Ringen en Lichamen

Luc Veldhuis

13 November 2017

Vraag uit boek

Vraag 8.3.7a

Laat π een element in $\mathbb{Z}[i]$.

Voor $n \ge 0$ hebben we: $(\pi^{n+1}) = \pi^{n+1}\mathbb{Z}[i]$.

- a) Bewijs $\mathbb{Z}[i]/(\pi) \cong (\pi^n)/(\pi^{n+1})$ door vermenigvuldiging met π^n .
- $\phi: \mathbb{Z}[i] \to^{\pi^n} (\pi^n) \to (\pi^n)/(\pi^{n+1})$ door de quotient afbeelding voor optelgroepen.
- ϕ is een homomorfisme van optelgroepen.

$$\alpha \in \ker(\pi) \Leftrightarrow \overline{\alpha \pi^n} = \overline{0} \text{ in } (\pi^n)/(\pi^{n+1})$$

$$\Leftrightarrow \alpha \pi^n \in (\pi^{n+1}) = \{ \pi^{n+1} \beta | \beta \in \mathbb{Z}[i] \}$$

$$\Leftrightarrow \alpha = \pi \gamma \text{ voor een } \gamma \in \mathbb{Z}[i]$$

$$\Leftrightarrow \alpha \in (\pi).$$

Vraag uit boek

Vraag 8.3.7b

b)
$$|\mathbb{Z}[i]/(\pi^n)| = |\mathbb{Z}[i]/(\pi)|^n$$
.

Ooit een opdracht dat als $H_2 \subseteq H_1 \subseteq G$, dan geldt

$$|G:H_2|=|G:H_1|\cdot |H_1:H_2|.$$

$$\mathbb{Z}[i] \supseteq (\pi) \subseteq (\pi^2).$$

$$|\mathbb{Z}[i]/(\pi^2)| = |\mathbb{Z}[i]:(\pi)| \cdot |(\pi):(\pi^2)| \text{ met } |(\pi):(\pi^2)| = |\mathbb{Z}[i]/(\pi)|$$

Dus
$$|\mathbb{Z}[i]/(\pi^2)| = |\mathbb{Z}[i]/(\pi)|^2$$
.

Voor $2 \rightarrow n$ werkt dit nu voor alle n.

Vraag uit boek

Vraag 8.3.7c

c) Gebruik dat $|\mathbb{Z}[i]/(\pi^n)| = |\mathbb{Z}[i]/(\pi)|^n$. En voor een willekeurig geval $\alpha = u\pi_1^{m_1}\pi_2^{m_2}\dots\pi_n^{m_n}$ alle π_i

irreducibel, paarsgewijs geassocieerd en $u \in \mathbb{Z}[i]^*$.

Als
$$\beta = \pi_1^{m_1} \dots \pi_n^{m_n}$$
 dan is $N(\beta) = N(\alpha)$, en dus $(\alpha) = (\beta)$.

Als laatste de Chineese Rest Stelling:

$$\mathbb{Z}[i]/(\beta) \cong \mathbb{Z}[i]/(\pi_1^{m_1}) \times \cdots \times \mathbb{Z}[i]/(\pi_n^{m_n}) \Rightarrow$$

$$|\mathbb{Z}[i]/(\beta)| = |\mathbb{Z}[i]/(\pi_1^{m_1})| \cdot \cdot \cdot \cdot |\mathbb{Z}[i]/(\pi_n^{m_n})|$$
 en

$$|\mathbb{Z}[i]/(\beta)| = N(\pi_1^{m_1}) \cdot \cdots \cdot N(\pi_n^{m_n}) = N(\beta).$$

Hoofdstelling veeltermringen

Stelling

Als R een domein is, dan:

- $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$ voor p(x), q(x) in R[x].
- $R[x]^* = R$
- R[x] is een domein

Stelling

R een ring, commutatief met $1 \neq 0$, $I \subseteq R$ een ideaal van R, dan is I[x] een ideaal van R[x] (= $(I)_{R[x]}$) en $R[x]/I[x] \cong R/I$ [x]. In het bijzonder is I een priem ideaal van $R \Leftrightarrow I[x]$ is een priemideaal van R[x].

Hoofdstelling veeltermringen

Bewijs

Als $\phi:R\to S$ een homomorfisme is, dan is $R[x]\to S[x]$ met $f(x)\mapsto f^\phi(x)$, pas ϕ toe op de coefficienten van f. Dit is een ring homomorfisme (ga na).

Pas dit toe op $\phi: R \to R/I$, een surjectief ringhomomorfisme.

Je krijgt $\varphi: R[x] \to R/I[x]$ met $f(x) \mapsto \overline{f}(x)$, reduceer de coefficienten van f modulo I.

 φ is surjectief.

 $f(x) \in \ker(\varphi) \Leftrightarrow \text{modulo } I \text{ zijn alle coefficienten } 0$

 \Leftrightarrow alle coefficienten zijn in I

$$\Leftrightarrow f(x) \in I[x] = \{a_0 + a_1x + \cdots \in R[x], a_i \in I\}.$$

Uit de 1e isomorfie stelling volgt nu dat $R[x]/I[x] \cong R/I[x]$.

$$(I)_{R[x]} = I[x]$$
 (Opgave)

Hoofdstelling veeltermringen

Voorbeeld

 $R = \mathbb{Z}$, I = (p) dan is $\mathbb{Z}[x]/(p) \cong \mathbb{Z}/p\mathbb{Z}[x]$

Stelling

I is een priemideaal van R

- $\Leftrightarrow R/I$ is een domein
- $\Leftrightarrow R/I[x]$ is een domein
- $\Leftrightarrow R[x]/I[x]$ is een domein (want $R[x]/I[x] \cong R/I[x] \Leftrightarrow I[x]$ is een priemideaal van R[x].

Herhaling

Als k een lichaam is dan is k[x] een Euclidische ring, dus een Hoofd Ideaal Ring, dus een ontbindings ring.

In k[x] is een ideaal of (0) of (f(x)) met $f(x) \neq 0$ in k[x].

f(x) is uniek op vermenigvuldiging met $k[x]^* = k^*$ na.

Kies in het algemeen de unieke monische (kop coefficient 1) voortbrenger.

Ook (f(x)) met $f(x) \neq 0$ is een priem ideaal

 $\Leftrightarrow f(x)$ is priem element

 $\Leftrightarrow f(x)$ is irreducibel (f(x) in HIR)

Ook in een HIR is elk priem ideaal \neq 0 een maximaal ideaal.

Dus k[x]/(f(x)) is een lichaam als f(x) irreducibel is.

Voorbeeld

- In $\mathbb{R}[x]$ is X^2+1 irreducibel (dus $R[x]/(X^2+1)$ is een lichaam). Maar in $\mathbb{C}[x]$ is $X^2+1=(X-i)(X+i)$ reducibel
- In $\mathcal{F}_2[x]$ geldt $X^4 + X^3 + X + \overline{1} = (X \overline{1})(X^3 + \overline{1}) = (X + \overline{1})^2(X^2 + X + 1)$ met $(X + \overline{1})$ en $(X^2 + X + 1)$ irreducibel. Dus $F_2[x]/(X^2 + X + \overline{1})$ is een lichaam met 4 elementen.

Stelling

Als R een ontbindingsring is dan is R[x] dat ook.

Idee

Gebruik F = Frac(R) en $R[x] \subseteq F[x]$ (een eenvoudige ring) en 'vergelijk' R[x] en F[x].

Voorbereiding

Gaußlemma: Zij R een ontbindingsring, F het brekenlichaam van F, zij $p(x) \in R[x](\subseteq F[x])$.

Als p(x) reducibel is in F[x] dan is p(x) reducibel in R[x].

Preciezer: als p(x) = A(x)B(x) in F(x)

 $(\deg(A(x)), \deg(B(x)) \ge 1$, dan bestaan a, b in F^* met ab = 1 en $aA(x), bB(x) \in R[x]$

$$\Rightarrow p(x) = (aA(x))(bB(x)) \text{ in } R[x]$$

Voorbeeld

$$6x^2 + 7x + 2 \in \mathbb{Q}[x] = (x + \frac{1}{2})(6x + 4) \in \mathbb{Q}[x] = (2x + 2)(3x + 2)$$

Bewijs

Er zijn a, b in $R \setminus \{0\}$ met $a_1A(x), b_1B(x)$ in R[x] met $d_1 = a_1b_1$, geldt $d_1p(x) = (a_1A(x))(b_1B(x)) \in R[x]$.

Als $d_1 \in R^*$ dan is $p(x) = (d_1^{-1}a_1A(x))(b_1B(x)) \in R[x]$.

Als $d_1 \notin R^*$, schrijf $d_1 = \pi_1 \pi_2 \dots \pi_n$ met π_i irreducieerbaar in R.

Reduceer $d_1p(x) = (a_1A(x))(b_1B(x))$ modulo (π_1) (dat will zeggen, gebruik $R[x] \to R/(\pi_1)[x]$.

 $\Rightarrow \overline{0}\overline{p}(x) = \overline{a_1A(x)b_1B(x)} \in R/(\pi_1)[x].$

 π_1 irreducibel $\Rightarrow \pi_1$ is priem in een ontbindings ring.

- $\Rightarrow (\pi_1)$ priemideaal van R
- $\Rightarrow R/(\pi_1)$ is een domein
- $\Rightarrow R/(\pi_1)[x]$ is een domein.

Bewijs (vervolg)

Dus
$$\overline{a_1 A(x)} = \overline{0}$$
 of $\overline{b_1 B(x)} = \overline{0}$.

Als
$$\overline{a_1A(x)} = \overline{0}$$
 dan is $a_1A(x) = \pi_1a_2A(x)$ met $a_2A(x) \in R[x]$.

Nog steeds geldt dat $a_2b_2 = d_2$.

$$\Rightarrow d_2p(x) = (a_2A(x))(b_2B(x)) \text{ met } a_1 = \pi_1a_2 \text{ en } b_1 = b_2 \text{ met}$$

$$d_1 = \pi_1 d_2$$
. Nu geldt $d_2 = \pi_2 \pi_3 \dots \pi_n$.

Idem als
$$b_1B(x)=\overline{0}$$
, dan geldt $a_1=a_2$ en $b_1=\pi_1b_2$.

Herhaal dit totdat $d_{n+1} = 1$,

$$d_{n+1}p(x) = (a_{n+1}A(x))(b_{n+1}B(x)) \in R[x].$$

Dan zien we $a_{n+1}b_{n+1} = d_{n+1} = 1$.

Gevolg

Zij R een ontbindingsring, F = Frac(R), $p(x) \in R[x]$ met ggd(coefficientp(x)) = 1.

Dan os p(x) reducibel in $R[x] \Leftrightarrow p(x)$ is reducibel in F[x].

Voorbeeld

 $R = \mathbb{Z}$, $F = \mathbb{Q}$, $p(x) = 6x + 4 \ ggd(coeff) = 2$, p(x) = 2(3x + 1) reducibel in $\mathbb{Z}[x]$.

p(x) is irreducibel in $\mathbb{Q}[x]$ want het is graad 1 en \mathbb{Q} is een lichaam.

Bewijs

Zie boek (gebruikt Gaußlemma)

Opmerking

Volgens het gevolg geldt ook: als p(x) in R[x] en ggd(coeff) = 1 dan geldt p(x) irreducibel in $R[x] \Leftrightarrow p(x)$ irreducibel in F[x].

Conclusie

In R[x] zijn de volgende elementen irreducibel:

- $\pi \in R$ met π irreducibel in R
- p(x) in R[x] met ggd(coeff) = 1 en p(x) irreducibel in F[x].

Voorbeeld

 $3x^2 + 7 \in \mathbb{Z}[x]$, ggd(coeff) = 1, $3x^2 + 7 \in \mathbb{Q}[x]$ graad 2, geen wortel in \mathbb{Q} .

