(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

PARI LATO CERRO LATORIA CONTRACTO LA DESCRIPCIO DE LA COLORIA DE LA COLORIA DE COLORIA DE LA COLORIA DE LA COL

(43) International Publication Date 15 November 2001 (15.11.2001)

 \mathbf{PCT}

(10) International Publication Number WO 01/85712 A1

(51) International Patent Classification[†]: C07D 307/87

(21) International Application Number: PCI/DK01/00333

(22) International Filing Date: 10 May 2001 (10.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: PA200000783

12 May 2000 (12.05.2000) DK

(71) Applicant (for all designated States except US): H. LUNDBECK A/S [DK/DK]; Ottiliavej 9, DK-2500 Valby-Copenhagen (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PETERSEN, Hous [DK/DK]; Guldagervej 11, DK-2720 Vanlgse (DK). DANCER, Robert [AU/DK]; J. M. Thielesvej 8, st th, DK-Frederiksberg C 1961 (DK).

(81) Designated States (national); AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ (utility model), DR, DE (utility model), DK, DK (utility model), DM, DZ, ER, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, II, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BI, CF, CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR THE PREPARATION OF CITALOPRAM

(57) Abstract: A method for the preparation of citalogram comprising reaction of a compound of formula 5-aminomethyl-1-(3-dimethylamino-propyl)-1-(4-fluoro-phenyl)-1,3-dihydro-isobenzofuran with an oxidising agent to prepare citalogram.

20

PCT/DK01/00333

Method for the Preparation of Citalopram

The present invention relates to a method for the preparation of the well-known antidepressant drug citalogram, 1-[3-(dimethylamino)propyi]-1-(4-fluorophenyl)-1,3-dihydro-5-isobenzofurancarbonitrile.

Background of the Invention

Citalopram is a well-known antidepressant drug that has now been on the market for some years and has the following structure:

It is a selective, centrally acting serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor, accordingly having antidepressant activities. The antidepressant activity of the compound has been reported in several publications, eg. J. Hyttel Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 1982, 6, 277-295 and A. Gravem, Acta Psychiatr. Scand. 1987, 75, 478-486. The compound has further been disclosed to show effects in the treatment of dementia and cerebrovascular disorders, EP-A 474580.

Citalopram was first disclosed in DE 2,657,013, corresponding to US 4,136,193. This patent publication describes the preparation of citalopram by one method and outlines a further method, which may be used for preparing citalopram.

According to the process described, the corresponding 1-(4-fluorophenyl)-1,3-dihydro-5isobenzofurancarbonitrile is reacted with 3-(N,N-dimethylamino)propyl-chloride in the
presence of methylsulfinylmethide as condensing agent. The starting material was prepared
from the corresponding 5-bromo derivative by reaction with cuprous cyanide.

According to the method, which is only outlined in general terms, citalogram may be obtained by ring closure of the compound:

CONFIRMATION COPY

PCT/DK01/00333

in the presence of a dehydrating agent and subsequent exchange of the 5-bromo group with cuprous cyanide. The starting material of Formula II is obtained from 5-bromophthalide by two successive Grignard reactions, i.e. with 4-fluorophenyl magnesium chloride and N,N-dimethylaminopropyl magnesium chloride, respectively.

A new and surprising method and an intermediate for the preparation of citalogram were described in US Patent No 4,650,884, according to which an intermediate of the formula

r Formula D

is subjected to a ring closure reaction by dehydration with strong sulfuric acid in order to obtain citalopram. The intermediate of Formula III was prepared from 5-cyanophthalide by two successive Grignard reactions, i.e. with 4-fluorophenyl magnesium halogenide and N,N-dimethylaminopropyl magnesium halogenide, respectively.

Further processes are disclosed in International patent application Nos. WO 98019511, WO 98019512 and WO 98019513. WO 98019512 and WO 98019513 relate to methods wherein a 5-amino-, 5-carboxy- or 5-(sec. aminocarbonyl)phthalide is subjected to two successive Grignard reactions, ring closure and conversion of the resulting 1,3-dihydroisobenzofuran derivative to the corresponding 5-cyano compound, i.e. citalopram. International patent application No. WO 98019511 discloses a process for the manufacture of citalopram wherein a (4-substituted-2-hydroxymethylphenyl-(4-fluorophenyl)methanol compound is subjected to ring closure and the resulting 5-substituted 1-(4-fluorophenyl)-1,3-dihydroisobenzofuran converted to the corresponding 5-cyano derivative which is alkylated with a (3-dimethylamino)propylhalogenide in order to obtain citalopram.

25

(--)

10

15

PCT/DK01/00333

3

Finally, methods for preparing the individual enantiomers of citalogram are disclosed in US Patent No 4,943,590 from which it also appears that the ring closure of the intermediate of Formula III may be carried out via a labile ester with a base.

5 It has now, surprisingly, been found that citalogram may be manufactured by a novel favourable and safe procedure using convenient starting materials.

Summary of the invention

Accordingly, the present invention relates to a novel method for the preparation of citalogram comprising reaction of a compound of Formula IV

with an appropriate oxidising agent such as copper (I) and O₂; or NiSO₄ and $K_2S_2O_8$ to afford cital operan

15

which is isolated as the base or a pharmaceutically acceptable salt thereof.

In another aspect, the invention relates to methods for preparing the intermediates of 20 Formula IV.

In yet another aspect, the present invention relates to an antidepressant pharmaceutical composition comprising citalogram as the base or any convenient salt thereof manufactured by the process of the invention.

PCT/DK01/00333

4

Furthermore, according to the invention, the compounds of Formula IV may be prepared by different methods.

One of these methods includes the following steps:

5

6-carboxy-3-(4-fluorophenyl)phthalide is reacted with an alcohol, R-OH, wherein R is preferably lower alkyl, most preferably Me, in the presence of a dehydrating agent, preferably SOCL₂.

The resulting compound of Formula VI is alkylated with

X_XX

(2 to 200)

1 .)

wherein X is a leaving group in the presence of a suitable base. X is preferably halogen or sulphonate.

Optionally, the alkylating reaction is a stepwise alkylation. In this case, the resulting compound of Formula VI is alkylated with a compound having the formula

20

wherein X' is a suitable leaving group and R' is -CH₂-O-Pg, -CH₂-NPg₁Pg₂,
-CO-N(CH₂)₂, -CH(OR¹)(OR²), -C(OR²)(OR⁵)(OR⁵) or -COOR³, wherein Pg is a
protection group for an alcohol group, Pg₁ and Pg₂ are protection groups for an amino

PCT/DK01/00333

5

group, R^1 and R^2 are alkyl groups or R^1 and R^2 together form a chain of 2 to 4 carbon atoms and R^3 , R^4 , R^5 and R^6 are alkyl, alkenyl, alkynyl, aryl or aralkyl;

to form a compound of Formula XVIII

wherein R' is as defined above; followed by conversion of the group R' to a dimethylaminomethyl group.

The resulting compound of Formula VII is reacted with a reducing agent such as LiAIH₄, Red-Al, AlH₄ or activated forms of NaBH₄, e.g. NaBH₄, Me₂SO₄; NaBH₄, I₂; NaBH₄, BF₃. Et₂O; or B₂H₆; followed by treatment with acid or another dehydrating agent to perform ring closure to form the compound of Formula VIII.

The alcohol of Formula VIII is conveniently activated by tosylchloride or mesylchloride to form the corresponding substituted sulphonate; or the alcohol is converted into the corresponding benzylic halide. This conversion is preferably carried out with SOBr₂ or SOCl₂.

The corresponding sulphonate or halide is either converted directly to the compound of Formula IV by reaction with liquid ammonia;

or by a reaction with a metal salt of phthalimide, preferably potassium phthalamide followed by treatment with NH₂NH₂ or by treatment with an amine in an alcohol, i.e. R⁶NH₂/R⁹-OH, wherein R⁸ and R⁹ are lower alkyl, preferably methyl or othyl, o.g. methylamine in ethanol;

25 or by a reaction with metal azide, MN₃, M preferably being Na or K; followed by treatment with a reducing agent such as Pd/C and H₂ or a hydrate source such as LiAiH₄ or NaBH₄ or an activated form of it.

Another method for preparing the compound of Formula IV includes the following steps:

30

5

25

PCT/DK01/00333

6

6-carboxy-3-(4-fluorophenyl)phthalide is conveniently reacted with a dehydrating agent such as thionylchloride, followed by aminolysis of the resulting activated acid derivative.

The resulting compound of Formula IX is alkylated with

wherein X is a leaving group in the presence of a suitable base. X is preferably halogen or sulphonate.

Optionally, the alkylating reaction is a stepwise alkylation analogous to the stepwise alkylation described above.

- The resulting compound of Formula X is reacted with a reducing agent such as LiAlH₄, Red-Al, AlH₃ or activated forms of NaBH₄, e.g. NaBH₄, Me₂SO₄; NaBH₄, I₂; NaBH₄, BF₃.Et₂O; or B₂H₆; followed by treatment with acid or another dehydrating agent to perform ring closure to form the compound of Formula IV.
- According to a third method for preparing the compound of Formula IV, the corresponding 6-cyano substituted derivative of 6-carboxy-3-(4-fluorophenyl)phthalide is prepared.

The carboxy derivative is either reacted with SOCl₂ followed by treatment with ammonia and finally a dehydrating agent such as SOCl₂ to prepare the cyano derivative of Formula XI:

or reacted with an alcohol R-OH in the presence of acid followed by treatment with ammonia and finally reacted with SOCl₂; or reacted in a one-pot process such as with

PCT/DK01/00333

7

SO₂(NH₂)₂, SOCl₂ and sulfolane, or with *tert*-butylamine, a dehydrating agent such as POCl₃ and a suitable solvent, such as toluene.

The resulting compound of Formula XI is alkylated with

wherein X is a leaving group in the presence of a suitable base. X is preferably halogen or sulphonate.

Optionally, the alkylating reaction is a stepwise alkylation analogous to the stepwise alkylation described above.

The resulting compound of Formula XII is reacted with a reducing agent such as LiAlH₄, Red-Al, AlH₃ or activated forms of NaBH₄, e.g. NaBH₄, Me₂SO₄; NaBH₄, I₂; NaBH₄, BF₃.Bt₂O; or B₂H₆; followed by treatment with acid to perform ring closure to form the compound of Formula IV.

Other reaction conditions, solvents, etc. for the reactions described above are conventional conditions for such reactions and may easily be determined by a person skilled in the art.

20 In another aspect, the present invention provides the novel intermediate of Formula V.

In a further aspect, the invention relates to methods for preparing the intermediate of Formula V.

25 One stepwise process for preparing the intermediate of Formula V is illustrated below:

m-xylene and p-fluorobenzoyl chloride, which are commercially available compounds are reacted in the presence of AlCl, to afford the compound of Formula XIV. This compound is oxidised with permanganate, preferably KMnO₄ or NaMnO₄, giving the resulting compound of Formula XIII, which is finally reacted conveniently with Zn in acid, preferably acetic acid.

PCT/DIC01/00333

8

Alternatively, the compound of Formula IV is prepared from the compound of Formula XIII by the following stepwise process:

The compound of Formula XIII is reacted with a reducing agent such as LiAIH, Red-Al, AlH₃ or activated forms of NaBH₄, e.g. NaBH₄, Me₂SO₄; NaBH₄, I₂; NaBH₄, BF₃.Bt₂O; or B₂H₆; followed by treatment with acid to perform ring closure to form the compound of Formula XV.

The alcohol of Formula XV is conveniently activated by tosylchloride or mesylchloride to form the corresponding substituted sulphonate; or the alcohol is converted into the corresponding benzylic halide. This conversion is preferably carried out with SOBr2 or SOCL.

The corresponding sulphonate or halide is either converted directly to the compound of Formula XVII by reaction with liquid ammonia; or by a reaction with a metal salt of phthalimide, preferably potassium phthalamide, followed by treatment with NH2NH2 or by treatment with an amine in an alcohol, i.e. R⁵NH₂/R⁹-OH, wherein R⁸ and R⁹ are lower alkyl, preferably methyl or ethyl, e.g. methylamine in ethanol;

or by a reaction with metal azide MN3, M preferably being Na or K; followed by treatment with a reducing agent such as Pd/C and H_2 or a hydride source such as LiAlH₄ or NaBH₄ or an activated form thereof.

The resulting compound of Formula XVII is alkylated with

25

1 .

PCT/DK01/00333

NO. 3209— -P. 20/34—

9

wherein X is a leaving group in the presence of a suitable base. X is preferably halogen or sulphonate.

Optionally, the alkylating reaction is a stepwise alkylation analogous to the stepwise alkylation described above.

Optionally the steps of the alkylation and the conversion to the cyano derivative are in opposite order so the conversion to the cyano derivative is performed before the alkylation.

- Throughout the specification and claims, the terms lower alkyl or C_{1.5} alkyl refer to a branched or unbranched alkyl group having from one to six carbon atoms inclusive, such as methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-2-propyl, 2,2-dimethyl-1-ethyl and 2-methyl-1-propyl.
- Similarly, aikenyl and alkynyl, respectively, designate such groups having from two to six carbon atoms, including one double bond and triple bond respectively, such as ethenyl, propenyl, butenyl, ethynyl, propynyl, and butynyl.

The term anyl refers to a mono- or bicyclic carbocyclic aromatic group, such as phenyl and naphthyl, in particular phenyl.

The term aralkyl refers to aryl-alkyl, wherein aryl and alkyl are as defined above.

Halogen means chloro, bromo or iodo.

25

The compound of general Formula I may be used as the free base or as a pharmaceutically acceptable acid addition salt thereof. As acid addition salts, such salts formed with organic or inorganic acids may be used. Exemplary of such organic salts are those with maleic, fumaric, benzoic, ascorbic, succinic, oxalic, bismethylenesalicylic, methanesulforic, ethanedisulfonic, acetic, propionic, tartaric, salicylic, citric, gluconic, lactic, malic, mandelic, cimamic, citraconic, aspartic, stearic, palmitic, itaconic, glycolic, paminobenzoic, glutamic, benzene sulfonic and theophylline acetic acids, as well as the 8-halotheophyllines, for example 8-bromotheophylline. Exemplary of such inorganic salts are those with hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric and nitric acids.

35

The acid addition salts of the compounds may be prepared by methods known in the art. The base is reacted with either the calculated amount of acid in a water miscible solvent, such as acetone or ethanol, with subsequent isolation of the salt by concentration and

PCT/DK01/00333

10

cooling, or with an excess of the acid in a water immiscible solvent, such as ethylether, ethylacetate or dichloromethane, with the salt separating spontaneously.

The pharmaceutical compositions of the invention may be administered in any suitable way and in any suitable form, for example orally in the form of tablets, capsules, powders or syrups, or parenterally in the form of usual sterile solutions for injection.

The pharmaceutical formulations of the invention may be prepared by conventional methods in the art. For example, tablets may be prepared by mixing the active ingredient with ordinary adjuvants and/or diluents and subsequently compressing the mixture in a conventional tabletting machine. Examples of adjuvants or diluents comprise: Com starch, potato starch, talcum, magnesium stearate, gelatine, lactose, gums, and the like. Any other adjuvant or additive, colouring, aroma, preservative etc. may be used provided that they are compatible with the active ingredients.

Solutions for injections may be prepared by dissolving the active ingredient and possible additives in a part of the solvent for injection, preferably sterile water, adjusting the solution to the desired volume, sterilising the solution and filling it in suitable ampoules or vials. Any suitable additive conventionally used in the art may be added, such as tonicity agents, preservatives, antioxidants, etc.

Examples

The invention is further illustrated by the following examples.

25

15

20

(⁽¹⁾)

Example 1

5-Aminomethyl-1-(3-dimethylamino-propyl)-1-(4-fluoro-phenyl)-1,3-dihydroisobenzofuran

1-(3-Dimethylamino-propyl)-1-(4-fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5carbonitrile (5.4 g, 16.2 mmol) was dissolved in dry THF (5 mL) and diluted with dry ether 30 (50 mL). This solution was added dropwise to a refluxing suspension of lithium aluminium hydride (2.5 g, 65 mmol) in dry ether (150 mL) over 10 - 15 minutes, after which the resulting suspension was heated at reflux for a further 4 h. The solution was allowed to cool to room temperature and was stirred at room temperature overnight. The reaction was quenched with a minimum of water, and the resulting solution/suspension was dried over anhydrous magnesium sulfate. The mixture was filtered, and the solid cake was washed with THF. The combined filtrates were evaporated to give an oil. The oil was dissolved in toluene (200 mL) and was stirred with an aqueous solution of sulfuric acid (10 ml, 70 % v/v) for 3 h. The mixture was diluted with water, and the pH was adjusted to >9

PCT/DK01/00333

11

by the addition of aqueous ammonia solution (25% w/v). The toluene was separated, and the aqueous phase was extracted with further toluene. The combined toluene extracts were dried over anhydrous magnesium sulfate, filtered and evaporated to give the title compound as a yellow oil (4.4 g, 84%). H NMR (CDCl₃): δ 1.25-1.40 (m, 1H), 1.40-1.55 (m, 1H), 2.11 (ddd, 1H), 2.13 (t, 3H), 2.15 (ddd, 1H), 2.21 (t, 2H), 3.85 (s, 2H), 5.11 (d, 1H), 5.14 (d, 1H), 6.96 (t, 2H), 7.15 (s, 1H), 7.21 (d, 1H), 7.22 (d, 1H), 7.45 (dd, 2H).

Example 2

Citalopram, HBr

10 A mixture of 5-aminomethyl-I-(3-dimethylamino-propyl)-1-(4-fluoro-phenyl)-1,3dihydro-isobenzofuran (10 g, 30 mmol) and 5Å molecular sieves (24 g) in pyridine (150 mL) was stirred at 60 °C under an atmosphere of oxygen. Copper(I) chloride (1.8 g, 1.8 mmol) was added, and the mixture was stirred for 3 h. Further copper(I) chloride (1.8 g, 1.8 mmol) was added, and the mixture was stirred overnight. The mixture was poured onto ice, and the pH of the mixture was adjusted to >9 by the addition of aqueous ammonia solution (25% w/v). The solution was diluted with toluene and filtered. The organic phase was separated, and the aqueous was washed with further toluene. The combined organic extracts were washed with water, dried over anhydrous sodium sulfate and evaporated. The residue was treated with heptane and was evaporated to give an oil (11.1 g). This oil was dissolved in acetone and treated with aqueous hydrohromic acid (7 ml, 47% w/v). The solution was evaporated, and the residue was dissolved in iso-propanol (100 mL). The solution was stirred overnight. The resulting precipitate was filtered and dried to give the HBr salt of citalopram as a white powder (8.2 g, 66%). The filtrate was evaporated, and the oily residue was shaken with ether and allowed to stand overnight. Filtration of the 25 solution gave further HBr salt of citalogram as a brown solid (1.7 g, 14%). ¹H NMR (d⁶-DMSO): δ 1.35-1.50 (m, 1H), 1.50-1.60 (m, 1H), 2.25 (t, 2H), 2.69 (s, 3H), 3.00-3.10 (m, 2H), 5.17 (d, 1H), 5.25 (d, 1H), 7.18 (t, 2H), 7.61 (dd, 2H), 7.77 (d, 1H), 7.82 (d, 1H), 7.83 (a, 1H), 9.27 (bs, 1H).

30 Example 3

1-(4-Fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carboxylic acid methyl ester
A stirred suspension of 1-(4-fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carboxylic
acid (1 g, 3.7 mmol) in thionyl chloride (25 mL) was heated at reflux for 25 min, during
which time the solid dissolved. The thionyl chloride was then evaporated, and the residue
was dissolved in toluene, and again evaporated. The residue was stirred in methanol (25
mL) overnight, during which time a heavy precipitate formed. The solvent was
evaporated, and the residue was partitioned between aqueous ammonia solution (25% w/v)
and toluene. The organic phase was separated, dried over magnesium sulfate and

PCT/DK01/00333

12

evaporated to give the title compound as a white solid (0.97 g, 92%). HNMR (d⁵-DMSO): δ 3.92 (s, 3H), 6.85 (s, 1H), 7.26 (t, 2H), 7.42 (dd, 2H), 7.61 (d, 1H), 8.31 (dd, 1H), 8.36 (s, 1H).

Example 4

1-(4-Fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carboxylic acid amide A stirred suspension of 1-(4-fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carboxylic acid (1 g, 3.7 mmol) in thionyl chloride (25 mL) was heated at reflux for 25 min, during which time the solid dissolved. The thionyl chloride was then evaporated, and the residue was dissolved in toluene, and again evaporated. The residue was dissolved in toluene (15 mL) and was treated with a solution of ammonia in ether and a heavy precipitate formed. The mixture was stirred overnight, diluted with toluene and aqueous ammonia solution, and filtered. The residue was dried to give the title compound as a white solid (0.80 g. 80%). H NMR (d⁶-DMSO): δ 6.81 (s, 1H), 7.25 (t, 2H), 7.40 (dd, 2H), 7.54 (d, 1H), 7.59 (bs, 1H), 8.24 (bs, 1H), 8.24 (dd, 1H), 8.42 (s, 1H).

Example 5

**)

in principle

25

30

35

I-(4-Fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carbonitrile A suspension of 1-(4-fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carboxylic acid amide (13.6 g, 0.05 mole) in thionyl chloride (40 mL) and DMF (0.25 mL) was heated at reflux for 2 hours. The thionyl chloride was then evaporated, and the residue was dissolved in hot IPA (100 mL). On cooling, crystals of the title compound was formed. Yield: 7.8 g (62%). ¹H NMR (d⁶-DMSO): δ 6.87 (s, 1H), 7.26 (t, 2H), 7.42 (dd, 2H), 7.58 (d, 1H), 8.18 (dd, 1H), 8.48 (s, 1H).

Example 6

5-Bromomethyl-1-(4-fluoro-phenyl)-1,3-dihydro-isobenzofuran A suspension of 5-hydroxymethyl-1-(4-fluoro-phenyl)-1,3-dihydro-isobenzofuran (2 g, 8.2 mmol) in toluene (20 mL) was heated until the solid dissolved. Heating was then stopped. Thionyl bromide (2.2 g, 10.6 mmol) was added, and the mixture was stirred for 1 h. Silica (25 g) was added, and the mixture was filtered, and the residue was washed with a 1:1 v/v solution of ethyl acetate and heptane. The filtrate was evaporated to give the title compound as a red-orange oil (2.6 g, 90%). ¹H NMR (d⁶-DMSO): δ 4.72 (s, 2H), 5.11 (d, 1H), 5.28 (d, 1H), 6.17 (s, 1H), 7.04 (d, 1H), 7.17 (t, 2H), 7.33 (d, 1H), 7.38 (dd, 2H), 7.45 (s, 1H).

PCT/DK01/00333

Example 7

5-Aminomethyl-1-(4-Fluoro-phenyl)-1,3-dihydro-isobenzofuran

A suspension of 5-bromomethyl-1-(4-fluoro-phenyl)-1,3-dihydro-isobenzofuran (1.96 g, 6.4 mmol) was stirred in liquid re-distilled ammonia (200 mL) under nitrogen/ammonia at -33 °C for 2½ days. The ammonia was allowed to evaporate, and the residue was stirred with a mixture of ethyl acetate and aqueous sulfuric acid (2 M). The aqueous phase was separated and was washed with ether. The aqueous phase was then basified to pH > 9 using aqueous ammonium hydroxide solution (25% w/v), and was extracted with tolucne. The toluene extracts were dried over anhydrous magnesium sulfate and evaporated to give the title compound as a yellow-orange oil (0.63 g, 40%). H NMR (d⁶-DMSO): δ 3.72 (s, 2H), 5.09 (d, 1H), 5.25 (dd, 1H), 6.14 (s, 1H), 6.96 (d, 1H), 7.17 (t, 2H), 7.20 (d, 1H), 7.32 (s, 1H), 7.36 (dd, 2H).

13

Example 8

15 Citalopram

To a stirred solution of 5-aminomethyl-1-(3-dimethylamino-propyl)-1-(4-fluoro-phenyl)-1,3-dihydro-isobenzofuran (0.5 g, 1.5 mmol) in dichloromethane (10 mL) was added an aqueous solution of potassium bisulfate and sodium hydroxide (19 mL; 0.2 M in $\rm K_2S_2O_8$, 3.8 mmol; 0.4 M in NaOH, 7.6 mmol), followed by an aqueous solution of nickel sulfate

20 (1.5 mL, 40 mM, 61 μmol). The mixture was stirred vigorously for 4 days, and was then filtered through celite. The filtrate was partitioned between aqueous sulfuric acid (2 M) and toluene. The aqueous layer was separated, and the pH of the mixture was adjusted to >9 by the addition of aqueous ammonia solution (25% w/v). The solution was extracted with toluene, and this latter toluene extract was dried over magnesium sulfate and evaporated to give the free base of citalogram as a very pale yellow oil (0.35 g, 70%).

Example 9

1-(4-Fluoro-phenyl)-3-oxo-1,3-dihydro-isobenzofuran-5-carboxylic acid
Zink (38 g, 0.58 mol) was suspended in acetic acid (400 mL). The mixture was heated to

50 °C. 2,4-dicarboxy-4'-fluoro-benzophenone (21 g, 0.075 mol) was added in portions of 5 grams. After addition, the reaction mixture was heated at reflux temperature for two hours. The suspension was filtered while it was still hot. The filtrate was added to ice-water (1 kg) and the title compound was isolated by filtration. Yield 17.8 g (90%). 'H NMR (d⁶-DMSO): 8 6.84 (s, 1H), 7.17 (t, 2H), 7.43 (dd, 2H), 7.59 (d, 1H), 8.31 (d, 1H), 8.35 (s, 1H).

10

r Table

WO 01/85712

PCT/DK01/00333

14

Claims

1. A method for the preparation of citalogram comprising reaction of a compound of Formula IV

with an oxidising agent to afford citalopram

which is isolated as the base or a pharmaceutically acceptable salt thereof.

2. The method of claim 1, characterised in that the intermediate of Formula IV is prepared by activating the alcohol of Formula VIII

by a substituted sulphonate or converting the alcohol into a benzylic halide or another activated derivative followed by aminolysis to form the compound of Formula IV

PCT/DK01/00333

-NO. 3209—-P. 26/34—

15

- 3. The method of claim 2, characterised in that the intermediate of Formula VIII is
- 5 prepared by reacting the compound of Formula VII

with a reducing agent,

4. The method of claim 3, characterised in that the intermediate of Formula VII is prepared by alkylating the compound of Formula ${f VI}$

Formula VI

optionally by stepwise alkylation.

15

5. The method of claim 4, characterised in that the intermediate of Formula VI is prepared by reacting the compound of Formula ${\bf V}$

PCT/DK01/00333

NO. 3209——P. 27/34—

Formula V

with an alcohol R-OH in the presence of a dehydrating agent.

6. The method of claim 1, characterised in that the intermediate of Formula IV is prepared by reacting the compound of Formula X

with a reducing agent followed by ring closure to form the compound of Formula IV

10

projective.

7. The method of claim 6, characterised in that the intermediate of Formula X is prepared by alkylating the compound of Formula IX

JUN. 5. 2006 11:05AM 312 616 5700 NO. 3209—P. 28/34—

WO 01/85712

PCT/DK01/00333

Formula IX

optionally by stepwise alkylation.

8. The method of claim 7, characterised in that the intermediate of Formula IX is prepared by reacting the compound of Formula ${f V}$

Formula V .

with a dehydrating agent such as thionylchloride followed by aminolysis of the resulting activated acid derivative;

9. The method of claim 1, characterised in that the intermediate of Formula IV is prepared by reacting the compound of Formula XII

15

with a reducing agent followed by ring closure to form the compound of Formula IV

PCT/DK01/00333

18

10. The method of claim 9, characterised in that the intermediate of Formula XII is prepared by alkylating the compound of Formula XI

Formula XI

optionally by stepwise alkylation.

11. The method of claim 10, characterised in that the intermediate of Formula XI is prepared by converting the compound of Formula V

Formula V

to the corresponding cyano substituted compound.

5

WO 01/85712

PCT/DK01/00333

12. A compound of Formula V

Formula V

13. A method for the preparation of an intermediate of claim 12 comprising a ring closure reaction of a compound of Formula XIII

19

Formula XIII

with a suitable reducing agent.

- 10
- 14. The method of claim 13, wherein the reducing agent is Zn in acid, preferably acetic acid.
- 15. The method of claim 1, characterised in that the intermediate of Formula IV is prepared by alkylating the compound of Formula XVII

Formula XVII

optionally by stepwise alkylation to form the compound of Formula IV

PCT/DK01/00333

·NO. 3209——P. 31/34_

20

16. The method of claim 15, characterised in that the intermediate of Formula XVII is prepared by aminolysis the compound of Formula XVI

Formula XVI

5

17. The method of claim 16, characterised in that the intermediate of Formula XVI is prepared by activating the alcohol of Formula XV

Formula XV

10

by a substituted sulphonate or converting the alcohol into a benzylic halide or another activated derivative.

15

PCT/DK01/00333

21

18. The method of claim 17, characterised in that the intermediate of Formula XV is prepared by reacting the ketone of Formula XIII

Formula XIII

- with a reducing agent followed by ring closure to form the compound of Formula XV.
 - 19. An antidepressant pharmaceutical composition comprising citalogram manufactured by the process of any of the claims 1-11 and 13-18.

INTERNATIONAL SEARCH REPORT

	HATERNATIONAL SEARCH R	REPORT	F	<u></u>
		W.N.	International	application No.
A. CLASSIFICATION OF SUBJECT MATTER			PCT/DK 01/00333	
TDC	7: C07D 307/87 ing to International Patent Classification (IPC) or teleplacetic SEARCHED		-	
Minima	ELDS SEARCHED	som menous classification an	d IPC	
Winding	un documentation searched (Castification system fo	llowed by classification symbols	1	
IPL/	: (0/0			
Docume	entation searched other than minimum decumenteet			
SE, D	entation searched other than minimum documentath K , FI , NO classes as above	on to the extent that such docum	ebukati sus sunsa	d in the fields scarched
1	le data base consulted during the international search	h (name of data base and, where	practicable, sea	ich terme (seed)
}	• .			with used)
				
C. DO	CUMENTS CONSIDERED TO BE RELEVA	ANT		
Category	Gitation of document, with indication, whe	TR STOTES - C. d		
Α	WO 9819511 A2 (11 110000000	a spir chitate, of the relevan	at passages	Relevant to claim A
	WO 9819511 A2 (H. LUNDBECK A (14.05.98)	/\$), 14 May 1998		1~18
X			•	
		•		19
		•		
A	- US 4136193 A (KLAUS D. DOGGO		-	
	- US 4136193 A (KLAUS P. BDGESC 23 January 1979 (23.01.79	TET AL),		1-18
Х		•	l	
	•			19
	~-			
A	Biochemistry, Volume 29, 1990	E A I Da.	1	
	Biochemistry, Volume 29, 1990, E.A.L. Biessen et al, "Partial Purification of the			1-18
- 1	Blood Platelets Mass	ake System from Huma	an	
	Affinity Resin page 3349	- page 3354	1	
- 1		, •]	
Purthe	dominants — National States			
Special	documents are listed in the continuation of B	lox C. X See patent i	family annex.	
document	amputer of cited documents: Articular tolegeneral state of the art which is not considere articular relevance	T' later deciment walls	-4 0	tional filing date or priority
" Carlier ap	plication or patent but published on or after the internation	the hunglys or theory.	under ying the law	union
दोस्त्री to स इक्ट्रांस्त्री राज्य	Which may throw doubts on priority claim(s) or which is stablish the publication date of snother citation or other law [as toucified]	econsidered novel or con	relevance the claim and he considered Listakan alone	med invention comot be to involve an inventive
ध्यक्षात्र (क्षेत्रकार्यकार	referring to an oral disclosure, use, exhibition or other published prior to the international filing date but later that date claimed	document of particular : considered to involve an combined with one or a		ned invention counce be to the document is numenta, such combination
the pricely	date claimed	being obvious to a pent dominent member of th	o same natest fami	Tu
re of me s	ctual completion of the international search	Date of mailing of the inte	anational secon	is tenant
Sept 20		l e e e e e e e e e e e e e e e e e e e		- rebour
ne and ma	alling address of the ICA	11 0 -09	2001	1
edish Patent Office		Authorized officer		
i auaa, 6- simile Na	102 42 STOCKHOLM +46 8 666 02 86	Göran Kerlsson/Eö		1
	10 (account sheet) (July 1998)	Telephone No. +46 8 71		J.

———NO. 3209——P. 34/34___

Form PCI/ISA/110 (patent family annex) (July 1998)