

HC32F003 系列 / HC32F005 系列 32 位 ARM® Cortex®-M0+ 微控制器

HC32F003C4UA/HC32F003C4PA HC32F005C6UA/HC32F005C6PA

数据手册

声明

- ▶ 华大半导体有限公司(以下简称华大半导体或华大)保有在不事先通知的情况下而修改这份文档的权利。华大半导体认为提供的信息是准确可信的。本文档信息于 2018 年 1 月开始使用。在实际进行生产设计时,请参阅各产品最新的数据手册等相关资料以获取本公司产品的最新规格。
- ▶ 华大半导体对本手册拥有包括版权等知识产权,受法律保护。未经本公司事先书面许可,任何 单位及个人不得以任何方式或理由对本手册进行复制、修改、抄录、传播等。本文件所登载内 容的错误,本公司概不负责。
- ▶ 华大半导体对于因使用本文件中列明的本公司产品而引起的,对第三方的专利,版权以及其它知识产权的侵权行为概不负责。本文件登载的内容不应视为华大半导体对其他公司或个人所拥有的专利,版权以及其它知识产权做出任何明示或默示的许可及授权。
- ▶ 本文件中的电路、软件以及相关信息仅用以说明半导体产品的运作和应用示例。用户如在设备设计中应用本文件中的电路、软件以及相关信息,应自行负责。对于用户或其他人因使用了上述电路、软件以及相关信息而引起的任何损失,华大半导体概不负责。
- ▶ 另外,华大半导体的产品不建议应用于生命相关的设备和系统。在使用该器件中因为设备或系统运转失灵而导致的损失,华大半导体不承担任何责任。
- ▶ 虽然本公司致力于提高半导体产品的质量及可靠性,但用户应知晓并同意,我们仍然无法完全 消除出现产品缺陷的可能。为了最大限度地减少因本公司半导体产品故障而引起的对人身、财 产造成损害(包括死亡)的危险,用户务必在其设计中采用必要的安全措施,如冗余度、防火 和防故障等安全设计。

目 录

1.	简介		4
2.	产品区	车容	12
3.	引脚酉	7置	15
4.	引脚巧	力能说明	17
5.	框图		21
6.	存储▷	区映射图	22
7.	电气物	寺性	24
	7.1	最大绝对额定值	24
	7.2	推荐工作条件	25
	7.3	直流特性	26
	7.4	交流特性	29
		7.4.1 输出特性——端口	29
		7.4.2 输入特性——端口	31
		7.4.3 端口外部输入采样要求——Timer Gate/Timer Clock	31
		7.4.4 端口漏电特性——P0,P1,P2,P3	31
		7.4.5 内部 RCH 振荡器	32
		7.4.6 内部 RCL 振荡器	32
		7.4.7 外部 XTH 晶振	32
	7.5	12 位 A/D 转换器	34
	7.6	模拟电压比较器	36
	7.7	低电压检测特性	38
	7.8	闪存擦/写特性	40
	7.9	低功耗模式返回时间	40
8.	封装厅	7寸	41
9.	版本证	□录 & 联系方式	44

1. 简介

HC32F003 系列 / HC32F005 系列是 Low Pin Count、宽电压工作范围的 MCU。集成 12 位 1M SPS 高精度 SARADC 以及集成了比较器、多路 UART、SPI、I2C 等丰富的通讯外设,具有高整合度、高抗干扰、高可靠性的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

Low Pin Count MCU 典型应用

- 小家电, 充电器, 重合闸, 遥控器, 电子烟, 燃气报警器, 数显表, 温控器, 记录 仪等行业
- 智能交通,智慧城市,智能家居
- 火警探头,智能门锁,无线监控等智能传感器应用
- 电机驱动

Low Pin Count MCU 产品特性

- 32MHz Cortex-M0+32 位 CPU 平台
- HC32F003 系列 / HC32F005 系列具有灵活 的功耗管理系统
 - 5μA @ 3V 深度睡眠模式: 所有时钟关 定时器/计数器 闭,上电复位有效,IO 状态保持,IO 中 - 3个通用16位定时器/计数器 断有效,所有寄存器、RAM 和 CPU 数 据保存状态时的功耗
 - 10μA @32KkHz 低速工作模式: CPU 和 外设模块运行中,从 Flash 运行程序
 - 30μA/MHz@3V@16MHz 睡眠模式: CPU 停止工作,外设模块运行,主时钟 运行
 - 150μA/MHz@3V@16MHz 工作模式: CPU 和外设模块运行,从 Flash 运行程
 - 3μS 低功耗唤醒时间,使模式切换更加 灵活高效,系统反应更为敏捷
 - 上述特性为室温下典型值, 具体的电气 特性, 功耗特性参考电气特性一章
- Flash 存储器,具有擦写保护功能
 - HC32F003 系列支持 16K 字节 Flash
 - HC32F005 系列支持 32K 字节 Flash
- RAM 存储器,附带奇偶校验,增强系统的 稳定性
 - HC32F003 系列支持 2K 字节 RAM
 - HC32F005 系列支持 4K 字节 RAM
- 通用 I/O 引脚 (16IO/20pin)
- ▶ 时钟、晶振
 - 外部高速晶振 4MHz~32MHz
 - 内部高速时钟 4M, 8M, 16M, 22.12M,

24MHz

- 内部低速时钟 32.768K / 38.4KHz
- 硬件支持内外时钟校准和监控
- - 3 个高性能 16 位定时器/计数器,支持 PWM 互补, 死区保护功能
 - 1个可编程 16 位定时器/计数器, 支持捕 获比较, PWM 输出
 - 1个20位可编程计数看门狗电路,内建 专用低功耗 RC-OSC 提供 WDT 计数

● 通讯接口

- UARTO-UART1 标准通讯接口
- SPI 标准通讯接口
- I2C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件 CRC-16 模块
- 唯一 16 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC, 内置运放, 可测量外部微弱信号
- 集成 6 位 DAC 和可编程基准输入的 2 路 电压比较器 VC
- 低电压侦测器 LVD,可配置 16 阶比较电平, 可监控端口电压以及电源电压
- 嵌入式调试解决方案,提供全功能的实时调 试器
- 工作温度: -40~85℃
- 工作电压: 1.8~5.5V
- 封装形式: OFN20, TSSOP20, SOP20

32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2			
流水线	2级流水线			
性能效率	2.46 CoreMark / MHz			
性能效率	0.95 DMIPS / MHz in Dhrystone			
中断	32个快速中断			
中断优先级	可配置4级中断优先级			
增强指令	单周期32位乘法器			
调试	Serial-wire 调试端口,支持4个硬中断(break point)			
	以及2个观察点(watch point)			

Flash 存储器

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

- HC32F003 系列支持 16K 字节 Flash
- HC32F005 系列支持 32K 字节 Flash

RAM 存储器

根据客户选择不同的功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,硬件电路会立刻产生中断,保证系统的可靠性。

- HC32F003 系列支持 2K 字节 RAM
- HC32F005 系列支持 4K 字节 RAM

时钟系统

- 一个频率为 4M~24MHz 可配置的高精度内部时钟 RCH。在配置 16MHz 下,从低功耗模式到工作模式的唤醒时间为 3uS,全电压全温度范围内的频率偏差 < ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4M~32MHz 的外部晶振 XTH。

一个频率为 32.768/38.4kHz 的内部时钟 RCL。

工作模式

- (1) 运行模式 Active: CPU 运行,周边功能模块运行。
- (2) 休眠模式 Sleep: CPU 停止运行,周边功能模块运行。
- (3) 深度休眠模式 Deep sleep: CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

通用 IO 端口

最多可提供 16个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种功耗模式下把 MCU 唤醒到工作模式。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16个通用 IO 可支持外部异步中断。

中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入; 有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_P0
[1]	GPIO_P1
[2]	GPIO_P2
[3]	GPIO_P3
[4]	-
[5]	-
[6]	UART0
[7]	UART1
[8]	-
[9]	-
[10]	SPI
[11]	-
[12]	I2C
[13]	-
[14]	Timer0

[15]	Timer1
[16]	Timer2
[17]	-
[18]	Timer4
[19]	Timer5
[20]	Timer6
[21]	PCA
[22]	WDT
[23]	-
[24]	ADC
[25]	-
[26]	VC0
[27]	VC1
[28]	LVD
[29]	-
[30]	RAM FLASH fault
[31]	Clock trim

复位控制器

本产品具有 7 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 00000000。

	中断来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软
	件复位
[6]	LVD 复位

定时器/计数器

		位宽	预除频	计数方向	PWM	捕获	互补输出
Base Timer	Timer0	16/32	1/2/4/8/16	上计数	无	无	无
			32/64/256				
	Timer1	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
	Timer2	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				

PCA	PCA	16	2/4/8/16/32	上计数	5	5	无
Advanced	Timer4	16	1/2/4/8/16/	上计数/	2	2	1
Timer			64/256/1024	下计数/			
				上下计数			
	Timer5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	Timer6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

Base Timer 包含三个定时器 Timer0/1/2。Timer0/1/2 功能完全相同。Timer0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。Timer0/1/2 可以对外部脉冲进行计数或者实现系统定时。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

Advanced Timer 是一个包含三个定时器 Timer4/5/6。Timer4/5/6 功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1 个定时器可以产生互补的一对 PWM 或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波				
	• 递加、递减计数方向				
	• 软件同步				
	• 硬件同步				
基本功能	• 缓存功能				
至	• 正交编码计数				
	• 通用PWM输出				
	• 保护机制				
	• AOS关联动作				
	计数比较匹配中断				
中断类型	计数周期匹配中断				
中断矢室 	死区时间错误中断				
	短路监测中断				

看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内 建 10k 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

通用异步收发器 UART0~UART1

2 路通用异步收发器(Universal Asynchronous Receiver/Transmitter)

同步串行接口 SPI

1 路同步串行接口(Serial Peripheral Interface),支持主从模式。

I2C 总线

1 路 I2C (Inter-Integrated Circuit),支持主从模式。采用串行同步时钟,可实现设备之间以不同的速率传输数据,串行 8 位双向数据传输最大速度可达 1Mbps。

蜂鸣器 Buzzer

3 个定时器 Base Timer 功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 16mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

唯一ID号

每颗芯片出厂前具备唯一的 16 Byte 设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。 ID 地址 0X0010_0E70-0X0010_0E7F

CRC16 硬件循环冗余校验码

符合 ISO/IEC13239 中给出的多项式 $F(x) = X^{16} + X^{12} + X^5 + 1$ 。

12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24M ADC 时钟下工作时,采样率达到 1Msps。

参考电压可选择片内精准电压 (1.5v 或 2.5v) 或从外部输入或电源电压。12 个输入通道,包括 9 路外部引脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压。内建可配置的输入信号放大器以检测弱信号。

电压比较器 VC

芯片引脚电压监测/比较电路。8个可配置的正/负外部输入通道;5个内部输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5V 参考电压、1路内建 BGR 1.2V 电压、1路 64 阶电阻分压。VC 输出可供定时器 Timer0/1/2, Advanced Timer 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16档电压监测值(1.8v~3.3v)。 可根据上升/下降 边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。 支持 4 个硬断点以及多个软断点。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2. 产品阵容

产品名称

功能

产品名称		HC32F005C6UA/HC32F005C6PA HC32F003C4UA/HC32F003C4PA	
引脚数	ģ.	20	
通用引	川脚数 GPIO	16	
CDU	内核	Cortex M0+	
CPU	频率	32MHz	
电源电	己压范围	1.8 ~5.5V	
单/双	电源	单电源	
温度剂	5围	-40 ~ 85 °C	
调试写	力能	串行线调试接口	
唯一训	只别码	支持	
多功能		UART0/1	
(UAR	T/SPI/I ² C)	SPI I2C	
⇔		Timer0/1/2	
定时器		Advanced Timer4/5/6	
液晶挡	控制器(LCDC)	无	
12 位	A/D 转换器	12bit	
模拟电	已压比较器	VC0/1	
实时时	寸钟	1	
端口中	断	16	
低电压	检测复位/中断	1	
	内部高速振荡器	IRC4M/8M/16M/22.12M/24M	
时钟	内部低速振荡器	IRC32.768K/38.4K	
	外部高速晶振振荡器	4M/8M/16M/32M	
蜂鸣器		Max 3ch	
闪存安	全保护	支持	
RAM ₽	5偶校验	支持	

产品选型表

产品编码	HC32F005C6UA	HC32F005C6PA	HC32F003C4UA	HC32F003C4PA	
Flash	32	2K	16	5K	
RAM	4	K	2	K	
UART	2	2	2	2	
SPI		1		1	
I2C		1		1	
ADC	9*	:12	9*12		
VComp	2	2	2		
I/O	16	i+1	16+1		
RTC	不过	支持	不支持		
LVD	支	持	支	持	
Timer	6*	:16	6*16		
PWM	6*	:16	6*16		
PCA	支	持	支持		
CRC16	支	持	支持		
Vdd	1.8~5.5v		1.8~5.5v		
Package	QFN20(3*3)	TSSOP20 /	QFN20(3*3)	TSSOP20 /	
		SOP20		SOP20	

3. 引脚配置

HC32F005C6UA / HC32F003C4UA

HC32F005C6PA / HC32F003C4PA

HC32F005C6PA / HC32F003C4PA

4. 引脚功能说明

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	SOP20			
1	4	4	RESETB	RESETB	复位输入端口,低有效,芯片复位
			P00	GPIO	P00 数字输入
2	5	5	P01	GPIO	P01 通用数字输入/输出引脚
				UART0_RXD	UART0 RXD
				I2C_SDA	I2C 数据
				UART1_TXD	UART1 TXD
				TIM0_TOG	Timer0 翻转输出
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				SPI_SCK	SPI 时钟
				TIM2_EXT	Timer2 外部时钟
				AIN7/VC7	模拟输入
				XTHI	外部 XTH 晶振时钟 输入
3	6	6	P02	GPIO	P02 通用数字输入/输出引脚
				UART0_TXD	UART0 TXD
				I2C_SCL	I2C 时钟
				UART1_RXD	UART1 RXD
				TIM0_TOGN	Timer0 翻转反相输出
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				SPI_CS	SPI CS
				TIM2_GATE	Timer2 门控
				AIN8	模拟输入
				XTHO	外部 XTH 晶振时钟 输出
4	7	7	VSS	GND	芯片地
5	8	8	Vcap	Power	LDO 内核供电输出(仅限内部电路使用,连接 4.7uF 的电容)
6	9	9	VDD	Power	芯片电源 1.8v~5.5v
7	10	10	P03	GPIO	P03 通用数字输入/输出引脚
				PCA_CH3	PCA 捕获输入/比较输出 3
				SPI_CS	SPI CS
				TIM6_CHB	Timer6 捕获输入/比较输出 B
				PCA_ECI	PCA 外部时钟输入
				VC0_OUT	VC0 输出
				LVDIN1	模拟输入
8	11	11	P15	GPIO	P15 通用数字输入/输出引脚
				I2C_SDA	I2C 数据
				TIM2_TOG	Timer2 翻转输出
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				SPI_SCK	SPI 时钟
				UART0_RXD	UART0 RXD
				LVD_OUT	LVD 输出
				/	/
9	12	12	P14	GPIO	P14 通用数字输入/输出引脚
				I2C_SCL	I2C 时钟

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	SOP20			
				TIM2_TOGN	Timer2 翻转反相输出
				ECI	PCA 外部时钟输入
				ADC_RDY	ADC ready
				SPI_CS	SPI CS
				UART0_TXD	UART0 TXD
				/	/
10	13	13	P23	GPIO	P23 通用数字输入/输出引脚
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				TIM4_CHA	Timer4 捕获输入/比较输出 A
				PCA_CH0	PCA 捕获输入/比较输出 0
				SPI_MISO	SPI 模块主机输入从机输出数据信号
				UART1_TXD	UART1 TXD
				IR_OUT	38K 载波输出
				LVDIN2/VC0	模拟输入
11	14	14	P24	GPIO	P24 通用数字输入/输出引脚
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				HCLK_OUT	HCLK 输出
				PCA_CH1	PCA 捕获输入/比较输出 1
				SPI_MOSI	SPI 模块主机输出从机输入数据信号
				UART1_RXD	UART1 RXD
				VC1_OUT	VC1 输出
				AIN0	模拟输入
12	15	15	P25	GPIO	P25 通用数字输入/输出引脚
				SPI_SCK	SPI 时钟
				PCA_CH0	PCA 捕获输入/比较输出 0
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				LVD_OUT	LVD 输出
				I2C_SDA	I2C 数据
				TIM1_GATE	Timer1 门控
				LVDIN3/VC1	模拟输入
13	16	16	P26	GPIO	P26 通用数字输入/输出引脚
				SPI_MOSI	SPI 模块主机输出从机输入数据信号
				TIM4_CHA	Timer4 捕获输入/比较输出 A
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				PCA_CH2	PCA 捕获输入/比较输出 2
				I2C_SCL	I2C 时钟
				TIM1_EXT	Timer1 部时钟输入
				AIN1	模拟输入
14	17	17	P27	GPIO	P27 通用数字输入/输出引脚
	•			SPI_MISO	SPI 模块主机输入从机输出数据信号
				TIM5_CHA	Timer5 捕获输入/比较输出 A
					Timer6 捕获输入/比较输出 A
				TIM6_CHA	IIIIero 用流相/八/记报相正A

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	SOP20			
				UART0_RXD	UART0 RXD
				RCH_OUT	24M 振荡输出
				XTH_OUT	32M 振荡输出
				SWDIO	SWDIO
15	18	18	P31	GPIO	P31 通用数字输入/输出引脚
				TIM3_TOG	Timer3 翻转输出
				PCA_ECI	PCA 外部时钟
				PCLK_OUT	PCLK 输出
				VC0OUT	VC0 输出
				UART0_TXD	UART0 TXD
				RCL_OUT	RCL 振荡输出
				HCLK_OUT	HCLK 输出
				SWCLK	SWCLK
16	19	19	P32	GPIO	P32 通用数字输入/输出引脚
				PCA_CH2	PCA 捕获输入/比较输出 2
				TIM6_CHB	Timer6 捕获输入/比较输出 B
				VC10UT	VC1 输出
				UART1_TXD	UART1 TXD
				PCA_CH4	PCA 捕获输入/比较输出 4
				AIN2/VC2	模拟输入
17	20	20	P33	GPIO	P33 通用数字输入/输出引脚
				PCA_CH1	PCA 捕获输入/比较输出 1
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				PCA_ECI	PCA 外部时钟
				UART1_RXD	UART1 RXD
				/	/
				TIM1_TOGN	Timerl 翻转反向输出
				AIN3/VC3	模拟输入
18	1	1	P34	GPIO	P34 通用数字输入/输出引脚
				PCA_CH0	PCA 捕获输入/比较输出 0
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				TIM0_EXT	Timer0 部时钟输入
				TIM4_CHA	Timer4 捕获输入/比较输出 A
				TIM1_TOG	Timer1 翻转输出
				AIN4/VC4	模拟输入
19	2	2	P35	GPIO	P35 通用数字输入/输出引脚
				UART1_TXD	UARTI TXD
				TIM6_CHB	Timer6 捕获输入/比较输出 B
				UART0_TXD	UARTO TXD
				TIM0_GATE	Timer0 门控
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				SPI_MISO	SPI 模块主机输入从机输出数据信号
				I2C_SDA	I2C 数据
				AIN5/VC5	模拟输入
20	3	3	P36	GPIO GPIO	P36 通用数字输入/输出引脚

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	SOP20			
				UART1_RXD	UART1 RXD
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				UART0_RXD	UARTO RXD
				PCA_CH4	PCA 捕获输入/比较输出 4
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				SPI_MOSI	SPI 模块主机输出从机输入数据信号
				I2C_SCL	I2C 时钟
				AIN6/VC6/	模拟输入
				AVREF	

5. 框图

功能模块

- *1: 16KB: HC32F003 系列; 32KB: HC32F005 系列。
- *2: 2KB: HC32F003 系列; 4KB: HC32F005 系列。

图 5-1 功能模块

6. 存储区映射图

HC32F00 HC32F00		HC32F00 HC32F00		
0x2000_1000	保留		保留	
0x2000_0000	SRAM (4KByte)	0x2000_0800 0x2000_0000	SRAM	
0x0000_8000	保留		保留	
	主闪存区 (32KByte)	0x0000_4000	主闪存区 (16KByte)	
0x0000_0000		0x0000_0000		

7. 电气特性

7.1 最大绝对额定值

如无特殊说明,所有典型值均基于室温和电源电压 3.3V 测试。

最小值和最大值如下表中定义的工作温度、工作电压、工作频率范围所示。如无特殊说明,所有数据均在此范围内测试。

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vpower	电源电压		0		5.5	V
Viopin	IO 的电压		-0.3		Vpower+0.3	V
Vop	工作电压		1.8	3.3	5.5	V
Tstg	存储温度		-40	25	150	$^{\circ}$
Тор	工作温度		-40	25	85	$^{\circ}$
Fcpu	CPU 工作频率		256	4M	32M	Hz
VESDHBM	ESD @ Human Body Mode			2		KV
VESDCDM	ESD @ Charge Device Mode			1		KV
VESDMM	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

表 7-1 工作和贮藏条件

7.2 推荐工作条件

 $(DV_{SS}=0.0 V)$

参数	松 .巳.	符号条件		额定值		
少 数	41.2	条件	最小值	最大值	单位	参考
电源电压	DVcc	-	1.8	5.5	V	
滤波电容	Cs	-			uF	
工作温度	Та	-	-40	85	\mathbb{C}	

注意:

- 推荐工作条件是确保半导体芯片正常工作的条件。在推荐工作条件的范围内,电气特性的所有规格值均可得到保证。务必在推荐工作条件下使用半导体芯片。超出该条件的使用可能会影响半导体的可靠性。
- 对于本数据手册中未记载的项目、使用条件或逻辑组合的使用,本公司不做任何保障。如果用户考虑在 所列条件之外使用本芯片,请事前联系销售代表。

7.3 直流特性

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
	All			4M	290		
T	peripherals	W _1.55W	RCH	8M	520		
I _{DD} (Run in RAM)	clock OFF,	V _{core} =1.55V V _{DD} =3.3V	clock source	16M	960		uA
(Kuli III KAM)	Run While(1)	VDD=3.3 V	Clock source	24M	1400		
	in RAM.			32M	1820		
	All			4M	870		
I_{DD}	peripherals			8M	1690		
	clock OFF,	V _{core} =1.55V	RCH	16M	3090		1.
(Run	Run	V _{DD} =3.3V	clock source	24M	4430		uA
CoreMark)	CoreMark in			32M			
	Flash.			(Flash Wait= 1)	4590		
	All			4M	910	1140	
	peripherals		-	8M	1760	2080	1
	clock ON,		RCH	16M	3250	3900	
	Run while(1)		clock source				
_	in Flash			24M	4680	5590	
I _{DD}				4M	720	980	uA
(Run mode)	All peripheral			8M	1370	1690	
	clock OFF,	$V_{core}=1.55V$	RCH	16M	2470	3120	
	Run while(1)	V _{DD} =1.8-5.5V	clock source	24M	3510	4290	
	in Flash			32M	2710	2000	
				(Flash Wait= 1)	3710	3900	
				4M	340	360	
	All peripheral	V _{core} =1.55V	RCH	8M	650	680	
	clock ON	V _{DD} =1.8-5.5V	clock source	16M	1240	1260	
-				24M	1820	1850	
I _{DD}				4M	140	160	
(Sleep mode)			200	8M	250	270	
	All peripheral	V _{core} =1.55V	RCH	16M	430	470	-
	clock OFF	V _{DD} =1.8-5.5V	clock source	24M	610	650	
				32M	750	790	uA
	All			TA = -40 to			
Idd	peripherals	V _{core} =1.55V		25° C	6	6	
	clock OFF	V _{DD} =1.8-5.5V		TA = 50 ° C	7	7	1
	except WDT			TA = 85 ° C	8	9	1
(DeepSleep				TA = -40 to			1
mode)	All	V _{core} =1.55V		25° C	5	6	
	peripherals	V _{DD} =1.8-5.5V		TA = 50 ° C	6	6	1
	clock OFF			TA = 85 ° C	7	8	1

1. Guaranteed by characterization results at 85 $\,^{\circ}\text{C},$ unless otherwise specified.

表 7-2 工作电流特性

Power On Reset/Brown Out Reset

图 7-1 POR/Brown Out 示意图

注意:

- POR/BOR 检测的是 V15(VDD)上的电压值。
- 不受 V15 上下电速率约束,只检测阈值。
- 上电与掉电的检测阈值相同, V15 低于该阈值即发 Reset 脉冲。
- 一旦产生 Reset 脉冲,脉冲持续宽度不会小于 Treset,保证系统能完全复位。

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{por}	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-3 POR/Brown Out

7.4 交流特性

7.4.1 输出特性——端口

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OH}	High level output	Sourcing 4 mA, VCC = 3.3 V	VCC-0.25		V
	voltage Source	(see Note 1)			
	Current	Sourcing 6 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
Vol	Low level output	Sinking 4 mA, VCC = 3.3 V		VSS+0.25	V
	voltage Sink	(see Note 1)			
	Current	Sinking 6 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V _{OHD}	High level output	Sourcing 8 mA, VCC = 3.3 V	VCC-0.25		V
	voltage Double	(see Note 1)			
	source Current	Sourcing 12 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
V_{OLD}	Low level output	Sinking 8 mA, VCC = 3.3 V		VSS+0.25	V
	voltage Double Sink	(see Note 1)			
	Current	Sinking 12 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-4 端口输出特性

Notes:

- 1. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
- 2. The maximum total current, I_{OH}(max) and I_{OL}(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 7.2 端口 V_{OH}/V_{OL} 实测曲线

7.4.2 输入特性——端口

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
V _{IT+}	Positive-going input	VCC=1.8v	1	1.1	1.2	V
	threshold voltage	VCC=3.3v	1.8	2	2.2	V
		VCC=5.5v	2.9	3.1	3.3	V
V _{IT} -	Negative-going input	VCC=1.8v	0.6	0.7	0.8	V
	threshold voltage	VCC=3.3v	1.1	1.3	1.5	V
		VCC=5.5v	2	2.2	2.4	V
V _{hys}	Input voltage hysteresis	VCC=1.8v	0.4	0.4	0.4	V
	$(V_{IT+} - V_{IT-})$	VCC=3.3v	0.7	0.7	0.7	V
		VCC=5.5v	0.9	0.9	0.9	V
R _{pullhigh}	Pullup resistor	Pullup enabled		80		Kohm
Cinput	Input capacitance			5		pf

7.4.3 端口外部输入采样要求——Timer Gate/Timer Clock

Symbol	Papameter	Conditions	VCC	Min	Max	Unit
t(int)	External interrupt	External trigger signal for the	1.8v	30		ns
	timing	interrupt flag (see Note 1)	3.3v	30		ns
			5.5v	30		ns
t(cap)	Timer capture timing	Timer4/5/6 capture pulse width	1.8v	0.5		us
		Fsystem = 4MHz	3.3v	0.5		us
			5.5v	0.5		us
t(clk)	Timer clock	Timer0/1/2/4/5/6 external clock	1.8v		PCLK/2	MHz
	frequency applied to	input	3.3v		PCLK/2	MHz
	pin	Fsystem = 4MHz	5.5v		PCLK/2	MHz
t(pca)	PCA clock frequency	PCA external clock input	1.8v		PCLK/8	MHz
	applied to pin	Fsystem = 4MHz	3.3v		PCLK/8	MHz
			5.5v		PCLK/8	MHz

Note:

1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int).

7.4.4 端口漏电特性——P0,P1,P2,P3

Symbol	Papameter	Conditions	VCC	Max	Unit
I _{lkg(Px.y)}	Leakage current	V _(Px.y) (see Note 1,2)	1.8 V/3.6 V	±50	nA

Notes:

- $1. \ The \ leakage \ current \ is \ measured \ with \ VSS \ or \ VCC \ applied \ to \ the \ corresponding \ pin(s), \ unless \ otherwise \ noted.$
- 2. The port pin must be selected as input.

7.4.5 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
FMCLK	Internal RC Oscillation		4.0	4.0	24.0	MHz
	frequency			8.0		
				16.0		
				22.12		
				24.0		
T _{Mstart}	Start-up time	$F_{MCLK} = 4MHz$		6.0		μs
	Not including software	$F_{MCLK} = 8MHz$		4.0		μs
	calibration	F _{MCLK} = 16MHz		3.0		μs
		F _{MCLK} = 24MHz		2.5		μs
I_{MCLK}	Current consumption	$F_{MCLK} = 4MHz$		80		μΑ
		$F_{MCLK} = 8MHz$		100		μΑ
		F _{MCLK} = 16MHz		120		μΑ
		F _{MCLK} = 24MHz		140		μΑ
DC _{MCLK}	Duty cycle		45	50	55	%
Dev _M	Frequency Deviation	VCC = 1.8V ~ 5.5V	-2.5		+2.5	%
		$T_{AMB} = -40 \text{°C} \sim 85 \text{°C}$				
		VCC = 1.8V ~ 5.5V	-2.0		+2.0	%
		$T_{AMB} = -20 \text{°C} \sim 50 \text{°C}$				

7.4.6 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
FACLK	Internal RC Oscillation			38.4		KHz
	Frequency			32.768		
TACLK	Start up time			100		uS
DC _{ACLK}	Duty cycle		25	50	75	%
I _{ACLK}	Current consumption			0.25		μΑ
Dev _A	Frequency Deviation	VCC = 1.8V ~ 5.5V	-2.0		+2.0	%
		$T_{AMB} = -40 \text{°C} \sim 85 \text{°C}$				
		VCC = 1.8V ~ 5.5V	-1.5		+1.5	%
		T _{AMB} = -20 ℃ ~ 50 ℃				

7.4.7 外部 XTH 晶振

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
F _{FCLK}	Crystal frequency		4		32	MHz
ESR _{FCLK}	Supported crystal equiv-			30	60	Ohm
	alent series resistance			400	1500	
CFCLK	Supported crystal external	There are 2 C _{FCLK} on 2 crystal	12		24	pF

	load range	pins individually				
DCFCLK	Duty cycle		40	50	60	%
Idd ⁽²⁾	Current consumption	32M Xtal, C _{FCLK} =12pF,		600		uA
		ESR=30ohm				
T _{start}	Start- up time.	4M~32MHz	200		400	us

⁽¹⁾ Current consumption could vary with oscillating frequency, XTH_CR.Driver=1110, input bias current.

7.5 12 位 A/D 转换器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCR} EFIN	V
V _{ADCREFIN}	Input range of external reference voltage	Single ended	0		5.5	V
V _{REF25}	Internal 2.5v Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
V _{REF15}	Internal 1.5v Reference Voltage	常温25℃ 3.3V	1.485	1.5	1.515	V
I _{ADC1}	Active current including reference generator and buffer	200kSPS		2		mA
IADC2	Active current without reference generator and buffer	1MSPS		0.5		mA
C _{ADCIN}	ADC input capacitance			16	19.2	pF
FADCCLK	ADC clock Frequency				24M	Hz
TADCSTART	Startup time of reference generator and ADC core			20		μS
T _{ADCCONV}	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v 200KSPS@VCC>=1.8v REF=EXREF		10.3		Bit
		1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v		10.3		Bit

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
		200KSPS@VCC>=1.8v				
		REF=VCC				
		200KSPS@VCC>=1.8v		0.4		D.
		REF=internal 1.5V		9.4		Bit
		200KSPS@VCC>=2.8v		9.4		Bit
		REF=internal 2.5V				
		1MSPS@VCC>=2.7v				
		500KSPS@VCC>=2.4v		68.2		dB
		200KSPS@VCC>=1.8v		08.2		ab
		REF=EXREF				
		1MSPS@VCC>=2.7v				
	Signal to Noise	500KSPS@VCC>=2.4v		69.2		ID.
SNR	Ratio	200KSPS@VCC>=1.8v		68.2		dB
		REF=VCC				
		200KSPS@VCC>=1.8v				ID.
		REF=internal 1.5V		60		dB
		200KSPS@VCC>=2.8v		60		dB
		REF=internal 2.5V				
DNL	Differential non-linearity		-1		1	LSB
INL	Integral non-linearity		-3		3	LSB
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB
MC	Missing code		11.999	12		Bits

7.6 模拟电压比较器

Parameter	Conditions	Min	Тур	Max	Unit
Input voltage range		0		5.5	V
Input common mode range		0		VCC-0.2	V
Input offset	常温25℃ 3.3V	-10		+10	mV
Internal 1.2V reference from main bandgap			1.2		V
Comparator's current	VCx_BIAS_SEL=00 VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11		0.16 1.28 10 20		uA
Comparator's response time when one input cross another	VCx_BIAS_SEL=00 VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11		20 5 1 0.2		uS
Comparator's setup time when ENABLE. Input signals unchanged.	VCx_BIAS_SEL=00 VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11		20 5 1 0.2		uS
From main bandgap enable to V1P2_AT stable			20		uS
From 2.5V enable & BGR enable to V2P5 stable.			20		uS
V2P5 current			4		uA
Digital filter time	VC_debounce = 000 VC_debounce = 001 VC_debounce = 010 VC_debounce = 011 VC_debounce = 100 VC_debounce = 101 VC_debounce = 110		20 50 100 400 1600 6000 25000		μS
	Input voltage range Input common mode range Input offset Internal 1.2V reference from main bandgap Comparator's current Comparator's response time when one input cross another Comparator's setup time when ENABLE. Input signals unchanged. From main bandgap enable to V1P2_AT stable From 2.5V enable & BGR enable to V2P5 stable. V2P5 current	Input voltage range Input common mode range Input offset 常温25℃ 3.3V Internal 1.2V reference from main bandgap Comparator's current VCx_BIAS_SEL=00 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11 Comparator's response time when one input cross another VCx_BIAS_SEL=01 VCx_BIAS_SEL=11 Comparator's setup time when ENABLE. Input signals VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11 From main bandgap enable to V1P2_AT stable From 2.5V enable & BGR enable to V2P5 stable. V2P5 current Digital filter time VC_debounce = 000 VC_debounce = 011 VC_debounce = 011 VC_debounce = 100 VC_debounce = 100 VC_debounce = 101	Input voltage range Input common mode range Input offset Input offset Internal 1.2V reference from main bandgap Comparator's current VCx_BIAS_SEL=00 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11 VCx_BIAS_SEL=00 VCx_BIAS_SEL=11 VCx_BIAS_SEL=01 VCx_BIAS_SEL=01 VCx_BIAS_SEL=01 VCx_BIAS_SEL=01 VCx_BIAS_SEL=01 VCx_BIAS_SEL=01 VCx_BIAS_SEL=11 VCx_BIAS_SEL=11 VCx_BIAS_SEL=11 VCx_BIAS_SEL=11 VCx_BIAS_SEL=11 VCx_BIAS_SEL=11 VCx_BIAS_SEL=10 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11	Input voltage range	Input voltage range

7.7 低电压检测特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vex	External input voltage		0		VCC	V
	range					
Vlevel	VCC or VEX's	LVD_CR.VTDS = 0000		1.86		V
	detectable threshold	$LVD_CR.VTDS = 0001$		1.96		
		$LVD_CR.VTDS = 0010$		2.07		
		$LVD_CR.VTDS = 0011$		2.17		
		$LVD_CR.VTDS = 0100$		2.27		
		LVD_CR.VTDS = 0101		2.38		
		$LVD_CR.VTDS = 0110$		2.48		
		$LVD_CR.VTDS = 0111$		2.58		
		LVD_CR.VTDS = 1000		2.69		
		LVD_CR.VTDS = 1001		2.79		
		LVD_CR.VTDS = 1010		2.89		
		LVD_CR.VTDS = 1011		3.00		
		LVD_CR.VTDS = 1100		3.10		
		LVD_CR.VTDS = 1101		3.20		
		LVD_CR.VTDS = 1110		3.31		
		LVD_CR.VTDS = 1111		3.41		
Icomp	Detector's current			0.12		uA
Tresponse	Detector's response time			80		uS
	when VCC or VEX fall					
	below or rise above the					
	threshold					
Tsetup	Detector's setup time			5		uS
	when ENABLE.					

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	VCC or VEX					
	unchanged.					
Vhyste	Hysteresis voltage			20		mV
Tfilter	Digital filter time	LVD_debounce = 000		30us		
		LVD_debounce = 001		40us		
		LVD_debounce = 010		50us		
		LVD_debounce = 011		130us		
		LVD_debounce = 100		480us		
		LVD_debounce = 101		1.8ms		
		LVD_debounce = 110		7.3ms		
		LVD_debounce = 111		29ms		

7.8 闪存擦/写特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
EC _{flash}	Sector Endurance		100k			cycles
RET _{flash}	Data Retention	常温	100			Years
		85℃	20			Years
T _{prog}	Byte Program Time		6		7.5	μs
T _{erase}	Sector Erase Time		4		5	ms
	Chip Erase Time		30		40	ms

7.9 低功耗模式返回时间

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Twakeup	Deep sleep mode to Active	Regulator voltage=1.5v,				uS
	mode	$T_{AMB} = 25$ °C		4.0		
		4M		3.1		
		8M				
		16M		2.8		
		24M		2.7		

8. 封装尺寸

QFN20 封装

		QFN20 (3x3))		
Symbol	Min	Nom	Max		
	0.70	0.75	0.80		
A	0.80	0.85	0.90		
A1	0	0.02	0.05		
A3		0.20REF			
b	0.15	0.20	0.25		
D		3.00BSC			
Е		3.00BSC			
D2	1.60	1.65	1.70		
E2	1.60	1.65	1.70		
e		0.40BSC			
L	0.35	0.40	0.45		
K	0.20				
aaa		0.15			
bbb		0.10			
ccc	0.10				
ddd	0.05				
eee		0.08			
fff		0.10			

TSSOP20 封装

		TSSOP20	
Symbol		1550120	
J	Min	Nom	Max
Α			1.20
A1	0.05		0.15
A2	0.80	1.00	1.05
A3	0.39	0.44	0.49
b	0.20	1	0.29
b1	0.19	0.22	0.25
С	0.13		0.18
c1	0.12	0.13	0.14
D	6.40	6.50	6.50
Е	6.20	6.40	6.60
E1	4.30	4.40	4.50
e		0.65BSC	
L	0.45	0.60	0.75
L1		1.00BSC	
θ	0		8°

SOP20 封装

	SOP20		
Symbol	Min	Nom	Max
A			2.65
A1	0.10		0.30
A2	2.25	2.30	2.35
A3	0.97	1.02	1.07
b	0.35		0.43
b1	0.34	0.37	0.40
С	0.25		0.29
c1	0.24	0.25	0.26
D	12.70	12.80	12.90
Е	10.10	10.30	10.50
E1	7.40	7.50	7.60
e	1.27BSC		
L	0.70		1.00
L1	1.40REF		
θ	0		8°

SECTION B-B

9. 版本记录 & 联系方式

版本	修订日期	修订内容摘要	
Rev1.0	2018/1/24	HC32F003 系列 / HC32F005 系列数据手册初版发布。	
Rev1.1	2018/4/4	版本更新。	
Rev1.2	2018/4/17	修正 Flash 参数。	

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址:www.hdsc.com.cn

通信地址:上海市张江高科园区碧波路 572 弄 39 号

邮编:201203

