Semaine du 06/05 au 10/05

1 Cours

Intégration

Intégration des fonctions en escalier Définition d'une fonction en escalier sur un segment, de son intégrale sur ce segment. Propriétés de l'intégrale : linéarité, positivité, croissance, relation de Chasles.

Intégration des fonctions continues par morceaux Définition d'une fonction continue par morceaux sur un segment. Approximation uniforme d'une fonction continue par morceaux par une fonction en escalier (hors-programme). Intégrale d'une fonction continue par morceaux. Propriétés de l'intégrale : linéarité, positivité, croissance, inégalité triangulaire, relation de Chasles. Une fonction **continue** et de signe constant admet une intégrale nulle sur [a, b] si et seulement si elle est nulle sur [a, b].

Calcul de primitives et d'intégrales Définition d'une primitive d'une fonction continue. Si f continue, $x \mapsto \int_a^x f(t)dt$ est l'unique primitive de f nulle en a. Deux primitives différent d'une constante. Si F est une primitive de f, $\int_a^b f(t)dt = F(b) - F(a)$. Intégration par parties. Changement de variables.

Approximation d'intégrales Sommes de Riemann et convergence.

Intégration des fonctions à valeurs complexes Intégrale d'une fonction continue par morceaux à valeurs complexes. Inégalité triangulaire.

Séries numériques

Généralités Définition, sommes partielles. Nature d'une série, somme. Si $\sum u_n$ converge, alors (u_n) converge vers 0. Divergence grossière. Nature et somme d'une série géométrique. Reste d'une série convergente. Opérations sur les séries.

Comparaison à une intégrale Encadrement de $\sum f(n)$ où f est monotone. Nature d'une série de Riemann.

Séries à termes positifs Une série à terme positif converge ou diverge vers $+\infty$. Si $0 \le u_n \le v_n$, lien entre la convergence ou la divergence des séries $\sum u_n$ et $\sum v_n$. Absolue convergence. La convergence absolue implique la convergence. Relations de comparaison : lien entre domination/négligeabilité/équivalence et convergence/divergence des séries.

2 Méthodes à maîtriser

- ▶ Majorer, minorer, encadrer une intégrale par croissance de l'intégrale ou inégalité triangulaire.
- ▶ Étudier une suite définie par des intégrales (souvent une IPP pour déterminer une relation de récurrence).
- ▶ Étudier une fonction définie par une intégrale à bornes variables (notamment calculer sa dérivée).
- ► Connaître les différentes techniques de calcul d'intégrales et de primitives.
- ► Reconnaître des sommes de Riemann.
- ▶ Établir la convergence d'une série et calculer sa somme par télescopage.
- ▶ Utiliser une décomposition en éléments simples pour déterminer par télescopage la somme d'une série $\sum F(n)$ où F est une fraction rationnelle.
- ▶ Utilisation de l'inégalité de Taylor-Lagrange pour prouver la convergence de séries.
- ► Comparer la somme partielle ou le reste d'une série à une intégrale (méthode des rectangles).
- ► Comparer à une série de Riemann ou une série géométrique pour déterminer la nature d'une série (inégalité, équivalent ou domination).
- ▶ Déterminer un équivalent de la somme partielle d'une série divergente ou du reste d'une série convergente par comparaison à une intégrale.

3 Questions de cours

- ▶ Lemme de Riemann-Lebesgue Soit f de classe \mathscr{C}^1 sur [a,b] à valeurs dans \mathbb{C} . Montrer que $\lim_{n \to +\infty} \int_a^b f(t)e^{int} dt = 0$.
- **▶** BCCP 05
 - 1. On considère la série de terme général $u_n = \frac{1}{n(\ln n)^{\alpha}}$ où $n \ge 2$ et $\alpha \in \mathbb{R}$.
 - (a) Cas $\alpha \ge 0$. En utilisant une minoration très simple de u_n , démontrer que la série diverge.
 - (b) Cas $\alpha > 0$. Étudier la nature de la série. Indication : on pourra utiliser la fonction $f: x \mapsto \frac{1}{x(\ln x)^{\alpha}}$.
 - 2. Déterminer la nature de la série

$$\sum_{n \ge 2} \frac{\left(e - \left(1 + \frac{1}{n}\right)^n\right) e^{\frac{1}{n}}}{(\ln(n^2 + n))^2}$$

Remarque. Dans le corrigé «officiel», le cas $\alpha > 0$ est traité à l'aide d'un théorème qui n'est pas au programme de première année. Mais ce cas a été traité en classe «à la main» via la méthode des rectangles lors de l'étude des séries de Bertrand (horsprogramme, je le rappelle).

▶ BCCP 07

- 1. Soient (u_n) et (v_n) deux suites de nombres réels positifs. On suppose que (u_n) et (v_n) sont non nulles à partir d'un certain rang. Montrer que si $u_n \sim v_n$, alors $\sum u_n$ et $\sum v_n$ sont de même nature.
- 2. Etudier la convergence de la série

$$\sum_{n \ge 2} \frac{((-1)^n + i) \ln(n) \sin(1/n)}{\sqrt{n+3} - 1}$$

- ► Constante γ d'Euler
 - 1. Montrer que la série $\sum_{n\geq 2} \frac{1}{n} \ln(n) + \ln(n-1)$ converge.
 - 2. En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

▶ Série exponentielle Soit $x \in \mathbb{R}$. Montrer que la série $\sum_{n \in \mathbb{N}} \frac{x^n}{n!}$ converge et que sa somme vaut e^x à l'aide de l'inégalité de Taylor-Lagrange.