LAPORAN TUGAS KECIL 1 IF2211 STRATEGI ALGORITMA

CYBERPUNK 2077 BREACH PROTOCOL SOLVER

Disusun oleh:

Abdullah Mubarak 13522101

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung
2022

Bab 1. Algoritma Brute Force

Algoritma brute force adalah algoritma yang menyelesaikan suatu masalah dengan pendekatan yang *straitforward*.

Pada penyelesaian Cyberpunk 2077 Breach Protocol dengan algoritma *brute force*, saya menggunakan langkah-langkah algoritma sebagai berikut :

- 1. Dilakukan perulangan sebanyak jumlah kolom untuk langkah-langkah setelah ini. Hal ini dilakukan untuk mengecek semua kemungkinan titik mulai *sequence*.
- 2. Dilakukan perulangan sebanyak x dengan x adalah selisih maksimal panjang *buffer* dan panjang *sequence* berhadiah terkecil untuk langkah-langkah setelah ini. Hal ini dilakukan untuk mengecek semua kemungkinan panjang *sequence*.
- 3. Ditentukan semua langkah *sequence* yang mungkin dengan algoritma *back tracking* dan dilakukan algoritma mencari total nilai *reward* untuk semua *sequence* yang terbentuk.

Algoritma *back tracking* (algoritma 1) yang digunakan untuk menentuak semua langkah *sequence* dengan panjang tertentu :

- 1. Simpan posisi awal *code* (hanya kolom nya saja) dan tokenya ke *vector*, lalu cek semua kemungkinan posisi selanjutnya (1 sampai jumlah baris, kecuali posisi sekarang) dimulai dari posisi yang paling kecil.
- 2. Simpan setiap posisi dan token yang telah dikunjungi ke vector.
- 3. Ketika panjang *code* sudah mencapai panjang *buffer* sekarang, cek *reward* yang dapat didapatkan dengan algoritma 2.
- 4. Cari code dengan reward paling besar sebagai vector code dan Riwayat posisi final.

Algoritma mencari total nilai reward dari sebuah sequence (algoritma 2):

- 1. Dicocokkan *sequence* berhadiah pertama terhadap *sequence code* terurut dari elemen pertamanya, jika ditemukan kecocokan *sequence*, maka pencocokan berhenti dan nilai reward ditambahkan.
- 2. Langkah 1 diulangin untuk semua sequence berhadiah.

Bab 2. Source Program

Saya menggunakan Bahasa C++ untuk mengerjakan tugas ini dengan menggunakan library:

- 1. iostream.
- 2. fstream.

5. chrono.6. random.

- 3. string.
- 4. vector.

Berikut source codenya:

1. Fungsi getTotalValue

```
int getTotalValue(int SequenceAmount,
                vector<vector<string>>& matrixSequence,
                vector<string>& arrayCode,
                vector<int>& arrayRewards,
                vector<int>& listSequenceLength,
                int buff) {
    int totalReward = 0;
    for (int i = 0; i < SequenceAmount; i++){</pre>
        vector<int> vectorRow;
        int count = 0;
        int indexCode = 0;
        bool found = false;
        while (indexCode < buff && !found) {</pre>
            if (matrixSequence[i][count] == arrayCode[indexCode]) {
                count++;
            } else {
                count = 0;
            if (count == listSequenceLength[i]) {
                totalReward += arrayRewards[i];
                found = true;
            indexCode++;
    return totalReward;
```

2. Fungsi generateCode

```
void generateCode(int SequenceAmount,
                    vector<string>& arrayCode2,
                    vector<int>& arrayDigit2,
                    vector<int>& arrayDigit,
                    vector<vector<string>>& matrixCode,
                    vector<vector<string>>& matrixSequence,
                    vector<int>& arrayRewards,
                    vector<int>& listSequenceLength,
                    bool isVertical,
                    int x, int buff,
                    int row, int col,
                    int currentRow,
                    int currentCol,
                    vector<string>& arrayCode,
                    int* max) {
    int c;
    if (x == 0) {
        int reward = getTotalValue(SequenceAmount,
                                matrixSequence,
                                arrayCode, arrayRewards,
                                listSequenceLength, buff);
        if (reward > *max) {
            *max = reward;
            arrayCode2.clear();
            arrayDigit2.clear();
            for (int i = 0; i < buff; i++) {
                arrayCode2.push_back(arrayCode[i]);
                arrayDigit2.push back(arrayDigit[i]);
        return;
    if (isVertical) {
        currentMaxValue = row;
        c = currentRow;
        currentMaxValue = col;
        c = currentCol;
```

```
for (int digit = 0; digit < currentMaxValue; digit++) {</pre>
        if (digit != c) {
            arrayCode.push_back(matrixCode[currentRow][currentCol]);
            arrayDigit.push_back(digit);
            if (isVertical) {
                generateCode(SequenceAmount,
                                 arrayCode2,
                                 arrayDigit2,
                                 arrayDigit, matrixCode,
                                 matrixSequence, arrayRewards,
                                 listSequenceLength,
                                 !isVertical,
                                 x - 1, buff,
                                 row, col,
                                 digit, currentCol,
                                 arrayCode, max);
            else {
                generateCode(SequenceAmount,
                                 arrayCode2,
                                 arrayDigit2,
                                 arrayDigit, matrixCode,
                                 matrixSequence, arrayRewards,
                                 listSequenceLength,
                                 !isVertical,
                                 x - 1, buff,
                                 row, col,
                                 currentRow, digit,
                                 arrayCode, max);
            arrayCode.pop back();
            arrayDigit.pop back();
bool isVectorInMatrix (vector<string> v, vector<vector<string>> matrix, int rowMatrix) {
    for (int i = 0; i < rowMatrix; i++) {
        if (v == matrix[i]) {
            return true;
```

3. Fungsi randomize

```
void randomize(vector<vector<string>>& matrixCode,
            int* SequenceAmount,
            int* buff, int* row, int* col,
            vector<vector<string>>& matrixSequence,
            vector<int>& listRewardsAmount,
            vector<int>& listSequenceLength,
            int* minSequenceLength) {
    int amountToken;
    int maxSequenceLength;
    vector<string> listToken;
    string token;
    cout << "Masukkan banyak jenis token: ";</pre>
    cin >> amountToken;
    cout << "Masukkan jenis-jenis token: ";</pre>
    for (int i = 0; i < amountToken; i++) {
        cin >> token;
        listToken.push_back(token);
    cout << "Masukkan panjang buffer maksimal: ";</pre>
    cin >> *buff;
    *minSequenceLength = *buff;
    cout << "Masukkan panjang baris dan kolom dari matriks code: " << endl;</pre>
    cout << "Baris: ";</pre>
    cin >> *row;
    cout << "Kolom: ";</pre>
    cin >> *col;
    cout << "Masukkan banyaknya sequence berhadiah: ";</pre>
    cin >> *SequenceAmount;
    cout << "Masukkan panjang maksimal sequence berhadiah: ";</pre>
    cin >> maxSequenceLength;
    cout << endl << "Hasil matriks acak: " << endl;</pre>
    random device rd;
    mt19937 eng(rd());
    for (int i = 0; i < *row; i++) {
        vector<string> rowMatrixCode;
        for (int j = 0; j < *col; j++) {
            uniform int distribution<int> distr(0, amountToken - 1);
            int index = distr(eng);
            token = listToken[index];
            cout << token << " ";
            rowMatrixCode.push_back(token);
        cout << endl;</pre>
        matrixCode.push back(rowMatrixCode);
```

```
cout << endl << "Sequence acak dan reward-nya: " << endl;</pre>
for (int i = 0; i < *SequenceAmount; i++) {</pre>
    uniform_int_distribution<int> distr(2, maxSequenceLength);
    int sequenceLength = distr(eng);
    if (sequenceLength < *minSequenceLength) {</pre>
        *minSequenceLength = sequenceLength;
    bool found = false;
    listSequenceLength.push back(sequenceLength);
    vector<string> rowMatrixSequence;
    while (found || rowMatrixSequence.empty()) {
        rowMatrixSequence.clear();
        for (int j = 0; j < sequenceLength; j++) {</pre>
            uniform_int_distribution<int> distr2(0, amountToken - 1);
            token = listToken[distr2(eng)];
            rowMatrixSequence.push_back(token);
        found = isVectorInMatrix(rowMatrixSequence, matrixSequence, i);
    for (int j = 0; j < sequenceLength; j++) {</pre>
        cout << rowMatrixSequence[j] << " ";</pre>
    cout << endl;</pre>
    uniform_int_distribution<int> distr3(0, 50);
    int rewardAmount = distr3(eng);
    cout << rewardAmount << endl;</pre>
    matrixSequence.push back(rowMatrixSequence);
    listRewardsAmount.push back(rewardAmount);
```

4. Fungsi utama (main function)

```
int main() {
   string line;
   int buff;
   vector<vector<string>> matrixCode;
   int SequenceAmount;
   vector<vector<string>> matrixSequence;
   vector<int> listRewardsAmount;
   vector<int> listSequenceLength;
   int minSequenceLength;
   int input;
   cout << "Pilih input yang ingin digunakan (1 atau 2):" << endl << "1. File" << endl << "2. Randomize" << endl;</pre>
   cin >> input;
   if (input == 1) {
       string filename;
       cin >> filename;
       ifstream inputfile (filename);
       while (!inputfile.is_open()) {
            cout << "Nama file tidak valid!" << endl;
cout << "Masukkan Nama file : ";</pre>
            cin >> filename;
            inputfile.open(filename);
```

```
while (getline(inputfile, line)) {
   if (i == 1) {
       buff = stoi(line);
        minSequenceLength = buff;
    } else if (i == 2) {
    row = line[0] - '0';
    } else if ( i < row + 3) {
        vector<string> rowMatrix;
        int indexRow = 0;
        while (indexRow < col) {</pre>
            rowMatrix.push_back(line.substr(c,2));
            c += 3;
            indexRow++;
        matrixCode.push_back(rowMatrix);
    } else if (i == row + 3) {
        SequenceAmount = stoi(line);
    } else {
        vector<string> rowMatrixtRewards;
        int count = 0;
            int length = line.length();
            if (length < minSequenceLength) {</pre>
                minSequenceLength = length;
            while(c < length){</pre>
                rowMatrixtRewards.push_back(line.substr(c,2));
            matrixSequence.push_back(rowMatrixtRewards);
            listSequenceLength.push_back((length + 1) / 3);
```

```
listRewardsAmount.push_back(stoi(line));
    inputfile.close();
    randomize (\verb|matrix| Code|,
            &SequenceAmount,
            &buff, &row, &col,
            matrixSequence,
            listRewardsAmount,
            listSequenceLength,
            &minSequenceLength);
cout << endl << "Hasil: " << endl;</pre>
auto start = chrono :: high_resolution_clock :: now();
vector<string> arrayCode;
vector<string> arrayCode2;
vector<string> arrayCodeFinal;
vector<int> arrayDigit;
vector<int> arrayDigit2;
vector<int> arrayDigitFinal;
int indexStartCol;
int maxbuff;
int max = 0;
int value;
    for (int currentCodeLength = minSequenceLength; currentCodeLength <= buff; currentCodeLength++) {</pre>
        value = 0;
        arrayDigit.clear();
        arrayCode.clear();
```

```
generateCode(SequenceAmount,
                      arrayCode2,
                      arrayDigit2,
                      arrayDigit, matrixCode,
                      matrixSequence,
                      listRewardsAmount,
                      listSequenceLength, true,
                      \verb|currentCodeLength|, \verb|currentCodeLength|, \\
                      row, col, 0, i, arrayCode, &value);
        if (value > max) {
             max = value;
             indexStartCol = i;
             maxbuff = currentCodeLength;
             arrayDigitFinal.clear();
             arrayCodeFinal.clear();
             for (int j = 0; j < currentCodeLength; j++) {</pre>
                 arrayDigitFinal.push_back(arrayDigit2[j]);
                 arrayCodeFinal.push_back(arrayCode2[j]);
auto end = chrono :: high resolution clock :: now();
auto duration = chrono :: duration_cast <chrono :: milliseconds> (end - start);
int y = indexStartCol + 1;
cout << "Hadiah maksimal: " << max << endl;</pre>
cout << "Code paling optimal: ";</pre>
if (arrayDigitFinal.size() != 0) {
    for (int i = 0; i < maxbuff; i++) [
     cout << arrayCodeFinal[i] << " ";</pre>
    cout << endl;</pre>
    cout << "Jejak posisi token pada code (row, col): " << endl;</pre>
    cout << x << ", " << y << endl;
```

```
for (int i = 0; i < maxbuff - 1; i++) {
        if (i % 2 == 0) {
            x = arrayDigitFinal[i] + 1;
        } else {
            y = arrayDigitFinal[i] + 1;
        cout << x << ", " << y << endl;</pre>
cout << endl;</pre>
cout << duration.count() << "ms" << endl;</pre>
cout << "Apakah ingin menyimpan solusi? (y/n)" << endl;</pre>
char isSave;
cin >> isSave;
if (isSave == 'y') {
    string filename;
    cout << "Masukkan nama file: ";</pre>
    cin >> filename;
    ofstream outputFile(filename);
    while (!outputFile.is_open()) {
        cout << "Nama atau path file tidak valid!" << endl;</pre>
        cout << "Masukkan Nama file : ";</pre>
        cin >> filename;
        outputFile.open(filename);
    outputFile << max;</pre>
    outputFile << endl;</pre>
    for (int o = 0; o < maxbuff; o++) {
        outputFile << arrayCodeFinal[o] << " ";</pre>
    outputFile << endl;</pre>
    if (arrayDigitFinal.size() != 0) {
        outputFile << 1 << ", " << y << endl;
        for (int o = 0; o < maxbuff - 1; o++) {
```

1. Masukan dari file 1

```
Pilih input yang ingin digunakan (1 atau 2):
1. File
2. Randomize
Masukkan nama file : input1.txt
Hasil:
Hadiah maksimal: 102
Code paling optimal: 55 1C 55 BD 7A E9
Jejak posisi token pada code (row, col):
1, 1
2, 1
2, 3
4, 3
4, 4
3, 4
285ms
Apakah ingin menyimpan solusi? (y/n)
Masukkan nama file: ../test/test1.txt
Data berhasil tertulis ke file.
```

File input:

```
1 7
2 6 6
3 55 55 1C 55 E9 1C
4 1C BD 55 55 7A E9
5 7A 1C 7A E9 BD 55
6 BD 7A BD 7A 55 1C
7 7A 7A 1C 7A E9 55
8 55 BD 55 55 1C 1C
9 3
10 BD 7A
11 32
12 1C 55
13 29
14 7A E9
15 41
```

File output:

```
1 102

2 55 1C 55 BD 7A E9

3 1, 4

4 2, 4

5 2, 3

6 4, 3

7 4, 4

8 3, 4

9

10 285ms
```

2. Masukan dari file 2

```
Pilih input yang ingin digunakan (1 atau 2):
1. File
2. Randomize
1
Masukkan nama file : input2.txt
Hasil:
Hadiah maksimal: 106
Code paling optimal: 1C 55 BD 7A 1C 7A E9
Jejak posisi token pada code (row, col):
1, 1
5, 1
5, 2
6, 2
6, 3
4, 3
4, 4
47196ms
Apakah ingin menyimpan solusi? (y/n)
Masukkan nama file: ../test/test2.txt
Data berhasil tertulis ke file.
```

File input

```
10
     6 6
     1C BD 55 55 7A E9
     BD 7A BD 7A 55 1C
     55 55 1C 55 7A 1C
     7A 1C 7A E9 BD 55
     55 BD 55 BD 1C 1C
     7A 7A 1C 7A E9 55
     BD 7A 1C
11
     50
12
     1C 55
13
     33
     7A E9
     23
```

File output

```
1 106
2 1C 55 BD 7A 1C 7A E9
3 1, 4
4 5, 4
5 5, 2
6 6, 2
7 6, 3
8 4, 3
9 4, 4
10
11 47196ms
```

3. Masukan dari file 3

```
Pilih input yang ingin digunakan (1 atau 2):
1. File
2. Randomize
1
Masukkan nama file : input3.txt
Hasil:
Hadiah maksimal: 50
Code paling optimal: 7A BD 7A BD 1C BD 55
Jejak posisi token pada code (row, col):
1, 1
4, 1
4, 3
5, 3
5, 6
3, 6
3, 1
Apakah ingin menyimpan solusi? (y/n)
Masukkan nama file: ../test/test3.txt
Data berhasil tertulis ke file.
```

File input

```
6 6
     7A 55 E9 E9 1C 55
     55 7A 1C 7A E9 55
     55 1C 1C 55 E9 BD
     BD 1C 7A 1C 55 BD
     BD 55 BD 7A 1C 1C
     1C 55 55 7A 55 7A
     BD E9 1C
     15
12
     BD 7A BD
     20
14
     BD 1C BD 55
15
     30
```

File output

```
1 50
2 7A BD 7A BD 1C BD 55
3 1, 1
4 4, 1
5 4, 3
6 5, 3
7 5, 6
8 3, 6
9 3, 1
10
11 259ms
```

4. Masukan dari keyboard 1

```
Pilih input yang ingin digunakan (1 atau 2):
1. File
2. Randomize2
Masukkan banyak jenis token: 3
Masukkan jenis-jenis token: AA BB 8U
Masukkan panjang buffer maksimal: 6
Masukkan panjang baris dan kolom dari matriks code:
Baris: 5
Kolom: 6
Masukkan banyaknya sequence berhadiah: 3
Masukkan panjang maksimal sequence berhadiah: 4
Hasil matriks acak:
8U BB 8U AA BB BB
8U AA BB 8U BB 8U
AA AA BB 8U AA 8U
AA BB BB 8U 8U AA
8U 8U 8U BB AA AA
Sequence acak dan reward-nya:
AA AA
32
AA BB BB
44
BB BB 8U
10
Hasil:
Hadiah maksimal: 76
Code paling optimal: 8U AA AA AA BB BB
Jejak posisi token pada code (row, col):
1, 1
3, 1
3, 2
2, 2
2, 3
3, 3
28ms
Apakah ingin menyimpan solusi? (y/n)
Masukkan nama file: ../test/test4.txt
Data berhasil tertulis ke file.
```

```
1 76
2 8U AA AA AA BB BB
3 1, 3
4 3, 3
5 3, 2
6 2, 2
7 2, 3
8 3, 3
9
```

5. Masukan dari keyboard 2

```
Pilih input yang ingin digunakan (1 atau 2):
1. File
2. Randomize
2
Masukkan banyak jenis token: 5
Masukkan jenis-jenis token: AA 88 IO I0 JJ
Masukkan panjang buffer maksimal: 7
Masukkan panjang baris dan kolom dari matriks code:
Baris: 10
Kolom: 9
Masukkan banyaknya sequence berhadiah: 4
Masukkan panjang maksimal sequence berhadiah: 5
Hasil matriks acak:
10 10 10 10 JJ JJ 88 10 JJ
AA 88 IO IO AA JJ 88 IO 88
IO AA I0 IO AA 88 IO JJ 88
IO AA JJ AA IO IO AA JJ IO
IO IO 88 AA IO IO 88 JJ AA
IO IO IO IO AA IO IO IO
I0 I0 88 88 I0 I0 I0 AA
JJ IO 88 JJ 88 IO JJ 88 88
10 10 10 JJ 10 10 88 JJ JJ
IO JJ IO IO IO JJ IO 88 AA
Sequence acak dan reward-nya:
JJ 88 AA
IO AA
48
AA AA JJ I0
4
IO JJ AA
47
Hasil:
Hadiah maksimal: 95
Code paling optimal: I0 IO AA IO JJ AA
Jejak posisi token pada code (row, col):
1, 1
3, 1
3, 2
8, 2
8, 1
2, 1
23222ms
Apakah ingin menyimpan solusi? (y/n)
```

Masukkan nama file: ../test/test5.txt

Data berhasil tertulis ke file.

```
1 95
2 I0 IO AA IO JJ AA
3 1, 1
4 3, 1
5 3, 2
6 8, 2
7 8, 1
8 2, 1
9
10 23222ms
```

6. Masukan dari keyboard 3

```
Pilih input yang ingin digunakan (1 atau 2):
1. File
2. Randomize
2
Masukkan banyak jenis token: 2
Masukkan jenis-jenis token: AA BB
Masukkan panjang buffer maksimal: 2
Masukkan panjang baris dan kolom dari matriks code:
Baris: 1
Kolom: 2
Masukkan banyaknya sequence berhadiah: 1
Masukkan panjang maksimal sequence berhadiah: 2
Hasil matriks acak:
AA BB
Sequence acak dan reward-nya:
AA AA
18
Hasil:
Hadiah maksimal: 0
Code paling optimal:
Apakah ingin menyimpan solusi? (y/n)
Masukkan nama file: ../test/test6.txt
Data berhasil tertulis ke file.
```

```
1 0
2
3
4 0ms
```

Bab 4

Link repo github: https://github.com/b33rk/STIMA