# 2018年至2020年国际油轮运输市场趋势

宋深科 515021910648

彭正皓 515021910506

支鹏飞 515021910369

简心语 515021910260

庞雪怡 5140219001

刘子平 515021910250

### 概述

- 背景
- 数据获取——2001年初至2017年 末共6039组数据
- 近年现状
- VAR建模——获取多变量回归模型,获取关系式
- GAM建模——单变量自回归模型,获取预测值
- 未来趋势分析



2018 年至 2020 年国际油轮运输市场趋势

#### 目 录

| 摘要   |                   | i  |
|------|-------------------|----|
| 第一章  | 概述                | 2  |
| 第二章  | 历史数据分析            | 3  |
| 第三章  | 现状分析              | 5  |
| 3.1  | 全球新造船市场分析         | 5  |
| 3.2  | 全球油轮二手船市场分析       | 6  |
| 3.3  | 2016 年油运市场        | 6  |
| 第四章  | 建模过程              | 8  |
| 4.1  | 向量自回归模型           | 8  |
| 4.2  | 广义相加模型            | 10 |
| 4.3  | 比较与总结             | 11 |
| 第五章  | 未来趋势              | 14 |
| 5.1  | 航运市场情况与油价有明显的相关关系 | 14 |
| 5.2  | 租船市场持续平稳          | 14 |
| 5.3  | 新造船市场与拆船市场持续发展    | 14 |
| 第六章  | 总结                | 15 |
| 附录 A | 数据获取与预处理          | 16 |
| A.1  | 数据获取              | 16 |
| A.2  | 数据清洗              | 16 |
| 附录 B | VAR 模型的处理         | 19 |
| B.1  | 对数变换增加平稳性         | 19 |
| B.2  | Granger 因果检验      | 19 |
| 附录 C | 调用 Prophet 库的代码   | 20 |

### 数据获取

- 我们得到了BDTI/BCTI/钢铁价格/原油价格/标普500/纳斯达克/全球油轮数量/全球油轮运力/油轮租船数量等6039组历史数据。
- 数据获取与清洗的过程详见报告《2018年至2020年 国际油轮运输市场趋势》 附录A。



# 背景



现在经济社会发展的支柱产业

# 背累

经济规律周期

波罗的海运价指数

经济全球化的进程

世界范围内职能分工

# 背景



# 意义

举足轻重

研究分析油轮运输市场的周期性波动及其未来的发展趋势

制定合理的企业经营策略并采取一定的措施合理规避企业经营风险,增强自身的核心竞争力从而确保经营收益、

#### 新造船市场

- 全球新签订单量持续减少,
  2016年万吨以上的油轮新订单总数仅72艘,同比下降
  85.15%
- 2017年,由于低价刺激,出现 初步复苏迹象,年初至今油轮 新船投资同比增幅133%
- 交付量维持在较高水平



#### 二手船市场

- 成交量同比增长,2016年总 成交量443艘,相比2015年 增长了40.19%
- 价格持续走低,如阿芙拉型油轮,2016年一年价格下降了36.04%。
- 灵便型二手油轮始终占据主导地位
- 油轮运力过剩,运价走低,导致了二手船市场的低迷

| 日期       | 总成交量<br>/艘 | 环比      | 载重<br>/万吨 | 环比      |
|----------|------------|---------|-----------|---------|
| 2016年1月  | 34         | -15%    | 203.5     | -7.69%  |
| 2016年2月  | 28         | -17.65% | 135.4     | -33.46% |
| 2016年3月  | 48         | 64.29%  | 329.5     | 143.33% |
| 2016年4月  | 32         | -30.43% | 177.7     | -46.07% |
| 2016年5月  | 31         | -3.13%  | 321.8     | 81.08%  |
| 2016年6月  | 53         | 70.97%  | 443.5     | 37.82%  |
| 2016年7月  | 48         | -9.43%  | 325.8     | -26.53% |
| 2016年8月  | 28         | 41.67%  | 257.1     | 21.08%  |
| 2016年9月  | 21         | 25%     | 94.6      | 63.21%  |
| 2016年10月 | 32         | 52.38%  | 289.6     | 206.19% |
| 2016年11月 | 43         | 34.88%  | 420       | 44.82%  |
| 2016年12月 | 45         | 4.65%   | 480       | 14.22%  |
| 总成交量/艘   | 443        |         |           |         |

#### 拆船市场

近年油轮拆船量相对温和,2015和2016年均处于较低水平

原因:油轮船龄短,压载水公约推迟

2017年往后拆船量逐渐回 升,有助于缓解过剩的运力

原因: 较低运费和较低船价的

双重压力



#### 油运市场

- 运价持续走低
- 运力严重过剩

#### 原因:

OPEC减产协议,油价稳定后,进口国减少原油储备,原油运输需求大幅下降;

2015年新造船大量交付,存储运力释放,运力大幅增加



Vector autoregression model

• 数据处理:对数据取对数变换。

• 对数据进行单位根检验。

#### 以下以LBDTI为例:

Null Hypothesis: LBDTI has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=18)

|                                        |           | t-Statistic | Prob.* |
|----------------------------------------|-----------|-------------|--------|
| Augmented Dickey-Fuller test statistic |           | -4.012257   | 0.0015 |
| Test critical values:                  | 1% level  | -3.441019   |        |
|                                        | 5% level  | -2.866139   |        |
|                                        | 10% level | -2.569278   |        |
|                                        |           |             |        |

\*MacKinnon (1996) one-sided p-values.

#### Vector autoregression model

- 确定滞后阶数,寻找最优滞后期
- 由表中得到,最优滞后阶数为2,即最后滞后期为2,我们以10天一个单位进行建模,即滞后期为20天

VAR Lag Order Selection Criteria

Endogenous variables: DLBDTI DLNASDAQ DLOILPRICE DLSP500 DLSTEELPRICE

DLTANKERNUM DLTANKERTON

Exogenous variables: C

Date: 12/17/17 Time: 20:11

Sample: 1 604

Included observations: 591

| Lag | LogL     | LR        | FPE       | AIC        | SC         | HQ         |
|-----|----------|-----------|-----------|------------|------------|------------|
| 0   | 8763.065 | NA        | 3.19e-22  | -29.63135  | -29.57945  | -29.61114  |
| 1   | 9355.227 | 1168.294  | 5.08e-23  | -31.46947  | -31.05427* | -31.30773  |
| 2   | 9457.961 | 200.2522  | 4.23e-23* | -31.65131* | -30.87281  | -31.34805* |
| 3   | 9506.856 | 94.15048  | 4.24e-23  | -31.65095  | -30.50916  | -31.20617  |
| 4   | 9548.500 | 79.20061  | 4.34e-23  | -31.62606  | -30.12097  | -31.03976  |
| 5   | 9599.299 | 95.40981  | 4.32e-23  | -31.63215  | -29.76376  | -30.90433  |
| 6   | 9630.740 | 58.30554  | 4.59e-23  | -31.57272  | -29.34104  | -30.70339  |
| 7   | 9674.994 | 81.01998  | 4.67e-23  | -31.55666  | -28.96168  | -30.54580  |
| 8   | 9690.667 | 28.32308  | 5.23e-23  | -31.44388  | -28.48560  | -30.29150  |
| 9   | 9715.832 | 44.87943  | 5.68e-23  | -31.36322  | -28.04164  | -30.06932  |
| 10  | 9752.362 | 64.28384  | 5.94e-23  | -31.32102  | -27.63615  | -29.88560  |
| 11  | 9835.310 | 144.0014  | 5.31e-23  | -31.43591  | -27.38773  | -29.85897  |
| 12  | 9914.584 | 135.7445* | 4.81e-23  | -31.53836  | -27.12688  | -29.81990  |

<sup>\*</sup> indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

#### Vector autoregression model

Pairwise Granger Causality Tests

- Granger因果检验
- 由此可见LNASDAQ和 LSP500是LBDTI的 Granger原因,而LBDTI 是LOILPRICE的 Granger原因

| Date: 12/16/17 Time: 23:42                 |      |             |        |
|--------------------------------------------|------|-------------|--------|
| Sample: 5/21/2001 8/01/2015                |      |             |        |
| Lags: 2                                    |      |             |        |
| Null Hypothesis:                           | Obs  | F-Statistic | Prob.  |
| DLNADAQ does not Granger Cause DLBDTI      | 5178 | 1.74658     | 0.0936 |
| DLBDTI does not Granger Cause DLNADAQ      |      | 1.02087     | 0.4140 |
| DLOILPRICE does not Granger Cause DLBDTI   | 5178 | 1.26196     | 0.2651 |
| DLBDTI does not Granger Cause DLOILPRICE   |      | 2.32463     | 0.0229 |
| DLSP500 does not Granger Cause DLBDTI      | 5178 | 1.86371     | 0.0712 |
| DLBDTI does not Granger Cause DLSP500      |      | 1.52504     | 0.1537 |
| DLSTEELPRICE does not Granger Cause DLBDTI | 5178 | 1.00177     | 0.4277 |
| DLBDTI does not Granger Cause DLSTEELPRICE |      | 1.62811     | 0.1225 |
| DLTANKERNUM does not Granger Cause DLBDTI  | 5178 | 0.55250     | 0.7949 |
| DLBDTI does not Granger Cause DLTANKERNUM  |      | 1.38534     | 0.2067 |
| DLTANKTON does not Granger Cause DLBDTI    | 5056 | 1.03282     | 0.4055 |
| DLBDTI does not Granger Cause DLTANKTON    |      | 0.90473     | 0.5015 |
|                                            |      |             |        |

#### • 多元回归模型

Dependent Variable: LBDTI

F-statistic

Prob(F-statistic)

Method: Least Squares Date: 12/17/17 Time: 20:48 Sample (adjusted): 3 604 Included observations: 602 after adjustments Variable Coefficient Std. Error t-Statistic Prob. С 30.57629 2.996668 10.20343 0.0000 LNASDAQ(-2) 0.603560 0.253212 2.383611 0.0175 LSP500(-2) -0.485602 0.295890 -1.641159 0.1013 LSTEELPRICE(-2) 0.363625 0.068711 5.292123 0.0000 LTANKERTON(-2) 4.836854 5.049078 0.957968 0.0000 LTANKERNUM(-2) -6.900668 0.937939 -7.357269 0.0000 LOILPRICE(-2) 0.349835 0.050039 6.991200 0.0000 0.538373 6.843029 R-squared Mean dependent var Adjusted R-squared 0.368491 0.533717 S.D. dependent var 0.089794 S.E. of regression 0.251624 Akaike info criterion 0.140960 Sum squared resid 37.67206 Schwarz criterion -20.02806 0.109709 Log likelihood Hannan-Quinn criter.

**Durbin-Watson stat** 

0.114209

115.6530

0.000000

$$\begin{split} ln(BDTI) &= 30.5762882894 \\ &+ 0.60355965164 \ ln(NASDAQ_{-2}) \\ &- 0.4856020949 \ ln(SP500_{-2}) \\ &+ 0.363624526363 \ ln(STEELPRICE_{-2}) \\ &+ 4.83685385685 \ ln(TANKERTON_{-2}) \\ &- 6.90066847379 \ ln(TANKERNUM_{-2}) \end{split}$$

 $+0.349834719564 ln(OILPRICE_{-2})$ 



### 广义相加模型

Generalized Additive Model

——为了获得单变量的预测值

$$y(t) = g(t) + s(t) + h(t) + \varepsilon(t)$$



### 广义相加模型

#### Generalized Additive Model

#### 以油价为例



### 广义相加模型

#### 以油价为例



#### 油价与BDTI的相反关系明显,季节性明显











#### 租船市场稳定



#### 新造船市场和拆船市场将有所发展

