

Transformers – Part 2

DL4DS – Spring 2025

Recap From Part 1

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

3 Types of Transformer Models

- 1. Encoder transforms text embeddings into representations that support variety of tasks (e.g. sentiment analysis, classification)
 - ❖ Model Example: BERT
- Decoder predicts the next token to continue the input text (e.g. ChatGPT, AI assistants)
 - ❖ Model Example: GPT4, GPT4
- 3. Encoder-Decoder used in sequence-to-sequence tasks, where one text string is converted to another (e.g. machine translation)

Encoder Model Example: BERT (2019)

<u>B</u>idirectional <u>E</u>ncoder <u>R</u>epresentations from <u>T</u>ransformers

- Hyperparameters
 - 30,000 token vocabulary
 - 1024-dimensional word embeddings
 - 24x transformer layers
 - 16 heads in self-attention mechanism
 - 4096 hidden units in middle of MLP
- ~340 million parameters
- Pre-trained in a self-supervised manner,
- then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

Encoder Pre-Training

Special <cls> token used for aggregate sequence representation for classification

- A small percentage of input embedding replaced with a generic <mask>
 token
- Predict missing token from output embeddings
- Added linear layer and softmax to generate probabilities over vocabulary
- Trained on BooksCorpus (800M words) and English Wikipedia (2.5B words)

Encoder Fine-Tuning

Sentiment Analysis

Named Entity Recognition (NER)

- Extra layer(s) appended to convert output vectors to desired output format
- 3rd Example: Text span prediction -- predict start and end location of answer to a question in passage of Wikipedia, see https://rajpurkar.github.io/SQuAD-explorer/

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

Decoder Model Example: GPT3 (2020) *Generative Pre-trained Transformer*

- One purpose: generate the next token in a sequence
- By constructing an autoregressive model

Decoder Model Example: GPT3 (2020) *Generative Pre-trained Transformer*

- One purpose: generate the next token in a sequence
- By constructing an autoregressive model
- Factors the probability of the sentence:

```
Pr(Learning deep learning is fun) =
Pr(Learning) × Pr(deep | learning) ×
Pr(learning | Learning deep) ×
Pr(is | Learning deep learning) ×
Pr(fun|Learning deep learning is)
```

Decoder Model Example: GPT3 (2020) *Generative Pre-trained Transformer*

- One purpose: generate the next token in a sequence
- By constructing an autoregressive model
- Factors the probability of the sentence:

```
Pr(Learning deep learning is fun) =
Pr(Learning) × Pr(deep | learning) ×
Pr(learning | Learning deep) ×
Pr(is | Learning deep learning) ×
Pr(fun | Learning deep learning is)
```

More formally: Autoregressive model_N

$$Pr(t_1, t_2, ..., t_N) = Pr(t_1) \prod_{n=2} Pr(t_n | t_1, t_2, ..., t_{n-1})$$

Decoder: Masked Self-Attention

- During training we want to maximize the log probability of the input text under the autoregressive model
- We want to make sure the model doesn't "cheat" during training by looking ahead at the next token
- Hence we mask the self attention weights corresponding to current and right context to negative infinity

Masked Self-Attention

Mask right context self-attention weights to zero

Masked Self-Attention a) Ь) Attention weights Attentions products \mathbf{x}_{1} \mathbf{x}_2 \mathbf{x}_3 $\mathbf{q}_3^T\mathbf{k}_1$ Inputs $\mathsf{a}[\mathbf{x}_3',\mathbf{x}_1]$ $oldsymbol{\Omega}_k$ $\mathsf{a}[\mathbf{x}_3,\mathbf{x}_1$

Generated

Decoder: Training Process – Teacher Forcing

- During training we compute loss between ground truth label input and generated output
- We do not feed output back to input → "Teacher Forcing"

Decoder: Text Generation (Generative AI)

Generate next token for the sequence by some strategy

Decoder: Text Generation (Generative AI)

Feed the output back into input

Decoder: Text Generation (Generative AI)

Feed the output back into input

- Motivation
- Dot-product self-attention
- Applying Self-Attention
- The Transformer Architecture
- Three Types of NLP Transformer Models
 - Encoder
 - Decoder
 - Encoder-Decoder

Encoder-Decoder Model

• Used for machine translation, which is a sequence-to-sequence task

Encoder Decoder Model

- The transformer layer in the decoder of the encoder-decoder model has an extra stage
- (As opposed to a standalone decoder i.e. GPT)
- Attends to the input of the encoder with cross attention using Keys and Values from the output of the encoder
- Shown here on original diagram from "Attention is all you need" paper

Encoder Decoder Model Training

- Target translation is fed to the decoder
- "Teacher forcing" is used, in that, regardless of decoder output, the correct word is provided the decoder

Encoder Decoder Model Inference

• TODO: Show inference progression

Cross-Attention

Keys and Values come from the last stage of the encoder

slido

Which model flavor do you use for Named Entity Recognition?

slido

Which model flavor do you use for language translation?

slido

Which model flavor do you use for generating text, question answering, Al assistant?

Next Token Selection

Recall: output is a $|\mathcal{V}| \times 1$ vector of probabilities

 How should we pick the next token in decoder and encoder-decoder models?

Trade off between accuracy and diversity

Probability of target token

Next Token Selection

Recall: output is a $|\mathcal{V}| \times 1$ vector of probabilities

- Greedy selection
- Top-K
- Nucleus
- Beam search

Probability of target token

Next Token Selection – Greedy

Pick most likely token (greedy)

Probability of target token

Simple to implement. Just take the max().

$$\hat{y}_t = rgmax_{w \in \mathcal{V}} \left[Pr(y_t = w | \hat{\mathbf{y}}_{< t}, \mathbf{x}, oldsymbol{\phi})
ight]$$

Might pick first token y_0 , but then there is no y_1 where $Pr(y_1|y_0)$ is high.

Result is generic and predictable. Same output for a given input context.

Next Token Selection -- Sampling

Sample from the probability distribution

Probability of target token

Get a bit more diversity in the output

Will occasionally sample from the long tail of the distribution, producing some unlikely word combinations

Next Token Selection – Top K Sampling

- Probability of target token
- zeta zero : : : abacus aardvark

- 1. Generate the probability vector as usual
- 2. Sort tokens by likelihood
- 3. Discard all but top k most probable words
- 4. Renormalize the probabilities to be valid probability distribution (e.g. sum to 1)
- 5. Sample from the new distribution

Diversifies word selection

Depends on the distribution. Could be low variance, reducing diversity

Next Token Selection – Nucleus Sampling

Probability of target token

Instead of keeping top-k, keep the top p percent of the probability mass.

Choose from the smallest set from the vocabulary such that

$$\sum_{w \in V^{(p)}} P(w|\mathbf{w}_{< t}) \ge p.$$

Diversifies word selection with less dependence on nature of distribution.

Depends on the distribution. Could be low variance, reducing diversity

Next Token Selection — Beam Search

Commonly used in *machine* translation

Maintain multiple output choices and then choose best combinations later via tree search

 $V = \{yes, ok, <eos>\}$

We want to maximize $p(t_1, t_2, t_3)$.

Greedy: $0.5 \times 0.4 \times 1.0 = 0.20$

Optimal: $0.4 \times 0.7 \times 1.0 = 0.28$

Next Token Selection – Beam Search

But we can't exhaustively search the entire vocabulary Keep k tokens (beam width) at each step

Next Token Selection – Beam Search

Next Token Selection – Beam Search

Calculated with *log* probabilities

and add

Next Token Selection

- Greedy selection
- Top-K
- Nucleus
- Beam search

Jupyter notebook exploring each of these will be assigned after spring break

Transformers for Long Sequences

Context Length of LLMs

Large Language Model Context Size

Model	Context Length
Llama 2	32K
GPT4	32K
GPT-4 Turbo	128K
Claude 2.1	200K

www.cobusgreyling.com

Attention Matrix

Scales quadratically with sequence length N, e.g. N².

Masked Attention

~1/2 the interactions but still scales quadratically

Use Convolutional Structure in Attention

Dilated Convolutional Structures

Have some tokens interact globally

Tokenization and Word Embedding

NLP Preprocessing Pipeline

Transformers don't work on character string directly, but rather on vectors.

The character strings must be converted to vectors

Preprocessing: Tokenization and Embedding

Tokenizer

Tokenizer chooses input "units", e.g. words, sub-words, characters via tokenizer training

In tokenizer training, commonly occurring substrings are greedily merged based on their frequency, starting with character pairs

Tokenization Issues

"A lot of the issues that may look like issues with the neural network architecture actually trace back to tokenization. Here are just a few examples" – Andrej Karpathy

- Why can't LLM spell words? Tokenization.
- Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
- Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
- Why is LLM bad at simple arithmetic? Tokenization.
- Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
- Why did my LLM abruptly halt when it sees the string "<| endoftext|>"? Tokenization.
- What is this weird warning I get about a "trailing whitespace"? Tokenization.
- Why did the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
- Why should I prefer to use YAML over JSON with LLMs? Tokenization.
- Why is LLM not actually end-to-end language modeling? Tokenization.
- What is the real root of suffering? Tokenization.

Unicode Standard and UTF-8

- Unicode variable length character encoding standard. currently defines 149,813 characters and 161 scripts, including emoji, symbols, etc.
- Unicode Codepoint can represent up to $17 \times 2^{16} = 1,114,112$ entries. e.g. U+0000 U+10FFFF in hexadecimal
- Unicode Transformation Standard (e.g. UTF-8) is a variable length encoding using one to four bytes
 - First 128 chars same as ASCII

Code p	oint ↔	UTF-8	conve	rsion
--------	--------	-------	-------	-------

First code point	Last code point	Byte 1	Byte 2	Byte 3	Byte 4
U+00 <mark>0</mark> 0	U+00 7 F	0xxxxxx			
U+00 <mark>8</mark> 0	U+07FF	110xxxxx	10xxxxx		
U+0800	U+FFFF	1110xxxx	10xxxxxx	10xxxxx	
U+010000	^[b] U+10FFFF	11110xxx	10xxxxx	10xxxxxx	10xxxxx

Covers ASCII

Covers remainder of almost all Latin-script alphabets

Basic Multilingual Plane including Chinese, Japanese and Korean characters

Emoji, historic scripts, math symbols

Tokenizer

Two common tokenizers:

- Byte Pair Encoding (BPE) Used by OpenAI GPT2, GPT4, etc.
 - The BPE algorithm is "byte-level" because it runs on UTF-8 encoded strings.
 - This algorithm was popularized for LLMs by the <u>GPT-2 paper</u> and the associated GPT-2 <u>code release</u> from OpenAI. <u>Sennrich et al. 2015</u> is cited as the original reference for the use of BPE in NLP applications. Today, all modern LLMs (e.g. GPT, Llama, Mistral) use this algorithm to train their tokenizers.*

sentencepiece

• (e.g. Llama, Mistral) use <u>sentencepiece</u> instead. Primary difference being that sentencepiece runs BPE directly on Unicode code points instead of on UTF-8 encoded bytes.

BPE Pseudocode

Initialize vocabulary with individual characters in the text and their frequencies

While desired vocabulary size not reached:

Identify the most frequent pair of adjacent tokens/characters in the vocabulary

Merge this pair to form a new token

Update the vocabulary with this new token

Recalculate frequencies of all tokens including the new token

Return the final vocabulary

Enforce a Token Split Pattern

- Do not allow tokens to merge across certain characters or patterns
- Common contraction endings: 'll, 've, 're
- Match words with a leading space
- Match numeric sequences
- carriage returns, new lines

GPT4 Tokenizer

Tiktokenizer

a sailor went to sea sea sea
to see what he could see see see
but all that he could see see see
was the bottom of the deep blue sea sea

cl100k_base is the GPT4 tokenizer

[64, 93637, 4024, 311, 9581, 9581, 9581, 198, 99 8, 1518, 1148, 568, 1436, 1518, 1518, 1518, 198, 8248, 682, 430, 568, 1436, 1518, 1518, 1518, 1518, 16514, 279, 5740, 315, 279, 5655, 6437, 9581, 958 1, 9581]

✓ Show whitespace

GPT2 Tokenizer

Tiktokenizer

```
class Tokenizer:
    """Base class for Tokenizers"""

    def __init__(self):
        # default: vocab size of 256 (all bytes), no merges,
no patterns
        self.merges = {} # (int, int) -> int
        self.pattern = "" # str
        self.special_tokens = {} # str -> int, e.g.
{'<|endoftext|>': 100257}
        self.vocab = self._build_vocab() # int -> bytes
```

You can see some issues with the GPT2 tokenizer with respect to python code

```
gpt2 ≎
```

Token count 146

```
class·Tokenizer:\n
...."""Base·class·for·Tokenizers"""\n
\n
....def·__init__(self):\n
.....#·default:·vocab·size·of·256·(all·bytes),·no·m
erges,·no·patterns\n
.....self.merges·=-{}·#·(int,·int)·->·int\n
.....self.pattern·=-""'-#·str\n
.....self.special_tokens·=-{}·#·str·->·int,·e.g.·
{'<|endoftext|>':·100257}\n
.....self.vocab·=-self._build_vocab()·#·int·->·byte
```

GPT4 Tokenizer

Tiktokenizer

```
class Tokenizer:
    """Base class for Tokenizers"""

def __init__(self):
    # default: vocab size of 256 (all bytes), no merges,
no patterns
    self.merges = {} # (int, int) -> int
    self.pattern = "" # str
    self.special_tokens = {} # str -> int, e.g.
{'<|endoftext|>': 100257}
    self.vocab = self._build_vocab() # int -> bytes
```

Issues are improved with GPT4 tokenizer

```
Token count
96

class·Tokenizer:\n
...."""Base·class·for·Tokenizers"""\n
\n
....def·__init__(self):\n
.....#·default:·vocab·size·of·256·(all·bytes),·no·m
erges,·no·patterns\n
.....self.merges·=·{}·#·(int,·int)·->·int\n
.....self.pattern·=·""'**str\n
.....self.special_tokens·=·{}·#·str·->·int,·e.g.·
{'<|endoftext|>':·100257}\n
.....self.vocab·=·self._build_vocab()·#·int·->·byte
s
```

[1058, 9857, 3213, 512, 262, 4304, 4066, 538, 369, 985
7, 12509, 15425, 262, 711, 1328, 2381, 3889, 726, 997,
286, 674, 1670, 25, 24757, 1404, 315, 220, 4146, 320,
543, 5943, 705, 912, 82053, 11, 912, 12912, 198, 286,
659, 749, 2431, 288, 284, 4792, 674, 320, 396, 11, 52
8, 8, 1492, 528, 198, 286, 659, 40209, 284, 1621, 674,
610, 198, 286, 659, 64308, 29938, 284, 4792, 674, 610,
1492, 528, 11, 384, 1326, 13, 5473, 100257, 1232, 220,
1041, 15574, 534, 286, 659, 78557, 284, 659, 1462, 595
7, 53923, 368, 674, 528, 1492, 5943]

Show whitespace

_	e 28	s	а	t	0	h		u	Ь	d	w	С	f	i	m	n	Р	r
33	28	15	12	11	8	6	6	4	3	3	3	2	1	1	1	1	1	1

- b) a_sailor_went_to_sea_sea_sea_
 to_see_what_he_could_see_see_see_
 but_all_that_he_could_see_see_see_
 was_the_bottom_of_the_deep_blue_sea_sea_sea_

 __ | e | se | a | t | o | h | | | u | b | d | w | c | s | f | i | m | n | p | r |
 33 | 15 | 13 | 12 | 11 | 8 | 6 | 6 | 4 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |
- C) a_sailor_went_to_sea_sea_sea_
 to_see_what_he_could_see_see_see_
 but_all_that_he_could_see_see_see_
 was_the_bottom_of_the_deep_blue_sea_sea_sea_

 __ | se | a | e_ | t | o | h | | u | b | d | e | w | c | s | f | i | m | n | p | r |
 21 | 13 | 12 | 12 | 11 | 8 | 6 | 6 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |

_ e s a t o h l u b d w c f i m n p r 33 28 15 12 11 8 6 6 4 3 3 3 2 1 1 1 1 1 1 1

```
b) a_sailor_went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

__ e | se | a | t | o | h | | u | b | d | w | c | s | f | i | m | n | p | r |
33 | 15 | 13 | 12 | 11 | 8 | 6 | 6 | 4 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |
```

_ e s a t o h l u b d w c f i m n p r 33 28 15 12 11 8 6 6 4 3 3 3 2 1 1 1 1 1 1 1

b) a_sailor_went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

___e_se_a_t_o_h | u b d w c s f i m n p r
33 15 13 12 11 8 6 6 4 3 3 3 2 2 1 1 1 1 1 1 1

C) a_sailor_went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

__ | se | a | e_ | t | o | h | | u | b | d | e | w | c | s | f | i | m | n | p | r

21 | 13 | 12 | 12 | 11 | 8 | 6 | 6 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1

```
_ e s a t o h l u b d w c f i m n p r 33 28 15 12 11 8 6 6 4 3 3 3 2 1 1 1 1 1 1 1
```

b) a_sailor_went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

__ | e | se | a | t | o | h | | | u | b | d | w | c | s | f | i | m | n | p | r |
33 | 15 | 13 | 12 | 11 | 8 | 6 | 6 | 4 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |

C) a_sailor_went_to_sea_sea_sea_
to_see_what_he_could_see_see_see_
but_all_that_he_could_see_see_see_
was_the_bottom_of_the_deep_blue_sea_sea_sea_

__ | se | a | e_ | t | o | h | | u | b | d | e | w | c | s | f | i | m | n | p | r

21 | 13 | 12 | 12 | 11 | 8 | 6 | 6 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1

Generally # of tokens increases and then starts decreasing after continuing to merge tokens

Learned Embeddings

- After the tokenizer, you have an updated "vocabulary" indexed by token ID
- Next step is to translate the token into an embedding vector
- Translation is done via a linear layer which is typically learned with the rest of the transformer model

```
self.embedding = nn.Embedding(vocab_size, embedding_dim)
```

Special layer definition, likely to exploit sparsity of input

Embeddings Output

In this example, we are assuming a token is simply a

"One hot encoding"

Token indices, T

So 30M parameters just for this matrix!

Next set of Jupyter Notebook assignments

- Not due till after break
- will likely release in the next day or two

- > self-attention
- > multi-head self-attention
- ▶ tokenization
- decoding strategies

After the break

- Image Transformers
- Multimodal Transformers
- RAG pattern
- Training and Fine-Tuning Transformers

• ...

Link

