École de technologie supérieure

Département de génie électrique

Chargé de cours: Olivier Tremblay

SYS-810 TECHNIQUES DE SIMULATION

DEVOIR n° 3

Étant donné la fonction de transfert suivante

$$G(s) = {100 s \over {s^3 + 11 s^2 + 30 s + 200}} = {Y(s) \over {U(s)}}$$

 a) Déterminer la représentation d'état et simuler le modèle continu avec Simulink en fixant les paramètres de simulation suivants (Simulation -> Configuration Parameters) :

Start time: 0.0 Stop time: 10.0			
Solver options—			
Туре:	Variable-step 💌	Solver:	ode45 (Dormand-Prince)
Max step size:	0.01	Relative tolerance:	1e-3
Min step size:	auto	Absolute tolerance:	auto

- b) Tracer la région de stabilité de la méthode AB_2 et déterminer T pour que la simulation soit stable. Simuler ensuite le système avec la méthode AB_2 (dans Simulink, remplacer les 3 intégrateurs continus par H(z) de la méthode AB_2) et déterminer le pas de calcul à partir duquel les résultats s'apparentent le plus à la simulation du modèle continu. Que pouvez-vous conclure?
- c) On désire maintenant utiliser AB_2 comme prédicteur dans une stratégie «prédicteur-correcteur ». Le correcteur est donné par la méthode de Tustin modifiée afin que son ordre soit identique à celui du prédicteur :

$$H(z) = \frac{T}{2} \cdot \frac{(z^2 + z)}{(z^2 - z)}$$
Tustin modifiée

- a) Tracer la région de stabilité du couple «prédicteur-correcteur» et déterminer T pour que la simulation soit stable.
- b) Donner l'algorithme de simulation du système (3 équations récurrentes pour le prédicteur et 3 pour le correcteur)