SMART LAND

"Your Digital Agricultural Assistant"

Khaled kamal Ali Khalid Ghonem AbdELhamid Gaber Mohamed Lotfi Hussien Talha Hussien Khaled Waled Mohamed

Nahla Mohamed Saeed Samar basuny Haidar Esraa abdelfttah Mohamed

INTRODUCTION

Smart land

mobile app designed to assist farmers and agricultural engineers. It uses artificial intelligence to simplify agricultural decision-making and provide accurate, accessible information.

Why?

- Provide instant farming support through an AI chatbot.
- Check soil fertility and offer smart agricultural advice.
- Make expert knowledge easily accessible via a simple mobile app.
- Reduce reliance on traditional help and improve decision-making.

Problem and Solution

Problem

Many farmers, especially in rural areas, lack access to reliable agricultural advice. Decisions about soil, fertilizers, and crops are often made without expert guidance, reducing productivity.

Why it matter

Agriculture is vital to our economy. Empowering farmers improves crop yield and sustainability. There's a gap between traditional farming and smart technology—Smart Land bridges that gap

Solution

- Offers a bilingual agricultural chatbot (Arabic & English)
- Provides a soil fertility analyzer using ML
- Delivers a simple, offline-friendly interface
- Includes a central knowledge base tailored for farmers

OUR GOALS

Soil Fertility Analysis

Use machine learning to check soil values (e.g., nitrogen, phosphorus, pH) and predict fertility level.

Better Decisions

Share educational content and best practices to help users farm smarter.

Accessible Knowledge

Provide agricultural help to farmers in remote areas who can't easily reach experts.

Reduce Dependency

Help users rely less on traditional agricultural extension services by offering smart, personal support.

Easy Mobile Use

Ensure the app is user-friendly and includes a searchable knowledge base of crops, fertilizers, and pesticides.

Al Chatbot Support

Build a chatbot that answers questions in Arabic and English about soil, crops, fertilizers, and irrigation.

Technologies

Frontend:

Flutter (Dart) Responsive Mobile UI

AI Integration:

LLAMA 3 (Meta)
LoRA Configration
Gradio Interface

Backend:

ASP.NET Core FastAPI (Python)

Others:

Figma (UI Design)
Ngrok (API Tunneling)
Postman (API Testing)

Database:

SQL Server Entity Framework (ORM)

Activity Diagram

User Functionality

Figure 3.4 - User Functionality

Class Diagram

Backend

- Developed using C# and ASP.NET Core Web API.
- Provides RESTful APIs for:
 - User management
 - Agricultural data processing
 - System interaction
- Follows a modular, clean architecture with database-mapped models.
- Designed for future scalability (AI, analytics, 3rd-party APIs).
- Main Features:
 - Secure user authentication & authorization
 - Password reset functionality
 - **Gmail OTP verification**
 - Notification management

End Point

Auth	Search
POST /api/Auth/register	GET /api/Search
POST /api/Auth/login	GET /api/Search/filter
POST /api/Auth/forgot-password	
POST /api/Auth/verify-code	CombinedEntities
POST /api/Auth/reset-password	GET /api/CombinedEntities
GET /api/Auth/profile	Contact
POST /api/Auth/upload-profile-image	POST /api/Contact
/api/Auth/update-profile	
Notifications	Crops
GET /api/Notifications	GET /api/Crops
Plants	GET /api/Crops/{id}
GET /api/Plants	Fertilizers
GET /api/Plants/{id}	G⊟T /api/Fertilizers

Soil Fertility Classification

- Data Source: Collected from FAO (Food and Agriculture Organization).
- Data Structure: Each row = one soil sample, columns = chemical features.
- Input Features:

Macro Elements: N, P, K

Soil Chemistry: pH, EC, OC, S

Micronutrients: Zn, Fe, Cu, Mn, B

- Algorithm Used: Random Forest
 - Chosen for high accuracy and resistance to overfitting
 - Combines multiple decision trees for better generalization
- Model Accuracy:
 - Achieved 95% accuracy on test data
 - Evaluated using Accuracy and Confusion Matrix
 - Effectively classifies soil as **high fertile or middle fertile low fertile**, making it suitable for real-world use

Llama-3.1-8B-Instruct

- LLAMA 3 is an open-source AI model from Meta, trained on conversations to understand and respond like a human.
- We used the lightweight Instruct-8B version to build a smart agricultural assistant that answers farmers' questions intelligently.

Data Gathering & Preprocess

LORA Configurations

Testing

Model Deployment

Quantization of Model

Model Training

Model Loss

Data Processing The Llama3 Instruct requires the data to be in a suitable format for training and inference before the

usage of the model

```
<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Hello!<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```

Quantization of Model

the LLAMA 3 model was quantized using the bitsandbytes library. Quantization significantly reduces memory usage and computational load by converting model weights to 4-bit precision, allowing the model to fit within the limited resources available

LORA Adapters:

LORA is Parameter Efficient Fine tuning technique which adds layers to the frozen model original layers thus indicating which layers should be focused on and retrained for the specific case, this way fine tuning Pre trained LLMs is working better

100	2.146000
110	1.736800
120	1.364900

Model Training:

The Model was trained for 2 epochs (considering the RAM of the hardware and) using PyTorch framework and SFT Trainer, obtaining a loss of 1.7, learning rate = 1e-5, batch size =4

Home Profile

Categories

Fiddle-Leaf Fig

Ficus lyrata

Description

The Fiddle-Leaf Fig is a popular indoor plant with large, glossy leaves that thrives in bright, indirect light and adds bold greenery to any space.

Overview

TEMPERATURE

18°C - 24°C

250-350 ml

Soil Analyzer screens

Chat Bot Screen

Conclusion

- This project presents a smart agricultural assistant using a fine-tuned LLaMA 3 model to offer real-time, bilingual support.
- It improves decision-making by combining AI-driven chatbot advice with soil analysis tools, making expert guidance accessible to farmers.

Future work

- focus on enhancing accessibility through voice support, offline functionality, and multilingual capabilities.
- It also aims to expand data coverage, improve security, and integrate with agricultural databases while adding features like analytics and gamification.