MTH 100: Worksheet 6

- 1. Let $F = \mathbf{Z_2}$ and consider the vector space $V = F^4$, the space of all ordered 4-tuples with entries from F.
 - (a) Suppose $v \in V$, $v \neq 0$. What can you say about the additive inverse of v?
 - (b) Consider the vectors $v_1 = (1, 0, 1, 0), V_2 = (1, 1, 0, 0)$ and $v_3 = (0, 0, 1, 1)$. Determine Span $\{v_1, v_2\}$ and Span $\{v_1, v_2, v_3\}$.
 - (c) Construct subspaces U and W of V which have 3 and 5 vectors, respectively.
 - (d) Apply what you have learned from (a), (b) and (c) to state and prove a result about the possible orders of subspaces of V. **Note:** For any finite set X, the **order** of X is the number of elements in X, notation |X|.
 - (e) Generalize your result in (d) to subspaces of F^n for any arbitrary positive integer n.
- 2. Prove the following: If $S = \{v_1, v_2, ... v_p\}$ is the set of vectors in a vector space V, then Span $S=\operatorname{Span}\{v_1, v_2, ... v_p\}$ is the smallest subspace which contains S, i.e. if W is a subspace such that $S \subseteq W$, then $S \subseteq \operatorname{Span} S \subseteq W$.
- 3. Let U and W be the subspaces of the vector space V. Then the sum of U and W is defined as $U+W=\{u+w:u\in U,w\in W\}$. Show that U+W is a subspace of V. Show further that U+W is the smallest subspace of V containing both U and W.
- 4. Let U and W be subspaces of the vector space V. Show by means of a suitable counterexample that $U \cup W$ (set theoretic union) need not be a subspace of V. Then prove that $U \cup W$ is a subspace if and only if either $U \subset W$ or $W \subset U$.(NB: This results holds whether V is finite dimensional or infinite dimensional. Hence, you can't use any propositions related to basis or dimension in the proof.)
- 5. Let W be a real vector space. Let V be a non-empty set and let $f: V \to W$ be a bijection (i.e. an injective and surjective function). For $u, v \in V$, and $c \in \mathbf{R}$, define $u \oplus v = f^{-1}(f(u) + f(v))$ and $c * v = f^{-1}(cf(v))$. Show that V is a real vector space under the operations \oplus and *. Why is it necessary for f to be a bijection?

- 6. Given the following vectors in $\mathbf{R^3}$: $\mathbf{u}=(1,3,5)$, $\mathbf{v}=(1,4,6)$, $\mathbf{w}=(2,-1,3)$ and $\mathbf{b}=(6,5,17)$
 - (a) Does $b \in W = \text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$?
 - (b) If the answer to first part is yes, express ${\bf b}$ as a linear combination of ${\bf u},{\bf v},{\bf w}$
- 7. Prove Remark related to linear dependence/independence): Any list which contains a linearly dependent list is linearly dependent.
- 8. Prove Remark related to linear dependence/independence: Any subset of linearly independent set is linearly independent.
- 9. Determine whether the given matrices in the vector space $\mathbf{R}^{2\times 2}$ are linearly dependent or linearly independent. $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
- 10. In the vector space $V=C[0,2\pi]$, determine whether the given vectors (i.e.functions) are linearly dependent or linearly independent:

$$f_1(x) = 1, f_2(x) = \sin(x), f_3(x) = \sin(2x)$$

(You must justify your answer)