

PWM e Atuadores

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br
Junho de 2023

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
1	7-fev.	04	Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados / Conceitos, Características e Aplicações
2	14-fev.	04	Visita Tecnica Evoluma Sistemas
3	28-fev.	04	Histórico de Sistemas Embarcados / Conceitos de Projeto de Sistemas Embarcados
4	9-mar.	04	Conceitos de Projeto de Sistemas Embarcados / Projeto de Sistemas Embarcados
5	14-mar.	04	Microcontroladores e Microprocessadores / Introdução ao Arduino
6	21-mar.	04	Introdução à Linguagens de Programação
7	23-mar.	04	Entradas Digitais Arduino / Estruturas Condicionais
8	28-mar.	04	Display / Comunicação I2C / Estruturas Condicionais
9	04-abr.	04	Estruturas Condicionais / Estruturas de Repetição / Entradas Analógicas / Sensores e Display
10	03-jun.	04	Jogos Sedentários

Cronograma

Encontro	Data	Nº Aulas	Conteúdo
11	13-jun.	04	Revisão de Conceitos
12	15-jun.	04	Entradas Digitais / Conversor A/D
13	16-jun.	04	Avaliação 01
14	20-jun.	04	Timers e Interrupções
15	21-jun.	04	Sensores: Ultrassônico, Umidade e Temperatura
16	22-jun.	04	Sensores: Luminosidade, Bluetooth
17	23-jun.	04	PWM / Atuadores: Servomotor, Ponte H / Motor DC
18	27-jun.	04	Relés / Buzzer
19	28-jun.	04	Avaliação 02
20	4-jul.	04	Conselho de Classe / Atividades de Encerramento da UC
		80	

Pauta

- PWM;
- Atuadores;
- Servomotor;
- Ponte H;

Pulse Width Modulation - PWM

Pulse Width Modulation - PWM

PWM

- A modulação por largura de pulso (PWM) é uma técnica que gera pulsos com base nas do sinal do modulador;
- Seu objetivo é controlar o fornecimento de energia, especialmente para dispositivos elétricos inerciais.
- O comportamento liga-desliga muda a potência média do sinal.
- O sinal de saída alterna entre ligado e desligado dentro de um período especificado.

PWM

- Se o sinal alternar entre ligado e desligado mais rápido do que a carga, a carga não será afetada pela alternância.
- A razão cíclica (duty cycle), define a tensão média aplicada:

PWM

Duty Cycle

- O Ciclo de Trabalho indica uma medida do tempo em que o sinal modulado está em seu estado "alto" em um determinado período;
- Geralmente é registrado como a porcentagem do período do sinal em que o sinal é considerado ativado.

Period (T)

PWM no Arduino

PWM no Arduino

PWM no Arduíno

PWM no Arduíno

- □ Para utilizar a porta PWM, você inicialmente deve defini-la como output;
- □ A partir disso, você deve utilizar o comando analogWrite() para acionar o PWM desejado, neste você deve informar os seguintes parâmetros:
 - A porta que será utilizada;
 - Qual o duty cycle desejado;

analogwrite(3, 150);

Prática PWM

- Você deve criar um circuito com um led ligado a uma porta PWM e um potenciômetro ligado uma porta analógica;
- Você deve controlar a intensidade do led conforme a leitura do potenciômetro;

Atuadores

Atuadores

Atuadores

- Atuadores são dispositivos destinados ao controle de processos;
- Estes dispositivos permitem que o sistema embarcado atue no ambiente, alterando características e controlando propriedades;
- □ De maneira geral estes dispositivos recebem um sinal de entrada e transformam em uma saída correspondente;
- Exemplos: Motores, chaves, relés, aquecedores, entre outros;

Servomotor

Servomotor

Servomotor

- Um Servo Motor é um motor que nos possibilita o controle de sua posição;
- O servo mais comum utilizado é o Micro Servo TowerPro 9g SG90;
- ☐ É um servo de qualidade e muito aplicado para as suas necessidades seja em aeromodelismo ou em projetos mecatrônicos;
- Para controle do servo, se faz necessário o uso da biblioteca <servo.h>.

Servomotor - Especificações

- Tensão de Operação: 3,0 7,2v
- Velocidade: 0,12 seg/60Graus (4,8v) sem carga
- Torque: 1,2 kg.cm (4,8v) e 1,6 kg.cm (6,0v)
- Temperatura de Operação.: -30C ~ +60C
- Dimensões.: 32x30x12 mm
- Tipo de Engrenagem: Nylon
- Tamanho cabo: 245 mm
- Peso: 9g

Servomotor - Conexão

Servomotor - Especificações

```
#include <Servo.h>
#define SERVO 8 // Porta Digital 6 PWM
Servo s; // Variável Servo
int pos; // Posição Servo
void setup ()
 s.attach(SERVO);
 Serial.begin(9600);
 s.write(0); // Inicia motor posição zero
```

```
void loop()
 for(pos = 0; pos < 180; pos++)
  s.write(pos);
 delay(30);
delay(2000);
 for(pos = 180; pos >= 0; pos--)
  s.write(pos);
  delay(30);
```


Prática com Servomotor

- Crie um circuito com um display LCD, um Servo Motor e um potenciômetro;
- Conforme a variação do potenciômetro, você deve movimentar o servomotor;
- Você também deve exibir no LCD a leitura do potenciômetro e o valor do ângulo correspondente do servomotor;

□ A ponte H é um circuito composto por 4 chaves, um motor e uma fonte de energia;

- Com o acionamento da chave S1 e da chave S4, o sentido da corrente será da esquerda para a direita;
- □ Por outro lado, se acionarmos as chaves S2 e S3, o sentido da corrente passa a ser da direita para a esquerda, invertendo o sentido da rotação do motor;

- O que o circuito L293D faz é utilizar transistores e diodos para fazer esse chaveamento;
- □ A vantagem é o tamanho reduzido e a possibilidade de controlar até 4 motores;

- Antes de montar e ligar o shield, baixe a biblioteca do Arduino Motor Shield neste link (https://goo.gl/PrUjTi).
- Descompacte a pasta e coloque dentro da pasta LIBRARIES do programa (IDE) do seu Arduino.
- Não esqueça de sair e carregar a IDE novamente para que a biblioteca seja reconhecida pelo programa.
- Com o uso da biblioteca, a programação é simplificada.

- O programa a seguir rotaciona o motor no sentido horário, para por 5 segundos,
 e depois inverte o sentido de rotação;
- motor.setSpeed(velocidade) = define a velocidade de rotação do motor, podendo ser um valor entre 0 (motor parado) e 255 (rotação máxima);
- motor.run(sentido) = aciona o motor no sentido definido: FORWARD (frente/horário), BACKWARD (sentido contrário/anti- horário), ou para o motor (RELEASE).


```
#include <AFMotor.h> //Inclui biblioteca AF Motor
                                                          motor1.run(RELEASE);
AF DCMotor motor1(1); //Selecao do Motor 1
                                                          motor2.run(RELEASE);
AF_DCMotor motor2(2); //Selecao do Motor 2
                                                          delay(2000);
int velocidadeMotores = 100:
                                                          motor1.run(FORWARD);
                                                          motor2.run(BACKWARD);
void setup(){
 motor1.setSpeed(velocidadeMotores);
                                                          delay(2000);
 motor2.setSpeed(velocidadeMotores);
                                                          motor1.run(RELEASE);
                                                          motor2.run(RELEASE);
void loop(){
                                                          delay(2000);
 motor1.run(FORWARD);
 motor2.run(FORWARD);
                                                          motor1.run(BACKWARD);
                                                          motor2.run(FORWARD);
 delay(2000);
                                                          delay(2000);
 motor1.run(RELEASE);
 motor2.run(RELEASE);
                                                          motor1.run(RELEASE);
 delay(2000);
                                                          motor2.run(RELEASE);
                                                          delay(2000);
 motor1.run(BACKWARD);
 motor2.run(BACKWARD);
 delay(2000);
```


Prática com Motores

- Crie um programa que controle o robô realizando os seguintes movimentos:
 - Caminha para a frente 3 segundos;
 - Faz 2 voltas para a direita;
 - Gira 90° à esquerda;
 - Caminha para trás por 1 segundo;
 - Faz uma volta à esquerda.

Obrigado!

Fernando Silvano Gonçalves

fernando.goncalves@ifsc.edu.br

se.cst.tub@ifsc.edu.br