MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 16th February, 2015 D1 - Lecture 18

Recall:

- The problem of solving linear system of 1-st order ODE with constant coefficients $\frac{du}{dt} = Au$ reduces to solving the eigenvalue problem $Ax = \lambda x$.
- The eigenvalues of A are roots of characteristic polynomial $\det(A \lambda I)$ and the eigenspace associated to eigenvalue λ is $N(A \lambda I)$.
- $\lambda = 0$ is an eigenvalue of $A \Leftrightarrow A$ is singular. So A is non-singular $\Leftrightarrow 0$ is not an eigenvalue of A.
- If A is a diagonal matrix, then eigenvalues of A are $a_{11}, a_{22}, \ldots, a_{nn}$ and the associated eigenvectors are e_1, \cdots, e_n .
- Eigenvectors need not form a basis of \mathbb{R}^n . Ex: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- **Def.** Let A and B be square matrices such that $S^{-1}AS = B$ for an invertible matrix S. Then A and B are called **similar**.

• Recall: Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be linear map L(x,y) = (x+y,x+2y). Let $\mathcal{B} = \{(1,0)^T,(0,1)^T\}$ and $\mathcal{B}' = \{(1,1)^T,(1,-1)^T\}$ be two bases of \mathbb{R}^2 . Let $A = [L]_{\mathcal{B}}^{\mathcal{B}}$ and $B = [L]_{\mathcal{B}'}^{\mathcal{B}'}$. Then A and B are similar. Consider

$$\mathbb{R}^{2}_{\mathcal{B}'} \xrightarrow{id} \mathbb{R}^{2}_{\mathcal{B}} \xrightarrow{L} \mathbb{R}^{2}_{\mathcal{B}} \xrightarrow{id} \mathbb{R}^{2}_{\mathcal{B}'}$$

$$(5)$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \ S = [id]_{\mathcal{B}'}^{\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \ B = S^{-1}AS = \begin{pmatrix} \frac{5}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{1}{2} \end{pmatrix}.$$

We can find B directly also

$$L(1,1) = (2,3) = \frac{5}{2}(1,1) + \frac{-1}{2}(1,-1)$$

$$L(1,-1) = (0,-1) = \frac{-1}{2}(1,1) + \frac{1}{2}(1,-1)$$

- If A and B are similar, then they have same characteristic polynomial, $det(A \lambda I) = det(B \lambda I)$, hence same eigenvalues.
- **Def.** A square matrix A is called diagonalizable if A is similar to a diagonal matrix Λ , i.e., $S^{-1}AS = \Lambda$ for some S. In this case, the eigenvalues of A are the diagonal entries of Λ .

- 1. 140020024 PRANSHU MAHENDRA JAIN
- 2. 140020025 AMIYA MAITREYA
- 3. 140020042 PRANAY AGARWAL
- 4. 140020045 MOHIT SINGHAL
- 5. 140020054 PRANAY LADIWALA
- 6. 140020089 SATYENDRA KUMAR
- 7. 140020105 ANUP PATTNAIK
- 8. 140050028 VARRE ADITYA VARDHAN
- 9. 140050031 C VISHWESH
- 10. 140050038 GUDIPATI KRISHNA CHAITANYA
- 11. 140050047 Y PUSHYARAG
- 12. 140050057 YOGENDRA VINAY
- 13. 140050065 ARUKONDA GOUTHAM SURYA
- 14. 140050071 DARNASI RAHUL KIRAN
- 15. 140050056 DANTAM MOHAN SAITEJA
- 16. 140050060 GANGAM ROHITH REDDY
- 17. 140050068 THANNEERU RANA PRATHAP

Diagonalization of a Matrix

Q: What is the advantage of a basis of \mathbb{R}^n consisting of eigenvectors?

Theorem:

Eigenvectors diagonalize a matrix

Assume an $n \times n$ matrix A has a basis consisting of eigenvectors $\{x_1, \ldots, x_n\}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$.

Consider the invertible matrix $S = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$ with columns x_i .

Then
$$S^{-1}AS=$$
 diagonal matrix $\Lambda=egin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}.$

Proof. (2 × 2 case). $Ax_i = \lambda_i x_i$. Hence

$$AS = A \begin{bmatrix} x_1 & x_2 \end{bmatrix} = \begin{bmatrix} Ax_1 & Ax_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 \end{bmatrix} = S\Lambda.$$

Therefore $S^{-1}AS = \Lambda$,

i.e., A is similar to a diagonal matrix.

Caution:
$$\Lambda S = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \lambda_1 a & \lambda_1 b \\ \lambda_2 c & \lambda_2 d \end{bmatrix} \neq S\Lambda.$$

Diagonalization: Example

Ex:
$$A = \begin{bmatrix} 1 & 5 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & 3 \end{bmatrix}$$
 is triangular.

$$\det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda).$$
Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

Note: If A is triangular, its eigenvalues are sitting on the diagonal

Eigenvectors:
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$, $x_3 = \begin{bmatrix} -7 \\ -4 \\ 1 \end{bmatrix}$.

Further, $\{x_1, x_2, x_3\}$ is a basis of \mathbb{R}^3 .

Hence $S = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ is invertible, and

$$AS = \begin{bmatrix} Ax_1 & Ax_2 & Ax_3 \end{bmatrix} = \begin{bmatrix} x_1 & 2x_2 & 3x_3 \end{bmatrix} = S\Lambda$$
, where $\Lambda = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}$.

Thus $S^{-1}AS = \Lambda$, i.e., A is diagonalizable.

Diagonalization and Change of Basis

With A as before, $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by Tx = Ax is linear. If $S = \{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 , then

$$[T]_{\mathcal{S}}^{\mathcal{S}} = \begin{bmatrix} [Te_1]_{\mathcal{S}} & [Te_2]_{\mathcal{S}} & [Te_3]_{\mathcal{S}} \end{bmatrix} = A.$$

Recall that for $x_1 = (1,0,0)^T$, $x_2 = (5,1,0)^T$ and $x_3 = (-7,-4,1)$, $Tx_1 = x_1$, $Tx_2 = 2x_2$, $Tx_3 = 3x_3$.

Furthermore, $\mathcal{B} = \{x_1, x_2, x_3\}$ is a basis of \mathbb{R}^3 . **Q:** What is $[T]_{\mathcal{B}}^{\mathcal{B}}$?

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{bmatrix} [Tx_1]_{\mathcal{B}} & [Tx_2]_{\mathcal{B}} & [Tx_3]_{\mathcal{B}} \end{bmatrix} = \Lambda = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}.$$

Consider

$$\mathbb{R}^3_{\mathcal{B}} \xrightarrow{id} \mathbb{R}^3_{\mathcal{S}} \xrightarrow{T} \mathbb{R}^3_{\mathcal{S}} \xrightarrow{id} \mathbb{R}^3_{\mathcal{B}}$$

Change of basis formula:

$$[id]_{\mathcal{S}}^{\mathcal{B}}[T]_{\mathcal{S}}^{\mathcal{S}}[id]_{\mathcal{B}}^{\mathcal{S}} = [T]_{\mathcal{B}}^{\mathcal{B}}$$
, i.e., $[id]_{\mathcal{S}}^{\mathcal{B}}A[id]_{\mathcal{B}}^{\mathcal{S}} = \Lambda$.

Observe:
$$[id]_{\mathcal{B}}^{\mathcal{S}} = \begin{bmatrix} [id(x_1)]_{\mathcal{S}} & [id(x_2)]_{\mathcal{S}} & [id(x_3)]_{\mathcal{S}} \end{bmatrix} := \mathcal{S}.$$

i.e., the change of basis formula gives: $S^{-1}AS = \Lambda$.

Thus diagonalization of a matrix is the same as finding a basis w.r.t. which the matrix is diagonal.

When is A Diagonalizabe

• If x_1, \ldots, x_r are eigenvectors of A associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$, then x_1, \ldots, x_r are linearly independent.

Proof. Suppose x_1, \ldots, x_r are linearly dependent. Choose a linear relation involving minimum number of x_i 's, say

(1)
$$a_1x_1 + \ldots + a_tx_t = 0$$
. $(1 < t \le r, t \text{ is minimal, } a_i \ne 0)$

Apply A to get
$$a_1\lambda_1x_1 + \ldots + a_t\lambda_tx_t = 0$$
 (2)

$$\lambda_1 \cdot (1) - (2)$$
 gives $a_2(\lambda_1 - \lambda_2)x_2 + \ldots + a_t(\lambda_1 - \lambda_t)x_t = 0$,

which contradicts the minimality of t.

• If A has n distinct eigenvalues, then A is diagonalizable.

Proof. If x_1, \ldots, x_n are eigenvectors associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\{x_1, \ldots, x_n\}$ is a linearly independent set.

Then $S = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$ is invertible, and $S^{-1}AS = \Lambda$ as earlier.

Hence A is diagonalizable.

When is A Diagonalizabe

• A is diagonalizable \Leftrightarrow A has n linearly independent eigenvectors.

Proof. We have seen (\Leftarrow) . Let's prove (\Rightarrow) .

Assume $S = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$ is an invertible matrix such that

$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Then $AS = S\Lambda$, i.e. $\begin{bmatrix} Ax_1 & \dots & Ax_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \dots & \lambda_n x_n \end{bmatrix}$.

Therefore x_1, \ldots, x_n are eigenvectors of A. They are linearly independent since S is invertible.

The columns of the diagonalizing matrix S are eigenvectors of A S need not be unique, e.g., replace x_1 by $2x_1$ etc.

M.K. Keshari () D1 - Lecture 18 16th February, 2015 9 / 12

Diagonalizability: Non-examples

Ex: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has repeated eigenvalues 1, 1.

The eigenvectors of A are $\begin{bmatrix} y \\ 0 \end{bmatrix}$. Theorefore A does not has a basis consisting of eigenvectors, so A is not diagonalizable.

Ex: Similarly, for any $a \in \mathbb{R}$, the matrix $\begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix}$ has repeated eigenvalues a, a and is not diagonalizable.

M.K. Keshari () D1 - Lecture 18 16th February, 2015 10 / 12

Eigenvalues of AB and A + B

• If λ is an eigenvalue of A, μ is an eigenvalue of B, is $\lambda\mu$ an eigenvalue of AB?

Proof. False Proof.
$$ABx = A(\mu x) = \mu(Ax) = \lambda \mu x$$
.

This is false since A and B may not have same eigenvector x.

• Ex:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

The eigenvalues of A and B are 0,0 and that of AB are 1,0.

- Eigenvalues of A+B are NOT $\lambda+\mu$. In above example, $A+B=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ has eigenvalues 1,-1.
- If A and B have same eigenvectors associated to λ and μ , then $\lambda\mu$ and $\lambda + \mu$ are eigenvalues of AB and A + B respectively.

Q: When do A and B have the same eigenvectors?

Simultaneous Diagonalizability

- Assume A and B are diagonalizable. Then A and B have same eigenvector matrix S if and only if AB = BA.
- **Proof.** (\Rightarrow) Assume $S^{-1}AS = \Lambda_1$ and $S^{-1}BS = \Lambda_2$, where Λ_1 and Λ_2 are diagonal matrices.

Then
$$AB = (S\Lambda_1 S^{-1})(S\Lambda_2 S^{-1}) = S(\Lambda_1 \Lambda_2)S^{-1}$$

and $BA = S(\Lambda_2 \Lambda_1)S^{-1}$.

Since $\Lambda_1\Lambda_2=\Lambda_2\Lambda_1$, we get AB=BA.

• (Part of \Leftarrow) Assume AB = BA.

If $Ax = \lambda x$, then $ABx = B(Ax) = B(\lambda x) = \lambda Bx$.

If Bx = 0, then x is an eigenvector of B, associated to $\mu = 0$.

If $Bx \neq 0$, then x and Bx both are eigenvectors of A, associated to λ .

Special case: Assume all the eigenspaces of A are one dimensional.

Then $Bx = \mu x$ for some scalar $\mu \Rightarrow x$ is an eigenvector of B.

We will not prove the general case.