

- 4. Energy-time efficiency
- 3. Physical and mental comfort
- 2. Legality
- 1. Safety

0. Law of physics

More details in Claussmann et al., 2019, freely available here: https://www.researchgate.net/publication/333124691_A_Review_of_Motion_Planning_for_Highway_Autonomous_Driving

Type of output

A space, a path, a trajectory, a maneuver, a symbolic representation

Space-time property

Predictive or reactive nature

Mathematical domain

The philosophy of the approach and the framework of the solver

The algorithm returns only a decomposition, rather than a reference

PROs – more natural representation

CONs – a complementary algorithm needs to be added

The algorithm returns a trajectory

PROs – trajectory readily available

CONs – less intuitive in some cases

The algorithm plans ahead. Used upstream for planning

PROs – better performance

CONs – computationally demanding

Traditional feedback control

PROs – simple to implement

CONs – Only really suitable for tracking

Uses property of space

PROs – It works directly with space constraints

CONs – Dealing with large space exploration

Depends on problem specific knowledge

PROs – Solves more quickly

CONs – No optimality guarantees

Deductive approaches built on assertions

PROs - Cause-effect link is clear

CONs – Combinatorial explosion

Evaluation of a situation based on previous knowledge

PROs – Ability to use existing knowledge to gather new information

CONs – Difficult to validate

A physics-inspired approach

PROs – Intuitive

CONs – Suboptimal, can generate unxpected behavior

Type of output

Set-algorithm
Solve algorithm

Space-time property

Predictive horizon Reactive horizon

Mathematical domain

Geometric
Heuristic
Logic
Cognitive
Biomimetic

TAKE AWAY POINTS

Hierarchy of decision making

Algorithm classification into 9 domains

NEXT

Algorithm types

- 1. Space configuration
- 2. Pathfinding algorithms
- 3. Attractive and repulsive forces
- 4. Parametric and semi-parametric curves
- 5. Artificial intelligence
- 6. Numerical optimization

embotech.com