Amendments to the Claims:

1. (currently amended) Dye mixture comprising at least one dye of the formula (1)

$$O_2N$$

$$R_2$$

$$R_4$$

$$R_6$$

$$R_6$$

$$R_6$$

and at least one dye of the formula (2)

$$\begin{array}{c}
N \\
N \\
N \\
R \\
R
\end{array}$$

$$\begin{array}{c}
R \\
9 \\
N \\
R \\
11
\end{array}$$

$$\begin{array}{c}
R \\
10 \\
R \\
11
\end{array}$$

$$\begin{array}{c}
R \\
11
\end{array}$$

where

R₁ is hydrogen, halogen, nitro or cyano

R₂ is hydrogen, halogen, nitro or cyano

 R_3 is hydrogen, halogen, C_1 - C_4 -alkoxy or C_1 - C_4 -alkyl

 R_4 is hydrogen, or C_1 - C_4 -alkyl,

 R_5 is hydrogen, unsubstituted or hydroxyl-, cyano-, C_1 - C_4 -alkylcarbonyloxy-, substituted C_1 - C_4 -alkyl or C_1 - C_4 -alkenyl,

 R_6 is unsubstituted or hydroxyl-, cyano-, C_1 - C_4 -alkylcarbonyloxy-, C_1 - C_4 -alkoxycarbonyl-substituted C_1 - C_4 -alkyl or C_1 - C_4 -alkenyl,

 R_7 is nitro, C_1 - C_4 -alkoxy or the radical -SO₂CH₃,

 R_8 is hydrogen or C_1 - C_4 -alkyl,

R₉ is hydrogen or C₁-C₄-alkyl,

 R_{10} is unsubstituted or hydroxyl- or cyano-substituted $C_1\text{-}C_4\text{-alkyl}$, and

 R_{11} is unsubstituted C_1 - C_4 -alkyl or is C_1 - C_4 -alkyl which is substituted by the radical -O-COR₁₂, where R_{12} is C_1 - C_4 -alkyl.

- 2. (currently amended) Dye mixtures as per mixture according to Claim 1, characterized in that they contain wherein said dye mixture comprises up to 60% of a dye as per the dye of formula (1) based on the sum total of the dyes (1) and (2).
- 3. (currently amended) Dye mixture as per according to Claim 1 characterized in that it centains further comprising at least one further one of the following dyes:

where

R₁₃ is C₁-C₄-alkyl, R₁₄ is C₁-C₄-alkyl and Halogen-denotes-the is a halogen atoms,

$$\begin{array}{c|c}
\hline
A & N \\
O_2N
\end{array}$$

$$\begin{array}{c|c}
SO_2 \cdot NH & B \\
\hline
\end{array}$$
(4)

where the rings A and B may be further substituted,

$$O = \begin{array}{c} NH - C \\ R_{15} \\ HO \end{array} \qquad (5)$$

where

 R_{15} is $C_1\hbox{-} C_4\hbox{-alkyl}$ and the rings C and D may be further substituted,

$$R_{32} \longrightarrow N \longrightarrow N_{16} \longrightarrow R_{17}$$

$$(6)$$

where

 R_{16} is unsubstituted or hydroxyl- or cyano-substituted C_1 - C_4 -alkyl, R_{17} is unsubstituted C_1 - C_4 -alkyl or C_1 - C_4 -alkyl which is substituted by the radical -O-COR₁₈, where R_{18} is C_1 - C_4 -alkyl, R_{32} is nitro, C_1 - C_4 -alkoxy or the radical -SO₂CH₃ and R_{33} is hydrogen or C_1 - C_4 -alkyl,

where

 R_{19} is C_1 - C_4 -alkyl, R_{20} is C_1 - C_4 -alkyl, R_{15} is C_1 - C_4 -alkyl and R_{22} is C_1 - C_4 -alkyl or the radical -NHCOR₂₃, where R_{23} is C_1 - C_4 -alkyl,

where R₂₄ is halogen,

$$\begin{array}{c|c}
R_{25} \\
N \\
R_{26}
\end{array}$$

$$\begin{array}{c|c}
R_{27} \\
R_{28}
\end{array}$$

$$\begin{array}{c|c}
R_{27} \\
R_{28}
\end{array}$$

$$\begin{array}{c|c}
\end{array}$$

where

 R_{25} is cyano, nitro or halogen, R_{26} is halogen, R_{27} is unsubstituted or hydroxyl-substituted C_1 - C_4 -alkyl and R_{28} is unsubstituted or hydroxyl-substituted C_1 - C_4 -alkyl and the naphthyl ring E may be further substituted, and/or

where

 R_{26} is C_1 - C_4 -alkyl or the radical NHCOR₁₇, where R_{17} is C_1 - C_4 -alkyl, R_{27} is C_1 - C_4 -alkyl or C_1 - C_4 -alkyl and R_{28} is C_1 - C_4 -alkyl or C_1 - C_4 -alkyl.

4.(currently amended) Dye mixtures as per mixture according to Claim 1 characterized in that wherein the at least one dye of the formula (1) the is a dye of formula (1') and at least one dye of the formula (2'):

$$O_2N$$
 O_2N
 O_2N

and the at least one dye-of the formula (2) the is a dye of formula (2')

- 5. (currently amended) Use of dye mixtures as per Claim 1-A method for dyeing or printing a semisynthetic or synthetic hydrophobic fibre material materials comprising cellulose acetate, comprising the step of contacting a dye mixture according to Claim 1 with the semisynthetic or synthetic hydrophobic fibre material comprising cellulose acetate.
- 6. (currently amended) Use of dye mixtures as per Claim 1 A method for dyeing or printing a fibrous structures structure comprising polyester and/or cellulose secondary acetate, comprising the step of contacting a dye mixture according to Claim 1 with the fibrous structure comprising polyester and/or cellulose secondary acetate.
- 7. (currently amended) Fibrous structures A fibrous structure dyed or printed with a dye mixture as per according to Claim 1.
- 8. (new) A semisynthetic or synthetic hydrophobic fibre material dyed or printed with a dye mixture according to Claim 1.