In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
nesarc = pd.read_csv('nesarc.csv', low_memory=False)
pd.set_option('display.float_format', lambda x:'%f'%x)
```

From Prac 1

Columns/Data used in Prac 1

In [3]:

```
nesarc['S2AQ5B'] = pd.to_numeric(nesarc['S2AQ5B'], errors='coerce') #convert variable t
o numeric
nesarc['S2AQ5D'] = pd.to_numeric(nesarc['S2AQ5D'], errors='coerce') #convert variable t
o numeric
nesarc['S2AQ5A'] = pd.to_numeric(nesarc['S2AQ5A'], errors='coerce') #convert variable t
o numeric
nesarc['S2BQ1B1'] = pd.to_numeric(nesarc['S2BQ1B1'], errors='coerce') #convert variable
to numeric
nesarc['AGE'] = pd.to_numeric(nesarc['AGE'], errors='coerce') #convert variable to nume
ric
```

From Prac 2

A subset of nesarc data, with the following criteria

Age from 26 to 50

Beer drinking status - S2AQ5A = Y

```
In [4]:
```

```
sub1=nesarc[(nesarc['AGE']>=26) & (nesarc['AGE']<=50) & (nesarc['S2AQ5A']==1)]
sub2=sub1.copy()</pre>
```

From Prac 2

SETTING MISSING DATA

In [5]:

```
sub2['S2AQ5D']=sub2['S2AQ5D'].replace(99, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(8, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(9, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(10, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(99, np.nan)
sub2['S2BQ1B1']=sub2['S2BQ1B1'].replace(9, np.nan)
```

From Prac 2

Recode data

```
In [6]:
```

```
recode2 = {1:30, 2:26, 3:14, 4:8, 5:4, 6:2.5, 7:1}
sub2['BEER_FEQMO']= sub2['S2AQ5B'].map(recode2)

recode3 = {2:0, 1:1}
sub2['S2BQ1B1']= sub2['S2BQ1B1'].map(recode3)
```

Plot bar chart for S2BQ1B1

```
In [7]:
```

```
sub2["S2BQ1B1"] = sub2["S2BQ1B1"].astype('category')
```

In [8]:

```
%matplotlib notebook
sns.countplot(x="S2BQ1B1", data=sub2)
plt.xlabel('Beer Dependence past 12 months')
plt.title('Beer Dependence in the Past 12 Months Among Adult Drinkers'+ '\n' + ' in the
    NESARC Study')
```


The bar chart shows in the past 12 months, majority of adult drinkers do not have beer dependence, and adults who do have beer dependency are less than 1000, which is less than 10% of sample size.

Out[8]:

Text(0.5,1,'Beer Dependence in the Past 12 Months Among Adult Drinkers\n i
n the NESARC Study')

Visualizing Quantitative Variable - histogram

From Prac 2

Create a secondary variable to estimate the number of beer consumed per month

NUMBEERMO_EST

In [9]:

A secondary variable multiplying the number of beers comsumed and the approx number of beers consumed/day $sub2["NUMBEERMO_EST"]=sub2["BEER_FEQMO"] * sub2["S2AQ5D"]$

Visualise the number of beers consumed per month (NUMBEERMO_EST) using a histogram

In [5]:

%matplotlib notebook #Univariate histogram for quantitative variable: sns.distplot(sub2["NUMBEERMO_EST"].dropna(), kde=False); plt.xlabel('Number of Beers per Month') plt.title('Estimated Number of Beers per Month' + '\n' + 'among Adult Beer Drinker in t he NESARC Study')

The histogram shows among all interviewees, most people do not drink any beer at all. And for those interviewees who do drink, most will not drink more than 200 bottles per month, with few except outliers.

Out[10]:

Text(0.5,1,'Estimated Number of Beers per Month\namong Adult Beer Drinker
in the NESARC Study')

Calculate the spread and centre of NUMBEERMO_EST

Use describe()

In [6]:

```
# standard deviation and other descriptive statistics for quantitative variables
print('describe number of beers drinking per month')
desc1 = sub2['NUMBEERMO_EST'].describe()
print (desc1)
```

describe number of beers drinking per month

count	7303.000000
mean	27.765713
std	49.201312
min	1.000000
25%	4.000000
50%	12.000000
75%	28.000000
max	900.000000

The dataset description indicates there are 7303 interviewees, and they drink 27.77 bottles of beer per month on average. There is a lot of variance in the observed data, as standard deviation is 49.2. The minimum and maximum value are 1 and 900 respectively. And quarterly percentiles are 4, 12, and 28 bottles.

Name: NUMBEERMO_EST, dtype: float64

Alternative method

Calculate descriptive statistics of NUMBEERMO_EST

Use mean(), std(), min(), max(), median(), mode()

In [7]:

```
print('mean')
mean1 = sub2['NUMBEERMO_EST'].mean()
print (mean1)
print('std')
std1 = sub2['NUMBEERMO EST'].std()
print (std1)
print('min')
min1 = sub2['NUMBEERMO EST'].min()
print (min1)
print ('max')
max1 = sub2['NUMBEERMO_EST'].max()
print (max1)
print ('median')
median1 = sub2['NUMBEERMO_EST'].median()
print (median1)
print ('mode')
mode1 = sub2['NUMBEERMO_EST'].mode()
print (mode1)
```

```
27.765712720799673
std
49.201312205771465
min
1.0
max
900.0
median
12.0
```

0 8.000000
dtype: float64

mean

mode

An alternative method to calculate descriptive statistics. Two new statistics are median and mode of given dataset, and they are 12 and 8 respectively.

Calculate descriptive statistics for categorical data

S2BQ1B1 - Beer Dependence

Use describe()

In [13]:

```
print ('describe beer dependence')
desc2 = sub2['S2BQ1B1'].describe()
print (desc2)
```

describe beer dependence count 10406.000000 unique 2.000000 top 0.000000 freq 9829.000000

Name: S2BQ1B1, dtype: float64

The descriptive statistics for beer dependency, there are 10406 interviewees, as there are only two values '0' and '1', so unique values is two. Top value is 0, and it has frequency of 9829.

What if categorical data was considered as quantitative data

S2BQ1B1 - Beer Dependence

Convert S2BQ1B1 to quantitative data and

Calculate descriptive statistics

Use describe()

In [14]:

```
sub2['S2BQ1B1'] = pd.to_numeric(sub2['S2BQ1B1']) # convert a numerical variable to quan
titatie
```

In [15]:

```
print ('describe beer dependence')
desc3 = sub2['S2BQ1B1'].describe()
print (desc3) #descriptor don't have sense
```

describe beer dependence 10406.000000 count 0.055449 mean std 0.228865 0.000000 min 25% 0.000000 50% 0.000000 75% 0.000000 1.000000 max

Name: S2BQ1B1, dtype: float64

The descriptive statistics for beer dependency (quantitative) shows the mean value is 0.055, with standard deviation of 0.23. The minimum and maximum value are 0 and 1. All quarterly percentiles are 0.

Visualising 2 variable

Categorical -> Quantitative - Bar chart

Create a secondary variable

CARTONPERMONTH - number of beer carton consumed per month

assume that there is 24 beer cans in a carton

In [16]:

sub2['CARTONPERMONTH']=sub2['NUMBEERMO_EST'] / 24

In [17]:

c2= sub2.groupby('CARTONPERMONTH').size()
print (c2)

72010	
CARTONPERMON	TH
0.041667	477
0.083333	407
0.104167	414
0.125000	172
0.166667	429
0.208333	623
0.250000	36
0.291667	5
0.312500	267
0.333333	635
0.416667	119
0.500000	296
0.520833	48
0.583333	160
0.625000	87
0.666667	561
0.729167	5
0.750000	1
0.833333	81
0.937500	3
1.000000	410
1.041667	6
1.083333	51
1.145833	1
1.166667	242
1.250000	
	62
1.333333	168
1.458333	1
1.500000	3
1 562500	
1.562500	2
1.302300	
	2 9
4.083333	 9
4.083333 4.333333	 9 37
4.083333 4.333333 4.666667	 9 37 21
4.083333 4.333333 4.666667 5.000000	 9 37 21 39
4.083333 4.333333 4.666667 5.000000 5.416667	9 37 21 39 13
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333	9 37 21 39 13 5
4.083333 4.333333 4.666667 5.000000 5.416667	9 37 21 39 13
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333	9 37 21 39 13 5
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000	 9 37 21 39 13 5
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000	9 37 21 39 13 5 2 18 54
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000	9 37 21 39 13 5 2 18 54 27
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000	9 37 21 39 13 5 2 18 54 27 77
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000 7.000000 7.500000 7.583333	9 37 21 39 13 5 2 18 54 27 77 6
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000 7.000000 7.583333 8.000000	9 37 21 39 13 5 2 18 54 27 77 6 3
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.583333 8.000000 8.666667	9 37 21 39 13 5 2 18 54 27 77 6 3 10
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000 7.000000 7.583333 8.000000	9 37 21 39 13 5 2 18 54 27 77 6 3
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.583333 8.000000 8.666667	9 37 21 39 13 5 2 18 54 27 77 6 3 10
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.583333 8.000000 8.666667 8.750000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000 7.000000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000 10.500000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.500000 7.000000 7.500000 7.500000 8.666667 8.750000 9.750000 10.0000000 10.5000000 10.833333	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000 10.5000000 10.833333 11.250000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000 10.500000 10.833333 11.2500000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000 7.000000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000 10.833333 11.250000 12.500000 13.000000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.500000 7.000000 7.500000 7.500000 8.666667 8.750000 9.750000 10.000000 10.833333 11.250000 12.500000 13.000000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14 25
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.500000 7.000000 7.500000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.833333 11.250000 12.500000 13.000000 15.000000 19.500000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14 25 1
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.500000 7.000000 7.500000 7.500000 8.666667 8.750000 9.750000 10.000000 10.833333 11.250000 12.500000 13.000000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14 25
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.500000 7.000000 7.500000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.833333 11.250000 12.500000 13.000000 15.000000 19.500000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14 25 1
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 7.000000 7.500000 7.500000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000 10.833333 11.2500000 12.500000 15.000000 15.000000 19.5000000 21.2500000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 14 6 14 25 1 1
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.250000 6.500000 7.000000 7.583333 8.000000 8.666667 8.750000 9.750000 10.000000 10.500000 10.833333 11.250000 12.500000 13.000000 19.5000000 21.2500000 21.666667	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14 25 1 1
4.083333 4.333333 4.666667 5.000000 5.416667 5.833333 6.000000 6.500000 7.000000 7.500000 7.500000 7.583333 8.000000 9.750000 10.000000 10.500000 10.833333 11.250000 12.500000 13.000000 15.000000 19.500000 21.2500000 21.666667 22.500000	9 37 21 39 13 5 2 18 54 27 77 6 3 10 5 2 13 5 3 4 6 14 25 1 1 2

The data shows how many cartons of beer interviewees drink per month in the last 12 months. Grouping interviewees by their consumptions, from 0.042 cartons per month to 30 cartons per month.

37.500000 1

Length: 75, dtype: int64

- 1 5 cartons
- 6 10 cartons
- 11 15 cartons
- 16 20 cartons
- 21 25 cartons
- 26 30 cartons
- 31 max cartons

```
In [23]:
```

```
sub2['CARTONCATEGORY'] = pd.cut(sub2.CARTONPERMONTH, [0, 5, 10, 15, 20, 25, 30, 38])
```

In [24]:

```
# change format from numeric to categorical
sub2['CARTONCATEGORY'] = sub2['CARTONCATEGORY'].astype('category')
```

Print describe of CARTONCATEGORY

In [25]:

```
print('describe CARTONCATEGORY')
desc3 = sub2['CARTONCATEGORY'].describe()
print (desc3)
```

describe CARTONCATEGORY

count 7303 unique 7 top (0,5] freq 7002

Name: CARTONCATEGORY, dtype: object

Discrete interviewees into 7 groups by their monthly beer consumption (in cartons). With 7303 data observed, most people (7002) drink 0 to 5 cartons per month.

Print carton category counts

In [26]:

```
print('carton category counts')
c7 = sub2['CARTONCATEGORY'].value_counts(sort=False, dropna=True)
print(c7)
```

carton cat	egory count:	S
(0, 5]		
(5, 10]	235	
(10, 15]	57	
(15, 20]	1	
(20, 25]	4	
(25, 30]	3	
(30, 38]	1	
Namo + CART	ONCATECORY	d+\/n

A specific value counts for number of interviewees in each data group. Most people drink 0 to 5 cartons per month, and only single digit number of people drink more than 15 cartons per month.

Name: CARTONCATEGORY, dtype: int64

Chart of bar chart showing the relationship between carton of beer consumed per month (CARTONCATEGORY) and Beer Dependent (S2BQ1B1)

In [27]:

```
# bivariate bar graph C->Q
sns.factorplot(x="CARTONCATEGORY", y="S2BQ1B1", data=sub2, kind="bar", ci=None)
plt.xlabel('Carton per Month')
plt.ylabel('Proportion Beer Dependent')
```


Out[27]:

Text(9.44444,0.5,'Proportion Beer Dependent')

A bar chart that shows there is a positive correlation between beer consumption and beer dependency. The more beer one drink, the more likely one becomes an alcoholic.

Visualising 2 variable

Categorical -> Categorical - Bar chart

Rename race from 1-5 to "White", "Black", "NatAm", "Asian", "Hispanic"

In [28]:

```
# you can rename categorical variable values for graphing if original values are not in
formative
# first change the variable format to categorical if you haven't already done so
sub2['ETHRACE2A'] = sub2['ETHRACE2A'].astype('category')
# second create a new variable (PACKCAT) that has the new variable value labels
sub2['ETHRACE2A']=sub2['ETHRACE2A'].cat.rename_categories(["White", "Black", "NatAm",
"Asian", "Hispanic"])
```

Function to get 'CARTON_ADAY)

In [29]:

```
def CARTON_ADAY (row):
    if row['BEER_FEQMO'] >= 30 :
        return 1
    elif row['BEER_FEQMO'] < 30 :
        return 0

sub2['CARTON_ADAY'] = sub2.apply (lambda row: CARTON_ADAY (row),axis=1)

c4= sub2.groupby('CARTON_ADAY').size()
print(c4)

CARTON_ADAY</pre>
```

CARTON_ADAY 0.000000 6897 1.000000 417 dtype: int64

For over 7000 interviewees, 6897 of them do not drink more than a carton of beer per day, while the rest 417 interviewees do.

Bar Graph showing the relationship between race (ETHRACE2A) and

CARTON_ADAY

In [30]:

```
# bivariate bar graph C->C
sns.factorplot(x='ETHRACE2A', y='CARTON_ADAY', data=sub2, kind="bar", ci=None)
plt.xlabel('Ethnic Group')
plt.ylabel('Proportion of drink beer a carton a day drinkers')
```


Out[30]:

Text(0.694444,0.5, 'Proportion of drink beer a carton a day drinkers')

Visualising 2 variable

Categorical -> Quantitative - box plot

convert age to category data type

convert income (S1Q10A) to numeric data type

```
In [31]:
```

```
sub2['AGE'] = sub2['AGE'].astype('category')
sub2['S1Q10A'] = pd.to_numeric(sub2['S1Q10A'])
```

Box plot to show the relationship between age and income (S1Q10A) among adults aged 26 - 50 years old.

In [32]:

```
%matplotlib notebook
sns.boxplot(x='AGE', y='S1Q10A', data=sub2)
plt.xlabel('Age')
plt.ylabel('Income')
```


The box plot shows interviewees' income from age of 26 to age of 50. As interviewees grow older, their income gradually increase.

Out[32]:
Text(0,0.5,'Income')

Visualising 2 variable

Quantitative -> Quantitative - scatter plot

Read in gapminder.csv

In [33]:

```
pd.set_option('display.float_format', lambda x:'%.2f'%x)
gapminder = pd.read_csv('gapminder.csv', low_memory=False)
gapminder.head()
```

Out[33]:

	country	incomeperperson	alcconsumption	armedforcesrate	breastcancerper
0	Afghanistan		.03	.5696534	26.8
1	Albania	1914.99655094922	7.29	1.0247361	57.4
2	Algeria	2231.99333515006	.69	2.306817	23.5
3	Andorra	21943.3398976022	10.17		
4	Angola	1381.00426770244	5.57	1.4613288	23.1

The first 5 rows of csv file 'gapminder'

convert 'oilperperson' and 'relectricperperson' to numeric

In [34]:

gapminder['oilperperson'] = pd.to_numeric(gapminder['oilperperson'],errors='coerce')
gapminder['relectricperperson'] = pd.to_numeric(gapminder['relectricperperson'],errors=
'coerce')

drop NAN data

In [35]:

gapminder_clean=gapminder.dropna()

Scatter plot to show the relationship between Electricity Use Per Person (relectricperperson) and Oil Use Per Person (oilperperson)

In [36]:

```
%matplotlib notebook
plt.figure()
scat1 = sns.regplot(x="relectricperperson", y="oilperperson", fit_reg=False, data=gapmi
nder_clean)
plt.xlabel('Electrcity Use Per Person')
plt.ylabel('Oil Use Per Person')
plt.title('Scatterplot for the Association Between Electrcity Use Per Person' + '\n' +
'and Oil Use Per Person')
```

Scatterplot for the Association Between Electrcity Use Per Person and Oil Use Per Person

Scatterplot indicates despite few outliers, there is a positive correlation between a person's oil usage and a person's electricity usage.

Out[36]:

Text(0.5,1,'Scatterplot for the Association Between Electrcity Use Per Per son\nand Oil Use Per Person')