

Deep Learning-Based Vehicle Front-Back Classification

Mohsin khan 19P-0060 Saad Ali 22P-9208

Introduction

- Vehicle orientation classification is essential for ITS applications like parking systems and toll collection.
- Focus on detecting vehicle front-back orientation in challenging conditions (lighting, weather, vehicle diversity).
- Utilizes CNN architectures for feature extraction.
- Goal: Develop a robust model for real-world traffic management applications.

Title	Methodology	Dataset	Result
"Classification of Vehicle Images through Deep Neural Networks"	Used DNNs to classify vehicle images by orientation in ITS applications.	Custom dataset with diverse vehicle angles and conditions.	Accuracy: 95%, indicating robust performance across varied conditions.
"Advancements in Image Classification using CNN "[2]	Reviewed CNN evolution for image classification tasks, emphasizing robustness.	Reviewed datasets like ImageNet.	Improvement in accuracy by ~10% using advanced architectures.
"VoNet: Vehicle Orientation Classification Using CNN" [3]	Proposed VoNet for front-back vehicle classification.	Custom dataset with multiple vehicle orientations.	Accuracy: 92.5%

Title	Methodology	Dataset	Result
Classification of Vehicles Using Histogram Oriented Gradients [4]	Modified HOG features for vehicle type classification.	PASCAL VOC dataset.	Accuracy: 88% (with modifications).
Real-Time Vehicle Classification Using CNN [5]	Developed a CNN-based system for real-time classification.	Custom real-time traffic dataset with diverse vehicle types.	Real-time accuracy: 93.2%.
Advancing Image Understanding in Poor Visibility [6]	Examined deep learning methods for vehicle detection in poor visibility.	Dataset with low-visibility conditions (fog, rain).	Model accuracy dropped ~20% under poor visibility.

Title	Methodology	Dataset	Result
Vehicle Shape and Color Classification Using CNN [7]	Used CNNs to classify vehicles based on shape and color.	Dataset with annotated shapes and colors.	Accuracy: 89.5%.
Evaluating ResNet for Image Recognition [8]	Benchmarked ResNet's performance for orientation detection.	ImageNet dataset.	Accuracy: 96.1% (ResNet-50).
Evaluation of Deep Learning for Semantic Segmentation of Car Parts [9]	Evaluated algorithms for car part segmentation, aiding orientation detection.	Car Parts Dataset with annotated parts.	IoU (Intersection over Union): 82%.

Title	Methodology	Dataset	Result
Deep Learning-Based Vehicle Orientation Estimation [10]	Analyzed environmental impacts (lighting, weather) on orientation classification.	Custom dataset under varied conditions.	Accuracy: 90% under normal, 78% under harsh conditions.
Fast Real-Time Vehicle Detection Using Deep Learning [11]	Proposed a real-time detection system for ITS.	KITTI dataset.	Detection accuracy: 91%, latency: 50ms per frame.
Real-Time Orientation Classification and Viewpoint-Aware Re-ID [12]	Combined orientation classification with re-identification for tracking.	Multi-view vehicle dataset.	Orientation accuracy: 94%, re-ID accuracy: 89%.

Title	Methodology	Dataset	Result
Deep Learning Techniques for Vehicle Detection [13]	Reviewed techniques for vehicle detection and classification in images/videos.	Reviewed KITTI and ImageNet datasets.	Best methods achieved >90% accuracy for classification.
Car Full View Dataset: Fine-Grained Orientation Prediction [14]	Introduced a dataset for fine-grained orientation prediction, tested models.	Car Full View Dataset with multiple vehicle perspectives.	Accuracy: 93.4%.
Vehicle Orientation Classification in Challenging Conditions [15]	Proposed hybrid CNN-LSTM for better classification in occlusion-heavy scenes.	Dataset with high occlusion scenarios.	Accuracy: 85% (10% better than CNN alone).

THE PRESENTATION OF THE PARTY O

Back view:

Pakwheels:

THE PRINCESS OF THE PARTY OF TH

Front view:

Pakwheels:

SALUMINIM SALUMAN SALU

Back view:

Methodology

- **Dataset:** 900 images, augmented for robustness.
- Feature Extraction: CNN models (MobileNet, VGG) used for visual feature extraction.
- Classification: MobileNetV2 with sigmoid activation vs. MobileNet + SVM classifier.
- **Training:** 5-fold cross-validation with evaluation metrics (accuracy, precision, recall, F1-score).

Results

• MobileNetV:

• **Test Loss:** 0.532

• **Test Accuracy:** 77.08%

• **VGG** + **SVM**:

o Accuracy: 0.9695

o Precision: 0.9794

o Recall: 0.9596

o F1 Score: 0.9694

• **Performance:** Excellent results with VGG+ SVM across all metrics.

Conclusion and future work

- **Conclusion:** MobileNet + SVM outperforms MobileNetV2 in accuracy and other metrics.
- **Future Work:** Expand dataset with more challenging conditions, explore more CNN Models
- **Real-Time Testing:** Integrate for real-time traffic monitoring and ITS applications.

References

- [1] Berwo, M. A., Khan, A., Fang, Y., Fahim, H., Javaid, S., Mahmood, J., Abideen, Z. U., & M. S., S. (2023). Deep learning techniques for vehicle detection and classification from images/videos: A survey. *Sensors*, 23(4832). https://doi.org/10.3390/s23104832
- [2] ResearchGate. (n.d.). Advancements in image classification using convolutional neural networks. Retrieved from https://www.researchgate.net/publication/333351209 Advancements in Image Classification using Convolutional Neural Network
- [3] ResearchGate. (n.d.). VoNet: Vehicle orientation classification using convolutional neural networks. Retrieved from https://www.researchgate.net/publication/313020044 VoNet vehicle orientation classification using convolutional neural network
- [4] ResearchGate. (n.d.). Classification of vehicles' types using histogram oriented gradients: Comparative study and modification. Retrieved from <a href="https://www.researchgate.net/publication/348273886_Classification_of_vehicles%27_types_using_histogram_oriented_gradients_comparative_study_and_modification_diffication_of_vehicles%27_types_using_histogram_oriented_gradients_comparative_study_and_modification_difficatio
- [5] ResearchGate. (n.d.). Real-time vehicle classification using CNN. Retrieved from https://www.researchgate.net/publication/344810419 Real-Time Vehicle Classification Using CNN
- [6] ResearchGate. (n.d.). Advancing image understanding in poor visibility environments: A collective benchmark study. Retrieved from https://www.researchgate.net/publication/340238487 Advancing Image Understanding in Poor Visibility Environments A Collective Benchmark Study
- [7] ResearchGate. (n.d.). Vehicle shape and color classification using convolutional neural networks. Retrieved from https://www.researchgate.net/publication/333259996_Vehicle_Shape_and_Color_Classification_Using_Convolutional_Neural_Network
- [8] ResearchGate. (n.d.). Evaluating the performance of ResNet model based on image recognition
- [9] ResearchGate. (n.d.). Evaluation of deep learning algorithms for semantic segmentation of car parts. Retrieved from https://www.researchgate.net/publication/351787893 Evaluation of deep learning algorithms for semantic segmentation of car parts
- [10] ResearchGate. (n.d.). Deep learning-based vehicle position and orientation estimation via inverse perspective mapping image. Retrieved from https://www.researchgate.net/publication/335499200 Deep Learning based Vehicle Position and Orientation Estimation via Inverse Perspective Mapping Image
- [11] ResearchGate. (n.d.). A fast and accurate real-time vehicle detection method using deep learning for unconstrained environments. Retrieved from https://www.researchgate.net/publication/368911542_A_Fast_and_Accurate_Real-Time_Vehicle_Detection_Method_Using_Deep_Learning_for_Unconstrained_Environments

- [12] ResearchGate. (n.d.). Real-time vehicle orientation classification and viewpoint-aware vehicle re-identification. Retrieved from https://www.researchgate.net/publication/352879933 Real-Time Vehicle Orientation Classification and Viewpoint-Aware Vehicle Re-Identification
- [13] ResearchGate. (n.d.). Deep learning techniques for vehicle detection and classification from images/videos: A survey. Retrieved from https://www.researchgate.net/publication/370840010 Deep Learning Techniques for Vehicle Detection and Classification from ImagesVideos A Survey
- [14] Catruna, A., Betiu, P., Tertes, E., Ghita, V., Radoi, E., Mocanu, I., & Dascalu, M. (2023). Car Full View Dataset: Fine-grained predictions of car orientation from images. *Electronics*, *12*(4947). https://doi.org/10.3390/electronics12244947
- [15] ResearchGate. (n.d.). Vehicle orientation classification in challenging conditions. Retrieved from https://www.researchgate.net/publication/368911542_A_Fast_and_Accurate_Real-Time_Vehicle_Detection_Method_Using_Deep_Learning_for_Unconstrain_ed_Environments

Thank You