

SISTEMA DE TREINAMENTO EM ROBÓTICA MODELO: ED-7255

CARACTERÍSTICAS

- Consiste em uma garra e 5 eixos verticais multi articulados.
- Sensor de Posição LVDT Tipo-Absoluto para cada eixo e não exige nenhum interruptor de limite
- CPU de alta performance permite controle em tempo real para cada eixo.
- · Ajuste de ganho PID e controle em tempo real
- Interruptor de emergência no controle e Teach Pendant
- Controle por USB e interface Ethernet
- 2 eixos expansíveis e porta I/O digital ou analógica
- Gráfico de simulação 3D e conectividade em tempo real com o robô

APLICAÇÕES

O sistema de treinamento em robótica ED-7255 é baseado em um sistema de cinco articulações que é bastante popular na indústria. Portanto, a experiência obtida através dos experimentos usando o ED-7255 pode ser diretamente aplicado nas necessidades reais da indústria. O controle do robô pode ser feito através de USB ou interface Ethernet.

шшш.minipa.com.br

PROPOSTA TÉCNICA

ESPECIFICAÇÕES

Processador do Braço

• CPU:

-666MHz, Min: 1 unidade

NAND Flash:

-128MByte: 1 unidade

NOR Flash:

-1MByte: 1 unidade

DRAM:

-128MByte: 1 unidade

DPRAM:

-128k: 1 unidade

Processador DSP

• TMS320F2811:

-150MHz: 1 unidade

Controle de Movimento:

-Controle por Retroalimentação: 1 unidade

• Motor de 8 eixos disponível:

-CPLD: 1 unidade

• Geração de PWM disponível:

-8 eixos: 1 unidade

• Contador Codificador Absouluto:

-8 canais: 1 unidade

Pacote de Driver

• Ambiente de operação:

-24V, 120W Max: 8 unidades

Ambiente de Simulação

• CPU: Pentium IV 2GHz ou superior

• Memória: Acima de 512MB

• Altura: 40mm

Sistema Operacional: Windows XP

Placa Gráfica:

-Placa gráfica com aceleração 3D

ESPECIFICAÇÕES

Processador do Braço

• USB:

-USB 1.1 Tipo A (Controle): 1 unidade -USB 2.0 Tipo B (PC): 1 unidade

• Ethernet:

-10Base-T: 1 unidade

RTR:

-Relógio de Tempo Real: 1 unidade

• Estado de LED:

-Alarme, Início / Pausa: 3 unidades

LCD:

-20 x 2: 1 unidade

• Entrada Digital:

-0~24V: 8 unidades

• Saída Digital:

-0~24V: 8 unidades

Entrada Analógica:

-0~10V: 4 unidades

Saída Analógica:

-0~10V: 4 unidades

Saída de Relé:

-SC,OC: 4 unidades

Corpo do Robô

Largura: 280mm

Profundidade: 280mmAltura: Max. 786mm

Peso: 16kg

Parte de Operação

Eixo	Faixa de operação	Comprimento	Peso
N° 0 (Base)	0	80mm	5.9kg
N° 1	-175~+175°	107mm	3.4kg
N° 2	-30~+90°	230mm	3.3kg
N° 3	-0~+130°	230mm	1.9kg
N° 4	-90~+90°	0mm	0.6kg
N° 5	-170~+170°	0mm	0.05kg
N° 6 (Garra)	0 ~ 80mm (Bloco de borracha)	139mm	0.35kg

шшш.minipa.com.br

PROPOSTA TÉCNICA

ESPECIFICAÇÕES

Teach Pendant

Display: 20 x 2 de LCDInterface: USB 1.1

Botões: 37 botões para usuário (Interruptor de emergência incluso)

Dimensões do Controle

Largura: 250mmProfundidade: 309mm

Altura: 88.1mmPeso: 3.8kg

Dimensões do Teach Pendant

Largura: 138mmProfundidade: 190mm

Altura: 40mmPeso: 0.55kg

EXPERIMENTOS

- Introdução do sistema
 - -Configuração Básica
 - -Descrição dos Componentes
 - -Resumo do Programa
 - -Arquitetura
 - -Instalação
- Composição do Programa
 - -Menu e Barra de Ferramentas
 - -Visualização e Windows
 - -Simulação e Controle de Tela
 - -Editor de Linguagem Industrial
- Arm Viewer e Manipulação do Robô
 - -Como usar o "3D Arm Viewer"
 - -Modo manual para controlar o Robô
 - -Armazenamento e utilização de dados de posição
- Programando
 - -Como usar o Program Editor
 - -Sintaxe do programa
 - -Programando
 - -Execução do programa e depuração

PROPOSTA TÉCNICA

EXPERIMENTOS

- Simulação do Robô
 - -Simulação virtual e métodos de manipulação do robô
 - -Experimentos Básicos 1
 - -Experimentos Básicos 2
 - -Experimentos Básicos 3
- Experimentos Básicos de Controle do Robô
 - -Métodos de Transferência de Posição
 - -Métodos de Transferência de Velocidade
 - -Métodos de Determinação de Posição
 - -Como usar o "Teach Pendant"
- Aplicações para Manipulação do Robô
 - -Transferência precisa através de repetições de bloco
 - -Agarra e transfere um determinado objeto
 - -Transferência de posição de um determinado objeto

ACESSÓRIOS

CONFIGURAÇÃO

- Cabo USB
- Cabo Alimentação AC
- Cabo de Conexão do Controle
- Cabo do Teach Pendant
- Cabo RJ-45
- Software e Manual do Usuário

- Introdução do sistema
 - -Configuração Básica
 - -Descrição dos Componentes
 - -Resumo do Programa
 - -Arquitetura

Especificações sujeitas a alterações sem prévio aviso. Figuras meramente ilustrativas.

шшш.minipa.com.br