Gibbs-Sampling mit Metropolis-Hastings-Schritt für Threshold-VAR-Modelle und stochastische Volatilitätsmodelle

Tim Baumann

timbaumann.info/gibbs-her

29. April 2016

- Das Threshold-VAR-Modell Bayesische Inferenz (mit Random-Walk-MH)
- 2 Metropolis-Hastings mit unabhängiger Kandidatenverteilung
- 3 Das stochastische Volatilitätsmodell Bayesische Inferenz (mit unabhängigem MH)
- 4 Erweiterte Version des stochastischen Volatilitätsmodells Bayesische Inferenz (mit unabhängigem MH)

Das Threshold-VAR-Modell

Dabei wird die Threshold-Komponente j von Y und die Verzögerung d vom Anwender gewählt.

Das Threshold-VAR-Modell

$$\begin{split} \text{(TVAR)} & \begin{cases} Y_t = \textbf{\textit{c}}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + \textbf{\textit{v}}_t, \; \, \text{Var}(\textbf{\textit{v}}_t) = \Omega_1 & \text{wenn } S_t \leq Y^* \\ Y_t = \textbf{\textit{c}}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + \textbf{\textit{v}}_t, \; \, \text{Var}(\textbf{\textit{v}}_t) = \Omega_2 & \text{wenn } S_t > Y^* \\ \text{wobei } S_t \coloneqq Y_{j,t-d} \; \, \text{(Threshold-Variable)} \\ Y_t, \textbf{\textit{v}}_t, \textbf{\textit{c}}_1, \textbf{\textit{c}}_2 \in \mathbb{R}^N, \; \; \beta_1, \beta_2 \in \mathbb{R}^{N \times N}, \; \; \Omega_1, \Omega_2 \in \mathbb{R}^{N \times N}, \; \; Y^* \in \mathbb{R} \end{split}$$

Dabei wird die Threshold-Komponente j von Y und die Verzögerung d vom Anwender gewählt.

Beispiel

Makroökonomische Modellierung, wobei vermutet wird, dass die Stärke wirtschaftlicher Zusammenhänge (z.B. Multiplikator für Staatsausgaben) in Wirtschaftkrisen unterschiedlich groß ist wie in wirtschaftlich normalen oder guten Zeiten.

Prior-Verteilung

$$\begin{aligned} \text{(TVAR)} & \begin{cases} Y_t = \textit{\textbf{c}}_1 + \sum_{j=1}^P \beta_1 Y_{t-j} + \textit{\textbf{v}}_t, \; \; \text{Var}(\textit{\textbf{v}}_t) = \Omega_1 & \text{wenn } \textit{\textbf{S}}_t \leq \textit{\textbf{Y}}^* \\ Y_t = \textit{\textbf{c}}_2 + \sum_{j=1}^P \beta_2 Y_{t-j} + \textit{\textbf{v}}_t, \; \; \text{Var}(\textit{\textbf{v}}_t) = \Omega_2 & \text{wenn } \textit{\textbf{S}}_t > \textit{\textbf{Y}}^* \\ \text{wobei } \textit{\textbf{S}}_t \coloneqq Y_{j,t-d} \; \; (\textit{Threshold-Variable}) \end{cases}$$

Prior-Verteilung

• Für den Threshold: $p(Y^*) \sim \mathcal{N}(\overline{Y}^*, \sigma_{Y^*})$

Erweitertes stoch. Volatilitätsmodell

Bayessche Inferenz im Threshold-VAR-Modell

Prior-Verteilung

- Für den Threshold: $p(Y^*) \sim \mathcal{N}(\overline{Y}^*, \sigma_{Y^*})$
- Für die VAR-Parameter $b_1, b_2 \in \mathbb{R}^{(1+NP) \cdot N}$ und $\Omega_1, \Omega_2 \in \mathbb{R}^{N \times N}$ verwenden wir die Normal-Inverse-Wishart-Verteilung mit Dummy-Observations $X_{D,i} \in \mathbb{R}^{k_i \times (1+NP)}$, $Y_{D,i} \in \mathbb{R}^{k_i \times N}$ (i = 1, 2):

$$p(b_i|\Omega_i) \sim \mathcal{N}(\text{vec}(B_{D,i}), \Omega_i \otimes (X_{D,i}^T X_{D,i})^{-1}), p(\Omega_i) \sim \mathcal{IW}(S_{D,i}, \frac{TODO}{TODO} : \frac{T_{D,i} - ????}{T_{D,i} - ????})$$

wobei
$$B_{D,i} := (X_{D,i}^T X_{D,i})^{-1} (X_{D,i} Y_{D,i}) \in \mathbb{R}^{(1+NP) \times N}$$

 $S_{D,i} := (Y_{D,i} - X_{D,i} B_{D,i})^T (Y_{D,i} - X_{D,i} B_{D,i}) \in \mathbb{R}^{N \times N}$

A. Initialisierung: Wähle einen Startwert für den Treshold Y* (z. B. den Durschnitt oder den Median der Werte S_t)

- A. Initialisierung: Wähle einen Startwert für den Treshold Y* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.

Erweitertes stoch. Volatilitätsmodell

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Beobachtung: Ist Y^* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* : • Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache
 - VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung

$$\begin{array}{lll} \rho(b_{i}|\Omega_{i},Y_{i,t}) & \sim & \mathcal{N}(\text{vec}(B_{i}^{*}),\Omega_{i}\otimes((X_{i}^{*})^{T}X_{i}^{*})^{-1}), \\ p(\Omega_{i},Y_{i,t}) & \sim & \mathcal{TW}(S_{i}^{*},TODO:T_{i}^{*}-???) \\ & \text{wobei} & B_{i}^{*} \coloneqq ((X_{i}^{*})^{T}X_{i}^{*})^{-1}(X_{i}^{*}Y_{i}^{*}) \\ & S_{i}^{*} \coloneqq (Y_{i}^{*}-X_{i}^{*}B_{i}^{*})^{T}(Y_{i}^{*}-X_{i}^{*}B_{i}^{*}) \\ & Y_{i}^{*} \coloneqq [Y_{i,t},Y_{D,i}] \\ & X_{i}^{*} \coloneqq [X_{i,t},X_{D,i}] \end{array}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung

$$\begin{array}{lll} \rho(b_{i}|\Omega_{i},Y_{i,t}) & \sim & \mathcal{N}(\text{vec}(B_{i}^{*}),\Omega_{i}\otimes((X_{i}^{*})^{T}X_{i}^{*})^{-1}), \\ p(\Omega_{i},Y_{i,t}) & \sim & \mathcal{IW}(S_{i}^{*},TODO:T_{i}^{*}-???) \\ & \text{wobei} & B_{i}^{*} \coloneqq ((X_{i}^{*})^{T}X_{i}^{*})^{-1}(X_{i}^{*}Y_{i}^{*}) \\ & S_{i}^{*} \coloneqq (Y_{i}^{*}-X_{i}^{*}B_{i}^{*})^{T}(Y_{i}^{*}-X_{i}^{*}B_{i}^{*}) \\ & Y_{i}^{*} \coloneqq [Y_{i,t},Y_{D,i}] \\ & X_{i}^{*} \coloneqq [X_{i,t},X_{D,i}] \end{array}$$

2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:

Erweitertes stoch. Volatilitätsmodell

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Beobachtung: Ist Y^* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t \le Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \le Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - ullet Beobachtung: Ist Y^* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* := Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Beobachtung: Ist Y^* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* := Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$r = \frac{\pi(\phi^{G+1})}{\pi(\phi^G)} \cdot \frac{q(\phi^G \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^G)}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\text{new}}^* := Y_{\text{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$r = \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^* (z. B. den Durschnitt oder den Median der Werte S_t)
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Beobachtung: Ist Y* bekannt, so zerfällt das Modell in zwei einfache VAR-Modelle, eines für das Regime $S_t < Y^*$, eines für $S_t > Y^*$.
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* := Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\begin{split} r &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \end{split}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* := Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\begin{split} r &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \end{split}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* \coloneqq Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

$$\begin{split} r &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \\ p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y^*) &= p(Y_{1,t} \mid b_1, \Omega_1, Y^*) \cdot p(Y_{2,t} \mid b_2, \Omega_2, Y^*) \\ \log p(Y_{i,t} \mid b_i, \Omega_i, Y^*) &= \frac{T}{2} \log |\Omega_i^{-1}| - \frac{1}{2} \sum_{t=1}^{T} (Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{-1}(Y_{i,t} - X_{i,t} \tilde{b}_i) \end{split}$$

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y^* :
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere einen Kandidaten Y^{*}_{new} durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* \coloneqq Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

• Berechne die Akzeptanz-Wahrscheinlichkeit $\alpha = \min(1, r)$ mit

$$\begin{split} r &= \frac{\pi(\phi^{G+1})}{\pi(\phi^{G})} \cdot \frac{q(\phi^{G} \mid \phi^{G+1})}{q(\phi^{G+1} \mid \phi^{G})} = \frac{p(Y_{\text{new}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)}{p(Y_{\text{old}}^* \mid b_1, \Omega_1, b_2, \Omega_2, Y_t)} \\ &= \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)} \\ p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y^*) &= p(Y_{1,t} \mid b_1, \Omega_1, Y^*) \cdot p(Y_{2,t} \mid b_2, \Omega_2, Y^*) \\ \log p(Y_{i,t} \mid b_i, \Omega_i, Y^*) &= \frac{T}{2} \log |\Omega_i^{-1}| - \frac{1}{2} \sum_{t=1}^{T} (Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{-1}(Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{1}(Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{-1}(Y_{i,t} - X_{i,t} \tilde{b}_i)$$

• Ziehe $u \sim \mathcal{U}(0,1)$. Behalte Y_{new}^* , falls $u < \alpha$, ansonsten verwerfe Y_{new}^* .

- A. Initialisierung: Wähle einen Startwert für den Treshold Y^*
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample die VAR-Parameter gegeben dem Threshold Y*:
 - Seien $Y_{1,t}$, $X_{1,t}$ die zum Regime $S_t \leq Y^*$ und $Y_{2,t}$, $X_{2,t}$ die zum Regime $S_t > Y^*$ zugehörigen Daten.
 - Ziehe $b_1, b_2, \Omega_1, \Omega_2$ aus der Posterior-Verteilung $p(b_i | \Omega_i, Y_{i,t}), p(\Omega_i, Y_{i,t})$.
 - 2. Führe einen Random-Walk-Metropolis-Hastings-Schritt für Y^* aus:
 - Generiere einen Kandidaten Y_{new}^* durch einen Random-Walk-Schritt:

$$Y_{\mathrm{new}}^* := Y_{\mathrm{old}}^* + e, \quad e \sim \mathcal{N}(0, \sigma)$$

Berechne die Akzeptanz-Wahrscheinlichkeit $\alpha = \min(1, r)$ mit

$$r = \frac{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{new}}^*) \cdot p(Y_{\text{new}}^*)}{p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y_{\text{old}}^*) \cdot p(Y_{\text{old}}^*)}$$

$$\begin{split} & p(Y_t \mid b_1, \Omega_1, b_2, \Omega_2, Y^*) = p(Y_{1,t} \mid b_1, \Omega_1, Y^*) \cdot p(Y_{2,t} \mid b_2, \Omega_2, Y^*) \\ & \log p(Y_{i,t} \mid b_i, \Omega_i, Y^*) = \frac{7}{2} \log |\Omega_i^{-1}| - \frac{1}{2} \sum_{t=1}^{T} (Y_{i,t} - X_{i,t} \tilde{b}_i)^T \Omega_i^{-1} (Y_{i,t} - X_{i,t} \tilde{b}_i) \end{split}$$

• Ziehe $u \sim \mathcal{U}(0,1)$. Behalte Y_{new}^* , falls $u < \alpha$, ansonsten verwerfe Y_{new}^* .

Ziel: Ziehen von Zahlen gemäß einer Dichte $\pi(\Phi)$

Ziel: Ziehen von Zahlen gemäß einer Dichte $\pi(\Phi)$

Erinnerung: Beim Metropolis-Hastings-Algorithmus zieht man zunächst einen Kandidaten gemäß der Kandidatenverteilung

$$q(\Phi^{G+1} | \Phi^G)$$

Dann berechnet man die Akzeptanzwahrscheinlichkeit $\alpha = \min(1, r)$ mit

$$r := \frac{\pi(\Phi^{G+1})/q(\Phi^{G+1} \mid \Phi^G)}{\pi(\Phi^G)/q(\Phi^G \mid \Phi^{G+1})}$$

Ziel: Ziehen von Zahlen gemäß einer Dichte $\pi(\Phi) \propto f(\Phi) \cdot g(\Phi)$ (wobei f eine wohlbekannte Wahrscheinlichkeitsdichte ist)

Erinnerung: Beim Metropolis-Hastings-Algorithmus zieht man zunächst einen Kandidaten gemäß der Kandidatenverteilung

$$q(\Phi^{G+1} | \Phi^G)$$

Dann berechnet man die Akzeptanzwahrscheinlichkeit $\alpha = \min(1, r)$ mit

$$r := \frac{\pi(\Phi^{G+1})/q(\Phi^{G+1} \mid \Phi^G)}{\pi(\Phi^G)/q(\Phi^G \mid \Phi^{G+1})}$$

Ziel: Ziehen von Zahlen gemäß einer Dichte $\pi(\Phi) \propto f(\Phi) \cdot g(\Phi)$ (wobei f eine wohlbekannte Wahrscheinlichkeitsdichte ist)

Erinnerung: Beim Metropolis-Hastings-Algorithmus zieht man zunächst einen Kandidaten gemäß der Kandidatenverteilung

$$q(\Phi^{G+1} | \Phi^G) := f(\Phi^{G+1})$$
 (unabhängig von Φ^G !)

Dann berechnet man die Akzeptanzwahrscheinlichkeit $\alpha = \min(1,r)$ mit

$$r := \frac{\pi(\Phi^{G+1})/q(\Phi^{G+1} \mid \Phi^G)}{\pi(\Phi^G)/q(\Phi^G \mid \Phi^{G+1})}$$

Ziel: Ziehen von Zahlen gemäß einer Dichte $\pi(\Phi) \propto f(\Phi) \cdot g(\Phi)$ (wobei f eine wohlbekannte Wahrscheinlichkeitsdichte ist)

Erinnerung: Beim Metropolis-Hastings-Algorithmus zieht man zunächst einen Kandidaten gemäß der Kandidatenverteilung

$$q(\Phi^{G+1} | \Phi^G) := f(\Phi^{G+1})$$
 (unabhängig von Φ^G !)

Dann berechnet man die Akzeptanzwahrscheinlichkeit $\alpha = \min(1,r)$ mit

$$r := \frac{\pi(\Phi^{G+1})/q(\Phi^{G+1} \mid \Phi^G)}{\pi(\Phi^G)/q(\Phi^G \mid \Phi^{G+1})} = \frac{f(\Phi^{G+1}) \cdot g(\Phi^{G+1})/f(\Phi^{G+1})}{f(\Phi^G) \cdot g(\Phi^G)/f(\Phi^G)}$$

Ziel: Ziehen von Zahlen gemäß einer Dichte $\pi(\Phi) \propto f(\Phi) \cdot g(\Phi)$ (wobei f eine wohlbekannte Wahrscheinlichkeitsdichte ist)

Erinnerung: Beim Metropolis-Hastings-Algorithmus zieht man zunächst einen Kandidaten gemäß der Kandidatenverteilung

$$q(\Phi^{G+1} | \Phi^G) := f(\Phi^{G+1})$$
 (unabhängig von Φ^G !)

Dann berechnet man die Akzeptanzwahrscheinlichkeit $\alpha = \min(1,r)$ mit

$$r \coloneqq \frac{\pi(\Phi^{G+1})/q(\Phi^{G+1} \mid \Phi^G)}{\pi(\Phi^G)/q(\Phi^G \mid \Phi^{G+1})} = \frac{f(\Phi^{G+1}) \cdot g(\Phi^{G+1})/f(\Phi^{G+1})}{f(\Phi^G) \cdot g(\Phi^G)/f(\Phi^G)} = \frac{g(\Phi^{G+1})}{g(\Phi^G)}$$

Das stochastische Volatilitätsmodell

```
\begin{array}{lll} \textit{y}_t = \epsilon_t \sqrt{\textit{h}_t}, & \epsilon_t \sim \mathcal{N}(0,1), \ t = 1, \ldots, \mathcal{T} & (\textit{Beobachtungsgl.}) \\ \ln \textit{h}_t = \ln \textit{h}_{t-1} + \textit{v}_t, \ \textit{v}_t \sim \mathcal{N}(0,g), \ t = 1, \ldots, \mathcal{T} & (\textit{Zustandsgl.}) \end{array}
```

$$y_t = \epsilon_t \sqrt{h_t}, \qquad \epsilon_t \sim \mathcal{N}(0,1), \quad t = 1, \dots, T \qquad \text{(Beobachtungsgl.)}$$

 $\ln \frac{h_t}{h_t} = \ln \frac{h_{t-1}}{h_{t-1}} + v_t, \quad v_t \sim \mathcal{N}(0,g), \quad t = 1, \dots, T \qquad \text{(Zustandsgl.)}$

Beispiel

TODO: Aktien? Graphik?

$$y_t = \epsilon_t \sqrt{\frac{h_t}{h_t}}, \qquad \epsilon_t \sim \mathcal{N}(0, 1), \quad t = 1, \dots, T$$

 $\ln \frac{h_t}{h_t} = \ln \frac{h_{t-1}}{h_{t-1}} + v_t, \quad v_t \sim \mathcal{N}(0, g), \quad t = 1, \dots, T$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt: $f(h_t \mid h_{-t}, \vec{y}, g) = f(h_t \mid h_{t-1}, h_{t+1}, y_t, g)$

$$\begin{aligned} y_t &= \epsilon_t \sqrt{\frac{h_t}{h_t}}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h_t} &= \ln \frac{h_{t-1}}{h_t} + v_t, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$f(h_{t} | h_{-t}, \vec{y}, g) = f(h_{t} | h_{t-1}, h_{t+1}, y_{t}, g) \\ \propto f(y_{t} | h_{t}, g) \cdot f(h_{t+1} | h_{t}, g) \cdot f(h_{t} | h_{t-1}, g)$$

$$\begin{aligned} y_t &= \epsilon_t \sqrt{\frac{h_t}{h_t}}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h_t} &= \ln \frac{h_{t-1}}{h_t} + v_t, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$f(h_{t} | h_{-t}, \vec{y}, g) = f(h_{t} | h_{t-1}, h_{t+1}, y_{t}, g) \\ \propto f(y_{t} | h_{t}, g) \cdot f(h_{t+1} | h_{t}, g) \cdot f(h_{t} | h_{t-1}, g)$$

Nebenrechnung

$$\begin{split} f(y_t \mid h_t) &= \frac{1}{\sqrt{2\pi h_t}} \exp\left(\frac{-y_t^2}{2h_t}\right) & \text{(Normalverteilung)} \\ f(h_{t+1} \mid h_t) &= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{h_{t+1}} \exp\left(\frac{-(\ln h_{t+1} - \ln h_t)^2}{2g}\right) & \text{(Log. Normalvert.)} \\ f(h_t \mid h_{t-1}) &= \frac{1}{\sqrt{2\pi}} \frac{1}{h_t} \exp\left(\frac{-(\ln h_t - \ln h_{t-1})^2}{2g}\right) & \text{(Log. Normalvert.)} \end{split}$$

$$\begin{aligned} y_t &= \epsilon_t \sqrt{\frac{h_t}{h_t}}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h_t} &= \ln \frac{h_{t-1}}{h_t} + v_t, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$\begin{array}{ll} f(h_{t} \mid h_{-t}, \vec{y}, g) &=& f(h_{t} \mid h_{t-1}, h_{t+1}, y_{t}, g) \\ &\propto & f(y_{t} \mid h_{t}, g) \cdot f(h_{t+1} \mid h_{t}, g) \cdot f(h_{t} \mid h_{t-1}, g) \\ &\propto & \frac{1}{\sqrt{h_{t}}} \exp\left(-\frac{y_{t}^{2}}{2h_{t}}\right) \frac{1}{h_{t}} \exp\left(-\frac{(\ln h_{t} - \mu)^{2}}{2\sigma_{h}}\right) \\ &\text{mit } \mu := \frac{1}{2} (\ln h_{t+1} + \ln h_{t-1}), \quad \sigma_{h} := \frac{1}{2} g \end{array}$$

Nebenrechnung

$$\begin{split} f(y_t \mid h_t) &= \frac{1}{\sqrt{2\pi h_t}} \exp\left(\frac{-y_t^2}{2h_t}\right) & \text{(Normalverteilung)} \\ f(h_{t+1} \mid h_t) &= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{h_{t+1}} \exp\left(\frac{-(\ln h_{t+1} - \ln h_t)^2}{2g}\right) & \text{(Log. Normalvert.)} \\ f(h_t \mid h_{t-1}) &= \frac{1}{\sqrt{2\pi}} \frac{1}{h_t} \exp\left(\frac{-(\ln h_t - \ln h_{t-1})^2}{2g}\right) & \text{(Log. Normalvert.)} \end{split}$$

$$\begin{aligned} y_t &= \epsilon_t \sqrt{\frac{h_t}{h_t}}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h_t} &= \ln \frac{h_{t-1}}{h_t + v_t}, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$f(h_{t} | h_{-t}, \vec{y}, g) = f(h_{t} | h_{t-1}, h_{t+1}, y_{t}, g) \\ \propto f(y_{t} | h_{t}, g) \cdot f(h_{t+1} | h_{t}, g) \cdot f(h_{t} | h_{t-1}, g) \\ \propto \frac{1}{\sqrt{h_{t}}} \exp\left(-\frac{y_{t}^{2}}{2h_{t}}\right) \frac{1}{h_{t}} \exp\left(-\frac{(\ln h_{t} - \mu)^{2}}{2\sigma_{h}}\right) \\ \text{mit } \mu := \frac{1}{2}(\ln h_{t+1} + \ln h_{t-1}), \quad \sigma_{h} := \frac{1}{2}g$$

$$\begin{aligned} y_t &= \epsilon_t \sqrt{h_t}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h} &= \ln \frac{h_{t-1}}{h_t} + v_t, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$\begin{array}{ll} f(h_{t} \mid h_{-t}, \vec{y}, g) \; = \; f(h_{t} \mid h_{t-1}, h_{t+1}, y_{t}, g) \\ & \propto \; f(y_{t} \mid h_{t}, g) \cdot f(h_{t+1} \mid h_{t}, g) \cdot f(h_{t} \mid h_{t-1}, g) \\ & \propto \; \frac{1}{\sqrt{h_{t}}} \exp\left(-\frac{y_{t}^{2}}{2h_{t}}\right) \frac{1}{h_{t}} \exp\left(-\frac{(\ln h_{t} - \mu)^{2}}{2\sigma_{h}}\right) \\ & \quad \text{mit} \; \mu \coloneqq \frac{1}{2} (\ln h_{t+1} + \ln h_{t-1}), \quad \sigma_{h} \coloneqq \frac{1}{2} g \end{array}$$

Wir erfinden eine weitere Volatilitätsvariable h_0 hinzu. Diese habe die Prior-Verteilung $h_0 \sim \mathcal{N}(\overline{\mu}, \overline{\sigma}^2)$. TODO: Behandlung von h_T

$$\begin{aligned} y_t &= \epsilon_t \sqrt{\frac{h_t}{h_t}}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h_t} &= \ln \frac{h_{t-1}}{h_t + v_t}, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$\begin{array}{ll} f(h_t \,|\, h_{-t}, \vec{y}, g) \; = \; f(h_t \,|\, h_{t-1}, h_{t+1}, y_t, g) \\ & \propto \; f(y_t \,|\, h_t, g) \cdot f(h_{t+1} \,|\, h_t, g) \cdot f(h_t \,|\, h_{t-1}, g) \\ & \propto \; \frac{1}{\sqrt{h_t}} \exp\left(-\frac{y_t^2}{2h_t}\right) \frac{1}{h_t} \exp\left(-\frac{(\ln h_t - \mu)^2}{2\sigma_h}\right) \\ & \text{mit} \; \mu \coloneqq \frac{1}{2} (\ln h_{t+1} + \ln h_{t-1}), \quad \sigma_h \coloneqq \frac{1}{2} g \end{array}$$

Wir erfinden eine weitere Volatilitätsvariable h_0 hinzu. Diese habe die Prior-Verteilung $h_0 \sim \mathcal{N}(\overline{\mu}, \overline{\sigma}^2)$. Für den Posterior gilt:

$$\begin{array}{l} f(h_0 \mid h_1) \, \propto \, f(h_0) \cdot f(h_1 \mid h_0) \\ \propto \, \frac{1}{\sqrt{\overline{\sigma}^2}} \exp\left(\frac{-(h_0 - \overline{\mu})^2}{2\overline{\sigma}^2}\right) \cdot \frac{1}{h_0} \exp\left(\frac{-(\ln h_1 - \ln h_0)^2}{2g}\right) \end{array}$$

$$\begin{aligned} y_t &= \epsilon_t \sqrt{\frac{h_t}{h_t}}, & \epsilon_t \sim \mathcal{N}(0, 1), & t = 1, \dots, T \\ \ln \frac{h_t}{h_t} &= \ln \frac{h_{t-1}}{h_t + v_t}, & v_t \sim \mathcal{N}(0, g), & t = 1, \dots, T \end{aligned}$$

Vorüberlegung: Für alle Zeitpunkte t, außer Start- und Endzeitpunkt, gilt:

$$\begin{array}{ll} f(h_t \,|\, h_{-t}, \vec{y}, g) \,=\, f(h_t \,|\, h_{t-1}, h_{t+1}, y_t, g) \\ & \propto \, f(y_t \,|\, h_t, g) \cdot f(h_{t+1} \,|\, h_t, g) \cdot f(h_t \,|\, h_{t-1}, g) \\ & \propto \, \frac{1}{\sqrt{h_t}} \exp\left(-\frac{y_t^2}{2h_t}\right) \frac{1}{h_t} \exp\left(-\frac{(\ln h_t - \mu)^2}{2\sigma_h}\right) \\ & \text{mit } \mu \coloneqq \frac{1}{2} (\ln h_{t+1} + \ln h_{t-1}), \quad \sigma_h \coloneqq \frac{1}{2} g \end{array}$$

Wir erfinden eine weitere Volatilitätsvariable h_0 hinzu. Diese habe die Prior-Verteilung $h_0 \sim \mathcal{N}(\overline{\mu}, \overline{\sigma}^2)$. Für den Posterior gilt:

$$f(h_0 \mid h_1) \propto f(h_0) \cdot f(h_1 \mid h_0)$$

$$\propto \frac{1}{\sqrt{\overline{\sigma}^2}} \exp\left(\frac{-(h_0 - \overline{\mu})^2}{2\overline{\sigma}^2}\right) \cdot \frac{1}{h_0} \exp\left(\frac{-(\ln h_1 - \ln h_0)^2}{2g}\right)$$

$$\propto h_0^{-1}$$

- A. Setze die Parameter der Prior-Vert. $h_0 \sim \mathcal{N}(\overline{\mu}, \overline{\sigma}^2)$ sowie $g \sim \mathcal{IG}(\frac{g_0}{2}, \frac{\nu}{2})$
- B. Initialisierung: Wähle Startwerte für h_0, \ldots, h_T und g
- C. Gibbs-Sampling: Wiederhole die Schritte
 - 1. TODO: t = 0
 - 2. Für $t=1,\ldots,T-1$ ziehe einen Kandidaten gemäß

$$q(h_{t,\text{new}}) = h_{t,\text{new}}^{-1} \exp\left(\frac{-(\ln h_{t,\text{new}} - \mu)^2}{2\sigma_h}\right), \quad \mu := \frac{\ln h_{t-1} + \ln h_{t+1}}{2}, \quad \sigma_h := \frac{g}{2}.$$

Berechne die Akzeptanz-Wahrscheinlichkeit $\alpha = \min(1, r)$ mit

$$r \coloneqq \frac{\frac{1}{\sqrt{h_{t,\text{new}}}} \exp\left(\frac{-y_t^2}{2h_{t,\text{new}}}\right)}{\frac{1}{\sqrt{h_{t,\text{old}}}} \exp\left(\frac{-y_t^2}{2h_{t,\text{old}}}\right)}$$

Ziehe $u \sim \mathcal{U}(0,1)$. Behalte $h_{t,\text{new}}$, falls $u < \alpha$, ansonsten verwerfe $h_{t,\text{new}}$.

- 3. TODO: T = t
- 4.

Erweiterte Version des stochastischen Volatilitätsmodells

$$\begin{aligned} y_t &= c_t + b_t y_{t-1} + \epsilon_t \sqrt{h_t}, \ \epsilon_t \sim \mathcal{N}(0,1), & t = 1, \dots, T \\ \ln h_t &= \ln h_{t-1} + v_t, & v_t \sim \mathcal{N}(0,g), & t = 1, \dots, T \end{aligned}$$
 Für die Regressions-Koeffizienten $B_t = \{c_t, b_t\}$ gelte dabei
$$B_t = B_{t-1} + e_t, & e_t \sim \mathcal{N}(0,Q), \ Q \in \mathbb{R}^{2 \times 2}.$$

TODO: Motivation

Bayessche Inferenz im erw. stoch. Volatilitätsmodell

- A. Initialisierung: Wähle Startwerte für TODO: ???
- B. Gibbs-Sampling: Wiederhole die Schritte
 - 1. Sample h_0, \ldots, h_T gegeben g und $B_1, \ldots B_T$: Für $t=1,\ldots, T-1$ führe einen MH-Schritt für h_t aus