Trabajo Práctico N 3

Diego N. Passarella

29 de mayo de 2013

Consignas

Se deberán entregar los scripts correspondientes a la resolución de cada ejercicio.

Se realizará un informe desarrollando los métodos y técnicas utilizados en el TP, discusión de resultados y conclusiones. El informe se entregará preferentemente en formato .pdf.

Fecha límite para la entrega del TP: Miércoles 12 de Junio.

1. Interpolación

Un robot debe pasar por los puntos de control especificados en la tabla 1, en el correspondiente tiempo.

Desarrolle la trayectoria del robot a partir de distintos polinomios interpolantes $(P_5, \text{ spline}, \text{ lineal a trozos}).$

Compare las trayectorias, la velocidad y la aceleración del robot (en componentes y magnitud).

2. Integración y derivación numérica

Se asume que el error entre el estado real y el estado objetivo en un dado sistema se expresa por

$$e(t) = \frac{\sin(\pi t)}{t}$$

Calcule y compare el valor de un controlador PID obtenido numéricamente $(u_N(t))$ con los siguientes esquemas en $t \in [0, 10]$ segundos:

- a) $h_t = 0.1$ [s], con la derivada calculada con un esquema con $R(h_t^2)$ e integral por Simpson
- b) $h_t=0.01$ [s], con la derivada calculada con un esquema con $R\left(h_t\right)$ e intregral por trapecio

Compare el error cometido por ambos controladores obtenidos numéricamente con respecto a la expresión analítica $e_{PID}(t) = u(t) - u_N(t)$. Para obtener una aproximación de la expresión analítica puede utilizar un esquema de alto orden y un paso extremadamente pequeño para computarla.

Para cada uno de los esquemas propuestos, analice otros pasos de tiempo a los anteriormente propuestos y grafique el error cuadrático medio de $e_{PID}(t)$ en $t \in [0, 10]$ como función del tiempo de cálculo necesario para obtener el valor del controlador.

La expresión del controlador viene dada por:

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Las constantes del controlador en este caso se tomarán como: $K_p=1,\,K_i=0,5,\,K_d=0,6.$