EE122 Computer Architecture & Logic Design

TOPICS: REGISTERS AND COUNTERS

WEEK: 10

PROGRAM: BE COMPUTER SOFTWARE ENGINEERING

COURSE TEACHER: DR. JAVED IQBAL

javed.iqbal@mcs.nust.edu.pk

Department of Computer Software Engineering, MCS - NUST

Today's Lecture

Identify the basic forms of data movement in shift registers

Explain how serial in/serial out, serial in/parallel out, parallel in/serial out, and parallel in/parallel out shift registers operate

Describe how a bidirectional shift register operates

Determine the sequence of a Johnson counter

Set up a ring counter to produce a specified sequence

Construct a ring counter from a shift register

Use a shift register as a time-delay device

Use a shift register to implement a serial-to-parallel data converter

Shift Registers – Introduction

- A type of sequential logic circuit
- Storage of digital data
- Shift registers consist of arrangements of flip-flops and are important in applications involving the storage and transfer of data in a digital system.
- A register has no specified sequence of states, except in certain very specialized applications.
- A register, in general, is used solely for storing and shifting data (1s and 0s) entered into it from an external source and typically possesses no characteristic internal sequence of states.

Shift Register Operations

A register can consist of one or more flip-flops used to store and shift data.

The *storage capacity* of a register is the total number of bits (1s and 0s) of digital data it can retain. Each **stage** (flip-flop) in a shift register represents one bit of storage capacity; therefore, the number of stages in a register determines its storage capacity.

The flip-flop as a storage element.

shift capability — Data movement in Registers

Data in

Types of Shift Register Data I/Os

- 1. Serial In/Serial Out Shift Registers
- 2. Serial in/parallel out Shift Registers
- 3. Parallel in/serial out Shift Registers
- 4. Parallel in/ Parallel out Shift Registers

Serial In/Serial Out Shift Registers

Serial in/serial out shift register.

With four stages, this register can store up to four bits of data.

Shifting a 4-bit code into the shift register in Figure Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q ₁)	FF2 (Q2)	FF3 (Q ₃)
Initial	0	0	0	0
1	0	0	0	0
2	1	0	0	0
3	0	1	0	0
4	1	0	1	0

Shifting a 4-bit code out of the shift register in Figure Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q2)	FF3 (Q ₃)	
Initial	1	0	1	0	
5	0	1	0	1	
6	0	0	1	0	
7	0	0	0	1	
8	0	0	0	0	

Serial In/Parallel Out Shift Registers

Parallel In/Serial Out Shift Registers

When $SHIFT/LOAD^*$ is LOW, gates G1 through G4 are enabled, allowing each data bit to be applied to the D input of its respective flip-flop. When a clock pulse is applied, the flip-flops with D=1 will set and those with D=0 will reset, thereby storing all four bits simultaneously

Parallel In/Serial Out Shift Registers- Logic symbol

Bidirectional Shift Registers

Example: Determine the state of the shift register of in the Figure (previous slide) after each clock pulse for the given $RIGHT/LEFT^*$ control input waveform shown. Assume that Q0 = 1, Q1 = 1, Q2 = 0, and Q3 = 1 and that the serial data-input line is LOW.

Solution

Shift Register Counters

- Discuss how a shift register counter differs from a basic shift register
- Explain the operation of a Johnson counter
- Specify a Johnson sequence for any number of bits
- Explain the operation of a ring counter and determine the sequence of any specific ring counter

The Johnson Counter

Table a)

Four-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0 ←
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

Table b)

Five-bit Johnson sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	Q_4
0	0	0	0	0	0 ←
1	1	0	0	0	0
2	1	1	0	0	0
3	1	1	1	0	0
4	1	1	1	1	0
5	1	1	1	1	1
6	0	1	1	1	1
7	0	0	1	1	1
8	0	0	0	1	1
9	0	0	0	0	1 —

Implementation of 4-bit Johnson Counter

Timing sequence for a 4-bit Johnson counter

Timing sequence for a 5-bit Johnson counter

The Ring Counter

A 10-bit ring counter

Ten-bit ring counter sequence.

Clock Pulse	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8	Q_9
0	1	0	0	0	0	0	0	0	0	0 <
1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0	0
4	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	1	0	0
8	0	0	0	0	0	0	0	0	1	0
9	0	0	0	0	0	0	0	0	0	1 -

Shift Register Applications -Time Delay

The shift register as a time-delay device

Example: Determine the amount of time delay between the serial input and each output in Figure below. Show a timing diagram to illustrate.

^{*} Data shifts from Q₀ toward Q₇.

Serial-to-Parallel Data Converter

Serial-to-Parallel Data Converter- Serial data format

Start bit (0) D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 Stop Stop bit (1) bit (1)

Serial-to-Parallel Data Converter- Universal Asynchronous Receiver Transmitter (UART)

Basic UART

Power on LOAD

Ringcourter

END OF LECTURE