

Trading Strategies Involving Options

Reference:

John Hull, Futures, Options and Other Derivatives (global edition, 9ed.) 2019. Ch. 12

본 강의자료는 수강생의 수업 목적을 위해 제공하는 것으로서,

KAIST 경영대학 혹은 저자의 허락없이 복사하거나 배포하는 것은 저작권법에 의거하여 금합니다.

Short Gamma vs Long Gamma

"변동성"을 이용한 수익 창출

Short Gamma vs Long Gamma

"변동성"을 이용한 수익 창출

Short gamma Position

Long gamma Position

Gamma as a View on Volatility

- As a measure of curvature, gamma reflects a view on volatility
- As motivation for this point, consider the holder of a call option
- The curvature in the call implies that the holder of a call benefits more from a price increase than he loses from a corresponding price decrease
- Ex.) in a Black-Scholes model with K = 100, $\sigma = 0.2$, r = 0.05, T-t=0.5 years, we can check the following:
 - At S = 100, we have C = 6.889.
 - If S increases to 104, the option price increases by 2.600.
 - If S falls to 96, the option price decreases by only 2.166

Curvature and Asymmetric Responses

Gamma and the Asymmetry

- Thus, curvature creates asymmetric exposure to price changes
- This is also true for puts: put holders benefit more from price decreases than they lose from price increases.
- The extent of the asymmetry depends on the gamma:
 - Large Γ ⇒ considerable curvature ⇒ substantial asymmetry
 - Small $\Gamma \Rightarrow$ option price is nearly linear \Rightarrow little asymmetry

Long Gamma: Long Volatility

- Asymmetric exposure is desirable if you expect an increase in volatility: it will enable you to benefit more on the upside than you lose on the downside
- Thus, a positive gamma position can be regarded as a <u>bullish</u> view on volatility
- Analogously, a negative gamma position, which is the gamma of the short position in the option, can be regarded as a bearish view on volatility

내용

1. Principal Protected Note

Knock Out

2. Naked v. Hedged Position

Covered Call, Protective Put

3. Spreads

Bull/Bear Spread, Butterfly

Calendar Spread

4. Combinations

Straddle, Strangle

내용

Principal Protected Note Knock Out Naked v. Hedged Position **Covered Call, Protective Put Spreads Bull/Bear Spread, Butterfly Calendar Spread Combinations** Straddle, Strangle

Strategies to be Considered

- Bond plus option to create principal protected note
- Stock plus option
- Two or more options of the same type (: spread)
- Two or more options of different types (: combination)

Principal Protected Note

- The return earned by the investor depends on the performance of a stock, a stock index, or other risky asset, but the initial principal amount invested is not at risk.
- Example: \$1000 instrument consisting of
 - 3-year zero-coupon bond with principal of \$1000
 - 3-year at-the-money call option on a stock portfolio currently worth \$1000

Principal Protected Notes continued

- Viability depends on
 - Level of dividends
 - Level of interest rates
 - Volatility of the portfolio
- Variations on standard product
 - Out of the money strike price
 - Caps on investor return
 - Knock outs, averaging features, etc

Example

Knock out & Rebate

[수익구조]

- 기초자산이 만기 평가일까지 단 1회라도 베리어(B)를 초과 상승한 적이 있는 경우, Principal x (1+Rebate rate)
- 2. '1'의 경우에 해당하지 않고, 만기평가지수(S_T)가 최초 기준가(K)의 100%이하에 있는 경우, Principal
- 3. 만기평가지수가 최초 기준가(K)와 베리어(B) 미만에 있는 경우, Principal x [1+(S_T K) / K] x Participation rate

Example (continued)

Example (continued)

내용

Principal Protected Note Knock Out 2. Naked v. Hedged Position **Covered Call, Protective Put Spreads Bull/Bear Spread, Butterfly Calendar Spread Combinations** Straddle, Strangle

Naked Position: Long Call

거래동기: 기초자산 가격의 상승 시 <u>레버리지 효과</u>를 통하여 높은 수익을 얻고자 함

Naked Position: Short Call

거래동기: 기초자산 가격의 변동이 적거나 기초자산 가격의 하락이 예상될 때 프리미엄 수입을 기대

Naked Position: Long Put

거래동기: 기초자산 가격의 하락 시 <u>레버리지 효과</u>를 통하여 높은 수익을 얻고자 함

Naked Position: Short Put

거래동기: 기초자산 가격의 변동이 작거나 기초자산 가격의 상승이 예상될 때 프리미엄 수입을 기대

Hedged Position: Covered Call

거래동기: 기초자산 보유 상태에서 가격 하락 대비 헤지 포지션 구축. 동시에 변동성이 크지 않을 것으로 예상될 때

Hedged Position: Protective Put

거래동기: 기초자산 보유 상태에서 가격 하락 대비 헤지 포지션 구축. 동시에 변동성이 클 것으로 예상될 때

Hedged Position with Short Underlying Asset

Synthetic Position

$$U = C - P$$

Position Synthetic Equivalent

$$+P = +C - U$$
 $U-C = -P$
 $+C = U+P$
 $U+P = +C$
 $-C+P = -U$
 $-P+C = +U$

Arbitrage

Long Call + Short Put = Synthetic Futures vs. Traded Futures

S _T Position	If S _⊤ ≥ K, Payoff at T	If S _T < K, Payoff at T
Long Call	S _T -K-P _C	-P _C
Short Put	P _P	S _T - K+ P _P
Long Call + Short Put	S _T - K+ (P _P -P _C)	S _T - K + (P _P -P _C)

Practical Example

[Prices] same M.

70.0 C: 3.0

70.0 P: 2.0

F: **70.5**

Syn. Futures Price = 3.0 - 2.0 + 70.0 = 71.0

Short Syn. F. @71.0 + Long F @70.5

→ risk-free profit 0.5pt(=71.0-70.5)
(:: same maturity)

Supposed that Contract sizes are different!!

Ex.) Futures: ₩500,000 per Contract, Options: ₩100,000 per Contract

 \rightarrow Q_{OPTION} = 5 x Q_{FUTURES}

5 Short 70.0 Call @3.0 5 Long 70.0인 Put @2.0

1 Long F @70.5

Arbitrage Gain = $0.5pt \times 500,000 = 250,000$

Practical Example (continued)

Long Call + Short Put = Synthetic Futures vs. Traded Futures

If S _T ≥ 70 (S _T =100), Payoff at T		If S _T < 70 (S _T =50), Payoff at T	
5 Short 70 Call @3.0	$-5 \times [(100 - 70) - 3.0] \times 100,000 = -13,500,000$	5 × 3.0 × 100,000 = 1.500,000	
5 Long 70 Put @2.0	$5 \times (-2.0) \times 100,000 =$ $-1,000,000$	5 × [(70-50) - 2.0] × 100,000= 9,000,000	
1 Long Futures @70.5	$[100 - 70.5] \times 500,000$ = 14,750,000	$[50-70.5] \times 500,000$ = -10,250,000	
Profit	250,000	250,000	

내용

Principal Protected Note Knock Out Hedged Position Covered Call, Protective Put Spreads Bull/Bear Spread, Butterfly Calendar Spread Combinations Straddle, Strangle

Spread Position

A spread trading strategy involves taking a position in two or more options of the **same type** (i.e., two or more calls or two or more puts).

- Call spread vs. Put spread
- Price spread or Money spread vs. Calendar spread or Time spread
- Long spread vs. Short spread
- Bull spread vs. Bear spread

Bull Spread Using Calls

Maximum Profit – Maximum Loss = $K_2 - K_1$ (Difference between the two exercise prices)

$$=3.0 - (-2.0) = 5.0 = 75.0 - 70.0$$

Bull Spread = Long Call or Put (K_1) + Short Call or Put (K_2) when $K_2 > K_1$

Bear Spread Using Calls

Maximum Profit – Maximum Loss = $K_2 - K_1$ (Difference between the two exercise prices)

$$=2.0 - (-3.0) = 5.0 = 75.0 - 70.0$$

Bear Spread = Short Call or Put (K_1) + Long Call or Put (K_2) when $K_2 > K_1$

Question?

Short 70.0 Put @1.0 Long 75.0 Put @3.0

Box Spread

- A box spread is a combination of a bull call spread with strike prices K₁ and K₂ and a bear put spread with the same two strike prices
- If all options are European, the payoff from a box spread is always K₂ - K₁. The value of a box spread is therefore always the present value of this payoff or

$$(K_2-K_1)e^{-rT}$$

If they are American, this is not necessarily so (see Business Snapshot 11.1)

Box Spread Payoff

Table 12.3 Payoff from a box spread.

Stock price range	Payoff from bull call spread	Payoff from bear put spread	Total payoff
$S_T \leqslant K_1$	0	$K_2 - K_1$	$K_2 - K_1$
$K_1 < S_T < K_2$	$S_T - K_1$	$K_2 - S_T$	$K_2 - K_1$
$S_T \geqslant K_2$	$K_2 - K_1$	0	K_2-K_1

Butterfly Spread

- A butterfly spread involves positions in options with three different strike prices
- It can be created by buying a European call option with a relatively low strike price K₁, buying a European call option with a relatively high strike price K₃, and selling two European call options with a strike price K₂ that is halfway between K₁ and K₃. Generally, K₂ is close to the current stock price
- Butterfly = Bull Spread + Bear Spread

Butterfly Spread Using Calls

Long Butterfly

<Bull Spread>
Long 70.0 Call @3.0
Short 75.0 Call @2.0

Question?

<Bear Spread>
Short 70.0 Call @5.0
Long 75.0 Call @2.0

<Bull Spread>
Long 75.0 Call @2.0
Short 80.0 Call @1.0

Calendar Spreads

- A calendar spread can be created by selling a European call option with a certain strike price and buying a longer-maturity European call option with the same strike price
- The longer the maturity of an option, the more expensive it usually is. A calendar spread therefore usually requires an initial investment.
- Profit diagrams for calendar spreads are usually produced so that they show the profit when the shortmaturity option expires on the assumption that the long-maturity option is closed out at that time.

Calendar Spread Using Calls

Figure 12.8 Profit from calendar spread created using two call options, calculated at the time when the short-maturity call option expires.

Calendar Spread Using Puts

Figure 12.9 Profit from calendar spread created using two put options, calculated at the time when the short-maturity put option expires.

Diagonal Spreads

- Bull, bear, and calendar spreads can all be created from a long position in one call and a short position in another call
- In the case of bull and bear spreads, the calls have different strike prices and the same expiration date
- In the case of calendar spreads, the calls have the same strike price and different expiration dates
- In a diagonal spread <u>both the expiration date and the strike price</u> of the calls are <u>different</u>. This increases the range of profit patterns that are possible.

내용

Principal Protected Note Knock Out Hedged Position Covered Call, Protective Put Spreads Bull/Bear Spread, Butterfly Calendar Spread Combinations Straddle, Strangle

Combinations

- A combination is an option trading strategy that involves taking a position in <u>both calls</u> and <u>puts</u> on the same stock.
 - Straddles
 - Strips
 - Straps
 - Strangles

Long Straddle

Buying a European call and put with the same strike price and expiration date

Short Straddle

Selling a European call and put with the same strike price and expiration date

Strips and Straps

- A strip consists of a long position in <u>one European</u> <u>call</u> and <u>two European puts</u> with the same strike price and expiration date
- In a strip the investor is betting that there will be a big stock price move and considers a <u>decrease in the</u> <u>stock price</u> to be more likely than an increase
- A strap consists of a long position in <u>two European</u> <u>calls</u> and <u>one European put</u> with the same strike price and expiration date.
- In a strap the investor is also betting that there will be a big stock price move and considers an <u>increase in</u> the stock price to be more likely than a decrease

Profit from a Strip and a Strap

Figure 12.11 Profit from a strip and a strap.

Long Strangle

Buying a European call and put with the same expiration date and different strike prices

Short Strangle

Selling a European call and put with the same expiration date and different strike prices

Ratio Backspread Using Call

Ratio Vertical Spread using Call

Other Payoff Patterns

- When the strike prices are close together, a butterfly spread provides a payoff consisting of a small "spike"
- If options with all strike prices were available, any payoff pattern could (at least approximately) be created by combining the spikes obtained from different butterfly spreads

Homework ch.12

- 1. Problem 12.8
- 2. Problem 12.11
- 3. Problem 12.21

A trader sells a strangle by selling a call option with a strike price of \$50 for \$3 and selling a put option with a strike price of \$40 for \$4. For what range of prices of the underlying asset does the trader make a profit?

- 4. Problem 12.24 (8 ed. 22)
- 5. Problem 12.26 (8 ed. 24)
- 6. Short 70.0 Put @1.0 + Long 75.0 Put @3.0
- 7. Butterfly

<Bear Spread>
Short 70.0 Call @5.0
Long 75.0 Call @2.0

<Bull Spread>
Long 75.0 Call @2.0
Short 80.0 Call @1.0