Jedną z metod interpolacji wielomianowej jest metoda Lagrange'a, gdzie wielomian interpolujący L(x) dla n+1 punktów $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ ma postać:

$$L(x) = \sum_{i=0}^{n} y_i \cdot l_i(x)$$

gdzie $l_i(x)$ to wielomiany bazowe Lagrange'a, określone jako:

$$l_i(x) = \prod_{\substack{j=0 \ j
eq i}}^n rac{x-x_j}{x_i-x_j}$$

Aby obliczyć wartość w punkcie x_q , korzystając z interpolacji Lagrange'a i mając 5 punktów (x_1, y_1 do x_5, y_5), postępuj zgodnie z tymi krokami:

- 1. **Przygotuj się**: Upewnij się, że znasz wszystkie swoje punkty i który x_q chcesz użyć do znalezienia odpowiadającego mu y_q .
- 2. Rozpocznij od pierwszego punktu: Zaczynając od x_1, y_1 , stwórz wzór dla pierwszej 'częściowej' krzywej (nazywanej wielomianem Lagrange'a), który bierze pod uwagę, jak ten punkt wpływa na kształt całej krzywej. Wzór ten wygląda tak:

$$l_1(x) = \frac{(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)}$$

Zauważ, że w liczniku i mianowniku umieszczasz różnice między x (twoim punktem zapytania) oraz innymi znanymi wartościami x, ale pomiń x_1 , ponieważ to jest 'twój' punkt teraz.

3. Powtórz dla każdego punktu: Dla każdego z pozostałych punktów (x_2,y_2 do x_5,y_5) stwórz podobne 'częściowe' krzywe, pamiętając, aby za każdym razem pominąć 'twój' punkt z licznika i mianownika. Na przykład, dla x_2,y_2 , wielomian będzie wyglądał tak:

$$l_2(x) = \frac{(x-x_1)(x-x_3)(x-x_4)(x-x_5)}{(x_2-x_1)(x_2-x_3)(x_2-x_4)(x_2-x_5)}$$

4. **Połącz je wszystkie**: Teraz, kiedy masz wszystkie 5 'częściowych' krzywych (od $l_1(x)$ do $l_5(x)$), połącz je razem, aby uzyskać pełną krzywą. Robisz to, mnożąc każdy wielomian Lagrange'a przez odpowiadającą mu wartość y i dodając je do siebie:

$$L(x) = y_1 \cdot l_1(x) + y_2 \cdot l_2(x) + y_3 \cdot l_3(x) + y_4 \cdot l_4(x) + y_5 \cdot l_5(x)$$

5. **Oblicz** y_q : Wstaw x_q do pełnego wzoru L(x), aby znaleźć y_q , czyli wartość y w punkcie zapytania:

$$y_q = L(x_q)$$