Veri Yapıları ve Algoritmalar

DR. ÖGR. ÜYESİ MEHMET AKİF BÜLBÜL 2023-2024 GÜZ YARIYILI ASIMPTOTIK ANALIZ (NOTASYONLAR)

Asimptotik Analiz

Bir algoritmanın orantılı zaman gereksinimi <u>büyüme</u> oranı (veya büyüme hızı) olarak bilinir.

T(n) nin büyüme oranı, algoritmanın <u>hesaplama</u> <u>karmaşıklığı</u>dır.

Hesaplama karmaşıklığı belirli bir uygulamadan bağımsız olarak **n** ile değişen **T(n)'** nin çalışma zamanını daha doğru bir şekilde bulmayı sağlar.

Genel olarak, az sayıda parametreler için karmaşıklıkla ilgilenilmez; eleman sayısı **n**'nin sonsuza gitmesi durumunda T(n) büyümesine bakılır.

Karmaşıklığı belirtmek için asimtotik notasyon (simgelem) ifadeleri kullanılmaktadır.

Tüm $n \ge n_0$ değerleri için sabitler c > 0, $n_0 > 0$ ise $0 \le f(n) \le cg(n)$ durumunda f(n) = O(g(n)) yazabiliriz.

f(n) ve g(n) verilen iki çalışma zamanı fonksiyonudur.

 $f(n) \leq c.g(n)$ ve $n \geq n_0$ koşullarını sağlayan c ve n_0 değerleri varsa f(n) zaman karmaşıklığı O(g(n)) dir.

Başka bir deyişle, n sayısı yeteri kadar büyük olduğunda, f(n), g(n) ile aynı büyüklüktedir.

O-notasyonu sabit bir katsayı içinde bir fonksiyon için üst sınırı verir

Örnek: 2n2 = O(n3) için c, no değerlerini bulunuz?

Çözüm kümesini sağlayan kaç tane n₀ ve c çifti olduğu önemli değildir. Tek bir çift olması notasyonun doğruluğu için yeterlidir.

Örnek: (1/2)n2+ 3n için üst sınırın O(n2) olduğunu gösteriniz.

Büyüme oranlarına bakarak iki algoritmanın verimliliğini karşılaştırabiliriz.

n' nin yeterince büyük değerleri için düşük büyüme oranına sahip algoritma her zaman daha hızlıdır.

Örneğin; f(n)=n2+3n+5 ifadesinin büyüme oranı O(n2) dir.

Algoritma tasarımcılarının amacı, çalışma zaman fonksiyonu olan f(n) nin mümkün olduğu kadar düşük büyüme oranı sahip bir algoritma olmasıdır.

 $3n_2+2n+5=0(n_2)$ olduğunu gösteriniz

Verimli algoritmaları geliştirmenin önemi:

Dizi boyutu	Sıralı arama	İkili (Binary) arama
128	128	8
1,048,576	1,048,576	21

Verilen zaman karmaşıklığı ile algoritmalar için yürütme zamanı

n	f(n)=n	f(n)=nlogn	f(n)=n2	f(n)=2n
20	0.02 μs	0.086 μs	0.4 μs	1 ms
10 6	1 μs	19.93 ms	16.7 dk	31.7 yıl
10 9	1 s	29.9 s	31.7 yıl	!!! yüzyıllar

Büyüme oranı fonksiyonlarının özellikleri

1- Bir algoritmanın büyüme oranı fonksiyonunda düşük dereceli terimler, sabitler ve katsayılar ihmal edilebilir.

$$O(n_3+4n_2+3n) \rightarrow O(n_3)$$

$$O(8n_4) \rightarrow O(n_4)$$

Büyüme oranı fonksiyonlarının özellikleri

2- Algoritmanın büyüme fonksiyonlarını birleştirebiliriz.

$$O(f(n))+O(g(n)) = O(f(n)+g(n))$$

$$O(n_3)+O(4n_2) \to O(n_3+4n_2) \to O(n_3)$$

Büyüme oranı analizi ile ilgili problemler

1- Daha küçük büyüme oranına sahip bir algoritma yeterince büyük olmayan belirli n değerleri için daha hızlı büyüme oranına sahip algoritmadan hızlı çalışmaz.

Büyüme oranı analizi ile ilgili problemler

2- Aynı büyüme oranına sahip algoritmalar çalışma zamanı fonksiyonlarındaki sabitlerden dolayı farklı çalışma zamanlarına sahip olabilirler. Ama iki algoritmanın da kırılma noktası aynı n değerine sahiptir.

Notasyonlarda eşitlik"=" gösterimi

A=B ise B = A anlamında değil mi?

Fakat, f(n) = O(g(n)), O(g(n)) = f(n) anlamına gelmez. Burada tek eşitlik söz konusudur.

Burada "=", üyelik işlemi (€) olarak tercih edilmiştir.

$$f(n) = O(g(n)) \rightarrow f(n) \in O(g(n)) dir$$

O(g(n)) bir küme anlamına gelir.

$$f(n) = O(g(n)) \rightarrow O(g(n)) = \{ f(n) \text{ gösterimi doğrudur.} \}$$

Ω-simgelemi (alt sınırlar)

```
\Omega(g(n)) = \{ f(n) : \text{tüm } n \ge n\_0 \text{ değerlerinde} 
c > 0, n\_0 > 0 \text{ ise,} 
0 \le cg(n) \le f(n) \}
```

Her durumda $f(n) \ge c g(n)$ ve $n \ge n_0$ koşullarını sağlayan pozitif, sabit c ve n_0 değerleri bulunabiliyorsa $f(n)=\Omega(g(n))$ dir.

Ω -simgelemi (alt sınırlar)

 $2n + 5 \in \Omega(n)$ olduğunu gösteriniz

Ω-simgelemi (alt sınırlar)

5*n2 - 3*n= $\Omega(n_2)$ olduğunu gösteriniz.

→ Notasyonu – Sıkı Sınırlar

Her durumda $c1.g(n) \le f(n) \le c2.g(n)$ ve $n \ge n0$ koşullarını sağlayan pozitif, sabit c1,c2 ve n0 değerleri bulunabiliyorsa $f(n)=\Theta(g(n))$ ifadesi doğrudur.

$$f(n) = 2n + 5 \in \Theta(n)$$
???

$$f(n) = 5*n_2 - 3*n \in \Theta(n_2)$$
???

ÖNEMLİ!!!!!!!!

DİL FARKETMEZ KOD YAZIN