Universidade Federal do Rio Grande do Sul Escola de Engenharia

ENG04010 Teoria Eletromagnética e Ondas

Trabalho Complementar Resolução de Problemas de Valor de Contorno

Pedro Lubaszewski Lima (00341810)

Turma U

Sumário

1.1	Enunciado do Problema	2
2.1	Resolução Analítica do Problema	:
	2.1.1 Determinando o Comportamento das Soluções	4
	2.1.2 Cálculo dos Coeficientes das Soluções	Ę
3.1	Resolução Numérica do Problema	7
	3.1.1 Comportamento Numérico da Solução	7
	3.1.2 Simulação em Software	7
4.1	Exemplos	

1.1 Enunciado do Problema

Com o intuito de exercitar os conhecimentos ensinados sobre Problemas de Valores de Contorno (PVC) em Eletrostática, foi proposto o seguinte exercício a ser resolvido:

Considere um cubo oco de dimensões laterais a, composto de faces condutoras ideais, conforme a figura abaixo. Suponha que exista uma pequena separação entre cada face. As faces laterais, em tom mais claro, são mantidas em um potêncial nulo. A face superior (0 < x < a, 0 < y < a, z = a) é mantida em potencial contante e uniforme V_0 .

Figura 1: Cubo Condutor de Dimensões Laterais a.

Com isso em mente, faça o que se pede:

- 1. Determine uma equação para o potencial no interior do cubo de forma analítica, utilizando o Método da Separação de Variáveis (discutido na Seção 2.1).
- 2. Esboce o potencial, na forma de um "mapa de calor", para a região central do cubo (fixando $x=\frac{a}{2}$ ou $y=\frac{a}{2}$ e variando as outras duas variáveis), utilizando resultados obtidos numericamente (discutido na Seção 3.1).

2.1 Resolução Analítica do Problema

Partindo de primeiros princípios, utilizando dos postulados da Eletrostática:

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{\rho_V}{\varepsilon_0}$$

$$\overrightarrow{\nabla} \times \overrightarrow{E} = \overrightarrow{0}$$

Com a segunda expressão, deduz-se que o campo elétrico é conservativo, ou seja,

$$\Rightarrow \exists V \mid \overrightarrow{E} = -\overrightarrow{\nabla}V$$

Logo, unindo essa equação e a primeira equação dessa seção:

$$\Rightarrow \overrightarrow{\nabla} \cdot (-\overrightarrow{\nabla} V) = \frac{\rho_V}{\varepsilon_0}$$

$$\Rightarrow \nabla^2 V = -\frac{\rho_V}{\varepsilon_0}$$
 (Equação de Poisson)

Para o caso do problema onde não há cargas onde procura-se determinar o potencial elétrico:

$$\Rightarrow \nabla^2 V = 0$$
 (Equação de Laplace)

Com isso, para modelar o comportamento de V(x,y,z) analiticamente, partir-se-á da Equação de Laplace com as Condições de Contorno fornecidas no problema:

$$\begin{cases} \nabla^2 V = 0 \\ x : V(0, y, z) = 0, \ V(a, y, z) = 0 \\ y : V(x, 0, z) = 0, \ V(x, a, z) = 0 \\ z : V(x, y, 0) = 0, \ V(x, y, a) = V_0 \end{cases}$$
(1)

A partir dela, tem-se, em coordenadas cartesianas, que:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

E, pelo Método da Separação de Variáveis, assume-se que, para coordenadas cartesianas:

$$V(x, y, z) = X(x)Y(y)Z(z)$$

Portanto, a partir daí, tem-se que:

$$\begin{split} \Rightarrow \frac{\partial^2 V}{\partial x^2} &= Y(y)Z(z)\frac{\partial^2}{\partial x^2}X(x) \\ \Rightarrow \frac{\partial^2 V}{\partial y^2} &= X(x)Z(z)\frac{\partial^2}{\partial y^2}Y(y) \\ \Rightarrow \frac{\partial^2 V}{\partial z^2} &= X(x)Y(y)\frac{\partial^2}{\partial z^2}Z(z) \\ \Rightarrow \nabla^2 V &= Y(y)Z(z)\frac{\partial^2}{\partial x^2}X(x) + X(x)Z(z)\frac{\partial^2}{\partial y^2}Y(y) + X(x)Y(y)\frac{\partial^2}{\partial z^2}Z(z) = 0 \end{split}$$

Agora, assumindo que $X(x) \neq 0$, $Y(y) \neq 0$ e $Z(z) \neq 0$, na região de interesse, pode-se dividir a equação acima por X(x)Y(y)Z(z):

$$\Rightarrow \frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} + \frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} + \frac{1}{Z(z)} \frac{\partial^2 Z(z)}{\partial z^2} = 0$$

Porém, a única forma dessa equação resultar em zero para todos os valores de X(x), Y(y) e Z(z) se dá quando cada uma das parcelas somadas na equação é uma constante. Em outras palavras:

$$\begin{cases} \frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} = -K_x^2 \\ \frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} = -K_y^2 & \Rightarrow K_x^2 + K_y^2 + K_z^2 = 0 \\ \frac{1}{Z(z)} \frac{\partial^2 Z(z)}{\partial z^2} = -K_z^2 \end{cases}$$
 (2)

Essa escolha de constantes foi feita para facilitar a dedução do resto do problema, visto que as constantes podem ser complexas.

Multiplicando cada uma das equações de 2 pelas suas respectivas funções dependentes apenas de uma coordenada e somando a constante dos dois lados das equações obtém-se o seguinte sistema de Equações Diferenciais Ordinárias (EDOs):

$$\begin{cases} \frac{d^2X(x)}{dx^2} + X(x)K_x^2 = 0\\ \frac{d^2Y(y)}{dy^2} + Y(y)K_y^2 = 0\\ \frac{d^2Z(z)}{dz^2} + Z(z)K_z^2 = 0\\ K_x^2 + K_y^2 + K_z^2 = 0 \end{cases}$$
(3)

Dadas essas EDOs, para alguma das variáveis, pode-se obter as seguintes soluções gerais:

$$S(s) = A_0 s + B_0, K_s^2 = 0 (4)$$

$$S(s) = A_1 \sin(ks) + B_1 \cos(ks), K_s^2 > 0, K_s = K \text{ real}$$
(5)

$$S(s) = A_2 \sinh(ks) + B_2 \cosh(ks), K_s^2 < 0, K_s = K \text{ imaginário}$$
(6)

Todas essas para S(s)=X(x),Y(y),Z(z). Para cada variável $x,\ y$ e z, a forma da solução geral depende das Condições de Fronteira.

Alguns PVCs em Eletrostática apresentam dependência em apenas algumas variáveis. No entanto, mesmo que este tenha alguma simetria em relação à x e y (fixando um certo x ou y, e fazendo z variar em função da variável restante deve resultar no mesmo comportamento de V(y,z) ou V(x,z)), de forma geral, precisar-se-á resolver o problema para todas as variáveis separadamente.

2.1.1 Determinando o Comportamento das Soluções

Para descobrir qual é o comportamento de cada variável desse problema, basta analisar as Condições de Fronteira para duas das variáveis dadas em 1 e, pela equação 3, obter e confirmar o comportamento da variável restante. Para a variável z:

$$z: V(x, y, 0) = 0, V(x, y, a) = V_0$$

Ou seja, observa-se um comportamento de decaímento. Quanto mais afasta-se verticalmente da placa com potencial V_0 , menor será o potencial. No entanto, esse comportamento não pode ser linear, pois esse é o caso quando há apenas duas placas paralelas, uma com potencial não nulo e a outra com potencial nulo. Esse não é o caso para este problema porque, ao decrementar a variável z, ocorre um certo amortercimento devido ao potencial nulo das placas laterais, gerando comportamento não linear em z. Isso indica, dentre as soluções gerais para as equações, que a solução nessa variável corresponde a um decaímento exponencial descrito pela equação 6. Ou seja, $K_z^2 < 0$. Por conta disso, sabe-se que precisa haver $K_x^2 > 0$ ou (inclusivo) $K_y^2 > 0$ para que o resto da equação 3 seja satisfeito. Nesse caso, como é um cubo com todas as distâncias iguais e com todos os potenciais iguais, exceto na tampa, percebe-se que tanto a variável x, quanto a variável y devem apresentar o mesmo comportamento. Isso também pode ser observado diretamente nas Condições de Fronteira dessas variáveis:

$$x: V(0, y, z) = 0, V(a, y, z) = 0$$

$$y: V(x,0,z) = 0, V(x,a,z) = 0$$

Logo, pelas constatações acima, sabe-se que $K_x^2 > 0$ e que $K_y^2 > 0$. Portanto, obtém-se as seguintes equações gerais para as variáveis do problema:

$$X(x) = A\sin(nx) + B\cos(nx), K_x^2 > 0, K_x = K \text{ real}$$
 (7)

$$Y(y) = C\sin(my) + D\cos(my), K_y^2 > 0, K_y = K \text{ real}$$
 (8)

$$Z(z) = Ee^{kz} + Fe^{-kz}, K_z^2 < 0, K_z = K \text{ imaginário}$$
 (9)

Será confirmado se essas constatações estão efetivamente corretas através da análise numérica na seção 3.1.

Portanto, agrupando 7, 8 e 9, obtém-se a seguinte solução geral para o problema original:

$$V(x, y, z) = [A\sin(nx) + B\cos(nx)][C\sin(my) + D\cos(my)][Ee^{kz} + Fe^{-kz}]$$
(10)

2.1.2 Cálculo dos Coeficientes das Soluções

Com as Condições de Fronteira, serão primeiramente calculados os coeficientes mais diretos. Ou seja, com as condições que envolvem zerar as soluções gerais:

• Usando V(0, y, z) = 0 na equação 10:

$$\Rightarrow V(0, y, z) = [A \cdot 0 + B \cdot 1][C\sin(my) + D\cos(my)][Ee^{kz} + Fe^{-kz}] = 0$$
$$\Rightarrow B[C\sin(my) + D\cos(my)][Ee^{kz} + Fe^{-kz}] = 0$$

Para uma multiplicação ser nula, precisa-se algum dos termos multiplicados seja nulo. Como sabe-se que exponenciais nunca são nulas, para essa parcela ser nula, precisar-se-ia que tanto E=0, quanto F=0. No entanto, isso resulta na solução trivial para a variável z, algo já constatado como falso. Logo, alguma das outras parcelas ou ambas deve ser nula:

$$\Rightarrow B[C\sin(my) + D\cos(my)] = 0$$

O mesmo raciocínio se aplica para as constantes C e D, visto que as funções seno e cosseno nunca são zero ao mesmo tempo, exigindo que, para essa parcela ser nula, precisa-se da solução trivial para y, algo analisado anteriormente como não verdadeiro. Portanto, só resta a conclusão que:

$$\Rightarrow B = 0$$

• Usando V(x,0,z)=0 na equação 10 sabendo que B=0:

$$\Rightarrow V(x,0,z) = A\sin(nx)[C\cdot 0 + D\cdot 1][Ee^{kz} + Fe^{-kz}] = 0$$
$$\Rightarrow D\cdot A\sin(nx)[Ee^{kz} + Fe^{-kz}] = 0$$

Como já argumentado acima, $E \neq 0$ e $F \neq 0$:

$$\Rightarrow D \cdot A \sin(nx) = 0$$

Pela mesma lógica da condição anterior, para não haver solução trivial na variável x, precisa-se que $A \neq 0$:

$$\Rightarrow D = 0$$

• Usando V(x, y, 0) = 0 na equação 10 sabendo que B = 0 e D = 0:

$$\Rightarrow V(x, y, 0) = A\sin(nx)D\sin(my)[E \cdot 1 + F \cdot 1] = 0$$
$$\Rightarrow A\sin(nx)D\sin(my)[E + F] = 0$$

Como já discutido anteriormente, para não haver solução trivial nas variáveis x e y, precisa-se que $A \neq 0$ e $C \neq 0$:

$$\Rightarrow E + F = 0$$
$$\Rightarrow E = -F$$

Assim, para facilitar, chamar-se-á K' := E = -F.

Portanto, a solução do problema agora é:

$$V(x, y, z) = A\sin(nx)D\sin(my)(K'e^{kz} - K'e^{-kz})$$
(11)

Agora, será utilizada a condição de fronteira $V(x,y,a)=V_0$ em 11. No entanto, essa condição não é trivial de ser aplicada, visto que gera-se a seguinte sequência de afirmações:

$$\Rightarrow V(x, y, a) = A\sin(nx)D\sin(my)(K'e^{ka} - K'e^{-ka}) = V_0$$

Coletando as constantes e definindo $C_{nm} = A \cdot B(K'e^{ka} - K'e^{-ka})$:

$$\Rightarrow C_{nm}\sin(nx)\sin(my) = V_0$$

A multiplicação de duas funções periódicas dessa forma nunca será constante. Portanto, será preciso extrapolar o problema e considerar que a função potencial é uma função períodica ímpar tanto em x, quanto em y, formando uma espécie tabuleiro de xadrez com largura de posição a no espaço:

Figura 2: Extrapolação do Potencial além de x=y=z=a.

- 3.1 Resolução Numérica do Problema
- 3.1.1 Comportamento Numérico da Solução
- 3.1.2 Simulação em Software

4.1 Exemplos

- $N_1 = 3;$
- $N_2 = 4;$
- $N_3 = 1$;
- $N_4 = 8;$
- $N_5 = 1;$
- $N_6 = 0$.

$$a_{11} = a'_{11}a''_{11} + a'_{12}a''_{21} a_{12} = a'_{11}a''_{12} + a'_{12}a''_{22}$$

$$a_{21} = a'_{21}a''_{11} + a'_{22}a''_{21} a_{22} = a'_{21}a''_{12} + a'_{22}a''_{22}$$
(12)