18K41A0574

Assignment - 9
18K41A057L

Develop a simple linear regression model using momentum optimizer

1	Sample	X	4			
1	1 -	0.2	3.4	9 +2		
	2	0.4	3.8			
	4	0.6	4.6	1	16	

Do manual calculations for two iterations with first two samples.

Step-4:
$$g_m = \frac{\partial E}{\partial m} = -(3.4 - 1(0.2) - (-1)) 0.2 = -0.84$$

$$g_c = \frac{\delta E}{\delta c} = -(3.4 - (1)(0.2) - (-1)) = -4.2$$

Step-5:
$$V_m = 8V_m - \eta g_m$$

= $(0.9)(0) - (0.1)(-0.84) = 0.084$

$$Vc = 8Vc = ngc$$

= $(0.9)(0) - (-0.1)(-4.2) = -0.42$

Step-6:
$$m = m + Vtn = 1 \pm 0.084 = 10000 - 0.916$$

 $c = c + vc = -1 \pm 0.42 = -0.48 - 1.42$

Step-4:
$$3m=\frac{\delta E}{\delta m}=-(3.4-(0.646)(0.2)+2.283)(0.2)$$

$$=-1.110$$
 $9c=\frac{\delta E}{\delta c}=-(3.4-(0.646)(0.2)+2.283)$

$$=-6.553$$
Step-5: $V_{m}=(0.9)(-0.269+)-(-61(41.110))$

$$=-0.353$$
 $V_{c}=(0.9)(-0.863)-(-0.1\times(-5.53))$

$$=-1.332$$
Step-6! $m=0.6463-(0.353)=0.293$

$$c=-2.283-1.332=-3.615$$
Step-7: $sample=1+(=2)$
Step-8: $if(2>2)$
 $goto step 4$
Step 9: $goto ste$

Step-6':
$$m = 0.293 - 0.609 = -0.316$$

 $C = -3.615 - 1.928 = -5.543$
Step-7: Sample = 2+1 = 3

Step-9: iter =
$$2+1=3$$

Step-11:
$$m = -0.316$$

$$c = -5.543$$