Convex optimization exercise sheet

Mathurin Massias

Notation

For a linear operator A, its adjoint is A^* and its Moore-Penrose pseudoinverse is A^{\dagger} .

1 Least squares from a linear algebra perspective

Exercise 1.1. Let $A \in \mathbb{R}^{n \times d}$. Show that $\operatorname{Ker} A = \operatorname{Ker} A^*A$.

Exercise 1.2. Show that there always exist a solution to $A^*Ax = A^*b$. PShow that this no longer holds in the infinite dimensional space (when A is a bounded linear operator between infinite dimensional Hilbert spaces.)

Exercise 1.3. Let $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$. Show that solving Ordinary Least Squares:

$$\min \frac{1}{2} ||Ax - b||^2 ,$$

amounts to solving $A^*Ax = A^*b$ (aka the normal equations). Show that the set of solutions is:

$$(A^*A)^{\dagger}A^*b + \operatorname{Ker} A$$
.

2 Gradient

Exercise 2.1. Provide an example of setting where the gradient is not equal to the vector of partial derivatives.

Exercise 2.2. Show that

$$\frac{d}{dt}f(\theta(t)) = \langle \nabla f(\theta(t)), \dot{\theta}(t) \rangle .$$

Exercise 2.3. Show that the gradient of a function is orthogonal to the level lines of that function.

Exercise 2.4. Let $A \in \mathbb{R}^{n \times d}$, $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^d \to \mathbb{R}$ defined as g(x) = f(Ax) for all $x \in \mathbb{R}^d$. Show that

$$\nabla g(x) = A^* \nabla f(Ax) \ ,$$

$$\nabla^2 g(x) = A^* \nabla^2 f(Ax) A \ .$$

Exercise 2.5. Let $A \in \mathbb{R}^{n \times d}$. Provide an example where the gradient of $x \mapsto \frac{1}{2}x^{\top}Ax$ is not equal to Ax.