

Fis 1

FIG. 2B

Fig. 3A

Figure 4 A

Fis. 6

Tune Resonator to Critical Coupling Point when Electromagnetically Coupled to the Reference Sample

710

Obtain Resonator's $f_{\text{res},1}$ and Q_1 Parameters when Electromagnetically coupled to the First Calibration Sample

7-17

Obtain Resonator's $f_{res,2}$ and Q_2 Parameters when Electromagnetically coupled to the Second Calibration Sample

2714

Calculate the Difference between $f_{res,2}$ and $f_{res,1}$ to obtain $\Delta f_{res,cal}$

2720

Calculate the Difference between Q_2 and Q_1 to obtain ΔQ_{cal}

2727

Calculate C' by taking the ratio of $\Delta\epsilon'_{\text{cal}}$ to $\Delta f_{\text{res,cal}}$

2729

Calculate C" by taking the ratio of $\Delta\epsilon$ "_{cal} to ΔQ_{cal}

2726

Fig 7A

540,550

Fig 7B

Fig. 8A

Fig. BB

Obtain Detector's I ₁ and Q ₁ Parameterswhen the Detector is Electromagnetically coupled to the First Calibration Sample	2912
Obtain Detector's I ₂ and Q ₂ Parameterswhen the Detector is Electromagnetically coupled to the Second Calibration Sample	2914
Compute {ΔI _{cal} } and {ΔQ _{cal} }	2916
Calculate {C'} by taking the ratio of $\{\Delta\epsilon'_{cal}\}$ to $\{\Delta I_{cal}\}$	2920
Calculate {C"} by taking the ratio of $\{\Delta\epsilon^{"}_{cal}\}$ to $\{\Delta Q_{cal}\}$	2922
Fig.9A	500,550
Obtain I _{ref} and Q _{ref} when the Detector is Electromagnetically coupled to the Reference Sample	2932
Obtain I _{sam} and Q _{sam} when the Detector is Electromagnetically coupled to the Test Sample	2934
Compute $\{\Delta I_{\text{sam-ref}}\}$ and $\{\Delta Q_{\text{sam-ref}}\}$	2936
Compute Change in Permittivity between Test & Ref Samples: $ \{\Delta\epsilon'_{sam-ref}\} = \{C'\} \times \{\DeltaI_{sam-ref}\} \\ \{\Delta\epsilon''_{sam-ref}\} = \{C''\} \times \{\DeltaQ_{sam-ref}\} $	2938
Fig. 9B	

Measine E do Calbration Sam measure oxpx favameters Derive 3 Bilinean Calibration mersure reflection Coefficiell Apply the measured Refliction coefficient to the 3 Bilincan calibraton coefficients

Fig. 10

Fig 12A

Use Dielectric Probe to Measure the Reference Sample Permittivity (Re and Im parts) at Temperatures $t_0, t_1, t_2....t_n$

21255

Use Dielectric Probe to Measure the Test Sample Permittivity (Re and Im parts) at Temperatures $t_0,t_1,\,t_2....t_n$

21224

Compute:

 $\Delta \varepsilon'(t_0), \Delta \varepsilon'(t_1), \Delta \varepsilon'(t_2), \dots \Delta \varepsilon'(t_n)$ and $\Delta \varepsilon''(t_0), \Delta \varepsilon''(t_1), \Delta \varepsilon''(t_2), \dots \Delta \varepsilon''(t_n)$

21226

Fig. 12B

C 1230

Compute:

$$\begin{split} &\text{Abs}[\Delta\epsilon^{\text{!`}}\text{-}\Delta\epsilon^{\text{!`}}(t_{\text{!`}})]_{t\text{!`}=\{\text{t0, t1, t2, ... tn}\}} \text{ and} \\ &\text{Abs}[\Delta\epsilon^{\text{"`}}\text{-}\Delta\epsilon^{\text{"`}}(t_{\text{!`}})]_{t\text{!`}=\{\text{t0, t1, t2, ... tn}\}} \end{split}$$

2 1232

The Temperature-dependent Permittivity is the $\Delta\epsilon'(t_i)$ and $\Delta\epsilon''(t_i)$ which produces Absolute Values closest to zero.

21234

Fzg. 126