Solution

1. Sample Solution:

Let $x \in \mathbb{R}$.
Proof by contrapositive
Assume $x \le -1$.
Then x < 0.
Also $x + 1 \le 0$.
Then x - 1 < 0. #subtr

Then x - 1 < 0. #subtract 2 from both sides and use the fact -2 < 0.

Then $(x+1)(x-1) \ge 0 \# \text{multiply } x+1 \le 0 \text{ by } x-1.$

Then $x^2 - 1 \ge 0$.

Then $x(x^2 - 1) \le 0 \#$ multiply by x < 0.

Then $x^2 - x \leq 0$.

Then $x \leq -1 \Rightarrow x^3 - x \leq 0$.

Then $x^3 - x > 0 \Rightarrow x > -1$.

Therefore $\forall x \in \mathbb{R} : x^3 - x > 0 \Rightarrow x > -1$.

2. Sample Solution:

Let $n \in \mathbb{Z}$.

Assume $\exists a, b \in \mathbb{Z} : n+5=5a+6b$.

Let $a_0, b_0 \in \mathbb{Z}$ such that $n + 5 = 5a_0 + 6b_0$.

Then, n + 2 = n + 5 - 3.

Then, $n+2=5a_0+6b_0-3$.

Then, $n + 2 = 5a_0 + 6b_0 - 15 + 15 - 3$.

Then, $n + 2 = 5(a_0 + 3) + 6(b_0 - 3)$.

Let $a_1 = a_0 + 3$.

Then, $a_1 \in \mathbb{Z}$.

Let $b_1 = 2(b_0 - 3)$.

Then, $b_1 \in \mathbb{Z}$.

Then, $n+2=5a_1+3b_1$.

Then, $\exists a, b \in \mathbb{Z} : n+2 = 5a+3b$.

Then, $[\exists a, b \in \mathbb{Z} : n+5 = 5a+6b] \Rightarrow [\exists a, b \in \mathbb{Z} : n+2 = 5a+3b].$

Therefore $\forall n \in \mathbb{Z} : [\exists a, b \in \mathbb{Z} : n+5=5a+6b] \Rightarrow [\exists a, b \in \mathbb{Z} : n+2=5a+3b].$