

Performance

Übungen Computerarchitektur

1 Prozessor Benchmark & Leistung

1.1	Welche	der folgende	en Aussagen	sind richtig?	

	0	Die wall-clock-time ist die insgesamt verstrichene Zeit, einschliesslich E/A, Betriebssystem-Overhead usw.
	\cap	Multi-threading verbessert den Durchsatz eines Prozesses
	0	Die Central-Processing-Unit (CPU) Zeit beinhaltet nicht die E/A-Zeit
	0	Multi-threading verbessert die Ausführungszeit eines Prozesses
		per/benchmark-01
		•
1.2	Wa	s ist der Durchsatz (throughput)?
	\circ	Leistung pro Watt (die Anzahl der FLOPS pro Watt)
	\circ	Rate der Verarbeitungsarbeit (n Aufträge/Sekunde)
	0	die Zeit zwischen Beginn und Abschluss eines Ereignisses/Aufgabe/Programms (n Sekunden)
		der Prozentsatz der Zeit, in der ein System in Betrieb ist und läuft
		per/benchmark-02
10	TA7 -	- int day CDEC2
1.3	wa	s ist der SPEC?
	0	ist ein Benchmark-Katalog, der entwickelt wurde, um die Leistung auf der Grundlage der neuesten Java-Anwendungsfunktion zu messen
	0	ist ein Benchmark, der die Energie- und Leistungsmerkmale von Computern der Volume- Server-Klasse bewertet
	0	ist der weltweite Standard für die Messung der Grafikleistung auf der Grundlage professioneller Anwendungen
	0	ist eine Benchmark-Katalog, die Leistungsmessungen liefert, die zum Vergleich computerin-
	_	tensiver Arbeitslasten auf verschiedenen Computersystemen verwendet werden können.
		per/benchmark-03

HEI-Vs / ZaS, AmA / 2025

1.4 Was ist das Ziel der EEMBC-Benchmark?

	 □ zur Bewertung der Leistung von eingebetteten Mikroprozessoren □ zur Bewertung der Leistung von Ganzzahlberechnungen □ zur Messung der Energieeffizienz verschiedener Computersysteme □ zur Bewertung der Gleitkommaleistung 	.04
1.5	Welche der folgenden Kennzahlen ist eine Energieeffizienzkennzahl?	04
	O flops	
	Microprocessor without Interlocked Pipelined Stages (MIPS)	
	Leistung pro Watt	
	☐ Leistungsaufnahme	
	per/benchmark-	05
1.6	Bei einem eingebetteten System sind sowohl der Stromverbrauch als auc	:h
	Leistung pro Watt wichtig.	
	○ Wahr	
	O Falsch	
	per/benchmark-	.06
	pen venennark-	00
1.7	Prozessorleistung	
	Ein Programm besteht aus 5'000 Gleitkomma- und 25'000 Ganzzahlbefehlen. Prozessor A hat ein Taktrate von 2.0GHz. Fliesskommaanweisungen benötigen 7 Zyklen und Ganzzahlanweisungen Zyklus.	
	a) Wie lange braucht dieser Prozessor, um das Programm auszuführen?b) Was ist der durchschnittliche Cycles per Instruction (CPI) für diesen Prozessor für das gegebe.	ne
	Programm?	
	c) Prozessor A führt Programm 2 aus, das aus 100'000 Gleitkomma- und 50'000 Ganzzahl-Befehle besteht. Wie hoch ist der durchschnittliche CPI für dieses Programm?	en
	d) Prozessor B hat einen durchschnittlichen CPI für Programm 2 von 3.5. Seine Taktrate beträ 1.8 GHz. Wie viel Zeit benötigt er für die Ausführung des Programms?	gt
	e) Welcher Prozessor ist schneller und um wie viel schneller?	
	Prozessor ist mal schneller als Prozessor	
	per/performance-	01

1.8 Prozessorleistung

Betrachten Sie die folgenden zwei Maschinenkonzepte mit ihren jeweiligen CPI's für verschiedene Befehlstypen. Computer A und Computer B haben den gleichen Befehlssatz:

HEI-Vs / ZaS, AmA / 2025

Instruction Type	CPI_A	CPI_B	Compiler 1 Mix
Data Manipulation	1.5	1.0	25%
Arithmetic	1.0	1.5	30%
Shifting	1.0	1.2	10%
Branching	4.0	2.0	25%
Multiply	20	12	10%

- a) Wie hoch ist die durchschnittliche CPI für jeden der Computer, die dieses Programm verwenden?
- b) Computer A hat eine Clock-Zykluszeit von 0, 5ns. Computer B läuft mit 1, 8GHz. Schreiben Sie eine quantitative Aussage zum Vergleich der beiden Computer.
- c) Wie hoch müsste die Taktrate des langsameren Computers sein, um die Leistung des schnelleren Computers zu erreichen?

per/performance-02

1.9 Prozessorleistung

Eine CPU läuft mit einer Basisfrequenz von 2GHz. Er führt ein Programm mit 5 Millionen Anweisungen mit der angegebenen Anweisungsmischung aus. newline Wie lange ist die Ausführungszeit des Programms?

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	50%	3
Load	20%	5
Store	10%	4
Branch	20%	3

per/performance-03

1.10 Prozessorleistung

Eine CPU ist für eine optimale Leistung bei einem bestimmten Programm mit den folgenden Merkmalen ausgelegt. 25% aller Anweisungen sind Gleitkommaanweisungen mit einem durchschnittlichen CPI von 4.0, ausserdem enthält das Programm 2% Floating Point Square Root (FPSQR) Anweisungen mit einem durchschnittlichen CPI von 20. Alle anderen Anweisungen haben einen durchschnittlichen CPI von 1.33.

Es gibt zwei Konzeptalternativen:

- 1. Senkung des CPI von FPSQR -Anweisungen auf 2.0
- 2. Senkung des durchschnittlichen CPI aller Gleitkommaanweisungen auf 2.5

Welche Wahl ist die bessere?

per/performance-04

1.11 Prozessorleistung

Wir wollen einen neuen Computer kaufen. Darauf sollen hauptsächlich die Programme P_1 und P_2 laufen.

Welches Gewicht \boldsymbol{w}_{p_1} und \boldsymbol{w}_{p_2} müssen die Programme haben, damit:

- a) CPU A der beste Kauf ist?
- b) CPU B der beste Kauf ist?
- c) CPU C der beste Kauf ist?

Program	CPU_A	CPU_B	CPU_C
Program P_1 (sec)	1	10	100
Program P_2 (sec)	100	10	1

per/performance-05

1.12 Prozessorleistung

Benutzen Sie das geometrische Mittel, um zu berechnen, welcher Computer der schnellste ist, wenn Sie die folgende Leistung von zwei Programmen auf drei CPU's betrachten:

- a) CPU A ist der Schnellste!
- b) CPU B ist der Schnellste!
- c) CPU C ist der Schnellste!

Program	CPU_A	CPU_B	CPU_C
P_1 (sec)	40	15	20
P_2 (sec)	40	1000	150

per/performance-06

1.13 Prozessorleistung

Berechnen Sie den durchschnittlichen CPI für 5 Millionen Anweisungen mit den folgenden Befehlshäufigkeiten:

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	40%	4
Load	30%	6
Store	5%	5
Branch	25%	4

Die Clockfrequenz des CPU beträgt 2 GHz

per/performance-07

1.14 Welches ist die beste Messgröße für einen Leistungsvergleich?

arithmetisches Mittel

HEI-Vs / ZaS, AmA / 2025

\bigcirc	geometrisches Mittel
\bigcirc	median
\bigcirc	maximale Leistung
0	harmonisches Mittel

per/performance-08

1.15 Prozessorleistung

Berechnen Sie die Ausführungszeit in ms, unter der Annahme, dass der CPU mit den folgenden Befehlshäufigkeiten arbeitet:

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	45%	5
Load	25%	6
Store	10%	5
Branch	20%	3

Für 2 Millionen Befehle und eine CPU Frequenz von 3 GHz.

per/performance-09

1.16 Amdahlsches Gesetz

Durch eine Verbesserung der Fliesskomma-Ausführungseinheit wurden 2x schnellere Fliesskomma-Befehle erzeugt. Im Durchschnitt sind 10% aller Befehle bei diesem Prozessor Fliesskomma-Befehle.

Wie hoch ist der Geschwindigkeitszuwachs insgesamt?

per/amdahls-law-01

1.17 Amdahlsches Gesetz

Wir wollen eine Gesamtbeschleunigung von 2 und können die Gleitkommaanweisungen um das Vierfache beschleunigen.

Wie hoch sollte der Anteil der Fliesskommaanweisungen sein?

per/amdahls-law-02

1.18 Amdahlsches Gesetz

Ein Program besteht aus 2 verschiedenen Elementen. Teil A hat eine Dauer von 15 und Teil B eine Dauer 5 Zeiteinheiten. Es gibt zwei Optimierungsvarianten:

- 1. Optimierung des A Teiles um das zweifache
- 2. Optimierung des B Teiles um das fünffache

Welche Optimierung ist vorteilhafter? Was sind die Implikationen?

per/amdahls-law-03