

CPE 633

Chapter 1 - Preliminaries

Dr. Rhonda Kay Gaede

UAH

UAH

Chapter 1

CPE 633

Motivation

- Computers are everywhere.
- Computers are used in _____ and _____ applications.
- Computer systems (_____ and _____) are incredibly _____.
- With complexity comes a propensity for _____.
- Two approaches:
 - _____
 - _____

1.1 Fault Classification

- Definitions
 - A fault (or failure) can be either a _____ or a _____.
 - An _____ is a manifestation of the _____.
- Examples
 - Output of adder circuit _____
 - $\sin(x)$ computation really _____
- Fault effects can _____.
- To limit this spread, designers incorporate _____.

1.1 Fault Classification

- These containment zones are _____ that reduce the chance that an effect can spread.
 - _____.
 - _____.
- Hardware faults can be:
 - _____
 - _____
 - _____
- Hardware faults are _____ or _____.

1.2 Types of Redundancy

- All of fault tolerance is an exercise in _____ and _____ - the property of _____ than is minimally necessary.
- Four forms of redundancy: _____, _____, _____, _____
- Hardware redundancy is provided by _____ in the design to _____ or _____ errors.
– It can be _____, _____ or _____

1.2 Types of Redundancy

- The best-known form of _____ redundancy, _____ and _____ coding, is widely used in _____.
- _____ and _____ codes are also used to protect data communicated over _____ (channels subject to many _____ failures) channels. _____ upon detection of an error is _____ redundancy.
- _____ redundancy leads to hardware _____.

1.3 Basic Measures of Fault Tolerance

- What does it mean to make machines more _____?
 - We need _____
- Traditional Measures
 - _____, _____, is the probability that the system has been _____ in the time interval $[0, t]$. It is suitable for applications in which even a _____ can prove costly.
 - _____ (MTTF)
 - _____ (MTBF)
 - _____ (MTTR)
 - _____ = _____ + _____

1.3 Basic Measures of Fault Tolerance

- _____, _____, is the average _____ over the interval $[0, t]$ that the system is _____.

$$A = \lim_{t \rightarrow \infty} A(t)$$

$$A = \frac{MTTF}{MTBF} = \frac{MTTF}{MTTF + MTTR}$$

- _____, _____, is the probability that the system is up at _____.

1.3 Basic Measures of Fault Tolerance

- All this is nice as long as we know what ____ means.
 - Some cases are simple, _____ for example.
 - Other cases not so much, what if _____?
 - Many systems have _____ states
- Extension of traditional measures to _____ of a system with n processors.

$$ACC = \sum_{i=1}^n c_i P_i(t)$$

- c_i is the _____ of a system with i processors
- $P_i(t)$ is the probability that exactly _____ are operational at time t

1.3 Basic Measures of Fault Tolerance

- Network Measures
 - Classical _____ and _____ - the minimum number of _____ and _____ that have to fail before the network becomes _____.
 - Average _____
 - Maximum _____ (_____)

