Data Mining for Visual Data

Outline

- Introduction
- Color Histogram
- LBP
- HOG

Introduction

Common Visual Features

Color Histogram

- Gray-scale image: [0,255]
 - Uniformly divide the range into bins, e.g., 16 bins
 - Count how many pixels for each bin
 - Normalize

Color Histogram

- How about RGB image?
 - 1. Get histogram of each channel then concatenate.
 - What is the drawback?
 - 2. Split bins based on three channels.
 - What is the drawback?

Take R and G channels for example

Color Histogram

- Spatial invariant
 - Good or not good?
 - Can we make it spatial variant?
- No texture information
 - Can be used to identify different people?
 - Can be used to identify different races (e.g, yellow, white, black)?

Local Binary Pattern (LBP)

- For each pixel p, create an 8-bit number [b1 b2 b3 b4 b5 b6 b7 b8], where bi = 0 if neighbor i has value less than p's value and 1 otherwise.
- Represent the texture in the image (or a region) by the histogram of these numbers.

Variations of LBP

• Multi-scale LBP

Bilinear Interpolation

$$\mathsf{f}(\mathsf{P}) = \frac{1}{(x_2-x_1)(y_2-y_1)} \left(f(Q_{11})(x_2-x)(y_2-y) + f(Q_{21})(x-x_1)(y_2-y) + f(Q_{12})(x_2-x)(y-y_1) + f(Q_{22})(x-x_1)(y-y_1) \right) \\ = \frac{1}{(x_2-x_1)(y_2-y_1)} \left(f(Q_{11})(x_2-x)(y_2-y) + f(Q_{21})(x-x_1)(y_2-y) + f(Q_{12})(x_2-x)(y-y_1) + f(Q_{22})(x-x_1)(y_2-y) \right) \\ = \frac{1}{(x_2-x_1)(y_2-y_1)} \left(f(Q_{11})(x_2-x)(y_2-y) + f(Q_{21})(x-x_1)(y_2-y) + f(Q_{12})(x_2-x)(y-y_1) + f(Q_{22})(x-x_1)(y_2-y) \right) \\ = \frac{1}{(x_2-x_1)(y_2-y_1)} \left(f(Q_{11})(x_2-x)(y_2-y) + f(Q_{21})(x-x_1)(y_2-y) + f(Q_{12})(x_2-x)(y-y_1) + f(Q_{22})(x-x_1)(y-y_1) + f(Q_{22})(x-x_1)(x-x_1)(y-y_1) + f(Q_{22})(x-x_1)(x-x_1)(x$$

Variations of LBP

LBP with Rotation Invariance

LBP Histogram

Gradient Operators

-1 0 1

centered

-1 1

uncentered

1 -8 0 8 -1

cubic-corrected

0	1
-1	0

diagonal

-1	0	1
-2	0	2
-1	0	1

Sobel

Histogram of Oriented Gradient (HOG)

Get direction and magnitude from 8*8 cell

$$g=\sqrt{g_x^2+g_y^2}$$

$$heta = arctanrac{g_x}{g_y}$$

- Split into 9 bins
 - [0,20,...,160]

Histogram of Oriented Gradient (HOG)

- Normalization based on 16*16 blocks (4 cells)
 - Normalize on vector with size 4*9=36

Centrist

- Centrist descriptor [Wu and Rehg, '11]
- Census Transform (CT):
 - encodes the "signs of neighboring comparisons" information of a gradient image

$$32 64 96$$
 $32 64 96$
 $31 0 \Rightarrow (11010110)_2 \Rightarrow CT = 214.$
 $32 32 96$
 110

• For an image, apply the CT to each pixel, and create the histogram of CT values.

