

Unified Convolution Framework

Jaeyeon Won, Changwan Hong, Charith Mendis, Joel Emer, Saman Amarasinghe

Convolution

Sparsity in Convolution

Sparsity in Convolution Sparse Filter Filter Sparse Convolution Input Output **Activation** Sparse Input Filter Sparse Convolution *

Sparsity in Convolution Sparse Filter Filter Sparse Convolution Input Output Activation Sparse Input Filter Sparse Convolution * Sparse Mask Masked(Submanifold) **Sparse Convolution** \odot

Sparsity in Convolution

Filter Sparse Convolution

Activation
Sparse
Convolution

DeepSparse Engine

A sparsity-aware neural network inference engine that delivers GPU-class performance on commodity CPUs, anywhere.

Masked(Submanifold)
Sparse Convolution

	Sparse Convolutions				Formats	Backends	
Name	Filter SpConv	Activation SpConv	Submanifold SpConv	Dual SpConv	Tormats		GPU
SkimCaffe	✓	X	X	X	1	1	X
TorchSparse	X	X	√	X	1	√	1
DeepSparse	√	✓	X	X	1	1	X

- 1. Unoptimized for new sparse convolutions
- 2. Unoptimized for various formats and backends

	Sparse Convolutions				Formats	Backends	
Name	Filter SpConv	Activation SpConv	Submanifold SpConv	Dual SpConv			GPU
SkimCaffe	Specifit ✓	X	X	X	1	1	X
TorchSparse	Х	Х	✓	Х	1	√	1
DeepSparse	✓	✓	X	X	1	1	X

- 1. Unoptimized for new sparse convolutions
- 2. Unoptimized for various formats and backends

	Sparse Convolutions				Formats	Backends	
Name	Filter SpConv	Activation SpConv	Submanifold SpConv	Dual SpConv		CPU	GPU
SkimCaffe	✓	X	X	X	1	√	X
TorchSparse	X	X	√	Х	1	/	√
DeepSparse	✓	✓	X	Х	1	/	X

- 1. Unoptimized for new sparse convolutions
- 2. Unoptimized for various formats and backends

<TODO list>

- 1. Optimize on Edge Device
- 2. Optimize on new GPU
- 3. Add New Features

. . .

- 1. Unoptimized for new sparse convolutions
- 2. Unoptimized for various formats and backends

Unified Convolution Framework (UCF)

	Sparse Convolutions				Formats	Backends	
Name	Filter SpConv	Activation SpConv	Submanifold SpConv	Dual SpConv		CPU	GPU
SkimCaffe	√	Х	X	X	1	/	X
TorchSparse	X	X	✓	X	1	/	1
DeepSparse	√	✓	X	Х	1	/	X
Our Work (TACO-UCF)	✓	✓	✓	✓	> 100	✓	1

Unified Convolution Framework is a compiler that supports (1) all sparse convolutions (2) on various formats and backends

Background: Tensor Compiler

What we want: Sparse Matrix – Dense Vector Multiplication Kernel

What we want: Sparse Matrix – Dense Vector Multiplication Kernel

Sparse Matrix – Vector Multiply

What we want: Sparse Convolution Kernel

TACO's Algorithm Language does not accept "Affine Index"

What TACO can support

What TACO cannot support

 $C_i = A_i * B_i$ (Element-wise Mul)

$$C_i = A_{2i+1} * B_{3i-1}$$

Single Variable Affine Expression (SVAE)

$$C_{i,j} = A_{i,k} * B_{j,k}$$
 (MatMul)

What TACO cannot support

can support

What TACO can support

$$C_i = A_i * B_i$$
 (Element-wise Mul)

$$C_i = A_{2i+1} * B_{3i-1}$$

$$C_{i,j} = A_{i,k} * B_{j,k}$$
 (MatMul)

Single Variable Affine Expression (SVAE)

What TACO cannot support $C_i = A_{i+k} * B_k$ (1DConv)

Multiple Variable Affine Expression (MVAE)

MVAE = Stride * Base-variable + Offset

$$A_{3i+2j+5} = A_{2*j+(3i+5)}$$
Stride Base-variable Offset

Multiple Variable Affine Expression (MVAE) Our Technique Single Variable Affine Expression (SVAE) **TACO** Codegen Generated C/CUDA Code

MVAE = Stride * Base-variable + Offset

$$A_{3i+2j+5} = A_{2*j+(3i+5)}$$
Stride Base-variable Offset

```
0: For i:
1: offset = 3*i+5
2: For j: //Base-variable j
3: access A[2*j + offset]
```


MVAE = Stride * Base-variable + Offset $A_{3i+2j+5} = A_{2*j+(3i+5)}$ Stride Base-variable Offset $A_{3*i+(2j+5)}$ Stride Base-variable Offset

Sparse Convolution w/ UCF

Sparse Convolution w/ UCF

Sparse CPU/GPU Convolution Kernel

Evaluation CPU: Intel Xeon E5-2680 v3 (24 threads)

GPU: Nvidia V100

1. Importance of Format and Schedule.

- 2. Performance Comparison
 - Filter Sparse Convolution
 - Submanifold Sparse Convolution

Format and Schedule Matters.

Format and Schedule Matters.

More Structured Pattern

Format and Schedule Matters.

Memory Saving over Uncompressed(Dense) Representation

80% Sparsity	MCRS Structure (Unstructured)	MCR Structure	MC Structure	M Structure
Format1	1.08x	1.55x	1.72x	1.84x
Format2	1.17x	2.64x	3.17x	3.41x
Format3	1.03x	1.83x	4.42x	4.78x
Format4	0.99x	0.99x	0.99x	5x

Format and Schedule Matters.

Memory Saving over Uncompressed(Dense) Representation

80% Sparsity	MCRS Structure (Unstructured)	MCR Structure	MC Structure	M Structure
Format1	1.08x	1.55x	1.72x	1.84x
Format2	1.17x	2.64x	3.17x	3.41x
Format3	1.03x	1.83x	4.42x	4.78x
Format4	0.99x	0.99x	0.99x	5x

GPU: Nvidia V100

1. Importance of Format and Schedule.

- 2. Performance Comparison
 - Filter Sparse Convolution
 - Submanifold Sparse Convolution

Evaluation – Filter Sparse Convolution

80% sparsity - pruned ResNet50 CPU: 24-core Intel Xeon

Evaluation – Filter Sparse Convolution

80% sparsity - pruned ResNet50 CPU: 24-core Intel Xeon

Not all layers can benefit from pruning!

Evaluation – Filter Sparse Convolution

ResNet50 on Nvidia V100 GPU

Pruning Sparsity	80%	91%	96%	98%
cuDNN	1.0×	1.0×	1.0×	1.0×
Escort	0.78×	$1.09\times$	$1.35 \times$	$1.49 \times$
TACO-UCF	_1.08×	1.61×	2.15 ×	2.57 ×

TACO-UCF > cuDNN at 80% Sparsity

Escort > cuDNN at 91% Sparsity

GPU: Nvidia V100

1. Importance of Format and Schedule.

- 2. Performance Comparison
 - Filter Sparse Convolution
 - Submanifold Sparse Convolution

Evaluation – Submanifold Sparse Convolution

Evaluation – Submanifold Sparse Convolution

GPU: Nvidia V100

1. Importance of Format and Schedule.

2. Performance Comparison

Library Name	Filter Sparse Conv		Submanifold Sparse Conv		
	CPU	GPU	CPU	GPU	
SkimCaffe					
Escort					
MinkowskiEngine					
TorchSparse					
Ours (Normalized)					

Evaluation

CPU: Intel Xeon E5-2680 v3 (24 threads)

GPU: Nvidia V100

1. Importance of Format and Schedule.

2. Performance Comparison

Library Name	Filter Sparse Conv		Submanifold Sparse Conv	
	CPU	GPU	CPU	GPU
SkimCaffe	76%	-	-	-
Escort	-	67%	-	-
MinkowskiEngine	-	-	12%	97%
TorchSparse	-	-	< 5%	123%
Ours (Normalized)	100%	100%	100%	100%

- 1. Better Performance
- 2. Versatile convolution support
- 3. Flexible Hardware
- 4. Less lines of code!

GPU: Nvidia V100

1. Importance of Format and Schedule.

2. Performance Comparison

Library Name	Filter Sparse Conv		Submanifold Sparse Conv		Dual Submanifold Sparse Conv	
	CPU	GPU	CPU	GPU	CPU	GPU
SkimCaffe	76%	-	-	-	Details In Paper!	
Escort	-	67%	-	-		
MinkowskiEngine	-	-	12%	97%		
TorchSparse	-	-	< 5%	123%		
Ours (Normalized)	100%	100%	100%	100%		

Thanks!