第二部分 微分学

第一讲、 中值定理及其应用

基本内容: 中值定理、导函数性质、 L'Hospital 法则、偏导数、全微分

Fermat **定理** 若 x_0 是函数 f(x) 的极值点, 且存在导数 $f'(x_0)$, 则一定有 $f'(x_0) = 0$.

设 f 在 [a,b] 上连续, 在 (a,b) 上可微, 且有 f(a) = f(b), 则存在 $\xi \in (a,b)$, 使 得 $f'(\xi) = 0$.

Lagrange 中值定理 设 f 在 [a,b] 上连续, 在(a,b) 上可微, 则存在 $\xi \in (a,b)$, 使得 f(b) - f(a) = $f'(\xi)(b-a)$.

Cauchy **中值定理** 设函数 f, g 在 [a, b] 上连续, 在(a, b) 上可微, 且满足条件

$$q(b) - q(a) \neq 0$$
, $\Re f'^{2}(x) + {q'}^{2}(x) \neq 0$, $\forall x \in (a, b)$,

则存在 $\xi \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{q(b) - q(a)} = \frac{f'(\xi)}{q'(\xi)}.$$

Darboux **定理** 设函数 f 在区间 I 上可微, 则导函数 f' 具有介值性质.

单侧导数极限定理 设 f 在 (a,b) 可微, 又在点 a 右连续. 若导函数 f'(x) 在点 a 存在右侧极限 f'(a+) = A, 则 f 在点 a 也一定存在右侧导数 $f'_{+}(a)$, 且成立

推论 设 f 在区门 (a, σ) 上可微,则导函数 f(x) 不会有第一类间断点. L'Hospital **法则** 设极限 $\lim_{x\to a} \frac{f(x)}{g(x)}$ (其中 a 为有限或 ∞),满足: (1) 这个极限是 $\frac{0}{0}$ 型或 $\frac{*}{\infty}$ 型的

不定式; (2) 极限 $\lim_{x\to a} \frac{f'(x)}{g'(x)} = A$ (其中 A 为有限或 $\pm\infty$). 则有 $\lim_{x\to a} \frac{f(x)}{q(x)} = A$.

$$\Delta z = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + o(|\Delta x| + |\Delta y|).$$

可微的意义: 在 (x_0, y_0) 附近函数 z = f(x, y) 可用一个 Δx 与 Δy 的线性函数近似代替.

多元函数的连续性、偏导数存在性、可微性之间有下列关系

在某个邻域内偏导数有界 偏导数存在 连续

混合偏导数与次序无关的条件 若 $f_x(x,y)$, $f_y(x,y)$ 在点 $f_y(x,y)$ 在点 $f_y(x,y)$ 的某邻域内存在,且 $f_y(x,y)$ 在 $f_y(x,y)$ 在 续. 则 $f_{yx}(x_0, y_0)$ 存在, 且 $f_{yx}(x_0, y_0) = f_{xy}(x_0, y_0)$.

§1.1 Rolle 定理、 Cauchy 中值定理、导函数性质、 L'Hospital 法则

例 1 用 Rolle 定理证明 Cauchy 中值定理、导函数性质和 L'Hospital 法则. 以较少的篇幅回顾一下这些重要定理的证明,从中体会导数的妙用(见附录).

例 2 证明函数
$$f(x) = e^{-x^2} \int_0^x \sqrt{x} e^{x^2} \sin x dx$$
 在 $[0, +\infty)$ 上有界.

例 3 设
$$f$$
 在 $(a, +\infty)$ 可微且 $\lim_{x \to +\infty} [f(x) + f'(x)] = A$, 证明 $\lim_{x \to +\infty} f(x) = A$.

例 4 设 g 是有界变差函数,若 g 又是某个函数的导函数,则 g 必定是连续函数.

例 5 设 f"(0) 存在,证明

$$\lim_{h \to 0} \frac{f(2h) - 2f(0) + f(-2h)}{4h^2} = f''(0)$$

例 6 设 f在 \mathbb{R} 上有界且二次可导, 证明 f'' 在 $(-\infty, +\infty)$ 上有零点.

§1.2 归零法和待定系数法-辅助函数的构造

例 1 设 f 在 [a,b] 上连续,在 (a,b) 上二次可导. f(a)=f(b)=0. 则 $\forall x\in(a,b)$, $\exists \xi\in(a,b)$,使得 $f(x)=\frac{f''(\xi)}{2}(x-a)(x-b)$.

例 2 设 f 在 \mathbb{R} 上二次可导, $|f(x)| \leq 1$, $(f(0))^2 + (f'(0))^2 = 4$. 证明存在 ξ ,使 得 $f(\xi) + f''(\xi) = 0$.

例 3 设
$$f$$
 在 $[\epsilon, t]$ 上三次可导 $f'(a) = f'(b) = 0$ 证明存在 $f(a) = f''(b) = 0$ 证明 $f(a) = f''(b) =$

§1.3 高维的讨论

例 1 高维的 Fermat 定理: 若 (x_0, y_0) 是函数 z = f(x, y) 的极值点, 且在 (x_0, y_0) 处 f 的偏导数存在, 则 $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$. (高维的 Rolle 定理又如何?)

例 2 设 f(x,y) 在单位圆盘 $D=\{(x,y)|x^2+y^2\leq 1\}$ 上具有连续的一阶偏导数, 且满足 $|f(x,y)|\leqslant 1, \quad \forall (x,y)\in D.$ 证明: 存在点 $(x_0,y_0)\in \mathrm{Int}D=\{(x,y)|x^2+y^2< 1\},$ 使 得 $(f_x(x_0,y_0))^2+(f_y(x_0,y_0))^2\leqslant 16.$

例 3 高维映射不一定成立中值定理,但有中值不等式.

例 4 (多元函数的连续、偏导和可微的讨论) 讨论非负参数 α 分别取何值时函数

$$f(x) = \begin{cases} |x|^{\alpha} \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0 \end{cases}$$

在 x=0 处连续, 可导, 导函数连续?

第一讲练习题

- 1. 设 f(x), g(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 $\forall x \in (a,b)$, $g'(x) \neq 0$, 试证: $\exists \xi \in (a,b), \quad \notin \frac{f'(\xi)}{g'(\xi)} = \frac{f(\xi) - f(a)}{g(b) - g(\xi)}.$
- 2. 设函数 f(x) 在 [a,b] 上存在 n+1 阶导数, 且满足 $f^{(k)}(a) = f^{(k)}(b) = 0$. $k = 0, 1, \dots, n$. 证明: 存在 $\xi \in (a, b)$, 使 $f(\xi) = f^{(n+1)}(\xi)$.
- 3. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 又 f(a) = 0, $f(x) > 0, x \in (a,b)$. 证明: 不 存在常数M > 0, 使 $\left| \frac{f'(x)}{f(x)} \right| \le M$, $x \in (a,b)$.
- 4. 设 f(x) 在 $(a, +\infty)$ 上可微, 且 $\lim_{x \to a} f'(x) = A$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = A.$$

5. 设函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b) 内可导, 又 f(x) 不是线性函数, 且 f(b) > f(a). 试证: $\exists \xi \in (a,b)$, 使

$$f'(\xi) > \frac{f(b) - f(a)}{b - a}.$$

- 6. 设函数 f(x) 在 $[0,+\infty)$ 上可微, f(0)=0, 并设存在 A>0, 使 $|f'(x)|\leq A|f(x)|$, $x \in [0, +\infty)$. 证明 $f(x) \equiv 0, x \in [0, +\infty)$.
- 7. 设函数 f(x,y) 在 (x₀ y₀) 附近连续,且 f_x((x₀ y₀) f_y((x₀ y_y)) 存在, 问 f(x,v) 是否在 (x₀ x_y) 点 i ;
 8. 给品满足 f(x,y) 在 (0,0) 处偏导数和方向导数均存在但不连续剖例子.
- 9. 举例说明
 - (1) f(x,y) 在某一点的邻域内存在偏导数, 但在该点不一定连续, 从而不一定可微.
 - (2) f(x,y) 在某一点连续, 但在该点偏导数不一定存在, 从而不一定可微.
 - (3) f(x,y) 在某一点可微, 但在该点偏导数不一定连续.
- 10. 设 z = f(x,y) 在开集 $D = (a,b) \times (c,d)$ 上可微, 且全微分 dz 恒为零. 问 f(x,y) 在 D 内 是否应取常数值?证明你的结论.
- 11. 设

$$f(x,y) = \begin{cases} xy \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$$

证明: (1) $f_x(0,0), f_y(0,0)$ 都存在; (2) $f_x(0,0), f_y(0,0)$ 在 (0,0) 点不连续; (3) f(x,y)在(0,0) 点可微.(本习题也说明从可微不能推出偏导数连续.)