数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれー(マイナスの符号)、または、0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **B C** などが繰り返し現れる場合, 2 度目以降 は, **A** , **B C** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ A \sqrt{B} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、以下のようにマークしてください。
- (4) DExに-xと答える場合は、De-, Ee1とし、以下のようにマークしてください。

【解答用紙】

Α		0	1	2	3	4	(5)	6	Ø	8	9	
В	Θ	0	1	2	•	4	9	6	0	8	9	
С	Θ	0	1	2	3	•	6	6	0	8	9	
D	•	0	1	2	3	4	6	6	0	8	9	
E	Θ	0	•	2	3	4	(5)	6	0	8	9	

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験	番号		*			*				
名	前							•		

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

< 解答用紙記入例 >							
解答	コース C	ourse					
コース Course	- I(コース 2 Course 2					
0		•					

選択したコースを正しくマークしないと、採点されません。

問 1 a = 0 とする。x の 2 次関数

$$y = ax^2 - 4x - 4a$$

.....

のグラフと原点 (0,0) に関して対称な曲線を G とする。

(1) 2次関数 ① のグラフの頂点の座標は

$$\left(\begin{array}{c|c} \hline A & \\ \hline a & -4a \end{array}\right)$$

である。

(2) G を表す 2 次関数は、以下の選択肢の中の \square である。

$$0) y = ax^2 + 4x + 4a$$

(1)
$$y = ax^2 + 4x - 4a$$

①
$$y = ax^2 + 4x + 4a$$
 ① $y = ax^2 + 4x - 4a$ ② $y = ax^2 - 4x + 4a$

③
$$y = -ax^2 + 4x + 4a$$
 ④ $y = -ax^2 - 4x + 4a$ ⑤ $y = -ax^2 - 4x - 4a$

(4)
$$y = -ax^2 - 4x + 4a$$

(5)
$$y = -ax^2 - 4x - 4a$$

(3) Gは、2次関数(1)のグラフと2点

で交わる。

(4) a=2 とする。このとき、G を表す 2 次関数の区間 $\boxed{\mathsf{DE}} \subseteq x \subseteq \boxed{\mathsf{G}}$ における 最大値は JK , 最小値は LM である。

注) 対称な:symmetric

問 a を定数とし、x の方程式

$$|ax - 11| = 4x - 10$$

を考える。

(1) 方程式 ① は、絶対値の記号を使わないで表すと

$$ax \ge 11$$
 のとき、 $\Big(a - \mathbb{N}\Big)x = \mathbb{O}$ $ax < 11$ のとき、 $\Big(a + \mathbb{P}\Big)x = \mathbb{Q}R$

となる。

(2) $a = \sqrt{7}$ のとき、方程式 ① の解は

$$x = \frac{\boxed{S} \left(\boxed{T} - \sqrt{\boxed{U}} \right)}{\boxed{V}}$$

である。

(3) 特に、a を正の整数とする。方程式 ① が正の整数解をもつとき、 $a = \boxed{\mathbf{W}}$ である。 また、そのときの正の整数解は $x = \boxed{\mathbf{X}}$ である。

注) 絶対値: absolute value

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{Y}$, $oxed{Z}$ はマークしないでください。

II

半径が 2 の円 O に内接する三角形 ABC が

$$3\overrightarrow{OA} + 4\overrightarrow{OB} + 2\overrightarrow{OC} = \overrightarrow{0}$$

を満たしているとする。

直線 AO と線分 BC の交点を D とおくとき、線分 AD と線分 BD の長さを求めよう。

(1) k を実数として, $\overrightarrow{OD} = k\overrightarrow{OA}$ とおくと

$$\overrightarrow{\text{OD}} = - \frac{\boxed{\textbf{A}}}{\boxed{\textbf{B}}} k \overrightarrow{\text{OB}} - \frac{\boxed{\textbf{C}}}{\boxed{\textbf{D}}} k \overrightarrow{\text{OC}}$$

$$AD = \boxed{I}$$

を得る。

(2) (1) より BD = J BC となるので、線分 BD の長さを求めるためには、線分 BC の長さを求めればよい。

まず

$$BC^2 = \boxed{L} - \boxed{M} \overrightarrow{OB} \cdot \overrightarrow{OC}$$

である。ただし, $\overrightarrow{OB} \cdot \overrightarrow{OC}$ は \overrightarrow{OB} と \overrightarrow{OC} の内積を表すものとする。また,① より, $|4\overrightarrow{OB}+2\overrightarrow{OC}|^2=$ **NO** であるから

$$\overrightarrow{OB} \cdot \overrightarrow{OC} = \frac{\overrightarrow{PQR}}{\boxed{S}}$$

を得る。したがって, $BC = \frac{T}{V}$ が求まり

$$BD = \frac{\sqrt{w}}{x}$$

を得る。

注) 内接する: be inscribed, 内積: inner product

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{Y}$, $oxed{Z}$ はマークしないでください。

正の数 x, y が

$$(\log_2 x)^2 + (\log_2 y)^2 = \log_2 \frac{8x^2}{y^2}$$

を満たしながら変わるとき、 xy^2 の最大値 および そのときの x, y の値を求めよう。

(1) ① の右辺は

$$\log_2 \frac{8x^2}{y^2} = \boxed{\mathbf{A}} \log_2 x - \boxed{\mathbf{B}} \log_2 y + \boxed{\mathbf{C}}$$

と変形できる。

したがって、 $\log_2 x = X$ 、 $\log_2 y = Y$ とおくとき、① は X, Y を用いて

$$(X - \boxed{D})^2 + (Y + \boxed{E})^2 = \boxed{F}$$
 ②

と表せる。

(2) $\log_2 xy^2 = k$ とおく。この式は (1) の X, Y を用いて

$$X + \Box Y - k = 0$$
 3

と表せる。

ここで、XY平面を考えると、② のグラフは円、③ のグラフは直線となる。k が最大になるのは、その円と直線が接するときである。よって、k= H のとき、 xy^2 は最大値 IJ をとる。また、このとき x= K 、y= L である。

[III] の問題はこれで終わりです。[III] の解答欄 [M] ~ [Z] はマークしないでください。

問 1 a を定数とする。関数

$$f(x) = 2\sin^3 x + a\sin 2x + \frac{9}{2}\cos 2x - 9\cos x - 2ax + 6$$

が $x=\frac{\pi}{3}$ で極値をもつとき, f(x) の区間 $0 \le x \le \frac{\pi}{2}$ における最大値と最小値について 調べよう。

(1) f(x) が $x = \frac{\pi}{3}$ で極値をもつから, $a = \frac{A}{B}$ である。

したがって、f(x) の導関数 f'(x) は

$$f'(x) = \Box \sin x \left(\Box \cos x - 1 \right) \left(\sin x - \Box \right)$$

と表される。

(2) (1) の結果より、f(x) は区間 $0 \le x \le \frac{\pi}{2}$ における最大値を $x = \boxed{\mathbf{F}}$ でとり、 最小値を $x = \begin{bmatrix} \mathbf{G} \end{bmatrix}$ でとる。

ただし、 \mathbf{F} , \mathbf{G} には、下の $\mathbf{0}$ ~ $\mathbf{4}$ の中から適当なものを選びなさい。

- $\bigcirc 0 \quad 0 \quad \boxed{0} \quad \frac{\pi}{6} \quad \boxed{2} \quad \frac{\pi}{4} \quad \boxed{3} \quad \frac{\pi}{3} \quad \boxed{4} \quad \frac{\pi}{2}$

注) 導関数:derivative

問 2 数列 {a_n} を

$$a_n = \int_0^{\frac{1}{4}} x^n e^{-x} dx$$
 $(n = 1, 2, 3, \dots)$

で定める。

このとき

$$a_1 = -\frac{\mathbf{H}}{\mathbf{L}} e^{\frac{\mathbf{JK}}{\mathbf{L}}} + 1$$

である。

また、 a_{n+1} は a_n を用いて

$$a_{n+1} = -\left(\frac{\mathbf{M}}{\mathbf{N}}\right)^{n+1} e^{\frac{\mathbf{J}\mathbf{K}}{\mathbf{L}}} + \left(n + \mathbf{O}\right) a_n \qquad (n = 1, 2, 3, \dots)$$

と表される。これを変形すると

$$na_n = a_{n+1} - a_n + \left(\frac{\mathbf{M}}{\mathbf{N}}\right)^{n+1} e^{\frac{\mathbf{J}\mathbf{K}}{\mathbf{L}}}$$

となり

$$\sum_{k=1}^{n} k a_k = a_{n+1} - a_1 + \frac{\mathbf{P}}{\mathbf{QR}} e^{\frac{\mathbf{JK}}{\mathbf{L}}} \left\{ 1 - \left(\frac{\mathbf{S}}{\mathbf{T}} \right)^n \right\}$$

を得る。

ここで、 $0 \le x$ のとき、 e^{-x} のとり得る値の範囲は $0 < e^{-x} \le$ $\boxed{ U }$ であるから

$$0 < a_n < \int_0^{\frac{1}{4}} \boxed{\mathbf{U}} x^n dx = \frac{1}{\boxed{\mathbf{V}}^{n+1} (n+1)}$$

が成り立つ。よって

$$\lim_{n\to\infty}a_n=\boxed{\mathbf{W}}$$

であるから

$$\lim_{n \to \infty} \sum_{k=1}^{n} k a_k = \frac{\mathbf{X}}{\mathbf{Y}} e^{\frac{\mathbf{J} \mathbf{K}}{\mathbf{L}}} - 1$$

を得る。

IV の問題はこれで終わりです。
IV の解答欄 Z はマークしないでください。
コース2の問題はこれですべて終わりです。解答用紙の V はマークしないでください。
解答用紙の解答コース欄に「コース2」が正しくマークしてあるか。
もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

〈数 学〉

	コース 1							
l l	9	解答欄	正解					
		AB	24					
		C	4					
	問1	DEF	-28					
) IDJ 1	GHI	2-8					
		JK	10					
I		LM	-8					
		NO	41					
		PQR	421					
	問2	STUV	7473					
		W	3					
		X	3					
		Α	3 3 5					
		ВС	12					
	問1	D	0					
		EFG	225					
		HI	45					
I	問2	JK	20					
		L	4					
		М	8					
		NOPQ	2020					
		RS	25					
		TU	25					
		Α	6					
		В	2					
		CD	52					
		EF	20					
		GH	32					
ш		IJK	568					
		L	2					
		М	4					
		N	4					
		0	6					
		PQ	94					
		ABC	443					
		DEF	-44					
IV		GHI	348					
		JK	-8					
		L	4					

コース 2							
Ī	l 引	解答欄	正解				
		AB	24				
	問1	С	4				
		DEF	-28				
		GHI	2-8				
		JK	10				
I		LM	-8				
		NO	41				
		PQR	421				
	問2	STUV	7473				
		W	3				
		Х	3				
		ABCD	3 3 4323				
		EFG	-12				
		Н	1				
			3				
I		JK	13				
ш п		LM	82				
		NO	36				
		PQRS	-114				
		TUV	362				
		WX	62				
		ABC	223				
		DEF	115				
		G	2				
Ш		Н	4				
		IJ	16				
		K	4				
		L	2				
		ĄВ	34				
	P8 4	CDE	323				
	問1	F	0				
		G	3				
		HIJKL	54-14				
N		MNO	141				
		PQRST	11214				
	問2	U	1				
		V	4				
		W	0				
		XY	43				