ECHE 363 – Thermodynamics of Chemical Systems Quiz 1

Name 50 ntions

100 points total.

Be sure to show all work to obtain maximum credit. Closed book and no notes.

Equations that may or may not be needed.

First Law for closed systems:

$$dU + dE_k + dE_p = \delta Q + \delta W$$

$$\Delta U + \Delta E_{k} + \Delta E_{p} = Q + W$$

PV work:

$$\delta w_{\rm m} = -P_{\rm E} dv_{\rm m}$$

Units and constants:

$$R = 8.314 \text{ J/(mol K)}$$

$$g = 9.8 \text{ m/s}^2$$

1 bar =
$$10^5 \text{ Pa} = 10^5 \text{ kg/(m s}^2)$$

For each of the following questions, consider the following process involving a piston—cylinder assembly:

The piston-cylinder assembly is <u>well-insulated</u> and initially contains an ideal gas at T_1 , P_1 , with an initial volume V_1 . The piston has a mass M and cross-sectional area A, and is exposed to atmospheric pressure P_a . The piston is initially held in place by a latch that keeps it from moving. The latch is subsequently released, allowing the piston to move.

$$\Delta U + \Delta E_{k} + \Delta E_{p} = A + W$$

$$= 0 \qquad = 0$$

$$ignore \ KE_{p}PE \qquad insulated,$$

$$adiabatic \qquad V_{2}$$

$$\Delta U = W \qquad = > \Delta U = - \int_{E} dV \qquad (only \ PV \ work)$$

$$(1971-11) In terms of the quantities provided derive an expression for the external pressure.$$

2. (15 Points) In terms of the quantities provided, derive an expression for the external pressure $P_{\rm E}$ during the process.

$$P_E = P_a + \frac{M_g}{A}$$
 (constant) $M_g = F_{piston}$

3. (10 Points) Provide an expression for the final pressure P_2 after the process has completed.

5. (5 points) At the end of the process, the piston will have: (circle one)

moved up

moved down

remained in its initial position

need more information

6. (5 Points) Briefly explain your answer to #5.

Do not know if PE is >, <, or = P1.

7. (10 Points) Assuming that the piston does move during the process, would the expansion/compression be reversible or irreversible? Briefly explain.

Irreversible: PE # P

8. (25 Points) Derive an expression for the work done during the expansion in terms of: P_1 , P_a , V_1 , V_2 , M, g, and A. Clearly explain all assumptions and simplifications. Note: you may not need all of these terms.

$$W = -\int_{E}^{V_{E}} dV$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{6}$$

$$V_{7}$$

$$V_{7}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{5}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{9}$$

$$V_{9}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{9}$$

$$V_{1}$$

$$V_{1}$$

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$

$$V_{7}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{8}$$

$$V_{9}$$

$$V_{9$$

$$... = -\left(P_a + \frac{M_g}{A}\right)\left(V_2 - V_1\right)$$