CARNEGIE MELLON UNIVERSITY COMPUTER SCIENCE DEPARTMENT 15-445/645 – DATABASE SYSTEMS (FALL 2020) PROF. ANDY PAVLO

Homework #2 (by Ian Romines)

Due: Sunday October 4, 2020 @ 11:59pm

IMPORTANT:

- Upload this PDF with your answers to Gradescope by 11:59pm on Sunday October 4, 2020.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- You have to use this PDF for all of your answers.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: \approx 1-4 hours (0.5-1 hours for each question)

Revision: 2020/09/29 10:44

Question	Points	Score
Cuckoo Hashing	20	
B+Tree	45	
Extendible Hashing	25	
Suffix Trees	10	
Total:	100	

Question 1: Cuckoo Hashing......[20 points]

Consider the following cuckoo hashing schema:

- 1. Both tables have a size of 4.
- 2. The hashing function of the first table returns the lowest two bits: $h_1(x) = x \& 0b11$.
- 3. The hashing function of the second table returns the next two bits: $h_2(x) = (x \gg 2) \& 0b11$
- 4. When replacement is necessary, first select an element in the second table.
- 5. The original content is shown in Figure 1.

Figure 1: Initial contents of the hash tables.

(a) [4 points] Insert keys 5 and 10. Select the resulting two tables.

	Table 1	Table 2		Table 1	Table 2	
	4			4		
	5				5	
	10	14		10	14	
□ A)			□ B)			

	Table 1	Table 2	Table 1	Table 2
	4		4	
	5			5
	14	10	14	10
□ C)		□ □ D)		

(b) [4 points] Then delete 14, and insert 8. Select the resulting two tables.

	Table 1	Table 2	Table 1	Table 2
	10	5 8	8 5 10	4
□ A)] C)	
	Table 1	Table 2	Table 1	Table 2
	5 10	8	4	8 5 10
□ B)] D)	

(c) **[6 points]** Finally, insert 24. Select the resulting two tables.

	Table 1	Table 2	Table 1	Table 2
	8		4	24
	5	4		5
	10		8	10
□ A)			□ C)	
	Table 1	Table 2	Table 1	Table 2
	8		8	
	5	4		4
	10	24	10	24
□ B)			□ D) □	

- (d) [6 points] What is the smallest key that potentially causes an infinite loop given the tables in (c)
 - \square 0 \square 2 \square 3 \square 6 \square 7 \square 9 \square None of the above

Figure 2: B+ Tree of order d=4 and height h=2.

When answering the following questions, be sure to follow the procedures described in class and in your textbook. You can make the following assumptions:

- A left pointer in an internal node guides towards keys < than its corresponding key, while a right pointer guides towards keys ≥.
- A leaf node underflows when the number of **keys** goes below $\lceil \frac{d-1}{2} \rceil$.
- An internal node underflows when the number of **pointers** goes below $\lceil \frac{d}{2} \rceil$.

(a) [15 points] Insert 14^* into the B+tree. Select the resulting tree.

(b) **[5 points]** How many pointers (parent-to-child and sibling-to-sibling) do you chase to find all keys between 5 and 15?

 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7

(c) [15 points] Then delete 23*. Select the resulting tree.

(d) [10 points] Finally insert 4* and delete 3*. Select the resulting tree.

Question 3: Extendible Hashing......[25 points]

Consider an extendible hashing structure such that:

- Each bucket can hold up to two records.
- The hashing function uses the lowest q bits, where q is the global depth.
- (a) Starting from an empty table, insert keys 15, 2, 31, 11.
 - i. [3 points] What is the global depth of the resulting table? \Box 0 \Box 1 \Box 2 \Box 3 \Box 4 \Box None of the above
 - ii. [3 points] What is the local depth the bucket containing 2?
 - \square 0 \square 1 \square 2 \square 3 \square 4 \square None of the above
 - iii. [3 points] What is the local depth of the bucket containing 31?
 - \square 0 \square 1 \square 2 \square 3 \square 4 \square None of the above
- (b) Starting from the result in (a), you insert keys 6, 9, 23, 12, 11.
 - i. [4 points] Which key will first cause a split (without doubling the size of the table)?
 - \square 6 \square 9 \square 23 \square 12 \square 11 \square None of the above
 - ii. [4 points] Which key will first make the table double in size?
 - \square 6 \square 9 \square 23 \square 12 \square 11 \square None of the above
- (c) Now consider the table below, along with the following deletion rules:
 - 1. If two buckets have the same local depth d, and share the first d-1 bits of their indexes (e.g. 010 and 110 share the first 2 bits), then they can be merged if the total capacity fits in a single bucket. The resulting local depth is d-1.
 - 2. If the global depth g becomes strictly greater than all local depths, then the table can be halved in size. The resulting global depth is g-1.

Figure 3: Extendible Hash Table along with the indexes of each bucket

Starting from the table above, delete keys 3, 8, 1, 2, 17.							
i.	[4 poin	nts] W	hich de	eletion f	irst cause	es a reduction in a local dep	oth.
	\Box 3	□ 8	\Box 1	\Box 2	□ 17	\Box None of the above	
ii. [4 points] Which deletion first causes a reduction in global depth						oth.	
	\Box 3	□ 8	\Box 1	\square 2	□ 17	\Box None of the above	

Figure 4: Suffix Tree

- (a) [3 points] Which of the following elements belong to the suffix tree. Select all that apply.
 - \square 0xCABEACCA \square 0xCA1337BF \square 0x77BDBECA \square 0xBAABCABE \square 0xCABEBC04
 - \Box None of the above
- (b) [7 points] Insert the key 0xCABEBADE. Select the resulting tree.

