DOBÓR PARAMETRÓW PRZEKŁADNI BATEJ (Materiały pomocnicze — tylko do celów dydaktycznych)

1. Ustalić prędkość kątową zębnika ω_1 — dla przekładni wielostopniowych.

2. Dobrać materiały na koła (z tabeli1).

Koła miękkie — HB < 350 — przyjąć materiał zębnika twardszy od materiału koła o około 40 HB (HV). Koła twarde — zębnik i koło z tego samego materiału.

Ustalić parametry materiałów:

- granicę zmęczenia dla naprężeń boku zęba dla materiału zębnika σ_{Hlim1} ;
- granicę zmęczenia dla naprężeń stopy zęba dla materiału zębnika $\sigma_{F ext{lim1}}$;
- granicę zmęczenia dla naprężeń boku zęba dla materiału koła σ_{Him2} ;
- granicę zmęczenia dla naprężeń stopy zęba dla materiału koła $\sigma_{F ext{lim2}}$;
- rodzaj obróbki cieplnej lub cieplno-chemicznej dla materiału zębnika i koła (o ile jest wymagana).

	Tabela 1. Parametry wytrzymałościowe metali stosowanych na koła zębate										
Lp.	Rodzaj materialu	Oznaczenie materialu	Rodzaj obróbki cieplnej	Twardość rdzenia	Twardość boków zęba	Granica zmęczenia boku zęba wg Hertza σ _{Hlim} [MPa]	Granica zmęczenia stopy zęba przy obciążeniu tętniącym σ _{Flim} [MPa]	Wytrzymałość statyczna stopy zęba [MPa]			
1	2	3	4	5	6	7	8	9			
1		St4	nie dotyczy	125 HB	125 HB	290	170	450			
2	\Box	St5		150 HB	150 HB	340	190	550			
3	Materialy MIEKKIE	St6		180 HB	180 HB	400	200	650			
5	型	St7	1	208 HB 140 HV10	208 HB 140 HV10	460	220 170	800 600			
	\mathbb{Z}	20	ulepszanie								
7	<u>X</u>	45 55	normalizowanie	185 HV10	185 HV10	590	200	800			
8	ria	30H		210 HV10	210 HV10	620	220	900			
9	ate	40H	ulepszanie	260 HV10 260 HV10	260 HV10 260 HV10	650 650	260 270	900 950			
10	\geq	40H 40HM	uiepszanie	280 HV10	280 HV10	670	290	1100			
11		34HNM		310 HV10	310 HV10	770	320	1300			
12		45	*) azotowanie	220 HV10	560 HV10	1100	270	1000			
13	ΙĴ	45		220 HV10	400 HV10	1100	350	1100			
14	\bigcirc	40HM	kąpielowe	275 HV10	500 HV10	1220	430	1450			
15	Υ	40HM	azotowanie gazowe	275 HV10	550 HV10	1220	430	1450			
16	\geq	15		190 HV10	720 HV1	1600	230	900			
17	Materialy TWARDE	16HG	utwardzanie	270 HV10	720 HV1	1630	460	1400			
18		18HGT		330 HV10	700 HV1	1630	480	1500			
19		19HM	dyfuzyjne	270 HV10	700 HV1	1630	400	1300			
20	\sum_{i}	15HN		310 HV10	700 HV1	1630	500	1600			
21		18H2N2		400 HV10	740 HV1	1630	500	1700			
22		17HNM		400 HV10	740 HV1	1630	500	1700			
*) hartowanie powierzchniowe obrotowe łącznie z dnem wrębu											

3. Przyjąć stosunek szerokości wieńca zębnika b do jego średnicy podziałowej d_1 :
— dla materiałów miękkich $b/d_1 = (0,8 \div 1,5)$; — dla materiałów twardych $b/d_1 = (0,4 \div 1)$.
Przekładnie lekkie $b < d_1$. Przekładnie normalne $b = d_1$. Przekładnie średnie i ciężkie $b = 1,5 d_1$.
4. Ustalić klasę dokładności wykonania kół zębatych.
Np. IT10
5. Przyjąć normalny kąt przyporu a_n .
Zwykle 20°.
6. Przyjąć kąt pochylenia linii śrubowej zęba $oldsymbol{eta}$.
Zwykle 8°÷15° (przyjąć wstępnie 12°).
7. Obliczyć moment obciążający $M_{\scriptscriptstyle 1}$
$M_1=rac{N}{\omega_1}$
N — moc przenoszona; ω_1 — prędkość kątowa zębnika.
8. Przyjąć liczbę zębów zębnika z_1 .

Najczęściej 15÷25 (przyjąć wstępnie 19).

9. Obliczyć średnicę zębnika d_1 w zależności od wybranego rodzaju materiału na koła.

Uwagi:

- U1. Obliczenia wykonywać możliwie najdokładniej, najlepiej z maksymalną dokładnością wykorzystywanego urządzenia.
- U2. Szczególną uwagę zwrócić na jednostki i ich przeliczanie.
- U3. W obliczeniach sprawdzających wykorzystać ostatecznie przyjęte i/lub policzone wartości.

KOŁA TWARDE

$$d_{1} = \sqrt{\frac{2M_{1}z_{1}Y_{F}Y_{e}Y_{\beta}K_{J}K_{V}K_{F\alpha}K_{F\beta}}{\frac{b}{d_{1}}\cos\beta\sigma_{FP}}} \quad =$$

moment obciążający;

liczba zębów zębnika;

współczynnik kształtu (zarysu) zęba (przyjąć wstępnie $Y_F = 2,4$);

współczynnik udziału obciążenia — przyjąć $Y_{\varepsilon} = 1/\varepsilon_{\alpha}$;

czołowy wskaźnik przyporu (przyjąć wstępnie $\varepsilon_{\alpha} = 1,5$), w obliczeniach sprawdzających policzyć ze wzorów podanych w dalszej części;

współczynnik kąta linii śrubowej: Y_{β}

$$Y_{\beta} = 1 - \frac{\beta}{120^{\circ}}$$

współczynnik eksploatacji — z tabeli 2;

współczynnik dynamiczny — przyjąć $K_V = 1$;

współczynnik rozkładu obciążenia wzdłuż odcinka przyporu — przyjąć $K_{F\alpha} = \varepsilon_{\alpha}$;

współczynnik rozkładu obciążenia wzdłuż szerokości wieńca — przyjąć $K_{FB} = 1$;

naprężenia dopuszczalne (na złamanie) ze wzoru:

$$\sigma_{FP} = \frac{\sigma_{F\lim 1}}{S_F} Y_S K_{FX}$$

- σ_{Flim1} z tabeli 1; S_F wspe współczynnik bezpieczeństwa ze względu na złamanie, w obliczeniach wstępnych przyjąć równy 2;
- współczynnik karbu, przyjąć równy 1 (przy założeniu, że promień zaokrąglenia stopy zęba jest większy niż $0,25 m_n$);
- współczynnik wielkości dla naprężeń stopy zęba, przyjąć równy 1.

Tabela 2a. Podział rodzajów maszyn na grupy (do doboru współczynnika K_J)					
Rodzaj maszyny napędzającej	Grupa				
Silnik elektryczny	I				
Turbina parowa	I				
Turbina gazowa	I				
Silnik tłokowy o liczbie cylindrów większej niż dwa	II				
Turbina wodna	II				
Silnik hydrauliczny	II				
Silnik tłokowy jedno- lub dwucylindrowy	III				

Tabela 2b									
Maszyna robocza	Grupa maszyny napędowej	Współczynnik eksploatacji K,	Maszyna robocza	Grupa maszyny napędowej	Współczynnik eksploatacji K ₁				
Podnośnik, winda (równomiernie obciążony)	I II III	1,6 1,8 1,8	Młyn do cementu	I II III	2,0				
Podnośnik, winda (nierównomiernie obciążony)	I II III	1,6 1,8 2,0	Przeciągarka do drutu	I II	1,8				
Koparka wieloczerpakowa łańcuchowa	I II III	2,0 2,0	Prądnica (oprócz prądnicy spawalniczej)	I II III	1,25 1,25 1,6				
Koparka z kołem czerpakowym	I II III	1,6 1,6	Prądnica spawalnicza	I II	2,24 2,24 2,24				
Koparka z głowicą tnącą	I II III	2,0 2,0	Walce do gumy	I II III	1,6				
Kruszarka	II III	2,24 2,24	Kuźniarka	II III	2,0 2,24				
Piec obrotowy	I II III	1,8 1,8	Kolej linowa	I II III	1,4 1,8				
Przenośnik taśmowy (równomiernie obciążony)	II II	1,25 1,60	Obrabiarka do drewna	II II	1,6 1,8 2,0				
Przenośnik taśmowy (nierównomiernie obciążony)	I II III	1,6 1,6	Sprężarka tłokowa jednocylindrowa	I III	2,0 2,24 2,24				
Kołowrót wyciągowy	I III	2,0 2,0	Sprężarka tłokowa wielocylindrowa	I II III	1,6 1,8 2,24				
Żuraw	I II III	1,6 2,24 2,24	Sprężarka osiowa	I II III	1,25 1,4				
Mieszarka do betonu	I II III	1,8 1,8 2,24	Konwertor	I II III	1,8				
Maszyna papiernicza (obciążona równomiernie)	I II III	1,6	Pompa tłokowa trzy- i więcej cylindrowa	I II III	1,6 1,6 1,8				
Maszyna papiernicza (obciążona nierównomiernie)	I II III	2,0	Pompa odśrodkowa	I II III	1,25 1,4 1,8				
Prasa do brykietów	I II III	2,5 2,5	Pompa wyporowa	I II III	1,4 1,4 1,4				
Prasa korbowa, mimośrodowa, kuźnicza	I II III	2,0	Maszyna sterowa	I II III	1,6 1,6				
Prasa do cegieł	I II III	2,5	Mieszalnik do lekkich cieczy	I II III	1,25				
Śruba okrętowa	I II III	1,4 1,4	Mieszalnik do cieczy lepkich i ciał stałych	I II III	1,6				
Pompa pogłębiarki	I II III	1,8 1,8	Maszyny tkackie	I II III	1,8				
Pompa tłokowa 1- lub 2-cylindrowa	II II	1,8 1,8 1,8	Wentylator duży (np. kopalniany)	II III	2,0 2,0				
Płuczarka	I II III	1,4	Wentylator mały	I II	1,25				
Obrabiarka o ruchu obrotowym	II III	1,6	Walcarka do wlewków	II III	2,0				
Obrabiarka o ruchu posuwisto-zwrotnym	I II	1,6	Walcarka do taśmy lub drutu	II III	2,0				
Wciągarka	I II	1,4 1,8 2,0	Walcarka do cięcia nożycami	I II	1,6				

KOŁA MIĘKKIE

$$d_{1} = \sqrt{\frac{2M_{1}K_{J}K_{V}K_{H\alpha}K_{H\beta}(Z_{H}Z_{M}Z_{\varepsilon})^{2}}{\frac{b}{d_{1}}\sigma_{HP}^{2}}} \frac{u+1}{u}$$

moment obciażający;

założone przełożenie przekładni zębatej (lub wynikające z rozdziału przełożeń);

u — założone przełożenie przekładni zębatej (lub w K_J — współczynnik eksploatacji — z tabeli 2; K_V — współczynnik dynamiczny — przyjąć $K_V = 1$; $K_{H\alpha}$ — współczynnik rozkładu obciążenia wzdłuż odc współczynnik rozkładu obciążenia wzdłuż odcinka przyporu, przyjąć $K_{H\alpha} = \varepsilon_{\alpha}$;

czołowy wskaźnik przyporu (przyjąć wstępnie $\epsilon_{\alpha}=1,5$), w obliczeniach sprawdzających policzyć ze wzorów podanych w dalszej części;

współczynnik rozkładu obciążenia wzdłuż szerokości wieńca — przyjąć $K_{H\beta} = 1$;

liczba wpływu kształtu boków zębów dla naprężeń stykowych — przyjąć wstępnie $Z_H = 1,65$, w obliczeniach sprawdzających policzyć ze wzoru podanego w dalszej części;

liczba wpływu materiału dla naprężeń stykowych boku zęba (wzór uproszczony stosowany dla kół wykonanych z jednego rodzaju materiału):

$$Z_M = \sqrt{0.35E}$$

E — moduł Younga;

 Z_{\circ} liczba wpływu wskaźnika przyporu:

$$Z_{\varepsilon} = \sqrt{\frac{\cos\beta_b}{\varepsilon_a}}$$

gdzie β_b jest kątem pochylenia linii zęba na walcu zasadniczym obliczanym z zależności:

$$\cos \alpha_{t} = \frac{\operatorname{tg} \beta_{b}}{\operatorname{tg} \beta} \\
\operatorname{tg} \alpha_{t} = \frac{\operatorname{tg} \alpha_{n}}{\cos \beta}$$

$$\Rightarrow \quad \beta_{b} = (\operatorname{arctg}(\operatorname{tg} \beta \cdot \cos (\operatorname{arctg} \left(\frac{\operatorname{tg} \alpha_{n}}{\cos \beta}\right))))$$

naprężenia dopuszczalne (na naciski) ze wzoru:

$$\sigma_{HP} = \frac{\sigma_{H \text{lim 1}}}{S_{H \text{min}}} K_L K_{HX} Z_R Z_V$$

 $\sigma_{H \text{lim}}$ z tabeli 1;

— S_H — współczynnik bezpieczeństwa ze względu na tworzenie się wgłębień, w obliczeniach wstępnych przyjąć równy 1,5;

współczynnik smaru, przyjąć równy 1;

 K_{HX} współczynnik wielkości koła, przyjąć równy 1;

współczynnik chropowatości, przyjąć równy 1;

współczynnik prędkości, przyjąć równy 1.

10. Obliczyć wstępnie moduł normalny:

$$m_n = \frac{d_1}{z_1} \cos \beta$$

Z tabeli 3 przyjąć moduł znormalizowany (z szeregu 1 lub 2).

Tabela 3. Najczęściej stosowane moduły w mm, według PN-78/M-88502 Szeregi modułów (szereg 1 jest uprzywilejowany)									
1	1,125	2	2,25	4	4,5	8	9		
1,25	1,375	2,5	2,75	5	5,5	10	11		
1,5	1,75	3	3,5	6	7	12	14		

11. Dobrać liczbę zębów koła z_2 (na podstawie założonego przełożenia u i liczby zębów zębnika z_1 , przy dopuszczalnym błędzie przełożenia $\Delta u=\pm 2,5\%$ — dla $u=(1\div 4,5)$).

$$z_2 = z_1 \cdot u$$

$$\Delta u = \frac{u - u_{rz}}{u} \cdot 100\%$$

gdzie: u_{rz} — rzeczywiste przełożenie przekładni.

Uwaga:

- U4. Liczby zębów zębnika i koła powinny być względnie pierwsze (liczby względnie pierwsze liczby całkowite, które nie mają innych poza jedynką wspólnych dzielników w rozkładzie na czynniki pierwsze, lub równoważnie, ich największym wspólnym dzielnikiem jest jedność).
- 12. Obliczyć zerową odległość osi:

$$a_0 = \frac{(z_1 + z_2) \, m_n}{2 \cos \beta}$$

Z tabeli 4 przyjąć znormalizowaną odległość osi a_w (z szeregu 1 lub 2).

Tabela 4. Znormalizowane odległości osi w mm, według PN-78/M-88525										
Szeregi odległości osi (szereg 1 jest uprzywilejowany)										
1	2	1	2	1	2	1	2			
40 50 63	45 56 71	80 100 125	90 112 140	160 200 250	180 225 280	315 400 500	355 450 560			

13. Wykonać obliczenia geometryczne przekładni:

— kat zarysu w przekroju czołowym a.:

$$\alpha_t = \operatorname{arc} \operatorname{tg} \left(\frac{\operatorname{tg} \alpha_n}{\cos \beta} \right)$$

— kąt przyporu toczny w przekroju czołowym a_{tw} :

$$a_{tw} = \arccos\left(\frac{a_0}{a_w}\cos\alpha_t\right) = \arccos\left(\frac{(z_1 + z_2)m_n\cos\alpha_t}{2a_w\cos\beta}\right)$$

— suma współczynników korekcji (przesunięcia zarysu):

$$x_1 + x_2 = (\text{inv } \alpha_{tw} - \text{inv } \alpha_t) \frac{(z_1 + z_2)}{2 \operatorname{tg} \alpha_n}$$

gdzie: $\operatorname{inv} \alpha_{t(tw)} = \operatorname{tg} \alpha_{t(tw)} - \widehat{\alpha}_{t(tw)}$ jest funkcją ewolwentową (jej wartość należy liczyć z dokładnością nie mniejszą niż 8 miejsc po przecinku; $\widehat{\alpha}_{t(tw)}$ — kąt w radianach).

Sprawdzić sumę współczynników korekcji

z rysunku 1. Jeśli zapewnia żądane własności wytrzymałościowe zazębienia (jest z przedziału zalecanego przez prowadzącego, np. $0,3\div0,9$) — kontynuować obliczenia. Jeśli jest poza założonym obszarem dopuszczalnym — powtórzyć obliczenia zgodnie z zaleceniami prowadzącego.

Uwaga:

U5. Przybliżoną wartość sumy współczynników korekcji można policzyć ze wzoru:

 $x_1 + x_2 \approx \frac{a_w - a_0}{m_m}$

Rys. 1. Dobór sumy współczynników przesunięcia zarysu wg DIN 3992.

15. Dokonać podziału sumy współczynników korekcji zgodnie z rysunkiem 2. Wyznaczyć punkt o współrzędnych:

$$\left(\frac{z_{v1}+z_{v2}}{2}, \frac{x_1+x_2}{2}\right)$$

następnie dokonać interpolacji i odczytu $x_{1,2}$ po wejściu liczbą zębów $z_{\nu 1}$ i $z_{\nu 2}$ (wzory dokładne na obliczanie zastępczych liczb zębów podano w dalszej części). W celu uniknięcia rozbieżności uzyskanych wyników z wynikami komputerowego sprawdzenia, należy wartość współczynnika x_1 dobrać z wykresu (z dokładnością do 2 miejsc po przecinku), a wartość x_2 policzyć (z dokładnością do 3 miejsc po przecinku) odejmując od policzonej sumy współczynników korekcji odczytaną wartość x_1 .

16. Wykonać obliczenia sprawdzające (dla ostatecznie dobranych parametrów i dokładnych wartości wszystkich współczynników):

- naprężeń stopy zęba zębnika i koła oraz naprężeń stykowych w biegunie zazębienia;
 i dodatkowo:
 - naprężeń stykowych w wewnętrznym punkcie jednoparowego przyporu zębnika (gdy zastępcza liczba zębów jest niewiększa od 20);
 - naprężeń stykowych w wewnętrznym punkcie jednoparowego przyporu koła.

Rys. 2. Podział współczynników przesunięcia zarysu w przekładniach redukujących wg DIN 3992.

CZOŁOWA LICZBA PRZYPORU

(czołowy wskaźnik przyporu, czołowy wskaźnik zazębienia)

$$\varepsilon_{\alpha} = \varepsilon_{\alpha 1}^{\prime} + \varepsilon_{\alpha 2}^{\prime} - \varepsilon_{\alpha a}^{\prime}$$

$$\varepsilon_{a1}' = \frac{\sqrt{z_1^2 \frac{1 - \cos^2 \alpha_t}{4} + h_{a1}^* \left(z_1 + h_{a1}^*\right)}}{\pi \cos \alpha_t}$$

$$\varepsilon_{\alpha 2}' = \frac{\sqrt{z_2^2 \frac{1 - \cos^2 \alpha_t}{4} + h_{a2}^* (z_2 + h_{a2}^*)}}{\pi \cos \alpha_t}$$

$$\varepsilon_{\alpha\alpha}^{\prime} = \frac{1}{2\pi} (z_1 + z_2) \operatorname{tg} \alpha_{tw}$$

współczynniki wysokości głowy zęba:

$$h_{a1}^* = \left(1 - x_2 + \frac{c_0}{m_n} - \frac{c_w}{m_n} + y_p\right) \cos\beta = \frac{d_{a1} - d_{t1}}{2 m_t}$$

$$h_{a2}^* = \left(1 - x_1 + \frac{c_0}{m_n} - \frac{c_w}{m_n} + y_p\right) \cos\beta = \frac{d_{a2} - d_{i2}}{2 m_t}$$

 c_0 — wielkość zaokrąglenia głowicy narzędziowej; c_w — wybrany luz wierzchołkowy;

Uwaga:

U6. Przyjąć $c_0 = c_w$.

— współczynnik przesunięcia osi:

$$y_p = \frac{a_w - a_0}{m_n}$$

POSKOKOWA LICZBA PRZYPORU

(poskokowy wskaźnik zazębienia)

$$\varepsilon_{\beta} = \frac{b \cdot \sin \beta}{m_{n} \cdot \pi} = \frac{b \cdot \text{tg}\beta}{m_{t} \cdot \pi} = \frac{b \cdot \text{tg}\beta}{p_{th}}$$

SPRAWDZENIE NAPRĘŻEŃ STOPY ZĘBA

$$S_{F1(2)} = \frac{\sigma_{F\lim 1(2)} b \, m_n^2 \, z_1 \, Y_S K_{FX}}{2 \, M_1 \cos \beta \, Y_{F1(2)} \, Y_{\varepsilon} \, Y_{\beta} \, K_J K_V K_{F\alpha} K_{F\beta}} \, \geq \, S_{F\min}$$

minimalny współczynnik bezpieczeństwa na złamanie $S_{Fmin} = 1,3$;

 $egin{array}{cccc} S_{F ext{min}} & -- \ \sigma_{F ext{lim } 1(2)} & -- \ b & -- \end{array}$ granica zmęczenia dla naprężeń stopy zeba dla materiału zębnika i koła z tabeli 1;

szerokość wieńca (zaokrąglona do liczby całkowitej w [mm]);

moduł normalny;

liczba zębów zębnika;

współczynnik karbu, przyjąć równy 1 (przy założeniu, że promień zaokrąglenia stopy zęba

jest większy niż $0,25 m_n$);

 K_{FX} — M_1 współczynnik wielkości dla naprężeń stopy zeba, przyjąć równy 1;

moment na wale zębnika;

kąt pochylenia linii śrubowej zęba;

współczynnik kształtu (zarysu) zęba; dobrać z rysunku 3 dla zastępczej liczby zębów kół:

$$z_{v1(2)} = \frac{z_{1(2)}}{\cos^2 \beta_b \cdot \cos \beta}; \quad \text{gdzie:} \quad \beta_b = (\arctan(\operatorname{tg}\beta \cdot \cos(\arctan\left(\frac{\operatorname{tg}\alpha_n}{\cos \beta}\right))))$$

Uwaga:

U7. Zębnik i koło zwykle mają różne wartości współczynnika Y_F , mogą się też różnić materiałem (koła miękkie).

Rys. 3. Współczynnik zarysu zeba (liczba analogii stereomechanicznej) — dla $\alpha_n = 20^\circ$.

współczynnik udziału obciążenia — przyjąć $Y_{\varepsilon} = 1/\varepsilon_{\alpha}$; Y_{ε} ε_a — czołowa liczba przyporu (wartość policzyć ze wzoru);

współczynnik kąta linii śrubowej: Y_{β}

$$Y_{\beta} = 1 - \frac{\beta}{120^{\circ}}$$

współczynnik eksploatacji — z tabeli 2;

współczynnik dynamiczny — przyjąć $K_V = 1$;

współczynnik rozkładu obciążenia wzdłuż odcinka przyporu — przyjąć $K_{F\alpha} = \varepsilon_a$;

współczynnik rozkładu obciążenia wzdłuż szerokości wieńca — przyjąć $K_{FB} = 1$.

SPRAWDZENIE NAPRĘŻEŃ STYKOWYCH W BIEGUNIE ZAZEBIENIA

$$S_{H\,1(2)} = \frac{\sigma_{H\,\text{lim}\,1(2)}\,m_{n}\,z_{1}\,Z_{V}Z_{R}\,K_{HX}\,K_{L}}{\cos\beta\,Z_{H}\,Z_{L}\,Z_{\varepsilon}\,\sqrt{\frac{u_{rz}+1}{u_{rz}}\,\frac{2\,M_{1}}{b}\,\,K_{J}\,K_{V}\,K_{H\alpha}\,K_{H\beta}}} \quad \geq \quad S_{H\,\text{min}}$$

minimalny współczynnik bezpieczeństwa ze względu na tworzenie się wgłębień $S_{H\min} = 1,1$; $S_{H_{\min}}$ —

 $egin{array}{ccc} \sigma_{H \mathrm{lim}\,1(2)} & - & \ Z_{V} & - & \end{array}$ granica zmęczenia dla naprężeń boku zęba dla materiału zębnika i koła z tabeli 1;

współczynnik prędkości, przyjąć równy 1;

współczynnik chropowatości, przyjąć równy 1;

współczynnik wielkości koła, przyjąć równy 1;

 K_{HX} — K_L — K_L współczynnik smaru, przyjąć równy 1;

kat pochylenia linii śrubowej zęba;

liczba wpływu kształtu boków zębów dla naprężeń stykowych:

$$Z_{H} = \sqrt{\frac{\cos\beta_{b}}{\cos^{2}\alpha_{t} \cdot tg\alpha_{tw}}} \qquad \text{gdzie:} \qquad \beta_{b} = (\arctan(tg\beta \cdot \cos(\arctan\left(\frac{tg\alpha_{n}}{\cos\beta}\right))))$$

- kąt zarysu w przekroju czołowym;
- kąt przyporu toczny w przekroju czołowym;
- Z_{M} liczba wpływu materiału dla naprężeń stykowych boku zęba (wzór uproszczony stosowany dla kół wykonanych z jednego rodzaju materiału):

$$Z_M = \sqrt{0.35E}$$

- moduł Younga (dla stali przyjąć 210000 MPa);
- liczba wpływu wskaźnika przyporu:

$$Z_{\varepsilon} = \sqrt{\frac{\cos\beta_b}{\varepsilon_a}}$$

- czołowa liczba przyporu (wartość policzyć ze wzoru);
- moment na wale zębnika;
- rzeczywiste przełożenie przekładni;
- szerokość wieńca (zaokrąglona do liczby całkowitej w [mm]);
- współczynnik eksploatacji z tabeli 2;
- współczynnik dynamiczny przyjąć $K_V = 1$;
- $K_{H\alpha}$ $K_{H\beta}$ współczynnik rozkładu obciążenia wzdłuż odcinka przyporu, można przyjąć $K_{H\alpha} = \varepsilon_{\alpha}$;
- współczynnik rozkładu obciążenia wzdłuż szerokości wieńca przyjąć $K_{H\beta} = 1$.

WZORY DODATKOWE

Pozorna odległość osi: $a_n = a_0 + m_n \cdot (x_1 + x_2)$

 $k = \frac{a_p - a_w}{m_{a}}$ Współczynnik zsunięcia:

ALGORYTM OBLICZANIA SKŁADOWYCH SIŁY MIĘDZYZĘBNEJ

Obliczenia geometryczne:

Średnice podziałowe:

$$d_{11} := \frac{z_1 \cdot m_n}{\cos(\beta)}$$

$$d_{12} := \frac{z_2 \cdot m_n}{\cos(\beta)}$$

Uwaga:

U8. Połowa sumy średnic podziałowych równa jest zerowej odległości osi.

Średnice toczne:

$$d_{w1} := 2 \cdot \frac{a_w}{1 + u}$$

$$d_{w2} := 2 \cdot \frac{a_{w}}{1 + u}$$

Uwaga:

U9. Połowa sumy średnic tocznych równa jest rzeczywistej odległości osi.

Katy pochylenia linii zęba na średnicach tocznych:

$$\beta_{w1} := atan \left(\frac{d_{w1}}{d_{11}} \cdot tan(\beta) \right)$$

$$\beta_{w2} := atan \left(\frac{d_{w2}}{d_{12}} \cdot tan(\beta) \right)$$

Uwaga:

U10. Kąty pochylenia linii zęba na średnicach tocznych powinny być sobie równe .

Siła styczna (obwodowa) na średnicy tocznej:

$$S_{mt} := \frac{2 \cdot M_1}{d_{w1}}$$

Siła wzdłużna:

$$S_{mo} := S_{mt} \cdot tan(\beta_{w1})$$

Siła promieniowa:

$$S_{mr} := S_{mt} \cdot tan(\alpha_{tw})$$