TD 1 - Rappels d'algorithmique et notions basiques sur les graphes.

Exercice 1.

On a trois algorithmes pour résoudre un problème. Le premier est de complexité $O(n^3 \log n)$, le deuxième de complexité $O(n(\log n)^{42})$ et le troisième de complexité $O(1.7^n)$. Lequel faut-il choisir si on a des données de grande taille ?

Exercice 2.

Classez par ordre croissant les ordres de grandeur suivants: $O(\frac{n}{\log n})$, O(n), O(1), $O(\log n)$, $O(\sqrt{n} \log n)$, $O(4^n)$, $O(4^n)$, $O(n^2 3^n)$.

Exercice 3.

Est-ce que la complexité d'un algorithme peut être à la fois en $O(n^3)$ et en $O(\log n)$?

Exercice 4.

Donnez la complexité des algorithmes suivants :

Algorithme1(n)

- val = 0
- 2 pour i allant de 1 à n faire
- $val = val + \sqrt{n.i + 2.i}$
- 4 renvoyer val

Algorithme 2(n)

- val = 0
- 2 pour i allant de 1 à n faire
- $\mathbf{3}$ pour j allant de 1 à i faire
- 4 | $val = val + j^2$
- 5 renvoyer val

Algorithme3(n)

- val = 0
- i = 0
- 3 tant que $i \times i < n$ faire
- $\mathbf{4} \quad val = val + i$
- 5 i = i + 1
- 6 renvoyer val

Algorithme4(n)

- val = 0
- i = 1
- 3 tant que $\log_2 i < n$ faire
- 4 val = val + i
- i = i + 1
- 6 renvoyer val

Exercice 5.

Donnez la matrice d'adjacence du graphe ci-dessous:

Exercice 6.

Voici une matrice d'adjacence: dessinez un graphe qui correspond à cette matrice.

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	1	1	1	0	1	1
1	0	0	0	0	0	1	0	1	1	1
2	0	0	0	1	1	0	1	0	1	0
3	1	0	1	0	0	1	0	0	0	0
4	1	0	1	0	0	0	1	0	0	0
5	1	1	0	1	0	0	0	0	1	0
6	1	0	1	0	1	0	0	0	0	0
7	0	1	0	0	0	0	0	0	0	0
8	1	1	1	0	0	1	0	0	0	1
9	1	1	0	0	0	0	0	0	1	0

Exercice 7.

Un cycle élémentaire ne contient pas de répétition de sommets ni d'arêtes. Donnez un graphe à 5 sommets contenant exactement (a) 1 cycle élémentaire, (b) 3 cycles élémentaires, (c) 6 cycles élémentaires. Justifiez vos réponses en donnant explicitement, pour chaque graphe, la liste de ses cycles.

Exercice 8.

Montrez que les deux graphes suivants sont isomorphes (c'est-à-dire que l'on peut numéroter leurs sommets de manière à obtenir le même ensemble d'arêtes).

Exercice 9.

Montrez que les deux graphes suivants ne sont pas isomorphes.

Exercice 10.

- (a) Qu'est-ce que le degré d'un sommet dans un graphe?
- (b) Montrez que la somme des degrés des sommets de tout graphe vaut deux fois son nombre d'arêtes.
- (c) Montrez que le nombre d'arêtes d'un arbre vaut son nombre de sommets moins 1.
- (d) Montrez que si G est un arbre et si tous ses sommets sont de degré impair, alors son nombre d'arêtes est impair.

Exercice 11.

La séquence des degrés d'un graphe est une séquence (non strictement) décroissante de naturels, qui reprend les degrés de chacun des sommets du graphe.

- (a) Donnez la séquence des degrés des graphes des exercices 6, 7 et 9.
- (b) Existe-t-il un graphe dont la séquence des degrés est (9, 9, 8, 6, 4, 2, 1)? Si oui, dessinez-le; sinon, expliquez pourquoi.