Đồ họa máy tính Đường cong và bề mặt II

$Q(s_c, t) \qquad Q(s, t_c)$

Bề mặt cong

- Có thể mở rộng khái niệm đoạn cong cho các bề mặt cong.
- Các bề mặt cong được xác định bởi công thức tham số của hai biến, s và t.

$$0 \le s \le 1$$
 and $0 \le t \le 1$

- Nghĩa là, một bề mặt cong là một tập hợp các đường cong tham số
- Xấp xỉ bằng một lưới đa giác. Khi vẽ, càng giảm nhỏ bước của s và t càng cho độ chính xác cao.

Bề mặt cong Bézier

Kiểm soát hình dạng của bề mặt

- Điều khiển bởi một lưới 2D các điểm điều khiển.
- Hàm bề mặt hai tham số có dạng:

$$X(s,t) = \sum_{ij} f_i(s) f_j(t) q_{ij}$$

similarly for $Y(s,t)$ and $Z(s,t)$

 Sử dụng các hàm cơ bản phù hợp cho các bề mặt Bézier và B-Spline.

Các bề mặt tròn xoay

(a) bề mặt cầu, (b) bề mặt xuyến và (c) bề mặt parabol.

Các bề mặt bậc 2

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + gx + hy + iz + j = 0$$

Các bề mặt bậc 2

$$x^2 + y^2 - 1 = 0$$

(a) Cylinder

$$x^2 + y^2 - z^2 = 0$$

(b) Double cone

$$-x^2 + y^2 + z^2 - 1 = 0$$

(c) Hyperboloid

Các bề mặt theo qui tắc

Bề mặt trồi: Cho một đường cong f: $[a,b] \rightarrow R3$ và vectơ $v \in R3$, bề mặt tham số p: $[a,b] \times [0,1] \rightarrow R3$ được định nghĩa bởi D(U, t) = f(U) + tV được gọi là một bề mặt trồi (extrusion). Véc-tơ v được gọi là véc-tơ quét của bề mặt trồi.

Extrus ion

Các bề mặt theo qui tắc

Bề mặt lofted: Cho trước 2 đường cong f và g: [a, b] \rightarrow R3, bề mặt tham số p: [a,b] \times [0,1] \rightarrow R3 được xác định bởi p(u, v) = (1 - v)f(u) + vg(u) (8.3) được gọi là một bề mặt lofted

Lofted surface

Các bề mặt quét

Quét một tập (đường cong hoặc khối hình) dọc theo một đường cong

Các bề mặt song tuyến

Cho điểm p00, p01, p10 và p11. Định nghĩa:

$$p(u,v) = (1-v)[(1-u)p00 + u.p10] + v[(1-u)p01 + u.p11],$$

= (1-u)[(1-v)p00 + v.p01] + u[(1-v)p10 + v.p11],
= (1-u)(1-v)p00 + (1-u)v.p01 + u(1-v)p10 + u.vp11

$$p(u,v) = (1-u u)\begin{pmatrix} \mathbf{p}_{00} & \mathbf{p}_{01} \\ \mathbf{p}_{10} & \mathbf{p}_{11} \end{pmatrix}\begin{pmatrix} 1-v \\ v \end{pmatrix}.$$

Các bề mặt song tuyến

(c)

Các bề mặt Coons

Các bề mặt Coons

$$(P1p)(u,v) = (1 - u)p(0,v) + up(1,v)$$

 $(P2p)(u,v) = (1 - v)p(u,0) + vp(u,1)$

$$p(u,v) = P1p(u,v) + P2(p - P1p)(u,v)$$

$$= P1p(u,v) + P2p(u,v) - P2P1p(u,v)$$

$$p(u,v) = (1-v)p(u,0) + vp(u,1) + (1-u)p(0,v) + up(1,v)$$

$$- (1-u)(1-v)p(0,0) - (1-u)vp(0,1) - u(1-v)p(1,0) - uvp(1,1).$$

Tổng kết

- Tính liên tục của các đường cong B-spline
- Các bề mặt cong