

Figure 1: Decoder.

$$G^{[D],[L]} = I^{[D],[L]}$$
 (1a)

$$I^{[D],[L]} = Y^{[D],[L]}$$
 (1b)

$$Y^{[D],[L]} = \text{normalize}(F^{[D],[L]} + a^{[D],[L]})$$
 (1c)

$$F^{[D],[L]} = j^{[D],[L]} \tag{1d}$$

$$j^{[D],[L]} = \text{normalize}(o^{[L]} + a^{[D],[L]})$$
 (1e)

$$o^{[L]} = q^{[D],[L]}, k^{[D],[L]}, v^{[D],[L]}$$
(1f)

$$a^{[D],[L]} = \text{normalize}(O^{[L]} + p^{[D],[L]})$$
 (1g)

$$v^{[D],[L]} = a^{[D],[L]}$$
 (1h)

$$O^{[L]} = Q^{[D],[L]}, K^{[D],[L]}, V^{[D],[L]}$$
(1i)

$$Q^{[D],[L]} = p^{[D],[L]}$$
 (1j)

$$K^{[D],[L]} = p^{[D],[L]}$$
 (1k)

$$V^{[D],[L]} = p^{[D],[L]} (11)$$

$$p^{[D],[L]} = R^{[D],[L]} \tag{1m}$$

$$R^{[D],[L]} = \tag{1n}$$

$$q^{[D],[L]} = \tag{10}$$

$$k^{[D],[L]} = \tag{1p}$$