Projects Presentation Natural Language Processing

Master's Degree in Engineering in Computer Science

Florin Cuconasu

Named Entity Recognition – NER Homework 1

Named Entity Recognition – NER

NER is the task of **locating** and **classifying** named entities in a text.

Six Categories (Plus **O** tag for no named entity):

PERson CORPoration LOCation PRODuct GRoup CreativeWork

Ex:

Sundar Pichai is CEO of Google having headquarter in Mountain View.

Dataset

- English
- 14535 training examples
- **765** validation examples
- Already tokenized
- Lowercase tokens only
- Contains non-Latin words

Entity	Train	Dev
O	192841	10240
PER	10895	629
GRP	9459	567
CW	9267	431
LOC	7154	396
CORP	5962	252
PROD	4480	236

Entity	Train	Dev
PER	23%	25%
GRP	20%	22.6%
CW	19.6%	17%
LOC	15.2%	16%
CORP	12.7%	10%
PROD	9.5%	9.4%

Entity Frequency without O

Word Embeddings

Bi-LSTM

POS Embeddings with spaCy

Best Model

Hyper-parameter	Value
Epochs	12
Batch Size	256
Loss Function	CRF
Optimizer	Adam
Learning Rate	0.003
Gradient Clipping	0.7
StepLR Scheduler	step size=5, $\gamma = 0.2$
Vocabulary Size	20 000
GloVe Embed Dim	100
FastText Embed Dim	300
Bi-LSTM Hidden Dim	512
Bi-LSTM Stacked Layers	3
Dropout	0.4
Activation Function	LeakyReLU

Results

Model	F1 DEV	Epochs
Bi-LSTM + CCE	62.0	15
Bi-LSTM	66.5	14
$Bi-LSTM + (F \mid G^* \mid DEP)$	70.3	10
$Bi-LSTM + (F \mid G^* \mid POS)$	71.3	7
$Bi-LSTM + (F \mid G)$	72.0	9
$Bi-LSTM + (F \mid G^*)$	72.5	12

Table 1: F_1 scores. CCE, F and G stands respectively for Categorical Cross-Entropy, FastText embeddings and GloVe embeddings. G* indicates that the weights are learned. If not specified the loss is CRF.

								Confusio	matrix						
	0 -	10089 79.12%	36 0.28%	13 0.10%	49 0.36%	13 0.10%	24 0.19%	42 0.33%	23 0.18%	13 0.10%	27 0.21%	59 0.46%	12 0.09%	28 0.22%	10428 96.75% 3.25%
	1.GRP .	15 0.12%	314 2.46%		3 0.02%			1 0.01%	2 0.02%	10 0.08%			5 0.04%		350 377 10,29%
	I.PER .	16 0.13%	13 0.10%	305 2.39%	14 0 11%	0.01%		0.01%		0.02%				0.01%	354 86.16% 13.84%
	1.CW -	19 0.15%	2 0.02%	5 0.04%	185 1.45%	1 0.01%		7 0.05%		2 0.02%	0.02%			1 0.01%	224 82.59% 17.41%
	B.PER	13 0.10%		0.01%	1 0.01%	268 2.10%	1 0.01%	9 0.07%	12 0.09%		0.02%	1 0.01%			309 86.73% 13.27%
	BJOC -	9 0.07%	0.02%			3 0.02%	210 1.65%	1 0.01%	2 0.02%		5 0.04%	2 0.02%	4 0.03%		238 88.24% 11.76%
ted	B.CW .	22 0 17%			5 0.04%	4 0.03%	1 0.01%	102 0.80%	4 0.03%			2 0.02%			140 72.86% 27.14%
Predicted	B-GRP -	7 0.05%	1 0.01%		2 0.02%	8 0.06%	4 0.03%	3 0.02%	142 1.11%		6 0.05%				173 82.08% 17.92%
	I.CORP .	5 0.04%	7 0.05%	1 0.01%	1 0.01%		1 0.01%	1 0.01%		82 0.64%					98 83.67% 16.33%
	B-CORP -	0.09%				0.01%	0.02%	2 0.02%	5 0.04%	0.02%	88 0.69%	0.01%			113 77.88% 22.12%
	B-PROD .	16 0.13%				1 0.01%		1 0.01%			0.02%	81 0.64%		0.01%	102 79.413 20.59%
	1.10C .	10 0.08%	0.02%	3 0.02%						6 0.05%			132 1.04%		153 86.27% 13.73%
	LPROD .	8 0.06%		0.01%	1 0.01%							3 0.02%		56 0.44%	69 81.16% 18.84%
	m. col	10240 98.53% 1.47%	377 83.29% 16.71%	329 92.71% 7.79%	261 70.88% 29.12%	300 89.33% 10.67%	243 86.42% 13.58%	170 60.00% 40.00%	190 74.74% 25.26%	119 68.91% 31.09%	133 66.17%	149 54.36% 45.64%	153 86.27% 13.73%	87 64.37% 35.63%	94.53% 5.47%
		o	I.GR.	REA	,cm	BRER	Broc	B.CM	8.GR	LCORR	8-CORR	8.7200	'roc	1,2800	gam jin
				,		V	V	Acti		1/2	8,	87		1/2	911

Coreference Resolution Homework 3

Coreference Resolution

Coreference Resolution is the task of finding all **expressions** that **refer** to the **same entity** in a text.

John went home because **he** was tired.

Dataset

- Gender Ambiguous Pronounouns
- English
- 2999 training examples
- 454 validation examples

Pronoun	Train	Dev		
his	904 (30.1%)	108 (23.9%)		
her	773 (25.8%)	140 (30.8%)		
he	610 (20.4%)	93 (20.5%)		
she	555 (18.5%)	87 (19.1%)		
him	157 (5.2%)	26 (5.7%)		

Pam and Tara clean up Elijah 's body; Jessica, after learning about Russell 's attempt to kill Sookie, decides to call Jason, but Bill asks her why, and refuses.

Pam and Tara clean up Elijah 's body; Jessica, after learning about Russell 's attempt to kill Sookie, decides to call Jason, but Bill asks her why, and refuses.

her 69

```
Pam and Tara clean up Elijah 's body; Jessica, after learning about Russell 's attempt to kill Sookie, decides to call Jason, but Bill asks her why, and refuses.
```

her 69

Jessica 37

Sookie 93

```
Pam and Tara clean up Elijah 's body; Jessica, after learning about Russell 's attempt to kill Sookie, decides to call Jason, but Bill asks her why, and refuses.
```

her 69

Jessica 37 TRUE

Sookie 93 FALSE

BERT

Baseline

Models Hyper-parameters

Hyper-parameter	Value
Epochs	2
Batch Size	4
Loss Function	Cross Entropy
Optimizer	Adam
Learning Rate	8e-6
StepLR Scheduler	step size = 1, $\gamma = 0.8$
BERT Tokenizer	Base Uncased
Head Hidden Dim	512
Linear Hidden Dim	256
Dropout	0.1
Activation Function	GELU

Hyper-parameter	Value
Epochs	6
Batch Size	4
Loss Function	Cross Entropy
Optimizer	Adam
Learning Rate	5e-6
StepLR Scheduler	step size = 3, $\gamma = 0.5$
BERT Tokenizer	Base Cased
Head Hidden Dim	512
Dropout	0.1
Activation Function	LeakyReLU

Results

Model	ACC	Epochs	Time
Multiple Choice (Large)	82.2	3	11m 58s
Baseline Base Uncased	83.0	5	16m 16s
Baseline Base Cased	86.3	6	15m 49s
Baseline Large Uncased	86.8	3	8m 2s
Mention Score Base	87.0	2	5m 31s
Mention Score Large	87.2	2	5m 44s

Table 1: Accuracy scores on validation set. The Large models were trained on a Colab Tesla T4 GPU; instead the other model were trained using a GeForce RTX 2060.

Fine fin fund канец kraj край final kraj 終わり konec ende einde lõpp վերջ pää ein son final τέλος vég deireadh beigas 结 galas крајот аћћаг slutt დასასრული koniec fim sfârşit 東 конец deireadh крај 종료 konec slutet أخر ахыр кінець oxiri diwedd kawg עק Епd