Sample and Computationally Efficient Active Learning

Maria-Florina Balcan
Carnegie Mellon University

Two Minute Version

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Billions of webpages

Images

Active Learning: utilize data, minimize expert intervention.

Two Minute Version

Active Learning: technique for best utilizing data while minimizing need for human intervention.

This talk: the power of aggressive localization for the label efficient, noise tolerant, poly time algo for learning linear separators [Awasthi-Balcan-Long JACM'17]

[Awasthi-Balcan-Haghtalab-Urner COLT'15] [Balcan-Long COLT'13]

• Much better noise tolerance than previously known for classic passive learning via poly time algos. [KKM5'05] [KL5'09]

 Solve an adaptive sequence of convex optimization pbs on smaller & smaller bands around current guess for target.

Passive and Active Learning

Supervised Learning

• E.g., which emails are spam and which are important.

Not spam thesis - Mozilla Thunderbird File Edit View Go Message Tools Help 🙈 Get Mail 🔹 📝 Write 🔲 Address Book 🏽 🥙 Tag 🖜 X → Teligil Subject

Subject

Teligil From Date Congrats on the dissertation award! Michelle Leah Goodstein 10/12/2009 9:56 ... SCS Dissertation Award & ACM Dissertatio... Randy Bryant 10/14/2009 10:0... reimbursemrent · 10/15/2009 9:34 ... Re: Congrats on the dissertation award! Maria Florina Balcan reneated-eq. Re: SCS Dissertation Award & ACM Dissert Doru-Cristian Balcan 10/15/2009 12:4 review seminars-gatech sindofrii archive junk Xdelete students 10/14/2009 10:00 PM subject SCS Dissertation Award & ACM Dissertation Nominees students-diverse atalks-accross-gatech cc Catherine Copetas <copetas@cs.cmu.edu> talks-campus atalks-gatech Nina: talks-outside You might have already seen this announcement, but I would like to teaching tech-report personally congratulate you for your outstanding dissertation. I would like to invite you to return to CMU to give a distinguished lecture theory-group sometime in the winter of 2010. Catherine Copetas will work out the theory-talks timing for you. You'll get to use the new Rashid Auditorium---a big improvement over Wean 7500. Tong total-diverse-gatech Best of wishes to you at Georgia Tech upcoming-trips Randy Downloading 26 of 29 in thesi Unread: 0 Total: 29

• E.g., classify objects as chairs vs non chairs.

chair

Statistical / PAC learning model

- Algo sees $(x_1,c^*(x_1)),...,(x_m,c^*(x_m)),x_i$ i.i.d. from D
 - Does optimization over S, finds hypothesis $h \in C$.
 - Goal: h has small error, $err(h)=Pr_{x \in D}(h(x) \neq c^*(x))$
- c* in C, realizable case; else agnostic

Two Main Aspects in Classic Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Runing time: poly $\left(d, \frac{1}{\epsilon}, \frac{1}{\delta}\right)$

Generalization Guarantees, Sample Complexity

Confidence for rule effectiveness on future data.

$$O\left(\frac{1}{\epsilon}\left(VC\dim(C)\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

C= linear separators in R^d:
$$O\left(\frac{1}{\epsilon}\left(d \log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right)\right)$$

Modern ML: New Learning Approaches

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences

Billions of webpages

Images

Active Learning

- Learner can choose specific examples to be labeled.
- · Goal: use fewer labeled examples [pick informative examples to be labeled].

Active Learning in Practice

- · Text classification: active SVM (Tong & Koller, ICML2000).
 - e.g., request label of the example closest to current separator.

Video Segmentation (Fathi-Balcan-Ren-Regh, BMVC 11).

Can adaptive querying help? [CAL92, Dasgupta04]

• Threshold fns on the real line: $h_w(x) = 1(x \ge w)$, $C = \{h_w : w \in R\}$

- Get $N = O(1/\epsilon)$ unlabeled examples
- How can we recover the correct labels with $\ll N$ queries?
- Do binary search! Just need O(log N) labels!

· Output a classifier consistent with the N inferred labels.

<u>Passive supervised</u>: $\Omega(1/\epsilon)$ labels to find an ϵ -accurate threshold.

<u>Active</u>: only $O(\log 1/\epsilon)$ labels. Exponential improvement.

Active learning, provable guarantees

Lots of exciting results on sample complexity. E.g.,

"Disagreement based" algorithms

Pick a few points at random from the current region of disagreement (uncertainty), query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

[BalcanBeygelzimerLangford'06, Hanneke07, DasguptaHsuMontleoni'07, Wang'09, Fridman'09, Koltchinskii10, BHW'08, BeygelzimerHsuLangfordZhang'10, Hsu'10, Ailon'12, ...]

Generic (any class), adversarial label noise.

- suboptimal in label complexity
- computationally prohibitive.

Margin Based Active Learning

Margin based algo for learning linear separators

• Realizable: exponential improvement, only $O(d \log 1/\epsilon)$ labels to find w error ϵ when D logconcave. [Balcan-Long COLT 2013]

- Agnostic & malicious noise: poly-time AL algo outputs w with $err(w) = O(\eta)$, $\eta = err(best lin. sep)$. [Awasthi-Balcan-Long JACM 2017]
 - · First poly time AL algo in noisy scenarios!
- Improves on noise tolerance of previous best passive (KKMS'05], [KLS'09] algos too!

Margin Based Active-Learning, Realizable Case

Draw m_1 unlabeled examples, label them, add them to W(1).

iterate k = 2, ..., s

- find a hypothesis w_{k-1} consistent with W(k-1).
- W(k)=W(k-1).
- sample m_k unlabeled samples x satisfying $|w_{k-1} \cdot x| \le \gamma_{k-1}$
- · label them and add them to W(k).

Margin Based Active-Learning, Realizable Case

Log-concave distributions: log of density fnc concave.

wide class: uniform distr. over any convex set, Gaussian, etc.

$$f(\lambda x_1 + (1 - \lambda x_2)) \ge f(x_1)^{\lambda} f(x_2)^{1-\lambda}$$

Theorem D log-concave in Rd. If $\gamma_k = O\left(\frac{1}{2^k}\right)$ then $err(w_s) \le \epsilon$ after $s = \log\left(\frac{1}{\epsilon}\right)$ rounds using $\tilde{O}(d)$ labels per round.

Active learning

 $\bigcirc \left(\operatorname{d} \log \left(\frac{1}{\epsilon} \right) \right) \text{ label requests}$ $\bigcirc \left(\frac{d}{\epsilon} \right) \text{ unlabeled examples}$

Passive learning

 $\Theta\left(\frac{d}{\epsilon}\right)$ label requests

Induction: all w consistent with W(k), $err(w) \le 1/2^k$

Induction: all w consistent with W(k), $err(w) \le 1/2^k$

Induction: all w consistent with W(k), $err(w) \leq 1/2^k$

Induction: all w consistent with W(k), $err(w) \leq 1/2^k$

Enough to ensure $Pr(w \text{ errs on } x \mid |w_{k-1} \cdot x| \leq \gamma_{k-1}) \leq C$

Need only $m_k = \tilde{O}(d)$ labels in round k.

Key point: localize aggressively, while maintaining correctness.

Margin Based Active-Learning, Agnostic Case

Draw m_1 unlabeled examples, label them, add them to W.

- Pick $\tau_k \approx \gamma_k$
- Localization & variance analysis control the gap between hinge loss and 0/1 loss (only a constant).

Improves over Passive Learning too!

Passive Learning	Prior Work	Our Work
Malicious	$\mathbf{err}(\mathbf{w}) = O(\eta d^{1/4})$ [KKM5'05] $\mathbf{err}(\mathbf{w}) = O(\sqrt{\eta \log(d/\eta)})$ [KLS'09]	$err(w) = O(\eta)$ Info theoretic optimal [Awasthi-Balcan-Long'17]
Agnostic	$err(w) = O(\eta \sqrt{\log(1/\eta)})$ [KKM5'05]	$\operatorname{err}(w) = O(\eta)$ [Awasthi-Balcan-Long'17]
Bounded Noise $ P(Y = 1 x) - P(Y = -1 x) \ge \beta$	NA	$\eta + \epsilon$ [Awasthi-Balcan-Haghtalab-Urner'15]
Active Learning [agnostic/malicious/bounded]	NA	same as above! Info theoretic optimal [Awasthi-Balcan-Long'14]

Slightly better results for the uniform distribution case.

Localization both algorithmic and analysis tool!

Useful for active and passive learning!

Discussion, Open Directions

- Active learning: important modern learning paradigm.
- First poly time, label efficient AL algo for agnostic learning in high dimensional cases.
- Also leads to much better noise tolerant algos for passive learning of linear separators!

Open Directions

- More general distributions, other concept spaces.
- Exploit localization insights in other settings (e.g., online convex optimization with adversarial noise).