

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2023/24

Belinda Fleischmann

Datum	Einheit	Thema	
11.10.23	Einführung	(1) Einführung	
18.10.23	R Grundlagen	(2) R und Visual Studio Code	
25.10.23	R Grundlagen	(2) R und Visual Studio Code	
01.11.23	R Grundlagen	(3) Vektoren	
08.11.23	R Grundlagen	(4) Matrizen	
15.11.23	R Grundlagen	(5) Listen und Dataframes	
22.11.23	R Grundlagen	(6) Datenmanagement	
29.11.23	R Grundlagen	(7) Häufigkeitsverteilungen	
06.12.23	R Grundlagen	(8) Verteilungsfunktionen und Quantile	
13.12.23	Deskriptive Statistik	(9) Maße der zentralen Tendenz	
20.12.23	Leistungsnachweis Teil 1		
20.12.23	Deskriptive Statistik	(10) Maße der Datenvariabilität	
	Weihnachtspause		
10.01.24	Deskriptive Statistik	(11) Anwendungsbeispiel (Deskriptive Statistik)	
17.01.24	Inferenzstatistik	(12) Anwendungsbeispiel (Parameterschätzung, Konfidenzintervalle)	
24.01.24	Inferenzstatistik	(13) Anwendungsbeispiel (Hypothesentest)	
25.01.24	Leistungsnachweis Teil 2		

(7) Häufigkeitsverteilungen

Beispieldatensatz

Häufigkeitsverteilungen

Histogramme

Beispieldatensatz

Häufigkeitsverteilungen

Histogramme

Definition und Ziele der Deskriptive Statistik

- Die Deskriptive Statistik ist die beschreibende Statistik.
- Ziel der Deskriptiven Statistik ist es, Daten übersichtlich darzustellen.
- Deskriptive Statistik ist inbesondere bei großen Datensätzen sinnvoll.
- Die Deskriptive Statistik berechnet zusammenfassende Maße aus Daten.

Typische Methoden der Deskriptiven Statistik

- Häufigkeitsverteilungen und Histogramme
- Verteilungsfunktionen und Quantile
- Maße der zentralen Tendenz und der Datenvariabilität
- Zusammenhangsmaße

Die Deskriptive Statistik benutzt keine probabilistischen Modelle, aber die Methoden der Deskriptiven Statistik ergeben nur vor dem Hintergrund probabilistischer Modelle Sinn.

Beispieldatensatz

Häufigkeitsverteilungen

Histogramme

Beispieldatensatz

Evidenzbasierte Evaluation von Psychotherapieformen bei Depression

Welche Therapieform ist bei Depression wirksamer?

Online Psychotherapie

Klassische Psychotherapie

Beispieldatensatz

Evidenzbasierte Evaluation von Psychotherapieformen bei Depression

Becks Depressions-Inventar (BDI) zur Depressionsdiagnostik

Beispiel: Evaluation von Psychotherapieformen bei Depression

Beispieldatensatz

Einlesen des Datensatzes mit read.table()

```
pfad_zu_datei <- file.path(pfad_zu_Datenordner, "psychotherapie_datensatz.csv")

# z.B. könnte pfad_zu_datei so aussehen:
# "/home/belindame_f/ovgu/progr-und-deskr-stat-23/Daten/psychotherapie_datensatz.csv"

D <- read.table(pfad_zu_datei, sep = ",", header = T)</pre>
```

Daten der ersten acht Proband:innen jeder Gruppe

	Bedingung	Pre.BDI	Post.BDI
1	Klassisch	17	9
2	Klassisch	20	14
3	Klassisch	16	13
4	Klassisch	18	12
5	Klassisch	21	12
6	Klassisch	17	14
7	Klassisch	17	12
8	Klassisch	17	9
51	Online	22	16
52	Online	19	15
53	Online	21	13
54	Online	18	15
55	Online	19	13
56	Online	17	16
57	Online	20	13
58	Online	19	16

Beispieldatensatz

Datensatzübersicht mit View()

Beispieldatensatz

Häufigkeitsverteilungen

Histogramme

Absolute und relative Häufigkeitsverteilungen

Definition (Absolute und relative Häufigkeitsverteilungen)

 $x:=(x_1,...,x_n)$ mit $x_i\in\mathbb{R}$ sei ein Datensatz (manchmal auch "Urliste" genannt) und $A:=\{a_1,...,a_k\}$ mit $k\leq n$ seien die im Datensatz vorkommenden verschiedenen Zahlenwerte (manchmal auch "Merkmalsausprägunge" genannt). Dann heißt die Funktion

$$h: A \to \mathbb{N}, a \mapsto h(a) := \mathsf{Anzahl} \ \mathsf{der} \ x_i \ \mathsf{aus} \ x \ \mathsf{mit} \ x_i = a$$
 (1)

die absolute Häufigkeitsverteilung der Zahlenwerte von x und die Funktion

$$r: A \to [0,1], a \mapsto r(a) := \frac{h(a)}{n} \tag{2}$$

die relative Häufigkeitsverteilung der Zahlenwerte von x.

Bemerkungen

- Absolute und relative Häufigkeitsverteilungen fassen Datensätze zusammen
- Absolute und relative Häufigkeitsverteilungen können einen ersten Datenüberblick geben

Berechnung der Häufigkeitsverteilungen

Erzeugen der absoluten Häufigkeitsverteilung mit table()

Erzeugen der relativen Häufigkeitsverteilung durch Division mit n

```
x <- D$Pre.BDI  # Double vector der Pre BDI Werte
n <- length(x)  # Anzahl der Datenwerte (100)
H <- as.data.frame(table(x))  # absolute Haeufigkeitsverteilung (dataframe)
names(H) <- c("a", "h")  # Spaltenbenennung
H$r <- H$h/n  # relative Haeufigkeitsverteilung</pre>
```

Visualisierung der absoluten Häufigkeitsverteilung mit barplot()

```
<- H$h
                        # h(a) Werte
h
names(h) <- H$a
                       # barplot braucht a Werte als names
dev.new()
                        # Abbildungsinitialisierung
barplot(
                        # Balkendiagramm
                        # absolute Haeufigkeiten
 h,
 col = "gray90", # Balkenfarbe
 xlab = "a", # x Achsenbeschriftung
 ylab = "h(a)", # y Achsenbeschriftung
 ylim = c(0,25), # y Achsengrenzen
 las = 2, # x Tick Orientierung
 main = "Pre BDI"
                       # Titel
```

Speichern von Abbildungen mit dev.copy2pdf()

Absolute Häufigkeitsverteilung aller Pre-BDI Werte

Relative Häufigkeitsverteilung aller Pre-BDI Werte

Be is piel daten satz

Häufigkeitsverteilungen

Histogramme

Definition (Histogramm)

Ein $\emph{Histogramm}$ ist ein Diagramm, in dem zu einem Datensatz $x=(x_1,...,x_n)$ mit verschiedenen Zahlenwerten $A:=\{a_1,...,a_m\}, m\leq n$ über benachbarten Intervallen $[b_{j-1},b_j[$, welche $\emph{Klassen}$ oder \emph{Bins} genannt werden, für j=1,...,k Rechtecke mit

$$\begin{array}{ll} \text{Breite} & d_j = b_j - b_{j-1} \\ \text{H\"ohe} & h(a) \text{ oder } r(a) \text{ mit } a \in [b_{i-1}, b_i] \end{array}$$

abgebildet sind, wobei $b_0 := \min A$ und $b_k := \max A$ angenommen werden soll.

Bemerkungen

- ullet Das Aussehen eines Histogramms ist stark von der Anzahl k der Klassen abhängig.
- Mit der Aufrundungsfunktion $\lceil \cdot \rceil$ sind konventionelle Werte für k

$$k := \lceil (b_k - b_0)h \rceil \qquad h \text{ ist die gewünschte Klassenbreite}$$

$$k := \lceil \sqrt{n} \rceil$$
 Excelstandard

$$k := \lceil \log_2 n + 1 \rceil$$
 Implizite Normalverteilungsannahme (Sturges, 1926)

$$k := 3.49 S_n / \sqrt[3]{n}$$
 Min. MSE Dichteschätzung bei Normalverteilung (Scott, 1979)

Berechnung und Visualisierung von Histogrammen

Berechnung und Visualisierung von Histogrammen mit hist()

- ullet Die Klassen $[b_{j-1},b_j[,j=1,...,k$ werden als Argument breaks festgelegt
- breaks ist der atomic vector $\mathbf{c}(b_0,b_1,...,b_k)$ mit Länge k+1
- Per default benutzt hist() eine Modifikation der Sturges Empfehlung $k = \lceil \log_2 n + 1 \rceil$
- hist() bietet eine Vielzahl weiterer Spezifikationsmöglichkeiten

```
# Default Histogramm
      <- D$Pre.BDI
                          # Datensatz
                          # x Achsengrenze (unten)
x_min <- 12
                          # x Achsengrenze (oben)
x_max <- 25
                          # v Achsengrenze (oben)
y_min <- 0
             # v Achsengrenze (unten)
y_max <- 30
hist(
                        # Histogramm
                          # Datensatz
 х.
 xlim = c(x_min, x_max), # x Achsengrenzen
 vlim = c(v_min, y_max), # y Achsengrenzen
 ylab = "Häufigkeit", # y-Achsenbezeichnung
 xlab = "",
             # x-Achsenbezeichnung
 main = "Pre-BDI, R Default" # Titel
```


Alternative Histogramme

Berechnung von Klassenanzahlen und breaks Argument

```
# Histogramm mit gewuenschter Klassenbreite
h <- 1
                                  # gewuenschte Klassenbreite
b 0 \leftarrow min(x)
                                  # b_0
b_k < - max(x)
                                 # b_k
k <- ceiling((b k - b 0)/h) # Anzahl der Klassen
  <- seq(b_0, b_k, by = h) # Klassen [b_{j-1}, b_{j}]
# Excelstandard
  <- length(x)
                                # Anzahl Datenwerte
k <- ceiling(sqrt(n))
                       # Anzahl der Klassen
  <- seq(b_0, b_k, len = k) # Klassen [b_{j-1}, b_j[
  \leftarrow b[2] - b[1]
                                 # Klassenbreite
# Sturges
  <- length(x)
                               # Anzahl Datenwerte
k <- ceiling(log2(n)+1)
                              # Anzahl der Klassen
  <- seq(b_0, b_k, len = k) # Klassen [b_{j-1}, b_j[
  \leftarrow b[2] - b[1]
                                 # Klassenbreite
# Scott
  <- length(x)
                                  # Anzahl Datenwerte
  <- sd(x)
                                 # Stichprobenstandardabweichung
  <- ceiling(3.49*S/(n^(1/3))) # Klassenbreite
  <- ceiling((b_k - b_0)/h) # Anzahl der Klassen
  <- seq(b_0, b_k, len = k) # Klassen [b_{j-1}, b_j[
```

Berechnung und Visualisierung - Alternative Histogramme

Berechnung und Visualisierung von Histogrammen mit hist()

- Die Klassen $[b_{j-1},b_j[,j=1,...,k,$ die in der Variable ${\tt b}$ gespeichert sind, werden als Argument mit breaks festgelegt
- breaks ist der atomic vector $c(b_0, b_1, ..., b_k)$ mit Länge k+1

```
# Default Histogramm
     <- D$Pre.BDT
                                                         # Datensatz
x_min <- 12
                                                         # x Achsengrenze (unten)
x_max <- 25
                                                         # x Achsengrenze (oben)
y_min <- 0</pre>
                                                         # y Achsengrenze (oben)
y_max <- 30
                                                         # v Achsengrenze (unten)
hist(
                                                         # Histogramm
 х.
                                                         # Datensatz
 breaks= b.
                                                         # breaks
 xlim = c(x min, x max).
                                                         # x Achsengrenzen
 ylim = c(y_min, y_max),
                                                         # y Achsengrenzen
 vlab = "Häufigkeit",
                                                         # y-Achsenbezeichnung
 xlab = "",
                                                         # x-Achsenbezeichnung
 main = sprintf("Pre-BDI, k = \%.0f, h = \%.2f", k, h)) # Titel
```

Gewünschte Klassenbreite h := 1

Pre-BDI, k = 9, h = 1.00

Gewünschte Klassenbreite h := 1.5

Pre-BDI, k = 6, h = 1.50

Excelstandard $k := \lceil \sqrt{n} \rceil$

Pre-BDI, k = 10, h = 1.00

nach Sturges (1926) , $k \coloneqq \lceil \log_2 n + 1 \rceil$

Pre-BDI, k = 8, h = 1.29

nach Scott (1979) $, h := 3.49 S_n / \sqrt[3]{n}$

Pre-BDI, k = 5, h = 2.25

Be is piel daten satz

Häufigkeitsverteilungen

Histogramme

- 1. Definieren Sie die Begriffe der absoluten und relativen Häufigkeitsverteilungen.
- 2. Visualisieren Sie die Häufigkeitsverteilungen der Post-BDI Daten.
- 3. Visualisieren Sie die Häufigkeitsverteilungen der Differenzen von Post- und Pre-BDI Daten.
- 4. Visualisieren Sie die Häufigkeitsverteilungen der Differenzen von Post- und Pre-BDI Daten getrennt nach den experimentellen Bedingungen "Klassisch" und "Online". Nutzen Sie dazu Ihr Wissen zu den Prinzipien der Indizierung in R.
- 5. Beschreiben Sie die in der vorherigen Aufgabe erstellten Häufigkeitsverteilungen.
- 6. Definieren Sie den Begriff des Histogramms.
- 7. Erläutern Sie die Bedeutung der Klassenanzahl für das Erscheinungsbild eines Histogramms.
- Visualisieren Sie Histogramme der Daten wie in Aufgabe 4. mit einer Klassenbreite von 3, dem Excelstandard, der Sturges Klassenanzahl und der Scott Klassenanzahl.
- 9. Beschreiben Sie die in der vorherigen Aufgabe erstellten Histogramme.

References

Scott, David W. 1979. "On Optimal and Data-Based Histograms," 6.

Sturges, Herbert A. 1926. "The Choice of a Class Interval." Journal of the American Statistical Association 21 (153): 65–66. https://doi.org/10.1080/01621459.1926.10502161.