Shark: SQL & Rich Analytics at Scale

Deborah Hanus & Victor Lei

What problem does Shark solve?

Increasing data volumes

Increased incidence of stragglers & faults

Increasing data volumes

Increased incidence of stragglers & faults

Data analysis more difficult

Increasing data volumes

Increased incidence of stragglers & faults

Data analysis more difficult

Users want to query at interactive speeds

Existing solutions

Queries to MapReduce (eg. Hive, Cheetah)

Highly scalable

Fine-grained fault tolerance

High latency

Existing solutions

Queries to MapReduce (eg. Hive, Cheetah)

Highly scalable

Fine-grained fault tolerance

High latency

Shared-nothing parallel DBs (eg. Impala, PowerDrill)

Less scalable

No fine-grained fault tolerance

Low latency

Existing solutions

Queries to MapReduce (eg. Hive, Cheetah)

Highly scalable

Fine-grained fault tolerance

High latency

Shared-nothing parallel DBs (eg. Impala, PowerDrill)

Less scalable

No fine-grained fault tolerance

Low latency

Hybrid approaches (eg. HadoopDB, Osprey)

What is the core intuition of Shark's solution?

What is the core intuition?

RDDs are the best.

What is the core intuition?

RDDs are the best.

Modern Databases are OK too.

Shark: Scalable, Fault Tolerant, Interactive query speeds

Solution: Resilient Distributed Datasets (RDDs)

Read-only partitioned collection of records stored in-memory.

Representation:

Set of partitions – atomic pieces of the data set

Set of dependencies on parent RDDs

Function to compute dataset based on its parents

Metadata about partitioning scheme and data placement

Created by transformations of (a) data in stable storage, or (b) other RDDs

Coarse-grained writes make it fault tolerant.

How do RDDs compare to standard distributed shared memory systems?

RDD's vs. Distributed Shared Memory Systems

Aspect	RDDs	Distr. Shared Mem.
Reads	Coarse- or fine-grained	Fine-grained
Writes	Coarse-grained	Fine-grained
Consistency	Trivial (immutable)	Up to app / runtime
Fault recovery	Fine-grained and low- overhead using lineage	Requires checkpoints and program rollback
Straggler mitigation	Possible using backup tasks	Difficult
Work placement	Automatic based on data locality	Up to app (runtimes aim for transparency)
Behavior if not enough RAM	Similar to existing data flow systems	Poor performance (swapping?)

Solution: Shark Architecture

Solution: Executing SQL on RDDs

1. Partial DAG Execution

Gathers statistics at global & partition granularities

Allows DAG to be altered based on stats

Worker sends stats to master, which optimizes

Handles skew and degree of parallelism

Allows join optimization

Solution: Partial DAG execution & join optimization

2. Columnar Memory Store

Placing objects in memory increases speed

All columns are JVM arrays

Each column creates only one JVM object

3. Distributed Data Loading

Tracks metadata for each task, determining if it should be compressed

4. Data Co-partitioning

If you know the data schema, you can avoid shuffles by co-partitioning

5. Partition Statistics & Map Pruning

Shark can avoid blocks that only contain data outside of the query range

How does this compare to modern database systems?

How does this compare to modern databases?

Cache conscious

Adaptive query patterns (e.g. H2O)

Parallelism for minimal lock contention

Shared nothing architecture (e.g. SharedDB)

Experiments

- 1. Pavlo et al. experiments (2.1 TB dataset)
- 2. TPC-H Dataset (100GB and 1TB)
- 3. Sampled real workload from Shark user (1.7TB)
- 4. Synthetic Machine Learning Dataset (100GB)

Experiments

8 cores

68 GB

1.7 TB

Results

Shark can perform 100x faster than Hive and Hadoop

Even faster* than MPP databases in some experiments

How does this compare to other machine learning systems?

Advantages of Shark for Machine Learning

Keeping data in memory (RDDs)

Machine Learning as a first-class citizen: incorporating SQL with Machine Learning

Machine Learning

1 B rows

10 columns

100 GB data

Figure 10: Logistic regression, per-iteration runtime (seconds)

Figure 11: K-means clustering, per-iteration runtime (seconds)

Aggregation performance

Figure 6: Aggregation queries on lineitem table. X-axis indicates the number of groups for each aggregation query.

SELECT [GROUP_BY_COLUMN], COUNT(*) FROM lineitem GROUP BY [GROUP BY COLUMN]

Join strategy optimization

Figure 7: Join strategies chosen by optimizers (seconds)

A combination of static query analysis and partial DAG execution led to a <u>3x</u> performance improvement over a naïve, statically chosen plan

Real Hive Warehouse Queries

Figure 9: Real Hive warehouse workloads

The map pruning technique, on average, reduced the amount of data scanned by <u>a factor of 30</u>

Next steps

Add the two unimplemented areas (bytecode compilation and specialized data structures) and benchmark differences in performance

More extensive real-world machine learning benchmarks (including machine learning tools)

Looking at other machine learning algorithms that can be incorporated into Shark