FCC PART 15.231(e)

MEASUREMENT AND TEST REPORT

FOR

SHENZHEN SHANLONG ELECTRONIC TECHNOLOGY CO., LTD.

Room A-B, 12 Floor, Sun Island Building No.2020 Dongmen South Road, Luohu

District, Shenzhen, China

FCC ID: XNFSL-53032A

Report Concerns:	Equipment Type:
Original Report	Sensor
Model:	<u>SL-53032A</u>
Report No.:	STR09078108I
Test/Witness Engineer:	Susom Eu
Test Date:	2009-07-29 to 2009-07-31
Issue Date:	2009-08-06
Prepared By:	
3/F, Jinbao Commo	ance Service Co., Ltd. erce Building, Xin'an Fanshen Road, enzhen, P.R.C. (518101)
Approved & Authorized By:	Jandy So / PSQ Manager

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by SEM.Test Compliance Service Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.4 TEST METHODOLOGY 1.5 TEST FACILITY	4
1.6 EUT Exercise Software	
1.7 ACCESSORIES EQUIPMENT LIST AND DETAILS	
1.8 EUT Cable List and Details	4
2. SUMMARY OF TEST RESULTS	5
3. §15.203 ANTENNA REQUIREMENT	6
3.1 STANDARD APPLICABLE	6
3.2 Test Result	6
4. §15.205, §15.209, §15.231 (E) RADIATED EMISSION	7
4.1 Measurement Uncertainty	7
4.2 Standard Applicable	
4.3 TEST EQUIPMENT LIST AND DETAILS	
4.4 TEST PROCEDURE	8
4.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
4.7 SUMMARY OF TEST RESULTS/PLOTS	
5. §15.231(C) 20DB BANDWIDTH TESTING	12
5.1 STANDARD APPLICABLE	12
5.2 TEST EQUIPMENT LIST AND DETAILS	
5.3 TEST PROCEDURE	
5.4 ENVIRONMENTAL CONDITIONS	12
5.5 SUMMARY OF TEST RESULTS/PLOTS	
6. §15.231(E) DEACTIVATION TESTING	
6.1 Standard Applicable	
6.2 Test Equipment List and Details	
6.3 TEST PROCEDURE 6.4 ENVIRONMENTAL CONDITIONS	
6.5 SUMMARY OF TEST RESULTS/PLOTS	
7. §15.231(E) DUTY CYCLE	
7. STANDARD APPLICABLE	
7.1 STANDARD APPLICABLE	
7.3 TEST PROCEDURE.	
7.4 ENVIRONMENTAL CONDITIONS	16
7.5 SUMMARY OF TEST RESULTS/PLOTS	16

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Applicant: SHENZHEN SHANLONG ELECTRONIC TECHNOLOGY

CO., LTD.

Address of applicant: Room A-B, 12 Floor, Sun Island Building No.2020 Dongmen

South Road, Luohu District, Shenzhen, China

Model: SL-53032A

Manufacturer: SHENZHEN SHANLONG ELECTRONIC TECHNOLOGY

CO., LTD.

Address of manufacturer: Room A-B, 12 Floor, Sun Island Building No.2020 Dongmen

South Road, Luohu District, Shenzhen, China

General Description of E.U.T

Items	Description					
EUT Description:	Sensor					
Trade Name:	1					
Model No.:	SL-53032A					
Rated Voltage:	DC 3V					
Output Power:	< 0dBm					
Frequency Range:	433.92MHz					
Antenna Type:	Integral Antenna					
Size:	10.3X6.8X2.0 cm					
Comment:	Periodic Operation Device					
For more information refer to the circuit diagram form	For more information refer to the circuit diagram form and the user's manual.					

The test data is gathered from a production sample, provided by the manufacturer.

1.2 Test Standards

The following report is prepared on behalf of the SHENZHEN SHANLONG ELECTRONIC TECHNOLOGY CO., LTD. in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Related Submittal(s)/Grant(s)

No Related Submittal(s).

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

Model: SL-53032A

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was tested in all three orthogonal planes and the worse case was showed.

1.5 Test Facility

• FCC – Registration No.: 994117

SEM.Test Compliance Services Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 994117.

• Industry Canada (IC) Registration No.: 7673A

The 3m Semi-anechoic chamber of SEM.Test Compliance Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 7673A.

1.6 EUT Exercise Software

The EUT exercise program used during the testing was designed to exercise the system components. The test software, provided by the customer, is started while the whole system is running.

1.7 Accessories Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/ /		/

1.8 EUT Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Cord/Without Cord
/	/	/	/

2. SUMMARY OF TEST RESULTS

Description of Test	Result
§15.203 Antenna Requirement	Compliant
§15.205 Restricted Band	Compliant
§15.207 Conducted Emission	N/A
§15.209 General Requirement	Compliant
§15.231 (e) Deactivation Testing	Compliant
§15.231 (c) 20dB Band Width Testing	Compliant
§15.231 (e) Radiated Emission	Compliant

REPORT NO.: STR09078108I FCC PART 15.231 PAGE 5 OF 18

3. §15.203 ANTENNA REQUIREMENT

3.1 Standard Applicable

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Model: SL-53032A

3.2 Test Result

This product has a permanent antenna, fulfill the requirement of this section.

REPORT NO.: STR09078108I PAGE 6 OF 18 FCC PART 15.231

4. §15.205, §15.209, §15.231 (e) RADIATED EMISSION

4.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 3.0 dB.

4.2 Standard Applicable

According to §15.231(e), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

F	ield strength of	Field strength of
Fundamental frequency (MHz)	fundamental	spurious emissions
	(microvolts/meter)	,
40.66-40.70		
70-130	500	50
130-174	\1\ 500 to 1500	
174-260	1500	150
260-470	\1\ 1500 to	1\ 150 to 500
	5000	
Above 470	5000	

\1\ Linear interpolations.

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

4.3 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	ROHDE&SCHWARZ	FSEA20	DE25181	2009-07-08	2010-07-07
Positioning Controller	C&C	CC-C-1F N/A		2009-07-08	2010-07-07
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2009-07-08	2010-07-07
Horn Antenna	SCHWARZBECK	BBHX 9120	9120-426	2009-07-08	2010-07-07
RF Switch	EM	EMSW18	SW060023	2009-07-08	2010-07-07
Amplifier	Agilent	8447F	3113A06717	2009-07-08	2010-07-07
Coaxial Cable	SCHWARZBECK	AK9513	9513-10	2009-07-08	2010-07-07
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	25498514	2009-07-08	2010-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

4.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.205 15.231(b) and FCC Part 15.209 Limit.

4.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Model: SL-53032A

Corr. Ampl. = Indicated Reading +Ant.Loss +Cab. Loss - Ampl.Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15.231 Limit

4.6 Environmental Conditions

Temperature:	26 °C
Relative Humidity:	50 %
ATM Pressure:	1014 mbar

4.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

-1.69 $dB\mu V$ at 2168.95 MHz in the Vertical polarization, (Ave) 30 MHz to 5 GHz, 3Meters

Plot of Radiation Emissions Test (Below 1 G)

Horizontal

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor	Factor	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
			(dB)	(dB)						
1	433.9200	67.46	14.15	N/A	84.34	92.86	-8.52	0	200	peak
	433.9200	/	/	-17.43	66.91	72.86	-5.95	0	200	Ave
2	867.8400	34.04	16.88	N/A	60.06	72.86	-12.80	359	200	peak
	867.8400	/	/	-17.43	42.63	52.86	-10.23	359	200	Ave

Above 1GHz

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor	Factor	dBuV/m	dBuV/m	dB	(°)	(cm)	
			(dB)	(dB)						
1	1301.76	32.40	29.10	N/A	61.50	72.86	-11.36	0	100	peak
2	1735.68	33.67	30.98	N/A	64.25	72.86	-8.61	0	100	peak
3	2169.60	34.01	33.67	N/A	67.68	72.86	-5.18	60	200	peak
	1301.76	/	/	-17.43	44.07	52.86	-8.79	0	100	Ave
	1735.68	/	/	-17.43	46.82	52.86	-6.04	0	100	Ave
	2169.60	/	/	-17.43	50.25	52.86	-2.61	60	200	Ave

Vertical

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor	Factor	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
			(dB)	(dB)						
1	433.9200	65.44	16.88	N/A	82.32	92.86	-10.54	360	200	peak
	433.9200	/	/	-17.43	64.89	72.86	-7.97	360	100	Ave
2	867.8400	31.49	26.02	N/A	57.51	72.86	-15.35	360	200	peak
	867.8400	/	/	-17.43	40.08	52.86	-12.78	360	100	Ave

Above 1GHz

No.	Frequency	Reading	Corr.	Dutycycle	Result	Limit	Margin	Deg.	Height	Remark
	MHz	dBuV/m	Factor	Factor	dBuV/m	dBuV/m	dB	(°)	(cm)	
			(dB)	(dB)						
1	1301.76	32.40	29.10	N/A	59.86	72.86	-13.00	45	100	peak
2	1735.68	33.67	30.98	N/A	62.16	72.86	-10.07	310	100	peak
3	2169.60	34.01	33.67	N/A	68.56	72.86	-4.30	0	200	peak
	1301.76	/	/	-17.43	42.43	52.86	-10.43	360	100	Ave
	1735.68	/	/	-17.43	44.22	52.86	-8.64	360	100	Ave
	2169.60	/	/	-17.43	51.13	52.86	-1.73	0	200	Ave

Note: The EUT was tested in all three orthogonal planes and frequency range 30MHz to the tenth harmonics. Emissions attenuated closely to the noise base are not reported.

The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the the operating frequency 433.92MHz.

5. §15.231(c) 20dB BANDWIDTH TESTING

5.1 Standard Applicable

According to FCC 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Model: SL-53032A

5.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Agilent Spectrum Analyzer		US41192821	2009-07-08	2010-07-07
ETS Receiver Antenna		2175	57337	2009-07-08	2010-07-07
ETS 50 ohm Coaxial Cable		SUCOFLEX 104	25498514	2009-07-08	2010-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.3 Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

5.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	1011 mbar

5.5 Summary of Test Results/Plots

Frequency	20dB Bandwidth	Limit	
MHz	KHz	kHz	
433.92	58.60	1084.8	

Limit=Frequency×0.25%=433.92×0.25%=1084.475 kHz

Test Result Pass

Refer to the attached plots.

6. §15.231(e) DEACTIVATION TESTING

6.1 Standard Applicable

According to FCC 15.231 (e) devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Model: SL-53032A

6.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2009-07-08	2010-07-07
Receiver Antenna	ETS	2175	57337	2009-07-08	2010-07-07
50 ohm Coaxial Cable	ETS	SUCOFLEX 104	25498514	2009-07-08	2010-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.79MHz, than set the spectrum analyzer to Zero Span for the release time reading.

6.4 Environmental Conditions

Temperature:	26 °C
Relative Humidity:	52 %
ATM Pressure:	1015 mbar

6.5 Summary of Test Results/Plots

Refer to the attached plots.

Silent Time =33.75s >10s and exceed 30times transmission time

Transmission Time=0.87s <1s

Result: Pass

Model: SL-53032A

7. §15.231(e) Duty Cycle

7.1 Standard Applicable

According to FCC 15.231 (b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

7.2 Test Equipment List and Details

Manufacturer Description		Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2009-07-08	2010-07-07
EMI Test Receiver	Rohde & Schwarz		101611	2009-07-08	2010-07-07
Receiver Antenna	ETS	2175	57337	2009-07-08	2010-07-07
50 ohm Coaxial Cable	ETS	SUCOFLEX 104	25498514	2009-07-08	2010-07-07

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

7.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.94MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

7.4 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

7.5 Summary of Test Results/Plots

Because the pulse train exceeds 0.1 seconds, the 0.1 seconds test time as Tp.

Tp = 100ms

Ton = Ton1 * Number + Ton2 * Number = 13.44ms

 $Duty\ Cycle = Ton\ /\ Tp\ *\ 100\% = 0.1344$

Factor = 20*Log (Ton/Tp) = -17.43dB

Refer to the attached plots.

Transmission on:

Quantity of pulses:

Pulse width:

***** END OF REPORT *****