NOM:

Prénom:

ENSISA I.R.1

24 octobre 2023

Examen de mathématiques discrètes 1 (durée : 2 heures)

Exercice 1 — Soit b un entier ≥ 2 et soit $x, y \in \mathbb{N}$.

a. On suppose que l'écriture de x en base 5 est $x=(123)_5$. Donner l'écriture de x en base 10, puis en base 4 :

x =

=

 $)_{10} \qquad \qquad x = \left(\qquad \qquad \right)_4$

b. On suppose que l'écriture de y en base b est $y=(105)_b$ et l'écriture de 2y en base b-1 est $2y=(300)_{b-1}$. Déterminer la valeur de b et celle de y:

Exercice 2 — Dans cet exercice, tous les nombres sont écrits en base 10. On admet que 9 999 999 (sept "9") est divisible par 239. Donner, en expliquant mais sans calcul, la longueur de la prépériode et la longueur de la période de $\frac{73}{80.239}$, i.e. déterminer les entiers k, ℓ tels que $\frac{73}{80.239} = 0, a_1 \cdots a_k \overline{a_{k+1} \cdots a_{k+\ell}}$ avec k et ℓ minimaux.

Exercice 3 — Le but de l'exercice est de trouver tous les nombres à deux chiffres écrits en base 7 qui sont égaux au carré de la somme de leurs chiffres. Soit donc $(ax)_7$ un tel nombre (avec $a, x \in \{0, \dots, 6\}$ et $a \neq 0$).

- a. Écrire l'équation de degré 2 que doit vérifier x (on trouvera pour discriminant $\Delta = 24a + 1$).
- **b.** Trouver les trois valeurs de a pour lesquelles Δ est le carré d'un entier.
- c. Conclure.

Exercice 4 — Soit l'ensemble $E = \{1\}$. Déterminer les ensembles suivants.

$$\mathcal{P}(E) = \mathcal{P}(\mathcal{P}(E)) =$$

$$\mathcal{P}(E \times E) = \qquad \qquad \mathcal{P}(E) \times E =$$

$$\mathcal{P}(E \cap E) = \mathcal{P}(E) \cap E =$$

$$\mathcal{P}(E \cup E) = \qquad \qquad \mathcal{P}(E) \cup E =$$

Exercice 5 — Soit E un ensemble non vide, A une partie de E et soit $f: \mathcal{P}(E) \to \mathcal{P}(E) \times \mathcal{P}(E)$ l'application définie par $f(X) = (A \cup X, A \cap X)$.

Cette application est-elle injective? justifier (par une preuve ou un contre-exemple).

Cette application est-elle surjective? justifier.

Exercice 6 — Soit $n \geq 3$ un entier naturel et soit $E_n = \{1, 2, ..., n\}$ muni de sa relation d'ordre usuelle. On veut montrer que toute fonction croissante de E_n dans E_n a au moins un point fixe. Soit donc $f: E_n \to E_n$ une fonction croissante (au sens large, i.e $\forall x, y \in E_n, \ x \leq y \Rightarrow f(x) \leq f(y)$). On cherche $a \in E_n$ tel que f(a) = a.

- a. Montrer que la partie $A = \{x \in E_n : f(x) \le x\}$ a bien un minimum, noté a dans la suite.
- **b.** Montrer que $f(a) \in A$.
- c. Conclure.

Exercice 7 — Soit $E = \{1, 2, 3\}$. On munit l'ensemble $\mathcal{P}(E)$ de l'ordre défini par la relation d'inclusion. Donner une partie \mathcal{A} de $\mathcal{P}(E)$ contenant 4 éléments, n'admettant ni plus petit élément ni plus grand élément, et admettant E comme borne supérieure (plusieurs choix possibles).

$$\mathcal{A}=\Big\{$$

Exercice 8 — Soit $E = \{0, 1, 2, \dots, 9\}$. Sur $E \times E$ on considère les deux ordres usuels :

- l'ordre produit \leq_P , défini par $(x_1, x_2) \leq_P (y_1, y_2)$ si et seulement si $x_1 \leq y_1$ et $x_2 \leq y_2$;
- et l'ordre lexicographique \leq_L défini par $(x_1, x_2) \leq_L (y_1, y_2)$ si et seulement si $x_1 < y_1$ ou $(x_1 = y_1$ et $x_2 \leq y_2)$.

Soit \mathcal{A} la partie de E donnée par $\mathcal{A} = \{(3,1), (6,2), (8,4), (5,4), (2,8), (0,5), (1,3)\}.$

a. Dessiner le diagramme de Hasse de A pour l'ordre lexicographique. On placera à gauche les éléments les plus petits.

Préciser les éléments minimaux, maximaux, l'inf et le sup de \mathcal{A} pour l'ordre lexicographique.

Éléments minimaux :

Éléments maximaux :

$$\inf \mathcal{A} =$$

$$\sup \mathcal{A} =$$

b. Dessiner le diagramme de Hasse de \mathcal{A} pour l'ordre produit.

Préciser les éléments minimaux, maximaux, l'inf et le sup de \mathcal{A} pour l'ordre produit.

Éléments minimaux:

Éléments maximaux :

$$\inf \mathcal{A} =$$

$$\sup \mathcal{A} =$$

Exercice 9 — Soit $\mathcal{A} = \{a, b\}$ un alphabet à deux lettres et \mathcal{A}^* l'ensemble de tous les mots écrits avec l'alphabet \mathcal{A} . On note ε le mot vide et on considère la partie L de \mathcal{A}^* définie inductivement par $B = \{a, b\}$ et la règle d'induction $f: L \to L$ telle que f(u) = aub.

On rappelle que $L=B_0\cup\cdots\cup B_p\cup B_{p+1}\cup\cdots$ où les ensembles B_p sont définis par :

$$B_0 = B$$
 et $B_{p+1} = B_p \cup f(B_p)$.

a. Compléter :

$$B_1 = \{$$

$$B_2 = \{$$

$$B_3 = \{$$

- **b.** Donner une caractérisation des mots appartenant à L:
- c. Démontrer cette caractérisation :

Exercice 11 — Soit B une algèbre de Boole. On considère la fonction $f(a,b,c)=abc+\bar{b}$. Déterminer la forme canonique disjonctive (somme de mintermes), puis la forme canonique conjonctive (produit de maxtermes) de f.

$$f(a, b, c) =$$

$$f(a,b,c) =$$

Exercice 12 — Soit $(B, +, \cdot, -)$ une algèbre de Boole et soit $a, b \in B$. On considère l'équation d'inconnue $x \in B$

$$ax + \overline{a}b = b \tag{1}$$

a. Écrire chaque côté de cette équation sous forme normale disjonctive (somme de mintermes).

=

- **b.** En déduire les solutions de (??). On écrira ces solutions sous la forme $U\overline{x} = Vx = 0$ où U et V sont des expressions en fonction de a, b, \overline{a} et \overline{b} .
- **c.** Lorsque $B = \mathcal{P}(E)$, caractériser les solutions de (??) à l'aide d'inclusions (rappel : on a $u \cap \overline{v} = \emptyset \Leftrightarrow u \subset v$).

Exercice 13 — Soit B une algèbre de Boole et $a, b \in B$. On admet les équivalences ci-dessous

$$a\overline{b} = 0 \Leftrightarrow \overline{a} + b = 1 \Leftrightarrow ab = a \Leftrightarrow a + b = b$$

et on note dans la suite $a \leq b$ lorsque ces assertions sont vraies.

a. Montrer que la relation \leq ainsi définie est une relation d'ordre sur B.

- b. Cette relation a-t-elle un plus petit élément? un plus grand élément? si oui, lesquels?
- c. Cette relation est-elle totale? Justifier.

NOM:

Prénom:

ENSISA I.R.1

24 octobre 2023

Examen de mathématiques discrètes 1 (durée : 2 heures)

Exercice 14 — Soit b un entier ≥ 2 et soit $x, y \in \mathbb{N}$.

a. On suppose que l'écriture de x en base 6 est $x=(123)_6$. Donner l'écriture de x en base 10, puis en base 5 :

x =

= (

= ()

 $x = \left(\begin{array}{cc} \end{array}\right)_5$

b. On suppose que l'écriture de y en base b est $y=(34)_b$ et l'écriture de 3y en base b+1 est $3y=(123)_{b+1}$. Déterminer la valeur de b et celle de y:

Exercice 15 — Le but de l'exercice est de trouver tous les nombres à deux chiffres écrits en base 6 qui sont égaux au carré de la somme de leurs chiffres. Soit donc $(ax)_6$ un tel nombre (avec $a, x \in \{0, \dots, 5\}$ et $a \neq 0$).

- a. Écrire l'équation de degré 2 que doit vérifier x (on trouvera pour discriminant $\Delta = 20a + 1$).
- **b.** Trouver l'unique valeur de a pour laquelle Δ est le carré d'un entier.
- c. Conclure.

Exercice 16 — Dans cet exercice, tous les nombres sont écrits en base 10. On admet que 9 999 999 (sept "9") est divisible par 239. Donner, en expliquant mais sans calcul, la longueur de la prépériode et la longueur de la période de $\frac{23}{250.239}$, i.e. déterminer les entiers k, ℓ tels que $\frac{23}{250.239} = 0, a_1 \cdots a_k \overline{a_{k+1} \cdots a_{k+\ell}}$ avec k et ℓ minimaux.

Exercice 17 — Soit l'ensemble $E = \{a\}$. Déterminer les ensembles suivants.

$$\mathcal{P}(E) = \mathcal{P}(\mathcal{P}(E)) =$$

$$\mathcal{P}(E) \cup E = \qquad \qquad \mathcal{P}(E \cup E) =$$

$$\mathcal{P}(E) \times E = \mathcal{P}(E \times E) =$$

$$\mathcal{P}(E) \cap E = \qquad \qquad \mathcal{P}(E \cap E) =$$

Exercice 18 — Soit $n \geq 3$ un entier naturel et soit $E_n = \{1, 2, \dots, n\}$ muni de sa relation d'ordre usuelle. On veut montrer que toute fonction croissante de E_n dans E_n a au moins un point fixe. Soit donc $f: E_n \to E_n$ une fonction croissante (au sens large, i.e $\forall x, y \in E_n, \ x \leq y \Rightarrow f(x) \leq f(y)$). On cherche $a \in E_n$ tel que f(a) = a.

- a. Montrer que la partie $A = \{x \in E_n : x \leq f(x)\}$ a bien un maximum, noté a dans la suite.
- **b.** Montrer que $f(a) \in A$.
- c. Conclure.

Exercice 19 — Soit E un ensemble non vide et soit $f: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathcal{P}(E) \times \mathcal{P}(E)$ l'application définie par $f(X,Y) = (X \setminus Y, Y \setminus X)$.

Cette application est-elle injective? justifier (par une preuve ou un contre-exemple).

Cette application est-elle surjective? justifier.

Exercice 20 — Soit $E = \{a, b, c, d\}$. On munit l'ensemble $\mathcal{P}(E)$ de l'ordre défini par la relation d'inclusion. Donner une partie \mathcal{A} de $\mathcal{P}(E)$ contenant 5 éléments, n'admettant ni plus petit élément ni plus grand élément, et admettant $\{a, b, c\}$ comme borne supérieure (plusieurs choix possibles).

$$\mathcal{A}=\Big\{$$

Exercice 21 — Soit $E = \{0, 1, 2, \dots, 9\}$. Sur $E \times E$ on considère les deux ordres usuels :

- l'ordre produit \leq_P , défini par $(x_1, x_2) \leq_P (y_1, y_2)$ si et seulement si $x_1 \leq y_1$ et $x_2 \leq y_2$;
- et l'ordre lexicographique \leq_L défini par $(x_1,x_2)\leq_L (y_1,y_2)$ si et seulement si $x_1 < y_1$ ou $(x_1=y_1$ et $x_2 \leq y_2)$.

Soit \mathcal{A} la partie de E donnée par $\mathcal{A} = \{(2,2), (3,4), (1,4), (5,1), (3,8), (2,5), (7,3)\}.$

a. Dessiner le diagramme de Hasse de A pour l'ordre lexicographique. On placera à gauche les éléments les plus petits.

Préciser les éléments minimaux, maximaux, l'inf et le sup de \mathcal{A} pour l'ordre lexicographique.

Éléments minimaux :

Éléments maximaux :

$$\inf \mathcal{A} =$$

$$\sup \mathcal{A} =$$

b. Dessiner le diagramme de Hasse de \mathcal{A} pour l'ordre produit.

Préciser les éléments minimaux, maximaux, l'inf et le sup de \mathcal{A} pour l'ordre produit.

Éléments minimaux:

Éléments maximaux :

$$\inf \mathcal{A} =$$

$$\sup \mathcal{A} =$$

Exercice 22 — Soit $\mathcal{A} = \{a,b\}$ un alphabet à deux lettres et \mathcal{A}^* l'ensemble de tous les mots écrits avec l'alphabet \mathcal{A} . On note ε le mot vide et on considère la partie L de \mathcal{A}^* définie inductivement par $B = \{\varepsilon\}$ et les règles d'induction $f: L \to L$ telle que f(u) = au et $g: L \to L$ telle que g(u) = ub.

On rappelle que $L=B_0\cup\cdots\cup B_p\cup B_{p+1}\cup\cdots$ où les ensembles B_p sont définis par :

$$B_0 = B$$
 et $B_{p+1} = B_p \cup f(B_p) \cup g(B_p)$.

a. Compléter:

$$B_1 = \{$$

$$B_2 = \{$$

$$B_3 = \{$$

- **b.** Donner une caractérisation des mots appartenant à L:
- c. Démontrer cette caractérisation :

Exercice 23 — Soit $(B, +, \cdot, -)$ une algèbre de Boole et soit $a, b, c \in B$. En détaillant les calculs, simplifier les expressions suivantes :

$$(a+b)(b+c)(c+a) + ab + bc + ca =$$

$$\overline{(\overline{\overline{a}+\overline{b}})\cdot(\overline{\overline{b}+\overline{c}})\cdot(\overline{\overline{c}+\overline{a}})} =$$

Exercice 24 — Soit B une algèbre de Boole. On considère la fonction $f(a, b, c) = ab + b\overline{c}$. Déterminer la forme canonique disjonctive (somme de mintermes), puis la forme canonique conjonctive (produit de maxtermes) de f.

$$f(a,b,c) =$$

$$f(a,b,c) =$$

Exercice 25 — Soit $(B, +, \cdot, -)$ une algèbre de Boole et soit $a, b \in B$. On considère l'équation d'inconnue $x \in B$

$$x + \overline{a}b\overline{x} = b \tag{2}$$

a. Écrire chaque côté de cette équation sous forme normale disjonctive (somme de mintermes).

=

- **b.** En déduire les solutions de (??). On écrira ces solutions sous la forme $U\overline{x} = Vx = 0$ où U et V sont des expressions en fonction de a, b, \overline{a} et \overline{b} .
- **c.** Lorsque $B = \mathcal{P}(E)$, caractériser les solutions de (??) à l'aide d'inclusions (rappel : on a $u \cap \overline{v} = \emptyset \Leftrightarrow u \subset v$).

Exercice 26 — Soit B une algèbre de Boole et $a, b \in B$.

a. Démontrer les équivalences ci-dessous

$$a\overline{b} = 0 \iff \overline{a} + b = 1 \iff ab = a \iff a + b = b.$$

On note dans la suite $a \leq b$ si ces assertions sont vraies.

b. Montrer que la relation \leq ainsi définie est une relation d'ordre sur B.