

Seeing Far in the Dark with Patterned Flash

Zhanghao Sun^{1*}, Jian Wang^{2*}, Yicheng Wu², Shree Nayar²

¹ Stanford University, ² Snap Inc, * equal contribution

Problem in Uniform Flash

- Flash light falls off with 1/depth²
- Flash signal overwhelmed by sensor noise

Patterned Flash

- Patterned flash concentrates light into a dot array for higher signal-noise ratio
- Patterned flash is a structured light system that supports depth estimation

Algorithm

- · Joint image reconstruction & depth estimation
- In simulations:
- PF achieves better image restoration quality
- o PF achieves sub-pixel disparity accuracy

Hardware Prototype

- Setup: camera, projector, beam splitter (for easily adjusting baseline only)
- Regular pattern vs. random pattern
- Better image restoration quality
- o More ambiguity in disparity estimation
- DMD projector & Laser projector

Image Restoration

 PF resolves fine details and avoids reconstruction artifacts compared to UF

Applications

- Low-light face detection (Google MediaPipe)
- Flash/No-flash imaging
- Other imaging modalities (e.g. IR imaging)
- Other hardware implementations
- o MEMS scanner, VCSEL array, Diffractive optical element (DOE), ...