СЕТЕВАЯ МОДЕЛЬ ДЛЯ ДИАГНОСТИКИ МИОКАРДИТА

Новикова Екатерина Ивановна – доцент кафедры системного анализа и управления в медицинских системах, ekaterina.novikova.67@list.ru

Данилова Юлия Сергеевна — старший преподаватель кафедры системного анализа и управления в медицинских системах, Воронежский государственный технический университет, г. Воронеж, Россия

Диагностика и лечение миокардитов по-прежнему остается одним из наиболее сложных разделов работы терапевтов и кардиологов. Разработанная сеть Петри для диагностики миокардита позволяет отслеживать текущее состояние пациента.

Ключевые слова: сеть Петри, имитационная модель, моделирование, миокардит.

NETWORK MODEL FOR DIAGNOSTICS OF MYOCARDITIS

Novikova E.I. – Associate Professor of the Department of System Analysis and Management in Medical Systems, ekaterina.novikova.67@list.ru

Danilova Yu.S. – Senior Lecturer at the Department of System Analysis and Management in Medical Systems, Voronezh, Russia, Voronezh State Technical University

Diagnosis and treatment of myocarditis still remains one of the most difficult areas of work for therapists and cardiologists. The developed Petri net for diagnosing myocarditis allows you to monitor the current condition of the patient.

Keywords: Petri net, simulation model, modeling, myocarditis

Диагностика и лечение миокардитов по-прежнему остается одним из наиболее сложных разделов работы терапевтов и кардиологов. Миокардит не «привязан» к определенному возрасту, диагностируется как у пожилых людей, так и у детей, и все же чаще всего отмечается у 30—40-летних: реже — у мужчин, чаще — у женщин. Постановка такого диагноза обычно осложнена латентным течением болезни и неоднозначностью ее симптомов. Она

осуществляется на основании опроса и анамнеза, физикального обследования, лабораторного анализа крови и кардиографических исследований:

Разработанная сеть Петри для диагностики миокардита позволяет отслеживать текущее состояние пациента. Узлами сети являются наборы классификационных признаков заболеваний, которые были выявлены у пациентов, и методики исследования, используемые при проведении диагностики [1, 2]. Имитационная сетевая модель [3, 4] рассматриваемой задачи диагностики представлена на рисунке 1.

Рис. 1. Сеть Петри

Пример реализации сети Петри. Пациент: мужчина 68 лет, вес 73 кг, рост 170 см. Состояние удовлетворительное. Физические показатели — активный образ жизни. Состояние кожи и подкожной клетчатки - в пределах нормы. Функции жизненно важных органов — относительно компенсированы. Хронические заболевания отсутствуют, ранее на учетах в лечебнопрофилактических учреждениях не стоял; инвалидность отсутствует; отеки ног не обнаружены; синюшность слизистых оболочек, кожных покровов не обнаружены; обмороки не зафиксированы. Поступил с жалобами на: боли в сердце и суставах, учащенное сердцебиение, быструю утомляе-

мость. Также было обнаружено вздутие шейных вен и повешенная температура тела до 37,8 С. В ходе проведения лабораторно-клинических и диагностических исследований, а именно: ЭКГ, УЗИ, ОАК и БХ, были обнаружены следующие результаты: при ЭКГ было обнаружено снижение сократительной функции сердца, исследование УЗИ показало увеличение габаритов сердца. Что касается лабораторно-клинических исследований, то при ОАК было обнаружено СОЭ 17 мм/ч, при БХ — креатин 120 мкмоль/л.

Функциональные назначения позиций, используемых в процессе моделирования, представлены в таблице 1.

Таблица 1 Функциональные назначения позиций

Позиция	Значение	Позиция	Значение
b1	боль в сердце	b22	структурных изменений нет
b2	сердцебиение при физических	b23	неревматический миокардит
	нагрузках		
b3	нарушение сердечного ритма	b24, b33	биохимичекий анализ
b4	увеличение температуры тела	b25	креатин (>100 мкмоль/л)
	37-37,9 C		
b5	боль в суставах	b26	Альфа-амилаза (>100 Ед/л)
b6	быстрая утомляемость	b27, b30	общий анализ крови
b7	отдышка	b28	СОЭ (>15 мм/ч)
b8	вздутие шейных вен	b29	лейкоциты (>9*10 ⁹)
b9	отеки ног	b31	тромбоциты (>400*10 ⁹)
b10	синюшность слизистых оболочек,	b32	эритройиты ($<3.8*10^{12}/\pi$)
	кожных покровов, губ и кончика носа		
b11	головокружение и обмороки	b34	АлАт (>42 Ед/л)
b12	боли в правом предреберье	b35	АсАт (>42 Ед/л)
b13, b14	прием врача	b37	жидкость в перикарде
b15, b36	ЭКГ	b38	диастолическая дисфункция
b16	снижение сократительной функции	b39	нарушение сердечного ритма
b17	дилатация сердечных полостей	b41	учащенное сердцебиение
b18, b40	УЗИ	b42	утолщение стенок желудочков
b19	увеличение габаритов сердца	b44	опухоль сердца
b20, b43	MPT	b45	миокардит Абрамова-Фидлера
b21	дефект межреберной перегородки	·	

Ниже представлены срабатывания переходов разработанной сети Петри, отражающие процесс исследования заболевания.

Использование предложенной методики диагностики миокардита на основе сети Петри в клинической практике поможет уточнить диагноз и скорректировать стратегию лечения.

Библиографический список

- 1. Новикова, Е.И. Моделирование биомедицинских систем: учебное пособие / Е.И. Новикова, О.В. Родионов, Е.Н. Коровин. Воронеж: ВГТУ, 2008. 196 с.
- 2. Андрианова, Е.А. Разработка имитационной модели для диагностики сердечно-сосудистой системы / Е.А. Андрианова, Е.И. Новикова // Программная инженерия: современные тенденции развития и применения (ПИ-2021): сборник материалов V Всероссийской научно-практической конференции. Курск, 2021. С. 103-107.
- 3. Новикова, Е.И. Разработка подсистемы диагностики гинекологических заболеваний на основе статистического и имитационного моделирования / Е.И. Новикова, А.Ю. Корниенко // Системный анализ и управление в биомедицинских системах. 2021. Т. 20. № 2. –С. 94-98.
- 4. Данилова, Ю.С. Сетевая модель процесса дифференциальной диагностики и лечения бронхиальной астмы на основе сетей Петри / Ю.С. Данилова, Е.Н. Коровин // Системный анализ и управление в биомедицинских системах. 2015. Т. 14. № 1. –С. 101-104.