Grado Ingeniería Informática. Matemáticas 2. Prácticas.

Práctica 2. Aplicaciones de las Derivadas

Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante

22 de febrero de 2017

Concepto de Límite.

La Derivada.

Análisis de funciones.

Optimización.

Ejercicios.

Límite de una función

Análisis de funciones.

Límite

El concepto de límite es la base del Cálculo Diferencial. La librería Symbolic Math Toolbox de MatLab permite calcular límites de funciones directamente mediante el comando

f = función, x = variable, a = punto al que tiende (puede ser)-inf-).

Límite de una función

Límite

Si f es una función de una única variable, se puede usar

Por otro lado

$$limit(f) = limit(f, 0).$$

Para límites laterales

$$limit(f, x, a, 'left')$$
 o $limit(f, x, a, 'right')$.

Límite de una función

Límite

Ejemplos:

```
>> syms x

>> limit((1+1/x)^{\wedge}x, x, inf)

ans = exp(1)

>> syms t, limit((1+t)^{\wedge}(1/t))

ans = exp(1)

>> syms x, limit([1/(x^{\wedge}2), sin(x)/x, log(x)], x, 0, right')

ans = [Inf, 1, -Inf]
```

La derivada

La derivada como límite

La **derivada** de f en x viene dada por la expresión

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

- La derivada existe, si existe el límite.
- Para todo x para los que exista el límite, f' es función de x.

900

La derivada

Ejemplo

a) Define la función:

>> syms x
>> funcf =
$$0.5 * x^4 + x^2 - 2$$

- b) Haz la gráfica de la function: >> ezplot(funcf, [0, 2])
- c) Define la función:

>> syms h
>> funcg =
$$((0.5*(1.2+h)^4+(1.2+h)^2-2)-(0.5*1.2^4+1.2^2-2))/h$$

d) Evalúa el valor de funcg para h = 1, h = 0.01, h = 0.001, h = -0.01, h = -0.001 mediante el comando >> subs(funcg, 1);

e) La función funcg, tiende a un valor fijo, ¿cuál es ese valor?

La derivada

Ejemplo

Para el cálculo de una derivada según la definición:

- 1. Se definen las variables simbólicas >> syms $\times h$
- 2. Se calcula el límite cuando h tiene a cero >> limit((cos(x+h)-cos(x))/h, h, 0)

La derivada

Análisis de funciones.

La derivada en Matlab

- Se declara la variable x como simbólica >> syms x.
- Se define la función $>> f = -2 * x^4 + 2 * x^3$
- Se calcula la derivada >> diff(f,x)
- Para una función de dos variables >> syms x y;
- >> $g(x, y) = x^2 + y^3$.
- Derivadas de primer y segundo orden, >> diff(f, y), >> diff(f,x), >> diff(f,y,2)

Los objetos simbólicos también se almacenan en el workspace.

Ejemplo

$$f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$$

a) Se define la función:

>> syms x
>> num =
$$2 * (x^2 - 9);$$

>> den = $x^2 - 4;$
>> $f(x) = num/den$
 $f = (2 * x^2 - 18)/(x^2 - 4)$

- b) Se dibuja la gráfica de la function: >> ezplot(f)
- c) Se guarda la gráfica como function2Analyze.fig

Indice Concepto de Límite. La Derivada. Análisis de funciones. Optimización. Ejercicios.

Análisis de Funciones

Ejemplo (cont)

Figura: Función definida

Ejemplo (cont)

- d) Asíntotas Horizontales: >> limit(f, inf)
- e) Asíntotas Verticales: se resuelve el denominador y se almacenar los resultados en una variable:

```
>> roots = solve(den)
roots =
2
-2
```

Dibuja en rojo la recta horizontal, y=2, sobre la gráfica anterior (por ejemplo con Menú *insertar* opción *linea*).

Dibuja en verde dos rectas verticales para x = 2 y x = -2, también sobre la gráfica anterior.

Guardarlo como functionAsymptotes.fig.

ndice Concepto de Límite. La Derivada. Análisis de funciones. Optimización. Ejercicios.

Análisis de Funciones

Ejemplo (cont)

Figura: Función con asíntotas: horizontal (rojo) y vertical (verde)

Ejemplo (cont)

f) Para los puntos críticos hay que encontrar las derivadas >> f1 = diff(f)f1 =

$$(4*x)/(x^2-4)-(2*x*(2*x^2-18))/(x^2-4)^2$$

Se simplifica la expresión:

>>
$$f1simp = simplify(f1)$$

 $f1simp = (20 * x)/(x^2 - 4)^2$

Ejemplo (cont)

f2simp =

f) Para los puntos críticos se resuelve f'(x) = 0
 >> criticos = solve(f1simp)
 criticos = 0
 Así pues, se tiene un punto crítico en x = 0.
 Para ver si es un máximo o mínimo se necesita el signo de la segunda derivada:
 >> f2 = diff(f, 2);
 f2simp = simplify(f2)

 $-(20*(3*x^2+4))/(x^2-4)^3$

Ejemplo (cont)

- f) Se calcula la segunda derivada en x = 0
 >> valor2deri = subs(f2simp, 0)
 5/4
 positivo, luego hay un mínimo relativo en x = 0.
- g) Ahora se dibuja este punto en la función
 - >> hold on;
 - >> plot(criticos, subs(f, criticos),'ro')
- h) Se le añade un título al gráfico y una etiqueta al punto.
 - >> title('Minimodef')
 - >> text(0,4,'Minimorelativo')

Indice Concepto de Límite. La Derivada. Análisis de funciones. Optimización. Ejercicios.

Análisis de Funciones

Ejemplo (cont)

Figura: Mínimo de la Función.

Ejemplo (cont)

 i) Para estudiar la concavidad y convexidad se mira el signo de la segunda derivada

$$f2simp = -(20*(3*x^2+4))/(x^2-4)^3$$

El numerador siempre es positivo y el denominador es negativo en (-2,2).

Una manera sencilla de buscar puntos de inflexión es trazar el signo de la función:

- >> ezplot(sign(f2simp), [-5, 5]) (mirar la siguiente transparencia)
- j) Puntos de inflexión, el signo de la segunda derivada cambia en x = -2 (de negativo a positivo) y también en x = 2 (de negativo a positivo).

ndice Concepto de Límite. La Derivada. Análisis de funciones. Optimización. Ejercicios.

Análisis de Funciones

Ejemplo (cont)

Figura: Signo de la segunda derivada.

Etapas

Para resolver un problema de optimización:

- Variables: Identificar las variables.
- Función: Encontrar la función a optimizar: error, área, perímetro, etc.
- Reducción: Si hay mas de una variable independiente
 x₁, x₂..., se reduce la función a una única variable. Si no es
 posible, debemos resolver un problema de optimización para
 cada variable independiente.
- Dominio: Hay que saber los dominios admisibles para la solución. y descartar resultados absurdos.

Ejemplo. Recta de mínimos cuadrados

Dado un conjunto de pares $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, se quiere encontrar la ecuación de la recta y = mx + b de manera que esté lo más próxima posible a todos ellos.

Puesto que y = mx + b se tiene que las variables son m y b, ya que definen la solución (una línea). Si los puntos estuvieran alineados

$$y_1 = mx_1 + b$$

$$y_2 = mx_2 + b$$

$$\dots = \dots$$
(2)

$$y_n = mx_n + n$$

(3)

Ejemplo. Recta de mínimos cuadrados (cont)

 x_i e y_i son datos, no variables!! Por ejemplo

i	1	2	3	4	5	6	7	8	9	10
Xi	1	2	3	4	5	6	7	8	9	10
Уi	3,5	4	8	9,5	10	12	14	16	18,5	20

En MATLAB:

$$>> xi = 1:10;$$

$$>> yi(1) = 3.5; yi(2) = 4; yi(3) = 8; yi(4) = 9.5; yi(5) = 10;$$

$$>> yi(6) = 12; yi(7) = 14; yi(8) = 16; yi(9) = 18.5; yi(10) = 20;$$

¿Qué ecuación se satisface? (si hay alguna): $y_i = mx_i + b$?

Ejemplo. Recta de mínimos cuadrados (cont)

Para encontrar la función a optimizar ponerla como y = f(x) partimos de las ecuaciones $y_i = mx_i + b$:

- Dados (desconocidos) m y b para cada par (x_i, y_i) , algunas veces será $y_i = mx_i + b > 0$, otras < 0 y eventualmente 0.
- Si encontramos m y b para los que la mayoría de las ecuaciones $y_i = mx_i + b \approx 0$ tendremos una elección optima

Se define el siguiente **error respecto a** (x_i, y_i) :

$$E_i(m,b) = (y_i - mx_i - b)^2$$

Entonces, una posible función a optimizar es:

$$E(m,b) = E_1(m,b) + E_2(m,b) + \ldots + E_n(m,b)$$

Ejemplo. Recta de mínimos cuadrados (cont)

Por lo tanto, la (función de mínimos cuadrados) a optimizar es:

$$E(m,b) = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Puesto que la elección optima de m y b es aquella para la que el error E(m,b) se minimiza.

Tomando las derivadas parciales e igualando a cero

$$\frac{dE}{dm} = 2\sum_{i=1}^{n} (y_i - mx_i - b)(-x_i) = 0$$

$$\frac{dE}{db} = 2\sum_{i=1}^{n} (y_i - mx_i - b)(-1) = 0$$

Concepto de Límite. Análisis de funciones. Optimización.

Optimización

Ejemplo. Recta de mínimos cuadrados (cont)

Se tienen dos variables m y b y como en este curso optimizamos funciones de una sola variable, se debe elegir una. Dibujando los puntos del ejemplo >> plot(xi, yi, 'ro') se tiene

Optimization

Ejemplo. Recta de mínimos cuadrados (cont)

Si consideramos b=0 (la recta pasa por el origen), entonces la función error se reduce a

$$E(m,0) = \sum_{i=1}^{n} (y_i - mx_i)^2$$

y la *m* optima se obtiene igualando la derivada a cero

$$\frac{dE}{dm} = 2\sum_{i=1}^{n} (y_i - mx_i)(-x_i) = 0$$

Ejemplo. Recta de mínimos cuadrados. Instrucciones.

- >> syms m
- >> $f(m) = sum((yi m * xi)^2)$ $f(m) = (m - 7/2)^2 + (2 * m - 4)^2 + (3 * m - 8)^2 + (5 * m - 10)^2 + (6 * m - 12)^2 + (7 * m - 14)^2 + (8 * m - 16)^2 + (4 * m - 19/2)^2 + (10 * m - 20)^2 + (9 * m - 37/2)^2$ >>
- >> f1 = diff(f, m) f1(m) =770 * m - 1576
- >> respuesta = double(solve(f1 == 0)) respuesta = 2.0468

Practica #1

Utilizando un script de instrucciones, obtén la derivada de la función logaritmo neperiano recurriendo a la definición de derivada y utilizando el comando limit.

Practica #2

Analiza las siguientes funciones. Para ello, crea cuatro scripts por cada función. Cada script creará una figura, siendo cada figura las siguientes: la función junto con las raíces, la función y las asíntotas, la función y los puntos críticos y, finalmente, la función y los puntos de inflexión.

- 1. $\frac{2x}{x^2+1}$.
- 2. $\frac{\ln x}{x}$.
- 3. $\frac{x+1}{\sqrt{x-1}-5}$.
- 4. $\frac{x^3}{(x-1)^2} 8$.

Recuerda como se resuelven los problemas de optimización

- Variables: Identificar las variables x e y
- Función objetivo: Encontrar la función a optimizar y reemplazar y = f(x).
- Reducción: Reduce la función a una única variable independiente.
- Dominio: Comprobar el dominio de admisión de las soluciones y descartar las absurdas.
- Calculo: Calcular el máximo o mínimo de la función objetivo.

Práctica #3

Queremos construir una caja cuya longitud sea tres veces su anchura. El material usado para construir la tapa y la base cuesta 10 euros por metro cuadrado y el material usado para construir los lados cuesta 6 euros por metro cuadrado. Si la caja tiene que tener un volumen de 50 metros cúbicos, determina las dimensiones que que minimizan el coste de construir la caja.

Práctica #4

Una ventana se construye en su parte superior con un semicírculo y en la parte inferior con rectángulo. Si hay 12m. de materiales, ¿cuales serán las dimensiones de la ventana para que entre la mayor cantidad de luz?

Práctica #5

Determinar los puntos sobre $y = x^2 + 1$ mas cercanos a (0,2)

Práctica #6

Resolver la b para el valor óptimo de m para la recta del ejemplo de la recta de minimos cuadrados creando un script para las soluciones:

Dado m = 2,0468 reemplazar en la función de error

$$E(m, b = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Y optimizarlo respecto a b.

Práctica #7

La función de Matlab que resuelve problemas es optimización es fminbnd, con sintaxis:

$$x = fminbnd(@fun, x1, x2),$$

con fun la función a optimizar y x1, x2 la región de búsqueda de la solución.

Minimiza la función
$$f(x) = x^2 - 12x + 3$$
 en el intervalo $-8 \le x \le 8$.

Ejercicios.