# Topic Compositional Neural Language Model

Wang et al 2018
AISTATS
Presenter Robert Thorstad

#### What Does Magical Mean?

1) Salaman Rushdie uses **magical** realism.

**Context:** fiction book

2) I watched Calvin Harris and it was magical

**Context**: music performance

3) Herbs have enormous **magical** power.

**Context**: book on wizardry

Need to know context!

#### Traditional language models lack longrange context



It was magical

#### What Does Magical Mean?

1) Salaman Rushdie uses magical realism.

Context: fiction book

2) I watched Calvin Harris and it was magical

**Context**: music performance

3) Herbs have enormous **magical** power.

**Context**: book on wizardry

Insight:
Context
mostly
semantic

#### Idea: Add context using topic model



(Ghosh et al, 2016; similar idea by Mikolov et al, 2012)

## Adding Topics Tells us Something About Psychology

### Topics as models of semantic knowledge base



(Griffiths, Steyvers, & Tenenbaum, 2007)





#### Really want topics integrated in model



Learned before training from a different corpus 😊

#### Proposal: Learn Topics using VAE



#### Then add topics to language model

|   | Topic     | Proportion |
|---|-----------|------------|
|   | Law       | 0.36       |
|   | Art       | 0.03       |
| - | Market    | 0.10       |
|   | Travel    | 0.07       |
|   | Company   | 0.09       |
|   | Politics  | 0.15       |
|   | Sport     | 0.01       |
|   | Education | 0.11       |
|   | Medical   | 0.02       |
|   | Army      | 0.06       |



### Learns qualitatively good topics

| Dataset | army          | animal                | medical               | $_{ m market}$ |  |
|---------|---------------|-----------------------|-----------------------|----------------|--|
|         | afghanistan   | animals               | patients              | zacks          |  |
|         | veterans      | $\operatorname{dogs}$ | $\operatorname{drug}$ | cents          |  |
| APNEWS  | soldiers      | ZOO                   | $\operatorname{fda}$  | earnings       |  |
|         | brigade       | bear                  | disease               | keywords       |  |
|         | infantry      | wildlife              | virus                 | share          |  |
|         | horror        | action                | family                | children       |  |
|         | zombie        | martial               | rampling              | $_{ m kids}$   |  |
| IMDB    | slasher       | kung                  | relationship          | snoopy         |  |
| пирь    | massacre      | li                    | binoche               | santa          |  |
|         | chainsaw      | $\operatorname{chan}$ | marie                 | cartoon        |  |
|         | gore          | fu                    | mother                | parents        |  |
|         | environment   | education             | politics              | business       |  |
|         | pollution     | courses               | elections             | corp           |  |
| BNC     | emissions     | training              | economic              | turnover       |  |
| DNC     | nuclear       | students              | minister              | unix           |  |
|         | waste         | medau                 | political             | net            |  |
|         | environmental | education             | democratic            | profits        |  |

#### Topics generate reasonable sentences

#### Seed RNN with a topic or mixture (!) of topics:

horror
action
family
children
war
horror+negative

sci-fi+children

- the killer is a guy who is n't even a zombie.
- the action is a bit too much, but the action is n't very good.
- $\bullet$  the film is also the story of a young woman whose <unk> and <unk> and very ye and palestine being equal , and the old man , a <unk> .
- i consider this movie to be a children 's film for kids .
- the documentary is a documentary about the war and the <unk> of the war.
- if this movie was indeed a horrible movie i think i will be better off the film.
- $\bullet$  paul thinks him has to make up when the <code><unk></code> eugene discovers defeat in order and then finds his wife and boys .

### Topics competitive with existing models

#### Perplexity

| Dataset | LSTM                   | basic-LSTM* | LDA+LSTM* |       | LCLM* | Topic-RNN |       | $\mathrm{TDLM}^*$ |       |       | TCNLM |       |       |       |       |
|---------|------------------------|-------------|-----------|-------|-------|-----------|-------|-------------------|-------|-------|-------|-------|-------|-------|-------|
| Dataset | $_{ m type}$           | Dasic-LSTW  | 50        | 100   | 150   | LCLIVI    | 50    | 100               | 150   | 50    | 100   | 150   | 50    | 100   | 150   |
| APNEWS  | $\operatorname{small}$ | 64.13       | 57.05     | 55.52 | 54.83 | 54.18     | 56.77 | 54.54             | 54.12 | 53.00 | 52.75 | 52.65 | 52.75 | 52.63 | 52.59 |
| AFNEWS  | large                  | 58.89       | 52.72     | 50.75 | 50.17 | 50.63     | 53.19 | 50.24             | 50.01 | 48.96 | 48.97 | 48.21 | 48.07 | 47.81 | 47.74 |
| IMDB    | $\operatorname{small}$ | 72.14       | 69.58     | 69.64 | 69.62 | 67.78     | 68.74 | 67.83             | 66.45 | 63.67 | 63.45 | 63.82 | 63.98 | 62.64 | 62.59 |
| IMDD    | large                  | 66.47       | 63.48     | 63.04 | 62.78 | 67.86     | 63.02 | 61.59             | 60.14 | 58.99 | 59.04 | 58.59 | 57.06 | 56.38 | 56.12 |
| BNC     | $\operatorname{small}$ | 102.89      | 96.42     | 96.50 | 96.38 | 87.47     | 94.66 | 93.57             | 93.55 | 87.42 | 85.99 | 86.43 | 87.98 | 86.44 | 86.21 |
| BNC     | large                  | 94.23       | 88.42     | 87.77 | 87.28 | 80.68     | 85.90 | 84.62             | 84.12 | 82.62 | 81.83 | 80.58 | 80.29 | 80.14 | 80.12 |

### Topics competitive with existing models

#### Coherence

| // mp • | M 11                   | Col    | herence |       |
|---------|------------------------|--------|---------|-------|
| # Topic | $\operatorname{Model}$ | APNEWS | IMDB    | BNC   |
|         | $LDA^*$                | 0.125  | 0.084   | 0.106 |
|         | $NTM^*$                | 0.075  | 0.064   | 0.081 |
| 50      | $TDLM(s)^*$            | 0.149  | 0.104   | 0.102 |
| 90      | TDLM(l)*               | 0.130  | 0.088   | 0.095 |
|         | Topic-RNN(s)           | 0.134  | 0.103   | 0.102 |
|         | Topic-RNN(l)           | 0.127  | 0.096   | 0.100 |
|         | TCNLM(s)               | 0.159  | 0.106   | 0.114 |
|         | TCNLM(l)               | 0.152  | 0.100   | 0.101 |
|         | LDA*                   | 0.136  | 0.092   | 0.119 |
|         | $NTM^*$                | 0.085  | 0.071   | 0.070 |
| 100     | $TDLM(s)^*$            | 0.152  | 0.087   | 0.106 |
| 100     | $TDLM(1)^*$            | 0.142  | 0.097   | 0.101 |
|         | Topic-RNN(s)           | 0.158  | 0.096   | 0.108 |
|         | Topic-RNN(l)           | 0.143  | 0.093   | 0.105 |
|         | TCNLM(s)               | 0.160  | 0.101   | 0.111 |
|         | TCNLM(l)               | 0.152  | 0.098   | 0.104 |
|         | LDA*                   | 0.134  | 0.094   | 0.119 |
|         | $NTM^*$                | 0.078  | 0.075   | 0.072 |
| 150     | TDLM(s)*               | 0.147  | 0.085   | 0.100 |
| 150     | $TDLM(l)^*$            | 0.145  | 0.091   | 0.104 |
|         | Topic-RNN(s)           | 0.146  | 0.089   | 0.102 |
|         | Topic-RNN(l)           | 0.137  | 0.092   | 0.097 |
|         | TCNLM(s)               | 0.153  | 0.096   | 0.107 |
|         | TCNLM(l)               | 0.155  | 0.093   | 0.102 |

#### Interestingly absent:

## Does adding topics make a better language model?

Need this...

to do this?

