Lecture Note 12 선형계획법(Linear Programming)

Dohyung Bang

Fall, 2021

Syllabus

Week	Date	Topic	Note
1	9/6(월)	R Basic - R 기초 문법 학습	
2	9/13(월)	R Basic – Data Manipulation I	과제#1
3	9/20(월) (추석)	<추석> (보충영상) R Basic - Data Manipulation II	
4	9/27(월)	Descriptive Analytics I - 데이터 요약하기/상관관계/차이검증	과제#2
5	10/4(월) (대체공휴일)	<대체공휴일> (보충영상) Descriptive Analytics II - 데이터 시각화	과제#2
6	10/11(월) (대체공휴일)	<대체공휴일> (보충영상) Supplementary Topic I - 외부 데이터 수집 (정적 컨텐츠 수집)	과제#4 과제#3
7	10/18(월)	Predictive Analytics I – Linear regression	
8	10/25(월)	Predictive Analytics II – Logistic Regression	시험 대체 수업
9	11/1(월)	Predictive Analytics III – Clustering & Latent Class Analysis	과제#4
10	11/8(월)	Predictive Analytics IV – Tree-based Model and Bagging (Random Forest)	
11	11/15(월)	Predictive Analytics V – Association Rules	
12	11/22(월)	Prescriptive Analytics I – Linear Programming	과제#5
13	11/29(월)	Prescriptive Analytics II – Data Envelopment Analysis (DEA)	
14	12/6(월)	Prescriptive Analytics III – Integer Programming	과제#6
15	12/13(월)	Prescriptive Analytics IV – Simulation	Quiz
16	12/20(월)	Final Presentation	

Lecture 12-1

처방적 분석과 경영과학

경영과학(Management Science)이란 무엇인가?

한정된 자원, 시간 하에서 어떤 것이 최적의 의사결정인가?

주어진 자원제약 하에서 의사결정 변수의 최적해를 도출함으로써 의사결정 목적(이윤 최대화, 비용 최소화 등)을 달성하기 위한 기법

Remind the categorization of BA

Descriptive Statistics

Sampling
Mean & Mode & Median
Standard Deviation
Range & Variance
Stem & Leaf Diagram
Histogram
Interquartile Range
Quartiles
Frequency
Distributions

Forecasting

Time-series Causal Relationships

Statistical Learning

Cluster Analysis
Association Analysis
Simple Regression
LASSO regression
Decision Tree Model
Support Vector Machine
Neural Networks
Text Mining

Management Science

Linear Programming
Sensitivity Analysis
Integer Programming
Goal Programming
Nonlinear
Logistics
Optimization
Heuristics
Simulation Modeling

Descriptive Analytics

Predictive Analytics

Prescriptive Analytics

Databases & Data Warehousing

Source: Asllani(2015). Business Analytics with Management Science Models and Methods

Remind the categorization of BA

처방적 분석(Prescriptive Analysis)

"What should I do?"

- ✓ 때로는 예측모형을 통해 미래를 예측하는 것도 중요하지만 '현재 내가 갖고 있는 자원과 역량을 바탕으로 어떤 의사결정을 내려야 하는가' 에 대한 답을 제공하는 것도 중요함
- ✓ 처방적 분석(Prescriptive analysis)는 마치 의사가 처방전을 내려주듯 비즈니스 의사결정에 있어서 '인적/물적 자원, 시간, 역량'을 적절히 배분하여 최적의 목표(Goal)를 달성하도록 하는 기법임
- ✓ 경영과학(Management Science)의 가장 기본적이면서 활용도가 높은 기법으로 "선형계획법(LP)"이 있음

Management Science

"Linear Programming"

Sensitivity Analysis
Integer Programming
Goal Programming
Nonlinear
Logistics
Optimization
Heuristics
Simulation Modeling

Prescriptive Analytics

Databases & Data Warehousing

Source: Asllani(2015). Business Analytics with Management Science Models and Methods

경영과학(Management Science) 기법의 적용사례

- 항공사 항공사 좌석 가격 책정
- 택배사 최적 수송계획 결정
- 제조업 최적 재고관리 모형
- 우버(Uber) 최적 여객운송 가격 산정
- 카카오 네비게이션 최단 경로/최적 경로 산정

왜 경영과학(Management Science) 기법이 필요한가?

가령, 호텔관광대학에서 회기역으로 가는 길을 찾아보자.

현실문제

<u>모형(Model)</u>

복잡한 경영환경에서 필수요소만 뽑아 의사결정 문제를 논리적으로 재구성한 것을 "모형"이라 하며, 최적화 문제는 필수 요소를 "수리적"으로 "모형화"하여 의사결정 문제를 해결하고자 함

VS

경영과학(Management Science) 분석절차

경영과학(Management Science) 모형의 분류

경영과학의 수리적 모형은 데이터의 확실성 정도에 따라 결정적 모형 및 확률적 모형으로 구분될 수 있고, 의사결정자들의 상호적인 의사결정을 분석하는 게임모형도 있음

결정적 모형 (Deterministic model)

- 선형계획법(Linear Programming)
- 정수계획법(Integer Programming)
- 목표 계획법(Goal Programming)
- 비선형계획법(Nonlinear Programming)
- 네트워크 최적화(Network Optimization)

확률적 모형 (Stochastic Model)

- 확률적 의사결정론(Decision Analysis)
- 확률과정론(Stochastic Process)
- 대기행렬 시스템(Queueing System)
- 시뮬레이션(Simulation)

게임 모형 (Game Model)

- 동시게임(Simultaneous game)
- 순차적게임(Sequential game)
- 경로선택게임(Routing game)
- 제로섬게임(Zero-sum game)

대표적인 결정적 모형 3가지

	선형계획법 (Linear Programming)	정수계획법 (Integer Programming)	비선형계획법 (Non-linear Programming)
개념	목적함수와 제약식이 모두 선형(Linear) 관계로 이루어진 모형 즉, 1차 함수의 꼴로 나타나는 수리모형으로 의사결정변수가 취할 수 있는 값이 연속형	 선형계획법과 동일하게 목적함수와 제약식의 형태는 선형 단, 의사결정변수가 취할 수 있는 값이 이산형(Discete) 즉, 정수(Integer) 값을 지니는 수리적 모형임 	제약식은 선형일 수 있으나 목적함수는 비선형 즉, 1차 함수가 아니라 2차 이상의 함수 꼴이거나 승법(Multiplication)으로 이루어짐 현실적으로 목적함수가 비선형 형태가 더 많으므로 선형계획법보다 더 현실적인 방법임
수익경영 적용 분야	최적 가격결정	각종 Capacity 믹스 결정 및 Labor Scheduling	최적 가격결정
모형 형태 예시	Max $z = x_1 + 2x_2$ Subject to $x_1 + x_2 \le 4$ $x_1 + 4x_2 \le 12$ $x_1 \ge 0$, $x_2 \ge 0$	Max $z = x_1 + 2x_2$ Subject to $x_1 + x_2 \le 4$ $x_1 + 4x_2 \le 12$ $x_1 \ge 0$, $x_2 \ge 0$ x_1 , $x_2 = 2$ 모두 정수	Max $z = x_1 * 2x_2$ or $max \qquad z = x_1 * 2x_2$

Lecture 12-2

선형계획법 이해하기

선형계획법(LP: Linear Programming)의 구성개념

(의사)결정변수 (Decision Variable)

- 직면한 의사결정 문제에서 결정해야 될 대안으로 정량적 혹은 논리적으로 표현된 변수 혹은 변수들의 집합(벡터)
- Ex) 생산량, 운송량, 투입시간, 투입비용 등

목적함수 (Objective function)

- 목적함수는 결정변수에 대한 함수이며, 최적해를 통해 달성하고자 하는 목적지
- 통상 무엇인가를 "최대화" 혹은 "최소화"하는 함수꼴로 나타남

제약조건 (Constraints)

- 결정변수들이 만족해야 할 일련의 조건들로 자원의 제약, 시스템 운영규칙, 법규 또는 물리적 법칙 등이 속함
- 문제에서 제약조건을 발견하는 것이 가장 어렵고 중요하며, 보통 "Subject to~ (~와 같은 제약 하에서)"로 표시함
- 일반적으로 거의 모든 문제에서 빠지지 않는 기본 제약조건은 비음조건(Non-negativity)으로 모든 의사결정 변수가 양수여야 한다는 조건임

가능해 (Feasible Solution)

- 제약조건을 모두 만족하는 대안을 가능해(Feasible Solution)라고 함
- 가능해는 일반적으로 집합(set)으로 표현될 수 있으며, 가능해가 모여있는 집합을 "가능해 집합" 또는 "가능해 영역" 이라고 표현함

최적해 (Optimal Solution)

■ 제약조건을 모두 만족하는 가능해 즉, 가능해 집합 (Feasible Solution Set) 중에서 목적함수를 최대화 혹은 최소화하는 해를 최적해(Optimal Solution)라고 함

간단한 예시를 통해 모형의 5가지 구성요소를 도출해보자

< 퇴근한 남편의 효용극대화 문제 >

- 퇴근하고 돌아온 남편은 저녁식사 후 잠들기 전 4시간 동안 '스타크래프트'를 하거나 '아들과 놀아주는' 두 가지 선택을 할 수 있다. 남편은 아내와 다음의 두 가지 약속을 했다.
 - 1) 게임을 하는 시간은 아들과 놀아주는 시간의 두 배를 넘을 수 없다.
 - 2) 경험으로 볼 때, 아들과 놀아주는 심리적 피로는 게임에서 오는 피로의 4배 정도라고 하자. 게임을 한시간 하는 데서 오는 피로를 1이라고 할 때, 두 활동(게임, 아들과 놀아주기)에서 오는 피로의 합이 12가 넘지 않도록 한다.
- · 그리고, 남편은 평소 아내의 반응을 비춰 봤을 때, 아들과 놀아주는 것이 게임하는 것보다 두 배로 유익하다는 것을 알고 있다.
- 즉, 아들과 1시간 놀아주는 것이 게임 한시간 하는 것보다 얻는 효용이 두배라고 할 수 있다.

"남편의 효용(Utility)을 극대화(Maximization) 시키기 위해서는 시간배분을 어떻게 해야될까?"

간단한 예시를 통해 모형의 5가지 구성요소를 도출해보자

< 퇴근한 남편의 효용극대화 문제 >

제약#1 – 가용한 자원의 합

- 퇴근하고 돌아온 남편은 저녁식사 후 잠들기 전 4시간 동안 '스타크래프트'를 하거나 '아들과 놀아주는' 두 가지 선택을 <u>하 수 있다. 남편은 아내와 다음의 두</u> 가지 약속을 했다. 제약#2 – 가용자원 간 관계에 대한 제약
 - 1) 게임을 하는 시간은 아들과 놀아주는 시간의 두 배를 넘을 수 없다.
 - 2) 경험으로 볼 때, 아들과 놀아주는 심리적 피로는 게임에서 오는 피로의 4배 정도라고 하자. 게임을 한시간 하는 데서 오는 피로를 1이라고 할 때, 두 활동(게임, 아들과 놀아주기)에서 오는 피로의 합이 12가 넘지 않도록 한다.
- 그리고, 남편은 평소 아내의 <mark>- 제약#3 피로도 총량 제약 (총 비용 or capa 제약)</mark> 게임하는 것보다 두 배로 유익하다는 것을 알고 있다.
- 즉, 아들과 1시간 놀아주는 것이 게임 한시간 하는 것보다 얻는 효용이 두배라고 할 수 있다. 목적함수에서 두 변수 간 관계

"남편의 효용(Utility)을 극대화(Maximization) 시키기 위해서는 시간배분을 어떻게 해야될까?"

간단한 예시를 통해 모형의 5가지 구성요소를 도출해보자

현재 풀고자 하는 문제의 목적함수와 앞에서 찾은 제약조건을 바탕으로 "모형화(Modeling)" 해보자.

- ✓ 본 문제에서 결정해야할 변수 즉, 의사결정 변수 2가지는 게임시간과 아들과 놀아주는 시간이다.
- ✓ 게임시간을 x_1 , 아들과 놀아주는 시간을 x_2 라고 하자. 여기서 풀어야 할 문제는 남편의 효용을 극대화하는 것이다.

목적함수:
$$Max$$
 $z = x_1 + 2x_2$ <== 효용을 수리모형으로 표현

제약조건: Subject to
$$x_1 + x_2 \le 4$$
 <== 4시간 넘을 수 없음

$$x_1 - 2x_2 \le 0$$
 <== 아내와의 약속 ①

$$x_1 + 4x_2 \leq 12$$
 <== 아내와의 약속 ②

$$x_1 \ge 0$$
, $x_2 \ge 0$ <== 비음조건(Non-negativity)

위 문제는 남편이 주어진 자원 제약 하에서 목적의 최적값을 달성하기 위한 최적화 문제를 푼 것으로 동일한 관점을 기업에 적용하면 수익 극대화의 원리를 이해할 수 있음

선형계획법(LP)의 기하학적 이해

퇴근한 남편의 문제를 좌표공간에 표현해보자.

- 의사결정 변수인 x₁, x₂의
 최적해를 찾는다는 것은 결국
 좌표평면 상에서 특정 좌표를
 찾는 것
- 여기서 제약조건을 모두 만족하는 부분을 좌표평면 상에 나타내면 다면체(색칠 부분)이 나타나며, 이것이 가능해(Feasible solution) 영역임
- 우리 목적은 가능해 영역에서 최적해(Optimal solution)을 찾는 것임

선형계획법(LP)의 기하학적 이해

퇴근한 남편의 문제를 좌표공간에 표현해보자.

- 그렇다면, 어떻게 최적해를 찾을까?
- 이에 대한 직관적 이해를 하기 위해 좌표평면을 살펴보자.
- 목적함수의 최대증가방향 (Gradient)을 찾으면, 최대증가 방향으로 가장 멀리 있는 가능해(꼭지점)가 최적해 (Optimal solution)가 됨
- 이는 목적함수 증가방향과 수직인 가상의 직선을 만들어 증가시켜보면 하나의 꼭지점에 도달한다는 사실을 알 수 있음

Lecture 12-3

불확실성을 반영한 민감도 분석

불확실성을 위한 민감도 분석(Sensitivity analysis)

민감도 분석 (Sensitivity Analysis)		■ 주어진 모형의 최적해를 구한 후, 모형의 변화가 최적해나 목적함수값에 어떤 영향을 미치는가를 분석			
민감도 분석의 범위 및 방법		목적함수계수 변화	■ 단위당이윤혹은 단위당생산비용 등의변화발생	ex) 최근 "스타크래프트:리마스터" 출시로 게임에서 오는 단위효용이 2로 늘어난 경우	
		우변상수 변화	■ 설비투자혹은 신규자금으로 인한 Capacity 확대 혹은 시장 성장으로 수요 제약 완화 등	ex)퇴근을 1시간일짜해가용시간이늘어나는 경우 or 내일이 주말이라총 피로도 합이 14가 되는 경우	
		제약식 변화	■ 지원투입정도,제약조건간 관계에 대한상황변화등	ex)게임시간과이이와놀이주는시간간관계가 "3배 많이지면 안된다"로 바뀌는 경우	
	새로운 변수 및	새로운 변수의 추가	■ 의사결정 변수가 추가되는 경우	ex) 매주금요일에는 강아지 산책을 시켜야되서 "산책시간"이 의사결정 변수로 추가되는 경우	
	제약식의 추가	새로운 제약의 추가	■ 자원투입정도,제약조건간 관계에 대한상황변화등	ex) 강아지 산책 변수 추가에 따라시간제약 추가	

목적함수 계수의 민감도 분석

퇴근한 남편의 문제에서 만약 목적함수 기울기가 변하면 어떻게 될까?

아들과 놀아주는 시간 x_2

목적함수 계수의 민감도 분석

퇴근한 남편의 문제에서 만약 목적함수 기울기가 변하면 어떻게 될까?

우변상수 (자원, Resource)의 민감도 분석

우변상수 (자원, Resource)의 민감도 분석

"우변항 변화 = 자원의 변화"

퇴근을 1시간 일찍하게 되어 가용시간이 5시간이

최적해 변함

내일이 주말이라 오늘은 총 피로도의 합에 대한 제약이 12 ->14가 된다면?

만약 게임하는 시간이 아이와 놀아주는 시간보다 2배 -> 3배 많아지면 안된다 라는 조건이 된다면?

우변상수 (자원, Resource)의 민감도 분석

제약식 관계의 민감도 변화

제약식 계수 변화 = 자원 배분의 관계 변화

1 퇴근을 1시간 일찍하게 되어 가용시간이 5시간이 되면 ?

2 내일이 주말이라 오늘은 총 피로도의 합에 대한 제약이 12 ->14가 된다면?

- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		

● 만약게임하는시간이 아이와 놀아주는시간보다 2배 → 3배 많아지면 안된다 라는 조건이 된다면 ?

최적해 변하지 않음

우변항 (자원, Resource)의 변화

	제약조건 상태	특성	자원의 종류	여유분(Surplus)
우변상수가 바뀌면 최적해도 바뀌는 제약	속박적(Binding) 제약조건	■ 특정 범위 내에서는 기저¹)가 유지됨 ■ 범위를 벗어나면 Non-binding 제약이 됨	희소자원	없음
우변상수가 바뀌어도 최적해가 바뀌지 않는 제약	비속박적 (Non-Binding) 제약조건	 우변상수가 (조금) 변해도 최적해에 전혀 영향이 없음 이미 남아서 쓸모없는 자원이므로 늘어나도 최적해 유지 	잉여자원	양(+)의 값으로 존재

- ▶ 우변항(자원)의 변화가 가져올 잠재가치 = 잠재가격 또는 쌍대가격(Shadow price or Dual price)
 - 자원의 추가적 한 단위의 가치(Worth of one additional unit of a resource)
 - 해당 자원을 한 단위 더 추가할 수 있을 때, 목적함수 값이 얼마나 향상될 수 있는 지를 측정한 값:

• 민감도 분석을 통해 잠재가격이 어느 정도인지 파악 가능

Lecture 12-4

연습 – 다양한 선형계획 문제 모형화

Capacity Allocation 을 통한 수익 극대화

< Capacity Allocation을 통한 수익 극대화 Problem>

- 경희 호텔 Revenue Manager는 Room mix를 각 여행사에 적절하게 제공해 최적의 수익을 낼 수 있는 방안을 모색하고 있다.
- 현재 거래 중인 판매 채널은 "A여행사", "B여행사", "C여행사" 이며,
 계약 조건에 따라 한번 Room mix를 제공할 때 각 여행사마다
 배분되는 객실 수가 상이하다.
 - ※가령, 우측 표와 같이 A 여행사에 한번 Room을 제공할 때는 Deluxe-double 5개, Deluxe-Twin 5개, Executive 2개를 제공해야 한다.
- 또한, 계약 조건에 따라 각 여행사에 판매하는 평균 객실가격도 상이하다.
- 현재 Deluxe-Double 50개, Deluxe-Twin 35개, Executive 13개 가 있고, 여행사와의 계약 체결조건은 우측의 표와 같다.
- 판매하는 시기가 성수기라 어떤 여행사는 판매하면 전 객실은 판매가 된다고 가정하자.

구분	A여행사	B여행사	C여행사	가 용 객실 수
Deluxe -Double	5	7	4	50
Deluxe -Twin	3	1	4	35
Executive	2	3	2	13
평균 판매가 (단위:십만원)	3	4	5	-

경희호텔 Revenue manger는 수익을 극대화하기 위해 각 여행사에 몇 건의 Room mix를 배정해야 할까?

Capacity Allocation 을 통한 수익 극대화

의사결정, 목적함수, 제약 조건 순으로 주어진 문제를 모형화 해보자.

구분	A여행사	B여행사	C여행사	가용 객실 수
Deluxe -Double	5	7	4	50
Deluxe -Twin	3	1	4	35
Executive	2	3	2	13
평균 판매가 (단위:십만원)	3	4	5	1

의사결정 변수는 무엇인가?

- ✓ A여행사 Room mix 판매 수 : x_1
- ✓ B여행사 Room mix 판매 수 : x_2
- ✓ C여행사 Room mix 판매 수 : x_3

목적함수는 무엇인가?

- ✓ 판매 수익을 극대화 하는 것 $Max Revenue = 3x_1 + 4x_2 + 5x_3$

제약조건은 무엇인가?

✓ 각 객실의 가용 객실 수 (자원 제약)

Subject to
$$5x_1 + 7x_2 + 4x_3 \le 50$$

 $3x_1 + 1x_2 + 4x_3 \le 35$
 $1x_1 + 3x_2 + 2x_3 \le 13$
 $x_1, x_2, x_3 \ge 0$

불확실성을 위한 민감도 분석(Sensitivity analysis)

민감도 분석 (Sensitivity Analysis)		 주어진 모형의 최적해를 구한 후, 모형의 변화가 최적해나 목적함수값에 어떤 영향을 미치는가를 분석 		
		목적함수 계수 변화	■ 단위 당 이윤 혹은 단위 당 생산비용 등의 변화 발생	ex) 경희 호텔이 각 여행사와 재계약 시 평균 판매 단가를 변화시킬 경우, 최적해 및 목적함수 값이 어떻게 변할까?
	데이터의 변화	우변상수 변화	■ 설비 투자 혹은 신규자금으로 인한 Capacity 확대 혹은 시장 성장으로 수요 제약 완화 등	ex) 경희 호텔이 내년도 호텔 증축을 통해 객실 보유 수를 늘릴 경우, 최적해 및 목적함수 값이 어떻게 될까?
민감도 분석의 범위 및 방법	법	제약식의 변화	■ 자원 투입 정도, 제약 조건 간 관계에 대한 상황 변화 등	ex) 경희 호텔이 여행사와 재계약 시 각 여행사 별 판매할 Room mix를 다르게 할 경우 어떻게 될까?
	새로운 변수 및	새로운 변수의 추가	■ 의사결정 변수가 추가되는 경우	ex) 경희 호텔이 금년도 새롭게 D여행사와 추가적인 계약을 맺을 경우
	제약식의 추가	새로운 제약의 추가	■ 자원 투입 정도, 제약 조건 간 관계에 대한 상황 변화 등	ex) 경쟁 호텔의 등장으로 새롭게 수요에 대한 제약이 생기는 경우

선형계획문제(LP Problem) 모형화 연습#1 – 생산계획문제

Q: 다음의 표를 기준으로 생산계획 의사결정 문제를 정의해보자.

	목공기술 (단위 : 개당 투입시간)	마무리기술 (단위 : 개당 투입시간)	개당 이익
사무용 책상	2	2	7만원
가정용 책상	2	1	5만원
가 용 기술시간	80시간/주	60시간/주	

- 고황가구는 사무용 책상과 가정용 책상을 제조한다. 사무용 책상은 1개 만드는데 목공기술 2시간, 마무리 기술 2시간이 투입되며 판매 시 개당 7만원의 이윤이 남는다.
- 가정용 책상은 1개 만드는데 목공기술 2시간, 마무리 기술 1시간이 투입되며, 개당 5만원의 이윤이 남는다.
- 경험으로 비춰볼 때, 가정용 책상은 수요가 무제한이나 사무용 책상은 많아봐야 한주에 15개 판매되었다.
- 위 문제를 모형화하면 어떻게 되는가?

의사결정 문제	
---------	--

선형계획문제(LP Problem) 모형화 연습#1 - 생산계획문제

Q: 다음의 표를 기준으로 생산계획 의사결정 문제를 정의해보자.

	목공기술 (단위 : 개당 투입시간)	마무리기술 (단위 : 개당 투입시간)	개당 이익
사무용 책상	2	2	7만원
가정용 책상	2	1	5만원
가용 기술시간	80시간/주	60시간/주	

- 고황가구는 사무용 책상과 가정용 책상을 제조한다. 사무용 책상은 1개 만드는데 목공기술 2시간, 마무리 기술 2시간이 투입되며 판매 시 개당 7만원의 이윤이 남는다.
- 가정용 책상은 1개 만드는데 목공기술 2시간, 마무리 기술 1시간이 투입되며, 개당 5만원의 이윤이 남는다.
- 경험으로 비춰볼 때, 가정용 책상은 수요가 무제한이나 사무용 책상은 많아봐야 한주에 15개 판매되었다.
- 위 문제를 모형화하면 어떻게 되는가?

의사결정 문제:

의사결정변수: 사무용 책상 생산량 x_1 , 가정용 책상 생산량 x_2

목적함수: Max $z = 7x_1 + 5x_2$ <== 수익 극대화 문제

제약조건 : Subject to $2x_1 + 2x_2 \le 80$ <== 목공기술 가용 시간에 대한 제약

 $2x_1 + x_2 \le 60$ <== 마무리기술 가용 시간에 대한 제약

 $x_1 \leq 15 <== 사무용 책상 수요에 대한 제약$

 $x_1, x_2 \ge 0$ <== 비음조건

선형계획문제(LP Problem) 모형화 연습#2 - 수송계획문제

Q: 다음의 표를 기준으로 수송계획 의사결정 문제를 정의해보자.

수송계획문제			Conscitu		
		1번	2번	3번	Capacity
ᄎ바ᅱ	Α	8	6	3	70
출발지	В	2	4	9	40
각 수송 경	경로 수요	40	35	25	

의사결정 군세 :	결정 문제 :	
-----------	---------	--

Cost

선형계획문제(LP Problem) 모형화 연습#2 - 수송계획문제

Q: 다음의 표를 기준으로 수송계획 의사결정 문제를 정의해보자.

수송계획문제			Conscitu		
		1번	2번	3번	Capacity
ᄎ바ᅱ	Α	8	6	3	70
출발지	В	2	4	9	40
각 수송 경	경로 수요	40	35	25	

의사결정 문제:

Cost

의사결정변수: 각 출발지에서 도착지로 가는 수송량 x_{ij} (i = A, B; j = 1,2,3)

목적함수: Min $z = 8x_{a1} + 6x_{a2} + 3x_{a3} + 2x_{b1} + 4x_{b2} + 9x_{b3} <== (수송)비용 최소화 문제$

제약조건: S.t. $x_{a1} + x_{a2} + x_{a3} \le 70$ <== A에서 출발하는 수송차량의 Capacity 제약

 $x_{b1}+x_{b2}+x_{b3} \leq 40$ <== B에서 출발하는 수송차량의 Capacity 제약

 $x_{a1} + x_{b1} \ge 40$ <== 1번 도착지의 Demand 제약조건

 $x_{a2} + x_{b2} \ge 35$ <== 2번 도착지의 Demand 제약조건

 $x_{a3} + x_{b3} \ge 25$ <== 3번 도착지의 Demand 제약조건

x_{ii} ≥ 0 <== 비음조건

선형계획문제(LP Problem) 모형화 연습#3 – 할당문제

Q: 다음의 표를 기준으로 일일 권장량을 채우면서, 가장 경제적인 식단을 찾아보자.

	우유(100g)	빵(100g)	돼지고기(100g)	양배추(100g)	일일권장량
칼로리(Kcal)	70	350	420	30	2,500
칼슘(mg)	100	0	11	18	700
단백질(g)	3	6	20	2	50
탄수화물(g)	5	58	0	5	400
가격(원)	250	300	600	50	

<u>o</u>	人	ŀ결	젓 .	무	제	:
	/		0	ᄔ	/\II	•

े 우유 100g 당 가격

선형계획문제(LP Problem) 모형화 연습#3 – 할당문제

Q: 다음의 표를 기준으로 일일 권장량을 채우면서, 가장 경제적인 식단을 찾아보자.

	우유(100g)	빵(100g)	돼지고기(100g)	양배추(100g)	일일권장량
칼로리(Kcal)	70	350	420	30	2,500
칼슘(mg)	100	0	11	18	700
단백질(g)	3	6	20	2	50
탄수화물(g)	5	58	0	5	400
가격(원)	250	300	600	50	

의사결정 문제:

우유 100g 당 가격

의사결정변수: 각 식품의 일일 섭취량 x_i (i = 1,2,3,4)

목적함수: Min $z = 250x_1 + 300x_2 + 600x_3 + 50x_4$ <== 비용 최소화 문제

제약조건: S.t. $70x_1 + 350x_2 + 420x_3 + 30x_4 \ge 2,500$

 $100x_1 + 11x_3 + 18x_4 \ge 700$

 $3x_1 + 6x_2 + 20x_3 + 2x_4 \ge 50$

 $5x_1 + 58x_2 + + 5x_4 \ge 400$

 $x_i \geq 0$; 비음조건

Lecture 12-4

선형계획법 해법

선형계획문제(LP), 어떻게 풀어야 하는가?

- 심플렉스 Method
- Spreadsheet "Solver"
- R의 "IpSolve" 패키지

선형계획문제(LP), 어떻게 풀어야 하는가?

- 심플렉스 Method
- Spreadsheet[©] "Solver"
- R의 "IpSolve" 패키지

Lecture 12-5

선형계획법 추가 Issue

쌍대이론(Duality Theory)과 민감도(Sensitivity)

원 문제(primal problem)

$$\mathbf{Max} \qquad \mathbf{z} = x_1 + 2x_2$$

Subject to
$$x_1 + x_2 \leq 4$$

$$x_1 - 2x_2 \le 0$$

$$x_1 + 4x_2 \leq 12$$

$$x_1 \geq 0$$
, $x_2 \geq 0$

쌍대 문제(Dual Problem)

Min
$$w = 4y_1 + 12y_3$$

Subject to
$$y_1 + y_2 + y_3 \le 1$$

$$y_1 - 2y_2 + 4y_3 \le 2$$

$$y_1 \ge 0$$
, $y_2 \ge 0$, $y_3 \ge 0$

"효용 극대화 문제" ————"피로도 최소화 문제"

쌍대이론(Duality Theory)과 민감도(Sensitivity)

"효용 극대화 문제" ————"피로도 최소화 문제"

쌍대이론(Duality Theory)과 민감도(Sensitivity)

원 문제(primal problem)

$$\mathbf{Max}$$
 $\mathbf{z} = x_1 + 2x_2$

Subject to
$$x_1 + x_2 \leq 4$$

$$x_1 - 2x_2 \le 0$$

$$x_1 + 4x_2 \leq 12$$

$$x_1 \ge 0$$
, $x_2 \ge 0$

쌍대 문제(Dual Problem)

쌍대문제의 최적해 y_1^*, y_2^*, y_3^* 는 잠재가격이 됨

$$Min w = 4y_1 + 0y_2 + 12y_3$$

Subject to
$$y_1 + y_2 + y_3 \le 1$$

$$y_1 - 2y_2 + 4y_3 \le 2$$

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$$

"효용 극대화 문제" ————"피로도 최소화 문제"

선형계획법(LP)의 기본가정

비례성 (Proportionality)

- 선형계획 문제는 목적함수 및 제약식이 선형함수로 표현됨. 즉, 결정변수가 의미하는 활동수준이 증가함에 따라 발생하는 비용, 이익, 소요자원 등이 선형으로 비례한다는 것을 의미함
- 만약, 선형비례성을 갖지 않는 목적함수 및 제약식이라면, 비선형계획법(Non-linear Programming)으로 풀어야 함

가합성 (Additivity)

■ 목적함수와 제약식은 계수(상수)와 결정변수의 곱으로 표현된 1차항들의 단순 합의 형태로 표현됨. 즉, 비례성을 가지고 발생한 양(비용, 이익, 소요자원 등)의 단순 합이 된다는 가정

분할성 (Divisibility)

- 선형계획에서 결정변수는 연속적인 실수값을 갖는다고 가정함.
 즉, 결정변수가 소수여도 실행할 수 있음
- 만약, 의사결정 변수가 정수값을 가져야 한다면 정수계획(Integer Programming) 문제로 접근해야 함