DNS

Sujet

Ressorts	2
I.Un ressort et une masse.	2
A.Mise en équation.	2
B.Résolution 1	
C.Résolution 2	3
II.Deux ressorts et une masse.	3
A. Mise en équation.	3
B.Résolution 1	
C. <u>Résolution 2</u>	3
III. Trois ressorts et deux masses	4
A.Mise en équation.	4
B.Résolution 1	4
C.Résolution 2	4
IV. <u>Résonance</u>	_

Ressorts

Pour étudier un problème faisant intervenir un ressort, il est bon dans un premier temps d'utiliser uniquement les notations suivantes:

 ℓ : longueur du ressort

 ℓ_o : longueur à vide du ressort

 ℓ_{eq} : longueur du ressort à l'équilibre.

Dans un deuxième temps, on peut passer à une notation « abscisse » en précisant dans le cas d'un mouvement rectiligne, un axe (direction, sens mais surtout : origine). Dans la suite, on étudiera deux possibilités différentes:

x : abscisse du point mobile en prenant une origine sur le bord gauche (voir plus loin)

X: abscisse du point mobile en prenant une origine à sa position d'équilibre. C'est cette dernière solution qui est la plus souvent adoptée.

L'accélération de la pesanteur est notée \vec{g} de norme notée g.

I. Un ressort et une masse

Un objet de masse m assimilé à un point matériel (de dimensions négligeables) A_1 peut glisser sans frottement le long d'un axe horizontal de vecteur unitaire \vec{u} . Il est fixé à l'extrémité d'un ressort horizontal désigné par ressort 1. L'autre extrémité du ressort 1 est fixée au point O. Le ressort 1 possède une raideur k. On utilisera les notations ℓ_1 , ℓ_o , $\ell_{eq,1}$. La masse est en mouvement.

A. Mise en équation

- 1. Qu'appelle-t-on allongement du *ressort* 1 . Faire intervenir deux des longueurs précédentes ?
- 2. En déduire l'expression de la force exercée par le ressort 1 sur A_1 en fonction de k, de ces deux longueurs et en utilisant le vecteur unitaire \vec{u} . Vérifier que le signe est correct en étudiant qualitativement les deux cas : ressort allongé puis ressort contracté.
- 3. Écrire vectoriellement le principe fondamental pour A_1 en définissant éventuellement la ou les notations ne figurant pas dans le texte.
- 4. Projeter alors cette relation sur les deux axes utiles (l'axe vertical sera choisi vers le haut).
- 5. Que vaut l'accélération au passage par une position d'équilibre ? En partant d'une des deux équations obtenues en 4, déterminer la relation entre longueur à l'équilibre $\ell_{eq,1}$ et longueur à vide ℓ_o .

B. Résolution 1

On choisit alors l'origine de l'axe au point O et l'abscisse de A_1 est notée x.

- 6. En déduire l'équation différentielle du deuxième ordre avec second membre constant vérifiée par x.
- 7. Résoudre avec précision cette équation différentielle en utilisant les conditions initiales suivantes: au départ c'est à dire en t=0, on avait $x=\ell_o+a$ et $\mathring{x}=0$.

C. Résolution 2

On recommence la résolution mais cette fois on choisit la nouvelle origine de l'axe à la position d'équilibre de A_1 . L'abscisse de A_1 est notée X.

- 8. En déduire en partant de l'équation différentielle obtenue en 4, l'équation différentielle du deuxième ordre vérifiée par $\,X\,$.
- 9. Résoudre cette équation différentielle en utilisant le même état initial que précédemment.

II. Deux ressorts et une masse

On accroche au point matériel A_1 un deuxième ressort ou $ressort\ 2$ dont l'autre extrémité est fixée au point O' (fixe) tel que OO'=d. Le $ressort\ 2$ est identique au $ressort\ 1$ (raideur k et longueur à vide ℓ_o). On utilisera aussi les notations ℓ_o et $\ell_{eq,2}$ pour ce $ressort\ 2$.

A. Mise en équation

- 10. Écrire l'expression de la force exercée par le *ressort* 2 sur A_1 en fonction de k, de deux longueurs et en utilisant le vecteur unitaire \vec{u} . Vérifier que le signe est correct en étudiant qualitativement les deux cas : ressort allongé puis ressort contracté.
- 11. Écrire vectoriellement le principe fondamental pour A_1
- 12. Projeter cette relation sur l'axe horizontal.
- 13. Justifier, en partant notamment de la relation précédente, les valeurs de $\ell_{eq,1}$ et $\ell_{eq,2}$.

B. Résolution 1

On choisit alors l'origine de l'axe au point O et l'abscisse de A_1 est notée x.

- 14. Écrire l'équation différentielle du deuxième ordre vérifiée par x.
- 15. Résoudre avec précision cette équation différentielle en utilisant les conditions initiales suivantes: au départ le point A_1 a été écarté de sa position d'équilibre (et de repos) d'une distance a dans le sens positif et lâché sans vitesse initiale. La pulsation propre du mouvement sera notée ω_0 dont on précisera l'expression en fonction de k et m. On indiquera aussi la condition évidente minimale à respecter pour a dans le cadre de ce problème théorique.

C. Résolution 2

On recommence la résolution. La nouvelle origine de l'axe est choisie à la position d'équilibre de A_1 . L'abscisse de A_1 est notée X.

16. Écrire l'équation différentielle du deuxième ordre vérifiée par X.

17. Résoudre.

III. Trois ressorts et deux masses

On étudie ici le problème de deux oscillateurs couplés. Les trois ressorts ressort 1, ressort 2 (ressort intermédiaire qui assure le couplage entre les mouvements des deux points) et ressort 3 sont identiques (raideur k et longueur à vide ℓ_o). Les deux points matériels A_1 et A_2 sont identiques, de masse m. La distance OO' est notée D.

A. Mise en équation

- 18.Écrire l'expression de la force exercée par le ressort 2 sur A_2 puis la force exercée par le ressort 2 sur A_1 . On utilisera notamment les notations longueurs.
- 19. Appliquer vectoriellement le principe fondamental puis projeter sur l'axe horizontal.
- 20. Justifier les valeurs de $\ell_{eq,1}$, $\ell_{eq,2}$ et $\ell_{eq,3}$.

B. Résolution 1

On choisit alors l'origine de l'axe au point O, l'abscisse de A_1 est notée x_1 et celle de A_2 est notée x_2 .

- 21. Écrire le système d'équations différentielles vérifiée par x_1 et x_2 . Introduire ω_0 en utilisant l'expression définie dans la deuxième partie.
- 22.Résoudre avec précision sachant qu'au départ le point A_1 a été écarté de sa position d'équilibre (et de repos) d'une distance a dans le sens positif, le point A_2 étant resté à sa position d'équilibre. Les deux points ont été libérés sans vitesse initiale. (Pour résoudre, faire la somme des deux équations différentielles et faire leur différence. On obtiendra une équation différentielle en x_1+x_2 et une autre équation différentielle en x_2-x_1).
- 23. Quelles sont les deux pulsations qui interviennent naturellement ? On désignera par ω_I la pulsation inférieure à ω_0 et par ω_{II} la pulsation supérieure à ω_0 .
- 24. Donner l'allure de $x_1(t)$ et de $x_2(t)$ (sur le même graphe).
- 25. Quelle est la condition à respecter pour a dans le cadre de ce problème théorique.

C. Résolution 2

On recommence la résolution. L'abscisse de A_1 est notée X_1 en prenant l'origine à la position d'équilibre de A_1 . L'abscisse de A_2 est notée X_2 en prenant l'origine à la position d'équilibre de A_2 .

26. Écrire le système d'équations différentielles en X_1 et X_2 .

27.Résoudre.

IV. Résonance

On reprend le système étudié précédemment. A_1 est repéré par X_1 et A_2 par X_2 (origines aux positions d'équilibre respectives). On excite le système à la pulsation ω en déplaçant le point O horizontalement de manière sinusoïdale. Par rapport à la position originelle de O en O_0 , on a désormais $\overline{O_oO} = X_O \vec{u} = X_{O,max} \cos(\omega t) \vec{u}$. On continue à négliger les éventuels frottements dans les calculs.

28. Écrire le système d'équations différentielles en X_1 et X_2 .

On cherche la solution en régime sinusoïdal forcé c'est à dire la solution particulière du système d'équations. On sait que lorsque le régime transitoire est éteint (il y a toujours en fait des frottements) , les deux points vibrent à la pulsation d'excitation ω . On travaille donc avec les complexes associés \underline{X}_1 et \underline{X}_2 qui sont en $\exp(j\,\omega t)$.

29. Que peut-on en déduire pour les expressions de $\frac{dX_1}{dt}$, $\frac{d^2X_1}{dt^2}$ en fonction de X_1 et

$$\frac{dX_2}{dt}$$
, $\frac{d^2X_2}{dt^2}$ en fonction de X_2 .

30. Écrire le système d'équations en X_1 et X_2 .

31. Déterminer \underline{X}_1 et \underline{X}_2 en fonction de \underline{X}_0 .

32.On désigne par $X_{1,max}$ l'amplitude de A_1 et par $X_{2,max}$ l'amplitude de A_2 . Déterminer $\frac{X_{1,max}}{X_{O,max}}$ et $\frac{X_{2,max}}{X_{O,max}}$ en fonction de la pulsation d'excitation.

33. Donner l'allure des courbes $\frac{X_{1,max}}{X_{O,max}}$ et $\frac{X_{2,max}}{X_{O,max}}$ en fonction de la pulsation ω .

34. Conclure sur le phénomène de résonance observé. En quoi l'allure des courbes serait-elle modifiée en présence de forces de frottement fluide sur chaque point ?

Réponses

1) allongement = longueur - longueur à vide

Dly = l, - lo

2) $\overrightarrow{f}_{1\rightarrow A_{1}} = - k \Delta \ell_{1} \overrightarrow{M}$ $\overrightarrow{f}_{1\rightarrow A_{1}} = - k (\ell_{1} - \ell_{0}) \overrightarrow{M}$

• resport allonge' 1 > 0

• resort contracté

△l1 < 0

l1 < l0

F1→A1 dans le sens de M

correct

3) Le point A est soumis aussi à son poids et à la réaction Ri exercée par le support. En l'absence de frottement solide, cette réaction est perpendiculaire au ouport.

reaction est perpendiculaire au oupport. $\overrightarrow{f}_{1\rightarrow A_{1}} + m\overrightarrow{g} + \overrightarrow{R}_{1} = m\overrightarrow{a}_{1}$

avec à acceleration de A1

by axes:

-k(l,-lo) w - mg mg +R, mg= ma, w

5) A l'équilire,
$$\overline{\xi} = \overrightarrow{\delta}$$
 donc $\overrightarrow{a}_1 = \overrightarrow{\delta}$

On remplace dans l'équation 4) 1) la par leg et au par 0 d'où

ce qui était ici évident.

9

L'équation différentielle est :

$$\ddot{z} + \frac{k}{m}x = \frac{k}{m}l_o$$

1 _ polition de l'équation homogène :

$$x = A \cos(\sqrt{k}t) + B \sin(\sqrt{k}t)$$

- solution particulière avec second membre constant:

on porte les conditions initiales

En K=0 :

$$B = 0$$

$$x = a \cos(\sqrt{\frac{k}{m}}t) + \ell_0$$

L'aquation différentielle est :

Il n'y a plus cette fois de second membre. L'équation différentielle est bomogène.

رو

avec en t=0

fundement

$$X = a \cos(\sqrt{k} t)$$

(ce qui est evidenment about aller la solution detenne en 7)

19)

$$\overrightarrow{F}_{2\rightarrow A_{1}} = + k \Delta l_{2} \overrightarrow{W}$$

$$\overrightarrow{F}_{2\rightarrow A_{1}} = k (l_{2}-l_{0}) \overrightarrow{W}$$

· resort allongé

F_{2→A}, dans le sens de u

correct

· resport contracté

De2 <0

l2 < l0

Fr. A, dans le sens contravre de U

correct

11)
$$\overrightarrow{f_{1}} \rightarrow A_{1} + \overrightarrow{f_{2}} \rightarrow A_{1} + \overrightarrow{m_{3}} + \overrightarrow{R_{1}} = \overrightarrow{ma_{1}}$$

- K(l_1-l_0) + K(l_2-l_0) - mg mg + R, mg = ma, m 12) projection sur is:

et
$$a_1 = \frac{d^2 l_1 l^2}{dt^2}$$

13) A l'équilibre : $l_1 \rightarrow l_{1,eq}$ $l_2 \rightarrow l_{2,eq}$

-> L'equation précédente devient :

$$-k(l_{1,eq}-l_{0})+k(l_{2,eq}-l_{0}) = 0$$

-> En tenant compte de

finalement:
$$l_{1,eq} = l_{2,eq} = \frac{d}{2}$$

(évident)

Avec l_= x , l'équation différentielle devient: 140

$$-k(x-l_0) + k(d-x-l_0) = m\frac{d^2x}{dt^2}$$

$$\ddot{z} + \frac{2k}{m}z = \frac{k}{m}d$$

on pose

$$\omega_0 = \pm \sqrt{\frac{2k_0}{m}}$$

$$\ddot{z} + \omega_0^2 \times = \omega_0^2 \frac{d}{2}$$

15) solutam générale:

 $x = A \cos(\omega_0 t) + B \sin(\omega_0 t) + \frac{d}{2}$ Conditions initiales:

$$\chi_{t=0} = a + \frac{d}{2} = A + \frac{d}{2}$$

$$\dot{x} = 0 = B \omega_0$$

finalement:
$$x = a \cos(u_0 t) + \frac{1}{2}$$

avec 0 < x < d

 $\frac{d}{a} < \frac{d}{2}$

(evident)

16 on a par exemple:

$$-k (l_1 - l_0) + k (l_2 - l_0) = m a_1$$

$$-k (l_1 e_1 - l_0) + k (l_2 e_1 - l_0) = 0$$

en favant la différence ontre ces deux équations:

تكنوح

$$-k \times + k (-\times) = m \frac{d^2x}{dt^2}$$

$$\times$$
 + ω_0^2 \times = 0

La solution est: 13

$$X = a \cos(\omega_0 t)$$

18)

$$\frac{f}{z \rightarrow A_2} = -k \Delta l_2 \overline{u}$$

$$\frac{f}{z \rightarrow A_2} = -k (l_2 - l_o) \overline{u}$$

$$\frac{f}{z \rightarrow A_1} = +k (l_2 - l_o) \overline{u}$$

Principe fordamental appliqué à
$$A_1$$
 en projection:
$$-k (\ell_1 - \ell_0) + k (\ell_2 - \ell_0) = m \quad a_1$$
Pour A_2 :
$$-k (\ell_2 - \ell_0) + k (\ell_3 - \ell_0) = m \quad a_2$$

$$- k (l_2 - l_0) + k (l_3 - l_0) = m a_2$$

avec les relations supplementaires:
$$l_1 + l_2 + l_3 = D$$

$$a_1 = \frac{d^2l_1}{dt^2}$$

$$a_2 = \frac{d^2(l_1 + l_2)}{dt^2}$$

20) A l'équilibre, ces deux équations devienment:

-
$$k(l_1, eq - l_0)$$
 + $k(l_2, eq - l_0)$ = 0
- $k(l_2, eq - l_0)$ + $k(l_3, eq - l_0)$ = 0

d'où:

$$l_{1,eq} = l_{2,eq} = l_{3,eq} = \frac{D}{3}$$

21) On pose: $l_1 = x_1$

$$\ell_1 + \ell_2 = \infty_2$$

D'où les équations:

$$-k(x_1-l_0) + k(x_2-x_1-l_0) = m \frac{d^2x_1}{dt^2}$$

$$-k(x_2-x_4-l_0) + k(D-x_2-l_0) = m\frac{d^2x_2}{dt^2}$$

23) On pose $5 = x_2 + x_1$ $N = x_2 - x_1$

-> La somme des deux équations en 21) donne:

$$\omega_{\rm I} = \frac{\omega_{\rm o}}{Vz}$$

L'equation à résordre est:

$$\ddot{S} + \omega_{\pm}^2 S = \omega_{\pm}^2 D$$

avec les conditions initiales ouvantes:

$$t=0 \quad x_1 = l_{1eq} + \alpha = \frac{D}{3} + \alpha$$

$$x_2 = l_{1eq} + l_{2eq} = \frac{2D}{3}$$

$$x_1 = 0$$

$$x_2 = 0$$

$$\begin{cases}
5 = 0 \\
3 = 0
\end{cases}$$

La polution est donc:

$$S = A_{I} \cos(\omega_{I}t) + B_{I} \sin(\omega_{I}t) + D$$

$$C.I. | \alpha+D = A_{I}$$

$$O = B_{I} \omega_{I}$$

___ La différence des deux équations en 21) donne:

$$N + \frac{3\omega_0^2}{2}N = \frac{\omega_0^2D}{2}$$

$$\omega_T^2$$

$$\omega_{\text{II}} = \omega_0 \sqrt{\frac{3}{2}}$$

L'equation à résondre est

$$\ddot{N} + \omega_{\underline{m}}^2 N = \omega_{\underline{m}}^2 \frac{D}{3}$$

avec pour les conditions initiales

$$t=0$$
 $N = l_{2eq} - a = \frac{D}{3} - a$
 $N = 0$

La solution est donc :

$$N = A_{\pi} \cos(\omega_{\pi} t) + B_{\pi} \sin(\omega_{\pi} t) + \frac{D}{3}$$

$$C.I. \frac{D}{3} - a = A_{\pi}$$

$$O = B_{\pi} \omega_{\pi}$$

$$N = -\alpha \cos(\omega_{\pi}t) + \frac{P}{3}$$

avec
$$x_1 = \frac{5-N}{2}$$

$$x_2 = \frac{5+N}{2}$$

finalement:

$$\mathcal{Z}_{1} = \frac{\alpha}{2} \left(\cos(\omega_{\pm}t) + \cos(\omega_{\pm}t) \right) + \frac{D}{3}$$

$$\mathcal{Z}_{2} = \frac{\alpha}{2} \left(\cos(\omega_{\pm}t) - \cos(\omega_{\pm}t) \right) + \frac{2D}{3}$$

23) on a dejà vu que \approx et \approx_2 faissient intervenir les pulsations $\omega_{\rm I}=\frac{\omega_0}{\sqrt{2}}$ et $\omega_{\rm II}=\frac{\sqrt{3}}{\sqrt{2}}\omega_0$.

25) Conditions à respecter (en supposant qu'un resort puisse de contractor guage'à une longueur nulle)

-le mobile A1 ne peut passer de l'autre cêté du point 0

24(t) >0

-le mobile A2 ne peut passer de l'autre côté du print 0'
>= 22 lt) < D

- les deux mobiles ne peuvent se croiser .
$$x_{2}(t) - x_{1}(t) > 0$$

Soit:
$$\frac{\alpha}{2} \left(\cos \left(\omega_{\underline{1}} t \right) + \cos \left(\omega_{\underline{\Pi}} t \right) \right) + \frac{D}{3} > 0$$

$$\frac{\alpha}{2} \left(\cos \left(\omega_{\underline{1}} t \right) - \cos \left(\omega_{\underline{\Pi}} t \right) \right) + \frac{2D}{3} < D$$

$$-\alpha \cos \left(\omega_{\underline{\Pi}} t \right) + \frac{D}{3} > 0$$

Chacune des ces inégalités donne

$$a < \frac{D}{3}$$

26) on avait:

- power A1 :

$$-k (l_1 - l_0) + k (l_2 - l_0) = m a_1$$

$$-k (l_1 - l_0) + k (l_{2eq} - l_0) = 0$$

différence:
$$-k (l_1 - l_{1aq}) + k (l_2 - l_{2aq}) = m a_1$$

- pour A2 :

on dient de nême
$$-k (l_2 - l_{2eq}) + k (l_3 - l_{3eq}) = m a_2$$

Les seules forces qui intervenment dans le mouvement sont les forces en ous de l'équilibre d'ai l'intérêt de repérer par rapport à la position d'équille

Avec:

$$l_1 = l_{1eq} + X_1$$

$$l_2 = l_{2eq} + X_2 - X_1$$

$$l_3 = l_{3eq} - X_2$$

Finalement, les équations deverment:

$$- k \times_{1} + k (X_{2} - X_{1}) = m \frac{d^{2}X_{1}}{dt^{2}}$$

$$- k (X_{2} - X_{1}) + k (-X_{2}) = m \frac{d^{2}X_{2}}{dt^{2}}$$

$$-\omega_0^2 \times_1 + \omega_0^2 \times_2 = \frac{\Delta^2 \times_1}{\Delta t^2}$$

$$\frac{\omega_0^2 \times_1}{2} \times_1 - \omega_0^2 \times_2 = \frac{\Delta^2 \times_1}{\Delta t^2}$$

on remarquera l'analogie avec les équations en 21)

27) La resolution se fait par les mêmes methodes et donne, been entender:

$$X_1 = \frac{\alpha}{2} \left(\cos \left(\omega_{\underline{x}} t \right) + \cos \left(\omega_{\underline{x}} t \right) \right)$$

$$X_2 = \frac{\alpha}{2} \left(\cos \left(\omega_{\underline{x}} t \right) - \cos \left(\omega_{\underline{x}} t \right) \right)$$

28) Désermais:

$$\ell_1 = \ell_{1eq} + x_1 - x_0$$

Les equations 25) devenment:
$$-k(X_1-X_0) + k(X_2-X_1) = m \frac{d^2X_1}{dt^2}$$

$$-k(X_2-X_1) + k(-X_2) = m \frac{d^2X_2}{dt^2}$$

 $\frac{dX_1}{At} = j\omega X_1 \quad \text{et} \quad \frac{dX_2}{dt} = j\omega X_2$ $\frac{d^2X_1}{dt^2} = -\omega^2X_1 \quad \text{et} \quad \frac{d^2X_2}{dt^2} = -\omega^2X_2$

On pose Xo = Xo, max exp gent

 $-\omega_o^2 \underline{X}_1 + \underline{\omega_o^2} \underline{X}_2 + \underline{\omega_o^2} \underline{X}_o = -\omega^2 \underline{X}_1$ 30) $\frac{\omega_0^2}{2} \underbrace{\times_1} - \omega_0^2 \underbrace{\times_2} = -\omega^2 \underbrace{\times_2}$

$$(\omega^2 - \omega_o^2) \underbrace{X_1} + \underbrace{\omega_o^2}_2 \underbrace{X_2} = -\underbrace{\omega_o^2}_2 \underbrace{X_o}$$

$$\underbrace{\omega_o^2}_2 \underbrace{X_1} + (\omega^2 - \omega_o^2) \underbrace{X_2}_2 = 0$$

31) solution:

$$\frac{X_1}{(\omega^2 - \omega_0^2)^2 - (\frac{\omega_0^2}{2})^2} = \frac{X_0}{(\omega^2 - \omega_0^2)^2}$$

$$\frac{X_2}{\left(\omega^2 - \omega_0^2\right)^2 - \left(\frac{\omega_0^2}{2}\right)^2} \quad \underline{X}_0$$

$$\frac{\times_1}{(\omega^2 - \omega_1^2) \frac{\omega_0^2}{2}} \times_0$$

$$\underline{X}_{2} = \frac{\underline{\omega_{0}}^{2}}{(\omega^{2} - \omega_{\pi}^{2})(\omega^{2} - \omega_{\pi}^{2})} \times_{0}$$

32

$$\frac{X_{0, \text{max}}}{X_{1, \text{max}}} = \left| \frac{\left(\omega_{0}^{2} - \omega_{1}^{2}\right) \left(\omega_{1}^{2} - \omega_{1}^{2}\right)}{\left(\omega_{1}^{2} - \omega_{1}^{2}\right)} \right|$$

$$\frac{X_{\bullet, max}}{X_{\bullet, max}} = \frac{\frac{W_{\bullet}^{2}}{\Lambda}}{\left(\omega^{2} - \omega_{\pm}^{2}\right)\left(\omega^{2} - \omega_{\pm}^{2}\right)}$$

33) les deux courbes (sans les valeurs absoluss)

- Loraque les courles sont positives, le mouvement forcé est en phase avec celui de O Smorr, il y a opposition de phase.
- Pour $\omega < \omega_{\rm I}$ A₁ et A₂ sont en place avec O $\omega_{\rm I} < \omega < \omega_{\rm o}$ A₁ et A₂ sont tous deux en apportion de place avec O $\omega_{\rm o} < \omega$ A₁ et A₂ sont en opportion de place entre $\omega_{\rm o}$ entre $\omega_{\rm o}$ avec inversion en $\omega_{\rm o}$

Les deux courbes demandées (avec les valeurs abolues)

On voit qu'il y a résonance (infinie en l'absence de frottements)

pour non pas une ... mais deux pulsations :

En présence de frottement fluide, les amplitudes ne sont pas infinies à la résonance. Il n'y aurait d'ailleurs résonance d'amplitude que si les frottements ne sont pas trop élevés. Les héquences de résonance ne sont plus nigoureusement égales à WI et WII.