Week 2: Data Summary and Visualization

5. Putting it together

Stat 140 - 04

Mount Holyoke College

Outline

1. Today: Putting it all together

2. Main ideas

- 1. Data wrangling
- 2. Data visualization with ggplot

1. Today: Putting it all together

2. Main ideas

- 1. Data wrangling
- 2. Data visualization with ggplot

Recall the data set called 'senate 113' with information about the senators in the 113th US Senate. Below is a side by side box plot of the 'age' variable across two parties: Democrats and Republicans.

1. Today: Putting it all together

2. Main ideas

- 1. Data wrangling
- 2. Data visualization with ggplot

https: //en.wikipedia.org/wiki/The_Treachery_of_Images Rene Magritte, 1929

dplyr functions work with pipes and expect tidy data. In tidy data:

& *****

Each **variable** is in its own **column**

Each **observation**, or **case**, is in its own **row**

The expression

mydata % > % verb(arguments)

is the same as

verb(mydata, arguments)

Thus,

function(x, args)

has the same effect as

$$x \% > \%$$
 function(args)

Instead of having to read/write:

```
select(filter(mutate(data, args1), args2), args3)
```

You can write:

```
data \% > \%

mutate(args1) \% > \%

filter(args2) \% > \%

select(args3)
```


https://youtu.be/R6xKM-H2awE

Nested form:

```
bop(scoop(hop(foo\_foo, through = forest), up = field\_mice), on = head)
```

With pipes:

```
foo_foo \% > \%
hop(through = forest) \% > \%
scoop(up = field_mouse) \% > \%
bop(on = head)
```

```
senate_113 % > %
    group_by(party) % > %
    summarize(
        mean_wt = mean(age),
        median_wt = median(age),
        q1_wt = quantile(age, probs = 0.25),
        q3_wt = quantile(age, probs = 0.75),
        iqr_wt = IQR(age),
        var_wt = var(age),
        sd_wt = sd(age)
)
```

party <chr></chr>	mean_wt <dbl></dbl>	median_wt <dbl></dbl>	q1_wt <dbl></dbl>	q3_wt <dbl></dbl>	iqr_wt <dbl></dbl>	var_wt <dbl></dbl>	sd_wt <dbl></dbl>
D	60.38679	61.6	54.2	66.0	11.8	94.52694	9.722496
R	61.20000	60.9	53.3	69.1	15.8	110.61773	10.517496

```
\begin{aligned} & \mathsf{senate\_113} \; \leftarrow \; \mathsf{senate\_113} \; \% > \% \\ & & \mathsf{arrange}(\mathsf{age}) \\ & \mathsf{head}(\mathsf{senate\_113}) \end{aligned}
```

firstname <chr></chr>	middlename <chr></chr>	lastname <chr></chr>	birthday <date></date>		party <chr></chr>	age <dbl></dbl>
Christopher	S.	Murphy	1973-08-03	CT	D	39.4
Brian	Emanuel	Schatz	1972-10-20	HI	D	40.2
Martin	NA	Heinrich	1971-10-17	NM	D	41.2
Marco	NA	Rubio	1971-05-28	FL	R	41.6
Mike	NA	Lee	1971-06-04	UT	R	41.6
Ted	NA	Cruz	1970-12-22	TX	R	42.0

```
\begin{aligned} \mathsf{senate\_113} &\leftarrow \mathsf{senate\_113} \ \% > \% \\ &\mathsf{arrange}(\mathsf{desc}(\mathsf{age})) \\ &\mathsf{head}(\mathsf{senate\_113}) \end{aligned}
```

firstname <chr></chr>	middlename <chr></chr>	lastname <chr></chr>	birthday <date></date>		party <chr></chr>	age <dbl></dbl>
Dianne	NA	Feinstein	1933-06-22	CA	D	79.5
Charles	E.	Grassley	1933-09-17	IA	R	79.3
Orrin	G.	Hatch	1934-03-22	UT	R	78.8
Richard	C.	Shelby	1934-05-06	AL	R	78.7
Carl	NA	Levin	1934-06-28	MI	D	78.5
James	M.	Inhofe	1934-11-17	OK	R	78.1

```
senate\_113 \leftarrow senate\_113 \% > \%mutate(age = floor(age))head(senate\_113)
```

firstname <chr></chr>	middlename <chr></chr>	lastname <chr></chr>	birthday <date></date>		party <chr></chr>	age <dbl></dbl>
Dianne	NA	Feinstein	1933-06-22	CA	D	79
Charles	E.	Grassley	1933-09-17	IA	R	79
Orrin	G.	Hatch	1934-03-22	UT	R	78
Richard	C.	Shelby	1934-05-06	AL	R	78
Carl	NA	Levin	1934-06-28	MI	D	78
James	М.	Inhofe	1934-11-17	OK	R	78

1. Today: Putting it all together

2. Main ideas

- 1. Data wrangling
- 2. Data visualization with ggplot

- ggplot2 is tidyverse's data visualization package
- ► The gg in "ggplot2" stands for Grammar of Graphics
- ▶ It is inspired by the book Grammar of Graphics by Leland Wilkinson

A grammar of graphics is a tool that enables us to concisely describe the components of a graphic

ggplot() is the main function in ggplot2

Structure of the code for plots can be summarized as

```
ggplot(data = [d], mapping = aes(x = [x-var], y = [y-var])) +
geom_xxx()
```

A statistical graphic is a **mapping** of **data** variables to **aes**thetic attributes of **geo**metric objects.

To use ggplot2 functions, first load tidyverse

```
library(tidyverse)
```

```
\begin{split} & \mathsf{ggplot}(\mathsf{data} = [\mathsf{d}], \ \mathsf{mapping} = \mathsf{aes}(\mathsf{x} = [\mathsf{x-var}], \ \mathsf{y} = [\mathsf{y-var}])) \ + \\ & \mathsf{geom\_xxx}() \end{split}
```

Within the parentheses, we can specify the data frame that contains what we want to plot, using the option data = [d].

```
\begin{split} & ggplot(data = [d], \, mapping = aes(x = [x-var], \, y = [y-var])) \, + \\ & geom\_xxx() \end{split}
```

Within the parentheses, we can specify the data frame that contains what we want to plot, using the option data = [d].

We also have to tell ggplot what columns of the data frame to actually plot – we do this with the argument that stands for aesthetics: **aes()**.

$$\begin{split} \text{ggplot(data} = [d], \ \text{mapping} = \text{aes(x} = [\text{x-var}], \ \text{y} = [\text{y-var}])) + \\ \text{geom_xxx()} \end{split}$$

Within the parentheses, we can specify the data frame that contains what we want to plot, using the option data = [d].

We also have to tell ggplot what columns of the data frame to actually plot – we do this with the argument that stands for aesthetics: **aes()**.

Finally, add a geom layer, which will determine the type of visual representation that will be used for the data. We use **geom_point**

$$\begin{split} \mathsf{ggplot}(\mathsf{data} = \mathsf{senate_113}, \ \mathsf{mapping} = \mathsf{aes}(\mathsf{y} = \mathsf{age})) \ + \\ \mathsf{geom_boxplot}() \end{split}$$


```
\begin{split} & \mathsf{ggplot}(\mathsf{data} = \mathsf{senate\_113}, \ \mathsf{mapping} = \mathsf{aes}(\mathsf{x} = \mathsf{party}, \ \mathsf{y} = \mathsf{age})) \\ & + \ \mathsf{geom\_boxplot}() \end{split}
```


$$\begin{split} \text{ggplot(data} &= \text{senate_113, mapping} = \text{aes(x = age))} + \\ &= \text{geom_histogram(binwidth} = 5) \end{split}$$


```
ggplot(data = senate\_113, mapping = aes(x = age, fill = party)) + geom\_histogram(binwidth = 5)
```


$$\begin{split} & \mathsf{ggplot}(\mathsf{data} = \mathsf{senate_113}, \, \mathsf{mapping} = \mathsf{aes}(\mathsf{x} = \mathsf{age})) \, + \\ & \mathsf{geom_density}() \end{split}$$


```
ggplot(data = senate\_113, mapping = aes(x = age, color = party)) + geom\_density()
```



```
ggplot(data = senate_113, mapping = aes(x = age)) + geom_density() + facet_wrap(<math>\sim party)
```

