My title*

My subtitle if needed

Kevin Roe

December 2, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Intr	oductio	on Control of the Con	2
2	Dat	a		3
	2.1	Overv	iew	3
	2.2	Measu	rement	4
	2.3		me variables	4
	2.4	Predic	etor variables	6
		2.4.1	Hour	6
		2.4.2	Type of Crash	7
		2.4.3	Automobile	7
		2.4.4	Motorcycle	8
		2.4.5	Passenger	8
		2.4.6	Pedestrian	8
		2.4.7	Police Division	9
		2.4.8	Year	9
		2.4.9	Relevant Interaction Terms	14
3	Mod	del		14
	3.1	Model	Set-Up and Justification	14
	3.2		Assumptions and Limitations	
1	Posi	ulte		16

^{*}Code and data are available at: https://github.com/Kanghyunroe/traffic_collisions/tree/main.

5	Discussion	18
	5.1 First discussion point	18
	5.2 Second discussion point	18
	5.3 Implications	18
	5.4 Weaknesses and Next Steps	18
Αļ	ppendix	19
Α	Additional data details	19
В	Model details	19
	B.1 Posterior predictive check	19
	B.2 Diagnostics	19
Re	eferences	20

1 Introduction

Automobile fatalities are a leading cause of death worldwide, posing a public health and safety concern for urban cities. For example, in 2024, thirty people have died on Toronto's roadways so far, which is a 20% increase from last year (insert citation, CBC). However, new headlines, such as CBCs, highlight that Motor Vehicle Collisions (MVC) tend to either be generalized as a summary statistic or typically fatal events are over analyzed to the extent that environmental factors surrounding the crash are ignored (CLARIFY). Moreover, general environmental factors such as the time of the crash or if a bicycle was involved in the accident are important to understand what increases the likelihood of a fatality occurring in an MVC. The use of statistical modeling on increasingly available vehicle collision data presents an opportunity to develop a nuanced understanding of what factors increases the likelihood for a fatality to occur in an accident. This paper uses the Toronto Police Service's Annual Statistical Report from Open Data Toronto to analyze what factors are most responsible in predicting if a fatality occurs in a MVC.

The estimand of interest is the log-adjusted probability of a fatality occurring in a MVC. Specifically, we aim to quanitfy how specific environmental factors increase or decrease the likelihood of a fatality. By applying inferential analysis through Bayesian linear models, we assess not only the magnitude of these effects, but their underlying uncertainties (EDIT).

what was found (FINISH PARAGRAPH)

The paper is not only important from a public health perspective, but the paper also has policy development implications. Road safety and reducing fatal MVCs are a critical agenda item of any municipal government. The paper informs what factors increase the likelihood of death in an MVC, which informs policymakers' focus for relevant policy design.

The remainder of this paper is structured as follows: Section 2 describes the dataset and methodology and ?@sec-model exhibits the use of inferential models. ?@sec-results presents the results of the analysis, detailing the observed relationships between likelihood of death and various circumstantial factors. ?@sec-discussion discusses the broader implications and limitations of our findings.@sec-appendix presents a detailed idealized methodology to improve data collection, and additional model summary and diagnostic information.

2 Data

2.1 Overview

This dataset, "Police Annual Statistical Report - Traffic Collisions", was published and refreshed on October 21st, 2024, by the Toronto Police Service [insert citation]. The Toronto Police Service publishes various datasets on public safety and crime to inform the public about safety issues (annual_statistics_report?). Data on traffic collisions is included in the Toronto Police Service's Annual Statistical Report, which also covers reported crimes, search of persons, firearms, and the Police Service's budget (annual_statistics_report?). The data is collected using historical Motor Vehicle Collisions and classifies them into the following categories: * Property Damage (PD) Collisions * Fail to Remain (FTR) Collisions, or commonly known as hit-and-run accidents * Injury Collisions * Fatalities

Following the Municipal Freedom of Information and Protection of Privacy Act, the Toronto Police Service ensures to protect the privacy of individuals involved in the reported crimes when publishing the data. The dataset is updated annually, is open data, and can be used if an attribution statement ?@sec-appendix-attribution and is properly cited (tphlicense?). Each entry in the dataset represents a singular vehicular accident and records all MVCs from 2015.

There is an alternative dataset from the Toronto Police Service called "Motor Vehicle Collisions involving Killed or Seriously Injured Persons" (CITE). Unlike the alternative dataset, this paper's dataset focuses on all collisions, instead of only focusing on ones where someone was either killed or seriously injured. While the alternative dataset has more explanatory variables simply because more data is collected when someone dies or is seriously injured, this paper's aims to generalize if a fatality is more likely to occur based on the general circumstances surrounding a crash, such as the time of day or if property damage occurred. Thus, we ended up not going with the alternative dataset for this paper, but there are variables in the alternative dataset that may motivate future research on this subject. (EDIT TO MAKE MORE CLEAR)

The paper uses the R programming language (R Core Team 2023) to analyze the dataset. The tidyverse package was used to simulate the dataset. Also, the tidyverse (**citetidyverse?**), arrow [CITE] and opendatatoronto (**citeopendatatoronto?**) packages were used to download the Victims of Crime dataset. Then, the tidyverse (**citetidyverse?**) package was used to clean

the raw dataset and generate tests. The testthat package [CITE THIS] was used to create tests for our cleaned dataset. Rstanarm [CITE], Arrow [CITE], and bayestestR [CITE] were used to create and test the model. Finally, ggplot2 (citeggplot2?), tidyverse (citetidyverse?), knitr (citeknitr?) and scales (citescales?) packages were used to create the tables and graphs to display the results. [edit this paragraph]

2.2 Measurement

Transforming a real-life Motor Vehicle Collision to an entry in the dataset is a well-documented process by the Toronto Police Service. For insurance purposes, the Toronto Police Service requires drivers to fill out the Motor Vehicle Collision Report for any collisions that occur in Toronto (CITE). Drivers required to fill out a motor vehicle collision report if the combined damage is more than \$2000, if someone is injured, if a criminal act such as a DUI occurs, or if a pedestrian is involved in the accident (CITE). These reports are retained for six years by the Toronto Police Service, with the exception of collisions resulting in a fatality, which are retained indefinitely. The form ensures documentation of collision characteristics, location, road condition, and the extent of damages, systematically recording the characteristics of each crash for further criminal investigation and data analysis.

For every collision, basic facts such as the location, time, and date of the collision is recorded through the Motor Vehicle Collision Report. Majority if not all the factors recorded in the dataset are all objective measurements regarding the specific details such as if a motorcycle was involved in the collision or if the collision resulted in property damage. All of these details are recorded in the Motor Vehicle Collision Report for all vehicular collisions and are entered into the dataset. However, while the Motor Vehicle Collision Report logs characteristics such as environmental conditions, alcohol involvement, or fatigue, the data set does not include them due to inconsistent data measurement techniques. Moreover, personal details such as the driver's age are not included to protect the driver's privacy.

2.3 Outcome variables

The main outcome variable records the number of fatalities for each MVC. According to the dataset, a fatal collision occurs when an individual's injuries from a collision results in a fatality within 30 days. Fatal collisions excludes occurences on private property, ones related to suddend eath prior to collision, such as suicide, and where the individuals has died more than 30 days after the collision. However, because we are more interested in predicting the probability that a fatality occurs than the number of fatalities, we transformed the variable that distinguishes collisions between if the collision resulted in any fatalities and those without fatalities. In the raw dataset, if there were no fatalities, the entry was recorded as NA, but if there were fatalities, then the number of fatalities were recorded. However, we transformed the dataset that all if a fatality occurred then fatalities indicates 1 and if there were no fatalities

then the fatalities column records a '0'. The distribution of the raw dataset is shown in Figure 1.

Figure 1: Distribution of Fatalities in the Raw Dataset

However, after the transformation, the outcome variable now takes on binary values and the distribution and summary statistics are shown below in **?@fig-fatalites-cleaned** and **?@tbl-fatalites**:

Figure 2: Distribution of Fatalities in the Cleaned Dataset

Table 1: Number of unique high-quality polling organizations

fatalities	Fatalities
------------	------------

0	697852
1	606

2.4 Predictor variables

2.4.1 Hour

The hour variable indicates the time at which the accident occurred using the 24 hour clock, such that a value of 0 represents 12 AM and 23 represents 11 PM. The distribution and summary statistics of the hour variable can be found in Figure 3 and Table 2, respectively. Figure 3 highlights that the majority of accidents happen from 9 AM to 7 PM, which is reasonable as these times include rush hour, where the greatest number of people are driving at the same time for work or school. However, Table 2 also shows that a greater number of fatalities occur at night, which we hypothesize is due to lack of vision or reckless driving.

Table 2: The Summary of the Hour

hour	No Fatalities	Fatality Occurred	Total
0	8067	25	8092
1	7116	15	7131
2	6734	16	6750
3	6630	21	6651
4	5142	11	5153
5	6623	10	6633
6	15083	28	15111
7	23066	10	23076
8	40638	16	40654
9	37153	30	37183
10	35278	27	35305
11	41358	26	41384
12	45955	33	45988
13	45393	25	45418
14	49293	30	49323
15	57762	24	57786
16	55857	27	55884
17	58001	33	58034
18	48357	43	48400
19	33556	34	33590
20	23794	40	23834
21	19414	26	19440

22	15555	29	15584
23	12027	27	12054

2.4.2 Type of Crash

Beyond identifying fatalities, the Motor Vehicle Collision Reports notes if the crash was one of three types: an injury collision, a fail to remain collision, and a property damage collision. A personal injury collision occur when an individual involved in a MVC suffers personal injuries. Fail to remain collisions are recorded when an individual involved in a collision fail to stop and provide their information at the scene of a collision. Property damage collisions occur when an individual has been damaged in a collision or the value of damages is less than \$\2000 for all parties. The distribution and summary statistics of these three variables can be found in Figure 4 and Table 3. The results in Table 3 show that crashes that classify under these three categories usually do not lead to death.

Table 3: Breakdown of MVCs Into the Different Categories, Broken Down by Fatalities

collision_type	No Fatalities	Fatality Occurred	Total
Fail to Remain Collision	112404	0	112404
Injury Collision	94326	2	94328
Not Applicable	0	604	604
Property Damage Collision	491122	0	491122
Total	697852	606	698458

2.4.3 Automobile

The automobile variable is a indicator variable to show if a collision involved a person in an automobile. In the raw dataset, the variable was labeled as Yes, No, None or N/R (Not Recorded). We labelled Not Recorded as NA because there is no reliable way of characterizing the variable. Further, we labeled No and None as 0 and Yes as 1, where 1 represents that an automobile was involved and 0 represents that an automobile was not, such as a crash between two motorcycles. We also employed this method for the following variables: motorcycle, passenger, and pedestrian.

Figure 5 and Table 4 shows that 588 of 608 deaths happened when an automobile was involved, which is not surprising given majority of vehicles on the road are cars.

Table 4: Summary of the Automobile Variable

automobile	No Fatalities	Fatality Occurred	Total
0	3337	18	3355

2.4.4 Motorcycle

The motorcycle variable is another indicator variable to show that whether the collision involved a person in a motorcycle. 1 represents that a motorcycle was involved and 0 represents that a motorcycle was not involved in the crash. Figure 6 and Table 5 shows the distribution and summary of the motorcycle variable, respectively. Table 5 shows that only 75 vehicular deaths involved a motorcycle.

Table 5: Summary of the Automobile Variable

motorcycle	No Fatalities	Fatality Occurred	Total
0	693656	331	694187
1	4196	75	4271

2.4.5 Passenger

The passenger variable is an indicator variable that highlights if the collision involved a passenger in a motor vehicle. 1 represents there was a passenger and 0 shows that there was not a passenger involved. Figure 7 and Table 6 shows the distribution and summary of the passenger variable, respectively. Table 6 shows that 177 vehicular deaths involved a passenger.

Table 6: Summary of the Passenger Variable

passenger	No Fatalities	Fatality Occurred	Total
0	644546	429	644975
1	53306	177	53483

2.4.6 Pedestrian

The pedestrian variable is an indicator variable that highlights if the collision involved a pedestrian. 1 represents a pedestrian was involved and 0 shows that there was no pedestrian. Figure 8 and Table 7 shows the distribution and summary of the pedestrian variable, respectively. Table 7 highlights that of 606 deaths, 342 deaths involved pedestrians, which is a significant percentage.

Table 7: Summary of the Pedestrian Variable

pedestrian	No Fatalities	Fatality Occurred	Total
0	680640 17212	264 342	680904 17554
1	1 (21 2	342	17002

2.4.7 Police Division

The Police Division variable represents the police division where the collision occured. The paper plans to include the police division variable as a general proxy for location and account if certain areas are more susceptible to crashes than others. Figure 9 and Table 8 shows the distirbution and breakdown of MVCs among police departments. Based on the Table 8, there seems to be no discernible pattern but D41 and D42 have the highest number of vehicular fatalities at 63 and 66, respectively.

Table 8: Summary of the Police Divison Variable

police_division	No Fatalities	Fatality Occurred	Total
D11	25230	24	25254
D12	23366	17	23383
D13	22295	28	22323
D14	37837	30	37867
D22	37436	55	37491
D23	34032	39	34071
D31	36370	39	36409
D32	56106	49	56155
D33	46169	39	46208
D41	47789	63	47852
D42	55916	66	55982
D43	37598	42	37640
D51	25877	35	25912
D52	31076	15	31091
D53	39128	34	39162
D55	43287	30	43317
NSA	98340	1	98341

2.4.8 Year

The year variable shows the number of MVCs per year. Figure 10 and Table 9 shows the number of MVCs over time. Looking at Figure 10 and Table 9 there is a noticeable dip in MVCs in 2020 and 2021 due to COVID-19 but MVC levels have not hit their 2019 peaks most

Figure 3: Distribution of the Hour Variable

Figure 4: Breakdown of Each Collision Type by Fatalities

Figure 5: Distribution of the Automobile Variable

Figure 6: Distribution of the Automobile Variable

Figure 7: Distribution of the Passenger Variable

Figure 8: Distribution of the Pedestrian Variable

Figure 9: Distribution of the Police Division

likely due to people in Toronto not driving as much as before. However, idea of fewer drivers is a hypothesis and needs further research.

Figure 10: Number of MVCs per Year

Table 9: Summary of Number of MVCs by Year

year	No Fatalities	Fatality Occurred	Total
2014	64228	51	64279
2015	66915	65	66980
2016	69219	76	69295
2017	73245	62	73307

2018	77034	66	77100
2019	81410	63	81473
2020	44511	40	44551
2021	43589	58	43647
2022	58950	48	58998
2023	67270	45	67315
2024	51481	32	51513

2.4.9 Relevant Interaction Terms

Why you have interaction between hour and all these things

3 Model

3.1 Model Set-Up and Justification

For our analysis, we employ a Bayesian Logistic Linear Model to forecast the likelihood of a fatality in a car crash. This approach allows us to capture known variations between years, police divisions, and the characteristics of a crash, such as the involvement of a motorcycle or if someone was injured.

The first step in the process involved selecting a reliable dataset for model development. We utilized high-quality vehicle collision data gathered by the Toronto Police Service. We first excluded all cases in our predictor variables that had null values. In addition, we transformed fatalities into a binary response variable. Let Y_i represent the fatality outcome for observation i, where $Y_i = 1$ indicates a fatality occurred and $Y_i = 0$ indicates no fatality. The probability of fatality is modeled through a Bernoulli distribution:

$$Y_i = \begin{cases} 0 & \text{if no fatality occurred (original classification: N/A)} \\ 1 & \text{if any fatality occurred (original classifications: 1, 2, or 3 fatalities)} \end{cases}$$

$$S_i \sim \text{Bernoulli}(p_i)$$
 (1)

$$logit(p_i) = \beta_0 + \beta_1 x_{hour_i} + \beta_2 x_{InjuryCollision_i} + \beta_3 x_{FTRCollision_i} + \beta_4 x_{PDCollision_i} + \beta_5 x_{automobile_i} + \beta_6 x_{motorcycle_i} + \beta_6 x_{pdcollision_i} + \beta_6 x_{pdcoll$$

In equation 2, each β represents a coefficient determined through regression analysis. The variables chosen for the model are hour, the different types of collisions, automobile, motorcycle, passenger, pedestrian, year, and police division. Each predictor variable was selected based on its significance in vehicle fatality prediction analysis. Temporal variables such as hour and year are introduced as fixed effects to account for biases across time without introducing unnecessary complexity. Similarly, location introduces biases as some neighborhoods may be more susceptible to vehicle accidents than others, prompting the inclusion of police department as a fixed effect and a proxy for location. Furthermore, depending on the time of day, motorcyclists and pedestrians are more susceptible to fatal vehicle accidents than during the day. Thus, β_{11} and β_{12} represents the coefficient of an interaction term between motorcycle and pedestrian with the categorical variable hour, respectively, to account for potential variations in risk patterns associated with different times of the day. These interaction terms allow the model to capture the increased vulnerability of motorcyclists and pedestrians during specific hours, such as nighttime or early morning, when visibility and traffic conditions may differ significantly, thereby improving the precision and interpretability of the predictions. In addition, any variables, especially the various interaction terms, will be omitted if they display high multicolinearity or insignificance. Finally, ϵ_i is the Gaussian-distributed error term, accounting for residual variation in the model.

To enhance the model, Bayesian priors were applied, introducing regularization and incorporating plausible ranges grounded. For the coefficient priors β , a normal distribution with a mean of 0 and a scale of 2.5 (autoscaled) was chosen to provide flexibility while mitigating overfitting. Similarly, the intercept uses a normal prior with a mean of 0 and a scale of 2.5 to stabilize model estimates. For the error term (sigma), an exponential prior with a rate of 1 was selected to constrain the residuals, aligning with Gaussian assumptions.

The model was implemented in R (R Core Team 2023) using the rstanarm package, which offers an accessible interface for Bayesian generalized linear models (GLMs), allowing specification of priors and customization of model parameters.

3.2 Model Assumptions and Limitations

The model assumes independence of observations, meaning that each observation's outcome is not influenced by others. However, this assumption may be partially violated in the context of vehicle accidents, as incidents occurring within close temporal or spatial proximity may share common influencing factors, such as weather, road conditions, or traffic patterns. While the inclusion of temporal and spatial variables like hour and police division aims to mitigate such dependencies, it may not fully account for potential clustering effects. As a result, the

model could underestimate or overestimate the significance of some predictors, impacting the robustness of its conclusions.

Another important limitation is the potential for omitted variable bias and unmeasured confounding factors. For example, the model does not include variables like road infrastructure quality, driver impairment (e.g., alcohol or drug use), or real-time weather conditions, all of which could influence accident outcomes. Additionally, selection bias is a concern, as the dataset may disproportionately represent severe accidents reported for insurance claims while omitting less severe incidents. This could skew the model's predictions toward more severe outcomes and limit its generalizability. Addressing these limitations would require incorporating additional data sources and applying techniques to account for potential dependencies and missing information. Additionally, the model relies on reported data, which may include potential selection bias, as minor accidents are less likely to be documented.

4 Results

To assess model reliability, we examined several key metrics. Convergence metrics, such as Rhat values, were very close to 1 for all parameters, indicating strong convergence. Additionally, the effective sample size $n_{\rm eff}$ was high across all parameters, suggesting low autocorrelation and contributing to model stability. See more details of our model diagnostics here: (INSERT REFERENCE)

Table 10 presents the estimated coefficients for the predictors in our GLM model. These coefficients fit into the GLM equation, 2, allowing us to interpret the impact of each predictor on the likelihood of fatality in a vehicular accident. Most notably, motorcyclist (18.723) and pedestrian (7.403) collisions exhibit substantial positive associations with fatality occurance, which is in line with expectations. Moreover, motorcyclist accidents during rush hour (hour 16 and 17) have the highest coefficients at 32.688 and 21.926, respectively, and during the late evening, such as at 11:00 PM (34.365), indicating that a collision involving a motorcycle during rush hour or late evening is around 77% likely to result in a fatality. We also find similar results with pedestrians as well. The type of collision variables all have a significant negative effect on the likelihood of death, as well. However, police division and year don't seem to have a significant impact on the likelihood of death.

Figure 11 represents the model coefficients, with error bars indicating the confidence interval for each estimate. While most variables are relatively in line, it seems that the automobile and motorcycle variables demonstrate high variability in its estimates.

Table 10: Summary for Motor Vehicle Collision Fatality Prediction Model

	(1)
(Intercept)	15.108
hour1	0.481
hour2	2.540
hour3	2.857
hour4	-1.278
hour5	1.537
hour6	-0.292
hour7	-2.695
hour8	-0.021
hour9	-0.632
hour10	0.616
hour11	0.183
hour12	0.137
hour13	0.039
hour14	0.498
hour15	-0.326
hour16	-0.537
hour17	-0.633
hour18	-0.228
hour19	0.109
hour20	1.134
hour21	0.390
hour22	0.387
hour23	1.967
injury_collision	-37.368
fail_to_remain_collision	-28.547
property_damage_collision	-29.156
automobile	-2.675
motorcycle	18.723
passenger	3.279
bicycle	4.897
pedestrian	7.403
$police_divisionD12$	0.340
police_divisionD13	-0.654
police_divisionD14	-0.986
$police_divisionD22$	1.971
$police_divisionD23$	-0.794
police_divisionD31	-0.201
$police_divisionD32$	-0.248
$police_divisionD33$	0.716
police_divisionD41	0.504
police_divisionD42	0.491
police_divisionD437	0.124
police_divisionD51	0.714
$police_divisionD52$	1.711
police_divisionD53	0.216
police_divisionD55	-0.631
police_divisionNSA	-3.196
year2015	0.574
vear2016	0.299

Figure 11: Coefficient Estimates for Predictors

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

Please don't use these as sub-heading labels - change them to be what your point actually is.

5.3 Implications

5.4 Weaknesses and Next Steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In we implement a posterior predictive check. This shows...

In we compare the posterior with the prior. This shows...

Examining how the model fits, and is affected by, the data

B.2 Diagnostics

is a trace plot. It shows... This suggests...

is a Rhat plot. It shows... This suggests...

Checking the convergence of the MCMC algorithm

References

R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.