

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	PNT2022TMID124356
Project Title	SmartLender - Applicant Credibility Prediction for Loan Approval
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Desc	Description						
Data Overview	614 r	Dimension: 614 rows × 13 columns Descriptive statistics: ApplicantIncome CoapplicantIncome LoanAmount Loan Amount Term Credit History						
	count	ApplicantIncome	CoapplicantIncome	592.000000	Loan_Amount_Term	Credit_History 564.000000		
	mean	5403 459283	1621.245798	146.412162	342.00000	0.842199		
	std	6109.041673	2926.248369	85.587325	65.12041	0.364878		
	min	150.000000	0.000000	9.000000	12.00000	0.000000		
	25%	2877.500000	0.000000	100.000000	360.00000	1.000000		
	50%	3812.500000	1188.500000	128.000000	360.00000	1.000000		
	75%	5795.000000	2297.250000	168.000000	360.00000	1.000000		
	max	81000.000000	41667.000000	700.000000	480.00000	1.000000		
Univariate Analysis								

Outliers and Anomalies -

Data Preprocessing Code Screenshots								
	<pre>#importing the dataset which is in csv file data = pd.read_csv('/content/Dataset/loan_prediction.csv') data</pre>							
Loading Data	Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncom							
	0 LP001002 Male No 0 Graduate No 5849 0.							
	1 LP001003 Male Yes 1 Graduate No 4583 1508.							
	2 LP001005 Male Yes 0 Graduate Yes 3000 0.							
	3 LP001006 Male Yes 0 Not Graduate No 2583 2358.							
	4 LP001008 Male No 0 Graduate No 6000 0.							
Handling Missing Data	<pre>data['Gender'] = data['Gender'].fillna(data['Gender'].mode()[0]) data['Married'] = data['Married'].fillna(data['Married'].mode()[0]) #replacing + with space for filling the nan values data['Dependents']=data['Dependents'].str.replace('+','') <ipython-input-71-6ac39c248773>:2: FutureWarning: The default value of regex will change from data['Dependents']=data['Dependents'].str.replace('+','') data['Dependents'] = data['Dependents'].fillna(data['Dependents'].mode()[0]) data['Self_Employed'] = data['Self_Employed'].fillna(data['Self_Employed'].mode()[0])</ipython-input-71-6ac39c248773></pre>							
	<pre>data['LoanAmount'] = data['LoanAmount'].fillna(data['LoanAmount'].mode()[0]) data['Loan_Amount_Term'] = data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mode()[0])</pre>							
	<pre>data['Credit_History'] = data['Credit_History'].fillna(data['Credit_History'].mode()[0])</pre>							
Data Transformation	data['Gender']=data['Gender'].map({'Female':1,'Male':0}) data['Property_Area']=data['Property_Area'].map({'Urban':2,'Semiurban': 1,'Rural':0}) data['Married']=data['Married'].map({'Yes':1,'No':0}) data['Education']=data['Education'].map({'Graduate':1,'Not Graduate':0}) data['Loan_Status']=data['Loan_Status'].map({'Y':1,'N':0}) # perfroming feature Scaling op[eration using standard scaller on X part of the dataset because # there different type of values in the columns sc=StandardScaler() x_bal=sc.fit_transform(x_bal)							
Feature Engineering	Attached the codes in final submission.							
Save Processed Data	-							