properties of symmetric difference

Recall that the <u>symmetric difference</u> of two sets A,B is the set $A \cup B - (A \cap B)$. In this entry, we list and prove some of the basic <u>properties</u> of \triangle .

- 1. (commutativity of \triangle) $A\triangle B=B\triangle A$, because \cup and \cap are commutative.
- 2. If $A \subseteq B$, then $A \triangle B = B A$, because $A \cup B = B$ and $A \cap B = A$. 3. $A \triangle \emptyset = A$, because $\emptyset \subseteq A$, and $A - \emptyset = A$.
- 4. $A \triangle A = \emptyset$, because $A \subseteq A$ and $A A = \emptyset$. 5. $A \triangle B = (A B) \cup (B A)$ (hence the name symmetric difference).
- $A \triangle B = (A \cup B) (A \cap B) = (A \cup B) \cap (A \cap B)' = (A \cup B) \cap (A' \cup B') = ((A \cup B) \cap A') \cup ((A \cup B) \cap B') = (B \cap A') \cup (A \cap B') = (B A) \cup (A B)$ $6. \ A' \triangle B' = A \triangle B, \text{ because } \ A' \triangle B' = (A' - B') \cup (B' - A') = (A' \cap B) \cup (B' \cap A) = (B - A) \cap (A - B) = A \triangle B.$ 7. (distributivity of \cap over \triangle) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$
 - $extit{Proof. } A \cap (B \triangle C) = A \cap ((B \cup C) (B \cap C)), ext{which is } (A \cap (B \cup C)) (A \cap (B \cap C)), ext{ one of the } properties of set difference}$ (see proof here
- $(\mathsf{http}: \texttt{//planetmath.org/PropertiesOfSetDifference})). \text{ This in turns is equal to } ((A \cap B) \cup (A \cap C)) ((A \cap B) \cap (A \cap C)) = (A \cap B) \triangle (A \cap C).$
- *Proof.* Let U be a set containing A,B,C as subsets (take $U=A\cup B\cup C$ if necessary). For a given B, let f:P(U) imes P(U) o P(U) be a f

defined by $f(A,C) = (A \triangle B) \triangle C$. Associativity of \triangle is then then same as showing that f(A,C) = f(C,A), since A riangle (B riangle C) = (B riangle C) riangle A = (C riangle B) riangle A.

By expanding f(A,C), we have

8. (associativity of \triangle) $(A \triangle B) \triangle C = A \triangle (B \triangle C)$

$$(A\triangle B) \triangle C = ((A\triangle B) - C) \cup (C - (A\triangle B)) \\ = (((A - B) \cup (B - A)) \cap C') \cup (C - ((A \cup B) - (A \cap B))) \\ = (((A \cap B') \cup (B \cap A')) \cap C') \cup ((C \cap A \cap B) \cup (C - (A \cup B))) \\ = ((A \cap B' \cap C') \cup (B \cap A' \cap C')) \cup ((C \cap A \cap B) \cup (C \cap A' \cap B'))$$

 $= (B \cap A' \cap C') \cup (B \cap A \cap C) \cup (B' \cap A \cap C') \cup (B' \cap A' \cap C).$

It is now easy to see that the last expression does not change if one exchanges A and C. Hence, f(A,C) = f(C,A) and this shows that \triangle is associative.

Remark. All of the properties of riangle on sets can be generalized to riangle (http://planetmath.org/DerivedBooleanOperations) on Boolean algebras.