West-Nile Virus Prediction

Problem Statement

We aim to produce a model which will **accurately identify the key contributing factors** that leads to the presence of the West Nile Virus (WNV).

The model and insights from the cost-benefit analysis could then be used by the Centers for Disease Control and Prevention (CDC) to help **predict future outbreaks of WNV** and **effectively allocate resources** to mitigate it.

Data Cleaning & Pre-Processing

Data Cleaning & Pre-Processing

Dropped

Dropped redundant columns

Combined

- Combined Train and Weather data
- Spray data wasn't included

Feature Engineering

- One-hot encoded categorical features like species and month
- Added lagged weather features for rainfall and temperature

Exploratory Data Analysis

2013 Spray and Mosquito Count Visualisation

Time Frame: 7 Jun - 9 Sep 2013

People per sq km

Finding #1: The more mosquitos there are in the trap, the more likely WNV is present.

Finding #2: Number of mosquitoes peaks in August

Finding #3: 2-4 week lag between rainfall and number of mosquitoes

Finding #4: 2 week lag between temperature and number of mosquitoes

Finding #5: No lag between wind speed and number of mosquitoes

Modelling

Choosing the production model

ROC Curve

		precision	recall	f1-score	support
	0	0.95	1.00	0.97	1934
	1	1.00	0.02	0.04	106
accus	acy			0.95	2040
macro	avg	0.97	0.51	0.51	2040
veighted	avg	0.95	0.95	0.93	2040

Kaggle Score: 0.64626

Features Importance

Features	Importance		
Longitude	0.231175		
Latitude	0.179395		
PrecipTotal_lag-14	0.044457		
Aug	0.044378		
Tavg_lag_14	0.036325		
Tavg_lag_10	0.032645		
dewpoint	0.028224		
year	0.025359		
resultdir	0.025208		

Cost Benefit Analysis & Recommendations

Cost Benefit Analysis

How significant is the Cost?

- WNV hospitalizations cost \$778 million in U.S. 1999 -2014
- Abatement areas have enough to contain mild outbreaks only
- Reduced surveillance activities due to lack of lab funding.

Spray Costs

- \$450,000 a truck spray session in 2002
- Adulticiding has an impact of only 1-2 days

Environmental & Health Cost

- Mixed reports on human and environmental impact even if its EPA approved
- At minimum fogging causes irritation to eyes

Strategy Recommendations

Further Improvement For the Model

Surveillance Data

- Dead Birds
- Wild Birds
- Human and Equine cases

Spray Data

 More spray and larvicidal data to determine effectiveness

Questions

References

J. E. Staples, M. Shankar, J. J. Sejvar, M. I. Meltzer, M. Fischer. Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease. *American Journal of Tropical Medicine and Hygiene*, 2014; DOI: 10.4269/ajtmh.13-0206

S, Hamill, https://www.chicagotribune.com/news/ct-xpm-2002-09-0209090156-story.html, Chicago Tribune, Viewed 10/7/2020