PDE NOTES

TOLIBJON ISMOILOV

Contents

1.	Theory of Distributions	2
	1.1. Space of test functions	2
2.	Dirichlet problem for Poisson equation	3

 $E\text{-}mail\ address: \verb|tolibjon.iismoilov@gmail.com||}. \\ Date: February\ 9,\ 2023.$

1. Theory of Distributions

Taqsimotlar nazariyasi (yohud umumlashgan funksiyalar nazariyasi)

1.1. Space of test functions. Test funksiyalar fazolari

Ushbu boʻlimda biz ixtiyoriy $\Omega \subseteq \mathbb{R}^d$ ochiq toʻplam uchun bir nechta funksiyanal fazolarni qaraymiz. $\Omega = \mathbb{R}^d$ boʻlgan hollarda biz ayrim belgilashlarda shunchaki \mathbb{R}^d tushurib ketamiz.

Ta'rif 1.1. $f: \Omega \to \mathbb{C}$ funksiyaning supporti dastagi deb

$$\{x \in \Omega : f(x) = 0\} \tag{1.1}$$

toʻplamning \mathbb{R}^d fazodagi yopilmasiga aytiladi va supp(f) bilan belgilanadi.

Agar supp(f) kompakt toʻplam boʻlsa, f funkisya kompakt dastakli deb ataladi.

Istalgan $n \geq 0$ butun son uchun $\Omega \subseteq \mathbb{R}^d$ toʻplamda quyidagi funksiyalar sinflarini qaraymiz.

- (i) $\mathscr{E}^n(\Omega) = \{ f : \Omega \to \mathbb{C} \mid f \in C^n(\Omega) \}$ ya'ni k marta uzliksiz differensiallanuvchi funksiyalar to'plami. Agar n = 0 bo'lsa, $\mathscr{E}^0(\Omega)$ bilan Ω to'plamda aniqlangan uzliksiz funkiyalar to'plamini belgilab olamiz.
- (ii) $\mathscr{E}(\Omega)$ bilan Ω toʻplamda aniqlangan silliq funksiyalar sinfini belgilab olamiz, ya'ni:

$$\mathscr{E}(\Omega) = \bigcap_{n=0}^{\infty} \mathscr{E}^n(\Omega) \tag{1.2}$$

(iii) Aylaylik $K\subset\Omega\subseteq\mathbb{R}^d$ kompakt toʻplam, $\mathscr{D}_K^n(\Omega)$ va $\mathscr{D}_K(\Omega)$ sinflarni quyidagicha aniqlaymiz

$$\mathscr{D}_{K}^{n}(\Omega) = \left\{ f \in \mathscr{E}^{k}(\Omega) \mid \operatorname{supp}(f) \subseteq K \right\}$$
 (1.3)

$$\mathscr{D}_{K}(\Omega) = \{ f \in \mathscr{E}(\Omega) \mid \operatorname{supp}(f) \subseteq K \} = \bigcap_{n=0}^{\infty} \mathscr{D}_{K}^{n}(\Omega)$$
 (1.4)

(iv) $\mathcal{K}(\Omega)$ esa Ω toʻplamning barcha kompakt qism-toʻplamlari sinfini belgilasin. $\mathcal{D}(\Omega)$ bilan Ω toʻplamda aniqlangan kompakt dastakli silliq funsiyalar sinfini belgilaymiz.

$$\mathscr{D}(\Omega) = \bigcup_{K \in \mathscr{K}(\Omega)} \mathscr{D}_K(\Omega) \tag{1.5}$$

Ha dastlab bu funksiyalar sinflari juda abstrakt va juda kichik sinflar boʻlib tuyilishi mumkin. Lekin aslida bu

T.Ismoilov

2. DIRICHLET PROBLEM FOR POISSON EQUATION