特開平11-120325 (11)特許出願公開番号

(43)公開日 平成11年(1999) 4月30日	380 380Z 101D	
	15/62 15/70 1/40	
	F 1 G06F 1 H04N	
	400000	
•	1/00 7/00 1/409	
	(51) Int CL. G 0 6 T H 0 4 N	

警査器式 未開水 請求項の数8 〇L (全 18 頁)

72) 発明者 (72) 発明者 (72) 発明者 (74) 代理人	平成 B 年 (1997) 10月16日 (72) 発明者 (72) 発明者 (72) 発明者	平成 9 年(1997) 10月16日 (72)発明者 (72)発明者 (72)発明者 (72)発明者	(21)出版每年	你取平 9~284138	(71) 出現人	(71) 出版人 000002369
平成 B 年 (1997) 10月16日 (72) 発明者 (72) 発明者 (72) 発明者 (72) 発明者	平成 B 年 (1997) 10月16日 (72) 発明者 (72) 発明者 (72) 発明者 (72) 発明者	平成 B 年 (1997) 10月16日 (72) 発明者 (72) 発明者 (72) 発明者 (72) 発明者				セイコーエブソン株式会社
(72) 短明者 献田 直樹 長野県嶼防市大和3丁目3番5号 セイコーエブソン株式会社内 (72) 発明者 中見 至宏 長野県嶼防市大和3丁目3番5号 セイコーエブソン株式会社内ーエブソン株式会社内ーエブソン株式会社内・エブリン株式会社内・アンツ・大学会社内・アンツ・大学会社内・アンツ・大学会社内・アンツ・大学会社内・アンツ・大学会社内・アンツ・大学会社内・アンツ・大学会社内・アンツ・アンツ・アンツ・アンツ・アンツ・アンツ・アンツ・アンツ・アンツ・アンツ	(72)発明者 紙田 正樹 長野保護的市大和3丁目3番5号 セイコ 一エブソン株式会社内 (72)発明者 中見 至宏 長野保護的市大和3丁目3番5号 セイコ 上エブソン株式会社内 (74)代理人 弁理士 的木 著三郎 (外2名)	(72)発明者 織田 直樹 長野保護的市大和3丁目3番5号 セイコ ーエブソン株式会社内 (72)発明者 中見 至宏 長野保護的市大和3丁目3番5号 セイコ ーエブソン株式会社内 (74)代別人 弁理士 鈴木 暮三郎 (外2名)	(22) 出版日	平成9年(1997)10月16日		東京都新信区西新宿2丁目4番1号
長野保護的市大和3丁目3番5号 セイコーエブソン株式会社内 (72)発明者 中見 至宏 長野県職助市大和3丁目3番5号 セイコーエブソン株式会社内 (74)代理人 弁理士 鈴木 著三郎 (外2名)	長野保護的市大和3丁目3番5号 セイコーエブソン株式会社内(72)発明者 中見 至宏長野保護的市大和3丁目3番5号 セイコーエブソン株式会社内(74)代理人 弁理士 鈴木 著三郎 (外2名)	長野保護的市大和3丁目3番5号 セイコーエブソン株式会社内(72)発明者 中見 至宏長野保護的市大和3丁目3番5号 セイコーエブソン株式会社内(74)代別人 弁理士 鈴木 暮三郎 (外2名)			(72) 発明者	東田 百数
一エブソン株式会社内(72)発明者 中見 至宏長野県職防市大和3丁目3番5号 セイコーエブソン株式会社内(74)代理人 弁理士 鈴木 著三郎 (外2名)	ーエブソン株式会社内 (72)発明者 中見 至宏 長野県職防市大和3丁目3番5号 セイコ 長野県職防市大和3丁目3番5号 セイコーエブソン株式会社内 (74)代理人 弁理士 鈴木 著三郎 (外2名)	ーエブソン株式会社内 (72)発明者 中見 至宏 長野県職防市大和3丁目3番5号 セイコ 長野県職防市大和3丁目3番5号 セイコーエブソン株式会社内 (74)代別人 弁理士 鈴木 暮三郎 (外2名)				長野県諏訪市大和3丁目3番5号 セイコ
(72)発明者 中見 至宏 長野県職防市大和3丁目3番5号 セイコ - エブソン株式会社内 (74)代理人 弁理士 鈴木 著三郎 (外2名)	(72)発明者 中見 至宏長が東京の大和3丁目3番5号 セイコールエブソン体式会社内 (74)代理人 弁理士 的木 著三郎 (外2名)	(72)発明者 中見 至宏長原原的な大和3丁目3番5号 セイコーエブソン株式会社内 (74)代別人 弁理士 鈴木 暮三郎 (外2名)				ーエブンン株式会社内
長野県職的市大和3丁目3番5号 セイコーエブソン株式会社内 (14)代理人 弁理士 的木 海三郎 (外2名)	長野県職防市大和3丁目3番5号 セイコーエブソン体式会社内 (74)代理人 弁理士 船木 著三郎 (外2名)	長野県職防市大和3丁目3番5号 セイコーエブノン株式会社内(30代別人 弁理士 鈴木 暮三郎 (外2名)			(72) 発明者	中見 至宏
						長野県諏訪市大和3丁目3番5号 セイコ
				•		ーエブンン株式会社内
					(74)代理人	
						•

国像界価方法、国像財価プログラムを配録した媒体および国像財価装置 (54) [発明の名称]

(21) [取色

一つの評価熱智だけでは腐りが生じる可能性 があった。 は四

いてステップS192~S196にて重み付け係数kを 決定し、この決定した狙み付け係数kを使用してステッ **プS310にて集計結果を合算して輝度分布ヒストグラ** ムを生成することにより、複数の評価基準を合算した総 台的な集計結果に基づいて画像を評価し、ステップS3 10~5350にて最適な画像処理を実行することがで ップS180にて入力される画像評価オブションに格力 **はステップS120,S140にて異なる評価基準で画** なの画像ゲータをサンプリングしておくとともに、ステ 【解決年段】 画像処理の中枢をなすコンピュータ21

【酵水項1】 ドットマトリクス状の画祭からなる実写 0画像データを入力し、各画衆の画像データを所定の甚

覧で集計し、集計結果に基づいて画像を評価する画像評 それぞれの評価基準に基づく評価結果を所定の重み付け 上記集計結果に対する複数の評価基準をもつさともに、 で合算することを特徴とする画像評価方法。 旧七沿かむった、

いて、上記画像データについて所定の基準で関引いて集 「酵水項2】 上記酵水項1に記載の画像評価方法にお を行って集計するとともに、それぞれの集計結果を所定 【酵水項3】 上記請水項2に記載の画像評価方法にお いて、一の評価基準が均等にサングリングして集計する 中するにあたり、複数の評価基準に基づくサンプリング の重み付けで合算することを特徴とする画像評価方法。 らのであることを特徴とする画像評価方法。

[0003]

を重くして集計するものであることを特徴とする画像評 「請求項4】 上記請求項1~請求項3のいずれかに記 戦の画像評価方法において、一の評価基準が各画葉にお ける隣接画葉との変化度合いが大きい画葉について評価

[請求項6] 上記請求項1~請求項5のいずれかに記 【請求項5】 上記請求項1~請求項4のいずれかに記 戦の画像評価方法において、各評価基準に対する重み付 戦の画像評価方法において、各評価基準に基づく評価結 果に基づいて当該評価結果の国み付けを変化させること けを変更可能としたことを特徴とする画像評価方法。

「請求項1】 コンピュータにてドットマトリクス状の 国禁からなる 実写の画像データを入力し、各画祭の画像 データを所定の基準で集計し、集計結果に基づいて画像 を評価する画像評価プログラムを配録した媒体であっ を特徴とする画像評価方法。

で合算することを特徴とする画像評価プログラムを配録 それぞれの評価基準に基づく評価結果を所定の重み付け 上記集計結果に対する複数の評価基準をもつとともに、

【請求項8】 ドットマトリクス状の画案からなる実写 の画像データを入力する画像データ入力手段と、 した森谷

る複数の評価基準をもつとともに、それぞれの評価基準 各画菜の画像データを所定の基準で集計し、集計結果に に基づく評価結果を所定の盧み付けで合算する画像デー **塔づいて画像を評価するにあたり、上記集計結果に対す** タ評価手段とを具備することを特徴とする画像評価装

[発明の詳細な説明]

象評価方法、画像評価プログラムを記録した媒体および 50 のような実写の画像データに基づいて画像を評価する画 [発明の属する技術分野] 本発明は、デジタル写真画像

画像評価装置に関する。

【従来の技術】 ディジタル耳其画像のような実写の画像 [0002]

データに対して各種の画像処理が行われている。例え

となっており、操作者がモニタ上で画像を確認して必要 か、明るさを補正するといった画像処理である。これら の画像処理は、通常、マイクロコンピュータで実行可能 な画像処理を選択したり、画像処理のパラメータなどを 決定している。すなわち、画像の特徴を操作者が判定し ば、コントラストを拡大するとか、色観を補正すると て各種の操作を選択したり実行している。 2

については各種のものが提案され、実際に効果を発揮し これは、画像処理の対象となるディジタル画像データに おいて、どこが重要であるのかを判断することができな [発明が解決しようとする課題] 近年、画像処理の技法 ている。しかしながら、どの技法でどの程度の処理を行 うかとなると、依然、人間が関与しなければならない。

平均が明るければ暗く補正するという自動処理を考えた **一々を自動補正すると、背景が真っ暗であるがために明** [0004]例えば、明るさを補正する画像処理を考え タがあるとする。背景は殆ど真っ暗に近いものの、人物 自体は良好に撮影できていたとする。この実耳の画像デ るく補正しようとしてしまい、昼間の画像のようになっ た場合、画面全体の平均が暗ければ明るく補正し、逆に とする。ここで、夜間撮影した人物像の奥写の画像デー かったためである。 8

部分だけに注目する。そして、人物像が暗ければ少し明 [0005]この場合、人間が関与していれば人物像の るく楠正するし、逆に、フラッシュなどの効果で明る過 ぎれば暗くする補正を選択する。 **イしまうことになる。** ន

[0006] 本出願人は、このような課題に鑑みて特願 ると考え、各画報での画像の変化既合いに着目して同変 平××号にて画像の中での重要な部分を判断する発明を **塩素した。同発明においては、画像のシャープな部分に** 本来の被写体 (オブジェクト) が存在しているはずであ 【0007】しかしながら、画像のシャープな部分があ るにしても同部分の面積は小さく背景部分を基準にした 画像処理が好ましい場合もあり、一つの評価基準だけで は偏りが生じる可能性があった。また、いずれの評価基 **草を採用すべきかを判定する必要性は依然として残った** 化度合いの大きな画菜をオブジェクトと判断している。 \$

[0008] 本発明は、上記課題にかんがみてなされた とが可能な画像評価方法、画像評価プログラムを記録し り、柔軟に対応して画像評価結果を利用しやすくするこ もので、画像処理の前提として画像を評価するにあた た媒体および画像評価装置の提供を目的とする。

[6000]

8

め、請求項1にかかる発明は、ドットマトリクス状の画 **ータを所定の基準で抵針し、集計結果に基づいて画像を** 降価する回像評価方法であった、上記扱計結果に対する 複数の評価基準をもつとともに、それぞれの評価基準に **剤 カヘ 評価 指来 や PP 所 の 倒 な 午 け か か 対 中 か 森 根 か し か** 群からなる実耳の画像データを入力し、各画数の画像デ [戦題を解決するための手段] 上記目的を遊成するた

画券の画像データを所定の基準で集計し、集計結果に基 別においては、評価する手法の前월として、ドットマト リクス状の画類からなる実写の画像データを入力し、各 【0010】上記のように構成した請求項1にかかる発 **が、大画像を評価する。 ここにおいて、上記4世格果に** 対する複数の評価基準をもっており、それぞれの評価基 群に基づく評価結果を所定の値み付けで合質する。

これのの枚数の評価格数を初行した映作しるのかれ **ぞれの重み付けを変えることによって適宜おりまぜ、総** [0011] すなわち、ポートフートのように固像のツ **ナープな彼耳体をオブジェクトとして当数画像を評価す** るのに適当な評価基準もあれば、保景を重要なオプジェ クトとして当校画像を評価するのに適当な評価基準もあ 6評価する。

とになる。

にも画像がシャープでももからから結構でもるとか、辞 [0012]なお、この評価結果は画像の特徴などを判 の種類を特定するような結果が得られる必要はない。例 えば、画像を明るいと判定するか略いと判定するかとい **記するのに使用可能なものであればよく、具体的に画像 った掛合の輝度のヒストグラムなどといった指標も合む** ものであり、明るい画像であるとか暗い画像であるとい った判定結果が得られる必要はない。 むろん、明暗以外 やかさを判断する壁の指数であってもよい。

以計するにもたり、核数の評価基準に指力ペサングリン るためには、実質的に同様の目的を遊するさまざまな手 田基単で虹み付けを与えて集計することもその一例であ ので、そのような状妃に対して好適な一回として、請求 グを行って集計するとともに、それぞれの集計結果を所 [0013] 集計結果に対して複数の評価基準を適用す **뀸を採用可能である。例えば、全画祭について個別の評** る。但し、金画菜について集計すると処理量が多くなる 項2にかかる発明は、請求項1に記載の画像評価方法に おいて、上記画像ゲータについて所定の基準で聞引いて

草に基づく腎価結果に対してそれぞれ餌み付けを持たせ [0014] 上記のように構成した請求項2にかかる発 ることとなり、さらに、それぞれの集計結果の餌み付け を閲覧して合算することにより、結果的に複数の評価基 明においては、集計する前提として画像データをサンプ リングすることとし、このサンプリングの仕方に対する 基準を変えることによって結果的に複数の基準を採用す 定の租み付けで合質する構成としてある。 **た評価したいとに対称する。**

のいずれかに記載の画像評価方法において、一の評価基 [0016] 上記のように構成した静水項3にかかる発 別においては、画像データが均等に聞引かれるが、画像 を全体的に扱えることになるので、風景写真などの判定 て、請求項3にかかる発明は、請求項1または請求項2 [0015] このような評価基準の基本的な一例とし **脅が均等にサンプリングして供針する構成としてある。** に適した評価基準と言える。

採用しない場合のいずれにも適用可能な評価基準の一例 として、請求項4にかかる発明は、請求項1~請求項3 のいずれかに記載の画像評価方法において、一の評価基 **準が各画栞における隣接画栞との変化度合いが大きい画** 【0017】 一方、サンプリング手法を採用する場合と 群にしいた評価を重くして集計する構成としてある。

[0018] 上記のように構成した請求項4にかかる発 明においては、各画葉における隣接画葉との変化度合い して集計することにより、結果的に変化度合いの大きい はっきりした画像部分を評価する評価基準を採用するこ を検出し、変化度合いが大きい画衆について評価を重く

大きい画像に評価の重きをおく手法には、集計しながら 国み付けを代えるものであってもよいし、変化度合いの 【0019】この評価基準は画像のシャープな部分に重 きをおいて評価するので、人物像などの画像を判定する のに好適なことはいうまでもない。ここで変化度合いが 大きい画葉だけについて集計するといったものでもよ 【0020】 評価基準の重み付けは必ずしも固定的でな は、諸求項1~請求項4のいずれかに記載の画像評価方 法において、各評価基準に対する重み付けを変更可能に ければならないわけではなく、請求項5にかかる発明

森成したかる。

別においては、それぞれの評価基準に対する重み付けを き出すことが可能となる。この場合、それぞれの重み付 けを個別に変更するものであるとか、複数の組合せを予 [0021] 上記のように構成した請求項5にかかる発 変更することにより、画像に対応した総合評価結果を導 り用意しておき、その組合せを選択するというものなど 各種の態様が含まれる。

【0022】また、このような重み付けの変更自体を操 ことも含まれ、その一例として、請求項6にかかる発明 は、各評価基準に基づく評価結果に基づいて当数評価統 作者が行うのではなく、画像ゲータに基心に失現する 果の餌み付けを変化させる構成としてある。

\$

[0023] 上記のように構成した請求項6にかかる発 月においては、各評価基準で評価結果を得て、その評価 特果からそれぞれの評価基準の適応性など勘案して当該 は価格果の重み付けを変化させる。

[0024] 評価結果を使用して評価基準の監み付けを 変える際にもさまざまな手法を採用可能であり、例え

プリングの対象とするか否かを判断するとすれば、その ば、ある評価基準で各画衆の画像データを上述したサン 画案数を一つの評価基準とし、画葉数が多い場合に重み 付けを重くするといったことも含まれる。 [0025]以上のような手法で画像を評価する発明の ドウェアで実現されたり、ソフトウェアで実現されるな 思想は、各種の態様を含むものである。すなわち、ハー ど、適宜、変更可能である。

[0026] 発明の思想の具現化例として画像処理する ソフトウェアとなる場合には、かかるソフトウェアを配 録したソフトウェア記録媒体上においても当然に存在 し、利用されるといわざるをえない。

る実写の画像データを入力し、各画禁の画像データを所 画像評価プログラムを記録した媒体であって、上記集計 は、コンピュータにてドットマトリクス状の画味からな **結果に対する複数の評価基準をもつとともに、それぞれ** の評価基準に基づく評価結果を所定の重み付けで合算す 定の基準で集計し、集計結果に基づいて画像を評価する 【0027】その一例として、請求項7にかかる発明

開発されるいかなるソフトウェア配砂媒体においても全 複製品などの複製段階については全く間う余地無く同等 である。その他、供給方法として通信回線を利用して行 し、半導体チップに書き込まれたようなものであっても もってもよいし光磁気配砂媒体であってもよいし、今後 く同様に考えることができる。また、一次複製品、二次 う場合でも本発明が利用されていることには変わりない [0028] むろん、その記録媒体は、磁気記録媒体で る権成としたある。 同様である。

【0029】さらに、一部がソフトウェアであって、一 郎がハードウェアで実現されている場合においても発明 の思想において全く異なるものはなく、一部をソフトウ ェア記録媒体上に記憶しておいて必要に応じて適宜競み 込まれるような形態のものとしてあってもよい。

計し、集計結果に基づいて画像を評価するにあたり、上 記集計解果に対する複数の評価基準をもつとともに、そ 【0030】これらの画像評価方法やソフトウェアの実 現主体として画像評価装置として適用可能なことはいう **ータ入力手段と、各画業の画像データを所定の基準で集** れがれの評価基準に描しく評価結果を形成の値を付けら 合算する画像データ評価手段とを具備する構成としてあ ス状の画葉からなる実写の画像データを入力する画像デ までもなく、請求項8にかかる発明は、ドットマトリク

てその集計結果に基づいて画像を評価する。この際、画 象データ評価手段は、上記集計結果に対する複数の評価 [0031] 上記のように構成した請求項8にかかる発 明においては、画像データ入力手段ばドットマトリクス タ評価手段は各画類の画像データを所定の基準で集計し 状の画葉からなる実写の画像データを入力し、画像デー

特開平11-120325

3

基準をもっており、それぞれの評価基準に基づく評価箱 果に対して所定の重み付けを持たせて合算して評価す

存在する場合もあるし、画像処理装置に組み込まれた状 [0032] むろん、このような画像評価装置は単独で **協で利用されることもあるなど、適宜変更可能である。** [0033]

[発明の効果] 以上説明したように本発明は、複数の評 価基準の重み付けを変えて総合的に評価するため、画像 の特徴を判定するにあたって柔軟に対応することが可能 な画像評価方法を提供することができる。 2

[0034]また、静水頃2にかかる発明によれば、画 ンプリングの仕方に応じて評価基準を複数採用可能であ 心理量を低減させつの風泉などに最適な評価基準を採用 [0035] さらに、請求項3にかかる発明によれば、 像データについてサンプリングして処理を行うため、 るとともに、処理量を低減させることができる。

画像の変化度合いが大きい部分はフォーカスのはっきり した被写体部分であることが多いため、このような重要 [0036] さらに、請求項4にかかる発明によれば、 することが可能となる。

[0037] さらに、請求項5にかかる発明によれば、 複数の評価基準に対する重み付けを変更することによ 画葉に重きをおいた画像評価が可能となる。

評価結果を利用して重み付けを変化させるため、評価の [0038] さらに、請求項6にかかる発明によれば、 り、より柔軟な評価が可能となる。 年間を軽成させることができる。

同様にして画像の特徴を判定するにあたって柔軟に対応 することが可能な画像評価プログラムを配録した媒体を [0039] さらに、請求項7にかかる発明によれば、 提供することができ、請求項8にかかる発明によれば、 画像評価装置を提供することができる。 8

[発明の実施の形態] 以下、図面にもとろいて本発明の 【0041】図1は、本発明の一実施形態にかかる画像 腎価方法を実行して画像処理する画像処理システムをプ ロック図により示しており、図2は具体的ハードウェア 実施形態を説明する。

【0042】図1において、画像入力装置10は写真な どをドットマトリクス状の画栞として扱した実写の画像 求め、同評価結果に基づいて画像処理の内容と程度を決 定してから画像処理を実行する。同画像処理装置20は データを画像処理装置20~出力し、同画像処理装置2 0 は所定の処理を経て画像データを集計して評価結果を 画像出力装置は画像処理された画像をドットマトリクス 画像処理した画像データを画像出力装置30〜出力し、 構成例を概略プロック図により示している。

【0043】画像処理装置20は、予め画像データを集 状の回珠や出力する。

ය

オカメラ14などが歓当し、画像処理装置20の具体例 23とCD-ROMドライブ24とフロッピーディスク 続し、ソフトウェアやゲータをダウンロードして導入可 【0044】画像入力装置10の具体例は図2における スキャナ11やゲジタルスチルカメラ12あるいはビデ **はコンピュータ21とハードディスク22とキーボード** ドライブ25とモデム26などからなるコンピュータン ステムが歓当し、画像出力装置30の具体例はプリンタ 31やディスプレイ32年が数当する。 本実館形態の協 台、画像の不具合毎を修正すべく毎数画像を評価するた め、画像データとしては写真などの実写データが好適で ある。なお、モデム26については公衆通信回接に依続 され、外部のネットワークに同公衆通信回線を介して接 能となっている。

[0045] 本虫植形節においては、画像入力装置10 プリンタドライバ216やディスプレイドライバ21c としてのスキャナ 1 1 やデジタルスケルカメラ 1 2 が画 像データとしてRGB(緑、青、棕)の略甌データを出 カするとともに、画像出力装置30としてのプリンタ3 1 は路観ゲータとしてCMY(ツアン、タゼンダ、イエ ロー) もるいはいれに既を加えたCMYKの口値ゲータ を入力として必要とするし、ディスプレイ32はRGB の略調データを入力として必要とする。一方、コンピュ ータ21内ではオペレーティングシステム21mが徐衡 しており、プリンタ31やディスプレイ32に対応した が組み込まれている。また、画像処理アプリケーション 21 d はオペレーティングシステム21 a にて処理の実 **作を監御され、必要に応じてプリンタドライバ21bや** ディスプレイドライバ2 1 c と連携して所定の画像処理 を来行する。

ンピュータ21の具体的役割は、RGBの路観データを [0046] 徐った、国体処理装置20としたのいのコ Bの胎闘ゲータを作成し、ディスプレイドライバ21 c を介してディスプレイ32に数示させるとともに、プリ K)の二値ゲータに兇殺したゲリンタ31に円墜さわる ンタドライパ21bを介してCMY(あるいはCMY

スチルカメラ12a内に回像評価して画像処理する画像 画像解価と画像処理を行うようにしているが、必ずしも [0047] いのように、本史施形態においたは、固像 の入出力装置の間にコンピュータシステムを組み込んで く、画像データに対して各種の画像処理を行うシステム に適用可能である。例えば、図3に示すようにデジタル かかるコンピュータシステムを必要とするわけではな

ータを入力して印刷するプリンタ316においては、ス デム265等を介して入力される画像データから画像群 スプレイ32mに敷示させたりプリンタ31m に印字さ せるようなシステムであっても良い。また、図4に示す ように、コンピュータシステムを介することなく画像デ キャナ116やデジタルスチルカメラ126あるいはモ **処理装置を組み込み、変換した画像データを用いてディ 田して画像処理するように構成することも可能である。** 【0048】上述した画像評価とそれに伴う画像処理

ホナフローチャートに対応した画像処理プログラムで行 を複数の評価基準で集計して所定の評価結果を得る処理 は、具体的には上記コンピュータ21内にて図5などに **っている。同図に示すフローチャートは画像処理プログ** ラムにおける画像評価の前段部分に歓当し、画像データ [0049] ここで本実施形態において採用する二0の で発作する。

評価基準について説明する。 共通するのはいずれも全画 **繋を対象とするのではなく、所庇の勘知に従って画繋を 間引くとともに、サンプリングした画菜について輝度を** 集計する点である。また、相違するのは、一方が均等に 画葉をサンプリングするのに対し、他方がエッジ画葉を **選択してサンプリングする点である。輝度の填計結果に** しいトロ後近するが、いのようにしていわゆるサンプリ がたきる。 均等に画味をサンプリングするというのは画 画像全体としての画像データの輝度の分布を評価するこ とになるから、風景写真が全体的に暗いとかコントラス ング手法を変えることにより、画像の評価を変えること 像会体の画菜について輝度を集計することに他ならず、 、が狭いといった評価の参考となる。

8

も被写体が十分な明るさを持っていれば画像の明るさは 十分であるといった評価結果が得られることになる。本 **契施形態においては、操作者による違択あるいは自動処** 【0050】 一方、エッジ画媒は画像のシャープな部分 であるから、画像の中でも本来の被写体に関わる画景に ついて輝度を集計することになり、たとえ背景が暗くて 囲によってこれら二つの評価基準を適宜組み合わせて画 彼の判定を行うようにしている。 8

クス状の画媒からなる画像ゲータにしいて対象画媒を水 この画像評価処理では、図6に示すようにドットマトリ 各画業についてサンプリング対象であるか否かを判断し [0051] 図5に示すフローチャートを参照すると、 平方向に主走査しつつ垂直方向に副走査して移動させ、 に供料している。

なる。この差分は輝度勾配であり、これをエッジ度と呼 [0052] 画像データがドットマトリクス状の画繋か ら構成されている場合には、各画禁ごとに上述したRG を判定する。図7に示すようなXY直交座標を考察する Bの輝度を接す階間データで扱されており、画像のエッ ジ部分では解接する画楽間での同ゲータの差分は大きく ぷことにし、ステップS110では各画繋でのエッジ度

S

で安すものとする。この場合、f (x, y) はRGBの 【0053】ドットマトリクス状の画繋からなるディジ タル画像においては、図8に示すように縦軸方向と横軸 y) であったり、あるいは全体の輝度Y (x, y) であ 場合、画像の変化度合いのベクトルはX軸方向成分とY 右向に画操が隣接しており、その明るさを f (x, y) 各類度であるR (x, y), G (x, y), B (x, ってもよい、なお、RGBの各輝度であるR(x, **協方向成分とをそれぞれ求めれば演算可能となる。**

Ξ: fx=f(x+1, y)-f(x, ... (2) fy = f(x, y+1) - f(x, y)

(0002) 10056]のように要される。従って、これらを成分・

国界に注目すると八つの隣接画繋がある。 従って、同様 9に示すように縦横に升目状に配置されており、中央の トルで扱し、このベクトルの和を画像の変化度合いと判 [0058] のように抜される。むろん、エッジ度はこ の一g(x, y)一で数される。なお、本来、画繋は図 にそれぞれの隣接する画繋との画像データの差分をベク

坠験的事実から考察すると、フォーカスが集中する被写★ が求められるので、あるしきい値と比較してエッジ度の 【0059】以上のようにして各画祭についてエッジ既 方が大きい画葉はエッジ画葉と判断すればよい。 なお、

い値は低く、エッジ度が比較的低くてもフォーカスが集 [0062] なる関係があり、中央に近い部分ほどしき Th1<Th2<Th3

中していると判断されるようになる。

【0063】 ステップS120ではエッジ度と同しきい ジ画繋であると判断し、ステップS130にてその画案 の画像データをサンプリングしてワークエリアに保存す る。ワークエリアはコンピュータ21内のRAMであっ 比較の結果、エッジ度の方が大きければこの画葉はエッ 値とを比較して変化度合いが大きいか否かを判断する。 てもよいしハードディスク22であってもよい。

にステップS140では当該対象回環が均等サンプリンな40 【教4】 「milo=Bio(width, poight)/A+1 【0064】一方、このようなエッジ度の判定と並行し

ングであり、一画琳おきにサンプリングしている。A= れか小さい方であり、Aは定数とする。また、ここでい リング周期ratio=2の場合を示している。すなわ [0067] とする。ここにおいて、min (widt h, height) はwidthとheightのいず ルキングリング 西差ratio pi 巨圏 繋 パカ にキングリ ち、縦方向及び樹方向に二画繋ごとに一画繋のサンプリ ングするかを扱しており、図11の〇印の画葉はサンブ

(x, y) との関係は、厳密には色変換テープルなどを **参照しなければ変換不能であるが、後述するようにして** *y), G (x, y), B (x, y) と全体の輝度Y 簡易な対応関係を利用するようにしても良い。

特開平11-120325

9

[0054] 図8に示すものにおいて、X方向の差分値 「×とY方向の整分値fyは、

[0055]

央部分から多くの画祭が抽出されるような仕組みとする ことにより、画像処理の判断に利用したときにより好ま ★体は構図の中央部分に位置することが多い。 なった、 しい効果を得られる。 8

【0060】このため、図10に示すように、画像の中 の部分毎に比較するしきい値Th1, Th2, Th3を 異ならせておくようにしてもよい。 むろん、この例で

[0061] [教3]

ンプリングする必要がある。統計的調差によれば、サン プル数Nに対する観遊は概ね1/ (N** (1/2)) と **抜せる。ただし、**は累聚を扱している。従って、1% セグの対象画業であるか否かを判断する。均等にサンプリ** 30 ングするといっても、ある路益の範囲内となる程度にサ 程度の割差で処理を行うためにはN=10000とな [0065] ここにおいて、図6にポナピットマップ画 西は (width) × (height) の画楽数とな

り、サンプリング周棋ratioは、 [9900]

.. (8)

200としたときの1ライン中のサンプリング画味数は 図12に示すようになる。

[0068] 国図から明らかなように、サンブリングし ないことになるサンプリング周期 r a t i o = 1 の場合 を除いて、200画繋以上の幅があるときには最低でも サンプル数は100画繋以上となることが分かる。従っ て、縦方向と横方向について200画衆以上の場合には (100回裝)×(100回裝)=(10000回裝)

න

dth, hoight)として、小さい方に基づいてサ (c) に示すように少ない方の様方向においても中間部 に、width>>hoightであるとすると、扱い しまった場合には、同図(り)に示すように、縦方向に は上盤と下路の2ラインしや国味を抽出されないといっ たことが起こりかわない。 しかしながら、min (wi を含むような関引きを行うことができるようになる。す 力のwidthでサンプリング函越ratioを決めて なむも、所庇の苗田教を臨保したサンプリングが可能と [0069] ここにおいてmin (width, hei g h t)を基準としているのは次のような理由による。 ンプリング困期ratioを決めるようにすれば同図 例えば、図13 (a) に示すピットマップ画像のよう が確保され、観益を1%以下にできる。

【0070】ステップS140では、このような均等な* [数5] V=0.30R+0.699+0.11B

(B) ::

ន ん、ステップS130の集計エリアとステップS150 [0073] 輝度はヒストグラムとして集計し、むろ

の集計エリアは別個である。なお、輝度の集計とともに

【0074】以上のような処理を画像データの各画報に **しいた行うため、ステップS160にて処理の対象国際 を移動させ、ステップS170にて金画架について終了** 棋門対象となった画教教にしてたも供軒しただく。 したと判断されるまで処理を繰り返す。

レイ32上に数示される画像評価オプション入力画面を 30 **⊩したなり、望女牧としたポートレートと國東時域と自**※ 【0075】それぞれのサンプリング手法で対象となる 回禁について輝度の集計を行ったの、ステップS180 では画像評価オプションを入力する。 図14はディスプ

4 設定である。この自動設定では先に述べたようにサンプ★ = 0, 8]と設定し、風景写真を踏択したときにはステ 「0」に沿んへなア会体包払わなり、「1」に近んへの ど被写体重視といえる。このため、図14に示す画像群 [0079] オプション磁状の残る一心の磁状版は自動 缶オプション入力画面でオプションを選択した後、ステ トレートを遊択したときにはステップS192にて「k ップS190に1回4プションに組んに1分枝し、ポー [0078]となる。そして、この重み付け係数 は、 ップS194にて「k=0、2」と数応する。

k=x_odg/(x_odg+x_ovo) 【0081】とした貸出した評価用の供料結果Dist

ても良いが、基本的にはかかる集計結果を利用する画像 50 [0082] このようにして評価用の集計結果Dist Sumを得ることにより画像の評価を行ったことにな る。むろん、この集計結果を用いてさらなる判定を行っ Sumを得る。

ソプリング対象となっているか否かを判断し、対象であ **たばステップS150にて画像ゲータをサンプリング**す * サンプリング手符を採用しらり、当該対象画繋がそのサ 2

て輝度を集計することを意味する。上述したように、本 い。このため、テレビジョンなどの場合に利用されてい をサンプリングするというのは、同画像データに基づい **東格形態においてはコンピュータ21が扱うのはRGB** 【0071】ステップS130, S150で画像データ い。輝度を求めるためにLuv表色空間に色変換するこ の路観データであり、直接には輝度の値を持っていな とも可能であるが、演算量などの問題から得策ではな るRGBから輝度を直に求める次式の変換式を利用す

[0072]

Dist_edgから、評価用の集計結果Dist_S を評価するためのヒストグラムを生成するにあたり、そ け係数kを採用すると、均等サンプリングの換計結果D ist_aveとエッジ画菜サンプリングでの集計結果 【0016】図15に示すように均容サングリングで待 **られた輝度のヒストグラムと、エッジ画菜のサンプリン** グで得られた輝度のヒストグラムとを合算して当校画像 れぞれの魚み付けを髑骸する必要がある。ここで亀み付 ti III i

[0077]

[数6]

Dist_BummkxDist_odg+ (1-k) xDist_sve

[0] に近づけるし、当数エッジ画架数が多い場合には る。エッジ画楽のサンプリング数×_edgと均等サン プリング数x_aveを使用し、ステップS196にて **★リングしたHッ沙国財教に描んや、当校Hッ沙国財教が** ポートレートと考えて重み付け係数kを「1」に近づけ 少ない場合には風景写真と考えて重み付け係数kを

[0800]

血み付け係数を

処理に応じて適宜変更すればよい。

[0083] この後、同集計結果に基づいた最適な画像 **処理を決定し、実行する。図16は、その一例としてコ** ントラストの拡大と明度の補正の画像処理を実行するた めのフローチャートを示している。

【0084】本実施形態でのコントラストを拡大するた

めの基本的な手法は、画像データに基凸いて輝度分布を 部分しか利用していないのであれば分布を拡大するとい **状め、この輝度分布が本来の格額幅(255階圏)の一**

布は図17に示すように概ね山形に変れる。 むろん、そ の位置、形状についてはさまざまである。輝度分布の幅 はこの固基をどこに決めるかによって決定されるが、単 する場合があるし、統計的に見れば限りなく「0」に近 [0085] 従って、ステップS310では上近した観 み付け係数kから供計箱果Dist Sumとしての輝 度分布のヒストグラムを作成し、ステップ 5 3 2 0 では 拡大する幅を決定する。 拡大幅を決定するにあたり、輝 度分布の固端を求めることを考える。写真画像の輝度分 とはできない。 据野部分では分布数が「0」付近で変移 に裾野が延びて分布数が「0」となる点を両端とするこ んきながら補移していくからかもる。

【0086】このため、分布範囲において吸む輝度の大

8 ろん、この割合については、適宜、変更することが可能* すように、この分布割合を0.5%に設定している。む を分布の面端とする。本実施形態においては、同図に示 きい例と小さい側からある分布割合だけ内側に経た部分

※ [教9]

[0090] ただし

a = 256/ (y max - y min

b=-a・y min あるいは266-a・y max

ຂ ★ったり、ハイツャドウ部分が聞くつぶれてしまうにと★ ■ = 2 4 m / (y m st ー y m h 換式によれば、図18に示すように、あるせまい幅を持 布の拡大を図った場合、ハイライト部分が白く抜けてし、 [0092]また、上配変換式にてY<0ならばY=0 る。ただし、再現可能な範囲を最大限に利用して輝度分 とし、Y>255ならばY=255とする。 ここにおけ る、a は傾きであり、b はオフセットといえる。この変 った輝度分布を再現可能な範囲まで広げることができ

再現可能な範囲を制限している。すなわち、再現可能な 「5」だけ残している。この結果、変換式のパラメータ ★が起こる。これを防止するため本実施形態においては、 範囲の上端と下端に拡大しない範囲として輝度値で は次式のようになる。

b=8-a·y mia &&ivit250-a·y max

適用してしまうと、非常に大きな拡大率が得られる場合 [0095] ただし、このままの拡大器 (aに対応) を も生じてしまう。例えば、タ方のような薄暮の状態では **最も明るい部分から暗い部分までのコントラストの幅が 吹くて当然であるのに、この画像についてコントラスト** を大きく拡大しようとする結果、昼間の画像のように変 換されてしまいかねない。このような変換は希望されな いので、拡大率には制限を設けておき、aが1. 5 (~ 2) 以上とはならないように制限する。これにより、辞 暮は済暮なりに表現されるようになる。なお、この場合 は輝度分布の中心位置がなるべく変化しないような処理 [0094] そして、この場合にはy<yminと、y> ymxの範囲においては変換を行わないようにする。

の値に対応して変換後の輝度Yを求めておくことも可能 である。従って、図19に示すようなテーブルとして配 【0097】このような変換テーブルを形成することが 5」でしかあり得ないため、予め輝度yが取りうる全て 換式 (Y=ay+b)を実行するのは非合理的である。 というのは、輝度yの取りうる範囲が「0」~「25

るため、ステップS330にて画像の明るさを判断し、

⊛

特開平11-120325

*である。このように、ある分布割合だけ上端と下端をカ

ットすることにより、ノイズなどに起因して生じている 白点や馬点を無視することもできる。すなわち、このよ うな処理をしなければ一点でも白点や黒点があればそれ が輝度分布の両端となってしまうので、255階間の輝

2

対する0. 5%を演算し、再現可能な輝度分布における

た輝度値を求める。以後、この上端側をymaxと呼

上端部分から 0. 5%の画架数だけ内側に入った部分を 【0087】実際の処理ではサンプリングした画衆数に 上端の輝度値及び下端の輝度値から順番に内側に向かい ながちそれぞれの分布数を累積し、0. 5%の値となっ

始的とすることにより、このようなことが無くなる。

度値であれば、多くの場合において最下端は路闕「0」

であるし、最上端は路観「255」となってしまうが、

5」としたときに、変換前の輝度ッと輝度の分布範囲の

【0088】 再現可能な輝度の範囲を「0」~「25

び、下端回を y minと呼ぶ。

最大値 y maxと最小値 y minから変換先の輝度Yを次式に

味るいて来める。

[0089]

[教8]

(6) ...

[0093]

1 (12)

【0096】ところで、輝度の変換時に、毎回、上記変

タを変更することが可能になる。しかし、このような輝 **実の範囲の拡大によってコントラストを強闘するだけで** なく、合わせて明るさを調整することも極めて有効であ ステップS320の拡大幅決定処理に該当し、画像デー

補正のためのパラメータを生成する。

し、逆に、図21にて架椽で示すように離政分布の山が [0098]倒えば、図20にて架梯で示すように輝度 分布の山が全体的に暗い側に布っている場合には弦線で 金体的に明るい側に寄っている場合には波線で示すよう 示すように全体的に明るい側に山を移動させると良い に全体的に暗い包に山外移動させると良い。 アヨymod/85

[0101] あるいは

V= (ymed/85) ** (1/2) [0102]

0. 7とする。このような限界を散けておかないと夜の 【0104】この場合、γ<0. 7となっても、γ= [0103] LTS.

ストが思い画像になりやすいため、劣皮を合わせて強國本 アニッモのd/128 るくしすぎると全体的に白っぽい画像になってコントラ

画像が昼間のようになってしまうからである。なお、明

[0107] あるいは

0108

r= (ymed/128) ** (1/2)

も、γ=1.3として暗くなり過ぎないように限界を散 [0109] とする。この場合、γ>1. 3となって

映させておけばよく、テーブルデータに対して同補正を して行っても良いし、安投後の輝度分布に対して行って も良い。ヶ相正をした協合における対応関係を図22に **ん、かかるヶ柏正の枯果も図19に示すテーブル内に反** 【0110】なお、このv相正は変換前の輝度分布に対 **示しており、y < 1 であれば上方に膨らむカーブとな** り、ッ>1であれば下方に膨らむカーブとなる。むろ けておく。

【0111】最後に、ステップS340にてコントラス◆

G=6 . G0 +b R= . R0+b B= . . B 0 + b [0114] として求めることもできる。ここで、輝度 【0115】従って、ステップS350では全国操の画 y、Yが粘調「0」~烙弧「255」であるのに対応し も同じ範囲となっており、上述した輝度ッ,Vの安徴テ てRGBの各成分値 (R0, G0, B0), (R,G,B) 像ゲータ (R0, G0, B0) について (18) ~ (2 ーブルをそのまま利用すればよいといえる。

0) 式に対応する変換テーブルを参照し、変数後の画像 データ (R, G, B) を得るという処理を偽り返すことに 【0116】ところで、この場合は輝度の集計結果を画 ト柏正と明度柏正を行うようにしているが、画像处理の 具体包はこれに限られるものかななく、絞って評価推断 像の判定に利用する評価基準として使用し、コントラス

として使用する集計内容も様々である。

いては、輝度分布におけるメジアンymedを求め、同 *【0099】各種の実験を行った結果、本実施形態にお メジアンy medが「85」未費である場合に暗い画像 と判断して以下のゝ値に対応するゝ補圧で明るくする。 [0100]

[数11]

.. (14)

※[数12]

★するなどの処理が好適である。 ... (18)

大きい場合に明るい画像と判断して以下のゞ値に対応す [0105] 一方、メジアンyme dが「128」より るヶ補圧で貼くする。

0106 [数13]

.. (18)

... (17) 女 [数14]

い値と比較し、拡大率の方が大きかったりゝ値が所定範 ト植正と明度補正が必要であるか否かを判断する。この 囲を超えていたら必要性有りと判断する。そして、必要 判断は上述した拡大率(a)とヶ値について適当なしき 性有りと判断されれば画像データの変換を行う。

(9) 式に基づく変換を行うが、同式の変換式は、RG Bの成分値との対応関係においても当てはめることがで き、変換前の成分値 (R0, G0, B0) に対して変換 [0112] 画像処理が必要であると判断された場合、

後の成分値 (K, G, B) は、 0113 ಜ

(数15)

.. (18) ... (20) [0117] 図23は彩度強調のための画像処理を実行 する場合のフローチャートを示している。

【0118】まず、画繋データがその成分要禁として彩 とが可能であるが、RGBの成分値しか持っていないた 空間への変換を行なわなければ彩度値を得ることができ 教している。ここにおいて、U権及びV権においては国 度を持っていればその彩度の値を用いて分布を求めるこ め、本来的には彩度値が直接の成分値となっている表色 ない。例えば、標準変色系としてのLuv空間において は、し軸が輝度(明度)を表し、U軸及びV軸で色相を 随の交点からの距離が影度を被すため、映質的に (Ut 2+V**2) ** (1/2) が劣敗となる。

[0119] このような異なる表色空間の間での色変換 は対応関係を記憶した色変換テーブルを参照しつつ、補 間液算を併用しなければならず、液算処理量は膨大とな

に利用して彩度の代替値Xを次のようにして求めてい * ってくる。このような状況に鑑み、本実施形態において は、画像データとして標準的なRGBの階観データを直

[0120]

|数16|

(21) 式によっても赤の単色および緑と青の混合色で※ 定割合による混合時において最大値となる。この性質か ら直に彩度を適切に表すのは可能であるものの、簡易な 「O」となり、RGBの単色あるいはいずれか二色の所 [0121] 本来的には影度は、R=G=Bの場合に X' = R+B-2×G X" = G+R-2×B X= | G+B-2 xR |

合に「0」となる。また、緑や青の単色についても最大

値の半分程度には違している。むろん、

[0122]

|数17]

※ある黄であれば最大値の彩度となり、各成分が均一の揺

.. (21)

*特開平11-120325

9

の集計結果から個別に彩度指数を導出し、上述した重みま A<B2なら ての彩度指数というものを決定する。但し、この場合も 均等サンプリングの集計結果とエッジ画繋サンプリング プリングとエッジ画報サンプリングの手法を採用しつり それぞれ別個に彩度の代替値Xについてのヒストグラム 0分布を求める。 (21) 式においては、彩度が最低値 [0] ~最大値 [511] の範囲で分布し、概略的には 0 わは、域計された形成分布に基心にたいの画像にしい [0124] ステップS410では、上述した均容サン 図24に示すような分布となる。次なるステップS42 [0123] という式にも代替可能である。

... (28) ... (27) S=-Ax (10/23) +100 2305Att S=-A× (10/48) +80 184\$A<230&6

作利な労政強闘ペラメータ Statioを、 \$ **袖観指数Sとの関係を示している。図に示すように、劣** る。しかしながら、RGBの画像データを、一旦、Lu [0128] とする。図25は、この郑段「A」と郑叚 取指数 5 は最大値「5 0」~最小値「0」の範囲で彩取 [A] が小さいときに大きく、同彩度「A」が大きいと [0129] 劣度強調指数Sに基凸いて彩度を強調する タを備えているものであれば同パラメータを変換すれば v 空間内で半径方向へ変移させなければならないといえ v 空間内の画像データに変換し、彩度強調後に再びRG にあたり、上並したように画像データが彩度のパラメー は、一旦、標準変色系であるLuv空間に変換し、Lu きに小さくなるように徐々に変化していくことになる。 よいものの、RGBの麥色空間を採用している場合に

(R, G, B) における背 (B) の成分値が最小値であ R'=B+ (R-B) × 8 rade . G'=B+ (G-B) × 8 rade [0133] として求める。この場合、劣度強励指数S = 0 のときに彩度強調パラメータ Sratio= 1 となって 彩度強調されない。次に、RGB階調データの各成分

... (22) ... (23)

★付け係数 k を利用して合算せしめた彩度指数を算出す

[0125] 彩度指数を導出するにあたり、本実施形態 数として上位の「16%」が占める範囲を求める。そし を安すものとして次式に払づいて彩度強調指数Sを決定 においては、サンプリングされた画衆教の範囲で、分布 て、この範囲内かの数低の彩度「A」がいの画像の彩度

[0126] すなわち、 ន

[0127] [数18]

3=-Ax (10/92) +50

925A<18446

... (25)

☆ざるを得ない。従って、RGBの階類データをそのまま 30 利用して彩度強調することにする。

【0130】RGB要色空間のように各成分が概略対等 =Bであればグレイでもって無劣敗となる。 涼った、R いるにすぎないと考えれば、各成分における最小値をす な関係にある色相成分の成分値であるときには、R=G 衆の色相に影響を与えることなく単に彩度を低下させて **ペイの成分値から減算し、その差分値を拡大することに** GBの各成分における最小値となる成分については各画

[0131] まず、上浜した笏阪街臨指数Sから資却に よって彩度を強調できるといえる。

[0132] [数19]

ったとすると、この彩度強闘パラメータ Sratio を使用 して吹のように変換する。 Bに戻すといった作薬が必要となり、液算量が多くならな S rado B(S+100)/100

[0134] [数20]

(30) (29)

... (31)

_	•

特開平11-120325

v 空間に色変換したのでは資質量が多大となってしまう ため、テレビジョンなどの場合に利用されているRGB 頃向がある。従って、各成分値から輝度の相当値を収算 [0137] まず、輝度を求めるために、上述したLu *を強調すると輝度も向上して全体的に明るくなるという した益分値を対象として変換を行うことにする。 から輝度を直に求める次式の変換式を利用する。 [0138] 瀬原Yは、 01391 [数21] Ξ トは、無妨取の成分にして、日本語に吸ぐ値の成分や他の 成分値から域算する手法を採用しているが、無彩度の成 分を収算するにあたっては別の複数式を採用するもので の間で一往復する二度の色変換が不要となるため、徴算 うに最小値を成算するだけの組合には果除算が伴わない 【0135】この結果、RGB数色空間とLuv空間と 中間の伝域をはかることができる。この映构形態におい わっても僻わない。ただし、(29)~(31)式のよ **【0136】 (25)~ (27) 式を採用する場合で** ので質算曲が容易となるという効果がある。

も、良好な変換が可能であるものの、この場合には影度* V=0、30R+0、69G+0、11B

.. (32)

[0141]

R' =R+AR G' =0+A0

B' = B + A B

* [0143]

【0142】とする。この加政佰△R; △G, △Bは暦

取との粒分値に基づいて枚式のように求める。すなわ

[数23]

ន

.. (38) ... (37) ... (38) AR= (R-Y) ×8 ruto AG= (G-Y) ×5 ruto AB= (B-Y) ×5 ruto

.. (39) .. (40) .. (41) ☆ [数24] # B' = R + (R - Y) x S rato
G' # G + (Q - Y) x S rato
B' # B + (B - Y) x S rato 【0144】となり、この結果、

=8 rato ((0. 30R+0. 59G+0. 119) -Y] ... (42) AY=0. 30AR+0. 59AG+0. 11AB 【0146】として変換可能となる。なお、輝度の保存 30◆【0147】 【教25】 $Y' = Y + \Delta Y$ は次式から明らかである。

[0148]また、入力がグレー (R=G=B) のとき には、類度Y=R=G=Bとなるので、加減値△R=△ **求めたち、ステップS430にて所定のしきい値と比較** (41)代に堪ん、ト台画群にし、ト画像ゲータを複数 【0149】以上のようにして残敗強闘指数 Sratio を (39) 式~ (41) 式を利用すれば輝度が保存され、 し、蛯度強調が必要な画像であるかを判断する。そし て、必要であればステップS440にて (39) 式~ G=AB=Oとなり、無妙句に句が行くこともない。 彩度を強関しても全体的に明るくなることはない。

弦数の評価地類に払ん、ト画像ゲータや評価つりり、ト れぞれの評価結果に対して所定の狙み付けを持たせて合 【0150】なって、ステップS410, S420にて

トウェアとによって画像データ評価手段を構成すること

れたエッジ度を画菜数で除算することにより、それぞれ 【0151】また、他の画像の評価基礎としてエッジ強 ることもできる。図26は、このエッジ強関処理のフロ 算出するものとし、ステップS510では対象画報を移 色させながら均等サンプリングとエッジ回鉄サンプリン グの手法で別々にエッジ度を集計する。そして、積算さ り評価基準に基づくエッジ度の平均値を算出する。すな 関処理の画像処理を前提としたエッジ度の評価に適用す ーチャートを示している。エッジ度は上述した手法にて bも、この画像のシャープ度合いSLは、画紫数をE

ಬ

算しており、これらを実行するハードウェア構成とソフ

 (I) p i x とすると、 [0152]

<u>2</u>

特開平11-120325

SL=Σ|g(x, y) |/E(!) pix xy

* [0155] 一方、画像のシャープさは感覚的なもので **わるため、 安駿的に毎られた最適なシャープ度合いの画** め、その値を理想のシャープ度合いSLoptと散定す るとともに、ステップS520においてエッジ強閥度E

像データについて同様にしてシャープ度合いSLを求

[0153] のようにして放算することができる。この 場合、SLの値が小さい画像ほどシャープネスの度合い が低い(見た目にぼけた)と判断できるし、SLの値が 大きい画像ほどシャープネスの度合いが高い(見た目に はっきりとしたもの)と判断できる。

【0154】次に、ステップS515では画像評価オブ

れぞれのサンプリング年法に基づくエッジ度を重み付け ションを入力するなどして重み付け係数トを決定し、そ 10算して合算する。

[0156]

2

enhanceを、 [教27] E eshance = k a · (8 L o p t - 8 L) · · (1/2)

※ットとwidthドットからなる場合、 [0158] [教28] ように画像データが縦横方向にそれぞれわ e i g h t ド※ [0157] として求める。ここにおいて、係数ksは 画像の大きさに基づいて変化するものであり、上述した

ka#Eln (helght, width) /A

20 してエッジ強調が必要である4判断し、必要であると判 断されればステップS540にて全画塀についてエッジ ★求めたら、ステップS530にて所定のしきい値と比較 [0161] エッジ強閥処理は、強調前の各回栞の輝度 Yに対して強闘後の輝度Y'が、 強調処理を実行する。 [0162] min (height, width) theight F は実験結果から得られたものであり、適宜変更可能であ きいものほど強調度を大きくするということで良好な紡 ットとwidthドットのうちのいずれか小さい方を指 し、Aは定数で「768」としている。むろん、これら ることはいうまでもない。ただし、基本的には画像が大 [0159] のようにして求めている。ここにおいて、

... (47) [0160] このようにしてエッジ強調政臣enhance を★ Y' = Y + E calance・ (Y − Y waterp) 果を得られている。

30 し、その周繰画薬に対して同マスクの升目における数値 ☆データにおける処理対象画案Y(x,y)の瓜み付けと ク41は、中央の「100」の値をマトリクス状の画像な [数30] Y unibarp $(x, y) = (1096) \Sigma (M \mid x Y (x+i, y+i))$ 各画森の画像データに対してアンジャープマスク処理を **施したものであり、 いいやアンジャープレスク処理に**り ナープマスク41を示している。このアンシャープマス・ いて説明する。図27は一例として5×5画業のアンシ [0163] として演算される。ここで、Yunsharpは

に対応した重み付けをして徴算するのに利用される。こ のアンシャープマスク41を利用する場合、 [0164]

... (48)

ルタをかけたものと同様の意味あいを持つ。 従って、 \$ り、サイズの異なるアンシャープマスクにおいては、そ れぞれ升目の合計値となる。また、Mijはアンジャー (x, y) は各画菜の画像データである。なお、ijに 式において、「396」とは重み付け係数の合計値であ ついてはアンツャープレスク41に対して複列と縦列の [0165] なる演算式に基づいて複算する。 (48) プマスクの升目に記載されている重み係数であり、Y 座標値で示している。

【0166】 (47) 式に基心いて資質されるエッジ強 (x, y) は往目画業に対して周緑画業の重み付けを低 このようにしてなまらせたものはいわゆるローパスフィ 関演算の意味するところは次のようになる。Yunsharp (アンジャープ)」画像データとしていることになる。 くして加算したものであるから、いわゆる「なまった

ಬ

ルタをかけたものと同様の意味あいを持つ。そして、ハ 「Y (x, y) -Yunsharp (x, y)」とは本来の全 [0167] なお、エッジ強闘が必要になる状況を考え るといわゆる画像のエッジ部分であるから、隣接する画 ようにしてもよい。このようにすれば、殆どのエッジ部 成分から低周波成分を引いたことになってハイパスフィ イパスフィルタを通過したこの高周核成分に対してエッ ジ強調度Eenhance を発算して「Y (x, n)」に加え **報との間で画像データの差が大きな場合にだけ液算する** れば同エッジ強調度Eenhanceに比例して髙周波成分を 増したことになり、エッジが強闘される結果となる。

分でない画像データ部分でアンシャープマスクの演算を 行う必要がなくなり、処理が激減する。

22

.. (49)

'n [0170] と置き換えれば、変換後のR' G'

R' 11R+de | ta G' 11G+de | ta B' 11G+de | te

[0171] [数32]

*

.. (60)

[0173] 従って、このエッジ強関処理では、ステッ **♪S510,S515にて、複数の評価基準に基づいて** 画像のエッジ度を評価しつし、それぞれの評価結果に対 して所定の重み付けを特たせて台算しており、これらを **取行するハードウェア権成とソフトウェアとによって画** 像データ評価手段を構成することになる。 [0172]のように演算可能となる。

わち、それぞれにおいて強関程度を設定しており、この [0174] なお、上述したコントラスト補正、明度補 **安成強闘、
オッジ強闘のそれぞれに
しいた、
画像処 囲を行うかを判断している。しかし、必ずしも画像処理** を行うか否かの二者択一の判断を行う必要はない。 すな ようにして散定した強闘程度で画像処理を行うようにし ても良い。

ន

[0175] 次に、上記権成からなる本映植形態の動作

21 dに取り込まれたら、処理対象画策を初期位置に設 【0176】写真画像をスキャナ11で競み込み、プリ dを饂動させ、スキャナ11に対して写真の酢み取りを **用始させる。 航み取られた画像ゲータが同才ペレーティ** ングシステム218を介して画像処理アプリケーション コンピュータ 2 1 にてオペレーティングシステム 2 1 a が稼働しているもとで、画像処理アプリケーション21 ンタ31にて印刷する場合を初定する。すると、まず、 記する。続いて、ステップS 1 1 0 にて(1)式~

りではしきい値と同エッジ度とを比較する。そして、エ であると判断し、ステップS130にて当該画菜の画像 あるか否かを判断し、対象である場合はステップS15 (3) 式に払づいてエッジ度を判定し、ステップS12 ッジ度の方が大きい場合には処理対象画策がエッジ画業 データをワークエリアに保存する。また、ステップS 1 4.0 では当数処理対象画報が均等サンプリングの対象で 0 で当数画琳の画像データを別のワークエリアに保存す

Janua (像データを複数する。

[0177]以上の処理をステップS160にて処理対 **映画琳を移動させながちステップS170にて全画寮に ひいて 東行したと 判断されるまで繰り返す。**

乍若が画像を見てポートレートであるか風景写真である のワークエリアには異なる評価基準でサンプリングされ 180では画像評価のためのオプションを入力する。 換 【0178】 全画群について東行し替えたら、それぞれ た画像データが保存されていることになり、ステップS

ය

かが判断できればいずれかを選択すればよいし、判断で きない場合や全てを自動化したい場合には自動設定を選 択する。ポートレートを選択した場合には重み付け係数 トが「0.8」となってエッジ画禁についての集計結果 に重きを置かれるし、風景写真を選択した場合には重み **付け係数 k が「0.2」となった均等にサンプリングし** た集計結果に重きを置かれ、自動設定を選択した場合に はエッジ画業の割合に応じた重み付け係数kがセットさ れる。ただし、どの場合においても重み付け係数kを使 用して複数の評価基準を採用することになり、一つだけ の評価基準にとらわれない柔軟な評価が可能となる。 2

や処理時間の面から考えると必ずしも画像データをその 布や彩度代替値分布のヒストグラムを作成することにな 【0179】本実施形態においては、ワークエリアに画 像データそのものを保存するようにしたが、メモリ容量 ものをワークエリアに保存しておく必要はない。すなわ も、最終的にはサンプリング対象の画葉について輝度分 るので、予めステップS120, S150にてヒストク ラムの情報を蓄積していくようにすればよい。

東め、ステップS320にて (12) (13) 式に基づ ップS340ではこれらのパラメータを所定のしきい値 合、預算量を減らすために最初に図19に示す輝度の変 数テーブルを作成しておき、(18)~(20)式に基 [0180] 自動的にコントラスト補正と明度補正を実 Fする場合は、重み付け係数を使用してステップS12 0, S150, S310にて輝度分布のヒストグラムを ステップS330にて(14)~(17)式に甚づいて 羽度補正のためのパラメータを決定する。そして、ステ と比較し、画像処理すべきと判断すればステップS35 0 にて上記パラメータに基づいて輝度変換する。この場 いて拡大処理のためのパラメータを決定するとともに、

示し、良好であればプリンタドライバ2 1 b を介してブ カし、所定の解像度変換を経てプリンタ31の印字ヘッ タライズデータをRGBからCMYKへ色変換し、その 後でCMYKの路鍋データから二値データへ変換してプ スプレイドライバ2 1 c を介してディスプレイ 3 2 に数 リンタ31にて印刷させる。すなわち、同プリンタドラ イバ21bはエッジ強闘されたRGBの階調データを入 :倒城に対応したラスタライズを行なうとともに、ラス 【0181】この後、画像処理された画像データをディ リンタ31へ出力する。

[0182] 以上の処理により、スキャナ11を介して ラスト補正と明度補正を施されてディスプレイ32に数. **第み込まれた写真の画像データは自動的に最適なコント** 複数の評価基準を採用してより柔軟に画像を判定し、そ の評価結果に基づいてコントラスト補正や明度補正とい 示された後、プリンタ31にて印刷される。すなわち、 う最適な画像処理を実現することができる。

の評価基準で彩度やエッジ度をサンプリングして集計す 【0183】一方、このようなコントラスト補正や明度 るとともに重み付け係数を調整して合算するようにした ため、単一の評価基準だけにとらわれない柔軟な判定を 楠正に限らず、郑度袖観やエッジ強調の場合にも、複巻 経て画像処理を実行することになる。

け係数なを決定し、この決定した重み付け係数なを使用 してステップS310にて集計結果を合算して輝度分布 【0184】このように、画像処理の中枢をなすコンピ ョンに基づいてステップS192~S196にて重み付 ヒストグラムを生成することにより、複数の評価基準を ュータ21はステップS120, S140にて異なる評 田基準で画衆の画像データをサンプリングしておくとと もに、ステップS180にて入力される画像評価オプシ 合質した総合的な集計結果に基づいて画像を評価し、ス テップS310~S350にて最適な画像処理を実行す

[図面の簡単な説明]

【図1】本発明の一実施形態にかかる画像処理装置を適 用した画像処理システムのブロック図である。

[図2] 同画像処理装置の具体的ハードウェアのプロッ

【図3】本発明の画像処理装置の他の適用例を示す概略 プロック図である。 [図4] 本発明の画像処理装置の他の適用例を示す概略 プロック図である。

[図5] 本発明の画像処理装置における画像評価処理部 分を示すフローチャートである。

[図6] 画像データの大きさと処理対象画素を移動させ [図1] 画像の変化度合いを直交座標の各成分値で要す ていく状態を示す図である

場合の説明図である。

[図8] 画像の変化度合いを縦軸方向と横軸方向の隣接 [図9] 隣接する全国薬間で画像の変化度合いを求める **画架における差分値で求める場合の説明図である。** 場合の説明図である。

特開平11-120325

(14)

|図10|| しきい値を変化させる領域を示す図である。 |図11| サンプリング周期を示す図がある。

|図12| サンブリング画紫数を示す囚である。

図13】変換元の画像とサンプリングされる画衆の関

係を示す図である。

[図14] 画像評価オプションの入力画面を示す図であ

【図16】画像評価処理の後段と画像処理部分を示すフ 【図15】個別のサンプリング結果を重み付けを変えて 台算する状況を示す図である。

[図17] 輝度分布の端部処理と端部処理にて得られる ローチャートである。

|図18| 輝度分布の拡大と再現可能な輝度の範囲を示 雑部を示す図である。 す図である。

[図19] 輝度分布を拡大する際の変換テーブルを示す

[図20] ヶ補正で明るくする概念を示す図である。 図である。

[図22] γ補正で変更される輝度の対応関係を示す図 [図21] ヶ補正で賄くする斑剣を示す図むもる。

[図23] 彩度強調する場合のフローチャートである。 [図24] 彩度分布の集計状態の概略図である。

[図25] 彩度Aと彩度強調指数Sとの関係を示す図で

【図26】 エッジ強調する場合のフローチャートであ

[図27] 5×5画祭のアンツャープレスクを示す図む

[作号の説明]

10…画像入力装置

20…画像处理装置

218…オペレーティングシステム 21…コンピュータ

216…プリンタドライバ

21c…ディスプレイドライバ

2 1 d…画像処理アプリケーション 22…ハードディスク 23…キーボード

25…フロッピーディスクドライブ 24…CD-ROMFライブ

\$

3 0 …画像出力装置

\$515 _ S520 - S540 Hッショドな音楽日 ・名様センレニング ・Hッショ祭センレニング 質なない配数でや 使用した総合エッジ属 中込造物算法 国家アール製製 [826] エッジ強調度 狭足 . 기 교 ロッジ強調 S420 自み在下降数でや 表出した数据製型 パレメーか状 別 国像データ政権 [823] 彩度強闘量? 新典智慧

特開平11-120325

(18)

[図27]

解平9-151413号にて画像の中での重要な部分を 判断する発明を提案した。同発明においては、画像のシャープな部分に本来の被写体(オブジェクト)が存在しているはずであると考え、各画業での画像の変化度合い に着目して同変化度合いの大きな画業をオブジェクトと 判断している。

[提出日] 平成9年12月3日

[手統補正告] [提出日] 平成 [手統補正1] [補正対象項目名] 0006

[相正方法] 変更

[補正內容]

[補正対象書類名] 明細書

[0006] 本出願人は、このような課題に鑑みて特