STK335 Analisis Eksplorasi Data Pertemuan 03

Pemeriksaan Sebaran Data

Bagus Sartono

Outline

Quantile-Quantile Plot

- Apa itu kuantil?
- Plot kuantil
- QQplot
- QQplot Normal
- QQplot selain normal

Goodness of Fit Test

- Chi-Square Test
- Kolmogorov-Smirnov Test

Persentil dan Kuantil

- Persentile ke-k dari sebuah dataset adalah sebuah nilai yang membagi sedemikian rupa sehingga terdapat k% amatan yang kurang dari nilai tersebut dan (100-k)% amatan bernilai lebih besar dari nilai persentil tersebut
 - Persentil ke-25 disebut juga sebagai lower quartile atau Q1
 - Persentil ke-50 disebut juga sebagai median
 - Persentil ke-75 disebut juga sebagai upper quartile atau Q3
- Dalam analisis statistik, istilah kuantil lebih umum digunakan dibandingkan persentil, meskipun maknanya sama. Hanya saja sering digunakan indeks yang berbeda.
 - $P25 \rightarrow Q(0.25)$
 - $P50 \rightarrow Q(0.5)$
 - $P75 \rightarrow Q(0.75)$

Kuantil

Misalkan ada dataset berikut

3.7 2.7 3.3 1.3 2.2 3.1

Pertama urutkan datanya

1.3 2.2 2.7 3.1 3.3 3.7

 Padankan setiap nilai yang terurut dengan bilangan fraksi antara 0 dan 1 dengan jarak yang sama

Sample fraction	0	.2	.4	.6	.8	1
Quantile	1.3	2.2	2.7	3.1	3.3	3.7

Kuantil

Kuantil yang lain diperoleh menggunakan interpolasi linear

Kuantil

- Andaikan terdapat suatu gugus data $x_1, x_2, ..., x_n$. Kuantil dengan fraksi tertentu diperoleh dengan cara sebagai berikut:
 - Urutkan datanya $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$.
 - Setiap data yang terurut merupakan kuantil yang bersesuaian dengan fraksi

$$p_i = \frac{i-1}{n-1}$$

untuk $i = 1, \ldots, n$

Kuantil untuk fraksi lain diperoleh dengan melakukan interpolasi linear

Plot Kuantil

Merupakan plot antar nilai kuantil dan fraksinya

 Serupa dengan plot dari fungsi sebaran kumulatif empirik (menukar sumbu)

24.3	14.0	1	14.0	0.0000	
17.7	15.0	2	15.0	0.0385	
23.4	16.1	3	16.1	0.0769	
20.2	16.2	4	16.2	0.1154	
22.8	16.6	5	16.6	0.1538	
16.1	16.7	6	16.7	0.1923	30
22.0	16.8	7	16.8	0.2308	30
21.8	17.2	8	17.2	0.2692	28
17.6	17.2	9	17.2	0.3077	
16.7	17.3	10	17.3	0.3462	26
18.2	17.4	11	17.4	0.3846	24
14.0	17.6	12	17.6	0.4231	•••
29.4	17.7	13	17.7	0.4615	22
19.4	18.2	14	18.2	0.5000	20
16.2	19.2	15	19.2	0.5385	* *
16.6	19.4	16	19.4	0.5769	18
17.4	20.2	17	20.2	0.6154	16
23.9	21.0	18	21.0	0.6538	16
19.2	21.8	19	21.8	0.6923	14 •
17.3	22.0	20	22.0	0.7308	
16.8	22.8	21	22.8	0.7692	12
21.0	23.1	22	23.1	0.8077	10
15.0	23.4	23	23.4	0.8462	0 0.2 0.4 0.6 0.8 1
17.2	23.9	24	23.9	0.8846	0 0.2 0.4 0.0 0.0 1
26.4	24.3	25	24.3	0.9231	
23.1	26.4	26	26.4	0.9615	
17.2	29.4	27	29.4	1.0000	

Plot QQ

- Plot Kuantil-Kuantil
- Theoretical QQ Plot
- Scatter plot antara quantil data dengan quantil berdasarkan sebaran hipotetik tertentu
- Digunakan untuk mengidentifikasi apakah sebaran data mengikuti sebaran hipotetik yang digambarkan
- Pola garis lurus mengindikasikan hal tersebut

Plot QQ

- Tahapan pembuatan
 - Urutkan data $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$.
 - Hitung pi = (i 0.5)/n
 - Untuk sebaran hipotetik tertentu, hitung $Q_i = F^{-1}(p_i)$ dengan F adalah fungsi sebaran kumulatif, dengan kata lain Qi adalah sebuah nilai sehingga $P(Y \le Q_i) = p_i$
 - Plot $x_{(i)}$ vs Q_i

Plot QQ Normal

- Tahapan pembuatan
 - Urutkan data $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$.
 - Hitung pi = (i 0.5)/n
 - Tentukan skor normal Z, untuk setiap p_i
 - Plot $x_{(i)}$ vs Z_i
- Digunakan untuk melihat apakah distribusi data mengikuti sebaran normal

1	14.0	0.0185	-2.08536	
2	15.0	0.0556	-1.59322	
3	16.1	0.0926	-1.32496	
4	16.2	0.1296	-1.12814	
5	16.6	0.1667	-0.96742	30
6	16.7	0.2037	-0.82846	
7	16.8	0.2407	-0.70392	28 +
8	17.2	0.2778	-0.58946	26
9	17.2	0.3148	-0.48225	20
10	17.3	0.3519	-0.38033	24
11	17.4	0.3889	-0.28222	•••
12	17.6	0.4259	-0.18676	22
13	17.7	0.4630	-0.09297	20
14	18.2	0.5000	-1.4E-16	*
15	19.2	0.5370	0.092972	18 +
16	19.4	0.5741	0.186756	•••
17	20.2	0.6111	0.282216	16
18	21.0	0.6481	0.380326	14
19	21.8	0.6852	0.482248	14 +
20	22.0	0.7222	0.589456	12
21	22.8	0.7593	0.703922	
22	23.1	0.7963	0.828465	10
23	23.4	0.8333	0.967422	-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
24	23.9	0.8704	1.128144	
25	24.3	0.9074	1.324958	
26	26.4	0.9444	1.593219	
27	29.4	0.9815	2.085356	

QQPlot Normal untuk Data yang Mengikuti Sebaran Normal

y <- rnorm(1000, 3,1) hist(y, breaks=30, col="green") qqnorm(y) qqline(y, col = "red")

QQPlot Normal untuk Data yang Sebarannya Menjulur ke Kanan

QQPlot Normal untuk Data yang Sebarannya Menjulur ke Kiri

y <- rchisq(1000, 3) hist(y, breaks=30, col="green") qqplot(qchisq(df=3, ppoints(500)), y, main = "QQplot dengan sebaran CHISQ(3)")

Goodness of Fit Test

- Uji formal untuk apakah suatu gugus data mengikuti sebaran hipotetik tertentu
- H0: data mengikuti sebaran hipotetik
- H1: data tidak mengikuti sebaran hipotetik
- Chi-Square test, didasarkan pada perbandingan frekuensi amatan antara data empirik dengan kondisi jika sebarannya mengikuti fungsi kepekatan/massa peluang tertentu
- Kolmogorov-Smirnov test, didasarkan pada perbandingan antara fungsi sebaran kumulatif empirik dan fungsi sebaran kumulatif hipotetik

 Membandingkan frekuensi amatan (observed, O) dengan frekuensi harapan (expected, E) berdasarkan sebaran tertentu

• Statistika Uji
$$\chi^2_{hitung} = \sum_{i=1}^p \frac{(O_i - E_i)^2}{E_i}$$

- χ^2_{hitung} mengikuti sebaran χ^2 dengan derajat bebas (p 1)
- Ingat! Ada beberapa batasan kevalidan uji ini...

(pelajari di berbagai sumber bacaan terkait hal ini)

• Ilustrasi: Apakah data berikut mengikuti sebaran seragam?

HO: P(A) = P(B) = P(C) = P(D) = P(F) = 0.2

H1: selainnya

HO : P(A) = P(B) = P(C) = P(D) = P(F) = 0.2

H1: selainnya

Nilai	Observed	Expected
А	5	8
В	11	8
С	16	8
D	6	8
F	2	8

$$\chi_{hitung}^{2} = \sum_{i=1}^{p} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$
= 15.25

Terima H0 atau Tolak H0?

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188

Ilustrasi: Apakah data berikut mengikuti sebaran Normal?

```
20.3
                   20.0
                          20.6
                                       18.0
                                             20.5
                                                    20.3
                                                          20.3
                                                                       20.9
18.5
      21.3
                                21.1
                                                                 19.3
                                                                              21.3
19.3
      20.2
            20.7
                   20.4
                         20.5
                                20.2
                                       20.6
                                             18.2
                                                    20.4
                                                          20.4
                                                                 19.3
                                                                       20.9
                                                                              22.5
      20.1
                                      18.4
                                             22.9
                                                    20.8
                                                          20.5
19.1
            19.9
                   19.2
                         19.3
                                19.4
                                                                 19.3
                                                                       19.7
                                                                              20.8
      18.6
            21.2
                   20.2
                          19.5
                                      20.9
                                             20.6
                                                    19.9
20.1
                                19.9
                                                          20.9
                                                                 20.7
                                                                       20.8
                                                                              19.2
```

H0: data menyebar normal

H1: data tidak menyebar normal

H0 : data menyebar Normal(?, ?)

H1: data tidak menyebar Normal(?, ?)

H0: data menyebar Normal(mu=20.2, sigma=0.972)

H1: data tidak menyebar Normal(mu=20.2, sigma=0.972)

H0: data menyebar Normal(mu=20.2, sigma=0.972)

H1: data tidak menyebar Normal(mu=20.2, sigma=0.972)

Selang Nilai	Frekuensi	sesuai H0	Ekspektasi	$\chi^2_{ m hitung}$
18-19	5	0.11761	6.115714	0.203544
19-20	14	0.319512	16.61465	0.411466
20-21	27	0.370859	19.28467	3.086720
21-22	4	0.163252	8.48909	2.373862
22-23	2	0.027061	1.40718	0.249745

$$\chi_{hitung}^{2} = \sum_{i=1}^{p} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$
= 6.33

Introduction

- A test for goodness of fit usually involves examining a random sample from some unknown distribution in order to test the null hypothesis that the unknown distribution function is in fact a known, specified function.
- A random sample X1, X2, ..., Xn is drawn from some population and is compared with $F^*(x)$ in some way to see if it is reasonable to say that $F^*(x)$ is the true distribution function of the random sample.
- One logical way of comparing the random sample with F*(x) is by means of the empirical distribution function S(x)

- Definition
- Let X1,X2, . . . , Xn be a random sample. The empirical distribution function S(x) is a function of x, which equals the fraction of Xis that are less than or equal to x for each x, -∞<x<∞, i.e

$$S(x) = \frac{1}{n} \sum_{i=1}^n I_{\{x_i \leq x\}}$$

- The data consist of a random sample X1,X2,..., Xn of size n associated with some unknown distribution function, denoted by F(x)
- The sample is a random sample
- Let S(x) be the empirical distribution function based on the random sample X1,X2, . . . , Xn. Let F*(x) be a completely specified hypothesized distribution function
- Let the test statistic T be the greatest (denoted by "sup" for supremum) vertical distance between S(x) and F*(x). In symbols we say

$$T = \sup_{x} \mid F^{*}(x) - S(x) \mid$$

Critical values for the Kolmogorov-Smirnov Test for goodness of fit For completely specified continuous distributions:

1 - α	0.9	0.95	0.99
n			
1	0.950	0.975	0.995
2	0.776	0.842	0.929
3	0.636	0.708	0.829
4	0.565	0.624	0.734
5	0.510	0.563	0.669
6	0.468	0.520	0.617
7	0.436	0.483	0.576
8	0.410	0.454	0.542
9	0.387	0.430	0.513
10	0.369	0.409	0.489
11	0.352	0.391	0.468
12	0.338	0.375	0.450
13	0.325	0.361	0.432
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.327	0.392
17	0.286	0.318	0.381
18	0.279	0.309	0.371
19	0.271	0.301	0.361
20	0.265	0.294	0.352

1 – α	0.9	0.95	0.99
n			
21	0.259	0.287	0.344
22	0.253	0.281	0.337
23	0.247	0.275	0.330
24	0.242	0.269	0.323
25	0.238	0.264	0.317
26	0.233	0.259	0.311
27	0.229	0.254	0.305
28	0.225	0.250	0.300
29	0.221	0.246	0.295
30	0.218	0.242	0.290
31	0.214	0.238	0.285
32	0.211	0.234	0.281
33	0.208	0.231	0.277
34	0.205	0.227	0.273
35	0.202	0.224	0.269
> 35	$\frac{1.224}{\sqrt{n}}$	$\frac{1.358}{\sqrt{n}}$	$\frac{1.628}{\sqrt{n}}$

 Ilustrasi: Apakah data berikut mengikuti sebaran Normal(mu=20.2, sigma=0.972)?

```
18.5
            20.3
                  20.0
                        20.6
                              21.1
                                           20.5
                                                 20.3
                                                       20.3
      21.3
                                     18.0
                                                             19.3
                                                                    20.9
                                                                          21.3
19.3
            20.7
                  20.4
                        20.5
                                           18.2
                                                       20.4
      20.2
                              20.2
                                     20.6
                                                 20.4
                                                             19.3
                                                                    20.9
                                                                          22.5
19.1
      20.1
            19.9
                  19.2
                        19.3
                              19.4
                                     18.4 22.9
                                                       20.5
                                                             19.3
                                                                    19.7
                                                                          20.8
                                                 20.8
20.1
      18.6
            21.2
                  20.2
                        19.5
                              19.9
                                     20.9
                                           20.6
                                                 19.9
                                                       20.9
                                                             20.7
                                                                    20.8
                                                                          19.2
```

H0: data menyebar Normal(mu=20.2, sigma=0.972)

H1: data tidak menyebar Normal(mu=20.2, sigma=0.972)

 Ilustrasi: Apakah data berikut mengikuti sebaran Normal(mu=20.2, sigma=0.972)?

```
18.5
            20.3
                  20.0
                        20.6
                              21.1
                                           20.5
                                                 20.3
                                                       20.3
      21.3
                                     18.0
                                                             19.3
                                                                    20.9
                                                                          21.3
19.3
            20.7
                  20.4
                        20.5
                                           18.2
                                                       20.4
      20.2
                              20.2
                                     20.6
                                                 20.4
                                                             19.3
                                                                    20.9
                                                                          22.5
19.1
      20.1
            19.9
                  19.2
                        19.3
                              19.4
                                     18.4 22.9
                                                       20.5
                                                             19.3
                                                                    19.7
                                                                          20.8
                                                 20.8
20.1
      18.6
            21.2
                  20.2
                        19.5
                              19.9
                                     20.9
                                           20.6
                                                 19.9
                                                       20.9
                                                             20.7
                                                                    20.8
                                                                          19.2
```

H0: data menyebar Normal(mu=20.2, sigma=0.972)

H1: data tidak menyebar Normal(mu=20.2, sigma=0.972)

i	Х		S(x)	F(x)	abs(S-F)
1	18	1	0.019231	0.011806	0.007424
2	18.2	2	0.038462	0.019814	0.018648
3	18.4	3	0.057692	0.032024	0.025669
4	18.5	4	0.076923	0.040148	0.036775
5	18.6	5	0.096154	0.049873	0.046281
6	19.1	6	0.115385	0.128883	0.013498
7	19.2	8	0.153846	0.151785	0.002061
8	19.2	8	0.153846	0.151785	0.002061
9	19.3	13	0.25	0.177242	0.072758
10	19.3	13	0.25	0.177242	0.072758
11	19.3	13	0.25	0.177242	0.072758
12	19.3	13	0.25	0.177242	0.072758
13	19.3	13	0.25	0.177242	0.072758
14	19.4	14	0.269231	0.205241	0.06399
15	19.5	15	0.288462	0.235712	0.05275
16	19.7	16	0.307692	0.303485	0.004207
17	19.9	19	0.365385	0.378797	0.013412
18	19.9	19	0.365385	0.378797	0.013412

Dst.... T = 0.1203 T kritis = 0.1883 Terima H0

ks.test()

> ks.test(data, "pnorm", 20.2, 0.972)

One-sample Kolmogorov-Smirnov test

data: data

D = 0.12033, p-value = 0.4388

alternative hypothesis: two-sided

- require(graphics)
- y < -rt(200, df = 5)
- qqnorm(y); qqline(y, col = 2)
- qqplot(y, rt(300, df = 5))
- qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")
- ## "QQ-Chisquare" : ------
- y < rchisq(500, df = 3)
- ## Q-Q plot for Chi^2 data against true theoretical distribution:
- qqplot(qchisq(ppoints(500), df = 3), y,
- main = expression("Q-Q plot for" ~~ {chi^2}[nu == 3]))
- qqline(y, distribution = function(p) qchisq(p, df = 3),
- prob = c(0.1, 0.6), col = 2)
- mtext("qqline(*, dist = qchisq(., df=3), prob = c(0.1, 0.6))")

```
require(graphics)
y <- rt(200, df = 5)
qqnorm(y); qqline(y, col = 2)
qqplot(y, rt(300, df = 5))
qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")
## "QQ-Chisquare" : ------
y < - rchisq(500, df = 3)
## Q-Q plot for Chi^2 data against true theoretical distribution:
qqplot(qchisq(ppoints(500), df = 3), y,
   main = expression("Q-Q plot for" ~~ {chi^2}[nu == 3]))
qqline(y, distribution = function(p) qchisq(p, df = 3),
   prob = c(0.1, 0.6), col = 2)
mtext("qqline(*, dist = qchisq(., df=3), prob = c(0.1, 0.6))")
library(moments)
library(nortest)
library(e1071)
set.seed(777)
x <- rnorm(250,10,1)
# skewness and kurtosis, they should be around (0,3)
skewness(x)
kurtosis(x)
# Shapiro-Wilks test
shapiro.test(x)
# Kolmogorov-Smirnov test
ks.test(x,"pnorm",mean(x),sqrt(var(x)))
# Anderson-Darling test
ad.test(x)
# qq-plot: you should observe a good fit of the straight line
```

p-plot: you should observe a good fit of the straight line

qqnorm(x) qqline(x)