IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re U.S. Patent Application of Mark ZOLLER, et al.

Serial No.: 10/725.037 Art Unit: 1647

Filed: December 2, 2003 Examiner: R.S. Landsman

Title: ISOLATED (T1R2/T1R3) SWEET TASTE RECEPTORS THAT RESPOND TO

SWEET TASTE STIMULI

Mail Stop AMENDMENT

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

SUPPLEMENTAL AMENDMENT AND STATEMENT OF SUBSTANCE OF INTERVIEW UNDER 37 C.F.R. § 1.133(b)

Sir:

In response to the interview between Applicants' representatives and Examiner Landsman conducted on June 5, 2007 ("the interview"), please amend the present application as follows:

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims begin on page 3 of this paper.

Remarks begin on page 8 of this paper.

Amendments to the Specification

Please replace paragraph [0001] with the following paragraph:

[0001] This application is a divisional of U.S. Serial No. 10/179,373, filed June 26, 2002, which is a continuation-in-part of U.S. Serial Nos. 10/035,045 filed January 3, 2002, and 09/897,427, now U.S. Patent No. 6,955,887, filed on July 3, 2001, and 09/799,629 filed on July 3, 2001, Application 10/179,373, claims priority to Provisional Application Serial No. 60/300,434, filed on June 26, 2001, U.S. Provisional Application Serial No. 60/304,749 filed on July 13, 2001, U.S. Provisional Application Serial No. 60/310,493 filed on August 8, 2001, U.S. Provisional Application Serial No. 60/331,771 filed on November 21, 2001, U.S. Provisional Application Serial No. 60/339,472 filed December 14, 2001, and—7 U.S. Provisional Serial No. 60/372,090 filed April 15, 2002, and U.S. Provisional Application Serial No. 60/374,143 filed on April 22, 2002, all of which are incorporated by reference in their entirety.

Amendments to The Claims

The following listing of claims replaces all prior versions and listings of the claims in this application.

Listing of the Claims

1-193. (Cancelled)

194. (Currently amended) An isolated heteromeric teste receptor that responds to sweet taste-stimuli and comprises at least one T1R2 polypeptide and at least one T1R3 polypeptide, wherein said T1R2 polypeptide is (i) encoded by a nucleic acid sequence comprising SEQ. ID. NO: 10, (ii) encoded by a nucleic acid sequence comprising a nucleic acid that hybridizes to SEQ. ID. NO: 10 under stringent hybridization conditions which are conducting the hybridization reaction at 42°C in a solution comprising 50% formamide, 5X SSC, and 1% SDS and washing at 65°C in a solution comprising 0.2X SSC and 0.1% SDS, or (iii) a T1R2 polypeptide possessing at least 90% sequence identity to the T1R2 polypeptide of SEQ. ID. NO: 6;

and wherein said T1R3 polypeptide is (i) encoded by a nucleic acid sequence comprising SEQ. ID. NO: 9 or SEQ. ID. NO: 11; (ii) encoded by a nucleic acid sequence that hybridizes to SEQ. ID. NO: 9 or SEQ. ID. NO: 11 under stringent hybridization conditions which are conducting the hybridization reaction at 42°C in a solution comprising 50% formamide, 5X SSC, 10% SDS; and washing at 65°C in a solution comprising 0.2X SCC and 0.1% SDS, or (iii) a T1R3 polypeptide possessing at least 90% sequence identity to the T1R3 polypeptide of SEQ. ID. NO: 4 or SEO. ID. NO: 7.

195. (Previously presented) The isolated heteromeric receptor of claim 194, which is expressed by a recombinant host cell that contains T1R2 and T1R3 nucleic acid coding sequences.

196. (Canceled)

197. (Canceled)

- 198. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 and T1R3 polypeptide are of the same species origin.
- 199. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 polypeptide has the sequence of SEQ. ID. NO: 6.
- 200. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 receptor polypeptide has a sequence that possesses at least 90% sequence identity to the polypeptide of SEQ. ID. NO: 6.
- 201. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 receptor polypeptide has an amino acid sequence that possesses at least 95% sequence identity to the polypeptide of SEQ. ID. NO: 6.
- 202. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 receptor polypeptide has an amino acid sequence that possesses at least 96% sequence identity to the polypeptide of SEQ. ID. NO: 6.
- 203. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 receptor polypeptide has an amino acid sequence identity that possesses at least 97% sequence to the polypeptide of SEQ. ID. NO: 6.
- 204. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 receptor polypeptide has an amino acid sequence that possesses at least 98% sequence identity to the polypeptide of SEQ. ID. NO: 6.
- 205. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 receptor polypeptide has an amino acid sequence that possesses at least 99% sequence identity to the polypeptide of SEQ. ID. NO: 6.
- 206. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 polypeptide is encoded by the nucleic acid sequence of SEO. ID. NO: 10.

207. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R2 polypeptide is encoded by the nucleic acid sequence that hybridizes to SEQ. ID. NO: 10 under stringent hybridization conditions which are conducting the hybridization reaction at 42°C in a solution comprising 50% formamide, 5X SSC, and 1% SDS and washing at 65°C in a solution comprising 0.2X SSC and 0.1% SDS.

208. (Canceled)

- 209. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 is a human T1R3 polypeptide having the sequence of SEO. ID. NO: 7.
- 210. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is a human T1R3 polypeptide having at least 90% sequence identity to the polypeptide of SEQ. ID. NO: 7.
- 211. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is a human T1R3 polypeptide having at least 95% sequence identity to the polypeptide of SEQ. ID. NO: 7.
- 212. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is a human T1R3 polypeptide having at least 96% sequence identity to the polypeptide of SEQ. ID. NO: 7.
- 213. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is a human T1R3 polypeptide having at least 97% sequence identity to the polypeptide of SEQ. ID. NO: 7.
- 214. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is a human T1R3 polypeptide having at least 98% sequence identity to the polypeptide of SEQ. ID. NO: 7.

- 215. (Previously presented) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is a human T1R3 polypeptide having at least 99% sequence identity to the polypeptide of SEO. ID. NO: 7.
- 216. (Currently amended) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is encoded by the nucleic acid sequence of SEQ. ID. NO: 9 or SEQ. ID. NO: 11
- 217. (Currently amended) The isolated heteromeric receptor of claim 194, wherein said T1R3 polypeptide is encoded by a nucleic acid sequence that hybridizes to SEQ. ID. NO: 9 or SEQ. ID. NO: 11 under stringent hybridization conditions which are conducting the hybridization reaction at 42°C in a solution comprising 50% formamide, 5X SSC, and 1% SDS and washing at 65°C in a solution comprising 0.2X SSC and 0.1% SDS.
- 218. (Previously presented) The isolated heteromeric receptor of claim 194 which is expressed by a recombinant host cell.
- 219. (Previously presented) The isolated heteromeric receptor of claim 218, wherein said cell is a mammalian, yeast, insect or amphibian cell.
- (Previously presented) A membrane extract comprising said heteromeric receptor of claim 194.
- (Previously presented) A lipid bilayer comprising said heteromeric receptor of claim 194.
- 222. (Previously presented) The isolated heteromeric receptor of claim 194 which is immobilized on a solid phase.
- (Previously presented) The isolated heteromeric receptor of claim 194 which is attached to a detectable label.
- 224. (Previously presented) The isolated heteromeric receptor of claim 223, wherein said label is an enzyme, radionuclide, fluorophore or chemiluminescent compound.

- 225. (Previously presented) The isolated heteromeric receptor of claim 194 which further comprises a G protein.
- 226. (Previously presented) The isolated heteromeric receptor of claim 225, wherein said G protein is G_{015} , G_{016} or transducin.
- 227. (Previously presented) The isolated heteromeric receptor of claim 194 which is bound to an antibody.
- 228. (Previously presented) The isolated heteromeric receptor of claim 194 which is in solution.
- 229. (Currently amended) The isolated heteromeric receptor of claim 194 wherein said T1R2 polypeptide comprises the amino acid sequence of SEQ. ID. NO: 6 and said T1R3 polypeptide comprises the sequence of SEQ. ID. NO: 4 or SEQ. ID. NO. 7.

230-258. (Canceled)

- 259. (New) The isolated heteromeric receptor of claim 194 which is expressed by an endogenous taste cell.
- 260. (New) The cell of claim 259, wherein the cell is a taste cell present in foliate, circumvallate or fungiform papillae.
- 261. (New) The cell of claim 259, wherein the cell is a taste cell present in geschmackstreifen, oral cavity, gastrointestinal epithelium or epiglottis.
- 262. (New) The cell of claim 261, wherein the cell is a taste cell present in gastrointestinal epithelium.