Algebra II, Sheet 8

Remarks and Solutions

Exercise 4.

(a)

It follows from the Artin-Wedderburn theorem that

$$\mathbb{C}[Q] \cong \mathrm{M}_{n_1}(\mathbb{C}) \times \cdots \times \mathrm{M}_{n_r}(\mathbb{C})$$

where n_1, \ldots, n_r are the dimensions of the irreducible complex representations of Q. We have for the resulting decomposition

$$8 = \dim \mathbb{C}[Q] = n_1^2 + \dots + n_r^2$$

three possibilities:

$$8 = 4 + 4$$
, $8 = 4 + 1 + 1 + 1 + 1$, $8 = 1 + \dots + 1$.

The group Q acts trivially on \mathbb{C} , and this makes \mathbb{C} into an irreducible complex representation. This shows that $n_i = 1$ for some i, thus we can exclude the possiblity 8 = 4 + 4. In the case $8 = 1 + \cdots + 1$ we would find that the algebra

$$\mathbb{C}[Q] \cong \mathbb{C} \times \cdots \times \mathbb{C}$$

is commutative, and hence that the group Q abelian. But this is not the case. We are only left with the possibility 8 = 4 + 1 + 1 + 1 + 1, which means that

$$\mathbb{C}[Q] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C}).$$

Remark 1. We have only used that the group Q is non-commutative and of order 8. If D is the dihedral group of order 8 then we therefore find that also

$$\mathbb{C}[D] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C}).$$

We hence find that $\mathbb{C}[Q] \cong \mathbb{C}[D]$ even though $Q \ncong D$.¹

¹This can be fixed by endowing the group algebra with the additional structure of an Hopf algebra.

(b)

There exists a unique linear map $f: \mathbb{R}[Q] \to \mathbb{H}$ with $f(q) = a_q$ for every $q \in Q$. This linear map is multiplicative on the basis Q of $\mathbb{R}[Q]$ and is therefore an algebra homomorphism. The basis 1, i, j, k of \mathbb{H} is contained in the image of f, which shows that f is surjective.

(c)

The center of Q is given by $Z(Q) = \{1, -1\}$. Any two elements of Q commute up to sign, so the quotient group Q/Z(Q) is abelian. The group Q/Z(Q) has order 4 and every nontrivial element has order 2. It follows that

$$Q/Z(Q) \cong \mathbb{Z}/2 \times \mathbb{Z}/2$$
.

One such isomorphism is given by

$$\pm 1 \mapsto (0,0), \quad \pm i \mapsto (0,1), \quad \pm j \mapsto (1,0), \quad \pm k \mapsto (1,1).$$

There exist four group homomorphisms $\mathbb{Z}/2 \times \mathbb{Z}/2 \to \mathbb{R}^2$, given by

$$\begin{cases} (1,0) \mapsto 1 \,, & \begin{cases} (1,0) \mapsto -1 \,, \\ (0,1) \mapsto 1 \,, \end{cases} & \begin{cases} (1,0) \mapsto 1 \,, \\ (0,1) \mapsto -1 \,, \end{cases} & \begin{cases} (1,0) \mapsto -1 \,, \\ (0,1) \mapsto -1 \,. \end{cases}$$

We hence get four different group homomorphisms $Q \to \mathbb{R}^{\times}$. These homomorphisms give four nonisomorphic one-dimensional real representations of Q.

(d)

It follows from the Artin-Wedderburn theorem that

$$\mathbb{R}[Q] \cong \mathcal{M}_{n_1}(D_1) \times \dots \times \mathcal{M}_{n_r}(D_r) \tag{1}$$

where $D_1^{\text{op}}, \ldots, D_n^{\text{op}}$ are the endomorphism ring of the irreducible real representations of Q. We have previously found four nonisomorphic one-dimensional real representations of Q; their endomorphism rings are given by \mathbb{R} (because these representations are one-dimensional).

The quaternions \mathbb{H} become an $\mathbb{R}[Q]$ -module, i.e. a representation of Q, via the constructed algebra homomorphism $\mathbb{R}[Q] \to \mathbb{H}$. The quaternions \mathbb{H} are simple as an \mathbb{H} -module because \mathbb{H} is a skew field, and hence simple as an $\mathbb{R}[Q]$ -module because the homomorphism $\mathbb{R}[Q] \to \mathbb{H}$ is surjective. Thus \mathbb{H} is another irreducible real representation of Q; it is nonisomorphic to the previous four irreducible representations for dimension reasons. We find with the surjectivity of the homomorphism $\mathbb{R}[Q] \to \mathbb{H}$ that

$$\operatorname{End}_{\mathcal{O}}(\mathbb{H}) = \operatorname{End}_{\mathbb{R}[\mathcal{O}]}(\mathbb{H}) = \operatorname{End}_{\mathbb{H}}(\mathbb{H}) \cong \mathbb{H}^{\operatorname{op}} \cong \mathbb{H},$$

where the last isomorphism is given by $x \mapsto \overline{x}$.

We have found for the decomposition (1) that, up to reordering, $D_1 = \cdots = D_4 = \mathbb{R}$ and $D_5 = \mathbb{H}$. For dimension reasons there can't be any more factors and $n_i = 1$ for all i. Therefore

$$\mathbb{R}[Q] \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{H}.$$

Remark 2. We have for the dihedral group D of order 8 that

$$\mathbb{R}[D] \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times M_2(\mathbb{R}).$$

Hence $\mathbb{R}[D] \ncong \mathbb{R}[Q]$ even though $\mathbb{C}[D] \cong \mathbb{C}[Q]$.

Indeed, the abelianization of D is given by $\mathbb{Z}/2 \times \mathbb{Z}/2$. We therefore find as for the quaternion group Q that D admits precisely four nonisomorphic real one-dimensional representations. Their endomorphism rings are given by \mathbb{R} .

The dihedral group also acts on $\mathbb{R}^2 \cong \mathbb{C}$ in the usual ways. The endomorphisms of this action are those \mathbb{R} -linear maps $f \colon \mathbb{C} \to \mathbb{C}$ that are compatible with rotation by 90°, i.e. multiplication with i, and reflection at the real axis, i.e. complex conjugation. The first conditions ensures that f is already \mathbb{C} -linear, and hence given by multiplication with some complex number $z \in \mathbb{C}$. The second conditions tells us that already $z \in \mathbb{R}$. This shows that

$$\operatorname{End}_D(\mathbb{C}) = \mathbb{R}$$
.

For the Artin-Wedderburn decomposition

$$\mathbb{R}[D] \cong \mathrm{M}_{n_1}(D_1) \times \cdots \times \mathrm{M}_{n_r}(D_r)$$

we now find that, up to reordering, $D_1 = \cdots = D_5 = \mathbb{R}$. We also know that

$$n_i \dim D_i = \dim V_i$$

because $D_i^{n_i}$ is the (up to isomorphism unique) simple module of $M_{n_i}(D_i)$. We hence find that $n_1 = n_2 = n_3 = n_4 = 1$ and $n_5 = 2$. We find by dimension reasons that there can be no other factors, and hence that

$$\mathbb{R}[D] \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times M_2(\mathbb{R}).$$