- 已知数列 {a_n} 满足 a_n = pn + q(p, q 为常数, n ∈ N*), 求证: {a_n} 是等差数列.
 解答在这里因为 a_{n+1} a_n = [p(n+1) + q] (pn + q) = p(n ∈ N*), 所以 {a_n} 是等差数列, 显然, 常数 p 是它的公差.
- 已知数列前 n 项和 S_n = An² + Bn + C, 试证明此数列从第二项起,构成一个等差数列.
 解答在这里由已知, a_n = S_n S_{n-1} = An² + Bn + C [A(n-1)² + B(n-1) + C] = A(2n-1) + B = 2An + (B-A)(n ≥ 2, n ∈ N*). 于是 a_{n+1} a_n = [2A(n+1) + (B-A)] [2An + (B-A)] = 2A(n ≥ 2, n ∈ N*), 故 {a_n} 从第二项起,构成一个等差数列.
- 3. 已知数列 $\{a_n\}$ 满足 $a_1=1$, $S_n=\frac{(n+1)a_n}{2}(n\in \mathbf{N}^*)$, 求通项 a_n 的表达式. 解答在这里由已知,得 $2S_n=(n+1)a_n(n\in \mathbf{N}^*)$, $2S_{n-1}=na_{n-1}(n\geq 2,\ n\in \mathbf{N}^*)$, 两式相减,得 $2a_n=(n+1)a_n-na_{n-1}$,即 $(n-1)a_n=na_{n-1}$,所以 $\frac{a_n}{a_{n-1}}=\frac{n}{n-1}(n\geq 2,\ n\in \mathbf{N}^*)$,于是有 $\frac{a_2}{a_1}=\frac{2}{1},\frac{a_3}{a_2}=\frac{3}{2},\frac{a_4}{a_3}=\frac{4}{3},\cdots,\frac{a_n}{a_{n-1}}=\frac{n}{n-1}(n\geq 2,\ n\in \mathbf{N}^*)$. 以上诸式相乘,得 $a_n=na_1=n(n\geq 2,\ n\in \mathbf{N}^*)$.又 $a_1=1$,所以 $a_n=n(n\in \mathbf{N}^*)$.
- 4. 在等差数列 $\{a_n\}$ 中,已知 $a_2 + a_7 + a_8 + a_{13} = 6$,求 $a_6 + a_9$. 解答在这里因为 $a_2 + a_{13} = a_7 + a_8 = a_6 + a_9$,所以 $a_6 + a_9 = 3$.
- 5. 在等差数列 $\{a_n\}$ 中,已知 $S_{11}=66$,求 a_6 . 解答在这里因为 $S_{11}=\frac{11(a_1+a_{11})}{2}=\frac{11\times 2a_6}{2}=11a_6=66$,所以 $a_6=6$.
- 6. 项数为奇数的等差数列 $\{a_n\}$ 中,已知奇数项之和为 12,偶数项之和为 10,求它的项数和中间项。 解答在这里设有 2n-1 项,则由题意,得 $\frac{S_{\tilde{\sigma}}}{S_{\mathbb{H}}} = \frac{\frac{(a_1+a_{2n-1})n}{2}}{\frac{(a_2+a_{2n-2})(n-1)}{2}} = \frac{n}{n-1} = \frac{12}{10} = \frac{6}{5}$,所以 n=6,故此数 列共有 11 项.又 $S_{\tilde{\sigma}} S_{\mathbb{H}} = (a_1+a_3+a_5+\cdots+a_{11}) (a_2+a_4+a_6+\cdots+a_{10}) = a_1+(a_3-a_2)+(a_5-a_4)+\cdots+(a_{11}-a_{10}) = a_1+5d=a_6=12-10=2$,所以中间项 $a_6=2$.
- 7. 在等比数列 $\{a_n\}$ 中,已知前 10 项和为 5,前 20 项和为 15,求前 30 项和. 解答在这里记 $A=a_1+a_2+\cdots+a_{10},\,B=a_{11}+a_{12}+\cdots+a_{20},\,C=a_{21}+a_{22}+\cdots+a_{30},\,$ 则 $A=5,\,$ $B=S_{20}-S_{10}=10.$ 因为 A,B,C 成等比,所以 $C=\frac{B^2}{A}=\frac{100}{5}=20,\,$ 故 $S_{30}=A+B+C=35.$
- 8. 求数列 $1, 1+a, 1+a+a^2, 1+a+a^2+a^3, \cdots, 1+a+a^2+\cdots+a^{n-1}, \cdots$ 的前 n 项和 S_n . 解答在这里 (1) 若 a=1, 则 $a_n=n$, 于是 $S_n=1+2+3+\cdots+n=\frac{n(n+1)}{2}$. (2) 若 $a\neq 1$, 则 $a_n=\frac{1-a^n}{1-a}$, 于是 $S_n=\frac{1-a}{1-a}+\frac{1-a^2}{1-a}+\frac{1-a^2}{1-a}+\cdots+\frac{1-a^n}{1-a}=\frac{1}{1-a}[n-(a+a^2+a^3+\cdots+a^n)]=\frac{1}{1-a}[n-\frac{a(1-a^n)}{1-a}]$.
- 9. 求和: $1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+\dots+n} (n \in \mathbb{N}^*).$ 解答在这里因为 $a_k = \frac{1}{1+2+\dots+k} = \frac{2}{k(k+1)}.$ 所以 $S_n = 2[\frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{n(n+1)}] = 2[(1-\frac{1}{2}) + (\frac{1}{2} \frac{1}{3}) + \dots + (\frac{1}{n} \frac{1}{n+1})] = 2(1 \frac{1}{n+1}) = \frac{2n}{n+1}.$

10.	求和: $a + 2a^2 + 3a^3 + \cdots +$	$na^n (n \in \mathbf{N}^*).$		
	解答在这里记 $S_n = a + 2a^2 +$	$3a^3 + \dots + (n-1)a^{n-1} + na^n$	$a+1$, M $aS_n = 2a^2 + 3a^3 + \dots + a^{n+1}$	$(n-2)a^{n-1} + (n-1)a^n +$
	na^{n+1} , 两式相减, 得 $(1-a)S$	$a_n = (a+2a^2+3a^3+\cdots+a^n)$	$-na^{n+1}$. 若 $a=1$, 则 $S_n=1$	$+2+\cdots+n = \frac{n(n+1)}{2};$
	若 $a \neq 1$,则 $S_n = \frac{a(1-a^n)}{(1-a)^2}$	$-\frac{na^{n+1}}{1-a}.$		
11.	已知数列 6,9,14,21,30,…,	其中相邻两项之差成等差数	效列, 求它的通项.	
	解答在这里因为 $a_2 - a_1 = a_2$	$3, a_3 - a_2 = 5, a_4 - a_3 =$	$7, \cdots, a_n - a_{n-1} = 2n - 1,$	各项相加得 $a_n - a_1 =$
	$3+5+7+\cdots+(2n+1), \beta$	所以 $a_n = 6 + 3 + 5 + 7 + \cdot$	$\dots + (2n+1) = n^2 + 5(n \in \mathbf{N})$	*).
12.	若 $1 \times 2^2 + 2 \times 3^2 + 3 \times 4^2$ -	$+\cdots + n(n+1)^2 = \frac{n(n+1)^2}{12}$	$\frac{1}{2}(an^2 + bn + c) \times n \in \mathbf{N}^* $	亘成立, 求 a,b,c 的值.
			$\sum_{k=1}^{n} k = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)^2}{4}$	
	70-1	n-1 n-1	k=1 4 $+11n+10$),所以 $a=3,b=1$	
13.	若数列 $\{a_n\}$ 满足 $a_1=2, a_n$	$a_{n+1} - a_n + 1 = 0 (n \in \mathbf{N}^*),$	则此数列的通项 a_n 等于 ().
	A. $n^2 + 1$	B. $n + 1$	C. $1 - n$	D. $3 - n$
14.	若数列 $\{a_n\}$ 的通项公式是 α	$a_n = 2(n+1) + 3$,则此数例	刊().	
	A. 是公差为 2 的等差数列		B. 是公差为 3 的等差数列	
	C. 是公差为 5 的等差数列		D. 不是等差数列	
15.	若 m, a_1, a_2, n 和 m, b_1, b_2, n	(m ≠ n) 分别是两个等差数	\mathbf{v} 列, 则 $\dfrac{a_2-a_1}{b_2-b_1}$ 的值为 ().
	A. $\frac{2}{3}$	B. $\frac{3}{4}$	C. $\frac{3}{2}$	D. $\frac{4}{3}$
16.	若等差数列 $\{a_n\}$ 的前三项化	文次为 $a-1, a+1, 2a+3,$	则此数列的通项 a_n 等于 ().
	A. $2n - 5$	B. $2n - 3$	C. $2n-1$	D. $2n + 1$
17.	在等差数列 $\{a_n\}$ 中, 若 a_3 +	$+a_4 + a_5 + a_6 + a_7 = 450,$	则 $a_2 + a_8$ 等于 ().	
	A. 45	B. 75	C. 180	D. 320
18.	在等差数列 $\{a_n\}$ 中, 已知 a	$a_1 + a_4 + a_7 = 39, a_2 + a_5 + $	$-a_8=33$,则 $a_3+a_6+a_9$ 的作	直是 ().

A. 30 B. 27 C. 24 D. 21

19. 在递增的等差数列 $\{a_n\}$ 中, 已知 $a_3 + a_6 + a_9 = 12$, $a_3 a_6 a_9 = 28$, 则通项 a_n 等于 ().

A. n-2 B. 16-n C. n-2 或 16-n D. 2-n

20. 若等差数列 $\{a_n\}$ 的公差 d 不为零, 且 $a_1 \neq d$, 前 20 项之和 $S_{20} = 10M$, 则 M 等于 ().

A. $a_6 + a_5$ B. $a_2 + 2a_{10}$ C. $2a_{10} + d$ D. $10a_2 + d$

21. 在等差数列 $\{a_n\}$ 中, 已知前 4 项和是 1, 前 8 项和是 4, 则 $a_{17}+a_{18}+a_{19}+a_{20}$ 的值等于 ().

A. 7 B. 8 C. 9 D. 10

22.	在等差数列 $\{a_n\}$ 中, 若前 15 项的和 $S_{15}=90$, 则 a_8 等于 ().
	A. 6 B. $\frac{45}{4}$ C. 12 D. $\frac{45}{2}$
23.	若数列 $\{a_n\}$ 满足 $a_{n+1}=\frac{3a_n+2}{3}$,且 $a_1=0$,则 $a_7=$
24.	若等差数列 $\{a_n\}$ 满足 $a_7=p,a_{14}=q(p\neq q),$ 则 $a_{21}=$
25.	首项为 -24 的等差数列从第 10 项开始为正数, 则公差 d 的取值范围是
26.	若等差数列 $\{a_n\}$ 的公差 $d \neq 0$,且 a_1, a_2 为关于 x 的方程 $x^2 - a_3 x + a_4 = 0$ 的两根,则 $\{a_n\}$ 的通项公式
	$a_n = \underline{\hspace{1cm}}$.
27.	若 $a, x, b, 2x$ 依次成等差数列,则 $a:b=$
28.	若 a, b, lg 6, 2 lg 2 + lg 3 依次成等差数列, 则 a =, b =
29.	等差数列 $\{a_n\}$ 中, 若 $a_1 + a_3 + a_5 = -1$, 则 $a_1 + a_2 + a_3 + a_4 + a_5 =$
30.	等差数列 $\{a_n\}$ 中, 若 $a_3 + a_{11} = 10$, 则 $a_2 + a_4 + a_{15} =$
31.	等差数列 $\{a_n\}$ 中, 若 $a_2 + a_3 + a_4 + a_5 = 34$, $a_2a_5 = 52$, 且 $a_4 > a_2$, 则 a_5
32.	等差数列 $\{a_n\}$ 中, 若 $a_1 - a_4 - a_8 - a_{12} + a_{15} = 2$, 则 $a_3 + a_{13} =$
33.	等差数列 $\{a_n\}$ 中, 若 $a_1 + a_2 + a_3 + a_4 + a_5 = 30$, $a_6 + a_7 + a_8 + a_9 + a_{10} = 80$, 则 $a_{11} + a_{12} + a_{13} + a_{14} + a_{15} + a_{1$
	$a_{15} = $
34.	等差数列 $\{a_n\}$ 中, 若 $a_2 + a_7 + a_{12} = 21$, 则前 13 项和 $S_{13} =$
35.	等差数列 $\{a_n\}$ 中, 若前 10 项和 $S_{10}=100$, 前 20 项和 $S_{20}=400$, 则前 30 项和 $S_{30}=$
36.	等差数列 $\{a_n\}$ 中, 若 $a_{11}=20$, 则前 21 项和 $S_{21}=$
37.	若一个等差数列的前 10 项和是前 5 项和的 4 倍, 则其首项与公差之比等于
38.	等差数列 $\{a_n\}$ 中, 若前 100 项之和等于前 10 项和的 100 倍, 则 $\frac{a_{100}}{}=$

- 40. 在等差数列 $\{a_n\}$ 中,已知 $a_m=p,\,a_n=q(m\neq n),\,$ 求 $a_{m+n}.$
- 41. 若 $\{a_n\}$ 是等差数列, 数列 $\{b_n\}$ 满足: $b_n=(\frac{1}{2})^{a_n},\,b_1+b_2+b_3=\frac{21}{8},\,b_1b_2b_3=\frac{1}{8},\,$ 求通项公式 a_n .

39. 若 100 个连续整数之和在 13400 与 13500 之间, 则此连续整数中最小的一个等于______.

- 42. 已知等差数列的第 1 项和第 4 项之和为 10, 且第 2 项减去第 3 项的差为 2, 求此数列的前 n 项之和.
- 43. 求所有能被7整除且被11除余2的三位数之和.
- 44. 首项 $a_1 \neq 0$ 的等差数列 $\{a_n\}$ 中, 已知前 9 项和与前 4 项和之比 $S_9: S_4 = 81: 16$, 求 $a_9: a_4$ 的值.

46.	若等差数列 $\{a_n\}$ 满足 $a_1+a_3+a_5+a_7+a_9=\frac{25}{2},\ a_2+a_4+a_6+a_8+a_{10}=15,$ 求前 20 项之和 S_{20} .				
47.	若三角形三边长成等差数列,	三角形三边长成等差数列, 周长为 36, 内切圆周长为 6π, 则此三角形是 ().			
	A. 正三角形		B. 等腰三角形, 但不是直角三	角形	
	C. 直角三角形, 但不是等腰	三角形	D. 等腰直角三角形		
48.	若 a,b,c 的倒数依次成等差数	数列, 且 a,b,c 互不相等, 则	則 $\frac{a-b}{b-c}$ 等于 ().		
	A. $\frac{c}{a}$	B. $\frac{a}{b}$	C. $\frac{a}{c}$	D. $\frac{b}{c}$	
49.	若等差数列 $\{a_n\}$ 的公差 $d=$ 等于 $($ $).$	$=\frac{1}{2}$, $a_1+a_3+a_5+a_7+a_7$	$a_9 + \dots + a_{95} + a_{97} + a_{99} = 60$, 则前 100 项之和 S_{100}	
	A. 120	B. 145	C. 150	D. 170	
50.	在等差数列 $\{a_n\}$ 中, $S_m=S_m$	$S_n = l(m \neq n), \; \mathbf{M} \; a_1 + a_m$	_{n+n} 等于 ().		
	A. mnl	B. $(m+n)l$	C. 0	D. $(m+n-1)l$	
51.	若等差数列 $\{a_n\}$ 满足 $3a_8$ =	$=5a_{13}$,且 $a_1>0$,则前 n^{-3}	项之和 S_n 的最大值是 $($ $)$.		
	A. S_{10}	B. S_{11}	C. S_{20}	D. S_{21}	
52.	若一个等差数列共有 $2n+1$	项, 其中奇数项之和为 290	0, 偶数项之和为 261 , 则第 n +	1 项为 ().	
	A. 30	B. 29	C. 28	D. 27	
53.	记两个等差数列 $\{a_n\}$ 和 $\{b_n\}$	$\}$ 的前 n 项和分别为 S_n \imath	$ \text{ for } T_n, \text{ II. } \frac{S_n}{T_n} = \frac{7n+1}{4n+27} (n \in \mathbf{N}) $	*), 则 $\frac{a_{11}}{b_{11}}$ 等于 ().	
	A. $\frac{7}{4}$	B. $\frac{3}{2}$	C. $\frac{4}{3}$	D. $\frac{78}{71}$	
54.	在等差数列 $\{a_n\}$ 中, 若前三項	页之和为 12, 最后三项之和		$a_1 = $	
	公差 d =				
55.	在等差数列 $\{a_n\}$ 中, 若前四项之和为 21 , 末四项之和为 67 , 前 n 项之和为 286 , 则该数列的项数为				
56.	. 在等差数列 $\{a_n\}$ 中, 若 $a_1+a_2+a_3+\cdots+a_{15}=a,\ a_{n-11}+a_{n-13}+\cdots+a_n=b,\ 则\ \{a_n\}$ 的前 n 项和				
	$S_n = \underline{\hspace{1cm}}$.				
57.	7. 在等差数列 $\{a_n\}$ 中, 若前 9 项和为 18 , 前 n 项和为 240 , 且 $a_{n-4}=30$, $n>9$, 则 $n=$				
58.	若等差数列 18,15,12,… 的	前 n 项和最大, 则 $n =$	·		
59.	若等差数列 -21,-19,-17,	·· 的前 n 项和最小. 则 n	=		
60.). 在等差数列 $\{a_n\}$ 中, 弱 $a_9 + a_{10} = a$, $a_{29} + a_{30} = b$, 则 $a_{99} + a_{100} =$				

45. 在等差数列 $\{a_n\}$ 中,已知公差 d=1,前 98 项和 $S_{98}=137$,求 $a_2+a_4+a_6+a_8+\cdots+a_{94}+a_{96}+a_{98}$.

- 61. 两个等差数列: 2,5,8,·,197 和 2,7,12,···,197 中,
 - (1) 有多少相同的项?
 - (2) 求这些相同项之和.
- 62. 求和: $100^2 99^2 + 98^2 97^2 + \cdots + 4^2 3^2 + 2^2 1^2$.
- 63. 若 $\{a_n\}$ 是等差数列,求证: $a_1^2 a_2^2 + a_3^2 a_4^2 + \dots + a_{2n-1}^2 a_{2n}^2 = \frac{n}{2n-1}(a_1^2 a_{2n}^2)$.
- 64. 若四个数依次成等差数列, 且四个数的平方和为 94, 首尾两数之积比中间两数之积少 18, 求此四数.
- 65. 已知 lg a, lg b, lg c 与 lg a lg 2b, lg 2b lg 3c, lg 3c lg a 都是等差数列, 试求 a, b, c 之比.
- 66. 已知 $\triangle ABC$ 的三边成等差数列, 且最大角与最小角之差为 90° , 求证: 其三边之比为 $(\sqrt{7}+1):\sqrt{7}:(\sqrt{7}-1)$.
- 67. 在 △ABC 中. 已知 lg tan A, lg tan B, lg tan C 依次成等差数列, 求 ∠B 的取值范围.
- 68. 若等差数列的第 p 项是 q, 第 q 项是 $p(p \neq q)$, 求它的第 p+q 项及前 p+q 项的和.
- 69. 在等差数列中, 若前 p 项的和与前 q 项的和相等求前 p+q 项的和.
- 70. 一等差数列共有奇数项, 且奇数项之和为80, 偶数项之和为75, 求此数列的中间项与项数.
- 71. 已知一个等差数列的项数 n 为奇数, 求其奇数项之和与偶数项之和的比.
- 72. 已知等差数列 $\{a_n\}$ 满足 $a_1 = -60$, $a_{17} = -12$, 记 $b_n = |a_n|$, 求数列 $\{b_n\}$ 前 30 项之和.
- 73. 若等差数列 $\{a_n\}$ 的通项为 $a_n = 10 3n$, 求 $|a_1| + |a_2| + \cdots + |a_n|$.
- 74. 求关于 x 的方程 $x^2 (3n+2)x + 3n^2 74 = 0 (n \in \mathbb{Z})$ 的所有实数根之和.
- 75. 若一等差数列 $\{a_n\}$ 的前 m 项、前 n 项之和分别为 S_m 和 S_n , 且 $S_m:S_n=m^2:n^2(m\neq n)$, 求证: $a_m:a_n=(2m-1):(2n-1)$.
- 76. 已知等差数列 $\{a_n\}$, $\{b_n\}$ 的前 2n-1 项之和分别为 S_{2n-1} 和 S'_{2n-1} . ① 求证: $a_n:b_n=S_{2n-1}:S'_{2n-1}$; ② 如果 $\{a_n\}$ 与 $\{b_n\}$ 的前 n 项之和的比为 $\frac{5n+1}{3n-1}$, 求 $a_{15}:b_{15}$.
- 77. 已知等差数列 $\{a_n\}$ 首项是 a, 公差为 d, $a_4=84$, 且前 10 项之和 S_{10} 与前 11 项之和 S_{11} 分别满足 $S_{10}>0$, $S_{11}<0$.
 - (1) 求公差 d 的取值范围;
 - (2) 求使 $a_n < 0$ 的最小的 n 值;
 - (3) 记 $S_1, S_2, S_3, \dots, S_n, \dots$ 中的最大值为 M, 求 M 的取值范围.
- 78. 已知一个数列 $\{a_n\}$ 的前 n 项和 $S_n = 2n(n+1)$, 求此数列的第 100 项.
- 79. 已知数列 $\{a_n\}$ 前 n 项和 $S_n = na_n n^2 + n$, 求 $a_{100} a_{99}$.
- 80. 已知数列 $\{a_n\}$ 前 n 项和 $S_n = 2n^2 3n 1$, 求此数列的通项公式.

81.	已知 $\{a_n\}$ 是首项为 a 的等差	差数列, 记 $b_n = \frac{a_1 + a_2 + \cdots}{n}$	$\frac{\cdot + a_n}{}$,求证: 数列 $\{b_n\}$ 是等	穿差数列.
82.	已知等差数列 $\{a_n\}$ 及关于 x 的方程 $a_ix^2+2a_{i+1}x+a_{i+2}=0 (i=1,2,\cdots,n,n\in {\bf N}^*)$, 其中 a_1 及公差 d 均			
	为非零实数.			
	(1) 求证: 这些方程有公共根	;		
	(2) 若方程的另一根为 a_i , 求	$ \vec{a} : \frac{1}{a_1 + 1}, \frac{1}{a_2 + 1}, \cdots, \frac{1}{a_n} $	+1 依次成等差数列.	
83.	已知 $a_{n+1} = \frac{2a_n}{a_n + 2}$, $a_1 = 2$.			
	(1) 求证: 数列 $\{\frac{1}{a}\}$ 是等差			
	$(2) \not \mathbb{R} a_5;$			
	$(3) \not \mathbf{x} \{a_n\}.$			
84.	若一个首项为 1 的等差数列	$\{a_n\}$ 的前 n 项和与基后的	2n 项和之比是与 n 无关的党	字值, 试求此数列的通项
-	公式.			
85.	若公差不为零的等差数列的领	4	4	列的公比等于().
	A. $\frac{3}{4}$	B. $-\frac{1}{3}$	C. $\frac{1}{3}$	D. 3
86.	$6.$ 若自然数 m,n,p,r 满足 $m+n=p+r,$ 则等比数列 $\{a_n\}$ 必定满足 ().			
	$A. \frac{a_m}{a_p} = \frac{a_r}{a_n}$	$B. \frac{a_m}{a_n} = \frac{a_r}{a_p}$	$C. a_m + a_n = a_p + a_r$	$D. a_m - a_n = a_p - a_r$
87.	在等比数列 $\{a_n\}$ 中, 已知 a_n	9 = -2, 则此数列前 17 项之	积等于 ().	
	A. 2^{16}	B. -2^{16}	C. 2^{17}	D. -2^{17}
88.	已知数列 $\{a_n\}$ 是公比 $q \neq 1$	的等比数列, 则在① $\{a_na_{n-1}\}$	$\{a_{n+1}\}, \ \ \ \{a_{n+1}-a_n\}, \ \ \ \ \ \{a_n^3\}$	·, ④ {na _n } 这四个数列
	中, 成等比数列的个数是 ().		
	A. 1	B. 2	C. 3	D. 4
89.	某商品欲分两次提价,提价方	万案有三种:方案甲是先提价	トa%, 再提价 b%; 方案乙是4	先提价 <i>b</i> %, 再提价 <i>a</i> %;
	方案丙是两次均提价 $\frac{a+b}{2}$ %			,
	A. 甲	В. Z	C. 丙	D. 三种方案一样
90.	在等比数列 $\{a_n\}$ 中, 若公比	为 $q, a_n = a_m \cdot x, $ 则 $x = _$		

93. 在等比数列 $\{a_n\}$ 中, 若 $a_1a_2\cdots a_9=512$, 则 $a_5=$ ______. 94. 若 $\{a_n\}$ 是等比数列, 且 $a_n>0$, $a_2\cdot a_4+2a_3\cdot a_5+a_4\cdot a_6=25$, 则 $a_3+a_5=$ ______.

91. 在等比数列 $\{a_n\}$ 中, 若 $a_5=2$, $a_{10}=10$, 则 $a_{15}=$ _____.

92. 在等比数列 $\{a_n\}$ 中, 若 $a_4=5, a_8=6, 则 a_2a_{10}=$ ______.

95. 已知数列 $\{a_n\}$ 成等差数列, 且公差 $d \neq 0$, 又 a_1, a_3, a_9 依次成等比数列, 则 $\frac{a_1 + a_3 + a_9}{a_2 + a_4 + a_{10}} =$ _______.

97.	. 在等比数列 $\{a_n\}$ 中, 在等比数列 $\{a_n\}$ 中, 若连续四项之积为 16 , 中间两项之和为 5 , 则公比 $q=$					
98.	在等比数列 $\{a_n\}$ 中, 若数列 $\{a_n\}$ 满足 $a_1=1,$ $\dfrac{a_n}{a_n+a_{n+1}}=2(n\in \mathbf{N}^*),$ 则它的通项 $a_n=$					
99.	若依次成等差数列的三实数 a,b,c 之和为 12 , 而 $a,b,c+2$ 又依次成等比数列, 则 a 的值等于					
100.	在 2 和 30 之间插入两个正数	女 , 使三个数成等比数列, 后	三个数成等差数列,则这插入	的两数是		
101.	若 a,b,c 依次成等差数列 (公	·差不为零), c,a,b 又依次成	汶等比数列 , 则 a : b : c =			
102.	一等比数列 $\{a_n\}$ 的前三项化	该次为 $a, 2a + 2, 3a + 3$, 且	$a_n = -\frac{27}{2}$, 则 $n = $	-		
103.	已知各项都为正数的等比数码	列的任何一项都等于它后面	两项的和, 则公比 =	·		
104.	· 某工厂在 1997 年底制订计划要使 2010 年的总产值在 1997 年总产值基础上翻三番, 则年总产值的平均增长率为 ().					
	A. $3^{\frac{1}{12}} - 1$	B. $3^{\frac{1}{13}} - 1$	C. $8^{\frac{1}{12}} - 1$	D. $8^{\frac{1}{13}} - 1$		
105.	若 $\{a_n\}$ 是各项都大于零的等	萨比数列,且公比 $q \neq 1$,则	$(a_1 + a_4)$ 与 $(a_2 + a_3)$ 的大小	关系是 ().		
	A. $a_1 + a_4 < a_2 + a_3$	B. $a_1 + a_4 > a_2 + a_3$	C. $a_1 + a_4 = a_2 + a_3$	D. 不能确定的		
106.	若正数 a, b, c 依次成公比大	F 1 的等比数列, 则当 $x >$	1 时, $\log_a x$, $\log_b x$, $\log_c x$).		
	A. 依次成等差数列		B. 依次成等比数列			
	C. 各项的倒数依次成等差数	数列	D. 各项的倒数依次成等比数3	ர்		
107.	若 $2^a = 3$, $2^b = 6$, $2^c = 12$, 反					
	A. 成等差数列, 但不成等比	数列	B. 成等比数列, 但不成等差数	列		
	C. 成等差数列, 又成等比数	列	D. 不成等差数列, 也不成等比	数列		
108 .在三棱台 $EFG-E_1F_1G_1$ 中, 分別过点 E,F_1,G 和点 G,E_1,F_1 作两个截面, 将此棱台截成三 $^{\prime\prime}$				支台截成三个棱锥 , 则这		
	三个棱锥的体积().					
	A. 成等差数列, 但不成等比	数列	B. 成等比数列, 但不成等差数	列		
	C. 成等差数列, 也成等比数	列	D. 不成等差数列, 也不成等比	数列		
109.	某厂去年产值为 a, 计划在今	, 后五年内每年比上年产值	增长 10%, 则从今年起到第五	五年, 这个厂的总产值为		
	().					
	A. $1.1^4 a$	B. $1.1^5 a$	C. $11(1.1^5 - 1)a$	D. $10(1.1^6 - 1)a$		
110.			一年定期),若年利率为 r 保持存款及利息全部取回, 他可取[
	A. $a(1+r)^5$	B. $\frac{a}{r}[(1+r)^5 - (1+r)]$	C. $a(1+r)^6$	D. $\frac{a}{r}[(1+r)^6 - (1+r)]$		

96. 在等比数列 $\{a_n\}$ 中, 若 $a_1+a_2+a_3=-3$, $a_1a_2a_3=8$, 则 $a_4=$ ______.

111.	若数列前 n 项的和 $S_n=2^n-1$, 则此数列奇数项的前 n 项的和是 ().				
	A. $\frac{1}{3}(2^{n+1}-1)$	B. $\frac{1}{3}(2^{n+1}-2)$	C. $\frac{1}{3}(2^{2n}-1)$	D. $\frac{1}{3}(2^{2n}-2)$	
112.	若等比数列的前 n 项和 S_n =	$=4^{n}+a$, 则 a 的值等于 ().		
	A4	В. –1	C. 0	D. 1	
113.	在等比数列 $\{a_n\}$ 中, 已知 a_1	$a_1 + a_2 + a_3 = 6, \ a_2 + a_3 + a_4$	$a_1 = -3$, $M a_3 + a_4 + a_5 + a_6$	$+a_7+a_8$ 等于 ().	
	A. $\frac{21}{16}$	B. $\frac{19}{16}$	C. $\frac{9}{8}$	D. $\frac{3}{4}$	
114.	在等比数列 $\{a_n\}$ 中, 已知对	任意自然数 $n, a_1 + a_2 + a_3$ -	$+\cdots + a_n = 2^n - 1$, $M a_1^2 + \cdots$	$a_2^2 + a_3^2 + \dots + a_n^2 $ 等于	
	().				
	A. $(2^n - 1)^2$	B. $\frac{1}{3}(2^n-1)$	C. $4^n - 1$	D. $\frac{1}{3}(4^n - 1)$	
115.	在等比数列 $\{a_n\}$ 中, 若前 n	项和为 S_n , 且 $a_3 = 3S_2 + 2$	$, a_4 = 3S_3 + 2, $ 则公比等于_	·	
116.	在等比数列 $\{a_n\}$ 中, 若公比	等于 2, 且前 4 项之和等于 1	,那么前8项之和等于		
117.	在等比数列 $\{a_n\}$ 中, 若第一、	. 二、三这三项之和为 168, 第	四、五、六这三项之和为 21,	则公比 q =	
	首项 $a_1 =$				
118.	在等比数列 $\{a_n\}$ 中, 若 a_1 +	$a_2 + a_3 + a_4 + a_5 = 31, a_2 + a_3$	$+a_4+a_5+a_6=62$, 则其通项	万公式 $a_n =$	
119.	已知等比数列 $\{a_n\}$ 各项均为	正数, 数列 $\{b_n\}$ 满足 $b_n=1$	$\log_2 a_n, \text{ If. } b_1 + b_2 + b_3 = 3, t$	$a_1b_2b_3 = -3$,求通项 a_n .	
120.	. 已知 a,b 为两个不等的正数, 且 a,x,y,b 依次成等差数列, a,m,n,b 依次成等比数列, 试比较 $x+y$ 与 $m+n$ 的大小.				
121.	若 $\sin 2x$ 与 $\sin x$ 分别是 \sin	$ heta$ 与 $\cos heta$ 的等差中项和等比	$七中项, 求 \cos 2x$ 的值.		
122.	. 已知 a,b,c 依次成等比数列, 且 x,y 分别是 a,b 与 b,c 的等差中项, 求 $\dfrac{a}{x}+\dfrac{c}{y}$ 的值.				
123.	. 某工厂产量第一年比上一年增加 $a\%$, 第二年又增加 $b\%$, 为使连续二年的平均增产率为 $c\%$, 问: 第三年比第二年应再增加百分之几?				
124.	从盛满 a 升纯酒精的容器里时容器里还有多少纯酒精?	倒出 b 升, 然后用水加满, 再	倒出 b 升, 再用水加满, 这样	详连续倒了 n 次, 问: 此	
125.	某市人口 1997 年底预计为 2	20 万, 人均住房面积 8m², 右	2001 年底达到人均住房面	积 10m². 如果该市计划	

三个数的和是 12, 求这四个数.

126. 有四个数, 其中前三个数成等差数列, 后三个数成等比数列, 且第一个数与第四个数的和是 16, 第二个数与第

127. 有四个数, 其中前三个成等比数列, 其积为 216, 后三个成等差数列, 其和为 12, 求这四个数.

米?(以万平方米为单位,保留两位小数)

将每年人口平均增长率控制在1%,那么要实现上述计划,这个城市平均每年至少要新增住房面积多少万平方

- 128. 七个实数排成一排, 奇数项成等差数列, 偶数项成等比数列, 且奇数项的和减去偶数项的积, 其差为 42, 首项、 尾项与中间项之和为 27, 求中间项.
- 129. 已知公差不为零的等差数列 $\{a_n\}$ 与递增的等比数列 $\{b_n\}$ 有如下关系: $a_1 = b_1 = 1$, $a_3 = b_3$, $a_7 = b_5$. 求:
 - (1) $\{a_n\}$ 前 n 项之和 S_n ;
 - $(2) \{b_n\}$ 的通项公式.
- 130. 已知数列 $\{a_n\}$ 是等比数列, 其首项为 10, 又 $b_n = \lg a_n$, 且数列 $\{b_n\}$ 的前 7 项之和 S_7 最大, $S_7 \neq S_8$, 求 $\{a_n\}$ 的公比 q 的取值范围.
- 131. 已知等比数列 $\{a_n\}$ 与等差数列 $\{b_n\}$ 满足 $a_1 > 0$, $\frac{a_2}{a_1} > 0$, $b_2 b_1 > 0$, 求证: 一定存在实数 a, 使 $\log_a a_n b_n$ 与 n 无关.
- 132. 求数列 $1,1-2,1-2+4,1-2+4-8,1-2+4-8+16,\cdots$ 的一个通项公式.
- 133. 求数列 $\frac{1}{2}$, $2\frac{3}{4}$, $4\frac{7}{8}$, $6\frac{15}{16}$, \cdots 前 n 项的和 S_n .
- 134. 求和: $4^n + 3 \times 4^{n-1} + 3^2 \times 4^{n-2} + \dots + 3^{n-1} \times 4 + 3^n (n \in \mathbb{N}^*)$.
- 135. 求和: $S = a^n + a^{n-1}b + a^{n-2}b^2 + \dots + a^{n-r}b^r + \dots + ab^{n-1} + b^n (a \neq 0, b \neq 0, n \in \mathbf{N}^*).$
- 136. 若 $\lg x + \lg x^2 + \dots + \lg x^{10} = 110$, 求 $\lg x + \lg^2 x + \dots + \lg^{10} x$ 的值.
- 137. 已知一个等比数列的前项和为 10, 前 20 项和为 30, 求其前 50 项的和.
- 138. 在等比数列 $\{a_n\}$ 中, 已知 $a_1 = 1$, 且有偶数项. 若其奇数项之和为 85, 偶数项之和为 170, 求公比 q 及项数.
- 139. 各项为正的等比数列 $\{a_n\}$ 中,已知其项数为偶数,且它的所有项之和等于它的偶数项之和的 4 倍,又第二项与第四项之积等于第三项与第四项之和的 9 倍. 求:
 - (1) a_1 及 q;
 - (2) 使 $\{\lg a_n\}$ 的前 n 项之和最大时的 n 值.
- 140. 已知等比数列各项均为正数,前 n 项和为 80, 其中数值最大的项为 54, 前 2n 项和为 6560, 求此数列的公比.
- 141. 已知等比数列 $\{a_n\}$ 的公比 q>1, 其第 17 项的平方等于第 24 项, 求使 $a_1+a_2+a_3+\cdots+a_n>\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}$ 成立的自然数 n 的取值范围.
- 142. 已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 4 4 \times 2^{-n} (n \in \mathbb{N}^*)$, 求证: $\{a_n\}$ 成等比数列.
- 143. 已知数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}=2(a_1+a_2+\cdots+a_n)(n\in \mathbb{N}^*)$, 求证: a_2,a_3,\cdots 成等比数列.
- 144. 已知数列 $\{a_n\}$ 的首项为 1, 从第二项起每项都是它前面各项之和, 求 $\{a_n\}$ 的通项公式及其前 n 项之和.
- 145. 已知数列 $\{a_n\}$ 满足 $a_1=3, a_na_{n+1}=(\frac{1}{2})^n(n\in \mathbf{N}^*)$, 求此数列前 2n 项之和.
- 146. 在数列 $\{a_n\}$ 中, 已知 $a_1=b(b\neq 0)$, 且前 n 项和 $S_1,S_2,\cdots,S_n,\cdots$ 成公比为 q 的等比数列 $(q\neq 1)$, 求证: 数列 $a_2,a_3,a_4,a_5,a_6,\cdots$ 也是一个等比数列, 并求其公比.

- 147. 已知数列 $\{a_n\}$ 的前 n 项之和 $S_n = p^n + q(p, q)$ 为常数且 $p \neq 0$), 求证: 当 q = -1 且 $p \neq 1$ 时, $\{a_n\}$ 成等比数列, 反之亦真.
- 148. 已知关于 x 的二次方程 $a_n x^2 a_{n+1} x + 1 = 0 (n \in \mathbf{N}^*)$ 的两根 α, β 满足 $6\alpha 2\alpha\beta + 6\beta = 3$, 且 $a_1 = \frac{2}{3}$.
 - (1) 试 a_n 用表示 a_{n+1} ;
 - (2) 求证: $\{a_n \frac{2}{3}\}$ 是等比数列;
 - (3) 当 $a_1 = \frac{7}{6}$ 时, 求数列 $\{a_n\}$ 的通项公式.
- 149. 已知数列 $\{a_n\}$ 的通项公式是 $a_n = a^n + \lg b^n (a \neq 0, b > 0)$, 求此数列的前 n 项之和 S_n .
- 150. 求数列 $1,(1+2),(1+2+3),(1+2+3+4),(1+2+3+4+5),\cdots$ 的前 n 项之和.
- 151. 求数列 $1,(1+2),(1+2+2^2),\cdots,(1+2+2^2+\cdots+2^{n-1}),\cdots$ 的前 n 项之和.
- 152. 已知数列 $1, 1+a, 1+a+a^2, 1+a+a^2+a^3, \cdots$ 求: (1) 其通项 a_n ;
 - (2) 前 n 项之和 S_n .
- 153. 已知数列 $2, 2^2 + 2^3, 2^4 + 2^5 + 2^6, 2^7 + 2^8 + 2^9 + 2^{10}, \dots$ 求:
 - (1) 前 n 项和 S_n ;
 - (2) 通项公式 a_n .
- 154. 给出数表

$$1 \quad 2 \quad 3 \quad \cdots \quad n$$

$$2 \quad 4 \quad 6 \quad \cdots \quad 2n$$

$$3 \quad 6 \quad 9 \quad \cdots \quad 3n$$

$$n \quad 2n \quad 3n \quad \cdots \quad n^2$$

已知表中所有数之和为 36100, 求 n.

155. 给出数表

- (1) 前 n 行共有几个数?
- (2) n 行的第一个数和最后一个数各是多少?
- (3) 求第 n 行各数之和;
- (4) 求前 n 行各数之和;
- (5) 数 100 是第几行的第几个数?

156. 求和:
$$\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \dots + \frac{1}{(2n)^2-1}$$
.

- 157. 已知数列 $\{a_n\}$ 的通项公式为 $a_n=\frac{1}{\sqrt{n}+\sqrt{n+1}}$, 它的前 n 项之和 $S_n=9$, 求项数 n.
- 158. 已知等差数列 $\{a_n\}$ 的各项均为正数, 求证: $\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$
- 159. 已知等差数列 $\{a_n\}$ 的各项均不为零, 求证: $\frac{1}{a_1a_2} + \frac{1}{a_2a_3} + \dots + \frac{1}{a_{n-1}a_n} = \frac{n-1}{a_1a_n}$.
- 160. 求数列 $\frac{2^2+1}{2^2-1}, \frac{3^2+1}{3^2-1}, \frac{4^2+1}{4^2-1}, \cdots$ 的前 n 项之和.
- 161. 求和: $\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \dots + \frac{1}{n(n+1)(n+2)} (n \in \mathbf{N}^*).$
- 162. 求和: $1 \times 2 + 4 \times 2^2 + 7 \times 2^3 + \dots + (3n-2) \times 2^n$.
- 163. 求数列 $\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \frac{7}{16}, \frac{9}{32}, \cdots$ 的前 n 项之和 S_n .
- 164. $\Re \text{iff}: \sqrt{2} \times \sqrt[4]{4} \times \sqrt[8]{8} \cdot \dots \cdot \sqrt[2^n]{2}^n < 4(n \in \mathbb{N}^*).$
- 165. 已知 a > 0, $a \neq 1$, 数列 $\{a_n\}$ 是首项为 a, 公比也为 a 的等比数列, 令 $b_n = a_n \lg a_n (n \in \mathbf{N}^*)$.
 - (1) 求数列 $\{b_n\}$ 的前 n 项之和 S_n ;
 - (2) 若数列 $\{b_n\}$ 中的每一项总小于它后面的项, 求 a 的取值范围.
- 166. 计算: $1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + n(n+1)$.
- 167. 计算: $1 \times 2 + 3 \times 4 + 5 \times 6 + \cdots + (2n-1)(2n)$.
- 168. 计算: $1^2 + 3^2 + 5^2 + \cdots + (2n-1)^2$.
- 169. 计算: $1 \times 2 \times 3 + 2 \times 3 \times 4 + 4 \times 5 \times 6 + \dots + n(n+1)(n+2)$.
- 170. 若 $1 \times 2^2 + 2 \times 3^2 + 3 \times 4^2 + \dots + n(n+1)^2 = \frac{n(n+1)}{12}(an^2 + bn + c)$ 对任何自然数 n 恒成立, 求 a, b, c 的值.
- 171. 已知数列 $\{a_n\}$ 和 $\{b_n\}$ 满足 $b_n=\frac{a_1+2a_2+3a_3+\cdots+na_n}{1+2+\cdots+n}$, 求证: 若 $\{a_n\}$ 为等差数列, 则 $\{b_n\}$ 也为等差数列, 反之亦真.
- 172. 已知 $f(x) = \sqrt{x^2 4} (x \le -2)$.
 - (1) 求 f(x) 的反函数 $f^{-1}(x)$;

 - (3) 如果 $b_1 = \frac{1}{a_1 + a_2}, b_2 = \frac{1}{a_2 + a_3}, b_3 = \frac{1}{a_3 + a_4}, \cdots, b_n = \frac{1}{a_n + a_{n+1}}, \cdots,$ 求数列 $\{b_n\}$ 前 n 项的和 S_n .
- 173. 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = S_n + (n+1)(n \in \mathbf{N}^*)$.
 - (1) 用 a_n 表示 a_{n+1} ;
 - (2) 求证: 数列 $\{a_n + 1\}$ 是等比数列;
 - (3) 求和 S_n .

- 174. 求 $\lim_{n \to \infty} (\frac{n^2 + 2n + 2}{n + 1} an + b)$, 其中 a, b 为常数. 解答在这里因为原式 $= \lim_{n \to \infty} \frac{(1 - a)n^2 + (2 - a + b)n + b + 2}{n + 1}$, 所以若 $a \neq 1$, 则极限不存在; 若 a = 1, 则原式 $= \lim_{n \to \infty} \frac{(b + 1)n + b + 2}{n + 1} = b + 1$.
- 175. 求 $\lim_{n\to\infty} (\frac{1}{n^2+1} + \frac{2}{n^2+1} + \dots + \frac{n}{n^2+1}).$ 解答在这里原式 = $\lim_{n\to\infty} \frac{1+2+\dots+n}{n^2+1} = \lim_{n\to\infty} \frac{n(n+1)}{2(n^2+1)} = \frac{1}{2}$
- 177. 若 $a \neq -1$, 求 $\lim_{n \to \infty} \frac{1-a^n}{1+a^n}$. 解答在这里若 |a| < 1, 则原式 $= \frac{1-\lim_{n \to \infty} a^n}{1+\lim_{n \to \infty} a^n} = 1$; 若 a = 1, 则原式 = 0. 若 |a| > 1, 则原式 $= \lim_{n \to \infty} \frac{\left(\frac{1}{a}\right)^n 1}{\left(\frac{1}{a}\right)^n + 1} = \frac{\lim_{n \to \infty} \left(\frac{1}{a}\right)^n 1}{\lim_{n \to \infty} \left(\frac{1}{a}\right)^n + 1} = -1$.
- 178. 已知等比数列 $\{a_n\}$ 满足 $a_1+a_2+a_3=18,\ a_2+a_3+a_4=-9,\$ 记 $S_n=a_1+a_2+\cdots+a_n,\$ 求 $\lim_{n\to\infty}S_n.$ 解答在这里设分比为 $q,\$ 则由已知, $a_1(1+q+q^2)=18,\ a_2(1+q+q^2)=-9,\$ 故 $\frac{a_2}{a_1}=-\frac{1}{2},\$ 于是 $q=-\frac{1}{2},$ $a_1=24,\$ 所以 $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{a_1(1-q^n)}{1-q}=\lim_{n\to\infty}\frac{24\times\left[1-\left(-\frac{1}{2}\right)^n\right]}{1-\left(-\frac{1}{2}\right)}=\frac{24}{1-\left(-\frac{1}{2}\right)}=16.$
- 179. 用定义证明数列 $\{\frac{n^2-1}{n^2+1}\}$ 的极限为 1. 解答在这里设 ε 是仟意小的正数,要使 $|\frac{n^2-1}{n^2+1}-1|<\varepsilon$,只要 $|\frac{2}{n^2+1}|<\varepsilon$,即 $\frac{2}{n^2+1}<\varepsilon$,即 $n^2>\frac{2}{\varepsilon}-1$,所以 $n>\sqrt{\frac{2-\varepsilon}{\varepsilon}}$.取 $N=[\sqrt{\frac{2-\varepsilon}{\varepsilon}}]$,则当 n>N 时,必有 $|\frac{n^2-1}{n^2+1}-1|<\varepsilon$,故 $\lim_{n\to\infty}\frac{n^2-1}{n^2+1}=1$.
- 180. 用极限的定义证明: $\lim_{n\to\infty}q^n=0(|q|<1)$. 解答在这里设 ε 是任意小的正数,要使 $|q^n-0|<\varepsilon$,即 $|q|^n<\varepsilon$,即 $n\lg|q|<\lg\varepsilon$. 因为 $\lg|q|<0$,所以 $n>\frac{\lg\varepsilon}{\lg|q|}$.取 $N=[\frac{\lg\varepsilon}{\lg|q|}]$,则当 n>N 时,必有 $|q^n-0|<\varepsilon$,故 $\lim_{n\to\infty}q^n=0$.
- 181. 若非常数的数列 $\{a_n\}$, 当 $n\to\infty$ 时的极限是 M, 则在区间 $(M-\varepsilon,M+\varepsilon)(\varepsilon$ 为任意小的正数) 内, 这个数列的项数为 (
 - A. 无限多项

B. 有限项

C. 零项

- D. 有限项与无限多项都有可能
- 182. 无穷数列 $\{a_n\}$ 的极限为 A, 指的是: 对任意的 $\varepsilon > 0$, 总能在 $\{a_n\}$ 中找到一项 a_N , 使 ().
 - A. a_N 以后至少有一项满足 $|a_n A| < \varepsilon$
- B. a_N 以后有有限项满足 $|a_n A| < \varepsilon$
- $C. a_N$ 以后有无限项满足 $|a_n A| < \varepsilon$
- D. a_N 以后的所有项都满足 $|a_n A| < \varepsilon$

183.	记 $a_1 + a_2 + \cdots + a_n = S_n$, 则数列 $\{a_n\}$ 有极限是数列 $\{S_n\}$ 有极限的 ().				
	A. 充分不必要条件		B. 必要不充分条件		
	C. 充分必要条件		D. 既不充分也不必要条件		
	观察下面四个数列: ① $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \cdots, (-1)^{n-1}$ ② $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2d}, \frac{1}{a+3d}, \frac{1}{a+3d}, \frac{3}{2}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \cdots, \frac{n+1}{n}, \cdots;$ ④ $-2, \frac{3}{2}, -\frac{4}{3}, \frac{5}{4}, \cdots, (-1)^{n-1}$ 其中存在极限的数列的个数为	$\frac{n+1}{n}, \cdots$	登均不为零);		
	A. 4	В. 3	C. 2	D. 1	
185.	若 $\lim_{n\to\infty} a_n$ 存在, $\lim_{n\to\infty} \frac{a_n-3}{a_n+3}$	$\frac{3}{2} = \frac{4}{9}$,则 $\lim_{n \to \infty} a_n = $			
186.	若数列 $\{a_n\}$ 、 $\{b_n\}$ 均存在极	限,且 $\lim_{n\to\infty} (3a_n + 4b_n) = 8$	$, \lim_{n \to \infty} (6a_n - b_n) = 1. \text{ M } \lim_{n \to \infty} (6$	$3a_n + b_n) = \underline{\qquad}.$	
187.	在数列 $\{a_n\}$ 中, 若 $a_n = \frac{n-1}{2}$ 小值是	$\frac{+2}{n}$,则 $ a_n - \frac{1}{2} =$; 要使 $n>N$ 时, 有 $ a_n-$	$\frac{1}{2} <0.001$,则 N 的最	
188.	若数列 $\{a_n\}$ 满足 $a_1 = \sqrt{6}$,	$a_{n+1} = \sqrt{a_n + 6} (n \in \mathbf{N}^*),$	且 $\lim_{n\to\infty} a_n$ 存在, 求 $\lim_{n\to\infty} a_n$.		
189.	. 用极限定义证明: 数列 $\{\frac{n}{2n+1}\}$ 的极限为 $\frac{1}{2}$.				
190.	用极限定义证明: $\lim_{n\to\infty} (1-\frac{1}{2^n}) = 1.$				
191.	. 用极限定义证明: $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0.$				
192.	$\lim_{n \to \infty} \left(\frac{n^2 + 1}{n^3} + \frac{n^2 + 2}{n^3} + \dots \right)$	$+rac{n^2+n}{n^3})$ 的值为 ().			
	A. 0	B. 1	C. 2	D. 不存在	
193.	若 $f(n) = 1 + 2 + \cdots + n(n)$	$\in \mathbf{N}^*$),则 $\lim_{n \to \infty} \frac{f(n^2)}{[f(n)]^2}$ 值	是 ().		
	A. 2	B. 0	C. 1	D. $\frac{1}{2}$	
194.	若 S_n 是无穷等差数列 $1,3,5$	5,⋯ 的前 n 项之和,则 li n-	$\lim_{n \to \infty} \frac{S_n}{S_{2n}}$ 的值等于 ().		
	A. $\frac{1}{4}$	B. 1	C. 2	D. 4	
195.	若数列 $\{a_n\}$ 满足 $a_n = (1 +$	$\frac{1}{2}$)(1 + $\frac{1}{3}$)(1 + $\frac{1}{4}$) · · · (1 +	$\frac{1}{n+1}$), 则 $\lim_{n \to \infty} \frac{a^n}{n}$ 的值等于	().	
	A. 0	B. $\frac{1}{2}$	C. 1	D. 不存在	
196.	若 $\lim_{n\to\infty} \frac{(k-2)n^2+4n}{2(n^2+7)} = 2,$	则实数 k 的值等于().		
	A. 4	B. 6	C. 8	D. 0	

197. 若 $\lim_{n \to \infty} \frac{an^2 + cn}{bn^2 + c} = 2$, $\lim_{n \to \infty} \frac{bn + c}{cn + a} = 3$, 则 $\lim_{n \to \infty} \frac{an^2 + bn + c}{cn^2 + an + b} = ($

D. 6

198. 数列极限 $\lim_{n\to\infty} (n+1-\sqrt{n^2+n})$ 是 ().

A. 不存在

C. 1

D. $\frac{3}{2}$

199. 以下各式中, 当 $n \to \infty$ 时, 极限值为 $\frac{1}{2}$ 的是 ().

A. $\frac{n-2}{2n(n+1)}$ B. $\frac{2n+1}{3n+2}$

C. $(\sqrt{n+1} - \sqrt{n})\sqrt{n}$ D. $\frac{1+4+7+\cdots+(3n-2)}{2n^2}$

200. $\lim_{n \to \infty} \left(\frac{2n^2 + 5n - 1}{3n^3 - 2n^2} + \frac{3 + 5n}{3n - 1} \right) = \underline{\qquad}.$

201. $\lim_{n\to\infty} \frac{1+3+5+7+\cdots+(2n-1)}{1+4+7+11+\cdots+(3n-2)} = \underline{\hspace{1cm}}$

202. 若 $\{a_n\}$ 是公差不为零的等差数列, S_n 是它的前 n 项之和, 则 $\lim_{n \to \infty} \frac{na_n}{S_n} =$ ______.

203. $\lim_{n \to \infty} \left[\frac{1}{(3n+1)(2n-1)} + \frac{5}{(3n+1)(2n-1)} + \frac{9}{(3n+1)(2n-1)} + \cdots + \frac{4n-3}{(3n+1)(2n-1)} \right] = \underline{\hspace{1cm}}$

204. $\lim_{n \to \infty} (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \cdots (1 - \frac{1}{n}) = \underline{\hspace{1cm}}$

205. $\lim_{n \to \infty} (1 - \frac{1}{2^2})(1 - \frac{1}{2^2})(1 - \frac{1}{4^2}) \cdots (1 - \frac{1}{n^2}) = \underline{\hspace{1cm}}$

206. 若 $\lim_{n \to \infty} (2n - \sqrt{4n^2 + an + 3}) = 1$, 则 a 等于 ().

A. -7

D. 4

207. $\lim_{n\to\infty}\frac{1}{n}[1^2+(1+\frac{1}{n})^2+(1+\frac{2}{n})^2+(1+\frac{3}{n})^2+\cdots(1+\frac{n+1}{n})^2]$ 的值为 (

209. 若 $\lim_{n \to \infty} \frac{3a^n + pb^n + c}{7a^n - 3b^n + c^2} = -5(1 < a < b, c, p)$ 为常数),则 p______.

210. 若 $\lim_{n \to \infty} (\sqrt{4n^2 + p} - pn) = q$, 则 $p = _____, q = _____.$

211. $\lim_{n\to\infty} \frac{2}{\sqrt{n^2+2n}-\sqrt{n^2+1}} = \underline{\hspace{1cm}}$

212. $\lim_{n\to\infty} \frac{1}{n^2 - n\sqrt{n^2 + 1}} = \underline{\hspace{1cm}}$

213. $\lim_{n \to \infty} \left[\sqrt{1+2+3+\cdots+n} - \sqrt{1+2+3+\cdots+(n-1)} \right] = \underline{\hspace{1cm}}$

214. $\lim_{n \to \infty} \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} \right) = \underline{\hspace{1cm}}$

215. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2 + 3k + 2} = \underline{\qquad}.$

- 216. 已知 y = f(x) 是一次函数, f(8) = 15, 又 f(2), f(5), f(4) 依次成等比数列, 记 $S_n = f(1) + f(2) + \cdots + f(n)$, 求 $\lim_{n\to\infty} \frac{S_n}{n^2}$.
- 217. 已知数列 $\{a_n\}$ 前 n 项的和 $S_n = n^2$, 记 $p_n = \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \cdots + \frac{1}{a_m a_{m+1}}$, 求 $\lim_{n \to \infty} p_n$.
- 218. 已知二次函数 $f(x) = n(n+1)x^2 (2n+1)x + 1$, 当 n 取所有自然数时, 求它的图象在 x 轴上截得的所有线 段长度的总和.
- 219. 若 $\lim_{n\to\infty} (1-2x)^n$ 存在, 则 x 的取值范围是 ().

A. 0 < x < 1

C. $0 \le x < 1$ D. $x \ge 1$ 或 $x \le 0$

220. 已知四个无穷数列 $\{(-1)^n\frac{1}{n}\},\{(-1)^n(\frac{1}{2})^n\},\{\frac{3^{n-1}}{2^n}\},\{\frac{10^{10}}{n^2+2n}\},$ 当 $n\to\infty$ 时, 这四个数列中极限为零的个

A. 1

B. 2

C. 3

D. 4

221. 已知四个数列的通项公式分别是 $a_n=1+(-1)^n,\ b_n=2+(-\frac{\sqrt{2}}{2})^n,\ c_n=(-1)^n\tan(\frac{n\pi}{2}-\frac{\pi}{4}),\ d_n=(-1)^n\sin(\frac{n\pi}{2}-\frac{\pi}{4})$ $(-1)^n \frac{n+1}{n},$ 当 $n \to \infty$ 时, 这四个数列中极限为 -1 的是数列 ().

B. $\{b_n\}$

C. $\{c_n\}$

D. $\{d_n\}$

222. 首项为 1、公比为 q(|q|>1) 的等比数列前 n 项之和为 S_n , 则 $\lim_{n\to\infty}\frac{S_n}{S_{n+1}}$ 的值为 (

A. 1

D. 不存在

- 223. 若 $\lim_{n\to\infty} (\frac{1-a}{2a})^n = 0$, 则 a 的取值范围是______.
- 224. 若 $\lim_{n\to\infty} [2-(\frac{q}{1-q})^n] = 2$, 则 q 的取值范围是______.
- 225. 若 $\lim_{n\to\infty} \frac{x^{2n+1}}{1+x^{2n}} = x(x\neq 0)$, 则 x 的取值范围是______.
- 226. 若 $\lim_{n\to\infty} \frac{3^n + a^n}{3^{n+1} + a^{n+1}} = \frac{1}{3}$, 则 a 的取值范围是______.
- 227. $\lim_{n \to \infty} \frac{2^{2n-1} + 1}{4^n 3^n} = \underline{\qquad}.$
- 228. $\lim_{n \to \infty} \frac{5^{n+1} 10^{n-1}}{10^{n+1} 5^{n-1}} = \underline{\hspace{1cm}}.$
- 229. $\lim_{n \to \infty} \frac{(-2)^{n+1}}{1 2 + 4 \dots + (-2)^{n-1}} = \underline{\qquad}.$
- 230. $\lim_{n \to \infty} \frac{1 + 2 + 2^2 + \dots + 2^{n-1}}{1 2^{n-1}} = \underline{\hspace{1cm}}.$
- 231. 若 |p| < 3, 则 $\lim_{n \to \infty} \frac{p^n + 3^n}{1 + 3 + 3^2 + \dots + 3^n} = \underline{\hspace{1cm}}$
- 232. **<math>\mathbf{z}** \mathbf{z} \mathbf{z}

233.	. 在正数数列 $\{a_n\}$ 中,已知 $a_1=2$, a_{n-1} 与 a_n 满足关系式 $\lg a_n=\lg a_{n-1}+\lg t$,其中 t 为大于零的常数. 求: (1) 数列 $\{a_n\}$ 的通项公式;				
234.	$(2) \lim_{n \to \infty} \frac{a_n + 1}{a_n - 1}$ 的值. 已知数列 $\{a_n\}$ 的前 n 项之和 (1) 求证: $\{s_n - 1\}$ 是公比为 (2) 求适合 $\lim_{n \to \infty} S_n = 1$ 的 r	$\frac{r}{r-1}$ 的等比数列;	= 1).		
235.	已知等差数列 $\{a_n\}$ 的首项为 n 项和为 B_n . 记 $S_n = B_1 + B_2$	_		1, 公比为 $q(q < 1)$, 前	
236.	无穷数列 $\frac{1}{2}\sin\frac{\pi}{2}, \frac{1}{2^2}\sin\frac{2\pi}{2},$	$\frac{1}{2^3}\sin\frac{3\pi}{2},\cdots,\frac{1}{2^n}\sin\frac{n\pi}{2},\cdots$	· 的各项之和为 ().		
	A. $\frac{1}{3}$	B. $\frac{2}{7}$	C. $\frac{2}{5}$	D. 不存在	
237.	将循环小数 0.36 化成最简分	数后, 分子与分母的和等于 ().		
	A. 15	B. 45	C. 126	D. 135	
238.	记 $b = \cos 30^{\circ}$,又无穷数列 ().	$\{a_n\}$ 满足 $a_1 = 2$, $\log_b a_{n+1}$	$1 = \log_b a_n + 2, \text{则} \lim_{n \to \infty} (a_2)$	$a_2 + a_3 + \dots + a_n$) 等于	
	A. 8	B. 6	C. $\frac{8}{3}$	D. 2	
239.	无穷等比数列 (公比 q 满足	q <1) 中,若任何一项都等	于该项后所有项的和,则等比	公数列的公比是 ().	
	A. $\frac{1}{4}$	B. $\frac{1}{2}$	C. $-\frac{1}{2}$	D. $-\frac{1}{4}$	
240.	一个公比的绝对值小于 1 的	无穷等比数列中,已知各项的	的和为 15, 各项的平方和为	45, 则此数列的首项为	
	A. 6	B. 5	C. 3	D. 2	
241.	241. 连接三角形三边中点得第二个三角形, 再连接第二个三角形三边中点得第三个二角形, 如此不断地作下去, 则所得的一切三角形 (不包括第一个三角形) 的而积之和与第一个三角形面积之比为 ().				
	A. 1	B. $\frac{1}{2}$	C. $\frac{1}{3}$	D. $\frac{1}{4}$	
242.	242. 设 a 是方程 $\log_2 x + \log_2 (x + \frac{3}{4}) + \log_2 4 = 0$ 的根,则无穷数列 a, a^2, a^3, \cdots 的各项之和等于				
243.	243. 已知 $S_n = \frac{1}{5} + \frac{2}{5^2} + \frac{1}{5^3} + \frac{2}{5^4} + \dots + \frac{1}{5^{2n-1}} + \frac{2}{5^{2n}}$,则 $\lim_{n \to \infty} S_n = \underline{\qquad}$.				
244.	44. 无穷数列 0.15, 0.015, 0.0015, · · · 所有项的和等于				
245.	45. 若 θ 是一个定锐角, θ_1 是 $\frac{\theta}{2}$ 的余角, θ_2 是 $\frac{\theta_1}{2}$ 的余角, θ_3 是 $\frac{\theta_2}{2}$ 的余角, \cdots , θ_n 是 $\frac{\theta_{n-1}}{2}$ 的余角, 则				
	$\lim_{n\to\infty}\theta_n = \underline{\qquad}.$				
246.	$\frac{1}{3} + \frac{3}{3^2} + \frac{7}{3^3} + \dots + \frac{2^n - 1}{3^n}$	+ · · · =			

- 247. $\aleph S_n = 1 \frac{1}{2} \frac{1}{4} + \frac{1}{8} \frac{1}{16} \frac{1}{32} + \frac{1}{64} \frac{1}{128} \frac{1}{256} + \dots + \frac{1}{2^{3n-3}} \frac{1}{2^{3n-2}} \frac{1}{2^{3n-1}}, \quad M \lim_{n \to \infty} S_n = \underline{\qquad}$
- 248. 在等比数列 $\{a_n\}$ 中,已知 $\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)=rac{1}{2}$,求 a_1 的取值范围.
- 249. 在等比数列 $\{a_n\}$ 中,已知 $a_1+a_2+a_3=18$, $a_2+a_3+a_4=-9$, 且 $S_n=a_1+2a_2+3(a_3+a_4+\cdots+a_n)(n\geq 3)$, 求 $\lim_{n\to\infty} S_n$.
- 250. 已知 $\{a_n\}$ 是公比为正数的等比数列,且 $\frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} = 117$, $a_1 \cdot a_2 \cdot a_3 = \frac{1}{36}$, 求 $\lim_{n \to \infty} (a_1 + a_2 + \cdots + a_n)$.
- 251. 已知数列 $\{a_n\}$ 的前 n 项之和 S_n 满足 $S_n=1-\frac{2}{3}a_n(n\in \mathbf{N}^*)$.
 - (1) $\Re \lim_{n\to\infty} S_n$;
 - (2) 若记数列 $\{a_nS_n\}$ 的前 n 项之和为 U_n , 求 $\lim_{n\to\infty}U_n$.
- 252. 已知数列 $\{a_n\}$ 的首项 $a_1 = b(b \neq 0)$, 它的前 n 项和 S_n 组成的数列 $\{S_n\}(n \in \mathbb{N}^*)$ 是一个公比为 $q(q \neq 0, |q| < 1)$ 的等比数列.
 - (1) 求证: $a_2, a_3, a_4, \dots, a_n, \dots$ 是一个等比数列;
 - (2) $\mbox{\it id} W_n = a_1 S_1 + a_2 S_2 + \dots + a_n S_n, \ \mbox{\it id} \lim_{n \to \infty} W_n(\mbox{\it H}\ b, q\ \mbox{\it \&\vec{\pi}}).$
- 253. 在 45° 角的一边上, 取距离顶点为 a 的一点, 由这点向另一边作垂线, 然后再由这个垂线的垂足向另一边作垂线, …, 如此无限地继续下去, 求所有这些垂线长的和.
- 254. 如图, 在直角坐标平面上, 点 P 从原点出发沿 x 轴的正方向前进 a 后向左转 90° , 前进 $\frac{a}{2}$ 后又向右转 90° , 前进 $\frac{1}{2^2}a$ 后再左转 90° , 无限地继续下去, 点 P 最后到达哪一点.

255. 设扇形 AOB 的半径为 R, 中心角为 $\theta(0 < \theta < \frac{\pi}{2})$, 由 A 向半径 OB 作垂线 AB_1 , 由垂足 B_1 引弦 AB 的平行线交 OA 于点 A_1 , 再由 A_1 向 OB 作垂线 A_1B_2 , 由垂足 B_2 引弦 AB 的平行线交 OA 于点 A_2 (如图), 这样无限地继续下去,在 OA, OB 上得到的点列 $\{A_n\}$ 、 $\{B_n\}$,设 $\triangle ABB_1$, $\triangle A_1B_1B_2$, \cdots , $\triangle A_nB_nB_{n+1}$, \cdots 的面积为 S_1, S_2, \cdots , S_{n+1}, \cdots ,求 $S = \lim_{n \to \infty} \sum_{k=1}^{n} S_k$.

256. 如图, 在 $Rt\triangle ABC$ 中排列着无限个正方形 $S_1, S_2, S_3, S_4, \cdots$, 且已知直角边 BC = a, 这无限个正方形的面 积之和正好是这个直角三角形面积的一半, 求另一直角边 AC 的长.

- 257. 在半径为 r 的球内作正方体, 然后在正方体内再作内切球, 在内切球内再作内接正方体, 然后再作它的内切 球,如此无限地作下去,求所有这些球的表面积之和(包括半径为 r 的球).
- 258. 用数学归纳法证明: $1+2+\cdots+2n=n(2n+1)(n \in \mathbb{N}^*)$.
- 259. 用数学归纳法证明: $\sqrt{1 \times 2} + \sqrt{2 \times 3} + \dots + \sqrt{n(n+1)} > \frac{n(n+1)}{2} (n \in \mathbf{N}^*).$
- 260. 用数学归纳法证明: $1 \times n + 2(n-1) + \dots + n \times 1 = \frac{n(n+1)(n+2)}{6} (n \in \mathbf{N}^*)$.

261. 记
$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} (n > 1, n \in \mathbb{N}^*)$$
,求证: $S_{2^n} > 1 + \frac{n}{2} (n \ge 2, n \in \mathbb{N}^*)$.

解答在这里 (1) 当 $n = 2$ 时, $S_{2^2} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12} > 1 + \frac{2}{2}$,所以当 $n = 2$ 时,命题成立.

(2) 设 $n = k$ 时,命题成立,即 $S_{2^k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k} > 1 + \frac{k}{2}$,则 $n = k + 1$ 时, $S_{2^{k+1}} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k} + \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^{k+1}} > 1 + \frac{k}{2} + \underbrace{\frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^k + 2^k}}_{2^k \neq 2^k} > 1 + \frac{k}{2} + \underbrace{\frac{2^k}{2^k + 2^k}}_{2^k + 2^k} = \underbrace{\frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^k + 2^k}}_{2^k + 2^k}$

$$1 + \frac{k}{2} + \frac{1}{2} = 1 + \frac{k+1}{2}$$
.

故当 n=k+1 时, 命题也成立. 由 (1), (2) 可知, 对 $n\in \mathbf{N}^*$, $n\geq 2$, $S_{2^n}>1+\frac{n}{2}$.

262. 求证: $a^{n+1} + (a+1)^{2n-1} (n \in \mathbb{N}^*)$ 能被 $a^2 + a + 1$ 整除.

解答在这里(1)当n=1时, $a^{1+1}+(a+1)^{2\times 1-1}=a^2+a+1$,命题显然成立.

- (2) 假设当 n=k 时, $a^{k-1}+(a+1)^{2k-1}$ 能被 a^2+a+1 整除, 则当 n=k+1 时, $a^{k+2}+(a+1)^{2k+1}=1$ $a \cdot a^{k+1} + (a+1)^2(a+1)^{2k-1} = a[a^{k+1} + (a+1)^{2k-1}] + (a+1)^2(a+1)^{2k-1} - a(a+1)^{2k-1} = a[a^{k+1} + (a+1)^{2k-1}] + a(a+1)^{2k-1} + a(a+1)^{$ $(1)^{2k-1}$] $+(a^2+a+1)(a+1)^{2k-1}$. 由归纳假设, 以上两项均能被 a^2+a+1 整除, 故 n=k+1 时, 命题也成 <u>)</u>.
- 由 (1), (2) 可知, 对 $n \in \mathbb{N}^*$ 命题成立.
- 263. 已知数列 $\{a_n\}$ 满足 $a_1 = a, a_{n+1} = \frac{1}{2 a_n}$.
 - (1) \mathbf{x} a_2, a_3, a_4 ;
 - (2) 推测通项 a_n 的表达式, 并用数学归纳法加以证明.

解答在这里 (1) 由
$$a_{n+1} = \frac{1}{2-a_n}$$
, 可得 $a_2 = \frac{1}{2-a}$, $a_3 = \frac{1}{2-\frac{1}{2-a}} = \frac{2-a}{3-2a}$, $a_4 = \frac{1}{2-\frac{2-a}{3-2a}} = \frac{3-2a}{4-3a}$.

(2) 推测
$$a_n = \frac{(n-1) - (n-2)a}{n - (n-1)a}$$
, 证明如下: ① 当 $n = 1$ 时, 左边 $= a_1 = a$, 右边 $= \frac{3 - 2a}{(1-1) - (1-2)a} = \frac{(1-1) - (1-2)a}{1 - (1-1)a} = \frac{(1-1) - (1-2)a}{1 - (1-1)a}$

a, 结论成立. ② 设 n=k 时,有 $a_k=\frac{(k-1)-(k-2)a}{k-(k-1)a}$,则当 n=k+1 时, $a_{k+1}=\frac{1}{2-a_k}=\frac{1}{2-\frac{(k-1)-(k-2)a}{k-(k-1)a}}=\frac{k-(k-1)a}{2[k-(k-1)a]-[(k-1)-(k-2)a]}=\frac{k-(k-1)a}{(k+1)-ka}$. 故当 n=k+1 时,结

由① , ② 可知, 对 $n \in \mathbb{N}^*$, 都有 $a_n = \frac{(n-1) - (n-2)a}{n - (n-1)a}$.

264. 平面内有 n 个圆, 其中每两个圆都交于两点, 且无任何三个圆交于一点, 求证: 这 n 个圆将平面分成 n^2-n+2 个部分.

解答在这里设 n = k 时, k 个圆将平面分成 $k^2 - k + 2$ 个部分 (如图), 则当 n = k + 1 时, 第 k + 1 个圆 C_{k+1} 交前面 k 个圆于 2k 个点, 这 2k 个点将圆 C_{k+1} 分成 2k 段, 每段将各自所在区域一分为二, 因此增加了 2k个区域, 于是这 k+1 个圆将平面分成 $k^2-k+2+2k$ 个部分, 即 $(k+1)^2-(k+1)+2$ 个部分.

265. 利用数学归纳法证明 " $1+a+a^2+\cdots+a^{n+1}=rac{1-a^{n+2}}{1-a}(a \neq 1,\, n \in \mathbf{N}^*)$ " 时, 在验证 n=1 成立时, 左边应 该是().

A. 1

- B. 1 + a
- C. $1 + a + a^2$ D. $1 + a + a^2 + a^3$
- 266. 欲用数学归纳法证明"对于足够大的自然数 n, 总有 $2^n > n^3$ ", 则验证不等式成立所取的第一个 n 值, 最小应 当是().

A. 1

B. 大于 1 且小于 6 的某个自然数

C. 10

- D. 大于 5 且小于 10 的某个自然数
- 267. 利用数学归纳法证明"对任意偶数 $n, a^n b^n$ 能被 a + b 整除"时, 其第二步论证, 应该是(
 - A. 假设 n = k 时命题成立, 再证 n = k + 1 时命题也成立
 - B. 假设 n=2k 时命题成立, 再证 n=2k+1 时命题也成立
 - C. 假设 n=k 时命题成立, 再证 n=k+2 时命题也成立
 - D. 假设 n=2k 时命题成立, 再证 n=2(k+1) 时命题也成立
- 268. 利用数学归纳法证明 " $(n+1)(n+2)(n+3)\cdots(n+n)=2^n\times 1\times 3\times \cdots \times (2n-1)(n\in \mathbb{N}^*)$ " 时, 从 "n=k" 变到 "n = k + 1" 时, 左边应增添的因式是 ().

A. 2k + 1

B. $\frac{2k+1}{k+1}$ C. $\frac{(2k+1)(2k+2)}{k+1}$ D. $\frac{2k+3}{k+1}$

269. 利用数学归纳法证明 " $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24} (n \geq 2, n \in \mathbf{N}^*)$ " 的过程中,由"n = k" 变到"n = k+1" 时,不等式左边的变化是()。

A. 增加
$$\frac{1}{2(k+1)}$$

C. 增加
$$\frac{1}{2k+2}$$
 并减少 $\frac{1}{k+1}$

B. 增加
$$\frac{1}{2k+1}$$
 和 $\frac{1}{2k+2}$

B. 增加
$$\frac{1}{2k+1}$$
 和 $\frac{1}{2k+2}$ D. 增加 $\frac{1}{2k+1}$ 和 $\frac{1}{2k+2}$, 并减少 $\frac{1}{k+1}$.

270. 利用数学归纳法证明不等式 " $\sqrt{n^2+n} < n+1$ " 时, 由 "假设 n=k 时命题成立" 到 "当 n=k+1 时", 正确

A.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} < \sqrt{k^2 + 4k + 4} = k + 2$$

B.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} = \sqrt{(k+2)^2 - (k+2)} < k+2$$

C.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} < \sqrt{(k+2)^2} = k+2$$

D.
$$\sqrt{(k+1)^2 + (k+1)} = \sqrt{k^2 + 3k + 2} = \sqrt{(k^2 + k) + 2k + 2} < \sqrt{(k+1)^2 + 2k + 2} = \sqrt{(k+2)^2 - 1} < \sqrt{(k+2)^2} = k + 2$$

271. 利用数学归纳证明不等式 " $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^n-1}< n(n\geq 2,\ n\in \mathbf{N}^*)$ " 的过程中,由"n=k" 变到 "n = k + 1" 时, 左边增加了(

A. 1 项

B. k 项

C. 2^{k-1} 项

D. 2^k 项

- 272. 利用数学归纳法证明: $1+2+3+\cdots+2n=n(2n+1)(n \in \mathbb{N}^*)$.
- 273. 利用数学归纳法证明: $1^2 2^2 + 3^2 4^2 + \dots + (-1)^{n-1}n^2 = (-1)^{n-1} \cdot \frac{n(n+1)}{2} (n \in \mathbf{N}^*)$.
- 274. 利用数学归纳法证明: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}(n\in\mathbf{N}^*).$
- 275. 利用数学归纳法证明: $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}[n(n+1)]^2 (n \in \mathbf{N}^*).$
- 276. 利用数学归纳法证明: $(1 \times 2^2 2 \times 3^2) + (3 \times 4^2 4 \times 5^2) + \dots + [(2n-1)(2n)^2 2n(2n+1)^2]$ $=-n(n+1)(4n+3)(n \in \mathbf{N}^*).$
- 277. 对于 $n \in \mathbb{N}^*$,求证: $\frac{1}{2} \tan \frac{x}{2} + \frac{1}{2^2} \tan \frac{x}{2^2} + \dots + \frac{1}{2^n} \tan \frac{x}{2^n} = \frac{1}{2^n} \cot \frac{x}{2^n} \cot x (x \neq k\pi, n \in \mathbf{Z}).$
- 278. 对于 $n \in \mathbb{N}^*$,求证: $\frac{1}{\cos \alpha \cos(\alpha+\beta)} + \frac{1}{\cos(\alpha+\beta)\cos(\alpha+2\beta)} + \cdots + \frac{1}{\cos[\alpha+(n-1)\beta]\cos(\alpha+n\beta)}$
- 279. 对于 $n \in \mathbb{N}^*$,求证: $(2\cos\theta 1)(2\cos2\theta 1)(2\cos2^2\theta 1)\cdots(2\cos2^{n-1}\theta 1) = \frac{2\cos2^n\theta + 1}{2\cos\theta + 1}$ (其中 $\theta \neq 0$ $2k\pi \pm \frac{2\pi}{3}, k \in \mathbf{Z}$).
- 280. 对于 $n \in \mathbb{N}^*$, 求证: $\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \dots + \frac{1}{\sin 2^n x} = \cot x \cot 2^n x (x \neq \frac{m\pi}{2^p}, m \in \mathbb{Z}, p \in \mathbb{N}^*).$
- 281. 在数列 $\{a_n\}$ 中,已知 $a_1=1, a_{n+1}=6(1+2+\cdots+n)+1(n\in \mathbf{N}^*)$,求证: $a_1+a_2+\cdots+a_n=n^3$.
- 282. 设 x_1, x_2 是关于 x 的方程 $2x^2 + 2nx n = 0 (n \in \mathbb{N}^*)$ 的两个根,数列 $\{a_n\}$ 的通项 $a_n = x_1^2 + x_2^2$,试用数学 归纳法证明: 对任何自然数 n,都有 $\frac{1}{1+a_1} + \frac{1}{2+a_2} + \frac{1}{3+a_3} + \cdots + \frac{1}{n+a_n} = \frac{n(3n+5)}{4(n+1)(n+2)}$.
- 283. 利用数学归纳法证明: $\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \cdots + \frac{1}{2n} > \frac{13}{24} (n \ge 2, n \in \mathbb{N}^*).$

- 284. 利用数学归纳法证明: $\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+2} > 1(n \in \mathbb{N}^*)$.
- 285. 利用数学归纳法证明: $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2} > 1 (n \ge 2, n \in \mathbb{N}^*).$
- 286. 利用数学归纳法证明: $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^n 1} < n(n \ge 2, n \in \mathbf{N}^*).$
- 287. 已知 $n \in \mathbb{N}^*$, 求证: $|\sin \theta| \le n |\sin \theta|$.
- 288. 已知 $n \in \mathbb{N}^*$, 求证: $\cot \frac{\theta}{2^n} \cot \theta \ge n(0 < \theta < \pi)$.
- 289. 利用数学归纳法证明: $(1 + \frac{1}{n})^n < n(n \ge 3, n \in \mathbf{N}^*)$.
- 290. 利用数学归纳法证明: $\frac{2^n-1}{2^n+1} > \frac{n}{n+1} (n \ge 3, n \in \mathbf{N}^*).$
- 291. 利用数学归纳法证明: $\frac{2^n + 4^n}{2} \ge 3^n (n \in \mathbf{N}^*)$.
- 292. 利用数学归纳法证明: $\frac{a^n+b^n}{2} \geq (\frac{a+b}{2})^n (a,b \in \mathbf{R}^+, n \in \mathbf{N}^*).$
- 293. 利用数学归纳法证明: $(2n+1)(1-x)x^n < 1 x^{2n+1}(0 < x < 1, n \in \mathbb{N}^*)$.
- 294. 已知数列 $\{a_n\}$ 满足 $a_1 = 2$, $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$, 求证: $\sqrt{2} < a_n < \sqrt{2} + \frac{1}{n}$.
- 295. 求证: $49^n + 16n 1$ 能被 64 整除 $(n \in \mathbb{N}^*)$.
- 296. 求证: $6^{2n} + 3^{n+2} + 3^n$ 是 11 的倍数 $(n \in \mathbb{N}^*)$.
- 297. 求证: $7^n + 1$ 能被 8 整除, 其中 n 为正奇数.
- 298. 求证: $(3n+1) \times 7^n 1$ 是 9 的倍数 $(n \in \mathbb{N}^*)$.
- 299. 求证: $1+2+2^2+2^3+\cdots+2^{5n-1}$ 能被 31 整除 $(n \in \mathbb{N}^*)$.
- 300. 求证: $(x+3)^n 1$ 能被 x+2 整除 $(n \in \mathbb{N}^*)$.
- 301. 求证: $x^n na^{n-1}x + (n-1)a^n$ 能被 $(x-a)^2$ 整除 $(n \ge 2, n \in \mathbb{N}^*)$.
- 302. 当 $n \in \mathbb{N}^*$ 时, 试用数学归纳法证明 $f(n) = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n 1$ 一定是整数.
- 303. 已知数列 $\{a_n\}$ 满足 $a_1=1, a_{n+1}=\frac{a_n}{1+a_n}$.
 - (1) 计算 a_2, a_3, a_4 ;
 - (2) 猜测 a_n 的表达式, 并用数学归纳法加以证明.
- 304. 已知数列 $\{a_n\}$ 的通项公式是 $a_n = \frac{1}{(n+1)^2} (n \in \mathbf{N}^*)$, 记 $b_n = (1-a_1)(1-a_2)\cdots(1-a_n)$.
 - (1) 写出数列 $\{b_n\}$ 的前三项;
 - (2) 猜想数列 $\{b_n\}$ 的通项公式, 并用数学归纳法加以证明;
 - (3) \diamondsuit $p_n = b_n b_{n+1}$, 求 $\lim_{n \to \infty} (p_1 + p_2 + \dots + p_n)$ 的值.

- 305. 已知 a>0, b>0, 数列 $\{a_n\}$ 满足 $a_1=\frac{1}{2}(a+\frac{b}{a}), a_2=\frac{1}{2}(a_1+\frac{b}{a_1}), a_3=\frac{1}{2}(a_2+\frac{b}{a_2}), \cdots, a_n=\frac{1}{2}(a_{n-1}+\frac{b}{a_{n-1}}).$
 - (1) 求证: $\frac{a_n \sqrt{b}}{a_n + \sqrt{b}} = \left(\frac{a \sqrt{b}}{a + \sqrt{b}}\right)^{2n};$
 - $(2) \, \, \, \, \, \, \, \, \lim_{n \to \infty} a_n.$
- 306. 已知正数数列 $\{a_n\}$ 满足 $2\sqrt{S_n} = a_n + 1 (n \in \mathbf{N}^*)$.
 - (1) $\Re a_1, a_2, a_3;$
 - (2) 猜测 a_n 的表达式, 并证明你的结论.
- 307. 已知正数数列 $\{a_n\}$ 的前 n 项和 S_n 满足 $S_n = \frac{1}{2}(a_n + \frac{1}{a_n})$, 求 a_n .
- 308. 已知正数数列 $\{a_n\}$ 的前 n 项和 $S_n = \frac{1}{2}(a_n + \frac{1}{a_n})$.
 - (1) 求 S_1, S_2, S_3 ;
 - (2) 写出 S_n 的表达式, 并证明你的结论;
 - $(3) \Re \lim_{n \to \infty} a_n.$
- 309. 已知正数数列 $\{a_n\}$ 的前 n 项和为 S_n , 且对任何自然数 n, a_n 与 2 的等差中项等于 S_n 与 2 的正的等比中项.
 - (1) 写出数列 $\{a_n\}$ 的前三项;
 - (2) 求数列 $\{a_n\}$ 的通项公式 (写出证明过程).
- 310. 已知 $n \in \mathbf{N}^*$,比较 $\frac{1}{2} imes \frac{3}{4} imes \frac{5}{6} imes \cdots imes \frac{2n-1}{2n}$ 与 $\frac{1}{2\sqrt{n}}$ 的大小.
- 311. 已知 $n \in \mathbb{N}^*$, 比较 $(n+1)^2$ 与 3^n 的大小.
- 312. 已知数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}=\frac{{a_n}^2+3}{2a_n}$, 数列 $\{b_n\}$ 满足 $b_n=3-a_n^2$. 求证:
 - $(1) b_n < 0;$
 - (2) $\left| \frac{b_{n+1}}{b_n} \right| < \frac{1}{2};$
 - (3) $|b_n| < (\frac{1}{2})^{n-1} (n \ge 2).$
- 313. 已知数列 $\{a_n\}$ 满足条件 $a_1=1,\ a_2=r(r>0),\ \mathbbm{1}$ $\{a_na_{n+1}\}$ 是公比为 q(q>0) 的等比数列, 记 $b_n=a_{2n-1}+a_{2n}(n\in \mathbb{N}^*).$
 - (1) 求出使不等式 $a_n a_{n+1} + a_{n+1} a_{n+2} > a_{n+2} a_{n+3}$ 成立的 q 的取值范围;
 - (2) $\Re b_n \Re \lim_{n \to \infty} \frac{1}{S_n}$, $\sharp \Phi S_n = b_1 + b_2 + \dots + b_n$.
- 314. 平面上有 n 条直线, 其中任何两条都不平行, 任何三条不共点, 求证这 n 条直线:
 - (1) 被分割成 n^2 段.
 - (2) 把平面分成 $\frac{1}{2}(n^2+n+2)$ 个部分.
- 315. 已知一个圆内有 n 条弦,这 n 条弦中每两条都相交于圆内的一点,且任何三条不共点,求证: 这 n 条弦将圆面分割成 $f(n)=\frac{1}{2}n^2+\frac{1}{2}n+1$ 个区域.

316. 数列 2,0,4,0,6,0,… 的一个通项公式是 ().

A.
$$a_n = \frac{n[1 + (-1)^n]}{2}$$

B. $a_n = \frac{(n+1)[1 + (-1)^n]}{2}$
C. $a_n = \frac{n[1 + (-1)^{n+1}]}{2}$
D. $a_n = \frac{(n+1)[1 + (-1)^{n+1}]}{2}$

317. 在数列 $\{a_n\}$ 中, 已知 $a_1 = 2$, $a_{n+1} = a_n + 2n$, 则 a_{100} 等于 ().

A. 9900

B. 9902

C. 9904

D. 10100

318. 已知数列 $\{a_n\}$ 满足 $a_1=4, a_2=2, a_3=1,$ 又数列 $\{a_{n+1}-a_n\}$ 成等差数列,则 a_n 等于 ().

A.
$$n-3$$

C. $\frac{1}{2}(2n^3 - 17n^2 + 33n - 10)$

B.
$$\frac{1}{2}(n^3 - 8n^2 + 13n + 2)$$

D. $\frac{1}{2}(n^2 - 7n + 14)$

319. 求数列 $23,2323,232323,\cdots$ 的通项公式 a_n .

320. 求数列
$$\sqrt{11-2}$$
, $\sqrt{1111-22}$, \cdots , $\sqrt{\underbrace{11\cdots 11}_{2n}} - \underbrace{22\cdots 22}_{n}$, \cdots 的前 n 项和 S_{n} .

- 321. 求证: 12,1122,111222, · · · 的每一项都是两个相邻整数之积.
- 322. 已知数列 $\{a_n\}$ 满足 $a_{n+1}=2a_n+3$, 且 $a_1\neq -3$.
 - (1) 求证: 数列 $\{a_n + 3\}$ 成等比数列;
 - (2) 若 $a_1 = 5$, 求 a_n .
- 323. 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = S_n + (n+1)$.
 - (1) 用 a_n 表示 a_{n+1} ;
 - (2) 求证: 数列 $\{a_n + 1\}$ 成等比数列;
 - (3) 求 a_n 和 S_n .

324. 已知数列 $\{a_n\}$ 满足 $a_1=\frac{5}{6}$, 且关于 x 的二次方程 $a_{k-1}x^2-a_kx+1=0$ 的两根 α,β 满足 $3\alpha-\alpha\beta+3\beta=1(k\geq 2,\,k\in {\bf N}^*)$, 求证: 数列 $\{a_n-\frac{1}{2}\}$ 是等比数列, 并求出通项 a_n .

325. 求和:
$$\frac{1}{2} + (\frac{1}{3} + \frac{2}{3}) + (\frac{1}{4} + \frac{2}{4} + \frac{3}{4}) + \dots + (\frac{1}{100} + \frac{2}{100} + \frac{3}{100} + \dots + \frac{99}{100}).$$

326. 将自然数按下表排列:

- (1) 第 1 列中第 m 个数是多少? 第 1 行中第 n 个数是多少?
- (2) 若 $m \ge n$, 则第 m 行 (自上而下)、第 n 列 (自左而右) 的数是多少? 若 m < n 呢?
- (3) 99 在上起第几行、左起第几列?

- 327. 已知数列 $1, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \cdots$
 - (1) 试按照规律, 将此数列分组;
 - (2) 分数 $\frac{n}{m}(m,n\in\mathbf{N}^*,\,m,n$ 互质) 属于第几组第几项?
 - (3) $\frac{17}{30}$ 是此数列的第几项?
 - (4) 数列的第 50 项是多少?
- 328. 已知数列 $\{a_n\}$ 的前 n 项之和 S_n 与 a_n 之间满足 $2S_n^2 = 2a_nS_n a_n(n \ge 2)$, 且 $a_1 = 2$.
 - (1) 求证: 数列 $\{\frac{1}{S_n}\}$ 是以 2 为公差的等差数列;
 - (2) 求 S_n 和 a_n .
- 329. 在数列 $\{a_n\}$ 中,已知 $a_1=1,\,a_n=\frac{2S_n^2}{2S_n-1}(n\geq 2).$
 - (1) 求证: $\{\frac{1}{S_n}\}$ 成等差数列;
 - (2) 求通项 a_n 的表达式.
- 330. 已知数列 $\{a_n\}$, $\{b_n\}$ 的通项公式分别是 $a_n=2^n$, $b_n=3n+2$, 将它们的公共项由小到大排成数列 $\{c_n\}$, 求数列 $\{c_n\}$ 的通项公式.
- 331. 已知数列 $\{a_n\}$ 满足 $a_{n+1}=3^na_n$, 且 $a_1=1$, 求 a_n .
- 332. 已知数列 $\{a_n\}$ 满足 $a_1=\frac{1}{2},\, S_n=n^2a_n(S_n$ 是前 n 项之和), 求 a_n .
- 333. 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_n + a_{n+1} = -2n$.
 - (1) 求证: 数列 $\{a_{2n}\}$ 与 $\{a_{2n-1}\}$ 均是以 -2 为公差的等差数列;
 - (2) 试用 n 表示和式 $M = a_1a_2 a_2a_3 + \dots + (-1)^{k+1} \cdot a_ka_{k+1} + \dots + a_{2n-1}a_{2n} a_{2n}a_{2n+1}$.
- 334. 是否可找到 2n+1 个连续自然数 $(n \in \mathbb{N}^*)$, 使得前 n+1 个数的平方和等于末 n 个数的平方和? 此时中间数可取什么?
- 335. 是否存在常数 k 和等差数列 $\{a_n\}$, 使得 $ka_n^2 1 = S_{2n} S_{n+1}$ 对任何 $n \in \mathbb{N}^*$ 都成立 $(S_n$ 为等差数列 $\{a_n\}$ 前 n 项之和)?
- 336. 在直角 $\triangle ABC$ 中,已知 $\angle C = 90^{\circ}$, AC = b, AB = c, 将斜边 AB 分成 n+1 等份, 记分点为 P_1, P_2, \cdots, P_n , 连接 CP_1, CP_2, \cdots, CP_n , 求 $\lim_{n \to \infty} \frac{1}{n} [(CP_1)^2 + (CP_2)^2 + \cdots + (CP_n)^2]$.
- 337. 已知各项为正数的数列 $\{a_n\}$ 满足 $a_n^2 \le a_n a_{n+1}$, 求证 $a_n < \frac{1}{n}$.
- 338. 已知各项为正数的数列 $\{a_n\}$ 满足 $a_1+a_2+\cdots+a_n=1$, 求证: $a_1^2+a_2^2+\cdots+a_n^2\geq \frac{1}{n}(n\geq 2)$.
- 339. 已知 $\frac{1}{2} \le a_k \le 1 (k \in \mathbf{N}^*)$,求证: $a_1 a_2 \cdots a_n + (1 a_1)(1 a_2) \cdots (1 a_n) \ge \frac{1}{2^{n-1}}$.
- 340. 已知 $\{a_n\}$, $\{b_n\}$ 是满足 $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$ 的两个无穷数列.
 - (1) 推测用 a_n , b_n 表示 $(1-\sqrt{2})^n$ 的表达方式, 并加以证明;
 - (2) \Re : $\lim_{n\to\infty} \frac{b_n}{a_n}$.