ETH zürich

Adaptive Probabilities in Stochastic Optimization Algorithms

Lei Zhong Data Analytics Lab

Apr. 21, 2015

ETH zürich

- Warm-Up
- 2 Non-Uniform Sampling
- Adaptive Sampling
- Discussions and Experiments

Seference

Apr. 21, 2015 Data Analytics Lab 2 / 39

Problem

Empirical Risk Minimization

$$\min_{\boldsymbol{w} \in \mathbb{R}^n} f(\boldsymbol{w})$$

$$f(\mathbf{w}) := \ell(\mathbf{w}) + \lambda r(\mathbf{w}) \tag{1}$$

where

$$\ell(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i).$$

and

$$r(\mathbf{w}) := \frac{1}{2} \|\mathbf{w}\|_2^2$$

Here, $\ell(., y_i) : \mathbb{R} \to \mathbb{R}$ is a loss function and r(.) takes the role of a regularizer.

Problem cont.

Partial Objective Function

$$f(\mathbf{w}, i) = \ell(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \lambda r(\mathbf{w}).$$

- x_i : feature vector of sample i
- y_i: label of sample i
- w: solution of objective function
- η : stepsize for updating w
- χ_i : subgradient of $f(\mathbf{w}, i)$

Assume f, ℓ and r are convex.

Apr. 21, 2015 Data Analytics Lab 4 / 39

Part A

Non-Uniform Sampling Algorithms

Apr. 21, 2015 Data Analytics Lab 5 / 39

Non-Uniform

Define p_i as the probability that sample i will be selected with $\sum_{j=1}^{n} p_j = 1$. We define \mathbf{g}_i as the weighted subgradient with $\mathbf{g}_i = \frac{\chi_i}{nn}$.

$$\mathbb{E}[\boldsymbol{g}(\boldsymbol{w})] = \sum_{i=1}^{n} \frac{\chi_i}{n} = \nabla f(\boldsymbol{w})$$

Apr. 21, 2015 Data Analytics Lab 6 / 39

NonUnifSGD

Algorithm 1: Non-Uniform Stochastic Gradient Discent

```
Input: \lambda > 0, p_i = \frac{\|x_i\|}{\sum_{i=1}^{n} \|x_i\|}, \forall i \in \{1, \dots, n\}.
Data: \{(x_i, y_i)\}_{i=1}^n.
Initialize: w^1 = 0
for t = 1, 2, ..., T
         Sample i_t from \{1, \ldots, n\} based on \boldsymbol{p};
         Set stepsize \eta_t \leftarrow \frac{1}{\lambda_t};
         Set \chi_{i_t}^t(\mathbf{w}^t) \leftarrow \ell'(\langle \mathbf{w}^t, \mathbf{x}_{i_t} \rangle, y_{i_t}) \mathbf{x}_{i_t} + \lambda \nabla r(\mathbf{w}^t);
       Set \boldsymbol{g}_{i_t}^t \leftarrow \frac{\chi_{i_t}^t(\boldsymbol{w}^t)}{np_{i_t}};
Set \boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^t - \eta_t \boldsymbol{g}_{i_t}^t;
```

end

Output: w^{T+1}

Convergence Theorem

Theorem

Suppose f is a λ -strongly convex function. If we choose the stepsize $\eta_t = \frac{1}{\lambda t}$, then after T iterations of NonUnifSGD (Algorithm 1) starting with $\mathbf{w}^1 = \mathbf{0}$, it holds that

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{w}^{t}\right)\right] - f(\boldsymbol{w}^{*}) \leq \frac{1}{2\lambda T}\sum_{t=1}^{T}\frac{\mathbb{E}[\|\boldsymbol{g}_{i_{t}}^{t}\|^{2}]}{t}$$

where $\mathbf{g}_{i_t}^t = \frac{\chi_{i_t}^t(\mathbf{w}^t)}{np_{i_t}}$ and the expectation is taken with respect to the distribution \mathbf{p} .

Apr. 21, 2015 Data Analytics Lab **8** / 3

Two corollaries

Definition

Define $G := \max_{i,t} \{ \| \chi_i^t(\mathbf{w}^t) \|^2 \}$ (i = 1 ... n, t = 1 ... T).

Define $W := \max_{i,t} \{\mathbb{E}[\|\chi_i^t(\mathbf{w}^t)\|^2]\}$ (i = 1 ... n, t = 1 ... T).

Corollary

Assume that $\max_t \{ \| \boldsymbol{\chi}_{i_t}^t(\boldsymbol{w}^t) \|^2 \} \le G$ or $\mathbb{E}[\| \boldsymbol{\chi}_{i_t}^t(\boldsymbol{w}^t) \|^2] \le W$ for all t and $p_i > \epsilon$ for all $i = \{1, \dots, n\}$,

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{w}^{t}\right)\right] - f(\boldsymbol{w}^{*}) \leq \frac{1}{2\lambda T}\sum_{t=1}^{T}\frac{G}{\epsilon nt} \leq \frac{G}{2\lambda \epsilon n} \cdot \frac{\ln T + 1}{T} or$$

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{w}^{t}\right)\right] - f(\boldsymbol{w}^{*}) \leq \frac{1}{2\lambda T}\sum_{t=1}^{T}\frac{W}{n^{2}\epsilon^{2}t} \leq \frac{W}{2\lambda n^{2}\epsilon^{2}} \cdot \frac{\ln T + 1}{T}$$

Apr. 21, 2015

Another Theorem for SGD

Theorem

Suppose f is a λ -strongly convex function. If we choose the stepsize $\eta_t = \frac{2}{\lambda(t+1)}$, then after T iterations of NonUnifSGD (Algorithm 1) with starting point $\mathbf{w}^1 = \mathbf{0}$, it holds that the weighted average of the iterates satisfies

$$\mathbb{E}\big[f(\frac{2}{T(T+1)}\sum_{t=1}^{T}t\boldsymbol{w}^t)\big] - f(\boldsymbol{w}^*) \leq \frac{2}{\lambda(T+1)}\max_{t}\mathbb{E}[\|\boldsymbol{g}_{i_t}^t\|^2]$$

where $\mathbf{g}_{i_t}^t = \frac{\chi_{i_t}^t(\mathbf{w}^t)}{np_{i_t}}$, and the expectation is taken with respect to the distribution \mathbf{p} .

Apr. 21, 2015 Data Analytics Lab 10 / 39

Dual Problem

Dual Objective Function

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} D(\boldsymbol{\alpha}) := \frac{1}{n} \sum_{i=1}^n -\ell_i^*(-\alpha_i) - \lambda r^*(\boldsymbol{v}(\boldsymbol{\alpha})).$$

The relationship between primal variable ${\it w}$ and dual variable ${\it lpha}$ is

$$\boldsymbol{w}(\alpha) := \nabla r^*(\boldsymbol{v}(\alpha)), \boldsymbol{v}(\alpha) := \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \boldsymbol{x}_i$$

where $\alpha \in \mathbb{R}^n$.

Apr. 21, 2015 Data Analytics Lab 11 / 39

NonUnifSDCA

Algorithm 2: Non-Uniform Stochastic Dual Coordinate Ascent

end

Output: w^{T+1}

Apr. 21, 2015 Data Analytics Lab 12 / 39

Part B

Adaptive Sampling Algorithms

Apr. 21, 2015 Data Analytics Lab 13 / 39

Idea behind SGD

According to the SGD theorem, we can reduce the convergence rate by solving the following optimization problem:

$$\min \mathbb{E}[\|oldsymbol{g}_{i_t}^t\|^2].$$

By the Cauchy-Schwarz inequality and the fact that $\sum_{i=1}^{n} p_i = 1$,

$$\mathbb{E}[\|\boldsymbol{g}_{i_t}^t\|^2] = \sum_{i=1}^n \frac{\|\chi_i\|^2}{n^2 p_i} = (\sum_{i=1}^n \frac{\|\chi_i\|^2}{n^2 p_i})(\sum_{i=1}^n p_i) \ge (\sum_{i=1}^n \frac{\|\chi_i\|}{n})^2.$$

The above inequality holds when

$$p_i = \frac{\|\boldsymbol{\chi}_i\|}{\sum_{j=1}^n \|\boldsymbol{\chi}_i\|}.$$

Apr. 21, 2015 Data Analytics Lab 14 / 39

AdaSGD

```
Algorithm 5: AdaSGD (Adaptive Non-Uniform Stochastic Gradient
Discent)
  Input: \lambda > 0
  Data: \{(x_i, y_i)\}_{i=1}^n
  Initialize: w^0 = 0, probabilities
                    p_i = \frac{\|\mathbf{x}_i\|^2 + \sqrt{\lambda}}{\sum_{i=1}^n \|\mathbf{x}_i\|^2 + \sqrt{\lambda}}, c_i = 0, \forall i \in \{1, \dots, n\}.
  for t = 1, 2, ..., T
        Sample i_t from \{1, ..., n\} based on p;
        Set \eta_i \leftarrow C_i \leftarrow \max\{c_i, \|\boldsymbol{\chi}_i\|\};
        Set \chi_{i_t}^t(w^t) \leftarrow \ell' x_{i_t} + \lambda \nabla r(w^t);
       if (t-1) mod n > n-k then
              for i = 1, 2, ..., n
                   Calculate \ell'(\langle x_i, w^t \rangle, y_i);
                   Set \chi_i \leftarrow \ell'(\langle x_i, w^t \rangle, y_i) x_i + \lambda \nabla r(w^t);
                   Set c_i \leftarrow \max\{c_i, \|\boldsymbol{\chi}_i\|\};
              end
        end
        if t \mod n = 0 then
              Option I: Run Algorithm 3 (Aggressive Update);
              Option II: Run Algorithm 4 (Conservative Update);
       end
        Set \mathbf{g}_{i_t}^t \leftarrow \frac{\mathbf{\chi}_{i_t}^t(\mathbf{w}^t)}{n\mathbf{v}_{i_t}};
        Set \boldsymbol{w}^{t+1} \leftarrow \boldsymbol{w}^{t} - \eta_{t} \boldsymbol{g}_{i}^{t};
```

Apr. 21, 2015

Two Updates

Algorithm 3: Aggressive Probability Update

$$\begin{array}{l} \textbf{for } j = 1, \ldots, n \\ \mid & \mathsf{Set} \ p_j \leftarrow \frac{c_j}{\sum_{k=1}^n c_k}; \end{array}$$

end

Algorithm 4: Conservative Probability Update

$$\begin{array}{l} \text{for } j = 1, \ldots, n \\ \mid & \mathsf{Set} \; p_j \leftarrow \frac{\tilde{c}_j}{\sum_{k=1}^n \tilde{c}_k}; \end{array}$$

end

For all
$$i \in \{1, ..., n\}$$
, $\tilde{c}_i := \max\{1, c_i\}$.

Apr. 21, 2015 Data Analytics Lab 16 / 39

AdaSVRG (variant of AdaSGD)

We add a $\tilde{\boldsymbol{w}}$ (which denotes the \boldsymbol{w} of last epoch) for a new update equation. Therefore, we get

$$\boldsymbol{w}^{t+1} := \boldsymbol{w}^t - \eta_t[\boldsymbol{g}_{i_t}^t(\boldsymbol{w}^t) - \boldsymbol{g}_{i_t}^t(\tilde{\boldsymbol{w}}) - \nabla f(\tilde{\boldsymbol{w}})]$$

The expectation of the update function is still the same as before, because

$$\mathbb{E}[\boldsymbol{g}(\boldsymbol{w}) - \boldsymbol{g}(\tilde{\boldsymbol{w}}) + \nabla f(\tilde{\boldsymbol{w}})] = \mathbb{E}[\boldsymbol{g}(\boldsymbol{w})] - \mathbb{E}[\boldsymbol{g}(\tilde{\boldsymbol{w}})] + \nabla f(\tilde{\boldsymbol{w}}) = \nabla f(\boldsymbol{w}).$$

Apr. 21, 2015 Data Analytics Lab 17 / 39

Idea behind SDCA

Definition

Define the gap of point i as

$$\sigma_i^t = \ell(\mathbf{x}_i^\mathsf{T} \mathbf{w}^t) + \ell^*(-\alpha_i^t) + \alpha_i^t \mathbf{x}_i^\mathsf{T} \mathbf{w}^t$$

where \mathbf{w}^t here is assumed to be the corresponding primal vector for the current α^t , that is $\mathbf{w}^t(\alpha^t) := \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i \mathbf{x}_i^t$.

The **duality gap** between the primal objective and dual objective at the t-th iteration is defined as

$$f(\mathbf{w}^t) - D(\alpha^t) = \frac{1}{n} \sum_{i=1}^n \sigma_i^t.$$

Apr. 21, 2015 Data Analytics Lab 18 / 39

AdaSDCA (Duality Gap)

Output: w^{T+1}

```
Algorithm 7: AdaSDCA (Adaptive Non-uniform Stochastic Dual Coor-
dinate Ascent)
  Input: \lambda > 0
  Data: \{(x_i, y_i)\}_{i=1}^n
  Initialize: \alpha^1 = \mathbf{0}, w^1 = \mathbf{0}, probabilities p_i = \frac{1 + \frac{1}{\lambda n \gamma_i}}{n + \sum_{i=1}^{n} \frac{1}{1 - i}} or
                    p_i = \frac{\|x_i\|}{\sum_{i=1}^n \|x_i\|}, c_i = 0, \forall i \in \{1, \dots, n\}.
  for t = 1, 2, ..., T
        Sample i_t from \{1, ..., n\} based on p;
        Calculate Δα<sup>t</sup> using following formulas:
        \Delta \alpha_{i_i}^t = \arg \mathbf{r} Set c_i \leftarrow \max\{c_i, \sigma_i^t\};
        Set \alpha_{i_t}^{t+1} \leftarrow \alpha_{i_t}^{t+1} \stackrel{\triangle w_{i_t}}{\leftarrow} x_{i_t},
Set w^{t+1} \leftarrow w^t + \frac{1}{\lambda n} \Delta \alpha_{i_t}^t x_{i_t};
        if (t-1) mod n \ge n-k then
              for i = 1, 2, ..., n
                    Calculate \sigma_i^t \leftarrow \ell(\mathbf{x}_i^\mathsf{T} \mathbf{w}^t) + l^*(-\alpha_i^t) + \alpha_i^t \langle \mathbf{x}_i, \mathbf{w}^t \rangle;
                   Set c_i \leftarrow \max\{c_i, \sigma_i^t\};
              end
        if t \mod n = 0 then
              Option I: Run Algorithm 3 (Aggressive Update);
              Option II: Run Algorithm 4 (Conservative Update);
        end
  end
```

AdaSDCAS (Subgradient)

Output: w^{T+1}

```
Algorithm 8: AdaSDCAS (Adaptive Non-uniform Stochastic Dual Co-
ordinate Ascent by Subgradient)
  Input: \lambda > 0
  Data: \{(x_i, y_i)\}_{i=1}^n
  Initialize: \alpha^1 = \mathbf{0}, w^1 = \mathbf{0}, probabilities p_i = \frac{1 + \frac{1}{\lambda n \gamma_i}}{n + \sum_{i=1}^n \frac{1}{\lambda n \gamma_i}} or
                    p_i = \frac{\|x_i\|}{\sum_{i=1}^n \|x_i\|}, c_i = 0, \forall i \in \{1, \ldots, n\}.
  for t = 1, 2, ..., T
        Sample i_t from \{1, ..., n\} based on p;
        Calculate \Delta \alpha_i^t using following formulas:
        \sum_{\text{Set }\alpha_{i}^{t+1}\leftarrow a_{i}}^{\Delta\alpha_{i_{t}}^{t}=\arg m} c_{i} \leftarrow \max\{c_{i}, \|\boldsymbol{\chi}_{i}^{t}\|\};
        Set w^{t+1} \leftarrow w^t + \frac{1}{\lambda_n} \Delta \alpha_{i_t}^t x_{i_t};
        if (t-1) \mod n > n-k then
              for i = 1, 2, ..., n
                   Calculate \ell'(\langle x_i, y^\ell \rangle, y_i);
                  Set \chi_i^t \leftarrow \ell'(\langle x_i | w^t \rangle, y_i) x_i + \lambda \nabla r(w^t);
Record c_i \leftarrow \max\{c_i, \|\chi_i^t\|\};
         end
        if t \mod n = 0 then
              Option I: Run Algorithm 3 (Aggressive Update);
              Option II: Run Algorithm 4 (Conservative Update);
        end
  end
```

Part C

Discussions and Experiments

Apr. 21, 2015 Data Analytics Lab 21 / 39

Datasets for empirical study

Dataset	Training(n)	Test	Features (d)	Sparsity $\left(\frac{nnz}{nd}\right)$
rcv1	20,242	677,399	47,236	0.16%
astro-ph	29,882	32,487	99,757	0.08%

• rcv1 is a corpus from Reuters news stories.

• astro-ph is astronomy data.

Apr. 21, 2015 Data Analytics Lab 22 / 39

Cost per epoch and properties of algorithms

Algorithm	cost of an epoch	non-uniform	adaptive
NonUnifSGD	nnz	✓	Х
NonUnifSDCA	nnz	✓	X
AdaSGD	(k+1) nnz	✓	✓
AdaSVRG	nd + k nnz	✓	✓
AdaSDCA	(k+1) nnz	✓	✓
AdaSDCAS	(k+1) nnz	✓	✓
AdaGrad (by Duchi)	2nd	×	X
AdaSDCA (by Csiba)	<i>n</i> nnz	✓	✓
AdaSDCA+ (by Csiba)	2 nnz	✓	✓

nnz: is the number of nonzero elements of the matrix consisting of all the samples in the dataset.

Apr. 21, 2015 Data Analytics Lab 23 / 39

Test Error with Different Values of λ

rcv1	1e-2	5e-3	1e-3	5e-4	1e-4
Test Error	0.05160	0.04833	0.04713	0.04913	0.05693

astro-ph	1e-2	5e-3	1e-3	5e-4	1e-4
Test Error	0.04103	0.03715	0.03441	0.03586	0.04371

Apr. 21, 2015 Data Analytics Lab 24 / 39

Verifying the Convergence of Duality Gap

Table: Average duality gap at different epochs for $\lambda = 0.001$

#epoch	duality gap on rcv1	duality gap on astro-ph
1	0.0863765	0.0883917
3	0.0105347	6.13163e-03
10	1.7485e-04	3.93673e-05
20	2.21547e-05	6.24779e-07
50	3.12797e-06	6.7474e-10
100	5.47897e-07	1.43083e-12

Apr. 21, 2015 Data Analytics Lab 25 / 39

Performance Metrics

Definition

The **primal sub-optimality** of algorithm is defined as $f(\mathbf{w}) - f(\mathbf{w}^*)$.

Definition

Test error is the error rate on test dataset.

We calculate the value by

$$\ln(f(\mathbf{w}) - f(\mathbf{w}^*) + \epsilon).$$

Apr. 21, 2015 Data Analytics Lab 26 / 39

Performance of Two Updating Algorithms

Figure: Comparison of two updating algorithms for AdaSGD and AdaSDCA on rcv1

Apr. 21, 2015 Data Analytics Lab 27 / 39

Different Adaptive Strategies for AdaSDCA

Figure: Comparison of AdaSDCA and AdaSDCAS on rcv1

Apr. 21, 2015 Data Analytics Lab 28 / 39

Comparison of Adaptive Algorithms

Figure: Comparison of five adaptive algorithms on rcv1

Apr. 21, 2015 Data Analytics Lab 29 / 39

Comparison of Adaptive Algorithms cont.

Figure: Comparison of three adaptive algorithms on astro-ph

Apr. 21, 2015 Data Analytics Lab 30 / 39

Comparison of Average Time

Table: Detailed training time and total running time per epoch

rcv1	Training time(s)	Total running time(s)
AdaSGD	0.04765	0.2059
AdaSDCA	0.05042	0.2064
NonUnifSGD	0.04244	0.1988
NonUnifSDCA	0.04716	0.2037
astro-ph	Training time(s)	Total running time(s)
astro-ph AdaSGD	Training time(s) 0.07236	Total running time(s) 0.1363
	. ,	• • • • • • • • • • • • • • • • • • • •
AdaSGD	0.07236	0.1363

Apr. 21, 2015 Data Analytics Lab 31 / 39

Comparison of Time

Figure: Comparison of the total running time to reach the same optimality

Apr. 21, 2015 Data Analytics Lab 32 / 39

Same Level of Optimality

Table: The number of epochs taken to reach the same level of optimality

rcv1	AdaSDCA	NonUnifSDCA	AdaSGD	NonUnifSGD
#epochs	9	35	210	500
astro-ph	AdaSDCA	NonUnifSDCA	AdaSGD	NonUnifSGD
#epochs	8	28	195	500

Apr. 21, 2015 Data Analytics Lab 33 / 39

Comparison of Vector Operation

Figure: Comparison of the vector operations taken to reach the same optimality

Apr. 21, 2015 Data Analytics Lab 34 / 39

Adaptive vs. Non-Uniform Algorithms

Figure: Comparison of adaptive algorithms with non-adaptive algorithms on rcv1

Apr. 21, 2015 Data Analytics Lab 35 / 39

Adaptive vs. Non-Uniform Algorithms cont.

Figure: Comparison of adaptive algorithms with non-adaptive algorithms on astro-ph

Apr. 21, 2015 Data Analytics Lab 36 / 39

ETH zürich

Summary

- Conservative Update works better on AdaSGD while Aggressive Update works better on AdaSDCA.
- AdaSDCA (adaptive algorithm with duality gap) performs better than AdaSDCAS (adaptive algorithm with subgradient).
- AdaSDCA has the best performance among all the adaptive algorithms (AdaSDCA, AdaSGD, AdaSVRG, AdaGrad and AdaSDCA+) and AdaSGD is the second best.
- AdaSVRG achieves a slightly better performance per epoch than AdaSGD but sacrifices the running time on sparse datasets.

Apr. 21, 2015 Data Analytics Lab 37 / 39

Reference

- [1] John Duchi, Elad Hazan, and Yoram Singer. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." JMLR, 12:21212159, August 2011.
- [2] Dominik Csiba, COM Zheng Qu, and Peter Richtárik. "Stochastic dual coordinate ascent with adaptive probabilities."
- [3] Peilin Zhao and Tong Zhang. "Stochastic Optimization with Importance Sampling." arXiv.org, January 2014.
- [4] Zheng Qu, Peter Richtárik, and Tong Zhang. "Randomized dual coordinate ascent with arbitrary sampling." arXiv preprint arXiv:1411.5873, 2014.
- [5] Rie Johnson and Tong Zhang. "Accelerating Stochastic Gradient Descent using Pre- dictive Variance Reduction." In NIPS, 2013.

Apr. 21, 2015 Data Analytics Lab 38 / 39

ETH zürich

Q&A

Thank You!

Acknowledgement:

Thanks to Martin for helpful discussions and suggestions!

Apr. 21, 2015 Data Analytics Lab 39 / 39