Diffusive dynamics

$$\dot{x}_{i} = -Bx_{i} + Rk_{i}^{-1} \sum_{j} A_{ij}x_{j}$$

$$J_{ij} = -B * \delta_{ij} + R * k_{i}^{-1} * A_{ij}$$

if B=R=1 ->
$$J_{ij}=-L_{ij}$$

$$\begin{split} \lambda_{max} &= -B \\ \lambda_{min} &= -(B-R) \\ \text{stable only if } \lambda_{min} &< 0 -> B > R \end{split}$$

it seems that:

- $\langle d \rangle(t) \sim e^{-\lambda_{max}t}$ for small t
- $\langle d \rangle(t) \sim e^{-\lambda_{min}t}$ for large t

BUT not able to prove it analytically

Average distance vs. time for different parameters B and R

Diffusive dynamics

if B=R=1 ->
$$J_{ij}=-L_{ij}$$

$$\begin{split} \lambda_{max} &= -B \\ \lambda_{min} &= -(B-R) \\ \text{stable only if } \lambda_{min} &< 0 -> B > R \end{split}$$

** average up to tmax = N (network size)

Average distance matrix (for different parameters B and R)

- large B -> more importance on exp decay => less effect of topology
- large R -> more importance on diffusive part => more effect of topology

Diffusive dynamics

$$\dot{x}_{i} = -Bx_{i} + Rk_{i}^{-1} \sum_{j} A_{ij}x_{j}$$

$$J_{ij} = -B * \delta_{ij} + R * k_{i}^{-1} * A_{ij}$$

if B=R=1 ->
$$J_{ij}=-L_{ij}$$

$$\begin{split} \lambda_{max} &= -B \\ \lambda_{min} &= -(B-R) \\ \text{stable only if } \lambda_{min} &< 0 -> B > R \end{split}$$

if R is negative -> even less effect of topology

- ** all the parameters are fixed to 1
- ** normalize t -> t / \(\)\max

- ** all the parameters are fixed to 1
- ** normalize t -> t / λmax

if <d> decay too fast -> when we compute average distance, only the first timesteps will count

if normalize d_ij(t) wrt max d_ij(t) -> all the timesteps are more evenly taken into account when computing average distance matrix

- ** all the parameters are fixed to 1
- ** normalize t -> t / \(\lambda \) max

- ** all the parameters are fixed to 1
- ** normalize t -> t / \(\lambda \) max

- ** all the parameters are fixed to 1
- ** normalize t -> t / λmax

Mantel's test (to compare similarity)

- ** all the parameters are fixed to 1
- ** normalize t -> t / \u00e4max

Mantel's test (to compare similarity)

- ** all the parameters are fixed to 1
- ** normalize t -> t / \(\lambda \) max

Average distance matrix

** color in dendrogram = structural community

- ** all the parameters are fixed to 1
- ** normalize t -> t / \(\lambda \) max

Average normalized distance matrix

** color in dendrogram = structural community

from here the normalization seems not that interesting...

Jacobian dynamics – other type of networks

- ** all the parameters are fixed to 1
- ** normalize t -> t / λmax

QUESTIONS:

- Can we prove analytically the dependence of the jacobian distance with the eigenvalues?
- Do we need the normalization?
- Mantel's test is ok? Other methods for comparing matrices?
- Apply to real networks?