When dispersed teams are more successful: Theory and evidence from software

Gabor Bekes*, Julian Hinz**, Miklos Koren*, Aaron Lohmann**

*CEU, KRTK and CEPR **University Bielefeld and IfW Kiel

Research questions

- 1. Why do people work for free? (literature in the early 2000s, not our main concern)
- 2. How do software teams form and collaborate in space? (This paper)

Why Open Source Software (OSS)?

- Software is everywhere and more specifically OSS is everywhere
 - 98% of commercial software uses OSS according to a report by Synopsis in 2023.
 - OSS is powering Machine Learning, Al development and embedded systems.
- OSS is huge
 - Hoffmann, Nagle, and Zhou (2024) estimate demand side as 8.8 triilion USD;
 GitHub nowadays has over 100 million developers
- OSS is observable
 - Due to the git paradigm almost everything is recorded!

What we see in the data: ggplot2-project as an example

Users living in cities

Figure 1: Hadley Wickham

are collaborating

Figure 2: Commits in ggplot2

earning them fame.

Figure 3: ggplot2 stars over time

Literature

- Production in teams: Jarosch, Oberfield, and Rossi-Hansberg (2021);
 Herkenhoff et al. (2024); Freund (2022); Kerr and Kerr (2018)
 Our contribution: A model for global team formation which has selection as a main mechanism.
- Gravity/International Trade: Eaton and Kortum (2002); Atkin, Chen, and Popov (2022); Head, Li, and Minondo (2019)
 Our contribution: Gravity estimates for team formation in OSS.
- OSS: Lerner and Tirole (2002); Fackler and Laurentsyeva (2020); Wachs et al.
 (2022)
 - Our contribution: Providing more descriptive statistics, making use of novel data and combining several data sources.

Data

We use novel, large scale dataset provided by GitHub:

- 37,000,000 software developers.
- 130,000,000 projects (repositories).
- Contributions of developers to projects.
- Location of developers on a monthly basis geocoded based on IP addresses.
- Project outcomes:
 - Stars (A like)
 - Forks (Copying code from someone for personal reuse)

Map of developers

Figure 4: Map of developers around the world

 $\it Notes:$ Based on 30 million developers. Location for each developers based on main developer location.

Collaboration

Num. Developers	Num. Projects	Share in percent	
1	115,813,905	90.8	
2	7,465,995	5.85	
3	2,389,951	1.87	
4	1220,896	0.96	
5	653,646	0.51	

 $\it Notes:$ Only counts core team members. Core team members defined as those contributing in the first 6 months after start of project.

- Team size follows a power-law like relationship.
- The vast majority of projects is developed by one developer.
- Projects with some threshold amount of commits, much. higher percentage is developed by teams.

Pairwise city

Figure 5: Pairwise collaboration between top cities in JavaScript language.

A model of global team formation

Features of OSS

- Developer differ in skills (partially observable).
- Team output is uncertain.
- Developers compete for "kudos."

Endowments, technologies, and tastes

Developers have heterogenous skills Z_i which is drawn from a Fréchet distribution according to $\Pr(Z_i \leq x) = e^{-T_i x^{-\theta}}$

- observable skill T_i
- dispersion of unobserved skill $1/\theta$

Quality production function

The best idea determines software quality.

$$X_p = \max_{j \in p} \{ Z_j / \tau_{jp} \}$$

Customer happiness

Overall customer happiness convex in software quality: $V_p := e^{X_p}$

Frictions

Communication

Not all good ideas are heard (language, time zone, culture, clarity). $\tau_{ip} \geq 1$ iceberg cost of turning skills into ideas.

Participation

Not all benefits of distant projects can be captured (private cost of participation, time zones, misappropriate of credit). $d_{ip} \geq 1$ iceberg cost of turning kudos into utils.

Team formation

Attribution of kudos

Developer with the "winning idea" gets all the kudos for ${\cal V}_p.$

Selection

Join if I am likely to have the winning idea \rightarrow positive selection.

$$Z_i > \frac{\tau_{ip} T_{jp}^{1/(\theta+1)}}{(\tau_{ip} d_{ip} - 1)^{1/(\theta+1)}} \xi_i$$

Team formation

Every project member has to say yes ightarrow assortative matching.

Visual representation

From theory to data

We derive the following empirical predictions from our model:

Prediction 1: Developers are **less likely** to collaborate across greater distances due to higher τ_{ip} and d_{ip} .

Prediction 2: Collaborating developers on average have higher skill.

Prediction 3: Skilled developers worked with skilled developers (PAM).

Prediction 4: Projects with **geographically diverse** teams tend to produce **higher quality** software, as measured by adoption or recognition.

Gravity approach for prediction 1

Developer i and j collaborate with probability

$$\Pr(\mathsf{Collaboration}_{ij}) = \exp(\alpha_i + \beta_j - \gamma \times \mathsf{distance}_{ij})$$

Aggregate across city pairs d and o:

$$E(N_{do, \mathrm{collab}}) = N_o \times N_d \times \exp(\tilde{\alpha}_d + \tilde{\beta}_o - \gamma \times \mathrm{distance}_{do})$$

Estimate this with Poisson maximum likelihood.

Costs for collaboration - Gravity approach (Prediction 1)

Figure 6: Estimates for different distance categories.

- Developers who are close are much more likely to collaborate.
- Reference category is 700+

Participation in collaboration (Prediction 2)

Figure 7: Work experience of developers who only work solo and those who work in collaboration.

- Developers who work in collaborative teams are on average more experienced.
- Experience works as a proxy here for skill.

Experienced developers work with experienced developers (Prediction 3)

Dependent Variables: Model:	$\log(Lag\ commits\ developer\ 1)$ (1)	Commits/Dev 1 Age (2)	
Variables			
log(Lag commits developer 2)	0.2950***		
, ,	(0.0014)		
Commits/Dev 2 Age	` '	0.0849***	
,		(0.0119)	
Fixed-effects			
Start Month ×Language	Yes	Yes	
Fit statistics			
Observations	3,227,819	4,488,144	
R^2	0.13888	0.00990	
Within R ²	0.08834	0.00221	

Clustered (Start Month \times Language) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Team dispersion and quality

We run the following Poisson regression equation

$$Quality_{ljt} = \beta_1 \log \mathsf{dist}_j + \beta_2 \mathsf{coder} \; \mathsf{experience}_{jt} + \lambda_t \times \delta_l + \varepsilon_{ljt}$$

where Quality can be:

- 1. Number of Stars
- 2. Number of public Forks

And the Fixed effects cover:

- 1. Language
- 2. Quarter

Higher success of dispersed teams (Prediction 4) – Teams of two

Dependent Variables:	Number Stars (after 12 months)		Number Forks (after 12 months)	
Model:	(1)	(2)	(3)	(4)
Variables				
log(distance)	0.3208***	0.2419***	0.2224***	0.1774***
	(0.0052)	(0.0048)	(0.0044)	(0.0040)
log(Age dev 1)		0.4667***		0.2484***
		(0.0149)		(0.0119)
log(Age dev 2)		0.4393***		0.2433***
		(0.0144)		(0.0105)
Fixed-effects				
Start Month $ imes$ Language	Yes	Yes	Yes	Yes
Fit statistics				
Observations	3,594,292	3,554,979	3,594,676	3,555,345
Squared Correlation	0.01035	0.01328	0.02615	0.02740
Pseudo R ²	0.20358	0.25902	0.11964	0.14604
BIC	72,598,211.8	66,970,411.6	21,982,816.1	21,024,483.2

Clustered (Start Month \times Language) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Conclusion

- We build a model of global team formation centering around selection on skill.
- This selection induces a positive correlation of distance and quality for software projects.
- Predictions are consistent with data from GitHub 2018-2024.

Next steps

- Estimate key parameters with "natural experiments" (policy changes on GitHub, war in Ukraine).
- Evaluate counterfactual policies.

Appendix

Expected developer payoff from project p

$$\mathcal{U}_{ip} = \begin{cases} e^{\xi_i Z_i/\tau_{ip}} & \text{if } Z_i/\tau_{ip} > Z_j/\tau_{jp} \\ 0 & \text{otherwise} \end{cases}$$

where $\boldsymbol{\xi}_i$ is a taste parameter for enjoying kudos. In expectation,

$$U_{ip} = \mathsf{E}\,\mathcal{U}_{ip} = e^{-T_{jp}\tau_{ip}^{\theta}Z_{i}^{-\theta}}e^{\xi Z_{i}/\tau_{ip}}$$

Increases in Z_i , decreases in T_{jp} , τ_{ip} .

Team formation

Does developer i join project p?

$$U_{ip}(Z_i,T_{jp},\xi_i)> \mathrm{cost}_i(Z_i,d_{ip}):=e^{d_{ip}\xi_iZ_i}$$

Distribution cost

 $d_{ip} \geq 1$. Not all benefits of distant projects can be captured (private cost of participation, time zones, misappropriate of credit).

Gravity

$$d_{ip} = \mathsf{distance}_{ip}^{\gamma_s}$$

where γ_s may be different from γ_k

Join team p if

$$Z_i > \frac{\tau_{ip} T_{jp}^{1/(\theta+1)}}{(\tau_{ip} d_{ip} - 1)^{1/(\theta+1)}} \xi_i^{-1/(\theta+1)}$$

Selection

- 1. Better skilled developers are more likely to join.
- 2. Spatial frictions reduce team formation.
- 3. Projects with high-skilled developers are more selective.

Fréchet magic

Assume Z_i is Fréchet with parameters T_i and θ ,

 ξ_i is Weibull with κ and $\theta/(\theta+1)$. Then

$$\Pr(Z_i \leq x | i \text{ joins project } p) = e^{-T_{ip}x^{-\theta}}$$

with

$$T_{ip} = T_i + \frac{1}{\kappa} \frac{\tau_{ip}^{\theta} T_{jp}^{\theta/(\theta+1)}}{(\tau_{ip} d_{ip} - 1)^{\theta/(\theta+1)}}$$

Closing the model

Both developers want to join, knowing what to expect from the other.

Mutual coincidence of wants

$$\begin{split} T_{1p} &= T_1 + \frac{1}{\kappa} \frac{T_{2p}^{\theta/(\theta+1)}}{(d_{1p} - 1)^{\theta/(\theta+1)}} \\ T_{2p} &= T_2 + \frac{1}{\kappa} \frac{\tau_{2p}^{\theta} T_{1p}^{\theta/(\theta+1)}}{(\tau_{2p} d_{2p} - 1)^{\theta/(\theta+1)}} \end{split}$$

Team forms with probability

$$\frac{T_1}{T_{1p}}\frac{T_2}{T_{2p}}$$

References

- Atkin, David, M Keith Chen, and Anton Popov. 2022. "The Returns to Face-to-Face Interactions: Knowledge Spillovers in Silicon Valley." National Bureau of Economic Research.
- Eaton, Jonathan, and Samuel Kortum. 2002. "Technology, Geography, and Trade." *Econometrica* 70 (5): 1741–79.
- Fackler, Thomas, and Nadzeya Laurentsyeva. 2020. "Gravity in Online Collaborations: Evidence from Github." In *CESifo Forum*, 21:15–20. 03. München: ifo Institut-Leibniz-Institut für Wirtschaftsforschung an der
- Freund, Lukas. 2022. "Superstar Teams: The Micro Origins and Macro Implications of Coworker Complementarities." *Available at SSRN 4312245*.
- Head, Keith, Yao Amber Li, and Asier Minondo. 2019. "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics." *Review of Economics and Statistics* 101 (4): 713–27.