# Document de référence

Plaquette de développement

Mathieu Lespérance Jérémie Dionne François Payen

Collège de Maisonneuve 2014

# Table des matières

| Analyse des besoins en alimentation et pistes de solution | 2 |
|-----------------------------------------------------------|---|
| Besoin en alimentation                                    | 2 |
| Options envisagées                                        | 2 |
| Liens                                                     | 2 |
| Choix des composantes du module fixe                      | 3 |
| Communication sans fil                                    | 3 |
| Microcontrôleur                                           | 3 |
| EEPROM & FLASH                                            | 3 |
| Régulateur                                                | 3 |
| Piles                                                     | 3 |
| Écran                                                     | 4 |
| Schéma                                                    | 5 |
| DEBUGBOARD                                                | 5 |
| DEMOBOARD                                                 | 6 |
| Layout                                                    | 7 |
| DEBUGBOARD                                                | 7 |
| DEMOBOARD                                                 | 8 |
| BOM                                                       | q |

### Analyse des besoins en alimentation et pistes de solution

### Besoin en alimentation

La puissance sur laquelle nous basons nos hypothèses est de 150 mW. Cette valeur découle d'une mesure du courant d'alimentation requis pour le MiWi evaluation board de Microchip, qui est d'environ 50 mA. Malgré la présence d'un afficheur sur ce module, nous avons conservé cette mesure telle quelle afin d'être conservateur. De plus, la consommation minimale du module en transmission est d'environ 25 mA. Dans le meilleur des cas, cela signifierait une consommation de 75 mW.

### Options envisagées

Les options qui ont été considérées pour alimenter le routeur (nœud présent dans chaque chambre) sont les suivantes :

- Secteur AC : Cette option a été rejetée très tôt en raison de la réglementation en place dans le milieu hospitalier qui nous empêche de nous connecter sur le secteur AC.
- Panneau solaire: Considéré comme source d'alimentation en continu durant le jour ainsi que comme système de recharge des piles au lithium qui prendraient le relais le soir venu. Malheureusement, cette option s'est avérée peu prometteuse pour plusieurs raisons, notamment sa faible capacité à récolter de l'énergie, son coût élevé et un temps de développement considérable. Cette option a donc été abandonnée.
- Piles: C'est l'option qui a finalement été retenue, malgré sa faible autonomie. Cela demeure néanmoins correct dans un contexte de prototypage. L'autonomie estimée du système est d'environ 2 à 3 jours avec 3 piles AA.

### Liens

- Utilisation d'un panneau solaire à l'intérieur :
   http://www.limpkin.fr/index.php?post/2011/12/07/Indoor-solar-energy-harvesting%3A-a-platform-to-%28finally%29-get-some-numbers
- Panneau solaire: https://www.sparkfun.com/search/results?term=prt-07840
- Circuit intégré : https://www.sparkfun.com/search/results?term=bob-09946

### Choix des composantes du module fixe

Le choix des composantes a été fait de manière non exhaustive et représente seulement une ébauche du produit final. Cependant, les informations ci-dessous permettent de se faire une idée précise des composantes majeures du module. Le module fixe est composé de deux plaquettes : la plaquette du module fixe et la plaquette débogue. Nous avons décidé de diviser le module en deux parce qu'une fois installer l'écran et les commutateurs deviennent inutiles. Alors idéalement, il n'y aura qu'une plaquette de débogue avec l'écran et les commutateurs pour tous les plaquettes « module fixe ».

### Communication sans fil

La communication se fait par le mRF24J40 qui a été sélectionné au préalable.

#### Microcontrôleur

Pour choisir le microcontrôleur nous avons procédé par élimination. Premièrement, nous souhaitions avoir une compatibilité maximale avec le PIC18F46J50 qui équipe la plaquette de démonstration. Nous avons donc restreint notre recherche à la famille des PIC18. Ensuite, nous avons discuté sur l'intérêt de choisir un PIC avec des broches ré-assignables et nous sommes venu à la conclusion que la complexité supplémentaire ajoutée par cette fonctionnalité était trop importante par rapport à son utilité. De plus, nous souhaitions un microcontrôleur qui avait une capacité de traitement de donnée supérieure ou équivalente PIC18F46J50, une consommation électrique modéré et un prix d'achat raisonnable. Selon nos recherches le PIC18F26K22 est le microcontrôleur qui répond le mieux à ces critères.

#### **EEPROM & FLASH**

Le code de Microchip pour le MRF24J40 semble avoir besoin d'une mémoire flash de 1Mbit (SST25VF010) et d'une EEPROOM de 2Kbit (25AA02E48) pour fonctionner convenablement. Nous avons convenu qu'il valait mieux les ajouté au design et si ils s'avéraient inutiles nous n'aurions qu'à ne pas les souder. Nous avons sélectionné les mêmes puces que sur la plaquette d'évaluation afin de limiter d'éventuel problème de compatibilité.

### Régulateur

Pour le régulateur nous avons choisis le TLV1117LV33 parce qu'il a un «drop out » de seulement 455mV et un « quiescent current» de 100uA ce qui devrait nous permettre d'obtenir une autonomie correcte. De plus, il est peu dispendieux et est capable de réguler amplement de courant à la tension désirée, i.e. 1 ampère à 3,3 Volts.

#### Piles

Comme source d'énergie nous avons opté pour 3 piles AAA en plus d'avoir un format assez compacte, leur capacité est suffisante et la tension de 4,5 Volts est parfaite pour un régulateur de type « LDO ».

# Écran

Nous avons sélectionné le même écran que sur la plaquette d'évaluation afin de limiter d'éventuel problème de compatibilité.

# Schéma

# DEBUGBOARD



### DEMOBOARD





# Layout

# DEBUGBOARD



### DEMOBOARD



# BOM

|                   |        |              | COORDONATEUR      |                  |            |          |                  |
|-------------------|--------|--------------|-------------------|------------------|------------|----------|------------------|
| Pièces            | RefDes | Manifacturer | Manifacturer Part | Caractéristiques | Prix unité | Quantité | Prix total/pièce |
| FTDI Bridge RS232 | None   | FTDI         | 768-1135-1-ND     | *Déjà en stock   | 2,47       | 1        | 2,47             |
|                   |        |              |                   |                  |            |          |                  |

|                     |                |                        | DÉMOBOARD                |                          |            |          |                  |
|---------------------|----------------|------------------------|--------------------------|--------------------------|------------|----------|------------------|
| Pièces              | RefDes         | Manifacturer           | Manifacturer Part        | Caractéristiques         | Prix unité | Quantité | Prix total/pièce |
| PIC 18LF26k22       | U1             | Microchip              | PIC18LF26K22-I/SS-ND     | *Déjà en stock           | 3,79       | 5        | 18,95            |
| Regulateur 3,3v     | U4             | Texas Instrument       | 296-28778-1-ND           | *Déjà en stock           | 0,82       | 5        | 4,1              |
| Crystal             | X2             | CTS-Frequency Controls | CTX1164CT-ND             |                          | 0,76       | 10       | 7,6              |
| Connecteurs         | Pickit         | Sullins                | PREC040SAAN-RC           |                          | 0,68       | 2        | 1,36             |
| Connecteurs Male    | Debug_Board_I0 | Assmann                | HRP10H-ND                |                          | 0,62       | 10       | 6,2              |
| Câble rectangulaire | None           | Assmann                | H3CCS-1006M-ND           | Pour utiliser Debugboard | 1,49       | 1        | 1,49             |
| FLASH               | U3             | Microchip              | SST25VF010A-33-4C-SAE-ND |                          | 0,82       | 10       | 8,2              |
| EEPROM              | U2             | Microchip              | 25AA02E48-I/SN-ND        |                          | 0,58       | 10       | 5,8              |
| Push Button         | S1             | C&K Component          | CKN9112CT-ND             |                          | 0,27       | 10       | 2,7              |
| Résistance          | R1,R2,R3       | Susumu                 | RR12P100DCT-ND           | 100                      | 0,14       | 30       | 4,2              |
| Résistance          | R4             | Susumu                 | RR12P4.7KDCT-ND          | 4,7K                     | 0,14       | 10       | 1,4              |
| Battery Holder      | Batterie AAA   | Keystone               | 2479K-ND                 | *Déjà en stock           | 2,48       | 5        | 12,4             |
| Condensateur        | C1             | Samsung                | 1276-1246-1-ND           | 1uF                      | 0,12       | 10       | 1,2              |
| Condensateur        | C5,C6          | Samsung                | 1276-1109-6-ND           | 10pF                     | 0,12       | 20       | 2,4              |
| Condensateur        | C2,C3,C4,C7    | Samsung                | 1276-1007-1-ND           | 0,1uF                    | 0,12       | 40       | 4,8              |
| Led                 | LED_G          | Kingbright             | 754-1131-1-ND            | Vert                     | 0,19       | 10       | 1,9              |
| Led                 | LED_Y          | Kingbright             | 754-1135-1-ND            | Jaune                    | 0,19       | 10       | 1,9              |
| Led                 | LED_R          | Kingbright             | 754-1128-1-ND            | Rouge                    | 0,19       | 10       | 1,9              |

|                  |        |                       | DEBUGBOARD              |                  |            |          |                  |
|------------------|--------|-----------------------|-------------------------|------------------|------------|----------|------------------|
| Pièces           | RefDes | Manifacturer          | Manifacturer Part       | Caractéristiques | Prix unité | Quantité | Prix total/pièce |
| LCD              | U1     | Newhaven Display Intl | NHD-C0216CZ-FSW-FBW-3V3 | none             | 13,26      | 1        | 13,26            |
| Connecteurs Male | J1     | Assmann               | HRP10H-ND               | none             | 0,62       | 1        | 0,62             |
| Push Button      | J2,J3  | C&K Component         | CKN9112CT-ND            | none             | 0,27       | 2        | 0,54             |
|                  | R1,R2  | Susumu                | RR12P4.7KDCT-ND         | 4,7K             | 0,14       | 2        | 0,28             |
| Condensateur     | C1,C2  | Samsung               | 1276-1246-1-ND          | 1uF              | 0,12       | 2        | 0,24             |
| Condensateur     | C3     | Samsung               | 1276-1007-1-ND          | 0,1uF            | 0,12       | 1        | 0,12             |