

Olimpiada Națională de Matematică Etapa Națională, București, 7 aprilie 2015

CLASA a IX-a - soluții și bareme orientative

Problema 1. Arătați că nu putem alege 45 de elemente distincte ale mulțimii $\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{2015}\}$, astfel încât numerele selectate să fie în progresie aritmetică.

Soluție. Dacă $m, n, p \in \mathbb{N}^*$ și $\sqrt{m}, \sqrt{n}, \sqrt{p}$ sunt trei numere în progresie aritmetică, atunci $p+m+2\sqrt{pm}=4n$, deci \sqrt{pm} este rațional. Rezultă $m=a^2d, \ p=c^2d, \ n=2b^2d$, cu $a,b,c,d\in\mathbb{N}$ și $a+c=2b\mathbf{4p}$ Astfel, dacă am putea alege 45 de numere în progresie aritmetică, atunci ele ar fi de forma

Problema 2. O funcție f de gradul al doilea are proprietatea: pentru orice interval I de lungime 1, intervalul f(I) are lungimea cel puțin 1.

Arătați că, pentru orice interval J de lungime 2, intervalul f(J) are lungimea cel puțin 4.

Problema 3. Punctul P este în interiorul triunghiului ABC, iar dreptele AP, BP, CP taie laturile BC, AC, AB în A_1 , B_1 , respectiv C_1 . Se știe că

$$s(PBA_1) + s(PCB_1) + s(PAC_1) = \frac{1}{2}s(ABC),$$

unde cu s(XYZ) s-a notat aria triunghiului XYZ. Arătați că P se află pe o mediană a triunghiului ABC.

Soluție. Avem
$$\frac{s(PBA_1)}{s(ABA_1)} = \frac{PA_1}{AA_1} = \frac{s(BPC)}{s(BAC)}$$
......2p

Notând $s(BPC) = s_a$ și analoagele, rezultă $\frac{s(PBA_1)}{s_c + s(PBA_1)} = \frac{s_a}{s}$, unde s = s(ABC), deci $s(PBA_1) = \frac{s_a}{s}$

$$\frac{s_a s_c}{s - s_a} = \frac{s_a s_c}{s_b + s_c} \dots 2\mathbf{p}$$

Ipoteza devine $\frac{s_a s_c}{s_b + s_c} + \frac{s_b s_a}{s_c + s_a} + \frac{s_c s_b}{s_a + s_b} = \frac{s_a + s_b + s_c}{2}$, ceea ce se reduce după calcule la $s(s_a - s_b)(s_b - s_c)(s_c - s_a) = 0$. Rezultă $s_a = s_b$ sau $s_a = s_c$ sau $s_b = s_c$, de unde concluzia3p

Problema 4. Fie $a,b,c,d\geq 0$ numere reale astfel încât a+b+c+d=1. Arătați că

$$\sqrt{a + \frac{(b-c)^2}{6} + \frac{(c-d)^2}{6} + \frac{(d-b)^2}{6}} + \sqrt{b} + \sqrt{c} + \sqrt{d} \le 2.$$