

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-012026

(43) Date of publication of application: 21.01.1994

(51)Int.CI.

G09G 3/28

5/66 HO4N

(21)Application number: 05-028336

(71)Applicant: NEC CORP

(22)Date of filing:

18.02.1993

(72)Inventor: NOBORIO MASAYUKI

SANO YOSHIO

NAKAMURA SHIYUUJI

(30)Priority

Priority number: 04 33835

Priority date: 21.02.1992

Priority country: JP

(54) METHOD FOR DRIVING PLASMA DISPLAY PANEL

(57)Abstract:

PURPOSE: To surely perform a display operation by surely generating write discharge without generating erroneous discharge and write maintaining discharge generated immediately after the write discharge in the driving of a memory type AC plasma display panel. CONSTITUTION: A subscanning pulse 6 is applied to a maintenance electrode in a scanning period so as to set potential difference between a scan electrode applying a scanning pulse 3 and the maintenance electrode at a range where the write maintaining discharge can be generated without generating the erroneous discharge. Thereby, the write discharge and the write maintaining discharge can be surely generated by the subscanning pulse 3, and global write probability on data can be heightened, and display grade can be improved.

LEGAL STATUS

[Date of request for examination]

18.02.1993

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2139129

[Date of registration]

13.11.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-12026

(43)公開日 平成6年(1994)1月21日

(51)Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

G 0 9 G 3/28

B 8729-5G

H 0 4 N 5/66

101 B 9068-5C

審査請求 有 請求項の数1(全 8 頁)

(21)出願番号

特願平5-28336

(22)出願日

平成5年(1993)2月18日

(31)優先権主張番号

特願平4-33835

(32)優先日

平 4 (1992) 2 月21日

(33)優先権主張国

日本 (JP)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 登尾 雅之

東京都港区芝五丁目7番1号日本電気株式

会社内

(72)発明者 佐野 奥志雄

東京都港区芝五丁目7番1号日本電気株式

会社内

(72)発明者 中村 修士

東京都港区芝五丁目7番1号日本電気株式

会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 プラズマディスプレイパネルの駆動方法

(57)【要約】

【目的】 メモリー型ACプラズマディスプレイパネルの駆動において、誤放電なく確実に書き込み放電、書き込み放電直後に起こる書き込み維持放電を発生させ、表示動作を確実にする。

【構成】 走査パルスを印加中の走査電極と維持電極間の電位差が、書き込み維持放電を誤放電なく発生できる範囲となるよう、副走査パルスを、走査期間中、維持電極に印加する。

【効果】 副走査パルスにより、書き込み放電、書き込み維持放電が確実に起こるようになり、総合的なデータの書き込み確率が高められ、表示品位が向上する。

- 1 維持パルスA
- 2 模特パルスB
- 3 走査パルス
- 4 消虫パルス
- 6 データパルス
- 副走査パルス
- A) 維持電極 S1, S8, …, Sm-2, Sm に印加する電圧波形
- (B) 走査管権 S2 に印加する電圧波形
- (C) 走査電極84に印加する電圧放形
- (D) 列電松D; に印加する電圧波形

【特許請求の範囲】

【請求項1】 走査パルスを線順次に印加する駆動を用いる、メモリー機能を有するドットマトリクス型プラズマディスプレイパネルの駆動方法において、

少なくとも走査パルス印加期間中の全部または一部は、 走査パルス電圧が印加されている走査電極と、維持電極 との間の電位差が、書き込み維持放電における走査電極 と維持電極との間の放電維持電圧の最低値以上であり、 かつ、書き込み維持放電における走査電極と維持電極と の間の放電開始電圧以下の範囲内となる、副走査パルス を維持電極に印加することを特徴とする、プラズマディ スプレイパネルの駆動方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、近年進展が著しいパーソナルコンピュータやオフィスワークステーション、ないしは将来の発展が期待されている壁掛けテレビ等に用いられる、いわゆるドットマトリクスタイプのメモリー型ACプラズマディスプレイパネルの駆動方法に関する。

[0002]

【従来の技術】従来のAC型プラズマディスプレイパネルとしては図5に示す構造のものがある。図5において、(A)は平面図、(B)は(A)のx-x'断面図である。このプラズマディスプレイパネルは、ガラスよりなる第1絶縁基板11、同じくガラスよりなる第2絶縁基板12、行電極13、列電極14、He,Xe 等の放電ガスが充填される放電ガス空間15、放電ガスの間を確保するとともに画素を区切る隔壁16、放電ガスの放電により発生する紫外光を可視光に変換する蛍光体17、行電極を覆う絶縁層18a、列電極を覆う絶縁層18b、絶縁体を放電より保護するMgO等よりなる保護層19で構成されている。なお、図5(A)において、参照番号20は両表で示している。蛍光体17を画素に3色に塗り分ければ、カラー表示可能なプラズマディスプレイを得ることが出来る。

【0003】次に、プラズマディスプレイパネルの電極のみに着目した図を図6に示す。図6において、21はプラズマディスプレイパネル、22は第1絶縁基板11と第2絶縁基板12を張り合わせ、内部に放電ガスを封入し気密にシールするシール部、 S_1 , S_3 , \cdots 、 S_{-2} , S_* は維持電極、 S_2 , S_4 , \cdots 、 S_{-3} , S_{-1} は走査電極、これらを合わせた S_1 , S_2 , \cdots 、 S_{-1} , S_2 , \cdots 、 S_{-1} , S_1 , S_2 , \cdots 、 S_{-1} , S_3 , S_4 , \cdots 、 S_4 , S_5 , \cdots 、 S_6 , S_6 ,

【0004】図7は、図5、図6に示したプラズマディスプレイパネルの駆動電圧波形、及び発光波形の一例を示す図である。波形(A)は、維持電極S₁,S₁,・・・・、S₁₋₂,S₁に印加する電圧波形、波形(B)

は、走査電極 S_2 に印加する電圧波形、波形(C)は、走査電極 S_4 に印加する電圧波形、波形(D)は、走査電極 S_6 に印加する電圧波形、波形(E)は、列電極 D_3 に印加する電圧波形、波形(F)は、画素 $a_{2,3}$ の発光波形、を示している。維持電極 S_1 , S_3 , \cdots , S_{3-2} , S_4 には、維持パルスA、31を印加する。また、走査電極 S_2 , S_4 , \cdots , S_{3-3} , S_4 には、これらの電極に共通した維持パルスB、32のほかに、各走査電極に独立したタイミングで走査パルス33と消去パルス34を線順次に印加する。各列電極 D_3 には、発光データがある場合は、データパルス3

【0005】図5、図6に示した構成のプラズマディスプレイパネルにおいて、走査電極と列電極の間に同じタイミングで走査パルスとデータパルスを印加して書き込み放電を行わせると、その後は隣あう維持電極と走査電極の間で、維持パルスA、31と維持パルスB、32により維持放電が持続される。このような機能はメモリー機能と呼ばれる。また、走査電極に消去パルスと呼ばれる狭いパルス幅の低電圧パルスを印加すると、維持放電を停止させることが出来る。

5を走査パルス33に同期して印加する。

【0006】また、図8~図10には、異なるプラズマディスプレイパネルの例を示す。1画素に行電極が2本入っている。このため、図10で判るように、維持電極の数は、図6の場合よりも1本少なく、 S_1 , S_3 , · · · 、 $S_{\bullet-2}$, までとなっている。このパネルの駆動は、維持電極が図6の場合より、1本少ないことを除けば、図7と全く同じ駆動波形を用いることができる。

[0007]

【発明が解決しようとする課題】しかしながら、図7のような駆動波形を用いた場合、表示データの書き込み放電を確実にするために走査パルス電圧を高めようとすると、誤放電を生じ、正常な書き込み動作を行えなくなるという問題があった。この誤放電は、電圧が高くなりすぎた走査電極と維持電極の間で生じていた。このようなことは、走査電極と維持電極間のギャップが、走査電極と列電極間のギャップより狭い場合に多くみられた。

【0008】また、上記の場合とは逆に、走査電極と維持電極間のギャップが走査電極と列電極間のギャップより広い場合、走査パルス電圧が走査側維持パルス電圧と同じ程度の低電圧ですでに書き込み放電が起こることがあった。この場合は、書き込み放電は確実に発生しているにもかかわらず、書き込み放電から維持放電への移行がうまくいかないことがあった。

【0009】本発明の目的は、プラズマディスプレイパネルの駆動装置において、上記の問題を解決し、誤放電なく、さらに確実な書き込み動作を実現することにある

[0010]

【課題を解決するための手段】本発明によれば、走査パ

30

40

50

ルスを線順次に印加する駆動を用いる、メモリー機能を 有するドットマトリクス型プラズマディスプレイパネル の駆動方法において、少なくとも走査パルス印加期間中 の全部または一部は、走査パルス電圧が印加されている 走査電極と、維持電極との間の電位差が、書き込み維持 放電における走査電極と維持電極との間の放電維持電圧 の最低値以上であり、かつ、書き込み維持放電における 走査電極と維持電極との間の放電開始電圧以下の範囲内 となる、副走査パルスを維持電極に印加することを特徴 とする、プラズマディスプレイパネルの駆動方法が得ら れる。

[0011]

【作用】本発明は、上述のような構成としたことによ り、従来技術の問題を解決した。すなわち、誤放電なく 書き込み放電を確実に維持放電に移行させるには、走査 パルスとデータパルスにより発生した書き込み放電を種 火として、書き込み放電直後に、走査電極と維持電極間 で放電が発生すること(以下書き込み維持放電と呼ぶ) が重要なことが新たに判った。 この書き込み維持放電 が確実に発生するには、書き込み放電が発生した時点 で、走査電極と維持電極の間の電位差が次の2つの条件 を満たす必要があった。1つは、該電位差が書き込み維 持放電における走査電極と維持電極との間の放電電圧の 最低値以上でないと書き込み維持放電が発生しない。こ こで言う書き込み維持放電の最低値とは、ACパルス電 圧を増大させて一般的に測定される放電維持電圧とは必 ずしも一致するものではない。すなわち、走査電極と列 電極間で書き込み放電が発生し、相当数の活性粒子が存 在するとともに、走査電極上に壁電荷の蓄積が始まって いる状態で規定されるものであり、一般的な放電維持電 圧より高くなる場合が多い。もう1つは、この電位差 が、この電位差だけで自ら放電を開始する電圧(放電開 始電圧)以下の電圧に設定されていることである。 すな わち、走査パルス電圧が印加された走査電極と維持電極 との間で、書き込み放電がないのに、書き込み維持放電 が生じてはならない。なお、ここでの放電開始電圧は、 維持パルスのみによる放電開始電圧よりも高い電圧とな る。これは、走査パルスの周期が維持パルスの周期より も非常に長いためである。

【0012】そこで、すくなくとも走査パルス電圧が走 査電極に印加されている走査期間中は、走査パルス電圧 が印加されている走査電極と維持電極との間の電位差 が、書き込み維持放電における走査電極と維持電極との 間の放電維持電圧の最低値以上であり、かつ、書き込み 維持放電における走査電極と維持電極との間の放電開始 電圧以下の範囲の電圧となるように、副走査パルスを維 持電極に印加することにした。これにより、

(1) 誤放電なく、走査パルス電圧を書き込み放電の最 適値に設定できるので、書き込み放電が確実に起こせる ようになった。

(2) 書き込み放電直後に発生する書き込み維持放電 が、誤放電なく確実に発生するようになった。

(3) 書き込み維持放電が確実に発生すると、その後の 維持放電も確実に起こるようになった。

これ等の理由により、書き込み放電の全体的な確実性が 大きく改善され、表示品位がいちじるしく向上した。以 下実施例により、詳しく説明する。

[0013]

【実施例】本発明を実施するプラズマディスプレイパネ ルとして、図5、図6に示したものを用いた。走査電極 S₂, S₄, · · · 、S₁₋₃, S₁₋₁は120本、 維持電極S1, S3, ・・・、S1-2, S1は121 本、列電極 D₁, D₂, · · · 、 D_{n-1} 、 D_n は 4 80本である。各画素のピッチは、列電極方向が0. 6 mm, 行電極方向が0.8mmである。行電極と行電極 の間の距離は0.1mm, 行電極と列電極の距離は0. 2mmである。また、図5において、11は2mm厚の ソーダガラスよりなる第1絶縁基板、12はやはり2m m厚のソーダガラスよりなる第2絶縁基板、13は銀の 厚膜電極よりなる行電極、14は銀の厚膜電極よりなる 列電極、15は全圧で200Torrで2.5%のXeを 混合したHeよりなる放電ガスが充填された放電ガス空 間、16は第1絶縁基板11と第2絶縁基板12によっ て挟み込まれ、各画素20の間を区切る厚膜プロセスで 形成した隔壁、17は放電ガスの放電により発生する紫 外光を可視光に変換するZn2SiO(:Mnなどより なる蛍光体、18 a は行電極13を覆う厚膜の透明グレ ーズよりなる絶縁層、18bは同じく列電極14を覆う やはり厚膜の透明グレーズよりなる絶縁層、19はガス 放電より絶縁層18αを保護する厚さ2μmのMgOよ りなる保護層である。

【0014】図1に本発明の第1の実施例の駆動波形を 示す。図1において、波形(A)は維持電極Si, S,, ・・・, S.2, S. に印加する電圧波形、波 形(B)は、最初の走査電極S2に印加する電圧波形、 波形 (C) は、次の走査電極S, に印加する電圧波形、 波形(D)は、列電極D,に印加する電圧波形、であ 維持電極S₁, S₃, · · · , S₁₋₂, S₁に は、維持パルスΑ、1 (パルス幅2μ秒、周期16μ 秒、電圧-160V)を印加する。また、走査電極 S_2 , S_4 , \cdots , S_{n-3} , S_{n-1} E I, E Iの電極に共通した維持パルスB、2 (パルス幅、周期、 電圧は維持パルスA、1に同じ)のほかに、各走査電極 に独立したタイミングで走査パルス3 (パルス幅4μ 秒、電圧-200V)を線順次に印加している。消去パ ルス4は、パルス幅が狭く(0.5μ秒)電圧の低い (一130V)、いわゆる細幅消去パルスを用いた。も ちろん、このような消去パルスでなく、太幅の消去パル スや、なまった波形の消去パルス、及びこれらの複合さ 50 れたパルスでも良い。列電極Djには、データパルス

立ち上がりは走査パルス3と同一時点であるが、立ち下 がりは走査パルス3より延ばし、維持パルスA、1の立

ち下がりと同一にしている。このように、副走査パルス 6を走査パルス3が印加される期間外にまで延長しても 差し支えない。

【0019】以上の実施例から明らかなように、本発明 の副走査パルスを用いることにより、走査電極と維持電 極間のギャップと、走査電極とデータ電極間のギャップ

の値に関係なく、走査電極に印加する走査パルス電圧 を、書き込み放電に最適な値に設定できるようになる。 従って、維持電極と走査電極間のギャップと、走査電極 と列電極間のギャップを、パネル設計時に自由に選択で きるようになるため、設計の自由度がたいへん大きくな

り、プラズマディスプレイパネルの生産上非常に用であ ス

【0020】また、図3に副走査パルスの異なる例を示 す。図3において(A)、(B), (C)は維持電極に 印加する副走査パルスの電圧波形、(D)は走査電極に 印加する走査パルス電圧波形である。図3に示すよう に、副走査パルス6は走査パルス3よりも幅が狭くとも 良い。図3 (A) の場合は、走査パルスと逆極性の副走 査パルスを印加する場合を示しており、副走査パルス6 が印加されている時間に、書き込み維持放電が充分に起 こるようなパルス幅に副走査パルス6を設定すれば良 い。この値は、走査パルスの電圧、繰り返しの周期、ま たはプラズマディスプレイパネルに用いるガスの圧力、 種類などにより変化する。時間差Taは書き込み放電が 開始するまでの時間であり、一般的には1μ秒以下とす る。書き込み放電は、Ta以降、走査パルスとデータパ ルスが印加されている間は発生する可能性があるので、 一般的には時間差Tbはほとんど0とする。ただし、書 き込み放電が非常に早く集束してしまう場合は、それ以 降の時間は副走査パルス6を0電圧として、時間差Tb を有限な値としても良い。

【0021】また図3(B)の場合は、時間差Ta、Tbは、維持電極と走査電極間で誤放電が起こらないような値に設定すれば良い。この値も、(A)の場合と同様プラズマディスプレイパネルの仕様によるが、一般的には1μ秒以下とすればよい。また図3(C)は、副走査パルス6のパルスエッジがなまった場合を示している。この場合は、パルス電圧がピーク電圧に達している時間でパルス幅を考えれば良い。

【0022】なお、図1から図3で述べた本発明の駆動 波形は、図8、図9に示した電極構成のプラズマディス プレイパネルにも適用できることは言うまでもない。

【0023】次に、図8~図10に示す電極構成のプラズマディスプレイパネルを用いて、副走査パルスをそれぞれの維持電極に独立に印加した場合の例を図4に示す。図4において、波形(A)は、走査電極S₂に印加する電圧波形 波形(B)は、走査電極S₂に印加する

(パルス幅は走査パルス3に同じ、電圧80V)をデー タの有無に応じて印加する。画素を発光させる場合は8 0 Vのデータパルスを印加し、発光させない場合は、0 Vのままとする。6は、本発明の副走査パルスであり、 パルス電圧は一20V,パルス幅は走査パルス3と同じ としている。また、パルスの立ち上がり位置はそれぞれ の走査パルス3と同じとした。この、副走査パルス6が ないと、一200Vの走査パルス電圧を印加した時点 で、走査電極と維持電極間で誤放電を起こしたが、副走 査パルス6を−20Vまで印加することにより、誤放電 なく走査パルス電圧を一200Vまで増加することがで きた。これにより、確実な書き込み放電を起こし、また その直後の書き込み維持放電も誤放電なく起こせるよう になった。従って、書き込み維持放電から、次の維持パ ルスA、1での維持放電にも、放電が確実に移行するよ うになった。結局、副走査パルス6を用いることによ り、書き込み放電を誤放電なく確実に行うことができ、 また書き込み放電から維持放電への放電の移行が非常に 確実に行われるようになった。

【0015】なお、副走査パルス6の電圧を余り大きくし過ぎると、走査パルス電圧が印加されている走査電極と維持電極との間の電位差が小さくなりすぎてしまい、書き込み維持放電を発生できなくなる。従って、副走査パルス6の電圧は、走査電極と維持電極の間の電位差が、書き込み維持放電を発生できる電圧以上となるようにする必要があった。

【0016】また、上記の場合とは逆に、走査電極と維持電極間のギャップが走査電極と列電極間のギャップより広い場合は、作用の項で述べた理由により、副走査パルスとして、走査パルス電圧と逆極性のパルスを維持電極に印加することが有効であった。すなわち、図2の電圧波形図((A)から(D)は図1に同じ)に示すように、すくなくとも走査パルス3が走査電極に次々と印加されている期間中は、走査パルス3が印加されている走査電極と維持電極との間の電位差が書き込み維持放電を発生できるように、走査パルス3と逆極性の副走査パルス6を維持電極に印加した。すなわち、図1の実施例と同じく、走査パルス3が印加されている走査電極と維持電極間の電圧を放電維持電圧の範囲内に収めるようにした。これにより、書き込み放電から書き込み維持放電への移行が確実に行われるようになった。

【0017】なお、本発明では、上記のように簡単のため走査電極と維持電極間のギャップ及び列電極間のギャップの大小として、現象を記述しているが、本来的に意味するところは、これらのギャップにより規定される放電開始電圧、放電維持電圧などの特性電圧の大小関係にある。特性電圧は構造、放電ガスなどの要因にも影響されるため、ギャップの大小と必ずしも1:1に対応するものではないことを申し添えておく。

【0018】また、図2においては、副走査パルス6の 50 する電圧波形、波形 (B) は、走査電極S,に印加する

電圧波形、波形(C)は、維持電極 S_1 に印加する電圧 波形、波形(D)は、維持電極 S_1 に印加する電圧波形を示している。図4から判るように、維持電極 S_1 , S_1 , \cdots , S_{-2} には、維持パルスA、1を共通に印加するとともに、各維持電極に独立して副走査パルス6を線順次に印加している。また、走査電極 S_2 , S_4 , \cdots , S_{-3} , S_{-1} には、これらの電極に共通した維持パルスB、2のほかに、各走査電極に独立したタイミングで走査パルス3と消去パルス4(図示せず)を 10線順次に印加している。

【0024】なお、以上の実施例では、図5、図6、または図8~図10に示したAC面放電型メモリーパネルを駆動した場合について述べたが、本発明は、これらに限らず、どの様な形式のACメモリー型プラズマディスプレイパネルにも適用できることはいうまでもない。

[0025]

【発明の効果】以上述べたように、本発明によれば、走査期間において、維持電極に副走査パルスを印加することにより、確実な書き込み放電が発生する範囲に走査パ 20 ルス電圧を自由に設定できるようになる。さらに、副走査パルスにより、書き込み放電とほぼ同時に、書き込み維持放電が確実に起こるようになる。

【0026】従って書き込み放電が確実に発生するとと もに、書き込み放電から書き込み維持放電、その後の維 持放電への移行が確実となり、総合的なデータの書き込 み確率が高められ、表示品位が向上する。

【0027】また、本発明を用いることにより、維持電極と走査電極間のギャップと、走査電極と列電極間のギャップを、パネル設計時に自由に選択できるようになる 30 ため、設計の自由度がたいへん大きくなり、プラズマディスプレイパネルの生産上非常に有用である。

【図面の簡単な説明】

【図1】本発明の駆動方法の第1の実施例を示す図である。

【図2】本発明の駆動方法の第2の実施例を示す図であ ス

【図3】本発明の駆動方法に用いることができる副走査*

8

*パルスの例を示す図である。

【図4】本発明の駆動方法の第3の実施例を示す図である。

【図5】プラズマディスプレイパネルの平面図と断面図である。

【図6】電極配置に注目したプラズマディスプレイパネルの構成図である。

【図7】プラズマディスプレイパネルの駆動電圧波形、 及び発光波形を示す図である。

0 【図8】プラズマディスプレイパネルの異なる例の平面 図である。

【図9】プラズマディスプレイパネルの異なる例の断面 図である。

【図10】図8,図9のプラズマディスプレイパネルの 電極配置に注目した構成図である。

【符号の説明】

1,31	維持パルスA
2,32	維持パルスB
3, 33	走査パルス
4、34	消去パルス
5、35	データパルス
6	副走査パルス
1 1	第1 絶縁基板
1 2	第2絶縁基板
1 3	行電極
1 4	列電極
1 5	放電ガス空間
1 6	隔壁
1 7	蛍光体
18a, 18b	絶縁層
1 9	保護層
2 0	画素
2 1	プラズマディスプレイパネル
2 2	シール部
D_1 , D_2 , ••	・、D _{n-1} 、D _n 列電極
S_1, S_2, \cdots	• 、S ₁₋₁ 、S ₁
S_1, S_3, \cdots	• 、S _{•-2} 、S _• 維持電極
	1

S₂、S₄,・・・、S₁₋₃、S₁₋₁ 走査電極

神間

【図1】

【図2】

- 1 維持パルスA
- 2 維持パルスB
- 8 走査パルス .
- 4 消去パルス
- 6 データパルス
- 8 副走査パルス
- (A) 維持電磁 S1. S3, ···, Sm-2, Sm に印加する電圧波形
- (B) 走査電板82に印加する電圧放形
- (C) 歩査電信 S4 に印加する電圧放影
- (D) 列電極 D」に印加する電圧波形

- 植持パルスA
- 2 維持パルスB
- 8 走査パルス
- 4 消去パルス
- 6 ゲータパルス
- 8 副走査パルス

(A) 0 (B) 0 (C) 0 (D) 0

【図3】

- 8 走査パルス
- 8 副走査パルス

Te, Tb 時間差

- (A)~(C) 維持電保に印加する副走査パルス の電圧波形
 - (D) 走査管値に印加する走査パルス の電圧波形

(F) 画素 a21 の発光波形

【図9】

【図10】

Dı ~ Dn 列電框

S1,S3,…,Sm-2 維持電極 S2,S4,…,Sm-1 走査電極