Autômatos Finitos Não-Determinísticos

Douglas O. Cardoso douglas.cardoso@cefet-rj.br

Douglas O. Cardoso CEFET-RJ Petrópolis

Roteiro

1 Conceitos Básicos

- 2 Equivalência entre AFDs e AFNs
- 3 AFN λ s

Roteiro

1 Conceitos Básicos

- 2 Equivalência entre AFDs e AFNs
- 3 AFN λ s

Definição

Um AFN é definido de forma semelhante a um AFD: uma quíntupla, (E,Σ,δ,I,F) , em que:

- \blacksquare E é um conjunto de estados;
- Σ é um alfabeto;
- $\delta: E \times \Sigma \to \mathcal{P}(E)$ é a função de transição;
- $I, I \subset E, I \neq \emptyset$, é o conjunto de estados iniciais;
- $F, F \subset E$, é o conjunto de estados finais.

AFDs, AFNs e Não-Determinismo

É importante notar duas diferenças de AFNs para AFDs, que representam o caráter não-determinístico dos primeiros:

- Um AFN pode ter um ou mais estados iniciais, enquanto um AFD tem apenas 1 estado inicial;
- Os elementos do contradomínio da função de transição de um AFN são conjuntos de estados, enquanto de um AFD são estados apenas.

Exemplo

$$E = \{1, 2\}$$

$$\Sigma = \{0, 1\}$$

$$I = \{1\}$$

$$F = \{2\}$$

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline 1 & \{1,2\} & \{1\} \\ 2 & \varnothing & \varnothing \end{array}$$

$\delta(e,a) = \varnothing$?

- No contexto de AFNs, $\delta(e,a)$ é o conjunto de estados alcançados por transição de e sob a.
- Logo, $\delta(e,a)=\varnothing$ se e somente se não há transições sob o símbolo a partindo de e.
- AFNs dispensam o uso de sumidouros, já que a função de transição permite indicar a ausência de transições de um estado sob um símbolo.
- Se $\forall (e,a) \in E \times \Sigma, |\delta(e,a)| \leq 1$, o referido AFN poderia ser representado como um AFD. (Por que?)

AFNs e Linguagens

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda)=A$, para todo $A\subseteq E$;
 - $\hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in A} \delta(e, a), w).$
- Usando a definição de $\hat{\delta}$, a linguagem aceita por um AFN $M=(E,\Sigma,\delta,I,F)$ é o conjunto

$$L(M) = \{ w \in \Sigma^* : \hat{\delta}(I, w) \cap F \neq \emptyset \} .$$

Por que usar AFNs?

- AFDs e AFNs são equivalentes: para todo AFN, há um AFD correspondente; e todo AFD é um "AFN determinístico".
- Ainda assim, AFNs ainda se mostram úteis ante a AFDs por permitirem descrições mais simples e claras de algumas ideias.
- Devido a isso, determinar um AFN para chegar ao seu AFD correspondente é eventualmente mais interessante que determinar o AFD diretamente.
- Por exemplo, como seriam um AFD e um AFN que aceitem a linguagem $\{0,1\}^*\{1010\}$?

$\{0,1\}^*\{1010\}$: AFD e AFN

Douglas O. Cardoso CEFET-RJ Petrópolis

Exercício

Considere a linguagem

$$L_i = \{w \in \{0,1\}^* : |w| \ge i \land w_{|w|-i+1} = 1\}, i > 0.$$

- \blacksquare Determine um AFD D_i e um AFN N_i tal que $L(D_i)=L(N_i)=L_i$, para i=1,2,3 .
- lacksquare Indique o número de estados de D_i e N_i em função de i.
- A comparação desses números diz algo sobre a importância de AFNs, apesar da sua equivalência com AFDs?

Douglas O. Cardoso CEFET-RJ Petrópolis

Roteiro

1 Conceitos Básicos

- 2 Equivalência entre AFDs e AFNs
- 3 AFN λ 9

$AFD \rightarrow AFN$: Intuição

- Um AFN $N=(E',\Sigma',\delta',I,F')$ equivalente a um AFD $D=(E,\Sigma,\delta,i,F)$ qualquer pode ser determinado baseando-se na ideia de que um AFD é como um "AFN determinístico" :
 - $E' = E, \Sigma' = \Sigma, \delta'(e, a) = \{\delta(e, a)\}, I = \{i\}, F' = F.$
 - Isso merece ser provado! :)
 - \blacksquare Provar a equivalência de D e N, L(D)=L(N), é provar que $\forall w,w\in L(D)\leftrightarrow w\in L(N).$

Douglas O. Cardoso CEFET-RJ Petrópolis

$AFD \rightarrow AFN$: Prova

Segue uma prova da ida, $w \in L(D) \to w \in L(N)$. A prova da volta usa os mesmo passos, mas ao contrário.

- $w \in L(D)$
- $\hat{\delta}(i,w) \in F$
- $\hat{\delta}(i,w) \in F'$
- $\{\hat{\delta}(i,w)\} \cap F' \neq \emptyset$
- $\hat{\delta}'(\{i\}, w) \cap F' \neq \varnothing$
- $w \in L(N)$

(Pela definição da linguagem aceita por AFD)

(Afinal, $F=F^{\prime}$)

(Pela definição matemática de conjuntos)

(Segundo $\{\hat{\delta}(e,w)\} = \hat{\delta}'(\{e\},w)$, a provar)

(Pela definição da linguagem aceita por AFN)

$\widehat{\{\delta(e,w)\}} = \widehat{\delta}'(\{e\},w)$: Prova, por indução em |w|, base

■ Base:
$$|w| = 0$$
 (i.e., $w = \lambda$).

$$\mathbf{1} \{\hat{\delta}(e,\lambda)\}$$

$$\hat{\delta}'(\{e\},\lambda)$$

(Pela definição de $\hat{\delta}$ para AFDs)

(Pela definição de $\hat{\delta}$ para AFNs)

$\{\hat{\delta}(e,w)\}=\hat{\delta}'(\{e\},w)$: Prova, por indução em |w|, passo

- Hipótese: $\{\hat{\delta}(e, w)\} = \hat{\delta}'(\{e\}, w)$, para |w| = n.
- Passo: $\{\hat{\delta}(e, aw)\} = \hat{\delta}'(\{e\}, aw)$.

 - $\hat{\delta}'(\{\delta(e,a)\},w)$
 - $\hat{\delta}'(\delta'(e,a),w)$
 - $\hat{\delta}'(\{e\}, aw)$

(Pela definição de $\hat{\delta}$ para AFDs)

(Pela hipótese de indução)

(Pela definição de δ')

(Pela definição de $\hat{\delta}$ para AFNs)

$AFN \rightarrow AFD$: Intuição

- Um AFD $D=(E',\Sigma',\delta',i,F')$ equivalente a um AFN $N=(E,\Sigma,\delta,I,F)$ qualquer realizaria, determinística e sincronicamente, computações "paralelas" do AFN.
- Logo, os estados desse AFD seriam conjuntos de estados do AFN (já que um AFN permite estar em mais de um estado ao mesmo tempo).
- lacksquare O estado inicial de D seria o próprio conjunto de estados iniciais de N.
- Os conjuntos de estados de N com pelo menos 1 estado final seriam os estados finais de D.
- $\blacksquare \text{ Assim sendo: } E' \subseteq \mathcal{P}(E), \Sigma' = \Sigma, i = I, F' = \{X \subseteq E : X \cap F \neq \varnothing\}.$
- Por fim, $\delta'(X,a) = \bigcup_{e \in X} \delta(e,a)$, para $X \subseteq E$.

$\mathsf{AFN} \to \mathsf{AFD}$: Prova, $w \in L(N) \leftrightarrow w \in L(D)$

$$w \in L(N)$$

$$\hat{\delta}(I,w) \cap F \neq \emptyset$$

$$\hat{\delta}'(I,w) \cap F \neq \emptyset$$

$$\hat{\delta}'(I,w) \cap F \neq \emptyset$$

$$\hat{\delta}'(I,w) \in F'$$

$$w \in L(D)$$

(Pela definição de linguagem aceita por AFN)

(Segundo
$$\hat{\delta}(X, w) = \hat{\delta}'(X, w)$$
, a provar)

(Pela definição de F')

(Pela definição de linguagem aceita por AFD)

$\hat{\delta}(X,w)=\hat{\delta}'(X,w)$: Prova, por indução em |w|, base

■ Base:
$$|w| = 0$$
 (i.e., $w = \lambda$).

$$\hat{\delta}(X,\lambda)$$

$$\hat{\delta}'(X,\lambda)$$

(Pela definição de $\hat{\delta}$ para AFNs)

(Pela definição de $\hat{\delta}$ para AFDs)

$\hat{\delta}(X,w)=\hat{\delta}'(X,w)$: Prova, por indução em |w|, passo

- Hipótese: $\hat{\delta}(X, w) = \hat{\delta}'(X, w)$, para |w| = n.
- Passo: $\hat{\delta}(X, aw) = \hat{\delta}'(X, aw)$.
 - $\hat{\delta}(X, aw)$
 - $\hat{\delta}(\bigcup_{e\in X}\delta(e,a),w)$
 - $\hat{\delta}'(\bigcup_{e\in X}\delta(e,a),w)$
 - $\hat{\delta}'(\delta'(X,a),w)$
 - $\hat{\delta}'(X, aw)$

(Pela definição de $\hat{\delta}$ para AFNs)

(Pela hipótese de indução)

(Pela definição de δ')

(Pela definição de $\hat{\delta}$ para AFDs)

Exercício

I Considere um AFN $N=(\{1,2,3,4,5\},\{0,1\},\delta,\{1,2\},\{5\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1	
1	{2}	Ø	
2	{3}	Ø	
3	Ø	{4 }	
4	Ø	$\{3, 5\}$	
5	Ø	Ø	

- 2 Desenhe o diagrama referente a este AFN.
- 3 Determine o AFD equivalente a este AFN.

Roteiro

1 Conceitos Básicos

- 2 Equivalência entre AFDs e AFNs
- 3 AFN λ s

Definição

- Um autômato finito não determinístico com transições λ (AFN λ) é definido de forma semelhante a um AFN.
- A diferença entre ambos está na função de transição, que para AFN λ s é descrita como: $\delta: E \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(E)$.
- Ou seja, num AFN λ é possível a realização de transições sem que qualquer símbolo da seja consumido.
- lacktriangle Mesmo com essa capacidade extra, AFN λ s são equivalentes a AFNs.
- Assim sendo, a utilidade de AFN λ s é baseada apenas na possibilidade de obter modelos mais claros e objetivos do que usando AFNs.

Função fecho $\lambda, f\lambda$

- Antes de falar na linguagem aceita por um AFN λ $M = (E, \Sigma, \delta, I, F)$, é interessante definir a função fecho $\lambda, f\lambda: \mathcal{P}(E) \to \mathcal{P}(E)$.
- Essa função é definida recursivamente, conforme mostrado a seguir, para um conjunto de estados X qualquer, $X \subseteq E$:
 - $X \subseteq f\lambda(X);$
 - Se $e \in f\lambda(X)$, então $\delta(e,\lambda) \in f\lambda(X)$.
- Numa descrição em alto nível, $f\lambda(X)$ é o conjunto de todos os estados alcançáveis a partir dos estados em X usando apenas transições sob λ , sem que símbolos sejam consumidos.

$AFN\lambda$ s e Linguagens

- Seja $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$ uma função de transição estendida de um AFN λ qualquer, tal que:
 - $\hat{\delta}(\varnothing,w)=\varnothing$, para todo $w\in\Sigma^*$;
 - $\hat{\delta}(A,\lambda) = f\lambda(A)$, para todo $A \subseteq E$;
 - $\hat{\delta}(A, aw) = \hat{\delta}(\bigcup_{e \in f\lambda(A)} \delta(e, a), w).$
- \blacksquare De forma semelhante a AFNs, a linguagem aceita por um AFN λ $M=(E,\Sigma,\delta,I,F)$ é o conjunto

$$L(M) = \{ w \in \Sigma^* : \hat{\delta}(I, w) \cap F \neq \emptyset \} .$$

Equivalência entre AFN λ s e AFNs

- Assim como AFDs são como um caso particular de AFNs, é possível ver os próprios ANFs como um caso particular de AFN λ s.
- Sendo assim, a equivalência entre AFN λ s e AFNs pode ser comprovada apenas obtendo AFNs correspondentes a todos AFN λ s.
- Considere então um AFN $\lambda M=(E,\Sigma,\delta,I,F)$. Um AFN equivalente seria $N=(E,\Sigma,\delta',I',F)$, tal que $I'=f\lambda(I)$ e $\delta'(e,a)=f\lambda(\delta(e,a))$.
- Para provar que L(M) = L(N), mostrar-se que $\hat{\delta}'(I', w) = \hat{\delta}(I, w)$.
 - $\hat{\delta}'(I',w)$
 - $\hat{\delta}'(f\lambda(I), w)$

(Pela definição de I')

 $\hat{\delta}(I,w)$

(Segundo $\hat{\delta}'(f\lambda(X), w) = \hat{\delta}(X, w)$, a provar)

$\hat{\delta}'(f\lambda(X),w)=\hat{\delta}(X,w)$: Prova, indução em |w|, base

■ Base:
$$|w| = 0$$
 (i.e., $w = \lambda$).

$$1 \hat{\delta}'(f\lambda(X),\lambda)$$

$$f_{\lambda}(X)$$

$$\hat{\delta}(X,\lambda)$$

(Pela definição de $\hat{\delta}$ para AFNs)

(Pela definição de $\hat{\delta}$ para AFN λ s)

$\hat{\delta}'(f\lambda(X),w)=\hat{\delta}(X,w)$: Prova, indução em |w|, passo

■ Hipótese: $\hat{\delta}'(f\lambda(X), w) = \hat{\delta}(X, w)$, para |w| = n.

 $\qquad \text{Passo: } \hat{\delta}'(f\lambda(X),aw) = \hat{\delta}(X,aw).$

EXERCÍCIO PARA CASA. :)

Exercício

I Considere um AFN λ $M=(\{1,2,2',3,3'\},\{0,1\},\delta,\{1\},\{2,3\})$, cuja matriz de transições é mostrada a seguir.

δ	0	1	λ
1	Ø	{3}	{2}
2	{2'}	Ø	Ø
2'	{2}	Ø	Ø
3	Ø	{3'}	Ø
3'	Ø	{3}	Ø

- 2 Desenhe o diagrama referente a este AFN λ .
- **3** Determine o AFN equivalente a este AFN λ .