

Applying a Multiverse to Population Habitat Analyses

Benjamin Michael Marshall*1 and Alexander Bradley Duthie**1

¹Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK

Abstract			
abc			

Keywords

Movement ecology, simulation, compana, resource selection functions, step selection function, habitat preference, habitat selection, animal movement, multiverse, research choice, researcher degrees for freedom,

^{*}benjaminmichaelmarshall@gmail.com

^{**}alexander.duthie@stir.ac.uk

1 Introduction

abc

2 Methods

test test

3 Results

3.1 Specification Curves

(Fig. 1).

Figure 1. Spec curve

(Fig. 2).

(Fig. 3).

3.2 Model Results

The conditional R^2 values differed for the three models. The Compana results model had a conditional R^2 of 0.33; whereas the SSF model returned 0.59, and the Poisson model returned 0.94.

The marginal R^2 represents the bulk of the conditional R^2 suggesting an important role for the fixed/population effects. The Compana results model had a conditional R^2 of 0.48; whereas the SSF model returned 0.51, and the Poisson model returned 0.83.

The sample size was negatively correlated with deviation from the median estimate (β -0.03; 95% HDCI -1.15 — 1.8).

(Fig. 4).

Figure 2. Spec curve

Figure 3. Spec curve

Figure 4. Beta coefs

(Fig. 5).

(Fig. 6).

4 Discussion

Figure 5. Beta coefs

Figure 6. Beta coefs