Exercice 1

Soit une machine 64-bit x86-64 (little endian), on vous donne les variables, ainsi que l'état initial de la mémoire (valeurs en hexadécimal):

Address	+0	+1	+2	+3	+4	+5	+6	+7
0 x 30	51	32	43	7 A	3в	FA	E4	76
0 x 38	48	22	00	88	9A	В2	CD	27
0 x4 0	4F	17	В3	2B	A0	A7	вс	F9
0 x 48	40	03	08	15	A 9	8B	F2	3F
0 x 50	AA	вв	CC	DD	EE	FB	01	02

char* cp = 0x30; long* qp = 0x48; int* ip = 0x3C;

Remplir avec le type et la valeur pour chacune des expressions C. Si la valeur ne peut pas être déterminée à partir des informations, répondre par UNKNOWN.

Expression (in C)	Type	Value (in hex)		
*ip				
cp + 13				
qp[-2] + 1				
((char) qp)				
(((short) ip) - 3)				

Exercice 2 : Même question

Word Addr	+0	+1	+2	+3	+4	+5	+6	+7
0x00	20	F6	EF	EA	A2	5E	9F	1A
0x08	A2	D0	4 F	C4	A0	0C	F7	27
0x10	В8	BD	1A	CA	35	95	СВ	80
0x18	84	3F	02	4 F	8E	F3	F6	E5
0x20	CD	4A	F6	48	1A	6F	7E	63

char* charP = 0xD; short* shortP = 0x1E;

C Expression	C Type	Hex Value		
*(charP + 6)		0x		
(int**)shortP - 2		0x		