Численные методы поиска условного экстремума

- 1. Постановка задачи
- 2. Необходимое и достаточное условие первого порядка условного экстремума в точке
- 3. Численные методы решения задачи нелинейного программирования с ограничениями
- 4. Метод внешних штрафов

1. Постановка задачи:

Пусть даны дважды непрерывно дифференцируемые целевая функция $f(x) = f(x_1, ..., x_n)$ и функции ограничений $g_j(x)$, j = 1, ... p, определяющие множество допустимых решений X:

$$g_j(x) = 0, \ j = 1, ... m \ (m < n), \qquad g_j(x) \le 0, \ j = m + 1, ... p;$$

Найти локальный минимум целевой функции на множестве X, то есть такую точку $x^* \in X$, что

$$f(x^*) = \min_{x \in X} f(x) \tag{1.1}$$

$$X = \left\{ x \in \mathbb{R}^n \middle| \begin{array}{l} g_j(x) = 0, & j = 1, \dots m \\ g_j(x) \le 0, & j = m + 1, \dots p \end{array} \right\}$$

Задача (1.1) называется задачей со *смешанными* ограничениями. При p=m задача преобразуется в задачу с ограничениями типа равенств, а при m=0 — в задачу с ограничениями типа неравенств.

<u>Определение 1.1</u> Функция

$$L(x, \lambda_0, \lambda) = \lambda_0 f(x) + \sum_{j=1}^{p} \lambda_j g_j(x)$$

называется *обобщенной функцией Лагранжа*, числа λ_0 , ... λ_p – множителями Лагранжа, $\lambda = \left(\lambda_1, ... \lambda_p\right)^T$.

Классической функцией Лагранжа называется функция

$$L(x,\lambda) = f(x) + \sum_{j=1}^{p} \lambda_j g_j(x)$$

<u>Определение 1.2</u> Ограничение $g_j(x) \le 0$ называется *активным* в точке x^* , если $g_j(x^*) = 0$, и пассивным, если $g_j(x^*) < 0$, j = m+1, ..., p.

<u>Определение 1.3</u> Градиенты ограничений $g_j(x)$, j=1,...,m, являются линейно независимыми в точке x^* , если

$$\lambda_1 \nabla g_1(x^*) + \dots + \lambda_m \nabla g_m(x^*) = 0 \iff \lambda_1 = \dots = \lambda_m = 0$$

2.1 Необходимое условие экстремума первого порядка

Пусть x^* – точка локального экстремума, тогда $\exists \ \lambda_0^* \ge 0, \ \lambda^* = (\lambda_1^*, ..., \lambda_P^*),$ не равные одновременно нулю, такие, что выполняются условия:

- стационарности функции Лагранжа по х:

$$\frac{\partial L(x^*, \lambda_0^*, \lambda^*)}{\partial x_i} = 0, \quad i = 1, ..., n$$

- допустимости решения:

(2.1)

$$g_j(x^*) = 0, \ j = 1, ..., m, \qquad g_j(x^*) \le 0, \ j = m+1, ..., p$$

- неотрицательности для условного минимума (≤ для максимума):

$$\lambda_i^* \ge 0, \ j = m + 1, ..., p$$

- дополняющей нежесткости: $\lambda_{i}^{*}g_{i}(x^{*})=0, \ j=m+1,...,p$

Если градиенты активных ограничений-неравенств и ограничений-равенств в точке x^* линейно независимы (то есть выполняется условие регулярности), то $\lambda_0^* \neq 0$.

2.2 Достаточное условие экстремума первого порядка

Пусть имеется точка (x^*, λ^*) , удовлетворяющая системе необходимых условий условного экстремума при $\lambda_0^* \neq 0$, суммарное число активных ограничений-неравенств в точке x^* и ограничений-равенств совпадает с числом n переменных (при этом выполняется условие регулярности).

Если $\forall j \in J_a$, где J_a – множество индексов ограничений, активных в точке x^* :

- 1) $\lambda_i^* > 0$, то x^* точка условного локального минимума.
- 2) $\lambda_i^* < 0$, то x^* точка условного локального максимума.

- 1. Точки x^* , удовлетворяющие системе (2.1), называются условностационарными.
- 2. Необходимые условия экстремума первого порядка формулируются отдельно для минимума и максимума
- 3. Если в задаче ограничения записаны в форме $g_j \ge 0$ то их необходимо преобразовать: $-g_j(x^*) \le 0$.
- 4. Точка экстремума, удовлетворяющая системе (2.1), при $\lambda_0^* \neq 0$, называется регулярной, а при $\lambda_0^* = 0$ нерегулярной. При $\lambda_0^* = 0$ ограничения вырождены.
- 5.1. Если при $\lambda_0^* \neq 0$ функции f(x), $g_j(x)$, j=m+1,...,p выпуклые, а функции $g_j(x)$, j=1,...,m линейные, то условия (2.1) являются также достаточными условиями локального и глобального минимума.
- 5.2. Если при $\lambda_0^* \neq 0$ функции -f(x), $g_j(x)$, j=m+1,...,p выпуклые, а функции $g_j(x)$, j=1,...,m линейные, то условия (2.1) являются также достаточными условиями локального и глобального максимума.
 - 5.3. В обоих случаях множество X выпукло.

- 3. Методы последовательной безусловной минимизации предполагают преобразование исходной задачи в последовательность задач безусловной оптимизации путем введения в рассмотрение вспомогательных функций.
 - Суть метода (внешних) штрафов состоит в том, что к целевой функции добавляется функция, интерпретируемая как штраф за нарушение каждого из ограничений. Метод генерирует последовательность точек, сходящихся к решению исходной задачи.
 - В методе барьеров (внутренних штрафов) к целевой функции добавляется слагаемое, которое не позволяет генерируемым точкам выходить за пределы множества допустимых решений.

Методы возможных направлений связаны с нахождением предела x^* последовательности $\{x^k\}$ допустимых точек при $k \to \infty$, таких, что $f(x^{k+1}) < f(x^k)$, k = 0,1,...

4. Метод внешних штрафов

Пусть поставлена задача (1.1).

Идея метода заключается в сведении задачи на <u>условный</u> минимум к решению последовательности задач <u>безусловного</u> минимума вспомогательной функции

$$F(x,r^k) = f(x) + P(x,r^k) \to \min_{x \in \mathbb{R}^n}$$
 (4.1)

где r^k – параметр штрафа, задаваемый на каждой k-й итерации, $P(x,r^k)$ – штрафная функция, которая строится, исходя из условий:

$$P(x, r^k) = \begin{cases} 0, & \text{при } x \in X \\ > 0, & \text{при } x \notin X \end{cases}$$

Если $x \notin X$, $r^k \to \infty$ и $k \to \infty$, то функция $P(x, r^k) \to \infty$.

Интерпретация такова, что чем больше r^k , тем больше штраф за невыполнение ограничений.

Для ограничений типа равенств используется квадратичный штраф, а для ограничений типа неравенств – квадрат срезки $g_i^+(x)$:

$$P(x,r^k) = \frac{r^k}{2} \left(\sum_{j=1}^m [g_j(x)]^2 + \sum_{j=m+1}^p [g_j^+(x)]^2 \right)$$
(4.2)

$$g_j^+(x) = \max\{0, g_j(x)\} = \begin{cases} g_j(x), & \text{при } g_j(x) > 0 \\ 0, & \text{при } g_j(x) \le 0 \end{cases}$$
 (4.3)

Начальная точка поиска задается обычно вне множества допустимых решений X. На каждой k-й итерации ищется точка $x^*(r^k)$ минимума вспомогательной функции $F(x,r^k)$ при заданном параметре r^k с помощью одного из методов безусловной минимизации.

Полученная точка используется в качестве начальной на следующей итерации, выполняемой при возрастающем значении параметра штрафа.

При неограниченном возрастании r^k последовательность построенных точек стремится к точке условного минимума x^* .

Рисунок 1 – Квадратичный штраф (а) и квадрат срезки (б)

Алгоритм поиска

- 1) Задается начальная точка x^0 , параметр штрафа r^0 , число K для увеличения параметра, точность $0<\varepsilon\ll 1$. Начальный шаг k=0.
 - 2) Составляется функция $F(x, r^k)$

$$F(x,r^k) = f(x) + \frac{r^k}{2} \left(\sum_{j=1}^m [g_j(x)]^2 + \sum_{j=m+1}^p [g_j^+(x)]^2 \right)$$

3) Находится точка $x^*(r^k)$ безусловного минимума функции $F(x,r^k)$ по x методом безусловной оптимизации:

$$F(x^*, r^k) = \min_{x \in \mathbb{R}^n} F(x, r^k)$$

- 4) Проверяется условие окончания алгоритма:
 - а) если $P(x^*, r^k) < \varepsilon$, процедура останавливается и вычисляется $f(x^*)$
 - б) в противном случае $r^{k+1} = Kr^k$, $x^{k+1} = x^*(r^k)$, k = k+1, осуществляется переход к п. 2.

<u>Утверждение.</u> Пусть x^* – локально единственное решение задачи поиска условного минимума, а функции f(x) и $g_j(x)$ непрерывно дифференцируемы в окрестности точки x^* . Тогда для достаточно больших r^k найдется точка $x^*(r^k)$ локального минимума функции $F(x,r^k)$ в окрестности x^* , и $x^*(r^k) \to x^*$ при $r^k \to \infty$.