Rec'd PCT/PT. 30

1 LISTING SEQUENCE

<110> Salceda, Susana Sun, Yongming Recipon, Herve Cafferkey, Robert

<120> A NOVEL METHOD OF DIAGNOSING, MONITORING, STAGING, IMAGING AND TREATING VARIOUS CANCERS

<130> DEX-0172 <140> 09/763,978 <141> 2001-02-28 <150> PCT/US99/19655 <151> 1999-09-01 <150> 60/098,880 <151> 1998-09-02 <160> 15 <170> PatentIn version 3.1 <210> 1 <211> 2587 <212> DNA <213> Homo sapien

<400> ggaaggcagc gggcagctcc actcagccag tacccagata cgctgggaac cttccccagc 60 catggcttcc ctggggcaga tcctcttctg gagcataatt agcatcatca ttattctggc 120 tggagcaatt gcactcatca ttggctttgg tatttcaggg agacactcca tcacagtcac 180 tactgtcgcc tcagctggga acattgggga ggatggaatc ctgagctgca cttttgaacc 240 tgacatcaaa ctttctgata tcgtgataca atggctgaag gaaggtgttt taggcttggt 300 ccatgagttc aaagaaggca aagatgagct gtcggagcag gatgaaatgt tcagaggccg 360 gacagcagtg tttgctgatc aagtgatagt tggcaatgcc tctttgcggc tgaaaaacgt 420 gcaactcaca gatgctggca cctacaaatg ttatatcatc acttctaaag gcaaggggaa 480 tgctaacctt gagtataaaa ctggagcctt cagcatgccg gaagtgaatg tggactataa 540 tgccagctca gagaccttgc ggtgtgaggc tccccgatgg ttcccccagc ccacagtggt 600 ctgggcatcc caagttgacc agggagccaa cttctcggaa gtctccaata ccagctttga 660 gctgaactct gagaatgtga ccatgaaggt tgtgtctgtg ctctacaatg ttacgatcaa 720 caacacatac tcctgtatga ttgaaaatga cattgccaaa gcaacagggg atatcaaagt 780 gacagaatcg gagatcaaaa ggcggagtca cctacagctg ctaaactcaa aggcttctct 840

gtgtgtctct tctttctttg ccatcagctg ggcacttctg cctctcagcc cttacctgat

gctaaaataa	tgtgccttgg	ccacaaaaaa	gcatgcaaag	tcattgttac	aacagggatc	960
tacagaacta	tttcaccacc	agatatgacc	tagttttata	tttctgggag	gaaatgaatt	1020
catatctaga	agtctggagt	gagcaaacaa	gagcaagaaa	caaaaagaag	ccaaaagcag	1080
aaggctccaa	tatgaacaag	ataaatctat	cttcaaagac	atattagaag	ttgggaaaat	1140
aattcatgtg	aactagacaa	gtgtgttaag	agtgataagt	aaaatgcacg	tggagacaag	1200
tgcatcccca	gatctcaggg	acctccccct	gcctgtcacc	tggggagtga	gaggacagga	1260
tagtgcatgt	tetttgtete	tgaattttta	gttatatgtg	ctgtaatgtt	gctctgagga	1320
agcccctgga	aagtctatcc	caacatatcc	acatcttata	ttccacaaat	taagctgtag	1380
tatgtaccct	aagacgctgc	taattgactg	ccacttcgca	actcaggggc	ggctgcattt	1440
tagtaatggg	tcaaatgatt	cactttttat	gatgcttcca	aaggtgcctt	ggcttctctt	1500
cccaactgac	aaatgccaaa	gttgagaaaa	atgatcataa	ttttagcata	aacagagcag	1560
teggegaeae	cgattttata	aataaactga	gcaccttctt	tttaaacaaa	caaatgcggg	1620
tttatttctc	agatgatgtt	catccgtgaa	tggtccaggg	aaggaccttt	caccttgact	1680
atatggcatt	atgtcatcac	aagctctgag	gcttctcctt	tccatcctgc	gtggacagct	1740
aagacctcag	ttttcaatag	catctagagc	agtgggactc	agctggggtg	atttcgcccc	1800
ccatctccgg	gggaatgtct	gaagacaatt	ttggttacct	caatgaggga	gtggaggagg	1860
atacagtgct	actaccaact	agtggataaa	ggccagggat	gctgctcaac	ctcctaccat	1920
gtacaggacg	tctccccatt	acaactaccc	aatccgaagt	gtcaactgtg	tcaggactaa	1980
gaaaccctgg	ttttgagtag	aaaagggcct	ggaaagaggg	gagccaacaa	atctgtctgc	2040
ttctcacatt	agtcattggc	aaataagcat	tetgtetett	tggctgctgc	ctcagcacag	2100
agagccagaa	ctctatcggg	caccaggata	acatctctca	gtgaacagag	ttgacaaggc	2160
ctatgggaaa	tgcctgatgg	gattatcttc	agcttgttga	gcttctaagt	ttctttccct	2220
tcattctacc	ctgcaagcca	agttctgtaa	gagaaatgcc	tgagttctag	ctcaggtttt	2280
cttactctga	atttagatct	ccagaccctt	cctggccaca	attcaaatta	aggcaacaaa	2340
catatacctt	ccatgaagca	cacacagact	tttgaaagca	aggacaatga	ctgcttgaat	2400
tgaggccttg	aggaatgaag	ctttgaagga	aaagaatact	ttgtttccag	ccccttccc	2460
acactcttca	tgtgttaacc	actgccttcc	tggaccttgg	agccacggtg	actgtattac	2520
atgttgttat	agaaaactga	ttttagagtt	ctgatcgttc	aagagaatga	ttaaatatac	2580
atttcct						2587

<210> 2 <211> 2070 <212> DNA

<213> Homo sapien

<400> 2 cacagagaga ggcagcagct tgctcagcgg acaaggatgc tgggcgtgag ggaccaaggc 60 ctgccctgca ctcgggcctc ctccagccag tgctgaccag ggacttctga cctgctggcc 120 agccaggacc tgtgtgggga ggccctcctg ctgccttggg gtgacaatct cagctccagg 180 ctacagggag accgggagga tcacagagcc agcatgttac aggatcctga cagtgatcaa 240 cetetgaaca geetegatgt caaaceeetg egeaaaceee gtateeeeat ggagaeette 300 agaaaggtgg ggatccccat catcatagca ctactgagcc tggcgagtat catcattgtg 360 gttgtcctca tcaaggtgat tctggataaa tactacttcc tctgcgggca gcctctccac 420 ttcatcccga ggaagcagct gtgtgacgga gagctggact gtcccttggg ggaggacgag 480 gagcactgtg tcaagagett eccegaaggg cetgeagtgg eagteegeet etceaaggae 540 cgatccacac tgcaggtgct ggactcggcc acagggaact ggttctctgc ctgtttcgac 600 aacttcacag aagctctcgc tgagacagcc tgtaggcaga tgggctacag cagcaaaccc 660 actttcagag ctgtggagat tggcccagac caggatctgg atgttgttga aatcacagaa 720 aacagccagg agettegeat geggaactea agtgggeeet gteteteagg etecettggte 780 tecetgeact gtettgeetg tgggaagage etgaagaeee eeegtgtggt gggtggggag 840 gaggeetetg tggattettg geettggeag gteageatee agtaegaeaa acageaegte 900 tgtggaggga gcatcctgga cccccactgg gtcctcacgg gcagcccact gcttcaggaa 960 acataccgat gtgttcaact ggaaggttgcg ggcaggctca gacaaactgg gcagcttccc 1020 atcoctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc ccaaagacaa 1080 tgacategec etcatgaage tgeagtteec acteaettte teaggeacag teaggeecat 1140 etgtetgeee ttetttgatg aggageteae tecagecaee ceaetetgga teattggatg 1200 gggctttacg aagcagaatg gagggaagat gtctgacata ctgctgcagg cgtcagtcca 1260 ggtcattgac agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1320 gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg acagtggtgg 1380 gcccctgatg taccaatctg accagtggca tgtggtgggc atcgttagct ggggctatgg 1440 ctgcgggggc ccgagcaccc caggagtata caccaaggtc tcagcctatc tcaactggat 1500 ctacaatgtc tggaaggctg agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc 1560

tteetteetg ceetgeeeac etggggatee ceeaaagtea gacacagage aagagteeee

		4			
ttgggtacac ccctctgccc 1680	acagecteag	catttct	tgg agcagca	aaag ggcctca	att
cctataagag accctcgcag	cccagaggcg	cccagaggaa	gtcagcagcc	ctagctcggc	1740
cacacttggt gctcccagca	tcccagggag	agacacagcc	cactgaacaa	ggtctcaggg	1800
gtattgctaa gccaagaagg	aactttccca	cactactgaa	tggaagcagg	ctgtcttgta	1860
aaagcccaga tcactgtggg	ctggagagga	gaaggaaagg	gtctgcgcca	gccctgtccg	1920
tetteaceca tecceaagee	tactagagca	agaaaccagt	tgtaatataa	aatgcactgc	1980
cctactgttg gtatgactac	cgttacctac	tgttgcattg	ttattacagc	tatggccact	2040
attattaaag agctgtgtaa	catctctggc				2070
<210> 3 <211> 1709 <212> DNA <213> Homo sapien					
<400> 3 agcagactca caccagaact	acattccctg	gccccctgcc	tgtgtgcttc	tggccaggcc	60
ttggttggca agtctgaccc	gagaaaagga	tctgcagaaa	atcagactat	gggatcactt	120
tgtttgtgca ttgggaatga	cattctttcc	caccccagga	aaacctttgg	gactttcaga	180
gacattgtgg ctagccaacc	acatggtcag	cctcaaagtt	gagaggctca	gtaaccctcc	240
tatccctaga gaattccaaa	gtgtggatgt	aatttaacta	gaaagccatt	ggtgactatc	300
tgtgatcctc tggaagtatg	ctatgttgtg	tatatcttgc	atccaaagcc	agagggaacc	360
acaatgacta gtaaaacggt	ggtctcaatg	cccacttagc	ctctgcctct	gaatttgacc	420
atagtggcgt tcagctgata	gagcgggaag	aagaaatatg	cattttttat	gaaaaaataa	480
atatccaaga gaagatgaaa	ctaaatggag	aaattgaaat	acatctactg	gaagaaaaga	540
tccaattcct gaaaatgaag	attgctgaga	agcaaagaca	aatttgtgtg	acccagaaat	600
tactgccagc caagaggtcc	ctggatgccg	acctagctgt	gctccaaatt	cagttttcac	660
agtgtacaga cagaattaaa	gacctggaga	aacagttcgt	aaagcctgat	ggtgagaata	720
gagetegett cettecaggg	aaagatctga	ccgaaaaaga	aatgatccaa	aaattagaca	780
agctggaact acaactggcc	aagaaggagg	agaagctgct	ggagaaggat	ttcatctatg	840
agcaggtete caggeteaca	gacaggetet	gcagcaaaac	tcagggctgc	aagcaggaca	900
cactgctctt agccaagaag	atgaatggct	atcaaagaag	gatcaaaaat	gcaactgaga	960
aaatgatggc tcttgttgct	gagctgtcca	tgaaacaagc	cctaaccatt	gaactccaaa	1020
aggaagtcag ggagaaagaa	gacttcatct	tcacttgcaa	ttccaggata	gaaaaaggtc	1080

tgccactcaa taaggaaatt 1140	gagaaagaat	ggttga	aagt ccttcg	agat gaagaaa	tgc
acgeettgge categetgaa	aagtctcagg	agttcttgga	agcagataat	cgccagctgc	1200
ccaatggtgt ttacacaact	gcagagcagc	gtccgaatgc	ctacatccca	gaagcagatg	1260
ccactcttcc tttgccaaaa	ccttatggtg	ctttggctcc	ttttaaaccc	agtgaacctg	1320
gagccaatat gaggcacata	aggaaacctg	ttataaagcc	agttgaaatc	tgaatatgtg	1380
aacaaatcca ggcctctcaa	ggaaaagact	tcaaccaggc	ttccttgtac	ccacaggtga	1440
aaaatgtgag cataatactt	ctaatattat	tgataagtaa	ggtaaccaca	attagtcagc	1500
aacagagtac aacagggttt	ctatttaccc	accaactact	atacctttca	tgacgttgaa	1560
tgggacatag aactgtccta	catttatgtc	aaagtatata	tttgaatcgc	ttatattttc	1620
tttttcactc tttatattga	gtacattcca	gaaatttgta	gtaggcaagg	tgctataaaa	1680
atgcactaaa aataaatctg	f ttctcaatg				1709
<210> 4 <211> 257 <212> DNA <213> Homo sapien					
<400> 4 ttaatgggta agtatttttt	atatgcttta	gctatagcta	aagaaaactg	atacttaaca	60
aagttgaata gtattattca	ctggtgctcc	taaaatattg	tttttcagtg	taaaatatgc	120
atatetteta tatttaatat	gaaagtcttg	aaatgtatca	gacagaaggg	gatttcagtt	180
tgcaaataat gagcaatgta	gcaattttaa	cacatttcat	aaatatatat	tttgtcattg	240
gtggagagca ccatttg					257
<210> 5 <211> 359 <212> DNA <213> Homo sapien					
<400> 5 gcctgagagc acttagcgtt	catgagtgtc	cccaccatgg	cctggatgat	gcttctcctc	60
ggactccttg cttatggatc	aggtcaggga	gtggattctc	agactgtggt	gacccaagag	120
ccatcgttat cagtgtcccc	tggagggaca	gtcacactca	cttgtggctt	ggcctctgac	180
tcagtctcta ctaatttctt	ccccacctgg	taccagcaga	ccccaggcca	ggctccacgc	240
acgctcatct acagcacaag	cactcgctct	tctggggtcc	ctgatcgttt	ctctggctcc	300
atccttggga acaaagctgc	cctcaccatt	acgggggccc	aggcagatga	tgaatctga	359

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

6 <210> 6 <211> 1372 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (6)..(6) <223> n = a, c, g or t<220> <221> misc_feature <222> (9)..(9) <223> n = a, c, g or t <400> 6 cettanagne ttggttgeca aacagaatge ceatateegt ettaettgtg aggaagettg cettgggege cetetgetgg ceeteetgaa getaacaggg gegagtgete ggtggtttac aaattgcctc catgcagact atgaaactgt tcagcctgct atagttagat ctctggcact ggcccaggag gtcttgcaga tttgcagatc aaggagaacc caggagtttc aaagaagcgg ctagtaaagg tctctgagat ccttgcacta gctacatcct cagggtagga ggaagatggc ttccagaagc atgeggetge tectattget gagetgeetg gecaaaacag gagteetggg tgatatcatc atgagaccca gctgtgctcc tgggatggtt ttaccacaag tccaattgct atggttactt caggaagctg aggaactggt ctgatgccga gctcgagtgt cagtcttacg gaaacggagc ccacctggca tctatcctga gtttaaagga agccagcacc atagcagagt acataagtgg ctatcagaga agccagccga tatggattgg cctgcacgac ccacagaaga ggcagcagtg gcagtggatt gatggggcca tgtatctgta cagatcctgg tctggcaagt ccatgggtgg gaacaagcac tgtgctgaga tgagctccaa taacaacttt ttaacttgga gcagcaacga atgcaacaag cgccaacact tcctgtgcaa gtaccgacca tagagcaaga

atcaagattc tgctaactcc tgcacagccc cgtcctcttc ctttctgcta gcctggctaa

atctgctcat tatttcagag gggaaaccta gcaaactaag agtgataagg gccctactac

actggctttt ttaggcttag agacagaaac tttagcattg gcccagtagt ggcttctagc

tetaaatgtt tgeecegeea teeettteea eagtateett etteeeteet eeeetgtete

tggctgtctc gagcagtcta gaagagtgca tctccagcct atgaaacagc tgggtctttg

gccataagaa gtaaagattt gaagacagaa ggaagaaact caggagtaag cttctagccc

cetteagett etacaccett etgecetete tecattgeet geaccecace ecagecacte

aactcctgct tgtttttcct ttggccatgg gaaggtttac cagtagaatc cttgctaggt

240

tgatgtgggc catacattcc tttaataaac cattgtgtac ataagaggtt gctgtgttcc 1320 agttcagtaa atggtgaatg tggaaaagtg aaataagacc aagaaataca aa 1372 <210> 7 <211> 291 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (277)..(277) <223> n= a, c, g, or t <400> 7 agaatggtag tagtaagaag aagaaaaata gaggatctga atgtattttg aaggtagagt 60 ccactggact tagagatgga ttgaatgtgg aagattaagg aaagggagaa atgaaagata 120 gtcttaggtt tcatcttcag atgactgggt gaacagcagt gttctttgct aagatgggga 180 agactaggga aaagagccag ttctgtattg agcatattat atttaagaca atcccatctg 240 ggtccaaaga caatgttgat tttttttctt agatacntgc cctttagacc t 291 <210> 8 <211> 1275 <212> DNA 1275 <213> Homo sapien <220> <221> misc feature <222> (410)..(410) <223> n= a, c, g, or t <220> <221> misc_feature <222> (728)..(756) <223> n= a, c, g, or t <220> <221> misc_feature <222> (957)..(957) <223> n= a, c, g, or t <400> 8 attctagaac atatgtataa gctaaaaaca gtattttact cagatcagta gttatcgtgt 60 ctatcagcta taaaaaaaat caactgccag ccaagaactt taaaacttta agctgtgtat 120

tatagaaccg ttttgtgtag cattggaata ttgtccattt tgtaagtcat tgtgaatgtt

cttaattatc agcttgaagg tatttttgta ttaaaagttg acattgaaga acctaagtgg

480

atgatgggat	ttggggccag	tagtgaaagt	atgtttcctc	taaaatattt	ccctaaacag	300
tggtatacat	ggttatttta	ttatgagatt	tgtatatgtt	ctgtgtttct	ctgtgaacaa	360
tgtttcagtc	tctctgtcac	catatgtaag	gggaagtcca	caaatatagn	actacattgc	420
acaaaactaa	aattgttaat	tacaagaaaa	tataggtgct	taccttttga	aggtttatta	480
atacatatgg	ttgtcacaat	acgtatatat	gataaatggt	gtacatatac	agatgtttat	540
ggtgtataaa	tttttctata	cccaattaga	attatettee	tgattcttta	ttcaataaca	600
tgctaattcc	tcttctatgt	tctatagtga	cagaatgcta	acttttctta	taccctggca	660
gaggacagag	gagtctggtc	taggatgggg	aactgaattt	ttgaacgaaa	aggaaagaga	720
aaggatgnnn	nnnnnnnnn	nnnnnnnnn	nnnnnntaat	gtttcttagt	cattttgatt	780
ggccatttga	acagtctaca	agtttaacgt	tatttccagt	gaagtaggat	ggctgaccta	840
gcaatacatg	tttcttcaaa	agggtaaaca	tgctttagtg	acctaaagct	aaattttgta	900
catttgacat	caggggtgtt	ataagtactg	cacttaatac	aaagctattt	ctcaatngtg	960
ttatttttga	gacaaatttt	tcttcaccat	taacttcttg	ttggtagctt	tttgttttgt	1020
aaaaattgag	agatggcaat	gcttatctca	accagattat	ccatctgcag	aattaaggta	1080
tgcaactggt	aaataaaaga	caaatgctcc	agtttgtctt	tctcaacctt	tgagttctta	1140
acctttgagt	taaaacctag	tctaaatagt	gggaatgtct	tggtttacag	taaggttttc	1200
ttgggaagga	tcttggtttt	gtgatctatt	tgtgaattaa	ggagtagatg	ttaaccatta	1260
ttttatagat	aagtg					1275
<210> 9 <211> 2479 <212> DNA <213> Homo	e sapien					
	acattccaga	tacctatcat	tactcgatgc	tgttgataac	agcaagatgg	60
ctttgaactc	agggtcacca	ccagctattg	gaccttacta	tgaaaaccat	ggataccaac	120
cggaaaaccc	ctatcccgca	cagcccactg	tggtccccac	tgtctacgag	gtgcatccgg	180
ctcagtacta	cccgtccccc	gtgccccagt	acgccccgag	ggtcctgacg	caggcttcca	240
accccgtcgt	ctgcacgcag	cccaaatccc	catccgggac	agtgtgcacc	tcaaagacta	300
agaaagcact	gtgcatcacc	ttgaccctgg	ggaccttcct	cgtgggagct	gcgctggccg	360
	at ann a at t					

ctggcctact ctggaagttc atgggcagca agtgctccaa ctctgggata gagtgcgact

cctcaggtac ctgcatcaac ccctctaact ggtgtgatgg cgtgtcacac tgccccggcg

			9			
gggaggacga 540	gaatcggtgt	gttcgcctct	acggaco	caaa cttcato	cctt cagatgt	act
catctcagag	gaagtcctgg	caccctgtgt	gccaagacga	ctggaacgag	aactacgggc	600
gggcggcctg	cagggacatg	ggctataaga	ataatttta	ctctagccaa	ggaatagtgg	660
atgacagcgg	atccaccagc	tttatgaaac	tgaacacaag	tgccggcaat	gtcgatatct	720
ataaaaaact	gtaccacagt	gatgcctgtt	cttcaaaagc	agtggtttct	ttacgctgtt	780
tagcctgcgg	ggtcaacttg	aactcaagcc	gccagagcag	gatcgtgggc	ggtgagagcg	840
cgctcccggg	ggcctggccc	tggcaggtca	gcctgcacgt	ccagaacgtc	cacgtgtgcg	900
gaggctccat	catcaccccc	gagtggatcg	tgacagccgc	ccactgcgtg	gaaaaacctc	960
ttaacaatcc	atggcattgg	acggcatttg	cggggatttt	gagacaatct	ttcatgttct	1020
atggagccgg	ataccaagta	caaaaagtga	tttctcatcc	aaattatgac	tccaagacca	1080
agaacaatga	cattgcgctg	atgaagctgc	agaagcctct	gactttcaac	gacctagtga	1140
aaccagtgtg	tctgcccaac	ccaggcatga	tgctgcagcc	agaacagctc	tgctggattt	1200
ccgggtgggg	ggccaccgag	gagaaaggga	agacctcaga	agtgctgaac	gctgccaagg	1260
tgcttctcat	tgagacacag	agatgcaaca	gcagatatgt	ctatgacaac	ctgatcacac	1320
cagccatgat	ctgtgccggc	ttcctgcagg	ggaacgtcga	ttcttgccag	ggtgacagtg	1380
gagggcctct	ggtcacttcg	aacaacaata	tctggtggct	gataggggat	acaagctggg	1440
gttctggctg	tgccaaagct	tacagaccag	gagtgtacgg	gaatgtgatg	gtattcacgg	1500
actggattta	tcgacaaatg	aaggcaaacg	gctaatccac	atggtcttcg	tccttgacgt	1560
cgttttacaa	gaaaacaatg	gggctggttt	tgcttccccg	tgcatgattt	actcttagag	1620
atgattcaga	ggtcacttca	tttttattaa	acagtgaact	tgtctggctt	tggcactctc	1680
tgccatactg	tgcaggctgc	agtggctccc	ctgcccagcc	tgctctccct	aaccccttgt	1740
ccgcaagggg	tgatggccgg	ctggttgtgg	gcactggcgg	tcaattgtgg	aaggaagagg	1800
gttggaggct	gcccccattg	agatetteet	gctgagtcct	ttccaggggc	caattttgga	1860
tgagcatgga	gctgtcactt	ctcagctgct	ggatgacttg	agatgaaaaa	ggagagacat	1920
ggaaagggag	acagccaggt	ggcacctgca	geggetgeee	tctggggcca	cttggtagtg	1980
tccccagcct	acttcacaag	gggattttgc	tgatgggttc	ttagagcctt	agcagccctg	2040
gatggtggcc	agaaataaag	ggaccagccc	ttcatgggtg	gtgacgtggt	agtcacttgt	2100
aaggggaaca	gaaacatttt	tgttcttatg	gggtgagaat	atagacagtg	cccttggtgc	2160
gagggaagca	attgaaaagg	aacttgccct	gagcactcct	ggtgcaggtc	tccacctgca	2220
cattgggtgg	ggctcctggg	agggagactc	agccttcctc	ctcatcctcc	ctgaccctgc	2280

tectageace etggag	gagtg aatgeceett	ggtccctggc	agggcgccaa	gtttggcacc	2340
atgtcggcct cttcac	ggcct gatagtcatt	ggaaattgag	gtccatgggg	gaaatcaagg	2400
atgctcagtt taaggt	acac tgtttccatg	ttatgtttct	acacattgat	ggtggtgacc	2460
ctgagttcaa agccat	cctt				2479
<210> 10 <211> 576					
<212> DNA <213> Homo sapie	en				
<400> 10					
ttcaaagaca tattag	gaagt tgggaaaata	attcatgtga	actagacaag	tgtgttaaga	60
gtgataagta aaatgo	cacgt ggagacaagt	gcatccccag	atctcaggga	cctccccctg	120
cctgtcacct ggggag	gtgag aggacaggat	agtgcatgtt	ctttgtctct	gaatttttag	180
ttatatgtgc tgtaat	gttg ctctgaggaa	gcccctggaa	agtctatccc	aacatatcca	240
catcttatat tccaca	aatt aagctgtagt	atgtacccta	agacgctgct	aattgactgc	300
cacttegeaa eteage	gggcg gctgcatttt	agtaatgggt	caaatgattc	actttttatg	360
atgettecaa aggtge	ecttg gettetette	ccaactgaca	aatgccaaag	ttgagaaaaa	420
tgatcataat tttagc	cataa acagagcagt	cggcgacacc	gattttataa	ataaactgag	480
caccttcttt ttaaac	caaac aaatgcgggt	ttatttctca	gatgatgttc	atccgtgaat	540
ggtccaggga aggacc	ctttc accttgacta	tatggc			576
<210> 11 <211> 890					
<212> DNA <213> Homo sapie	en				
<400> 11					
caagetetga ggette	cteet tteeateetg	cgtggacagc	taagacctca	gttttcaata	60
gcatctagag cagtgg	gact cagctggggt	gatttcgccc	cccatctccg	ggggaatgtc	120
tgaagacaat tttggt	tacc tcaatgaggg	agtggaggag	gatacagtgc	tactaccaac	180
tagtggataa aggcca	aggga tgctgctcaa	cctcctacca	tgtacaggga	cgtctcccca	240
ttacaactac ccaato	ccgaa gtgtcaactg	tgtcaggact	aagaaaccct	ggttttgagt	300
agaaaagggc ctggaa	agag gggagccaac	aaatctgtct	gcttcctcac	attagtcatt	360
ggcaaataag cattct	gtct ctttggctgc	tgcctcagca	cagagagcca	gaactctatc	420
gggcaccagg ataaca	itctc tcagtgaaca	gagttgacaa	ggcctatggg	aaatgcctga	480
tgggattatc ttcago	cttgt tgagcttcta	agtttctttc	ccttcattct	accctgcaag	540

ccaagttctg taagagaaat gcctgagttc tagctcaggt tttcttactc tgaatttaga 600 tctccagacc cttcctggcc acaattcaaa ttaaggcaac aaacatatac cttccatgaa 660 gcacacacay acttttgaaa gcaaggacaa tgactgcttg aattgaggcc ttgaggaatg 720 aagctttgaa ggaaaagaat actttgtttc cagccccctt cccacactct tcatgtgtta 780 accactgcct tcctggacct tggagccacg gtgactgtat tacatgttgt tatagaaaac 840 tgattttaga gttctgatcg ttcaagagaa tgattaaata tacatttcct 890 <210> 12 <211> 406 <212> DNA <213> Homo sapien <220> <221> misc_feature <222> (30)..(30) <223> n= a, c, g, or t <220> <221> misc_feature <222> (248)..(248) <223> n= a, c, g, or t <220> <221> misc feature <222> (383)..(383) <223> n= a, c, g, or t <400> 12 gtgaatgtgg actataatgc cagctcagan accttgcggt gtgaggctcc ccgatggttc 60 ccccagccca cagtggtctg ggcatcccaa gttgaccagg gagccaactt ctcggaaqtc 120 tocaatacca gotttgagot gaactotgag aatgtgacca tgaaggttgt gtotgtgote 180 tacaatgtta cgatcaacaa cacatactcc tgtatgattg aaaatgacat tgccaaagca 240 acaggggnta tcaaagtgac agaatcggag atcaaaaggc ggagtcacct acagctgcta 300 aactcaaagg cttctctgtg tgtctcttct ttctttgcca tcagctgggc acttctgcct 360 ctcagccctt acctgatgct aanataatgt gccttggcca caaaaa 406 <210> 13 <211> 462 <212> DNA <213> Homo sapien <400> 13 ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc ttccccagcc 60

atggcttccc	tggggcagat	cctcttctgg	g agcataatta	gcatcatcat	tattctggct	120
ggagcaattg	cactcatcat	tggctttggt	atttcaggga	gacactccat	cacagtcact	180
actgtcgcct	cagctgggaa	cattggggag	g gatggaatcc	tgagctgcac	ttttgaacct	240
gacatcaaac	tttctgatat	cgtgatacaa	tggctgaagg	aaggtgtttt	aggcttggtc	300
catgagttca	aagaaggcaa	agatgagctg	g teggageagg	atgaaatgtt	cagaggccgg	360
acagcagtgt	ttgctgatca	agtgatagtt	ggcaatgcct	ctttgcggct	gaaaaacgtg	420
caactcacag	atgctggcac	ctacaaatgt	tatatcatca	ct		462
<210 > 14 <211 > 272 <212 > DNA <213 > Hom <400 > 14	o sapien					
gcagcttgct	cagcggacaa	ggatgctggg	g cgtgagggac	caaggcctgc	cctgcactcg	60
ggcctcctcc	agccagtgct	gaccagggac	ttctgacctg	ctggccagcc	aggacctgtg	120
tggggaggcc	ctcctgctgc	cttggggtga	caatctcagc	tccaggctac	agggagaccg	180
ggaggatcac	agagccagca	tggatcctga	cagtgatcaa	cctctgaaca	gcctcgtcaa	240
ggtgattctg	gataaatact	acttcctctg	g cg			272
	o sapien					
<400> 15						
Met Ala Le 1	u Asn Ser G 5	ly Ser Pro	Pro Ala Ile 10	Gly Pro Tyr	Tyr Glu 15	
Asn His Gl	y Tyr Gln P 20	ro Glu Asn	Pro Tyr Pro 25	Ala Gln Pro	Thr Val	
Val Pro Th	r Val Tyr G	lu Val His 40	Pro Ala Gln	Tyr Tyr Pro	Ser Pro	
Val Pro Gl 50	n Tyr Ala P	ro Arg Val 55	Leu Thr Gln	Ala Ser Asr 60	n Pro Val	

Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys 65 70 75 80

Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val 85 90 95

Gly Ala Ala Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys \$100\$ \$105\$ \$110\$

Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn 115 120 125

Pro Ser Asn Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp 130 140

Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp 165 170 175

Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn 180 185 190

Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser 195 200 205

Phe Met Lys Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys 210 215 220

Leu Tyr His Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg 225 230 235 240

Cys Leu Ala Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile
245 250 255

Val Gly Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser 260 265 270

Leu His Val Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro 275 280 285

Glu Trp Ile Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn 290 295 300

Pro Trp His Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met 305 310 315 320

Phe Tyr Gly Ala Gly Tyr Gln Val Gln $\,$ Lys Val Ile Ser His Pro Asn $\,$ 325 $\,$ 330 $\,$ 335

Tyr Asp Ser Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln 340 345 350

Lys Pro Leu Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn 355 360 365

Pro Gly Met Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp 370 375 380

Gly Ala Thr Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala 385 $390 \hspace{1.5cm} 395 \hspace{1.5cm} 400$

Lys Val Leu Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr 405 410 415

Asp Asn Leu Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly 420 425 430

Asn Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser 435 440 445

Asn Asn Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly 450 455 460

Cys Ala Lys Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe 465 470 475 480

Thr Asp Trp Ile Tyr Arg Gln Met Lys Ala Asn Gly

SEQUENCE LISTING

<110> Salceda, Susana Sun, Yongming Recipon, Herve Cafferkey, Robert DIADEXUS LLC <120> A NOVEL METHOD OF DIAGNOSING, MONITORING, STAGING, IMAGING AND TREATING VARIOUS CANCERS <130> DEX-0043 <140> <141> <150> 60/098,880 <151> 1998-09-02 <160> 15 <170> PatentIn Ver. 2.0 <210> 1 <211> 2587 <212> DNA <213> Homo sapiens <400> 1 ggaaggcagc gggcagctcc actcagccag tacccagata cgctgggaac cttccccagc 60 catggcttcc ctggggcaga tectettctg gagcataatt agcatcatca ttattctggc 120 tggagcaatt gcactcatca ttggctttgg tatttcaggg agacactcca tcacagtcac 180 tactgtcgcc tcagctggga acattgggga ggatggaatc ctgagctgca cttttgaacc 240 tgacatcaaa ctttctgata tcgtgataca atggctgaag gaaggtgttt taggcttggt 300 ccatgagttc aaagaaggca aagatgagct gtcggagcag gatgaaatgt tcagaggccg 360 gacagcagtg tttgctgatc aagtgatagt tggcaatgcc tctttgcggc tgaaaaacgt 420 gcaactcaca gatgctggca cctacaaatg ttatatcatc acttctaaag gcaaggggaa 480 tgctaacctt qagtataaaa ctqqaqcctt cagcatgccg gaaqtqaatg tqqactataa 540 tgccagetca gagaeettge ggtgtgagge teecegatgg tteececage ceacagtggt 600 ctgggcatcc caagttgacc agggagccaa cttctcggaa gtctccaata ccagctttga 660 gctgaactct gagaatgtga ccatgaaggt tgtgtctgtg ctctacaatg ttacgatcaa 720 caacacatac teetgtatga ttgaaaatga cattgecaaa geaacagggg atateaaagt 780 gacagaatcg gagatcaaaa ggcggagtca cctacagctg ctaaactcaa aggcttctct 840 gtgtgtctct tctttctttg ccatcagctg ggcacttctg cctctcagcc cttacctgat 900 gctaaaataa tgtgccttgg ccacaaaaaa gcatgcaaag tcattgttac aacagggatc 960

tacagaacta tttcaccacc agatatgacc tagttttata tttctgggag gaaatgaatt 1020 catatctaga agtctggagt gagcaaacaa gagcaagaaa caaaaagaag ccaaaagcag 1080 aaggctccaa tatgaacaag ataaatctat cttcaaagac atattagaag ttgggaaaat 1140

```
aattcatgtg aactagacaa gtgtgttaag agtgataagt aaaatgcacg tggagacaag 1200
tqcatcccca gatctcaggg acctccccct gcctgtcacc tggggagtga gaggacagga 1260
tagtgcatgt tetttgtete tgaattttta gttatatgtg etgtaatgtt getetgagga 1320
agcccctgga aagtctatcc caacatatcc acatcttata ttccacaaat taagctgtag 1380
tatgtaccct aagacgctgc taattgactg ccacttcgca actcaggggc ggctgcattt 1440
tagtaatggg toaaatgatt cactttttat gatgetteea aaggtgeett ggettetett 1500
cocaactgac aaatgccaaa gttgagaaaa atgatcataa ttttagcata aacagagcag 1560
teggegacae egattttata aataaaetga geaeettett titaaaeaaa eaaatgeggg 1620
tttatttctc agatgatgtt catccgtgaa tggtccaggg aaggaccttt caccttgact 1680
atatggcatt atgtcatcac aagetetgag getteteett teeateetge gtggacaget 1740
aagacctcag ttttcaatag catctagage agtgggacte agetggggtg atttegeeee 1800
ccatctccgg gggaatgtct gaagacaatt ttggttacct caatgaggga gtggaggagg 1860
atacagtgct actaccaact agtggataaa ggccagggat gctgctcaac ctcctaccat 1920
gtacaggacg tetececatt acaactacee aateegaagt gteaactgtg teaggactaa 1980
gaaaccctgg ttttgagtag aaaagggcct ggaaagaggg gagccaacaa atctgtctgc 2040
ttctcacatt agtcattggc aaataagcat tctgtctctt tggctgctgc ctcagcacag 2100
agagccagaa ctctatcggg .caccaggata acatctctca gtgaacagag ttgacaaggc 2160
ctatgggaaa tgcctgatgg gattatcttc agcttgttga gcttctaagt ttctttccct 2220
tcattctacc ctgcaagcca agttctgtaa gagaaatgcc tgagttctag ctcaggtttt 2280
cttactctga atttagatct ccagaccctt cctggccaca attcaaatta aggcaacaaa 2340
catatacett ecatgaagea cacacagaet tttgaaagea aggacaatga etgettgaat 2400
tgaggccttg aggaatgaag ctttgaagga aaagaatact ttgtttccag cccccttccc 2460
acactettea tgtgttaace actgeettee tggaeettgg agecaeggtg actgtattae 2520
atgttgttat agaaaactga ttttagagtt ctgatcgttc aagagaatga ttaaatatac 2580
                                                                  2587
atttcct
<210> 2
<211> 2070
<212> DNA
<213> Homo sapiens
<400> 2
cacagagaga ggcagcagct tgctcagcgg acaaggatgc tgggcgtgag ggaccaaggc 60
ctgccctgca ctcgggcctc ctccagccag tgctgaccag ggacttctga cctgctggcc 120
agccaggacc tgtgtgggga ggccctcctg ctgccttggg gtgacaatct cagctccagg 180
ctacagggag accgggagga tcacagagcc agcatgttac aggatcctga cagtgatcaa 240
cctctgaaca gcctcgatgt caaacccctg cgcaaacccc gtatccccat ggagaccttc 300
agaaaggtgg ggatccccat catcatagca ctactgagcc tggcgagtat catcattgtg 360
gttgtcctca tcaaggtgat tctggataaa tactacttcc tctgcgggca gcctctccac 420
ttcatcccga ggaagcagct gtgtgacgga gagctggact gtcccttggg ggaggacgag 480
gagcactgtg tcaagagctt ccccgaaggg cctgcagtgg cagtccgcct ctccaaggac 540
cgatccacac tgcaggtgct ggactcggcc acagggaact ggttctctgc ctgtttcgac 600
aacttcacag aagctctcgc tgagacagcc tgtaggcaga tgggctacag cagcaaaccc 660
actttcagag ctgtggagat tggcccagac caggatctgg atgttgttga aatcacagaa 720
aacagccagg agcttcgcat gcggaactca agtgggccct gtctctcagg ctccctggtc 780
tecetgeact gtettgeetg tgggaagage etgaagaece eeegtgtggt gggtggggag 840
gaggeetetg tggattettg geettggeag gteageatee agtaegaeaa acageaegte 900
```

tgtggaggga gcatcctgga ccccactgg gtcctcacgg gcagcccact gcttcaggaa 960

```
acataccqat gtgttcaact ggaaggtgcg ggcaggctca gacaaactgg gcagcttccc 1020
atccctggct gtggccaaga tcatcatcat tgaattcaac cccatgtacc ccaaagacaa 1080
tgacatcgcc ctcatgaagc tgcagttccc actcactttc tcaggcacag tcaggcccat 1140
ctqtctqccc ttctttgatg aggagctcac tccagccacc ccactctgga tcattggatg 1200
gggctttacg aagcagaatg gagggaagat gtctgacata ctgctgcagg cgtcagtcca 1260
ggtcattgac agcacacggt gcaatgcaga cgatgcgtac cagggggaag tcaccgagaa 1320
gatgatgtgt gcaggcatcc cggaaggggg tgtggacacc tgccagggtg acagtggtgg 1380
gcccctgatg taccaatctg accagtggca tgtggtgggc atcgttagct ggggctatgg 1440
ctgcgggggc ccgagcaccc caggagtata caccaaggtc tcagcctatc tcaactggat 1500
ctacaatgtc tggaaggctg agctgtaatg ctgctgcccc tttgcagtgc tgggagccgc 1560
tteetteetg ecetgeecae etggggatee eceaaagtea gacacagage aagagteece 1620
ttgggtacac ccctctgccc acagectcag catttcttgg agcagcaaag ggcctcaatt 1680
cctataagag accetegeag eccagaggeg eccagaggaa gteageagee etagetegge 1740
cacacttggt geteccagea teccagggag agacacagee cactgaacaa ggtetcaggg 1800
gtattgctaa gccaagaagg aactttccca cactactgaa tggaagcagg ctgtcttgta 1860
aaagcccaga tcactgtggg ctggagagga gaaggaaagg gtctgcgcca gccctgtccg 1920
tetteaceca tecceaagee tactagagea agaaaceagt tgtaatataa aatgeactge 1980
cctactgttg gtatgactac cgttacctac tgttgcattg ttattacagc tatggccact 2040
                                                                  2070
attattaaag agctgtgtaa catctctggc
```

<210> 3 <211> 1709 <212> DNA

<213> Homo sapiens

<400> 3

agcagactca caccagaact acattecetg geoecetgee tgtgtgette tggecaggee 60 ttggttggca agtctgaccc gagaaaagga tctgcagaaa atcagactat gggatcactt 120 tgtttgtgca ttgggaatga cattctttcc caccccagga aaacctttgg gactttcaga 180 gacattgtgg ctagccaacc acatggtcag cctcaaagtt gagaggctca gtaaccctcc 240 tatccctaga gaattccaaa gtgtggatgt aatttaacta gaaagccatt ggtgactatc 300 tgtgatcctc tggaagtatg ctatgttgtg tatatcttgc atccaaagcc agagggaacc 360 acaatgacta gtaaaacggt ggtctcaatg cccacttagc ctctgcctct gaatttgacc 420 atagtggcgt tcagctgata gagcgggaag aagaaatatg cattttttat gaaaaaataa 480 atatccaaga gaagatgaaa ctaaatggag aaattgaaat acatctactg gaagaaaaga 540 tccaattcct gaaaatgaag attgctgaga agcaaagaca aatttgtgtg acccagaaat 600 tactgccagc caagaggtcc ctggatgccg acctagctgt gctccaaatt cagttttcac 660 agtgtacaga cagaattaaa gacctggaga aacagttcgt aaagcctgat ggtgagaata 720 gagctcgctt ccttccaggg aaagatctga ccgaaaaaga aatgatccaa aaattagaca 780 agctggaact acaactggcc aagaaggagg agaagctgct ggagaaggat ttcatctatg 840 agcaggtete caggeteaca gacaggetet geageaaaac teagggetge aagcaggaca 900 cactgctctt agccaagaag atgaatggct atcaaagaag gatcaaaaat gcaactgaga 960 aaatgatggc tettgttget gagetgteea tgaaacaage eetaaceatt gaacteeaaa 1020 aggaagtcag ggagaaagaa gacttcatct tcacttgcaa ttccaggata gaaaaaggtc 1080 tgccactcaa taaggaaatt gagaaagaat ggttgaaagt ccttcgagat gaagaaatgc 1140 acgccttggc catcgctgaa aagtctcagg agttcttgga agcagataat cgccagctgc 1200 ccaatggtgt ttacacaact gcagagcagc gtccgaatgc ctacatccca gaagcagatg 1260 ccactettee tttgccaaaa cettatggtg etttggetee ttttaaaece agtgaacetg 1320

```
gagocaatat gaggoacata aggaaacotg ttataaagoo agttgaaato tgaatatgtg 1380
aacaaatcca ggcctctcaa ggaaaagact tcaaccaggc ttccttgtac ccacaggtga 1440
aaaatgtgag cataatactt ctaatattat tgataagtaa ggtaaccaca attagtcage 1500
aacagagtac aacagggttt ctatttaccc accaactact atacctttca tgacgttgaa 1560
tgggacatag aactgtccta catttatgtc aaagtatata tttgaatcgc ttatattttc 1620
tttttcactc tttatattga gtacattcca gaaatttgta gtaggcaagg tgctataaaa 1680
atgcactaaa aataaatctg ttctcaatg
                                                                   1709
<210> 4
<211> 257
<212> DNA
<213> Homo sapiens
<400> 4
ttaatqqqta aqtatttttt atatqcttta qctataqcta aaqaaaactq atacttaaca 60
aagttqaata gtattattca ctggtgctcc taaaatattg tttttcagtg taaaatatgc 120
atatetteta tatttaatat gaaagtettg aaatgtatea gacagaaggg gattteagtt 180
tgcaaataat gagcaatgta gcaattttaa cacatttcat aaatatatat tttgtcattq 240
gtggagagca ccatttg
                                                                   257
<210> 5
<211> 359
<212> DNA
<213> Homo sapiens
<400> 5
gcctgagagc acttagcgtt catgagtgtc cccaccatgg cctggatgat gcttctcctc 60
ggactccttg cttatggatc aggtcaggga gtggattctc agactgtggt gacccaagag 120
ccategttat cagtgteece tggagggaca gteacactea ettgtggett ggeetetgae 180
tcagtctcta ctaatttctt ccccacctgg taccagcaga ccccaggcca ggctccacgc 240
acqctcatct acagcacaag cactegetet tetggggtee etgategett etetggetee 300
atcottggga acaaagotgo ootoacoatt acgggggooo aggcagatga tgaatotga 359
<210> 6
<211> 1372
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (6)
<220>
<221> unsure
<222> (9)
<400> 6
ccttanagnc ttggttgcca aacagaatgc ccatatccgt cttacttgtg aggaagcttg 60
```

```
cettgggege cetetgetgg ceeteetgaa getaacaggg gegagtgete ggtggtttae 120
aaattqcctc catqcaqact atgaaactgt tcagcctgct atagttagat ctctggcact 180
ggcccaggag gtcttgcaga tttgcagatc aaggagaacc caggagtttc aaagaagcgg 240
ctagtaaagg tototgagat cottgoacta gotacatoot cagggtagga ggaagatago 300
ttccaqaaqc atqcqqctqc tcctattqct gagctgcctg qccaaaacag gagtcctggg 360
tgatatcatc atgagaccca gctgtgctcc tgggatggtt ttaccacaag tccaattgct 420
atggttactt caggaagctg aggaactggt ctgatgccga gctcgagtgt cagtcttacg 480
gaaacggagc ccacctggca tctatcctga gtttaaagga agccagcacc atagcagagt 540
acataagtgg ctatcagaga agccagccga tatggattgg cctgcacgac ccacagaaga 600
ggcagcagtg gcagtggatt gatggggcca tgtatctgta cagatcctgg tctggcaagt 660
ccatgggtgg gaacaagcac tgtgctgaga tgagctccaa taacaacttt ttaacttgga 720
qcaqcaacqa atqcaacaaq cgccaacact tcctgtgcaa gtaccgacca tagagcaaga 780
atcaagatto tgctaactco tgcacagcoo cgtcctctto ctttctgcta gcctggctaa 840
atotgotoat tatttoagag gggaaacota gcaaactaag agtgataagg gccctactac 900
actggctttt ttaggcttag agacagaaac tttagcattg gcccagtagt ggcttctagc 960
totaaatgtt tgccccgcca tccctttcca cagtatcctt cttccctcct cccctgtctc 1020
tggctgtctc gagcagtcta gaagagtgca tctccagcct atgaaacagc tgggtctttg 1080
gccataagaa gtaaagattt gaagacagaa ggaagaaact caggagtaag cttctagccc 1140
cetteagett etacaceett etgecetete tecattgeet geaceceace ceagecacte 1200
aactectgct tgtttttcct ttggccatgg gaaggtttac cagtagaate cttgctaggt 1260
tgatgtgggc catacattcc tttaataaac cattgtgtac ataagaggtt gctgtgttcc 1320
aqttcaqtaa atqqtqaatq tggaaaagtg aaataagacc aagaaataca aa
                                                                  1372
<210> 7
<211> 291
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (277)
<400> 7
agaatggtag tagtaagaag aagaaaaata gaggatctga atgtattttg aaggtagagt 60
ccactggact tagagatgga ttgaatgtgg aagattaagg aaagggagaa atgaaagata 120
gtcttaggtt tcatcttcag atgactgggt gaacagcagt gttctttgct aagatgggga 180
agactaggga aaagagccag ttctgtattg agcatattat atttaagaca atcccatctg 240
ggtccaaaga caatgttgat tttttttttt agatacntgc cctttagacc t
<210> 8
<211> 1275
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (410)
```

```
<220>
<221> unsure
<222> (728)..(756)
<220>
<221> unsure
<222> (957)
<400> 8
attotagaac atatgtataa gotaaaaaca gtattttact cagatcagta qttatcqtqt 60
ctatcagcta taaaaaaaat caactgccag ccaagaactt taaaacttta agctgtgtat 120
tatagaaccg ttttgtgtag cattggaata ttgtccattt tgtaagtcat tgtgaatgtt 180
cttaattatc agcttgaagg tatttttgta ttaaaagttg acattgaaga acctaagtgg 240
atgatgggat ttggggccag tagtgaaagt atgtttcctc taaaatattt ccctaaacag 300
tggtatacat ggttatttta ttatgagatt tgtatatgtt ctgtgtttct ctgtgaacaa 360
tgtttcagtc tctctgtcac catatgtaag gggaagtcca caaatatagn actacattgc 420
acaaaactaa aattgttaat tacaagaaaa tataggtgct taccttttga aggtttatta 480
atacatatgg ttgtcacaat acqtatatat gataaatggt gtacatatac agatgtttat 540
ggtgtataaa tttttctata cccaattaga attatcttcc tgattcttta ttcaataaca 600
tgctaattcc tcttctatgt tctatagtga cagaatgcta acttttctta taccctggca 660
gaggacagag gagtctggtc taggatgggg aactgaattt ttgaacgaaa aggaaagaga 720
aaggatgnnn nnnnnnnnn nnnnnnnnn nnnnnntaat gtttcttagt cattttgatt 780
ggccatttga acagtctaca agtttaacgt tatttccagt gaagtaggat ggctqaccta 840
gcaatacatg tttcttcaaa agggtaaaca tgctttagtg acctaaagct aaattttgta 900
catttgacat caggggtgtt ataagtactg cacttaatac aaagctattt ctcaatngtg 960
ttatttttga qacaaatttt tcttcaccat taacttcttg ttggtagctt tttgtttgt 1020
aaaaattgag agatggcaat gcttatctca accagattat ccatctgcag aattaaggta 1080
tgcaactggt aaataaaaga caaatgctcc agtttgtctt tctcaacctt tgagttctta 1140
acctttgagt taaaacctag tctaaatagt gggaatgtct tggtttacag taaggttttc 1200
ttgggaagga tcttggtttt gtgatctatt tgtgaattaa ggaqtagatg ttaaccatta 1260
                                                                  1275
ttttatagat aagtg
<210> 9
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 9
qtcatattqa acattccaqa tacctatcat tactcqatqc tqttqataac aqcaaqatqq 60
ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat ggataccaac 120
cggaaaaccc ctatcccgca cagcccactg tggtccccac tgtctacgag gtgcatccgg 180
ctcagtacta cccgtccccc gtgccccagt acgccccgag ggtcctgacg caggcttcca 240
accoegtegt etgeacgeag eccaaatece cateegggae agtgtgeace teaaagaeta 300
agaaagcact gtgcatcacc ttgaccctgg ggaccttcct cgtgggagct gcgctggccg 360
ctggcctact ctggaagttc atgggcagca agtgctccaa ctctgggata gagtgcgact 420
cctcaggtac ctgcatcaac ccctctaact ggtgtgatgg cgtgtcacac tgccccggcg 480
gggaggacga gaatcggtgt gttcgcctct acggaccaaa cttcatcctt cagatgtact 540
catctcagag gaagtcctgg caccctgtgt gccaagacga ctggaacgag aactacgggc 600
```

```
qqqcqqcctq caqqqacatq qqctataaqa ataattttta ctctaqccaa qqaataqtqq 660
atgacagegg atccaccage tttatgaaac tgaacacaag tgccggcaat gtcgatatet 720
ataaaaaact gtaccacagt gatgcctgtt cttcaaaagc agtggtttct ttacgctgtt 780
tagcctgcgg ggtcaacttg aactcaagcc gccagagcag gatcgtgggc ggtgagagcg 840
egeteeegg ggeetggeee tggeaggtea geetgeaegt ceagaaegte caegtgtgeg 900
qaqqctccat catcacccc gagtggatcg tgacagccgc ccactgcgtg gaaaaacctc 960
ttaacaatcc atggcattgg acggcatttg cggggatttt gagacaatct ttcatgttct 1020
atggageegg ataccaagta caaaaagtga ttteteatee aaattatgae teeaagaeea 1080
aqaacaatga cattqcqctq atgaagctgc agaagcctct gactttcaac gacctagtga 1140
aaccagtgtg tetgeecaac ecaggeatga tgetgeagee agaacagete tgetggattt 1200
ccgggtgggg ggccaccgag gagaaaggga agacctcaga agtgctgaac gctgccaagg 1260
tgcttctcat tgagacacag agatgcaaca gcagatatgt ctatgacaac ctgatcacac 1320
cagccatgat ctgtgccggc ttcctgcagg ggaacgtcga ttcttgccag ggtgacagtg 1380
gagggeetet ggteactteg aacaacaata tetggtgget gataggggat acaagetggg 1440
gttctggctg tgccaaagct tacagaccag gagtgtacgg gaatgtgatg gtattcacgg 1500
actggattta tegacaaatg aaggeaaacg getaateeac atggtetteg teettgaegt 1560
cgttttacaa gaaaacaatg gggctggttt tgcttccccg tgcatgattt actcttagag 1620
atgattcaga ggtcacttca tttttattaa acagtgaact tgtctggctt tggcactctc 1680
tgccatactg tgcaggctgc agtggctccc ctgcccagcc tgctctccct aaccccttgt 1740
ccgcaagggg tgatggccgg ctggttgtgg gcactggcgg tcaattgtgg aaggaagagg 1800
qttqqaqqct qccccattg agatcttcct gctgagtcct ttccaggggc caattttgga 1860
tgagcatgga gctgtcactt ctcagctgct ggatgacttg agatgaaaaa ggagagacat 1920
ggaaagggag acagccaggt ggcacctgca gcggctgccc tctgggggcca cttggtagtg 1980
tccccagcct acttcacaag gggattttgc tgatgggttc ttagagcctt agcagccctg 2040
qatqqtqqcc aqaaataaaq ggaccagccc ttcatgggtg gtgacgtggt agtcacttgt 2100
aaggggaaca gaaacatttt tgttcttatg gggtgagaat atagacagtg cccttggtgc 2160
gagggaagca attgaaaagg aacttgccct gagcactcct ggtgcaggtc tccacctgca 2220
cattgggtgg ggctcctggg agggagactc agccttcctc ctcatcctcc ctgaccctgc 2280
tectaquace etggagagtg aatgeceett ggteeetgge agggegeeaa gtttggeace 2340
atgtcggcct cttcaggcct gatagtcatt ggaaattgag gtccatgggg gaaatcaagg 2400
atgctcagtt taaggtacac tgtttccatg ttatgtttct acacattgat ggtggtgacc 2460
                                                                  2479
ctgagttcaa agccatctt
<210> 10
<211> 576
```

<212> DNA

<213> Homo sapiens

<400> 10

ttcaaagaca tattagaagt tgggaaaata attcatgtga actagacaag tgtgttaaga 60 gtgataagta aaatgcacgt ggagacaagt gcatcccag atctcaggga cctcccctg 120 cctgtcacct ggggagtgag aggacaaggat agtgcatgtt ctttgtctct gaatttttag 180 ttatatgtgc tgtaatgttg ctctgaggaa gcccctggaa agtctatccc aacaatatcca 240 catcttatat tccacaaatt aagctgtagt atgtacccta agacgctgct aattgactgc 300 cacttcgcaa ctcaggggcg gctgcatttt agtaatgggt caaatgattc acttttatg 360 atgcttccaa aggtgccttg gcttctctc ccaactgaca aatgccaaag ttgagaaaaa 420 tgatcataat tttagcataa acagagcagt cggcgacacc gattttataa ataaactgag 480 caccttcttt ttaaacaaac aaatgcgggt ttatttcca gatgatgtc atccgtgaat 540

ggtccaggga aggacctttc accttgacta tatggc 576 <210> 11 <211> 890 <212> DNA <213> Homo sapiens <400> 11 caagetetga ggetteteet tteeateetg egtggacage taagaeetea gtttteaata 60 gcatctagag cagtgggact cagctggggt gatttegeec eccateteeg ggggaatgte 120 tqaaqacaat tttggttacc tcaatgaggg agtggaggag gatacagtgc tactaccaac 180 tagtggataa aggccaggga tgctgctcaa cctcctacca tgtacaggga cgtctcccca 240 ttacaactac ccaatccgaa gtgtcaactg tgtcaggact aagaaaccct ggttttgagt 300 agaaaagggc ctggaaagag gggagccaac aaatctgtct gcttcctcac attagtcatt 360 ggcaaataag cattotgtot otttggotgo tgootcagoa cagagagoca gaactotato 420 gggcaccagg ataacatctc tcagtgaaca gagttgacaa ggcctatggg aaatgcctga 480 tgggattate treagertgt tgagetteta agtitette cetreatiet accetgeaag 540 ccaagttctg taagagaaat gcctgagttc tagctcaggt tttcttactc tgaatttaga 600 tetecagace ettectggee acaatteaaa ttaaggeaae aaacatatae ettecatgaa 660 gcacacacag actititgaaa gcaaggacaa tgactgctig aattgaggcc tigaggaatg 720 aagctttgaa ggaaaagaat actttgtttc cagccccctt cccacactct tcatgtgtta 780 accactgoot tootggacct tggagccacg gtgactgtat tacatgttgt tatagaaaac 840 tgattttaga gttctgatcg ttcaagagaa tgattaaata tacatttcct 890 <210> 12 <211> 406 <212> DNA <213> Homo sapiens <220> <221> unsure <222> (30) <220> <221> unsure <222> (248) <220> <221> unsure <222> (383) <400> 12 gtgaatgtgg actataatgc cagctcagan accttgcggt gtgaggctcc ccgatggttc 60 ccccagccca cagtggtctg ggcatcccaa gttgaccagg gagccaactt ctcggaagtc 120 tccaatacca gctttgagct gaactctgag aatgtgacca tgaaggttgt gtctgtgctc 180 tacaatgtta cgatcaacaa cacatactcc tgtatgattg aaaatgacat tgccaaagca 240 acaggggnta tcaaagtgac agaatcggag atcaaaaggc ggagtcacct acagctgcta 300 aactcaaagg cttctctgtg tgtctcttct ttctttgcca tcagctgggc acttctgcct 360

the table of tabl

WO 00/12758

PCT/US99/19655

ctcagccctt	acctgatgct a	anataatgt go	ccttggcca (Caaaaa	406
<210> 13					
<211> 462					
<212> DNA					
<213> Homo	sapiens				
<400> 13					
ggaaggcagc	ggcageteca e	tcagccagt ad	cccagatac	gctgggaacc ttccccagcc	60
atggcttccc	tggggcagat c	ctcttctgg ag	gcataatta	gcatcatcat tattctggct	120
				gacactccat cacagtcact	
				tgagctgcac ttttgaacct	
				aaggtgtttt aggettggte	
				atgaaatgtt cagaggccgg	
				ctttgcggct gaaaaacgtg	
caactcacag	atgctggcac c	tacaaatgt ta	atatcatca	ct	462
<210> 14					
<211> 272					
<212> DNA					
<213> Homo	sapiens				
<400> 14					
				caaggeetge eetgeacteg	
				ctggccagcc aggacctgtg	
				tccaggctac agggagaccg	
				cctctgaaca gcctcgtcaa	240
ggtgattctg	gataaatact a	cticcicig c	g		212
<210> 15					
<211> 492					
<212> PRT					
<213> Homo	sapiens				
<400> 15					
Met Ala Le	u Asn Ser Gly	Ser Pro Pr	o Ala Ile	Gly Pro Tyr Tyr Glu	
1	5		10	15	
Asn His Gl	y Tyr Gln Pro	Glu Asn Pr	o Tyr Pro	Ala Gln Pro Thr Val	
	20	2	:5	30	
Val Pro Th	r Val Tyr Glu	Val His Pr	o Ala Gln	Tyr Tyr Pro Ser Pro	
	5	40		4 5	
Val Pro Gl	n Tvr Ala Pro	Arg Val Le	eu Thr Gln	Ala Ser Asn Pro Val	
50		55		60	
Val Cvs Th	ır Gln Pro Lvs	s Ser Pro Se	er Glv Thr	Val Cys Thr Ser Lys	
·ar cys ii	O L.O Dy				

WO 00/12758

PCT/US99/19655

65					70					75					80
Thr	Lys	Lys	Ala	Leu 85	Cys	Ile	Thr	Leu	Thr 90	Leu	Gly	Thr	Phe	Leu 95	Val.
Gly	Ala	Ala	Leu 100	Ala	Ala	Gly	Leu	Leu 105	Trp	Lys	Phe	Met	Gly 110	Ser	Lys
Cys	Ser	Asn 115	Ser	Gly	Ile	Glu	Cys 120	Asp	Ser	Ser	Gly	Thr 125	Cys	Ile	Asn
Pro	Ser 130	Asn	Trp	Cys	Asp	Gly 135	Val	Ser	His	Cys	Pro 140	Gly	Gly	Glu	Asp
Glu 145	Asn	Arg	Cys	Val	Arg 150	Leu	Tyr	Gly	Pro	Asn 155	Phe	Ile	Leu	Gln	Met 160
Tyr	Ser	Ser	Gln	Arg 165	Lys	Ser	Trp	His	Pro 170	Val	Cys	Gln	Asp	Asp 175	Trp
Asn	Glu	Asn	Tyr 180	Gly	Arg	Ala	Ala	Cys 185	Arg	Asp	Met	Gly	Tyr 190	Lys	Asn
Asn	Phe	Tyr 195	Ser	Ser	Gln	Gly	Ile 200	Val	Asp	Asp	Ser	Gly 205	Ser	Thr	Ser
Phe	Met 210	Lys	Leu	Asn	Thr	Ser 215	Ala	Gly	Asn	Val	Asp 220	Ile	Tyr	Lys	Lys
Leu 225	Tyr	His	Ser	Asp	Ala 230	Cys	Ser	Ser	Lys	Ala 235	Val	Val	Ser	Leu	Arg 240
Cys	Leu	Ala	Cys	Gly 245	Val	Asn	Leu	Asn	Ser 250	Ser	Arg	Gln	Ser	Arg 255	Ile
Val	Gly	Gly	Glu 260	Ser	Ala	Leu	Pro	Gly 265	Ala	Trp	Pro	Trp	Gln 270	Val	Ser
Leu	His	Val 275	Gln	Asn	Val	His	Val 280	Cys	Gly	Gly	Ser	Ile 285	Ile	Thr	Pro
Glu	Trp 290	Ile	Val	Thr	Ala	Ala 295	His	Cys	Val	Glu	Lys 300	Pro	Leu	Asn	Asn
Pro 305	Trp	His	Trp	Thr	Ala 310	Phe	Ala	Gly	Ile	Leu 315	Arg	Gln	Ser	Phe	Met 320
Phe	Tyr	Gly	Ala	Gly	Tyr	Gln	Val	Gln	Lys	Val.	Ile	Ser	His	Pro	Asn

WO 00/12758

PCT/US99/19655

				325					330					335	
Tyr	Asp	Ser	Lys 340	Thr	Lys	Asn	Asn	Asp 345	Ile	Ala	Leu	Met	Lys 350	Leu	Gln
Lys	Pro	Leu 355	Thr	Phe	Asn	Asp	Leu 360	Val	Lys	Pro	Vāl	Cys 365	Leu	Pro	Asn
Pro	Gly 370	Met	Met	Leu	Gln	Pro 375	Glu	Gln	Leu	Cys	Trp 380	Ile	Ser	Gly	Trp
Gly 385	Ala	Thr	Glu	Glu	Lys 390	Gly	Lys	Thr	Ser	Glu 395	Val	Leu	Asn	Ala	Ala 400
Lys	Val	Leu	Leu	Ile 405	Glu	Thr	Gln	Arg	Cys 410	Asn	Ser	Arg	Tyr	Val 415	Tyr
Asp	Asn	Leu	Ile 420	Thr	Pro	Ala	Met	Ile 425	Cys	Ala	Gly	Phe	Leu 430	Gln	Gly
Asn	Val	Asp 435	Ser	Cys	Gln	Gly	Asp 440	Ser	Gly	Gly	Pro	Leu 445	Val	Thr	Ser
Asn	Asn 450	Asn	Ile	Trp	Trp	Leu 455	Ile	Gly	Asp	Thr	Ser 460	Trp	Gly	Ser	Gly
Cys 465	Ala	Lys	Ala	Tyr	Arg 470	Pro	Gly	Val	Tyr	Gly 475	Asn	Val	Met	Val.	Phe 480
Thr	Asp	Trp	Ile	Tyr 485	Arg	Gln	Met	Lys	Ala 490	Asn	Gly				