TABLE 3.4 Color Coordinate Systems

Color coordinate system	Description
1. C.I.E. spectral primary system: R, G, B	Monochromatic primary sources P_1 , red = 700 nm, P_2 , green = 546.1 nm, P_3 , blue = 435.8 nm. Reference white has flat spectrum and $R = G = B = 1$. See Figs. 3.13 and 3.14 for spectral matching curves and chromaticity diagram.
2. C.I.E. X, Y, Z system Y = luminance	$ \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.490 & 0.310 & 0.200 \\ 0.177 & 0.813 & 0.011 \\ 0.000 & 0.010 & 0.990 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} $
3. C.I.E. uniform chromaticity scale (UCS) system: u, v, Y	$u = \frac{4X}{X + 15Y + 3Z} \equiv \frac{4x}{-2x + 12y + 3}$
u, v = chromaticities	$v = \frac{6Y}{X + 15Y + 3Z} = \frac{6y}{-2x + 12y + 3}$
Y = luminance	$U = \frac{2X}{3}, V = Y, W = \frac{-X + 3Y + Z}{2}$
U, V, W = tristimulus values corresponding to u, v, w	
4. U*, V*, W* system (modified UCS system)	$U^* = 13W^*(u - u_0)$ $V^* = 13W^*(v - v_0)$ $W^* = 25(100Y)^{1/3} - 17, 1 \le 100Y \le 100$
Y = luminance [0.01, 1]	u_0 , v_0 = chromaticities of reference white W^* = contrast or brightness
5. S , θ , W^* system: S = saturation θ = hue W^* = brightness	$S = [(U^*)^2 + (V^*)^2]^{1/2} = 13W^*[(u - u_0)^2 + (v - v_0)^2]^{1/2}$ $\theta = \tan^{-1}\left(\frac{V^*}{U^*}\right) = \tan^{-1}[(v - v_0)/(u - u_0)], \ 0 \le \theta \le 2\pi$
6. NTSC receiver primary system R_N , G_N , B_N	Linear transformation of X , Y , Z . Is based on television phosphor primaries. Reference white is illuminant C for which $R_N = G_N = B_N = 1$.
	$\begin{bmatrix} R_N \\ G_N \\ B_N \end{bmatrix} = \begin{bmatrix} 1.910 & -0.533 & -0.288 \\ -0.985 & 2.000 & -0.028 \\ 0.058 & -0.118 & 0.896 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$
7. NTSC transmission system: Y = luminance 1, Q = chrominances	$Y = 0.299R_N + 0.587G_N + 0.114B_N$ $I = 0.596R_N - 0.274G_N - 0.322B_N$ $Q = 0.211R_N - 0.523G_N + 0.312B_N$
8. L*, a*, b* system:	$L^* = 25 \left(\frac{100Y}{Y_0}\right)^{1/3} - 16, \ 1 \le 100Y \le 100$
L* = brightness	$a^* = 500 \left[\left(\frac{X}{X_0} \right)^{\nu \cdot 3} - \left(\frac{Y}{Y_0} \right)^{\nu \cdot 3} \right]$
$a^* = \text{red-green content}$	$b^* = 200 \left[\left(\frac{Y}{Y_0} \right)^{1/3} - \left(\frac{Z}{Z_0} \right)^{1/3} \right]$
$b^* = yellow-blue content$	X_0 , Y_0 , Z_0 = tristimulus values of the reference white