Price and Hedge Discovery of Bermudan Swaptions under Hull-White Dynamics using Q-Learning

Samarth Kadaba

SMBC Capital Markets, New York, NY

August 24, 2023

About Me

I am Electrical Engineering student at Stanford University broadly interested in optimization and control theory.

In my free time, I do research in robotics and dance on my schools Bhangra team!

Figure: Enjoying New York City with friends.

Goals and Achievements

Goals

- 1 Develop understanding of...
 - Classical option pricing theory
 - Linear interest-rate derivatives (IRDs)
 - Term structure modeling
- Understand DP-based and data-driven Q-Learning
- **3** Connect (1) and (2) for **model-free** IRD pricing

Achievements

- Optimal hedges/prices discovered with Q-learning
- 2 Demonstrated algorithm tractability and model customization

Problem

Objective: Determine optimal price of Bermudan swaption using underlying swap trajectories (S_t) and replicating portfolio Π_t with terminal payoffs $\Pi_T = H_T(S_T)^{-1}$

- Preliminaries on Q-Learning in a Black-Scholes-Merton word (QLBS)
- 2 Considerations for interest-rate derivative products
- Methods for pricing/hedging European and Bermudan swaptions
- Selected results

I. Halperin (2019). QLBS: Q-Learner in the Black-Scholes(-Merton) Worlds. arXiv: 1712.04609 [q-fin.CP]

Preliminaries on Q-Learning

Benefits of Q-Learning

- Provides optimal price and hedge actions
- Can be relaxed: 1) non-constant volatility, 2) incorporate dividends, etc. via reward structure
- Converges to BSM hedges and price as $\Delta t \rightarrow 0$ (derivation)

(Simplified) RL Approach via Maximization:

$$Q_t^* = \max_{\substack{a_t \in A \\ \text{s.t.}}} \mathbb{E}_t \left[R_t + \gamma \max_{\substack{a_{t+1} \\ R_t = H_T(S_T)}} Q_{t+1}^* \right]$$
(1)

Condition on previous state, action value. R_t a function of -Var(Π_t) and current portfolio return.

DP Solution for QLBS (focus of methods herein)

QLBS aims to build a table of (state, action) tuples which learns optimal hedges for a given state (S_t) , an **on-policy** learner.

Solve for Q values backwards in time with $-Q_0^*$ being the option price. Why is this the case?

- $-Q_0^*$, by construction, will be (expectation of) Π_0 plus some constant times $Var(\Pi_{t=0,...,T})$.
- a_t^* found to minimize sum of negative returns and portfolio variance
- Fix a_t^* , find Q_t^* to minimize difference to instantaneous rewards plus discounted future rewards (2)

Solution via Fitted Q-Learning

In this setting, do not consider reward or state dynamics to be known, hence **model-free** and **off-policy**.

Consider Q value updates from single step observations $(X_t^n, a_t^n, R_t^n, X_{t+1}^n)$

From Bellman Optimality, solve **Least Squares** problem:

min
$$\mathbb{L}_t(Q_t) = \sum_{k=1}^{N_{MC}} (R_t(a_t^*) + \gamma \max_{a_{t+1}} Q_{t+1}^*(a_{t+1}) - Q_t^*(a_t))^2$$
 (2)

Adaptation to Interest-Rate derivative Products

Added complexity from interest rate dynamics:

- ① Construction of yield curve from market instruments
- 2 Evolution of term structure via short-rate model
- 3 Pricing for
 - Zero-Coupon Bonds
 - Swaps
 - European swaptions
 - Bermudan swaptions

Added complexity from early exercise:

- 1 Model as basket of European swaptions
- Computation of continuation-values (cost of exercising)

Yield Curve Construction and Short-Rate Evolution

Term-structure fitted to current-market data, then evolved with HW.

- Build yield curve from convexity-adjusted futures (forward-Libor and forward-swap rates).
- W (3) models the short-rate dynamics under the risk-neutral measure after calibration to market-quoted swaption volatilities.

$$dr(t) = [\theta(t) - \alpha(t)r(t)]dt + \sigma(t)dW(t)$$
 (3)

We consider a simplified (1-factor) HW model with constant volatility, mean-reversion.

Pricing Swaps and European Swaptions

Swap valuation formula (4) gives present value of a fixed and floating-leg bonds according to specified payment (tenor) structure.

$$V_{swap}(t) = \sum_{n=0}^{N-1} (P(t, T_n) - P(t, T_{n+1}) - \tau_n k P(t, T_{n+1}))$$
 (4)

- P(t, T) denotes zero coupon bond price at time t with maturity T
- k denotes fixed rate (value which makes $V_{swap}(0) = 0$)
- n = 0...N 1 denotes the N payment periods on the bond legs

Then, $V_{swaption}(t)$ with expiry T_0 is given by is simply the positive part of the swap value at time T_0 deflated by money-market account.

Pricing Bermudans in Longstaff Schwartz

The price of a bermudan at time T is the maximum of its intrinsic value and its computed continuation value at T (5) 2 .

The continuation value C(T) is given by regressing future Bermudan values on basis functions (typically of swap rates).

$$P(T) = \max(P(T), C(T)) \tag{5}$$

Where P(T) denotes the time T intrinsic value of the bermudan (i.e. the equivalent European price).

L. B. Andersen (1999). "A simple approach to the pricing of Bermudan swaptions in the multi-factor libor market model".
 In: SSRN Electronic Journal. DOI: 10.2139/ssrn.155208

Results

Summary: QLBS accurately prices exotic interest rate derivative products while providing efficient hedging on the underlying instruments.

- Recovering zero coupon bond (ZCB) prices
- Replicating forward swap values
- Pricing European swaptions via Monte Carlo
- Pricing and hedging via QLBS

Recovering ZCB Prices

To validate short-rate evolution we evaluate (6) which is the generic bond pricing formula.

$$P(0,T) = \exp(-\int_0^T r(\tau)d\tau)$$
 (6)

Rel. Error - QuantLib (bps)

	1					60	
5	0.00	0.08	0.09	0.09	-0.48	-0.35	2.09
10	0.00	0.09	0.10	0.10	-0.46	-0.35 -0.94	-1.75

Recovering Swap Prices

To validate swap pricing, we replicate vanilla instruments through QuantLib libraries and price under equivalent conditions.

We consider 5 year and 10 year swaps below with varying forward times.

Rel.	Error	-	QuantLib	(%))

		3					
5	-0.19	0.15	-0.32	0.07	-0.3	0.087	-0.33
10	0.13	0.15 00.16	0.31	0.25	0.35	0.80	-0.5

Recovering Swaption Prices via Monte Carlo

We compare Monte Carlo derived European swaption prices with those derived analytically from Quantilb (which uses Jamishidan swaption pricing).

We consider options into 5 and 10 year swaps with varying expiry (chosen based on which instruments were most liquid).

Rel.	Error	-	QuantLib	(%))
------	-------	---	----------	-----	---

		3					
5	-6.78	-10.18	-5.66	-10.19	-5.19	-8.75	-2.27
10	-8.17	-10.18 -3.04	-7.91	-4.08	-6.73	-4.13	-7.61

Pricing European and Bermudan Swaptions using QLBS

Rel.	Error	- Euro	(%)
------	--------------	--------	-----

				10	2.4	60	100
	_	3	-				
5	-13.2	-12.9	-10.0	-0.6	-7.3	-2.0	3.6
_10	-13.2 -15.1	-15.3	-14.3	-10.3	-11.0	-5.9	N/A

Rel. Error - Berm (%)

	1	3	6	12	24	60	120
5	9.5	-6.3	-15.7	-14.1	-11.5	-6.7	-1.9
10	-1.65	-2.01	-15.7 -15.69	-22.5	-20.8	-16.3	N/A

Future Directions

With additional time I would explore:

- Multi-factor models for term structure evolution
- Non-constant volatility models
- 3 Sensitivity of price/hedge to bumps in yield curve
- Fitted Q-learning and model-free, off-policy RL
- More exotic agreements i.e. varying fixed/floating payment schedules, strike rates, etc.
- **6** Dynamic risk-free rates
- Incorporating dividends into reward structure

Acknowledgements

Thank you to Sandeep, Dongsheng, Ying, Yan, Yuncai, Dorothy, and the entire Strats team for their help and guidance!

1M x 5y swap: Underlying Trajectories and Optimal Hedging

Swap value deflated by money-market account (risk-neutral numeraire) is a martingale.

1M x 5y swap: Portfolio Values and Q-Values

Observe expected increase in portfolio value and near-monotonic decrease in -Q value (increase +Q).

1M x 10y swap: Underlying Trajectories and Optimal Hedging

In real-world settings, transaction costs would enforce smooth hedging which can be achieved with certain regularization on optimal actions.

1M x 10y swap: Portfolio Values and Q-Values

Evaluating Hedge Effectiveness - 1M x 5y ³

Figure: On notional of \$100M, we require an initial bank account of \$500K for optimal hedging.

Figure: Our total slippage, i.e. unprotected ΔV_{swap} is \$9,822.61 or \$427.07 per timestep.

³ J. H. Hoencamp, S. Jain, and D. Kandhai (2022). "A semi-static replication approach to efficient hedging and pricing of callable IR derivatives". In

Evaluating Hedge Effectiveness - 1M x 10y

Figure: On notional of \$100M, we require an initial bank account of \$800K for optimal hedging.

Figure: Our total slippage, i.e. unprotected ΔV_{swap} is \$16,334.83 or \$710.21 per timestep.

Another look at Hedge Effectiveness

Figure: 1M x 5y outstanding per 1\$ change in underlying (ΔS) .

Figure: 1M x 10y outstanding per 1\$ change in underlying (ΔS) .

We assume risk per-timestep, however our average net-position per dollar change in the underlying is approx. \$0.2.

Appendix 3

Sparse first-differences with L1 regularization. We add weighted L1 regularization to a_t^* , and vectorize w.r.t. time.

Figure: L1 regularization yields minimal optimality gap with sparse hedge first differences; shown for coefficients related to two features.

Appendix 4

Implementation details. Some parameters and assumptions were made to normalize experimental results.

- Fixed and floating-leg payment schedules identical
- Quarterly payments
- Hedge re-balancing across 24 timesteps
- 8192 Sobol (low-discrepancy) sequences were used to simulate short-rate paths (computation time around 30 secs)
- 3% risk-free rate
- All swaptions were evaluated ATM
- Purely risk-based hedging

Bibliography

- Andersen, L. B. (1999). "A simple approach to the pricing of Bermudan swaptions in the multi-factor libor market model". In: SSRN Electronic Journal. DOI: 10.2139/ssrn.155208.
- Halperin, I. (2019). *QLBS: Q-Learner in the Black-Scholes(-Merton) Worlds.* arXiv: 1712.04609 [q-fin.CP].
- Hoencamp, J. H., S. Jain, and D. Kandhai (2022). "A semi-static replication approach to efficient hedging and pricing of callable IR derivatives". In.