

National Accreditation Board for Testing and Calibration Laboratories

(An Autonomous Body under Department of Science & Technology, Govt. of India)

CERTIFICATE OF ACCREDITATION

Q-TECH ENGINEERING SERVICES

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

S-134,C/o, Precision Engineering Works, MIDC, Bhosari, Pune, Maharashtra

in the discipline of

MECHANICAL CALIBRATION

Certificate Number C-0917

Issue Date

14/05/2015

Valid Until 13/05/2017

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the additional requirements of NABL.

Signed for and on behalf of NABL

Program Manager

Director

Prof. Ashutosh Sharma Chairman

रा.प्र.प्र.बो.

राष्ट्रीय परीक्षण और अंशशोधन प्रयोगशाला प्रत्यायन बोर्ड

(विज्ञान एवं प्रौद्योगिकी विभाग, भारत सरकार के अधीन स्वायत्तशासी निकाय)

प्रत्यायन प्रमाण-पत्र

क्यू-टेक इंजीनियरिंग सर्विसेस

का मूल्यांकन और प्रत्यायन निम्न मानक के अनुसार आई.एस.ओ./आई.ई.सी. 17025:2005 "परीक्षण एवं अंशशोधन प्रयोगशालाओं की सक्ष्मता की सामान्य अपेक्षाएँ"

पुणे,महाराष्ट्र

में स्थित इसकी सुविधाओं के लिए

यांत्रिक अंशशोधन

के विषय क्षेत्र में किया गया।

(इस प्रयोगशाला के प्रत्यायन के विषय क्षेत्र की जानकारी एन ए बी एल वेबसाइट www.nabl-india.org से भी प्राप्त कर सकते हैं)

प्रमाण-पत्र संख्या

अ-0917

जारी करने की तिथि

14/05/2015

वैधता की तिथि

13/05/2017

यह प्रमाण-पत्र उपर्युक्त मानक तथा राष्ट्रीय परीक्षण और अंशशोधन प्रयोगशाला प्रत्यायन बोर्ड की अतिरिक्त अपेक्षाओं का निरंतर संतोषप्रद अनुपालन किए जाने पर अनुबंध में निर्दिष्टानुसार प्रत्यायन के क्षेत्र के लिए वैध रहेगा।

्रा.प्र.प्र.बो. की ओर से हस्ताक्षरित

अ. इस

अविजित दास कार्यक्रम प्रवन्धक अतिल देविया

अनिल रेलिया निदेशक उगाम् ज्यान ज्याना प्रो. अशुतीष शर्मा

अध्यक्ष

SCOPE OF ACCREDITATION

Laboratory

Q-Tech Engineering Services, S-134, C/o, Precision Engineering Works,

MIDC, Bhosari, Pune, Maharashtra

Accreditation Standard ISO/IEC 17025:2005

Discipline

Mechanical Calibration

Issue Date

14.05.2015

Certificate Number

C-0917

Valid Until

13.05.2017

Last Amended on

24.05.2015

Page

1 of 5

Quantity Measured /	
Instrument	

Range/ Frequency * Calibration Measurement Capability (±)

Remarks

DIMENSION

1.	EXTERNAL
	MICROMETER ^S
	LC 1 um [©]

U	o to	100) mn	1
>100	mm	to	300	mm

1.4 µm 3.0 µm

Using Slip Gauge Blocks Gr '0' / Long Slip Gauges, by Comparison Method

DEPTH MICROMETERS

L.C.: 10 µm

Up to 300 mm

8.8 µm

Using Slip Gauge Blocks Gr '0', by Comparison Method

INTERNAL 3. MICROMETER^S

L.C.: 10 µm

Up to 600 mm

8.2 µm

Using Slip Gauge Blocks Gr '0', by Comparison Method

CALIPERS

(Vernier /Dial/Digital)

L.C.: 0.01 mm^Ф

Up to 600 mm

15.0 µm

Using Slip Gauge Blocks Gr '0' & Caliper Checker, Long Slip Gauge, by Comparison Method

HEIGHT GAUGE^S

(Vernier /Dial/Digital)

L.C.: 0.01 mm[©]

Up to 600 mm

13.0 µm

Using Slip Gauge Blocks Gr '0' & Caliper Checker, Long Slip Gauge, by Comparison Method

DEPTH GAUGE^S

(Vernier /Dial/Digital) L.C.: 0.01 mm^Ф

Up to 300 mm

15.0 µm

Using Slip Gauge Blocks Gr '0' & Caliper Checker, by Comparison Method

Shally Sharma Convenor

SCOPE OF ACCREDITATION

Laboratory Q-Tech Engineering Services, S-134, C/o, Precision Engineering Works,

MIDC, Bhosari, Pune, Maharashtra

Accreditation Standard ISO/IEC 17025:2005

Discipline Mechanical Calibration Issue Date 14.05.2015

Certificate Number C-0917 Valid Until 13.05.2017

Last Amended on 24.05.2015 Page 2 of 5

C	Quantity Measured / F Instrument		on Measurement pability (±)	Remarks
7.	PLUNGER DIAL GAUGE COMPARATOR ^S	39121197		
	L.C.: 0.001 mm L.C.: 0.001 mm	Up to 1 mm Up to 25 mm	1.2 μm 2.6 μm	Using Electronic Dial Calibration Tester by Comparison Method
8.	LEVER DIAL GAUGE S L.C.: 0.001 mm [©] L.C.: 0.01 mm	Up to 0.2 mm Up to 1 mm	1.8 μm 5.9 μm	Using Electronic Dial Calibration Tester by Comparison Method
9.	BORE GAUGE ⁸	Transmission only 0 to 2 mm	4.0	Using Electronic Dial Calibration Tester by Comparison Method
10.	DIAL SNAP GAUGE ^S	Up to 150 mm	3.9	Using Slip Gauge Block Gr '0', by Comparison Method
11.	DIAL THICKNESS GAUCE	GE /		
	L.C.: 0.01 mm L.C.: 0.1 mm	Up to 30 mm Up to 50 mm	5.9 μm 60 μm	Using Slip Gauge Block Gr '0' by Comparison Method
12.	BEVEL PROTRACTOR/ ANGLE PROTRACTOR/ COMBINATION SET ^S			
	L.C.: 51 ^{-©}	Up to 360°	3.6'	Using Angle Gauge Block Gr '0' by Comparison Method
13.	PLAIN PLUG GAUGE / SETTING PLUG GAUGE OD MASTER / HEIGHT MASTER / WIDTH GAUG PLAIN MANDRILL ⁵	> 100 mm to 300 mm	1.6 μm 2.0 μm 4.0 μm	Using Slip Gauge Block Gr '0' & Comparator with Stand, by Comparison Method
	DAMA .			1-2

Shally Sharma Convenor

SCOPE OF ACCREDITATION

Laboratory

Q-Tech Engineering Services, S-134, C/o, Precision Engineering Works,

MIDC, Bhosari, Pune, Maharashtra

Accreditation Standard ISO/IEC 17025:2005

Discipline

Mechanical Calibration

Issue Date

14.05.2015

Certificate Number

C-0917

Valid Until

13.05.2017

Last Amended on

24.05.2015

Page

3 of 5

0	luantity Measured / Rang		on Measurement bability (±)	Remarks
		- (), (1) 212	, (=)	
14.	SNAP GAUGE / GAP GAUGE ^S	Up to 100 mm > 100 mm to 200 mm > 200 mm to 300 mm	1.5 μm 3.0 μm 5.0 μm	Using Slip Gauge Block Gr '0', by Comparison Method
15.	THREAD PLUG GAUGE ^S Effective Dia. / Major Dia.	Up to 100 mm	3.4 µm	Using FCDM with Electronic probe by Comparison Method
16.	TAPER THREAD PLUG GAUGE ^S Effective Dia. / Major Dia.	Up to 100 mm	4.8 μm	Using FCDM with Electronic probe, by Comparison Method
17.	FEELER GAUGE SET ^S	Up to 1 mm	3.0 μm	Using Digital Micrometer, By Comparison Method
18.	CYLINDRICAL SETTING MASTER ⁸	Up to 100 mm	2.0 μm	Using Slip Gauge Block Gr '0' & Comparator with Stand, by Comparison Method
19.	MEASURING PIN/ THREAD MEASURING WIRE ^S	Up to 20 mm	1.5 μm	Using Slip Gauge Block Gr '0' & Comparator with Stand, by Comparison Method
20.	MICROMETER SETTING STICKS ^S	Up to 100 mm > 100 mm to 300 mm > 300 mm to 600 mm	2.0 μm 3.7 μm 7.8 μm	Using Slip Gauge Block Gr '0', Comparator with Stand , Single Axis Measuring M/C, by Comparison Method
21.	PLAIN RING GAUGE ^S	Up to 100 mm > 100 mm to 300 mm	6.0 μm 6.5 μm	Using Electronic Height Gauge 2D, by Comparison Method
22.	COATING THICKNESS GAUGE ^S	Up to 2000 μm	5.0 μm	Using Master Thickness Foils, Comparison Method,
	D . A			^

Shally Sharma Convenor

SCOPE OF ACCREDITATION

Laboratory Q-Tech Engineering Services, S-134, C/o, Precision Engineering Works,

MIDC, Bhosari, Pune, Maharashtra

Accreditation Standard ISO/IEC 17025:2005

Discipline Mechanical Calibration Issue Date 14.05.2015

Certificate Number C-0917 Valid Until 13.05.2017

Last Amended on 24.05.2015 Page 4 of 5

G	luantity Measured / Instrument		Measurement bility (±)	Remarks
23.	COATING THICKNESS FOILS ⁸	Up to 2 mm	1.5 µm	Using Electronic Probe with Comparator stand, by Comparison Method
24.	DIAL CALIBRATION TESTER ^S (Micrometer Lead Type) L.C.: 0.0002 mm [©]	Up to 25 mm	2.4 μm	Using Electronics Probe, by Comparison Method
25.	ELECTRONIC PROBE / COMPARATOR ^S L.C.: 0.0001 mm [©]	Up to 25 mm	0.7 μm	Using Slip Gauge & Comparator with stand, by Comparison Method
26.	COMPARATOR STAND	Up to 150 mm	3.7 µm	Using Single Axis Measuring M/C, by Comparison Method
27.	INSIDE DIAL CALIPER TWO PIN DIAL ^S L.C.: 0.01 mm [©]	Up to 100 mm	7.0 µm	Using Digital Micrometer, by Comparison Method
28.	V BLOCK / PARALLEL BLOCK ⁵ Parallelism /Symmetricity Squareness	Up to 150 mm	7.0 μm 16.0 μm	Using Electronics Height Gauge 2D, Surface Plate & Plain Mandrill, by Comparison Method
29.	ENGINEERS SQUARES Parallelism/ Straightness/ Flatness Squareness	Up to 300 mm	6.2 μm 16.0 μm	Using Electronic Height Gauge 2D, Surface Plate, by Comparison Method
	Shally Sharma Convenor			Avijit Das Program Manager

SCOPE OF ACCREDITATION

Laboratory

Q-Tech Engineering Services, S-134, C/o, Precision Engineering Works.

MIDC, Bhosari, Pune, Maharashtra

Accreditation Standard ISO/IEC 17025:2005

Discipline

Mechanical Calibration

Issue Date

14.05.2015

Certificate Number

C-0917

Valid Until

13.05.2017

Last Amended on

24.05.2015

Page

5 of 5

C	Quantity Measured / Instrument		on Measurement pability (±)	Remarks
30.	ANGLE PLATE / BOX PLATE ^S Parallelism / Flatness/ Squareness	Up to 300 mm	6.2 μm 16.0 μm	Using Electronic Height Gauge 2D, Surface Plate, by Comparison Method
31.	'V' ANVIL MICROMET L.C.: 0.001 mm [©]	Up to 100 mm	6.0 μm	Using Setting Master, by Comparison Method
32.	CALIPER CHECKER / STEP GAUGE ^S	Up to 600 mm	9.6 μm	Electronic Height Gauge 2D, Surface Plate, by Comparison Method

^{*} Measurement Capability is expressed as an uncertainty (±) at a confidence probability of 95%

Shally Sharma Convenor

SOnly in Permanent Laboratory

^{*}Only for Site Calibration

[&]quot;The laboratory is also capable for site calibration however, the uncertainty at site depends on the prevailing actual environmental conditions and master equipment used.

⁶ Laboratory can also calibrate instruments/devices of coarser resolution / least count within the accredited range using same reference standard/ master equipment under the scope of accreditation.