Attention Is All You Need

著者: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin

出典: Advances in Neural Information Processing Systems 30 (NIPS 2017)

目次

- 従来手法
- Attention
- Transformer
 - 機構
 - 推論時,学習時の流れ
 - エンコーダ, デコーダの動き
 - 応用例
- ・まとめ

時系列予測

時系列データ:個々の要素に順序があるデータ

- 自然言語
- 気象データ
- 株価

時系列予測のための従来手法

- Recurrent Neural Network (RNN[1986])
- Sequence to Sequence (seq2seq[2014])

RNN[1986]

中間層に閉路を持つニューラルネットワーク

- 時系列順に要素を入力
- ・中間層で過去の情報を伝播
- ・最終的な出力が埋め込み

seq2seq[2014]

時系列データから別の時系列データへ変換

• エンコーダ:入力データから埋め込みを生成

・デコーダ : 埋め込みから時系列データを生成

例:翻訳タスク

※[BOS]:文章の始まり, [EOS]:文章の終わり

課題点(1/2)

時系列データを逐次的に入力する必要あり

- ・ 並列化できず、計算速度の向上が困難
- ・単語数の増加で計算量が線形増加

課題点(2/2)

長期的な依存関係の捕捉が困難

- RNNの逆伝播はシーケンスが長いほど勾配消失
- ・ 逐次的に入力するため過去の情報は徐々に減衰

例: John went to the store to buy some food. He met his old friend there.

They talked about their school days. He really enjoyed catching up with him.

新たなアプローチ

Transformer: Attention機構で構成されたモデル

利点

- ・並列処理が可能に
- 長期的な依存関係を効率的に捕捉
- RNNより勾配消失が起きにくい

Attention

- 重要な情報に注目する仕組み
- ・機械翻訳では単語同士の関連度を計算し重み付け

	This	is	a	pen					
これ	0.80	0.03	0.15	0.02	これ	This	is	а	pen
は	0.02	0.95	0.03	0.00	は	This	is	а	pen
ペン	0.02	0.03	0.25	0.70	ペン	This	is	а	pen
です	0.15	0.05	0.75	0.05	です	This	is	а	pen

事前準備

•入力

X_{Source} : 参照したい情報

• *X_{Target}* : 主となる情報

• 機械翻訳の例

• X_{Source} :This is a pen (元の文)

• X_{Target} :これ は ペン です (翻訳文)

事前準備

• 入力を Query , Key , Value にマッピング

W:学習可能なパラメータ行列

• X : 入力行列

$$Q = X_{Target} W^{Q}$$

$$K = X_{Source}W^{K}$$

$$V = X_{Source}W^V$$

Q, K, V の次元数

Query

Key , Value

: *X*_{Target}のトークン数×512

: *X_{Source}*のトークン数×512

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

- dはQ,Kの埋め込みベクトルの次元数
- ・データ同士の関連度計算
- 関連度のスケーリング
- 関連度のソフトマックス正規化
- QとKの関連度でValueの重みつけ

dはQ,Kの埋め込みベクトルの次元数

$$Attention(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d}}\right)V$$

- データ同士の関連度計算
- 関連度のスケーリング
- 関連度のソフトマックス正規化
- QとKの関連度でValueの重みつけ

$$Attention(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

- データ同士の関連度計算
- 関連度のスケーリング
- 関連度のソフトマックス正規化
- QとKの関連度でValueの重みつけ

dはQ,Kの埋め込みベクトルの次元数

Transformerの全体像

機構

- 前処理
- Multi-Head Attention
- フィードフォワードネットワーク

機構

- 前処理
 - トークン化
 - Embedding
 - Positional Encoding
- Multi-Head Attention
- フィードフォワードネットワーク

トークン化

- ・トークンとは
 - テキストデータを処理する際に使用される基本的な単位
- トークン化についてのいくつかの手法がある
 - ・単語トークン化
 - ・文字トークン化
 - サブワードトークン化

単語トークン化

- テキストを単語ごとに分割する方法
 - スペースや句読点に基づく手法
 - ・辞書を使用して単語を特定する手法 等がある
- 具体例

• 入力 : "I love eating pizza"

• トークン : ["I" , "love" , "eating" , "pizza"]

文字トークン化

- テキストを個々の文字に分割する方法
 - ・ 単語の境界を意識せずに文字の並びをトークンとして扱う

• 具体例

• 入力 : "Hello"

• トークン : ["H", "e", "I", "I", "o"]

サブワードトークン化

- テキストを部分文字列に分割する方法
 - ・ 単語レベルと文字レベルの中間的手法
- 具体例

• 入力 : "I loved eating pizza"

• トークン : ["I" , "love" , "d" , "eat" , "ing" , "pizza"]

Embedding

Embedding(機械翻訳の例)

トークンをベクトルに変換

$$\begin{array}{c} I \\ \text{am} \\ \end{array} \begin{array}{c} X' = \begin{bmatrix} 2.62 & 1.54 & \dots & 7.64 \\ 1.45 & 2.31 & \dots & 4.38 \\ 3.22 & 5.33 & \dots & 9.21 \end{bmatrix}$$

d:特徵次元数

Positional Encoding

Positional Encoding

- 各単語の位置情報を埋め込む
 - モデル内で順序を考慮した学習が可能になる
- 1. 位置情報行列 P を計算
- 2. 入力のEmbeddingと加算

$$P_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

$$P_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

d_{model}:総次元数

pos: 文字の位置i: 次元

位置情報行列 P の詳細

- 三角関数を用いる理由
 - 埋め込む値を -1 ~ 1 の範囲に制限可能

$$P = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

- 10,000とは
 - 三角関数は周期関数なので同じ値が返ることがある
 - 同じ値が現れないほど低い周波数を与える目的

位置情報行列の形

- 位置情報行列Pは以下の行列のようになる (イメージ)
 - sin, cos が交互に出現

$$P_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$
 , $P_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$

sin, cos 両方用いる理由

$$P_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) \quad , \quad P_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

- 低い周波数の三角関数では値の変化が小さい
- 表現力を大きくするために両方使用

 d_{model} : 総次元数

pos:文字の位置

i :次元

機構

• 前処理

- Multi-Head Attention
 - Multi-Head Attention 計算
 - Single Headとの違い
 - Self Attention とは
- フィードフォワードネットワーク

Multi Head Attention

Multi Head Attention

- 複数のAttentionを並行して使用する手法
 - 異なる部分的な情報や関係性を同時に学習可能

Single と Multi の違い

• Single : 主に一つの部分にしか注目できない

• Multi : 複数箇所に注目可能

Single Head

Multi Head

Single と Multi の違い

• Single : 主に一つの部分にしか注目できない

• Multi : 複数箇所に注目可能

 $MultiHead(Q, K, V) = Concat (head_1, ..., head_8) W^O$ $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

・本論文中では8つのheadを使用

W:学習可能なパラメータ行列

i : ヘッドの割り当て番号

 $MultiHead(Q, K, V) = Concat (head_1, ..., head_8) W^O$ $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- Q,K,Vをheadの数に分割
- head毎にAttentionをとる
- head毎のAttentionを連結
- 連結した行列を線形変換

 $MultiHead(Q,K,V) = Concat (head_1,...,head_8) W^{O}$

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

- Q,K,Vをheadの数に分割
- head毎にAttentionをとる
- head毎のAttentionを連結
- 連結した行列を線形変換

 $MultiHead(Q,K,V) = Concat (head_1,...,head_8) W^O$

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

- Q,K,Vをheadの数に分割
- head毎にAttentionをとる
- head毎のAttentionを連結
- 連結した行列を線形変換

 $MultiHead(Q, K, V) = Concat (head_1, ..., head_8)W^O$ $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- Q,K,Vをheadの数に分割
- head毎にAttentionをとる
- head毎のAttentionを連結
- 連結した行列を線形変換

 $MultiHead(Q, K, V) = Concat (head_1, ..., head_8) W^0$

 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- Q,K,Vをheadの数に分割
- head毎にAttentionをとる
- head毎のAttentionを連結
- 連結した行列を線形変換

Transformerの全体像

Cross と Self の違い

• Q,K,Vのマッピング

• Cross : X_{Target} を Q に, X_{Source} を K,V にマッピング • Self : 1つのデータでQ,K,Vにマッピング

Cross, Self Attention (機械翻訳の例)

- Cross Attention
 - 異なるデータ間でAttentionをとる手法
 - •【例】 X_{Target} :This is a pen (元の文) X_{Source} :これ は ペン です (翻訳文)
- Self Attention
 - ・自分自身のデータ同士でAttentionをとる手法
 - 機械翻訳では文章中のトークン同士の関係性を計算
 - 【例】A cat ate the meal because it was hungry という文章中の「it」が何を指すかを探索

Self Attention (機械翻訳の例)

•【例】A cat ate the meal because it was hungry という文章中の「it」が何を指すかを探索

機構

- 前処理
- Multi-Head Attention
- フィードフォワードネットワーク

Transformerの全体像

$$FFNN(x) = MAX(0, xW_1 + b_1)W_2 + b_2$$

- 全結合(512次元から2048次元へ)
- •活性化関数(ReLU)を適用
- 全結合(2048次元から512次元へ)

$$FFNN(x) = MAX(0, xW_1 + b_1)W_2 + b_2$$

- 全結合(512次元から2048次元へ)
- •活性化関数(ReLU)を適用
- 全結合(2048次元から512次元へ)

$$FFNN(x) = MAX(0, xW_1 + b_1)W_2 + b_2$$

- 全結合(512次元から2048次元へ)
- •活性化関数(ReLU)を適用
- 全結合(2048次元から512次元へ)

$$FFNN(x) = MAX(0, xW_1 + b_1)W_2 + b_2$$

- 全結合(512次元から2048次元へ)
- •活性化関数(ReLU)を適用
- 全結合(2048次元から512次元へ)

Transformerの全体像

学習時

- •全て同時に学習する
- 学習するときは未来の情報は隠す
 - 【例】「です」を学習する場合「です」「。」を隠す

Transformerの全体像

- 1. エンコーダ入力前の前処理
- 2. Multi Head Attentionに入力
- 3. Feed Forward Networkに入力
- 4. 次のエンコーダに入力値として提供
- 2~4を計6回繰り返し, 最上位のエンコーダの出力値をデコーダへ

- 1. エンコーダ入力前の前処理
- Embedding
 - トークンをベクトルに変換
- Positional Encoding
 - ・位置情報を入力に埋め込み

2. Multi Head Attentionに入力

 $MultiHead(Q, K, V) = Concat (head_1, ..., head_8) W^O$ $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

- Self Attention
 - ・自身のデータ同士の関係を計算
- ・ 残差接続 , レイヤー正規化

3. Feed Forward Networkに入力

$$FFNN(x) = MAX(0, xW_1 + b_1)W_2 + b_2$$

4. 次のエンコーダに入力値として

• 2~4を計6回繰り返し, 最上位の エンコーダの出力値をデコーダへ

- 1. デコーダ入力前の前処理
- 2. Multi Head Attentionに入力
- 3. エンコーダからの出力も取り入れ Multi Head Attentionに入力
- 4. Feed Forward Networkに入力
- 5. 次のデコーダに入力値として提供

2~5を計6回繰り返し, 最上位の デコーダの出力値をLinear, Softmax へ

- 1. デコーダ入力前の前処理
- Embedding
- Positional Encoding

- 2. Masked Multi Head Attentionに入力
- Self Attention
- Mask
 - ・正解の情報である未来の情報を隠す機構

υT

		K -					
		これ	は	ペン	です		
	これ	1.00	0.00	0.00	0.00		
Q	は	0.03	0.97	0.00	0.00		
	ペン	0.25	0.03	0.72	0.00		
	です	0.00	0.02	0.03	0.95		

- 3. エンコーダからの出力も取り入れ Multi Head Attentionに入力
- Cross Attention

X_{Target} : デコーダ内での情報

X_{Source} : エンコーダからの情報

以上二つのデータ間の関係性を計算_{L/}T

		\mathbf{N}					
		This	is	а	pen		
Q	これ	0.80	0.03	0.15	0.02		
	は	0.02	0.95	0.03	0.00		
	ペン	0.02	0.03	0.70	0.20		
	です	0.15	0.05	0.75	0.05		

- 4. Feed Forward Networkに入力
- 5. 次のデコーダに入力値として提供

2~5を計6回繰り返し, 最上位の デコーダの出力値をLinear, Softmax へ

- 出力形式
 - ・候補となる単語の確率が出力
 - ・最高確率の単語を選択すれば翻訳可能

元の文: This is a pen

	これ	•••	です	 は		ペン	
1単語目	0.8		0	 0		0.02	
2単語目	0.01		0	 0.7	•••	0.01	
3単語目	0.04		0.02	 0.01		0.9	
4単語目	0		0.75	 0	•••	0.1	

全体像

Transformerの応用例

- 自然言語処理
 - ・文脈理解,文章生成,チャットボットに使用
 - GPT, BERT
 - 機械翻訳
 - Google翻訳, DeepL翻訳
- 画像処理
 - 画像分類
 - VIT
 - 画像生成
 - DALL-E, VQ-VAE

まとめ

- Transformer
 - Attention機構で構成されたモデル
 - 自然言語処理,画像処理,音声処理等幅広い分野で活躍
- 主な提案
 - Multi Head Attention
 - 複数箇所に注目可能なAttention機構
 - Self Attention
 - ・入力文中の単語間の関係を計算
 - Positional Encoding
 - Attentionのみでは学習できない時系列情報を埋め込む

補足資料

全体像

全体像

セルフアテンション (機械翻訳)

実験

- タスク
 - 英語からドイツ語
 - ・英語からフランス語 への機械翻訳
- データセット
 - WMT 2014 News:翻訳されたニュースでの英語の文章
- 評価指標
 - BLEUスコア

BLEUスコア

- 機械翻訳の精度を評価する指標
 - 人間の翻訳例と機械翻訳の類似度を計算

$$BLEU = BP_{BLEU} imes exp(\sum_{n=1}^{N} w_n log p_n)$$

$$p_n = rac{\Sigma i$$
翻訳文 i と参照訳 i で一致した $n-gram$ 数 $w_n = rac{1}{N}$

BP_{BLEU}: 文の長さが参照例より短い時のペナルティ

実験結果

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$	

Attention計算

スケールドットプロダクトアテンション

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

dはQ,Kの埋め込みベクトルの次元数

- ・データ同士の関連度計算
- 関連度のスケーリング
- 関連度のソフトマックス正規化
- QとKの関連度でValueの重みつけ

LSTM

- 入力ゲートg_j^{I,t}
- 出力ゲートg_i^{O,t}
- 忘却ゲートg_j^{F,t}
- メモリセルの状態 s_j^t
- 長期記憶を可能にするために 考案された
- 中間層のユニットをメモリユニットで 置き換えた構造

LSTMからTransformerにする利点

- 並列計算が可能
- ・長期依存関係の学習の改善

行正規化

• 行ごとに正規化

例 (イメージ)

1	2	3
4	5	6
L 7	8	9]

0.17	0.33	0.5
0.27	0.33	0.4
0.29	0.33	.38.

トークン化(日本語)

- 単語トークン化
 - テキスト: "私はリンゴが好きです。"
 - トークン: ["私", "は", "リンゴ", "が", "好き", "です", "。"]
- ・文字トークン化
 - ・テキスト: "リンゴ"
 - トークン: ["リ", "ン", "ゴ"]
- サブワードトークン化(イメージ)
 - テキスト: "私はリンゴが好きです"
 - トークン:['私','は','リン','ゴ','が','好','き','です']

関連度スケーリング理由

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

dはQ,Kの埋め込みベクトルの次元数

- 内積の計算結果が大きくなりすぎるのを防ぐ
- 大きくなりすぎると
 - ・ 数値的に不安定に
 - 勾配消失,勾配爆発

- $d_{model} = 4$ と仮定して計算
- トークン数は3

$$P_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

$$P_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)$$

d_{model}: 総次元数

pos: 文字の位置i: 次元の位置

$$P = pos$$

$$I \qquad 0 \qquad \left[\sin\left(\frac{pos}{10000^{0/4}}\right) \quad \cos\left(\frac{pos}{10000^{0/4}}\right) \quad \sin\left(\frac{pos}{10000^{2/4}}\right) \quad \cos\left(\frac{pos}{10000^{2/4}}\right) \right]$$

$$am \qquad 1 \qquad \left[\sin\left(\frac{pos}{10000^{0/4}}\right) \quad \cos\left(\frac{pos}{10000^{0/4}}\right) \quad \sin\left(\frac{pos}{10000^{2/4}}\right) \quad \cos\left(\frac{pos}{10000^{2/4}}\right) \right]$$

$$good \qquad 2 \qquad \left[\sin\left(\frac{pos}{10000^{0/4}}\right) \quad \cos\left(\frac{pos}{10000^{0/4}}\right) \quad \sin\left(\frac{pos}{10000^{2/4}}\right) \quad \cos\left(\frac{pos}{10000^{2/4}}\right) \right]$$

$$0 \qquad 1 \qquad 2 \qquad 3 \qquad i$$

$$P = \begin{cases} pos \\ I & 0 \\ sin(0) & cos(0) \\ am & 1 \\ good & 2 \end{cases} sin(1) & cos(1) \\ sin(2) & cos(2) \\ 1 & sin(\frac{2}{100}) \\ sin(\frac{2}{100}) & cos(\frac{2}{3100}) \\ sin(2) & cos(2) \\ 1 & sin(\frac{2}{100}) \\ sin(2) & cos(2) \\ 1 & sin(\frac{2}{100}) \\ sin(2) & cos(\frac{2}{3100}) \\ sin(2)$$

$$X = \begin{bmatrix} 2.62 & 1.54 & 3.51 & 7.64 \\ 1.45 & 2.31 & 5.14 & 4.38 \\ 3.22 & 5.33 & 4.17 & 3.21 \end{bmatrix} + \begin{bmatrix} 0.00 & 1.00 & 0.00 & 1.00 \\ 0.84 & 0.54 & 0.01 & 0.99 \\ 0.91 & -0.41 & 0.02 & 0.99 \end{bmatrix}$$

$$X'$$

$$= \begin{bmatrix} 2.62 & 2.54 & 3.51 & 8.64 \\ 2.29 & 2.85 & 5.15 & 5.37 \\ 4.13 & 4.92 & 4.19 & 4.20 \end{bmatrix}$$

フィードフォワードネットワーク

入力層 512次元 中間層 2048次元

出力層 512次元

