Topic 26 - Two-Way Random Effects

STAT 525 - Fall 2013

STAT 525

Outline

- Two-way Random effects
 - Data
 - Model
 - Variance component estimation
 - F-tests

Topic 26

STAT 525

Data for Two-Way Design

- Same data structure as fixed design
- Y is the response variable
- Factor A has levels i = 1, 2, ..., a
- Factor B has levels j = 1, 2, ..., b
- Y_{ijk} is the k^{th} observation of cell (i, j) with $k = 1, 2, ..., n_{ij}$
- Balanced when $n_{ij} = n$

STAT 525

Example Page 1080

- Interested in assessing the fuel efficiency (mpg) of a specific model of car
- Two random factors
 - Factor A: Driver
 - Factor B: Car
- How much of the overall variability is due to driver and/or car?
- Each driver drove each car twice (n = 2) over same 40 mile course

Topic 26

3

Topic 26

SAS Commands

```
data a1; infile 'u:\.www\datasets525\CH25PR15.txt';
  input mpg driver car;
proc print data=a1; run;

data a1; set a1;
  if (driver eq 1)*(car eq 1) then dc='01_1A';
  if (driver eq 1)*(car eq 2) then dc='02_1B';
  if (driver eq 1)*(car eq 3) then dc='03_1C';
  if (driver eq 1)*(car eq 4) then dc='04_1D';
  if (driver eq 1)*(car eq 5) then dc='05_1E';
  if (driver eq 2)*(car eq 1) then dc='06_2A';
  if (driver eq 2)*(car eq 2) then dc='07_2B';
  :
  if (driver eq 4)*(car eq 4) then dc='19_4D';
  if (driver eq 4)*(car eq 5) then dc='20_4E';

proc gplot data=a1;
  plot mpg*dc/frame; run;
```

Topic 26

Output

s m	pg dri	ver c	ar
1 25	.3	1	1
2 25	.2	1	1
3 28	.9	1	2
4 30	.0	1	2
5 24	.8	1	3
6 25	.1	1	3
7 28	.4	1	4
3 27	.9	1	4
9 27	.1	1	5
26	.6	1	5
1 33	.6	2	1
2 32	.9	2	1
:	:	:	:
7 31	.8	4	4
30	.7	4	4
9 30	.3	4	5
29	.9	4	5
	1 25 2 25 3 28 4 30 5 24 6 25 7 28 8 27 9 27 0 26 1 33 2 32 :	1 25.3 2 25.2 3 28.9 4 30.0 5 24.8 6 25.1 7 28.4 8 27.9 9 27.1 0 26.6 1 33.6 2 32.9 : : 7 31.8 3 0.7 9 30.3	1 25.3 1 2 25.2 1 3 28.9 1 4 30.0 1 5 24.8 1 6 25.1 1 7 28.4 1 8 27.9 1 9 27.1 1 0 26.6 1 1 33.6 2 2 32.9 2 : : : :

Topic 26

STAT 525

STAT 525

SAS Commands

```
proc means data=a1;
   output out=a2 mean=avmpg;
   var mpg;
   by driver car;

title1 'Plot of the means';
symbol1 v='A' i=join c=black;
symbol2 v='B' i=join c=black;
symbol3 v='C' i=join c=black;
symbol4 v='D' i=join c=black;
symbol5 v='E' i=join c=black;
proc gplot data=a2;
   plot avmpg*driver=car/frame;
run;
```

Topic 26

STAT 525

Random Effects Model

• Expressed as

$$Y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$

$$\mu_{ij} \sim N(\mu, \sigma_{\mu}^2)$$

$$\varepsilon_{ijk} \sim N(0, \sigma^2)$$

 μ_{ik} and ε_{ijk} independent

- Not all observations independent
- Will separate mean variances into factor variances

Topic 26

10

STAT 525

Random Factor Effects Model

• Expressed as

$$Y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ij}$$

 μ - overall mean

$$\alpha_i \sim N(0, \sigma_\alpha^2)$$

$$\beta_i \sim N(0, \sigma_\beta^2)$$

$$(\alpha\beta)_{ij} \sim N(0, \sigma_{\alpha\beta}^2)$$

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

• There are <u>FOUR</u> parameters/variances

STAT 525

Topic 26

Covariance Structure

• Covariances:

$$Cov(Y_{ijk}, Y_{ijk}) = \sigma^2 + \sigma_{\alpha}^2 + \sigma_{\beta}^2 + \sigma_{\alpha\beta}^2$$

$$Cov(Y_{ijk}, Y_{ijk^*}) = \sigma_{\alpha}^2 + \sigma_{\beta}^2 + \sigma_{\alpha\beta}^2$$

$$Cov(Y_{ijk}, Y_{ij^*k}) = \sigma_{\alpha}^2$$

$$Cov(Y_{ijk}, Y_{i^*jk}) = \sigma_{\beta}^2$$

$$Cov(Y_{ijk}, Y_{i^*j^*k}) = 0$$

- Can look at percentage of variability due to factors
- Could look at percentage of total variability or percentage of cell means variability (i.e., ignoring error variance).
- Approach to confidence intervals same as before

ANOVA Table

- Terms and layout of ANOVA table the same as that used in the fixed effects case
- The expected means squares (EMS) are different because of the additional random effects
- Results in different F tests
- ullet Use EMS as guide for tests \longrightarrow determine denominator MS

Topic 26

13

STAT 525

Model Estimates

• Using mean squares (ANOVA estimates)

$$\hat{\sigma}^2 = MSE$$

$$\hat{\sigma}_{\alpha\beta}^2 = (MSAB - MSE)/n$$

$$\hat{\sigma}_{\beta}^2 = (MSB - MSAB)/an$$

$$\hat{\sigma}_{\beta}^2 = (MSA - MSAB)/bn$$

- Estimates can be negative
- Similar adjustments used

Expected Mean Squares

- Same partition of Total Sum of Squares
- Assuming balanced design

 $E(MSE) = \sigma^2$

 $E(MSAB) = \sigma^2 + n\sigma_{\alpha\beta}^2$

 $E(MSB) = \sigma^2 + n\sigma_{\alpha\beta}^2 + an\sigma_{\beta}^2$

 $E(MSA) = \sigma^2 + n\sigma_{\alpha\beta}^2 + bn\sigma_{\alpha}^2$

• Estimates of variances can be obtained from these equations or other methods

Topic 26

14

STAT 525

Topic 26

Hypothesis Tests

• Three tests of variance

 H_{0A} : $\sigma_{\alpha}^2 = 0$ vs H_{1A} : $\sigma_{\alpha}^2 > 0$

 H_{0B} : $\sigma_{\beta}^2 = 0$ vs H_{1B} : $\sigma_{\beta}^2 > 0$

 H_{0AB} : $\sigma_{\alpha\beta}^2 = 0$ vs H_{1AB} : $\sigma_{\alpha\beta}^2 > 0$

- No hierarchy in terms of testing
- Not all tests use MSE in denominator
- To test σ_{α}^2 or σ_{β}^2 use MSAB
- Will alter denominator DF too

SAS Commands

```
proc glm data=a1;
    class driver car;
    model mpg=driver car driver*car;
    random driver car driver*car/test;
run;

proc mixed data=a1 cl;
    class car driver;
    model mpg=;
    random car driver car*driver/vcorr;
run;
```

Topic 26

STAT 525

Output

Proc GLM assumes all factors are fixed effects...in ANOVA table all terms tested over MSE

With random statement and test option, will perform tests based on $\ensuremath{\mathsf{EMS}}$

 Source
 DF
 Type III SS
 Mean Square
 F Value
 Pr > F

 driver
 3
 280.284750
 93.428250
 458.26
 <.0001</td>

 car
 4
 94.713500
 23.678375
 116.14
 <.0001</td>

Error 12 2.446500 0.203875

Error: MS(driver*car)

Source DF Type III SS Mean Square F Value Pr > F driver*car 12 2.446500 0.203875 1.16 0.3715 Error: MS(Error) 20 3.515000 0.175750

Topic 26

Output

Sum of

 Source
 DF
 Squares
 Mean Square
 F Value
 Pr > F

 Model
 19
 377.4447500
 19.8655132
 113.03
 <.0001</td>

 Error
 20
 3.5150000
 0.1757500

Corrected Total 39 380.9597500

R-Square Coeff Var Root MSE mpg Mean 0.990773 1.395209 0.419225 30.04750

Source DF Type I SS Mean Square F Value Pr > F driver 3 280.2847500 93.4282500 531.60 <.0001 car 4 94.7135000 23.6783750 134.73 <.0001 driver*car 12 2.4465000 0.2038750 1.16 0.3715

Source Type III Expected Mean Square

driver Var(Error) + 2 Var(driver*car) + 10 Var(driver)

car Var(Error) + 2 Var(driver*car) + 8 Var(car)

driver*car Var(Error) + 2 Var(driver*car)

Topic 26

STAT 525

19

Output

Model Information

Data Set WORK.A1

Dependent Variable mpg

Covariance Structure Variance Components

Estimation Method REMI

Dimensions

Covariance Parameters 4
Columns in X 1
Columns in Z 29
Subjects 1
Max Obs Per Subject 40
Total Observations 40

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 203.25223618

1 86.77908149 0.00000000

20

Convergence criteria met.

Topic 26

Output

Estimated V Correlation Matrix ***Summarized entries***

Same observation: 1.0000
Same i and j : 0.9859
Same j : 0.7490
Same i : 0.2358

Covariance Parameter Estimates

Cov Parm	Estimate	Alpha	Lower	Upper
car	2.9343	0.05	1.0464	24.9038
driver	9.3224	0.05	2.9864	130.79
car*driver	0.01406	0.05	0.001345	3.592E17
Residual	0.1757	0.05	0.1029	0.3665

Fit Statistics

-2 Res Log Likelihood 86.8
AIC (smaller is better) 94.8
AICC (smaller is better) 96.0
BIC (smaller is better) 93.2

Topic 26

STAT 525

21

Background Reading

- KNNL Section 25.2-25.6
- knnl1080.sas
- KNNL Sections 25.2-25.6

Topic 26 2: