Machine Learning

Regularization and Feature Selection

Fabio Vandin

November 22nd, 2022

Feature Selection

In general, in machine learning one has to decide what to use as features (= input) for learning.

Even if somebody gives us a representation as a feature vector, maybe there is a "better" representation?

What is "better"?

Example

- features x₁, x₂, output y
- $x_1 \sim Uniform(-1,1)$
- $y = x_1^2$
- $x_2 \sim y + Uniform(-0.01, 0.01)$

If we want to predict y, which feature is better: x_1 or x_2 ?

- xs, because with x1 you perfectly predict y. But what if you use x2 as feature of a linear model? Predict tion is not great!
- tion is not great!

 -x2, because with linear models we predict y exactly up to noise (Uniform (-0.01, 0.01)). But we could do bettour with \$2!

Example

- features x_1, x_2 , output y
- $x_1 \sim Uniform(-1,1)$
- $y = x_1^2$
- $x_2 \sim y + Uniform(-0.01, 0.01)$

If we want to predict y, which feature is better: x_1 or x_2 ?

No-free lunch...