

Practica Profesionalizante 2- Evidencia 2

Alumnos:

Almada, Sergio Daniel Beltramone, Mateo Guzmán, Nahir Dayana Navarro, Paola Giselle Galeano, Gerardo Agustín Gesto, Giuliana Sofía

> Link al Colab Link al Github

Informe de Análisis de Fairness por Neighborhood

Resumen Ejecutivo

Este informe presenta un análisis de equidad algorítmica enfocado en la variable **Neighborhood** (barrio) para el dataset de precios de viviendas. El análisis revela **disparidades significativas** entre barrios que pueden introducir sesgos en modelos predictivos de precios inmobiliarios.

Hallazgos Principales

- 25 barrios analizados con un factor de disparidad de 3.6x entre el barrio más caro y el más económico
- **36% de los barrios** presenta alta volatilidad de precios (CV > 0.3)
- 2 barrios críticos con representación insuficiente (< 10 muestras)
- Distribución relativamente equilibrada por categorías de precio

1. Análisis de Representación

1.1 Distribución por Categorías de Precio

Categoría	Cantidad de Casas	Porcentaje	Status
Bajo	667 casas	45.7%	☑ Bien representada
Medio	515 casas	35.3%	☑ Bien representada
Alto	278 casas	19.0%	♣ Sub-representada

Interpretación: La categoría de barrios de precio alto está sub-representada, lo que puede sesgar el modelo hacia predicciones menos precisas para viviendas de lujo.

1.2 Barrios con Representación Crítica

Barrio	Número de Muestras	Riesgo
Blueste	2 casas	Crítico
NPkVill	9 casas	O Alto

Implicaciones: Estos barrios tienen muestras insuficientes para entrenar modelos robustos, lo que puede resultar en:

- Predicciones poco confiables
- · Alta varianza en las estimaciones
- Potencial discriminación algorítmica

2. Análisis de Disparidad de Precios

2.1 Métricas de Inequidad

• Rango de precios medianos: \$88,000 - \$315,000

• Factor de disparidad: 3.6x

• Barrio más caro: Precio mediano de \$315,000

• Barrio más económico: Precio mediano de \$88,000

2.2 Contexto de Disparidad

Un factor de disparidad de **3.6x** indica una **inequidad moderada-alta** en el mercado inmobiliario. Esto sugiere:

- Segmentación clara del mercado por ubicación
- Posibles barreras socioeconómicas de acceso
- Riesgo de perpetuar desigualdades existentes a través de algoritmos

3. Análisis de Volatilidad de Precios

3.1 Barrios con Alta Volatilidad (CV > 0.3)

Barrio	Coeficiente de Variación	Precio Mediano	Interpretación
StoneBr	0.364	\$278,000	Mercado muy heterogéneo
NoRidge	0.362	\$301,500	Alta variabilidad premium
Crawfor	0.327	\$200,624	Gentrificación posible
NridgHt	0.305	\$315,000	Segmento de lujo diverso
Veenker	0.303	\$218,000	Transición de mercado

Total: 9 barrios (36% del total) con alta volatilidad

3.2 Barrios con Baja Volatilidad (CV < 0.15)

Barrio	Coeficiente de Variación	Precio Mediano	Interpretación
NPkVill	0.066	\$146,000	Mercado homogéneo*
Blueste	0.139	\$137,500	Precios consistentes*
BrDale	0.137	\$106,000	Segmento estable

^{*}Nota: Los primeros dos barrios tienen muestras muy pequeñas, por lo que la baja volatilidad puede ser artificial.

4. Identificación de Riesgos de Sesgo

4.1 Indicadores Detectados

Sesgo de Representación

- Barrios de lujo sub-representados (19% vs 45.7% de barrios económicos)
- Dos barrios con muestras críticamente pequeñas

Sesgo de Volatilidad

- 36% de barrios con alta volatilidad puede llevar a predicciones inconsistentes
- Concentración de volatilidad en segmentos de precio medio-alto

Riesgo de Amplificación

- · Los algoritmos pueden amplificar las disparidades existentes
- Predicciones menos confiables para grupos minoritarios

4.2 Tipos de Fairness Comprometidos

Tipo de Fairness	Status	Descripción
Representational Fairness	Comprometido	Sub-representación de barrios específicos
Allocative Fairness	En riesgo	Disparidad 3.6x puede perpetuarse
Quality of Service	En riesgo	Menor precisión para grupos pequeños

5. Recomendaciones Estratégicas

5.1 Acciones Inmediatas (Corto Plazo)

1. Tratamiento de Muestras Pequeñas

- Agrupar Blueste y NPkVill con barrios similares
- Aplicar técnicas de oversampling sintético (SMOTE)
- Considerar modelos jerárquicos por región

2. Estratificación del Modelo

- Entrenar modelos separados por categoría de precio
- Implementar ensemble weighted por representación
- Validación cruzada estratificada por barrio

3. Monitoreo de Equidad

- Métricas de fairness por barrio en producción
- Alertas automáticas para disparidades > 4x

Dashboard de equidad para stakeholders

5.2 Estrategias de Mediano Plazo

1. Recolección de Datos

- Enriquecer dataset con más muestras de barrios sub-representados
- Incorporar variables socioeconómicas contextuales
- Datos temporales para análisis de tendencias

2. Técnicas Avanzadas de Fairness

- Implementar constraint-based fairness durante entrenamiento
- Post-processing para calibrar predicciones por grupo
- · Adversarial debiasing networks

3. Validación Robusta

- Testing con datos externos por barrio
- Auditorías de equidad trimestrales
- Análisis de impacto diferencial

5.3 Consideraciones Éticas y Regulatorias

1. Transparencia

- Documentar limitaciones por barrio
- Comunicar incertidumbre en predicciones
- Explicabilidad localizada por grupo

2. Gobernanza

- Comité de ética para decisiones de fairness
- Políticas de uso responsable del modelo
- Protocolo de escalación para casos edge

6. Conclusiones

6.1 Estado Actual

El análisis revela **desafíos moderados de fairness** en el dataset, con disparidades significativas pero manejables. La representación desigual y alta volatilidad en algunos barrios requieren **intervención proactiva** para evitar discriminación algorítmica.

6.2 Viabilidad del Proyecto

Viable con mitigaciones: El proyecto puede proceder implementando las recomendaciones de fairness propuestas.

6.3 Próximos Pasos Prioritarios

- 1. Implementar agrupación de barrios con muestra pequeña
- 2. Estratificar validación por categoría de precio
- 3. Establecer métricas de monitoreo continuo
- 4. Desarrollar pipeline de fairness automatizado

Anexos

A.1 Métricas Técnicas Detalladas

- Coeficiente de Gini por barrio: Pendiente de cálculo
- Índice de Theil: Análisis de segregación espacial
- Disparate Impact Ratio: Por implementar post-predicciones

A.2 Referencias Metodológicas

- IEEE Standards for Algorithmic Bias Assessment
- Google's What-If Tool para análisis de fairness
- IBM AI Fairness 360 toolkit

Informe generado el: Mayo 2025

Autor: Análisis Automatizado de Fairness

Dataset: House Prices - Advanced Regression Techniques