Emotion Classification using Tweet

Group

1337

(Joe) Jiaheng Kang z5419190 (Dylan) Yuyang Xiao z5529467 Silu Yang z5526686 Tong Zhou z5418247 Xiao Dong z5571806

O1 Motivation Problem Statement

(Joe) Jiaheng Kang Silu Yang

02

Literature Review

(Joe) Jiaheng Kang Tong Zhou Silu Yang

04

Methods

(Joe) Jiaheng Kang

03

Dataset/EDA

Xiao Dong

05

Results

(Dylan) Yuyang Xiao

06

Discussion Conclusion

Tong Zhou

Motivation

Emotions

anger

fear

joy

love

sadness surprise

AI MODELS

Human-Computer Interaction

market research

Mental Health Monitoring

Customer Service

Public Opinion Analysis

Advertising

Problem Statement: Emotion Classification using Tweets

Background:

Tweets express emotions in subtle, varied ways, often shaped by personal and cultural context. This makes automatic recognition challenging, especially in informal online language.

Significance:

Accurate emotion detection in tweets supports public opinion analysis and mental health applications.

Key Challenge:

Capturing nuanced emotions is difficult—The main challenges are the highly imbalanced emotion distribution, the short and noisy nature of tweets, and the difficulty of accurately recognizing subtle emotions, especially for rare classes.

Our Aim:

Our aim is to compare CNN, BiLSTM, and advanced transformers (RoBERTa/DeBERTa) models to identify the most effective architecture for emotion classification in tweets. Based on the best-performing model, we further incorporate attention pooling and class balancing techniques to better capture subtle emotional cues and improve recognition of both common and rare emotions in real-world social media data.

Literature Review: Emotion Extraction and Classification from Twitter

Text CNN:

Efficient at local feature extraction; struggles with overall sentence context and complex emotions.

BiLSTM:

Captures global dependencies, outperforming CNNs on accuracy/F1; training slower, more resource-intensive.

Limitations:

Depend on static word embeddings, lack adaptability to context.

Poor at handling class imbalance.

Architectural complexity increases cost with only minor performance gains.

Recent Advances:

Transformer models (RoBERTa, DeBERTa) provide stronger contextual understanding and improved solutions for class imbalance, setting new standards in emotion classification.

Max ************** Max Val Accuracy: 90.60% Averag Val Accuracy: 91.75% Averag Train Accuracy on Bi-LSTM: 74.719 Max Val Precision: 90.80% Averag Val Precision: 100.00% Averag Val Accuracy on Bi-LSTM: 76.247 Max Val Recall: 90.60% Averag Train Loss on Bi-LSTM: 0.669 Averag Val Recall: 91.75% Averag Val Loss on Bi-LSTM: 0.613 Max Val Fl Score: 90.65% Averag Val F1 Score: 91.77% Test Accuracy: 89.30% Test Accuracy: 90.95% Test Precision: 89.32% Test Precision: 90.91% Test Recall: 89.30% Test Recall: 90.95% Test F1 Score: 89.26% Test F1 Score: 90.91%

Literature Review

FEEL-IT: Emotion and Sentiment Classification for the Italian Language ACL 2021 Workshop

Key Features:

- Model constructed using high quality Italian Tweets (from COMMOWNCRAW ITA)
- UmBERTo-FT Model obtained the best result in terms of overall performance
- Trained to perform both sentiment and emotion classification

Modifitions to the FEEL-IT Model to enable prediction of english tweets:

- Map dair-ai/emotion dataset's ("Love", "Surprise" -> "Joy") to FEEL-IT Format (anger, fear, joy, sadeness)
 Trained a model with the pretrained FEEL-IT model and the
- dair-ai/emotion dataset.

Primary Issue with the model:

The emotions are annotated by Italian speakers, which reflects Italian cultural and linguistic norms. Even after retraining with English data, these annotations still fail to capture English culture, syntax, and context effectively.

Literature Review

CARER: Contextualized Affect Representations for Emotion Recognition (EMNLP 2018, Saravia et al.)

Key Features:

- Construct an "emotion graph."
- Generate semantic patterns.
- Weight patterns per emotion.
- Classify with a CNN (CARER).

Explanation of Emotional Graph:

Ugh, he forgot my birthday again—so mad right now!

"mad", "ugh" contains high emotions

Emotional word (graph) = Subjective tweet - Objective tweet)

The pattern of (connector words, emotional words) e.g (so mad) resolves the issue of identifying "sooo maaaaad" as the model can group the two words "sooo" and "maaaaad" together for classification

Issues:

- Did not resolve class imbalance
- Hard to implement and high costs

Dataset

Source: dair-ai/emotion · Datasets at Hugging Face

Text

- The text field contains short emotional sentences from English Twitter posts
- Text lengths vary significantly, ranging from 7 to nearly 300 characters

Label

- The training set includes 16,000 samples
- The dataset defines 6 basic emotion classes

01

Dataset Overview

Provided a structural summary of the dataset, including data types, missing values, and basic statistics.

02

Class Distribution

Analysed the emotion class counts and identified class imbalance

04

VIF

Conducted
Variance Inflation
Factor analysis to
check for
multicollinearity

03

Text Length Stats

Computed text length statistics to assess variability in input size

05

Data Leakage

Test the predictive power of text length alone, to find leakage.

06

Conclusion

Class imbalance exists and must be addressed before modeling.

EDA of Emotion Classification Dataset

- 100

- 95

Methods

O1 Reuse CARER's cleaned data pipeline / preproceed data

O2 Utilize a DeBERTa model to do the final perdiction

O3 Introduce undersampling(repeated sampling) and oversampling

Methods

- ☐ Alternative choices:
- ☐ RoBERTa vs DeBERTa
 - DeBERTa's disentangled attention better captures subtle semantic clues (like sarcasm, emojis, or indirect emotion), which is critical in emotion classification.
 - Relative positional encoding (which can understand the context better)
 - In GoEmotions (27-label fine-grained emotion dataset), DeBERTa shows higher F1 scores than RoBERTa.
 - DeBERTa typically converges faster

Methods

- Alternative choices:
- ☐ Oversampling (SMOTE or similar)
 - Tokenisation
 - Non-continuous data
 - Unreliable synthesised data

Examples:

- I want to kill! (anger)
- I hate you! (anger)
- want to I you (nonsense)
- I hate to kill (anger?)

Results

The model achieves a macro F1 score of **92%**, loss of **0.22** and accuracy of **93%** on the test set. Compared to baseline model, macro F1 score of **86%**, loss of **0.30** and accuracy of **92%** on the test set.

Epoch 9: 100% 250/250 [04:51<00:00, 0.86it/s, v_num=2, train_loss_step=0.000158, train_acc_step=1.000, val_loss_step=0.352, val_acc_step=0.875, val_loss_epoch=0.922, val_acc_epoch=0.937, val_f1=0.997, train_loss_epoch=0.0084, train_acc_step=1.000, val_loss_step=0.352, val_acc_step=0.875, val_loss_epoch=0.922, val_acc_epoch=0.937, val_f1=0.997, train_loss_epoch=0.0084, train_acc_step=1.000, val_loss_epoch=0.922, val_acc_step=1.000, val_f1=0.993, val_f1=0.997, train_loss_epoch=0.0084, train_acc_step=1.000, val_f1=0.993, val_f1=0.9 INFO:pytorch lightning.utilities.rank zero: Trainer.fit stopped: `max epochs=10' reached. INFO:pytorch lightning.accelerators.cuda:LOCAL RANK: 0 - CUDA VISIBLE DEVICES: [0] /usr/local/lib/python3.11/dist-packages/pytorch lightning/trainer/connectors/data connector.py:425: The 'test dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num worke 32/32 [00:12<00:00, 2.47it/s] Testing DataLoader 0: 100% Test metric DataLoader 0 test acc epoch 0.9244999885559082 test f1 0.8626927137374878 test loss epoch 0.30245256423950195 [{'test loss epoch': 0.30245256423950195, 'test acc epoch': 0.9244999885559082, 'test f1': 0.8626927137374878}] Epoch 6: 100% 188/188 [00:37<00:00. 4.95it/s, v_num=2, train_loss=0.0499, train_acc=1.000, train_f1=1.000, val_loss=0.252, val_acc=0.924, val_f1=0.917] INFO:pytorch_lightning.callbacks.early_stopping:Metric val_f1 improved. New best score: 0.877 INFO:pytorch lightning.callbacks.early stopping:Metric val f1 improved by 0.020 >= min delta = 0.0. New best score: 0.897 INFO:pytorch lightning.callbacks.early stopping:Metric val f1 improved by 0.021 >= min delta = 0.0. New best score: 0.917 INFO:pytorch lightning.callbacks.early stopping:Metric val f1 improved by 0.007 >= min delta = 0.0. New best score: 0.924 INFO:pytorch lightning.callbacks.early stopping:Monitored metric val f1 did not improve in the last 3 records. Best score: 0.924. Signaling Trainer to stop. INFO:pytorch lightning.accelerators.cuda:LOCAL RANK: 0 - CUDA VISIBLE DEVICES: [0] Testing DataLoader 0: 100% 188/188 [00:06<00:00, 29.86it/s] Test metric DataLoader 0 test acc 0.9336666464805603 test f1 0.9260219931602478 test loss 0.21613095700740814 [{'test loss': 0.21613095700740814,

'test_acc': 0.9336666464805603, 'test_f1': 0.9260219931602478}

Results(acc &loss)

Train acc

Baseline: 0.9984

Val acc

Baseline: 0.9386

Test acc

Baseline: 0.9285

Train loss

Baseline: 0.0053

Val loss

Baseline:0.206

Test loss

Baseline: 0.2913

Discussion

New Model	Baseline
~143m Parameters	~82m Parameters
Trains Fasters (30minutes in Google Colab) due to optimisation made to account for pytorch performance	Trains Slower (2-3 Hours in Google Colab)
Better Accuracy (93%) and F1 Score (92%)	Worth Accuracy (92%) and F1 Score (86%)

Key Strength

- ☐ The significant improvement in F1 Score shows the effectiveness of balancing data
- ☐ The utilisation of DeBERTa also contributed to the improve in accuracy and training time

Discussion (continued)

Weakness & Limitation:

The Model struggles to distinguish between

- Joy vs Love
- Fear vs Suprise

Future Work:

- Exploration of DeBERTa model with larger number of parameters.
- Explore multi-label classification models to capture co-existing emotions.

Conclusion

Through

- Changing system archiact to DeBERTa model
- Performing oversampling and undersamplying to balance the tweet data.

We

- Improved Performance: Accuracy and F1 Score
- Tackled class imbalance issues
- Reduced Computational Cost and Training Time

However, model are still limited to

- classification of close emotions (joy vs love, fear vs surprise)
- the number of parameters

In which we are looking to explore further in the future!

