Homework 8

Elliott Pryor

9 April 2021

Problem 1 10.1.5 Problem 3

If f is differentiable at y, show that $d_u f(y)$ is linear in u, meaning $d_{(au+bv)} f(y) = a d_u(y) + b_v f(y)$.

Hint: Apply Theorem 10.1.1

Problem 2 10.1.5 Problem 10

Let $g:[a,b]\to\mathbb{R}^n$ be differentiable. If $f:\mathbb{R}^n\to\mathbb{R}$ is differentiable, what is the derivative (d/dt)f(g(t))

Hint: Use notation $g(t) = (g_1(t), \dots, g_n(t)), t \in [a, b]$ and $f(z) = f(z_1, \dots, z_n), z = (z_1, \dots, z_n) \in \mathbb{R}^n$ and Apply the chain rule.

Problem 3 10.1.5 Problem 13

Compute df of

- 1. $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = x_1 e^{x_2}$
- 2. $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x_1, x_2, x_3) = (x_3, x_2)$
- 3. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (x_1, x_2, x_1 \cdot x_2)$

Problem 4 10.1.5 Problem 15

If $f: D \to \mathbb{R}$ is C^1 with $D \subseteq \mathbb{R}^n$ and D contains the line segment joining x and y, show that $f(y) = f(x) + \nabla(z) \cdot (y - x)$ for some point z on the line segment. Explain why this is an n-dimensional analog of the mean value theorem

Hint: Define function $g:[0,1]\to\mathbb{R}^n$ by g(t)=x+t(y-x) and consider the composition function

$$h(t) = (f \circ g)(t) = f(g(t)) : \mathbb{R} \to \mathbb{R}$$

Apply Mean Value Theorem to h(t) for h(1) - h(0) and use the chain rule (formula derived in problem 10 above) to calculate h'