

#### 热门文章

感动! 有人将吴恩达的视频课程做成了文字 版 📵 93102

用AI给黑白照片上色,复现记忆中的旧时光 58798

算法工程师讨去这一年, 理想很丰满, 现实 很骨感 @ 55884

今晚直播 | 一次性掌握机器学习基础知识脉 络 🐽 48564

ICLR 2019论文投稿近1600篇,强化学习最 热门 💿 45387

#### 分类专栏

## 最新评论

来了来了! 趋势预测算法大PK! 程序员雍正: 很不错分享~进步的路上一起 努力! 也期待您的点赞支持!

来了来了! 趋势预测算法大PK! 程序员雍正: 大佬可否认识一下~

Python跳槽薪资报告: 人生苦短, Python. 成长的Offer:写的不错,学习了,学习的道 路上一起进步,也期待你的关注与支持!

Python多阶段框架实现虚拟试衣间,超逼.. 乎你: 好文, 鉴定完毕!

腾讯Al Lab 2020年度回顾:科技向善,迈. 预见未来to50: 这么好的文章, 评论这么少

## 最新文章

腾讯首位17级杰出科学家诞生: 腾讯Al Lab

百万美元技术大奖, 雷军颁给了秒充和隐私 保护技术团队

IT基础架构变革,Hitachi Vantara如何解决超 融合(HCI)的真正痛点?

2021年 15篇 2020年 1128篇 2019年 1762篇 2018年 1227篇 2017年 317篇

# 难以置信! LSTM和GRU的解析从未如此清晰(动图+视 频)



作者 | Michael Nguyen

编译 | 蔡志兴、费棋

编辑 | Jane

出品 | AI科技大本营

【导语】机器学习工程师 Michael Nguyen 在其博文中发布了关于 LSTM 和 GRU 的详细图解指 南。博文中,他先介绍了 LSTM 和 GRU 的本质, 然后解释了让 LSTM 和 GRU 有良好表现的内 部机制。 当然,如果你还想了解这两种网络背后发生了什么,那么这篇文章就是为你准备的。

视频详解

## 短时记忆

RNN 会受到短时记忆的影响。如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后 面的时间步。 因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信

在反向传播期间,RNN 会面临梯度消失的问题。 梯度是用于更新神经网络的权重值,消失的梯度问 题是当梯度随着时间的推移传播时梯度下降,如果梯度值变得非常小,就不会继续学习。

## new weight = weight - learning rate\*gradient

2.0999

Not much of a difference

0.001 update value

梯度更新规则

因此,在递归神经网络中,获得小梯度更新的层会停止学习—— 那些通常是较早的层。 由于这些层 不学习, RNN 可以忘记它在较长序列中看到的内容, 因此具有短时记忆。

## ▼作为解决方案的 LSTM 和 GRU

LSTM 和 GRU 是解决短时记忆问题的解决方案,它们具有称为"门"的内部机制,可以调节信息流。









这些"门"可以知道序列中哪些重要的数据是需要保留,而哪些是要删除的。 随后,它可以沿着长链序列传递相关信息以进行预测,几乎所有基于递归神经网络的技术成果都是通过这两个网络实现的。

LSTM 和 GRU 可以在语音识别、语音合成和文本生成中找到,你甚至可以用它们为视频生成字幕。对 LSTM 和 GRU 擅长处理长序列的原因,到这篇文章结束时你应该会有充分了解。

下面我将通过直观解释和插图进行阐述,并避免尽可能多的数学运算。

## 本质

让我们从一个有趣的小实验开始吧。当你想在网上购买生活用品时,一般都会查看一下此前已购买该 商品用户的评价。

## Customers Review 2,491



Thanos

September 2018

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!



A Box of Cereal

当你浏览评论时,你的大脑下意识地只会记住重要的关键词,比如"amazing"和"awsome"这样的词汇,而不太会关心"this"、"give"、"all"、"should"等字样。如果朋友第二天问你用户评价都说了什么,那你可能不会一字不漏地记住它,而是会说出但大脑里记得的主要观点,比如"下次肯定还会来买",那其他一些无关紧要的内容自然会从记忆中逐渐消失。

## Customers Review 2,491



September 2018 Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!



A Box of Cereal \$3.99 而这基本上就像是 LSTM 或 GRU 所做的那样,它们可以学习只保留相关信息来进行预测,并忘记不相关的数据。

## RNN 述评

为了了解 LSTM 或 GRU 如何实现这一点,让我们回顾一下递归神经网络。 RNN 的工作原理如下;第一个词被转换成了机器可读的向量,然后 RNN 逐个处理向量序列。



逐一处理矢量序列

处理时,RNN 将先前隐藏状态传递给序列的下一步。 而隐藏状态充当了神经网络记忆,它包含相关网络之前所见过的数据的信息。



将隐藏状态传递给下一个时间步

让我们看看 RNN 的一个细胞,了解一下它如何计算隐藏状态。 首先,将输入和先前隐藏状态组合 成向量,该向量包含当前输入和先前输入的信息。 向量经过激活函数 tanh之后,输出的是新的隐藏 状态或网络记忆。



激活函数 Tanh

激活函数 Tanh 用于帮助调节流经网络的值。 tanh 函数将数值始终限制在 -1 和 1 之间。



当向量流经神经网络时,由于有各种数学运算的缘故,它经历了许多变换。 因此想象让一个值继续乘以 3,你可以想到一些值是如何变成天文数字的,这让其他值看起来微不足道。



没有 tanh 函数的向量转换

tanh 函数确保值保持在 -1~1 之间,从而调节了神经网络的输出。 你可以看到上面的相同值是如何保持在 tanh 函数所允许的边界之间的。



有 tanh 函数的向量转换

这是一个 RNN。它内部的操作很少,但在适当的情形下(如短序列)运作的很好。 RNN 使用的计算资源比它的演化变体 LSTM 和 GRU 要少得多。

## LSTM

LSTM 的控制流程与 RNN 相似,它们都是在前向传播的过程中处理流经细胞的数据,不同之处在于 LSTM 中细胞的结构和运算有所变化。



LSTM的细胞结构和运算

这一系列运算操作使得 LSTM具有能选择保存信息或遗忘信息的功能。咋一看这些运算操作时可能有点复杂,但没关系下面将带你一步步了解这些运算操作。

## 核心概念

LSTM 的核心概念在于细胞状态以及"门"结构。细胞状态相当于信息传输的路径,让信息能在序列连中传递下去。你可以将其看作网络的"记忆"。理论上讲,细胞状态能够将序列处理过程中的相关信息一直传递下去。

因此,即使是较早时间步长的信息也能携带到较后时间步长的细胞中来,这克服了短时记忆的影响。 信息的添加和移除我们通过"门"结构来实现,"门"结构在训练过程中会去学习该保存或遗忘哪些信

## Sigmoid

门结构中包含着 sigmoid 激活函数。Sigmoid 激活函数与 tanh 函数类似,不同之处在于 sigmoid 是把值压缩到 0~1 之间而不是 -1~1 之间。这样的设置有助于更新或忘记信息,因为任何数乘以 0 都得 0,这部分信息就会剔除掉。同样的,任何数乘以 1 都得到它本身,这部分信息就会完美地保存下来。这样网络就能了解哪些数据是需要遗忘,哪些数据是需要保存。



Sigmoid 将值压缩到 0~1 之间

接下来了解一下门结构的功能。LSTM 有三种类型的门结构:遗忘门、输入门和输出门。

## 遗忘门

遗忘门的功能是决定应丢弃或保留哪些信息。来自前一个隐藏状态的信息和当前输入的信息同时传递 到 sigmoid 函数中去,输出值介于 0 和 1 之间,越接近 0 意味着越应该丢弃,越接近 1 意味着越应 该保留



遗忘门的运算过程

## 输入门

输入门用于更新细胞状态。首先将前一层隐藏状态的信息和当前输入的信息传递到 sigmoid 函数中去。将值调整到 0~1 之间来决定要更新哪些信息。0 表示不重要,1 表示重要。

其次还要将前一层隐藏状态的信息和当前输入的信息传递到 tanh 函数中去,创造一个新的侯选值向量。最后将 sigmoid 的输出值与 tanh 的输出值相乘,sigmoid 的输出值将决定 tanh 的输出值中哪些信息是重要且需要保留下来的。



输入门的运算过程

## 细胞状态

下一步,就是计算细胞状态。首先前一层的细胞状态与遗忘向量逐点相乘。如果它乘以接近 0 的值,意味者在新的细胞状态中,这些信息是需要丢弃掉的。然后再将该值与输入门的输出值逐点相加,将神经网络发现的新信息更新到细胞状态中去。至此,就得到了更新后的细胞状态。



细胞状态的计算

## 输出门

输出门用来确定下一个隐藏状态的值,隐藏状态包含了先前输入的信息。首先,我们将前一个隐藏状态和当前输入传递到 sigmoid 函数中,然后将新得到的细胞状态传递给 tanh 函数。

最后将 tanh 的输出与 sigmoid 的输出相乘,以确定隐藏状态应携带的信息。再将隐藏状态作为当前细胞的输出,把新的细胞状态和新的隐藏状态传递到下一个时间步长中去。



让我们再梳理一下。遗忘门确定前一个步长中哪些相关的信息需要被保留;输入门确定当前输入中哪些信息是重要的,需要被添加的;输出门确定下一个隐藏状态应该是什么。

## 代码示例

对于那些懒得看文字的人来说,代码也许更好理解,下面给出一个用 python 写的示例。

```
def LSTMCELL(prev_ct, prev_ht, input):
    combine = prev_ht + input
    ft = forget_layer(combine)
    candidate = candidate_layer(combine)
    it = input_layer(combine)
    Ct = prev_ct * ft + candidate * it
    ot = output_layer(combine)
    ht = ot * tanh(Ct)
    return ht, Ct
ct = [0, 0, 0]
ht = [0, 0, 0]
for input in inputs:
    ct, ht = LSTMCELL(ct, ht, input)
```

python 写的伪代码

- 1.首先,我们将先前的隐藏状态和当前的输入连接起来,这里将它称为 combine;
- 2.其次将 combine 丢到遗忘层中,用于删除不相关的数据;
- 3.再用 combine 创建一个候选层,候选层中包含着可能要添加到细胞状态中的值;
- 4.combine 同样要丢到输入层中,该层决定了候选层中哪些数据需要添加到新的细胞状态中;
- 5.接下来细胞状态再根据遗忘层、候选层、输入层以及先前细胞状态的向量来计算;
- 6.再计算当前细胞的输出;
- 7.最后将输出与新的细胞状态逐点相乘以得到新的隐藏状态。

是的,LSTM 网络的控制流程就是几个张量和一个 for 循环。你还可以使用隐藏状态进行预测。结合这些机制,LSTM 能够在序列处理中确定哪些信息需要记忆,哪些信息需要遗忘。

## GRU

知道了 LSTM 的工作原理之后,来了解一下 GRU。GRU 是新一代的循环神经网络,与 LSTM 非常相似。与 LSTM 相比,GRU 去除掉了细胞状态,使用隐藏状态来进行信息的传递。它只包含两个门,更新门和重置门。



GRU 的细胞结构和门结构

更新门的作用类似于 LSTM 中的遗忘门和输入门。它决定了要忘记哪些信息以及哪些新信息需要被添加。

#### 重置门

重置门用于决定遗忘先前信息的程度。

这就是 GRU。GRU 的张量运算较少,因此它比 LSTM 的训练更快一下。很难去判定这两者到底谁更好,研究人员通常会两者都试一下,然后选择最合适的。

## 结语

总而言之,RNN 适用于处理序列数据用于预测,但却受到短时记忆的制约。LSTM 和 GRU 采用门结构来克服短时记忆的影响。门结构可以调节流经序列链的信息流。LSTM 和 GRU 被广泛地应用到语音识别、语音合成和自然语言处理等。

原文链接: https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

## 2018 AI开发者大会

•

拒绝空谈, 技术争鸣

•

2018 AI开发者大会(AI NEXTCon)由中国IT社区CSDN与硅谷AI社区AICamp联合出品的AI技术与产业年度盛会。多年经验淬炼,如今蓄势特发:将有近百位中美顶尖AI专家、知名企业代表以及千余名AI开发者齐聚北京,进行技术解读和产业论证。我们只讲技术,拒绝空谈,诚挚邀请AI业内人士一起共铸人工智能新篇章!

2018 AI开发者大会首轮重磅嘉宾及深度议题现已火热出炉,扫码抢"鲜"看。国庆特惠,购票立享 5 折优惠!



## 深度学习--几种常见的循环神经网络<mark>视频</mark>教学(RNN+LSTM+GRU)

05-24

深度学习的项级循环神经网络的工作方式包括 LSTM、GRU 和 RNN. 循环神经网络(RNN)在自然语言处理、语音识... 别等有很广泛的用途。LSTM和GRU是目前使用最广泛的两个循环神经网络的模型变种。该<mark>视频</mark>课程内容主要分为三 大部分,机器学习神经网络RNN教程、LSTM、GRU。



忧质评论可以帮助作者获得更高权重



#### GRU与LSTM总结

Ireaderl的博客 @ 6万+

一、LSTM(长短期记忆网络)LSTM是一种特殊的RNN类型,一般的RNN结构如下<mark>图</mark>所示,是一种将以往学习的结... 果应用到当前学习的模型,但是这种一般的RNN存在着许多的弊端。举个例子,如果我们要预测"the clouds are in t he sky"的最后一个单词,因为只在这一个句子的语境中进行预测,那么将很容易地预测出是这个单词是sky。在这样的场景中,相关的信息和预测的词位置之间的间隔是非常小的

#### LSTM 和GRU的区别

Adrianna的专栏 @ 4万+

Reference: https://cs224d.stanford.edu/lecture\_notes/LectureNotes4.pdf Empirical Evaluation of Gated Recur...
nt Neural Networks on Sequence Modeling https://feature.engineering/difference-between-lstm-a

## rnn,lstm与GRU详解

05-20

三种循环神经网络的介绍与比较,帮助大家对循环神经网络的理解

#### 一文了解LSTM和GRU背后的秘密(绝对没有公式)

weixin\_33672109的博客 @ 226

你好,欢迎阅读长短期记忆网络(LSTM)和门控循环单元(GRU)的图解文章。我是Michael,是Al语音助理领域… 的机器学习工程师。 在这篇文章中,我们将从LSTM和GRU背后的原理出发。然后我将解释允许LSTM和GRU表现良 好的内部机制。如果你想了解这两个网络的背后到底是什么,那么这篇文章就是为你准备的。 问题根源短期记忆 递 归神经网络/RNM...

#### 带你深入AI(5)-自然语言处理领域: RNN LSTM GRU

谢杨易的博客 @ 1万+

1 引言深度学习算法模型大致分为三类,物体分类,目标检测和自然语言处理。前面两章我们分析了物体分类算法... 目标检测算法,着重讲解了算法执行流程,优缺点,以及他们的优化技巧。本文分析最后一个大类,即自然语言处理领域。与物体分类和目标检测不同,自然语言处理中,前一个时刻和后一个时刻会对我们当前的输出结果产生影响,也就是网络模型是与时序相关的。比如"我是法国人,我会说""这个句子中,我们要预测最后的词语,需要

深度学习笔记——RNN(LSTM、GRU、双向RNN)学习总结

mpk\_no1的博客 @ 5万+

本文是关于RNN和RNN的变种LSTM、GRU以及BiRN的学习总结。

#### 史上最小白之LSTM 与 GRU详解

nk1995的博客 @ 826

1.前言上一篇介绍了循环神经网络 RNN,正好今天周日在家闲者也是闲着,就干脆趁热打铁,把LSTM和GRU也介.. 绍一下吧。不太清楚RNN原理的同学可以参考我上一篇博客,史上最小白值RNN详解 2.LSTM(Long short-term m emory) 2.1为什么需要LSTM Long short-term memory,也就是长短期记忆,那么从字面意思来理解LSTM就是一种不仅具有短期记忆而...

# 深度学习与自然语言处理(7)\_斯坦福cs224d 语言模型,RNN,LSTM与GRU 塞小阳 ⑩ 5万+ 说明: 本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译。

说明:本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译。与发表 1.语言模型 语言模型用于对特定序列的一系列词汇的出现概率进行计算。一个长度为m的词汇序列{w1,...,wm}的联合概率被表示为P(w1,...,wm)。由于在得到具体的词汇之前我们会先知道词汇的数量,词汇w的属性变化会根据

其在输入文档中的位置而定,而联合概率P(w1,...,wm)的计

Hayden的博客 @ 486

版权声明:本文为博主原创文章,未经博主允许不得转载。https://blog.csdn.net/weixin\_42432468 学习心得: 1、. 每周的视频课程看一到两遍 2、做笔记 3、做每周的作业练习,这个里面的含金量非常高。攀握后一定要自己敲一遍,这样以后用起来才能得心应手。对RNN、Simplified GRU、Full GRU、LSTM单元的理解: 1、RNN Unit 2、S...

## 理解I STM网络

RNN, GRU, LSTM

英文原地址;http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 中文原地址;http://www.jianshu.com/p..dc9f41f0b29 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理

## LSTM与GR

weixin\_42421001的博客 @ 4451

很多博客已经详细讲述了Istm和gru的结构及公式,这里就不一一介绍了,参考下面链接,讲的挺详细 https://blog.... dn.net/gzi\_1101/article/details/79376798 这篇文章主要讲自己对Istm与gru的区别及联系的理解。 在传统RNN中,由于反向传播过程中出现激活函数的累乘,容易造成梯度消失和梯度爆炸,这就造成在较长的time-steps下,后面...

## RNN, LSTM, GRU 公式总结

张小彬的专栏 📵 3

RNN参考 RNN wiki 的描述,根据隐层 htt\_t 接受的是上时刻的隐层(hidden layer) ht-1h\_{t-1} 还是上时刻的输出. (output layer)yt-1y\_{t-1},分成了两种 RNN,定义如下; Elman network 接受上时刻的隐层 ht-1h\_{t-1} Jordan network 接受上时刻的输出 yt-1y\_{t-1} 但是看了很多的教程,感觉应

## LSTM和GRU的对比和分析

Kevin.Shi @ 559

先给出一些结论: GRU和LSTM的性能在很多任务上不分伯仲。 GRU 参数更少因此更容易收敛,但是数据集很大的情况下,LSTM表达性能更好。 从结构上来说,GRU只有两个门(update和reset),LSTM有三个门(forget、input,output),GRU直接将hidden state 传给下一个单元,而LSTM则用memory cell 把hidden state 包装起来。 基...

## RNN、LSTM、GRU学习资料记录

夏至是个程序媛 ④ 32

RNN、LSTM: 人人都能看懂的LSTM GRU; 人人都能看懂的GRU 其他参考: 1、深度学习笔记——RNN(LSTM、GRU、双向RNN)学习总结 一、RNN RNN: 循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。 1、单个输入xxx: 允许,y=f(h,x)f: h',y = f(h,x)f: h',y = f(h,x) 输入....

【串讲总结】RNN、LSTM、GRU、ConvLSTM、ConvGRU、ST-LSTM 前言平时很少写总结性的文章,感觉还是需要阶段性总结一些可以串在一起的知识。 AI蜗牛车 ④ 4380

前言平时很少写总结性的文章,感觉还是需要阶段性总结一些可以串在一起的知识点,所以这次写了下。因为我写... 的内容主要在时序、时空预测这个方向,所以主要还是把rnn,lstm,gru,convl...

## torch.nn.GRU()函数解读

qq\_40178291的博客 📵 1万+

参考链接代码示例一个序列时: >>> import torch.nn as nn >>> **gru** = nn.**GRU**(input\_size=50, hidden\_size=50, b.. tch\_first=True) >>> embed = nn.Embedding(3, 50) >>> x = torch.LongTen...

## LSTM与GRU的一些比较--论文笔记

meanme的专栏 ④ 6万+

reference: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling1.概要: 传统的RN... 在训练long-term dependencies 的时候会遇到很多困难,最常见的便是vanish gradient problen。期间有很多种解决 这个问题的方法被发表。大致可以分为两类: 一类是以新的方法改

LSTM、GRU

算法探索之路 ④ 124

©□2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页

关于我们 招贤纳士 广告服务 开发助手 ☎400-660-0108 ☑ kefu@csdn.net ⑤ 在线客服 工作时间 8:30-22:00