Varible Compleja I

Ejercicios resueltos

Doble Grado en Ingeniería Informática y Matemáticas Curso 2016/17

Índice

1.	Nún	neros complejos	5
	1.1.	Ejercicio 1	5
	1.2.	Ejercicio 3	5
	1.3.	Ejercicio 4	5
	1.4.	Ejercicio 5	6
	1.5.	Ejercicio 6	6
	1.6.	Ejercicio 8	7
	1.7.	Ejercicio 10	7
2	Ton	ología del plano complejo	9
۷٠	_	Ejercicio 1	
		Ejercicio 2	
		Ejercicio 3	
		Ejercicio 4	
	2.5.	Ejercicio 5	10
3.	Fun	ciones holomorfas	11
	3.1.	Ejercicio 1	11
		3.1.1. a)	11
	3.2.	Ejercicio 2	11
	3.3.	Ejercicio 3	11
	3.4.	Ejercicio 4	11
	3.5.	Ejercicio 5	12
	3.6.	Ejercicio 6	12
	3.7.	Ejercicio 7	12
1	Eum	ciones analíticas	14
4.			
	4.1.	Ejercicio 1	
		4.1.1. b)	
		4.1.2. c)	
		4.1.3. e)	
		4.1.4. c)	
	4.2.	Ejercicio 2	
		4.2.1. a)	
		Ejercicio 3	
	4.4.	Ejercicio 4	15

ÍNDICE

5.	Fun	ciones elementales	16
	5.1.	Ejercicio 1	16
	5.2.	Ejercicio 2	16
	5.3.	Ejercicio 4	16
	5.4.	Ejercicio 5	17
	5.5.	Ejercicio 6	17
	5.6.	Ejercicio 7	18
	5.7.	Ejercicio 8	18
	5.8.	Ejercicio 9	18
	5.9.	Ejercicio 10	19
	5.10.	. Ejericicio 12	19
6.	Inte	gral curvilínea	20
	6.1.	Ejercicio 1	20
	6.2.	Ejercicio 2	20
	6.3.	Ejercicio 3	21
	6.4.	Ejercicio 4	21
	6.5.	Ejercicio 5	22
	6.6.	Ejercicio 6	22
7.	Teon	rema local de Cauchy	23
7.		rema local de Cauchy Ejercicio 1	
7.	7.1.	•	23
7.	7.1. 7.2.	Ejercicio 1	23 23
7.	7.1.7.2.7.3.	Ejercicio 1 Ejercicio 2	232323
7.	7.1.7.2.7.3.	Ejercicio 1 Ejercicio 2 Ejercicio 3	23 23 23 24
7.	7.1.7.2.7.3.7.4.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a	23 23 23 24
	7.1.7.2.7.3.7.4.7.5.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a	23 23 23 24 24
	7.1. 7.2. 7.3. 7.4. 7.5.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5	23 23 23 24 24 24 25
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía	23 23 23 24 24 24 25
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1. 8.2.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 1	23 23 23 24 24 24 25 25
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1. 8.2.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 1 Ejercicio 2	23 23 23 24 24 24 25 25 25 25
	7.1. 7.2. 7.3. 7.4. 7.5. Equ: 8.1. 8.2. 8.3.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 1 Ejercicio 2 Ejercicio 3	23 23 24 24 24 25 25 25 25 26
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1. 8.2. 8.3.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 1 Ejercicio 2 Ejercicio 3 8.3.1. a	23 23 24 24 24 25 25 25 26 26
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1. 8.2. 8.3.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 2 Ejercicio 2 Ejercicio 3 8.3.1. a Ejercicio 6	23 23 24 24 24 25 25 25 26 26 26
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1. 8.2. 8.3.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 1 Ejercicio 2 Ejercicio 3 8.3.1. a Ejercicio 6 Ejercicio 1	23 23 24 24 24 25 25 25 26 26 26 26
	7.1. 7.2. 7.3. 7.4. 7.5. Equation 8.1. 8.2. 8.3.	Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 7.4.1. a Ejercicio 5 ivalencia entre analiticidad y holomorfía Ejercicio 1 Ejercicio 2 Ejercicio 3 8.3.1. a Ejercicio 6 Ejercicio 1 8.5.1. a)	23 23 24 24 24 25 25 25 26 26 26 26

ÍNDICE

	8.6. Ejercicio 12	27
9.	Ceros de las funciones holomorfas	28
10.	Teorema de Morera y sus consecuencias	30
	10.1. Ejercicio 5	30
	10.2. Ejercicio 6	30
	10.3. Ejercicio 7	30
	10.4. Ejercicio 8	30
	10.4.1. a)	30
	10.4.2. b)	31
11.	Comportamiento local de una función holomorfa	32
	11.1. Ejercicio 1	32
	11.2. Ejercicio 2	32
	11.3. Ejercicio 3	32
	11.4. Ejercicio 4	32
	11.5. Ejercicio 5	32
	11.6. Ejercicio 7	33
	11.7. Ejercicio 8	33
	11.8. Ejercicio 9	33
	11.9. Ejercicio 10	34
12.	El teorema general de Cauchy	35
	12.1. Ejercicio 1	35
	12.2. Ejercicio 2	35
13.	Residuos	36
	13.1. Ejercicio 1	36
	13.2. Ejercicio 4	36
	13.3. Ejercicio 16	37

Números complejos

Ejercicio 1.

Probar que el conjunto de matrices

$$M = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

con las operaciones de suma y producto de matrices, es un cuerpo isomorfo a C .

Solución

Ejercicio 3.

Solución

 $|f(z)| < 1 \ \forall z : |z| < 1 \ f^{-1}(z) = \frac{z+a}{1+\overline{a}z} \ \text{Si} \ |z| = 1$, entonces $|f(z)| = |\frac{z-a}{a-\overline{a}z}|$ multiplicando en esta expresión por $\overline{z} \ \frac{z-a}{1-\overline{a}z} \overline{z} = \frac{1-a\overline{z}}{1-\overline{a}z} \ f$ tenemos que es holomorfa en el disco, lleva la frontera en la frontera.

Ejercicio 4.

Dados $z_1, z_2, ..., z_n \in C^*$, encontrar una condición necesaria y suficiente para que se verifique la siguiente igualdad:

$$|\sum_{k=1}^{n} z_k| = \sum_{k=1}^{n} |z_k|$$

Solución

Por inducción, todos los números complejos deben tener el mismo argumento, son vectores linealmente dependientes sin que se invierta el signo de ninguno de ellos.

$$\exists \lambda_1, ..., \lambda_n > 0 : \lambda_1 z_1 = \lambda_2 z_2 = ... = \lambda_n z_n$$

para probar que es necesaria no hace falta hacer inducción $|\sum_{k=1}^n z_n| = |\sum_{k=1}^n \frac{\lambda_1}{\lambda_k} z_1| = |z_1| \sum_{k=1}^n \frac{\lambda_1}{\lambda_k} = |z_1| \sum_{k=1}^n \frac{|z_k|}{|z_1|} = \sum_{k=1}^n |z_k|$

$$n=2 \implies |z_1+z_2|=|z_1|+|z_2| \longleftrightarrow z_2=\lambda z_1 \text{ con } \lambda \in \mathbb{R}$$

Números complejos Ejercicio 5.

Sea cierto para $n \in \mathbb{N} \mid \sum_{k=1}^{n+1} z_k \mid = |z_{n+1} + \sum_{k=1}^n z_k| = |z_{n+1}| + |\sum_{k=1}^n z_k|$

Hemos usado en este último paso que $|z_{n+1}|+|\sum_{k=1}^n|\geq |\sum_{k=1}^{n+1}z_k|=\sum_{k=1}^{n+1}|z_k|=|z_{n+1}|+\sum_{k=1}^n|z_k|$ donde la otra desigualdad entre los extremos se sabe de la desigualdad triangular. $|z_{n+1}|+|\sum_{k=1}^nz_k|=|z_{n+1}|+\sum_{k=1}^n|z_k|$ Por la hipótesis de inducción para k=2, tenemos que $\exists \lambda>0:z_{n+1}=\lambda\sum_{k=1}^nz_k$

Nos queda por hacer lo análogo con el resto de números complejos z_k , k=1...n Por la hipótesis de inducción para k=n, $\exists \mu_1,...\mu_n: \mu_1z_1=\mu_2z_2=...=\mu_nz_n$, como $z_{n+1}=\lambda\sum_{k=1}^n z_k=\lambda\sum_{k=1}^n \frac{\mu_1}{\mu_k}z_1$

$$|z_1 + z_2| = |z_1| + |z_2| \iff |z_1 + z_2|^2 = (|z_1| + |z_2|)^2 = |z_1|^2 + 2|z_1||z_2| + |z_2|^2$$

entonces tenemos

$$z_1\overline{z_2} = \lambda > 0$$
 y que $z_1 = \frac{\lambda}{|z_2|^2}z_2$

Ejercicio 5.

Describir geométricamente los subconjuntos del plano dados por

$$A = \{z \in \mathbb{C} : |z + i| = 2|z - i|\} \text{ y } B = \{z \in \mathbb{C} : |z - i| + |z + i| = 4\}$$

Veamos el conjunto A, tenemos en cuenta z=(a,b), A cumple $\sqrt{a^2+(b+1)^2}=2\sqrt{a^2+(b-1)^2}$, entonces $a^2+b^2+1+2b=a^2+(b+1)^2=4(a^2+(b-1)^2)=4a^2+4b^2+4-8b$, entonces $3a^2+3b^2-10b+3=0$, $a^2+b^2-\frac{10}{3}b+1=0$, sumamos y restamos $\frac{25}{9}$, $a^2+(b-\frac{5}{3})^2-\frac{25}{9}+1$, $a^2+(b-\frac{5}{3})^2=\frac{16}{9}$ Vemos que A es la circunferencia con $c=(0,\frac{5}{3})$, $r=\frac{4}{3}$

Veamos el B, elevando dos veces al cuadrado tenemos como resultado una elipse

$$\frac{a^2}{\sqrt{3}^2} + \frac{b^2}{2^2} = 1$$

Ejercicio 6.

Probar que $argz = 2 \arctan(\frac{Imz}{Rez+|z|})$ para todo $z \in \mathbb{C}^* \backslash \mathbb{R}^-$.

Solución

Hemos usado la fórmula del ángulo doble

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\phi = \arctan(\frac{Imz}{Rez + |z|}) \ \phi = 2\alpha = \arctan(\frac{Imz}{Rez + |z|})$$

Números complejos Ejercicio 8.

Pista para otra forma de hacerlo

$$\phi = 2\arctan(\frac{Imz}{Rez + |z|})|z|(\cos(\phi) + i\sin(\phi)) = ?z$$

Para ello usamos, si $t = \theta/2$

$$\cos(\theta) = \frac{1 - \tan^2(\theta/2)}{1 + \tan^2(\theta/2)} \sin(\theta) = \frac{2 \tan(\theta/2)}{1 + \tan^2(\theta/2)}$$

Ejercicio 8.

Solución

Haremos la prueba por inducción, para el caso inicial n=1 es trivial, suponemos cierto para un $n \in \mathbb{N}$ genérico. Probamos que en ese caso es cierto para n+1.

$$\cos((n+1)\theta) + i\sin((n+1)\theta) = \cos(n\theta + \theta) + i\sin(n\theta + \theta)$$

$$= \cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta) + i\cos(n\theta)\sin(\theta) + i\sin(n\theta)\cos(\theta)$$

$$= \cos(n\theta)(\cos(\theta) + i\sin(\theta)) + i\sin(n\theta)(\cos(\theta) + i\sin(\theta))$$

$$= (\cos(theta) + i\sin(\theta))(\cos(n\theta) + i\sin(n\theta)) = (\cos(\theta) + i\sin(theta))^{n+1}$$

La última igualdad la tenemos por la hipótesis de inducción.

Ejercicio 10.

Pista Probar las dos simultáneamente y usar la fórmula de moivre $\sum_{k=0}^{n} (cos(x) + sin(x))^k$

Solución

$$\sin(x/2) \sum_{k=0}^{n} \cos(kx) + i \sin(x/2) \sum_{k=0}^{n} \sin(kx)$$

Sacamos factor común

$$\sin(x/2)(\sum_{k=0}^{n}\cos(kx) + i\sin(kx))$$

Usamos la fórmula de Moivre

$$\sin(x/2)\sum_{k=0}^{n}(\cos(x)+i\sin(x)^{k}$$

Usamos que $x \notin 2\pi \mathbb{Z}$

$$\sin(x/2) \frac{1 - (\cos(x) + i\sin(x)^{n+1})}{1 - (\cos(x) + i\sin(x))}$$

$$= \sin(x/2) \frac{1 - (\cos((n+1)x) + i\sin((n+1)x))}{1 - \cos(x) - i\sin(x)}$$

Números complejos Ejercicio 10.

Usamos que $2\sin^2(x/2) = 1 - \cos(x)$ y que $\sin(x) = \sin(x/2)\cos(x/2)$,

$$\sin(x/2) \frac{1 - (\cos((n+1)x) + i\sin((n+1)x))}{2\sin^2(x/2) - 2i\sin(x/2)\cos(x/2)} = \frac{1 - (\cos((n+1)x) + i\sin((n+1)x))}{2\sin(x/2) - 2i\cos(x/2)}$$
$$\frac{2\sin^2(\frac{n+1}{x}x) - i2\sin(\frac{n+1}{2}x)\cos(\frac{n+1}{2}x)}{2\sin(x/2) - 2i\cos(x/2)}$$

Multiplicamos numerador y denominador por el conjugado del denominador

$$\sin(\frac{n+1}{2}x)(\sin(\frac{n+1}{2}x) - i\cos(\frac{n+1}{2}x))(\sin(x/2) + i\cos(x/2))$$

$$= \sin(\frac{n+1}{2}x)(\cos(\frac{n+1}{2}x)\cos(x/2) + \sin(\frac{n+1}{2}x)\sin(x/2) + i(\sin(\frac{n+1}{2}x)\cos(x/2) - \cos(\frac{n+1}{2}x)\sin(x/2)))$$

$$= \sin(\frac{n+1}{2}x)(\cos(\frac{nx}{2}) + i\sin(\frac{nx}{2}))$$

Topología del plano complejo

Ejercicio 1.

Estudiar la continuidad de la función argumento principal, $arg: \mathbb{C}^* \to \mathbb{R}$.

Solución

Usamos la fórmula de la relación anterior para probar que es continua en $\mathbb{C}^*\setminus\mathbb{R}$

$$argz = 2 \arctan(\frac{Imz}{Rez + |z|})$$
 $\forall z \in \mathbb{C}^* \backslash \mathbb{R}$

Luego nos paroximamos por sucesiones

$${z + \frac{i}{n}} \rightarrow z$$
 $\lim_{n} (arg(z + \frac{i}{n})) = \lim_{n} (\arctan(\frac{1}{nz} + \pi)) = \pi$

$$\{z - \frac{i}{n}\} \to z \lim_{n} (arg(z - \frac{i}{n})) = \lim_{n} (\arctan(\frac{-1}{nz} - \pi)) = -\pi$$

Ejercicio 2.

Dado $\theta \in \mathbb{R}$, se considera el conjunto $S_{\theta} = \{z \in \mathbb{C}^* : \theta \notin Argz\}$. Probar que existe una función $\phi \in C(S_{\theta})$ que verifica

Solución

Definimos

$$f(z) = z(\cos(\pi - \theta) + i\sin(\pi - \theta))$$
 $f: \mathbb{C} \to \mathbb{C}$ es continua $\phi(z) = arg(f(z)) - (\pi - \theta)$ $\phi: S_{\theta} \to \mathbb{C}$ ϕ es continua

$$\phi(z) \in Arg(f(z)) + \theta - \pi \subset Arg(f(z)) + Arg(\cos(\theta - \pi) + i\sin(\theta - \pi))$$
$$= Arg(f(z) - \cos(\theta - \pi) + i(\theta - \pi)) = Argz$$

Ejercicio 3.

Probar que no existe ninguna función $\phi \in C^*$ tal que $\phi(z) \in Argz$ para todo $z \in C^*$

Solución

 \mathbb{T} compacto y conexo $\implies \phi(\mathbb{T})$ intervalo cerrado y acotado

Sea $\alpha \in \mathbb{T}$: $\phi(\alpha) \neq \min(\phi(\mathbb{T}))$, $\max(\phi(\mathbb{T}))$ $\phi(\mathbb{T} - \{\alpha\})$ conexo $\Longrightarrow [\min(\phi(\mathbb{T})), \phi(\alpha)[\cup]\phi(\alpha), \max(\phi(\mathbb{T}))]$ que es una contradicción.

Si $\exists h: \mathbb{C}^* \to \mathbb{R}$ con $h(z) \in Arg(z) \ \forall z \in \mathbb{C}^* \ y \ h$ continua, entonces $h_{|\mathbb{T}}: \mathbb{T} \to \mathbb{T} \to \mathbb{R}$ es continua y $h_{|\mathbb{T}}(z) \in Arg(z) \ \forall z \in \mathbb{T}$

Ejercicio 4.

Solución

$$\{z_n\} \to z \implies \forall \varepsilon > 0 \; \exists m \in \mathbb{N} : n \geq m \; |z_n - z| z \varepsilon$$

Sea $\varepsilon = \frac{|z|}{2}$, entonces $\exists m \in \mathbb{N} : n \ge m \ z_n \in D(z, |z|/2)$

Usamos el ejercicio 2

Ejercicio 5.

Idea

$$|1 + \frac{z}{n}|^n \to e^{Rez}$$

$$\lim_{n \to \infty} |1 + \frac{z}{n}|^n = e^{\lim_{n \to \infty} n(|1 + \frac{z}{n}| - 1)}$$

$$arg((1+\frac{z}{n})^n) \to Imz$$

Solución

$$z_n \in \mathbb{C}, \phi_n \in Arg(z_n)$$

$$\{|z_n|\} \rightarrow |z| \ y \ \{y_n\} \rightarrow y \in Arg(z)$$

Vamos a usar que is tiene sun sucesión de numeros complejos y la sucesion de los modulos converge y hay una sucesion de los argumentos de forma q convergen, la sucesion converge al modulo por el cos +isen

$$\phi_n \in Arg(z_n), z_n = (1 + \frac{z}{n})^n = (1 + \frac{a+ib}{n})^n = [(1 + \frac{a}{n}) + (\frac{ib}{n})]^n |z_n| = [|(1 + \frac{a}{n}) + \frac{ib}{n}|]^n = [(1 + \frac{a}{n})^2 + (\frac{b}{n})^n]^{1/2} = \lim [(1 + \frac{a^2}{n^2} + (\frac{a}{n} + \frac{b^2}{n^2}))]^{n/2} = e^{\lim n/2(\frac{a^2}{n^2} + 2a/n + b^2/n^2)} = e^a = e^{Rez}$$

Vamos a utilizar la fórmula de Moivre.

$$z_m = (1+z/n)^n \ Arg(a+\frac{a+ib}{n})^n = nArg(a+\frac{a+ib}{n}) = n * \arctan(\frac{b/n}{1+a/n}) = n * \arctan(\frac{b}{n+a}) \text{ Llamamos}$$

$$y = b/(n+a) \text{ y usamos } \lim_{y \to 0} \frac{\arctan(y)}{y} = 1, n * \arctan(\frac{b}{n+a}) = \frac{\arctan(\frac{b}{n+a})}{\frac{n+a}{n}} = b$$

Funciones holomorfas

Ejercicio 1

a)

Cauchy Riemman

Solución

c)

$$f(x+iy) = \frac{x^3+iy^3}{x^2+y^2}, \forall (x,y) \in \mathbf{R}^2 \backslash \{(0,0)\}, f(0) = 0$$

$$u(x,y) = Ref = \frac{x^3}{x^2 + y^2}, v(x,y) = Imf = \frac{y^3}{x^2 + y^2}$$

En **C***

$$\frac{\partial u}{\partial x} = \frac{3x^2}{x^2 + y^2} + \frac{x^4(-1)2}{(x^2 + y^2)^2} \frac{\partial v}{\partial y} = \frac{3y^2}{x^2 + y^2} = \frac{y^4(-1)2}{(x^2 + y^2)^2}$$

entonces
$$\frac{\partial u}{\partial y} = \frac{x^3(-1)2y}{(x^2+y^2)^2} \frac{\partial v}{\partial x} = \frac{y^3(-1)2x}{(x^2+y^2)^2}$$

De las dos ecuaciones primeras deducimos

$$3x^2(x+y^2) - 2x^4 = 3y^2(x^2+y^2) - 2y^4$$
 (1)

de últimas dos deducimos

$$2yx^3 = -2xy^3 \implies xy(x^2 + y^2) = 0 \implies xy = 0x^2 + y^2 = 0$$

por tanto

$$x^4 - y^4 = 0 \implies |x| = |y|$$

Ejercicio 2

2 cauchy riemman $Im f = 4x^3 * y - 4xy^3$

Ejercicio 3

3 cauchy rieman a = -c

Ejercicio 4

Enunciado

Funciones holomorfas Ejercicio 5

Solución 4 cauchy rieman, derivar respecto x y respecto y Ref(x, y) = u(x, y) Im f(x, y) = v(x, y)

Los casos extremos son a = 0 o b = 0, donde o la imagen o la parte real que quedan serían constantes.

$$au(x,y) + bv(x,y) = c - bv(x,y) = c - au(x,y) v(x,y) = c' - a'u(x,y)$$
 Derivamos

$$\frac{\partial v(x,y)}{\partial x} = \frac{-a'\partial u(x,y)}{\partial x} = \frac{-a'\partial v(x,y)}{\partial y} = \frac{\partial v(x,y)}{\partial y} = \frac{-a'\partial u(x,y)}{\partial y} = -a'\frac{\partial v(x,y)}{\partial x} \text{ implica } \frac{\partial u(x,y)}{\partial x} = -a'\frac{\partial v(x,y)}{\partial y} = -a'\frac{\partial v(x,y)}{\partial y} = -a'\frac{\partial v(x,y)}{\partial x} = -a'\frac{\partial v(x,y)}{\partial x} = -a'\frac{\partial v(x,y)}{\partial x} = -a'\frac{\partial v(x,y)}{\partial y} = -a'\frac{\partial v(x,y)}{\partial y} = -a'\frac{\partial v(x,y)}{\partial x} = -a'\frac{\partial v(x,y)}{\partial x} = -a'\frac{\partial v(x,y)}{\partial y} = -a'\frac{\partial v(x,y)}{\partial y$$

Ejercicio 5

Enunciado

Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$. Probar que si $\overline{f} \in \mathcal{H}(\Omega)$, entonces f es constante.

Solución

 Ω dominio, $f \in \mathcal{H}(C)$ $f + \overline{f} = 2Ref$ g es holomorfa por ser suma de holomorfas, $g \in \mathcal{H}(C)$ $g \in \mathcal{H}(\Omega)$ y su parte imaginaria es constante, por tanto g es constante, entonces

Ref es constante, $f \in \mathbb{H}(\Omega)$, Ω dominio implican que f es constante.

Ejercicio 6

Enunciado

Solución

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 P(\overline{z}) = a_n \overline{z}^n + a_{n-1} \overline{z}^{n-1} + ... + a_1 \overline{z} + a_0$$

$$\overline{P(\overline{z})} = \overline{a_n} z^n + \overline{a_{n-1}} z^{n-1} + \dots + \overline{a_1} z + \overline{a_0}$$

$$\overline{z}^n = \overline{z}...\overline{z} = \overline{(z^n)}$$

resolvemos

$$a \in \Omega^* \longleftrightarrow \overline{a} \in \Omega \text{ } \lim_{z \to a} \frac{f^*(z) - f^*(a)}{z - a} = \lim_{z \to a} \frac{\overline{f(\overline{z})} - \overline{f(\overline{a})}}{z - a} = \lim_{z \to a} \frac{\overline{\overline{f(\overline{z})}} - \overline{f(\overline{a})}}{z - a} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a}} = \lim_{z \to a} \overline{\frac{f(\overline{z}) - f(\overline{a})}{z - a$$

Ejercicio 7

Enunciado

Solución

Idea 7 jugar con los grados del polinomio

Suponemos que existe una función racional que es la exponencial:

Funciones holomorfas Ejercicio 7

$$R(z) = \frac{\sum_{i=0}^{k} \lambda_i z^i}{\sum_{i=0}^{m} \mu_i z^i} = \frac{A(z)}{B(z)}$$

$$R(z) = R'(z) = \frac{A'(z)B(z) - A(z)B'(z)}{B(z)^2} = \frac{A(z)}{B(z)}$$
 (Tachamos los $B(z)$)

$$A(z) = A'(z) - \frac{B'(z)A(z)}{B(z)}, B(z)A(z) = A'(z)B(z) - B'(z)A(z), \text{ esto se da } \forall z \in D(a,r) \text{ con } a \in \mathbb{C}, r > 0$$

Tienes dos polinomios que son iguales en un entorno no vació. Para deducir lo último tienes que pensar que son polinomios iguales en un montón de puntos.

$$gr(B(z)) + gr(A(z)) \le \max\{gr(A'(z)) + gr(B(z)), gr(A(z)) + gr(B'(z))\}$$

Por tanto llegamos a una contradicción, nuestra hipótesis no era cierto.

Funciones analíticas

Ejercicio 1

b)

Solución

 $\sum_{n\geq 0} z^{2n} = \sum_{n\geq 0} \alpha_n z^n$ con $\alpha_n z 2n + 1 = 0$, $\alpha_{2n} = 1$ hay que ver el límite superior de la sucesión lím sup $|\alpha_n| = 1 \implies R = \frac{1}{1} = 1$

c)

Solución

 $\sum_{n\geq 0} 2^n z^{n!}$, si $|z| \geq 1$, entonces la serie diverge, si |z| < 1 $\sqrt[n]{|2^n z^n!|} = \sqrt[n]{2^n |z|^{n!}} = 2 * |z|^{(n-1)!} \to 0$ por tanto $\sum_{n\geq 0} |2^n z^{n!}| < \infty \implies \sum_{n\geq 0} 2^n z^{n!} < \infty$, entonces R = 1.

e)

Solución

 $\sum_{n\geq 0} (n+a^n) z^n$ con $a\in \mathbb{R}^+$. Lo separamos en dos series, calculamos los radios de convergencia por separado y cogemos el menor.

$$\textstyle \sum_{n\geq 0} nz^n \ \mathrm{y} \ \textstyle \sum_{n\geq 0} a^n z^n$$

 $a^n \le n + a^n \le (n+1)a^n$ en los extremos el radio de convergencia es 1/a, por tanto el radio de convergencia de $n + a^n$ es 1/a

$$\sum_{n \ge 0} a^n |z|^n \le \sum_{n \ge 0} (n + a^n) |z|^n \le \sum_{n \ge 0} (n + 1) a^n |z|^n$$

Por tanto el radio de convergencia es 1/a.....

//Podemos usar el criterio de la raíz para sucesiones $\sum_{n\geq 0} (n+a^n) z^n \operatorname{con} a \in \mathbb{R}^+$ Calculamos $\lim_{n\to\infty} \sqrt[n]{n+a^n} = \lim_{n\to\infty} \frac{(n+1)+a^{n+1}}{n+a^n} = a(\operatorname{si} a>1)$, $1(\operatorname{si} a<=1)$ por tanto R=1/a(a>1), 1(a<=1)

c)

 $\sum_{n\geq 0} a^{n^2} z^n$, $a\in \mathbb{C}$ raíz n-esima

Funciones analíticas Ejercicio 2

Ejercicio 2

a)

No se reduce el radio de convergencia, se puede intentar el radio de convergencia de las derivadas

Ejercicio 3

Convergen en todo el plano las que a partir de cierto término son 0, o sea, las que son una suma finita

Sea $\sum_{n\geq 0} \alpha_n (z-a)^n$ que converge uniformemente, $S_n = \sum_{k=0}^{n-1} \alpha_k (z-a)^k$ c.u. $\iff S_n$ es uniformemente de Cauchy $\iff \forall \varepsilon > 0, \exists m \in \mathbb{N} : p \geq q \geq n \implies |S_p(z) - S_q(z)| < \varepsilon \forall z \in \mathbb{C}$ Vemos que los polinomios divergen en infinito. Sea $p \in \mathbb{P}[\mathbb{C}]$, $\lim_{|z| \to \infty} p(z) = \infty \iff gr(p) > 0$

Vemos que $|S_p(z) - S_q(z)|$ es un polinomio que está acotado, tiene que ser constante para no diverger en infinito, en particular es la constante 0, ya que $S_p(a) = S_q(a)$, por tanto $\sum_{q=m}^{p-10} \alpha_n (z-\alpha)^n = 0 \implies \alpha_n = 0 \forall n \geq m$

Ejercicio 4

Idea:

llamar w a (w-1)/(z-1), y mirar cuando la función tiene imagen que cae en el disco de centro 0 y radio 1, afinar para saber cuando un subconjunto de C po esta función cae dentro de un subconjunto compacto donde el sumatorio converja

Funciones elementales

Ejercicio 1

Solución

$$f(0) = f(0+0) = f(0)^2 f(0) = 0 6 f(0) = 1$$

Si f(0) = 0 la función es constante. EN el caso $f(0) \neq 0$, f(0) = 1, Si f es derivable en $\alpha \in \mathbb{C}$

 $\exists \lim_{n\to 0} \frac{f(\alpha+h)-f(\alpha)}{n}$ vemos que cumple la fórmula de adición $\frac{f(\alpha+h)-f(\alpha)}{n} = f(\alpha)\frac{f(n)-f(0)}{n} \iff f$ es derivable en 0 Y eso se puede aplicar $\forall z \in \Omega$

Ahora encontramos todas las funciones enteras que cumplan la condición del enunciado.

Sea *z* ∈ Ω,
$$f(z) = 0$$
, $f(z) = e^{wz}$: $w ∈ C$

Sea f tal que $f \in \mathbb{H}(\mathbb{C})$

f'(z)=f(z) $\lim_{h\to 0}\frac{f(h)-f(0)}{h}$ $(f(z)e^{-wz})'=f'(z)e^{-w}z+(-w)+ze^{-wz}=f(z)we^{-wz}-f(z)we^{-wz}=0$ las funciones son la misma salvo una constante En el punto 0 las dos funciones valen lo mismo, por lo que la función es la constante 1, ya que f(0)=1

El ejemplo es $f(z) = e^{Re(z)}$

Ejercicio 2

 $e^z = e^{Re(z)(\cos(Imz) + i\sin(Imz))}$ $B_V = \{z \in \mathbb{C} : a \le Rez \le b\}, a, b \in \mathbb{R} \text{ con } a < b \ B_H = \{z \in \mathbb{C} : a \le Imz \le b\} \text{ si } a \le Rez \le b, e^a \le e^{Rez} \le e^b \text{ lo que pasa es que se puede mover en toda la circunferencia unidad}$

cuando la parte imaginaria se puede mover donde quiera le das infinitas vueltas a la circunferencia unidad. Tenemos que

 \boldsymbol{e}_{V}^{B} e la corona circular de centro 0 y radios \boldsymbol{e}^{a} y \boldsymbol{e}^{b}

donde

 $a \leq Imz \leq b$

Tenemos que $\exp(B_H)$ es el sector del plano encerrado entre los ángulos a y b

Ejercicio 4

Enunciado

Funciones elementales Ejercicio 5

Probar que si $\{z_n\}$ y $\{w_n\}$ son sucesiones de números complejos, con $z_n \neq 0$ para todo $n \in \mathbb{N}$ y $\{z_n\} \to 1$, entonces

$$\{w_n(z_n-1)\} \to \lambda \in \mathbb{C} \implies \{z_m^{w_n}\} \to e^{\lambda}$$

Solución Como la función exponencial es continua $\{w_n(z_n-1)\} \to \lambda \implies \{e^{w_n(z_n-1)}\} \to e^{\lambda}$

$$\lim\{\log(z_n)\} = 0 \implies \lim\{z_n - \log(z_n)\} = 1 \implies \lim\{w_n(z_n - \log(z_n)) - w_n\} = 0$$

$$\lim\{z_n^{w_n} = e^{\log(z_n) - w_n}\} = \lim\{e^{w_n(z_n - 1)}\} \Longleftrightarrow \lim\{\frac{e^{w_n(z_n - 1)}}{e^{w_n(\log(z_n))}} = e^{w_n(z_n - \log(z_n)) - w_n}\} = 1$$

Vemos que $z_n^{w_n} = e^{w_n \frac{\log(z_n)}{z_n - 1}(z_n - 1)} = e^{w_n(z_n - 1) \frac{\log(z_n)}{z_n - 1}}$ Sabemos que $\frac{\log(z_n)}{z_n - 1} \to 1$ ya que $\lim_{z \to 1} \frac{\log(z) - \log(1)}{z - 1} = \log'(1) = 1/1$

Ejercicio 5

Enunciado

Estudiar la convergencia puntual, absoluta y uniforme de la serie de funciones $\sum_{n\geq 0} e^{-nz^2}$

Solución

La serie converge puntualmente si, y sólo si, $|\frac{1}{e^{z^2}}| < 1 \iff 1 < |e^{z^2}| \iff 0 < Rez^2 = (Rez)^2 - (Imz)^2 \iff |Rez| > |Imz|$

donde en la última implicación hemos usado $e^{z^2} = e^{Rez^2}e^{Imz^2}$

$$Rez^2 = (Rez)^2 - (Imz)^2, Rez^2 > 0 \Longleftrightarrow |Rez| > |Imz|$$

Vemos ahora la convergencia uniforme

 $A=\{z\in\mathbb{C}:(Rez)^2>(Imz)^2\}$ Si $B\subset A$ y satisface que $\inf_{z\in B}[(Rez)^2-(Imz)^2]>0$, entonces hay convergencia uniforme en B

Ejercicio 6

Enunciado

Probar que $a, b, c \in \mathbb{T}$ son vértices de un triángulo equilátero si, y sólo si, a + b + c = 0.

Solución

$$\{a,b,c\} = \{e^{(\lambda - 2/3\pi)}, e^{\lambda i}, e^{(\lambda + 2/3\pi)i}\}\$$

 \Rightarrow

$$e^{2/3\pi i}(a+b+c) = e^{2/3\pi i}a + e^{2/3\pi i}b + e^{2/3\pi i}c = a+b+c \implies a+b+c = 0$$

Funciones elementales Ejercicio 7

 \Leftarrow

$$a'=\frac{a}{a}=1, b'=\frac{b}{a}, c'=\frac{c}{a}$$
 $b'=e^{\theta i}, c'=e^{\gamma i}=-b-1$

$$a + b + c = 0 \implies a' + b' + c' = 0 \implies 1 + b' + c' = 0 \implies c' = -b' - 1 \cos \gamma, \theta \in]-\pi, \pi[$$

De lo que deducimos que $(-\cos(\theta) - 1) - i\sin(\theta) = (\cos(\gamma)) + i(\sin(\gamma))$

$$-\in(\theta)=\sin(\gamma)\implies\theta=-\gamma-\cos(\theta)-1=\cos(\gamma)$$
 por tanto $\theta=\pm\frac{2\pi}{3}=-\gamma$

Ejercicio 7

Solución

 $a \in \Omega$ y vemos que es derivable por la definición lím $_{z \to a}$ $\frac{\phi(z) - \phi(a)}{z - a}$ $\frac{\phi(z) - \phi(a)}{\phi(z) + \phi(a)} =$ lím $_{z \to a}$ $\frac{z - a}{z - a}$ $\frac{1}{\phi(z) + \phi(a)} = \frac{1}{2\phi(a)} =$ $\phi'(a)$ donde hemos usado que $\phi(a) \neq 0$

Ejercicio 8

Enunciado

Probar que, para todo $z \in D(0,1)$ se tiene:

a)
$$\sum_{n=1} \infty \frac{(-1)^{n+1}}{n} z^n = \log(1+z)$$

Solución a) $\log(1+z) \in \mathbb{H}(D(0,1))$ y $(\log(1+z))' = \frac{1}{1+z} \ \forall z \in D(0,1)$

 $\frac{1}{1+z}=\frac{1}{1-(-z)}=\sum_{n=0}^{\infty}(-1)^nz^n$ por otra parte la serie de potencias

 $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n} z^n$ tiene radio de convergencia 1 y su suma $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^n = f(z)$ es holomorfa en D(0,1) y su derivada se calcula término a término

$$f'(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} n z^{n-1} = \sum_{n=0}^{\infty} (-1)^n z^n$$

Entonces $f'(z) = g'(z) \ \forall z \in D(0,1)$, por tanto $f \ y \ g$ differen en una constante.

Como $g(0) = \log(1) = 0 = f(0)$ con lo que tenemos que f y g son iguales en D(0,1)

Eiercicio 9

Solución

 $f(z) = \log(\frac{1+z}{1-z})$ la función es holomorfa en $\mathbb{C}\setminus\{1\}$ sabemos que $\log\in\mathbb{H}(\mathbb{C}^*\setminus\mathbb{R}^-)$ y vemos cuando la función logaritmo cae dentro de dicho conjunto

de forma intuitiva $\frac{1+z}{1-z} \in \mathbb{R}^- \iff \exists r > 0: z \neq 1, \frac{1+z}{1-z} = -r \iff 1+z = rz - r \iff z(r-1) = 1+r \iff z = \frac{1+r}{r-1}$

Funciones elementales Ejercicio 10

Viendo que $g(z) = \frac{1+z}{1-z} \in \mathbb{H}(\Omega)$ y $g(\Omega) \subseteq \mathbb{C}^* \setminus \mathbb{R}^-$ podemos asegurar que $f \in \mathbb{H}(\mathbb{C})$ por composición.

$$f'(z) = \frac{\frac{1-z+(1+z)}{(1-z)^2}}{\frac{1+z}{1-z}} = \frac{2}{1-z^2}$$

Siendo $\xi \in \mathbb{H}(\Omega)$, entonces $\xi'(z) = \frac{1}{1+z} + \frac{1}{1-z} = \frac{2}{1-z^2}$

Pista hacer $\frac{2}{1-z^2}$ en serie de potencias

Ejercicio 10

Pista $z^{\phi} = e^{\phi \log z} \operatorname{con} \Omega, \Omega_{\phi} \subset \mathbb{C}^* \backslash \mathbb{R}^-$

$$f^{-1}(z) = \phi^{\frac{1}{\phi \log z}} = z^{1/phi}$$

Ejericicio 12

Pista

 $\sin(nz) = \frac{e^{inz} - e^{-inz}}{2i}$, entonces $\frac{1}{2i} \sum_{n \geq 0} \frac{e^{inz} - e^{-inz}}{2^n}$ Tenemos que ver cuando, para un $z \in \mathbb{C}$ fijo, estudiar la convergencia de las series $\sum_{n \geq 0} \frac{e^{inz}}{2^n}$ y $\sum_{n \geq 0} \frac{e^{-inz}}{2^n}$

$$e^{inz} = e^{in(Rez + iImz)} = e^{-nImz + inRez} = e^{-nImz}e^{inRez}$$
con $|e^{inRez}| = 1$

$$\left|\frac{e^{inz}}{2^n}\right| = \frac{e^{-nImz}}{2^n} = \left(\frac{e^{-Imz}}{2}\right)^n$$
 entonces

$$\sum_{n\geq 0} |\frac{e^{inz}}{2^n}|$$
 converge $\iff e^{-Imz} < 2 \iff -Imz < \ln 2 \iff -\ln 2 < Imz$

y tenemos convergencia uniforme en $B\subset A=\{z\in\mathbb{C}:|Imz|<\ln 2\}$ tal que $\sup_{z\in B}|Imz|<\ln 2$

Integral curvilínea

Ejercicio 1

Enunciado

Solución

$$\begin{split} \gamma: [0,r] &\to \mathbb{C}, \gamma(s) = \alpha + s, s \in [0,r] \\ \int_{[\alpha,\alpha+r]} f(z) dz &= \int_0^r f(\alpha+s) \gamma'(s) ds, \text{donde } \gamma'(s) = 1 \forall s \in [0,r] \\ \int_0^r f(\alpha+s) \gamma'(s) ds &= \int_0^r f(\alpha+s) ds \\ \xi: [0,r] &\to \mathbb{C}, \, \xi(s) = \alpha + is \forall s \in [0,r] \\ \int_{[\alpha,\alpha+ir]} f(z) dz &= \int_0^r f(\alpha+is) \gamma'(s) ds = i \int_0^r f(\alpha+is) ds \end{split}$$

Ejercicio 2

Enunciado

Solución

Tenemos que probar que lím $_{r \to \infty} \int_{\gamma_r} \frac{z dz}{z^3 + 1} = 0$

 $|\int_{\gamma_r} \tfrac{z}{z^3+1} dz| \leq \int_{\gamma_r} \tfrac{|z|}{|z^3+1|} dz \leq l(\gamma_r) M(r) \text{ donde } M(r) > 0 \text{ satisface que } \tfrac{|z|}{|z^3+1|} \leq M(r) \forall z \in \gamma_r * M(r)$

Dado $z \in \mathbb{C}(0, r)^*$, |z| = r

$$\frac{|z|}{|z^3+1|} \le \frac{r}{|z^3|-1} = \frac{r}{r^3-1}$$

Por tanto $l(\gamma_r)M(r)=2\pi r\frac{r}{r^3-1}$ y $\lim_{r\to\infty}\frac{r}{r^3-1}=0$

Para la otra integral tenemos que probar que

$$\lim_{r\to\infty} \int_{\gamma_r} \frac{z^2 e^z}{z+1} dz = 0$$

$$\left| \int_{\gamma_r} \frac{z^2 e^z}{z+1} dz \right| < \int_{\gamma_r} \frac{|z|^2 |e^z|}{z+1} dz$$

Si $z \in \gamma_r^*$

$$|z|^2 = |-r + is|^2 \le (r+1)^2$$
 $s \in [0,1]$ $|z+1| \ge r-1$

Como
$$z \in \gamma_r^*$$
, $|e^z| = e^{Rez} = e^{-r}$

Integral curvilínea Ejercicio 3

Ejercicio 3

Enunciado

Solución

$$\int_{\mathbb{C}(0,r)} \frac{\log(i+z)}{z} dz$$

donde
$$0 < r < 1$$
, $\mathbb{C}(0, r)^* \subset D(0, 1)$ definimos $f(z) = \log(1 + z)$, $f \in \mathcal{H}(D(0, 1))$

Usando la fórmula de Cauchy para la circunferencia:

$$\int_{\mathbb{C}(0,r)} \frac{\log(i+z)}{z} dz = f(0) 2\pi i = 0$$

Sin usar la fórmula de Cauchy para la circunferencia vemos:

 $\log(1+z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$, la serie $\sum_{n\geq 1} (-1)^{n+1} \frac{z^n}{n}$ converge uniformemente sobre compactos de D(0,1).

La sucesión $\{\frac{1}{z}\}$ está acotada en el compacto $\mathbb{C}(0,1)^*$

Usando **observación** $\frac{1}{z}\sum_{n\geq 1}(-1)^{n+1}\frac{z^n}{n}$ converge uniformemente en $\mathbb{C}(0,r)^*$ a $\frac{\log(1+z)}{z}$

Observación

 $\{f_n\}$ converge uniformemente en B a f y $g: B \to \mathbb{C}$ está acotada en B, entonces $\{gf_n\}$ converge uniformemente en B a gf

$$(\exists M > 0 : |g(z)| \le M \quad \forall z \in B)$$

$$0 = \int_{\mathbb{C}(0,r)} \frac{\log(1+z)}{z} dz = \int_{-\pi}^{\pi} \frac{\log(1+re^{it})}{re^{it}} dt = i \int_{-pi}^{\pi} \log(1+re^{it}) dt \ i \int_{-\pi}^{\pi} \ln|1+re^{it}| dt - \int_{-\pi}^{\pi} arg(1+re^{it}) dt \\ \Longrightarrow \int_{-\pi}^{\pi} \ln|1+re^{it}| dt = 0$$

Sabemos que $\log(1+re^{it})=\ln|1+re^{it}|+i*arg(1+re^{it})$ y que $\gamma(t)=re^{it}, \gamma:[-\pi,\pi]\to\mathbb{C}, \gamma'(t)=ire^{it}$

también sabemos que $|1+re^{it}| = ((1+r\cos(t))^2 + r^2\sin^2(t))^{1/2} = (1+2r\cos(t)+r^2\cos^2(t)+r^2\sin^2(t))^{1/2} = (1+2r\cos(t)+r^2\cos^2(t$

por tanto
$$0 = \int_{-\pi}^{\pi} \ln|1 + re^{it}| dt = 1/2 \int_{-\pi}^{\pi} \ln(1 + 2r\cos(t) + r^2) dt$$

Como sabemos que el coseno es par $1/2\int_{-\pi}^{\pi}\ln(1++2r\cos(t)+r^2)dt=\int_{0}^{\pi}\ln(1+2r\cos(t)+r^2)dt$

Ejercicio 4

Enunciado

Integral curvilínea Ejercicio 5

Solución

Sabemos que $f \in D(0,1)$, teniendo que $|f(z)-1| < 1, \forall z \in D(0,1)$

Sabemos que f no se anula en D(0,1) y deducimos que $f(D(0,1)) \subset D(1,1)$. Por tanto $\log(f) \in \mathcal{H}(D(0,1))$

 $\log(f(z))' = \frac{f'(z)}{f(z)} \Longrightarrow \frac{f'}{f}$ admite primitiva holomorfa en D(0,1) y $\mathbb{C}(0,r) \subset D(0,1)$ es un camino cerrado, por tanto $\int_{\mathbb{C}(0,r)} \frac{f'(z)}{f(z)} dz = 0$

Ejercicio 5

Enunciado

Solución

$$\frac{1}{1+z^2} = \frac{1}{(z-i)(z+i)} = \frac{A}{z-i} + \frac{B}{z+i} = \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right]$$

Por tanto

$$\int_{\mathbb{C}(i,1)} \tfrac{1}{1+z^2} dz = \tfrac{1}{2i} \left[\int_{\mathbb{C}(i,1)} \tfrac{1}{z-i} dz - \int_{\mathbb{C}(i,1)} \tfrac{1}{z+i} dz \right] \neq 0$$

La primera es $2\pi i$

La segunda integral es 0 por el teorema de Cauchy para dominios estrellados, teniendo que $\mathbb{C}(i,1) \subset D(i,3/2)$.

Ejercicio 6

Idea

 $\Omega = \mathbb{C} \setminus \{iy : |y| > 1\}$ arctan $\in \mathcal{H}(\Omega)$ y arctan es una primitiva de $\frac{1}{1+z^2}$

 $\sigma^*\subset\Omega$ y σ es un camino cerrado.

Con esa información sabremos que $\int_{\sigma} \frac{1}{1+z^2} dz = 0$

Teorema local de Cauchy

Ejercicio 1

Solución

Fijo $z \in \mathbf{C}$ con |z-a| > r, $\exists r' > 0 : |z-a| > r' > r$ Consideramos $\Omega = D(a,r')$, $f(w) = \frac{1}{w-z}$, $f \in \mathcal{H}(D(a,r'))$ D(a,r') es convexo, en particular estrellado, por tanto, usando TLC y TCDE $\int_{C(a,r)} \frac{dw}{w-z} = 0$

Ejercicio 2

Solución

Fijo
$$z \in D(a, R)$$
 Fijo $0 < r < R : |z - a| < r < R, \overline{D}(a, r) \subset D(a, R)$

Por la fórmula de Cauchy para la circunferencia $f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w-z} dw$

$$\begin{split} &\left| \frac{1}{2\pi i} \int_{C(0,R)} \frac{f(w)}{w - z} dz - \frac{1}{2\pi i} \int_{C(0,r)} \frac{f(w)}{w - z} dw \right| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} \frac{f(a + Re^{it})iRe^{it}}{a + Re^{it} - z} dt - \int_{-\pi}^{\pi} \frac{f(a + re^{it})ire^{it}}{a + re^{it} - z} dt \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{f(a + Re^{it})R}{a + Re^{it} - z} - \frac{f(a + re^{it})r}{a + re^{it} - z} \right| dt \end{split}$$

$$g:[r,R]x]-\pi,\pi[\to\mathbb{C},g(p,t)=\frac{f(a+pe^{it})p}{a+pe^{it}-z}\text{ por lo que el término de la integral queda}\,|g(R,t)-g(r,t)|$$

g es una función continua en un compacto, por lo tanto es uniformemente continua.

Dado
$$\varepsilon > 0 \exists \delta : si \| (p,t) - (p',t') \|_{\infty} < \delta \implies |g(p,t) - g(p',t')| < \varepsilon$$
, y lo utilizamos para $(p,t) = (R,t)$ y $(p',t') = r,t$, si $|R-r| < \delta$ entonces $|g(R,t) - g(r,t)| < \varepsilon$

Por lo tanto

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}\left|\frac{f(a+Re^{it})R}{a+Re^{it}-z}-\frac{f(a+re^{it})r}{a+re^{it}-z}\right|dt\leq\frac{1}{2\pi}\varepsilon2\pi\text{ en el caso de que }|R-r|<\delta$$

Ejercicio 3

Solución

$$\frac{1}{(z-b)(z-c)} = \frac{1}{b-c} \big[\frac{1}{z-b} - \frac{1}{z-c} \big]$$

Vemos primero el caso $b \neq c$

Tenemos tres subcasos

- b interior, c exterior $\int_{C(a,r)} f(z) dz = \frac{1}{b-c} \left[\int_{C(a,r)} \frac{dz}{z-b} \int_{C(a,r)} \frac{dz}{z-c} \right] = \frac{1}{b-c} (2\pi i (binterior) 0(ej1))$
- by c interiores $\int_{C(a,r)} f(z) dz = \frac{1}{b-c} [2\pi i 2\pi i] = 0$
- by c exteriores, por el ejercicio 1 ambas partes son 0: $\int_{C(a,r)} f(z) dz = 0 0 = 0$

Ahora vemos el caso b=c $f(z)=\frac{1}{(z-b)^2}$ tiene primitiva holomorfa en \mathbb{C}^* , $\frac{-1}{z-b}$ $\implies \int_{C(a,r)} f(z) dz = 0$

Ejercicio 4

Solución

•

$$\int_{C(0,r)} \frac{z+1}{z(z^2+4)} dz, \text{ donde } r \neq 2, z \neq \pm 2i$$

$$\frac{z+1}{z(z^2+4)} = \frac{A}{z} + \frac{B}{z-2i} + \frac{C}{z+2i}, \text{ donde } A = 1/4, B = 1/8 - i/4, C = -1/8 - i/4$$

Por tanto

$$\int_{C(0,r)} \frac{z+1}{z(z^2+4)} dz = \tfrac{1}{4} \int_{C(0,r)} \tfrac{dz}{z} + (\tfrac{1}{8} - \tfrac{i}{4}) \int_{C(0,r)} \tfrac{1}{z-2i} dz + (-\tfrac{1}{8} + \tfrac{i}{4}) \int_{C(0,r)} \tfrac{1}{z+2i} dz$$

para $r \neq 2$ las dos últimas integrales se anulan, y por tanto $\frac{1}{4} \int_{C(0,r)} \frac{dz}{z} = \frac{2\pi i}{4} = \frac{\pi}{2}$

Ejercicio 5

Solución

 $R > \max\{|a|, |b|\}$

$$\int_{C(0,R)} \frac{f(z)}{(z-a)(z-b)} dz = \frac{1}{b-a} \left[\int_{C(0,R)} \frac{f(z)}{z-b} dz - \int_{C(0,R)} \frac{f(z)}{z-a} dz \right]$$

Por el ejercicio 3 tenemos

$$\frac{f(z)}{(z-a)(z-b)} = \frac{f(z)}{b-a} \left[\frac{1}{z-b} - \frac{1}{z-a} \right]$$

Por la fórmula de Cauchy para la circunferencia

$$= \tfrac{1}{b-a} \left[\int_{C(0,R)} \tfrac{f(z)}{z-b} dz - \int_{C(0,R)} \tfrac{f(z)}{z-a} dz \right] = 2\pi i f(b) - 2\pi i f(a)$$

Consecuencia

Si $\exists M > 0 : |f(z)| \le M \forall z \in \mathbb{C}$

$$\frac{2\pi |f(b)-f(a)|}{|b-a|} = \frac{|2\pi i (f(b)-f(a))|}{|b-a|} = \left| \int_{C(0,R)} \frac{f(z)}{|z-a|(z-b)} dz \right| \leq \int_{C(0,R)} \frac{|f(z)|}{|z-a||z-b|} dz \leq \frac{M}{(R-|a|)(R-|b|)} 2\pi R \text{ que tiende a } 0 \text{ cuando } R \to \infty \text{ ya que } |z-a| \geq R - |a| \text{ y } |z-b| \geq R - |b|$$

Equivalencia entre analiticidad y holomorfía

Ejercicio 1

Solución

$$\phi(w,z) = \frac{\varphi}{w-z},$$

$$\phi: \gamma^* x \mathbb{C} \backslash \gamma^* \to \mathbb{C}$$

 ϕ es continua

$$\phi_w(z) = \phi(w, z)$$

$$z \to \phi_w(z)$$

$$\phi_w \in \mathcal{H}(\mathbb{C}\backslash\{w\}), \phi_w \in \mathcal{H}(\mathbb{C}\backslash\gamma^*)$$

Por tanto por el teorema de holomorfía de una integral dependiente de 1 parámetro $f \in \mathcal{H}(\mathbb{C}\backslash \gamma^*)$

Podemos proceder también de otra forma:

Fijo
$$a \in \mathbb{C} \setminus \gamma^*$$
 lí $m_{z \to a} \frac{f(z) - f(a)}{z - a} = \lim_{z \to a} \frac{\int_{\gamma} \frac{\varphi(w)}{w - z} dw - \int_{\gamma} \frac{\varphi(w)}{w - a} dw}{z - a}$

$$= \lim_{z \to a} \int_{\gamma} \varphi_{\frac{(w-a)-(w-z)}{(z-a)(w-z)(w-a)}} dw = \lim_{z \to a} \int_{\gamma} \varphi(w)_{\frac{dw}{(w-z)(w-a)}}$$

Sabemos que podemos intercambiar límite e integral

Nos podemos restringir a un compacto para ver $\psi:\phi_{|\gamma*\times\overline{D}(a,r)}\to\mathbb{C}$ es continua con r suficientemente pequeño y $\psi(w,z)=\frac{\varphi(w)}{(w-z)(w-a)}$

tenemos que $\gamma^* \times \overline{D}(a,r)$ es compacto, por tanto ϕ es uniformemente continua.

La fórmula para las derivadas la podemos obtener por inducción:

k = 1 lo hemos hecho, supuesto cierto para k, vemos para k + 1

Ejercicio 2

Solución

 $(1+z)^{\alpha} = e^{\alpha \log(1+z)} \in \mathcal{H}(D(0,1))$ por tanto es analítica en ese disco.

Por el Teorema de desarrollo de Taylor $\sum_{n\geq 0} \frac{f^{n)}(0)}{n!} z^n$

Ejercicio 3

Solución

a

$$f'(z) = \frac{2z - 3}{z^2 - 3z + 2}$$

$$\frac{1}{z^2 - 3z + 2} = \frac{A}{2 - z} + \frac{B}{1 - z}$$

Por tanto el desarrollo en serie de potencias de la original se puede conseguir a partir de desarrollo de las dos partes por separado.

$$f'(z) = (2z - 3) \sum_{n \ge 0} \left(\frac{A}{2} \left(\frac{z}{2}\right)^n + Bz^n\right) = (2z - 3) \sum_{n \ge 0} \left(\frac{A}{2^{n+1}} + B\right) z^n$$
$$= \sum_{n \ge 0} \left(\frac{A}{2^n} + 2B\right) z^{n+1} - \sum_{n \ge 0} 3\left(\frac{A}{2^{n+1}} + B\right) z^n$$

que nos da como resultado

$$f'(z) = -\left(\frac{3A}{2} + B\right) + \sum_{n \ge 1} \left(\frac{A}{2^{n+1}} - B\right) z^n$$

Ejercicio 6

Solución

$$f(z) = \frac{1}{1-z-z^2} = \frac{1}{(z-a_1)(z-a_2)} z^2 + z - 1 = 0 \iff z = \frac{-1\pm\sqrt{5}}{2}$$
, donde $a_1 = \frac{-1+\sqrt{5}}{2}$, $a_2 = \frac{-1-\sqrt{5}}{2}$ $f(z) = \frac{1}{(a_1-z)(a_2-z)} = \frac{1}{a_1-a_2} \left[\frac{1}{a_1-z} - \frac{1}{a_2-z} \right]$ Expresamos α_n en términos de a_1 y a_2 $a_1 + a_2 = -1$ $a_1 * a_2 = -1$ $(z-a_1)(z-a_2) = z^2 - (a_1 + a_2) + a_1 a_2$

 α_{n+2} a partir de aquí se puede expresar en términos de α_n y α_{n+1}

Ejercicio 1

Solución

a)

$$f(z) = \sum_{n \ge 0} \frac{f^{n}(0)}{n!} z^n f^{n}(0) = n, \text{ vemos } \left\{ \frac{n}{n!} \right\}, \left\{ \sqrt[n]{\frac{n}{n!}} \right\} \to 0 \implies R = \infty,$$

b)

 $\frac{f^{n)}(0)}{n!} = \frac{(n+1)!}{n!} = n+1, \sqrt[n]{n+1} \implies R=1$ Por tanto no hay función entera que cumpla la condición

c)

$$\frac{f^{n)}(0)}{n!} = \frac{2^n n!}{n!} = 2^n, \ \sqrt[n]{z^n} = 2 \implies R = 1/2$$

d)

$$\frac{f^{n)}(0)}{n!} = \frac{n^n}{n!}, \sqrt[n]{\frac{n^n}{n!}}$$
 por el criterio del cociente $\implies R = \frac{1}{e} < \frac{1}{2}$

Ejercicio 12

Solución

$$\begin{split} &\int_{C(0,2)} \frac{dz}{z^2(z-1)^2} \, f(z) = \frac{1}{z^2(z-1)^2} \\ &\phi(z) = \frac{1}{z} \\ &\gamma^* = C(0,1/2)^* \, \phi(\gamma^*) = C(0,2)^* \, \mathrm{Si} \, \gamma(t) = \frac{1}{2} e^{-it} \, \phi(\gamma(t)) = 2 e^{it} \implies \phi o \gamma = C(0,2) \end{split}$$

$$\int_{C(0,2)} \frac{dz}{z^2(z-1)^2} = \int_{C(0,1/2)} \frac{1}{\frac{1}{w^2}} \frac{1}{\frac{1}{w}-1)^2} \frac{1}{w^2} dw = \int_{C(0,1/2)} \frac{w^2 dw}{(1-w)^2}$$

Ceros de las funciones holomorfas

4 Existe la posibilidad de que f sea constante.

En otro caso, si f no es constante usando Liouille sabemos que $f(\mathbb{C})$ es denso en \mathbb{C} Entonces $\forall z \in f(\mathbb{C})$, $\exists : f(c) = z \implies f(z) = f(f(c)) = f(c) = z$

Por tanto

$$f(\mathbb{C}) \cap \mathbb{C} \implies f(z) = z \forall z \in \mathbb{C}$$

también se puede razonar de la siguiente forma: $\forall z \in \mathbb{C}, \exists \{z_n\}_{n \in \mathbb{N}}$ tal que $z_n \in f(\mathbb{C}) \forall n \in \mathbb{C} \forall n \in \mathbb{N}$ y $\{z_n\} \to z \implies \{f(z_n)\} \to f(z) = z \implies f(z) = z \forall z \in \mathbb{C}$

Ejercicio 8

f'(g(z))g'(z) = 0 entonces puede darse f'(g) = 0 o g' = 0

Ejercicio 9

Definimos $h(z) = \frac{1}{f(1/z)}$, como $\lim_{w\to\infty} f(w) = \infty$ por tanto $\exists R > 0$ tal que si |w| > R, entonces |f(w)| > 1

Si $z \in D(0, 1/R) \setminus \{0\}$, $|z| < 1/R \iff 1/|z| > R$, entonces

podemos definir $h: D(0,1/R)\setminus\{0\} \to \mathbb{C}$, $h\in \mathbb{H}(D(0,1/R)\setminus\{0\})$ y $\lim_{z\to 0} h(z) = \lim_{z\to 0} \frac{1}{f(1/z)} = 0$ y deducimos por el Teorema de Extensión de Riemman $h\in \mathbb{H}(D(0,1/R))$ y h(0)=0

 $\exists g \in \mathbb{H}(D(0,1/R))) \text{ con } g(0) \neq 0, \exists k \in \mathbb{N} \text{ tal que } h(z) = \frac{1}{f(1/z)} = z^k g(z)$

 $f(1/z) = \frac{1}{z^k} \frac{1}{g(z)}$ donde el valor absoluto del segundo término está acotado, por tanto $f(w) = w^k \frac{1}{g(1/w)}$, como $g(0) \neq 0 \exists \delta > 0$, $\exists C > 0$ tal que $D(0, \delta) \subset D(0, 1/R)$ tal que $|g(z)| \geq C > 0 \forall z \in D(0, \delta) \implies \frac{1}{|g(z)|} \leq \frac{1}{C} \forall z \in D(0, \delta) \implies \frac{1}{|g(1/w)|} \leq \frac{1}{C} \forall x \in \mathbb{C} \setminus \overline{D}(0, 1/\delta)$

$$|f(w)| = |w|^k \frac{1}{g(1/w)} \le \frac{1}{C} |w|^k \ \forall w \in \mathbb{C} \backslash \overline{D}(0, 1/\delta)$$

por el ejercicio 2 de esta relación

f es un polinomio, en particular de grado menor o igual que k

10 pista LEMA Si f verifica que $|z|=1 \implies |f(z)|=1$, entonces f(0)=0 o f es constante. PISTA LEMA: $1=|f(z)|^2=f(z)\overline{f(z)} \forall z\in\mathbb{T} \ 1=f(\overline{z})\overline{f(\overline{z})}=f(1/z)\overline{f(\overline{z})} \forall -\text{Si hemos probado eso y f es constante es trivial,}$ en caso contrario $f(0)=0 \implies \exists g\in\mathbb{H}(\mathbb{C}), \exists k\in\mathbb{N} \text{ con } g(0)\neq 0 \text{ tal que } f(z)=z^kg(z) \forall z\in\mathbb{C}$

Ceros de las funciones holomorfas

 $1=|f(z)|=|z|^k|g(z)|z\in \mathbb{T}$ g está en las mismas condiciones que f y por el lema anterior g es constante

Teorema de Morera y sus consecuencias

Ejercicio 5

Sea U con interior no vacío, entonces $\exists z_o \in U$ con $|Im(z_o)| \ge r > 0$

 $\frac{1}{n}|\sin(nz_0)| = \frac{1}{n}\left|\frac{e^{inz_0} - e^{-inz_0}}{2i}\right| = \frac{1}{2n}\left|e^{inz_0} - e^{inz_0}\right|$ entonces si $Im(z_0) \ge r\frac{1}{2n}\left|e^{inz_0} - e^{inz_0}\right| \ge \frac{1}{2n}\left(e^{nIm(z_0)} - e^{-nIm(z_0)}\right)$ que tiende a infinito cuando $n \to \infty$

Ejercicio 6

$$\frac{\sin(nz)}{3^n} = \frac{1}{2i} \left(\frac{e^{inz}}{3^n} - \frac{e^{-inz}}{3^n} \right)$$

 $\left|\frac{e^{inz}}{3^n}\right| = \frac{|e^{inRe(z)-nIm(z)}|}{3^n} = \frac{e^{nIm(z)}}{3^n}$ tenemos que hacer que sea menor que δ^n con $0 < \delta < 1$, lo que pasa solamente cuando $-Im(z) < \log(3) + \log(\delta)$

Ejercicio 7

Es entera por el teorema de holomorfía de integrales dependientes de un parámetro.

Ejercicio 8

a)

$$f_n(z) = \int_0^n \sqrt{t} e^{-tz} dt$$

Usaremos el teorema de holomorfía de integrales dependientes de un parámetro.

Definimos $\gamma_n:[0,n]\to\mathbb{C}, \ \gamma_n(t)=t, \ \gamma'(t)=1$ Tenemos que buscar una función $\Phi_n:\gamma_n^*\times\mathbb{C}\to\mathbb{C},$ $\Phi_n(w,z)=\sqrt{w}e^{-wz}$ Tenemos que

- Φ_n es continua
- $\Phi_n(w,\dot)$ es entera $\forall w \in \gamma_n^*$

por el teorema de holomorfía $f_n\in\mathbb{H}(\mathbb{C})$ y $f_n'(z)=\int_{\gamma_n}\frac{d}{dz}(\Phi_n(w,z))dw$

$$\int_{\gamma_n} (\Phi_n(w,z)) dw = \int_0^n \sqrt{t} e^{-tz} dt$$

b)

Sea $n \in \mathbb{N}$,

$$|f_n(z)-f(z)|=|\int_0^n \sqrt{t}e^{-tz}dt-\int_0^\infty \sqrt{t}e^{-tz}dt|=|\int_n^{\int_n^\infty} \sqrt{t}e^{-tz}dt|$$

Usamos que $|e^{-tz}| = |e^{-tRe(z)-iIm(z)}| = e^{-tRe(z)}$, de esta forma

$$|\int_n^{\int_n^\infty} \sqrt{t} e^{-tz} dt| \leq \int_n^\infty \sqrt{t} e^{-tRe(z)} dt \leq \int_n^\infty \sqrt{t} e^{-tk} dt$$

$$\forall \forall k \in \{z \in \mathbb{C} : Re(z) \ge k > 0\} \text{ tenemos } \int_n^\infty \sqrt{t} e^{-tk} dt \le \int_n^\infty \sqrt{t} e^{-tk} dt \le \int_n^\infty t e^{-tk}$$

Comportamiento local de una función holomorfa

Ejercicio 1

Si existen 0 < r1 < r2 < R tal qe $M(r_2) \le M(r_1)$

$$M(r_1) \ge M(r_2) = \max\{|f(z)| : z \in \mathbb{C}(0, r_2)^*\} = \max\{|f(z)| : z \in \overline{D}(0, r_2)\}$$

por tanto

 $\exists z_0 \in D(0, r_1)$ en el que |f| alcanza un máximo relativo para el disco $D(0, r_2)$, ahora usamos el principio de módulo máximo para deducir que f es constante en $D(0, r_2)$ y por el principio de identidad f es constante en D(0, R)

Ejercicio 2

$$g: \overline{D}(0,1)\setminus\{0\} \to \mathbb{C}, g(z) = f(1/z) \ g \in \mathbb{H}(D(0,1)\setminus\{0\}) \ y \text{ continua en } \overline{D}(0,1)\setminus\{0\}$$

 $\lim_{z\to 0} g(z) = \lim_{w\to\infty} f(w) \in \mathbb{C}$ por tanto, por el teorema de extensión de Riemann $g\in \mathbb{H}(D(0,1))$

Ahora se aplica el resultado del ejercicio 1 a g y sacamos la conclusión sobre f.

Ejercicio 3

$$\lim_{z\to\infty} \frac{P(z)}{z^n} = a_n$$

 $f(z) = \frac{P(z)}{z^n}$, $f \in \mathbb{H}(\{z \in \mathbb{C} : |z| > 1\})$ y f es continua en $\{z \in \mathbb{C} : |z| \ge 1\}$ y usando ejercicio 2 sabemos que |f| alcanza su máximo en el conjunto $\{z \in \mathbb{C} : |z| \ge 1\}$ en un punto de \mathbb{T} .

$$\left|\frac{P(z)}{z^n}\right| = |f(z)| \le M \,\forall z \, \text{con} \, |z| \ge 1$$

Ejercicio 4

$$|f(a)| = \left| \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w-a} dw \right| \leq \frac{1}{2\pi} \int_{C(a,r)} \frac{|f(w)|}{|w-a|} dw \leq \frac{l(C(a,r))}{2\pi r} \max\{f(w) : w \in C(a,r)\} = \max\{f(w) : w \in C(a,r)\}$$

Definimos
$$g(z)=f(z)f(-z), |f(0)|^2=|g(0)|=\max\{|g(w)|:w\in\mathbb{T}\}\leq 2\ \forall w\in\mathbb{T}$$

Ejercicio 5

Sabemos que $f \in \mathbb{H}(D(0,1))$ y usamos la desigualdad de la medie en C(0,r)

$$|f(0)| \le \max\{|f(z)| : z \in C(0, r)^*\} = r^n \ \forall 0 < r < 1$$

tomamos límite con $r \to 0$ obtenemos que f(0) = 0

Si f es constante no hay nada que demostrar Si f no es constante, entonces, por el principio de los ceros de una función holomorfa $\exists g \in \mathbb{H}(D(0,1)), \exists k \in \mathbb{N} \text{ con } g(0) \neq 0 \text{ tal que } f(z) = z^k g(z) \ \forall z \in D(0,1)$

Si tenemos que k < n $r^n = \max\{|f(z)| : |z| = r\} = \max\{|z^k g(z)| : |z| = r\} = r^k \max\{|g(z)| : |z| = r\}$ por tanto $\max\{|g(z)| : |z| = r\} = r^{n-k}$ tomando límite en $r \to 0$ tenemos que g diverge en g

Si tenemos que n > k, como máx $\{|g(z)| : |z| = r\} = r^{n-k}$ tomando límite en $r \to 0$ deducimos que g(0) = 0, lo que también es una contradicción.

Luego k = n tenemos $f(z) = z^n g(z) \ \forall z \in D(0,1)$

como máx $\{|g(z)|: |z|=r\}=r^{n-k}$ deducimos que máx $\{|g(z)|: |z|=r\}=1 \ \forall r\in]0,1[$ por el ejercicio 1 tenemos que g es constante.

Ejercicio 7

 $\lim_{z\to\infty}P(z)=\infty \text{ En }\overline{D}(0,R)|P| \text{ alcanza su mínimo absoluto en }\overline{D}(0,R) \text{ que vale } k=\min\{|P(z)|:z\in\overline{D}(0,R)\} \text{ Entonces } \exists R^+>R \text{ tal que si } |z|\geq R^+ \text{ entonces } |P(z)|>k$

En $\overline{D}(0,R) \subset \overline{D}(0,R^+)$ |P| alcanza su mínimo absoluto en $z_0 \in \overline{D}(0,R^+)$ y sabemos que es menor o igual que k.

Como en $C(0, R^+) |P| > k$ entonces $z_0 \in D(0, R^+)$

 $P \in \mathbb{H}(D(0,R^+))$ y |P| alcanza un mínimo relativo en z_0 , por el principio del módulo mínimo $P(z_0) = 0$.

Ejercicio 8

Tenemos un punto $a \in \Omega$ tal que Re(f) tiene un extremo relativo en a. Sabemos que $\exists R > 0$ tal que $D(a,R) \subset \Omega$ y $Re(f(z)) \ge Re(f(a))$ (respectivamente $Re(f(z)) \le Re(f(a))$) $\forall z \in D(a,R)$.

Suponemos que f no es constante y por el teorema de la aplicación abierta, $f(a) \in (D(a,R))$ que es abierto. Sabemos que existsr > 0 tal que $D(f(a),r) \subset f(D(a,R))$, lo que es una contradicción con que Re(f) alcance un extremo relativo en a.

Ejercicio 9

Como C(0,1) es cerrado y acotado su imagen es un compacto. Si $Im(f(z)) = 0 \forall z \in D(0,1) \implies f$ es constante en $\overline{D}(0,1)$. En caso contrario $\exists z_0 \in D(0,1)$ tal que $Im(f(z_0)) \neq 0$, se continuará suponiendo que $Im(f(z_0)) > 0$, en caso de ser menor que 0 se razonaría igual pero usando el mínimo.

 $Im(f):\overline{D}(0,1)\to\mathbb{R}$ es continua en un compacto, por tanto $\exists w_0\in\overline{D}(0,1)$ tal que $Im(f(w_0))=\max\{Im(f(z)):z\in\overline{D}(0,1)\}>0$ Como $Im(f(w_0))>0$ tenemos que $w_0\in D(0,1)$ y Im(f) tiene un máximo relativo en w_0 . Por el ejercicio 8 tenemos que f es constante.

Ejercicio 10

Tenemos un abierto $\Omega \in \mathbb{C}$, $f \in \mathbb{H}(\mathbb{C})$ invectiva. $\overline{D}(a,r) \subseteq \Omega \forall z_0 \in D(a,r)$

$$\int_{C(a,ra,r)} \frac{wf'(w)}{f(w)-f(z_0)} dw \text{ Sabemos que en el caso de un cambio de variable } \int_{\gamma} g(\varphi(w)) \varphi' dw = \int_{\varphi \circ \gamma} g(z) dz$$

Aplicando la fórmula del cambio de variable usando $\gamma = C(a,R), \varphi(w) = f(w), g(z) = \frac{f^{-1}(z)}{den}$ y nos queda $g(\varphi(w)) = \frac{w}{f(w) - f(z_0)}$.

Entonces
$$\int_{C(a,ra,r)} \frac{wf'(w)}{f(w)-f(z_0)} dw = \int_{f(C(a,r))} \frac{f^{-1}(z)}{z-f(z_0)} dz$$

Por el teorema general de Cauchy $(\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{z-z_0}dz=Ind_{\Gamma}(z_0)f(z_0)$, tema 12) nos queda

$$\int_{f(C(a,r))} \frac{f^{-1}(z)}{z-f(z_0)} dz = 2\pi i Ind_{f(C(a,r))}(f(z_0)) * f^{-1}(f(z_0)) = 2\pi i Ind_{f(C(a,r))}(f(z_0)) * z_0$$

El teorema general de Cauchy

Ejercicio 1

Veamos el giro de centro z_0 y ángulo θ . $\varphi(z) = z_0 + (z - z_0)e^{i\theta}$.

La homotecia de centro z_0 y módulo $\lambda \in \mathbb{R}^*$ $\varphi_{\lambda}(z) = z_0 + (z - z_0)\lambda$

Y la traslación de vector $z_0 \varphi_{z_0}(z) = z + z_0$

Sea γ un camino cerrado en $\Omega = \Omega^{\circ}$ y $z \in \Omega \backslash \gamma *$.

Queremos ver si $Ind_{\gamma}(w)=Ind_{\varphi\circ\gamma}(\varphi(w_0))=\frac{1}{2\pi i}\int_{\varphi\circ\gamma}\frac{1}{z-\varphi(w_0)}dz$

Por el ejercicio 11 de la relación 8 deducimos que $\frac{1}{2\pi i}\int_{\varphi\circ\gamma}\frac{1}{z-\varphi(w_0)}dz=\frac{1}{2\pi i}\int_{\gamma}f(\varphi(w))\varphi'(w)dw=\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi'(w)}{\varphi(w)-\varphi(w_0)}dw$

$$\varphi(w) - \varphi(w_0) = (w - w_0)\xi \; z_0 + (w - z_0)e^{i\theta} - (z_0 + (w_0 - z_0))e^{i\theta} \; \varphi'(w) = \xi \in \{e^{i\theta}, \lambda, 1\}$$

De esa forma tenemos $\frac{1}{2\pi i}\int_{\gamma}\frac{\varphi'(w)}{\varphi(w)-\varphi(w_0)}=\frac{1}{2\pi i}\int_{\gamma}\frac{dw}{w-w_0}=Ind_{\gamma}(w_0)$

Ejercicio 2

Sea $\mathbb{C}\setminus\sigma^*$ tiene una única componente conexa no acotada U y $\forall z\in U, Ind_{\sigma}(z)=0=\Omega=\{z\in\mathbb{C}:\exists t\in[-\pi,\pi], z=|z|e^{it}, |z|<\varphi(t)\}$

Como $\varphi: [-\pi, \pi] \to \mathbb{R}^+$ es continua alcanza su mínimo absoluto que es positivo.

 $0 \in \Omega$ y Ω es estrellado respecto a cero (dado $z \in \Omega$ $\lambda z + (1 - \lambda)0 \in \Omega$ con $\lambda \in [0, 1]$), por tanto Ω es conexo.

 $\Omega \cup \sigma^* \cup U = \mathbb{C}$

Si $z \in \Omega$, como el índice es constante en cada componente conexa tenemos que $Ind_{\sigma}(z) = Ind_{\sigma}(0)$

$$Ind_{\sigma}(0) = \tfrac{1}{2\pi i} \int_{\sigma} \tfrac{1}{z-0} dz = \tfrac{1}{2\pi i} \int_{-\pi}^{\pi} \tfrac{1}{\sigma(t)} \sigma'(t) dt = \tfrac{1}{2\pi i} \int_{-\pi}^{\pi} \tfrac{\varphi'(t)+i\varphi(t)}{\varphi(t)} dt$$

Residuos

Ejercicio 1

$$\int_0^{2\pi} \frac{\cos^2(3t)}{1 + a^2 - 2a\cos(2t)} dt$$

$$\begin{aligned} 1 + a^2 - 2a\cos(2\pi) &= |1 - ae^{2it}|^2 = 1 + a^2 - 2aRe(e^{2it}) = 1 + a^2 - 2a\cos(2t) = (1 + ae^{2it})\overline{1 - ae^{2it}} \\ &= (1 - ae^{2it})(1 - A\overline{e^{2it}}) = (1 + ae^{2it})(1 - ae^{-2it}) \end{aligned}$$

$$\gamma(t) = e^{it} \gamma'(t) = ie^{it}$$

entonces

$$(1 + ae^{2it})(1 - ae^{-2it}) = (1 - az^2)(a - \frac{a}{z^2})$$

por lo que consideramos la función

$$\frac{z^2}{(1-az^2)(z^2-a)}$$
 como tenemos que multiplicar por $\gamma'(t)$ consideramos $\frac{z}{(1-az^2)(z^2-a)}$

lo que es igual a

$$\frac{e^{it}}{(1-ae^{2it})(e^{2it}-a)}ie^{it}$$

Haciendo el mismo procedimiento con el numerador

$$\cos^2(3t) = \frac{1+\cos(6t)}{2} = \frac{1+Re(e^{i6t})}{2} = Re(\frac{1+e^{i6t}}{2})$$

Así vemos que la función que finalmente tendríamos que considerar es

$$f(z) = \frac{(1+z^6)z}{2(1-az^2)(z^2-a)} A = \{ \frac{-1}{\sqrt{a}}, \frac{1}{\sqrt{a}}, \pm \sqrt{a} \} f : \mathbb{C} \backslash A \to \mathbb{C}, f \in \mathbb{H}(\mathbb{C} \backslash A)$$

El camino $\gamma:[0,2\pi]\to\mathbb{C}$, $\gamma(t)=e^{it}$ es nulhomólogo con respecto a \mathbb{C}

 $\mathsf{Como}\,A' = \emptyset \,\mathsf{por}\,\mathsf{el}\,\mathsf{teorema}\,\mathsf{de}\,\mathsf{los}\,\mathsf{residuos}\,\int_{\mathcal{Y}} f(z)dz = 2\pi i \,\Big(Ind_{\mathcal{Y}}(-\sqrt{a})Res(f(z),-\sqrt{a}) + Res(f(z),\sqrt{a}) \Big) \,\mathsf{deg}(f(z),-\sqrt{a}) + Res(f(z),\sqrt{a}) \Big) \,\mathsf{deg}(f(z),-\sqrt{a}) + Res(f(z),\sqrt{a}) + R$

Ejercicio 4

Sean $a, b \in \mathbf{R}^+$ calcular

$$\int_{-\infty}^{\infty} \frac{dx}{(x^+a^2)(x^2+b^2)^2}$$

En el caso $a \neq b$ tomamos $f(z) = \frac{1}{(z^2 + a^2)(z^2 + b^2)^2}$ $f \in \mathbb{H}(\mathbb{C} \setminus \{\pm ia, \pm ib\})$

Residuos Ejercicio 16

Tomamos $R > \max\{a, b\}$, consideramos el camino cerrado $\Gamma = [-R, R] + SC(0, R)$ (semicircunferencia recorrida en sentido positivo)

$$\gamma: [-R, R] \to \mathbb{C}, \gamma(x) = x, \gamma'(x) = 1$$

Usamos que Γ es nul-homologa con respecto a $\mathbb{C}\int_{\Gamma}f(z)dz=\int_{-R}^{R}f(x)dx+\int_{SC(0,R)}$

Por el teorema de los residuos

$$\begin{split} \int_{\Gamma} f(z)dz &= 2\pi i [Ind_{\Gamma}(ia)Res(f(z),ia) + Ind_{\Gamma}(ib)Res(f(z),ib)] \\ &\int_{\Gamma} f(z)dz = 2\pi i [Res(f(z),ia) + Res(f(z),ib)] \end{split}$$

Ambos índices son 1 $\int_{\Gamma} f(z)dz = \int_{-R}^{R} f(x)dx + \int_{SC(0,R)} f(z)dz$

 $|\int_{SC(0,R)} f(z)dz| \le l(SC(0,R)) \max\{|f(z)| : z \in SC(0,R)\} \le \frac{\pi R}{(R^2 - a)(R^2 - a^2)^2}$ que tiende a 0 cuando $R \to \infty$

$$|f(z)| = \frac{1}{|z^2 + a^2||z^2 + b^2|} \le \frac{1}{(R^2 - a^2)(R^2 - b^2)^2}$$

$$|z| = R |z^2 + a^2| \ge |z|^2 - a^2 = R^2 - a^2$$

 $Res(f(z),ia) = \lim_{z \to ia} (z - ia) f(z) = \lim_{z \to ia} \frac{(z - ia)}{(z^2 + a^2)(z^2 + b^2)^2} = \frac{1}{(b^2 - a^2)^2} \lim_{z \to ia} \frac{z - ia}{z^2 + a^2} \text{ por l'Hopital} = \frac{1}{(b^2 - a^2)^2} \frac{1}{2ia}$

k es el orden del polo ib

$$Res(f(z),ib) = \frac{1}{(z-1)'} \lim_{z \to ib} \frac{d^{k-1}}{dz^{k-1}} ((z-ib)^k f(z)) = \lim_{z \to ib} \frac{d}{dz} ((z-ib)^2 f(z)) = \lim_{z \to ib} \frac{d}{dz} \left(\frac{(z-ib)^2}{(z^2+a^2)(z-ib)^2(z+ib)^2} \right) = \lim_{z \to ib} \frac{2z*(z+ib)^2 + 2(z+ib)(z^2+a^2)}{(z^2+a^2)^2(z+ib)^4} = \frac{4b+2(-a^2+b^2)}{(a^2-b^2)^2(-ib^3)8}$$

por tanto

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+a^2)(x^2+b^2)^2} = 2\pi i \left(\frac{1}{2ia} \frac{1}{(b^2-a^2)^2} + \frac{4b+2(b^2-a^2)}{(b^2-a^2)(-i)8b^34} \right) = \frac{4b^3-a(4b+2(b^2-a^2))}{4ab^3(b^2-a^2)^2}$$

continuará

Ejercicio 16

$$\int_{-\infty}^{\infty} \frac{e^{x/2}}{e^x + 1} dx$$

Consideramos
$$f(z) = \frac{e^{z/2}}{e^z + 1} e^z + 1 = 0 \iff e^z = -1 \iff z \in Log(-1) = \{0 + i(\pi + 2k\pi) : k \in \mathbb{Z}\} = A$$

 $f: \mathbb{C} \setminus A \to \mathbb{C} \ f \in \mathbb{H}(\mathbb{C} \setminus A)$

Residuos Ejercicio 16

 $\Gamma_R = [-R, R, R + 2\pi i, -R + 2\pi i]$ es nul-homólogo con respecto a $\mathbb C$ A no tiene puntos de acumulación en $\mathbb C$

Por el teorema de los residuos

$$\int_{\Gamma} f(z)dz = 2\pi i Ind_{\Gamma_R}(i\pi) Res(f(z), i\pi)$$

$$\int_{\Gamma_R} f(z) dz = 2\pi i Res(f(z), i\pi) = \frac{[-R,R]}{f}(z) dz + \int_{[R,R+2\pi i]} f(z) dz + \int_{[R+2\pi i,-R+2\pi i]} f(z) dz + \int_{[-R+2\pi i,-R]} f(z) dz + \int_{[-R+2\pi i$$

$$\left|\int_{[R,R+2\pi i]}\right| \leq 2\pi \max\{|f(z)|: z \in [R,R+2\pi i]\} \leq 2\pi \frac{e^{R/2}}{e^R-1} \to 0 \text{ cuando } R \to \infty$$

donde hemos usado:
$$|f(z)| = |\frac{e^{z/2}}{e^z + 1}| = \frac{e^{R/2}e^{ti/2}}{e^R - 1} = \frac{e^{R/2}}{e^R - 1}$$
 y $|e^z + 1| \ge |e^z| - 1 = e^R - 1$ ya que $z = R + ti$

$$\left| \int_{-R+2\pi i,-R} f(z) dz \right| \leq 2\pi \max\{ |f(z)| : z \in [-R+2\pi i,-R] \} \leq 2\pi \frac{e^{-R/2}}{1-e^{-R}} \to 0 \text{ cuando } R \to \infty$$
 usando: Si $z = -R + ti : t \in [0,2\pi] \ |f(z)| = \left| \frac{e^{-R/2}e^{ti/2}}{e^{-R}e^{ti}+1} \right| \leq \frac{e^{-R/2}}{1-e^{-R}}$

$$\int_{[-R,R]} f(z) dz = \int_{-R}^{R} \frac{e^{x/2}}{e^x + 1} \gamma'(x) dx \text{ con } \gamma(x) = x \text{ y } x \in [-R,R]$$

$$\int_{[R+2\pi i,-R+2\pi i]} f(z)dz = -\int_{[-R+2\pi i,R+2\pi i]} f(z)dz = -\int_{-R}^{R} \frac{e^{x/2}e^{\pi i}}{e^x+1}dz = \int_{[-R,R]} \frac{e^{x/2}}{e^x+1}dx \text{ donde hemos usado } \varphi(x) = xx + 2\pi i : x \in [-R,R], \ \varphi'(x) = 1$$

$$f(\varphi(x)) = \frac{e^{x/2}e^{\pi i}}{e^{x+2\pi i}+1} = \frac{-e^{x/2}}{e^2+a}$$

Tomando límite con $R \to \infty$ obtenemos que $2 \int_{-\infty}^{\infty} \frac{e^{x/2}}{e^x + 1} dx = 2\pi i Res(f(z), i\pi)$

 $Res(f(z),i\pi) = \lim_{z \to i\pi} f(z) = \lim_{z \to i\pi} (z - i\pi) \frac{e^{z/2}}{e^z + 1} = e^{i\pi/2} \lim_{z \to i\pi} \frac{z - i\pi}{e^z + 1} \text{ que usando l'Hopital nos queda}$ -i

$$\int_{-\infty}^{\infty} \frac{e^{x/2}}{e^x + 1} dx = \pi i Res(f(z), i\pi) = \pi i (-i) = \pi$$