Digital IC Design Report

Exercise 5: SRAM Model in Verilog

Professor: Po-Tsang Huang

Student/ID: 尤彥捷/310591036

In this exercise, we have to design a 512*32 SRAM module in Verilog based on the following I/O description (Figure 1.) and timing specification (Figure 2.).

Input	Description
clk	Clock signal
CEN	CEN = 0 (enable) CEN = 1 (disable)
WEN	WEN = 0 (Write operation) WEN = 1 (Read operation)
Din[31:0]	Data input
Addr[8:0]	Address
Output	Description
Dout[31:0]	Data output

Figure 1. I/O description of SRAM module

Maximum Frequency	2GHz	
Read latency	450ps	
Setup time of Input	20ps	
Hold time of input	20ps	

Figure 2. Timing Spec. of SRAM module

- Simulation & Function Verification
- ✓ SRAM Function & Read Latency

Figure 3. The regular SRAM function test. The read command operate at 1,250ps and the dout register received it after 450ps read latency

✓ Maximum Frequency Test

Figure 4. To adjust period to 250ps, system pops up warning and dout register goes to unknown

✓ Setup time & Hold time Test

Figure 5. Setup time test, the data come in right on the positive edge of clock. It should come in 20ps earlier. System pops up warning message and set output to unknown.

Figure 6. Hold time test, the data change at 760ps instead of 770ps which violated the spec. of hold time. System pops up warning message and set output to unknown.

★ Ex5-2: Merge Sort with two 512x32 SRAMs

❖ Finite State Machines

I use two FSMs to handle the sram and merge sort algorithm respectively.

FSM(cstate, nstate)

Figure 7. FSM state diagram for handling SRAM

FSM(nstate_sort, cstate_sort)

Figure 8. FSM for handling merge sorts

❖ Behavior Simulation

Figure 9. Start of the behavior simulation.

Figure 10. When Cnt_data = 513, Invalid_Number = 1, SRAM1 starts to output ten data based on the random address.

 $\label{eq:figure 11.} Figure \ 11. \ When \ Cnt_data = 1025, \ Invalid_Number = 1, \ SRAM2 \ starts \\ to output \ ten \ data \ based \ on \ the \ random \ address.$

Figure 12. When Cnt_data = 1537, Invalid_Number = 1, SRAM1 starts to output ten data based on the random address.

Figure 13. When Cnt_data = 2049, Invalid_Number = 1, SRAM2 starts to output ten data based on the random address.

Figure 14. After cstate_sort = 14, it convert to merge sort state. It will use merge sort algorithm to put data into a [7:0] arrays from big to small.

* Synthesis

Clock period = 500ps

Timing Report

Timing Report		
Point	Incr	Path
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	0.00
i reg 0 /CLK (ASYNC DFFHx1 ASAP7 75t R)	0.00	0.00 r
i reg 0 /ON (ASYNC DFFHx1 ASAP7 75t R)	50.25	50.25 r
U5548/Y (BUFx8 ASAP7 75t R)	27.54	77.79 r
U5554/Y (INVx11_ASAP7_75t_R)	13.49	91.28 f
U5551/Y (INVx11_ASAP7_75t_R)	16.37	107.65 r
U5543/Y (OR2x2_ASAP7_75t_R)	44.65	152.30 r
U9664/Y (NOR2xp33_ASAP7_75t_R)	24.18	176.48 f
U9665/Y (OR4x2_ASAP7_75t_R)	44.69	221.16 f
U6940/Y (NOR2xp33_ASAP7_75t_R)	18.17	239.33 r
U7455/Y (OR2x2_ASAP7_75t_R)	20.78	260.11 r
U6816/Y (NAND2xp33_ASAP7_75t_R)	9.35	269.46 f
U8153/Y (NAND2xp5_ASAP7_75t_R)	10.65	280.11 r
U7806/Y (AND3x1_ASAP7_75t_R)	21.09	301.20 r
U5370/Y (NOR2xp33_ASAP7_75t_R)	11.21	312.41 f
U5368/Y (NOR3xp33_ASAP7_75t_R)	16.03	328.44 r
U5362/Y (AND2x2_ASAP7_75t_R)	32.29	360.73 r
U5354/Y (NAND2xp5_ASAP7_75t_R)	14.89	375.62 f
U6707/Y (NOR2xp33_ASAP7_75t_R)	24.85	400.48 r
U10570/Y (NAND2xp33_ASAP7_75t_R)	15.96	416.44 f
U10572/Y (AND2x2_ASAP7_75t_R)	29.04	445.48 f
U9247/Y (OR2x2_ASAP7_75t_R)	22.80	468.28 f
U6855/Y (NAND2xp33_ASAP7_75t_R)	13.26	481.54 r
Final_OUT_reg_617_/D (ASYNC_DFFHx1_ASAP7_75t_R)	0.00	481.54 r
data arrival time		481.54
clock clk (rise edge)	500.00	500.00
clock network delay (ideal)	0.00	500.00
Final_OUT_reg_617_/CLK (ASYNC_DFFHx1_ASAP7_75t_R)	0.00	500.00 r
library setup time	-18.32	481.68
data required time		481.68
data required time		481.68
data arrival time		-481.54
slack (MET)		0.14

Area Report

<u>Total Cell Area = 15958.451463</u>

Latency: measure from (Cnt_data = 2057 -> 2058) to (out_valid = 1 -> 0) = 15,320 ps

Performance

Performance = 15958.451463 * 15.320 ns = **244,483.47641316**