ҚАЗАНСҚИЙ (ПРИВОЛЖСҚИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИҚИ

В. А. Попов

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Часть 2. Случайные величины

Учебное пособие

Печатается по решению Редакционно-издательского совета ФГАОУВПО «Казанский (Приволжский) федеральный университет»

методической комиссии Института физики протокол N2 4 от 17 июня 2013 г.

заседания кафедры теории относительности и гравитации протокол N_2 6 от 14 июня 2013 г.

Рецензенты:

доктор физ.-мат. наук, профессор КФУ С. В. Сушков канд. физ.-мат. наук, доцент КНИТУ-КАИ М. Х. Бренерман

Попов В. А.

Теория вероятностей. Часть 2. Случайные величины: Учебное пособие / В. А. Попов — Казань: Казанский университет, 2013. - 45 с. — Табл. 1. Ил. 5. Библиогр. 11 назв.

В учебном пособии рассматриваются дискретные и абсолютно непрерывные случайные величины, их свойства и характеристики. Предназначено для студентов, обучающихся по направлениям "Физика", "Радиофизика", "Астрономия", "Геодезия и дистанционное зондирование", "Информационная безопасность", "Нанотехнологии и микросистемная техника", "Техническая физика".

- ©Казанский университет, 2013
- ©Попов В. А., 2013

Предисловие

Основной задачей теории вероятностей является не столько изучение экспериментов со случайными исходами, а связанных с ними числовых величин. Такие величины называются случайными величинами.

Использование аппарата случайных величин оказывается удобным, поскольку он позволяет заменить исходное множество событий на числовую прямую. В результате вероятностная модель абстрагируется от «несущественных» деталей и может быть использована для описания самых разных случайных явлений. По сути все свойства и характеристики этих явлений оказываются записаны в одну функцию — функцию распределения случайной величины.

Во второй части курса «Теория вероятностей и математическая статистика», читаемого в Институте физики Казанского университета изучаются распределения случайных величин, их числовые характеристики и свойства, а также предельные распределения.

В отличие от первой части, для чтения которой было достаточно школьной математической подготовки, изучение случайных величин требует более серьезной базы. Предполагает, что студент знаком с основными понятиями следующих разделов математического анализа и линейной алгебры: пределы, ряды, определенный и несобственный интегралы, матрицы и определители.

С точки зрения математической строгости данный курс является сильно «облегченным». Он не использует теории меры, интегралов Лебега и Стилтьеса. Тем не менее, он содержит доказательства для большинства теорем, а большое число примеров помогут студенту использовать теоретические знания для решения практических задач. В приложении приведено в сжатом виде сведения из первой части об общих свойствах вероятности, которые необходимы для описания свойств функции распределения. Понятия и термины, которые нужно знать, выделены курсивом. В конце книги приведен список использованной литературы. Его же можно рекомендовать для более подробного знакомства с предметом.

Для облегчения поиска по ссылкам используется двойная нумерация теорем, примеров и формул. Например, ссылка (2.5) означает, что имеется ввиду формула 5 из § 2, а ссылка $(\Pi.1)$ относится к формуле 1 из приложения. Значок \blacksquare означает конец доказательства теоремы, а значок \square — завершение примера.

Изучение материала данного пособия необходимо для дальнейшего изучения вероятностных дисциплин таких, как математическая статистика и теория случайных процессов, а также курсов «Термодинамика и статистическая физика», «Физика жидкости», «Методы обработки информации», «Метрологический анализ измерительных схем», «Теория математической обработки измерений» и других.

Случайные величины **§** 1

Случайной величиной называется действительная функция $\xi = \xi(\omega)$, заданная на множестве элементарных событий так, что любое множество $A = \{\omega : \xi(\omega) < x\}$ принадлежит алгебре событий \mathfrak{A} . Событие A коротко записывают $A = \{\xi < x\}$, а его вероятность $P(A) = P(\xi < x)$.

 Φ ункцией распределения случайной величины ξ называется функция F(x), выражающая вероятность того, что ξ примет значение, меньшее чем x:

$$F(x) = \mathbf{P}(\xi < x).$$

Теорема 1.1. Функция распределения обладает следующими свойствами:

1. Функция распределения есть неубывающая функция.
2.
$$\lim_{x \to -\infty} F(x) \equiv F(-\infty) = 0$$
.
3. $\lim_{x \to \infty} F(x) \equiv F(\infty) = 1$. (1.1)
4. Функция распределения непрерывна слева: $\lim_{x \to a-0} F(x) = F(a)$.
5. $\mathbf{P}(\xi \geqslant x) = 1 - F(x)$.
6. $\mathbf{P}(a \leqslant \xi < b) = F(b) - F(a)$. (1.2)
7. $\mathbf{P}(\xi = x) = F(x + 0) - F(x)$.

6.
$$P(a \le \xi < b) = F(b) - F(a)$$
. (1.2)

Доказательство. 1. Пусть $x_1 \leqslant x_2$. Тогда для событий $A_1 = \{\xi < x_1\}$ и $A_2 = \{\xi < x_2\}$, справедливо $A_1 \subset A_2$. Тогда ${f P}(A_1) \leqslant {f P}(A_2)$, а значит $F(x_1) \leqslant F(x_2)$.

2. Рассмотрим события $A_n = \{\xi < -n\}$, где $n = 1, 2, \dots$ Очевидно, что последовательность A_n удовлетворяет аксиоме вероятности 4. Поскольку функция распределения монотонна, то

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} \mathbf{P}(A_n) = 0.$$

3. Рассмотрим события $A_n = \{\xi < n\}$, где $n = 1, 2, \dots$ Последовательность A_n удовлетворяет условию

$$A_1 \subset A_2 \subset \ldots \subset A_n \subset \ldots$$
 и $\bigcup_{n=1}^{\infty} A_n = \Omega$.

В силу монотонности функции распределения и по формуле (П.5)

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} \mathbf{P}(A_n) = 1.$$

4. Пусть $\{a_n\}$ — возрастающая последовательность и $\lim_{n\to\infty} a_n = a$. Определим событие $A = \{\xi < a\}$, и события $A_n = \{x < a_n\}$. Очевидно, что для последовательности событий A_n справедливо

$$A_1 \subset A_2 \subset \ldots \subset A_n \subset \ldots$$
 и $\bigcup_{n=1}^{\infty} A_n = A$.

С учетом монотонности функции распределения и формулы (П.5)

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{P}(A) = F(a).$$

5. Событие $\{\xi \geqslant x\}$ противоположно событию $\{\xi < x\}$, следовательно

$$P(\xi \ge x) = 1 - P(\xi < x) = 1 - F(x). \tag{1.3}$$

- 6. Для любых чисел a и b (a < b) событие $\{\xi < b\}$ может быть представлено как сумма несовместных событий $\{\xi < a\}$ и $\{a \leqslant \xi < b\}$. По аксиоме 3 вероятность $\mathbf{P}(\xi < b) = \mathbf{P}(\xi < a) + \mathbf{P}(a \leqslant \xi < b)$, откуда $\mathbf{P}(a \leqslant \xi < b) = \mathbf{P}(\xi < b) \mathbf{P}(\xi < a) = F(b) F(a)$.
- $\mathbf{P}(a\leqslant \xi < b) = \mathbf{P}(\xi < b) \mathbf{P}(\xi < a) = F(b) F(a).$ 7. Событие $\{\xi = x\} = \bigcap_{n=1}^{\infty} A_n$, где $A_n = \{x \leqslant \xi < x + 1/n\}$. Так как $A_1 \supset A_2 \supset \ldots \supset A_n \supset \ldots$, то по формулам (П.5) и (1.3)

$$\mathbf{P}(\xi = x) = \lim_{n \to \infty} \mathbf{P}(A_n) = \lim_{n \to \infty} \left(F\left(x + \frac{1}{n}\right) - F(x) \right) = F(x + 0) - F(x).$$

1.1 Дискретные случайные величины

Дискретной случайной величиной называется случайная величина, пробегающая не более чем счетное число значений. При этом

$$p_i = \mathbf{P}(\xi = x_i), \quad \sum_i p_i = 1,$$

где сумма берется по всем возможным значениям i.

3аконом распределения дискретной случайной величины ξ называется таблица, где перечислены возможные (различные) значения этой случайной величины $x_1, x_2, \ldots, x_k, \ldots$ с соответствующими им вероятностями $p_1, p_2, \ldots, p_k, \ldots$:

Графическое изображение ряда распределения (рис. 1) называется многоугольником распределения.

Перечислим некоторые дискретные законы распределения.

1. Биномиальное распределение. Случайная величина ξ может принимать значения $m=0,1,2,\ldots,n$. Соответствующие вероятности:

$$p_m = \mathbf{P}(\xi = m) = C_n^m p^m (1 - p)^{n - m},$$

где 0 .

2. Гипергеометрическое распределение. Случайная величина ξ может принимать значения $m=0,1,2,\ldots,\min(n,M)$. Соответствующие вероятности:

$$p_m = \mathbf{P}(\xi = m) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n},$$

где $n,\ M$ и N — натуральные числа, причем $n,M\leqslant N.$

3. Распределение Пуассона. Случайная величина ξ может принимать значения $m=0,1,2,\ldots$ Соответствующие вероятности:

$$p_m = \mathbf{P}(\xi = m) = \lambda^m e^{-\lambda} / m!, \qquad (1.4)$$

гле $\lambda > 0$.

4. Геометрическое распределение. Случайная величина ξ может принимать значения $m=1,2,\ldots$ Соответствующие вероятности:

$$p_m = \mathbf{P}(\xi = m) = (1 - p)^{m-1}p$$
,

где 0 .

Пример 1.1. В корзине 6 шаров, из которых 4 белых и 2 черных. Вытаскивается 3 шара. Случайной величиной ξ является число вытащенных белых шаров. Записать закон распределения случайной величины ξ , изобразить многоугольник распределения, записать функцию распределения и нарисовать ее график. Найти вероятность события $\mathbf{P}(0,5<\xi<2,5)$.

Решение. Распределение является гипергеометрическим с N=6, M=4 и n=3; m может принимать значения 0,1,2,3. Чтобы составить ряд распределения, вычислим значения вероятностей. Поскольку вытаскивается 3 шара, а черных только 2, то $p_0=\mathbf{P}(\xi=0)=0$. Остальные вероятности:

$$p_1 = \mathbf{P}(\xi = 1) = \frac{C_4^1 C_2^2}{C_6^4} = \frac{1}{5}$$

$$p_1 = \mathbf{P}(\xi = 2) = \frac{C_4^2 C_2^1}{C_6^4} = \frac{3}{5}$$

$$p_1 = \mathbf{P}(\xi = 3) = \frac{C_4^3 C_2^0}{C_e^4} = \frac{1}{5}$$

x_i	0	1	2	3
p_i	0	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

Соответствующий этому ряду многоугольник распределения изображен на рис. 2.

Чтобы построить функцию распределения, разобьем числовую ось на интервалы $(-\infty,0],\ (0,1],\ (1,2],\ (2,3],\ (3,+\infty)$. На каждом из этих интервалов функция распределения будет постоянной:

$$x \in (-\infty, 0] : F(x) = \mathbf{P}(\xi < x) = 0,$$

$$x \in (0, 1] : F(x) = \mathbf{P}(\xi < x) = p_0 = 0,$$

$$x \in (1, 2] : F(x) = \mathbf{P}(\xi < x) = p_0 + p_1 = \frac{1}{5},$$

$$x \in (2, 3] : F(x) = \mathbf{P}(\xi < x) = p_0 + p_1 + p_2 = \frac{4}{5},$$

$$x \in (3, +\infty) : F(x) = \mathbf{P}(\xi < x) = p_0 + p_1 + p_2 + p_3 = 1.$$

График этой функции изображен на рис. 3.

Согласно свойству (1.2), вероятность

$$P(0.5 < \xi < 2.5) = F(2.5) - F(0.5) = 4/5 - 0 = 4/5.$$

1.2 Непрерывные случайные величины

Абсолютно непрерывной случайной величиной называется случайная величина, для которой существует неотрицательная функция p(x), такая что

$$F(x) = \int_{-\infty}^{x} p(t) dt.$$
 (1.5)

Функция p(x) называется *плотностью распределения* (вероятностей) случайной величины. В точках, где плотность распределения является непрерывной, она является производной от функции распределения, p(x) = F'(x).

Из формулы (1.5) и пункта 1.1 теоремы 1.1 следует, что плотность распределения удовлетворяет *условию нормировки*:

$$\int_{-\infty}^{\infty} p(x) = 1. \tag{1.6}$$

Приведем некоторые непрерывные распределения.

1. Равномерное распределение на отрезке [a,b]. Плотность распределения задается функцией

$$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$
 (1.7)

2. Нормальное (гауссово) распределение с параметрами (a, σ^2) :

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\}.$$
 (1.8)

3. Показательное распределение с параметром $\lambda > 0$:

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$
 (1.9)

4. Распределение Максвелла:

$$p(x) = \begin{cases} \sqrt{\frac{2}{\pi\sigma^3}} x^2 \exp\left\{-\frac{x^2}{2\sigma^2}\right\}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 (1.10)

5. *Распределение Стьюдента* с *n* степенями свободы:

$$p(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}.$$
 (1.11)

6. Распределение хи-квадрат с п степенями свободы:

$$p(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$
 (1.12)

Здесь $\Gamma(s)$ — гамма-функция.

Методами математического анализа можно показать, что функции p(x), определенные формулами (1.7)—(1.12), удовлетворяют условию нормировки (1.6).

§ 2 Система двух случайных величин

 \mathcal{A} вумерной случайной величиной называют совокупность двух случайных величин (ξ,η) , рассматриваемых совместно. Геометрически двумерная величина может быть истолкована как случайная точка M на плоскости xOy или как случайный вектор OM.

 Φy нкцией распределения F(x,y) двумерной случайной величины называется вероятность совместного выполнения двух неравенств $\xi < x$ и $\eta < y$:

$$F(x,y) = \mathbf{P}(\xi < x, \, \eta < y).$$
 (2.1)

Геометрически F(x,y) интерпретируется как вероятность попадания случайной точки (ξ,η) в квадрант с вершиной (x,y), заштрихованный на рис. 4.

Теорема 2.1. Свойства двумерной функции распределения:

1. Значения функции распределения удовлетворяют двойному неравенству:

$$0 \leqslant F(x, y) \leqslant 1.$$

- 2. Функция распределения есть неубывающая функция по каждому аргументу.
- 3. Имеют место предельные соотношения:

$$F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0, \quad F(\infty, \infty) = 1.$$
 (2.2)

Здесь обозначения имеют тот же смысл, что и в (1.1).

- 4. При $y \to \infty$ функция распределения системы становится функцией распределения составляющей ξ : $F_{\xi\eta}(x,\infty) = F_{\xi}(x)$. Аналогично, $F_{\xi\eta}(\infty,y) = F_{\eta}(y)$.
- 5. Вероятность попадания точки в прямоугольник $a \leqslant x < b, c \leqslant y < d$ вычисляется по формуле:

$$P(a \le \xi < b, c \le \eta < d) = F(a, c) + F(b, d) - F(a, d) - F(b, c). (2.3)$$

Доказательство. Доказательство свойств 1—4 строится аналогично доказательству свойств одномерной функции распределения в теореме 1.1.

Для доказательства формулы (2.3) разобьем сектор, ограниченный неравенствами (x < b, y < d) на области (см. рис. 5): $A = (x < a, c \leqslant y < d)$, $B = (a \leqslant x < b, c \leqslant y < d)$, C = (x < a, y < c) и $D = (a \leqslant x < b, y < c)$. Поскольку области не пересекаются, то вероятность попадания в сектор (x < b, y < d) складывается из вероятностей попадания в области A, B, C и D.

Вероятность $\mathbf{P}((\xi,\eta) \in B)$ есть искомая вероятность. По определению (2.1) вероятности $\mathbf{P}((\xi,\eta) \in A+B+C+D)=F(b,d)$ и $\mathbf{P}((\xi,\eta) \in A+C)=F(a,d)$. Область D есть сектор (x < b,y < c) за вычетом сектора (x < a,y < c), поэтому $\mathbf{P}((\xi,\eta) \in D)=F(b,c)-F(a,c)$.

Случайный вектор (ξ,η) называется $\partial ucк pemным$, если существует не более чем счетное множество пар чисел (x_k,y_j) , таких что

$$\mathbf{P}(\xi = x_k, \eta = y_j) = p_{kj} > 0, \qquad \sum_{k,j} p_{kj} = 1.$$

Случайный вектор (ξ,η) называется абсолютно непрерывным,

если существует неотрицательная функция p(x,y), называемая совместной (двумерной) плотностью распределения, такая, что

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(s,t) \, \mathrm{d}s \, \mathrm{d}t.$$

В точках непрерывности плотность распределения выражается через функцию распределения формулой

$$p(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}.$$

Вероятность попадания случайной точки (ξ, η) в произвольную область D выражается формулой:

$$\mathbf{P}((\xi, \eta) \in D) = \iint_D p(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

2.1 Независимость случайных величин

Случайные величины ξ и η называются *независимыми*, если

$$F_{\xi\eta}(x,y) = F_{\xi}(x)F_{\eta}(y).$$
 (2.4)

Следующая теорема позволяет вместо определения (2.4) использовать иное соотношение.

Теорема 2.2. Необходимым и достаточным условием независимости случайных величин ξ и η является

$$P(a \leqslant \xi < b, c \leqslant \eta < d) = P(a \leqslant \xi < b)P(c \leqslant \eta < d)$$
 (2.5)

для любых a < b и c < d.

Доказательство. Необходимость. В формуле (2.3) заменим F(a,c)=F(a)F(c) и т. д. Тогда совместная вероятность приводится к виду

$$\mathbf{P}(a \leqslant \xi < b, c \leqslant \eta < d) = (F(b) - F(a))(F(d) - F(c)),$$

откуда следует (2.5).

Достаточность. Возьмем произвольные числа a, c, x, y, так что a < x и c < y. В левую часть равенства (2.5) подставим формулу (2.3), а вероятности в правой части заменим выражением (1.2) и, затем, возьмем предел при $a \to -\infty$ и $c \to -\infty$. Принимая во внимание предельные значения одномерной и совместной функций распределения (1.1) и (2.2), и в силу произвольности x и y, получим (2.4).

Условие независимости (2.5) применим для получения условий независимости дискретных и непрерывных случайных величин.

Теорема 2.3. Пусть ξ и η — дискретные случайные величины, причем $\sum_{i,j} \mathbf{P}(\xi = x_i, \eta = y_j) = 1$, а последовательности $\{x_i\}$ и $\{y_j\}$ не имеют предельных точек. Случайные величины ξ и η независимы тогда и только тогда, когда для любых значений x_i и y_j выполнено

$$\mathbf{P}(\xi = x_i, \eta = y_j) = \mathbf{P}(\xi = x_i)\mathbf{P}(\eta = y_j). \tag{2.6}$$

Доказательство. Необходимость. Пусть случайные величины ξ и η независимы. Тогда выполнено условие (2.5). Выберем значения a, b, c, d таким образом, чтобы внутри прямоугольника оказалась только одна точка (x_i, y_j) . Тогда $\mathbf{P}(a \leq \xi < b, c \leq \eta < d) = \mathbf{P}(\xi = x_i, \eta = y_j)$, $\mathbf{P}(a \leq \xi < b) = \mathbf{P}(\xi = x_i)$ и $\mathbf{P}(c \leq \eta < d) = \mathbf{P}(\eta = y_j)$ и формула (2.6) следует из (2.5).

Достаточность. Пусть выполнено условие (2.6). Для произвольных значений $a,\ b,\ c,\ d$ в полуинтервалах [a,b) и [c,d) окажутся некоторые из точек последовательностей $\{x_i\}$ и $\{y_j\}$ и

$$\mathbf{P}(a \leqslant \xi < b, c \leqslant \eta < d) = \sum_{\substack{x_i \in [a,b) \\ y_j \in [c,d)}} \mathbf{P}(\xi = x_i, \eta = y_j) = \\
= \sum_{\substack{x_i \in [a,b) \\ y_j \in [c,d)}} \mathbf{P}(\xi = x_i) \mathbf{P}(\eta = y_j) = \sum_{x_i \in [a,b)} \mathbf{P}(\xi = x_i) \sum_{y_j \in [c,d)} \mathbf{P}(\eta = y_j).$$

Эти суммы равны $\mathbf{P}(a \leqslant \xi < b)$ и $\mathbf{P}(c \leqslant \eta < d)$ соответственно, что дает условие (2.5), означающее независимость величин ξ и η .

Теорема 2.4. Пусть ξ и η — непрерывные случайные величины с совместной плотностью $p_{\xi\eta}(x,y)$, а $p_{\xi}(x)$ и $p_{\eta}(y)$ — их одномерные плотности распределения. Случайные величины ξ и η независимы тогда и только тогда, когда $p_{\xi\eta}(x,y)=p_{\xi}(x)p_{\eta}(y)$ во всех точках непрерывности функций $p_{\xi\eta}(x,y),\,p_{\xi}(x)$ и $p_{\eta}(y).$

$$p_{\xi\eta}(x,y) = p_{\xi}(x)p_{\eta}(y) \tag{2.7}$$

Доказательство. Необходимость. Пусть случайные величины ξ и η независимы. Тогда выполнено условие (2.5), которое для произвольных a, b, c, d записывается в виде

$$\int_{a}^{b} \int_{c}^{d} p_{\xi\eta}(s,t) \, ds \, dt = \int_{a}^{b} p_{\xi}(s) \, ds \int_{c}^{d} p_{\eta}(t) \, dt.$$
 (2.8)

Выберем область $D = \{a \leqslant x < b, c \leqslant y < d\}$. Переходя от повторного интеграла к двойному, получим

$$\int_{a}^{b} \int_{c}^{d} \left(p_{\xi\eta}(s,t) - p_{\xi}(s) p_{\eta}(t) \right) ds dt = 0.$$
 (2.9)

Из (2.9) следует (2.7). Действительно, пусть это не так. Тогда в силу непрерывности подынтегральной функции (она следует из непрерывности плотностей распределения, оговоренной в условии теоремы) найдется окрестность точки (x, y), где она отлична от нуля и сохраняет знак. Выбрав область D целиком лежащей в этой области, получим противоречие c (2.9).

Достаточность. Пусть выполнено условие (2.7). Тогда для любых a, b, c, d имеет место (2.9), откуда следует (2.8) и (2.5).

Функции случайных величин 2.2

Пусть на вероятностном пространстве $(\Omega, \mathfrak{A}, P)$ задана некоторая случайная величина $\xi(\omega)$, и пусть $\varphi(x)$ — числовая функция, заданная на действительной оси. Суперпозиция функций $\xi(\omega)$ и $\varphi(x)$, $\eta=\varphi(\xi(\omega))$, называется ϕ ункцией случайной величины ξ (обозначается $\eta = \varphi(\xi)$), если для любого действительного числа x событие $\{\eta < x\} \in \mathfrak{A}$.

Теорема 2.5. Пусть случайные величины ξ_1 и ξ_2 независимы, а $\varphi_1(x)$ и $\varphi_2(x)$ — произвольные числовые функции. Тогда случайные величины $\eta_1 = \varphi_1(\xi_1)$ и $\eta_2 = \varphi_2(\xi_2)$ также независимы.

Доказательство. Обозначим полуинтервалы $D_1=[a,b)$ и $D_2=[c,d)$. Пусть $\eta_1\in D_1$ и $\eta_2\in D_2$. Тогда

$$\mathbf{P}(\eta_1 \in D_1, \eta_2 \in D_2) = \mathbf{P}(\varphi_1(\xi_1) \in D_1, \varphi_2(\xi_2) \in D_2) = \\
= \mathbf{P}(\xi_1 \in \varphi_1^{-1}(D_1), \xi_2 \in \varphi_2^{-1}(D_2)). \quad (2.10)$$

Аналогично,

$$\mathbf{P}(\eta_i \in D_i) = \mathbf{P}(\xi_i \in \varphi_i^{-1}(D_i)), \quad i = 1, 2.$$
 (2.11)

В силу независимости ξ_1 и ξ_2 выполнено условие (2.7), которое применительно к рассматриваемым интервалам может переписано в виде

$$\mathbf{P}(\xi_1 \in \varphi_1^{-1}(D_1), \xi_2 \in \varphi_2^{-1}(D_2)) = \mathbf{P}(\xi_1 \in \varphi_1^{-1}(D_1)) \mathbf{P}(\xi_2 \in \varphi_2^{-1}(D_2)).$$

Подставляя (2.10) и (2.11), получим

$$P(\eta_1 \in D_1, \eta_2 \in D_2) = P(\eta_1 \in D_1)P(\eta_2 \in D_2),$$

что и требовалось доказать.

Теорема 2.6. Если случайная величина ξ распределена нормально с параметрами (a, σ^2) , то случайная величина $\eta = A\xi + B$ $(A, B = \text{const}, A \neq 0)$ распределена нормально с параметрами $(Aa + B, A^2\sigma^2)$.

Доказательство. Пусть A>0. Тогда

$$F_{\eta}(x) = \mathbf{P}(A\xi + B) = \mathbf{P}\left(\xi < \frac{x - B}{A}\right) = F_{\xi}\left(\frac{x - B}{A}\right).$$

Плотность распределения $p_{\xi}(x)$ непрерывна при всех значениях аргумента, поэтому

$$p_{\eta}(x) = F'_{\eta}(x) = \frac{1}{A} p_{\xi} \left(\frac{x - B}{A} \right) = \frac{1}{\sqrt{2\pi}\sigma A} \exp \left\{ -\frac{(x - Aa - B)^2}{2A^2\sigma^2} \right\}.$$

Аналогичные вычисления для A < 0 дают

$$p_{\eta}(x) = \frac{1}{\sqrt{2\pi}\sigma|A|} \exp\left\{-\frac{(x - Aa - B)^2}{2A^2\sigma^2}\right\}.$$

Пример 2.1. Случайная величина ξ имеет показательное распределение с плотностью $p_{\xi}(x)=\lambda e^{-\lambda x}~(x>0)$. Найти плотность распределения случайной величины $\eta=\sqrt{\xi}$.

Решение. По определению функции распределения:

$$F_{\eta}(x) = \mathbf{P}(\eta < x) = \mathbf{P}(\sqrt{\xi} < x) = \mathbf{P}(\xi < x^2) = F_{\xi}(x^2).$$

При x>0, плотность распределения является производной от функции распределения:

$$p_{\eta}(x) = F'_{\eta}(x) = \frac{\mathrm{d}F_{\xi}(x^2)}{\mathrm{d}x} = 2xp_{\xi}(x^2) = 2\lambda x e^{-\lambda x^2}.$$

Это распределение называется распределением Рэлея.

Если на вероятностном пространстве задано несколько случайных величин ξ_1, \ldots, ξ_n , то при определенных условиях функция $\eta = \varphi(\xi_1, \ldots, \xi_n)$ также будет случайной величиной. Например, достаточно потребовать, чтобы функция $\varphi(x_1, \ldots, x_n)$ была непрерывной. Справедливо будет также утверждение, обобщающее теорему 2.5: если случайные величины ξ_1, \ldots, ξ_n независимы, то функции $\eta_1 = \varphi_1(\xi_1, \ldots, \xi_m)$ и $\eta_1 = \varphi_2(\xi_{m+1}, \ldots, \xi_n)$ (m < n) также независимы. Более детальное описание функций нескольких случайных величин можно найти в [1].

§ 3 Числовые характеристики случайных величин

3.1 Математическое ожидание

Mатематическим ожиданием дискретной случайной величины ξ называют число, равное сумме произведений всех ее возможных значений на их вероятности:

$$\mathbf{M}\xi = \sum_{i} x_i p_i. \tag{3.1}$$

Сумма может содержать как конечное, так и бесконечное число членов. В последнем случае предполагается, что бесконечный ряд сходится абсолютно. Если же ряд не сходится абсолютно, то математическое ожидание случайной величины ξ не определено.

Математическим ожиданием непрерывной случайной величины ξ называют число

$$\mathbf{M}\xi = \int_{-\infty}^{\infty} x p(x) \, \mathrm{d}x,\tag{3.2}$$

если этот интеграл сходится абсолютно. Если интеграл (3.3) не сходится абсолютно, то математическое ожидание случайной величины ξ не определено.

Математическим ожиданием функции дискретной случайной величины $\varphi(\xi)$ называют число

$$\mathbf{M}\xi = \sum_{i} \varphi(x_i) p_i,$$

если ряд сходится абсолютно.

Математическим ожиданием функции непрерывной случайной величины $\varphi(\xi)$ называют число

$$\mathbf{M}\xi = \int_{-\infty}^{\infty} \varphi(x)p(x) \, \mathrm{d}x, \tag{3.3}$$

если интеграл сходится абсолютно.

Математическим ожиданием функции дискретных случайных величин $\varphi(\xi,\eta)$ называют число

$$\mathbf{M}\phi(\xi,\eta) = \sum_{i,k=1}^{\infty} \mathbf{P}(\xi = x_i, \eta = y_k) \varphi(x_i y_k), \qquad (3.4)$$

если ряд сходится абсолютно.

Mатематическим ожиданием функции непрерывных случайных величин $\varphi(\xi,\eta)$ называют число

$$\mathbf{M}\phi(\xi,\eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(x,y) p_{\xi\eta}(x,y) \, \mathrm{d}x \, \mathrm{d}y$$
 (3.5)

если интеграл сходится абсолютно.

Эти определения естественным образом обобщается для большего числа случайных величин.

Теорема 3.1. Математическое ожидание обладает следующими свойствами:

1. Математическое ожидание постоянной величины равно самой постоянной:

$$MC = C$$
.

2. Постоянный множитель можно выносить за знак математического ожидания:

$$M(C\xi) = CM\xi.$$

3. Для любой случайной величины ξ

$$|\mathbf{M}\xi| \leqslant \mathbf{M}|\xi|. \tag{3.6}$$

4. Математическое ожидание суммы случайных величин ξ и η равно сумме математических ожиданий слагаемых:

$$\mathbf{M}(\xi + \eta) = \mathbf{M}\xi + \mathbf{M}\eta.$$

5. Математическое ожидание произведения независимых случайных величин ξ и η равно произведению математических ожиданий сомножителей:

$$\mathsf{M}\xi\eta=\mathsf{M}\xi\mathsf{M}\eta.$$

Доказательство. Свойства 1-3 следуют из соответствующих свойств интегралов и рядов. Для доказательства свойства 4 в случае, например, непрерывных случайных величин ξ и η , рассмотрим интеграл (3.5) для функции $\varphi(x,y)=x+y$:

$$\mathbf{M}(\xi + \eta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) p_{\xi\eta}(x, y) \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \int_{-\infty}^{\infty} x \left(\int_{-\infty}^{\infty} p_{\xi\eta}(x, y) \, \mathrm{d}y \right) \, \mathrm{d}x + \int_{-\infty}^{\infty} y \left(\int_{-\infty}^{\infty} p_{\xi\eta}(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y =$$

$$= \int_{-\infty}^{\infty} x p_{\xi}(x) \, \mathrm{d}x + \int_{-\infty}^{\infty} y p_{\eta}(y) \, \mathrm{d}y = \mathbf{M}\xi + \mathbf{M}\eta.$$

Свойство 5 докажем для дискретных случайных величин ξ и η . Подставим в сумму (3.4) функцию $\phi(x,y)=xy$ и учтем, что для независимых случай-

ных величин выполняется равенство (2.6):

$$\mathbf{M}(\xi\eta) = \sum_{i,k=1}^{\infty} \mathbf{P}(\xi = x_i) \mathbf{P}(\eta = y_k) x_i y_k =$$

$$= \sum_{i=1}^{\infty} \mathbf{P}(\xi = x_i) x_i \cdot \sum_{k=1}^{\infty} \mathbf{P}(\eta = y_k) y_k = \mathbf{M}\xi \cdot \mathbf{M}\eta.$$

3.2 Дисперсия

 \mathcal{A} исперсией случайной величины ξ называют число, равное математическому ожиданию квадрата отклонения случайной величины от ее математического ожидания:

$$\mathsf{D}\xi = \mathsf{M}(\xi - \mathsf{M}\xi)^2. \tag{3.7}$$

Дисперсию также удобно вычислять по формуле:

$$\mathsf{D}\xi = \mathsf{M}\xi^2 - (\mathsf{M}\xi)^2,\tag{3.8}$$

которая получается из (3.7) путем несложных вычислений с использованием свойств математического ожидания.

Теорема 3.2. Дисперсия обладает следующими свойствами:

1. Дисперсия является неотрицательной величиной:

$$\mathbf{D}\xi \geqslant 0.$$

2. Дисперсия постоянной величины равна нулю:

$$DC = 0.$$

3. Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат:

$$D(C\xi) = C^2 D\xi.$$

4. Дисперсия суммы независимых случайных величин ξ и η равна сумме дисперсий слагаемых:

$$\mathbf{D}(\xi + \eta) = \mathbf{D}\xi + \mathbf{D}\eta. \tag{3.9}$$

Доказательство. Свойства 1—3 следуют непосредственно из свойств математического ожидания. Для доказательства формулы (3.9) запишем

Так как случайные величины ξ и η — независимы, то независимы случайные величины ξ — $\mathbf{M}\xi$ и η — $\mathbf{M}\eta$. Следовательно,

$$\mathbf{M}(\xi - \mathbf{M}\xi)(\eta - \mathbf{M}\eta) = \mathbf{M}(\xi - \mathbf{M}\xi) \cdot \mathbf{M}(\eta - \mathbf{M}\eta) =$$
$$= (\mathbf{M}\xi - \mathbf{M}\xi)(\mathbf{M}\eta - \mathbf{M}\eta) = 0$$

И

$$D(\xi + \eta) = M(\xi - M\xi)^2 + M(\eta - M\eta)^2 = D\xi + D\eta.$$

Средним квадратическим отклонением случайной величины называют квадратный корень из дисперсии:

$$\sigma_{\xi} = \sqrt{\mathsf{D}\xi}.$$

3.3 Ковариация и коэффициент корреляции

Ковариацией (корреляционным моментом) случайных величин ξ и η называют число

$$cov(\xi, \eta) = \mathbf{M}((\xi - \mathbf{M}\xi)(\eta - \mathbf{M}\eta)). \tag{3.10}$$

Используя свойства математического ожидания, легко получить другую формулу для вычисления ковариации:

$$cov(\xi, \eta) = \mathbf{M}\xi \eta - \mathbf{M}\xi \,\mathbf{M}\eta. \tag{3.11}$$

Теорема 3.3. Ковариация обладает следующими свойствами:

1. Ковариация не меняется при перестановке случайных величин:

$$cov(\xi, \eta) = cov(\eta, \xi).$$

- 2. Если C = const, то $\text{cov}(\xi, C) = 0$.
- 3. Если случайные величины ξ и η независимы, то $\text{cov}(\xi,\eta)=0$.
- 4. $cov(\xi, \xi) = \mathbf{D}\xi$.
- 5. Ковариация линейна по каждому из своих аргументов:

$$cov(C_1\xi_1 + C_2\xi_2, \eta) = C_1cov(\xi_1, \eta) + C_2cov(\xi_2, \eta),$$

где $C_1, C_2 = \text{const.}$

Доказательства этих свойств следуют непосредственно из определения (3.10) или формулы (3.11).

Для произвольных случайных величин ξ и η

$$\mathbf{D}(\xi + \eta) = \mathbf{D}\xi + \mathbf{D}\eta + 2\operatorname{cov}(\xi, \eta). \tag{3.12}$$

Формулу (3.12) легко получить самостоятельно по аналогии с доказательством свойства дисперсии (3.9) с учетом определения (3.10).

Теорема 3.4. Если для случайных величин ξ_1 и ξ_2 существуют $\mathrm{cov}(\xi_i,\xi_j)=\sigma_{ij},$ i,j=1,2, то при любых постоянных C_1 и C_2

$$D(C_1\xi_1 + C_2\xi_2) = \sum_{i,j=1}^{2} C_i C_j \sigma_{ij}.$$
 (3.13)

Доказательство. Согласно формуле (3.12) и свойствам дисперсии и ковариации, дисперсия суммы

$$D(C_1\xi_1 + C_2\xi_2) = C_1^2 \mathbf{D}\xi_1 + C_2^2 \mathbf{D}\xi_2 + 2C_1C_2 \operatorname{cov}(\xi_1, \xi_2).$$

Используя обозначения, введенные в теореме, последнее равенство легко переписать в виде (3.13).

Правую часть (3.13) можно рассматривать как квадратичную форму от двух переменных C_1 и C_2 . В силу неотрицательности дисперсии эта форма неотрицательно определена. Необходимым и достаточным условием неотрицательности квадратичной формы двух переменных является неотрицательность всех главных миноров матрицы квадратичной формы. В данном случае такими минорами являются дисперсии $\sigma_{11} = \mathbf{D}\xi_1$ и

 $\sigma_{22} = \mathsf{D}\xi_2$, а также определитель

$$|\sigma_{ij}| = \sigma_{11}\sigma_{22} - \sigma_{12}^2 = \mathbf{D}\xi_1 \,\mathbf{D}\xi_2 - [\operatorname{cov}(\xi_1, \xi_2)]^2.$$
 (3.14)

Из неотрицательности определителя (3.14) следует, что

$$|\text{cov}(\xi_1, \xi_2)| \leqslant \sqrt{\mathbf{D}\xi_1 \mathbf{D}\xi_2}.$$

Kоэффициентом корреляции величин ξ и η называют отношение ковариации к произведению средних квадратических отклонений этих величин:

$$\rho_{\xi\eta} = \frac{\text{cov}(\xi,\eta)}{\sqrt{\mathsf{D}\xi\,\mathsf{D}\eta}}.$$

Коэффициент корреляции — безразмерная величина, причем $|\rho_{\xi\eta}| \leqslant 1$. Коэффициент корреляции служит для оценки тесноты *линейной* связи между ξ и η : чем ближе абсолютная величина коэффициента корреляции к единице, тем связь сильнее; чем ближе абсолютная величина коэффициента корреляции к нулю, тем связь слабее. Коэффициент корреляции равен 1 тогда и только тогда, когда случайные величины линейно связаны¹⁾. Если коэффициент корреляции равен нулю, то величины называют *некоррелированными*. Из независимости двух величин следует их некоррелированность, но из некоррелированности еще нельзя сделать вывод о независимости этих величин. Покажем это на следующем примере.

Пример 3.1. Случайная величина ξ имеет закон распределения

Найти ковариацию случайных величин $\eta = \cos \xi$ и $\zeta = \sin \xi$. Являются ли они независимыми?

Peшение. Запишем явно законы распределения случайных величин η и ζ :

y_i	-1	0	1
p_i	1/3	1/3	1/3

$$\begin{array}{c|c|c} z_i & 0 & 1 \\ \hline p_i & 2/3 & 1/3 \\ \hline \end{array}$$

и закон их совместного распределения

¹⁾Доказательство этого утверждения не приводится. Оно составляет содержание задач 136 и 137 в [7].

y_i	-1	0	1
0	1/3	0	1/3
1	0	1/3	0

Легко видеть, что $\mathbf{M}\eta\zeta=0$, $\mathbf{M}\eta=0$ и $\mathbf{M}\zeta=1/3$. По формуле (3.11) находим, что $\mathrm{cov}(\eta,\zeta)=0$, то есть случайные величины η и ζ некоррелированы.

Зависимость случайных величин η и ζ следует из того факта, что условие (2.6) выполнено не для всех значений. Например, $\mathbf{P}(\eta=0,\zeta=0)=0$, тогда как $\mathbf{P}(\eta=0)=1/3$ и $\mathbf{P}(\zeta=0)=2/3$.

Заметим, что для некоторых распределений понятия независимости и некоррелированности являются эквивалентными. В частности, если случайные величины ξ и η имеют нормальное распределение и $\rho_{\xi\eta}=0$, то они независимы.

3.4 Моменты случайных величин

Hачальным моментом порядка k случайной величины ξ называют математическое ожидание величины ξ^k :

$$\alpha_k = \mathbf{M}\xi^k$$
.

$$\mu_k = \mathbf{M}(\xi - \mathbf{M}\xi)^k.$$

Hачальным моментом порядка k+m случайного вектора (ξ,η) называют математическое ожидание величины $\xi^k\eta^m$:

$$\alpha_{k,m} = \mathbf{M}(\xi^k \eta^m).$$

$$\mu_{k,m} = \mathbf{M} \left((\xi - \mathbf{M} \xi)^k (\eta - \mathbf{M} \eta)^m \right).$$

Ранее мы уже познакомились с некоторыми моментами распределений. Например, $\alpha_1 = \mathbf{M}\xi$, $\mu_2 = \mathbf{D}\xi$, а $\mu_1 \equiv 0$. Для случайного вектора (ξ,η) начальные моменты $\alpha_{1,0} = \mathbf{M}\xi$, $\alpha_{0,1} = \mathbf{M}\eta$, а центральные моменты $\mu_{0,1} = \mu_{1,0} = 0$, $\mu_{2,0} = \mathbf{D}\xi$, $\mu_{0,2} = \mathbf{D}\eta$.

3.5 Числовые характеристики некоторых распределений

Пример 3.2. *Математическое ожидание и дисперсия распре- деления Пуассона*. Для распределения Пуассона (1.4) математическое ожидание вычисляем по формуле (3.1):

$$\begin{split} \mathbf{M}\xi &= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda} = \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} e^{-\lambda} = \\ &= \lambda e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} = \lambda e^{-\lambda} e^{\lambda} = \lambda. \end{split}$$

Вычислим математическое ожидание от квадрата случайной величины:

$$\mathbf{M}\xi^2 \ = \ \sum_{k=0}^\infty k^2 \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^\infty \frac{k\lambda^k}{(k-1)!} e^{-\lambda}.$$

Если $k \geqslant 2$, то

$$\frac{k}{(k-1)!} = \frac{1}{(k-1)!} + \frac{1}{(k-2)!}.$$

Пользуясь этим, разобьем сумму на две части:

$$\mathbf{M}\xi^{2} = \left(\sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} + \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!}\right) e^{-\lambda} =$$

$$= \left(\sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} + \sum_{n=0}^{\infty} \frac{\lambda^{n+2}}{n!}\right) e^{-\lambda} =$$

$$= \left(\lambda + \lambda^{2}\right) e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} = \left(\lambda + \lambda^{2}\right) e^{-\lambda} e^{\lambda} = \lambda + \lambda^{2}.$$

По формуле (3.8) находим:

$$\mathbf{D}\xi = (\lambda + \lambda^2) - \lambda^2 = \lambda.$$

Пример 3.3. *Математическое ожидание и дисперсия распре- деления Гаусса*. Математическое ожидание вычисляем по формуле (3.3) с плотностью распределения (1.8):

$$\mathbf{M}\xi = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} x \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\} dx.$$

Выполним замену переменных $(x-a)/\sigma = t$.

$$\mathbf{M}\xi = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (\sigma t + a)e^{-t^2/2}\sigma \,dt = \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} te^{-t^2/2} \,dt + \frac{a}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} \,dt.$$

Первый интеграл обращается в ноль, поскольку подынтегральная функция нечетная. Во втором слагаемом интеграл равен $\sqrt{2\pi}$. Это легко сообразить, если вспомнить, что функция $p(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ есть плотность вероятности для гауссова распределения с параметрами (0,1); интеграл от нее по бесконечному промежутку равен 1. Таким образом $\mathbf{M}\xi=a$.

Дисперсия

$$\mathbf{D}\xi = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} (x-a)^2 \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\} dx.$$

Снова сделаем замену переменной $(x-a)/\sigma = t$ и проинтегрируем по частям:

$$\mathbf{D}\xi = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-t^2/2} \, dt = -\frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t \, de^{-t^2/2} =$$

$$= -te^{-t^2/2} \Big|_{-\infty}^{\infty} + \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} \, dt = \sigma^2.$$

Пример 3.4. *Математическое ожидание и дисперсия биноми- ального распределения*. Числовые характеристики биномильного распределения вычислим двумя способами. Первый способ предполагает вычисление непосредственно по формулам (3.1) и (3.8). Второй способ использует свойства математического ожидания и дисперсии, доказан-

ные в теоремах 3.1 и 3.2.

С п о с о б 1. Случайная величина ξ принимает значения $x_k=k \ (0\leqslant k\leqslant n)$ с вероятностью $p_k=C_n^kp^kq^{n-k}$. По формуле (3.1)

$$\mathbf{M}\xi = \sum_{k=0}^{n} k \, C_n^k p^k q^{n-k}.$$

Чтобы вычислить сумму, рассмотрим функцию $f(p)=(p+q)^n$. Продифференцировав ее, найдем $f'(p)=n(p+q)^{n-1}$.

С другой стороны,

$$f(p) = \sum_{k=0}^{n} C_n^k p^k q^{n-k},$$

следовательно

$$f'(p) = \sum_{k=0}^{n} k C_n^k p^{k-1} q^{n-k}.$$

Если умножить получившуюся сумму на p, то она совпадет с выражением, которое необходимо вычислить. При этом надо считать, что p+q=1. Таким образом, $\mathbf{M}\xi=pf'(p)_{|p+q=1}=np$.

Аналогичным образом вычислим

$$\mathbf{M}\xi^2 = p(pf'(p))'_{|p+q=1} = [n(p+q)^{n-1} + n(n-1)p^2(p+q)^{n-2}]_{|p+q=1} = np + n(n-1)p^2.$$

Отсюда по формуле (3.8)

$$\mathbf{D}\xi = np + n(n-1)p^2 - (np)^2 = np(1-p) = npq.$$

С пособ 2. Обозначим ξ_k k-е испытание в схеме Бернулли. Каждая из случайных величин ξ_k принимает с вероятностью q значение 0 и с вероятностью p значение 1. Следовательно,

$$\mathbf{M}\xi_k = 0 \cdot q + 1 \cdot p = p,$$
 $\mathbf{D}\xi_k = 0 \cdot q + 1 \cdot p - p^2 = p(1-p) = p q.$

Очевидно, что ξ_k — независимы и $\xi = \xi_1 + \xi_2 + \ldots + \xi_n$. Пользуясь свойствами математического ожидания и дисперсии для суммы случайных величин, находим $\mathbf{M}\xi = np$, $\mathbf{D}\xi = np\,q$.

Пример 3.5. Закон распределения дискретного случайного вектора (ξ, η) определяется таблицей

x_i y_i	-1	0	2
1	0,15	0,3	0,35
2	0,05	0,1	0,05

а) Найти законы распределения отдельных компонент ξ и η . б) Построить функцию распределения F(x,y). в) Установить, являются ли зависимыми величины ξ и η . г) Чему равна вероятность $\mathbf{P}(\xi \geqslant \eta)$? д) Найти коэффициент корреляции.

Pешение. а) Чтобы найти закон распределения случайной величины ξ , надо найти вероятности ${f P}(\xi=1)$ и ${f P}(\xi=2)$. Находим

$$\mathbf{P}(\xi = 1) = \mathbf{P}(\xi = 1, \eta = -1) + \mathbf{P}(\xi = 1, \eta = 0) + \mathbf{P}(\xi = 1, \eta = 1) = 0.15 + 0.3 + 0.35 = 0.8,$$

то есть складываем все вероятности в первой строке таблицы. Аналогично, складывая числа во второй строке, получаем, что $\mathbf{P}(\xi=2)=0,2$. Чтобы получить закон распределения величины η , надо складывать числа по столбцам таблицы. В итоге приходим к следующим рядам распределения:

$ x_i $	1	2
p_i	0,8	0,2

y_i	-1	0	2
p_i	0,2	0,4	0,4

б) Чтобы построить функцию распределения, разобьем оси Ox и Oy на интервалы, границы которых определяют возможные значения случайных величин ξ и η . Внутри каждого получившегося прямоугольника значение функции распределения постоянно. Такую функцию распределения удобно оформить в виде таблицы:

x y	$y \leqslant -1$	$-1 < y \leqslant 0$	$0 < y \leqslant 2$	y > 2
$x \leqslant 1$	0	0	0	0
$1 < x \leqslant 2$	0	0,15	0,45	0,8
x > 2	0	0,2	0,6	1

в) Величины ξ и η зависимы, так как, например,

$$\mathbf{P}(\xi=1,\eta=-1)=0.15, \;\; \text{Ho} \;\; \mathbf{P}(\xi=1) \; \mathbf{P}(\eta=-1)=0.8 \cdot 0.2=0.16$$

- г) Условию $\xi \geqslant \eta$ удовлетворяют все пары чисел (x_i,y_k) , кроме пары (1;1). Поэтому $\mathbf{P}(\xi > \eta) = 1 \mathbf{P}(\xi = 1, \eta = 1) = 1 0.35 = 0.65.$
- д) Пользуясь рядами распределения для отдельных компонент ξ и η , находим математические ожидания $\mathbf{M}\xi=1.2$ и $\mathbf{M}\eta=0.6$, а также средние квадратические отклонения $\sigma_{\xi}=0.4$ и $\sigma_{\eta}=1.2$ (см. § 3). В таблице

совместного распределения ξ и η сдвигаем значения x_i и y_k на величину $\mathbf{M}\xi$ и $\mathbf{M}\eta$:

$y_i - M\eta$ $x_i - M\xi$	-1,6	-0,6	1,4
-0,2	0,15	0,3	0,35
0,8	0,05	0,1	0,05

Вычисляем ковариацию и коэффициент корреляции:

$$cov(\xi, \eta) = -0.2 \cdot (-1.6) \cdot 0.15 + (-0.2) \cdot (-0.6) \cdot 0.3 + (-0.2) \cdot 1.4 \cdot 0.35 + 0.8 \cdot (-1.6) \cdot 0.05 + 0.8 \cdot (-0.6) \cdot 0.1 + 0.8 \cdot 1.4 \cdot 0.05 = -0.07,$$

$$\rho_{\xi\eta} = \frac{-0.07}{\sqrt{0.4 \cdot 1.2}} = -0.101.$$

3.6 Прочие числовые характеристики

В разделах 3.1—3.3 подробно рассматривались моменты распределения первого и второго порядков. В этом параграфе мы познакомимся с некоторыми числовыми характеристиками, сконструированными на основе моментов третьего и четвертого порядка, а также с рядом других величин.

Коэффициент асимметрии (или, просто, асимметрия) — это число $\nu_1 = \mu_3/\mu_2^{3/2}$. Как видно из названия, оно характеризует асимметрию распределения случайной величины. Если $\nu_1 = 0$, то распределение симметрично относительно математического ожидания. При отрицательной асимметрии вероятность того, что случайная величина примет значение меньше среднего больше 1/2, при положительной — меньше.

Коэффициент эксцесса (эксцесс) — число $\nu_2 = \mu_4/\mu_2^2 - 3$, служит мера остроты пика распределения случайной величины. Для нормального распределения $\nu_2 = 0$. Положительное значение эксцесса соответствует более более острому пику около математического ожидания, отрицательное — более гладкому.

 $Mo\partial a$. Для дискретного распределения модой называется значение случайной величины, имеющей наибольшую вероятность. Для непрерывного распределения мода — это точка локального максимума плотности распределения. Распределение может иметь несколько мод.

 $Me\partial uaha$. Для непрерывного распределения медиана — это значение x случайной величины, для которого выполнено условие $F(x)=\mathbf{P}(\xi< x)=1/2$ или, что то же самое, $\mathbf{P}(\xi< x)=\mathbf{P}(\xi\geqslant x)$. Для дискретного распределения эти определения могут не работать; тогда в качестве медианы может быть выбрано любое число, лежащее между соседними значениями случайной величины x_k и x_{k+1} , для которых $F(x_k)<1/2$ и $F(x_{k+1})>1/2$.

Kвантиль — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если распределение непрерывно, то α -квантиль однозначно задаётся уравнением $F(x) = \alpha$. Таким образом, медиана является 0,5-квантилем распределения. В математической статистике квантили используются для построения доверительных интервалов, оценки гипотез и т. д.

Пример 3.6. Рассмотрим распределение Максвелла (1.10), которое описывает распределение частиц в газе по абсолютной величине скорости:

$$p(v) = \sqrt{\frac{2m^3}{\pi (kT)^3}} v^2 \exp\left(-\frac{mv^2}{2kT}\right).$$
 (3.15)

Здесь и далее в этом примере мы используем «физические» обозначения: v — скорость частицы, m — ее масса, T — температура, k — постоянная Больцмана. Очевидно, что формула (3.15) имеет смысл, когда $v \geqslant 0$. Если v отрицательно, то p(v) = 0.

Найдем числовые характеристики данного распределения. Математическое ожидание, оно же средняя скорость частицы, обозначается $\langle v \rangle$ или $\bar{v}^{1)}$.

$$\langle v \rangle = \int_{0}^{\infty} v p(v) \, \mathrm{d}v = \sqrt{\frac{8m}{\pi kT}}.$$

Второй начальный момент дает квадрат средней квадратичной скорости, то есть $\langle v_{\text{\tiny KB}} \rangle = \sqrt{\langle v^2 \rangle}.$

$$\langle v^2 \rangle = \int_0^\infty v^2 p(v) \, \mathrm{d}v = \frac{3kT}{m} \qquad \Longrightarrow \qquad \langle v_{\text{KB}} \rangle = \sqrt{\frac{3kT}{m}} \,.$$

 $^{^{1)}}$ Ниже будем для обозначения среднего будем использовать только угловые скобки.

Для нахождения моды найдем производную от плотности распределения и приравняем ее к нулю, откуда получим значение

$$v_{\scriptscriptstyle \mathrm{B}} = \sqrt{rac{2kT}{m}}\,,$$

которое называют наиболее вероятной скоростью.

Чтобы найти медиану V данного распределения нужно решить уравнение

$$\int_{0}^{V} p(v) \, \mathrm{d}v = \frac{1}{2}.$$
 (3.16)

Удобно ввести безразмерную величину $u = V \sqrt{m/kT}$. Тогда проинтегрировав по частям (3.16), получим трансцендентное уравнение

$$2\Phi(u) - \sqrt{\frac{2}{\pi}} u e^{-u^2/2} = \frac{1}{2},$$

численное решение которого дает $u\approx 1,538$. Таким образом, $V\approx \sqrt{2,37kT/m}$, то есть значение V лежит между наиболее вероятной и средней скоростью. В зависимости от задачи, все найденные характеристики могут рассматриваться в качестве центра распределения.

§ 4 Характеристические функции

Комплекснозначной случайной величиной называется функция $\xi(\omega)+i\eta(\omega)$, где ξ и η — действительные случайные величины, заданные на множестве событий Ω . Математическое ожидание комплекснозначной случайной величины вычисляется по формуле

$$\mathbf{M}(\xi + i\eta) = \mathbf{M}\xi + i\mathbf{M}\eta$$

и удовлетворяет всем свойствам математического ожидания, полученным в разделе 3.1.

 $Xарактеристической функцией случайной величины <math>\xi$ называется комплексная функция действительного аргумента

$$f_{\xi}(t) = \mathbf{M}e^{i\xi t}. (4.1)$$

Если ξ — дискретная случайная величина, то из (4.1) следует

$$f_{\xi}(t) = \sum_{n=1}^{\infty} e^{ix_n t} \mathbf{P}(\xi = x_n). \tag{4.2}$$

Для непрерывной случайной величины характеристическая функция вычисляется по формуле

$$f_{\xi}(t) = \int_{-\infty}^{\infty} e^{ixt} p_{\xi}(x) \, \mathrm{d}x. \tag{4.3}$$

Теорема 4.1. Характеристическая функция обладает следующими свойствами:

1. Характеристическая функция определена и непрерывна на всей числовой прямой и удовлетворяет соотношениям

$$|f(t)| \le 1, \qquad f(0) = 1.$$

2. Если $\eta=a\xi+b$, где a и b — постоянные, то

$$f_{\eta}(t) = e^{ibt} f_{\xi}(at).$$

3. Характеристическая функция суммы двух независимых случайных величин ξ и η равна произведению их характеристических функций:

$$f_{\xi+\eta}(t) = f_{\xi}(t)f_{\eta}(t).$$

4. Соответствие между множеством характеристических функций и множеством функций распределения является взаимно однозначным.

Доказательство. 1. При любом действительном t имеет место $|e^{it}|=1$. Используя свойство (3.6) математического ожидания, получим

$$|f_{\xi}(t)| \leqslant \mathbf{M}|e^{i\xi t}| = 1.$$

2. Справедливость этого утверждения следует из

$$f_{\eta}(t) = \mathbf{M}e^{it(a\xi+b)} = e^{ibt}\mathbf{M}e^{iat\xi} = e^{ibt}f_{\xi}(at).$$

3. Используя теорему 2.5, найдем, что

$$f_{\xi+\eta}(t) = \mathbf{M}e^{i(\xi+\eta)t} = \mathbf{M}e^{i\xi t}e^{i\eta t} = \mathbf{M}e^{i\xi t}\mathbf{M}e^{i\eta t} = f_{\xi}(t)f_{\eta}(t).$$

Заметим, что это свойство легко обобщить на сумму любого конечного числа независимых случайных величин.

4. Доказательство утверждения 4 приводится, например в [1]. ■

Следующая теорема позволяет использовать характеристическую функцию для вычисления моментов случайной величины.

Теорема 4.2. Если случайная величина ξ имеет абсолютный момент n-го порядка, то есть $\mathbf{M}|\xi|^n<\infty$, то характеристическая функция величины ξ дифференцируема n раз и при $k\leqslant n$

$$f^{(k)}(0) = i^k \mathbf{M} \xi^k. \tag{4.4}$$

Доказательство. Пусть ξ — непрерывная случайная величина. Тогда характеристическая функция вычисляется по формуле (4.3). Покажем, что можно дифференцировать под знаком интеграла. Поскольку

$$\left| i \int_{-\infty}^{\infty} x e^{ixt} p_{\xi}(x) \, \mathrm{d}x \right| \leqslant \int_{-\infty}^{\infty} |x| e^{ixt} p_{\xi}(x) \, \mathrm{d}x = \mathbf{M} |\xi| < \infty,$$

то интеграл в левой части неравенства сходится равномерно по t. Следовательно,

$$f'_{\xi}(t) = i \int_{-\infty}^{\infty} x e^{ixt} p_{\xi}(x) dx, \qquad f'_{\xi}(0) = i\mathbf{M}\xi.$$

Аналогично доказывается равномерная сходимость интегралов

$$i^k \int_{-\infty}^{\infty} x^k e^{ixt} p_{\xi}(x) \, \mathrm{d}x, \qquad k \leqslant n$$

и справедливость формулы (4.4).

Если ξ — дискретная случайная величина, то для доказательства теоремы необходимо показать равномерную сходимость рядов

$$i^k \sum_{n=1}^{\infty} x_n^k e^{ix_n t} \mathbf{P}(\xi = x_n), \qquad k \leqslant n,$$

которая позволяет почленно дифференцировать ряд (4.2).

Пример 4.1. Характеристическая функция биномиального распределения. Случайная величина ξ принимает целые значения $k=0,1,2,\ldots,n$ с вероятностью $p_k=C_n^kp^kq^{n-k}$. По определению (4.1)

$$\begin{split} f(t) &= \mathbf{M} e^{i\xi t} = \sum_{k=0}^n C_n^k p^k q^{n-k} e^{ikt} = \sum_{k=0}^n C_n^k \left(p e^{it} \right)^k q^{n-k} = \\ &= (p e^{it} + q)^n. \end{split}$$

Пример 4.2. *Характеристическая функция нормального рас- пределения с параметрами* (a, σ^2) . По определению (4.1)

$$f(t) = \mathbf{M}e^{i\xi t} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x-a)^2/2\sigma^2} e^{ixt} \, \mathrm{d}x =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x^2 - 2(a + it\sigma^2)x + a^2)/2\sigma^2} \, \mathrm{d}x =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\frac{(x - a - it\sigma^2)^2}{2\sigma^2} + iat - \frac{\sigma^2 t^2}{2}\right\} \, \mathrm{d}x.$$

Сделаем замену переменной $y=(x-a-it\sigma^2)/\sigma$:

$$f(t) = e^{iat - \sigma^2 t^2/2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/2} dx = e^{iat - \sigma^2 t^2/2}.$$

Вычислить моменты этих распределений с помощью формулы (4.4) читателю предоставляется самостоятельно в качестве простого упражнения.

§ 5 Предельные теоремы

5.1 Закон больших чисел

Угадать, какое значение примет случайная величина в результате испытании невозможно — это зависит от многих причин, учесть которые

мы не в состоянии. Казалось бы, что не стоит ожидать никаких закономерностей в поведении и суммы достаточно большого числа случайных величин. Однако, оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным. Эти условия указываются в теоремах, носящих общее название закона больших чисел.

Закон больших чисел имеет большое теоретическое и практическое значение. Именно он лежит в основе статистического определения вероятности, которое рассматривается как предел частоты появления события и на нем базируются статистические методы анализа массовых явлений.

Теорема 5.1. Пусть ξ — неотрицательная случайная величина. Если существует $\mathbf{M}\xi$, то для любого $\varepsilon>0$

$$\mathbf{P}(\xi \geqslant \varepsilon) \leqslant \frac{\mathbf{M}\xi}{\varepsilon}.\tag{5.1}$$

Доказательство. Проведем доказательство для непрерывной случайной величины. Согласно определению математического ожидания

$$\mathbf{M}\xi \equiv \int_{-\infty}^{\infty} x p_{\xi}(x) \, \mathrm{d}x = \int_{0}^{\infty} x p_{\xi}(x) \, \mathrm{d}x,$$

так как случайная величина ξ неотрицательна. Для любого положительного числа ε имеют место следующие неравенства

$$\int_0^\infty x p_{\xi}(x) \, \mathrm{d}x \leqslant \int_{\varepsilon}^\infty x p_{\xi}(x) \, \mathrm{d}x \leqslant \varepsilon \int_{\varepsilon}^\infty p_{\xi}(x) \, \mathrm{d}x.$$

Последний интеграл равен $\mathbf{P}(\xi \geqslant \varepsilon)$.

Теорема 5.2. (**Неравенство Чебышева**) Если случайная величина ξ имеет дисперсию, то при любом $\varepsilon > 0$

$$P(|\xi - M\xi| \geqslant \varepsilon) \leqslant \frac{D\xi}{\varepsilon^2}.$$
 (5.2)

Доказательство. Рассмотрим случайную величину $\eta = (\xi - \mathbf{M}\xi)^2$. Она неотрицательна и имеет математическое ожидание, так как $\mathbf{M}\eta = \mathbf{M}(\xi - \mathbf{M}\xi)^2 = \mathbf{D}\xi$. Следовательно, можно воспользоваться неравенством (5.1):

$$P(|\xi - M\xi| \geqslant \varepsilon) = P(\eta \geqslant \varepsilon^2) \leqslant \frac{M\eta}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}.$$

Пример 5.1. Оценить вероятность того, что случайная величина ξ отклонится от своего математического ожидания более чем на три средних квадратических отклонения.

Решение. В неравенстве (5.2) положим $\varepsilon = 3\sigma$, где $\sigma = \sqrt{D\xi}$ — среднее квадратическое отклонение:

$$\mathbf{P}(|\xi - \mathbf{M}\xi| \geqslant 3\sigma) \leqslant \frac{\mathbf{D}\xi}{9\sigma^2} = \frac{1}{9}.$$

Теорема 5.3. Если случайные величины $\xi_1, \xi_2, \dots, \xi_n$ попарно независимы и

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=1}^n\mathbf{D}\xi_k=0,$$

то для любого $\varepsilon>0$

$$\lim_{n\to\infty} \mathbf{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n}\xi_k - \frac{1}{n}\sum_{k=1}^{n}\mathbf{M}\xi_k\right| < \varepsilon\right) = 1. \tag{5.3}$$

Доказательство. Обозначим $\eta_n = (\xi_1 + \xi_2 + \ldots + \xi_n)/n$. Тогда в силу попарной независимости случайных величин $\xi_1, \xi_2, \ldots, \xi_n$

$$\mathsf{D}\eta_n = \frac{1}{n^2} \sum_{k=1}^n \mathsf{D}\xi_k.$$

Согласно неравенству Чебышева (5.2)

$$\lim_{n\to\infty} \mathbf{P}\left(|\eta_n - \mathbf{M}\eta_n| \geqslant \varepsilon\right) \leqslant \lim_{n\to\infty} \frac{\mathbf{D}\eta_n}{\varepsilon^2} = \lim_{n\to\infty} \frac{1}{\varepsilon^2 n^2} \sum_{k=1}^n \mathbf{D}\xi_k = 0,$$

что равносильно пределу (5.3).

Частными случаями теоремы 5.3 являются следующие теоремы.

Теорема 5.4. (**Теорема Чебышева**) Если случайные величины $\xi_1, \xi_2, \dots, \xi_n$ попарно независимы и имеют конечные дисперсии, то для любого $\varepsilon > 0$ имеет место предел (5.3).

Доказательство. Так как дисперсии конечны, то найдется постоянная C такая, что $\mathbf{D}\xi_k \leqslant C$ любого $k=1,2,\ldots$ Следовательно,

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=1}^n\mathsf{D}\xi_k\leqslant\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=1}^nC=\lim_{n\to\infty}\frac{C}{n}=0.$$

Теорема 5.5. Если случайные величины $\xi_1, \xi_2, \dots, \xi_n$ одинаково распределены, попарно независимы и имеют конечную дисперсию, то для любого $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbf{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n} \xi_k - a\right| < \varepsilon\right) = 1,\tag{5.4}$$

где $a = \mathbf{M}\xi_k$.

Доказательство. Так как дисперсии $\mathbf{D}\xi_k$ существуют и равны друг другу, то выполнены условия теоремы Чебышева. Подставляя $\mathbf{M}\xi_k=a$ в (5.3), получим (5.4).

Теорема 5.6. (Теорема Бернулли) Пусть m — число успехов в n испытаниях Бернулли, а p — вероятность успеха в одном испытании. Тогда для любого $\varepsilon>0$

$$\lim_{n \to \infty} \mathbf{P}\left(\left|\frac{m}{n} - p\right| < \varepsilon\right) = 1 \tag{5.5}$$

Доказательство. Представим $m=\sum\limits_{k=1}^n \xi_k$, где ξ_k — число успехов в k-ом испытании. Случайные величины ξ_k независимы и одинаково распределены. Каждая может принимать два значения: 0 и 1, причем $\mathbf{P}(\xi_k=0)=1-p=q$ и $\mathbf{P}(\xi_k=1)=p$. Легко вычислить: $\mathbf{M}\xi_k=p$ и $\mathbf{D}\xi_k=pq$. Таким образом, дисперсии ξ_k конечны и утверждение данной теоремы следует из теоремы 5.5.

5.2 Центральная предельная теорема

В теореме 4.1 было указано, что между множеством распределений и множеством характеристических функций существует взаимно однозначное соответствие. Приведем формулировку теоремы о непрерывности этого соответствия, которую мы используем при доказательстве центральной предельной теоремы.

Теорема 5.7. Пусть $F_n(x), n=1,2,\ldots$ — последовательность функций распределения, а $f_n(t)$ — соответствующая последовательность характеристических функций. Если $f_n(t) \to f(t)$ при $n \to \infty$ для любого значения t и f(t) непрерывна при t=0, то f(t)— характеристическая функция, соответствующая некоторой функции распределения F(x) и $F_n(x) \to F(x)$ при $n \to \infty$ равномерно по $x \in (-\infty, \infty)$.

Доказательство теоремы 5.7 мы опускаем. Условия сходимости последовательностей функций распределения и доказательства соответствующих теорем можно найти, например, в [10].

Теорема 5.8. (Центральная предельная теорема) Если случайные величины $\xi_1, \xi_2, \dots, \xi_n$ одинаково распределены, независимы и имеют конечную дисперсию, то при $n \to \infty$

$$\mathbf{P}\left(\frac{\sum_{k=1}^{n} \xi_k - na}{\sigma\sqrt{n}} < x\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \,\mathrm{d}u \tag{5.6}$$

равномерно по $x \in (-\infty, \infty)$. Здесь $a = \mathbf{M}\xi_k$ и $\sigma^2 = \mathbf{D}\xi_k$.

Доказательство. Обозначим

$$\eta_n = \frac{\xi_1 + \ldots + \xi_n - na}{\sigma \sqrt{n}} = \sum_{k=1}^n \frac{\xi_k - a}{\sigma \sqrt{n}} = \frac{1}{\sigma \sqrt{n}} \sum_{k=1}^n \zeta_k,$$

где случайная величина $\zeta_k = \xi_k - a$.

Преобразуем характеристическую функцию случайной величины η_n , используя теорему 4.1:

$$f_{\eta_n}(t) = f_{\sum \zeta_k / \sigma \sqrt{n}}(t) = f_{\sum \zeta_k} \left(\frac{t}{\sigma \sqrt{n}} \right) = \prod_{k=1}^n f_{\zeta_k} \left(\frac{t}{\sigma \sqrt{n}} \right) = \left[f_{\zeta_k} \left(\frac{t}{\sigma \sqrt{n}} \right) \right]^n.$$

При любом фиксированном t при $n \to \infty$ разложим $f_{\zeta_k}(t/\sigma\sqrt{n})$ в ряд Маклорена:

$$f_{\zeta_k}\left(\frac{t}{\sigma\sqrt{n}}\right) = 1 + i\frac{t}{\sigma\sqrt{n}}\mathbf{M}\zeta_k + i^2\frac{t^2}{\sigma^2n}\mathbf{M}\zeta_k^2 + o\left(\frac{t^2}{\sigma^2n}\right) ,$$

в котором по теореме 4.2 производные в нуле заменены моментами распределения. Так как $\mathbf{M}\zeta_k=0$ и $\mathbf{M}\zeta_k^2=\sigma^2$, то

$$f_{\eta_n}(t) = \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{\sigma^2 n}\right)\right]^n \to e^{-t^2/2}$$

при $n \to \infty$. Предельная характеристическая функция является характеристической функцией нормального распределения с параметрами (0,1). По теореме 5.7 следует что равномерная сходимость последовательности функций распределения $F_{\eta_n}(t)$ к функции нормального распределения.

Заметим, что интегральная теорема Муавра—Лапласа является частным случаем центральной предельной теоремы, когда случайные величины ξ_k имеют биномиальное распределение.

Приложения

Приложение 1. Вероятностное пространство

Тройка $(\Omega, \mathfrak{A}, \mathbf{P})$ называется вероятностным пространством. Здесь Ω — множество событий, \mathfrak{A} — σ -алгебра событий, \mathbf{P} — вероятность. Событиями являются подмножества Ω принадлежащие \mathfrak{A} . Вероятность \mathbf{P} — это числовая функция, определенная на σ -алгебре событий \mathfrak{A} . Она удовлетворяет следующим условиям (аксиомы вероятности):

1. $P(A) \geqslant 0$ для любого события $A \in \mathfrak{A}$.

2.
$$P(\Omega) = 1$$
. $(\Pi.1)$

3. Для любых несовместных событий A и B из $\mathfrak A$ имеет место

$$P(A+B) = P(A) + P(B). \tag{\Pi.2}$$

4. Для любой убывающей последовательности

$$A_1 \supset A_2 \supset \ldots \supset A_n \supset \ldots$$

событий из $\mathfrak A$ такой, что $\bigcap\limits_{n=1}^\infty A_n=\varnothing$, имеет место равенство $\lim\limits_{n\to\infty}\mathbf P(A_n)=0.$

 $\widetilde{\mathbf{y}}$ кажем некоторые свойства, которые следуют непосредственно из аксиом 1-4 и не зависят от выбора вероятностной модели.

$$\mathbf{P}(\overline{A}) = 1 - \mathbf{P}(A). \tag{\Pi.3}$$
$$\mathbf{P}(\emptyset) = 0.$$

Для произвольных событий A и B имеет место формула

$$\mathbf{P}(A+B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(AB). \tag{\Pi.4}$$

Если для бесконечной последовательности событий A_1,A_2,\dots выполнено

$$A_1 \supset A_2 \supset \ldots \supset A_n \supset \ldots$$
 и $\bigcap_{n=1}^{\infty} A_n = A$

ИЛИ

$$A_1 \subset A_2 \subset \ldots \subset A_n \subset \ldots$$
 и $\bigcup_{n=1}^{\infty} A_n = A$,

ТО

$$\lim_{n \to \infty} \mathbf{P}(A_n) = \mathbf{P}(A). \tag{\Pi.5}$$

Доказательство этих свойства можно найти в первой части пособия, а также в книгах, указанных в списке литературы.

Приложение 2. Таблица значений функции Лапласа
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_0^x e^{-t^2/2} \, \mathrm{d}t$$

	· · · · · · · · · · · · · · · · · · ·					1	· · · · · · · · · · · · · · · · · · ·		
x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$	x	$\Phi(x)$
0.	0.	0.31	0.12172	0.62	0.23237	0.93	0.32381	1.24	0.39251
0.01	0.00399	0.32	0.12552	0.63	0.23565	0.94	0.32639	1.25	0.39435
0.02	0.00798	0.33	0.1293	0.64	0.23891	0.95	0.32894	1.26	0.39617
0.03	0.01197	0.34	0.13307	0.65	0.24215	0.96	0.33147	1.27	0.39796
0.04	0.01595	0.35	0.13683	0.66	0.24537	0.97	0.33398	1.28	0.39973
0.05	0.01994	0.36	0.14058	0.67	0.24857	0.98	0.33646	1.29	0.40147
0.06	0.02392	0.37	0.14431	0.68	0.25175	0.99	0.33891	1.3	0.4032
0.07	0.0279	0.38	0.14803	0.69	0.2549	1.	0.34134	1.31	0.4049
0.08	0.03188	0.39	0.15173	0.7	0.25804	1.01	0.34375	1.32	0.40658
0.09	0.03586	0.4	0.15542	0.71	0.26115	1.02	0.34614	1.33	0.40824
0.1	0.03983	0.41	0.1591	0.72	0.26424	1.03	0.34849	1.34	0.40988
0.11	0.0438	0.42	0.16276	0.73	0.2673	1.04	0.35083	1.35	0.41149
0.12	0.04776	0.43	0.1664	0.74	0.27035	1.05	0.35314	1.36	0.41309
0.13	0.05172	0.44	0.17003	0.75	0.27337	1.06	0.35543	1.37	0.41466
0.14	0.05567	0.45	0.17364	0.76	0.27637	1.07	0.35769	1.38	0.41621
0.15	0.05962	0.46	0.17724	0.77	0.27935	1.08	0.35993	1.39	0.41774
0.16	0.06356	0.47	0.18082	0.78	0.2823	1.09	0.36214	1.4	0.41924
0.17	0.06749	0.48	0.18439	0.79	0.28524	1.1	0.36433	1.41	0.42073
0.18	0.07142	0.49	0.18793	0.8	0.28814	1.11	0.3665	1.42	0.4222
0.19	0.07535	0.5	0.19146	0.81	0.29103	1.12	0.36864	1.43	0.42364
0.2	0.07926	0.51	0.19497	0.82	0.29389	1.13	0.37076	1.44	0.42507
0.21	0.08317	0.52	0.19847	0.83	0.29673	1.14	0.37286	1.45	0.42647
0.22	0.08706	0.53	0.20194	0.84	0.29955	1.15	0.37493	1.46	0.42785
0.23	0.09095	0.54	0.2054	0.85	0.30234	1.16	0.37698	1.47	0.42922
0.24	0.09483	0.55	0.20884	0.86	0.30511	1.17	0.379	1.48	0.43056
0.25	0.09871	0.56	0.21226	0.87	0.30785	1.18	0.381	1.49	0.43189
0.26	0.10257	0.57	0.21566	0.88	0.31057	1.19	0.38298	1.5	0.43319
0.27	0.10642	0.58	0.21904	0.89	0.31327	1.2	0.38493	1.51	0.43448
0.28	0.11026	0.59	0.2224	0.9	0.31594	1.21	0.38686	1.52	0.43574
0.29	0.11409	0.6	0.22575	0.91	0.31859	1.22	0.38877	1.53	0.43699
0.3	0.11791	0.61	0.22907	0.92	0.32121	1.23	0.39065	1.54	0.43822

x	$\Phi(x)$								
1.55	0.43943	1.76	0.4608	1.97	0.47558	2.36	0.49086	2.78	0.49728
1.56	0.44062	1.77	0.46164	1.98	0.47615	2.38	0.49134	2.8	0.49744
1.57	0.44179	1.78	0.46246	1.99	0.4767	2.4	0.4918	2.82	0.4976
1.58	0.44295	1.79	0.46327	2.	0.47725	2.42	0.49224	2.84	0.49774
1.59	0.44408	1.8	0.46407	2.02	0.47831	2.44	0.49266	2.86	0.49788
1.6	0.4452	1.81	0.46485	2.04	0.47932	2.46	0.49305	2.88	0.49801
1.61	0.4463	1.82	0.46562	2.06	0.4803	2.48	0.49343	2.9	0.49813
1.62	0.44738	1.83	0.46638	2.08	0.48124	2.5	0.49379	2.92	0.49825
1.63	0.44845	1.84	0.46712	2.1	0.48214	2.52	0.49413	2.94	0.49836
1.64	0.4495	1.85	0.46784	2.12	0.483	2.54	0.49446	2.96	0.49846
1.65	0.45053	1.86	0.46856	2.14	0.48382	2.56	0.49477	2.98	0.49856
1.66	0.45154	1.87	0.46926	2.16	0.48461	2.58	0.49506	3.	0.49865
1.67	0.45254	1.88	0.46995	2.18	0.48537	2.6	0.49534	3.2	0.49931
1.68	0.45352	1.89	0.47062	2.2	0.4861	2.62	0.4956	3.4	0.49966
1.69	0.45449	1.9	0.47128	2.22	0.48679	2.64	0.49585	3.6	0.49984
1.7	0.45543	1.91	0.47193	2.24	0.48745	2.66	0.49609	3.8	0.49993
1.71	0.45637	1.92	0.47257	2.26	0.48809	2.68	0.49632	4.	0.49997
1.72	0.45728	1.93	0.4732	2.28	0.4887	2.7	0.49653	4.5	0.5
1.73	0.45818	1.94	0.47381	2.3	0.48928	2.72	0.49674	5.	0.5
1.74	0.45907	1.95	0.47441	2.32	0.48983	2.74	0.49693	5.5	0.5
1.75	0.45994	1.96	0.475	2.34	0.49036	2.76	0.49711	6.	0.5

Литература

- [1] А. А. Боровков. Теория вероятностей. М.: Наука, 1986.
- [2] М. Х. Бренерман. Теория вероятностей. Казань, изд-во КГТУ, 2009.
- [3] Е. С. Вентцель, Л. А. Овчаров. Теория вероятностей. М.: Наука, 1973.
- [4] Н. Я. Виленкин. Комбинаторика. М.: Наука, 1969.
- [5] В. Е. Гмурман. Теория вероятностей и математическая статистика. М.: Высшая школа, 2003.
- [6] Б. В. Гнеденко. Курс теории вероятностей. М.: Наука, 1988.
- [7] В. А. Попов, М. Х. Бренерман. Руководство к решению задач по теории вероятностей и математической статистике. Казань, изд-во КГУ, 2008.
- [8] В. Феллер. Введение в теорию вероятностей и ее приложения. Том 1. М.: Мир, 1984.
- [9] М. Холл. Комбинаторика. М.: Мир, 1970.
- [10] В. П. Чистяков. Курс теории вероятностей. М.: Наука, 1982.
- [11] А. Н. Ширяев. Вероятность. М.: Наука, 1989.

Оглавление

§ 1	Случ	айные величины	5
	1.1	Дискретные случайные величины	6
	1.2	Непрерывные случайные величины	6
§ 2	Сист	ема двух случайных величин	11
	2.1	Независимость случайных величин	13
	2.2	Функции случайных величин	15
§ 3	Числ	овые характеристики случайных величин	17
	3.1	Математическое ожидание	17
	3.2	Дисперсия	20
	3.3	Ковариация и коэффициент корреляции	21
	3.4	Моменты случайных величин	24
	3.5	Числовые характеристики некоторых распределений	25
	3.6	Прочие числовые характеристики	29
§ 4	Xapa	ктеристические функции	31
§ 5		ельные теоремы	34
	5.1	Закон больших чисел	34
	5.2	Центральная предельная теорема	37
Прилох	жения		40
Литера	тура		44

Попов Владимир Александрович

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. ЧАСТЬ 2. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Подписано в печать 23.07.2013. Форм. 60×84 1/16. Гарнитура «Литературная». Печать ризографическая. Печ. л. 3. Тираж 100 экз. Заказ 190. Лаборатория оперативной полиграфии издательства КФУ 420045, Казань, ул. Кр. Позиция, 2a Тел. 233-72-12