Expected Value & Variance

Distribution	Description	Prob. Mass function	E[X]	Var[X]
Uniform	X takes each value in the range R with equal probability. R contains n numbers.	$f_X(k) = \begin{cases} \frac{1}{n} & k \in R \\ n & \end{cases}$	$\frac{1}{n} \sum_{k \in R} k$	$\frac{1}{n}\sum_{k}(k-E[X])^2$
	Example: Value shown on a fair die.	$\begin{bmatrix} 0 & \text{else.} \end{bmatrix}$	(average)	$k \in R$
11:30	A Bernoulli trial results in "success" with probability p and "eggless" with probability p and		1	(")"
Dernoulli	Tallure with probability $1-p$. X takes the value 1 in the event of success, and 0 for failure.	$f_X(k) = \begin{cases} 1 - p & k = 0\\ 0 & \text{else.} \end{cases}$	d	p(1-p)
Disconic	A Bernoulli trial with probability	$f_{\mathbf{v}}(k) = \begin{cases} \binom{n}{k} p^k (1-p)^k & 0 \le k \le n \\ & \text{integer} \end{cases}$	Ś	(")""
DIIIOIIIIAI	p or success as performed n times. X is the number of successes.	$\begin{pmatrix} JA(B) \\ 0 \end{pmatrix}$ else.	du	rp(1-p)
	A Bernoulli trial with probability p of success is performed until the	$\left(p(1-p)^k \substack{k>0\\ \text{integer}}\right)$	- - - - -	
Geometric	first success is achieved. X is the number of failures before the first		$\frac{d}{d-1}$	$\frac{1-p}{p^2}$
	success.	(o eise.		
	A jar contains N marbles, of which m are white and $N = m$	$\left(\frac{m}{k}\right)\left(\frac{N-m}{n-k}\right) \xrightarrow{0 \le k \le m}$		nm(N-m)(N-n)
Hypergeometric	Hypergeometric are black. A sample of n marbles	$f_X(k) = \left\{ egin{array}{c} inom{N}{n} \ inom{N}{n} \end{array} ight.$	$\frac{mn}{\sqrt{N}}$	$N^2(N-1)$
	is drawn, and X is the number of	C	N,	(not in slides)
	white marbles in the sample.	(0 else.		
	X is the number of times an	$\int e^{-\lambda} \lambda^k \qquad _{k>0}$		
			,	
Poisson	occur at an "average rate" λ ,	$f_X(k) = \langle \dots \rangle$	~	~
	independently of the amount of	معام		
	time since the last event.			

1. Practice Problems

- (1) Derive the formula for E[X] for the Bernoulli random variable.
- (2) Show that E[X] for the Binomial and Hypergeometric random variables can be derived from the previous answer using the properties of Expected Value.
- (3) Why is Var[X] for the hypergeometric random variable not given by $\frac{mn(N-m)}{N^2}$?
- (4) What is a fair price for the following games:
 - (a) A fair coin is flipped until heads comes up, and the player wins a dollar for each tails she flipped before the heads.
 - (b) The game runner and the player each roll a six-sided die. If the player has a strictly higher roll, then he wins a dollar.
 - (c) The player watches a road which has red cars pass at a rate of 10 per hour. She wins a dollar for each red car she sees in the hour.
- (5) Suppose I flip a penny, a nickel, a dime, and a quarter. Let X be the value in cents of the coins showing heads. What is E[X] and Var[X]?