2

1

> 1 2

> > 1

2

1

2

2

1

What is claimed is:

1/	A communications system comprising:						
	an encoder to en	code a digitized speech signal;					

- a communication link communicatively coupled to the encoder;
- a decoder communicatively coupled to the encoder via the communication link; and
- a short term excitation enhancement circuit in communication with the encoder and the decoder.
- 2. The system according to claim 1 where the decoder includes the short term excitation enhancement circuit.
- 3. The system according to claim 1 where the short term excitation enhancement circuit operates to improve the perceptual quality of speech data for reproduction.
- 4. The system according to claim 1 where the system employs eXtended code-excited linear prediction.
- 5. The system according to claim 1 where the system employs code-excited linear prediction.
- 6. The system according to claim 1 where the short term excitation enhancement circuit is distributed between the encoder and the decoder.
- 7. The system according to claim 1 where the short term excitation enhancement circuit places at least one pulse, in addition to at least one current excitation pulse, within a speech sub-frame.
- 8. The system according to claim 7 where the short term excitation enhancement circuit uses a weighted excitation pulse to estimate a location of a correlation peak within the speech sub-frame.

2

1

3

1

2

1

2

1

2

1

2

1

2

3

1 2

1

2

3

9.	The	system	according	to	claim	8	where	the	short	term	excitation	n
enhancement	circui	t uses th	e estimated	l lo	cation	of i	the corr	elati	on pea	ık to p	lace the	at
least one pulse	€.				•							

- 10. The system according to claim 1 where the short term excitation enhancement circuit performs short term excitation within a pitch lag.
 - W. A communidations system comprising:
- a short term excitation enhancement circuit that improves the perceptual quality of speech data for reproduction.
- 12. The system according to claim 11 where the short term excitation enhancement circuit places at least one pulse, in addition to at least one current excitation pulse, within a speech sub-frame.
- 13. The system according to claim 12 where the short term excitation enhancement circuit uses a weighted excitation pulse to estimate a location of a correlation peak within the speech sub-frame.
- 14. The system according to claim 13 where the short term excitation enhancement circuit uses the estimated location of the correlation peak to place the at least one pulse.
- 15. The system according to claim 11 where the short term excitation enhancement circuit performs short term excitation within a pitch lag.
- The system according to claim 11 where the system employs eXtended code-excited linear prediction.
- 17. The system according to claim 11 where the system employs codeexcited linear prediction.
- 18. The system according to claim 11 where the short term excitation enhancement circuit is included on a decoder of the communication system.

2

1	19. A method to perform excitation enhancement on speech data, the						
2	method comprising:						
3	analyzing a coded signal; and						
4	performing short term excitation enhancement in accordance with the						
5	analyzed coded signal.						
1	20. The method according to plaim 19 where the analyzed coded signa						
2	includes a past weighted excitation signal.						
L ~ ~	21. The method according to claim 19 where analyzing the coded signa						
2	further includes estimating a location of a correlation function within a current sub						
3	frame.						
1	22. The method according to claim 21 where estimating the location of the						
2	correlation function is based on a past weighted excitation signal.						
1	23. The method according to claim 22 further comprising adding a pulse						
2	in addition to at least one current excitation pulse, to a current sub-frame to produce						
3	an enhanced excitation signal.						
1	24. The method according to claim 23 further comprising using the						
2	enhanced excitation signal during the reconstruction of the original speech signal.						
1	25. The method according to claim 22 further comprising transmitting						
2	the weighted excitation signal from an encoder to a decoder via a communication						
3	link.						
1	The method according to claim 19 further comprising performing						
2	code-exdited linear prediction to generate the coded signal.						
1	27. The method according to claim 19 further comprising performing						

eXtended code-excited linear prediction to generate the coded signal.