

PES University, Bengaluru

(ESTABLISHED UNDER KARNATAKA ACT No. 16 of 2013)

UE17CS254

MAY 2019: END SEMESTER ASSESSMENT (ESA) B.TECH. IV SEMESTER UE17CS254—THEORY OF COMPUTATION

TIME: 3 HRS.

ANSWER ALL QUESTIONS

MAX MARKS: 100

1.	a)	Define the following terms:								04	
		i. Alpł	nabet								
		ii. Transition function									
		iii. Grammar									
		iv. Language									
	b)	Construct a DFA to accept strings over {a, b} not ending with abb.									04
	c)	Convert the following NFA to its equivalent DFA using subset construction method:									06
											-
			,	1		(q1)	_				
		0									
)	9		/)		\wedge		
	\rightarrow q0 \rightarrow $(q2)$										
			70			0			92)		
	d)	d) Minimize the following DFA using table filling algorithm:									06
		States	→A	В	*C	D	Е	F	G	Н	
		0	В	G	Α	С	Н	С	Н	G	
		1	F	С	С	G	F	G	F	С	
	1	*			e						
2.	a)	Construct regular expressions for the following languages:								06	
		1		2 5		tly one pai	r of conse	cutive a s}			
		ii. L = {a ⁿ b ^m : n ≥ 3, m is odd}									
		iii. Set of all strings over {a, b}* not ending with the substring 'ab'.									
	b)									06	
	-1	convenience, r = p + q is represented as a ^p b ^q c ^r .									08
	c)	Obtain regular expression for the following DFA using state elimination technique:									

			s	RN			1		
		δ		а	b	С			
		→q0	q1, 🗌, R						
	q1		q2,	q1, a, R	q1, c, R	q1, c, R			
		*q2		q2, c, L		q2, b, L			
		ii. Give the state diagram of M.							
	iii. Describe the result of a computation in M.								
	c)	Write short notes on:							
		i. Universal Turing machine							
		ii. Post correspondence problem							
