PUC-GOIÁS CMP1054 - EDI

Árvores

Prof. Dr. José Olimpio Ferreira

SUMÁRIO

- Árvores
 - Introdução
 - Definição
 - Terminologia
 - Travessia/Caminhamento em Árvores
 - Em-Pré-ordem
 - Em-ordem

- Em-Pós-ordem
- Em-Largura

INTRODUÇÃO

- Árvores são estruturas de dados bastante utilizadas na computação:
 - Estruturas de arquivos
 - · Árvores de parsing em Compilação de Programas
 - Parsing: Análise, análise da sintaxe ou análise sintática é o processo de análise de uma string (série de símbolos e Computação), seja em linguagem natural, linguagem computacional ou estruturas de dados, em conformidade com as regras de uma gramática formal.
 - Documentos HTML, XML etc

•

DEFINIÇÃO

- · Uma árvore é composta por um conjunto de nós.
 - · Um conjunto é vazio (Uma árvore vazia) ou
 - Existe um nó especial chamado de nó raiz (**r**) que contém zero ou mais sub-árvores cujas raízes são ligadas a ele.
 - · As raízes das sub-árvores são ditos nós filhos de r.
 - · Cada sub-árvore é ligada à raiz por uma aresta (ou link).
 - · Nós com filhos são chamados de nós internos.
 - · Nós sem filhos são chamados de nós folhas.
 - · Nós armazenam informações.

REPRESENTAÇÃO GRÁFICA

EXEMPLO: ESTRUTURA DE DIRETÓRIOS

- 6 é filho de 8.
- · 8 é pai de 6.

- 5, 6 e 7 são irmãos (têm o mesmo pai.)
- 5, 4, 3, 7, 0, 2 e 11 são folhas.
- 6, 8, 10 e 1 são nós internos.

- 9, 10, 1 e 2 é um caminho de 9 até 2.
 - · Um caminho entre dois nós é único.
 - Tamanho do caminho = número de arestas no caminho.
 - O tamanho do caminho de 9 até 2 é 3.
 - · Existe um caminho de tamanho zero de cada nó para ele mesmo.

- · Profundidade (depth) de um nó n.
 - · Tamanho do caminho da raiz até o nó n.
 - · A raiz tem profundidade zero.
- Profundidade (depth) de uma árvore é profundiade de sua folha mais distante.
 - Profundidade(T) = 3.

· Altura (height) de um nó k.

- · Tamanho do maior caminho de k até uma folha.
- Folhas têm altura zero.
- O altura (height) de uma árvore é o altura de sua raiz.
 - Altura(T) = 3.

- · Grau de um nó.
 - · É o número de filhos que ele tem.
 - O nó 8 tem grau 3
 - O nó 10 tem grau 2
 - O nó 3 tem grau 0.
- · Grau da árvore.

- · É o grau do nó com maior grau em toda a árvore.
- A árvore T tem grau 3.

ÁRVORES

- Podemos a nível prático pensar em dois tipos de árvores:
 - Árvores binárias
 - · Árvores em que cada nó tem nenhum, um ou dois filhos.
 - Árvores n-árias.
 - · Árvores com número variado de filhos

IMPLEMENTAÇÃO DE ÁRVORES N-ÁRIAS

- · Mantenha os filhos de cada nó numa lista.
 - · O filho mais a esquerda encabeça a lista.
 - · Seus irmãos formam a lista da esquerda para a direita.
- · Cada nó conhece:
 - · lista de irmãos.
 - · lista de filhos.

TRAVESSIA OU CAMINHAMENTO EM ÁRVORES N-ÁRIAS

- · Pré-ordem.
 - Processa cada nó antes de processar suas sub-árvores (da esquerda para a direita).
 - $9 \to 8 \to 5 \to 6 \to 4 \to 3 \to 7 \to 0 \to 10 \to 1 \to 2 \to 11$

TRAVESSIA OU CAMINHAMENTO EM ÁRVORES N-ÁRIAS

- · Pós-ordem.
 - Processa cada nó após processar suas sub-árvores (da esquerda para a direita).
 - $5 \to 4 \to 3 \to 6 \to 7 \to 8 \to 0 \to 2 \to 1 \to 11 \to 10 \to 9$

TRAVESSIA OU CAMINHAMENTO EM ÁRVORES N-ÁRIAS

- Em-largura.
 - Todos os nós na profundidade d são processados antes que os nós na profundidade d+1.
 - $9 \rightarrow 8 \rightarrow 0 \rightarrow 10 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 1 \rightarrow 11 \rightarrow 4 \rightarrow 3 \rightarrow 2$