the y earthquake direction considered

 $M_{\rm t}$ = Total mass of building $(M_{\rm t} = W_{\rm t}/g)$

 $M_{\rm U,Rd,b}$ = Upper bound plastic resistance of beam, computed taking into account the concrete component of the section and all the steel components in the section, including those not classified as ductile

 $M_{\rm Y}$ = Bending moment corresponding to the state of first-yield in RC section

 $m_{\rm e}$ = Nonstructural element mass

Total number of stories of building from the foundation level
(In buildings with rigid peripheral basement walls, total number of stories from the ground floor level)

 $N_{\rm Ed}$ = Design axial force obtained from analysis for the seismic design situation

 $N_{\rm Ed,E}$ = Axial force due to design seismic action

 $N_{\rm Ed,G}$ = Axial force due to non-seismic actions in seismic design situation

 $N_{\rm pl,Rd}$ = Design value of yield resistance in tension of the gross cross-section of a member in accordance with EN 1993-1-1:2004

n = Steel-to-concrete modular ratio for short term actions

 n_1 = Live Load Mass Reduction Factor

 n_2 = Live Load Participation Factor

 Q_{Cx} = Response quantity obtained by modal combination in Response Spectrum Method for an earthquake in x direction

 Q_{Cy} = Response quantity obtained by modal combination in Response Spectrum Method for an earthquake in y direction

 $Q_{\rm D}$ = Design response quantity due to seismic action

 Q_i = Total live load at i'th storey of building

 Q_{Sx} = Scaled response quantity obtained by modal combination in Response Spectrum Method for an earthquake in x direction

 Q_{Sy} = Scaled response quantity obtained by modal combination in Response Spectrum Method for an earthquake in y direction

 $Q_{\rm x}$ = Response quantity obtained in Equivalent Seismic Load Method for an earthquake in x direction

 Q_y = Response quantity obtained in Equivalent Seismic Load Method for an earthquake in y direction

q = Behaviour Factor

 q_e = Behaviour Factor for nonstructural element or component

 $q_{\rm R}(T)$ = Seismic Load Reduction Factor

 R_d = Design resistance of an element; resistance of connection in accordance with EN 1993-1-1:2004

 $R_{\rm di}$ = Design resistance of the zone or element i

 $R_{\rm fy}$ = Plastic resistance of connected dissipative member based on design yield strength of material as defined in EN 1993-1-1:2004

 $S_{AE}(T)$ = Elastic spectral acceleration [m/s²]

 $S_{AR}(T)$ = Design (reduced) spectral acceleration [m/s²]

 S_{SD} = Short period (0.2 second) elastic spectral acceleration [m/s²]

 S_{1D} = 1.0 second elastic spectral acceleration [m/s²] S_{1D} = Spacing of transverse reinforcement [mm]

T = Natural period of vibration [s]

 $T_{\rm L}$ = Transition period of response spectrum to long-period range [s]

 $T_{\rm o}$ = Response spectrum short corner period [s] $T_{\rm S}$ = Response spectrum long corner period [s]

 T_1 = Natural period of predominant mode (first mode) [s]