CSCI-GA.1180-001

September 26, 2016

Solutions to Problem 1 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

(a) Solution:

Let,
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \implies A^2 = \begin{pmatrix} a_{11}^2 + a_{12}a_{21} & a_{11}a_{12} + a_{12}a_{22} \\ a_{21}a_{11} + a_{22}a_{21} & a_{21}a_{12} + a_{22}^2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Therefore,

$$a_{11}^2 + a_{12}a_{21} = -1 (1)$$

$$a_{11}a_{12} = -a_{22}a_{12} \tag{2}$$

$$a_{11}a_{21} = -a_{22}a_{21} \tag{3}$$

$$a_{22}^2 + a_{21}a_{12} = -1 (4)$$

From equations (1) and (4), it is clear that $a_{12} \neq 0$ and $a_{21} \neq 0$. Therefore from equations (2) and (4), we can conclude that $a_{11} = -a_{22}$. Let $a_{11} = 1$, $a_{12} = 1 \implies a_{22} = -1$ and $a_{21} = -2$

Therefore
$$A = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$$

(b) **Solution:** Let, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \implies B^2 = \begin{pmatrix} b_{11}^2 + b_{12}b_{21} & b_{11}b_{12} + b_{12}b_{22} \\ b_{21}b_{11} + b_{22}b_{21} & b_{21}b_{12} + b_{22}^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Therefore,

$$b_{11}^2 = -b_{12}b_{21} (5)$$

$$b_{11}b_{12} = -b_{22}b_{12} \tag{6}$$

$$b_{11}b_{21} = -b_{22}b_{21} (7)$$

$$b_{22}^2 = -b_{21}b_{12} (8)$$

From the above equations, it can be easily observed that if $b_{11} = 0$, B becomes zero matrix. So assume, $b_{11} \neq 0$. From equations (5) and (8), we can conclude that, $b_{11}^2 = b_{22}^2$ and $b_{12}b_{21} < 0 \implies (b_{12} - b_{21}) \neq 0$. From equations (6) and (7) we get, $(b_{12} - b_{21})(b_{11} + b_{22}) = 0$. Therefore, $b_{11} = -b22$. Let $b_{11} = 1$, $b_{12} = 1$ then $b_{22} = -1$ and $b_{21} = -1$.

Therefore,
$$B = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

(c) Solution: Let $C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$, $D = \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix}$ Given that $CD = -DC \implies$

$$2c_{11}d_{11} = -c_{12}d_{21} - d_{12}c_{21} (9)$$

$$c_{11}d_{12} + c_{12}d_{22} = -d_{11}c_{12} - d_{12}c_{22} \tag{10}$$

$$c_{21}d_{11} + c_{22}d_{21} = -d_{21}c_{11} - d_{22}c_{21} (11)$$

$$2c_{22}d_{22} = -d_{21}c_{12} - c_{21}d_{12} (12)$$

Equations (9), (10) $\implies c_{11}d_{11} = c_{22}d_{22}$ Equations (10), (11) $\implies c_{12}(d_{11}+d_{22}) = -d_{12}(c_{11}+c_{22})$ and $d_{21}(c_{11}+c_{22}) = -c_{21}(d_{11}+d_{22})$ Let $c_{11} = 1, c_{22} = -1, d_{11} = 1$ then $d_{22} = -1$. Now pick $c_{12} = 1$ and $c_{21} = 1$, from equation (9) we get, $-d_{21} - d_{12} = -2$. Pick $d_{21} = -3$ then $d_{12} = 1$. Therefore $C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, D = \begin{pmatrix} 1 & 1 \\ -3 & -1 \end{pmatrix}$ where $CD = \begin{pmatrix} -2 & 0 \\ 4 & 2 \end{pmatrix}$ and $DC = \begin{pmatrix} 2 & 0 \\ -4 & -2 \end{pmatrix}$

П

Solutions to Problem 2 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

Solution:

- If A is a singular matrix, then for any non-zero vector x we know that $Ax \neq 0$
- Since B is non singular, there exists a non-zero vector y such that By = x.
- Therefore, $Ax \neq 0 \implies A(By) \neq 0 \implies (AB)y \neq 0$ where y is a non-zero matrix.
- \therefore If A and B are non-singular matrices then their product AB is also non-singular.

Solutions to Problem 3 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

Solution:

Given
$$A = \begin{pmatrix} 1 & 8 & 7 \\ 2 & 10 & 8 \\ 3 & 12 & 9 \end{pmatrix}$$

$$a_{3} = \lambda_{1}a_{1} + \lambda_{2}a_{2}$$

$$\lambda_{1} \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 8\\10\\12 \end{pmatrix} = \begin{pmatrix} 7\\8\\9 \end{pmatrix}$$

$$\Rightarrow \lambda_{1} + 8\lambda_{2} = 7$$

$$2\lambda_{1} + 10\lambda_{2} = 10$$

$$3\lambda_{1} + 12\lambda_{2} = 9$$

$$(1)$$

$$(2)$$

$$(3)$$

Solving equations (1) and (2), we get $\lambda_1 = -1$ and $\lambda_2 = 1$. Substitute these values in (3), we get -3 + 12 = 9. Therefore the columns of the matrix are linearly dependent.

Solutions to Problem 4 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

Solution:

Theorem 1. Let A be an $n \times n$ real matrix. If the only solution of Ay = 0 is y = 0 then prove that there is a unique n-vector x satisfying Ax = b for any nonzero n-vector b

Proof. Let us assume that there are two vectors x_1 and x_2 where $x_1 \neq x_2$ such that $Ax_1 = b$ and $Ax_2 = b \implies A(x_1 - x_2) = 0$. But we know that if $Ay = 0 \implies y$ has to be zero. Therefore, $(x_1 - x_2) = 0 \implies x_1 = x_2$.

This is a contradiction to the given hypothesis. Thus our assumption was wrong i.e. x_1 and x_2 should be equal. Hence, there is a unique n-vector x satisfying Ax = b for any nonzero n-vector b if the only solution of Ay = 0 is y = 0

Theorem 2. Let A be an $n \times n$ real matrix. If there is a unique n-vector x satisfying Ax = b for any nonzero n-vector b then prove that the only solution of Ay = 0 is y = 0.

Proof. Let us assume that there exists a non-zero vector y such that Ay = 0. We know that Ax = b where x is a unique n-vector and b is a non-zero vector. Adding these two equations, we get A(x + y) = b where $x + y \neq x$ since y is a non-zero vector.

This is a contradiction to the given hypothesis. Thus our assumption was wrong i.e. y can not be a non-zero vector. Hence, the only solution of Ay = 0 is y = 0 if there is a unique n-vector x satisfying Ax = b for any nonzero n-vector b.

Solutions to Problem 5 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

(a) Solution:

If columns of A are linearly independent then Az = 0 only if z = 0.

If $Ax = Ay \implies A(x - y) = 0$. Given that the columns of A are linearly independent, $\therefore x - y = 0 \implies x = y$

(b) Solution:

$$A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & -2 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \implies Ax = \begin{pmatrix} 12 \\ -1 \end{pmatrix}$$

Let
$$y = \begin{pmatrix} 5 \\ \lambda_2 \\ 4 \end{pmatrix} \implies Ay = \begin{pmatrix} 12 \\ -1 \end{pmatrix}$$

Solve for
$$\lambda_2$$
, we get $\lambda_2 = 5/2$ $\therefore y = y = \begin{pmatrix} 5 \\ 5/2 \\ 4 \end{pmatrix}$

$\mathbf{CSCI\text{-}GA.1180\text{-}001}$

September 26, 2016

Solutions to Problem 6 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

Solution:

Rank of A is equal to the maximum number of linearly independent rows and columns of A (which are equal). Thus $r \leq m$ and $r \leq n$. But it is given that r = m. Therefore $m \leq n$

Solutions to Problem 7 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

Solution:

Assume that both (1) and (2) are true

$$\begin{aligned} y^Tb &= y^T(Ax) & \textit{Using (1)} \\ &= (y^TA)x & \textit{Associative property of Matrix Multiplication} \\ &= ((y^TA)^T)^Tx \\ &= (A^Ty)^Tx \\ &= 0^Tx & \textit{Using (2)} \\ &= 0 \end{aligned}$$

But from (2), we know that $y^T b \neq 0$. This is a contradiction. Thus our assumption was wrong, (1) and (2) cannot both be true and thus they are contradictory.

Solutions to Problem 8 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

(a) Solution:

Given that x_R is the linear combination of columns of A. Therefore, there is a n vector y such that $Ay = x_R$.

$$x_R^T x_N = (Ay)^T x_N$$

 $= (y^T A^T) x_N$
 $= y^T (A^T x_N)$ Associative property of Matrix Multiplication
 $= y^T 0$
 $= 0$

Hence proved

(b) Solution:

Let us assume that x_R and x_N are not unique. Let $\exists x_{R_1}, x_{R_2} \in \mathbb{R}(A)$ and $x_{N_1}, x_{N_2} \in \mathbb{N}(A^T)$ where $x_{R_1} \neq x_{R_2}$ and $x_{N_1} \neq x_{N_{1_2}}$ such that

$$x = x_{R_1} + x_{N_1}$$
$$x = x_{R_2} + x_{N_2}$$

Subtracting these two equations we get

$$0 = (x_{R_1} - x_{R_2}) + (x_{N_1} - x_{N_2})$$

$$x_{R_1} - x_{R_2} = -(x_{N_1} - x_{N_2})$$
(1)

But we know that Range space and Null space are closed under addition and subtraction. $(x_{R_1} - x_{R_2}) \in \mathbb{R}(A)$ and $(x_{N_1} - x_{N_2}) \in \mathbb{N}(A^T) \implies (x_{R_1} - x_{R_2}) \perp (x_{N_1} - x_{N_2})$ but from (1) we have, $(x_{R_1} - x_{R_2}) \parallel (x_{N_1} - x_{N_2}) \implies (x_{R_1} - x_{R_2}) = 0$ and $(x_{N_1} - x_{N_2}) = 0 \implies x_{R_1} = x_{R_2}$ and $x_{N_1} = x_{N_2}$

This is a contradiction. Hence our assumption was wrong. Therefore x_R and x_N are unique.

(c) Solution:

It is given that $x_R \neq 0$ and $x_N \neq 0$

Assume that $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$ such that $\lambda_1 x_R + \lambda_2 x_N = 0 \implies x_R$ and x_N are parallel but we also know that x_R and x_N are perpendicular to each other $x_R \in \mathbb{R}(A)$ and $x_N \in \mathbb{N}(A^T) \implies x_R = x_N = 0$. But this a contradiction to the given hypothesis. Hence our assumption is wrong. Therefore if x_R and x_N are both nonzero then they are linearly independent. \square

Solutions to Problem 9 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

(a) Solution:

Given that C is an $m \times n$ matrix with full column rank. Hence all the columns of C are linearly independent. Therefore $Cy = 0 \implies y = 0$. Assume there are two vectors x_1 and x_2 such that $Cx_1 = d$ and $Cx_2 = d$. $\implies C(x_1 - x_2) = 0$. But we know that if cy = 0, y = 0. $\therefore x_1 - x_2 = 0 \implies x_1 = x_2$. Therefore x is unique

(b) Solution:

We know \exists unique x_R, x_N such that $b = x_R + x_N$ and \exists y such that $x_R = Ay :: x_R \in \mathbb{R}(A)$ $\implies b = Ax = Ay + x_N \implies Ax - Ay = X_N \implies Ax - Ay \parallel x_N$. $Ax - Ay \in \mathbb{R}(A)$ using closure property of Range space $\implies Ax - Ay \perp X_N$ $\therefore Ax - Ay = 0 \implies x = y$. We are sure that \exists y for the unique $x_R \implies x$ exists too. \therefore The system Ax = b is compatible $\forall b \in \mathbb{R}^m$

(c) Solution:

The rank of the 2×4 matrix cannot be two because if it is 2 then from part (b) the system Ax = b is compatible for every $b \in \mathbb{R}^m$. So choose a matrix whose rank is 1 and columns are linearly independent. It easy to choose such a matrix. Choose the columns such that they are multiples of column 1, so they are linearly dependent.

Let
$$A = (a_1 \, a_2 \, a_3 \, a_4)$$
 where $a_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \, a_2 = 2a_1, a_3 = 3a_1, a_4 = 4a_1.$

$$\therefore A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \end{pmatrix} \implies b = Ax = \begin{pmatrix} x_1 + 2x_2 + 3x_3 + 4x_4 \\ 2x_1 + 4x_2 + 6x_3 + 8x_4 \end{pmatrix} \in \mathbb{R}(A)$$

 $\mathbb{R}(A)$ consists of only those vectors such that $b_2 = 2b_1$. Choose any vector b that violates this property. Let $b = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$. Therefore for the chosen A, b the system Ax = b is not compatible.

Solutions to Problem 10 of Homework 1

Name: GOWTHAM GOLI (N17656180) Due: Tuesday, September 26

(a) Solution:

Let $A = (a_1 \, a_2 \, a_3 \, a_4 \, a_5)$ where a_i is a 2 dimensional vector. Given that the rank(A) = 2 and the 2×2 submatrix consisting of the first two columns of A has rank 1. Therefore a_1 and a_2 should be linearly dependent on each other. Hence choose $a_2 = 2a_1$ where $a_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and

 $a_2 = \binom{2}{4}$. Clearly a_1 and a_2 are linearly dependent. Thus (a_1a_2) has rank 1. Now we need to choose a_3, a_4, a_5 such that the maximum number of linear independent columns are only 2. Let $a_5 = \binom{5}{9}$. Therefore a_1, a_5 and a_2, a_5 are linearly independent but a_1, a_2, a_5 are linearly dependent a_1, a_2, a_5 are linearly independent a_1, a_2, a_5 are linearly dependent a_1, a_2, a_3 are linearly independent columns still remains to be 2. Simply choose a_3, a_4 to be multiples of a_1 so that a_1, a_5 for a_1, a_2, a_3 are linearly independent. Therefore a_1, a_2, a_3, a_4 to be multiples of a_1 so that a_1, a_2, a_3 for a_1, a_2, a_3 are linearly independent. Therefore a_1, a_2, a_3, a_4 to be multiples of a_1 so that a_1, a_2, a_3 for a_1, a_2, a_3 are linearly independent. Therefore a_1, a_2, a_3, a_4 to be multiples of a_1, a_2, a_3 for a_1, a_2, a_3 are linearly independent. Therefore a_1, a_2, a_3, a_4 to be multiples of a_1, a_2, a_3 for a_1, a_2, a_3 are linearly independent. Therefore a_1, a_2, a_3, a_4 to be multiples of a_1, a_2, a_3 for a_1, a_2, a_3 are linearly independent.

independent. Therefore $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 9 \end{pmatrix}$

 a_1, a_2 are linearly dependent (confirms (i))

 $a_1 + a_4 = a_2 + a_3 + 0a_5 \implies \text{Rank cannot be 5}$

Randomly choose any 4 columns from A, if a_5 is one of the chosen columns, then simply choose the coefficient of a_5 to be 0 and the remaining columns will be linearly dependent on each other as they are all multiples of a_1 . If a_5 is not chosen then it is straight forward that all the columns will be linearly dependent. A similar argument can be given for choosing any 3 columns from $A \implies$ Rank cannot be 3, 4

Choose $a_1, a_5, \lambda_1 a_1 + \lambda_2 a_5 = 0 \implies \lambda_1 = -5\lambda$ and $2\lambda_1 = -9\lambda_2 \implies \lambda_1 = \lambda_2 = 0$: the rank of the matrix is 2 (confirms (ii))

(b) **Solution**:

Let
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \implies b = Ax = \begin{pmatrix} x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 \\ 2(x_1 + 2x_2 + 3x_3 + 4x_4) + 9x_5 \end{pmatrix}$$

For
$$x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \implies b = \begin{pmatrix} 15 \\ 29 \end{pmatrix}$$

(c) Solution:

Let
$$x_1 + 2x_2 + 3x_3 + 4x_4 = k$$
, then $b = Ax = \binom{k + 5x_5}{2k + 9x_5} \in range(A)$

For any 2-vector b the system of linear equations can be solved to get the values of k and x_5 . Using k choose x_1, x_2, x_3, x_4 such that $x_1 + 2x_2 + 3x_3 + 4x_4 = k$ i.e. $\forall b \exists x \text{ such that } b = Ax$. It is not possible to find any such $b \notin range(A)$

(d) Solution:

$$A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \\ 4 & 8 \\ 5 & 9 \end{pmatrix} \implies b = A^{T}x = \begin{pmatrix} x_{1} + 2x_{2} \\ 2x_{1} + 4x_{2} \\ 3x_{1} + 6x_{2} \\ 4x_{1} + 8x_{2} \\ 5x_{1} + 9x_{2} \end{pmatrix} \in range(A^{T})$$

Notice that rows 2 to 4 of b are multiples of row 1. Choose c such that c violates this property.

$$\therefore c = \begin{pmatrix} 3 \\ 7 \\ 10 \\ 11 \\ 14 \end{pmatrix} \not\in range(A^T)$$