Exercice 4:

1. Soit
$$x \in \mathbb{R}_+$$
, $\forall n \in \mathbb{N}^*$, $n^{3/2} \frac{x}{n^2 + x^2} \underset{n \to +\infty}{\sim} \frac{x}{\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 0$. Donc par critère de Riemann, $\sum_{n \ge 1} u_n(x)$ converge.

Ainsi $\sum_{n\geq 1} u_n$ converge simplement sur \mathbb{R}_+ .

2. Soit
$$n \in \mathbb{N}^*$$
, $\forall x \in \mathbb{R}_+$, $u'_n(x) = \frac{n^2 + x^2 - 2x^2}{(n^2 + x^2)^2} = \frac{n^2 - x^2}{(n^2 + x^2)^2}$.

On a les variations suivantes :

Donc
$$\sup_{x \in \mathbb{R}_+} |u_n(x)| = \frac{1}{2n}$$
.

Donc $\sup_{x \in \mathbb{R}_+} |u_n(x)| = \frac{1}{2n}$. Comme la série $\sum \frac{1}{2n}$ est une série de Riemann divergente, $\sum u_n$ ne converge pas normalement sur \mathbb{R}_+ .

3. Soit
$$a > 0$$
, on a

3. Soit
$$a > 0$$
, on a $\forall n \in \mathbb{N}^*, \ \forall x \in [0, a], \ |u_n(x)| = \frac{x}{n^2 + x^2} \le \frac{a}{n^2}.$

Puisque $\sum \frac{a}{n^2}$ est une série de Riemann convergente (2 > 1), on en déduit que $\sum u_n$ converge normalement sur [0,a].