Parámetro	media	varianza	estadístico	Intervalo de confianza
μ con σ conocida				$\bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
μ con σ desconocida				$\bar{x} \pm t_{\frac{\alpha}{2},n-1} \frac{\sigma}{\sqrt{n}}$
Proporción	np	npq		$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Varianza			$\chi^2_{(n-1)} \sim \frac{(n-1)S^2}{\sigma^2}$	$\frac{(n-1)s^2}{x_{\frac{\alpha}{2},n-1}^2} < \sigma^2 < \frac{(n-1)s^2}{x_{1-\frac{\alpha}{2},n-1}^2}$
$\mu_1 - \mu_2 \operatorname{con}$ $\sigma_1^2 \ y \ \sigma_2^2$ conocidas	$\mu_1 - \mu_2$	$\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)$	$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}}$	$(\bar{X}_1 - \bar{X}_2) \pm Z_{\frac{\alpha}{2}} \sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}$
$\mu_1 - \mu_2 \operatorname{con}$ $\sigma_1^2 \ y \ \sigma_2^2$ Desconocidas pero iguales	$\mu_1 - \mu_2$	$s_{p}^{2} = \left[\frac{(n_{1} - 1) S_{1}^{2} + (n_{2} - 1) S_{2}^{2}}{n_{1} + n_{1} - 2}\right]$	$t_{(n_1+n_2-2)} = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{s_p^2}}$	$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2},v} S_p \sqrt{\left(\frac{1}{n_1}\right) + \left(\frac{1}{n_2}\right)}$
$\mu_1-\mu_2$ con $\sigma_1^2~y~\sigma_2^2$ Desconocidas y diferentes	$\mu_1 - \mu_2$	$\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)$	$Z = \frac{\bar{X}_1 - \bar{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}}$	$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$ $v = \frac{\left(\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_1}\right)^2}$ $\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_1}\right)^2}{n_2 - 1}$
Diferencias pareadas μ_d	$ar{d}$		$t_{(n-1)} = \frac{\bar{d} - \mu_d}{sd/\sqrt{n}}$	$\bar{d} \pm t_{\frac{\alpha}{2}, n-1} \frac{s_d}{\sqrt{n}}$
Diferencia de proporciones	$\widehat{p_x} - \widehat{p_y}$	$\left(\frac{p_x q_x}{n_x}\right) + \left(\frac{p_y q_y}{n_y}\right)$	$Z = \frac{\left(\widehat{p_x} - \widehat{p_y}\right) - \left(p_x - p_y\right)}{\sqrt{\left(\frac{p_x q_x}{n_x}\right) + \left(\frac{p_y q_y}{n_y}\right)}}$	$(\widehat{p_x} - \widehat{p_y}) \pm Z_{\frac{\alpha}{2}} \sqrt{\left(\frac{p_x q_x}{n_x}\right) + \left(\frac{p_y q_y}{n_y}\right)}$

Parámetro	media	varianza	estadístico	Intervalo de confianza
Razón de			$S_1^2 * \sigma_2^2$	S_1^2 1 σ_1^2 S_1^2
varianzas			$F = \frac{1}{S_2^2 * \sigma_1^2}$	$\left \frac{\frac{1}{S_2}^2}{S_2^2} * \frac{1}{f_{\frac{\alpha}{2},n_1-1,n_2-1}} < \frac{\frac{1}{\sigma_2}}{\sigma_2} < \frac{\frac{1}{\sigma_2}}{S_2^2} * \right $
			2 1	$f_{\frac{\alpha}{2},n_2-1,n_1-1}$

Tamaños de muestra

Tamaño de muestra	finita	infinita
media	$Z^2\sigma^2$	$NZ^2\sigma^2$
	$n = \frac{1}{e^2}$	$n = \frac{1}{(N-1)e^2 + Z^2\sigma^2}$
Proporción	Z^2pq	NZ^2pq
	$n = \frac{1}{e^2}$	$n = \frac{1}{(N-1)e^2 + Z^2pq}$