Bayesian Inference for a Mean

Jingchen (Monika) Hu

Vassar College

MATH 347 Bayesian Statistics

Outline

- Example: Expenditures in the Consumer Expenditure Surveys
- 2 Prior and posterior distributions for mean and standard deviation
- 3 Bayesian inference for unknown mean μ (Lab 2)
- 4 Recap

Outline

- Example: Expenditures in the Consumer Expenditure Surveys
- Prior and posterior distributions for mean and standard deviation
- 3 Bayesian inference for unknown mean μ (Lab 2)
- 4 Recap

The Consumer Expenditure Surveys Data (CE)

- Conducted by the U.S. Census Bureau for the BLS.
- Contains data on expenditures, income, and tax statistics about consumer units (CU) across the country.
- Provides information on the buying habits of U.S. consumers.

The Consumer Expenditure Surveys Data (CE)

- Conducted by the U.S. Census Bureau for the BLS.
- Contains data on expenditures, income, and tax statistics about consumer units (CU) across the country.
- Provides information on the buying habits of U.S. consumers.
- The CE program releases data in two ways:
 - ► Tabular data (aggregated)
 - Micro-level data: public-use microdata PUMD (CU-level)

The Consumer Expenditure Surveys Data (CE)

- Conducted by the U.S. Census Bureau for the BLS.
- Contains data on expenditures, income, and tax statistics about consumer units (CU) across the country.
- Provides information on the buying habits of U.S. consumers.
- The CE program releases data in two ways:
 - ► Tabular data (aggregated)
 - Micro-level data: public-use microdata PUMD (CU-level)
- We work with PUMD micro-level data, with the continuous variable TOTEXPPQ: CU total expenditures last quarter.
- We work with Q1 2017 sample: n = 6,208.

The TOTEXPPQ variable

```
CEsample = read_csv("CEsample1.csv")
summary(CEsample$TotalExpLastQ)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 30 3522 6417 9513 11450 1270598
sd(CEsample$TotalExpLastQ)
```

[1] 19341.25

The TOTEXPPO variable cont'd

```
ggplot(data = CEsample, aes(TotalExpLastQ)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Total expenditure last Q") +
  theme_grey(base_size = 8, base_family = "")
```

Total expenditure last Q

The TOTEXPPQ variable cont'd

Total expenditure last Q

- Very skewed to the right.
- Take log and transform it to the log scale.

Log transformation of the TOTEXPPQ variable

```
CEsample$LogTotalExpLastQ <- log(CEsample$TotalExpLastQ)
ggplot(data = CEsample, aes(LogTotalExpLastQ)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Total expenditure last Q (log)") +
  theme_grey(base_size = 8, base_family = "")</pre>
```

Total expenditure last Q (log)

The Normal distribution

- The Normal distribution is a symmetric, bell-shaped distribution.
- ullet It has two parameters: mean μ and standard deviation σ .

The Normal distribution

- The Normal distribution is a symmetric, bell-shaped distribution.
- It has two parameters: mean μ and standard deviation σ .
- The probability density function (pdf) of $Normal(\mu, \sigma)$ is:

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y-\mu)^2}{2\sigma^2}\right), -\infty < y < \infty.$$

The Normal distribution cont'd

i.i.d. Normals

- Suppose there are a sequence of n responses: Y_1, Y_2, \cdots, Y_n .
- Further suppose each response independently and identically follows a Normal distribution:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

• Then the joint probability density function (joint pdf) of y_1, \dots, y_n is:

$$f(y_1, \dots, y_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y_i - \mu)^2}{2\sigma^2}\right), -\infty < y_i < \infty. \quad (1)$$

Outline

- 1 Example: Expenditures in the Consumer Expenditure Surveys
- 2 Prior and posterior distributions for mean and standard deviation
- 3 Bayesian inference for unknown mean μ (Lab 2)
- 4 Recap

Recap from proportion lecture

- Bayesian inference procedure:
 - ► Step 1: express an opinion about the location of the proportion p before sampling (prior).
 - Step 2: take the sample and record the observed proportion (data/likelihood).
 - ▶ Step 3: use Bayes' rule to sharpen and update the previous opinion about *p* given the information from the sample (posterior).

Recap from proportion lecture

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of the proportion p before sampling (prior).
 - Step 2: take the sample and record the observed proportion (data/likelihood).
 - ▶ Step 3: use Bayes' rule to sharpen and update the previous opinion about *p* given the information from the sample (posterior).
- For Binomial data/likelihood, the Beta distributions are conjugate priors.
 - ▶ The prior distribution: $p \sim \text{Beta}(a, b)$
 - ▶ The sampling density: $Y \sim \text{Binomial}(n, p)$
 - ▶ The posterior distribution: $p \mid Y = y \sim \text{Beta}(a + y, b + n y)$

Recap from proportion lecture

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of the proportion p before sampling (prior).
 - Step 2: take the sample and record the observed proportion (data/likelihood).
 - ► Step 3: use Bayes' rule to sharpen and update the previous opinion about *p* given the information from the sample (posterior).
- For Binomial data/likelihood, the Beta distributions are conjugate priors.
 - ▶ The prior distribution: $p \sim \text{Beta}(a, b)$
 - ▶ The sampling density: $Y \sim \text{Binomial}(n, p)$
 - ▶ The posterior distribution: $p \mid Y = y \sim \text{Beta}(a + y, b + n y)$
- What to do for a Normal model $Y_i \overset{i.i.d.}{\sim} \text{Normal}(\mu, \sigma)$?
 - ▶ Data model/sampling density is chosen: Normal.
 - ▶ What to do with two parameters μ and σ ?
 - ► How to specify priors? Conjugate priors exist?

Step 1: Prior distributions

• The data model/sampling density for *n* observations:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

- ullet There are two parameters μ and σ in the Normal model.
- Therefore, the likelihood is in terms of both unknown parameters:

$$f(y_1, \cdots, y_n) = L(\mu, \sigma). \tag{2}$$

Step 1: Prior distributions

• The data model/sampling density for *n* observations:

$$Y_i \overset{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

- There are two parameters μ and σ in the Normal model.
- Therefore, the likelihood is in terms of both unknown parameters:

$$f(y_1,\cdots,y_n)=L(\mu,\sigma). \tag{2}$$

• Need a joint prior distribution:

$$\pi(\mu,\sigma)$$
. (3)

Bayes' rule will help us derive a joint posterior:

$$\pi(\mu,\sigma\mid y_1,\cdots,y_n). \tag{4}$$

If only mean μ is unknown

- Special case: μ is unknown, σ is known.
- There is only one parameter μ in $Y_i \overset{i.i.d.}{\sim} \operatorname{Normal}(\mu, \sigma)$.
- The Bayesian inference procedure simplifies to:
 - ▶ The data model for *n* observations with σ known:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

▶ The likelihood is in terms of unknown parameter μ :

$$f(y_1,\cdots,y_n)=L(\mu). \tag{5}$$

Need a prior distribution for μ:

$$\pi(\mu \mid \sigma)$$
. (6)

B Bayes' rule will help us derive a posterior for μ :

$$\pi(\mu \mid y_1, \cdots, y_n, \underline{\sigma}). \tag{7}$$

If only mean μ is unknown: Normal conjugate prior

- For this special case, Normal prior for μ is a conjugate prior:
 - ► The prior distribution:

$$\mu \mid \sigma \sim \text{Normal}(\mu_0, \sigma_0).$$
 (8)

► The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (9)

If only mean μ is unknown: Normal conjugate prior

- ullet For this special case, Normal prior for μ is a conjugate prior:
 - ► The prior distribution:

$$\mu \mid \sigma \sim \text{Normal}(\mu_0, \sigma_0).$$
 (8)

► The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (9)

The posterior distribution:

$$\mu \mid y_1, \cdots, y_n, \frac{\phi}{\phi} \sim \text{Normal}\left(\frac{\phi_0 \mu_0 + n\phi \overline{y}}{\phi_0 + n\phi}, \sqrt{\frac{1}{\phi_0 + n\phi}}\right),$$
 (10)

where $\phi = \frac{1}{\sigma^2}$ (and $\phi_0 = \frac{1}{\sigma_0^2}$), the precision. Since σ (and σ_0) is known, ϕ (and ϕ_0) is known too.

If only mean μ is unknown: Normal conjugate prior

- For this special case, Normal prior for μ is a conjugate prior:
 - ► The prior distribution:

$$\mu \mid \sigma \sim \text{Normal}(\mu_0, \sigma_0).$$
 (8)

► The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (9)

► The posterior distribution:

Recall: \pi(\mu I y_1,...,y_n, \sigma) \propto \pi(\mu I \sigma)x L(\mu)

$$\mu \mid y_1, \cdots, y_n, \frac{\phi}{\phi} \sim \text{Normal}\left(\frac{\phi_0 \mu_0 + n\phi \overline{y}}{\phi_0 + n\phi}, \sqrt{\frac{1}{\phi_0 + n\phi}}\right),$$
 (10)

This is \mu 's own Normal distrubution

where $\phi = \frac{1}{\sigma^2}$ (and $\phi_0 = \frac{1}{\sigma_0^2}$), the precision. Since σ (and σ_0) is known, ϕ (and ϕ_0) is known too. Note that again, the posterior mean is the weighted average of prior mean \mu_0 (with weight \phi_0) and sample mean

• We can then use the rnorm() R function to sample posterior draws of μ from Equation (10). Known quantities: $\phi_0, \mu_0, n, \bar{y}, \phi$

Simulate posterior draws of μ

```
mu \ 0 < -5
sigma_0 <- 1
phi_0 <- 1/sigma_0^2
ybar <- mean(CEsample$LogTotalExpLastQ)</pre>
phi <- 1.25
n <- dim(CEsample)[1]
mu_n \leftarrow (phi_0*mu_0+n*ybar*phi)/(phi_0+n*phi)
sd_n <- sqrt(1/(phi_0+n*phi))</pre>
set.seed(123)
S <- 1000
mu_post <- rnorm(S, mean = mu_n, sd = sd n)</pre>
df <- as.data.frame(mu post)</pre>
```

Simulate posterior draws of μ cont'd

```
ggplot(data = df, aes(mu_post)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Posterior density") +
  xlab(expression(mu)) +
  theme_grey(base_size = 8, base_family = "")
```

Posterior density

If only standard deviation σ is unknown

- Special case: μ is known, σ is unknown.
- There is only one parameter μ -in $Y_i \overset{i.i.d.}{\sim} \operatorname{Normal}(\mu, \sigma)$.
- The Bayesian inference procedure simplifies to:
 - ▶ The data model/sampling density for n observations with μ known:

$$Y_i \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

▶ The likelihood is in terms of unknown parameter σ :

$$f(y_1,\cdots,y_n)=L(\sigma). \tag{11}$$

▶ Need a prior distribution for σ :

$$\pi(\sigma \mid \mu). \tag{12}$$

B Bayes' rule will help us derive a posterior for σ :

$$\pi(\sigma \mid y_1, \cdots, y_n, \underline{\mu}). \tag{13}$$

If only standard deviation σ is unknown: Gamma conjugate prior for $1/\sigma^2$

- For this special case, Gamma prior for $1/\sigma^2$ is a conjugate prior:
 - ► The prior distribution:

$$1/\sigma^2 \mid \mu \sim \text{Gamma}(\alpha, \beta).$$
 (14)

▶ The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (15)

If only standard deviation σ is unknown: Gamma conjugate prior for $1/\sigma^2$

- For this special case, Gamma prior for $1/\sigma^2$ is a conjugate prior:
 - ► The prior distribution:

$$1/\sigma^2 \mid \mu \sim \text{Gamma}(\alpha, \beta).$$
 (14)

▶ The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (15)

► The posterior distribution:

$$1/\sigma^2 \mid y_1, \cdots, y_n, \frac{\mu}{\mu} \sim \operatorname{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^{n} (y_i - \mu)^2\right)$$
 (16)

If only standard deviation σ is unknown: Gamma conjugate prior for $1/\sigma^2$

- For this special case, Gamma prior for $1/\sigma^2$ is a conjugate prior:
 - ► The prior distribution:

$$1/\sigma^2 \mid \mu \sim \text{Gamma}(\alpha, \beta).$$
 (14)

► The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$
 (15)

► The posterior distribution:

$$1/\sigma^2 \mid y_1, \cdots, y_n, \mu \sim \operatorname{Gamma}\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^n (y_i - \mu)^2\right)$$
 (16)

• We can then use rgamma() R function to sample posterior draws of σ from Equation (16). Known quantities: α , n, β , $\{y_i\}$, μ

Simulate posterior draws of σ

```
alpha <- 1
beta <- 1
mu <- 8
n <- dim(CEsample)[1]
alpha_n <- alpha+n/2
beta_n <- beta+1/2*sum((CEsample$LogTotalExpLastQ-mu)^2)

set.seed(123)
S <- 1000
invsigma2_post <- rgamma(S, shape=alpha_n, rate=beta_n)
df <- as.data.frame(invsigma2_post)</pre>
```

Simulate posterior draws of σ cont'd

```
ggplot(data = df, aes(invsigma2_post)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Posterior density") +
  xlab(expression(1/sigma^2)) +
  theme_grey(base_size = 8, base_family = "")
```

Posterior density

Outline

- Example: Expenditures in the Consumer Expenditure Surveys
- Prior and posterior distributions for mean and standard deviation
- 3 Bayesian inference for unknown mean μ (Lab 2)
- 4 Recap

- Bayesian hypothesis testing
 - exact solution: conjugacy
 - **★** pbeta() \rightarrow pnorm() R functions
 - approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions

- Bayesian hypothesis testing
 - exact solution: conjugacy
 - ★ pbeta() → pnorm() R functions
 - approximation by Monte Carlo simulation
 - ★ rbeta() \rightarrow rnorm() R functions
- Bayesian credible interval
 - exact solution: conjugacy
 - ★ qbeta() → qnorm() R functions
 - approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions

- Bayesian hypothesis testing
 - ▶ exact solution: conjugacy

 * pbeta() → pnorm() R functions
 - poeta() → pnorm() K functions
 approximation by Monte Carlo simulation
 - * rbeta() → rnorm() R functions
- Bayesian credible interval
 - exact solution: conjugacy
 - ★ qbeta() → qnorm() R functions
 - approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions
- Bayesian prediction
 - approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions

- Bayesian hypothesis testing
 - exact solution: conjugacy
 - **★** pbeta() \rightarrow pnorm() R functions
 - ▶ approximation by Monte Carlo simulation
 ★ rbeta() → rnorm() R functions
- Bayesian credible interval
 - exact solution: conjugacy
 - ★ qbeta() → qnorm() R functions
 - approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions
- Bayesian prediction
 - ► approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions
- Posterior predictive checking
 - approximation by Monte Carlo simulation
 - ★ rbeta() → rnorm() R functions

Outline

- Example: Expenditures in the Consumer Expenditure Surveys
- Prior and posterior distributions for mean and standard deviation
- 3 Bayesian inference for unknown mean μ (Lab 2)
- 4 Recap

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - ▶ Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).
- For Normal data/likelihood, Normal distributions are conjugate priors for μ , and Gamma distributions are conjugate priors for ϕ .

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).
- For Normal data/likelihood, Normal distributions are conjugate priors for μ , and Gamma distributions are conjugate priors for ϕ .
- Bayesian inference
 - Bayesian hypothesis testing
 - Bayesian credible interval
 - Bayesian prediction
 - ► Posterior predictive checking

- Bayesian inference procedure:
 - Step 1: express an opinion about the location of mean μ and standard deviation σ (or precision ϕ) before sampling (prior).
 - Step 2: take the sample (data/likelihood).
 - Step 3: use Bayes' rule to sharpen and update the previous opinion about μ and σ (or precision ϕ) given the information from the sample (posterior).
- For Normal data/likelihood, Normal distributions are conjugate priors for μ , and Gamma distributions are conjugate priors for ϕ .
- Bayesian inference
 - Bayesian hypothesis testing
 - Bayesian credible interval
 - Bayesian prediction
 - Posterior predictive checking
- What if we want to use a different prior for μ ? What if both μ and σ are unknown?