8. Internal Forced Convection

8.1. General Procedure

- 1. Find fluid properties from Appendix 1 at bulk mean temperature $T_b = (T_i + T_e)/2$
 - ρ , μ , k, c_p , Pr, ν
- 2. Determine mean velocity V_{avg}
- 3. Determine the type of flow (laminar or turbulent)
 - Laminar: Re < 2300
 - Turbulent: Re > 4000
- 4. Determine the Nusselt number, Nu, using the appropriate correlation
 - Check if $l_{h,\text{laminar}}$ or $l_{t,\text{laminar}}$ is less than L. If so, use Table 1
 - Else, use empirical correlations
- 5. Determine the heat transfer coefficient h using Nu, k, and A_s

8.2. Variable Definitions

- Nu: Nusselt number
- Re: Reynolds number
- Pr: Prandtl number
- μ: Dynamic viscosity
- ν: Kinematic viscosity
- k: Thermal conductivity
- h: Convection heat transfer coefficient
- D_h: Hydraulic diameter
- A_s: Surface area
- A_c: Cross-sectional area
- V_{avg}: Average velocity
- T_b: Bulk mean temperature
- T_i : Inlet temperature
- T_e: Exit temperature
- \dot{m} : Mass flow rate
- \dot{q} : Heat flux
- ΔT_{lm} : Log mean temperature difference

8.3. Formulas

$$\begin{split} \dot{m} &= \rho V_{\rm avg} A_c \\ {\rm Re} &= \frac{\rho V_{\rm avg} D}{\mu} = \frac{V_{\rm avg} D}{\nu} \\ D_h &= \frac{4A_c}{{\sf Perimeter}} = D|_{\sf circular} = a|_{\sf square} \\ &= \frac{2ab}{a+b}\bigg|_{\sf rectangular} = \frac{4ab}{a+b}\bigg|_{\sf channel} \\ {\sf Nu} &= \frac{hD_h}{k} \\ A_s &= \pi DL|_{\sf circular} = 4ab|_{\sf rectangular} \\ A_c &= \pi \frac{D^2}{4}\bigg|_{\sf circular} = ab|_{\sf rectangular} \\ l_{h,{\sf laminar}} &= 0.05{\sf Re} D_h \\ l_{t,{\sf laminar}} &= 0.05{\sf Re} {\sf Pr} D_h = 0.05{\sf Pr} l_{h,{\sf laminar}} \\ l_{h,{\sf turbulent}} &\approx l_{t,{\sf turbulent}} = 10D_h \end{split}$$

Constant \dot{q} :

$$T_e = T_i + \frac{\dot{q}}{\dot{m}c_p}$$

$$\dot{q} = h(T_s - T_b)$$

Constant
$$T_s$$
:
$$T_e = T_s - (T_s - T_i) \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)$$

$$T_s = \frac{T_e - T_i \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}{1 - \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}$$

$$\dot{Q} = hA_s\Delta T_{\rm lm}$$

$$T_{\rm lm} = \frac{T_i - T_e}{\ln[(T_s - T_e)/(T_s - T_i)]}$$

For fully developed laminar flow, use Table 1.

For entry region in a circular tube where $T_s = \text{constant}$, use:

(Edwards et al., 1979) Nu =
$$3.66 + \frac{0.0658(D/L) {\rm RePr}}{1 + 0.04[(D/L) {\rm RePr}]^{2/3}}$$

For entry region in a circular tube where the difference between T_s and T_b is large, use:

(Sieder and Tate, 1936) Nu =
$$1.86 \left(\frac{\text{RePr}D}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$
 $0.6 < \text{Pr} < 5, \quad 0.0044 < \frac{\mu_b}{\mu_s} < 9.75$

All properties for Sieder and Tate should be evaluated at T_b except μ_s which should be evaluated at T_s .

For entry region between two isothermal parallel plates, use:

(Edwards et al., 1979) Nu =
$$7.54 + \frac{0.03(D_h/L) \mathrm{RePr}}{1 + 0.016[(D_h/L) \mathrm{RePr}]^{2/3}}$$
 Re < 2800

For turbulent flow in a circular tube, use:

(Dittus-Boelter, 1930) Nu =
$$0.023$$
Re^{0.8}Prⁿ
 $n = 0.4$ (Heating), $n = 0.3$ (Cooling)

Tables

Table 1: Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections ($D_h = 4A_c/P$, $Re = V_{\rm avg}D_h/\nu$, and $Nu = hD_h/k$) (Table 8-1 in textbook)

		N		
Tube Geometry	a/b or $ heta^\circ$	$T_s = constant$	$\dot{q}_s = constant$	f
Circle	_	4.36	3.66	64/Re
D				
	$\frac{a/b}{1}$			
Rectangle	1	2.98	3.61	56.92/Re
	2 3	3.39	4.12	62.20/Re
	3	3.96	4.79	68.36/Re
$b\uparrow$	4	4.44	5.33	72.92/Re
	6	5.14	6.05	78.80/Re
← a →	8	5.60	6.49	82.32/Re
	∞	7.54	8.24	96.00/Re
	$\frac{a/b}{1}$			
Ellipse	1	3.66	4.36	64.00/Re
	2	3.74	4.56	67.28/Re
	4	3.79	4.88	72.96/Re
	8	3.72	5.09	76.60/Re
$ \leftarrow a \rightarrow $	16	3.65	5.18	78.16/Re
	$\underline{\theta^{\circ}}$			
Isosceles triangle	10	1.61	2.45	50.80/Re
	30	2.26	2.91	52.28/Re
	60	2.47	3.11	53.32/Re
θ	90	2.34	2.98	52.60/Re
	120	2.00	2.68	50.96/Re