7章 ネットワークの基礎

7.1 インターネットプロトコルの基礎

- コンピュータなどの端末がネットワーク通信を行う場合、共通のルールが必要
- 現在の通信プロトコルの標準は「TCP/IP」である。

7.1.1 TCP/IPの通信フロー

- 4つの層に分けて管理をする
 - アプリケーション層
 - トランスポート層 (ヘッダ -> ポート番号)
 - インターネット層(ヘッダ -> IPアドレス)
 - ネットワークインターフェイス層(ヘッダ -> MACアドレス)
- データを送信するときは「ヘッダ(=パケット)+データ」を送信する
- それぞれの層で利用されるプロトコルは異なる

レイヤー	通信プロトコル	
アプリケーション層	FTP SSH Telnet SMTP DNS HTTP POP3 IMAP4 NTP HTTPS	
トランスポート層	TCP UDP	
インターネット層	IP ICMP ARP	
ネットワークインターフェイス層(通信規格*TCP/IP とは別)	Ethernet IEEE802 PPP	

- アプリケーション層
 - 各種ネットワークアプリケーションの制御を行う層
 - Webデータの閲覧、メールの送信など
- トランスポート層
 - データの転送制御を行う層
 - o TCP: コネクションを確立し、エラー発生時は再送するなどのサポートをする信頼性の高い通信
 - UDP:コネクションは確立せず、エラー発生時も再送はしない
 - アプリケーション層でどの通信プロトコルを扱ったのかを指定するため、ポート番号を記録
 - ポート番号:1~1023=ウェルノウンポート(特権ポート)

ホート番号	アノリケーション
20	FTP(データ利用)
21	FTP (制御)

ポート番号 アプリケーション	
22	SSH
23	Telnet
25	SMTP
53	DNS
80	НТТР
110	POP3
123	NTP
139	NBT Session
143	IMAP
161	SNMP
162	SNMP Trap
389	LDAP
443	HTTPS
465	SMTPS
514	syslog
636	LDAPS
993	IMAPS
995	POP3S

- ネットワーク層
 - 。 宛先や伝送経路の制御
 - IPアドレスという宛先情報を利用
 - o pingなどはこの層のプロトコルのICMPを利用する
- ネットワークインターフェイス層
 - 。 様々な種類の回線への接続を管理
 - 。 同一ネットワークにおける宛先端末の管理
 - 。 宛先情報としてMACアドレスを扱う

7.1.2 IPv4アドレスとネットワーク構成

- 宛先情報としてIPアドレスを使用(IPv4 / IPv6)
- IPv4アドレスは32ビットで構成されており、8ビットずつ10進数に置き換えて、IPアドレスとサブネットマスクで次のように構成。
 - 。 IPアドレス: 192.168.56.11
 - サブネットマスク: 255.255.255.0 (= /24)

Linuc101 2 07.md 2023/6/23

サブネットマスクが「1」になっている範囲をネットワークアドレス部

- それ以降は、ホストアドレス部
- 各ネットワークで先約のあるアドレス
 - o 各ネットワークの先頭: **ネットワークアドレス**
 - ネットワーク自体を表す
 - 末尾のアドレス:**ブロードキャストアドレス
 - 同じネットワーク内の全端末に送信が可能なアドレス

192.168.56.0/24

ネットワークアドレス ホストアドレス

192.168.56.0

 $192.168.56.1 \sim 254$

ブロードキャストアドレス

192.168.56.255

- 同じネットワーク範囲のホストはARPでMACアドレスを検出し、直接通信する
 - o MACアドレスはNICに対して物理的に割り当てられているアドレス
 - ブロードキャストでネットワーク内の全端末へ
- 異なるネットワーク範囲に接続する場合はルーターを使用する
 - ルーターのアドレスについては、デフォルトゲートウェイアドレスを割り当てる
- ・各端末には、IPアドレスとサブネットマスクが必要
- ・各ネットワークには、ネットワークアドレスとブロードキャストアドレスが存在する
- ・異なるネットワークに接続するときは、デフォルトゲートウェイが必要

7.1.3 IPアドレスクラスとサブネット分割

クラス 第一オクテット(2進数での先頭部分) デフォルトマスク

А	0 ~ 127 (0 ~)	255.0.0.0 (/8)
В	128 ~ 191 (10 ~)	255.255.0.0 (/16)
С	192 ~223 (110 ~)	255.255.255.0 (/24)

デフォルトのマスク値が決まっているため、増やすのはかまわないが減らすのはできない

172.16.10.5/8 ····「×」 クラスBなので、/8にはできない 172.16.10.5/16 ····「○」 クラスBのデフォルトのマスク値

172.16.10.5/14 ···「○」 増やすのはOK

- 本来ホストアドレス部だった部分をネットワークアドレス部として利用する方法をサブネット分割と いう
- ネットワーク分割実行時のネットワーク数とホスト数

マスク値 分割後のネットワーク数 各ネットワークの最大ホスト数

/25 2 126(128-2)

マスク値 分割後のネットワーク数 各ネットワークの最大ホスト数

/26	4	62(64-2)
/27	8	30(32-2)
/28	16	14(16-2)
/29	32	6(8-2)
/30	64	2(4-2)

- IPv4 には
 - プライベートアドレス
 - グローバルアドレス (=> ICANNによって管理される一意のアドレス)

IPアドレスクラスごとのプライベートアドレス範囲

クラス	プライベートアドレス範囲	デフォルトマスク
Α	10.0.0.0 ~ 10.255.255.255	/8
В	172.16.0.0 ~ 172.31.255.255	/16
С	192.168.0.0 ~ 192.168.255.255	/24

特殊な用途で使用されるアドレス範囲

ァ	Ľ۱	ノス範囲	用谚
Y	ΝI	ノ人斬囲	用设

127.0.0.0/8	ループバックアドレス(ホスト自身を表すアドレス、一般的には127.0.0.1を利用)
169.154.0.0/16	APIPA(DHCPサーバーからアドレスを取得できなかった場合に自動構成されるIPアドレス)

7.1.4 IPv6アドレス

• IPv6アドレスは、128ビットで構成され、これを8ビットずつ16進数に置き換える

2001:0dgt:dead:beef:0000:0000:1234/64

- 先頭に0がある場合は、表記を省略できる
- 0しか書かれていない数値列(0000)(ゼロフィールド)は省略できる
- ネットワークアドレス部(=プレフィックス)とホストアドレス部(=インターフェイス識別子)で構成
- IPv6には**アドレスのスコープ**という概念がある
- IPv6ではループバックアドレスは「::1」

スコープの種類 用途 ス		用途
グローバル	2000::/3	インターネットで一意に利用。IPv4でのグローバルアドレスに相当

スコープの種類	アドレ ス	用途
ユニークローカ ル	fc00::/7	組織内のネットワークで一意に利用。IPv4でのプライベートアドレスに相 当
リンクローカル	fe80::/10	同一ネットワークで一意に利用。IPv4でのリンクローカルアドレスに相当 (APIPA)

インターフェイス

• enp0s3: 仮想マシン同士の接続で利用するインターフェイス

• enp0s8: インターネットなど外部ネットワークへの接続で利用するインターフェイス

7.2 基本的なネットワーク構成

7.2.1 ホスト名の設定

cat /etc/hostname

ホスト名の確認・設定 hostname [ホスト名]

7.2.2 TCP/IPの基本的な設定

nmcli

- NetworkManagerサービスを利用することで異なる環境でも同様にネットワークの設定ができる
- nmcli

再起動後も設定が残る nmcli オブジェクト [サブコマンド] [引数]

オブジェクト

connection 接続情報の管理。インターフェイスの設定など。

general NetworkManagerサービスの管理

device デバイスの管理

サブコマンド

show 設定を参照 modify 設定を変更 up 接続の有効化

show

nmcli connection show

NAME UUID TYPE DEVICE enp0s3 de428841-c5bc-4767-bcef-1a62963dd676 ethernet enp0s3

有線接続 1 d8592de7-e07a-3393-b9ed-cfff1aed6161 ethernet enp0s8nmcli connection

nmcli connection show enp0s3

modify

nmcli connection modify enp0s3 connection.autoconnect "yes"
nmcli connection modify enp0s8 ipv4.address "10.0.0.1/24"

ip

• IPアドレスの確認

インターフェイスやルーティング設定を確認・設定 ip [オプション] サブコマンド

サブコマンド

addr IPアドレスに関する情報を表示・設定。サブコマンドで処理を実行

show 「インターフェイス名」 #設定情報を表示

add IPアドレス/マスク dev インターフェイス名 #IPアドレスを設定 del IPアドレス/マスク dev インターフェイス名 #IPアドレスを削除

route ルーティングテーブルに関する情報を表示・設定。(アドレス部にdefauletでデフォゲの設定)

add IPアドレスまたはネットワークアドレス/マスク via 転送先 #ルート情報を追加 del IPアドレスまたはネットワークアドレス/マスク via 転送先 #ルート情報を削除

ip a ip addr

• nmcliコマンドで設定した内容を読み込ませる

systemctl restart network

- ipコマンドでIPアドレスを設定する
 - o networkサービスが起動している間、有効

```
# loインターフェイスにIPアドレスを追加
ip addr add 127.0.0.2/8 dev lo
ip addr show lo
```

ifconfig

ifconfig [オプション] [インターフェイス名] [IPアドレス [netmask サブネットマスク]] [up/down]

- -a 無効になっているインターフェイスも表示する
- インターフェイスの有効化、無効化は以下でもできる
 - o ifup インターフェイス名
 - ifdowm インターフェイス名

	iprouteパッケージ	net-toolsパッケージ
インターフェイス/IPアドレスの参照・設定	ifconfig、ifup、ifdown	ip
ルーティングテーブルの参照・設定	ip route	route
	SS	netstat

7.2.3 ルート情報の設定

ルーティングテーブル

- ルータに記録される経路情報で、ルーティング処理を行う際に参照する。作成方法には、スタティックルーティングとダイナミックルーティングの2種類がある。
- あるネットワークの端末Aから別のネットワークの端末Bへデータを転送するとき、中継するルータは端末Bが所属するネットワークへ届けるための経路、つまりルートをルーティングテーブルから参照して転送する。
- スタティックルーティングとは、あらかじめネットワーク管理者が接続するネットワークのアドレス を設定する方法だ。一方のダイナミックルーティングとは、ルータ同士が経路情報をルーティングプロトコルによって交換し、自動でルーティングテーブルに設定する方法である。

ip route

default via 10.0.2.2 dev enp0s3 proto dhcp metric 100 10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100 192.168.21.0/24 dev enp0s8 proto kernel scope link src 192.168.21.3 metric 101

route (表示) route add -net ターゲット netmask マスク gw ゲートウェイ /

default gw ゲートウェイ (追加)

route del -net ターゲット / default (削除)

-n ルート情報を名前解決せずに表示

7.3 基本的なネットワークの問題解決

ping

ping [オプション] 宛先

-c 回数 : 指定した回数、ぱけっとを 送信

- pingによる疎通確認
 - o ICMPパケットを送信して確認する
 - o ICMPはインターネット層のプロトコルだが、IPヘッダとともにICMPメッセージが付与される

• 主なICMPメッセージタイプ

メッセージタ イプ

意味

0: エコー応答 pingパケットを受信したホストが返す応答メッセージ

3:宛先到達不

能

途中経路などで設定ミスなどにより、目的のホストにメッセージを送るのが不可

8: エコー要求 pingを実行したときに贈られるエコー応答を要求するメッセージ

11:時間経過 経由したルーターが多すぎるなど、目的のホストにメッセージを送ることができない場合に帰ってくる

traceroute

宛先に到達するまでの経路を出力できる

traceroute [オプション] 宛先

-I : ICMPIコー要求による経路を確認(既定ではUDP)

tracepath

宛先に到達するまでの経路をMTUとともに出力 tracepath [オプション] 宛先

Ipv6に対して

- ping6
- traceroute6
- taracepath6

7.3.2 TCP/IP通信の状態を確認

SS

TCP/IP通信の状態を表示

ss [オプション]

-a : 待機ポートも含むすべての状態の通信を表示(-1を指定しなければ、確立した通信のみを表示)

-1 : 待機(LISTEN)ポートを表示

-n : 名前解決せずに表示

-t : TCP通信を表示 -u : UDP通信を表示

-p : 対応するプロセスのPIDを表示

すべてのTCP/IP通信を表示

ss -atu

netstat

TCP/IP通信の状態を表示 netstat [オプション]

オプションはssと同じ

7.3.3 指定したポートへの接続

nc

- # 指定したポートへの接続、もしくは指定したポートを待ち受け
 - -1: 指定したポートを待ち受ける

7.4 クライアント側のDNS設定

7.4.1 名前解決の設定

- 端末上に存在するetc/hostsファイルの情報を参照し、名前解決
- /etc/resolve.confファイルに指定されたNSサーバーに問い合わせて名前解決

この処理順は、/etc/nsswitch.confファイルに定義されている

grep ^host /etc/nsswitch.conf
hosts: files dns myhostname

/etc/nsswitch.confの書式 システムデータベース: サービス [サービス]

/etc/hostsファイルの書式 IPアドレス ホスト名 [ホスト名]

DNSのはなし

- DNSサーバによる名前解決
 - FQDN(完全修飾ドメイン=ドメイン名のついたホスト名)とIPアドレスwp解決
 - FQDNからIPアドレスを問い合わせる名前解決を正引き
 - o IPアドレスからFQDNを問い合わせることを逆引き
- DNSサーバへの問い合わせの流れ
 - 。 ISPや社内のDNSサーバに問い合わせ
 - 。 example.comの権威NSサーバ(ゾーンを管理しているサーバ)に問い合わせ
 - 権威サーバが保持するゾーン情報からホスト名を検索
 - ローカルDNSサーバに対し応答
 - クライアントに応答
- 主なDNSレコード

レコードの種類 内容

SOA	ゾーンの権威情報
NS	DNSサーバー
MX	メールサーバー
А	ホスト名に対応するIPv4アドレス。ホスト名を指定した名前解決(正引き)の際に利用
PTR	IPアドレスに対応するホスト名。IPアドレスを指定した名前解決(逆引き)の際に利用
CNAME	

• 参照するDNSサーバは、/etc/resolve.confに記述する

/etc/resolve.confファイルの書式 設定項目 値

設定項目意味

search | domain ドメイン名として補完

nameserver DNSサーバーアドレス(複数行設定可能)

7.4.2 名前解決の検証

host

名前解決を検証し、簡易的な情報を出力 host [オプション] 名前 [DNSサーバー]

-t レコード : 問い合わせるレコードの種類を指定

• dig

名前解決を検証し、詳細な情報を出力 dig [オプション] [@サーバー] 名前 [レコード]

-x 逆引きの問い合わせ(PTRレコードの問い合わせ)を実行

nslookup

名前解決を検証し、簡易的な情報を出力 nslookup [オプション] 名前 [DNSサーバー]

-type=レコード: 問い合わせるレコードの種類を指定

最強Web問題集から

ipコマンドを使って、以下の条件でルーティングテーブルに新しい経路を追加したい。正しいコマンドはどれか

宛先ネットワークアドレス:192.168.3.0

サブネットマスク: 255.255.255.0

ゲートウェイ: 192.168.1.1

ip route add 192.168.3.0/24 via 192.168.1.1

• RHEL7やCentOS7以降はnet-toolsがインストールされず、新しいiproute2が採用されている

	net-tools	iproute2	iproute2(省略形)
アドレスの表示	ifconfig	ip addr	ір а
リンク状態の表示	ifconfig	ip link	ip I
ルーティングテーブルの表示	route	ip route	ip r
ソケットの表示	netstat	SS	SS
ソケットの表示(プログラム名付き)	netstat -tulpn	ss -tulpn	ss -tulpn
インターフェイスの統計情報表示	netstat -i	ip -statistics link	ip -s l
ARP テーブルの表示	arp	ip n	ip neighbor
ARP テーブルのモニタ	-	ip monitor	ip mo

• ルーティングテーブルに新しい経路を追加する