Mutation-Based Accuracy Improvements in Neural Networks using Spectrum-Based Fault Localization

Lennart Mühlhahn

Institute for Software Systems

April 10, 2024

Contents

Introduction

Motivations

Work

Introduction

- Neural Networks increasingly deployed in applications, often in safety critical domains:
 - Autonomous Vehicles
 - Medical Diagnostics
- ► How can we ensure reliable Networks?

Neural Networks

- Neural networks, machine learning algorithms inspired by the brain.
- They consist of interconnected neurons organized in layers.
- Each neuron receives input, processes it, and generates an output signal.
- Neural networks can learn complex patterns in data and make predictions based on them.

Training a Neural Network

$$y = f\left(\sum_{i=1}^{n} w_i \cdot x_i + b\right)$$

- ► Forward Propagation: Input data is passed through the network to generate predictions.
- ▶ **Backpropagation**: Error is calculated and propagated backward, to adjust the weights and biases.
- This process is repeated iteratively until the network's predictions are sufficiently accurate.

Spectrum-Based Fault Localization

- Technique for identifying faults by analysing program execution
- Ochiai meassure:

$$\frac{N_{cf}}{\sqrt{\left(N_{cf}+N_{nf}\right)\cdot\left(N_{cf}+N_{cs}\right)}}$$

- N statement, c covered, n not covered, s success, f failure
- Covered meaning executed
- Challenge: False Positives

DeepFault

- ► First Spectrum-Based Fault Localization for Neural Networks, using
- ► Aim: Identifying not rightly calibrated neurons
 - ▶ By constructing a hit spectrum matrix
 - Ranking neurons by suspiciousness value
- ► Train those with synthesized inputs

Our Aim.

- Identifying suspicious neurons and mutating them to improve the network
- Mutating by changing weight or bias values or assigning completely new ones
- Improving trained models, for the accuracy and loss
- Retrain neurons of trained models

Our Contribution

- ► Introduced savings for the hit spectrum and ranked neurons, to reduce redundant computations
- A function to take a model and modify it, according to the ranking
- Random Choosing of Neurons
- Modification functions, that modify a weight or bias
 - Assign a value, random or a set value
 - Scale by a value, random or a set value
 - Delete a neuron
- Updated libraries to current versions

Our Contribution

- Break conditions, that are enacted when model is worsening in regards of the:
 - Loss
 - Accuracy
 - Loss or Accuracy
 - Loss and Accuracy
- ► An offset for the loss and accuracy break condition, to prevent premature termination
- A regression function for the offset to lead to faster breakage.

Flow Chart

Figure: Flow Chart of Algorithm

Evaluation

- ▶ 4 Architectures, 2 Convolutional and 2 Deep Neural Networks
- Dataset: Fashion-MNIST
- ► Trained: With full, half and quarter dataset
- Aggregated over 160000 Datapoints
- ► CL: Convoulutional Layer, stride (1,1), kernel size (3,3), pooling layer (2.2)

Model Name	Mod. Param.	Architecture
DNN1	16	< 16 >
DNN2	64	< 4x16 >
CNN1	12	< CL, 4 >
CNN2	20	< CL, CL, 4 >

Parameters

- ➤ **Similarity coefficient:** tarantula, dstar with value 3, ochiai and random
- Mutation functions: modify_weight_one_random_gauss, modify_weight_all_random_gauss, modify_bias, modify_bias_random_gauss, modify_all_weights, modify_all_weights_by_scalar, modify_all_weights_by_scalar_random_gauss, modify_weight_all_random_by_scalar_gauss
- Break conditions: loss, accuracy, loss and accuracy, loss or accuracy
- **Loss offset:** 0.005, 0
- ► Accuracy offset: 0.01, 0
- Loss and accuracy regression: True for all runs
- ► Values: -1, -0.5, 0, 0.5, 1
- ► Sigma for random: 0.5, 1

Figure: Accuracy of the models, with training

Figure: Loss of the models, with training

Figure: Accuracy of the models, without training

Figure: Loss of the models, without training

Figure: Trained and Not Trained data points.

In the further evaluation epochs where reduced to:

► Trained: 20 epochs

Not trained: 10 epochs

Some more Results

- ▶ Works best for models with less epochs, for 1 pre-trained epochs then 6 pre-trained epochs.
- Better results for the full and half dataset, quarter a worsening outlook.
- Tarantula is the most promising measure
 - For the trained runs, the three other aren't much different
 - For the untrained runs, we see ochiai, d-star then random.
- Performs better for CNN models
 - Could be due to the larger number of values.

Some more Results

- ➤ The Offset seems to be essential for the performance, and yields far better results
- ▶ Breaking on Accuracy more important, even for the loss
 - solely on accuracy or heavily on accuracy
- Weight functions better performing, than bias functions
 - ▶ No difference between random and a set value
 - Caution, only Gauss variables were examined
- The value used in the mutation has no significant impact

Future Work

- ► Testing the approach on a larger model
- ► Testing on different datasets
- ▶ Elicit a ratio of modifiable neurons
 - Using the process on multiple different models and datasets.
 - ► How many neurons of a model can we mutate before damaging it?
- Using a dynamic spectrum matrix.
 - To account for changes in the model during execution of the model.

Future Work

- Genetic programming derived suspiciousness measures
- Aggregate layer suspiciousness and modify the whole layer or add another layer
 - before or after the most suspicious layer
- Use localised neurons and try to fix it by identifying problem exploiting phenomena like:
 - dying ReLu.
 - vanishing and exploding gradients