Modélisation Stochastique et Approche Bayésienne

Introduction et principes généraux

Roland Donat

Université de Bretagne Sud

ENSIBS - Spécialité Cyber Data

https://roland-donat.github.io/cours-rb/ensibs/

Objectifs pédagogiques

- Se sensibiliser et pratiquer la modélisation probabiliste
- Replacer le développement des techniques bayésiennes dans l'Histoire scientifique
- Comprendre le principe de raisonnement bayésien
- Introduire le concept de réseau bayésien
- Savoir construire un réseau bayésien pour un problème donné

oduction Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références Annexe

Plan de la présentation

- Introduction
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes

Plan

- Introduction
 - Objet du cours
 - Historique
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes

Quelques définitions avant de démarrer

Modélisation stochastique

- Modélisation : Action de représenter (en simplifiée) une entité, un phénomène, le monde, etc...
- Stochastique : Synonyme du mot "aléatoire"
- ⇒ Représentation d'éléments possédant des comportements aléatoires

Historique

Comment tout a commencé...

Révérend Thomas Bayes (1702–1761)

- 1763: An Essay towards solving a Problem in the Doctrine of Chances
- Notion de probabilité conditionnelle : If there be two subsequent events, the probability of the second b/N and the probability of both together P/N, and it being first discovered that the second event has also happened, the probability I am right [i.e., the conditional probability of the first event being true given that the second has happened] is P/b.
- ⇒ Théorème de Bayes

Historique

Comment tout a commencé...

Pierre-Simon Laplace (1749–1827)

- 1774 : Mémoire sur la Probabilité des Causes par les Événements
- 1812 : Reformulation et clarification des travaux de Bayes

Plan

- Introduction
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes

on Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références Annexe:

Rappels de probabilité

Variable aléatoire discrète et finie

Variable aléatoire discrète et finie

- Intuition: Une variable aléatoire (v.a.) est une "variable" a dont les valeurs possibles sont les résultats d'un phénomène aléatoire.
- Un peu plus formellement, une variable aléatoire (v.a.) X est définie sur un ensemble $\mathcal X$ représentant les résultats possibles d'une expérience aléatoire
- ullet Si l'ensemble ${\mathcal X}$ est discret et fini, on parle alors de variable aléatoire discrète et finie
- *a*. En fait, une v.a. est une application entre deux espaces mesurables mais n'en parlons plus...

Exemples de variables discrètes et finies

- *X* : "intensité d'un séisme", $\mathcal{X} = \{[0, 3[, [3, 7[, [7, \infty[]$
- Y: "l'alarme de ma voiture sonnera t-elle cette nuit?", $\mathcal{Y} = \{\text{non.oui}\}$

Rappels de probabilité

Variable aléatoire discrète et finie

Variable aléatoire discrète et finie

- Intuition: Une variable aléatoire (v.a.) est une "variable" a dont les valeurs possibles sont les résultats d'un phénomène aléatoire.
- Un peu plus formellement, une variable aléatoire (v.a.) X est définie sur un ensemble $\mathcal X$ représentant les résultats possibles d'une expérience aléatoire
- ullet Si l'ensemble ${\mathcal X}$ est discret et fini, on parle alors de variable aléatoire discrète et finie
- *a*. En fait, une v.a. est une application entre deux espaces mesurables mais n'en parlons plus...

Exemples de variables discrètes et finies

- *X* : "intensité d'un séisme", $\mathcal{X} = \{[0, 3[, [3, 7[, [7, \infty[]$
- Y: "l'alarme de ma voiture sonnera t-elle cette nuit?", $\mathcal{Y} = \{\text{non, oui}\}$

Loi de probabilité discrète

Loi de probabilité discrète

- Soit une v.a. X définie sur le domaine discret et fini $\mathcal{X} = \{x_1, \dots, x_N\}$
- L'application P de $\mathcal X$ dans [0,1] définie la loi de probabilité de la v.a. X si

$$\forall x_i \in \mathcal{X}, P(X = x_i) \in [0, 1] \text{ et } \sum_{n=1}^N P(X = x_n) = 1$$

- \Rightarrow On note alors P(X) la loi de probabilité de la v.a. discrète et finie X à valeurs dans $\mathcal X$
 - Interprétation: Une loi de probabilité permet de quantifier le caractère aléatoire d'une v.a. (i.e. d'un phénomène aléatoire)

Exemple de loi sur l'intensité d'un séisme représentée par la v.a. X

	P(X)	
[0, 3[[3, 7[$[7,\infty[$
0.9999	0.00009	0.00001

Loi jointe - Définition

Loi jointe

- Soit X_1, \ldots, X_N une suite de v.a. discrètes à valeurs dans les ensembles $\mathcal{X}_1, \ldots, \mathcal{X}_N$ respectivement
- La loi jointe des v.a. X_1, \ldots, X_N est caractérisée par les probabilités :

$$P({X_1 = x_1} \text{ et } {X_2 = x_2} \text{ et } \dots \text{ et } {X_N = x_N})$$

pour tous $x_1 \in \mathcal{X}_1, \dots, x_N \in \mathcal{X}_N$.

- Hypothèse : Les v.a. sont considérées comme a priori interdépendantes
- Remarque : La loi jointe contient toute l'information sur le phénomène aléatoire associé aux v.a. X_1, \ldots, X_N

Exemple de loi jointe sur l'intensité d'un séisme X et l'occurrence d'une alarme Y

P(X,Y)					
[0, 3[[3, 7[[7, ∞[[0, 3[[3, 7[[7, ∞[
non	non	non	oui	oui	oui
0.9989001	$2.7 \cdot 10^{-5}$	$5 \cdot 10^{-7}$	$9.999 \cdot 10^{-4}$	$6.3 \cdot 10^{-5}$	$9.5 \cdot 10^{-6}$

Loi jointe - Notations

Conventions et simplifications d'écritures

Il est courant de simplifier l'écriture des expressions probabilistes pour gagner en lisibilité :

- Le terme "et" dans l'expression d'une probabilité jointe est remplacé par une virgule ou un point virgule
- Omission des accolades dans les expressions sauf si ces dernières permettent d'améliorer la lisibilité

$$\Rightarrow P(\{X_1 = x_1\} \text{ et } \dots \text{ et } \{X_N = x_N\}) = P(X_1 = x_1, \dots, X_N = x_N)$$

Attention

- La quantité $P(X_1 = x_1, ..., X_N = x_N)$ avec $x_1 \in \mathcal{X}_1, ..., x_N \in \mathcal{X}_N$ est une probabilité, c'est à dire un réel entre 0 et 1
- L'objet $P(X_1,...,X_N)$ est une loi de probabilité qui peut être représentée sous forme de tableau dans le cas où les v.a. $X_1,...,X_N$ sont discrètes et finies

Rappels de probabilité

Loi jointe - Notations

Conventions et simplifications d'écritures

Il est courant de simplifier l'écriture des expressions probabilistes pour gagner en lisibilité :

- Le terme "et" dans l'expression d'une probabilité jointe est remplacé par une virgule ou un point virgule
- Omission des accolades dans les expressions sauf si ces dernières permettent d'améliorer la lisibilité

$$\Rightarrow P(\{X_1 = x_1\} \text{ et } \dots \text{ et } \{X_N = x_N\}) = P(X_1 = x_1, \dots, X_N = x_N)$$

Attention

- La quantité $P(X_1 = x_1, ..., X_N = x_N)$ avec $x_1 \in \mathcal{X}_1, ..., x_N \in \mathcal{X}_N$ est une probabilité, c'est à dire un réel entre 0 et 1
- L'objet $P(X_1,...,X_N)$ est une loi de probabilité qui peut être représentée sous forme de tableau dans le cas où les v.a. $X_1,...,X_N$ sont discrètes et finies

Probabilité conditionnelle

Probabilité conditionnelle

- Lorsque deux phénomènes aléatoires représentés par des v.a. X et Y sont corrélés, les valeurs prises par Y influent sur les valeurs prises par X et inversement
- La loi P(Y|X) représente l'information sur la loi de Y conditionnellement aux valeurs de X
- Par définition : $P(Y|X) = \frac{P(X,Y)}{P(X)}$

Exemple d'une loi d'occurrence d'une alarme Y conditionnellement à l'intensité d'un séisme X

	P(Y X)			
	,	Y		
X	non	oui		
[0, 3[0.999	0.001		
[3, 7]	0.3	0.7		
[7, ∞[0.05	0.95		

Indépendance

Indépendance

• Les v.a. X et Y sont indépendantes si et seulement si :

$$P(X|Y) = P(X) \iff P(Y|X) = P(Y) \iff P(X,Y) = P(X) \times P(Y)$$

• Notation : $X \perp \!\!\!\perp Y$

Exemple

- X: résultat pile ou face, $\mathcal{X} = \{\text{pile}, \text{face}\}$
- *Y* : valeur pièce, $\mathcal{Y} = \{0.50, 1, 2\}$

P(X Y)				
	,	X		
Y	pile	face		
50 centimes	0.5	0.5		
1 euros	0.5	0.5		
2 euros	0.5	0.5		

Indépendance

Indépendance conditionnelle

 Les v.a. X et Y sont indépendantes conditionnellement à Z si et seulement si :

$$P(X|Y,Z) = P(X|Z) \iff P(Y|X,Z) = P(Y|Z)$$
$$\iff P(X,Y|Z) = P(X|Z) \times P(Y|Z)$$

• Notation : $X \perp \!\!\!\perp Y|Z$

Exemple

- X: historique accident, $\mathcal{X} = \{aucun, accident(s)\}$
- Y: sexe du conducteur, $\mathcal{Y} = \{\text{femme, homme}\}$
- Z: nombre de points au permis, $\mathcal{Z} = \{<5, >5\}$

	P(X Y,Z)				
			X		
Y	Ζ	aucun	accident(s)		
femme	< 5	0.2	0.8		
femme	≥ 5	0.45	0.55		
homme	< 5	0.2	0.8		
homme	> 5	0.45	0.55		

Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références Annexes

Rappels de probabilité

Marginalisation

Marginalisatior

• Soient X et Y deux v.a. discrètes à valeurs dans $\mathcal X$ et $\mathcal Y$ respectivement. L'opération de marginalisation sur la v.a. X (ou sommation sur la v.a. Y) est définie par :

$$P(X = x) = \sum_{y \in \mathcal{Y}} P(X = x, Y = y), \ \forall x \in \mathcal{X}$$

• Notation : $P(X) = \sum_{Y} P(X, Y)$.

Exemple

X à valeurs dans $\mathcal{X} = \{x_1, x_2, x_3\}$ et Y à valeurs dans $\mathcal{Y} = \{y_1, y_2\}$

P(X,Y)					
<i>x</i> ₁	x_2	<i>X</i> ₃	x_1	<i>x</i> ₂	<i>X</i> ₃
<i>y</i> ₁	y_1	y_1	<i>y</i> ₂	<i>y</i> ₂	<i>y</i> ₂
1/4	1/12	1/4	0	1/6	1/4

$$P(Y) = \sum_{X} P(X, Y)$$

$$y_1 \qquad y_2$$

$$7/12 \qquad 5/12$$

Plan

- Introduction
- Rappels de probabilité
- Approche bayésienneRetour sur l'historique
- 4 Les réseaux bayésiens
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes

roduction Rappels **Approche bayésienne** RB Concepts fondamentaux Conclusions Références Annexes

Historique

Deux siècles plus tard...

L'ère des systèmes experts

- Formalisation des connaissances sur un système sous forme de règles déterministes
 Exemple: SI X = VRAI ET Y = FAUX ALORS Z = VRAI
- Moteur d'inférence reposant sur la logique booléenne
- ⇒ Déduction d'informations à partir d'une base de règles

oduction Rappels **Approche bayésienne** RB Concepts fondamentaux Conclusions Références Annexes

Historique

Deux siècles plus tard...

Judea Pearl (1936–) : Père des réseaux bayésiens

 1982: Reverend Bayes on inference engines: A distributed hierarchical approach

P(X = Ok) = 0.3 etP(Z = Défaillant) = 0.2 Alors

P(Y = Dégradé) = ?

- (Pearl 1988): Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
- 2004: MIT's Technology Review place l'apprentissage des réseaux bayésiens en quatrième position des dix technologies émergeantes qui vont changer le monde
- 2011 : Judea Pearl reçoit le Prix Turing

oduction Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références Annexes

Approche bayésienne

Principes

Principes de l'approche bayésienne

- L'approche bayésienne repose sur l'utilisation du langage des probabilités pour réaliser des raisonnements
- Cette approche de raisonnement généralise la logique booléenne
- Chaque raisonnement se matérialise par une suite de calculs probabilistes
- La conclusion d'un raisonnement bayésien est donnée sous la forme d'une loi de probabilité

roduction Rappels **Approche bayésienne** RB Concepts fondamentaux Conclusions Références Annexe:

Approche bayésienne

Exemple de raisonnement

Alarme et vol de voiture

- Situation : J'ai été réveillé par l'alarme de ma voiture en pleine nuit
- Question: Ma voiture est-elle en train de se faire voler?

Raisonnement de type bayésien

- Modélisation : on liste les phénomènes qui pourraient expliquer l'alarme (e.g. fausse alarme, tremblement de terre, criminalité, etc...) et on tente d'établir leur probabilité
- Inférence : on réalise des calculs de probabilité pour obtenir la réponse qui nous intéresse, i.e. ma voiture est-elle en train de se faire voler?
- Oécision: si, compte tenu du contexte, la probabilité d'un vol est inférieur à un seuil donné, je me recouche, sinon j'appelle la police

Approche bayésienne

Théorème de Bayes

Théorème de Bayes

- Le théorème (ou formule) de Bayes permet d'exprimer la loi conditionnelle d'un phénomène X sachant un phénomène Y en fonction de la loi du phénomène Y sachant X et de la loi marginale du phénomène X.
- Soient X et Y deux v.a., on a :

$$P(X|Y) = \frac{P(Y|X)P(X)}{\sum_{X} P(Y|X)P(X)}$$

- Dans le contexte de cette formule, la loi P(X) est souvent appelée loi a priori du phénomène X
- ⇒ Le théorème de Bayes permet d'effectuer des raisonnements probabilistes impliquant deux phénomènes aléatoires

Approche bayésienne

Formule de Bayes généralisée

Formule de Bayes généralisée

• Soit X_1, \ldots, X_N une suite de v.a. discrètes. La loi jointe des v.a. admet la factorisation suivante :

$$P(X_1,...,X_N) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)...P(X_N|X_1,...,X_{N-1})$$

- Pour N = 2, on retrouve la définition d'une loi de probabilité conditionnelle
- Cette formule donne une factorisation toujours valide de la loi jointe sous forme de lois conditionnelles (plus pratiques à manipuler)
- Toutefois, cette factorisation reste difficile à utiliser en pratique mais les réseaux bayésiens vont nous sauver!

on Rappels Approche bayésienne **RB** Concepts fondamentaux Conclusions Références Annexe

Plan

- Introduction
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
 - Les réseaux bayésiens en trois points
 - Domaines d'application
 - Définition formelle
 - Principe
 - Exemple
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes

roduction Rappels Approche bayésienne **RB** Concepts fondamentaux Conclusions Références Annexe:

Les réseaux bayésiens en trois points

Qu'est ce que c'est?

- Les réseaux bayésiens désignent un formalisme de modélisation graphique
- Ce formalisme permet de représenter des connaissances incertaines et d'effectuer des raisonnements probabilistes sur ces connaissances

Sur quoi ça repose?

- Théorie des graphes (aspect qualitatif)
- Théorie des probabilités (aspect quantitatif)

Pourquoi est-ce intéressant?

- Formalisme graphique intuitif (facilite la communication)
- Puissance de modélisation

roduction Rappels Approche bayésienne **RB** Concepts fondamentaux Conclusions Références Annexe:

Domaines d'application

Quelques champs d'applications

- Intelligence artificielle
- Biologie, Médecine
- Marketing, Finance
- Sûreté de fonctionnement

Types d'analyses possibles

- Analyse prévisionnelle : Expliquer un phénomène par rapport à son contexte
- Diagnostic : Comprendre le contexte/les causes associé à l'occurrence d'un événement
- Simulation : Étudier un système complexe en générant des scénarios
- ⇒ Applications à l'aide à la décision en général

roduction Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références Annexe

Un petit exemple...

roduction Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références Annexe

Définition formelle

Definition (Réseau bayésien (RB))

- Un graphe orienté sans circuit \mathcal{G} où
- ⇒ Les nœuds représentent les v.a.
- ⇒ Les arcs indiquent des relations de dépendances
- Les Lois de Probabilité Conditionnelles (LPC) de chaque v.a. X_i sachant ses parents $pa(X_i)$, notées $P(X_i|pa(X_i))$

roduction Rappels Approche bayésienne **RB** Concepts fondamentaux Conclusions Références Annexes

Définition formelle

Definition (Réseau bayésien (RB))

- ullet Un graphe orienté sans circuit ${\cal G}$ où
- ⇒ Les **nœuds** représentent les v.a.
- ⇒ Les **arcs** indiquent des relations de dépendances
- Les Lois de Probabilité Conditionnelles (LPC) de chaque v.a. X_i sachant ses parents $pa(X_i)$, notées $P(X_i|pa(X_i))$

Définition formelle

Definition (Réseau bayésien (RB))

- ullet Un graphe orienté sans circuit ${\cal G}$ où
- ⇒ Les nœuds représentent les v.a.
- ⇒ Les arcs indiquent des relations de dépendances
- Les Lois de Probabilité Conditionnelles (LPC) de chaque v.a. X_i sachant ses parents pa(X_i), notées P(X_i|pa(X_i))

Définition formelle

Definition (Réseau bayésien (RB))

- ullet Un graphe orienté sans circuit ${\cal G}$ où
- ⇒ Les **nœuds** représentent les v.a.
- ⇒ Les **arcs** indiquent des relations de dépendances
- Les Lois de Probabilité Conditionnelles (LPC) de chaque v.a. X_i sachant ses parents $pa(X_i)$, notées $P(X_i|pa(X_i))$

Définition formelle

Definition (Réseau bayésien (RB))

- ullet Un graphe orienté sans circuit ${\cal G}$ où
- Les nœuds représentent les v.a.
- ⇒ Les arcs indiquent des relations de dépendances
- Les Lois de Probabilité Conditionnelles (LPC) de chaque v.a. X_i sachant ses parents pa(X_i), notées P(X_i|pa(X_i))

Principe de modélisation avec un RB

Représentation qualitative à l'aide d'un graphe orienté sans circuit

- Représenter graphiquement la loi jointe d'un ensemble de variables aléatoires X_1, \ldots, X_n , c-à-d. $P(X_1, \ldots, X_n)$
- Spécifier les relations de dépendances locales de chaque variable pour en déduire le comportement global du système

Représentation quantitative à l'aide de LPC

- Spécifier la "force" des relations de dépendances locales à l'aide de probabilités conditionnelles
- Exploiter l'ensemble des relations d'indépendances entre les variables pour simplifier la loi jointe du processus

oduction Rappels Approche bayésienne **RB** Concepts fondamentaux Conclusions Références Annexes

Exemple de l'étudiant

Contexte

• Un étudiant souhaite obtenir une lettre de recommandation

Comment modéliser les raisonnements intuitifs suivants?

- L'écriture d'une lettre de recommandation dépend de la note de l'étudiant à l'examen
- La réussite d'un étudiant à un examen quelconque dépend de son niveau scolaire et de la difficulté de l'examen
- Les résultats au BAC dépendent du niveau scolaire

Questions

- Les résultats au BAC d'un étudiant peuvent-ils avoir une influence sur l'obtention d'une lettre de recommandation?
- Connaître le niveau scolaire d'un étudiant peut-il nous aider à connaître la difficulté d'un examen?
- Quelle est la meilleur stratégie pour obtenir une lettre?

Exemple de l'étudiant

Contexte

• Un étudiant souhaite obtenir une lettre de recommandation

Comment modéliser les raisonnements intuitifs suivants?

- L'écriture d'une lettre de recommandation dépend de la note de l'étudiant à l'examen
- La réussite d'un étudiant à un examen quelconque dépend de son niveau scolaire et de la difficulté de l'examen
- Les résultats au BAC dépendent du niveau scolaire

Questions

- Les résultats au BAC d'un étudiant peuvent-ils avoir une influence sur l'obtention d'une lettre de recommandation?
- Connaître le niveau scolaire d'un étudiant peut-il nous aider à connaître la difficulté d'un examen?
- Quelle est la meilleur stratégie pour obtenir une lettre?

Exemple de l'étudiant

Contexte

• Un étudiant souhaite obtenir une lettre de recommandation

Comment modéliser les raisonnements intuitifs suivants?

- L'écriture d'une lettre de recommandation dépend de la note de l'étudiant à l'examen
- La réussite d'un étudiant à un examen quelconque dépend de son niveau scolaire et de la difficulté de l'examen
- Les résultats au BAC dépendent du niveau scolaire

Questions

- Les résultats au BAC d'un étudiant peuvent-ils avoir une influence sur l'obtention d'une lettre de recommandation?
- Connaître le niveau scolaire d'un étudiant peut-il nous aider à connaître la difficulté d'un examen?
- Quelle est la meilleur stratégie pour obtenir une lettre?

oduction Rappels Approche bayésienne **RB** Concepts fondamentaux Conclusions Références Annexe ○O ○○○○○○○○ ○○○○○○ ○○○○○○○ ○○○○○○○○○○ ○○○

Plan

- Introduction
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
- Concepts fondamentaux
 - Factorisation de la loi jointe
 - Complexité
 - Relations d'indépendances
 - Fidélité
- Conclusion, perspectives et outils
- Annexes

Loi jointe et factorisation

Factorisation dans un RB

• La loi jointe d'une suite de v.a. X_1, \ldots, X_n représentée dans un RB se factorise comme le produit des LPC de chacune des variables

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i|\mathsf{pa}(X_i))$$

Rappel de la formule de Bayes généralisée (toujours vraie) :

$$P\left(X_{1},\ldots,X_{n}\right)=P\left(X_{1}\right)\times P\left(X_{2}|X_{1}\right)\times P\left(X_{3}|X_{1},X_{2}\right)\times\ldots\times P\left(X_{n}|X_{1},\ldots,X_{n-1}\right)$$

⇒ La factorisation dans un RB permet de simplifier la formule de Bayes

Exercice

Écrire la factorisation du RB dans l'exemple de l'étudiant

Loi jointe et factorisation

Factorisation dans un RB

• La loi jointe d'une suite de v.a. X_1, \ldots, X_n représentée dans un RB se factorise comme le produit des LPC de chacune des variables

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|pa(X_i))$$

Rappel de la formule de Bayes généralisée (toujours vraie) :

$$P\left(X_{1},\ldots,X_{n}\right)=P\left(X_{1}\right)\times P\left(X_{2}|X_{1}\right)\times P\left(X_{3}|X_{1},X_{2}\right)\times\ldots\times P\left(X_{n}|X_{1},\ldots,X_{n-1}\right)$$

⇒ La factorisation dans un RB permet de simplifier la formule de Bayes

Exercice

Écrire la factorisation du RB dans l'exemple de l'étudiant

Complexité spatiale d'une LPC

Complexité spatiale d'une LPC

- Soient $\mathbf{X} = X_1, \dots, X_n$ et $\mathbf{Y} = Y_1, \dots, Y_m$ deux suites de v.a. à valeurs dans les ensembles discrets et finis $\mathcal{X}_1, \dots, \mathcal{X}_n$ et $\mathcal{Y}_1, \dots, \mathcal{Y}_m$
- La complexité spatiale associée à la LPC $P(X_1, \ldots, X_n | Y_1, \ldots, Y_m) = P(\boldsymbol{X} | \boldsymbol{Y})$, notée $CS(P(\boldsymbol{X} | \boldsymbol{Y}))$, est définie par le nombre de configurations de valeurs différentes que peuvent prendre les v.a. $X_1, \ldots, X_n, Y_1, \ldots, Y_m$
- Autrement dit : $CS(P(X|Y)) = \prod_{i=1}^{n} |\mathcal{X}_i| \prod_{j=1}^{m} |\mathcal{Y}_j|$ où $|\mathcal{X}_i|$ est le nombre d'éléments dans l'ensemble \mathcal{X}_i

Exemples de l'étudiant

- la complexité spatiale de la LPC P (Note|Niveau, Difficulté) est égale à $2 \times 2 \times 3 = 12$
- la complexité spatiale de la LPC P (Niveau) est égale à 3

Complexité probabiliste d'une LPC

- Soient $\mathbf{X} = X_1, \dots, X_n$ et $\mathbf{Y} = Y_1, \dots, Y_m$ deux suites de v.a. à valeurs dans les ensembles discrets et finis $\mathcal{X}_1, \dots, \mathcal{X}_n$ et $\mathcal{Y}_1, \dots, \mathcal{Y}_m$
- La complexité probabiliste associée à la LPC $P(X_1, \ldots, X_n | Y_1, \ldots, Y_m) = P(\boldsymbol{X} | \boldsymbol{Y})$, notée $CP(P(\boldsymbol{X} | \boldsymbol{Y}))$, est définie par le nombre de paramètres (probabilités) nécessaires pour définir la LPC
- Autrement dit : $CP(P(\boldsymbol{X}|\boldsymbol{Y})) = \prod_{i=1}^{m} (|\mathcal{X}_i| 1) \prod_{j=1}^{m} |\mathcal{Y}_j|$
- La CP tient simplement compte du fait qu'une LPC doit sommer à 1 pour chaque configuration des variables de conditionnement
- La CP mesure le potentiel de modélisation d'une loi

- la complexité probabiliste de la LPC P (Note|Niveau, Difficulté) est égale à $1 \times 2 \times 3 = 6$
- la complexité probabiliste de la LPC P (Niveau) est égale à 2

Complexité d'une loi jointe naturelle

Complexité d'une loi jointe naturelle

- Soit X_1, \ldots, X_n une suite de v.a. à valeurs dans les ensembles discrets et finis $\mathcal{X}_1, \ldots, \mathcal{X}_n$
- La **complexité spatiale** d'une loi jointe naturelle $P(X_1, ..., X_n)$ vaut

$$CS(P(X_1,\ldots,X_n)) = \prod_{i=1}^n |\mathcal{X}_i|$$

• La **complexité probabiliste** d'une loi jointe naturelle $P(X_1, ..., X_n)$ vaut

$$CP(P(X_1,...,X_n)) = CS(P(X_1,...,X_n)) - 1$$

Complexité d'une loi jointe dans un RB

Complexité d'une loi jointe factorisée dans un RB

- Soit X_1, \ldots, X_n une suite de v.a. à valeurs dans les ensembles discrets et finis $\mathcal{X}_1, \ldots, \mathcal{X}_n$
- La complexité spatiale (resp. probabiliste) d'une loi jointe factorisée dans un RB, notée $P^{RB}(X_1,\ldots,X_n)$, est définie comme étant la somme des complexités spatiales (resp. probabilistes) associées à chacune des LPC $P(X_i|pa(X_i))$.
- La complexité spatiale a pour expression :

$$CS(P^{RB}\left(X_{1},\ldots,X_{n}\right)) = \sum_{i=1}^{n} CS(P(X_{i}|\mathsf{pa}(X_{i}))) = \sum_{i=1}^{n} |\mathcal{X}_{i}| \times \prod_{\mathcal{X} \in \mathsf{pa}(\mathcal{X}_{i})} |\mathcal{X}|$$

La complexité probabiliste a pour expression :

$$CS(P^{RB}\left(X_{1},\ldots,X_{n}\right)) = \sum_{i=1}^{n} CP(P(X_{i}|\mathsf{pa}(X_{i}))) = \sum_{i=1}^{n} \left(|\mathcal{X}_{i}|-1\right) \times \prod_{\mathcal{X} \in \mathsf{pa}(\mathcal{X}_{i})} |\mathcal{X}|$$

Conséquences pratiques

RB = Représentation parcimonieuse

- Un RB est une représentation compacte d'un processus aléatoire
- Moins il y a d'arcs dans le graphe :
- plus des hypothèses d'indépendances conditionnelles entre les variables sont posées
- plus le potentiel de modélisation, i.e. la capacité à représenter des phénomènes complexes, diminue (CP faible)
- plus la représentation par RB est avantageuse du point de vue du stockage, du paramétrage et de la complexité calculatoire (CS faible)

Complexité: Exemple

Complexité du modèle de l'étudiant

- Loi jointe naturelle :
- \Rightarrow CS = [3(Difficulté) × 2(Niveau) × 2(Note) × 3(BAC) × 2(Recom.)] = 72
- \Rightarrow *CP* = *CS* 1 = 71 paramètres
- Représentation par RB :
- \Rightarrow CS = 3(Difficulté) + 2(Niveau) + 2 × 3 × 2(Note) + 3 × 2(BAC) + 2 × 2(Recom.) = 27
- \Rightarrow CP = 2(Difficulté) + 1(Niveau) + 1 × 3 × 2(Note) + 2 × 2(BAC) + 1 × 2(Recom.) = 15 paramètres

Complexité: Exemple

Complexité du modèle de l'étudiant

- Loi jointe naturelle :
- \Rightarrow CS = [3(Difficulté) × 2(Niveau) × 2(Note) × 3(BAC) × 2(Recom.)] = 72
- \Rightarrow *CP* = *CS* -1 = 71 paramètres
- Représentation par RB :
- \Rightarrow CS = 3(Difficulté) + 2(Niveau) + 2 × 3 × 2(Note) + 3 × 2(BAC) + 2 × 2(Recom.) = 27
- \Rightarrow *CP* = 2(Difficulté) + 1(Niveau) + 1 × 3 × 2(Note) + 2 × 2(BAC) + 1 × 2(Recom.) = 15 paramètres

Relations d'indépendances

RB et indépendances conditionnelles

- Un RB peut être vu comme un codage de relations d'indépendances conditionnelles parmi un ensemble de variables aléatoires
- Attention :
 - L'absence d'arc entre deux variables ne signifie pas qu'elles sont indépendantes
 - Un arc entre deux variables ne signifie pas toujours qu'elles sont dépendantes (cf. notion de fidélité)

Structures fondamentales

Les relations d'indépendances dans un RB se déduisent des trois structures fondamentales suivantes :

- Onnexion série : $X \rightarrow Y \rightarrow Z$
- ② Connexion divergente : $X \leftarrow Y \rightarrow Z$
- a Connexion convergente (V-structure): $X \rightarrow Y \leftarrow Z$

Relations d'indépendances

RB et indépendances conditionnelles

- Un RB peut être vu comme un codage de relations d'indépendances conditionnelles parmi un ensemble de variables aléatoires
- Attention :
 - L'absence d'arc entre deux variables ne signifie pas qu'elles sont indépendantes
 - Un arc entre deux variables ne signifie pas toujours qu'elles sont dépendantes (cf. notion de fidélité)

Structures fondamentales

Les relations d'indépendances dans un RB se déduisent des trois structures fondamentales suivantes :

- Onnexion série : $X \rightarrow Y \rightarrow Z$
- ② Connexion divergente : $X \leftarrow Y \rightarrow Z$
- **3** Connexion convergente (V-structure) : $X \rightarrow Y \leftarrow Z$

Relations d'indépendances

Connexion divergente

Propriétés

- X et Z sont dépendantes.
- Si Y est connue, alors X et Z sont indépendantes
- $\Leftrightarrow X \perp \!\!\! \perp Z | Y : X \text{ et } Z \text{ sont indépendantes conditionnellement à } Y$
- \Leftrightarrow Si la loi P(Y) est connue, X n'intervient pas dans le calcul de P(Z) (et inversement)
- $\Leftrightarrow P(Z|X,Y) = P(Z|Y) \Leftrightarrow P(X,Z|Y) = P(X|Y) \times P(Z|Y)$

Relations d'indépendances

Connexion divergente - Démonstration

Démonstration de la propriété $X \perp \!\!\! \perp Z \mid Y$

• La loi des v.a. X, Y et Z se factorise dans ce RB comme suit :

$$P(X, Y, Z) = P(X|Y) \times P(Y) \times P(Z|Y)$$

• Conditionnons par Y en divisant par P(Y):

$$P(X, Y, Z) \times \frac{1}{P(Y)} = P(X|Y) \times P(Y) \times P(Z|Y) \times \frac{1}{P(Y)}$$

- À gauche, on a par définition $\frac{P(X,Y,Z)}{P(Y)} = P(X,Z|Y)$ et à droite le terme P(Y) disparaît.
- $\Rightarrow P(X,Z|Y) = P(X|Y) \times P(Z|Y) \Rightarrow X \perp \!\!\!\perp Z|Y$

Relations d'indépendances

Connexion divergente - Démonstration

Démonstration de la propriété $X \perp \!\!\! \perp Z \mid Y$

• La loi des v.a. X, Y et Z se factorise dans ce RB comme suit :

$$P(X, Y, Z) = P(X|Y) \times P(Y) \times P(Z|Y)$$

• Conditionnons par Y en divisant par P(Y):

$$P(X, Y, Z) \times \frac{1}{P(Y)} = P(X|Y) \times P(Y) \times P(Z|Y) \times \frac{1}{P(Y)}$$

- À gauche, on a par définition $\frac{P(X,Y,Z)}{P(Y)} = P(X,Z|Y)$ et à droite le terme P(Y) disparaît.
- $\Rightarrow P(X,Z|Y) = P(X|Y) \times P(Z|Y) \Rightarrow X \perp \!\!\!\perp Z|Y$

Relations d'indépendances

Connexion divergente - Démonstration

Démonstration de la propriété $X \perp \!\!\! \perp Z \mid Y$

• La loi des v.a. X, Y et Z se factorise dans ce RB comme suit :

$$P(X, Y, Z) = P(X|Y) \times P(Y) \times P(Z|Y)$$

• Conditionnons par Y en divisant par P(Y):

$$P(X,Y,Z) \times \frac{1}{P(Y)} = P(X|Y) \times P(Y) \times P(Z|Y) \times \frac{1}{P(Y)}$$

• À gauche, on a par définition $\frac{P(X,Y,Z)}{P(Y)} = P(X,Z|Y)$ et à droite le terme P(Y) disparaît.

$$\Rightarrow P(X,Z|Y) = P(X|Y) \times P(Z|Y) \Rightarrow X \perp \!\!\!\perp Z|Y$$

Relations d'indépendances

Connexion divergente - Démonstration

Démonstration de la propriété $X \perp \!\!\! \perp Z \mid Y$

• La loi des v.a. X, Y et Z se factorise dans ce RB comme suit :

$$P(X, Y, Z) = P(X|Y) \times P(Y) \times P(Z|Y)$$

• Conditionnons par Y en divisant par P(Y):

$$P(X, Y, Z) \times \frac{1}{P(Y)} = P(X|Y) \times P(Y) \times P(Z|Y) \times \frac{1}{P(Y)}$$

• À gauche, on a par définition $\frac{P(X,Y,Z)}{P(Y)} = P(X,Z|Y)$ et à droite le terme P(Y) disparaît.

$$\Rightarrow P(X,Z|Y) = P(X|Y) \times P(Z|Y) \Rightarrow X \perp \!\!\!\perp Z|Y$$

Relations d'indépendances

Connexion série

Propriétés

- X et Z sont dépendantes.
- Si Y est connue, alors X et Z sont indépendantes
- $\Leftrightarrow X \perp \!\!\! \perp Z \mid Y : X \text{ et } Z \text{ sont indépendantes conditionnellement à } Y$
- \Leftrightarrow Si la loi P(Y) est connue, X n'intervient pas dans le calcul de P(Z) (et inversement)
- $\Leftrightarrow P(Z|X,Y) = P(Z|Y) \Leftrightarrow P(X,Z|Y) = P(X|Y) \times P(Z|Y)$

Relations d'indépendances

Connexion convergente (V-structure)

Propriétés

- $X \perp \!\!\! \perp Z : X$ et Z sont indépendantes.
- Si Y est connue, alors X et Z sont dépendantes
- ⇔ X et Z sont dépendantes conditionnellement à Y
- Si la loi P (Y) est connue, X intervient dans le calcul de P (Z) (et inversement)
- $\Leftrightarrow P(X,Z) = P(X) \times P(Z)$

Notion de fidélité

Définition

Un RB \mathcal{M} représentant la loi jointe d'une suite de v.a. X_1, \ldots, X_n de graphe \mathcal{G} et de LPC $P(X_i|pa(X_i))$ est qualifié de fidèle si toutes les relations d'indépendances conditionnelles induites par la loi jointe $P(X_1, \ldots, X_n)$ peuvent être déduites du graphe \mathcal{G}

Exemple d'infidélité

- $G = X_1 \rightarrow X_2$
- $P(X_2|X_1=0) = P(X_2|X_1=1) = [p, 1-p]$
- \Rightarrow Les variables X_1 et X_2 sont indépendantes d'un point de vue probabiliste mais semblent dépendantes à la lecture du graphe

Plan

- Introduction
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes

Conclusion

Points clés de ce cours

- Un réseau bayésien permet de structurer un phénomène aléatoire sous forme de graphe :
 - Noeuds du graphe = Variables aléatoires
 - Arcs entre noeuds = Relations de dépendance
- L'information apportée par la structure du graphe permet en général de simplifier la loi jointe du phénomène aléatoire étudié - notion de parcimonie
- Si les LPC du RB sont connues, des algorithmes d'inférence probabiliste permettent de déduire de nouvelles connaissances sur le phénomène aléatoire étudié

RB = formalisme séduisant

- Lisibilité des modèles
- Rigueur mathématique
- Fort potentiel de modélisation

Perspectives

Perspectives du cours

- Apprendre à faire des calculs dans un RB
- Renseigner automatiquement les LPC à partir de données
- Étudier quelques extensions des RB
- Appliquer les RB à un problème de classification automatique réelle

Outils pour manipuler les RB

Outils graphiques

- Genie: outil gratuit sous Windows et Linux (via Wine)
- Hugins: outil commercial sous Windows

Librairies informatiques

- Agrum: librairie opensource C++ avec une interface Python PyAgrum
- gRain: librairie opensource en R
- Smile: librairie gratuite C++

Références

Pearl, J. (sept. 1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 1^{re} éd. Morgan Kaufmann.

Shachter, Ross D. (1998). "Bayes-ball: Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams)". In: *Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence*. UAI'98. Madison, Wisconsin: Morgan Kaufmann Publishers Inc., p. 480-487.

Plan

- Introduction
- Rappels de probabilité
- Approche bayésienne
- 4 Les réseaux bayésiens
- Concepts fondamentaux
- 6 Conclusion, perspectives et outils
- Annexes
 - Principe du Bayes Ball

duction Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références **Annexes** O 00000000 0000000 00000000 0000

Principe du Bayes Ball (Shachter 1998)

Objectif

Déterminer si deux ensembles de variables A et B dans un RB sont indépendantes (conditionnellement à un ensemble de variables C)

Principe:

- Colorier les variables observées/instanciées de l'ensemble C
- Faire passer une balle d'une des variables de A vers une des variables de B en respectant les règles du Bayes Ball (cf. slide suivante)
- La balle peut voyager dans le sens opposé des liens du graphe
- Si la balle ne peut atteindre B à partir de A alors $A \perp \!\!\! \perp B \mid C$

duction Rappels Approche bayésienne RB Concepts fondamentaux Conclusions Références **Annexes** 00 00000000 0000000 00000000000000 0000 0**●○**

Principe du Bayes Ball (Shachter 1998)

Objectif

Déterminer si deux ensembles de variables A et B dans un RB sont indépendantes (conditionnellement à un ensemble de variables C)

Principes

- Colorier les variables observées/instanciées de l'ensemble C
- Faire passer une balle d'une des variables de A vers une des variables de B en respectant les règles du Bayes Ball (cf. slide suivante)
- La balle peut voyager dans le sens opposé des liens du graphe
- Si la balle ne peut atteindre B à partir de A alors $A \perp \!\!\!\perp B \mid C$

Règles du Bayes Ball

Image de M. Paskin issu d'un cours sur les modèles graphiques