Resting-state fMRI and graph-based methods for analyzing functional connectivity

Alexander Schaefer

Lecture SS 2014

Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany

Introduction

- Resting State fMRI
- Graphs and their Definition
- Analyze and Compare Graphs

Brain Connectivity, Marie Liebert Publishing

Boettger, IEEE TVCG, 2014

- spontaneous brain activity in the absence of task
- correlated signal in functionally coupled networks

BB Biswal, MRM,1995

 rs-fMRI observation (Biswal95): correlated signal in functionally coupled networks

Figures adopted from Van Dijk et al., 2010, Journal of Neurophysiology

- Intrinsic connectivity
 - Present during task, in the absence of task and under anesthesia
 - Majority of the power of the signal is between is in very slow signals (0.01 – 0.05 Hz)
 - correlates with (neuronal) EEG signal (Mantini 2007)

 Correlated signal reflects functionally coupled networks (www.youtube.com/user/YeoKrienen)

Yeo, J. Neurophysiol., 2011

Yeo, J. Neurophysiol., 2011

Correlated signal reflects functionally coupled

networks

Yeo, J. Neurophysiol., 2011

- Resembles "task-based" coactivation areas
- Database of 10,000 studies (Smith, PNAS, 2010)

- Good Test-Retest Reliability (Shezad, 2009)
- Can be altered by training a task (Taubert 2010)
- Can predict the age of a subject (Dosenbach 2010)
- Can predict the disease status of a subject e.g. in Depression (Zeng, 2012), ADHD (Fair, 2013)
 Alzheimer (Sorg, 2007)

- intrinsic brain connectivity → the cross talk of brain areas
- Whole brain cross talk → functional brain network

Biswal, MRM,1995

Brain Connectivity, Marie Liebert Publishing

Some examples of graphs people already work with

Protein Interaction Graph Tucker 2001

Airplane Graph Aeorspace.org

Social Graph Youarethem.co.uk

- Some examples of graphs people already work with
- Advantage → we can use the same math for all of them

Protein Interaction Graph Tucker 2001

Airplane Graph Aeorspace.org

Social Graph Youarethem.co.uk

- A Graph is a tupel (V,E)
- V is a set of vertices
- E is a set of edges, where e in E: V x V

Protein Interaction Graph Tucker 2001

Airplane Graph Aeorspace.org

Social Graph Youarethem.co.uk

- A Graph is a tupel (V,E)
- V is a set of vertices
- E is a set of edges, where e in E: V x V

 "Good" definition of vertices is crucial for the following graph analysis

- Voxel-based
 - Each voxel represents a distinct node

- Voxel-based
 - Pro:
 - Data Driven
 - Good reliability
 - High Resolution
 - Con:
 - Unclear Validity
 - Computational intensive
 - Higher risk of false positive short range connections

- Anatomical
 - Base on prior anatomical information

Desikan, Neurolmage 2006

- Anatomical
 - Pro:
 - Intuitive parcellation
 - Fast to compute
 - High reliability
 - Con:
 - Low Resolution
 - Variation in node size?
 - Low validity?

- Random Parcellation
 - Randomly into regions with similar size
 - Allows multi resolutions:

Hagmann, PloS Bio, 2007

- Random
 - Pro:
 - Minimize node size variations
 - Multi resoltuion
 - Con:
 - Unclear validity / reliability

- Functional Parcellation
 - Based on prior functional information
 - Coordinates from meta analysis or functional homogeneity analysis

Dosenbach, Science, 2010

Smith, PNAS, 2009

Varoquax, Inf Proc Med, 2011

- functional
 - Pro:
 - Good reliability
 - Good validity
 - Con:
 - May miss regions
 - Difficult to apply to DTI

- "Good" definition of vertices is crucial for the following graph analysis
- "Good"
 - functional intra-homogeneous
 - Ideally functional inter-heterogeneous
 - reliable
 - account for spatial relationships

- A Graph is a tupel (V,E)
- V is a set of vertices
- E is a set of edges, where e in E: V x V

- Estimate a "functional connection" between ROIs
- Data?
 - Average signal over Parcell
 - First eigenvector of PCA over ROI (lower reliability; Z

Chang, Neurolmage, 2008

What do we do with the Data? There are many differenty ideas.

- What do we do with the Data? There are many differenty ideas.
- Simplest idea (maybe best): measure the pairwise similarity between regions

- Pearson Correlation: $r = \frac{\sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i \bar{X})^2} \sqrt{\sum_{i=1}^n (Y_i \bar{Y})^2}}$
- Notice: → Correlation Matrix: normalized Covariance Matrix
- Positive correlations indicate
- a functional connection
- Matrix has dimension

Vertices x Vertices

Shen, J Neuro, 2012

- Pearson Correlation: $r = \frac{\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i \bar{Y})^2}}$
- Notice: → Correlation Matrix: normalized Covariance Matrix
- Performs quite well
- But induces indirect connections
- A → B → C
- False positive A C

Shen, J Neuro, 2012

- Solution → Partial Correlation:
 - Regress out all other timeseries from the data and then perform correlation
 - Gets rid of indirect connections!
 - Problem in (rs-) fMRI: low number of timepoints

- Solution → Partial Correlation:
 - Regress out all other timeseries from the data and then perform correlation (or compute the inverse Covariance Matrix)
 - Gets rid of indirect connections!
 - Problem in (rs-) fMRI: low number of timepoints
 - Voxel-level: 60 000 voxels * 200 timepoints
 - Rank of Correlation Matrix?

- Solution → Sparse Inverse Covariance:
 - Idea: regress less by eliminating some connections from the regression process (sparse matrix)
 - some connections are not essential to explain data
 - Problem: Finding this sparse matrix is computationally hard
 - Solution: approximation algorithm (graphical lasso)

- Conclusion
 - Pearson Correlation has problems with false positives
 - Partial Correlation performs better but has problems with low d.o.f. in fMRI
 - Sparse methods might help

- A Graph is a tupel (V,E)
- V is a set of vertices
- E is a set of edges, where e in E: V x V

Thresholding

- Validity: mix of correlations and anti-correlations
- Reliability: higher for stronger correlations
- Strategies:
 - Sparsity Thresholding: use only the strongest x% of edges
 - Soft Thresholding: use only edges above value x
 - Hard Thresholding: use only edges above value x and set them to 1 (binarization)

Graph Analysis / Graph Comparison

- Analysis of Brain Organization
- Comparing Graphs / Brains
 - Centrality Mapping
 - Graph-topological metrics
 - Predictive Modeling

- Investigate Brain Organization
- Unsupervised machine learning
- Power, Neuron, 2011
 - info map algorithm (Rosvall, Bergstrom, 2008)
 - random walk
 - optimal code to describe this random walk
 - code word -> subgraph

- Edge clustering
- Similarity between connections
- Hierarchical clustering

Figure adopted from Schaefer et al., 2014, Frontiers in Human Neuroscience

- Edge clustering
- http://openscience.cbs.mpg.de/schaefer/

Figure adopted from Schaefer et al., 2014, Frontiers in Human Neuroscience

- Comparing Graphs
- Centrality Analysis
 - Degree Centrality
 - Assign each Vertex the Sum over its weighted edges:

$$DC(i) = \sum_{j=1}^{N} a_{ij}$$
.

Junker, BioInf, 2006

- Centrality Mapping
 - Degree Centrality

Assign each Vertex the Sum over its weighted

connections:

$$DC(i) = \sum_{j=1}^{N} a_{ij}.$$

Zuo, Cerb. Cortex, 2010

- Centrality Mapping
 - Eigenvector Centrality

Assign each Vertex the load of its first

eigenvector:

$$EC\left(i\right) = \mu_1\left(i\right) = \frac{1}{\lambda_1}A\mu_1 = \frac{1}{\lambda_1}\sum_{j=1}^N a_{ij}\mu_1(j).$$

Cares also about indirect connections

Zuo, Cerb. Cortex, 2010

- Centrality Mapping
 - Further information in Zuo, Cererbral Cortex, 2012

Cerebral Cortex doi:10.1093/cercor/bhr269

Network Centrality in the Human Functional Connectome

Xi-Nian Zuo^{1,2}, Ross Ehmke³, Maarten Mennes², Davide Imperati², F. Xavier Castellanos^{2,4}, Olaf Sporns³ and Michael P. Milham⁵

- Graph-topological metrics
 - Path Length

$$d_{ij} = \sum_{a_{uv} \in gi \leftrightarrow j} a_{uv},$$

- Average Path Length

$$L = \frac{1}{n} \sum_{i \in N} L_i = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}}{n - 1},$$

- Graph-topological metrics
 - Clustering Coefficient

$$C = \frac{1}{n} \sum_{i \in N} C_i = \frac{1}{n} \sum_{i \in N} \frac{2t_i}{k_i(k_i - 1)},$$

- Small Worldness

$$S = \frac{C/C_{\text{rand}}}{L/L_{\text{rand}}},$$

– Problem: What is random, what is artificial?

- Graph-topological metrics
 - Modularity:

$$Q = \sum_{u \in M} \left[e_{uu} - \left(\sum_{v \in M} e_{uv} \right)^2 \right],$$

- within module connections
 - (inter module connections)^2

Wikipedia

- Graph-topological metrics
 - Pro:
 - Many of these Measures are quite intuitive
 - Con:
 - The topology itself is reduced to a single number. To simplistic?
 - Results are not very reliable

- Graph-topological metrics
 - Further Reading

Complex network measures of brain connectivity: Uses and interpretations Mikail Rubinov a,b,c, Olaf Sporns d,*

- Predictive Modeling
 - Supervised machine learning problem
 - Targets of prediction: age, disease or cognitive state
 - Features are connectivity, centrality or topology metrics
 - To prevent over fitting of the model one uses cross validation

Predictive Modeling: Predicting Age

Dosenbach, Science, 2010

Predictive Modeling: Predicting Depression

Zeng, Brain, 2012

Predictive Modeling: Predicting ADHD

Fair, Fron Hum, 2013

- Predictive Modelling
 - Pro:
 - Allows more complex interactions
 - "multivariate like the brain"
 - Closer to the single subject level
 - Con:
 - Complex models on high dimensional data with very few samples (over fitting!)

- Few samples
 - Problem: Scanning is expensive
 - Solution: Data Sharing Initiatives:
 - » ADNI (adni.loni.usc.edu/)
 - » ADHD200
 (fcon_1000.projects.nitrc.org/indi/adhd200)
 - » ABIDE (fcon_1000.projects.nitrc.org/indi/abide)
 - » Human Connectome Project
 (www.humanconnectome.org/)

Software

- Preprocessing rs-fMRI:
 - Nipype (nipy.sourceforge.net/nipype/)
 - FCON1000 (nitrc.org/projects/fcon_1000/)
- Building graphs (learned here)
 - Nipy and Numpy
 - Matlab
- Visualizing Graphs
 - brainGL (http://code.google.com/p/braingl/)
 - Gephi (https://gephi.org/)

Boettger, IEEE TVCG, 2014

Further Reading

- Varoquaux, Gaël, and R. Cameron Craddock.
 "Learning and comparing functional connectomes across subjects." NeuroImage 80 (2013): 405-415.
- Fornito, Alex, Andrew Zalesky, and Michael Breakspear. "Graph analysis of the human connectome: promise, progress, and pitfalls." Neuroimage 80 (2013): 426-444.

Thank you

- Dept. of Neurology
- Resting State Group

Zuo, Cereb Cortex, 2012

Ylipaavalniemi, 2005

Ylipaavalniemi, 2005

Smith PNAS 2009

Smith, PNAS, 2009

Smith PNAS 2009

Smith, PNAS, 2009

- Preprocessing
- 1) discarding the first four EPI volumes to allow for signal equilibration,
- 2) 3D motion correction
- 3) time series despiking,
- 4) 4D mean-based intensity normalization,
- 5) band-pass temporal filtering (0.01-0.1 Hz),
- 6) removing linear and quadratic trends and
- 7) regressing out eight nuisance signals (white matter, cerebrospinal fluid and six motion parameters).