

Contents

- Introduction
- 2 Problem and Motivation
- 3 Numerical analysis
- 4 Initial calculations
- Summary
- 6 Bibliography

KM3NeT as a neutrino telescope

New research infrastructure

 Discovery and subsequent observation high-energy neutrino sources in the universe

KM3NeT as a neutrino telescope

New research infrastructure

- Discovery and subsequent observation high-energy neutrino sources in the universe
- Measurement of neutrino mass hierarchy

KM3NeT as a neutrino telescope

New research infrastructure

- Discovery and subsequent observation high-energy neutrino sources in the universe
- Measurement of neutrino mass hierarchy
- Joint research with earth and sea sciences

Detection mechanism

Detection mechanism

Cherenkov radiation

Electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the phase velocity of light in that medium.

Design

Design

Several unknowns

Measuring the artifical light sources

A conversion between lumen and photons is needed.

Measuring the artifical light sources

A conversion between lumen and photons is needed.

Conversion factor 1 lumen = $4.11 * 10^{15}$ photons

at $\lambda = 555nm$

Water parameters

From Rayleigh scattering theory we have

$$L_{sca}(\lambda) = \left(\frac{\lambda}{550nm}\right)^{4.32} \tag{1}$$

$$\frac{dp_{sca}}{d\Omega}(\beta) = \frac{1}{4\pi} \frac{3}{3+b} (1 + b\cos^2\beta)$$
 (2)

Water parameters

From Rayleigh scattering theory we have

$$L_{sca}(\lambda) = \left(\frac{\lambda}{550nm}\right)^{4.32} \tag{1}$$

$$\frac{dp_{sca}}{d\Omega}(\beta) = \frac{1}{4\pi} \frac{3}{3+b} (1 + b\cos^2\beta)$$
 (2)

Water absorption length in salt water.

8/17

Water molecular Rayleigh scattering length.

PMT parameters

PMT quantum efficiency including glass and gel.

PMT angular acceptance.

PMT parameters

PMT quantum efficiency including glass and gel.

PMT angular acceptance.

Values taken from the oficial KM3NeT simulations.

Different setups

Different setups

The corresponding scattering differential probability and absorption probability are given by:

$$\frac{dP_{sca}}{ds}(\lambda, s) = \frac{e^{-s/L_{sca}(\lambda)}}{L_{sca}(\lambda)},$$

$$P_{abs}(\lambda, s+x) = e^{-(s+x)/L_{abs}(\lambda)},$$
(4)

$$P_{abs}(\lambda, s+x) = e^{-(s+x)/L_{abs}(\lambda)},\tag{4}$$

Setup a)

$$\begin{split} R(\lambda,d,\delta) &= \Phi_0(\lambda) Q E_{PMT}(\lambda) \int_0^{\infty \approx 500} ds P_{abs}(\lambda,s+x) \\ &\frac{dP_{sca}}{ds}(\lambda,s) P_{PMT}(\alpha) \frac{dp_{sca}}{d\Omega}(\beta) \frac{A_{PMT}}{x^2} \end{split} \tag{5}$$

Setup a)

$$\begin{split} R(\lambda,d,\delta) &= \Phi_0(\lambda) Q E_{PMT}(\lambda) \int_0^{\infty \approx 500} ds P_{abs}(\lambda,s+x) \\ &\frac{dP_{sca}}{ds}(\lambda,s) P_{PMT}(\alpha) \frac{dp_{sca}}{d\Omega}(\beta) \frac{A_{PMT}}{x^2} \end{split} \tag{5}$$

Setup b)

$$R(\lambda, d, \delta) = \Phi_0(\lambda) Q E_{PMT}(\lambda) \int_0^{\infty \approx 500} \int_0^{\pi/2} ds d\delta P_{abs}(\lambda, s + x)$$

$$\frac{dP_{sca}}{ds}(\lambda, s) P_{PMT}(\alpha) \frac{dp_{sca}}{d\Omega}(\beta) \frac{A_{PMT}}{x^2}$$
(6)

Setup b)

$$R(\lambda, d, \delta) = \Phi_0(\lambda) Q E_{PMT}(\lambda) \int_0^{\infty \approx 500} \int_0^{\pi/2} ds d\delta P_{abs}(\lambda, s + x)$$

$$\frac{dP_{sca}}{ds}(\lambda, s) P_{PMT}(\alpha) \frac{dp_{sca}}{d\Omega}(\beta) \frac{A_{PMT}}{x^2}$$
(6)

Setup c)

c)

$$R(\lambda, d) = \Phi_0(\lambda) Q E_{PMT}(\lambda) P_{abs}(\lambda, d) P_{PMT}(0) \frac{A_{PMT}}{4\pi d^2}.$$
 (7)

Setup c)

c)

$$R(\lambda, d) = \Phi_0(\lambda) Q E_{PMT}(\lambda) P_{abs}(\lambda, d) P_{PMT}(0) \frac{A_{PMT}}{4\pi d^2}.$$
 (7)

Lower limits wrap up

Background noise

Natural bioluminiscence and natural radiation from ^{40}K is $\sim 6-7kHz$

Next steps

- Multiple scattering.
- Mie theory for particle scattering.
- Montecarlo simluations for single photons.

Bibliography I

- Silvia Adrian-Martinez et al. (2016). "Letter of intent for KM3NeT 2.0". In: Journal of Physics G: Nuclear and Particle Physics 43.8, p. 084001.
- JA Aguilar et al. (2005). "Transmission of light in deep sea water at the site of the ANTARES neutrino telescope". In: Astroparticle Physics 23.1, pp. 131–155.
- Hendrik Christoffel Hulst and Hendrik C van de Hulst (1981). Light scattering by small particles. Courier Corporation.
- Andre Morel and Hubert Loisel (1998). "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution". In: *Applied Optics* 37.21, pp. 4765–4776.
- Theodore J Petzold (1972). Volume scattering functions for selected ocean waters. Tech. rep. Scripps Institution of Oceanography La Jolla Ca Visibility Lab.

