

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

Digitális technika VIMIAA02 2. EA

Fehér Béla, Benesóczky Zoltán BME MIT

Digitális technika

Adatábrázolás kódokkal

- A digitális információfeldolgozó gépek bemenetükre érkező információt bináris kódként kapják.
 - Aritmetikai kódok (számok)
 - Akkor alkalmazzuk, ha a kódolt információnak nagysága van. Pl. Fizikai mennyiség (feszültség, hőmérséklet, stb.) kódolása.
 - Ilyenkor összehasonlíthatók és aritmetikai műveletek végezhetők közöttük.
 - Analóg jelből analóg/digitális konverzióval (A/D konverter) állítják elő.
 - Egyéb jelek, kódok (nem, vagy korlátozottan végezhető aritmetika művelet)
 - Nyomógomb állapota, határérték túllépése (1 biten kódolhatók).
 - Halmaz elemeinek megkülönböztetése. (Pl. alma:00, körte:01, sárgabarack:10, őszibarack:11)
 - Közlekedési lámpa állapotai (PSZ: 100,110,001,010)
 - Karakterek kódolása (Pl. ASCII kód, 8 bites, sorbarendezésre alkalmas)
 - Speciális egyéb kódok (nem részletezzük)

Számábrázolási módszerek

• A megszokott súlyzott helyiértékes (pozicionális) számrendszerekben, megegyezés szerint, a balról jobbra egymás után a leírt számok i-edik számjegyének (d_i) értéke r alapú számrendszerben:

 $d_i * r^i \in \{0,1...r-1\}$ (Pl. 935-ben a 2. számjegy értéke $9*10^2$)

- A d_i számjegyek a **0-tól a r-1** értékűek lehetnek: $d_i \in \{0,1...r-1\}$ (Pl. 10-es számrendszerben $d_i \in \{0,1...9\}$)
- r^i -t a d_i számjegy súlyának nevezik.
- A teljes szám értéke a $d_i * ri$ -k összege: (Pl. 935₁₀ = 9*10² + 3*10¹+ 5*10⁰) $D = d_{N-1} * r^{N-1} + d_{N-2} * r^{N-2} + \dots + d_2 * r^2 + d_1 * r^1 + d_0 * r^0$

Rövid matematikai alakban: $D = \sum_{i=0}^{N-1} d_i * r^i$

A fenti képletet tetszőleges számrendszerű szám decimális konverziójára szoktuk használni.

Számábrázolási módszerek

- Digitális technikában fontos számrendszerek
- Tízes/Decimális/Dekadikus r = 10 $d_i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,$
- Kettes/Bináris r = 2 $d_i = 0$, 1, (a nevük bit, binary digit == bit)
- Tizenhatos/Hexadecimális r = 16
 - A számjegyek 9-ig a megszokottak, utána az ABC betűit használják az A-tól kezdve (10:A, 11:B,...15:F).

$$d_i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F$$

 $d_i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f$

• A számjegyek fenti szimbólumait a digitális gépek bináris bitsorozatokkal reprezentálják.

Hexadecimális → Decimális konverzió

• A már ismert képletet használjuk r=16 esetére:

$$D = \sum_{i=0}^{N-1} d_i * 16^i$$

$$1A0_{16} = 1*16^2 + 10*16^1 + 0*16^0 =$$

$$= 1*256 + 10*16 + 0*1 = 416_{10}$$

Tehát $1A0_{16} = 416$

(A szám számrendszerét sokszor a szám utáni alsó index-szel jelöljük, de 10-es számrendszer esetén nem szokás kitenni.) **Verilogban**:

<-><bitek_száma>'<s><számrendszer><numerikus_konstans>

<->:Negatív előjel (vagy nincs) < s >: 2-es komplemens kódú

A 16-os számrnedszer jele: h, a bináris számrendszeré: b

pl. A 12 biten ábrázolt 1A0₁₆ Verilogban 12'h1A0

BME-MI

• A Bináris → Decimális konverzió

• A már ismert képletet használjuk r=2 esetére:

$$D = \sum_{i=0}^{N-1} d_i * 2^i$$

$$1110_2 = 1*2^3 + 1*2^2 + 1*2^1 + 0*2^0 =$$

$$= 8 + 4 + 2 + 0 = 14_{10}$$

Tehát $1110_2 = 14$

Verilogban a fenti szám 2-es számrendszerben:

4 biten 4'b1110 8 biten 8'b00001110 vagy

8'b0000_1110 (az aláhúzás jellel tagolhatjuk), vagy

8'b1110 (a vezető 0-ák elhagyhatók)

Hexadecimális → Bináris konverzió

Mivel 16 = 2⁴, 1 db hexadecimális számjegy 4 bináris digit (bit) Most felírjuk **a hexidecimális számjegyek értékét 4 bites bináris** számokként:

$$\begin{array}{l} 0_{16} = 0000_2 \; 1_{16} \; = \; 0001_2 \; 2_{16} = 0010_2 \; 3_{16} = 0011_2 \; 4_{16} = 0100_2 \; 5_{16} = 0101_2 \; 6_{16} = 0110_2 \\ 7_{16} = 0111_2 \; 8_{16} = 1000_2 \; 9_{16} = 1001_2 \; A_{16} \; (10) = 1010_2, \; B_{16} \; (11) = 1011_2 \; , \; C_{16} \; (12) = 1100_2 \; D_{16} \; (13) = 1101_2 \; E_{16} \; (14) = 1110_2 \; F_{16} \; (15) = 1111_2 \end{array}$$

A konverzió során egyszerűen a hexadecimális számjegyeket a számjeggyel egyező értékű 4 bites bináris számra kell cserélni:

$$2_{16} A_{16}$$
P1. $2A_{16} = 00101010_2$

A vezető (bal oldali) 0-ákat elhagyhatjuk: 101010

Bináris → Hexadecimális konverzió

Ha a bináris szám bitszáma nem 4 többszöröse, akkor először balról kiegészítjük megfelelő számú 0-val.

Ezután 4 bites csoportokat képzünk, majd a 4 bites bináris számokat a hexadecimális megfelelőjükkel helyettesítjük.

Pl. 101101101₂

Kiegészítés 0-kkal a baloldalon és 4-es csoportok képzése:

0001_0110_1101

Hexa számjegyek hozzárendelése:

1 6 I

Tehát $1_0110_1101_2 = 16D_{16}$

A Decimális → Bináris konverzió 1.

- Az eddigieknél bonyolultabb az algoritmusa.
- A konvertálandó decimális számot addig kell osztogatni 2-vel, amíg nullává nem válik a hányados.
- Az egyes osztások maradékai adják a bináris szám bitjeit, a legkisebb
 (0.) bittől (Least Significant Bit, LSB) kezdődően.
 - Pl. 13₁₀ átalakítása:

osztandó	osztandó osztó		maradék
13	2	6	1 (LSB)
6	2	3	0
3	2	1	1
1	2	0	1

• Az eredmény: $13_{10} = 1101_2$

Digitális technika

Néhány fontosabb bináris érték

2 ⁷	28	2 ¹⁰	2 ¹⁶	2 ²⁰	2 ³⁰	2 ³²
128	256	1024	65536	1048576	1073741824	4294967296
~száz		~ezer		~millió	~milliárd	

• Apró kellemetlenség, $1000 \neq 1024 \ (10^3 \neq 2^{10})$

• A korábban elterjedt k, M, G, T nagyságrendi jelölések nem

teljesen precízek.

	SI (de	ecimális	s)	IEC (bináris)						
jel	név	ér	ték	jel	név	é	rték			
k	kilo	10 ³ 1000 ¹		Ki	kibi	kibi 2 ¹⁰				
М	mega	10 ⁶	0 ⁶ 1000 ² Mi		mebi	2 ²⁰	1024 ²			
G	giga 10 ⁹		1000 ³	Gi	gibi	2 ³⁰	1024 ³			
Т	tera	10 ¹²	1000 ⁴	Ti	tebi	2 ⁴⁰	1024 ⁴			

• Az új szabványos jelölés lassan terjed, mi is nehezen tanuljuk, de egy informatikusnak illik tudni róla.

• Bináris pozitív egész számok

- A pozitív egész bináris számokat előjel nélküli bináris számoknak is szokás nevezni.
- N biten, a pozitív egészek értéktartománya 0-tól 2^N-1 terjed. (Pl. 8 biten 0-tól 255, 16 biten 0-65535)

Aritmetikai műveletek

Bináris összeadás

Szabályok 1 bites operandusokra:

0+0=0, 1+0=0+1=1, 1+1=10, ahol az 1 az átvitel a következő helyiértékre. (Úgy is mondhatjuk, hogy 1+1=0 maradt az 1)

- Példa: 6 + 3 = 9, 4 biten
- Átvitel a 2. és a 3. pozíción
- Túl nagy számok esetén az eredmény nem fér el a rendelkezésre álló számú biten. (Pl. 9 + 8 = 17)

	1	1					
	0	1	1	0		6	
+	0	0	1	1	+	3	
	1	0	0	1		9	

Bináris szorzás

• Szabályok egy bites operandusokra. (Ez a Boole algebrai szorzás művelet, vagyis ÉS, AND):

$$0 * 0 = 0$$
, $1 * 0 = 0$, $0 * 1 = 0$, $1 * 1 = 1$

- Bináris számoknál a szorzó és szorzandó számjegyei 2 hatványok. Ezért fontos a 2-vel és 2 hatvánnyal szorzás szabálya.
- A 2-vel szorzás után az egyes számjegyek (digitek, d_{Ni}) 1-el nagyobb hatvánnyal szorzódnak mint a szorzás előtt és a legkisebb számjegy 0 lesz:

•
$$N*2 = (d_{Nn}*2^n + + d_{N1}*2^1 + d_{N0}*2^0)*2 =$$

= $d_{Nn}*2^{n+1}... + d_{N1}*2^2 + d_{N0}*2^1 + 0*2^0$
Pl. $0011*10 = 0110 (3*2 = 6)$

- 2-es számrendszerben egy N szám 2-vel szorzásnál 1-el balra toljuk (shifteljük) a számjegyeket és a legkisebb számjegy 0 lesz.
- 2-es számrendszerben egy N szám 2^k –al szorzása k-szori balra shiftelésnek felel meg és jobbról k darab 0 lép be.

 $N \ \ szorozva \ M, \ ahol \ M = d_{Mn} * 2^n \cdots + d_{M1} * 2^1 + d_{M0} * 2^0 \ \ d_i \in \{0,1\} \ \ számmal.$

$$N^*M = N^*d_{Mn}^*2^n + N^*d_{M1}^*2^1 + N^*d_{M0}^*2^0$$

A szorzás i-edik lépésében ha a szorzó i-edik számjegye $d_{Mi} = 1$, akkor a szorzandó (N) i-szer balra shifteltjét (2ⁱ-szeresét) hozzáadjuk az eddigi szorzatösszeghez. Ha $d_i = 0$, akkor 0-át adunk hozzá (semmit nem csinálunk).

Az eredmény 2 db k-bites szám esetén maximum 2*k bites lehet.

Példa:
$$14_{10} * 10_{10} = 140_{10}$$

4 bites bináris számokkal, a szorzó legkisebb bitjével (LSB)kezdve:

1110 * 1010

részösszegek 10-es számrendszerben mutatva

0. résszorzat:
$$0*1*14 = 0$$

1. résszorzat :
$$1*2*14 = 28$$

2. résszorzat :
$$0*4*14 = 0$$

3. résszorzat :
$$1*8*14 = 112$$

$$= 10001100_2 = 128_{10} + 8_{10} + 4_{10} = 140$$

Példa:

4 bites bináris számokkal, a szorzó legnagyobb helyiértékű bitjével kezdve (MSB) kezdve:

1110 * 1010

részösszegek 10-es számrendszerben mutatva

0. résszorzat :
$$1*8*14 = 112$$

$$+ 000000$$

1. résszorzat :
$$0*4*14 = 0$$

2. résszorzat :
$$1*2*14 = 28$$

3. résszorzat :
$$0*1*14 = 0$$

$$= 10001100_2 = 128_{10} + 8_{10} + 4_{10} = 140$$

- Eddig csak pozitív egész számokkal foglalkoztunk, azonban negatív számokra is szükségünk van.
- Előjeles számok
 - Normál jelölésben van előjel (+ és jel, előbbit nem szoktuk jelölni)
 - Bináris számoknál csak "0" és "1" szimbólum van.
 - A bináris előjeles számok ábrázolására több formátum is létezik (pl. 1-es komplemens, **2-es komplemens**, offset stb.).
 - Mi ezekből csak a kettes komplemens számábrázolással foglalkozunk részletesen. Ezt 2's C-vel is szokás jelölni.

BME-MI:

- Egyes komplemens (1's C)
 - Képzési szabálya (egy szám -1-szerese): Minden bináris számjegyet invertálunk $(0 \rightarrow 1, 1 \rightarrow 0)$
- Kettes komplemens (2's C)
 - Képzési szabálya (egy szám -1-szerese):
 Minden bitet invertálunk (1's C) majd az így kapott számhoz hozzáadunk 1-et és csak az eredeti számú bitet őrizzük meg.
- Pl. +3: **0011** invertálás: 1100 1 hozzáadása: +0001

 $1101_2 = -3_{10}$

Mégegyszer alkalmazva visszakapjuk az eredeti számot.

1101 inv \rightarrow 0010 +1 \rightarrow **0011**

Bináris	2's C
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

Kettes komplemens számábrázolás

• A pozícionális számábrázolás definíciója alapján:

$$D = -b_{N-1} *2^{N-1} + \sum_{i=0}^{N-2} b_i *2^{i}$$

- b_{N-1} a legnagyobb helyiértékű bit (MSB), b_i pedig a többi bit.
- Az MSB negatív értékű, ha nem nulla. Másképp fogalmazva b_{N-1} az előjel bit. A szám pozítív vagy 0, ha $b_{N-1}=0$, a szám negatív, ha $b_{N-1}=1$
- N biten a számábrázolási tartomány: -2^{N-1}...+2^{N-1} -1

 Pl. 4 biten: -8 ...+7

- A 2's C számábrázolás tulajdonságai
 A legnegatívabb számban csak az előjel bit 1 értékű.
 Pl. 4 biten a legnegatívabb szám: 1000₂ = -8
- A legnegatívabb szám 2-es komplemense önmaga, tehát nem önmaga -1-szeresét adja! (Az nem fér be a számtartományba.)
 Pl. 4 biten -8₁₀:1000→0111+1 = 1000 (számtartomány: -8...+7)
- A 2's C előjeles számokkal az összeadás szabályai megegyeznek a normál pozitív számokra vonatkozókkal (az eredmény is 2's C)

```
Pl: 0101 (+5)
+1001 (-7)
-----
1110 (-2)
```

- Kettes komplemens (2's C) méretkonverzió
 - Előjel kiterjesztés: A bitjek számának a növelése
 - Pozitív számokra egyértelmű, bal oldalon kiegészítés 0-kal, a számérték természetesen nem változik.
 Pl: +5 érték 4 biten 0101 és 12 biten 0000_0000_0101
 - Negatív szám esetén a bal oldalon kiegészítés 1-ekkel.
 Pl: -5 érték 4 biten 1011 és 12 biten 1111_1111_1011
 Mert a 2's C szabályai szerint ennek bitjeit invertálva + 1, azaz 0000_0000_0100 + 1 = 0000_0000_0101
 - Tehát, ha kevesebb bitről **előjel kiterjesztéssel** méretet növelünk több bitre, **a szám értéke nem változik**
 - Jelentősége: pl. konverzió különböző méretű adatformátumok között (pl. 8 bites byte-ból → 32 bites szó)

BWE-WT

Valós számok

Fixpontos számábrázolás

- Az eddigi pozícionális számrendszer a törtrészre is kiegészíthető, **negatív kitevőkkel:** r ⁻¹, r ⁻², r ⁻ⁿ, tört helyiértékek, r⁰ –tól jobbra (½,½...)
- Bináris előjeles (2-es komplemens) számrendszer 8 biten valós számokra, 3 db tört számjegy esetére:

24	2 ³	2 ²	2 ¹	2°	2 ⁻¹	2 ⁻²	2 ⁻³
-16	8	4	2	1	0,5	0,25	0,125

Implicit (nem létező) "kettedes" pont a ↑ megfelelő helyen

- Példák a fenti formátumú számok decimális konverziójára:
 - $00110\ 101 = 6 + 0.5 + 0.125 = 6.625$
 - 11111 111 negatív, tehát 2-es kompl. képzés kell az abszolút értékhez: 00000 001 = 0.125 tehát 11111 111 = -0.125
- Tetszőleges pontosság, bitszám növelésével elérhető, de Probléma a végtelen tizdestörtek: $0.1_{10} = 0.0001100110011001100..._2$

Fixpontos számábrázolás

 A teljes értéktartományt (FSR, Full Scale Range) a legnagyobb helyiértékű bit (MSB) értéke határozza meg, a példában az előjeles számokra ~ ±2⁴ = ~ ± 16

24	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³	
-16	8	4	2	1	0,5	0,25	0,125	

- Két érték közötti min. eltérést (felbontás, pontosság) a legkisebb helyiértékű bit (LSB) értéke határozza meg, a példában $\sim \pm 2^{-3} = \sim \pm 0,125$
 - Nagy értéktartományhoz→ sok egész bit kell
 - Nagy pontossághoz → sok törtrész bit kell
 - Rögzített bitszámnál kompromisszum kell

Megoldás → Skálázó tényező alkalmazása

Lebegőpontos számformátum

Középiskolából ismerjük a számok normál alakját (pl. 6.0*10²³). A lebegőpontos formátum ezt modellezi, a választott számrendszer szerinti skálázó tényező (rk) használatával

$$\mathbf{D} = (-1)^{\mathbf{e}} \mathbf{m}^* \mathbf{r}^{\mathbf{k}}$$

- ahol e az előjel (pozítív: 0, negatív: 1), m a mantissza, r a számrendszer (radix) (2 vagy 10), k a kitevő (előjeles szám). A szabvány több méretet definiál (32/64/128 bit).
- Nagy értéktartomány, nagyon nagy és nagyon kicsi számok is ábrázolhatók.
- Egyenletes relatív pontosság
 Pl. az IEE754 szabvány szerint, 32 biten a formátum a következő: e=1 bit, m=24 (23+1) bit, k=8 bit, és az érték

$$(-1)^{e*}(1+m)*2^{(k-127)}$$

Értéktartománya: 32 biten maximum ±3,4*10³⁸ A legkisebb értékei ±1,4*10⁻⁴⁵

Decimális számábrázolás

- Bináris számábrázolás esetén a legegyszerűbbek a hardver műveletvégzők (összeadó, kivonó, szorzó, osztó). Ezért a digitális készülékek bináris számokkal számolnak.
- Azonban szükség lehet a decimális értékre (kijelzésnél) vagy akár decimális aritmetikára (pontosabb banki számítások)
- Két megoldás lehetséges, feladattól függ a választás
 - Decimális adatok tárolása (nem hatékony), decimális műveletvégzés (bonyolultabb), de közvetlen decimális eredmény.
 - Bináris adat tárolás (hatékony), bináris műveletvégzés (egyszerűbb), kijelzés előtt BIN → DEC konverzió

Decimális számábrázolás

- Decimális számjegyek (0-9) kódolása, ábrázolása
- A binárisan kódolt decimális (BCD, Binary Coded Decimal) kódban a bitek
 számjegyenként 4 biten, természetes 8-4-2-1 súlyozással szerepelnek
- Érvényes NBCD kódok értéktartmánya:
 0000-1001 (Pl. 1010 nem érvényes kód)
- Pl. 1986 NBCD kódja:
 0001_1001_1000_0110
 1 9 8 6

Érték	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Egyéb kódok

 A digitális technikában a kódoknak csak kis részét használják számok ábrázolására. Most két elterjedt másféle kódot ismertetünk.

1-az-n-ből kód

- Az n-bites kódban az n db bitből 1 db 1 értékű.
- Pl. 1-a-6-ból kód.
 Előnye, hogy digitális
 hardverrel könnyen
 generálható, és könnyen
 dekódolható.

1-a-6-ból	
100000	
010000	
001000	
000100	
000010	
000001	

Egyéb kódok

ASCII kód

- Karakterek ábrázolására használják.
- Eredeti ASCII (American Standard Code for Information Interchange) karaktertáblázat 7 bites, 128 db kódszó, pl.

ı	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Ε	ı Fı
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	НТ	LF	VT	FF	CR	50	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EH	SUB	ESC	FS	GS	RS	US
2			п	#	\$	%	&	1	()	*	+	,	-/	•	/
3	0	1	2	3	4	5	6	7	8	9		;	<)=/	٧	?
4	0	A	В	С	D	Е	F	G	Н	I	J	K	L	H	N	0
5	Р	Q	R	S	T	U	٧	W	X	Y	Z	I	1		^	
6	*	а	b	C	d	e	f	g	h	i	j	k	1	m	n	0
7	P	q	r	s	t	u	٧	W	Х	У	Z	{		}	2	DEL

Egy karakter kódja hexadecimálisan úgy olvasható ki a táblázatból, hogy a karakter sorának elején és oszlopának tetején levő egy-egy hexadecimális számot egymás után írjuk.

P1.
$$\mathbf{A'} = 41_{16} = 100_0001_2$$
 $\mathbf{,0'} = 30_{16} = 0011_0000_2$

- A hardver tervezés során gyakran használnak programozható logikai elemeket (FPGA, CPLD stb.). A laborban FPGA-t használunk (Xilinx XC3S250E típusút).
- A programozható logikai elemek tervezését (is) CAD rendszerek segítik. Mi a XILINX ISE rendszert használjuk.

A tery bevitele

- A hardver terv bevitelére több lehetőség is van.
 - Grafikusan, a kapcsolási rajz bevitelével.
 Itt használhatunk előre elkészített könyvtári elemeket. (Az első laborban ezt ismertük meg.) Azonban lehetőség van saját logikai elem készítésére is.
 - Bevihetjük a tervet hardver leíró nyelv (Hardware Description Language, HDL) használatáva. Erre a továbbiakban a Verilog HDL nyelvet fogjuk használni.

Szintézis

- A CAD rendszer a terv bevitele és szintaktikai ellenőrzése után, a megadott típusú programozható logikai eszközhöz előállítja az eszközbe programozandó információt. Ez nevezik szintézisnek.
- A szintézis több lépésből áll, ezeket nem részletezzük. (Többek között itt történik a logikai függvények egyszerűsítése is.)

Szimuláció

- Az eszközbe programozás előtt lehetőség van hardver nélkül ellenőrizni (tesztelni) a tervet. Ezt a célt szolgálja a szimuláció.
- A CAD rendszer a szintézis által generált adatok alapján elkészíti a logika funkcionális és időzítés **modelljét**.
- A teszteléshez a logika bementére a valós működést szimuláló tesztadatokat kell generálni. (A tesztadatok megadása is a tervezés része.)
- A modell és tesztadatok alapján a CAD rendszer szimulátor része kiszámítja, hogy milyen kimenő adatok jelennek meg a megtervezett logika kimenetén.

Szimulációs eredmény megjelenítése

- A szimulátor a kimeneti adatokat meg tudja jeleníteni grafikusan is.
- Így a szimulációs eredmények hasonló formában jelennek meg, mintha egy valós logika bementére adtuk volna az tesztadatokat és a be és kimeneti jeleket megfelelő műszer (logikai analizátor) képernyőjén néznénk:

Az alábbi egyszerűsített ábrán összefoglaltuk a hardver tervezéshez használt CAD rendszer fentiekben leírt működését:

Hardverleíró nyelvek

A hardverleíró nyelveket (HDL) digitális áramkörök tervezéshez (tervbevitel), modellezéséhez és szimulálásához fejlesztették ki.

A nyelvi konstrukciók sokszor hasonlítanak a megszokott programozási nyelvekben találhatókhoz. Azonban mivel a hardver különböző részei egyszerre működnek, a HDL-el is ilyen (párhuzamos) működés írható le, csak kapcsolási rajz helyett szövegesen. Azonban a szimuláció tesztmintáinak (időben egymást követő bemetei jelek) leírására is képes.

- A legismertebb HDL nyelvek az VHDL és a Verilog. Mi az utóbbit fogjuk használni.
- A Verilog nyelv hierarchikus (többszintű), funkcionális egység alapú tervezési megközelítést használ:
 - A teljes rendszer több kisebb modulból épül fel.
 Pl. Az alábbi rendszer legfelső szintje az ALU modul az alatta levő szinten 5 db modult tarlamaz (ADD, SUB, MUL, DIV, MUX). Verilogban a teljes rendszert szövegesen írjuk le.

A modul a környezetével a be és kimeneti jelein keresztül tartja a kapcsolatot. Ezt nevezik a modul **interfészének**. A be és kimeneti jeleket a modul **portjainak**.

Egy 4 bites bemenetekkel és 5 bites kimenettel rendelkező összeadó modul Verilog leírása:

module ADD(input wire [3:0] OP1, OP2, output wire [4:0] RESULT);

// a belső működés leírása:

assign RESULT = OP1 + OP2;

endmodule

Az **input** bemeneti, az **output** kimeneti portot jelöl. Ezek **típusát** (pl. wire) **nevét** és **méretét** (hány bites) utána kell megadni.

A wire [3:0] op1, op2 4 bites változókat jelöl, a wire [4:0] RESULT

5 bitest.

A több bites változókat vektor változóknak is szoktuk nevezni. A bitvektor bit tartományát a változó név elé írt [i:j] jelöli. Ebből a bitszám is egyértelmű.

A wire olyan változó, amelynek a deklarálása után, később értéket adni csak assign-nal lehet. Sokszor modulok között jelek összerendelésére használjuk (összekötés, huzalozás). A neve is erre utal.

Az assign változó = kifejezés; jobb oldalán Verilog változókkal és operátorokkal leírható kifejezés állhat. A wire változóval csak kombinációs hálózat valósítható meg. Az értéke megváltozik, amint a fenti értékadás jobb oldali kifejezése megváltozik. Mi leggyakrabban az alábbi operátorokat fogjuk használni: Aritmetikai operátorok: +, -, * (ahogy eddig is ismertük)

Pl. assign c = a - b; assign c = -b; assign c = a*b;

Logikai operátorok: & (AND), | (OR), ^ (EXOR), ~ (NOT) Ezeket n bites változók között használva az eredmény is n bites lesz, a művelet az azonos bitek között végződik el.

Például:

További részletek a Verilog_bevező jegyzet 1-14 oldalán.

Modul példányosítása

- Egy már elkészített modulból tetszőleges számú példány felhasználható egy másik modulban.
- Pl. Készítünk egy topmodult, melynek bemenetei a kapcsolók (sw[7:0]), kimenetei a LED-ek (ld[4:0]). Ebben felhasználjuk az előzőekben definiált ADD modul ADD0 példányát. Az ADD1 OP1 bemenetére rákapcsoljuk a topmodul sw[7:4] jeleit, az OP2 bemenetére rákapcsoljuk az sw[3:0] jeleit a RESULT kimenetére az ld[4:0] jeleit.

module top_mod(input [7:0] sw, output [4:0] ld); //példányosítás:

ADD ADD0(.OP1(sw[7:4], .OP2(sw[3:0], .RESULT(ld[4:0])); endmodule

Külső jel összekötése a modul jelével: .modul_jele(külső_jel)

вме-міт Да További részletek a Verilog bevezető jegyzet 21-23 oldalán.

1. EA vége