

TYPO DETECTOR 8 CORRECTOR

2540096182 - ALEXANDER THEODORE 2540125131 - DENNIS LIM KAM HO 2540096081 - JOVIAN CHRISTOPHER HIZKIA 2540123542 - VINCENTIUS 2540123510 - HANS REGINALD

Background

- Typo detector dapat membantu mencari kata dan mengoreksi kesalahan penulisan yang dapat mengurangi kualitas teks
- Typo detector dapat mengetahui posisi kesalahan dalam sebuah kata dan memberikan saran kata yang lebih tepat
- Typo detector dapat meningkatkan efisiensi dan kenyamanan dalam menulis teks

Contoh

• Dalam penelitian Konchady et al. (2009), typo detector dengan n-gram dapat mendeteksi dan mengoreksi kesalahan penulisan dalam bahasa Inggris dengan menghasilkan tingkat akurasi yang tinggi diatas 85%

Source:

 Konchady, M. (2009). Detecting Grammatical Errors in Text using a Ngram-based Ruleset. ResearchGate. https://www.researchgate.net/publication/255654796_Detecting_Grammatical_Errors_in_Text_using_a __Ngram-based_Ruleset

https://www.researchgate.net/publication/255654796_Detecting_Grammatical_Errors_in_Text_using_a_N gram-based_Ruleset

Related Works

Algoritma ini sudah diterapkan oleh beberapa proyek yang dibuat oleh orang lain. Contohnya adalah:
• Reverso Spell Checker:

- Reverso Spell Checker:

 https://www.reverso.net/spell-checker/english-spelling-grammar
- Quillbot Spell Checker: https://quillbot.com/spellchecker
- Grammarly Spell Checker:
 https://www.grammarly.com/spell-checker

Translation

Context

Grammar Check

Synonyms

Conjugation

◆ Download for Windows

Premium >

Login

EN +

Grammar Checker & Rephraser

Check spelling, grammar and style for English texts

In a groundbreaking study, researchers at the renowned Lfie Sciences Institute have made a significant btreakthrough in the field of medical traeatment, offering new hope for patietns around the world. The study, led by Dr. Alexnder Johnson, focused on developing a novey therapy for neurologiucal disorders, particularly Alzheimer's diseases.

Let's get started.

Step 1: Add your text, and Grammarly will underline any issues.

Step 2: Hover over the underlines to see suggestions.

Step 3: Click a suggestion to accept it.

Get Grammarly It's free

Already have an account? Log in

Related Works

- FASPell: A Fast, Adaptable, Simple, Powerful Chinese Spell Checker Based On DAE-Decoder Paradigm oleh Yuzhong Hong, Xianguo Yu, Neng He, Nan Liu, Junhui Liu (2019)
- Spell Checker oleh Vibhakti V. Bhaire, Ashiki A. Jadhav, Pradnya A. Pashte, Mr. Magdum P.G (2015)
- Spell checker for consumer language (CSpell) oleh Chris J Lu, Alan R Aronson, Sonya E Shooshan, Dina Demner-Fushman (2019)

Methods

Model

```
# Bikin class biar rapih
class ngram_checker:
    # Kasih text training sama angka n_gram yang diinginkan.
   def __init__(self, text:int, n_gram:int):
        self.n_gram = n_gram
       self.word freq = self. get freq(text, n gram)
        self.vocab = set(self.word_freq["word"].apply(lambda x: x[0]).unique())
    # Generate df ngram, dengan padding
    def _get_freq(self, text:str, n_gram:int):
        token = word_tokenize(text)
        grams = ngrams(token, n_gram, pad_left = True, pad_right = True, left_pad_symbol="<s>", right_pad_symbol="</s>")
        df = pd.DataFrame(Counter(grams).items(), columns=["word", "freq"])
        return df
    # Dari sebuah list of tokens dimana elemen terakhirnya typo,
    # buat daftar frekuensi huruf2 yang jaraknya 2 edit distance
    # aka token pengganti.
    def prob grams(self, tokens:list[str]):
        ret = pd.DataFrame(columns=self.word_freq.columns)
        # Atur padding
        if len(tokens) < self.n_gram:</pre>
           tokens = (["<s>"] * (self.n_gram - len(tokens))) + tokens
        else:
            tokens = tokens[-self.n_gram:]
        # Ret kalo ada di vocab, bukan typo.
        word = tokens[-1]
        if word in self.vocab:
            return ret
        # Generate semua string yang mungkin buat edit distance 2, terus pilih yang dalam vocab kita.
        possible edits = edits2(word)
        vocab_words = possible_edits.intersection(self.vocab)
        # filter dulu yang depannya sesuai, biar kodenya lebih cepet
        freq = self.word_freq[self.word_freq["word"].apply(lambda x: x[:-1] == tuple(tokens[:-1]))]
```

Methods


```
# sekarang filter yang belakangnya sesuai
   for word in vocab words:
       ret = pd.concat((ret, freq[freq["word"].apply(lambda x: x[-1] == word)]))
   return ret.sort values("freq", ascending=False)
# Fungsi yang bakal ngejalanin prob grams secara otomatis.
# Bakal nerima string habis itu secara otomatis tokenize.
# Habis ditokenize diproses pake fungsi atas buat dapet list2 token pengganti.
# Ambil token pengganti dengan probabilitas tertinggi, terus sambung.
def autocorrect(self, text:str):
   # Hasil autocorrect
   new_tokens = []
   # Hubungin kata yang satu dengan yang lain
   tokens = word tokenize(text)
   ngram_tokens = list(ngrams(tokens, self.n_gram, pad_left=True, left_pad_symbol = "<s>"))
   # Bikin list of list biar bisa dimutate
   ngram tokens = [list(1) for 1 in ngram tokens]
   # Jalanin
   for t in ngram tokens:
       result = self.prob_grams(t)
       if len(result) == 0:
           new_tokens.append(t[-1])
        else:
            print(f"Corrected {t} to: ", end="")
           t[-1] = result.iloc[0]["word"][-1]
           new_tokens.append(t[-1])
           print(f"{t}")
   return TreebankwordDetokenizer().detokenize(new_tokens)
```



```
[ ] # Kalo trigram ketemu, pake punya trigram, kalo gak pake punya bigram, kalo ga unigram.
    class fallback ngram:
        def __init__(self, models):
             self.models = models
        def autocorrect(self, text:str):
             new_tokens = []
             # Hubungin kata yang satu dengan yang lain
             tokens = word_tokenize(text)
             ngram_tokens = list(ngrams(tokens, 3, pad_left=True, left_pad_symbol = "ks>"))
             # Bikin list of list biar bisa dimutate
             ngram tokens = [list(1) for 1 in ngram tokens]
             # Jalanin
             for t in ngram_tokens:
                 found = False
                 for model in self.models:
                     t = t[-model.n_gram:]
                     result = model.prob_grams(t)
                     if len(result):
                         print(f"Corrected {t} to: ", end="")
                         t[-1] = result.iloc[0]["word"][-1]
                         new_tokens.append(t[-1])
                         print(f"{t} ({model.n_gram}-gram)")
                         found = True
                         break
                 if not found:
                     new_tokens.append(t[-1])
             return TreebankWordDetokenizer().detokenize(new_tokens)
```

```
[ ] combined_model = fallback_ngram([fourgram, trigram, bigram, unigram])
    combined_res = combined_model.autocorrect(test)

Corrected ['of', 'gene'] to: ['of', 'one'] (2-gram)
    Corrected ['a', 'proimising'] to: ['a', 'promising'] (2-gram)
    Corrected ['expalined'] to: ['explained'] (1-gram)
    Corrected ['regneration'] to: ['generation'] (1-gram)
    Corrected ['tarhgting'] to: ['targeting'] (1-gram)
    Corrected ['markeers'] to: ['markets'] (1-gram)
```

Link colab:

https://colab.research.google.com/drive/1crgFYiyz99

Evaluation

• Untuk mengevaluasi model, kami mengevaluasi masing-masing dari 6 metode dengan hitungan sebagai berikut:

Correctly Spelled Words = no. of correctly spelled words / total number of words

• Kami menghitung correctly spelled words menggunakan Python. Hasilnya dalam tabel sebagai berikut:

	Original text	Unigram	Bigram	Trigram	Fourgram	1-4 gram*	1-2 gram*
Correctly							
spelled	420 / 510	460 / 510	440 / 510	426 / 510	421 / 510	467 / 510	467 / 510
words	420 / 519	460 / 519	440 / 519	426 / 519	421 / 519	467 / 519	467 / 519
(ratio)							
Correctly							
spelled	80.92%	88.63%	84.77%	82.08%	81.11%	89.98%	89.98%
words	80.92%	00.0370	64.//70	02.00%	01.1170	65.56%	65.56%
(%)							
						*combined model	

Hitungan di Python:

Correctly spelt words for Original Text is 420 / 519. 0.80924 Correctly spelt words for Unigram is 460 / 519. 0.88631984585 Correctly spelt words for Bigram is 440 / 519. 0.847784200385 Correctly spelt words for Trigram is 426 / 519. 0.82080924855 Correctly spelt words for Fourgram is 421 / 519. 0.8111753371 Correctly spelt words for 1-4 Gram is 467 / 519. 0.8998073217 Correctly spelt words for 1-2 Gram is 467 / 519. 0.8998073217

Hasil evaluasi:

- 1. Combined model 1-4 gram dan 1-2 gram merupakan dua model terbaik dibanding model lainnya untuk mendeteksi dan mengoreksi typo.
- 2. Dalam merancang model n-gram typo detector, semakin tinggi nilai n belum tentu menyebabkan model bekerja lebih baik.

Conclusion

1171 117 2 171 11 3 171

AKURASI MODEL

Semakin tinggi nilai ngram belum tentu menyebabkan model bekerja lebih baik.

ARSITEKTUR & IMPLEMENTASI

Kecepatan spellchecking turun untuk n-gram yang lebih tinggi.

Ada baiknya memilih nilai n yang fixed agar dapat digunakan struktur data yang lebih cepat.

DATASET

Data training sebaiknya disesuaikan dengan penggunaan ATAU dikumpulkan lebih banyak untuk menghindari OOV.

Conclusion

Model	Runtime	Entries	
Unigram	52s	63 K	
Bigram	50s	441 K	
Trigram	78s	930 K	
Fourgram	110s	1 217 K	
1-4 gram	228s	2 651 K	
1-2 gram	67s	504 K	

Kecepatan spellchecking

	word1	
2665	for	the
19	the	the
4	vs	vs
2	for	for
1	vs	the

Data dapat dibuat n-dimensional untuk mempercepat komputasi

Conclusion

renowned

word freq

renewed

word freq

6088 (renewed,) 67

Corrected ['renowned'] to: ['renewed']

"renowned" sebagai contoh OOV yang dianggap typo

#