Pant B

Department: 65E

Program: BSc in CSE

Counse mo: CSE3211

Course Pitle: Data communication

Examination: final

Semester (session): Fall 2019

Student no: 170104077

Signature and Date: Raju

15/10/2020

Amito the Rues no 1(a)

hivan,

bandwidth of the low pass signal, B = 560 KH2

: frequency fmax = 560 KHz

Levels of quantization, L=2048

... number of bit per sample $nb = lag_2L$ $= lag_2(2048)$ = 11

1) Sampling nates fs = fmax x 2 = 560 KH2 x 2 = 1120 KH2

... bit note of the digitized signal $= N = f_5 \times m_b$ $= 1120 \times 11 \text{ Kbps}$ = 12320 Kbps = 12.32 Mbps

ii) We know,

PCM Bandwidth,
$$B = C \times N \times \frac{1}{L}$$

$$= \frac{1}{2} \times 12320 \text{ Kbp5} \times \frac{1}{L}$$

$$= \frac{6160}{L} \text{ KH2}$$

for MRZ on bipolar signal n=1, then the bandwidth will be 6160 KHZ

Pagu

Course no: CSE 3211

Am! to the Ques no 16

riven,

$$V_{\text{max}} = 120V$$

$$V_{\text{min}} = -120V$$

$$A = \frac{\sqrt{max} - \sqrt{min}}{L}$$

$$\Rightarrow L = \frac{120 + 120}{15}$$

$$= 16$$

... The given nange can be divided into 16 2 ones.

Normalized Ernon	-0.05	0.05	-0:41	6.3	0.35	-0.22	6.25	-0.19
Normalized Quantized values	75	4.5	1.5	1.5	3.5	-6.5	-5.5	-2.5
Quantization Values	112.5	67.5	22.5	22.5	52.5	-9A·5	-82:5	-37.5
Normalized PAM Values	7.5	445	1.91	1.18	3.15	-6.28	-5.75	-231
Actual Amplitude	113.2	66.7	28.6	17.7	47.2	-942	-86.1	-34.6

Am: to the Ques no 2(a)

from figure 1,

Quantization code: 15 12 9 9 11 1 2 5

Encoded word: 1111 1100 1001 1001 1011 0001 0010 0101

Am: to the Ques no 2(5)

Applying 4B/5B to the result of 260, we get 11101 11010 10011 10011 10111 01001 10100 01011

Am: to the Ques no 2 (3)

Applying 8B/6T to the sur result of 2(6), we get

and it will be encoded as following signal pattern,

$$A6 \rightarrow ++-0-0$$

