Data Analysis Course

Descriptive Statistics(Version-1)

Venkat Reddy

Data Analysis Course

- Data analysis design document
- Introduction to statistical data analysis

Descriptive statistics

- Data exploration, validation & sanitization
- Probability distributions examples and applications
- Simple correlation and regression analysis
- Multiple liner regression analysis
- Logistic regression analysis
- Testing of hypothesis
- Clustering and decision trees
- Time series analysis and forecasting
- Credit Risk Model building-1
- Credit Risk Model building-2

Note

- This presentation is just class notes. The course notes for Data Analysis Training is by written by me, as an aid for myself.
- The best way to treat this is as a high-level summary; the actual session went more in depth and contained other information.
- Most of this material was written as informal notes, not intended for publication
- Please send questions/comments/corrections to <u>venkat@trenwiseanalytics.com</u> or <u>21.venkat@gmail.com</u>
- Please check my website for latest version of this document

-Venkat Reddy

Contents

- What are Descriptive statistics
- Frequency tables and graphs, Histograms
- Central Tendency
- Mean, Median, Mode
- Dispersion
- Range, variance, standard deviation
- Quartiles, Percentiles
- Box Plots
- Bivariate Descriptive Statistics
 - Contingency Tables
 - Correlation
 - Regression

Why Descriptive statistics?

- Who is a better ODI batsmen Sachin or Muralidharan?
 - Batting average?
- Who is the reliable- Dhoni or Afridi?
 - Score variance
- A triangular series among Aus, Eng & Newziland; Who will win?
 - Most number of wins Mode
- I am going to buy shoes. Which brand has verity- Power or Adidas?
 - Price range Range
- We used Average, Variance, Mode, Range to make some inferences.
 These are nothing but descriptive statistics
- Descriptive statistics tell us what happened in the past.
- Descriptive statistics avoid inferences but, they help us to get a feel of the data.
- Some times they are good enough to make an inference.

Descriptive Statistics

- A statistic or a measure that describes the data
 - Average salary of employees
- Describing data with tables and graphs (quantitative or categorical variables)
- Numerical descriptions
 - Center Give some example measures of center of the data
 - Variability

 Give some example measures of variability of the data
- Bivariate descriptions (In practice, most studies have several variables)
 - Dependency measures(Correlation)

Simple Descriptive Statistics

- N
- Sum
- Min
- Max
- Average
- Frequency of each level
- Variance
- Standard deviation

These simple descriptive statistics will be use in inferential statistics later.

Frequency tables & Histograms

 Frequency distribution: Lists possible values of variable and number of times each occurs

Intervals	Tally Marks	Frequency
0 - 9	шт	5
10 – 19	HII	4
20 – 29	HT I	6
30 - 39	ML II	7
40 – 49	Н	2
50 - 59	III	3

Shapes of histograms

- Bell-shaped (IQ, SAT, political ideology in all U.S.)
- Skewed right
 - Example Annual income
 - No. times arrested
- Skewed left
 - Score on easy exam
 - Daily level if excitement in office
- Bimodal
 - Hardworking days in a year (Peaks near Mid year & year end Appraisal)

Lab: Histogram

- Create a histogram on variable 'actual' in prdsale data
 - How many modes?
 - What is the skewness?
 - What is its kurtosis?
- Create a histogram on variable 'msrp' in cars data
 - How many modes?
 - What is the skewness?
 - What is its kurtosis?
- Create a histogram on variable 'weight' in cars data
 - How many modes?
 - What is the skewness?
 - What is its kurtosis?

Compare the above three histograms.

Central tendency

- What is the flight fare from Bangalore to Delhi? 3500–Exact or average?
- What is central tendency? Average
- Three types of Averages
 - Mean
 - Median
 - Mode

Mean

- Center of gravity
- Evenly partitions the sum of all measurement among all cases; average of all measures

$$\overline{\overline{x}} \neq \frac{\sum_{i=1}^{n} x_i}{n}$$

- Crucial for inferential statistics
- Mean is not very resistant to outliers —See in Median

Median

- What is the mean of [0.1 0.8 0.4 0.3 0.1 0.4 9.0 0.1 0.9 0.3 1.0 0.3 0.1]
- Guess without calculation Around 0.5?
- Now calculate the mean
- Median is exactly in the middle. Isn't mean exactly in the middle
- Order the observations in ascending or descending order and pick the middle observation
- less useful for inferential purposes
- More resistant to effects of outliers...

Calculation of Median

rim diameter (cm)

```
unit 1 unit 2
        9.7
               9.0
       11.5
              11.2
       11.6
              11.3
              11.7
       12.1
       12.4 12.2
       12.6
              12.5
12.9 <--
              13.2
                    13.2
              13.8
       13.1
       13.5
              14.0
       13.6
              15.5
       14.8
              15.6
       16.3
              16.2
      26.9
              16.4
```

Mode

- How do you express average size of the shoes?
 - 6.567 or 6?
- Mode is the most numerous category
- Can be more or less created by the grouping procedure
- For theoretical distributions—simply the location of the peak on the frequency distribution

Lab

- Run Proc means data product data
- What is the mean of 'msrp' in cars data?
- Is it reflecting the average value of price?
- What is median of 'msrp' in cars data?
- Is it reflecting the average value of price?
- Run Proc Univariate on weight varaibale in cars data. Find mean, Median & Mode.

Dispersion

Person1: What is the average depth of this river? 5 feet

Person2: I am 5.5 I can easily cross it(and starts crossing it)

Person 2: Help....help.

Person 1: Some times just knowing the central tendency is not

sufficient

- Measures of dispersion summarize the degree of clustering/spread of cases, esp. with respect to central tendency...
 - range
 - variance
 - standard deviation

Range

Max –Min

R: range(x)

unit 1	unit 2
9.7	9.0
11.5	11.2
11.6	11.3
12.1	11.7
12.4	12.2
12.6	12.5
13.1	13.2
13.5	13.8
13.6	14.0
14.8	15.5
16.3	15.6
26.9	16.2
	16.4

Variance

- Take deviation from Mean- It can be zero some times
- Hence take square of deviation from mean → Take average of that
- Average mean squared distance is variance

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}$$

- Units of <u>variance</u> are <u>squared</u>... this makes variance hard to interpret
- Eg : Mean length = 22.6 mm variance = 38 mm²
- What does this mean??? —I don't Know

Standard Deviation

Square root of variance

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

- Units are in <u>same</u> units as base measurements
- Mean = 22.6 mm standard deviation = 6.2 mm
- Mean +/- sd (16.4—28.8 mm)
 - should give at least <u>some</u> intuitive sense of where most of the cases lie, barring major effects of outliers

Quartiles & Percentiles

- pth percentile: p percent of observations below it, (100 p)% above it.
- Like 95% of CAT percentile means → 5% are above & 95% are below
- 1,2,3,4,5,6,7,8,9,10 What is 25th percentile?
- 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 What is 25th percentile? What is 80th percentile?
 - p = 50: median
 - p = 25: lower quartile (LQ)
 - p = 75: upper quartile (UQ)
- Interquartile range IQR = UQ LQ

Box Plots

Quartiles portrayed graphically by box plots

Box Plots

Example: weekly TV watching for *n*=60, 3 outliers

Box Plots Interpretation

- Box plots have box from LQ to UQ, with median marked. They
 portray a five-number summary of the data: Minimum, LQ,
 Median, UQ, Maximum
- Except for outliers identified separately
- Outlier = observation falling
 below LQ 1.5(IQR) or above UQ + 1.5(IQR)
- Ex. If LQ = 2, UQ = 10, then IQR = 8 and outliers above 10 + 1.5(8) = 22

Lab

- Run proc univariate on a variable from sample data in sas default library(prd sale / cars)
- Run proc means on actual & predicted variables from product sales data
- What are the values of Range, Variance, SD
- What are 1,2,3 & 4 quartile values
- What is 95th percentile?
- Use "all" option to display the box plots

Contingency Tables

- Cross classifications of categorical variables in which rows (typically) represent categories of explanatory variable and columns represent categories of response variable.
- Counts in "cells" of the table give the numbers of individuals at the corresponding combination of levels of the two variables

Example: Happiness and Family Income of 1993 families (GSS 2008 data: "happy," "finrela")

	Happiness			
Income	Very	Pretty	Nottoo	Total
				-
Above Aver.	164	233	26	423
Average	293	473	117	883
Below Aver.	132	383	172	687
Total	589	1089	315	1993

Contingency tables

- Example: Percentage "very happy" is
 - 39% for above average income (164/423 = 0.39)
 - 33% for average income (293/883 = 0.33)
 - What percent for below average income?

Happiness							
Income	Very	Pretty	Not oo	Total			
Above	164 (39%)	233 (55%	6) 26 (6%)	423			
Average	293 (33%)	473 (54%	%) 117 (13%)	883			
Below	132 (19%)	383 (56%	%) 172 (25%)	687			

- What can we conclude? Is happiness depending on Income? Or Happiness is independent of Income?
- Inference questions for later chapters?

Correlation

- Correlation describes strength of association between two variables
- Falls between -1 and +1, with sign indicating direction of association (formula & other details later)
- The larger the correlation in absolute value, the stronger the association (in terms of a straight line trend)
- Examples: (positive or negative, how strong?)
 - Mental impairment and life events, correlation =
 - GDP and fertility, correlation =
 - GDP and percent using Internet, correlation =

Strength of Association

- Correlation 0 → No linear association
- Correlation 0 to 0.25 → Negligible positive association
- Correlation 0.25-0.5 → Weak positive association
- Correlation 0.5-0.75 → Moderate positive association
- Correlation >0.75 → Very Strong positive association
- What are the limits for negative correlation

Regression

Regression analysis gives line predicting y using
 X(algorithm & other details later)

- y = college GPA, x = high school GPA
- Predicted y = 0.234 + 1.002(x)

Lab

- Create a contingency table for product sales data
- Find contingency tables for
 - Region by product type
 - Division by Product type
- Find the correlation between actual sales and predicted sales.
- Find the correlation between weight & msrp in cars data

Venkat Reddy Konasani

Manager at Trendwise Analytics

venkat@TrendwiseAnalytics.com

21.venkat@gmail.com

+91 9886 768879

www.TrendwiseAnalytics.com/venkat