Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

2ª aula Prática

Sumário:

Resolução de problemas sobre o cap. 1

Bibliografia:

Garcia, cap.5.

John V. Guttag, Introduction to Computation and Programming Using Python, 2013, 2ª edição, MIT Press, cap. 15.

Problema cap 1.5 Regressão linear pelo método dos mínimos quadráticos

Quando se tem um conjunto x, y de N medições, o método dos mínimos quadráticos oferece o ajuste linear que apresenta a menor diferença entre os valores medidos e os estimados por uma reta y = m x + b. Se se considerar que os erros que afetam os valores de y são iguais, as expressões que o método fornece são:

$$m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

$$b = \frac{\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

$$r^{2} = \frac{\left(N \sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}\right)^{2}}{\left[N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \left[N \sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right)^{2}\right]}$$

O coeficiente de determinação r^2 é tal que quando ~1 indica um ótimo ajuste, enquanto que ~ 0 indica que não o modelo não é linear.

$$\Delta m = |m| \sqrt{\frac{\frac{1}{r^2} - 1}{N - 2}} \text{ e } \Delta b = \Delta m \sqrt{\frac{\sum_{i=1}^{N} x_i^2}{N}}$$

Escreva um programa em python que calcule as quantidades anteriores.

Problema cap 1.5 Regressão linear pelo método dos mínimos quadráticos

Numa experiência de difração de um feixe de luz por uma fenda foram medidos 7 pares de valores (na tabela) da distância da fonte de luz ao alvo, L, e a distância entre máximos luminosos consecutivos (entre a mancha vermelha central e as outras manchas vermelhas) da figura de difração, X,

L (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

Escreva um programa em python que calcule as quantidades anteriores. Como teste ao programa escrito, compare os seus resultados intermédios com os valores

$$\sum_{i=1}^{N} x_i y_i = 2322.4; \quad \sum_{i=1}^{N} x_i = 1286.0; \sum_{i=1}^{N} y_i = 13.5;$$

$$\sum_{i=1}^{N} x_i^2 = 221719.5; \quad \sum_{i=1}^{N} y_i^2 = 24.33;$$

$$m = 0.01015505; \quad \Delta m = 0.000162973$$

$$b = 0.05507544; \quad \Delta b = 0.02713077$$

$$r^2 = 0.99845714$$

Problema cap 1.5 Regressão linear pelo método dos mínimos quadráticos

- a) Comece por representar os dados experimentais num gráfico.
- b) Calcular as somas das expressões acima.
- c) De seguida calcule o declive, a ordenada na origem e o coeficiente de determinação ou de correlação r^2 .
- d) faça um gráfico com os pontos experimentais e a reta cujos parâmetros m e b calculou anteriormente.
- e) Encontre o valor de X, quando $L=165.0\,\mathrm{cm}$. Use a reta determinada pela regressão linear.
- f) Afaste da reta encontrada um dos valores medidos de y. Compare o coeficiente de determinação com o valor anterior. Faça um gráfico com os novos pontos experimentais e a nova reta.

Nota: os valores da tabela acima são as medições realizadas numa experiência de difração por uma dupla fenda de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração.

Problema cap 1.6 Regressão linear pelo método dos mínimos quadráticos

Um ciclista tenta percorrer a velocidade constante (uniforme) uma distância de 10 km.

O seu treinador nos primeiros 9 minutos e a cada minuto mede a distância percorrida, e regista os valores em km:

0.00 0.735 1.363 1.739 2.805 3.814 4.458 4.955 5.666 6.329

- a) Apresente estas medições num gráfico. A analisar o gráfico, a relação entre o tempo e a distância percorrida é linear?
- b) Encontre o declive, a ordenada na origem, os erros respetivos e o coeficiente de determinação.
- É uma relação linear bem aproximada? O ciclista conseguiu manter a mesma velocidade uniforme durante o percurso?
- c) Qual a velocidade média do ciclista?
- d) Use a função polyfit dos pacote numpy ou do pacote pylab para encontrar a reta que mais se aproxima das medições.
- O declive e a ordenada na origem concordam com os valores calculados na alínea b)?
- e) Apresente a velocidade em km/hora.

Cap. 1 Física: Medição e Modelação

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$
$$\log_b \frac{x}{y} = \log_b x - \log_b y$$
$$\log_b x = \frac{\log_c x}{\log_c b}$$

Leis de potência $y = cx^n$

$\log_b y = \log_b c + \underbrace{n} \cdot \log_b x : RETA$ declive

Problema cap 1.8 Regressão linear pelo método dos mínimos quadráticos

Foi medida a energia por segundo (potência) emitida por um corpo negro (corpo que absorve toda a energia que incide nele) de área 100 cm^2 em função da temperatura absoluta, T, e registada na seguinte tabela

- T (K) 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1100. E (J) 0.6950 4.363 15.53 38.74 75.08 125.2 257.9 344.1 557.4 690.7
- a) Apresente estas medições num gráfico. A analisar o gráfico, a relação entre a energia emitida e a temperatura é linear?
- b) Apresente as medições num gráfico log-log. Qual a dependência entre as quantidade energia emitida e a temperatura?