

Par	te	Teó	r:ca																																	
((12	pts) 1	Demo:	stra (que.	ы V	es o	on es	Paco	vect	oci al	de	dimen	Si on	n Si	ઝહ	un G	er po	k, e	ntonce	ಚ ಲು	x:ste	ധറ ക്ര	omor f	om2:	f:	v →	k*								
		(am	0	giw (- (v.	di	n (kª	') = r		Como	f es	bo	ison	w fisc	no (:avec	tiva v	v Solo	revect	:va)	Sobe	mos	Que.	Im	(f)=	k ⁿ	Can	dimens	ion i	n ent	noces	ام ا	im de	nuck	lo es	D
										62:8								1	,				4-													
		de.	e 1	(cole)	io ec	Jun C	i inco f	/U13	•	67.2		. 130	140) (7	21110	CIMIC		y																			
Λ.																																				
(2) (·	12 pts									can p					_																					
		Con	si dere	me2	{ 454	,, 4	ſa} €	v 1	q <	ڼ4, نا	>=0	Po	ra i	ز≠	y 15:	¥ o	, Su(ponemo	os de	e e	xiste	UND	comp	იილ	n line	al fa	1 0	14 V4 +	+	Qa Va	=0	90	st a	i e k	gara i	=1, -, ,
		ha	æmos	lo	sigui	ente	_ <	Q4 V4	+ +	Qa V	که ره	. >	નુજ	a k	- 4,,	n,	<i>S</i> P1	kneak	નેશને	de ga	ograp	inte	100		Q4<454	, UL>	+ Q2	< V 2	, 18 t) +	+ G	くぜっ	,45k >			
		C.	omo	(3	. y 1	J.	Sen	er409	onale	ر) د	ረብ,	űι>=	:01	para	ì≠	ι.	y com	0 (Vk	, UL>	> 0	Porq	له عمر	ΓL≠O	la	for m	ola ;	se rea	o cirio		a	ak	ζďL,	Nx >	= 0	ya 🤉	gue
					•			٦		on p				Ī			İ				Ì	ĺ														
										ď					7	_									- 0											
മാ)obo c	m! 0.	,				la s		4							C lo		- 1.C	1		هد		L.		. 10	مادما										
								٠		œf: cr							-									Set ora										
(D) (36									зрасю																										
			opor	/16VP	90	e	V e	אט צ	Sop	espac	o de	qum	1 (დი	pose	B	= [ช	Jα	ท ข	≠0	, 00	mo es	app 2	qım	1 (ipol q	veræ	de So	ઝ θ [emen:	pz ş	uede	exp.	re sa s	32	
			Como	molt	. olg:	de 4	΄, ΄	N 1	CO	v q	i e k	• •	la	tran	s for a	nacie	n lin	eal	82r1 Q	T	(V)=	BN	car	BE	K	.:	T	ეს√()	= B	(ob 4) =	Bo	b)√			
			.:	se r	ia	T=	β· J	J,	.:	verd	de de re	,																								
A	lato E	Sı V		Soom	ا. مر	اممما	اسط		C00	o er	tore		, m (1	Hom (V V*	۔ ۱۱	n																			
Φ.	- p-6/			, ·														٠,		be 1.			f		. le.			L 1,		1/4		٠				
										' '							T														1	20106 U	102	give :	≥ev.	
		180	mo()	'smos	(in	ect. u	os	λ 20	breye	ctiva	s/	Se i	lo ta	anto	H	om (V	, V*)	= K		• .	911	m (Hor	n (V,	V*) I =	n^ :	≠ n		Jals	0							

```
(4) (15 pts) Sea T: R[t], -> Th[t], la transformación lineal ty. T(p(x))= p'(x). Probar que det(57) = 0 para toda transformación lineal S: R[x], -> R[x],
       T(1), T(x), ..., T(x^n) => but \begin{pmatrix} 0 & 1 & 0 & 0 \\ \vdots & 0 & 2 & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} b => 0 & bet(s) = 0
  (§) Sea U{peR[x]4 : p(6)=0}
   (a) (7 pts) Mostrar que es un subespacio y hallar una base de U. (Ayuda: s: PEU entonces P(x) = (x-6) 9(x), con el grado de 9 menor o igual a 3.
          (a) Contención del vector o
                                                                          p(x) = (x-6) (b0+ b4x + b1 x2+ b3x3)
            por let salemos que p(6)=0 .: contrene al vector O
                                                                             = (x-6)bo + (x-6)xb1 + (x-6)x2b2 + (x-6)x3b3
                                                                                Xbo - 6 bo + x2b1 - 661x + x3b2 - 6x2b2 + x4b3 - 6x3b3
         (assorb bajo la soma
                                                                               (-6bo) + x (bo . 6b1) + x2 (b1 - 6b2) + x3 (b2 - 6b3) + ba x4
           (p+q)(x) = p(x)+q(x), evaluand on 6
                     \rho(6) + 9(6)
                     O+ 70
                                  : cerrado en la suma
                                                                              .: todas los golinomios puesen expresorse como combinación lineal de
                                                                                 \{(x-6), x(x-6), x^2(x-6), x^3(x-6)\}
                        ο,
                                                                                 \{(x-6), (x^2-6x), (x^3-6x^2), (x^4-6x^3)\}
                                                                                  d_{1}(x-6) + d_{2}(x^{2}-6x) + d_{3}(x^{3}-6x^{2}) + d_{4}(x^{4}-6x^{3}) = 0
         (ii) Cerado bajo multiplicación de escalar
                                                                                   0-1 = de = 00 3 = 06 4 = 0 .. 84 boss
                 (dy)(x) = ap(x), evaluand en 6
                           q.o
                           o : cerra de en la multiplicacion
  (b) (6 pts) Extender la base obtenida en (a) a una base de RIX]4
        Observemos que dim (R[x]4)=5 y nuestra base trane dim=4 .: nacesitamas otro polinomio que no pertenezca a U y que sea li con los ya
       obtenidos. Observamos que falta el termino independiente, 1(6)=1 $0 => 1£0 y también es li con todos has otros, por la base completa
        Seria { 1, (x-6), (x2-6x), (x3-6x2), (x4-6x3)}
  (C) (7 pts) Encontrar un subespacio W tq B[x]4 = U@W
      W = PREXJ4 to W N U = {0}. Como en el ejericio anterior completarnos base can {13, en este ejercico podemos hacer la mumo
      ya que el espacio generando por [13] y el espacio genera do por o henen interseción iguel a o por ser li con serpecito a los polinomios
      : [1]@U = R [x]4
© Figemas A = (2 1) y T: R2x2 -> R2xz, definida por T(B) = AB-BA para todo motriz B
  (1) (10 opts) calcular la motriz [T] & con E la base canonica de R 2x2
= 7 (0, -2, 2, 0)
= > (-2,0,0,2) [T]r= -2 0 0 2
=> (2,0,0,-2)
=> (0,2,-2,0)
```

```
(6) (10 pts) Calcular los autoralores y autorectores asocia dos para [T] ¿ y deu dir si es diagonalizable

\begin{bmatrix}
0 & -2 & 2 & 0 \\
-2 & 0 & 0 & 1 \\
2 & 0 & 0 & -2
\end{bmatrix}

\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & -2
\end{bmatrix}

\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & -2
\end{bmatrix}

\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & -2 & 2 & 0 & 0 & 0 \\
2 & 0 & 0 & -2 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 2 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 2 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}

    et (A(1/1)) = (- λ3) + 0 + 0 - (-4λ) - (-4λ) - 0 et (A(1/2)) = -2 λ2 - 8 + 8
                         = -\lambda^3 + 8\lambda
                                                                                    -2 0 2 -2 1^2
     -102
    0 - 1 -2
                                                                                       2 - 1 -2
                                                                                        0 -2 -7
     2 -2 - 1
                                                                                        -2 0 2
     -102
                                                                                        2 - 1 -2
      0 - 1 -2
                                                                                        (-1)(-1^3+81)-(-2)(-21^2)+2(-21^2)
    bt (A(413))=
                         8-8 -212
                                                                                                -2 -7 2
                         ~212
    2 0 -2
    0 2 - 2
     -2 -1 2
    2 0 -2
   Pasa 1,=0
    10 -2 2 0
                                 ( - 2y +2 = 0
    (W, 7, 2, W) - W (1, 0, 0, 1) + 2 (0, 1, 1, 0)
                                                         > (2y-22=0 2y=2z => y=z .:
                               (2y-2=0
     0 2 -2 0/
                                                                                                                              .: los autovectores son
                                                                                                                                    { 1.0.0,1), (0,1,1,0)}
 Para 12=2
   -24 - 2(-w+y) -2w =0
                                                                                                                                 - 4W + 2W - 2y -0
   -2 -2 0 2 => \-2x-2y +2W=0
                                                                                                                                       -2y = 24r
   0 2 -2 -2
                                     2x - 2t - 2w = 0
                                  y = -W
                                                                                                                         .. (-w, -w, -2w, N) = w(-1, -1, -2, 1)
                                                                            2y-2x-2y-24=0
                                                                                                                               : el autorector es (-1,-1,-2,1)
                                                                                    -2x -2 W = 0
                                                                                             x = - W
Para 13=-2
   \begin{pmatrix} 2 & -2 & 2 & 0 \\ -2 & 2 & 0 & 2 \\ 2 & 0 & 2 & -2 \end{pmatrix} = \begin{pmatrix} 2x - 2y + 2z = 0 & = 7 & 2z = -2x + 2y = 7 & z = -x + y \\ -2x + 2y + 2w = 0 & z = -x + 2y + 2w = 0 \end{pmatrix}
                                                                                                                         : (-w, w, zw, w) = w (-4, 1, 2, 1)
   0 2 -2 2/
                                 (2y-27+2w=0 -> 2y-2(-x+y)+2w=0
                                                                      2y + 2x - 2y + 2w = 0
                                                                                                                        ; { (4.0,0,1), (0,4,1,0), (-4,-1,-2,1), (-4,1,2,4)}
                                                                                        X =- W
                                      -2Wtz(W+y)-2W=0
                                                                                                                         es base de autovertores .: [T] E es diagonalizable
                                               -2W +2y =0
                                                            W= y
```

