

Chapter 2 Bits, Data Types, and Operations

How do we represent data in a computer?

At the lowest level, a computer is an electronic machine.

works by controlling the flow of electrons

Easy to recognize two conditions:

- 1. presence of a voltage we'll call this state "1"
- 2. absence of a voltage we'll call this state "0"

Could base state on *value* of voltage, but control and detection circuits more complex.

 compare turning on a light switch to measuring or regulating voltage

Computer is a binary digital system.

Digital system:

finite number of symbols

Binary (base two) system:

has two states: 0 and 1

Basic unit of information is the binary digit, or bit.

Values with more than two states require multiple bits.

- A collection of two bits has four possible states: 00, 01, 10, 11
- A collection of three bits has eight possible states:
 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2n possible states.

What kinds of data do we need to represent?

- Numbers signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Logical true, false
- Text characters, strings, …
- Images pixels, colors, shapes, …
- Sound
- ...

Data type:

representation and its associated operations within the computer

We'll start with numbers...

Unsigned Integers

Non-positional notation

- could represent a number ("5") with a string of ones ("11111")
- problems?

Weighted positional notation

- like decimal numbers: "329"
- "3" is worth 300, because of its position, while "9" is only worth 9

$$3x100 + 2x10 + 9x1 = 329$$

$$1x4 + 0x2 + 1x1 = 5$$

Unsigned Integers (cont.)

An *n*-bit unsigned integer represents 2^n values: from 0 to 2^n -1.

2 ²	2 ¹	2 ⁰	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

add from right to left, propagating carry

Subtraction, multiplication, division,...

Signed Integers

With n bits, we have 2ⁿ distinct values.

- assign about half to positive integers (1 through 2ⁿ⁻¹)
 and about half to negative (- 2ⁿ⁻¹ through -1)
- that leaves two values: one for 0, and one extra

Positive integers

 just like unsigned – zero in most significant (MS) bit 00101 = 5

Negative integers

- sign-magnitude set MS bit to show negative,
 other bits are the same as unsigned
 10101 = -5
- one's complement flip every bit to represent negative
 11010 = -5
- in either case, MS bit indicates sign: 0=positive, 1=negative

Two's Complement

Problems with sign-magnitude and 1's complement

- two representations of zero (+0 and -0)
- arithmetic circuits are complex
 - ➤ How to add two sign-magnitude numbers?
 - -e.g., try 2 + (-3)
 - >How to add to one's complement numbers?
 - -e.g., try 4 + (-3)

Two's complement representation developed to make circuits easy for arithmetic.

 for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

Two's Complement Representation

If number is positive or zero,

normal binary representation, zeroes in upper bit(s)

If number is negative,

- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

Two's Complement Shortcut

To take the two's complement of a number:

- copy bits from right to left until (and including) the first "1"
- flip remaining bits to the left

Two's Complement Signed Integers

MS bit is sign bit – it has weight -2^{n-1} .

Range of an n-bit number: -2^{n-1} through $2^{n-1} - 1$.

• The most negative number (-2ⁿ⁻¹) has no positive counterpart.

-2 ³	2 ²	2 ¹	2 ⁰		-2 ³	2 ²	2 ¹	2 ⁰	
0	0	0	0	0	1	0	0	0	-8
0	0	0	1	1	1	0	0	1	-7
0	0	1	0	2	1	0	1	0	-6
0	0	1	1	3	1	0	1	1	-5
0	1	0	0	4	1	1	0	0	-4
0	1	0	1	5	1	1	0	1	-3
0	1	1	0	6	1	1	1	0	-2
0	1	1	1	7	1	1	1	1	-1

Converting Binary (2's C) to Decimal

- 1. If leading bit is one, take two's complement to get a positive number.
- 2. Add powers of 2 that have "1" in the corresponding bit positions.
- 3. If original number was negative, add a minus sign.

$$X = 01101000_{two}$$

= $2^6+2^5+2^3=64+32+8$
= 104_{ten}

Assuming 8-bit 2's complement numbers.

More Examples

$$X = 00100111_{two}$$

= $2^5+2^2+2^1+2^0 = 32+4+2+1$
= 39_{ten}

$$X = 11100110_{two}$$
-X= 00011010
= $2^4+2^3+2^1=16+8+2$
= 26_{ten}
X= - 26_{ten}

Assuming 8-bit 2's complement numbers.

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Converting Decimal to Binary (2's C)

First Method: Division

- 1. Find magnitude of decimal number. (Always positive.)
- 2. Divide by two remainder is least significant bit.
- 3. Keep dividing by two until answer is zero, writing remainders from right to left.
- 4. Append a zero as the MS bit; if original number was negative, take two's complement.

$X = 104_{ten}$	104/2 =	52 r0	bit 0
	52/2 =	26 r0	bit 1
	26/2 =	13 r0	bit 2
	13/2 =	6 r1	bit 3
	6/2 =	3 r0	bit 4
	3/2 =	1 r1	bit 5
$X = 01101000_{two}$	1/2 =	0 r1	bit 6

Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two

- 1. Find magnitude of decimal number.
- 2. Subtract largest power of two less than or equal to number.
- 3. Put a one in the corresponding bit position.
- 4. Keep subtracting until result is zero.
- 5. Append a zero as MS bit;

if original was negative, take two's complement							
X =	104 _{ten}	104 - 64 =	40	bit 6			
		40 - 32 = 8 - 8 =	_	bit 5 bit 3			
X=	01101000 _{two}						

	_
n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Operations: Arithmetic and Logical

Recall:

a data type includes representation and operations.

We now have a good representation for signed integers, so let's look at some arithmetic operations:

- Addition
- Subtraction
- Sign Extension

We'll also look at overflow conditions for addition.

Multiplication, division, etc., can be built from these basic operations.

Logical operations are also useful:

- AND
- OR
- NOT

Addition

As we've discussed, 2's comp. addition is just binary addition.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2's comp. representation

Assuming 8-bit 2's complement numbers.

Subtraction

Negate subtrahend (2nd no.) and add.

- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2's comp. representation

Assuming 8-bit 2's complement numbers.

Sign Extension

To add two numbers, we must represent them with the same number of bits.

If we just pad with zeroes on the left:

<u>4-bit</u>		<u>8-bit</u>	
0100	(4)	00000100	(still 4)
1100	(-4)	00001100	(12, not -4)

Instead, replicate the MS bit -- the sign bit:

<u>4-bit</u>	<u>8-bit</u>	
0100 (4)	00000100	(still 4)
1100 (-4)	11111100	(still -4)

Overflow

If operands are too big, then sum cannot be represented as an *n*-bit 2's comp number.

We have overflow if:

- signs of both operands are the same, and
- sign of sum is different.

Another test -- easy for hardware:

carry into MS bit does not equal carry out

Logical Operations

Operations on logical TRUE or FALSE

• two states -- takes one bit to represent: TRUE=1, FALSE=0

A	В	A AND B	A	В	A OR B	A	NOT A
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		'
1	1	1	1	1	1		

View *n*-bit number as a collection of *n* logical values

operation applied to each bit independently

Examples of Logical Operations

AND

- useful for clearing bits
 - >AND with zero = 0
 - **≻AND** with one = no change

AND 00001111

00000101

OR

- useful for setting bits
 - **≻OR** with zero = no change
 - > OR with one = 1

11	00	00	1()1

11001111

NOT

- unary operation -- one argument
- flips every bit

NOT 11000101 00111010

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.

- fewer digits -- four bits per hex digit
- less error prone -- easy to corrupt long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Fractions: Fixed-Point

How can we represent fractions?

- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2's comp addition and subtraction still work.
 - **>if binary points are aligned**

$$2^{-1} = 0.5$$

$$2^{-2} = 0.25$$

$$2^{-3} = 0.125$$

$$00101000.101 (40.625)$$

$$+ 11111110.110 (-1.25)$$

$$00100111.011 (39.375)$$

No new operations -- same as integer arithmetic.

Very Large and Very Small: Floating-Point

Large values: 6.023 x 10²³ -- requires 79 bits

Small values: 6.626 x 10⁻³⁴ -- requires >110 bits

Use equivalent of "scientific notation": F x 2^E Need to represent F (*fraction*), E (*exponent*), and sign. IEEE 754 Floating-Point Standard (32-bits):

$$N = (-1)^{S} \times 1.$$
fraction $\times 2^{\text{exponent}-127}$, $1 \le \text{exponent} \le 254$

$$N = (-1)^{S} \times 0.$$
fraction $\times 2^{-126}$, exponent = 0

Floating Point Example

- Sign is 1 number is negative.
- Exponent field is 01111110 = 126 (decimal).
- Fraction is 0.10000000000... = 0.5 (decimal).

Value =
$$-1.5 \times 2^{(126-127)} = -1.5 \times 2^{-1} = -0.75$$
.

Floating-Point Operations

Will regular 2's complement arithmetic work for Floating Point numbers?

(*Hint*: In decimal, how do we compute $3.07 \times 10^{12} + 9.11 \times 10^{8}$?)

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

• both printable and non-printable (ESC, DEL, ...) characters

00	nul	10	dle	20	sp	30	0	40	@	50	Р	60	•	70	p
	SO		dc												
01	h	11	1	21	Ţ	31	1	41	A	51	Q	61	a	71	q
			dc												
02	stx	12	2	22	"	32	2	42	B	52	R	62	b	72	r
			dc												
03	etx	13	3	23	#	33	3	43	C	53	S	63	C	73	S
			dc												
04	eot	14	4	24	\$	34	4	44	D	54	T	64	d	74	t
	en		na												
05	q	15	k	25	%	35	5	45	Ε	55	U	65	e	75	u
	ac		sy												
06	k	16	n	26	&	36	6	46	F	56	V	66	f	76	V
07	bel	17	etb	27	1	37	7	47	G	57	W	67	g	77	W
			ca												
80	bs	18	n	28	(38	8	48	Н	58	X	68	h	78	X
09	ht	19	em	29)	39	9	49	1	59	Υ	69	i.	79	у
			su		-										-
0a	nl	1a	b	2a	*	3a	:	4a	J	5a	Z	6a	j	7a	Z

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?

What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

Given two ASCII characters, how do we tell which comes first in alphabetical order?

Are 128 characters enough?

(http://www.unicode.org/) 16bits representation

(한글 U+AC00~U+D7A3 가나다순으로 11,172자)

No new operations -- integer arithmetic and logic.

Other Data Types

Text strings

- sequence of characters, terminated with NULL (0)
- typically, no hardware support

Image

- array of pixels
 - ➤ monochrome: one bit (1/0 = black/white)
 - >color: red, green, blue (RGB) components (e.g., 8 bits each)
 - **≻other properties: transparency**
- hardware support:
 - >typically none, in general-purpose processors
 - >MMX -- multiple 8-bit operations on 32-bit word

Sound

sequence of fixed-point numbers

LC-3 Data Types

Some data types are supported directly by the instruction set architecture.

For LC-3, there is only one hardware-supported data type:

- 16-bit 2's complement signed integer
- Operations: ADD, AND, NOT

Other data types are supported by <u>interpreting</u> 16-bit values as logical, text, fixed-point, etc., in the software that we write.