Homework 2

Madiba Hudson-Quansah

Question 1

- 1. Write the logical expression that indicates *Y*'s functional behaviour
- 2. Design a logic circuit network that realizes Y's functional behaviour
- 3. Construct a Karnaugh map
- 4. Using the Karnaugh map results, re-write the logical expression from part a above
- 5. Re-design the logical circuit network from b above and indicate what elements have been eliminated from the original logic circuit network.
- 6. Write the SOP and POS forms of the given truth table. For this truth table, which form is more efficient and convenient and why
- 7. Using universal gates NAND and NOR, draw the circuits that realize the logic for the SOP

Solution:

1.
$$Y = (A + B + C) \left(A + \overline{B} + C \right) \left(\overline{A} + \overline{B} + C \right)$$

2.

3

4.
$$Y = A\overline{B} + C$$

5.

Two OR gates and \overline{A} have been removed

6.

$$SOP = \overline{AB}C + \overline{A}BC + A\overline{B}C + A\overline{B}C + ABC$$

$$POS = Y = (A + B + C)\left(A + \overline{B} + C\right)\left(\overline{A} + \overline{B} + C\right)$$

The POS is more efficient and convenient as it has less terms and therefore requires less gates to construct.

Question 2

1. Using Boolean algebra, show that the following two expressions are equivalent:

$$F_{1} = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$F_{2} = (A + B + C)\left(A + B + \overline{C}\right)\left(A + \overline{B} + C\right)\left(\overline{A} + B + C\right)$$

These two expressions represent the majority function in sum-of-products and product-of-sums form.

2. Assuming that AND, OR, NAND and NOT gates are available, sketch the combinations that would realize the following:

(a)
$$Y = AB\overline{C} + \overline{A + (B + C)}$$

(b) $Z = B\left(A + \overline{B} + \overline{C}\right) + \overline{A + (B + C)}$

- 3. For the circuit shown below, determine the relationship between the output Z and the inputs A, B and C. Construct a truth table for the function
- 4. Provide a circuit diagram that implements the following Boolean function using four inputs (A, B, C, D):

$$F = \left(A + \overline{B}\right) \left(B + C + \overline{D}\right) \left(A + \overline{B} + \overline{C}\right)$$

That has don't care states $AB\overline{CD}$, $AB\overline{CD}$, ABCD, $ABC\overline{D}$

(a) Implement the function above using only NAND gates.

Solution:

1.

$$F_{2} = (A + B + C) \left(A + B + \overline{C} \right) \left(A + \overline{B} + C \right) \left(\overline{A} + B + C \right)$$

$$= A + B + \overline{C}C \left(A + \overline{B} + C \right) \left(\overline{A} + B + C \right)$$

$$= A + A\overline{B} + AC + AB + BC \left(\overline{A} + B + C \right)$$

$$= A + AC + BC \left(\overline{A} + B + C \right)$$

$$= A \left(\overline{A} + B + C \right) + AC \left(\overline{A} + B + C \right) + BC \left(\overline{A} + B + C \right)$$

$$= AB + AC + ABC + AC + \overline{A}BC + BC$$

$$= AB + AC + ABC + \overline{A}BC + BC$$

$$= ABC + AB\overline{C} + ABC + \overline{A}BC + \overline{A}BC$$

$$= ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$$

$$F_{1} = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$$

$$\therefore F_1 = F_2$$

$$Z = \overline{\overline{A}B + AC}$$

A	В	С	$\overline{\overline{A}B + AC}$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

4.

(a)

Question 3

A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations:

$$A(t+1) = \overline{x}y + xA + yA$$
$$B(t+1) = \overline{x}B + xA + \overline{x}\overline{A}$$
$$z = A + Bx$$

- 1. Draw the logic diagram of the circuit
- 2. Provide the state table for the sequential circuit.
- 3. Draw the corresponding state diagram.
- 4. Is this circuit a Mealy machine or a Moore Machine? Explain why

Solution:

1.

	Current State		Input		Next State		Output	
	Α	B	\boldsymbol{x}	y	A	В	Z	
2.	0	0	0	0	0	1	0	
	0	0	0	1	1	1	0	
	0	0	1	0	0	0	0	
	0	0	1	1	0	0	0	
	0	1	0	0	0	1	0	
	0	1	0	1	1	1	0	
	0	1	1	0	0	0	1	
	0	1	1	1	0	0	1	
	1	0	0	0	0	0	1	
	1	0	0	1	1	0	1	
	1	0	1	0	1	1	1	
	1	0	1	1	1	1	1	
	1	1	0	0	0	1	1	
	1	1	0	1	1	1	1	
	1	1	1	0	1	1	1	
	1	1	1	1	1	1	1	

3.

4. This is a Mealy machine because the output depends on both the state and input.

Question 4

1. Convert each binary number to hexadecimal:

- (a) 10101010
- (b) 10101100
- (c) 10111011

2. Perform each subtraction in the 2's complement form:

- (a) 00110011 00010000
- (b) 01100101 11101000

3. Perform the following binary multiplications:

- (a) 1100×101
- (b) 1110×1110

Solution:

- 1. (a) AA
 - (b) AC
 - (c) BB
- 2. (a)

(b)

	0	1	1	0	0	1	0	1
_	1	1	1	0	1	0	0	0
	0	1	1	0	0	1	0	1
+	0	0	0	1	1	0	0	0
	Λ	1	1	1	1	1	$\overline{\Omega}$	1

3. (a)

(b)