Lecture 10: Growth and dominance

Jonathan Holland

Rochester Institute of Technology*

September 19, 2018

^{*}These slides may incorporate material from Hughes-Hallet, et al, "Calculus", Wiley

Preview

- Continuity, definition in terms of limits. f(x) is continuous at x = c if c is in the domain of f, and $\lim_{x \to c} f(x) = f(c)$.
- Continuity, as a statement about approximation
- A function g(x) is **ultimately much bigger than** f(x) if $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$. We write " $f\prec g$ as $x\to\infty$ "
- A suppose two functions f(x), g(x) tend to zero as $x \to c$. We say that $f(x) \prec g(x)$ as $x \to c$ if $\lim_{x \to c} \frac{f(x)}{g(x)} = 0$.
- We write $f(x) \approx g(x)$ as $x \to c$ if $f(x) g(x) \prec g(x) g(c)$

Continuity

- Suppose x represents a measurement, whose true value is x = c, but that has some small error Δx .
- Let y = f(x) be a computation we must perform on the measurement.
- The function is continuous at x = c provided that the error in the computation, $\Delta y = f(x) f(c)$ is comparable to the error in the measurement, $\Delta x = x c$.
- That is, for any target accuracy ϵ in the computation, $|\Delta y| < \epsilon$, we can make the measurement accurate enough to achieve this target.
- In other words, for all $\epsilon > 0$, there exists a $\delta > 0$ such that $|\Delta y| < \epsilon$ provided $|\Delta x| < \delta$.

Review: localization of a polynomial at a zero

- Example: $f(x) = (x-1)(x+1)^2(x-2)$.
- Near x = 1, $f(x) \approx (x 1)(1 + 1)^2(1 2) = -4(x 1)$ (purple)
- Near x = -1, $f(x) \approx (-1 1)(x + 1)^2(-1 2) = 6(x + 1)^2$ (red)
- Near x = 2, $f(x) \approx (2-1)(2+1)^2(x-2) = 9(x-2)$ (red)

Being more precise about \approx

- $f(x) = (x-1)(x+1)^2(x-2)$.
- When we write $f(x) \approx 6(x+1)^2$ near x = -1, we mean that $f(x) = 6(x+1)^2 + e(x)$ where e(x) is an error that tends to zero faster than $(x+1)^2$.
- That is, $\lim_{x \to -1} \frac{e(x)}{(x+1)^2} = 0$.
- We can check that this works, because we have an explicit formula for the error e(x):

$$e(x) = (x-1)(x+1)^2(x-2) - 6(x+1)^2 = (x+1)^2((x-1)(x-2) - 6) = (x+1)^3(x-4)$$

Order of smallness

• For values of x near 0, which is smaller x, x^2, x^3 ?

Definition

We say that $x^2 \prec x$ as $x \to 0$ if

$$\lim_{x\to 0}\frac{x^2}{x}=0.$$

- This says that x^2 tends to zero faster than x.
- Similarly $x^3 \prec x^2$ as $x \to 0$.

Theorem

If n < m, then $x^m \prec x^n$ as $x \to 0$.

Definition of \approx

Definition

Let f(x) and g(x) be continuous functions. We will say that $f(x) \approx g(x)$ for x near a if

$$f(x) = g(x) + e(x)$$

where e(x) tends to zero faster than g(x)-g(a). Equivalently, $f(x)\approx g(x)$ near x=a if f(a)=g(a) and

$$\lim_{x\to a}\frac{f(x)-f(a)}{g(x)-g(a)}=1.$$

Example

- $\sin x \approx x$ for x near 0.
- $e^x \approx 1 + x + x^2/2$ for x near 0: $e^0 = 1 = 1 + 0 + 0^2/2$, so the approximation is valid if $\lim_{x\to 0} \frac{e^x-1}{x+x^2/2} = 1$ (L'Hôpital)

Comparing functions

- We say that a function f(x) tends to zero faster than g(x) as $x \to a$ if $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$. We write " $f(x) \prec g(x)$ as $x \to a$ "
- Localization: We will write " $f(x) \approx g(x)$ for x near a" if f(a) = g(a) and f(x) tends to f(a) at the same rate that g(x) tends to g(a):

$$\lim_{x\to a}\frac{f(x)-f(a)}{g(x)-g(a)}=1.$$

• The **linearization** of a function f(x) is the linear function as L(x) = f(a) + m(x - a) that satisfies $f(x) \approx L(x)$ for x near a.

The approximation problem

- A central application of calculus is finding useful approximations of functions, and also estimating the error in those approximations.
- For example, suppose we measure the side of a square to be x = 1in, so that the square has area $x^2 = 1in^2$.
- Suppose that there is a small error dx = 0.1 in our measurement, so that the true value of the side is actually x + dx = 1.1 in.
- The true value of the area is then $(x + dx)^2 = 1.21in^2$. So there is an error in the area of $0.21in^2$.

The approximation problem continued

 More generally, if we compute a side length of x = c and we can estimate that there is a possible error in the length dx, then we can estimate what the error in the area is by

$$(c + dx)^2 = c^2 + 2c dx + dx^2$$

= $c^2 + (2c + dx) dx$

• The error term is *comparable* to the error *dx* in the original measurement.

Limits as approximations

- Suppose that f is a function, and we are interested in values of the function near x = c.
- Suppose that for small values of dx, we have the approximation $f(c + dx) \approx L$. If the error in this approximation is comparable to dx, then we say that the limit of f(x) is L as x approaches c.
- What does it mean for these errors to be comparable?
- The error in the approximation $f(c + dx) \approx L$ is the difference |f(x + dx) L|.
- We shall say that this error is comparable to dx if it can be made as small as desired by making dx sufficiently small.

Dominance

- $\lim_{x\to\infty} x = ...\infty$
- Which of the functions f(x) = x and $g(x) = x^2$ is ultimately much bigger?
- Note that it makes no sense to compare " ∞ " with " ∞ 2", because these are not numbers!
- The key is that the limit

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$$

• This tells us the growth in g(x) is ultimately much larger than that of f(x). (Numerical example: Consider $\frac{f(10)}{g(10)} = \frac{10}{10^2} = \frac{1}{10}, \frac{f(100)}{g(100)} = \frac{100}{100^2} = \frac{1}{100}$ and so forth.)

Limit laws at infinity...

Assuming all the limits on the right hand side exist (and are finite):

- If b is a constant, then $\lim_{x\to\infty}(bf(x))=b\lim_{x\to\infty}f(x)$ (contant multiple law)
- $\lim_{x \to \infty} (f(x)g(x)) = \lim_{x \to \infty} f(x) \lim_{x \to \infty} g(x) \text{ (product law)}$
- $\lim_{\substack{x\to\infty\\x\to\infty}} (f(x)/g(x)) = \lim_{\substack{x\to\infty\\x\to\infty}} f(x)/\lim_{\substack{x\to\infty\\x\to\infty}} g(x), \text{ provided}$
- $\lim_{\substack{x\to\infty\\\text{law}}} [f(x)]^n = [\lim_{\substack{x\to\infty}} f(x)]^n \text{ if } n \text{ is a positive integer (power law)}$
- $\lim_{\substack{x \to \infty \\ x \to \infty}} k = k \text{ for any constant } k.$
- $\lim_{x\to\infty}\frac{1}{x^n}=0 \text{ for } n>0$

Defining "Ultimately much bigger than"

Definition

A function g(x) is *ultimately much bigger than* f(x), written $f \prec g$ at $x \to \infty$, if

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0.$$

Example

- Algorithm run-times (or space): Often write "f(n) = o(g(n))" for $f \prec g$. For example, the *quicksort* has average performance o(n) in the size n of an array.
- $\bullet \preccurlyeq$, O(n)