COMP 424 Artificial Intelligence - Winter 2019

Wenzong Xia

January 17, 2019

Contents

1	Introduction	2			
II	Basic Tools	5			
1	Search1.1Uninformed Search1.1.1Defining a Search Problem1.1.2Basic Assumptions1.1.3Search Graph vs Search Tree1.1.4Data Structure for Search Tree1.1.5Generic Search Algorithm	6 6 6 6 7 7			
Π	I Logical Representations	8			
2	Game Playing	9			
3	3 Logical Reasoning				
4	Classical Planning	11			
IJ	Probabilistic Representations	12			
5	5 Probabilistic Reasoning				
6	6 Learning Probabilistic Models				
\mathbf{V}	Utility Theory	15			
7	Reasoning With Utilities	16			
8	Sequential Reasoning And Decision-making	17			
9	Learning Complex Sequential Decisions				
10	Applications	19			

Part I Introduction

Biological Intelligence

What is biological intelligence? A mix of general-purpose and special-purpose algorithms. **General purpose:** Memory formation, updating, retrieval. Learning new tasks. **Special-purpose:** Recognizing visual patterns. Recognizing sounds. Learning language. All are integrated seamlessly.

Definition of AI

Working definition of AI: Developing models and algorithms that can produce rational behaviors in response to incoming stimulus and information.

Human intelligence:		Artificial Intelligence:	
•	Sensory processing:		
	 Visual cortex 	→	Computer vision
	 Auditory cortex 	→	Signal/speech processing
	 Somatosensory cortex 	→	Haptics
•	Motor cortex	→	Robotics
•	Cognitive functions		
	 Memory 	→	Knowledge representation
	 Reasoning 	→	Search, inference
	 Executive control 	→	Planning, decision-making
	 Learning 	→	Model learning
	 Language 	→	Language understanding

Goals of AI

The general goals of AI:

Acting Rationally

- Rational behavior = doing the 'right' thing.
- Doing what is expected to maximize goal achievement, given the available information and available resources.
 - Does not necessarily require thinking (e.g. blinking reflex).
 - But in many cases, thinking serves rational behavior.
 - This is the flavor of AI we will focus on.

Rational Agents

- This course is about designing rational agents.
 - An agent is an entity that perceives and acts.
 - Goal: Learn a function mapping percept histories to actions: $f: p^h \to A$
- A rational agent implements this function such as to maximize performance.
- Caveat: resources constraints (time, space, energy, bandwidth,...) which make perfect rationality unachievable.

• Objective: Find best function for given information and resources.

Part II Basic Tools

1 Search

1.1 Uninformed Search

Search is at the heart of all AI systems. Typical setup of an AI task includes:

• Knowledge:

- Formal representation of the problem to be solved.
- Includes definitions of state, goal, available actions.
- Other factual or probabilistic knowledge about the problem.

• Search:

- Process of finding a solution (or possibly, the **best** solution).

1.1.1 Defining a Search Problem

Before we solve a problem, we need to formulate the problem into a search problem:

- State space S: all possible configurations of the domain.
- Initial state $s_0 \in S$: the start state.
- Goal states $G \subset S$: the set of end states.
- Operators A: the actions available (often defined in terms of mapping from state to successor state).
- Path: a sequence of states and operators.
- Path cost C: a number associated with any path.
- Solution: a path from s_0 to $s_q \in G$.
- Optimal solution: a path with minimum cost.

1.1.2 Basic Assumptions

For next few lectures, simplifying assumptions for now. Later, we will consider search in other settings.

- Static: The environment will not change in the course of the search. vs dynamic environment.
- Observable: The agent always know the current state. vs unobservable environment.
- Discrete: At any given states, there are only finite many actions to choose from. vs continuous states.
- **Deterministic:** Each action has exactly one outcome. vs **stochastic** environment.

Under these assumptions, the solution to any problem is a fixed sequence of actions.

Eight Puzzle Example

1.1.3 Search Graph vs Search Tree

The process of looking for a sequence of actions that reach the goal is called **search**. A search algorithm takes a problem as input and returns a solution in the form of an action sequence. Once a solution is found, the actions it recommended can be carried out and thus in a execution phase.

Search Graph

Search graph can visualize the state space search in terms of a graph. Graph defined by a set of vertices and a set of edges connecting the vertices. Nodes correspond to states in S. Edges correspond to operators.

Search Tree

Search tree represents the exploration paths in a search procedure. Nodes represent partial solutions, including a state in S. Edges correspond to operators.

CHAPTER 1. SEARCH 7

1.1.4 Data Structure for Search Tree

Defining a search tree node:

- Each node contains a state id (from states in the graph).
- Nodes also contain additional information:
 - The parent state and the operator used to generate it.
 - Cost of the path so far.
 - Depth of the node.

Expanding a search tree node:

- Applying <u>all</u> legal operators to the state.
- Generating nodes for all the corresponding successor states.

1.1.5 Generic Search Algorithm

Algorithm 1.1.1: Generic Search Algorithm

Result: A solution/Failure

Initialize the search tree using the initial state of the problem;

Repeat

if No candidate nodes can be expanded then

| return Failure

Choose a node for expansion, according to some search strategy;

if The node contains a goal state then

return the corresponding path

else

Expand the node by applying each applicable operator, generating the successor state and adding the resulting node to the tree

end

Part III Logical Representations

2 | Game Playing

3 | Logical Reasoning

4 | Classical Planning

Part IV Probabilistic Representations

5 | Probabilistic Reasoning

6 | Learning Probabilistic Models

Part V Utility Theory

7 | Reasoning With Utilities

8 | Sequential Reasoning And Decisionmaking 9 | Learning Complex Sequential Decisions

10 | Applications