Parallel Programming MSBD5009

Course Introduction

Course Background

- An MSBD ELECTIVE
 - Assume CSE basic programming, OS, Algorithms
 - Structured lectures based on reference books
 - Teach parallel programming knowledge
 - Practice parallel programming in three languages
 - Workload
 - Three assignments + final exam
 - Exclusion COMP5112

Course Topics

- Introduction to parallel computer architectures
- Principles of parallel algorithm design
- Shared-memory programming models
- Message passing programming models
- Data-parallel programming models for GPUs
- Case studies of parallel algorithms, systems, and applications
- Hands-on experience with writing parallel programs for tasks of interest

Parallel Computer Architectures

- Review on OS and Computer Architecture
 - The von Neumann architecture
 - Processes, multitasking, and threads
 - Modifications to the von Neumann Model
 - Caches
 - Virtual memory
 - Instruction-level parallelism
 - Hardware multithreading
- Parallel Hardware
 - SIMD systems
 - MIMD systems
 - Interconnection networks
 - Cache coherence
 - Shared-memory versus distributed-memory

Principles of parallel algorithm design

- Preliminaries
 - Decomposition, Tasks, and Dependency Graphs
 - Granularity, Concurrency, and Task-Interaction
 - Processes and Mapping
- Decomposition Techniques
- Mapping Techniques for Load Balancing
- Methods for Containing Interaction Overheads
- Parallel Algorithm Models

Message passing programming models

- Principles of Message-Passing Programming
- Building Blocks: Send and Receive Operations
- MPI: the Message Passing Interface
- Collective Communication and Computation Operations
 - Gather, Scatter, Prefix, Reduction, Broadcast,
 Barrier, and so on

Shared-memory programming models

Pthreads

- Critical sections, busy-waiting, mutexes
- Producer-Consumer Synchronization and Semaphores
- Barriers and Condition Variables
- Read-Write Locks
- Caches, Cache Coherence, and False Sharing
- Thread safety

OpenMP

Data-parallel programming for GPUs

- CUDA C Language APIs
- CUDA Execution Model
- CUDA Memories
- Performance Considerations
- Parallel Patterns
 - Gather, Scatter, Reduction, Prefix Scan, and so on
- Case Studies

Reference Book 1

Introduction to Parallel Computing 2nd edition

By Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar.

Addison Wesley, 2003.

Reference Book 2

An Introduction to Parallel Programming

By Peter Pacheco

Morgan Kaufmann, 2011

https://www.cs.usfca.edu/
~peter/ipp/

Reference Book 3

Programming Massively
Parallel Processors:
A Hands-on Approach
3rdd Edition
Author(s): Kirk & Hwu
2017

Morgan Kaufmann

https://www.elsevier.com/books/programming-massively-parallel-processors/kirk/978-0-12-811986-0

Lecture Time and Venue

- Weekly lectures on Saturdays 3-5:50pm
 - Face-to-Face lectures as situation allows
 - Zoom lectures as necessary

Workload & Assessment

Tentative plan

- Three programming assignments 50%
 - Week 4, 7, 9 on MPI, Pthreads, CUDA
 - All assignments on a single topic (e.g., shortest path)
 - Sequential version program given (a few hundred lines of code)
 - Parallel program skeleton given
 - Your task is to fill in parallel processing components
- One final exam 50%
 - Programming: fill in code, similar to assignments
 - Short answer questions on concepts from course material

Lab Facilities

Microsoft Azure

- Each student has an account.
- TA will guide you to set up virtual machines.
- Each account has about 220 VM hours.
- Get Started with Azure documentations:

https://docs.microsoft.com/en-us/azure/

Academic Integrity

- Code similarity detection enforced
- Assignment demonstration may be requested
- ALL parties in plagiarism penalized