# Wildfire Detection with a CNN Ensemble 1INF52 Deep Learning

CPSquad

PUCP

March 3, 2025

#### Contents

- Introduction
- State of the Art and Baseline
- Open Dataset
- 4 Experiments: Model Pipeline
  - Model Pipeline
  - Hyperparameter Tuning
  - Ensemble
- Results
- 6 Conclusions

#### Introduction and Problem Statement

- The increasing frequency of wildfires has led to a demand for automated monitoring systems.
- Traditional methods (satellites, thermal sensors) suffer from delayed data retrieval.
- Deep learning techniques can be used to improve detection speed and accuracy.



Figure 1: Wildfire in Peru. Source: Daily Sabah

#### Research Motivation and Goals

#### Objective of this Study

- Develop an ensemble of CNNs for wildfire detection in aerial images.
- Evaluate the performance of Xception,
   DenseNet121, and ResNet152.
- Improve classification accuracy while keeping computational efficiency.

## Traditional Approaches to Wildfire Detection

- Sensor-based methods: Use temperature, smoke, and gas sensors, but have limited coverage.
- Classic Computer Vision methods: Use color-based segmentation, but suffer from high false positives.
- Machine Learning and Deep Learning approaches:
  - CNN-based classification (e.g., Xception, DenseNet, ResNet).
  - Object detection with YOLOv8.
  - Vision Transformers (ViTs) for feature extraction.

## Baseline Model: FireSight (Stanford)

- FireSight combines CNNs and ViTs for aerial wildfire detection.
- Achieves 82.28% accuracy and an F1-score of 0.75 using a DenseNet + ResNet + ViT ensemble.
- Our approach:
  - Perform Transfer Learning on Xception, DenseNet, and ResNet using pre-trained weights.
  - Improve each model's performance by unfreezing and training the last layers to refine feature extraction.
  - Ensemble the fine-tuned models using a voting-based strategy to compare against the SOTA baseline.

## FLAME Dataset Overview

- The dataset contains drone-captured images of wildfires.
- Designed specifically for binary wildfire classification (Fire vs No Fire).
- Training Set: 39,375 images
- Test Set: 8,617 images.
- Validation Split: 10% of training set.
- Class Distribution:
  - Fire: 25,027 images (63.55%).
  - No-Fire: 14,357 images (36.45%).



Figure 2: Sample FLAME dataset image.

## Pipeline for Model Training



Figure 3: Model Architecture

- Preprocessing: Images resized to 224x224 and augmented.
- Training Strategy: Individual CNNs trained separately.
- Evaluation: Models compared based on accuracy, precision, recall, and F1-score.

## Keras Tuner for Hyperparameter Search

- Keras Tuner used for optimizing batch size, dropout, L2 regularization, and learning rate.
- Best hyperparameters found:

| Model       | Batch Size | Dropout | L2 Factor | Learning Rate |
|-------------|------------|---------|-----------|---------------|
| Xception    | 10         | 0.45    | 0.001     | 0.00541       |
| DenseNet121 | 64         | 0.35    | 0.001     | 0.00147       |
| ResNet152   | 64         | 0.4     | 0.0005    | 0.00093       |

## Why Use an Ensemble?

- Goal: Improve model stability and accuracy.
- We experimented with:
  - Majority Voting (Final Selection).
  - Weighted Averaging.
  - Stacking.

## Final Approach: Voting

- Each model votes on the predicted class.
- The most frequent class is the final prediction.

## Confusion Matrices

hola

## Final Model Performance

| Model             | Baseline |          | Our Models |          |
|-------------------|----------|----------|------------|----------|
|                   | F1-score | Accuracy | F1-score   | Accuracy |
| Xception          | 0.58     | 49.09%   | 0.5087     | 70.72%   |
| DenseNet121       | 0.53     | 70.35%   | 0.8324     | 86.5%    |
| ResNet152         | 0.61     | 73.2%    | 0.6484     | 72.3%    |
| Ensemble (Voting) | 0.75     | 81.94%   | 0.7169     | 79.4%    |

## Key Takeaways

- DenseNet121 and Xception models outperformed the ensemble in some metrics.
- The ensemble's advantage might be due to the use of Vision Transformers (ViTs).
- Close-to-SOTA results may be due to this dataset not being used at scale with recent models.
- Keras Tuner was crucial for finding the best hyperparameters, improving individual models.
- Future Work:
  - **Pruning** to reduce model size and improve inference speed.
  - Distillation to compress into a lighter architecture like MobileNetV3.

## Thank You!



#### Our code is available at:

github.com/Litusuwu/DeepLearning\_Project

#### Trained models can be found at:

huggingface.co/superflash41/fire-chad-detector-v1.0