NaturalLI: Natural Logic Inference for Common Sense Reasoning

Gabor Angeli, Chris Manning

Stanford University

October 26, 2014

Natural Logic Inference for Common Sense Reasoning

Kittens play with yarn

Kittens play with computers

Natural Logic Inference for Common Sense Reasoning

Kittens play with yarn

Kittens play with computers

The city refused the demonstrators a permit because they feared violence.

The city refused the demonstrators a permit because they feared violence. a city fears violence demonstrators fear violence

2 / 21

The city refused the demonstrators a permit because they feared violence. a city fears violence demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork cakes come with cherries cakes are eaten using cherries

The city refused the demonstrators a permit because they feared violence. a city fears violence demonstrators fear violence

I ate the cake with a cherry vs. I ate the cake with a fork cakes come with cherries cakes are eaten using cherries

Put a sarcastic comment in your talk. That's a great idea. Sarcasm in your talk is a great idea

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Baseball is played underwater

Baseball is played on grass

Prior Work on Common Sense Reasoning

Old School Al: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Prior Work on Common Sense Reasoning

Old School Al: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.

- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Prior Work on Common Sense Reasoning

Old School Al: Nuanced reasoning; tiny coverage.

- Default reasoning (Reiter 1980; McCarthy 1980).
- Theorem proving (e.g., Datalog).

Textual Entailment: Rich inference; small data.

- RTE Challenges.
- Episodic Logic (Schubert, 2002).

Information Extraction: Shallow inference, large data.

- OpenIE (Yates et al., 2007), NELL (Carlson et al., 2010).
- Extraction of facts from a large corpus; fuzzy lookup.

Start with a large knowledge base

Start with a large knowledge base

Infer new facts...

Infer new facts...

Infer new facts...

Infer new facts...on demand from a query...

... Using text as the meaning representation...

...Without aligning to any particular premise.

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

Fast.

Minimal pre-processing of guery.

Minimal pre-processing of knowledge base.

Lookup in 270 million entry KB...

...by lemmas 12% recall

...with NaturalLI 49% recall (91% precision)

Formal logical entailment: Not just fuzzy lookup.

Maintain good properties of fuzzy lookup.

- Fast.
- Minimal pre-processing of query.
- Minimal pre-processing of knowledge base.

Natural Logic

s/Natural Logic/Syllogistic Reasoning/g

Some cat ate a mouse (all mice are rodents) Some cat ate a rodent

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
 - :. Most cats eat **rodents**

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- · Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
- Most cats eat rodents
- "All students who know a foreign language learned it at university."

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- · Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
- Most cats eat rodents
- "All students who know a foreign language learned it at university."
 - :: "They learned it at school."

s/Natural Logic/Syllogistic Reasoning/g

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
- Most cats eat rodents
- .. Wost cats eat **rodents**
- "All students who know a foreign language learned it at university."
 - :: "They learned it at school."

Facts are text; inference is lexical mutation

Hypernymy is a bounded distributive lattice.

Hypernymy is a bounded distributive lattice.

Hypernymy is a bounded distributive lattice.

Hypernymy is a bounded distributive lattice.

Polarity is the direction a lexical item can move along the lattice.

living thing animal ↑ feline

cat

Hypernymy is a bounded distributive lattice.

Hypernymy is a bounded distributive lattice.

Hypernymy is a bounded distributive lattice.

Natural Logic and Polarity

Hypernymy is a bounded distributive lattice.

Polarity is the direction a lexical item can move along the lattice.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Mutations must respect polarity.

Inference is reversible

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!*

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!* (*Generated from Ollie extractions.)

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!* (*Generated from Ollie extractions.)
- Still captures common inferences.
 - We make these types of inferences regularly and instantly.

- Computationally fast during inference.
 - "Semantic" parse of query is just syntactic parse.
 - Inference is lexical mutations / insertions / deletions.
- Computationally fast during pre-processing.
 - Plain text!* (*Generated from Ollie extractions.)
- Still captures common inferences.
 - We make these types of inferences regularly and instantly.
 - We expect readers to make these inferences instantly.

All cats have tails All kittens are cute

Nodes (fact, truth maintained $\in \{\text{true}, \text{false}\}\)$

Nodes (fact, truth maintained $\in \{\text{true}, \text{false}\}\)$

Start Node (query fact, true) any known fact **End Nodes**

Nodes (fact, truth maintained $\in \{\text{true}, \text{false}\}\)$

Start Node (query fact, true) **End Nodes** any known fact

Edges Mutations of the current fact

Nodes (fact, truth maintained $\in \{\text{true}, \text{false}\}\)$

Start Node (query fact, true) **End Nodes** any known fact

Edges Mutations of the current fact **Edge Costs** How "wrong" an inference step is (learned)

Search mutates *opposite* to polarity

Truth true maintained:

Truth false maintained:

Shorthand for a node:

No carnivores eat animals?

An Example Search (with edges)

Template Instance Edge

Operator Negate

Template Instance Edge Operator Negate No \rightarrow The

Template Instance Edge No carnivores eat animals \rightarrow Operator Negate No \rightarrow The The carnivores eat animals

Template Instance Edge The carnivores eat animals \rightarrow Hypernym carnivore → feline The feline eats animals

Template Instance Edge The feline eats animals \rightarrow Hypernym feline \rightarrow cat The cat eats animals

Template Instance Edge The cat eats animals \rightarrow Hypernym animal → chordate The cat eats chordates

Template Instance Edge The cat eats chordates \rightarrow chordate → mice Hypernym The cat eats mice

Template Instance

Delete Existential

The cat eats mice \rightarrow The cat ate a mouse

Edge

Want to make likely (but not certain) inferences.

Same motivation as Markov Logic, Probabilistic Soft Logic, etc.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta > 0$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$. Cost of a path is $\theta \cdot \mathbf{f}$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each edge template has a cost $\theta > 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Cost of an edge is $\theta_i \cdot f_i$. Cost of a path is $\theta \cdot \mathbf{f}$. Can learn parameters θ .

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

- nocturnal $\xrightarrow{\downarrow}$ diurnal, all $\xrightarrow{\wedge}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

- nocturnal $\xrightarrow{\downarrow}$ diurnal, all $\xrightarrow{\wedge}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

\bowtie	=	Ш		人	-)	#
\equiv	=			人	_)	#
			#	1	1	#	# #
		#	□ # □ ⇒	\cup	#)	# # #
人	人	$\overline{}$	1	=	\Box		#
1	1	#	1	□	#	□ □ #	#
	\smile	$\overline{}$	#		#		#
#	#	#	#	#	#	#	#

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

- nocturnal $\xrightarrow{\downarrow}$ diurnal, all $\xrightarrow{\wedge}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

\bowtie	\equiv			人	1)	#
\equiv	=			人	1)	#
			#	1	1	#	#
		#	□ # □ ⇒	\cup	#)	# #
人	人	\cup	1	≡	\Box		#
1	1	#	1		#	□ □ #	#
	\cup		#		\Box		#
#	#	#	#	#	#	#	#

Taken for granted: $A \Rightarrow B$ and $B \Rightarrow C$ then $A \Rightarrow C$.

- nocturnal $\xrightarrow{\downarrow}$ diurnal, all $\xrightarrow{\wedge}$ not all
 - \therefore all bats are nocturnal $\stackrel{?}{\rightarrow}$ not all bats are diurnal

					16.		
\bowtie	=	Ш	⊒	人	<u></u>)	#
≡	=			人)	#
		 #	#			#	#
⊒		#	# ⊒	Y /	#)	# #
人	人	$\overline{}$			\supseteq		#
1	1	#			# # #	□ □ #	#
$ \ \ $	\smile	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			⊒	#	#
#	#	#	#	#	#	#	#

Natural Logic Analog of Transitivity:

State **Fact** Mutation

all bats are nocturnal.

Natural Logic Analog of Transitivity:

State	Fact	Mutation

(nocturnal $\xrightarrow{1}$ diurnal) all bats are nocturnal.

Natural Logic Analog of Transitivity:

State Fact

⇒ all bats are nocturnal,

 $\Rightarrow \neg$ all bats are diurnal.

Mutation

(nocturnal $\xrightarrow{\downarrow}$ diurnal)

Natural Logic Analog of Transitivity:

State Fact

 \Rightarrow all bats are nocturnal.

 $\Rightarrow \neg$ all bats are diurnal.

Mutation

(nocturnal $\xrightarrow{\downarrow}$ diurnal) $(all \stackrel{\wedge}{\rightarrow} not all)$

Natural Logic Analog of Transitivity:

State **Fact**

- \Rightarrow all bats are nocturnal.
- $\Rightarrow \neg$ all bats are diurnal.
 - ⇒ not all bats are diurnal

Mutation

(nocturnal $\xrightarrow{\downarrow}$ diurnal) $(all \stackrel{\wedge}{\rightarrow} not all)$

Natural Logic Analog of Transitivity:

State	Fact	Mutation
\Rightarrow	all bats are nocturnal,	(nocturnal $\stackrel{ }{ o}$ diurnal)
$\Rightarrow \neg$	all bats are diurnal,	(all $\overset{\curlywedge}{ o}$ not all)
\Rightarrow	not all bats are diurnal	

Maintain correct Natural Logic inference tracking only *valid* and invalid at each state.

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?

P: At least three commissioners spend a lot of time at home.

H: At least three commissioners spend time at home.

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 - P: At least three commissioners spend a lot of time at home.
 - H: At least three commissioners spend time at home.
 - P: At most ten commissioners spend a lot of time at home.
 - H: At most ten commissioners spend time at home.

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 - P: At least three commissioners spend a lot of time at home.
 - H: At least three commissioners spend time at home.
 - P: At most ten commissioners spend a lot of time at home.
 - H: At most ten commissioners spend time at home.
- 9 focused sections; 3 in scope for this work.

FraCaS Textual Entailment Suite:

- Used in MacCartney and Manning (2007; 2008).
- RTE-style problems: is the hypothesis entailed from the premise?
 - P: At least three commissioners spend a lot of time at home.
 - H: At least three commissioners spend time at home.
 - P: At most ten commissioners spend a lot of time at home.
 - H: At most ten commissioners spend time at home.
- 9 focused sections; 3 in scope for this work.

Not a blind test set!

 "Can we make deep inferences without knowing the premise a priori?"

Systems

M07: MacCartney and Manning (2007) M08: MacCartney and Manning (2008)

Classify entailment after aligning premise and hypothesis.

Systems

M07: MacCartney and Manning (2007)

M08: MacCartney and Manning (2008)

Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

Search blindly from hypothesis for the premise.

Systems

M07: MacCartney and Manning (2007)

M08: MacCartney and Manning (2008)

Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

Search blindly from hypothesis for the premise.

§	Category	Accuracy		
		M07	80M	Ν
1	Quantifiers	84	97	95
5	Adjectives	60	80	73
6	Comparatives	69	81	87

Systems

M07: MacCartney and Manning (2007)

M08: MacCartney and Manning (2008)

Classify entailment after aligning premise and hypothesis.

N: NaturalLI (this work)

Search blindly from hypothesis for the premise.

§	Category	Accuracy		
		M07	M08	Ν
1	Quantifiers	84	97	95
5	Adjectives	60	80	73
6	Comparatives	69	81	87
Applicable (1,5,6)		76	90	89

ConceptNet:

A semi-curated collection of common-sense facts.

October 26, 2014

ConceptNet:

 A semi-curated collection of common-sense facts. not all birds can fly noses are used to smell nobody wants to die music is used for pleasure

Experiments

ConceptNet:

- A semi-curated collection of common-sense facts. not all birds can fly noses are used to smell nobody wants to die music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.

Experiments

ConceptNet:

- A semi-curated collection of common-sense facts. not all birds can fly noses are used to smell nobody wants to die music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Experiments

ConceptNet:

- A semi-curated collection of common-sense facts. not all birds can fly noses are used to smell nobody wants to die music is used for pleasure
- Negatives: ReVerb extractions marked false by Turkers.
- Small (1378 train / 1080 test), but fairly broad coverage.

Our Knowledge Base:

270 million lemmatized Ollie extractions.

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

October 26, 2014

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1
NaturalLI Only	88.8	40.1
NaturalLI	90.6	49.1

Systems

Direct Lookup: Lookup by lemmas.

NaturalLI: Our system.

NaturalLI Only: Use only inference (prohibit exact matches).

System	Р	R
Direct Lookup	100.0	12.1
NaturalLI Only	88.8	40.1
NaturalLI	90.6	49.1

• 4x improvement in recall.

Conclusions

Takeaways

- *Deep* inferences from a *large* knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Strictly better than querying a knowledge base

12% recall → 49% recall @ 91% precision

Conclusions

Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Strictly better than querying a knowledge base

12% recall → 49% recall @ 91% precision

Strictly better fuzzy queries

- Checks logical entailment, not just fuzziness
- Support doesn't have to be lexically similar

Thanks!

http://plato42.stanford.edu/naturalli

