Nome _	
Cognome _	
Matricola _	

Architettura degli Elaboratori

Corso di Laurea in Informatica Appello 31 Gennaio 2014

1. (4 punti) Si consideri lo statement di alto livello $x=a^2+(c^3/b)^2$. Si traduca lo statement in una sequenza di istruzioni assembly nel modello registro-registro. Si assuma la presenza di quattro registri general purpose R1, R2, R3, R4. Si commentino le operazioni con la corrispondente notazione simbolica. Si assumano le variabili intere a,b,c disponibili nelle locazioni di memoria di indirizzi simbolici A,B e C, rispettivamente. Si assuma che la variabile x sia indirizzabile tramite l'indirizzo simbolico X.

	Istruzioni	Notazione Simbolica		Istruzioni	Notazione Simbolica
1			7		
2			8		
3			9		
4			10		
5			11		
6			12		

	C			10		+	
	6			12			
2.	le seg che c più d	nti) Si supponga di me guenti caratteristiche: iascun file debba essen lischi, calcolare il nun IiB) di spazio inutilizz	32 piatti, 2048 tracce re memorizzato su uno nero di dischi necessar	e, 512 ed u	settori e settori da i n solo disco e che non	1024 byte. S n possa esser	upponendo e diviso tra
	Num	ero dischi:		Sp	azio libero:		
3.	che e	unti) Determinare le fussa sia composta da d mensione 256 MiB, 25	ue banchi identici e ch	ie ogr	ni banco sia formato,		
	SEI	1:	bit.int	_ 5	EEL4:		bit.int
	SEI	Ĺ2:	bit.int	_ 5	EL5:		bit.int
	SEI	Ĺ3:	bit.int	_ 5	EL6:		bit.int
4.	32bit	unti) Si illustrino in n s, dotata di stack e de POP R1	i registri BP ed SP:				
5.	azion	inti) Si fornisca il con ni: // AX,4; PUSH AX; M					

6. (3 punti) Sia dato un calcolatore, con frequenza di clock $f_{ck} = 3.2$ GHz, in grado di eseguire i 5 tipi diversi di operazioni descritte in tabella, ognuna delle quali viene eseguita in un certo numero medio di cicli di clock (c_i) . Sia dato un programma P che esegue ognuna delle operazioni in figura un certo numero X_i di volte.

i	Istruzione	c_i	X_i
1	ADD	15	$24 \cdot 10^{6}$
2	MUL	12	$10 \cdot 10^{6}$
3	MEM	8	$15 \cdot 10^{6}$
4	JUM	13	$8 \cdot 10^{6}$
5	DIV	20	$2 \cdot 10^{6}$

Car	COI	are:							
(a)	il	numero	effettivo	di	istruzioni	macchina	eseguite da	P	_

(b) il numero di cicli di clock del programma P

(c) il numero medio di clock per istruzione di macchina C_{PI}

(d) il tempo di esecuzione del programma P (in millisecondi)

7. (2 punti) In riferimento all'esercizio precedente, dato il tempo di esecuzione di P, si supponga di poter apportare un miglioramento che produce un'accelerazione di un generico componente hardware pari ad a = 1.5. Calcolare la frequenza di utilizzo (f_u) e di inutilizzo (f_i) del componente in modo che risulti una accelerazione complessiva del sistema pari a $a_q = 1.2$. Fornire il tempo di esecuzione t_n di P (in millisecondi) sul sistema risultante.

 $f_u = \underline{\qquad} f_i = \underline{\qquad} t_n = \underline{\qquad}$

8. (3 punti) Si consideri una gerarchia di memoria a tre livelli in cui: (a) il tempo medio di accesso al livello più alto t_{c1} è pari a 2 ns; (b) il tempo medio di accesso al livello intermedio t_{c2} è pari a 20 ns; (c) il tempo medio di accesso al livello più basso t_{c3} è pari a 60 ns; (d) il tasso di hit del livello più alto h_1 è pari a 0.9; (e) il tasso di hit del livello intermedio h_2 è pari a 0.8. Si calcoli il tempo complessivo medio di accesso alla gerarchia, in nanosecondi.

Risposta: .

9. (6 punti) Si forniscano i segnali di controllo temporizzati della fase di execute di una generica istruzione **OP** RA,RB,VAR che ha l'effetto di copiare la somma dei contenuti dei registri RA ed RB nella locazione di memoria successiva alla locazione di memoria VAR, assumendo che, nel formato in linguaggio macchina, l'istruzione occupi 32 bit organizzati, in ordinamento little-endian, come segue: i 6 bit più significativi dedicati al codice operativo, i 10 bit successivi alla specifica dei registri RA ed RB, e i 16 bit meno significativi alla codifica dell'indirizzo simbolico VAR. Si assuma che la fase di fetch termini al ciclo T3 e che la memoria risponda in tre cicli di clock. Si tenga in considerazione la direzionalità del registro di trasferimento dati e si assumano parole allineate da 32 bit ed una organizzazione interna a singolo bus.

\mathbf{T}	Segnali di Controllo	\mathbf{T}	Segnali di Controllo

ATTENZIONE: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.