On Statistics Independent of a Sufficient Statistic: Basu's Lemma

UWE KOEHN AND D. L. THOMAS*

1. Introduction

In 1955 D. Basu [1] published a proof of the statement that if $\mathbf{P} = \{P_{\theta} : \theta \in \Omega\}$ is a family of probability measures on an abstract sample space (X, A) and S is a sufficient statistic for \mathbf{P} , then for a statistic V to be stochastically independent of S for every θ the probability distribution of V must be free of θ . Since that time his theorem has been given in many courses on advanced statistics and has appeared in several textbooks, e.g., Vol. 2 of The Advanced Theory of Statistics by M. G. Kendall and A. Stuart [3]. Although the result has not had the prominent position in statistics which its partial converse (i.e., the fact that when S is a boundedly complete sufficient statistic the distribution of V being free of θ implies V is independent of S) has had, it has been used to prove characterizations of certain families of distributions, e.g., Basu [1].

Subsequently Basu, Farrell and others recognized that Basu's original statement needed qualification and Basu [2] gave a sufficient condition for its validity. Nevertheless, since many statisticians do not seem to have realized the original error and because we have a simple proof of necessary and sufficient conditions for the validity of Basu's result, we have submitted this note.

In Section 2 we give three simple examples. The simplest, given in Example 2, suffices to show the need for additional conditions; however, since some readers may understand the problem more clearly in the context of continuous distributions, in Example 1 we give a counterexample involving uniform distributions. The third example illustrates when Basu's statements will hold. In the final section we give a corrected version of Basu's theorem.

2. Examples

Example 1: Suppose we take **X** to be the real line, **A** to be the Borel sets, and P_{θ} to be uniform measure over the half-open interval $[\theta, \theta + 1)$ where θ is an integer. Since we can write the density functions in the form

$$P_{\theta}(x) = I_{(\theta,\theta+1)}(x) = \begin{cases} 1 & \text{if } [x] = \theta \\ 0 & \text{if } [x] \neq \theta \end{cases} = I_{(\theta,\theta)}([x])$$

with [x] defined to be the largest integer less than or equal to x, we know by the factorization theorem that S = [X] is a sufficient statistic for the family **P**. For each A in **A** and any integers, θ and **s**,

$$P_{\theta}(X \in A, S(X) = \mathbf{s}) = \begin{cases} P_{\theta}(X \in A) & \text{if } \mathbf{s} = \theta \\ 0 & \text{if } \mathbf{s} \neq \theta \end{cases}$$
$$= P_{\theta}(X \in A) P_{\theta}(S(X) = \mathbf{s})$$

hence, X and S are independent for every θ . Of course, the distribution of X depends on θ and Basu's original claim fails to hold here. We might note in passing that S is a constant with probability one for each θ so that it is actually independent of any other statistic, and it is complete.

Example 2: To obtain another counterexample let $\mathbf{P} = \{P_1, P_2\}$ be a family of two probability measures on (\mathbf{X}, \mathbf{A}) such that $P_2(A) = P_1(A^c) = 1$ and $P_2(A^c) = P_1(A) = 0$ for some A in \mathbf{A} . Take $S(\cdot) = I_A(\cdot)$ to be the indicator function of the set A and write $\mathbf{P}^S = \{P_1^S, P_2^S\}$ for the family of induced probability measures on the image space under S. It is clear that

$$P_2(X \in A \mid S(X) = 1) = P_1(X \in A^c \mid S(X) = 0) = 1$$
 and

 $P_1(X \in A \mid S(X) = 0) = P_2(X \in A^c \mid S(X) = 1) = 0;$

hence, for each θ in $\Omega = \{1, 2\}$ we have

$$P_{\theta}(X \in A \mid S(X) = \mathbf{s}) = \mathbf{s}$$
 a.e. (P_{θ}^S)

and

$$P_{\theta}(X \in A^c \mid S(X) = \mathbf{s}) = 1 - \mathbf{s}$$
 a.e. (P_{θ}^S) .

Therefore, S = S(X) is a sufficient statistic for the family **P**. Now for any A' in **A** and each θ in Ω

$$P_{\theta}(X \in A', S(X) = 1)$$

$$= P_{\theta}(X \in A', X \in A)$$

$$= \begin{cases} P_{2}(X \in A' \cap A) & \text{if } \theta = 2 \\ 0 & \text{if } \theta = 1 \end{cases}$$

$$= \begin{cases} P_{2}(X \in A') & \text{if } \theta = 2 \\ 0 & \text{if } \theta = 1 \end{cases}$$

$$= P_{\theta}(X \in A')P_{\theta}(S(X) = 1)$$

and, similarly,

$$P_{\theta}(X \in A', S(X) = 0) = P_{\theta}(X \in A')P_{\theta}(S(X) = 0).$$

Thus, X and S are independent for each θ even though the distribution of X depends on θ . So, Basu's theorem is not true without restrictions on the family \mathbf{P} under consideration.

Example 3. It will follow from the theorem in the next section that we could enlarge the parameter space of

^{*} Dept. of Statistics, Univ. of Connecticut, Storrs, Conn. 06268.

Example 1 somewhat and still be able to find a statistic independent of the sufficient statistic whose distribution depends on θ ; however, if enough of the "right" parameter points are added to the original space, then Basu's theorem will be correct. For example, allow θ to range over the set $\{k/2: k \text{ is an integer}\}$. Then, via the factorization theorem the statistic defined by

$$S(x) = k \qquad \text{if} \qquad \frac{k}{2} \le x < \frac{k+1}{2}$$

can be shown to be sufficient. But, now,

$$P_{\theta}(X \in A, S(X) = \mathbf{s})$$

$$= \begin{cases} P_{\theta}(X \in A \cap [\theta, \theta + \frac{1}{2})) & \text{if } \mathbf{s} = 2\theta \\ P_{\theta}(X \in A \cap [\theta + \frac{1}{2}, \theta + 1)) & \text{if } \mathbf{s} = 2\theta + 1 \\ 0 & \text{elsewhere,} \end{cases}$$

which is not always equal to

$$P_{\theta}(X \in A)P_{\theta}(S(X) = \mathbf{s})$$

$$= \begin{cases} P_{\theta}(X \in A)/2 & \text{if } \mathbf{s} = 2\theta \text{ or } \mathbf{s} = 2\theta + 1 \\ 0 & \text{elsewhere.} \end{cases}$$

Thus, as an illustration of the fact that for this family **P** any statistic whose distribution depends on θ will not be independent of S for all θ , we have X and S dependent. The important change is the destruction of the disjointness of the distributions in Example 1.

3. Sufficiency and Independence

To understand the difficulty with the original "proof" of Basu's result let $\{P_{\theta}\}$ be a family of probability measures for which S is a sufficient statistic and suppose V is a statistic that is independent of S for all θ . If $(\mathbf{S}, \mathbf{B}, P_{\theta}^{S})$ is the range space of S, then

$$P_{\theta}(V \in C, S \in B) = \int_{B} P(V \in C | \mathbf{s}) dP_{\theta}^{S}$$

$$= P_{\theta}(V \in C)P_{\theta}(S \in B)$$

$$= P_{\theta}(V \in C) \int_{B} dP_{\theta}^{S},$$

where we drop the θ on $P(V \in C \mid \mathbf{s})$ because S is sufficient. Since

$$\int_{B} P(V \in C \mid \mathbf{s}) P_{\theta}{}^{S} = \int_{B} P_{\theta}(V \in C) \ dP_{\theta}{}^{S}$$

for every B in \mathbf{B} , then

$$P(V \in C \mid \mathbf{s}) = P_{\theta}(V \in C)$$
 a.e. (P_{θ}^S)

for each θ , i.e., except for $\mathbf{s} \in B_{\theta}$ where $P_{\theta}^{S}(B_{\theta}) = 0$ we have $P(V \in C \mid \mathbf{s}) = P_{\theta}(V \in C)$. The mistake usually made consists of concluding that, therefore,

$$P_{\theta_1}(V \in C) = P(V \in C \mid \mathbf{s}) = P_{\theta_2}(V \in C)$$

which may not be true because B_{θ} may vary with θ . In Example 2, for instance, B_1 is the complement of B_2 .

The following theorem and corollary give necessary and sufficient conditions for the result under discussion to hold.

Theorem: Let $\{P_{\theta}\}$ be a family of probability measures on the measurable space (\mathbf{X}, \mathbf{A}) for which S is a sufficient statistic. There exists a statistic V, independent of S for all θ , whose distribution depends on θ if, and only if, there exists a set $A \in \mathbf{A}$ such that $P_{\theta}(A) = 0$ or 1 for all θ with $P_{\theta}(A) = 1$ for some θ and $P_{\theta}(A) = 0$ for some θ . In that case we will call A a splitting set.

Proof: We recall that if a random variable is a constant with probability one, then it is independent of all random variables.

Now suppose A is a splitting set and let $\omega = \{\theta: P_{\theta}(A) = 1\}$. If $V(x) = I_A(x)$, the indicator function of the set A, then we see that $P_{\theta}(V(x) = 1) = 1$ for $\theta \in \omega$ and $P_{\theta}(V(x) = 0) = 1$ for $\theta \in \omega$. Thus, the distribution of V depends on θ but V is a constant with probability one for each θ and so it is independent of S.

On the other hand, let V be a random variable independent of S for all θ whose distribution depends on θ so that there exists a measurable set C such that

$$P_{\theta_1}(V \in C) \neq P_{\theta_2}(V \in C) \tag{1}$$

for some parameter values θ_1 and θ_2 . Since S is sufficient

$$P(V \in C \mid S(x)) = P_{\theta}(V \in C)$$
 a.e. $(P_{\theta}, \mathbf{A}_S)$ (2)

where A_S is the sub- σ -field induced by S. To emphasize that $P(V \in C \mid S(x))$ is a function of x, let $h(x) = P(V \in C \mid S(x))$. Also let

$$A_{\theta} = \{x \colon h(x) = P(V \in C \mid S(x)) = P_{\theta}(V \in C)\}.$$

Now A_{θ} is the set on which h(x) takes the value $P_{\theta}(V \in C)$ and (1) says that there are at least two such values. Since h is a function, the sets A_{θ} corresponding to different values are distinct and those corresponding to identical values are equal. So $A_{\theta_1} \cap A_{\theta_2} = \emptyset$. By (2), $P_{\theta}(A_{\theta}) = 1$ for every θ .

Let $A = A_{\theta_1}$ and $\omega = \{\theta : A_{\theta} = A\}$. Of course, $\theta_1 \in \omega$ and $\theta_2 \in \Omega - \omega$ and so neither ω nor $\Omega - \omega$ is empty. If $\theta \in \omega$, then $P_{\theta}(A) = P_{\theta}(A_{\theta}) = 1$ and if $\theta \in \Omega - \omega$, $P_{\theta}(A^c) \geq P_{\theta}(A_{\theta}) = 1$, since $A_{\theta} \subset A^c$ (i.e., if $x \in A_{\theta}$ then $h(x) = P_{\theta}(V \in C) \neq P_{\theta_1}(V \in C)$ and so $x \notin A_{\theta_1} = A$). Hence, A is a splitting set.

Corollary: Let $\{P_{\theta}\}$ be a family of probability measures on (\mathbf{X}, \mathbf{A}) and let S be sufficient for the family. Every statistic independent of S for all θ has a distribution that does not depend on θ if, and only if, there does not exist a measurable splitting set A, i.e., a set such that $P_{\theta}(A) = 1$ for various θ and $P_{\theta}(A) = 0$ for all other θ , neither set of θ being vacuous.

Proof: This statement is merely the contrapositive of the theorem.

Remark 1: Basu's [1] proof of his characterization of the normal distribution is not valid as it stands. Extra conditions such as the nonexistence of a splitting set A are needed.

Remark 2: Basu [2] gives a sufficient condition for any statistic V independent of S to have a distribution free of the parameter θ . His condition is implied by ours but the reverse implication does not hold.

Basu defines the overlapping of two probability measures, μ_a and μ_b , on (\mathbf{X}, \mathbf{A}) by the condition that if $B \in \mathbf{A}$ and $\mu_a(B) = 1$, then $\mu_b(B) > 0$. Two measures, μ_a and μ_b , in a family are said to be connected if there exists a finite sequence of probability measures in the family, $\mu_0 = \mu_a, \mu_1, \ldots, \mu_k = \mu_b$, such that μ_i and $\mu_{i+1}(i=0,1,\ldots,n-1)$ overlap. It is clear that if every two probability measures in a family are connected, then no splitting set A exists that divides the family into two classes, and so having a connected family is a sufficient condition.

On the other hand consider the Borel sets on the real line and let N be a non-measurable set. Let \mathbf{P} be the family of two point measures putting probability $\frac{1}{2}$ on each point with the restriction that both points are in N or in its complement. Clearly connectedness is impossible since no measure concentrated in N overlaps with any concentrated in the complement of N. How-

ever the only splitting set is N which is not measurable. Thus any statistic independent of a complete sufficient statistic has a distribution free of the parameter while Basu's condition does not hold. Actually in this situation a single observation, S, is complete and sufficient since N and its complement each contain at least three points.

Acknowledgment: The example in Remark 2 was suggested to the authors by Professor Stuart Sidney of the University of Connecticut Mathematics Department. The authors also wish to thank the referees for helpful and stimulating comments.

REFERENCES

- Basu, D., "On Statistics Independent of a Complete Sufficient Statistic," Sankhyā, Ser. A, 15 (1955), 377–380.
- [2] ———, "On Statistics Independent of Sufficient Statistics," Sankhyā, Ser. A, 20 (1958), 223–226.
- [3] Kendall, M. G. and Stuart, A., The Advanced Theory of Statistics, Vol. 2, New York: Hafner Publishing Company, 1967.

From the Noncentral t to the Normal Integral

DOUGLAS M. HAWKINS*

The noncentral t distribution with n degrees of freedom and noncentrality δ is of great importance in hypothesis testing as it yields the power of the widely used t tests (see for example Hogg and Craig [2, p 292], Kendall and Stuart [3, p 264]). Pedagogically, too, it is quite easily derived by standard transformation methods or, rather less usually, as the compound distribution resulting when a $N(\delta v^{-1}, v^{-2})$ distribution is mixed by letting nv^2 follow a χ_n^2 distribution.

Its complementary cumulative distribution function is

$$P[T > t \mid n, \delta]$$

$$= \frac{\exp(-\frac{1}{2}\delta^{2})}{(\pi n)^{1/2}\Gamma(\frac{1}{2}n)} \sum_{j=0}^{\infty} \frac{\Gamma\{\frac{1}{2}(n+j+1)\}}{j!}$$

$$\times (\delta \sqrt{2})^{j} \int_{t}^{\infty} \frac{x^{j}}{n^{1/2j}[1+x^{2}/n]^{1/2(n+j+1)}} dx \qquad (1)$$

This expression may be simplified in several stages. First, the integral is written in the standard form for an incomplete beta function by making the change of variable

$$u = n/(n + x^2).$$

Next, the term in j! is rewritten using the duplication formula for gamma functions

$$j! = \Gamma(j+1) = 2^{j} \Gamma\{\frac{1}{2}(j+1)\} \Gamma(\frac{1}{2}j+1) / \sqrt{\pi}$$

These transformations bring (1) to the form

$$\frac{\exp(-\frac{1}{2}\delta^2)}{\Gamma(\frac{1}{2}n)\sqrt{\pi}} \, \sum_{j=0}^{\infty} \frac{\Gamma\{\frac{1}{2}(n+j+1)\}\sqrt{\pi}}{2^j \Gamma\{\frac{1}{2}(j+1)\}\Gamma(\frac{1}{2}j+1)} \, (\delta\sqrt{2})^j.$$

$$\frac{1}{2} \int_{0}^{u(t)} u^{1/2n-1} (1-u)^{1/2(j-1)} du.$$
 (2)

Introducing the incomplete beta ratio

$$I_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1} (1-t)^{b-1} dt,$$

we see that (2) may be written in the form

$$\frac{1}{2}e^{-1/2\delta^2} \sum_{j=0}^{\infty} \frac{(\delta/\sqrt{2})^j}{\Gamma(\frac{1}{2}j+1)} I_{\alpha}\{\frac{1}{2}n, \frac{1}{2}(j+1)\}, \quad (3)$$

where $\alpha = n/(n + t^2)$.

The recursion that results from integrating $I_x(a, b)$ by parts makes the representation (3) suitable for computer implementation. A very similar expansion in terms of incomplete beta ratios may also be found for the noncentral F distribution, whose density is given by Anderson [1] p 114.

A rather surprising result emerges from (3) if we set t = 0. In this case $\alpha = 1$ and $I_1(a, b) = 1$ for all a and b. Thus

^{*} Dept. of Applied Mathematics, Univ. of the Witwatersrand, 1 Jan Smuts Ave., Johannesburg 2001, South Africa.