

Q-Learning and SARSA: Intelligent stochastic control approaches for financial trading

Marco CORAZZA

(corazza@unive.it)

Department of Economics - Ca' Foscari University of Venice

EUROPEAN CENTER FOR LIVING TECHNOLOGY

Venice, Italy - January 13, 2017

Summary

- O Introduction(EMH *vs.* AMH)
- **1** Reinforcement learning
- **2** Q-Learning and SARSA
- **3** Operational implementation
- **4** Application to the Italian stock market
 - **5** Some final remarks

0 – Introduction (1/8)

A (simple) definition

«A **trading system** is simply a group of specific rules, or parameters, that determine **entry** and **exit points** for a given equity.»

From: http://www.investopedia.com/

0 – Introduction (2/8)

The starting question

Can machine learning methods be used to develop profitable trading systems?

Classical answer

Modern answer

0 - Introduction (3/8)

Classical answer

Efficient Market Hypothesis (EMH)

In financial markets, it is possible to "gain" only **randomly** and **rarely**.

In a liquid financial market, **asset prices fully reflect** all currently available **information**.

The EMH exists in various degrees:

Weak form (past prices and volumes);

Semi-strong form (public information);

Strong form (public and private information).

0 – Introduction (4/8)

Classical answer

0 - Introduction (5/8)

Classical answer

According to EMH, asset price movements can be described as

$$\frac{P_{t+1}}{P_{t+1}} = E(\tilde{P}_{t+1}|\Omega_t) + \tilde{\varepsilon}_{t+1} = \frac{P_t}{P_t}$$
 where

t and t+1: consecutive time instants,

 P_{τ} : asset price at time τ ,

 $E(\cdot)$: expectation operator,

 \tilde{P}_{t+1} : random variable "asset price" at time t+1,

 Ω_t : set of all available information at time t,

 $\tilde{\varepsilon}_{t+1}$: **error term** at time t+1, with $E(\tilde{\varepsilon}_{t+1}) = 0$.

0 – Introduction (6/8)

<u>Modern answer</u>

Adaptive Market Hypothesis

Financial markets are systems in which the agents interact among them in complex ways in order to maximize their profits.

Agents react to the news in a **not fully rational ways**, making mistakes but **learning** and **adapting** their behaviors.

So, financial markets are generally **inefficient** and the traders can **more or less systematically** implement **profitable strategies**.

0 – Introduction (7/8)

<u>Modern answer</u>

0 - Introduction (8/8)

Summarizing

It is reasonable to assume **AMH** is valid.

Therefore, to develop profitable trading systems it is necessary to provide them with **problem-solving capabilities** similar to those of the superior living beings, that is to make them "intelligent".

1 – Reinforcement Learning: A sketch (1/3)

Machine learning is a research field studying **methodologies** by which a computer is able to perform a finalized **action** given its **state** depending on an algorithmic learning based on **past** and **current data**.

Main machine learning methodologies

Supervised learning
Unsupervised learning
Reinforcement learning

1 - Reinforcement Learning: A sketch (2/3)

$$s_0 \stackrel{a_0}{\longrightarrow} s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} \dots$$

1 - Reinforcement Learning: A sketch (3/3)

- *time t*: the system **detects the state of the environment**;
- time t: on this basis, the systems takes an action;
- time t + 1: the environment returns a negative or positive reward coherently with the exactness, or less, of the action;
- time t + 1: the agent modifies its knowledge, that is it learns, depending on whether the action is incorrect or correct.

1 - Reinforcement Learning: Formalization (1/5)

- **Discrete time framework**: 0, 1, ..., t, t + 1, ...;
- **State vector**: $s_t \in \mathbb{R}^n$, it contains the relevant information;
- Action: $a_t \in A(s_t) \subseteq \mathbb{R}$, where $A(s_t)$ is the set of the possible actions according to the state s_t ;
- Reward function:

$$r(\boldsymbol{s}_t, a_t, \boldsymbol{s}_{t+1});$$

1 - Reinforcement Learning: Formalization (2/5)

System's goal: To maximize the expected value of

$$R(\mathbf{s}_t) = r(\mathbf{s}_t, a_t, \mathbf{s}_{t+1}) + \gamma \cdot r(\mathbf{s}_{t+1}, a_{t+1}, \mathbf{s}_{t+2}) + \dots + \gamma^2 \cdot r(\mathbf{s}_{t+2}, a_{t+2}, \mathbf{s}_{t+3}) + \dots$$

where

 $\gamma \in [0, 1[$ is a discount factor;

Reinforcement Learning's goal:

To detect a **policy**, that is a map

$$\pi(\mathbf{s}_t) = a_t,$$

which associates to each state the action that maximizes the expected value of $R(\mathbf{s}_t)$;

1 - Reinforcement Learning: Formalization (3/5)

Reformulated system's goal: To maximize the expexted value of

$$R^{\pi}(s_t) = r(s_t, \frac{\pi(s_t)}{\sigma(s_t)}, s_{t+1}) + \gamma \cdot r(s_{t+1}, \frac{\pi(s_{t+1})}{\sigma(s_{t+1})}, s_{t+2}) + \dots + \gamma^2 \cdot r(s_{t+2}, \frac{\pi(s_{t+2})}{\sigma(s_{t+2})}, s_{t+3}) + \dots;$$

• Value functions: For maximize the expexted value of $R(s_t)$ or $R^{\pi}(s_t)$, one introduce

$$V^{\pi}(s) = \mathbf{E}(R^{\pi}(s_t)|s_t = s)$$
or
$$O^{\pi}(s, a) = \mathbf{E}(R^{\pi}(s_t)|s_t = s, a_t = a).$$

where

 \boldsymbol{s} and \boldsymbol{a} are particular value of \boldsymbol{s}_t and \boldsymbol{a}_t respectively;

1 - Reinforcement Learning: Formalization (4/5)

 Bellman equation: For the value equations, the following recursive relationship holds

$$V^{\pi}(s) = \mathbf{E}[r(s_t, \pi(s_t), s_{t+1}) + \gamma \cdot V^{\pi}(s_{t+1}) | s_{t+1} = s]$$

from which the following approximate iterative estimator

$$\widehat{V}_{k+1}^{\pi}(\boldsymbol{s}_t) = \mathbf{E}[r(\boldsymbol{s}_t, \pi(\boldsymbol{s}_t), \boldsymbol{s}_{t+1}) + \gamma \cdot \widehat{V}_k^{\pi}(\boldsymbol{s}_{t+1})].$$

1 - Reinforcement Learning: Formalization (5/5)

 In order to improve the policy at each instant time, the following approximate iterative procedure is considered

$$\widehat{V}_{k+1}^{\pi'}(\boldsymbol{s}_t) = \max_{a} \mathbf{E}[r(\boldsymbol{s}_t, a, \boldsymbol{s}_{t+1}) + \gamma \cdot \widehat{V}_k^{\pi}(\boldsymbol{s}_{t+1})]$$

where

 $\hat{V}_{k+1}^{\pi'}(\mathbf{s}_t)$ is the update estimate at time instant t=k+1

and with

$$a_t = \begin{cases} \pi'(\mathbf{s}_t) \text{ with probability } 1 - \varepsilon \\ a \in A(\mathbf{s}_t) \text{ with probability } \varepsilon \end{cases}$$

where

$$\varepsilon \in [0,1]$$

and

 $\pi'(\mathbf{s}_t)$ is the action which maximizes $Q^{\pi}(\mathbf{s}, a)$.

2 - The Q-Learning and SARSA algorithms (1/4)

 In the Q-Learning framework, the approximate iterative procedure becomes

$$\hat{Q}_{k+1}(\boldsymbol{s}_t, a_t) = \hat{Q}_k(\boldsymbol{s}_t, a_t) + \frac{1}{k+1} \left[r(\boldsymbol{s}_t, a_t, \boldsymbol{s}_{t+1}) + \gamma \cdot \max_{a} \hat{Q}_k(\boldsymbol{s}_{t+1}, a_t) - \hat{Q}_k(\boldsymbol{s}_t, a_t) \right];$$

• In the **SARSA** framework, the **approximate iterative procedure** becomes

$$\begin{aligned} \hat{Q}_{k+1}(\boldsymbol{s}_t, \boldsymbol{a}_t) &= \hat{Q}_k(\boldsymbol{s}_{t}, \boldsymbol{a}_t) + \\ + \frac{1}{k+1} \big[r(\boldsymbol{s}_t, \boldsymbol{a}_t, \boldsymbol{s}_{t+1}) + \gamma \cdot \hat{Q}_k(\boldsymbol{s}_{t+1}, \boldsymbol{a}_t) - \hat{Q}_k(\boldsymbol{s}_t, \boldsymbol{a}_t) \big]; \end{aligned}$$

2 - The Q-Learning and SARSA algorithms (2/4)

• As the system takes into account **continuous** s_t , $\hat{Q}_k(s_t, a_t)$ may be approximate by

$$\widehat{Q}_k(\mathbf{s}_t, a_t) = \widehat{Q}_k(\mathbf{s}_t, a_t; \boldsymbol{\theta}_k)$$

where

 $\boldsymbol{\theta}_k$ is a parameter vector, randomly initialized.

2 - The Q-Learning and SARSA algorithms (3/4)

• For obtaining the best estimation of $Q^{\pi}(s_t, a_t)$, the following **linear** functional is considered

$$\widehat{Q}^{\pi}(\mathbf{s}, \mathbf{a}; \boldsymbol{\theta}) = \boldsymbol{\theta_0} + \sum_{i=1}^{n} \boldsymbol{\theta_i} \cdot \phi(s_i) + \sum_{i=n+1}^{n+m} \boldsymbol{\theta_i} \cdot \phi(a_i)$$

where

 $\mathbf{s} = (s_1, \dots, s_n)$ is the state vector,

 $\boldsymbol{a}=(a_1,\cdots,a_m)$ is the action vector,

 $\phi(\cdot)$ is a proper transformation function of states and actions.

2 - The Q-Learning and SARSA algorithms (4/4)

Finally, one obtain the following iterative updating rules

$$\begin{cases} d_k = r(\boldsymbol{s}_t, a_t, \boldsymbol{s}_{t+1}) + \gamma \cdot \max_{a} \hat{Q}^{\pi}(\boldsymbol{s}_{t+1}, a_t; \boldsymbol{\theta}_k) - \hat{Q}^{\pi}(\boldsymbol{s}_t, a_t; \boldsymbol{\theta}_k) \\ \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \cdot d_k \cdot \nabla_{\boldsymbol{\theta}} \cdot \hat{Q}^{\pi}(\boldsymbol{s}_{t+1}, a_t; \boldsymbol{\theta}_k) \end{cases}$$

where

 $\alpha_k \in [0, 1]$ is the so called **learning rate**.

Adaptive stochastic optimal conrol problem.

3 - Operational implementation (1/6)

Specification of the **state vector** s_t ;

Specification of the **actions** a_t ;

Specification of the **reward function** $r(s_t, a_t, s_{t+1})$;

Specification of **transformation function** $\phi(\cdot)$;

Other.

3 – Operational implementation (2/6)

• Specification of the **state vector** s_t :

$$\mathbf{s}_t = (e_{t-n}, e_{t-(n-1)}, \cdots, e_t, a_{t-1}),$$

where

$$e_t = \ln\left(\frac{p_t}{p_{t-1}}\right)$$

and

with

$$n \in \{0, 4\}$$
;

• Specification of the **actions** a_t :

$$a_t = \begin{cases} -1 & \text{(short position)} \\ \mathbf{0} & \text{(stay out position)}; \\ +1 & \text{(long position)} \end{cases}$$

3 - Operational implementation (3/6)

• Specification of the **reward function** $r(s_t, a_t, s_{t+1})$, **Sharpe ratio**:

$$r(\mathbf{s}_{t}, a_{t}, \mathbf{s}_{t+1}) = \frac{g_{t,L}}{\sqrt{\frac{\sum_{i=0}^{L-1} (g_{t-i} - \bar{g}_{t,L})^{2}}{L-1}}},$$

where $g_t = a_{t-1} \cdot e_t$ and with

 $L \in \{5, 22\}$;

Specification of the transaction costs: 0,19%;

3 – Operational implementation (4/6)

• Specification of the **transformation** or **squashing function** $\phi(\cdot)$:

$$\phi(x) = \frac{a}{1 + be^{-cx}} - d,$$

with

$$a = 2$$
, $b = 1$, $c = 10^{15}$ and $d = -1$

• $\alpha = 5,0\%$, $\gamma = 95\%$, $\varepsilon \in \{2.5\%, 5.0\%, 10.0\%\}$;

3 – Operational implementation (5/6)

 Number of iterations: 500; (both Q-Learning and SARSA are stochastic algorithms)

3 - Operational implementation (6/6)

Determination of the action:

$$a_t = \begin{cases} -1 & \text{if } \bar{a}_t \in \left[-1, -\frac{1}{3}\right] \\ 0 & \text{if } \bar{a}_t \in \left[-\frac{1}{3}, \frac{1}{3}\right], \\ +1 & \text{if } \bar{a}_t \in \left[\frac{1}{3}, 1\right] \end{cases}$$

where

$$\bar{a}_t = \frac{1}{500} \sum_{i=1}^{500} a_{t,i}.$$

4 - Applications (1/9)

Daily closing prices:

From January 2, 1985 to September 30, 2014 (7518 data):

Assicurazioni Generali

FIAT

Pirelli & C.

Saipem

Telecom Italia

UniCredit

4 - Applications (2/9)

(2 algorithms of RL) X

X (2 values of n) X

X (2 values of L) X

X (3 values of ε) =

= 24 configurations.

4 - Applications (3/9)

Telecom Italia – Q-Learning, $n=5, L=22, \varepsilon=10.0\%$

4 - Applications (4/9)

Telecom Italia – SARSA, $n=5, L=22, \varepsilon=10.0\%$

4 - Applications (5/9)

Pirelli & C. – Q-Learning vs. SARSA, $n=5, L=22, \varepsilon=10.0\%$

4 - Applications (6/9)

g[%]: Net average return per year;

%: Percentage of time such that C(t) > C(1), with $t = 2, \dots, T = 7518$;

#: Average number of trade per year;

g[%]net>0: Percentage of configurations for which g[%] > 0;

#>50%: Percentage of configurations such that % > 0 in the 50% of the days.

4 - Applications (7/9)

Best case – Assicurazioni Generali

			N = 1			N = 5		
y0	L	3	g[%]	%	#	g[%]	%	#
	5	2.5%	3.64	99.20	0.54	2.91	99.88	0.74
	5	5.0%	3.30	100.00	4.09	2.22	99.77	4.50
07	5	10.0%	-1.97	54.04	10.19	1.62	99.33	7.78
QLa	22	2.5%	-0.17	92.84	5.00	-0.57	82.33	4.09
	22	5.0%	2.89	99.88	5.13	1.54	100.00	5.47
	22	10.0%	3.38	99.84	7.81	3.71	100.00	6.21

	200		N=1			N = 5		
	L	Ε	g[%]	%	#	g[%]	%	#
	5	2.5%	3.80	99.27	0.67	3.31	99.88	0.60
	5	5.0%	3.88	100.00	0.34	3.40	99.65	0.47
SARSAa	5	10.0%	2.92	99.96	1.48	2.07	99.32	2.01
SAKSAU	22	2.5%	-0.08	58.37	13.01	0.89	99.75	7.85
	22	5.0%	1.58	99.88	8.72	1.47	99.52	0.94
	22	10.0%	1.65	100.00	1.68	0.85	99.88	9.19

4 - Applications (8/9)

Worst case – Pirelli & C.

		3	N=1			N=5		
	L	3	g[%]	%	#	g[%]	%	#
	5	2.5%	1.78	99.91	1.01	-0.34	1.36	2.21
	5	5.0%	1.43	98.60	6.97	0.18	39.80	7.25
OI a	5	10.0%	3.34	98.82	11.13	-0.36	15.81	11.61
QLa	22	2.5%	-4.70	52.18	7.54	-3.84	20.55	2.85
	22	5.0%	-1.40	41.02	4.59	-4.51	20.22	7.62
a.1	22	10.0%	3.81	98.16	8.32	0.62	69.34	7.31

			N=1			N=5		
	L	3	g[%]	%	#	g[%]	%	#
	5	2.5%	2.02	99.91	0.27	-0.34	1.36	1.34
	5	5.0%	1.31	99.04	0.94	-1.24	0.45	1.48
SARSAa	5	10.0%	0.99	98.82	0.94	-0.77	0.37	2.01
SAKSAU	22	2.5%	1.43	98.76	0.54	0.76	99.79	0.34
	22	5.0%	1.24	98.83	0.27	0.38	98.90	0.47
	22	10.0%	-0.13	17.34	4.02	0.38	99.61	0.94

4 - Applications (9/9)

	QLa				
	g[%]net > 0 [%]	%>50% [%]			
All configurations	75.00	83.33			
N=1	76.19	88.10			
N=5	76.19	78.57			
L=5	73.81	76.19			
L=22	76.19	90.48			
$\varepsilon = 2.5\%$	67.86	92.86			
ε = 5.0%	67.86	78.57			
ε= 10.0%	82.14	78.57			

	SARSAa				
	g[%]net > 0 [%]	% > 50% [%]			
All configurations	71.43	77.38			
N=1	71.43	80.95			
N=5	71.43	73.81			
L=5	90.48	90.48			
L=22	52.38	64.29			
$\varepsilon = 2.5\%$	78.57	82.14			
$\varepsilon = 5.0\%$	75.00	82.14			
ε= 10.0%	60.71	67.86			

5 – Some concluding remarks

Performances

 Both Q-Learning and SARSA achieve satisfactory results, although they use simple states and not refined configurations.

Log-returns as states

Simple choice. (I am working on some new states)

Reward function

 The Sharpe ratio is too basic. (I am working on some new performance measures)

• Estimation of $Q^{\pi}(s_t, a_t)$

Experience new estimators besides the linear one.

References

- Bertoluzzo F. and Corazza M. (2014) "Reinforcement learning for automated financial trading: Basics and applications". In: Bassis S., Esposito A. and Morabito F.C. (Eds.): Recent Advances of Neural Network Models and Applications, Springer, 197-213.
- Lo A. (2004) "The Adaptive Markets Hypothesis: Market efficiency from an evolutionary perspective", *Journal of Portfolio Management*, 30, 15–29.
- Moody J., Saffel M. (2001) "Learning to trade via Direct Reinforcement", *IEEE Transactions on Neural Network*, 12, 875-889

