Code description for

Local neural operator for solving transient partial differential equations on varied domains

by Hongyu Li, Ximeng Ye, Peng Jiang, Guoliang Qin, Tiejun Wang

Program structure

- *Train Validation*: training and validation of LNO
 - main.py: main program to run the training or validation of LNO
 - *lib*: supportive functions and supportive data
 - chebyshevs: the discrete kernel $\varphi_{m,i}$ in Eq. (17) and $\psi_{m,i}$ in Eq. (19) for 5th~41st-order Chebyshev polynomials used in the spectral path, calculated according to Eqs. (S21-S22)
 - legendres: the discrete kernel $\varphi_{m,i}$ in Eq. (17) and $\psi_{m,i}$ in Eq. (19) for 5th~41st-order Legendre polynomials used in the spectral path, calculated according to Eqs. (S21-S22)
 - networks FNO.py: the network of Fourier neural operator
 - networks_LNO.py: the network of local neural operator, including the networks for Navier-Stokes equation (and 2D viscous Burgers equations), Wave equation, and 1D viscous Burgers equation
 - ◆ *train*.py: functions to train LNO
 - ◆ *test*.py: functions to test trained LNO
 - *utils.*py: supportive functions to generate the kernel of spectral path
 - Data: functions to generate and extract data for training
 - ◆ DatasetNS.py: generate dataset for Navier-Stokes equations
 - ◆ DatasetBurgers1D.py: generate dataset for 1D viscous Burgers equations
 - ◆ DatasetBurgers2D.py: generate dataset for 2D viscous Burgers equations
 - ◆ DatasetWave.py: generate dataset for wave equations
 - *models*: the trained LNO models
 - outputs: predicted results on validation samples by trained LNOs
 - *logs*: the output logs during the training process
- *Application*: apply pre-trained LNO to solve unseen problems
 - mainSquareCylinder.py: main program to solve the flow around a square cylinder
 - mainCascade.py: main program to solve the flow across a cascade
 - *IBMInterpolation*.py: function to implement immersed boundary method
 - *NACA0012 20.*mat: geometry file of the airfoil in the cascade

- *lib*: supportive functions
 - *networkNS*.py: the network of local neural operator for Navier-Stokes equation, almost the same as *networks_LNO*.py but padding operations are removed
 - utils.py: supportive functions to generate the kernel of spectral path
- *models*: pre-trained LNO models for solving the unseen problems

How to use

• To train a new LNO and then test:

Enable train_test_save() in *main*.py and run command:

nohup python -u main.py -n run_name > logs/run_name.log 2>&1 &

The training log will be in *logs* named *run name*.log.

• To test a trained LNO:

Enable load_test(args.out_name) in *main*.py and run command:

nohup python -u main.py -n run_name > logs/run_name.log 2>&1 &

The results of predicting the validation data samples will be in *outputs* named *run name*.mat.

• To solve the flow around a square cylinder:

Put a pre-trained LNO model file into *models*, change model_file in *mainSquareCylinder*.py and run command:

python mainSquareCylinder.py

The predicted flow fields at different time levels will be named SC timelevel.mat.

• To solve the flow across a cascade:

Put a pre-trained LNO model file into *models*, change model_file in *mainSquareCylinder*.py and run command:

python mainCascade.py

The predicted flow fields at different time levels will be named *Cascade timelevel*.mat.

Dataset description

Data samples for each PDE to be learned are stored in one independent folder.

PDE	Folder name	
Navier-Stokes	NG120D - ()41000	
equation	NS128Re{}t1000	
1D viscous Burgers	Burgers128Re100t1000	
2D viscous Burgers	Burgers2D128Re100t1000	
Wave equation	Wave128t1000	

In each folder, data samples are stored in pieces with name <code>folder_name_order</code>:mat, e.g., <code>NS128Re500t1000_1</code>:mat, which is the physical field calculated from one random initial condition. Each data file includes all the physical fields required for training, and each physical field is in the format [total_time_steps×field_value_in_a_time_level]. An example data sample can be found in

https://pan.baidu.com/s/1-XdFSOX4MTY1baRWpgSKHw? at =1701329901362#list/path=%2Fn

Main adjustable parameters

Parameter	Description	Options
Train_Validation		
PROBLEM	The type of PDE to be learned	'NS' for Navier-Stokes equation 'Burgers1D' for 1D viscous Burgers equation 'Burgers2D' for 2D viscous Burgers equation 'Wave' for wave equation
data_dir	Path of dataset	/
data_name	Name of folder according to Table 1	/
Re	Viscosity of Navier-Stokes equation to be learned	/
t_interval	Controling the time step Δt of the learning task, $\Delta t = \Delta \tau \times t_interval$, where $\Delta \tau = 0.01$ is the time step of training data samples	Positive integer
learning_rate	Initial learning rate	0.001 (recommend)
reccurent	Round number for recurrent training,	10 (recommend)
epochs_overall	Epoch number of training	200 (recommend)
iterations	Iteration number in each epoch	500 (recommend)
orders_all	Orders of all used data samples, including both training and validation samples	/
orders_train	Orders of training data samples	/
n	Order of spectral transform N	5~41
m	Selected first m lowest modes M	≤ n
k	Number of repetitions K	2 (recommend)
Application		
model_file	File name for the pre-trained LNO model	/
NG_L,NG_D,NG_U,NG_R	The size of the computational domain from the original coordinate in the left, down, up, and right sides	/
u_lid	Velocity of the inflow	1 (recommend)
alpha	Angle of attack α for the cascade	/