DoSA User Manual

Example of Solenoid

2018-04-21 GiTae Kweon (zgitae@gmail.com)

DoSA Structure

Program Structure

Toolbar

1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications

3. Experiment

✓ Force : Magnetic force estimation for driving part

✓ Stroke : Magnetic force estimation for each stroke

✓ Current : Magnetic force estimation for each current

Analysis Model

Analysis Model

1. Model Shape

2. Product Specifications

가. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

나. Power

• Voltage : 14.5V

(Work Example Files : DoSA Install Directory > Samples > Solenoid)

New design

1. Toolbar > Click New Button

- 2. Design Name: "Solenoid"
- 3. Click OK

Parts Design

Add Coil

Coll

1. Toolbar > Click Coil button

2. Coil Name: "coil"

3. Coil Shape Input

✓ Coil Location : Base_X 4.8, Base_Y -2

✓ Left-Down Point : X 0, Y 0 (Relative Coordinates)

✓ Right-Upper Point : X 6, Y 16 (Relative Coordinates)

4. Screen Adjustment : Use Fit All Button

5. Click OK Button

6. Check Shape (FEMM Window)

Coil Design

1. Input Coil specifications

- ✓ Part Material : Copper
- ✓ Current Direction : IN (Inner Direction)
- ✓ Moving Parts : FIXED (Fixed Parts)
- ✓ Coil Wire Grade : Enameled_IEC_Grade_2
- ✓ Copper Diameter: 0.27 mm
- ✓ Horizontal Coefficient : 0.9 (Enameled Type)
- ✓ Vertical Coefficient : 0.98 (Enameled Type)
- ✓ Resistance Coefficient : 1 (Enameled Type)
- 2. Calculate the coil specification
 - ✓ Click "Coil Design" button

1			
Δ	Common Fields		
	Node Name	coil	
Δ	Specification Fields		
	Part Material	Copper	
	Curent Direction	IN	
	Moving Parts	FIXED	
Δ	Calculated Fields		
	Coil Turns	1040	
	Coil Resistance [Ω]	15, 20945	
	Coil Layers	20	
	Turns of One Layer	52	
Δ	▲ Design Fields (optional)		
	Coil Wire Grade	Enameled_IEC_Grade_2	
	Inner Diameter [mm]	9,6	
	Outer Diameter [mm]	21,6	
	Coil Height [mm]	16	
	Copper Diameter [mm] 0.27		
	Wire Diameter [mm]	0,31072	
	Coil Temperature [°€]	20	
	Horizontal Coefficient	0.9	
	Vertical Coefficient	0.98	
	Resistance Coefficient	1	

Add plunger

1. Toolbar > Click Steel Button

2. Steel Name: "plunger"

3. Face Type: RECTANGLE

4. Plunger Shape

✓ Plunger Location : Base_X 0, Base_Y -12

✓ Left-Down Point : X 0, Y 0

(Relative Coordinates)

✓ Right-Upper Point : X 4, Y 12

(Relative Coordinates)

5. Screen Adjustment: Use Fit All Button

6. Click OK Button

7. Check Shape (FEMM Window)

Plunger Settings

8. Plunger setting

✓ Part Material: 430 Stainless Steel

✓ Moving Parts : Moving (Moving Parts)

[BH Curve]

■ Common Fields Node Name plunger Specification Fields 430 Stainless Steel Part Material Moving Parts MOVING

Add core

1. Toolbar > Click Steel Button

- 2. Steel Name: "core"
- 3. Add input lines of point : Click 'A' button
- 4. Core Shape
 - ✓ Core Location : Base_X 0, Base_Y 1.2
 - ✓ 1 point : X 0, Y 0
 - ✓ 2 point : X 4, Y 0
 - ✓ 3 point : X 4, Y 13.6
 - ✓ 4 point : X 15.6, Y 13.6
 - ✓ 5 point : X 15.6, Y 18
 - ✓ 6 point : X 0, Y 18
- 5. Screen Adjustment : Use Fit All Button
- 6. Click OK Button

Core Settings

- 7. Check Shape (FEMM Window)
- 8. Core setting

✓ Part Material: 430 Stainless Steel

✓ Moving Parts : FIXED

Add case

1. Toolbar > Click Steel Button

- 2. Steel Name: "case"
- 3. Add input lines of point : Click 'A' button
- 4. Case Shape
 - ✓ Case Location : Base_X 4.4, Base_Y -10.4
 - ✓ 1 point : X 0, Y 0
 - ✓ 2 point : X 11.2, Y 0
 - ✓ 3 point : X 11.2, Y 25.2
 - ✓ 4 point : X 7.4, Y 25.2
 - ✓ 5 point : X 7.4, Y 7.6
 - ✓ 6 point : X 0, Y 7.6
- 5. Screen Adjustment : Use Fit All Button
- 6. Click OK Button

Case Setting

7. Check Shape (FEMM Window)

8. Case setting

✓ Part Material: 1010 Steel

✓ Moving Parts : FIXED

Virtual Experiments

Experiment of magnetic force

- 1. Toolbar > Click Force Button
- 2. Force Experiment Name: "force"
- 3. Click OK Button
- 4. Setting of magnetic force experiment
 - ✓ Voltage: 14.5 V
- 5. Click "Force Test" Button

Results of magnetic force

1. Force: 12.57 N

Experiment of displacement-magnetic force

1. Toolbar > Click Stroke Button

2. Stroke Experiment Name: "stroke"

3. Click OK Button

4. Settings of the experiment

✓ Voltage: 14.5 V

✓ Initial Stroke: 0.0 mm

✓ Final Stroke: 1.0 mm

✓ Step Count: 5

Results of displacement-magnetic force

5. Information View > Click "Stroke Test" Button

Experiment of current-magnetic force

- 1. Toolbar > Click Current Button
- 2. Current Experiment Name: "current"
- 3. Click OK Button
- 4. Experiment Settings
 - ✓ Initial Current: 0.0 A
 - ✓ Final Current: 1.5 A
 - ✓ Step Count: 5

Results of current-magnetic force

5. Information View > Click "Current Test" Button

Thank You