Universidad Autónoma Gabriel René Moreno

Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones

Programa Analítico de la Asignatura

1. Datos Generales

o Asignatura: Ecuaciones Diferenciales

Sigla y Código: MAT207
 Periodo: Tercer Semestre
 Requisitos: Cálculo II (MAT102)

• **Horas:** 5 (3HT+2HP)

o Créditos: 4

o Última Revisión: Jornadas Académicas 2007

2. Justificación

Las ecuaciones diferenciales ordinarias constituyen una de las más poderosas herramientas teóricas de la Matemática Aplicada. Su aprendizaje y su utilización en los programas de Ingeniería es fundamental, pues gracias a ellas es posible modelar en forma dinámica una enorme variedad de procesos en áreas tales como la Física, la Química, la Geometría y otras de la Ingeniería en particular y de la Ciencia en general., haciendo posible la ampliación del razonamiento lógico, visión y comprensión del mundo que nos rodea y su aplicación en el aprendizaje de otras materias específicas de la carrera.

3. Objetivos

- Resolver los principales tipos de ecuaciones diferenciales ordinarias y sistemas de ecuaciones diferenciales, utilizando los conceptos fundamentales del análisis matemático.
- Aplicar las ecuaciones diferenciales ordinarias en la resolución de problemas de Ingeniería, Física,
 Geometría y otras áreas de la Ciencia.

4. Contenido General

- Teoría general de las Ecuaciones Diferenciales.
- Ecuaciones Diferenciales Ordinarias de primer orden. Sus aplicaciones.
- o Ecuaciones Diferenciales Ordinarias de primer orden donde la derivada esta implícita.
- \circ Ecuaciones Diferenciales Ordinarias lineales de orden n.
- Aplicaciones de las Ecuaciones Diferenciales lineales.
- o Sistemas de ecuaciones diferenciales lineales.
- \circ Transformada de Laplace (\mathscr{L}).

 \circ Resolución de Ecuaciones Diferenciales de Orden n por Transformada de Laplace.

5. Unidades del Programa

Unidad I: Conceptos Generales de Ecuaciones Diferenciales

Tiempo: 6 Horas

o Objetivo:

 Interpretar las soluciones geométricas y analíticas de ecuaciones diferenciales de primer orden.

• Contenido:

- 1.1 Ecuación Diferencial: Conceptos y Generalidades.
- **1.2** Grado, Orden y Linealidad.
- **1.3** Soluciones Generales, Particulares y Singulares.

Unidad II: Ecuaciones Diferenciales Ordinarias

Tiempo: 42 Horas

o Objetivo:

- Resolver Ecuaciones Diferenciales Ordinarias de primer orden y primer grado.
- Resolver Ecuaciones Diferenciales Ordinarias de primer orden donde la derivada está en forma implícita.
- Encontrar la Ecuación Diferencial de familias de curvas.
- Resolver problemas utilizando Ecuaciones Diferenciales Ordinarias de primer orden.

Contenido:

Ecuaciones Diferenciales Ordinarias de Primer Orden y Primer Grado

- **2.1** Ecuaciones con variables separadas.
- **2.2** Ecuaciones con variables separables y reducibles a variables separables.
- **2.3** Ecuaciones homogéneas y reducibles a homogéneas.
- **2.4** Ecuaciones lineales de primer orden homogéneas y no homogéneas.
- **2.5** Ecuación diferencial de *Bernoulli*.
- **2.6** Ecuaciones diferenciales exactas.
- **2.7** Ecuaciones diferenciales no exactas:
 - **2.7.1** Factor integrante y combinación integrable.

Ecuaciones Diferenciales Ordinarias donde la y^\prime esta de forma implícita

- **2.8** Ecuaciones Diferenciales de grado n en y'.
- **2.9** Ecuaciones Diferenciales de la Forma: F(y, y') = 0 y F(x, y') = 0
- **2.10** Ecuaciones de *Claireaut* y *Lagrange*.
- 2.11 Determinación de las soluciones singulares de una Ecuación Diferencial.

Aplicaciones de las Ecuaciones Diferenciales Ordinarias de Primer Orden en Diversos Problemas

• 2.12 Obtención de la Ecuación Diferencial Ordinaria de una familia de curvas.

- **2.13** Crecimiento y decrecimiento.
- **2.14** Ley de Newton del enfriamiento.
- **2.15** Movimiento acelerado de cuerpos.
- 2.16 Trayectorias ortogonales (en coordenadas cartesianas y polares).
- **2.17** Aplicaciones a la geometría.
- 2.18 Disoluciones
- 2.19 Circuitos eléctricos simples.

Unidad III: Ecuaciones Diferenciales de Orden Superior

Tiempo: 24 Horas

o Objetivo:

- Resolver Ecuaciones Diferenciales Ordinarias lineales de orden superior con coeficientes constantes.
- Resolver Ecuaciones Diferenciales Ordinarias lineales de orden superior con coeficientes variables.
- Aplicar las Ecuaciones Diferenciales Ordinarias lineales de orden superior, en la resolución de problemas de Física e Ingeniería.

Contenido:

Ecuaciones Diferenciales Ordinarias Lineales de Orden n y coeficientes constantes

- **3.1** Ecuaciones lineales homogéneas de coeficientes constantes.
 - **3.1.1** Raíces reales simples y múltiples de la ecuación característica.
 - **3.1.2** Raíces complejas simples y múltiples de la ecuación característica.
- **3.2** Ecuaciones lineales no homogéneas de coeficientes constantes.
 - **3.2.1** Método de los coeficientes indeterminados.
 - 3.2.2 Métodos abreviados.
 - 3.2.3 Método de la variación de parámetros.

Ecuaciones Diferenciales Ordinarias Lineales de Orden n y coeficientes Variables

- **3.3** Ecuaciones Diferenciales Ordinarias de *Euler-Legendre*
 - **3.3.1** Métodos de Solución.
- **3.4** Ecuaciones diferenciales homogéneas de coeficientes variables.
- **3.5** Ecuaciones diferenciales no homogéneas de coeficientes variables.
 - **3.5.1** Método de la variación de parámetros.

Aplicaciones de las Ecuaciones Diferenciales Ordinarias Lineales de Orden Superior

- **3.6** Flexión de Vigas
- 3.7 Circuitos Electrónicos
- 3.8 Resortes

Unidad IV: Sistemas de Ecuaciones Diferenciales

Tiempo: 6 Horas

Objetivos:

• Resolver sistemas de ecuaciones diferenciales aplicando diferentes métodos.

Contenido:

Concepto de Sistemas de Ecuaciones Diferenciales Ordinarias Lineales de Primer Orden

- **4.1** Resolución por sustitución.
- 4.2 Método de Euler.
- 4.3 Método de operadores.

Unidad V: Otros Métodos de Resolución

Tiempo: 18 Horas

o Objetivo:

• Resolver Ecuaciones Diferenciales Ordinarias utilizando la transformada de Laplace.

Contenido:

La Transformada de Laplace

- **5.1** Definición y Generalidades
- **5.2** Propiedades Fundamentales
- **5.3** Transformada de Laplace de las derivadas e integrales.

La Transformada Inversa de Laplace

- **5.4** Definición y generalidades
- **5.5** Propiedades fundamentales
- **5.6** Transformada inversa de Laplace por el método de fracciones parciales.
- **5.7** Fórmula de Heaviside.

Resolución de Ecuaciones Diferenciales Ordinarias Utilizando la Transformada de Laplace

- **5.8** Resolución de Ecuaciones Diferenciales Ordinarias lineales con coeficientes constantes.
- **5.9** Resolución de Ecuaciones Diferenciales Ordinarias lineales con coeficientes variables.

6. Metodología

Para el dictado de los contenidos se ha determinado los siguientes métodos de enseñanza:

- Clases de carácter teórico-conceptual: Clases a cargo del profesor, a modo orientador, presentando los temas para situar intelectualmente a los alumnos en el desarrollo de su razonamiento lógico. Su desarrollo se basará en el uso de elementos auxiliares para la enseñanza, como pizarra, proyector de multimedia.
- Desarrollo de Trabajos Prácticos: Los conceptos introducidos en las clases teóricas, especialmente los relativos a la solución de problemas y aplicaciones de la vida real, tendrán una componente práctica basada en la propuesta y resolución de problemas, de carácter individual o grupal, así como también la investigación de tópicos referentes a las unidades programáticas.
- **Prácticas de Laboratorio:** Se utilizarán los Laboratorios de Matemáticas para la realización de prácticas específicas que permitan conocer el uso de sistemas de aplicación computacionales.
- Elaboración del proyecto final de la materia: El proyecto es de carácter grupal, consistente en un trabajo de investigación sobre aplicación de los problemas (Nivel conceptual, intermedio y físico) de un caso real, proporcionado por la cátedra. El proyecto deberá ser entregado en la fecha fijada por la cátedra.

7. Cronograma de Actividades

Semana	U1	U2	U3	U4	U5	Practico	Examen
1	√					Diagnóstico	
2		√					
3		√					
4		√					
5		√				1º Examen	
6		√					
7		√					
8		√					1º Parcial
9			✓				
10			✓				
11			✓				
12			✓				
13				✓			
14					√	2º Examen	
15					√		
16					✓		2º Parcial
17							Final

8. Sistema de Evaluación

Descripción	Porcentaje	Temas
Primer Examen Parcial	20%	Unidades: I - II
Segundo Examen Parcial	20%	Unidades: III - IV - V
Examen, Proyecto o Trabajo Practico	20%	Aplicación de la Materia
Examen Final	40%	Todas las Unidades

• Primer Examen Parcial

La evaluación del primer parcial tendrá 3 componentes:

- Teórico, conceptual.
- Razonamiento lógico en la resolución de problemas reales referente a modelado de datos.
- Práctico en laboratorio de Matemáticas en lo referente a la aplicación de sistemas computacionales.

o Segundo Examen Parcial

La evaluación del segundo parcial tendrá 2 componentes:

- Razonamiento lógico en la resolución de problemas.
- Práctico en la resolución de ejercicios en laboratorio de Matemáticas.

o Proyecto

La evaluación del proyecto final de la materia se realizará en dos fases: **Primera**, será la presentación de un modelo conceptual, intermedio y físico de un problema de un caso real. **Segunda**, será la implementación del diseño de la primera fase en algún sistema computacional.

o Examen Final

La evaluación final será teórica y se aplicará el criterio de razonamiento lógico en la resolución de problemas referente a las ecuaciones diferenciales.

9. Bibliografía

- o Ayres, Frank Jr. Teoría y Problemas de Cálculo Mc.Graw Hill 1978.
- o Granville. W Cálculo Diferencial e Integral LIMUSA 1980.
- o Leithold, L. Cálculo con Geometría Analítica Harper 1979.
- o Piskunov, N. Cálculo Diferencial e integral MIR 1980.
- o Protter & Morris Análisis Matemático Fondo Educ. Interam. 1969.
- o Sadosky y otros Elementos de Cálculo Diferencial e Integral Alsina 1962.
- o Taylor H. y otros Cálculo Diferencial e Integral LIMUSA 1971.
- o Edward & Penney Cálculo con Geometría Analítica Prentice Hall 1994.
- o Thomas/Finney Cálculo con Geometría Analítica Adison Wesley 1987.
- Thomas/Finney Cálculo de varias variables Adison Wesley 1987.
- o Zill, Dennis Ec. Diferenciales con Aplicaciones Iberoaméricana 1995.
- o Hoffman/Bradley Cálculo para administración y economía Mc.Graw Hill 1999.

Semana	U1	U2	U3	U4	U5	U6	Practico	Examen
Х	Х	Х						
х	Х	4						