Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики

Полное название

Выполнил: Пащенко А.Е.

"МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)" ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

На тему: "Улучшение робастности динамической системы в продольном канале управления с применением обратной динамики"

Выполнил: Пащенко Алексей Евгеньевич,

Студент группы М1О-403Б-18

Руководитель: Иргалеев Ильяс Хусаинович,

к.т.н., доц. каф. 106

Задачи дипломной работы

Задачи

- Расчет ЛТХ, ВПХ, а также характеристик манёвренности
- Рассмотреть один из основных способов улучшения робастности динамической системы с применением обратной динамики при помощи PI-котроллера.

Объект исследования

В расчёт ЛТХ входит

- Расчёт области установившихся горизонтальных полётов
- Расчёт траектории полёта
- Расчёт транспортных возможностей самолёта

Расчёт области возможных полётов

Определение теоретического и практического потолка

Потолки

Расчёт статического и практического потолка производится по $V_{y_{max}}^{*}$

 $H_{\!\scriptscriptstyle T} = 19,8$ км

 $H_{\mathsf{np}} = 19,5$ км

Минимальные значения часового и километрового расходов топлива

Расчёт траектории полёта

Траектория

Траеткорию полёта принято разделять на три этапа

- Набор высоты
- Крейсерский полёт
- Снижение

Результаты расчётов

$$L=L_{
m Ha6}+L_{
m kp}+L_{
m cnyck}=278,04\
m km+7610\
m km+314,16\
m km}=8202,2\
m km$$
 $T=T_{
m Ha6}+T_{
m kp}+T_{
m cnyck}=20,06\
m muh+403\
m muh+42\
m muh=465,4\
m muh}$ $m_T=m_{T_{
m Ha6}}+m_{T_{
m kp}}+m_{T_{
m cnyck}}=7225\
m kr+50234\
m kr+757\
m kr}=58216\
m kr$

Расчёт траектории полёта

Расчёт транспортных возможностей самолёта

Основные положения

Расчёт ведётся для трёх режимов

- Полет с максимальной коммерческой нагрузкой
- Полёт с максимальным запасом топлива
- Полёт без коммерческой нагрузки ($m_{
 m qH}=0$) с максимальным запасом топлива

Диаграмма транспортных возможностей самолёта

Расчет взлетно-посадочных характеристик самолета

Результаты расчётов

$V_{\text{отр}}$, м/с	<i>L</i> _p , м	<i>L</i> _{вд} , м	$V_{\rm кас}$, м/с	<i>L</i> _{проб} , м	<i>L</i> _{пд} , м
88,85	1125,37	1392	64,58	576	1200,78

Расчёт характеристик манёвренности

Задачи раздела

Задачи

Расчёт:

- ullet Нормальной перегрузки на вираже $n_{y_{\mathtt{вир}}}$
- Угловой скорости на вираже $\omega_{ exttt{вир}}$
- Времени выполнение виража $t_{вир}$
- \bullet Радиуса на вираже $r_{вир}$

Расчёт характеристик манёвренности Графики

$$\dot{x} = Ax + Bu
y = Cx + Du$$

$$x = \begin{bmatrix} V_x \\ V_y \\ \omega_z \\ \vartheta \end{bmatrix}, u = \delta_{\mathfrak{I}}$$
(1)

$$A = \begin{bmatrix} -0.0110 & 0.0433 & 1.7295 & -7.1876 \\ -0.0691 & -0.6975 & -7.0678 & -54.8976 \\ 0.00011 & 0.00116 & -0.35407 & 0.0911 \\ 0 & 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} -0.4412 \\ -12.388 \\ -0.58446 \\ 0 \end{bmatrix}$$

Специальная часть

Собственная робастность системы

$$f_1 = \dot{\omega}_z - m_{\delta_{\mathfrak{g}}} \delta_{\mathfrak{g}}$$

$$G_c = \frac{K}{p+K} = \frac{1}{Tp+1}$$

Схема

Специальная часть

Робастность системы

Задача РІ-контроллера

PI-контроллер в теории должен уменьшать сигнал ошибки $e=\delta_{\mathtt{9}}-\omega_{\mathtt{Z}}$, где k - это сигнал входящий в систему.

PI-контроллер

$$y(t) = K_p + \frac{1}{p}K_i,$$

где $K_p = 2$, $K_i = 5$. Коэффициенты PI-контроллера были выбраны с условием того, что система должна оставаться устойчива.

Специальная часть

Улучшение робасности с применением РІ-контроллера

Схема

Специальная часть

Улучшение робасности с применением РІ-контроллера

Выводы

- Расчёты лётно-технических характеристик показали, что самолёт примерно соответствует на б/ф режиме похожие характеристики как и у обычного дозвукового самолёта
- В результате расчётов манёвренных возможностей самолёта на высоте H=6 км было выяснено, что самолёт пригоден для выполнения манёвра придельного виража в установившемся $\Gamma\Pi$.
- Также в работе было показанно, что PI-контроллер улучшает робастность динамической системы в продольном канале управления с применением обратной динамики

Благодарность

Спасибо за внимание

