Disjoint Sets: Efficient Implementations

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Data Structures Fundamentals Algorithms and Data Structures

Outline

- 1 Trees
- 2 Union by Rank
- 3 Path Compression
- 4 Analysis

Represent each set as a rooted tree

- Represent each set as a rooted tree
- ID of a set is the root of the tree

- Represent each set as a rooted tree
- ID of a set is the root of the tree
- Use array parent[1...n]: parent[i] is

the parent of i, or i if it is the root

MakeSet(i)

 $parent[i] \leftarrow i$

MakeSet(i)

 $parent[i] \leftarrow i$

Running time: O(1)

```
	ext{MakeSet}(i)
	ext{parent}[i] \leftarrow i
	ext{Running time: } \textit{O}(1)
```

```
Find(i)

while i \neq parent[i]:

i \leftarrow parent[i]

return i
```

```
\frac{\text{MakeSet}(i)}{\text{parent}[i] \leftarrow i}
```

Running time: O(1)

Find(i)

while $i \neq \text{parent}[i]$: $i \leftarrow \text{parent}[i]$ return i

Running time: O(tree height)

■ How to merge two trees?

- How to merge two trees?
- Hang one of the trees under the root of the other one

- How to merge two trees?
- Hang one of the trees under the root of the other one
- Which one to hang?

- How to merge two trees?
- Hang one of the trees under the root of the other one
- Which one to hang?
- A shorter one, since we would like to keep the trees shallow

Outline

- 1 Trees
- **2** Union by Rank
- 3 Path Compression
- 4 Analysis

When merging two trees we hang a shorter one under the root of a taller one

- When merging two trees we hang a shorter one under the root of a taller one
- To quickly find a height of a tree, we will keep the height of each subtree in an array rank[1...n]: rank[i] is the height of the subtree whose root is i

- When merging two trees we hang a shorter one under the root of a taller one
- To quickly find a height of a tree, we will keep the height of each subtree in an array rank[1...n]: rank[i] is the height of the subtree whose root is i
- (The reason we call it rank, but not height will become clear later)

- When merging two trees we hang a shorter one under the root of a taller one
- To quickly find a height of a tree, we will keep the height of each subtree in an array rank[1...n]: rank[i] is the height of the subtree whose root is i
- (The reason we call it rank, but not height will become clear later)
- Hanging a shorter tree under a taller one is called a union by rank heuristic

```
MakeSet(i)
parent[i] \leftarrow i
rank[i] \leftarrow 0
```

```
Find(i)
```

```
while i \neq \text{parent}[i]:
    i \leftarrow \mathtt{parent}[i]
```

return *i*

```
Union(i, j)
i\_id \leftarrow Find(i)
j\_id \leftarrow Find(j)
if i\_id = j\_id:
return
```

if rank[i id] > rank[j id]:

 $parent[i id] \leftarrow i id$

parent[i id] \leftarrow j id

if rank[i id] = rank[j id]:

 $\texttt{rank}[j_id] \leftarrow \texttt{rank}[j_id] + 1$

else:

Query:

Query:

```
MakeSet(1)
MakeSet(2)
...
MakeSet(6)
```

parent

rank

1 2 3 4 5 6

Example Query:

rank

Query:

parent

rank

 $\begin{array}{c|ccccc}
\Omega & \Omega & \Omega & \Omega \\
\hline
2 & 3 & 4 & 5
\end{array}$

1 2 3 4 5 6 1 2 3 4 5 6

Query:

parent

rank

1 | 4 | 3 |

4 | 5 |

Query:

parent

rank

1 | 4 |

3 | 4 | 5 |

Query:

parent

rank

parent

rank

Example Query:

parent

rank

Example

Example Query:

parent

rank

Example

Query:

parent

rank

Example

rank

Important property: for any node i, rank[i] is equal to the height of the tree rooted at i

Lemma

The height of any tree in the forest is at most $log_2 n$.

Lemma

The height of any tree in the forest is at most $log_2 n$.

Follows from the following lemma.

Lemma

Any tree of height k in the forest has at least 2^k nodes.

Proof

Induction on k.

- Base: initially, a tree has height 0 and one node: $2^0 = 1$.
- Step: a tree of height k results from merging two trees of height k-1. By induction hypothesis, each of two trees has at least 2^{k-1} nodes, hence the resulting tree contains at least 2^k nodes.

Summary

The union by rank heuristic guarantees that Union and Find work in time $O(\log n)$.

Summary

The union by rank heuristic guarantees that Union and Find work in time $O(\log n)$.

Next part

We'll discover another heuristic that improves the running time to nearly constant!

Outline

1 Trees

- 2 Union by Rank
- 3 Path Compression
- 4 Analysis

Find(i)

```
if i \neq \text{parent}[i]:
```

return parent[i]

 $parent[i] \leftarrow Find(parent[i])$

Definition

The iterated logarithm of n, $\log^* n$, is the number of times the logarithm function needs to be applied to n before the result is less or equal than 1:

$$\log^* n = egin{cases} 0 & \text{if } n \leq 1 \ 1 + \log^*(\log n) & \text{if } n > 1 \end{cases}$$

Example

n	log* n
n=1	0
n=2	1
$n \in \{3,4\}$	2
$n \in \{5,6,\ldots,16\}$	3
$n \in \{17, \dots, 65536\}$	4
$n \in \{65537, \dots, 2^{65536}\}$	5

Lemma

Assume that initially the data structure is empty. We make a sequence of m operations including n calls to MakeSet. Then the total running time is $O(m \log^* n)$.

In other words

The amortized time of a single operation is $O(\log^* n)$.

In other words

The amortized time of a single operation is $O(\log^* n)$.

Nearly constant!

For practical values of n, $\log^* n \le 5$.

Outline

1 Trees

- 2 Union by Rank
- 3 Path Compression
- 4 Analysis

Goal

Prove that when both union by rank heuristic and path compression heuristic are used, the average running time of each operation is nearly constant.

$Height \leq Rank$

■ When using path compression, rank[i] is no longer equal to the height of the subtree rooted at i

$Height \leq Rank$

- When using path compression, rank[i] is no longer equal to the height of the subtree rooted at i
- Still, the height of the subtree rooted at i is at most rank[i]

$Height \leq Rank$

- When using path compression, rank[i] is no longer equal to the height of the subtree rooted at i
- Still, the height of the subtree rooted at i is at most rank[i]
- And it is still true that a root node of rank *k* has at least 2^{*k*} nodes in its subtree: a root node is not affected by path compression

Important Properties

There are at most $\frac{n}{2^k}$ nodes of rank k

Important Properties

- 11 There are at most $\frac{n}{2^k}$ nodes of rank k
- For any node i, rank[i] < rank[parent[i]]</pre>

Important Properties

- 11 There are at most $\frac{n}{2^k}$ nodes of rank k
- For any node i, rank[i] < rank[parent[i]]</pre>
- 3 Once an internal node, always an internal node

$$T(\text{all calls to Find}) =$$

 $\#(i \rightarrow j) =$
 $\#(i \rightarrow j: j \text{ is a root}) +$

 $\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[i]) +$

 $\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) = \log^*(\operatorname{rank}[j])$

$$\#(i \rightarrow j) =$$

 $\#(i \rightarrow j: j i$

$$T(\text{all calls to Find}) = \#(i \rightarrow j) =$$

$$\#(i \rightarrow i \cdot i)$$

$$\#(i \rightarrow j: j \text{ is a root})+$$

$$\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j]) + \#(i \rightarrow j: \log^*(\operatorname{rank}[i]) = \log^*(\operatorname{rank}[j])$$

$$T(\text{all calls to Find}) =$$

 $\#(i \rightarrow j) =$
 $\#(i \rightarrow j: j \text{ is a root}) +$
 $\#(i \rightarrow j: \log^*(\text{rank}[i]) < \log^*(\text{rank}[j])) +$

Claim

 $\#(i \rightarrow j: j \text{ is a root}) \leq O(m)$

$$\#(i \rightarrow j: j \text{ is a root}) \leq O(m)$$

Proof

There are at most m calls to Find.

$$\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j]))$$

 $\leq O(m \log^* n)$

$$\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) < \log^*(\operatorname{rank}[j]))$$

 $\leq O(m \log^* n)$

Proof

There are at most $\log^* n$ different values for $\log^*(\text{rank})$.

$$\#(i \rightarrow j: \log^*(\operatorname{rank}[i]) = \log^*(\operatorname{rank}[j])) \le$$

 $O(n \log^* n)$

• assume rank[i] $\in \{k+1,\ldots,2^k\}$

- **assume rank**[i] $\in \{k+1,\ldots,2^k\}$
- the number of nodes with rank lying in this interval is at most

$$\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\cdots\leq\frac{n}{2^k}$$

- assume rank[i] $\in \{k+1,\ldots,2^k\}$
- the number of nodes with rank lying in this interval is at most

$$\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\cdots\leq\frac{n}{2^k}$$

after a call to Find(i), the node i is adopted by a new parent of strictly larger rank

- assume rank[i] $\in \{k+1,\ldots,2^k\}$
- the number of nodes with rank lying in this interval is at most

$$\frac{n}{2^{k+1}}+\frac{n}{2^{k+2}}+\cdots\leq\frac{n}{2^k}$$

- after a call to Find(i), the node i is adopted by a new parent of strictly larger rank
- after at most 2^k calls to Find(i), the parent of i will have rank from a different interval

■ there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k
- the contribution of all the nodes with rank from this interval is at most O(n)

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k
- the contribution of all the nodes with rank from this interval is at most O(n)
- the number of different intervals is log* n

- there are at most $\frac{n}{2^k}$ nodes with rank in $\{k+1,\ldots,2^k\}$
- \blacksquare each of them contributes at most 2^k
- the contribution of all the nodes with rank from this interval is at most O(n)
- the number of different intervals is log* n
- thus, the contribution of all nodes is $O(n \log^* n)$

■ Represent each set as a rooted tree

- Represent each set as a rooted tree
- Use the root of the set as its ID

- Represent each set as a rooted tree
- Use the root of the set as its ID
- Union by rank heuristic: hang a shorter tree under the root of a taller one

- Represent each set as a rooted tree
- Use the root of the set as its ID
- Union by rank heuristic: hang a shorter tree under the root of a taller one
- Path compression heuristic: when finding the root of a tree for a particular node, reattach each node from the traversed path to the root

- Represent each set as a rooted tree
- Use the root of the set as its ID
- Union by rank heuristic: hang a shorter tree under the root of a taller one
- Path compression heuristic: when finding the root of a tree for a particular node, reattach each node from the traversed path to the root
- Amortized running time: $O(\log^* n)$ (constant for practical values of n)