Turier

F: [a,b] - R handinunlige, F'(t)

Definisjan: En paramhisert hure 7: [0,6] st holles glott desans den derivele F'(E) abrisher for alle de (0,6) og en handimalig på dett inhundlet.

Definispen: En parambised hune $\vec{r}: [a,b] \rightarrow [l]^n$ kolles skylling glatt dusam alm en hankinnelig og ell frims en appelling $a = l_1 < l_1 < l_2 < ... < l_m = b$

ou [a, V] slik d ?: [linti] -R en en glatt laure.

War er la huner geambiet like?

Dépinisjon: Je paramehrende huner $\overline{r}_n: [a,b] \rightarrow \mathbb{R}^n$ og $\overline{r}_2: [c,d] \rightarrow \mathbb{R}^n$ hollos <u>eliviclule</u> dusom del fermes en funksjons $Q: [a,b] \rightarrow [c,d]$ slib et

- (i) $\vec{r}_{1}(t) = \vec{v}_{2}(c(t))$ for all $t \in [a,b]$.
- (ii) Q er shengt mondon og Q[[a,b]]=[c,d]

(init de a deriubar i alle peulles te (a,b) og Q(L) +0.

Turjeinkorde for skolarfunkopun Tenk d'humen en en brêd med varienende helled og d'i skol vegne selve helled og d'i skol vegne selve. lugalin AS $Q = l_0 < l_1 < l_2 < ... < l_m = l_m =$ Mi≈ { [F(ti,)) y (tin) (ti, -ti,) Total more: $M = \sum m_{i} \approx \sum \int (\vec{r}(t_{i-1}) \sqrt{t_{i-1}}) (t_{i-1} - t_{i-1})$ Diemansum $\int (\vec{r}(t)) \sqrt{t}$ $\longrightarrow \int \int (\vec{r}(t)) \sqrt{t} dt$

Definique: Onta at 7: [a, b] - R' en en skylling glatt hune 60g al R: R a en harlinulig furbojan. De afirer i linjeinhepreld I fla ved $\int_{T} f ds = \int_{0}^{b} f(\overline{r}(t)) v(t) dt$ Huafa C?: Fadi devan Ty of Te en to formalise men ehivalule paramehiseringer, Då () { ((, (t)) v, (t) 2) = } { ((2 (t)) v2 (t) 2) Elsempel: $f_{0} = r(t) = r^{2} + r^{2}r^{2}$, $r_{0} = r^{2} + r^{2}r^{2}$, $r_{0} = r^{2} + r^{2}r^{2}$. $r_{0} = r^{2} + r^{2}r^{2}$. $r_{0} = r^{2} + r^{2}r^{2}$. $r_{0} = r^{2} + r^{2}r^{2}$. [fds = [] f[F(t)] v(t) et = [] f. 12 V1+42 et = [] 3 V1+42 et $= \int_{0}^{2} \int_{0}^{2} \sqrt{u} \frac{1}{8} du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \int_{0}^{2} \int_{0}^{2} \sqrt{u} \frac{1}{8} du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \int_{0}^{2} \int_{0}^{2} \sqrt{u} \frac{1}{8} du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \int_{0}^{2} \int_{0}^{2} \sqrt{u} \frac{1}{8} du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \int_{0}^{2} \int_{0}^{2} \sqrt{u} \frac{1}{8} du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \int_{0}^{2} \int_{0}^{2} \sqrt{u} \frac{1}{8} du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \int_{0}^{2} \int_{0}^{2} (u^{2} - u^{2}) du = \int_{0}^{2} \frac{u-1}{4} \sqrt{u} \frac{1}{8} du$ $= \frac{1}{32} \int_{1}^{5} (u^{2} - u^{1/2}) du = \dots$

Teorem: Deusam \vec{v}_1 og \vec{v}_2 er lo ehrvelik parambiseringer, på er $\int_{0}^{\infty} f \, ds = \int_{0}^{\infty} f \, ds \qquad \text{Bare hursen filler},$ $\int_{0}^{\infty} f \, ds = \int_{0}^{\infty} f \, ds \qquad \text{ishe parambiseringen''}$ parambised $\int_{0}^{\infty} f \, ds = \int_{0}^{\infty} f \, ds \qquad \text{ishe parambiseringen''}$ red \vec{v}_1 and \vec{v}_2

