Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 7F Fog

Fog

- Fog is a general term describing atmospheric effects such as haze, mist, smoke, or pollution
 - Objects in fog fade into the distance
 - Important feature in visual-simulation applications
 - Flight simulators
 - Can provide an additional depth cue
- Objects fade into a 'fog color' based on distance from the viewpoint
 - Similar to pixel blending, input color is blended with the fog color
- Fog is different than attenuation
 - Attenuation lowers intensity of lit objects based on distance from light sources
 - Fog blends a fog color with the input color based on distance from viewpoint
 - Black fog color would simulate attenuation form a light source at the viewpoint

Fog

Nate Robbins OpenGL Tutorials

http://www.xmission.com/~nate/tutors.html

OpenGL Fog

- Enable and disable fog
 - glEnable (GL_FOG);
 - glDisable (GL_FOG);
- Set fog parameters
 - glFog{if} (GLenum pname, GLfloat param)
 - GL_FOG_MODE: GL_LINEAR, GL_EXP, and GL_EXP2
 - GL_FOG_DENSITY: Specifies the fog density used in both exponential fog equations. Must be >=0. Default = 1.0.
 - GL_FOG_START: Specifies start, the near distance used in the linear fog equation. Default = 0.0.
 - GL_FOG_END: Specifies end, the far distance used in the linear fog equation. Default = 1.0.
 - glFog{if}v (GLenum pname, const GLfloat *params)
 - GL FOG COLOR: specify C_f, the fog color
- Specify the accuracy (type) of fog calculation
 - glHint (GL_FOG_HINT, GLenum mode);
 - GL_NICEST The most correct, or highest quality, option should be chosen.
 - Per-pixel fog calculation (if supported by the OpenGL implementation)
 - GL_DONT_CARE or GL_FASTEST: Per-vertex calculation of fog effects.

OpenGL Fog

- Fog blends the fog color with the input object color using a fog blending factor f
 - Final color is: $C = fC_i + (1-f)C_f$
 - Ci is the input color, Cf is the fog color
 - f is calculated with one of 3 equations and is clamped to the range [0,1]

•
$$f = e^{-(\text{density} \cdot z)}$$

•
$$f = e^{-(\text{density} \cdot z)2}$$

- z is the distance from the viewpoint to the object in view coordinates
- Per vertex fog
 - Fog is applied after matrix transformations and lighting
 - Before projection and clipping
- Per pixel fog (if supported)
 - Blend a fog color into the post-texturing color
 - Needs to transform each pixel (at least the z value) back into view coordinates

• Invert z viewport to get
$$z_s$$
 from -1 to 1

$$z_{..} = \frac{r[10]z_s + r[14]}{r[10]z_s + r[14]}$$

Then using the inverse projection matrix r:

$$z_{v} = \frac{r[10]z_{s} + r[14]}{r[11]z_{s} + r[15]}$$

