SMART pipeline Documentation

Release 1.0

M. Sejourne, A. Teissander, G. Boldina, M. Dutertre, N. Servant

CONTENTS

Contents:

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

SMART QUICK START GUIDE

See NEWS for information about changes in this and previous versions

See LOGBOOK for details about the HiC-Pro developmens

1.1 What is the SMART pipeline?

SMART (3'-Seq Mapping Annotation and Regulation Tool) was set up to process 3' sequencing data from aligned sequencing reads. It includes the peak detection, filtering, and annotation. If you use it, please cite: *Boldina et al.* 2015

1.2 How to install it?

The following dependancies are required: * * R with the *RColorBrewer*, *ggplot2*, *rtracklayer*, *DESeq2*, *magrittr*, *dplyr*, *qplots* and *genomicRanges* packages * Samtools (>0.1.18) * BEDTools (>2.17.0)

To install the SMART pipeline, simply extract the archive and set up the configuration file with the paths to dependencies.

```
tar -zxvf smart_1.0.0.tar.gz cd smart_1.0.0
```

1.3 Annotation Files

The pipeline is using a couple of annotation files with gene annotation and last exons information. These files are based on UCSC Refseq gene. In order to generate all required annotation files, please set the ANNOT_DIR, ORG and UCSC_EXPORT in the configuration file

```
BUILD_ANNOT=1
ORG=mm9
UCSC_EXPORT=refseq_export_mm9.csv
```

SMART will start by creating the annotation files in the forder ANNOT_DIR/ORG/ The annotation only have to be generated once. Mouse annotation are provided with the pipeline.

1.4 How to use it?

SMART can be used both for a single sample or for a list of samples. In the case of sample list, peaks detected in all samples are merged before annotation. In oder to use the pipeline, please set up the configuration according to your analysis, and run the following command:

/bin/smart -c CONFIG [-i INPUT_BAM] [-l INPUT_LIST] -o OUTPUT_DIR

CHAPTER

TWO

SMART PIPELINE MANUAL

2.1 What is the SMART pipeline?

SMART was set up to process PolyA sequencing data from aligned sequencing reads. It includes the peak detection, filtering, and annotation. If you use it, please cite: *Boldina et al. 2015*

2.2 How to install it?

The following dependancies are required: * * R with the *RColorBrewer*, *ggplot2*, *rtracklayer*, and *genomicRanges* packages * Samtools (>0.1.18) * BEDTools (>2.17.0)

To install the SMART pipeline, simply extract the archive.

```
tar -zxvf smart_1.0.0.tar.gz cd smart_1.0.0
```

Then, edit the *config.txt* file and manually defined the paths to dependencies.

SYSTEM CONFIGURATION		
SAMTOOLS_PATH	Full path to the samtools installation directory (>0.1.18)	
BEDTOOLS_PATH	Full path to the BEDTools installation directory (>2.17.0)	
R_PATH	Full path to the R installation directory	
PYTHON_PATH	Full path to the python installation directory	
AWK_PATH	Full path to the awk utility	

2.3 Annotation Files

The pipeline is using a couple of annotation files with gene annotation and last exons information. These files are based on UCSC Refseq gene. This file can be downloaded from the UCSC TableBrowser website and should look like this:

```
#bin name
              chrom
                       strand txStart txEnd
                                                cdsStart
cdsEnd
              exonCount
                               exonStarts
exonEnds
                      name2
                               cdsStartStat
                                               cdsEndStat
                                                                exonFrames
      NM_001195025
                                       134212701
                                                        134230065
                      chr1
                               134212701, 134221529, 134222782, 134224273, 134224707,
      134228958
      134226534,134227135,134227897, 134213049,134221650,134222806,134224425,
      134224773, 134226654, 134227268, 134230065,
                                                                Nuak2
      cmpl
              0,0,1,1,0,0,0,1,
      NM_028778
                                                        134230065
                                                                         134212806
                      chr1
                                       134212701
```

134228958 7	13421	2701 , 13422	21529,13	4224273,	134224707,	134226534,	
134227135,13422789	7, 13421	3049 , 13422	21650,13	4224425,	134224773,	134226654,	
134227268,13423006	5, 0	Nuak2	cmpl	cmpl	0,0,1,0,	0,0,1,	

In order to generate all required annotation files, please set the ANNOT_DIR, ORG and UCSC_EXPORT in the configuration file

```
BUILD_ANNOT=1
ORG=mm9
UCSC_EXPORT=refseq_export_mm9.csv
```

The pipeline will start by creating the annotation files in the forder ANNOT_DIR/ORG/ The annotation only have to be generated once. Mouse annotation are provided with the pipeline.

In addition, SMART will look for known polyA signal in the detected peaks and flanking regions. This list of motif is defined in the *polyA_signal.csv* file and can be edited.

```
AATAAA
ATTAAA
AGTAAA
TATAAA
CATAAA
CATAAA
AAGAAA
GATAAA
AATATA
AATGAA
TTTAAA
AATACA
AAAAAG
AATAGA
```

2.4 How to use it?

SMART can be used both for a single sample or for a list of samples. In the case of sample list, peaks detected in all samples are merged before annotation. In oder to use the pipeline, please set up the configuration according to your analysis, and run the following command:

```
/bin/smart -c CONFIG [-i INPUT_BAM] [-l INPUT_LIST] -o OUTPUT_DIR
```

2.5 How to use it?

1. Copy and edit the configuration file 'config.txt' in your local folder. The '[' options are optional.

GENE ANNOTATIONS	
BUILD_ANNOT	0/1 - Run the annotation builder
ORG	Organism
UCSC_EXPORT	UCSC reference to build the annotation (i.e. refseq_export_mm9.csv)
POLYA_MOTIF	List of polyA annotation signal (i.e annotation/polyA_signal.csv)

PEAK DETECTION	
MIN_MAPQ	Minimum reads mapping quality (default: 20)
MAX_DIST_MERGE	Maximum distance between reads to be merged as a peak (default: 170)
MIN_NB_READS_PER_PEAK	Minimum number of reads per peads (default: 5

PEAK FILTERING		
NB_STRETCH_POLYA	Window length to look for polyA stretch (default: 9)	
MISM	Number of non-A base allowed in the NB_STRETCH_POLYA window	
	(default: 1)	
NB_STRETCH_CONSECUTIVE	Minimum size of A stretch (default: 6)	
WINSIZE_DOWN	Window size downstream the peaks (default: 150)	
WINSIZE_UP	Window size upstream the peaks (default: 50)	
KEEP_LE_PEAKS	Always keep peaks in gene's last exon (0/1, default: 1)	

ANNOTATION	
MIN_LE_OV	Minimum overlap to consider a peak as overlapping with a last exon (default: 1)
MIN_INTRON_OV	Minimum overlap to consider a peak as overlapping with a intron (default: 3)
MIN_ANNOT_OV	Minimum overlap for peaks annotation (default: 1)

SAMPLES COMPARISON		
COM-	Samples to merge before comparison. Should be under bracket, with comma separated	
BINE_SAMPLE	(i.e [1,2,3,4][5,6,7,8])	
COM-	Define group to compare. Must be defined as COMBINE_SAMPLE with group 0 vs	
PARE_SAMPLE	group 1 (i.e [0,0,1,1][0,0,1,1])	
MIN_COUNT_PER_C	OMD imum sum of counts per condition. (Default: 10)	

- 2. Edit the sample list files in case of multiple samples. This file must be tab delimited with <code>sample_number</code> t <code>file</code> t <code>sample_id</code>. Note that the <code>sample_number</code> must correspond to the COMBINE_SAMPLE variable from the configuration file. These samples will be combined to define a common set of peaks which can further be used for differential analysis. The <code>sample_id</code> are used for the differential analysis only. Here is an sample list file example:
- :: 1 /data/sample1.bam COND1 2 /data/sample1.bam COND1 3 /data/sample1.bam COND2 ...
 - 3. Run the pipeline
 - For one file

```
/bin/smart -c CONFIG -i INPUT_BAM -o OUTPUT_DIR
```

• For a list of file

```
/bin/smart -c CONFIG -l INPUT_LIST -o OUTPUT_DIR
```

2.6 How does SMART work?

TODO