1.
$$\frac{d^{2}u}{dx^{2}} + u = 0$$
. $u''' + u = 0$ best quant; $u(x) = ce^{xx}$
 $u'' = cx^{2}e^{xx}$
 $u''' + u = cx^{2}e^{xx} + ce^{xx} = ce^{xx}(x^{2} + 1) = 0$
 $x^{2} = 1$
 $x^{2} = 1$

 $0) \frac{d^2y}{dx^2} + y = 1 \Rightarrow y'' + y = 1$. y'' + y = 0let 4, (x) = Geos (x) 41 = -Gsin(x), 4" (x) = -G coo.(x) and 4"+4=- C, cos(x) + C, cos(x) = 0 1 finishely, yelx) = cz sin(x), yz = cz cos(x), yz (x) = - cz sin(x) => 42 +4= - (2 sin(x) + (2 sin(x) = 0 V :. Uh = C1 cos(x) + (2 sin(x) Let Up = 1, U'p + Up = 0+1=1 Let up = then U(x) = C1 cos(x) + C2 sin(x) +1 I nitial conditions: u(0) = 0, u(1) = 0 4(0) = 9 cos(0) + (2 sin(0) +1 => |C, +1 = 0| => C,=-1 4(N=0=-cos(1)+Cz sin(1)+1=0 $= C_{2}\sin(i) = con(i) - 1 \Rightarrow C_{2} = con(i) - 1$ $= con(i) - 1 \Rightarrow con(i) = con(i) - 1$ $= con(i) - 1 \Rightarrow con(i) = con(i) - 1$ then, 124 + 4=1 with 4(0)=0, 4(1)=0 have j-st

one soldion.

1.c)
$$\frac{d^2u}{dx^2} + u = 0$$
, $u(0) = 0$, $u(\pi) = 1$
 $u'' + u = 0$ Let $u_1(x) = c_1 co_2(x)$, $u_2(x) = c_2 c_2 c_2(x)$
 $u''_1 = -c_1 c_2 c_2(x) + c_1 c_2 c_2(x) = 0$
 $u''_2 = c_2 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_2 + u_2 = -c_2 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$. General robution is $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2(x) + c_2 c_2(x) = 0$
 $u''_1 + u'_2 = u'_1 = c_1 c_2(x) + c_2 c_2$

rot Solution