AIRBNB
PRICE
PREDICTION.

OVERVIEW

Subject Area: What triggers the Airbnb rental price?

- Number of beds?
- Review score?
- Number of guests allowed?
- Cancellation policy?

Goal: Analyse the factors that influence the rental price and develop a model that captures the complexity of the pricing system.

Opportunity: Provides interesting insights that can benefit a host looking to maximize their profit.

PROPOSED VISION FOR TACKLING THE PROBLEM.

- Feature selection: Identify the key features that are likely to influence.
- Scaling: If necessary, scale numerical data to ensure they are on a similar scale.
- Model training: Implement linear regression on the preprocessed dataset.
- Model evaluation: Analyze the coefficients of the model to understand the impact of each features on rental price.

IMPACT OF THE PROPOSED SOLUTION.

Potential impact of a successful solution includes:

- Hosts can optimize pricing strategies.
- Guests can make better decisions that fits their interests and financial limitations.
- Transparent Airbnb marketplace.

DATASET AND PREPROCESSING.

Dataset:

Comprises information on Airbnb listings in USA with 74111 rows and 29
 columns

Preprocessing:

- Data cleaning: Almost clean!
- Scaling: Scale numerical features to similar range.
- Encoding: Label encoding.
- **Feature selection**: Identify the key features that are likely to influence.

IMPORTANT FINDINGS IN EDA.

- Data Distribution: Normal distribution.
- Data Quality: Missing values and outliers were handled appropriately.
- Patterns and trends: To understand underlying relationships and phenomena of data through visualization.
- Correlation: Analyze multicollinearity with heatmaps
- Feature importance: Determining which features are most relevant for the target variable through visual inspection.

SOME VISUALS

BOXPLOTS

PIE CHARTS

BAR GRAPHS

DISTRIBUTION

MODELS USED

- Linear Regression
- Decision Tree
- Random Forest Regressor
- Neural Networks

BASELINE MODEL AND EVALUATION METRICS.

Baseline Model : Linear Regression

Mean Absolute Error (MAE): 0.36

Mean Squared Error (MSE): 0.23

Root Mean Squared Error

(RMSE): 0.48

R-squared (R2) Score: 0.54

DECISION TREE

OSR	Score:	64%

	feature	importance
1	room_type	0.279940
14	longitude	0.124422
13	latitude	0.106926
17	bedrooms	0.100541
3	accommodates	0.084841
4	bathrooms	0.063458

Importance

RANDOM FOREST REGRESSOR

	feature	importance
1	room_type	0.279940
14	longitude	0.124422
13	latitude	0.106926
17	bedrooms	0.100541
3	accommodates	0.084841
4	bathrooms	0.063458

Importance

OOB Score: 70%

NEURAL NETWORK- MULTI LAYERED PERCEPTRON

No feature selection

MAE: 0.36

Accuracy 56%

With More Layers

MAE: 0.37

Accuracy 55%

With Drop-out

MAE: 0.38

Accuracy 53%

With Regularisation

MAE: 0.37

Accuracy 56%

COMPARISON OF MODELS

Linear Regression: 54%

Decision Tree: 64%

Random Forest: 70%

Neural Network

Benchmark: 56%

With more layers: 55%

With Drop-out: 53%

With L1/L2 Regularization: 56%

Random Forest Regressor → Best Performing Model with 70% Accuracy!

Triggering Features in order → Room Type, Location, Accommodates, Bedrooms, Bathrooms

THANK YOU!

ANY QUESTIONS?

