Review of Matrix Algebra

- * In this section I will give a brief review of some key points in matrix algebra.
- * This is not exhaustive and students are required to have taken a course in linear algebra to the level of Math 2R03.
- * Many basic results are given in the appendix to Chapter 2 of the textbook.

Some Notation

- * I will denote vector or matrix quantities in bold.
- * All vectors are considered to be column vectors (i.e. a vector is a matrix with only one column).
- * I will use A^t to denote the transpose of a vector or matrix.
- * I_p will be the $p \times p$ identity matrix.
- * $\mathbf{0}_p$ and $\mathbf{1}_p$ will be vectors of length p with all entries equal to 0 or 1 respectively

Some Basics

- * If c is a constant then cA multiplies each element of A by c.
- * If A and B are of the same size then A+B is the elementwise sum of the two matrices.
- * If ${m A}$ is of dimension $n \times m$ and ${m B}$ is of dimension $m \times p$ then ${m C} = {m A}{m B}$ is a $n \times p$ matrix with

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}.$$

* It is important to note that matrix multiplication is not commutative $(AB \neq BA)$.

Properties of the Determinant

* The determinant of a 2×2 matrix is

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

- * For larger square matrices the determinant is found through a recursive definition.
- * The determinant of a diagonal matrix is the product of the diagonal elements.

Properties of the Determinant

- * If a single column (or row) of A is multiplied by a constant c then the determinant is also multiplied by that constant.
- * If a multiple of one column (or row) is added to another then the determinant is unchanged.
- * If two columns (or rows) are interchanged then the sign of the determinant changes.
- * If any column is a multiple of another then the determinant is 0.
- * If A and B are both $p \times p$ matrices then |AB| = |BA| = |A||B|

The Inverse

* If A is a $p \times p$ matrix then the Inverse of A is the $p \times p$ matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I_p$$

- * A square matrix A has an inverse if, and only if, it is non-singular so $|A| \neq 0$.
- * The inverse of a diagonal matrix is a diagonal matrix with elements equal to the reciprocal of the original matrix.

$$* \left(A^{t}\right)^{-1} = \left(A^{-1}\right)^{t}.$$

* If A and B are square matrices then $(AB)^{-1} = B^{-1}A^{-1}$.

The Trace

* The trace of a square matrix is the sum of the diagonal

$$tr(A) = \sum_{i} A_{ii}$$

st A useful result is that if AB is a square matrix then

$$tr(AB) = tr(BA)$$

Important Square Matrices

- * A square matrix A is symmetric if, and only if, $A^t = A$.
- * A square matrix A is orthogonal if, and only if,

$$AA^t = A^tA = I.$$

st A square matrix X is idempotent if, and only if,

$$A^2 = AA = A.$$

* A useful property of an idempotent matrix is that its trace is always an integer and is equal to therank of the matrix.

Eigenvalues and Eigenvectors

* For any square matrix A, an eigenvalue, λ and corresponding eigenvector, $v \neq 0$, satisfy

$$Ae = \lambda e$$

st The eigenvalues can be found as the p solutions to the equation

$$|A - \lambda I_p| = 0$$

- * The eigenvector corresponding to an eigenvalue is not uniquely determined but will conventionally be chosen such that they have length one and are orthogonal to each other.
- * The Spectral Decomposition of a $p \times p$ matrix A is given by

$$A = \sum_{i=1}^p \lambda_i e_i e_i^t$$

Quadratic Forms and Positive Definite Matrices

- * Suppose that x is a vector of length p and A is a symmetric $p \times p$ matrix, then $x^t A x$ is called a Quadratic Form.
- * If A satisfies that

$$oldsymbol{x}^t oldsymbol{A} oldsymbol{x} \ \geqslant \ 0$$
 for every $p ext{-} ext{vector}\ oldsymbol{x}$

then A is said to be nonnegative definite.

* If A is nonnegative definite and

$$x^t A x = 0 \iff x = 0$$

then A is said to be positive definite.

Square Root Matrix

* In many situations it can be useful to have a square root matrix, for a positive definite matrix, satisfying

$$A = A^{1/2}A^{1/2}$$

* Suppose that the spectral decomposition of A is

$$A = \sum_{i=1}^{p} \lambda_1 e_i e_i^t = P \Lambda P$$

where P is the orthogonal matrix of eigenvectors and Λ is a diagonal matrix with the eigenvalues on the diagonal. Then we can see that

$$A = (P\Lambda^{1/2}P^t)(P\Lambda^{1/2}P^t)$$

* Also we have

$$A^{-1} = \left(P\Lambda^{-1/2}P^{t}\right)\left(P\Lambda^{-1/2}P^{t}\right)$$

Random Vectors and Matrices

- * Throughout this course we shall be dealing with random vectors and matrices.
- * A random vector (matrix) is one whose elements are random variables in the usual univariate sense.
- * The Expected Value of a random matrix $X = \{X_{ij}\}$ is

$$\mathsf{E}[X] \; = \; \left(\begin{array}{cccc} \mathsf{E}[X_{11}] & \mathsf{E}[X_{12}] & \cdots & \mathsf{E}[X_{1p}] \\ \mathsf{E}[X_{21}] & \mathsf{E}[X_{22}] & \cdots & \mathsf{E}[X_{2p}] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{E}[X_{n1}] & \mathsf{E}[X_{n2}] & \cdots & \mathsf{E}[X_{np}] \end{array} \right)$$

st If $oldsymbol{X}$ is a random vector and $oldsymbol{A}$ and $oldsymbol{B}$ are conformable matrices of constants then

$$E[AXB] = AE[X]B.$$

Joint Probability Distributions

- * Suppose that X is a random vector, we can describe its distribution with a joint probability density function $f_X(x_1, \ldots, x_p)$.
- * A joint pdf satisfies the considitions
 - **1.** $f_X(x_1,...,x_p) \ge 0$ for all $(x_1,...,x_p) \in \mathbb{R}^p$.
 - 2.

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(x_1, \dots, x_p) \, dx_1 \cdots dx_p = 1$$

- st If any components of X are discrete then the corresponding integral becomes a sum over the possible values.
- * Note that, for many distributions, the support

$$\mathcal{X} = \{(x_1, \dots, x_p) \mid f_X(x_1, \dots, x_p) > 0\}$$

is not equal to \mathbb{R}^p so care must be taken in the limits of the integrals.

Marginal and Conditional Distributions

st To find the marginal pdf for X_i we integrate over all of the other components

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(x_1, \dots, x_p) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_p$$

- * We can also find the marginal joint pdf for some components of some components in a similar way.
- * The full conditional distribution of X_i given values for the other components is

$$f_{X_i|X_{-i}}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_p) = \frac{f_X(x_1,\ldots,x_p)}{\int_{-\infty}^{\infty} f_X(x_1,\ldots,x_p) dx_i}$$

Expectation

* Suppose that g is a scalar function on \mathbb{R}^p . Then the expectation of g(X) can be found from the joint probability density

$$\mathsf{E}[g(X)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_p) f_X(x_1, \dots, x_p) \, dx_1 \cdots dx_p$$

* We can, for example, find the marginal mean of X_i by taking $g(x_1, \ldots, x_p) = x_i$ so

$$\begin{aligned}
&\mathsf{E}[X_1] &= \mathsf{E}[g(\mathbf{X})] \\
&= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_p) f_{\mathbf{X}}(x_1, \dots, x_p) \, dx_1 \cdots dx_p \\
&= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_i f_{\mathbf{X}}(x_1, \dots, x_p) \, dx_1 \cdots dx_p \\
&= \int_{-\infty}^{\infty} x_i f_{X_i}(x_i) \, dx_i
\end{aligned}$$

Mean Vectors and Covariance Matrices

Definition 1

Suppose that $X = (X_1, ..., X_p)^t$ is a random vector. Then the mean of X is

$$\mathsf{E}[X] = \mu = (\mathsf{E}[X_1], \mathsf{E}[X_2], \dots, \mathsf{E}[X_p])^t$$

and the covariance matrix of X is the matrix

$$Var(X) = \Sigma = E[(X - \mu)(X - \mu)^{t}]$$

$$= \begin{pmatrix} E[(X_{1} - \mu_{1})^{2}] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})] & \cdots & E[(X_{1} - \mu_{1})(X_{p} - \mu_{p})] \\ E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})] & E[(X_{2} - \mu_{2})^{2}] & \cdots & E[(X_{2} - \mu_{2})(X_{p} - \mu_{p})] \\ \vdots & \vdots & \ddots & \vdots \\ E[(X_{1} - \mu_{1})(X_{p} - \mu_{p})] & E[(X_{2} - \mu_{2})(X_{p} - \mu_{p})] & \cdots & E[(X_{p} - \mu_{p})^{2}] \end{pmatrix}$$

$$[(X_1 - \mu_1)(X_p - \mu_p)] \quad \mathsf{E}[(X_2 - \mu_2)(X_p - \mu_p)] \quad \cdots \quad \mathsf{E}[(X_p - \mu_p)^2]$$

Correlation Matrix

* The population correlation between 2 random variables X_i and X_j is

$$\rho_{ij} = \frac{\mathsf{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]}{\sqrt{\mathsf{Var}(X_i)}\sqrt{\mathsf{Var}(X_j)}} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$$

* The correlation matrix for the random vector $\mathbf{X} = (X_1, \dots, X_p)^t$ is then

$$\rho = \begin{pmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{12} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1p} & \rho_{2p} & \cdots & 1 \end{pmatrix}$$

* If $m{V}$ is a diagonal matrix with elements σ_{ii} then we have the relationship

$$\Sigma = V^{1/2} \rho V^{1/2}$$

Independence in \mathbb{R}^2

* Two random variable X_1 and X_2 are independent if, and only if,

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$$

for every point $(x_1, x_2) \in \mathbb{R}^2$.

* A consequence of this is then that

$$E[g_1(X_1)g_2(X_2)] = E[g_1(X_1)]E[g_2(X_2)]$$

- * Hence we see that if X_1 and X_2 are independent then $Cov(X_1, X_2) = 0$.
- * The inverse is not true in general.

Independence in \mathbb{R}^p

* The random variables X_1, \ldots, X_p are mutually independent if, and only if,

$$f_{X_{i_1},\dots,X_{i_k}}(x_{i_1},\dots,x_{i_k}) = f_{X_{i_1}}(x_{i_1})\cdots f_{X_{i_k}}(x_{i_k})$$

for every set of indices $\{i_1,\ldots,i_k\}\subset\{1,\ldots,p\}$.

* A consequence is that

$$f_X(x_1,\ldots,x_p) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_p}(x_p)$$

* The random variables X_1, \ldots, X_p are pairwise independent if, and only if,

$$f_{X_i,X_j}(x_i,\ldots,x_j) = f_{X_i}(x_i)\cdots f_{X_j}(x_j)$$

for every pair of indices $i \neq j$.

Partitioned Random Vectors

st It will sometimes be useful to partition the random vector $oldsymbol{X}$ as

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_q \\ \hline X_{q+1} \\ \vdots \\ X_p \end{pmatrix} = \begin{pmatrix} X^{(1)} \\ \hline X^{(2)} \end{pmatrix}$$

* This induces partitioning of μ and Σ as

$$\mu = \left(\frac{\mu^{(1)}}{\mu^{(2)}}\right) \qquad \Sigma = \left(\frac{\Sigma_{11} \mid \Sigma_{12}}{\Sigma_{21} \mid \Sigma_{22}}\right)$$

* $\Sigma_{12} = \Sigma_{21}^t$. is the matrix of covariances between a component of $X^{(1)}$ and a component of $X^{(2)}$.

Linear Combinations

* Suppose that $c = (c_1, \ldots, c_p)^t$ is a vector of constants then

$$Y = c^t X = \sum_{i=1}^p c_i X_i$$

is a linear combination.

- * Y is a scalar random variable.
- * The mean and variance of Y are

$$\mathsf{E}[Y] = c^t \mu \qquad \mathsf{Var}(Y) = c^t \Sigma c$$