17. (12 分) S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $a_n > 0$, $a_n^2 + a_n = 4S_n + 3$.

- (I) 求 $\{a_n\}$ 的通项公式;
- (II) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和.
- 18. (12分)

如图,四边形 ABCD 为菱形, $\angle ABC=120^\circ$, E,F 是平面 ABCD 同侧的两点, $BE\perp$ 平面 ABCD, $DF\perp$ 平面 ABCD,BE=2DF, $AE\perp EC$.

- (I)证明: 平面 *AEC* ⊥ 平面 *AFC*;
- (II) 求直线 AE 与直线 CF 所成的角的余弦值.

19. (12 分) 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元) 对年销售量 y (单位: t) 和年利润 z (单位:千元) 的影响,对近 8 年的年宣传费 x_i 和年销售量 y_i ($i=1,2,\cdots,8$) 数据作了初步处理,得到下面的散点图及一些统计量的值:

\overline{x}	\overline{y}	\overline{w}	$\sum_{i=1}^{8} (x_i - \overline{x})^2$	$\sum_{i=1}^{8} (w_i - \overline{w})^2$	$\sum_{i=1}^{8} (x_i - \overline{x})(y_i - \overline{y})$	$\sum_{i=1}^{n} (w_i - \overline{w})(y_i - \overline{y})$
46.6	563	6.8	289.8	1.6	1469	108.8

表中 $w_i = \sqrt{x_i}, \ \overline{w} = \frac{1}{8} \sum_{i=1}^8 w_i.$

(I) 根据散点图判断 y = a + bx 和 $y = c + d\sqrt{x}$ 哪一个适宜作为年销售量 y 关于年宣传费 x 的回归方程类型(给出判断即可,不必说明理由);

- (II) 根据(I)的判断结果及表中数据,建立y关于x的回归方程;
- (III) 已知这种产品的年利润 z 与 x、y 的关系为 z=0.2y-x,根据(II)的结果回答下列问题:
 - (i) 年宣传费 x = 49 时,年销售量及年利润的预报值是多少?
 - (ii) 年宣传费 x 为何值时, 年利润的预报值最大?

附: 对于一组数据 $(u_1, v_1), (u_2, v_2), \cdots, (u_n, v_n)$, 其回归直线 $v = \alpha + \beta u$ 的斜率和截距的最小二乘估计公式为:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (u_i - \bar{u})(v_i - \bar{v})}{\sum_{i=1}^{n} (u_i - \bar{u})^2}, \ \hat{\alpha} = \bar{v} - \hat{\beta}\bar{u}.$$

20. (12分)

在直角坐标系 xOy 中,曲线 $C: y = \frac{x^2}{4}$ 与直线 l: y = kx + a(a > 0) 交于 M,N 两点.

- (I) 当 k=0 时,分别求 C 在点 M 和 N 处的切线方程;
- (II) y 轴上是否存在点 P, 使得当 k 变动时, 总有 $\angle OPM = \angle OPN$? 说明理由.
- 21. (12分)

已知函数 $f(x) = x^3 + ax + \frac{1}{4}$, $g(x) = -\ln x$.

- (I) 当 a 为何值时, x 轴为曲线 y = f(x) 的切线;
- (II) 用 $\min\{m,n\}$ 表示 m,n 中的最小值,设函数 $h(x) = \min\{f(x),g(x)\}(x>0)$,讨论 h(x) 零点的个数.
- (二)选考题: 共 10 分。请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题计分。
- 22. (10 分) 选修 4-1: 几何证明选讲

如图, $AB \not\in \bigcirc O$ 的直径, $AC \not\in \bigcirc O$ 的切线, BC 交 $\bigcirc O$ 于点 E.

- (I) 若 D 为 AC 的中点,证明: DE 是 $\odot O$ 的切线;
- (II) 若 $OA = \sqrt{3}CE$, 求 $\angle ACB$ 的大小.

23. (10 分) 选修 4-4: 坐标系与参数方程

在直角坐标系 xOy 中,直线 $C_1: x=-2$,圆 $C_2: (x-1)^2+(y-2)^2=1$,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.

- (I) 求 C_1 , C_2 的极坐标方程;
- (II) 若直线 C_3 的极坐标方程为 $\theta = \frac{\pi}{4} (\rho \in \mathbf{R})$,设 C_2 与 C_3 的交点为 M, N,求 $\triangle C_2 M N$ 的面积.
- 24. (10 分) 选修 4-5: 不等式选讲

己知 f(x) = |x+1| - 2|x-a|, a > 0.

- (I) 当 a = 1 时,求不等式 f(x) > 1 的解集;
- (II) 若 f(x) 的图像与 x 轴围成的三角形面积大于 6,求 a 的取值范围.