Mathematical Problems of Non-perturbative Quantum General Relativity

Abhay Ashtekar Physics Department, Syracuse University, Syracuse, NY 13244-1130

Abstract

The purpose of these lectures is to discuss in some detail a new, non-perturbative approach to quantum gravity. I would like to present the basic ideas, outline the key results that have been obtained so far and indicate where we are headed and what the hopes are. The audience at this summer school had a diverse background; many came from high energy physics, some from mathematical physics and the rest from general relativity. Therefore, I have tried to keep the technicalities—particularly proofs and even the number of equations—to a minimum. My hope is that a research student in any of these three fields should be able to get a bird's eye view of the entire program. In particular, I have kept all three perspectives in mind while discussing the difficulties one encounters and strategies one adopts and in evaluating the successes and limitations of the program.

Lectures delivered at the 1992 Les Houches summer school on Gravitation and Quantization.

1. Introduction

... a really new field of experience will always lead to crystallization of a new system of scientific concepts and laws. ... When faced with essentially new intellectual challenges we continually follow the example of Columbus who possessed the courage to leave the known world in the almost insane hope of finding land again beyond the sea.

W. Heisenberg (Changes in the Foundation of Exact Science)

1.1 The problem

Quantum mechanics and general relativity are among the greatest scientific discoveries ever made. Born early in this century, the two theories have dictated the course of physics in all the subsequent decades. The reason is that they have altered the very conceptual fabric that underlies fundamental physics. Furthermore, each has been extraordinarily successful in describing the physical phenomena in its domain. The experimental checks of QED, for example, are legendary. And we have learned through Thibault Damour's lectures that experimental tests of general relativity are now reaching even higher levels of accuracy. And yet the two theories offer us strikingly different pictures of physical reality. The world of general relativity is precise and geometric. The world of quantum mechanics is governed by intrinsic uncertainties and probabilities. It is only because the Planck length happens to be so small that we can maintain a schizophrenic attitude, using general relativity to discuss cosmological and astrophysical phenomena and then blissfully switching over to quantum mechanics to examine the sub-atomic world. The strategy is of course quite appropriate as a practical stand. However, form a conceptual viewpoint, it is quite unsatisfactory. Everything in our past experience of physics tells us that the two descriptions of Nature we currently use must be approximations, special cases which arise as suitable limits of a single, universal theory. That theory must be based on a synthesis of the basic principles of general relativity and quantum mechanics. This would be the quantum theory of gravity that we are seeking.

The burden on this theory is huge. First, it should adequately describe *all* the known physical phenomena, currently encompassed in the separate regimes of general relativity and quantum mechanics. Second, it should adequately handle Planck regime, the common turf on which both theories lay separate claims.

The general nature of the claims laid by quantum mechanics are quite familiar to most working physicists. Take Maxwell's theory as an example. In classical physics, central objects are the solutions to Maxwell's equations: at each point of space-time, there is a well-defined electric and magnetic field; these fields propagate via hyperbolic equations; the fluxes of energy and momentum across any surface are computed as integrals of smooth fields; and so on. When quantum mechanics is brought in, it demands a radical shift of the framework. Now, the electric and magnetic fields are operators, subject to the Heisenberg uncertainty relations, whence their values can no longer be specified simultaneously; the

field excitations represent particle states –photons; the propagation is via the Schrödinger evolution in the Fock space; and, the energy is expressed as a sum of contributions from photons, each carrying a quantum $h\nu$. In the case of gravity, one expects a similar quantum description, far removed from the geometric world of general relativity.

General relativity, on the other hand, has its own claims which are perhaps not so familiar. It asks that the theory be diffeomorphism invariant, that there be no background geometric structures, that there be no fiducial space-time to anchor the machinery of quantum mechanics in. It says that, one cannot just postulate micro-causality because there is no background causal structure in terms of which to formulate the notion; that one cannot simply evolve states via a Schrödinger equation because a priori there is no time to evolve anything in; that the familiar particles of specific mass and spin cannot be the fundamental excitations because there is no Poincaré group to construct these Casimir operators from. These are surprisingly strong demands. In particular, they cast a grave doubt on direct applicability of the ideas and techniques from quantum field theory which are rooted in a background (Minkowskian) geometry. While these methods would be obviously useful in suitable approximations, suddenly, they seem to be inappropriate to tackle the problem at a fundamental level.

What questions is such a framework to address? Here are some examples. I have purposely tried to focus on issues that are rarely on the fore front in field theoretic discussions of quantum gravity, to emphasize that the theory has much more than scattering amplitudes to come to grips with.

Through general relativity, Einstein taught us that the gravitational field is inseparably intertwined with the geometry of space-time, whence geometry is a dynamical, physical entity with degrees of freedom of its own. Any genuine quantum theory of gravity would therefore have to be a quantum theory of space-time geometry. What does quantum geometry mean? If it is a physical entity, like this sheet of paper you are looking at, does it have constituents? What are they? Is it, like the sheet of paper, mostly empty? How do these constituents manage to group together to give us the continuum picture under "normal" conditions? What happens to it near what we call, in classical relativity, a singularity? What replaces the continuum picture then? Is the smooth geometry that we perceive on macroscopic scales really a "mean field"? What physical concepts and mathematical techniques should we use to go beyond the mean field approximation?

There has been much excitement about the interplay between quantum field theory in curved space-times and statistical mechanics in black hole physics. This is a most fascinating development indeed and there is a general belief that this interplay is something very basic, very fundamental. Is this really so from the perspective of full quantum gravity? In classical general relativity, the notion of a black hole is *genuinely* global. To know if given initial conditions lead to the formation of a black hole, for example, we have to first obtain the *maximal* evolution of the data and then ask if, in the resulting space-time, the past of future null infinity is the entire space-time. If it is not, the data evolved to form a black hole and the boundary of the past of future null infinity is the horizon. It is *very* striking how very global the notion is. Now, in quantum mechanics, due to the basic uncertainty principle, classical trajectories do not play a fundamental role. Furthermore, in non-trivial, interacting quantum theory, it is rather rare that there are solutions to the

quantum evolution equations which approximate a classical solution globally in time. If this is so, why should anything like a black hole appear in exact quantum gravity? Why should black hole thermodynamics have significance beyond the semi-classical approximation? Let me give an analogy. The Bohr model of atom was considered fundamental in the 1910s. We soon learned, however, that its ad-hoc mixture of quantization rules and classical (electron) trajectories has no fundamental place in the framework of full quantum mechanics. The ideas are useful only in semi-classical approximations. Is the situation perhaps similar with black hole thermodynamics? Would black hole thermodynamics turn out to be the "Bohr atom of quantum gravity"? After all, these results are also obtained by a somewhat ad-hoc combination of classical ideas -black hole geometries with their event horizons and the resulting classical, causal structure— and quantum mechanics—second quantization and Bogoliubov transformations. Or, is there something much deeper going on here? Are there perhaps exact quantum states of gravity which do resemble black holes globally? Are the laws of black hole thermodynamics then firmly rooted in the exact framework of quantum gravity? This is not out of the question, for black holes are very special entities in the classical theory. One would hope that quantum gravity can be developed sufficiently in the coming years to decide which of the two scenarios is likely to occur. Of course, it would be no mean feat to be "just" the Bohr atom of quantum gravity for, although it does not have much of a role to play in the finished picture, historically, the Bohr atom did play a key role in the development of quantum mechanics.

Then, there are a number of questions regarding the nature of time and dynamics. At a fundamental level, since there is no background metric, there is no a priori notion of time either. What does dynamics and evolution even mean if there is no background space-time? How is time born in the framework? Is it only an approximate concept or is it exact? If it is approximate, is the notion of unitarity also approximate? Why then do we not perceive any violations? These questions naturally lead one to the issue of measurement theory. Constructing a mathematical framework is only half of the story. We need a suitable framework to discuss the issues of interpretation as well. In absence of a background space-time geometry, the Copenhagen interpretation is of very little use. What should replace it? The probabilities for an exhaustive set of mutually exclusive alternatives should add up to one. In quantum mechanics, this is generally ensured by using an instant of time to specify such alternatives. What is one to do when there is no time and no instants? These are fascinating issues. However, since the entire course of lectures by Jim Hartle is devoted to this problem of interpretation, I will not elaborate on this point any further.

1.2 Difficulties

The importance of the problem of unification of general relativity and quantum theory was recognized as early as 1930's and a great deal of effort has been devoted to it in the last three decades. Yet, we seem to be far from seeing the light at the end of the tunnel. Why is the problem so hard? What are the principal difficulties? Why can we not apply

the quantization techniques that have been successful in theories of other interactions? In this subsection, I will address these questions from various perspectives.

The main difficulty, of course, is the lack of experimental data with a direct bearing on quantum gravity. One can argue that this need not be an unsurmountable obstacle. After all, one hardly had any experimental data with a direct bearing on general relativity when the theory was invented. Furthermore, the main motivation came from the incompatibility of Newtonian gravity with special relativity. We face a similar situation; we too are driven by a basic incompatibility. However, it is also clear that the situation with general relativity is an anomaly rather than a rule. Most new physical theories—including quantum mechanics—arose and were continually guided and shaped by experimental input. In quantum gravity, we are trying to make a jump by some twenty orders of magnitude, from a fermi to a Planck length. The hope that there is no dramatically new physics in the intermediate range is probably just that—hope.

This experimental situation, however, makes the situation even more puzzling. If there is hardly any experimental data, theorists should have a ball; without these "external, bothersome constraints," they should be able to churn out a theory a week. Why then do we not have a *single* theory in spite of all this work? The brief answer, I think, is that it is *very* difficult to do quantum physics in absence of a background space-time. We have *very* little experience in constructing physically realistic, diffeomorphism invariant field theories. Indeed, until recently, there were just a handful of examples, obtained by truncating general relativity in various ways. It is only in the last two or three years that a significant number of diffeomorphism invariant models with an infinite number of degrees of freedom has become available, albeit in low space-time dimensions.

This response may not satisfy the reader. After all, particle theorists, mathematical physicists and general relativists all have their favorite strategies to the problem of quantization and it is important to know why these have not been successful. Therefore, in the rest of this sub-section, I will discuss the difficulties from the three perspectives.

Particle theorist's strategies

In the world of particle physics, perturbative quantum field theory has proved to be enormously useful. The standard model has met with success every experimental test to date. It is therefore tempting to apply these methods also to gravity. This involves splitting the space-time metric g_{ab} in to two parts, a kinematic (say, flat) background η_{ab} and the dynamical field h_{ab} measuring the deviation of the physical metric from the background. Thus, one sets $g_{ab} = \eta_{ab} + Gh_{ab}$, where G is Newton's constant, regards the deviation h_{ab} as representing the "physical gravitational field" and quantizes it on the background space-time η_{ab} . The quanta represent zero rest mass, spin-2 particles –the gravitons. These are subject to interactions whose nature is dictated by the Einstein-Hilbert action. One can now bring in the arsenal of the perturbative quantum field theory to calculate the amplitudes for graviton-graviton scattering. In the process, however, one has split the dual role played by g_{ab} in general relativity, assigning to η_{ab} the geometric, kinematic role and to h_{ab} the dynamical role of the gravitational potential. The general relativist may object violently to this split on the ground that it destroys the whole spirit of Einstein's theory. But the particle theorist can shrug his shoulders and say that such aesthetic considerations are subjective and that, in any case, this is a small price to pay

to usher in the powerful and highly successful machinery of perturbative quantum field theory.

This scenario was introduced by Feynman in the early sixties and carried to completion by a number of workers, notably DeWitt, in the subsequent decade. Unfortunately, as is now well known, the strategy fails by its own criteria. The theory is not renormalizable; the perturbative quantum theory has infinitely many undetermined parameters, rendering it pretty much useless as far as physical predictions are concerned. In terms of the modern view, suggested by the theory of critical phenomena, there is new physics at short distances which is not captured by perturbative techniques and to which the theory is highly sensitive. In the Planck regime, there are new, non-local effects which make the standard perturbative techniques inappropriate in this regime. It is possible that the theory does not even exist, i.e., that it is mathematically inconsistent. However, this is by no means clear. There are examples of interesting theories –Gross-Neveau model in 3 space-time dimensions for instance (Wightman, 1992)—which are not renormalizable but are exactly soluble. Renormalizability is a criterion of simplicity; such theories are "short-distance insensitive" so that, even in absence of the detailed picture of the microscopic physics, one can make predictions using just a finite number of effective parameters which are relevant to the scale of observation. It is not a criterion to decide if a theory is consistent quantum mechanically.

Simplicity is, nonetheless, very desirable. Therefore, it seemed natural to try to replace general relativity by another theory of gravity which is renormalizable. Impetus to this idea came from the Weinberg-Salam model. The Fermi theory of weak interactions is not renormalizable although, at low energies, it agrees with the experimental data very well. The Weinberg-Salam model agrees with these low energy predictions and is in addition renormalizable. It marshals new processes at high energies, ignored by the Fermi model, and these cure the ultra-violet problems. The moral of the story was clear. Just because a theory is in excellent agreement with experiments at large distances does not mean that it correctly captures the physics at small scale. The parallel between the Fermi theory and general relativity seemed obvious and pursuit began to find new theories of gravity which would agree with general relativity in the large but usher in new processes in the small making it renormalizable. And such theories were in fact found. Their Lagrangians contain higher derivative terms (quadratic, rather than just linear in curvature) which become important only at high energies but which suffice to make the theories renormalizable. It turned out, however, that these theories are not unitary. Their Hamiltonians unbounded below, causing them to be dramatically unstable.

Another modification of general relativity is suggested by supersymmetry. Here, there are no higher derivative terms in the gravitational action. Rather, the *number* of fields is increased using supersymmetry. In particular, new spin 3/2 gravitino fields arise as supersymmetric partners of the spin 2 graviton. The resulting theory—supergravity— has a Hamiltonian which is manifestly positive at least formally and instabilities encountered in the higher derivative theories are avoided. Moreover, it appeared at first that the infinities of bosonic fields would cancel those of fermionic fields, making not just gravity but gravity coupled with matter renormalizable. The hopes ran high. In his Lucasian Chair inaugural address entitled *Is the end in sight for theoretical physics?* Hawking argued that

the N=8 supergravity theory would be the "theory of everything". The confidence in this scenario was so strong that in the Einstein Centennial conference in Princeton, both plenary lectures on quantum gravity were devoted to supergravity. Unfortunately, the theory turned out to be non-renormalizable at the two loop level. Again, as I emphasized above, this does not mean that the theory is necessarily inconsistent; it may very well exist non-perturbatively. However, the whole reason for abandoning general relativity in the first place is now considerably weakened.

As is well known, in the eighties, another, qualitatively different idea dominated — String theory as the theory of everything. It is obvious even to a casual observer that this theory is vastly richer than quantum field theories encountered so far in particle physics and, at least potentially, extremely powerful. It is a very "tight" theory with relatively little fed in at the outset. And it has had very significant mathematical successes. But it is not at all obvious that string theory will indeed provide us with a consistent, unambiguous quantum theory of gravity in four dimensions. Most effort that has gone into it is perturbative and there is a growing realization that non-perturbative effects hold a key to further progress. As is clear from the scientific program of this school, for example, there has been a major shift in the direction of research over the last two or three years. The effort is now concentrated on lower dimensional models which can be tackled non-perturbatively. I believe that this work is very valuable but still in a beginning stage.

One's first reaction to the effort which has gone into the problem over the last three decades may be that of disappointment. I believe that this is unwarranted. It is important that one tries out the "obvious" avenues before advocating radical revisions. Furthermore, the perturbative methods that were developed in the context of quantum general relativity have turned out to be extremely valuable to the treatment of gauge theories. Within quantum gravity itself, we have learnt important lessons. Perhaps the most significant of these is that we should not assume right at the outset what the micro-structure of spacetime ought to be. At shorter and shorter length scales, we find ultra-violet problems, virtual processes involving higher and higher energies. Why should a smooth continuum be then a good approximation to represent the space-time geometry? We should not presuppose what the micro-structure should be. Rather, we should let the theory itself tell us what this structure is. This in turn means that when one comes to gravity, the basic assumptions of perturbation theory are flawed. We need non-perturbative approaches. Although we arrived at this lesson starting from mathematical considerations in quantum field theory, we are led to the same conclusion by the conceptual questions raised in the last sub-section. There is much more to quantum gravity than graviton-graviton scattering.

Mathematical physicist's methods

The failure of perturbation theory would, presumably, not upset the mathematical physicist a great deal. After all, she knows that in spite of perturbative non-renormalizability, a quantum field theory can exist non-perturbatively. Indeed, as I will indicate below, there is some evidence from numerical simulations that quantum general relativity itself may have this feature. One might therefore wonder: why have the standard methods developed by mathematical physicists not been applied to the problem of quantum gravity? What are the obstacles? Let me therefore consider some natural strategies that one may be tempted to try and indicate the type of difficulties one encounters.

First, one might imagine defining the goal properly by writing down a set of axioms. In Minkowskian field theories the Wightman and the Haag-Kastler axioms serve this purpose. Can we write down an analogous system for quantum gravity, thereby spelling out the goals in a clean fashion? Problems arise right away because both the system of axioms are rooted in the geometry of Minkowski space and in the associated Poincaré group. Let me consider the Wightman system (Streater & Wightman 1964) for concreteness. The zeroth axiom asks that the Hilbert space of states carry an unitary representation of the Poincaré group and that the 4-momentum operator have a spectrum in the future cone; the second axiom states how the field operators should transform; the third axiom introduces microcausality, i.e., the condition that field operators should commute at space-like separations; and, the fourth and the last axiom requires asymptotic completeness, i.e., that the Hilbert spaces \mathcal{H}^{\pm} of asymptotic states be isomorphic with the total Hilbert space. Thus, four of the five axioms derive their meaning directly from Minkowskian structure. It seems extremely difficult to extend the zeroth and the fourth axioms already to quantum field theory in topologically non-trivial space-times, leave alone to the context in which there is no background metric what so ever. And if we just drop these axioms, we are left with a framework that is too loose to be useful.

The situation is similar with the Osterwalder-Schrader system. One might imagine foregoing the use of specific axioms and just using techniques from Euclidean quantum field theory to construct a suitable mathematical framework. This is the view recently adapted by some groups using computer simulations. These methods have had a great deal of success in certain exactly soluble 2-dimensional models. The techniques involve dynamical triangulations and have been extended to the Einstein theory in 4 dimensions (see, e.g., Agishtein & Migdal (1991)). Furthermore, there is some numerical evidence that there is a critical point in the 2-dimensional parameter space spanned by Newton's constant and the cosmological constant, suggesting that the continuum limit of the theory may well exist. This is an exciting development and interesting results have now been obtained by several groups. Let us be optimistic and suppose that a well-defined Euclidean quantum theory of gravity can actually be constructed. This would be a major achievement. Unfortunately, it wouldn't quite solve the problem at hand. The main obstacle is that, as of now, there is no obvious way to pass from the Euclidean to the Lorentzian regime! The standard strategy of performing a Wick-rotation simply does not work. First, we don't know which time coordinate to Wick-rotate. Second, even if we just choose one and perform the rotation, generically, the resulting metric will not be Lorentzian but complex. The overall situation is the following. Given an analytic Lorentzian metric, one can complexify the manifold and extend the metric analytically. However, the resulting complex manifold need not admit any Euclidean section. (Conversely, we may analytically continue an Euclidean metric and the resulting complex space-time need not have any Lorentzian section.) This is not just an esoteric, technical problem. Even the Lorentzian Kerr metric, which is stationary, does not admit an Euclidean section. Thus, even if one did manage to solve the highly non-trivial problem of actually constructing an Euclidean theory using the hints provided by the computer work, without a brand new idea we would still not be able to answer physical questions that refer to the Lorentzian world.

Why not then try canonical quantization? This method lacks manifest covariance. Nonetheless, as we will see, one can construct a Hamiltonian framework without having to introduce any background fields, thereby respecting the diffeomorphism invariance of the theory. However, from the perspective of a mathematical physicist, the structure of the resulting framework has an unusual feature which one has never seen in any of the familiar field theories: it is a dynamically constrained system. That is, most of the non-trivial content of the theory is in its constraints. On physical states, the Hamiltonian vanishes identically if the spatial topology is compact and equals a surface term –analogous to the charge integral in QED- if space-time is asymptotically flat ¹. Suddenly, then, one finds oneself in an unfamiliar territory and all the experience one has gained from canonical quantization of field theories in 2 or 3 dimensions begins to look not so relevant. Normally, the key problem is that of finding a suitable representation of the CCRs –or, an appropriate measure on the space of states—which lets the Hamiltonian be self-adjoint. Now, the Hamiltonian seems trivial but all the difficulty seems concentrated in the quantum constraints. Furthermore, while the representation of the CCRs is to be chosen prior to the imposition of constraints, the inner product on the space of states has physical meaning only after the constraints are solved. One thus needs to develop new strategies and modify the familiar quantization program appropriately.

One may imagine using techniques from geometrical quantization. However, since the key difficulty lies in the constraints of the theory, a "correct" polarization would be the one which is preserved, in an appropriate sense, by the Hamiltonian flows generated by the constraint functions on the phase space (Ashtekar & Stillermann, 1986). The problem of finding such a polarization is closely related to that of obtaining a general solution to Einstein's equation and therefore seems hopelessly difficult in 4 dimensions. (In 3 dimensions, the strategy does work but only because every solution to the field equations is flat.) One may imagine using instead the Dirac (1964) approach to quantization of constrained systems. We will see however that the representation best suited for solving the quantum constraints in this framework does not arise from any polarization what so ever on the phase space. Thus, unfortunately, geometric quantization techniques do not seem to be well suited to this problem. Finally, one might imagine group theoretic method of quantization. An appropriate canonical group was in fact found and it does "interact" well with the constraints of the theory which generate spatial diffeomorphisms and triad rotations (Isham & Kakas, 1984a,b). However, the problem of incorporating the so called Hamiltonian constraint which generates time translations again seems hopelessly difficult.

General relativist's approaches

To general relativists, a central lesson of Einstein's theory is that the gravitational field is inseparably intertwined with the geometry of space-time. Indeed, the most spectacular predictions of the theory, from big bang to black holes, stem from this synthesis. It therefore seems natural not to tamper with it in the process of quantization. One is

¹ This arises as follows. Constraints normally generate gauge. However, now the effective gauge group is the group diffeomorphisms whence "motions within space-time" are also generated by constraints. Thus, as might be expected, the origin of this unusual feature lies in diffeomorphism invariance of the theory.

thus extremely reluctant to split the metric into a kinematical and a dynamical part, and more generally, to introduce any background fields in the theory at a fundamental level. Consequently, most work by relativists has occurred in the canonical or the path integral framework.

The canonical framework was introduced by Dirac and Bergmann in the late 50's and then developed more fully by several others, most notably Arnowitt, Deser and Misner in the 60's. (See, e.g., their review (1962)). The 3-metric (or, the first fundamental form) on a space-like surface plays the role of the configuration variable while the extrinsic curvature (or, the second fundamental form), of the momentum. As indicated above, the theory is subject to constraints which generate diffeomorphisms. The framework is geometric and fully non-perturbative right from the start. It provides a complete description of how 3-metrics evolve in Einstein's theory and was therefore baptized by Wheeler as qeometrodynamics. The idea is to go to quantum theory by considering wave functions $\Psi(q_{ab})$ of 3-metrics q_{ab} and to select as physical states those wave functions which are annihilated by the quantum constraint operators. The first equation is similar in form to the Gauss constraint of Yang-Mills theory and requires that the states $\Psi(q_{ab})$ be invariant under spatial diffeomorphisms. The second constraint –called the Wheeler-DeWitt equation– is more complicated. Its classical analog generates dynamics. Therefore, it is believed to contain the time-evolution equation of the theory. (For details, see, e.g. Wheeler (1964) and Kuchař (1981).)

As emphasized earlier, however, there is no background space-time and therefore, in particular, no a priori notion of time. How can one speak of dynamics and time-evolution then? The idea is that a suitable component of the argument q_{ab} of the wave function is to play the role of time and the Wheeler-DeWitt equation is to tell us how the wave function evolves with respect to that time. The counting goes as follows. q_{ab} has six components. Roughly speaking the condition of (3-dimensional) diffeomorphism invariance tells us that a physical state can depend on only 3 of the 6 components of q_{ab} . Two of these are the true, dynamical degrees while the third represents "time". The Wheeler-DeWitt equation is thus to tell us how the dependence of the wave function on the true degrees of freedom changes as the variable representing time increases, and these changes are to be interpreted as time evolution. Thus, time, in spite of its name, is to be an "internal" variable, not an external clock. Until we isolate time, the Wheeler-DeWitt equation is just a constraint on the allowable wave functions. Once time is isolated, the same equation can be interpreted as providing evolution; dynamics is then born.

These ideas seem extremely appealing. However, in this geometrodynamical framework, to date, no one has found a single solution to the Wheeler-DeWitt equation in the full theory. Furthermore, even at a formal level, the component of the metric which is to represent time has not been isolated and the idea that the Wheeler-DeWitt equation can be re-interpreted as the Schrödinger equation still remains a hope.

However, in the seventies several models, obtained by freezing all but a finite number of degrees of freedom of general relativity via imposition of symmetries, were analysed in detail and the Wheeler quantization program was successfully completed. The success provided –and continues to provide– confidence in the general setup. It should be emphasized, however, that these models –called minisuperspaces– are exceedingly simple compared to

the full theory. In particular, they are free of divergences simply by virtue of the fact that one has thrown out, by hand, most of the degrees of freedom, thereby reducing the quantum field theory to quantum mechanics. (There is an interesting model with an infinite number of degrees of freedom which has been fully analysed: the "midisuperspace" of cylindrical waves in the spatially open case, or, of Gowdy space-times in the spatially compact case. However, they could be treated exactly because, after appropriate gauge fixing, the field equations can be made linear and the genuine complications of quantum field theory can be again avoided.) A rather common viewpoint, however, was that this was just a technical convenience. Once one could satisfactorily treat a sufficiently complicated minisuperspace (e.g., the Bianchi type IX model) one would be "almost home". That is, the key difficulties were thought to lie in the conceptual challenges such as those posed by absence of a grandfather time, rather than in quantum field theoretic problems. (For a critical discussion of this attitude, see, e.g., Isham & Kakas (1984a,b).) Thus, the relative weights assigned to various difficulties were almost completely reversed from those assigned by mathematical and particle physicists. This is a key reason why a genuine communication gap persisted between the two communities, a gap which has begun to close only in recent years. In retrospect, it seems clear that these extreme positions are flawed and both sets of problems must be faced squarely. We must address satisfactorily the conceptual problems mentioned above and, at the same time, learn to come to grips with the field theoretic divergences.

Let us now turn to path integral quantization². Until the recent computer work mentioned above, developments in the path integral approach had also remained formal, and perhaps to an even greater degree. In Minkowskian field theories, path integrals are defined by wick-rotating to the Euclidean space and, in most "realistic" theories, by further making use of perturbation theory. Now, as we saw above, the notion of Wick rotation faces a difficulty. One might tentatively adopt a view –advocated by Hawking in the early eighties— that it is the Euclidean domain that is fundamental— and see if the path integrals can be given meaning without worrying about what the results might imply in the Lorentzian regime. But now the theory is not renormalizable and one cannot take recourse to perturbation theory to give meaning to the path integral. Consequently, as far as the full theory is concerned, most of the work in this area has remained formal. Again, as in geometrodynamics, considerable effort has been devoted to minisuperspaces where, due to the presence of a finite number of degrees of freedom the most pressing of the worries disappear. However, even with this truncation, the functional integrals could not be calculated exactly and one often had to take recourse to (WKB type) approximation

² As was emphasized by Gregg Zuckermann in his lectures, the canonical and the path integral approaches are not as much in competition as they are complementary to one another. Path integrals let us compute transition amplitudes but one has to supplement them with the appropriate sets of (in and out) states which, in a non-perturbative treatment, typically come from canonical quantization. Conversely, path integrals let us compute probability amplitudes for such processes as topology change which are hard to fit in the canonical framework.

methods. Nonetheless, with all these caveats, calculations can be completed and one can hope to draw some qualitative lessons by interpreting the results appropriately.

This completes the discussion of the difficulties in constructing a quantum theory of gravity. I do not wish to imply that these are unsurmountable. Indeed, we will see in these notes and in other contributions to this volume that some of them have been overcome already. Rather, my goal has been to point out why "obvious" strategies don't quite work, where one gets stuck and the sort of obstacles one faces.

1.3 Overview

Over the past six years, the canonical approach has been revived with three key inputs: i) an extension of the Dirac program for quantization of constrained systems to address the problems faced by diffeomorphism invariant theories such as general relativity; ii) a reformulation of Hamiltonian general relativity as a dynamical theory of connections rather than of metrics; and iii) the introduction of loop space methods to analyse the structure of quantum theories of connections non-perturbatively. In this new version, the program is fully non-perturbative—there are no background fields at the basic level. At the same time, careful attention is paid to quantum field theoretic issues. The program has led to several interesting mathematical results. Some of the more striking among these are: i) techniques for regulating operators in a way that respects the diffeomorphism invariance of the theory; ii) quantum states which approximate classical geometries on large scales but exhibit a definite discrete structure at the Planck scale; iii) an infinite dimensional space of solutions to all quantum constraints; and, iv) a deep relation between knot theory and physical states of quantum gravity. In full general relativity, although significant progress has been made, the program is still far from being complete. However, it has been carried to completion in a number of truncated models. In particular, the problem of time has been successfully addressed in several cases.

Before outlining the plan of these lectures notes, let me just say a few words about my own viewpoint towards this approach. Although I will deal exclusively with general relativity, I do not necessarily believe that quantum general relativity (coupled to matter) would be the correct theory to describe physics in the Planck regime. Rather, the attitude is the following. Since nothing that we know to date implies that quantum general relativity can not exist non-perturbatively, it is well worth finding out if it does. If the theory does exist non-perturbatively, then its viability would be an experimental question. If it does not, we will learn why not and the exercise will presumably suggest modifications. (This attitude is in fact very similar to the one adopted in perturbative treatments in the seventies and eighties.) In any case, the qualitative insights one would gain –and, indeed, has already gained—about the nature of diffeomorphism invariant quantum theories will be valuable no matter what the correct theory turns out to be. Thus, in the very least, this analysis can be regarded as a non-perturbative investigation of a physically interesting model in four dimensions which is much more realistic than analogous diffeomorphism invariant models in two or less dimensions. Finally, I find the relative richness of the program very attractive: It has led to new insights in a number of topics quite apart

from issues in quantum gravity. Examples are: the mathematical structure of the space of self dual Einstein manifolds (see, e.g., Samuel 1992); C^* -algebras of holonomies and their representation theory (Ashtekar & Isham 1992); loop space description of the Fock space of photons (Ashtekar & Rovelli, 1992); differential geometric techniques to analyse knot invariants (Di Bortolo et al, 1992); etc.

In section 2, I have collected several mathematical techniques that are used through out the notes. These include a short introduction to the symplectic description of constrained systems and to the Dirac program for quantization of constrained systems, a summary of the algebraic quantization program which extends the Dirac program in an appropriate fashion, and an outline of the powerful "non-linear duality" between connections and loops. Section 3 is devoted to 3-dimensional gravity. In this case the algebraic quantization program can be completed and in particular, the general goals of Wheeler's program referred to above can be met. This is interesting because, although mathematically much simpler, the theory has the same overall structure as 4-dimensional general relativity and hence, a priori, faces the same conceptual problems. My aim is to use 3-dimensional gravity as a toy model to introduce the reader both to the mathematical techniques and to the general directions of thinking that underlie the program for 4-dimensional gravity. In section 4, I present the new Hamiltonian formulation of 4-dimensional gravity. Now, the configuration variable is a connection and all of Einstein's equations become polynomial in the basic canonical variables. The emphasis on connections suggests that we describe the theory in terms of holonomies and this is how the loops begin to play significant role. Thus, the suggestion is that while metrics, distances and null cones govern the world of classical relativity, connections, holonomies of spinors around closed loops, knots and links are the basic objects in the Planck regime. In section 5, I discuss the quantum theory. In the initial treatments, as is perhaps inevitable when one embarks on a new exploration, the issue of regularization of operators was often not treated with due care. As a result, there is now a widespread belief that the results obtained within quantum theory are formal. This is no longer true. By now, several careful calculations have been performed and a general framework has emerged which does have the precision that one is normally used in theoretical (as opposed to, say, mathematical) physics. I have therefore taken some care to make the current level of precision explicit and also pointed out what needs to be done to make it acceptable by standards of mathematical physics. I conclude in section 6 with a brief discussion.

By now there are about 300 papers on the subject and I can not do justice to all the interesting results that have emerged. Therefore, I apologize in advance to various authors who might find that their contributions are not mentioned at all or discussed very briefly. Fortunately, there do exist several detailed reviews. First, there is a monograph (Ashtekar 1991) addressed to research students that covers in detail most results that were obtained by December 1990; there is a more compact review addressed to standard physics audiences (Rovelli, 1990); a summer school report geared to particle physicists (Smolin, 1992); a review where one can find a discussion of the problems of quantum cosmology (Kodama, 1992); and, a summary of the developments pertaining to supergravity (Nicoli& Matschull, 1992). While there is an inevitable overlap between the present notes and these reviews, by and large, I have tried to focus on recent results and have presented

the material from a slightly different perspective. My goal is to get the general picture and the overall direction of thinking across rather than details of any specific results. For references to more detailed treatments, the reader should consult the reviews mentioned above and to the papers they refer to. (See, in particular, the extensive bibliography in Ashtekar (1991).) By and large, here I will provide references only to recent papers which may not be included in the reviews.

My conventions will be as follows. The space-time manifold, M, is assumed to be topologically $\Sigma \times \mathbb{R}$ of some 3-manifold Σ (except in section 3 on 3-dimensional gravity where Σ is a 2-manifold). The space-time metric g_{ab} is assumed to have signature -+++ (and -++ in section 3). Throughout, I have employed Penrose's abstract index notation (Penrose & Rindler (1986), see also Wald (1984)). Since density weights of various fields often play an important role (except when the notation becomes too cumbersome) I have used an over-tilde to denote an object with density weight +1 and an under-tilde, an object with density weight -1.

2. Mathematical Preliminaries

The beginner ... should not be discouraged if ... he finds that he does not have the prerequisite for reading the prerequisites.

P. Halmos

The purpose of this section is to collect several mathematical techniques that are used in the rest of these lecture notes. Sections 2.1 and 2.2 recall the symplectic description of constrained classical systems; 2.3 discusses the Dirac quantization program for such systems and points out its limitations; 2.4 introduces an algebraic quantization program; and 2.5 provides the reader with some powerful tools for analyzing quantum theories of connections particularly in the context of diffeomorphism invariance. Familiarity with these ideas is assumed particularly in sections 3 and 5. However, it is *not* essential that the readers have a full grasp of these methods —particularly those contained in section 2.5— before embarking on the main text.

Advanced researchers, on the other hand, should skip this section and proceed directly to section 3.

2.1 Symplectic framework

The purpose of this section is to recall some notions from symplectic geometry. In broad terms, the symplectic framework geometrizes the Hamiltonian description of classical systems, thereby making it coordinate-independent and suggesting interesting generalizations. What we will present here is a self-contained but brief and "practically oriented" introduction to the subject. (More extensive accounts can be found, e.g., in monographs by R. Abraham and J.E. Marsden, V.I. Arnold, and, V.W. Guillemin.)

The arena for classical mechanics is a symplectic manifold, $(\Gamma, \Omega_{\alpha\beta})$, where Γ is an even-dimensional manifold, and $\Omega_{\alpha\beta}$ a symplectic form, i.e., a 2-form which is closed and non-degenerate. Given any torsion-free derivative operator ∇ , one can express the closure requirement as: $\nabla_{[\alpha}\Omega_{\beta\gamma]} = 0$. The non-degeneracy condition reads: $\Omega_{\alpha\beta}v^{\alpha} = 0 \Leftrightarrow v^{\alpha} = 0$. If Γ is finite-dimensional, non-degeneracy guarantees that $\Omega_{\alpha\beta}$ has a unique inverse, $\Omega^{\alpha\beta}$, with $\Omega^{\alpha\beta}\Omega_{\beta\gamma} = \delta_{\gamma}{}^{\alpha}$, or that the mapping $\Omega: T\Gamma \to T^*\Gamma$ from tangent vectors to cotangent vectors, with $\Omega_{\alpha\beta}v^{\beta} = v_{\alpha}$, is an isomorphism.

 $^{^3}$ If Γ is infinite-dimensional, one has to be careful with functional analysis. The form Ω is said to be weakly non-degenerate if its kernel consists only of the zero vector and strongly non-degenerate if the mapping it defines from the tangent space to the cotangent space is an isomorphism. In what follows, in the infinite-dimensional cases, we will assume only that Ω is weakly non-degenerate. Although weak non-degeneracy does not ensure that Ω admits an inverse, the main ideas to be discussed here go through in the weaker case. Roughly, equations which do not involve the inverse of the symplectic form continue to hold in the weakly non-degenerate case. Therefore, in the equations which hold in the finite-dimensional case, one first multiplies both sides by Ω with an index structure so

Each point of Γ represents a possible state of the given classical system. Dynamics can be therefore specified by introducing a vector field on Γ : integral curves of the vector field represent dynamical trajectories and the affine parameter keeps track of the passage of time. The availability of the symplectic form simplifies the task of specifying the dynamical vector field. For, as we will see, the symplectic form enables one to construct these vector fields from functions—the Hamiltonians—on the phase space. Thus, to specify dynamics on a symplectic manifold, it suffices to specify a function thereon.

Given a vector field v^{α} on Γ , we say that v^{α} is an *infinitesimal canonical transformation* iff it leaves the symplectic form invariant, i.e., iff

$$\mathcal{L}_{v}\Omega_{\alpha\beta} = 0. \tag{2.1.1}$$

The diffeomorphisms generated by these v^{α} are called *canonical transformations*. Since they preserve the geometrical structure of $(\Gamma, \Omega_{\alpha\beta})$, these canonical transformations are the symmetries of classical mechanics. Now, it is easy to verify that v^{α} satisfies (2.1.1) iff there exists, locally, (and, if the first homology group of Γ is trivial, globally) a function f such that:

$$v^{\alpha} = X_f^{\alpha} := \Omega^{\alpha\beta} \nabla_{\beta} f. \tag{2.1.2}$$

The vector field X_f^{α} so constructed from f is called the *Hamiltonian vector field* of f. Thus, all Hamiltonian vector fields generate infinitesimal canonical transformations, and all one-parameter families of canonical transformations are locally generated by a function, called the *Hamiltonian* of the corresponding transformation⁴. In particular, therefore, we have established that, in striking contrast to, say, metric manifolds, every symplectic manifold admits infinitely many independent symmetries.

Given two functions $f, g: \Gamma \to \mathbb{R}$, their *Poisson bracket* is defined by

$$\{f, g\} := \Omega^{\alpha\beta} \nabla_{\alpha} f \nabla_{\beta} g$$

$$\equiv -\mathcal{L}_{X_f} g \equiv \mathcal{L}_{X_g} f.$$
(2.1.3)

It is easy to verify that the Poisson bracket operation turns the vector space of functions on Γ into a Lie algebra. Using this Lie-bracket, we can now state an important property of the map $f \mapsto X_f^{\alpha}$ that associates to f its Hamiltonian vector field: It takes Poisson brackets of functions into commutators of vector fields:

$$X_{\{f,g\}}^{\alpha} = -[X_f, X_g]^{\alpha}. \tag{2.1.4}$$

chosen as to eliminate its inverse and *then* takes over the resulting equation to the infinite-dimensional case. However, here, we will not worry about functional analytic rigor.

⁴ Note that, in symplectic geometry, the term Hamiltonian has a more general meaning than in physics. *Any* function on the phase space, when used to generate a canonical transformation, is referred to as a Hamiltonian; the canonical transformation need not correspond to time evolution. In what follows, the intended sense in which the term Hamiltonian is used will be clear from the context.

(Note also that the map is linear and its kernel consists precisely of the constant functions on Γ .)

Let us now return to the issue of dynamics. For a large class of physically interesting systems, the dynamical vector fields are globally Hamiltonian. That is, time-evolution of physically interesting systems can be generally specified simply by fixing a function H on Γ ; its Hamiltonian vector field X_H^{α} then provides the dynamical vector field everywhere on Γ . Thus, given a point in the phase space representing the initial state of the system, the dynamical trajectory is simply the integral curve of the Hamiltonian vector field X_H^{α} through that point. Using this fact, it is straightforward to check that the time evolution (in the Heisenberg picture) of any observable f is given by:

$$\dot{f} := \mathcal{L}_{X_H} f \equiv \{f, H\}. \tag{2.1.5}$$

Finally, we note that, since the symplectic form is closed, it can be obtained locally (and, if the second homology group of Γ is trivial, globally) from a 1-form ω_{α} , called the symplectic potential: $\Omega_{\alpha\beta} = 2\nabla_{[\alpha}\omega_{\beta]}$. For a given $\Omega_{\alpha\beta}$ the symplectic potential is thus determined up to the addition of a gradient. This potential plays an important role in geometric quantization.

2.2 First class constraints

A dynamical system is said to be constrained if its physical states are restricted to lie in a submanifold $\hat{\Gamma}$ of the phase space Γ , called the *constraint surface*. One can specify $\hat{\Gamma}$ by the vanishing of a set of functions $C_{\mathbf{i}}: \Gamma \to \mathbb{R}$ called the *constraints* ⁵:

$$\hat{\Gamma} := \{ p \in \Gamma \mid C_{\mathbf{i}}(p) = 0, \text{ for } \mathbf{i} = 1, \dots, m \}.$$
 (2.2.1)

Note that $\hat{\Gamma}$ does not provide a unique choice of constraint functions C_i ; there is considerable "coordinate freedom" in the selection of constraint functions. In this section we will restrict ourselves to the so-called first class constraints since these are the ones that play an important role in gauge theories and general relativity.

A constrained system is said to be of first class if for all covectors n_{α} normal to $\hat{\Gamma}$, $\Omega^{\alpha\beta}n_{\alpha}$ is tangent to $\hat{\Gamma}$. This characterization is coordinate independent. Given a set of constraint functions, one can reformulate this definition as follows: the system is of first class if the constraint functions "weakly "commute, i.e.,

$$\forall \mathbf{i}, \mathbf{j} \qquad \{C_{\mathbf{i}}, C_{\mathbf{j}}\} \approx 0,$$
 (2.2.2)

where \approx means "equals when restricted to the constraint surface". This implies that there exist functions $f_{ij}^{\ \mathbf{k}}$ on Γ such that:

$$\forall \mathbf{i}, \mathbf{j} \qquad \{C_{\mathbf{i}}, C_{\mathbf{j}}\} = -f_{\mathbf{i}\mathbf{j}}{}^{\mathbf{k}} C_{\mathbf{k}}. \tag{2.2.3}$$

⁵ The boldface, lower case latin letters $(\mathbf{i}, \mathbf{j}...)$, used here are *numerical* indices, running over the number of constraints.

These functions are called *structure functions*. If they happen to be constants, the constraint functions C_i are generators of a sub-Lie algebra of the set of functions on Γ . The second definition of first class constraints is often more useful in practice, while the first one is more "covariant": it shows explicitly that the notion is independent of the choice of constraint functions.

Let us now consider a first class constrained system $(\Gamma, \hat{\Gamma}, \Omega_{\alpha\beta}, H)$, and examine the consequences of the existence of the constraints for its dynamics. In particular, since the point representing the state of the system is required to remain on $\hat{\Gamma}$, we are interested in knowing to what extent we can consider just $\hat{\Gamma}$ as our phase space, instead of the whole of Γ .

Suppose Γ is 2n-dimensional. By definition of first class constraints, the m vector fields $X_{\bf i}^{\alpha}:=\Omega^{\alpha\beta}\nabla_{\!\beta}C_{\bf i}$, are tangential to $\hat{\Gamma}$ and, because of the non-degeneracy of $\Omega_{\alpha\beta}$, they are linearly independent. Thus, at each $p\in\hat{\Gamma}$, they span an m-dimensional subspace $\mathcal{G}\subset T_p\hat{\Gamma}$. The vector fields in \mathcal{G} are called constraint vector fields. \mathcal{G} is called a gauge flat, since, as Dirac observed, motion along any of the directions contained in \mathcal{G} corresponds to a gauge transformation of the system. This interpretation is suggested by the following considerations. Since the physical states of the system are restricted to $\hat{\Gamma}$, measurements can reveal the values of observables, such as the physical Hamiltonian, H, only on $\hat{\Gamma}$. There is thus an ambiguity in extending the function "off" $\hat{\Gamma}$: if H is an extension, so is $H'=H+f^{\bf j}C_{\bf j}$ where $f^{\bf j}$ are any smooth functions on Γ . This in turn introduces an ambiguity in dynamics even for the physical states, i.e., points of $\hat{\Gamma}$: if H defines the Hamiltonian vector field X_H^{α} , H' leads to the vector fields, $X_H^{\alpha} + f^{\bf j}X_J^{\alpha}$ on $\hat{\Gamma}$. Hence, we are led to conclude that motions along constraint vector fields, X_I^{α} , represent gauge.

Consider the restriction of $\Omega_{\alpha\beta}$ to $\hat{\Gamma}$ (i.e., its pullback $\hat{\Omega}_{\alpha\beta} = i^*\Omega_{\alpha\beta}$ by the inclusion map $i: \hat{\Gamma} \to \Gamma$). Then, for any n_{α} normal to $\hat{\Gamma}$ and any \hat{v}^{α} tangent to $\hat{\Gamma}$,

$$0 = \hat{v}^{\alpha} n_{\alpha} = \hat{v}^{\alpha} \Omega_{\alpha \gamma} \Omega^{\gamma \beta} n_{\beta} = \hat{v}^{\alpha} \Omega_{\alpha \gamma} \hat{n}^{\gamma}$$
 (2.2.4)

where $\hat{n}^{\alpha} := \Omega^{\alpha\beta} n_{\beta}$. However, the n^{α} 's are in 1-1 correspondence with constraint vector fields, so all constraint vector fields are degenerate directions for $\hat{\Omega}_{\alpha\beta}$. Conversely, all degenerate directions of this tensor are of this form. Thus, $\hat{\Omega}_{\alpha\beta}$ is m-fold degenerate, and it just defines a presymplectic structure on $\hat{\Gamma}$. The practical significance of this fact is that $\hat{\Omega}_{\alpha\beta}$ does not have a unique inverse. One may imagine defining $\hat{\Omega}^{\alpha\beta}$ to be the inverse if it satisfies $\hat{\Omega}_{\alpha\gamma}\hat{\Omega}^{\gamma\delta}\hat{\Omega}_{\delta\beta} = \hat{\Omega}_{\alpha\beta}$. However, for any constraint vector field X^{α} and arbitrary \overline{T}^{α} , $\hat{\Omega}^{\alpha\beta} + X^{[\alpha}\overline{T}^{\beta]}$ can then equally be considered as an inverse. In particular, using just $\hat{\Omega}_{\alpha\beta}$, we cannot associate a unique Hamiltonian vector field to a function on $\hat{\Gamma}$. We have to replace (2.1.2) by

$$\hat{\Omega}_{\alpha\beta}X_H^{\beta} = \hat{\nabla}_{\alpha}H, \tag{2.2.5}$$

which determines X_H^{α} up to the addition of a constraint vector field. In particular, if we want to work just on $\hat{\Gamma}$, the time evolution of a system is *not* determined uniquely by the Hamiltonian. The ambiguity corresponds precisely to motions along the constraint vector fields. This provides an alternate version of the motivation for interpreting \mathcal{G} as gauge flats.

There are however two ways to recover a well-defined evolution. The first is to eliminate in $\hat{\Gamma}$ the variables representing the gauge degrees of freedom, and introduce the so-called reduced phase space, $\bar{\Gamma} := \hat{\Gamma}/\mathcal{G}$, the space of orbits of the gauge diffeomorphisms. This is possible first because the gauge flats are integrable, which follows from Frobenius' lemma and

$$[X_{\mathbf{i}}, X_{\mathbf{j}}] = -X_{\{C_{\mathbf{i}}, C_{\mathbf{j}}\}} = X_{f_{\mathbf{i}\mathbf{j}}{}^{\mathbf{k}}C_{\mathbf{k}}} \approx f_{\mathbf{i}\mathbf{j}}{}^{\mathbf{k}}X_{\mathbf{k}}, \tag{2.2.6}$$

and second because $\mathcal{L}_{X_i}\Omega_{\alpha\beta}=0\Rightarrow\mathcal{L}_{X_i}\hat{\Omega}_{\alpha\beta}=0$. We now have a projection mapping $\pi:\hat{\Gamma}\to\bar{\Gamma}$, and the (non-degenerate) symplectic form $\bar{\Omega}_{\alpha\beta}$ on $\bar{\Gamma}$ is naturally defined by $\bar{\Omega}_{\alpha\beta}\bar{u}^{\alpha}\bar{v}^{\beta}:=\hat{\Omega}_{\alpha\beta}\hat{u}^{\alpha}\hat{v}^{\beta}$, where \hat{u}^{α} and \hat{v}^{α} are any two vectors projected to \bar{u}^{α} and \bar{v}^{α} , respectively, by the mapping π . The second way to obtain a non-degenerate symplectic form from $\hat{\Omega}_{\alpha\beta}$ is to fix a gauge, i.e., a global cross-section of $\hat{\Gamma}$ each point of which intersects the integral manifold of constraint vector fields once and only once, and restrict oneself to states which lie on this cross-section. The pull-back of $\hat{\Omega}_{\alpha\beta}$ to the gauge-fixed surface is non-degenerate. The second method is less elegant and the required global cross-section need not always exist. However, if it does, the method is often simpler to use.

We conclude with an example. Consider Maxwell fields in Minkowski space-time. Let us consider a 3+1 formulation of the theory. The configuration space \mathcal{C} can then be taken to be the space of 1-forms A_a —the vector potentials— on a space-like 3-plane Σ . The canonically conjugate momenta are then represented by the electric fields E^a and the symplectic structure Ω is then given by:

$$\Omega = 2 \int_{\Sigma} d^3x \, dI E^a(x) \wedge dI A_a(x) \tag{2.2.7}$$

where dI denotes the exterior derivative operator and \wedge the exterior product, on the infinite dimensional phase space. The system is subject to the Gauss constraint:

$$D_a E^a(x) = 0. (2.2.8)$$

Since the left side of (2.2.8) is a field on Σ , it is not a real-valued function on Γ . To use the Hamiltonian framework directly, it is convenient to smear the left side by smooth functions $\Lambda(x)$, say of compact support on Σ

$$C_{\Lambda}(A,E) := \int_{\Sigma} d^3x \,\Lambda(x) D_a E^a(x) \tag{2.2.9}$$

and replace (2.2.8) by: $C_{\Lambda} = 0$ for all $\Lambda(x)$. To verify that these constraints form a first class system, one must compute the Poisson brackets between the constraint functions. These are straightforward to evaluate: Since the functions depend only on $E^{a}(x)$ and are independent of A_{a} , the Poisson brackets vanish,

$$\{C_{\Lambda}(A, E), C_{\Phi}(A, E)\} = 0,$$
 (2.2.10)

whence we do have a first class set. Next, one can show that the Hamiltonian vector field of the constraint C_{Λ} generates precisely the gauge transformation of electrodynamics. Since

$$X_{C_{\Lambda}} = \int_{\Sigma} d^3x \left[-(D_a \Lambda(x)) \cdot \left(\frac{\delta}{\delta A_a(x)} \right) \right], \qquad (2.2.11)$$

the infinitesimal canonical transformation induced by this vector field is

$$A_a \mapsto A_a - \epsilon D_a \Lambda$$
, and $E^a \mapsto E^a$. (2.2.12)

These are precisely the gauge transformations induced by the gauge function Λ .

2.3 Dirac quantization program and its limitations

In the sixties, Dirac developed a program for quantization of first class systems which has since been used widely ⁶. (See, e.g., Dirac (1964).) In particular, the attempts at canonical quantization of general relativity have traditionally followed this route. In this section, I will first outline the program and then point out some of its limitations. The algebraic quantization program introduced in the next subsection is an extension of the Dirac strategy, aimed at overcoming these limitations.

Let us suppose that the phase space Γ of the classical system has the structure of a cotangent bundle. (I am making this restriction for simplicity of presentation. The program can be implemented in a more general context using ideas from geometrical quantization. See, e.g., Ashtekar and Stillermann (1986).) We shall denote the configuration variables by q and momentum variables by p. Let the first class constraints be C(q, p). The q, p and C are all collective labels. In particular, Γ may be infinite dimensional and there may be infinitely many constraints as in the example of a Maxwell field, considered above.

To quantize the system, one proceeds in the following steps:

- Ignore the constraint to begin with. Then, it is natural to consider as states wave functions $\Psi(q)$ on the configuration space, represent the operators \hat{q} by multiplication, $\hat{q} \cdot \Psi(q) = q\Psi(q)$, and \hat{p} by derivation, $\hat{p} \cdot \Psi(q) = -i\hbar \delta \Psi/\delta q$, so that the classical Poisson brackets are taken over to $i\hbar$ times the commutators. Denote by V the vector space spanned by $\Psi(q)$.
- Since constraints are ignored, the elements of V do not represent physical states. To obtain these, one first promotes the classical constraints C(q,p) to operators $\hat{C} := C(\hat{q},\hat{p})$ on the V. In general, this step needs a choice of factor ordering (and, in the case of a system with infinite number of degrees of freedom, also regularization). Then, one selects physical states Ψ_P as those elements of V which are annihilated by

⁶ Second class constraints, if any, arise in pairs and the pull-back of the symplectic structure to the sub-manifold where these constraints hold is non-degenerate. Therefore, this sub-manifold can be taken to be the phase space of the system right in the beginning of the analysis. That is, the second class constraints are eliminated classically before embarking on the quantization program.

the operators \hat{C} . The space V_P spanned by Ψ_P is the space of states of relevance to physics. The idea is to do quantum mechanics on this V_P .

Let us illustrate the program by applying it to the case of a Maxwell field considered above. In the first step, one represents quantum states as functionals of vector potentials $\Psi(A)$ on the spatial 3-plane Σ and defines the operators (or, rather, operator-valued distributions) $\hat{A}_a(x)$ and $\hat{E}^a(x)$ as: $\hat{A}_a(x) \cdot \Psi(A) = A_a(x)\Psi(A)$ and $\hat{E}^a(x) \cdot \Psi(A) = -i\hbar \delta \Psi(A)/\delta A_a(x)$. In the second step, one wants to select the physical states. To do so, one first promotes the constraint functionals $C_{\Lambda}(E)$ to concrete operators: $\hat{C}_{\Lambda} = -i\hbar \int d^3x (D_a \Lambda(x))(\delta/\delta A_a(x))$. The physical states are annihilated by all these operators. A straightforward calculation shows that this condition is equivalent to demanding that the states $\Psi_P(A)$ be gauge invariant. Thus, the imposition of the quantum constraint has precisely the desired effect: in the classical theory, the constraints generate gauge on the Maxwell phase space while in quantum theory they require that physical states be gauge invariant.

As a second, and somewhat different example, consider a free particle of mass m in Minkowski space. The classical phase space is the cotangent bundle over Minkowski space and there is one constraint, $p^{\mu}p_{\mu} + m^2 = 0$, which ensures, in a relativistically invariant way, that the intuitive expectation that the system should have only 3 degrees of freedom is correct. In the Dirac program, states can be represented by functions $\Psi(q)$ on Minkowski space. The physical states $\Psi_P(q)$ must then satisfy the operator version $\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}\Psi_P(q) + m^2\Psi_P(q) = 0$ of the classical constraint. That is, the physical states are precisely the solutions to the Klein-Gordon equation. From representation theory of the Poincaré group, we know that the space of suitable solutions to this equation can be interpreted as representing quantum states of a relativistic particle with mass m and spin zero. Thus, again, the Dirac imposition of the quantum constraint provides the answer that we expect on physical grounds.

In spite of these nice features, the program is incomplete in certain ways and this turns out to be an important limitation for application to diffeomorphism invariant theories such as general relativity. First, it provides no guidelines for introducing the appropriate inner product on the space of physical states. In examples such as the ones considered above -fields or particles in Minkowski space—one does not encounter a serious difficulty in practice because one can use the available symmetries to select a preferred inner-product. For examples, in the case of the Maxwell field, one selects the vacuum state by invoking Poincaré invariance and then uses the vacuum expectation values of physical operators to obtain the required Hilbert space structure. Similarly, in the case of a free relativistic particle, the time translation group enables one to perform a natural positive and negative frequency decomposition of the solutions to the Klein-Gordon equation and arrive at the standard Hilbert space structure. In canonical quantum gravity, on the other hand, such a space-time group of symmetries is simply not available. (One might imagine using the spatial diffeomorphism group to select the vacuum. However, the strategy fails because imposition of quantum constraints implies that every physical state is invariant under this group). Therefore, Dirac's program has to be supplemented with a new guiding principle.

A second problem one often encounters is the following. In interesting examples, although the phase space Γ may indeed have the cotangent bundle structure, the configuration space \mathcal{C} is often a non-trivial manifold (i.e., not diffeomorphic to \mathbb{R}^n). When this occurs, there is no global chart whence a complete set of configuration and momentum observables is necessarily overcomplete. That is, there are algebraic relations between the basic variables which one wants to promote to operators in the quantum theory. Again, a guiding principle is needed, already in the first step of the program, to specify how these are to be incorporated in the quantum theory. Are they to be imposed as "additional constraints"? Or, is one to first construct an algebra which already incorporates these constraints and then seek its representations on a vector space V? Or, should one do something entirely different? In concrete examples, this problem may remain hidden if the quantum constraint operators \hat{C} can be constructed directly without having to go through the "elementary" operators such as \hat{q} and \hat{p} . Unfortunately, as we will see, this simplification does not always arise whence new input is needed.

2.4 Algebraic quantization program

We will now introduce a slight extension of the Dirac program aimed at overcoming the limitations discussed above. The new ingredients can be summarized as follows. (For details, see chapter 10 of Ashtekar (1991), Ashtekar and Tate (1992) and Rendall (1992a).)

First, the program is algebraic in spirit. Thus, one first constructs an (abstract) algebra of quantum operators and then looks for its representations. In non-relativistic quantum mechanics (on \mathbb{R}^n) Von-Neumann's uniqueness theorem tells us that there is only one representation of the canonical commutation relations (CCRs) that is of direct physical interest. In the context of field theories, on the other hand, the CCRs admit infinitely many inequivalent representations and one does not know a priori which of them would encompass the physical situation under consideration. The algebraic strategy is therefore better suited.

Second, in the very construction of the algebra, one begins with a class of "elementary functions" on the phase space which can be more general than the q and the p considered above. Not only does this enable one to consider systems in which the phase space does not necessarily have the structure of a cotangent bundle, but it also introduces considerable flexibility. For the Maxwell field considered above, for example, one may take, as one's elementary functions, self dual electric and magnetic fields, or even a "hybrid" pair consisting of the self dual (and hence, complex) electric field but a real vector potential. This is important because, as we will see in section 4, equations of general relativity simplify considerably if one uses such hybrid variables. Another new feature is that the set of elementary variables can be overcomplete. The algebraic relations between them are incorporated right in the beginning, in the very construction of the algebra of quantum operators. We shall see in section 5 that this flexibility is essential if one wants to carry out quantization in the loop representation.

Third, the "reality conditions" in the classical theory are incorporated in the \star -relations in the quantum algebra. That is, if two elementary functions on the classical

phase space are complex-conjugates of one another, the corresponding operators are to be \star -adjoints of one another. This enables one to introduce a new guiding principle to select the physical inner product without reference to a symmetry group. Given an irreducible representation of the quantum algebra on a vector space (V or V_P), one seeks an inner product such that the abstractly defined \star -relations become concrete Hermitian-adjointness relations on the resulting Hilbert space of states. Such an inner-product, if it exists, is unique even if the system has an infinite number of degrees of freedom (Rendall (1992a)). If it does not exist, one has to start all over and begin with a new vector space representation. In a variety of physical examples considered so far -2+1 gravity, photons and gravitons in 3+1-dimensional Minkowski space, non-trivially constrained systems with a finite number of degrees of freedom, quantization based on self dual or "hybrid" elementary variables, etc.— this procedure has successfully picked out the correct inner-product.

The example of 2+1 dimensional gravity—discussed in section 3— is particularly interesting because, as in the 3+1 case, the theory is diffeomorphism invariant. In spite of this feature, contrary to what was the conventional wisdom, one can arrive at the correct inner-product without having to first isolate time and "deparametrize" the theory. Such a deparametrization is likely to be essential to interpret the theory properly. However, for such purposes, it may well suffice to have only an approximate notion of time. Had it been essential to single out time to get an inner-product, on the other hand, an approximate notion would not suffice; one cannot do mathematical physics with approximate inner products! Finally, note that, in elementary quantum mechanics, it is always the case that the classical complex-conjugation relations are promoted to hermiticity conditions on operators. Therefore, the above strategy involving classical "reality conditions" may seem trivial at first. What is new here is that, unlike in elementary quantum mechanics, we do not have an a priori inner product and the strategy is used to select one.

We can now spell out the main steps involved:

- 1. As in the Dirac program, ignore the constraints to begin with. Select a subspace \mathcal{S} of complex-valued functions on the classical phase-space, closed under the operation of taking Poisson-brackets. Each element of \mathcal{S} is to be promoted to a quantum operator unambiguously; it represents an elementary classical variable. \mathcal{S} has to be "small enough" so that this quantization procedure can be carried out unambiguously (i.e. without eventual factor ordering problems) and yet "large enough" so that they can serve as (complex) coordinates on the phase-space.
- 2. Associate with each element F of S an abstract operator \hat{F} . These are the elementary quantum operators. Construct the (free) algebra generated by these elements and impose the canonical commutation relations: $[\hat{F}, \hat{G}] i\hbar\{\hat{F}, \hat{G}\} = 0$. If there are algebraic relations between the elementary classical variables, these are to be incorporated in the very construction of the quantum algebra. For example, if the functions F, G and FG on the phase space are all elementary classical variables, then one requires, in the quantum algebra, $\hat{F}\hat{G} + \hat{G}\hat{F} 2\widehat{FG} = 0$. (For further details, see references quoted in the beginning of this section.) Denote the resulting algebra by A.
- 3. Next, define a \star -relation (i.e. an involution) on this algebra by requiring that, if two elementary classical variables F and G are complex conjugates of one another, i.e.,

- if $\bar{F} = G$, then $\hat{G} = (\hat{F})^*$, and that the \star operation satisfies the properties of an involution. (Recall that these are: $(\hat{F} + \lambda \hat{G})^* = \hat{F}^* + (\bar{\lambda})\hat{G}^*$, $(\hat{F}\hat{G})^* = \hat{G}^*\hat{F}^*$, and, $(\hat{F}^*)^* = F$.) Denote the resulting \star -algebra by $\mathcal{A}^{(\star)}$.
- 4. Find a representation of the algebra \mathcal{A} by operators on a complex vector space V. Note that in general V may not be equipped with any inner-product and that the \star -relations can be ignored at this stage. This representation may be obtained by any convenient means. Possible candidates are: geometric quantization techniques, group theoretical methods and Gel'fand spectral theory discussed in the next section.
- 5. Obtain the quantum analogs of the classical constraints. In general, this requires the choice of a factor-ordering and regularization. Find the linear subspace V_{phy} of V which is annihilated by all quantum constraints. This is the space of physical quantum states.
- 6. Introduce an inner-product on V_{phy} such that the \star -relations –ignored so far– become Hermitian adjoint relations on the resulting Hilbert space. Note that the full \star -algebra $\mathcal{A}^{(\star)}$ itself does not have a well-defined action on the physical subspace V_{phy} ; a general element of \mathcal{A} would not weakly commute with the constraints and would therefore throw physical states out of V_{phy} . One must therefore find a "sufficiently large" set of operators which weakly commute with the constraints whose \star -adjoints also weakly commute with the constraints. It is the \star -relations between these "physical" operators that are to be taken over to Hermitian adjointness relations by the inner product. This is a rather involved procedure.
- 7. Interpret a sufficiently large class of self-adjoint operators; devise methods to compute their spectra and eigenvectors; analyze if there is a precise sense in which the 1-parameter family of transformations generated by the Hamiltonian can be interpreted as "time evolution"; etc.

If this program can be completed, one would have available a coherent mathematical framework. Conceptual issues from measurement theory can be then faced. It is important to emphasize, however, that these steps are meant to be guidelines rather than a rigid set of rules. The strength of the program lies in the fact that: i) it provides a broad framework encompassing many physically interesting systems including gauge theories and general relativity; and, ii) it isolates the inputs that are required: Selection of the space \mathcal{S} of elementary variables in the first step and the choice of the vector space representation in the fourth step. Once these choices are made, the quantum theory, if it exists, is unique. This helps to focus one's efforts. However, one must use judgement and physical intuition to make this selection. This is as it must be for we are trying to arrive at a more complete quantum theory starting only from its classical limit.

⁷ In certain cases, it turns out to be easier to first isolate the physical operators that weakly commute with constraints and then introduce \star -relations directly on them. In such situations, it is not necessary to equip the initial operator algebra \mathcal{A} with a \star -operation.

2.5 Connections and loops: a non-linear duality

The purpose of this subsection is to present a strategy to quantize theories of connections by exploiting a certain "non-linear duality" that exists between connections and loops. (Throughout this subsection, the term "duality" is used in the sense of "interplay" rather than as a specific mathematical operation.) This strategy is particularly well suited for diffeomorphism invariant theories of connections such as general relativity in 3 and 4 dimensions and certain topological field theories. The technical level of this material is, however, substantially more sophisticated than that of the material covered so far in this section. Therefore, the treatment will not be as detailed. My aim is to provide a bird's eye view and make the reader comfortable with the multifaceted use of loops in quantum theories of connections.

Let A_a^i be a connection on a manifold Σ which takes values in the Lie algebra of a group G. In concrete applications, we will take Σ to be a spatial slice in space-time and choose G to be either U(1) or SU(2). Let γ be a closed curve in Σ . Then, the trace $T[\gamma, A]$ of the holonomy of A_a^i around a closed loop γ is defined to be:

$$T[\gamma, A] := \operatorname{tr} \mathcal{P} \left(\exp(\oint_{\gamma} dS^a A_a) \right), \tag{2.5.1}$$

where, \mathcal{P} stands for "path-ordered," the trace is taken in some representation of G and A_a is the matrix valued 1-form representing A_a^i in the corresponding representation of the Lie algebra. For a fixed γ , $T[\gamma,A]$ can be regarded as a function on the space \mathcal{C} of connections. However these functions are gauge invariant and therefore naturally project down to the quotient \mathcal{C}/\mathcal{G} of \mathcal{C} by the group \mathcal{G} of local gauge transformations. Similarly, for a fixed A, $T[\gamma,A]$ can be regarded as a function on the space of loops. However, in general, these functions do not separate loops. Let γ be (trace-)equivalent to γ' if for all connections A_a^i , in the Lie algebra of G, $T[\gamma,A] = T[\gamma',A]$. (This notion of equivalence is sensitive to the choice G. For example, γ is equivalent to γ^{-1} if G is SU(2) but not if it is U(1).) Each of these (trace) equivalence classes of loops will be called a G-troop. However, for simplicity, in what follows we will generally not pass to the quotients; we will regard $T[\gamma,A]$ as a function of loops and connections and just bear in mind that it can be projected to the space of troops and gauge-equivalence classes of connections.

Note that there is a striking similarity between the functional form (2.5.1) of $T[\gamma, A]$ and the form of the integral kernel $\exp(i\vec{k}\cdot\vec{x})$ which enables one to transform functions of \vec{x} to functions of \vec{k} . Indeed, it is possible to use the trace as the kernel in an integral transform which sends functions of connections to functions of loops: we can set

$$\psi(\gamma) := \int_{\mathcal{C}/\mathcal{G}} d\mu T[\gamma, A] \Psi[A], \qquad (2.5.2)$$

where $d\mu$ is a measure on \mathcal{C}/\mathcal{G} . (This transform was first proposed as a powerful but heuristic device by Rovelli and Smolin (1990) and was put on a precise mathematical footing by Ashtekar and Isham (1992).) Thus, in analogy to the duality between \vec{k} and \vec{x} , we can say that troops are dual to the gauge equivalence class of connections. In the

non-Abelian case, however, the space of troops as well as the space of gauge equivalence class of connections are *non-linear*, whence the terminology "non-linear duality". We will see that this duality is quite powerful.

Let me begin by illustrating these ideas in the context of the Abelian (Maxwell) theory in Minkowski space. We will be interested in a canonical approach. Therefore, all loops and fields will be defined on a spatial plane, t = const. Let us begin with observables, the electric and the magnetic fields. These are normally measured in the lab through their fluxes across 2-surfaces. Let S and S' be two such surfaces bounded by closed loops γ and γ' . Then a simple calculation shows that the commutator between the fluxes of the two operators, $[\hat{B}(S), \hat{E}(S')]$ is given simply by $i\hbar \mathcal{L}(\gamma, \gamma')$, where $\mathcal{L}(\gamma, \gamma')$ is the Gauss linking number between the closed loops γ and γ' . Hence, the two fluxes are are subject to the fundamental Heisenberg uncertainty relations:

$$\Delta[\hat{E}(S)] \cdot \Delta[\hat{B}(S')] = \hbar \mathcal{L}(\gamma, \gamma'). \tag{2.5.3}$$

On the left side, we have physical fields while on the right side, the simplest topological invariant associated with two loops. The two are related precisely because the fluxes in question are just the holonomies of (magnetic and electric) connections around the loops that feature on the right side. This interplay between connections and loops opens up new ways of describing the quantum Maxwell field. For example, the photon states in the Fock space can be represented by suitable functions on the loop space and the entire physics of the Maxwell field can be captured in the properties of these functions (Ashtekar & Rovelli, 1992).

Let us now turn our attention to non-Abelian theories. To be specific, let the gauge group be SU(2) and let Σ be a spatial 3-manifold. For the present discussion, we will focus just on the Gauss constraint; other constraints, if any, are to be considered at the end. We can therefore take the traces of holonomies as gauge invariant configuration variables. Since we are now thinking of these as functions of connections, labelled by loops, let us denote them as $T[\gamma](A)$. It is easy to verify that they form an overcomplete set of functions on the effective configuration space of the theory, \mathcal{C}/\mathcal{G} . Following Rovelli and Smolin (1990), we can also introduce momentum variables which are again gauge invariant and labelled by loops. (We will not need their explicit expressions here. They are discussed in detail in sections 4 and 5.) Together, these two sets can serve as the elementary classical variables in the algebraic quantization program: the complex vector space they generate is closed under the Poisson bracket and the variables are overcomplete on the effective phase space $T^*(\mathcal{C}/\mathcal{G})$. It is easy to follow the steps outlined in section 2.4 to construct the quantum \star -algebra corresponding to these variables.

The next task is that of finding the representations of this quantum algebra. The following program addresses this task systematically. First, one focuses on the *Abelian* part of the algebra, makes it into a C^* algebra and uses a powerful framework due to Gel'fand to develop a proper representation theory of this C^* -algebra. In the next stage, one brings in the rest of the algebra. Not all representations of the Abelian algebra carry representations of the full algebra. One focuses only on those which do. Finally, one takes up the issue of dynamics (or, of imposition of the remaining constraints, if any) to further weed the remaining representations. More precisely, one requires that the representation

should be such that the Hamiltonian (or the constraint operators) be well defined. While this general program is applicable to any field theory, in practice, the last step is *extremely* difficult to carry out. For diffeomorphism invariant theories, however, one can often succeed basically because dynamics is either trivial or governed by constraints. An example is given by 3-dimensional general relativity discussed in the next section. Most of the discussion in the remainder of this section, however, will be devoted to the first step of this program.

To carry out this step, we have to select an appropriate Abelian subalgebra of the quantum algebra. The obvious choice is to use the configuration variables $T[\gamma](A)$; since they depend only on the connections on the spatial slice and not on the conjugate momentum, their mutual Poisson brackets vanish. With each closed loop γ , let us associate an abstractly defined quantum operator $\hat{T}[\gamma]$. Denote by \mathcal{A}_0 the free associative algebra they generate. Following the algebraic quantization program, we need to incorporate in \mathcal{A}_0 the algebraic relations that exist among the classical functions $T[\gamma]$ on \mathcal{C}/\mathcal{G} . This can be easily achieved. (In this step, the troop equivalence is automatically incorporated.) Finally the sup norm on the space of classical configuration variables naturally endows the quantum \star -algebra with an appropriate norm. Denote the resulting C^{\star} -algebra by \mathcal{A} . Note that because we started by considering functions of connections, the generators of the algebra $\hat{T}[\gamma]$ are labelled by loops.

To find representations, one can use Gel'fand's theory of representations of Abelian C^* algebras. The first key result is that every such algebra is isomorphic to the C^* algebra of continuous complex valued functions on a compact topological space. This space is called the Gel'fand spectrum of the algebra and generally denoted by Δ . What is even more interesting is that Δ can be constructed from the C^* -algebra itself. As a point set, Δ is the space of maximal ideals of the algebra, or, equivalently, of (multiplicative) homomorphisms from the algebra to the complex numbers. The Gel'fand topology on Δ is the the weakest one which makes the naturally defined functions on Δ , $f_{\hat{a}}(h) := h(\hat{a})$, continuous. (Here $h \in \Delta$ is regarded as a homomorphism from the algebra to complexes and \hat{a} is any fixed element of the algebra.)

Our holonomy algebra \mathcal{A} is, in particular, isomorphic to the algebra of continuous functions on its specturm Δ . Furthermore, one can show (Rendall, 1992) that the classical configuration space \mathcal{C}/\mathcal{G} is densely embedded in Δ . Now, one intuitively expects the quantum states to be gauge invariant functions of connections, i.e., functions on \mathcal{C}/\mathcal{G} . This expectation is essentially correct. The domain space turns out to be Δ : quantum states $\Psi(h)$ are functions on Δ and the algebra operates on them via the natural map: $\hat{a} \cdot \Psi(h) = h(\hat{a})\Psi(h)$, for all $h \in \Delta$ and $\hat{a} \in \mathcal{A}$. There is of course a key difference between \mathcal{C}/\mathcal{G} and Δ ; while the former is not even locally-compact in any one of the standard topologies one uses on spaces of connections, the latter is compact in it's natural, Gel'fand topology. This in particular means that Δ admits regular measures. Let $d\mu$ be one such measure. Then a C^* -representation of the algebra is given by choosing as the Hilbert space of states, the Cauchy completion of all continuous functions with respect to the Hermitian inner product:

$$\langle \Psi_1 | \Psi_2 \rangle := \int_{\Delta} d\mu \overline{\Psi_1(h)} \Psi_2(h).$$
 (2.5.4)

Note that, since traces of holonomies around any fixed troop are continuous functions on Δ , it follows that they belong to the Hilbert space. Hence, we see that the Rovelli-Smolin transform (2.5.2) is well-defined from (L^2)-functions on Δ to functions on the space of troops.

In quantum mechanics of systems with only a finite number of degrees of freedom, the classical configuration space turns out to be the domain space of quantum states. In field theory, one generally has to enlarge the classical configuration space to obtain the domain space because quantum states tend to have support on distributional classical configurations. This is the essential reason behind the enlargement from \mathcal{C}/\mathcal{G} to Δ . Let us put these important technicalities aside for a moment. Then, the rough picture that emerges is the following. The operator algebra is generated by $\hat{T}[\gamma]$ labelled by closed loops while states $\Psi(h)$ are functions of (generalized) connections.

This interplay between loops and connections continues. To see this, let us first note that there is a precise sense in which the representations considered in the previous paragraph are the generic ones. The sense is the following. Given a C^* -algebra, of particular interest are its *cyclic* representations. These are the ones in which one can obtain (a dense subspace of) the Hilbert space of states by acting successively by the elements of the algebra on a fiducial vector, called the cyclic vector or the vacuum. Roughly speaking, cyclic representations are the "building blocks" from which all other representations can be constructed. The key fact is that *every* cyclic representation is of the type discussed above. Furthermore, the measure $d\mu$ is completely determined by its "Fourier transform," $\Gamma[\alpha]$, given by

$$\Gamma[\alpha] := \int_{\Lambda} d\mu(h) \, h(\hat{T}[\alpha]), \tag{2.5.5}$$

where, once again, we have used the fact that every element h of Δ is a homomorphism on the algebra. Note that $\Gamma[\alpha]$ –called the generating function of the representation– is a function on the space of loops. Furthermore, one can write down directly –i.e., without knowing the measure $d\mu$ – necessary and sufficient conditions on a loop function so that it can qualify to be a generating function. That is, one can write down suitable loop functions $\Gamma[\alpha]$ directly and use them to determine the measure $d\mu$ and hence the representation. Often, physics of the problem naturally leads to candidates for the generating functions $\Gamma[\alpha]$. For example, in the SU(2) case under consideration, if we wish to find a diffeomorphism invariant representation, we could use for $\Gamma[\alpha]$ the following function:

$$\Gamma[\alpha] := \int_{\mathcal{M}} dV(A) T[\alpha](A), \qquad (2.5.6)$$

where \mathcal{M} is the moduli space of $flat\ SU(2)$ connections on the 3-manifold Σ and dV a volume element thereon. This representation plays a key role in the quantization of the Chern-Simons theory of ISO(3) (i.e., the Euclidean group in 3 dimensions) connections. The diffeomorphism group of Σ is unitarily represented on the Hilbert space of states. One expects that other diffeomorphism invariant measures on Δ can be obtained by choosing suitable *knot invariants* for one's generating function, $\Gamma[\alpha]$.

To summarize, in theories of connections, the generators of the Abelian C^* algebra \mathcal{A} are labelled by loops. The states are functions of (generalized) connections. Suitable functions of loops lead to measures on the space of (generalized) connections, thereby fixing the inner product. More precisely, for each choice of the generating function $\Gamma[\alpha]$, we obtain a cyclic representation of the algebra \mathcal{A} . The choice of $\Gamma[\alpha]$ is to be dictated by the physics of the problem. In diffeomorphism invariant theories, there are often natural candidates available and it appears that there is an interesting interplay between knots and diffeomorphism invariant measures on the space of (generalized) connections. We will see in the next section, quantization of 2+1 dimensional general relativity can be carried out by choosing the appropriate analog of (2.5.6) for the required generating function.

3. Three faces of 2+1 quantum gravity

Feynman thought about it himself. Once –uninterested though he was in fiction or poetry– he carefully copied out a verse fragment by Vladimir Nabokov: "space is a swarming in the eyes; and time, a singing in the ears".

James Gleick (Genius).

3.1 Introduction

Researchers in non-perturbative quantum gravity have, by and large, adopted three viewpoints. Very roughly, they can be summarized as follows.

In the first and the most abstract of the three, one begins with some discrete structures at a fundamental level and attempts to capture physics through combinatorial principles. Examples of such attempts are those dealing with spin-networks, twistors and causal sets. The underlying idea is clearly very exciting and thought provoking. However, these approaches have suffered from the extreme open-endedness of the problem. The second viewpoint emerged from the canonical approach as practiced by the Bergmann school in the sixties and the seventies. The viewpoint here is that all physics is contained in the solutions to the quantum constraint equations; there is no time and no dynamics. Physical questions are to be phrased and answered in terms of the Dirac observables –i.e., the operators which (weakly) commute with the constraints. This "timeless description" is very much in the spirit of classical general relativity where solutions to field equations represent entire space-times. At a fundamental, covariant level, nothing "happens"; evolution arises only when we introduce an extra structure such as a foliation and compare fields on one leaf of the foliation with those on another. The main problem with this method is the construction of a sensible measurement theory to handle issues discussed in Jim Hartle's lectures. The third viewpoint emerged in the seventies from Wheeler's school of thought also on canonical quantization. As explained in section 1, the idea here is to interpret the quantum scalar constraint as a Schrödinger equation for evolution of quantum states by isolating one of the components of the configuration variables as time. The emphasis is on "departrization" of general relativity: Not only is this step considered essential for interpretational issues but also for selecting the correct mathematical ingredients, particularly the inner-product on physical states. These ideas have been implemented in a number of truncated models. However, in full, 3+1 dimensional general relativity, the program faces serious obstacles (see, e.g., Kuchař (1981)).

In this chapter, we will discuss 3-dimensional general relativity. We will find that the algebraic quantization program discussed in section 2.4 can be completed and, furthermore, leads to three descriptions which can be regarded as implementations of the three sets of ideas discussed above. These are the three faces of 2+1 quantum gravity. The first is a description without space and without time; the second is a timeless description on a given spatial manifold; time arises in the third description, but "internally," as one of the

mathematical variables of the theory and with it are born the notion of dynamics and unitarity. Thus, we have a concrete example in which the three sets of ideas co-exist in a complementary fashion. This framework serves to illustrate what we are aiming for in the 4-dimensional theory. We will see in the next two sections that notable progress has been made on each of the three directions if one regards general relativity as a dynamical theory of connections rather than of metrics.

3-dimensional gravity provides us with an interesting example because, although it is very similar to the 4-dimensional theory in its structure, it is technically much simpler. As in the 4-dimensional case, the theory is diffeomorphism invariant; the gravitational field is coded in the very geometry of space-time; there is no background time to evolve in; and, in the Hamiltonian formulation, dynamics is governed by first class constraints. A simple minded dimensional counting suggests that, as in the 3+1 case, the theory would be perturbatively non-renormalizable. Indeed, there are some detailed papers in the literature arguing that in the perturbative ("covariant") quantization scheme, the theory is as pathological as 3+1-dimensional general relativity. The theory was also analysed canonically using geometrodynamical variables —the 2-metric and the extrinsic curvature of a spatial slice. It was found that the functional form of the constraints as well as their Poisson algebra is completely analogous to that in the 3+1 dimensional case, whence it was difficult to find solutions to the quantum scalar constraint, i.e., the Wheeler-DeWitt equation. Thus, up until mid-eighties, the general consensus was that quantum general relativity is almost as difficult in 2+1 dimensions as it is in 3+1. On the other hand, it was known that, since the vanishing of the Einstein tensor implies the vanishing of the Riemann tensor in 3-dimensions, every solution to the vacuum equation is flat. Thus, in 2+1 dimensions, there are no gravity waves classically, and hence no gravitons quantum mechanically. This suggests that, technically, the theory should be much easier to handle. We now know that this expectation is correct: the theory can in fact be solved exactly. There are no divergences, and, the general solution to all quantum constraints can be constructed provided one chooses judicious canonical variables (Achucarro & Townsend (1986), Witten (1988), Ashtekar et al (1989).) Furthermore, these are precisely the analogs of the canonical variables which have simplified the equations in 3+1 dimensions (Ashtekar (1987)) and which we will use in the next two chapters.

In this chapter, we will present a treatment which admits an extension to 3+1 dimensions. In section 2, we present the classical Hamiltonian framework assuming that the spatial sections are compact. In section 3, we construct the "timeless" quantum description along the lines of the Bergmann school. In section 4, for simplicity we restrict ourselves to the 2-torus spatial topology and recast this description in a form in which only discrete structures and combinatorial techniques come into play. In section 5, we reformulate the description by extracting time and reducing the scalar constraint to a time evolution equation. (The problem of extracting time in the case of more general topologies is still open.)

There is a very considerable body of research on 2+1 dimensional gravity particularly by Carlip, Deser, Jackiw and 't Hooft, Hoyosa, Martin and Moncrief. Much of this work, however, is in either geometrodynamical framework or in the context of Witten's (1988) reformulation of 2+1 dimensional general relativity as a ISO(2,1) theory. While both

approaches are closely related to the one presented here, neither generalizes in a direct manner to 3+1 dimensional general relativity. Since my primary motivation for treating 2+1 dimensional gravity is to make the reader familiar with certain ideas, techniques and viewpoints that are useful in 3+1 dimensions, I will refrain from discussing these other approaches.

3.2 Hamiltonian formulation

Let us assume that the space-time manifold has topology $\Sigma \times \mathbb{R}$ where Σ is an orientable, compact 2-manifold of an arbitrarily chosen but fixed genus. We will begin with the Palatini action and then perform a Legendre transform to pass to the Hamiltonian description. Thus, the basic variables are co-triads, e_a^I , and SO(2,1) connections, $^3A_a^I$, where the uppercase latin letters I, J... denote internal SO(2,1) indices (and label the co-triads, while the lower case latin indices a, b, ... denote space-time (or spatial) indices. To recover general relativity, one must assume that the co-triads are linearly independent. However, our framework itself is slightly more general; it can accommodate degenerate metrics. In that follows, we shall consider this more general theory (except when we comment on the relation of this framework to geometrodynamics). The action is given by:

$$S(e, {}^{3}A) := \int_{M} d^{3}x \, \widetilde{\eta}^{abc} e_{a}^{I} {}^{3}F_{bcI}, \qquad (3.2.1)$$

where, $\tilde{\eta}^{abc}$ is the metric independent Levi-Civita density on M and, ${}^3F_{abI} := 2\partial_{[a}{}^3A_{b]I} + \epsilon_{IJK}{}^3A_a^J{}^3A_b^K$ is the field strength of the connection ${}^3A_a^I$. The classical equations of motion are:

$${}^{3}\mathcal{D}_{[a}e_{b]I} = 0$$
 and ${}^{3}F_{ab}^{I} = 0,$ (3.2.2)

where ${}^{3}\mathcal{D}$ is the gauge covariant derivative operator determined by ${}^{3}A_{a}^{I}$. The first equation ensures that the connection is compatible with the triad while the second tells us that the connection is flat. Together, they tell us that (when the triad is non-degenerate) the 3-metric $g_{ab} := e_{a}^{I}e_{bI}$ constructed from the triad is flat, i.e., satisfies the 3-dimensional Einstein's equation. Thus, the 2+1 theory has no local degrees of freedom. As we will see later in this section, it does, however, have (a finite number of) global, topological degrees of freedom.

As far as classical equations of motion are concerned, the Palatini action (3.2.1) is of course completely equivalent to the Einstein-Hilbert action. However, while the Einstein-Hilbert action leads to the geometrodynamical Hamiltonian framework –based on 2-metrics and extrinsic curvatures—as we will now see, in 2+1 dimensions, the Palatini action naturally leads to quite a different Hamiltonian description.

Let us then perform the Legendre transform of this action. The resulting phase space description is as follows. The configuration space \mathcal{C} is the space of pull-backs, A_a^I , to the 2-dimensional spatial slice Σ of the connection ${}^3A_a^I$. The momentum \widetilde{E}_I^a conjugate to A_a^I is the dual of the pull-back of the co-triad e_b^I , $\widetilde{E}_I^a := \widetilde{\eta}^{ab} e_{bI}$, where $\widetilde{\eta}^{ab}$ is the (metric

independent) Levi-Civita density of weight 1 on Σ . Thus, the phase space Γ consists of pairs (A_a^I, \tilde{E}_I^a) of fields on Σ ; the basic (non-vanishing) Poisson brackets are simply

$$\{A_a^I(x), \, \widetilde{E}_J^b(y)\} = \delta_a^b \, \delta_J^I \, \delta^2(x, y).$$
 (3.2.3)

Note that although \widetilde{E}_I^a does determine the induced metric q_{ab} on the spatial 2-manifold Σ via $(\det q)$ $q^{ab} = \widetilde{E}_I^a \widetilde{E}^{bI}$, the momenta \widetilde{E}_I^a are not dyads; the internal index still runs from 1 to 3. Thus, we are not assuming that there is a global frame field on Σ . Such an assumption would have restricted the topology of Σ severely; our construction, on the other hand, places no such restriction.

The system has first class constraints. These can be read-off from the Legendre transform of the action, or, more directly, by simply pulling back the equations of motion (3.2.1) to the spatial slice:

$$\mathcal{D}_a \widetilde{E}_I^a = 0 \quad \text{and} \quad F_{ab}^I = 0, \tag{3.2.4}$$

where F_{ab}^{I} is the curvature of A_{a}^{I} . The first equation is the Gauss constraint which ensures that the internal SO(2,1)-rotations are gauge transformations. The "time" component, on the internal index, of the second equation is equivalent to the scalar (or, Hamiltonian) constraint of 2+1 dimensional geometrodynamics, while the "space" component gives us the vector (or, diffeomorphism) constraint. As could have been expected, the Hamiltonian is a linear combination of constraints. The striking feature of the constraints is their simplicity: the first is linear in momentum, the second depends only on the configuration variable. We will see that this makes the task of quantization rather straightforward.

We now introduce two sets of functions associated with closed loops γ on Σ . Elements of the first set will be denoted by $T^0[\gamma]$ and of the second by $T^1[\gamma]$. The $T^0[\gamma]$ represent configuration variables in that they depend only on A_a^I while the $T^1[\gamma]$ represent the momentum variables in that they depend linearly in \widetilde{E} . (The superscripts 0 and 1 thus refer to the momentum dependence. One can also construct observables $T^n[\gamma]$ which are higher order in momenta. However, it turns out to be redundant to do so.) These configuration and the momentum variables are defined as follows:

$$T^{0}[\gamma](A) := \frac{1}{2} \operatorname{tr} U_{\gamma} \quad \text{and} \quad T^{1}[\gamma](A, \widetilde{E}) := \frac{1}{2} \oint_{\gamma} dS^{a} \operatorname{tr} E_{a} U_{\gamma}, \quad (3.2.5)$$

where, $U_{\gamma}(s) := \mathcal{P} \exp \int_{\gamma} A$ is the holonomy of A_a^I around γ , evaluated at the point $\gamma(s)$, $E_a := \eta_{ab} \tilde{E}^b$, and where we have used the 2-dimensional representation of SO(2,1) to take the trace 8 . In the case when Σ is non-compact, with the topology of a punctured 2-plane, T^0 is essentially the mass and T^1 , the angular momentum, of the "particle" at the puncture enclosed by the loop γ . In the compact case now under consideration, one does not, on the other hand, have such a direct physical interpretation.

⁸ Since I want to present a bird's eye view, I have skipped detailed definitions of what we mean by loops, holonomies etc. These can be found in section 4.3.

Nonetheless, even in the compact case these functions have certain properties which make them central objects in the classical as well as quantum descriptions within the canonical framework:

- They are *Dirac observables*; their Poisson brackets with constraints vanishes weakly. Thus, in the language of section 2.2, they can be projected down unambiguously to the reduced phase space of the system. This property is straightforward to verify.
- They provide us with a *complete* set of observables on the reduced phase space. This point will be discussed at the end of this section.
- They are closed under the Poisson bracket. Furthermore, the Poisson bracket can be coded in simple operations involving breaking, re-routing and joining the loops in the arguments of these functions. This in turn means that the symplectic structure on true degrees of freedom of general relativity (and also gauge theories) in 2+1 dimensions can be coded in these simple operations.

The Poisson brackets are given by:

$$\{T^{0}[\gamma], T^{0}[\delta]\} = 0; \qquad \{T^{1}[\gamma], T^{0}[\delta]\} = \sum_{i} \Delta_{i}(\gamma, \delta) (T^{0}[\gamma \circ_{i} \delta] - T^{0}[\gamma \circ_{i} \delta^{-1}])$$

$$\{T^{1}[\gamma], T^{1}[\delta]\} = \sum_{i} \Delta_{i}(\gamma, \delta) (T^{1}[\gamma \circ_{i} \delta] - T^{1}[\gamma \circ_{i} \delta^{-1}]),$$
(3.2.6)

where, i labels the points where the two curves γ and δ intersect, \circ_i stands for composition of the two curves at the ith intersection and Δ_i equals $\pm \frac{1}{2}$ depending on whether the dyad formed by the tangent vectors to the two curves at i is right or left handed. The general structure of these Poisson brackets is characteristic of the Poisson algebra of configuration and momentum observables on any cotangent bundle. However, the important point is that now we are considering only a subset of configuration and momentum observables, namely the ones associated with closed loops. It is somewhat remarkable that this subset is also closed under Poisson brackets.

The completeness as well as a number of other properties of these 2+1 observables are easier to establish if one notices a certain relation between them. To see this, note first that, since we are in 2+1 dimensions, the configuration space \mathcal{C} itself is equipped with a natural symplectic structure: For any two vectors (δA) and $(\delta A)'$ tangent to \mathcal{C} with components $(\delta A)_a^I$ and $(\delta A)'_a^I$, set $\Omega((\delta A), (\delta A)') := \int_{\Sigma} d^2x \tilde{\eta}^{ab}(\delta A)_a^I(\delta A)'_bI$. Since $T^0[\gamma](A)$ is a function on \mathcal{C} , we can construct the Hamiltonian vector field $X_{[\gamma]}$ it generates. We can now return to the phase space Γ . With every vector field on \mathcal{C} , we can associate a function on Γ which is linear in momenta. It turns out that this is precisely our momentum observable $T^1[\gamma]$ of (3.2.5). Thus, the symplectic structure Ω on \mathcal{C} enables one to "construct" the observables $T^1[\gamma]$ starting from $T^0[\gamma]$. Since $T^0[\gamma]$ are simply traces of holonomies, it is generally easy to analyse their properties. The above construction then enables one to extend these properties to the momentum observables $T^1[\gamma]$. Thus, the following properties:

$$T^{0}[0] = 1,$$
 $T^{0}[\alpha] = T^{0}[\alpha^{-1}],$ $T^{0}[\alpha \circ \beta] = T^{0}[\beta \circ \alpha],$
and $2T^{0}[\alpha] \cdot T^{0}[\beta] = T^{0}[\alpha \circ \beta] + T^{0}[\alpha \circ \beta^{-1}],$ (3.2.7a)

of traces of holonomies (which follow trivially from SO(2,1) trace identities), immediately imply:

$$T^{1}[0] = 0, T^{1}[\alpha] = T^{1}[\alpha^{-1}], T^{1}[\alpha \circ \beta] = T^{1}[\beta \circ \alpha],$$

and $2T^{0}[\alpha] \cdot T^{1}[\beta] + 2T^{0}[\beta] \cdot T^{1}[\alpha] = T^{1}[\alpha \circ \beta] + T^{1}[\alpha \circ \beta^{-1}].$ (3.2.7b)

These are the "universal" algebraic identities shared by $all T^0$ and T^1 observables because they are *over*complete. As required in the algebraic quantization program, they will go over to the quantum theory.

A second application of the above construction of $T^1[\gamma]$ is to the discussion of their completeness as momentum variables. Let us, to begin with, ignore the constraint $F_{ab}^{I}=0$ and concentrate just on the Gauss constraint. This part of the discussion will be therefore applicable also to gauge theories. Now, the effective configuration space is the gauge equivalence classes of connections on Σ and the $T^0[\gamma]$ are well defined functions on this space. Indeed, one generally thinks of traces of holonomies as containing "all the gauge invariant information" that a connection has. Had the gauge group been SO(3) rather than SO(2,1), we could have labelled any gauge equivalence class of connections A_a^I completely by the values that observables $T^0[\gamma]$ take on that equivalence class. In the present case, the situation is a little more complicated: while the holonomies themselves do carry all the gauge invariant information, some of this is lost while taking traces. (In particular, connections whose holonomy group is the null-rotation subgroup of SO(2,1) can not be distinguished from the zero connections if one looks only at traces.) For our purposes, it will suffice to note just that the $T^0[\gamma]$ can be used to separate points almost everywhere on the effective configuration space; completeness fails only on a set of measure zero. (For details, see, e.g., Goldberg et al (1992).) While this failure does have some interesting consequences in quantum theory, we will ignore this issue in the present discussion. The construction of $T^1[\gamma]$ from $T^0[\gamma]$ now implies that these two sets of functions form an (over)complete set of (Gauss-)gauge invariant observables on the phase space Γ . A direct proof of completeness of $T^1[\gamma]$ as (Gauss-)gauge invariant momentum variables would have been quite difficult.

Let us now bring in the constraint $F^I_{ab}=0$ of general relativity (which is absent in gauge theories). Since the entire set of constraints is of first class, we can quotient the constraint surface by the Hamiltonian vector fields generated by the constraint functions and, as in section 2.3, pass to the reduced phase space $\bar{\Gamma}$. Points of $\bar{\Gamma}$ represent the "true degrees of freedom" of 2+1 dimensional general relativity. Since the constraints are either linear or independent of momenta, the quotient construction is a straightforward procedure and the resulting $\bar{\Gamma}$ is again a cotangent bundle. However, while Γ is infinite dimensional, $\bar{\Gamma}$ is only finite dimensional. This comes about because, while the configuration variable A^I_a has 6 degrees of freedom per point of Σ , we also have 6 first class constraints per space point, given by (3.2.4). Thus, 2+1 quantum gravity resembles quantum mechanics rather than quantum field theory; it has no local degrees of freedom.

What structure does $\bar{\Gamma}$ have? Let us begin with the reduced configuration space \bar{C} over which $\bar{\Gamma}$ is the cotangent bundle. \bar{C} is the moduli space of flat SO(2,1) connections: each point of \bar{C} is an equivalence class \bar{A} of flat SO(2,1) connections, where two are regarded

as equivalent if they are related by a local SO(2,1) transformation. Had the gauge group been SO(3), $\bar{\mathcal{C}}$ would have had just one component. In the SO(2,1) case now under consideration, however, the moduli space has several disconnected components because, unlike SO(3), the group SO(2,1) admits distinct continuous subgroups and connections with different sub-groups as holonomy groups cannot in general be deformed continuously from one to another. (In this construction, cerain "pathological" points are deleted to ensure that $\bar{\mathcal{C}}$ has a manifold structure.) Since $\bar{\Gamma}$ is the cotangent bundle over $\bar{\mathcal{C}}$, it also has several disconnected components.

Let us now return to the T-algebra. Since they are Dirac observables, the restrictions to the constraint surface of the $T^0[\gamma]$ and $T^1[\gamma]$ can be projected down unambiguously to functions $\bar{T}^0[\gamma]$ and $\bar{T}^1[\gamma]$ on the reduced phase space $\bar{\Gamma}$. Since the T^0 and T^1 form a complete set of (Gauss-)gauge invariant functions on Γ , it follows, in particular, that \bar{T}^0 and \bar{T}^1 form a complete set on $\bar{\Gamma}$. Finally, these functions on $\bar{\Gamma}$ have an important property that is *not* shared by T^0 and T^1 on the full phase space Γ :

• Because the connections under consideration are now flat, the values of $\bar{T}^0[\gamma]$ –and hence, using the relation between $T^0[\gamma]$ and $T^1[\gamma]$, also of $\bar{T}^1[\gamma]$ – are left unchanged if the closed loop γ is replaced by a homotopic loop. Thus the \bar{T} -observables are labelled by the homotopy classes of closed loops rather than by individual closed loops.

This concludes the discussion of the Hamiltonian formulation of 2+1 dimensional general relativity. It is apparent that the framework is quite different from the geometro-dynamical one that results from the Einstein-Hilbert action. Mathematically, the two are equivalent (apart from the subtlety involving degenerate metrics). However, the emphasis is very different. Here, connections are put to forefront and the description closely resembles the phase space formulation of gauge theories. Indeed, we need not even "know" that we are speaking of a dynamical theory of metrics; metrics are just secondary, derived objects. The basic concepts are parallel transport and holonomies, not distances and light cones. Primary tools are loops, primary operations are breaking, re-routing and gluing loops. This new way of looking at general relativity is not particularly illuminating as far as the classical theory is concerned. However, as we will see in the next three subsections, it is significantly better suited for quantization.

3.3 Timeless description: Frozen formalism

Let us now implement the algebraic quantization program of section 2.4 to arrive at the first of the three quantum descriptions of 2+1 dimensional general relativity.

Let us make the obvious choice of elementary variables: the canonical coordinates A_a^I and \tilde{E}_I^a on the phase space. The complex vector space generated by (the smeared version of) these variables (together with constant functions) is closed under the Poisson bracket and is obviously "large enough". The quantum algebra is straightforward to construct. The elementary quantum operators are \hat{A}_a^I and \hat{E}_I^a , satisfying the canonical commutation relations. (There are no algebraic relations between the elementary classical variables whence the CCRs are the only relations to be incorporated in the quantum algebra.) There is an obvious choice also for the representation space V unconstrained states: Let

V be the space of complex valued functionals $\Psi(A)$ of the connection A_a^I and represent \hat{A}_a^I by multiplication and \hat{E}_I^a by $-i\hbar\delta/\delta A_a^I$.

For later use, let us note the action of the \hat{T} operators on V. Since $T^0[\gamma]$ is a classical configuration observable, its quantum analog $\hat{T}^0[\gamma]$ is a multiplication operator on V. Similarly, since $T^1[\gamma]$ is linear in momentum, its quantum analog, $\hat{T}^1[\gamma]$, is a Lie derivative:

$$\hat{T}^{0}[\gamma] \cdot \Psi(A) := \bar{T}^{0}[\gamma](A) \cdot \Psi(A), \quad \text{and} \quad \hat{T}^{1}[\gamma] \cdot \Psi(A) := -i\hbar \mathcal{L}_{X[\gamma]} \Psi(A), \tag{3.3.1a}$$

where $X_{[\gamma]}$ is, as before, the Hamiltonian vector field on \mathcal{C} constructed from $T^0[\gamma](A)$. These expressions follow from the action of \hat{A}_a^I and \hat{E}_a^I on V and the standard choice of factor ordering one uses in quantum mechanics on manifolds. It is straightforward to check that the commutators of these operators are $-i\hbar$ times the Poisson brackets of their classical analogs. This relation between the commutators and the Poisson brackets is quite general; it holds in any physical system for observables which are independent of or linear in momenta.

The next step is to impose the quantum constraints and extract the space V_{phy} of physical states. This turns out to be straightforward. Since the constraints are either linear or independent of momenta, there are no nontrivial factor ordering or regularization problems to solve. The quantum Gauss constraint requires that $\Psi(A)$ be gauge invariant while the second constraint requires that $\Psi(A)$ should have support only on flat connections. Thus, the general solution, a la Dirac, of the two quantum constraints is a function $\Psi(\bar{A})$ on the moduli space \bar{C} of flat connections on Σ . The space of these $\Psi(\bar{A})$ is the required space V_{phy} .

We must now find the physical operators on V_{phy} . Fortunately, this task is straightforward: all of the \hat{T} -operators introduced above commute with the constraints; they are all physical operators. On the physical subspace, V_{phy} , their action can be written as:

$$\hat{T}^{0}[\gamma] \cdot \Psi(\bar{A}) := \bar{T}^{0}[\gamma](\bar{A}) \cdot \Psi(\bar{A}), \quad \text{and} \quad \hat{T}^{1}[\gamma] \cdot \Psi(\bar{A}) := -i\hbar \mathcal{L}_{\bar{X}[\gamma]} \Psi(\bar{A}), \tag{3.3.1b}$$

where $\bar{X}[\gamma]$ is the vector field on $\bar{\mathcal{C}}$ induced by the vector field $X[\gamma]$ on \mathcal{C} , or, alternatively, it is the Hamiltonian vector field on $\bar{\mathcal{C}}$ generated by $\bar{T}^0[\gamma]$ via the symplectic structure $\bar{\Omega}$.

Our next task is to introduce an inner-product on V_{phy} . For this, we want to impose the "reality conditions". The classical observables $T^A[\gamma]$, with A=1,2 are all real. Therefore, we want to find an inner product on V_{phy} which makes the quantum operators $\hat{T}^A[\gamma]$ self-adjoint. We shall first exhibit such an inner product and then discuss the issue of its uniqueness. Recall that the configuration space \mathcal{C} is equipped with a natural symplectic structure. We can pull it back to the space of flat connections, and since it is manifestly gauge invariant, project it to the space of their gauge equivalence classes, \bar{A} . The result is a symplectic structure $\bar{\Omega}$ on $\bar{\mathcal{C}}$. Denote by $d\bar{V}$ the associated Liouville volume element and introduce on V_{phy} the following inner product:

$$\langle \Psi , \Phi \rangle := \int_{\bar{\mathcal{C}}} d\bar{V} \ (\overline{\Psi(\bar{A})}) \Phi(\bar{A}) \ .$$
 (3.3.2)

Denote by \mathcal{H} the resulting Hilbert space. The $\hat{T}^0[\gamma]$, being multiplication operators, are obviously self-adjoint on \mathcal{H} . Since $\bar{X}[\gamma]$ are Hamiltonian vector fields, their action preserves the Liouville volume element; they are divergence-free with respect to $d\bar{V}$. Hence it follows that $\hat{T}^1[\gamma]$ are also self-adjoint 9 . Thus, the required reality conditions have been fulfilled and we have a \star -representation of the algebra of physical operators. As a curiosity, let us ask how the diffeomorphism group of the spatial 2-manifold Σ acts on these quantum states. It is clear that every (smooth) diffeomorphism on Σ gives rise to a diffeomorphism on the reduced configuration space $\bar{\mathcal{C}}$. (A diffeomorphism which is generated by a vector field maps flat connections to gauge equivalent flat connections whence the induced action on $\bar{\mathcal{C}}$ is in fact trivial. It is only the "large diffeomorphisms" that have non-trivial action.) Furthermore, it follows from the expression of the symplectic structure Ω on \mathcal{C} that $\bar{\Omega}$ –and hence $d\bar{V}$ – is invariant under these induced diffeomorphisms. Thus, the Hilbert space \mathcal{H} provides a unitary representation of the full diffeomorphism group of Σ .

It turns out that this \star -representation of the physical algebra is reducible. To see this, recall, first, that the moduli space $\bar{\mathcal{C}}$ has several disconnected pieces. It is clear that the subspace \mathcal{H}_k of quantum states with support just on one of these pieces, say $\bar{\mathcal{C}}_k$, is mapped to itself by the quantum \hat{T} -algebra. Thus, the full representation is reducible. Furthermore, the subspace \mathcal{H}_k itself is in general reducible because the observables $T^A[\gamma]$ form a complete set only almost everywhere on $\bar{\mathcal{C}}$. One can show that, on each irreducible piece, the inner product of (3.3.2) is uniquely picked out by the reality conditions, i.e., by the requirement that each $\hat{T}^A[\gamma]$ be represented by a self-adjoint operator. Thus, in the technically as well as physically appropriate sense, the reality conditions determine the inner product.

Finally, let us check that the "universal" properties of the classical T observables also carry over to the quantum theory. First, since $\bar{T}^0[\gamma]$ –and hence, also $\bar{X}[\gamma]$ – depend not on the individual loop γ but rather its homotopy class, it is clear from (3.3.1) that $\hat{T}^0[\gamma]$ and $\hat{T}^1[\gamma]$ also depend only on the homotopy class of γ . Next, let us consider the algebraic relations in (3.2.7). Since \hat{T}^0 are multiplication operators, it is clear that the identities in (3.2.7a) go over to the quantum theory simply by replacing each $T^0[\gamma]$ by the operator $\hat{T}^0[\gamma]$. What is the situation with respect to the identities in (3.2.7b) on observables $T^1[\gamma]$? Note first that (3.2.7a) imply that the vector fields $\bar{X}[\gamma]$ satisfy the following conditions: $\bar{X}[0] = 0$; $\bar{X}[\alpha] = \bar{X}[\alpha^{-1}]$; $\bar{X}[\alpha\#\beta] = \bar{X}[\beta\#\alpha]$; and, $\bar{X}[\alpha\#\beta] + \bar{X}[\alpha\#\beta^{-1}] = T^0[\alpha]\bar{X}[\beta] + T^0[\beta]\bar{X}[\alpha]$. It now immediately follows that (3.2.7b) also carries over to quantum theory (where, in the last equation, we must keep \hat{T}^0 to the left of \hat{T}^1 .) Thus, we have a representation of the quantum \hat{T} -algebra. This representation can also be obtained directly starting with the holonomy algebra generated by $\hat{T}[\gamma]$, then using Gel'fand spectral theory outlined in section 2.5, and finally choosing (2.5.6) for the generating functional $\Gamma[\alpha]$ with dV, the Liouville volume element.

This completes the quantum description. The Hilbert space is the space of square-integrable functions on the moduli space of flat connections (i.e., the reduced classical configuration space.) A complete set of observables is given by $T^0[\gamma]$ and $T^1[\gamma]$; elements

⁹ More precisely, symmetric. The distinction between symmetric and self-adjoint operators is too refined for the level of rigor adopted in these notes.

of both sets are labelled just by homotopy classes of closed loops. They derive their physical meaning through the operation of parallel transport of internal vectors, which are the SU(1,1) spinors. One can devise Bohm-Aharanov type experiments with spin- $\frac{1}{2}$ test particles to distinguish one quantum state from another. We have access to space but there is no time. The description is in terms of "constants of motion", i.e., Dirac observables. Classically, each gauge equivalence class of solutions to the field equations is completely determined by the values taken by $T^0[\gamma]$ and $T^1[\gamma]$ on it. In the language of space-time metrics, $T^0[\gamma]$ and $T^1[\gamma]$ provide us with a complete set of labels on the space of solutions modulo space-time diffeomorphisms. Quantum mechanically, the $T^0[\gamma]$ constitute a complete set of commuting observables and these are diagonal in our chosen representation.

The situation is analogous to the one in the momentum representation for a free relativistic particle in Minkowski space: Our $\Psi(\bar{A})$ are analogous to the wave functions $\varphi(k)$ on the future mass shell and our \hat{T}^A -observables are analogous to the angular momentum operators generating rotations and boosts (which also constitute a complete set of Dirac observables). In both cases, there is no time and no dynamics. Yet, in a well-defined sense, the mathematical description is complete. What is lacking in both cases is a satisfactory measurement theory. And, within the present framework, it seems impossible to provide one in the absence of time.

3.4 Discrete elements: Pre-geometry

I would now like to present a second quantum description which is in terms of discrete elements—the finished picture will refer neither to time nor to space, both of which are to arise as secondary, derived objects. The key idea here is to use a "loop representation" in which states arise as functions on a discrete set which, due to its mathematical structure, can be finally identified with the homotopy classes of closed loops on the manifold Σ of genus g. The action of our fundamental operators \hat{T}^0 and \hat{T}^1 will be specified through combinatorial operations which exploit the structure available on the discrete domain space of quantum states.

For a general genus g, this description can be arrived at using the algebraic approach of section 2.4 in which T^0 and T^1 are chosen as the elementary variables. However, in the general case, there many technical subtleties –not all of which have been fully analysed– which complicate the discussion. These can be traced back to the fact that the effective configuration space \bar{C} has several disconnected components with various topologies and, furthermore, on some of them there are sets of measure zero where \bar{T}^0 fail to be complete, i.e. the gradients of \bar{T}^0 fail to span the cotangent space. Since the purpose of this section is only to illustrate how discrete structures and combinatorics arise, I will forego the generality and make choices which are technically as simple as possible. Also, for pedagogical reasons, I will first arrive at the new description starting from the timeless framework of the previous section and, at the end, state results in a way which makes no reference to connections or indeed the 2-manifold Σ on which they are defined.

Let me then restrict myself to the case in which the spatial 2-manifold, Σ , is a 2torus. We will begin by discussing the structure of the moduli space \mathcal{C} of flat connections on Σ . Recall, first, that the gauge invariant information in the connection is coded in the holonomies it defines around closed loops. Since the connections of interest are flat, their holonomies around a closed loop depend only on the homotopy class of that loop. Now, the homotopy group on a 2-torus has 2 generators. Denote them by α_1 and α_2 . Then, by the defining relation of the homotopy group, we have $\alpha_1\alpha_2=\alpha_2\alpha_1$; the group is Abelian. Hence, the homotopy class of any closed loop α is labelled just by two integers, n_1, n_2 , which tell us how many times the loop winds around the two generators; $\alpha = \alpha_1^{n_1} \alpha_2^{n_2}$. Fix any base point p on Σ . Any flat connection on Σ can now be characterized just by the pair of holonomies $U[\alpha_1]$ and $U[\alpha_2]$ around the two generators, modulo the action of the gauge group at p. Since the homotopy group is Abelian, the holonomies must also commute, $U[\alpha_1] \cdot U[\alpha_2] = U[\alpha_2] \cdot U[\alpha_1]$, whence they are SO(2,1) rotations around the same axis. Under the action of the gauge group at p, the axis itself rotates preserving only its time-like, null or space-like character. Therefore, the gauge equivalent classes A of flat connections fall into three disconnected sectors. A simple calculation reveals that the sector with time-like axis has topology $S^1 \times S^1$, the one with null axis has topology S^1 while the one with space-like axis, $\mathbb{R}^2/\mathbb{Z}^2$. For technical simplicity, I will now restrict myself to the time-like sector (eventhough from a geometrodynamical viewpoint, it is the space-like sector that is more interesting.)

We can now make the discussion of the previous subsection more specific by making the states, the inner product and the operators explicit. Let us coordinatize the time-like component $\bar{\mathcal{C}}_t$ of the reduced configuration space by a_I , where I=1,2, with $a_I\in[-1,1]$. Each element \bar{A} of $\bar{\mathcal{C}}_t$ is thus labelled by two numbers, a_I . The volume element $d\bar{V}$ on $\bar{\mathcal{C}}$ now turns out to be precisely $da_1 \wedge da_2$. Thus, the Hilbert space \mathcal{H}_t is just the space of square-integrable functions $\Psi(a_1,a_2)$ on $\bar{\mathcal{C}}_t$. Finally, it is straightforward to work out the explicit expressions of the basic \hat{T} operators. The operators associated with the generators a_I of the homotopy group of Σ are given by:

$$\hat{T}^{0}[\alpha_{J}] \cdot \Psi(a_{1}, a_{2}) = \cos(a_{J}\pi)\Psi(a_{1}, a_{2})$$

$$\hat{T}^{1}[\alpha_{J}] \cdot \Psi(a_{1}, a_{2}) = 2\pi i\hbar \sin(a_{J}\pi) \epsilon_{IJ} \frac{\partial \Psi(a_{1}, a_{2})}{\partial a_{I}},$$
(3.4.1)

where ϵ_{IJ} is the anti-symmetric symbol. Thus, $\hat{T}^0[\alpha_J]$ commute among themselves and so do $\hat{T}^1[\alpha_J]$. Similarly, the two operators associated with any one generator commute with each other. The non commuting (and hence, conjugate) pairs are $\hat{T}^0[\alpha_1]$, $\hat{T}^1[\alpha_2]$, and, $\hat{T}^0[\alpha_2]$, $\hat{T}^1[\alpha_1]$.

We are now ready to introduce the loop representation. The idea is to follow the Rovelli-Smolin (1990) prescription to perform a transform from wave functions of connections to those of loops via:

$$\Psi[\gamma] = \int_{\mathcal{C}/\mathcal{G}} d\mu(A) \left[T^0[\gamma](A) \right] \Psi(A). \tag{3.4.2}$$

where \mathcal{C}/\mathcal{G} is the space of connections (modulo gauge transformations) and $d\mu(A)$ a measure on this space. (See, section 2.5). In the case now under considerations, we can use for \mathcal{C}/\mathcal{G} the reduced configuration space $\bar{\mathcal{C}}$ and use as our measure the Liouville volume element $d\bar{\mathcal{V}}$. With these choices, $\Psi(A)$ becomes the function $\Psi(a_1, a_2)$ of two variables and the loop γ can be labelled by two integers (n_1, n_2) since, as far as $T^0[\gamma]$ is concerned, only its homotopy class of γ matters. Consequently, the Rovelli-Smolin transform reduces simply to a Fourier transform:

$$\Psi[n_1, n_2] = \int_{-1}^1 da_1 \int_{-1}^1 da_2 \cos(a_1 n_1 + a_2 n_2) \pi \,\Psi(a_1, a_2), \tag{3.4.3}$$

where we have used the fact that the trace of the holonomy of the connection labelled by (a_1, a_2) around a loop γ labelled by (n_1, n_2) is given by: $\bar{T}^0[n_1, n_2](a_I) = \cos(n_1 a_1 \pi + n_2 a_2 \pi)$. Thus, the quantum states are now functions of two integers (n_1, n_2) labelling the homotopy classes of loops 10 . The inner product can be easily expressed: $\langle \Psi, \Psi \rangle \equiv \sum \overline{\Psi(n_1, n_2)} \Psi(n_1, n_2) < \infty$. This provides us with the Hilbert space H in the loop representation. Using (3.4.1) and (3.4.3) we have:

$$2\hat{T}^{0}[\alpha_{1}] \cdot \Psi(n_{1}, n_{2}) = \Psi(n_{1} + 1, n_{2}) + \Psi(n_{1} - 1, n_{2})$$

$$2\hat{T}^{1}[\alpha_{1}] \cdot \Psi(n_{1}, n_{2}) = i\hbar n_{2} [\Psi(n_{1} + 1, n_{2}) - \Psi(n_{1} - 1, n_{2})],$$
(3.4.4)

and similarly for operators associated with the generator α_2 .

Let us now examine the final picture. The quantum states are functions on a discrete set, that of two integers. The inner product uses the obvious measure on this discrete set: characteristic functions of points provide an orthonormal basis. The basic operators of the theory have a simple, combinatorial action: the arguments of the wave functions are shifted by ± 1 . There is no space, no time. Indeed, space can be regarded as a genuinely "derived" concept. Given the mathematical expressions above, one may suddenly realize that the two integers in the argument of the wave function can be "interpreted" as the labels for homotopy classes of closed loops on a 2-torus. One may then notice the expressions of the inner product and operators and realize that we are dealing with a theory of flat connections on a torus.

In a more general context, one would recognize the discrete set featuring in the argument of the wave function has just the right mathematical properties for us to identify it with the homotopy classes of a 2-manifold of genus g and the combinatorial expressions of the basic operators would lead us the space of flat connections on this 2-manifold. We can then work backwards and realize that what we have is a quantum theory of 2+1-dimensional general relativity on $\Sigma \times \mathbb{R}$ where Σ is a genus g 2-manifold. Out of discrete structures would thus arise the continuum interpretations 11 .

¹⁰ Furthermore, they are invariant under a reflection $(n_1, n_2) \to (-n_1, -n_2)$. For a general genus g, the quantum states are functions on the space of homotopy classes subject to similar conditions which follow directly from identities (3.2.7a) satisfied by traces of holonomies.

¹¹ As indicated in footnote 10, there are technical caveats to all these statements. My

3.5 Extracting time: Dynamics unfolded

As in the previous subsection, we will assume that the spatial topology is that of a 2-torus. However, there we arrived at a "pre-geometry" description by starting with the frozen formalism and *removing* direct reference to space. We will now proceed in the opposite direction and *supplement* the frozen description with the notion of time. Thus, now, the wave functions will depend on *three* parameters rather than two, but will be subject to one quantum constraint which can be regarded as as a Schrödinger equation if one of the three arguments of the wave functions is interpreted as time and the other two are considered as representing the true dynamical degrees of freedom. Thus, dynamics will be born once an internal time is isolated.

Let me first outline the conceptual structure of the argument. Recall that the content of the classical constraints (3.2.4) is as follows. The first set, $\mathcal{D}_a \widetilde{E}_I^a = 0$, is just the Gauss law which tells us that the internal SO(2,1) rotations should be interpreted as gauge. The second, $\widetilde{\eta}^{ab} F_{ab}^I = 0$ is the "covariant" version of the combined scalar and vector constraints. Thus, we expect the information about dynamics to be contained in the "zeroth" component of this constraint. There are, however, two technical problems that need to be solved to extract this information. First, in the expression of this constraint, it is the internal, rather than the space-time index which is free whence the canonical transformations generated by this constraint corresponds to "translations" in the internal space, which leave space-time points fixed. We need to carry their action to space-time. Second, to split the constraint into its scalar and vector parts, we need to carry out its 2+1 decomposition without violating the Gauss gauge invariance. Fortunately, both these steps can be carried out in one stroke: Replace $\widetilde{\eta}^{ab} F_{ab}^I = 0$ by the pair:

$$\widetilde{E}_{I}^{a}F_{ab}^{I} = 0; \quad \text{and} \quad \epsilon^{IJK}\widetilde{E}_{I}^{a}\widetilde{E}_{J}^{b}F_{abK} = 0,$$
(3.5.1)

where ϵ^{IJK} is the 3-form on the Lie algebra of SO(2,1) defiend by the natural Killing form. (One might be concerned at first about degenerate triads in passing from (3.2.4) to (3.5.1). However, the gauge transformations generated by (3.2.4) are such that within each gauge orbit there is a non-degenerate \widetilde{E}_{I}^{a} , whence, in the final picture, the degenerate triads can be in effect ignored.) The canonical transformations generated by the first of these equations on the phase space Γ correspond to spatial diffeomorphisms on Σ while those generated by the second correspond to time evolution. Thus, modulo internal rotations generated by the Gauss law, these two constraints are equivalent to the standard diffeomorphism and the Hamiltonian constraints in the triad version of geometrodynamics. (We will see in section 4 that the corresponding constraints of 4-dimensional general relativity can be cast in a similar form.) Now, the scalar equation holds at each point of Σ ; it corresponds to an infinite number of constraint equations. The idea is to interpret the "zero mode" of this equation in quantum theory as the Schrödinger equation. Thus, all other equations will be used to reduce the number of free parameters in the argument of the wave function

aim here is to communicate the overall qualitative picture since it is the general viewpoint rather than detailed framework that serves as a guideline in 3+1 dimensional gravity.

and thus eliminated while the "zero mode" of the scalar constraint will be retained in the final description as the quantum evolution equation.

The detailed implementation of this idea is considerably simplified if one uses an ingenious technique introduced by Manojlović and Miković (1992). To explain this technique, let me first consider a general Hamiltonian system with phase space Γ and a set of first class constraints $C_{\mathbf{i}} = 0$. Suppose Γ admits a symplectic sub-manifold Γ' whose intersection with the constraint surface of Γ gives a set of first class constraints $C'_{\mathbf{i}'} = 0$. It is then possible to ask for the relation between the two reduced phase spaces. Suppose they are naturally isomorphic. Then, the two classical systems are equivalent and we may use $(\Gamma', C_{\mathbf{i}'})$ as a starting point for quantization. Let me rephrase this result. Let us suppose that the defining equations of the sub-manifold Γ' in Γ are $C'_{\alpha'} = 0$. Then, the set of constraints $(C'_{\alpha'}, C'_{\mathbf{i}'})$ on Γ is equivalent to the original set $C_{\mathbf{i}}$.

To apply this idea to 2+1 gravity, we will again follow Manojlović and Miković (1992). Let us introduce on the spatial 2-torus, two periodic coordinates $\varphi^{\underline{a}}$ (with $\underline{a}=1,2$), denote the coordinate dyads by $X^{\underline{a}}_{\underline{a}}$ and co-dyads by $\chi^{\underline{a}}_{\underline{a}}$. Using this background structure, let us construct the "zero modes" of the canonical variables:

$$\underline{A}_{\underline{a}}^{I} := \frac{1}{V} \int_{\Sigma} d^{2} \varphi A_{\underline{a}}^{I} X_{\underline{a}}^{a}, \quad \text{and} \quad \underline{E}_{I}^{\underline{a}} := \frac{1}{V} \int_{\Sigma} d^{2} \varphi (q_{o})^{-\frac{1}{2}} \widetilde{E}_{I}^{a} X_{\underline{a}}^{a}, \tag{3.5.2}$$

where q_o is the determinant of the (background) metric defined by the dyad $X_{\underline{a}}^a$ and V the volume of Σ it determines. Now, let us consider the sub-manifold Γ' of Γ defined by

$$A_a^I X_{\underline{a}}^a - \underline{A}_{\underline{a}}^I = 0$$
, and $\widetilde{E}_I^a \chi_{\overline{a}}^a - \sqrt{q_o} \underline{E}_{\overline{I}}^a = 0$. (3.5.3)

 Γ' is a six dimensional, symplectic sub-manifold of Γ ; $\underline{A}_{\underline{a}}^{I}$ and $\underline{E}_{I}^{\underline{a}}$ serve as the natural canonical coordinates. The constraint surface of Γ intersects Γ' and the induces the following constraints on Γ' :

$$\epsilon^{IJK} \underline{E}_{J}^{\underline{a}} \underline{A}_{\underline{a}K} = 0, \quad \text{and} \quad \epsilon_{IJK} \underline{A}_{\underline{a}}^{J} \underline{A}_{\underline{b}}^{K} = 0,$$
(3.5.4)

where we have used the fact that $\underline{A}_{\underline{a}}^{I}$ and $\underline{E}_{I}^{\underline{a}}$ are constant on Σ . It is easy to check that, although (3.5.4) seems to provide us with six constraints, only four of them are independent whence the reduced configuration space is two dimensional. It is in fact naturally isomorphic with the moduli space of flat connections on Σ —the reduced configuration space that resulted from (3.2.4). Thus, together, (3.5.3) and (3.5.4) provide us with a system of constraints on Γ which is equivalent to (3.2.4).

To go to quantum theory, let us work in the connection representation and use quantum constraints to select physical states. However, since we want to extract time, we should first decompose the second equation in (3.5.4) into a vector and a scalar part as in (3.5.1). We obtain:

$$\epsilon_{IJK}\underline{E}^{\underline{a}I}\underline{A}_{\underline{a}}^{J}\underline{A}_{\underline{b}}^{K} = 0$$
, and $\underline{E}_{[I}^{\underline{a}}\underline{E}_{J]}^{\underline{b}}\underline{A}_{\underline{a}}^{I}\underline{A}_{\underline{b}}^{J} = 0$. (3.5.5)

Note that the first of these equations is already contained in the Gauss constraint of (3.5.4). Thus, effectively we only have the three Gauss constraints and a scalar constraint whence

the system has two true degrees of freedom. In section 3.4, we just stated this result; we now have an explicit method to see how the counting works out.

We are now ready to impose the quantum constraints. To begin with, because of (3.5.3), the wave functions $\Psi(A)$ depend only on the six components of the "zero modes" $\underline{A}_{\underline{a}}^{I}$ of the connection. Next, the quantum Gauss constraint implies, as usual, that the wave function be gauge invariant. More explicitly, if we denote $\underline{A}_{\underline{a}}^{I}$ as the (internal) vector $\vec{A}_{\underline{a}}$, the Gauss constraint requires that the wave function $\Psi(\underline{A})$ depend only on the three gauge invariant parameters $\vec{A}_{\underline{a}} \cdot \vec{A}_{\underline{b}}$, where the "dot" denotes the inner-product of the two internal vector with respect to the Killing form on the Lie algebra of SO(2,1). Thus, we have eliminated all but the scalar constraint in (3.5.5) to conclude: $\Psi(A) \equiv \Psi(\vec{A}_{\underline{a}} \cdot \vec{A}_{\underline{b}})$. The physical states are thus functions $\Psi(\vec{A}_{\underline{a}} \cdot \vec{A}_{\underline{b}})$ of three variables, $\vec{A}_{1} \cdot \vec{A}_{1}$, $\vec{A}_{1} \cdot \vec{A}_{2}$ and $\vec{A}_{2} \cdot \vec{A}_{2}$, subject to just the scalar constraint.

Let us explore the structure of this last quantum constraint. It is quadratic in momentum —i.e., of the form $G^{\alpha\beta}p_{\alpha}p_{\beta}=0$. Furthermore, it is easy to check that the "supermetric" $G^{\alpha\beta}$ is flat, with signature -++. Thus, the quantum scalar constraint is just the Klein-Gordon equation in a 3-dimensional Minkowski space. The Cartesian coordinates $b_{\underline{I}}$ of this Minowskian metric are easily expressible in terms of the three parameters $\vec{A}_{\underline{a}} \cdot \vec{A}_{\underline{b}}$. In terms of these, the constraint is simply:

$$\left(-\partial_0^2 + \partial_1^2 + \partial_2^2\right)\Psi(b_{\underline{I}}) = 0. \tag{3.5.6}$$

Our next task is to introduce an inner product on this space. This can be again achieved by expressing the T-variables as operators on the space of solutions $\Psi(b_I)$ to (3.5.6) and invoking the reality conditions. As one might expect, this leads one precisely to the positive and negative frequency decomposition and the standard Klein-Gordon inner product on the positive frequency solutions. (As is usual in the algebraic quantization program, it is the condition that we have an *irreducible* representation of the observable algebra that forces us to restrict ourselves just to positive frequency fields.) The end result is that, on physical states, the quantum scalar constraint reduces to the Schrödinger equation:

$$i\partial_0 \Psi(b_{\underline{I}}) = +\sqrt{-\partial_1^2 - \partial_2^2} \circ \Psi(b_{\underline{I}}). \tag{3.5.6}$$

Thus $b_{\underline{1}}$ and $b_{\underline{2}}$ can be thought of as the true degrees of freedom and $b_{\underline{0}}$, as the internal time. We have succeeded in carrying out Wheeler's program. On the one hand, the quantum scalar constraint is just a constraint that a wave function must satisfy to be admissible as a physical state. On the other hand, if we choose to interpret $b_{\underline{0}}$ as time, the same equation can be re-interpreted as the dynamical or evolution equation: it tells us how the dependence of the wave functional on the true degrees of freedom changes as one moves, in the domain space of the wave function, from one constant b_0 slice to another.

Since the quantum scalar constraint reduces to the wave equation in a 3-dimensional Minkowski space, semi-classical states are easy to construct. Classical solutions correspond to null geodesics in this Minkowski space. Hence, the semi-classical states can be obtained by forming wave packets, using a superposition of "plane waves," which are sharply peaked

at specific null wave vectors. In these states, the space-time geometry will be approximately classical. Finally, we can use this preferred class of foliations of the "superspace" spanned by the three $b_{\underline{I}}$ to specify a complete set of mutually exclusive alternatives to provide the framework with a measurement theory along the lines discussed in Jim Hartle's lectures.

These three faces of 2+1 quantum gravity suggest how apparently distinct goals and approaches can lead to mathematically equivalent pictures in the final analysis. This is the vision that underlies the discussion of the 3+1-theory in the next two sections.

4. 3+1 General relativity as connection-dynamics

When Henry Moore visited the University of Chicago ... I had the occasion to ask him how one should view sculpture: from afar or from nearby. Moore's response was that the greatest sculptures can be viewed—indeed, should be viewed—from all distances since new aspects of beauty will be revealed in every scale. ... In the same way, the general theory of relativity reveals strangeness in the proportion at any level in which one may explore its consequences.

S. Chandrasekhar (Truth and Beauty)

4.1 Introduction

General relativity is traditionally considered to be the theory of dynamics of geometry, i.e., of space-time metrics. This view lies at the heart of the classical treatments of a diverse range of topics ranging from cosmology to black holes, gravity waves to singularity theorems. Yet, it appears that this view of general relativity may not be the one that is best suited for microscopic physics at the Planck scale. Indeed, we saw in the last section that, in 3 dimensions, the problem of quantization takes on a much more manageable form if general relativity is cast as a theory of dynamics of *connections* rather than of geometries. We will now see that the same is true also in 4 dimensions¹². Furthermore, it will turn out that, from this new perspective, the theory has new striking features. It's form is quite different, but once again it has an elegance, a beauty and a strangeness in proportion.

The idea of formulating general relativity in terms of connections is of course quite old. Indeed, since all other basic interactions are mediated by gauge bosons, described classically by connections, it is natural to attempt to formulate gravity along similar lines. In previous attempts, however, one was led to *new* theories of gravity, based on a Yang-Mills type action. Since these actions are typically quadratic in curvature, one is naturally led to field equations which are of order four (or higher) in the metric. In the present approach, on the other hand, one wants to retain general relativity; it is *Einstein's* field equations that are to be re-interpreted as governing dynamics of a connection.

The obvious question is: which connections should one use in such a reformulation? Because of the success of the procedure used in 3 dimensions, one might imagine using the Palatini form of the action based on a SO(3,1) connection and a tetrad but regard the connection—rather than the metric or the tetrad—as the "fundamental variable". Such a viewpoint was adopted by a number of authors—including Einstein and Schrödinger—and was developed in detail by Kijowski and his collaborators. However, as far as I am aware,

¹² Note incidentally that, chronologically, it is this 3+1 framework that came first and served as a motivation to consider 2+1 gravity in the language of connections. The same is true of the T-variables in section 4.3.

when one tries to cast the resulting theory in a Hamiltonian form, one is led to a Arnowitt-Deser-Misner type framework in which the 3-metric and the extrinsic curvature –rather than a connection– play a fundamental role. Thus, the situation is quite different from the one we came across in the 2+1 theory. The difference arises because in 4 dimensions the Palatini action contains two co-tetrads, rather than just one:

$$S_P(e, {}^4\omega) := \frac{1}{G} \int d^4x \, \widetilde{\eta}^{abcd} e_{aI} e_{bJ} \,^*({}^4R_{cd}{}^{IJ}),$$
 (4.1.1)

where G is Newton's constant, I, J, \ldots denote the internal indices labeling the co-tetrads, a, b, \ldots denote space-time indices and where $^*(^4R_{ab}{}^{IJ})$ is the dual of the curvature tensor of the SO(3,1) connection $^4\omega_a^{IJ}$. (Note that the internal indices can be raised and lowered freely using the fixed, kinematical metric η_{IJ} on the internal space.) Hence, when one performs the Legendre transform, the momentum $\widetilde{\Pi}_{IJ}^a$ conjugate to the connection A_a^{IJ} is the dual $\widetilde{\eta}^{abc}\epsilon^{IJ}{}_{KL}e_b^Ke_c^L$ of a product of two co-triads rather than of a single co-triad as in the 2+1 dimensional case. (Here, $\widetilde{\eta}^{abc}$ is the metric independent Levi-Civita density on the 3-manifold used in the 3+1 decomposition.) The theory then has an additional constraint –saying that the momentum is "decomposable" in this manner—which spoils the first class nature of the constraint algebra. Following the Dirac procedure, one can solve for the second class constraint and obtain new canonical variables. It is in this elimination that one loses the connection 1-form altogether and is led to geometrodynamics. (For details, see chapters 3 and 4 in Ashtekar (1991).)

These complications disappear, however, if one requires the connection to take values only in the self dual (or, alternatively anti-self dual) part of SO(3,1). Furthermore, the resulting connection dynamics is technically significantly simpler than geometrodynamics. It is this simplicity that underlies many of the recent developments in non-perturbative quantization. Thus, the answer to the question we posed above is: it is the use of chiral connections that simplifies the theory. The purpose of section 4 is to elaborate on this observation.

Let me first explain what I mean by self duality here. Let us denote the self dual connections by ${}^4\!A_a^{IJ}$. If one begins with a Lorentz connection ${}^4\!\omega_a^{IJ}$, the self dual connection ${}^4\!A_a^{IJ}$ can be obtained via:

$$2G^{4}A_{a}^{IJ} = {}^{4}\omega_{a}^{IJ} - \frac{i}{2}\epsilon^{IJ}{}_{KL}{}^{4}\omega_{a}^{KL}, \tag{4.1.2}$$

where G is Newton's constant. (This factor has been introduced for later convenience and plays no role in this discussion of the mathematical meaning of self duality.) However, we will regard the self dual connections themselves as fundamental; they are subject just to the following algebraic condition on internal indices:

$$\frac{1}{2}\epsilon^{IJ}{}_{KL}{}^{4}A^{KL}_{a} = i {}^{4}A^{IJ}_{a}. \tag{4.1.3}$$

Thus, unlike in the analysis of self dual Yang Mills fields, the notion of self duality here refers to the *internal* rather than space-time indices: to define the duality operation, we use

the kinematical internal metric η_{IJ} (and its alternating tensor) rather than the dynamical space-time metric (to be introduced later).

The new action is obtained simply by substituting the real SO(3,1) connection ${}^4\omega_a^{IJ}$ by the self dual connection A_a^{IJ} in the Palatini action (modulo overall constants):

$$S(e, {}^{4}A) := \int d^{4}x \, \widetilde{\eta}^{abcd} \, e_{aI} \, e_{bJ} \, {}^{\star}({}^{4}F_{ab}{}^{IJ}), \tag{4.1.4}$$

where,

$${}^{4}F_{abI}{}^{J} := 2\partial_{[a}{}^{4}A_{b]I}{}^{J} + G {}^{4}A_{aI}{}^{M} {}^{4}A_{bM}{}^{J} - G {}^{4}A_{bI}{}^{M} {}^{4}A_{aM}{}^{J}$$

$$(4.1.5)$$

is the field strength of the connection ${}^4A_{aI}{}^J$. Thus, G plays the role of the coupling constant. Note incidentally that because of the factors of G, ${}^4A_{aI}{}^J$ and ${}^4F_{abI}{}^J$ do not have the usual dimensions of connections and field strength. This fact will be important later.

By setting the variation of the action with respect to ${}^4A_a{}^{IJ}$ to zero we obtain the result that ${}^4A_a{}^{IJ}$ is the self dual part of the (torsion-free) connection ${}^4\Gamma_a{}^{IJ}$ compatible with the tetrad $e^a{}_I$. Thus, ${}^4A_a{}^{IJ}$ is completely determined by $e^a{}_I$. Setting the variation with respect to $e^a{}_I$ to zero and substituting for the connection from the first equation of motion, we obtain the result that the space-time metric $g^{ab} = e^a{}_I e^b{}_J \eta^{IJ}$ satisfies the vacuum Einstein's equation. Thus, as far as the classical equations of motion are concerned, the self dual action (4.1.4) is completely equivalent to the Palatini action (4.1.1).

This result seems surprising at first. Indeed, since ${}^4A_a{}^{IJ}$ is the self dual part of ${}^4\omega_a{}^{IJ}$, it follows that the curvature ${}^4F_{ab}{}^{IJ}$ is the self dual part of the curvature ${}^4R_{ab}{}^{IJ}$. Thus, the self dual action is obtained simply by adding to the Palatini action an extra (imaginary) term. This term is not a pure divergence. How can it then happen that the equations of motion remain unaltered? This comes about as follows. First, the compatibility of the connections and the tetrads forces the "internal" self duality to be the same as the space-time self duality, whence the curvature ${}^4F_{abI}{}^J$ can be identified with the self dual part, on space-time indices, of the Riemann tensor of the space-time metric. Hence, the imaginary part of the field equation says that the trace of the dual of the Riemann tensor must vanish. This, however, is precisely the (first) Bianchi identity! Thus, the imaginary part of the field equation just reproduces an equation which holds in any case; classically, the two theories are equivalent. However, the extra term does change the definition of the canonical momenta in the Legendre transform –i.e., gives rise to a canonical transform on the Palatini phase space— and this change enables one to regard general relativity as a theory governing the dynamics of 3-connections rather than of 3-geometries.

In section 4.2, we discuss this Hamiltonian framework. In section 4.3, we introduce the 3+1 analogs of the T-variables which played an important role in the 2+1 theory and analyse their properties. These ideas will constitute the basis of quantization in section 5. As before, the emphasis is on presenting the global picture. I will therefore skip derivations and technical caveats. The details can be found in Ashtekar (1991), Romano (1991), Rovelli (1991) and references contained therein.

4.2 Hamiltonian framework

For simplicity, I shall restrict myself to source-free general relativity. The framework is, however, quite robust: all its basic features remain unaltered by the inclusion of a cosmological constant and coupling of gravity to Klein-Gordon fields, (classical or Grassmann-valued) Dirac fields and Yang-Mills fields with any internal gauge group.

Since in the Lorentzian signature self dual fields are necessarily complex, it is convenient to begin with complex general relativity –i.e. by considering complex Ricci-flat metrics g_{ab} on a real 4-manifold M- and take the "real section" of the resulting phasespace at the end. Let e_a^I then be a complex co-tetrad on M and ${}^4A_a{}^{IJ}$ a self dual SO(3,1)connection, and let the action be given by (4.1.4). Let us assume that M has the topology $\Sigma \times \mathbb{R}$ and carry out the Legendre transform. This is a fairly straightforward procedure. The resulting canonical variables are then complex fields on a ("spatial") 3-manifold Σ . To begin with, the configuration variable turns out to be a 1-form A_a^{IJ} on Σ which takes values in the self dual part of the (complexified) SO(3,1) Lie-algebra and its canonical momentum $\widetilde{\Pi}_a^{IJ}$ is a self dual vector density which takes values also in the self dual part of the SO(3,1) Lie algebra. The key improvement over the Palatini framework is that there are no additional constraints on the algebraic form of the momentum. Hence, all constraints are now first class and the analysis retains its simplicity. For technical convenience, one can set up, once and for all, an isomorphism between the self dual sub-algebra of the Lie algebra of SO(3,1) and the Lie algebra of SO(3). When this is done, we can take our configuration variable to be a complex, SO(3)-valued connection $A_a{}^i$ and its canonical momentum, a complex spatial triad $\widetilde{E}^a{}_i$ with density weight one, where 'a' is the (co)vector index and 'i' is the triad or the SO(3) internal index.

The (only non-vanishing) fundamental Poisson brackets are:

$$\{\widetilde{E}^{a}{}_{i}(x), A_{b}{}^{j}(y)\} = -i\delta^{a}{}_{b}\delta_{i}{}^{j}\delta^{3}(x,y). \tag{4.2.1}$$

The geometrical interpretation of these canonical variables is as follows. As we saw above, in any solution to the field equations, ${}^4A_a{}^{IJ}$ turns out to be the self dual apart of the spin connection defined by the tetrad, whence $A_a{}^i$ has the interpretation of being a potential for the self dual part of the Weyl curvature. $\widetilde{E}^a{}_i$ can be thought of as a "square-root" of the 3-metric (times its determinant) on Σ . More precisely, the relation of these variables to the familiar geometrodynamical variables, the 3-metric q_{ab} and the extrinsic curvature K_{ab} on Σ , is as follows:

$$GA_a{}^i = \Gamma_a{}^i - iK_a{}^i$$
 and $\widetilde{E}^a{}_i\widetilde{E}^{bi} = (q)q^{ab}$ (4.2.2)

where, as before, G is Newton's constant, $\Gamma_a{}^i$ is the spin connection determined by the triad, $K_a{}^i$ is obtained by transforming the space index 'b' of K_{ab} into an internal index by the triad $E_i^a := (1/\sqrt{q}) \tilde{E}_i^a$, and q is the determinant of q_{ab} . Note, however, that, as far as the mathematical structure is concerned, we can also think of $A_a{}^i$ as a (complex) SO(3)-Yang-Mills connection and $\tilde{E}^a{}_i$ as its conjugate electric field. Thus, the phase space has a dual interpretation. It is this fact that enables one to import into general relativity and

quantum gravity ideas from Yang-Mills theory and quantum chromodynamics and may, ultimately, lead to a unified mathematical framework underlying the quantum description of all fundamental interactions. In what follows, we shall alternate between the interpretation of $\widetilde{E}^a{}_i$ as a triad and as the electric field canonically conjugate to the connection $A_a{}^i$.

Since the configuration variable $A_a{}^i$ has nine components per space point and since the gravitational field has only two degrees of freedom, we expect seven first class constraints. This expectation is indeed correct. The constraints are given by:

$$\mathcal{G}_i(A, \widetilde{E}) := \mathcal{D}_a \widetilde{E}^a{}_i = 0, \tag{4.2.3}$$

$$\mathcal{V}_a(A, \widetilde{E}) := \widetilde{E}^b{}_i F_{ab}{}^i \equiv \operatorname{tr} E \times B = 0, \tag{4.2.4}$$

$$S(A, \widetilde{E}) := \epsilon^{ijk} \widetilde{E}^a{}_i \widetilde{E}^b{}_j F_{abk} \equiv \operatorname{tr} E \times E \cdot B = 0, \tag{4.2.5}$$

where, $F_{ab}{}^i := 2\partial_{[a}A_{b]}{}^i + G\epsilon^{ijk}A_{aj}A_{bk}$ is the field strength constructed from $A_a{}^i$, B stands for the magnetic field $\tilde{\eta}^{abc}F_{bc}^i$, constructed from F_{ab}^i , and tr refers to the standard trace operation in the fundamental representation of SO(3). Note that all these equations are simple polynomials in the basic variables; the worst term occurs in the last constraint and is only quadratic in each of $\tilde{E}^a{}_i$ and $A_a{}^i$. The three equations are called, respectively, the Gauss constraint, the vector constraint and the scalar constraint. The first, Gauss law, arises because we are now dealing with triads rather than metrics. It simply tells us that the internal SO(3) triad rotations are "pure gauge". Modulo these internal rotations, the vector constraint generates spatial diffeomorphisms on Σ while the scalar constraint is responsible for diffeomorphisms in the "time-like directions". Thus, the overall situation is the same as in triad geometrodynamics.

From geometrical considerations we know that the "kinematical gauge group" of the theory is the semi-direct product of the group of local triad rotations with that of spatial diffeomorphisms on Σ . This group has a natural action on the canonical variables $A_a{}^i$ and $\widetilde{E}^a{}_i$ and thus admits a natural lift to the phase-space. This is precisely the group formed by the canonical transformations generated by the Gauss and the vector constraints. Thus, six of the seven constraints admit a simple geometrical interpretation. What about the scalar constraint? Note that, being quadratic in momenta, it is of the form $G^{\alpha\beta}p_{\alpha}p_{\beta}=0$ where, the connection supermetric $\epsilon^{ijk}F_{abk}$ plays the role of $G^{\alpha\beta}$. Consequently, the motions generated by the scalar constraint in the phase space correspond precisely to the null geodesics of the "connection supermetric". As in geometrodynamics, the spacetime interpretation of these canonical transformations is that they correspond to "multi-fingered" time-evolution. Thus, we now have an attractive representation of the Einstein evolution as a null geodesic motion in the (connection) configuration space ¹³.

¹³ At first sight, it may appear that this interpretation requires $G^{\alpha\beta}$ to be non-degenerate since it is only in this case that one can compute the connection compatible with $G^{\alpha\beta}$ unambiguously and speak of null geodesics. However, in the degenerate case, there exists a natural generalization of this notion of null geodesics which is routinely used in Hamiltonian mechanics.

If Σ is spatially compact, the Hamiltonian is given just by a linear combination of constraints. In the asymptotically flat situation, on the other hand, constraints generate only those diffeomorphisms which are asymptotically identity. To obtain the generators of space and time translations, one has to add suitable boundary terms. In a 3+1 framework, these translations are coded in a lapse-shift pair. The lapse –which tends to a constant value at infinity– tells us how much of a time translation we are making while the shift – which approaches a constant vector field at infinity– tells us the amount of space-translation being made. Given a lapse ^{14}N and a shift N^a , the Hamiltonian is given by:

$$H(A,\widetilde{E}) = i \int_{\Sigma} d^3x \left(N^a F_{ab}{}^i \widetilde{E}^b{}_i - \frac{i}{2} N \epsilon^{ijk} F_{abk} \widetilde{E}^a{}_i \widetilde{E}^b{}_j \right)$$
$$- \oint_{\partial \Sigma} d^2S_a \left(N \epsilon^{ijk} A_{bk} \widetilde{E}^a{}_i \widetilde{E}^b{}_j + 2i N^{[a} \widetilde{E}^{b]}{}_i A_b{}^i \right). \quad (4.2.6)$$

The dynamical equations are easily obtained since the Hamiltonian is also a low order polynomial in the canonical variables. We have

$$\dot{A}_{a}^{i} = -i\epsilon^{ijk} \widetilde{N} \widetilde{E}_{j}^{b} F_{abk} - N^{b} F_{ab}^{i}
\dot{E}_{i}^{a} = i\epsilon_{i}^{jk} \mathcal{D}_{b} (\widetilde{N} \widetilde{E}_{i}^{a} \widetilde{E}_{k}^{b}) - 2\mathcal{D}_{b} (N^{[a} \widetilde{E}^{b]i})$$
(4.2.7)

Again, relative to their analogs in geometrodynamics, these equations are significantly simpler.

So far, we have discussed complex general relativity. To recover the Lorentzian theory, we must now impose reality conditions, i.e., restrict ourselves to the real, Lorentzian section of the phase-space. Let me explain this point by means of an example. Consider a simple harmonic oscillator. One may, if one so wishes, begin by considering a complex phase-space spanned by two complex co-ordinates q and p and introduce a new complex co-ordinate z = q - ip. (q and p are analogous to the triad $\tilde{E}^a{}_i$ and the extrinsic curvature $K_a{}^i$, while z is analogous to $A_a{}^i$.) One can use q and z as the canonically conjugate pair, express the Hamiltonian in terms of them and discuss dynamics. Finally, the real phase-space of the simple harmonic oscillator may be recovered by restricting attention to those points at which q is real and ip = q - z is pure imaginary (or, alternatively, \dot{q} is also real.) In the present phase-space formulation of general relativity, the situation is analogous. In terms of the familiar geometrodynamic variables, the reality conditions are simply that the 3-metric be real and the extrinsic curvature —the time derivative of the 3-metric—be real. If these conditions are satisfied initially, they continue to hold under time-evolution. In

In this framework, the lapse naturally arises as a scalar density N of weight -1. It is N that is the basic, metric independent field. The "geometric" lapse function N is metric dependent and given by $N = \sqrt{q}N$. Note also that, unlike in geometrodynamics, Newton's constant never appears explicitly in the expressions of constraints, Hamiltonians, or equations of motion; it features only through the expression for F_{ab}^{i} in terms of the connection.

terms of the present canonical variables, these become: i) the (densitized) 3-metric $\tilde{E}^a{}_i\tilde{E}^{bi}$ be real, and, ii) its Poisson bracket with the Hamiltonian H be real, i.e.,

$$(\widetilde{E}^a{}_i\widetilde{E}^{bi})^* = \widetilde{E}^a{}_i\widetilde{E}^{bi} \tag{4.2.8}$$

$$[\epsilon^{ijk}\widetilde{E}^{(a}{}_{i}\mathcal{D}_{c}(\widetilde{E}^{b)}{}_{k}\widetilde{E}^{c}{}_{j})]^{\star} = -\epsilon^{ijk}\widetilde{E}^{(a}{}_{i}\mathcal{D}_{c}(\widetilde{E}^{b)}{}_{k}\widetilde{E}^{c}{}_{j}), \tag{4.2.9}$$

where \star denotes complex-conjugation. (Note, incidentally, that in Euclidean relativity, these conditions can be further simplified since self dual connections are now real: The reality conditions require only that we restrict ourselves to real triads and real connections.) As far as the classical theory is concerned, we could have restricted to the "real slice" of the phase-space right from the beginning. In quantum theory, on the other hand, it is simpler to first consider the complex theory, solve the constraint equations and then impose the reality conditions as suitable Hermitian-adjointness relations. Thus, the quantum reality conditions would be restrictions on the choice of the inner-product on physical states.

Could we have arrived at the phase-space description of real general relativity in terms of $(A_a{}^i, E^a{}_i)$ without having to first complexify the theory? The answer is in the affirmative. This is in fact how the new canonical variables were first introduced (Ashtekar (1987).) The idea is to begin with the standard Palatini action for real tetrads and real Lorentz-connections, perform the Legendre transform and obtain the phase-space of real relativity a la Arnowitt, Deser and Misner. The basic canonical variables in this description can be taken to be the density weighted triads $\widetilde{E}^a{}_i$ and their canonical conjugate momenta π_a^i . The interpretation of π_a^i is as follows: In any solution to the field equations, i.e., "on shell," $K_{ab} := \pi^i_{(a} E_{b)i}$ turns out to be the extrinsic curvature. Up to this point, all fields in question are real. On this real phase space, one can make a (complex) canonical transformation to pass to the new variables: $(\widetilde{E}_i^a, \pi_a^i) \to (\widetilde{E}_i^a, GA_a^i) := \Gamma_a^i - i\pi_a^i \equiv$ $(\delta F/\delta \widetilde{E}_i^a) - i\pi_a^i$), where the generating function $F(\widetilde{E})$ is given by: $F(\widetilde{E}) = \int_{\Sigma} d^3x \widetilde{E}_i^a \Gamma_a^i$ and where Γ_a^i are the spin coefficients determined by the triad \widetilde{E}^a_i . Thus, A_a^i is now just a complex coordinate on the traditional, real phase space. This procedure is completely analogous to the one which lets us pass from the canonical coordinates (q, p) on the phase space of the harmonic oscillator to another set of canonical coordinates (q, z = dF/dq - ip), with $F(q) = \frac{1}{2}q^2$, and makes the analogy mentioned above transparent. Finally, the second of the reality conditions, (4.2.9), can now be re-expressed as the requirement that $GA_a^i - \Gamma_a^i$ be purely imaginary, which follows immediately from the expression of $A_a{}^i$ in terms of the real canonical variables $(\widetilde{E}_i^a, K_a^i)$.

I will conclude this subsection with a few remarks.

i) In broad terms the Hamiltonian framework developed above is quite similar to the one discussed in section 3 (see especially section 3.5) for the 2+1 theory: in both cases, the configuration variable is a connection, the momentum can be regarded as a "square root" of the metric, and the constraints, the Hamiltonian and the equations of motion have identical form. However, there are a number of key differences. The first is that the connection in the 3+1 theory is the self dual SO(3,1) spin-connection while that in the 2+1 theory is the real SO(2,1) spin-connection. More importantly, while the scalar and the vector constraints together imply in the 2+1-theory that the connection

- is flat, a simple counting argument shows that there is no such implication in the 3+1 theory. This is the reason behind the key difference between the two theories: Unlike in the 2+1 case, the 3+1 theory has *local* degrees of freedom and hence gravitons.
- ii) A key feature of this framework is that all equations of the theory—the constraints, the Hamiltonian and hence the evolution equations and the reality conditions—are simple polynomials in the basic variables $\tilde{E}^a{}_i$ and $A_a{}^i$. This is in striking contrast to the ADM framework where the constraints and the evolution equations are non-polynomial in the basic canonical variables. An interesting—and potentially, powerful—consequence of this simplicity is the availability of a nice algorithm to obtain the "generic" solution to the vector and the scalar constraint (Capovilla et al 1989). Choose any connection $A_a{}^i$ such that its magnetic field $\tilde{B}^a{}_i := \tilde{\eta}^{abc} F_{bci}$, regarded as a matrix, is non-degenerate. A "generic" connection $A_a{}^i$ will satisfy this condition; it is not too restrictive an assumption. Now, we can expand out $\tilde{E}^a{}_i$ as $\tilde{E}^a{}_i = M_i{}^j \tilde{B}^a{}_j$ for some matrix $M_i{}^j$. The pair $(A_a{}^i$, $\tilde{E}^a{}_i$) then satisfies the vector and the scalar constraints if and only if $M_i{}^j$ is of the form $M_i{}^j = [\phi^2 \frac{1}{2} \operatorname{tr} \phi^2]_i{}^j$, where $\phi_i{}^j$ is an arbitrary trace-free, symmetric field on Σ . Thus, as far as these four constraints are concerned, the "free data" consists of $A_a{}^i$ and $\phi_i{}^j$.
- iii) The phase-space of general relativity is now identical to that of complex-valued Yang-Mills fields (with internal group SO(3)). Furthermore, one of the constraint equations is precisely the Gauss law that one encounters on the Yang-Mills phase-space. Thus, we have a natural embedding of the constraint surface of Einstein's theory into that of Yang-Mills theory: Every initial datum $(A_a^i, \widetilde{E}^a{}_i)$ for Einstein's theory is also an initial datum for Yang-Mills theory which happens to satisfy, in addition to the Gauss law, a scalar and a vector constraint. From the standpoint of Yang-Mills theory, the additional constraints are the simplest diffeomorphism and gauge invariant expressions one can write down in absence of a background structure such as a metric (Bengtsson 1989). Note that the degrees of freedom match: the Yang-Mills field has 2 (helicity) $\times 3$ (internal) = 6 degrees and the imposition of four additional firstclass constraints leaves us with 6-4=2 degrees of freedom of Einstein's theory. I want to emphasize, however, that in spite of this close relation of the two initial value problems, the Hamiltonians (and thus the dynamics) of the two theories are very different. Nonetheless, the similarity that does exist can be exploited to obtain interesting results relating the two theories (See, e.g. the review by Samuel (1991)).
- iv) Since all equations are polynomial in $A_a{}^i$ and $\widetilde{E}^a{}_i$ they continue to be meaningful even when the triad (i.e. the "electric field") $\widetilde{E}^a{}_i$ becomes degenerate or even vanishes. As in the 2+1 theory, this feature enables one to use in quantum theory a representation in which states are functionals of $A_a{}^i$ and $\hat{E}^a{}_i$ is represented simply by a functional derivative with respect to $A_a{}^i$, thereby shifting the emphasis from triads to connections. In fact, Capovilla, Dell and Jacobson (1989) have introduced a Lagrangian framework which reproduces the Hamiltonian description discussed above but which never even introduces a space-time metric! This formulation of "general relativity without metric" lends strong support to the viewpoint that the traditional emphasis on metric-dynamics, however convenient in classical physics, is not indispensable.

This completes the discussion of the Hamiltonian description of general relativity which casts it as a theory of connections. We have transformed triads from configuration to momentum variables and found that self dual connections serve as especially convenient configuration variables. In effect, relative to the Arnowitt-Deser-Misner geometrodynamical description, we are looking at the theory "upside down" or "inside out". And this unconventional way of looking reveals that the theory has a number of unexpected and, potentially, profound features: it is much closer to gauge theories (particularly the topological ones) than was previously imagined; its constraints are the simplest background independent expressions one can write down on the phase space of a gauge theory; its dynamics has a simple geometrical interpretation on the space of connections; etc. It opens new doors particularly for the task of quantizing the theory. We are led to shift emphasis from metrics and distances to connections and holonomies and this, in turn suggests fresh approaches to unifying the mathematical framework underlying the four basic interactions (see, in particular, Peldan (1992)).

4.3 Rovelli-Smolin Loop variables

Let us now introduce the analogs of the 2+1 T-variables and analyse their properties. As one might expect, they will play an important role in the quantum theory.

Consider continuous, piecewise analytic mappings $\alpha: S^1 \to \Sigma$ from a circle to the spatial 3-manifold Σ . Each of these mappings gives us a parametrized, closed curve on Σ . We will denote these curves by $\alpha(s), \beta(t), ...,$ let the parameters s, t, ... take values modulo 1 and call them *loops*. The inverse of α will be defined to be the loop $\alpha^{-1}(s) = \alpha(1-s)$. The equivalence class of such closed curves, where any two defer only by an orientation preserving reparametrization, will be referred to as an unparametrized loop. While we will generally use loops in the intermediate steps, the final results will not be sensitive to the choice of parametrization. Such technicalities are necessary also in 2+1 dimension. We skipped them because we could pass quickly to the homotopy classes of loops, which in turn was possible because the constraints required that the connections be flat. In the 3+1 theory now under consideration, the connections are not forced by the constraints to be flat; there are local degrees of freedom. Hence, for a significant part of the discussion, we have to deal directly with loops themselves and now the details given above become relevant. Finally, in 3 – and only in 3– dimensions, we have the interesting phenomenon of knotting and linking of loops. As we saw in section 2.5, already in the case of a Maxwell field, linking numbers play an important role in the quantum description. We will see in the next section that in 3+1 gravity (and, although we will not discuss them here, also in certain topological field theories) both knot and link invariants play a key role.

As in 2+1 gravity, the configuration variables $T[\gamma]$ are just the traces of holonomies. Let σ^j denote the three 2 × 2 Pauli matrices and set $\tau^j = (1/2i)\sigma^j$. We will use these matrices to pass to the 2-dimensional representation of (complexified) SO(3). Thus, given the connection 1-form A_a^i , we can construct a 2×2 matrix $A_a := A_a^j \tau_j$ in the Lie algebra of SL(2, C) and use it in the expression of the parallel-transport operation:

$$U_{\gamma}(s,t) := \mathcal{P} \exp\left(G \int_{\gamma(s)}^{\gamma(t)} dS^a A_a\right), \tag{4.3.1}$$

where $\gamma(s)$ and $\gamma(t)$ are two points on γ and, as before, \mathcal{P} stands for "path-ordered" and where the factor of G is necessary because it is GA_a that has the dimensions of inverse length. $U_{\gamma}(s,t)$ is reparametrization invariant; it depends only on the points $\gamma(s)$ and $\gamma(t)$ fixed on the loop γ .) If t = s + 1, we obtain a group element at $\gamma(s)$ which encodes the parallel transport operation along the closed loop γ . We denote it simply by $U_{\gamma}(s)$; this is the holonomy defined by A_a around the closed loop γ , evaluated at $\gamma(s)$. Our configuration variable is simply the trace of this SL(2, C) matrix:

$$T[\gamma](A) := \frac{1}{2} \operatorname{tr} U_{\gamma}(s). \tag{4.3.2}$$

Using (4.3.1) and the cyclic property of the trace operation, it is easy to verify that the trace can be evaluated at any point along the loop; its value depends only on the loop γ and not on the point $\gamma(s)$ used in the evaluation. As noted in section 3, these configuration variables are automatically gauge invariant. Thus, if \mathcal{C} denotes the space of all (suitably regular) connections A_a on Σ and \mathcal{C}/\mathcal{G} its quotient by the $local\ SL(2,C)$ transformations, $T[\gamma]$ can be naturally projected down to \mathcal{C}/\mathcal{G} . Furthermore, they form a complete set –in the sense that their gradients span the cotangent space to \mathcal{C}/\mathcal{G} – almost everywhere (Goldberg et al 1992). As remarked in section 3, had the gauge group been SO(3) or SU(2), these variables would be complete. It is the presence of the null rotation subgroup of SL(2,C) that makes them incomplete on sets of measure zero. Finally, as in 2+1 theory, where ever the $T[\gamma]$ are complete, they are in fact overcomplete; there are algebraic identities between them which should be carried over to the quantum theory. These are:

$$T[0] = 1, T[\gamma] = T[\gamma^{1}], T[\gamma \circ \beta] = T[\beta \circ \gamma]$$

and
$$2T[\gamma] \cdot T[\beta] = T[\gamma \sharp \beta] + T[\gamma \sharp \beta^{-1}], (4.3.3)$$

where, as before $\gamma \circ \beta$ is the composition of two loops at an intersection point (so the third relation is empty if the loops dont intersect) and $\gamma \sharp \beta$ is the "eye-glass" loop obtained by joining the two loops by a line segment (whence the fourth relation is relevant even if the loops do not intersect). The right hand side of the last equation is independent of the choice of the line segment used to join the loop, provided, of course the *same* segment is used in both terms.

Next, we wish to introduce variables which are linear in momenta $\widetilde{E}^a{}_i$. Since $\widetilde{E}^a{}_i$ has a free internal index, it is gauge covariant rather than gauge invariant. To obtain a gauge invariant momentum variable, we need to "tie" this index with that of some other gauge covariant, momentum independent object. The obvious choice is the holonomy $U_\gamma(s)$ around a closed loop γ . However, unlike its trace $T[\gamma]$, $U_\gamma(s)$ "sits" at a specific point $\gamma(s)$ of the loop γ . Hence, the electric field must "sit" at the same point. Thus, the momentum

variable is associated with a closed loop γ together with a marked point $\gamma(s)$ on it. Given this pair, we set:

$$T^{a}[\gamma; s](A, \widetilde{E}) := \frac{1}{2} \operatorname{tr} \left(U_{\gamma}(s) \widetilde{E}^{a}(\gamma(s)) \right), \tag{4.3.4}$$

where $\widetilde{E}^a = \widetilde{E}^a_i \tau^i$ and where, for notational simplicity, I have dropped the tilde over T^a even though it is a density of weight one. By construction, these variables are also (Gauss) gauge invariant. It is therefore convenient to reduce the phase space with respect to the Gauss constraint –i.e., to first restrict ourselves to the $(A_a{}^i, \widetilde{E}^a{}_i)$ pairs which satisfy the Gauss constraint and then factor out by the canonical transformations generated by this constraint. Since the constraint is linear in momenta, the reduced phase space is again a cotangent bundle and the reduced configuration space is just \mathcal{C}/\mathcal{G} . The analysis of Goldberg, Lewandowski and Stornaiolo (1992) shows that the $T[\gamma]$ and $T^a[\gamma;s]$ provide us with an overcomplete set almost everywhere on this reduced phase space. The "marked point on γ at which \widetilde{E}^a sits is called a hand. In various calculations, –such as that of the Poisson bracket between $T^a[\gamma;s]$ and $T[\beta]$ – non-trivial terms generally result only if another loop $-\beta$ in our example– intersects γ at the marked point $\gamma(s)$. In this case, one says the hand on γ has grasped β .

In contrast to the 2+1 dimensional case, the momentum variable is now a function on the phase-space which takes values in vector densities of weight one rather than complex numbers and depends not only on the loop but also a point on the loop. As we will see, the form in (4.3.4) is convenient in practice when dealing with constraints. However, in a proper mathematical treatment along the lines sketched in section 2.5, one must begin with a genuine algebra of operators which in turn means that the elementary classical variables should be genuine complex-valued functions on the phase space yielding a true Lie algebra under the Poisson bracket operation. For these purposes, it is convenient to smear $T^a[\gamma;s]$ appropriately. This can be done as follows. Note first that, since the T^a are vector densities and since vector densities in three dimensions are dual to 2-forms, it is now natural to smear them on 2-surfaces. Further, since we must get rid of the marked point on the loop, smearing should contain in it an integration over the loop; the loop itself should be contained in the 2-surface. These considerations lead us to the following construction. Consider a continuous, piecewise analytic mapping from $S^1 \times (-\epsilon, \epsilon)$ to the 3-manifold. Its image in Σ is a ribbon which comes with a parametrization (σ, τ) , with $\sigma \in [0,1]$ and $\tau \in (-\epsilon,\epsilon)$. These parameters will be convenient in the intermediate steps of our calculations. However, just as the variable $T[\gamma]$ and its properties are invariant under the reparametrizations of the loop γ , the smeared momentum variable T[S] will be insensitive to the values of the parameters σ, τ . The invariant structure will be the $S^1 \times \mathbb{R}$ topology of S, its foliation by a family of closed curves and its orientation $(d\sigma \wedge d\tau)$. The equivalence class of ribbons S where any two are considered as being equivalent if they differ only by an orientation preserving reparametrization will be called a *strip*. Given a strip S, we define:

$$T[S](A,E) := \int_{S} dS^{ab} \eta_{abc} T^{c}[\tau;\sigma], \tag{4.3.5}$$

where the closed loops needed in the definition of T^c are provided by $\tau = \text{const}$ circles. These are now gauge invariant, complex-valued functions on the phase space, which are linear in momenta. As in the 2+1 theory, the algebraic relations (4.3.3) in turn imply that the strip variables are also algebraically constrained:

$$T[S] = 0, \quad T[S] = T[S^{-1}] \quad \text{and} \quad T[S \circ S'] = T[S' \circ S],$$
 (4.3.6)

where $S \circ S'$ is the strip obtained by composing the two strips at the points of their intersection (the portions of either strips which are not ruled by circles passing through the intersection points being discarded.) As in the 2+1 theory, the momentum variables T[S] can be "derived" from the $T[\gamma]$ although the construction is somewhat more involved. This derivation can again be used to obtain (4.3.6) from (4.3.3). (See chapter 15 in Ashtekar (1991).) There is, however, one difference. In the 2+1 theory, the momentum variables T^1 are also associated with loops and the last equation in (4.3.3) leads to an additional algebraic constraint on the T^1 variables. In the 3+1 theory, due to the asymmetry between loops and strips, we do not obtain such a relation.

The above construction of the loop-strip variables, as well as their properties has a universality. For gauge fields in n (spatial) dimensions, the configuration variables are associated with closed loops while the momentum variables are associated with n-1 dimensional strips. In 2+1 dimensional theories, the numbers conspire and the momenta are again associated with closed loops. Independent of the dimension n, the loop-strip variables are closed under the Poisson bracket. Furthermore, the operation of taking these brackets corresponds simply to breaking, re-routing and joining the loops and the strips¹⁵:

$$\{T[\gamma], T[\beta]\} = 0; \qquad \{T[S], T[\gamma]\} = \sum_{i} \Delta_{i}(S, \gamma) (T[\gamma \circ_{i} \tau_{i}] - T[\gamma \circ_{i} \tau_{i}^{-1}])$$

$$\{T[S], T[S']\} = \sum_{i} \Delta_{i}(S, S') (T[S \circ_{i} S'] - T[S \circ_{i} (S')^{-1}],$$

$$(4.3.7)$$

where the subscript i labels the intersections between γ and S or, S and S'; τ_i is the closed loop on S passing through the i-th intersection between γ and S; \circ_i denotes the composition of the loops or strips at the i-th intersection; and, Δ_i equals $\pm \frac{1}{2}$ depending on the orientation of the two arguments at the intersection. Thus, the structure we encountered in the Poisson brackets between T variables in 2+1 dimensions is not accidental.

There is however a key property of the 2+1 loop variables which is not shared by the 3+1 ones: The $T[\gamma]$ and the T[S] are no longer Dirac observables. While they continue to strongly commute with the Gauss constraints, in the 3+1 theory, they fail to commute even weakly with the vector and the scalar constraints. This failure can be traced back to the fact that the gravitational field now has local degrees of freedom. At a technical level, it is this failure that causes the key difficulties in the quantization of the 3+1 theory and explains why, in contrast to the 2+1 theory, the program there is still so far from

Thus, had we required that the loops and strips be smooth, the $T[\gamma]$ and T[S] would not have been closed under the Poisson bracket. This is why we allowed them to be non-differentiable at isolated points. We required them to be piecewise analytic rather than, say, C^{∞} to ensure that the sums on the right side of the Poisson brackets range over a finite number of terms.

completion. From a physical viewpoint, however, this feature lies at the heart of the richness of the 3+1 theory.

The $T[\gamma]$ and the T[S] serve as the point of departure for the quantization problem in a proper mathematical setting, e.g., in the spirit of section 2.5. Thus, one may first construct a C^* algebra and then analyse its representations systematically. However, given a representation, one is still left with the task of introducing physically interesting operators, such as the quantum analogs of constraints. At this stage, the unsmeared form (4.3.4) of the momentum variable (as well as its analogs which are quadratic or higher order in momenta) are often more directly useful. We will conclude with a discussion of how this comes about.

Let us begin with the vector constraint on the classical phase space. (Note incidentally that both the vector and the scalar constraints commute with the Gauss constraint and therefore admit a well-defined projection to $T^{\star}(\mathcal{C}/\mathcal{G})$, the reduction of the phase space with respect to the Gauss constraint. Since the T-variables are also admit this projection, the entire analysis can be carried out on this reduced space.) Fix a point p on Σ and let x^i be local coordinates centered at p. Let γ_{12}^{δ} be a loop in Σ of coordinate area δ , centered at p, lying entirely in the 1-2 coordinate plane. Then, using the definition of the path ordered exponential, it follows that:

$$U[\gamma^{\delta}_{12}] = 1 + \delta F_{12}(p) + o(\delta), \quad \text{whence,}$$

$$T^{2}[\gamma^{\delta}_{12}] = \frac{\delta}{2} \operatorname{tr} F_{12}(p) \widetilde{E}^{2}(p) + o(\delta), \tag{4.3.8}$$

where $o(\delta)$ denotes terms which vanish in the limit faster than δ . Hence, the vector constraint can now be expressed as a sum of three terms:

$$\mathcal{V}_a(p) := \operatorname{tr} F_{ab}(p)\widetilde{E}^b(p) = \lim_{\delta \to 0} \frac{2}{\delta} \sum_a T^b[\gamma_{ab}^{\delta}; 0], \tag{4.3.9}$$

involving three loops centered at p in the 3-planes defined by the coordinates. To express the scalar constraint in a similar fashion, it is convenient to introduce a loop variable $T^{a,a'}$ which is quadratic in momenta:

$$T^{aa'}[\gamma; s, s'](A, E) = \frac{1}{2} \operatorname{tr} \left(U_{\gamma}(s', s) \widetilde{E}^{a}(\gamma(s)) U_{\gamma}(s, s') \widetilde{E}^{a'}(\gamma(s')) \right). \tag{4.3.10}$$

This is again gauge invariant. These variables can be used to express the scalar constraint:

$$S(p) := \operatorname{tr} F_{ab}(p)\widetilde{E}^{a}(p)\widetilde{E}^{b}(p) = \lim_{\delta \to 0} \frac{1}{\delta} \sum_{a,a'} T^{[aa']}[\gamma^{\delta}{}_{aa'}; 0, \delta], \tag{4.3.11}$$

as well as the density weight 2, contravariant metric $\widetilde{\widetilde{q}}^{ab} \equiv \widetilde{E}^a_i \widetilde{E}^{bi}$:

$$-4\widetilde{\widetilde{q}}^{aa'}(p) := \lim_{\delta \to 0} T^{aa'}[\gamma; 0, \delta]. \tag{4.3.12}$$

From the point of view of the classical theory, in spite of their manifest gauge invariance, the loop variables are rather awkward to use: they are non-local in their dependence on Σ and, consequently, one has to resort to limiting procedures to extract even the most basic functions on the phase space such as the 3-metric and the constraints. Furthermore, under the evolution generated by the Hamiltonians, each of the loop variables is mapped to functions on the phase space which can be expressed only as a limit of an infinite sum of loop variables; the vector space generated by these variables is not stable under evolution of general relativity or even the linearized approximation thereof. Consequently, so far, these variables have played virtually no role at all in classical general relativity. However, their weakness turns to strength in the process of quantization. For, we expect expressions such as the 3-metric or the constraints which involve products of $A_a{}^i$ and $\widetilde{E}^a{}_i$ at the same point to give rise to divergent operators in the quantum theory and that a suitable "point splitting" procedure would be necessary to regulate such expressions. The loop variables provide a natural regularization procedure. In the expression (4.3.12) for the metric, for example, we have basically point-split the two triads in the expression $\widetilde{E}^a_i \widetilde{E}^{bi}$ in a gauge invariant way. We will see that the loop variables can be promoted directly to quantum operators: One does not first promote $A_a{}^i$ and $\widetilde{E}^a{}_i$ to quantum theory and then reconstruct operators corresponding to the loop variables in terms of them. It is natural to interpret these operators as the regulated versions of constraints, metric, etc and then define these latter operators by performing suitable limits. Thus, the loop variables come into their own in the quantum theory.

5. The loop representation for 3+1 gravity

Aboriginals ... could not imagine territory as a block of land but rather as an interlocking networks of "lines" or "ways through." All ... words for "country" ... are the same as the words for "line."

Bruce Chatwin (The songlines)

5.1 Introduction

In this section, we want to combine the ideas introduced in the last three sections to develop a non-perturbative approach to quantum general relativity in four dimensions.

As in 2+1-gravity, we will use the algebraic quantization method of section 2.4. Recall that this program requires two key inputs: the choice of a class of elementary classical variables right in the first step and the choice of the representation of the quantum algebra in the fourth step. The geometric properties of the T-variables introduced in the last section suggest that they are natural candidates to be the elementary classical variables. Even after this choice is made, however, there remains a considerable freedom in the selection of the representation of the required quantum algebra. Indeed, in the 3-dimensional theory, we found that at least two possibilities arise naturally: the connection representation and the loop representation. The discussion of the "non-linear duality" between connections and loops (of section 2.5) suggests that, from the viewpoint of a general representation theory, it is the connection representation that should be regarded as "basic" and the loop representation as being "derived" through the loop transform. This is the strategy we adopted in 2+1-gravity. In 4-dimensional general relativity, however, this procedure faces certain technical problems. These are being investigated but have not been fully resolved. More importantly, so far, the theory has advanced much further in the loop representation than in the connection picture. Therefore, in the main body of this section, I will essentially follow the steps used by Rovelli and Smolin (1990) in their pioneering work and construct the loop representation ab-initio. In the last subsection, I will briefly present the current status of the construction of a systematic representation theory along the lines of section 2.5.

In section 5.2, we will construct the loop representation: the space V of states as well as the action of the \hat{T} -operators on this space will be specified. This is quantum kinematics. Unlike in the 2+1 theory, the system now has an infinite number of degrees of freedom and this poses non-trivial regularization problems. These are addressed in the following two subsections. We begin in section 5.3 by showing how certain operators of physical interest can be regulated in a way that respects the diffeomorphism invariance of the theory. We then use these regulated expressions to exhibit states –called weaves– which approximate smooth classical geometries on a macroscopic scale but have a discrete structure of a definite type at the Planck scale. In section 5.4, we discuss quantum dynamics, i.e., solutions to the quantum constraints. The first step, again, is the regularization of the constraint operators. The Gauss constraint is trivial in the loop representation and the vector constraint can

be regulated such that the resulting operator is manifestly free of dependence on the background structure introduced in the process. Furthermore, it has the expected action: it generates diffeomorphisms. Therefore, the general solution to the Gauss and the vector constraints can be given explicitly: These are the loop functions which project down to the space of (generalized) knots and links (where intersections are permitted). Since the space of knots and links is discrete, one expects key mathematical as well as conceptual simplifications. Finally, we discuss the solutions to the quantum scalar constraint—the analog of the Wheeler-DeWitt equation of quantum geometrodynamics. This constraint needs both regularization and renormalization and, futhermore, the resulting operator carries background dependence. However, the dependence has a specific form so that a background independent kernel can be extracted. The result yields an infinite dimensional space of solutions to all constraints. Some of these are directly related to knot invariants. It is important to note that these solutions are not just formal; detailed regularization has been carried out and, futhermore, attention is paid so that the final results are independent of background structures used in the intermediate steps. We will conclude in section 5.5 with a brief discussion of the open problems and of some of the work in progress.

Thus, we will see in this section that significant progress has been already made along several different lines. These results have provided valuable insights. The framework leads to discrete structures at two levels. First, the quantum states representing a macroscopic, smooth geometry exhibit discreteness at the Planck scale on 3-dimensional space. Second, the domain space of quantum states –the space on which solutions to quantum constraints live— is also discrete. The two are related but quite distinct both mathematically and conceptually. The first type of discreteness suggests that the assumption that space-time is represented by a smooth continuum, normally made in field theory, may be seriously flawed. More importantly, it tells us how this error can be rectified —what the continuum is to be replaced by. The second type of discreteness should enable to one to formulate the mathematics of quantum theory in a combinatorial framework, without any reference to space and time. It opens up doors to new arenas, lets one visualize Planck scale physics in an entirely different fashion and provides tools to pose and answer new questions. At a technical level, many of the hard problems of functional analysis are simplified because physical states are functions on a discrete space. The first type of discreteness has implications which are easier to grasp in terms of notions we are used to; it is as though there is an ultra-violet cut-off built into the very fabric of the non-perturbative treatment or that the correct expression of the density of states at high energies is qualitatively different from the naive one, used in the perturbation theory. However I believe that, in the end, the second type of discreteness is likely to have a more profound impact on our understanding of the Planck scale physics.

These developments are exciting. However, as will be clear from the discussion, a comprehensive picture which unites the various concrete results in a systematic fashion is not yet available. In particular, in the loop representation, rather than constructing a proper representation theory, one makes convenient choices as they are needed. Consequently, there are neither uniqueness results nor a good control of what would have happened if different choices had been made. In a sense this is no different from what one does in interacting quantum field theory in Minkowski space, where again there is no a

priori justification for using the Fock representation. (Moreover, in 4 dimensions, there are good mathematical reasons for *not* using it!) However, in that case, over the years one has acquired a great deal of theoretical experience and, more importantly, there exist a vast number of experimental tests which support the strategy as a good working hypothesis. In non-perturbative quantum gravity, on the other hand, one lacks both and hence the issue of "control" and uniqueness become much more important. (Incidentally, although this point is rarely raised in other non-perturbative approaches to quantum gravity, such as quantum geometrodynamics or string theory, it is equally valid there.) However, I should also emphasize that the choices made in the construction of the loop representation *are* well motivated. Furthermore, within the chosen representation, the analysis has now reached a high level of precision and is on a sound mathematical footing by standards conventionally used in theoretical (as opposed to mathematical) physics. Finally, although important technical problems remain, a general, systematic approach (along the lines of section 2.5) which may justify the choices we have made *is* now in sight.

A much more serious limitation is the *incompleteness* of the program. In particular, the space of solutions to all constraints, although infinite dimensional, is far from being exhaustive. Even on the space of available solutions, we do not know the correct inner-product. The general quantization program of section 2.4 does provide a strategy involving the so-called "reality conditions". However, in the obvious implementation of this idea, one needs to know the complex conjugation relation on a large class of Dirac observables and *very* few of these are known. Finally, there is the issue of physical interpretation. Over the last two years, however, the program has been completed in several truncated models and more recently, certain approximation methods have been introduced in the full theory. These have provided fresh insights into the open problems. Much of the current work is in the area of constructing more and more sophisticated models –e.g. one Killing field reduction of general relativity— with the hope that they will tell us how to tackle the problem in its complete generality.

5.2 The loop representation

Let us now introduce the loop representation in a somewhat loose manner, specifying only those technicalities which are needed in the next two subsections.

The first step is the construction of the quantum algebra. Let us choose as our elementary variables the loop-strip functions $T[\gamma]$ and T[S] introduced in section 4.3 (see (4.3.2) and (4.3.5) respectively.) The $T[\gamma]$ represent the configuration variables and the T[S] represent the momentum variables. They are complete –in fact, overcomplete– almost everywhere on the phase space and closed under the Poisson bracket. Let us denote by S the complex vector space they generate. Because of overcompleteness, there are algebraic relations (4.3.3) and (4.3.6) between these T-variables. This is not surprising. For, the effective configuration space C/\mathcal{G} , the quotient of the space C of connections modulo the local gauge group G, is a genuinely non-linear space with a complicated topology, whence any set of functions on the effective phase space, $T^*(C/\mathcal{G})$, which is complete is necessarily overcomplete. It is possible to reduce this overcompleteness significantly and

it is often convenient to do so, especially for concrete calculations in a lattice theory (Loll 1991). However, the overcompleteness cannot go away entirely because of the topological reasons mentioned above. Therefore, in the construction of the general framework here, it will be easier to deal with the entire set of loop-strip variables and incorporate the algebraic relations between them in the very fabric of the quantum algebra. Thus, in any representation of this algebra, the quantum operators will satisfy the corresponding relations, ensuring, in particular, the correct classical limit.

Let us then begin the construction of the quantum algebra, by associating with each loop γ an operator $\hat{T}[\gamma]$ and a strip S another operator $\hat{T}[S]$ and consider the algebra they generate. On this algebra, we impose the hatted versions of the algebraic relations (4.3.3) and (4.3.6) and require that the commutator between any two loop-strip variables be given by $i\hbar$ times their Poisson bracket (4.3.7). This is our quantum algebra \mathcal{A} .

Our next task is to find representations of this algebra. Let us begin by specifying the vector space V of states. Let V be the space of functions $\psi(\gamma)$ of loops satisfying the following two conditions:

- i) Continuity: If a sequence of loops γ_i converges to a loop γ pointwise on Σ , then the complex numbers $\psi(\gamma_i)$ converge to $\psi(\gamma)$.
- ii) If $\sum c_i T[\alpha_i](A) = 0$ for all $A \in \mathcal{C}/\mathcal{G}$ then $\sum c_i \psi[\alpha_i] = 0$, where c_i are constants.

Note that the first condition can be stated directly on the space of loops without any reference to the connection. The second condition, however, knows about connections, whence also about the gauge group and the effective configuration space \mathcal{C}/\mathcal{G} . It is an open question whether this condition can also be recast purely in the language of loops, without reference to connections, in a concise fashion. Finally, it is very likely that in a more precise treatment one would need to impose additional "regularity conditions" on the loop functions: examples of topological field theories as well as of linearized gravity (Ashtekar, et al 1991) and Maxwell theory (Ashtekar & Rovelli, 1992) make this amply clear. However, I will refrain from imposing any conditions that will not be needed directly in the calculations that follow, thereby maintaining a flexibility that may be useful subsequently.

Let us now specify the action of operators on these loop states. We will set ¹⁶:

$$(\hat{T}[\gamma] \circ \psi)(\alpha) = \frac{1}{2} (\psi(\alpha \sharp \gamma) + \psi(\alpha \sharp \gamma^{-1}))$$

$$(\hat{T}[S] \circ \psi)(\alpha) = \hbar G \sum_{i} \Delta_{i}(S, \alpha) (\psi(\alpha \circ \tau_{i}) - \psi(\alpha \circ \tau_{i}^{-1})),$$
(5.2.1)

where, as before $\alpha \sharp \gamma$ is the "eye-glass loop" obtained by joining α and γ by any line segment, Δ_i is ± 1 depending on the orientation of the loop α and the strip S at the i-th intersection and, as in section 4.3, τ_i labels the loop on the strip S at the i-th intersection between S and the loop α . (In particular, if the loop α in the argument of the wave function does not intersect the strip S, then the value of $\hat{T}[S] \cdot \psi$ vanishes at the loop α .) One must verify that these operators are well-defined, i.e., they leave the vector space V defined above invariant. This is, however, straightforward to check. Finally, it is convenient to use a bra-ket notation to express the action of these operators. Setting $\psi(\gamma) = \langle \gamma \mid \psi \rangle$, the action can be expressed more directly as:

$$\langle \alpha \mid \circ \hat{T}[\gamma] = \frac{1}{2} (\langle \alpha \sharp \gamma \mid + \langle \alpha \sharp \gamma^{-1} \mid)$$

$$\langle \alpha \mid \circ \hat{T}[S] = \hbar G \sum_{i} \Delta_{i}(S, \alpha) (\langle \alpha \circ \tau_{i} \mid - \langle \alpha \circ \tau_{i}^{-1} \mid).$$

$$(5.2.2)$$

The content of the two sets of equations is precisely the same¹⁷. In what follows, we will often use the notationally more compact form (5.2.2) which avoids the use of the dummy variable ψ in each term and enables us to visualize various operators more directly in terms of what they do to loops.

From the viewpoint of the general quantization program, one is free to choose any V one likes and represent the quantum algebra in any manner one pleases so long as the result is a proper representation of the algebra \mathcal{A} ; there is no a priori need to "justify" these choices. However, one's results may depend sensitively on these choices —and we will see that, in a certain sense, ours do. Therefore, as indicated above, one would like a degree of

Rovelli and Smolin (1990) considered wave functions $\psi(\{\beta\}) := (\psi_0, \psi_1(\beta), \psi_2(\beta_1 \cup \beta_2), ..., \psi_n(\beta_1 \cup \cup \beta_n)...)$ of multi-loops and defined the action of operators $\hat{T}[\gamma]$ as follows: $(\hat{T}[\gamma] \circ \psi)(\{\beta\}) := \psi(\gamma \cup \{\beta\})$. At first, it was thought that the existence of such states would let one introduce "raising" and "lowering" operators and endow the space of states with a natural Fock like structure, states with support on single loops playing the role of the "first excited" or, "one particle" states. This interpretation turned out to be incorrect because multi-loop states can be identified with linear combinations of single-loop states in 3 as well as 4 dimensional gravity (and also in the Fock space of spin-2 gravitons). Thus, at a fundamental, conceptual level, we only need to consider functions of single loops. In calculations, however, it is often convenient to consider the combination $\frac{1}{2}(\psi(\gamma\sharp\beta) + \psi(\gamma\sharp\beta^{-1}))$ as a 2-loop state and denote it by $\psi(\gamma\cup\beta)$. We will use this notation in sections 5.3 and 5.4.

Thus, strictly speaking, the argument α in the bra $\langle \alpha |$ is not a single loop but an equivalence class of loops $\{\alpha\}$ on which each $\psi(\alpha)$ in V takes the same value.

control and, ideally, a uniqueness theorem which says that these are the only possibilities subject to certain well-motivated physical and mathematical restrictions. At the current stage of the program, we are quite far from such a theorem. However, we can motivate the choices as follows. First, the choices we made mirror the structure we found in the loop representation of the 2+1 theory. Second, in the connection representation, it is natural to represent A_a^i by a multiplication operator and \tilde{E}_i^a by a functional derivative. Now, if one performs a heuristic transform to the loop representation assuming that the measure is (quasi)invariant under the action of the motions on the configuration space \mathcal{C}/\mathcal{G} generated by the vector fields which implicitly feature in the momentum variables T[S], one is led to the representation map (5.2.1). Thus, in a certain sense, the choices made above are the "simplest" ones consistent with (4.3.3), (4.3.6) and the canonical commutation relations.

This completes steps 1, 2 and 4 in the algebraic quantization program. Notice that we skipped step 3 —the introduction of \star relations on the algebra \mathcal{A} of quantum operators. The primary reason is that the reality conditions (4.2.9) are quite complicated to capture in the language of T-variables. The issue is being investigated currently and I will report on its status in section 5.5. The purpose of the reality conditions is to provide us an inner product on the vector space V. However, since this inner product is introduced prior to the imposition of quantum constraints, it does not have direct physical significance. Indeed, in most toy models, where \star -relations can be introduced, it turns out that the resulting inner product on V is such that the solutions to quantum constraints fail to be normalizable. However, the inner product can be of considerable technical help especially when the system has an infinite number of degrees of freedom. Fortunately, at our present level of rigor, these specific technical issues do not play a significant role. Hence, the absence of the \star relation on the algebra will pose no obstruction until we have solved the constraints and found the physical sector of the theory.

Finally, we saw in section 4.3 that, although $T[\alpha]$ and T[S] are overcomplete almost every where on the phase space, it is easier to express¹⁸ geometrical variables such as the (density weighted, contravariant) metric as well as the constraint functions in terms of distributions $T^a[\alpha; s]$ and $T^{aa'}[\alpha; s, s']$. Let us therefore see how these distributional variables can be promoted to (distribution valued) operators. We have:

$$\langle \beta \mid \circ \hat{T}^{a}[\gamma; s] := \frac{\hbar G}{2} \left(\oint_{\beta} dt \delta^{3}(\beta(t), \gamma(s)) \dot{\beta}^{a}(t) \right) \cdot \left(\langle \beta \circ_{s} \gamma \mid -\langle \beta \circ_{1-s} \gamma^{-1} \mid \right), \tag{5.2.3}$$

The situation is rather similar to Schrödinger quantum mechanics on manifolds. In that case, with each (suitably regular) function f on the configuration space, one associates a configuration variable Q[f] and with each vector field \vec{v} , a momentum variable $P[\vec{v}]$. These are analogous to our $T[\alpha]$ and T[S], respectively, and constitute an overcomplete set. However, to obtain the operator analog of the kinetic part $g^{ab}p_ap_b$ of the Hamiltonian, one does not first decompose this classical function as a sum of products of the elementary variables and then write the analogous quantum operator. It is easier to appeal to general covariance requirements and promote the operator directly as the Laplacian $-\hbar^2 g^{ab}D_aD_b$. We are adopting a similar procedure here.

where the subscript to \circ denotes the intersection at which the two loops are re-routed. Similarly, the action of $\hat{T}^{aa'}$ is given by:

$$\langle \beta \mid \circ \hat{T}^{aa'} [\gamma; s, s'] := (\frac{\hbar G}{2})^2 \left(\oint_{\beta} dt \delta^3(\beta(t), \gamma(s)) \dot{\beta}^a(t) \cdot \oint_{\beta} dt' \delta^3(\beta(t'), \gamma(s')) \dot{\beta}^{a'}(t') \right)$$

$$\times \left(\langle \gamma_s^{s'} \beta_{t'}^t (\gamma_{s'}^s)^{-1} (\beta_t^{t'})^{-1} \mid + \langle \gamma_s^{s'} (\beta_t^{t'})^{-1} (\gamma_{s'}^s)^{-1} \beta_{t'}^t \mid + \langle \gamma_s^{s'} \beta_t^{t'} \mid + \langle \gamma_s^{s'} (\beta_t^{t'})^{-1} \cup \gamma_{s'}^s \beta_{t'}^t \mid \right)$$

$$+ \langle \gamma_s^{s'} \beta_{t'}^t \cup \gamma_{s'}^s \beta_t^{t'} \mid + \langle \gamma_s^{s'} (\beta_t^{t'})^{-1} \cup \gamma_{s'}^s \beta_{t'}^t \mid \right)$$

$$(5.2.4)$$

where we have made the reroutings in the four terms explicit by specifying the compositions of various segments involved and where in the last two terms we have used the notation of footnote 16 for disjoint union of loops. Equation (5.2.3) gives just the action of the unsmeared version of $\hat{T}[S]$, while the second operator is new. Note that the action is non-trivial only if (at least) one "hand" on γ grasps β , i.e. if β intersects γ at a point at which a triad lives. Both definitions are motivated, as before, by a heuristic loop transform. Furthermore, the commutators of these operators with one another as well as with $\hat{T}[\alpha]$ is just $i\hbar$ times the quantum analog of the Poisson bracket, modulo terms of the oder \hbar^2 and higher (which arise if one or both operators are quadratic in momenta). For details, see the original paper by Rovelli and Smolin (1990).

To conclude this section, I will introduce (see, e.g., Chen (1973)) the notion of a certain directional derivative on the space of loop functions which turns out to be extremely useful in the analysis of quantum constraints. Note first that, given a loop γ , a parameter value s, and two vectors V^a and W^a at the point $\gamma(s)$ of Σ , we can construct an infinitesimally displaced loop as follows. First extend V^a and W^a smoothly in a neighborhood of $\gamma(s)$ such that $[V,W]^a=0$, then construct from their integral curves an infinitesimal parallelogram, δP , by moving first along the integral curve of V^a an affine distance ϵ , then along the integral curve of W^a an affine parameter distance ϵ , then again along $-V^a$ and back to $\gamma(s)$ along $-W^a$, and finally consider the composed loop $\gamma \circ_s \delta P$. A loop function $\psi(\beta)$ is said to be area differentiable in the direction of this displacement $(s, \delta P)$ at the loop γ if

$$\lim_{\epsilon \to 0} \frac{\psi(\gamma \circ_s \delta P) - \psi(\gamma)}{\epsilon^2} \qquad \text{exists}, \tag{5.2.5}$$

depends only on the bi-vector $V^{[a}W^{b]}$ at $\gamma(s)$, and the dependence is linear. Let us denote the limit via:

$$\lim_{\epsilon \to 0} \frac{\psi(\gamma \circ_s \delta P) - \psi(\gamma)}{\epsilon^2} = [\sigma^{ab}(\gamma(s))\Delta_{ab}(s) \circ \psi](\gamma), \tag{5.2.6}$$

where $\sigma^{ab} = V^{[a}W^{b]}(\gamma(s))$. If the directional derivative exists for all s and for all choices of bi-vectors, ψ is said to be area differentiable and $\Delta_{ab} \circ \psi$ is said to be area derivative of ψ . It is important to note that, in spite of the term "area" in this nomenclature, the notion does not refer to a background field such as a metric or an alternating tensor. An example of a function which is area differentiable is given by the trace of the holonomy tr $H_A(\gamma)$ of a smooth connection A around the loop γ : $[\Delta_{ab}(s) \cdot \operatorname{tr} H_A](\gamma) = \operatorname{tr}(F_{ab}(\gamma(s)) \cdot H_A(\gamma)(s))$. Of

course, not all functions are area differentiable. In particular, a diffeomorphism invariant function is in general area differentiable in the direction $\sigma^{ab}(\gamma(s))$ only if the 2-flat spanned by σ^{ab} contains the tangent to the loop.

5.3 Regularization and weaves

I will now discuss two striking results that have emerged –already at a kinematical level– from the loop representation. The first is that certain operators representing geometrical observables can be regulated in a way that respects the diffeomorphism invariance of the underlying theory. What is more, these regulated operators are finite without any renormalization. Using these operators, one can ask if the space V admits loop states which approximate smooth geometry at large scales. One normally takes for granted that the answer to such questions would be obviously "yes". However, in genuinely non-perturbative treatments, this is by no means clear a priori; one may be working in a sector of a theory which does not admit the correct or unambiguous classical limit. For example, the sector may correspond to a confined phase which has no classical analog or the limit may yield a wrong number even for the macroscopic dimensions of space-time. The second main result of this subsection is that not only is the answer to the question raised above in the affirmative but, furthermore, these states exhibit a discrete structure of a definite type at the Planck scale.

Let us begin with the issue of regularization. As noted in section 4, in the present framework, the spatial metric (of density weight two) is a "composite" field given by $\widetilde{\widetilde{q}}ab(x)=\widetilde{E}^{ai}(x)\widetilde{E}_i^b(x)$. In the quantum theory, therefore, this operator must be regulated. The obvious possibility is point splitting. One might set $\widetilde{\widetilde{q}}^{ab}(x)=\lim_{y\to x}\widetilde{E}^{ai}(x)\widetilde{E}_i^b(y)$. However, the procedure violates gauge invariance since the internal indices at two different points have been contracted. As we saw in section 4.3, a gauge invariant prescription is to use the Rovelli-Smolin loop variable $T^{ab}[\gamma](x,y)$ defined in the classical theory by

$$T^{aa'}[\gamma](y,y') := \frac{1}{2}\operatorname{tr}\left[(\mathcal{P}\exp G\int_{y'}^{y}A_{b}dl^{b})\widetilde{E}^{a}(y')(\mathcal{P}\exp G\int_{y}^{y'}A_{c}dl^{c})\widetilde{E}^{a'}(y)\right], \quad (5.3.1)$$

where y and y' are two points on the loop γ , and note that in the limit γ shrinks to zero, $T^{aa'}[\gamma](y,y')$ tends to $-4\tilde{q}^{aa'}$. Now, we just saw that, in quantum theory, one can define the action of the operator $\hat{T}^{aa'}[\gamma](y,y')$ directly on the loop states via (5.2.4). Its action is rather simple: if a loop β does not intersect γ at y or y', the operator simply annihilates the bra $\langle \beta \mid$ while if an intersection does occur, it breaks and re-routes the loop β , each routing being assigned a specific weight. One may therefore try to define a quantum operator $\hat{q}^{aa'}$ as a limit of $\hat{T}^{aa'}[\gamma]$ as γ shrinks to zero.

The resulting operator does exist after suitable regularization and renormalization. However, because of the density weights involved, the operator necessarily carries memory of the background metric used in regularization. Before going into details of the regularization scheme let me sketch a rough argument to see the origin of this problem intuitively. The operator in question is analogous to the product $\delta^3(x) \cdot \delta^3(x)$ of distributions at the

same point. To regulate it, we may introduce a background metric. The final result is a distribution of the form $\widetilde{N}(x)\delta^3(x)$ where, because $\delta^3(x)$ is a density of weight one, the renormalization parameter \widetilde{N} is now a density of weight one, proportional to the determinant of the background metric. Since the final answer carries a memory of the particular metric used to regulate the operator, we have violated diffeomorphism invariance. Although there is no definitive proof, there do exist arguments which suggest that any local operator carrying the information about geometry will face the same problem.

There do exist, however, *non-local* operators which can be regulated in a way that respects diffeomorphism invariance.

As the first example, consider the function $q(\omega)$ –representing the smeared 3-metric– on the classical phase space, defined by

$$Q(\omega) := \int d^3x \, (\widetilde{\widetilde{q}}^{ab} \omega_a \omega_b)^{\frac{1}{2}}, \tag{5.3.2}$$

where ω_a is any smooth 1-form of compact support. (Note that the integral is well-defined without the need of a background volume element because \tilde{q}^{ab} is a density of weight two. Also, in spite of the notation, $Q(\omega)$ is not obtained by smearing a distribution with a test field; there is a square-root involved.) To define the corresponding operator, we can proceed as follows. Let us choose on Σ test fields $f_{\epsilon}(x,y)$ which are densities of weight one in x, which satisfy:

$$\lim_{\epsilon \to 0} \int_{\Sigma} d^3x f_{\epsilon}(x, y) g(x) = g(y)$$
 (5.3.3.)

for all smooth functions of compact support g(x). If Σ is topologically \mathbb{R}^3 , for example, we can construct these test fields as follows:

$$f_{\epsilon}(x,y) = \frac{\sqrt{h(x)}}{\pi^{\frac{3}{2}}\epsilon^3} \exp{-\frac{|\vec{x} - \vec{y}|^2}{2\epsilon^2}},$$
 (5.3.4)

where \vec{x} are the cartesian coordinates labeling the point x and h(x) is a "background" scalar density of weight 2. Next, let us define

$$\widetilde{\widetilde{q}}_{\epsilon}^{aa'}(x) = -\frac{1}{4} \int_{\Sigma} d^3y \int_{\Sigma} d^3y' f_{\epsilon}(x, y) f_{\epsilon}(x, y') T^{aa'}(y, y'). \tag{5.3.5}$$

As ϵ tends to zero, the right side tends to \widetilde{q}^{ab} because the test fields force both the points y and y' to approach x, and hence the loop passing through y, y', used in the definition of $T^{aa'}(y,y')$, to zero. It is now tempting to try to define a local metric operator $\hat{q}^{aa'}$ corresponding to $\widetilde{q}^{aa'}$ by replacing $T^{aa'}(y,y')$ in (5.3.5) by its quantum analog and then taking the limit. One finds that the limit does exist provided we first renormalize $\hat{q}^{aa'}_{\epsilon}$ by an appropriate power of ϵ . However, the answer depends on the background structure (such as the density h(x)) used to construct the test fields $f_{\epsilon}(x,y)$. If, however, one tries

to construct the quantum analog of the non-local classical variable $Q(\omega)$, this problem disappears. To see this, let us first express $Q(\omega)$ using (5.3.5) as:

$$Q(\omega) = \lim_{\epsilon \to 0} \int_{\Sigma} d^3 x (\widetilde{\widetilde{q}_{\epsilon}}^{aa'} \omega_a \omega_{a'})^{\frac{1}{2}}.$$
 (5.3.6)

The required quantum operator $\hat{Q}(\omega)$ on the loop states can now be obtained by replacing $T^{aa'}(y,y')$ by the operator $\hat{T}^{aa'}(y,y')$ defined in (5.2.3). A careful calculation shows that: i) the resulting operator is well-defined on loop states; ii) no renormalization is necessary, i.e., the limit is automatically finite; and, iii) the final answer carries no imprint of the background structure (such as the density h(x) or, more generally, the specific choice of the test fields $f_{\epsilon}(x,y)$) used in regularization. To write out its explicit expression, let me restrict myself to smooth loops γ without any self-intersection. Then, the action is given simply by:

$$\langle \gamma \mid \circ \hat{Q}(\omega) = l_P^2 \oint_{\gamma} ds |\dot{\gamma}^a \omega_a| \cdot \langle \gamma |,$$
 (5.3.7)

where $l_P = \sqrt{G\hbar}$ is the Planck length, s, a parameter along the loop and $\dot{\gamma}^a$ the tangent vector to the loop. In this calculation, the operation of taking the square-root is straightforward because the relevant operators are diagonal in the loop representation. This is analogous to the fact that, in the position representation of non-relativistic quantum mechanics, we can set $\langle x| \circ \sqrt{\exp(\hat{X})} = \langle x| \cdot \exp x/2$ without recourse to the detailed spectral decomposition of x. The G in l_P of (5.3.7) comes from the fact that $\hat{G}A_a^i$ has the usual dimensions of a connection while \hbar comes from the fact that \hat{E}_i^a is \hbar times a functional derivative. The final result is that, on non-intersecting loops, the operator acts simply by multiplication: the loop representation is well-suited to find states in which the 3-geometry –rather than its time evolution– is sharp.

The second class of operators corresponds to the area of 2-surfaces. Note first that, given a smooth 2-surface S in Σ , its area \mathcal{A}_S is a function on the classical phase space. We first express it using the classical loop variables. Let us divide the surface S into a large number N of area elements S_I , I=1,2...N, and set $\mathcal{A}_I^{\text{appr}}$ to be

$$\mathcal{A}_{I}^{\text{appr}} = -\frac{1}{4} \left[\int_{S_{I}} d^{2}S^{bc}(x) \eta_{abc} \int_{S_{I}} d^{2}S^{b'c'}(x') \eta_{a'b'c'} T^{aa'}(x, x') \right]^{\frac{1}{2}}, \tag{5.3.8}$$

where η_{abc} is, as usual, the (metric independent) Levi-Civita density of weight -1. Since $T^{aa'}$ approximates $-4(\det q)q^{ab}$ for smooth metrics, $\mathcal{A}_I^{\text{appr}}$ approximates the area function (on the phase space) defined by the surface elements S_I , the approximation becoming better as S_I —and hence loops with hands at x and x' used in the definition of $T^{aa'}$ —shrink. Therefore, the total area \mathcal{A}_S associated with S is given by

$$\mathcal{A}_S = \lim_{N \to \infty} \sum_{I=1}^N \mathcal{A}_I^{\text{appr}}.$$
 (5.3.9)

To obtain the quantum operator $\hat{\mathcal{A}}_S$, we simply replace $T^{aa'}$ in (5.3.8) by the quantum loop operator $\hat{T}^{aa'}$. This somewhat indirect procedure is necessary because, as indicated above, there is no well-defined operator-valued distribution that represents the metric or its area element at a point. Again, the operator $\hat{\mathcal{A}}_S$ turns out to be finite. Its action, evaluated on a nonintersecting loop γ for simplicity, is given by:

$$\langle \gamma | \circ \hat{\mathcal{A}}_S = \frac{l_p^2}{2} I(S, \gamma) \cdot \langle \gamma |,$$
 (5.3.10)

where $I(S, \gamma)$ is simply the *unoriented* intersection number between the 2-surface S and the loop α . (One obtains the *un*oriented intersection number here and the absolute sign in the integrand of (5.3.7) because of the square-root operation involved in the definition of these operators.) Thus, in essence, a loop γ contributes half a Planck unit of area to any surface it intersects.

The fact that the area operator also acts simply by multiplication on non-intersecting loops lends further support to the idea that the loop representation is well-suited to "diagonalize" operators corresponding to 3-geometry. Indeed, we can immediately construct a large set of simultaneous eigenbras of the smeared metric and the area operators. There is one, $\langle \gamma |$, associated to every nonintersecting loop γ . Note that the corresponding eigenvalues of area are quantized in integral multiples of $l_P^2/2$. There are also eigenstates associated with intersecting loops which, however, I will not go into to since the discussion quickly becomes rather involved technically.

With these operators on hand, we can now turn to the construction of weaves. Recall that the goal here is to introduce loop states which approximate a given 3-metric, say, h_{ab} on Σ on scales large ¹⁹ compared to l_p . The basic idea is to weave the classical metric out of quantum loops by spacing them so that on an average only one line crosses every surface element whose area, as measured by the given h_{ab} is one Planck unit. Such loop states will be called weaves. Note that these states are not uniquely picked out since our requirement is rather weak. Indeed, given a weave approximating a given classical metric, one can obtain others, approximating the same classical metric. Let us begin with a concrete example of such a state which will approximate a flat metric h_{ab} . To construct this state, we proceed as follows. Using this metric, let us introduce a random distribution of points on $\Sigma = \mathbb{R}^3$ with density n (so that in any given volume V there are $nV(1+\mathcal{O}(1/\sqrt{nV}))$ points). Center a circle of radius $a=(1/n)^{\frac{1}{3}}$ at each of these points, with a random orientation. We assume that $a \ll L$, so that there is a large number of (non-intersecting but, generically, linked) loops in a macroscopic volume L^3 . Denote the collection of these circles by Δ . As noted in footnote 18, due to $SL(2,\mathbb{C})$ trace identities, multi-loops are equivalent to single loops, whence there is a well-defined bra $\langle \Delta |$. I would like to claim that this is a weave state with the required properties. Let us first consider the observable $Q[\omega]$. To see if $\langle \Delta |$ reproduces the geometry determined by the classical metric h_{ab} on a scale $L >> l_p$, let us introduce a 1-form ω_a which is slowly varying on the

¹⁹ Note, incidentally, that the large scale limit is equivalent to the semi-classical limit since in source-free, non-perturbative quantum general relativity, \hbar and G always occur in the combination $\hbar G = l_p^2$.

scale L and compare the value $Q[\omega](h)$ of the classical $Q[\omega]$ evaluated at the metric h_{ab} , with the action of the quantum operator $\hat{Q}[\omega]$ on $\langle \Delta |$. A detailed calculation yields:

$$\langle \Delta | \circ \hat{Q}[\omega] = \left[\frac{\pi}{2} \left(\frac{l_p}{a} \right)^2 Q[w](h) + \mathcal{O}(\frac{a}{L}) \right] \cdot \langle \Delta |. \tag{5.3.11}$$

Thus, $\langle \Delta |$ is an eigenstate of $\hat{Q}[\omega]$ and the corresponding eigenvalue is closely related to $Q[\omega](h)$. However, even to the leading order, the two are unequal unless the average distance, a, between the centers of loops equals $\sqrt{\pi/2} l_p$. More precisely, (5.3.11) can be interpreted as follows. Let us write the leading coefficient on the right side of this equation as $(1/4)(2\pi a/l_p)(nl_p^3)$. Since this has to be unity for the weave to reproduce the classical value (to leading order), we see that Δ should contain, on an average, one fourth Planck length of curve per Planck volume, where lengths and volumes are measured using h_{ab} .

The situation is the same for the area operators \hat{A}_S . Let S be a 2-surface whose extrinsic curvature varies slowly on a scale $L >> l_P$. One can evaluate the action of the area operator on $\langle \Delta |$ and compare the eigenvalue obtained with the value of the area assigned to S by the given flat metric h_{ab} . Again, the eigenvalue can be re-expressed as a sum of two terms, the leading term which has the desired form, except for an overall coefficient which depends on the mean separation a of loops constituting Δ , and a correction term which is of the order of $\mathcal{O}(\frac{a}{L})$. We require that the coefficient be so adjusted that the leading term agrees with the classical result. This occurs, again, precisely when $a = \sqrt{\pi/2}l_p$. It is interesting to note that the details of the calculations which enable one to express the eigenvalues in terms of the mean separation are rather different for the two observables. In spite of this, the final constraint on the mean separation is precisely the same.

Let us explore the meaning and implications of these results.

- 1) As was emphasized by Jim Hartle in his lectures, to obtain classical behavior from quantum theory, one needs two things: i) appropriate coarse graining, and, ii) special states. In our procedure, the slowly varying test fields ω_a enable us to perform the appropriate coarse graining while weaves—with the precisely tuned mean separation a—are the special states. There is, however, something rather startling: The restriction on the mean separation a—i.e., on the short distance behavior of the multi-loop Δ —came from the requirement that $\langle \Delta |$ should approximate the classical metric h_{ab} on large scales L!
- 2) In the limit $a \to \infty$, the eigenvalues of the two operators on $\langle \Delta |$ go to zero. This is not too surprising. Roughly, in a state represented by any loop γ , one expects the quantum geometry to be excited just at the points of the loops. If the loops are *very* far away from each other as measured by the fiducial h_{ab} , there would be macroscopic regions devoid of excitations where the quantum geometry would seem to correspond to a zero metric.
- 3) The result of the opposite limit, however, is surprising. One might have naively expected that the best approximation to the classical metric would occur in the continuum limit in which the separation a between loops goes to zero. However, the explicit calculation outlined above shows that this is not the case: as a tends to zero,

- the leading terms in the eigenvalues of $\hat{Q}[\omega]$ and \mathcal{A}_S actually diverge ²⁰! It is, however, easy to see the underlying reason. Intuitively, the factors of the Planck length in (5.3.7) and (5.3.10) force each loop in the weave to contribute a Planck unit to the eigenvalue of the two geometrical observables. In the continuum limit, the number of loops in any fixed volume (relative to the fiducial h_{ab}) grows unboundedly and the eigenvalue diverges.
- 4) It is important to note the structure of the argument. In non-perturbative quantum gravity, there is no background space-time. Hence, terms such as "slowly varying" or "microscopic" or "macroscopic" have, a priori, no physical meaning. One must do some extra work, introduce some extra structure to make them meaningful. The required structure should come from the very questions one wants to ask. Here, the questions had to do with approximating a classical geometry. Therefore, we could begin with classical metric h_{ab} . We used it repeatedly in the construction: to introduce the length scale L, to speak of "slowly varying" fields ω_a and surfaces S, and, to construct the weave itself. The final result is then a consistency argument: If we construct the weave according to the given prescription, then we find that it approximates h_{ab} on macroscopic scales L provided we choose the mean separation a to be $\sqrt{\pi/2}l_p$, where all lengths are measured relative to the same h_{ab} .
- 5) Note that there is a considerable non-uniqueness in the construction. First of all, as we noted already, a given 3-geometry can lead to distinct weave states; our construction only serves to make the existence of such states explicit. For example, there is no reason to fix the radius r of the individual loops to be a. For the calculation to work, we only need to ensure that the loops are large enough so that they are generically linked and small enough so that the values of the slowly varying fields on each loop can be regarded as constants plus error terms which we can afford to keep in the final expression. Thus, it is easy to obtain a 2-parameter family of weave states, parametrized by r and a. The condition that the leading order terms reproduce the classical values determined by h_{ab} then gives a relation between r, a and l_P which again implies discreteness. Clearly, one can further enlarge this freedom considerably: There are a lot of eigenbras of the smeared-metric and the area operators whose eigenvalues approximate the classical values determined by h_{ab} up to terms of the order $\mathcal{O}(\frac{l_p}{L})$ since this approximation ignores Planck scale quantum fluctuations. Thus, this non-uniqueness is not very surprising. There is, however, a possibility of a more subtle non-uniqueness in the opposite Direction: A given weave may approximate two different 3-metrics! This could happen precisely because the notion of "slowly varying"

One's first impulse from lattice gauge theories may be to say that the limit is divergent simply because we are not rescaling, i.e., renormalizing the operator appropriately. Note, however, that, in contrast to the calculations one performs in lattice theories, here, we already have a well defined operator in the continuum. We are only probing the properties of its eigenvectors and eigenvalues, whence there is nothing to renormalize. Even in non-relativistic quantum mechanics the spectrum of respectable operators are typically unbounded whence the Hilbert space admits sequences of eigenstates with the property that the corresponding sequence of eigenvalues diverges in the limit.

is tied to the metric h_{ab} we are trying to approximate. Suppose, two metrics h_{ab} and h'_{ab} which are not slowly varying with respect to one another, lead to quite distinct classes of slowly varying test fields ω_a and ω'_a . Then, it could happen that there is a single weave $\langle \Delta |$ which has the property that, to leading order, the eigenvalues of $\hat{Q}[\omega]$ are equal to $Q[\omega](h)$ while those of $\hat{Q}[\omega']$ are equal to $Q[\omega](h')$. While it is likely that such an ambiguity exists, whether it in fact does is not quite clear. In a broader context, I suspect that such ambiguities will arise in the classical interpretations of quantum states in any framework simply because of the freedom in the choice of coarse graining that is needed to pass to this limit. In most current discussions, "obvious" choices are made and ambiguities may very well be simply overlooked.

6) Finally, I would like to emphasize that, at a conceptual level, the important point is that the eigenvalues of $\hat{Q}[\omega]$ and $\mathcal{A}[S]$ can be discrete²¹; quantized in multiples of half Planck units. Given a specific eigenstate, one can examine the micro-structure of the geometry it defines. The precise characteristics of the discreteness in that structure will vary from state to state. Since many of these weaves may define the same macroscopic geometry, it is also clear that we cannot, at least at this stage, associate a *specific* discrete structure to a given classical geometry. All detailed claims refer only to eigenstates of the geometric operators.

Let me conclude the discussion on weaves with two remarks. First, it is not difficult to extend the above construction to obtain weave states for curved metrics q_{ab} which are slowly varying with respect to a flat metric h_{ab} . Given such a metric, one can find a slowly varying tensor field $t_a{}^b$, such that the metric q_{ab} can be expressed as $t_a{}^c t_b{}^d h_{cd}$. Then, given a weave of the type $\langle \Delta |$ considered above approximating h_{ab} , we can "deform" each circle in the multi-loop Δ using $t_a{}^b$ to obtain a new weave $\langle \Delta |_t$ which approximates q_{ab} in the same sense as $\langle \Delta |$ approximates h_{ab} . The second remark is that since the weaves are eigenbras of the operators that capture the 3-geometry, none of them is a candidate for representing the vacuum state. In the linearized Theory, the vacuum is a coherent state. It is neither an eigenstate of the linearized metric operator, nor of the linearized extrinsic curvature (or, connection). Rather, it is peaked, with minimum uncertainty spreads for both operators, at their zero values. The candidates for vacuum state in the full theory would have a similar characteristic. Some insight into this issue has come from a recent analysis of the relation between the exact and the linearized theory in the loop representation (Iwasaki & Rovelli (1992)).

Since these results are both unexpected and interesting, it is important to probe their origin. We see no analogous results in familiar theories. For example, the eigenvalues of the fluxes of electric or magnetic fields are not quantized in QED nor do the linearized analogs of our geometric operators admit discrete eigenvalues in spin-2 gravity. Why then did we find qualitatively different results? The technical answer is simply that the familiar results refer to the *Fock representation* for photons and gravitons while we are using a

 $^{^{21}}$ I have used the conservative phrase "can be" because at the present level of rigor we cannot be sure that the eigenvalues that have naturally emerged above constitute the entire spectrum. One would have to tie oneself to a specific inner product on V to nail down this issue.

completely different representation here. Thus, the results are tied to our specific choice of the representation. Why do we not use Fock or Fock-like states? It is not because we insist on working with loops rather than space-time fields such as connections. Indeed, one can translate the Fock representation of gravitons and photons to the loop picture. (See, e.g., Ashtekar et al (1991) and Ashtekar & Rovelli, (1992).) And then, as in the Fock space, the discrete structures of the type we found in this section simply disappear. However, to construct these loop representations, one must use a flat background metric and essentially every step in the construction violates diffeomorphism invariance. Indeed, there is simply no way to construct "familiar, Fock-like" representations without spoiling the diffeomorphism invariance. Thus, the results we found are, in a sense, a direct consequence of our desire to carry out a genuinely non-perturbative quantization without introducing any background structure. As remarked in section 5.1, however, we do not have a uniqueness theorem singling out the representation we are using. One cannot rule out the possibility of the existence of other, sufficiently rich representations which also maintain diffeomorphism invariance but in which geometric operators considered above have only continuous spectra. The one which we are using is just the "simplest" background independent representation and it leads to interesting results.

My overall viewpoint is that one should simultaneously proceed along two lines: i) one should take these results as an indication that we are on the right track and push this particular representation as far as possible; and, ii) one should try to better understand this representation by, e.g., perturbing it in small steps, with the hope of arriving at a uniqueness result.

5.4 Quantum dynamics

So far we have dealt with quantum kinematics. The next step in the algebraic program is the imposition of constraints. As we saw in section 4, because of the absence of a background metric in classical general relativity, dynamics is in effect governed by constraints. Furthermore, we saw in section 3 that, in the 2+1-theory, quantum dynamics—in the sense of time evolution— can be recovered from the quantum constraints. In this subsection I will address the mathematical problem of solving the quantum constraints in the 3+1-theory. We will see that, in striking contrast with geometrodynamics, there is available an infinite dimensional space of solutions to all constraints. Technically, this is possible essentially because the constraints now have a form that is significantly simpler than that of geometrodynamics. Furthermore, thanks to the interplay between connections and loops, the solutions have a natural interpretation in terms of knot theory.

The classical framework gives us three sets of constraints. The first of these, (4.2.3), constitutes the Gauss law which ensures gauge invariance of physical states. Fortunately, in the loop representation of any theory of connections, everything is manifestly gauge invariant whence the Gauss constraint is redundant. (The loop transform (2.5.2), for example, is from functions on the *moduli* space \mathcal{C}/\mathcal{G} of connections to functions of loops.)

The second set, (4.2.4), constitutes the vector constraint. As noted in section 4.3, it can be expressed in terms of the T^a -variables:

$$\mathcal{V}(\vec{N}) \equiv \int_{\Sigma} d^3x N^a(x) \mathcal{V}_a(x)$$

$$= \lim_{\delta \to 0} \frac{1}{\delta} \int_{\Sigma} d^3x N^a(x) \sum_b T^b[\gamma_{ab}^{\delta}], \qquad (5.4.1)$$

where, as before, γ_{ab}^{δ} is a loop at x in the a,b plane of (coordinate) area δ , (the position of the "hand" i.e. of the insertion of electric field— on the loop being allowed to be arbitrary.) We can take this expression over to quantum theory. It is already regulated and the limit turns out to be well-defined without renormalization. Thus, unlike the smeared metric and the area operator, the regulated vector constraint is a good operator valued distribution. This result may seem surprising at first but it is a rather straightforward consequence of the fact that T^a is only linear in momentum. Using the definition of the operator \hat{T}^a and of the area derivative (see section 4.3), one finds:

$$[\hat{\mathcal{V}}(N) \circ \psi](\beta) = [\oint_{\beta} ds \dot{\beta}^{b}(s) N^{a}(\beta(s)) \Delta_{ab}(s) \circ \psi](\beta)$$

$$= [\oint_{\beta} ds N^{a}(\beta(s)) \frac{\delta}{\delta \beta^{a}(s)} \circ \psi](\beta),$$
(5.4.2)

where in the second step we have used the fact that the direction in which the areas derivative is being taken includes the tangent to the loop. I should emphasize that, unlike in section 5.3, here and in subsequent calculations in this subsection, the loop in the arguments of the quantum states is allowed to have an arbitrary number of self-intersections and, in particular, there may be multi-intersections through the same point. Thus, the effect of the regulated vector constraint on the loop states is precisely the expected one; the loop is displaced infinitesimally along the vector field N^a . Therefore, the state ψ is annihilated by the vector constraint if and only if it is diffeomorphism invariant. Now, two loops (possibly with self-intersections) which can be mapped into each other by a diffeomorphism belong to the same (generalized) knot class. Thus, we conclude that the general solution to the Gauss and vector constraints is a loop function which can be projected down unambiguously to the space of (generalized) knots. Unlike the superspace of geometrodynamics—the space of diffeomorphism equivalence classes of 3-metrics—this space is discrete and a good deal is known about its structure. Indeed, in the last four years, there has been an explosion of activity relating knot theory to other branches of mathematics ranging from C^* algebras to topological field theories. One hopes that this powerful machinery will be useful in understanding the meaning and the structure of these solutions better.

Let us now consider the last constraint, S(A, E) of (4.2.5). We noted in section 4.3 that this constraint can be expressed in terms of T^{ab} . However since (the constraint as well as) T^{ab} is quadratic in momenta, one would expect that the corresponding regulated operator would not be finite without renormalization and, even after renormalization, would not define a background independent operator valued distribution. After all, this is the reason

why we were led in section 5.3 to consider *non-local* variables to carry information about the 3-geometry. The general expectations are indeed correct. Furthermore, in the present case, we do *not* wish to construct non-local expressions since the constraints have to be imposed locally; only a linear smearing with a lapse field is allowed. Thus, we seem to be stuck with background dependence in the expression of the operator. This may seem like a disaster. Fortunately, however, we are not interested in the entire spectrum of the operator but only its kernel. And, as we shall now see, the kernel *can* be extracted in a background independent manner.

As in previous cases, we begin by first rewriting the scalar constraint in terms of the classical T-variables. Using the same notation as before, we have:

$$S(N) \equiv \int_{\Sigma} d^3x N(x)S(x) = \lim_{\delta \to 0} S^{\delta}(N), \qquad (5.4.3a)$$

where,

$$S_{\delta}(N) = \int_{\Sigma} d^3x N(x) \left(\frac{1}{\delta}\right) \sum_{a \neq b} T^{[ab]} [\gamma_{ab}^{\delta}; 0, \delta].$$
 (5.4.3b)

We now take this expression over to quantum theory. A proper treatment of intersecting loops is considerably more complicated now since T^{ab} has two hands. To take the limit properly, one has to introduce (background dependent) regulators $f_{\epsilon}(x,y)$ used in section 4.3, and furthermore, renormalize the expression by multiplying it by ϵ before taking the limit $\epsilon \to 0$. This procedure has been carried out in detail by Brügmann and Pullin (1992). The final, renormalized operator \hat{S} has the following action. First, if a loop β has no self intersections, $\hat{S}(N) \circ \psi$ vanishes at β . If there are intersections, $\beta(s_i) = \beta(t_i)$, with $s_i \neq t_i$, we obtain:

$$[\hat{S}(N) \circ \psi](\beta) = \sum_{i} \left[N \hat{\mathcal{F}}_{i} \, \dot{\beta}^{a}(s_{i}) \dot{\beta}^{b}(t_{i}) \Delta_{ab}^{1} \circ \psi \right] (\beta_{t_{i}}^{s_{i}} \cup \beta_{s_{i}}^{t_{i}}), \tag{5.4.4}$$

where $\hat{\mathcal{F}}_i$ is a background dependent factor involving the properties of the loop at the *i*th intersection, β_t^s is the loop obtained by going along β from $\beta(t)$ to $\beta(s)$, \cup is the disjoint union of two loops (see footnote 16) and where the loop derivative Δ_{ab}^1 acts just on the first loop in the argument of β . Thus, the operator has a form

$$\hat{S}(N) = \sum_{i} \hat{\mathcal{F}}_{i} \hat{\mathcal{S}}_{i} \tag{5.4.5}$$

of a sum of products of background dependent and background independent operators. Therefore, if we choose a wave function which is annihilated by $each \, \hat{S}_i$, we would have a

state which is annihilated by constraints for any choice of background. ²² Generically, to be annihilated by the regulated constraint for any choice of background, the wave function has to be in the kernel of all \hat{S}_i as well. The work of Rovelli & Smolin (1990), Blencowe (1990), Brügmann, Gambini & Pullin (1992a,b) has provided us with an infinite dimensional space of such states.

First, given any state obtained by choosing values on non-intersecting loops in any smooth manner and then letting the defining regularity conditions constrain its values on intersecting loops, satisfies the scalar constraint (Rovelli & Smolin (1990).) Thus, in particular, from the weave $\langle \Delta |$ we can construct a ket $\Psi_{\Delta}(\gamma)$ satisfying the Hamiltonian constraint. However, these kets do not satisfy the vector constraint. To get a simultaneous solution to both constraints, we can proceed as follows. First, given a weave, we can consider the knot class to which it belongs, ask that on non-intersecting loops, ψ be the characteristic function on the knot class and then extend the value of ψ to intersecting loops in a way consistent with the regularity conditions. This provides us a solution to all constraints of quantum gravity. Heuristically, one may interpret this solution as representing the 3-geometry to which the 3-metric represented by the original weave $\langle \Delta |$ belongs. Another class of such simultaneous solutions can be obtained from holonomies. Let A_a^i be a flat connection and set $\psi_A(\beta) = \operatorname{tr} \mathcal{P} \exp \oint_{\beta} A.dl$. Then, $\psi_A(\gamma)$ is a solution to all constraints (Blencowe, 1990). Such solutions capture an aspect (the first homology) of the topology of the 3-manifold.

The 3-metrics underlying the Rovelli-Smolin solutions to the Hamiltonian constraint are, microscopically, distributional with support only on the location of the loops. Furthermore, the excitations of the metric operator are, in a certain sense, restricted to "point along" the loops whence the metrics are also (algebraically) degenerate. However, as we saw in section 4.3, some of these solutions can represent smooth, non-degenerate geometries macroscopically, when coarse-grained appropriately. The 3-geometries underlying the Blencowe solutions are harder to visualize because they are not eigenstates of geometrical operators. However in the simplest examples, the algebraic degeneracy persists.

More interesting solutions, related to knot invariants—the second coefficient of the Alexander-Conway polynomial—have been obtained more recently by Brügmann, Gambini and Pullin (1992a,b). Apart from intriguing connections with knot theory that they have opened up, these solutions have also considerably improved our overall understanding of the structure of the space of solutions to the scalar constraint. For, unlike the earlier ones, these solutions have support on loops with triple intersections whence they represent

This is a good illustration of the difference between a quantum field theory in Minkowski space and a diffeomorphism invariant theory. On the one hand, diffeomorphism invariance makes it difficult to regulate the constraints since we do not have a canonical background metric at our disposal. On the other hand, dynamics is now governed by constraints and the problem is only that of finding the *kernel* of the constraint operator rather than the entire spectrum of a Hamiltonian. It is not that one problem is easier than another. Rather, the problems are *different*. This is why, as pointed out in section 1, the experience we have gained from Minkowskian field theories is only of limited use in dealing with the mathematical problems of non-perturbative quantum gravity.

3-geometries which are distributional but (algebraically) non-degenerate at points where they have support, i.e., even microscopically. There is a close relations between these solutions, Jones polynomials and Chern-Simons theory whose ramifications are still to be fully understood. This is an area where one can expect significant progress in the coming years.

5.5 Outlook

The developments reported in the last two subsections represent definite progress. Let us contrast the situation with, say, quantum geometrodynamics. This framework has shaped the general thinking in the field and provided a general picture of what one should expect from non-perturbative quantum gravity. These lessons have been extremely valuable. However, quantum geometrodynamics has not provided detailed insight into the micro-structure of space-time. The pictures of space-time foam (Wheeler, 1963) that came out of this framework are largely qualitative; there are essentially no hints, for example, as to what would replace differential geometry in the Planck regime. On the dynamical side, one is yet to succeed in regulating the scalar constraint—the Wheeler-DeWitt equation—whence, systematic work to look for solutions in a well-defined mathematical framework has not even begun. Furthermore, even at a heuristic level, no solution is known to the Wheeler-DeWitt equation in full, non-truncated quantum geometrodynamics. In the connection dynamics approach, as the last two subsections indicate, one has been able to go further.

In spite of this progress, one should emphasize that there is still a long way to go. Three key issues remain unresolved.

First, we do not know which - if any - of these solutions will have finite norm with respect to the correct inner produce on the space of physical states 23 . The problem is that the reality conditions are hard to express in terms of the T-variables and hence have so far not been translated to the loop representation.

Let us assume for the moment that at least some of these solutions will have finite norm. The second conceptual issue is then that of interpretation. This issue appears to be quite difficult to address. To illustrate the problem, let me use an analogy. A

The requirement that the norm be finite can in fact carry the crucial physical information. For example, if one solves the eigenvalue equation for the harmonic oscillator in the position representation, one finds that there exist eigenstates $\Psi(x)$ for any value of energy. It is the requirement that the norm be finite that enforces both positivity and quantization of energy. Note however that whether all solutions to the eigenvalue equation are normalizable depends on the choice of representation. For example, if states are taken to be holomorphic functions of z = q - ip, every eigenstate $\Psi(z)$ turns out to be normalizable whence the conclusion that energy is positive and quantized can be arrived at simply by solving the eigenvalue equation. Of course, a priori it is not clear whether the loop representation is analogous to the x representation of the z representation in this respect.

Rovelli-Smolin type solution associated with the knot class of a *single* loop would appear to represent "an elementary excitation" of the gravitational field and is hard to interpret in classical terms. We need to superpose a large number of such excitations to obtain a weave, which then can be interpreted classically. This is analogous to the fact that a single photon state has no obvious interpretation from the standpoint of classical Maxwell theory and, to obtain a state that a classical physicist can interpret using only his conceptual framework, we must have a large number of photons. To interpret a single photon state, one has to be "at home" with genuinely quantum concepts. Unfortunately, in non-perturbative gravity, we have very little intuition for the analogous genuinely quantum world. And this makes the problem of interpretation difficult for most solutions. The problem would disappear only when we begin to feel comfortable with observables —to be associated, say, with knot invariants— which distinguish between the physical states.

The final issue is in the realm of mathematical physics. Results such as the discreteness of the spectra of geometric operators depend critically upon the choices we made a various steps in the construction of the loop representation. Perhaps the most important of these is that we choose to require that $\hat{T}[\gamma]$ and $\hat{T}[S]$ operators be well-defined in quantum theory even though classically they are smeared only along 1-dimensional loops and 2-dimensional strips. This means that the quantum theory will not in general admit operator-valued distributions corresponding to $A_a^i(x)$ and $E_i^a(x)$; the operators $T[\alpha]$ and T[S] are the primary ones. In the Fock space of photons, for example, the analogous operators are not well-defined without additional smearing. The reason we were led here to consider, e.g., unsmeared loop operators is that there is no satisfactory way of smearing loops without using a background field such as a 3-metric. The viewpoint is that in "topological" theories of connections, such as general relativity, one should not have to use background structures at a fundamental level whence natural objects like traces of holonomies should be themselves promoted to operators. Some evidence for this view comes from 3-dimensional gravity and other topological field theories. However, all these systems have only a finite number of degrees of freedom and the evidence is therefore weak. One would like to have a better understanding and a better control of all the assumptions that have been made in the construction of the loop representation. Ideally, one would like to prove an uniqueness theorem in which the assumptions can be motivated by physical considerations.

Some of the work now in progress addresses these issues.

First, certain approximation methods are being developed to get a better handle on the first two issues. The idea here is the following. We saw in Section 5.3 that there exist weave states which approximate the flat 3-metric. On the other hand, there also exists a loop representation for spin-2 gravitons in flat space, obtained by linearizing the Hamiltonian framework of section 4. Now, since the connections are *self dual* (rather than negative frequency), it turns out that one is forced to thicken out the loops in the quantum theory (Ashtekar et al 1991). The idea now is to recast this description of spin-2 gravitons as perturbations of the weave state. First steps in this analysis have been already completed (Iwasaki & Rovelli (1992), Zegwaard (1992)) and there exists a map from the states of the exact theory to those of spin-2 gravitons with interesting properties. Work is in progress to isolate states of the full theory which, under this map, are sent to the

vacuum state and the n-graviton states of linearized gravity. This will provide the much needed intuition for (some of) the loop states of the full theory and is also likely to suggest strategies for selecting the inner-product. This work is also beginning to shed some light on how standard quantum field theory in Minkowski space where only the smeared operators make sense can emerge from a theory which, to begin with, has no smearing at all. It is the background weave state that provides the structure for smearing and one is essentially forced into smearing by the requirement that the operators of the linearized theory should approximate the operators of the full theory in an appropriate sense. If this analysis can be carried out to completion, the unease about using unsmeared operators in the exact theory, mentioned above, will disappear.

Another promising direction, within the exact theory, has been opened up by the recent work of Gambini and collaborators. The idea is to first characterize (holonomically equivalent) loops by a series of distributions and then, using these "loop coordinates," construct a more general space in which the space of loops is properly embedded (Gambini & Leal, 1991). (These loop coordinates are the non-Abelian analogs of the "form factors of loops" introduced in the context of the Maxwell theory (Ashtekar & Rovelli, 1992.) It then turns out that this "extended space" is naturally endowed with the structure of an infinite dimensional Lie group (Di Bortolo, Gambini & Griego, 1992). The structure of this group is being analyzed. Its existence leads to an extension of the loop representation just of the type needed to test how robust the various results obtained so far are. In the near future, therefore, one should have a much better feeling for the "uniqueness" issue that I have raised above. In addition, these techniques have opened up new avenues to explore generalized knot invariants from a differential geometric viewpoint and to analyze their role in quantum gravity. They may therefore provide a powerful tool to interpret various loop states and the combinatorial operations thereon. The mathematical structures that have been unravelled so far are so rich that it seem reasonable to expect that they will bring us a wealth of new insights.

Work is also in progress to make the work on loop transform well defined for gravity. Ashtekar & Isham (1992) used the Gel'fand spectral theory to exploit the non-linear duality between loops and connections along the lines of section 2.5. However, that work is complete only in the case of real gauge fields with a compact group, say, SU(2). In the gravitational case, the connections are complex-valued and this creates obstacles in completing the program. However, since the connection is analogous to the complex coordinate z = q - ip on the phase space of an oscillator, the wave functions in the connection representation are holomorphic functions rather than general, complex-valued ones. By exploiting this fact, Ashtekar and Lewandowski have recently proposed a strategy to extend the representation theory to general relativity. If this program can be completed, the loop transform would be well-defined and one would therefore have a good mathematical control over the available freedom in the construction of a general loop representation. One would then have the technology to analyse the sense in which the loop representation used here is unique.

Finally, recently Baez (1992) has used the mathematical structure available on the space of tangles to provide an inner product on loop states in the asymptotically flat context. In our terminology, he also uses reality conditions. However these are suggested

by mathematical properties of certain operators and it is not clear how these properties are related to the "physical" reality conditions which come from the properties of functions on the gravitational phase space. Nonetheless, this is a very interesting development and the general approach holds a great deal of promise.

For reasons mentioned in the beginning, throughout this section I have restricted myself to the loop representation. However, like the metric representation of geometrodynamics, this representation is not well suited to analyse the issue of time (see, e.g., chapter 12 in Ashtekar (1991)). This problem –along with some others– has been partially analysed in the connection representation. I will mention these results in the next section.

6. Discussion

I will first summarize the main results of sections 3-5, then discuss the open problems and the current thinking on how they might be overcome and finally present an evaluation of the program from various perspectives.

6.1 Summary

In section 3, we considered 3-dimensional general relativity and found that the algebraic quantization program can be completed in 3 different ways: there is the combinatorial description in terms of "pre-geometry" that came from the loop representation; there is the timeless description obtained in the "frozen" version of the connection representation; and, there is a dynamical description where the scalar constraint is recast as an evolution equation, also in the connection representation. These frameworks serve to illustrate the type of mathematical results we are seeking in 4-dimensions. In all three cases, the starting point is a formulation of general relativity as a dynamical theory of connections. This shift of emphasis from metrics to connections underlies the entire discussion. It let us regard quantum states as wave functions of connections; it provided a natural strategy to introduce the inner product using the symplectic structure on the new domain space; it enabled us us to single out time as one of the connection components; it allowed us to construct the T-variables which then served as the basic Dirac observables; and, it naturally led us to the loop representation via the loop transform.

In section 4, therefore, we began by recasting 4-dimensional general relativity as a theory of connections. We found that we could again use the Yang-Mills phase space and express Einstein constraints and Hamiltonians in the language of connections and the conjugate electric fields. Indeed, there even exists a pure connection formulation in which the space-time metric never appears as a primary field either in the Lagrangian or the Hamiltonian descriptions (Capovilla, et al 1989). If, however, we interpret the electric fields as triads and the connections as potentials for the self dual part of the Weyl tensor, we recover geometrodynamics. We may choose to forego this interpretation and regard the theory simply as a diffeomorphism invariant, dynamical theory of connections. This perspective immediately puts at our disposal the powerful machinery of gauge theories. Furthermore, there are now significant technical simplifications relative to geometrodynamics: constraints and Hamiltonians are low-order polynomials in the new canonical variables. Thus, the new 4-dimensional Hamiltonian framework is qualitatively similar to the 3-dimensional one. However, there is also a key difference: the connections are no longer constrained to be flat whence the theory now has an infinite number of local degrees of freedom rather than just a finite number of topological ones. This makes physics vastly richer but the task of quantization correspondingly more difficult.

In section 5, we presented the current status of the quantum theory. For brevity, we concentrated on the loop representation. As far as the implementation of the algebraic quantization program is concerned, it is in this framework that the non-truncated theory has advanced the most. (In the terminology of section 3, the loop representation yields the

"pregeometry" picture. As we will see below, however, the program has gone further in the connection representation in several truncated models where, the the other two pictures from section 3 arise naturally.) We found three significant results.

First, one *can* invent techniques so that operators of the theory can be regulated in a way that respects the diffeomorphism invariance. This result by itself is quite surprising from the perspective of Minkowskian quantum field theories since the standard techniques such as normal ordering or point-splitting produce regulated operators whose structure refers to the background space-time metric. However, this is not all; the regulated operators—such as the area of a 2-surface—carrying geometric information turn out to have discrete eigenvalues, quantized in Planck units.

The second result is that the non-perturbative theory admits states —weaves— which approximate smooth geometries at large scales but exhibit a discrete structure of a specific type at the Planck scale. The existence of these states suggests that a basic assumption of the perturbation theory—that quantum states can be represented as fluctuations off a smooth background geometry— may be seriously flawed in the Planck regime. Non-renormalizability of quantum general relativity implies that one should expect new physics at small scale and these non-perturbative states indicate the type of new structures that one can expect to find. That some discreteness of this sort should occur in the Planck regime has been anticipated for quite some time now. However, as John Wheeler puts it, such ideas of "space-time foam" (which he introduced) were based on simple estimates and it is only with the weave states that they have acquired a precise mathematical meaning.

The third result concerns non-perturbative solutions to quantum constraints. I first presented the general solution to the quantum Gauss and vector constraints. These are functions on the space of generalized knots (where the generalization consists of allowing for self-intersections). Thus, as in the 3-dimensional case, the domain space of physical wave functions is discrete in the loop description—the homotopy classes are replaced by the generalized knot classes. There is a good reason to believe that this second and mathematically deeper level of discreteness will significantly simplify the task of introducing inner products and render the subject to combinatorial techniques. Consequently, it appears that, as in the 3-dimensional case, the loop representation will lead us to a "pregeometry" description in which neither space nor time play a fundamental role—both will be derived concepts. Finally, I presented an infinite dimensional space of solutions to the scalar constraint. The calculations that led us to these solutions are instructive in that they bring out the differences between the mathematical problems of diffeomorphism invariant quantum theories and those of quantum field theories on a given space-time background. In particular, we found that while the regularization of the scalar constraint produces a background dependent operator, we could still get by since we are only interested in its kernel; while most properties such as the spectrum of the operator are background dependent, the kernel turned out to be background independent. Thus, while the constraints generate dynamics in a suitable sense, the mathematical role they play is quite different from the role played by the Hamiltonian in more familiar theories.

Overall, the present approach has managed to go significantly beyond quantum geometrodynamics. This seems quite surprising. After all, to go to connection dynamics, one only performed a canonical transformation. How can things be so different then? I am

not sure of the complete answer for it depends largely on whether one continues to make progress. If one does, then the following scenario would seem appropriate.

One would conclude that this upside down and inside out way of looking at general relativity is better suited to the problem of quantization precisely because it brings to forefront those concepts which are appropriate to the Planck regime. That is, the view would be that while distances, light cones and geodesics may be the most fruitful concepts to extract physical information from general relativity at the macroscopic level, they just aren't the "correct" concepts in the Planck regime. The "correct" concepts may be spinconnections, holonomies of spinors around closed loops, knots and links. We have learn to think in terms of these concepts, to formulate questions and analyse them in a genuinely quantum mechanical fashion. We already expressed some of the geometrical operators as well as quantum constraints in this new language. We should be able to grasp fully the real microscopic "meaning" of the constraints in this new language. In particular, we should think of the scalar constraint primarily in terms of intersections, grasps and re-routings of loops; its role as the generator of time evolution, for example, may be appropriate only in a semi-classical regime in which there is such thing as time. We should develop a physical intuition for the basic mathematical operations directly, without going through metrics and space-time descriptions. After all, this has happened before. A classical physicist would want to compute the trajectories of electrons in the Bohr atom. He might be disappointed that the uncertainty principle makes a precise calculation impossible but would still insist on working out smeared out trajectories. From a quantum mechanical point of view, these calculations are not fundamental; we have to shift our perspective and worry about, e.g., eigenvalues and eigenvectors of the Hamiltonian first. Similarly, we should not insist that space-time geometry –or more generally, any specific feature of the standard differential geometry—must play a role at a fundamental level in quantum theory. Indeed, it is more a rule than an exception that quantum theory forces us to change our perspective. We changed the perspective when we learned to think of the electromagnetic field in terms of photons; when we put aside interference and diffraction of fields and learned to think directly in terms of Feynman diagrams; when we learned to put the scattering theory for classical Yang-Mills fields on the back-burner and to think instead in terms of confinement and/or symmetry breaking. It may well be that metrics and light cones come in to their own only in the semi-classical regimes. Then, differential geometry reigns. In the Planck world, it may be superseded by distributional, possibly degenerate geometries; by the theory of knots and links; by the algebra of combinatorial operations.

6.2 Open issues and directions for future

In spite of these successes, as we saw in section 5.5, the program is quite incomplete even at a mathematical level. First, we need to find the "correct" inner product on the space of physical states, i.e., of solutions to quantum constraints. Since we know the general solution to the Gauss and vector constraints, it is tempting to first introduce an inner product on these "pre-physical states" and then focus on the physical subspace on which the scalar constraint is satisfied as well. The strategy looks attractive especially

because the domain space of pre-physical states is discrete and the problem of finding measures is significantly simpler. I believe that, at the present state of our understanding, this is a useful strategy to pursue. (Furthermore, there exists in the literature a model system due to Husain and Kuchař (1990) which is well suited to test strategy; it only has the analogs of Gauss and vector constraints, whence the loop representation provides us with a complete set of physical states for this model. The first step in the above strategy is then to find the correct inner product for the Husain-Kuchař model.) However, the task of selecting one measure over another even on this space is quite non-trivial. One might imagine using the reality conditions for this purpose. However, neither do we know how to express the reality conditions in terms of loop-variables (in the Husain-Kuchař model, we do!) nor do we have anything beyond a handful classical observables which Poisson-commute with Gauss and vector constraints. We do have "enough" linear operators on the space of pre-physical states. However, since we do not know their classical analogs, we do not know what the quantum *-relations between these observables should be. The first step then would be to understand the physical meaning of these operators.

The quantization program has been, however, carried to completion in several truncated models and these investigations provide considerable hope. These include²⁴ Bianchi I and II models (Gonzalez & Tate, 1992); spherically symmetric minisuperspace (Thiemann & Kastrup 1992); the midisuperspace of two hypersurface orthogonal, commuting Killing fields (Thiemann, 1992), and, the weak field truncation of general relativity in which one keeps terms in the constraints up to quadratic order (Ashtekar, 1991; chapter 12). In all these cases, sufficient simplifications occur to enable one to impose the reality conditions and these then single out the inner-product uniquely. In cases –such as the Bianchi models and the weak field truncation—where there are other reasons based on symmetry groups to constrain what the correct answer should be, the inner product singled out by the reality conditions can be shown to be the correct one. The spherically symmetric model is of special interest because in this case the reality conditions involve genuinely non-linear relations between the classical phase space variables. The weak field truncation is interesting for two reasons. First, this is the only one among the models listed above in which one has worked directly in the loop representation to arrive at the correct inner product. (All other models have been worked out *only* in the connection representation.) Second, one can also work in the connection representation and then the scalar constraint can be re-interpreted as a Schrödinger equation by isolating time among the components of the connection. (In this treatment, matter fields can be incorporated and the same gravitational connection component serves as the time variable for all fields.) Thus, at least in the weak field limit of the quantum theory, one can single out time and recast the "timeless" loop description in the more familiar terms. At a conceptual level, this is an important result

²⁴ Partial results have been obtained in several other models. In particular, solutions to constraints have been obtained in the Bianchi IX model (Kodama, 1988) and have been transformed back to the metric representation to obtain a first solution to the Wheeler-DeWitt equation in the model (Moncrief & Ryan, 1991). Also, a new proposal has been put forward for singling out a preferred state in quantum cosmology to serve as "the wave function of the universe" (Kodama, 1990).

since it tells us that the familiar quantum field theoretic description in Minkowski space does emerge as a well-defined truncation of the abstract, non-perturbative framework of canonical quantum gravity. The main reason why I did not include this discussion in any detail here is that is has already been in the literature for some time now.

Currently, work is in progress (by Ashtekar and Varadarajan) on the midisuperspace with one Killing field. It turns out that, in presence of a Killing symmetry, the vacuum Einstein theory in 4-dimensions is equivalent to the Einstein theory coupled to a doublet of scalar fields in 3-dimensions (where the doublet constitutes a sigma model). Using this fact, the reality conditions can be recast in a form that is fully manageable as in 3-dimensional gravity. Therefore, one can begin to implement the program. The hope is that this simplification will lead us to the inner product. (Note incidentally that, to find the inner product, it is *not* essential to first find the general solution to the constraints explicitly; what we need is a handle on the structure of the space of solutions.) Furthermore, there are recent results from perturbation theory which suggest that the theory is not only renormalizable but *finite* (Bonacino et al, 1992). This indication is supported by non-perturbative considerations in the classical theory: in the spatially open case, the Hamiltonian turns out to be not only positive but *bounded above*! Therefore, one can hope to solve the theory exactly and compare the results with those of the perturbation theory.

Perhaps the most important limitation of the "loopy" framework for the full theory is that it is yet to produce testable, physical predictions. True, we have a new picture of the micro-structure of space-time in the Planck regime. True, we have all these interesting relations between mathematics of knot theory and states of quantum gravity. But where are testable predictions? This is a problem faced by all approaches to quantum gravity and the difficulty lies in the fact that we do not have experimental tools to probe things like the nature of geometry at the Planck scale. But it does seem to me that it should be possible to make a number of theoretical checks. I would like to propose three in an increasing order of speculative character. My primary motivation is only to illustrate ways in which viability of these non-perturbative quantization ideas can be tested.

The first check comes from the expectation that we should be able to replace Minkowski space in the familiar quantum theories by weaves and obtain physically acceptable results. To begin with, this would provide a viability test for the idea that the microstructure of space-time is in fact discrete and that the discreteness is of a specific type. At a rough level, it should not be too difficult to obtain such a result because the difference between the weave states and the continuum picture is significant only at the Planck scale and, since renormalizable field theories are short distance insensitive, their predictions at the laboratory scale of observation should not be sensitive to the Planck scale structure. But the analysis is by no means straightforward and the calculation will provide us with considerable new insight in to the viability of the weave ideas. Of particular interest is the question of infinities: do they simply go away if we use weaves?

The second check concerns Hawking radiation. I indicated above that if we carry out a truncation of the theory, keeping only terms up to second order in deviation from flat space, we can identify one of the connection components as time and re-interpret the scalar constraint as a Schrödinger equation for the evolution of quantum states. What happens if we carry out a similar truncation about a black hole background? Do the modifications

in the boundary conditions at the horizon naturally lead to the Hawking radiation? If so, one would have a systematic derivation of the Hawking effect from full quantum gravity, where the nature of approximation involved is clear so that one can probe the predictions of the theory beyond this approximation. This would be a view of the effect "from above;" the usual view is "from below" since one begins with the classical theory and climbs just one step up to quantum field theory in curved space-time.

The final proposal addresses the issue of the cosmological constant. Ashtekar and Renteln pointed out in '86 that if one begins with any connection A_a^i , constructs its magnetic field \widetilde{B}_i^a and simply sets $\widetilde{E}_i^a := (1/\Lambda)\widetilde{B}_i^a$, then the pair $(A_a^i, \widetilde{E}_i^a)$ satisfies all the constraint equations with a cosmological constant Λ , and, furthermore, this ansätz provides a complete characterization of solutions with non-zero Λ in which the Weyl tensor is self dual. Thus, if one imposes the (Lorentzian) reality conditions, this ansätz picks out uniquely the (anti-)de Sitter space-time. (For details, see Samuel (1991).) Now, the corresponding ansätz in quantum theory produces for the state $\Psi(A)$ precisely the exponential of the Chern-Simons action, with $(1/\Lambda)$ playing the role of the coupling constant. Several workers in the field noted independently that this functional satisfies all the quantum constraints formally. More recently, this statement was made precise by Brügmann, Gambini and Pullin through the implementation of a point splitting regularization. Kodama (1990) has shown that, as one might intuitively expect, this state is associated with the (anti-)de Sitter space-time in a WKB approximation. He has then gone on to argue that it should be considered as a ground state of the theory in the $\Lambda \neq 0$ sector. There is also some independent support for this idea coming from the mathematical theory of representations of the holonomy algebra. Let us accept this viewpoint. Then, we are led to the conclusion that, if $\Lambda \neq 0$, the vacuum is no longer CP-invariant, whence there is gravitational CP-violation (see, e.g., chapter 13 in Ashtekar (1991).) Now, if we believe that there is no such violation –being gravitational, it would have to be universal, not restricted just to the weak interaction sector—we are led to the conclusion that the cosmological constant must be zero. Thus, the suggestion is that the two facts -vanishing of the cosmological constant and the CP symmetry of the gravitational interaction— are really two facets of the same feature of non-perturbative quantum gravity. This reduction of the two mysteries to one may be considered as a "solution" of the cosmological constant problem.

6.3 An evaluation

In section 1, I outlined the difficulties of quantum gravity from three perspectives: that of a high energy theorist, of a mathematical physicist and a general relativist. How has the connection-loop program fared from these three angles?

The emphasis on the absence of a background structures should please the general relativist. The approach is, nonetheless, based on a 3+1 decomposition and therefore fails to be manifestly covariant. However, one can regard the use of the Hamiltonian framework only as an intermediate step. As in the pre-geometry version of the 3-dimensional theory, at a fundamental mathematical level, there is neither space nor time. Manifest covariance is violated but only by the procedure by which we descend from the quantum theory to

classical relativity. At a fundamental level in quantum theory, we do not even need a manifold structure and in the final step we do recover classical general relativity with all its covariance. Furthermore, even the space-time split which arose in the intermediate level—when we introduced a preferred "internal" time— seems to be essential, at this stage, to satisfy the demands of the quantum measurement theory (see Jim Hartle's lectures). The full covariance is gained in the classical limit when these quantum measurement issues can be ignored. The mathematical developments related to knot theory and the way in which time arises in the weak field truncation suggests that the overall situation would be similar in the 4-dimensional theory.

The mathematical physicist can see that the program is only a step or two beyond the heuristic level. But she would probably appreciate that it has enough ingredients –the algebraic quantization program, the representation theory of holonomy algebras, the nonlinear duality between connections and loops, etc.— of the sort that one comes across in mathematical physics so that it should be possible to put the various constructions on a much more satisfactory footing. In particular, one can hope to prove theorems which will justify, or at least spell out, the assumptions that are implicit in the choices one has made in the construction of the loop representation. While this may seem "reasonable," a little voice would probably say: hold on! How can it be that one hopes to construct a quantum theory of gravity when not a single realistic, interacting theory has been solved so far in four dimensions? Let me answer this in two parts. First, as was emphasized at various points (particularly in section 5.4) the mathematical problems one comes across in nonperturbative gravity are quite different from those one has come across in Minkowskian field theories. Second, the problems one faces in Minkowskian field theories generally (although not exclusively) come from the bad ultra-violet behavior. From a physical standpoint, however, at these higher and higher energies, the basic approximation that gravity can be ignored and space-time can be represented by a continuum, flat geometry seems hopelessly bad. Thus, it may be that the mathematical difficulties one encounters have a physical origin. Only when we handle the short distance structure of space-time correctly may these difficulties go away. One might say: wait a minute; if this was so, why were we successful in constructing quantum field theories in low dimensions? Won't your objections apply there as well? My present belief is that they are in fact not applicable because, in less than 4 dimensions, the gravitational field does not have its own degrees of freedom. There are no gravitational modes that can be excited by the quantum fluctuations of the matter fields whence the smooth continuum picture is probably a good approximation.

The high energy theorist may find the tools used here somewhat unusual because at a fundamental level, there are no Fock spaces, no particle like excitations and no S-matrices. The methods may also seem somewhat unfamiliar for there are no effective actions and no path integrals. But he would be pleased with the fact that one does focus on issues that are of concern also in the field theoretic approaches: the short distance behavior of the theory, the new physics at the Planck scale whose existence is suggested by perturbative non-renormalizability, and, the finiteness of eigenvalues of geometrical operators. He would also be relieved that one is not just formally manipulating products of operators but worries about regularization and renormalization. There is, however, a key difference of philosophy between our approach and the ones that have been used in high energy theory

for well over a dozen years. We have dealt with general relativity by itself and ignored other fields; these are to be brought in later. It is not that matter fields are irrelevant or uninteresting. That would be too naive a stand. Furthermore, significant work has been done in this direction in the present canonical framework, particularly on supersymmetric coupling of gravity to matter (see, e.g., Nicoli & Matschull, 1992). This represents an important technical development in the subject and is bound to play a substantial role in the coming years. However, the belief is that it is pure gravity that plays a key role in determining the quantum structure of space-time; other fields are dynamically important but, as far as the microstructure of geometry and the corresponding kinematic structure of the theory are concerned, they will not qualitatively alter what we have learned from pure gravity. In the high energy approaches, on the other hand, one assumes, at least implicitly, that a consistent theory would not result until a whole tower of particle states is included; that quantum gravity by itself would not make sense. While I do not find the standard reasoning behind this view compelling, I certainly have no argument to rule out this possibility.

The two ways of looking at the problem, I think, are complementary and it is important that everyone does *not* follow the same approach, work with the same set of prejudices. In a field like quantum gravity where the experimental data is so scarse, diversity of ideas is all the more important. The advice that Richard Feynman gave to younger researchers at CERN on his way back from Stockholm in 1965 seems especially apt in the context of quantum gravity:

It's very important that we do not all follow the same fashion. ... It's necessary to increase the amount of variety ... and the only way to do it is to implore you few guys to take a risk with your lives that you will be never heard of again, and go off in the wild blue yonder and see if you can figure it out.

Acknowledgments

The innumerable discussions I have had with Bernd Brügmann, Rodolfo Gambini, Chris Isham, Jorge Pullin, Carlo Rovelli, Lee Smolin and Ranjeet Tate have added a great deal of clarity to these notes and the comments I received on the manuscript from the members of the Syracuse relativity group have led to a number of improvements. I am also grateful to the organizers of the school, Bernard Julia and J. Zinn-Justin, for their advice, help, and patience and to participants of the school for many stimulating discussions. This work was supported in part by the NSF grants PHY90-16733 and INT88-15209 and by research funds provided by Syracuse University.

References

Achucarro, A. & Townsend, P. (1986) Phys. Lett. **B180**, 85-89.

Agishtein, A. & Migdal, A. (1992) Mod. Phys. Lett. 7, 1039-1061.

Arnowitt, R., Deser, S. & Misner, C. (1962) In: L. Witten, ed *Introduction to current research*, Wiley, New York; pp 227-265.

Ashtekar, A. (1987) Phys. Rev. **D36**, 1587-1602.

Ashtekar, A. (1981) Non-perturbative canonical gravity, World Scientific, Singapore.

Ashtekar, A. & Stillerman, M. (1986) J. Math. Phys. 27, 1319-1330.

Ashtekar, A., Husain, V., Rovelli, C. & Smolin, L. (1989) Class. Quan. Grav. 6, L185-L193.

Ashtekar, A., Rovelli, C. & Smolin, L. (1991) Phys. Rev. **D44**, 1740-1755.

Ashtekar, A. & Isham, C. (1992) Class. Quan. Grav. 9, 1069-1100.

Ashtekar, A. & Rovelli, R. (1992) Class. Quan. Grav. 9, 1121-1150.

Ashtekar, A., Rovelli, C. & Smolin L. (1992) Phys. Rev. Lett. 69 237-240.

Ashtekar, A. & Tate, R. (1992) Syracuse University Pre-print.

Baez, J. (1992) Class. Quan. Grav. (to appear)

Bengtsson, I. (1989) Phys. Lett. **B220**, 51-53.

Blencowe, M. (1990) Nucl. Phys. **B341**, 213-251.

Bonacina, G., Gamba, A. & Martellini, M. (1992) Phys. Rev. **D45**, 3577-3583.

Brügmann, B., Gambini, R. & Pullin, J. (1992a) Phys. Rev. Lett. 68, 431-434.

Brügmann, B., Gambini, R. & Pullin, J. (1992b) In: S. Cotta & A. Rocha eds, XXth International conference on differential geometric methods in physics, World Scientific, Singapore.

Brügmann, B. & Pullin, J. (1992) Nucl. Phys. **B** (to appear)

Capovilla, R., Dell, J. & Jacobson, T. (1989) Phys. Rev. Lett. **63**, 2325-2328.

Chen, K. (1973) Ann. Math. 97, 217-246.

Di Bortolo, R. Gambini & Griego, J. (1992) Comm. Math. Phys. (to appear)

Dirac, P. (1964) Lectures on Quantum Mechanics, Yeshiva University Press, New-York.

Gambini R. & Leal, A. (1992) Comm. Math. Phys. (to appear)

Goldberg, J., Lewandowski, J. & Stornaiolo, C. (1992) Comm. Math. Phys. 148, 337-402.

Gonzalez G. & Tate, R. (1992) Syracuse University Pre-print.

Husain, V. & Kuchař K. (1990) Phys. Rev. **D** 42, 4070-4077.

Isham, C.& Kakas A. (1984a) Class. Quan. Grav. 1, 621-632.

Isham, C.& Kakas A. (1984b) Class. Quan. Grav. 1, 633-650.

Iwasaki, J. & Rovelli, C. (1993) Int. J. Mod. Phys. **D** (to appear)

Kuchař, K. (1981) In: C. Isham, R. Penrose & D. Sciama eds, *Quantum gravity 2*, Clarendon press, Oxford; pp329-374.

Kodama, H. (1988) Prog. Theo. Phys. 80, 1024-1040.

Kodama, H. (1990) Phys. Rev. **D42**, 2548-2565.

Kodama, H. (1992) Int. J. Mod. Phys. **D** (to appear)

Loll, R. (1992) Nucl. Phys. **B368**, 121-142.

Manojlović N. & Mikocić A. Nucl. Phys. **B** (to appear)

Moncrief, V. & Ryan, M. (1991) Phys. Rev. **D44**, 2375-2379.

Nicoli, H. & Matschull, H. (1992) DESY Pre-print.

Peldan, P. (1992) Phys. Rev. **D46**, 2279-2282; Nucl. Phys. **B** (to appear)

Penrose, R. & Rindler, W. (1986) Spinors and Space-time; Vol 1, Cambridge University Press, Cambridge.

Randall, A. (1992a) Syracuse University Pre-print.

Randall, A. (1992b) Class. Quan. Grav. (to appear)

Romano, J. (1991) Geometrodynamics vs connection dynamics, Syracuse University Thesis; Gen. Rel. Grav. (to appear)

Rovelli, C. (1991) Class. Quan. Grav. 8, 1613-1675.

Rovelli, C. & Smolin, L. (1990) Nucl. Phys. **B331**, 80-152.

Samuel, J. (1991) In: A. Janis & J. Porter eds, Recent advances in general relativity, Birkhäuser, Boston; pp72-84.

Smolin, L. (1992) In: XXIInd International seminar on theoretical physics, World-Scientific, Singapore.

Streater, R. & Wightman, A. (1964) *PCT*, spin and statistics, and all that, Benjamin, New York.

Thiemann, T. (1992) Private Communication.

Thiemann, T. & Kastrup, H. (1992) Nucl. Phys. **B** (to appear).

Wald, R. (1984) General Relativity, University of Chicago Press, Chicago.

Wheeler, J. (1964) In: C. DeWitt and B. DeWitt eds, *Relativity, groups and topology*, Gordon & Breach, New York; pp316-520.

Wightman, A. (1992) Quantum field theory: some history and some current problems; the annual joint mathematics-physics colloquium, Syracuse university.

Witten, E. (1988) Nucl. Phys. **B311**, 46-78.

Zegwaard, J. (1992) Nucl. Phys. B378, 288-308.