Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»					
КАФЕДРА	ИУК4	«Программное	обеспечение	ЭВМ,	информационные	
технологии»						

ЛАБОРАТОРНАЯ РАБОТА №6

«Кластерный анализ»

ДИСЦИПЛИНА: «Технологии анализа данных»

Выполнил: студент гр. ИУ	ТК4-82Б (Подпись)	(<u>Карельский М.К.</u>)
Проверил:	(Подпись)	(Ерохин И.И)
Дата сдачи (защиты):		
Результаты сдачи (защиты	и): - Балльная оценка:	
	- Оценка:	

Цель: формирование практических навыков решения задач кластерного анализа.

Задачи: классификация объектов.

Вариант 5

Считать данные из файла iris_df.csv в структуру DataFrame. Построить график показывающий выбор числа кластеров. Построить график кластеризации для Sepal Length, Petal width. С помощью k-means построить их центроиды. Провести иерархическую кластеризацию методом average. Labels = Sepal Length. Построить дендрограмму.

Листинг:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from scipy.cluster.hierarchy import dendrogram, linkage
iris df = pd.read csv('iris df.csv')
sns.set(style='whitegrid')
sns.pairplot(iris df, hue='Species', markers=["o", "s", "D"])
plt.show()
X = iris df[['Petal Length', 'Petal Width']]
kmeans = KMeans(n clusters=3)
kmeans.fit(X)
centroids = kmeans.cluster centers
plt.figure(figsize=(8, 6))
plt.scatter(X['Petal Length'], X['Petal Width'], c=kmeans.labels ,
cmap='viridis', s=50, alpha=0.5)
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', marker='X', s=200)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.title('K-means Clustering')
plt.show()
Z = linkage(X, method='single')
plt.figure(figsize=(10, 7))
dendrogram(Z, labels=iris df['Species'].values)
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Species')
plt.ylabel('Distance')
plt.show()
```

Результат:

Рис. 1. График выбора числа кластеров

Рис. 2. Кластеризация

Рис. 3. Дендограмма

Вывод: в ходе выполнения лабораторной работы были получены практические навыки решения задач кластерного анализа.