Theoretical Justification of Deep Learning

Generalization and Optimization

Oualid Missaoui

Agenda

- Standard/classic statistical learning theory (SLT)
- Double Descent and limitations of classic SLT
- Benign Overfitting in interpolating shallow models
 - Linear Models
 - Kernel Methods
 - Boosting
 - Random Forests
- Theoretical Justifications of linear interpolators
- Linearization of Neural Networks
- Optimization: SGD Implicit Bias
- References

Classic/Standard Statistical Learning Theory

	Finite ${\cal H}$	Infinite ${\cal H}$
Realizable	$\mathfrak{R}(g) \leq rac{1}{N}ig[\log \mathcal{H} + \log rac{1}{\delta}ig]$	$\mathfrak{R}(g) < rac{\mathit{VC}(\mathcal{H})\log 2\mathit{N} + \log rac{1}{\delta}}{\mathit{N}}$
Agnostic	$\mathfrak{R}(g) < \hat{\mathfrak{R}}(g) + \sqrt{rac{1}{2N}\lograc{2 \mathcal{H} }{\delta}}$	$\mathfrak{R}(g) < \hat{\mathfrak{R}}(g) + \sqrt{rac{VC(\mathcal{H})(\log rac{2N}{VC(\mathcal{H})}) + \log rac{4}{\delta}}{N}}$

where $VC(\mathcal{H})$ is the Vapnik-Chervonenkis dimension of the hypothesis space \mathcal{H} . What is $VC(\mathcal{H})$ dimension ?

- A dichotomy of a set S is a partition of S into two disjoint subsets
- A set of instances S is shattered by a hypothesis space \mathcal{H} if and only if for every dichotomy of S there exists some hypothesis in \mathcal{H} consistent with this dichotomy.
- The Vapnik-Chervonenkis dimension $VC(\mathcal{H})$ of hypothesis space \mathcal{H} defined over instance space \mathcal{X} is the size of the largest finite subset of \mathcal{X} shattered by \mathcal{H} . If arbitrary large finite sets of \mathcal{X} can be shattered by \mathcal{H} , then $VC(\mathcal{H}) = \infty$

VC Dimension

Hypothesis class	VC dimension (approx/exact)
Half-line thresholds on \mathbb{R} , $h_a(x)=1\{x\geq a\}$	1
Intervals on $\mathbb R$ (positive on $[a,b]$)	2
Union of k intervals on $\mathbb R$	2k
Homogeneous hyperplanes in \mathbb{R}^d (through origin)	d
Affine hyperplanes in \mathbb{R}^d (with bias)	d+1
Axis-aligned rectangles in \mathbb{R}^d	$2d$ (\Rightarrow in \mathbb{R}^2 : 4)
Euclidean balls in \mathbb{R}^d	d+1
Decision stumps on d real features	d
Depth- L axis-aligned decision trees	$O(2^L \log 2^L)$ (grows with #leaves)
1-Nearest Neighbor in \mathbb{R}^d (prototypes unconstrained)	∞
Degree- p polynomial separators in \mathbb{R}^d	$\binom{d+p}{p}$
ReLU (piecewise-linear) NN with $oldsymbol{W}$ weights	$\Theta(W \log W)$ (tight up to constants)
Linear separators with margin γ on radius- R data	$\lesssim (R/\gamma)^2$ (dimension-free bound)

VC measures worst-case shattering power; higher VC implies a greater sample requirement or stronger regularization for good generalization.

Double Descent (1)

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias-variance trade-off. (B) The double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the "classical" regime) together with the observed behavior from using high-capacity function classes (i.e., the "modern" interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation threshold have zero training risk.

Double Descent (2)

- As model capacity increases from small to moderate, test error first decreases and then increases.
- There is a point where the model exactly fits the training data while test error is near its highest.
- Beyond this point, further increasing capacity causes test error to decrease again.
- Training error keeps decreasing with capacity and remains near zero after exact fit.
- The behavior therefore is not a single U-shape but a "double descent" in test error as capacity grows.
- Models that are far larger than needed to interpolate the data can exhibit lower test error than smaller models.
- The location of the peak and the rate of the second descent depend on the task, data, and model family.

Double Descent (3)

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient ℓ_2 norms (log scale), and training risks of the RFF model predictors $h_{n,N}$ learned on a subset of MNIST ($n = 10^4$, 10 classes). The interpolation threshold is achieved at $N = 10^4$.

Fig. 3. Double-descent risk curve for a fully connected neural network on MNIST. Shown are training and test risks of a network with a single layer of H hidden units, learned on a subset of MNIST ($n=4\cdot 10^3$, d=784, K=10 classes). The number of parameters is $(d+1)\cdot H+(H+1)\cdot K$. The interpolation threshold (black dashed line) is observed at $n\cdot K$.

Fig. 4. Double-descent risk curve for random forests on MNIST. The double-descent risk curve is observed for random forests with increasing model complexity trained on a subset of MNIST ($n=10^4$, 10 classes). Its complexity is controlled by the number of trees $N_{\rm tree}$ and the maximum number of leaves allowed for each tree $N_{\rm leaf}^{\rm max}$.

Double Descent (4)

- The double-descent pattern shows up in all three: a linear model (with random features), a random forest, and a neural network.
- For each model family, **training error** falls to (near) zero as complexity increases and stays near zero afterward.
- For each model family, **test error peaks around the interpolation threshold**—the point where the model first exactly fits the training data.
- **Linear model:** increasing the number of random features moves from under- to over-parameterized and produces the same peak-then-drop in test error.
- **Neural network:** growing hidden units/parameters shows the same peak at interpolation followed by a second descent in test error.
- Random forest: increasing trees/allowed depth shows the same pattern—test error rises to a peak and then declines with more capacity.
- Across losses (zero-one and squared), the qualitative behavior is the same for all three model classes.
- The **peak location** and **descent rate** differ by model family and the chosen complexity knob, but the **overall pattern is consistent**.

Justification of Double Descent in linear regression (1)

We consider a regression problem where the response y is equal to a linear function $\boldsymbol{\beta} = (\beta_1, \dots, \beta_D) \in \mathbb{R}^D$ of D real-valued variables $\boldsymbol{x} = (x_1, \dots, x_D)$ plus noise $\sigma \epsilon$:

$$y = x^*\beta + \sigma\epsilon = \sum_{j=1}^{D} x_j\beta_j + \sigma\epsilon.$$

Given n iid copies $((\boldsymbol{x}^{(i)}, y^{(i)}))_{i=1}^n$ of (\boldsymbol{x}, y) , we fit a linear model to the data only using a subset $T \subseteq [D] := \{1, \ldots, D\}$ of p := |T| variables.

Let $\mathbf{X} := [\mathbf{x}^{(1)}|\cdots|\mathbf{x}^{(n)}]^*$ be the $n \times D$ design matrix, and let $\mathbf{y} := (y^{(1)}, \dots, y^{(n)})$ be the vector of responses. For a subset $A \subseteq [D]$ and a D-dimensional vector \mathbf{v} , we use $\mathbf{v}_A := (v_j : j \in A)$ to denote its |A|-dimensional subvector of entries from A; we also use $\mathbf{X}_A := [\mathbf{x}_A^{(1)}|\cdots|\mathbf{x}_A^{(n)}]^*$ to denote the $n \times |A|$ design matrix with variables from A. For $A \subseteq [D]$, we denote its complement by $A^c := [D] \setminus A$. Finally, $\|\cdot\|$ denotes the Euclidean norm.

We fit regression coefficients $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_D)$ with

$$\hat{\boldsymbol{\beta}}_T := \boldsymbol{X}_T^{\dagger} \boldsymbol{y}, \quad \hat{\boldsymbol{\beta}}_{T^c} := \boldsymbol{0}.$$

Above, the symbol † denotes the Moore-Penrose pseudoinverse. In other words, we use the solution to the normal equations $\boldsymbol{X}_{T}^{*}\boldsymbol{X}_{T}\boldsymbol{v}=\boldsymbol{X}_{T}^{*}\boldsymbol{y}$ of least norm for $\hat{\boldsymbol{\beta}}_{T}$ and force $\hat{\boldsymbol{\beta}}_{T^{c}}$ to all-zeros.

Theorem 1. Assume the distribution of \mathbf{x} is the standard normal in \mathbb{R}^D , ϵ is a standard normal random variable independent of \mathbf{x} , and $y = \mathbf{x}^*\boldsymbol{\beta} + \sigma\epsilon$ for some $\boldsymbol{\beta} \in \mathbb{R}^D$ and $\sigma > 0$. Pick any $p \in \{0, \ldots, D\}$ and $T \subseteq [D]$ of cardinality p. The risk of $\hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}_T = \mathbf{X}_T^T \mathbf{y}$ and $\hat{\boldsymbol{\beta}}_{T^c} = \mathbf{0}$, is

$$\mathbb{E}[(y - \boldsymbol{x}^* \hat{\boldsymbol{\beta}})^2] = \begin{cases} (\|\boldsymbol{\beta}_{T^c}\|^2 + \sigma^2) \cdot \left(1 + \frac{p}{n - p - 1}\right) & \text{if } p \leq n - 2; \\ +\infty & \text{if } n - 1 \leq p \leq n + 1; \\ \|\boldsymbol{\beta}_{T}\|^2 \cdot \left(1 - \frac{n}{p}\right) + (\|\boldsymbol{\beta}_{T^c}\|^2 + \sigma^2) \cdot \left(1 + \frac{n}{p - n - 1}\right) & \text{if } p \geq n + 2. \end{cases}$$

The proof of Theorem 1 is not hard, we give the details in Section 2.2. We now turn to the risk of $\hat{\beta}$ under a random selection model for T.

Justification Double Descent in linear regression (2)

Figure 1: Plot of risk $\mathbb{E}[(y - \boldsymbol{x}^*\hat{\boldsymbol{\beta}})^2]$ as a function of p, under the random selection model of T. Here, $\|\boldsymbol{\beta}\|^2 = 1$, $\sigma^2 = 1/25$, D = 100, and n = 40.

In this setup with n=40n = 40n=40 and D=100D = 100D=100, least-squares regression uses ppp features, and as ppp increases up to nnn, the model overfits and risk worsens—reflecting the classical double descent without the initial descent. Interestingly, when p>np > np>n, the risk decreases again as the model benefits from overparameterization, perfectly fitting the data while becoming less volatile.

Figure 2: Plot of risk $\mathbb{E}[(y-\boldsymbol{x}^*\dot{\boldsymbol{\beta}})^2]$ as a function of p, under the "prescient" selection model of T. Here, $\|\boldsymbol{\beta}\|^2=1,\ \beta_j^2\propto 1/j^2,\ \sigma^2=1/25,\ D=100,\ \text{and}\ n=40.$

 The risk curve shows a "sweet spot" at low feature counts, resembling traditional descent, with higher risk in the interpolation regime. This happens because in a scientific feature selection setting, one cannot hand-pick informative features—so interpolation only helps when feature choice isn't biased. If features can be cherry-picked, good performance is achievable even with few variables.

Minimum-norm solution in the underdetermined/overparameterized/interpolating regime

Setting. Linear regression with more parameters than samples:

- Data matrix $X \in \mathbb{R}^{n \times d}$ with d > n; targets $y \in \mathbb{R}^n$.
- Interpolation means there exist $w \in \mathbb{R}^d$ such that Xw = y (infinitely many solutions).

Main result (least-squares). Among all interpolating solutions,

$$w^\dagger = rg \min_{w: Xw = y} \|w\|_2 \ = \ X^+ y \ = \ X^ op (XX^ op)^{-1} y,$$

where X^+ is the Moore–Penrose pseudoinverse.

Equivalently,

$$w^\dagger = \lim_{\lambda\downarrow 0}rg\min_w \|Xw-y\|_2^2 + \lambda\|w\|_2^2.$$

How it's selected in practice (implicit bias).

Gradient Descent on squared loss, initialized at $w_0=0$ (and step size $<2/\|X\|_2^2$), converges to w^\dagger among all exact-fit solutions.

Kernel/RKHS analogue (ridgeless).

For kernel matrix $K = X_{\phi}X_{\phi}^{ op}$:

$$f^\dagger(\cdot) = rg \min_{f: f(X) = y} \|f\|_{\mathcal{H}} \quad \Rightarrow \quad f^\dagger(x) = k(x,X)^ op K^+ y.$$

Why it matters. The minimum-norm (a.k.a. ridgeless) interpolant explains implicit regularization, connects to double-descent/benign overfitting, and often generalizes when signal aligns with the data span.

Notation. n: samples, d: features, X: design matrix, y: responses, w: parameters, $\|\cdot\|_2$: Euclidean norm, X^+ : pseudoinverse, K: kernel Gram matrix, \mathcal{H} : RKP $^{\circ}$

References.

- Hastie, Montanari, Rosset, Tibshirani (2019), Surprises in High-Dimensional Ridgeless Least Squares, PNAS.
- Bartlett, Long, Lugosi, Tsigler (2020), Benign Overfitting in Linear Regression, PNAS.
- (GD implicit bias) Gunasekar et al. (2018), Implicit Bias of Gradient Descent on Linear Convolutional Networks; standard linear case yields the minimum-ℓ₂ interpolant.

Bridging to Neural Tangent Kernel (NTK)

- We've seen that linear models and kernel methods can interpolate the data, and gradient descent picks the minimum-norm (ridgeless) interpolant—matching the double-descent pattern we observed.
- Natural question: Can we approximate deep nets as linear or kernel machines so we can port these insights (interpolation, minimum-norm bias, double descent) to modern networks?
- Idea: look at very wide networks trained with small steps; their training can be linearized around initialization and viewed through a kernel induced by the network itself.
- This leads us to the Neural Tangent Kernel (NTK)—a framework where wide nets behave like kernel regressors with a learned, network-defined kernel.
- **Next:** define NTK, show the training dynamics, and connect it back to interpolation and generalization.

Linearization of Neural Networks

For very wide nets trained with small steps, training behaves like fitting a linear model on fixed features determined at initialization.

Setup (scalar output for simplicity)

- Data: $X=\{x_i\}_{i=1}^n$, with $x_i\in\mathbb{R}^d$; labels $y\in\mathbb{R}^n$ where $y_i\in\mathbb{R}$.
- Network: $f_{\theta}: \mathbb{R}^d \to \mathbb{R}$ with parameters $\theta \in \mathbb{R}^p$.
- Initialization: $\theta_0 \in \mathbb{R}^p$; parameter change: $\Delta \theta \coloneqq \theta \theta_0$.

Fixed "tangent" features at initialization

• $\phi(x)$: gradient of the output w.r.t. parameters, evaluated at θ_0 (a length-p feature vector).

$$\phi(x) \coloneqq \nabla_{\theta} f_{\theta_0}(x) \in \mathbb{R}^p.$$

First-order (linear) approximation around θ_0

$$f_{ heta}(x) \ pprox \ f_{ heta_0}(x) \ + \ \phi(x)^ op \Delta heta$$

- f_{θ0}(x): prediction at initialization.
- $\phi(x)^{\top}\Delta\theta$: linear model in the fixed features $\phi(x)$.

Neural Tangent Kernel (NTK)

$$K(x,x') \ \coloneqq \ \phi(x)^ op \phi(x') \in \mathbb{R}.$$

- Kernel Gram matrix (train–train): $K(X,X) \in \mathbb{R}^{n \times n}$ with entries $K_{ij} = K(x_i,x_j)$.
- Cross-kernel (test-train): $K(x,X) \in \mathbb{R}^n$ with entries $K(x,x_i)$.

Training dynamics (squared loss, gradient flow)

Let $f_t(X) \in \mathbb{R}^n$ collect predictions $(f_{\theta(t)}(x_1), \dots, f_{\theta(t)}(x_n))$. Under gradient flow (continuous-time limit of small-step GD) in the lazy regime:

$$rac{df_t(X)}{dt} \; = \; - \, K(X,X) \, ig(f_t(X) - y ig)$$

- t: (continuous) training time.
- Interpretation: predictions evolve by **kernel gradient descent** with kernel K.

Closed-form limit (interpolation, K(X, X) invertible)

$$f_{\infty}(x) = K(x,X) K(X,X)^{-1} y$$

- The trained wide NN behaves like kernel regression with the NTK.
- If K(X, X) is ill-conditioned, use ridge:

$$f_{\lambda}(x) = K(x,X) \left(K(X,X) + \lambda I
ight)^{-1} y, \quad \lambda > 0.$$

Wide + small steps \Rightarrow NN \approx NTK kernel regression \Rightarrow double descent/benign overfitting results from linear & kernel models largely apply.

Implicit Bias of Gradient Descent

- On linearly separable data, plain gradient descent on logistic/cross-entropy (and any smooth, strictly decreasing loss with an exponential tail) implicitly drives the predictor toward the hard-margin SVM solution. Concretely, the weights blow up in norm but their direction converges to the L2 max-margin separator.
- Under similar assumptions, **SGD also converges in direction to the L2 max-margin separator** on linearly separable data with exponentially-tailed losses (e.g., logistic).
- GD/SGD pick a specific interpolating classifier: on linearly separable data with an exponentially-tailed loss (e.g., logistic), both gradient descent and SGD drive the weight norm to infinity but their direction converges to the L2 hard-margin SVM. Practically, training longer after achieving 0 training error keeps increasing the margin, which often improves test accuracy.
 - If you're doing linear (or last-layer) classification with cross-entropy, **plain GD/SGD implicitly does SVM-like margin maximization**—so longer training can help margins without explicit regularization.

Taxonomy of overfitting

Figure 1: As $n \to \infty$, interpolating methods can exhibit three types of overfitting. (A) In benign overfitting, the predictor asymptotically approaches the ground-truth, Bayes-optimal function. Nadaraya-Watson kernel smoothing with a singular kernel, shown here, is asymptotically benign. (B) In tempered overfitting, the regime studied in this work, the predictor approaches a constant test risk greater than the Bayes-optimal risk. Piecewise-linear interpolation is asymptotically tempered. (C) In catastrophic overfitting, the predictor generalizes arbitrarily poorly. Rank-n polynomial interpolation is asymptotically catastrophic.

Benign	Tempered	Catastrophic	
Early-stopped DNNs	 Interpolating DNNs 	• Gaussian KR	
KR with ridge	• Laplace KR	 Critically-parameterized regression 	
• k -NN ($k \sim \log n$)	• ReLU NTKs		
Nadaraya-Watson kernel	• k-NN (constant k)		
smoothing with Hilbert kernel	• Simplicial interpolation		

Table 2: A taxonomy of models under the three types of fitting identified in this work. **BOLD** are results from our work, others are known or folklore results.

	Regression	Classification
Benign	$\lim_{n\to\infty} \mathcal{R}_n = R^*$	$\lim_{n\to\infty} \mathcal{R}_n = R^*$
Tempered	$\lim_{n\to\infty} \mathcal{R}_n \in (R^*, \infty)$	$\lim_{n\to\infty} \mathcal{R}_n \in (R^*, 1-\frac{1}{K})$
Catastrophic	$\lim_{n\to\infty} \mathcal{R}_n = \infty$	$\lim_{n\to\infty} \mathcal{R}_n = 1 - \frac{1}{K}$

Deep Neural Network Diagnostics via Random Matrix Theory

SETOL + WeightWatcher — one-slide takeaway

Main message. Deep nets that *generalize* have heavy-tailed layer spectra. You can score a model's quality without any data by fitting a power law to each layer's empirical spectral density (ESD) and reading off the α (alpha) exponent; SETOL provides the theory, WeightWatcher gives you the button.

arXiv +1

Key result (paper). SETOL derives a layer-quality metric via a one-step Exact Renormalization Group (ERG) construction and shows it aligns closely with HTSR's α/α metrics computed from the ESDs of weight matrices—yielding conditions for "ideal learning" and flags for non-ideal regimes (e.g., overfit layers when $\alpha < 2$).

What to remember.

- Good layers: α ≈ 2 (practically 2–6 acceptable).
- Red flags: α < 2 (over-trained/memorizing) or » 6 (under-trained/noisy); watch for correlation traps
 (spikes/outliers). (WeightWatcher +1)
- Why it matters: Average α̂ (and related summaries) track test accuracy trends across model families—no train/test data needed.

References

- Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal, <u>Reconciling modern</u> machine-learning practice and the classical bias-variance trade-off
- Arthur Jacot et al (2020), <u>Neural Tangent Kernel: Convergence and</u> Generalization in Neural Networks
- Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, Nathan Srebro (2018), <u>The implicit Bias of Gradient Descent on Separable Data</u>
- Mor Shpigel Nacson et al (2019), <u>Stochastic Gradient Descent on Separable</u>
 <u>Data: Exact Convergence with a Fixed Learning Rate</u>
- Neil Mallinar et al (2024), <u>Benign, Temered, or Catastrophic: A taxonomy of Overfitting</u>
- Charles Martin and Michael Mahoney (2021), <u>Implicit self-regularization in deep neural networks</u>