WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z FIZYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZK. 2021/2022

KLUCZ OCENIANIA - ETAP SZKOLNY

Poprawne rozwiązanie zadań innym sposobem niż podany poniżej powoduje przyznanie maksymalnej liczby punktów.

Wielkość, którą uczeń ma wyznaczyć w zadaniu musi być opatrzona prawidłową jednostką. Uczeń może nie obliczać wielkości pośrednich, wówczas jeśli wielkość końcową obliczy prawidłowo otrzymuje max liczbę punktów.

Treść	Punktacja
Zaznaczenie prawidłowej odpowiedzi C	1
Razem 1.	1
2. Obliczenie odległości w metrach 5500 000 m	1
Zastosowanie wzoru na szybkość v=s/t (lub drogę s=vt i wyznaczenie czasu)	
Obliczenie czasu (t= $s/v = 55000 \ 000/30 = 183 \ 333,3 \ s$)	1
Zamiana s na h (183 333,3 s = 183 333,3/3600= 50,93 h)	1
Zaokrąglenie do pełnych godzin t=51 h	1
Uczeń może zamienić szybkość na km/h (30 m/s=108 km/h), a następnie	
<i>obliczyć czas (t=5500/108=50</i> ,93 h)	
Razem 2.	4
3. Zastosowanie wzoru na szybkość w ruchu jednostajnym (v=s/t)	1
Obliczenie szybkości konia (v _k =80/4=20 m/s)	1
Obliczenie szybkości zająca (v _z =60/4=15 m/s)	1
Obliczenie szybkości słonia (v _s =60/5=12 m/s)	1
Podanie, że "najszybciej porusza się koń"	1
Razem 3.	5
4. Zastosowanie wzoru na szybkość lub czas w ruchu jednostajnym (v=s/t lub	
t=s/v)	1
Obliczenie czasu pokonywania pierwszego odcinka t ₁ =54/½=108 s	1
Obliczenie czasu pokonywania drugiego odcinka t ₂ =54/3=18 s	1
Obliczenie całkowitego czasu ruchu t=t ₁ +t ₂ =126s	1
Obliczenie całkowitej drogi s=2 ·54m=108m	1
Obliczenie szybkości średniej v _{śr} =s/t (0,86m/s)	1
Razem 4.	6
5. Zaznaczenie prawidłowej odpowiedzi A.P	1
Zaznaczenie prawidłowej odpowiedzi B.P	1
Zaznaczenie prawidłowej odpowiedzi C.P	1
Zaznaczenie prawidłowej odpowiedzi D.F	1
Razem 5.	4
6. Zastosowanie wzoru na prędkość w ruchu jednostajnym (v=s/t)	1
Obliczenie szybkości psa v=3,5 m/s	1
Zastosowanie wzoru na prędkość względną psa i Marcina w sytuacji	
opisanej w zadaniu v _w =v+v _M	1
Obliczenie szybkości względnej v _w = 4m/s	1
Obliczenie czasu biegu psa t= s/ v _w =90/4=22,5s	1
Razem 6.	5

7. Prawidłowe narysowanie i podanie nazwy "siły ciężkości"	1
Prawidłowe narysowanie i podanie nazwy "siły rekcji na nacisk lub siły	1
sprężystości podłoża" UWAGA –SIŁY PIONOWE MUSZĄ BYĆ JEDNAKOWEJ DŁUGOŚCI	1
Prawidłowe narysowanie i podanie nazwy "siły pchania"	1
Prawidłowe narysowanie i podanie nazwy "siły tarcia"	1
UWAGA –SIŁY POZIOME MUSZĄ BYĆ JEDNAKOWEJ DŁUGOŚCI	
Nie oceniamy relacji pomiędzy długościami wektorów poziomych i	
pionowych	
Zastosowanie wzoru na pracę W=Fs	1
Zauważenie, że F=F _{tarcia}	1
Zastosowanie wzoru na siłę tarcia F _{tarcia} =fmg	
Obliczenie siły tarcia F _{tarcia} =0,2 30 10=60N	1 1
Obliczenie pracy W= 60 1,5=90J	1
Razem 7.	9
$E_p = mgh, E_k = 0$	
h	
$E_p = 0, E_k = \frac{1}{2} m v^2$	
8. Zastosowanie zasady zachowania energii $\Delta E_p = \Delta E_k$	1
Zastosowanie wzoru na energię potencjalną ΔE _p =mgh	1
Zastosowanie wzoru na energię kinetyczną $\Delta E_k = \frac{1}{2} m v^2$	1
Wyznaczenie prędkości z zasady zachowania energii v= $\sqrt{2gh}$	1
Obliczenie prędkości v=10 m/s	1
Razem 8.	5
9. Zastosowanie wzoru na moc (P=W/t lub pracę W=Pt)	1
Zamiana minut na sekundy (2 min=120 s)	1 1
Obliczenie pracy (W= $3 \cdot 10^{-4}$ W $120s = 0,036$ J)	3
Razem 9. 10. Zaznaczenie prawidłowej odpowiedzi D	1
Razem 10.	1
11. Prawidłowe zaznaczenie położenia jednego klocka - <i>Ipunkt</i> , prawidłowe	1
zaznaczenie położenia 2 lub 3 klocków -2 punkty	
2-1-3	
Razem 11.	2
12. Wskazanie szalki z obciążnikiem m=0,5 kg, jako tej którą należy dodatkowo	
obciążyć	1
Zastosowanie warunku równowagi dźwigni dwustronnej F ₁ r ₁ =F ₂ r ₂	1
Zastosowanie wzoru na ciężar F=mg (m ₁ gr ₁ =m ₂ gr ₂)	1
Obliczenie lub wyznaczenie masy potrzebnej do zrównoważenia dźwigni	1
$m_2 = m_1 r_1 / r_2 = 0.3 / 0.2 = 1.5 kg$ Obliggania dadatkawai masy ma m=1 kg	1 1
Obliczenie dodatkowej masy m ₂ -m=1 kg Razem 12.	5
13. Zastosowanie wzoru na okres obrotu T= t /n (lub częstotliwość f=n/t; f=1/T)	1
Obliczenie czasu jednego obrotu T= 2/8=0,25 s	1
Razem 13.	2
14. Zaznaczenie prawidłowej odpowiedzi D	1
· · · · · · · · · · · · · · · · · · ·	_

Razem 14	1
15. Zamiana 200 g na kg (0,2kg)	1
Zastosowanie wzoru na energię cieplną Q=mc∆t	1
Ustalenie, że temperatura początkowa wody wynosi 100°C	1
Obliczenie przyrostu temperatur $\Delta t = 80 ^{\circ}\text{C}$	1
Obliczenie ilości energii Q=67 200J	1
Razem 15.	5
16. Za każde prawidłowo wstawione wyrażenie, daną lub wniosek uczeń	
otrzymuje 1 punkt	
"Przy każdym następnym pomiarze temperatura wody była <u>niższa</u> niż przy	
poprzednim. Wraz z upływem czasu szybkość stygnięcia wody <u>maleje</u> .	
Woda, gdy stygnie <u>oddaje</u> ciepło <u>do</u> otoczenia. Średnia szybkość ostygania	
wody w pierwszej godzinie wynosiła $\underline{\bf 40}$ °C/h, a w siódmej godzinie $\underline{\bf 0}$ °C/h.	
Po siedmiu godzinach temperatura wody nie zmienia się, ponieważ woda	
osiagnela temperature otoczenia	
Razem 16.	7
17. Zamiana cm na m, 30 cm= 0,3m oraz 10 cm=0,1m	1
Obliczenie wysokości słupa oleju h= 0,3-0,1=0,2m	1
Zastosowanie wzoru na ciśnienie hydrostatyczne p=dgh (pwody=1000 10	
$0,1=1000 \text{ Pa}, p_{\text{oleju}}=850 10 0,2=1700 \text{Pa})$	1
Zauważenie, że ciśnienie na dno p=p _{wody} +p _{oleju}	1
Obliczenie ciśnienia p=2700Pa	1
Razem 17.	5
18. Zapisanie relacji wynikającej z tekstu F _{ww} =½F _{wp}	1
Zastosowanie wzoru na ciężar ciała w powietrzu F _{wp} =mg	1
Zastosowanie wzoru na gęstość d=m/V (m=dV) F _{wp} =dVg Zapisanie, co oznacza ciężar ciała w wodzie F _{ww} = F _{wp} -F _w	1
Zapisanie, co oznacza ciężai w wodzie $\Gamma_{ww} = \Gamma_{wp} - \Gamma_{w}$ Zastosowanie wzoru na siłę wyporu $\Gamma_{w} = d_{w} Vg$	1
Wykonanie przekształceń F _{wp} -F _w =½F _{wp} ; F _w =½F _{wp} ; d _w Vg=½ dVg; d=2d _w	1
Obliczenie gęstości ciała d= 2000 kg/m ³	1
Razem 18.	7
19. Zaznaczenie ładunków "-" na każdym baloniku oraz "+" na płycie	1
Opisanie "baloniki zostaną przyciągnięte do płyty"	1
Podanie nazwy "indukcja elektrostatyczna" lub "elektryzowanie przez	
indukcję" lub "elektryzowanie przez wpływ"	1
Razem 19.	3
Razem	80