ENGINEERING MECHANICS: STATICS

Idealizations in Mechanics:

Models are used to simplify theory application

Models include:

Particles

Rigid Bodies

Concentrated Forces

Models:

Particle:

Size (and sometimes mass) are neglected

For example, Earth is very large, yet insignificant when compared to the size of orbit. Therefore, Earth can be modeled as a particle.

Models:

Rigid Body:

A combination of a large number of particles that stay at a fixed distance from one another before and after applying load.

Models:

Concentrated Force:

Represents the effect of a loading which is assumed to act at a point on a body when the area over which the load is applied is small compared to the body.

2.1: Scalars and Vectors

Scalar: Quantity w/ magnitude (+ or -)

$$|F| = scalar$$

Vector: Quantity w/ magnitude & direction

$$\overrightarrow{F} = vector$$

Magnitude

A

Direction

Sense-

Unit Vector: Vector w/ magnitude of ONE.

Since a force has both magnitude & direction, it can be represented as a vector.

Resultant of Vectors: Combining two or more vectors into a single vector.

$$\overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} + \dots + \overrightarrow{F_n}$$

Resolution of a vector: To describe a single vector as two or more vectors, called "component form"

$$\overline{F} = \overline{F_x}\hat{i} + \overline{F_y}\hat{j}$$

Important components include:

Rectangular Components
Orthogonal Components

<u>Parallelogram Law</u>: This method may also be used to find component of force and is useful when the axes are not at a right angle.

Sine Law:

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$

Cosine Law:

$$C = \sqrt{A^2 + B^2 - 2AB\cos c}$$

Example: Write each of the forces in Cartesian Vector form and determine the resultant force. Refer to Video

ENGINEERING MECHANICS: STATICS

