Practical 3 Determine optimal window size for the Ethernet based host

GAHAN M. SARAIYA, 18MCEC10

18mcec10@nirmauni.ac.in

I. Introduction

Aim of this experiment is to determine optimal window size after which throughput saturates for ethernet based host situated nearby.

II. IMPLEMENTATION

Experiment is carried out using iperf3 module

Client Reading

```
iperf3 -c <server-ip-address> -w <window-size>
```

- server-ip-address here is 10.1.3.34
- window-size is specified in kilobytes or megabytes

Related output result are shown as below:

```
Window Size, Throughput

1 KB, 23.7

5 KB, 77.4

4 10 KB, 91.2

5 100 KB, 92.4

6 1 MB, 91.6

7 2 MB, 91.4

8 5 MB, 92.8

9 15 MB, 91.9

10 25 MB, 91

11 50 MB, 92.1
```

Window size v/s Throughput (Mbps) (Client)

90 80 Throughput (in Mbps) 70 60 50 40 30 25 MB 50 MB 5 KB 10 KB 100 KB 1 MB 2 MB 5 MB 15 MB Window Size

Figure 1: Graph for client measuring throughut with different window sizes

Server Reading

Server IP Address: 10.1.3.34

below command will start iperf server on default port 5201

iperf3 -s

Related output result are shown as below:

```
window Size,Throughput
thin KB,23.7
KB,77.1
thin KB,90.9
thin KB,90.1
thin KB,91.1
thin KB,91.1
thin KB,91.1
thin KB,91.5
thin KB,91.5
thin KB,91.5
thin KB,91.5
thin KB,91.8
```

GRAPH:: WINDOW_SIZE VS THROUGHPUT

Figure 2: Graph for server throughut on client request with different windows sizes

III. SUMMARY

As observed in above result graph increasing window size gradually increases throughput till windows size reaches to 10 KB after which throughput saturates at $\approx 91 Mbits/sec$.

Hence the conclusion of this experiment to determine optimal window size is achieved and it is 10 KB.