Дискретная математика

Харитонцев-Беглов Сергей

9 ноября 2021 г.

Содержание

1. Teo	рия множеств	1
1.1	Базовые понятия	1
1.2	Операции с множествами	1
2. Kon	ибинаторика	4
2.1	Сшки	4
2.2	Биномиальные коэффициенты	5
2.3	Мультимножество	5
2.4	k-перестановки	5
2.5	Комбинаторика в схемах и мемах	6
3. Bep	оятности	8
3.1	Дискретная вероятность	8
3.2	Случайная величина	9
3.3	Биномиальное распределение	9
3.4	Геометрическое распределение	10
3.5	Гипергеометрическое распределение	10
3.6	Численные характеристики	10
4. Рек	уррентные соотношения	12
4.1	Определение	12
4.2	Линейные реккуренты	12
43	Неолноролные линейные реккуренты	13

1. Теория множеств

1.1. Базовые понятия

Есть официальный конспект, который будет Здесь.

Onpedenehue 1.1. Множество — набор различимых между собой по какому-то признаку предметов.

Определение 1.2. Предметы входящие в это множество называются его элементами.

Если мы хотим описать множество, то нужно просто описать предметы этого множества. Например, чтобы задать множество студентов необходимо задать просто студентов.

Есть конечные, счетные, несчетные и целый зоопарк множеств разных мощностей. Самое простое множество — \varnothing , множество ничего не содержащее — пустое.

Определение 1.3. X подмножество (\subseteq) $Y \Leftarrow \forall y \in Y : y \in X$. \varnothing и X — тривиальные, остальные — нетривиальные. все подмножества, кроме X — собственные.

1.2. Операции с множествами

Символ	Определение	Словами
Ω	$A \cap B = \dots$	Пересечение множества
U	$A \cup B = \dots$	Объединение множеств
\	$A \setminus B = \dots$	Разность множеств
Δ	$A \triangle B = \dots$	Симметрическая разность множеств

Определение 1.4. Алгебраическая структура — множество, на котором ввели какую-то операцию.

Пример. Пусть заданы несколько множеств:

- 1. $\exists e: a \cdot e = a \ \forall a \in G$
- 2. $\forall a \in G \ \exists a^{-1} \in G : \ a \cdot a^{-1} = a^{-1} \cdot a = e$
- 3. $\forall a, b, c : (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 4. $\forall a, b \in Ga \cdot b = b \cdot a$

То это абелева группа и это к алгебре.

А дискретная математика не имеет аксиом, то есть мало чего можно использовать из алгебры / матана.

Если задать какое-то надмножество X над A, то появится операция дополнения: $A' = X \setminus A$. Законы Де Моргана:

Теорема 1.1. $(A \cup B)' = A' \cap B'$

Теорема 1.2. $(A \cap B)' = A' \cup B'$

Доказательство смотри в конспекте Омеля, тут мне лень это делать.

Определение 1.5. Система иножеств — множество, элементами которого являются множества.

Определение 1.6. Семейство множеств — упорядоченный набор неких множеств (X_1, X_2, \dots, X_k) . Причем множества в наборе могут повторяться.

Определение 1.7. Некоторое покрытие множества X системой множеств — система множеств, объединение элементов которого равняется X.

Определение 1.8. Разбиение множества X на блоки — система (X_1, X_2, \dots, X_k) , удовлетворяющая неким условиям:

- 1. $X = \bigcup_{i=1}^{k} X_i$
- 2. $\forall i: X_i \neq \emptyset$
- 3. $\forall i, j = 1..k : X_i \cap X_j = \emptyset$

Определение 1.9. Пара элементов (x,y) — упорядоченный набор из двух элементов. То есть для $x \neq y$: $(x,y) \neq (y,x)$

Определение 1.10 (Декартово произведение). $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$

можно ввести понятие «nки» — упорядоченный набор из n элементов. Поэтому можно ввести $A \times B \times C \times \dots$ и A^2, A^n

 $Onpedenehue\ 1.11.$ Отношение между множествами — некое подмножество декартого произведения этих множеств

Пусть ω — отношение между X и Y. Тогда их записывают $X\omega Y$, а отсутствие — $X\omega Y$.

Определение 1.12. Отношение эквивалентности (X, \sim) :

- 1. $x \sim x \ \forall x \in X$
- 2. $x \sim, y \Rightarrow y \sim x \ \forall x, y \in X$
- 3. $x \sim y, y \sim z, \Rightarrow x \sim z \ \forall x, y, z \in X$

Пусть $\widetilde{x} = \{ y \in X \mid y \sim x \}.$

Свойство. пусть $y \in \widetilde{x} \Rightarrow \widetilde{y} = \widetilde{x}$

Теорема 1.3. Разбиение на блоки задает классы эквивалентности.

- $X = \bigcup_{x \in X} \widetilde{x}$
- $\widetilde{x} \neq \emptyset$, т.к. хотя бы $x \in \widetilde{x}$.
- Рассмотрим $\widetilde{x},\widetilde{y}$. Пусть $\exists z:\ z\in\widetilde{x}\cap\widetilde{y}$. Тогда $\begin{array}{c} \widetilde{z}=\widetilde{x}\\ \widetilde{z}=\widetilde{y} \end{array} \}\Rightarrow\widetilde{x}=\widetilde{y}$

Определение 1.13. Мультимножество — $(x; \varphi): \varphi \to \mathbb{Z}_+$

Есть еще несколько базовых понятий: k-перестановки/сочетания из n элементов с/без повторений.

$$|A\cup B|=|A|+|B|$$
, если $A\cap B=\varnothing$. Поэтому, если есть разбиение на блоки, то $X=X_1\cup\ldots\cup X_k\Rightarrow |X|=|X_1|+\ldots+|X_k|$

$$X = X_1 \times \ldots \times X_k$$
, тогда $|X| = |X_1| \cdot \ldots \cdot |X_k|$

$$|A' \cap B'| = |(A \cup B)'| = |X| - |A \cup B| = |X| - |A| - |B| + |A \cap B|$$

2. Комбинаторика

2.1. Сшки

Есть два способа записи цэшек: $C_n^k = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$. Обычно формулы в комбинаторике используются не для подсчетов, а для определения асимптотики/верней оценки и так далее. Например если взять n=100, то уже проблема: 100! — довольно большое число. Но там еще и деление!!! Короче, может получиться небольшое число при больших числах в подсчетах.

Давайте забудем эту дурацкую формулу и будем использовать рекурренты: легко считать, пишется в миг. $\binom{n}{k} = \binom{n-1}{k} + \binom{n}{k-1}, \binom{0}{0} = 1.$

Доказательство. Пусть есть множество из n элементов. Разобьем все k-элементные подмножества на блоки: в одном все без последнего элемента, в другом все с последним. Тогда в первом блоке тогда есть $\binom{n-1}{k}$ элементов. В другом $\binom{n-1}{k-1}$ элементов. А значит $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ \square Есть пара граничных случаев: $\binom{n}{0} = 1$, $\binom{n}{k}(n < k) = 0$. После этого можно сделать треугольник Паскаля:

Рассмотрим решетчатую плоскость (если вы это читаете это и здесь нет картиночки напишите @doktorkrab, чтобы я добавил картиночку). Какое здесь количество путей? Ну $An^k = A_{n-1}^k + A_{n-1}^{k-1}$. А это Сшки.

Теперь посмотрим на сумму на диагонали. Получаем гипотезу: $\sum m = 0^n \binom{m}{k} = \binom{k}{k} + \binom{k+1}{k} + \ldots + \binom{n-1}{k} + \binom{n}{k} = \binom{n+1}{k-1}$.

Доказательство. По основному комбинаторному тождеству: $\binom{m+1}{k+1} = \binom{m}{k+1} \binom{m}{k} \Rightarrow \binom{m}{k} = \binom{m+1}{k+1} - \binom{m}{k+1}$. Тогда:

$$\sum_{m=k}^{n} {m \choose k} = \sum_{m=k}^{n} {m+1 \choose k+1} - \sum_{m=k}^{n} {m \choose k+1}.$$
$$\binom{n+1}{k+1} + \sum_{m=k}^{n-1} {m+1 \choose k+1} - \sum_{m=k+1}^{n} {m \choose k+1}.$$

Дальше, если, расписать сумму все получится.

Пусть хочу набрать k+1-элементное подмножество из n+1-элементного множества. Пусть мы выбрали последний элемент, тогда у нас есть $\binom{n}{k}$ способов, а если не выбрали, то $\binom{n}{k+1}$ способов. А по индукции $\binom{n}{k+1} = \binom{n-1}{k+1} + \binom{n-1}{k}$. И так далее. \square Рассмотрим $\binom{n+m}{k} = \sum_{i=0}^k \binom{n}{i} \cdot \binom{m}{k-i}$

Доказательство. Рассмотрим два множества: одно n-элементное ("мальчики"), другое m-элементное ("девушки"). Тогда пусть мы выбрали i мальчиков, тогда нам нужно выбрать k-i девушек. \square Мы здесь применили принцип double counting: если мы посчитали что-то двумя способами, то результаты равны.

2.2. Биномиальные коэффициенты

Подробности на втором курсе.

Рассмотрим бином Ньютона: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k \cdot y^{n-k}$

Доказательство. Раскроем скобки в левой части: $(x+y)(x+y)(x+y)\dots$ Когда у нас x^k ? Когда мы ровно в k скобках выбрали x. Сколько способов? Очевидно $\binom{n}{k}$.

Частные случаи:

- x = y = 1. Тогда $2^n = \sum_{k=0}^n \binom{n}{k}$
 - Рассмотрим множество $\{x_1, x_2, \dots, x_n\}$. Каждому числу можно сопоставить 0/1 берем/не берем. Тогда количество подмножеств количество бинарных строчек длины n. Такой метод называется биективным: когда мы доказываем, что один объект является биекцией другого, то их количества равны.
- x = 1, y = -1. Тогда $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$ количества способов выбрать подмножество четных длин и нечетных длин равны.

2.3. Мультимножество

Хотим посчитать $\binom{n}{k}$ — количество k-элементных подмультимножеств.

Пусть X = [n]. По принципу биекции найдем сначала $\binom{n}{k}$ для X, а потом найти для произвольного множества.

Пусть есть множество A, заменим его на множество $\{i+A_i\}$. $\binom{n}{k} = \binom{n+k-1}{k}$

2.4. k-перестановки

Определение 2.1. Упорядоченные набор из k элементов, где все элементы принадлежат множеству X.

Если мы считаем, что с повторениям, то ответ n^k , а если без то $n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = (n)_k$. Перестановку можно записать как: $\begin{pmatrix} 1 & 2 & 3 & \ldots & n-1 & n \\ a_1 & a_2 & a_3 & \ldots & a_{n-1} & a_n \end{pmatrix}$. То есть i перешло в a_i . После этого можно композировать перестановки: $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$.

Заметим, что:

- 1. Существует нейтральный элемент тождественная перестановка $e = \{1, 2, \dots, n-1, n\}$
- 2. Существует обратный элемент: $\sigma \sigma^{-1} = \sigma^{-1} \sigma = e$
- 3. Ассоциативность: $\sigma \cdot (\tau \cdot \pi) = (\sigma \cdot \tau) \cdot \pi$

Значит перестановки с операцией композиции — группа. Носит название S_n . Есть теорема о том, что любая конечная группа представима как подгруппа S_n .

Рассмотрим $(n)_k = n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \binom{n}{k} \cdot k!$. Тогда $\binom{n}{k} = \frac{(n)_k}{k!}$. Тогда можно заменить n на $q, q \in \mathbb{C}$. Тогда

$$\binom{q}{k} = \begin{cases} \frac{(q)_k}{k!} & k > 0\\ 1 & k = 0\\ 0 & k < 0 \end{cases}$$

Пусть
$$(n)^k = n \cdot (n+1) \cdot \ldots \cdot (n+k-1)$$
. Тогда $\binom{n}{k} = \frac{(n)^k}{k!}$

2.5. Комбинаторика в схемах и мемах

Пусть есть n различных предметов. Нужно выбрать k предметов с различными ограничениям: с повторениями/без, упорядоченные/неупорядоченные.

	с повторениями	без повторений
упорядоченные	n^k	$(n)_k$
неупорядоченные	$\binom{n}{k}$	$\binom{n}{k}$

Схема ящиков.

	\forall	≤ 1	1	≥ 1
ящики+предметы различимы	n^k	$(n)_k$	1/n!	$\widehat{S}(n,k)$
ящики различимы, а предметы — нет	$\binom{n}{k}$	$\binom{n}{k}$	1/0	$\binom{n}{k-n}$
ящики не различимы, а предметы различимы				S(n,k)
ящики+предметы неразличимы				

Последнюю строчку мы не сможем заполнить на первом курсе, нужны производящие функции. Эта строчка решает множество задач, например, разложение числа на слагаемые.

Отображение $f:X\to Y$ — такое правило, что $\forall x\in X\ \exists !y\in Y:y=f(x).$ Количество k^n (|X|=n,|Y|=k)

Определение 2.2. Отображение — тройка из $(x, y, \Gamma \subseteq X \times Y)$, причем каждый x_i встречается в Γ ровно один раз.

Определение 2.3. Отображение называется иньективным, если $\forall x_1, x_2 \in X \ f(x_1) \neq f(x_2) \Rightarrow x_1 = x_2$. Их количество $-(k)_n$

Определение 2.4. Отображение называется биективным, если $\forall y \in Y \; \exists ! x \in X : y = f(x)$. Количество — n!.

Определение 2.5. Отображение называется сурьективным, если $\forall y \in Y \ \exists x \in X : y = f(x)$.

Посчитаем количество сурьективных отображений. Пусть ${\rm Im}(f)=\{y\in Y\mid \exists x\in X:y=f(x)\}.$ Тогда для любого отношения $f:X\to {\rm Im}(f)$ — сурьективно.

Пусть $|\operatorname{Im}(f)|=i$, а количество сурьективных отображений — $\widehat{S}(n,i)$. Тогда $\widehat{S}(n,i)\cdot \binom{k}{i}$ — количество суьективных подмножеств мощности k.

Тогда
$$k^n = \sum_{i=0}^k \binom{k}{i} \widehat{S}(n,i)$$

Пусть есть две числовые последовательности $f_0, f_1, \ldots, f_k, \ldots$ и $g_0, g_1, \ldots, g_k, \ldots$ Причем $g_k = \sum_{i=0}^k \binom{k}{i} f_i$, тогда $f_k = \sum_{i=0}^k (-1)^{k-1} \binom{k}{i} g_i$. Значит $\widehat{S}(n,k) = \sum_{i=0}^k (-1)^{k-1} \binom{k}{i} \cdot i^n$

Рассмотрим отображение $\{\{x_1, x_2\}, \{x_3\}, \varnothing\}$. Получение разбиение на блоки. Предположим, что отображение сурьективно, значит получили разбиение k предметов n ящиков.

Предположим, что в первый ящик нужно положить a_1 предмет, во второй — a_2 , и так далее. Тогда количество вариантов: $\sum \binom{n}{a_1}\binom{n-a_1}{a_2}\dots$ Если взять $\sum_{a_i\geqslant 0,a_1+\dots+a_k=n}\binom{n}{a_1}\binom{n-a_1}{a_2}=k^n=\frac{n!}{a_1!a_2!\dots a_k!}$. А если $\sum_{a_i>0,a_1+\dots+a_k=n}\binom{n}{a_1}\binom{n-a_1}{a_2}=\widehat{S}(n,k)$

Хотим разбить на блоки вида a_1 предметов + a_2 предметов + a_3 предметов...Тогда заметим, что это $\sum_{a_i\geqslant 0,\sum a_i=n}\binom{n}{a_1}\binom{n-a_1}{a_2}\ldots\binom{n-a_1-a_{k-1}}{a_k}$. Заметим, что суммарно это k^n , а если строго больше нуля, то $\widehat{S}(n,k)$. Также можно раскрыть скобки и получить. $\frac{n!}{a_1!a_2!...a_k!}$

Рассмотрим $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = P(n; k; n-k)$. Комбинаторно они равны через битовые строки.

Теперь посмотрим на $\binom{n}{k} = \frac{(n-1+k)!}{(n-1)! \cdot k!}$, через шары и перегородки.

Вернемся к k^n — все отображения, $\widehat{S}(n,k)$ — все сюръективные отображение, S(n,k) — количество разбиений n-множества на k-подмножества. (Числа Стирлинга второго рода).

Заметим, что $S(n,k)\cdot k!=\widehat{S}(n,k)$, так как в S с крышечкой это про неупорядоченные. $S(n,k)=\frac{1}{k!}\sum_{i=0}^k (-1)^{k-i} \binom{k}{i} i^n$. S(0,0)=1. $\forall S(n,0)=0$. $S(n,k)=S(n-1,k-1)+k\cdot S(n-1,k)$. Доказываем так: либо удаляем x_n , либо пихаем x_n куда-то.

$$k^{n} = \sum_{i=0}^{n} {k \choose i} \widehat{S}(n, i) = \sum_{i=0}^{n} \frac{k!}{i!(k-i!)} S(n, i).$$

Откуда:

$$x^{n} = \sum_{i=0}^{n} (x)_{i} \cdot S(n, i) \iff (x)_{n} = \sum_{i=0}^{n} x^{i} s(n, i)..$$

Где s(n,i) — числа Стирлинга первого рода.

Решим задачу, где мы хотим разбить n различимых предметов в k различимых ящиков $B(n,k) = \sum_{i=0}^k S(n,i)$. Причем $B(n,n) = B_n$ — числа Белла. Количество способов разбить n-множество на блоки.

3. Вероятности

3.1. Дискретная вероятность

Вероятностное событие — событие в какой-то вероятностной математической модели. (Результат трудно предсказать)

Множество исходов $\Omega = \{\omega_1, \dots, \omega_n\}$ — состоит из элементарных исходов. В дискретной вероятности Ω конечно или счетно.

Событие A — подмножество Ω .

Рассмотрим какой-то набор событий, добавим туда \varnothing, Ω . Получим алгебру. Тогда вероятность это отображение $P: \Omega \mapsto [0,1]$, такое что $\sum_{\omega \in \Omega} P(\omega) = 1$. Тогда $P(A) = \sum_{\omega \in A} P(\omega)$.

- 1. $P(\emptyset) = 0, P(\Omega) = 1$
- 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Определение 3.1. Назовем события A и B несовместными, если $A \cap B = \emptyset$.

Некоторым очень хочется дать определение вида $P_r(A) = \frac{|A|}{|\Omega|}$. Это не работает, если события не равновероятны.

Пусть есть два события на кубике: A — число > 3, B — четное число. $P_r(A) = \frac{1}{2}$, $P_r(B) = \frac{1}{2}$.

Теперь пусть есть инсайд: событие A произошло. Тогда $P_r(B \mid A) = \frac{2}{3}$. Тогда посмотрим на картинку и получим $P_r(B \mid A = \frac{|A \cap B|}{|A|})$. Но не забудем, про то, что мы смотрели на равновероятные события, тогда поделим на $|\Omega|$. Получим $P_r(B|A) \stackrel{\text{def}}{=} \frac{P_r(A \cap B)}{P_r(A)}$.

Посмотрим на крайние случаи: $P_r(A|A) = 1$, $P_r(A|\Omega) = P_r(A)$, $P_r(B|A) = 1$, если $A \subseteq B$.

Тогда пусть $B_1 \cap B_2 = \emptyset$. Тогда $P_r((B_1 \cup B_2) \cap A) = P_r((B_1 \cap A) \cup (b_2 \cap A)) = P_r(B_1 \cap A) + P_r(B_2 \cap A)$. А $P_r(B_1 \cup B_2 \mid A) = P_r(B_1 \mid A) + P_r(B_2 \mid A)$.

Посмотрим на $P_r(B|\overline{A})=\frac{1}{3}$. Докажем, что $P_r(B\mid A)\cdot P_r(A)+P_r(B\mid \overline{A})\cdot P_2(\overline{A})=1$. Докажем формулу полной вероятности.

Доказательство. Пусть Ω разбита на блоки $\{A_1,\ldots,A_k\}$. Заметим, что $P_r(B)=P_r(B\cap\Omega)=P_r(B\cap(A_1\cup\ldots\cup A_k))=P_r((B\cap A_1)\cup(B\cap A_2)\cup\ldots\cup(B\cap A_k))$. Дальше заметим, что $\forall i,j:A_i\cap A_j=\varnothing$. Тогда получаем $P_r(B\cap A_1)+P_r(B\cap A_2)+\ldots+P_r(B\cap A_k)$. Применив формулу условной вероятности, получим формулу полной вероятности:

$$P_r(B) = P_r(B \mid A_1) \cdot P_r(A_1) + P_r(B \mid A_2) \cdot P_r(A_2) + \ldots + P_r(B \mid A_k) \cdot P_r(A_k).$$

Заметим, что $P_r(A \cap B) = P_r(B \mid A) \cdot P_r(A)$ и $P_r(B \cap A) = P_r(A \mid B) \cdot P_r(B) \Rightarrow P_r(A \mid B) = \frac{P_r(B \mid A)P_r(A)}{P_r(B)}$. Тогда, вспомнив формулу полной вероятности, получаем:

$$P_r(A_i \mid B) = \frac{P_r(B \mid A_i) \cdot P_r(A_i)}{\sum_{j=1}^k P_r(B \mid A_j) \cdot P_r(A_j)}.$$

Пусть у вас есть событие $P_r(B)$, причем $P_r(B) = P_r(B \mid A) = \frac{P_r(A \cap B)}{P_2(A)} P_r(A) \Rightarrow P_r(A \cap B) = P_r(A) \cdot P_r(B)$

Автор: Харитонцев-Беглов Сергей

Определение **3.2.** Два события называются независимыми, если вероятность их пересечения равна произведению вероятностей этих событий.

Схема Бернулли: есть n независимых испытаний, где есть два исхода: p>0 и q>0, p+q=1. Все элементарных исходов можно записать в виде бинарной строки длины n. Тогда для какого-то ω $P_r(\omega)=p^k\cdot q^{n-k}, k=\sum_{i=1}^n a_i$. Заметим, что $\sum_{k=0}^n \binom{n}{k} p^k q^{n-k}=(p+q)^n=1^n=1$.

Определение 3.3. Независимые в совокупности события — события A_1, \ldots, A_k , такие что $P_r(A_1 \cap A_2 \cap \ldots \cap A_k) = P_r(A_1) \cdot P_r(A_2) \cdot \ldots \cdot P_r(A_k)$,

$$\Omega_1 = \{\text{успех, неудача}\}, \ P_{r_1}(\omega) = \begin{cases} p & \text{успех} \\ q & \text{неуспех} \end{cases}, \ A_1 = \{\varnothing, \text{успех, неудача}, \Omega\}. \ \text{Тогда} \ \Omega = \Omega_1 \times \ldots \Omega_n, \\ A = A_1 \times \ldots \times A_n.$$

Тогда рассмотрим (Ω_1, A_1, P_{r_1}) , (Ω_2, A_2, P_{r_2}) . Тогда $\Omega = \Omega_1 \times \Omega_2$, $A = A_1 \times A_2$. Тогда события $A_1 \times \Omega_2$, $\Omega_1 \times A_2$.

3.2. Случайная величина

Определение 3.4. Случайная величина ξ — отображение $\xi: \Omega \to \mathbb{R}$.

Иногда описание при помощи Ω , \mathbb{A} , \Pr даёт слишком точное, громоздкое описание. \mathbb{A} мы хотим только суть: например сумму значений после броска двух кубиков.

Рассмотрим некую Ω : $|\Omega| = m, |X| = n$, где $X = \{x_i \mid x_i = \xi(\omega)\}$. Рассмотрим событие $A_k = \{\omega \in \Omega \mid \xi(\omega) = x_k\}$. Тогда $\Pr(A_k) = \sum_{\omega \in \Omega; \xi(\omega) = x_k} \Pr(\omega)$.

Определение 3.5. $\{\Pr(A_1), \dots, \Pr(A_n)\}$ — распределение вероятности случайной величины ξ . Причем $\sum_{k=1}^{n} \Pr(A_k) = 1$.

А теперь пусть B — множество всех подмножеств X, тогда можно перейти к пространству (X, B, \Pr) . Так мы получили более простой эксперимент.

3.3. Биномиальное распределение

Вспомним, что такое схема Бернулли: пусть есть монетка, которую кидаем n раз, орел выпадает с вероятностью p, решка с вероятностью q. Тогда $\omega = (0, 1, 1, 0, \dots, 0)$, в общем случае $\omega = (a_1, a_2, \dots, a_n), a_n \in \{0, 1\}.$ $k \coloneqq \sum_{i=1}^n a_i$ — количество успехов в n испытаниях.

Нам кажется, что такое описание ω довольно сложно, нам хочется просто знать что-то про k. Тогда введем ξ : $\xi(\omega) = k$. Тогда $X = \{0, 1, 2, \dots, n\}$, а $\Pr(\xi(\omega) = w) = \binom{n}{k} p^k q^{n-k}$.

Тогда заметим, что $\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} = (p+q)^n = 1^n = 1$. Значит, у нас нормальная вероятность. Построим тогда график.

3.4. Геометрическое распределение

Нам интересен первый момент, когда у нас произошел фейл. Тогда пусть $\xi(\omega)=k$ — первый момент фейла. $\Pr(\xi(\omega)=k)=q^{k-1}\cdot p$. Тогда проверим нормировку: $\sum_{k=1}^\infty =p\cdot q^{k-1}=p\sum_{k=1}^\infty q^{k-1}=\frac{p}{1-q}=\frac{p}{p}=1$.

3.5. Гипергеометрическое распределение

У нас есть три переменных n,m,k. Число предметов первого и второго сорта. $\xi(\omega)$ — кол-во предметов 1-го сорта в выборке из k человек. $\Pr(\xi(\omega)=i)=\frac{\binom{n}{i}\binom{m}{k-i}}{\binom{n+m}{k}}$

У нас могут начаться проблемы из-за того, что у нас может быть задано несколько величин. Пусть η — произведение при броске двух кубиков.

y	1	2	3	4	5	6	8	9	10	12	15	16
Pr(B)	$\frac{1}{36}$	$\frac{2}{36}$										

Определение 3.6. Если $\forall \omega : \Pr(\xi(\omega) = x \land \eta(\omega) = y) = \Pr(\xi(\omega) = x_k) \cdot \Pr(\eta(\omega) = k)$, то случайные величины независимы.

Посмотрим на $\xi(\omega) = x_i, \eta(\omega) = y_i$. Тогда пусть $\chi(\omega) = \eta(\omega) + \xi(\omega)$. Тогда $\Pr(\chi(\omega) = z) = \Pr(\chi(\omega) = x_i + y_i) = \sum_{k,j:x_k+y_j=z} \Pr(\xi(\omega) = x_k \wedge \eta(\omega) = y_k)$. Если величины независимы, то получим под суммой $\Pr(\xi(\omega)) \cdot \Pr(\eta(\omega))$

3.6. Численные характеристики

 $\xi(\omega) \in X = \{x_1, \dots, x_n\}. \ \{p_1, p_n\}$ — распределение вероятности: $p_i = \Pr(\xi(\omega) = x_i)$. Посмотрим на среднее: $\frac{x_1 \cdot (p_1 N) + x_2 \cdot (p_2 N) + \dots + x_n \cdot (p_n N)}{N} = \sum_{i=1}^n p_i \cdot x_i =: E(\xi)$.

Определение 3.7. $E(\xi)$ — мат. ожидание величины ξ .

Определение 3.8. Медианой называется число m, такое что $\Pr(\xi(\omega)\geqslant m)\geqslant \frac{1}{2}$ и $\Pr(\xi(\omega)\leqslant m)\geqslant \frac{1}{2}$

Пример. Пусть в университете работает 100 человек, у 96 зарплата 20 тысяч рублей, у 4 — 2 миллиона. Тогда E=99200 рублей. А медиана равна 20 тысячам. Поэтому медиану лучше использовать в неравномерных распределениях.

Помним, что $E(\xi) = \sum_{k=1}^n x_k \cdot p_k = \sum_{\omega \in \Omega} \xi(\omega) \cdot \Pr(\omega)$. Так как $p_k = \Pr(\xi(\omega) = x_k) = \sum_{\omega: \xi(\omega) = x_k} \Pr(\omega)$.

Утверждение 3.1. $E(c_1\xi_1+c_2\xi_2)=c_1E(\xi_1)+c_2E(\xi_2)$.

Доказательство. $E(\xi_1+\xi_2)=\sum_{\omega\in\Omega}(\xi_1+\xi_2)\Pr(\omega)=\sum_{\omega}\xi_1\Pr(\omega)+\sum_{\omega}\xi_2\Pr(\omega)=E(\xi_1)+E(\xi_2)$ \square

Определение 3.9. Дисперсия $Var(\xi) = E(\xi - E(\xi))^2$

Посчитаем это: $= E(\xi^2 - 2E(\xi)\xi + E^2(\xi)) = E(\xi^2) - 2E(\xi)E(\xi) + E^2(\xi) = E(\xi^2) - E^2(\xi)$.

Заметим, что дисперсия не линейна: $Var(\xi_1+\xi_2)=E((\xi_1+\xi_2)^2)-E^2(\xi_1+\xi_2)=\ldots=E(\xi_1^2)+2E(\xi_1\cdot\xi_2)+E(\xi^2)-E^2(\xi_1)-2E(\xi_1)E(\xi_2)-E^2(\xi_2)=Var(\xi_1)+Var(\xi_2)+2cor(\xi_1;\xi_2),$ где $cor(\xi_1,\xi_2)=E(\xi_1\xi_2)-E(\xi_1)\cdot E(\xi_2)$

Теорема 3.2 (Теорема Чебышева). $E((\xi - \mu)^2 \geqslant \alpha) \leqslant \frac{Var(\xi)}{\alpha} \ \forall \alpha > 0$, где $\mu \coloneqq E(\xi)$.

 $\pmb{Cnedcmeue.}\ \sigma \coloneqq \sqrt{Var(\xi)}; Var(\xi) = \sigma^2 \Rightarrow \alpha = c^2\sigma^2.$ Тогда $E(|\xi - \mu| \geqslant c\sigma) \leqslant \frac{1}{c^2}.$

4. Рекуррентные соотношения

4.1. Определение

Определение 4.1. Пусть есть последовательность (a_0, a_1, a_2, \ldots) и $a_{n+1} = F(a_0, a_1, \ldots)$. Тогда данная последовательность реккурентая.

Будем рассматривать последовательности, в которых n-ый считается от фиксированного количества предыдущих членов.

Пример. Разводим лягушек. Изначально есть 50 лягушек. Каждый год количество увеличивается в 4 раза, но сто лягушек едут во Францию (навсегда...). Тогда количество лягушек в i-ый год: $a_n = 4a_{n-1} - 100$.

Очень классно, но что с этим можно сделать? Все просто — есть проблема в скорости пересчета, поэтому хочется найти замкнутую форму (формулу).

Но не для всех можно придумать формулу, конечно, не всегда. Но такие последовательности от дьявола.

4.2. Линейные реккуренты

Определение 4.2. Линейными реккурентным соотношениями будем называть реккуренты вида:

$$a_{n+m} = b_1(n) \cdot a_{n+m-1} + b_2(n)a_{n+m-2} + \ldots + u(n).$$

Где $b_i(n) = \text{const} = u(n)$.

Определение 4.3. Соотношение однородное, если u(n) = 0.

Если соотношение однородное, то можно сказать $a_n = \lambda^n!$ Что просто замечательно! $a_{n+2} = b_1 a_{n+1} + b_2 a_n$. Тогда $\lambda^{n+2} = b_1 \lambda^{n+1} + b_2 \lambda^n$.

Тогда получаем, $\lambda^2 = b_1 \lambda + b_2$ — характеристическое уравнение реккурентного соотношения.

Пусть мы в решении мы нашли два неравных решения λ_1, λ_2 . Тогда заметим, что их сумма подходит. А еще домножение каждого на константу работает.

То есть $a_n = c_1 \lambda_1^n + c_2 \lambda_2^n$, $\forall c_1, c_2$. Тогда нам можно выбрать просто a_0, a_1 .

Заметим, что по a_0,a_1 можно найти c_1,c_2 : $\begin{cases} a_0=c_1\lambda_1^0+c_2\lambda_2^0=c_1+c_2\\ a_1=c_1\lambda_1+c_2\lambda_2 \end{cases}$. Откуда получаем,

что $c_2 = \frac{a_1 - \lambda_1 a_0}{\lambda_2 - \lambda_1}$ и $c_1 = a_0 - c_2$.

Теперь разберем случай, когда $\lambda_1 = \lambda_2$. Тогда будем искать вид $a_n = c_1 \lambda_1^n + c_2 \cdot n \cdot \lambda_1^n$.

Доказательство. Хотим доказать:

$$c_1 \cdot \lambda^{n+2} + c_2(n+2)\lambda^{n+2} = b_1c_1\lambda^{n+1} + c_2(n+1)\lambda^{n+1} + b_1c_1\lambda^n + c_2(n)\lambda^n..$$

Заметим, что достаточно доказывать, что $c_1 \dots = c_1 \dots$ и $c_2 \dots = c_2 \dots$ Тогда докажем, что штука $(n+2)\lambda_1^{n+2} = b_1(n+1)\lambda^{n+1} + b_2n\lambda^n$:

$$n\lambda_1^n + 2\lambda^{n+2} = n\lambda_1^{n+1} + n\lambda_1^n + \lambda_1^{n+1}.$$

Заметим, что штуки с n решается понятно как (λ_1 — корень хар. уравнения). Тогда получили:

$$2\lambda_1^{n+2} = \lambda_1^{n+1} \iff 2\lambda_1^2 - \lambda_1 = 0.$$

Дальше решаем систему для a_0, a_1 и живем счастливо!.

Пример Числа Фиббоначи.

$$F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}, F_n = \lambda^n.$$

$$\lambda^{n+1} = \lambda^n + \lambda^{n-1} \iff \lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

$$\begin{cases} F_0 = c_1(\frac{1+\sqrt{5}}{2})^0 + c_2(\frac{1-\sqrt{5}}{2})^0 \\ F_0 = c_1(\frac{1+\sqrt{5}}{2})^1 + c_2(\frac{1-\sqrt{5}}{2})^1 \end{cases}.$$

Откуда получаем, что $c_1 = \frac{1}{\sqrt{5}}, c_2 = -\frac{1}{\sqrt{5}}$.

Пусть у нас больше двух членов в реккуренте. Заметим, что там техника будет ровно такая же. Только теперь получим $a_n = \sum c_i \lambda_i^n$. Но пусть у лямбды есть кратность, тогда будем искать: $a_n = c_1 \lambda_1^n + c_2 n \lambda_1^n + c_2 n^2 \lambda_1^n + \dots$ Соответственно, если кратность ds, то для лямбды будет $\sum c_i n^i \lambda^n$.

4.3. Неоднородные линейные реккуренты

Пусть есть $a_{n+1}=4a_n-100$. Тогда скажем, что на самом деле $a_{n+1}=ba_n+4=b(ba_{n-1}+4)=b(b(ba_{n-2}+4)+4)+4=\ldots=b^{n+1}a_0+(b^n+b^{n-1}+\ldots+b+1)\cdot 4=b^{n+1}\cdot a_0+\frac{b^{n+1}-1}{b-1}\cdot 4.$

Теорема 4.1. $a_{n+m} = b_1 a_{n+m-1} + \ldots + b_m a_n + u(n)$. Если α_n — решение левого, а β_n — удовлетворяет тому же, но без u(n). То $\alpha_n + c\beta_n$ будет удовлетворять реккуренте.

Доказательство.
$$\alpha_{n+m} + \frac{c\beta_{n+m}}{c\beta_{n+m}} = \frac{b_1}{(\alpha_{n+m-1} + \frac{\beta_{n+m-1}}{\beta_{n+m-1}}) + ... + u(n)}$$
.

Пример. $a_{n+1}=2a_n+7$. $a_n=C$, тогда c=-7. $a_{n+1}=2a_n\Rightarrow a_n=c2^n$. $a_0=c\cdot 2^0-7\Rightarrow C=a_0+7$

Пример. $a_{n+1} = 2a_n + (n+1)3^n$. Будем искать частное решение вида $(b_1n + b_0)3^n$:

$$b_1(n+1)3^{n+1} + b_03^{n+1} = 2b_13^n + 2b_1b_03^n + (n+1)3^n.$$

Сокращаем на 3^n :

$$3b_1n + 3b_1 + 3b_0 = n + 2b_1 + b_0 + 1...$$

Что выполняется для любого n. Тогда $3b_1=1$ и $3b_1+3b_0=2b_1+2b_0+1$

Пример. $a_{n+1} = a_n + 1$. Заметим, что здесь c = c + 1 уже не подходит. А характеристическое уравнение: $a_{n+1} = a_n \Rightarrow \lambda = 1$.

Пример. $a_{n+2} = 7a_{n+1} + 11a_n + 7^n + (n+1)3^n$. Последние два слагаемые нельзя представить в виде $P(n)R^n$. Тогда можно отдельно решить без них, с первым с двумя. А дальше как обычно.