APPENDIX SUMMARY

Reference	Item
APPENDIX I	SSD1357Z Die Pad Floor Plan
APPENDIX II	SSD1357 Bump Die Pad Coordinates
APPENDIX III	SSD1357 Command Table and Command Description

SSD1357 | Rev 1.0 | P 1/20 | Nov 2016 | **Solomon Systech**

Appendix I: SSD1357Z Die Pad Floor Plan

Figure 1-1: - SSD1357Z Die drawing

Die size	10.90 mm +/- 0.05mm x 1.01 mm+/- 0.05mm
Die thickness	250 +/- 15um
Min I/O pad pitch	55um
Min SEG pad pitch	27um
Min COM pad pitch	33.4um
Bump height	Nominal 12 um

Bump size		
Pad#	X[um]	Y[um]
1~48, 175~222	18	90
223~241, 632~650	90	18
49~174	35	67
242~631	15	80

Alignment mark	Position	Size	
+ shape	(5077.5, 112.5)	56.25um x 56.25um	
T shape	(-5077.5, 112.5)	56.25um x 56.25um	

SSD1357Z X

Pad 1,2,3,...->222 Gold Bumps face up

Figure 1-2: SSD1357Z alignment mark dimension

 Solomon Systech
 Nov 2016
 P 2/20
 Rev 1.0
 SSD1357

Appendix II: SSD1357 Bump Die Pad Coordinates

Table 1: SSD1357 Bump Die Pad Coordinates

Pin Number	Pin Name	Х	Υ
1	VLSS	-5116.8	-425.9
2	COM82	-5083.4	-425.9
3	COM83	-5050	-425.9
5	COM84 COM85	-5016.6 -4983.2	-425.9 -425.9
6	COM86	-4949.8	-425.9
7	COM87	-4916.4	-425.9
8	COM88	-4883	-425.9
9	COM89	-4849.6	-425.9
10	COM90	-4816.2	-425.9
11	COM91	-4782.8	-425.9
12	COM92	-4749.4	-425.9
13	COM93	-4716	-425.9
14	COM94	-4682.6	-425.9
15	COM95	-4649.2	-425.9
16	COM96	-4615.8	-425.9
17	COM97	-4582.4	-425.9
18	COM98	-4549	-425.9
19	COM99	-4515.6	-425.9
20	COM100	-4482.2	-425.9
21	COM101	-4448.8	-425.9
22	COM102	-4415.4	-425.9
23	COM103 COM104	-4382 -4348.6	-425.9 -425.9
25	COM104 COM105	-4348.6 -4315.2	-425.9 -425.9
26	COM103	-4313.2	-425.9
27	COM100	-4248.4	-425.9
28	COM108	-4215	-425.9
29	COM109	-4181.6	-425.9
30	COM110	-4148.2	-425.9
31	COM111	-4114.8	-425.9
32	COM112	-4081.4	-425.9
33	COM113	-4048	-425.9
34	COM114	-4014.6	-425.9
35	COM115	-3981.2	-425.9
36	COM116	-3947.8	-425.9
37	COM117	-3914.4	-425.9
38	COM118	-3881	-425.9
39	COM119	-3847.6	-425.9
40	COM120 COM121	-3814.2 -3780.8	-425.9 -425.9
42	COM121	-3747.4	-425.9
43	COM123	-3714	-425.9
44	COM124	-3680.6	-425.9
45	COM125	-3647.2	-425.9
46	COM126	-3613.8	-425.9
47	COM127	-3580.4	-425.9
48	NC	-3547	-425.9
49	NC	-3437.5	-424.5
50	NC	-3382.5	-424.5
51	NC	-3327.5	-424.5
52	NC	-3272.5	-424.5
53	NC	-3217.5	-424.5
54	NC NC	-3162.5	-424.5
55 56	NC NC	-3107.5	-424.5 -424.5
56 57	NC NC	-3052.5 -2997.5	-424.5 -424.5
58	NC NC	-2997.5	-424.5
59	NC	-2887.5	-424.5
60	NC	-2832.5	-424.5
61	NC	-2777.5	-424.5
62	NC	-2722.5	-424.5
63	VLSS	-2667.5	-424.5
64	VLSS	-2612.5	-424.5
65	VLSS	-2557.5	-424.5
66	VLSS	-2502.5	-424.5
67	VSL	-2447.5	-424.5
68	VSL	-2392.5	-424.5
69	VSL	-2337.5	-424.5
70	VCOMH	-2282.5	-424.5
71	VCOMH	-2227.5	-424.5
72	VCOMH	-2172.5	-424.5
73	VCOMH	-2117.5	-424.5
74 75	VCOMH VCOMH	-2062.5 -2007.5	-424.5 -424.5
70		-2007.5 -1952.5	-424.5 -424.5
76	\/P		
76 77	VP VP		
77	VP VP VP	-1897.5	-424.5
	VP		

Pin Number	Pin Name	Х	Υ
81	VCC	-1677.5	-424.5
82	VCC	-1622.5	-424.5
83	VCC	-1567.5	-424.5
84	VCC	-1512.5	-424.5
85	IREF	-1457.5	-424.5
86	T0	-1402.5	-424.5
87	T1	-1347.5	-424.5
88	VSS	-1292.5	-424.5
89 90	VSS BGGND	-1237.5 -1182.5	-424.5 -424.5
91	VBREF	-1102.5	-424.5 -424.5
92	VDD	-1072.5	-424.5
93	VDD	-1017.5	-424.5
94	VDD	-962.5	-424.5
95	VDD	-907.5	-424.5
96	FR	-852.5	-424.5
97	CL	-797.5	-424.5
98	VLL	-742.5	-424.5
99	RES#	-687.5	-424.5
100	D/C#	-632.5	-424.5
101	CS#	-577.5	-424.5
102	VLL	-522.5	-424.5
103	CLS	-467.5	-424.5
104 105	VLH BS2	-412.5 -357.5	-424.5 -424.5
105	VLL	-302.5	-424.5 -424.5
107	BS1	-302.5	-424.5 -424.5
107	VLH	-192.5	-424.5
109	BS0	-137.5	-424.5
110	VLL	-82.5	-424.5
111	R/W#(WR#)	-27.5	-424.5
112	E(RD#)	27.5	-424.5
113	VLH	82.5	-424.5
114	D_SEL	137.5	-424.5
115	VLL	192.5	-424.5
116	VDD	247.5	-424.5
117	VDD	302.5	-424.5
118	VDD	357.5	-424.5
119	VDD VPP	412.5 467.5	-424.5 -424.5
121	VPP	522.5	-424.5 -424.5
122	D0	577.5	-424.5
123	D1	632.5	-424.5
124	D2	687.5	-424.5
125	D3	742.5	-424.5
126	D4	797.5	-424.5
127	D5	852.5	-424.5
128	D6	907.5	-424.5
129	D7	962.5	-424.5
130 131	D8 D9	1017.5 1072.5	-424.5 -424.5
132	D10	1127.5	-424.5 -424.5
133	D10	1182.5	-424.5 -424.5
134	D12	1237.5	-424.5
135			
	D13	1292.5	-424.5
136	D13	1292.5 1347.5	
			-424.5
136 137 138	D14 D15 VLL	1347.5 1402.5 1457.5	-424.5 -424.5 -424.5 -424.5
136 137 138 139	D14 D15 VLL VCC	1347.5 1402.5 1457.5 1512.5	-424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140	D14 D15 VLL VCC VCC	1347.5 1402.5 1457.5 1512.5 1567.5	-424.5 -424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140 141	D14 D15 VLL VCC VCC VCC	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5	-424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140 141	D14 D15 VLL VCC VCC VCC VCC	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5	-424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140 141 142 143	D14 D15 VLL VCC VCC VCC VCC VCC VCC	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5	424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5
136 137 138 139 140 141 142 143	D14 D15 VLL VCC VCC VCC VCC VCC VCC VP VP	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5	424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5
136 137 138 139 140 141 142 143 144	D14 D15 VLL VCC VCC VCC VCC VCC VCC VP VP VP	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5	-424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140 141 142 143 144 145	D14 D15 VLL VCC VCC VCC VCC VCC VCC VP VP VP VP	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5	424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5
136 137 138 139 140 141 142 143 144	D14 D15 VLL VCC VCC VCC VCC VCC VCC VP VP VP	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5	-424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140 141 142 143 144 145 146	D14 D15 VLL VCC VCC VCC VCC VCC VCC VP VP VP VP VP	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1897.5	424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5
136 137 138 139 140 141 142 143 144 145 146 147	D14 D15 VLL VCC VCC VCC VCC VCC VP VP VP VP VP VP VP	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1897.5 1952.5 2007.5	424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5 424.5
136 137 138 139 140 141 142 143 144 145 146 146 147 148	D14 D15 VLL VCC VCC VCC VCC VCC VP VP VP VP VP VP VP VP VCOMH	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1897.5 1952.5 2007.5	-424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5 -424.5
136 137 138 139 140 141 142 143 144 145 146 147 148 149	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VP VP VCOMH	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1897.5 2007.5 2007.5	-424.5 -425.5 -4
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VCOMH VCOMH	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1897.5 1952.5 2007.5 2062.5 2117.5 2227.5	-424.5 -425.5 -4
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VSL	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1897.5 1897.5 1952.5 2007.5 2062.5 2117.5 2172.5 2227.5 2337.5	-424.5 -425.5 -4
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VCOMH VSL VSL	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1842.5 1897.5 1952.5 2007.5 2002.5 2117.5 2172.5 2227.5 2282.5 2337.5	-424.5 -425.5 -4
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VCOMH VSL VSL	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1787.5 1842.5 1897.5 1952.5 2007.5 2117.5 2172.5 2227.5 2282.5 2337.5 2392.5 2447.5	-424.5 -424.5
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 151 152 153 154 155	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VCOMH VSL VSL VSS	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1952.5 2007.5 2062.5 2117.5 2172.5 2227.5 2282.5 2337.5 2392.5 2447.5 2502.5	-424.5 -424.5
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 155	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VSL VSL VLSS VLSS	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1842.5 1897.5 1952.5 2007.5 2062.5 2177.5 2272.5 2282.5 2337.5 2392.5 2447.5 2502.5 2557.5	-424.5 -424.5
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 151 152 153 154 155	D14 D15 VLL VCC VCC VCC VCC VP VP VP VP VP VP VCOMH VCOMH VCOMH VCOMH VSL VSL VSS	1347.5 1402.5 1457.5 1512.5 1567.5 1622.5 1677.5 1732.5 1787.5 1842.5 1952.5 2007.5 2062.5 2117.5 2172.5 2227.5 2282.5 2337.5 2392.5 2447.5 2502.5	-424.5 -424.5

Pin Number	Pin Name	Х	Y
161	NC	2722.5	-424.5
162	NC	2777.5	-424.5
163	NC	2832.5	-424.5
164 165	NC NC	2887.5	-424.5 -424.5
166	NC NC	2942.5 2997.5	-424.5 -424.5
167	NC NC	3052.5	-424.5
168	NC	3107.5	-424.5
169	NC	3162.5	-424.5
170	NC	3217.5	-424.5
171	NC	3272.5	-424.5
172 173	NC NC	3327.5 3382.5	-424.5 -424.5
173	NC NC	3437.5	-424.5 -424.5
175	NC	3547	-425.9
176	COM63	3580.4	-425.9
177	COM62	3613.8	-425.9
178	COM61	3647.2	-425.9
179 180	COM60 COM59	3680.6 3714	-425.9 -425.9
181	COM58	3747.4	-425.9
182	COM57	3780.8	-425.9
183	COM56	3814.2	-425.9
184	COM55	3847.6	-425.9
185	COM54	3881	-425.9
186 187	COM53 COM52	3914.4 3947.8	-425.9 -425.9
188	COM51	3981.2	-425.9
189	COM50	4014.6	-425.9
190	COM49	4048	-425.9
191	COM48	4081.4	-425.9
192	COM47	4114.8	-425.9
193 194	COM46 COM45	4148.2 4181.6	-425.9 -425.9
195	COM44	4215	-425.9
196	COM43	4248.4	-425.9
197	COM42	4281.8	-425.9
198	COM41	4315.2	-425.9
199	COM40	4348.6 4382	-425.9
200	COM39 COM38	4415.4	-425.9 -425.9
202	COM37	4448.8	-425.9
203	COM36	4482.2	-425.9
204	COM35	4515.6	-425.9
205	COM34	4549	-425.9
206 207	COM33 COM32	4582.4 4615.8	-425.9 -425.9
208	COM31	4649.2	-425.9
209	COM30	4682.6	-425.9
210	COM29	4716	-425.9
211	COM28	4749.4	-425.9
212 213	COM27 COM26	4782.8 4816.2	-425.9 -425.9
213	COM25	4849.6	-425.9 -425.9
215	COM24	4883	-425.9
216	COM23	4916.4	-425.9
217	COM22	4949.8	-425.9
218	COM21	4983.2	-425.9
219 220	COM20 COM19	5016.6 5050	-425.9 -425.9
221	COM18	5083.4	-425.9
222	VLSS	5116.8	-425.9
223	NC	5356.9	-451.9
224	COM17	5356.9	-418.5
225 226	COM16 COM15	5356.9 5356.9	-385.1 -351.7
226	COM15 COM14	5356.9	-351.7
228	COM13	5356.9	-284.9
229	COM12	5356.9	-251.5
230	COM11	5356.9	-218.1
231	COM10	5356.9	-184.7
232	COM9 COM8	5356.9 5356.9	-151.3 -117.9
233	COM7	5356.9	-84.5
235	COM6	5356.9	-51.1
236	COM5	5356.9	-17.7
237	COM4	5356.9	15.7
238 239	COM3 COM2	5356.9 5356.9	49.1 82.5
239	COM2 COM1	5356.9	115.9
	001411	5550.5	

SSD1357 Rev 1.0 P 3/20 Nov 2016 **Solomon Systech**

Pin Number	Pin Name	Х	Y
241	COM0	5356.9	149.3
242	NC	5324.5	434
243	SA0	5297.5	434
244	SB0	5270.5	434
245	SC0	5243.5	434
246	SA1	5216.5	434
247	SB1	5189.5	434
248	SC1	5162.5	434
249	SA2	5135.5	434
250	SB2 SC2	5108.5	434 434
251 252	SA3	5081.5 5054.5	434
253	SB3	5027.5	434
254	SC3	5000.5	434
255	SA4	4973.5	434
256	SB4	4946.5	434
257	SC4	4919.5	434
258	SA5	4892.5	434
259	SB5	4865.5	434
260	SC5	4838.5	434
261	SA6	4811.5	434
262	SB6	4784.5	434
263	SC6	4757.5	434
264	SA7	4730.5	434
265	SB7	4703.5	434
266	SC7	4676.5	434
267	SA8	4649.5	434
268	SB8	4622.5	434
269	SC8	4595.5	434
270	SA9	4568.5	434
271	SB9	4541.5	434
272	SC9	4514.5	434 434
273	SA10	4487.5	
274 275	SB10 SC10	4460.5 4433.5	434 434
276	SA11	4406.5	434
277	SB11	4379.5	434
278	SC11	4352.5	434
279	SA12	4325.5	434
280	SB12	4298.5	434
281	SC12	4271.5	434
282	SA13	4244.5	434
283	SB13	4217.5	434
284	SC13	4190.5	434
285	SA14	4163.5	434
286	SB14	4136.5	434
287	SC14	4109.5	434
288	SA15	4082.5	434
289	SB15	4055.5	434
290	SC15	4028.5	434
291	SA16	4001.5	434
292	SB16	3974.5	434
293 294	SC16 SA17	3947.5 3920.5	434
294	SB17	3920.5	434
296	SC17	3866.5	434
297	SA18	3839.5	434
298	SB18	3812.5	434
299	SC18	3785.5	434
300	SA19	3758.5	434
301	SB19	3731.5	434
302	SC19	3704.5	434
303	SA20	3677.5	434
304	SB20	3650.5	434
305	SC20	3623.5	434
306	SA21	3596.5	434
307	SB21	3569.5	434
308	SC21	3542.5	434
309	SA22	3515.5	434
310	SB22	3488.5	434
311	SC22	3461.5	434
312	SA23	3434.5	434
313	SB23	3407.5	434
314 315	SC23 SA24	3380.5 3353.5	434 434
316	SB24	3326.5	434
317	SC24	3299.5	434
318	SA25	3272.5	434
319	SB25	3245.5	434
320	SC25	3218.5	434

Pin Number	Pin Name	Х	Υ
321	SA26	3191.5	434
322	SB26	3164.5	434
323	SC26	3137.5	434
324	SA27	3110.5	434
325	SB27	3083.5	434
326	SC27	3056.5	434
327 328	SA28 SB28	3029.5 3002.5	434 434
329	SC28	2975.5	434
330	SA29	2948.5	434
331	SB29	2921.5	434
332	SC29	2894.5	434
333	SA30	2867.5	434
334	SB30	2840.5	434
335	SC30	2813.5	434
336	SA31	2786.5	434
337 338	SB31 SC31	2759.5 2732.5	434 434
339	SA32	2705.5	434
340	SB32	2678.5	434
341	SC32	2651.5	434
342	SA33	2624.5	434
343	SB33	2597.5	434
344	SC33	2570.5	434
345	SA34	2543.5	434
346	SB34	2516.5	434
347	SC34	2489.5	434
348	SA35	2462.5	434
349 350	SB35 SC35	2435.5 2408.5	434 434
351	SA36	2381.5	434
352	SB36	2354.5	434
353	SC36	2327.5	434
354	SA37	2300.5	434
355	SB37	2273.5	434
356	SC37	2246.5	434
357	SA38	2219.5	434
358	SB38	2192.5	434
359	SC38	2165.5	434 434
360 361	SA39 SB39	2138.5 2111.5	434
362	SC39	2084.5	434
363	SA40	2057.5	434
364	SB40	2030.5	434
365	SC40	2003.5	434
366	SA41	1976.5	434
367	SB41	1949.5	434
368	SC41	1922.5	434
369 370	SA42 SB42	1895.5 1868.5	434 434
371	SC42	1841.5	434
372	SA43	1814.5	434
373	SB43	1787.5	434
374	SC43	1760.5	434
375	SA44	1733.5	434
376	SB44	1706.5	434
377	SC44	1679.5	434
378	SA45	1652.5	434
379	SB45 SC45	1625.5	434 434
380 381	SA46	1598.5 1571.5	434
382	SB46	1544.5	434
383	SC46	1517.5	434
384	SA47	1490.5	434
385	SB47	1463.5	434
386	SC47	1436.5	434
387	VCC	1409.5	434
388	VCC	1309.5	434
389	SA48	1282.5	434
390	SB48	1255.5	434
391 392	SC48 SA49	1228.5 1201.5	434 434
392	SB49	1174.5	434
394	SC49	1174.5	434
395	SA50	1120.5	434
396	SB50	1093.5	434
		1066.5	434
397	SC50	1000.5	434
	SC50 SA51	1039.5	434
397			

Din Number	Pin Name	х	Y
Pin Number 401	SA52	958.5	434
401	SB52	931.5	434
403	SC52	904.5	434
404	SA53	877.5	434
405	SB53	850.5	434
406	SC53	823.5	434
407	SA54	796.5	434
408	SB54	769.5	434
409	SC54	742.5	434
410	SA55	715.5	434
411	SB55	688.5 661.5	434
412 413	SC55 SA56	634.5	434 434
414	SB56	607.5	434
415	SC56	580.5	434
416	SA57	553.5	434
417	SB57	526.5	434
418	SC57	499.5	434
419	SA58	472.5	434
420	SB58	445.5	434
421	SC58	418.5	434
422 423	SA59 SB59	391.5 364.5	434 434
424	SC59	337.5	434
425	SA60	310.5	434
426	SB60	283.5	434
427	SC60	256.5	434
428	SA61	229.5	434
429	SB61	202.5	434
430	SC61	175.5	434
431 432	SA62 SB62	148.5 121.5	434 434
433	SC62	94.5	434
434	SA63	67.5	434
435	SB63	40.5	434
436	SC63	13.5	434
437	SA64	-13.5	434
438	SB64	-40.5	434
439	SC64	-67.5	434
440 441	SA65 SB65	-94.5 -121.5	434 434
441	SC65	-121.5	434
443	SA66	-175.5	434
444	SB66	-202.5	434
445	SC66	-229.5	434
446	SA67	-256.5	434
447	SB67	-283.5	434
448	SC67	-310.5	434
449 450	SA68 SB68	-337.5 -364.5	434 434
451	SC68	-304.5	434
452	SA69	-418.5	434
453	SB69	-445.5	434
454	SC69	-472.5	434
455	SA70	-499.5	434
456	SB70	-526.5	434
457	SC70	-553.5	434
458 459	SA71 SB71	-580.5 -607.5	434 434
460	SC71	-634.5	434
461	SA72	-661.5	434
462	SB72	-688.5	434
463	SC72	-715.5	434
464	SA73	-742.5	434
465	SB73	-769.5	434
466 467	SC73 SA74	-796.5 -823.5	434 434
468	SB74	-850.5	434
469	SC74	-877.5	434
470	SA75	-904.5	434
471	SB75	-931.5	434
472	SC75	-958.5	434
473	SA76	-985.5	434
474	SB76	-1012.5	434
475 476	SC76 SA77	-1039.5 -1066.5	434 434
476	SB77	-1000.5	434
478	SC77	-1120.5	434
479	SA78	-1147.5	434
480	SB78	-1174.5	434

 Solomon Systech
 Nov 2016
 P 4/20
 Rev 1.0
 SSD1357

Pin Number	Pin Name	х	Υ
481	SC78	-1201.5	434
482	SA79	-1228.5	434
483	SB79	-1255.5	434
484	SC79	-1282.5	434
485	VCC	-1309.5	434
486	VCC	-1409.5	434
487 488	SA80 SB80	-1436.5 -1463.5	434 434
489	SC80	-1403.5	434
490	SA81	-1517.5	434
491	SB81	-1544.5	434
492	SC81	-1571.5	434
493	SA82	-1598.5	434
494	SB82	-1625.5	434
495	SC82	-1652.5	434
496	SA83	-1679.5	434
497	SB83	-1706.5	434
498	SC83	-1733.5	434
499 500	SA84 SB84	-1760.5 -1787.5	434 434
501	SC84	-1814.5	434
502	SA85	-1841.5	434
503	SB85	-1868.5	434
504	SC85	-1895.5	434
505	SA86	-1922.5	434
506	SB86	-1949.5	434
507	SC86	-1976.5	434
508	SA87	-2003.5	434
509	SB87	-2030.5	434
510 511	SC87 SA88	-2057.5	434 434
511	SB88	-2084.5 -2111.5	434
513	SC88	-2111.5	434
514	SA89	-2165.5	434
515	SB89	-2192.5	434
516	SC89	-2219.5	434
517	SA90	-2246.5	434
518	SB90	-2273.5	434
519	SC90	-2300.5	434
520	SA91	-2327.5	434
521 522	SB91	-2354.5	434
523	SC91 SA92	-2381.5 -2408.5	434
524	SB92	-2435.5	434
525	SC92	-2462.5	434
526	SA93	-2489.5	434
527	SB93	-2516.5	434
528	SC93	-2543.5	434
529	SA94	-2570.5	434
530	SB94	-2597.5	434
531	SC94	-2624.5	434
532 533	SA95 SB95	-2651.5 -2678.5	434 434
534	SC95	-2075.5	434
535	SA96	-2732.5	434
536	SB96	-2759.5	434
537	SC96	-2786.5	434
538	SA97	-2813.5	434
539	SB97	-2840.5	434
540	SC97	-2867.5	434
541	SA98	-2894.5	434
542	SB98	-2921.5	434
543 544	SC98 SA99	-2948.5 -2975.5	434 434
545	SB99	-3002.5	434
546	SC99	-3029.5	434
547	SA100	-3056.5	434
548	SB100	-3083.5	434
549	SC100	-3110.5	434
550	SA101	-3137.5	434
551	SB101	-3164.5	434
552	SC101	-3191.5	434
553	SA102	-3218.5	434
554 555	SB102 SC102	-3245.5 -3272.5	434 434
556	SA103	-3272.5	434
557	SB103	-3326.5	434
558	SC103	-3353.5	434
336	00100		
559	SA104	-3380.5	434

Pin Number	Pin Name	Х	Y	Pi	n Number	Pin Name	Х	Y
561	SC104	-3434.5	434		641	COM73	-5356.9	-151.3
562	SA105	-3461.5	434		642	COM74	-5356.9	-184.7
563	SB105	-3488.5	434		643	COM75	-5356.9	-218.1
564	SC105	-3515.5	434		644	COM76	-5356.9	-251.5
565	SA106	-3542.5	434		645	COM77	-5356.9	-284.9
566	SB106	-3569.5	434		646	COM78	-5356.9	-318.3
567	SC106	-3596.5	434		647	COM79	-5356.9	-351.7
568	SA107	-3623.5	434	-	648	COM80	-5356.9	-385.1
569	SB107	-3650.5	434		649	COM81	-5356.9	-418.5
570 571	SC107 SA108	-3677.5 -3704.5	434 434	<u> </u>	650	NC	-5356.9	-451.9
571	SB108	-3704.5	434					
573	SC108	-3751.5	434					
573	SA109	-3785.5	434					
575	SB109	-3812.5	434					
576	SC109	-3839.5	434					
577	SA110	-3866.5	434					
578	SB110	-3893.5	434					
579	SC110	-3920.5	434					
580	SA111	-3947.5	434					
581	SB111	-3974.5	434					
582	SC111	-4001.5	434					
583	SA112	-4028.5	434					
584	SB112	-4055.5	434					
585	SC112	-4082.5	434					
586	SA113	-4109.5	434					
587	SB113	-4136.5	434					
588	SC113	-4163.5	434					
589	SA114	-4190.5	434 434					
590 591	SB114 SC114	-4217.5 -4244.5	434					
591	SA115	-4244.5	434					
593	SB115	-4271.5	434			Inc		
594	SC115	-4325.5	434		- A			
595	SA116	-4352.5	434					
596	SB116	-4379.5	434	A (
597	SC116	-4406.5	434					
598	SA117	-4433.5	434					
599	SB117	-4460.5	434					
600	SC117	-4487.5	434					
601	SA118	-4514.5	434					
602	SB118	-4541.5	434					
603	SC118	-4568.5	434					
604	SA119	-4595.5	434					
605	SB119	-4622.5	434					
606	SC119	-4649.5	434					
608	SA120 SB120	-4676.5 -4703.5	434 434					
609	SC120	-4703.5	434					
610	SA121	-4757.5	434					
611	SB121	-4784.5	434					
612	SC121	-4811.5	434	1				
613	SA122	-4838.5	434					
614	SB122	-4865.5	434					
615	SC122	-4892.5	434					
616	SA123	-4919.5	434					
617	SB123	-4946.5	434					
618	SC123	-4973.5	434					
619	SA124	-5000.5	434					
620	SB124	-5027.5	434					
621	SC124	-5054.5	434					
622 623	SA125 SB125	-5081.5 -5108.5	434 434					
624	SC125	-5106.5	434					
625	SA126	-5162.5	434					
626	SB126	-5189.5	434					
627	SC126	-5216.5	434					
628	SA127	-5243.5	434					
629	SB127	-5270.5	434	1				
630	SC127	-5297.5	434]				
631	NC	-5324.5	434]				
632	COM64	-5356.9	149.3					
633	COM65	-5356.9	115.9					
634	COM66	-5356.9	82.5					
635	COM67	-5356.9	49.1					
636	COM68	-5356.9	15.7					
637	COM69	-5356.9	-17.7					
638	COM70	-5356.9	-51.1					
639	COM71	-5356.9	-84.5					
640	COM72	-5356.9	-117.9	l				

Pin Number	Pin Name	X	Υ
641	COM73	-5356.9	-151.3
642	COM74	-5356.9	-184.7
643	COM75	-5356.9	-218.1
644	COM76	-5356.9	-251.5
645	COM77	-5356.9	-284.9
646	COM78	-5356.9	-318.3
647	COM79	-5356.9	-351.7
648	COM80	-5356.9	-385.1
649	COM81	-5356.9	-418.5
650	NC	-5356.9	-451.9

SSD1357 P 5/20 Rev 1.0 Nov 2016 Solomon Systech

Appendix III: SSD1357 Command Table and Command Description

1 COMMAND TABLE

Table 1-1: SSD1357 Command Table

(D/C# = 0, R/W#(WR#) = 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0) for first byte, D/C# = 1 for other bytes)

	mental (0), 1	Turti	pic c	yie c	Johnnana (B) CII	= 0 for first byte, D/C# = 1 for other bytes)
D/C#	Hex	D7	D6	D 5	D4	D3	D2	D 1	D 0	Command	Description
0 1 1	15 A[6:0] B[6:0]	0 *	0 A ₆ B ₆	0 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Column Address	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
0 1 1	75 A[6:0] B[6:0]	0 *	1 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄	0 A ₃ B ₃	1 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Set Row Address	A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127
0	5C	0	1	0	1	1	1	0	0	Write RAM Command	Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Read RAM Command	Enable MCU to read Data from RAM
0 1 1 1	A0 A[7:0] B[7:0]	1 A ₇ 0	0 A ₆ 0	1 A ₅ 0	0 A ₄ 0	0 A ₃ 0	0 A ₂ 0	0 A ₁ 0	0 A ₀ 0	Set Re-map / Color Depth (Display RAM to Panel)	A[0]=0b, Horizontal address increment [reset] A[0]=1b, Vertical address increment A[1]=0b, Column address 0 is mapped to SEG0 [reset] A[1]=1b, Column address 127 is mapped to SEG0 A[2]=0b, Color sequence: A → B → C [reset] A[2]=1b, Color sequence is swapped: C → B → A A[3]=0b, Reserved [reset] A[3]=1b, Reserved A[4]=0b, Scan from COM0 to COM[N-1] [reset] A[4]=1b, Scan from COM[N-1] to COM0. Where N is the Multiplex ratio. A[5]=0b, Disable COM Split Odd Even A[5]=1b, Enable COM Split Odd Even [reset] A[7:6] Set Color Depth, 00b: 256color 01b: 65k color [reset] 10b: 262k color 11b Pseudo 262k color, 16-bit format 2 Refer to Product Preview Table 6-6 for details

 Solomon Systech
 Nov 2016
 P 6/20
 Rev 1.0
 SSD1357

Funda	Indamental Command Table C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
D /C#	Hex	D7	D6	D5	D4	D3	D2	D1	D 0	Command	Description			
0	A1 A[6:0]	1 *	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Set Display Start Line	Set vertical scroll by RAM from 0~127. [reset=00h]			
0	A2 A[6:0]	1 *	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Set Display Offset	Set vertical scroll by Row from 0-127. [reset=00h]			
0	A4~A7	1	0	1	0	0	1	X ₁	X ₀	Set Display Mode	A4h: All OFF A5h: All ON (All pixels have GS63) A6h: Reset to normal display [reset] A7h: Inverse Display (GS0 -> GS63, GS1 -> GS62,)			
0	AE~AF	1	0	1	0	1	1	1	X_0	Set Sleep mode ON/OFF	AEh = Sleep mode On (Display OFF) AFh = Sleep mode OFF (Display ON)			
0 1	B1 A[7:0]	1 A ₇	0 A ₆	1 A ₅	1 A4	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Pre-charge (Phase 2) period	A[3:0] Phase 1 period of 2~30 DCLK(s) clocks [reset=0100b] A[3:0]: 0 invalid 1 = 2 DCLKs 2 = 4 DCLKs : 15 = 30DCLKs A[7:4] Phase 2 period of 2~30 DCLK(s) clocks [reset=1000b] A[7:4]: 0 invalid 1 = 2 DCLKs 2 = 4 DCLKs : 15 = 30DCLKs Note (1) 0 DCLK is invalid in phase 1 & phase 2			

 SSD1357
 Rev 1.0
 P 7/20
 Nov 2016
 Solomon Systech

Funda	mental (Com	man	d Ta	ble						
D/C #	Hex	D7	_		_	D3	D2	D1	D0	Command	Description
0	B3	1	0	1	1	0	0	1	1	Command	A[3:0] [reset=0000b], divide by DIVSET where
				_	_	_		_	_		A[5.0] [reset=00000], divide by DIVBLI where
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	\mathbf{A}_1	A_0		A[3:0] DIVSET
											0000 divide by 1
											0001 divide by 2
											0010 divide by 4
										Frank Classia	0011 divide by 8
										Front Clock Divider	0100 divide by 16
										(DivSet)/	0101 divide by 32
										Oscillator	0110 divide by 64
										Frequency	0111 divide by 128
										- ·	1000 divide by 256
											>=1001 invalid
											A[7:4] Oscillator frequency, frequency increases as level
											increases [reset=0010b]
0	B6	1	0	1	1	0	1	0	0		A[3:0] Set Second Pre-charge Period
$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	A[3:0]	0	0	0	0	A_3	A_2	A_1	A_0		- (e-v) are are a second of
1	A[3.0]					113	112	71	710		0000b invalid
											0001b 1 DCLKS
										Set Second Pre-	0010b 2 DCLKS
										charge Period	
										76,	1000 8 DCLKS [reset]
											1111 15 DCLKS
									10		0 1111
0	В8	1	0	1	1	1	0	0	0	28	The next 63 data bytes define Gray Scale (GS) Table by
1	A1[7:0]	A1 ₇	$A1_6$	A15	$A1_4$	$A1_3$	$A1_2$	$A1_1$	$A1_0$		setting the gray scale pulse width in unit of DCLK's
1							$A2_2$				(ranges from 0d ~ 180d).
1							Ţ				A 1[7,0], Commo Satting for CS1
1											A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2,
1	_				17						A2[7.0]. Gainina Setting for G52,
1	A62[7:0]	A62-	A62.	A62=	A624	A622	A622	A621	A62a		A62[7:0]: Gamma Setting for GS62,
1	A63[7:0]										A63[7:0]: Gamma Setting for GS63
1	1103[7.0]	1037	1006	1005	1034	r1033	1000	1100	1000		
											Note
											$^{(1)}$ 0 \leq Setting of GS1 $<$ Setting of GS2 $<$ Setting of GS3
										Gray Scale	< Setting of GS62 < Setting of GS63
											(2) GS0 does not has pre-charge and current drive stages.
										(Color A,B,C)	(3) GS1 can be set as only pre-charge but no current drive stage by input gamma setting for GS1 equals 0.
											(4) When command B8h is input only, color A, B, C will
											follow the master LUT.
											(5) When command BCh is input, it selects individual LUT
											for color A, GS1~31A; When command BDh is input, it
											selects individual LUT for color C, GS1~31C
											(6) To select individual LUT for color B, A and C, command
											B8h should be input before command BCh and BDh,
		<u> </u>		<u> </u>					<u> </u>		

 Solomon Systech
 Nov 2016
 P 8/20
 Rev 1.0
 SSD1357

Funda	mental (Com	man	d Ta	ble						
D/C#	Hex	D7	D6	D5	D4	D3	D2	D 1	D 0	Command	Description
0	B9	1	0	1	1	1	0	0	1		Reset to default Look Up Table:
											Color A Color B Color C
										Use Built-in	GS1A = 0 DCLK GS1B = 0 DCLK GS1C = 0 DCLK
										Linear LUT	GS2A = 4 DCLK GS2B = 2 DCLK GS2C = 4 DCLK GS3A = 8 DCLK GS3B = 4 DCLK GS3C = 8 DCLK
										[reset= linear]	
											GS31A = 120 DCLK GS62B = 122 DCLK GS31C = 120 DCLK GS63B = 124 DCLK
0	BB	1	0	1	1	1	0	1	1		Set pre-charge voltage level.[reset = 11110b]
		0					_				set pre enarge voltage leven freset 111100]
1	A[4:0]	U	0	0	A_4	A_3	A_2	A_1	A_0		A[4:0] Hex code pre-charge voltage
											00000 00h 0.10 x V _{CC}
										Set Pre-charge	11110 1Eh 0.50 x V _{CC} [reset]
										voltage	11111 1Fh 0.5133 x V _{CC}
											Note
											(1)Pre-charge voltage level must be smaller than COM
											deselect voltage level
0	BC	1	0	1	1	1	1	0	0		The next 31 data bytes define Gray Scale (GS) Table by
		_		_	_	_	1	-		450	setting the gray scale pulse width in unit of DCLK's
1						A1 ₃				Jan Salar	(ranges from 0d ~ 180d) for color A.
1	A2[7:0]	$A2_7$	$A2_6$	A2 ₅	$A2_4$	$A2_3$	$A2_2$	$A2_1$	$A2_0$	70,	
1	•									4.00	A1[7:0]: Gamma Setting for GS1A,
1	•										A2[7:0]: Gamma Setting for GS2A,
1						. '	9				:
1	A30[7:0]	A307	A306	A30s	A30 ₄	A30 ₂	A30 ₂	A301	A30 ₀		A62[7:0]: Gamma Setting for GS30A,
1	A31[7:0]							7 0	0	Individual Look	A63[7:0]: Gamma Setting for GS31A
	1101[7.0]	. 1. J 1. 7	16 کدی	1.015	1.3.14	1313	1312	1011	1010	Up Table for	Note
										Gray Scale	
										Pulse width	(1) 0 ≤ Setting of GS1 < Setting of GS2 < Setting of GS3 < Setting of GS30 < Setting of GS31
										(Color A)	(2) GSO does not has pre-charge and current drive stages.
											(3) GS1 can be set as only pre-charge but no current drive
											stage by input gamma setting for GS1 equals 0.
											(4) When command B8h is input, it selects one LUT for color
											A, B and C. i.e. GS1~31A, GS1~63B and GS1~31C are
											updated.
											(5) Command B8h should be input before command BCh and
											BDh to select individual LUT for color B, A and C.

SSD1357 Rev 1.0 P 9/20 Nov 2016 **Solomon Systech**

	mental (_	_	_			ı	ı		
D/C #	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 1 1 1 1 1 1	A2[7:0]	A2 ₇	A2 ₆	A2 ₅	A2 ₄	A2 ₃		A2 ₁	A2 ₀	Individual Look Up Table for Gray Scale Pulse width (Color C)	The next 31 data bytes define Gray Scale (GS) Table by setting the gray scale pulse width in unit of DCLK's (ranges from 0d ~ 180d) for color C. A1[7:0]: Gamma Setting for GS1C, A2[7:0]: Gamma Setting for GS2C, : A62[7:0]: Gamma Setting for GS30C, A63[7:0]: Gamma Setting for GS31C Note (1] 0 ≤ Setting of GS1 < Setting of GS31 Setting of GS30 < Setting of GS31 (2) GS0 does not has pre-charge and current drive stages. (3) GS1 can be set as only pre-charge but no current drive stage by input gamma setting for GS1 equals 0. (4) When command B8h is input, it selects one LUT for color A, B and C. i.e. GS1~31A, GS1~63B and GS1~31C are updated. (5) Command B8h should be input before command BCh and BDh to select individual LUT for color B, A and C.
0 1	BE A[2:0]	1 0	0 0	1 0	1 0	1 0	1 A ₂	1 A ₁	0 A ₀	Set V _{COMH} Voltage	A[2:0] Hex code V COMH 000 00h 0.72 x V _{CC} : : : 101 05h 0.82 x V _{CC} [reset] : : : 111 07h 0.86 x V _{CC}
0 1 1 1	C1 A[7:0] B[7:0] C[7:0]	1 A ₇ B ₇ C ₇	\mathbf{B}_{6}	\mathbf{B}_5	\mathbf{B}_4	B_3		\mathbf{B}_1	$\begin{array}{c} 1 \\ A_0 \\ B_0 \\ C_0 \end{array}$		A[7:0] Contrast Value Color A [reset=7Fh] B[7:0] Contrast Value Color B [reset=7Fh] C[7:0] Contrast Value Color C [reset=7Fh]
0	C7 A[3:0]	1 *	1 *	0 *	0 *	0 A ₃	1 A ₂	1 A ₁	1 A ₀	Master Contrast Current Control	A[3:0]: 0000b reduce output currents for all colors to 1/16 0001b reduce output currents for all colors to 2/16 1110b reduce output currents for all colors to 15/16 1111b no change [reset]
0	CA A[6:0]	1 0	1 A ₆	0 A ₅	0 A ₄	1 A ₃	0 A ₂	1 A ₁	0 A ₀	Set MUX Ratio	A[6:0] MUX ratio 4MUX ~ 128MUX, [reset=127], (Range from 3 to 127)
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation

 Solomon Systech
 Nov 2016
 P 10/20
 Rev 1.0
 SSD1357

D/C #	Hex	D7	D6	D5	D4	D3	D2	D 1	D 0	Command	Description
0	FD	1	1	1	1	1	1	0	1		A[7:0]: MCU protection status [reset = 12h]
1	A[7:0]	A ₇	A_6	A ₅	A_4	A_3	A_2	A_1	A_0		A[7:0] = 12h, Unlock OLED driver IC MCU interface from entering command [reset]
											A[7:0] = 16h, Lock OLED driver IC MCU interface from
										Set Command Lock	entering command
											Note (1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command.

Note

Gonfidential to chor Inc.
WiseChip Semiconductor Inc. (1) "*" stands for "Don't care".

Rev 1.0 P 11/20 SSD1357 Nov 2016 Solomon Systech

Table 1-2: SSD1357 Graphic Acceleration Command List

Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0 for first byte, D/C# = 1 for other bytes)

Grap	hic acc	eler	atior	ı con	nma	nd					
D /C#	Hex	D7	D6	D5	D4	D3	D2	D2	D 0	Command	Description
0	96	1	0	0	1	0	1	1	0		A[7:0] = 00000000b No scrolling
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[7:0] = 00000001b to 00111111b Scroll towards SEG127 with 1 column offset
1	B[6:0]	0	B_6	\mathbf{B}_{5}	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1	B_0		A[7:0] = 01000000b to 11111111b
1	C[7:0]	0	C_6	C_5	C_4	C_3	C_2	C_1	C_0		Scroll towards SEG0 with 1 column offset
1	D[6:0]	0	D_6	D_5	D_4	D_3	D_2	D_1	D_0		75.60
1	E[1:0]	0	0	0	0	0	0	E_1	E_0		B[6:0]: start row address
											C[7:0]: end row address
										Horizontal Scroll	D[6:0]: Reserved (reset=00h) E[1:0]: scrolling time interval 00b Invalid 01b normal 10b slow 11b slowest Note Operates during display ON.
0	9E	1	0	0	1	1	1	1	0	Side	Stop horizontal scroll
								C		Stop Moving	Note After sending 9Eh command to stop the scrolling action, the ram data needs to be rewritten
0	9F	1	0	0	1	1	1	1	1	Start Moving	Start horizontal scroll

Note

(2) "*" stands for "Don't care".

 Solomon Systech
 Nov 2016
 P 12/20
 Rev 1.0
 SSD1357

2 COMMAND DESCRIPTION

2.1 Set Column Address (15h)

This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row.

2.2 Set Row Address (75h)

This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address.

For example, column start address is set to 2 and column end address is set to 125, row start address is set to 1 and row end address is set to 126. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 126 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation(solid line in Figure 2-1). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1(solid line in Figure 2-1). While the end row 126 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2(dotted line in Figure 2-1).

Figure 2-1: Example of Column and Row Address Pointer Movement

SSD1357 | Rev 1.0 | P 13/20 | Nov 2016 | Solomon Systech

2.3 Write RAM Command (5Ch)

After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM.

2.4 Read RAM Command (5Dh)

After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM.

2.5 Set Re-map & Dual COM Line Mode (A0h)

This command has multiple configurations and each bit setting is described as follows:

• Address increment mode (A[0])

When A[0] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 2-2.

Row 0
Row 1
Row 126
Row 127

Figure 2-2: Address Pointer Movement of Horizontal Address Increment Mode

When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 2-3.

 Col 0
 Col 1

 Col 126
 Col 127

 Row 0

 Row 1

 Row 126

Figure 2-3: Address Pointer Movement of Vertical Address Increment Mode

Column Address Remap (A[1])

Row 127

This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when A[1] is set to 0) or vice versa (when A[1] is set to 1), as demonstrated in Figure 2-4.

A[1] = 0 (reset): RAM Column $0 \sim 127$ maps to Col $0 \sim$ Col127

A[1] = 1: RAM Column $0 \sim 127$ maps to Col127 \sim Col0

 Solomon Systech
 Nov 2016
 P 14/20
 Rev 1.0
 SSD1357

- Color Remap (A[2])
 - A[2] = 0 (reset): color sequence $A \rightarrow B \rightarrow C$
 - A[2] = 1: color sequence $C \rightarrow B \rightarrow A$
- COM scan direction Remap (A[4])

This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa.

- A[1] = 0 (reset): Scan from up to down
- A[1] = 1: Scan from bottom to up
- Details of pin arrangement can be found in Figure 2-4.
- Odd even split of COM pins (A[5])
 - This command bit can set the odd even arrangement of COM pins.
 - A[5] = 0 (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63
 - A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126 Details of pin arrangement can be found in Figure 2-4.

Figure 2-4: COM Pins Hardware Configuration (MUX ratio: 128) A[3]=0A[4]=0Disable Odd Even Split of Disable COM Left / Right COM Scan Direction : from COM0 to COM127 COM pins Remap ROW12 ROW ROW63 OM0 SSD1357 COM127 COM63 Pad 1,2,3,...Gold Bumps face up A[3]=0A[4]=0A[5] = 1Enable Odd Even Split of Disable COM Left / Right COM Scan Direction: from COM pins Remap COM0 to COM127 ROW126 ROW127 128 x 128 ROW

• Display color mode (A[7:6]) Select either 262k, 65k or 256 color mode.

SSD1357 | Rev 1.0 | P 15/20 | Nov 2016 | **Solomon Systech**

SSD1357Z

COM63

COM127

Pad 1,2,3,...

COM64

COM0

Gold Bumps face up

2.6 Set Display Start Line (A1h)

This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 2-5 shows an example of using this command when MUX ratio = 128 and MUX ratio = 100 and Display Start Line = 28. In there, "Row" means the graphic display data RAM row.

Figure 2-5: Example of Set Display Start Line with no Remap

	128	128	100	100	MUX ratio (CAh)
COM Pin	0	28	0	28	Display start line (A1h)
COM0	Row0	Row28	Row0	Row28	
COM1	Row1	Row29	Row1	Row29	1
COM2	Row2	Row30	Row2	Row30	1
COM3	Row3	Row31	Row3	Row31	1
COM4	Row4	Row32	Row4	Row32	1
COM5	Row5	Row33	Row5	Row33	†
COM6	Row6	Row34	Row6	Row34	1
:	:	:	:	:	†
:	:	:	:	:	1
:	:	1:	:	:	†
:	 .	:	:	:	†
COM95	Row95	Row123	Row95	Row124	†
COM96	Row96	Row123	Row96	Row125	+
COM97	Row90	Row124	Row97	Row126	4
					4
COM98 COM99	Row98 Row99	Row126 Row127	Row98 Row99	Row127 Row0	
COM99 COM100	Row100			Row0	-
COM100 COM101	Row100 Row101	Row0 Row1	- 40	-	-
					-
COM102	Row102	Row2	-	-40	_
COM103	Row103	Row3	-		-
COM104	Row104	Row4	4		4
COM105	Row105	Row5	- 40	-	_
COM106	Row106	Row6	-	-	4
COM107	Row107	Row7	- 4 6	-	_
COM108	Row108	Row8		-	_
COM109	Row109	Row9	-	-	4
COM110	Row110	Row10	-	-	4
COM111	Row111	Row11	-	-	_
COM112	Row112	Row12	-	-	_
COM113	Row113	Row13	-	-	_
COM114	Row114	Row14	-	-	_
COM115	Row115	Row15	-	-	
COM116	Row116	Row16	-	-	
COM117	Row117	Row17	-	-	1
COM118	Row118	Row18	-	-	1
COM119	Row119	Row19	-	-	
COM120	Row120	Row20	-	-	
COM121	Row121	Row21	-	-	
COM122	Row122	Row22	-	-	
COM123	Row123	Row23	-	-	
COM124	Row124	Row24	-	-	
COM125	Row125	Row25	=	-	
COM126	Row126	Row26	=	=	
COM127	Row127	Row27	-	-	
Display					
example					
		SOLOMON		SOLOMON	
	001011011	SYSTECH	COLORION	SYSTECH	001011011
	SOLOMON				SOLOMON
	SYSTECH				SYSTECH
		(4)	(-)	(d)	
	(a)	(b)	(c)	(u)	(GDDARAM)

 Solomon Systech
 Nov 2016
 P 16/20
 Rev 1.0
 SSD1357

2.7 Set Display Offset (A2h)

This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM16 towards the COM0 direction for 16 lines, A[7:0] should be given by 00010000. The figure below shows an example of this command. In there, "Row" means the graphic display data RAM row.

Figure 2-6: Example of Set Display Offset with no Remap

	a	b	c	Case
	128	96	96	MUX ratio (CAh)
	0	0	32	Display offset (A2h A[7:0])
COM0	Row0	Row0	Row32	
COM1	Row1	Row1	Row33	
COM2	Row2	Row2	Row34	
:	:	:	:	
COM61	Row61	Row61	Row93	
COM62	Row62	Row62	Row94	
COM63	Row63	Row63	Row95	
COM64	Row64	Row64	-	
COM65	Row65	Row65	-	
COM66	Row66	Row66	-	
•	:	:	:	
COM93	Row93	Row93	-	
COM94	Row94	Row94	-	
COM95	Row95	Row95	-	
COM96	Row96	-	Row0	4.0
COM97	Row97	-	Row1	4 80
COM98	Row98	-	Row2	40
••	:	:	:	
COM125	Row125	-	Row29	4010
COM126	Row126	-	Row30	
COM127	Row127	-	Row31	
Display				
example				
•			COLOMON	
	SOLOMON	COLONON		SOLOMON
	SYSTECH			SYSTECH
	(a)	(c)	(d)	(GDDARAM)
	(a)		(u)	(GDDARAWI)

SSD1357 | Rev 1.0 | P 17/20 | Nov 2016 | **Solomon Systech**

2.8 Set Display Mode (A4h ~ A7h)

These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display.

All OFF (A4h)

Force the entire display to be at gray scale level "GS0" regardless of the contents of the display data RAM as shown in Figure 2-7.

Figure 2-7: Example of Entire Display OFF

Set Entire Display ON (A5h)

Force the entire display to be at gray scale "GS63" regardless of the contents of the display data RAM as shown in Figure 2-8.

Figure 2-8: Example of Entire Display ON

Set Entire Display OFF (A6h)

Reset the above effect and turn the data to ON at the corresponding gray level. Figure 2-9 shows an example of Normal Display.

Figure 2-9: Example of Normal Display

Inverse Display (A7h)

The gray level of display data are swapped such that "GS0" \leftrightarrow "GS63", "GS1" \leftrightarrow "GS62", ... Figure 2-10 shows an example of inverse display.

Figure 2-10: Example of Inverse Display

Solomon Systech Nov 2016 P 18/20 Rev 1.0 SSD1357

2.9 Set Sleep mode ON/OFF (AEh / AFh)

These single byte commands are used to turn the OLED panel display ON or OFF.

When the display is OFF (command AEh), the segment is in V_{SS} state and common is in high impedance state.

2.10 Set Phase Length (B1h)

This double byte command sets the length of phase 1 and 2 of segment waveform of the driver.

- Phase 1 (A[3:0]): Set the period from 2 to 30 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely.
- Phase 2 (A[7:4]): Set the period from 2 to 30 in the unit of 2DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage V_P.

2.11 Set Front Clock Divider / Oscillator Frequency (B3h)

This double byte command consists of two functions:

- Front Clock Divide Ratio (A[3:0])
 Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 8, with reset value =0. Please refer to Product Preview Section 6.3 for the detail relationship of DCLK and CLK.
- Oscillator Frequency (A[7:4])
 Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4-bit value results in 16 different frequency settings being available.

2.12 Set Second Pre-charge period (B6h)

This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 1 to 15 DCLK's.

2.13 Look Up Table for Gray Scale Pulse width (B8h, BCh, BDh)

This command is used to set each individual gray scale level of Color A, B and C for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it's turned ON.

Following the command B8h, the user has to set the gray scale setting for GS1B, GS2B, ..., GS62B, GS63B one by one in sequence for LUT of color B. GS1 can be set as gamma setting 0, which means there is only pre-charge phase but no current drive phase. Refer to Product Preview Section 6.8 for details. Command B8h should be input before command BCh and BDh, to select LUT for color B, A and C.

After setting B8h command, BCh and BDh commands are used to set gray scale setting for color A and color C respectively. Following the command BCh, the user has to set the gray scale setting for GS1A, GS2A, ..., GS30A, GS31A one by one in sequence for LUT of color A. While following the command BDh, the user has to set the gray scale setting for GS1C, GS2C, ..., GS30C, GS31C one by one in sequence for LUT of color C.

The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 2-) can compensate this effect.

SSD1357 | Rev 1.0 | P 19/20 | Nov 2016 | Solomon Systech

Gamma Look Up table setting

Panel response

Result in linear

Gamma Setting

response

Gray Scale Table

Figure 2-12: Example of Gamma correction by Gamma Look Up table setting

2.14 Use Built-in Linear LUT (B9h)

Gray Scale Table

Gamma Setting

This single byte command reloads the preset linear Gray Scale table. For color B, GS0 =Gamma Setting 0, GS1 = Gamma Setting 0, GS2 = Gamma Setting 2, GS3 = Gamma Setting 4,... GS62 = Gamma Setting 122, GS63 = Gamma Setting 124. Refer to Product Preview Section 6.8 for details.

2.15 Set Pre-charge voltage (BBh)

This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of pre-charge voltage is programmed with reference to V_{CC} .

2.16 Set V_{COMH} Voltage (BEh)

This double byte command sets the high voltage level of common pins, V_{COMH} . The level of V_{COMH} is programmed with reference to V_{CC} .

2.17 Set Contrast Current for Color A,B,C (C1h)

This command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current I_{SEG} increases linearly with the contrast step, which results in brighter display.

2.18 Master Contrast Current Control (C7h)

This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from 1 [0000b] to 16 [1111b – default]. The smaller the master current value, the dimmer the OLED panel display is set.

For example, if original segment output current is 160uA at scale factor = 16, setting scale factor to 8 would reduce the current to 80uA.

2.19 Set Multiplex Ratio (CAh)

This double byte command switches default 1:128 multiplex mode to any multiplex mode from 4 to 128. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of "Display Offset" register programmed by command A2h. Figure 2-5 and Figure 2-6 show examples of setting the multiplex ratio through command CAh.

2.20 Set Command Lock (FDh)

This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call "Lock" state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the "Lock" state.

Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the "Lock" state. And the driver IC will then respond to the command and memory access.

Solomon Systech Nov 2016 P 20/20 Rev 1.0 SSD1357