```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
In [4]: df = pd.read_csv('iris_csv.csv')
df
```

Out[4]:		sepallength	sepalwidth	petallength	petalwidth	class
- -	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [5]: df.isnull().sum()
```

Out[5]: sepallength 0 sepalwidth 0 petallength 0 petalwidth 0 class 0 dtype: int64

```
In [6]: df.shape
```

Out[6]: (150, 5)

1.300000

1.800000

2.500000

```
In [7]: df.describe()
```

Out[7]:		sepallength	sepalwidth	petallength	petalwidth
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000

3.000000

3.300000

4.400000

4.350000

5.100000

6.900000

```
In [18]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_stat)
```

```
In [19]: x_train.shape
```

Out[19]: (120, 4)

50%

75%

max

5.800000

6.400000

7.900000

```
In [20]: x_test.shape
```

Out[20]: (30, 4)

```
In [21]: from sklearn.preprocessing import StandardScaler
```

```
In [24]: sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)
```

```
In [26]: from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier()
```

```
In [27]: classifier.fit(x_train,y_train)
         C:\Users\prati\anaconda3\lib\site-packages\sklearn\neighbors\_classification.
         py:215: DataConversionWarning: A column-vector y was passed when a 1d array w
         as expected. Please change the shape of y to (n_samples,), for example using
         ravel().
           return self._fit(X, y)
Out[27]: KNeighborsClassifier()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust
         the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
In [28]: y_pred = classifier.predict(x_test)
         from sklearn.metrics import accuracy_score,confusion_matrix
In [31]:
         accuracy_score(y_test,y_pred)
Out[31]: 0.866666666666667
In [32]: confusion_matrix(y_test,y_pred)
Out[32]: array([[11,
                      0,
                           0],
                 [0, 9, 4],
                 [ 0, 0, 6]], dtype=int64)
```

In []: