# 第一章 线性代数基础

# 1.6 不变子空间

定义1(不变子空间)设V是数域F上的线性空间,W是V的一个子空间, $T \in L(V)$ . 如果 $\forall x \in W$ ,都有 $T(x) \in W$ ,称W是T的一个不变子空间.

定义1(不变子空间)设V是数域F上的线性空间,W是V的一个子空间, $T \in L(V)$ .如果 $\forall x \in W$ ,都有 $T(x) \in W$ ,称W是T的一个不变子空间.

例如(1)线性空间V的任意一个子空间都是数乘变换的不变子空间.

- (2)  $\forall T \in L(V)$ , 整个空间V和零子空间 $\{\theta\}$ 都是T的不变子空间,称为平凡不变子空间.
- (3)不变子空间的交与和也是不变子空间.



例1 设V是数域F上的线性空间,  $T \in L(V)$ . R(T)与 N(T)是T的不变子空间.

证明:设 $\alpha \in R(T)$ ,显然有 $T\alpha \in R(T)$ ,所以R(T)是T的不变子空间.

设 $\beta$  ∈ N(T),则 $T\beta$  = 0 ∈ N(T),所以N(T)是T的不变子空间.



例2 设V是数域F上的线性空间,  $T \in L(V)$ . T的特征子空间是T的不变子空间.

**定理1** 设V是数域F上的线性空间,  $T \in L(V)$ . 则V可以分解成T的不变子空间的直和

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_s$$

的充分必要条件是T在某组基下的矩阵是准对角阵  $diag\{A_1, A_2, \dots, A_s\}$ .其中 $A_i$ 是  $T|_{W_i}$ 在对应基下的矩阵.

注: 定理表明可以使用不变子空间简化线性变换的矩阵.

