Package 'PRECAST'

March 19, 2024

```
Version 1.6.5
Date 2024-03-19
Author Wei Liu [aut, cre],
     Yi Yang [aut],
     Jin Liu [aut]
Maintainer Wei Liu liuweideng@gmail.com>
Description An efficient data integration method is provided for multiple spatial transcrip-
     tomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spa-
     tial factor analysis simultaneously with spatial clustering and embedding alignment, requir-
     ing only partially shared cell/domain clusters across datasets. More details can be re-
     ferred to Wei Liu, et al. (2023) <doi:10.1038/s41467-023-35947-w>.
License GPL-3
Depends parallel, gtools, R (>= 4.0.0)
Imports GiRaF, MASS, Matrix, mclust, methods, purrr, utils, Seurat,
     cowplot, patchwork, scater, pbapply, ggthemes, dplyr, ggplot2,
     stats, DR.SC, scales, ggpubr, graphics, colorspace, Rcpp (>=
     1.0.5)
LazyData true
URL https://github.com/feiyoung/PRECAST
BugReports https://github.com/feiyoung/PRECAST/issues
Suggests knitr, rmarkdown
LinkingTo Rcpp, RcppArmadillo
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-03-19 08:30:02 UTC
```

Title Embedding and Clustering with Alignment for Spatial Datasets

Type Package

2 AddAdjList

R topics documented:

	djList Add adjacency matrix list for a PRECASTObj object	
Index		35
	volinPlot	33
	SpaPlot	
	SelectModel	
	selectIntFeatures	
	PRECASTObj-class	
	PRECASTObj	
	PRECAST	
	plot_scatter	
	plot_RGB	
	Mouse_HK_genes	
	model_set	
	IntegrateSpaData	
	ICM.EM_structure	
	ICM.EM	18
	Human_HK_genes	17
	getAdj_reg	17
	getAdj_fixedNumber	16
	firstup	15
	featurePlot	14
	drawFigs	13
	doHeatmap	
	dimPlot	
	CreatePRECASTObject	
	coordinate_rotate	
	chooseColors	
	boxPlot	
	Add_embed	
	AddUMAP	
	AddTSNE	
	AddParSetting	
	AddAdjList	2

Description

Add adjacency matrix list for a PRECASTObj object to prepare for PRECAST model fitting.

Usage

```
AddAdjList(PRECASTObj, type="fixed_distance", platform="Visium", ...)
```

AddParSetting 3

Arguments

PRECASTObj a PRECASTObj object created by CreatePRECASTObject.

type an optional string, specify which type of neighbors' definition. Here we provide

two definition: one is "fixed_distance", the other is "fixed_number".

platform a string, specify the platform of the provided data, default as "Visium". There

are more platforms to be chosen, including "Visuim", "ST" and "Other_SRT" ("Other_SRT" represents the other SRT platforms except for 'Visium' and 'ST'), which means there are spatial coordinates information in the metadata of PRE-CASTObj. The platform helps to calculate the adjacency matrix by defining the

neighborhoods when type="fixed_distance" is chosen.

.. other arguments to be passed to getAdj_auto and getAdj_fixedNumber

funciton.

Details

When the type = "fixed_distance", then the spots within the Euclidean distance cutoffs from one spot are regarded as the neighbors of this spot. When the type = "fixed_number", the K-nearest spots are regarded as the neighbors of each spot.

Value

Return a revised PRECASTObj object by adding the adjacency matrix list.

Note

nothing

Author(s)

Wei Liu

See Also

AddParSetting.

AddParSetting

Add model settings for a PRECASTObj object

Description

The main interface function provides serveral PRECAST submodels, so a model setting is required to specified in advance for a PRECASTObj object.

Usage

```
AddParSetting(PRECASTObj, ...)
```

4 AddTSNE

Arguments

PRECASTObj a PRECASTObj object created by CreatePRECASTObject.
... other arguments to be passed to model_set function.

Details

Nothing

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
data(PRECASTObj)
PRECASTObj <-AddParSetting(PRECASTObj)
PRECASTObj@parameterList</pre>
```

AddTSNE

Add tSNE embeddings for a Seurat object

Description

Run t-SNE dimensionality reduction on selected features.

Usage

```
AddTSNE(seuInt, n_comp=3, reduction='PRECAST', assay='PRE_CAST', seed=1)
```

Arguments

seuInt a Seurat object.

n_comp an optional positive integer, specify the number of features to be extracted. reduction an optional string, means which dimensional reduction (e.g. PRECAST, PCA)

to use for the tSNE. Default is PRECAST.

assay Name of assay that that t-SNE is being run on.

seed an optional integer, the random seed to evaluate tSNE.

AddUMAP 5

Details

Nothing

Value

Return a revised Seurat object by adding tSNE reduction object.

Note

nothing

Author(s)

Wei Liu

See Also

None

AddUMAP

Add UMAP embeddings for a Seurat object

Description

Run UMAP dimensionality reduction on selected features.

Usage

```
AddUMAP(seuInt, n_comp=3, reduction='PRECAST', assay='PRE_CAST', seed=1)
```

Arguments

seuInt a Seurat object.

n_comp an optional positive integer, specify the number of features to be extracted.

reduction an optional string, means which dimensional reduction (e.g. PRECAST, PCA)

to use for the UMAP. Default is PRECAST.

assay Name of assay that that t-SNE is being run on.

seed an optional integer, the random seed to evaluate UMAP.

Details

Nothing

Value

Return a revised Seurat object by adding UMAP reduction object.

6 Add_embed

Note

nothing

Author(s)

Wei Liu

See Also

None

Add_embed

Add embeddings for a Seurat object

Description

Add embeddings for a Seurat object.

Usage

```
Add_embed(embed, seu, embed_name='tSNE' , assay = "RNA")
```

Arguments

embed an embedding matrix.

seu a Seurat object.

embed_name an optional string, the name of embeddings.

Name of assay that that embed is being put

Details

Nothing

Value

Return a revised Seurat object by adding a embedding matrix to the Reduc slot in Seurat object.

Note

nothing

Author(s)

Wei Liu

See Also

None

boxPlot 7

boxPlot

Boxplot for a matrix

Description

Boxplot for a matrix.

Usage

```
boxPlot(mat, ylabel='ARI', cols=NULL, ...)
```

Arguments

mat a matrix with columns.

ylabel an optional string, the name of ylabel.

cols colors used in the plot

... Other parameters passed to geom_boxplot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
mat <- matrix(runif(100*3, 0.6, 1), 100, 3)
colnames(mat) <- paste0("Method", 1:3)
boxPlot(mat)</pre>
```

8 coordinate_rotate

chooseColors

Choose color schema from a palette

Description

Choose color schema from a palette

Usage

```
chooseColors(
  palettes_name = c("Nature 10", "Light 13", "Classic 20", "Blink 23", "Hue n"),
  n_colors = 7,
  alpha = 1,
  plot_colors = FALSE
)
```

Arguments

palettes_name a string, the palette name, one of "Nature 10", "Light 13", "Classic 20", "Blink

23" and "Hue n", default as 'Nature 10'.

n_colors a positive integer, the number of colors.

alpha a positive real, the transparency of the color.

plot_colors a logical value, whether plot the selected colors.

Examples

chooseColors()

coordinate_rotate

Coordinates rotation for visualization

Description

Coordinates rotation for visualization.

Usage

```
coordinate_rotate(pos, theta=0)
```

Arguments

pos a matrix, the n-by-d coordinates, where n is the number of coordinates, d is the

dimension of coordinates.

theta a real number, the angle for counter-clock-wise rotation.

Details

Nothing

Value

Return a rotated coordinate matrix.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
x <- 1:100
pos <- cbind(x, sin(pi/4*x))
oldpar <- par(mfrow = c(1,2))
plot(pos)
plot(coordinate_rotate(pos, 40))
par(oldpar)</pre>
```

CreatePRECASTObject

Create the PRECAST object with preprocessing step.

Description

Create the PRECAST object with preprocessing step.

Usage

Arguments

seuList a list consisting of Seurat objects, where each object is a SRT data batch. The

default assay of each Seurat object will be used for data preprocessing and followed model fitting. The specified format about seuList argument can be re-

ferred to the details and example.

project An optional string, name of the project, default as "PRECAST".

gene.number an optional integer, the number of top spatially variable genes (SVGs) or highly

variable genes (HVGs) to be chosen.

selectGenesMethod

an optional integer, the method to select genes for each sample. It supports 'SPARK-X' and 'HVGs' to select genes now. Users can provide self-selected

genes using customGenelist argument.

numCores_sparkx

an optional integer, specify the number of CPU cores in SPARK package to use

when selecting spatial genes.

customGenelist an optional string vector, the list of user specified genes to be used for PRECAST

model fitting. If this argument is given, SVGs/HVGs will not be selected.

premin. spots An optional integer, the features (genes) are retained in raw data filtering step

with at least premin.spots number of spots, default is 20.

premin.features

An optional integer, the locations are retained in raw data filtering step with at

least premin.features number of nonzero-count features (genes), default is 20.

postmin.spots An optional integer, the features (genes) are retained in filtering step after com-

mon genes selected among all data batches with at least postmin.spots number

of spots, default is 15.

postmin.features

An optional integer, the locations are retained in filtering step after common genes selected among all data batches with at least postmin.features number of

nonzero-count features (genes), default is 15.

rawData.preserve

An optional logical value, whether preserve the raw seuList data.

verbose whether display the message in the creating process.

Details

seuList is a list with Seurat object as component, and each Seurat object includes the raw expression count matrix, spatial coordinates and meta data for each data batch, where the spatial coordinates information must be saved in the metadata of Seurat, named "row" and "col" for each data batch.

Value

Returns PRECAST object prepared for PRECAST model fitting. See PRECASTObj-class for more details.

dimPlot 11

Examples

```
data(PRECASTObj)
library(Seurat)
seuList <- PRECASTObj@seulist
## Check the input of seuList for create PRECAST object.
## Check the default assay for each data batch
lapply(seuList, DefaultAssay)
## Check the spatial coordinates in the meta data named "row" and "col".
head(seuList[[1]]@meta.data)
## Then create PRECAST object using this seuList.
## For convenience, we show the user-specified genes' list for creating PRECAST object.
## Users can use SVGs from SPARK-X or HVGs.
PRECASTObj2 <- CreatePRECASTObject(seuList,
    customGenelist= row.names(seuList[[1]]), verbose=FALSE)</pre>
```

dimPlot

Low-dimensional embeddings' plot

Description

Low-dimensional embeddings' plot colored by a specified meta data in the Seurat object.

Usage

Arguments

seuInt an object named "Seurat". the item used for coloring the plot in the meta data of seuInt object. item reduction the reduction used for plot in the seuInt object. If reduction is null, the last added one is used for plotting. the size of point in the scatter plot. point_size text_size the text size in the plot. cols colors used in the plot font_family the font family used for the plot. border_col the border color in the plot. fill_col the color used in backgroup. other arguments passed to plot_scatter

.

12 doHeatmap

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
data(PRECASTObj)
PRECASTObj <- SelectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
dimPlot(seuInt, reduction = 'PRECAST')
## or use the Seurat::DimPlot(seuInt, reduction = 'PRECAST')</pre>
```

doHeatmap

Heatmap for spots-by-feature matrix

Description

Plot heatmap for a Seurat object with expressioin data.

Usage

Arguments

```
an object named "Seurat". The object of class "Seurat" must include slot "scale.data".

features an optional string vector, the features to be plotted.

cell_label an optional string, the name of legend.

grp_label an optional logical value, whether display the group names.

the point size used in the plot

grp_color the colors to use for the group color bar.

Other paramters passed to DoHeatmap.
```

drawFigs 13

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

featurePlot

Examples

```
library(Seurat)
data(PRECASTObj)
PRECASTObj <- SelectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
seuInt <- ScaleData(seuInt)
doHeatmap(seuInt, features=row.names(seuInt)[1:5])</pre>
```

drawFigs

Draw a figure using a group of ggplot objects

Description

Draw a figure using a group of ggplot objects

Usage

```
drawFigs(
  pList,
  layout.dim = NULL,
  common.legend = FALSE,
  legend.position = "right",
   ...
)
```

14 featurePlot

Arguments

pList a list with component ggplot objects.

layout.dim a integer vector with length 2, the layout of subplots in rows and columns.

common.legend a logical value, whether use common legend for all subplots.

legend.position

a string, the position of legend.

... other arguments that pass to ggarrange.

Value

return a new ggplot object.

featurePlot

Spatial expression heatmap

Description

Plot spatial heatmap for a feature of Seurat object with spatial transcriptomics data.

Usage

```
featurePlot(seu, feature=NULL, cols=NULL, pt_size=1, title_size =16, quant=0.5,
   assay='RNA' , reduction="position")
```

Arguments

seu an object named "Seurat". The object of class "Seurat" must include slot "scale.data".

feature an optional string, specify the name of feature to be plotted. If it is null, the first

feature will be plotted.

cols colors used in the plot

pt_size the size of point in the spatial heatmap plot.

title_size the title size used for the plot.

quant the quantile value to generate the gradient color map.

assay the assay selected for plot. reduction the Reduc object for plot.

Details

Nothing

Value

Return a ggplot2 object.

firstup 15

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
library(Seurat)
data(PRECASTObj)
PRECASTObj <- SelectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
seuInt <- ScaleData(seuInt)
featurePlot(seuInt, assay='PRE_CAST')</pre>
```

firstup

Set the first letter of a string vector to captial

Description

Set the first letter of a string vector to captial.

Usage

firstup(x)

Arguments

Х

a string vector.

Details

Nothing

Value

Return a string vector with first letter capital.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
x <- c("good", "Morning")
firstup(x)</pre>
```

getAdj_fixedNumber

Calculate adjacency matrix by user-specified number of neighbors

Description

an efficient function to find the neighborhood based on the matrix of position and a user-specified number of neighbors of each spot.

Usage

```
getAdj_fixedNumber(pos, number=6)
```

Arguments

pos is a n-by-d matrix of position, where n is the number of spots, and d is the

dimension of coordinates.

number is the number of neighbors of each spot. Euclidean distance to decide whether a

spot is an neighborhood of another spot.

Value

A sparse matrix containing the neighbourhood.

See Also

```
getAdj_auto, getAdj.
```

getAdj_reg

getAdj_reg	Calculate adjacency matrix for regular spatial coordinates.	

Description

Calculate adjacency matrix for regular spatial coordinates from ST or Visium platform.

Usage

```
getAdj_reg(pos, platform= "Visium")
```

Arguments

pos is a n-by-d matrix of position, where n is the number of spots, and d is the

dimension of coordinates.

platform a string, specify the platform of the provided data, default as "Visium", and only

support "ST" and "Visium" platform.

Value

A sparse matrix containing the neighbourhood.

See Also

```
getAdj_auto, getAdj, getAdj_fixedNumber.
```

Human_HK_genes	Human housekeeping genes database	

Description

Human housekeeping genes database.

Details

This data is a data.frame and include the Human housekeeping genes information in the columns named "Gene" and "Ensembl".

ICM.EM

Description

ICM-EM algorithm for fitting PRECAST model

Usage

```
ICM.EM(XList, q, K, AdjList=NULL, Adjlist_car=NULL, posList = NULL,
    platform = "ST", beta_grid=seq(0.2,4, by=0.2),maxIter_ICM=6,
    maxIter=20, epsLogLik=1e-5, verbose=TRUE,mix_prop_heter=TRUE,
    Sigma_equal=FALSE, Sigma_diag=TRUE,error_heter=TRUE, Sp2=TRUE,
    wpca_int=FALSE, int.model='EEE', seed=1,coreNum = 1, coreNum_int=coreNum)
```

Arguments

XList	an M-length list consisting of multiple matrices with class dgCMatrix or matrix that specify the log-normalization gene expression matrix for each data sample used for PRECAST model.
q	a positive integer, specify the number of latent features to be extracted, default as 15.
K	a positive integer allowing scalar or vector, specify the number of clusters in model fitting.
AdjList	an M-length list of sparse matrices with class dgCMatrix, specify the adjacency matrix used for Potts model in PRECAST. We provide this interface for those users who would like to define the adjacency matrix by their own.
Adjlist_car	an M-length list of sparse matrices with class dgCMatrix, specify the adjacency matrix used for CAR model in PRECAST, default as AdjList in the Potts model. We provide this interface for those users who would like to use the different adjacency matrix in CAR model.
posList	an M-length list composed by spatial coordinate matrix for each data sample.
platform	a string, specify the platform of the provided data, default as "Visium". There are many platforms to be supported, including ("Visuim", "ST", "SeqFISH", 'merFISH', 'slide-seqv2', 'seqscope', "HDST"). If AdjList is not given, the The platform helps to calculate the adjacency matrix by defining the neighbors.
beta_grid	an optional vector of positive value, the candidate set of the smoothing parameter to be searched by the grid-search optimization approach.
maxIter_ICM	an optional positive value, represents the maximum iterations of ICM.
maxIter	an optional positive value, represents the maximum iterations of EM.
epsLogLik	an optional positive vlaue, tolerance vlaue of relative variation rate of the observed pseudo log-loglikelihood value, defualt as '1e-5'.
verbose	an optional logical value, whether output the information of the ICM-EM algorithm.

ICM.EM 19

mix_prop_heter an optional logical value, specify whether betar are distict, default as TRUE. an optional logical value, specify whether Sigmaks are equal, default as FALSE. Sigma_equal an optional logical value, specify whether Sigmaks are diagonal matrices, de-Sigma_diag fault as TRUE. error_heter an optional logical value, whether use the heterogenous error for DR-SC model, default as TRUE. If error_heter=FALSE, then the homogenuous error is used for probabilistic PCA model in PRECAST. Sp2 an optional logical value, whether add the ICAR model component in the model, default as TRUE. We provide this interface for those users who don't want to include the ICAR model. wpca_int an optional logical value, means whether use the weighted PCA to obtain the initial values of loadings and other paramters, default as FALSE which means the ordinary PCA is used. int.model an optional string, specify which Gaussian mixture model is used in evaluting

the initial values for PRECAST, default as "EEE"; and see Mclust for more

models' names.

an optional integer, the random seed in fitting PRECAST model. seed

an optional positive integer, means the number of thread used in parallel comcoreNum

putating.

coreNum_int an optional positive integer, means the number of cores used in parallel compu-

tation for initial values when K is a vector, default as same as coreNum.

Details

Nothing

Value

hΖ

ICM.EM returns a list with class "SeqKiDRSC_Object" with the number of components equal to the length of K, where each component includes the model fitting results for one number of cluster and is a list consisting of following components:

cluster an M-length list that includes the inferred class labels for each data sample.

for each data sample.

h۷ an M-length list that includes the estimate the ICAR component for each sample. Rf an M-length list that includes the posterior probability of domain clusters for

an M-length list that includes the batch corrected low-dimensional embeddings

each sample.

an M-length vector that includes the estimated smoothing parameters for each beta

Mu mean vectors of mixtures components. covariance matrix of mixtures components. Sigma

estimated loading matrix

estimated variance of errors in probabilistic PCA model Lam

loglik pseudo observed log-likelihood. 20 ICM.EM_structure

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None

Examples

ICM.EM_structure

ICM-EM algorithm implementation with organized paramters

Description

Efficient data integration as well as spatial clustering for multiple spatial transcriptomics data

Usage

```
ICM.EM_structure(XList, K, AdjList, q=15,parameterList=NULL)
```

ICM.EM_structure 21

Arguments

XList an M-length list consisting of multiple matrices with class dgCMatrix or matrix

that specify the log-normalization gene expression matrix for each data sample

used for PRECAST model.

K a positive integer allowing scalar or vector, specify the number of clusters in

model fitting.

AdjList an M-length list of sparse matrices with class dgCMatrix, specify the adjacency

matrix used for Potts model and Intrisic CAR model in PRECAST model. We provide this interface for those users who would like to define the adjacency

matrix by their own.

q a positive integer, specify the number of latent features to be extracted, default

as 15.

parameterList Other arguments in PRECAST model, it can be set by model_set.

Details

Nothing

Value

ICM.EM_structure returns a list with class "SeqK_PRECAST_Object" with the number of components equal to the length of K, where each component includes the model fitting results for one number of cluster and is a list consisting of following components:

cluster an M-length list that includes the inferred class labels for each data sample.

hZ an M-length list that includes the batch corrected low-dimensional embeddings

for each data sample.

hV an M-length list that includes the estimate the ICAR component for each sample.

Rf an M-length list that includes the posterior probability of domain clusters for

each sample.

beta an M-length vector that includes the estimated smoothing parameters for each

sample.

Mu mean vectors of mixtures components.

Sigma covariance matrix of mixtures components.

W estimated loading matrix

Lam estimated variance of errors in probabilistic PCA model

loglik pseudo observed log-likelihood.

Note

nothing

Author(s)

Wei Liu

22 IntegrateSpaData

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None

Examples

IntegrateSpaData

Integrate multiple SRT data

Description

Integrate multiple SRT data based on the PRECASTObj by PRECAST model fitting.

Usage

Arguments

PRECASTObj a PRECASTObj object after finishing the PRECAST model fitting and model

selection.

species an optional string, one of 'Human', 'Mouse' and 'Unknown', specify the species

of the SRT data to help choose the housekeeping genes. 'Unknown' means only

using the PRECAST results reconstruct the alligned gene expression.

custom_housekeep

user-specified housekeeping genes.

IntegrateSpaData 23

covariates_use a string vector, the colnames in 'PRECASTObj@seulist[[1]]@meta.data', representing other biological covariates to considered when removing batch effects. This is achieved by adding additional covariates for biological conditions in the regression, such as case or control. Default as 'NULL', denoting no other covariates to be considered.

seuList

an optional Seurat list object, 'seuList' plays a crucial role in the integration process. If 'seuList' is set to 'NULL' and 'PRECASTObj@seuList' is not NULL, then 'seuList' will adopt the values of 'PRECASTObj@seuList'. Subsequently, the genes within 'seuList' will be utilized for integration. Conversely, if 'seuList' is not NULL, the integration will directly employ the genes specified within 'seuList'. In the event that both 'seuList' and 'PRECASTObj@seuList' are set to NULL, integration will proceed using the genes outlined in 'PRECAS-TObj@seulist', i.e., the variable genes. To preserve the 'seuList' not NULL in 'PRECASTObj@seuList', user can set 'rawData.preserve=TRUE' when running 'CreatePRECASTObject'. This parameter empowers users to integrate the entire set of genes in 'seuList' when implementing the integration, as opposed to exclusively considering the variable genes within 'PRECASTObj@seuList'.

subsample_rate an optional real number ranging from zero to one, this parameter specifies the subsampling rate during integration to enhance computational efficiency, default as 1 (without subsampling).

sample_seed

an optional integer, with a default value of 1, serves to designate the random seed when 'subsample rate' is set to a value less than one, ensuring reproducibility in the sampling process.

Details

Nothing

Value

Return a Seurat object by integrating all SRT data batches into a SRT data, where the column "batch" in the meta.data represents the batch ID, and the column "cluster" represents the clusters obtained by PRECAST.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

Gagnon-Bartsch, J. A., Jacob, L., & Speed, T. P. (2013). Removing unwanted variation from high dimensional data with negative controls. Berkeley: Tech Reports from Dep Stat Univ California, 1-112.

24 model_set

See Also

None

Examples

```
data(PRECASTObj)
PRECASTObj <- SelectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')</pre>
```

model_set

PRECAST model setting

Description

Set the PRECAST model structure and paramters in the algorithm.

Usage

Arguments

Sigma_equal	an optional logical value, specify whether Sigmaks are equal, default as FALSE.
Sigma_diag	an optional logical value, specify whether Sigmaks are diagonal matrices, default as $\ensuremath{TRUE}.$
${\tt mix_prop_heter}$	an optional logical value, specify whether betar are distict, default as TRUE.
error_heter	an optional logical value, whether use the heterogenous error i.e. lambdarj != lambdark for each sample r, default as TRUE. If error_heter=FALSE, then the homogenuous error is used for probabilistic PCA model.
Sp2	an optional logical value, whether add the ICAR model component in the model, default as TRUE. We provide this interface for those users who don't want to include the ICAR model.
wpca_int	an optional logical value, means whether use the weighted PCA to obtain the initial values of loadings and other paramters, default as FALSE which means the ordinary PCA is used.
int.model	an optional string, specify which Gaussian mixture model is used in evaluting the initial values for PRECAST, default as "EEE"; and see Mclust for more models' names.
coreNum	an optional positive integer, means the number of thread used in parallel computating.

Mouse_HK_genes 25

coreNum_int an optional positive integer, means the number of cores used in parallel compu-

tation for initial values when K is a vector, default as same as coreNum.

beta_grid an optional vector of positive value, the candidate set of the smoothing parameter

to be searched by the grid-search optimization approach.

maxIter_ICM an optional positive value, represents the maximum iterations of ICM.
maxIter an optional positive value, represents the maximum iterations of EM.

epsLogLik an optional positive value, tolerance value of relative variation rate of the ob-

served pseudo log-loglikelihood value, defualt as '1e-5'.

verbose an optional logical value, whether output the information of the ICM-EM algo-

rithm.

seed an optional integer, the random seed in fitting PRECAST model.

Details

Nothing

Value

Return a list including all paramters' setting.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

model_set()

Mouse_HK_genes

Mouse housekeeping genes database

Description

Mouse housekeeping genes database.

Details

This data is a data.frame and include the mouse housekeeping genes information in the columns named "Gene" and "Ensembl".

plot_RGB

plot_RGB

Spatial RGB heatmap

Description

Plot spatial RGB heatmap.

Usage

```
plot_RGB(position, embed_3d, pointsize=2,textsize=15)
```

Arguments

position a coordinates matrix with two columns: x-coordinate and y-coordinate.

embed_3d a embedding matrix with three columns: x, y and z embeddings.

pointsize the size of point in the scatter plot.

textsize the text size in the plot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

plot_scatter 27

plot_scatter	Scatter plot for two-dimensional embeddings
--------------	---

Description

Scatter plot for two-dimensional embeddings

Usage

```
plot_scatter(embed_use, meta_data, label_name,
    xy_names=c('tSNE1', 'tSNE2'), no_guides = FALSE,
    cols = NULL,
    point_size = 0.5, point_alpha=1,
    base_size = 12, do_points = TRUE, do_density = FALSE, border_col='gray',
    legend_pos='right', legend_dir='vertical', nrow.legend=NULL)
```

Arguments

embed_use	an object named "Seurat", "maxtrix" or "dgCMatrix". The object of class "Seurat" must include slot "scale.data".
meta_data	an optional positive integer, specify the number of features to be extracted.
label_name	the size of point in the scatter plot.
xy_names	the text size in the plot.
no_guides	whether display the legend.
cols	colors used in the plot.
point_size	the point size of scatter plot.
point_alpha	the transparency of the plot.
base_size	the base text size.
do_points	Plot point plot.
do_density	Plot density plot
border_col	the border color in the plot.
legend_pos	the position of legend.
legend_dir	the direction of legend.
nrow.legend	the number of rows of legend.

Details

Nothing

Value

Return a ggplot2 object.

28 PRECAST

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
embed_use <- cbind(1:100, sin((1:100)*pi/2))
meta_data <- data.frame(cluster=factor(rep(1:2, each=50)))
plot_scatter(embed_use, meta_data, label_name='cluster')</pre>
```

PRECAST

Fit a PRECAST model

Description

Fit a PRECAST model.

Usage

```
PRECAST(PRECASTObj, K=NULL, q= 15)
```

Arguments

PRECASTObj	an object named "PRECASTObj". The object PRECASTObj is created by CreatePRECASTObject.
K	An optional integer or integer vector, specify the candidates of number of clusters. if $K=NULL$, it will be set to $4\sim12$.
q	An optional integer, specify the number of low-dimensional embeddings to extract in PRECAST.

Details

The model fitting results are saved in the slot of resList.

Value

Return a revised PRECASTObj object.

Note

nothing

PRECASTObj 29

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None

PRECASTObj

A simple PRECASTObj for example

Description

A simple PRECASTObj for example.

Details

This PRECASTObj include the basic slots in PRECAST object; see PRECASTObj-class for more details

PRECASTObj-class

Each PRECASTObj object has a number of slots which store information.

Description

Each PRECASTObj object has a number of slots which store information. Key slots to access are listed below.

Slots

seuList A list with Seurat object as component, representing the raw expression count matrix, spatial coordinates and meta data for each data batch, where the spatial coordinates information is saved in the metadata of Seurat, named "row" and "col" for each data batch.

seulist A Seurat list after the preprocessing step in preparation for PRECAST model.

AdjList The adjacency matrix list for a PRECASTObj object.

parameterList The model parameter settings for a PRECASTObj object

resList The results after fitting PRECAST models.

project Name of the project.

30 selectIntFeatures

selectIntFeatures

Select common genes for multiple data batches

Description

selectIntFeatures prioritizes genes based on the number of times they were selected as HVGs/SVGs in all data baches, and chose the top genes as the input for the analysis. We broke ties by examining the ranks of the tied genes in each original dataset and taking those with the highest median rank.

Usage

```
selectIntFeatures(seulist, spaFeatureList, IntFeatures=2000)
```

Arguments

seulist a list consisting of Seurat objects, where each object is a SRT data batch.

spaFeatureList an list consisting of SVGs vectors, where each vector is the top HVGs/SVGs for

each SRT data batch.

IntFeatures the number of common HVGs/SVGs genes to be chosen.

Details

Nothing

Value

Return a string vector, the selected gene list for integration in PRECAST.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None

SelectModel 31

SelectModel Select best PRECAST model from candidated models
--

Description

Select best PRECAST model from candidated models with different number of clusters.

Usage

```
## S3 method for class 'SeqK_PRECAST_Object'
SelectModel(obj, criteria = 'MBIC',pen_const=1, return_para_est=FALSE)
## S3 method for class 'PRECASTObj'
SelectModel(obj, criteria = 'MBIC',pen_const=1, return_para_est=FALSE)
```

Arguments

obj a SeqK_PRECAST_Object or PRECASTObj object after PRECAST model fit-

ting.

criteria a string, specify the criteria used for selecting the number of clusters, supporting

"MBIC", "BIC" and "AIC".

pen_const an optional positive value, the adjusted constant used in the MBIC criteria.

return_para_est

an optional logical value, whether return the other paramters' estimators in PRE-

CAST.

Details

Nothing

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

See Also

None

32 SpaPlot

Examples

```
data(PRECASTObj)
PRECASTObj <- SelectModel(PRECASTObj)</pre>
```

SpaPlot

Spatial heatmap

Description

Plot spatial heatmap for a Seurat object with spatial transcriptomics data.

Usage

Arguments

seuInt an object named "Seurat". batch an optional positive integer or integer vector, specify the batches to be extracted. Users can check the batches' names by unique(seuInt\$batch). item an optional string, which column is plotted in the meta data of seuInt. Users can check the meta data by head(seuInt@meta.data). If item takes value from ("RGB_UMAP", "RGB_tSNE"), this function will plot the RGB plot. the size of point in the scatter plot. point_size text_size the text size in the plot. colors used in the plot cols font_family the font family used for the plot, default as Times New Roman. border_col the border color in the plot. fill_col the color used in backgroup. ncol the number of columns in the layout of plots. combine an optional logical value, whether plot all on a figure. If TRUE, all figures are plotted; otherwise, return a list with each plot as component. an optional string, title name in the plot. title_name other arguments passed to plot_scatter

Details

Nothing

volinPlot 33

Value

Return a ggplot2 object or list of ggplots objects.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```
data(PRECASTObj)
PRECASTObj <- SelectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
SpaPlot(seuInt)</pre>
```

volinPlot

Volin/boxplot plot

Description

Plot volin/boxplot.

Usage

```
volinPlot(mat, ylabel='ARI', cols=NULL)
```

Arguments

mat a matrix with columns.

ylabel an optional string, the name of ylabel.

cols colors used in the plot

Details

Nothing

Value

Return a ggplot2 object.

34 volinPlot

Note

nothing

See Also

None

Examples

```
mat <- matrix(runif(100*3, 0.6, 1), 100, 3)
colnames(mat) <- paste0("Method", 1:3)
volinPlot(mat)</pre>
```

Index

```
Add_embed, 6
                                                  PRECASTObj, 29
AddAdjList, 2
                                                  PRECASTObj-class, 10, 29, 29
AddParSetting, 3, 3
                                                  selectIntFeatures, 30
AddTSNE, 4
AddUMAP, 5
                                                  SelectModel, 31
                                                  SpaPlot, 32
boxPlot, 7
                                                  volinPlot, 33
chooseColors, 8
coordinate_rotate, 8
CreatePRECASTObject, 3, 4, 9, 28
data.frame, 17, 25
dimPlot, 11
DoHeatmap, 12
doHeatmap, 12
drawFigs, 13
featurePlot, 13, 14
firstup, 15
getAdj, 3, 16, 17
getAdj_auto, 3, 16, 17
getAdj_fixedNumber, 3, 16, 17
getAdj_reg, 17
ggarrange, 14
Human_HK_genes, 17
ICM.EM, 18
ICM.EM_structure, 20
IntegrateSpaData, 22
list, 10, 19, 21, 25
model_set, 4, 21, 24
Mouse_HK_genes, 25
plot_RGB, 26
plot_scatter, 11, 27, 32
PRECAST, 28
```