Introduction to Graph Theory Lecture 26

Menu

- Trees and forests
- Spanning trees
- Minimum spanning tree
- Greedy algorithm for determining a minimum spanning tree
- Shortest path problem

Trees

- A tree is a connected graph with no cycles.
- A forest is a graph with no cycles and it may or may not be connected
- Example 1: Identify which of the following graphs are trees or forests.

Solution:

(b) A forest

(c) A tree

Tree properties

- If a tree T has at least two vertices then it has the following properties:
- There is exactly one path from any vertex V_i in T to any other vertex V_j
- The graph obtained from tree T by removing any edge has two components, each of which is a tree.
- |E| = |V| 1

Spanning trees

- A spanning tree of a graph G is
 - a tree T
 - a spanning subgraph of G.
 - That is, T has the same vertex set as G.
- Example 2 Identify a spanning tree for each of the following graphs:

Hint: remove any edge which forms a cycle

Multiple spanning trees may exist

Given a graph G: How to draw a spanning tree?

- Take any vertex of G as an initial partial tree.
- Add edges one by one so each new edge joins a new vertex to the partial tree.
- When to stop?
- If there are n vertices in the graph G then the spanning tree will have n vertices and n-1 edges.

Minimum spanning tree

- Suppose we have a group of offices which need to be connected by a network of communication lines.
- The offices may communicate with each other directly or through another office.
- Condition: there exists one path between any two vertices.

•

- In order to decide on which offices to build links between we firstly work out the cost of all possible connections.
- This will give us a weighted complete graph as shown next.
- The minimum spanning tree is then the spanning tree that has the minimum cost among all spanning trees.

Minimum spanning tree

- A weighted complete graph.
- The vertices represent offices and the edges possible communication links.
- The weights on the edges represent the cost of construction of the link.

What is the use of minimum spanning tree?

- City/town planning: design a minimum-cost road layout connecting several cities
- Used in communications: Ethernet bridge
 layout autoconfiguration avoid packets being
 sent over a network segment twice, so use of
 minimum spanning tree is required (no cycle)

The gr\$\$dy algorithm for the minimum spanning tree

- Choose any start vertex to form the initial partial tree (Vi)
- Add the ch\$ap\$st edge, Ei, to a new vertex to form a new partial tree
- Repeat step 2 until all vertices have been included in the tree

Why is it greedy?

Find the minimum spanning tree for the graph representing communication links between offices as shown below.

- Start with any vertex, in this case choose the one marked a.
- Add the edge ab which is the cheapest edge of those adjacent to a.

 Looking for the cheapest edge from among those incident to a or b, we find edges bc and ad, both costing 3, and that no other available edge costs less. We can choose either bc or ad. Arbitrarily we choose bc.

Find the minimum spanning tree for the graph representing communication links between offices as shown above.

• We now look for the edge which is the cheapest remaining edge or those incident to *a* or *b* or *c* which forms a partial tree. This edge is *ad*.

 Continuing in this manner we find the minimum spanning tree shown:

• The total cost of our solution is found to be 2+3+3+2+4=14.

The shortest path problem

- The weights on a graph may represent delays in a communication network or travel times along roads.
- A practical problem to consider is to find the shortest path between any two vertices.
- Shortest path → shortest delay
- The algorithm to determine this will be demonstrated through an example.

Summary

- Definitions of trees, forests & spanning trees
- Shown how to draw a spanning tree
- Introduced the concept of a minimum spanning tree
- Presented the gr\$\$dy algorithm for determining a minimum spanning tree: shortest edge first
- Introduced the shortest path problem: to find the shortest path between any two vertices in a weighted graph

Readings

- [Mar07] Read 9.5
- [Mar13] Read 9.5