

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчет по лабораторной работе №4

«Линейные модели, SVM и деревья решений» по дисциплине «Технологии машинного обучения»

Выполнил: студент группы ИУ5Ц-84Б Падалко К.Р. подпись, дата

Проверил: к.т.н., доц., Ю.Е. Гапанюк подпись, дата

СОДЕРЖАНИЕ ОТЧЕТА

1.	Цель лабораторной работы	3
2.	Задание	3
3.	Основные характеристики датасета	3
4.	Листинг	5
4.1.	Изучение данных	5
4.2.	Преобразование данных	6
4.3.	Описательная статистика	7
4.4.	Предобработка данных	8
4.4.	1. Пропущенные значения	8
4.4.2	2. Дубликаты	9
4.5.	Отсев до определенного количества уникальных значений	9
4.6.	Машинное обучение	. 10
4.6.	1. Деление на обучающей и тестовой выборки	. 10
4.7.	Кодирование признаков – прямое кодирование (One-Hot Encoding)	. 11
4.8.	Обучение модели	. 11
4.8.	1. Linear Regression	. 11
4.8.2	2. Decision Tree Regressor	. 13
4.8.3	3. Support Vector Machine	. 14
4.9.	Итог	. 16
4.9.	1. Анализ моделей	. 16
4.9.2	2. Важность признаков модели «DecisionTreeRegressor»	. 17
4.9.3	3. Визуализация Дерева решений	. 18
5.	Вывол	. 19

1. Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений.

2. Задание

1) Выберите набор данных (датасет) для решения задачи классификации

или регрессии.

2) В случае необходимости проведите удаление или заполнение пропусков

и кодирование категориальных признаков.

3) С использованием метода train test split разделите выборку на

обучающую и тестовую.

4) Обучите следующие модели:

• одну из линейных моделей (линейную или полиномиальную

регрессию при решении задачи регрессии, логистическую регрессию

при решении задачи классификации);

• SVM;

• дерево решений.

5) Оцените качество моделей с помощью двух подходящих для задачи

метрик. Сравните качество полученных моделей.

6) Постройте график, показывающий важность признаков в дереве

решений.

7) Визуализируйте дерево решений или выведите правила дерева решений

в текстовом виде.

3. Основные характеристики датасета

Название датасета: Набор данных о видах ирисов.

Ссылка: https://www.kaggle.com/datasets/uciml/iris

О датасетах

Этот набор данных содержит информацию о различных аспектах ирисов

(цветков) из трех видов: Setosa, Versicolor и Virginica. В наборе представлены

характеристики, такие как длина и ширина чашелистика и лепестка для 150

образцов ирисов. Данные используются для классификации видов ирисов на

основе этих характеристик.

3

Набор данных включает 150 строк, каждая из которых представляет один ирис, и 5 столбцов.

Этот датасет использован для задач классификации и обучения моделей машинного обучения, таких как k-ближайших соседей, дерева решений, логистической регрессии и других методов классификации.

Структура данных

sepal length (длина чашелистика) — измеряется в сантиметрах. sepal width (ширина чашелистика) — измеряется в сантиметрах. petal length (длина лепестка) — измеряется в сантиметрах. petal width (ширина лепестка) — измеряется в сантиметрах. species (вид) — категориальная переменная, указывающая на вид ириса, который представлен в строке (Setosa, Versicolor или Virginica).

Выбор признаков для машинного обучения

Для машинного обучения выберем целевой признак — вид ирисов. Сопоставим с остальными признаками, а именно, характеристики цветов, вывялим примерный вид ириса.

4. Листинг

4.1.Изучение данных

```
[11]:
      df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 150 entries, 0 to 149
      Data columns (total 6 columns):
                        Non-Null Count Dtype
           Column
                        -----
           -----
       0
           Ιd
                        150 non-null
                                       int64
          SepalLengthCm 150 non-null
       1
                                      float64
          SepalWidthCm 150 non-null
       2
                                       float64
          PetalLengthCm 150 non-null float64
       3
          PetalWidthCm 150 non-null float64
       4
       5
           Species
                       150 non-null
                                       object
      dtypes: float64(4), int64(1), object(1)
      memory usage: 7.2+ KB
```

В датасете содержатся 150 строки, имеются 3 различные типы: object, int64 и float64.

Просмотр названий столбцов.

Первые и последние пять строк датасета.

[13]:	<pre>display(df.head()) display(df.tail())</pre>
	uispiay(ui.taii())

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

Приведем к нижнему регистру и удаление лишних пробелов в названиях столбцов.

```
[14]: #Приведение к нижнему регистру и удаление лишних пробелов в названиях столбцов df.columns = df.columns.str.strip().str.lower()
```

4.2.Преобразование данных

Объем датасета после преобразования: 0.013 Мбайт

```
[15]: # Проверим объем занимаемой памяти в Мбайтах до преобразования
       print(f'Oбъем датасета до преобразования: {df.memory\_usage(deep=True).sum() / 1024 / 1024:.3f} Мбайт')
      Объем датасета до преобразования: 0.016 Мбайт
[16]: original_memory = df.memory_usage(deep=True).sum()
[17]: # Автоматизируем
       def change_type_variable(dateframe, show_print_report=False):
          for name_column in dateframe:
              if(dateframe[name_column].dtype == 'int64'):
                   dateframe[name_column] = dateframe[name_column].astype('int32')
                   if(show_print_report):
                       print(f'Успешно, преобразовали в другой тип INT32 колонки: {name_column}')
              if(dateframe[name_column].dtype == 'float64'):
                   dateframe[name_column] = dateframe[name_column].astype('float32')
                   if(show print report):
                      print(f'Успешно, преобразовали в другой тип FLOAT32 колонки: {name_column}')
              \textbf{if}(name\_column \ \textbf{in} \ [\ 'accidents\_or\_damage', \ 'one\_owner', \ 'personal\_use\_only']):
                  dateframe[name_column] = dateframe[name_column].astype(bool)
           if not(show_print_report):
              print('Успешно, преобразованы в другой тип')
[18]: # Преобразуем их
      {\tt change\_type\_variable(df)}
      Успешно, преобразованы в другой тип
[19]: # Проверим объем занимаемой памяти в Мбайтах до преобразования
      print(f'Объем датасета после преобразования: {df.memory_usage(deep=True).sum() / 1024 / 1024:.3f} Мбайт')
```

```
[21]: optimized_memory = df.memory_usage(deep=True).sum()
[22]: # Узнаем, сколько сэкономили памяти
     savings_percentage = (original_memory - optimized_memory) / original_memory * 100
     print(f"Сэкономлено {savings percentage:.2f}% памяти")
     Сэкономлено 17.99% памяти
[23]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 150 entries, 0 to 149
      Data columns (total 6 columns):
       # Column Non-Null Count Dtype
      ___
                         -----
       0 id
                        150 non-null int32
          sepallengthcm 150 non-null float32
       1
          sepalwidthcm 150 non-null float32
          petallengthcm 150 non-null float32
       4 petalwidthcm 150 non-null float32
       5 species
                        150 non-null object
      dtypes: float32(4), int32(1), object(1)
      memory usage: 4.2+ KB
```

4.3.Описательная статистика

[24]:	: df.describe()					
[24]:		id	sepallengthcm	sepalwidthcm	petallengthcm	petalwidthcm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000
	max	150.000000	7.900000	4.400000	6.900000	2.500000

id: Это уникальные идентификаторы записей в данных. Каждая строка представляет отдельный образец ириса, и этот столбец не несет дополнительной информации о характеристиках цветов. Он служит лишь для идентификации строки в наборе данных.

sepallengthcm: Это длина чашелистика цветка ириса, измеренная в сантиметрах. Среднее значение длины чашелистика составляет 5.84 см. Диапазон значений от 4.3 см до 7.9 см, что указывает на разнообразие в длине чашелистика среди разных видов ирисов.

sepalwidthcm: Это ширина чашелистика цветка ириса, измеренная в сантиметрах. Средняя ширина чашелистика составляет 3.05 см. Значения

варьируются от 2.0 см до 4.4 см, что показывает, что ширина чашелистика также имеет значительные колебания среди ирисов.

petallengthcm: Это длина лепестка цветка ириса, измеренная в сантиметрах. Средняя длина лепестка составляет 3.76 см. Длина лепестков варьируется от 1.0 см до 6.9 см, с большими различиями между образцами, что может указывать на разнообразие форм лепестков в зависимости от вида ириса.

petalwidthcm: Это ширина лепестка цветка ириса, измеренная в сантиметрах. Средняя ширина лепестка составляет 1.20 см. Значения варьируются от 0.1 см до 2.5 см, что также указывает на значительный разброс в характеристиках лепестков среди разных видов ирисов.

4.4.Предобработка данных

4.4.1. Пропущенные значения

```
# Copadaem cnucok с именами столбцов и количеством пропущенных значений missing_counts = [df[column].isnull().sum() for column in df.columns]

# Copmupyem cmoлбцы в порядке убывания количества пропущенных значений sorted_columns, sorted_missing_counts = zip(*sorted(zip(df.columns, missing_counts), key=lambda x: x[1], reverse=False))

# Copadaem горизонтальную столбчатую диаграмму plt.figure(figsize=(10, 6))

# Используем barh для горизонтальных столбцов plt.barh(sorted_columns, sorted_missing_counts) plt.xlabel('Количество пропущенных значений') plt.ylabel('Название столбцов') plt.title('Количество пропущенных значений в каждом столбце') plt.title('Количество пропущенных значений в каждом столбце') plt.tight_layout()

# Отображаем график plt.show()
```


В диаграмме отсутствуют пропуски в столбцах.

```
[26]: columns_isnull = [col for col, count in zip(sorted_columns, sorted_missing_counts) if count > 0]
      print(f'Названий столбцов, у которых пропуски:')
      for col in columns isnull:
         print('\t' + col)
      Названий столбцов, у которых пропуски:
[27]: # Проверим наличие пустых значений
      # Цикл по колонкам датасета
      for col in df.columns:
          # Количество пустых значений - все значения заполнены
          temp_null_count = df[df[col].isnull()].shape[0]
          print('{} - {}'.format(col, temp_null_count))
      sepallengthcm - 0
      sepalwidthcm - 0
      petallengthcm - 0
      petalwidthcm - 0
      species - 0
```

4.4.2. Дубликаты

2.4.2. Дубликаты

```
[28]: # Количество дублирующих значений df.duplicated().sum()

[28]: 0
```

Дубликатов нет, это говорит о том, что датасет был хорошо сделан.

4.5.Отсев до определенного количества уникальных значений

Для кодирования признаков ОНЕ или ОН будет черевато, если оставить

много уникальных названий, т.к. это приведет к созданию много новых признаков. Поэтому отсеиваем до небольших количеств, так чтобы создали максимум небольших новых закодированных признаков.

```
[30]: # Сделаем копию датасета
       df_copy = df.copy()
[31]: df_copy.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 150 entries, 0 to 149
       Data columns (total 6 columns):
                         Non-Null Count Dtype
        # Column
                           150 non-null int32
        ---
        0 id
        1 sepallengthcm 150 non-null
2 sepalwidthcm 150 non-null
                                              float32
                                             float32
            petallengthcm 150 non-null
                                              float32
        4 petalwidthcm 150 non-null float32
                                             object
        5 species
                            150 non-null
       dtypes: float32(4), int32(1), object(1)
       memory usage: 4.2+ KB
[32]: # Функция, которая разделяет численные и категориальные признаки \mathbf{def} divide_features(\mathbf{df}):
         numerical_features = df.select_dtypes(include=['number']).columns
          categorical_features = df.select_dtypes(exclude=['number']).columns
        return numerical_features, categorical_features
[33]: numerical_features, categorical_features = divide_features(df)
[34]: print("Численные признаки:", numerical_features.to_list())
      Численные признаки: ['id', 'sepallengthcm', 'sepalwidthcm', 'petallengthcm', 'petalwidthcm']
[35]: print("Нечисленные признаки:", categorical_features.to_list())
      Нечисленные признаки: ['species']
[36]: # Можно закодировать
      df_copy['species'].value_counts()
[36]: Iris-setosa
      Iris-versicolor
                      50
      Iris-virginica
      Name: species, dtype: int64
```

4.6. Машинное обучение

```
[39]: # Здесь сохраняем результаты машинного обучения results = pd.DataFrame()

# Счетчтик для нумераций count_model = 0
```

4.6.1. Деление на обучающей и тестовой выборки

```
[41]: # Получаем признаки и целевую переменную
features = df.drop(['id', 'species'], axis=1) # Удаляем ненужные столбцы
target = df['species'] # Используем species как целевую переменную

[45]: # Применяем LabelEncoder для кодирования целевой переменной 'species'
encoder = LabelEncoder()
target_encoded = encoder.fit_transform(target)

# Разделяем на тренировочную и тестовую выборки
features_train, features_test, target_train, target_test = train_test_split(features, target_encoded, test_size=0.2, random_state=12345)
```

4.7. Кодирование признаков – прямое кодирование (One-Hot Encoding)

[49]: # Просматриваем первые несколько строк
display(features_train.head())
display(features_test.head())

	sepallengthcm	sepalwidthcm	petallengthcm	petalwidthcm
19	5.1	3.8	1.5	0.3
48	5.3	3.7	1.5	0.2
146	6.3	2.5	5.0	1.9
121	5.6	2.8	4.9	2.0
60	5.0	2.0	3.5	1.0

	sepallengthcm	sepalwidthcm	petallengthcm	petalwidthcm
69	5.6	2.5	3.9	1.1
42	4.4	3.2	1.3	0.2
56	6.3	3.3	4.7	1.6
35	5.0	3.2	1.2	0.2
16	5.4	3.9	1.3	0.4

4.8.Обучение модели

4.8.1. Linear Regression

3.3.1. LinearRegression

```
[127]: # Устанавливаем нужные параметры
parameters = {}

# Инициализируем модель (включая масштабирование) и GridSearchCV
pipeline_scale = make_pipeline(StandardScaler(), LinearRegression())
model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring='neg_mean_absolute_error', error_score='raise')
display(model)
```

```
[128]: %%notify -m "KNeighborsRegressor OHE"
       %%time
       # Обучим модель на обучающей выборке
       model.fit(features_train, target_train)
       time = model.refit_time_
       params = model.best_params_
       # Узнаем МАЕ обучающей выборки
       result_MAE_t = -model.best_score_
       print('MAE TRAIN:', result_MAE_t)
       print('TIME TRAIN [s]:', round(time, 2))
       MAE TRAIN: 0.16818602681159972
       TIME TRAIN [s]: 0.01
       CPU times: total: 93.8 ms
       Wall time: 249 ms
       <IPython.core.display.Javascript object>
       Проверка на тестовой выборки
[129]: %%time
       start_time = timeit.default_timer()
       # Получаем предсказания на тестовой выборке
       predictions = model.predict(features_test)
       elapsed = round(timeit.default_timer() - start_time, 3)
       # Узнаем МАЕ
       result_MAE_v = mean_absolute_error(target_test, predictions)
       print('MAE TEST:', result_MAE_v)
       print('Предсказание:', predictions.mean())
       MAE TEST: 0.1970571130514145
       Предсказание: 0.9414801
       CPU times: total: 15.6 ms
       Wall time: 6 ms
[130]: # Зафиксируем результаты
         results[count_model] = pd.Series({
             'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__,
             'MAE TRAIN': result_MAE_t,
             'MAE TEST': result_MAE_v,
             'PREDICTIONS': predictions.mean(),
             'TIME TRAINING [s]': model.refit_time_,
             'TIME PREDICTION [s]': elapsed,
             'PARAMETRS': model.best_params_
         })
         results[count_model]
         count_model += 1
```

4.8.2. Decision Tree Regressor

print('Предсказание:', predictions.mean())

Предсказание: 0.9666666666666667 CPU times: total: 15.6 ms

MAE TEST: 0.1

```
# Матрица гиперпараметров
parameters = {
     'decisiontreeregressor__max_depth': range(1, 101, 10),
     'decisiontreeregressor__min_samples_leaf': [1, 0.5]
# Инициализируем модель (включая масштабирование) и GridSearchCV
pipeline_scale = make_pipeline(StandardScaler(), DecisionTreeRegressor(random_state=12345))
model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring='neg_mean_absolute_error')
# Выводим модель с настроенными гиперпараметрами
display(model)
                                     GridSearchCV
GridSearchCV(cv=5,
            estimator=Pipeline(steps=[('standardscaler', StandardScaler()), ('decisiontreeregressor',
            scoring='neg_mean_absolute_error')
           Pipeline(steps=[('standardscaler', StandardScaler()),
('decisiontreeregressor',
DecisionTreeRegressor(random_state=12345))])

    StandardScaler

                               StandardScaler()
                               DecisionTreeRegressor
                     DecisionTreeRegressor(random_state=12345)
%%notify -m f"{pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__}"
# Обучим модель на обучающей выборке
model.fit(features_train, target_train)
time = model.refit_time_
params = model.best_params_
# Узнаем МАЕ обучающей выборки
result_MAE_t = -model.best_score_
print('MAE TRAIN:', result_MAE_t)
print('TIME TRAIN [s]:', round(time, 2))
MAE TRAIN: 0.05
TIME TRAIN [s]: 0.01
CPU times: total: 1.88 s
Wall time: 2.14 s
<IPython.core.display.Javascript object>
Проверка тестовой выборки
start_time = timeit.default_timer()
# Получим предсказания на тестовой выборки
predictions = model.predict(features_test)
elapsed = round(timeit.default_timer() - start_time, 3)
result_MAE_v = mean_absolute_error(target_test, predictions)
print('MAE TEST:', result_MAE_v)
```

```
# Зафиксируем pesynhmamы
results[count_model] = pd.Series({
    'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class_.__name__,
    'MAE TRAIN': result_MAE_t,
    'MAE TEST': result_MAE_v,
    'PREDICTIONS': predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best_params_
})
results[count_model]
count_model+=1
```

4.8.3. Support Vector Machine

```
# Матрица гиперпараметров

parameters = {
    'svr_C': [0.1, 1, 10],
    'svr_kernel': ['linear', 'rbf'],
    'svr_gamma': ['scale', 'auto']
}

# Инициализируем модель с параметрами и создаем конвейер

pipeline_scale = make_pipeline(StandardScaler(), SVR())

model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring='neg_mean_absolute_error')

# Выводим модель с настроенными гиперпараметрами

display(model)
```

```
%%notify -m f"{pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__}"
%%time
# Обучим модель на обучающей выборке
model.fit(features_train, target_train)
time = model.refit_time_
params = model.best_params
# Узнаем МАЕ обучающей выборки
result_MAE_t = -model.best_score_
print('MAE TRAIN:', result_MAE_t)
print('TIME TRAIN [s]:', round(time, 2))
MAE TRAIN: 0.13504827333792374
TIME TRAIN [s]: 0.01
CPU times: total: 1.08 s
Wall time: 1.2 s
<IPython.core.display.Javascript object>
Проверка тестовой выборки
%%time
start_time = timeit.default_timer()
# Получим предсказания на тестовой выборки
predictions = model.predict(features_test)
elapsed = round(timeit.default_timer() - start_time, 3)
# Узнаем МАЕ
result\_{MAE\_v} = mean\_absolute\_error(target\_test, predictions)
print('MAE TEST:', result_MAE_v)
print('Предсказание:', predictions.mean())
MAE TEST: 0.1352222378629114
Предсказание: 0.8807385884750125
CPU times: total: 0 ns
Wall time: 9 ms
# Зафиксируем результать
results[count_model] = pd.Series({
    'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__,
    'MAE TRAIN': result_MAE_t,
    'MAE TEST': result_MAE_v,
    'PREDICTIONS': predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best_params_
})
results[count_model]
count_model+=1
```

4.9.Итог

4.9.1. Анализ моделей

. . . .

Модель DecisionTreeRegressor демонстрирует наименьшую среднюю абсолютную ошибку (MAE) как на обучающем наборе (0.05), так и на тестовом наборе (0.1). Это может указывать на то, что она наилучшим образом подгоняется под тренировочные данные и обладает хорошей обобщающей способностью.

В то время как модели LinearRegression и SVR имеют более высокие значения МАЕ на обучающем наборе (0.168186 и 0.135048 соответственно), что может подгоняются свидетельствовать TOM. что они менее точно требуют дополнительной настройки тренировочные данные И гиперпараметров для улучшения качества предсказаний.

Кроме того, DecisionTreeRegressor показала лучшее значение предсказаний (0.966667) по сравнению с другими моделями, что подтверждает её эффективность в данной задаче. В результате, можно сделать вывод, что решающее дерево является предпочтительным выбором для этой задачи, тогда как линейная регрессия и SVR могут потребовать дальнейшей оптимизации для повышения производительности.

4.9.2. Важность признаков модели «DecisionTreeRegressor»

3.4.2. Важность признаков модели "DecisionTreeRegressor"

```
# Извлекаем результаты решающего дерева dt_results = results[results['NAME'] == 'DecisionTreeRegressor'].iloc[<math>\theta]
display(dt_results)
                                                                 DecisionTreeRegressor
                                                                                   0.05
MAE TRAIN
MAE TEST
                                                                                       0.1
PREDICTIONS
                                                                                 0.966667
TIME TRAINING [s]
                                                                                 0.009005
TIME PREDICTION [s]
                            {'decisiontreeregressor__max_depth': 11, 'deci...
PARAMETRS
Name: 1, dtype: object
# Извлекаем параметры из словар.
param_dict = results['PARAMETRS']
# Преобразуем значения словаря в строки и извлекаем параметры cleaned_params = {re.sub('decisiontreeregressor_', '', str(key)): value for key, value in param_dict.items()}
display(cleaned_params)
{'0': {},
'1': {'decisiontreeregressor_max_depth': 11,
  'decisiontreeregressor_min_samples_leaf': 1},
'2': {'svr_C': 10, 'svr_gamma': 'scale', 'svr_kernel': 'rbf'}}
cleaned_params.pop('1', None)
cleaned_params.pop('2', None)
best_model = DecisionTreeRegressor(**cleaned_params['0'])
best_model.fit(features_train, target_train)
 ▼ DecisionTreeRegressor ① ②
```

DecisionTreeRegressor()

```
# Получение важности признаков
feature_importance = best_model.feature_importances_
# Получение названий признаков
feature_names = features_train.columns
# Сортировка индексов признаков по их важности
sorted_idx = np.argsort(feature_importance)
# Построение графика важности признаков с улучшенным отображением
plt.figure(figsize=(10, 15))
plt.barh(range(len(sorted_idx)), feature_importance[sorted_idx])
plt.yticks(range(len(sorted_idx)), feature_names[sorted_idx], fontsize=10) plt.xlabel('Важность признака', fontsize=12)
plt.title('График важности признаков в дереве решений', fontsize=14)
plt.grid(axis='x', linestyle='--', alpha=0.6)
plt.show()
```


4.9.3. Визуализация Дерева решений

```
os.environ["PATH"] += os.pathsep + r"C:\Program Files\Graphviz\bin"

dot_data_graphviz = export_graphviz(
    best_model,
    out_file=None,
    feature_names=list(features_train.columns),
    filled=True,
    rounded=True,
    special_characters=True
)
graph = graphviz.Source(dot_data_graphviz)
graph.render("decision_tree") # Coxpanumb zpaφ β φαῦn
graph.view("decision_tree") # Открыть граф β προςмотрицике
```

^{&#}x27;decision_tree.pdf'

5. Вывод

В ходе лабораторной работы изучили линейные модели, SVM и деревья решений.