Intro to programming in Haskell

Computational Linguistics (LING 455)

Rutgers University

September 7, 2021

ı

A little bit of Haskell

Firing up the Haskell interpreter

```
> ghci
GHCi, version 8.10.4: https://www.haskell.org/ghc/
Prelude>
Prelude> 2+3
5
Prelude> take 20 "My very educated mother just served"
"My very educated mot"
Prelude> drop 20 "My very educated mother just served"
"her just served"
```

3

Writing .hs scripts

```
-- W2.hs (a comment!)
-- Edit this with a text editor (VS Code is great!)
myList :: [Int] -- myList is a list of Ints
myList = [1..100] -- types can generally be left off
sumList :: [Int] -> Int
sumList [] = 0
sumList (n:ns) = n + sumList ns -- a recursive function
                                   defined using itself!
```

Interpreting .hs scripts

```
> ghci W1.hs
GHCi, version 8.10.4
[1 of 1] Compiling Main ( W1.hs, interpreted )
Ok, one module loaded.

*Main> sumList myList
5050
```

Types in Haskell: preventing many errors

Not all languages work in this way. For example, Javascript:

```
>> !2
false
```

Declaring types

```
str1 :: String
str1 = "Simon" -- Strings go in double-quotes

str2 :: [Char]
str2 = str1 -- Strings are just lists of characters

char1 :: Char
char1 = 'S' -- Single characters are in single quotes
```

Generally you do not *need* to declare types. In most cases ghci can figure out the type on its own. Types are useful for your reader (as code **documentation**), and also to you the coder:

• A type is a program **specification**: a program's type gives a hint (sometimes a big one) about how the program should be defined.

7

Interlude: two kinds of equality

When I write str2 = str1, I am defining str2 to be whatever str1 is. This presupposes that str1 is already defined.

This is not the same as a true-or-false assertion that str2 and str1 are the same, str2 == str1. This assertion is True or False, and presupposes that str1 and str2 are both already defined:

```
*Main> str1 = "Simon"

*Main> str2 = "simon"

*Main> str2 == str1 -- "S" and "s" aren't the same!
False
```

Querying types

You can also ask ghci to tell you an expression's type:

```
*Main> :t (:)
(:) :: a -> [a] -> [a]
```

Given any a and any list of a s, (:) produces another list of a s:

```
*Main> 'S' : "imon"
"Simon"
```

The (++) function is similar but glues together two lists:

```
*Main> :t (++)
(++) :: [a] -> [a] -> [a]
*Main> "Si" ++ "mon"
"Simon"
```

Interlude: infix operators

In general, any operator that is written as an infix can also be written as a prefixed function, by surrounding it with parens:

```
*Main> (+) 2 ((*) 5 6)
32
*Main> (==) ((*) 5 6) 30
True
```

Though it's much harder to read, this is probably a more "faithful" representation of these functions, as suggested by their types. The infix notation is just a nice bit of syntactic "sugar".

Qualified types

```
*Main> :t (==)
(==) :: Eq a => a -> Bool
```

This says: (==) is the sort of thing that takes one a, then another a, and gives back a Bool (True or False), so long as a is a type ghci knows how to check Eq for (not always possible!).

```
*Main> :t (+)
(+) :: Num a => a -> a
```

This says: (+) is the sort of thing that takes one a, then another a, and ultimately gives back a third a, so long as a is a Num.¹

¹ Computer languages represent different kinds of numbers in different ways. The details of this aren't important for this course.

Expressions and evaluation

Evaluation of expressions

Expressions are any program or piece of code. Expressions are set in a grey box to distinguish from normal text. Some examples:

• 4, "hello", x + 3,...

We will write $e \Longrightarrow e'$ to mean that expression e **evaluates** *in one step* to expression e'. Some examples:

- \bullet 3 + 4 \Longrightarrow 7
- $2 * (3 + 4) \Longrightarrow 2 * 7$
- ("un" ++ "lock") ++ "able" \Longrightarrow "unlock" ++ "able"

We may sometimes write $e \Longrightarrow^* e'$ to mean that e evaluates to e' in one or more steps. Thus, $2 * (3 + 4) \Longrightarrow^* 14$.

Expressions in Haskell

Haskell has a few important types of expressions:

- Identifiers
 - Variables start with a lowercase letter: x, x1, myThing, add
 - Data constructors start with an uppercase letter: True, Cons
- Several related ways of doing evaluation/substitution:
 - Let expressions: let x = y in z
 - Lambda expressions: \x -> body
 - Case expressions: case x of {...}

let expressions

let expressions allow us to associate a name with some value and use it elsewhere, maybe more than once:

• let
$$x = 5$$
 in $x + (3 * x) \implies 5 + (3 * 5)$

Here's a general rule characterizing evaluation of let expressions:

let
$$v = e$$
 in $e' \Longrightarrow [e/v]e'$

[e/v]e' is an expression like e', but with all (free) occurrences of v replaced by e. Pronounced: e replacing v in e'.

15

Lambda expressions

Another sort of expression, closely related to let expressions, are lambda expressions, which are used to define **functions**:

Lambda expressions have a familiar evaluation behavior:

•
$$(\x -> x + (3 * x)) 5 \Longrightarrow 5 + (3 * 5)$$

This suggests the following familiar evaluation rule:²

$$(\v \rightarrow e') e \Longrightarrow [e/v]e'$$

We will often call e the argument of the function.

² As before, the replacement is restricted to **free** occurrences of v in e'. Thus, we see that let x = 5 in $x * ((\x -> x + 4) 3) \Longrightarrow 5 * ((\x -> x + 4) 3)$: the innermost x is intended to be associated with \x , not let x.

Matters of taste

You can replace a let with a lambda:

- let v = e in $e' \equiv (\langle v \rangle e') e$
- Both of these evaluate to [e/v]e'

When you define a function, you can use an explicit lambda or not. The latter style is more concise and idiomatic.³

```
addTwoLam = n \rightarrow n + 2
addTwo n = n + 2
```

 $^{^3}$ For those who have studied lambda calculus before, this is just η -equivalence.

Pattern matching

When some value has a known shape, it is convenient to expoit that:

case expressions

A case expression allows a function to behave in different ways on different inputs: (It's important the possible values are left-aligned!)

We can also define a new type and write case expressions for it:

When defining a function, a case expression can be left out:

Note that we are also pattern-matching on the head of the list x in the second case -branch. We can also pattern-match on the tail x s .

Recursion and inductive types

Numbers

```
-- A Natural number is either Zero,
-- or the Successor of a Natural number
data Nat = Z | S Nat
 deriving (Eq. Show) -- don't worry about this
-- With this data type, we can roll our own numbers:
one = SZ
two = S one -- S (S Z)
three = S two -- S (S (S Z))
-- We can also perform sanity checks:
-- *Main> two == S (S Z)
-- True
```

```
addOne :: Nat -> Nat
addOne n = S n

subOne :: Nat -> Nat
subOne Z = Z
subOne (S n) = n
```

We didn't *have* to decide that sub0ne $Z \Longrightarrow Z$. If we left off this line, trying to evaluate sub0ne Z would lead to an error.

```
toInt :: Nat -> Int

toInt Z = 0 -- Rule TI0

toInt (S n) = 1 + toInt n -- Rule TIR

-- ^^^^ recursion!
```

```
toInt (S (S Z))
```

```
toInt (S (S Z)) \Rightarrow 1 + toInt (S Z) by Rule TIR
```

```
toInt (S (S Z))

\Rightarrow 1 + toInt (S Z) by Rule TIR

\Rightarrow 1 + (1 + toInt Z) by Rule TIR
```

```
toInt :: Nat -> Int

toInt Z = 0 -- Rule TI0

toInt (S n) = 1 + toInt n -- Rule TIR

-- ^^^^ recursion!
```

```
toInt (S (S Z))

\Rightarrow 1 + toInt (S Z) by Rule TIR

\Rightarrow 1 + (1 + toInt Z) by Rule TIR

\Rightarrow 1 + (1 + 0) by Rule TI0
```

```
toInt :: Nat -> Int

toInt Z = 0 -- Rule TI0

toInt (S n) = 1 + toInt n -- Rule TIR

-- ^^^^ recursion!
```

```
toInt (S (S Z))
\Rightarrow 1 + toInt (<math>S Z) by Rule TIR
\Rightarrow 1 + (1 + toInt Z) by Rule TIR
\Rightarrow 1 + (1 + 0) by Rule TI0
\Rightarrow 1 + 1
```

```
toInt :: Nat -> Int

toInt Z = 0 -- Rule TI0

toInt (S n) = 1 + toInt n -- Rule TIR

-- ^^^^ recursion!
```

```
toInt (S (S Z))
\Rightarrow 1 + \text{toInt (S Z)} \qquad \text{by Rule TIR}
\Rightarrow 1 + (1 + \text{toInt Z}) \qquad \text{by Rule TIR}
\Rightarrow 1 + (1 + 0) \qquad \text{by Rule TIO}
\Rightarrow 1 + 1
\Rightarrow 2
```

On recursion

To write a recursive function, ask yourself these questions, in order:

- 1. What is your base case? Where does the recursion bottom out?
- 2. Assume that you know how do a calculation for some 'step' of the problem. Given this assumption, what do you require to complete the **next step**?

If your recursion never bottoms out, your program will loop. Don't try this at home: let badRec n = badRec n in badRec (S Z).

```
double (S (S Z))
```

```
double (S (S Z)) \implies S (S (double (S Z))) by Rule R
```

```
double (S (S Z)) by Rule R S (S (S (S (double S Z))) by Rule R
```

```
double (S (S Z))
\Rightarrow S (S (double (S Z))) by Rule R
\Rightarrow S (S (S (S (double Z)))) by Rule R
\Rightarrow S (S (S (S (S Z))) by Rule 0
```

Write is Even and is 0dd

Write is Even and is Odd

isEven (S (S Z))

Write is Even and is 0dd

```
isEven (S (S Z)) \implies isOdd (S Z) by Rule ER
```

Write is Even and is 0dd

```
isEven (S (S Z))
\implies isOdd (S Z) by Rule ER
\implies isEven Z by Rule OR
```

Write is Even and is 0dd

```
isEven (S (S Z))
\implies isOdd (S Z) \qquad \text{by Rule ER}
\implies isEven Z \qquad \text{by Rule OR}
\implies True \qquad \text{by Rule E0}
```

Constructing lists

Here is another way to roll by hand a type that Haskell gives us:

```
data IntList = Empty | Cons Int IntList
                      ^^^^ 'Cons' for 'Construct'
myIntList = Cons 2 (Cons 5 (Cons 3 Empty))
sumIntlist :: Intlist -> Int
sumIntList Empty = 0
sumIntList (Cons n ns) = n + sumIntList ns
-- *Main> sumIntList myIntList
-- 10
```

Haskell's native lists

In fact, this is how Haskell's lists already work!

```
*Main> 2 : (5 : (3 : [])) == [2,5,3]
True
```

And recalling that x : xs is just infix sugar for (:) x xs ...

```
*Main> [2,5,3] == (:) 2 ((:) 5 ((:) 3 []))
True
```

A Cons 2 (Cons 5 (Cons 3 Empty)) by any other name...

```
sumlist [2,5,3] -- 2:(5:(3:[]))
```

```
sumList [] = 0

sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))

\implies 2 + sumlist [5,3]
```

```
sumList [] = 0
sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))

\implies 2 + \text{sumlist } [5,3]

\implies 2 + (5 + \text{sumList } [3])
```

```
sumList [] = 0
sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))

\Rightarrow 2 + sumlist [5,3]

\Rightarrow 2 + (5 + sumList [3])

\Rightarrow 2 + (5 + (3 + sumList []))
```

```
sumList [] = 0
sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))

\implies 2 + \text{sumlist } [5,3]

\implies 2 + (5 + \text{sumList } [3])

\implies 2 + (5 + (3 + \text{sumList } []))

\implies 2 + (5 + (3 + 0))
```

```
sumList [] = 0
sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))
\Rightarrow 2 + \text{sumlist } [5,3]
\Rightarrow 2 + (5 + \text{sumList } [3])
\Rightarrow 2 + (5 + (3 + \text{sumList } []))
\Rightarrow 2 + (5 + (3 + 0))
\Rightarrow 2 + (5 + 3)
```

```
sumList [] = 0
sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))

\Rightarrow 2 + sumlist [5,3]

\Rightarrow 2 + (5 + sumList [3])

\Rightarrow 2 + (5 + (3 + sumList []))

\Rightarrow 2 + (5 + (3 + 0))

\Rightarrow 2 + (5 + 3)

\Rightarrow 2 + 8
```

```
sumList [] = \emptyset
sumList (n:ns) = n + sumList ns
```

```
sumlist [2,5,3] -- 2:(5:(3:[]))

\Rightarrow 2 + sumlist [5,3]

\Rightarrow 2 + (5 + sumList [3])

\Rightarrow 2 + (5 + (3 + sumList []))

\Rightarrow 2 + (5 + (3 + 0))

\Rightarrow 2 + (5 + 3)

\Rightarrow 2 + 8

\Rightarrow 10
```

Math and logic

The sumList function may be familiar from math classes:

- ullet sumList is the big summation operation Σ
- prodList, defined with * replacing +, is the big product \prod

As it happens, Prelude already defines sum and product for you. The Prelude also defines or and and. What do they do?

```
*Main> :t or
or :: [Bool] -> Bool -- same type for `and`
```

Math and logic

The sumList function may be familiar from math classes:

- sumList is the big summation operation Σ
- prodList, defined with * replacing +, is the big product \prod

As it happens, Prelude already defines sum and product for you. The Prelude also defines or and and. What do they do?

```
*Main> :t or
or :: [Bool] -> Bool -- same type for `and`
```

They operate on lists of Bool s: or requires that *at least one* of them is True, and and requires that *all* of them are True.

- or is the big disjunction ∨
- ullet and is the big conjunction \wedge

List comprehensions

Lists are in some ways central to Haskell, and it makes it very easy to do amazing stuff with them, like 'graph' functions:

```
x3 = [ (x,y) | x <- [1..10], y <- [1..1000], y == x^3 ]
-- *Main> x3
-- [(1,1),(2,8),(3,27),(4,64),(5,125),(6,216),(7,343),
-- (8,512),(9,729),(10,1000)]
```

The synax of a list comprehension is: [vals | conditions]. This is intended to be just like set comprehensions:

$$\{(x, y) \mid x \in \{1...10\}, y \in \{1...1000\}, y = x^3\}$$

Ranges

Ranges are easy to pick out with lists:

- $[1..10] \implies [1,2,3,4,5,6,7,8,9,10]$
- ['d'..'m'] \Longrightarrow * "defghijklm"

[1..] is an *infinite list*, which you can actually use!

```
*Main> take 10 (drop 36 [1..])
[37,38,39,40,41,42,43,44,45,46]
```

What do you suppose the length of myListEvens is?

```
myListEvens = [n \mid n \leftarrow [1..100], even n]
```

How would you define myListOdds?

What do you suppose the length of myListEvens is?

$$myListEvens = [n \mid n \leftarrow [1..100], even n]$$

How would you define myListOdds?

$$myListOdds = [n \mid n \leftarrow [1..100], odd n]$$

What's sumList myListEvens - sumList myListOdds?

What do you suppose the length of myListEvens is?

$$myListEvens = [n \mid n \leftarrow [1..100], even n]$$

How would you define myListOdds?

$$myListOdds = [n \mid n \leftarrow [1..100], odd n]$$

What's sumList myListEvens - sumList myListOdds?

*Main> sumList myListEvens - sumList myListOdds 50

List comprehensions

```
muls17 = [ n | n <- [1..], n `mod` 17 == 0 ]
```

```
*Main> take 15 muls17
[17,34,51,68,85,102,119,136,153,170,187,204,221,238,255]
```

```
pyTriples = [ (a,b,c) | c <- [1..], b <- [1..c],
a <- [1..b], a*a + b*b == c*c ]
```

```
*Main> take 4 (drop 123 pyTriples)
[(48,189,195),(28,195,197),(120,160,200),(56,192,200)]
```

On pyTriples: we know the hypotenuse c is longer than both legs a and b, and we don't care about returning both (3,4,5) and (4,3,5). Much more efficient!

Strings

A String is just a nice sugared representation for a list or sequence of Char s, as we discussed earlier.

```
*Main> 'S':('i':('m':('o':('n':[])))) == "Simon"
True
```

Lists and Strings can both be concatenated via ++:

```
*Main> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]
*Main> "Si" ++ "mon"
"Simon"
```

How would you define ++ on your own, if you had to?