2007-04-22 시행 정보처리 기사 실기 기출문제(A형)

1. 데이터베이스(일부 복원)

물리적 모델링의 관점에서 볼 때 A 데이터베이스와 B 데이터베이스는 물리적으로 특성이 상이하므로 기본적으로 모델링을 다시 수행하는 것이 타당하다. 하지만 귀하가 기존의 A데이터베이스에 대해 검토한 결과 개체와 개체간의 관계를 기본요소로 이용하여 현실세계의 무질서한 데이터를 개념적인 논리 데이터로 표현하는 (1)가(이) 존재하지 않는 등 산출물이 이동한 상태임이 확인되어 기존 데이터베이스에 대한 현황분석이용이 하지 않았다.

[배점 : 30점]

역공학 기법을 활용하여 (1)을 생성하여 분석을 시도하고자 했으나 역공학 (1)을(를) 가지고 분석하는 것에는 한계가 있었으며 작성된 (1)는 대부분이 (2)설정에 대한 (3)확보가 되어있지 않아 용이하게분석할 수 없는 상황임이 인지되었다.

(3)은 (2)의 값이 NULL이거나 참조릴레이션의 기본키값과 동일해야 함을 의미한다.

즉 릴레이션은 참조할 수 없는 (2)값을 가질 수 없다는 것이다. 관계형 데이터의 모델에서 한 릴레이션의(2)는 참조되는 릴레이션의 기본키와 대응되어 릴레이션간의 참조관계를 표현하는데 사용되는 중요한도구이다. 관계를 맺고 있는 어떤 릴레이션 R1 R2에서 릴레이션 R1이 참조하고 있는 릴레이션 R2의 기본키와같은R1 릴레이션의 속성을 (2)라 한다.

현편 기존 A 데이터베이스에 대한 구조를 분석해보니 450여개의 엔티티가 존재하여 테이블명 만으로 파악해볼때 임시테이블, 중복테이블, 사용하지 않는 테이블 등이 상당부분 존재할 가능성이 있는 것으로 보였다. 기존 A데이터베이스에서 추출한 (1)의 대부분이 (2)에 의한 (3)이 확보되는 식의 관계가 대부분이었다.

이것은 데이터베이스에서 역공학으로 재생한 (1)인 관계상 논리적 관계가 모두 표현되지 않을수 있다는 점을 감안하더라도 관계설정의 질이 높지 않음을 의미하는 것이었다.

또한 기존의 A데이터베이스 안에서 추출한 (1)상에서 다음 <예1>에서 일부 사례를 나타낸바와 같이 테이블의 이름이 유사한 경우가 많아 중복이 사용되었다는 것을 알 수 있다. 임시테이블에서 불필요한 분할 등의 가능성이 해소되지 않았다. 새로운 B데이터베이스로의 이관 시 불필요한 테이블이 어느 것인지 식별하여 조치해 주는 것이 필요함에도 불구하고 응용시스템과 데이터베이스 의무 상관관계를 검토해보니 기존에 이와 관련한 상관관계 분석이 미흡하여 불필요한 테이블에 대한 식별이 용이하지 않았다.

또한 <예2>에서 나타낸 바와 같이 데이터베이스 표준 측면에서 (4)를 검토한 결과 미흡한 부분의 존재가 인지 되었다.

시스템의 생명은 (4)이다. 결과가 틀린 시스템은 가치를 잃기 마련이다. 사용자를 위해 개발된 어플리케이션과 각종 사용자 도구들을 이용하여 데이터의 (4)을(를) 검증하고 필요하다면 소스 데이터와의 비교검토를 통해 잘못된 곳을 찾아 해결 방안을 마련해야 한다.

일반적으로 (4)이(가) 맞지 않는 이유는 각 테이블에서 보유하고 있는 코드들의 불일치로 생기는 경우가 많다.

또한 엔티티에 대한 정리가 필요한 것으로 판단되어 (5)을(를) 활용하여 응용시스템과 데이터베이스간의 상관관계 분석을 실시하고 사용되지 않는 엔티티를 식별하고 저장되어 있는 자료를 확인한 후 삭제하거나 타 엔티티로 이동시키는 등의 조취를 취하기로 하였다. (5)는 업무프로세서와 데이터간의 상관관계 분석을 위한 것으로 업무프로세서와 엔티티타입을 행과 열로 구분하여 행과 열이 만나는 교차점에 발생, 이용에 대한 상태를 표시한다. 일반적으로 생성, 이용, 수정, 삭제로 나뉘어 표현한다.

2. 업무 프로세스(복원 X)

3. 신기술 [배점: 10점]

신기술 동향에 관한 아래 설명의 괄호 안 내용에 가장 적합한 항목을 <답항보기>에서 선택하여 답안지의 해당번호 (1)~(5)에 마크하시오. (단, 괄호 번호가 동일한 경우 답안 내용은 동일함)

- (1) ()는 불특정 다수의 인터넷 사용자들을 대상으로 특정 질문에 답변을 제시하거나 또는 공통적인 관심사가 포함된 웹사이트나 여러 자료들의 링크를 제공하는 웹사이트 또는 서비스를 말한다. ()는 누구나 질문을 올릴 수 있고 전문가나 일반 인터넷 사용자로부터 이에 대한 답변을 받을 수 있는 질의 응답 또는 지식 검색 사이트를 의미한다. 단순검색엔진과는 달리 사용자들의 상호작용에 의한 새로운 검색영역을 개척할 수 있어 포털사이트들의 중요한 사업형태로 인정받고 있다.
- (2) ()리눅스는 공개 소프트웨어 리눅스의 한국형 데스크톱 및 서버운영체제 표준 배포판이다. ()리눅스는 국내 관련 기업과 소프트웨어의 진흥과 한국 전자 통신 연구원이 협력하여 개발하고 공인인증기관인 TTA의 인증을 받은 국내의 표준 리눅스 플랫폼이다.
- (3) ()는 1년에 단 몇 권 밖에 팔리지 않는 흥행성 없는 책들의 판매량을 모두 합하면 놀랍게도 잘 팔리는 책의 매상을 추월한다는 원리인 판매의 특성을 이르는 개념이다. ()는 20%의 핵심고객으로부터 80%의 매출이 나온다는 파레토법칙과 반대되는 개념이어서 역파레토법칙 이라고도 한다.
- (4)()는 모든 네트워크 사업자는 모든 콘텐츠를 동등하게 취급받고 어떠한 차별도 하지 않아야 한다는 원칙을 의미한다.()를 보장하기 위해 비차별, 상호접촉, 접근 성능 이 3가지 원칙이 모든 통신망에 동일하게 적용되야 한다는 것을 의미한다.
- (5)()는 상호관계를 이해하는 관계성을 기반으로 하는 새로운 패러다임을 말한다. 기술 위주로 발전하는 정보기술에 나와서 사람과 사람, 문화와 문화, 인문학 등 논리 위주의 ()가 접목되어야 한다는 점을 강조하여 이어령 이화여대 교수가 만들어낸 신조어이다.

[배점 : 20점]

4. 알고리즘 [배점 : 30점]

다음은 어떤 정수의 모든 약수 중 자신을 제외한 약수로 모두 합하면 자신과 같아지는 수가 있다.

예를 들어 정수 6의 약수는 1,2,3,6 이다. 이 중 6을 제외한 약수 1,2,3을 모두 합하면 6이 되어 자신과 같아진다. 다음 <그림>의 순서도는 4부터 1000까지의 정수 중 이러한 약수를 갖는 수를 찾아 출력하고, 또한 그 개수를 구하여 출력하는 알고리즘이다. <그림>의 괄호 안 내용 (1)~(5)에 가장 적합한 내용을 <답항보기>에서 선택하여 답안지의 해당번호 (1)~(5)에 각각 마크하시오.

<처리조건>

조건 : 약수 중 가장 큰 수는 그 수를 2로 나눈 것 보다 같거나 작다. 짝수의 경우 자신을 제외한 제일 큰 약수는 2 를 나눈 값이다

<사용 변수 설명>

- LM : 문제에서 주어진 수의 개수 - N,J,R: 계산에 사용되는 변수

- SUM : 약수의 합

- K : 위 조건을 만족하는 K

<약수 의미 설명>

어떤 수의 모든 약수 중 자신을 제외하면 그 절반 값이 최대의 약수가 된다

(※짝수의 경우)

예를 들어 20의 모든 약수는 1, 2, 4, 5, 10, 20

[답항 보기]

1	R	2	LM+K	3	MOD(K/2)	4	J	5	MOD(LM/2)
6	MOD(J/2)	7	LM=LM+1	8	77	9	LM+J	10	99
11	100	12	SUM=SUM+J+N	13	SUM=SUM-1	14	R=J	15	LM=N
16	MOD(LM/J)	17	LM-N	18	SUM-1	19	N=SUM	20	SUM
21	SUM-K	22	LM-1	23	MOD(1000/4)	24	SUM+J	25	K=SUM
26	LM+N	27	SUM=SUM+J	28	R=MOD(N/J)	29	MOD(K/J)	30	SUM+LM
31	MOD(N/J)	32	4	33	SUM-J	34	SUM+K	35	88
36	LM-J	37	SUM+N	38	0	39	LM+1	40	SUM+R

5. 전산 영어 [배점: 10점]

(①) is a programming language model organized around "(②)s" rather than "actions" and data rather than logic. Historically.							
a program has been viewed as a logical procedure that lakes input data, processes it, and produces output data. The programming challenge was seen as how to write the logic, not how to define the data. (①) takes the view that what we really care about are the (②)s we want to manipulate rather than the logic required to manipulate them. Examples of(②)s range from human beings (described by name, address, and so forth) to buildings and floors.							
The first step in (①) is to identify all the (②)s you want to manipulate and how they relate to each other. Once you've identified an (②), you generalize it generalize it as a class of objets and define the kind of data it contains and any logic sequences that can manipulate it.							
Each distinct logic sequence is known as a (③).							
A real instance of a class is called an "(②)" or, in some environments, an "instance of a class." The (②) or class instance is what you run in the computer. Its (③)s provide computer instructions and the class (②) -characteristics provide relevant data.							
You communicate with (②)s and they communicate with each other - with well - defined interfaces called (④)s. One of the first (②) oriented computer language was called Small talk.							
C++ and (⑤) are the most popular (①) today. The (③) programming language is designed especially for use in distributed applications on corporate networks and the internet.							

[답안]

NO.	데이터베이스	업무프로세스	신기술	알고리즘	전산 영어	
1	ERD	재고(Rethinking)	Social	MOD(N/J)	OOP	
2	외래키	수기작업비교확인	Вооуо	0	Object	
3	참조무결성	무형고정자산	Long tail	SUM+J	Method	
4	정합성	수기감가상각처리 (정액법)	Network Neutrality	SUM	Message	
5	CRUD 매트릭스	수기감가상각처리 (정률법)	Relational Technology	LM+1	JAVA	