Checking consistency between interaction diagrams and state machines in UML models

Piotr J. Puczynski

DTU Informatics

June 12, 2012

Inconsistency example (faulty ATM System)

Aim of the Master's project

- Check for consistency between (behavioral and protocol) state machines and interactions (sequence diagrams)
- Extending use case scenarios (sequence diagrams)
- Hints to a user during design

Extensions of scenarios

Related work

Two main groups of consistency checking techniques:

- usage of intermediate representations
 - model checking
- direct usage of UML models
 - simulation
 - UML 1.x and no CASE tools support (98.4%)
 - No extensions of sequence diagrams

Checking consistency

- Structural properties of model (incl. components, interfaces)
- Sequence diagrams and behavioral state machines

Protocol state machines and behavioral state machines

Design of the tool

Extending and validating sequence diagrams

Behavioral state machines execution

```
callOperation() =
notifyObservers(callEvent)
execute(effects(enabledTransition(operation)))
execute(effects(completionTransitions()))
if isSynchronous
notifyObservers(replyEvent)
```

Verification of protocol state machines

Verification of protocol state machines

Example run in ATM system

Checks and error messages

- Support for 130 distinct error messages
- Examples:
 - Instance instanceName is not ready to respond to an event eventName.
 - Multiplicity check failed when trying to assign return value for operation operationName to value: valueToAssign.
 - Orovided interface interfaceName is not realized by any class in component componentName.

Conclusions and future work

- Checking consistency by realization of scenarios
- Simple Action Language (SAL)
- Statistics: 130 distinct error messages; 110 scenarios and test models; two models of the toll system

Conclusions and future work

- Checking consistency by realization of scenarios
- Simple Action Language (SAL)
- Statistics: 130 distinct error messages; 110 scenarios and test models; two models of the toll system
- Problems:
 - Semantics of run-to-completion
 - Termination of scenarios
 - 3rd party bugs

Conclusions and future work

- Checking consistency by realization of scenarios
- Simple Action Language (SAL)
- Statistics: 130 distinct error messages; 110 scenarios and test models; two models of the toll system
- Problems:
 - Semantics of run-to-completion
 - Termination of scenarios
 - 3rd party bugs

Future work:

- Support for more UML elements
- Creation and destruction in SAL
- More functionality (e.g. step-by-step simulation)
- Experimental evaluation