Рубежный контроль №1

Технологии разведочного анализа и обработки данных.

Вариант №2

Выполнил: Борисочкин М. И., РТ5-61Б

Текстовое описание набора данных

В качестве набора данных в данном варианте используется игрушечный датасет "Ирисы Фишера" (load_iris) из библиотеки scikit-learn.

В данном датасете присутствуют следующие столбцы:

- sepal length длина чашелистика в см;
- sepal width ширина чашелистика в см;
- petal length длина лепестка в см;
- petal width ширина лепестка в см;
- target целевой признак. Представляет собой виды ирисов: Iris setosa (0), Iris versicolor (1), Iris virginica (2).

Импорт библиотек

```
In [1]: from sklearn.datasets import load_iris
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    %matplotlib inline
    sns.set(style='ticks')
```

Загрузка данных

```
In [2]: # Загрузка датасета
iris = load_iris(as_frame=True)
data : pd.DataFrame = iris.frame
```

Основные характеристики датасета

```
In [3]: # Первые 5 строк датасета
         data.head()
           sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
Out[3]:
         0
                        5.1
                                        3.5
                                                        1.4
                                                                       0.2
                                                                                0
                        4.9
                                        3.0
                                                        1.4
                                                                        0.2
         2
                        4.7
                                        3.2
                                                                       0.2
                                                        1.3
                                                                        0.2
                        4.6
                                        3.1
                                                        1.5
                                                                       0.2
         4
                        5.0
                                       3.6
                                                        1.4
                                                                                0
         # Последние 5 строк датасета
In [4]:
         data.tail()
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
Out[4]:
         145
                          6.7
                                          3.0
                                                          5.2
                                                                          2.3
                                                                                  2
         146
                                          2.5
                                                          5.0
                                                                          1.9
                          6.3
                                                                                  2
         147
                          6.5
                                          3.0
                                                          5.2
                                                                          2.0
                                                                                  2
         148
                          6.2
                                          3.4
                                                          5.4
                                                                          2.3
                                                                                  2
         149
                          5.9
                                          3.0
                                                          5.1
                                                                          1.8
                                                                                  2
         # Размер датасета
In [5]:
         data.shape
         (150, 5)
Out[5]:
         # Типы данных в столбцах
In [6]:
         data.dtypes
         sepal length (cm) float64
Out[6]:
         sepal width (cm)
                                float64
         petal length (cm)
                               float64
         petal width (cm)
                               float64
         target
                                  int32
         dtype: object
In [7]:
         # Пустые значения
         data.isnull().sum()
         sepal length (cm)
                                 0
Out[7]:
         sepal width (cm)
         petal length (cm)
                                 0
         petal width (cm)
         target
                                 0
         dtype: int64
```

In [8]: # Статистические характеристки датасета
data.describe()

Out[8]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333	1.000000
	std	0.828066	0.435866	1.765298	0.762238	0.819232
	min	4.300000	2.000000	1.000000	0.100000	0.000000
	25%	5.100000	2.800000	1.600000	0.300000	0.000000
	50%	5.800000	3.000000	4.350000	1.300000	1.000000
	75%	6.400000	3.300000	5.100000	1.800000	2.000000
	max	7.900000	4.400000	6.900000	2.500000	2.000000

In [9]: # Метки целевого признака и их количество data['target'].value_counts()

Out[9]: 0 50 1 50 2 50

Name: target, dtype: int64

Корреляционный анализ

Из парных диаграмм выше видно, что сильно коррелируют следующие пары параметров:

- petal length (cm) и petal width (cm);
- petal length (cm) и target;
- petal width (cm) и target.

Теперь для потверждения корреляции данных параметров и нахождения новых (коррелирующих параметров) построим тепловую карту корреляционной матрицы:

In [11]: # Тепловая карта корреляционной матрицы
 plt.figure(figsize=(10,8))
 sns.heatmap(data=data.corr(), annot=True, vmin=-1, vmax=1, fmt='.3f', cmap='PRGn')
 plt.show()

Из данной корреляционной матрицы мы можем сделать следующие выводы:

- Признаки sepal length (cm), petal length (cm) и petal width (cm) сильно коррелируют с целевым признаком target;
- Нецелевые признаки, указанные выше, также довольно сильно коррелируют между собой, поэтому есть смысл оставить только один из них: petal width (cm), так как у него самый высокий коэффициент корреляции с целевым признаком (0,96);
- Признак sepal width (cm) мало коррелирует с остальными нецелевыми признаками, при этом имея некоторый уровень корреляции с целевым параметром target, поэтому оставляем его.

Итого, для обучения модели будем использовать только два признака: petal width (cm) и sepal width (cm).

Для выполнения дополнительного задания построим jointplot оставшихся признаков.

```
In [12]: # Jointplot (доп. задание)
sns.jointplot(x='sepal width (cm)', y='petal width (cm)', data=data,
color='#5D3FD3', height=8, ratio=2, marginal_ticks=True)
plt.show()
```

