ECE/CS 559 - Fall 2017 - Midterm Part #2.

Full Name: ID Number:

Q3 (25 pts). Let u be the step activation function with u(x) = 1 if $x \ge 0$, and u(x) = 0, otherwise. Consider the perceptron $y = u(w_0 + w_1x_1 + w_2x_2)$, where w_1 and w_2 are the weights for inputs x_1 and x_2 , respectively, w_0 is the perceptron bias, and y is the perceptron output. Let $C_0 = \{ \begin{bmatrix} 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix} \}$, and $C_1 = \{ \begin{bmatrix} 1 & 1 \end{bmatrix} \}$. The desired output for class C_0 is 0, and the desired output for class C_1 is 1. Correspondingly, let $d(\mathbf{x}) = 0$ if $\mathbf{x} \in C_0$, and otherwise, let $d(\mathbf{x}) = 1$ if $\mathbf{x} \in C_1$.

(a) (8 pts) If possible, find w_0, w_1, w_2 that can separate C_0 and C_1 (i.e., provide the desired output for all 4 possible input vectors). Otherwise, prove that no choice of weights can separate the two classes.

(b) (10 pts) Recall that the perceptron training algorithm relies on the update $\mathbf{w} \leftarrow \mathbf{w} + \eta(d(\mathbf{x}) - y) \begin{bmatrix} 1 & \mathbf{x} \end{bmatrix}$, where $\mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix}$ is the weight vector. Let $\eta = 1$ and the initial weight vector be given by $\mathbf{w} = \begin{bmatrix} -0.5 & 1 & 0 \end{bmatrix}$. Calculate the updated weights after two epochs of training.

(c)	(7 pts) Will the weigh sufficiently larger number	hts provided by the	algorithm (as setup your answer.	in (b)) eventually	converge after a
	, c	·	·		

Q4 (15 pts). Let

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \phi \left(\begin{bmatrix} w_{10} & w_{11} & w_{12} \\ w_{20} & w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \right), \text{ and } \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \phi \left(\begin{bmatrix} u_{10} & u_{11} & u_{12} \\ u_{20} & u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} 1 \\ y_1 \\ y_2 \end{bmatrix} \right)$$
(1)

with the understanding that the activation function ϕ is applied component-wise. These equations define a two-layer neural network with 2 input nodes, 2 neurons in the hidden layer, and 2 output nodes.

- (a) (5 pts) Draw the block diagram of the neural network with all inputs, outputs, weights labeled.
- (b) (10 pts) Let $E = (d_1 z_1)^2 + (d_2 z_2)^4 + u_{22}^2$. Write down the expressions for $\frac{\partial E}{\partial w_{10}}$ and $\frac{\partial E}{\partial u_{22}}$. You may use the backpropagation algorithm. Your expressions may contain intermediate variables that you shall clearly define on the feedforward/feedback graphs.

Q5 (10 pts). Consider the activation function $\phi(v) = \frac{v}{1+|v|}$ defined for all real numbers.

(a) (5 pts) Find $\phi'(v) = \frac{\partial \phi}{\partial v}$.

(b) (5 pts) Express $\phi'(v)$ in terms of $\phi(v)$ only.