Name:	

SEMIFINAL

Math 237 – Linear Algebra

Version 4

Fall 2017

Choose up to 6 problems to work. Work each problem on one of the attached pages; write the standard in the upper left corner. Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

Solution:

$$-4x_1 - x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 0$$
$$-x_1 + 4x_2 + x_3 = 4$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 3 & -2 & 1 & 8 & | & -5 \\ 2 & 2 & 0 & 6 & | & -2 \\ -1 & 1 & 1 & -4 & | & 6 \end{bmatrix}$$

Solution:

RREF
$$A = \begin{bmatrix} 1 & 0 & 0 & 3 & | & -2 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & -1 & | & 3 \end{bmatrix}$$

E3. Solve the following linear system.

$$3x + 2y + z = 7$$
$$x + y + z = 1$$
$$-2x + 3z = -11$$

Solution: Let $A = \begin{bmatrix} 3 & 2 & 1 & 7 \\ 1 & 1 & 1 & 1 \\ -2 & 0 & 3 & 11 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$. It follows that the system has exactly one solution: $\begin{bmatrix} 4 & -2 & -1 \end{bmatrix}$

E4. Find a basis for the solution set to the homogeneous system of equations given by

$$3x + 2y + z = 0$$
$$x + y + z = 0$$

Solution: Let $A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$.

V1. Let V be the set of all real numbers with the operations, for any $x, y \in V$, $c \in \mathbb{R}$,

$$x \oplus y = \sqrt{x^2 + y^2}$$
$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $x, y, z \in \mathbb{R}$. Then

$$(x \oplus y) \oplus z = \sqrt{x^2 + y^2} \oplus z$$

$$= \sqrt{(\sqrt{x^2 + y^2})^2 + z^2}$$

$$= \sqrt{x^2 + y^2 + z^2}$$

$$= \sqrt{x^2 + (\sqrt{y^2 + z^2})^2}$$

$$= x \oplus \sqrt{y^2 + z^2}$$

$$= x \oplus (y \oplus z)$$

However, this is not a vector space, as there is no zero vector.

V2. Determine if $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, and $\begin{bmatrix} -3\\-2\\5 \end{bmatrix}$.

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -3 & 1 \\ 3 & -1 & -2 & 4 \\ -1 & 0 & 5 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Since this system has a solution, $\begin{bmatrix} 1\\4\\3 \end{bmatrix}$ is a linear combination of the three vectors.

V3. Determine if the vectors $\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$ span \mathbb{R}^4 .

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there is a zero row, the vectors do not span \mathbb{R}^4 .

V4. Let W be the set of all polynomials of the form $ax^3 + bx$. Determine if W is a subspace of \mathcal{P}^3 .

Solution: Yes because $s(a_1x^3 + b_1x) + t(a_2x^3 + b_2x) = (sa_1 + ta_2)x^3 + (sb_1 + tb_2)x$ also belongs to W. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} 3\\-1\\0\\4 \end{bmatrix}, \begin{bmatrix} 1\\2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-8\\6\\5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Solution:

$$RREF \left(\begin{bmatrix} 3 & 1 & 3 \\ -1 & 2 & -8 \\ 0 & -2 & 6 \\ 4 & 1 & 5 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the reduced row echelon form has a nonpivot column, the vectors are linearly dependent.

S2. Determine if the set $\{x^3 - 3x^2 + 2x + 2, -x^3 + 4x^2 - x + 1, -x^3 + 2x + 1, 3x^2 + 3x + 9\}$ is a basis of \mathcal{P}^3 or not.

Solution:

RREF
$$\begin{bmatrix} 1 & -1 & -1 & 0 \\ -3 & 4 & 0 & 3 \\ 2 & -1 & 2 & 3 \\ 2 & 1 & 1 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

 $\textbf{S3.} \quad \text{Let } W = \text{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right). \text{ Find a basis of } W.$

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then $\left\{ \begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$ is a basis of W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Solution:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$

A2. Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

A3. Determine if the following linear maps are injective (one-to-one) and/or surjective (onto).

(a)
$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $S\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}3x+2y\\x-y\\x+4y\end{bmatrix}$

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ 2y+3z \\ x-y-2z \end{bmatrix}$

Solution:

(a)

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, T is not injective. Since there is a zero row, T is not surjective.

(b)

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 1 & 4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Since all columns are pivot columns, S is injective. Since there is a zero row, S is not surjective.

A4. Let $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$ be the linear map given by $T\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \begin{bmatrix} 8x - 3y - z + 4w \\ y + 3z - 4w \\ -7x + 3y + 2z - 5w \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T.

Solution:

$$RREF\left(\begin{bmatrix} 8 & -3 & -1 & 4\\ 0 & 1 & 3 & -4\\ -7 & 3 & 2 & -5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & -1\\ 0 & 1 & 3 & -4\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 8 \\ 0 \\ -7 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 3 \end{bmatrix} \right\}$ is a basis for the image, and $\left\{ \begin{bmatrix} -1 & -3 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for the kernel.

M1. Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 0 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 3 & 9 & 11 & 1 \\ 0 & 0 & 7 & 2 \\ -2 & -6 & -5 & 0 \end{bmatrix}$$

M2. Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 3 \end{bmatrix}$ is invertible.

Solution:

RREF
$$\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & -2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This matrix is not row equivalent to the identity matrix, so it is not invertible.

M3. Find the inverse of the matrix $\begin{bmatrix} 1 & -4 & 5 \\ -5 & 24 & -28 \\ 1 & -5 & 6 \end{bmatrix}$.

G1. Compute the determinant of the matrix $\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix}.$

Solution:

$$\det\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix} = 2 \det\begin{bmatrix} 3 & 0 & -1 \\ 1 & 3 & 1 \\ -3 & -2 & -1 \end{bmatrix} - (-1) \det\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 1 & -3 & -2 \end{bmatrix}$$

$$= 2 \left(3 \det\begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix} + (-1) \det\begin{bmatrix} 1 & 3 \\ -3 & -2 \end{bmatrix} \right) + \left(1 \det\begin{bmatrix} 1 & 3 \\ -3 & -2 \end{bmatrix} - 3 \begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix} \right)$$

$$= 2 \left(3(-1) + (-1)(7) \right) + ((1)(7) - 3(-3))$$

$$= 2(-10) + 16$$

$$= -4$$

G2. Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 2 & -3 & 2 \\ 8 & -9 & 5 \\ 8 & -7 & 3 \end{bmatrix}$.

Solution: The eigenvalues are 0 with multiplicity 1 and -2, with algebraic multiplicity 2.

G3. Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{\begin{bmatrix}1\\3\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}\right)$$

G4. Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

Standard:	

Standard:	