

CIRCUITOS INTEGRADOS PARA RECEPTORES

Asignatura: Circuitos Electrónicos 2

Estudiante: Leonardo David Vazquez

Profesores: Gustavo Javier Meschino, Julián Antonacci

Fecha: 11/11/2021

ÍNDICE

- Introducción
- Receptores integrados
- Circuito integrado SA605
- Comparación de Ci's
- Receptor GPS
- Resumen

INTRODUCCIÓN

Tanto las señales de humo de los antiguos griegos como la radiodifusión moderna utilizan el mismo esquema de comunicación: La transmisión de un mensaje por un medio hacia un receptor.

Las tecnologías actuales permiten miniaturizar estos sistemas para diferentes aplicaciones. Es por esto que, surge la necesidad de conocer los diferentes dispositivos que existen en el mercado.

En este trabajo, nos dedicaremos a los Circuitos Integrados para Receptores.

RECEPTORES INTEGRADOS (FM)

Conversión simple

RECEPTORES INTEGRADOS (FM)

Conversión doble

Diagrama en bloques simplificado

El Ci SA605 es un sistema monolítico de FM de baja potencia de alto rendimiento que incorpora:

- Mezclador (1,2,20)
- Oscilador (3,4)
- Amplificador de FI (16,17,18,19)
- Indicador logarítmico de intensidad de señal recibida (RSSI) (7)
- Demoduladores FM analógico y digital

Características principales

- Bajo consumo de energía: 5,7 mA típicos a 6 V
- Entrada del mezclador a 500 MHz
- Cifra de ruido del mezclador de 4,6 dB a 45 MHz
- 102 dB de ganancia del amplificador/limitador de FI
- Bajo número de componentes externos; adecuado para filtros de cristal/cerámica/LC
- Excelente sensibilidad

Bloques internos y externos

Aplicación

Adaptación de impedancia

Impedancia de entrada: Abaco de Smith

Oscilador local

Circuito interno del oscilador local

Circuito externo del oscilador local

Mixer

Célula de Gilbert

Demodulación de frecuencia

Detector de fase

Conversor FM - PM

Hoja de datos

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Mixer/oscillator section (external LO = 300 mV)									
fi	input frequency		-	500	-	MHz			
f _{osc}	oscillator frequency		-	150	-	MHz			
NF	noise figure	at 45 MHz	-	5.0	-	dB			
IP3 _i	input third-order intercept point	FL1 = 45.0 MHz; FL2 = 45.06 MHz	-	-10	-	dBm			
$G_{p(conv)}$	conversion power gain	matched 14.5 dBV step-up	10	13	15	dB			
		50 $Ω$ source	-	-1.7	-	dB			
R _{i(RF)}	RF input resistance	single-ended input	3.0	4.7	-	kΩ			
C _{i(RF)}	RF input capacitance		-	3.5	4.0	pF			
R _{o(mix)}	mixer output resistance	MIXER_OUT pin	1.25	1.5	-	kΩ			

Hoja de datos

IF section						
G _{amp(IF)}	IF amplifier gain	50 Ω source	-	39.7	-	dB
G _{lim}	limiter gain	50 Ω source	-	62.5	-	dB
P _{i(IF)}	IF input power	for –3 dB input limiting sensitivity; R17 = 5.1 kΩ; test at IF_AMP_IN pin	-	-113	-	dBm
α_{AM}	AM rejection	80 % AM 1 kHz	29	34	43	dB
	audio level	RMS value; R10 = 100 kΩ; 15 nF de-emphasis	80	150	260	m∨
	unmuted audio level	R11 = 100 kΩ; 150 pF de-emphasis	-	480	-	m∨
SINAD	signal-to-noise-and-distortion ratio	RF level –118 dB	-	16	-	dB
THD	total harmonic distortion		-34	-42	-	dB
S/N	signal-to-noise ratio	no modulation for noise	-	73	-	dB

COMPARACIÓN DE CI'S

FAMILIA SA6XX - RECEPTORES FM

Receptor con SA602 y SA604A

10μF

- Ancho de Banda de FI bajo
- Características similares al SA605

RECEPTOR GPS MAX2745

Circuito integrado para uso de sistema de posicionamiento global de alto rendimiento:

- No requiere filtros discretos externos
- Sensores de Temperatura incorporados
- Amplificador de FI de bajo ruido
- Cifra de ruido típica de 3.5dB
- Bajo consumo: tensión de alimentación entre 2.4 V a 3.6 V

RESUMEN

- SA605: funcionalidades, construcción y componentes externos
- Comparación con SA602 y SA604
- Ejemplo de Ci receptor para una aplicación específica

MUCHAS GRACIAS

Leonardo David Vazquez vazquezleonardodavid@outlook.com

