Parameter Prediction for Unseen Deep Architectures

Докладчик: Анастасия Дроздова Рецензент: Айнур Нуриев Практик-исследователь: Полина Гусева Хакер: Алексей Цеховой

Идея

- предсказываем веса для архитектуры за один проход
- набор данных и задача фиксированы

$$\underset{\theta}{\operatorname{arg \, min}} \; \sum\nolimits_{j=1}^{N} \sum\nolimits_{i=1}^{M} \mathcal{L}\Big(f\Big(\mathbf{x}_{j}; a_{i}, H_{\mathcal{D}}(a_{i}; \theta)\Big), y_{j}\Big)$$

Example of evaluating on an unseen architecture $a \notin \mathcal{F}$ (ResNet-50)

Graph HyperNetwork GHN-1

- архитектура направленный ацикличный граф вычислений
- вершины $V = \{v_i\}_{i=1}^{|V|}$
- ullet матрица смежности ${f A} \, \in \, \{0,1\}^{|V| imes|V|}$
- ullet матрица операций $\mathbf{H}^0 = [\mathbf{h}^0_1, \mathbf{h}^0_2, ..., \mathbf{h}^0_{|V|}]$
- кодируем размерности параметров

Graph HyperNetwork GHN-1

1. Эмбеддинг \mathbf{H}^0 размерности d: $\mathbf{H}^1 \in \mathbb{R}^{|V| imes d}$

2. GatedGNN имитирует проходы по графу

$$\forall t \in [1,...,T]: \left[\forall \pi \in [\mathsf{fw},\mathsf{bw}]: \left(\forall v \in \pi: \mathbf{m}_v^t = \sum_{u \in \mathcal{N}^\pi} \mathsf{MLP}(\mathbf{h}_u^t), \ \mathbf{h}_v^t = \mathsf{GRU}(\mathbf{h}_v^t, \mathbf{m}_v^t) \right) \right]$$

3. Декодер использует \mathbf{h}_v^T , чтобы получить параметры $\hat{\mathbf{w}}_p^v$

GHN-2

- нормализация предсказанных параметров
- виртуальные ребра
- мета-батчи

Type of node v	Normalization
Conv./fully-conn. Norm. weights Biases	$\hat{\mathbf{w}}_p^v \sqrt{eta/(C_{in}\mathcal{HW})} \ 2 imes ext{sigmoid}(\hat{\mathbf{w}}_p^v/T) \ anh(\hat{\mathbf{w}}_p^v/T)$

GHN-2

- нормализация предсказанных параметров
- виртуальные ребра
- мета-батчи

DeepNets-1M

Было в DARTS

- o stems
- normal cells
- reduction cells
- classification heads

Добавили:

- non-separable 2D convolutions
- Squeeze&Excite
- multihead self-attention
- positional encoding
- layer norm

Генерация архитектур

- in-distribution
- out-of-distribution (wide, deep, dense, BN-free, ResNet, ViT)

IN-DISTRIBUTION

OUT-OF-DISTRIBUTION

Эксперименты: предсказание параметров

Table 4: ImageNet results on DEEPNETS-1M. Mean (\pm standard error of the mean) top-5 accuracies are reported (random chance $\approx 0.5\%$). *Estimated on ResNet-50 with batch size 128.

Метнор	#upd	GPU sec.	CPU sec.	ID-TEST		OOD-TEST				
	\$25.45	avg	avg	avg	max	WIDE	DEEP	DENSE	BN-FREE	RESNET/VIT
GHN-1	1	0.3	0.5	17.2 ± 0.4	32.1	15.8 ± 0.9	15.9 ± 0.8	15.1 ± 0.7	$0.5 {\pm} 0.0$	6.9 /0.9
GHN-2	1	0.3	0.7	27.2 ±0.6	48.3	19.4 ±1.4	24.7 ±1.4	26.4 ±1.2	7.2 ±0.6	5.3/4.4
Iterative optimizers (all architectures are ID in this case)										
SGD (1 step)	1	0.4	6.0	0.5 ± 0.0	0.7	$0.5 {\pm} 0.0$	$0.5{\pm}0.0$	$0.5{\pm}0.0$	$0.5 {\pm} 0.0$	0.5/0.5
SGD (5000 steps)	5k	2×10^3	3×10^4	25.6 ± 0.3	50.7	26.2 ± 1.4	13.2 ± 1.1	$25.4{\pm}1.1$	4.8 ± 0.8	34.8/24.3
SGD (10000 steps)	10k	4×10^3	6×10^{4}	37.7 ± 0.6	62.0	38.7 ± 1.6	22.1 ± 1.4	36.3 ± 1.2	8.0 ± 1.2	49.0/33.4
SGD (100 epochs)	1000k	$6\times10^{5*}$	$6 \times 10^{7*}$	_		_	_	_	_	92.9/72.2

Эксперименты: предсказание метрик

- accuracy on clean set
- accuracy on corrupted set
- inference speed
- convergence speed (SGD)

Figure 4: Property prediction of neural networks in terms of correlation (higher is better). Error bars denote the standard deviation across 5 runs.

Эксперименты: transfer learning

INITIALIZATION	GPU sec. to init.*	100-S	HOT CIFAR	-10	PENN-FUDAN OBJECT DETECTION			
METHOD		RESNET-50	VIT	DARTS	RESNET-50	VIT	DARTS	
He's [57] GHN-1 (trained on ImageNet) GHN-2 (trained on ImageNet)	0.003 0.6 0.7	41.0±0.4 46.6±0.0 56.4 ±0.1	33.2±0.3 23.3±0.1 41.4 ±0.6	45.4±0.4 49.2±0.1 60.7 ±0.3	0.197±0.042 0.433±0.013 0.560 ±0.019	0.144±0.010 0.0±0.0 0.436 ±0.032	0.486±0.035 0.468±0.024 0.785 ±0.032	
ImageNet (1k pretraining steps) ImageNet (2.5k pretraining steps) ImageNet (5 pretraining epochs) ImageNet (final epoch)	6×10^{2} 1.5×10^{3} 3×10^{4} 6×10^{5}	45.4 ± 0.3 55.4 ± 0.2 84.6 ± 0.2 89.2 ± 0.2	44.3±0.1 50.4±0.3 70.2±0.5 74.5±0.2	62.4±0.3 70.4±0.2 83.9±0.1 85.6±0.2	$ \begin{array}{c c} 0.302 \pm 0.022 \\ \textbf{0.571} \pm 0.056 \\ 0.723 \pm 0.045 \\ 0.876 \pm 0.011 \end{array} $	0.182 ± 0.046 0.322 ± 0.073 0.391 ± 0.024 0.468 ± 0.023	0.814±0.033 0.823±0.022 0.827±0.053 0.881±0.023	

Рецензент

Сильные стороны

- Значительно ускоряет fine-tuning (100 -> 5 эпох) благодаря хорошей инициализации весов
- Может также предсказывать получаемое accuracy, inference speed, convergence speed

Слабые стороны

- Проигрывает SGD и Adam
- Не можем предсказывать параметры для новых задач
- Не может обобщаться на разные датасеты (на вход не подаются входные данные исходной нейронной сети на которой обучаемся)

Оценки

Понятность

Написано хорошо, но для полного и безболезненного понимания статьи нужны знания в графовых нейронных сетях.

Воспроизводимость

Несмотря на отсутствие практика, качественное описания всех необходимых деталей для запуска дает уверенность в хорошей воспроизводимости. Есть хорошо проработанный авторский репозиторий с моделью.

Вывод

Громкая статья с большим количеством подробностей, интересными идеями и впечатляющими результатами.

Оценка по НИПС: 8 (уверенность 4)

Практик-исследователь

Остатье

- Первая версия написана весной 2021 года
- Постер на NeurlPS'21
- Статья активно обсуждалась ML сообществом:
 - Анонс от авторов в Twitter набрал 1.5k+ лайков и 400 ретвитов
 - Статье посвящен выпуск на подкасте Янника Килчера
 - Статья освещалась в неформальных научных изданиях

Авторы

Boris Knyazev

PhD студент, University of Guelph

GNN и CV

Michal Drozdal

Research Scientist, Facebook AI Research

Medical AI и CV

Graham W. Taylor

Профессор, University of Guelph

GNN и многое другое...

Adriana Romero-Soriano

Research Scientist, Facebook AI Research

Multimodal data

Смежные статьи

Базовые статьи

 Graph HyperNetworks for Neural Architecture Search (2019)

Предложенная сеть может принимать другие сети на вход.

 DARTS: Differentiable Architecture Search (2018)

Предложили базовые блоки для нейросетевых архитектур.

Конкуренты

Нет (пока)

Цитирования

На статью опираются 2 работы:

- Teaching Networks to Solve Optimization Problems
- Tutorial on amortized optimization for learning to optimize over continuous domains

Еще 2 работы упоминают статью в обзорах литературы.

Итого 4 цитирования.

Что дальше?

Практика

 Использовать модель для предсказания статистик финальной метрики, скорости инференса и скорости сходимости.

 Использовать предсказанные веса в качестве инициализации.

Эксперименты

 Сравниться с методами для инициализации сетей.

 Изучить метод на задачах отличных от классификации изображений.