PREDICTIVE MODELING PROJECT REPORT

AHMED BASHA K 25-09-2022

Contents

Problem 1	(Linear Regression)	

- **1.1** The very first step of any data analysis assignment is to do the exploratory data analysis (EDA). Once you have understood the nature of all the variables, identified the response and the predictors, apply appropriate methods to determine whether there is any duplicate observation or missing data and whether the variables have symmetric or skewed distribution. Note that data may contain various types of attributes and numerical and/or visual data summarization techniques need to be appropriately decided. Both univariate and bivariate analyses and pre-processing of data are important. Check for outliers and comment on removing or keeping them while model building. Since this is a regression problem, the dependence of the response on the predictors needs to be thoroughly investigated.
- **1.2** Use the Pre-processed <u>Full Data</u> to develop a model to identify significant predictors. Check whether the proposed model is free of multicollinearity. Apply variable selection method as required. Show all intermediate models leading to the final model. Justify your choice of the final model. Which are the significant predictors?
- **1.3** Alternatively, if prediction accuracy of the price is the <u>only</u> objective, then you may want to divide the data into a training and a test set, chosen randomly, and use the training set to develop a model and test set to validate your model. Use the models developed in Part (2) to compare accuracy in training and test sets. Compare the final model of Part (2) and the proposed one in Part (3). Which model provides the most accurate prediction? If the model found in Part (2) is different from the proposed model in Part (3), give an explanation.

Problem 2(Logistic Regression and LDA)	
--	--

- **2.1** The very first step of any data analysis assignment is to do the exploratory data analysis (EDA). Once you have understood the nature of all the variables, identified the response and the predictors, apply appropriate methods to determine whether there is any duplicate observation or missing data and whether the variables have symmetric or skewed distribution. Note that data may contain various types of attributes and numerical and/or visual data summarization techniques need to be appropriately decided. Both univariate and bivariate analyses and pre-processing of data are important. Check for outliers and comment on removing or keeping them while model building. Since this is a regression problem, the dependence of the response on the predictors needs to be thoroughly investigated.
- **2.2** Use the Pre-processed <u>Full Data</u> to develop a model to identify significant predictors. Check whether the proposed model is free of multicollinearity. Apply variable selection method as required. Show all intermediate models leading to the final model. Justify your choice of the final model. Which are the significant predictors?
- **2.3** Alternatively, if prediction accuracy of the price is the <u>only</u> objective, then you may want to divide the data into a training and a test set, chosen randomly, and use the training set to develop a model and test set to validate your model. Use the models developed in Part (2) to compare accuracy in training and test sets. Compare the final model of Part (2) and the proposed one in Part (3). Which model provides the most accurate prediction? If the model found in Part (2) is different from the proposed model in Part (3), give an explanation.

Problem 1: Linear Regression

You are hired by a company named Gem Stones Co Ltd, which is a cubic zirconia manufacturer. You are provided with the dataset containing the prices and other attributes of approximately 27,000 pieces of cubic zirconia (which is an inexpensive synthesized diamond alternative with similar qualities of a diamond).

Your objective is to accurately predict prices of the zircon pieces. Since the company profits at a different rate at different price levels, for revenue management, it is important that prices are predicted as accurately as possible. At the same time, it is important to understand which of the predictors are more important in determining the price.

The data dictionary is given below.

Data Dictionary:

Variable Name	Description
Carat	Carat weight of the cubic zirconia.
Cut	Describe the cut quality of the cubic zirconia. Quality is increasing order Fair, Good, Very Good, Premium, Ideal.
Colour	Colour of the cubic zirconia. With D being the best and J the worst.
Clarity	Clarity refers to the absence of the Inclusions and Blemishes. (In order from Best to Worst in terms of avg price) IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1
Depth	The Height of cubic zirconia, measured from the Culet to the table, divided by its average Girdle Diameter.
Table	The Width of the cubic zirconia's Table expressed as a Percentage of its Average Diameter.
Price	the Price of the cubic zirconia.
X	Length of the cubic zirconia in mm.
Y	Width of the cubic zirconia in mm.
Z	Height of the cubic zirconia in mm.

The data is given in the File " cubic zirconia.csv" As shown below.

	Unnamed: 0	carat	cut	color	clarity	depth	table	x	у	z	price
0	1	0.30	Ideal	E	SI1	62.1	58.0	4.27	4.29	2.66	499
1	2	0.33	Premium	G	IF	60.8	58.0	4.42	4.46	2.70	984
2	3	0.90	Very Good	Е	VVS2	62.2	60.0	6.04	6.12	3.78	6289
3	4	0.42	Ideal	F	VS1	61.6	56.0	4.82	4.80	2.96	1082
4	5	0.31	Ideal	F	VVS1	60.4	59.0	4.35	4.43	2.65	779
•••									•••		
26962	26963	1.11	Premium	G	SI1	62.3	58.0	6.61	6.52	4.09	5408
26963	26964	0.33	Ideal	Н	IF	61.9	55.0	4.44	4.42	2.74	1114
26964	26965	0.51	Premium	E	VS2	61.7	58.0	5.12	5.15	3.17	1656
26965	26966	0.27	Very Good	F	VVS2	61.8	56.0	4.19	4.20	2.60	682
26966	26967	1.25	Premium	J	SI1	62.0	58.0	6.90	6.88	4.27	5166

26967 rows x 11 columns

1. Exploratory Data Analysis for

The very first step of any data analysis assignment is to do the exploratory data analysis (EDA). Once you have understood the nature of all the variables, identified the response and the predictors, apply appropriate methods to determine whether there is any duplicate observation or missing data and whether the variables have a symmetric or skewed distribution. Note that data may contain various types of attributes and numerical and/or visual data summarization techniques need to be appropriately decided. Both univariate and bivariate analyses and preprocessing of data are important. Check for outliers and comment on removing or keeping them while model building. Since this is a regression problem, the dependence of the response on the predictors needs to be thoroughly investigated.

Exploratory Data Analysis:

HEAD

	Unnamed: 0	carat	cut	color	clarity	depth	table	X	y	z	price
0	1	0.30	Ideal	Е	SI1	62.1	58.0	4.27	4.29	2.66	499
1	2	0.33	Premium	G	IF	60.8	58.0	4.42	4.46	2.70	984
2	3	0.90	Very Good	Е	VVS2	62.2	60.0	6.04	6.12	3.78	6289
3	4	0.42	Ideal	F	VS1	61.6	56.0	4.82	4.80	2.96	1082
4	5	0.31	Ideal	F	VVS1	60.4	59.0	4.35	4.43	2.65	779

SHAPE OF THE DATA:

Number of rows: 26967Number of columns: 10

INFO OF THE DATA:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26967 entries, 0 to 26966
Data columns (total 10 columns):

Daca	COTAMILE	(cocar ro coramir	υ, .
#	Column	Non-Null Count	Dtype
0	carat	26967 non-null	float64
1	cut	26967 non-null	object
2	color	26967 non-null	object

1 cut 26967 non-null object
2 color 26967 non-null object
3 clarity 26967 non-null object
4 depth 26270 non-null float64
5 table 26967 non-null float64
6 x 26967 non-null float64
7 y 26967 non-null float64
8 z 26967 non-null float64
9 price 26967 non-null int64

dtypes: float64(6), int64(1), object(3)

memory usage: 2.1+ MB

Descriptive Statistics:

	count	uniq ue	top	freq	mean	std	min	25 %	50%	75%	max
carat	26967 .0	NaN	Na N	NaN	0.798375	0.477745	0.2	0.4	0.7	1.05	4.5
cut	26967	5	Ide al	1081 6	NaN	NaN	Na N	Na N	NaN	NaN	NaN
color	26967	7	G	5661	NaN	NaN	Na N	Na N	NaN	NaN	NaN
clarit y	26967	8	SI1	6571	NaN	NaN	Na N	Na N	NaN	NaN	NaN
dept h	26270 .0	NaN	Na N	NaN	61.745147	1.41286	50.8	61.0	61.8	62.5	73.6
table	26967 .0	NaN	Na N	NaN	57.45608	2.232068	49.0	56.0	57.0	59.0	79.0

	count	uniq ue	top	freq	mean	std	min	25 %	50%	75%	max
x	26967 .0	NaN	Na N	NaN	5.729854	1.128516	0.0	4.71	5.69	6.55	10.23
y	26967 .0	NaN	Na N	NaN	5.733569	1.166058	0.0	4.71	5.71	6.54	58.9
z	26967 .0	NaN	Na N	NaN	3.538057	0.720624	0.0	2.9	3.52	4.04	31.8
price	26967 .0	NaN	Na N	NaN	3939.5181 15	4024.8646 66	326. 0	945. 0	2375.	5360. 0	18818

Unique value:

CUT : 5

Fair 781
Good 2441
Very Good 6030
Premium 6899
Ideal 10816

Name: cut, dtype: int64

COLOR: 7
J 1443
I 2771
D 3344
H 4102
F 4729
E 4917
G 5661

Name: color, dtype: int64

CLARITY: 8 I1 365 IF 894 VVS1 1839 VVS2 2531 4093 VS1 4575 SI2 6099 VS2 SI1 6571

Name: clarity, dtype: int64

Missing values:

carat	0
cut	0
color	0
clarity	0
depth 6	97
table	0
x	0
У	0
z	0
price	0
dtype: int64	

Duplicates values:

34

Univariate Analysis of Continuous and Categorical variables:

After treating the outliers:

Checking the spread of the data using count plot for the categorical variables.

Bivariate Analysis:

Correlation:

	carat	depth	table	X	y	Z	price
carat	1.000000	0.029433	0.187143	0.982387	0.981464	0.977508	0.936762
depth	0.029433	1.000000	-0.289357	-0.019848	-0.022884	0.095253	-0.001060
table	0.187143	-0.289357	1.000000	0.199061	0.193428	0.159380	0.137880
X	0.982387	-0.019848	0.199061	1.000000	0.998491	0.988168	0.912933
y	0.981464	-0.022884	0.193428	0.998491	1.000000	0.987841	0.914361
Z	0.977508	0.095253	0.159380	0.988168	0.987841	1.000000	0.905866
price	0.936762	-0.001060	0.137880	0.912933	0.914361	0.905866	1.000000

Comparison:

Depth vs Price

Z vs Price

Correlation plot:

The matrix clearly shows the presence of multi collinearity in the dataset.

Conclusion of EDA:

- Price This variable gives the continuous output with the price. This will be our Target Variable.
- Carat, depth, table, x, y, z variables are numerical or continuous variables.
- Cut, Clarity and colour are categorical variables.
- our study which leaves the shape of the dataset with 26967 rows & 10 Columns.
- Only in-depth 697missing values are present which we will impute by its median values.

2.Build various iterations of the Linear Regression model using appropriate variable selection techniques for the full data.

Use Full Data to develop a model to identify significant predictors. Check whether the proposed model is free of multicollinearity. Apply variable selection method as required. Show all intermediate models leading to the final model. Justify your choice of the final model. Which are the significant predictors?

Getting unique counts of all Objects.

```
cut
Ideal
              10805
              6886
Premium
Very Good
              6027
Good
              2435
               780
Fair
Name: cut, dtype: int64
color
      5653
G
E
     4916
     4723
н
     4095
D
     3341
I
     2765
     1440
Name: color, dtype: int64
clarity
         6565
SI1
VS2
        6093
SI2
        4564
        4087
VS1
VVS2
        2530
VVS1
        1839
         891
IF
         364
Name: clarity, dtype: int64
```

Converting objects to categorical codes:

	carat	cut	color	depth	table	X	y	z	price	clarity_0	clarity_1	clarity_2	clarity_3	clarity_4
0	0.30	2	1	62.1	58.0	4.27	4.29	2.66	499.0	0	0	0	1	0
1	0.33	2	2	60.8	58.0	4.42	4.46	2.70	984.0	1	0	0	0	0
2	0.90	1	1	62.2	60.0	6.04	6.12	3.78	6289.0	0	1	0	0	0
3	0.42	2	2	61.6	56.0	4.82	4.80	2.96	1082.0	0	0	1	0	0
4	0.31	2	2	60.4	59.0	4.35	4.43	2.65	779.0	0	1	0	0	0

Check for Multicollinearity:

```
carat VIF = 331.65
cut VIF = 331.65
color VIF = 331.65
clarity_0 VIF = 331.65
clarity_1 VIF = 331.65
clarity_2 VIF = 331.65
clarity_3 VIF = 331.65
clarity_4 VIF = 331.65
depth VIF = 331.65
table VIF = 331.65
x VIF = 331.65
y VIF = 331.65
z VIF = 331.65
```

Building a base model with all the features:

OLS Regre	ssion Res	ults						r		
Dep. V	/ariable:		p	rice		R-squ	ared:	0.930		
	Model:		C	DLS	Adj. R-squared:				0.930	
	Method:		Least Squa	res	F-statistic:				2.979e+04	
	Date:	Sa	t, 24 Sep 20	022	Prob	(F-stati	stic):		0.00	
	Time:		23:30	:09	Lo	g-Likelih	ood:	-2	2.2195e+05	
No. Obser	vations:		269	933			AIC:		4.439e+05	
Df Re	siduals:		269	920			BIC:		4.440e+05	
D	f Model:			12						
Covariano	се Туре:		nonrob	ust						
	C	oef	std err		t	P> t	[0	0.025	0.975]	
Intercept	1256.60)28	480.359	2	2.616 0.009		315.073		2198.132	
carat	8728.42	221	68.185	128	3.011	0.000	8594	4.776	8862.068	
cut	188.63	361	11.831	15	5.944	0.000	16	5.447	211.825	
color	-386.95	550	5.492	-70).452	0.000 -39		7.721	-376.189	
clarity_0	1642.92	248	98.277	16	6.717	0.000	1450	0.296	1835.554	
clarity_1	1408.16	692	96.554	14	1.584	0.000	1218	3.919	1597.420	
clarity_2	805.03	389	97.147	8	3.287	0.000	614	4.625	995.453	
clarity_3	-157.46	673	97.925	-1	1.608	0.108	-349	9.406	34.472	
clarity_4	-2442.06	629	105.584	-23	3.129	0.000	-2649	9.013	-2235.113	
depth	-14.87	724	7.634	-1	1.948	0.051	-29.836		0.092	
table	-25.54	186	3.032	-8	3.426	0.000	-3′	1.492	-19.605	

x	-1496	.6947	7 99.02		29 -15.114		00	-1690.796	-1302.593
у	1302	.7690 97.		.637	13.343	0.000		1111.396	1494.142
z	-282	.6023	23 82.2		-3.437	0.001		-443.767	-121.437
Omi	nibus:	5531	.122	Di	urbin-Wats	on:			2.015
Prob(Omnibus):		0	.000	Jarque-Bera (JB		JB):			16723.084
Skew:		1.	.065	Prob(J		JB):			0.00
Kurtosis:		6	.220		Cond.	No.			1.39e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.99e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Building 2nd iteration removing 'y' as p-value>0.05:

OLS Regression Results							
Dep. Variable:	price	R-squared:	0.930				
Model:	OLS	Adj. R-squared:	0.929				
Method:	Least Squares	F-statistic:	3.227e+04				
Date:	Sat, 24 Sep 2022	Prob (F-statistic):	0.00				
Time:	23:30:10	Log-Likelihood:	-2.2204e+05				
No. Observations:	26933	AIC:	4.441e+05				
Df Residuals:	26921	BIC:	4.442e+05				

Df Model:			1	1			
Covarianc	Covariance Type:		nonrobust				
	,	coef	std err	t	P> t	[0.025	0.975]
Intercept	3226.9	1665	458.599	7.037	0.000	2328.089	4125.843
carat	8781.2	:335	68.293	128.581	0.000	8647.375	8915.092
cut	159.8	8091	11.670	13.694	0.000	136.935	182.683
color	lor -387.7263		5.510	-70.365	0.000	-398.527	-376.926
clarity_0	2057.5587		93.541	21.996	0.000	1874.213	2240.904
clarity_1	1818.0	238	91.838	19.796	0.000	1638.017	1998.031
clarity_2	1207.1	.576	92.658	13.028	0.000	1025.544	1388.771
clarity_3	241.2	205	93.562	2.578	0.010	57.835	424.606
clarity_4	-2096.9	942	102.704	-20.418	0.000	-2298.299	-1895.689
depth	-44.3	476	7.332	-6.049	0.000	-58.718	-29.977
table	-32.2	164	3.001	-10.737	0.000	-38.098	-26.335
x	-396.0	711	54.976	-7.204	0.000	-503.827	-288.316
z	-0.3	495	79.718	-0.004	0.997	-156.601	155.902

Omnibus:	5467.329	Durbin-Watson:	2.015
Prob(Omnibus):	0.000	Jarque-Bera (JB):	16861.885
Skew:	1.046	Prob(JB):	0.00
Kurtosis:	6.263	Cond. No.	1.42e+17

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.6e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Building 3nd iteration removing 'Z' as p-value>0.05:

OLS Regression Results									
Dep. Variable:			price			R-squ	ared:		0.930
	Model:		C	DLS	Ad	j. R-squ	ared:		0.929
ı	Method:		Least Squa	res		F-stat	istic:		3.550e+04
	Date:	Sa	t, 24 Sep 20)22	Prob (F-statistic):				0.00
	Time:		23:30	:11	Lo	g-Likelih	ood:		-2.2204e+05
No. Obser	vations:	26933				AIC:	4.441e+05		
Df Residuals:		26922		BIC:			4.442e+05		
D	f Model:	10		10					
Covariano	е Туре:	nonrobust		ust					
	C	oef	std err		t	P> t	[0	0.025	0.975]
Intercept	3228.00)94	392.058	.058 8		0.000	2459	9.556	3996.463
carat	8781.21	151	68.163	128.827		0.000	8647.612		8914.818
cut	159.81	126	11.642	13	3.728 0.000 1		136	6.994	182.631

color	-387.	.7260	5.	.510	-70.369	0.00	00	-398.526	-376.926	
clarity_0	2057.	.7662	80.	.687	25.503	0.00	00	1899.615	2215.918	
clarity_1	1818.	.2317	78.642		23.121	0.00	00	1664.090	1972.373	
clarity_2	1207.	.3660	79.	.528	15.182	0.000		1051.487	1363.245	
clarity_3	241.4295		80.	.502	2.999	0.003		83.642	399.217	
clarity_4	-2096	-2096.7840		.831	-23.084	0.000		-2274.818	-1918.751	
depth	-44.	.3694	5.392		-8.228	0.00	00	-54.939	-33.800	
table	-32.	.2155	2.	.993	-10.763	0.000		-38.082	-26.348	
х	-396.	.2783	28.	.108	-14.098	0.00	00	-451.372	-341.185	
Omi	nibus:	5467	.320	Di	urbin-Wats	son:			2.015	
Prob(Omn	ibus):	0.	.000	Jaro	que-Bera (.	JB):		16861.833		
	Skew:	1.	.046		Prob(JB):			0.00	
Kurtosis:		6.	.263		Cond.	No.			1.41e+17	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.63e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Re-check for Multicollinearity:

```
cut VIF = 1.01
color VIF = 1.07
clarity_0 VIF = 1.02
clarity_1 VIF = 1.06
clarity_2 VIF = 1.01
clarity_3 VIF = 1.08
clarity_4 VIF = 1.01
depth VIF = 1.0
table VIF = 1.04
x VIF = inf
```

Using the last best model:

0	-280.241006	
1	1410.044509	
2	5635.197209	
3	1220.377845	
4	1008.157509	
	• • •	
26962	5508.652147	
26963	1062.233010	
26964	2210.661885	
26965	595.030098	
26966	5860.960279	
Length:	26933. dtype:	float64

Distplot:

Linear Relationship b/w Dependent and Independent Variables:

3. Split the data into training (70%) and test (30%). Build the various iterations of the Linear Regression models on the training data and use those models to predict on the test data using appropriate model evaluation metrics.

If prediction accuracy of the price is the only objective, then you may want to divide the data into a training and a test set, chosen randomly, and use the training set to develop a model and test set to validate your model. Use the models developed in Part (II) to compare accuracy in training and test sets. Compare the final model of Part (II) and the proposed one in Part (III). Which model provides the most accurate prediction? If the model found in Part (II) is different from the proposed model in Part (III), give an explanation.

Best Model vs Base Model

Base Model building using sklearn Linear Regression:

• After Training Data Prediction:

Training Data RMSE of model base: 923.42

• After Test Data Prediction:

Test Data RMSE of model base: 905.12

	RMSE Training Data	RMSE Test Data
Base Model	923.42	905.12

Best Model building using sklearn Linear Regression:

• After Training Data Prediction

Training Data RMSE of model best: 926.17

• After Test Data Prediction:

Test Data RMSE of model best: 908.81

	RMSE Training Data	RMSE Test Data
Best Model	926.17	908.81

Best Model vs Base Model

	RMSE Training Data	RMSE Test Data
Base Model	923.42	905.12
Best Model	926.17	908.81

Problem 2: Logistic Regression

You are hired by a tour and travel agency which deals in selling holiday packages. You are provided details of 872 employees of a company. Among these employees, some opted for the package and some didn't. You have to help the company in predicting whether an employee will opt for the package or not on the basis of the information given in the data set. Also, find out the important factors on the basis of which the company will focus on particular employees to sell their packages.

Data Dictionary:

Variable Name	Description
Holiday Package	Opted for Holiday Package yes/no?
Salary	Employee salary
age	Age in years
Edu	Years of formal education
No young children	The number of young children (younger than 7 years)
No older children	Number of older children
foreign	foreigner Yes/No

The data is given in the File " Holiday Package.csv" As shown below.

	Unnamed: 0	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	1	no	48412	30	8	1	1	no
1	2	yes	37207	45	8	0	1	no
2	3	no	58022	46	9	0	0	no
3	4	no	66503	31	11	2	0	no
4	5	no	66734	44	12	0	2	no
			:		:	::		
867	868	no	40030	24	4	2	1	yes
868	869	yes	32137	48	8	0	0	yes
869	870	no	25178	24	6	2	0	yes
870	871	yes	55958	41	10	0	1	yes
871	872	no	74659	51	10	0	0	yes

872 rows × 8 columns

2.1Exploratory Data Analysis for Problem 2

The very first step of any data analysis assignment is to do the exploratory data analysis (EDA). Once you have understood the nature of all the variables, especially identified the response and the predictors, apply appropriate methods to determine whether there is any duplicate observation or missing data and whether the variables have a symmetric or skewed distribution. Note that data may contain various types of attributes and numerical and/or visual data summarization techniques need to be appropriately decided. Both univariate and bivariate analyses and pre-processing of data are important. Check for outliers and comment on removing or keeping them while model building. For this is a classification problem, the dependence of the response on the predictors needs to be investigated.

EDA:

Head of the data:

	Unnamed: 0	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	1	no	48412	30	8	1	1	no
1	2	yes	37207	45	8	0	1	no
2	3	no	58022	46	9	0	0	no
3	4	no	66503	31	11	2	0	no
4	5	no	66734	44	12	0	2	no

After removing the **Unnamed: 0** column:

	Holliday_Package	Salary	age	educ	no_young_children	no_older_children	foreign
0	0	48412.0	30	8	1	1	no
1	1	37207.0	45	8	0	1	no
2	0	58022.0	46	9	0	0	no
3	0	66503.0	31	11	2	0	no
4	0	66734.0	44	12	0	2	no

Shape of the data:

• Number of rows: **872** • Number of columns: **7**

Information of the data:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 872 entries, 0 to 871

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Holliday_Package	872 non-null	int8
1	Salary	872 non-null	float64
2	age	872 non-null	int64
3	educ	872 non-null	int64
4	no_young_children	872 non-null	int64
5	no_older_children	872 non-null	int64
6	foreign	872 non-null	object
dtwn	$es \cdot float 64(1)$ int	64(4) in+8(1)	object (1)

dtypes: float64(1), int64(4), int8(1), object(1)

memory usage: 41.9+ KB

Descriptive Statistics:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Holliday_Package	872.0	NaN	NaN	NaN	0.459862	0.498672	0.0	0.0	0.0	1.0	1.0
Salary	872.0	NaN	NaN	NaN	45608.336869	15699.745151	8105.75	35324.0	41903.5	53469.5	80687.75
age	872.0	NaN	NaN	NaN	39.955275	10.551675	20.0	32.0	39.0	48.0	62.0
educ	872.0	NaN	NaN	NaN	9.307339	3.036259	1.0	8.0	9.0	12.0	21.0
no_young_children	872.0	NaN	NaN	NaN	0.311927	0.61287	0.0	0.0	0.0	0.0	3.0
no_older_children	872.0	NaN	NaN	NaN	0.982798	1.086786	0.0	0.0	1.0	2.0	6.0
foreign	872	2	no	656	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Missing Values:

Holliday_Package	0
Salary	0
age	0
educ	0
no_young_children	0
no_older_children	0
foreign	0
dtype: int64	

Duplicates:

Number of duplicate rows = 1

unique counts of all Objects:

foreign

no 656 yes 216

Name: foreign, dtype: int64

Univariate Analysis:

Boxplot

Treating the outliers:

Count plot

Bivariate Analysis:

Salary VS Holiday Package

Age VS Holiday Package

Educe VS Holiday Package

No young children Vs Holiday Package

No older children Vs Holiday Package

Foreign Vs Holiday Package

Converting the Target Variable into Categorical:

0 471 1 401

Name: Holliday Package, dtype: int64

Information of the data:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 872 entries, 0 to 871
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Holliday_Package	872 non-null	int8
1	Salary	872 non-null	float64
2	age	872 non-null	int64
3	educ	872 non-null	int64
4	· 4 · · · J · · · · · · ·	872 non-null	int64
5	no_older_children	872 non-null	int64
6	foreign	872 non-null	object
dtype	es: float64(1), int	64(4), int8(1),	object(1)

memory usage: 41.9+ KB

Creating the dummy variables for foregin variable:

	Holliday Package	Salary	age	educe	no_young_children	no_older_children	foreign yes
0	0	48412.0	30	8	1	1	0
1	1	37207.0	45	8	0	1	0
2	0	58022.0	46	9	0	0	0
3	0	66503.0	31	11	2	0	0
4	0	66734.0	44	12	0	2	0

Correlations:

	Holliday Package	Salary	age	educe	no_young_children	no_older_children	foreign_yes
Holliday Package	1.000000	-0.180214	-0.092311	-0.102552	-0.173115	0.080286	0.254096
Salary	-0.180214	1.000000	0.047029	0.352726	-0.034360	0.121993	-0.239387
age	-0.092311	0.047029	1.000000	-0.149294	-0.519093	-0.116205	-0.107148
educe	-0.102552	0.352726	-0.149294	1.000000	0.098350	-0.036321	-0.419678
no_young_children	-0.173115	-0.034360	-0.519093	0.098350	1.000000	-0.238428	0.085111
no_older_children	0.080286	0.121993	-0.116205	-0.036321	-0.238428	1.000000	0.021317
foreign_yes	0.254096	-0.239387	-0.107148	-0.419678	0.085111	0.021317	1.000000

There is hardly any correlation between the variables.

Descriptive Statistics:

	count	mean	std	min	25%	50%	75%	max
Holliday_Package	872.0	0.459862	0.498672	0.00	0.0	0.0	1.0	1.00
Salary	872.0	45608.336869	15699.745151	8105.75	35324.0	41903.5	53469.5	80687.75
age	872.0	39.955275	10.551675	20.00	32.0	39.0	48.0	62.00
educ	872.0	9.307339	3.036259	1.00	8.0	9.0	12.0	21.00
no_young_children	872.0	0.311927	0.612870	0.00	0.0	0.0	0.0	3.00
no_older_children	872.0	0.982798	1.086786	0.00	0.0	1.0	2.0	6.00
foreign_yes	872.0	0.247706	0.431928	0.00	0.0	0.0	0.0	1.00

Pair plot using SNS.

2.2Build various iterations of the Logistic Regression model using appropriate variable selection techniques for the full data. Compare values of model selection criteria for proposed models. Compare as many criteria as you feel are suitable.

Use Full Data to develop a logistic regression model to identify significant predictors. Check whether the proposed model is free of multicollinearity. Apply variable selection method as required. Show all intermediate models leading to the final model. Justify your choice of the final model. Which are the significant predictors?

Model 1

Logit Regression Res	ults							
Dep. Variable:	Holliday_Pacl	kage	No.	Observat	ions:		872	
Model:	I	ogit		Df Resid	uals:	865		
Method:	N	MLE		Df M	odel:		6	
Date:	Sat, 24 Sep 2	2022	P	seudo R-	squ.:		0.1244	
Time:	18:2	0:55	Log-Likelihood:				-526.78	
converged:	r	True	LL-Null:				-601.61	
Covariance Type:	nonro	bust	LLR p-value:			9.138e-30		
	coef	std err		z	P> z	[0.025	0.975]	
Intercept	2.5432	0).559	4.550	0.000	1.448	3.639	
Salary	-2.088e-05	5.26	ie-06	-3.970	0.000	-3.12e-05	-1.06e-05	
age	-0.0496	0	0.009	-5.491	0.000	-0.067	-0.032	
educ	0.0342	0	0.029	1.172	0.241	-0.023	0.091	
no_young_children	-1.3287	0	0.180	-7.386	0.000	-1.681	-0.976	
no_older_children	-0.0251	0	0.074	-0.341	0.733	-0.169	0.119	
foreign_yes	1.3037	0	0.200	6.519	0.000	0.912	1.696	

Check for multicollinearity in the predictor variables using Variance Inflation Factor (VIF).

Check for Multicollinearity:

Holliday Package VIF = 1.19 Salary VIF = 1.22 age VIF = 1.62 educe VIF = 1.41 no_young_children VIF = 1.69 no_older_children VIF = 1.19 foreign_yes VIF = 1.34

Model 2

Note: Threshold value considered is VIF < 1.5

Logit Regression Res	sults							
Dep. Variable:	Holliday Packa	age	No. C	bservati	ons:	872		
Model:	L	ogit		Df Residu	uals:	866		
Method:	N	1LE		Df Mo	odel:		5	
Date:	Sat, 24 Sep 20	022	Ps	eudo R-s	squ.:		0.09790	
Time:	18:28	3:17	Log-Likelihood:				-542.72	
converged:	Т	rue	LL-Null:				-601.61	
Covariance Type:	nonrob	ust		LLR p-va	alue:	9.214e-24		
	coef	coef s		z	P> z	[0.025	0.975]	
Intercept	0.0723	0.323		0.224	0.823	-0.561	0.706	
Salary	-2.325e-05	5.1	6e-06	-4.503	0.000	-3.34e-05	-1.31e-05	
educ	0.0654		0.028	2.312	0.021	0.010	0.121	
no_young_children	-0.7949		0.140	-5.675	0.000	-1.069	-0.520	
no_older_children	0.1029		0.068	1.502	0.133	-0.031	0.237	
foreign_yes	1.3914		0.197	7.079	0.000	1.006	1.777	

Model 3

Note: Threshold value considered is VIF < 1.5

Logit Regression Res	sults							
Dep. Variable:	Holliday Packa	age	No. C	bservati	ons:	872		
Model:	L	ogit		Df Residu	uals:		867	
Method:	N	1LE		Df Mo	odel:	2		
Date:	Sat, 24 Sep 20	022	Ps	eudo R-s	squ.:	0.0960		
Time:	18:30	:07	Lo	g-Likelih	ood:	-543.85		
converged:	Т	rue		LL-	Null:	-601.61		
Covariance Type:	nonrob	ust	LLR p-value:		alue:	4.807e-24		
	coef	std err		z	P> z	[0.025	0.975]	
Intercept	0.1467	0.319		0.459	0.646	-0.479	0.773	
Salary	-2.213e-05	5.0	9e-06	-4.346	0.000	-3.21e-05	-1.21e-05	
educ	0.0639		0.028	2.265	0.023	0.009	0.119	
no_young_children	-0.8367	0.137		-6.093	0.000	-1.106	-0.568	
foreign_yes	1.4043		0.196	7.148	0.000	1.019	1.789	

Check for Multicollinearity:

```
Holliday_Package VIF = 1.14
Salary VIF = 1.19
educ VIF = 1.36
no_young_children VIF = 1.08
foreign_yes VIF = 1.33
```

Using the best model:

2.3 Split the data into training (70%) and test (30%). Build the various iterations of the Logistic Regression models on the training data and use those models to predict on the test data using appropriate model evaluation metrics.

If prediction accuracy of the full scholarship is the only objective, then you may want to divide the data into a training and a test set, chosen randomly, and use the training set to develop a model and test set to validate your model. Use the models developed in Part (II) to compare accuracy in training and test sets. Compare the final model of Part (II) and the proposed one in Part (III). Which model provides the most accurate prediction? If the model found in Part (II) is different from the proposed model in Part (III), give an explanation.

Shape of Train data:

• Number of rows: **610**

• Number of columns: 7

Shape of Test data:

Number of rows: 262Number of columns: 7

value counts of Holliday Package:

Train data:

0 0.539344
1 0.460656
Name: Holliday Package, dtype: float64

Test data:

0 0.541985
1 0.458015
Name: Holliday Package, dtype: float64

Build the models 1,2 and 3 on the training data, check the accuracy score of each of the models on the training data and use those models to predict the classes and the corresponding probabilities on the test data.

<u>Model 1</u> - Building the model on the Training Data and checking the Accuracy score on the training data.

Accuracy Score of Model 1: 0.6672131147540984

Model 2 - Building the model on the Training Data and checking the Accuracy score on the training data.

Accuracy Score of Model 2: 0.6491803278688525

Model 3 - Building the model on the Training Data and checking the Accuracy score on the training data.

Accuracy Score of Model 3: 0.6344262295081967

Evaluate the three models on the test data using the various statistics of the confusion matrix:

Confusion Matrix summary statistics Evaluation on the Test Data.

confusion matrix:

Model 1

True Negative: 108
False Positives: 34
False Negatives: 58
True Positives: 62

Model 2

True Negative: 105
False Positives: 37
False Negatives: 53
True Positives: 67

Model 3

True Negative: 106
False Positives: 36
False Negatives: 59
True Positives: 61

Classification report:

Model 1

	precision	recall	f1-score	support
0	0.65	0.76	0.70	142
1	0.65	0.52	0.57	120
accuracy			0.65	262
macro avg	0.65	0.64	0.64	262
weighted avg	0.65	0.65	0.64	262

Model 2

	precision	recall	f1-score	support
0	0.66	0.74	0.70	142
1	0.64	0.56	0.60	120
accuracy			0.66	262
macro avg	0.65	0.65	0.65	262
weighted avg	0.66	0.66	0.65	262

Model 3

	precision	recall	f1-score	support
0	0.64	0.75	0.69	142
1	0.63	0.51	0.56	120
accuracy			0.64	262
macro avg	0.64	0.63	0.63	262
weighted avg	0.64	0.64	0.63	262

Check the summary statistics of the AUC-ROC curve for all the three Logistic Regression Models built. This is for the test data.

AUC and ROC:

Model 1 = 0.71496

Model 2 = 0.70628

<u>Model 3</u> = 0.70120

