

BINARY LOGIC AND LOGIC GATES

Digital logic design

Iqra Chaudhary (Lecturer CS dept. NUML)

- Definition of Binary Logic
 - Binary logic consists of binary variables and a set of logical operations.
 - The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: 1 and 0,
 - Three basic logical operations: AND, OR, and NOT.
 - 1. AND: This operation is represented by a dot or by the absence of an operator. For example, $x \cdot y = z$ or xy = z is read "x AND y is equal to z," The logical operation AND is interpreted to mean that z = 1 if only x = 1 and y = 1; otherwise z = 0. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0, and nothing else.)
 - 2. OR: This operation is represented by a plus sign. For example, x + y = z is read "x OR y is equal to z," meaning that z = 1 if x = 1 or y = 1 or if both x = 1 and y = 1. If both x = 0 and y = 0, then z = 0.
 - 3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, x' = z (or $\overline{x} = z$) is read "not x is equal to z," meaning that z is what z is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1

Not Function (NOT Gate)

- Complement operation
 - Single input
 - Inverts value of input
 - Symbolized by prime x'
- Truth table
 - Input combinations on the left
 - Output of function on the right
- Graphic symbol
 - NOT gate
 - Little circle indicates inversion

- (a) Distinctive shape symbols with negation indicators
- (b) Rectangular outline symbols with polarity indicators

Timing Diagram

AND Gate

- Operation to check if two conditions are satisfied
 - Two inputs
 - Output = 1 if and only if both inputs are 1
 - Symbolized by dot or absence of operatorx-y or xy
- Truth table
 - Needs to consider 2² = 4 input combinations
- Graphic symbol
 - AND gate

Logical Expression

Timing Diagram of an AND gate

Application of an AND gate Seat belt alarm system

OR Gate

- Operation to check if at least one condition is
- met
 - Two inputs
 - Output = 1 if any one or both inputs are 1
 - Symbolized by "plus" sign: x + y
- Truth table
 - Graphic symbol
 - OR gate

X	У	Z
0	0	0
0	1	1
1	0	1
1	1	1

Logical Expression

$$\begin{array}{cccc}
A & & & \\
B & & & & \\
\end{array}$$

$$\begin{array}{cccc}
A & & & \\
C & & & \\
\end{array}$$

$$X = A + B + C$$

Timing Diagram of an OR gate

Application of an OR gate Security system

Truth Tables, Boolean Expressions, and Logic Gates

AND

X	у	z
0	0	0
0	1	0
1	0	0
1	1	1

$$z = x \cdot y = xy$$

$$x$$
 y $-z$

OR

X	у	Z
0	0	0
0	1	1
1	0	1
1	1	1

\mathcal{X}	у	Z
0	0	0
0	1	1
1	0	1
1	1	1

$$z = x + y$$

NOT

$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{Z}}$
0	1
1	0

$$z = \overline{x} = x'$$

$$x \longrightarrow z$$

Logic gates

- Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.4 Symbols for digital logic circuits

Iqra chaudhary Fig. 1.5 Input-Output signals for gates

- Logic gates
 - Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.6 Gates with multiple inputs

Some more about Logic Gates

- Basic Gates
 - AND
 - OR
 - Not
- Extended Gates
 - NAND
 - NOR
 - XOR
 - XNOR

NAND Gate

- Operation to check if two conditions are met (for two input)
 - Output = 0 if and only if both inputs are 1
 - Symbolized by dot or absence of operator with a bar over them

 $\overline{x \cdot y}$ or \overline{xy}

_	_	4 1	4		ı
	l rı	ith	ta	\cap	
•	111	1 II I	la		J

 Needs to consider 2² = 4 input combinations

Graphic symbol

In	puts	Output
X	y	Z
0	0	1
0	1	1
1	0	1
_1	1	0

(b) Rectangular outline, 2-input NAND gate with polarity indicator

Logical Expression

$$X = \overline{AB}$$

22

NOR Gate

- Operation to check if two conditions are not met (for two input)
 - Output = 1 if and only if both inputs are 0
 - Symbolized by + operator with a bar over them

		_
X-	+	y

- Truth table
- Graphic symbol
 - NAND gate

uts	Output
y	z
0	1
1	0
0	0
1	0
	0 1

(a) Distinctive shape, 2-input NOR gate and its NOT/OR equivalent

(b) Rectangular outline, 2-input NOR gate with polarity indicator

$$X = \overline{A + B}$$

- XOR Gate

 Operation to check if two conditions are not met (for two input)
 - Output = 1 if one of the inputs is 1
- . Truth table
- Graphic symbol
 - XOR gate

Inputs	Output
x y	Z
0 0	0
0 1	1
1 0	1
_1 1	0

(a) Distinctive shape

(b) Rectangular outline

Two identical circuits connected in parallel

30

An XOR gate used to add two bits.

Input	Bits	Output (Sum)
\boldsymbol{A}	В	Σ
0	0	0
0	1	1
1	0	1
1	1	0 (without the 1 carry bit)
	75	

XOR and XNOR

Multiple-input XOR

- Extension of exclusive-OR not straightforward
 - What is the definition for 3 variables?
- Turns into "odd" function
 - Function is 1 when there is
 - an odd number of 1's

X	У	Z	x⊕y⊕z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Fixed function Logic

Some common gate configurations of 74 series are shown

Thank You