Week 4

Agenda

- 1. Warm up and breakout
- 2. Trees
- 3. Forests
- 4. Bias/variance tradeoff discussion

Warm up with Quizzes

- 1. Decision Trees can only represent linear boundaries
- 2. Which of these are base cases for the decision tree algorithm?
 - a. completely pure split of the data
 - b. Not data! Default to parent's majority class
 - c. All possible splits have zero entropy
 - d. All of the above

Warm up with Quizzes (2)

- 1. Select the most fitting answer: Use ____ with continuous features...
 - a. discrete
 - b. continuous
 - c. thresholds
 - d. algorithms
- 2. Select most fitting answer: ...and ____ for features with many attributes
 - a. chaining
 - b. binarization
 - c. symbology
 - d. properties
- 3. There are typically two points of randomness in decision forests. What are they?
 - a. The first point is ____
 - b. The second point is ____

Decision Trees

Tree Algorithm

GrowTree (S):

if y == 0 for all $\langle x, y \rangle$ in S: return new leaf (0)

else if y == 1 for all $\langle x, y \rangle$ in S: return new leaf (1)

else:

choose best attribute x_i

 $S_0 = \text{all} < x, y > \text{in } S \text{ with } x_i == 0$

 $S_I = \text{all} < x, y > \text{in } S \text{ with } x_i ==1$

return new node $(x_i, GrowTree(S_0), GrowTree(S_1))$

- Goal: Find a tree that is consistent with training examples.
- Strategy: Recursively choose most significant attribute as root of subtree.

Compare to KNN, Naive Bayes--

- Describe the algorithm for training decision trees?
- 2. What's the training complexity?
 - a. Can it be parallelized?
- 3. What's the prediction complexity?
- 4. Why is a tree sometimes said to be a 'white box'?

Decision Trees - online learner?

Tree Algorithm

GrowTree (S):

```
if y == 0 for all \langle x, y \rangle in S: return new leaf (0)
```

else if y == 1 for all $\langle x, y \rangle$ in S: return new leaf (1)

else:

choose best attribute x_i

$$S_0 = \text{all} < x, y > \text{in } S \text{ with } x_i == 0$$

$$S_I = \text{all} < x, y > \text{in } S \text{ with } x_i ==1$$

return new node $(x_i, GrowTree(S_0), GrowTree(S_1))$

- Goal: Find a tree that is consistent with training examples.
- Strategy: Recursively choose most significant attribute as root of subtree.

- 1. Recap: What is an online learner?
- 2. Is a decision tree an online learner?

Decision Trees - online learner?

Tree Algorithm

GrowTree (S):

if y == 0 for all $\langle x, y \rangle$ in S: return new leaf (0)

else if y == 1 for all $\langle x, y \rangle$ in S: return new leaf (1)

else:

choose best attribute x_i

 $S_0 = \text{all} < x, y > \text{in } S \text{ with } x_i == 0$

 $S_I = \text{all} < x, y > \text{in } S \text{ with } x_i ==1$

return new node $(x_i, GrowTree(S_0), GrowTree(S_1))$

- Goal: Find a tree that is consistent with training examples.
- Strategy: Recursively choose most significant attribute as root of subtree.

Decision trees have incremental versions, e.g., VFDT, ID4 (Schlimmer & Fischer paper)

Decision Trees - Features

- \bullet S is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- 1. Throwback: What is feature selection?
- What is entropy? What is information gain?
- 3. How is entropy used for feature selection in decision trees?
- 4. Can it be used for feature selection with other algorithms (e.g. Naive Bayes)?

Ensembling

Random Forest Algorithm

- Generate artificial training set through bootstrapping with replacement.
- Build decision tree.
 - o Randomly choose subset of features; consider those as split points.
 - No pruning!
- · Repeat process to create multiple trees.
- · Run test case through all trees.
- Predict by taking vote among trees.

Recap Bootstrapping (with replacement)

Bagging

- What is bagging?
- What is the intuition as to why bagging is effective?
- 3. What is the complexity of training a bagging classifier? Can it be parallelized?
- 4. What are different ways to combine predictions?

Boosting Classifier: AdaBoost Algorithm

- 1. Set weight for each training example = 1/n.
- 2. Train a classifier where objective respects the weights.
 - Run classifier over training examples.
- Reduce weights for correct examples; increase weights for misclassified examples.
- 4. Return to step 2.
 - Second classifier is trained with objective that respects importance weights placed on each feature.

Boosting

- 1. What is boosting?
- 2. In terms of implementation, how do you incorporate example weights into the training of a tree?
- 3. How would you describe the complexity of training a boosting classifier? Is it parallelizable?
- One of the best approaches -> often the winning "team" in Kaggle

Bias and Variance Errors

Bias / Variance Tradeoff

- 1. What do bias and variance intuitively refer to?
- 2. Why is there typically a tradeoff?

Discuss when boosting or bagging may reduce variance and when bias

