五、考試領域科目內容大綱與題型

本许短许初口	考試內容大綱
考試領域科目	考試內谷大綱
工程數學	一、常微分方程(一階、二階與高階、及其應用) 二、向量分析(向量代數、向量之微分與積分) 三、線性代數(矩陣、行列式、線性系統) 四、特徵值問題(含特殊函數)
	五、傅立葉分析(傅立葉級數與轉換、拉普拉斯轉換) 六、偏微分方程(一階、二階、擴散方程,波動方程、 拉普拉斯方程)
英文	考試內容以中英文撰寫之一般機械相關的工程學書籍技術報告所能 接觸到的相關文件為主
工程力學 (含靜力學、材料力學)	一、質點與剛體的靜力平衡 二、應力與應變 三、軸向負荷、軸的扭轉 四、樑的應力與變形 五、柱的挫曲
動力學	一、慣性與牛頓力學定律 二、摩擦力,功與能量 三、質點系動力學 四、剛體平面運動學 五、剛體平面動力學
機械設計與機動學	 一、機械設計基礎與損壞理論(機械設計程序、安全係數、靜態負荷所導致的機械元件損壞、變動負荷所導致的機械元件疲勞損壞) 二、機械元件設計(扣件[螺栓、鍵、銷、焊接件]、傳動元件[軸、軸承、齒輪、凸輪、聯軸器]、撓性傳動元件[皮帶、鏈條]、其他機械元件[彈簧、制動器]) 三、機構原理及特性(運動型態、連桿、接頭、機構示意圖、四連桿機構、滑塊曲柄機構、軸節機構) 四、機構運動(連桿運動、運動自由度、位置軌跡、瞬心、速度分析)
機械製造(含工程材料)	一、機械的加工性質與行為(Fe-C平衡相圖、熱處理、機械性質試驗、非鐵金屬之性質與應用、高分子材料之加工性質與應用等) 二、切削加工(切削理論〔正交切削理論、材料切削行為〕、切削刀具及材料、車削、銑削、鑽削、研磨加工等加工) 三、塑性加工(鍛造、滾〔輥〕製、擠〔拉〕製、鈑金加工等加工) 四、鑄造(砂模鑄造、精密鑄造等) 五、接合技術(各種焊接加工及機械接合) 六、其他(特殊加工〔放電加工、超音波加工、雷射加工、電子東加工、電化學加工〕、粉末冶金、塑膠加工、量測與品管、生產自動化〔CNC工具機、CIM、FMS〕及微電子裝置之製程〔薄膜技術、微影蝕刻技術、封裝技術〕等)

自動控制	一、控制系統與數學模型 (控制系統元件、控制系統之方塊圖和轉移函數、控制系統之頻率響應函數) 二、系統動態分析及性能(暫態響應,穩態響應,干擾響應、控制系統之靈敏度分析、時域性能和頻域性能) 三、線性回授控制系統之穩定性分析(系統穩定性法則[羅氏及奈氏穩定性法則等]、根軌跡圖分析) 四、回授控制系統設計與實現(比例—積分—微分控制器、補償器設計)
熱力學(含熱傳學)	一、熱傳導之基本觀念和應用 二、熱對流之基本觀念和應用 三、熱力學第一定律和第二定律基本觀念和應用 四、常用熱機熱力循環之效率 五、熵增原理和可用能在熱力系統之應用
流體力學	一、流體靜力學(靜壓流體總力、壓力量測、表面靜壓、動態流體壓力) 二、流體運動學(流速場、加速度場、雷諾轉換定理) 三、流體動力學(伯努利方程式、連續方程式、動量方程式、能量方程式、那維爾-史托克方程式) 四、因次分析(相似律、白金漢 Pi 定理、模型試驗) 五、管流與沉浸體鏡流(層流與紊流、水頭損失、管路與幫浦、邊界層特性、阻力與升力)

109年度考試考題題型及來源

題型:選擇題、填空題及問答題(含計算題、證明題)。

來源:以103年至108年度研究生入學能力考試考題做為出題之主要來源。