Electronic Systems Active Filters Sheet 2

1. For the circuits shown:

- Derive the Circuit transfer function $A_v(S)$.
- Determine the maximum gain (Am) and cutoff frequency f_c .
- Determine the unity gain frequency $f_{\rm T}$.
- Design the circuit for maximum gain of 20 and cutoff freq. of 20 KHz.
- What is the type of the filter?

2. For the circuits shown:

- Derive the Circuit transfer function A_V(S).
- Determine the maximum gain (A_m) and cutoff frequency (f_c) .
- Design the circuit for cutoff frequency of 10 KHz. Given: for n=2 the Butterworth polynomial Bn(S) is $(S^2 + 1.414S + 1)$.

- 3. Design a 3^{rd} order Butterworth LPF with a cut-off frequency 30 KHz. For n = 3, $Bn(S) = (S+1)(S^2 + S+1)$.
- 4. Design a 5th order Butterworth LPF with a cut-off frequency of 50 KHz. For n = 5, $Bn(S) = (S+1)(S^2 + 0.618S+1) (S^2 + 1.618S+1)$.
- 5. Design a 5th order Butterworth BPF with an operating frequency band from 10 KHz to 50 KHz. For n = 5, $Bn(S) = (S+1)(S^2 + 0.618S+1) (S^2 + 1.618S+1)$.
- 6. Design a 6^{th} order Butterworth BSF with a rejection frequency band from 20 KHz to 60 KHz. For n = 6, $Bn(S) = (S^2 + 0.517638S + 1) (S^2 + 1.414214S + 1) (S^2 + 1.931852S + 1).$