```
#@title Licensed under the Apache License, Version ender the Apache
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at License, Version 2.0 (the

# License, Version 2.0 (the

# License);

# License);

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
```

Lesson 2

In the screencast for this lesson I go through a few scenarios for time series. This notebook contains the code for that with a few little extras! :)

Setup

```
!pip install -U tf-nightly-2.0-preview

ERROR: Could not find a version that satisfies the requirement tf-nightly-2.0-preview (formatter)

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras

def plot_series(time, series, format="-", start=0, end=None, label=None):
    plt.plot(time[start:end], series[start:end], format, label=label)
    plt.xlabel("Time")
    plt.ylabel("Value")
    if label:
        plt.legend(fontsize=14)
    plt.grid(True)
```

Trend and Seasonality

```
def trend(time, slope=0):

return slope * time

///colors/disable to the color of t
```

Let's create a time series that just trends upward:

```
time = np.arange(4 * 365 + 1)
baseline = 10
series = trend(time, 0.1)

plt.figure(figsize=(10, 6))
plot_series(time, series)
plt.show()
```


Now let's generate a time series with a seasonal pattern:

```
plt.figure(figsize=(10, 6))
plot_series(time, series)
plt.show()
```


Now let's create a time series with both trend and seasonality:

```
slope = 0.05
series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude)
plt.figure(figsize=(10, 6))
plot_series(time, series)
plt.show()
```


Noise

In practice few real-life time series have such a smooth signal. They usually have some noise, and the signal-to-noise ratio can sometimes be very low. Let's generate some white noise:

```
def white_noise(time, noise_level=1, seed=None):
    rnd = np.random.RandomState(seed)
    return rnd.randn(len(time)) * noise_level
```

noise_level = 5
noise = white_noise(time, noise_level, seed=42)

plt.figure(figsize=(10, 6))
plot_series(time, noise)
plt.show()

Now let's add this white noise to the time series:

series += noise

```
plt.figure(figsize=(10, 6))
plot_series(time, series)
plt.show()
```


All right, this looks realistic enough for now. Let's try to forecast it. We will split it into two periods: the training period and the validation period (in many cases, you would also want to have a test period). The split will be at time step 1000.

def autocorrelation(time, amplitude, seed=None):

rnd = np.random.RandomState(seed)

```
φ = 0.8
ar = rnd.randn(len(time) + 1)
for step in range(1, len(time) + 1):
    ar[step] += φ * ar[step - 1]
return ar[1:] * amplitude
```

```
series = autocorrelation(time, 10, seed=42)
plot_series(time[:200], series[:200])
plt.show()
```



```
series = autocorrelation(time, 10, seed=42) + trend(time, 2)
plot_series(time[:200], series[:200])
plt.show()
```


series = autocorrelation(time, 10, seed=42) + seasonality(time, period=50, amplitude=150) + t
plot_series(time[:200], series[:200])
plt.show()

 Γ


```
series = autocorrelation(time, 10, seed=42) + seasonality(time, period=50, amplitude=150) + t
series2 = autocorrelation(time, 5, seed=42) + seasonality(time, period=50, amplitude=2) + tre
series[200:] = series2[200:]
# series += noise(time, 30)
plot_series(time[:300], series[:300])
plt.show()
```



```
def impulses(time, num_impulses, amplitude=1, seed=None):
    rnd = np.random.RandomState(seed)
    impulse_indices = rnd.randint(len(time), size=10)
    series = np.zeros(len(time))
    for index in impulse_indices:
        series[index] += rnd.rand() * amplitude
    return series

series = impulses(time, 10, seed=42)
plot_series(time, series)
plt.show()
```

 \Box


```
def autocorrelation(source, φs):
    ar = source.copy()
    max_lag = len(φs)
    for step, value in enumerate(source):
        for lag, φ in φs.items():
            if step - lag > 0:
                  ar[step] += φ * ar[step - lag]
    return ar
```

```
signal = impulses(time, 10, seed=42)
series = autocorrelation(signal, {1: 0.99})
plot_series(time, series)
plt.plot(time, signal, "k-")
plt.show()
```



```
signal = impulses(time, 10, seed=42)
series = autocorrelation(signal, {1: 0.70, 50: 0.2})
plot_series(time, series)
plt.plot(time, signal, "k-")
plt.show()
```

 Γ

series_diff1 = series[1:] - series[:-1]
plot_series(time[1:], series_diff1)

from pandas.plotting import autocorrelation_plot
autocorrelation_plot(series)


```
from statsmodels.tsa.arima_model import ARIMA
import pandas as pd
model = ARIMA(series, order=(5, 1, 0))
model_fit = model.fit(disp=0)
print(model fit.summary())
```

Dep. Variable: Model: Method: Date: Time: Sample:	,	ARIMA(5, 1, css- d, 23 Sep 2	0) Log mle S.D		5	2223.4 0.0 -4432.8 -4395.8 -4419.0
	coef	std err	z	P> z	[0.025	0.97
const	0.0003	0.001	0.384	0.701	-0.001	0.0
ar.L1.D.y	-0.1235	0.026	-4.714	0.000	-0.175	-0.
ar.L2.D.y	-0.1254	0.029	-4.333	0.000	-0.182	-0.
ar.L3.D.y	-0.1089	0.029	-3.759	0.000	-0.166	-0.
ar.L4.D.y	-0.0914	0.029	-3.162	0.002	-0.148	-0.
ar.L5.D.y	-0.0774	0.029	-2.675 Roots	0.008	-0.134	-0.
	Real	eal Imaginar		Modulus	Modulus	
AR.1	1.0145	-1.1311j		1.5194		-0.13
AR.2	1.0145	+1.1311j		1.5194	1.5194	
AR.3	-1.8173	-0.00005		1.8173	1.8173	
AR.4	-0.6967	-1.6113j		1.7554		-0.31
AR.5	-0.6967	+1.6113j		1.7554		0.31

```
df = pd.read_csv("sunspots.csv", parse_dates=["Date"], index_col="Date")
series = df["Monthly Mean Total Sunspot Number"].asfreq("1M")
series.head()
series.plot(figsize=(12, 5))
series["1995-01-01":].plot()
series.diff(1).plot()
plt.axis([0, 100, -50, 50])
from pandas.plotting import autocorrelation_plot
autocorrelation_plot(series)
```

```
autocorrelation plot(series.diff(1)[1:])
autocorrelation_plot(series.diff(1)[1:].diff(11 * 12)[11*12+1:])
plt.axis([0, 500, -0.1, 0.1])
autocorrelation plot(series.diff(1)[1:])
plt.axis([0, 50, -0.1, 0.1])
116.7 - 104.3
[series.autocorr(lag) for lag in range(1, 50)]
pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_co
Read a comma-separated values (csv) file into DataFrame.
from pandas.plotting import autocorrelation plot
series diff = series
for lag in range(50):
 series_diff = series_diff[1:] - series_diff[:-1]
autocorrelation plot(series diff)
import pandas as pd
series_diff1 = pd.Series(series[1:] - series[:-1])
autocorrs = [series diff1.autocorr(lag) for lag in range(1, 60)]
plt.plot(autocorrs)
plt.show()
```