CSC2429: Proof Complexity

Winter 2018

Lecture 2: Proof System and Algorithms for LP

Lecturer: Toni Pitassi Scribe: Lily Li

2.1 Sherali Adams

2.1.1 Review LP

Consider this as a sound and complete proof system for deriving or refuting a set of linear inequalities over \mathbb{R}^n . As always an LP is defined as

$$\max \mathbf{c}^T x$$
 over \mathbb{R}
Subject to: $A\mathbf{x} \leq \mathbf{b}$

The decision version of this problem asks if the feasible region of the LP is empty.

Lemma 2.1 (Farkas' Lemma.) A set $\{A\mathbf{x} \leq \mathbf{b}\}$ is unsatisfiable over \mathbb{R} if and only if there exists $\mathbf{y} \geq 0$ such that $\mathbf{y}^T A = 0$ and $\mathbf{y}^T \mathbf{b} = -1$.

Farkas' Lemma should be viewed as a soundness and completeness proof of the decision version and the y^T can be seen as a linear combination of the rows of of A which add to -1.

2.1.2 Duality

(Considered a form of implicational completeness). We want to show that each feasible solution of the dual produces an upper bound of the primal objective function. Consider any $\mathbf{y}^T \geq 0$ such that $\mathbf{y}^T A \geq \mathbf{c}^T$. Then for any feasible solution \mathbf{x} of the primal $A\mathbf{x} \leq \mathbf{b}$,

$$\mathbf{c}^T \leq \mathbf{y}^T A \mathbf{x} \leq \mathbf{y}^T \mathbf{b}$$

where $\mathbf{c}^T \mathbf{x}$ is exactly the primal objective function. Thus we say that \mathbf{y} witnesses the upper bound $\mathbf{b}^T \mathbf{y}$.

To see how tight this bound is, we consider following primal and dual LP problems:

(P) Primal: (D) Dual:
$$\max \mathbf{c}^T \mathbf{x} \qquad \min \mathbf{b}^T \mathbf{y}$$
Such that: $A\mathbf{x} \leq \mathbf{b} \qquad A^T \mathbf{y} \geq \mathbf{c}$
$$\mathbf{x} \geq 0 \qquad \mathbf{y} \geq 0$$

Theorem 2.2 (Duality of LP.) This is implied by Farkas' Lemma. For an LP with primal solution P and dual solution D, exactly of the following is true:

1. Neither (P) nor (D) has a feasible solution.

- 2. (P) has arbitrarily large solutions and (D) is unsatisfiable.
- 3. (P) is unsatisfiable and (D) has an arbitrarily small solution.
- 4. Both (P) and (D) have optimal solutions \mathbf{x}^* and \mathbf{y}^* . Further $\mathbf{c}^T\mathbf{x}^* = \mathbf{b}^T\mathbf{y}^*$

In the decision version an LP refutation is just the y from Farkas' Lemma.

An LP "derivation" of

$${A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0} \implies \mathbf{c}^T \mathbf{x} \leq \mathbf{c_0}$$

is a $\mathbf{y}^* \geq 0$ such that $(\mathbf{y}^*)^T \mathbf{b} = \mathbf{c_0}$.

It is known that LP is in P. The satisfiability of an LP is in NP since we can just guess a \mathbf{x} . Further Farkas' lemma shows that the problem is in coNP since we can just guess a \mathbf{y} (there are problems which are in P \cap NP but not known to be in P, e.g. factoring and graph isomorphism, but these are uncommon). In 1979 Khachiyan use the Ellipsoid Algorithm to show that $LP \in P$.

2.1.3 SA Introduction

SA is a sound, lift and project proof system that "tightens" the LP solution to a good approximation of the IP. SA can be interpretations: as (1) LP tightening, solutions to the extended degree d SA LP pseudo-distribution, and as a proof or refutation system.

2.1.4 SA Degree d Tightening

When viewed as LP tightening in degree d, we do the following:

- Add new variables to represent all degree $\leq d$ terms.
- Lift the polytope from n dimensions to $n^{o(d)}$ dimensions.
- Project back to $x_1, ..., x_n$ preserves all 0, 1 solutions (and may remove some fractional solutions).

More formally, let the original LP be

$$A\mathbf{x} \geq \mathbf{b}$$
, and let $1 \geq 0, 0 \leq \mathbf{x} \leq 1$.

We add new variables:

$$y_S: \forall S \subseteq [n], |S| \leq d.$$

And new constraints (junta) for all subsets $U, V \subset [n]$ with $U \cap \emptyset$ and $|U \cup V| \leq d$:

$$\prod_{i \in U} x_i \cdot \prod_{j \in V} (1 - x_j) \cdot (\mathbf{a}^T \mathbf{x} - \mathbf{b}) \ge 0$$

for all rows \mathbf{a} of A, for all U, V.

When we translate the above constrains into linear equalities using the new y_S variables and the multi-linear inequalities $x_i^2 = x_i$ we obtain:

$$y_{\emptyset} = 1$$

$$y_{i} = x_{i}$$

$$0 \le y_{S} \le 1$$

$$\sum_{V' \subseteq V} (-1)^{|V'|} \cdot \left(\sum_{i=1}^{n} a_{i} y_{U \cup V' \cup \{i\}} - \mathbf{b} y_{U \cup V'}\right) \ge 0$$

for all rows \mathbf{a} of A.

Further, since we have trivially $1 \ge 0$ as an initial constraint, we can add

$$\prod_{i \in U} x_i \prod_{j \in V} (1 - x_j) \ge 0$$

which translates to

$$\sum_{V' \subseteq V} (-1)^{|V'|} \cdot (y_{U \cup V'}) \ge 0$$

Now we need to defined a pseudo-distribution for a degree d SA LP (this is a real distribution over sets variables of degree at most d and might not work else-where). Let $\mathcal{H} = \{A\mathbf{x} - \mathbf{b} \geq \mathbf{0}, \mathbf{x} \geq \mathbf{0}, \mathbf{1} \geq \mathbf{0}\}$. $\mathcal{E}_d(\mathcal{H})$ is a set of linear functionals $E : \mathbb{R}[x_1, ..., x_n]_d \to \mathbb{R}$ such that $\forall E \in \mathcal{E}_d(\mathcal{H})$:

- 1. E(1) = 1
- 2. $E(Q) \geq 0$ for all non-negative junta Q with $\deg(Q) \leq d$.
- 3. $E(PQ) \ge 0$ for $P \in \mathcal{H}$, and non-negative junta Q with $\deg(PQ) \le d$ where a non-negative junta is of the form:

$$\alpha \cdot \prod_{i \in U} x_i \prod_{j \in V} (1 - x_j)$$

for non-negative coefficient α and $U \cup V = \emptyset$. This is quite useful to show that what you have is actually a probability distribution (recall the marginals).

Essentially you should interpret each $E \in \mathcal{E}_d(\mathcal{H})$ as a *pseudo-distribution* for the feasible (maybe? my words here) region of \mathcal{H} . Further, feasible solutions to the degree-d SA polytope are exactly the degree-d pseudo-distributions.

Consider any feasible solution α . For each variable $y_S, \alpha(y_S)$ is the value in [0,1] assigned to y_S such that all the linear constraints are satisfied.

The corresponding pseudo-distribution E_{α} which assigns values to degree-d polynomials is defined in the obvious way.

Example 2.3 Suppose we have d=3 and the polynomial $f=-x_1x_2x_4+x_7-3x_1x_8$, then

$$E_{\alpha}[f] = -\alpha(y_{1,2,4}) + \alpha(y_7) - 3\alpha(y_{1,8}).$$

It so happens that the degree-d SA linear constraints exactly enforce the properties of the pseudo-distribution (what E_{α} does is assign a [0,1] value to every set of $\leq d$ of the original variables such that the marginal distributions of each subset $S' \subset S$ is equal to the distribution assigned to each entry of S').

2.1.5 Equivalent view as a Refutation System

Let \mathcal{F} be a set of polynomial equalities of the form $x_i^2 - x_i = 0$ (this set is actually quite important, why?). Let \mathcal{H} be a set of polynomial inequalities $\{A\mathbf{x} - \mathbf{b} \geq 0, 1 \geq \mathbf{x} \geq 0, \text{ and } \mathbf{1} \geq \mathbf{0}\}$ our original inequalities. A degree-d SA derivation of -1 from \mathcal{F} and \mathcal{H} — witnessing that no feasible solutions exists — is a set of polynomials $(g_1, ..., g_m, p_1, ..., p_l)$ such that

- 1. $\sum_{j=1}^{m} g_j f_j + \sum_{i=1}^{l} p_i h_i = -1$
- 2. The p_i 's are non-negative linear combinations of juntas $p_i = \alpha_1 Q_1 + \cdots + \alpha_m Q_m$ (the Q's are the juntas), $h_i \in \mathcal{H}$, $f_j \in \mathcal{F}$, and g_j are arbitrary polynomials since the f_j 's evaluate to 0.
- 3. $\max\{\deg(g_j f_j), \deg(p_i h_i)\} = d.$

2.1.6 SA as a Derivation System

SA as a derivation system is almost exactly like SA as a refutation system except that the sum of the product of the polynomials $g_j f_j$ and $p_i h_i$ is some other polynomial f which we wish to derive.

Lemma 2.4 Let $\{A\mathbf{x} - b \ge 0, 1 \ge 0, \mathbf{x} \ge 0\} = \mathcal{H}$. Then the degree-d SA LP has no feasible solution if and only if there is a degree-d SA refutation of \mathcal{H} .

Proof: Let the SA refutation be a sett of polynomials as above. The SA LP has a feasible solution \mathbf{x}^* , then we can plug in \mathbf{x}^* into the set of polynomials and evaluate. Since \mathbf{x}^* is feasible the LHS of each inequality will be positive so it is impossible to obtain a sum equal to -1.

Conversely if the SA LP has no feasible solution we can translate it into a refutation of \mathcal{H} as defined in the "SA as a Refutation System" section.

Example 2.5 We are going to apply SA on the maximum independent set problem with the graph $G = C_7$. If you just formulate the standard LP as:

Maximize:
$$\sum_{i=1}^{7} x_i$$
Subject to: $x_i + x_{i+1} \le 1$ and $0 \le x_i \le 1$ for $1 \le i \le 7$

you would get a fractional optimum value of 3.5. Lifting to d=2 introduces the following constraints:

$$x_{1}(x_{1}+x_{2}) \leq x_{1} \implies y_{1,2} \leq 0$$

$$(1-x_{1})(x_{2}+x_{3}) \leq 1-x_{1} \implies y_{2}+y_{3}-y_{1,2}-y_{1,3} \leq 1-y_{1}$$

$$x_{1}(x_{3}+x_{4}) \leq x_{1} \implies y_{1,3}+y_{1,4} \leq y_{1}$$

$$(1-x_{1})(x_{4}+x_{5}) \leq 1-x_{1} \implies y_{4}+y_{5}-y_{1,4}-y_{1,5} \leq 1-y_{1}$$

$$x_{1}(x_{5}+x_{6}) \leq x_{1} \implies y_{1,5}+y_{1,6} \leq y_{1}$$

$$(1-x_{1})(x_{6}+x_{7}) \leq 1-x_{1} \implies y_{6}+y_{7}-y_{1,6}-y_{1,7} \leq 1-y_{1}$$

$$x_{1}(x_{1}+x_{7}) \leq x_{1} \implies y_{1,7} \leq 0$$

(as well as other constraints, but these are all the ones we need to consider). Running the LP here would produce the answer 3 (which is optimal).