Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>Р3208</u>	К работе допущен
Студент Шмунк Андрей Александрович	Работа выполнена 22.09.2024
Преподаватель Сорокина Е К	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследовать распределения случайной величины на примере многократных измерений длины определённых предметов.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести многократные измерения длины определенных предметов.
 - 2. Построить гистограмму распределения результатов измерения.
 - 3. Вычислить среднее значение и дисперсию полученной выборки.
 - 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением.
- 3. Объект исследования.

Случайная величина – результат измерений длин листьев на кустарнике, растущем возле дома.

4. Метод экспериментального исследования.

Многократное прямое измерение длин определенных предметов и проверка закономерностей распределения значений этой случайной величины.

- 5. Рабочие формулы и исходные данные.
 - $\langle l \rangle_N = \frac{1}{N}(l_1 + l_2 + ... + l_N) = \frac{1}{N}\sum_{i=1}^N l_i$ среднее арифметическое всех результатов измерений.
 - $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (l_i \langle l \rangle_N)^2}$ выборочное среднеквадратичное отклонение.
 - $ho_{max}=rac{1}{\sigma\sqrt{2\pi}}-$ максимальное значение плотности распределения.
 - $\sigma_{\langle l \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (l_i \langle l \rangle_N)^2}$ среднеквадратичное отклонение среднего значения.
 - $\rho(l)=\frac{1}{\sigma\sqrt{2\pi}}exp\left(\frac{-(l-\langle l\rangle)^2}{2\sigma^2}\right)$ нормальное распределение, описываемое функцией Гаусса.
 - $\Delta l = l_{\alpha,N} \cdot \sigma_{(l)}$ доверительный интервал.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка	Аналоговый	0-15 см	0.05см

7. Схема установки.

Кустарник и линейка, с ценой деления не более 0.1 см. Длина листов кустарника многократно измеряется при помощи линейки.

8. Результаты прямых измерений и их обработки.

Таблица 1. Результаты прямых измерений.

No॒	l_i , см	$l_i - \langle l \rangle_N$, см	$(l_i - \langle l \rangle_N)^2$, $c M^2$
1	8,0	1,22	1,49
2	6,5	-0,28	0,08
3	8,5	1,72	2,96
4	5,5	-1,28	1,64
5	6,0	-0,78	0,61
6	3,5	-3,28	10,76
7	7,0	0,22	0,05
8	9,0	2,22	4,93
9	5,0	-1,78	3,17
10	4,0	-2,78	7,73
11	4,5	-2,28	5,20
12	5,2	-1,58	2,50
13	11,0	4,22	17,81
14	1,5	-5,28	27,88
15	2,0	-4,78	22,85
16	4,3	-2,48	6,15
17	10,0	3,22	10,37
18	12,0	5,22	27,25
19	10,5	3,72	13,84
20	7,5	0,72	0,52
21	2,3	-4,48	20,07
22	5,6	-1,18	1,39
23	12,5	5,72	32,72
24	3,5	-3,28	10,76
25	6,7	-0,08	0,01
26	4,0	-2,78	7,73
27	9,8	3,02	9,12
28	5,6	-1,18	1,39
29	4,3	-2,48	6,15
30	7,5	0,72	0,52
31	8,9	2,12	4,49
32	2,5	-4,28	18,32
33	11,2	4,42	19,53
34	13,0	6,22	38,69
35	3,5	-3,28	10,76
36	4,5	-2,28	5,20

37	5,6	-1,18	1,39
38	1,9	-4,88	23,82
39	2,5	-4,28	18,32
40	2,7	-4,08	16,65
41	5,6	-1,18	1,39
42	7,8	1,02	1,04
43	9,2	2,42	5,86
44	10,3	3,52	12,39
45	3,4	-3,38	11,43
46	5,6	-1,18	1,39
47	7,4	0,62	0,38
48	8,9	2,12	4,49
49	5,8	-0,98	0,96
50	9,3	2,52	6,35
51	5,6	-1,18	1,39
52	1,5	-5,28	27,88
53	2,8	-3,98	15,84
54	4,5	-2,28	5,20
55	4,8	-1,98	3,92
56	3,4	-3,38	11,43
57	5,0	-1,78	3,17
58	9,0	2,22	4,93
59	3,0	-3,78	14,29
60	6,0	-0,78	0,61
61	6,7	-0,08	0,01
62	8,0	1,22	1,49
63	4,7	-2,08	4,33
64	6,7	-0,08	0,01
65	5,0	-1,78	3,17
66	10,0	3,22	10,37
67	10,5	3,72	13,84
68	12,0	5,22	27,25
69	12,5	5,72	32,72
70	10,5	3,72	13,84
71	4,7	-2,08	4,33
72	5,4	-1,38	1,90
73	6,5	-0,28	0,08
74	4,0	-2,78	7,73
75	7,8	1,02	1,04
76	8,0	1,22	1,49
77	9,1	2,32	5,38
78	10,0	3,22	10,37
79	3,6	-3,18	10,11
80	15,0	8,22	67,57
81	13,5	6,72	45,16
82	6,7	-0,08	0,01
83	8,9	2,12	4,49
84	6,0	-0,78	0,61
U-T	0,0	0,70	0,01

85	3,1	-3,68	13,54
86	4,0	-2,78	7,73
87	5,8	-0,98	0,96
88	4,6	-2,18	4,75
89	7,0	0,22	0,05
90	3,8	-2,98	8,88
91	8,0	1,22	1,49
92	5,7	-1,08	1,17
93	6,7	-0,08	0,01
94	10,9	4,12	16,97
95	11,4	4,62	21,34
96	5,0	-1,78	3,17
97	6,7	-0,08	0,01
98	10,9	4,12	16,97
99	11,4	4,62	21,34
100	4,5	-2,28	5,20
101	11,0	4,22	17,81
	$\langle l \rangle_N = 6,78$ cm	$\sum_{i=1}^{N}(l_i-\langle l angle_N)=0$ см	$\sigma_N = 3.09 \ cM$ $\rho_{max} = 0.13 \ cM^{-1}$

9. Расчет результатов косвенных измерений.

•
$$\langle l \rangle_{N=\frac{1}{50}} \sum_{i=1}^{101} l_i N_i = 6.78$$
cm

•
$$\sigma_N = \sqrt{\frac{1}{101-1} \sum_{i=1}^{101} (l_i - 6.78)^2} = 3.09 cm$$

•
$$\rho_{\text{max}} = \frac{1}{3,098\sqrt{2\pi}} = 0.13 \text{ cm}^{-1}$$

•
$$\sigma_{\langle l \rangle} = \sqrt{\frac{1}{101*100} \sum_{i=1}^{101} (l_i - 6.78)^2} = 0.31 \text{ cm}$$

• $l_{min}=1,5$ см, $l_{max}=15$ см, $\sqrt{N}\approx 10$ —тогда для построения гистограммы возьмем 10 интервалов $\Delta l=1,35$ см

Таблица 2. Данные для построения гистограммы.

Границы интервалов, см	ΔN	$\frac{\Delta N}{N\Delta l}$, CM^{-l}	l, см	ρ, см-1	
1,50	9	0.07	2 10	0.04	
2,85	9	0,07	2,18	0,04	
2,85	13	0.10	2 52	0.07	
4,20	15	0,10	3,53	0,07	
4,20	17	0.12	4 00	0.11	
5,55	17	0,12	4,88	0,11	
5,55	20	0.15	6 22	0.12	
6,90	20	0,15	6,23	0,13	

6,90 8,25	11	0,08	7,58	0,12	
8,25	0	0.07	0.02	0.10	
9,60	9	0,07	8,93	0,10	
9,60	10 0,07	10,28	0,07		
10,95	10	0,07	10,28	0,07	
10,95	7	0,05	11,63	0,034	
12,30	,	0,03	11,03	0,054	
12,30	4	0,03	12,975	0,02	
13,65	4	0,03	12,373	0,02	
13,65	1	0,01	14,325	0,01	
15,00	1				

Рассчитаем значения для первого интервала:

В диапазон [1,50;2,85] попадает 9 значений, Δ N=9

$$\frac{\Delta N}{N\Delta l} = \frac{9}{1,35 * 101} \approx 0,07 \text{ cm}^{-1}$$

 $I=(1,50+2,85)/2\approx 2,18$ cm

$$\rho(2,18) = \frac{1}{3,09\sqrt{2\pi}} \exp\left(\frac{-(2,18-6,78)^2}{2*3,09^2}\right) \approx 0.04$$

Аналогично с остальными интервалами.

Таблица 3. Стандартные доверительные интервалы

	Интервал, см		ΔN	ΔN	P
	ОТ	до	ΔΙ	$\frac{\Delta N}{N}$	Γ
$\langle 1 \rangle_N \pm \sigma$	3,69	9,88	6,00	0,06	0,62
$\langle 1 \rangle_N \pm 2\sigma$	0,59	12,97	12,00	0,12	0,97
$\langle 1 \rangle_N \pm 3\sigma$	-2,50	16,07	16,00	0,16	1,00

Рассчитаем для интервала [3,69,9,88]

$$\Delta N = 6$$
; $\frac{\Delta N}{N} = \frac{6}{101} \approx 0.6$; $N_{12} = 63$; $P = \frac{N_{12}}{N} = \frac{63}{101} \approx 0.62$

Аналогично с остальными интервалами.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Рассчитаем случайную погрешность:

$$\overline{\Delta x} = t_{\alpha,N} \cdot \sigma_{\langle l \rangle} \approx 1,98 \cdot 0,31 = 0,61; \ t_{\alpha,N} \approx 2,01;$$

Рассчитаем абсолютную погрешность с учетом погрешности прибора: $\Delta_{ux} = 0.05$ см;

$$\Delta x = \sqrt{\left(\overline{\Delta x}\right)^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2} \approx 0.61 cm$$

Рассчитаем относительную погрешность измерения:

$$\varepsilon_x = \frac{\Delta x}{\overline{x}} \cdot 100\% = 9,02\%$$

12. Окончательные результаты.

$$l = (6.78 \pm 0.67) \text{ cm } \varepsilon_l = 9.02\% \ \alpha = 0.95$$

13. Выводы и анализ результатов работы.

Было исследовано распределение случайной величины на примере многократных замеров длины, получена выборка из 101 измерения. Результаты прямых измерений, данные для построения гистограммы, стандартные доверительные интервалы были занесены в соответствующие таблицы. После заполнения таблиц была построена гистограмма и функция Гаусса.

При сравнении гистограммы с графиком функции Гаусса - распределения случайной величины (при таких же начальных параметрах) – было отмечено сходство этих графиков. Сравнение вероятностей для стандартных интервалов с табличными значениями подтверждает случайность распределения. Работа позволила ознакомиться с законом распределения случайной величины и подробно его изучить.