2 punti

Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola:	

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte

- corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette). (a) Sia B un insieme non vuoto e sia $L=\{g\}$ un linguaggio del prim'ordine con 2 punti q simbolo di funzione unaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle B, g \rangle$, l'affermazione: "g è suriettiva"? $\Box \exists x \forall y (g(x) = y)$ $\Box \ \forall x \forall y (q(x) = y)$ $\Box \ \forall x \exists y (g(x) = y)$ $\blacksquare \ \forall y \exists x (g(x) = y)$ (b) Sia $L = \{q\}$ un linguaggio del prim'ordine con q simbolo di funzione 2 punti binario. Quali delle seguenti affermazioni sono formalizzate dalla formula $\neg \exists y (q(y,y)=y)$ relativamente alla struttura $\langle \mathbb{Q}, + \rangle$? □ "C'è un numero razionale che è il doppio di se stesso." □ "C'è un numero razionale che non è il doppio di se stesso." ■ "Tutti i numeri razionali y sono tali che $y + y \neq y$." ■ "Nessun numero razionale è il doppio di se stesso." (c) Sia B un insieme non vuoto di cardinalità finita e C un insieme di cardinalità 2 punti infinita. Stabilire quali delle seguenti affermazioni sono corrette. \square $B \times C$ ha cardinalità finita.
 - \blacksquare $B \setminus C$ ha cardinalità finita.
 - \square $B \triangle C$ ha cardinalità finita.
 - \square $C \setminus B$ ha cardinalità finita.
- (d) Siano S, P relazioni binarie su un insieme B. Stabilire quali delle seguenti affermazioni sono corrette.
 - \blacksquare Se per ogni $b \in B$ esiste un solo $c \in B$ tale che S(b,c), allora S è una funzione.
 - \blacksquare Se S è riflessiva e $S \subseteq P$, anche P è riflessiva.
 - \square Se S è riflessiva e $S \supseteq P$, anche P è riflessiva.
 - \blacksquare Se per ogni $b, c \in B$ vale che S(b, c) se e solo se P(c, b), allora $P = S^{-1}$.

(e) Siano Q e R formule proposizionali. Quali delle seguenti affermazioni sono corrette?

2 punti

- $\blacksquare \ \neg \mathbf{Q} \lor (\mathbf{R} \to \mathbf{Q})$ è una tautologia.
- \square Se Q è una tautologia allora non è soddisfacibile.
- $\blacksquare Q \leftrightarrow R \equiv (Q \to R) \land (R \to Q)$
- \blacksquare Se Q \models R, allora \neg Q \lor R è una tautologia.
- (f) Siano B, C, D lettere proposizionali e Q una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

В	\mathbf{C}	D	Q
$\overline{\mathbf{V}}$	\mathbf{V}	V	\mathbf{F}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{F}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	${f V}$	\mathbf{V}	\mathbf{F}
${f F}$	${f V}$	\mathbf{F}	\mathbf{F}
${f F}$	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

- \Box B \wedge C \models Q
- $\square \ \, \mathbf{Q} \ \, \mathbf{\grave{e}}$ insoddisfacibile.
- ¬Q è soddisfacibile.
- \blacksquare Q $\models \neg C$
- (g) Siano $g\colon \mathbb{Q}_{\geq 1}\to \mathbb{R}$, dove $\mathbb{Q}_{\geq 1}$ è l'insieme dei numeri reali maggiori o uguali a 1, e $h\colon \mathbb{Q}\to \mathbb{Q}_{\geq 1}$ definite da $g(y)=\sqrt{y-1}$ e $h(z)=z^2+1$. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- \Box g è una funzione suriettiva.
- $\blacksquare g \circ h(b) = b \text{ per ogni } b \in \mathbb{Q} \text{ con } b \ge 0.$
- \Box h è una funzione iniettiva.
- $\blacksquare g \circ h \colon \mathbb{Q} \to \mathbb{R}.$

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{S, g, d\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario S, un simbolo di funzione binario g e un simbolo di costante d.

Consideriamo la struttura $Q = \langle \mathbb{Q}, <, +, 1 \rangle$. Stabilire se:

- $\mathcal{Q} \models \neg(w=y) \land \neg(w=g(y,d))[y/2,w/2.5]$
- $\mathcal{Q} \models S(w,y) \lor S(g(y,d),w)[y/2,w/2.5]$
- $\mathcal{Q} \models (\neg(w=y) \land \neg(w=g(y,d))) \rightarrow (S(w,y) \lor S(g(y,d),w))[y/2,w/2.5]$
- $\mathcal{Q} \models \forall y \forall w [(\neg(w=y) \land \neg(w=g(y,d))) \rightarrow (S(w,y) \lor S(g(y,d),w))][y/2,w/1.5]$

Consideriamo ora la struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

Verificare se

$$\mathcal{N} \models \forall y \forall w [(\neg(w=y) \land \neg(w=g(y,d))) \rightarrow (S(w,y) \lor S(g(y,d),w))][y/2,w/3]$$

L'enunciato $\forall y \forall w [(\neg(w=y) \land \neg(w=g(y,d))) \rightarrow (S(w,y) \lor S(g(y,d),w))]$ è una tautologia?

Giustificare le proprie risposte.

Soluzione: Si verifica che:

- $\mathcal{Q} \models \neg(w = y) \land \neg(w = g(y, d))[y/2, w/2.5]$ se e solo se $2.5 \neq 2$ e $2.5 \neq 2 + 1 = 3$ che chiaramente è il caso.
- $\mathcal{Q} \models S(w,y) \lor S(g(y,d),w)[y/2,w/2.5]$ se e solo se 2.5 < 2 o 2+1=3 < 2.5 che chiaramente non è il caso.
- $Q \not\models (\neg(w=y) \land \neg(w=g(y,d))) \rightarrow (S(w,y) \lor S(g(y,d),w))[y/2,w/2.5]$ dato che, come verificato nei due punti precedenti, la premessa dell'implicazione è verificata con l'assegnamento dato, mentre la tesi non lo è con lo stesso assegnamento.
- $\mathcal{Q} \not\models \forall y \forall w [(\neg(w=y) \land \neg(w=g(y,d))) \rightarrow (S(w,y) \lor S(g(y,d),w))][y/2,w/1.5]$ come testimoniato dall'assegnamento al punto precedente alle variabili y, w.

Sia ψ l'enunciato

$$\forall y \forall w [(\neg(w=y) \land \neg(w=q(y,d))) \rightarrow (S(w,y) \lor S(q(y,d),w))].$$

Sia in \mathcal{Q} che in \mathcal{N} , l'interpretazione di ψ è

Per ogni $y \in w$, se w è diverso sia da y che da y+1 allora o w < y oppure y+1 < w. (Equivalentemente: per ogni y non c'è alcun w strettamente compreso tra $y \in y+1$.)

Quindi si ha che:

• $Q \not\models \psi$. Infatti, l'assegnamento y = 2 e w = 2.5 mostra che w è strettamente compreso tra y e y + 1 (come già visto per la soluzione del terzo e quarto item dell'esercizio).

• Al contrario, $\mathcal{N} \models \psi$ perché non c'è nessun numero naturale strettamente compreso tra due numeri consecutivi arbitrari (ovvero tra due numeri del tipo y e y+1).

L'enunciato ψ non è una tautologia in quanto risulta falso nella struttura \mathcal{Q} .

Esercizio 3 9 punti

Sia B un insieme non vuoto e $S\subseteq B\times B$ una relazione binaria. Formalizzare relativamente alla struttura $\langle B,S\rangle$ mediante il linguaggio $L=\{S\}$ con un simbolo di relazione binaria le seguenti affermazioni:

- 1. S è simmetrica
- 2. S è un ordine
- 3. S^{-1} è antisimmetrica
- 4. ran(S) = B.

Soluzione: 1. S è simmetrica: $\forall x \forall y (S(x,y) \rightarrow S(y,x))$

2. S è un ordine:

$$\forall x S(x,x) \land \forall x \forall y (S(x,y) \land S(y,x) \rightarrow x = y) \land \forall x \forall y \forall z (S(x,y) \land S(y,z) \rightarrow S(x,z))$$

- 3. S^{-1} è antisimmetrica: $\forall x \forall y (S(y,x) \land S(x,y) \rightarrow y = x)$
- 4. ran(S) = B: $\forall y \exists x S(x, y)$