# Unsupervised Learning

#### Steven Van Vaerenbergh

Universidad de Cantabria

July 2021

# Unsupervised learning

#### Machine learning techniques that learn from unlabeled data.

- ► Clustering
- Outlier detection
- Dimensionality reduction
- **>** ...









#### Data format

Table with rows and columns (Pandas dataframe):



Unsupervised learning: input data without labeled responses.

Unsupervised Learning 2/40

#### Software

- ► Python 3
- ► Algorithms included in scikit-learn





# Part 1: Clustering

## Clustering

Goal: to group the datapoints of a dataset into disjoint sets, such that points within one group are similar and the points in different groups are dissimilar, according to a given similarity or distance measure.



Unsupervised Learning 5/40

# Clustering algorithm 1: K-Means



1 parameter: number of clusters *k*.

# K-means: algorithm

- 1. Random initialization of centroids  $\mu_i$ , (j = 1, ..., k),  $\mathbb{R}^d$
- Assign patterns to clusters/centroids: assign each pattern xn to its closest centroid

$$\mathbf{x}_n \in \mathcal{C}_i, \quad i = \underset{j=1,\dots,k}{\operatorname{argmin}} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2$$

3. Update centroids as

$$\mu_i = \frac{1}{n_i} \sum_{\mathbf{x}_n \in \mathcal{C}_i} \mathbf{x}_n$$

Repeat steps 2 and 3. Converges to a (local) minimum.

#### K-Means

- ► The most widely used clustering method
- ▶ Input: Data  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ , and number of clusters k
- ▶ Output: k centroids  $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$
- ► Centroids divide the input space into *k* disjoint Voronoi regions (clusters)



#### K-means: Additional details

► The clustering problem is to find the optimal centroids that minimize a distortion criterion

$$D(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k) = \sum_{j=1}^k \sum_{\mathbf{x}_n \in \mathcal{C}_j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2$$

- lacktriangle Each cluster  $\mathcal{C}_j$ , is defined by its corresponding centroid  $\mu_j$
- ► To solve the problem we have to:
  - ▶ Assign patterns to clusters  $\mathbf{x}_n \to \mathcal{C}_i$
  - ightharpoonup Estimate centroids  $\mu_i$
- There is no closed-form solution, so we have to resort to iterative algorithms

# Clustering algorithm 2: DBSCAN



2 parameters: search radius  $\epsilon$ , min pts. 3 types of points: core, border, noise.

Source: DiFrancesco, Bonneau & Hutchinson (2020). DOI: 10.3390/rs12111885

Unsupervised Learning 10/40

### **DBSCAN: Properties**

"Density-Based Spatial Clustering of Applications with Noise"

- ► Core points: in areas of high density
- Clusters = areas of high density separated by low density
- ► Take a core point, find all of its neighbors that are core points, find all of their neighbors that are core points, etc.



Unsupervised Learning 11/40

# **DBSCAN: Properties**

- ► Clusters found by DBSCAN can be any shape.
- Number of clusters not required beforehand.
- Only 2 parameters, though choice is not always obvious.
- Deterministic under some circumstances.
- Difficulties when clusters have different densities.
- ▶ May be memory intensive,  $\mathcal{O}(n^2)$ .

# Many more clustering algorithms

- ► Spectral clustering
- ► Hierarchical Clustering
- ► Affinity Propagation
- Mean Shift
- Gaussian Mixtures
- ▶ ...

# Clustering algorithms: Comparison



Source: https://scikit-learn.org/stable/modules/clustering.html

# Part 2: Dimensionality Reduction

# Example: UK food

Data from DEFRA<sup>1</sup>: Consumption in grams (per person, per week) of 17 different types of food-stuff measured and averaged in the four countries of the United Kingdom in 1997.

|              | Cheese | Carcass<br>Meat | Other<br>Meat | Fish | Fats<br>and<br>Oils | Sugars | Fresh potatoes | Fresh<br>Veg | Other<br>Veg | Processed potatoes | Processed<br>Veg | Fresh<br>Fruits | Cereals | Ве |
|--------------|--------|-----------------|---------------|------|---------------------|--------|----------------|--------------|--------------|--------------------|------------------|-----------------|---------|----|
| England      | 105    | 245             | 685           | 147  | 193                 | 156    | 720            | 253          | 488          | 198                | 360              | 1102            | 1472    |    |
| Wales        | 103    | 227             | 803           | 160  | 235                 | 175    | 874            | 265          | 570          | 203                | 365              | 1137            | 1582    |    |
| Scotland     | 103    | 242             | 750           | 122  | 184                 | 147    | 566            | 171          | 418          | 220                | 337              | 957             | 1462    |    |
| N<br>Ireland | 66     | 267             | 568           | 93   | 209                 | 139    | 1033           | 143          | 355          | 187                | 334              | 674             | 1494    |    |

Are any countries similar? How do we visualize these data?

Unsupervised Learning 16/40

<sup>&</sup>lt;sup>1</sup>UK's "Department for Environment, Food and Rural Affairs".

#### Data format

Selection / elimination of some features  $\rightarrow$  Feature Selection.



Unsupervised Learning 17/40

#### Data format

Converting the original d features to a smaller set of r **new** features  $\rightarrow$  **Dimensionality Reduction**.



|    | р          | q          | r         |
|----|------------|------------|-----------|
| 0  | 6.714282   | 4.263453   | -3.698543 |
| 1  | 10.808431  | -3.605318  | -5.503636 |
| 2  | -5.706837  | 1.614261   | 4.903340  |
| 3  | 7.967174   | 13.080329  | 0.804771  |
| 4  | -13.493403 | -2.883923  | -9.851133 |
| 5  | 0.428223   | 11.200599  | 4.443526  |
| 6  | 7.754553   | -10.512425 | 8.192590  |
| 7  | -8.213388  | -1.709213  | -4.202378 |
| 8  | -15.188940 | -2.985254  | -7.907185 |
| 9  | 3.892792   | -6.433339  | 0.217544  |
| 10 | 16.222026  | -4.871032  | -7.677208 |
| 11 | -12.432569 | 7.402058   | 3.093797  |
| 12 | -1.928984  | -11.331136 | 2.937210  |
| 13 | 5.864160   | 11.300092  | 0.921414  |
| 14 | -3.750759  | -10.217692 | 14.785712 |
| 15 | 6.721941   | 12.206578  | 1.011207  |
| 16 | 2.723118   | -6.903958  | -1.785841 |
| 17 | 1.891926   | -7.880966  | -3.138556 |
|    |            |            |           |

18 -10.273747 8.266886 2.453369

# Example: UK Food

|          | Cheese | Carcass<br>Meat | Other<br>Meat | Fish | Fats<br>and<br>Oils | Sugars | Fresh potatoes | Fresh<br>Veg | Other<br>Veg | Processed potatoes | Processed<br>Veg | Fresh<br>Fruits | Cereals | Be |
|----------|--------|-----------------|---------------|------|---------------------|--------|----------------|--------------|--------------|--------------------|------------------|-----------------|---------|----|
| England  | 105    | 245             | 685           | 147  | 193                 | 156    | 720            | 253          | 488          | 198                | 360              | 1102            | 1472    |    |
| Wales    | 103    | 227             | 803           | 160  | 235                 | 175    | 874            | 265          | 570          | 203                | 365              | 1137            | 1582    |    |
| Scotland | 103    | 242             | 750           | 122  | 184                 | 147    | 566            | 171          | 418          | 220                | 337              | 957             | 1462    |    |
| N        | 66     | 267             | 568           | 93   | 209                 | 139    | 1033           | 143          | 355          | 187                | 334              | 674             | 1494    |    |

Reduce 17 columns to 2, using PCA (preserves as much information as possible).



Unsupervised Learning 19/40

# Dimensionality reduction

#### Problem

Given n patterns or input vectors of dimension d,  $\mathbf{x}_i \in \mathbb{R}^d$  (i = 1, ..., n) and a desired output space dimension, r < d, the problem consists in finding a transformation

$$\mathbf{x}_i \in \mathbb{R}^d \longrightarrow \mathbf{y}_i \in \mathbb{R}^r$$
,

that preserves/optimizes some characteristic of the data (e.g. variance, correlation between data sets, inter-class separation).

# Why reduce dimensionality?

- 1. Visualization: Projection in 2D or 3D space.
- 2. **Compression**: Reduction of the storage requirements while maintaining the possibility to recover the original data.

Compression: The intrinsic dimension of the data of interest can be much less than the extrinsic data of the observation space or feature space.

Example: The digit "6" can be represented by a small set of parameters.





# Why reduce dimensionality?

- 3. **Noise reduction**: Projection onto a subspace or *manifold* in which the data of interest reside.
- 4. **Convergence**: Lowering the dimensionality improves the convergence of ML algorithms.

Convergence: ML techniques are not effective in high-dimensional spaces → Curse of Dimensionality



# Dimensionality reduction algorithm 1: PCA

PCA: "Principal Component Analysis"

Introduction



Source: Werner and Friedrich (2014). DOI: 10.1371/journal.pone.0113083

Unsupervised Learning 23/40

# Example: 2D data



#### **PCA**

#### PCA (Pearson, 1901)

Principal Component Analysis (PCA) obtains a set of r orthogonal directions  $\mathbf{P}_r = \begin{bmatrix} \mathbf{p}_1 & \dots & \mathbf{p}_r \end{bmatrix}$  that maximize the variance of the projected data  $\mathbf{y}_i = \mathbf{P}_r \mathbf{x}_i$ 

# PCA theory (1/3)

▶ Given a data set  $\mathbf{x}_i \in \mathbb{R}^d$  (i = 1, ..., n) with zero mean (if the mean is not zero, we subtract the sample mean  $\mathbf{m}_x = \frac{1}{n} \sum_i \mathbf{x}_i$ )

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$$

▶ The sample covariance matrix (dimensions  $d \times d$ ) is

$$\hat{\mathbf{C}}_{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \frac{1}{n} \mathbf{X} \mathbf{X}^{T}$$

▶ If we choose a direction  $\mathbf{v} \in \mathbb{R}^d$  such that  $||\mathbf{v}||^2 = 1$ , the variance of the data projected onto this direction is

$$\sigma_{v}^{2} = \mathbf{v}^{T} \hat{\mathbf{C}}_{x} \mathbf{v}$$

# PCA theory (2/3)

► Decompose  $\hat{\mathbf{C}}_{x}$  into eigenvectors and eigenvalues:

$$\hat{\mathbf{C}}_{\mathsf{Y}} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^T$$

where 
$$\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$$
 with  $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_d$ 

▶ Since  $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_d \end{bmatrix}$  forms a basis of  $\mathbb{R}^d$ ,  $\mathbf{v}$  can be expanded as

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i$$
, where  $\sum_{i=1}^{n} \alpha_i^2 = 1$ 

and the variance of the projection is

$$\sigma_{\rm v}^2 = \sum_i \alpha_i \sigma_i^2$$

# PCA theory (3/3)

► The projection of maximum variance is found by solving

$$\underset{\alpha_i}{\text{maximize}} \sum_{i} \alpha_i \sigma_i^2 \qquad s.t. \quad \sum_{i=1}^d \alpha_i^2 = 1$$

whose solution is  $\alpha_1^* = 1$ ,  $\alpha_2^* = \ldots = \alpha_d^* = 0$ 

► The direction that maximizes the variance is the principal eigenvector of  $\hat{\mathbf{C}}_x$ 

$$v = u_1$$

► The first principal component (1D projection) is

$$y_i = \mathbf{u}_1^T \mathbf{x}_i$$

► The proportion of variance "explained" by  $y_i$  is  $\frac{\sigma_1^2}{\sum_{i=1}^d \sigma_i^2}$ 

# Example: PCA on 2D data

# Data (blue) and principal directions (red).



# Projection onto the first principal direction.



# Extension to *r* principal components

➤ Since the eigenvectors form an orthogonal basis and the eigenvalues are in descending order, the *r* PCA directions are

$$\mathbf{U}_r = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_r \end{bmatrix} \in \mathbb{R}^{d \times r}$$

▶ Data with reduced dimensionality (principal components):

$$\mathbf{y}_i = \mathbf{U}_r^T \mathbf{x}_i \in \mathbb{R}^r \Rightarrow \mathbf{Y} = \mathbf{U}_r^T \mathbf{X}$$

► The proportion of variance "explained" by  $y_i$  is now  $\frac{\sum_{i=1}^r \sigma_i^2}{\sum_{i=1}^d \sigma_i^2}$ 

# Example: PCA for visualization

#### Iris dataset:

- ► 3 classes
- ► 150 data
- ▶ 4 features



#### 3 principal components:



#### 2 principal components:



# Example: PCA for compression/reconstruction Reconstructions:

#### MNIST dataset:

- ► 10 classes
- ► 70000 images
- ► 784 pixels





# Example: PCA for compression/reconstruction

#### Olivetti Faces dataset:

- 40 classes
- 400 images
- ► 4096 pixels



#### Average ("Mean face"):



#### Principal directions ("eigenfaces"):































# Example: PCA for noise reduction





Using patches of 7x7 pixels.

Source: Shah & Bhalgat (2015). https://github.com/meetps/CS-663

Unsupervised Learning 34/40

# How to choose the number of components *r*?

Cumulative plot of the variance explained by the principal components:



Given a target percentage of explained variance, this plot shows the number of principal components required.

Dimensionality Reduction

Based on Stochastic Neighbor Embedding (SNE).

- ► Hinton & Roweis, 2003.
- ► Constructs a **probability distribution of the potential neighbors** of all **x**<sub>i</sub> by placing a Gaussian at each location.
- Similarly, constructs a probability distribution over all  $\mathbf{y}_i \in \mathbb{R}^r$ .
- SNE uses gradient descent to minimize the Kullback-Leibler divergence between both distributions.
- Non-convex optimization problem; SNE uses several heuristics.

# t-distributed SNE (t-SNE)

- Extension of SNE (van der Maaten & Hinton, 2008), uses Student t-distributions rather than Gaussians.
- Better results than SNE and faster (converges earlier).
- Parameter "perplexity": balance between local and global aspects.
- Very flexible algorithm, but hard to interpret and finetune.
- "How to Use t-SNE Effectively" https://distill.pub/2016/misread-tsne

# Other dimensionality reduction algorithms

- ► MDS: Multidimensional Scaling
- ► Isomap
- ► LLE: Locally Linear Embedding
- UMAP: Uniform Manifold Approximation and Projection (no incluido en scikit-learn)

▶ ..

# Example: Visualizations of MNIST



# Example: Visualizations of MNIST



Unsupervised Learning 40/40