Méthodes à noyaux et SVMs (Séparateurs à Vastes Marges)

Antoine Cornuéjols

Équipe TAO (INRIA/CNRS) - Université de Paris-Sud, Orsay & ENSIIE (Evry)

antoine@lri.fr

http://www.lri.fr/~antoine

Plan

- 1- Induction
- 2- Méthodes à noyaux
 - 2.1- Exemple de la régression
 - 2.2- Fonctions noyau
- 3- Exemple d'algorithme à noyau : les SVMs
- 4- Mise en œuvre
- 5- Bilan

Apprentissage inductif supervisé

Induction

À partir de l'échantillon d'apprentissage $S = \{(x_i, u_i)\}_{1,m}$

Méthodes à noyaux

on cherche à identifier une loi de dépendance sous-jacente

Fonctions novax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

 Construction de noyaux

• Par exemple une fonction h aussi proche possible de f

(fonction cible) tq: $u_i = f(x_i)$

Ou bien de la distribution de probabilités $P(x_i, u_i)$

Bilan

afin de prédire l'avenir

Apprentissage inductif supervisé

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

 S_m

Échantillon d'apprentissage

$P(\boldsymbol{x}, u)$ $u_i = f(\boldsymbol{x}_i)$

$$\{(\boldsymbol{x}_i, u_i)\}_{1 \le i \le m}$$

$$u = h(\boldsymbol{x})$$

- o Identification:
 - Prédiction

- h « proche de » f
- h « bonne règle de décision »

L'induction supervisée

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- Illustration

Mise en œuvre

- Validation
- Construction de noyaux

- f: fonction continue
 - Régression
 - **Estimation de densité**
- f: fonction discrète
 - Classification
- o f: fonction binaire (booléenne)
 - **►** Apprentissage de concept

Cadre

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- · Construction de noyaux

Bilan

Hypothèses fondamentales

- Données i.i.d.
- Distribution $P_{\chi_{\chi}U}$ identique en apprentissage et après

Mesure de performance : le risque réel

Induction

Méthodes à noyaux

- · Régression
- · Fonctions novax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- · Validation
- · Construction de noyaux

Bilan

Fonction de perte

Objectif: trouver une hypothèse $h \in \mathcal{H}$ minimisant *le risque réel* (espérance de risque, erreur en généralisation)

$$R(h) = \int_{X \times Y} l\left(h(x), u\right) dP(x, y)$$
Loi de probabilité
jointe sur $X \times Y$

$$Etiquette frédite (ou désirée)$$

Le principe inductif ERM

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- · Validation
- Construction de noyaux

$$R(h) = \int_{X \times Y} l(h(x), u) dP(x, y)$$

- On ne connaît pas la loi de probabilité $P_{\chi_{\chi Y}}$.
- Le *principe ERM* (*minimisation du risque empirique*) prescrit de chercher l'hypothèse $h \in \mathcal{H}$ minimisant le risque empirique

$$R_{\text{Emp}}(h) = \frac{1}{m} \sum_{i=1}^{m} l(h(\boldsymbol{x}_i), u_i)$$

ERM régularisé

Induction

Pour éviter le surapprentissage (« overfitting »)

Méthodes à noyaux

Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

Validation

 Construction de noyaux

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \left[R_{\text{Emp}}(h) + \lambda \Gamma(h) \right]$$

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \left[R_{\operatorname{Emp}}(h) + \lambda \left[\Gamma(\mathcal{H}) \right] \right]$$

Interpolation : par plus proches voisins

Hypothèse de continuité dans X

Interpolation : par fonction de décision

Induction

Méthodes à noyaux

- · Régression
- Fonctions noyax

Les SVMs

- · Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Espace des exemples : X

Espace des hypothèses : ${\cal H}$

Le compromis biais-variance

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Conditions pour l'induction

Induction

Méthodes à noyaux

- Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Conditions de généralisation

- □ Si espace d'hypothèses : Choix de H
 - \circ Contrôler la capacité de ${\mathcal H}$
- ullet Si directement dans X (plus proches voisins)
 - Choix de la distance
 - Choix des poids sur les voisins
- Efficacité en gain d'information (e.g. taille d'échantillon)
- Efficacité computationnelle

Exemple : régression linéaire

Induction

Méthodes à noyaux

- Régression
- · Fonctions novax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

$$R_{\text{Emp}}(h) = R_{\text{Emp}}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} l(h(\boldsymbol{x}_i), u_i) = \frac{1}{m} \sum_{i=1}^{m} (y_i - h(\boldsymbol{x}_i))^2 = \frac{1}{m} \sum_{i=1}^{m} \xi_i^2$$

Approximation par moindres carrés

Induction

Méthodes à noyaux

· Régression

· Fonctions novax

Les SVMs

Principe

· Problème associé

· Illustration

 $R_{\text{Emp}}(\boldsymbol{w}) = ||\xi||_2^2 = (y - \boldsymbol{X}\boldsymbol{w})^{\top}(y - \boldsymbol{X}\boldsymbol{w})$

$$\frac{\partial R_{\text{Emp}}(\boldsymbol{w})}{\partial \boldsymbol{w}} = -2\boldsymbol{X}^{\top} y + 2\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w}$$

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} = \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} y$$

Mise en œuvre

Validation

· Construc

novaux

 $\mathbf{w} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} y = (\mathbf{X}^{\top} \mathbf{X}) (\mathbf{X}^{\top} \mathbf{X})^{-2} \mathbf{X}^{\top} y = \sum \alpha_i \mathbf{x}_i$

Bilan

 $h(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle = \sum \alpha_i \langle \boldsymbol{x}_i, \boldsymbol{x} \rangle$

Représentation duale

Ridge regression

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- · Validation
- Construction de noyaux

Bilan

ullet Si $oldsymbol{X}^ op oldsymbol{X}$ n'est pas inversible

- Pas assez de données
- Bruit
- Problème mal-posé

Régularisation

$$\hat{\boldsymbol{w}} = \operatorname{ArgMin}_{\boldsymbol{w} \in \mathcal{W}} \left[\frac{1}{m} \sum_{i=1}^{m} (y_i - \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle)^2 + \lambda ||\boldsymbol{w}||^2 \right]$$

 $\lambda \ge 0$ (Coefficient de régularisation)

Solution pour la « ridge regression »

Induction

Méthodes à noyaux

Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

$$\hat{\boldsymbol{w}} = \operatorname{ArgMin}_{\boldsymbol{w} \in \mathcal{W}} \left[\frac{1}{m} \sum_{i=1}^{m} (y_i - \langle \boldsymbol{w}, \boldsymbol{x}_i \rangle)^2 + \lambda ||\boldsymbol{w}||^2 \right]$$

$$\frac{\partial R_{\text{Emp}}(\boldsymbol{w})}{\partial \boldsymbol{w}} = \frac{1}{m} [-2\boldsymbol{X}^{\top} \boldsymbol{y} + 2\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w}] + 2\lambda \boldsymbol{w} \\ \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{w} + \lambda \boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_d) \boldsymbol{w} = \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\lambda \leftarrow m \cdot \lambda$$

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_d)^{-1} \boldsymbol{X}^{\top} y$$
 (Primale)

Système de d équations linéaires à d inconnues : $O(d^3)$

Construction de

noyaux

$$\boldsymbol{w} = \lambda^{-1} \boldsymbol{X}^{\top} (y - \boldsymbol{X} \boldsymbol{w}) = \boldsymbol{X}^{\top} \boldsymbol{\alpha}$$

$$\boldsymbol{\alpha} = \lambda^{-1}(y - \boldsymbol{X}\boldsymbol{w}) = \lambda^{-1}(y - \boldsymbol{X}\boldsymbol{X}^{\top}\boldsymbol{\alpha}) = (\boldsymbol{X}\boldsymbol{X}^{\top} + \lambda \boldsymbol{I}_m)^{-1}y$$

$$h(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle = \left\langle \sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i}, \boldsymbol{x} \right\rangle = \sum_{i=1}^{m} \alpha_{i} \langle \boldsymbol{x}_{i}, \boldsymbol{x} \rangle = \boldsymbol{y}^{\top} (\boldsymbol{G} + \lambda \boldsymbol{I}_{m})^{-1} \langle \boldsymbol{x}_{i}, \boldsymbol{x} \rangle$$

Formule duale

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Provient directement des données

- L'information sur les exemples est entièrement contenue dans les produits scalaires (matrice de Gram G et les $\langle x_i, x \rangle$)
- L'équation en α requiert O(m) opérations
- Le calcul de h(x) requiert $O(m \ l)$ opérations

Régression non linéaire

Induction

Méthodes à noyaux

· Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

Validation

 Construction de noyaux

Bilan

o Idée : re-décrire les données dans un espace dans lequel la relation cherchée puisse avoir la forme d'une droite

$$\phi: \mathbf{x} \in \mathbb{R}^d \mapsto \phi(\mathbf{x}) \in F \subseteq \mathbb{R}^N$$

Régression non linéaire

Induction

Méthodes à noyaux

Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

Validation

 Construction de noyaux

Bilan

o Idée : re-décrire les données dans un espace dans lequel la relation cherchée puisse avoir la forme d'une droite

$$\phi: \mathbf{x} \in \mathbb{R}^d \mapsto \phi(\mathbf{x}) \in F \subseteq \mathbb{R}^N$$

• Expression primale :

$$\boldsymbol{w} = (\phi(\boldsymbol{X})^{\top} \phi(\boldsymbol{X}) + \lambda \boldsymbol{I}_N)^{-1} \phi(\boldsymbol{X})^{\top} y$$
 $O(N^3)$

$$y = h(x) = \langle w, \phi(x) \rangle$$
 $O(N)$

• Expression duale:

$$O(m^3 + m^2N)$$

$$h(\boldsymbol{x}) = \sum_{i=1}^{m} \alpha_i \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}) \rangle = \boldsymbol{y}^{\top} (\boldsymbol{G} + \lambda \boldsymbol{I}_m)^{-1} \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}) \rangle$$
 $O(mN)$

$$G_{ij} = \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j) \rangle$$

Les fonctions noyau (kernel functions)

Induction

Méthodes à noyaux

· Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

 Construction de noyaux

Bilan

• Fonction k telle que :

 $k: \mathcal{X} \times \mathcal{X} \to \Re$

 $\forall \boldsymbol{x}, \boldsymbol{z} \in \mathcal{X} : k(\boldsymbol{x}, \boldsymbol{z}) = \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{z}) \rangle$

où: $\phi: \boldsymbol{x} \mapsto \phi(\boldsymbol{x}) \in F$

Espace de redescription muni d'un produit interne

Les fonctions noyau : exemple

Soit : $\mathcal{X} \subseteq \Re^2$

Induction

Méthodes à noyaux

Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

Validation

 Construction de noyaux $\phi: \ \mathbf{x} = (x_1, x_2) \mapsto \phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2} x_1 x_2) \in F = \Re^3$

 $h(\mathbf{x}) = w_{11} x_1^2 + w_{22} x_2^2 + w_{12} \sqrt{2} x_1 x_2$

 $\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \langle (x_1^2, x_2^2, \sqrt{2} x_1 x_2), (z_1^2, z_2^2, \sqrt{2} z_1 z_2)$ $= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$ $= (x_1 z_1 + x_2 z_2)^2 = \langle \mathbf{x}, \mathbf{z} \rangle^2$

 $k(\boldsymbol{x}, \boldsymbol{z}) = \langle \boldsymbol{x}, \boldsymbol{z} \rangle^2$

Bilan

• Rq (non unicité de l'espace F défini par Φ) :

 $\phi: \ \boldsymbol{x} = (x_1, x_2) \mapsto \phi(\boldsymbol{x}) = (x_1^2, x_2^2, x_1 x_2, x_2 x_1) \in F = \Re^4$

Les fonctions noyau

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Efficacité computationnelle :

$$O(m^3 + m^2 d)$$

$$h(\boldsymbol{x}) = \sum_{i=1}^{m} \alpha_i \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}) \rangle = \boldsymbol{y}^{\top} (\boldsymbol{G} + \lambda \boldsymbol{I}_m)^{-1} \boldsymbol{k}(\boldsymbol{x}_i, \boldsymbol{x})$$

$$G_{ij} = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

O(m d)

Les méthodes à noyau

Modularité

Induction

Méthodes à noyaux

- · Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Découplage entre

- Les algorithmes (linéaires)
- La description des données

Leçons (provisoires)

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

L'emploi de fonctions noyau permet :

- D'utiliser les algorithmes de recherche de régularités linéaires pour la *recherche de régularités non linéaires*
- D'employer ces algorithmes même sur des *données non* vectorielles (du moment que l'on sait trouver une fonction noyau adéquate)
- De redécrire implicitement les données dans des *espaces de grande dimension* sans en avoir le coût computationnel

Les méthodes à noyaux

Tout passe par les produits internes dans F!!!

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Philosophie de représentation des données radicalement différente

Conséquences d'une représentation par noyau

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Des informations sont perdues

- ightharpoonup Orientation (invariance de la matrice K par rotation)
- Alignement des données avec les axes (idem)

Les fonctions noyau : définition

Induction

Méthodes à noyaux

Régression

Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

 Construction de noyaux

Bilan

Fonction noyau positive définie

 \square Symétrique : k(x, z) = k(z, x)

Positive définie :

$$\forall n > 0, \forall \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}, \forall c_1, \dots, c_n \in \Re: \sum_{i=1}^n \sum_{j=1}^n c_i c_j k(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$

o Théorème de Mercer

□ Toute fonction positive définie peut être exprimée comme un produit interne dans un espace de description

Fonctions noyau et similarité

Induction

Méthodes à noyaux

Régression

Fonctions noyax

Les SVMs

· Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

 Construction de noyaux

Bilan

 \bullet k(x, z) grand \Leftrightarrow x similaire à z

• Évident pour le noyau gaussien : $k(x, z) = \exp(-\frac{d(x, z)^2}{2\sigma^2})$

Plus généralement :

$$k(x, z) = \frac{||\phi(x)||^2 + ||\phi(z)||^2 - d(\phi(x), \phi(z))^2}{2}$$

Si tous les points sont de même « longueur » dans F, $(||\phi(x)||^2 = k(x,x) = \text{Const.}, \forall x \in \mathcal{X})$, alors le noyau est une fonction décroissante de d.

Inversement: $d(x, z) = \sqrt{k(x, x) - 2k(x, z) + k(z, z)}$

Fonctions noyau pour des vecteurs

Induction

Méthodes à noyaux

· Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

Validation

 Construction de noyaux

Bilan

Noyaux polynomiaux

$$k_{\mathtt{poly1}}({oldsymbol{x}},{oldsymbol{z}}) = ({oldsymbol{x}}^{ op}{oldsymbol{z}})^d$$

$$k_{\mathtt{poly2}}(\boldsymbol{x}, \boldsymbol{z}) = (\boldsymbol{x}^{\top} \boldsymbol{z} + c)^d$$

Tous les produits d'exactement d variables

Tous les produits d'au plus d variables

Noyaux gaussiens

$$k_G(\boldsymbol{x}, \boldsymbol{z}) = \exp\left(-\frac{d(\boldsymbol{x}, \boldsymbol{z})^2}{2\sigma^2}\right)$$

Sorte de décomposition en série de Fourrier

Noyaux sigmoïdes

$$k(\boldsymbol{x}, \boldsymbol{z}) = \tanh(\kappa \, \boldsymbol{x}^{\top} \boldsymbol{z} + \theta)$$

Pas définie positive.

Mais fonction de décision

proche des réseaux connexionnistes

Les SVMs (Séparateurs à Vastes Marges)

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- · Validation
- Construction de noyaux

Bilan

• Tâche de discrimination (entre deux classes)

Cas de la séparation linéaire

- On cherche h sous forme d'une fonction linéaire : h(x) = w. x + b
- La *surface de séparation* est donc l'hyperplan :

$$w.x + b = 0$$

- Elle est valide si

ou encore

$$\forall i \ u_i h(\mathbf{x}_i) \geq 0$$

 $\min |w.x + b| = 1$

- L'hyperplan est dit sous <u>forme canonique</u> lorsque

$$\forall i \ u_i(w.x_i+b) \geq 1$$

Hyperplan de plus vaste marge

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Optimisation de la marge

Induction

Méthodes à noyaux

· Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Optimisation de la marge

La distance d'un point à l'hyperplan est :

$$d(x) = \frac{\left\| w.x + w_0 \right\|}{\left\| w \right\|}$$

Induction

Méthodes à noyaux

Régression

Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

 Construction de noyaux

Bilan

L'hyperplan optimal est celui pour lequel la distance aux points les plus proches (*marge*) est maximale. Cette distance vaut $\frac{2}{\|w\|}$

Maximiser la marge revient donc à minimiser ||w|| sous contraintes:

$$\begin{cases} \min \frac{1}{2} \| w \|^2 \\ \forall i \quad u_i(w. x_i + w_0) \geq 1 \end{cases}$$

EXPRESSION PRIMALE

Remarques sur la justification de ce critère inductif

Induction

Méthodes à noyaux

Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

· Validation

 Construction de noyaux

Bilan

Intuitivement satisfaisant

 Si il y a du bruit dans les données, le séparateur à marge maximale sera plus robuste

o Risque empirique régularisé

Satisfaire les données : $u_i[(w.x_i) + w_0] \ge 1$, i = 1,...,n

Régulariser: $\min (|\eta(w)| = \frac{1}{2} ||w||^2)$

Transformation du problème d'optimisation

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Méthode des multiplicateurs de Lagrange

$$\begin{cases} L(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} ||\boldsymbol{w}||^2 - \sum_{i=1}^m \alpha_i [(\boldsymbol{x}_i \cdot \boldsymbol{w} + w_0) u_i - 1] \\ \alpha_i \ge 0 \ (\forall i) \end{cases}$$

EXPRESSION DUALE

$$\begin{cases} \max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j u_i u_j \, k(\boldsymbol{x}_i, \boldsymbol{x}_j) \\ \sum_{i,j=1}^{m} \alpha_i u_i = 0 \\ \alpha_i \ge 0 \ (\forall i) \end{cases}$$

Méthodes à noyaux

· Fonctions novax

· Régression

Justification impliquant la fonction noyau

Norme du vecteur de poids

$$||\mathbf{w}||^{2} = \langle \mathbf{w}, \mathbf{w} \rangle = \langle \sum_{i=1}^{m} \alpha_{i} \phi(\mathbf{x}_{i}), \sum_{i=1}^{m} \alpha_{j} \phi(\mathbf{x}_{j}) \rangle$$

$$= \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle = \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

Les SVMs

Induction

· Principe

· Problème associé

· Illustration

Mise en œuvre

- Validation
- · Construction de noyaux

Bilan

Espace d'hypothèses de norme bornée

$$||\boldsymbol{w}||^2 = \boldsymbol{\alpha}^{\top} \boldsymbol{K} \boldsymbol{\alpha} \leq B^2$$

Fonction de perte (hinge loss) $(1 - y h(x))_{+}$

$$(1 - y h(\boldsymbol{x}))_+$$

l(v, h(x))

v.h(x)

• Alors: $\hat{R}_m(\mathcal{F}_B) \leq \frac{2B}{m} \sqrt{\mathsf{tr}(\boldsymbol{K})}$

Complexité de Rademacher de \mathcal{F}_B

Avec
$$prob \ge 1-\delta$$

$$R_{\texttt{R\'eel}}(h) \leq R_{\texttt{E}mp}(h) + \hat{R}_m(\mathcal{F}_B) + \sqrt{\frac{\ln(2/\delta)}{2m}}$$

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Les données s'expriment à travers la matrice noyau

• La matrice noyau contrôle la régularisation du risque

Solution du problème d'optimisation dual

Induction

• Dans la forme duale :

Méthodes à noyaux

· Régression

· Fonctions noyax

Les SVMs

Principe

· Problème associé

· Illustration

Mise en œuvre

Validation

 Construction de noyaux

Bilan

$$h(\boldsymbol{x}) = \operatorname{sign} \left(\sum_{i=1}^{m_S} \alpha_i \, u_i \, \frac{k(\boldsymbol{x_i}, \boldsymbol{x})}{k(\boldsymbol{x_i}, \boldsymbol{x})} + w_0 \right)$$

 m_S : nb de points de support

Schéma de fonctionnement des SVMs

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- · Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Sortie: $sign(\sum \alpha_i u_i K(x_i,x) + w_0)$

Comparaison : $K(x_i, x)$

Échantillon $x_1, x_2, x_3, ...$

Vecteur d'entrée x

Cas du problème non séparable : marges douces

o On introduit des variables "ressort" qui pénalisent l'erreur commise :

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

$$\begin{cases} \min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{l} \xi_i \\ \forall i \quad u_i(w.x_i + w_0) \geq 1 - \xi_i \end{cases}$$

Le problème dual a la même forme à l'exception d'une constante C

$$\begin{cases} \max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j u_i u_j \, k(\boldsymbol{x}_i, \boldsymbol{x}_j) \\ \sum_{i,j=1}^{m} \alpha_i u_i = 0 \\ 0 \le \alpha_i \le C \quad (\forall i) \end{cases}$$

Induction

Méthodes à noyaux

- Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- Illustration

Mise en œuvre

- · Validation
- Construction de noyaux

Bilan

Soient 5 points sur la droite :

$$\{(x_1=1, u_1=1), (x_2=2, u_2=2), (x_3=4, u_3=-1), (x_4=5, u_4=-1), (x_5=6, u_5=1)\}$$

Utilisation d'un noyau polynomial de degré 2

- $k(x_i, x_j) = (x_i x_j + 1)^2$
- C = 100

Recherche de α_i par :

$$\begin{cases} \max_{\alpha} \sum_{i=1}^{5} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{5} \alpha_{i} \alpha_{j} u_{i} u_{j} \left(\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j} + 1 \right)^{2} \\ \sum_{i,j=1}^{5} \alpha_{i} u_{i} = 0 \\ 0 \leq \alpha_{i} \leq 100 \quad (\forall i) \end{cases}$$

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Utilisation d'un programme de résolution de problème quadratique

- $\alpha_1=0, \alpha_2=2.5, \alpha_3=0, \alpha_4=7.333, \alpha_5=4.833$
- Les points de supports sont : $\{x_2=2, x_4=5, x_5=6\}$

La *fonction de décision* est :

$$h(x) = (2.5)(1)(2x+1)^2 + 7.333(1)(5x+1)^2 + 4.833(1)(6x+1)^2 + b$$
$$= 0.6667 x^2 - 5.333 x + b$$

Avec *b* obtenue par h(2)=1 ou par h(5)=-1 ou par h(6)=1, puisque x_2 , x_4 et x_5 sont sur la droite $u_i(w^T\Phi(x)+b)=1$ ce qui donne b=9

o D'où:

$$h(x) = 0.6667 x^2 - 5.333 x + 9$$

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

La mise en pratique

Il faut choisir :

Induction

Méthodes à noyaux

- Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

□ Le type de fonction noyau *k*

- Sa forme
- Ses paramètres
- La valeur de la constante C

La sélection de ces paramètres requiert l'utilisation de **méthodes empiriques pour faire le meilleur choix (validation croisée)**

Exemple

Dans cercle: points de support

Fct noyau polynomiale de degré 3

• : exemple +

Induction

• : exemple -

· Régression

Fonctions noyax

Les SVMs

Principe

· Problème associé

Illustration

Mise en œuvre

Validation

 Construction de noyaux

Bilan

Démo:

http://svm.research.bell-labs.com/

http://svm.dcs.rhbnc.ac.uk/pagesnew/G
Pat.shtml

Les données d'apprentissage

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Effet des paramètres de contrôle

Induction

Méthodes à noyaux

- · Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

- Apprentissage de deux classes
 - exemples tirés uniformément sur l'échiquier
- SVM à fonctions noyau gaussienne

$$K(\mathbf{x}, \mathbf{x}') = e^{-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}}$$

- o Ici deux valeurs de σ
 - En haut : petite valeur
 - En bas : grande valeur
- Les gros points sont des exemples critiques
 - Plus en haut qu'en bas
- Dans les deux cas : $R_{emp} = 0$

Paramètres de contrôle : les fonctions noyau

- http://sym.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
- 47 exemples (22 +, 25 -)
- Exemples critiques: 4 + et 3-
- o Ici fonction polynomiale de degré 5 et C = 10000

Paramètres de contrôle : les fonctions noyau

47 exemples (22 +, 25 -)

Ici fonction polynomiale de degré 2, 5, 8 et C = 10000

• Exemples critiques: 4 + et 3 -

Ici fonction Gaussienne de $\sigma = 2, 5, 10$ et C = 10000

Ajout de quelques points ...

- http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
- $_{\circ}$ 47 + 8 exemples (30 +, 25 -)
- Exemples critiques: 5 + et 8 -
- o Ici fonction polynomiale de degré 5 et C = 10000

Estimation de la performance

• Empiriquement: par validation croisée

Induction

Méthodes à noyaux

- · Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Heuristiquement (mais théoriquement fondé)

- Nombre de points de supports
 - o Moins il y en a, mieux c'est
- Caractéristiques de la matrice noyau
 - Si pas de structure dans K, aucune régularité ne peut-être trouvée
 - o E.g.
 - Si les termes hors diagonale sont très petits : sur-adaptation
 - Si matrice uniforme : sous-apprentissage : tous les points sont attribués à la même classe

Construction de fonctions noyau

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

 Construction à partir de fonctions noyau de base (Propriétés de clôture)

$$K(x,z) = K_1(x,z) + K_2(x,z)$$

$$K(x,z) = a K_1(x,z)$$

$$K(x,z) = K_1(x,z) \cdot K_2(x,z)$$

O ...

Construction de fonctions noyau dédiées

- \Box Splines B_m
- Expansion de Fourrier
- Ondelettes

Construction de noyaux

Induction

Méthodes à noyaux

Régression

Fonctions noyax

Les SVMs

Principe

· Problème associé

Illustration

Mise en œuvre

Validation

 Construction de noyaux

Bilan

Noyau invariant par translation

$$k(\boldsymbol{x},\boldsymbol{z}) = k(\boldsymbol{x} - \boldsymbol{z})$$

Noyau défini sur des ensembles

$$k(A_1,A_2)=2^{|A_1\cap A_2|}\quad \Longleftrightarrow\quad \phi(A)_U=\left\{\begin{array}{ll} 1 & \sin U\subseteq A,\\ 0 & \sin n. \end{array}\right.$$

Stratégies de construction

- o Noyau vu comme un moyen de coder de l'information a priori
 - Invariance: synonymie, longueur de document, ...
 - Traitements linguistiques: normalisation des mots, semantique, stopwords, weighting scheme, ...
- Noyaux de convolution :

le texte est une structure de données récursivement définie.

Pb : construire un noyau global à partir de noyaux locaux ?

Noyaux à partir de modèles génératifs :

la "topologie" du problème est traduite en une fonction noyau

Noyaux pour arbres : exemple

A Parse Tree

Kco- root	i	j	k
a	1	0	0
b	0	0	0
c	1	0	0
d	0	0	0
e	0	0	0
f	0	0	0
g	0	0	0
h	0	0	0

Applications

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

- Catégorisation de textes
- Reconnaissance de caractères manuscrits
- Détection de visages
- Diagnostic de cancer du sein
- Classification de protéines
- Prévision de consommation électrique
- Recherche de vidéos par du texte

Trained SVM classifiers for pedestrian and face object detection (Papageorgiou, Oren, Osuna and Poggio, 1998)

Implémentation des SVMs

Induction

Méthodes à noyaux

- Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

- Minimisation de fonctions différentiables convexes à plusieurs variables
 - Pas d'optima locaux
 - Mais:
 - o Problèmes de stockage de la matrice noyau (si milliers d'exemples)
 - o Long dans ce cas
 - D'où mise au point de méthodes spécifiques
 - Gradient sophistiqué
 - Méthodes itératives, optimisation par morceaux
 - Plusieurs packages publics disponibles
 - SVMTorch
 - o SVM^{Light}
 - o SMO
 - O ...

Bilan : état des recherches

Deux tâches évidentes

Induction

Méthodes à noyaux

- Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

- Conception de noyaux
 - Commence à être bien étudié
 - Encore des recherches pour certains types de données
- Noyautiser les algorithmes classiques (« kernelization »)
 - o SVM
 - Kernel Régression
 - Kernel PCA
 - o Clustering (K-means, ...)
 - o Estimation de densité, détection de nouveauté
 - o Tri (ranking)
 - o ...
- Recherche sur la sélection automatique des modèles (choix des paramètres)

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Les méthodes à noyau sont :

- Une bonne idée
- Destinées à durer

- Offrent une boîte à outils
 - □ Très versatile
 - Avec de bons fondements théoriques
 - E.g. garanties de performance

Bilan

Nouvelle philosophie de représentation

Induction

Méthodes à noyaux

- · Régression
- · Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

- Toute l'information sur les données passe par le filtre de la matrice noyau
 - De l'information est perdue
 - Permet des manipulations particulières
 - E.g. ajout d'une constante sur la diagonale → marge souple ou terme de régularisation
 - Incorporation de connaissances a priori
 - Matrice noyau : interface entre les modules de traitement
- La qualité de l'apprentissage peut être estimée à partir des caractéristiques de la matrice noyau

Sources documentaires

Induction

Méthodes à noyaux

- · Régression
- Fonctions noyax

Les SVMs

- Principe
- · Problème associé
- · Illustration

Mise en œuvre

- Validation
- Construction de noyaux

Bilan

Ouvrages / articles

- Cornuéjols & Miclet (02) : *Apprentisage artificiel. Concepts et algorithmes*. Eyrolles, 2002.
- Herbrich (02): Learning kernel classifiers. MIT Press, 2002.
- Schölkopf, Burges & Smola (eds) (98): Advances in Kernel Methods: Support Vector Learning. MIT Press, 1998.
- Schölkopf & Smola (02): Learning with kernels. MIT Press, 2002.
- Shawe-Taylor & Cristianini(04): *Kernel methods for pattern analysis*. Cambridge University Press, 2004.
- Smola, Bartlett, Schölkopf & Schuurmans (00): *Advances in large margin classifiers*. MIT Press, 2000.
- Vapnik (95): *The nature of statistical learning*. Springer-Verlag, 1995.

Sites web

- http://www.kernel-machines.org/ (point d'entrée)
- http://www.support-vector.net (point d'entrée)