Package 'FertBoot'

October 12, 2022

Type Package

Title Fertilizer Response Curve Analysis by Bootstrapping Residuals
Version 0.5.0
Maintainer Ting Fung (Ralph) Ma <tingfung.ma@wisc.edu></tingfung.ma@wisc.edu>
Description Quantify variability (such as confidence interval) of fertilizer response curves and optimum fertilizer rates using bootstrapping residuals with several popular non-linear and linear models.
Imports stats, nls.multstart, simpleboot
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Ting Fung (Ralph) Ma [cre, aut], Hannah Francis [aut], Matt Ruark [ctb]
Repository CRAN
Date/Publication 2021-02-19 20:00:02 UTC
R topics documented: boot.CI
boot.resid.quad
f.quad.plateau

boot.CI

Bootstrap confidence intervals of mean

Description

Bootstrap confidence intervals of mean

Usage

```
boot.CI(x, alpha = 0.05, CI.type = "all")
```

Arguments

x a vector of observation

alpha significance level (default: 0.05)
CI.type type of CI required (default: "all")

Value

boot.CI return list of confidence intervals of mean (CI.percent: percentile, CI.BC: bias-corrected and CI.BCa: bias-corrected and accelerated).

Examples

```
set.seed(12)
boot.CI(rnorm(1000, mean=0, sd=1), alpha=0.05, CI.type="per") # example of wrong input for type
boot.CI(rnorm(1000, mean=0, sd=1), alpha=0.05, CI.type="all") # require all type
```

boot.resid.linear.plateau

Linear plateau model estimation by bootstrapping residuals

Description

boot.resid.linear.plateau is the core function to implement bootstrapping residuals on linear plateau models, which assumes $y \sim a + b * (x - c) * (x <= c)$. Note that this function may take minutes up to days. Parallel computing may be necessary. We suggest users start with a smaller B and moderate n.start to see if the bootstrap models can converge. In general, increasing n.start and plus_minus may help with ease of convergence. For rigorous statistical inference, B should be on the order of a thousand.

boot.resid.linear.plateau

3

Usage

```
boot.resid.linear.plateau(
  mod,
  data,
  x.range = data.frame(x = seq(0, 280, by = 40)),
  B = 100 - 1,
  plus_minus = 100,
  n.start = 1000,
  print.progress = TRUE
)
```

Arguments

mod	a full model list, probably from f.linear.plateau()
data	data frame with two columns (x and y)
x.range	vector of data.frame with one column for range of N rate of interested for prediction interval
В	bootstrap sample size
plus_minus	radius of random initial values (default: 100)
n.start	total number of initial points considered (default: 1000)
print.progress	logical flag whether printing progress

Value

boot.resid.linear.plateau returns a list of two elements: result: matrix with B rows and columns containing bootstrap sample for parameter (a,b,c), optimal N and yield (\max_x, \max_y) , log-likelihood (\log_x) and N values of interest; x.range: range of x considered for prediction interval (same as x.range in vector form)

Examples

4 boot.resid.quad

boot.resid.quad

Fitting quadratic model using multiple initial values

Description

boot.resid.linear.plateau is the core function to implement bootstrapping residuals on quadratic models, which assumes $y \sim a+b*x+c*x^2$. Note that this function may take minutes up to days. Parallel computing may be necessary. We suggest users start with a smaller B and moderate n.start to see if the bootstrap models can converge. In general, increasing n.start and plus_minus may help with ease of convergence. For rigorous statistical inference, B should be on the order of a thousand.

Usage

```
boot.resid.quad(
  mod,
  data,
  x.range = data.frame(x = seq(0, 280, by = 40)),
  B = 100 - 1,
  plus_minus = 10,
  n.start = 20,
  print.progress = TRUE
)
```

Arguments

a full model list, probably from f.quad.plateau()

data data frame with two columns (x and y)

x.range vector of data.frame with one column for range of N rate of interested for prediction interval

B bootstrap sample size

plus_minus radius of random initial values (default: 10)

n.start total number of initial points considered (default: 20)

print.progress logical flag whether printing progress

Value

boot.resid.quad.plateau returns a list of two elements: result: matrix with B rows and columns containing bootstrap sample for parameter (a,b,c), optimal N and yield (max_x, max_y), log-likelihood (logLik) and N values of interest; x.range: range of x considered for prediction interval (same as x.range in vector form)

boot.resid.quad.plateau 5

Examples

boot.resid.quad.plateau

Quadratic plateau model estimation by bootstrapping residuals

Description

boot.resid.quad.plateau is the core function to implement bootstrapping residuals on quadratic plateau models, which assumes $y = (a + b * x + c * x^2) * (x <= -0.5*b/c) + (a + -b^2/(4 * c)) * (x > -0.5 * b/c)$. Note that this function may take minutes up to days. Parallel computing may be necessary. We suggest users start with a smaller B and moderate n.start to see if the bootstrap models can converge. In general, increasing n.start and plus_minus may help with ease of convergence. For rigorous statistical inference, B should be on the order of a thousand.

Usage

```
boot.resid.quad.plateau(
  mod,
  data,
  x.range = data.frame(x = seq(0, 280, by = 40)),
  B = 100 - 1,
  plus_minus = 100,
  n.start = 5000,
  print.progress = TRUE
)
```

6 compare.two.sample

Arguments

mod a full model list, probably from f.quad.plateau()

data frame with two columns (x and y)

x.range vector of data.frame with one column for range of N rate of interested for pre-

diction interval

B bootstrap sample size

plus_minus radius of random initial values (default: 100)

n.start total number of initial points considered (default: 1000)

print.progress logical flag whether printing progress

Value

boot.resid.quad.plateau returns a list of two elements: result: matrix with B rows and columns containing bootstrap sample for parameter (a,b,c), optimal N and yield (max_x, max_y), log-likelihood (logLik) and N values of interest; x.range: range of x considered for prediction interval (same as x.range in vector form)

Examples

compare.two.sample

Two sample bootstrap test for comparing different in sample1 and sample2, not necessary with same sample size

Description

Two sample bootstrap test for comparing different in sample1 and sample2, not necessary with same sample size

f.linear.plateau 7

Usage

```
compare.two.sample(sample1, sample2, fun = mean, R = 1000)
```

Arguments

```
sample1 first sample
sample2 second sample
fun statistic (univariate) to be compared (default: mean)
R number of resamples (default: 1000)
```

Value

compare.two.sample return a list with two components, namely, p.value: two tailed p-value for the bootstrap test object: a "simpleboot" object allowing further analysis using other R packages, such as boot)

Examples

```
set.seed(1203)
# compare median of two expontential r.v.
compare.two.sample(rexp(100, rate=1), rexp(100, rate=2), fun=median, R=1e3)$p.value
f.Q1 <- function(x) quantile(x, probs=0.25)
compare.two.sample(rnorm(100, mean=0), rnorm(200, mean=0.5), fun=f.Q1, R=1e3)$p.value</pre>
```

f.linear.plateau

Fitting linear plateau model using multiple initial values

Description

f.linear.plateau fits linear plateau model using multiple initial values. The multiple initial values are randomly sampled in a "cube" of parameter space. More precisely, linear plateau model assumes $y \sim a + b * (x - c) * (x <= c)$.

Usage

```
f.linear.plateau(
    d,
    start = list(a = 1, b = 1, c = 1),
    plus_minus = 100,
    n.start = 1000,
    msg = FALSE
)
```

f.quad

Arguments

```
data frame with two columns (x and y)

start initial estimate for non-linear least square (default value: list(a = 1, b = 1, c = 1))

plus_minus radius of random initial values (default: 100)

n.start total number of initial points considered (default: 1000)

msg logical flag whether printing progress
```

Value

f.linear.plateau returns a list of two components (if converged): nls.summary: summary of the fitted model; nls.model: nls object

Examples

f.quad

Fitting quadratic model using multiple initial values

Description

f.quad fits quadratic model using multiple initial values. The multiple initial values are randomly sampled in a "cube" of parameter space. More precisely, quadratic model assumes $y \sim a+b*x+c*x^2$,

Usage

```
f.quad(
   d,
   start = list(a = 1, b = 1, c = 1),
   plus_minus = 1,
```

f.quad.plateau 9

```
n.start = 10,
 msg = FALSE
)
```

Arguments

d data frame with two columns (x and y) initial estimate for non-linear least square (default value: list(a = 1, b = 1, c start = 1)) plus_minus radius of random initial values (default: 100) n.start total number of initial points considered (default: 1000) logical flag whether printing progress

Value

msg

f. quad returns a list of two components (if converged): nls.summary: summary of the fitted model; nls.model: nls object

Examples

```
set.seed(1)
x <- rep(1:300, each=2)
a <- 8; b <- 0.05; c <- -1e-3
y \leftarrow a + b*x + c*x^2 + rnorm(length(x), sd=0.1)
d <- cbind(x,y)</pre>
# a converged example:
ans <- f.quad(d, start=list(a = 7, b = 0.02, c = 1e-5),
    plus_minus=10, n.start=10, msg=FALSE)
summary(ans$nls.model)
```

f.quad.plateau

Fitting quadratic plateau model using multiple initial values

Description

f.quad.plateau fits quadratic plateau model using multiple initial values. The multiple initial values are randomly sampled in a "cube" of parameter space. More precisely, quadratic plateau model assumes $y \sim (a + b * x + c * x^2) * (x <= -0.5*b/c) + (a + -b^2/(4 * c)) * (x > -0.5 * b/c).$

10 f.quad.plateau

Usage

```
f.quad.plateau(
    d,
    start = list(a = 1, b = 1, c = 1),
    plus_minus = 100,
    n.start = 1000,
    msg = FALSE
)
```

Arguments

```
data frame with two columns (x and y)

start initial estimate for non-linear least square (default value: list(a = 1, b = 1, c = 1))

plus_minus radius of random initial values (default: 100)

n.start total number of initial points considered (default: 1000)

msg logical flag whether printing progress
```

Value

f.quad.plateau returns a list of two components (if converged): nls.summary: summary of the fitted model; nls.model: nls.object

Examples

Index

```
boot.CI, 2
boot.resid.linear.plateau, 2
boot.resid.quad, 4
boot.resid.quad.plateau, 5

compare.two.sample, 6

f.linear.plateau, 7
f.quad, 8
f.quad.plateau, 9
```