## **Inscribed Angles**

Proofs updated.

**Problem 1** In the figure below,  $\overline{AB}$  is a diameter of a circle with center P. Prove that  $\angle B$  is a right angle.



(a) Beginning with the diagram on the left, Natalia draws  $\overline{PB}$  and marks the diagram to show segments that she knows to be congruent because each one is a  $\boxed{radius}$  of the circle.



(b) Natalia sees that  $\triangle APB$  and  $\triangle BPC$  are  $\boxed{isosceles}$  triangles, so she marks the figure to show angles that must congruent.

Fixnote: Do we need a statement or citation of the theorem?

- (c) In order to do some algebra with these congruent angles, Natalia labels their measures x and y, as shown in the picture on the right.
- (d) She writes an equation for the sum of the angles of  $\triangle ABC$ :

$$x + (x+y) + y = 180^{\circ}$$

Learning outcomes: Author(s): Brad Findell Fixnote: Need a prompt about dividing the equation by 2.

(e) Since  $m \angle B = \boxed{x+y}$ , she concludes that  $m \angle B = 90^{\circ}$ .

Fix note: Should call it  $\angle ABC$  because of the new segment. Or may be note this earlier.

**Problem 2** Fixnote: New problem about relationship between inscribed angle and central angle.

