

Very High Speed 2K (6K) Gate CMOS FPGA

Features

- · Very high speed
 - Loadable counter frequencies greater than 150 MHz
 - Chip-to-chip operating frequencies up to 85 MHz
 - Input + logic cell + output delays under 9 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
 - 12 x 16 array of 192 logic cells provides 6,000 total available gates
 - 2,000 typically usable "gate array" gates in 68- and 84-pin PLCC, 84-pin CPGA, and 100-pin TQFP packages
- · Low power, high output drive
 - Standby current typically 2 mA
 - 16-bit counter operating at 100 MHz consumes 50 mA
 - Minimum I_{OL} of 12 mA and I_{OH} of 8 mA
- Flexible logic cell architecture
 - Wide fan-in (up to 14 input gates)
 - Multiple outputs in each cell
 - Very low cell propagation delay (1.7 ns)
- Powerful design tools—Warp3 ™
 - Designs entered in VHDL, schematics, or both

- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Robust routing resources
 - Fully automatic place and route of designs using up to 100 percent of logic resources
 - -No hand routing required
- 56 (CY7C383A) to 68 (CY7C384A) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fanout-independent, low-skew nets
 - Clock skew <1 ns
- Input hysteresis provides high noise immunity
- Thorough testability
 - Built-in scan path permits 100 percent factory testing of logic and I/O cells
- Automatic Test Vector Generation (ATVG) software supports user testing after programming
- CMOS process with ViaLink[™] programming technology
 - High-speed metal-to-metal link
 - Non-volatile antifuse technology
- 68-pin PLCC is compatible with CY7C382A footprint for easy upgrade
 84 pin PLCC is compatible with
- 84-pin PLCC is compatible with ACT1020 power supply and ground pinouts

Functional Description

The CY7C383A and CY7C384A are very high speed CMOS user-programmable ASIC (pASIC*) devices. The 192 logic cell field-programmable gate array (FPGA) offers 2,000 typically usable "gate array" gates. This is equivalent to 6,000 EPLD or LCA gates. The CY7C383A is available in a 68-pin PLCC. The CY7C384A is available in an 84-pin PLCC and CPGA and 100-pin TQFP.

Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 150 MHz with input delays under 1.5 ns and output delays under 3 ns. This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors.

Designs are entered into the CY7C383A and CY7C384A using Cypress Warp3 software or one of several third-party tools. Warp3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C383A and CY7C384A feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.

For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

ViaLink and pASIC are trademarks of QuickLogic Corporation. Warp3 is a trademark of Cypress Semiconductor Corporation.

4 - 25

| 2589662 OO13237 157 **|**

Pin Configurations

c383A-5

Pin Configurations (continued)

CPGA Bottom View

1/0	5	1/0	ŀΟ	1/0	1/0	VΟ	1/0	1/0	1/0	₩	A
1/0	1/0	VO	VΟ	1/(SCLK)	I/(P)	1	1/0	Ι⁄Ο	1/0	1/0	В
1/0	1/0			V _{SS}	(SM)	Vcc			1/0	1/0	С
1/0	VO								1/0	1/0	D
ŅΟ	1/0	νœ	,					V _{SS}	1/0	1/0	E
1/0	1/0	1/0						1/0	1/0	Ø	F
1/0	1/0	V _{SS}						v _{cc}	1/0	1/0	G
1/0	ŀΟ						_		ŀΟ	VΟ	н
1/0	VO			v _{cc}	I/CLK	Vss			1/0	1/0	J
1/0	Ŋ	VO	1/0	I/(SO)	-	I/(SI)	VΟ	1/0	1/0	1/0	к
1/0	VO	1/0	VO	VO	1/0	VO	1/0	ŀΟ	1/0	VO	L
-11	10		А	7	6	5	4	3	,	1	-

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Latch-Up Current ±200 mA

Storage Temperature

 Ceramic
 -65°C to +150°C

 Plastic
 -40°C to +125°C
 Supply Voltage −0.5V to +7.0V Input Voltage -0.5V to V_{CC} +0.5V

DC Input Voltage ±20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{v}_{\mathbf{cc}}$
Commercial	0°C to +70°C	5V ± 5%
Industrial	-40°C to +85°C	5V ± 10%
Military	-55°C to +125°C	5V ± 10%

Delay Factor (K)

Speed	Mili	tary	Indu	strial	Comn	ercial
Grade	Min.	Max.	Min.	Max.	Min.	Max.
-0	0.39	1.82	0.4	1.67	0.46	1.55
-1	0.39	1.56	0.4	1.43	0.46	1.33
-2			0.4	1.35	0.46	1.25

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -4.0 \text{ mA}$	3.7		V
		$I_{OH} = -8.0 \text{ mA}$	2.4		V
		$I_{OH} = -10.0 \mu\text{A}$	$V_{\rm CC}-0.1$		V
V _{OL}	Output LOW Voltage	I _{OL} = 12 mA Commercial I _{OL} = 8.0 mA Military/Industrial		0.4	v
		$I_{OL} = 10.0 \mu\text{A}$		0.1	V
V _{IH}	Input HIGH Voltage		2.0		V
V_{IL}	Input LOW Voltage			0.8	V
II	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μA
I_{OZ}	Output Leakage Current—Three-State	$V_{IN} = V_{CC} \text{ or } V_{SS}$	-10	+10	μА
IOS	Output Short Circuit Current	$V_{OUT} = V_{SS}$	-10	-80	mA
		V _{OUT} =V _{CC}	30	140	mA
I _{CC}	Standby Supply Current	V_{IN} , $V_{I/O} = V_{CC}$ or V_{SS}		10	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance ^[1]	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	20	pF

Notes:

1. $C_{IN} = 40 \text{ pF max. on I/(SI)}$ and I/(P).

Switching Characteristics Over the Operating Range

		Propagation Delays ^[2] with Fanout of					
Parameter	Description	1	2	3	4	8	Unit
LOGIC CELI	LS						
t _{PD}	Combinatorial Delay ^[3]	1.7	2.2	2.6	3.2	5.2	ns
t _{SU}	Set-Up Time ^[3]	2.1	2.1	2.1	2.1	2.1	ns
t _H	Hold Time	0.0	0.0	0.0	0.0	0.0	ns
t _{CLK}	Clock to Q Delay	1.0	1.5	1.9	2.5	4.6	ns
t _{CWHI}	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns
t _{CWLO}	Clock LOW Time	2.0	2.0	2.0	2.0	2.0	ns
t _{SET}	Set Delay	1.7	2.1	2.6	3.2	5.2	ns
t _{RESET}	Reset Delay	1.5	1.9	2.2	2.7	4.3	ns
t _{SW}	Set Width	1.9	1.9	1.9	1.9	1.9	ns
t _{RW}	Reset Width	1.8	1.8	1.8	1.8	1.8	ns

		Propagation Delays ^[2]						
Parameter	Description	1	2	3	4	6	8	Unit
INPUT CELL	s							•
t _{IN}	Input Delay (HIGH Drive)	2.4	2.5	2.6	2.7	3.0	3.3	ns
t _{INI}	Input, Inverting Delay (HIGH Drive)	2.5	2.6	2.7	2.8	3.1	3.6	ns
t _{IO}	Input Delay (Bidirectional Pad)	1.4	1.9	2.2	2.8	3.7	4.6	ns
t _{GCK}	Clock Buffer Delay ^[4]	2.7	2.8	2.8	2.9	2.9	3.0	ns
t _{GCKHI}	Clock Buffer Min. HIGH ^[4]	2.0	2.0	2.0	2.0	2.0	2.0	ns
t _{GCKLO}	Clock Buffer Min. LOW ^[4]	2.0	2.0	2.0	2.0	2.0	2.0	ns

		Propagation Delays ^[2] with Output Load Capacitance (pF) of					
Parameter	Description	30	50	75	100	150	Unit
OUTPUT CE	LLS						
toutlh	Output Delay LOW to HIGH	2.7	3.4	4.2	5.0	6.7	ns
touthl	Output Delay HIGH to LOW	2.8	3.7	4.7	5.6	7.6	ns
t _{PZH}	Output Delay Three-State to HIGH	4.0	4.9	6.1	7.3	9.7	ns
t _{PZL}	Output Delay Three-State to LOW	3.6	4.2	5.0	5.8	7.3	ns
t _{PHZ}	Output Delay HIGH to Three-State ^[5]	2.9				-	ns
t _{PLZ}	Output Delay LOW to Three-State ^[5]	3.3					ns

Notes:

Worst-case propagation delay times over process variation at V_{CC} = 5.0V and T_A = 25°C. Multiply by the appropriate delay factor, K, for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with 3-ns linear transition time between 0 and 3 volts.

 These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.

- Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock buffer delay.
- 5. The following loads are used for t_{PXZ} :

c383A-9

High Drive Buffer

		# High Drives Wired	Propagation Delays ^[2] with Fanout of					
Parameter	Description	Together	12	24	48	72	96	Unit
tiN	High Drive Input Delay	1	4.5	5.4				ns
		2		3.9	5.6			ns
		3			4.5	5.3	6.3	ns
		4				4.6	5.3	ns
t _{INI}	High Drive Input, Inverting Delay	1	4.7	5.6				ns
		2		4.0	5.8			ns
		3			4.6	5.5	6.4	ns
		4	***	1	1	4.8	5.5	ns

Switching Waveforms

Switching Waveforms (continued)

Three-State Delay OUTPUT BUFFER ENABLE t_{PHZ} -THREE-STATE THREE-STATE THREE-STATE OUTPUT c383A-10

Typical AC Characteristics

Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The AC Characteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay

Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. Warp3 incorporates datasheet AC Characteristics into the design database for pre – place-and-route simulations. The Warp3 Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

*THETA JA = 45 °C/WATT FOR PLCC

4 - 31

2589662 0013243 450

Combinatorial Delay Example (Load = 30 pF)

Sequential Delay Example (Load = 30 pF)

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C383A-2JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C383A-2JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
1	CY7C383A-1JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C383A-1JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
0	CY7C383A-0JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C383A-0JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C384A-2AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C384A-2GC	G84	84-Pin Grid Array (Cavity Up)	1
	CY7C384A-2JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384A-2AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C384A-2GI	G84	84-Pin Grid Array (Cavity Up)	
	CY7C384A-2JI	J83	84-Lead Plastic Leaded Chip Carrier	
1	CY7C384A-1AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C384A-1GC	G84	84-Pin Grid Array (Cavity Up)	
	CY7C384A-1JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384A-1AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C384A-1GI	G84	84-Pin Grid Array (Cavity Up)	
	CY7C384A-1JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384A-1GMB	G84	84-Pin Grid Array (Cavity Up)	Military
0	CY7C384A-0AC	A100	100-Pin Thin Quad Flat Pack	Commercial
	CY7C384A-0GC	G84	84-Pin Grid Array (Cavity Up)	
	CY7C384A-0JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384A-0AI	A100	100-Pin Thin Quad Flat Pack	Industrial
	CY7C384A-0GI	G84	84-Pin Grid Array (Cavity Up)	
	CY7C384A-0JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384A-0GMB	G84	84-Pin Grid Array (Cavity Up)	Military

Shaded area contains advanced information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC1}	1, 2, 3

Document #: 38-00361