightarrow CH₃OH $_{(g)}$

$$K_3 = 1.4 \times 10^7$$

$$CO_{2(q)} + H_{2(q)} = CO_{q} + H_{2}O_{q}$$

$$K = \frac{1}{1 \cdot 0 \times 10^{5}}$$

$$CO_{2(q)} + 2H_{2(q)} = CH_{3}OH_{(q)}$$

$$K = 1 \cdot 4 \times 10^{7}$$

$$CO_{2(q)} + 3H_{2(q)} = CH_{3}OH_{(q)} + H_{2}O_{(q)}$$

$$K = (\frac{1}{1 \cdot 0 \times 10^{5}})(1 \cdot 4 \times 10^{7}) = 140$$

2. Consider the following chemical equation and equilibrium constant at 25 °C.

 $2 \text{ COF}_{2 (g)} \leftrightarrow \text{CO}_{2 (g)} + \text{CF}_{4 (g)}$

$$K_C = 2.2 \times 10^6$$

Compute the equilibrium constant for the following reaction at 25°C.

 $2 CO_2 (g) + 2 CF_4 (g) \leftrightarrow 4 COF_2 (g)$ K' = 3

$$CO_{2(q)} + CF_{4(q)} = 2COF_{2(q)} K = \frac{1}{2.2 \times 10^6}$$

$$2CO_{2(q)} + 2CF_{4} = 4COF_{2(q)}$$

$$K = \left(\frac{1}{2 \cdot 2 \times 10^{6}}\right)^{2} = 2 \cdot 1 \times 10^{-13}$$

3. Find K_C for the following reaction:

$$N_{2(g)} + O_{2(g)} + Br_{2(g)} \leftrightarrow 2NOBr_{(g)}$$
 $K_{C} = ?$

Use the following data to find K_C :

$$2NO_{(g)} \leftrightarrow N_{2(g)} + O_{2(g)} \qquad K_C = 2.1x10^{30}$$

$$NO_{(g)} + \frac{1}{2}Br_{2(g)} \leftrightarrow NOBr$$
 $K_C = 1.41$

$$N_{2(q)} + O_{2(q)} \Longrightarrow 2 NO_{q} \quad K = \frac{1}{2 \cdot 1 \times 10^{30}}$$

$$2 \left(NO_{q}\right) + \frac{1}{2} Br_{2(q)} \Longrightarrow NOBr_{2(q)} \quad K = (1.41)^{2}$$

$$N_{2(q)} + O_{2(q)} + Br_{2(q)} \Longrightarrow 2 NOBr_{(q)}$$

$$K = \left(\frac{1}{2 \cdot 1 \times 10^{30}}\right) \left(1.41\right)^{2} = 9.5 \times 10^{-31}$$

CHM129

The Equilibrium Constant

1. Consider the following reaction:

2
$$CH_4$$
 (g) \leftrightarrow 3 H_2 (g) + C_2H_2 (g)

A mixture at 1700 °C initially contains $[CH_4]=0.115M$. At equilibrium, the concentration of C_2H_2 is 0.035M. What is the value of the equilibrium constant?

$$K = \frac{[C_2H_2][H_2]^3}{[CH_4]^2}$$

$$K = \frac{(0.035)(0.105)^3}{(0.045)^2}$$

K = 0.020

	[C14]	[H2]	[CeHz]
I	0.115	0	٥
C	-0-070	1+0-105	H 0.035
Ē	10.045	0.105	0-035

2. Consider the following reaction and its equilibrium constant:

$$I_{2 (g)} + Cl_{2 (g)} \leftrightarrow 2 ICl_{(g)} K=81.9$$

A reaction mixture contains $[I_2]=0.114M$, $[Cl_2]=0.102M$ and [ICl]=0.355M. Is the reaction mixture at equilibrium? If not, in which direction will the reaction proceed?

$$Q = \frac{[ICI]^2}{[I2][C12]} = \frac{(0.355)^2}{(0.114)(0.102)} = 10.8$$

3. Consider the following reaction:

$$N_{2~(g)}$$
 + $O_{2~(g)}$ \leftrightarrow 2 NO $_{(g)}$ K=0.10 at 2000 °C

A reaction mixture initially contains $[N_2] = 0.200M$ and $[O_2] = 0.200M$. Find the concentration of the reactants and the products at equilibrium.

	[N2]	[02]	[NO]
I	0-200		0
<u> </u>	-x	-×	+2X
E	0.200-X	0.200-X	2×

$$[N_2] = [O_2] = 0.200M - X$$

$$= 0.200M - 0.027M$$

$$= 0.173M$$

$$K = \frac{[N0]^2}{[N_2][O_2]} = 0.10$$

$$\frac{(2x)^2}{(0.200-x)(0.200-x)} = 0.10$$

$$\sqrt{\frac{(2x)^2}{(0.200-x)^2}} = \sqrt{0.10}$$

$$\frac{2x}{0.200-x} = \sqrt{0.10}$$