

Eigendecomposition

For a given square matrix A, there are special vectors which refuse to stray from their path

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{vmatrix} 3 \\ 3 \end{vmatrix} =$$

 \mathcal{A}

These vectors are called eigenvectors

Eigendecomposition

For a given square matrix A, there are special vectors which refuse to stray from their path

These vectors are called eigenvectors

Eigendecomposition

For a given square matrix A, there are special vectors which refuse to stray from their path

These vectors are called eigenvectors

Formally, $Ax = \lambda x$

where λ are the eigenvalues determining the scale, but directions remains the same (x)

Several properties of matrices can be analyzed based on their eigenvalues.