From Top to Gp Oct 16: JZ, is a Functor: I is continuous, then J [f*: JZ,(and s.t. fxg* = (fog)*. Pf: Define $T: X \circ \mathcal{T} \times X \longrightarrow X \times X \to X$)(= (g(f(8(t) Retr, Def Ret. $\mathcal{T}_{i}(X \times Y)$ > 10(PX*(X)) P(*(X)) 1x* 8, iy * 8) (Px* ixx s Py* iy* 8) = ((Pxix)* 8 (Priy)*8)

 $\pi_i(S^n) = 0$ for n = 1P.f. 5° is trivial; 5°= P, LLPz. Let & be a path If n>1, then state consider BE(-x) = 50n for 0<E<<1. I claim we can find 8=8 s.t. 8:I->5" | BE(-x) Note: If we can do this, then $\mathbb{R}^n \cong \mathbb{S}^n \setminus \mathbb{B}_{\mathfrak{s}}(\mathsf{x})$ is contractible, so X is null homotopic. Let VUSI be $N = \{x \in I : X(x) \in B_{\varepsilon}(x)\}$ U is open, so U=U (aisbi) $\leq [0,1]$ For $\delta(a_i,b_i)$, consider δ_i : (a_i,b_i) connecting $\delta(a_i)$ to $\delta(b_i)$ on the circle $\delta(x,\epsilon)$. Then $\chi_{(a_i,b_i)} \simeq \chi_{i,a_i}$ Pefine $\mathcal{H} = \begin{cases} \delta(t) & t \notin V(ai,bi) \\ \delta(t) & t \in (ai,bi) \end{cases}$ Then 828 and we are done.

$T_{i}(X \times Y)$
Cor: R2 # Rn for n #2.
Pf: If n=1, R ¹ /Pt is not connected, whereas R ² /pt is.
If n>2, then consider
51=R2/pt-> Rn/pt~51-1
$\mathcal{F}^{\text{Jes}} = \mathcal{T}_{1}(S^{2}) = ZZ$ $\mathcal{T}_{2}(\mathbb{R}^{2}) = ZZ$
We need the following prop:
Prop: If 4:X > Y is a homotopy eq, then
Prop: If $\mathcal{C}: X \to Y$ is a homotopy eq, then $\mathcal{C}_{X}: \mathcal{T}_{1}(X, x_{0}) \to \mathcal{T}_{1}(Y, y_{0})$ is an isom.
Pf: If le is a homotopy, then
$JZ_{1}(X_{1},X_{0}) \xrightarrow{\ell_{0}*} JZ_{1}(Y_{1},\ell_{0}(X_{0}))$
e_{i} g_{i} g_{i
Sh $(Y, C_1(x_0))$
en If lis as above, let y
be its inverse hen (e) Y = Idy
50 (4.04) = 14
(1) POV.
The Prospects for Commutative Algebra OSAKA 2017

Oct 20: If X is a space, can we Compute T4(X) by smaller pieces? Thm: If Axis X are path connected spaces Aa >x, then if Aan AB is path connected, $*\pi(A, x) \xrightarrow{*i_{\alpha}} \pi_{\alpha}(X, x)$ is surjective If Moreover, AnnABNA, is path connected, then $\ker(*_{\alpha}) = (i_{\alpha B_{\alpha}}(Y) i_{\beta \alpha *}(Y)^{-1})$ Particular Case: X=AUB ANB ANB IS A,B, AnB are path Connected, then $\pi_{1}(X) = \pi_{1}(A) * \pi_{1}(B)$ Example: De XVY: Take A=X, B=Y, AnB=Pt. $\mathcal{T}_{i}(X \vee Y) = \mathcal{T}_{i}(X) * \mathcal{T}_{i}(Y) = \mathcal{T}_{i}(X) * \mathcal{T}_{i}(Y)$

So $\pi_{i}(\infty) = \pi_{i}(s^{2}vs^{2}) = 22 * 27$

Connected Sum of Tori: T2# T2 =

 $\pi(\Pi^2|pt) = \pi(\alpha \log \alpha) = \pi(\alpha \log \alpha)$

 $= 2 \times 2 \qquad a \qquad b \qquad c \qquad d$ $= 2 \times 2 \qquad \pi_1(M_2) = (2 \times 2) \times (2 \times 2)$

ababot 11 > Cd Cod

This can be generalized: Mg = T2# # # T2

9-61/Me)

 $T_{i}(M_{g}) = Z_{i}^{*2g}/\langle a_{i}b_{i}a_{i}^{\dagger}b_{i}^{\dagger} - a_{n}b_{n}a_{n}^{-\dagger}b_{n}^{-\dagger}\rangle$

Let's Rook at the proof: First I will show the surjective part Given SET, (X, X), we have

X:I-) X=UAx, then we can cover

I=US (Ax) take a finite refinement n

Nent n $Z = U(a_i, b_i, b_i)$ bir Refine to $I = U(b_i, b_i, b_i)$

Commutative Algeb

Consider 8 = 8 (Bi, bi+1): [bi, bi+1] -> Axi. Be

Then, since each AxinAxins path connected,]
Pi connecting X to V(bit). Consider

 $\chi \simeq \chi_{0} \cdots \chi_{0}$

 $\simeq (8_0 \cdot \overline{g}_1)(g_1 \times g_2)(\overline{g}_2 \times g_3) \cdots (g_{n-1} \times g_n)$

= * *ix, * (80], -- ix, (gn-18n)

& EIm (**ia*) => Surjective.

Now, we assume that every triple intersection Ax NABNAX is path connected. Consider

Ker $(*i\alpha)$. It clearly contains $(*i\text{diag}(8))i_{Bag}(8)$ Since 8.8 = e in X. It goes to show $(*i\alpha) = (*i\alpha) = (*i\alpha)(*i)$. Let

 $*i_{\alpha}(N-Y_1--Y_n)=0$

w/ di E Axi. That is to say 80... 8n2 ex.

Let F: XXI > > be the homotopy.

1/n=1 7	
	each \square is s.t. $F(\square) \leq A_{\alpha} = A_{\alpha}$
inte s	
	We perturb so that each point lies in at most 3 Ax, Axz, Axz, Changing only row not top or bottom.
	3 Ag, Ag, Ag, Changing only row not top or bottom.
	Cerelabel as R, Rz, , Rnm, n rows, m-columns.
	For each corner, if $F(c_{ij}) = x$, we can replace it with a loop g_{ij} g_{ji} contained in the 3 (or less A). This replaces A loop on the boundaries into A homotopy inside 1 Mi. Ax (or even $A_{x} \cap A_{y} \cap A_{y}$)
	Air. This replaces A loop on the boundaries into
	A homotopy inside 1 M. Ax (or even AxABNAS)
	Doing this one step at a time produces
	8, 28, in A, , Viz 28,2 in A12, 8,2 28,3
-	$\Rightarrow N = Ker(*)$
Management	
