10.12.2004

PA 125025

THE UNIVERD STAYIES OF AMERICA

TO ALL TO WHOM THUSE; PRESENTS SHAM, COMES

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

November 23, 2004

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/567,011

FILING DATE: May 03, 2004

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) REO'D' 0 4 JAN 2005

WIPO PCT

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

Certifying Officer

PROVISIONAL APPLICATION FOR PATENT COVER SHEET This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

ð	INVENTOR(S)			Ť
iven Name (first and middle [if any]) Family Name or Surname		Residence (City and either State or Foreign Country)		,
ıkashi TANI		Kawasaki	Japan	
akoto SAITO		Kawasaki	Japan	
akashi UEDA		Kawasaki	Japan	
eiichi NAKAMURA		Kawasaki	Japan	
omofumi NISHIMURA		Kawasaki	Japan	
Additional inventors are being named on the separately numbered sheet(s) attached hereto				
	TITLE OF THE INVENTION (500 charac			
PRODUCTION METHOD OF FINE PARTICULATE METAL OXIDE O				
CORRESPONDENCE ADDRESS Direct all correspondence to the address for SUGHRUE MION, PLLC filed under the Customer Numb washington office 23373 customer number			isted below:	17858 U.S. 60/5670
ENCLOSED APPLICATION PARTS (check all that apply)				
(Japanese Language) Number of Pages 10 □ CD(s), Number I Drawing(s) Number of Sheets 1 □ Other (specify) 1 Application Data Sheet. See 37 CFR 1.76				
METHOD OF PAYMENT OF FILING FE	EES FOR THIS PROVISIONAL APPLICATION	ON FOR PATENT		
Applicant claims small entity status				
No. 19-4880. Please also credit any overpayments to said Deposit Account. The USPTO is hereby authorized to charge the Provisional filing fees to our Deposit Account No. 19-4880. The USPTO is directed and authorized to charge all required fees, except for the Issue Fee and the Publication			FILING FEI AMOUNT (S	
Fee, to Deposit Account No. 19-4880. Please also credit any overpayments to said Deposit Account.			\$160.00	
he invention was made by an agency of the United States Government or under a contract with an agency of the United States Government. No. Yes, the name of the U.S. Government agency and the Government contract number are:				
Respectfully submitted,				
signature <u>Sheldon U.</u>	Landsman	DATE May 3, 2004		
TYPED or PRINTED NAME Sheldon I. Landsman REGISTRATION NO. 25,430				
TELEPHONE NO. (202) 293-7060	DOCKET NO PRI29			

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

【書類名】明細書

【発明の名称】金属酸化物微粒子の製造方法

[技術分野]

[0001]

本発明は、金属酸化物微粒子の製造方法に関し、さらに詳しくは、例えば蛍光体、触媒、研磨剤、透明伝導性膜などに利用される金属酸化物微粒子の製造方法に関する。

【背景技術】

[0002]

金属酸化物の微粒子は、例えば蛍光体、触媒、研磨剤、透明伝導性膜などに利用されている。特に粒子径を100nm以下とした微粒子は発光強度、触媒活性、研磨性などが飛躍的に向上するため、微粒子の金属酸化物を効率よく簡便に製造する方法の開発が望まれていた。

[0003]

金属酸化物の微粒子を製造する方法としては、様々な方法が知られており、例えば化学気相析出法による微粒子の製造方法としては、金属ハロゲン化物と酸化性ガスを用いる方法(例えば、特許文献1参照)が知られているが、この方法ではハロゲン化物が生成し、得られる微粒子にハロゲン化物が混入するため微粒子の性能を悪化させるという問題があった。

[0004]

また、金属ハロゲン化物、金属アルコキシド等の液状の金属酸化物前駆体をガス化し、 次いで酸素含有ガスと気相で接触、反応させて金属酸化物微粒子を製造する方法(例えば、 特許文献2参照)も知られているが、金属アルコキシドが容易に加水分解するため気化前 に分解して収率が低い、配管が閉塞するなどの問題があった。

[0005]

さらに、 β -ジケトネート金属錯体と水蒸気との混合物を加熱し錯体を加水分解して金属酸化物の薄膜または微粉末を製造する方法(例えば、特許文献 3、4参照)が知られているが、 β -ジケトネート錯体蒸気とキャリアガスと水蒸気の流量をコントロールしモル比を制御する煩雑な操作が必要であり、安定して小粒径の微粉末を得ることはできなかった。

【特許文献1】特許第1033945号公報.

【特許文献2】特公昭63-46002号公報

【特許文献3】特開昭57-118002号公報

【特許文献4】特許1845566号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、金属酸化物微粒子を効率よく簡便に製造する方法を提供することを目的としている。得られた金属酸化物の微粒子は、例えば蛍光体、触媒、研磨剤、透明伝導性膜などに利用可能である。

【課題を解決するための手段】

[0007]

本発明者らは、上記課題に対して鋭意検討した結果、金属酸化物微粒子を効率よく簡便に製造する方法を見出し、本発明に至った。すなわち、本発明は例えば下記の[1]~[25]に示される事項からなる。

- [1] 気体状の有機金属化合物を、酸化性物質の存在下に気相中で燃焼させて金属酸化物微粒子を得ることを特徴とする金属酸化物微粒子の製造方法。
- [2] 気体状の有機金属化合物と、酸化性物質とを混合し、混合物を燃焼させて金属酸化物微粒子を得ることを特徴とする金属酸化物微粒子の製造方法。
- [3] 有機金属化合物の溶液と、酸化性物質とを混合し、混合物を気体状とした後、該

気体状の混合物を燃焼させて金属酸化物微粒子を得ることを特徴とする金属酸化物微粒子の製造方法。

- [4] 有機金属化合物の溶液を気化させた気体状の有機金属化合物を含む蒸気と、酸化性物質とを混合し、混合物を燃焼して金属酸化物微粒子を得ることを特徴とする金属酸化物微粒子の製造方法。
- [5] 上記酸化性物質が、酸素含有ガス、酸素、水および亜酸化窒素のいずれか1種類以上であることを特徴とする[1]~[4]のいずれかに記載の金属酸化物微粒子の製造方法。
- [6] 上記有機金属化合物と酸化性物質とを燃焼させる際に助燃剤を用いることを特徴とする[1]~[5]のいずれかに記載の金属酸化物微粒子の製造方法。
- [7] 上記有機金属化合物溶液の溶媒が助燃剤であることを特徴とする[3]~[4]のいずれかに記載の金属酸化物微粒子の製造方法。
- [8] 上記有機金属化合物が、少なくとも金属、炭素および水素原子を含むことを特徴とする[1]~[7]のいずれかに記載の金属酸化物微粒子の製造方法。
- [9] 上記有機金属化合物がアルキル金属化合物、金属アルコキシドおよび β ジケトン金属錯体から選ばれる少なくとも 1 種類以上含むことを特徴とする $[1] \sim [7]$ のいずれかに記載の金属酸化物微粒子の製造方法。
- [10] 上記アルキル金属化合物のアルキル部が、炭素数 $1 \sim 10$ のアルキル基であることを特徴とする [9] に記載の金属酸化物微粒子の製造方法。
- [11] 上記金属アルコキシドが、金属のメトキシド、エトキシド、n-プロポキシド、i-プロポキシド、n-プトキシド、sec-プトキシド、tert-プトキシドまたはt-アミロキシドであることを特徴とする [9] に記載の金属酸化物微粒子の製造方法。
- [12] 上記 β -ジケトン金属錯体が、2,2,6,6-テトラメチルヘプタンー3,5-ジオン、2,6-ジメチルー3,5-ヘプタンジオンまたは2,4-ペンタンジオンの金属錯体であることを特徴とする[9]に記載の金属酸化物微粒子の製造方法。

[13]

上記有機金属化合物溶液の溶媒が、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、テトラヒドロフラン、ジメチルスルホキサイド、ジメチルホルムアミド、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジオキサン、アセトン、酢酸エチル、酢酸ブチル、メチルイソブチリルケトン、ジエチルエーテル、tーブチルメチルエーテル、アセチルアセトン、ジイソブチリルメタンおよびジピパロイルメタンから選ばれる少なくとも1種の溶媒であることを特徴とする[3]~[4]のいずれかに記載の金属酸化物微粒子の製造方法。

- [14] 上記燃焼温度が400℃以上であることを特徴とする [1] ~ [13] のいずれかに記載の金属酸化物微粒子の製造方法。
- [15] 上記酸化性物質を、有機金属化合物および有機金属化合物の溶液の溶媒を完全酸化するのに必要な酸素量の0.5倍~40倍モルの量で用いることを特徴とする可[1]~[14]のいずれかに記載の金属酸化物微粒子の製造方法。
- [16] 数平均粒径が100nm以下である金属酸化物微粒子を製造することを特徴とする[1]~[15]のいずれかに記載の金属酸化物微粒子の製造方法。
- [17] 蛍光体である金属酸化物微粒子を製造することを特徴とする[1]~[16]のいずれかに記載の金属酸化物微粒子の製造方法。
- [18] 上記蛍光体が Y_1O_3 : Eu、 $(Y, Gd)_2O_3$: Euおよび YBO_3 : Eu $(Y, Gd)_BO_3$: Euから選ばれるいずれか1種の赤色蛍光体であることを特徴とする [17] に記載の金属酸化物微粒子の製造方法。
- [19] 上記YBO3: Eu (Y, Gd) BO3: Euのホウ素源がホウ酸エステルであることを特徴とする [18] に記載の金属酸化物微粒子の製造方法
- [20] 上記蛍光体がY,O3: TbおよびZn,SiO4: Mn、(Mg, Sr, Ba) A

 $\mathbf{1}_{12}\mathbf{O}_{19}: \mathbf{M}\,\mathbf{n}\,$ から選ばれるいずれか1種の緑色蛍光体であることを特徴とする[17]に 記載の金属酸化物微粒子の製造方法。

- [21] 上記蛍光体が Y_1O_3 : Tmおよび (Ba、Mg) $Al_{10}O_{17}$: Euから選ばれるいずれか 1 種の青色蛍光体であることを特徴とする [17] に記載の金属酸化物微粒子の製造方法。
- [22] 導電材である上風酸化物微粒子を製造することを特徴とする [1] ~ [16] のいずれかに記載の金属酸化物微粒子の製造方法。
- [23] 上記導電材が酸化錫、または酸化錫が添加された酸化インジウムであることを 特徴とする[22]に記載の金属酸化物微粒子の製造方法。
- [24] 強誘電体である金属酸化物微粒子を製造することを特徴とする[1]~[16]のいずれかに記載の金属酸化物微粒子の製造方法。
- [25] 上記強誘電体が、チタン酸パリウム、チタン酸ストロンチウム、チタン酸鉛、 チタン酸パリウムストロンチウム、ジルコンチタン酸鉛、ランタンジルコンチタン酸鉛ま たはストロンチウムピスマスタンタル酸化物であることを特徴とする[24]に記載の金 属酸化物微粒子の製造方法。

【発明の効果】

[0008]

本発明により、煩雑な操作無しに、高品質で粒径の揃った金属酸化物微粒子を高収率で製造することが出来る。

【発明を実施するための最良の形態】

[0009]

以下本発明に係る金属酸化物微粒子の製造方法の詳細について説明する。

[0010]

本発明は、気体状の有機金属化合物を、酸化性物質の存在下に燃焼させて金属酸化物微粒子を製造することが特徴の一つである。

[0011]

本発明では、有機金属化合物が少なくとも金属、炭素および水素原子を含むものであることが好ましく、具体的にはアルキル金属化合物、金属アルコキシドまたは β ージケトン 金属錯体であることが好ましい。

[0012]

本発明で用いられるアルキル金属化合物としては、アルキル部が炭素数 1 ~ 1 0 のアルキル基であるアルキル金属化合物が好ましく、例えばトリメチルアルミニウム、トリメチルインジウム、トリメチルガリウムなどが挙げられる。

[0013]

本発明で用いられる金属アルコキシドとしては、金属のメトキシド、エトキシド、n-プロポキシド、i-プロポキシド、n-プトキシド、sec-プトキシド、tert-プトキシド、t-アミロキシドなどが好ましく、具体的には例えばテトラメトキシシラン、テトラエトキシチタン、テトラi-プロポキシチタン、テトラt-プトキシジルコニウム、テトラt-プトキシハフニウム、ペンタエトキシタンタル、トリi-プロポキシアルミニウム、トリエトキシホウ素、ジt-プトキシ錫等が挙げられる。

[0014]

(DPM) 2, Sr (DMHD) 2, Ba (DMHD) 2, Mg (DMHD) 2, Y (DMHD) 3. La (DMHD) 3. Pr (DMHD) 3. Eu (DMHD) 3. Gd (DMHD) 3. T b (DMHD) 3, Dy (DMHD) 3, Tm (DMHD) 3, Ti (DMHD) , (i PrO) Zr (DMHD) 4, Hf (DMHD) 4, Fe (DMHD) 3, Ru (DMHD) 3, C u (DMHD) 2, A1 (DMHD) 3, In (DMHD) 3, Sn (DMHD) 2, Pb (D MHD) 2. Bi (DMHD) 3. Mn (DMHD) 2. Zn (DMHD) 2. Sr (acac) , Ba (acac) , Mg (acac) , Y (acac) , La (acac) , Pr (acac) 3. Eu (acac) 3. Gd (acac) 3. Tb (acac) 3. Dy (ac ac) 3. Tm (acac) 3. Ti (acac) 4. Zr (acac) 4. Hf (acac) 4. Fe (acac) 3. Ru (acac) 3. Cu (acac) 2. Al (acac) 3. I n (acac) 3, Sn (acac) 2, Pb (acac) 2, Bi (acac) 3, Mn (a cac)、Zn (acac), およびこれらのn水塩 (nは1以上の数) が挙げられる。 [0015]

有機金属化合物は、目的とする金属酸化物微粒子により1種単独で、または2種以上組 み合わせて用いられる。有機金属化合物を適宜組み合わせることにより、蛍光体、導電材、 誘電材、触媒、研磨剤などを製造することができる。

[0016]

有機金属化合物を2種用いる組み合わせとしては以下のようなものが挙げられる。

[0017]

例えば、 β ージケトネートY錯体と β ージケトネートE u 錯体とを用いると、赤色蛍光 体微粒子Y,O,: Euを得ることができ、

 β - $ジケトネート Y 錯体、 <math>\beta$ - $ジケトネート G d 錯体 と <math>\beta$ - ジケトネート E u 錯体 とを用いると、赤色蛍光体微粒子(Y, Gd)2O3:Euを得ることができ、

 β - ジケトネートY錯体、 β - ジケトネートGd錯体と β - ジケトネートEu錯体とホ ウ酸エステルを用いると、赤色蛍光体微粒子YBO₃: Eu(Y, Gd)BO₃: Euを得 ることができる。

[0018]

Y,O3:Tbを得ることができ、

 β ージケトネートZ n錯体、 β ージケトネートM n錯体とS i アルコキシドを用いると、 緑色蛍光体微粒子Zn,SiO4:Mnを得ることができ、

 β ージケトネートA1錯体、 β ージケトネートMg錯体、 β ージケトネートSr錯体、 β - ジケトネートB a 錯体、 β - ジケトネートM n 錯体を用いると、緑色蛍光体微粒子 (Mg, Sr, Ba) Al₁₂O₁₉: Mnを得ることができる。

[0019]

Y,O3:Tmを得ることができ、

 β ージケトネートAl錯体、 β ージケトネートBa錯体、 β ージケトネートMg、 β ー ジケトネートEu錯体錯体とを用いると、青色蛍光体微粒子(Ba、Mg) Al₁₀O₁₇: E uを得ることができる。

[0020]

 β ージケトネート I n 錯体と β ージケトネートS n 錯体とを用いると、透明導電性錫添 加インジウム酸化物微粒子を得ることができる。

[0021]

β-ジケトネートBa錯体とTiアルコキシドとを用いると、強誘電体チタン酸バリウ ム微粒子を得ることができる。

[0022]

 β ージケトネートP D 錯体、 β ージケトネートZ r 錯体とT i アルコキシドとを用いると、強誘電体ジルコンチタン酸鉛微粒子を得ることができる。

[0023]

なお、強誘電体とは、数百以上の大きな誘電率を示し、自発分極を生ずる物体をいう。 [0024]

気体状の有機金属化合物としては、固体または液体状の有機金属化合物を加熱して気化 させたもの、有機金属化合物の溶液を加熱して気化させたもの、これらの混合物などが挙 げられる。

[0025]

気体状の有機金属化合物は、1種の有機金属化合物の蒸気であっても、2種以上の有機 金属化合物の混合蒸気であってもよい。 2 種以上の有機金属化合物の混合蒸気は、 2 種以 上の有機金属化合物を混合してから気化させたものでもよいし、気化させてから混合した ものでも良い。

[0026]

有機金属化合物として金属アルコキシドを使用する場合は、含まれる金属によっては金 風アルコキシドが容易に加水分解するため、気化前に分解して収率が低い、配管が閉塞す るなどの問題が発生する場合があるので、金属アルコキシドを有機溶媒の溶液として安定 化させて気化することも好ましい。

[0027]

気体状の有機金属化合物が、有機金属化合物の溶液を加熱して気化させたものである場 合には、1種の有機金属化合物の蒸気を含むものであっても、2種以上の有機金属化合物 の蒸気を含むものであってもよい。2種以上の有機金属化合物の蒸気を含む場合には、異 なる有機金属化合物を含む2以上の溶液から気化させたものを混合したものであってもよ いし、2種以上の有機金属化合物を含む溶液から気化させたものであってもよい。

[0028]

ここで有機金属化合物の溶液に用いられる溶媒としては、メチルアルコール、エチルア ルコール、プロピルアルコール、プチルアルコール、テトラヒドロフラン、ジメチルスル ホキサイド、ジメチルホルムアミド、ヘキサン、シクロヘキサン、メチルシクロヘキサン、 ジオキサン、アセトン、酢酸エチル、酢酸プチル、メチルイソプチリルケトン、ジエチル エーテル、 t ープチルメチルエーテル、アセチルアセトン、ジイソプチリルメタン、ジピ パロイルメタンなどから選ばれる少なくとも1種の溶媒が挙げられる。これらの溶媒は、 1種単独で、または2種以上組み合わせて用いることができる。また、溶液の濃度は特に 限定されない。

[0029]

本発明では、気体状の有機金属化合物のキャリアとして、窒素、アルゴンなどの不活性 ガスを用いることができる。

[0030]

本発明で用いられる酸化性物質としては、酸素、酸素と他の気体、例えば窒素、アルゴ ンなど不活性ガスとを任意の割合で混合した混合ガス、空気、水、亜酸化窒素などが挙げ られる。これら酸化性物質は単独で使用しても2種類以上を組み合わせて使用しても良い。

[0031] 気体状の有機金属化合物と酸化性物質とは、有機金属化合物を燃焼させる前に、それぞ れ有機金属化合物が分解する温度未満の温度に予熱してもよいし、気体状の有機金属化合 物と酸化性物質とを混合した後に、有機金属化合物が分解する温度未満の温度に予熱して もよい。また、気体状の有機金属化合物と酸化性物質とは、燃焼させる前に混合してもよ いし、気体状の有機金属化合物を有機金属化合物が分解する温度以上の温度に加熱した後、 酸化性物質中に放出して、酸化性物質と混合しながら燃焼させてもよい。また、有機金属 化合物が液体状のもの、あるいは有機溶媒に溶解した溶液状のものである場合は液体状の

[0032]

まま酸化性物質と混合しても良い。

有機金属化合物と酸化性物質の混合は、完全混合状態になるような条件で混合するのが

2003-309092

望ましい。混合が不十分であると、例えば2種類以上の有機金属化合物を用いた場合に混合不足により、得られる金属酸化物微粒子の組成が不均一になることがあり好ましくない。

[0033]

気体状有機金属化合物と酸化性物質とは、混合した後燃焼させることが好ましい。燃焼 させるには、着火源を用いてもよいし、発火点以上の温度に加熱してもよい。

[0034]

混合が不十分で有機金属化合物が完全に燃焼しない場合は、炭化物や水分等の未反応物の残存や、反応時間の長時間化による微粒子の融着などが生じる為、品質や粒径が安定せず、得られる粒子径も概して大きくなるという問題がある。

[0035]

気体状の有機金属化合物または有機金属化合物を溶解した溶液を気化したものを酸化性 物質と混合したあとの混合気体は、有機金属化合物の濃度が爆発範囲に入っていることが 好ましい。範囲外の場合は燃焼が安定せず、好ましくない。有機金属化合物の蒸気圧が低 く、爆発範囲に到達しない場合には助燃剤を使用することが好ましい。助燃剤に特に制限 は無いが、例えば有機金属化合物を溶解した溶液を使用する場合は、この溶液の溶媒を助 燃剤とすることが出来る。

[0036]

酸化性物質は、有機金属化合物として固体、または液体状の有機金属化合物を加熱して 気化させたものを用いる場合には有機金属化合物を完全酸化するのに必要な酸素量、気体 状の有機金属化合物として有機金属化合物の溶液を加熱して気化させたものを用いる場合 には、有機金属化合物および溶媒を完全酸化するのに必要な酸素量の0.5倍~40倍モ ル、好ましくは1~30倍モル、より好ましくは1~20倍モルとなる量で用いられる。 酸素量が少なすぎると未反応の原料により生成した金属酸化物微粒子が凝集する場合があ る。多すぎると有機物濃度が爆発限界以下となり燃焼が安定せず好ましくない。

[0037]

本発明における燃焼温度は400℃以上が好ましく、特に500~1500℃の範囲が好ましい。燃焼温度が低い場合は未反応原料や不完全燃焼による有機成分の残存などが有り好ましくない。燃焼温度が高すぎる場合は装置材質の劣化による装置寿命の低下やコンタミネーションなどの問題があり好ましくない。

[0038]

このようにして得られる金属酸化物微粒子の数平均粒径は、100nm以下、好ましく. は $5\sim90nm$ 、より好ましくは $5\sim50nm$ である。

[0039]

粒子径が100nm以下の金属酸化物微粒子は、例えば蛍光体、触媒、研磨剤、透明伝導性膜などに利用したときに、発光強度、触媒活性、研磨性などが特に優れている。

[0040]

本発明では、金属酸化物微粒子の数平均粒径は、電子顕微鏡像の計測による顕微鏡法によって測定される。

[0041]

次に、本発明に係る金属酸化物微粒子の製造方法についてより具体的な例を説明する。 【0042】

本発明に係る金属酸化物微粒子の製造方法の一例としては、気体状の有機金属化合物と、酸化性物質とを混合し、混合物を燃焼させて金属酸化物微粒子を製造する方法がある。

[0043]

このような方法で金属酸化物微粒子を製造するより具体的な方法としては、例えば図1 に示すような装置で行う方法がある。

[0044]

図1は、本発明に係る金属酸化物微粒子の製造方法に用いられる製造装置の一例を示す

概念図である。

[0045]

有機金属化合物は加熱気化器6にあらかじめセットされ、そこで気化され、有機金属化合物は、2のキャリアガスがマスフローコントローラ4bを通じて定量的に加熱気化器6に供給されることにより、定量的に管状電気炉8に供給される。1の酸化性物質は、マスフローコントローラ4aを通じて定量的に予熱器5に供給され、予熱された酸化性物質は、定量的に管状電気炉8に供給される。有機金属化合物を2種用いる場合には、加熱気化器6に2種の有機金属化合物を入れてもよく、加熱気化器7を用いて気化した有機金属化合物を3のキャリアガスにより管状電気炉8に供給してもよい。

[0046]

管状電気炉8に供給され、酸化性物質と混合された気体状の有機金属化合物は、燃焼することにより金属酸化物微粒子を生成する。生成した金属酸化物微粒子は、捕集器9で捕集される。

[0047]

本発明に係る金属酸化物微粒子の製造方法の他の例としては、有機金属化合物の溶液と、酸化性物質とを混合し、混合物を加熱して気体状とした後、該気体状の混合物を燃焼させて金属酸化物微粒子を得る方法がある。

[0048]

この方法では、例えば有機金属化合物の溶液と、酸化性物質との混合物を、管状電気炉等の燃焼装置に定量的に供給(例えば、スプレー法)する。この混合物は、燃焼装置内で加熱され、気体状となり、該気体状の混合物が燃焼することにより金属酸化物微粒子が生成する。生成した金属酸化物微粒子は、例えば捕集器で捕集される。

[0049]

なお、2種以上の有機金属化合物を用いる場合には、1種の有機金属化合物を含む溶液 2種以上をそれぞれ個別に加熱分解装置に供給してもよく、2種以上の有機金属化合物を 含む溶液を加熱分解装置に供給してもよい。

[0050]

本発明に係る金属酸化物微粒子の製造方法の他の例としては、有機金属化合物の溶液を 気化させた気体状の有機金属化合物を含む蒸気と、酸化性物質とを混合し、混合物を加熱 して該気体状の有機金属化合物を燃焼して金属酸化物微粒子を得る方法がある。

[0051]

このような方法で金属酸化物微粒子を製造するより具体的な方法としては、例えば図2に示すような装置で行う方法がある。

[0052]

図2は、本発明に係る金属酸化物微粒子の製造方法に用いられる製造装置の他の例を示す概念図である。

[0053]

10の有機金属化合物の溶液は、定量ポンプ11を通じて定量的に加熱気化器7に供給され、ここで気化される。また、加熱気化器7で気化された気体状の有機金属化合物を含む蒸気は、2のキャリアガスがマスフローコントローラ4eを通じて定量的に加熱気化器7に供給されることにより、定量的に管状電気炉8に供給される。1の酸化性物質は、マスフローコントローラ4dを通じて定量的に予熱器12aに供給され、予熱された酸化性物質は、定量的に管状電気炉8に供給される。有機金属化合物を2種用いる場合には、10の有機金属化合物の溶液として、2種以上の有機金属化合物を含む溶液を用いてもよく、有機金属化合物の溶液を気化して管状電気炉8に供給する手段を複数設けてもよい。

[0054]

管状電気炉8に供給され、酸化性物質と混合された気体状の有機金属化合物は、燃焼することにより金属酸化物微粒子を生成する。生成した金属酸化物微粒子は、捕集器9で捕集される。

[0055]

上述した例では燃焼装置として管状電気炉が用いられているが、本発明では気体状の有機金属化合物を燃焼させることができる装置であれば特に限定されない。

[実施例]

[0056]

以下実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に制限されるものではない。

[0057]

なお、金属酸化物微粒子の数平均粒径の測定は、顕微鏡法により行った。

【実施例1】

[0058]

図1に示すような装置を用いて金属酸化物微粒子を製造した。

[0059]

230℃に加熱した気化器 (6) にY (DPM) 390.5g、Eu (DPM) 32.63gおよびメタノール 217gの混合溶液を4ml/minの流速で導入、気化した。管状電気炉 (8) での燃焼温度を800℃とした。230℃に加熱した空気 (1) を33.31/minの量で流し、気体状のY (DPM) 3、Eu (DPM) 3およびメタノールと、空気とを管状電気炉 (8) に供給した。燃焼時間は3秒であり、供給した空気中の酸素量は β -ジケトネート金属錯体 (Y (DPM) 3、Eu (DPM) 3)およびメタノールを完全酸化するのに必要な酸素量の1.5倍モルの量であった。その結果捕集器 (9) に捕集されたY2O3:Eu赤色蛍光体微粒子の収率は90%であった。また、Y2O3:Eu微粒子の平均粒径10nmであった。

【実施例2】

[0060]

図1に示すような装置を用いて金属酸化物微粒子を製造した。

[0061]

230℃に加熱した気化器 (6) にY (DPM) 349.5g、Gd (DPM) 29.5g、Eu (DPM) 2.18gおよびメタノール188gの混合溶液を4ml/minの流速で導入、気化した。管状電気炉 (8) での燃焼温度を800℃とした。230℃に加熱した空気 (1) を33.31/minの量で流し、気体状のY (DPM) 3、Gd (DPM) 3、Eu (DPM) 3およびメタノールと、空気とを管状電気炉 (8) に供給した。燃焼時間は3秒であり、供給した空気中の酸素量は β -ジケトネート金属錯体 (Y (DPM) 3、Gd (DPM) 3、Eu (DPM) 3)およびメタノールを完全酸化するのに必要な酸素量の1.5倍モルの量であった。その結果捕集器 (9) に捕集された (Y, Gd) 2 O3:Eu赤色蛍光体微粒子の収率は91%であった。また、 Y_2O_3 :Eu微粒子の平均粒径10nmであった。

【実施例3】

[0062]

図1に示すような装置を用いて金属酸化物微粒子を製造した。

[0063]

230℃に加熱した気化器 (6) にY (DPM) $_3$ 92.7g、Tb (DPM) $_3$ 1.03gおよびメタノール 218gの混合溶液を4ml/minの流速で導入、気化した。管状電気炉 (8) での燃焼温度を800℃とした。230℃に加熱した空気 (1) を33.31/minの量で流し、気体状のY (DPM) $_3$ 、Tb (DPM) $_3$ およびメタノールと、空気とを管状電気炉 (8) に供給した。燃焼時間は3秒であり、供給した空気中の酸素量は β -ジケトネート金属錯体 (Y (DPM) $_3$ 、Tb (DPM) $_3$)およびメタノールを完全酸化するのに必要な酸素量の1.5倍モルの量であった。その結果捕集器 (9) に捕集されたY $_2$ O $_3$: Tb 緑色蛍光体微粒子の収率は91%であった。また、Y $_2$ O $_3$: Tb 微粒子の平均粒径10nmであった。

【実施例4】

[0064]

図1に示すような装置を用いて金属酸化物微粒子を製造した。

[0065]

230℃に加熱した気化器 (6) に Z n (a c a c), 39.2 g、テトラエトキシシラン 15.5 g、Mn (DPM), 0.63 gおよびメタノール 498 gの混合溶液を4ml/minの流速で導入、気化した。管状電気炉 (8) での燃焼温度を800℃とした。230℃に加熱した空気 (1) を33.3 l/minの量で流し、気体状のZ n (a c a c), テトラエトキシシラン、Mn (DPM),およびメタノールと、空気とを管状電気炉 (8) に供給した。燃焼時間は3秒であり、供給した空気中の酸素量はZ n (a c a c), テトラエトキシシラン、Mn (DPM),およびメタノールを完全酸化するのに必要な酸素量の1.5倍モルの量であった。その結果捕集器 (9) に捕集されたZ n, Z i O4: Mn緑色蛍光体微粒子の収率は81%であった。また、Z n, Z i O4: Mn微粒子の平均粒径50 nmであった。

【実施例5】

[0066]

図1に示すような装置を用いて金属酸化物微粒子を製造した。

[0067]

230℃に加熱した気化器 (6) に In (acac), 47.1g、Sn (DPM), 2.78g、acac・H 449gの混合溶液を4ml/minの流速で導入、気化した。管状電気炉(8)での燃焼温度を800℃とした。230℃に加熱した空気(1)を40.01/minの量で流し、気体状の In (acac), Sn (DPM), およびacac・Hと、空気とを管状電気炉(8)に供給した。燃焼時間は3秒であり、供給した空気中の酸素量は In (acac), Sn (DPM), およびacac・Hを完全酸化するのに必要な酸素量の1.5倍モルの量であった。その結果捕集器(9)に捕集された酸化錫添加酸化インジウム導電体微粒子の収率は88%であった。また、酸化錫添加酸化インジウム 微粒子の平均粒径50nmであった。

【実施例6】

[0068]

図1に示すような装置を用いて金属酸化物微粒子を製造した。

[0069]

230℃に加熱した気化器 (6) にBa (DPM), 43.2g、チタンテトライソプロボキシド 24.4gおよびメタノール 270gの混合溶液を4ml/minの流速で導入、気化した。管状電気炉(8) での燃焼温度を800℃とした。230℃に加熱した空気(1)を33.3l/minの量で流し、気体状のBa (DPM), チタンテトライソプロボキシドおよびメタノールと、空気とを管状電気炉(8) に供給した。燃焼時間は3秒であり、供給した空気中の酸素量はBa (DPM), チタンテトライソプロボキシドとメタノールを完全酸化するのに必要な酸素量の1.5倍モルの量であった。その結果捕集器 (9) に捕集されたチタン酸バリウム微粒子の収率は87%であった。また、チタン酸バリウム微粒子の平均粒径30nmであった。

【図面の簡単な説明】

[0070]

【図1】本発明に係る金属酸化物微粒子の製造方法に用いられる製造装置の一例を示す概念図である。

【図2】本発明に係る金属酸化物微粒子の製造方法に用いられる製造装置の他の例を示す概念図である。

【図3】実施例1で得られた赤色蛍光体微粒子の電子顕微鏡写真である。

【符号の説明】

[0071]

- 1 … 酸化性物質
- 2 … キャリアガス
- 3 … キャリアガス
- 4a、4b、4c、4d … マスフローコントローラ
- 5 … 予熱器
- 6 … 加熱気化器 7 … 加熱気化器
- 8 … 管状電気炉 (燃焼装置)
- 9 … 捕集器
- 10 ... 溶液
- 11 ... 定量ポンプ
- 12a、12b … 予熱器

Takashi TANI, et al PRODUCTION METHOD OF FINE..... May 3., 2004 Sheldon I. Landsman (202) 293-7060 P81296 I of 1

【書類名】図面 【図1】

【図2】

【図3】

