1. Lec3, P3

3 Invariance of OLS Assume that X^TX is non-degenerate and Γ is a $p \times p$ orthogonal matrix. Define $\tilde{X} = X\Gamma$. Give the formulas of the coefficient of \tilde{X} and the fitted values in the OLS fit of Y on \tilde{X} . How do they depend on Γ ?

suppose OLS of Yon X:

$$\hat{\beta}' = (\hat{X}^{T}\hat{X})^{-1}\hat{X}^{T} Y = [(XT)^{T}(XT)]^{-1}(XT)^{T} Y$$

$$= (T^{T}X^{T}XT)^{-1} (T^{T}X^{T}) Y$$

Because = $T^{-1}(X^{T}X)^{-1}TT^{T}X^{T}Y$

$$(T^T=T^{-1}) = T^{-1}(X^TX)^{-1}X^TT = T^{-1}\hat{\beta},$$

where $\hat{\beta}$ is coefficient of X in the OLS of Yon X

Hence
$$\hat{Y}' = \hat{X} \cdot \hat{\beta}' = X \hat{T} \cdot \hat{T}^{-1} \hat{\beta} = X \hat{\beta} = \hat{T}$$
.

Hence the coefficient is scaled by T^{-1} , while the fitted values doesn't change.

5 OLS with multiple responses For each unit $i=1,\ldots,n$, we have multiple responses $y_i=(y_{i1},\ldots,y_{iq})^{\mathrm{T}}$ and multiple covariates $x_i=(x_{i1},\ldots,x_{ip})^{\mathrm{T}}$. Define

$$Y = \begin{pmatrix} y_{11} & \cdots & y_{1q} \\ \vdots & & \vdots \\ y_{n1} & \cdots & y_{nq} \end{pmatrix} = \begin{pmatrix} y_1^\mathsf{T} \\ \vdots \\ y_n^\mathsf{T} \end{pmatrix} = (Y_1, \dots, Y_q), \quad X = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix} = \begin{pmatrix} x_1^\mathsf{T} \\ \vdots \\ x_n^\mathsf{T} \end{pmatrix} = (X_1, \dots, X_p)$$

as the $n \times q$ response matrix and $n \times p$ covariate matrix. Define the multiple OLS matrix as

$$\hat{B} = \arg\min_{B \in \mathbb{R}^{p \times q}} \sum_{i=1}^{n} \|y_i - B^{\mathsf{T}} x_i\|^2$$

Show that $\hat{B} = (\hat{B}_1, \dots, \hat{B}_q)$, where

$$\hat{B}_1 = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y_1, \dots, \hat{B}_q = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y_q.$$

This result tells us that if the multiple OLS for a vector outcomes reduces to multiple independent OLS fits.

Suppose
$$B_k = \begin{bmatrix} B_{k1} \\ \vdots \\ B_{kp} \end{bmatrix}$$
 Hence $B = \begin{bmatrix} B_{11} & B_{21} & \cdots & B_{q_1} \\ B_{12} & B_{22} & \cdots & B_{q_2} \\ \vdots & \vdots & \vdots \\ B_{1p} & B_{2p} & B_{qp} \end{bmatrix}$

$$y_{i} - B^{T} \cdot \chi_{i} = \begin{bmatrix} y_{i1} \\ \vdots \\ y_{iq} \end{bmatrix} - \begin{bmatrix} B_{i1} & \cdots & B_{i}P \\ \vdots & \vdots \\ B_{q1} & \cdots & B_{q}P \end{bmatrix} \begin{bmatrix} \chi_{i1} \\ \vdots \\ \chi_{ip} \end{bmatrix} = \begin{bmatrix} y_{i1} - \sum_{j=1}^{p} B_{1j} \chi_{ij} \\ \vdots \\ y_{iq} - \sum_{j=1}^{p} B_{qj} \chi_{ij} \end{bmatrix}$$

$$\hat{B} = \underset{B}{\operatorname{arg min}} \sum_{i=1}^{n} \sum_{k=1}^{g} \left[y_{ik} - \sum_{j=1}^{p} B_{kj} X_{ij} \right]^{2}$$

To get
$$\exists k$$
 need to $\frac{\partial}{\partial B_{kj}} \sum_{i=1}^{n} [y_{ik} - \sum_{j=1}^{p} B_{kj} x_{ij}]^{2} = 0$

where
$$j=1,\dots,p$$
. That is: $2\cdot\sum_{i=1}^{n}(y_{ik}-\sum_{j=1}^{p}B_{kj}X_{ij})\cdot X_{j}=0$

Hence
$$B_k = (X^TX)^H X^T Y_k$$
. $k=1...$ 9

3. Lec 4. PI. Prove Lemma 1.

Lemma 1. Both H and $I_n - H$ are projection matrices onto the column space of X and its complement, respectively. In particular, HX = X, $(I_n - H)X = 0$, and they are orthogonal:

$$H(I_n - H) = (I_n - H)H = 0.$$

Because $H^2 = X(X^TX)^{-1}X^TX(X^TX)^{-1}X^T = X(X^TX)^{-1}X^T = H$ And $H^T = X(X^TX)^{-1}X^T = H$

=) H is projection matrix

$$HX = X(X^TX)^{-1}X^TX = X$$

=> H is projection matrix onto the Column space of X

 \Rightarrow I-H is projection matrix (I-H)X= X-HX=X-X=0

=> H is projection matrix onto the complement of colourn Space of X

8.
$$H(I_n-H) = H-H^2 = .H-H=0$$

 $(I_n-H)H = H-H^2 = H-H=0$

Hence they are orthogonal

4. Lec 4. P3.

3 Gauss–Markov Theorem for prediction Under the Gauss–Markov model, the OLS predictor $\hat{Y} = X\hat{\beta}$ for the mean $X\beta$ is the best linear unbiased predictor in the sense that $\underline{\text{cov}(\hat{Y}) \preceq \text{cov}(\tilde{Y})}$ for any predictor \hat{Y} satisfying

(C1) $\tilde{Y} = \tilde{H}Y$ for some $\tilde{H} \in \mathbb{R}^{n \times n}$ not depending on Y; To Prove \hat{Y} is BLP

(C2) \tilde{Y} is unbiased for $X\beta$.

$$\hat{Y} = X\hat{\beta} = X(X^TX)^TX^TY = HY$$
. H is projection matrix
(a) + (a) $\Rightarrow E(\hat{Y}) = X\beta \Rightarrow E(\hat{H}Y) = \hat{H} E(Y) = X\beta$
 $\Rightarrow \hat{H}X\beta = X\beta$. $\Rightarrow \hat{H}X = X$.

$$Cov(\widetilde{Y}) = Cov(\widetilde{H}Y) = Cov(\widetilde{H}Y - HY + HY)$$

= $Cov[(\widetilde{H} - H)Y + HY]$

$$Cov((\widetilde{H}-H)Y, HY) = (\widetilde{H}-H)Cov(Y)H = z^{2}(\widetilde{H}\cdot H - H)$$

= $z^{2}(\widetilde{H}\cdot X(X^{T}X)^{-1}X^{T} - H) = z^{2}(H-H) = z$

Hence
$$Cov(\Upsilon) = (\widetilde{H} - H) Cov(\Upsilon) (\widetilde{H} - H)^T + H Cov \Upsilon H$$

$$= 3^2 (\widetilde{H} - H) (\widetilde{H} - H)^T + 3^2 H$$

$$Cov(\Upsilon) = 3^2 H.$$

5. Lec5. P1.

1 MLE Under the Gaussian linear model, show that the maximum likelihood estimator (MLE) for β is the OLS estimator, but the MLE for σ^2 is $\tilde{\sigma}^2 = \text{RSS}/n$ Compare the mean squared errors of $\hat{\sigma}^2$ and $\tilde{\sigma}^2$ for estimating σ^2 .

Hence
$$\log L(Y) = Constant - n\log \delta + \frac{1}{23^2} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$$

$$\frac{\partial \log L(Y)}{\partial \beta} = \sum_{i=1}^{n} X_i^T (y_i - X_i^T \beta) = 0$$

Hence
$$\hat{\beta}_{MLE} = (X^TX)^{-1}X^TY$$
, exactly OLS estimator

$$\frac{\partial \log L(Y)}{\partial \sigma} = -\frac{0}{\sigma} - \frac{1}{\sigma^3} \sum_{i=1}^{n} (y_i - \chi_i^T \beta)^2 = 0$$

Here
$$\widehat{S}_{NE} = \frac{\sum_{i=1}^{n} (y_i - X_i^T \beta)^2}{n} = \frac{RSS}{n} = \widehat{S}^2$$

(a)
$$\hat{3}^{2} = \frac{RSS}{n-p}$$
, $\hat{3}^{2} = \frac{RSS}{n}$, $\hat{3}^{3} \sim \frac{3^{2}}{n-p} \chi_{n-p}^{2}$

• Bias.
$$E(\hat{z}^a) = z^a$$

 $E(\hat{z}^a) = E(\hat{z}^a, \frac{n-p}{n}) = \frac{n-p}{n}z^a$

· Variance.
$$Var(\tilde{\beta}^2) = \frac{\tilde{\beta}^4}{(h-p)^2} \cdot 2 \cdot (n-p) = \frac{2\tilde{\beta}^4}{n-p}$$

• MSE
$$MSE(\hat{s}^{a}) = [E(\hat{s}^{a}) - \delta^{2}]^{2} + Var(\hat{s}^{2})$$

$$= \frac{a\delta^{4}}{n-p}$$

$$MSE(\hat{s}^{a}) = [E(\hat{s}^{a}) - \delta^{2}]^{2} + Var(\hat{s}^{a})$$

$$= \frac{(n-p)^{2}}{n^{2}} \frac{1}{\delta^{4}} - \frac{a(n-p)}{n^{2}} \frac{1}{\delta^{4}}$$

$$= \frac{(n-p)^{2} - a(n-p)}{n^{2}} \frac{1}{\delta^{4}}$$

$$= \frac{(n-p)^{2} - a(n-p)}{n^{2}} \frac{1}{\delta^{4}}$$

$$MSE(\hat{s}^{a}) - MSE(\hat{s}^{a}) = \frac{3}{n^{2}} (n-p)^{3} + a(n-p)^{3}$$

$$Compare \ a(n^{2} + (n-p)^{2}) \ and \ (n-p)^{3}.$$

$$If \ a(n^{2} + (n-p)^{3}) > (n-p)^{3}, \ MSE(\hat{s}^{a}) > MSE(\hat{s}^{a})$$

$$If \ a(n^{3} + (n-p)^{3}) > (n-p)^{3}, \ MSE(\hat{s}^{a}) > MSE(\hat{s}^{a})$$

4 Analysis of Variance (ANOVA) with multi-level treatment Let x_i be the indicator vector for J treatment levels in a completely randomized experiment, for example, $x_i = e_j = (0, \dots, 1, \dots, 0)^T$ with the jth element being one if unit i receives treatment level j ($j = 1, \dots, J$). Let y_i be the outcome of unit i ($i = 1, \dots, n$). Let \mathcal{T}_j be the indices of units receiving treatment j, and let $n_j = |\mathcal{T}_j|$ be the sample size and $y_j = n_j^{-1} \sum_{i \in \mathcal{T}_j} y_i$ be the sample mean of the outcomes under treatment j. Define $y_i = n^{-1} \sum_{i=1}^n y_i$ as the grand mean. We can test whether the treatment has any effect on the outcome by testing the null hypothesis

$$H_0: \beta_1 = \cdots = \beta_J$$

in the Gaussian linear model $Y = X\beta + \varepsilon$ assuming $\varepsilon \sim N(0, \sigma^2 I_n)$. This is a special case of testing $C\beta = 0$. Find C and show that the F statistic is identical to

$$F = \frac{\sum_{j=1}^{J} n_j (\bar{y}_j - \bar{y})^2 / (J - 1)}{\sum_{j=1}^{J} \sum_{i \in \mathcal{T}_t} (y_i - \bar{y}_j)^2 / (n - J)} \sim F_{J-1, n-J}.$$

Remarks: (1) This is Fisher's F statistic. (2) In this linear model formulation, X does not contain a column of 1's. (3) The choice of C is not unique, but the final formula for F is. (4) You may use the Sherman–Morrison formula in the proof.

(i).
$$C \cdot \beta = 0 \iff \beta_1 = \cdots = \beta_T$$

Hence one solution for C could be $C \cdot \beta = \begin{bmatrix} \beta_1 - \beta_2 \\ \beta_1 - \beta_3 \end{bmatrix}$

$$C = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 1 & 0 & -1 & 0 & \cdots & 0 \\ \vdots & & & \vdots & \vdots \\ 1 & 0 & -\cdots & 0 & -1 \end{bmatrix} (J-1) \times (J)$$

$$=) (c\hat{\beta} - c\beta)^{\mathsf{T}} \cdot (\vec{\zeta}^2 C(\vec{X}^\mathsf{T} \vec{X})^\mathsf{T} C^{\mathsf{T}})^\mathsf{T} \cdot (C\hat{\beta} - C\beta) \sim \chi^2_{\mathsf{J}-1}$$

Hence
$$F_c = \frac{(c\beta - c\beta)^T \cdot (\zeta^2 - c\beta)^T \cdot (\zeta^2 - c\beta)^T \cdot (c\beta - c\beta)^T \cdot (\zeta^2 -$$

Next. prove Fc = F