

G5B. EQUILIBRIO IÓNICO ÁCIDOS Y BASES

Ejercicio Resuelto N° 10

- Una solución acuosa de ácido metanoico (fórmico), cuya constante de disociación es $K_a = 1,77.10^{-4}$, tiene un grado de disociación $\alpha = 0,0412$.
- a) Plantear los equilibrios presentes con sus constantes y los balances de especies y de cargas.
- b) ¿Cuál es la concentración molar de dicho ácido?
- c) ¿Cuál es el pH de dicha solución?
- d) ¿Cuantos mililitros de ácido metanoico 1 M habrá que tomar para preparar 100ml de la solución original?
 - a) Equilibrios, constantes de equilibrio y balances

CHOOH
$$\rightleftharpoons$$
 H⁺ + CHOO- Ka = $\frac{[CHOO^{-}][H^{+}]}{[CHOOH]}$ = 1,77 10⁻⁴

$$H_2O \rightleftharpoons H^+ + OH^ Kw = [H^+][OH^-] = 10^{-14}$$

Balance de carga: $[H^+] = [OH^-] + [CHOO^-]$

Balance de masa: [CHOOH]₀= [CHOO⁻] + [CHOOH]

a) Equilibrics, constantes de equilibries y ball CHOOH 2: H*+CHOO (6a = (2HVOT)+7) (H, O, 2: H*+OH* (6a = (1+))OH*] = 1 Balanze de casps; (H*) = (OH*) + (CHOO*)

b) Concentración molar del ácido

$$\alpha$$
= 0,0412 = $\frac{[CHOO^{-}]}{[CHOOH]_{0}}$ Por lo tanto: [CHOO⁻] = 0,0412 [CHOOH]₀

Como se trata de un ácido considero: [H⁺] > [OH ⁻] y desestimo la concentración de hidroxilos en el balance de carga.

$$[H^+] = [OH^-] + [CHOO^-] = [CHOO^-] = 0,0412 [CHOOH]_0$$

Del balance de masa: $[CHOOH]_0 = [CHOO^-] + [CHOOH]$, resulta $[CHOOH] = [CHOOH]_0 - [CHOO^-]$

$$[CHOOH] = [CHOOH]_0 - 0,0412 [CHOOH]_0$$

Reemplazamos en la constante de equilibrio K_a

$$K_{a} = \frac{[CHOO^{-}][H^{+}]}{[CHOOH]} = 1,77 \ 10^{-4}$$

$$K_{a} = \frac{0,0412^{2} \ [CHOOH]_{0}^{2}}{[CHOOH]_{0}(1-0,0412)} = 1,77 \ 10^{-4}$$

$$[CHOOH]_0 = 1,77 \ 10^{-4}(1-0,0412) / 0,0412^2$$

 $[CHOOH]_0 = 0,1 \ M$

c) $pH = -\log [H^+] = -\log (0.0412.0.1) = -\log 0.00412 = 2.385$

d) Preparar 100ml de una solución 0,1 M (0,1 moles por litro de solución), a partir de una solución 1 M (1 mol/l).

Si en un litro (1000 ml) tengo 0,1 moles, en 100 ml tendré 0,01 moles (100 x 0,1/1000).

De la solución 1 M tengo que tomar 0,01 moles, entonces si en un litro (1000 ml) hay 1 mol, para tomar 0,01 moles hago $(0,01 \times 1000/1 = 10)$ Es decir en 10 ml habrá 0,01 moles.

Tengo que tomar 10ml de solución 1M y agregar agua hasta completar 100 ml, por lo tanto tengo que agregar 90 ml de agua