INF01 118

UFRGS

Técnicas Digitais para Computação

Pass Transistors (transistor de passagem) Transmission Gates (portas de transmissão) Lógica Tri-state

Aula 5

Transistores PMOS e NMOS

Lógica com chaves NMOS

Transistores N

Sem consumo estático na rede de chaves.

V_G alto varia em função da lógica.

O buffer regenera o sinal lógico.

Chaves NMOS

- •V_F está abaixo de V_C para NMOS "ON"
- • V_F não consegue atingir 5V, mas $5V V_{Tn}$
- O transistor NMOS passa um '0' forte (GND) e um '1' fraco (V_C V_{Tn})

Chaves CMOS ou Porta de Transmissão (Transmission gate)

Símbolos:

OBS: o transistor PMOS passa um '0' fraco e um '1' forte

o transistor NMOS passa um '0' forte e um '1' fraco

Req de uma chave CMOS: cerca de 10 K Ω

Desvantagem: A chave é controlada por C e C

Porta XOR (porta 'OU Exclusivo')

Equação Booleana: S = E1 ⊕ E2

 $S = E1 \oplus E2 \oplus ... \oplus En$

Tabela Verdade:

E1	E2	S
0	0	0
0	1	1
1	0	1
1	1	0

E 1	E2	•••	En	S
0	0		0	0
0	1		1	0
1	0		0	1
1	1	•••	1	1

Dica: A SAÍDA É 1 SOMENTE QUANDO HOUVER UM NÚMERO **ÍMPAR** DE ENTRADAS COM VALOR 1.

XNOR (porta 'Não OU Exclusivo')

Equação Booleana:
$$S = \overline{E1 \oplus E2}$$

 $S = \overline{E1 \oplus E2 \oplus ... \oplus En}$

Tabela Verdade:

E1	E2	S
0	0	1
0	1	0
1	0	0
1	1	1

E 1	E2	•••	En	S
0	0		0	1
0	1		1	1
1	0		0	0
1	1	•••	1	0

Dica: A SAÍDA É 1 SOMENTE QUANDO HOUVER UM NÚMERO PAR DE ENTRADAS COM VALOR 1. CONTRÁRIO DA PORTA XNOR.

Lógica com chaves CMOS

XNOR e XOR

XOR realizado com transistores de passagem

Alta Impedância (Z)

Inversor Tri-State (INVTR)

	E	C	C	S
_	0	0	1	Z
	1	0	1	Z
	0	1	0	1
	1	1	0	0

Outra opção... (controle negado)

E	C	S
0	0	1
1	0	0
0	1	Z
1	1	Z

 $OU = \begin{array}{|c|c|c|} \hline C & S \\ \hline 0 & \overline{E} \\ \hline 1 & Z \end{array}$

Buffer Tri-State (BUFTR)

E	C	S
0	0	0
1	0	1
0	1	Z
1	1	Z

C S 0 Z 1 E

* PODE-SE PENSAR EM QUALQUER PORTA LÓGICA COM SAÍDA TRI-STATE OU ALTA-IMPEDÂNCIA (Z) !!!

OU

Uso de Porta Tri-State ...

* NÃO É PERMITIDO EM CMOS:

* CORRETO:

* BARRAMENTO DE SINAIS:

