Letzte Hüfe

xB Fucking HELS

April 13, 2024

Contents

1 Grundkonzepte

1.1 Grundeinheiten

Symbol	Bedeutung	Einheit	Zusammenhang
U	Spannung	Volt (V)	-
I	Strom	Ampere (A)	-
R	Widerstand	Ohm (Ω)	-
G	Leitwert	Siemens (S)	$\frac{1}{R}$
Р	Leistung	Watt (W)	$U \cdot I$
С	Kapazität	Farad (F)	$C \cdot s$
Q	Ladung	Coloumb (C)	$C \cdot U$
L	Induktivität	Henry (H)	-
Е	Elektrische Feldstärke	$\frac{V}{m}$	$\frac{F}{Q}$
Ψ	Elektrischer Fluss	C	-
D	Elektrische Flussdichte	$\frac{C}{m^2}$	$\frac{\Psi}{A^2}$

Table 1.1: Grundeinheiten

1.2 Konstanten

Symbol	Bedeutung	Wert
ϵ_0	Permittivitätskonstante	$8,854 \cdot 10^{-12} \frac{F}{m}$
μ_0	Permeabilitätskonstante	,,,,

Table 1.2: Konstanten

2 Widerstand

2.1 Ohm'sches Gesetz

Der Zusammenhang zwischen Spannung, Strom und Widerstand:

$$U = R \cdot I \tag{2.1}$$

$$I = \frac{U}{R} \tag{2.2}$$

$$I = \frac{U}{R}$$

$$R = \frac{U}{I}$$
(2.2)

2.2 Netzwerke

- 2.2.1 Serienschaltung
- 2.2.2 Parallelschaltung
- 2.3 Leitungswiderstand
- 2.4 Sterndreiecktransformation
- 2.5 Temperaturabhängigkeit
- 2.6 Potentiometer

3 Kirchhoff

Kirchhoff hat zwei fundamentale Regeln/Gesetze aufgestellt.

3.1 Knotenregel

Die Summe aller Ströme bei einem Knotenpunkt ist 0, d.h. Ströme die hineinfließen, müssen auch hinausfließen.

3.2 Maschenregel

Die Summer aller Spannungen in einer Masche ist 0.

$$\sum U = 0$$

$$U_1 + U_2 = U_3 (3.1)$$

$$U_1 + U_2 - U_3 = 0 (3.2)$$

Alle Spannungen in Richtung des Umlaufsinns: + Alle Spannungen in Gegenrichtung des Umlaufsinns: -

4 Leistung

- 4.1 Blindleistung
- 4.1.1 Kompensation
- 4.2 Scheinleistung
- 4.3 Wirkleistung
- 4.4 Wirkungsgrad

5 Quellen

- 5.1 Spannungsquelle
- **5.2 Stromquelle**
- 5.3 Überlagerungsprinzip
- 5.4 Ersatzschaltbild

6 Felder

- **6.1 Elektrisches Feld**
- **6.2 Elektrischer Fluss**
- 6.3 Magnetisches Feld
- **6.4 Magnetischer Fluss**

7 dB-Rechnung

- 7.1 dBV
- 7.2 dB
- 7.3 dBm

8 Wechselstromtechnik

8.1 Komplexe Zahlen

Komplexe Zahlen sind die Erweiterung der Realen Zahlen ℝ:

$$\mathbb{N} \to \mathbb{Z} \to \mathbb{R}(\mathbb{Q} + \mathbb{I}) \to \mathbb{C} \tag{8.1}$$

Die Defintion $j=\sqrt{-1}$ ist hierbei besonders wichtig.

Beispiel

$$x^2 = -9 (8.2)$$

$$x^2 = j^2 \cdot 9 /$$
 (8.3)

$$\Rightarrow x_1 = 3j \quad x_2 = -3j \tag{8.4}$$

Eine komplexe Zahl \underline{z} besteht aus einem Realteil a und einem Imaginärteil b

Der Betrag des Punktes ($|\underline{z}|$) ist die Länge zwischen [0;0] und \underline{z} . Der Winkel φ ist zwischen der x-Achse und dem Zeiger.

$$\underline{z} = a + jb = Re(\underline{z}) + jIm(\underline{z}) \tag{8.5}$$

$$\underline{z} = |\underline{z}| \cdot e^{j\varphi} \tag{8.6}$$

Die Länge kann über den Pythagoras berechnet werden und der Winkel mit dem Arkustangens:

$$Re(\underline{z}) = |\underline{z}| \cdot cos(\varphi)$$
 (8.7)

$$Im(\underline{z}) = |\underline{z}| \cdot sin(\varphi) \tag{8.8}$$

$$\varphi = \arctan(\frac{Im(\underline{z})}{Re(z)}) \tag{8.9}$$

$$|\underline{z}| = \sqrt{Re(\underline{z})^2 + Im(\underline{z})^2}$$
 (8.10)

8.1.1 Addition Subtraktion

Die Summe Differenz kompler Zahlen $\underline{z_1}=a+jb$ und $\underline{z_2}=c+jd$ ist definiert als

$$z_1 + z_2 = (a+c) + j(c+d)$$
 $z_1 - z_2 = (a+c) - j(c+d)$ (8.11)

Es werden Real- und Imaginärteile addiert bzw. subtrahiert.

Grafisch können Zahlen in Zeigerdarstellung wie Vektoren addiert bzw. subtrahiert werden. D.h. beim Addieren wird das Ende eines Zeigers wird and die Spitze des anderen gehängt.

8.1.2 Multiplikation

Die Längen der Zeiger multiplizieren und die Winkel addieren:

$$y \cdot \underline{z} = |y| \cdot |\underline{z}| \cdot e^{j \cdot (\varphi_{\underline{y}} + \varphi_{\underline{z}})} \tag{8.12}$$

8.1.3 Division

Die Längen der Zeiger dividieren und die Winkel subtrahieren:

$$\frac{\underline{y}}{z} = \frac{|\underline{y}|}{|\underline{z}|} \cdot e^{j \cdot (\varphi_{\underline{y}} - \varphi_{\underline{z}})} \tag{8.13}$$

8.1.4 Konjugiert Komplexe Zahlen

Konjugiert-Komplexe Zahlen sind besonders wichtig, wenn man mit komplexen Zahlen rechnen möchte. Um die konjugiert-komplexe Zahl zu ermitteln, wird nur das Vorzeichen des Imaginärteils der Zahl umgedreht; sie wird als z^* angeschrieben.

$$\underline{z} = a + jb = |\underline{z}| \cdot e^{j\varphi} \tag{8.14}$$

$$\underline{z}^* = a - jb = |\underline{z}| \cdot e^{-j\varphi} \tag{8.15}$$

Visuell ist es das Gleiche, als wenn man den Punkt auf der x-Achse spiegelt.

8.2 Zeigerdiagramm

Mit Zeigerdiagrammen kann man sinusförmige Funktion übersichtlicher darstellen. Die Zeiger folgen dem Einheitskreis und sollen zeigen, wie sich die Funktion zeitlich verhält.

8.3 Impedanz

Die Impedanz ist der "Widerstand" eines Systems, die aber auch die Frequenz einbezieht (weil der Imaginärteil nicht 0 ist). Sie wird mit z dargestellt.

$$\underline{z} = \frac{\underline{U}}{\underline{I}} \tag{8.16}$$

$$\underline{z} = R + jx \tag{8.17}$$

Beispiel

Kondensator: $C=1\mu F$

$$\underline{z}_C = R + jx = \underline{y}_C \tag{8.18}$$

$$\underline{x}_C = \frac{1}{j \cdot \omega C} \cdot \frac{j}{j} \tag{8.19}$$

$$\underline{U} = 5V \cdot e^{j \cdot 0} \qquad f = 1kHz \tag{8.20}$$

8.4 Admittanz

Die Admittanz ist der Kehrwert der Impedanz und sozusagen "der Leitwert, zum Widerstand". Sie wird mit dem Buchstaben y angeschrieben.

$$\underline{y} = \frac{1}{\underline{z}} \tag{8.21}$$

$$\underline{y} = G + jB \tag{8.22}$$

9 Lineare Bauteile

- 9.1 Kondensator
- 9.1.1 Kapazität
- **9.1.2 Ladung**
- 9.2 Spule
- 9.2.1 Induktionsvorgänge
- 9.2.2 Kopplungsgrad
- 9.2.3 Induktivitäten
- 9.3 RLC Netzwerke
- 9.3.1 τ -Messung
- 9.4 Resonanzkreise
- 9.4.1 Güte
- 9.4.2 Bandbreite

9.5 Übertragungsfunktion

Die Übertragungsfunktion beschreibt das Ausgangs- im Vergleich zum Eingangssignal und ist definiert als

$$\underline{H}(j\omega) = \frac{\underline{U}_2}{\underline{U}_1} \tag{9.1}$$

wobei \underline{U}_1 der Eingang und \underline{U}_2 der Ausgang ist.

9.5.1 Bodediagramm

Das Bodediagramm zeigt das Verhalten eines Systems im logarithmischen Frequenzbereich. Es besteht aus Amplitudengang (in dB) und Phasengang (in °) und veranschaulicht die Übertragungsfunktion $H(j\omega)$.

Es könnte beispielsweise so aussehen:

10 Halbleiter

- 10.1 Dioden
- 10.1.1 Sperrkennlinie
- 10.1.2 Durchbruchsspannung
- 10.2 MOSFET
- 10.3 Bipolartransistor

11 OPV-Schaltungen

- 11.1 Verstärker
- 11.2 Schmitttrigger
- 11.3 Addierer Subtrahierer
- **11.4 Integrator Differenzierer**
- 11.5 Instrumentation Amplifier

12 Simulation

- 12.1 Altium
- 12.2 MicroCap