ROZMAITOŚCI RÓŻNICZKOWALNE. LISTA 1.

O rozmaitościach topologicznych

- 1. Uzasadnij, że jeśli w definicji rozmaitości topologicznej warunek lokalnej euklidesowości zastąpimy którymkolwiek z następujących warunków:
 - (a) każdy punkt posiada otwarte otoczenie homeomorficzne z otwartą kulą w \mathbb{R}^n ,
 - (b) każdy punkt posiada otwarte otoczenie homeomorficzne z całą przestrzenią \mathbb{R}^n , to otrzymamy definicję równoważną.
- 2. Uzasadnij, że każdy otwarty podzbiór rozmaitości topologicznej jest rozmaitością topologiczną.
- 3. Uzasadnij, że jeśli rozmaitość M jest spójna, to jest też drogowo spójna, tzn. każde dwa punkty $p,q \in M$ możną połaczyć ciągła krzywą $\gamma:[0,1] \to M$ (taką, że $\gamma(0)=p,\gamma(1)=q$). Wskazówka: dla ustalonego punktu p rozważ zbiór tych punktów q, które można połaczyć z p krzywą ciągła.
- 4. Udowodnij, że jeśli (U, φ) jest mapą na rozmaitości M, zaś K jest zwartym podzbiorem $\varphi(U)$, to zbiór $\varphi^{-1}(K)$ jest (a) domknięty w M, (b) zwarty. Pokaż też, że jeśli K jest domknięty w $\varphi(U)$ to $\varphi^{-1}(K)$ nie musi być domknięty w M.
- 5. Pokaż, że jeśli przestrzeń topologiczna ma przeliczalną bazę, to z każdego jej pokrycia zbiorami otwartymi można wybrać przeliczalne podpokrycie.
- 6. Korzystając z zadań 4 i 5 uzasadnij, że każda rozmaitośc M jest przeliczalną sumą otwartych podzbiorów homeomorficznych z otwartymi kulami w R^n , których domknięcia w M sa homeomorficzne z domknietymi kulami w R^n .

Zgodność map i atlasów, rozmaitości gładkie

- 7. Uzasadnij, że lokalnie wokół każdego punktu $(x, y) \neq (0, 0)$ współrzędne biegunowe na R^2 są zgodne ze współrzędnymi kartezjańskimi.
- 8. Pokaż, że współrzędne geograficzne na sferze S^2 (określone na dopełnieniu biegunów i jednego z południków) są zgodne ze standardową strukturą na S^2 . Wskazówka: skorzystaj z parametrycznego równania sfery z użyciem współrzędnych geograficznych.
- 9. Uzasadnij, że zgodność atlasów jest relacją symetryczną i przechodnią.
- 10. Uzasadnij, że każdy atlas A na rozmaitości M zawiera się w dokładnie jednym atlasie maksymalnym (złożonym ze wszystkich map na M zgodnych z A).
- 11. Uzasadnij, że produkt $M \times N$ rozmaitości topologicznych jest rozmaitością topologiczną. Zakładając, że M i N są rozmaitościami gładkimi, opisz naturalny atlas definiujący strukturę gładką na produkcie (i sprawdź, że mapy są gładko zgodne).
- 12. Znajdź gładki atlas na R^1 niezgodny ze standardowym. Zrób to samo dla S^1 .

Własności ogólne odwzorowań przejścia

- 13. Uzasadnij, że dla $k \geq 1$ nie istnieje C^k -dyfeomorfizm pomiędzy otwartymi podzbiorami w R^n i R^m gdy $n \neq m$. Pozwoli to określić pojęcie wymiaru gładkiej rozmaitości w sposób niezależny od topologicznego (znacznie trudniejszego) twierdzenia o nieistnieniu homeomorfizmu pomiędzy otwartymi podzbiorami w R^n i R^m .
- 14. Uzasadnij, że jakobian odwzorowań przejścia pomiędzy mapami w C^k -rozmaitości, dla k > 0, jest w każdym punkcie niezerowy.

Funkcje gładkie na rozmaitościach

- 15. Niech M będzie rozmaitością gładką, $p \in M$ ustalonym punktem, zaś $f: M \to R$ funkcją rzeczywistą na M. Uzasadnij, że jednokrotna różniczkowalność funkcji $f \circ \varphi^{-1}$ w punkcie $\varphi(p)$ nie zależy od wyboru mapy (U, φ) zawierającej p (tzn. takiej, że $p \in U$). Oznacza to, że jednokrotna różniczkowalność w punkcie jest dobrze określonym pojęciem dla funkcji rzeczywistych na rozmaitości gładkiej.
- 16. Wykaż, że nieróżniczkowalność funkcji $f: M \to R$ w punkcie $p \in M$ jest dobrze określonym pojęciem (nie zależy od mapy zawierającej p).
- 17. Mówimy że funkcja wielu zmiennych ma w pewnym punkcie pochodną zerową gdy odpowiedni funkcjonał liniowy przybliżający funkcję na otoczeniu tego punktu, zadany przez pochodne cząstkowe, jest zerowy. Pokaż, że zerowość i niezerowość pochodnej funkcji $f: M \to R$ w punkcie $p \in M$ nie zależy od wyboru mapy. Pokaż też, że w każdym punkcie p rozmaitości M, w którym funkcja gładka $f: M \to R$ osiąga ekstremum lokalne, pochodna tej funkcji jest zerowa.
- 18. Niech $F: R^2 \to R$ będzie funkcją gładką, i niech $W(F) = \{(x,y,z) \in R^3 : z = F(x,y)\}$ będzie wykresem tej funkcji. Zadaj na wykresie W(F) strukturę gładkiej rozmaitości (za pomocą rzutu na płaszczyznę Oxy), a następnie udowodnij, że funkcja odległości od dowolnego ustalonego punktu $A \in R^3$ nie należącego do W(F), po obcięciu do tego wykresu, jest gładka.
- 19. Rozważmy sferę $S^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$, i niech N = (0,0,1) będzie jej biegunem północnym. Uzasadnij, że funkcja $f: S^2 \to R$ określona wzorem $f(x) = |x N|^2$ jest funkcją gładką. A co z funkcją g(x) = |x N|?

Rozmaitości z brzegiem

- 20. Uzasadnij, że brzeg ∂M jest domkniety w M.
- 21. Uzasadnij, że dla dowolnej gładkiej funkcji $f:M\to R$ obcięcie $f|_{\partial M}:\partial M\to R$ jest funkcją gładką.
- 22. Niech $F: R^n \to R$ bedzie gładką funkcją. Uzasadnij, że obszar pod wykresem funkcji F określony przez $\Omega_F = \{(x,y) \in R^n \times R : y \leq F(x)\}$ jest rozmaitością z brzegiem o strukturze gładkiej, która na wnętrzu int $\Omega_F = \{(x,y) \in R^n \times R : y < F(x)\}$ pokrywa się ze zwykłą strukturą otwartego podzbioru w R^{n+1} .
- 23. Uzasadnij, że $R^n \setminus \text{int} D^n = \{x \in R^n : |x| \ge 1\}$ jest rozmaitością z brzegiem.
- 24. B jest domkniętą kulą w pewnym lokalnym układzie współrzędnych na gładkiej rozmaitości M. Uzasadnij, że $M \setminus \text{int} B$ jest rozmaitością z brzegiem.