Digital Image Processing (CSE/ECE 478)

Lecture 6 : Spatial Filters (Part 2)

Ravi Kiran Rajvi Shah

Recap ...

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

▶ Point to Point

Neighborhood to Point

Global Attribute to Point

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

▶ Point to Point

Neighborhood to Point

Global Attribute to Point

Smoothing as Averaging

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

$$I'(u,v) \leftarrow \sum_{i=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$
 • $H(i,j)$

Sharpening Filter

Dbjective of sharpening is to highlight fine detail in an image or to enhance detail that has been blurred.

▶ Smoothing → Averaging → Summation → Integration

▶ Sharpening → Difference

1-D Derivatives

First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- Zero in flat segments
- Nonzero at the onset of a step or ramp
- Nonzero along ramps

Second Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x).$$

- Zero in flat areas;
- Nonzero at the onset and end of a gray-level step or ramp;
- Zero along ramps of constant slope

Image Derivatives

$$f(x-1,y) \qquad f(x,y) \qquad f(x+1,y)$$

$$f(x,y-1)$$

$$f(x,y)$$

$$f(x,y)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Laplacian Filter

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x^2}$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

0	1	0
1	-4	1
0	1	0

Laplacian Filter

_	0	1	0
	1	-4	1
	0	1	0

	0	-1	0
	-1	4	-1
-	0	-1	0

 1	1	1
1	-8	1
1	1	1

	-1	-1	-1
	-1	8	-1
-	-1	-1	-1

a b c d

FIGURE 3.37

(a) Filter mask used to implement Eq. (3.6-6). (b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementations of the Laplacian found frequently in practice.

Implementation

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{If the center coefficient is negative} \\ f(x,y) + \nabla^2 f(x,y) & \text{If the center coefficient is positive} \end{cases}$$

Where f(x,y) is the original image

 $\nabla^2 f(x, y)$ is Laplacian filtered image

g(x,y) is the sharpen image

sharpened = range_normalize(input + filtered)

Laplacian Filters

Unsharp Masking (and Highboost Filtering)

▶ **High boost filter**: amplify input image, then subtract a lowpass image

$$Highboost = A \ Original - Lowpass$$

= $(A-1) \ Original + Original - Lowpass$
= $(A-1) \ Original + Highpass$

Unsharp Masking / Highboost Filtering

$$A>=1$$
 $W = 9A-1$
 -1
 -1
 w
 -1
 -1
 w
 -1

$$A=2$$
 $W = 17$
 -1
 -1
 -1
 -1
 -1

- If **A=I**, we get unsharp masking.
- If A>I, part of the original image is added back to the high pass filtered image.

Unsharp Masking (and Highboost Filtering)

Unsharp Masking (and Highboost Filtering)

Also saw

- Non-linear Filters
 - min, max, median
 - Introduction to bilateral Filter

Continued ...

$$g(i,j) = \frac{\sum_{k,l} f(k,l)w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$
(3.34)

$$g(i,j) = \frac{\sum_{k,l} f(k,l)w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$
 (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

and a data-dependent range kernel (Figure 3.19d),

$$g(i,j) = \frac{\sum_{k,l} f(k,l)w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$
 (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$d(i, j, k, l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),\tag{3.35}$$

and a data-dependent range kernel (Figure 3.19d),

$$r(i,j,k,l) = \exp\left(-\frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$
 (3.36)

$$g(i,j) = \frac{\sum_{k,l} f(k,l)w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}.$$
 (3.34)

The weighting coefficient w(i, j, k, l) depends on the product of a *domain kernel* (Figure 3.19c),

$$d(i, j, k, l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2}\right),\tag{3.35}$$

and a data-dependent range kernel (Figure 3.19d),

$$r(i,j,k,l) = \exp\left(-\frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$
(3.36)

When multiplied together, these yield the data-dependent bilateral weight function

$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right).$$
(3.37)

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Usual Gaussian Filtering

Same Gaussian kernel everywhere.

output

The kernel shape depends on the image content.

Noisy input

Bilateral filter 7x7 window

Bilateral filter Median 3x3

Bilateral filter Median

More on Gradients

1-D Derivatives

First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- Zero in flat segments
- Nonzero at the onset of a step or ramp
- Nonzero along ramps

Second Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x).$$

- Zero in flat areas;
- Nonzero at the onset and end of a gray-level step or ramp;
- Zero along ramps of constant slope

Image Derivatives

$$f(x-1,y) \qquad f(x,y) \qquad f(x+1,y)$$

$$f(x,y-1)$$

$$f(x,y)$$

$$f(x,y)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Laplacian Filter

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

0	1	0
1	-4	1
0	1	0

Laplacian Filter

_	0	1	0
	1	-4	1
	0	1	0

0	-1	0
-1	4	-1
0	-1	0

-	1	1	1
	1	-8	1
	1	1	1

	4	1	1
	-1	-1	-1
	-1	8	-1
-	-1	-1	-1

a b c d

FIGURE 3.37

(a) Filter mask used to implement Eq. (3.6-6). (b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementations of the Laplacian found frequently in practice.

Gradient Operators

Based on First Derivative

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$magnitude(\nabla f) = \sqrt{G_x^2 + G_y^2} \approx |G_x| + |G_y|$$

$$orientation(\nabla f) = \tan^{-1}(\frac{G_y}{G_x})$$

Gradient Implementation

We can implement $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial v}$ using masks:

▶ A different approximation of the gradient:

$$\frac{\partial f}{\partial x}(x, y) = f(x, y) - f(x+1, y+1)$$

$$\frac{\partial f}{\partial x}(x, y) = f(x+1, y) - f(x+1, y+1)$$

∂f	f(v + 1, v)	-f(x,y+1),
$\frac{\partial}{\partial y}(x,y) =$	J(x + 1, y)	$- \int (x, y + 1),$
σv		

good approximation (x+1/2,y+1/2)

Gradient Operators

Sobel Operator

∂f
∂x

-1	0	1
-2	0	2
-1	0	1

∂f
$\overline{\partial y}$

	-1	-2	-1
-	0	0	0
	1	2	1

Example

Gradient Magnitude

Gradient vs. Laplacian

Original

Laplacian

Sobel X

Sobel Y

Sobel X+Y

Gradient vs. Laplacian

Other Important Filters

- Laplacian of Gaussian
 - Noise Suppression

- Difference of Gaussian
 - Band-pass

Remember this?

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

$$I'(u,v) \leftarrow \sum_{i=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$
 • $H(i,j)$

Linear Filtering: Generalization

$$I'(u,v) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} I(u+i,v+j) \cdot H(i,j)$$

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} f(x+s, y+t) \cdot w(s,t)$$

Linear Filtering: Generalization

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} f(x+s, y+t) \cdot w(s, t)$$

1-D Case:
$$g(x) = \sum_{s=-a}^{a} f(x+s) \cdot w(s)$$

Linear Filtering – 1D

$$g(x) = \sum_{s=-a}^{a} f(x+s) \cdot w(s)$$

- (e) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 3 2 8

 Position after four shifts
- (f) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Final position

Linear Filtering – 1D

$$g(x) = \sum_{s=-a}^{a} f(x-s) \cdot w(s)$$

Linear Filtering – 1D

$$g(x) = \sum_{s=-a}^{a} f(x-s) \cdot w(s)$$

f is impulse g is same as g

▶ Impulse Response

Signal as weighted sum of shifted impulses

$$f(x) = \sum_{s=0}^{a} \delta(x-s) \cdot f(s)$$

$$T[f(x)] = T[\sum_{s=-\alpha}^{\alpha} \delta(x-s) \cdot f(s)]$$

$$g(x) = \sum_{s=0}^{a} T[\delta(x-s)] \cdot T[f(s)]$$

$$g(x) = \sum_{s=-a}^{a} w(x-s) \cdot f(s) = \sum_{s=-a}^{a} f(x-s) \cdot w(s)$$

Linear Filtering as convolution

$$g(x) = f * w = \sum_{s=-a}^{a} f(x-s) \cdot w(s)$$

$$g(x, y) = f * w = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} f(x+s, y+t) \cdot w(s,t)$$

Time for a (de)tour!

Filters for Image Analysis

We learned filters for image enhancement

But also very important for image analysis tasks

- Fundamental tool for Feature based Image Representation
 - Necessary Computer Vision and Machine Learning

Histogram of Colors

Visualizing Gradients

Face

Person

Gradient Orientations

Histogram of Gradient Orientations

Learning Filters

Central to Convolutional Neural Network

Summary

- Linear Filtering moving a weight mask over the input image, multiplying weights with intensity values, and summing them up to produce output image
- Linear Filtering as Convolution
 - Part of larger LTI systems
- Nonlinear Filtering min, max, median, bilateral (mask is datadependent)

References

► GW Chapter – 3.4

- Szeliski Book : Computer Vision and Applications
 - Bilateral Filtering

Prof. Bebis Slides

Slides from Vineet Gandhi