F19T1A2

a) Es sei $(f_n)_n$ eine Folge von Funktionen $f_n : \mathbb{R} \to \mathbb{R}$. Formuliere das *Majorantenkriterium von Weierstraß für die gleichmäßige* Konvergenz der Funktionenreihe $\sum_{n=1}^{\infty} f_n$ auf \mathbb{R} .

Von nun an sei $f:[0,1]\to\mathbb{R}$ eine stetig differenzierbare Funktion auf dem kompakten Intervall $[0,1]\subseteq\mathbb{R}$.

- b) Zeige, dass f dehnungsbeschränkt (global Lipschitz-stetig) ist, d.h. dass es ein L > 0 gibt, so dass $|f(x) f(y)| \le L \cdot |x y|$ für alle $x, y \in [0, 1]$ ist.
- c) Zeige, dass die Funktionenreihe

$$\sum_{n=1}^{\infty} \left[f\left(\frac{1}{n^2 + x^2}\right) - f(0) \right]$$

gleichmäßig auf \mathbb{R} konvergiert (bezüglich x). Begründen Sie, ob die Gernzfunktion stetig ist.

Zu a):

Majorantenkriterium von Weierstraß für gleichmäßige Konvergenz

Es sei $f_n: M \to \mathbb{R}$ eine Folge von Funktionen so gilt: Falls die Reihe $\sum_{n=1}^{\infty} \sup_{x \in M} |f_n(x)|$ konvergiert, so konvergiert die Reihe $\sum_{n=1}^{\infty} f_n$ gleichmäßig auf M.

Zu b):

Da f stetig differenzierbar ist, ist f' stetig und nimmt deshalb auf dem kompakten Intervall [0,1] ein Maximum $L:=\max_{t\in[0,1]}|f'(t)|$ an. Dann gilt für alle $x,y\in[0,1]$:

$$|f(x) - f(y)| = \left| \int_{y}^{x} f'(t)dt \right| \le \left| \int_{y}^{x} \underbrace{|f'(t)|}_{\le L} dt \right| \le L \cdot \left| \int_{y}^{x} 1dt \right| = L \cdot |x - y|$$

(Alternative: Mittelwertsatz, Ableitung ist beschränkt)

Zu c):

Hier ist $f_n(x) = f\left(\frac{1}{n^2+x^2}\right) - f(0)$, $x \in \mathbb{R}$. Wegen $\frac{1}{n^2+x^2} \in [0,1]$ für alle $n \in \mathbb{N}$ und $x \in \mathbb{R}$ kann man wie in b) annehmen:

$$\left| f\left(\frac{1}{n^2 + x^2}\right) - f(0) \right| \le L \cdot \left| \frac{1}{n^2 + x^2} - 0 \right|.$$

Es ist dann

$$\max_{x \in \mathbb{R}} \left| \frac{1}{n^2 + x^2} \right| \le \max_{x \in \mathbb{R}} \frac{L}{n^2 + x^2} \stackrel{x=0}{=} \frac{L}{n^2}.$$

Damit erhält man

$$\sum_{n=1}^{\infty} \max_{x \in \mathbb{R}} \left| f\left(\frac{1}{n^2 + x^2}\right) - f(0) \right| \le \sum_{n=1}^{\infty} \frac{L}{n^2} < \infty.$$

Wobei die letzte Reihe eine aus Analysis I bekannte Reihe ist. Nach dem Majorantenkriterium konv. die gesuchte Funktionenreihe also gleichmäßig auf \mathbb{R} . Die Grenzfunktion ist stetig, da sie gleichmäßiger Limes stetiger Funktionen $f_n : \mathbb{R} \to \mathbb{R}$ ist (Analysis I/II).