

# Fast Recovery Epitaxial Diode (FRED)

| V <sub>RSM</sub> | $\mathbf{V}_{RRM}$ | Туре         |
|------------------|--------------------|--------------|
| V                | V                  |              |
| 600              | 600                | DSEI 60-06A  |
| 600              | 600                | DSEI 60-06AT |



| FAV               | = | 60  | Α  |
|-------------------|---|-----|----|
| $V_{RRM}$         | = | 600 | ٧  |
| $\mathbf{t}_{rr}$ | = | 35  | ms |



A = Anode, C = Cathode

#### **Features**

- International standard package JEDEC TO-247 AD
- Planar passivated chips
- Very short recovery time
- Extremely low switching losses
- Low IRM-values
- · Soft recovery behaviour
- Epoxy meets UL 94V-0

#### **Applications**

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

#### **Advantages**

- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching
- Low losses
- Operating at lower temperature or space saving by reduced cooling

| Symbol                                                 | Conditions                                                                                  |                                             | Maximum Ra                | tings            |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|------------------|
| I <sub>FRMS</sub> I <sub>FAVM</sub> ① I <sub>FRM</sub> | $T_{\rm C} = 70^{\circ}\text{C}$ ; rectangula $t_{\rm p} < 10 \ \mu\text{s}$ ; rep. rating, | r, d = 0.5 pulse width limited by $T_{VJM}$ | 100<br>60                 | A<br>A           |
| I <sub>FSM</sub>                                       | $T_{VJ} = 45^{\circ}C;$ $t = 10 \text{ r}$<br>t = 8.3                                       | ns (50 Hz), sine<br>ns (60 Hz), sine        | 550<br>600                | A                |
|                                                        | $T_{VJ} = 150^{\circ}\text{C};  t = 10 \text{ r}$<br>t = 8.3                                | ns (50 Hz), sine<br>ns (60 Hz), sine        | 480<br>520                | Α                |
| l²t                                                    | $T_{VJ} = 45^{\circ}C;$ $t = 10 \text{ r}$<br>t = 8.3                                       | ns (50 Hz), sine<br>ns (60 Hz), sine        | 1510<br>1490              | A <sup>2</sup> s |
|                                                        | $T_{VJ} = 150$ °C; $t = 10$ r $t = 8.3$                                                     | ns (50 Hz), sine<br>ns (60 Hz), sine        | 1150<br>1120              | A <sup>2</sup> s |
| T <sub>VJ</sub> T <sub>VJM</sub> T <sub>stg</sub>      |                                                                                             |                                             | -55+150<br>150<br>-55+150 | ე°<br>ე°         |
| P <sub>tot</sub>                                       | T <sub>C</sub> = 25°C                                                                       |                                             | 166                       | W                |
| M <sub>d</sub>                                         | mounting torque                                                                             |                                             | 0.81.2                    | Nm               |
| Weight                                                 | typical                                                                                     |                                             | 6                         | g                |

| Symbol            | Conditions Characteristic Val                                                                                                             |      | alues |     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----|
|                   |                                                                                                                                           | typ. | max.  |     |
| I <sub>R</sub>    | $V_R = V_{RRM}$ $T_{VJ} = 25^{\circ}C$                                                                                                    |      | 200   | μA  |
|                   | $V_R = 0.8 \cdot V_{RRM}$ $T_{VJ} = 25^{\circ}C$                                                                                          |      | 100   | μA  |
|                   | $V_R = 0.8 \cdot V_{RRM}$ $T_{VJ} = 125^{\circ}C$                                                                                         |      | 14    | mA  |
| V <sub>F</sub>    | $I_{\rm F} = 70 \text{ A}$ $T_{\rm V,I} = 150^{\circ}\text{C}$                                                                            |      | 1.5   | V   |
|                   | $T_{VJ} = 25^{\circ}C$                                                                                                                    |      | 1.8   | V   |
| V <sub>T0</sub>   | For power-loss calculations only                                                                                                          |      | 1.13  | V   |
| r <sub>T</sub>    | $T_{VJ} = T_{VJM}$                                                                                                                        |      | 4.7   | mΩ  |
| R <sub>thJC</sub> |                                                                                                                                           |      | 0.75  | K/W |
| R <sub>thCH</sub> | (version A)                                                                                                                               | 0.25 |       | K/W |
| t <sub>rr</sub>   | $I_F = 1 \text{ A}$ ; -di/dt = 200 A/ $\mu$ s; $V_R = 30 \text{ V}$ ; $T_{VJ} = 25 ^{\circ}\text{C}$                                      | 35   | 50    | ns  |
| I <sub>RM</sub>   | $V_R = 350 \text{ V}; I_F = 60 \text{ A}; -di_F/dt = 480 \text{ A}/\mu\text{s}$<br>$L \le 0.05 \mu\text{H}; T_{VJ} = 100^{\circ}\text{C}$ | 6.0  | 7.5   | А   |

 $<sup>\</sup>odot$  I<sub>FAVM</sub> rating includes reverse blocking losses at T<sub>VJM</sub>. V<sub>R</sub> =  $0.8 \cdot V_{RRM}$ , duty cycle d = 0.5



Fig. 1 Forward current versus voltage drop.





Fig. 3 Peak reverse current versus -di<sub>-</sub>/dt.



Fig. 4 Dynamic parameters versus junction temperature.



Fig. 5 Recovery time versus -di\_/dt.



Fig. 6 Peak forward voltage versus di<sub>F</sub>/dt.



Fig. 7 Transient thermal impedance junction to case.



#### Dimensions TO-247 AD



| Dim. | Millimeter |       | Inches |       |
|------|------------|-------|--------|-------|
|      | Min.       | Max.  | Min.   | Max.  |
| A    | 19.81      | 20.32 | 0.780  | 0.800 |
| B    | 20.80      | 21.46 | 0.819  | 0.845 |
| C    | 15.75      | 16.26 | 0.610  | 0.640 |
| D    | 3.55       | 3.65  | 0.140  | 0.144 |
| E    | 4.32       | 5.49  | 0.170  | 0.216 |
| F    | 5.4        | 6.2   | 0.212  | 0.244 |
| G    | 1.65       | 2.13  | 0.065  | 0.084 |
| H    | -          | 4.5   |        | 0.177 |
| J    | 1.0        | 1.4   | 0.040  | 0.055 |
| K    | 10.8       | 11.0  | 0.426  | 0.433 |
| L    | 4.7        | 5.3   | 0.185  | 0.209 |
| M    | 0.4        | 0.8   | 0.016  | 0.031 |
| N    | 1.5        | 2.49  | 0.087  | 0.102 |

### Dimensions TO-268 AA



| 0)/14 | INCHES |          | MILLIMETERS |                    |  |
|-------|--------|----------|-------------|--------------------|--|
| SYM   | MIN    | MAX      | MIN         | MAX                |  |
| Α     | .193   | .201     | 4.90        | 5.10               |  |
| A1    | 106،   | .114     | 2.70        | 2.90               |  |
| A2    | .001   | .010     | 0.02        | 0.25               |  |
| Ь     | .045   | .057     | 1.15        | 1.45               |  |
| b2    | .075   | .083     | 1.90        | 2.10               |  |
| С     | .016   | .026     | 0.40        | 0.65               |  |
| C2    | .057   | .063     | 1,45        | 1.60               |  |
| D     | .543   | .551     | 13.80       | 14.00              |  |
| D1    | .488   | .500     | 12.40       | 12.70              |  |
| E     | .624   | .632     | 15.85       | 16.05              |  |
| E1    | .524   | .535     | 13.30       | 13.60              |  |
| е     | .215   | BSC      | 5.45 BSC    |                    |  |
| Н     | .736   | .752     | 18.70       | 1 <del>9</del> .10 |  |
| L     | .094   | .106     | 2.40        | 2.70               |  |
| L1    | .047   | .055     | 1.20        | 1.40               |  |
| L2    | .039   | .045     | 1.00        | 1.15               |  |
| L3    | .010   | .010 BSC |             | 0.25 BSC           |  |
| L4    | .150   | .161     | 3.80        | 4.10               |  |

20070419

IXYS reserves the right to change limits, test conditions and dimensions.

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:
DSEI60-06A