

## FUNDAMENTOS DE FÍSICA PARA AS TECNOLOGIAS DE INFORMAÇÃO

## MIEGSI

2º Teste Sumativo

17 de Janeiro de 2013

Duração: 2h

| Nome | Nº |
|------|----|
|      |    |

Todas as respostas devem indicar quais os princípios físicos (leis, conceitos, etc) em que se baseiam e devem ser justificadas. As respostas que não estejam de acordo com estes pressupostos não poderão obter a cotação total.

| <u>Parte I (8 valores)</u> |                                                                                                                                                                                                    |                                        |                          |                                           |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|-------------------------------------------|--|
| 1.                         | Duas fontes laser com a mesma potência, emitem luz de cor diferente: verde (532 nm) e vermelha (633 nm). Por unidade de tempo, o laser verde emite                                                 |                                        |                          |                                           |  |
|                            | 1.1.                                                                                                                                                                                               | or □ a m<br>de energia que o laser ve  | nesma<br>ermelho.        | ☐ menor                                   |  |
|                            | 1.2. ☐ mai                                                                                                                                                                                         | or □ a m<br>de energia luminosa que    | nesma<br>o laser vermell | $\square$ menor                           |  |
|                            | 1.3. ☐ mai<br>número de f                                                                                                                                                                          | or □ o n<br>otões que o laser verme    | nesmo<br>Iho.            | $\square$ menor                           |  |
| 2.                         | . Coloca-se um objecto real a 7 cm de um espelho esférico côncavo de 20 cm de raio. A imagem formada será                                                                                          |                                        |                          |                                           |  |
|                            |                                                                                                                                                                                                    | ☐ real ☐ direita ☐ maior que o objecto | □ir                      | irtual<br>nvertida<br>nenor que o objecto |  |
| 3.                         | . Fazendo incidir um feixe de radiação monocromática, de comprimento de onda $\lambda$ , sobre determinado fotocátodo, verifica-se que se gera uma corrente de fotoelectrões.                      |                                        |                          |                                           |  |
|                            | 3.1. A função de trabalho do material deste fotocátodo é seguramente                                                                                                                               |                                        |                          |                                           |  |
|                            |                                                                                                                                                                                                    | $\Box$ inferior a $hc/\lambda$         | $\square$ igual a $hc/$  | $\lambda$                                 |  |
|                            | 3.2. Aumentando a intensidade do feixe incidente, a energia cinética dos fotoelectrões emitidos                                                                                                    |                                        |                          |                                           |  |
|                            |                                                                                                                                                                                                    | $\square$ aumenta                      | ☐ mantém-se              | $\square$ diminui                         |  |
|                            | 3.3. Com radiação de maior comprimento de onda, os fotoelectrões serão emitidos com uma energia cinética                                                                                           |                                        |                          |                                           |  |
|                            |                                                                                                                                                                                                    | $\square$ inferior                     | $\square$ igual          | $\square$ superior                        |  |
| 4.                         | <ul> <li>4. (V/F) A profundidade de campo na fotografia depende da escolha do diafragma. Uma diminuição d diâmetro do diafragma</li> <li>         aumenta a profundidade de campo.     </li> </ul> |                                        |                          |                                           |  |
|                            | $\square$ reduz a profundidade de campo.                                                                                                                                                           |                                        |                          |                                           |  |
|                            | $\square$ aumenta a difracção nos bordos do sistema óptico.                                                                                                                                        |                                        |                          |                                           |  |
|                            | $\square$ aumenta a resolução da imagem.                                                                                                                                                           |                                        |                          |                                           |  |
|                            | □ reduz as aberrações esféricas da lente.                                                                                                                                                          |                                        |                          |                                           |  |

## Parte II (12 valores)

## Indique TODOS os cálculos

- 1. O máximo da distribuição espectral do fluxo radiante emitido por determinado corpo cinza ocorre para o comprimento de onda de 10,6μm (na região do infravermelho). A temperatura do corpo é aumentada até que o fluxo total emitido se torne três vezes maior. Determine:
  - 1.1. as temperaturas inicial e final do corpo;
  - 1.2. a nova posição do máximo da distribuição espectral.
- 2. Um feixe de raios paralelos incide no topo de um cilindro de vidro  $(n_2=1,56)$  com um ângulo de incidência de 45°.
  - 2.1. Que acontece ao feixe nesta interface? Faça um esboço ilustrativo.
  - 2.2. Determine a direcção do feixe refractado.
  - 2.3. Que acontece ao feixe refractado quando incide na superfície lateral do cilindro? Faça um esboço ilustrativo. Represente todos os ângulos envolvidos, indicando o seu valor.



- 3. Uma lente esférica convexo-côncava ( $n_l=1.5$ ) tem raios de curvatura 20.0 cm e 40.0 cm, e 60 mm de diâmetro. Um objecto encontra-se a uma distância de 30 cm da lente. Determine
  - 3.1. a distância focal da lente;
  - 3.2. a posição da imagem formada pela lente;
  - 3.3. a ampliação da imagem;
  - 3.4. o diâmetro do foco da lente (para luz paralela de comprimento de onda  $\lambda = 550$  nm).
- 4. Um feixe de luz monocromática de comprimento de onda  $\lambda$  incide sobre vidro ( $n_2=1.6$ ) com uma camada de água e sabão de espessura d=0.10 mm e indice de refracção  $n_1=1,33$ . Considere incidência normal.
  - 4.1. Determine a diferença de fase dos raios reflectidos nas interfaces I e II
  - 4.2. Para que valores de  $\lambda$  se observará interferência (parcialmente) destrutiva dos dois feixes?

