A Design Study Approach to Classical Control

Randal W. Beard Timothy W. McLain Brigham Young University

Updated: June 2, 2016

Homework C.15

- (a) Draw by hand the Bode plot of the inner loop transfer function from torque τ to angle θ for the satellite attitude problem. Use the Matlab bode command and compare your results.
- (b) Draw by hand the Bode plot of the outer loop transfer function from body angle θ to panel angle ϕ for the satellite attitude problem. Use the Matlab bode command and compare your results.

Solution

From HW C.5, the transfer function for the inner loop of the satellite attitude problem is

$$P_{in}(s) = \frac{1/J_s}{s^2 + \frac{b}{J_s}s + \frac{k}{J_s}} = \frac{0.2}{s^2 + 0.01s + 0.03}.$$
 (1)

In Bode canonical form we have

$$P_{in}(j\omega) = \frac{6.67}{1 + 0.33j\omega + (j\frac{\omega}{0.173})^2}$$

Therefore

$$20\log_{10}|P_{in}(j\omega)| = 20\log_{10}6.67 - 20\log_{10}\left|1 + 0.33j\omega + \left(j\frac{\omega}{0.173}\right)^2\right| \quad (2)$$

Therefore, the Bode plot for magnitude will be the graphical addition of a constant gain, and a complex pole. Similarly, the phase is given by

$$\angle P_{in}(j\omega) = \angle 6.67 - \angle \left(1 + 0.33j\omega + \left(j\frac{\omega}{0.173}\right)^2\right).$$

The straight line approximation as well as the Bode plot generated by Matlab are shown in Figure 1.

Figure 1: Bode plot for the transfer function given in Equation (15.21).

The Matlab command to generate the Bode plot is

```
1 >> Pin = tf([0.2], [1, 0.01, 0.03]);
2 >> figure(1), clf, bode(Pin), grid on
```

From HW C.5, the transfer function for the outer loop of the satellite is

$$P_{out}(s) = \frac{\frac{b}{J_p}s + \frac{k}{J_p}}{s^2 + \frac{b}{J_p}s + \frac{k}{J_p}} = \frac{0.05s + 0.15}{s^2 + 0.05s + 0.15}.$$
 (3)

In Bode canonical form we have

$$P_{out}(j\omega) = \frac{1 + j\frac{\omega}{3}}{1 + j\frac{\omega}{3} + \left(j\frac{\omega}{0.3873}\right)^2}$$

Therefore

$$20\log_{10}|P_{out}(j\omega)| = 20\log_{10}|1 + j\omega/3| - 20\log_{10}\left|1 + j\omega/3 + \left(j\frac{\omega}{0.3873}\right)^{2}\right|$$
(4)

Therefore, the Bode plot for magnitude will be the graphical addition of a zero, and a complex pole. Similarly, the phase is given by

$$\angle P_{out}(j\omega) = \angle (1 + j\omega/3) - \angle \left(1 + j\omega/3 + \left(j\frac{\omega}{0.3873}\right)^2\right).$$

The straight line approximation as well as the Bode plot generated by Matlab are shown in Figure 2.

Figure 2: Bode plot for the transfer function given in Equation (15.23).

The Matlab command to generate the Bode plot is

```
1 >> Pout = tf([0.05, 0.15], [1, 0.05, 0.15]);
2 >> figure(1), clf, bode(Pout), grid on
```