1.28 Theorem. Let $a, b, n \in \mathbb{Z}$ with n > 0. Then $a \equiv b \pmod{n}$ if and only if a and b have the same remainder when divided by n. Equivalently, $a \equiv b \pmod{n}$ if and only if when $a = nq + r \pmod{n}$ and $b = nq' + r' \pmod{n}$, then r = r'.

Proof. Let $a, b, n \in \mathbb{Z}$ with n > 0 be given, and let $a \equiv b \pmod{n}$. By definition, a - b = nk for some $k \in \mathbb{Z}$. Thus,

$$a = nk + b$$

$$= nk + nq' + r'$$

$$= n(k + q') + r'.$$

Examining a = nq + r and a = n(k + q') + r', by uniqueness of TDA, r = r'.

Let r = r', a = nq + r, and b = nq' + r' be given. Then,

$$a - nq = b - nq'$$
, and
 $a - b = nq - nq'$
 $= n(q - q')$.

Thus, a - b = nt where q - q' = t for some $t \in \mathbb{Z}$, and $a \equiv b \pmod{n}$. \square