Ideation Phase

Literature Review

Date	20 September 2022
Team ID	PNT2022TMID46718
Project Name	Al-powered Nutrition Analyzer for Fitness Enthusiasts

Paper / Title	Author	Year	Objective	Proposed Technique	Limitations/ Improvements
EVIDENCE-BASED DEVELOPMENT OF A MOBILE TELEPHONE FOOD RECORD FOOD IMAGE ANALYSIS AND DIETARY ASSESSMENT VIA DEEP MODEL	Bethany L Six, TusaRebecca E Schap, Anand Mariappan,	2011	(1) to test whether participants' proficiency with the mpFR improved after training and repeated use, and (2) to measure changes in perceptions regarding use of the mpFR after training and repeated use. To design and implement a system for food image analysis - output the amount of nutritional ingredients of each food items from daily captured images. A	1) Image Segmentation 2) Volume Estimation 3) FNDDS Indexing Nutrient Info Extract the regions of interests (ROIs) by applying the Region Proposal Network derived from the Faster R-CNN model. Apply Convolutional Neural Network	Needs to accommodate the lifestyles of its users to ensure useful images and continuous use throughout the day or multiple days. To provide a healthy diet, an automatic diet calculator.
			thorough dietary assessment report will be generated based on what you have during the meal.	(CNN) on selected Rols and classify them into different food item categories. A regression module is also used to locate the food coordinates in the image.	

	ı			T	
AUTOMATIC FRUIT	Jimenez A, Jain	1999	To recognize spherical	Two images represent	Cannot work with
RECOGNITION: A	A, Ceres R, Pons		fruits in different	the azimuth and	low resolution
SURVEY AND NEW	J.		situations such as	elevation angles the	images.
RESULTS USING			shadows, bright areas,	attenuation is	
RANGE/ATTENUATION			occlusions and	in <i>ATTE</i> (<i>x, y</i>) and the	
IMAGES			overlapping fruits.	reflectance	
				image <i>REFL(x, y)</i> . The	
				image analysis	
				process uses the	
				images obtained from	
				the scanner to detect	
				the position of the	
				fruits by thresholding	
				and clustering.	
DEEPFOOD: DEEP	Chang Liu, Yu	2016	To propose a new CNN	A new architecture	The inference time
LEARNING-BASED	Cao, Yan Luo,		architecture for food	was proposed based	is extremely long
FOOD IMAGE	Guanling Chen,		image recognition and	on the backbones of	for even a single
RECOGNITION FOR	Vinod		apply benchmark on	LeNet, AlexNet and	image and hence
COMPUTER-AIDED	Vokkarane, and		UEC-256 and Food-101	GoogleNet. After	not feasible to
DIETARY ASSESSMENT	Yunsheng Ma			convolutions, it was	deploy in real time
				followed by sub-	
				sampling to reduce	
				dimensions and FC	
				layers.	
DEEP-LEARNING-	Ying-Chieh Liu	2022	To integrate ML	Adopted EfficientDet-	Yet to be
ASSISTED MULTI-DISH			innovations of a	D1 with EfficientNet-	integrated with a
FOOD RECOGNITION			realistic mobile health	B1 as the backbone.	mobile app or web
APPLICATION FOR			application using	EfficientDet detector	application.
DIETARY INTAKE			mobile ICT and AI	architecture	
REPORTING			technology to allow	with EfficientNet was	
			people to report their	selected	
			dietary intake easily		
			and accurately under		
			real conditions.		