CS6046 Problem Set 1

Instructor: Dr. Kota Srinivas Reddy Jul - Nov 2023, Deadline: 17/08/2023

- 1. (Practice) Let F be any non-empty set. Let \mathcal{F} be a collection of subsets of F with the following properties.
 - (a) $F \in \mathcal{F}$
 - (b) If $X, Y \in \mathcal{F}$ and $Y \subset X$, then $X Y \in \mathcal{F}$
 - (c) If $(X_n)_{n\in\mathbb{N}}\in\mathcal{F}$ and $X_n\subset X_{n+1}$ for each $n\in\mathbb{N}$, then $\bigcup_{n\in\mathbb{N}}X_n\in\mathcal{F}$
 - (d) If $X, Y \in \mathcal{F}$, then $X \cap Y \in \mathcal{F}$

Show the \mathcal{F} is a σ -algebra.

- 2. (Practice) Consider two random variables X and Z. Given that $Y = \mathbb{E}[X \mid Z]$, use the **tower property of expectation** to calculate $\mathbb{E}[(X Y)^2]$ and $\text{COV}(Z, \mathbb{E}[X \mid Z])$. Here, $\mathbb{E}[X]$ is the expectation of X and $\text{COV}(\cdot, \cdot)$ is the covariance.
- 3. (8+2 marks) Consider two Gaussian distributions $p \sim \mathcal{N}(\mu_p, \sigma_p^2)$ and $q \sim \mathcal{N}(\mu_q, \sigma_q^2)$. Calculate the **KL** divergence $\mathcal{D}_{KL}(p||q)$ from distribution p to distribution q. Is $\mathcal{D}_{KL}(p||q) = \mathcal{D}_{KL}(q||p)$?
- 4. (4+3+3 marks) Let X and Y be two independent random variables, where $X \sim \mathcal{N}(0,1)$ and $Y \sim \text{Exp}(\lambda)$. The **MGF** of a random variable Z is defined as $M_Z(t) = \mathbb{E}[e^{tZ}]$, where t is a real parameter.
 - (a) Calculate the MGF $M_X(t)$ and $M_Y(t)$ for random variables X and Y respectively.
 - (b) Let W = X + Y. Calculate the MGF $M_W(t)$ for the random variable W.
 - (c) Using the results from parts (a) and (b), find the MGF $M_Z(t)$ for a random variable Z=2X-3Y.
- 5. (Practice) Let U be a continuous random variable following a uniform distribution over the interval [a, b] ($U \sim \text{Uniform}(a, b)$), with 0 < a < b. Using the **inverse CDF** method, transform U into an exponential random variable X with parameter λ ($X \sim \text{Exp}(\lambda)$).
- 6. (10+10 marks) Let (Ω, \mathcal{F}, P) be a probability space, $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ be sub- σ -fields and X, Y be random variables with $\mathbb{E}[|X|], \mathbb{E}[|X|] < \infty$. Then, prove the following properties:
 - (a) If $\mathcal{H} \subseteq \mathcal{G}$, then $\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}]$.
 - (b) If Y is \mathcal{G} , then $\mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}]$.