Point Cloud Registration

A fast and robust local descriptor for 3D point cloud registration 论文研究报告 张旭东

シ 主要方法 Main idea

研究背景 Background

- 点云配准 Point cloud registration
- 特征提取 Feature extraction

Application

- 1. 3D modeling
- 2. Object recognition
- 3. Pose estimation
- 4. Face recognition
- 5. Surface alignment
- 6. Localization

| Point cloud registration

2 steps

- 1. Coarse registration
- 2. Fine registration

2 kinds

- 1. Total registration
- 2. Local registration

特征提取

Application

- 1. Model reconstruction
- 2. Point cloud registration
- 3. Surveying and mapping

主要方法 Main idea

LFSH feature descriptor

Local feature statistics histograms

a

b

C

Deviation angle between normals

$$\vartheta_j = \arccos(n_i \cdot n_i^j)$$

Local depth

$$d_j = r - n_j \cdot (q_i^j - q_i)$$

Horizontal projection distance

$$p_j = \sqrt{\|p_i - p_i^j\|^2 - (n_i \cdot (p_i - p_i^j))^2}$$

How to calculate normals?

How to distinguish the descriptors?

histograms

Changing parameters of the histograms

$$MMD = \frac{1}{N} \sum_{i=1}^{N} \frac{\sum_{j=1}^{k_i} ||p_i - \widetilde{p_j}||}{k_i}$$

区分性, $\widetilde{p_j}$ 表示相似但不同点

Coarse-to-fine 3D registration algorithm

Filtering the irrelevant points & coarse registration

Bunny

Нарру

Buddha

Dragon

PCC=正确率

Room

PCC=55.61%

运行效果 Performance

- Descriptiveness
- Robustness
- Registration time consuming

Table 3Feature matching results of the six descriptors on Bunny, Armadillo, Room, and Apartment data. (*NC* denotes the number of correspondences. *NCC* represents the number of correct correspondences. *PCC* is the percentage of correct correspondences.)

		Spin image	PFH	FPFH	SHOT	RoPS	LFSH
Bunny	NC	546	312	247	461	357	234
	NCC	120	82	58	105	168	83
	PCC (%)	21.98	26.28	23.48	22.78	47.06	35.5
Armadillo	NC	267	319	208	405	404	285
	NCC	82	114	63	180	227	137
	PCC (%)	30.71	35.74	30.29	44.44	56.19	48.07
Room	NC	449	229	293	464	335	254
	NCC	69	87	90	205	117	135
	PCC (%)	15.37	37.99	30.72	44.18	34.93	53.15
Apartment	NC	815	1021	1196	1172	892	937
	NCC	68	282	295	306	128	345
	PCC (%)	8.34	27.62	24.67	26.11	14.35	36.82

Registration time consuming

- Data compression
- Accuracy

Randomly or particularly?

Coarse is enough

3Q©