Introduction to Algorithms: 6.006
Massachusetts Institute of Technology

Instructors: Zachary Abel, Erik Demaine, Jason Ku

Lecture 14: Dijkstra's Algorithm

Oct. 30, 2018

Lecture 14: Dijkstra's Algorithm

Today: SSSP without negative weights

- If all weights are ≥ 0 , can do better than Bellman Ford's $O(|V| \cdot |E|)$
- Dijkstra's Algorithm takes $O(|E| + |V| \log |V|)$ time

Idea of Dijkstra's Algorithm

- Intuition: expanding frontier
 - At time x, identify all nodes with $\delta \leq x$
 - Frontier takes w(u, v) time to traverse edge (u, v)
 - Grow frontier until all nodes are reached
- Familiar case:
 - If all weights are 1, this is BFS
 - For small integer weights, can subdivide edges and then use BFS
 - * like Wleft Brothers in pset problem 6-4(a)
 - * Positive integer weights $\leq k$ leads to $O(|V| + k \cdot |E|)$ runtime.
 - * Bad if weights are big; doesn't work if weights are fractional
- Goal: Simulate continuous expansion process with discrete steps
 - Fast-forward to the next **event**: next time the frontier reaches a new vertex
 - Priority queue!
- Example (see slides)

Dijkstra's Algorithm

- Fits in relaxation framework
- Uses a Priority Queue to decide relaxation order
- Need a changeable Priority Queue! How?
 - Pset problem 5-2 showed how to cross-link a binary heap with a DAA (or Hash Table) to support change_key in $O(\log n)$ time (expected time if using a Hash Table)

- * Recall: Q.change_key(id, new_key) finds the item with identifier id, changes its key to new_key, and readjusts the queue as necessary
- * decrease_key is the special case where the new key must be smaller than the old key
- Easier DAA-based priority queue can easily be modified in O(1) time

```
def dijkstra_sssp(Adj, w, s):
      parent = [None] * len(Adj) # Same
      parent[s] = s
                                  # init
      d = [math.inf] * len(Adj) # as
      d[s] = 0
                                  # before.
      Q = PriorityQueue.build(Item(id=u, key=d[u]) for u in Adj)
8
      while len(Q) > 0:
9
          u = Q.delete_min().id # Delete and process u
10
                                        # Same
          for v in Adj[u]:
11
              if d[v] > d[u] + w(u,v): # relax
12
                  d[v] = d[u] + w(u, v) # as
                  parent[v] = u
                                        # before.
                  Q.decrease_key(id=v, new_key=d[v]) # NEW!
16
      return d, parent
```

- Runtime is dominated by Priority Queue operations: build once, delete_min |V| times, and decrease_key |E| times.
- Which Priority Queue to use?! Four standard contenders (all runtimes are $O(\cdots)$):

Priority Queue	build	del_min	dec_key	Total
DAA Heap	V	V	1	V^2
Hash Table Heap	V ex.	V ex.	1 ex.	V^2 ex.
Binary Heap	V	$\log V$	$\log V$	$(V+E)\log V$
Fibonacci Heap	V	$\log V$ am.	1 am.	$E + V \log V$

- This class **does not cover** how Fibonacci Heaps work; you only need to know these runtimes
- When to use each?
 - Fibonacci Heap: Asymptotically best of the three options, but higher constant factors
 - Hash Table / Direct Access Array: Tied with Fibonacci Heaps for dense graphs with $E=\Omega(V^2)$.
 - Binary Heap: Tied with Fibonacci Heaps for sparse graphs with $E={\cal O}(V),$ e.g., planar graphs.
 - In the real world, Binary Heaps are often faster^[citation needed], even if not asymptotically

Correctness of Dijkstra

- Intuition for the proof: the frontier includes nodes with "small" δ and excludes nodes with "large" δ . How to formalize this?
- Let B be the set of vertices that have been deleted from the Queue. Every loop adds one node to B.
- Loop Invariant:
 - For each node $u \in B$, $d[u] = \delta(s, u)$.
 - For each node $v \notin B$, its key d[v] in Q equals the minimum weight of an s-v path that **only visits nodes in** B except for v
- Base Case: True at beginning when $B = \emptyset$, since there's only one (zero-edge) path that stays in B until the last vertex, and that path has weight 0.
- Inductive step: assume B is not empty and satisfies our loop invariant. Let $M = \min\{d[v] \mid v \notin B\}$ be the minimum key in Q. (Note: Since keys are deleted in increasing order, we have $\delta(s, u) \leq M$ for every $u \in B$.)
- Claim: All paths from s that leave B have weight $\geq M$. Proof: Let x be the first node the path visits outside of B. Then the path has weight $\geq d[x] \geq M$.
- All nodes $v \notin B$ have $\delta(s, v) \geq M$. Proof: any s-v path leaves B.
- The next vertex u_{next} that is about to get deleted from Q has $d[u_{\text{next}}] = M$, since that is $delete_min$'s job.
- We just argued that $\delta(s, u_{\text{next}}) \geq M$, but by safety $\delta(s, u_{\text{next}}) \leq d[u_{\text{next}}] = M$, so indeed $d[u_{\text{next}}] = \delta(s, u_{\text{next}}) = M$.
- What about the rest of the nodes $v \notin B$ and $v \neq u_{\text{next}}$? What can the shortest s-v path that doesn't leave $B \cup \{u_{\text{next}}\}$ look like?
 - Case 1: the penultimate vertex is u_{next} . The best weight of such a path is $\delta(s, u_{\text{next}}) + w(u_{\text{next}}, v)$.
 - Case 2: the penultimate vertex is some $u \neq u_{\text{next}}$. Then replace the path to u with a shortest path that stays entirely in B, so this new path to v doesn't visit u_{next} at all. The smallest weight of such a path is (the old value of) d[v].
- Since edge (u_{next}, v) gets relaxed when u_{next} is processed, the loop invariant is restored.

Single Pair Search: Compute a single $\delta(s,t)$

- What if we just need $\delta(s,t)$, don't care about the rest of the graph
- Idea: Search from both directions at once! When frontiers overlap, we've found the shortest path.
- Hopefully we've avoided looking at much of the graph.
- In more detail:
 - Run two Dijkstra's: one from s, and one backwards from t (with all edges reversed).
 - Two separate Priority Queues Q_s and Q_t , two parent pointers $\operatorname{parent}_s[v]$ and $\operatorname{parent}_t[v]$, and two distance measures $d_s[v]$ and $d_t[v]$
 - Interleave steps from the two Dijkstra runs, in any order
 - Stop after some vertex has been deleted and processed in both runs
 - Warning: This first vertex to be processed twice might not be on the shortest path!
 - Read through all processed vertices and find the vertex x that minimizes $d_s[x] + d_t[x]$ Use parent pointers to reconstruct and return the s-t path through x.
- Runtime: No guaranteed asymptotic gains, but often great in practice

SSSP Algorithm	Lecture	Setting	Running Time
BFS	10	$w(e) = 1$ for all $e \in E$	O(V+E)
DAG shortest paths	12	G acyclic	O(V+E)
Dijkstra	14	$w(e) \ge 0$ for all $e \in E$	$O(V \log V + E)$
Bellman-Ford	13	(general)	O(VE)

```
def dijkstra_sssp(Adj, w, s):
   parent = [None] * len(Adj) # Same
   parent[s] = s
                           # init
   d = [math.inf] * len(Adj) # as
   d[s] = 0
                              # before.
   Q = PriorityQueue.build(Item(id=u, key=d[u]) for u in Adj)
   while len(Q) > 0:
       u = Q.delete_min().id # Delete and process u
       for v in Adj[u]:
                              # Same
           if d[v] > d[u] + w(u,v): # relax
               d[v] = d[u] + w(u,v) # as
               parent[v] = u  # before.
               Q.decrease_key(id=v, new_key=d[v]) # NEW!
```

return d, parent

Dijkstra Runtime

Build $+ V \cdot DeleteMin + E \cdot DecreaseKey$

Queue	Build	Delete Min	Decrease Key	Total
DAA Heap	V	V	1	$V^2 + E = O(V^2)$
Hash Table Heap	V ex.	V ex.	1 ex.	V^2 ex.
Bin Heap	V	$\log V$	$\log V$	$(V+E)\log V$
Fibonacci Heap	V	log V am.	1 am.	$V \log V + E$

(All runtimes are big-0)

Dijkstra vs Bidirectional Dijkstra

