VNU-HUS MAT3500: Toán rời rạc

Bài tập Lý thuyết số cơ bản I

Hoàng Anh Đức

Bộ môn Tin học, Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Bài tập 1. Biểu diễn các số nguyên sau dưới dạng nhị phân

- (a) 231
- (b) 4532
- (c) 97644

Bài tập 2. Tính tổng và tích các số nhi phân sau

- (a) $(1000111)_2$ và $(1110111)_2$
- (b) $(11101111)_2$ và $(10111101)_2$

Bài tập 3. Sử dụng thuật toán tính $b^n \mod m$ thông qua biểu diễn nhị phân của n để tính $7^{644} \mod 645$.

Bài tập 4. Tính các biểu thức sau

- (a) $(-133 \mod 23 + 261 \mod 23) \mod 23$
- (b) $((457 \mod 23) \cdot (182 \mod 23)) \mod 23$
- (c) $(99^2 \mod 32)^3 \mod 15$
- (d) $(3^4 \mod 17)^2 \mod 11$

Bài tập 5. Chứng minh rằng nếu $a \equiv b \pmod{m}$ và $c \equiv d \pmod{m}$, trong đó a, b, c, d và m là các số nguyên thỏa mãn $m \geq 2$, thì $a - c \equiv b - d \pmod{m}$.

Bài tập 6. Giá trị của hàm Euler ϕ tại số nguyên dương n được định nghĩa là số các số nguyên dương nhỏ hơn hoặc bằng n và nguyên tố cùng nhau với n. Ví dụ, $\phi(6) = 2$ vì trong các số nguyên dương nhỏ hơn hoặc bằng 6, chỉ có 1 và 5 là nguyên tố cùng nhau với 6.

- (a) Tính $\phi(4)$, $\phi(10)$, và $\phi(13)$.
- (b) Chứng minh rằng n là số nguyên tố khi và chỉ khi $\phi(n) = n 1$

Bài tập 7. Chứng minh rằng với mọi số nguyên dương n, tồn tại một dãy n hợp số liên tiếp. (**Gợi ý:** Xét dãy số nguyên liên tiếp bắt đầu từ (n+1)!+2.)

Bài tập 8. Tìm $\gcd(92928, 123552)$ and $\gcd(92928, 123552)$, và kiểm tra lại rằng $\gcd(92928, 123552)$ $\gcd(92928, 123552)$ = $92928 \cdot 123552$. (**Gợi ý:** Phân tích 92928 và 123552 thành tích các thừa số nguyên tố.)

Bài tập 9. Sử dụng thuật toán Euclid để tìm

- (a) gcd(12, 18)
- (b) gcd(111, 201)
- (c) gcd(1001, 1331)

Bài tập 10. Biểu diễn ước chung lớn nhất của các cặp số sau dưới dạng tổ hợp tuyến tính của chúng

- (a) 10,11
- (b) 21,44
- (c) 36,48
- (d) 34,55
- (e) 117, 213

Bài tập 11. Chứng minh rằng tích của ba số nguyên liên tiếp bất kỳ chia hết cho 6

Bài tập 12. Chứng minh rằng nếu a,b,m là các số nguyên với $m \ge 2$ và $a \equiv b \pmod{m}$ thì $\gcd(a,m) = \gcd(b,m)$. (Gợi ý: Chứng minh tập các ước chung của a và m bằng với tập các ước chung của b và m.)

Bài tập 13 (*). Chứng minh rằng nếu a và b đều là các số nguyên dương thì

$$(2^a - 1) \mod (2^b - 1) = 2^{a \mod b} - 1$$

(Gợi ý:
$$2^a - 1 = 2^{a-b}(2^b - 1) + 2^{a-b} - 1.$$
)