1 Definições Elementares

Definição 1.1. Sejam $f: X \to X$ uma função, $p \in X$ e $n \ge 1$. Dizemos que p é um ponto periódico com período n, se $f^n(p) = p$. Se $f^k(p) \ne p$ para todo $1 \le k < n$, então n é chamado de período principal. Em particular, se n = 1, dizemos que p é um ponto fixo.

Definição 1.2. Sejam $f: X \to X$ uma função, $p \in X$ e $n \ge 1$. Dizemos que p é um ponto eventualmente periódico com período n, se existe m > 1 tal que $f^k(p) = f^{k+n}(p)$ para todo $k \ge m$. Em particular, se n = 1, dizemos que p é um ponto eventualmente fixo.

Definição 1.3. Sejam $f: X \to X$ uma função e $x \in X$. A *órbita de x* é o conjunto $O(x) = \{x, f(x), f^2(x), \dots\}.$

Definição 1.4. Sejam $f: X \to X$ uma função, p um ponto periódico período n e $x \in X$. Dizemos que x tende assintoticamente para p se $\lim_{k\to\infty} f^{kn}(x) = p$. O conjunto dos pontos que tendem assintoticamente para p, denotado por $W^s(p)$, é chamado chamado de conjunto estável de p. Dizemos que x tende assintoticamente para infinito se $\lim_{k\to\infty} |f^k(x)| = \infty$. O conjunto dos pontos que tendem assintoticamente para infinito, denotado por $W^s(\infty)$, é chamado de conjunto estável do infinito.

Proposição 1.5. Sejam $f: X \to X$ uma função e p_1 , p_2 pontos periódicos distintos. $Então\ W^s(p_1) \cap W^s(p_2) = \emptyset$.

Demonstração. Sejam n_1 , n_2 os períodos de p_1 , p_2 , respectivamente. Suponha que exista $x \in W^s(p_1) \cap W^s(p_2)$. Sabemos que $|f^{kn_1}(x) - p_1| \to 0$ e $|f^{kn_2}(x) - p_2| \to 0$, quando $k \to \infty$. Desse modo, dado $\varepsilon > 0$ existe $N \ge 1$ tal que $|f^{kn_1}(x) - p_1| < \frac{\varepsilon}{2}$ e $|f^{kn_2}(x) - p_2| < \frac{\varepsilon}{2}$ para todo k > N. Portanto, $|p_1 - p_2| = |p_1 - f^{kn_1n_2}(x) + f^{kn_1n_2}(x) - p_2| \le |f^{kn_2n_1}(x) - p_1| + |f^{kn_1n_2}(x) - p_2| < \varepsilon$. Temos então que p = q, pois ε é arbitrário. Absurdo.

2 Teorema de Sharkovsky

Ao longo dessa seção, f denotará uma função contínua de um intervalo em \mathbb{R} , onde o intervalo não precisa ser fechado ou limitado.

Definição 2.1. Se $I_0, I_1, \ldots, I_{n-1}$ são intervalos fechados, n > 1,

- 1. dizemos que I_0 cobre I_1 , e denotamos por $I_0 \longrightarrow I_1$, se $f(I_0) \supset I_1$.
- 2. dizemos que $I_0, I_1, \ldots, I_{n-1}$ é um caminho entre I_0 e I_{n-1} , e denotamos por $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_{n-1}$, se $f(I_i) \supset I_{i+1}$, $i = 0, \ldots, n-2$.
- 3. dizemos que $I_0, I_1, \ldots, I_{n-1}$ é um ciclo entre I_0 e I_{n-1} , e denotamos por $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_0$, se $f(I_i) \supset I_{i+1}$, $i = 0, \ldots, n-2$, e $f(I_{n-1}) \supset I_0$.

Lema 2.2. Se $I_0 \longrightarrow I_1$, então $f(I'_0) = I_1$ para algum intervalo fechado $I'_0 \subset I_1$.

Demonstração. Se $I_0 = [a, b]$ e $I_1 = [c, d]$, pelo Teorema do Valor Intermediário, existem $p, q \in I_0$ tais que f(p) = c e f(q) = d. Suponha que $p \le q$ e defina $I'_0 = [a', b']$, onde

$$b' = \inf\{x \in [p, q] : f(x) = d\} \in a' = \sup\{x \in [p, b'] : f(x) = c\}$$

Sendo f contínua temos que f(a') = c e f(b') = d e, desse modo, $f(I'_0) \supset I_1$. Se f(x) < c para algum $x \in I'_0$, existe $y \in [x, b']$ tal que f(y) = c, o que é um absurdo pois nesse caso y > a'. Absurdo análogo ocorre se f(x) > d para algum $x \in I'_0$. Portanto, $f(I'_0) = I_1$.

Lema 2.3. Se $J_0 \longrightarrow J_1 \longrightarrow \cdots \longrightarrow J_{n-1} \longrightarrow J_0$, então existe $p \in J_0$ tal que $f^k(p) \in J_k$, para todo $k = 1, \ldots, n-1$, e $f^n(p) = p$.

Demonstração. De acordo com as hipóteses e com a Proposição anterior, temos as seguintes implicações:

$$J_0 \longrightarrow J_1 \Rightarrow \text{ existe } J_0' \subset J_0 \text{ tal que } f(J_0') = J_1$$

$$J_1 \longrightarrow J_2 \Rightarrow \text{ existe } J_1' \subset J_0' \text{ tal que } f^2(J_1') = J_2$$

$$\vdots$$

$$J_{n-2} \longrightarrow J_{n-1} \Rightarrow \text{ existe } J_{n-2}' \subset J_{n-3}' \text{ tal que } f^{n-1}(J_{n-2}') = J_{n-1}$$

$$J_{n-1} \longrightarrow J_0 \Rightarrow \text{ existe } J_{n-1}' \subset J_{n-2}' \text{ tal que } f^n(J_{n-1}') = J_0$$

Construímos então uma sequência de n intervalos fechados $J_0 \supset J'_0 \supset J'_1 \supset \cdots \supset J'_{n-1}$ tal que $f^k(J'_{k-1}) = J_k$, para todo $k = 1, \ldots, n-1$, e $f^n(J'_{n-1}) = J_0$. Como $J_0 \supset J'_{n-1}$, existe $p \in J'_{n-1}$ tal que $f^n(p) = p$. Em particular, $p \in J_0$ e $f^k(p) \in J_k$, para todo $k = 1, \ldots, n-1$.

Teorema 2.4. Se f admite ponto periódico de período principal 3, então f admite ponto periódico de período principal n, para todo $n \ge 1$.

Demonstração. Sejam p um ponto periódico de período principal 3 e $p_1 < p_2 < p_3$ os pontos da órbita de p e suponha que $f(p_1) = p_2$ e $f(p_2) = p_3$. O outro caso possível, em que $f(p_1) = p_3$ e $f(p_3) = p_2$, é demonstrado de maneira análoga. Definindo $I_1 = [p_1, p_2]$ e $I_2 = [p_2, p_3]$, temos que $I_1 \longrightarrow I_2$, $I_2 \longrightarrow I_1$ e $I_2 \longrightarrow I_2$.

- (a) n = 1: Como $I_2 \longrightarrow I_2$, existe $p \in I_2$ tal que f(p) = p.
- (b) n = 2: Como $I_1 \longrightarrow I_2 \longrightarrow I_1$, existe $p \in I_1$ tal que $f(p) \in I_2$ e $f^2(p) = p$. Se f(p) = p, então $p \in I_1 \cap I_2 = \{p_2\}$, o que é um absurdo pois p_2 possui período principal 3. Desse modo, o período principal de p é 2.
- (c) n > 3: Se $I_2 \longrightarrow \cdots \longrightarrow I_2 \longrightarrow I_1 \longrightarrow I_2$ é um ciclo de tamanho n, existe $p \in I_2$ tal que $f^k(p) \in I_2$, para todo $k = 1, \ldots, n-2, f^{n-1}(p) \in I_1$ e $f^n(p) = p$. Se $f^{n-1}(p) = p$, então $p \in I_1 \cap I_2 = \{p_2\}$, o que é um absurdo pois implica que $f(p) = p_3 \in I_1$. Se $f^k(p) = p$ para algum $k = 1, \ldots, n-2$ implica que $f^k(p) \in I_2$, para todo $k \ge 1$. Em particular, $f^{n-1}(p) \in I_1 \cap I_2 = \{p_2\}$ e, portanto, $p = f^n(p) = p_3$, o que é um absurdo pois implica que $f(p) = p_1 \in I_2$.

Desse modo, o resultado está provado.

Para demonstrar os seguintes Lemas, supomos que f admite um ponto periódico p de período principal n > 1. Seja $\mathcal{O}(p) = \{p_1 < p_2 < \cdots < p_n\}$ a órbita de p. Vamos definir n-1 intervalos fechados da forma $[p_i, p_{i+1}]$, que serão denotados por $I_1, I_2, \ldots, I_{n-1}$, com propriedades que permitam demonstrar o Teorema de Shakovsky.

Lema 2.5. Existe $k = 1, \ldots, n-1$ tal que $[p_k, p_{k+1}] \longrightarrow [p_k, p_{k+1}]$.

Demonstração. Seja $p_k = \max\{p_i \in \mathcal{O}(p) : f(p_i) > p_i\}$. Observe que $p_k < p_n$. Pela definição de p_k e por $f(p_{k+1}) \neq p_{k+1}$, temos que $f(p_k) > p_k$ e $f(p_{k+1}) < p_{k+1}$. Portanto, $[p_k, p_{k+1}] \longrightarrow [p_k, p_{k+1}]$.

O intervalo encontrado no Lema anterior será denotado por I_1 . Portanto, $I_1 \longrightarrow I_1$.

Lema 2.6. Existe um caminho entre I_1 e $[p_i, p_{i+1}]$, para todo i = 1, ..., n-1.

Demonstração. Para cada $n \geq 1$, defina \mathcal{U}_n como a união dos intervalos da forma $[p_i, p_{i+1}]$ tal que existe um caminho de tamanho n entre I_1 e $[p_i, p_{i+1}]$.

Se $[p_i, p_{i+1}]$ é um intervalo de \mathcal{U}_n , então existe um caminho de tamanho n entre I_1 e $[p_i, p_{i+1}]$. Adicionando $I_1 \longrightarrow I_1$ ao início do caminho formamos um caminho de tamanho n+1 entre I_1 e $[p_i, p_{i+1}]$. Portanto, $[p_i, p_{i+1}]$ é um intervalo de \mathcal{U}_{n+1} e, desse modo, $\mathcal{U}_n \subset \mathcal{U}_{n+1}$. Observe que se $\mathcal{U}_n \neq \mathcal{U}_{n+1}$, existe um intervalo $[p_i, p_{i+1}]$ de \mathcal{U}_n tal que $f([p_i, p_{i+1}] \cap \mathcal{O}(p)) \nsubseteq \mathcal{U}_n$.

Como $\mathcal{O}(p)$ é finita e $\mathcal{U}_1 \subset \mathcal{U}_2 \subset \cdots$, existe $k \geq 1$ tal que $\mathcal{U}_k = \mathcal{U}_{k+1}$. De acordo com a observação anterior, $f([p_i, p_{i+1}] \cap \mathcal{O}(p)) \subset \mathcal{U}_k$ para todo intervalo $[p_i, p_{i+1}]$ de \mathcal{U}_k , ou seja, $f(\mathcal{U}_k \cap \mathcal{O}(p)) \subset \mathcal{U}_k$. Desse modo, $f(\mathcal{U}_k \cap \mathcal{O}(p)) = \mathcal{U}_k \cap \mathcal{O}(p)$. Como o único subconjunto de $\mathcal{O}(p)$ estável por f é ele próprio, segue que $\mathcal{U}_k \cap \mathcal{O}(p) = \mathcal{O}(p)$. Assim, $\mathcal{U}_k = [p_1, p_n]$ e o resultado está provado.

Lema 2.7. Se não existe $[p_i, p_{i+1}] \neq I_1$ tal que $[p_i, p_{i+1}] \longrightarrow I_1$, então

- 1. f é uma bijeção entre os pontos de $\mathcal{O}(p)$ à esquerda e à direita de I_1
- 2. n é par
- 3. f admite um ponto de período 2

Demonstração. Seja $I_1 = [p_k, p_{k+1}]$ e considere os conjuntos $\mathcal{O}_1 = \{p_1, \dots, p_k\}$ e $\mathcal{O}_2 = \{p_{k+1}, \dots, p_n\}$.

- 1. Se f calculada em algum ponto de \mathcal{O}_1 permanece em \mathcal{O}_1 , considere $p_j = \max\{p_i \in \mathcal{O}_1 : f(p_i) \in \mathcal{O}_1\}$. Por definição de p_j , temos $f(p_j) \leq p_k$ e $f(p_{j+1}) \geq p_{k+1}$. Além disso, $p_j < p_k$. Desse modo, $[p_j, p_{j+1}] \neq I_1$ e $[p_j, p_{j+1}] \longrightarrow I_1$, o que é um absurdo. Logo, todo ponto de \mathcal{O}_1 é levado em \mathcal{O}_2 por f. Analogamente, mostra-se que todo ponto de \mathcal{O}_2 é levado em \mathcal{O}_1 por f. Assim, existe uma bijeção entre \mathcal{O}_1 e \mathcal{O}_2 .
- 2. Em particular, o tamanho de \mathcal{O}_1 e \mathcal{O}_2 são iguais. Desse modo, n é par.
- 3. Como $[p_1, p_k] \longrightarrow [p_{k+1}, p_n]$ e $[p_{k+1}, p_n] \longrightarrow [p_1, p_k]$, existe $p \in [p_1, p_k]$ tal que $f^2(p) = p$. Como os intervalos são disjuntos, segue que o período principal de $p \notin 2$.

Desse modo, as afirmações estão provadas.

Lema 2.8. Se n > 1 é impar e f não admite ponto de período impar menor que n, então existe um ciclo $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_1$ tal que

- 1. se $I_i \longrightarrow I_{i+j}$ então j=1
- 2. $I_{n-1} \longrightarrow I_j$, para todo j < n-1 ímpar

Demonstração. Inicialmente, vamos provar a existência do ciclo de tamanho n-1. De acordo com os dois Lemas anteriores, existe um intervalo da forma $[p_i, p_{i+1}]$ diferente de I_1 tal que $[p_i, p_{i+1}] \longrightarrow I_1$ (se esse intervalo não existe, então n é par) e existe um caminho entre I_1 e $[p_i, p_{i+1}]$. Portanto, existe um ciclo começando em I_1 diferente de $I_1 \longrightarrow I_1$. Observe que o tamanho desse ciclo pode ser arbitrariamente grande já que $I_1 \longrightarrow I_1$. Suponha que o menor ciclo dessa forma possui tamanho k e o denote por $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_k \longrightarrow I_1$.

Suponha que k < n-1. Então $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_k \longrightarrow I_1$ ou $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_k \longrightarrow I_1 \longrightarrow I_1$ é um ciclo de tamanho ímpar m menor que n. Desse modo, $f^m(p) = p$ para algum $p \in I_1$, o que é um absurdo pois f não admite ponto periódico de período ímpar menor que n.

Pela minimalidade do ciclo, a propriedade 1. é verdadeira. Para provar a propriedade 2., seja $I_1 = [p_k, p_{k+1}]$. Pela definição de I_1 , temos que $f(p_k) \ge p_{k+1}$ e $f(p_{k+1}) \le p_k$. Como o período de p é maior que 2, então $f(p_k) > f(p_{k+1})$ ou $f(p_{k+1}) < p_k$. Suponha que $f(p_k) > f(p_{k+1})$. O outro caso é demonstrado de maneira análoga.

Pela propriedade 1., sabemos que I_1 cobre somente ele mesmo e I_2 . Desse modo, $f(p_k) = p_{k+2}$ e $f(p_{k+1}) = p_k$, e portanto $I_2 = [p_{k+1}, p_{k+2}]$. Como I_2 cobre somente I_3 , e já sabendo que $f(p_{k+1}) = p_k$, temos que $f(p_{k+2}) = p_{k-1}$ e portanto $I_3 = [p_{k-1}, p_k]$. Prosseguindo desse modo, observamos que os intervalos estão distribuídos de maneira simétrica em relação à I_1 . Em particular, $I_{n-1} = [p_{n-1}, p_n]$ com $f(p_{n-1}) = p_1$ e $f(p_n) = p_{k+1}$. Desse modo, $f(I_{n-1}) \supset [p_1, p_{k+1}]$ e a afirmação está provada.

Definição 2.9. O Ordenação de Sharkovsky é definida por

$$3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^2 \cdot 7 \triangleright \cdots \triangleright 2^n \cdot 3 \triangleright 2^n \cdot 5 \triangleright 2^n \cdot 7 \triangleright \cdots \triangleright 2^2 \triangleright 2 \triangleright 1$$

ou seja, é formada inicialmente pelos ímpares maiores que 1 em ordem crescente; depois pelos ímpares maiores que 1, multiplicados por 2, em ordem crescente; depois pelos ímpares maiores que 1, multiplicados por 2^2 , em ordem crescente; e assim sucessivamente. Por fim, a ordem é formada por todas as potências de 2 em ordem decrescente.

Teorema 2.10. Se f admite ponto de período principal n, então f admite ponto de período principal m, para todo $m \triangleleft n$.

Demonstração. Suponha que f admite ponto de período principal n. Vamos provar o teorema nos seguintes casos:

(a) se n > 1 ímpar e f não admite ponto periódico de período ímpar menor que nPelo Lema anterior, podemos construir o ciclo

$$I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_1$$

de tamanho m, para todo m > n. Desse modo, existe $p \in I_1$ tal que $f^k(p) \in I_{k+1}$ se $k = 1, \ldots, n-2, f^k(p) \in I_1$ se $k = n-1, \ldots, m-1$ e $f^m(p) = p$.

Se $f^k(p) = p$ para algum k = 1, ..., n - 2, então $p \in I_1 \cap I_{k+1}$ e, portanto, p não existe ou possui período principal n > k, o que é um absurdo. Analogamente, $f^k(p) \neq p$ para k = n - 1, ..., m - 1. Portanto, o período principal de p é m.

Ainda de acordo com o Lema anterior, podemos construir ciclos da forma

$$I_{n-1} \longrightarrow I_{n-2} \longrightarrow I_{n-1}$$

$$I_{n-1} \longrightarrow I_{n-4} \longrightarrow I_{n-3} \longrightarrow I_{n-2} \longrightarrow I_{n-1}$$

$$\vdots$$

que permitem mostrar a existência de ponto de período principal m < n, m par.

(b) se $n = 2^m$, com $m \ge 1$

Seja $k=2^l$ com l < m e considere $g=f^{\frac{k}{2}}$. Temos que g admite um ponto de período principal 2^{m-l+1} . Como g admite um ponto de período principal par ≥ 2 , segue que g admite ponto de período principal 2^l .

(c) se $n = p2^m$, com $m \ge 1$ e p impar

Seja $g = f^{2^m}$. Vamos mostrar inicialmente que f admite ponto de período principal $q2^m$, q par. Temos que g admite ponto de período principal p ímpar. Pelo item (a), g admite ponto de período principal q par. Logo, f admite ponto de período principal $q2^m$, q par.

Agora, vamos mostrar que f admite ponto de período principal $q2^m$, q > p ímpar. Pelo item (a), g admite ponto de período principal q > p ímpar. Desse modo, f admite ponto de período principal $q2^{m-i}$ para algum i = 0, ..., m. Se i = 0, está mostrado. Se i > 0, pelo parágrafo anterior, f admite ponto de período principal $2^i(q2^{m-i}) = q2^m$ e, portanto, a afirmação está provada.

Por fim, vamos mostrar que f admite ponto de período principal 2^l , com l < k. Sabemos que f admite ponto de período principal $q2^k$, q par. Em particular, tomando q = 2, concluímos que f admite ponto de período principal 2^l , com l < k.

Observando que as afirmações anteriores esgotam as possibilidades na ordenação de Sharkovsky, concluímos a demonstração do teorema. \Box

Teorema 2.11. Para todo $n \ge 1$ existe uma função f que admite ponto periódico de período principal n e que não admite ponto de período principal m se $m \triangleright n$.

Demonstração. Seja $T:[0,1] \to [0,1]$ a função dada por T(x) = 1 - |2x - 1| e considere a família de funções $T_h(x) = \min\{h, T(x)\}$ definidas em [0,1], com o parâmetro h variando em [0,1]. Observe que $T_1 = T$, pois $T(x) \le 1$ para todo $x \in [0,1]$. Além disso, observando o gráfico de T_1 concluímos que a função possui 2^k pontos periódicos de período k e assim podemos definir, para cada $k \ge 1$,

 $h(k) = \min\{\max\{\mathcal{O} : \mathcal{O} \text{ \'e uma \'orbita de tamanho } n \text{ de } T_1\}\}$

A ideia principal da prova consiste no fato de que h(k) desempenha os papéis de parâmetro, máximo e ponto de uma órbita de $T_{h(k)}$. As seguintes afirmações tornarão preciso esse fato.

- (a) Se $\mathcal{O} \subset [0, h)$ é uma órbita de T_h , então \mathcal{O} é uma órbita de T_1 Se $p \in \mathcal{O}$ então $T_h(p) \in [0, h)$. Desse modo, $T_h(p) = \min\{h, T(p)\} = T(p) = T_1(p)$, ou seja, T_h e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_1 .
- (b) Se $\mathcal{O} \subset [0, h]$ é uma órbita de T_1 , então \mathcal{O} é uma órbita de T_h . Se $p \in \mathcal{O}$ então $T_1(p) \in [0, h]$. Desse modo, $T_h(p) = \min\{h, T(p)\} = \min\{h, T_1(p)\} = T_1(p)$, ou seja, T_h e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_h .
- (c) $T_{h(k)}$ possui uma órbita $\mathcal{O} \in [0, h(k))$ de tamanho l se e somente se h(k) > h(l). Se $T_{h(k)}$ possui uma órbita $\mathcal{O} \in [0, h(k))$ de tamanho l, então \mathcal{O} é uma órbita de T_1 por (a) e, pela definição de h(l), concluímos que h(l) < h(k). Por outro lado, se h(l) < h(k), então T_1 possui uma órbita $\mathcal{O} \subset [0, h(l)] \subset [0, h(k)]$ de tamanho l e, desse modo, \mathcal{O} é uma órbita de $T_{h(k)}$ por (b).
- (d) A órbita de T_1 que contém h(k) é uma órbita de tamanho k de $T_{h(k)}$. Além disso, todas as outras órbitas de $T_{h(k)}$ estão em [0, h(k)).

 Pela definição de h(k), T_1 possui uma órbita $\mathcal{O} \subset [0, h(k)]$ de tamanho k e, portanto,

Para demonstrar a segunda parte, basta observar que h(k) é o valor máximo de $T_{h(k)}$ e, desse modo, toda órbita de $T_{h(k)}$ está contida em [0, h(k)]. Em particular, se a órbita não contém h(k), então ela está contida em [0, h(k)).

(e) $k \triangleright l$ se o somente se h(k) > h(l).

 \mathcal{O} é uma órbita de $T_{h(k)}$ por (b).

Suponha que $k \triangleright l$. Por (d), $T_{h(k)}$ possui uma órbita de tamanho k. De acordo com o Teorema de Sharkovsky e com (d), $T_{h(k)}$ admite uma órbita de tamanho l contida em [0, h(k)). Desse modo, h(k) > h(l) por (c).

Por outro lado, suponha que h(k) > h(l). Caso l > k, a demonstração no parágrafo anterior implicaria que h(k) < h(l), contrariando a hipótese. Desse modo, k > l.

Assim, para cada $n \geq 1$, $T_{h(n)}$ possui órbita de tamanho n. Além disso, se $m \triangleright n$ então h(m) > h(n) por (e) e, portanto, $T_{h(n)}$ não possui órbita de tamanho m por (c).

3 Implicações da Diferenciabilidade

Proposição 3.1. Seja $f: I \to \mathbb{R}$ uma função contínua. Se $f(I) \subset I$ ou $f(I) \supset I$, então f possui ponto fixo.

Demonstração. Seja I=[a,b]. Suponha que $f(I)\subset I$. Considere a função contínua g(x)=f(x)-x definida em I. Como $f(a),f(b)\in I$, temos que $g(a)=f(a)-a\geq 0$ e $g(b)=f(b)-b\leq 0$. Pelo Teorema do Valor Intermediário, existe $p\in I$ tal que g(p)=f(p)-p=0. Desse modo, p é ponto fixo de f.

Suponha que $f(I) \supset I$. Por definição, existem $c, d \in I$ tais que f(c) = a ef(d) = b. Considere a função contínua g(x) = f(x) - x definida em I. Temos que $g(c) = a - c \le 0$ e $g(d) = b - d \ge 0$. Pelo Teorema do Valor Intermediário, existe $p \in I$ tal que g(p) = f(p) - p = 0. Desse modo, p é ponto fixo de f.

Teorema 3.2. Seja $f: I \to I$ uma função diferenciável. Se |f'(x)| < 1 para todo $x \in I$, então f admite um único ponto fixo e |f(x) - f(y)| < |x - y| para todo $x, y \in I$ distintos.

Demonstração. Sejam $x, y \in I$, x < y. Pelo Teorema do Valor Médio, existe $c \in [x, y]$ tal que f(x) - f(y) = f'(c)(x - y). Portanto, |f(x) - f(y)| = |f'(c)||x - y| < |x - y|.

Pela Proposição 3.1, f admite um ponto fixo p. Suponha que exista um ponto fixo q diferente de p. Então, pela primeira parte da demonstração, |p-q|=|f(p)-f(q)|<|p-q|. Absurdo.

Definição 3.3. Sejam $f: I \to I$ uma função diferenciável e p um ponto periódico com período principal n. Dizemos que p é um ponto hiperbólico se $|(f^n)'(p)| \neq 1$. Se $|(f^n)'(p)| > 1$, dizemos que p é um ponto atrator e se $|(f^n)'(p)| < 1$, dizemos que p é um ponto repulsor. Dizemos que p é um ponto não hiperbólico se $|(f^n)'(p)| = 1$.

Teorema 3.4. Sejam $f: I \to I$ uma função C^1 e p um ponto periódico com período principal n. Se p é um ponto hiperbólico atrator, existe uma vizinhança de p contida em $W^s(p)$. Se p é um ponto hiperbólico repulsor, existe uma vizinhança U de p tal que, se $x \in U$ e $x \neq p$, $f^{kn}(x) \notin U$ para algum $k \geq 1$.

Demonstração. Suponha que p é um ponto hiperbólico atrator. Como f' é contínua, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \le \lambda < 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Pelo Teorema do Valor Médio, se $x \in U$ então $|f^n(x) - p| = |f^n(x) - f^n(p)| \le \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| \le \lambda^k |x - p|$. Desse modo, $f^{kn}(x) \to p$ quando $k \to \infty$.

Suponha que p é ponto hiperbólico repulsor. De maneira análoga, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \ge \lambda > 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Fixado $x \in (p - \varepsilon, p + \varepsilon)$, $x \ne p$, suponha que $f^{kn}(x) \in (p - \varepsilon, p + \varepsilon)$ para todo $k \ge 1$. Pelo Teorema do Valor Médio, $|f^{kn}(x) - p| \ge \lambda^k |x - p|$ para todo $k \ge 1$. Absurdo, pois $\lambda^k |x - p| \to \infty$ quando $k \to \infty$.

Observação. A segunda parte do teorema afirma que existe uma vizinhança de p tal que todo ponto diferente de p nessa vizinhança é movida para fora dela após um número de iterações da f. Observe o ponto pode voltar para vizinhança após mais um número finito de iterações da f, pois sabermos que o valor absoluto da derivada é maior que 1 apenas nessa vizinhança.

4 Função Logística I: Estudo Inicial

Durante essa seção e as próximas, estudaremos a dinâmica da função logística, que é dada por $F(x) = \mu x (1-x)$ para $\mu > 0$.

Proposição 4.1. Se $\mu > 1$, então

1.
$$F(1) = F(0) = 0$$
 e $F(\frac{1}{\mu}) = F(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu - 1}{\mu}$.

- 2. $0 < p_{\mu} < 1$.
- 3. o vértice da parábola de F é o ponto $(\frac{1}{2}, \frac{\mu}{4})$.

Demonstração. Aplicação direta das definições.

Proposição 4.2. Se $\mu > 1$, então $(-\infty, 0) \cup (1, \infty) \subset W^s(\infty)$.

Demonstração. Se x < 0, a sequência $(x, F(x), F^2(x), \dots)$ é estritamente decrescente pois F(x) < x. Se $(F^n(x))_n \to x_0$ quando $n \to \infty$, a continuidade de F implica que $(F^{n+1}(x))_n \to F(x_0) < x_0$. Absurdo. Portanto, $(F^n(x))_n \to -\infty$ quando $n \to \infty$. Como F(x) < 0 para todo x > 1, concluímos que $(-\infty, 0) \cup (1, \infty) \subset W^s(\infty)$.

Proposição 4.3. Se $1 < \mu < 3$, então

- 1. 0 é um ponto repulsor e p_{μ} é um ponto atrator.
- 2. $\lim_{n\to\infty} F^n(x) = p_\mu \text{ para todo } x \in (0,1).$

Demonstração. A primeira parte é verdadeira pois $|F'(0)| = \mu > 1$ e $|F'(p_{\mu})| = |2-\mu| < 1$, quando $1 < \mu < 3$.

Falta provar o item 2.
$$\Box$$

Desse modo, conhecemos completamente a dinâmica de F quando $1 < \mu < 3$:

$$W^{s}(0) = \{0, 1\}, W^{s}(p_{u}) = (0, 1) \in W^{s}(\infty) = (-\infty, 0) \cup (1, \infty).$$

5 Função Logística II: Conjuntos de Cantor

Se $\mu > 4$, então $F\left(\frac{1}{2}\right) = \frac{\mu}{4} > 1$, ou seja, existem pontos em [0,1] que não permanecem em [0,1] após uma iteração de F. Em vista da Proposição 4.2, a dinâmica de F em tais pontos é determinada, pois pertencem ao conjunto $W^s(\infty)$. De modo mais geral, se um ponto de [0,1] não permanece [0,1] após um número finito de iterações, então ele pertence ao conjunto $W^s(\infty)$.

Desse modo, considere o conjunto $\Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1]\}$, que é formado pelos pontos que permanecem em [0,1] após n iterações de F, e considere o conjunto $\Lambda = \cap \Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1] \text{ para todo } n \geq 1\}$, que é formado pelos pontos que permanecem para sempre em [0,1] por iterações de F. Observe que $\Lambda_n \supset \Lambda_{n+1}$, para todo $n \geq 1$, pois se $F^{n+1}(x) = F(F^n(x)) \in [0,1]$, então $F^n(x) \in [0,1]$.

Proposição 5.1. Se $\mu > 4$, então

1.
$$\Lambda_1 = [0, x_1] \cup [x_2, 1]$$
, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ $e \ x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$.

- 2. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 3. $F^n: I \to [0,1]$ é bijetora, onde I é qualquer um dos 2^n intervalos fechados disjuntos que formam Λ_n .

Demonstração. Analisando F' observamos que F é estritamente crescente no intervalo $\left[0,\frac{1}{2}\right]$ e estritamente decrescente no intervalo $\left[\frac{1}{2},1\right]$. Como F(0)=F(1)=0 e $F\left(\frac{1}{2}\right)>1$, o Teorema do Valor Intermediário garante que existem $x_1\in \left(0,\frac{1}{2}\right)$ e $x_2\in \left(\frac{1}{2},1\right)$ tais que $F(x_1)=F(x_2)=1$. Os valores de x_1 e x_2 são encontrados resolvendo a equação de segundo grau $\mu x(1-x)=1$. Logo, $F(\left[0,x_1\right])=F(\left[x_2,1\right])=\left[0,1\right]$ e F(x)>1 para todo $x\in (x_1,x_2)$. Portanto, $\Lambda_1=\left[0,x_1\right]\cup \left[x_2,1\right]$ e o item 1 está demonstrado.

A demonstração dos itens 2 e 3 será feita por indução. De acordo com a primeira parte, Λ_1 é a união de $2^1 = 2$ intervalos fechados disjuntos e F restrita é cada um desses intervalos é uma bijeção com o intervalo [0,1].

Suponha que Λ_{k-1} é a união de 2^{k-1} intervalos fechados disjuntos de modo que F^{k-1} : $[a,b] \to [0,1]$ é bijetora para todo intervalo [a,b] que forma Λ_{k-1} . Sendo F^{k-1} bijetora, $(F^{k-1})'(x) > 0$ ou $(F^{k-1})'(x) < 0$ para todo $x \in [a,b]$. Como as demonstrações para os dois casos são análogas, podemos supor que $(F^{k-1})'(x) > 0$.

Como F^{k-1} é estritamente crescente, o Teorema do Valor Intermediário afirma que existem únicos $\overline{x_1}, \overline{x_2} \in (a, b)$ tais que

(a)
$$a < \overline{x_1} < \overline{x_2} < b$$
,

(b)
$$F^{k-1}([a, \overline{x_1}]) = [0, x_1],$$

(c)
$$F^{k-1}((\overline{x_1}, \overline{x_2})) = (x_1, x_2) e$$

(d)
$$F^{k-1}([\overline{x_2}, 1]) = [x_2, 1].$$

As condições acima garantem que os intervalos $[a, \overline{x_1}]$, $[\overline{x_2}, b]$ são disjuntos e que $F^k(x) = F(F^{k-1}(x)) > 1$ para todo $x \in (\overline{x_1}, \overline{x_2})$. Também, temos que $F^k([a, \overline{x_1}]) = F([0, x_1]) = [0, 1]$ e, analogamente, $F^k([\overline{x_2}, 1]) = [0, 1]$. Além disso,

$$(F^k)'([a,\overline{x_1}]) = F'(F^{k-1}([a,\overline{x_1}]))(F^{k-1})'([a,\overline{x_1}]) = F'([0,x_1])(F^{k-1})'([a,\overline{x_1}]) > 0$$

e, analogamente,

$$(F^k)'([\overline{x_2}, 1]) = F'([x_2, 1])(F^{k-1})'([\overline{x_2}, 1]) < 0.$$

Logo, F^k é uma bijeção entre $[a, \overline{x_1}]$ e [0, 1] e entre $[\overline{x_2}, 1]$ e [0, 1].

Portanto, a partir de cada intervalo fechado de Λ_{k-1} , construímos dois novos intervalos fechados disjuntos tais que F^k restrita em cada um desses intervalos é um bijeção com [0,1] e, dessa maneira, esses intervalos estão contidos em Λ_k . Desse modo, se Λ_{k-1} é formado por 2^{k-1} intervalos fechados disjuntos, então Λ_k é formado por $2 \times 2^{k-1} = 2^k$ intervalos fechados disjuntos. Assim, o resultado está provado.

Definição 5.2 (Conjunto de Cantor). Um conjunto $\Gamma \subset \mathbb{R}$ não vazio é um *conjunto de Cantor* se

- 1. Γ é fechado e limitado,
- 2. Γ não possui intervalos e
- 3. Todo ponto de Γ é um ponto de acumulação de Γ .

Lema 5.3. Se $\mu > 2 + \sqrt{5}$, então

- 1. existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$.
- 2. o tamanho de cada intervalo fechado em Λ_n é menor que $\frac{1}{\lambda^n}$.
- 3. dados $x \in \Lambda$ e $\varepsilon > 0$, existe um intervalo fechado $I \subset \Lambda_n$, para algum $n \ge 1$, que contém x e cujo tamanho é menor que ε tal que $F^n : I \to [0,1]$ é bijetora.

Demonstração. 1. Inicialmente, observamos que $\mu^2 - 4\mu > 1$ quando $\mu > 2 + \sqrt{5}$. Desse modo, $F'(x_1) = \sqrt{\mu^2 - 4\mu} > 1$ e $F'(x_2) = -\sqrt{\mu^2 - 4\mu} < -1$, onde x_1 e x_2 são como na Proposição 5.1. Observamos também que F' é estritamente decrescente, pois $F''(x) = -2\mu < 0$. Portanto, $F'(x) \geq F'(x_1) > 1$ para todo $x \in [0, x_1]$ e $F'(x) \leq F'(x_2) < -1$ para todo $x \in [x_2, 1]$. De acordo com a Proposição 5.1, $\Lambda_1 = [0, x_1] \cup [x_2, 1]$ e, desse modo, |F'(x)| > 1 para todo $x \in \Lambda_1$. Sendo F' contínua e Λ_1 compacto, existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$.

2. De acordo com a Proposição 5.1, Λ_n é formado pela união de 2^n intervalos disjuntos. Seja [a,b] um desses intervalos. Se $x \in [a,b]$, em particular $F^k(x) \in \Lambda_1$ para todo $0 \le k < n$. Desse modo, de acordo com o item anterior, temos que $(F^n)'(x) = F'(F^{n-1}(x)) \times F'(F^{n-2}(x)) \times \cdots \times F'(x) > \lambda^n$.

Pelo Teorema do Valor Médio, existe $c \in [a, b]$ tal que

$$|F^n(b) - F^n(a)| = |(F^n)'(c)||b - a| > \lambda^n |b - a|$$

Como $F^n:[a,b]\to [0,1]$ é contínua e bijetora, temos que $|F^n(b)-F^n(a)|=1$. Desse modo, $|b-a|<\frac{1}{\lambda^n}$ e a afirmação está provada.

3. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{\lambda^n} < \varepsilon$, onde $\lambda > 1$ é como no primeiro item. Em particular, $x \in \Lambda_n$. Seja I um dos intervalos que formam Λ_n e que contém x. Pelo item anterior, o tamanho de I é menor que ε . Além disso, pela Proposição 5.1, $F^n: I \to [0,1]$ é bijetora e, portanto, a afirmação está provada.

Teorema 5.4. Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Demonstração. Λ é não vazio pois $0 \in \Lambda$, é limitado pois $\Lambda_1 \in [0,1]$ e é fechado pois é intersecção de conjuntos fechados.

Agora, suponha que Λ contém algum intervalo. Então, existem $x,y \in I, x < y$, tais que $[x,y] \subset \Lambda$. Seja k tal que $\frac{1}{\lambda^k} < |x-y|$. Em particular, $[x,y] \subset \Lambda_k$. Mas, de acordo com o Lema 5.3, os intervalos de Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$. Absurdo e, portanto, Λ não possui intervalos.

Por fim, observe que, se x é um ponto extremo de algum intervalo de Λ_n , então $x \in \Lambda$ pois $F^{n+1}(x) = 0$. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Em particular, $x \in \Lambda_k$ e, portanto, x é elemento de algum intervalo cujo tamanho é menor que ε , de acordo com o Lema 5.3. Portanto, existe $y \in \Lambda$ ponto extremo do intervalo que contém x tal que $|x - y| < \varepsilon$. Como ε é arbitrário, concluímos que x é um ponto de acumulação de Λ . \square

Observação. O Teorema 5.4 é válido para $4 < \mu \le 2 + \sqrt{5}$, porém a demonstração é mais difícil.

6 Função Logística III: Caos

Proposição 6.1. Se $\mu > 2 + \sqrt{5}$, então o conjunto de pontos periódicos de $F: \Lambda \to \Lambda$ é denso em Λ .

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 5.3, o intervalo fechado $I \subset \Lambda_k$ que contém x possui tamanho menor que ε . Pela Proposição 5.1, $F^k : I \to [0,1]$ é bijetora. Como $F^k(I) \supset I$, a Proposição 3.1 afirma que existe $y \in I$ tal que $F^k(y) = y$. Observando que $y \in \Lambda$ e $|x - y| < \varepsilon$, o resultado está provado.

Definição 6.2. Seja $f: D \to D$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in D$ e $\varepsilon > 0$, existem $z \in D$ e $k \ge 1$ tais que $|z - x| < \varepsilon$ e $|f^k(z) - y| < \varepsilon$.

Proposição 6.3. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ é topologicamente transitiva.

Demonstração. Sejam $x, y \in \Lambda$ e $\varepsilon > 0$. Existe $k \geq 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 5.3, o tamanho de cada intervalo fechado em Λ_k é menor que $\frac{1}{\lambda^k}$ e, portanto, menor que ε . Como $x \in \Lambda_k$, existe um intervalo $[a, b] \subset \Lambda_k$ que contém x. Pela Proposição 5.1, $F^k : [a, b] \to [0, 1]$ é bijetora e, pelo Teorema do Valor Intermediário, existe $z \in [a, b]$ tal que $F^k(z) = y$. Observando que $z \in \Lambda$, concluímos que F é topologicamente transitiva.

Definição 6.4. Seja $f: D \to D$ uma função. Dizemos que f depende sensivelmente das condições iniciais se para algum $\delta > 0$, dados $x \in D$ e $\varepsilon > 0$, existem $y \in D$ e $k \ge 1$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição 6.5. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ depende sensivelmente das condições iniciais.

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Como na demonstração da Proposição anterior, seja I o intervalo fechado contido em Λ_k que contém x e cujo tamanho é menor que ε . Como $F^k: I \to [0,1]$ é um bijeção, então $F^k(a) = 0$ e $F^k(b) = 1$, onde a e b são pontos extremos de I. Como $F(\frac{1}{2}) > 1$ e $x \in \Lambda$, segue que $F^k(x) \in [0, \frac{1}{2}) \cup (\frac{1}{2}, 1]$. Se $F^k(x) \in [0, \frac{1}{2})$, então $|F^k(x) - F^k(b)| = |F^k(x) - 1| > \frac{1}{2}$ e se $F^k(x) \in (\frac{1}{2}, 1]$, então $|F^k(x) - F^k(a)| = |F^k(x)| > \frac{1}{2}$. Observando que $|x - a| < \varepsilon$ e $|x - b| < \varepsilon$, temos o resultado para $\delta = \frac{1}{2}$.

Definição 6.6. Seja $f: D \to D$ uma função. Dizemos que $f \in ca\'otica$ se

- 1. O conjunto de pontos periódicos de f é denso em D.
- 2. f é topologicamente transitiva.
- 3. f depende sensivelmente das condições iniciais.

Teorema 6.7. $Se \ \mu > 2 + \sqrt{5}$, $ent\~ao \ F : \Lambda \to \Lambda \ \'e \ ca\'otica.$ $Demonstra\~ç\~ao$. O resultado segue das Proposi $\~ç$ ões 6.1, 6.3 e 6.5. \Box $Observa\~ç\~ao$. O Teorema 6.7 'e válido para $4 < \mu \le 2 + \sqrt{5}$, por 'em a demonstra $\~ç$ ão 'e mais difícil.

Teorema 6.8. $Se \ D \ \'e \ um \ subconjunto \ infinito \ de \ \mathbb{R} \ e \ f : D \to D \ \'e \ uma \ fun\~ç\~ao \ topologicamente transitiva cujo conjunto \ de \ pontos \ peri\'odicos \ \'e \ denso, \ ent\~ao \ f \ \'e \ ca\'otica.$ $Demonstra\~ç\~ao$. Por demonstrar. \Box

7 Função Logística IV: Conjugação Topológica

Definição 7.1. Sejam $f: A \to A$, $g: B \to B$ e $\tau: A \to B$ funções. Dizemos que f e g são topologicamente conjugadas por τ , se τ é um homeomorfismo tal que $\tau \circ f = g \circ \tau$.

Proposição 7.2. Sejam $f: A \to A$, $g: B \to B$ e $\tau: A \to B$ funções. Se f e g são topologicamente conjugadas por τ , então

- 1. $g \ e \ f \ s\tilde{a}o \ topologicamente \ conjugadas \ por \ \tau^{-1}$.
- 2. $\tau \circ f^n = q^n \circ \tau \text{ para todo } n > 1.$
- 3. p é ponto periódico de f se e somente se $\tau(p)$ é ponto periódico de g. Além disso, os períodos principais de p e $\tau(p)$ são iguais.
- 4. $W^s(\tau(p)) = \tau(W^s(p))$, se p é um ponto periódico de f.
- 5. o conjunto de pontos periódicos de f é denso se e somente se o conjunto de pontos periódicos de g é denso.
- 6. f é topologicamente transitiva se e somente se g é topologicamente transitiva.
- Demonstração. 1. Como τ é um homeomorfismo, a função inversa τ^{-1} existe e também é um homeomorfismo. Além disso, $\tau \circ f = g \circ \tau$ implica que $f \circ \tau^{-1} = \tau^{-1} \circ g$. Portanto, τ^{-1} é conjugação topológica de g e f.
 - 2. Por definição, a afirmação é verdadeira quando n=1. Suponha que $\tau \circ f^{n-1}=g^{n-1}\circ \tau$. Desse modo, $\tau \circ f^n=\tau \circ f^{n-1}\circ f=g^{n-1}\circ \tau \circ f=g^{n-1}\circ g\circ \tau=g^n\circ \tau$. Portanto, a afirmação é verdadeira para todo $n\geq 1$.
 - 3. Suponha que p é um ponto periódico de f com período principal n. Desse modo, $g^n(\tau(p)) = \tau(f^n(p)) = \tau(p)$. Se $k = 1, \ldots, n-1$, então $g^k(\tau(p)) = \tau(f^k(p)) \neq \tau(p)$, pois $f^k(p) \neq p$ e τ é injetora. Portanto, $\tau(p)$ é um ponto periódico de g com período principal n. A outra implicação é demonstrada de maneira análoga.
 - 4. Suponha que p é um ponto periódico com período n. Se $x \in W^s(\tau(p))$, então $\lim_{k\to\infty} g^{kn}(x) = \tau(p)$. Como τ^{-1} é contínua, temos $\lim_{k\to\infty} f^{kn}(\tau^{-1}(x)) = \lim_{k\to\infty} \tau^{-1}(g^{kn}(x)) = p$. Então, $x \in \tau(W^s(p))$ pois $\tau^{-1}(x) \in W^s(p)$.
 - Por outro lado, se $\tau(x) \in \tau(W^s(p))$, então $\lim_{k\to\infty} f^{kn}(x) = p$. Como τ é contínua, temos $\lim_{k\to\infty} g^{kn}(\tau(x)) = \lim_{k\to\infty} \tau(f^{kn}(x)) = \tau(p)$ e, portanto, $\tau(x) \in W^s(\tau(p))$.
 - 5. Se o conjunto Per(f) dos pontos periódicos de f é denso em A, então $\tau(Per(f))$ é denso em B pois τ é um homeomorfismo. Como $\tau(Per(f)) = Per(g)$, temos que Per(g) é denso em B. A outra implicação é demonstrada de maneira análoga.

6. Inicialmente, sendo τ é contínua, dado $\varepsilon > 0$ existe $\delta > 0$ de modo que, se $z \in A$, $|x-z| < \delta$ e $|y-f^n(z)| < \delta$, então $|\tau(x) - \tau(z)| < \varepsilon$ e $|\tau(y) - \tau(f^n(z))|$, onde $n \ge 1$ é fixado.

Se $x', y' \in B$, existem $x, y \in A$ tais que $\tau(x) = x'$ e $\tau(y) = y'$. Como f é topologicamente transitiva, existe $z \in A$ tal que $|x - z| < \delta$ e $|y - f^n(z)| < \delta$ para algum $n \ge 1$. Portanto, $|\tau(x) - \tau(z)| < \varepsilon$ e $|\tau(y) - \tau(f^n(z))| < \varepsilon$. Se $\tau(z) = z'$, então $|x' - z'| < \varepsilon$ e $|y' - g^n(z')| < \varepsilon$ e, portanto, g é topologicamente transitiva. A outra implicação é demonstrada de maneira análoga.

Lema 7.3. A função $T : [0,1] \to [0,1]$, dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

é caótica.

 $\begin{array}{l} \textit{Demonstração}. \text{ Inicialmente, provaremos por indução que } T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^n. \text{ Pela definição de } T, \text{ a afirmação \'e verdadeira quando } n = 1. \text{ Suponha que } T^{n-1}: \left[\frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^{n-1}. \text{ Fixado } k, \text{ podemos supor que } T^{n-1}\left(\frac{k}{2^{n-1}}\right) = 0 \text{ e } T^{n-1}\left(\frac{k+1}{2^{n-1}}\right) = 1. \\ \text{O caso em que } T^{n-1}\left(\frac{k}{2^{n-1}}\right) = 1 \text{ e } T^{n-1}\left(\frac{k+1}{2^{n-1}}\right) = 0 \text{ \'e tratado de maneira análoga. Temos que } T^{n-1}(\overline{x}) = \frac{1}{2}, \text{ onde } \overline{x} = \frac{2k+1}{2^n} \text{ \'e o ponto m\'edio do intervalo } \left[\frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right]. \text{ Portanto, } T^n(\overline{x}) = T(T^{n-1}(\overline{x})) = T\left(\frac{1}{2}\right) = 1, \ T^n\left(\frac{k}{2^{n-1}}\right) = T(0) = 0 \text{ e } T^n\left(\frac{k+1}{2^{n-1}}\right) = T(1) = 0. \\ \text{Desse modo, } T^n: \left[\frac{k}{2^{n-1}}, \overline{x}\right] \to [0,1] \text{ e } T^n: \left[\overline{x}, \frac{k+1}{2^{n-1}}\right] \to [0,1] \text{ são funções lineares(pois são composições de funções lineares) e bijetoras para todo <math>0 \leq k < 2^{n-1}. \text{ Observando que } \left[\frac{k}{2^{n-1}}, \overline{x}\right] = \left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right] = \left[\frac{2k+1}{2^n}, \frac{2k+2}{2^n}\right], \text{ concluímos que que } T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1] \text{\'e uma função linear bijetora para todo } 0 \leq k < 2^n \text{ e, portanto, a afirmação está provada.} \end{cases}$

Para provar que T é caótica, seja $\varepsilon > 0$. Pelo afirmação do parágrafo anterior, existem $n \ge 1$ e $I = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$ tais que $\frac{1}{2^n} < \varepsilon, \ x \in I$ e $T^n : I \to [0,1]$ é bijetora.

Seja $x \in [0,1]$. Como $T(I) \supset I$, a Proposição 3.1 afirma que existe $p \in I$ tal que $T^n(p) = p$. Observando que $|x-p| \le \frac{1}{2^n} < \varepsilon$, concluímos que o conjunto de pontos periódicos de T é denso em [0,1].

Sejam $x, y \in [0, 1]$. Como $T^n : I \to [0, 1]$ é sobrejetora, existe $z \in I$ tal que $T^n(z) = y$. Observando que $|z-x| \le \frac{1}{2^n} < \varepsilon$ e $|T^n(z)-y| = 0 < \varepsilon$, concluímos que T é topologicamente transitiva.

Seja $x \in [0,1]$. Como $T^n: I \to [0,1]$ é sobrejetora, existem $a,b \in I$ tais que $T^n(a) = 0$ e $T^n(b) = 1$. Se $T^n(x) \in [0,\frac{1}{2}]$, então $|T^n(x) - T^(b)| = |T^n(x) - 1| \ge \frac{1}{2}$ e se $T^n(x) \in [\frac{1}{2},1]$, então $|T^n(x) - T^n(a)| = |T^n(x)| \ge \frac{1}{2}$. Observando que $|x - a| \le \frac{1}{2^n} < \varepsilon$ e $|x - b| \le \frac{1}{2^n} < \varepsilon$, concluímos que T depende sensivelmente das condições iniciais.

Teorema 7.4. Se $\mu = 4$, então F é caótica.

Demonstração. Seja $\tau(x) = \mathrm{sen}^2\left(\frac{\pi x}{2}\right)$ definida no intervalo [0,1]. τ é homeomorfismo pois τ' existe em [0,1] e $\tau' > 0$ em (0,1).

Se
$$x \in \left[0, \frac{1}{2}\right]$$
, então

$$\tau \circ T(x) = \tau(2x) = \operatorname{sen}^2(\pi x)$$

e se $x \in \left[\frac{1}{2}, 1\right]$, então

$$\tau \circ T(x) = \tau(2 - 2x) = \sin^2(\pi - \pi x) = (\sin(\pi)\cos(\pi x) - \sin(\pi x)\cos(\pi x))^2 = \sin^2(\pi x)$$

Por outro lado,

$$F \circ \tau(x) = 4\operatorname{sen}^2\left(\frac{\pi x}{2}\right)\left(1 - \operatorname{sen}^2\left(\frac{\pi x}{2}\right)\right) = 4\operatorname{sen}^2\left(\frac{\pi x}{2}\right)\operatorname{cos}^2\left(\frac{\pi x}{2}\right) = \operatorname{sen}^2(\pi x)$$

Desse modo, $\tau \circ T = F \circ \tau$. Portanto, de acordo com o Teorema 6.7, a Proposição 7.2 e o Lema 7.3, F é caótica.

8 Função Logística V: Dinâmica Simbólica

Definição 8.1. $\Sigma_2 = \{s = (s_0 s_1 s_2 \dots) : s_k = 0 \text{ ou } s_k = 1 \text{ para todo } k \geq 0\}$ é o espaço das sequências de 0 e 1.

Proposição 8.2. A função $d: \Sigma_2 \times \Sigma_2 \to \mathbb{R}$, dada por

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k}$$

 \acute{e} uma distância em Σ_2 .

Demonstração. Inicialmente, observamos que a função d é bem definida pois

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} \le \sum_{k=0}^{\infty} \frac{1}{2^k} = 2$$

Além disso, é fácil verificar que as propriedades de uma distância são válidas em d, isto é,

- (a) d(s,t) > 0
- (b) d(s,t) = 0 se e somente se s = t
- (c) d(s,t) = d(t,s)
- (d) d(s,t) < d(s,r) + d(r,t)

para todo $r, s, t \in \Sigma_2$. Portando, d é uma distância e a afirmação está provada. \square

Proposição 8.3. Sejam $s = (s_0 s_1 s_2 \dots), t = (t_0 t_1 t_2 \dots) \in \Sigma_2$. Se $s_k = t_k$ para todo $0 \le k \le n$, então $d(s,t) \le \frac{1}{2^n}$. Por outro lado, se $d(s,t) < \frac{1}{2^n}$, então $s_k = t_k$ para todo $0 \le k \le n$.

Demonstração. Suponha que $s_k = t_k$ para todo $0 \le k \le n$. Desse modo,

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} = \sum_{k=n+1}^{\infty} \frac{|s_k - t_k|}{2^k} \le \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^n}$$

Por outro lado, se $s_i \neq t_i$ para algum $0 \leq i \leq n$, então

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} \ge \frac{1}{2^i} \ge \frac{1}{2^n}$$

Portanto, se $s_k = t_k$ para todo $0 \le k \le n$, concluímos que $d(s,t) < \frac{1}{2^n}$.

Definição 8.4. A função $\sigma: \Sigma_2 \to \Sigma_2$, dada por $\sigma(s_0s_1s_2...) = (s_1s_2s_3...)$, é chamada de função shift.

Proposição 8.5. σ é contínua.

Demonstração. Sejam $s=(s_0s_1s_2\dots)\in\Sigma_2,\ \varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Se $t=(t_0t_1t_2\dots)\in\Sigma_2$ e $d(s,t)<\frac{1}{2^{n+1}}$, então $s_k=t_k$ para todo $0\leq k\leq n+1$, de acordo com a Proposição 8.3. Como $\sigma(s)=(s_1s_2s_3\dots)$ e $\sigma(t)=(t_1t_2t_3\dots)$, temos que as primeiras n+1 entradas de $\sigma(s)$ e $\sigma(t)$ são iguais. Novamente, utilizando a Proposição 8.3, temos que $d(\sigma(s),\sigma(t))\leq\frac{1}{2^n}<\varepsilon$. Como s é um ponto arbitrário em Σ_2 , concluímos que σ é contínua.

Proposição 8.6. Se σ é a função shift, então

- 1. existem 2^n pontos periódicos com período n.
- 2. existe um ponto cuja órbita é densa.
- 3. o conjunto dos pontos periódicos é denso.
- 4. o conjunto dos pontos não periódicos que são eventualmente periódicos é denso.
- 5. o conjunto dos pontos que não são periódicos e nem eventualmente periódicos é denso.

Demonstração. 1. Se $s = (s_0 s_1 s_2 \dots)$ é um ponto periódico com período n, então

$$\sigma^k(\sigma^n(s)) = (s_{n+k}s_{n+k+1}s_{n+k+2}\dots) = (s_ks_{k+1}s_{k+2}\dots) = \sigma^k(s)$$

para todo $k \geq 0$. Desse modo, s é formado pela repetição das entradas $s_0 s_1 \dots s_{n-1}$. Pelo Princípio Fundamental da Contagem, existem 2^n sequências distintas para $s_0 s_1 \dots s_{n-1}$ e, portanto, a afirmação está provada.

- 2. Considere o ponto $s^* = (0\,1\,00\,01\,10\,11\,000\,001\dots)$ formado por todos os blocos de tamanho 1, depois por todos os blocos de tamanho 2, e assim sucessivamente.
 - Sejam $s \in \Sigma_2$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{2^n} < \varepsilon$. É fácil ver que existe $k \ge 0$ de modo que $\sigma^k(s^*)$ e s são iguais nas primeiras n+1 entradas. De acordo com a Proposição 8.3, $d(s, \sigma^k(s^*)) \le \frac{1}{2^n} < \varepsilon$ e, portanto, a afirmação está provada.
- 3. Sejam $s=(s_0s_1s_2\dots)\in\Sigma_2,\ \varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Considere o ponto periódico t com período n+1 formado pela repetição da sequência $s_0s_1s_2\dots s_n$. De acordo com a Proposição 8.3, $d(s,t)\leq\frac{1}{2^n}<\varepsilon$ e, portanto, a afirmação está provada.

9 Derivada de Schwarz

Definição 9.1. Se $f:[a,b] \subset \mathbb{R} \to [a,b]$ é uma função de classe $C^3([a,b])$ dizemos que f possui derivada de Schwarz negativa, e escrevemos $S_f < 0$, quando

$$S_f(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2 < 0$$

para todo $x \in [a, b]$ tal que $f'(x) \neq 0$.

Lema 9.2. Se $S_f < 0$ e $x_0 \in (a,b)$ é mínimo local de f', então $f'(x_0) \leq 0$.

Demonstração. Como x_0 é ponto crítico de f', temos que $f''(x_0) = 0$. Se $f'(x_0) \neq 0$, então

$$S_f(x_0) = \frac{f'''(x_0)}{f'(x_0)} < 0$$

Como x_0 é mínimo local, $f'''(x_0) \ge 0$ pelo teste da segunda derivada. Desse modo, $f'(x_0) < 0$.

Lema 9.3. Se $S_f < 0$ e a, b, c são pontos fixos de f, com a < b < c, então f possui um ponto crítico em (a, c) se $f'(b) \le 1$.

Demonstração. Pelo Teorema do Valor Médio, existem $r \in (a, b)$ e $s \in (b, c)$ tais que f'(r) = f'(s) = 1. Observe que f' admite um mínimo global em [r, s], pois é contínua. Como $b \in (r, s)$ e $f'(b) \le 1$, f' admite um mínimo local $x_0 \in (r, s)$. Pelo Lema anterior, $f'(x_0) \le 0$. Segue o resultado pelo Teorema do Valor Intermediário.

Lema 9.4. Se $S_f < 0$ e a, b, c, d são pontos fixos de f, com a < b < c < d, então f possui um ponto crítico em (a, d).

Demonstração. Se $f'(b) \leq 1$ ou $f'(c) \leq 1$, segue o resultado pelo Lema anterior. Se f'(b) > 1 e f'(c) > 1, então a inclinação local de f é maior que a inclinação da função identidade. Desse modo, existem $r, t \in (b, c)$, com r < t, tais que f(r) > r e f(t) < t. Pelo Teorema do Valor Médio, existe $s \in (r, s)$ tal que f'(s) < 1. Logo, f' possui um mínimo local em (r, t). O resultado segue utilizando o Lema 9.2 e o Teorema do Valor Intermediário.

Corolário 9.5. Se Sf < 0, então $Sf^n < 0$ para todo $n \ge 1$.

Lema 9.6. Se f possui um número finito de pontos críticos, então f^n também possui um número finito de pontos críticos para todo $n \ge 1$.

Demonstração. Inicialmente, observe que $f^{-1}(c) = \{x \in [a,b] : f(x) = c\}$ é finito para todo c. De fato, pelo Teorema do Valor Médio existe um ponto crítico de f entre dois elementos de $f^{-1}(c)$.

Lema 9.7. Se $Sf < 0$ e f possui um número	finito de pontos	$críticos, então f^n$	possui
um número finito de pontos críticos.			
$Demonstraç\~ao.$			