Tema: PCA

1. Determine the population principal components Y_1 and Y_2 for the covariance matrix

$$\mathbf{\Sigma} = \left[egin{array}{cc} 5 & 2 \\ 2 & 2 \end{array}
ight]$$

Also, calculate the proportion of the total population variance explained by the first principal component.

- 2. Convert the covariance matrix in Exercise 1 to a correlation matrix ρ .
 - (a) Determine the principal components Y_1 and Y_2 from ρ and compute the proportion of total population variance explained by Y_1 .
 - (b) Compare the components calculated in Part a with those obtained in Exercise 1. Are they the same? Should they be?
 - (c) Compute the correlations $\rho_{Y_1,Z_1}, \rho_{Y_1,Z_2}$, and ρ_{Y_2,Z_1}
- 3. Data on x_1 = sales and x_2 = profits for the 10 largest companies in the world were already listed. We know that

$$\overline{\mathbf{x}} = \begin{bmatrix} 155.60 \\ 14.70 \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} 7476.45 & 303.62 \\ 303.62 & 26.19 \end{bmatrix}$$

- (a) Determine the sample principal components and their variances for these data. (You may need the quadratic formula to solve for the eigenvalues of S.)
- (b) Find the proportion of the total sample variance explained by \hat{y}_1 .
- (c) Compute the correlation coefficients $r_{\hat{y}_1,x_k}, k = 1, 2$. What interpretation, if any, can you give to the first principal component?
- 4. Convert the covariance matrix S in Exercise 3 to a sample correlation matrix R.
 - (a) Find the sample principal components \hat{y}_1, \hat{y}_2 and their variances.
 - (b) Compute the proportion of the total sample variance explained by \hat{y}_1 .
 - (c) Compute the correlation coefficients $r_{\hat{y}_1,z_k}, k=1,2$. Interpret \hat{y}_1
 - (d) Compare the components obtained in Part a with those obtained in Exercise 3 (a) do you feel that it is better to determine principal components from the sample covariance matrix or sample correlation matrix? Explain.
- 5. The weekly rates of return for five stocks listed on the New York Stock Exchange are given in Table 1 (stock_data.DAT).
 - (a) Construct the sample covariance matrix S, and find the sample principal components. (Note that the sample mean vector $\overline{\mathbf{x}}$ is displayed in Example 8.5.)

	JР		Wells	Royal	Exxon
Week	Morgan	Citibank	Fargo	Dutch Shell	Mobil
1	0.01303	-0.00784	-0.00319	-0.04477	0.00522
2	0.00849	0.01669	-0.00621	0.01196	0.01349
3	-0.01792	-0.00864	0.01004	0	-0.00614
4	0.02156	-0.00349	0.01744	-0.02859	-0.00695
5	0.01082	0.00372	-0.01013	0.02919	0.04098
6	0.01017	-0.01220	-0.00838	0.01371	0.00299
7	0.01113	0.02800	0.00807	0.03054	0.00323
8	0.04848	-0.00515	0.01825	0.00633	0.00768
9	-0.03449	-0.01380	-0.00805	-0.02990	-0.01081
10	-0.00466	0.02099	-0.00608	-0.02039	-0.01267
:	:	:	:	:	:

Table 1: Stock-Price Data (Weekly Rate of Return)

- (b) Determine the proportion of the total sample variance explained by the first three principal components. Interpret these components.
- (c) Given the results in Parts a-b, do you feel that the stock rates-of-return data can be summarized in fewer than five dimensions? Explain.
- 6. Consider the census-tract data listed in Table 2 (census_tract.DAT). Suppose the observations on X_5 = median value home were recorded in ten thousands, rather than hundred thousands, of dollars; that is, multiply all the numbers listed in the sixth column of the table by 10.
 - (a) Construct the sample covariance matrix S for the census-tract data when X_5 = median value home is recorded in ten thousands of dollars.
 - (b) Obtain the eigenvalue-eigenvector pairs and the first two sample principal components for the covariance matrix in Part a.
 - (c) Compute the proportion of total variance explained by the first two principal components obtained in Part b. Calculate the correlation coefficients, r_{y_i,x_k} , and interpret these components if possible.

Profesores:	Maria	Mestres.	Juan	Camilo	Yepes
i ioicooico.	TVICTIC	TVICE OILCE,	oaan	Camino	I CPCD

	Total population	Professional degree	Employed age over 16	Government employment	Median home value
	(thousands)	(percent)	(percent)	(percent)	(\$100,000)
1	2.67	5.71	69.02	30.3	1.48
2	2.25	4.37	72.98	43.3	1.44
3	3.12	10.27	64.94	32.0	2.11
4	5.14	7.44	71.29	24.5	1.85
5	5.54	9.25	74.94	31.0	2.23
6	5.04	4.84	53.61	48.2	1.60
7	3.14	4.82	67.00	37.6	1.52
8	2.43	2.40	67.20	36.8	1.40
9	5.38	4.30	83.03	19.7	2.07
10	7.34	2.73	72.60	24.5	1.42
	:	:	:	:	:

Table 2: Census-track Data