

Beschreibung
Bedienungsanleitung
Garantieschein

Für die vielfältigsten Meßaufgaben in Elektrotechnik und Elektronik steht heute eine breite Palette von Meßgeräten zur Verfügung.

Eine weitere Bereicherung stellt der Isolationsmesser ISO 1000 dar, der speziell zur Messung von Isolationswiderständen konzipiert ist.

Die universelle Anwendbarkeit des ISO 1000 durch seine drei Meßspannungen und den großen Meßumfang von $40\text{ k}\Omega$ bis $2000\text{ M}\Omega$, auch bei komplizierten Kriechstrombedingungen, sind besondere Vorzüge dieses Meßgerätes.

Zusätzlich zu seinem Hauptanwendungsbereich besteht die Möglichkeit, Gleich- und Wechselspannungen zu messen.

Isolationsmesser ISO 1000

VEB MESSTECHNIK MELLENBACH

Betrieb des Kombinates VEB Elektro-Apparate-Werke Berlin-Treptow „Friedrich Ebert“

DDR - 6428 Mellenbach-Glasbach

Fernsprecher: Oberweißbach 3001 · Fernschreiber: 0628320

1.1. Gehäuse

Das Gehäuse des Isolationsmessers ISO 1000 besteht aus bruchsicherem Thermoplast.

Die einzelnen Funktionsgruppen sind zweckmäßig und übersichtlich angeordnet.

Die Konstruktion gestattet die Anwendung in waagerechter und, durch Herausklappen einer Stütze am Boden des Meßgerätes, in 30° -Schräglage.

1.2. Meßwerk

Die Anzeige wird durch ein spannbandgelagertes Drehspulmeßwerk mit Kernmagnet realisiert.

1.3. Meßbereichswahlschalter (1)

Die Einstellung der Meßbereiche erfolgt mit dem Meßbereichswahlschalter.

Die Schalterstellung „▼“ dient dem Abgleich der Meßspannungen.

1.4. Schiebetastenschalter (2)

Mit dem Schiebetastenschalter werden die Meßspannungen 100 V, 500 V, 1 000 V eingeschaltet.

1.5. Taste (3)

Durch Betätigen dieser Taste mit selbständigem Rückgang erfolgt das Einschalten des ISO 1000 zur Durchführung des Meß- oder Abgleichvorganges.

1.6. Regler zum Meßspannungsabgleich (4)

Mit diesem Regler kann die Meßspannung genau abgeglichen werden.

1.7. Mechanischer Zeigernullsteller (5)

Mit dem mechanischen Zeigernullsteller wird der mechanische Nullpunkt bei ausgeschaltetem Meßgerät eingestellt.

1.8. Eingangsbuchsen (6)

An die Eingangsbuchsen „⊥“ und „+“ ist das Meßobjekt mittels Meßleitungen anzuschließen. Bei Gleichspannungsmessung ist die Polarität vertauscht.

1.9. Eingangsbuchse zur Unterdrückung von Kriechströmen (7)

Ein zusätzlicher Anschluß des Meßobjektes an diese Eingangsbuchse bewirkt, vorhandene Kriechströme, die Fehlmessungen verursachen können, zu unterdrücken.

1.10. Funktionsanzeige (8)

Das Leuchten der grünen LED signalisiert die Funktionstüchtigkeit des Meßgerätes während des Meß- oder Abgleichvorganges.

1.11. Anzeige für gestörten Betrieb

Bei Überlastung, nicht gedrücktem Schiebetastenschalter (2) und/oder verbrauchten Zellen R 6 erfolgt ein Leuchten der roten LED.

Ein kurzes Aufleuchten ist nach Abschluß eines Meß- oder Abgleichvorganges – Loslassen Taste (3) – sichtbar.

1 Meßbereichswahlschalter
2 Schiebetastenschalter
3 Taste
4 Regler zum Meßspannungsabgleich
5 mechanischer Zeigernullsteller
6 Eingangsbuchsen
7 Eingangsbuchse zur Unterdrückung von Kriechströmen
8 Funktionsanzeige
9 Anzeige für gestörten Betrieb

Bild 1:
Lage der Bedienelemente

7

- Überzeugen Sie sich vor jeder Messung vom Zustand der Primärelemente.
- Sollte aufgrund von Überlagerung oder anderer Ursachen ein Auslaufen der Primärelemente feststellbar sein, so sind diese unbedingt auszuwechseln und der Batterieraum ist gründlich von eventuell ausgelaufenem Elektrolyt zu säubern.

3. Abgleichen der Meßspannung

Zur Erreichung von Meßergebnissen mit der angegebenen Genauigkeit muß vor Beginn der Messung oder nach längerer Meßdauer ein Abgleich der Meßspannung erfolgen.

Die Wahl der Meßspannung richtet sich nach der Nennspannung des Meßobjektes. Der Abgleich der Meßspannung erfolgt aber immer bei „Meßspannung 100 V“, auch wenn mit Meßspannung 500 V oder 1000 V gemessen wird.

Zum Abgleich der Meßspannung

- darf der ISO 1000 nicht an das Meßobjekt angeschlossen sein
- ist der Meßbereichswahlschalter (1) auf „▼“ zu schalten
- muß die Meßspannung 100 V durch Drücken des entsprechenden Schiebetastenschalters eingeschaltet und
- die Taste (3) betätigt und mittels Regler zum Meßspannungsabgleich (4) der Zeiger auf die Abgleichmarke „▼“ gestellt werden

Während des Abgleichvorganges muß die Funktionsanzeige (8) leuchten. Leuchtet jedoch die Anzeige für gestörten Betrieb (9), sind die 5 Zellen R 6 verbraucht und auszuwechseln.

2. Vorbereitung zur Messung

- 5 Zellen R 6 entsprechend vorgegebener Kennzeichnung in den Batterieraum einlegen und Batterieraum verschließen

Bild 2: Anordnung der 5 Zellen R 6

- ISO 1000 in gewünschter Lage aufstellen
- unmittelbar vor der Messung Glasscheibe nicht putzen, da sonst eine elektrostatische Aufladung erfolgen kann, die das Meßergebnis verfälscht
- mechanische Nullstellung kontrollieren und falls erforderlich, mittels mechanischem Zeigernullsteller (5) korrigieren
- Meßspannung 100 V einschalten und abgleichen

Achtung!

- Beim Messen Batterieraum stets geschlossen halten!
An den Batterieklemmen liegt das Eingangspotential der Eingangsbuchsen an.

8

4. Durchführung der Messung

4.1. Messung von Isolationswiderständen

- Meßspannung durch Drücken des entsprechenden Schiebetastenschalters (2) einschalten, die entsprechend Punkt 3. abgeglichen sein muß
- ISO 1000 auf zu erwartenden Widerstandsmittelbereich schalten
- Meßobjekt mittels Meßleitung an die Eingangsbuchsen (6) anschließen

Achtung!

Das Meßobjekt muß sich im spannungsfreien Zustand befinden!

Gegebenenfalls entsprechend Punkt 4.4. kontrollieren.

- Taste (3) drücken
- Wert des Isolationswiderstandes unter Beachtung des Meßbereichsfaktors auf der Skale, die der Meßspannung zugeordnet ist, ablesen
Während des Meßvorganges leuchtet die Funktionsanzeige (8)

Die maximale Meßzeit beim Betätigen der Taste darf 3 min. nicht überschreiten.

Die Ruhezeit zwischen den Messungen sollte das Fünffache der jeweiligen Meßzeit betragen.

4.2. Messung von Isolationswiderständen mit Kriechstromunterdrückung

Diese Meßart findet z. B. Anwendung bei Feststellung von Fehlern der Isolation engliegender isolierter Leiter, wenn aufgrund von eventuell vorhandenen Kriechströmen, hervorgerufen durch zusätzliche Ableitwiderstände, Fehlmessungen auftreten können.

Bild 3: Beispiel für die Messung von Isolationswiderständen mit Kriechstromunterdrückung

Bei Anschluß des Meßobjektes nach Bild 3 wird der Isolationswiderstand der Leiter 1 und 2 gegeneinander geprüft. Die eventuell auftretende Abweichung des Meßergebnisses bei möglicherweise vorhandenen Kriechströmen zwischen Leiter 1 und Leiter 3 und zwischen Leiter 2 und Leiter 3 wird dann den Zahlenwert der Genauigkeitsklasse nicht überschreiten, wenn

- zusätzliche Ableitwiderstände $R_{1/3}$ und $R_{2/3} > 5 \times R_{1/2}$ beim Meßstrom $\geq 1 \text{ mA}$ (Meßbereich x 1) oder beim Meßstrom $\geq 100 \mu\text{A}$ (Meßbereich x 10) bzw.
- zusätzliche Ableitwiderstände $R_{1/3}$ und $R_{2/3} \geq 2 \times R_{1/2}$ beim Meßstrom $\leq 1 \text{ mA}$ (Meßbereich x 1) oder beim Meßstrom $\leq 100 \mu\text{A}$ (Meßbereich x 10) sind.

Analog ist bei der Überprüfung der anderen Leiterpaare zu verfahren. Die Durchführung der Messung erfolgt entsprechend Punkt 4.1.

4.3. Besonderheiten bei der Isolationswiderstandsmessung

4.3.1. Messung von Isolationswiderständen mit elektrischen Kapazitäten

Mit dem ISO 1000 können Prüflinge mit einer elektrischen Kapazität $C \leq 5 \mu\text{F}$ auf ihren Isolationswiderstand überprüft werden, wobei das Meßergebnis mit einem zusätzlichen Fehler bis max. 10 % behaftet sein kann.

Solche Kapazitäten erkennt man

- bei Beginn der Messung am Vollausschlag des Zeigers (Anschlag rechts) und
- dem anschließend langsamen Rückgang des Zeigers auf den Meßwert

Beim Abschalten des ISO 1000 – Loslassen Taste (3) – bewegt sich der Zeiger zum linken Anschlag und verharrt in dieser Lage, bis die Kapazität über den internen Widerstand von $R = 1 \text{ M}\Omega$ entladen ist.

11

12

4.3.2. Anzeige für gestörten Betrieb:

Bei Auftreten der nachstehend genannten Ursachen für die Anzeige des gestörten Betriebes während des Meßvorganges kann ein, durch die verwendete Schaltung bedingtes Abschalten – Zeiger geht in Ruhelage – nach einer Ansprechzeit von ca. 3 s erfolgen.

Nach Unterbrechung des Meßvorganges infolge dieses Abschaltens kann erst nach einer Ruhepause von 4 s mit einer erneuten Messung begonnen werden.

Ein Leuchten der roten LED während des Meßvorganges erfolgt

- beim versehentlichen Anlegen einer Spannung bis 1000 V in den Widerstandsmeßbereichen und Betätigen der Taste (3). Der Zeiger befindet sich rechts am Anschlag (außerhalb der Skale)

Achtung!

- Nach dieser Überlastung die Feinsicherung überprüfen und bei Zerstörung auswechseln.
- Bei Nichtbetätigung der Taste (3) kann ein Ausschlag des Zeigers erfolgen.

Der ISO 1000 ist vom Meßobjekt zu trennen!

- wenn der Wert des Isolationswiderstandes kleiner als der kleinste Anzeigewert bei der jeweiligen Meßspannung ist, d. h. es liegt eine fehlerhafte Isolation oder „Kurzschluß“ vor.

In diesem Fall befindet sich beim Meßbereich „x 1“ der jeweiligen Meßspannung der Zeiger rechts am Anschlag (außerhalb der Skale).

Wegen rationellster Beanspruchung der Primärzellen erfolgt im Meßbereich „x 1“ im Falle eines vorliegenden „Kurzschlusses“ immer ein Abschalten des ISO 1000.

Im Meßbereich „x 10“ erfolgt kein Leuchten der roten LED bzw. kein Abschalten bei Vorliegen eines „Kurzschlusses“,

- wenn die Primärelemente verbraucht sind.

In diesem Fall befindet sich im Meßbereich „x 1“ der jeweiligen Meßspannung der Zeiger innerhalb des Anzeigebereiches.

Die Primärelemente müssen ausgetauscht werden.

4.4. Spannungsmessung

- Meßbereichswahlschalter (1) auf die entsprechende Spannungsart schalten
- Meßobjekt mittels Meßleitung an die Eingangsbuchsen (6) anschließen
Bei Messung von Gleisspannungen ist die Polarität an den Eingangsbuchsen (6) vertauscht!

Der Skalenendwert der „V-Skale“ entspricht 660 V.

Für die Spannungsmessung werden die 5 Zellen R 6 nicht benötigt.

Achtung!

Das Meßobjekt darf nicht an die Eingangsbuchse zur Unterdrückung von Kriechströmen (7) und eine der Eingangsbuchsen (6) angeschlossen werden, da sonst eine Zerstörung des Meßgerätes erfolgt!

13

14

5. Technische Daten

Isolationswiderstandsmessung

Anzahl der Meßbereiche: 6

Meßspannung U_M	Meßbereichsfaktor x 1	Meßbereichsfaktor x 10
100 V	40 k Ω bis 20 M Ω	400 k Ω bis 200 M Ω
500 V	200 k Ω bis 100 M Ω	2 M Ω bis 1 G Ω
1000 V	400 k Ω bis 200 M Ω	4 M Ω bis 2 G Ω

R_X	Meßspannung U_M	Meßstrom
1 M Ω	1000 V	
0,5 M Ω	500 V	
0,1 M Ω	100 V } $\pm 1,5\%$	1 mA

15

Meßspannung bei $R_X \rightarrow \infty$	$= U_M + 10\%$
Genauigkeitsklasse	2,5
Skalenlänge	90 mm
Stromversorgung	5 Zellen R 6 TGL 7487 oder 5 Zellen IEC LR 6
Betriebszeit	ca. 400 Meßzyklen 1 Meßzyklus \leqq 5 s Einschaltzeit + 25 s Pause
Überlastschutz	elektronische Anzeige durch LED
Batterie- und Funktionsanzeige	mittels LED
Gleich- und Wechselspannungsmessung	
Meßbereich	bis 660 V
Anzegebereich	bis 660 V
Genauigkeitsklasse	2,5
Skalenlänge	60 mm
Allgemeines	
Bezugslage	waagerecht 30°-Schräglage mit 1% zusätzlichem Fehler

16

Prüfspannung	$U_{eff} = 3 \text{ kV}$
Abmessung	210 mm x 105 mm x 60 mm
Masse	ca. 600 g
Mechanische Festigkeit	Eb 6–15–500, TGL 200–0057
Ausführungsklasse	N III, TGL 9200
Schutzgrad	IP 20, TGL RGW 778
Gültiger Standard	TGL 19472

Schutzhülle liegt vor.

6. Wartung und Lagerung

Die Wartung beschränkt sich auf den Wechsel der Batterien. Der Batteriedeckel lässt sich leicht öffnen und die Batterien schnell tauschen. Es ist zu beachten, daß eventuell verunreinigte Kontakte gesäubert werden.

Beim Wechsel der Zellen R 6 ist auf richtige Polarität zu achten.

Die Lagerung soll in trockenen Räumen, die frei von aggressiven Dämpfen sind, bei einer Temperatur von $+10^\circ\text{C}$ bis $+30^\circ\text{C}$, sowie vor Stoß und Schlag geschützt und ohne eingelegte Batterien erfolgen.

Liste der Bauelemente

R 1	Schichtwiderstand, 20,5 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 2	Schichtwiderstand, 59 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 3	Schichtwiderstand, 121 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 4	Schichtwiderstand, 20,5 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 5	Schichtwiderstand, 20,5 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 6	Schichtwiderstand, 78,7 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 7	Schichtwiderstand, 100 kΩ, 5 %, 23.309, TK 200, TGL 36521
R 8	Schichtwiderstand, 10 kΩ, 5 %, 23.309, TK 200, TGL 36521
R 9	Schichtwiderstand, 1,69 kΩ, 2 %, 23.309, TK 200, TGL 36521
R 10	Schichtwiderstand, 3,32 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 11	Schichtwiderstand, 9,09 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 12	Schichtwiderstand, 78,7 kΩ, 1 %, 23.309, TK 200, TGL 36521
R 13	Schichtwiderstand, 1,54 kΩ, 1 %, 23.617, TK 200, TGL 36521
R 14	Schichtwiderstand, 5,36 MΩ, 1 %, 23.617, TK 200, TGL 36521
R 15	Schichtwiderstand, 5,36 MΩ, 1 %, 23.617, TK 200, TGL 36521
R 16	Schichtwiderstand, 1 MΩ, 1 %, 23.412, TK 200, TGL 36521

R 17	Schichtwiderstand, 1,62 MΩ, 1 %, 23.412, TK 200, TGL 36521
R 18	Schichtwiderstand, 787 kΩ, 1 %, 23.412, TK 200, TGL 36521
R 19	Schichtwiderstand, 1 MΩ, 0,5 %, 23.617, TK 200, TGL 36521
R 20	Verbindung
R 21	Schichtwiderstand, 10,5 kΩ, 0,5 %, 23.617, TK 200, TGL 36521
R 22	Schichtwiderstand, 42,2 kΩ, 0,5 %, 23.617, TK 200, TGL 36521
R 23	Schichtwiderstand, 95,3 kΩ, 0,5 %, 23.617, TK 200, TGL 36521
R 24	Schichtwiderstand, 105 kΩ, 0,5 %, 23.412, TK 200, TGL 36521
R 25	Schichtwiderstand, 422 kΩ, 0,5 %, 23.412, TK 200, TGL 36521
R 26	Schichtwiderstand, 953 kΩ, 0,5 %, 23.412, TK 200, TGL 36521
R 27	Schichtwiderstand, 75 Ω, 2 %, 23.309, TK 200, TGL 36521
R 28	Schichtwiderstand, 162 Ω, 1 %, 23.309, TK 200, TGL 36521
R 29	Schichtwiderstand, 121 Ω, 1 %, 23.309, TK 200, TGL 36521
R 30	Schichtwiderstand, 1,21 kΩ, 2 %, 23.309, TK 200, TGL 36521
R 31	Schichtwiderstand, 1 MΩ, 10 %, 25.518, TGL 8728
R 32	Schichtwiderstand, 0,33 Ω, 5 %, 25.518, TGL 8728
R 33	Schichtwiderstand, 0,33 Ω, 5 %, 25.518, TGL 8728

R 34	Schichtwiderstand, 10 Ω, 10 %, 25.311, TGL 8728
R 35	Schichtwiderstand, 121 Ω, 1 %, 23.309, TK 200, TGL 36521
R 36	Schichtwiderstand, 10 MΩ, 10 %, 25.311, TGL 8728
R 37	Schichtwiderstand, 20 kΩ, 5 %, 25.412, TGL 8728
R 38	Schichtwiderstand, 2,4 kΩ, 5 %, 25.412, TGL 8728
R 39	Widerstand, TNK-A 10/120/10, TGL 14281/03
R 40	veränderbarer Schichtwiderstand, 100 Ω, 595.1210.2, TGL 11886
R 41	veränderbarer Schichtwiderstand, 2,2 kΩ, 595.1210.2, TGL 11886
R 42	veränderbarer Schichtwiderstand, 100 kΩ, 595.1210.2, TGL 11886
R 43	veränderbarer Schichtwiderstand, 1 kΩ, 745.2510.2, TGL 11892
R 44	veränderbarer Schichtwiderstand, 1 kΩ, 745.2510.2, TGL 11892
R 45	Schichtwiderstand, 78,7 kΩ, 1 %, 23.309, TK 200, TGL 36521

C 1	Elektrolytkondensator, 220/6,3, TGL 37225
C 2	Elektrolytkondensator, 220/6,3, TGL 37225
C 3	Elektrolytkondensator, 470/16, TGL 37225
C 4	Elektrolytkondensator, 470/16, TGL 37225

C 5	Elektrolytkondensator, 470/6,3, TGL 37225
C 6	Elektrolytkondensator, 47/25, TGL 37225
C 7	MKL 1 Kondensator, 1,5/63, TGL 10793
C 8	MKT – Kondensator, 0,33/20/630, TGL 31680
C 9	MKT – Kondensator, 0,33/20/630, TGL 31680
C 10	Folienkondensator, SDVU 3312.4–7500.84 3312 Ag
C 11	Folienkondensator, 220/5/63, TGL 5155
C 12	KS-Kondensator, 4700/5/25, TGL 5155
C 13	KS-Kondensator, 10000/5/25, TGL 5155

VD 1	Lichtemitterdiode, VQA 13, TGL 32988
VD 2	Lichtemitterdiode, VQA 23, TGL 32988
VD 3	
VD 4	Schaltdiode, SAL 41, L 3/12, TGL 27975
VD 5	
VD 6	Diode, SZX 21/5,1, L 2/4, TGL 27338
VD 7	Diode, SZX 21/7,5, L 2/4, TGL 27338

VD 8 Diode, SZX 21/10, L 2/4, TGL 27338

VD 9 Diode, SZX 21/12, L 2/4, TGL 27338

VD 10 Schaltdiode, SAY 17, L 2/4, TGL 25184
VD 11

VD 14

VD 15 Schaltdiode, SAY 30/4, TGL 200-8466

VD 16

VD 17 Gleichrichterdiode, SY 330/15, TGL 31905
VD 18

VD 19 Gleichrichterdiode, SY 330/10, TGL 31905
VD 20

VT 1

VT 2 Transistor, SF 126 D 15, TGL 200-8439

VT 3

VT 4

VT 5

VT 6

VT 7 Transistor, SC 236 D, TGL 27147

VT 8

VT 9 Transistor, SC 307, TGL 37871

VS 1 Schaltkreis, B 109 D, TGL 28873

F 1 G-Schmelzeinsatz, T 35, TGL 0-41571/03

S 1 Schiebetastenschalter

T 1 Wandlertrafo

Änderungen am Erzeugnis im Interesse des wissenschaftlich-technischen Fortschritts behalten wir uns vor.

V 2.20 Sp 51 83

Garantieschein

Der VEB Meßtechnik Mellrichstadt

gewährt für den

Isolationsmesser ISO 1000

6 Monate Garantie

Der Garantiezeitraum beginnt gemäß § 43 Abs. 1 VG mit dem Tag der Entgegennahme

Lieferdatum ab Werk

Prüfvermerk oder Stempel der Endkontrolle

Verkaufstag an den Endverbraucher

Verkaufsstelle

Deutsche Post
Zentralamt für Materialwirtschaft
Außenstelle Berlin Steffelbaustrasse 1160 Berlin
Am Flughafen 60-70
Deutsche Post
05.06.86

Schaltbild ISO 1000

Vertragswerkstätten für Reparaturen des VEB Meßtechnik Mellenbach

VEB Meßtechnik Mellenbach
Betrieb des Kombinates
VEB Elektro-Apparate-Werke
Berlin-Treptow „Friedrich Ebert“
6428 Mellenbach-Glasbach
Zirkel 3
Ruf: Oberweißbach 30 01

Einbauinstrumente 120 x 130 DS,
H 95 DS 2, H 128 DS 2, H 160/2
polnische Einbauinstrumente
MK, MP, MZ
Kompensationsmeßtische KMT III und IV
Präz.-Kurbelmeßbrücke in
Wheatstone- und Thomsonschaltung
Hochpräzisions-Feußner-Kompensator,
Typ 10.009
Präz.-Widerstände Typ I - III
Elektronisches Galvanometer EG 01
Hochpräzisions-Dieselhorst-Kompen-
sator Typ 10.010
Universalmessер 7, 9, 10 und UNI 21
Elektronischer Vielfachmesser UNI 11e
Isolationsmesser ISO 1000
Autotest electric
Isolationsmesser 51, 61
Kleinmeßbrücken in Wheatstone- und
Thomsonschaltung

VEB Meßtechnik Mellenbach
Service-Werkstatt Glauchau
9610 Glauchau
Wilhelmstraße 36
Ruf: 29 11

VEB Elektrodienst
6060 Zella-Mehlis
Forstgasse 29
Ruf: 21 62

Vielfachmesser III
Universalmessер UNI 21
V 2 20 Ag 307 83 8633

PGH Radio-Fernsehen-Elektro
9340 Marienberg / Sa.
Annabergstraße 2
Ruf: 4 89

PGH „Elektron“
Elektro-Radio-Fernsehen
7950 Bad Liebenwerda
Maxim-Gorki-Platz 5
Ruf: 22 45

Fa. Elektronik
Bringfried Wege
4603 Bad Schmiedeberg
Schellingberg 19
Ruf: 5 49

VEB Industrievertrieb
Rundfunk und Fernsehen
1400 Oranienburg
Liebigstraße 2
Ruf: 32 71

Fa. Wolfgang Luck
5701 Felchta
Hauptstraße 34
Ruf: Mühlhausen 39 08

Um unnötige Transportwege zu vermeiden, bitten wir, anfallende Reparaturen
möglichst direkt an angeführte Vertragswerkstätten einzusenden.

Universalmessер 7, 10 und UNI 21

Elektro-Thermometer

Universalmessер 7, 9, 10 und UNI 21

Vielfachmesser III
Universalmessер 7, 9, 10 und UNI 21
zuständig für den gesamten
Industrievertrieb der DDR

Elektronisches Vielfachmeßgerät
UNI 11e
Universalmessер UNI 21

VEB Meßtechnik Mellenbach
Betrieb des Kombinates
VEB Elektro-Apparate-Werke Berlin-Treptow „Friedrich Ebert“

Garantiebedingungen

Die Garantieleistung besteht in der kostenlosen Behebung aller Mängel, die im Garantiezeitraum festgestellt werden. Voraussetzung für die Inanspruchnahme der Garantieleistung ist die sach- und ordnungsgemäße Aufbewahrung, Handhabung, Anwendung und Wartung des Erzeugnisses unter Beachtung der beigefügten Gerätedokumentation. Eine Garantiepflicht besteht nicht bei unsachgemäßer Behandlung des Erzeugnisses. Dazu zählen insbesondere eigenmächtige Eingriffe sowie mechanische Beschädigungen durch unsachgemäße Lagerung und Behandlung. Schäden, die durch mangelhafte Verpackung bei der Einsendung des reklamierten Gerätes eintreten, werden nicht ersetzt. Bei Inanspruchnahme der Garantie schicken Sie das Gerät unter Befügung des **ordnungsgemäß ausgefüllten Garantiescheines** und Angabe Ihrer genauen Anschrift an eine von uns autorisierte Vertragswerkstatt. Soweit in den übergebenen Dokumenten keine Vertragswerkstatt aufgeführt ist, hat die Einsendung des Gerätes unter Beachtung der genannten Formalitäten an den Hersteller zu erfolgen.