Feuille d'exercices 25. Espaces euclidiens

Exercice 25.1 : (niveau 1)

Déterminer la matrice dans la base canonique de l'espace euclidien \mathbb{R}^3 de la réflexion par rapport au plan d'équation x + 2y + 3z = 0.

Exercice 25.2 : (niveau 1)

On pose
$$M = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Montrer que M est une projection orthogonale sur un espace vectoriel à déterminer.

Exercice 25.3 : (niveau 1)

Soit E un espace euclidien et f un endomorphisme symétrique de E. Montrer que $\text{Im}(f) = (\text{Ker}(f))^{\perp}$.

Exercice 25.4 : (niveau 1)

Soit
$$A = \frac{1}{9} \begin{pmatrix} -7 & -4 & 4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{pmatrix} \in M_3(\mathbb{R})$$
. Quelle transformation de \mathbb{R}^3 représente A ?

Exercice 25.5 : (niveau 1)

Soit E un espace euclidien. Soit $B=(e_1,\ldots,e_n)$ une base orthonormée de E. On suppose que f est un endomorphisme de E tel que pour tout $u,v\in E$,

$$\langle u, v \rangle = 0 \Longrightarrow \langle f(u), f(v) \rangle = 0.$$

Soit $i, j \in \{1, \dots, n\}$ tels que $i \neq j$.

- 1°) Montrer que $e_i e_j$ et $e_i + e_j$ sont orthogonaux.
- **2**°) Montrer que $||f(e_i)|| = ||f(e_j)||$.
- **3°)** Montrer qu'il existe $\lambda \geq 0$ tel que pour tout $u \in E$, $||f(u)|| = \lambda ||u||$.

Exercice 25.6 : (niveau 1)

Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . On note φ l'application de E^2 dans \mathbb{R} définie par $\varphi(f,g)=\int_0^1 f(x)g(x)dx$.

- $\mathbf{1}^{\circ}$) Montrer que φ est un produit scalaire sur E.
- 2°) Soit A l'ensemble des fonctions positives de E. Montrer que $A^{\perp} = \{0\}$.

Exercice 25.7 : (niveau 2)

Soit $(p,q) \in \mathbb{N}^{*2}$ et soit $A \in \mathcal{M}_{p,q}(\mathbb{R})$. Montrer que $rg(A) = rg({}^tAA)$.

Exercice 25.8 : (niveau 2)

On note E l'espace des applications continues de [-1,1] dans $\mathbb R$ et ϕ définie sur $E\times E$ par

$$\forall (f,g) \in E^2 , \phi(f,g) = \int_{-1}^{1} |x| f(x) g(x) dx.$$

- 1°) Montrer que ϕ est un produit scalaire sur E.
- **2°)** On pose $e_1: x \mapsto 1, e_2: x \mapsto \cos(\pi x)$ et $e_3: x \mapsto \sin(\pi x)$. La famille (e_1, e_2, e_3) est-elle libre? orthonormale? Orthonormaliser cette famille selon le procédé de Gram-Schmidt.

Exercice 25.9 : (niveau 2)

Soient E un espace euclidien et f et g deux endomorphismes symétriques sur E, dont les spectres sont notés Sp(f) et Sp(g).

- 1°) Si x est un vecteur unitaire de E, montrer que $\langle x, f(x) \rangle \geq \min(Sp(f))$.
- **2°)** Montrer que $\min(Sp(f+g)) \ge \min(Sp(f)) + \min(Sp(g))$.

Exercice 25.10 : (niveau 2)

- 1°) Montrer que $(f,g) \longmapsto \int_0^1 f(x)g(x)dx$ définit un produit scalaire sur l'ensemble E des applications continues de [0,1] dans \mathbb{R} .
- **2**°) Déterminer $\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 x^2 (\ln x ax b)^2 dx$.

Exercice 25.11 : (niveau 2)

Soit $(a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une matrice orthogonale d'ordre n.

- 1°) Montrer que $n \leq \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} |a_{i,j}|.$
- 2°) En utilisant le vecteur de \mathbb{R}^n dont toutes les composantes sont égales à 1, montrer que $|\sum_{1 \leq i \leq n \atop j \neq i \leq n} a_{i,j}| \leq n$.

Exercice 25.12 : (niveau 2)

Soit E un espace euclidien muni d'une base orthonormée $B=(e_1,e_2,e_3)$.

Soit
$$f \in L(E)$$
 tel que $M = mat(f, B) = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix}$.

- 1°) Montrer que f est une rotation vectorielle si et seulement si a+b+c=1 et ab+bc+ac=0.
- **2°)** Montrer que cette condition est équivalente à : il existe $p \in [0, \frac{4}{27}]$ tel que a, b, c sont solutions de $x^3 x^2 + p = 0$.
- 3°) On suppose que $b = c \neq 0$. Déterminer les éléments caractéristiques de f.

Exercice 25.13 : (niveau 2)

Soit $u \in O(E)$, où E est un espace euclidien.

- 1°) Montrer que les valeurs propres réelles de u sont dans $\{1, -1\}$.
- 2°) Montrer que les valeurs propres complexes de u sont de module 1.

Exercice 25.14 : (niveau 2)

- 1°) Si A est une matrice antisymétrique réelle, montrer que les valeurs propres de A sont de la forme ix avec x réel.
- **2°)** Montrer que l'application $\varphi: A \longmapsto (I_n A)(I_n + A)^{-1}$ est une bijection de l'espace $A_n(\mathbb{R})$ des matrices réelles antisymétriques de taille n sur l'espace Z des éléments de $O_n(\mathbb{R})$ de déterminant égal à 1 et qui n'admettent pas -1 pour valeur propre.

Exercice 25.15 : (niveau 2)

On note $E = \mathbb{R}_n[X]$. Soit a_0, \dots, a_n n+1 réels deux à deux distincts.

Pour
$$P, Q$$
 dans E , on definit : $(P, Q) = \sum_{k=0}^{n} P(a_k)Q(a_k)$.

- 1°) Montrer que c'est un produit scalaire.
- 2°) Construire une base orthonormée de E.
- 3°) Calculer la distance de Q à $H = \{P \in E / \sum_{k=0}^{n} P(a_k) = 0\}.$

Exercice 25.16: (niveau 2)

Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice symétrique dont le spectre est inclus dans \mathbb{R}_+^* .

- 1°) Montrer qu'il existe une matrice R(A) symétrique, dont le spectre est inclus dans \mathbb{R}_+^* , et telle que $R(A)^2 = A$.
- **2**°) Soit $\lambda \in \mathbb{R}_+^*$. Etudier les suites vérifiant la relation de récurrence $u_{n+1} = \frac{1}{2}(u_n + \frac{\lambda}{u_n})$, avec $u_0 > 0$.
- **3**°) On considère la suite matricielle définie par les relations suivantes : $X_0 = I_p$ et, pour tout $n \in \mathbb{N}$, $X_{n+1} = \frac{1}{2}(X_n + AX_n^{-1})$. Montrer que cette suite est définie correctement et qu'elle converge vers R(A).

Exercice 25.17 : (niveau 2)

Soient n et m deux entiers naturels non nuls tels que $m \ge n$. Soient $A \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B \in \mathbb{R}^m$. On pose $E = \{ \|AX - B\|^2 / X \in \mathbb{R}^n \}$.

- 1°) Montrer que E possède un minimum.
- **2°)** On note (S) le système linéaire AX = B et on appelle pseudo-solution de (S) tout élément Y de \mathbb{R}^n tel que $||AY B||^2 = \min(E)$. Lorsque (S) admet des solutions, quelles sont les pseudo-solutions de (S)?
- 3°) On note (S') le système linéaire ${}^{t}AAX = {}^{t}AB$. Démontrer que Y est pseudo-solution de (S) si et seulement si Y est une solution de (S').
- **4°)** a) Démontrer que $rg(A) = rg({}^tAA)$.
- b) Déterminer alors une condition nécessaire et suffisante pour que (S) admette une et une seule pseudo-solution.
- 5°) Déterminer les pseudo-solutions du système $\begin{cases} \alpha \beta + \gamma &= 1\\ \alpha + \beta + 2\gamma &= 1\\ \alpha + \gamma &= 1\\ 2\alpha + \beta + 3\gamma &= 0 \end{cases}$

Exercice 25.18: (niveau 2)

E désigne l'ensemble des applications continues de [-1,1] dans \mathbb{R} . Pour tout $(f,g) \in E^2$, on pose $< f,g> = \int_{-1}^1 fg$.

- 1°) Montrer que E muni de <.,.> est un espace préhilbertien.
- 2°) On note $F = \{ f \in E/f_{/[0,1]} = 0 \}$. Déterminer F^{\perp} .
- 3°) Déterminer $F + F^{\perp}$.

Exercice 25.19: (niveau 3)

Soit E un espace euclidien et $p \in L(E)$.

Montrer que p est un projecteur orthogonal si et seulement si $p^2 = p$ et pour tout $x \in E$, $||p(x)|| \le ||x||$.

Exercice 25.20 : (niveau 3)

Soit $n \in \mathbb{N}^*$.

 1°) Soit A une matrice carrée d'ordre n à coefficients réels que l'on suppose symétrique et à valeurs propres positives.

Montrer que
$$Tr(A) \ge n \sqrt[n]{det(A)}$$
.

2°) Montrer ce même résultat si l'on suppose maintenant que $A = A_1A_2$ où A_1 et A_2 sont deux matrices carrées d'ordre n à coefficients réels, que l'on suppose symétriques et à valeurs propres positives.

Exercice 25.21 : (niveau 3)

Matrices de Householder et décomposition QR

On fixe $n \in \mathbb{N}$ avec $n \geq 2$.

Pour $v \in \mathbb{R}^n \setminus \{0\}$ vu comme un vecteur colonne, on note $H(v) = I_n - \frac{2}{\|v\|_2^2} v^t v$.

 1°) Interpréter géométriquement l'endomorphisme canoniquement associé à H(v).

2°) Soit
$$a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$$
 tel que $(a_2, \dots, a_n) \neq 0$.

Montrer qu'il existe $v \in \mathbb{R}^n \setminus \{0\}$ tel que H(v)(a) a toutes ses composantes nulles sauf la première, qui est dans \mathbb{R}_+^* .

3°) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $Q \in O_n$ et R triangulaire supérieure à coefficients diagonaux positifs ou nuls telles que A = QR.

Lorsque A est inversible, montrer que le couple (Q,R) vérifiant les propriétés précédentes est unique.

Exercice 25.22 : (niveau 3)

a et b sont deux réels tels que a < b.

f est une application continue de [a, b] dans \mathbb{R}_+^* .

Posons, pour tout $(P,Q) \in \mathbb{R}[X]^2$,

$$\langle P, Q \rangle = \int_a^b f(t)P(t)Q(t)dt.$$

- 1°) Montrer qu'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$.
- **2°)** Montrer qu'il existe une unique famille orthonormale $(P_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$ telle que :

$$\forall n \in \mathbb{N} \ \left\{ \begin{array}{c} deg(P_n) = n \\ \text{et } \langle P_n, X^n \rangle > 0. \end{array} \right.$$

3°) On fixe $n \in \mathbb{N}^*$.

a) Supposons qu'il existe $\alpha \in \mathbb{C} \setminus \mathbb{R}$ tel que $P_n(\alpha) = 0$.

Montrer qu'il existe un polynôme $T \in \mathbb{R}[X]$ unitaire et irréductible de degré 2 et un polynôme $P \in \mathbb{R}_{n-2}[X]$ tel que $P_n = TP$.

En déduire que toutes les racines de P_n sont réelles.

- b) Montrer que toutes les racines de P_n sont simples et qu'elles appartiennent à l'intervalle]a,b[.
- 4°) On fixe $n \in \mathbb{N}$. Montrer qu'il existe trois réels a, b et c tels que $aP_{n+2} + XP_{n+1} + bP_{n+1} + cP_n = 0$.

Exercices supplémentaires

Exercice 25.23: (niveau 1)

L'espace est rapporté à un repère orthonormal Oxyz.

Soit P le plan d'équation x + 2y + z = 0 et D la droite d'équations $\begin{cases} 0 &= 3x - y + z \\ 0 &= x + y - z \end{cases}$.

Donner la symétrique de D par rapport à P.

Exercice 25.24 : (niveau 1)

Soit E un espace euclidien orienté et soit $x = (x_1, ..., x_n)$ une base de E.

Notons $e = (e_1, ..., e_n)$ la base déduite de x par le procédé d'orthonormalisation de Gram-Schmidt. Montrez que si x est directe, e est directe.

Exercice 25.25 : (niveau 1)

Soit (i, j, k) une base orthonormée de \mathbb{R}^3 . Déterminez la matrice de la rotation r vérifiant r(i) = -j et r(u) = u où u = i - j + k. Précisez son axe et son angle.

Exercice 25.26: (niveau 1)

Nature géométrique de l'endomorphisme de l'espace euclidien \mathbb{R}^3 , canoniquement associé à la matrice

 $M = \frac{1}{4} \begin{pmatrix} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix}.$

Exercice 25.27 : (niveau 1)

On munit \mathbb{R}^4 de son produit scalaire canonique et on note $e=(e_i)_{1\leq i\leq 4}$ sa base canonique. Posons $F=\{(x,y,z,t)\in\mathbb{R}^4/x+y+z+t=0\ \text{et}\ x-y+z-t=0\}.$

Exercice 25.28 : (niveau 1)

 $x_1,...,x_n$ sont n réels tels que $\sum_{i=1}^n x_i^2 = 1$. Notons $A = (x_i x_j)_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in M_n(\mathbb{R})$.

Donner la matrice dans la base e de la projection orthogonale sur F.

- 1°) Montrer que A est la matrice d'une projection orthogonale que l'on précisera.
- **2**°) Montrer que $2A I_n$ est une matrice orthogonale.

Exercice 25.29 : (niveau 1)

Soit $a_1, \ldots, a_n, b_1, \ldots, b_n$ et c_1, \ldots, c_n 3n réels strictement positifs.

Montrer que
$$(\sum_{k=1}^{n} a_k b_k c_k)^2 \le (\sum_{k=1}^{n} a_k^2 c_k) (\sum_{k=1}^{n} b_k^2 c_k).$$

Exercice 25.30 : (niveau 1)

On travaille dans $\mathcal{M}_2(\mathbb{R})$. On considère l'application $\phi(A,B)=Tr({}^t\!AB)$ ainsi que l'ensemble

$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| (a; b) \in \mathbb{R}^2 \right\}$$

- 1°) Montrer que ϕ est un produit scalaire.
- 2°) Montrer que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- **3°)** Exprimer une base de F^{\perp} .

Exercice 25.31: (niveau 2)

On se place dans $E = \mathbb{R}_n[X]$. Lorsque $P, Q \in E$, avec $P = \sum_{i=0}^n a_i X^i$ et $Q = \sum_{i=0}^n b_i X^i$,

on pose
$$\langle P, Q \rangle = \sum_{i=0}^{n} a_i b_i$$
.

On définit $H = \{ P \in E/P(1) = 0 \}.$

- 1°) Montrer que < .,. > définit un produit scalaire sur E et trouver une base orthonormée de E.
- **2°)** On introduit la famille $B'=(e_i)_{i\in\{1,\dots,n\}}$, définie par $\forall i\in\{1,\dots,n\},\ e_i=X^i-X^{i-1}$.
- a) Montrer que B' est une base de H et calculer pour tout (i,j) chacun des $\langle e_i, e_j \rangle$.
- b) Trouver une base orthonormée de H à partir de B' en utilisant le procédé d'orthonormalisation de Gram-Schmidt.

Exercice 25.32 : (niveau 2)

E désigne un espace euclidien et p est un projecteur de E.

- 1°) Montrer que p est un projecteur orthogonal si et seulement si, pour tout $x \in E$, $||p(x)|| \le ||x||$.
- **2°**) Si p et q sont deux projecteurs orthogonaux, montrer qu'ils commutent si et seulement si $p \circ q$ est un projecteur.

Exercice 25.33 : (niveau 2)

 $A_n(\mathbb{R})$ et $S_n(\mathbb{R})$ désignent respectivement l'ensemble des matrices antisymétriques et celui des matrices symétriques réelles. On introduit le produit scalaire tel que pour tout $M, N \in \mathcal{M}_n(\mathbb{R}), \langle M|N \rangle = tr({}^tMN)$.

1°) Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires et orthogonaux dans $\mathcal{M}_n(\mathbb{R})$.

2°) Soit la matrice M où pour tout $i, j \in \{1, ..., n\}$, $M_{i,j} = i$. Déterminer la distance de M à $S_n(\mathbb{R})$.

Exercice 25.34 : (niveau 2)

Soit E un espace préhilbertien réel et F un sous-espace vectoriel de E tel que $E=F+F^{\perp}$. Montrer que F est fermé dans E.

Exercice 25.35 : (niveau 2)

Soit A un ensemble fini de cardinal n et R une relation d'équivalence sur A. On note k le nombre de classes d'équivalence de R et m le cardinal du graphe de R. Montrez que $n^2 \leq km$. Cas d'égalité.

Exercice 25.36 : (niveau 2)

Soient E un espace préhilbertien réel, $n \in \mathbb{N}^*$ et $(x_1, ..., x_n) \in E^n$.

1°) Montrer que
$$\sum_{1 \le i < j \le n} \|x_i - x_j\|^2 = n \sum_{i=1}^n \|x_i\|^2 - \left\| \sum_{i=1}^n x_i \right\|^2$$
.

2°) On suppose que, pour tout $(i, j) \in \mathbb{N}_n^2$, $(i \neq j) \Rightarrow ||x_i - x_j|| \geq 2$. Soit $x \in E$.

On note B la boule fermée de centre x et de rayon $R: B = \{y \in E/||x-y|| \le R\}$. On suppose que B contient $x_1, ..., x_n$.

On suppose que B contient $x_1, ..., x_n$. Montrer que $R \ge \sqrt{\frac{2(n-1)}{n}}$.

Exercice 25.37 : (niveau 2)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^tAA = I_n$. Que peut-on dire de A?

Exercice 25.38 : (niveau 2)

Soient $A, B \in O(3, \mathbb{R})$ telles que AB = BA et det(A) = det(B) = 1.

Que peut-on dire au sujet de la nature des endomorphismes de \mathbb{R}^3 associés à A et B?

Exercice 25.39 : (niveau 3)

Soit E un espace euclidien de dimension n > 0.

1°) Si x et y sont deux vecteurs non nuls de E, on note $\widehat{(x,y)} = \arccos \frac{\langle x,y \rangle}{\|x\| \|y\|}$.

Montrer que $\widehat{(x,y)}$ est une quantité correctement définie.

2°) Si $p \in \mathbb{N}^*$, une famille de p vecteurs de $E \setminus \{0\}$, $(x_1, ..., x_p)$ est dîte obtusangle si et seulement si $\forall (i, j) \in \{1, ..., p\}^2 \ (i \neq j \Rightarrow \widehat{(x_i, x_j)} \in]\frac{\pi}{2}, \pi]$).

Par récurrence sur n, montrer qu'une famille obtusangle peut avoir n+1 éléments mais pas davantage.

3°) Soit $(x_1, ..., x_p)$ une famille obtusangle dans laquelle, pour tout $(i, j) \in \{1, ..., p\}^2$ avec $i \neq j$, $\widehat{(x_i, x_j)} = \varphi$ (φ ne dépend ni de i ni de j).

Vérifier que $1 + (p-1)\cos\varphi \ge 0$, avec égalité si p = n+1.

Exercice 25.40 : (niveau 3)

Soit E un espace euclidien dans lequel le produit scalaire de deux vecteurs x et y sera noté $\langle x, y \rangle$.

Considérons deux familles de vecteurs $(y_k)_{1 \le k \le p}$ et $(z_k)_{1 \le k \le p}$ telles que :

$$\forall (i,j) \in \mathbb{N}_p^2 < y_i, y_j > = < z_i, z_j > .$$

Le but de l'exercice est de montrer qu'il existe un automorphisme orthogonal f sur E tel que : $\forall k \in \mathbb{N}_p$ $f(y_k) = z_k$.

- $\mathbf{1}^{\circ}$) Soit $(a_k)_{1 \leq k \leq p} \in \mathbb{R}^p$. Montrer que $\sum_{k=1}^p a_k y_k = 0$ si et seulement si $\sum_{k=1}^p a_k z_k = 0$.
- 2°) Résoudre l'exercice dans le cas où (y_1, \ldots, y_p) est libre.
- 3°) Résoudre l'exercice dans le cas général.

Exercice 25.41 : (niveau 3)

Soient E un espace euclidien et α un réel non nul.

On appelle inversion de puissance α l'application i_{α} , de $E \setminus \{0\}$ dans $E \setminus \{0\}$, définie par

$$i_{\alpha}(x) = \frac{\alpha}{\|x\|^2} x.$$

- 1°) Montrer que $i_{\alpha} \circ i_{\alpha} = Id_{E\setminus\{0\}}$.
- 2°) Soit $a \in E \setminus \{0\}$. On note S la sphère de centre a passant par 0. Montrer que $i_{\alpha}(S \setminus \{0\})$ est un hyperplan affine orthogonal à a ne passant pas par 0. Réciproquement, étudier l'image par i_{α} d'un hyperplan affine ne passant pas par 0.
- ${\bf 3}^{\circ})~$ Soit S une sphère de rayon r et de centre a, ne passant pas par 0.
- a) Montrer que si $\alpha = ||a||^2 r^2$, $i_{\alpha}(S) = S$.
- b) Déterminer $i_{\alpha}(S)$ pour $\alpha \in \mathbb{R}^*$.

Exercice 25.42: (niveau 3)

Soit E un espace préhilbertien réel.

Montrer que $\{(x,y) \in E^2/(x,y) \text{ libre}\}$ est un ouvert de E^2 .

Exercice 25.43 : (niveau 3)

Soient E un espace euclidien et u un automorphisme orthogonal de E.

- 1°) On pose $v = u Id_E$. Montrer que $Ker(v) = Im(v)^{\perp}$.
- **2°)** Soit $x \in E$. On note y la projection orthogonale de x sur Ker(v).

Montrer que y est la limite de $\left(\frac{1}{n+1}\sum_{k=0}^n u^k(x)\right)_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.

Exercice 25.44 : (niveau 3)

Etude des polynômes de Legendre.

Posons, pour tout $(P,Q) \in \mathbb{R}[X]^2$,

$$< P, Q > = \int_{-1}^{+1} P(t)Q(t)dt.$$

- Montrez qu'on définit ainsi un produit scalaire sur $\mathbb{R}[X]$.
- **2°)** Soit $n \in \mathbb{N}$. On note $Q_n(t) = \frac{1}{2^n n!} \frac{d^n[(t^2 1)^n]}{dt^n}$. Calculez le degré du polynôme Q_n . Calculez $Q_n(1)$ et $Q_n(-1)$.
- 3°) a) Soit $n \in \mathbb{N}^*$.

Montrez que Q_n est orthogonal à tout polynôme de degré strictement inférieur à n.

- b) Calculez la norme de Q_n .
- 4°) a) Etablir que, pour tout $n \in \mathbb{N}$, $(n+2)Q_{n+2} = (2n+3)XQ_{n+1} (n+1)Q_n$. b) Montrez que, pour tout $(n,t) \in \mathbb{N} \times \mathbb{R}$, $\frac{d}{dt}((1-t^2)Q_n'(t)) + n(n+1)Q_n = 0$.
- 5°) Soit $n \in \mathbb{N}^*$.

Montrez que toutes les racines de Q_n sont simples et qu'elles sont incluses dans]-1,1[. Indication. On pourra raisonner par récurrence, en utilisant le théorème de Rolle.