APPENDIX for

"Chronic Pain Diagnosis based on Artificial Intelligence:

A System Review and Research Vision"

Appendix Table 1. Inclusion and exclusion criteria

No.	Category of Criteria	Include Criteria	Exclude Criteria
1	Types of Pain	Studies focused on the chronic pain	Studies focused on the acute pain, overlapping pain, traumatic brain injury
2	Task of the Study	Studies focused on the prediction, classification, identification, assessment and diagnosis of chronic pain	Studies focused on the classification and identification of chronic pain-related information rather than the diagnosis of chronic pain, as shown the follows:
3	Machine Learning Techniques	Modern machine learning techniques: Adaptive boosting, Bayesian, decision trees, fuzzy logic, gradient boosting, k-means clustering, natural language processing, nearest neighbors, neural networks, principal component analysis, random forests, reinforcement learning, simulated treatment learning, support vector machines	Not use artificial intelligence approaches, or only use traditional machine learning approaches, such as: Rule-based systems, Logistic and linear regression, Linear mixed-effect model, ANOVA Sample size less than 10 patients Did not report standard performance metrics (e.g., accuracy or AUC) or comparisons with a control group for at least one modern AI model.

4	Article Type	Peer-reviewed articles describing: - Original research - Structured reviews of the literature reported in accordance with PRISMA guidelines	Not published in the English language
5	Species of Samples	Human	Different animals except human
6	Publication Year	Articles published between 2012 to 2022 (Last ten years)	Articles published before 2012

Appendix Note 1. PubMed (NCBI) Search Strategy

("Chronic Pain/classification" [Mesh] OR "Chronic Pain/diagnosis" [Mesh] OR "Chronic Pain/diagnostic imaging" [Mesh] OR Chronic Pain Diagnosis OR Chronic Pain Assessment OR Chronic Pain Classification) AND (Artificial Intelligence [Mesh] OR Artificial Intelligence OR Machine Learning OR Deep Learning OR Support Vector Machine OR Transfer Learning OR Transformer OR Graph Neural Network OR Adaptive boosting OR Bayesian OR Decision Trees OR Fuzzy Logic OR Gradient Boosting OR k-means Clustering OR Natural Language Processing OR Nearest Neighbors OR Neural Networks OR principal component analysis OR random forests OR reinforcement learning OR Simulated Treatment Learning) NOT ((Therapy[Title]) OR (Treatment[Title]) OR (Opioid[Title]) OR (Opioid[Title]) OR (Prevention[Title]))

Restricted to ENGLISH LANGUAGE AND SPECIES Human AND PUBLISHED January 1, 2012 to Aug 2, 2022

Appendix Note 2. Web of Science (WOS) Search Strategy

TI=(((chronic pain diagnosis) OR (chronic low back pain diagnosis) OR (chronic pain assessment) OR (chronic pain prediction)) AND ((machine learning) OR (deep learning) OR (classification) OR (Support Vector Machine) OR (Transfer Learning) OR Transformer OR (Graph Neural Network))) OR AB = (((chronic pain diagnosis) OR (chronic low back pain diagnosis) OR (chronic pain assessment) OR (chronic pain prediction)) AND ((machine learning) OR (deep learning) OR (classification) OR (Support Vector Machine) OR (Transfer Learning) OR Transformer OR (Graph Neural Network))) NOT TI = ((therapy) OR (treatment) OR (opioid) OR (opiate) OR (relief) OR (intervention) OR (prevention)) NOT SO=CLINICAL REHABILITATION NOT WC= Rehabilitation AND PY=(2012-2022)

Appendix Note 3. Google Scholar Search Strategy

No.	Search Query	Search Result No.
1	(intitle:chronic pain assessment) OR (intitle:chronic pain diagnosis) AND (intitle:deep learning) OR (intitle:machine learning)	87
2	(intitle:pain assessment) OR (intitle:pain diagnosis) AND (intitle:deep learning) OR (intitle:machine learning)	147
3	chronic pain diagnosis AND "deep learning"	24
4	chronic pain diagnosis AND "machine learning"	65

Appendix Note 4. Survey Paper List

No.	First Author	Year	Title	Database	PMID
1	D'Antoni, F	2022	Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review	WoS	35627508
2	D'Antoni, F	2021	Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review	WoS	34682647
3	Jenssen, MDK	2021	Machine Learning in Chronic Pain Research: A Scoping Review	WoS	33259458
4	Boissoneault, J	2017	Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning	WoS	28144827

Appendix Table 2. Excluding Paper and Corresponding Excluding Reasons during Full-text Reading (N = 21)

No.	First Author	Year	Title	Database	PMID	Exclude Reason
1	Abdollah V	2021	Texture analysis in the classification of T (2) - weighted magnetic resonance images in persons with and without low back pain	PubMed	33247597	This paper only uses the random forests algorithm to select the most promising classifiers. But they use the linear mixed-effect model for the low back pain daignosis.
2	Moustafa S	2020	Accurate diagnosis of endometriosis using serum microRNAs	PubMed	32165186	According to ICD-11, endometriosis is belong to diseases of the genitourinary system, rather than chronic pain.
3	Yang Z	2020	Combining deep learning with token selection for patient phenotyping from electronic health records	PubMed	31996705	This paper aims to identify disease phenotypes from EHR. Chronic pain is one of the 10 diseaese (including Depression, Psychiatric Disorders, Obesity, Substance Abuse, Alcohol Abuse, Chronic Pain, Chronic Neuro, Adv. Lung Disease, Adv. Heart Disease, Adv. Cancer). So this article is not focused on chronic pain diagnosis.
4	Strik C	2019	Risk of Pain and Gastrointestinal Complaints at 6Months After Elective Abdominal Surgery	PubMed	30107242	This study aims to assess risk factors instead of diagnosing or identifying chronic postoperative abdominal pain (CPAP).
5	D'Antoni, F	2022	Artificial Intelligence and Computer Aided Diagnosis in Chronic Low Back Pain: A Systematic Review	WoS	35627508	Survey paper
6	Keller, AV	2022	Unsupervised Machine Learning on Motion Capture Data Uncovers Movement Strategies in Low Back Pain	WoS	35497350	This study presented a biomechanical biomarker that could potentially identify LBP subjects. The performance of this biomaker is unknown as no classification experiments or accuracy is reported.
7	Nephew, BC	2022	Depression Predicts Chronic Pain	WoS	34908146	This study focuses on the potential relationship

			Interference in Racially Diverse, Income- Disadvantaged Patients			between depression and chronic pain, which does not match the topics of chronic pain dignosis or classification.
8	D'Antoni, F	2021	Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review	WoS	34682647	Survey paper
9	Jenssen, MDK	2021	Machine Learning in Chronic Pain Research: A Scoping Review	WoS	33259458	Survey paper
10	Brown, TT	2020	The FUTUREPAIN study: Validating a questionnaire to predict the probability of having chronic pain 7-10 years into the future	WoS	32817710	This study aims to predict the probability of chronic pain in the future 7–10 years, which does not match the topic of diagnosing or identifying chronic pain. And
11	Boissoneault, J	2017	Biomarkers for Musculoskeletal Pain Conditions: Use of Brain Imaging and Machine Learning	WoS	28144827	Survey paper
12	Mauricio, A	2020	Chronic Pain Estimation Through Deep Facial Descriptors Analysis	Google Scholar	N.A.	Pain intensity prediction
13	Grauhan, NF	2021	Deep learning for accurately recognizing common causes of shoulder pain on radiographs	Google Scholar	33611622	This paper aim to recognize for common causes of shoulder pain (including both acute and chronic causes), not for chronic pain diagnosis.
14	Guan, B	2022	Deep learning approach to predict pain progression in knee osteoarthritis	Google Scholar	33835240	This paper aim to predict pain progression (the changes in pain score between baseline and two or more follow-up time over the first 48-months) in knee osteoarthritis, rather than chronic pain diagnosis.
15	Schmidt, D	2021	Deep learning takes the pain out of back breaking work - Automatic vertebral segmentation and attenuation measurement for osteoporosis	Google Scholar	34598006	This paper only use the deep learning technique to segment CT image for "vertebrae" identification, which is a part of the knee osteoporosis diagnosis.
16	Ibrahim, Said A	2021	Artificial intelligence for disparities in knee pain assessment	Google Scholar	33442017	This paper focus on the exploration of racial disparities in the assessment of knee osteoarthritis, rather that diagnosis of knee osteoarthritis
17	Lukkahatai N	2018	A predictive algorithm to identify genes that discriminate individuals with fibromyalgia syndrome diagnosis	Survey Paper	30538537	Machine learning is just part of the methods they used, not for the main diagnosis task

			from healthy control subjects			
18	Ultsch A	2016	A data science approach to candidate gene selection of pain regarded as a process of learning and neural plasticity	Survey Paper	27548044	Used machine learning to combine the knowledge to identify the genes relevant to pain, rather than diagnosis.
19	Lee J	2019	Machine learning- based prediction of clinical pain using multimodal neuroimaging and autonomic metrics.	Survey Paper	30540621	Predict pain intensity, rather than diagnosis.
20	B Mathew	1998	Artificial intelligence in the diagnosis of low-back pain and sciatica	Survey Paper	2970122	This paper is published in 1988
21	Masoud Abdollahi	2020	Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach	Survey Paper	32604794	This paper focuses on categorization of nonspecific low back pain patients to low, medium and high risk categories, rather than chonic pain diagnosis.
22	J B Bishop	1997	Classification of low back pain from dynamic motion characteristics using an artificial neural network	Survey Paper	9431637	This paper is published in 1997
23	Karabulut, EM	2014	Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing	Survey Paper	24753003	This paper focus on the identification of Vertebral Column Pathologies, which may cause acute pain or chronic pain, rather than diagnosis of chronic pain.
24	N W Sanders	2000	Automated scoring of patient pain drawings using artificial neural networks: Efforts toward a low back pain triage application	Survey Paper	10913774	This paper is published in 2000

Appendix Table 3. Data Abstraction of all Including Papers (N = 55)

No.	Authors	Year	Title	Database	PMID	Country	Organization	Journal /Conference	DOI
1	Lamichhane B, Jayasekera D, Jakes R, Ray WZ, Leuthardt EC, Hawasli AH.	2021	Functional Disruption s of the Brain in Low Back Pain: A Potential Imaging Biomarker of Functional Disability	Survey Papers	3433 5444	USA	Washington University	Frontiers in Neurology	10.3 389/f neur. 2021 .669 076
2	Ung H, Brown JE, Johnson	2014	Multivariat e	PubMed	2324 6778	USA	University of Pennsylvania	Cerebral Cortex	10.1 093/

	KA, Younger J, Hush J, Mackey S.		classificati on of structural MRI data detects chronic low back pain						cerc or/bh s378
3	Ketola, J. H., Inkinen, S. I., Karppinen, J., Niinimäki, J., Tervonen, O., & Nieminen, M. T.	2021	T 2- weighted magnetic resonance imaging texture as predictor of low back pain: A texture analysis- based classificati on pipeline to symptoma tic and asymptom atic cases	Survey Papers	3336 8707	Finland	University of Oulu	Journal of Orthopaedic Research	N.A.
4	Athertya JS, Saravana Kumar G.	2021	Classificat ion of certain vertebral degenerat ions using MRI image features	PubMed	3398 4847	India	IIT - Madras	Biomedical Physics Engineering Express	10.1 088/ 2057 - 1976 /ac0 0d2
5	Shen W, Tu Y, Gollub RL, Ortiz A, Napadow V, Yu S, Wilson G, Park J, Lang C, Jung M, Gerber J, Mawla I, Chan ST, Wasan AD, Edwards RR, Kaptchuk T, Li S, Rosen B, Kong J.	2019	Visual network alterations in brain functional connectivi ty in chronic low back pain: A resting state functional connectivi ty and machine learning study	PubMed	3092 7604	China	Hainan Medical University	Neuroimage Clinical	10.1 016/j .nicl. 2019 .101 775
6	Kulkarni, K. R., Gaonkar, A., Vijayarajan, V., & Manikandan, K	2014	Analysis of lower back pain disorder using deep learning	Google Scholar	N.A.	India	VIT University	IOP Conference Series: Materials Science and Engineering	N.A.
7	Torrado- Carvajal A, Toschi N, Albrecht DS, Chang K,	2021	Thalamic neuroinfla mmation as a reproduci	PubMed	3306 5737	USA	Harvard Medical School	Pain	10.1 097/j .pain .000 0000

	Akeju O, Kim M, Edwards RR, Zhang Y, Hooker JM, Duggento A, Kalpathy- Cramer J, Napadow V, Loggia ML.		ble and discrimina ting signature for chronic low back pain						0000 0210 8
8	Lamichhane B, Jayasekera D, Jakes R, Glasser MF, Zhang J, Yang C, Grimes D, Frank TL, Ray WZ, Leuthardt EC, Hawasli AH.	2021	Multi- modal biomarker s of low back pain: A machine learning approach	Survey Papers	3333 8968	USA	Washington University	NeuroImage: Clinical	10.1 016/j .nicl. 2020 .102 530
9	Tan, W. K., Hassanpour, S., Heagerty, P. J.	2018	Comparis on of natural language processin g rules- based and machine- learning systems to identify lumbar spine imaging findings related to low back pain	Google Scholar	2960 5561	USA	University of Washington	Academic Radiology	N.A.
10	Owari Y, Miyatake N.	2019	Prediction of Chronic Lower Back Pain Using the Hierarchic al Neural Network: Comparis on with Logistic Regressio n-A Pilot Study	PubMed	3118 1815	Japan	Shikoku Medical College	Medicina	10.3 390/ medi cina 5506 0259
11	Parsaeian M, Mohammad K, Mahmoudi M, Zeraati H	2012	Comparis on of logistic regression and artificial neural network in low back pain prediction: Second national health survey	Survey Papers	2311 3198	Iran	Tehran University of Medical Sciences	Iranian Journal of Public Health	N.A.

		l	D		1	I			1
12	Judd, M; Zulkernine, F; Wolfrom, B; Barber, D; Rajaram, A	2018	Detecting Low Back Pain from Clinical Narratives Using Machine Learning Approach es	Web of Science	N.A.	Canada	Queen's University, Kingston	International Conference on Database and Expert Systems Applications: Dexa 2018 International Workshops	10.1 007/ 978- 3- 319- 9913 3- 7_10
13	Hu B, Kim C, Ning X, Xu X.	2018	Using a deep learning network to recognise low back pain in static standing	PubMed	2979 2576	USA	Harvard T.H. Chan School of Public Health	Ergonomics	10.1 080/ 0014 0139 .201 8.14 8123 0
14	Ashouri, S., Abedi, M., Abdollahi, M., Manshadi, F. D., Parnianpour, M., & Khalaf, K.	2017	A novel approach to spinal 3D kinematic assessme nt using inertial sensors: Towards effective quantitativ e evaluation of low back pain in clinical settings	Survey Papers	2880 0443	Iran	Sharif University of Technology	Computers in Biology and Medicine	N.A.
15	Thiry, P; Houry, M; Philippe, L; Nocent, O; Buisseret, F; Dierick, F; Slama, R; Bertucci, W; Thevenon, A; Simoneau- Buessinger, E	2022	Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumen ted Trunk Bending and Return Test	Web of Science	3580 8522	France	Université Polytechnique Hauts-de- France	Sensors (Basel)	10.3 390/ s221 3502 7
16	Chan, H; Zheng, HR; Wang, HY; Sterritt, R; Newell, D	2013	Smart Mobile Phone Based Gait Assessme nt of Patients with Low Back Pain	Web of Science	2608 9700	UK	University of Ulster	International Conference on Natural Computation	N.A.
17	Staartjes VE, Quddusi A, Klukowska AM, Schröder ML.	2020	Initial classificati on of low back and leg pain	PubMed	3207 2271	Switzerl and	University of Zurich	European Spine Journal	10.1 007/ s005 86- 020-

			based on objective functional testing: a pilot study of machine learning applied to diagnostic s						0634 3-5
18	Bernard X W Liew, David Rugamer, Alessandro Marco De Nunzio, Deborah Falla	2019	Interpreta ble machine learning models for classifying low back pain status using functional physiologi cal variables	Survey Papers	3212 4044	UK	University of Essex	European Spine Journal	10.1 007/ s005 86- 020- 0635 6-0
19	Du, WJ; Omisore, OM; Li, HH; Ivanov, K; Han, SP; Wang, L	2018	Recogniti on of Chronic Low Back Pain during Lumbar Spine Movement s Based on Surface Electromy ography Signals	Web of Science	3281 7710	China	Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences	IEEE Access	10.1 109/ ACC ESS. 2018 .287 7254
20	Caza-Szoka M, Massicotte D, Nougarou F, Descarreaux M.	2016	Surrogate analysis of fractal dimension s from SEMG sensor array as a predictor of chronic low back pain	PubMed	2826 9714	Canada	University of Quebec, Tri- Rivers City	International Conference of The IEEE Engineering in Medicine & Biology Society	10.1 109/ EMB C.20 16.7 5921 95
21	Wang, N., Zhang, Z., Xiao, J., & Cui, L	2019	DeepLap: A Deep Learning based Non- Specific Low Back Pain Symptom atic Muscles Recogniti on System	Google Scholar	N.A.	China	Chinese Academy of Sciences	IEEE International Conference on Sensing, Communicat ion, and Networking	N.A.

		ı			1				
22	Robinson ME, O'Shea AM, Craggs JG, Price DD, Letzen JE, Staud R.	2015	Comparis on of machine classificati on algorithms for fibromyalg ia: neuroima ges versus self-report	PubMed	2570 4840	USA	University of Florida	Journal of Pain	10.1 016/j .jpai n.20 15.0 2.00 2
23	Behr M, Saiel S, Evans V, Kumbhare D.	2020	Machine Learning Diagnostic Modeling for Classifyin g Fibromyal gia Using B-mode Ultrasoun d Images	PubMed	3217 4253	Canada	University Health Network	Ultrasonic Imaging	10.1 177/ 0161 7346 2090 8789
24	Alves MVS, Maciel LIL, Ramalho RRF, Lima LAS, Vaz BG, Morais CLM, Passos JOS, Pegado R, Lima KMG.	2021	Multivariat e classificati on technique s and mass spectrome try as a tool in the screening of patients with fibromyalg ia	PubMed	3479 9667	Brazil	Federal University of Rio Grande do Norte	Scientific Reports	10.1 038/ s415 98- 021- 0214 1-1
25	Emir, B; Masters, ET; Mardekian, J; Clair, A; Kuhn, M; Silverman, SL	2015	Identificati on of a potential fibromyalg ia diagnosis using random forest modeling applied to electronic medical records	Web of Science	2608 9700	USA	Pfizer Inc.	Journal of Pain Research	10.2 147/ JPR. S825 66
26	Andrés- Rodríguez L, Borràs X, Feliu-Soler A, Pérez-Aranda A, Rozadilla- Sacanell A, Arranz B, Montero-Marin J, García- Campayo J, Angarita-	2019	Machine Learning to Understan d the Immune- Inflammat ory Pathways in Fibromyal gia	PubMed	3147 0635	Spain	Institut de Recerca Sant Joan de Déu	International Journal of Molecular Sciences	10.3 390/i jms2 0174 231

	Osorio N, Maes M, Luciano JV.								
27	Sundermann B, Burgmer M, Pogatzki-Zahn E, Gaubitz M, Stüber C, Wessolleck E, Heuft G, Pfleiderer B.	2014	Diagnostic classificati on based on functional connectivi ty in chronic pain: model optimizati on in fibromyalg ia and rheumatoi d arthritis	PubMed	2450 7423	German y	University Hospital Munster, Albert- Schweitzer- Campus	Academic Radiology	10.1 016/j .acra .201 3.12. 003
28	Wang, R., Xu, K., Feng, H., & Chen, W	2020	Hybrid RNN-ANN Based Deep Physiologi cal Network for Pain Recogniti on	Google Scholar	3301 9243	China	Fudan University	International Conference of The IEEE Engineering in Medicine & Biology Society	N.A.
29	Fodeh SJ, Finch D, Bouayad L, Luther S, Kerns RD, Brandt C.	2017	Classifyin g Clinical Notes with Pain Assessme nt using Machine Learning	PubMed	2929 5346	USA	Yale University School of Medicine	Medical & Biological Engineering & Computing	N.A.
30	Gilam, G; Cramer, EM; Webber, KA; Ziadni, MS; Kao, MC; Mackey, SC	2021	Classifyin g chronic pain using multidime nsional painagnostic symptom assessme nts and clustering analysis	Web of Science	3451 6888	USA	Stanford University School of Medicine	Science Advances	10.1 126/ sciad v.abj 0320
31	Gaynor, SM; Bortsov, A; Bair, E; Fillingim, RB; Greenspan, JD; Ohrbach, R; Diatchenko, L; Nackley, A; Tchivileva, IE; Whitehead, W; Alonso, AA; Buchheit, TE; Boortz-Marx, RL; Liedtke, W; Park, JJ; Maixner, W; Smith, SB	2021	Phenotypi c profile clustering pragmatic ally identifies diagnostic ally and mechanist ically informativ e subgroups of chronic pain patients	Web of Science	3325 9458	USA	Harvard T.H. Chan School of Public Health	Pain	10.1 097/j .pain .000 0000 0000 0215 3

	T		1		1		T		
32	Antonucci, LA; Taurino, A; Laera, D; Taurisano, P; Losole, J; Lutricuso, S; Abbatantuono, C; Giglio, M; De Caro, MF; Varrassi, G; Puntillo, F	2020	An Ensemble of Psycholog ical and Physical Health Indices Discrimina tes Between Individual s with Chronic Pain and Healthy Controls with High Reliability: A Machine Learning Study	Web of Science	3288 0867	Italy	University of Bari Aldo	Pain and Therapy	10.1 007/ s401 22- 020- 0019 1-3
33	Zhang W, Bianchi J, Turkestani NA, Le C, Deleat- Besson R, Ruellas A, Cevidanes L, Yatabe M, Goncalves J, Benavides E, Soki F, Prieto J, Paniagua B, Najarian K, Gryak J, Soroushmehr R.	2021	Temporo mandibula r Joint Osteoarth ritis Diagnosis Using Privileged Learning of Protein Markers	PubMed	3489 1638	USA	University of Michigan, Ann Arbor	International Conference of The IEEE Engineering in Medicine & Biology Society	10.1 109/ EMB C46 164. 2021 .962 9990
34	Bianchi J, de Oliveira Ruellas AC, Gonçalves JR, Paniagua B, Prieto JC, Styner M, Li T, Zhu H, Sugai J, Giannobile W, Benavides E, Soki F, Yatabe M, Ashman L, Walker D, Soroushmehr R, Najarian K, Cevidanes LHS.	2020	Osteoarth ritis of the Temporo mandibula r Joint can be diagnosed earlier using biomarker s and machine learning	PubMed	3241 5284	USA	School of Dentistry	Scientific Reports	10.1 038/ s415 98- 020- 6494 2-0
35	Mao CP, Chen FR, Huo JH, Zhang L, Zhang GR, Zhang B, Zhou XQ.	2020	Altered resting-state functional connectivi ty and effective connectivi ty of the	PubMed	3248 8929	China	Second Affiliated Hospital of Xi'an Jiaotong University	Human Brain Mapping	10.1 002/ hbm. 2503 8

		l	1		1			I	
			habenula in irritable bowel syndrome: A cross- sectional and machine learning study						
36	Labus JS, Van Horn JD, Gupta A, Alaverdyan M, Torgerson C, Ashe-McNalley C, Irimia A, Hong JY, Naliboff B, Tillisch K, Mayer EA.	2015	Multivariat e morpholo gical brain signatures predict chronic abdominal pain patients from healthy control subjects.	Survey Papers	2590 6347	USA	University of California at Los Angeles	Pain	10.1 097/j .pain .000 0000 0000 0019 6
37	Lin YC, Yu NY, Jiang CF, Chang SH.	2018	Characteri zing the SEMG patterns with myofascia I pain using a multi- scale wavelet model through machine learning approach es	Survey Papers	2989 0503	China	National Cheng Kung University	Journal of Electromyog raphy and Kinesiology	10.1 016/j .jelek in.20 18.0 5.00 4
38	Behr M, Noseworthy M, Kumbhare D.	2019	Feasibility of a Support Vector Machine Classifier for Myofascia I Pain Syndrome : Diagnostic Case- Control Study	PubMed	3061 4553	Canada	University of Toronto	Journal Of Ultrasound in Medicine	10.1 002/j um.1 4909
39	Callan D, Mills L, Nott C, England R, England S.	2014	A tool for classifying individuals with chronic back pain: using multivariat e pattern analysis	PubMed	2490 5072	Japan	Osaka University	PLoS One	10.1 371/j ourn al.po ne.0 0980 07

		1	20.				1	I	
			with functional magnetic resonance imaging data						
40	Santana, A. N., Cifre, I., De Santana, C. N.	2019	Using Deep Learning and Resting- State fMRI to Classify Chronic Pain Condition s	Google Scholar	3192 0483	Spain	University of the Balearic Islands	Frontiers In Neuroscienc e	N.A.
41	Santana, A. N., de Santana, C. N., & Montoya, P	2020	Chronic Pain Diagnosis Using Machine Learning, Questionn aires, and QST: A Sensitivity Experime nt	Google Scholar	3321 2774	Spain	University of the Balearic Islands	Diagnostics (Basel)	N.A.
42	Tan, W. K., & Heagerty, P. J. (2022)	2020	Surrogate -guided sampling designs for classificati on of rare outcomes from electronic medical records data	Google Scholar	N.A.	USA	University of Washington	Biostatistics	N.A.
43	Lee, J. J., Liu, F., Majumdar, S., & Pedoia, V	2021	An ensemble clinical and MR- image deep learning model predicts 8- year knee pain trajectory: Data from the osteoarthr itis initiative	Google Scholar	N.A.	USA	University of California San Francisco	Osteoarthriti s Imaging	N.A.
44	Chang, G. H., Felson, D. T., Qiu, S., Capellini, T. D	2018	Assessme nt of bilateral knee pain from MR imaging	Google Scholar	N.A.	USA	Boston University	Biorxiv	N.A.

	Ι	ı			ı	ı	T	1	1
			using deep neural networks						
45	Barroso J, Vigotsky AD, Branco P, Reis AM, Schnitzer TJ, Galhardo V, Apkarian AV.	2020	Brain gray matter abnormalit ies in osteoarthr itis pain: a cross- sectional evaluation	PubMed	3237 9222	Portugal	Universidade do Porto	Pain	10.1 097/j .pain .000 0000 0000 0190 4
46	Wang Y, Zhu Y, Xue Q, Ji M, Tong J, Yang JJ, Zhou CM.	2021	Predicting chronic pain in postopera tive breast cancer patients with multiple machine learning and deep learning models	PubMed	3436 4190	China	The First Affiliated Hospital of Zhengzhou University	Journal Of Clinical Anaesthesia	10.1 016/j .jclin ane. 2021 .110 423
47	Kartal, E; Kocoglu, FO; Ozen, Z; Emre, IE; Gungor, G; Bozkurt, PS	2022	AN INTELLIG ENT POSTOP ERATIVE CHRONIC PAIN PREDICTI ON SYSTEM (I- POCPP)	Web of Science	N.A.	Turkiye	Istanbul University	Journal of Istanbul Faculty of Medicine- Istanbul Tip Fakultesi Dergisi	10.2 6650 /IUIT FD.9 7273 8
48	He M, Wang X, Zhao Y.	2021	A calibrated deep learning ensemble for abnormalit y detection in musculos keletal radiograp hs	PubMed	3390 7257	USA	Fordham University	Scientific Reports	10.1 038/ s415 98- 021- 8857 8-w
49	Lendaro E, Balouji E, Baca K, Muhammad AS, Ortiz- Catalan M.	2021	Common Spatial Pattern EEG decompos ition for Phantom Limb Pain detection	PubMed	3489 1394	Sweden	Chalmers University of Technology	International Conference of The IEEE Engineering in Medicine & Biology Society	10.1 109/ EMB C46 164. 2021 .963 0561
50	Yang M, Zheng H, Wang H, McClean S,	2012	A machine learning approach	Survey Papers	2199 6355	UK	University of Ulster	Medical Engineering & Physics	10.1 016/j .med engp

	Hall I Harria		to		l		T		by 2
	Hall J, Harris N.		to assessing						hy.2 011.
			gait						09.0
			patterns						18
			for Complex						
			Regional						
			Pain						
			Syndrome						
	Bagarinao E,		Preliminar						
	Johnson KA,		y structural						
	Martucci KT,		MRI						
	Ichesco E,		based						10.1
	Farmer MA, Labus J, Ness		brain classificati		2524		Stanford		016/j .pain
51	TJ, Harris R,	2014	on of	PubMed	2566	USA	University	Pain	.201
	Deutsch G,		chronic				Medical Center		4.09.
	Apkarian VA,		pelvic						002
	Mayer EA, Clauw DJ,		pain: A MAPP						
	Mackey S.		network						
			study						
			Diagnosis						
			of Metacarp						10.1
	Cheng Y, Jin		ophalange						016/j
	Z, Zhou X,		al		3493		Nanjing	Ultrasound	.ultra sme
52	Zhang W,	2022	Synovitis	PubMed	0637	China	University	In Medicine	dbio.
	Zhao D, Tao C, Yuan J.		with Musculos					& Biology	2021
	Tuair 5.		keletal						.11.0
			Ultrasoun						03
			d Images						
			Kinematic biomarker						
	Jiménez-		s of						10.1
	Grande D,		chronic						016/j
	Farokh Atashzar S,		neck pain measured					Journal Of	.jbio
53	Martinez-	2021	during	PubMed	3358	UK	University of	Biomechanic	mec
	Valdes E,		gait: A		1443		Birmingham	S	h.20 20.1
	Marco De		data-						1019
	Nunzio A, Falla D.		driven classificati						0
	D.		on						
			approach						
			Multivariat						
			e pattern classificati						10.1
	Zhong J, Chen		on of						097/j
	DQ, Hung PS,		brain		0000		University		.pain
54	Hayes DJ,	2018	white matter	PubMed	2990 5649	Canada	Health	Pain	.000
	Liang KE, Davis KD,		connectivi		3049		Network		0000
	Hodaie M.		ty predicts						0131
			classic						2
			trigeminal neuralgia						
	Garcia-		Automatic						10.1
	Chimeno Y,		migraine					BMC	186/
	Garcia-	0047	classificati	D. J. M. J.	2840	O: -	Avda.	Medical	s129
55	Zapirain B, Gomez-	2017	on via feature	PubMed	7777	Spain	Universidades	Informatics and Decision	11- 017-
	Beldarrain M,		selection					Making	0434
	Fernandez-		committee						-4

Ruanova B,	and			
Garcia-Monco	machine			
JC.	learning			
	technique			
	s over			
	imaging			
	and			
	questionn			
	aire data			

Appendix Table 4. List of Abbreviation

NI.	A1.1	T De Control
No.	Abbreviation	Definition
	Types	
1	ECG	Electrocardiography
2	EMG	Electromyography
3	sEMG	Surface electromyography
4	EEG	Electroencephalo-graph
5	EMR	Electronic medical record
6	SC	Skin conductance
7	fMRI	Functional magnetic resonance imaging
8	MRI	Magnetic resonance images
9	QSTs	Quantitative sensory tests
10	BDI	Beck depression inventory II
11	STAI	State-trait anxiety inventory
12	GSRS	Gastrointestinal symptom rating scale
13	IMGV	Integrative medical group visits
14	TSPO	18 kda translocator protein
15	CT	Computerised tomography
Mac	hine Learning Mo	odels
16	CART	Classification and regression tree
17	DT	Decision tree
18	ETC	Extra trees classifier
19	KNN	K-nearest neighbors
20	KRVFL	Kernel-based random vector functional link network
21	LASSO	Least absolute shrinkage and selection operator algorithm
22	LDA	Linear discriminant analysis
23	LR	Logistic regression
24	LUPI	Learning using privileged information
25	MLP	Multi-layer perceptron
26	MPC	Multivariate pattern classification
27	NB	Naive bayes
28	PCA	Principle component analysis
29	RF	Random forest
30	SVC	Support vector classifier
31	SVM	Support vector machine
32	MVPA	Multivariate pattern analysis
33	MR	Multiple regression
34	AHC	Agglomerative hierarchical clustering
35	sPLS-DA	Sparse partial least squares for discrimination analysis
36	HRGAN	High-resolution Generative Adversarial Network
37	DB	Data boosting
38	SPA-LDA	Successive projections algorithm with linear discriminant analysis
39	NCA-K-NN	Neighbourhood component analysis - k-nearest neighbour
Othe		
40	CP	Chronic pain group
41	HC	Healthy control group
42	OA	Osteoarthritis
43	TMJ	Temporomandibular joint
44	RA	Rheumatoid arthritis
		<u>'</u>
45 46 47	POCP CPP FMS	Postoperative chronic pain Chronic pelvic pain Fibromyalgia

48	PPT	Pain threshold				
49	LF	Lateral flexion				
50	5R-STS	Five-repetition sit-to-stand				
51	IBS	Irritable bowel syndrome				
52	MPS	Myofascial pain syndrome				
53	CPSP	Chronic postsurgical pain				
54	MSDs	Musculoskeletal disorders				
55	PLP	Phantom limb pain				
56	CRPS	Complex regional pain syndrome				
57	CPP	Chronic pelvic pain				
58	MCP	Metacarpophalangeal				
59	TN	Trigeminal neuralgia				
60	CNP	Chronic neck pain				