Universidad del Valle de Guatemala

Sang Woo Shin, 15372

Diego Valdez, 15397

Hoja de Trabajo #5

Tarea: Graficas de rendimiento

MEMORIA 100	intervalos de 10)	intervalos de 5	
Velocidad 3	# de Procesos	Tiempo Promedio	# de Procesos	Tiempo Promedio
	50	11.404008	50	7.032069
	100	12.034699	100	7.811251
	150	13.857897	150	10.561662
	200	15.94524	200	13.092751
	intervalos de 1			
	# de Procesos	Tiempo Promedio		
	50	4.209089		
	100	7.017546		
	150	10.748186		
	200	13.710423		

MEMORIA 200	intervalos de 10)	intervalos de 5	
Velocidad 3	# de Procesos	Tiempo Promedio	# de Procesos	Tiempo Promedio
	50	11.404008	50	7.131482
	100	11.8693	100	7.218885
	150	11.916852	150	7.3477
	200	11.952348	200	7.900967
	intervalos de 1			
	# de Procesos	Tiempo Promedio		
	50	3.269782		
	100	3.856089		
	150	5.818512		
	200	7.214601		

MEMORIA 100	intervalos de 10)	intervalos de 5	
Velocidad 6	# de Procesos	Tiempo Promedio	# de Procesos	Tiempo Promedio
	50	9.924331	50	5.271428
	100	10.155153	100	5.472859
	150	10.361583	150	5.862745
	200	11.722685	200	5.58416
	intervalos de 1			
	# de Procesos	Tiempo Promedio		
	50	1.845638		
	100	2.096749		
	150	3.460338		
	200	3.426727		

Pensamos que la mejor estrategia para poder reducir el tiempo de las corridas es tener un procesador más rápido. Debido a que si se tiene un CPU más rápido, no es necesario más memoria porque los procesos están saliendo de forma rápida. Después pensamos que lo siguiente más importante son los intervalos en los que aparecen los procesos. Este es importante debido a que sin importar que tan rápida sea la CPU, si las instrucciones llegan de forma lenta, la CPU tendrá espacios en las que no hace nada. La memoria es más importante para cuando hay muchos procesos que hacer, esto permite a que no estén esperando.