Quantitative Analysis and Visualization of Signaling Networks

ASCB Workshop

December 14, 2015

1. Dynamics and complexity: Two challenges for modern signal transduction research

Signaling networks regulate cellular processes

Signal dynamics and localization carry information

Ebisuya, Kondoh, and Nishida (2005)

Many signaling pathways oscillate

Challenges in signal transduction: Complexity

Challenges in signal transduction: Complexity

Caron et al. (2010)

How do we approach the complexity of biological networks?

Tracking multiple signaling events with long-term live-cell microscopy

Blue: NLS-CFP (nuclear marker)

Green: FIRE (ERK)

Red: RFP-geminin (S/G₂)

2. Using tools from the engineering world in signal transduction research

Lessons from other complex systems

Engineering fields that deal with similar challenges

Differential equation modeling

Dynamical systems

Control theory

Signal Processing

Computational models can take many different forms

Differential equation models of biochemical dynamics

Differential equation models can recapitulate complex biological processes

Modeling the right thing: population average data can misrepresent kinetics

Using single-cell data to fit models

Using single-cell data to fit models

Aoki et al., 2013

Signal processing: methods for separating meaningful signals from "noise"

3. Strategies for collecting time-series data

Collecting a multidimensional signaling dataset

Collecting a multidimensional signaling dataset

Collecting a multidimensional signaling dataset

Single-cell imaging shows that signaling pathways rarely follow simple patterns

Destructive vs. real-time experiments

FRET-based kinase reporters

Harvey et al. (2008), Komatsu et al. (2011)

Dynamics of ERK activity in response to EGF

"Physiological" EGF (0.1 ng/ml)

Multiplexing reporters to make network measurements

Sergi Regot, Markus Covert

An integrated genomic reporter for Fra-1

Reporters to track signaling events in long-term live-cell microscopy

Reporter	Target	Modality	Structure
Fucci ¹	S/G ₂ phase	INT	mCherry Geminin ₁₋₁₁₀
H2B-GFP ²	M phase	LOC	H2B EGFP
d2-CFP ³	Translation	INT	NLS mCerulean d2-PEST
IMS-RP ⁴	Apoptosis (MOMP)	LOC	Smac _{1.65} mCherry
EC-RP, IC-RP4	Caspase activities	FRET	mCerulean DEVDR mVenus NES
EKAR ⁵ ,AMPKAR ⁶ ,	. Kinase activities	FRET	mCerulean WW substrate mVenus
FP-FOXO	Akt/SGK activity	LOC	mCherry Foxo3A ₁₋₄₀₀
FIRE	ERK/RSK activity	INT	NLS mVenus Fra1 ₁₆₃₋₂₇₁
FP-Myc	Myc levels	INT	NLS mVenus c-Myc ₁₋₃₃₀
Perceval ⁷	ATP	INT	GlnK1 ₁₋₅₁ cp-mVenus GlnK1 ₅₂₋₁₁₂
Peredox ⁸	NADH/NAD+	INT	T-Rex cp-TSapphire T-Rex mCherry NLS
miR-X	miRNA levels	INT	- NLS mVenus d2-PEST

4. Answering questions with large time-series datasets

Dynamics of ERK activity in response to EGF

High EGF (20 ng/ml)

Frequency-modulated ERK pulses

Correlating patterns of ERK activity with commitment to S-phase

ERK activity increases sharply in the 12 hours preceding S-phase entry

Understanding how the p53 response is triggered quantitatively

Understanding how the p53 response is triggered quantitatively

Multiplexing reporters to make network measurements

Topics for the hands-on workshop

- 1. Data visualization
- 2. Dealing with noise and other problems in your data
- 3. Identifying dynamic features present in your data
- 4. Quantifying trends and testing them statistically
- 5. Making publication-quality figures

Visualization of Data

Dynamics of ERK activity in response to EGF

"Physiological" EGF (0.1 ng/ml)

Extracting single cell data from movies

Heatmaps – viewing numbers as colors

Line plots are ideal for comparing two signals in the same cell

Normalization, scaling, and subjectivity

Time-dependent histograms

More advanced options: Spotfire

Separating individual tracks into qualitatively distinct clusters

Making publication-quality figures

Vector vs. Raster graphics

VECTOR GRAPHICS

BITMAPPED (RASTER) GRAPHICS

Dealing with noise

Noise effects in dynamic data

- Random varies rapidly
 - Many sources throughout measurement
- Bias ongoing trend
 - Photobleaching, interference
- Outlier out of range
 - Transient interference
 - Imaging or processing fault

Random noise

Bias (baseline drift)

For random noise: average

- Typical of most measurements
 - Real signal is mean value
- Our signals are dynamic
 - Change with time
 - Difficult to sample noise
- Average over time
 - Moving average
 - Filter by frequency

For bias: identify and remove

- Changes in time (or space)
 - Can be removed if identified
 - With caution!
- Fit to a model
 - Exponential for photobleach
- Generic
 - Filter (subtract mean)
 - Subtract local baseline
 - Caution: Risk of new bias

For outliers: identify and remove

- Expect hiccups
 - Ideal if tracked separately
- Identify
 - Out of range
 - Sudden jump
- Remove/replace
 - Interpolate from nearby data
 - If many gaps, or sensitive data, fit model or use Kalman filter

Identifying dynamic features

Dividing dynamics into parts

- Mean value
- Derivative

Oscillations

- Pulses/peaks
 - Peak features

Characterizing oscillations

- Frequency
- Amplitude
- Frequency analysis
 - Fourier transform
 - Power spectral density
 - Phase

Characterizing pulses

- Timing
 - Pulse duration
 - Spacing/frequency
- Amplitude
- Kinetics
 - Rise/fall time
 - Shape of rise/decay curves, if high res.

Quantifying trends

Trends in features over time

- How do the dynamics change over time?
 - Evaluate within windows
- Correlation with events
 - Stimulation
 - Cell cycle
 - Death
 - Movement

Correlating dynamics

- How do the dynamics relate?
 - Direct relationships
 - Can fit/test models
- Correlation
 - Direct relationships
- Cross-correlation
 - Time-shifted correlation
 - Find delays

Hands-on portion