1 Rayleighův podíl (Rayleigh quotient)

Pro hermitovskou matici $M \in \mathbb{C}^{n \times n}$ a nenulový vektor $x \in \mathbb{C}^n$ definujeme Rayleighův podíl

$$R(M,x) = \frac{x^*Mx}{x^*x}.$$

Úloha 1. Nechť $M \in \mathbb{C}^{n \times n}$ je hermitovská. Ukažte následující vlastnosti:

- (i) $R(\alpha M, \beta x) = \alpha R(M, x)$ pro každé $\alpha, \beta \in \mathbb{C}, \beta \neq 0$.
- (ii) $R(M \alpha I, x) = R(M, x) \alpha$ pro každé $\alpha \in \mathbb{C}$.
- (iii) Nechť $Mv = \lambda v$ pro nějaký nenulový $v \in \mathbb{C}^n$. Potom $R(M, v) = \lambda$.
- (iv) Nechť λ_{\min} a λ_{\max} jsou nejmenší, respektive největší vlastní číslo matice M. Ukažte, že

$$R(M, x) \in [\lambda_{\min}, \lambda_{\max}] \quad \forall x \in \mathbb{C}^n.$$

Proč požadujeme, aby matice M byla hermitovská (a nestačí například diagonalizovatelná)?

(v) (navíc) Nechť jsou vlastní čísla M seřazena sestupně a největší je jednonásobné, tedy

$$\lambda_1 > \lambda_2 > \cdots > \lambda_n$$
.

Nechť v_1 je vlastní vektor příslušný λ_1 . Ukažte, že

$$R(M,x) \in [\lambda_n, \lambda_2] \qquad \forall x \in v_1^{\perp}.$$

(vi) (navíc)
$$R(M,x) = \underset{\mu \in \mathbb{R}}{\operatorname{arg min}} \|(M - \mu I)x\|^2$$
.

2 Mocninná metoda

Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice. Cílem mocninné metody je nalezení jednoho vlastního páru (vlastního čísla a vlastního vektoru) matice.

Nechť $A \in \mathbb{C}^{n \times n}$ je diagonalizovatelná matice (tj. má n lineárně nezávislých vlastních vektorů, které tvoří bázi prostoru \mathbb{C}^n),

$$A = S\Lambda S^{-1}.$$

kde pro $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ jsou vlastní čísla seřazena sestupně, tj.

$$|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|,$$

a matice $S = [s_1, \dots, s_n]$ je tvořena příslušnými normalizovanými vlastními vektory.

Pro jednoduchost předpokládejme, že $|\lambda_1|$ je dominantní vlastní číslo, tj. $|\lambda_1| > |\lambda_2|$.

Nechť v je nenulový startovací vektor. Mocninnou metodu pak můžeme zapsat následujícím algoritmem:

Algoritmus 1 Mocninná metoda

```
Input: A, v
v_0 = v/\|v\|
for k = 1, \dots do
w = Av_{k-1}
v_k = w/\|w\|
\mu_k = v_k^* A v_k
end for
```

Úloha 2. Naprogramujte mocninnou metodu na základě Algoritmu 1 do předpřipraveného skriptu power_method.m. Poté spusťte power_method_test.m pro různé vstupní matice a počáteční vektory (připravené v komentáři ve skriptu, nebo vlastní). K čemu a jak rychle mocninná metoda konverguje? Všímejte si konvergence aproximace vlastního čísla i vektoru.

Návodné otázky:

- Dostali jsme vlastní číslo a vlastní vektor který jsme měli?
- Jak je rychlost konvergence ovlivněna volbou vlastních čísel?
- Jak je rychlost konvergence ovlivněna volbou počátečního vektoru? Co znamená a co se stane, když je v počátečním vektoru 0?
- Co se děje, je-li nějaké vlastní číslo záporné? Konverguje metoda i pro záporné dominantní vlastní číslo?
- Co se děje, je-li více čísel dominantních, tj. např. $|\lambda_1| = |\lambda_2|$?

 $\check{R}e\check{s}en\acute{i}$. Pro porozumění, co se děje s odhadem λ je klíčové si uvědomit, že je-li $x=\sum \alpha_i v_i$, kde v_i jsou vlastní vektory odpovídající λ_i , pak

 $x^T A x = \frac{\sum \lambda_i \alpha_i^2}{\sum \alpha_i^2} \,, \tag{1}$

tj. Rayleighův podíl x odpovídá váženému průměru vlastních čísel, kde váhy jsou čtverce složek při rozkladu x do báze vlastních vektorů.

K jednotlivým bodům:

- Cím blíže jsou dominantní a druhé největší číslo k sobě, tím pomalejší je konvergence.
- Když je složka vektoru odpovídající dominantnímu vl. číslu relativně malá, zpožďuje to konvergenci. Když je nějaká složka nulová, metoda příslušné vlastní číslo ignoruje.
- Složky vektoru odpovídající záporným vlastním číslům vždy oscilují. To ovšem neznamená, že
 by úloha nekonvergovala. Je-li dominantní číslo záporné, konverguje vektor k vlastnímu směru,
 jenom se mění jeho směr (což ničemu nevadí).
- Zde je nutno rozlišit případy, kdy 1) $\lambda_1 = \lambda_2$ a 2) $\lambda_1 = -\lambda_2$.
 - 1) λ konverguje k λ_1 , vlastní vektory příslušné λ_1 tvoří dvoudimenzionální prostor. Vektor x konverguje k vlastnímu vektoru danému počátečním poměrem mezi příslušnými složkami vektoru.
 - 2) λ se blíží k číslu danému vzorcem (1), tedy k něčemu mezi λ_1 a λ_2 . Vektor nekonverguje k vlastnímu vektoru (pokud předpokládáme nenulové složky počátečního vektoru).

Úloha 3. Dovedete nastavit vstupy tak, aby metoda nejdříve směřovala k (λ_2, q_2) , a až po delší době zkonvergovala k (λ_1, q_1) ? Dovedete ukázat bizarnější nebo zajímavější příklad průběhu konvergence?

 $\check{R}e\check{s}en\acute{i}$. Stačí dát složku příslušnou dominantnímu číslu řádově menší než složku příslušnou subdominantnímu. Jde vytvořit i celý řetěz takových zdánlivých konvergencí (pěkně je to vidět na grafu vývoje λ).

Úloha 4. Změní se odpověď na některou z otázek v Úloze 2, když budeme uvažovat skutečný praktický výpočet v konečné aritmetice (tj. když nebudeme vše počítat vzhledem k bázi vlastních vektorů a matice A nebude diagonální)?

 \check{R} ešení. Pro matice, jejichž některé vlastní vektory jsou skoro rovnoběžné, mohou nastat problémy se zaokrouhlovacími chybami. Pro normální matice ale chování bude odpovídat našemu experimentu, s výjimkou případu, kdy dáváme 0 do složky startovacího vektoru odpovídající dominantnímu vlastnímu číslu. Tady nám zaokrouhlovací chyby pravděpodobně pomohou k tomu, aby metoda nakonec konvergovala správně.

Úloha 5. Co se změní, když matice Λ není diagonální? (Když původní matice A není diagonalizovatelná.) Všímejte si konvergence aproximace vektoru i vlastního čísla.

 $\check{R}e\check{s}en\acute{i}$. Mj. lze pozorovat: V rámci podprostoru odpovídajícímu Jordanovu bloku pro kladné vlastní číslo se aproximace vektoru postupně přesouvá od zobecněných vlastních vektorů k vlastnímu vektoru (pro záporné vlastní číslo je chování složitější). Tedy máme-li místo dominantního vektoru celý Jordanův blok, budeme konvergovat k nezobecněnému vlastnímu vektoru, a aproximace vlastního čísla se bude nadhodnocovat (pro kladné číslo). Jordanův blok příslušný subdominantnímu vlastnímu číslu může dočasně "přebít"dominantní vlastní číslo s násobností 1 (anebo alespoň zpomaluje konvergenci).

3 Inverzní iterace

Úloha 6. Nechť A je matice s vlastními čísly λ_i a odpovídajícími vlastními vektory v_i .

- 1. Nechť $\mu \in \mathbb{C}$ a $(A \mu I)$ je regulární. Ukažte, že vlastní čísla a vlastní vektory matice $(A \mu I)^{-1}$ jsou rovny $(\lambda_j \mu)^{-1}$ a v_j .
- 2. Odvoďte takzvanou inverzní iteraci (inverse iteration) jako mocninnou metodu aplikovanou na matici $(A \mu I)^{-1}$. K jakému číslu bude v obecném případě metoda konvergovat.
- 3. Naprogramujte inverse iteration v MATLABu (doplňte inverse_iteration.m) pro aproximaci vlastních čísel matice A a ověřte odpověď na předchozí otázku numericky s využitím skriptu run_inverse_iteration.m.

Poznámka: Opakovaný výpočet $(A-\mu I)^{-1}v_k$ v MATLABu buď řešte jako (A-mu*eye(n))\v, nebo jedním LU-rozkladem matice a řešením trojúhelníkových soustav.

Řešení.

```
function [lambda, v, history] = inverse_iteration(A,v,mu,niter)
matrix = A - mu*eye(size(A));
history = zeros(1,niter);
for k = 1:niter
    v = matrix\v;
    v = v/norm(v);
    history(k) = v'*(A*v);
end
lambda = history(end);
```