Leçon 219. Extremums : existence, caractérisation, recherche. Exemples et applications.

- [6] 1. NOTATION. Soit E un espace vectoriel normé. On considère une partie $X \subset E$, une fonction $f: X \longrightarrow \mathbf{R}$ et un point $a \in X$.
 - 2. Définition. Le point a est un maximum global de la fonction f si

$$\forall x \in X, \qquad f(x) \leqslant f(a).$$

C'en est un maximum local s'il existe un voisinage $V \subset X$ du point a tel que

$$\forall x \in V, \qquad f(x) \leqslant f(a).$$

On définit, de même, la notion de minimum local et global (en renversant les inégalités) et de maximum et minimum stricts (en mettant des inégalités strictes lorsque $x \neq a$). Un extremum est un minimum ou un maximum.

I. Étude globale : critère d'existence et d'unicité

I.1. Utilisation de la compacité

- [4] 3. PROPOSITION. Soient $X \subset E$ une partie compact et $f: X \longrightarrow \mathbf{R}$ une fonction continue. Alors elle est bornée et atteint ses bornes.
 - 4. EXEMPLE. Sur tout compact $K \subset \mathbb{C}$, la fonction $z \in \mathbb{C} \longmapsto |z|$ atteint ses bornes. Sur un espace vectoriel normé de dimension finie, toutes les normes sont équivalentes.
 - 5. APPLICATION. La distance entre deux parties compactes K_1 et K_2 d'un espace métrique E est atteinte, c'est-à-dire qu'il existe deux points $x_1 \in K_1$ et $x_2 \in K_2$ tels que $d(x_1, x_2) = d(K_1, K_2)$. Le résultat reste vrai lorsque la partie K_1 est juste fermée. 6. APPLICATION. Soient E un espace métrique compact et $f: E \longrightarrow E$ une application
 - 6. APPLICATION. Soient E un espace métrique compact et $f: E \longrightarrow E$ une applicat telle que

$$\forall x,y \in E, \qquad x \neq y \quad \Longrightarrow \quad d(f(x),f(y)) < d(x,y).$$

Alors elle admet un unique point fixe et toute suite des itérées de la fonction f converge vers ce point fixe.

- [1] 7. DÉFINITION. Soit $X \subset E$ une partie non bornée. Une fonction $f: X \longrightarrow \mathbf{R}$ est coercive si $f(x) \longrightarrow +\infty$ lorsque $x \longrightarrow +\infty$ et $x \in X$.
 - 8. Proposition. On suppose que l'espace E est de dimension finie. Soient $X \subset E$ une partie fermée non bornée et $f \colon X \longrightarrow \mathbf{R}$ une fonction coercive continue. Alors elle admet un minimum global.

I.2. Utilisation de la convexité

 $\ ^{[1]}$ 9. Définition. Soit $C\subset E$ un convexe. Une fonction $f\colon C\longrightarrow \mathbf{R}$ est convexe si

$$\forall x, y \in C, \ \forall \lambda \in [0, 1], \qquad f(\lambda x + (1 - \lambda)y) \leqslant \lambda f(x) + (1 - \lambda)f(y).$$

Lorsque l'inégalité est stricte avec $x \neq y$ et $\lambda \in]0,1[$, elle est strictement convexe.

- 10. Exemple. Les fonctions $x \in \mathbf{R} \longmapsto x^2$ et $x > 0 \longmapsto -\ln x$ sont strict. convexes.
- 11. Proposition. Soient $C \subset E$ un convexe et $f: C \longrightarrow \mathbf{R}$ une fonction strictement convexe. Alors elle admet au plus un minimum.
- 12. Contre-exemple. La seule convexité ne suffit pas à assurer au plus un minimum (le fonction nulle sur \mathbf{R}). La stricte convexité n'assure pas l'existence d'un minimum (la fonction exponentielle sur \mathbf{R}).

13. APPLICATION. Soient E un espace euclidien, $b \in E$ un vecteur et $u \in \mathcal{L}(E)$ un endomorphisme symétrique défini positif. Alors la fonction

$$f : \begin{vmatrix} E \longrightarrow \mathbf{R}, \\ x \longmapsto \frac{1}{2} \langle u(x), x \rangle - \langle b, x \rangle \end{vmatrix}$$

admet un unique point minimum.

I.3. Résultats en analyse hilbertienne

14. Théorème (de projection). Soient H un espace de Hilbert et $C \subset H$ un convexe [1] fermé non vide. Pour tout $x \in H$, il existe un unique élément $p_C(x) \in C$ tel que

$$||p_C(x) - x|| = d(x, C) = \inf_{y \in C} ||y - x||.$$

- 15. Contre-exemple. Toutes les hypothèses sont nécessaires.
 - L'hypothèse hilbertienne est nécessaire. Dans l'espace $(\mathscr{C}^0([0,1]), \| \|_{\infty})$, la distance d(1,C) avec $C := \{ f \in \mathscr{C}^0([0,1]) \mid 0 \leqslant f \leqslant 1, f(0) = 0 \}$ est réalisée par les fonctions $f \in C$.
 - L'hypothèse de complétude est nécessaire. En prenant $E := \mathscr{C}^0([0,1]) \subset L^2([0,1])$ avec $C := (\mathbf{1}_{[0,1/2]})^{\perp}$ et $C_1 := C \cap E$, la distance $d(f_1, C_1)$ n'est pas atteinte pour toute fonction $f_1 \in E \setminus C_1$.
 - L'hypothèse de convexité est nécessaire. Dans \mathbf{R}^2 , l'origine admet une infinité de projetés sur la sphère unité $\mathbf{S}^1 \subset \mathbf{R}^2$.

16. APPLICATION (moindres carrés). Étant donnés n points $(x_i, y_i) \in \mathbf{R}^2$ tels que les [6] réels x_i ne soient pas tous égaux entre eux, il existe $\lambda, \mu \in \mathbf{R}$ qui minimisent la somme

$$\sum_{i=1}^{n} (\lambda x_i + \mu - y_i)^2.$$

- 17. COROLLAIRE (théorème du supplémentaire orthogonal). Soient H un espace de [1] Hilbert et $F \subset H$ un sous-espace vectoriel. Alors $H = F \oplus F^{\perp}$.
- 18. Théorème (Riesz). Soit H un espace de Hilbert. Alors l'application

$$\begin{vmatrix} H \longrightarrow H', \\ y \longmapsto \langle \cdot, y \rangle \end{vmatrix}$$

est une isométrie surjective.

19. THÉORÈME. Soit H un espace de Hilbert. Alors toute suite bornée $(x_n)_{n\in\mathbb{N}}$ [3] de H admet une sous-suite convergeant faiblement, c'est-à-dire qu'il existe une extraction $\varphi \colon \mathbb{N} \longrightarrow \mathbb{N}$ et un vecteur $x \in H$ tels que

$$\forall y \in H, \qquad \langle x_{\varphi(n)}, y \rangle \longrightarrow \langle x, y \rangle.$$

- 20. PROPOSITION. Soient H un espace de Hilbert et $C \subset H$ une partie convexe non bornée. Soit $J \colon C \longrightarrow \mathbf{R}$ une fonction convexe, continue et coercive. Alors cette dernière atteint sa borne inférieure.
- 21. Remarque. La proposition permet de généraliser l'application 13 à un espace [1] de Hilbert H. Soient $b \in H$ un vecteur et $u \in \mathcal{L}(H)$ un endomorphisme symétrique

défini positif tel que l'application $x \in H \longmapsto \langle u(x), x \rangle$ soit coercive. Alors on retrouve la conclusion du point 13.

22. COROLLAIRE (théorème de Lax-Milgram). Soient H un espace de Hilbert et a une forme bilinéaire symétrique continue coercive sur H. Soit $\varphi \in H'$ une forme linéaire continue sur H. Alors il existe un unique élément $x \in H$ tel que

$$\forall y \in H, \quad a(x,y) = \varphi(y).$$

De plus, cet élément x est caractérisé par l'égalité

$$\frac{1}{2}a(x,x) - \varphi(x) = \min_{y \in H} \left(\frac{1}{2}a(y,y) - \varphi(y)\right).$$

[2] 23. REMARQUE. Le théorème de Lax-Milgram est un outil permettant d'étudier certaines équations aux dérivées partielles. Soit $f:]0,1[\longrightarrow \mathbf{R}$ une fonction. On considère le problème de Dirichlet

$$-u'' + u = f \quad \text{sur }]0,1[,$$

$$u(0) = u(1) = 0.$$
 (1)

Lorsque $f \in L^2(]0,1[)$, le problème (1) admet une unique solution faible dans $H_0^1(]0,1[)$ et c'est la fonction minimisant la fonction

$$v \in \mathrm{H}^1_0(]0,1[) \longmapsto \frac{1}{2} \int_0^1 (v'^2 + v^2) - \int_0^1 fv \in \mathbf{R}.$$

I.4. Holomorphie et principe du maximum

- [1] 24. Théorème (principe du maximum global). Soit $\Omega \subset \mathbf{C}$ un ouvert borné. Soit $f \colon \overline{\Omega} \longrightarrow \mathbf{C}$ une fonction continue sur $\overline{\Omega}$ et holomorphe sur Ω . Alors la fonction |f| atteint son maximum sur la frontière $\partial \Omega$ et, si son maximum est atteint sur Ω , alors elle est constante sur Ω .
 - 25. COROLLAIRE (Liouville). Toute fonction entière bornée est constante.
 - 26. APPLICATION (théorème de d'Alembert-Gauss). Le corps des complexes est algébriquement clos.

II. Étude locale : critère d'existence par le calcul différentiel

27. NOTATION. Soient $U \subset E$ un ouvert et $f: U \longrightarrow \mathbf{R}$ une fonction.

II.1. Condition du premier ordre

[6] 28. Rappel. On suppose que la fonction f est différentiable en un point $a \in U$. Lorsque $h \longrightarrow 0$, on a

$$f(a+h) = f(a) + df(a)(h) + o(||h||).$$

- 29. PROPOSITION. Soit $x^* \in U$. On suppose que la fonction f admet un minimum et est différentiable en ce point x^* . Alors $df(x^*) = 0$.
- 30. Contre-exemple. La condition est loin d'être nécessaire puisque la fonction cube $x \in \mathbf{R} \longmapsto x^3$ voit sa dérivée s'annuler au point $x^* = 0$ et, pourtant, ce point n'est pas un minimum.
- [1] 31. APPLICATION. L'unique minimum de l'application f définie au point 13 est atteint au point $x^* \in E$ vérifiant $u(x^*) = b$.

- 32. THÉORÈME (Rolle). Soit $f: [a, b] \longrightarrow \mathbf{R}$ une fonction continue sur [a, b] et déri- [4] vable sur [a, b[avec f(a) = f(b). Alors il existe $c \in [a, b[$ tel que f'(c) = 0.
- 33. Proposition (inégalité d'Euler). Soient $C \subset U$ une partie convexe et $f: U \longrightarrow \mathbf{R}$ [1] une fonction qui admet un minimum local $x^* \in C$ sur C et qui est différentiable en ce point x^* . Alors

$$\forall y \in C, \qquad df(x^*)(y - x^*) \geqslant 0.$$

- 34. PROPOSITION. Soient $C \subset E$ un convexe ouvert et $f \colon C \longrightarrow \mathbf{R}$ une fonction convexe différentiable. Alors tout point critique de f en est un minimum global.
- 35. Proposition (point de Fermat). Soient A, B et C trois points non alignés du [6] plan euclidien ${\bf R}^2$. On suppose que les trois angles du triangle ABC sont strictement inférieurs à $2\pi/3$. Alors la fonction

$$f : \begin{vmatrix} \mathbf{R}^2 \longrightarrow \mathbf{R}, \\ M \longmapsto MA + MB + MC \end{vmatrix}$$

admet un unique point minimum qui est dans l'intérieur strict du triangle ABC.

II.2. Condition du second ordre

36. Proposition. On suppose que la fonction f est deux fois différentiable en un [6] point $a \in U$. Lorsque $h \longrightarrow 0$, on a

$$f(a+h) = f(a) + df(a)(h) + \frac{1}{2}d^2f(a)(h,h) + o(\|h\|^2).$$

- 37. PROPOSITION. Soit $x^* \in U$. On suppose que la fonction f est deux fois différentiable en ce point x^* .
 - Si le point x^* en est un minimum local, alors $df(x^*) = 0$ et sa différentielle seconde $d^2f(x^*)$ est une forme quadratique positive, c'est-à-dire

$$d^2 f(x^*)(h,h) \geqslant 0, \quad \forall h \in E.$$

- Si $df(x^*) = 0$ et sa différentielle seconde $d^2f(x^*)$ est définie positive, alors le point x^* est un minimum local strict de la fonction f.
- 38. Contre-exemple. Les réciproques des deux points sont fausses. Pour le premier [1] point, la fonction $(x,y) \in \mathbf{R}^2 \longmapsto x^2 y^2$ admet un unique point critique qui est l'origine et, en ce point, sa hessienne est positive, mais l'origine n'est pas un minimum local. On considère le contre-exemple $(x,y) \in \mathbf{R}^2 \longmapsto x^2 + y^2$ pour le second point.

II.3. Extrema liés

39. THÉORÈME. Soient $g_1, \ldots, g_m \colon \mathbf{R}^n \longrightarrow \mathbf{R}$ des applications de classe \mathscr{C}^1 . On pose [1]

$$C := \{x \in \mathbf{R}^n \mid g_1(x) = \dots = g_m(x) = 0\}.$$

Soit $U \subset E$ un ouvert vérifiant $U \supset C$. Soit $f: U \longrightarrow \mathbf{R}$ une application admettant un extremum local en un point $x^* \in U$ et différentiable en ce point. On suppose que les différentielles $dg_i(x^*)$ avec $i \in [1, m]$ sont linéairement indépendantes. Alors il existe des réels $\lambda_1, \ldots, \lambda_m \in \mathbf{R}$ tels que

$$df(x^*) = \lambda_1 dg_1(x^*) + \dots + \lambda_m dg_m(x^*).$$

Les réels λ_i sont appelés les multiplicateurs de Lagrange.

40. Contre-exemple. L'hypothèse d'indépendance linéaire est nécessaire : la fonc-

tion $f:(x,y)\in\mathbf{R}^2\longmapsto x+y^2$ admet un unique minimum, qui est l'origine, sous la contrainte $g(x,y) := x^3 - y^2 = 0$. Mais on a dg(0,0) = 0 et $df(0,0) \neq 0$.

41. APPLICATION (théorème spectral en dimension finie). Soient E un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme symétrique. En considérant les fonctions

$$f: x \in E \longmapsto \langle u(x), x \rangle$$
 et $g: x \in E \longmapsto ||x||$,

la fonction f atteint son minimum sur la sphère $\{q=1\}\subset E$ en un point $x^*\in E$ puisque c'est un compact. Le théorème 39 fournit alors une valeur propre $\lambda_1 \in \mathbf{R}$.

III. Algorithmes de recherche

42. NOTATION. On cherche des algorithmes permettant de chercher le minimum d'une fonction $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ de classe \mathscr{C}^1 .

III.1. Méthodes de gradient

[5] 43. DÉFINITION. Soit $(\rho_k)_{k\in\mathbb{N}}$ une suite réelle. La méthode de gradient à pas variable consiste en une suite réelle $(u_k)_{k\in\mathbb{N}}$ vérifiant

$$u_{k+1} = u_k - \rho_k \nabla f(u_k), \qquad k \in \mathbf{N}.$$

On dit que la méthode est à pas fixe lorsque la suite $(\rho_k)_{k\in\mathbb{N}}$ est constante.

44. THÉORÈME. Soient $A \in \mathscr{S}_n^{++}(\mathbf{R})$ et $b \in \mathbf{R}^n$. On définit la fonction

$$f: \begin{vmatrix} \mathbf{R}^n \longrightarrow \mathbf{R}, \\ x \longmapsto \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle. \end{vmatrix}$$

Soit $x^* \in \mathbf{R}^n$ son unique minimum. Soit $(x_k)_{k \in \mathbf{N}}$ la suite réelle définie par

$$x_{k+1} = x_k - t_k \nabla f(x_k)$$
 avec $t_k := \underset{t>0}{\operatorname{arg min}} f(x_k - t \nabla f(x_k)), \quad k \in \mathbf{N}.$

Alors elle converge vers le point x^* et, plus précisément, en notant λ_{\min} et λ_{\max} les valeurs propres minimale et maximale de A, il existe une constante $C \geqslant 0$ telle que

$$\forall k \in \mathbf{N}, \qquad \|x_k - x^*\| \leqslant C \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^k.$$

III.2. Méthode de Newton

[6] 45. DÉFINITION. Soit $f: [c, d] \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^2 . On suppose qu'elle admet un unique zéro $a \in [c, d]$. La méthode de Newton consiste en, lorsqu'elle est bien définie, une suite réelle $(x_n)_{n\in\mathbb{N}}$ vérifiant

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n \in \mathbf{N}.$$

46. Théorème. Alors il existe deux constantes $C, \alpha > 0$ tel que, si $|x_0 - a| < \alpha$, alors la suite $(x_n)_{n\in\mathbb{N}}$ est bien définie, elle converge vers le point a et elle vérifie

$$\forall n \in \mathbf{N}, \qquad |x_{n+1} - a| \leqslant C(x_n - a)^2.$$

47. COROLLAIRE. Lorsque la fonction f est strictement convexe et vérifie f'(a) > 0, la suite $(x_n)_{n\in\mathbb{N}}$ avec $x_0>a$ décroît strictement et converge vers le point a.

48. Remarque. Soit $g:[c,d] \longrightarrow \mathbf{R}$ une fonction strictement convexe de classe \mathscr{C}^3 . On peut ainsi approcher son minimum en appliquant la méthode de Newton à sa dérivée f := g'. On peut également la généraliser à la dimension supérieure.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2º édition. H&K, 2005.

^[1] [2] [3] Haïm Brézis. Analyse fonctionnelle. 2e tirage. Masson, 1983.

Philippe Ciarlet. Introduction à l'analyse numérique matricielle et à l'optimisation. 3° tirage. Masson, 1982.

Xavier Gourdon. Analyse. 2e édition. Ellipses, 2008.

Jean-Baptiste Hiriart-Urruty. Optimisation et analyse convexe. EDP Sciences, 2009.

François ROUVIÈRE. Petit guide de calcul différentiel. Quatrième édition. Cassini, 2015.