Formal Definitions of Big-Oh, Big-Omega, and Big-Theta

(i.e., get ready to do lots of math)

Slides by **Sean Szumlanski** for **COP 3503**, Computer Science II

Fall 2021

Big-Oh (Lite)

Back in CS1, when faced with a runtime like this:

$$T(n) = \frac{1}{8}n^3 + \frac{1}{2}n^2 + 46$$

...we learned to derive Big-Oh by doing the following:

- 1 Look for the highest-order term
- 2 Drop any constants

So, you all have no trouble telling me that T(n) is $O(n^3)$.

(By the way, you could derive a runtime like T(n) using summations!)

It turns out there's a formal, mathematical definition for Big-Oh:

f(n) is
$$O(g(n))$$
 iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

...where c_1 and N_0 are constants. Here's what those constants mean:

- $\mathbf{N_0}$ At some point, although maybe not right away, $c_1 \cdot g(n)$ meets or exceeds f(n)
- We can <u>multiply</u> g(n) by a constant to make it meet or exceed f(n). (Note: We require $c_1 > 0$.)

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Let's examine this idea graphically.

Big-Oh

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

(The Bitter Truth)

Initially:

$$T_1(n) > T_2(n)$$

Eventually:

 $T_2(n)$ dwarfs $T_1(n)$ (...and ever after)

The upper bound on the $T_1(n)$ curve is formed by a multiple of n^2 .

$$T_1(n)$$
 is $O(n^2)$.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

In a bit more detail for when you read through this at home:

Here, we see graphically what the definition of Big-Oh intends to capture.

Initially, $T_1(n) > T_2(n)$, but there comes a point where $T_2(n)$ dwarfs $T_1(n)$. That's the idea behind N_0 ; the inequality holds — not always, but rather, **after some point**.

Also, we see that there's some multiple of n^2 that forms an upper bound on the $T_1(n)$ curve. Notice that $T_2(n)$ is simply some constant (10) times our Big-Oh (n^2).

So, it looks like $T_1(n)$ is $O(n^2)$.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

If it's true that $1.2n^2 + 6$ is $O(n^2)$, we should be able to prove it mathematically.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Example: Let $f(n) = 1.2n^2 + 6$. Prove f(n) is $O(n^2)$.

We must find c_1 and N_0 such that $f(n) \le c_1 \cdot n^2$ for $n \ge N_0$

Proof: $f(n) = 1.2n^2 + 6 \le 1.2n^2 + 6n^2 = 7.2n^2$ (for $n \ge 1$)

^ (this inequality holds because $6n^2 \ge 6$ when $n \ge 1$)

That's it! I showed $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$. $(c_1 = 7.2, g(n) = n^2, and N_0 = 1)$

Notice that I needed some **constant** times n^2 on the right-hands side, so I established an inequality in which all the **lower-order** terms were converted to n^2 terms. That's generally how we'll approach these problems.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

If it's true that $3n^2 + 4$ is $O(n^2)$, we should be able to prove it mathematically.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Example: Let $f(n) = 3n^2 + 4$. Prove f(n) is $O(n^2)$.

We must find c_1 and N_0 such that $f(n) \le c_1 \cdot n^2$ for $n \ge N_0$

Proof: $f(n) = 3n^2 + 4 \le 3n^2 + 4n^2 = 7n^2$ (for $n \ge 1$)

^ (this inequality holds because $4n^2 \ge 4$ when $n \ge 1$)

That's it! I showed $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$. $(c_1 = 7, g(n) = n^2, and N_0 = 1)$

Notice that I needed some **constant** times n^2 on the right-hands side, so I established an inequality in which all the **lower-order** terms were converted to n^2 terms. That's generally how we'll approach these problems.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Let's prove that $3n^2 + 10$ is $O(n^2)$, using a slight twist on this approach.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Another example: Let $f(n) = 3n^2 + 10$. Prove f(n) is $O(n^2)$.

We must find c_1 and N_0 such that $f(n) \le c_1 \cdot n^2$ for $n \ge N_0$

Proof:
$$f(n) = 3n^2 + 10 \le 3n^2 + n^2 = 4n^2$$
 (for $n \ge \sqrt{10}$)

^ (this inequality holds because $n^2 \ge 10$ when $n \ge √10$)

That's it! I showed $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$. $(c_1 = 4, g(n) = n^2, and N_0 = \sqrt{10})$

Notice that I approached this a bit differently from the previous slide. Instead of *multiplying* an existing constant by n², I *replaced* a constant with n²! So, there are different ways to lock down values for these constants!

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Let's prove that $3n^2 + 10$ is $O(n^3)$. This might be a bit jarring, but it's true.

f(n) is O(g(n)) iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

Example: Let $f(n) = 3n^2 + 10$. Prove f(n) is $O(n^3)$.

We must find c_1 and N_0 such that $f(n) \le c_1 \cdot n^3$ for $n \ge N_0$

Proof: $f(n) = 3n^2 + 10 \le 3n^2 + n^2 = 4n^2 \le 4n^3$ (for $n \ge \sqrt{10}$)

^ (this inequality holds because $n^2 \ge 10$ when $n \ge √10$)

That's it! I showed $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$. $(c_1 = 4, g(n) = n^3, and N_0 = \sqrt{10})$

- It might be a bit jarring to you to see that **f(n) = 3n² + 10** is **O(n³)**. From CS1, we're used to taking only the **highest-order term** and locking it down as our Big-Oh.
- What we're seeing, however, is that Big-Oh is actually a sort of **upper bound**. And upper bounds can get **arbitrarily large** and still be upper bounds. Note: See terminology in Webcourses: "upper bound," "asymptotic upper bound," "tight bound," and so on.

Big-Omega

(Very similar to Big-Oh)

This is our formal, mathematical definition for Big-Oh:

f(n) is
$$O(g(n))$$
 iff $f(n) \le c_1 \cdot g(n)$ for $n \ge N_0$

There's a related concept, Big-Omega, whose definition is:

f(n) is
$$\Omega(g(n))$$
 iff $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$

We use Big-Oh to articulate an upper bound on a function.

We use Big-Omega to articulate a lower bound on a function.

Note: For both definitions, we require $c_1 > 0$.

$$f(n)$$
 is $\Omega(g(n))$ iff $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$

Let's prove that $3n^2 + 4$ is $\Omega(n^2)$. (Can you see intuitively that this is true?)

f(n) is $\Omega(g(n))$ iff $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$

Example: Let $f(n) = 3n^2 + 4$. Prove f(n) is $\Omega(n^2)$.

We must find c_1 and N_0 such that $f(n) \ge c_1 \cdot n^2$ for $n \ge N_0$

Proof: $f(n) = 3n^2 + 4 \ge 3n^2$ (for $n \ge 1$)

^ (do you agree that this inequality holds?)

That's it! I showed $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$. $(c_1 = 3, g(n) = n^2, and N_0 = 1)$

$$f(n)$$
 is $\Omega(g(n))$ iff $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$

Let's prove that $3n^2 + 4$ is $\Omega(1)$. (Can you see intuitively that this is true?)

$$f(n)$$
 is $\Omega(g(n))$ iff $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$

Example: Let $f(n) = 3n^2 + 4$. Prove f(n) is $\Omega(1)$.

We must find c_1 and N_0 such that $f(n) \ge c_1 \cdot 1$ for $n \ge N_0$

Proof: $f(n) = 3n^2 + 4 \ge 4$ (for $n \ge 1$)

^ (do you agree that this inequality holds?)

That's it! I showed $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$. $(c_1 = 4, g(n) = 1, and N_0 = 1)$

$$f(n)$$
 is $\Omega(g(n))$ iff $f(n) \ge c_1 \cdot g(n)$ for $n \ge N_0$

Food for Thought:

- Why might a **lower bound** on a runtime be useful?
- When might it be useful to use bounds that are not tight?
- These definitions apply to all mathematical functions (not just runtimes).
- Big-Oh is not akin to worst-case runtime.
- Big-Omega is not akin to best-case runtime.

Big-Theta

(Very similar to our old conception of Big-Oh from CS1!)

$$f(n) \text{ is } \Theta(g(n)) \text{ iff: } \begin{cases} f(n) \text{ is } O(g(n)) \\ -AND - \\ f(n) \text{ is } \Omega(g(n)) \end{cases} \text{ lower bound}$$

- With big-theta, f(n) is sandwiched between g(n) curves (upper and lower).
- The **g(n)** curves are each multiplied by some constant, of course.
- We say this g(n) function forms a tight bound on f(n).
- We effectively have an **f(n) sandwich** on **g(n) bread**.
- There are many delicious sandwiches to be made in Webcourses.

Big-Oh (Upper Bound)

Big-Theta (Sandwich Bound)

Suppose we have some function with: $\begin{cases} \textbf{Best-Case Runtime: } 4n^2 + n \\ \textbf{Worst-Case Runtime: } 3n^3 + 2 \end{cases}$

Can we say the **best-case** runtime is...

 $\Omega(n^2)$ YES

 $\Omega(1)$ YES

 $\Omega(n^3)$ NO

O(n²) YES

O(1) NO

O(n³) YES

 $\Theta(n^2)$ YES

Θ(1) NO

 $\Theta(n^3)$ NO

Big-Oh (Upper Bound)

Big-Theta (Sandwich Bound)

Suppose we have some function with: $\begin{cases} \textbf{Best-Case Runtime: } 4n^2 + n \\ \textbf{Worst-Case Runtime: } 3n^3 + 2 \end{cases}$

Can we say the **worst-case** runtime is...

 $\Omega(n^2)$ YES

 $\Omega(1)$ YES

 $\Omega(n^3)$ YES

O(n²) NO

O(1) NO

O(n³) YES

 $\Theta(n^2)$ NO

Θ(1) NO

Θ(n³) YES

Big-Oh (Upper Bound)

Big-Theta (Sandwich Bound)

Suppose we have some function with: $\begin{cases} \textbf{Best-Case Runtime: } 4n^2 + n \\ \textbf{Worst-Case Runtime: } 3n^3 + 2 \end{cases}$

In general, can we say the runtime for this function is...

 $\Omega(n^2)$ YES

 $\Omega(1)$ YES

 $\Omega(n^3)$ NO

O(n²) NO

O(1) NO

O(n³) YES

 $\Theta(n^2)$ NO

Θ(1) NO

 $\Theta(n^3)$ NO