

Proc

duct Summary	Gree

BVDSS	RDSON	ID
100V	65mΩ	15.0A
-100V	180mΩ	-10.0A

Super Low Gate Charge

- 100% EAS Guaranteed
- ★ Green Device Available
- ★ Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

Description

The XR20G10 is the highest performance complementary N-ch and P-ch MOSFETs MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR20G10 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO252-4L Pin Configuration

Absolute Maximum Ratings

Oranah al	_ ,	Rating			
Symbol	Parameter	N-Channel	P-Channel	Units	
V _{DS}	Drain-Source Voltage	100	-100	V	
V _{GS}	Gate-Source Voltage	±20	±20	V	
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	15.0	-10.0	Α	
ID@TA=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	10.0	-5	А	
I _{DM}	Pulsed Drain Current ²	25	-18	Α	
EAS	Single Pulse Avalanche Energy ³	22.5	35.3	mJ	
I _{AS}	Avalanche Current	22.6	-26.6	Α	
P _D @T _A =25°C	Total Power Dissipation⁴	3.5	3.5	W	
T _{STG}	Storage Temperature Range	-55 to 150	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C	

Thermal Data

Symbol	Parameter		Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		70	°C/W
Rejc	Thermal Resistance Junction-Case ¹		61.5	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
Danger	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =Í A		îí	J€	mΩ
R _{DS(ON)}	Static Diam-Source On-Nesistance	V _{GS} =4.5V , I _D =HA		ΪÍ	F€Í	11152
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	FÈG	Œ	ŒĬ	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-250UA				mV/°C
l	Drain-Source Leakage Current	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Diain-Source Leakage Current	V _{DS} =100V, V _{GS} =0V , T _J =100°C			100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =Í A	Œ	FG		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		FÈH		Ω
Qg	Total Gate Charge			ŒÌÌ		
Q _{gs}	Gate-Source Charge V _{DS} =50V , V _{GS} =10V , I _D =Í A			I		nC
Q _{gd}	Gate-Drain Charge			HÈ		
T _{d(on)}	Turn-On Delay Time			ΙĖ		
Tr	Rise Time	VGS=10V, VDD=30V,		G€		no
T _{d(off)}	Turn-Off Delay Time	RG=2.5Ω, ID=Í A		Œ		ns
T _f	Fall Time			FÎ		
C _{iss}	Input Capacitance			FGG€		
Coss	Output Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		ĺН		pF
C _{rss}	Reverse Transfer Capacitance			ΙG		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			FÍ	Α
Vsp	Diode Forward Voltage ²	V _{GS} =0V , I _S =20A , T _J =250			1.2	V

 $\label{eq:final_policy} \textbf{F} \dot{\textbf{H}} \text{ he} \dot{\textbf{A}} \text{ lata} \dot{\textbf{A}} \text{ ested} \dot{\textbf{A}} \text{ by} \dot{\textbf{A}} \text{ surface} \dot{\textbf{A}} \text{ nounted} \dot{\textbf{A}} \text{ n} \dot{\textbf{A}} \hat{\textbf{A}} \dot{\textbf{A}} \text{ he} \text{ lata} \dot{\textbf{A}} \text{ ested} \dot{\textbf{A}} \text{ by} \dot{\textbf{A}} \text{ surface} \dot{\textbf{A}} \text{ local} \dot{\textbf$

GÌ he Ágata Áested Áby Ápulsed Áfpulse Ávidth Á: 300us Áfguty Árycle Á: 2%. HE he ÆAS Ágata Áshows Ánax. Árating Ár he Æst Arondition As Ar RANA; "Ö, VDD=50V, VGS=10V, L=€ÈmH. I È he Ápower Ágissipation Ás Áimited Áby Á 50°C junction Áremperature I É he Ágata Ás Áheoretically Áhe Ásame Áss Ápand Ápand Áreal Áspplications Áshould Ábe Áimited Áby Árotal Ápower Ágissipation.

P-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-100			V
Dagger	Static Drain-Source On-Resistance ² $\frac{V_{GS}=-10V \text{ , } I_{D}=-3A}{V_{GS}=-4.5V \text{ , } I_{D}=-2A}$	V_{GS} =-10 V , I_{D} =-3 A		180	220	mΩ
Rds(ON)			210	255	1117.5	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=-250uA$	-1.2		-2.5	٧
l	Drain Source Leekage Current	V_{DS} =-80V , V_{GS} =0V , T_{J} =25 $^{\circ}$ C			-1	uA
I _{DSS}	Drain-Source Leakage Current	V_{DS} =-80V , V_{GS} =0V , T_{J} =85 $^{\circ}$ C			-30	uA
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
Rg	Gate Resistance	V_{DS} =0V , V_{GS} =0V , f =1MHz		13		Ω
Qg	Total Gate Charge (-10V)			19		
Qgs	Gate-Source Charge	V _{DS} =-50V , V _{GS} =-10V , I _D =-2A		3.4		nC
Q_gd	Gate-Drain Charge			2.9		
T _{d(on)}	Turn-On Delay Time			9		
Tr	Rise Time	V_{DD} =-30 V , V_{GS} =-10 V , R_{G} =3.3 Ω ,		6		
T _{d(off)}	Turn-Off Delay Time	I _D =-1A		39		ns
T _f	Fall Time			33		
C _{iss}	Input Capacitance			1228		
Coss	Output Capacitance	V _{DS} =-30V , V _{GS} =0V , f=1MHz		41		pF
Crss	Reverse Transfer Capacitance			29		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-10.0	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V

Note

- 1. The data tested by surface mounted on a 1 inch $^2\,\text{FR-4}$ board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.5mH, I_{AS} =-14A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized V_{GS(th)} vs T_J

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs T_J

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform

Package Mechanical Data- PDFN5060-8L

Top View

Bottom View

Side View

Crombal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.000	0.035	0.039
A3	0.154	AREF.	0.006	REF.
D	4.944	5.096	0.195	0.201
E	5.974	6.126	0.235	0.241
D1	1.470	1.870	0.058	0.074
D2	0.470	0.870	0.019	0.034
E1	3.375	3.575	0.133	0.141
D3	4.824	4.976	0.190	0.196
E2	5.674	5.826	0.223	0.229
k	1.190	1.390	0.047	0.055
b	0.350	0.450	0.014	0.018
е	1.270TYP.		0.050	TYP.
L	0.559	0.711	0.022	0.028
L1	0.424	0.576	0.017	0.023
Н	0.574	0.726	0.023	0.029
θ	10°	12°	10°	12°