Planche 1.

Question de cours. Donner la nature de la série de terme général :

$$u_n = \frac{1}{(1 + \frac{1}{2}\sin(\frac{1}{n^2}))n^{\alpha}}$$

Exercice 1. Soit une série de terme général u_n positif et convergente. Montrer que la série de terme général $\sqrt{u_n u_{n+1}}$ converge.

Exercice 2. Soit $\alpha \in \mathbb{R}$ et f continue sur [0,1] à valeurs dans \mathbb{R} telle que $f(0) \neq 0$. Etudier la convergence de la série

$$u_n = \frac{1}{n^{\alpha}} \int_0^{1/n} f(t^n) dt$$

Planche 2.

Question de cours. Etudier la convergence de la suite définie par : $u_n = \int_0^n \frac{1}{1+t+t^2} dt$

Exercice 1. Soit a_n une suite positive et (u_n) la suite définie par $u_0 > 0$ et par :

$$u_{n+1} = u_n + \frac{a_n}{u_n}$$

Montrer que la suite (u_n) converge \iff la série de terme général a_n converge.

Exercice 2. Soit u_n une suite positive. On suppose que

$$(u_n)^{1/n} \to l \in \mathbb{R}^+$$

Etudier la convergence selon la position de l par rapport à 1.

Planche 3.

Question de cours. Est ce que si $u_n \le v_n$ pour tout n et si la série des v_n converge alors la série des u_n converge ?

Exercice 1. Montrer que la suite suivante a une limite non nulle : $u_n = \frac{n!e^n}{n^{n+1/2}}$

Exercice 2. Soit a_n une suite définie par récurence avec $a_0 > 0$:

$$a_{n+1} = 1 - e^{-a_n}$$

Quelle est la nature de la suite a_n ? Nature de la série de terme général a_n^2 ? Déterminer la nature de la série de terme général a_n à l'aide de celle de terme général $\ln(\frac{a_{n+1}}{a_n})$?

Solutions - Planche 1.

Question de cours Le terme général est positif et est équivalent à $1/n^{\alpha}$ car $1+\sin(1/n^2)/2 \rightarrow 0$. Donc les séries sont de même nature. Or d'après le cours, la série des $1/n^{\alpha}$ converge ssi $\alpha > 1$.

Exercice 1. Comme $\sqrt(ab) \le (a+b)/2$ (car $(a-b)^2 \ge 0$), alors en posant $v_n = \sqrt{u_n u_{n+1}}$, on a :

$$v_n \le (u_n + u_{n+1})/2$$

Or ces deux séries convergent, donc la série des v_n converge.

Exercice 2. Montrons que

$$\int_0^{1/n} f(t^n)dt \sim f(0)/n$$

Pour ce faire, on fait la différence des deux et on montre que la différence est un petit o devant l'un des termes.

Or

$$|\int f(t^n)dt - f(0)/n| = |\int_0^{1/n} (f(t^n) - f(0))dt| \leq \int |f(t^n) - f(0)|dt \leq 1/n \sup_{y \in [0,1/n]} (|f(y) - f(0)|)$$

Or cette dernière quantité tend vers 0 car f est continue en 0. Donc la différence est un o(1/n). Donc on a l'équivalence voulue (on a bien $f(0) \neq 0$).

Donc le terme général de la série est positif et est équivalent à :

$$f(0)/n^{1+\alpha}$$

Donc d'après le cours, la série converge ssi $\alpha > 0$.

Solutions - Planche 2.

Question de cours On utilise la comparaison série intégrale du cours. La suite u_n converge ssi la série des f(n) converge. Or :

$$f(n) = \frac{1}{1 + n + n^2} \sim 1/n^2$$

Donc la série converge et donc la suite converge.

Exercice 1. Par récurence, on montre que $u_n \ge 0$. Puis $u_{n+1} - u_n \ge 0$. Donc la suite est croissante.

Si u_n converge, alors $u_{n+1} - u_n \sim a_n/l$. D'après le lien suite/série, la série des $u_{n+1} - u_n$ converge car la suite des u_n converge. Donc par équivalence de termes positifs, la série des a_n est convergente.

Si la série des a_n converge. Alors par croissance de u_n , on a :

$$u_{n+1} - u_n = a_n/u_n \le a_n/u_0$$

Or cette dernière série converge donc la série des $u_{n+1} - u_n$ converge donc la suite converge.

Exercice 2. Si l > 1, on pose M = (l+1)/2. Il existe un rang à partir duquel $u_n \ge M^n$. Donc la série des u_n diverge. Si l < 1, on pose m = (1-l)/2. Il existe un rang à partir duquel $u_n \le m^n$. Donc la série des u_n converge.

Si l=1, tout peut arriver. Si $u_n=1/n$ alors $n^{-1/n}\to 1$ et la série des u_n diverge. Si $u_n=1/n^2$, on a enore $(u_n)^{1/n}\to 1$ et la série converge.

Solutions - Planche 3.

Question de cours. Non. si $u_n = -1$ et $v_n = 1/n^2$. On a bien $u_n \le v_n$ mais la série des u_n diverge.

Exercice 1. Si on montre que la série des $ln(u_{n+1}) - ln(u_n)$ converge, alors d'après le lien suite/série, la suite $ln(u_n)$ converge et alors la suite u_n converge.

On fait donc un développement limité :

$$\ln(u_{n+1}) - \ln(u_n) = \ln(\frac{u_{n+1}}{u_n}) == O(1/n^2)$$

Et c'est bon la série converge.

Exercice 2. On montre par récurence que $a_n \ge 0$. Comme $e^x \ge 1 + x$. alors la suite décroit et converge donc. On note l sa limite, on a donc

$$l = 1 - e^{-l}$$

Donc l = 0.

b)
$$a_{n+1} = 1 - (1 - a_n + a_n^2/2 + o(a_n^2))$$

Donc

$$a_n^2 \sim -2(a_{n+1} - a_n)$$

Donc par le lien suite/série, la série des $a_{n+1}-a_n$ converge car la suite des a_n converge. Donc par équivalence de termes positifs, la série des a_n^2 converge.

c) La série des $\ln(a_{n+1}) - \ln(a_n)$ a la même nature que la suite des $\ln(a_n)$ qui diverge. Donc la série diverge.

Or $\ln(\frac{a_{n+1}}{a_n}) = \ln(1 - a_n/2 + o(a_n)) \sim -a_n/2$, donc la série des a_n diverge.