Reducing Interference with Phase Recovery in DNN-based Monaural Singing Voice Separation

¹Laboratory of Signal Processing, Tampere University of Technology, Finland ²Fraunhofer IDMT, Ilmenau, Germany

Introduction

Problem setting

- Monaural singing voice separation.
- ► State-of-the-art approach: estimate STFT magnitudes with DNNs, and retrieve the sources using the mixture's phase.
- ► This re-introduces interferences in the separated signals.

Contributions

- Phase recovery algorithms instead of the mixture's phase.
- Reduction of interferences between the estimated sources.

Magnitude estimation: MaD TwinNet

- Most up-to-date DNN system for singing voice separation [1].
- Used here as a baseline for magnitude estimation.

- ► **The Masker** predicts and applies a time-frequency mask to the mixture's magnitude.
- ► The Denoiser reduces remaining interferences.
- ► The **Twin Network** is a regularization that accounts for long-term temporal patterns (melody, rhythm).

Phase constraints

Consistency

- ► The STFT is computed with overlapping analysis windows.
- ightharpoonup Redundancies ightharpoonup constraints between adjacent TF bins.

Sinusoidal model

- Each source is modeled as a sum of sinusoids.
- Explicit phase relationship between successive time frames.

Phase recovery algorithms

Consistent anisotropic Wiener filter [2]

- A phase-aware extension of the Wiener filter.
- ▶ Based on an *anisotropic* Gaussian model (i.e, with non-uniform phase) \rightarrow accounts for the sinusoidal phase model.
- Includes a consistency regularization.

Iterative procedure [3]

- Minimizes the mixing error between the sources.
- Uses the sinusoidal phase as an initial phase estimate.
- Does not modify the magnitude estimates.

Experiments

- ► DSD100: 100 songs with singing voice + musical background.
- ► A learning set (50 songs) is used for tuning the consistent anisotropic Wiener filter parameters.
- ► Separation on the test set measured with the signal to distortion, interference and artifact ratios (SDR, SIR and SAR):

	SDR	SIR	SAR
Mixture's phase	4.57	8.17	5.97
Iterative procedure	4.52	8.87	5.52
Consistent anisotropic Wiener	4.46	10.32	4.97

Conclusion

Advanced phase recovery algorithms reduce interference at the cost of limited additional distortion and artifacts.

Future work:

- Phase recovery with DNNs.
- Joint magnitude and phase estimation.

References

- [1] K. Drossos, S.I. Mimilakis, D. Serdyuk, G. Schuller, T. Virtanen, Y. Bengio, "MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation", in Proc. of the IEEE IJCNN, 2018.
- [2] P. Magron, J. Le Roux and T. Virtanen, "Consistent anisotropic Wiener filtering for audio source separation", in Proc. of the IEEE WASPAA 2017.
- [3] P. Magron, R. Badeau and B. David, "Model-based STFT phase recovery for audio source separation", in the IEEE Trans. on Audio, Speech, and Language Processing, June 2018.

Ohttps://github.com/magronp/phase-madtwinnet