Decentralised location verification system

Conor Taylor

B.A.(Mod.) Computer Science Final Year Project, April 2016 Supervisor: Stephen Barrett

A system that allows participants to verify a users claimed location.

A system that allows participants to verify a users claimed location.

A system that allows participants to verify a users claimed location.

Goals:

▶ False location claims must be detectable.

A system that allows participants to verify a users claimed location.

- ▶ False location claims must be detectable.
- Privacy protecting.

A system that allows participants to verify a users claimed location.

- ▶ False location claims must be detectable.
- Privacy protecting.
- Cannot rely on any centralised resources.

A system that allows participants to verify a users claimed location.

- ▶ False location claims must be detectable.
- Privacy protecting.
- Cannot rely on any centralised resources.
- Capable of running in the background on mobile devices.

Background

There are **no** known existing decentralised location proof systems.

Existing centralised solutions: hardware and/or software

3 distinct entities:

- ► Mobile node
- ► Miner node M
- ▶ Verifier node

Mobile node

Mobile node

Mobile nodes

Mobile nodes

Design Identities

Used to anonymously identify a node in a transaction.

Balancing goals:

- ► False location claims must be detectable.
- Privacy protecting.

Identities: Nonce Lists

Identities: Nonce Lists

Identities: Nonce Lists

Identities: Duplication

Identity duplication is unavoidable in a decentralised system.

Identities: Duplication

Identity duplication is unavoidable in a decentralised system.

ID	Contents
ffa0	
ffa1	
ffa2	T_{A4}
ffa3	
ffa4	T _{B87}

Identities: Duplication

Identity duplication is unavoidable in a decentralised system.

ID	Contents	
ffa0		
ffa1		
ffa2	T_{A4} , T_{C102}	
ffa3		
ffa4	T _{B87}	

Design Transactions

Transactions are created when two mobile nodes physically meet.

▶ Ad-hoc bluetooth connection between the nodes.

Design Transactions II

Node A

Transactions II

n

Node A

m

Transactions II

m

Transactions II

Node A $\mathcal{K}_A^+, \mathcal{K}_A^ \mathcal{N}L_A$

Mode B

Transactions II

n Node A Node B $K_A^+, K_A^ NL_A$ $ID_{An} = K_A^+(NL_A[n])$

Transactions II

nNode A K_A^+ , $K_A^ NL_A$ ID_{An} ts_A

m

Transactions II

n Node A K_A^+ , $K_A^ NL_A$ ID_{An} ts_A loc_A

m

Transactions II

	n	
	Node A	
K_A^+ , K_A^-		
$NL_{\mathcal{A}}$		
ID_{An}		
$ts_{\mathcal{A}}$		
loc_A		

 $egin{aligned} egin{aligned} egin{aligned} egin{aligned} K_B^+,\ K_B^- \ NL_B \ ID_{Bm} \ ts_B \ Ioc_B \end{aligned}$

Transactions II

NNode A K_A^+ , $K_A^ NL_A$ ID_{An} ts_A loc_A

m Node B K_B^+ , $K_B^ NL_B$ ID_{Bm} ts_B loc_B ID_{An} ts_A loc_A

Transactions II

	n Node A
K_A^+ , K_A^-	
NL_A	
ID_{An}	
$ts_{\mathcal{A}}$	
loc_A	
ID_{Bm}	
ts_B	
loc_B	

m Node B $K_B^+, K_B^ NL_B$ ID_{Bm} ts_B loc_B ID_{An} ts_A loc_A

	n	<i>m</i>
	Node A	Node B
K_A^+ , K_A^-		K_B^+ , K_B^-
$NL_{\mathcal{A}}$		NL_B
ID_{An}		ID_{Bm}
$ts_{\mathcal{A}}$		ts _B
loc_A	verify $ ts_A - ts_B < \epsilon_{ts}$	loc_B
ID_{Bm}	$\&\& loc_A - loc_B < \epsilon_{loc}$	ID_{An}
ts_B		$ts_{\mathcal{A}}$
loc_B		loc_A