REFERENCE SHEET

Forces we have studied:

- Normal force: contact force between objects. Can only push, never pull.
- Gravity: mg downward on Earth, $\frac{GMm}{r^2}$ in general, where r is the distance between the objects' centers
- Static friction: keeps objects which are in contact from sliding; maximum value $F_{f,\text{max}} = \mu_s F_N$. Traction is a special case of static friction.
- Kinetic friction: opposes the relative motion of two surfaces in contact. $F_f = \mu_k F_N$.
- Tension: force that ropes exert on things. Can only pull, never push.

Centripetal acceleration of an object in uniform circular motion:

$$a_c = \frac{v_T^2}{r}$$
 or $\omega^2 r$

Tangential velocity $v_T = \omega r$

Newton's second law: $\vec{F}=m\vec{a}$ Newton's third law: $\vec{F}_{\rm A\,on\,B}=-\vec{F}_{\rm B\,on\,A}$

Kinematics of constant acceleration:

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$
$$v(t) = at + v_0$$
$$v_f^2 - v_0^2 = 2a\Delta x$$

1 revolution = 360 degrees = 2π radians

Momentum: $\vec{p} = m\vec{v}$

Conservation of momentum: $\sum \vec{p_i} = \sum \vec{p_f}$, if there are no external forces