## 1 Section 4.5 Exercises

Exercises with solutions from Section 4.5 of [UA].

**Exercise 4.5.1.** Show how the Intermediate Value Theorem follows as a corollary to Theorem 4.5.2.

Solution. Let  $f:[a,b] \to \mathbf{R}$  be continuous and let  $L \in \mathbf{R}$  be such that either f(a) < L < f(b) or f(b) < L < f(a); our aim is to show that there exists  $c \in (a,b)$  such that f(c) = L. Theorem 3.4.7 shows that [a,b] is connected and hence Theorem 4.5.2 implies that the image f([a,b]) is also connected. Clearly  $f(a), f(b) \in f([a,b])$ , so Theorem 3.4.7 implies that  $L \in f([a,b])$ , i.e. there exists  $c \in [a,b]$  such that f(c) = L. In fact, since  $f(a) \neq L$  and  $f(b) \neq L$  we have  $c \in (a,b)$ .

Exercise 4.5.2. Provide an example of each of the following, or explain why the request is impossible

- (a) A continuous function defined on an open interval with range equal to a closed interval.
- (b) A continuous function defined on a closed interval with range equal to an open interval.
- (c) A continuous function defined on an open interval with range equal to an unbounded closed set different from **R**.
- (d) A continuous function defined on all of  $\mathbf{R}$  with range equal to  $\mathbf{Q}$ .

Solution. (I am not sure if Abbott allows unbounded intervals here!)

- (a) If we allow unbounded intervals, then  $f : \mathbf{R} \to \mathbf{R}$  given by f(x) = x is an example of such a function. For bounded intervals, see Exercise 4.4.8 (b) for an example of such a function.
- (b) If we allow unbounded intervals, then  $f : \mathbf{R} \to \mathbf{R}$  given by f(x) = x is an example of such a function. If we do not allow unbounded intervals, then such a function cannot exist by Theorem 4.4.1 (Preservation of Compact Sets).
- (c) If we allow unbounded intervals, then  $f: \mathbf{R} \to \mathbf{R}$  given by  $f(x) = \max\{0, x\}$  is an example of such a function; the image of f is  $[0, \infty)$ . For bounded intervals, consider the function  $f: (0, 2) \to \mathbf{R}$  given by  $f(x) = \frac{1}{x(2-x)}$ ; the image of f is  $[1, \infty)$ .
- (d) This is impossible.  $\mathbf{R}$  is connected (Theorem 3.4.7) and so its image under a continuous function must also be connected (Theorem 4.5.2); however,  $\mathbf{Q}$  is not connected (Theorem 3.4.7).

**Exercise 4.5.3.** A function f is *increasing* on A if  $f(x) \leq f(y)$  for all x < y in A. Show that if f is increasing on [a, b] and satisfies the intermediate value property (Definition 4.5.3), then f is continuous on [a, b].

Solution. First, let us prove the following lemma.

**Lemma 1.** Suppose a < b and  $f : [a, b] \to \mathbf{R}$  is increasing.

(i) If  $c \in (a, b]$ , then

$$\lim_{x \to c^{-}} f(x) = \sup\{f(x) : a < x < c\}.$$

(ii) If  $c \in [a, b)$ , then

$$\lim_{x \to c^+} f(x) = \inf\{f(x) : c < x < b\}.$$

Proof.

(i) Fix  $c \in (a, b]$ . Note that since f is increasing, we have  $f([a, b]) \subseteq [f(a), f(b)]$ ; it follows that  $\{f(x) : a < x < c\}$  is bounded and non-empty, so  $S := \sup\{f(x) : a < x < c\}$  exists. Let  $\epsilon > 0$  be given. There exists a  $y \in (a, c)$  such that  $S - \epsilon < f(y) \le S$ . Since f is increasing, we then have

$$x \in (y, c) \implies S - \epsilon < f(y) \le f(x) \le S.$$

In other words, letting  $\delta = c - y$ , for any x satisfying  $c - \delta < x < c$  we have  $|f(x) - S| < \epsilon$ . It follows that  $\lim_{x \to c^-} f(x) = S$ .

(ii) The proof is similar to part (i).

Returning to the exercise, we will now prove the contrapositive result: if f is increasing and not continuous on [a, b], then f does not satisfy the intermediate value property. Suppose therefore that f is not continuous at some  $c \in [a, b]$  i.e. suppose that  $\lim_{x\to c} f(x) \neq f(c)$  (Theorem 4.3.2 (iv)).

Case 1. Suppose  $c \in (a, b)$ . Since f is increasing on [a, b], Lemma 1 implies that both of the one-sided limits exist:

$$\alpha := \lim_{x \to c^{-}} f(x) = \sup\{f(x) : a < x < c\},\$$

$$\beta := \lim_{x \to c^+} f(x) = \inf\{f(x) : c < x < b\}.$$

By Exercise 4.2.10 (b), it must be the case that at least one of these limits is not equal to f(c). Since f is increasing, we must then have  $\alpha < \beta$ ; it follows that the infinite subset  $(\alpha, \beta) \setminus \{f(c)\} \subseteq [f(a), f(b)]$  does not belong to the image of f and so f does not satisfy the intermediate value property on [a, b].

Case 2. Suppose c = a, i.e. f is not continuous at a. Since f is increasing on [a, b], Lemma 1 implies that the limit from the right exists:

$$\beta := \lim_{x \to a^+} f(x) = \inf\{f(x) : a < x < b\}.$$

Since a is the minimum element of the domain of f, we have  $\lim_{x\to a} f(x) = \lim_{x\to a^+} f(x) = \beta$ , and since f is not continuous at a and increasing on [a,b], it must then be the case that  $f(a) < \beta$ . It follows that the infinite subset  $(f(a), \beta) \subsetneq [f(a), f(b)]$  does not belong to the image of f and so f does not satisfy the intermediate value property on [a,b].

Case 3. If f fails to be continuous at b, then an argument similar to the one given in Case 2, this time using the limit from the left, shows that f does not satisfy the intermediate value property on [a, b].

**Exercise 4.5.4.** Let g be continuous on an interval A and let F be the set of points where g fails to be one-to-one; that is,

$$F = \{x \in A : f(x) = f(y) \text{ for some } y \neq x \text{ and } y \in A\}.$$

Show F is either empty or uncountable.

Solution. It will suffice to show that if F is not empty then F is uncountable. Suppose therefore that there exist x < y in A such that g(x) = g(y). If g is constant on [x, y], then F contains the uncountable subset [x, y] and so must itself be uncountable. Otherwise, there exists some  $a \in (x, y)$  such that  $g(a) \neq g(x)$ . Let

$$I:=(\min\{g(x),g(a)\},\max\{g(x),g(a)\})$$

and note that I is a proper interval (not a singleton) since  $g(a) \neq g(x)$ . Since g is continuous on A, the Intermediate Value Theorem (Theorem 4.5.1) implies that for each  $t \in I$  there exist  $x_t \in (x, a)$  and  $y_t \in (a, y)$  such that  $g(x_t) = g(y_t) = t$ , so that  $x_t \in F$ . Since g is a function, each  $t \in I$  gives rise to a distinct  $x_t \in F$ ; since I is uncountable, it then follows that F is uncountable.

Exercise 4.5.5. (a) Finish the proof of the Intermediate Value Theorem using the Axiom of Completeness started previously.

- (b) Finish the proof of the Intermediate Value Theorem using the Nested Interval Property started previously.
- Solution. (a) (Here is the start of the proof from the textbook.) To simplify matters a bit, let's consider the special case where f is a continuous function satisfying f(a) < 0 < f(b) and show that f(c) = 0 for some  $c \in (a, b)$ . First let

$$K = \{x \in [a, b] : f(x) \le 0\}.$$

Notice that K is bounded above by b, and  $a \in K$  so K is not empty. Thus we may appeal to the Axiom of Completeness to assert that  $c = \sup K$  exists.

There are three cases to consider:

$$f(c) > 0$$
,  $f(c) < 0$ , and  $f(c) = 0$ .

- Case 1. Suppose that f(c) > 0. Then since f is continuous at c, there is a  $\delta > 0$  such that f(x) > 0 for all  $x \in (c \delta, c + \delta) \cap [a, b]$  (see Exercise 4.3.8 (c)). This implies the existence of a  $t \in (c \delta, c) \cap [a, b]$  such that t is an upper bound of K, which contradicts that c is the supremum of K.
- Case 2. Suppose that f(c) < 0. Then since f is continuous at c, there is a  $\delta > 0$  such that f(x) < 0 for all  $x \in (c \delta, c + \delta) \cap [a, b]$  (see Exercise 4.3.8 (c)). This implies the existence of a  $t \in (c, c + \delta) \cap [a, b]$  such that t belongs to K, which contradicts that c is the supremum of K.

So the only possibility is that f(c) = 0; note that c lies strictly between a and b since f(a) < 0 < f(b).

The more general statement of the Intermediate Value Theorem can be obtained from this special case by considering either the function g(x) = f(x) - L if f(a) < f(b) or the function g(x) = L - f(x) if f(a) > f(b).

(b) (Here is the start of the proof from the textbook.) Again, consider the special case where L = 0 and f(a) < 0 < f(b). Let  $I_0 = [a, b]$ , and consider the midpoint

$$z = (a+b)/2.$$

If  $f(z) \ge 0$ , then set  $a_1 = a$  and  $b_1 = z$ . If f(z) < 0, then set  $a_1 = z$  and  $b_1 = b$ . In either case, the interval  $I_1 = [a_1, b_1]$  has the property that f is negative at the left endpoint and nonnegative at the right.

We repeat this procedure inductively, obtaining a sequence  $(I_n = [a_n, b_n])$  of nested intervals such that  $f(a_n) < 0$ ,  $f(b_n) \ge 0$ , and  $|I_n| = 2^{-n}(b-a)$  for all  $n \in \mathbb{N}$ . We can now appeal to the Nested Interval Property to assert that  $\bigcap_{n=1}^{\infty} I_n = \{c\}$  for some  $c \in [a, b]$  (the intersection is non-empty as the intervals are closed and nested, and the intersection is a singleton since  $\lim |I_n| = 0$ ); furthermore, we have  $\lim a_n = \lim b_n = c$ . Since f is continuous at c, it follows that  $\lim f(a_n) = \lim f(b_n) = f(c)$ . The Order Limit Theorem implies that  $f(c) \le 0$ , since  $f(a_n) < 0$  for all  $n \in \mathbb{N}$ , and that  $f(c) \ge 0$ , since  $f(b_n) \ge 0$  for all  $n \in \mathbb{N}$ . Thus f(c) = 0.

Again, c lies strictly between a and b since f(a) < 0 < f(b), and the more general statement of the Intermediate Value Theorem can be obtained from this special case by considering either the function g(x) = f(x) - L if f(a) < f(b) or the function g(x) = L - f(x) if f(a) > f(b).

**Exercise 4.5.6.** Let  $f:[0,1]\to \mathbf{R}$  be continuous with f(0)=f(1).

- (a) Show that there must exist  $x, y \in [0, 1]$  satisfying |x y| = 1/2 and f(x) = f(y).
- (b) Show that for each  $n \in \mathbb{N}$  there exist  $x_n, y_n \in [0, 1]$  with  $|x_n y_n| = 1/n$  and  $f(x_n) = f(y_n)$ .
- (c) If  $h \in (0, 1/2)$  is not of the form 1/n, there does not necessarily exist |x y| = h satisfying f(x) = f(y). Provide an example that illustrates this using h = 2/5.
- Solution. (a) Define  $g: \left[0, \frac{1}{2}\right] \to \mathbf{R}$  by  $g(x) = f(x) f\left(x + \frac{1}{2}\right)$  and note that g is continuous by Theorems 4.3.4 and 4.3.9. If g(0) = 0 then  $f(0) = f\left(\frac{1}{2}\right)$  and we are done. Otherwise, note that

$$g(0) = f(0) - f\left(\frac{1}{2}\right) = f(1) - f\left(\frac{1}{2}\right) = -\left(f\left(\frac{1}{2}\right) - f(1)\right) = -g\left(\frac{1}{2}\right).$$

Thus  $0 \in (\min\{g(0), g\left(\frac{1}{2}\right)\}, \max\{g(0), g\left(\frac{1}{2}\right)\})$  and so the Intermediate Value Theorem implies that there exists a  $c \in (0, \frac{1}{2})$  such that g(c) = 0, i.e.  $f(c) = f\left(c + \frac{1}{2}\right)$ .

(b) For n=1, we can take  $x_1=0$  and  $y_1=1$ . For  $n\geq 2$ , define  $g:\left[0,\frac{n-1}{n}\right]\to \mathbf{R}$  by  $g(x)=f(x)-f\left(x+\frac{1}{n}\right)$  and note that g is continuous by Theorems 4.3.4 and 4.3.9. If g(0)=0 then  $f(0)=f\left(\frac{1}{n}\right)$  and we are done. Otherwise, note that

$$g(0) = f(0) - f\left(\frac{1}{n}\right),$$

$$g\left(\frac{1}{n}\right) = f\left(\frac{1}{n}\right) - f\left(\frac{2}{n}\right),$$

$$g\left(\frac{2}{n}\right) = f\left(\frac{2}{n}\right) - f\left(\frac{3}{n}\right),$$

$$\vdots$$

$$g\left(\frac{n-1}{n}\right) = f\left(\frac{n-1}{n}\right) - f(1).$$

Since f(0) = f(1), this implies that

$$g(0) + g\left(\frac{1}{n}\right) + g\left(\frac{2}{n}\right) + \dots + g\left(\frac{n-1}{n}\right) = 0,$$

and since  $g(0) \neq 0$ , there must exist some  $k \in \{1, \ldots, n-1\}$  such that  $g\left(\frac{k}{n}\right)$  has the opposite sign to g(0). The Intermediate Value Theorem now implies that there exists a  $c \in \left(0, \frac{k}{n}\right)$  such that g(c) = 0, i.e.  $f(c) = f\left(c + \frac{1}{n}\right)$ . Thus we can take  $x_n = c$  and  $y_n = c + \frac{1}{n}$ .

(c) Consider the function  $f:[0,1]\to \mathbf{R}$  given by

$$f(x) = \begin{cases} -10x & \text{if } 0 \le x < \frac{1}{5}, \\ 15\left(x - \frac{1}{5}\right) - 2 & \text{if } \frac{1}{5} \le x < \frac{2}{5}, \\ -10\left(x - \frac{2}{5}\right) + 1 & \text{if } \frac{2}{5} \le x < \frac{3}{5}, \\ 15\left(x - \frac{3}{5}\right) - 1 & \text{if } \frac{3}{5} \le x < \frac{4}{5}, \\ -10\left(x - \frac{4}{5}\right) + 2 & \text{if } \frac{4}{5} \le x \le 1. \end{cases}$$

This function has the property that  $f\left(x+\frac{2}{5}\right)-f(x)=1$  for every  $x\in\left[0,\frac{3}{5}\right]$  (see Figure 1), so that there cannot possibly exist  $x,y\in\left[0,1\right]$  satisfying  $|x-y|=\frac{2}{5}$  and f(x)=f(y).



Figure 1: Exercise 4.5.6 (c) function

**Exercise 4.5.7.** Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one value of  $x \in [0,1]$ .

**Solution.** Define  $g:[0,1] \to \mathbf{R}$  by g(x) = f(x) - x and note that g is continuous by Theorem 4.3.4. Furthermore, fixed points of f correspond precisely to zeros of g. If g(0) = 0 or g(1) = 0,

then we are done. Suppose therefore that  $g(0) \neq 0$  and  $g(1) \neq 0$ . Since  $0 \leq f(x) \leq 1$  for all  $x \in [0,1]$ , it must then be the case that  $0 < f(0) \leq 1$  and  $0 \leq f(1) < 1$ , which implies that g(0) is positive and g(1) is negative. The Intermediate Value Theorem can now be applied to obtain some  $x \in (0,1)$  such that g(x) = 0.

**Exercise 4.5.8 (Inverse functions).** If a function  $f: A \to \mathbf{R}$  is one-to-one, then we can define the inverse function  $f^{-1}$  on the range of f in the natural way:  $f^{-1}(y) = x$  where y = f(x).

Show that if f is continuous on an interval [a, b] and one-to-one, then  $f^{-1}$  is also continuous.

Solution. Here are a couple of useful lemmas.

**Lemma 2.** Suppose  $f: A \to \mathbf{R}$  is continuous and injective, where  $A \subseteq \mathbf{R}$  is some domain. Then f is strictly monotone, i.e. f is either strictly increasing or strictly decreasing.

*Proof.* We will prove the contrapositive result: if f is continuous and neither strictly increasing nor strictly decreasing, then f is not injective.

Since f is not strictly increasing, there exist x < y in A such that  $f(y) \le f(x)$ , and since f is not strictly decreasing, there exist s < t in A such that  $f(s) \le f(t)$ . There are a number of cases to check. We will check one case only; the others are handled similarly.

Suppose that x < s < t and f(s) < f(x) < f(t). Since f is continuous, the Intermediate Value Theorem implies the existence of some  $c \in (s,t)$ , so that  $c \neq x$ , such that f(c) = f(x). Thus f is not injective.

**Lemma 3.** Suppose  $g: A \to I$  is a strictly monotone surjection, where  $A \subseteq \mathbf{R}$  is some domain and I is an interval. Then g is continuous.

*Proof.* The cases where I is empty or a singleton (which are precisely the cases where A is empty or a singleton, respectively) are easily handled, so we may assume that I is a proper interval. We may also assume that g is strictly increasing (if g is strictly decreasing, consider the function -g instead).

Fix  $b \in A$  and  $\epsilon > 0$ . We consider four cases.

Case 1. Suppose  $g(b) - \epsilon$  and  $g(b) + \epsilon$  both belong to I. Since g is a surjection, there exist  $a, c \in A$  such that  $g(a) = g(b) - \epsilon$  and  $g(c) = g(b) + \epsilon$ , and since g is strictly increasing it must be the case that a < b < c. Set  $\delta = \min\{b - a, c - b\}$ . Then

$$x \in (b - \delta, b + \delta) \cap A \implies g(x) \in (g(b) - \epsilon, g(b) + \epsilon)$$

also follows since q is strictly increasing.

Case 2. Suppose  $g(b) - \epsilon \in I$  and  $g(b) + \epsilon \notin I$ . Since g is a surjection, there is an  $a \in A$  such that  $g(a) = g(b) - \epsilon$ , and since I is an interval it must be the case that I is bounded above by  $g(b) + \epsilon$ , so that sup I exists and is less than or equal to  $g(b) + \epsilon$ .

If  $g(b) = \sup I$ , then let  $\delta = b - a$  and note that  $\delta$  is positive since  $g(a) = g(b) - \epsilon < g(b)$  implies a < b by the monotonicity of g. Since g(b) is the supremum of the image of g and g is strictly increasing, we then have

$$x \in (b-\delta, b+\delta) \cap A \implies g(x) \in (g(b)-\epsilon, g(b)] \subseteq (g(b)-\epsilon, g(b)+\epsilon).$$

If  $g(b) < \sup I$ , then since I is an interval we have  $s := \frac{g(b) + \sup I}{2} \in I$ . The surjectivity of g then implies that there exists a  $c \in A$  such that g(c) = s. Since g is strictly increasing and  $g(b) - \epsilon < g(b) < s$ , we must have a < b < c. Set  $\delta = \min\{b - a, c - b\}$ . Then

$$x \in (b - \delta, b + \delta) \cap A \implies g(x) \in (g(b) - \epsilon, g(b) + \epsilon)$$

also follows since g is strictly increasing.

Case 3. The case where  $g(b) - \epsilon \notin I$  and  $g(b) + \epsilon \in I$  is handled similarly to Case 2, this time by considering the infimum of I.

Case 4. The case where neither one of  $g(b) - \epsilon$  and  $g(b) + \epsilon$  belongs to I is handled similarly to Cases 2 and 3, by considering both the infimum and supremum of I. Note that since I is a proper interval, we must have  $\inf I < \sup I$ , so that g(b) could never be equal to both  $\inf I$  and  $\sup I$ .

In any case, we obtain a  $\delta > 0$  such that

$$x \in (b - \delta, b + \delta) \cap A \implies g(x) \in (g(b) - \epsilon, g(b) + \epsilon),$$

so that g is continuous at each  $b \in A$ .

Returning to the exercise, we have a continuous and bijective function  $f:[a,b] \to f([a,b])$  defined on the compact and connected set [a,b] (we may as well assume a < b); the image of f must be compact and connected (Theorems 4.4.1 and 4.5.2). The only possibility is f([a,b]) = [c,d] for some c < d (Theorems 3.3.8 and 3.4.7). It must be the case that c is strictly less than d since f is injective.

Now let  $g:[c,d] \to [a,b]$  be the inverse of f. By Lemma 2, f must be strictly monotone; it is straightforward to verify that the inverse of a strictly monotone function is also strictly monotone. Since the image of g is the interval [a,b], we may apply Lemma 3 to conclude that g is continuous.

[UA] Abbott, S. (2015) Understanding Analysis. 2<sup>nd</sup> edition.