IEMS 304 Lecture 4: Model and Variable Selection, Shrinkage, and Multicollinearity

Yiping Lu yiping.lu@northwestern.edu

Industrial Engineering & Management Sciences Northwestern University

Model Selection

Fitting a Polynomial Using Linear Regression

Consider fitting a polynomial of degree p to data $\{(x_i, y_i)\}$:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \epsilon.$$

Define new variables: $z_1 = x$, $z_2 = x^2$, ..., $z_p = x^p$. Then, the model can be written as:

$$y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \cdots + \beta_p z_p + \epsilon,$$

which is linear in the parameters $\beta_0, \beta_1, \dots, \beta_p$.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ 1 & x_2 & x_2^2 & \cdots & x_2^p \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^p \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}.$$

2

Is More Feature Better? (Homework)

Questions?

How to Select the Number of Features?

Intuitive Understanding of Model Selection

- SSE is small, but prediction error can be large.
- We want to select models that **generalize**.

Bias-Variance Trade-off

First Idea: Cross-Validation

Hold a test send

Cross-Validation

Recall: Degree of Freedom

$$\underline{\text{Fact 1}}. \ \mathbb{E}\big[\tfrac{1}{n}\sum_{i=1}^n (y_i' - \hat{y}_i)^2\big] = \mathbb{E}\big[\tfrac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2\big] + \tfrac{2\sigma^2}{n}\,\mathrm{d}f(\hat{y}).$$

Fact 2. $df(\hat{y}^{linreg}) = p$

How to design a Model Selection algorithm?

Model Selection Algorithms

penalize	for	larger	d	and/	or or	larger	SSE
----------	-----	--------	---	------	-------	--------	-----

Criterion	Large-sample complexity penalization					
MSE, $r_{\rm adj}^2$	d					
MSE, r_{adj}^2 AIC, C_p	2 <i>d</i>					
BIC	d log n					

- $r_{\mathrm{adj}}^2 = 1 \frac{\mathrm{MSE}}{\mathrm{MST}} = 1 \frac{\mathrm{SSE}}{\mathrm{SST}} \cdot \frac{n-1}{n-(k+1)}$ (larger is better).
- $MSE = \frac{SSE}{n-(k+1)}$ (smaller is better).
- Mallow's C_p : $C_p = \frac{\mathrm{SSE}}{\hat{\sigma}^2} + (2d n)$ (smaller is better),
- AIC: $\frac{1}{n} \left[\frac{\text{SSE}}{\hat{\sigma}^2} + 2d \right]$ (smaller is better)
- BIC: $\frac{1}{n} \left[\frac{\text{SSE}}{\hat{\sigma}^2} + d \cdot \log n \right]$. (smaller is better)

 C_p can be viewed as a special case of AIC for linear regression. AIC and BIC (for both, smaller is better) are much more general than C_p and apply to many nonlinear models fit via maximum likelihood estimation (MLE).

Discussion

- When comparing models with the same d, using C_p , r_{adj}^2 , r^2 , MSE, AIC, or BIC are all equivalent to selecting the model with the lowest training SSE.
- When comparing models with different d, using simply SSE for model selection is usually not a good idea.
- Using C_p , $r_{\rm adj}^2$, r^2 , MSE, AIC, or BIC may lead to different model selection
- For large data sets, CV often gives smaller selected models than any of the analytical criteria.

Analytical Criteria v.s. Cross-Validation

- Cross-validation (CV) can be used to evaluate and compare virtually any set of models.
 - CV applies to any type of model (linear, nonlinear, trees, neural networks, etc)
 - CV applies equally well to classification and regression (but for classification you would use a different error measure than SSE)
 - CV is generally the most reliable, because it involves no assumptions
 (analytical criteria like C_ρ, AIC, BIC involve assumptions, such as no
 influential observations or outliers, large sample sizes, etc)
- CV is too computationally expensive for the automated variable selection methods. For these, we need the analytical criteria. But we can always use CV to assess and compare a few final candidate best models.

Stepwise and Subsets

Regression

Variable Selection

- Given a possibly large set of predictor variables $\{x_1, x_2, \dots, x_k\}$, how to decide which ones belong in the model?
 - Including more predictors than needed is bad for explanatory, as well as predictive, purposes.
 - Could consider doing partial F-tests comparing all possible combinations of models having subsets of the k predictors, but this is not computationally feasible, and we would like a more automated method.
 - Could consider fitting one model with all *k* predictors and then looking at their *t*-test *P*-values (why is this a bad approach?)
- Two common automated variable selection methods are
 - Stepwise regression (good, and computationally feasible);
 - Best subsets regression (best, only feasible for k < 50 or so).

Forward Stepwise Regression

- Basic idea is to start with no predictors in the model and build the model iteratively (in steps), one predictor at a time. On each step you:
 - Find which one of the remaining individual predictors would most reduce the SSE if it were added to the model.
 - Use some criterion like AIC to decide whether the model is better with or without that one predictor.
 - If the criterion says to add that one predictor, you add it and go to the next step; otherwise, you terminate the algorithm and take the best model to be the current one.
- The original criterion for deciding whether the model is better with or without the additional predictor was a partial F-test, and this is still used in many software.
- AIC or Mallows' C_p is usually considered preferable now.

A Toy Example of 8 Variables

- Suppose we are at the third iteration to add variables.
- In the first iteration, we added predictor x_2 and at the second iteration we added predictor x_5 .
- The current model contains $\{x_2, x_5\}$ and we test the following six combinations:

$$\begin{cases} x_2, x_5, x_1 \end{cases} \quad \begin{cases} x_2, x_5, x_3 \end{cases} \quad \begin{cases} x_2, x_5, x_4 \end{cases}$$

$$\begin{cases} x_2, x_5, x_6 \end{cases} \quad \begin{cases} x_2, x_5, x_7 \end{cases} \quad \begin{cases} x_2, x_5, x_8 \end{cases}$$

- Suppose $\{x_2, x_5, x_1\}$ has the smallest SSE. We denote it as SSE₃. Let SSE₂ denote the SSE for the model $\{x_2, x_5\}$.
- We calculate $AIC_2 = n \log(SSE_2) + 2 \times 3$ and $AIC_3 = n \log(SSE_3) + 2 \times 4$.
- If $AIC_3 < AIC_2$, we add x_1 to the model and proceed to the fourth iteration. Otherwise, we terminate and take $\{x_2, x_5\}$ as the final model.

Forward vs. Backward vs. Forward/Backward

- Forward Stepwise: Start with no predictors in the model and add them one-at-a-time.
- Backward Stepwise: Start with all k predictors in the model and remove them one-at-a-time. At each step, the removed predictor is the one that least increases the SSE after its removal. Stop removing according to the same AIC or F-test criteria.
- Forward/Backward Stepwise (forward version): Start with no predictors in the model and add them one-at-a-time. However, at each step, you can consider removing one or more of the predictors that were added at a previous step. Whether to add, remove, or stop is determined according to the same AIC or F-test criteria.

Example: Stepwise Regression

- pred_weight.txt contains data to predict person's weight. We demonstrate the forward/backward stepwise regression.
- ullet The initial model is a constant model, i.e., weight ~ 1 .
- We add predictors one-by-one in each iteration. Meanwhile, in each iteration, we check if any previously added predictors can be removed.

```
step(object, scope, scale = 0,
    direction = c("both", "backward", "forward"),
    trace = 1, keep = NULL, steps = 1000, k = 2, ...)
```

Example: The First Iteration

```
Start: AIC=205.9 weight ~ 1
```

```
Df Sum of Sq RSS AIC
+ gender
                15232.5 11615 182.76
+ height
             1 8968.4 17879 195.71
             1 4034.2 22813 203.02
+ age
<none>
                        26847 205.90
+ digit
             1 1260.7 25587 206.46
+ meat
                  868.7 25979 206.91
+ NI
                  313.6 26534 207.55
+ cell phone 1 244.6 26603 207.63
+ fruit veg 1
                  166.3 26681 207.72
```

- Which added predictor achieves the lowest SSE?
- Shall we add the predictor identified above to the model?

Example: The Second Iteration

```
Step: AIC=182.77 weight ~ gender
```

```
Df Sum of Sq RSS AIC
           1
               1223.6 10391 181.43
+ age
+ height
           1 1088.7 10526 181.81
<none>
                     11615 182.76
+ NI
           1 313.6 11301 183.94
+ meat
          1 64.7 11550 184.60
+ fruit veg 1 4.9 11610 184.75
+ cell_phone 1
                  3.8 11611 184.76
+ digit 1
                  0.4 11614 184.76
           1 15232.5 26847 205.90
gender
```

- Which added predictor achieves the lowest SSE?
- Shall we add the predictor identified above to the model?

Example: The Third and Fourth Iteration

```
Step: AIC=181.43
                                         Step:
                                                AIC=181.18
                                         weight ~ gender + age + height
weight ~ gender + age
            Df Sum of Sa
                                                      Df Sum of Sa
                                                                      RSS
                            RSS
                                   AIC
                                                                             ATC
+ height
            1
                   750.4 9640.8 181.18
                                         <none>
                                                                   9640.8 181.18
<none>
                         10391.3 181.43
                                         - height
                                                            750.4 10391.3 181.43
+ NI
                313.6 10077.6 182.51
                                         - age
                                                            885.3 10526.1 181.81
             1 1223.6 11614.8 182.76
                                         + digit
                                                            404.7 9236.2 181.89
age
+ digit
                50.1 10341.1 183.28
                                        + NI
                                                            200.1 9440.7 182.55
+ meat
                   36.2 10355.0 183.32
                                                             33.1 9607.7 183.07
                                        + meat
                                        + fruit veg
                                                         26.4 9614.5 183.09
+ fruit_veg
                34.8 10356.4 183.32
+ cell phone
                   1.9 10389.4 183.42
                                         + cell_phone
                                                              3.5 9637.3 183.17
                                         - gender
gender
                 12421.9 22813.2 203.02
                                                       1
                                                           6685.4 16326.2 194.98
```

Shall we continue the process or terminate?

Questions and Discussions

- Stepwise regression is "fooled" by influential observations (just like other tests of statistical significance of the coefficients are fooled), so this must be taken into account.
- When you have many predictors and suspect that only a few may be important, forward stepwise is preferable to backwards.
- When you suspect that most predictors may be important, backward stepwise may be preferable.
- Suppose you have 50 rows of data, 75 predictor variables, and you are not sure how many of the 75 are important. Would backwards or forwards stepwise be a better choice in this case?

Best Subsets Regression

- Basic Idea: For p = 1,2,..., k, find the best (or best 2 or 3) models that contain exactly p predictors, a subset of {x₁, x₂,...,x_k}.
- You can then choose the overall best model from among the best of each size.
- How to quantify which models are "better"?
 - For comparing models having the same p, this is easy: better = lower SSE.
 - For comparing models having different p, you can use your favorite model selection criterion (Cp, AIC, CV, etc.).

Example: Best Subsets Regression

• We use pred_weight.txt data again. The leaps() function is useful for best subsets regression.

	size	Ср	height	gender	meat	fruit_veg	age	cell_phone	digit	NL
X1	2	1.727439	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
X1.1	2	16.681476	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
X2	3	0.806466	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
X2.1	3	1.128335	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
ХЗ	4	1.014981	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
X3.1	4	2.057747	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE
X4	5	2.048960	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	FALSE
X4.1	5	2.537256	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE
X5	6	3.098190	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE
X5.1	6	3.899458	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	FALSE
X6	7	5.050088	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE
X6.1	7	5.090002	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE
X7	8	7.008034	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE
X7.1	8	7.046338	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
X8	9	9.000000	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

Questions and Discussions

- Best subsets with $r_{\rm adj}^2$ as the criterion (use method = "adjr2") would give a 5-predictor model with {gender, age, height, digit, NL} as the best model, which is clearly too many predictors. In contrast, using C_p as the criterion gives the 2-predictor model {gender, age} as the best model.
- The top three models in order of C_p are {gender, age}, {gender, age, height}, and {gender, height}.
- These three models have similar C_p . What follow-up analyses would you do to decide which is the best model?

Follow-up Analysis After Best Subsets

- Variable gender is in all of the top models. We explore whether height or age is the better predictor to include.
- We use PRESS to evaluate those models again.

Model	C_p	PRESS
$\{gender, age\}$	8.0	14858
$\{gender, height, age\}$	1.0	14582
{gender, height}	1.1	12720
{gender}	1.7	13232

• According to PRESS, {height, gender} is the best model.

Why age Loses the Game?

- \bullet We try to fit a simple linear model weight $\sim {\rm gender}$ and do some residual plots.
- We distinguish the residuals according to gender. For male, the residual is represented in blue and for female, the residual is represented in red.

Stepwise v.s. Best Subsets Regression

- Computational (major advantage for stepwise):
 - Stepwise is very fast computationally and can handle virtually any number of predictors, even with large data sets.
 - Best subsets is very slow even with the computational tricks. It cannot handle more than k > 50 predictors, or so.
- Optimality of selected model (minor advantage for best subsets)
 - Stepwise is a greedy optimization algorithm that does not necessarily find best model of each size (for fixed size, best means lowest SSE), although it usually does a pretty good job.
 - Best subsets is guaranteed to find the best model of each size.
- Flexibility (major advantage for stepwise):
 - Versions of stepwise are available for other models, like logistic regression.
 Best subsets is restricted to linear regression models, because of the computational challenges.

Multicollinearity

Multicollinearity

- Multicollinearity means that some of the predictors (or linear combinations of them) are highly correlated with each other.
- We have already seen how multicollinearity causes problems in regression (e.g., misleading t-tests, estimated coefficients that have the wrong sign).
 It also compounds problems associated with leverage and influence (easier to have high-leverage observations when multicollinearity is present) and causes numerical problems.
- Multicollinearity is closely connected to variable selection:
 - It makes variable selection ambiguous;
 - Variable selection is one "solution" to multicollinearity, since it tends to omit predictors that are correlated with included ones.

Illustration of Multicollinearity

• We fit a model $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$.

Questions and Discussions

- In the right figure on the previous slide, the multicollinearity between x_1 and x_2 makes it nearly impossible to distinguish between their effects. This means we cannot distinguish between β_1 and β_2 , which translates to poor estimation and large standard errors.
- Why is the situation depicted in the right figure more likely to be subject to influential observations?
- If you are only interested in predicting the response (i.e., you are not interested in distinguishing the effects of x_1 and x_2), AND you will not be extrapolating/predicting the response at x values that fall outside the relationship seen in the training data (i.e., off the $x_1 = x_2$ line in the right figure), then multicollinearity may not be a problem.

Mathematical Reason Why Multicollinearity Causes Problems

• Recall that we can represent data as a matrix X:

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{15} & \dots & x_{1k} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{n5} & \dots & x_{nk} \end{bmatrix}.$$

- Suppose the second and the fifth predictor variables are highly linearly dependent.
- This says matrix X is "almost not full column rank".
- When we solve the linear equations for the coefficients, i.e., $(X^{T}X)\hat{\boldsymbol{\beta}} = X^{T}Y$, the solution is underdetermined— $X^{T}X$ is almost singular.

Detecting Multicollinearity

- Inspect matrix scatter plots of predictors (BEWARE: can miss multicollinearity if k > 2).
- Inspect correlation matrices of predictors (BEWARE for same reason).
- Variance Inflation Factors (VIFs) (the best way to detect multicollinearity).

Pairwise Multicollinearity

- If you see high correlation (among predictors) in a matrix scatterplot, then
 multicollinearity is present. However, if you do not see it, it may still be
 present.
- Inspecting correlation matrices is subject to the same pitfall.
- Side note: It is common to standardize the predictors before fitting a model (i.e., standardize each "column" to have zero mean and unit variance)

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} \quad \text{sample average of j-th predictor,}$$

$$s_{x_j} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2} \quad \text{sample std of j-th predictor,}$$

$$x_{ij}^* = \frac{x_{ij} - \bar{x}_j}{s_{x_j}} \quad \text{standardized j-th predictor.}$$

Correlation Matrix

- We define $r_{x_jx_l} = \frac{1}{n-1} \sum_{i=1}^n x_{ij}^* x_{il}^*$ as the sample correlation coefficient between x_j and x_l .
- Correlation matrix is to collect all the correlation coefficients between pairwise predictor, i.e.,

$$\mathsf{R} = \begin{bmatrix} 1 & r_{x_1 x_2} & \dots & r_{x_1 x_k} \\ r_{x_2 x_1} & 1 & \dots & r_{x_2 x_k} \\ \vdots & \vdots & \ddots & \vdots \\ r_{x_k x_1} & r_{x_k x_2} & \dots & 1 \end{bmatrix}.$$

- Interpretation of correlation coefficients:
 - $-1 \le r_{x_i x_l} \le 1$ always;
 - $r_{x_i x_l} = \pm 1$ perfectly linearly related;
 - $r_{x_i x_l} = 0$ no (linear) relation.

Example: Correlation Matrix

• In gas_mileage.csv data, we calculate the correlation matrix. Part of the matrix is shown below.

	Displacement	Hpower	Torque	Comp_ratio	Rear_axle_ratio
Displacement	1.000	0.945	0.989	-0.330	-0.632
Hpower	0.945	1.000	0.964	-0.292	-0.517
Torque	0.989	0.964	1.000	-0.326	-0.673
Comp_ratio	-0.330	-0.292	-0.326	1.000	0.374
Rear_axle_ratio	-0.632	-0.517	-0.673	0.374	1.000
Carb_barrels	0.659	0.772	0.653	-0.049	-0.205
Nospeeds	-0.781	-0.643	-0.746	0.494	0.843
Length	0.855	0.797	0.864	-0.258	-0.548
Width	0.801	0.718	0.788	-0.319	-0.434
Weight	0.946	0.883	0.943	-0.277	-0.542
Transtype	0.835	0.727	0.801	-0.368	-0.703

Example: (Lurking) Multicollinearity

- barstock.csv contains 30 observed cases of 5 variables. Each row is the weight, volume, height, width, and length of a roughly cube-shaped piece of stock metal.
- We can find the correlation matrix as follows.

```
volume height width length volume 1.000 0.369 0.548 0.738 height 0.369 1.000 -0.361 0.054 width 0.548 -0.361 1.000 0.182 length 0.738 0.054 0.182 1.000
```

Shrinkage

James-Stein Estimator

Used for estimating the mean vector $\theta = (\theta_1, \dots, \theta_p)$ of a multivariate normal distribution given an observation $X \sim N(\theta, \sigma^2 I_p)$

- \square Maximum likelihood estimator: The sample mean X
- James-Stein Estimator: Instead of using the MLE directly, shrink it towards zero (Why?) to reduce the mean squared error (MSE)

$$\hat{\theta}_{JS} = \left(1 - \frac{(p-2)\sigma^2}{\|X\|^2}\right)X, \text{ for } p \ge 3$$

Notable Result: The James-Stein estimator dominates the MLE under squared error loss when $p \ge 3$

Example: Risk Comparison for $\theta = 0$, p = 3

MLE Estimator: $R(0, \hat{\theta}_{MLE}) = E||X - 0||^2 = E||X||^2 = 3.$

James-Stein Estimator: $\hat{\theta}_{JS} = \left(1 - \frac{1}{\|X\|^2}\right) X$.

Risk Calculation:
$$R(0, \hat{\theta}_{JS}) = \left(1 - \frac{1}{\|X\|^2}\right)^2 \|X\|^2 = \|X\|^2 - 2 + \frac{1}{\|X\|^2}$$
.

- \square Since $||X||^2 \sim \chi_3^2$:
 - $E[||X||^2] = 3$.
 - For $\nu > 2$, $E\left[\frac{1}{\|X\|^2}\right] = \frac{1}{\nu 2}$; hence for $\nu = 3$, $E\left[\frac{1}{\|X\|^2}\right] = 1$.

$$R(0, \hat{\theta}_{JS}) = 3 - 2 + 1 = 2.$$

James-Stein as Penalized Least Squares

Penalized Objective Function

Consider the objective function

$$J(\theta) = \|X - \theta\|^2 + \lambda \|\theta\|^2,$$

where $X \sim N(\theta, I_p)$ and λ is a penalty parameter.

The minimizer of $J(\theta)$ is found by setting the derivative with respect to θ to zero:

$$\frac{\partial J(\theta)}{\partial \theta} = -2(X - \theta) + 2\lambda \theta = 0$$

 $\frac{\partial J(\theta)}{\partial \theta} = -2(X-\theta) + 2\lambda\,\theta = 0.$ This yields $\hat{\theta} = \frac{1}{1+\lambda}\,X$. We take $\lambda = \frac{p-2}{\|X\|^2 - (p-2)}$.

Regularized Linear Regression

• Basic idea: When fitting a regression model, instead of minimizing the SSE, pick a small $\lambda>0$ and minimize

$$\sum_{i=1}^{n} (y_i - \hat{\boldsymbol{\beta}}^{\top} \mathsf{x}_i)^2 + \lambda \sum_{i=0}^{k} \beta_j^2.$$

Note that we have added a 1 in each data point x_i .

• Because the objective function is still quadratic in the $\hat{\beta}$, there is a closed form solution:

$$\hat{\boldsymbol{\beta}}_{\text{ridge}} = (\mathsf{X}^{\top}\mathsf{X} + \lambda\mathsf{I})^{-1}\mathsf{X}^{\top}\mathsf{Y}.$$

 $\bullet \ \ \text{This is called "shrinkage" because } \ \left\| \hat{\beta}_{\mathrm{ridge}} \right\|_2 \leq \left\| \hat{\beta} \right\|_2.$

Implementing Ridge Regression

- Important: Standardize all predictors first.
- Choose a large initial λ (e.g., $\lambda = n$).
- Fit the ridge regression model.
- Reduce λ (i.e., reset $\lambda \to \lambda/1.5$) and go to the previous step. Repeat until $\lambda \approx 0$.
- Choose the best value of λ by either:
 - inspecting a plot of $\hat{\beta}_{\rm ridge}$ versus λ and choosing the smallest λ after which $\hat{\beta}_{\rm ridge}$ stabilizes.
 - C_p with the "model complexity" d replaced by the equivalent number of fitted parameters $\operatorname{trace}(X[X^\top X + \lambda I]^{-1}X^\top)$.
 - Generalized cross-validation (GCV), similar to AIC and C_p .
 - Whatever criterion your software has (there are a few other analytical criteria).
 - As always, cross-validation (see Lab 2) can be used.

Bias-Variance Trade-off

Bias-Variance Trade-off for Ridge Regression (Multiple Regression)

Selecting λ

LASSO

When fitting a regression model, instead of minimizing the ${\rm SSE},$ pick a small $\lambda>0$ and minimize

$$\sum_{i=1}^{n} (y_i - \hat{\boldsymbol{\beta}}^{\top} \mathbf{x}_i)^2 + \lambda \sum_{j=0}^{k} |\beta_j|.$$

Why?

Weight Decay

Try to run gradient descent for
$$F(\beta) + \lambda \sum_{i=1}^{d} \beta_i^2$$
 $\vdots = \|\beta\|_2^2$

Gradient Descent gives $\beta_i = (1 - 2\alpha\lambda)\beta_{i-1} - \alpha\nabla F(\beta_{i-1})$

Try to run gradient descent for
$$F(\beta) + \lambda \sum_{i=1}^{a} |\beta_i|$$

L2 VS L1

New View of Gradient Descent

$$\beta_i = \beta_{i-1} - \alpha \nabla F(\beta_{i-1}) \text{ is the solution to}$$

$$\arg \min_{\beta} \underbrace{F(\beta_{i-1}) + \nabla F(\beta_{i-1})(\beta - \beta_{i-1}) + \frac{\alpha}{2} \|\beta - \beta_{i-1}\|_2^2}_{\text{approximation to } F(\beta)}$$

Let's go back to LASSO objective $\underbrace{F(\beta)}_{\text{smooth}} + \lambda \sum_{i=1}^{5} |\beta_i|$, thus we can update β_i as

$$\arg\min_{\beta}\underbrace{F(\beta_{i-1}) + \nabla F(\beta_{i-1})(\beta - \beta_{i-1}) + \frac{\alpha}{2}\|\beta - \beta_{i-1}\|_2^2}_{\text{approximation to }F(\beta)} + \lambda\|\beta\|_1$$

- Call "Proximal Gradient Descent"
- ☐ Closed form! (Homework)

Iterative Shrinkage Thresholding Algorithm (ISTA)

$$\arg\min_{\beta}\underbrace{F(\beta_{i-1}) + \nabla F(\beta_{i-1})(\beta - \beta_{i-1}) + \frac{\alpha}{2}\|\beta - \beta_{i-1}\|_2^2}_{\text{approximation to }F(\beta)} + \lambda\|\beta\|_1$$

The minimization leads to the update:

$$\beta_i = S_{\lambda/\alpha} \Big(\beta_{i-1} - \frac{1}{\alpha} \nabla F(\beta_{i-1}) \Big)$$

where $S_{\theta}(z) = \operatorname{sign}(z) \max(|z| - \theta, 0)$ is the soft-thresholding operator.

Soft/Hard Thresholding

Hard Thresholding is the proximal algorithm for $F(\beta) + \lambda \|\beta\|_0$ where $\|\beta\|_0$ is the number of 0 coeficents in β_i .

L_p -norm Ball

Why L_1 is so special?

Take IEMS 351: Optimization Methods in Data Science