

COORDINATION CHEMISTRY

Addition compound

(two or more simple salt combining with fixed proportion of mass)

Double salt

* Loose their idenity in aqueous solution eg. $KCl.MgCl_2.6H_2O$ carnalite salt $K_2SO_4^-.Al_2(SO_4)_3.24H_2O$ potash alum

C-ordination compound

* Retain their indenity in aqeous solution eg. K₄[Fe(CN)₆] Potassium hexacynidoferrate (II)

REPRESENTATION OF COMPLEX COMPOUND

Co-ordination number = Number of electron pair accepted by central metal ion.

LIGAND

Chemical species which can donates electron pair.

Calssification of the basis of denticity

(Denticity : = Number of electron pair donated by central metal atom or ion)

Monodentate (denticity = 1):

eg. H⁻, X⁻, Py, N₂, N³⁻, N₂H₄ etc.

Bidentate (denticity = 2):

eg. en, pn, bn, ox²⁻, acac⁻¹, gly⁻¹, dmg⁻¹

Polydentate (denticity = >2):

eg. dien, imda⁻², trien, nta³⁻, EDTA⁴⁻

Ambidentate: Ligand which have more than one donor site but at the time of donation only atom can donate electron pair.

 $\begin{array}{ll} \text{eg.}: & (\text{CN}^{\!\!\!-}\!\!, \text{NC}^{\!\!\!-}\!\!), (\text{NO}_2^{\!\!\!-}\!\!, \text{ONO}^{\!\!\!-}\!\!), (\text{SCN}^{\!\!\!-}\!\!, \text{NCS}^{\!\!\!-}\!\!), \\ (\text{OCN}^{\!\!\!-}\!\!, \text{NCO}^{\!\!\!-}\!\!), (S_2^{\!\!\!\!2}\!\!\!_2^{\!\!\!2^{\!\!\!-}}\!\!, \text{SO}_2^{\!\!\!2^{\!\!\!-}}\!\!\!_2^{\!\!\!\!2^{\!\!\!-}}\!\!\!_2^{\!\!\!\!-}) \end{array}$

Flexidentate ligand : Show more than one type of denticity.

eg. : CO_3^{2-} , SO_4^{2-} , CH_3COO^{-}

Note: Bidentate and Polydentate are also called chelating ligand.

Calssification on the basis of electron donating and accepting tandency

Classsical ligand : H₂O, NH₃ etc.

Non-calssical ligand: CN, NO, NO, CO,

PPh₃ etc

 $\Rightarrow \pi$ -donor ligand $\Rightarrow C_2H_4$, C_2H_2 etc.

BONDING IN COORDINATION COMPOUND Effective atomic number & Sidgwick rule:

Total number of electron present on central metal atom or ion after accepting the electron pair from ligand.

$$K_4 [Fe(CN)_6]$$
EAN = 26 - (+2) + 6(2) = 36

- ⇒ If EAN value is equal to atomic number of Noble gas then complex follow sidgwick rule of EAN.
- ⇒ In carbonyl complex if EAN value = Atomic number of Noble gas then carbonyl complex is more stable.

	eg.	$[V(CO)_6]$	$[CI(CO)_6]$	
		act as oxidising	stable	act as reducing
		agent	complex	agent
\Rightarrow	Brown	n ring complex	37	
	Sodiu	m nitroprusside	36	
	Zeise's	s Salt	84	
	$Mn_2(CO)_{10}$		36	
	Fe ₂ (C		36	
	Co ₂ (C	O) ₈	36	

node06\B0Ai-B0\Kota\JEE[Advanced]\Leader\Che\Sheet\Handbook(E+L)\2_IOC\Eng.p65

WERNER'S CO-ORDINATION THEORY:

- ⇒ Metals possesses two types of valencies PV & SV.
- ⇒ PV is non-directional, represent by _____ (doted line) is satisfied by negative charge species.
- ⇒ SV is directional, represent by _____ (solid line) and satisfied by negative or neutral species.
- ⇒ Now a days primary valency and secondary valency is consider as oxidation & co-ordination number respectively.

VBT:

- \Rightarrow Metal provoide hybridised vacant orbital for the acceptence of lone pair from ligand.
- ⇒ Hybridisation, shape and magnatic behaviour of complex depends upon the nature of ligand.
- ⇒ Strong field ligand pair up the unpaired e⁻ of central metal atom where as weak field ligand does not.
- \Rightarrow If unpaired e⁻ present in complex then complex is paramagnatic. If unpaired e⁻ is absent then diamagnatic.

 $[NiCl_4]^{2-}$

 NI^{+2} in $[NiCl_4]^2$

- \rightarrow sp³
- → Tetrahedral
- → Paramagnatic
- → Outer Orbital complex
- \rightarrow $\mu = \sqrt{8} BM$

[Ni(CN)₄]²⁻

 NI^{+2} in $[Ni(CN)_4]^2$

CN- CN-

CN CN

- dsp^2
 - → Square planar
 - → Diamagnatic
 - Inner Orbital complex

 $[Ni(CO)_4]$

NI⁺² in [Ni(CO)₄]

- → Diamagnatic
- Outer Orbital complex

CRYSTAL FIELD THEORY

Crystal Field Theory: In the electric field of these negative charges, the five d orbitals of the metal atom no longer have exactly same energy. Splitting of five degenerate d-orbitals of the metal ion into sets of orbitals having different energies is called crystal field splitting.

In octahedral:

In tetrahedral:

Orbitals which have same energy in a subshell are known as degenerate orbitals.

Series which shows the relative strength of ligands:

 Γ (weakest) < Br^- < SCN^- < $C\Gamma$ < S^{2-} < F^- < OH^- < $C_2O_4^{2-}$ < H_2O_- < NCS^- < $edta^{4-}$ < NH_3 < en < CN^- < CO (strongest)

ightharpoonup Crystal field stablisation energy (CFSE) :

(i) For octahedral CFSE = $\left[-0.4\left(n_{t_{2g}}\right) + 0.6\left(n_{eg}\right)\right]\Delta_0$ +

Paring energy **(P.E.)** $\times x$

where $n_{t_{2g}}$ = number of electron in t_{2g} orbitals n_{eg} = number of electron in eg orbitals x = number of electron pair

(ii) For tetrahedral CFSE

=
$$\left[-0.6\left(n_{e}\right)+0.4\left(n_{t_{2}}\right)\right]\Delta_{t}$$
 +Paring energy **(P.E.)**× x

where n_{t_g} = number of electron in t_2 orbitals n_e = number of electron in e orbitals x = number of electron pair

Follow Hund's Pauli & Aufbau rule.

CN-6

 d^2sp^3 , Octahedral low spin complex, inner orbital complex, paramagnatic $\mu=\sqrt{3}$ BM

 sp^3d^2 , Octahedral high spin complex, outer orbital complex, paramagnatic $\mu=\sqrt{35}$ BM

d²sp³, Octahedral low spin complex, inner orbital complex, diamagnatic

Exeption:

[Co(OX) ₃] ³⁻	d^2sp^3	diamagnatic
$[Co(OX)_3]^{3-}$ $[Co(H_2O)_6]^{3+}$ $[NiF_6]^{2-}$	d^2sp^3	diamagnatic
	d^2sp^3	diamagnatic
$[Cr(NH_3)_6]^{2+}$	sp^3d^2	paramagnatic
[Mn(NH ₃) ₆] ²⁺	sp^3d^2	paramagnatic
[Fe(NH ₃) ₆] ²⁺	sp^3d^2	paramagnatic
$[CoL_6]^{4-}$ (L = NO_2^{-}/CN^{-})	d^2sp^3	paramagnatic

CN-4:

E

dsp², sq. planar inner orbital complex, diamagnatic low spin complex

 $[AuCl_{1}]^{-}$

ds², sq. planar inner orbital complex, diamagnatic low spin complex,

Exception:

d³s hybridisation, Td, diamagnetic, inner orbital complex

MnO₄, CrO₄²⁻, Cr₂O₇²⁻, CrO₂Cl₂, CrO₂F₂, VO₄³⁻

Tranference of electron

Cu⁺² in CN-4 with L eg.

 $L = NO_2^- / CN^- / NH_3$ etc.) (where

Factor affecting splitting

- (i) Strength of ligand
- (ii) Oxidation state of central metal ion
- (iii) Transition series (d-series)
- (iv) Geometry (number of ligands).
- (v) Chelation

Colour of complexes

Colour

d-d tranistion

- \rightarrow d¹-d⁹ complex can show colour.
- → Complementry colour of absorb colour is observe
- eg. : $[T_1(H_2O)_6]^{3+}$, $[Ni_1(H_2O)_6]^{2+}$ $[Cu(NH)_a]^{2}$
- Charge transfer
- → Metal-metal charge transfers or metal ligand charge transfers
- $\rightarrow MnO_4^{-}, CrO_4^{-2}, Cr_2O_7^{-2}$ brown ring complex sodium nitroprusside purssian blue, turnbull's blue

ORGANOMETALLIC COMPOUDS

Compounds in which the less E.N. (Ge, Sb, B, Si, P, As) central metal atoms are bonded directly to carbon atoms are called organometallic compounds.

O σ -bonded compounds formed by nontransition elements.

R-Mg-X, (CH₃-CH₂)₂Zn, Ziegler natta catalyst,

- O π -bonded organometallic compounds are generally formed by transition elements e.g. Zeise's salt, ferrocene, dibenzene chromium,
- O σ -and π -bonded organometallic compounds: Metal carbonyls, compounds formed between metal and carbon monoxide belong to this class. Ni(CO)₄, Fe(CO)₅etc.

Synergic bonding

ABMO

IUPAC nomenclature of complex compounds:

(A) For anionic complex (like K₄[Fe(CN)₆])

> Common name of normal cation (without numeral prefix) + name of ligands (with numeral prefix) + latin name of CMI along with suffix ate + Ox. St (in roman number).

eg.: Potassium hexacyanoferrate (II)

(B) For cationic comlex like [Cu(NH₃)₄]SO₄

> Name of ligands (with numeral prefix) + Common name of CMI + Ox. St (In roman number) + Name of anion (without numeral prefix)

eg.: Tetraammine copper (II) sulphate.

(C) For neutral complex (like [Fe(CO)₅)

Name of ligands (with numeral prefix)

+ Common name of CMI + Ox. St.

(In roman number)

eg.: Pentacarbonyl iron (O)

(D) Rule same just apply alphabetical order when write the name of ligands.

e.g. [Pt(NH₃)₂Cl₂]

Diamminedichloroplatinum (II)

E

STRUCTURAL ISOMERISM

- i) **Ionisation isomerism :** Counter ion as a ligand & ligand act as counter ion. [Co $(H_2O)_5Cl]$ SO₄ \leftrightarrow [Co $(H_2O)_5SO_4$] Cl
- (ii) **Hydrate isomersim :** Number of water molecule inside & outside the co-ordinate sphere are different.

 $[Cr(H_2O)_2]Cl_3 \leftrightarrow [Cr(H_2O)_5Cl]Cl_2.H_2O \leftrightarrow [Cr(H_2O)_4Cl_2]Cl.2H_2O$

(iv) Linkage: Exihibit when ambidentate ligand is present in co-ordination sphere.

 $[NC \rightarrow Ag \leftarrow CN]^- \leftrightarrow [NC \rightarrow Ag \leftarrow NC]^- \leftrightarrow [CN \rightarrow Ag \leftarrow NC]^-$

(iv) Co-ordination isomerism: Exihibit when both are cationic & anionic complex

 $[Pt(NH_3)_4] [PtCl_4] \leftrightarrow [Pt(NH_3)_3Cl] [Pt(NH_3)Cl_3]$

STEREO ISOMERISM

STEREO ISOMERISM IN CO-ORDINATION COMPOUND

CN-4

- Square planar complex does not show optical isomerism.
- * Square planar complex show optical activity if the co-ordinated ligand having chiral center.
- Square planar complex

 $[Ma_2b_2]^{n^\pm}\,,\;[Ma_2bc]^{n^\pm}\,,\;[Mabcd]^{n^\pm}\,,\;[M(AB)cd]^{n^\pm}\,,$

 $[M(AB)(CD)]^{n^{\pm}}$ show geometrical isomerism

 $[Mabcd]^{n^{\pm}}$ form two cis and one trans.

- * Tetrahedral complex [Mabcd]^{n±}, [M(AB)cd]^{n±}
 - [M(AB)(CD)]^{n[±]} show optical isomerism
- * Tetrahdral complex does not show geometrical isomerism.

CN-6

NUMBER OF POSSIBLE ISOMERS FOR SPECIFIC COMPLEXES

Formula	Number of stereoisomers	Pairs of Enantiomers	Number of G.I.
Ma ₄ b ₂	2	0	2
Ma ₄ bc	2	0	2
Ma ₃ b ₃	2	0	2
Ma ₃ b ₂ c	3	0	3
Ma ₃ bcd	5	1	4
Ma ₂ b ₂ c ₂	6	1	5
Ma ₂ b ₂ cd	8	2	6
Ma ₂ bcde	15	6	9
Mabcdef	30	15	15
M(AA)(BC)de	10	5	5
M(AB)(AB)cd	11	5	6
M(AB)(CD)ef	20	10	10
M(AB) ₃	4	2	2

Note: Uppercase letters represent chelating ligands and lowercase letters represent monodentate ligands.