7 – Díodos e aplicações

Objectivos – Analisar e compreender o funcionamento de circuitos com díodos. Rectificador de meia onda e de onda completa. Filtragem. Díodos LED. Díodo Zener como regulador de tensão. Fotodíodo.

7.1 - Rectificador de meia onda

- A fig. 7.1 apresenta o primeiro circuito a montar na placa branca. A fonte de sinal é o gerador de funções que deve ser regulado para uma saída sinusoidal de frequência *1KHz* e *10Vpp* (*10 Volts* pico-a-pico). O díodo é do tipo 1N4148 (*datasheet* disponível no elearning).
- a) Supondo uma tensão de condução no díodo de 0.7V, comece por calcular o valor que R_L deverá ter de forma que a corrente máxima no circuito seja aproximadamente 2mA.
- **b)** Com o valor de R_L determinado, ligue o circuito e veja no osciloscópio os sinais v_i e v_o em simultâneo. Interprete o funcionamento do circuito e meça a amplitude de v_o .

7.2 - Rectificador de meia onda com filtragem

O circuito de retificação com filtragem é obtido colocando um condensador em paralelo com a resistência R_L , tal como mostra a fig. 7.2

- a) Calcule o valor de *C* de forma que a *tensão de ripple* seja aproximadamente *5%* da amplitude do sinal sinusoidal (veja a expressão a usar nos slides da Aula 19, pg. 4.48).
- b) Observe no osciloscópio os sinais v_i e v_o em simultâneo. Explique o comportamento do díodo e do condensador ao longo de um ciclo do sinal v_i . Que *tensão de ripple* obteve?
- c) Neste circuito o gerador de sinal apenas fornece energia no curto intervalo em que o díodo conduz. Para medir os **picos de corrente** de carga do condensador, intercale uma resistência de 10Ω entre C e a massa.

Com o osciloscópio meça o valor máximo da queda de tensão nessa resistência e calcule a corrente.

7.3 - Circuito com LED

Neste ponto pretende-se montar e testar o circuito da fig. 7.3. O gerador de funções, v_i , deve ser ajustado para ter na saída uma onda quadrada, a variar entre -5 e 5V, com uma frequência de 1Hz.

- a) Assumindo como primeira aproximação que a tensão de condução do LED é de 1.5V, calcule R de modo que a corrente máxima no LED seja de 5mA.
- **b)** Verifique o funcionamento do circuito e meça com o osciloscópio a tensão de condução do LED.

7.4 - Circuito com díodos Zener

A fig. 7.4 representa um circuito limitador. Este circuito inclui dois díodos do tipo Zener, da série BZX79 (datasheet disponível no elearning), com tensões diferentes: $V_{ZI} = 3.3V$ e $V_{Z2} = 4.7V$. O gerador de funções, v_{t} , deve ser ajustado para ter na saída uma onda triangular com 15Vpp, e uma frequência de 1KHz.

- a) Calcule R de modo que o valor máximo da corrente no circuito seja de 7.5mA.
- **b)** Monte o circuito e verifique o efeito dos díodos, relacionando v_I com v_0 .

7.5 – Detector de luminosidade com foto-díodo

O circuito da fig. 7.5 reune muitos dos componentes que estudou até agora, nomeadamente amplificadores operacionais e vários tipos de díodos (LED, Zener e foto-díodo). Também implementa uma aplicação muito concreta: é um detector de luminosidade.

Quando se incide luz no foto-díodo a corrente inversa deste aumenta. O OpAmp A_1 transforma esta corrente (que é da ordem dos micro-ampéres) na tensão v_{ol} . O OpAmp A_2 , que está montado numa configuração de *Schmitt trigger* não inversor, compara a tensão v_{ol} com uma tensão de referência de 3.3V estabilizada pelo díodo Zener. Quando a tensão v_{ol} é suficientemente elevada, a saída de A_2 sobe para o nível de saturação positivo do OpAmp e o LED acende.

Este circuito utiliza o integrado TL082, que inclui no mesmo invólucro dois OpAmps semelhantes ao TL081, que já conhece. Os números indicados junto a cada terminal correspondem aos números dos pinos do circuito integrado. Embora os terminais de alimentação não aparecem na fig. 7.5, estes devem, evidentemente, ser ligados à fonte de alimentação: o pino 8 a +15V e o pino 4 a -15V.

- a) Monte o circuito e verifique a sua funcionalidade. O LED só deve acender quando incide luz (usando, por exemplo, a lanterna do seu telemóvel) no foto-díodo.
- b) Usando o osciloscópio observe a variação da tensão v_{ol} com diferentes níveis de luminosidade. Determine a gama de correntes no foto-díodo.

c) Calcule o valor teórico das tensões V_H e V_L do Schmitt trigger (consulte os slides da Aula 17).

