1A Low Dropout Positive Voltage Regulators

Features

- Maximum dropout of 1.5V at full load current
- Fast transient response
- Output current limiting
- Built-in thermal shutdown
- Available packages: SOT223, TO252, SOT89
- Good noise rejection
- Stable with Only 1uF Low ESR Ceramic Capacitor
- Three-terminal adjustable or fixed 1.5V, 1.8V, 1.9V, 2.5V, 3.3V, 5.0V
- RoHS-compliant, halogen-free

Typical Applications

- PC peripherals
- Communications

Description

The APE1117A is a low dropout positive adjustable or fixed-mode regulator with minimum output current capability of 1A. The product is specifically designed to provide well-regulated supply for low-voltage IC applications such as high-speed bus-termination and low current 3.3V logic supplies. It is also well suited for other applications such as VGA cards.

The APE1117A is guaranteed to have lower than 1.5V dropout at full load current making it ideal to provide well-regulated outputs of 1.25 to 5.0V with 6.4V to 16V input supply.

5V/3.3V using fixed output version

5V/2.5V using adjustable output version

Note:
$$V_o = V_{REF} * (1 + \frac{R_2}{R})$$

Example: APE1117AK-33-HF-3TR 3.3V fixed output in RoHS-compliant, halogen free SOT-223 shipped on tape and reel, 3000pcs/reel

Block Diagram

Pin Configurations

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Pin Descriptions

NAME	I/O	PIN#	FUNCTION		
Adj (GND)	ı	1	A resistor divider from this pin to the Vout pin and ground sets the adjustable output voltage. (Ground this pin only for Fixed-Mode)		
Vout	0	2	The output of the regulator. A capacitor with a minimum value of $1\mu F0.01\Omega \leq ESR \leq 1\Omega$) must be connected from this pin to ground to ensure stability.		
Vin	I	3	The input pin of regulator. A capacitor with a minimum value of 1µF is connected from this pin to ground to ensure that the input voltage does not sag below the minimum dropout voltage during the load transient response. This pin must always be 1.5V higher than Vout in order for the device to regulate properly.		

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
Vin	DC Supply Voltage	-0.3 to 16	V
Pb	SOT-223 Power Dissipation SOT-89 TO-252	850 330 1050	mW mW mW
T _{ST}	Storage Temperature	-65 to +150	°C
T _{OP}	Operating Junction Temperature Range	0 to +150	°C

Electrical Characteristics

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
Reference Voltage	APE1117A-ADJ	$T_J=25$ °C, $(V_{IN}-V_{OUT})=1.5V$ $I_O=10$ mA	1.225	1.250	1.275	٧
	APE1117A-15	$I_{OUT} = 10 \text{mA}, T_J = 25^{\circ}\text{C},$ $3\text{V} < \text{V}_{IN} < 16\text{V}$	1.470	1.500	1.530	V
	APE1117A-18	$I_{OUT} = 10 \text{mA}, T_J = 25^{\circ}\text{C},$ $3.3 \text{V} < V_{IN} < 16 \text{V}$	1.764	1.800	1.836	V
Output Valle as	APE1117A-19	$I_{OUT} = 10 \text{mA}, T_J = 25^{\circ}\text{C},$ $3.3 \text{V} < V_{\text{IN}} < 16 \text{V}$	1.862	1.900	1.938	V
Output Voltage	APE1117A-25	$I_{OUT} = 10 \text{mA}, T_J = 25^{\circ}\text{C},$ $4\text{V} < \text{V}_{\text{IN}} < 16\text{V}$	2.450	2.500	2.550	V
	APE1117A-33	$I_{OUT} = 10 \text{mA}, T_J = 25^{\circ}\text{C},$ $4.8 \text{V} < V_{IN} < 16 \text{V}$	3.235	3.300	3.365	V
	APE1117A-50	$I_{OUT} = 10 \text{mA}, T_J = 25^{\circ}\text{C},$ 6.5V < V_{IN} < 16V	4.900	5.000	5.100	V
Line Regulation	APE1117A-XXX	$I_{O}=10$ mA, $V_{OUT}+1.5$ V $<$ V $_{IN}<16$ V, $T_{J}=25$ °C			0.5	%
	APE1117A-ADJ	V_{IN} =3.3V,Vadj=0,10mA <lo<1a, T_J=25°C (Note 1,2)</lo<1a, 			1	%
	APE1117A-15	V_{IN} =3V, 10mA <lo<1a, T_J=25°C (Note 1,2)</lo<1a, 		12	15	mV
	APE1117A-18	V_{IN} =3.3V, 10mA <lo<1a, <math="">T_J=25°C (Note 1,2)</lo<1a,>		15	18	mV
Load Regulation	APE1117A-19	V_{IN} =3.3V, 10mA <lo<1a, <math="">T_J=25°C (Note 1,2)</lo<1a,>		16	19	mV
	APE1117A-25	V_{IN} =4V, 10mA <lo<1a, T_J=25°C (Note 1,2)</lo<1a, 		20	25	mV
	APE1117A-33	$V_{IN} = 5V$, 10mA <lo<1a, $T_J = 25^{\circ}C$ (Note 1,2)</lo<1a, 		26	33	mV
	APE1117A-50	$V_{IN} = 6.5V$, 10mA <lo<1a, $T_J = 25^{\circ}C$ (Note 1,2)</lo<1a, 		40	50	mV
Dropout Voltage (V _{IN} -V _{OUT})	APE1117A-XXX	I _{OUT} = 1A, ΔVουτ= 1%Vουτ		1.3	1.5	V
Current Limit	APE1117A-XXX	$(V_{IN}-V_{OUT})=5V$	1. 1			Α
Minimum Load Current	APE1117A-XXX	0°C <tj <125°c<="" td=""><td></td><td>5</td><td>10</td><td>mA</td></tj>		5	10	mA
Thermal Regulation	T _A =25°C, 30ms pulse			0.008	0.04	%/W
Ripple Rejection	f=120Hz, C _{OUT} =25uF	Tantalum, I _{OUT} =1A				
Ripple Rejection	APE1117A-XXX \		60	70	dB	
Temperature Stability I _O =10mA				0.5		%
	Thermal Shutdown Temperature			150		°C
Thermal Shutdown Temperature Recovery				130		°C
θ_{JA} Thermal Resistance	SOT89			300		
Junction-to-Ambient	SOT-223			117		°C/W
(No heat sink; no air flow)	TO-252			92		
θ _{JC} Thermal Resistance Junction-to-Case	SOT-223 : Control Ci	cuitry/Power Transistor rcuitry/Power Transistor rcuitry/Power Transistor		100 15 10		°C/W
I _Q Quiescent Current	APE1117A-18/25/28 APE1117A-33	VIN < 9V VIN < 12V		5.5 5.5	10 10	mA

Note1: See thermal regulation specifications for changes in output voltage due to heating effects. Line and load regulation are measured at a constant junction temperature by low duty cycle pulse testing. Load regulation is measured at the output lead = 1/18" from the package.

Note2: Line and load regulation are guaranteed up to the maximum power dissipation of 15W. Power dissipation is determined by the difference between input and output differential and the output current. Guaranteed maximum power dissipation will not be available over the full input/output range.

Note3: Quiescent current is defined as the minimum output current required in maintaining regulation. At 12V input/output differential the device is guaranteed to regulate if the output current is greater than 10mA.

Electrical Characteristics (cont.)

Marking Information

SOT-223 TO-252

SOT-89

Identification code	Output Type
17AA(R)	Adjustable (R)
17AB(R)	1.5V (R)
17AC(R)	1.8V (R)
17AG(R)	1.9V (R)
17AD(R)	2.5V (R)
17AE(R)	3.3V (R)
17AF(R)	5.0V (R)

Package Dimensions: TO-252

SYMBOLS	Millimeters			
	MIN	NOM	MAX	
A2	1.80	2.30	2.80	
A3	0.40	0.50	0.60	
B1	0.40	0.70	1.00	
D	6.00	6.50	7.00	
D1	4.80	5.35	5.90	
E3	3.50	4.00	4.50	
F	2.20	2.63	3.05	
F1	0.50	0.85	1.20	
E1	5.10	5.70	6.30	
E2	0.50	1.10	1.80	
e		2.30		
C	0.35	0.50	0.65	

- 1. All dimensions are in millimeters.
- 2. Dimensions do not include mold protrusions.

Package Dimensions: SOT-223

SYMBOLS	Millimeters			
51112525	MIN	NOM	MAX	
A	6.70	7.00	7.30	
В		2.30		
С	2.90	3.00	3.10	
D	0.60	0.70	0.80	
G	0.25	0.30	0.35	
Е	6.30	6.50	6.70	
F	1.40	1.60	1.80	
K	0.02	0.06	0.10	

- 1. All dimensions are in millimeters.
- 2. Dimensions do not include mold protrusions.

Marking Information

Package Dimensions: SOT-89

	Millimeters			
SYMBOLS	MIN	NOM	MAX	
A	4.40	-	4.60	
В	4.05	-	4.25	
С	1.40	-	1.75	
Е	2.40	-	2.60	
F	0.89	-	1.20	
I	0.35	-	0.55	
Н		1.50		
G		3.00		
J	1.40	-	1.60	
K	0.35	-	0.43	

- 1. All dimensions are in millimeters.
- 2. Dimensions do not include mold protrusions.

Marking Information

