Теормин по Математическому анализу №1 И пусть удача всегда будет с вами

- **1.** Аксиома непрерывности (полноты) множества R. Пусть $X,Y \subset \mathbb{R}$, причем $X \neq \emptyset, Y \neq \emptyset$. Тогда $(\forall x \in X \ \forall y \in Y \ x \leq y) \Rightarrow (\exists c \in \mathbb{R}: \ x \leq c \leq y \ \forall x \in X, \forall y \in Y)$.
- **2.** Индуктивное множество. Множество $X \subset \mathbb{R}$ называется индуктивным, если $\forall x \in X \ (x+1) \in X$.
- **3.** Множество натуральных чисел. Множеством натуральных чисел называется пересечение всех индуктивных множеств, содержащих число 1. Обозначается множество натуральных чисел как N.
- **4. Расширенное множество** R**.** Множество $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ называется расширенным множеством вещественных чисел, а символы $-\infty, +\infty$ минус и плюс бесконечностями, соответственно, причем для вновь введенных символов постулируются следующие возможные операции:

$$x + (\pm \infty) = (\pm \infty) + x = \pm \infty, \ x \in \mathbb{R},$$

$$x * ((\pm \infty) = (\pm \infty) * x = \begin{cases} \pm \infty, \ x > 0 \\ \pm \infty, \ x < 0 \end{cases},$$

$$\frac{x}{\pm \infty} = 0, \ x \in \mathbb{R},$$

$$(\pm \infty) + (\pm \infty) = \pm \infty,$$

$$(+\infty) * (+\infty) = (-\infty) * (-\infty) = +\infty,$$

$$(+\infty) * (-\infty) = (-\infty) * (+\infty) = -\infty,$$

$$-\infty < x < +\infty, \ x \in \mathbb{R}.$$

- **5.** Окрестность и проколотая окрестность точки. Окрестностью точки $x_0 \in R$ называется произвольный интервал, содержащий x_0 . Проколотой окрестностью точки $x_0 \in \overline{\mathbb{R}}$ называется множество $U(x_0) \setminus \{x_0\}$, то есть произвольная окрестность точки x_0 без самой этой точки.
- **6.** Окрестности элементов $+\infty$ и $-\infty$. Окрестностью элемента $+\infty$ в \overline{R} называется множество вида $(a, +\infty], a \in \mathbb{R}$. Окрестностью элемента $-\infty$ в \overline{R} называется множество вида $[-\infty, a), a \in \mathbb{R}$.
- 7. Ограниченность множества сверху, верхняя граница. Множество $X \subset \overline{\mathbb{R}}$ называется ограниченным сверху, если $\exists M \in \mathbb{R}: \ \forall x \in X \ x \leq M$. Найденное число M называется верхней границей для X.
- **8.** Ограниченность множества снизу, нижняя граница. Множество $X \subset \overline{\mathbb{R}}$ называется ограниченным снизу, если $\exists m \in \mathbb{R} : \ \forall x \in X \ x \geq m$. Найденное число m называется нижней границей для X.

- **9.** Ограниченное множество. Множество $X \subset \overline{\mathbb{R}}$ называется ограниченным, если оно ограничено как сверху, так и снизу, то есть $\exists M, m \in \mathbb{R} : \in X \ m \leq x \leq M$.
- **10.** Максимальный и минимальный элемент множества. Элемент $M \in X \subset \overline{\mathbb{R}}$ называется максимальным (наибольшим) элементом множества X, если $\forall x \in X \ x \leq M$. Обозначают это так: M = maxX. Элемент $m \in X \subset \overline{\mathbb{R}}$ называется минимальным (наименьшим) элементом множества X, если $\forall x \in X \ x \geq m$. Обозначают это так: m = minX.
- **11. Точная верхняя грань.** Пусть $X \subset \overline{\mathbb{R}}$ ограничено сверху и не пусто. Наименьший элемент множества верхних границ называется супремумом (точной верхней гранью) множества X и обозначается sup X.
- **12.** Точная нижняя грань. Пусть $X \subset \overline{\mathbb{R}}$ ограничено сверху и не пусто. Наибольший элемент множества нижних границ называется инфимумом (или точной нижней гранью) множества X и обозначается inf X.
- **13. Целая и дробная части числа.** Для любого числа $x \in \mathbb{R}$ существует единственное $k \in \mathbb{Z}$ такое, что $k \leq x < k+1$, число k называется целой частью числа x и обозначается [x]. Величина $\{x\} = x [x]$ называется дробной частью числа x.
- **14. Последовательность.** Последовательность это функция, областью определения которой является множество натуральных чисел.
- 15. Предел последовательности на языке неравенств. Число A называется пределом последовательности x_n , если для любого положительного числа ε существует натуральное число n_0 , зависящее от ε такое, что какое бы ни взять натуральное число n, большее n_0 , будет выполняться неравенство $|x_n A| < \varepsilon$.
- **16.** Сходящаяся последовательность. Если последовательность x_n имеет предел $A \in R$ (число!), то говорят, что она сходится.
- 17. Бесконечные пределы последовательностей. Элемент $+\infty$ называется пределом последовательности x_n , если $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N}: \ \forall n > n_0 \ x_n > \frac{1}{\varepsilon}$. Элемент $-\infty$ называется пределом последовательности x_n , если $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N}: \ \forall n > n_0 \ x_n < -\frac{1}{\varepsilon}$. Обозначают это так: $\lim_{n\to\infty} x_n = \pm\infty, \ x_n \xrightarrow[n\to\infty]{} \pm\infty, \ x_n\to\pm\infty$.
- 18. Возрастающая и строго возрастающая последовательности. Говорят, что последовательность x_n возрастает, если $\forall n_1, n_2 \in \mathbb{N}: n_1 > n_2 \ x_{n1} \geq x_{n2}$. Говорят, что последовательность x_n строго возрастает, если $\forall n_1, n_2 \in \mathbb{N}: n_1 > n_2 \ x_{n1} > x_{n2}$.
- 19. Убывающая и строго убывающая последовательности. Говорят, что последовательность x_n убывает, если $\forall n_1, n_2 \in \mathbb{N}: n_1 > n_2 \ x_{n1} \leq x_{n2}$.

Говорят, что последовательность x_n строго убывает, если $\forall n_1, n_2 \in \mathbb{N}: n_1 > n_2 x_{n_1} < x_{n_2}$.

- **20.** Подпоследовательность. Пусть дана последовательность x_n и возрастающая последовательность $n_1 < n_2 < n_3 < ... < n_k < ...$ натуральных чисел. Последовательность $y_k = x_{n_k}$ называется подпоследовательностью последовательности x_n .
- **21.** Частичные пределы последовательности. Пределы (имеющих предел) подпоследовательностей последовательности x_n называются частичными пределами этой последовательности.
- **22.** Верхний и нижний пределы последовательности. Пусть E (непустое) множество частичных пределов последовательности x_n . Верхним пределом последовательности x_n называется $\sup E$ и обозначается $\overline{\lim_{n\to\infty}} x_n$ или $\limsup_n x_n$. Нижним пределом последовательности x_n называется $\inf E$ и обозначается $\underline{\lim_{n\to\infty}} x_n$ или $\liminf_n x_n$.
- **23.** Фундаментальная последовательность. Последовательность x_n называется фундаментальной, если $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \ \forall n > n_0 \ \forall p \in \mathbb{N} | x_{n+p} x_n | < \varepsilon$.
- **24.** Предельная точка множества. Точка $x_0 \in \mathbb{R}$ называется предельной для множества $E \subset \mathbb{R}$, если в любой окрестности x_0 содержится бесконечное число элементов множества E, то есть $\forall U(x_0) \ U(x_0) \cup E$ бесконечно.
- **25.** Предел функции по Коши на языке неравенств. Пусть $f: E \to \mathbb{R}, x_0 \in \mathbb{R}$ предельная точка для E. Число $A \in R$ называется пределом функции f в точке x_0 , если $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \; \forall x \in E: \; 0 < |x x_0| < \delta \; |f(x) A| < \varepsilon$. Обозначают это так: $\lim_{x \to x_0} f(x) = A, \; f(x) \underset{x \to x_0}{\to} A$.
- **26.** Бесконечные пределы функции в конечной точке (на языке неравенств). Пусть $f: E \to \mathbb{R}, \ x_0$ предельная для E. Элемент $-\infty$ называется пределом функции f в точке $x_0 \in \mathbb{R},$ если $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : 0 < |x x_0| < \delta \ f(x) < -\frac{1}{\varepsilon}$. Элемент $+\infty$ называется пределом функции f в точке $x_0 = -\infty$, если $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : x < -\frac{1}{\varepsilon} \ f(x) > \frac{1}{\varepsilon}$.
- **27.** Конечные пределы функции в бесконечных элементах (на языке неравенств). Число A называется пределом функции f в точке $x_0 = +\infty$, если $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0$: $\forall x \in E : x > \frac{1}{\delta} \ |f(x) A| < \varepsilon$.
- **28.** Определение предела по Гейне. Пусть $f: E \to \mathbb{R}, x_0 \in \overline{\mathbb{R}}$ предельная точка для E. Элемент $A \in \overline{\mathbb{R}}$ называется пределом функции f в точке x_0 , если для любой последовательности x_n такой, что: 1. $x_n \in E$. 2. $x_n \neq x_0$. 3. $\lim_{x \to \infty} x_n = x_0$ выполняется равенство $\lim_{x \to \infty} f(x_n) = A$.
 - 29. Возрастающая и строго возрастающая функция. Пусть $f: E \to \mathbb{R}$. Гово-

рят, что функция f возрастает на E, если $\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) \leq f(x_2)$. Говорят, что функция f строго возрастает на E, если $\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) < f(x_2)$.

- **30. Убывающая и строго убывающая функция.** Говорят, что что функция f убывает на E, если $\forall x_1, x_2 \in E: x_1 < x_2 \quad f(x_1) \geq f(x_2)$. Говорят, что функция f строго убывает на E, если $\forall x_1, x_2 \in E: x_1 < x_2 \quad f(x_1) > f(x_2)$.
- 31. Правосторонний и левосторонний пределы функции в конечной точке. Пусть $f: E \to \mathbb{R}, x_0 \in \mathbb{R}$ предельная точка для множества $U_+(x_0) = \{x \in E: x > x_0\}$. Говорят, что элемент $A \in \overline{\mathbb{R}}$ является пределом функции f в точке x_0 справа, если $\forall \varepsilon > 0 \exists \delta > 0: \forall x \in E: 0 < x x_0 < \delta \quad f(x) \in U_\varepsilon(A)$. Обозначается это так: $\lim_{x \to x_0 + 0} f(x) = A$.

Пусть $f: E \to \mathbb{R}, x_0 \in \mathbb{R}$ - предельная точка для множества $U_-(x_0) = \{x \in E: x < x_0\}$. Говорят, что элемент $A \in \overline{\mathbb{R}}$ является пределом функции f в точке x_0 слева, если $\forall \varepsilon > 0 \exists \delta > 0: \forall x \in E: 0 < x_0 - x < \delta \quad f(x) \in U_{\varepsilon}(A)$. Обозначается это так: $\lim_{x \to x_0 = 0} f(x) = A$.

- 32. Бесконечно малая и бесконечно большая функции. Функция $\alpha(x)$ называется бесконечно малой при $x \to x_0$, если $\lim_{x \to x_0} \alpha(x) = 0$. Функция $\beta(x)$ называется бесконечно большой при $x \to x_0$, если $\lim_{x \to x_0} |\beta(x)| = +\infty$
- **33.** О-большое от функции. Пусть $f,g: E \to \mathbb{R}, x_0$ предельная для E, и существует окрестность $\overset{\delta}{U}(x_0)$ такая, что $f(x) = \alpha(x)g(x)$ при $x \in \overset{\circ}{U}(x_0) \cap E$. 1. Если $\alpha(x)$ ограничена на множестве $\overset{\circ}{U}(x_0) \cap E$, то говорят, что функция f(x) есть «О большое» от функции g(x) при $x \to x_0$ (или что функция f(x) ограничена по сравнению с функцией g(x) при $x \to x_0$) и пишут $f(x) = O(g(x)), \quad x \to x_0$.
- **34.** о-малое от функции. Если $\lim_{x\to x_0}\alpha(x)=0$, то говорят, что функция f(x) есть «о малое» от функции g(x) при $x\to x_0$ (или что функция f(x) бесконечно малая по сравнению с функцией g(x) при $x\to x_0$) и пишут $f(x)=o(g(x)),\quad x\to x_0$.
- **35.** Эквивалентная функция. 3. Если $\lim_{x\to x_0}\alpha(x)=1$, то говорят, что функция f(x) эквивалентна функции g(x) при $x\to x_0$.
- **1.** Принцип математической индукции. Если множество $X \subset \mathbb{N}$ таково, что $1 \in X$ и $x \in X$ $(x+1) \in X$, то $X = \mathbb{N}$.
- **2. Принцип точной грани.** Пусть $X \subset \overline{\mathbb{R}}$, не пусто и ограничено сверху (снизу). Тогда существует единственный supX(infX).
- **3.** Принцип Архимеда. Пусть $x \in \mathbb{R}, x > 0$. Для любого $y \in \mathbb{R}$ существует единственное целое $k \in \mathbb{Z}$ такое, что $(k-1)x \le y < kx$.
 - 4. Свойства последовательностей, имеющих конечный предел.

Пусть $\lim x_n = A$. Тогда:

- 1. При $A \in \overline{\mathbb{R}}$ предел единственен.
- 2. При $A \in \mathbb{R}$ последовательность x_n ограничена.
- 3. В любой окрестности $A \in \mathbb{R}$ содержатся все элементы последовательности x_n , за исключением не более чем конечного числа.
- 5. Арифметические свойства пределов последовательностей в расширен**ном** R. Пусть $\lim_{n\to\infty}x_n=A,\ \lim_{n\to\infty}y_n=B,\ A,B\in\overline{\mathbb{R}}.$ Тогда, если определена соответствующая операция (сложения, умножения или деления) в $\overline{\mathbb{R}}$, то:
- 1. Предел суммы равен сумме пределов, то есть

$$x_n + y_n \underset{x \to \infty}{\longrightarrow} A + B$$

2. Предел произведения равен произведению пределов, то есть

$$x_n y_n \underset{x \to \infty}{\longrightarrow} AB$$

3. Предел частного равен (при естественных ограничениях) частному пределов, то есть

$$\frac{x_n}{y_n} \underset{x \to \infty}{\to} \frac{A}{B}, \ y_n \neq 0, \ B \neq 0$$

- 6. Предельный переход в неравенствах для последовательностей.
- Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, $A,B\in\overline{\mathbb{R}}$. 1. Если $x_n>y_n$, начиная с какого-либо номера n_0 , то $A\geq B$.
- 2. Если $x_n \geq y_n$, начиная с какого-либо номера n_0 , то $A \geq B$.
- 7. О сжатой переменной для последовательностей. Пусть, начиная с какого-то номера n_0 , выполняется $x_n \leq z_n \leq y_n$. Пусть, кроме того, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = A$, $A \in \overline{\mathbb{R}}$. Tогда $\lim_{n\to\infty} z_n = A$.
- 8. Теорема Вейерштрасса о пределе монотонной последовательности. Возрастающая последовательность x_n сходится тогда и только тогда, когда она ограничена сверху, причем $=\lim_{n\to\infty}x_n=\sup_nx_n$. Убывающая последовательность x_n сходится тогда и только тогда, когда она ограничена снизу, причем $\lim_{n\to\infty} x_n = \inf_n x_n$
- 9. О связи пределов последовательности и её подпоследовательностей. Пусть последовательность x_n имеет предел. Тогда любая ее подпоследовательности имеет тот же самый предел.
- 10. Теорема Больцано-Вейерштрасса. У любой ограниченной последовательности x_n существует сходящаяся подпоследовательность.

- **11. Критерий Коши для последовательностей.** Последовательность x_n сходится (в \mathbb{R}) тогда и только тогда, когда она фундаментальна.
- **12.** Локальные свойства функций, имеющих предел. Теорема 18 (Локальные свойства функций, имеющих предел). Пусть $f: E \to \mathbb{R}$ и $\lim_{x \to x_0} f(x) = A$. Тогда: 1. При $A \in \overline{\mathbb{R}}$ предел единственен. 2. При $A \in \mathbb{R}$ существует окрестность $U(x_0)$ такая, что в $U(x_0) \cap E$ функция $U(x_0) \cap E$ функция $U(x_0) \cap E$ знаки $U(x_0) \cap$
- 13. Арифметические свойства пределов функций в расширенном R. Теорема 19 (Арифметические свойства пределов в $\overline{\mathbb{R}}$). Пусть $f,g:E\to\mathbb{R}, \lim_{x\to x_0}f(x)=A, \lim_{x\to x_0}g(x)=B, A, B\in\overline{\mathbb{R}}$. Тогда, если определена соответствующая операция (сложения, умножения или деления) в $\overline{\mathbb{R}}$, то: 1. Предел суммы равен сумме пределов, то есть

$$f(x) + g(x) \xrightarrow[x \to x_0]{} A + B.$$

2. Предел произведения равен произведению пределов, то есть

$$f(x)g(x) \xrightarrow[x \to x_0]{} AB.$$

3. Если $g(x) \neq 0$ в некоторой $\stackrel{o}{U}(x_0)$, то предел частного равен частному пределов, то есть

$$\frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} \frac{A}{B}$$

- **14.** Предельный переход в неравенствах для функций. Пусть $f,g:E\to \mathbb{R}, \lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} g(x) = B, A, B \in \overline{\mathbb{R}}.$ 1. Если f(x)>g(x) на E, то $A\geq B$. 2. Если $f(x)\geq g(x)$ на E, то $A\geq B$.
- **15.** О сжатой переменной для функций. Пусть $f, g, h : E \to \mathbb{R}, f(x) \le h(x) \le g(x)$ на E и $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A, A \in \overline{\mathbb{R}}$. Тогда $\lim_{x \to x_0} h(x) = A$.
- 16. Теорема Вейерштрасса о пределах возрастающей и убывающей функций. Пусть $f: E \to \mathbb{R}$ возрастающая (на E) функция, $s = \sup E$ предельная для E. Тогда $\lim_{x\to s} f(x) = \sup_{x\in E} f(x)$. Пусть $f: E \to \mathbb{R}$ убывающая (на E) функция, $s = \inf E$ предельная для E. Тогда $\lim_{x\to i} f(x) = \inf_{x\in E} f(x)$.
- **17. Критерий Коши для функции.** Пусть $f: E \to \mathbb{R}, x_0$ предельная точка для E. Тогда $\lim_{x \to x_0} f(x) = A \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0: \forall x', x'' \in \stackrel{o}{U}_{\delta}(x_0) \cap E \quad |f(x') f(x'')| < \varepsilon$.
- **18.** Критерий существования предела через односторонние. Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$ предельная точка для множеств $U_-(x_0) = \{x \in E: x < x_0\}$, $U_+(x_0) = \{x \in E: x < x_0\}$

 $\{x \in E : x > x_0\}$. Тогда $\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) = A$, $A \in \mathbb{R}$.

- 19. О связи бесконечно большой и бесконечно малой функций. Пусть $\beta(x)$ бесконечно большая при $x \to x_0$. Тогда $\alpha(x) = \frac{1}{\beta(x)}$ бесконечно малая при $x \to x_0$. Пусть $\alpha: E \to \mathbb{R}$ бесконечно малая при $x \to x_0$ и $\exists \delta > 0: \forall x \in \stackrel{o}{U}_{\delta}(x_0) \cap E \quad \alpha(x) \neq 0$. Тогда $\beta(x) = \frac{1}{\alpha(x)}$ бесконечно большая при $x \to x_0$.
- **20.** О свойствах бесконечно малых функций. Пусть $\alpha, \beta: E \to \mathbb{R}$ бесконечно малые при $x \to x_0$. Тогда: 1. Функция $\alpha(x) + \beta(x)$ бесконечно малая при $x \to x 0$. 2. Функция $\alpha(x)\beta(x)$ бесконечно малая при $x \to x_0$. 3. Если функция $\theta: E \to \mathbb{R}$ ограничена в некоторой проколотой окрестности U_{δ} $(x_0) \cap E$, то функция $\alpha(x)\theta(x)$ бесконечно малая при $x \to x_0$.
- **21.** Критерий существования конечного предела в терминах бесконечно малых функций. Пусть $f: E \to \mathbb{R}, x_0$ предельная для E. Тогда $\lim_{x \to x_0} f(x) = A \in \mathbb{R} \Leftrightarrow f(x) = A + \alpha(x)$, где $\alpha(x)$ бесконечно малая при $x \to x_0$.