

IN THE CLAIMS:

Claim 1 (amended). A compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

*B
Catal.*

$\cancel{R_1}$ and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or
polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with
hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur)
or,
unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or
polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to
four hetero atoms as N (nitrogen), O (oxygen) or S
(sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_iOR_{13}$
- $(CH_2)_iSR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

- $(\text{CH}_2)_i$ - tetrazole, and
 - polyhydroxy alkyl or cycloalkyl of from 5 to 8 carbon atoms,
 wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alkyl (1-4 carbon atoms), alkaryl of from 7 to 10 carbon atoms;

$\text{NR}_{13}\text{R}_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N, O, S;

provided that when W, X, Y and Z are each C-R₃, C-R₄, C-R₅ and C-R₆ and R₃, R₄, R₅ and R₆ are hydrogen and A is

$\begin{array}{c} \text{O} \\ \parallel \\ \text{NH}-\text{C}- \end{array}$ and R₁ is unsubstituted phenyl, then R₂ cannot be unsubstituted phenyl;

further provided that when W, X, Y and Z are each C-R₃,

C-R₄, C-R₅, and C-R₆ and R₃, R₄, R₅ and R₆ are hydrogen or halogen and

A is $\text{NH}-\text{C}(=\text{O})-\text{NH}$, and
M is oxygen, and

R₂ is unsubstituted or mono substituted phenyl and wherein substitution is chloro, bromo, butyl, n-butoxy, iso-butoxy, then R₁ cannot be unsubstituted or mono substituted phenyl, or unsubstituted naphthyl wherein substitution is chloro or bromo;

furthermore provided that when W, X, Y and Z are each C-R₃, C-R₄, C-R₅, and C-R₆ and R₃, R₄, R₅ and R₆ are hydrogen or halogen and

B /
Cont'd - A is $\text{NH}-\text{C}(=\text{S})-\text{NH}$, and
M is oxygen, and

R₁ is unsubstituted phenyl, unsubstituted benzyl, unsubstituted naphthyl or mono substituted phenyl wherein substitution is halogen, methyl, n-butyl or methoxy, then R₂ cannot be: a) unsubstituted phenyl; b) unsubstituted naphthyl; c) unsubstituted benzyl; d) mono substituted phenyl wherein substitution is halogen, methyl, n-butoxy, iso-butoxy, or methoxy; [or] e) disubstituted phenyl wherein substitution is methyl or f) alkyl.

Claim 2 (amended). The compound of claim 1 wherein:

W and Y are each independently C-R₃, C-R₅ or N,

X and Z are each independently C-R₄ or C-R₆,

wherein R₃, R₄, R₅ and R₆ are each independently chlorine, bromine, iodine, carbmethoxy, carboxy, methoxy, methyl, thio, thiomethyl, thioethyl, and hydroxy;

M is O or S;

A is selected from

wherein R_{11} and R_{12} are independently hydrogen or alkyl of from 1 to 4 carbon atoms, n is 0 or 1;

R_1 and R_2 are independently an unsubstituted, mono or polysubstituted phenyl, pyridyl, pyrrolyl, furanyl, thifuranyl, pyrimidinyl, indolyl, quinolinyl, quinaxolinyl; or a cyclo or polycycloalkyl hydrocarbon of 6 to 12 carbon atoms;

wherein [the substituents are of claim 1, having up to three substituents per ring are present.

Claim 3 (amended). The compound of claim 1 wherein:

W is C-R₃ or N wherein R₃ is selected from hydrogen, chlorine, bromine, iodine, methoxy, and methyl;

X is C-R₄ wherein R₄ is selected from hydrogen, chlorine, hydroxy, methoxy, sulfhydryl and thioethylether;

Y is C-R₅ wherein R₅ is selected from hydrogen, chlorine, bromine, iodine, methoxy, methyl, carboxy, and carbmethoxy;

Z is C-R₆ and N, wherein R₆ is hydrogen;

M is oxygen or sulfur;

A is selected from

wherein R_{11} and R_{12} are hydrogen;
 n is 0 or 1;

R_1 and R_2 are independently phenyl,
 mono or polysubstituted phenyl,
 pyridyl,
 pyrrolyl,
 furanyl,
 thifuranyl,
 pyrimidinyl,
 indolyl,
 quinolinyl,
 quinaxolinyl[;

wherein substitutions are the same as in claim 1].

B1
Claim 4 (amended). The compound of claim 1 wherein:
 M is sulfur,
 A is

and W , X , Y , Z , R_1 and R_2 are as in claim 1].

In Claim 5, add a " ." after the structure.

In Claim 6, add a " ." after the structure.

B2
 $\text{Claim 7 (amended). The compound of claim 1}$
 wherein:

M is oxygen;

A is

W , X , Y , and Z are selected from $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and
 N and at least one and no more than two of W , X , Y and Z
 are N . [R_1 , R_2 , R_3 , R_4 , R_5 and R_6 are as defined in claim
 1.]

✓
In Claim 8, add a " ." after the structure.

✓
In Claim 9, add a " ." after the structure.

Claim 10 (amended). The compound of claim 1 having the structure:

B3
wherein R_X is hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 , where $x=0-3$;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

R_1 and R_2 are as defined in Formula I].

Claim 11 (amended). The compound of claim 1 wherein:

W , X , Y and Z are selected from $C-R_3$, $C-R_4$, $C-R_5$ and $C-R_6$;
 M is oxygen;

A is

R_1 and R_2 cannot both be phenyl in the same compound; and
 R_3 , R_4 , R_5 and R_6 are as defined in claim 1].

Claim 12 (amended). The compound of claim 1 wherein:
 M is S (sulfur);

[W , X , Y , Z , R_1 and R_2 are as defined in claim 1; and]

A is

having the structure:

In Claim 13, add a " ." after the structure.

Claim 14 (amended). The compound of claim 1

wherein:

W, X, Y and Z are selected from C-R₃, C-R₄, C-R₅, and C-R₆ wherein R₃, R₄, R₅ and R₆ [are as defined in claim 1 except none can] cannot be hydrogen or halogen;

M is oxygen;

A is

R₁ and R₂ are as defined in claim 1.

Claim 16 (amended). The compound of claim 1

wherein:

W, X, Y, and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and wherein R₃, R₄, R₅ and R₆ are independently selected from hydroxy, sulfhydryl, lower alkoxy, lower thioalkoxy, lower alkyl, CN, CF₃, NO₂, COOR₇, NR₇R₈, wherein R₇ and R₈ are as defined in claim 1;

M is oxygen[; and

B⁵
Concluded

R₁ and R₂ are as defined in claim 1].

Claim 17 (amended). The compound of claim 1
wherein:

W, X, Y and Z are each independently selected
from C-R₃, C-R₄, C-R₅, C-R₆ and wherein R₃, R₄, R₅ and R₆
are as defined above but they cannot be hydrogen or
halogen;

M is oxygen;

A is

R₁ and R₂ are as defined in claim 1].

C
Claim 19 (amended). The compound of claim 1
wherein:

A is

$$\begin{array}{c} \text{O} \\ \parallel \\ \text{—NH—C—} \end{array} \text{ or } \begin{array}{c} \text{O} \\ \parallel \\ \text{—NH—C—NH—}; \end{array}$$

R₁ is

or

B6
Concluded

R₁₃ and R₁₄ are each independently selected from hydrogen, methyl, ethyl, t-butyl, and benzyl;

wherein R₁₅ and R₁₆ are independently selected from hydrogen, methyl and ethyl;

i is 0 or 1;

M is O (oxygen) [; and

W, X, Y, Z and R₂ are as defined in claim 1].

In Claim 20, delete "of claim 1".

In Claim 21, at line 19, on page 99, delete the word "dichoro" and insert instead "dichloro"; and at line 20, put a "]" after the word "phenyl".

B7

Claim 22 (amended). [The] A compound [of Claim 1 is] selected from the group consisting of:

2-Thioxo-3-o-tolyl-2,3-dihydro-1H-quinazolin-4-one

3-(2-Ethyl-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-(4-Chloro-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-(2,3-Dichloro-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-(3-Fluoro-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-Naphthalen-1-yl-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-(3-Methoxy-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

[2-Hydrazio-2-(3-methoxy-phenyl)-3H-quinazolin-4-one]

3-(3-Dimethylamino-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-[4-(Morpholine-4-sulfonyl)-phenyl]-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-Pyridin-3-yl-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

3-(4-Methoxy-phenyl)-2-thioxo-2,3-dihydro-1H-quinazolin-4-one

~~3 - (3 - Isopropoxy - phenyl) - 2 - thioxo - 2,3 - dihydros - 1H - pyrido [2,3 - d] pyrimidin - 4 - one~~

~~3 - (3,4 - Dimethoxy - phenyl) - 2 - thioxo - 2,3 - dihydro - 1H - quinazolin - 4 - one.~~

Claim 23 (amended). [The] A compound [of Claim 1 is] selected from the group consisting of:

~~2 - Hydrazino - 3 - o - toyl - 3H - quinazolin - 4 - one]~~

~~3 - (2 - Ethyl - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one~~

~~3 - (4 - Chloro - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one]~~

~~3 - (2,3 - Dichloro - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one~~

~~3 - (3 - Fluoro - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one]~~

~~2 - Hydrazino - 3 - naphthalen - 1 - yl - 3H - quinazolin - 4 - one~~

~~2 - Hydrazino - 3 - (3 - methoxy - phenyl) - 3H - quinazolin - 4 - one~~

~~3 - (3 - Fluoro - phenyl) - 2 - hydrazino - 3H - 1quinazolin - 4 - one]~~

~~3 - (3 - Dimethylamino - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one~~

~~2 - Hydrazino - 3 - [4 - (morpholine - 4 - sulfonyl) - phenyl] - 3H - quinazolin - 4 - one~~

~~2 - Hydrazino - 3 - pyridin - 3 - yl - 3H - quinazolin - 4 - one~~

~~2 - Hydrazino - 3 - (4 - methoxy - phenyl) - 3H - quinazolin - 4 - one]~~

~~3 - (3 - Amino - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one~~

~~2 - Hydrazino - 3 - (3 - isopropoxy - phenyl) - 3H - pyrido [2,3 - d] pyrimidin - 4 - one~~

~~3 - (3,4 - Dimethoxy - phenyl) - 2 - hydrazino - 3H - quinazolin - 4 - one.~~

Claim 24 (amended). [The] A compound [of Claim 1] of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from C-R₃,
C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈i
wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

B¹
Contd.

wherein R₁₁ and R₁₂ are independently hydrogen or lower alkyl (1-4 carbon atoms); n = 0 or 1;

R₁ is alkyl of 1 to 6 carbon atoms,

[wherein] R₂ is

unsubstituted, mono or polysubstituted phenyl or polyaromatic,

unsubstituted, mono or polysubstituted heteroaromatic, with hetero

atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or, unsubstituted, mono or polysubstituted aralkyl,

unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,

- ~~i~~
- $(CH_2)_iOR_{13}$
 - $(CH_2)_iSR_{13}$
 - trifluoromethyl
 - nitro
 - halo
 - cyano
 - azido
 - acetyl

 $CONHSO_2R_{13}$ $S(O)_j R_{13}$

*B7
Contd.*

[, and]

 $S(O)_j R_{13}$

, and

NR₁₃R₁₄ is also mono or bicyclic ring with one to four hetero atoms as N, O, S;

provided that when w, x, y and z are each C-R₃, C-R₄, C-R₅ and C-R₆ and R₃, R₄, R₅ and R₆ are hydrogen and A is

NH-C=O and R₁ is unsubstituted phenyl, then R₂ cannot be unsubstituted phenyl;

further provided that when w, x, y and z are each C-R₃, C-R₄, C-R₅, and C-R₆ and R₃, R₄, R₅ and R₆ are hydrogen or halogen and

A is —NH—C=O—NH—, and M is oxygen, and

R₂ is unsubstituted or mono substituted phenyl and wherein substitution is chloro, bromo, butyl, n-butoxy, iso-butoxy, then R₁ cannot be unsubstituted or mono substituted phenyl, or unsubstituted naphthyl wherein substitution is chloro or bromo;

furthermore provided that when w, x, y and z are each C-R₃, C-R₄, C-R₅, and C-R₆ and R₃, R₄, R₅ and R₆ are hydrogen or halogen and

A is —NH—C=S—NH—, and M is oxygen, and

B7
Contd.

B7
Concluded

R₁ is unsubstituted phenyl, unsubstituted benzyl, unsubstituted naphthyl or mono substituted phenyl wherein substitution is halogen, methyl, n-butyl or methoxy, then R₂ cannot be: a) unsubstituted phenyl; b) unsubstituted naphthyl; c) unsubstituted benzyl; d) mono substituted phenyl wherein substitution is halogen, methyl, n-butoxy, iso-butoxy, or methoxy; e) disubstituted phenyl wherein substitution is methyl or f) alkyl.

In Claim 25, at line 1 delete "21" and insert ✓ instead "24".

Claim 26 (amended). A compound having the structure:

B8
Formula I

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

*B8
Contd.*

R_1 and R_2 independently are:
 an alkyl of 1 to 6 carbon atoms,
 unsubstituted, mono or polysubstituted phenyl or polyaromatic,
 unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
 unsubstituted, mono or polysubstituted aralkyl,
 unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
 mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(\text{CH}_2)_i\text{OR}_{13}$
- $(\text{CH}_2)_i\text{SR}_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

and

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
 alkyl, alkaryl or from 7 to 10 carbon atoms; and

$NR_{13}R_{14}$ may [is] also be mono or bicyclic ring
 with one to four hetero atoms as N,O,S.

Claims 30-40, cancel without prejudice.

Please add the following new claims:

41. (New) A method for treating a condition advantageously affected by the binding of the compound of Formula I to a CCK receptor in a mammal in need of such treatment comprising providing an effective binding amount of the compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;
 R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_iOR_{13}$
- $(CH_2)_iSR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

β^9
contd.

and

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
 alky, alkaryl of from 7 to 10 carbon atoms; and

$NR_{13}R_{14}$ is also mono or bicyclic ring with one to
 four hetero atoms as N,O,S.

42. (New) A method of reducing gastric acid
 secretion in a mammal comprising administering an effective
 gastric acid secretion reducing amount to a mammal in need
 thereof a compound of Formula I:

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or
polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to
four hetero atoms as N (nitrogen), O (oxygen) or S
(sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_iOR_{13}$
- $(CH_2)_iSR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

and

wherein i and j are independently 0, 1, 2,

R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alky, alkaryl of from 7 to 10 carbon atoms; and

$NR_{13}R_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N, O, S.

B9
cont'd
43. A method of reducing anxiety in a mammal, comprising administering an effective anxiety reducing amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from C- R_3 , C- R_4 , C- R_5 , C- R_6 and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon

atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , COOR_7 or NR_7R_8 ; wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

B9
contd.

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

R_1 and R_2 independently are:
 an alkyl of 1 to 6 carbon atoms,
 unsubstituted, mono or polysubstituted phenyl or polyaromatic,
 unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
 unsubstituted, mono or polysubstituted aralkyl,
 unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
 mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(\text{CH}_2)_i\text{OR}_{13}$
- $(\text{CH}_2)_i\text{SR}_{13}$
- trifluoromethyl
- nitro
- halo

- cyano
- azido
- acetyl

B⁹
contd.

and

wherein i and j are independently 0, 1, 2,

R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower alkyl, alkaryl or from 7 to 10 carbon atoms; and

$NR_{13}R_{14}$ is also mono or bicyclic ring with one to four hetero atoms as N,O,S.

44. A method for treating gastrointestinal ulcers in a mammal comprising administering an effective gastrointestinal ulcer treating amount to a mammal in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from C- R_3 , C- R_4 , C- R_5 , C- R_6 and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;
 R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur)
or,
unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms.
- $(CH_2)_iOR_{13}$
- $(CH_2)_iSR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
 alky, alkaryl of from 7 to 10 carbon atoms; and
 $NR_{13}R_{14}$ is also mono or bicyclic ring with one to
 four hetero atoms as N,O,S.

45. (New) A method of treating psychosis in a
 mammal comprising administering an effective psychosis in
 a mammal comprising administering an effective psychosis
 treating amount to a mammal in need thereof a compound of
 Formula I:

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,

unsubstituted, mono or polysubstituted aralkyl,
 unsubstituted, mono or polysubstituted cyclo or
 polycycloalkyl hydrocarbon, or
 mono or polyheterocycle (3 to 8 atoms per ring) with one to
 four hetero atoms as N (nitrogen), O (oxygen) or S
 (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_iOR_{13}$
- $(CH_2)_iSR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

and

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
 alky, alkaryl of from 7 to 10 carbon atoms; and

$NR_{13}R_{14}$ is also mono or bicyclic ring with one to
 four hetero atoms as N,O,S.

*B9
contd.*
 46. (New) A method of blocking drug or alcohol
 withdrawal reaction in a mammal comprising administering an
 effective withdrawal reaction blocking amount to a mammal
 in need thereof a compound of Formula I:

Formula I

wherein W, X, Y and Z are each independently selected from
 $C-R_3$, $C-R_4$, $C-R_5$, $C-R_6$ and N (nitrogen) and that no more
 than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;
 wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

B9
contd.

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

R_1 and R_2 independently are:
 an alkyl of 1 to 6 carbon atoms,
 unsubstituted, mono or polysubstituted phenyl or polyaromatic,
 unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
 unsubstituted, mono or polysubstituted aralkyl,
 unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
 mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(\text{CH}_2)_i\text{OR}_{13}$
- $(\text{CH}_2)_i\text{SR}_{13}$
- trifluoromethyl
- nitro
- halo

- cyano
- azido
- acetyl

and

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
 alky, alkaryl of from 7 to 10 carbon atoms; and
 $NR_{13}R_{14}$ is also mono or bicyclic ring with one to
 four hetero atoms as N,O,S.

47. (New) A method of treating pain in a mammal
 comprising administering an effective amount to a mammal in
 need thereof a compound of Formula I:

B9
B11.
Contd.

wherein W, X, Y and Z are each independently selected from C- R_3 , C- R_4 , C- R_5 , C- R_6 and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R_3 , R_4 , R_5 and R_6 are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF_3 , NO_2 , $COOR_7$ or NR_7R_8 ;

wherein R_7 and R_8 are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

*B9
contd.*

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;
 R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(CH_2)_iOR_{13}$
- $(CH_2)_iSR_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

and

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
 alky, alkaryl of from 7 to 10 carbon atoms; and

$NR_{13}R_{14}$ is also mono or bicyclic ring with one to
 four hetero atoms as N, O, S.

48. (New) A method of treating and/or
 preventing panic in a mammal comprising administering an

effective amount to a mammal in need thereof a compound of
 Formula I:

Formula I

B9
contd.

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,

B9
contd.

unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or
mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- B9
contd
- hydrogen
 - lower alkyl of 1-4 carbon atoms,
 - $(\text{CH}_2)_i\text{OR}_{13}$
 - $(\text{CH}_2)_i\text{SR}_{13}$
 - trifluoromethyl
 - nitro
 - halo
 - cyano
 - azido
 - acetyl

B9
B10
contd.

B9
and

wherein i and j are independently 0, 1, 2,
 R_{13} , R_{14} , R_{15} , R_{16} are each independently hydrogen, lower
alkyl, alkaryl or from 7 to 10 carbon atoms; and
 $NR_{13}R_{14}$ is also mono or bicyclic ring with one to
four hetero atoms as N, O, S.

49. (New) A method of diagnosis of gastrin-
dependent tumors in a mammal, comprising administering to
the mammal in need thereof an effective diagnosing amount
of a radiolabelled iodo compound of Formula I:

~~Formula I~~

wherein W, X, Y and Z are each independently selected from C-R₃, C-R₄, C-R₅, C-R₆ and N (nitrogen) and that no more than two of W, X, Y and Z are N;

wherein R₃, R₄, R₅ and R₆ are each independently hydrogen, hydroxy, sulfhydryl, lower alkoxy (1-4 carbon atoms), lower thioalkoxy (1-4 carbon atoms), lower alkyl (1-4 carbon atoms), halo, CN, CF₃, NO₂, COOR₇ or NR₇R₈;

wherein R₇ and R₈ are independently hydrogen or lower alkyl (1-4 carbon atoms);

M is oxygen or sulfur;

A is selected from the group consisting of:

*B9
cont'd.*

wherein R_{11} and R_{12} are independently hydrogen or lower alkyl (1-4 carbon atoms); $n = 0$ or 1 ;

R_1 and R_2 independently are:
an alkyl of 1 to 6 carbon atoms,
unsubstituted, mono or polysubstituted phenyl or polyaromatic,
unsubstituted, mono or polysubstituted heteroaromatic, with hetero atom(s) N (nitrogen), O (oxygen) and/or S (sulfur) or,
unsubstituted, mono or polysubstituted aralkyl,
unsubstituted, mono or polysubstituted cyclo or polycycloalkyl hydrocarbon, or

mono or polyheterocycle (3 to 8 atoms per ring) with one to four hetero atoms as N (nitrogen), O (oxygen) or S (sulfur); and

wherein the substitutions are selected from

- hydrogen
- lower alkyl of 1-4 carbon atoms,
- $(\text{CH}_2)_i \text{OR}_{13}$
- $(\text{CH}_2)_i \text{SR}_{13}$
- trifluoromethyl
- nitro
- halo
- cyano
- azido
- acetyl

