7주차(1/3)

순방향 신경망

파이썬으로배우는기계학습

한동대학교 김영섭교수

순방향 신경망

- 학습 목표
 - 순방향 신경망의 신호를 처리한다.
- 학습 내용
 - 순방향 신경망 신호표기
 - 순방향 신경망 신호처리
 - 가중치 표기법
 - 순방향 신경망 예제

■ 다층 신경망

- **Z**: 뉴론의 입력
- A: 뉴론의 출력
- L: 전체 층의 수
- I: 각 층 번호(소문자 엘)

■ Z: 뉴론의 입력

■ A: 뉴론의 출력

■ L: 전체 층의 수

■ I: 각 층 번호(소문자 엘)

■ Z^[1]: 은닉층(1)의 입력

- Z: 뉴론의 입력
- A: 뉴론의 출력
- L: 전체 층의 수
- I: 각 층 번호(소문자 엘)

- **Z**^[1]: 은닉층(1)의 입력
- A^[2]: 출력층(2)의 출력

■ Z: 뉴론의 입력

■ A: 뉴론의 출력

■ L: 전체 층의 수

■ I: 각 층 번호(소문자 엘)

■ **Z**^[1]: 은닉층(1)의 입력

■ A^[2]: 출력층(2)의 출력

A^[0]: 입력층(0)의 출력

- **Z**: 뉴론의 입력
- A: 뉴론의 출력
- L: 전체 층의 수
- **!**: 각 층 번호
- W: 가중치

- Z: 뉴론의 입력
- A: 뉴론의 출력
- L: 전체 층의 수
- **!**: 각 층 번호
- W: 가중치
- ŷ: 최종 출력

$$\widehat{y} = A^{[2]}$$

- Z: ∑(가중치 * 입력)
 - 순입력
 - net input 혹은 weighted sum

- Z: ∑(가중치 * 입력)
 - 순입력
 - net input 혹은 weighted sum

- Z: ∑(가중치 * 입력)
 - 순입력
 - net input 혹은 weighted sum

- Z: ∑(가중치 * 입력)
 - 순입력
 - net input 혹은 weighted sum

$$Z^{[l]} = W^{[l]T}A^{[l-1]}$$

$$A^{[l]} = g(Z^{[l]})$$
활성화 함수

$$Z^{[l]} = W^{[l]T} A^{[l-1]}$$
[기층 순입력

$$Z^{[l]} = W^{[l]T} A^{[l-1]}$$

$$[l] \stackrel{\wedge}{=} 2^{l} + 2^{l} +$$

$$A^{[l]} = g(Z^{[l]})$$

[*l*]층 출력

$$A^{[l]} = g(Z^{[l]})$$
[l]층 출력
활성화 함수
[l]층 순입력

- Z: ∑(가중치 * 입력)
 - 순입력
 - net input 혹은 weighted sum

$$\mathbf{Z}^{[l]} = W^{[l]T} A^{[l-1]}$$

$$\mathbf{Z}^{[l]} = W^{[l]T}A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$
 엘흥가중치

$$\mathbf{Z}^{[l]} = W^{[l]T}A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$
엘 층 가중치
$$\begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$
은닉층 가중치

$$\mathbf{Z}^{[l]} = W^{[l]T}A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$
엘 층 가중치
$$\begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$
은닉층 가중치

$$\mathbf{Z}^{[1]} = W^{[1]T} A^{[0]}$$

$$\mathbf{Z}^{[l]} = W^{[l]T}A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$
엘충가중치
$$\begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$
은닉총가중치

$$\mathbf{Z}^{[l]} = W^{[l]T} A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$
 엘총 가중치

$$\mathbf{W}^{(1)} = \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$
 은닉층 가중치

$$\mathbf{Z}^{[1]} = W^{[1]T} A^{[0]}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}^{T} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\mathbf{Z}^{[l]} = W^{[l]T} A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$
엘총가중치

$$\mathbf{W}^{(1)} = \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$
은닉총 가중치

$$\mathbf{Z}^{[1]} = W^{[1]T} A^{[0]}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}^{T} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2 \\ w_{12}^{(1)} x_1 + w_{21}^{(1)} x_2 \\ w_{13}^{(1)} x_1 + w_{23}^{(1)} x_2 \end{pmatrix} = \begin{pmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{pmatrix}$$

$$\mathbf{Z}^{[l]} = W^{[l]T} A^{[l-1]}$$

$$\mathbf{W}^{(l)} = \begin{pmatrix} w_{11}^{(l)} & w_{12}^{(l)} & w_{13}^{(l)} \\ w_{21}^{(l)} & w_{22}^{(l)} & w_{23}^{(l)} \end{pmatrix}$$

$$\mathbf{W}^{(1)} = \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}$$

은닉층 순입력
$$\mathbf{Z}^{[1]} = W^{[1]T}A^{[0]}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)}x_1 + w_{21}^{(1)}x_2 \\ w_{12}^{(1)}x_1 + w_{22}^{(1)}x_2 \\ w_{13}^{(1)}x_1 + w_{23}^{(1)}x_2 \end{pmatrix} = \begin{pmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{pmatrix}$$
은닉층 순입력

$$\mathbf{Z}^{[1]} = W^{[1]T} A^{[0]}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{12}^{(1)} & w_{13}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} & w_{23}^{(1)} \end{pmatrix}^{T} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}^{(1)} x_1 + w_{21}^{(1)} x_2 \\ w_{12}^{(1)} x_1 + w_{21}^{(1)} x_2 \\ w_{13}^{(1)} x_1 + w_{23}^{(1)} x_2 \end{pmatrix} = \begin{pmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{pmatrix}$$

• W_{ij}^T 형상

l 층의 노드 + \times (l-1)층의 노드 +

- W_{ij}^T 형상
 - l 층의 노드 수 x (l 1)층의 노드 수
- W^1 .shape = (3,2)

$$W^{[1]} = \begin{pmatrix} w_{11}^{[1]} & w_{21}^{[1]} \\ w_{12}^{[1]} & w_{22}^{[1]} \\ w_{13}^{[1]} & w_{23}^{[1]} \end{pmatrix}$$

$$W^{[2]} = \begin{pmatrix} w_{11}^{[2]} & w_{21}^{[2]} & w_{31}^{[2]} \\ w_{12}^{[2]} & w_{22}^{[2]} & w_{32}^{[2]} \end{pmatrix}$$

$$\mathbf{Z}^{[l]} = W^{[l]} A^{[l-1]}$$

$$\mathbf{Z}^{[l]} = W^{[l]} A^{[l-1]}$$

$$\mathbf{Z}^{[l]} = W^{[l]} A^{[l-1]}$$

$$\mathbf{Z}^{[l]} = W^{[l]}A^{[l-1]}$$

$$\mathbf{Z}^{[1]} = W^{[1]}A^{[0]}$$

$$\mathbf{Z}^{[1]} = W^{[1]} A^{[0]}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\mathbf{Z}^{[l]} = W^{[l]} A^{[l-1]}$$

$$\mathbf{Z}^{[1]} = W^{[1]} A^{[0]}$$

$$= \begin{pmatrix} w_{11}^{(1)} & w_{21}^{(1)} \\ w_{12}^{(1)} & w_{22}^{(1)} \\ w_{13}^{(1)} & w_{23}^{(1)} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$= \begin{pmatrix} z_{1}^{(1)} \\ z_{2}^{(1)} \\ z_{3}^{(1)} \end{pmatrix}$$

2. 가중치 표기법: W_{ij}^T 방식(혹은 W_{ji} 방식)

• W_{ij} 와 W_{ij}^T 표기법

3. 순방향 신경망 예제: W_{ij}^{T} 표기법

• W_{ij} 와 W_{ij}^T 표기법

■ 입력 X: m = 1, n = 2

■ 입력 X: m = 1, n = 2

$$\mathbf{X} \in \mathbb{R}^{nxm}$$

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(m)} \\ \vdots & \vdots & \vdots & \vdots \\ x_n^{(1)} & x_n^{(2)} & \cdots & x_n^{(m)} \end{bmatrix}$$

$$\mathbf{x}^{(1)} = \begin{pmatrix} x_1^{(1)} \\ x_2^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

■ 가중치 초기화

■ 입력 X: m = 1, n = 2

$$\mathbf{X} \in \mathbb{R}^{n \times m}$$

$$\mathbf{X} = \begin{pmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(m)} \\ \vdots & \vdots & \vdots & \vdots \\ x_n^{(1)} & x_n^{(2)} & \cdots & x_n^{(m)} \end{pmatrix}$$

$$\mathbf{x}^{(1)} = \begin{pmatrix} x_1^{(1)} \\ x_2^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

■ 가중치 초기화

4. 순방향 신경망 계산: 입력층

• $A^{[0]} = X$

4. 순방향 신경망 계산: 은닉층

- $Z^{[l]} = W^{[l]}A^{[l-1]}$
- $A^{[i]} = g(Z^{[i]})$

4. 순방향 신경망 계산: 은닉층

4. 순방향 신경망 계산: 은닉층

4. 순방향 신경망 계산: 출력층

4. 순방향 신경망 계산: 출력층

4. 순방향 신경망 계산: 출력층

출력층(2)

$$\hat{y} = \begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \end{pmatrix} = \begin{pmatrix} 0.581 \\ 0.554 \end{pmatrix}$$

순방향 신경망

- 학습 정리
 - 순방향 신경망 신호 표기
 - 순방향 신경망 신호 처리
 - 가중치 W_{iJ} 과 W_{ij}^T 방식
 - 순방향 신경망 예제와 계산

■ **7-2** 순방향 신경망 예제

7주차(1/3)

순방향 신경망

파이썬으로배우는기계학습

한동대학교 김영섭교수

여러분 곁에 항상 열려 있는 K-MOOC 강의실에서 만나 뵙기를 바랍니다.