

Product Launches, Revolutionized...

Aprendizado de Máquina -Regressão Múltipla

< Anterior

Próximo >

Regressão múltipla

A regressão múltipla é como <u>a regressão linear</u> , mas com mais de um valor independente, o que significa que tentamos prever um valor com base em duas ou mais variáveis.

Dê uma olhada no conjunto de dados abaixo, ele contém algumas informações sobre carros.

Carro	Modelo	Volume	Peso	CO2
Toyota	Aygo	1000	790	99
Mitsubishi	Estrela do Espaço	1200	1160	95
Skoda	Citigo	1000	929	95
Fiat	500	900	865	90
Mini	Tanoeiro	1500	1140	105
VW	Acima!	1000	929	105
Skoda	Fábia	1400	1109	90

Mercedes	Uma aula	1500	1365	92
Ford	Festa	1500	1112	98

We can predict the CO2 emission of a car based on the size of the engine, but with multiple regression we can throw in more variables, like the weight of the car, to make the prediction more accurate.

How Does it Work?

In Python we have modules that will do the work for us. Start by importing the Pandas module.

import pandas

Learn about the Pandas module in our Pandas Tutorial.

The Pandas module allows us to read csv files and return a DataFrame object.

The file is meant for testing purposes only, you can download it here: <u>cars.csv</u>

```
df = pandas.read_csv("cars.csv")
```

Then make a list of the independent values and call this variable X.

Put the dependent values in a variable called y.

```
X = df[['Weight', 'Volume']]
y = df['CO2']
```

Tip: It is common to name the list of independent values with a upper case X, and the list of dependent values with a lower case y.

We will use some methods from the sklearn module, so we will have to import that module as well:

```
from sklearn import linear_model
```

From the sklearn module we will use the LinearRegression() method to create a linear regression object.

This object has a method called fit() that takes the independent and dependent values as parameters and fills the regression object with data that describes the relationship:

```
regr = linear_model.LinearRegression()
regr.fit(X, y)
```

Now we have a regression object that are ready to predict CO2 values based on a car's weight and volume:

```
#predict the CO2 emission of a car where the weight is 2300kg, and the volume
is 1300cm³:
predictedCO2 = regr.predict([[2300, 1300]])
```

Example

See the whole example in action:

```
import pandas
from sklearn import linear_model

df = pandas.read_csv("cars.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)

#predict the CO2 emission of a car where the weight is 2300kg, and the volume is 1300cm³:
predictedCO2 = regr.predict([[2300, 1300]])
```

print(predictedCO2)

Result:

[107.2087328]

Run example »

We have predicted that a car with 1.3 liter engine, and a weight of 2300 kg, will release approximately 107 grams of CO2 for every kilometer it drives.

Coefficient

The coefficient is a factor that describes the relationship with an unknown variable.

Example: if x is a variable, then 2x is x two times. x is the unknown variable, and the number 2 is the coefficient.

In this case, we can ask for the coefficient value of weight against CO2, and for volume against CO2. The answer(s) we get tells us what would happen if we increase, or decrease, one of the independent values.

Example

Print the coefficient values of the regression object:

```
import pandas
from sklearn import linear_model

df = pandas.read_csv("cars.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)

print(regr.coef_)
```

Result:

```
[0.00755095 0.00780526]
```

Run example »

Result Explained

The result array represents the coefficient values of weight and volume.

Weight: 0.00755095 Volume: 0.00780526

These values tell us that if the weight increase by 1kg, the CO2 emission increases by 0.00755095g.

And if the engine size (Volume) increases by 1 $\rm cm^3$, the CO2 emission increases by 0.00780526 g.

I think that is a fair guess, but let test it!

We have already predicted that if a car with a 1300cm³ engine weighs 2300kg, the CO2 emission will be approximately 107g.

What if we increase the weight with 1000kg?

Example

Copy the example from before, but change the weight from 2300 to 3300:

```
import pandas
from sklearn import linear_model

df = pandas.read_csv("cars.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)

predictedCO2 = regr.predict([[3300, 1300]])

print(predictedCO2)
```

Result:

[114.75968007]

Run example »

Previmos que um carro com motor de 1,3 litro e peso de 3.300 kg liberará aproximadamente 115 gramas de CO2 por cada quilômetro percorrido.

O que mostra que o coeficiente de 0,00755095 está correto:

107,2087328 + (1000 * 0,00755095) = 114,75968

< Anterior

Próximo >

PROPAGANDA

SELETOR DE CORES

Obtenha a certificação completando um curso hoje!

iniciar

Jogar um jogo

PROPAGANDA

Reportar erro

Fórum

Sobre

Comprar

Principais tutoriais

Tutorial HTML Tutorial
CSS Tutorial
JavaScript
How To Tutorial
SQL Tutorial
Python Tutorial
W3.CSS Tutorial
Bootstrap Tutorial
PHP Tutorial
Java Tutorial
C++ Tutorial
jQuery

Principais referências

HTML Reference
CSS Reference
JavaScript Reference
SQL Reference
Python Reference
W3.CSS Reference
Bootstrap Reference
PHP Reference
HTML Colors
Java Reference

Angular Reference jQuery Reference

Top Examples

HTML Examples
CSS Examples
JavaScript Examples
How To Examples
SQL Examples
Python Examples
W3.CSS Examples
Bootstrap Examples
PHP Examples
Java Examples
XML Examples
jQuery Examples

Web Courses

HTML Course
CSS Course
JavaScript Course
Front End Course
SQL Course
Python Course
PHP Course
jQuery Course
Java Course
C++ Course
C# Course
XML Course

Get Certified »

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2022 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.

