5. Equivalences d'automates

- 5.1. Le problème du déterminisme
- 5.2. Différentes sortes d'AEF
- 5.3. Déterminisation d'un AEF
- 5.4. Déterminisation d'un AEF avec ϵ -transitions
- 5.5. Minimisation d'un AEF déterministe

5. Equivalences d'automates

A il existe plusieurs types d'Automates d'Etats Finis

ils sont équivalents

La définition d'un automate d'états finis n'interdit pas les "conflits".

$$L = aab^*a + ab^*b$$

Comment doit-on interpréter $\delta(q_0, a)$?

Le choix est non-déterministe.

Définition

Un automates d'états finis déterministe (AEFD) (en anglais : Deterministic Finite Automaton (DFA)) est un automate d'états finis tel que, de chaque état $q \in Q$, il part $|\Sigma|$ transitions, une pour chacune des lettres de l'alphabet Σ .

Remarque : Pas d' ϵ -transition !

Dans un automate déterministe, on a un 'état poubelle', vers lequel on envoie toutes les transitions non définies.

Souvent, cet état poubelle est implicite.

Exemple d'automate déterministe sur $\Sigma = \{a, b\}$ pour $L = aab^*a + ab^*b$:

On définit 3 sortes d'automates d'états finis :

- **()** les automates d'états finis non-déterministes sans ϵ -transition (NFA-W, W pour'' Without'')
- ② les automates d'états finis non-déterministes avec ϵ -transition (NFA- ϵ)
- 3 les automates d'états finis déterministes

Exemple :
$$L = \{a, ab, ba\}$$
 *

 $L = \{a, ab, ba\}$ * non déterministe avec ϵ -transition

 $L = \{a, ab, ba\}$ * non déterministe sans ϵ -transition

Théorème

La classe des langages reconnus par :

- les automates d'états finis déterministes
- les automates d'états finis non-déterministes sans ϵ -transition
- les automates d'états finis non-déterministes avec ϵ -transition

est la même : celle des langages rationnels.

Preuve : constructive (algorithmes de passage d'un type d'AEF à un autre)

 \Diamond On part d'un AEF non déterministe $A_1 = (\mathcal{Q}, \Sigma, \delta, q_0, F)$ sans ϵ -transition.

4 On calcule un automate d'états finis déterministe $A_2 = (\mathcal{Q}', \Sigma, \delta', Q_0', F')$, avec $Q_0' = \{q_0\}$

Principe : On construit les états et la table de transition de δ' :

- 1 On construit la table de transition de δ (qui comporte des ensembles d'états)
- 2 Initialisation de δ'
 - on commence par $Q_0' = \{q_0\}$
 - on applique chaque caractère x de Σ à Q_0'
 - on obtient un ensemble d'états qui est sera état de \mathscr{Q}'

- 3 Construction de δ'
 - on choisit un état Q' de \mathcal{Q}' non encore traité
 - on applique chaque caractère x de Σ chaque état de Q' avec δ
 - on obtient un ensemble d'états
 - ① si cet ensemble ne correspond pas à un été déjà défini de \mathscr{Q}' , on crée un nouvel état de \mathscr{Q}'
- 4 les états finaux de A_2 sont ceux qui contiennent au moins un état final de F

Algo DETERMINISATION

```
Donnee: un automate A_1 = (\mathcal{Q}, \Sigma, \delta, q_0, F)
Resultat : un automate déterministe A_2 = (\mathcal{Q}', \Sigma, \delta', Q_0', F').
Initialisation: Q_0' \leftarrow \{q_0\}; ATRAITER \leftarrow Q_0' = \{q_0\}; \mathcal{Q}' \leftarrow \{Q_0'\};
tant que ATRAITER \neq \emptyset faire
   CHOISIR Q' dans ATRAITER; ATRAITER \leftarrow ATRAITER - Q';
   pour chaque caractère x de \Sigma faire
         pour chaque état Q de Q' faire
             \delta'(Q',x) \leftarrow \delta'(Q',x) \cup \delta(Q,x):
         si \delta'(Q',x) n'est pas un état de \mathscr{Q}' alors
             Q'' \leftarrow \delta'(Q', x); \mathscr{Q}' \leftarrow \mathscr{Q}' + \{Q''\};
             ATRAITER \leftarrow ATRAITER + \{Q''\};
pour chaque état Q' de \mathcal{Q}' contenant un état de F faire
     AJOUTER Q' à F':
Retourner((\mathcal{Q}', \Sigma, \delta', Q_0', F')).
```

Exemple:

$$L = \{ab, ac\}$$

δ	а	b	С
q_0	$\{q_1,q_3\}$	$\{\emptyset\}$	$\{\emptyset\}$
q_1	$\{\emptyset\}$	$\{q_2\}$	$\{\emptyset\}$
q_2	$\{\emptyset\}$	$\{\emptyset\}$	$\{\emptyset\}$
q ₃	$\{\emptyset\}$	{Ø}	$\{q_4\}$
q_4	$\{\emptyset\}$	{∅}	$\{\emptyset\}$

Initialisation : $Q_0' = \{q_0\}$

$$\delta'(Q_0', \mathsf{a}) = \{q_1, q_3\}$$
 : on crée un nouvel état $Q_1' = \{q_1, q_3\}$

On a un état $Q_1'=\{q_1,q_3\}$ qui n'est pas traité :

$$\delta'(Q_1',a)=\emptyset$$
 $\delta'(Q_0',b)=\{q_2\}$: on crée un nouvel état $Q_2'=\{q_2\}$ $\delta'(Q_0',c)=\{q_4\}$: on crée un nouvel état $Q_3'=\{q_4\}$

On traite l'état $Q_2' = \{q_2\}$: $\delta'(Q_2', a) = \delta'(Q_2', b) = \delta'(Q_2', c) = \emptyset$ On traite l'état $Q_3' = \{q_4\}$: $\delta'(Q_3', a) = \delta'(Q_3', b) = \delta'(Q_3', c) = \emptyset$ Etats finaux : Q_2' parce qu'il contient q_2 , et Q_3' parce qu'il contient q_4 .

A la fin, on obtient :

δ'	a	b	С
$Q_0' = \{q_0\}$	$\{q_1,q_3\}=Q_1'$	{Ø}	{Ø}
$Q_1' = \{q_1, q_3\}$	{Ø}	$\{q_2\} = Q_2'$	$\{q_4\} = Q_3'$
$Q_{2}'=q_{2}$	{Ø}	{Ø}	{Ø}
$Q_3' = q_4$	{Ø}	{Ø}	{Ø}

Remarque:

Etant donné un AEF non déterministe à k états, l'AEF déterministe correspondant peut avoir 2^k états.

On étend la technique de déterminisation en étendant la fonction de transition $\delta'(Q_i, x)$ à une fonction donnée par les mots $\epsilon^* x \epsilon^*$.

Définition

On appelle ϵ -fermeture d'un état q l'ensemble des états q_i atteignables à partir de q par un chemin étiqueté uniquement par le mot vide ϵ .

Définition

On appelle ϵ -fermeture d'un ensemble Q d'états l'union des ϵ -fermetures des états appartenant à Q.

Principe de déterminisation :

Pour un état Q' de l'AEF déterministe en cours de calcul :

- **1** On part de l' ϵ -fermeture de Q'.
- **②** On calcule $\delta(Q')$
- **3** On calcule l' ϵ -fermeture de $\delta(Q')$
- 4 On obtient un état du nouvel automate

Les états finaux du nouvel automate sont ceux qui contiennent au moins un état final de l'automate de départ.

δ	а	b	С	ϵ
q_0	$\{q_0\}$	$\{\emptyset\}$	$\{\emptyset\}$	$\{q_0, q_1, q_2\}$
q_1	$\{\emptyset\}$	$\{q_1\}$	{∅}	$\{q_1, q_2\}$
q_2	$\{\emptyset\}$	{∅}	{ q ₂ }	{q ₂ }

Construction de δ' , $Q_0' = \epsilon$ -fermeture $(q_0) = \{q_0, q_1, q_2\}$

δ'	a	b	С		
$Q_0' = \{q_0, q_1, q_2\}$	$\{q_0\} o Q_0'$	$\{q_1\} ightarrow\{q_1,q_2\}=Q_1'$	$\{q_2\} ightarrow \{q_2\}$ =		
$Q_1' = \{q_1, q_2\}$	{∅}	$\{Q_1'\}$	$\{Q_2'\}$		
$Q_2'=\{q_2\}$	{∅}	$\{\emptyset\}$	$\{Q_2'\}$		

Tous les états sont finaux, on obtient l'automate :

Théorème

(de Nérode - Myhill) :

Pour un langage rationnel donné L, il existe un automate d'états finis déterministe canonique (uniquement défini), et qui comporte un nombre minimum d'états (parmi tous les automates déterministes), reconnaissant L.

→ Il existe un algorithme très efficace de minimisation.

Principe de minimisation d'un automate d'états finis déterministe : utilise le principe algorithmique d'éclatement de partitions.

Rappel : une **partition** d'un ensemble est la définition d'un ensemble de **classes**, tel que l'union de toutes les classes est l'ensemble de départ et l'intersection de deux classes est vide (une partition correspond à une **relation d''équivalence**)

Principe algorithmique d'éclatement de partitions (ou d'affinement de partitions)

- on part d'une (ou plusieurs) (grandes) classes
- ② on a un critère qui permet de partitionner un classe en plusieurs classes plus petites
- on arrête quand chaque classe obtenue est non-partitionnable

Pour minimiser un AEF déterministe :

- on retire les états non atteignables;
- ② on partitionne l'ensemble des états en deux classes :
 - les états finaux
 - ② les états non finaux (y compris l'état poubelle ∅)

Etape d'éclatement d'une classe C_i :

- **1** appliquer à C_i une transition par un caractère x de $\in \Sigma$;

→On répète jusqu'à ce qu'il n'y ait plus d'éclatement possible.

A la fin, on a pour toute classe
$$C_i$$
 obtenue : $\forall x \in \Sigma, \ \forall q, q' \in C_i, \ \delta(q, x) = \delta(q', x)$

 \sim On obtient la description d'un nouvel AEF déterministe, dont l'état initial est l'état contenant q_0 et dont les états finaux sont les états contenant un état final de l'automate de départ.

On part de $C_1 = \{q_3, q_4\}$ et $C_2 = \{q_0, q_2, \emptyset\}$ $C_2 = \{q_0, q_2, \emptyset\}$ avec b se partitionne en : $\{q_0, \emptyset\} | \{q_2, \emptyset\}$ avec a se partitionne en : $\{q_0\} | \{\emptyset\}$ $\{q_3, q_4\}$ ne se partitionne ni avec a ni avec b.

On obtient finalement la partition : $\emptyset |\{q_0\}|\{q_2\}|\{q_3,q_4\}$

On obtient un automate d'états finis déterministe à trois états :

Algo MINIMISATION

```
<u>Donnee</u>: un automate déterministe A_1 = (\mathcal{Q}, \Sigma, \delta, q_0, F)
Resultat : l'automate déterministe minimum
A_2 = (\mathcal{Q}', \Sigma, \delta', Q_0', F').
Initialisation : \mathscr{C} \leftarrow \{Q - F, F\}; b \leftarrow 1;
SUPPRIMER de A_1 les états non atteignables :
tant que b=1 faire
  b \leftarrow 0:
   pour chaque classe C de \mathscr{C} faire
       pour chaque caractère x de \Sigma faire
         si par \delta on n'aboutit pas dans une même classe de \mathscr C alors
REMPLACER C dans \mathscr{C} par les classes obtenues; b \leftarrow 1;
\delta' \leftarrow fonction de passage d'une classe de \mathscr{C} à une autre;
F' \leftarrow ensemble des classes de \mathscr{C} classes contenant au moins un
état de F :
Retourner(\mathscr{C}, \Sigma, \delta', q_0, F').
```

Théorème

Pour un langage rationnel L donné, il existe un unique automate d'états fini déterministe minimum engendrant L.

Conséquence fondamentale :

Les langages rationnels sont non ambigüs.