### 目 录

2008年西南交通大学641生物化学考研 真题

2007年西南交通大学641生物化学考研 真题

2006年西南交通大学341生物化学考研 真题

2005年西南交通大学341生物化学考研 真题

2004年西南交通大学341生物化学考研 真题 2008年西南交通大学641生物化学考研真题

#### 试题代码: 641

### 西南交通大学 2008 年硕士研究生招生入学考试 试题名称: 生物化学

考试时间: 2008年1月

| 考试时间: 2008 年 1 月                        |
|-----------------------------------------|
| 考生请注意:                                  |
| 1.本试题共 六 题, 共 6 页, 满分150分, 请认真检查:       |
| 2.答题时,直接将答题内容写在考场提供的答题纸上,答在试卷上的内容无效;    |
| 3.请在答题纸上按要求填写试题代码和试题名称:                 |
| 4.试卷不得拆开,否则遗失后果自负。                      |
| 一、判断题 (每题 1 分, 共 20 分, 请用"是"和"否"分别表示对错) |
| 1、肾上腺分泌的激素均是氨基酸衍生物激素。( )                |
| 2、真核生物与原核生物在蛋白质合成过程中都需要 GTP。( )         |
| 3、磺胺类药物对细胞叶酸合成酶的抑制属于竞争性抑制。( )           |
| 4、蛋白质在热力学上最稳定的构象是自由能低的结构。( )            |
| 5、严重糖尿病患者因其糖异生作用加强导致血酮症。( )             |
| 6、糖苷键对碱稳定,而易被酸水解。( )                    |
| 7、原核生物转录启动子有三个重要部位,即-10区、-35区及SD序列。(    |
| 8、多核糖体是由一定数目的核糖体联接而成。( )                |
| 9、氧化磷酸化的解偶联剂都是质子载体。( )                  |
| 10、尿苷激酶催化胞嘧啶核苷生成胞嘧啶核苷酸。( )              |
| 11、所有核酸合成时,新链的延长方向都是从5'到3'。( )          |
| 12、所有糖类都含有不对称碳原子,所以都具有旋光性。( )           |
| 13、烷基化和烃基化都是与氨基酸的氨基发生的反应。( )            |

14、有些酶的 Km 值可能由于结构上与底物无关的代谢物的存在而改变。

共6页 第1页。

试题代码: 641

| 15、DNA 的复制与转录都必须根据碱基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 配对的原则。( )           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 16、当某些物质由还原型变成氧化型时,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 标准氢电极为负。( )         |
| 17、柠檬酸循环中有 GTP 的生成。(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                   |
| 18、通过光合作用生成的葡萄糖分子中原                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 所含的氧来自水分子。( )       |
| 19、胆固醇的合成与脂肪酸的降解无关。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( )                 |
| 20、在真核细胞中, 三种主要 RNA 的台                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 合成都是由一种 RNA 聚合酶催化。  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ζ Σ                 |
| 二、选择题(从4个备选答案中选出1个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 正确的答案,每题1分,共20分)    |
| 1、叶绿素分子中含有的金属离子是(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3</b>            |
| A 、 Fe <sup>2++</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B, Cu <sup>2+</sup> |
| C、Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D, Ca <sup>2+</sup> |
| 2、维生素 D 的结构是一种 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| A、醇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B、169               |
| C、醛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D、酮                 |
| 3、线粒体基质中脂酰辅酶 A 脱氢酶的辅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 基是 ( )              |
| A. FAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B、NAD⁺              |
| C、NADP*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D、GSSG              |
| 4、嘧啶核苷合成途径中,首先出现的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( )                 |
| A、一磷酸胞苷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B、一磷酸尿苷             |
| C、乳清酸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D、氦甲酰磷酸             |
| 5、下列哪种化合物不是高能磷酸化合物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( )                 |
| A、磷酸烯醇式丙酮酸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B、1,3-二磷酸甘油酸        |
| C、1-碳酸葡萄糖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D、磷酸肌酸              |
| 6、已知某人从膳食中每日摄入蛋白质 50g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g,每日排出氨量为 10g,则此人的  |
| The second secon |                     |
| 试题代码: 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 共 6 页 第 2 页         |

| 氨代谢处于 ( ) 平衡状态      | Co.<br>Dept.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A、氮正平衡              | B、氮负平衡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C、氮总平衡              | D、以上都不是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7、变构效应物与酶结合的部位是     | and the control of th |
| A、活性中心的底物结合部位       | B、活性中心的催化部位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C、活性中心以外特殊部位        | D、活性中心以外任何部位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8、一个酶作用多种物质时,其天     | 然作用物的 Km 值应该是 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A、最小                | B、最大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C、居中                | D、与其他作用物相同                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9、糖原分子中葡萄糖单位之间存     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | B、有β (1→4) 和β (1→6) 糖苷键                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C、只有 α (1→4) 糖苷键    | D、有 a (1→4) 和 a (1→6) 糖苷键                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10、依赖 cAMP 的蛋白激酶 A( | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A、 使蛋白质中丝氨酸或苏氨酸残    | 基磷酸化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B、 使蛋白质中酪氨酸或苏氨酸残    | 基磷酸化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C、 使蛋白质中丝氨酸或酪氨酸残    | 基磷酸化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D、 使蛋白质中苏氨酸或酪氨酸残    | 基磷酸化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11、由人淋巴细胞得到的变性 DNA  | 与人的哪种核酸不能构成杂交链?( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A、淋巴细胞 rRNA         | B、肾 tRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C、变性的肝 DNA          | D、变性的线粒体 DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12、下列哪种糖不能成脎? (     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A、果糖                | B、蔗糖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C、麦芽糖               | D、乳糖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13、在研究和模拟生物膜时常使用的   | to the control of the |
| A、脂质体               | B、核糖体                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 试歷代码: 641           | 共 6 页 第 <b>3</b> 页                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| C、微粒体                                                              | D、线粒体               |
|--------------------------------------------------------------------|---------------------|
| 14、血液凝固的过程是凝血酶原和血                                                  | 11纤蛋白原( )           |
| A、变性的过程                                                            | B、激活的过程             |
| C、变构的过程                                                            | D、重新组合的过程           |
| 15、胰蛋白酶的作用部位是。(                                                    | )                   |
| A、精氨酰—X                                                            | B、苯丙氨酰—X            |
| C、天冬氨酰一X                                                           | D、谷氨酰—X             |
| 16、DNA的Tm与介质的离子强度有                                                 | 关,所以 DNA 制品应该保存在( ) |
| A、高浓度的缓冲液中                                                         | B、低浓度的缓冲液中          |
| C、纯水中                                                              | D、有机试剂中             |
| 17、在氧化脱羧反应过程中,需要明                                                  | B种辅酶参加? ( )         |
| A、抗坏血酸                                                             | B、焦磷酸硫胺素            |
| C、生物素                                                              | D、nh酸               |
| 18、动物体内氨基酸分解产生的α-氢                                                 | 《基,其运输和储存的形式是()     |
| A、尿素                                                               | B、天冬氨酸              |
| C、氨甲酰磷酸                                                            | D、谷氨酰胺              |
| 19、别嘌呤醇与次黄嘌呤结构相似,引                                                 | 虽烈地抑制下列哪种酶的活性( )    |
| A、次黄嘌呤氧化酶                                                          | B、黄嘌呤氧化酶            |
| C、次黄嘌呤还原酶                                                          | D、黄嘌呤还原酶            |
| 20、与乳糖操纵子操纵基因结合的物                                                  | 顶是()                |
| A、RNA 聚合酶                                                          | B、DNA 聚合酶           |
| C、阻遏蛋白                                                             | D、反密码子              |
| 三、填空题 (每空1分,共20分)                                                  |                     |
| 1、在 pH6 条件下具有较强缓冲能力                                                | 的氨基酸是()。            |
| 2、当[S]< <km km+[s]可近似看<="" td="" 时,=""><td>成与()相等,此时米氏方程</td></km> | 成与()相等,此时米氏方程       |
| 试题代码: 641                                                          | 共6页 第4页             |

| 可改写成(                                                                                 | ).                                        |                   |                         |
|---------------------------------------------------------------------------------------|-------------------------------------------|-------------------|-------------------------|
| 3、当给动物喂食的                                                                             | 决乏泛酸的食物时                                  | ,导致肝脏软脂酸          | 合成受阻, 这是因为              |
| 泛酸是(                                                                                  | )和(                                       | ) 的组成成            |                         |
| 4、二异丙基氟磷                                                                              | 酸是一种神经毒                                   | 剂,它能与乙酰胆          | 残酯酶活性部位的                |
|                                                                                       | 抑制酶的活性。                                   |                   |                         |
| 5、可被转录的 DNA                                                                           | 、链,它的顺序同4                                 | 录合成的 RNA 链        | 분( ).                   |
| 6、一段线性双螺旋                                                                             | DNA, 在经过连                                 | 续五次增殖后, 最初        | D的 DNA 占总 DNA           |
| 的比例为(                                                                                 |                                           |                   |                         |
| 7、谷氨酸经谷氨酸                                                                             | 脱氢酶催化产生的                                  | jα-酮戊二酸,最终        | 可以 CO <sub>2</sub> 的形式完 |
| 全降解,其中(                                                                               |                                           |                   |                         |
| 分子 CO2 是在柠檬!                                                                          |                                           |                   |                         |
| 8、呼吸链各组分中                                                                             | 1,只有(                                     | )是唯一的非蛋           | 白质组分。它且有                |
| <i>(</i>                                                                              |                                           |                   | Livery Civery           |
| 9、根据分子大小分                                                                             | 离蛋白质最常用的                                  | )技术是 (            | ).                      |
| 10、一条 5'和 3'端                                                                         |                                           |                   |                         |
| 水解时, 其产物是(                                                                            |                                           | )和(               | ).                      |
| 11、脂蛋白是由脂质                                                                            | 与蛋白质借(                                    |                   |                         |
| 12、乙醛酸循环中非                                                                            |                                           |                   | )和                      |
| (                                                                                     | ) 催化的。                                    |                   | У-ЛН                    |
| 13、E.coli 中某蛋白质                                                                       | 员是由 250 个氨基                               | <b>够</b> 残基构成的单结? | 長白 该蛋白质的                |
| A challenge and distribution for the form of the first of the form of the contract of |                                           | 该蛋白质总共需要          |                         |
| 子 ATP。                                                                                |                                           |                   | × 221                   |
| 四、名词解释题 (每)                                                                           | 題 3 分,共 30 分                              | )                 |                         |
| 1、糖胺聚糖                                                                                | received probable standigment and comment |                   | 产物学说                    |
| 3、超二级结构                                                                               |                                           |                   | 1 例子说                   |
| 试题代码: 641                                                                             |                                           | 共6页 第5            |                         |

| 5、mRNA 的帽子结构                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.         | 柠檬酸穿梭           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| 7、ATP 合酶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 葡萄糖效应           |
| 9、不对称转录                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | IP <sub>3</sub> |
| 五、简答题(每题5分,共20分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 11-3            |
| 1、何谓酮体?有何生物学意义。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
| 2、简述生物膜的不对称性和流动性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 |
| 3、简述糖酵解途径的主要调节机制。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |
| 4、什么是肽单位?它有哪些基本特                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 |
| 六、分析题 (每题 10 分,共 40 分)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 |
| 1、比较分析氧化磷酸化、光合磷酸化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 化、底物水平磷酸   | 化的导应            |
| 2、 举例说明分析酶高效性的机制。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | runtat lete     |
| 3、 试述乙酰 CoA 在代谢中的地位和                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 作用。        |                 |
| 4、分析蛋白质结构与功能的关系。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 11,750 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
| ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |
| 试题代码: 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |
| made approved the second of th | 共6页 第63    | 页               |

#### 2007年西南交通大学641生物化学考研真题

#### 西南交通大学 2007 年硕士研究生入学考试试卷

试题代码: 641

试题名称: 生物化学

考试时间: 2007年1月

| -  | 44 |    | • | -  |
|----|----|----|---|----|
| 25 | £  | uт | Œ | 意: |

- 1.本试题共 五 题,共 7 页,满分150分,请认真检查;
- 2.答题时,直接将答题内容写在考场提供的答题纸上,答在试卷上的内容无效:
- 3.请在答题纸上按要求填写试题代码和试题名称:
- 4.试卷不得拆开,否则遗失后果自负。
- 一、选择题(从4个被选答案中选出1个正确的答案,每题1分,共30分)
- 1、钙调蛋白展于()
- A、中性蛋白

B、酸性蛋白

C、碱性蛋白

D、水解酶 ·

- 2、下列氨基酸,哪一个不是人体的必需氨基酸?
- A. Phe

B. Thr

C. Tyr

D. Met

- 3、硫酸软骨素中的氨基糖是()
- A、N-乙酰 o-D-半乳糖胺

B、N-乙酰β-D-半乳糖胺

C、N-乙酰 a-D-葡萄糖胺

D、N-乙酰β-D-葡萄糖胺

4、酶促反应的双倒数作图如下, Km 值应为(



试题代码: 641

(共つ反)

2 (共7页)

试题代码: 641

| A、脂质体             | B、核糖体                 |
|-------------------|-----------------------|
| C、微粒体             | D、线粒体                 |
| 12、协同效应的结构基础是(    | <b>)</b>              |
| A、寡聚蛋白质分子的解聚      | B、赛聚蛋白质的降解            |
| C、寡聚蛋白质与非蛋白物质的结合  | D、寡聚蛋白质的别构作用          |
| 13、下列哪种酶对于碱性氨基酸羧  | 基参与形成的肽键具有最强的专一性      |
|                   | ( )                   |
| A、羧肽酶 A           | B、胃蛋白酶                |
| C、弹性蛋白酶           | D、胰蛋白酶                |
| 14、热变性后的 DNA ( )  | W. St.                |
| A、形成三股螺旋          | B、紫外吸收增强              |
| C、磷酸二酯键断裂         | D、碱基组成发生变化            |
| 15、下列哪种物质不是由核酸与蛋白 | 质结合而成的复合物。()          |
| A、病毒              | B、核糖体                 |
| C、线粒体内膜           | D、蛋白质生物合成起始物          |
| 16、长期食用精米和精面的人容易患 | 療皮病, 这是因为缺乏()         |
| A、烟酸和烟酰胺          | B、泛酸                  |
| C、磷酸吡哆醛           | D、硫辛酸                 |
| 17、泛酸作为辅酶的成分参加下列哪 | 个代谢过程? ( )            |
| A、脱羧基作用           | B、脱氨基作用               |
| C、转氨基作用           | D、转酰基作用               |
| 18、氰化物中毒是由于它抑制了电子 | 传递链上的 ( )             |
| A、Cyta            | B、Cytb                |
| C. Cylc           | D. Cytaa <sub>3</sub> |
| 19、线粒体的标志酶是()     |                       |
| 动数代码, 641         | 3 (共7页)               |

| A、葡萄糖-6-磷酸脱氢酶      |       | B、琥珀酸脱氢酶            |
|--------------------|-------|---------------------|
| C、腺苷酸环化酶           |       | D、乳酸脱氢酶             |
| 20、由草酰乙酸和乙酰辅酶 A 合成 | 柠檬酸是三 | 三羧酸循环重要控制点,ATP      |
| 对柠檬酸合酶的调节作用属于(     | )     |                     |
| A、变构调节             |       | B、反竞争抑制             |
| C、竞争抑制             |       | D、共价修饰调节            |
| 21、红细胞有以下的代谢途径(    | )     |                     |
| A、糖原合成             |       | B、糖酵解·              |
| C、三羧酸循环            |       | D、糖醛酸途径             |
| 22、脂肪酸从头合成的反应顺序是   | ( )   |                     |
| A、脱氢、再脱氢、水合、硫解·    |       |                     |
| B、缩合、还原、脱水、再还原     |       |                     |
| C、还原、缩合、再还原、脱水     |       |                     |
| D、脱氢、水合、再脱氢、硫解     |       |                     |
| 23、脂肪酸在肝脏进行β氧化不生质  | 战下列哪种 | 化合物? ( )            |
| A、H <sub>2</sub> O |       | B、乙酰辅酶 A            |
| C. NADH            |       | D、FADH <sub>2</sub> |
| 24、血氨升高的主要原因是(     | )     |                     |
| A、食入蛋白质过多          |       | B、肝功能障碍             |
| C、肾功能障碍            |       | D、以上都不是             |
| 25、S-腺苷甲硫氨酸的重要作用是  | ( )   |                     |
| A、补充甲硫氨酸           | #     | B、合成四氢叶酸            |
| C、提供甲基             |       | D、合成同型半胱氨酸          |
| 26、嘧啶环中的两个氦原子来自(   | )     |                     |
| A、谷氨酰胺和氨           |       | B、谷氨酰胺和天冬酰胺         |
| 试题代码: 641          | 4 (   | 共つ員)                |

| C、天冬氨酸和氨甲酰磷酸          | D、谷氨酸和氨甲酰磷酸          |
|-----------------------|----------------------|
| 27、DNA 连接酶的作用是(       |                      |
| A、使 DNA 形成超螺旋结构       |                      |
| B、使 DNA 双链缺口的两个末端相    | 连接                   |
| C、去除引物,填补空缺           |                      |
| D、将双螺旋解旋              |                      |
| 28、复制过程是依靠下列哪种物质      | 辨认起始点?(  )           |
| A、DNA 聚合酶             | B、解旋酶                |
| C、Dna A 蛋白            | D、。因子                |
| 29、真核生物 mRNA 的转录后加工   | 有()                  |
| A、磷酸化                 | B、去除外显子              |
| C、把内含子连接起来            | D、首、尾修饰              |
| 30、线粒体 DNA ( )        |                      |
| A、通常成双股线形             | B、与组蛋白相结合            |
| C、编码线粒体核糖体的 rRNA      | D、编码三羧酸循环的酶          |
| 二、填空题(每空 0.5 分,共 15 分 |                      |
| 1、麦芽糖是由(              | )组成,它们之间通过( )糖苷      |
| 键相连.                  |                      |
| 2、淀粉遇碘显( )色,糖         | 原週碘显( )色。            |
| 3、常见的脱氢酶的辅酶是(         | )和( ),辅基是( )         |
| 和( ).                 |                      |
| 4、Tm 值高的 DNA 分子中, (   | )百分含量高: Tm 值低的 DNA 分 |
| 子中, ( )百分含量高。         |                      |
| 5、DNA 的复性速度与(         | ),( )以               |
| 及 DNA 重复序列的多少有关。      |                      |
| 试题代码: 641             | 5 (共7支)              |

| 6、樹胖胖的大硬酶包括:( )、(                       |
|-----------------------------------------|
| •                                       |
| 7、单糖的 D-构型和 L-构型是以 ( ) 碳原子上的羟基位         |
| 作依据的。                                   |
| 8、别构酶的反应速度 V 对底物浓度[S]作图得到 ( ) 形曲组       |
| 9、20 种氨基酸中,() 无不对称碳原子,() 与茚三            |
| 反应生成黄色物质。( )可以参与形成二硫键。                  |
| 10、下列过程发生在真核生物细胞的哪一个部分?                 |
| 糖酵解在(), β-氧化在(), 氧化磷酸化在(                |
| 蛋白质合成在(),脂肪酸转变为糖在(),rRN                 |
| 合成在()。                                  |
| 11、蛋白质生物合成的新生肽链是从 ( ) 端开始, 在 mRNA 上阅    |
| 时,密码子是从()端到()端。                         |
| 12、RNA 聚合酶复合物中 σ 因子的作用是 (               |
| 三、是非题 (每题 1 分, 共 20 分, 请用"是"和"否"分别表示对错) |
| 1、营养充足的婴儿、孕妇、恢复期病人,常保持氮的负平衡。(           |
| 2、L-氨基酸氧化酶催化氧化脱羧基反应。( )                 |
| 3、尿素循环中天冬氨酸的含碳部分掺入到精氨酸中。( )             |
| 4、滚环式复制是环状 DNA 的一种特殊的单向复制方式。( )         |
| 5、抑制 RNA 合成酶的抑制剂不影响 DNA 的合成。( )         |
| 6、磺胺类药物治病原理是直接杀死细菌。( )                  |
| 7、利福霉素对细菌的 DNA 指导的 RNA 聚合酶具有特效抑制作用。(    |
| 8、谷丙转氨酶的辅酶是磷酸吡哆醛。( )                    |
| 9、维生素 A 在维持暗视觉中直接发挥作用的形式是反视黄醛。( )       |
| 10、丙酮酸氧化脱羧需要 FMN。( )                    |
| ·武 版代 68 . 641 6 (-共 7 页)               |

| 11、从 DNA 分子的序列可以准确                              | 地推定蛋白质的氨基酸序列。( )           |
|-------------------------------------------------|----------------------------|
| 12、氨酰 IRNA 合成酶既能识别氨                             | (基酸,又能识别相应的tRNA。(          |
| 13、必需氨基酸是指蛋白质代谢中                                | 不可缺少的氨基酸。( )               |
| 14、ATP 是为核糖体上的蛋白质生                              | 物合成提供能量的分子。( )             |
| 15、解偶联剂的作用是解开电子作                                | 专递和磷酸化的偶联关系,并不影响 ATF       |
| 的形成。( )                                         |                            |
| 16、磷酸肌酸是生物体内的高能量                                | I酸基团的"仓库"。( )              |
| 17、任何一条 DNA 片段中,破基                              | 的含量都是 A=T、C=G。( )          |
| 18、用二苯胺法测定 DNA 含量时间                             | 必须用同源的 DNA 作标准样品。(         |
| 19、腺酶的专一性很强,除尿素外                                | 不作用于其他物质。( )               |
| 20、生物膜的结构与球蛋白类似,                                | 疏水基团在内,极性基团在外。(            |
| 四、名词解释题(每题3分,共3                                 | 0分)                        |
| 1、蛋白激酶 A                                        | 2、分子杂交                     |
| 3、SDS-PAGE 法                                    | 4、NADH 电子传递链               |
| 5、同工酶                                           | 6、磷酸甘油穿梭                   |
| 7、HMS 途径                                        | 8、联合脱氨基作用                  |
| 9、一碳单位                                          | 10、乳糖操纵子                   |
| 五、分析题(共55分)                                     |                            |
| 1、写出 α -D-吡喃葡萄糖的 Fisher                         | 结构式和 Haworth 结构式。(本小題 5 分) |
| 2、试述丙酮酸在物质代谢中的变                                 | 化。(本小题 8 分)                |
| 3、试比较糖蛋白和蛋白聚糖在结                                 | 均和功能上的不同。(本小题8分)           |
| 4、试述蛋白质合成体系中各成分                                 | 的作用。(本小题》分5                |
| 5、举例说明物质的循环利用对生物                                | 物体的意义。(本外题8分)              |
| 6、试述 IP <sub>3</sub> -Ca <sup>2*</sup> 信息传递途径。( | 本小题 8 分)                   |
| 7、试述核酸的结构与功能的关系                                 | . (本小學10分)                 |
| 动起 153.641                                      | 7 (# 7 <b>)</b>            |
|                                                 |                            |

#### 2006年西南交通大学341生物化学考研真题

| 考生请注意: 1.本议题共         | 供的答题纸上,答                                                 | ;<br>生议卷上的内容无效                          | *              |
|-----------------------|----------------------------------------------------------|-----------------------------------------|----------------|
| 西南交通大学 2006 年         | 硕士研究生入学                                                  | 考试试卷                                    |                |
| 试题代码: 341             | 试题名称: 生                                                  | 三物化学                                    |                |
| 一、选择题(从4个被选答案中选出1     | 个正确的答案。                                                  | <b>発膜 1 分, 共 30 分</b>                   |                |
| 1、下列哪一种氨基酸在生理条件下含有可能  | <ul> <li>Sozabol-various/Sobsessor/Problem in</li> </ul> | )                                       |                |
| A. Ala B. Leu         |                                                          | D. Phe                                  |                |
| 2、糖蛋白中蛋白质与糖分子结合的基团是(  |                                                          |                                         |                |
| A.—OH · B.—SH         | C COOH                                                   | DCH                                     | <br>(#%)       |
| 3、全衡是指( )             |                                                          |                                         |                |
| A、酶的辅助因子以外的部分         | e en                                                     | 3#<br>                                  |                |
| B、胸的无活性前体             |                                                          |                                         |                |
| C、一种需要辅助因子的酶, 非且己具名   | 各种成分                                                     |                                         |                |
| D、一种解一抑制剂复合物          |                                                          |                                         |                |
| 4、下列各化合物。哪一个不是丙酮酸脱氢酶。 | 和 a 一個心…粉粉氣                                              | 似的结拟切子?(                                | -              |
| A. ATP B. FAD         |                                                          |                                         |                |
| 5、人体内将还原力运至线粒体的主要系统是  | anas seesa ee aasta ah ah ah                             | )                                       |                |
| A、乙醛酸穿梭 B、肉碱穿梭        |                                                          |                                         |                |
| 6、如果酶的浓度增加一倍,酶的动力学会出  | . Tana araba a a a a a a a a a a a a a a a a             |                                         |                |
| A、Km 值起原来的 1/2        |                                                          |                                         |                |
| B、Km 值增加一倍            |                                                          |                                         |                |
| C、双侧数作图所得的直线在 Y 输上的截  | DING RISE (CE                                            | SAN |                |
| D、Vmax 不变             | CPC PP ICC                                               | ***                                     |                |
| 7、多聚核糖体( )            |                                                          |                                         |                |
| A、是由核糖体大、小亚基聚合而成的     |                                                          |                                         |                |
| B、是由核糖体小亚基与 mRNA 聚合而成 | 100                                                      |                                         |                |
| C、是在蛋白质生物合成才出现的       | · 10.3                                                   |                                         |                |
| D、是由 DNA 形成的串珠模型      |                                                          | #                                       |                |
| 8、不通过胞内受体发挥作用的是 ( )   |                                                          | Nav                                     |                |
|                       | C WARM                                                   | n mass                                  |                |
| A、肾上腺素 B、雌激素          | C、中心脉系                                                   | D. REKU                                 | 8 m            |
| 9、必须达到饱和硫酸铵浓度时才折出的血浆剂 | 以刊灰地 ( )                                                 |                                         | 9 % -<br>9<br> |

## 原创力文档 max.book118.com 预览与源文档一致下载高清无水即

# 原创力文档 max.book118.com 预览与源文档一致下载高清无水印

### 原创力文档 max.book118.com 预览与源文档一致下载高清无水印

原创力文档 max.book118.com 预览与源文档一致下载高清无水印

| A、a 一球蛋白 B、白蛋白      | 自 C、β 一球蛋白                            | D、Y一球蛋白             |
|---------------------|---------------------------------------|---------------------|
| i0、Cori循环是指( )      | 25                                    |                     |
| A、肌肉内葡萄糖酵解成乳酸。      | 有氧时乳酸重新合成糖原                           | 2                   |
| B、肌肉从丙酮酸生成丙氨酸。      | 肝内丙氨酸重新变成丙酮酸                          |                     |
| C、肌肉内蛋白质分解, 生成丙     | 氨酸,后者进入肝异生为葡萄糖,                       | 葡萄糖再经血液输送           |
| 到机构                 |                                       | 1142                |
| D、外周组织内葡萄糖醇解成乳      | .酸,乳酸在肝异生成葡萄糖后释放                      | <b>次</b> 八血中供周围组织利  |
| л                   |                                       |                     |
| 1.1、胰岛素对物质代谢有广泛的调节行 | 作用,在生理浓度下,它不能引起。                      | 下列哪一种作用增强?          |
|                     | · 2                                   | ( )                 |
| A、葡萄糖透过细胞膜 B、       | 葡萄糖氧化 C、脂肪合成                          | · D、糖异生             |
| 12、镰刀状红细胞贫血的异常血红蛋   | 白中,哪个氨基酸取代了正常珠的                       | <b>货白 B 链中的谷氨酸线</b> |
| 茲? ( )              | 78                                    |                     |
| A、赖氨酸 B、缬氨          | 酸 C、丙氨酸                               | D、天冬氨酸              |
| 13、RNA和DNA彻底水解后的产物  | · · · · · · · · · · · · · · · · · · · |                     |
| A、核糖相同。碱基不同         | B、碱基相同,核                              | 核格不同                |
| C、核糖不同,碱基不同         | D、以上都不对                               |                     |
| 14、假如氢离子从细胞溶胶进入线粒   | 体而不通过 Fo/F <sub>1</sub> 通道,结果会        | ( )                 |
| A、氧化 B、还原           | C、主动转运                                | D、解偶联               |
| 15、多酶体系是指( )        |                                       | 287                 |
| A、某种细胞内所在的酶         | B、某一代谢途径的反应链。                         | 中所包括的一系列的           |
| C、细胞质中所有的酶          | D、几个酶构成的复合体。你                         | <b>化某一代谢</b> 反应过程   |
| 16、丙二酸对琥珀酸脱氢酶的抑制效   | 应是( )                                 |                     |
| A、Vmax 降低, Km 不变    | B、Vmax 降低                             | Km 降低               |
| C、Vmax 不变, Km 降低    | D、Vmax 不变                             | Km 増加               |
| 17、原核生物与真核生物核糖体上都   | 有( )                                  |                     |
| A. 18SrRNA B. 5SrRN | NA C. S.BSYRNA                        | D. 28SrRNA          |
| 18、脱氧核糖含量的测定采用(     | )                                     |                     |
| A、地衣砌法 B、二苯胺        | 法 C、福林一酚法                             | D、费林滨定法             |
| 19、蛋白质生物合成时转肽酶活性存在  | 在于())                                 | enima               |
|                     | 2                                     |                     |

| A、核糖体大亚基            | B、核糖体小亚基         | C. Er            | D, IF     |
|---------------------|------------------|------------------|-----------|
| 20、DNA 复制时下列哪一种醉力   | 是不需要的? (         | <b>)</b>         | ***       |
| A、DNA 指导的 DNA 聚合    | 砂                | B、DNA 指导的 RNA    | 聚合酶       |
| C、RNA 指导的 DNA 聚合    | 59               | D、连接解            |           |
| 21、下列磷脂中哪一个含有胆碱     | 7 ( . )          | Da j             | ok        |
| A、脑磷脂               | B、心磷脂            | C、卵磷脂            | D、磷脂酸     |
| 22、请指出下列脂蛋白密度由低     | 到高的正确顺序。(        | )                |           |
| A. CM. VLDL. LDL    |                  | B. LDL. VLDL. CM |           |
| C. HDL. VLDL. CM    |                  | D. VLDL, LDL, CM |           |
| 23、哺乳动物体内直接催化尿酸     | 生成的酶是(           | )                |           |
| · A、尿酸氧化酶 B、黄       | i嘌呤氧化酶 C         | 、腺苷脱氢酶 D、        | 马嘌呤脱氨酶    |
| 24、三羧酸循环中底物水平磷酸     | 化的反应是 (          | )                |           |
| A、 异柠檬酸 → α - 酮戊    | 二酸               | B、 a 一酮戊二酸 →     | 琥珀酸       |
| C、琥珀酸 - 延胡素酸        |                  | D、延胡索酸 - 苹果      | S Tre     |
| 25、蛋白质分子中引起 280nm 波 | 长处吸收的主要成分        | )是( ) …          |           |
| A、色氨酸的吲哚基           |                  | B、酪氨酸的酚基         |           |
| C、半胱氨酸的巯基           | W.               | D、组氨酸的咪唑基        |           |
| 26、脱氧核糖核苷酸生成方式主     | 要是 ( )           |                  |           |
| A、直接由核糖还原           |                  | B、由核苷酸还原         |           |
| C、由二磷酸核苷还原          |                  | D、由三磷酸核苷还原       |           |
| 27、关于电子传递链的叙述错误的    | 的是 ( )           | e e              |           |
| A、 电子传递链各组分组成       | 4个复合体            |                  | 49        |
| B、电子传递链中的递氢体同       | 时也是递电子体          |                  |           |
| C、电子传递链中的递电子体       | 同时也是递氢体          |                  | *         |
| D、 电子传递的同时伴有 AD     | P的磷酸化            |                  |           |
| 28、p因子的功能是()        |                  |                  |           |
| A、结合阻遏物于启动区域处       |                  | B、增加 RNA 的合成这    | <b>化率</b> |
| C、释放结合在启动子上的 R      | NA 聚合酶           | D、参与转录的终止过       | 群         |
| 29、动物细胞中蛋白质合成的主要    | <b>昭位是( . )</b>  |                  | 1000      |
| A、细胞核 B、溶l          | 16/4 C.<br>3 · . | 粗而内质网 D.         | 高尔基体      |

| 30、有一个反应途径由解 A→酶 D 4 个不一C. 酶 C 催化 C→D. 酶 D 催化 D→E. ē    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| 10 <sup>-3</sup> mol/L、10 <sup>-4</sup> mol/L,相关 Km 值分别 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                 |                       |
| 请问哪一个酶催化的反应速度最接近 Vms                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nout to mou          | L. 10 mol/L.          |
| A、酶A B、酶B                                               | 9970, (1.1.158 1), To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                  |                       |
| 二、填空题(每空 0.5 分, 共 20 分)                                 | C、酶C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ļ                    | 、酶D                   |
|                                                         | <b>維度</b> 一種                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                       |
| 1、DNA 双螺旋每旋转一周,沿轴上升的                                    | 1.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) <b>.</b>           |                       |
| 2、酪氨酸 tRNA 反密码子是 5'-GU ( ).                             | 14一3、它能辨以                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mRNA 上的社             | 日应密码于是                |
| ( )。<br>3、皂化价为 200 的甘油三酯,其分子量点                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mary.                |                       |
| 4、胆固醇合成的酶系存在于(                                          | A STATE OF THE STA | 3.                   | ·<br>*                |
| 5、假尿嘧啶核苷的糖苷键是(                                          | )和(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >.                   |                       |
| 6、常用来测定蛋白质分子量的方法有(                                      | ) 连接.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 21                    |
| ( )、最小分子                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . (                  | ).                    |
| 7、生物机体生成 ATP 的主要方式有(                                    | <del>vertegjjet</del> etik<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>              | 960                   |
| ( ).                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . (                  | <b>)</b> ,            |
| 70 (1757)<br>11 - Paragana (1758)                       | ). (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ), (                 | 786                   |
| 可逆的非共价结合等。                                              | ^ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>7.</i> (          | ٠,                    |
| 9、自然界中存在的多糖含量最多的是(                                      | )。其次!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .,                   | <b>).</b> .           |
| 10、mRNA 分子 3'末端的帽子结构是(                                  | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>5. V</b> .<br>(8) |                       |
| 11、成熟红细胞的主要能源来自(                                        | ) 途径。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                       |
| 12                                                      | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) 分子 NADPH.          |                       |
| 13、蛋白质变性时, 其理化性质会发生改变                                   | 가야, 도구스                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )、粘度 (               | (A)                   |
| 颜色反应 ( )、易被蛋白酶水解                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. 110X V            |                       |
| 14、酶的高效性机制包括: (                                         | »,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | Э.                    |
| ( ), ( .                                                | )及金属 <b>高</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 子)世少数。•              |                       |
| 15、合成糖原时,葡萄糖基的直接供体是(                                    | 0 *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) mm                 | で <i>発</i> し<br>- 100 |
| 16、终止密码子一共有三个。它们分别是(                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ` ` · · ·          |                       |
| 17、在尿素循环中,能穿出线粒体进入细胞                                    | 1 A.7 € 7 1850 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mIL (                |                       |
| 18、糖胺聚糖又称粘多糖,是一类含(                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                       |

| 19、血红蛋白与氧的结合过程呈现 ( ) 效应,这是通过血红蛋白              | ₩) (   | )    |
|-----------------------------------------------|--------|------|
| 作用来实现的。                                       |        | F    |
| 20、EC3.1.1.11 应为 ( ) 酶类。                      | ¥      | 11.4 |
| 21、肽链延伸包括进位、( )、( ) 三个步骤重复进                   | 生行。    |      |
| 22、糖醇解途径中最重要的关键酶(调节点)是(                       |        |      |
| 三、是非愿(每题1分,共20分,谓用"是"和"否"分别表示                 | 对错)    |      |
| 1、甘油二酯是磷脂酶 C 作用于 PIP2 的产物, 是第二信使。             | (      | )    |
| 2、各种 IRNA3'來端结构不同,因而能结合各种不同的氨基酸。              | (      | )    |
| 3、ATP 含酶本身就具有 ATP 酶的活性。                       | (      | )    |
| 4、成熟红细胞内磷酸戊糖途径所生成的 NADPH 的主要功能是维持还原型          | 谷胱甘肽的  | 内正常  |
| <b>水平</b> .                                   | (      | >    |
| 5、嘧啶分解代谢降码会引起前风症。                             | •      | )    |
| 6、DNA 折扑异构酶的作用是解开 DNA 双螺旋使其易下复制。              | C      | )    |
| 5、三酯酰甘油分子中不饱和脂肪酸含量越高,其熔点越高。                   | •      | )    |
| 8、人体内各种活动的直接能量供给者是葡萄糖。                        | •      | )    |
| 9、D-甘露糖和 D-半乳糖都是葡萄糖的装向异构体,所以它们也是-             | ·对袋向异  | 构体.  |
|                                               | •      | )    |
| 10、蛋白激酶 A 的特点是当 C 亚基与 4 分子 cAMP 结合时,R 亚基与 C 亚 | 基解离, ( | . 亚基 |
| 才有活性。                                         | • (    | )    |
| 11、戊糖磷酸途径的主要功能是产生 NADPH 和 5°-磷酸核酮糖。           | (      | )    |
| 12、从葡萄糖合成糖原时,每加上1个葡萄糖效蒸器消耗2个高能磷酸键。            | . (    | )    |
| 13、透明质酸的生物合成过程是先合成二糖单位。再相互连接成多糖链。             | (      | )    |
| 14、叶酸的作用能被数嘌呤及氨甲嘌呤所拮抗。                        | (      | )    |
| 15、前列腺素的化学本质是脂肪酸衍生物。                          | (      | )    |
| 16、肽酰IRNA 结合在核蛋白体 A 位。氨酰IRNA 结合在 D 位。         | (      | )    |
| 17、Sanger提出的 DNA 核苷酸顺序测定法是双股氧末端终止法。属于直读法      | . (    | )    |
| 18、氨基甲酰磷酸既可以合成尿素也可以转变为嘌呤核苷酸。                  | (      | )    |
| 19、磷酸肌酸是 ATP 高能磷酸基的贮存库。                       | (      | )    |
| 20、在极低底物浓度时,酶促反应初速度与底物浓度没关系。                  | (      | )    |

### 四、名词解释题 (每题 3 分, 共30分)

1、构型

2、必需脂肪酸

3、G 蛋白

4、0 - 螺旋

5、分子杂交

6、酮体

7、非竞争性抑制作用

8、一碳单位

9、限制性核酸内切酶

10、操纵子

#### 五、分析题(共50分)

- 1、试述维生素 B 族在代谢中的作用。(本小题 6 分)
- 2、试比较酶的别构调节与共价修饰调节的异同。(本小题 8 分)
- 3、举例说明第二信使分子在细胞信息传递过程中的作用。(本小题8分)
- 4、简述核苷酸的生物学功能。(本小题6分)
- 5、试述生物膜的两侧不对称性。(本小题6分)
- 6、根据下面实验结果推断某条多肽链的氨基酸序列。(本小题 6 分)
- (1) 酸水解后氨基酸组成: 2Ala、Arg、2Lys、Met、Phe、2Ser;
- (2) 羧肽酶 A 水解得一氨基酸为 Ala;
- (3) 胰蛋白酶水解得四个肽段,其氨基酸组成为:
- 1) Ala. Arg. 2) Lys. Phe. Ser; 3) Lys; 4) Ala. Met. Ser:
- (4) 溴化氰水解得两个肽段,其氢基酸组成如下:
  - 1) Ala, Arg, 2Lys, Met, Phe, Ser: 2) Ala, Ser;
- (5) 嗜热菌蛋白酶水解得两个肽段,其氨基酸组成如下:
  - 1) Ala. Arg. Ser: 2) Ala. 2Lys. Met. Phe. Ser.
- 7、试分析糖、脂、蛋白质三大营养物质的代谢转变关系。 本小题 10 分)

### 2005年西南交通大学341生物化学考研真题

## 西南交通大学 2005 年硕士研究生入学考试试卷

试题代码: 341

试题名称: 生物化学

#### 考生注意:

- 1. 本试题共 五 题,共 六 页,请考生认真检查;
- 2. 请务必将答案写在答卷纸上,写在试卷上的答案无效。

| 題号 | <br> | Ξ | 29 | £ | 六                    | 七              | 八 | 九 | + | 总分  |
|----|------|---|----|---|----------------------|----------------|---|---|---|-----|
| 得分 |      |   |    |   | Pittoria<br>Januaria | i<br>Inna-a-la |   |   |   | , i |
| 签字 |      | · | 2  |   |                      |                |   |   |   |     |

| 一、 填空题 (每空 0.5 分, 共 30 分 | )                |                |             |
|--------------------------|------------------|----------------|-------------|
| 1、自然界中普遍存在的单糖多为(         | ) 构型, 氨基酸        | 多为()           | 构型。         |
| 2、乙酰 CoA 在动物体内的主要代谢去路员   | F (              | ), (           | Э,          |
|                          | ).               |                |             |
| 3、与葡萄糖互为差向异构体的是(         | ), (             | ), (           | ).          |
| 4、一组蛋白质相对分子量分别是: A=90000 | B=45000, C=1     | 10000。用 SDS一聚7 | 万烯酰胺凝胶电泳法测定 |
| 这组蛋白质分子量时,它们的电泳先后顺序      | 所 (              | ).             |             |
| 5、酶是生物催化剂。其主要特点是(        | ), (             | ), (           | ).          |
| 6、生物氧化的主要方式是()、          | ( ) <sub>v</sub> | ( ) <b>.</b>   |             |
| 7、糖胺聚糖是一类含 ( ) 和 (       | ) 的杂氢            | >糖,其代表性化合物     | 9年(         |
| ), ( ), (                | ) %.             |                |             |
| 8、蛋白质的紫外吸收特征峰值为(         | )。核酸的紫外          | 吸收特征峰值为(       | Σ.          |
| 9、维生素 B1 在体内的活性形式是(      | ), 主要有           | <b>≱</b> 与(    | ) 反应。       |
| 10、电子传递链中与电子传递有关的成分是     | ( -), (          | ), (           | ).          |
| 11、酶反应速度受许多因素的影响。以反应。    | 速度对底物浓度作         | 图,得到一条(        | )。以反应速度对    |
| 酶浓度作图,得到一条(),以反          | 应速度对 pH 作l       | <b>组,得到一条(</b> |             |
|                          |                  |                |             |
| 12、糖酵解途径的关键酶是(           | ), (             | ). (           | ).          |
| 13、举出两例生物细胞中氧化脱羧反应:(     |                  | >, (           |             |
|                          | 1                |                |             |

| 14、Asp 在生理 pH 条件下房 | <b>听带净电荷为(</b>    | Tables of the second | ).      |        |      |      | 99 <b>%</b> 9 |
|--------------------|-------------------|----------------------|---------|--------|------|------|---------------|
| 15、HDL 的主要生理功能是    | (                 |                      | ).      |        |      |      |               |
| 16、氨在血液中的主要运输      | 形式是(              | )和                   | (       | ٠.     |      |      |               |
| ·<br>17、核苷酸衍生物是物质代 | 谢的重要活性形式          | t,如(                 |         | ), (   |      | ).   |               |
| 18、若使酶促反应速度达到5     | 最大速度的 90%。        | 此时底物浓                | 度应是此酶   | Km值的(  | ,    | 倍.   |               |
| 19、在脂肪酸分解代谢中脂      | 酰基的载体是(           |                      | )。而在/   | 脂肪酸合成化 | 中部分  | 的脂酰基 | 的载体           |
| ( ).               |                   |                      |         |        |      |      |               |
| 20、生物体中重要的第二信任     | 使分子有(             | ), (                 |         | ), (   | ),   |      |               |
| ( )等。              |                   |                      |         |        |      |      |               |
| 21、参与 DNA 切除修复的關   | 有(                | ), (                 |         | ), (   |      |      |               |
| >.                 |                   |                      | tar ere |        |      |      |               |
| 22、遗传密码的特点有连续情     | 生、(               | ), (                 | ), (    | ),     | •    |      |               |
| )以及有起始密码           | 和终止密码。            |                      |         |        |      |      |               |
| 3、三羧酸循环中重要的有标      | 机酸包括柠檬酸、          | 异柠檬酸、(               |         | ), (   |      | ١,   |               |
| ( ), (             | ).                | ,                    |         |        |      |      | 13 \$2 5 1    |
| 二、 是非應(每應1分        | 分,共20分,           | 请用"是"                | 和"否" 5  | 分别表示对  | 借)   |      |               |
| 、一切有旋光性的糖都有变       | 旋现象。              |                      |         | (      |      | )    |               |
| 、自然界中常见的不饱和脂       | 肪酸一般是顺式           | A9.                  |         |        |      | )    |               |
| 、黄素蛋白的氧化还原电位       | 随结合的蛋白不           | 同而变化。                |         |        |      | )    |               |
| 、磷脂和糖脂都属于两亲化       | 合物。               |                      |         |        | (C   | )    |               |
| 、双缩脲反应是肽和蛋白质       | 特有的反应, 所          | 以二肽也有双               | 缩脲反应。   |        | (    | )    |               |
| 、蛋白质的变性是蛋白质分       | 子立体结构的破           | 坏,因此常涉               | 及肽键的断   | 製。 (   |      | )    |               |
| 、川碱水解 RNA 和 DNA B  | <b>打可得到 2'、3'</b> | 核苷酸.                 |         |        | c    | )    |               |
| 、溶液的 pH 值可以影响氦     | 基酸的等电点。           |                      |         |        | £;;- | )    | 7,5755 T      |
| 、维生素E不容易被氧化。       |                   |                      |         |        | (    | )    |               |
| 0、对于提纯的 DNA 样品。    |                   |                      | 明样品中含   | 有 RNA。 |      | )    |               |
| 1、某蛋白质在 pH6 时向图    |                   |                      |         |        | (    | )    |               |
| 2、Km 是酶的特征常数,只     |                   |                      | 《物无关。   |        | (    | 5    |               |
| 3、氨基甲酰磺酸既可以合用      |                   |                      |         | 30     |      | )    |               |
| 4、正协同效应使酶与底物?      |                   |                      |         |        | C    | )    |               |

| 15、NADH 和 NADPH 都可以直接进入呼吸链。 |              |             | ). |
|-----------------------------|--------------|-------------|----|
| 16、放线菌素 D 既可以抑止质核细胞的基因转录    | ,又可以抑止真核细胞的  | 的基因转录。(     | )  |
| 17、脂肪酸合成的直接前体是丙二酸单酰 CoA。    |              | (           | )  |
| 18、在蛋白质生物合成中,所有的氨酰一tRNA 着   | 都是首先进入核糖体的 A | 部位。(        | )  |
| 19、基因表达的调控关键在于转录水平的调控。      |              |             | )  |
| 20、核苷酸分子中核糖为吡喃型结构。          |              |             | )  |
| 三、 选择题(从4个备选答案中选1个          |              | 共30分)       |    |
| 1、下列高能磷酸化合物。在肌肉中具有贮能作用      |              | (           | )  |
| A、ATP B、1,3-二磷酸甘油酸 C        | 、磷酸烯醇式丙酮酸    | D、磷酸肌酮      | ğ  |
| 2、嘌呤环上的 C4 和 C5 来源于哪种氨基酸?   |              |             | )  |
| A. Gly B. Asp               | C、Gin        | D. Glu      |    |
| 3、关于以 DNA 为模板的 RNA 合成的下列叙述。 | 中,哪一条是不正确的?  | ¢           | )  |
| A、只有在 DNA 存在下。RNA 聚合酶才能催化的  | 真酸二酯键的形成:    |             |    |
| B、在转录过程中,RNA 聚合酶需要一段引物:     |              |             |    |
| C、在体内大多数情况下, DNA 上只有一条链作    | 模板用:         |             |    |
| D、合成的 RNA 链不可能是环状的。         |              |             |    |
| 4、下列哪种动力学属于酶的竞争性抑制作用        |              |             | )  |
| A、Km 增加,Vmax 不变:            | B, Km 才      | 变,Vmax 增大:  |    |
| C、Km 降低。Vmax 降低:            | D, Km 🏻      | 任低。Vmax 不变: |    |
| 5、溴乙啶嵌入双链 DNA 会引起:          |              | ( )         | )  |
| A、颠换突变: B、缺失突变:             | C、移码突变:      | D、转换多       | 变变 |
| 6、长碳链的脂酰 CoA 氧化的连续进行不依赖于    | 下列哪种酶?       | Ç           | )  |
| A、脂酰 CoA 脱氢酶:               | B、烯酰         | E CoA 水化酶:  |    |
| C、硫激酶:                      | D、β-羟        | 脂酰 CoA 脱氢酶  |    |
| 7、下列结构式中,哪个是α-D-吡喃葡萄糖的结     | 构式?          | (           |    |
| ÇН₂ОН                       | й Сн₃он      | oх н        |    |
| н о он                      | / н          | Ku          |    |
| но он н н                   | но он        | ₩ ОН        |    |
| й он                        | н ②          | ОН          |    |
| Α, ①                        | В.           |             |    |

| но Сн₂он                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | он н         | HO CH <sub>2</sub> C | он он       |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|-------------|---------|
| н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ОН           | н —                  | — H         |         |
| он ③                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ## 7#<br>}   | D <sub>v</sub>       | <b>④</b>    |         |
| C、<br>8、呼吸链磷酸化应                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 在什么部位        |                      | ¢           | )       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B、线粒体内膜      | C、线粒体基质              | D、细胞质       | 膜       |
| 9、细胞色素氧化酶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                      | ¢           | )       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B、细胞色素 bb.;  | C、细胞色素 bc:           | D、细胞t       | 色素 case |
| 10、糖醇解的最终多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                      | ¢           | )       |
| ADT G. ATTATTER CALLAND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B、乙醇         | C、乙醛                 | D、丙酮剂       | 良       |
| A. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 一个不是人体的必需领 |                      | ć           | )       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                      | D. Thr      |         |
| A. Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B、Tyr        | C. Met               |             |         |
| 12、与片断 TAGC <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 互补的片段为       |                      |             |         |
| A. TAGC <sub>P</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B. CGATP     | C. ATCG <sub>P</sub> | D, GCT      | Ар      |
| 12、碳原子数相同的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 的脂肪酸,不饱和的与饱  | 和的相比,其熔点             | × ×         | )       |
| A、较低:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B、较高:        | C、相同:                | D、变化        | 七不定。    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ,若只存在 a -螺旋、则3       | 4长度为 (      | )       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | C. 25.75nm           | D. 30.50    | 0nm     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 白质生物合成提供能量的  | 分子是                  | (           | )       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B, GTP       | C. UTP               | D, CTI      | P       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 下列哪种方法不能用于   | <b>近少10年</b> ?       | (           | )       |
| 15、人.1.台/8.BAP1,<br>A、登叙法:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | C、混合酸酐法:             | D、形成        | 甲酚.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (基酸在紫外区有强吸收。 |                      | )           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B、220nm 处:   |                      | D. 268nr    | n处      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 草酰乙酸是什么海作用的  |                      |             | )       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B、琥珀酸脱氢酶     |                      | D、顺乌头的      | 皮酶      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 中磷酸化酶水解的键是   |                      |             | )       |
| A、 a -1, 6-糖苷键                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                      | В、β-1,6-糖   | 丁键      |
| A、α-1, 6-被11被<br>C、α-1, 4-糖苷键                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                      | D、β-1, 4-糖  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 6                    | C           | )       |
| A STANCE OF THE | 所以呈酸性是因为它含有  |                      | D、唾液酸       |         |
| A、脂肪酸:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B、糖醛酸;       | C、胞壁酸:               | LAC TERRIBE |         |

| 20、下列哪一种酶作          | 用于底物 ApUpApApCpl   | J 时,得到产物 A。pl     | U, pA, pA | . pC. r          | U: (    | )       |
|---------------------|--------------------|-------------------|-----------|------------------|---------|---------|
| A、蛇毒磷酸二酯酶:          |                    | B、牛脾磷酸二酯          | iii¥:     |                  |         |         |
| C、牛胰核糖核酸酶;          |                    | D、限制性内切置          | ٧.        |                  |         |         |
| 21、血浆中催化胆固          | 醇酯合成的酶是哪一种?        |                   |           | (                | )       |         |
| A、卵磷脂:胆固醇酰          | 基转移酶;              | B、肉碱脂酰转移          | 酶:        |                  |         |         |
| C、脂酰 CoA:胆固醇        | 酰基转移酶:             | D、磷脂酶。            |           |                  |         |         |
| 22、下列有关 RNA 聚       | <b>聚合酶的陈述中哪一种是</b> | 正确的?              |           | C                | )       |         |
| A、合成多核苷酸链印          | t。RNA 聚合酶作用于核      | (苷二磷酸:            |           |                  |         |         |
| B、RNA 聚合酶作用         | 时需要引物:             |                   |           |                  |         |         |
| C、RNA 聚合酶只能         | 在延伸多核苷酸链的 3'端      | 加上核苷酸:            |           |                  |         |         |
|                     | 合酶可以在 DNA 模板的      |                   |           | i<br>Responsable |         | 40      |
| 23、肌糖原的降解不同         | 能直接为血液提供葡萄糖        | ,这是因为肌肉细胞         | 中缺乏下述     | 哪种酶?             | C       | )       |
| A、糖原磷酸化酶;           |                    |                   | 磷酸葡萄      | 肺变位酶             | . C     | 、葡萄     |
| 糖激酶:                |                    | D、葡萄糖-6           | 磷酸酶。      |                  |         |         |
| 24、逆转录酶是            | §                  |                   |           | (                | )       |         |
| A、RNA 指导的 RNA       | 聚合酶:               | B. DNA            | 指导的 RN    | A 聚合酚            | i. C. R | NA 指    |
| 导的 DNA 聚合酶:         | 1                  | D、DNA 指导的 DNA     | 聚合酶。      |                  |         |         |
| 25、冈崎片段是            |                    |                   |           | C                | )       |         |
| A、DNA 合成中的最         | 终产物:               | B. RNA            | 4 合成中的    | 中间物:             | C. RN/  | A合成     |
| 中的最终产物:             | ľ                  | O、DNA 合成中的中位      | 可物        |                  |         |         |
| 26、关于脂肪酸β-氧         | 化的叙述,哪一种是正确        | 1的?               |           | (                | )       |         |
| A、起始物是自由脂肪          | 7酸:                | B、起始和             | 物是脂酰 Co   | pΑι              |         |         |
| C、全过程在过氧化物          | 7体内进行:             | D、全过机             | 程在胞浆中     | 进行。              |         |         |
| 27、下列化合物中哪-         | 一组所标的名称是正确的        | ?                 |           | <b>(</b>         | )       |         |
| A、磷酸吡哆醛             | 维生素 B2 衍生物:        |                   |           |                  |         |         |
| C、硫胺素               | l生素 B1 衍生物:        | D、核黄素             | 维生素 B6    | 行生物。             |         |         |
| 28、保护巯基酶免遭的         | 氧化而失活的化合物是         |                   |           | C                | )       |         |
| A、胱氨酸:              | B、二价削离子:           | C、谷胱甘肽:           |           | D. 尿             |         |         |
| 29、脂肪酸从头合成;         | 全径中需要哪一种还原剂        | 17                | 71        | ¢                | ).      |         |
| A . NADH:           | B. NADPH:          | C. FADH2:         |           | D. I             | MNH2    | 30. DNA |
| 拓扑异构酶 1 型(Topl)     | 和II型(Top II)的主要差   | 別是                | (         | >                |         |         |
| A、Top I 使 DNA 的-    | 一条链发生斯裂并再连接        | ,而 Top II 使 DNA 两 | 条链同时期     | f製, 井1           | 月连接:    |         |
| B、Top I 和 Top II 都有 | 更 DNA 的一条链断裂并      | 再连接。但 Topl 催化     | 的反应需 A    | TP,Top II        | 不渴 AT   | P供给     |
| 能量:                 |                    |                   |           |                  |         |         |
| C、Top I 和 Top II 都包 | EDNA 的两条链断裂并i      | 写连接,但 Top I 催化的   | 反应不需 /    | TP, Top          | H & AT  | P提供     |
| 能量:                 |                    |                   |           |                  |         |         |
|                     |                    |                   |           |                  |         |         |
|                     |                    | 5                 |           |                  |         |         |
|                     |                    |                   |           |                  |         |         |

|       | op I 使i<br>名i |     |          |        |                |      |     |            |        |      | 吏 D         | NA 的—         | 条包   | 断裂并 | <b>写连接。</b> |
|-------|---------------|-----|----------|--------|----------------|------|-----|------------|--------|------|-------------|---------------|------|-----|-------------|
| 1、氧   | 化磷酸           | 化   |          |        |                |      | 2.  | 别构训        | 日 竹    |      |             |               |      |     | 前酮酸循环       |
| 4、分   | 子杂交           |     |          |        |                | 5.   | . 埤 | 1色效        | 应      |      |             | 6.            | 异シ   | 人物  |             |
| 7. CI | nargaff ?     | 去则  |          |        | 8、肚            | 单位   | Z   |            | 9.     | 磷酸戊  | 糖:          | 金径            | 10   | 核蛋白 | 体循环         |
| 五、    | 综合            | }題  | (共       | 40     | 分)             |      |     |            |        |      |             | Water Control |      |     |             |
| 1、试   | 比较复           | 制与车 | 专录自      | 的异     | 同。             | (本/  | 小腿  | 8分         | )      |      |             |               |      |     |             |
| 2、试   | 分析酶           | 高效性 | 上的化      | 乍用     | 机制             | . (2 | 本小  | 题 8        | 分)     |      |             |               |      |     |             |
| 3. iX | 述维持           | 血糖平 | と衝ヌ      | 寸生     | 物机             | 体的   | 重3  | 更性。        | (本     | 小題8  | 分)          |               |      |     |             |
| 4. bt | 述分子           | 可作用 | カヌ       | 寸生     | 物大             | 分子   | 结构  | 勾与以        | 能的     | 的重要性 | ()          | <b>本小題 8</b>  | 分)   |     |             |
| 5、请   | 用线式店          | 反应示 | 意口       | 分      | 子葡萄            | 梅糖   | 彻底  | <b>定氧化</b> | . 89 f | 弋谢转变 | 及自          | <b>能量变化</b>   | . (8 | (分) |             |
|       |               |     |          |        |                |      |     |            |        |      | <b>1</b> 20 |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      | 4   |             |
|       |               |     |          |        | 9/             |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      | .v  |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     |          |        |                |      |     |            |        |      |             |               |      |     |             |
|       |               |     | Contains | irinia | interes in the |      |     |            |        | 6    |             |               |      |     |             |

### 2004年西南交通大学341生物化学考研真题

# 艺》项、沿着对然在潜意依上、写在讨意上心然意无效。 西南交通大学 2004 年硕士研究生入学考试试卷

| 试题代码: 341 试题名称: 生物化学                                                                                                |                  |
|---------------------------------------------------------------------------------------------------------------------|------------------|
| 一、 填空题 (每空1分,共40分) 清水神 紫黑宝石                                                                                         | · 洛卷 five.       |
| 1、常用来定量测定还原糖的试剂是()试剂和(                                                                                              |                  |
| 2、含原苷酸的辅酶有( )、( )、( )、                                                                                              | ( ) <sub>*</sub> |
| 3、某双链 DNA 分子按摩尔计含有 15.1%的胸腺嘧啶核苷酸, 其鸟苷酸剂                                                                             | 9含量应是( )。        |
| 4、一组蛋白质相对分子量分别是: A=90000, B=45000, C=110000。其                                                                       | 日凝胶过滤法分离这        |
| 组蛋白质时,它们洗脱下来的先后顺序是()。                                                                                               |                  |
| 5、酶的结合部位决定酶的(),而催化部位决定酶的(                                                                                           | ٠.               |
| 6、自然界中重要的己醛糖有()、()、(                                                                                                | ). ·             |
| 7、糖胺聚糖是一类含 ( )和 ( )的杂多糖,其代                                                                                          | 表性化合物有(          |
| ), ( ), ( ) by.                                                                                                     |                  |
| 8、具有紫外吸收能力的氨基酸有()、()、()、(                                                                                           | ).               |
| 9、延胡索酸只对反丁烯二酸起催化作用,而对顺丁烯二酸则无作用,区                                                                                    | 1而此酶具有 (         |
| <b>)♥─性</b> ・                                                                                                       |                  |
| 10、生物氧化有三种方式:()、()、()、(                                                                                             | ).               |
| 11、酶反应速度受许多因素的影响,以反应速度对底物浓度作图,得到-                                                                                   | 一条 ( ),          |
| 以反应速度对酶浓度作图,得到一条( ),以反应速度对 pH                                                                                       | 作图,得到一条(         |
| <b>).</b>                                                                                                           |                  |
| 12、维生素 B <sub>6</sub> 有 ( )、( )、( ) 三种形式                                                                            | ,可以作为氨基酸         |
| ( )、( )、( )的辅酶。                                                                                                     |                  |
| 13、举出两例生物细胞中氧化脱羧反应;(                                                                                                | 5.               |
| <b>).</b>                                                                                                           |                  |
| 14、可以编码相同氨基酸的密码子称为 ( ) 密码子。                                                                                         |                  |
| 15、乳糜微粒的主要生理功能是()。                                                                                                  |                  |
| 16、谷氨酸的 pK <sub>1</sub> (α-COOH) =2.19, pK <sub>2</sub> (α-NH <sub>3</sub> <sup>+</sup> ) =9.67, pK <sub>R</sub> (R | 基) =4.25, 其 pl   |
| 值应是 ( )。                                                                                                            |                  |
| 17、若使酶促反应速度达到最大速度的 90%, 此时底物浓度应是此酶 Km                                                                               |                  |
| 二、 是非题(每题1分,共20分,请用"+"和"一"分别                                                                                        |                  |
|                                                                                                                     | 2~11/11 HE X     |

世四月海月

| 1、生物体内转运-      | 一碳单位的载体是生物       | 勿紧。                                |                 |             |
|----------------|------------------|------------------------------------|-----------------|-------------|
| 2、谷氨酰胺是体产      | 内氨的一种运输、储存       | 7、解毒方式。                            | C               | )           |
| 3、黄素蛋白的氧化      | 比还原电位随结合的进       | 度白不同而变化。                           | · ·             | )           |
| 4、变位酶和差向异      | <b>P构的是同工的</b> 。 |                                    | ţ               | )           |
| 5、人类缺乏维生素      | SB1会产生脚气崩。       |                                    | (               | )           |
| 6、蛋白质的变性是      | 上近白质分子立体结构       | 的破坏。因此常涉及肽键的断                      | 恕。 (            | )           |
| 7、用碳水解 RNA     | fil DNA 时可得到 2'、 | 3'-核苷酸。                            | (               | )           |
| 8、胆汁酸基固醇的      | 衍生物, 是一种重要       | 的乳化剂。                              | ť               | )           |
| 9、抗坏血酸是山梨      | 醇的衍生物。           |                                    | (               | )           |
| 10、细胞色素 C 和用   | 机红蛋白都是含有血红       | 工素辅基的蛋白质,它们必定具                     | 有相似的三级          | 结构。         |
|                |                  |                                    | (               | )           |
| 11、当某一氨基酸品     | 晶体溶于 pH7.0 的水中   | · 所得溶液的 pH 为 8.0,则则                | s氨基酸的 pl s      | /定大         |
| 于 8.0。         |                  |                                    | ·               | )           |
| 12、氨基酸在体内小     | 肠的吸收与葡萄糖相        | 似,同样需要载体、Na*和消耗                    | ATP. (          | )           |
|                | E可以合成尿素也可以       |                                    | •               | `           |
| 14、脂肪酸活化后进     | 入线粒体内进行 8-9      | (化, 需经脱氢、脱水、加氢和                    | 硫解等四个过          | #¥.         |
|                |                  |                                    | (               | )           |
| 15、单链 DNA 结合的  | 蛋白与 DNA 结合使其     | 解链。                                |                 | )           |
| 16、L-氨基酸氧化酶;   | 是参与氨基酸脱氨基        | 作用的主要酶。                            | (               | )           |
| 17、大肠杆菌参与 D    | NA 错配修复的 DNA     | 聚合酶是 DNA 聚合酶 I。                    | (               | )           |
| 18、四膜虫 Pre-mRN |                  |                                    | (               | )           |
| 19、在翻译起始阶段。    | ,由完整的核糖体与        | mRNA 的 5'端结合开始蛋白质                  | 4. 프랑크이지 생각되었다. | )           |
| 20、基因表达的调控     |                  |                                    | (               | )           |
| 三、 选择题(从       | 人4个备选答案中边        | 生1个正确答案,每题1分                       |                 | 3445 B 4500 |
| 1、下列氨基酸中与尿     |                  |                                    |                 | )           |
| A、特氨酸          | B、赖氨酸            | C、鸟氨酸                              | D、天门冬贺          |             |
| 2、在磷脂的生物合成     |                  | 왕이 많아 마시아는 경기가 되었다면 경기가 회원들이 가입니다. | (               |             |
| A. ATP         | B, GTP           | C, CTP                             |                 | ,           |
| 3、维生素 A 在维持暗   |                  |                                    | D. UTP          |             |
| A、反视黄醛         | B、顺视黄醛           |                                    | n southwe       | 8 1         |
|                | - AND DE SEE SEE | C、视黄醛                              | D、视黄醇           |             |

| 4、下列哪种动力学                                | 超于酶的竞争性抑制作用          |                                       | C                                       | •       |
|------------------------------------------|----------------------|---------------------------------------|-----------------------------------------|---------|
| A、Km 增加,Vma                              | ×不变                  | В                                     | 、Km 不变,Vr                               | nax 增大  |
| C、Km 降低,Vmax                             | x 降低                 | D                                     | 、Km 附低,Vn                               | nax 不变  |
| 5、胃蛋白酶属于                                 |                      |                                       | (                                       | )       |
| A、丝氨酸蛋白酶                                 | 8、巯基蛋白酶              | C、酸性蛋白酶                               | D、金旗                                    | (近白海    |
| 6、脂肪的碱水解订                                | 给出下列哪一项专有名词          |                                       |                                         | >       |
| A、酯化作用                                   | B、还原作用               | C、皂化作用                                | D、水解                                    | 作用      |
| 7、呼吸链磷酸化应                                | 在什么部位                |                                       | (                                       | )       |
| A、线粒体外膜                                  | B、线粒体内膜              | C、线粒体基质                               | D、细胞                                    | 质膜      |
| 8、双链 DNA 的 Tm                            | 值高是由下列哪组碱基含          | 含量高引起的                                | (                                       | )       |
| A、腺嘌呤+鸟嘌呤                                | B、胞嘧啶+胸腺嘧啶           | C、腺嘌呤+胸腺嘧啶                            | ( D、胞嘧啶+                                | 乌嘌呤     |
| 9、在一个肽平面中,                               | 能自由旋转的价键有几           | <b>^</b>                              | (                                       | )       |
| A. 2                                     | B, 3                 | C, 4                                  | D. 5                                    |         |
| 10、一条含有 105 个                            | 氨基酸残基的多肽链,若          | 只存在α-螺旋,则其                            | <b>失度为</b> (                            | )       |
| A 15.75nm                                | B、37.80nm            | C、25.75nm                             | D、30.50                                 | nm      |
| 11、与片断 TAGC <sub>p</sub> 互               | 补的片段为                |                                       | (                                       | )       |
| A. TAGC <sub>P</sub>                     | B. CGAT <sub>P</sub> | C. ATCG <sub>P</sub>                  | D. GCTA                                 | i p     |
| 12、具有四级结构的3                              | 黃白质特征是               |                                       | (                                       | )       |
| A、分子中必定含有轴                               | 125                  | B、含有两条                                | 或两条以上的多                                 | 肽链      |
| C、每条多肽链都具有                               | 独立的生物学活性             | D、依赖肽键组                               | 生系蛋白质分子的                                | 内稳定     |
| 13、m22G 的中文名称                            | 是                    |                                       | (                                       | 3       |
| A、N <sup>2</sup> , N <sup>2</sup> -二甲基岛则 | 票中令                  | B, N <sup>2</sup> , N <sup>2</sup> -= | 甲基乌苷                                    |         |
| C、C <sup>2</sup> , C <sup>2</sup> -二甲基乌叻 | (a)                  | D, C2, C21                            | 甲基乌苷                                    |         |
| 14、为核糖体上蛋白原                              | (生物合成提供能量的分          |                                       | (                                       | )       |
| A. ATP                                   | 3. GTP               | C、UTP                                 | D. CTP                                  |         |
| 15、RnaseH 能特异的/                          | KAY .                |                                       | (                                       | )       |
| A、双链 DNA                                 |                      | B, RNA-D                              | NA 杂合子中的                                | DNA     |
| C、双链 RNA                                 |                      |                                       | NA 杂合子中的                                |         |
| 16、酵解的速度决定于                              |                      |                                       | , , , , , , , , , , , , , , , , , , , , | )       |
| A、磷酸葡萄糖变位酶                               |                      |                                       | B、磷酸果糖                                  |         |
|                                          |                      |                                       | D、 9年1度次代程                              | CIX END |
|                                          |                      | 3                                     |                                         |         |

| A、柠檬酸脱氢酚                      |                |                    | D、编和2日初的2时     |
|-------------------------------|----------------|--------------------|----------------|
|                               | 就乙酸是什么酶作用      | 用的直接产物             | (              |
| TO THE RESIDENCE AND ADDRESS. | B、琥珀酸脱氢酶       | C、苹果酸脱氢酶           | D、顺乌头酸酶        |
| 19 (10) 55 55 54 50 11 14.    | 异含有            |                    | (              |
| A、核黄素                         | B、时报           | C. ÆN              | D、抗坏血酸         |
| 19、糖原分解过程中                    | 磷酸化酶水解的键法      | <u>Ł</u>           | ( )            |
| A、 a -1. 6-糖苷键                |                |                    | В、β-1,6-棚貸键    |
| C、a-1,4-簡苷键                   |                |                    | D、β-1, 4-柳苷键   |
| 20、动物饥饿后摄食                    | . 其肝细胞主要糖什     | 代谢途径               | ( )            |
| A、糖异生                         | B、糖酵解          | C、糖有氧氧化            | D、糖原分解         |
| 四、 名词解释品                      | 厦(每題3分,共       | 30分)               |                |
| 1、构型 2、成                      | 物水平磷酸化         | 3、血浆脂蛋白            | 4、联合脱氨基作用      |
| 5、順式作用元件 6                    | 、G-蛋白 7、固定     | 2化酶 8、端粒 9、        | 酮体 10、逆转录      |
| 五、 计算题 (共                     | 共15分)          |                    |                |
| 1、有一个 DNA 双螺                  | 旋分子, 其相对分子     | 质量为 3×107, 求:(1)分  | 子的长度为多少? (2)   |
| 分子含有多少螺旋?                     | (3) 分子的体积是多    | 8少?(脱氧核苷酸残基对的      | 的平均相对分子质量是:    |
| 618)。(本小題 6 分)                |                |                    |                |
| 2、称取 25mg 蛋白酶?                | 粉配成 25 mL 酶溶液  | 攻,从中取出 0.1mL 酶液,以  | 酪蛋白为底物,用 Folin |
| 比色法测定酶活力。                     | 得知每小时产生 150    | 0μg酪氨酸; 另取 2mL酶    | 液用凯氏定氯法测得蛋     |
| 白飯为 0.2mg, 根据以                | 以上数据,求出;(1     | ) ImL 酶液所含的蛋白质质    | 量及活力单位:(2)比    |
| 活力: (3) 1g 酶制剂                | 的总蛋白含量及总流      | 5力。(每分钟产生 1 u g 酪) | 氨酸的酶量规定为 1 个   |
| 活力单位。)(本小题                    | 9分)            |                    |                |
| 六、 问答題(ま                      | <b>¢ 25</b> 分) |                    |                |
| 1、简述血氮的代谢转                    | 变。(本小題5分)      |                    |                |
| 2、试述维持生物大分                    | 子空间结构的作用的      | 因素。(本小題 6 分)       |                |
|                               | 生物体内重要的活性      | 生物质。(本小題 6 分)      |                |
| 3、举例说明氨基酸是                    |                | 学发展中的作用。(本小题       |                |