#30
$$\chi^{2} = \sum (\frac{n_{i_{1}} - n_{i_{1}}}{N_{i_{j}}})^{2}$$

$$= \sum (\frac{n_{i_{1}} - n_{i_{1}}}{N_{i_{1}}})^{2}$$

$$= \sum (\frac{n_{i_{1}} - n_{i_{1}}}{N_{i_{1}}})^{2}$$

$$= \sum (\frac{n_{i_{1}} - n_{i_{1}}}{N_{i_{2}}})^{2}$$

$$= \sum (\frac{n_{i_{1}} - n_{i_{1}}}{N_{i_{1}}})^{2}$$

$$= \sum (\frac{n_{i_{1}} - n_{i_{1}}}{N_{$$

ru= (y-ritto)/ ntto(1-tto) , riz=-(y-ntro)/n(Hto)(1-(Hto))

EPG =
$$\frac{1}{N}$$
 Eng = $\frac{1}{N}$ NTTG = $\frac{1}{N}$. Eng = EPG Pg = EPG EPG = $\frac{1}{N}$ Var Pej = $\frac{1}{N}$ Var Neg = $\frac{1}{N}$ · N ($\frac{1}{N}$) + $\frac{1}{N}$ · N ($\frac{1}{N}$) = $\frac{1}{N}$ · N ($\frac{1}{N}$) · N ($\frac{1}{N}$) = $\frac{1}{N}$ · N ($\frac{1}{N}$) · N ($\frac{1}{N}$) = $\frac{1}{N}$ · N ($\frac{1}{N}$) · N ($\frac{1}{N}$) = $\frac{1}{N}$ · N ($\frac{1}{N}$) · N ($\frac{1}{$

#42. P4 04 31 ∞ Mid-Puel = { 2/2+ /5 : N=3 2/2+ /4+ /5 : N=3 2/2+ /3+ /4+ /5 : N=2 2/2+ /3+ /4+ /6 : N=1 2/1+ ... +/5: N=0. = P4tP5: N1=3
P4tP5: N1=3
PatP4tP5: N1=2
PatPatP4tP5: N1=1
Pt: + P5: N1=0