1st Order Transients – 1

concepts

Where are we?

- Resistive circuits:
 - Simple elements; Kirchhoff's and Ohm's Laws
 - Nodal analysis
- Inductors and capacitors
 - Steady state (phasor) analysis
- Op amps
- Circuit theorems:
 - Thevenin/Norton, maximum power
- Transients:
 - 1st order circuits
 - 2nd order circuits

Mesh analysis

Recall the 1st Phasor Circuit

We developed the 2nd order differential equations

$$\frac{d^2A(t)}{dt^2} + 858 \frac{dA(t)}{dt} + 72,000 A(t) = 50 \frac{dV_1(t)}{dt} + 40,000 V_1(t)$$
$$\frac{d^2B(t)}{dt^2} + 858 \frac{dB(t)}{dt} + 72,000 B(t) = 40 \frac{dV_1(t)}{dt}$$

$$\frac{d^2A(t)}{dt^2} + 858 \frac{dA(t)}{dt} + 72,000 A(t) = 50 \frac{dV_1(t)}{dt} + 40,000 V_1(t)$$
$$\frac{d^2B(t)}{dt^2} + 858 \frac{dB(t)}{dt} + 72,000 B(t) = 40 \frac{dV_1(t)}{dt}$$

• The homogeneous solutions were both exponential in form

$$A_{homogeneous}(t) = a_1 e^{-94.3t} + a_2 e^{-764t}$$

 $B_{homogeneous}(t) = b_1 e^{-94.3t} + b_2 e^{-764t}$

• If $V_1(t) = V_1$ is a constant (DC) voltage source; then the particular solutions are both constants

$$A_{steady-state}(t) = a_0 \left(= \frac{40,000 V_1}{72,000} = \frac{5 V_1}{9} \right)$$
$$B_{steady-state}(t) = b_0 (= 0)$$

Combining

$$A(t) = \frac{5V_1}{9} + a_1 e^{-94.3t} + a_2 e^{-764t}$$
$$B(t) = b_1 e^{-94.3t} + b_2 e^{-764t}$$

• This solution still has unknown constants

Transient Analysis

- Short-term response of a circuit to "change", typically a switching event:
 - An actual switch or sources turning on/off
 - Interest is after the switching event

• We consider the DC source case so that the force portion is a constant; specifically, in steady state, all voltages/currents are constants, so

$$v_L = L \frac{di_L(t)}{dt} = 0$$
 \rightarrow inductors act as short circuits

$$i_C = C \frac{dv_C(t)}{dt} = 0$$
 \rightarrow capacitors act as open circuits

As an example:

Before time t_0 , assuming steady state:

And a long time after time t_0 , steady state again:

The transient is 2Ω what happens in between these $0.4\,\mathrm{H}$ 6Ω $\overline{\uparrow}_{0.5 \text{ F}}$ 6 V ν (our topic of interest)

 t_0

 $t_0 + ??$

time

- Terminology used:
 - Natural response: circuit with no sources, initial conditions only; usually all variables go to zero
 - Step response: circuit with DC sources, zero initial conditions
 - Combined response = sum of both
- Useful facts:
 - Inductor: a short for DC; current cannot jump (is a continuous function)
 - <u>Capacitor</u>: an open for DC; voltage cannot jump (is a continuous function)

First Order RC Case

 Consider this simple circuit; assume the source is DC and that the initial capacitor voltage is zero

- Node equation after t = 0: $\frac{dv(t)}{dt} + \frac{1}{RC}v(t) = \frac{1}{C}I_S$
- Solution is: $v(t) = A e^{-\frac{1}{RC}t} + B$
- Need to solve for A and B

$$v(t) = A e^{-t/RC} + B$$

• Initial and final conditions: from the math

$$v(0) = A + B = \mathbf{v_0}$$
 $v(\infty) = B = \mathbf{v_{\infty}}$

• So, solving

$$v(t) = (v_0 - v_\infty)e^{-t/RC} + v_\infty$$

- Final value
 - Exploit the fact that in steady state the capacitor acts like an open

$$v_{\infty} = I_{S}R$$

- Initial condition
 - Exploit the fact that the capacitor voltage cannot take a jump

$$v_0 = v(0)$$

$$v(t) = (v(0) - I_s R)e^{-t/RC} + I_s R$$

Consider a transformation:

With result

$$v(t) = (v(0) - I_S R)e^{-t/RC} + I_S R$$
$$= (v(0) - V_S)e^{-t/RC} + V_S$$