Saturday, June 14, 2025 10:07 PM

Author: Kumar Anurag

1. Impulse response of an LTI system:
Li linear Time Impulsiont

- · The impulse response of a system is the response of a system when the input is an impulse signal.
- · The Impulse Response of an LTI system is represented as hit).
- The impulse response in an characteristic of an LTI system. The output of a system to any input is calculated by convolving the input with the Impulse Response of the system.
- 2. Convolution Property of Laplace Transform:

If,
$$y(t) \rightleftharpoons \chi(s)$$

$$y(t) \rightleftharpoons \gamma(s)$$
then,
$$\chi(s) * y(t) \rightleftharpoons \chi(s) \cdot \gamma(s)$$

· Convolution in time domain is the multiplication in frequency domain.

In time domain ylt) can be columbated as:

ylt) = x(t) * hlt)

In Irequency domain,

L[
$$x$$
[t] = x [t]
L[$h(t)$] = $H(s)$
By comvolution Property:
L[y [t]] = x (s). $H(s)$
 y [s] = x (s). $H(s$)
 y [s] = x (s). y (s)
 y [s] = x (s). y (s)
 y [s] = x (s). y (s)
 y [s] = x (s). y (s)
 y (s) = x (s). y (s)

Note: In time domain, we can clearly see, it's difficult/complicated to calculate y (t) as we need to solve the comolution integral.

However, it is much easier to calculate

y(t) in frequency domain as we don't have to solve any integral, (it's just simple multipliation).

- 3 References.
- 1. Neso Academy