# Discrete Mathematics and Logic Graph Theory Lecture 3

Andrey Frolov Professor

Innopolis University

### What did we know in the last week?

- 1. Trees and forests
- 2. The characteristic property for trees
- 3. Spanning trees
- 4. Weighted graphs
- 5. Minimal spanning trees
- 6. The Prim's algorithm
- 7. Never forget that my favorite question is "Why?"!



### Definition

A connected graph having no cycle is called a tree.



What about cycles?



#### **Definitions**

The sequence  $u_1u_2...u_k$  is called a **walk** (or a **way**) from  $u_1$  to  $u_k$ , if any vertices  $u_i$  and  $u_{i+1}$  are neighbours.

#### Definition

```
Let the sequence u_1, u_2, \ldots, u_k be a walk. We say that it is closed, if u_1 = u_k. it is a path, if (u_i, u_{i+1}) \neq (u_j, u_{j+1}) for all i \neq j. it is a cycle, if it is a closed path.
```

### Example

```
v_1v_2v_3v_1 – a non-walk

v_1v_2v_3v_2 – some walk

v_1v_2v_3v_2v_1 – a closed walk

v_4v_3v_4 – a closed walk

v_4v_3v_2 – a path

v_1v_2v_3v_4 – a path

v_1v_2v_3v_4v_1 – a cycle
```





It is impossible to cross each of the seven bridges of Königsberg once and only once during a walk (1736).



Leonhard Euler (1707 - 1783)

The sufficient and necessary condition

#### Definition

A path is called **Euler**, if it contains every edge and only once.

Remark (the terminology problem)

An Euler path = An Euler trail.

### Definition

A path is called **Euler**, if it contains every edge and only once.



#### Definition

A path is called **Euler**, if it contains every edge and only once.

### Definition

A graph having an Euler path is called **semi-Eulerian** (only in Russian), has no name in English.



The graph has a Euler path = = it is a semi-Eulerian



The path  $v_1, v_2, v_5, v_4, v_3, v_2, v_6$ is an Euler path

#### Definition

A cycle is called **Euler**, if it contains every edge and only once.

So, a closed Euler path is an Euler cycle.

Remark (the terminology problem)

An Euler cycle = An Euler tour.

### Definition

A cycle is called **Euler**, if it contains every edge and only once.



#### Definition

A cycle is called **Euler**, if it contains every edge and only once.

#### Definition

A graph having an Euler cycle is called an **Eulerian**.



The graph is an Eulerian



The cycle  $v_1, v_2, v_5, v_4, v_3, v_2, v_6, v_7, v_1$  is an Euler cycle

## Theorem (the sufficient and necessary condition)

A non-trivial connected graph is Eulerian iff every vertex has even degree.



## Theorem (the sufficient and necessary condition)

A non-trivial connected graph is Eulerian iff every vertex has even degree.

### Proof $(\Rightarrow)$

If a vertex appearing k times in a Euler tour, then it must have degree 2k.



The Euler cycle  $v_1, v_2, v_5, v_4, v_3, v_2, v_6, v_7, v_1$ 

A non-trivial connected graph is Eulerian iff every vertex has even degree.

### Proof $(\Leftarrow)$

Suppose that G is a non-Eulerian connected graph with at least one edge and all vertices have even degree.

Since each vertex of G has degree at least 2, the G must contain a cycle.

## Theorem (the sufficient and necessary condition)

A non-trivial connected graph is Eulerian iff every vertex has even degree.

### Proof $(\Leftarrow)$

Traversability

Since the G contains a cycle, we can find a cycle C of maximum possible length.

Obviously, C is itself Eulerian. So, each vertex of C has even degree.

A non-trivial connected graph is Eulerian iff every vertex has even degree.

### Proof $(\Leftarrow)$

Therefore, each vertex of G - E(C) has also even degree and is not trivial (since G is not an Eulerian).

Thus, C can be extended. It contradicts with the choice of C.

# Theorem (the sufficient and necessary condition)

A non-trivial connected graph is Eulerian iff every vertex has even degree.



## Euler paths and cycles

### Corollary

A connected graph has an Euler path iff it either has no, or has exactly two vertices with odd degrees.



# The Fleury's algorithm

- 1. Let  $v_0$  be an arbitrary vertex, and  $W_0 = \emptyset$ .
- 2. Repeat the following procedure for i = 1, 2, ... as long as possible:

Suppose that  $W_i = \{e_1, e_2, \dots, e_i\}$  has been constructed, where  $e_i = (v_{i-1}, v_i)$ . Choose a new edge  $e_{i+1}$  such that

- a)  $e_{i+1} \notin W_i$  and  $e_{i+1}$  has an end  $v_i$ ,
- b)  $G \{e_1, e_2, \dots, e_i, e_{i+1}\}$  does not contain two non-trivial connected components, unless there is no alternative.

# The Fleury's algorithm



# What we knew today?

- 1. Euler paths and cycles
- 2. Eulerians
- 3. The sufficient and necessary condition
- 4. The Fleury's algorithm

Thank you for your attention!

Don't forget that my favorite question is "Why?"!