

# Current status of data center for cosmic rays based on KCDC

GRID-2018, Dubna

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs for the German-Russain Astroparticle Data Life Cycle Group | September 12, 2018



#### Introduction:

# The astroparticle physics data rate



- Wide range of experiments;
- Looking at the same sky with different eyes: different detectors, different phenomena under the study;
- Common data rate for astrophysical experiments all together is a few PBytes/yeary, which is comparable to the current LHC output\*
- Big data for deep learning

Modern astroparticle experiments data rate [Gbytes/day]\*

\*APPEC brochure on Computing, 2016

http://www.appec.org/wp-content/uploads/Documents/Docs-from-old



# **German-Russian Astroparticle** Data Life Cycle Initiative\*



















\*Granted by RSF-Helmholtz Joint Research Groups



#### KASCADE



- Proposed in 1989—disassembled in 2013;
- Aimed at studying high-evergy (galactic) cosmic rays by observing extensive air showers (EAS);
- Consisted of:
  - scintillators detecting  $e, \gamma, \mu$ :
    - KASCADE 256 stations:
    - GRANDE 37 stations:
  - Hadronic callorimeter;





- Recognized astrophysical results were obtained. The data analysis is ongoing;
- KCDC (KASCADE Cosmic Ray Data Center, http://kcdc.ikp.kit.edu) is a dedicated portal where all the data collected are available online.



#### **TAIGA**



Started in the mid 90s, is still operating and continiously enhancend;

#### Tunka-133



- 133 photomultipliers
- measures EAS Cherenkov light

#### Tunka-Rex



- 63 antennas
- measures EAS radio-emission

#### Tunka-HiSCORE



- 47 photomultipliers
- measures EAS Cherenkov light

#### Tunka-Grande



- 380 scintillators 0.64m<sup>2</sup> each
- measures  $e/\mu$ from EAS

#### Tunka-IACT



- Imaging Air Cherenkov Telescopes
- is being extended

# The project objectives





<sup>†</sup>Minh Duc Nguyen, A distributed data warehouse system for astroparticle physics, GRID2018 session 10

<sup>&</sup>lt;sup>‡</sup>Yu. Kazarina, Application of Hubzero platform for the educational process in astroparticle physics. GRID2018 poster

# Deep into KASCADE-Grande and Tunka data formats



#### Different

- Data format (depends on avalilable detectors)
- Dedicated software for analyzing data
- Special system environment for the software

#### Common

- Metadata format (e.g. time, location, atmospheric conditions)
- Software for EAS simulation (e.g. CORSIKA)
- Shower parameters
- Theoretical models

#### Current state

Separate APIs and UIs for different experiments

### Our objective

Unified API and UIs for different experiments



# WMS—workload management system



- The basic idea is to provide a central gueue for all users and make all the distributed sites look like local ones:
- Starting from mid 90's are widely used in collider experiments (AliEn, Dirac, PanDA);
- Dedicated for:
  - Unified usage of the distributed remote data and common data analysis;
  - Conceal various low-level software and provide unified high-level interface:
- Provide the common way to issue tasks to different types of the distibuted sites:
- The same system for the data access, analysis and simulation.



## **Data-oriented approach**



#### What data do we work with?

- Data types:
  - Raw detector readouts:
  - Pre-analyzed events;
  - Metadata

- Data structure:
  - Different formats:
  - Different messengers;
  - Common metadata

#### Our approach:

- It is proposed to store unique event id and metadata in the unified database
- With growing data sizes, distribured storage for events could be useful



# Proposed cosmic-ray metadata structure





## Data analysis



- Software for data analysis depends on a particular experiment
  - Problem: It may even require dedicated system environment
  - Solution: Virtualization could be useful
- Data analysis requires huge amounts of input data
  - Problem: It is often more optimal to perform it on the same site the data are stored
  - Solution: Job management could handle the task



#### **Simulation**



| Feature                                                                                                    |               | Consequence                                              |
|------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------|
| The software for EAS simulation (e.g. CORSIKA) does not depend on a particular experiment                  | $\Rightarrow$ | Simulations require standar-<br>tized system environment |
| Simulations require small amounts of input data Simulations can be done independently for different events | $\Rightarrow$ | Simulations are easily scalable                          |
| Simulations require a lot of computing resources                                                           | $\Rightarrow$ | HPC sites are needed                                     |

Distributed computing could be useful



# Distributed analysis and simulation scheme





#### **Current status**



- The KASCADE project has a data center called KCDC, that is planned to serve as the basis for the future common center for data access;
- The differences in the data formats were analyzed and solutions for organizing storage and distributed data processing were proposed;
- A scheme of a relational database for the future data center is designed using a metadata-based approach;
- The possibilities to apply the results of the project to educational and outreach activities are being explored.
  - The joint resource **astroparticle.online** is created to provide access to KASCADE and TAIGA data and metadata.

#### Conclusion



- The constantly growing amount of accumulated astroparticle data and the request for the multi-messenger astronomy and machine learning, enable us to develope a unified system for astroparticle data storage and processing;
- KASCADE is the only astroparticle experiment so far that has fully published its data and has a software infrastructure for data access and online analysis (KCDC);
- The pecularities of data format and acquisition make it impossible to utilize 'from scratch' the solutions widely used in collider experiments;
- We are developing a new approach to the astroparticle data life cycle for combined analysis of the KASCADE and TAIGA data;
- The built-up infrastructure will be used to analyze combined data sets with large statistics, allowing to study galactic sources of high-energy  $\gamma$ -rays, which could be a notable step forward in multi-messenger astroparticle physics.

# The German-Russain Astroparticle Data Life Cycle collaboration



- TAIGA Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy (see taiga-experiment.info);
- KASCADE-Grande KArlsruhe Shower Core and Array DEtector -Grande (see www-ik.fzk.de/KASCADE\_home.html);
- KIT-IKP Institute for Nuclear Physics Karlsruhe Institute of Technology
- SCC Steinbuch Centre for Computing Karlsruhe Institute of Technology
- SINP MSU Skobeltsyn Institute Of Nuclear Physics Lomonosov Moscow State University
- ISU Irkutsk State University
- ISDCT Matrosov Institute for System Dynamics and Control Theory



# The German-Russain Astroparticle Data Life Cycle Initiative





- 133 photomultipliers
- measures EAS Cherenkov light

