Baseball's Unprecedented Half-innings and Other Insights from Markov Chains

Sean G. Carver, Ph.D.

September 12, 2019

What is a Markov Chain?

Markov Chains Beyond Sports

Hodgkin-Huxley Sodium Channel

Modern Model of Sodium Channel

$$C1\frac{4\alpha_{n}}{\beta_{n}} C2\frac{3\alpha_{n}}{2\beta_{n}} C3\frac{2\alpha_{n}}{3\beta_{n}} C4\frac{\alpha_{n}}{4\beta_{n}} O$$

Potassium Channel

Detect statistically significant changes to users' or communities' interactions with Twitter

Baseball as a Markov Chain

Visualizing Baseball's Graph (Double and Triple Plays)

Visualizing Baseball's Graph (Clean and Single Plays)

Symmetry and Asymmetry in Baseball's Graph

Rules of symmetric & real baseball: \triangle Outs ≥ 0 AND $0 \le \text{Runners-on-base} \le 3$

 Δ Runners-on-base = 1 - Δ Outs - Δ Score

 Δ Score ≥ 0

Additional asymmetries in real baseball: Three outs and it's over!

3:12 (3X:12X, ...) impossible---runners cannot retreat!

Transition Probability Matrix -- Clean Plays, No Outs

Prob. =
$$\# (\text{From} \rightarrow \text{To})$$

From

Computed with respect to a population of transitions

Full Transition Probability Matrix

Population: All MLB teams, 1930-2018, Regular season

Many More Probabilities Are Zero for Subpopulations

Washington Nationals, batting at home, 2018

4		De	Jotive	T	ono	tic	n [Drobol	kilii	·io	. (1	റാവ വ) N	10)			123:1		
		Λt	Hativt		alis	ILIU	ווע	TUDA	JIIII	uc	5 (1	930-2	. U	10)				23:1XX 23:XXX	3:23
						1:1						12:0XX			123X:1X				
				1X:1X		2	XX:23X	×	12X:1X			12:1	13X:	3X:23X		13:1 13:XXX	123:0XX		
3-				1X:0XX		1:0X			12X:0XX				13X:0		3XX:23XX 3XX:12 XX 3X:0XX		123:0X		
	-				1XX:1XX			12XX:1XX			1	13XX:1XX		123XX:1XX		13:0X	123:XXX		3:2X
									12X:3XX			12:3X 12:XXX							
				1X:3XX		1:3X				2:0X		12:1X 12:2X			123X:3XX	13:3X	123:1XX 123:2XX 123:3X	23:0XX 23:2XX	
-log10(probability)								2X:23) 2X:0X)	< <12 X :2 X X				13X:3	зхх	23X 1 23X : 4XX 3X	oxx		23:3XX 23:0X	3:0XX
		0:3	0XX:3X 0X:3X	1X:3X	1XX:3XX		2XX:3XX	2X-3X	12X:3X	2:83×		12:3	13X:		23>	:3X 13:3	123:12XX 123:3		3:1X
	-			1X:2X		1:2	,	2X:1XX	<			12:1XX 13:2X			123X:2X 23X 23X			23:13X	3:3
-		0:0	0X:0X 0XX:0X	× 1×:0×	1 %%23% 1××:0××	1:0		,	12X:0X		зхх:охх 1		1 3 条独 13X:1	3X:0X	1237-07637-		123:0 123:23X)	23:0	3:0
				1X:23X		1:23	XX:13X	×	12X:23X 12X:13X			18:28	13X:	23X	123X:13XX 123X:13X 123X:23X	13:12X	123:13		
		0:2	0X:2X 0XX:2X	1X:13X	1XX:13XX	1:13	2XX:2XX	2XX:12XX2X:13X		2:2	1:	3XX:13XX ^{12:12}	13X:		23XX:2X <u>¥3</u> 3X:23XX 123X:12X 23X 23X	13:13 :1X :13X	123:23		3:2
1	_			1X:2XX		2	2XX:1XX					12:3XX 3XX:123X¥2:13X		23X 1	23XX:1XX 123X:13X ^{23X}		123:12X 123:13X		
				1X:XXX		1:0XX 1:2X	12 XX:12X		,1 <i>23</i> :7233 <	Ę.	3XX:1XX		13%			13:12	123:123	23:3X 23:123	3:13
		0:1	0X:1X 0XX:1X		1XX:12XX	1:12				2:3X			13X:1		3XX:123XX 123X:123	13:1X 13:13X			3:0X
				1X:1XX		1:1X		2X:2X	12X:12X	× 2:2X		12:12X		зх:зхх			123:123>	23:23X	3:3X
0		0:0×	0X:0XX0XX:XX	×	1XX:XXX	2	2XX:XXX	c exx:xxx			зхх:ххх	Sex:xxx		123XX:XXX	23XX:XXX				

Baseball's Unprecedented Half-innings

The most unlikely unprecedented half-innings:

```
|-log10(probability)|
sequence
            Three Plays
0:3:13:XXX
                6.43509767499117
0:3:23:XXX
                 9.73543779430501
             Four Plays
0:2:3:23:XXX
                11.0579993507313
0:0:3:23:XXX
                11.3442887847059
0:3:3:23:XXX
                11.7519898723546
0:3:23:23:XXX
                 11.855734799529
             Five Plays
0:3:23:3:23:XXX
                 15.6122744428876
*3XX:23XX*
```

log10(number of half-innings played) = 6.45

Quantifying the Similarity Between Model Baseball Teams

Result: it takes 30±1 half-innings, simulated from the 2011 Baltimore Orioles model, to reject, with 95% confidence, the statement that these half-innings were sampled from the 2011 New York Yankees model.

Making Half-inning History and **Markov Transition Probabilities** Easily Accessible to All aws

Future work: Applying Markov Chains to Win Games

The Markov model can be used to detect statistically significant changes, including...

- Changes to a team's play,
- Changes to the whole league's play.

Once a change has been detected, insight into why can be pursued.

This insight can be leveraged to win games.

Collaborators on Related Projects

Jacob Ward

Formerly Professorial Lecturer, American University

Jake Berberian

Class of 2022, American University

Kingsley Iyawe

Masters Student, American University, expected graduation: May 2020