RESUMO DE ÁLGEBRA AVANÇADA

1 Aula 1 - Conceitos iniciais de grupo

Definição 1.1. Um **grupo** é um conjunto G com uma operação $\cdot : G \times G \to G$, $(g,h) \mapsto g \cdot h = gh$, chamada **produto** (ou multiplicação) que satisfaz:

- i) Para todo $a, b, c \in G$, vale (ab)c = a(bc) (associatividade).
- ii) Existe $e \in G$ tal que, para todo $g \in G$, temos que eg = ge = g (existência de um elemento neutro).
- iii) Para todo $a \in G$, existe $b \in G$ tal que ab = ba = e (existência de um inverso).

Lema 1.1. O elemento neutro é único

Lema 1.2. O inverso é único.

Lema 1.3. Sejam $f, g \in G$. Então as equações fx = g e xf = g possuem única solução.

Lema 1.4. Se $f, g \in G$, então $(fg)^{-1} = g^{-1}f^{-1}$. Em particular, se $g_1, \ldots, g_n \in G$, então $(g_1 \ldots g_n)^{-1} = g_n^{-1} \ldots g_1^{-1}$.

Definição 1.2. Um grupo G é abeliano (ou comutativo), se para todo $a, b \in G$, ocorre ab = ba.

2 Aula 2 - Subgrupo gerado

Definição 2.1. Sejam $n \in \mathbb{Z}$ e $g \in G$. Definimos $g^n = (g^{n-1})g$, $g^0 = e$ e $g^{-n} = (g^n)^{-1}$.

Lema 2.1. $g^{-n} = (g^{-1})^n$.

Definição 2.2. Dizemos que $H \subseteq G$, com $H \neq \emptyset$, é um **subgrupo de** G, se H é grupo com o mesmo produto de G. Notação: $H \leq G$.

Lema 2.2. $H \subseteq G$, com $H \neq \emptyset$ é subgrupo de G, se, e somente se,

- i) para todo $h_1, h_2 \in H, h_1h_2 \in H$.
- ii) para todo $h\in H,\, h^{-1}\in H.$

Definição 2.3. Seja $g \in G$. Definimos $\langle g \rangle = \{g^z \mid z \in \mathbb{Z}\}$ e o denominamos por **subgrupo de** G **gerado por** g.

Lema 2.3. $\langle g \rangle$ é subgrupo de G.

Lema 2.4. Considere $G = (\mathbb{Z}, +)$. Se H é subgrupo de G, então existe $n \in \mathbb{Z}_{\geq 0}$ tal que $H = n\mathbb{Z} = \langle n \rangle = \{nz \mid z \in \mathbb{Z}\}.$

Definição 2.4. Dado um grupo G, denotamos |G| ou o(G) como sendo a cardinalidade de G. Dizemos que G é finito, se $|G| < \infty$ e que é infinito se $|G| = \infty$.

Definição 2.5. Sejam um grupo G e $g \in G$. Definimos a **ordem de** g como sendo $|\langle g \rangle|$. Notação: |g| ou o(g).

Lema 2.5. Seja $g \in G$ tal que |g| = n. Então valem as seguintes propriedades:

- i) $g^n = e$.
- ii) $\langle g \rangle = \{g^0 = e, g, g^2, \dots, g^{n-1}\}.$
- iii) se $z \in \mathbb{Z}$ é tal que $g^z = e$, então $n \mid z$.

3 Aula 3 - Teorema de Lagrange

Definição 3.1. Seja $H \leq G$. Uma classe lateral à direita de H em G é um subconjunto $Hg = \{hg \mid h \in H\}$, para algum $g \in G$. Analogamente, defini-se uma classe lateral à esquerda.

Lema 3.1. Sejam $H \leq G$ e $g_1, g_2 \in G$. Então $Hg_1 = Hg_2$ ou $Hg_1 \cap Hg_2 = \emptyset$.

Corolário 3.1. Sejam $H \leq G$ e $g_1, g_2 \in G$. Então $Hg_1 = Hg_2 \Leftrightarrow g_2 \in Hg_1$ e $g_1 \in Hg_2$.

Proposição 3.1. Seja $H \leq G$. Então

- a) G é união disjunta das classes laterais à direita.
- a) G é união disjunta das classes laterais à esquerda.

Lema 3.2. Seja $H \leq G$. Defina $X_1 = \{$ classes laterais à direita de H em $G \}$ e $X_2 = \{$ classes laterais à esquerda de H em $G \}$. Então existe uma bijeção $\varphi : X_1 \to X_2$.

Definição 3.2. Seja $H \leq G$. Uma transversal à direita de H em G é um subconjunto T de G tal que $G = \bigcup_{s \in S} Hs$.

Definição 3.3. Seja $H \leq G$. O **índice de** H **em** G, denotado por [G:H], é |T| = |S|, para alguma transversal à direita T ou alguma transversal à esquerda S.

Teorema 3.1 (Lagrange). Seja $H \leq G$. Então o(G) = o(H)[G:H].

Corolário 3.2. Se $o(G) < \infty$ e $H \le G$, então $o(H) \mid o(G)$.

Corolário 3.3. Se $o(G) < \infty$ e $g \in G$, então $o(g) \mid o(G)$.

Corolário 3.4. Se $p \in \mathbb{Z}_{>0}$ é primo e |G| = p, então G é cíclico, ou seja, existe $g \in G$ tal que $G = \langle g \rangle$.

Proposição 3.2. Sejam $H \leq G$ e $K \leq H$. Então [G:K] = [G:H][H:K].

Lema 3.3 (Euler). Sejam $n \in \mathbb{N}$, com $n \geq 2$, e $a \in \mathbb{Z}$, tal que $\mathrm{mdc}(a,n) = 1$. Então $a^{\varphi(n)} \equiv 1 \pmod{n}$, onde $\varphi(n) = \#\{1 \leq r \leq n \mid \mathrm{mdc}(r,n) = 1\}$.

4 Aula 4 - Grupos quociente e comutador

Definição 4.1. Sejam $H \leq G$ e $g_1, g_2 \in G$. Definimos o produto de classes como sendo $g_1Hg_2H = (g_1g_2)H$.

Proposição 4.1. Seja $H \leq G$. Então são equivalentes:

- a) O produto das classes é bem definido.
- b) gH = Hg, para todo $g \in G$

Definição 4.2. Um subgrupo H de G é **normal**, se Hg = gH (ou, equivalentemente, $g^{-1}Hg = H$). Notação: $H \triangleleft G$.

Lema 4.1. Se $H \leq G$ tal que [G:H] = 2, então $H \triangleleft G$.

Definição 4.3. Definimos o **centro de** G por $\mathcal{Z}(G) = \{g \in G \mid \forall h \in G, gh = hg\}.$

Lema 4.2. $\mathcal{Z}(G) \triangleleft G$.

Teorema 4.1. Seja $H \triangleleft G$. Defina $G/H = \{gH \mid g \in G\}$. Então G/H é grupo com a operação induzida de G, isto é, $(g_1H)(g_2H) = (g_1g_2)H$.

Definição 4.4. Chamamos $G_{/H}$ de grupo quociente de G por H.

Definição 4.5. Seja $\emptyset \neq S \subseteq G$. Definimos $\langle S \rangle = \{g_1g_2 \dots g_k \mid k \geq 1 \text{ e } g_i \in S \cup S^{-1}\}$, onde $S^{-1} = \{s^{-1} \mid s \in S\}$.

Teorema 4.2. $\langle S \rangle$ é o menor subgrupo de G que contém S, isto é, se $S \subseteq H \leq G$, então $\langle S \rangle \subseteq H$.

Definição 4.6. Sejam $g, h \in G$. O comutador de g e h é $[g, h] = g^{-1}h^{-1}gh$.

Definição 4.7. Seja $S = \{[g,h] \mid g,h \in G\}$. Definimos o **comutador de** G (ou subgrupo derivado de G) por $G' = \langle S \rangle$ (às vezes, denotado também por [G,G]).

Teorema 4.3.

- a) $G' \triangleleft G$.
- b) $G_{G'}$ é abeliano.
- c) $H \triangleleft G$ tal que G/H é abeliano, se, e somente se, $G' \subset H$.

5 Aula 5 - Homomorfismo

Definição 5.1. Uma função (de conjuntos) $\varphi: G \to H$ é um **homomorfismo**, se $\varphi(ab) = \varphi(a)\varphi(b)$, para todo $a,b \in G$.

Lema 5.1. Seja $\varphi: G \to H$ um homomorfismo. Então:

- i) $\varphi(1_G) = 1_H$.
- ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$, para todo $g \in G$.
- iii) $\ker \varphi = \{g \in G \mid \varphi(g) = 1_H\} \triangleleft G.$
- iv) $\operatorname{Im} \varphi = \{ h \in H \mid \exists g \in G, \varphi(g) = h \} \leq H.$

Definição 5.2. Seja $\varphi: G \to H$ um homomorfismo. Então:

- i) φ é monomorfismo, se φ é injetora.
- ii) φ é **epimorfismo**, se Im $\varphi = H$.
- iii) φ é **isomorfismo**, se φ é bijetora.

Lema 5.2. Seja $\varphi: G \to H$ um homomorfismo. Então:

- i) φ é monomorfismo $\Leftrightarrow \ker \varphi = \{1_G\}.$
- ii) φ é isomorfismo \Leftrightarrow existe $\theta: H \to G$ homomorfismo tal que $\theta \circ \varphi = \mathrm{id}_G$ e $\varphi \circ \theta = \mathrm{id}_H$.

Lema 5.3. Seja $\varphi: G \to H$ um homomorfismo. Então:

- a) Se $A \leq G$, então $\varphi(A) \leq H$. Além disso, $\varphi^{-1}(\varphi(A)) = A \ker \varphi = \{ah \mid a \in G, h \in \ker \varphi\}$.
- b) Se $B \leq H$, então $\varphi^{-1}(B) \leq G$. Além disso, $\varphi(\varphi^{-1}(B)) = B \cap \operatorname{Im} \varphi$.

Teorema 5.1 (Isomorfismo). Sejam $\varphi: G \to H$ um homomorfismo e $N = \ker \varphi$. Então:

- 1. φ induz um isomorfismo entre G_N e Im φ com a função $\theta: G_N \to \operatorname{Im} \varphi, gN \mapsto \varphi(g)$.
- 2. Existe uma bijeção entre { subgrupos de G que contêm N } e { subgrupos de $\operatorname{Im} \varphi$ }, fazendo $N \leq K \leq G \mapsto \varphi(K)$ e $\varphi^{-1}(C) \longleftrightarrow C \leq \operatorname{Im} \varphi$
- 3. $K \triangleleft G \Leftrightarrow \varphi(K) \triangleleft \operatorname{Im} \varphi$.

Corolário 5.1. Sejam $A \leq G$ e $\varphi: G \to H$ um homomorfismo. Então $A \cap \ker \varphi \triangleleft A$ e $A/A \cap \ker \varphi \cong \varphi(A)$.

Lema 5.4. Se $N \triangleleft G$ e $K \leq G$. Então:

- i) NK = KN e é subgrupo de G.
- ii) Se $K \triangleleft G$, então $NK \triangleleft G$.

Corolário 5.2. Se $N \triangleleft G$ e $K \leq G$, então $K_{N \cap K} \cong KN_{N}$.

6 Aula 6 - Subgrupo característico e produto direto

Corolário 6.1. Se $K \leq H \leq G, \ K \lhd G$ e $H \lhd G$, então $G_{/H} \cong G_{/K/H_{/K}}$.

Definição 6.1. Aut $(G) = \{ \varphi : G \to G \mid \varphi \text{ \'e isomorfismo } \}.$

Lema 6.1. Aut(G) sobre a composição de funções é grupo.

Definição 6.2. Dado $g \in G$, definimos $I_g : G \to G$, $h \mapsto ghg^{-1}$.

Lema 6.2.

- 1. $I_q \in Aut(G)$.
- $2. I_{g_1g_2} = I_{g_1} \circ I_{g_2}.$
- 3. $I_{g^{-1}} = (I_g)^{-1}$.
- 4. Se $\sigma \in \text{Aut}(G)$, então $\sigma I_g \sigma^{-1} = I_{\sigma(g)}$.

Lema 6.3. $\operatorname{Inn}(G) = \{I_g \mid g \in G\} \lhd \operatorname{Aut}(G).$

Definição 6.3. Seja $H \leq G$ tal que $\varphi(H) \subset H$, para todo $\varphi \in \operatorname{Aut}(G)$. Então H é chamado de **subgrupo característico de** G e é denotado por $H \triangleleft_{char} G$.

Lema 6.4. Se $H \triangleleft_{char} G$, então $H \triangleleft G$.

Lema 6.5. Se $T \subseteq G$ e $\varphi \in Aut(G)$, então $\varphi(\langle T \rangle) = \langle \varphi(T) \rangle$.

Lema 6.6. Se $M \triangleleft_{char} H \triangleleft G$, então $M \triangleleft G$.

Definição 6.4. Sejam G_1, \ldots, G_k grupos. Considere o produto cartesiano $G_1 \times \cdots \times G_k$ e defina $(g_1, \ldots, g_k)(h_1, \ldots, h_k) = (g_1 h_1, \ldots, g_k h_k)$, com $g_i h_i$ usando o produto de G_i .

Lema 6.7. $G = G_1 \times \cdots \times G_k$ com a multiplicação acima é grupo.

Lema 6.8.

- 1. $H_i = \{(1_{G_1}, \dots, 1_{G_{i-1}}, g, 1_{G_{i+1}}, \dots, 1_{G_k}) \mid g \in G_i\} \triangleleft G$
- 2. Se $h_i \in H_i$, $h_j \in H_j$ e $i \neq j$, então $h_i h_j = h_j h_i$.
- 3. $G = H_1 \dots H_k$.
- 4. $H_i \cong G_i$, para todo $i = 1, \ldots, k$.

Lema 6.9. Sejam G grupo e $H_i \leq G$, com i = 1, ..., k tais que

- i) $h_i h_j = h_j h_i$, para todo $h_i \in H_i$, $h_j \in H_j$ e $i \neq j$.
- ii) para todo $g \in G$, existem únicos $h_i \in H_i$ tais que $g = h_1 \dots h_k$.

Então $G \cong H_1 \times \cdots \times H_k$.

Teorema 6.1 (Chinês do Resto). Sejam $m_1, \ldots, m_k \in \mathbb{Z}_{>0}$ tais que $\mathrm{mdc}(m_i, m_j) = 1$, se $i \neq j$. Se $m = m_1 \ldots m_k$, então $\mathbb{Z}_m \cong \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_k} \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k}$

Lema 6.10. Se G é cíclico, então existe $\varphi : \mathbb{Z} \to G$ epimorfismo.

Corolário 6.2. Se G é cíclico, com $|G| = \infty$, então $G \cong \mathbb{Z}$.

Corolário 6.3. Se G é cíclico, com $|G| < \infty$, então $G \cong \mathbb{Z}/_{m\mathbb{Z}}$, com m > 0.

7 Aula 7 - Grupo de permutação

Lema 7.1. Seja G um grupo cíclico de ordem finita.

- a) Se $H \leq G$, então $o(H) \mid o(G)$ e H é cíclico.
- b) Se $d \mid o(G)$, então existe $H \leq G$ tal que o(H) = d.

Lema 7.2. Sejam $G = \mathbb{Z}/_{m\mathbb{Z}}$ e $g = s + m\mathbb{Z}$, com $0 \le 0 \le m - 1$. Então $o(g) = o(G) \Leftrightarrow G = \langle g \rangle \Leftrightarrow \operatorname{mdc}(s, m) = 1$.

Definição 7.1. Seja $X = \{1, ..., n\}$. Denotaremos o grupo de permutação dos elementos de X por S_n , ou seja, $S_n = \{f : X \to X \mid f \text{ \'e bijetora }\}$ com a operação de composição de funções.

Teorema 7.1 (Cayley). Seja G um grupo finito. Então existe um monomorfismo $\varphi: G \to S_n$, para algum n.

Definição 7.2. Um elementos $\mu \in S_k$ é chamado **ciclo**, se existem i_1, \ldots, i_m $(m \ge 2)$ tal que $i_1 \xrightarrow{\mu} i_2 \xrightarrow{\mu} \ldots \xrightarrow{\mu} i_m \xrightarrow{\mu} i_1$ e $\mu(\ell) = \ell$, se $\ell \notin \{i_1, \ldots, i_m\}$.

Definição 7.3. Ciclos σ_1, σ_2 são **independentes** se $\operatorname{supp}(\sigma_1) \cap \operatorname{supp}(\sigma_2) = \emptyset$, onde $\operatorname{supp}(\sigma) = \{i \mid \sigma(i) \neq i\}$.

Teorema 7.2. Se $g \in S_m$, então $g = \sigma_1 \dots \sigma_j$, onde σ_i são ciclos independentes. Além disso, essa decomposição é única.

Lema 7.3. Se $\sigma = (\alpha_1 \alpha_2 \dots \alpha_k)$ é ciclo, então $|\sigma| = k$.

Teorema 7.3. Seja $\sigma \in S_n$, com $\sigma = \sigma_1 \dots \sigma_m$, onde σ_i são ciclos independentes. Então $|\sigma| = \text{mmc}(|\sigma_1|, \dots, |\sigma_m|)$.

Definição 7.4. Uma transposição em S_n é um ciclo de ordem 2, ou seja, (ij), com $i \neq j$.

Lema 7.4.

- 1. $S_n = \langle \{(ij) \mid 1 \le i < j \le n \} \rangle$.
- 2. $S_n = \langle \{(1i) \mid 2 \le i \le n\} \rangle$.
- 3. $S_n = \langle \{(i(i+1)) \mid 1 \le i \le n-1\} \rangle$.

Definição 7.5. $A_n = \{g \in S_n \mid g = \mu_1 \dots \mu_s, \text{ com } \mu_i \text{ transposições e 2 divide } s\}$ é chamado subgrupo alternado (ou subgrupo alternativo).

Teorema 7.4. $A_n \triangleleft S_n$.

8 Aula 8 - Simplicidade de A_n

Lema 8.1. Sejam $f \in \mathbb{Z}[X_1, \ldots, X_n]$ e $\alpha, \beta \in S_n$. Então $((\alpha\beta)f) = (\alpha(\beta f))$, onde definimos $\sigma f(X_1, \ldots, X_n) = f(X_{\sigma^{-1}(1)}, \ldots, X_{\sigma^{-1}(n)})$, sendo $\sigma \in S_n$.

Lema 8.2. Sejam $f \in \mathbb{Z}[X_1, \dots, X_n]$, com $f = \prod_{1 \le i < j \le n} (X_j - X_i)$, e σ um transposição. Então $\sigma f = -f$.

Teorema 8.1. Seja $g \in S_n$, com $g = \mu_1 \dots \mu_s = \nu_1 \dots \nu_t$, onde μ_i e ν_j são transposições. Então $2 \mid (s-t)$, isto é, a paridade da decomposição é única.

Definição 8.1. Seja $g \in S_n \setminus \{1\}$ tal que $g = g_1 \dots g_m$, com g_i ciclos independentes e $|g_1| \le |g_2| \le \dots \le |g_m|$. Dizemos que g tem **tipo de decomposição** $(|g_1|, |g_2|, \dots, |g_m|)$.

Definição 8.2. Seja G um grupo qualquer. Dizemos que g e g' são **conjugados**, se existe $h \in G$ tal que $g' = hgh^{-1}$.

Teorema 8.2. Seja $g = (i_{11} \dots i_{1\alpha_1})(i_{21} \dots i_{2\alpha_2}) \dots (i_{m1} \dots i_{m\alpha_m}) \in S_n$.

- a) Se $\sigma \in S_n$, então $\sigma g \sigma^{-1} = t$, com $t = (\sigma(i_{11}) \dots \sigma(i_{1\alpha_1})) \dots (\sigma(i_{m1}) \dots \sigma(i_{m\alpha_m}))$
- b) $g, g' \in S_n \setminus \{1\}$ têm o mesmo tipo de decomposição \Leftrightarrow existe $\sigma \in S_n$ tal que $g' = \sigma g \sigma^{-1}$.
- c) Se $g, g' \in S_n \setminus \{1\}$ têm o mesmo tipo de decomposição e $|\operatorname{supp}(g)| \le n-2$, então $\sigma \in A_n$ tal que $g' = \sigma g \sigma^{-1}$.

Definição 8.3. G é **simples**, se os únicos subgrupos normais dele são $\{1\}$ e o próprio G.

Lema 8.3.

- a) $A_n = \langle \{(ijk) \mid i \neq j \neq k \neq i\} \rangle$.
- b) Fixados $a \neq b$, $A_n = \langle \{(abk) \mid a \neq k \neq b\} \rangle$.

Teorema 8.3. Se $n \geq 5$, então A_n é simples.

Corolário 8.1. Seja $n \geq 5$. Então

- a) Se $M \triangleleft S_n$, então $M = \{1\}$, $M = A_n$ ou $M = S_n$.
- b) $S'_n = A_n$, $A'_n = A_n$, $\mathcal{Z}(S_n) = \{1\}$ e $\mathcal{Z}(A_n) = \{1\}$.

9 Aula 9 - Ações e subgrupos de Sylow

Definição 9.1. Se G é um grupo finito abeliano, então denotamos:

- produto por +
- elemento neutro por 0
- q^z passa a ser $zq \in G \times H$ vira $G \oplus H$.

Definição 9.2. $G(p) = \{g \in G \mid |g| \in \{p^0, p^1, p^2, \dots\}\}$

Teorema 9.1. Se $G \neq 0$ é grupo abeliano e finito, então $G \cong \bigoplus_{G(p) \neq \{0\}} G(p)$.

Definição 9.3. Sejam G um grupo qualquer e X um conjunto. Dizemos que G age em X a esquerda, $X \curvearrowleft G$, se existe uma aplicação $G \times X \to X$, $(g,x) \mapsto g \cdot x$ (ou, só gx) tal que

- $1_G x = x, \forall x \in X$
- $(g_1g_2)x = g_1(g_2x)$

Definição 9.4. Se $X_1
subseteq G$ e $X_2
subseteq G$, dizemos que $f: X_1 \to X_2$ é um **morfismo**, se para todo $x \in x_1$ e todo $g \in G$, f(gx) = gf(x). Se f é bijetora, dizemos que f é um **isomorfismo** de G-conjuntos.

Definição 9.5. Seja $X \curvearrowleft G$. Para cada $x \in X$, definimos $G_x = \{g \in G \mid gx = x\}$, chamado **estabilizador de** x **em** G. Definimos também a G-órbita de x por $Gx = \{gx \mid g \in G\}$.

Lema 9.1. Se $X \curvearrowleft G$ e $x \in X$, então Gx = Gy, para todo $y \in Gx$.

Corolário 9.1. Se $X \curvearrowleft G$ e $x, y \in X$, então Gx = Gy ou $Gx \cap Gy = \emptyset$.

Corolário 9.2. Se $X \curvearrowleft G$, então $X = [\cdot]Gx$.

Lema 9.2. Se $X \curvearrowright G$ e $x \in X$, então $Gx \cong \{gGx\}_{g \in G}$.

Corolário 9.3. $[G:G_x] = |Gx|$.

Proposição 9.1. Se G é grupo tal que $|G| = p^m$, com p primo, então $\mathcal{Z}(G) \neq \{1\}$.

Definição 9.6. Seja G um grupo finito. Dizemos que $P \leq G$ é um p-subgrupos de Sylow, se $|P| = p^m$ e $p^{m+1} \nmid |G|$ (note que $p^m \mid G$).

Teorema 9.2. Se p é primo e $p \mid |G|$, então existe p-subgrupo de Sylow em G.

10 Aula 10 - Teorema de Sylow

Teorema 10.1 (Teorema de Sylow). Sejam G um grupo finito, p um primo tal que $p \mid |G|$ e $H \leq G$ tal que |H| = potência de p.

- 1. Existe $P \in \text{Syl}_n(G)$ tal que $H \leq P$.
- 2. Se $P_1, P_2 \in \operatorname{Syl}_p(G)$, então existe $g \in G$ tal que $P_1 = gP_2g^{-1}$.
- 3. Seja $\eta_p = |\operatorname{Syl}_p(G)|$. Então $\eta_p \equiv 1 \pmod{p}$ e $\eta_p \mid |G|$.

11 Aula 11 - Primeira Prova

Foi realizada a primeira prova.

12 Aula 12 - Conceitos Iniciais de Anéis

Definição 12.1. $R \neq \emptyset$ conjunto tal que (R, +) é grupo abeliano e (R, \cdot) satisfaz:

- i) a(bc) = (ab)c
- ii) a(b+c) = ab + ac e (a+b)c = ac + bc

para todo $a, b, c \in R$ é dito **anel**. A operação + é dita **adição** (ou soma) e ·, **multiplicação** (ou produto). Se ab = ba, para todo $a, b \in R$, então R é dito **anel comutativo**. Se existe $1_R \in R$ tal que $1_R a = a1_R = a, \forall a \in R$, então R é dito **anel com identidade**.

Teorema 12.1. Para todo $a, b, a_i, b_i \in R$ e todo $n \in \mathbb{Z}_{>0}$, valem:

- -0a = a0 = 0;
- -(-a)b = a(-b) = -(ab);
- -(-a)(-b) = ab;
- (na)b = a(nb) = n(ab);

$$-\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{j=1}^{m} b_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i}b_{j}.$$

Definição 12.2. $a \in R \setminus \{0\}$ é dito **divisor de zero a esquerda** (direita), se existe $b \in R \setminus \{0\}$ tal que ab = 0 (ba = 0). Se a é divisor de zero a esquerda e a direita, então a é **divisor de zero**.

Definição 12.3. Seja R é um anel com identidade 1_R . a é **invertível a esquerda** (direita), se existe $c \in R$ tal que $ca = 1_R$ ($ac = 1_R$). Se a é invertível tanto a esquerda, quanto a direita, dizemos que a é **unidade** (ou invertível).

Definição 12.4. Se R é comutativo com identidade $1_R \in R \setminus \{0\}$ e não tem divisores de zero, então R é um **domínio de integridade** (DI).

Definição 12.5. Um anel D com identidade $1_D \in D \setminus \{0\}$ tal que todo $a \in D \setminus \{0\}$ é unidade é dito **anel de divisão** (AD).

Definição 12.6. F é um **corpo** se F é anel de divisão comutativo.

Definição 12.7. Sejam G um grupo e R um anel. Defina $R(G) = \{\sum_{g \in G} r_g g \mid r_g \in R\}$, denotado também por $\langle g \mid g \in G \rangle_R$. Defina a adição e a multiplicação como sendo $(\sum_{g \in G} r_g g) + (\sum_{h \in G} s_h h) = (\sum_{g \in G} (r_g + s_g)g)$ e $(\sum_{g \in G} r_g g) \cdot (\sum_{h \in G} s_h h) = \sum_{g \in G} \sum_{h \in G} (r_g s_h)(gh)$. Assim, R(G) é um anel chamado de **anel de grupo de** G **sobre** G.

Definição 12.8. Sejam R, S anéis. Uma função $f: R \to S$ é um **homomorfismo** (de anéis), se para todo $a, b \in R$, f(a + b) = f(a) + f(b) e f(ab) = f(a)f(b).

Mono, epi, iso e automorfismo são definidas analogamente ao caso de grupo.

Definimos o núcleo de f como sendo ker $f = \{a \in R \mid f(a) = 0_S\}$ (note que são os elementos de R que são levados na identidade da soma e não do produto).

Definição 12.9. Se existe $n \in \mathbb{Z}_{>0}$ tal que $nr = 0, \forall r \in R$, então a **característica de** R, char(R), é definida como sendo o menor n satisfazendo $nr = 0, \forall r \in R$. Se tal n não existe, então definimos char(R) como sendo zero.

Teorema 12.2. Se R é anel com identidade 1_R e char(R) = n > 0, então

- a) $\varphi: \mathbb{Z} \to R$, $m \mapsto mr$ é homomorfismo e $\ker \varphi = \langle n \rangle = n\mathbb{Z}$;
- b) n é o menor inteiro positivo tal que $n1_R = 0$;
- c) se R não tem divisores de zero, então n é primo.

Teorema 12.3. Todo anel R pode ser mergulhado em um anel com identidade S. Além disso, S pode ser escolhido com char(S) = 0 ou char(S) = char(R).

Definição 12.10. $\emptyset \neq S \subseteq R$ é um **subanel de** R, se S é um anel com respeito as operações de R. Um subanel $I \subseteq R$ é um **ideal a esquerda** (direita), se dados $r \in R, i \in I$, $ri \in I$ ($ir \in I$). Denotamos por $I \triangleleft_{\ell} R$ ($I \triangleleft_{r} R$). Se I é ideal a esquerda e a direita, dizemos que I é **ideal**, denotado por $I \triangleleft R$.

13 Aula 13 - Teorema de Isomorfismo e Ideais Primos e Maximais

Teorema 13.1. $\emptyset \neq I \subseteq R$ é ideal a esquerda se, e somente se,

- $a b \in I, \forall a, b \in I;$
- $ra \in I, \forall r \in R, a \in I$.

Vale também para \triangleleft_r e \triangleleft .

Corolário 13.1. $\{A_i \triangleleft_{\ell} R\}_{i \in I} \Rightarrow \bigcap_{i \in I} A_i \triangleleft_{\ell} R$. Vale também para $\triangleleft_r e \triangleleft$.

Definição 13.1. Seja $X \subseteq R$. Definimos $\cap \{A_i \mid A_i \lhd_\ell, X \subseteq A_i\}$ é o **ideal a esquerda gerado por** X. Vale também para \lhd_r e \lhd .

Observações:

- 1. O ideal bilateral gerado por X é denotado por (X).
- 2. Se $X = \{x\}$, então (X) = (x) e é chamado ideal principal gerado por x.
- 3. R é chamado **anel de ideal principal**, se todo ideal de R é principal. Se R for um domínio, então dizemos **domínio de ideal principal**.

Teorema 13.2. Se $X \subseteq R$ e $a \in R$, então

- 1. $(a) = \{ra + as + na + \sum_{i=1}^{m} r_i as_i \mid r, s, r_i, s_i \in R, n \in \mathbb{Z}\}.$
- 2. Se $1_R \in R$, então $(a) = \{ \sum_{i=1}^m r_i a s_i \mid r_i, s_i \in R \}.$
- 3. Se $a \in C(R)$, então $(a) = \{ra + na \mid r \in R, n \in \mathbb{Z}\}.$
- 4. $Ra = \{ra \mid r \in R\}$ é ideal a esquerda e $aR = \{ar \mid r \in R\}$ é ideal a direita.
- 5. Se $1_R \in R$ e ar = ra, então aR = Ra.
- 6. Se $1_R \in R$ e xr = rx, para todo $x \in X$ e $r \in R$, então $(X) = \{\sum_{i=1}^m r_i x_i \mid r_i \in R, x_i \in X\}$

Definição 13.2. Sejam $A, A_1, \ldots, A_n, B \subseteq R$. Então

1.
$$A_1 + \cdots + A_n = \{ \sum a_i \mid a_i \in A_i \}.$$

2.
$$AB = \{ \sum ab \mid a \in A, b \in B \}.$$

- 3. Se A (ou B) é fechado com relação a soma e $B = \{b\}$ (ou $A = \{a\}$), então $AB = Ab = \{ab \mid a \in A\}$ (ou $AB = aB = \{ab \mid b \in B\}$).
- 4. $A_1 \dots A_n = \{ \sum a_1 \dots a_n \mid a_i \in A_i \}.$

Teorema 13.3. R/I é anel com multiplicação (a+I)(b+I)=ab+I, para todo $a,b\in R$.

Teorema 13.4. Se $f: R \to S$ é homomorfismo, então ker $f \lhd R$. Além disso, se $I \lhd R$, então $I = \ker \pi$, onde $\pi: R \to R/I$, $r \mapsto r + I$.

Teorema 13.5. Se $f: R \to S$ é homomorfismo, então $R_{\ker f} \cong \operatorname{Im} f$.

Teorema 13.6. Sejam $I, J \triangleleft R$. Então

$$- (I+J)_{/J} \cong I_{/I \cap J}$$

- Se
$$I \subseteq J$$
, então $J/I \triangleleft R/I$ e $R/J \cong R/I/J/I$.

Teorema 13.7. Se $I \triangleleft R$, então existe uma bijeção entre $\{J \triangleleft R \text{ tal que } I \subseteq J\}$ e $\{K \triangleleft R/I\}$, fazendo $J \mapsto \pi(J)$ e $\pi^{-1}(K) \longleftrightarrow K$.

Definição 13.3. Um ideal $P \triangleleft R$ é **primo**, se $P \neq R$ e se dados $A, B \triangleleft R$ tais que $AB \subseteq P$, então $A \subseteq P$ ou $B \subseteq P$.

Teorema 13.8.

- 1. Se $P \lhd R$ e $P \neq R$ é tal que para todo $a,b \in R$, temos que $a \in P$ ou $b \in P$, sempre que $ab \in P$, então P é primo.
- 2. Se P é primo e R é comutativo, então $a \in P$ ou $b \in P$, sempre que $ab \in P$.

Teorema 13.9. Seja R comutativo com $1_R \in R$. Então P é primo se, e somente se, R/P é domínio.

Definição 13.4. $M \triangleleft R$ é maximal, se $M \neq R$ e se $M \triangleleft I \triangleleft R$, então I = M ou I = R.

Teorema 13.10. Se $R \neq 0$ e $1_R \in R$, então todo ideal I de R está contido em um ideal maximal de R.

Corolário 13.2. Se $R \neq 0$ e $1_R \in R$, então R admite um ideal maximal.

Teorema 13.11. Seja R comutativo tal que $R^2 = R$. Então se $M \triangleleft R$ é maximal, então M é primo.

Corolário 13.3. Seja R comutativo tal que $1_R \in R$. Então se $M \triangleleft R$ é maximal, então M é primo.

Teorema 13.12. Seja $M \triangleleft R$ e $1_R \in R$.

1. R comutativo e M maximal $\Rightarrow R_M$ é corpo.

2. R_M anel de divisão $\Rightarrow M$ é maximal.

Corolário 13.4. Seja R comutativo tal que $1_R \in R$. Então são equivalentes:

- 1. R é corpo.
- $2.\ R$ não possui ideais não triviais.
- 3. (0) é ideal maximal.
- 4. Se $\varphi:R\to S$ é homomorfismo não nulo, então φ é monomorfismo.

Definição 13.5. Se $\{R_i\}_{i\in I}$ é família não vazia de anéis, então $\prod_{i\in I} R_i = \{(r_i)_{r_i\in R_i}\}$ é anel soma e produto definidos coordenada a coordenada através das operações dos anéis R_i .

Teorema 13.13. Seja $A_1, \ldots, A_n \triangleleft R$ tais que:

$$-A_1 + \dots + A_n = R$$

-
$$A_i \cap (A_1 + \dots + A_{i-1} + A_{i+1} + \dots + A_n) = 0$$

Então $R \cong A_1 \times \cdots \times A_n = \prod_{i=1}^n A_i$.

14 Aula 14 - Fatoração em Anéis Comutativos

Teorema 14.1 (Teorema do Resto Chinês). Sejam $A_1, \ldots, A_n \triangleleft R$ tais que $R^2 + A_i = R$, $\forall i = 1, \ldots, n$, e $A_i + A_j = R$, $\forall i \neq j$. Se $b_1, \ldots, b_n \in R$, então $\exists b \in R$ tal que $b \equiv b_i \pmod{A_i}$, $\forall i = 1, \ldots, n$. Também b é único $\pmod{\bigcap_{i=1}^n} A_i$, isto é, se $c \equiv b_i \pmod{A_i}$, $\forall i = 1, \ldots, n$, então $c \equiv b \pmod{\bigcap_{i=1}^n} A_i$.

Corolário 14.1. Se $A_1, \ldots, A_n \triangleleft R$, então existe monomorfismo $\theta : R_{\bigcap_{i=1}^n A_i} \to R_{\bigwedge_1} \times \cdots \times R_{\bigwedge_n}$, $r + \bigcap_{i=1}^n A_i \mapsto (r + A_1, \ldots, r + A_n)$. Além disso, se $R^2 + A_i = R$, $\forall i \in A_i + A_j = R$, $\forall i \neq j$, então θ é isomorfismo.

Definição 14.1. 1. $a \in R$ divide $b \in R$, se b = ax, para algum $x \in R$. Notação: $a \mid b$. Se $a \mid b$ e $b \mid a$, então a e b são **associados**.

- 2. Se $1_R \in R$, então $c \in R$ é **irredutível**, se
 - i) $c \neq 0$ e c não é unidade;
 - ii) $c = ab \Rightarrow a$ unidade ou b unidade.
- 3. Se $p \in R$ é **primo**, se
 - i) p não é unidade;
 - ii) $p \mid ab \Rightarrow p \mid a \text{ ou } p \mid b$.

Teorema 14.2. Sejam R um domínio integral e $p, c \in R$. Então:

- 1. $p \in \text{primo} \Leftrightarrow (p) \triangleleft_{\text{primo}} R$;
- 2. c é irredutível \Leftrightarrow (c) é maximal em $S = \{(r) \triangleleft R \mid (r) \neq R\}$, isto é, se $(c) \subseteq (r)$, então (c) = (r);
- 3. primo \Rightarrow irredutível;

- 4. se R é domínio de ideal principal, então p primo \Leftrightarrow p irredutível;
- 5. associado de primo é primo e associado de irredutível é irredutível;
- 6. c irredutível e $a \mid c \Rightarrow a$ e c são associados.

Definição 14.2. Seja R um domínio integral. Dizemos que ele é um domínio de fatoração única (DFU), se:

- i) $\forall a \in R \setminus \{0\}$ não unidade, temos que $a = c_1 \dots c_n$, com c_i irredutível, $\forall i$.
- ii) se $a = c_1 \dots c_n$ e $a = d_1 \dots d_m$, então n = m e existe $\sigma \in S_n$ tal que c_i e $d_{\sigma(i)}$ são associados, $\forall i$.

Lema 14.1. Se R é anel de ideal principal e $(a_1) \subseteq (a_2) \subseteq \ldots$ uma cadeia, então $\exists n \in \mathbb{Z}_{>0}$ tal que $(a_i) = (a_n), \forall i \geq n$.

Teorema 14.3. Todo DIP é DFU.

Definição 14.3. R comutativo é um **anel euclidiano**, se existe uma função $\varphi : R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ tal que:

- $\forall a, b \in R$, com $ab \neq 0$, temos $\varphi(a) \leq \varphi(ab)$;
- $\forall a, b \in R, \exists q, r \in R \text{ tal que } a = qb + r, \text{ onde } r = 0 \text{ ou } \varphi(r) < \varphi(b).$

Teorema 14.4. Se R é anel euclidiano, então R é anel de ideal principal com $1_r \in R$. Em particular, se R é domínio euclidiano, então R é DFU.

15 Aula 15 - Anel de Polinômios

Para anéis de polinômios, vamos sempre considerar $1_R \in R$.

Definição 15.1. Seja $\emptyset \neq X \subseteq R$ (R comutativo). Dizemos que $d \in R$ é **máximo divisor comum** de X, se

- a) $d \mid x, \forall x \in X$;
- b) se $c \mid x, \forall x \in X$, então c e d são associados.

Definição 15.2. Se 1_R é o mdc de X, então os elementos de X são ditos **relativamente** primos.

Teorema 15.1. Sejam $a_1, a_2, \ldots, a_n \in R$, onde $1_r \in R$.

- 1. $d = \text{mdc}(a_1, \dots, a_n) = r_1 a_1 + \dots + r_n a_n \Leftrightarrow (d) = (a_1) + \dots + (a_n)$.
- 2. Se R é anel de ideal principal, então $\operatorname{mdc}(a_1,\ldots,a_n)$ existe e é da forma $r_1a_1+\cdots+r_na_n$.
- 3. Se R é domínio de fatoração única, então $\operatorname{mdc}(a_1,\ldots,a_n)$ existe.

Definição 15.3. Se $R \subseteq S$ são anéis, então $x \in S$ é uma **indeterminada** sobre R, se $\forall n > 0$ $a_0 + a_1x + \cdots + a_nx_n = 0 \Leftrightarrow a_i = 0, \forall i, \text{ com } a_i \in R$.

Lema 15.1. Dado um anel R existe um anel S satisfazendo:

a) $R \subseteq S$ é subanel;

- b) $\exists x \in S$ indeterminada sobre R;
- c) $xr = rx, \forall r \in R$.

Definição 15.4. Sejam $R \subseteq S$ como lema. Então $R[x] = \{a_0 + a_1x + \cdots + a_nx^n \mid n \ge 0, a_i \in R\}$ é subanel de S, chamado **anel de polinômio** sobre R. Em particular, $f(x) \in R[x] \Rightarrow f(x) = \sum_{i=0}^{n} a_i x^i$.

Definição 15.5. Seja $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x]$. Então

- 1. Se $a_n \neq 0$, então o **grau de** f(x) é $\deg(f(x)) = n$.
- 2. a_n é o **coeficiente líder** de f(x).
- 3. a_0 é o coeficiente constante de f(x).
- 4. Se $a_n = 1_R$, então f(x) é **mônico**.

Lema 15.2. Sejam $f(x), g(x) \in R[x]$.

- a) $\deg(f(x) + g(x)) \le \max(\deg(f(x)), \deg(g(x)))$
- b) $\deg(f(x)g(x)) \leq \deg(f(x)) + \deg(g(x))$
- c) Se R é domínio, então deg (f(x)g(x)) = deg(f(x)) + deg(g(x))
- d) Se R é domínio, então R[x] é domínio
- e) Se R é domínio, então as unidades de R[x] são as unidades de R
- f) Se o coeficiente líder de f(x) ou g(x) é unidade, então $f(x)g(x) \neq 0$ e deg $(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$.

Teorema 15.2 (Algoritmo da Divisão). Sejam $f(x), g(x) \in R[x]$, com $f(x) \neq 0$. Suponha que o coeficiente líder de f(x) seja unidade em R. Então existem únicos $q(x), r(x) \in R[x]$ tais que g(x) = q(x)f(x) + r(x), com r(x) = 0 ou deg $(r(x)) < \deg(f(x))$.

Corolário 15.1. Se F é corpo, então F[x] é domínio euclidiano (com função euclidiana igual a deg). Em particular, F[x] é DFU.

Teorema 15.3. Seja $f(x) \in R[x]$. Então $\forall a \in R$, o resto da divisão de f(x) por (x-a) é f(a).

Definição 15.6. $a \in R$ é raiz de $f(x) \in R[x]$, se f(a) = 0.

Teorema 15.4. Seja $f(x) \in R[x]$. $a \in R$ é raiz de $f(x) \Leftrightarrow (x-a) \mid f(x)$.

Definição 15.7. Seja $a \in R$. Dizemos que a tem **multiplicidade** $m \ge 0$ como raiz de f(x), se $f(x) = (x - a)^m q(x)$ e $q(a) \ne 0$.

Teorema 15.5. Seja R domínio integral e $f(x) \in R[x]$. Se deg (f(x)) = n, então f(x) possui, no máximo, n raízes distintas.

Teorema 15.6. Seja R domínio integral. Defina $X = \{(r, u) \mid r, u \in R, u \neq 0\}$ com a relação de equivalência $(r, u) \equiv (s, v) \Leftrightarrow rv = su$. Defina por r/u a classe de equivalência de (r, u) e considere $Q = \{r/u \mid r, u \in R, u \neq 0\}$. Defina $r/u + s/v = \frac{(rv + su)}{uv}$ e $r/u \cdot s/v = \frac{rs}{uv}$. Então $(Q, +, \cdot)$ é corpo.

16 Aula 16 - Lema de Gauss

Proposição 16.1. Sejam D DFU, F o corpo de frações de D e $f(x) = \sum_{i=0}^{n} a_i x^i \in D[x]$. Se $u = \frac{c}{d} \in F$, $(c, d) = 1_D$ e f(u) = 0, então $c \mid a_0$ e $d \mid a_n$.

Definição 16.1. Sejam D domínio integral e $f(x) = a_0 + a_1x + \cdots + a_nx^n \in D[x]$. A **derivada formal** de f(x) é o polinômio $f'(x) = a_1x + 2a_2x + \cdots + na_nx^{n-1}$.

Lema 16.1. Se $c \in D$, então:

- a) (cf(x))' = cf'(x);
- b) (f(x) + g(x))' = f'(x) + g'(x);
- c) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x);
- d) $(f^n(x))' = nf^{n-1}(x)f'(x)$.

Teorema 16.1. Sejam $D \subseteq E$ domínios integrais, $f(x) \in d[x]$ e $c \in E$.

- 1. c é raiz com multiplicidade maior do que $1 \Leftrightarrow f(c) = 0$ e f'(c) = 0;
- 2. Se D é corpo e $(f(x), f'(x)) = 1_{D[x]}$, então f(x) não possui raiz com multiplicidade maior do que 1 em E;
- 3. Se D é corpo, f(x) é irredutível em D[x] e E contém uma raiz de f(x), então f(x) não possui raízes com multiplicidade maior do que 1 em $E \Leftrightarrow f'(x) = 0$.

Definição 16.2. Seja $f(x) = a_0 + a_1x + \cdots + a_nx^n \in D[x]$. O **conteúdo** de f(x), denotado por cont(f(x)), é qualquer $mdc(a_0, \ldots, a_n)$.

Definição 16.3. Se cont(f(x)) é unidade em D, dizemos que f(x) é **primitivo**.

Lema 16.2 (Lema de Gauss). Se D é DFU e $f(x), g(x) \in D[x]$, então $\operatorname{cont}(f(x)g(x)) = \operatorname{cont}(f(x)) \operatorname{cont}(g(x))$. Em particular, se f(x) e g(x) são primitivos, então f(x)g(x) é primitivo.

Lema 16.3. Sejam D DFU, F corpo de frações de D e $f(x), g(x) \in D[x]$ primitivos. Então f(x) e g(x) são associados em $D[x] \Leftrightarrow f(x)$ e g(x) são associados em F[x].

Teorema 16.2. Sejam D DFU, F corpo de frações de D e $f(x) \in D[x]$ primitivo, com deg(f(x)) > 0. Então f(x) é irredutível em $D[x] \Leftrightarrow f(x)$ é irredutível em F[x].

Teorema 16.3. D é DFU $\Rightarrow D[x]$ é DFU.

17 Aula 17 - R-módulos Noetheriano

Definição 17.1. Um grupo abeliano (M, +) é um R-módulo à esquerda, se existe uma ação de R em M, $R \times M \to M$, $(r, m) \mapsto rm$ tal que $\forall m, n \in M$ e $\forall r, s \in R$, vale

- i) r(m+n) = rm + rn
- ii) (r+s)m = rm + sm
- iii) r(sx) = (rs)x
- iv) $1_r m = m$

Definição 17.2. Sejam M, N R-módulos. Dizemos que $f: M \to N$ é **homomorfismo de** R-módulos, se f é homomorfismo de grupos abelianos e $f(rm) = rf(m), \forall r \in R, m \in M$.

Definição 17.3. Seja N um subgrupo de M tal que R age em N via restrição. Chamamos N de **submódulo de** M. Notação: $N \leq M$ (ou $M \geq N$).

Definição 17.4. Sejam $N \leq M$. Sabemos que M/N é grupo abeliano. Defina M/N como R-módulo, fazendo a ação ser r(m+N) = rm+N, para todo $m \in M$.

Proposição 17.1. Sejam $N \leq M$. Qualquer homomorfismo $f: M \to L$ tal que $N \subseteq \ker(f)$ induz homomorfismo $\overline{f}: M/N \to L$, $m+N \mapsto f(m)$. Além disso,

- \overline{f} é epimorfismo $\Leftrightarrow f$ é epimorfismo.
- \overline{f} é monomorfismo $\Leftrightarrow N = \ker(f)$.

Teorema 17.1 (Isomorfismo). Se $f: M \to N$ é homomorfismo, então $f(M) \cong M/\ker(f)$ (iso de R-módulos).

Proposição 17.2 (Correspondência). Existe bijeção $\{N \leq K \leq M\} \leftrightarrow \{L \leq M/N\}$.

Definição 17.5. $N \le M$ é maximal (próprio), se $N \ne M$ e $N \le L \le M \Rightarrow L = M$ ou L = M. Se $M \ne \{0\}$ não possui submódulos próprios não nulos, dizemos que M é **simples**.

Lema 17.1. $N \leq M$ é maximal $\Leftrightarrow M/N$ é simples.

Definição 17.6. Seja $\{M_i\}_{i\in I}$ uma família de R-módulos. O **produto direto** de M_i , denotado por $\prod_{i\in I} M_i = \{(a_i)_{i\in I} \mid a_i \in M_i\}$ é um R-módulo com $(a_i)_{i\in I} + (b_i)_{i\in I} = (a_i + b_i)_{i\in I}$ e $r(a_i)_{i\in I} = (ra_i)_{i\in I}$. A **soma direta** (externa) de M_i , denotada por $\bigoplus_{i\in I} M_i$ é o submódulo de $\prod_{i\in I} M_i$, cujos elementos são da forma $(a_i)_{i\in I}$, com $a_i \neq 0$, somente para finitos índices.

Definição 17.7. Dizemos que M satisfaz a condição de cadeia ascendente (descendente), CCA (CCD), se toda cadeia ascendente (descendente) de submódulos estabiliza, isto é, se $M_1 \leq M_2 \leq M_3 \leq \ldots$ ($M_1 \geq M_2 \geq M_3 \geq \ldots$) é cadeia de submódulos, então existe n > 0 tal que $M_n = M_{n+1} = \ldots$

Proposição 17.3 (Noeth). As seguintes condições são equivalentes:

- 1. M satisfaz CCA.
- 2. toda família não vazia de submódulos de M admite elemento maximal (com relação a inclusão).

Proposição 17.4 (Artin). As seguintes condições são equivalentes:

- 1. M satisfaz CCD.
- 2. toda família não vazia de submódulos de M admite elemento simples (com relação a inclusão).

Definição 17.8. Um *R*-módulo satisfazendo uma das condições da proposição de Noeth (Artin) é chamado **noetheriano** (**artiniano**).

Definição 17.9.

1. Se $N_1, N_2 \leq M$, então $N_1 + N_2 = \{x + y \mid x \in N_1, y \in N_2\}$ é submódulo.

2. Seja $S \subseteq M$. Dizemos que S **gera** M se todo elemento $x \in M$ é da forma $\sum_{i=1}^{n} r_i x_i$, $r_i \in R, x_i \in S$. Se S é finito e gera M, então M é **finitamente gerado**. M é **cíclico** se é gerado por um só elemento.

Proposição 17.5. M é noetheriano \Leftrightarrow todo submódulo de M é finitamente gerado.

Definição 17.10. Um anel R é **noetheriano** (artiniano) à esquerda se R é noetheriano (artiniano) como R-módulo à esquerda $(R \times R \to R, (r, s) \mapsto rs)$.

Proposição 17.6. Sejam $N \leq M$. Então M é noetheriano (artiniano) $\Leftrightarrow N$ e $^{M}/_{N}$ são noetheriano (artiniano).

18 Aula 18 - Base de Hilbert

Corolário 18.1. Se M_1, \ldots, M_n são noetherianos (artinianos), então $M_1 \oplus \cdots \oplus M_n$ é noetheriano (artiniano).

Definição 18.1. Uma série de comprimento n de M é uma sequência de submódulos $M = M_0 \ngeq M_1 \trianglerighteq M_2 \trianglerighteq \cdots \trianglerighteq M_{n-1} \trianglerighteq M_n = 0$. Uma série de comprimento n é uma série de composição se os fatores M_i/M_{i+1} são simples, $\forall i = 0, \ldots, n-1$. Duas séries são equivalentes se elas têm o mesmo comprimento e os fatores são isomorfos a menos de reordenação.

Teorema 18.1 (Jordan-Hölder). Se um módulo M admite uma série de composição, então quaisquer duas séries de composição são equivalentes. Além disso, qualquer cadeia de submódulos pode ser refinada para uma série de composição.

Teorema 18.2. Um módulo M admite uma série de composição $\Leftrightarrow M$ é noetheriano e artiniano.

Teorema 18.3 (Base de Hilbert). Se R é noetheriano, então $R[x_1,\ldots,x_n]$ é noetheriano.

Definição 18.2. $f: M \times N \to L$ é R-bilinear se:

i)
$$f(x + x', y) = f(x, y) + f(x', y)$$

ii)
$$f(x, y + y') = f(x, y) + f(x, y')$$

iii)
$$f(rx, y) = f(x, ry) = rf(x, y)$$

para todo $x, x' \in M, y, y' \in N, r \in R$.

Definição 18.3. O **produto tensorial de** M **e** N é um R-módulo T unido de uma aplicação R-bilinear $h: M \times N \to T$ satisfazendo a seguinte propriedade universal: se L é um R-módulo e $f: M \times N \to L$ é R-bilinear, então $\exists ! \overline{f} : T \to L$ R-homomorfismo tal que $f = \overline{f} \circ h$, ou seja, tal que o diagrama abaixo comuta.

$$M \times N \xrightarrow{h} T$$

$$\downarrow \exists ! \overline{f}$$

Lema 18.1. Se o produto tensorial existe, então ele é único a menos de isomorfismo.

19 Aula 19 - Propriedades do produto tensorial

Definição 19.1. Seja X um conjunto. O R-módulo livre com base X é $F = \{\varphi : X \to R \mid \varphi(x) \neq 0 \text{ para finitos } x \in X\}$, onde $(\varphi_1 + \varphi_2)(x) = \varphi_1(x) + \varphi_2(x)$ e $(r\varphi)(x) = r\varphi(x)$, $\forall \varphi_1, \varphi_2 \in F, x \in X, r \in R$. Pensamos nos elementos como R-combinações lineares finitas de elementos de X.

$$\varphi \in F \leftrightarrow \sum_{x \in X} \varphi(x) x$$

Teorema 19.1. Sejam M e N R-módulos. Considere o R-módulo livre F com base $M \times N$ e tome G o submódulo de F gerado pelos elementos da forma (x+x',y)-(x,y)-(x,y)-(x',y), (x,y+y')-(x,y)-(x,y), (rx,y)-r(x,y) e (x,ry)-r(x,y), para todo $x,x'\in M,y,y'\in N,y\in N$. Defina $M\otimes N=F/G$ e denote $(x,y)+G=x\otimes y,$ para todo $x\in M,y\in N$. Então o R-módulo $M\otimes N$ junto com o mapa $f:M\times N\to M\otimes N,$ $(x,y)\mapsto x\otimes y$ é o produto tensorial de M e N.

Definição 19.2. Os elementos do produto tensorial são chamados tensores e os tensores da forma $x \otimes y$ são chamados tensores simples.

Proposição 19.1. $M \otimes N \cong N \otimes M$.

Proposição 19.2. $(M \otimes N) \otimes L \cong M \otimes (N \otimes L)$.

Proposição 19.3. $M \otimes (N \oplus L) \cong (M \otimes N) \oplus (M \otimes L)$.

Proposição 19.4. $R \otimes_R M \cong M$.

20 Aula 20 - Conceitos Iniciais de Extensão de Corpos

Proposição 20.1. Se M é gerado por um conjunto X e N é gerado por um conjunto Y, então $M \otimes N$ é gerado por $\{x \otimes y \mid x \in X, y \in Y\}$.

Proposição 20.2. Se M, N são R-módulos livres com base X e Y, respectivamente, então $M \otimes N$ é R-módulo livre com base $\{x \otimes y \mid x \in X, y \in Y\}$.

Corolário 20.1. Se V e W são espaços vetoriais finitos sobre um corpo K, então $V \otimes W$ também é dimensão finita e $\dim(V \otimes W) = \dim(V) \dim(W)$.

Corolário 20.2. $R^m \otimes_R R^n \cong R^{mn}$.

Definição 20.1. Suponha $f_1: M_1 \to N_1$ e $f_2: M_2 \to N_2$ homomorfismo. Defina $M_1 \times M_2 \to N_1 \otimes N_2, (x,y) \mapsto f_1(x) \otimes f_2(y)$ que é R-bilinear. Então \exists ! homomorfismo $f: M_1 \otimes M_2 \to N_1 \otimes N_2, x \otimes y \mapsto f_1(x) \otimes f_2(y)$. Então f é dito **produto tensorial de** f_1 **e** f_2 e é denotado por $f_1 \otimes f_2$.

Definição 20.2. Suponha (por facilidade que):

- $M \in \mathbb{R}$ -módulo com base w_1, w_2 ;
- $N \in \mathbb{R}$ -módulo com base x_1, x_2 ;
- $P \in R$ -módulo com base y_1, y_2 ;
- $Q \in R$ -módulo com base z_1, z_2 ;

Considere $f: M \to N, g: P \to Q$ homomorfismos com matrizes $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ e $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, respectivamente (nas bases fixadas). Então $f \otimes g: M \otimes P \to N \otimes Q$ tem matriz $\begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix}$ na base $\{w_1 \otimes y_1, w_1 \otimes y_2, w_2 \otimes y_1, w_2 \otimes y_2\}$. Essa matriz, denotada por $A \otimes B$ é chamada **produto de Kronecker** das matrizes $A \in B$.

Definição 20.3. Sejam F, K corpos. K é uma extensão de F, se $F \subseteq K$ é subcorpo.

Definição 20.4. Seja $K \supseteq F$ extensão de corpo. O **grau de** K **sobre** F é definido por $[K:F] = \dim_F K$. Dizemos que $K \supseteq F$ é extensão finita de F, se $[K:F] < \infty$.

Teorema 20.1. Sejam $L \supseteq K \supseteq F$ tais que $[L:K] < \infty$ e $[K:F] < \infty$. Então [L:F] = [L:K][K:F].

Corolário 20.3. Se $L \supseteq K \supseteq F$ são extensões finitas, então $[L:K] \mid [L:F] \in [K:F] \mid [L:F]$.

Definição 20.5. $a \in K$ é algébrico sobre F, se existe $f(x) \in F[x]$ não nulo tal que f(a) = 0.

Teorema 20.2. $a \in K$ é algébrico se, e somente se, F(a) é uma extensão finita de F.

Definição 20.6. a é algébrico de grau n sobre F, se o polinômio mônico de grau mínimo que se anula em a em F[x] tem grau n.

Corolário 20.4. Se $a \in K$ é algébrico de grau n sobre F, então [F(a):F]=n.

Teorema 20.3. $L = \{a \in K \mid a \text{ \'e alg\'ebrico sobre } F\}$ \'e subcorpo de K.

21 Aula 21 - Corpo de fatoração

Corolário 21.1. Se $a, b \in K$ são algébricos (em F) de grau n e m, respectivamente, então a + b, ab, $\frac{a}{b}(b \neq 0)$ são algébricos com grau menor do que ou igual a mn.

Definição 21.1. Uma extensão $K \supseteq F$ é uma **extensão algébrica** se todo $a \in K$ é algébrico sobre F.

Teorema 21.1. Se $L \supseteq K$ é algébrica, $K \supseteq F$ é algébrica, então $L \supseteq F$ é algébrica.

Teorema 21.2. Se $p(x) \in F[x]$ é irredutível e $\deg(p(x)) = n \ge 1$, então existe extensão E de F tal que [E:F] = n e p(x) admite raiz.

Corolário 21.2. Se $f(x) \in F[x]$, então existe extensão finita $E \supseteq F$ com uma raiz de f(x) e, além disso, $[E:F] \le \deg(f(x))$.

Teorema 21.3. Seja $f(x) \in F[x]$ com $\deg(f(x)) = n \ge 1$. Então existe extensão $E \supseteq F$ com $[E:F] \le n!$ onde vivem todas as raízes de f(x).

Definição 21.2. Seja $f(x) \in F[x]$. Uma extensão finita $E \supseteq F$ com grau mínimo tal que f(x) se fatora como produto de fatores lineares em E[x] é chamada de um **corpo de fatoração de** f(x).

Suponha $F \cong_{\tau} F'$ e denote $\tau(\alpha) = \alpha'$, $\forall \alpha \in F$. Isso induz um isomorfismo $F[x] \cong_{\tau} F'[t]$, onde $\tau(f(x)) = \tau(a_0 + a_1 x + \cdots + a_n x^n) = a'_0 + a'_1 t + \cdots + a'_n t^n = f'(t)$. Note que fatoração de $f(x) \Leftrightarrow$ fatoração de f'(t); em particular, f(x) irredutível $\Leftrightarrow f'(t)$ irredutível. Como $\tau(f(x)) = f'(t)$, então $\tau((f(x))) = (f'(t))$. Daí, τ também induz isomorfismo $F[x]/(f(x)) \cong_{\tau} F'[t]/(f'(t))$, onde $g(x) + (f(x)) \mapsto g'(t) + (g'(t))$; em particular $x + (f(x)) \mapsto t + (f'(t))$ e $\alpha + (f(x)) \mapsto \alpha + (f'(t))$. Observe que $F \hookrightarrow F[x]$, logo $F \hookrightarrow F[x]/(f(x))$, portanto, $\tau(\alpha) = \alpha'$ em F[x]/(f(x)), $\forall \alpha \in F$.

Teorema 21.4. Se p(x) é irredutível em F[x] e v é uma raiz de p(x), então $F(v) \cong F'(w)$, onde w é uma raiz de f'(t). Além disso, tal isomorfismo pode ser escolhido de modo que $\tau(\alpha) = \alpha'$, $\forall \alpha \in F$ e $\tau(v) = w$.

Corolário 21.3. Se $p(x) \in F[x]$ é irredutível e a, b são duas raízes quaisquer de p(x), então $F(a) \cong F(b)$ por um isomorfismo que leva a em b e deixa fixo os elementos de F.

Teorema 21.5. Sejam E e E' corpos de fatoração de $f(x) \in F[x]$ e $f'(t) \in F'[t]$. Então $E \cong_{\phi} E'$, onde $\phi(\alpha) = \alpha'$, $\forall \alpha \in F$. Em particular, quaisquer corpos de fatoração de f(x) são isomorfos por isomorfismo que deixa os elementos de F fixados.

22 Aula 22 - Corpo fixado

De agora em diante, todo corpo tem característica 0.

Definição 22.1. $K \supseteq F$ é uma extensão simples de F se $K = F(\alpha)$ para algum $\alpha \in K$.

Teorema 22.1. Se a, b são algébricos sobre F, então existe $c \in F(a, b)$ tal que F(c) = F(a, b).

Corolário 22.1. Se $\alpha_1, \ldots, \alpha_n$ são algébricos sobre F, então existe $c \in F(\alpha_1, \ldots, \alpha_n)$ tal que $F(\alpha_1, \ldots, \alpha_n) = F(c)$. Em particular, qualquer extensão finita é simples.

Teorema 22.2. Se $\sigma_1, \ldots, \sigma_n \in \text{Aut}(K)$, com $\sigma_i \neq \sigma_j$, se $i \neq j$, então $\nexists a_1, \ldots, a_n \in K$ não todos nulos tais que $a_1\sigma_1 + \cdots + a_n\sigma_n = 0$ (isto é, $a_1\sigma_1(u) + \cdots + a_n\sigma_n(u) = 0$, para todo $u \in K$).

Definição 22.2. Seja $G \leq \operatorname{Aut}(K)$. O corpo fixado por $G \notin \{a \in K \mid \sigma(a) = a, \forall \sigma \in G\}$.

Definição 22.3. Seja $K \supseteq F$. Então $G(K : F) = \{ \sigma \in Aut(K) \mid \sigma(a) = a, \forall a \in F \}$.

Teorema 22.3. Seja $K \supseteq F$ extensão finita. Então $|G(K:F)| \le [K:F]$.

23 Aula 23 - Segunda prova

Foi realizada a segunda prova.

24 Aula 24 - Funções Racionais Simétricas

Definição 24.1. O subcorpo S de $F(x_1, \ldots, x_n)$ que é fixado pelos elementos de S_n , isto é, $\sigma(f(x)) = f(x), \forall \sigma \in S_n$ é chamado **corpo de funções racionais simétricas**. Definimos as funções elementares simétricas: $a_0 = 0, a_1 = \sum_{i=1}^n x_i, a_2 = \sum_{i < j}^n x_i x_j, \ldots, x_n = \prod_{i=1}^n x_i$.

Teorema 24.1. Se $S \subseteq F(x_1, \ldots, x_n)$ é o corpo das funções racionais simétricas, então:

- 1. $[F(x_1,\ldots,x_n):S]=n!$.
- 2. $G(F(x_1,...,x_n):S)=S_n$.
- 3. Se $a_1, \ldots, a_n \in F(x_1, \ldots, x_n)$ são funções simétricas elementares, então $S = F(a_1, \ldots, a_n)$.
- 4. $F(x_1,\ldots,x_n)$ é o corpo de fatoração do polinômio $p(t)=(t-x_1)\ldots(t-x_n)=\sum_{i=0}^n(-1)^i$ $a_it^{n-1}\in S[t].$

Definição 24.2. $K \supseteq F$ é extensão normal de F, se:

- 1. [K:F] é finita.
- 2. O subcorpo de K fixado pelo grupo G(K:F) é F.

Teorema 24.2. Sejam $E \supset F$ extensão normal, $H \leq G(E:F)$ e $E_H = \{x \in E \mid \sigma(x) = x, \forall \sigma \in H\}$. Então:

- 1. $[E:E_H]=|H|$.
- 2. $H = G(E : E_H)$.

Em particular, [E:F] = |G(E:F)|.

Lema 24.1. Seja $K \supseteq F$ corpo de fatoração de $f(x) \in F[x]$ e seja $p(x) \in F[x]$ fator irredutível de f(x). Se as raízes de p(x) são $\alpha_1, \ldots, \alpha_r$, então existem $\sigma_i \in G(K:F)$ tais que $\sigma_i(\alpha_1) = \alpha_i$, $\forall i = 1, \ldots, r$.

Teorema 24.3. $K \supseteq F$ é extensão normal de F se, e somente se, K é corpo de fatoração de algum polinômio $f(x) \in F[x]$.

25 Aula 25 - Teorema Fundamental da Teoria de Galois

Definição 25.1. Seja $K \supseteq F$ o corpo de fatoração de algum polinômio $f(x) \in F[x]$. O **grupo** de Galois de f(x) é G(K, F).

Lema 25.1. Sejam $f(x) \in F[x]$, $E \supseteq F$ corpo de fatoração de f(x) e G(E, F) o grupo de Galois de f(x). Então $T \supseteq F$ é normal $\Leftrightarrow \sigma(T) = T, \forall \sigma \in G(E, F)$.

Teorema 25.1 (Teorema Fundamental da Teoria de Galois). Sejam $f(x) \in F[x]$, $E \supseteq F$ corpo de fatoração de f(x) e G(E,F) o grupo de Galois de f(x). Para cada subcorpo T tal que $E \supseteq T \supseteq F$ considere $G(E,T) \le G(E,F)$ e para cada subgrupo $H \le G(E,F)$ considere $E_H = \{x \in E \mid \sigma(x) = x, \forall \sigma \in H\}$ (note que $E \supseteq E_H \supseteq F$). Sejam $A = \{T \text{ corpo } \mid E \supseteq T \supseteq F\}$ e $B = \{H \text{ grupo } \mid H \le G(E,F)\}$. Considere as aplicações:

$$\varphi: A \to B$$
 $\psi: B \to A$ $T \mapsto G(E, T)$ $H \mapsto E_H$

Então

- 1. $\psi(\varphi(T)) = T$, ou seja, $E_{G(E,T)} = T$.
- 2. $\varphi(\psi(H)) = H$, ou seja, $G(E, E_H) = H$.
- 3. [E:T] = |G(E,T)| e [T:F] = [G(E,F):G(E,T)].
- 4. $T \supseteq F$ é normal $\Leftrightarrow G(E,T) \lhd G(E,F)$.
- 5. $T \supseteq F$ é normal $\Rightarrow G(T,F) \cong G(E,F)/G(E,T)$.

26 Aula 26 - Solubilidade por radicais

Definição 26.1. G é **solúvel** se existe uma cadeia finita de subconjuntos $G = N_0 \ge N_1 \ge \cdots \ge N_k = \{1_G\}$, onde $N_i \triangleleft N_{i-1}$ e $N_{i-1} \not N_i$ é abeliano.

Lema 26.1. Defina $G^{(1)} = G', G^{(k)} = (G^{(k-1)})'$. Então $G^{(k)} \triangleleft G, \forall k, e \xrightarrow{G^{(k-1)}} G^{(k)}$ é abeliano.

Lema 26.2. G é solúvel $\Leftrightarrow G^{(k)} = \{1_G\}$ para algum $k \geq 0$.

Corolário 26.1. Seja $f: G \to H$ homomorfismo. Se G é solúvel, então f(G) é solúvel.

Corolário 26.2. S_n , $n \ge 5$, não é solúvel.

Definição 26.2. Um polinômio $p(x) \in F[x]$ é **solúvel por radicais** se existem corpos $F = F_0 \subseteq F_1 = F_0(w_1) \subseteq F_2 = F_1(w_2) \subseteq \cdots \subseteq F_k = F_{k-1}(w_k)$, onde $w_i^{r_i} \in F_{i-1}$, $\forall i = 1, \ldots, k$, e todas as raízes de p(x) estão em F_k .

Lema 26.3. Se F tem todas as n-ésimas raízes da identidade (para algum n) e se a é um elemento não nulo de F, então:

- 1. K = F(u) é corpo de fatoração de $x^n a \in F[x]$, onde u é raiz qualquer de $x^n a$.
- 2. O grupo de Galois, G(K, F), é abeliano.

Teorema 26.1. Seja F corpo que contém todas as raízes da identidade. Se $p(x) \in F[x]$ é solúvel por radicais, então o grupo de Galois de p(x) é solúvel. (Observação: o teorema mais geral é: $p(x) \in F[x]$ é solúvel por radicais \Leftrightarrow o grupo de Galois de p(x) é solúvel).

Teorema 26.2. Um polinômio geral p(x) com grau $\deg(p(x)) \geq 5$ não é solúvel por radical.

27 Aula 27 - Terceira Prova

Foi realizada a terceira prova.