Introduction to Machine Learning, Fall 2023 Homework 1

(Due Thursday, Oct. 26 at 11:59pm (CST))

November 2, 2023

- 1. [10 points] [Math review] Suppose $\{X_1, X_2, \dots, X_n\}$ form a random sample from a multivariate distribution:
 - (a) Prove that the covariance of X_i is a semi positive definite matrix. [3 points]
 - (b) Assuming $\mathbf{X}_i \sim \mathcal{N}(\mu, \Sigma)$ which is a multivariate normal distribution, and samples X_i , derive the the log-likelihood $l(\mu, \Sigma)$ and MLE of μ [4 points]
 - (c) Suppose $\hat{\theta}$ is an unbiased estimator of θ and $\mathbf{Var}(\hat{\theta}) > 0$. Prove that $(\hat{\theta})^2$ is not an unbiased estimator of θ^2 . [3 points]

Answer:

(a) Let $\mu = \mathbf{E}(\mathbf{X})$

$$\Sigma = \mathbf{E} \left[\mathbf{X} - \mu \right] \left[\mathbf{X} - \mu \right]^T$$

For any $\mathbf{u} \in \mathbb{R}^n$

$$\mathbf{u}^T R \mathbf{u} = \mathbf{u}^T \mathbf{E} \left[\mathbf{X} - \mu \right] \left[\mathbf{X} - \mu \right]^T \mathbf{u} = \mathbf{E} \left[\mathbf{u}^T (\mathbf{X} - \mu) \right] \left[\mathbf{u}^T (\mathbf{X} - \mu) \right]^T = \mathbf{E} \left[\mathbf{u}^T (\mathbf{X} - \mu) \right]^2 \ge 0$$

(b) Let p be the dimension of \mathbf{X} . Let $A = \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})^T = X^T X - n \overline{X}^T \overline{X}$ Notice that Σ is positive definite, we have

$$\left(\mathbf{X}_{i}-\mu\right)^{T} \Sigma^{-1} \left(\mathbf{X}_{i}-\mu\right) = \operatorname{tr}\left(\left(\mathbf{X}_{i}-\mu\right)^{T} \Sigma^{-1} \left(\mathbf{X}_{i}-\mu\right)\right) = \operatorname{tr}\left(\Sigma^{-1} \left(\mathbf{X}_{i}-\mu\right) \left(\mathbf{X}_{i}-\mu\right)^{T}\right)$$

Hence we have

$$\begin{split} l(\mu, \Sigma) &= \ln(L(\mu, \Sigma)) \\ &= \prod_{i=1}^n \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{X}_i - \mu\right)^T \Sigma^{-1} \left(\mathbf{X}_i - \mu\right)\right] \\ &= -\frac{np}{2} \ln 2\pi - \frac{n}{2} ln |\Sigma| - \frac{1}{2} \mathrm{tr} \left[\Sigma^{-1} \sum_{i=1}^n \left(\mathbf{X}_i - \mu\right) \left(\mathbf{X}_i - \mu\right)^T\right] \\ &= C - \frac{1}{2} \mathrm{tr} \left[\Sigma^{-1} A + n \Sigma^{-1} (\overline{X} - \mu) (\overline{X} - \mu)^T\right] \\ &= C - \frac{1}{2} \mathrm{tr} \left(\Sigma^{-1} A\right) - \frac{n}{2} (\overline{X} - \mu) \Sigma^{-1} (\overline{X} - \mu)^T \\ &\leq C - \frac{1}{2} \mathrm{tr} \left(\Sigma^{-1} A\right) \end{split}$$

Notice that $l(\mu, \Sigma) = C - \frac{1}{2} \text{tr} (\Sigma^{-1} A)$ if and only if $(\overline{X} - \mu) \Sigma^{-1} (\overline{X} - \mu)^T = 0 \iff \overline{X} = \mu$, hence, $\max_{\mu} l(\mu, \Sigma) = l(\overline{X}, \Sigma)$, $\hat{\mu} = \overline{X}$ (3 points for log-likelihood and 1 points for MLE)

(c)

$$\mathbf{Var}(\hat{\theta}) = \mathbf{E}(\hat{\theta}^2) - \mathbf{E}(\hat{\theta})^2$$

Given that $\mathbf{Var}(\hat{\theta}) > 0$

$$\mathbf{E}(\hat{\theta^2}) > \mathbf{E}(\hat{\theta})^2$$

Hence, $(\hat{\theta})^2$ is not an unbiased estimator of θ^2 .

2. [10 points] Consider real-valued variables X and Y, in which Y is generated conditional on X according to

$$Y = aX + b + \epsilon$$
, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Here ϵ is an independent variable, called a noise term, which is drawn from a Gaussian distribution with mean 0, and variance σ^2 . This is a single variable linear regression model, where a is the only weight parameter and b denotes the intercept. The conditional probability of Y has a distribution $p(Y|X,a,b) \sim \mathcal{N}(aX+b,\sigma^2)$, so it can be written as:

$$p(Y|X, a, b) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(Y - aX - b)^2\right).$$

- (a) Assume we have a training dataset of n i.i.d. pairs (x_i, y_i) , i = 1, 2, ..., n, and the likelihood function is defined by $L(a, b) = \prod_{i=1}^{n} p(y_i|x_i, a, b)$. Please write the Maximum Likelihood Estimation (MLE) problem for estimating a and b. [3 points]
- (b) Estimate the optimal solution of a and b by solving the MLE problem in (a). [4 points]
- (c) Based on the result in (b), argue that the learned linear model f(X) = aX + b, always passes through the point (\bar{x}, \bar{y}) , where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ denote the sample means. [3 points]

Answer:

(a) [HINT:] You will lose 1 point if neither argmin/argmax nor "maximize" / "minimize" is appeared in your answer.

i.
$$\arg\max_{a}\prod_{i}\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2\sigma^{2}}\left(y_{i}-ax_{i}\right)^{2}\right)$$

ii.
$$\arg\max_{a}\prod_{i}\exp\left(-\frac{1}{2\sigma^{2}}\left(y_{i}-ax_{i}\right)^{2}\right)$$

iii.
$$\operatorname{arg\,min}_a \frac{1}{2} \sum_i (Y_i - aX_i)^2$$

All of the above answers are correct.

(b)

$$\hat{a} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2},$$

$$\hat{b} = \bar{y} - \hat{a}\bar{x},$$
(1)

where $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ and $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$ denote the sample means.

(c) We can plug (\bar{x}, \bar{y}) into the equation $\hat{y} = \hat{a}x_i + \hat{b}$, and we find $\bar{y} = \hat{a}\bar{x} + \bar{y} - \hat{a}\bar{x} = \bar{y}$ satisfies. So the least squares line always passes through the point (\bar{x}, \bar{y}) .

- 3. [10 points] [Regression and Classification]
 - (a) When we talk about linear regression, what does 'linear' regard to? [2 points]
 - (b) Assume that there are n given training examples $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, where each input data point x_i has m real valued features. When m > n, the linear regression model is equivalent to solving an under-determined system of linear equations $\mathbf{y} = \mathbf{X}\beta$. One popular way to estimate β is to consider the so-called ridge regression:

$$\underset{\beta}{\operatorname{argmin}} ||\mathbf{y} - \mathbf{X}\beta||_2^2 + \lambda ||\beta||_2^2$$

for some $\lambda > 0$. This is also known as Tikhonov regularization.

Show that the optimal solution β_* to the above optimization problem is given by

$$\beta_* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

Hint: You need to prove that given $\lambda > 0$, $\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$ is invertible. [5 points]

(c) Is the given data set linear separable? If yes, construct a linear hypothesis function to separate the given data set. If no, explain the reason. [3 points]

Answer:

(a) linear is regard to the parameters θ s. The hypnosis can be written in the form of $h(\mathbf{x}, \theta) = \theta^T \phi(\mathbf{x})$ (notice that $\phi(\cdot)$ dose not necessary to be a linear function. i.e.

$$f(x) = \theta \begin{bmatrix} x, \\ x^2 \end{bmatrix}$$

is a linear regression.)

(b) Let $L(\beta) = ||\mathbf{y} - \mathbf{X}\beta||_2^2 + \lambda ||\beta||_2^2$

$$L'(\beta) = -2(\mathbf{v} - \mathbf{X}\beta)\mathbf{X} + 2\lambda\beta = -2X^Ty + 2X^TX\beta + 2\lambda\beta$$

To minimize $L(\beta)$, $L'(\beta_*) = 0$, $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})\beta_* = \mathbf{X}^T \mathbf{y}$.

Notice that for all $\mathbf{u} \neq \mathbf{0}$

$$\mathbf{u}^T (X^T X + \lambda \mathbf{I}) \mathbf{u} = \mathbf{u}^T X^T X \mathbf{u} + \lambda \mathbf{u}^T \mathbf{u} > = \lambda \mathbf{u}^T \mathbf{u} > 0$$

 $X^TX + \lambda \mathbf{I}$ is positive definite, and so it is invertible. Hence, $\beta_* = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$ (2points for solution and 2 points for invertible)

(c) It is not linear separable because there is no hyper-plane which can separate the data, in another word, there is no **w** and b such that for all $x, y, y = \text{sign}(w^T x + b)$. To proof this, notice that the convex set of positive labels and the convex set of negative labels are intersect, thus it is not separable. (Student may plot a image to explain the reason which is acceptable.)

3