BALANÇO DE ENERGIA EM UM TUBO DE VENTURI

Luiz Augusto Dembicki Fernandes

22 de fevereiro de 2023

Resumo

Compararando a taxa de esvaziamento teórica com a experimental, sendo encontrados boas correlações.

1 Montagem Experimental

Foi utilizado um compressor para encaminhar ar até um tubo de venturi, conectado a 8 manometros utilizando água, de forma a medir as pressões(em duas vazões diferentes) e relacionar com a energia cinética e potencial do ar que trafega o tubo.

2 Dados

```
\begin{split} P_{atm} &= 692 \text{ mmHg} \\ T_{ambiente} &= 23, 1^{\circ}\text{C} \\ T_{ar} &= 31, 5^{\circ}\text{C} \\ \rho_{ar@31,5^{\circ}\text{C}} &\approx 1.159 \frac{\text{kg}}{\text{m}^3} \\ \rho_{H_2O@25^{\circ}\text{C}} &\approx 997 \frac{\text{kg}}{\text{m}^3} \\ \rho_{Hg@25^{\circ}\text{C}} &\approx 13534 \frac{\text{kg}}{\text{m}^3} \\ \text{Gravidade local: } 9,78 \ m/s^2 \\ \gamma_{ig} &= 1,4 \\ C_D &\approx 1 \end{split}
```

Ponto	1	2	3	4	5	6	7	8
L (mm)	0	36	57	78	100	132	150	193
D (mm)	53	49	39	31	25	33	36	40

Tabela 1: Distância entre cada um dos pontos e os diâmetros equivalentes

Vazão	1	Vazão 2		
Ponto	h_{man} (cm)	Ponto	h_{man} (cm)	
1	-6,1	1	-6,1	
2	-11	2	-10	
3	-16	3	-15,5	
4	-62	4	-61,5	
5	-15,8	5	-16	
6	5	6	5	
7	13	7	13	
8	15	8	14,5	

Tabela 2: h_{man} calculadas por a subtração da altura da pressão atmosférica com a pressão de gás.

3 Análise de dados

A partir dos dados foram criadas as seguintes tabelas:

Vazão	1	$\dot{m} \; (kg/s)$	0,053			
Ponto	h_{man} (cm)	P_{ar} (Pa)	$\rho \ (kg/m^3)$	$\Delta E P_x (J/kg)$	$V_x \text{ (m/s)}$	$\Delta E K_x (J/kg)$
1,000	-6,100	91000,074	1,159	0,000	20,583	0,000
2,000	-11,000	90522,291	1,155	-413,012	24,172	80,299
3,000	-16,000	90034,758	1,150	-836,061	38,304	521,762
4,000	-62,000	85549,455	1,109	-4807,056	62,878	1765,013
5,000	-15,800	90054,260	1,150	-819,108	93,202	4131,480
6,000	5,000	92082,397	1,169	929,902	52,646	1173,989
7,000	13,000	92862,450	1,176	1595,272	43,972	754,929
8,000	15,000	93057,463	1,178	1760,991	35,564	420,561

Vazão 2		$\dot{m} (kg/s)$	0,053			
Ponto	h_{man} (cm)	P_{ar} (Pa)	$\rho (kg/m^3)$	$\Delta E P_x (J/kg)$	$V_x \text{ (m/s)}$	$\Delta E K_x (J/kg)$
1,000	-6,100	91000,074	1,159	0,000	20,788	0,000
2,000	-10,000	90619,798	1,156	-328,598	24,393	81,447
3,000	-15,500	90083,512	1,151	-793,683	38,670	531,619
4,000	-61,500	85598,208	1,109	-4763,102	63,478	1798,673
5,000	-16,000	90034,758	1,150	-836,061	94,144	4215,481
6,000	5,000	92082,397	1,169	929,902	53,170	1197,469
7,000	13,000	92862,450	1,176	1595,272	44,409	770,028
8,000	14,500	93008,710	1,177	1719,584	35,931	429,456

As vazões foram minimamente diferentes, as únidades que não estavam no SI foram convertidas e foram utilizadas as equações pertinentes. Os resultados foram plotados:

4 Conclusão

Infelizmente podemos notar que a partir do ponto 5 a energia potencial não segue exatamente o esperado, e acaba por assumir valores positivos, também é perceptível um atraso entre a relação das curvas. E por fim um espaçamento entre as curvas.

Pode se a atribuir os valores positivos da energia potencial que seu valor padrão no ponto 1 é relacionado a uma pressão negativa e assim quando a pressão se tornou positiva, em relação a pressão atmosférica, a energia potencial se apresentou como positiva então, não havendo uma criação de energia no sistema. O delay pode ter ocorrido devido a natureza dos calculos empregados de variação de energia. e a abertura entre as curvas se deve a energias residuais como a de fricção, de natureza entrópica.