

MATHEMATISCHE MODELLE DER KONTINUUMSMECHANIK [MA2904] SoSe 2019
PROF. DR. DANIEL MATTHES matthes@ma.tum.de
BENEDIKT GRASWALD benedikt.graswald@ma.tum.de

Aufgabenblatt 5

Tutorübungen am 19./26./27. Juni

Aufgabe T5.1 (Diskret vs. Kontinuierlich)

Betrachten Sie die Funktion $f_{\lambda}(x) = \lambda x(1-x)$ mit $\lambda > 0$.

- a) Lösen Sie die Differentialgleichung $x' = f_{\lambda}(x)$ mit Anfangswert $x(0) = x_0 \in [0, 1]$, und diskutieren Sie das qualitative Verhalten der Lösungen.
- b) Betrachten Sie die Iterationsvorschrift $x_{n+1} = f_{\lambda}(x_n)$ mit Startwert $x_0 \in [0, 1]$.
 - i) Für welche $\lambda > 0$ verlässt x_n nie das Intervall [0,1], für beliebige x_0 ?
 - ii) Bestimmen Sie alle Fixpunkte der Iteration.
 - iii) Bestimmen Sie unter den Parametern aus i) diejenigen λ , für die die Iteration eine periodische Lösung mit kleinster Periode 2 besitzt.
 - iv) Bestimmen Sie für $\lambda = 4$ ein x_0 , so dass die Iteration eine periodische Lösung mit kleinster Periode 3 liefert.

Hinweis: Benutzen Sie die Transformation $x_n = \sin^2(y_n)$ aus der Vorlesung.

Aufgabe T5.2 (Planetenbahnen)

Wir betrachten die Bewegung eines Planeten der Masse M_p um eine Sonne der Masse M_s . Dazu seien $x_p(t)$ die Position des Planeten und $x_s(t)$ die Position der Sonne. Der orientierte Abstand zwischen Planet und Sonne sei $x(t) := x_p(t) - x_s(t)$.

- 1. Stellen Sie die Gleichungen zur Bewegung von Sonne und Planeten auf.
- 2. Zeigen Sie, dass sich die Bewegung des Planeten um die Sonne durch die Gleichung

$$x''(t) = -GM \frac{x(t)}{|x(t)|^3}$$

mit der Gesamtmasse $M := M_p + M_s$ und der Gravitationskonstanten G beschreiben lässt.

3. Verifizieren Sie, dass Energie und Drehimpuls Erhaltungsgrößen sind.