

Ranked List Loss for Deep Metric Learning Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, Romain Garnier, Neil M. Robertson

What is deep metric learning (DML)?

> DML learns a deep embedding space where the relative locations of data points are based on their semantic labels to achieve intraclass compactness and interclass separability.

Figure 1: An excerpt of t-SNE plot on CUB-200-2011 test set.

What are the limitations of methods in the literature?

- Exploiting only a proportion of informative examples. We find that utilising all of them jointly is better.
- Tending to shrink class-level distribution into one point, i.e., kill all intraclass variances in the metric space. We argue that regularising the metric space by pulling all intraclass examples into a hypersphere is better.
- > Imbalanced number of positive examples and negative ones.

How do we address the key limitations?

- Leveraging all non-trivial training examples.
- Hypersphere regulator: Non-excessively reduce intraclass variances.
- > Treating the positive and negative sets of a query equally.

Illustration of our ranked list loss (RLL)

Figure 2: The optimisation objective of RLL. Different shapes represent different classes. The red and yellow denote trivial and informative examples, respectively. Arrows indicate pull/push effects to the query by non-trivial examples in the gallery. During training, the query's representation is updated based on a weighted combination of their effects. We only calculate the gradient w.r.t. the query per loss. In other words, we iteratively update a query's embedding while fixing the gallery.

Figure 3: Comparing RLL with other ranking-motivated structured losses. The blue circle is an anchor (query). The intraclass hypersphere diameter: $\alpha-m$

Figure 4: Pipeline of RLL. Computational complexity: O(N^2)

SOTA results and ablation study on SOP

Query

The top 4 images in the ranked list of each query

	S	OP	
R@1	R@10	R@100	NMI
66.7	82.4	91.9	89.5
62.5	80.8	91.9	88.7
66.4	83.2	93.0	89.4
67.0	83.7	93.2	89.5
67.6	83.7	93.3	89.4
73.7	_	_	90.6
76.1	89.1	95.4	89.7
79.8	91.3	96.3	90.4
	66.7 62.5 66.4 67.0 67.6 73.7 76.1	R@1 R@10 66.7 82.4 62.5 80.8 66.4 83.2 67.0 83.7 67.6 83.7 73.7 - 76.1 89.1	66.7 82.4 91.9 62.5 80.8 91.9 66.4 83.2 93.0 67.0 83.7 93.2 67.6 83.7 93.3 73.7 - - 76.1 89.1 95.4

Embedding	R@1	R@10	R@100
L	76.1	88.8	94.9
M	76.9	89.6	95.5
H	76.1	89.1	95.4
(L,M,H)	79.8	91.3	96.3
Batch size	R@1	R@10	R@100
$120 = 40 \times 3$	79.2	90.9	96.2
$150 = 50 \times 3$	79.5	91.1	96.2
$165 = 55 \times 3$	79.7	91.2	96.3
$180 = 60 \times 3$	79.8	91.3	96.3
$195 = 65 \times 3$	79.8	91.3	96.3

		4
General	hyper-tac	tore etudi
Ochleran	Tryper rae	iois stady

RLL's hyper-parameters study

m = 0.4, T = 10	R@1	R@10	R@100
$\alpha = 1.4$	76.2	89.4	95.6
$\alpha = 1.2$	79.8	91.3	96.3
$\alpha = 1.0$	78.7	90.5	95.9

R@1 R@10 R@100	0.4.1.0		
	$m = 0.4, \alpha = 1.2$	R@1	R@10
76.1 89.8 95.7	T = 0	78.8	90.7
79.0 91.2 96.3	T = 5	79.1	91.0
79.8 91.3 96.3	T = 10	79.8	91.3
79.2 90.6 96.0	T = 15	79.3	90.9
79.1 90.5 95.8	T = 20	78.6	90.5

Summary

 $\alpha = 1.2, T = 10$

m = 0

m = 0.2

m = 0.4

m = 0.6

m = 1.2

- > RLL is simple, effective, intuitive (easy to interpret).
- > Extensive ablation studies are presented and valuable for practice.