Question 1 Correct P Flag

question

Given an array of numbers, find the index of the smallest array element (the pivot), for which the sums of all elements to the left and to the right are equal. The array may not be reordered.

Example

arr=[1,2,3,4,6]

- the sum of the first three elements, 1+2+3=6. The value of the last element is 6.
- Using zero based indexing, arr[3]=4 is the pivot between the two subarrays.
- The index of the pivot is 3.

Function Description

Complete the function balancedSum in the editor below.

balancedSum has the following parameter(s):

int arr[n]: an array of integers

Returns:

int: an integer representing the index of the pivot

Constraints

- · 3 ≤ n ≤ 10⁵
- 1 ≤ arr[i] ≤ 2 × 10⁴, where 0 ≤ i < n
- · It is guaranteed that a solution always exists.

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The first line contains an integer n, the size of the array arr.

Each of the next n lines contains an integer, arr[i], where $0 \le i < n$.

Answer: (penalty regime: 0 %)

Reset answer

```
1 . /*
     * Complete the 'balancedSum' function below.
 2
 3
 4
     * The function is expected to return an INTEGER.
     * The function accepts INTEGER_ARRAY arr as parameter.
 6
 7
    int balancedSum(int arr_count, int* arr)
9,
        int totalsum = 0;
10
11 .
        for(int 1=0;i<arr_count;i++){
            totalsum+=arr[i];
12
13
14
        int leftsum=0;
15
        for(int i=0;i<arr_count;i++){
16
            int rightsum=totalsum-leftsum-arr[i];
            if(leftsum==rightsum){
17
18
               return i;
19
            leftsum+=arr[i];
20
21
22
        return 1;
23
24
25
```

	Test	Expected	Got	
~	int arr[] = {1,2,3,3}; printf("%d", balancedSum(4, arr))	2	2	~

Passed all tests! 🗸

Quest	ion 2
Come	
P Fi	
quest	tion

	Calcula
<u>Jan</u>	Examp
	numbe
	The su
	Functio
	Compl
	arraySu
	Return
	Constr
	1 ≤ n ≤
	Input F
	Input f

ate the sum of an array of integers. ers = [3, 13, 4, 11, 9] um is 3 + 13 + 4 + 11 + 9 = 40. ion Description lete the function arraySum in the editor below. um has the following parameter(s): mbers(n): an array of integers teger sum of the numbers array raints ≤ 10⁴ umbers[i] ≤ 10⁴ Format for Custom Testing from stdin will be processed as follows and passed to the function. The first line contains an integer n, the size of the array numbers. Each of the next n lines contains an integer numbers[i] where $0 \le i \le n$.

Answer: (penalty regime: 0 %)

Reset answer

```
* Complete the 'arraySum' function below.
     * The function is expected to return an INTEGER.
     * The function accepts INTEGER_ARRAY numbers as parameter.
    int arraySum(int numbers_count, int *numbers)
        int sum=0;
10
11 .
        for(int i=0;i<numbers_count;i++){
12
            sum=sum+numbers[i];
14
        return sum;
15
16
```

	Test	Expected	Got	
~	int arr[] = {1,2,3,4,5}; printf("%d", arraySum(5, arr))	15	15	~

Passed all tests! <

Question 3
Correct
F Flag
question

Given an array of n integers, rearrange them so that the sum of the absolute differences of all adjacent elements is minimized. Then, compute the sum of those absolute differences. Example n = 5 arr = [1, 3, 3, 2, 4] If the list is rearranged as arr' = [1, 2, 3, 3, 4], the absolute differences are |1 - 2| = 1, |2 - 3| = 1, |3 - 3| = 0, |3 - 4| = 1. The sum of those differences is 1 + 1 + 0 + 1 = 3. Function Description Complete the function minDiff in the editor below, minDiff has the following parameter: arr: an integer array Returns: int: the sum of the absolute differences of adjacent elements Constraints $2 \le n \le 105$ 0 \le arr[i] ≤ 109 , where $0 \le i \le n$ Input Format For Custom Testing The first line of input contains an integer, n, the size of arr. Each of the following $n \ge 100$ 1 in the sum of the absolute differences of adjacent elements Constraints $n \ge 100$ 2 arr[i] (where $n \ge 100$ 3 arr in the sum of those differences is $n \ge 100$ 4 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of those differences is $n \ge 100$ 5 arr in the sum of the sum o

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1 .
     * Complete the 'minDiff' function below.
 3
     * The function is expected to return an INTEGER.
     * The function accepts INTEGER_ARRAY arr as parameter.
    #include<stdio.h>
    int compare(const void *a,const void *b){
        return(*(int*)a- *(int*)b);
 9
10
11
    int minDiff(int arr count, int* arr)
12 .
13
        gsort(arr,arr count,sizeof(int),compare);
14
        int totaldiff=0:
15
        for(int i=1;i<arr count;i++){
16
            totaldiff+=abs(arr[i]-arr[i-1]);
17
18
        return totaldiff;
19
20
21
```

	Test	Expected	Got	
V.	int arr[] = {5, 1, 3, 7, 3}; printf("%d", minDiff(5, arr))	6	6	~

Passed all tests! <