Lead scoring case study

By: Jayshree Sahoo and Shreeyash

Data sourcing

- Data was provided by Upgrad
- Master data and data dictionary were present
- Master data had 9240 rows and 37 columns
- It had both system and sales generated data

Exploring the data

- X Education sells online courses to industry professionals
- They have sales team that reaches out to the leads and try to sell them the courses
- We have different columns namely, lead origin, specialization, converted, total visit, do not call, do not email etc
- Some of the data is sales generated so we may have to drop them
- Some of the columns are numerical and some are categorical
- There seemed to be outliers in the numerical columns
- Categorical columns had high values as select, per the data dictionary these are null values and need to be replaced by nan

Data cleaning

- Checking of missing values
 - Replacing select value by NaN, as python will not recognize select as null-value
 - Dropping the columns having missing values more than 40%
- For some categorical columns we replaced null values as not mentioned
- Combining the variables of the categorical columns that had low individual value count
- We have renamed some of the columns as their names were too large
- Checking for outliers
 - We used box plots to identify the outliers here
 - We capped all the numerical columns except lead number(as it is unique), between .05 and .95 to remove the outliers

EDA

Univariate Analysis

- Country
 - Here we can
 see that most
 of the leads are
 from one
 category i.e
 India, we may
 not need this
 column for our
 model

Last Activity

- Here we combined all the variables that had very low value count to others
- However this is a sales generated data so we may not consider this as well for our model

Current Occupation

- Here we can see that most of the leads are unemployed.
- Also most of them have not mentioned there current occupation

- As visible in the graph the data is highly skewed so these won't be of any help for our model
- We will not consider these columns for our model
- Also there are columns that are sales generated we will drop those columns to avoid ambiguity.

Bivariate Analysis

Country

Here we can observe that the data is skewed so we will be dropping this column

Current Occupation

- Here we can see that the maximum conversion is for the unemployed group
- Leads who have not mentioned their occupation have a very less conversion rate.

Lead Origin

- The leads originated from 'Landing Page Submission' contributes the most.
- The leads originated from 'Lead Add Form' have very high conversion rate

Specialization

- Leads in management courses have a very good conversion
- Leads with not mentioned specialization have very less conversion rate

Tags

This is highly skewed and sales generated data so we will remove this column.

Sales generated columns

- These columns are sales generated and is of no use to our model also they are highly skewed
- Also most of the columns have "No" value

Numerical Columns

- Data looks good
- No outliers and the columns can be used for our final model

Heatmap for numerical variables

- Here we can see that total time spent on the website has a maximum correlation with the converted columns which is our target column.
- Also, TotalVisits and Page Views Per Visit are highly correlated to each other.

Converted vs Not - converted

- Here we can see that 62% of the data belongs to the leads which were not converted
- The conversion rate was only 38%.

Data preparation

- Here we dropped the columns which were not important for our model, as discovered during the EDA, data exploring, and cleaning
- Then we created the dummy columns for the all the remaining categorical columns
- Then we checked the correlation between dummy columns using heatmap and dropped the highly correlated columns
- We did the train-test split in the ratio of 7:3
- We did the scaling for the numerical column of the train data using Standard Scaler method.

Model building

- We used logistic regression for our model using sklearn and stats model
- We used RFE to select the top15 features for our model
- Then we manually dropped the features with p-values greater than .05 and VIF values greater than 5.0 one by one until we had a model with features having desired p-values and VIF value

Dep. Variable:	Converted	No. Observations:	6351	
Model:	GLM	Df Residuals:	6342	
Model Family:	Binomial	Df Model:	8	
Link Function:	logit	Scale:	1.0000	
Method:	IRLS	Log-Likelihood:	-3105.6	
Date:	Tue, 10 May 2022	Deviance:	6211.2	
Time:	11:43:08	Pearson chi2:	6.20e+03	
No. Iterations:	7			
Covariance Type:	nonrobust			

		coef	std err	Z	P> z	[0.025	0.975]
	const	-1.9046	0.072	-26.292	0.000	-2.047	-1.763
	Total Time Spent on Website	0.9620	0.035	27.531	0.000	0.893	1.030
	Page Views Per Visit	-0.4195	0.037	-11.484	0.000	-0.491	-0.348
	Lead Source_Welingak Website	4.6006	0.717	6.418	0.000	3.196	6.006
	Specialization_Marketing Management	0.2600	0.107	2.439	0.015	0.051	0.469
	Current_Occupation_Other	2.7336	0.525	5.207	0.000	1.705	3.763
	Current_Occupation_Student	1.2981	0.201	6.460	0.000	0.904	1.692
	Current_Occupation_Unemployed	1.4935	0.081	18.522	0.000	1.335	1.652
С	urrent_Occupation_Working Professional	4.2231	0.183	23.107	0.000	3.865	4.581

Model Evaluation

- Here the area under the ROC Curve is .83 which is good.
- The specificity, sensitivity and accuracy is around 63%, 85% and 70% respectively
- We found the optimal cut off specificity and sensitivity plot which was around 0.3
- The conversation rate for the test data set was around 85%

ROC Curve

- We will consider 0.3 as the optimal cut off for the final prediction on test data set
- After the prediction of the test data set we obtained the specificity as 62%, sensitivity is around 84% and accuracy is around 70%
- Also the final conversation rate is around 84% which was the target

Conclusion

- ► The features that contribute the most towards the probability of leads getting converted are :
 - Lead Source_Welingak Website
 - Current_Occupation_Working Professional
 - Current_Occupation_Other
- ► The lead score calculated for the test dataset and train dataset shows the conversion rate of 84% and 85%,