

Practice No. : 2

Topic : Introduction to Java

Date : 03-05-2024

Solve the following problems

Question No.	Question Detail	Level
1	Determine whether to sleep in based on two conditions: 'weekday'	Easy
	and 'vacation'. If it's not a weekday or if we're on vacation, we	
	sleep in. Write Java code to determine whether we sleep in or not.	
	Sample Input: false false	
	Sample Output: true	
	Sample Input:true false	
	Sample Output: false	
	Sample Input: false true	
	Sample Output: true	
2	Determine whether we are in trouble based on the smiling status	Easy
	of two monkeys, 'aSmile' and 'bSmile'. We are in trouble if both	
	monkeys are smiling or if neither of them is smiling. Return true if	
	we are in trouble	
	Sample Input: false false	
	Sample Output: true	
	Sample Input: true true	
	Sample Output: true	
	Sample Input: false true	
	Sample Output: false	

SDE Readiness Training

3	Given two integer values, calculate their sum. If the two values	Easy
3	-	Lasy
	are the same, return double their sum; otherwise, return their	
	sum.	
	Sample Input: 1 2	
	Sample Output: 3	
	Sample Output: 3	
	Sample Input: 3 2	
	Sample Output: 5	
	Sample Input: 2 2	
	Sample Output: 8	
4	We have a loud-talking parrot. The "hour" parameter is the current	Easy
	hour time in the range 023. We are in trouble if the parrot is	
	talking and the hour is before 7 or after 20. Print true if we are in	
	trouble.	
	Sample Input: 6 true	
	Sample Output: true	
	Sample Input: 7 true	
	Sample Output: false	
	Sample Input: 6 false	
	Sample Output: false	
5	We're hosting a party with tea and candy. The outcome of the	Easy
	party is encoded as follows: 0=bad, 1=good, or 2=great. A party	
	is considered good (1) if both tea and candy are at least 5. If either	
	tea or candy is at least double the amount of the other one, the	
	party is great (2). However, if either tea or candy is less than 5,	
	the party is always bad (0).	
	Sample Input: 6 8	
	Sample Output: 1	
	Sample Input: 3 8	
L		

SDE Readiness Training

	Sample Output: 0	
	Sample Input: 20 6	
	Sample Output: 2	
6	Identify the required variables to store the information of a mobile	Easy
	for a mobile shop. Create and show the sample data.	•
7	Do the following and explore what is happening. (Print the values	Easy
	to see the impact)	
	a. Initialize an integer variable 'price' with the value 52 and	
	assign it to a float variable `priceInFloat'.	
	b. Initialize a byte variable 'age' with the value 83 and assign	
	it to an integer variable `intAge'.	
	c. Initialize an integer variable 'highestAge' to 120 and assign	
	it to a byte variable `byteAge'.	
	d. Change the value of 'highestAge' to 130 and assign it to	
	`byteAge'.	
8	If the selling price of 15 items and total profit earned on them is	Easy
	input through the keyboard, write a program to find the cost price	
	of one item.	
	Sample Input: 60,30	
	Sample Output: 2	
	Sample Input: 225, 45	
	Sample Output: 12	
9	Given 2 non-negative ints, a and b, return their sum, so long as	Easy
	the sum has the same number of digits as a. If the sum has more	
	digits than a, just return a without b.	
	Sample Input: 2 3	
	Sample Output: 5	
	Sample Input: 8 3	
	Sample Output: 8	
10	Given an int n, return the string form of the number followed by	Easy
	"!". So the int 6 yields "6!". Except if the number is divisible by 3	
	use "Fizz" instead of the number, and if the number is divisible by	
	5 use "Buzz", and if divisible by both 3 and 5, use "FizzBuzz". Note:	
	the % "mod" operator computes the remainder after division, so	

SDE Readiness Training

23 % 10 yields 3. What will the remainder be when one number	
divides evenly into another?	

