DM 14

Equation dans $\mathcal{L}(E)$ Soit E un \mathbb{R} -espace vectoriel non réduit à son vecteur nul. On s'intéresse aux endomorphismes f de E vérifiant la relation

$$f^2 = 3f - 2\operatorname{Id}_E$$
. (*)

Un exemple On définit l'application :

$$g \mid \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

 $(x,y) \mapsto (3x+2y,-x)$

- 1. Montrer que g est un endomorphisme de \mathbb{R}^2 .
- 2. Donner la matrice de g, notée A, dans la base canonique.
- 3. Calculer $g \circ g$ et vérifier que g est solution de (*)
- 4. Déterminer $F = \ker(g \operatorname{Id}_{\mathbb{R}^2})$ et $G = \ker(g 2\operatorname{Id}_{\mathbb{R}^2})$ et donner une base de F et une base de G.
- 5. Montrer que $F \cap G = \{0\}$
- 6. Soit u=(1,-1) et v=(-2,1) Montrer que B=(u,v) est une base de \mathbb{R}^2 . Calcul de g^n
- 7. Premiere méthode
 - (a) Donner la matrice de g, notée D, dans la base B
 - (b) Donner la matrice, notée P, de l'identité relativement aux bases B au départ et la base canonique à l'arrivée.
 - (c) Montrer que P est inversible et calculer $P^{-1}AP$. ¹
 - (d) En déduire, pour tout $n \in \mathbb{N}$, A^n et l'expression de g^n .
- 8. Deuxième Méthode
 - (a) Soit $(x,y) \in \mathbb{R}^2$. Exprimer (x,y) comme combinaison linéaire de u et v.
 - (b) Calculer $g^n(u)$ et $g^n(v)$.
 - (c) Donner finalement l'expression de $g^n(x,y)$ en fonction de x et y.
 - (d) Donner la matrice de g^n dans la base canonique.

Etude de f On se place à nouveau dans le cas général et on s'intéresse à l'équation (*).

- 1. Montrer que si f vérifie (*) alors f est bijective et exprimer f^{-1} comme combinaison linéaire de f et de Id_E .
- 2. Déterminer les solutions de (*) de la forme $\lambda \operatorname{Id}_E$ où $\lambda \in \mathbb{R}$.

Etude des puissance de f On suppose dans la suite que f est une solution de (*) et que f n'est pas de la forme $\lambda \operatorname{Id}_E$.

- 1. (a) Exprimer f^3 et f^4 comme combinaison linéaire de Id_E et f.
 - (b) Montrer que pour tout n de \mathbb{N} , f^n peut s'écrire sous la forme $f^n = a_n f + b_n \operatorname{Id}_E$ avec $(a_n, b_n) \in \mathbb{R}^2$
- 2. (a) Montrer que pour tout entier $n \in \mathbb{N}$, $a_{n+1} 3a_n + 2a_{n-1} = 0$
 - (b) En déduire une expression de a_n ne faisant intervenir que n.
 - (c) Calculer alors b_n .

^{1.} J'ai pas encore tapé le corriger donc si vous obtenez pas D, essayez de calculer PAP^{-1} , mais je crois que c'est bon comme ca...