Zusammenfassung ETiT II SS12

Maximilian Reuter

9. September 2012

Inhaltsverzeichnis

1	\mathbf{Elel}	ktrostatisches Feld
	1.1	Konstanten
	1.2	Ladungsformen
	1.3	Das Coulombsche Gesetz / Gravitationsgesetz
	1.4	Elektrisches Feld
	1.5	Elektrischer Fluss
	1.6	Potentialfunktionen
		1.6.1 Punktladung
		1.6.2 Dipol
		1.6.3 Linienladung
	1.7	Influenz
		1.7.1 FeldmÄhle
	1.8	KapazitÃt
		1.8.1 Kugelkondensator
		1.8.2 Koaxialer Zylinder
		1.8.3 Superposition von Potentialen
	1.9	Feldbilder
	1.10	Energie im elektrischen Feld
		1 10 1 KrÄfte im elektrostatischen Feld

Kapitel 1

Elektrostatisches Feld

1.1 Konstanten

$$c_0 = 299792458 \frac{m}{s}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{V_s^s}{Am}$$

$$\epsilon_0 = 8,854 \cdot 10^{-12} \text{ (durch } \epsilon_0 \cdot \mu_0 \cdot c_0^2 = 1\text{)}$$

$$K = \frac{1}{4\pi\epsilon_0} = 10^{-7} \cdot c_0^2$$

 ϵ_r : temperaturunabh Ãngig, oberhalb der ferroelektrischen Curie-Temperatur
 starkes absinken.

Ladungsformen 1.2

Raumladungsdichte: $\rho = \lim_{\Delta V \to 0} \frac{\Delta Q}{\Delta V} = \frac{dQ}{dV}$ Ladung durch Ortsfunktion $\rho(x,y,z)$ berechnen: $Q = \int\limits_V \rho \ dV = \iiint\limits_V \rho(x,y,z) \ dx \ dy \ dz$

FlÃchenladungsdichte: $\sigma = \lim_{\Delta A \to 0} \frac{\Delta Q}{\Delta A}$

Bei einem Leiter mit $L\tilde{A}nge >> Durchmesser \rightarrow$ Linienladungs. Linienladungsdichte: $\lambda = \lim_{\Delta l \rightarrow 0} \frac{\Delta Q}{\Delta l} = \frac{dQ}{dl}$

Das Coulombsche Gesetz / Gravitationsgesetz 1.3

Kraftwirkung zwischen zwei Ladungen Q_1 und Q_2 : $\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2} \cdot d\vec{r_0}$ Kraftwirkung zwischen zwei Massen m_1 und m_2 : $F_m = G \cdot \frac{m_1 \cdot m_2}{r^2}$

Elektrisches Feld 1.4

$$\vec{E} = \frac{\vec{F}}{Q} \text{ mit } [E] = \frac{V}{m}$$

$$\vec{D} = \epsilon_0 \cdot \vec{E} - \frac{\Delta \Psi}{M} = \frac{Q}{M} \cdot \vec{R}$$

$$\begin{split} \vec{E} &= \frac{\vec{F}}{Q} \text{ mit } [E] = \frac{V}{m} \\ \vec{D} &= \epsilon_0 \cdot \vec{E} = \frac{\Delta \Psi}{\Delta A} = \frac{Q}{4\pi r^2} \cdot \vec{r} \\ \text{E-Feld um Punktladung: } \vec{E} &= \frac{Q}{4\pi \epsilon_0 r^2} \cdot \vec{r} \text{ (Abnahme $\frac{\sim 1}{r^2}$)} \end{split}$$

Arbeit um Ladung im Feld zu verschieben: $\Delta W_{mech} = F \cdot \Delta s = q \cdot E \cdot \Delta s$

Potentielle Energie der Ladung nimmt um gleichen Betrag ab $\rightarrow \Delta U = E \cdot \Delta s$

Verschiebung in beliebige Richtung:

$$\Delta W_{mech} = \vec{F} \cdot \Delta s \cdot \cos \alpha = |\vec{F}| \cdot |\Delta \vec{s}| \cdot \cos(\vec{F}, \Delta \vec{s})$$

$$W_{mech} = q \int_{A}^{B} \vec{E} \cdot d\vec{s} \; (\text{,Linienintegral"})$$

Bei geschlossenem Weg: $\oint\limits_{r}\vec{E}\cdot d\vec{s}=0$ ("Wirbelfreiheit")

Das Linienintegral der E-FeldstÄrke ist weg-unabhÄngig. Es kommt nur auf den Anfangsund Endpunkt an!

$$U_{AB} = \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Potential in Bezug auf Punkt 0: $\varphi_v = U_{v0} = \int_v^0 \vec{E} \cdot d\vec{s} = -\int_0^v \vec{E} \cdot d\vec{s}$

$$E_x = -\frac{d\varphi}{dx}, \ E_y = -\frac{d\varphi}{dy}, \ E_z = -\frac{d\varphi}{dz} \to \vec{E} = -grad\varphi$$

1.5 Elektrischer Fluss

Elektrischer Fluss: $\Delta \Psi = D \cdot A = |\vec{D}| |\vec{A}| \cdot cos(\vec{D}), \Delta \vec{A}$ mit $\Delta \Psi = \Delta Q$

Gau Ascher Satz der Elektrostatik: $Q = \oint_A \vec{D} \cdot d\vec{A}$

 $\Psi = \int\limits_A \vec{D} \cdot dA$ bei beliebiger, jedoch nicht geschlossener FlÃche

Potentialfunktionen 1.6

Punktladung 1.6.1

$$U_{PB} = \frac{Q}{4\pi\epsilon} \left(\frac{1}{r_P} - \frac{1}{r_B}\right) = \varphi(P) - \varphi(B)$$

Ohne Festlegung eines Bezugspunkts: $\varphi(P) = \frac{Q}{4\pi\epsilon} \frac{1}{r} + const$ (bei weit entferntem oder geerdetem Bezugspunkt: const = 0)

1.6.2 Dipol

b: Abstand zwischen den Ladungsschwerpunkten

$$\varphi(P) = \frac{Q}{4\pi\epsilon} \cdot \frac{r_- - r_+}{r_- r_+}$$

NÃherung fÃr sehr kleines b: $\varphi(P) = \frac{p \cdot cos\vartheta}{4\pi\epsilon r^2}$ mit $p = Q \cdot b$ (elektrisches Dipolmoment) Punktladung: Potentialabnahme mit $\frac{1}{r}$

Dipol: Potentialabnahme mit $\frac{1}{r^2}$, da sich die beiden Wirkungen zunehmend aufheben.

1.6.3 Linienladung

$$dQ = \lambda \cdot ds \to d\varphi(P) = \frac{\lambda ds}{4\pi\epsilon r}$$

$$\varphi(P) = \frac{\lambda}{4\pi\epsilon} \int_{l}^{+l} \frac{1}{\sqrt{\rho^2 + (z-s)^2}} ds = \left[\frac{\lambda}{4\pi\epsilon} \cdot Arsh\frac{s-z}{\rho}\right]_{-l}^{+l} \text{ mit } Arshx = ln(x + \sqrt{x^2 + 1})$$

Besser (får Zylindersymmetrische Anordnungen):

Desset (III Zymmetrisymmetrische Imfordingen).
$$Q = \lambda l = \int\limits_{Mantel} \vec{D} \cdot d\vec{A} = D(\rho) 2\pi \rho l$$

$$E(\rho) = \frac{\lambda}{2\pi\epsilon\rho}$$

$$U_{PB} = \int\limits_{\rho_P} E(\rho) d\rho = \frac{\lambda}{2\pi\epsilon} [ln(\rho)]_{\rho_P}^{\rho_B} \to \varphi(\rho) = \frac{\lambda}{2\pi\epsilon} ln\frac{\rho_B}{\rho}$$

1.7 Influenz

$$\sigma = \frac{dQ}{dA} = \frac{d\Psi}{dA} = D$$

1.7.1 FeldmÃhle

$$\sigma=D=\epsilon_0\cdot E$$
 Ladung auf FlÃche A: $Q=\int\limits_{(A)}\sigma dA=\int\limits_{(A)}\epsilon_0EdA=\epsilon_0EA$

1.8 KapazitÃt

$$\begin{array}{l} C = \frac{Q}{U} \\ U = Ed \end{array}$$

1.8.1 Kugelkondensator

$$C = 4\pi\epsilon \frac{r_1 r_2}{r_2 - r_1}$$

$$U_{12} = \int_{r_1}^{r_2} E dr = \frac{Q}{4\pi\epsilon} (\frac{1}{r_1} \frac{1}{r_2})$$

$$E_{max} = \frac{U}{r_1} \frac{r_2}{r_2 - r_1}$$

Minimale Feldst Ãrke: $\frac{dE_{max}}{dr_1}=0 \rightarrow r_{1,opt}=\frac{r_2}{2}$ Sonderfall, KapazitÃt einer Kugel frei im Raum: $C = 4\pi\epsilon r_1$ $E_{max} = \frac{U}{r}$

1.8.2 Koaxialer Zylinder

$$\begin{split} Q &= \lambda z = \oint\limits_A \vec{D} \cdot d\vec{A} = D(\rho) \cdot A(\rho) = D(\rho) \cdot 2\pi \rho z \\ E(\rho) &= \frac{\lambda}{2\pi\epsilon\rho} \\ \text{L\~A}ngen-bezogene Kapazit\~At: } C' &= \frac{C}{z} = \frac{\lambda}{U} = \frac{2\pi\epsilon}{\ln\frac{\rho 2}{\rho_1}} \\ \text{Minimum der Maximalen Feldst\~Arke: } \frac{dE_{max}}{d\frac{\rho 2}{\rho_1}} = 0 \rightarrow \rho_{1,opt} = \frac{\rho_2}{e} \end{split}$$

Geschichtete Dielektrika

Geschichtete Dielektrika
$$(\epsilon_1, \rho_1...\rho_2 \text{ und } \epsilon_2, \rho_2...\rho_3)$$
:
$$U_{ges} = U_{\rho_1\rho_2} + U_{\rho_2\rho_3} = \frac{\lambda}{2\pi} \left(\frac{1}{\epsilon_1} ln \frac{\rho_2}{\rho_1} + \frac{1}{\epsilon_2} ln \frac{\rho_3}{\rho_2}\right)$$

$$C' = \frac{\lambda}{U_{ges}} = \frac{2\pi}{\frac{1}{\epsilon_1} ln \frac{\rho_2}{\rho_1} + \frac{1}{\epsilon_2} ln \frac{\rho_3}{\rho_2}}$$
Feldst Ärkeverh Ältnisse: $\frac{E_2(\rho_2)}{E_1(\rho_2)} = \frac{\epsilon_1}{\epsilon_2}$

Das Maximum der FeldstÄrke tritt jeweils am Innenradius des Dielektrikums auf!

$$\frac{E_{max1}}{E_{max2}} = \frac{\epsilon_2 \rho_2}{\epsilon_1 \rho_1}$$

1.8.3Superposition von Potentialen

Zwei parallele Linienladungen, ungleichen Vorzeichens, mit Radius ρ_0 , Punkt P mit φ_+ ,

$$\varphi_{-}:$$

$$C' = \frac{\lambda}{\varphi_{+} - \varphi_{-}} = \frac{\pi \epsilon}{\ln \frac{f}{\rho_{0}}}$$

$$\varphi(P) = \frac{\lambda}{2\pi \epsilon} \ln \frac{\rho_{-}}{\rho_{+}}$$

$$E_{max} = \frac{U}{2\rho_{0} \ln \frac{d}{\rho_{0}}}$$

(Gleiche Vorzeichen:
$$\varphi(P) = \frac{\lambda}{2\pi\epsilon} \cdot \ln \frac{\rho_B}{\rho_1} + \frac{\lambda}{2\pi\epsilon} \cdot \ln \frac{\rho_B}{\rho_2} = \frac{\lambda}{2\pi\epsilon} \ln \frac{\rho_B^2}{\rho_1 \rho_2}$$
)

Feldbilder 1.9

d : Abstand zwischen zwei Äquipotentiallinien.

$$\Delta U = d \cdot E$$

b: Abstand zwischen zwei Feldlinien.

 ΔQ : Ladung auf den Elektroden.

$$\Delta Q = D \cdot \Delta A = \epsilon E \cdot \Delta A = \epsilon E b z$$

 ΔC : Teilkapazit Ät pro K
 Ästchen mit Seitenl Ängen d
 und b.

$$\Delta C = \frac{\Delta Q}{\Delta U} = \frac{\epsilon E b z}{dE} = \epsilon z \frac{b}{d} = const.$$

$$\Delta C' = \frac{\Delta C}{z} = \epsilon \frac{b}{d} = const.$$

 $\Delta C = \frac{\Delta Q}{\Delta U} = \frac{\epsilon Ebz}{dE} = \epsilon z \frac{b}{d} = const.$ $\Delta C' = \frac{\Delta C}{z} = \epsilon \frac{b}{d} = const.$ Der gesamte Feldraum kann als Reihen- und Parallelschaltung gleicher (LÄngen-bezogener) Teilkapazit \tilde{A} ten $\Delta C'$ verstanden werden, f \tilde{A} r die gilt:

$$\Delta C' = \frac{\epsilon b}{d}$$

FÃr
$$\frac{b}{d} = 1$$
 (Quadrate) gilt: $\Delta C' = \epsilon \rightarrow C' = \epsilon \frac{n}{m-1}$

$$\Delta C' \stackrel{a}{=} \epsilon \rightarrow C' = \epsilon \frac{n}{m-1}$$

mit n: Anzahl d. Feldlinien und m: Zahl d. Äquipotentiallinien (inc. OberflÄche). Nur gÄltig fÅr 2D Felder.

Energie im elektrischen Feld 1.10

Allgemein:

$$W_e = \int\limits_0^\infty u(t)i(t)dt = \int\limits_0^{Q_e} udQ$$

 $W_e = \int\limits_0^\infty u(t)i(t)dt = \int\limits_0^{Q_e} udQ$ Plattenkondensator mit Abstand d: $W_e = \int\limits_0^{Q_e} udQ = \int\limits_0^{D_e} EdAdD = Ad\int\limits_0^{D_e} EdD \text{ mit } Ad = V \text{ ist das vom Feld durchsetzte Volumen:}$

$$W_e = V \int\limits_0^{D_e} EdD = \frac{1}{2}CU^2$$

$$w_e = \frac{W_e}{V} = \int_0^{D_e} E dD = \frac{1}{2} \cdot \frac{D_e^2}{\epsilon} = \frac{1}{2}DE$$

$$F_x = -\frac{dW_e^{(Q)}}{dx} = \frac{Q^2}{2\epsilon A}$$
 fÃr F_x : aufzuwendende Kraft bei VergröÃerung d. KapazitÃt.

1.10.1KrÄfte im elektrostatischen Feld

$$Q = \oint_A \vec{D} \cdot dA = D2A = \epsilon E2A$$

$$F = \frac{Q^2}{2\epsilon A}$$