

<u>Gameboard</u>

Maths

Polynomials, Factors and Roots 4i

# Polynomials, Factors and Roots 4i



The polynomial f(x) is given by  $f(x) = 2x^3 + 9x^2 + 11x - 8$ .

#### Part A Factors

Using the factor theorem decide whether (2x-1) is a factor of f(x) or not.

(2x-1) is not a factor of f(x)

(2x-1) is a factor of f(x)

### Part B Find quadractic factor

Express f(x) as a product of a linear factor and a quadratic factor.

The following symbols may be useful: x

#### Part C Real roots

State the number of real roots to the equation f(x) = 0.

Gameboard:

<u>Pure Maths Practice: Polynomials, Factors and Roots</u>



<u>Gameboard</u>

Maths

Algebraic Division 5ii

# Algebraic Division 5ii



### Part A Quotient and Remainder 1

Find the quotient and remainder when  $3x^4 - x^3 - 3x^2 - 14x - 8$  is divided by  $x^2 + x + 2$ .

Give the quotient.

The following symbols may be useful: x

Give the remainder.

The following symbols may be useful: x

### Part B Quotient and Remainder 2

Find the quotient and remainder when  $4x^3 + 8x^2 - 5x + 12$  is divided by  $2x^2 + 1$ .

Give the quotient.

The following symbols may be useful: x

Give the remainder.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**Pure Maths Practice: Algebraic Division** 



<u>Gameboard</u>

Maths

Algebraic Division 5i

# Algebraic Division 5i



### Part A Quotient and Remainder

Find the quotient and remainder when  $x^4+1$  is divided by  $x^2+1$ .

State the quotient.

The following symbols may be useful: x

State the remainder.

## Part B Find f(x)

When the polynomial f(x) is divided by  $x^2+1$ , the quotient is  $x^2+4x+2$  and the remainder is x-1. Find f(x), simplifying your answer.

The following symbols may be useful:  $\boldsymbol{x}$ 

Used with permission from UCLES A-level Maths papers, 2003-2017.



<u>Gameboard</u>

Maths

Algebraic Division 3ii

# Algebraic Division 3ii



The cubic polynomial  $ax^3 - 4x^2 - 7ax + 12$  is denoted by f(x).

#### Part A Value of a

Given that (x-3) is a factor of f(x), find the value of the constant a.

The following symbols may be useful: a

#### Part B Remainder

Using this value of a, find the remainder when f(x) is divided by (x+2).

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

**Pure Maths Practice: Algebraic Division** 



Maths

Number

Arithmetic

**Proof and Hollow Pyramids** 

# **Proof and Hollow Pyramids**



A hollow pyramid shape can be made by stacking identical spheres.

### Part A Square-based pyramids

The diagram below shows the first three pyramids in a sequence of square-based hollow pyramids.



Figure 1: Square-based hollow pyramids with sides made up of 4, 5 and 6 identical spheres.

Let the number of spheres that make up the  $k^{\rm th}$  pyramid be  $S_k$ . From the list below, choose the correct expression for  $S_k$ .

- 8k+21
- $\bigcirc$  4k + 5
- () 8k + 13
- $\bigcirc$  16k-11

### Part B Triangle-based pyramids

The diagram below shows the first three pyramids in a sequence of triangle-based hollow pyramids.



Figure 2: Triangle-based hollow pyramids with sides made up of 4, 5 and 6 identical spheres.

Find an expression for  $T_n$ , the number of spheres that make up the  $n^{th}$  pyramid in this sequence.

The following symbols may be useful:  $\ensuremath{\mathsf{n}}$ 

#### Part C Is rearrangement possible?

Prove that it is not possible to rearrange the spheres making up any square-based pyramid to produce a triangle-based pyramid (of any size) without either having spheres left over or needing extra spheres.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof. You may use the same answer more than once.

We will use proof by deduction.

### Reasoning:

The number of spheres making up the  $k^{\rm th}$  hollow square-based pyramid is given by 8k+13. For any positive value of k, 8k is . Hence, 8k+13 is always .

The number of spheres making up the  $n^{\rm th}$  hollow triangle-based pyramid is given by . For any positive value of  $n,\,6n$  is . Hence, is always even.

Therefore, the number of spheres required to make a hollow square-based pyramid the same as the number of spheres required to make a hollow triangle-based pyramid.

#### **Conclusion:**

Hence, it is not possible to rearrange the spheres making up any square-based pyramid to produce a triangle-based pyramid (of any size) without either having spheres left over or needing extra spheres.

#### Items:



Created for Isaac Physics by J. Waugh



Maths

Number

**Proof Applied to Surface Areas** 

# **Proof Applied to Surface Areas**

Arithmetic



Consider a sphere with a radius r cm, where r is a rational number. Using proof by contradiction, show that the side length of a cube with the same surface area cannot also be a rational number of cm.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof. You may use the same answer more than once.

### **Assumption:**

Consider a sphere of radius r cm, where r is a rational number. Let the side length of a cube with the same surface area as the sphere be a cm. Assume that a is a rational number, in which case  $a=\frac{b}{c}$ , where b and c are integers with no common factor.

### Reasoning:

The surface area of the sphere is a rational number,  $r=\frac{p}{q}$ , where p and q are integers with no common factor. Hence, the surface area of the sphere may be written as .

The surface area of the cube is  $a=rac{b}{c}$  . Using  $a=rac{b}{c}$  , the surface area may be written as

The surface area of the sphere and the cube are equal. Hence,  $4\pi\left(\frac{p}{q}\right)^2=6\left(\frac{b}{c}\right)^2$ . Re-arranging this equation to give an expression for

As b, c, p and q are all integers, must be number. However,  $\pi$  is not number.

### Reasoning:

The assumption that a is rational has resulted in a contradiction. Hence, the assumption cannot be true. Therefore, the side length of a cube with the same surface area as a sphere of radius  $r \, \mathrm{cm}$ , where r is a rational number, cannot be a rational number of  $\mathrm{cm}$ .

### Items:

a rational

 $4\pi r^2$ 

an irrational

 $\pi=rac{3b^2q^2}{2c^2p^2}$ 

 $\pi$ 

 $6a^2$ 

 $\pi = rac{3b^2p^2}{2c^2q^2}$ 

 $a^3$  ar

a real

 $\begin{bmatrix} 3b^2q^2 \\ 2c^2p^2 \end{bmatrix} = 4\pi$ 

 $\boxed{4\pi \left(\begin{matrix} p \\ q \end{matrix}\right)^2}$ 

 $6 \binom{b}{c}^2$ 



Maths

Number

Arithmetic Divisibility by Exhaustion

# **Divisibility by Exhaustion**



A sequence  $u_n$  is defined by  $u_n=n^7-n$ , where  $n\in\mathbb{N}.$  The first four terms of this sequence are

 $0, 126, 2184, 16380, \dots$ 

What is the largest integer that will divide every term of this sequence?

### Part A Factorise $u_n$

Factorise  $u_n$  completely.

The following symbols may be useful: n

#### 

Using your expression from part A, prove that every term in the sequence is divisible by 2.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof.

We know that  $u_n = (n-1)n(n+1)(n^2+n+1)(n^2-n+1)$ .

When n is even, it is divisible by 2 and we can see that is a factor of  $u_n$ , so  $u_n$  is divisible by 2.

When n is odd, we can write n= , where  $k\in\mathbb{Z}.$  Then = , so is divisible by 2, and hence  $u_n$  is divisible by 2.

Therefore,  $u_n$  is divisible by 2 for any value of n. So every term in the sequence is divisible by 2.

Items:

$$egin{bmatrix} n & egin{bmatrix} n+1 \end{bmatrix} & egin{bmatrix} 2k \end{bmatrix} & egin{bmatrix} n-1 \end{bmatrix} & egin{bmatrix} n^2+n+1 \end{bmatrix} & egin{bmatrix} 2k+1 \end{bmatrix} & egin{bmatrix} n^2-n+1 \end{bmatrix}$$

### Part C Divisibility by 3

Using your expression from part A, prove that every term in the sequence is divisible by 3.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof.

We know that  $u_n = (n-1)n(n+1)(n^2+n+1)(n^2-n+1)$ .

When n is a multiple of 3, it is divisible by 3 and we can see that is a factor of  $u_n$ , so  $u_n$  is divisible by 3.

When n=3k+1, where  $k\in\mathbb{Z}.$  Then = , so is divisible by 3, and hence  $u_n$  is divisible by 3.

When n=3k+2, where  $k\in\mathbb{Z}.$  Then = , so  $\qquad$  is divisible by 3, and hence  $u_n$  is divisible by 3.

Therefore,  $u_n$  is divisible by 3 for any value of n. So every term in the sequence is divisible by 3.

Items:

$$egin{bmatrix} n & egin{bmatrix} 3k-3 & egin{bmatrix} 3k+1 & egin{bmatrix} n-1 & egin{bmatrix} n^2-n+1 & egin{bmatrix} 3k & egin{bmatrix} n+1 & egin{bmatrix} 3k+3 & egin{bmatrix} 3k+2 & egin{bmatrix} n^2+n+1 &$$

#### Divisibility by 7Part D

Using your expression from part A, prove that every term in the sequence is divisible by 7.

Once you have worked out a proof yourself, consider the model proof below. Drag and drop answers into the blank spaces to complete the proof. You may use the same answer more than once.

We know that  $u_n = (n-1)n(n+1)(n^2+n+1)(n^2-n+1)$ .

When n is a multiple of 7, it is divisible by 7 and we can see that is divisible by 7.

is a factor of  $u_n$ , so  $u_n$ 

When n=7k+1, where  $k\in\mathbb{Z}$ , then

, so

, so

, so

is divisible by 7, and

hence  $u_n$  is divisible by 7.

When n=7k+2, where  $k\in\mathbb{Z}$ , then

, so

=

=

is divisible by 7, and

hence  $u_n$  is divisible by 7.

When n=7k+3, where  $k\in\mathbb{Z}$ , then

is divisible by 7, and

hence  $u_n$  is divisible by 7.

When n=7k+4, where  $k\in\mathbb{Z}$ , then

is divisible by 7, and

hence  $u_n$  is divisible by 7.

When n=7k+5, where  $k\in\mathbb{Z}$ , then

, so

is divisible by 7, and

hence  $u_n$  is divisible by 7.

When n=7k+6, where  $k\in\mathbb{Z}$ , then

=

, so

is divisible by 7, and

hence  $u_n$  is divisible by 7.

Therefore,  $u_n$  is divisible by 7 for any value of n. So every term in the sequence is divisible by 7.

Items:

 $49k^2 + 63k + 21$ 

 $n^2 - n + 1$ 

 $n^2 + n + 1$ 

 $49k^2 + 35k + 7$ 

### Part E Largest Divisor

Prove that 42 is the largest integer that will divide every term of  $u_n$ .

We know that  $u_n$  is divisible by 2, 3 and 7. So we know that  $2 \times 3 \times 7 = 0$  will divide  $u_n$ . Are there any larger integers that can do so?

Let's consider the first non-zero term, 126. We find that  $126 \div 42 = 100$ . This shows that the prime factorisation of 126 is 126 . Hence, the only larger factors of 126 are 126 and 126 . Will these divide any other terms of 126?

Looking at the next term, we find that  $2184\div=\frac{104}{3}$ , so does not divide 2184. Considering our other factor, we find that  $2184\div=\frac{52}{3}$ , so does not divide 2184 either.

Therefore, 42 is the largest integer that will divide every term of  $u_n$ .

Items:

$$\boxed{45} \boxed{42} \boxed{18} \boxed{2^2 \times 3 \times 7} \boxed{63} \boxed{2 \times 3^2 \times 7} \boxed{2} \boxed{126} \boxed{3} \boxed{5} \boxed{2 \times 3^2 \times 5} \boxed{7}$$

Created for isaacphysics.org by Matthew Rihan



<u>Gameboard</u>

Maths

Induction: Sequences 1i

# Induction: Sequences 1i



The sequence  $u_1$ ,  $u_2$ ,  $u_3$  . . . is defined by  $u_1=2$  and  $u_{n+1}=rac{u_n}{1+u_n}$  for  $n\geq 1$ .

Part A  $u_2$ ,  $u_3$ , and  $u_4$ 

Find  $u_2$ .

The following symbols may be useful: u\_2

Find  $u_3$ .

The following symbols may be useful: u\_3

Find  $u_4$ .

The following symbols may be useful: u\_4

### Part B $u_n$ in terms of n

Hence, suggest an expression for  $u_n$  in terms of n and use induction to prove your suggestion is correct.

The following symbols may be useful: n, u\_n

Adapted with permission from UCLES, A Level, Jan 2013, Paper 4725, Question 10.

Gameboard:

**Further Maths Practice: Induction - Sequences** 



<u>Gameboard</u>

Maths

Induction: Divisibility 1i

# **Induction: Divisibility 1i**



The sequence  $u_1$ ,  $u_2$ ,  $u_3$  ... is defined by  $u_n = 5^n + 2^{n-1}$ .

Part A  $u_1$ ,  $u_2$  and  $u_3$ 

Find  $u_1$ .

The following symbols may be useful: u\_1

Find  $u_2$ .

The following symbols may be useful: u\_2

Find  $u_3$ .

The following symbols may be useful: u\_3

### Part B Divisibility

Hence, suggest a positive integer, other than 1, which divides exactly into every term of the sequence and prove it with induction by considering  $u_{n+1} + u_n$ .

Adapted with permission from UCLES, A Level, June 2014, Paper 4725, Question 10.

Gameboard:

**Further Maths Practice: Induction - Divisibility** 



<u>Gameboard</u>

Maths

Induction: Matrices 2i

## **Induction: Matrices 2i**



The matrix  ${f M}$  is given by  ${f M}=egin{pmatrix} 3 & 0 \ 2 & 1 \end{pmatrix}$  .

 $\mathbf{M}^n$  can be expressed in the form

$$\mathbf{M}^n = egin{pmatrix} lpha & eta \ \gamma & \delta \end{pmatrix}$$

Part A  $\mathbf{M}^4$ 

Give an expression for  $\alpha + \beta + \gamma + \delta$  when n = 4.

#### Part B $\mathbf{M}^n$

Hence, suggest a suitable form for  $\mathbf{M}^n$  in terms of n and prove it with induction. Give an expression for  $\alpha + \beta + \gamma + \delta$ .

The following symbols may be useful: n

Adapted with permission from UCLES, A Level, Jan 2012, Paper 4725, Question 7.