Efficient Local Search for Nonlinear Real Arithmetic

Zhonghan Wang, Bohua Zhan, Bohan Li, Shaowei Cai

Institute of Software, Chinese Academy of Sciences

VMCAI 2024 15 January 2024

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Other Environments
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Implementation Detail
 - Look-ahead
 - Other
- 5. Conclusion

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Other Environments
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Implementation Detail
 - Look-ahead
 - Other
- Conclusion

Syntax of SMT(NRA)

polynomial:
$$p::=x\mid c\mid p+p\mid p-p\mid p\times p$$
 atoms: $a::=b\mid p=0\mid p>0\mid p<0$ formula: $f::=a\mid \neg f\mid f\wedge f\mid f\vee f$

SMT: Determine whether the formula is satisfied by some assignment (local search focuses), or prove unsat

Example:

$$x^2+y^2\leq 1\wedge x+y<1\wedge x+z>0$$
 assignment with $\{x\to 0,y\to 0,z\to 1\}$ satisfies all clauses.

Fragment of Local Search

```
Input: A set of clauses F
Output: An assignment of variables that satisfy F,
         or failure
Initialize assignment to variables;
while \top do
   if all clauses satisfied then
       return success with assignment;
   end
   if time or step limit reached then
       return failure:
   end
   Critical move procedure.
end
  Algorithm 1: Basic Fragment of Local Search
```

Fragment of Local Search

```
var, new\_value, score \leftarrow best move according to
 make-break score:
if score > 0 then
    Perform move, assigning var to new_value:
end
else
    Update clause weight according to PAWS
     scheme:
    repeat
       cls \leftarrow random unsatisfied clause;
       var, new\_value, score \leftarrow critical move
         making cls satisfied;
       if score \neq -\infty then
           Perform move, assigning var to
             new\_value;
       end
```

Local Search for SAT and SMT

Problem LS	SAT	SMT
Operation (Move)	Flip	Critical Move
Score Definition	Weighted unsat clauses	
Score Computation	Cached score	No Caching, time costly

What LS for SAT brings us:

Maintain scoring information after each iteration.

Difficulty:

Predetermine critical move shift value.

Our Solution:

Introduce Scoring Boundaries.

- Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Other Environments
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Implementation Detail
 - Look-ahead
 - Other
- Conclusion

Critical Move Value? Interval!

Reference introduces multiple values choices for critical move, resulting in different scores.

Actually, **interval** brings the difference.

Boundary

Brief. Given an arithmetic variable, maintain critical move scores for specific moving intervals.

Definition. 123

Example.

Assume boundary for variable v is

Remark

- the environment above is **block**
- the environment here is alertblock

Boundary Example

Assume boundary for variable v as below:

Computation of Boundary (Incremental)

```
Data: this text
Result: how to write algorithm with LATEX2e
initialization.
while not at end of this document do
    read current;
    if understand then
        go to next section;
        current section becomes this one;
    else
        go back to the beginning of current section;
    end
end
Algorithm 3: How to write algorithms (copied from
here)
```

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Other Environments
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Implementation Detail
 - Look-ahead
 - Other
- Conclusion

Equality Constraints in Local Search

- 1 item
- 2 another
- 3 more
 - first
 - second
 - third

Relaxation

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

first block

columns achieves splitting the screen

second block

stack block in columns

Relaxation (CAD view)

Restore

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Other Environments
- 3. Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Implementation Detail
 - Look-ahead
 - Other
- 5. Conclusion

- 1. Problem Nonlinear Real Arithmetic
 - Search Space of SMT(NRA)
 - Current Existing Methods
- 2. Incremental Computation of Variable Scores
 - Scoring Boundary for Arithmetic Variable
 - Other Environments
- Temporary Relaxation of Equality Constraints
 - Difficulty in Local Search
 - Relaxation Method
- 4. Implementation Detail
 - Look-ahead
 - Other
- 5. Conclusion

End

The last page.