

Ecuaciones Diferenciales y Cálculo Numérico

Grado en Ingeniería de Tecnologías de Telecomunicación

Convocatoria Extraordinaria de Septiembre

21 de septiembre de 2012

Apellidos:		Firma:
Nombre:	D.N.I. (o Pasaporte):	

ACLARACIONES SOBRE EL EXAMEN

- La duración del examen es de 2 horas 45 minutos.
- No se permite el uso de calculadora programable.
- El examen corresponde a la parte de teoría y problemas, consta de 4 ejercicios y será valorada sobre 9 puntos. En cada ejercicio se indica su valoración máxima.
- Cada ejercicio ha de realizarse en hojas distintas.
- (2.5) 1. Sea el problema de valores iniciales $x' = 3\frac{t}{x} + \frac{x}{t}$, x(1) = -2.
 - a) Resuelve el problema propuesto. (Sugerencia: usa el cambio de variables x = ut.)
 - b) ¿Cuál es el intervalo maximal de definición de la solución hallada?
- (2.5) 2. Sea la ecuación diferencial $x'' 4x = e^{2t} + \cos(2t)$.
 - a) Calcula un sistema fundamental para la ecuación homogénea asociada.
 - b) Halla la solución de la ecuación propuesta para la que x(0) = x'(0) = 0.
 - (2) 3. Sea la ecuación no lineal $3x + \sin(2x + 3) + 4 = 0$.
 - a) Demuestra que dicha ecuación tiene exactamente una raíz real.
 - b) Determina (justificadamente y sin usar la calculadora) un intervalo de longitud 1 al que pertenezca la raíz.
 - c) Mediante el método de bisección sobre el intervalo hallado en el apartado b), localiza la raíz en un intervalo de longitud $\frac{1}{4}$ (usando la calculadora si lo deseas).
 - d) Tomando como punto de partida el intervalo hallado en el apartado c), aplica el método de la secante para calcular la raíz con tres decimales exactos.
 - (2) 4. Para cierta función $f(x): [-2,1] \to \mathbb{R}$ se obtiene la tabla de datos

- a) Calcula el spline cuadrático s(x) que interpola tales datos y, además, satisface la condición s(0)=3.
- b) A partir de lo hecho en el apartado anterior, halla una aproximación de $\int_{-2}^{0} f(x) dx$.