					_	-			7		7						\sqcap			- 1	
, 111,114	PANEL BRIGHTNESS cd/m²		515	512	21.0	OTC	513	508	360	520		250	535	200	540	530	000	520	7.5	C/4	
	HE NUMBER OF FANELS PAILURE WITH STAND VOLTAGE FAILURE N 20 PANELS AFTER AGING ON	50V AND 30 KHZ	0	U		0	0		0			0				•				10	
	THICKNESS V		13 // m	of C	14 μ m	13 µm	13 // m	10 10 111	$5 \mu \mathrm{m}$		ω _π χ	10 /Lm		$0 \mu m$	3	0 1111	$0 \mu \text{m}$	10 11	117 17 111	20μ m	
717	DIELECTRIC (10	10	11	20	1.0	CI	13		13	12	CI	1		1	1	,	13	13	
		102	+	 	0	10	l	C	rc	,	വ	L	0	0	, '	0		> 1	<u>۔</u> د	7.	_
١		E Ö	+.		8	2		10	10	?	10	5	2	_	,	0	C	>	10	-	2
	SE DIE	02 <u> </u> A	-	=	12	15	, ,	2	7.	,	5	1,	2	10	27	10	1	2	ഹ	L4	2
	DSITION OF DIE LAYER (% BY	03 <mark> </mark> Si	+		19 1	=		10	5	2	10		10	0	>	0	0	>	10	5	∩ T
	ASS LA	PhO 18203 SiO2 Al203 TiO2		78 1	65 1	7.3		74	1/1	7-	74		74	6	5	0	(>	74		/ 4
	AETALLIC GL	OXIUE ON STECTRODE PP	_	CVD ME1πOD 7 ZnO(0.5 μm) 7	CVD METHOD (+=		CVD METHOD (TION)	15		CVD METHOD	1	CVD MELECO CrO3(1:0 # m)		SiO ₂ (5.0 μ n	CVD METHOU Al ₂ O ₃ (3.0 4 m)	CVD MFTH	ZnO(6 µ m	Alabare min		OXIDE
	N ECTRODE N	AATERIAL		Ag	Ag (\top	Ag	Ag		Ag		Ag	Ag		Cr-Cu-Cr	Cr-Cu-Cr		Cr-Cu-Cr	Ασ	٥	Ag
	0 0 10/11/	経典で			~	3	3	4	•	2	c	٥	∞		<u>ග</u>	10		11	1.5	7.	13

TABLE 1.B

		•					7 7				OTRIOTIVE CO tractica and tractical	
7.4.4.01 E	מחסתיים זמ		93 93	OMPOSIT	STTION OF	OF DIELEC (% BY WEI			DELECTRIC	THICKNESS	THE NUMBER OF PANELSCAUSING WITH STAND VOLTAGE FAILURE	PANEL BRIGHTNESS
NMER MAT	铝	OXIDE ON ELECTRODE	PbO	B203	B2O3 SiO2 Al203 TiO2	12031	102		3	OF GLASS	IN 20 FAINTLS AND TEN AND SON 150V AND 30 KHZ	cd/m²
-		CVD METHOD	77	22	22	ıc	LC.	 -	12	14 μ m	0	510
14	Ag	ZnO(0.1 μm)	7	3	1	,	, †	,†			O	512
15	Ag	CVD METHOD ZrOz(0.3 μ m)	45	20	20	rC	رى.	5	18	13 μ m	Ο	210
16	δΔ	CVD METHOD	30	37	10	3	10	10	24	13μ m	0	513
1 10	χο	CVD METHOD	\$ \	25	23	~	8	7	20	12 μ m	0	515
_	Ag	TiO ₂ (1.0 μ m)		3	3	,	,				C	515
~ ~	Ασ	CVD METHOD	*	*	"	"	"	"	"	$ 11\mu$ m	O	010
2	9,,	SIU2(1.0 m)	1	_					:	10 11		514
19	Ag	CVD METHOD A1203(0.5 g.m)	"	"	"	"	*	"	//	117 # III		}
5		CVD METHOD	"		=	=	"	"	11	12μ m	0	514
77	70 V	Cr2O3(0.3 µ m)									T	520
2.	Cr-Cu-Cr	Cr-Cu-Cr CVD METHOD	0	0	0	0	0	0		0		070
i		CVD METHOL		<	<	\ c	c	C		0	2	519
7.7	Cr-Cu-Cr	CrO3(5 μ m)	>					<u>}</u>				520
22	Δα	CVD NETHOL) 40	25	23	7	က	_	20	10μ m	0	020
3	91,	TiO ₂ (0.2 μ m)	-10	+			L	<u> </u> '	5	1 5 // 35	00	480
24*	Ag	NO METALLI OXIDE	1 40 1) 25	. 23	2	m		77	111 th C1		
	_	COMPA					7.0	1600				

* EXAMPLE NUMBER 13 AND 24 FOR COMPARISON

	1
\sim	
ĮΤ	
딮	
AB	
⋖	
\vdash	

					CLASS SUBSTRATE	ATE					
			MOTHING		THEWARON	Į.	COMPOSIT * RO(MgO,	10N OF (CaO, SrO	JLASS BaO)	11	DHICKNESS
NOMBEK	PRODUCT	PRODUCT MANUFACTURER	PONT(E)	OF CLASS (g/cm³)	(×10-1/C)	Si02	A1203	B2O3	RO* (ALKALINE EARTH)	R2O* (ALKALI)	SUBSTRATE (mm)
25	04-2	NIHON ELECTRIC	650	2.73	47	56	15	2	27	0	1.0
67	1	NHON ELECTRIC		2.73	47	56	15	2	27	0	0.7
27	RI C	GLASS CO. NIHON ELECTRIC		2.36	51	72	5	6	7.5	6.5	1.5
17	סום סום	NIHON ELECTRIC		2.36	51	72	5	6	7.5	6.5	1.0
07	270	GLASS CO.		2.78	46	49	11	15	25	0	1.0
53	NA45	CLASS CO.	010	01.7	?				i		13 (
30	NA45	NH TECHNO	610	2.78	46	49	H	15	¢7	o	0.0
5 6	NIA 35		650	2.50	39	56	15	2	27	0	1.5
31	CC-UNI		3				;	G	2.7	C	0.1
32	NA-35	LYTSCHNO CLASS CO.	650	2.50	39	26	<u>د</u> ا	7	17		
33*	SODALIME	F ASAHI CO.	511	2.49	85	72.5	7	0	12	13.5	
*7°	SODALIME		511		85	72.5	2	0	12	13.5	1.5
r 5	GLASS(AS				3	\ <u>0</u>	7	c	21	14	2.7
35*	PD-200	O AZASS CO.	570	2.77	84	g -	-	> <u> </u>	1	,	-
36*	PD-200	D ASAUL CO	570	2.77	84	58	7	0	21	14	C.1
					110000						

* EXAMPLE NUMBER 9-12 FOR COMPARISON

TABLE 3

		DIELECTRIC LAYER	100	DROTTECTING 1 AYER		PANEL	ATE	CHANGING RATE OF
STANKER !	FORMING	COMPOSITION OF EDIELECTRIC LAYER C	CEFFICIENT COEFFICIENT	FORMING METHOD AND FACE ORIENTATION	(FORMING METHOD AND MATERIAL)	WEINTON CIRCUIT)		AFTER OPERATION ON 200V FOR 5000H(%)
30	THERMAN.	D(30), B2O3(20)		THERMAL CVD METHOD MGO	THERMAL SPRAYING METHOD A 1909(A) I IMINA)	3.0kg	NO CRACK IN DIELECTRIC GLASS	-2.9
	ع ا	SiO2(45),AI2U3(5)		THERMAL CVD METHOD MGO.		2.1kg	NO CRACK IN PIEL EPTRIP CLI ASS	-2.5
92	METHOD CV		0/			-100	NO CRACK IN	2.8
27	SHEAT AND SHEAT	P2Os(45),ZnO(34) A12O3(18).CaO(3)	50	PLASMA CVD METHOD MGG WITH (100)-FACE ORIENTATION		3.9Kg	DIELECTRIC GLASS	0.77
82	PLASMA CVD	3AI2O3 · 2SiO2	20	PLASMA CVD METHOD MGO WITH (100)-FACE ORIENTATION	THERMAL SPRAYING ME1HOD MULLITE(3AI2O3 · 2SiO2)	2.6kg	DIELECTRICCLASS	-2.7
	SPEAYAR	اصرد	45	PLASMA CVD METHOD MGO WITH (100)-FACE ORIENTATION	THERMAL SPRAYING METHOD MULLITE (3A12O3 · 2SiO2)	3.1kg	NO CRACK IN DIELECTRIC GLASS	-2.7
3 8		P2O5(45), ZnO(34)	05	PLASMA CVD METHOD MGO	THERMAL SPRAYING METHOD	1.54kg	NO CRACK IN DIELECTRIC GLASS	-2.6
8	2,002	A1203(18),CaO(3)		WILM (IW)-FACE UNIENTATION	THERMAI SPRAYING METHOD	_	NO CRACK IN.	56-
31	PLASMA CVD	SiOz	30	WITH (100)-FACE ORIENTATION	MULLITE (3AI2O3 · 2SiO2)	4.1Kg	DIELECTRIC GLASS	1.5
\$	PLASMA CVD	SiO,	08	PLASMA CVD METHOD MGO	THERMAL SPRAYING METHOD	0.28kg	NO CRACK IN DIELECTRIC GLASS	-3.0
7	METHOD	PhO(20) B203(20)		PLASMA CVD METHOD MGO	PLASMA CVD METHOD MCO. THERMAL SPRAVING METHOD	7.4kg	CRACK IN DIELECTRIC	CRACK IN
33*	N. C. L. L. C.	SiO ₂ (45), A ₁₂ O ₃ (5)		WITH (100)-FACE URIENTATION	MULLITE(SAIZO3 * 23102)	4	THE PARTY OF THE P	
34*	PLASMA CVD	D A1203	70	PLASMA CVD METHOD MGO WITH / ION FACE ORIENTATION	I HEKMAL SPKATING METHOD V MULLITE(3AI2O3 • 2SiO2)	4.1kg	CKACK IN PANEL	
*±	SPERMAL SPERMAL		99	PLASMA CVD METHOD MGO	THERMAL SPRAYING METHOD MILLIFE (3A12O3 · 2SiO2)	8.3kg	CRACK IN DIELECTRIC SUBSTANCE	C CRACK IN PANEL
3	METHOD ON A CAN	AI2U3(_	PI ASWA CVD METHOD MGO	PI ASMA CVD METHOD MGO THERMAL SPRAYING METHOD	5.0kg	CRACK IN PANEL	·
*9£	WENT OF THE	SiO ₂	30	WITH (100)-FACE ORIENTATION	N MULLITE (3A12O3 · 2SiO2)	4		
				INCOID ACT CO.				

* EXAMPLE NUMBER 9-12 FOR COMPARISON

United States Patent & Trademark Office

Office of Initial Patent Examination

Application papers not suitable for publication

SN	0996 4837	Mail Date 69	126/0/
	Non-English Specification		
\not	Specification contains drawing(s) on page	ge(s)	or table(s) 2016 14 70 58
	Landscape orientation of text		//
	Handwritten □ Specification □ 0	Claims 🗆 Absti	ract
	More than one column	on Claims	☐ Abstract
	Improper line spacing	on 🗆 Claims	☐ Abstract
	Claims not on separate page(s)		
	Abstract not on separate page(s)		
	Improper paper size Must be either A	4 (21 cm x 29.7 cm	m) or 8-1/2"x 11"
	☐ Specification page(s)		☐ Abstract
	☐ Drawing page(s)		☐ Claim(s)
	Improper margins		
	☐ Specification page(s)		☐ Abstract
	☐ Drawing page(s)		☐ Claim(s)
	Not reproducible	Section	
	Reason	☐ Specification p	page(s)
	☐ Paper too thin	☐ Drawing page((s)
	☐ Glossy pages	☐ Abstract	
	☐ Non-white background	☐ Claim(s)	
	Drawing objection(s)		
	☐ Missing lead lines, drawing(s)	- 111	
	☐ Line quality is too light, drawing(s)_		
	☐ More than 1 drawing and not number	red correctly	
	☐ Non-English text, drawing(s)		
	☐ Excessive text, drawing(s)		
	☐ Photographs capable of illustration,	drawing(s)	