Analysis of Algorithms

Saikrishna Arcot (edits by M. Hudachek-Buswell)

January 17, 2017

 The algorithms considered here will transform input objects into output objects for the most part.

- The algorithms considered here will transform input objects into output objects for the most part.
- The runtime of an algorithm is the period during which the computer is executing, and typically grows with the input size.

- The algorithms considered here will transform input objects into output objects for the most part.
- The runtime of an algorithm is the period during which the computer is executing, and typically grows with the input size.
- The average case runtime may be difficult to determine, and best case runtime is not really considered.

- The algorithms considered here will transform input objects into output objects for the most part.
- The runtime of an algorithm is the period during which the computer is executing, and typically grows with the input size.
- The average case runtime may be difficult to determine, and best case runtime is not really considered.
- Our main focus in this course is the worst case runtime (Big-O) of algorithms.

- The algorithms considered here will transform input objects into output objects for the most part.
- The runtime of an algorithm is the period during which the computer is executing, and typically grows with the input size.
- The average case runtime may be difficult to determine, and best case runtime is not really considered.
- Our main focus in this course is the worst case runtime (Big-O) of algorithms.
 - Easier to analyze and approximate.

- The algorithms considered here will transform input objects into output objects for the most part.
- The runtime of an algorithm is the period during which the computer is executing, and typically grows with the input size.
- The average case runtime may be difficult to determine, and best case runtime is not really considered.
- Our main focus in this course is the worst case runtime (Big-O) of algorithms.
 - Easier to analyze and approximate.
 - Crucial to applications such as games, finance, and robotics.

 Seven functions that describe growth of functions that often appear in algorithm analysis:

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate.

- Seven functions that describe growth of functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate.
- The Big-O of a function is usually described using one of the above functions.

Functions Graphed

Functions Graphed (zoomed out)

Functions Graphed (zoomed out even more)

Basic computations performed by an algorithm

- Basic computations performed by an algorithm
- Identifiable in pseudocode

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples
 - Evaluating an expression

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples
 - Evaluating an expression
 - Assigning a value to a variable

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Examples
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method
- These functions are considered to run in O(1) time.

Estimating Running Time

Given the algorithm

```
public static double arrayMax(double[] data) {
   int n = data.length;
   double currentMax = data[0];
   for (int j = 1; j < n; j++) {
      if (data[j] > currentMax) {
            currentMax = data[j];
      }
   }
   return currentMax;
}
```

Lines 6 to 8 may be executed from 0 to n times, while all of the other lines will get executed exactly once. Therefore, the Big-O of this function is O(n).

Why Big-O Matters

For example, given a processor that can do 100 operations per second, the time to do a certain number of operations (in seconds) with a function of a certain Big-O might be as follows (assume that only one operation is done for each input that is used):

Big-O	1000 inputs	1001 inputs	2000 inputs
O(1)	constant	constant	constant
$O(\log n)$	0.09966	0.09967	0.10967
O(n)	10	10.01	20
$O(n \log n)$	99.66	99.77	219
$O(n^2)$	10000	10020	40000
$O(n^3)$	10000000	100300300	80000000
$O(2^{n})$	1.07×10^{299}	2.14×10^{299}	1.14×10^{598}

Notes on Big-O

■ The Big-O of a function only describes how the runtime of a function changes with respect to input size; it does **not** say anything about the absolute runtime (a function with a Big-O of $O(n^2)$ may take less time than a function with a Big-O of O(n) for some given input size).

Notes on Big-O

- The Big-O of a function only describes how the runtime of a function changes with respect to input size; it does **not** say anything about the absolute runtime (a function with a Big-O of $O(n^2)$ may take less time than a function with a Big-O of O(n) for some given input size).
- Given the Big-O of a function, you cannot simply calculate the time it will take for the function to run given an input of certain size; there are other factors involved.