6 הרצאה

2019 באפריל 2019

1 חבורות ציקליות - סיום

 $g^n=e$ - כך ש- כך כך הגדרנו את החבורה הציקלית להיות חבורה להיות חבורה מזכיר כי הגדרנו את החבורה הציקלית להיות חבורה $G=\{e,g,g^2,\ldots,g^{n-1}\}$ ואנו אומרים ש-g הוא היוצר של

הערה 1. תת חבורה של חבורה ציקלית, היא ציקלית.

לדוגמה, למדנו כי אם $H<\mathbb{Z}$, כלומר תת חבורה של השלמים, אז היא מהצורה לדוגמה, כלומר תח $H=\{\ldots,-5,0,5,10,15,\ldots\}$ עבור לבור לקבור להשלמים, או היא מהצורה לדוגמה, כלומר

הוכחה. ניתן להניח כי $G=\mathbb{Z}_n$ (כי ראינו שכל חבורה ציקלית היא איזומורפית ל- \mathbb{Z}_n , ולכן הן למעשה אותו דבר וההוכחה שקולה).

k אם נראה שכל איבר h נוצר על ידי $m\cdot k$ הוא מהצורה $m\cdot k$ הוא מהצורה $m\cdot k$ שווה ל-0. נניח בשלילה כי נרשום: $m\cdot k+r$ כאשר $m\cdot k+r$ נרצה להראות שהשארית $m\cdot k+r$ אווה לכך ש- $m\cdot k$ היה לכך ש- $m\cdot k$ מינימאלי, שונה מ-0 ב- $m\cdot k$

. לכן r=0 וkו הוא באמת יוצר כנדרש