Seminarul nr. 5

- 1. Fiind date două numere pe n biţi (cu primul bit drept bit de semn) să se construiască un circuit care să selecteze pe cel mai mare dintre ele.
- 2. Se dă automatul

Să se arate că poate fi folosit drept un counter crescător pe 2 biți ($COUNT_2$).

- 3. Să se construiască un automat prefix pentru cazul $m=1,\ n=2.$
- 4. Fiind dat un polinom $a(X) = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}_2[X]$, să se construiască un circuit de înmulțire cu a(X).
- 5. Se dă un DFF. Să se construiască un circuit a cărui ieşire este 1 dacă și numai dacă DFF schimbă starea (din 0 în 1 sau din 1 în 0). De exemplul pentru intrarea 00110 ieşirea va fi 00101.
- 6. Să se construiască un automat care are ieșirea 1 dacă cel puțin doi din ultimii trei biți de intrare sunt 1. De exemplu, pentru intrarea 10011010011 ieșirea va fi 00001110001.
- 7. Se dă automatul

Să se construiască funcția de tranziție, funcția de ieșire și graful de funcționare.

8. Aceeași problemă pentru automatul

Soluţii

1. Se folosește observația din curs: a>b este echivalent cu $a+\bar{b}>11\dots 1$. Deci se testează bitul de semn al sumei $a+\bar{b}$. Acesta va fi selectorul a n multiplexori elementari, care triază între biții numărului a și cei ai numărului b.

2. Componentele din definiție se construiesc ușor: $Q=\{0,1\}^2,\; X=\{0,1\},\; Y=\{0,1\}$

	0			0	
00	00	01	00	00	01
01	01	10	01	01	10
10	00 01 10	11	10	00 01 10	11
11	11	00	11	11	00

funcțiile de tranziție și de ieșire (coincid). Graful de funcționare este:

3. Particularizând automatul prefix de la curs, se obține

Acest automat are $Q=\{0,1\}^3,~X=\{0,1\}^2,~Y=\{0,1\}^3,$ iar funcțiile sunt $\lambda(abc,xyz)=abc$ pentru ieșire și

δ	00	01	10	11
000	000	001	010	011
001	001	010	011	100
010	010	011	100	101
011	011	100	101	110
100	100	101	110	111
101	101	110	111	000
110	110	111	000	001
111	111	000	001	010

pentru transfer.

Graful de funcționare se construiește imediat.

4. Dacă polinomul este $a(X) = a_0 + a_1X + \dots + a_nX^n$, putem considera evident $a_n = 1$. Circuitul este format dintr-un registru serial SR_n (format din n DFF) și cel mult n-1 porți XOR. O reprezentare a circuitului este

Un arc marcat cu a_i este suspendat dacă $a_i = 0$ (iar poarta XOR in care intră acesta poate fi eliminată). Dacă $a_i = 1$, atunci acesta este un arc normal.

5. O soluţie posibilă este:

6. O soluţie posibilă este:

(din FA se reține numai transportul, valoarea sumei nefiind necesară).

7. Componentele automatului sunt: $Q=\{0,1\},\ X=\{0,1\}^2,\ Y=\{0,1\},$

δ	00	01	10	11	λ	1			
0	0	0	0	1			1		0
1	1	0	0	0	1	1	070	1	

Graful de funcționare se construiește imediat.

8. Componentele automatului sunt: $Q=\{0,1\},~X=\{0,1\}^2,~Y=\{0,1\},$

δ	00	01	10	11			01		
0	0	0	0	1			1		
1	1	1	1	0	1	1	070	1	

De remarcat că automatul diferă de cel anterior numai prin funcția de transfer. Graful de funcționare se construiește imediat.