Correction Exercice Bonus

Isomérisation de la propanone

Notons A = propanone et B = propèn-2-ol.

1. Avancement volumique maximal

Si la réaction était totale : $x_{max} = [A]_0 = 0.050 \text{ mol} \cdot L^{-1}$

$$x_{max} = 0.050 \text{ mol} \cdot \text{L}^{-1}$$

$\overline{\mathbf{2. Expression \ et \ valeur \ de } Q_r}$

Pour la réaction A(aq) = B(aq):

$$Q_r = \frac{a_{\rm B}}{a_{\rm A}} = \frac{[{\rm B}]/C^o}{[{\rm A}]/C^o} = \frac{[{\rm B}]}{[{\rm A}]}$$

avec $C^o = 1 \text{ mol} \cdot L^{-1}$.

À t = 5.0 min:

— [B] = $0.028 \text{ mol} \cdot \text{L}^{-1}$

- [A] = $0.050 - 0.028 = 0.022 \text{ mol} \cdot \text{L}^{-1}$

$$Q_r(5.0 \text{ min}) = \frac{0.028}{0.022} = 1.27$$

$$Q_r(t = 5.0 \text{ min}) = 1.3$$

À $t = 10.0 \text{ min}$:

- [B] = 0.036 mol·L⁻¹

 $- [A] = 0.050 - 0.036 = 0.014 \text{ mol} \cdot L^{-1}$

$$Q_r(10.0 \text{ min}) = \frac{0.036}{0.014} = 2.57$$

$$Q_r(t = 10.0 \text{ min}) = 2.6$$

On observe que Q_r augmente au cours du temps et tend vers K^o .

3. Observation à $t \ge 20$ min

Pour $t \ge 20$ min, on observe que [B] = 0.039 mol·L⁻¹ = constante.

L'avancement ne varie plus : $x_{eq} = 0.039 \text{ mol} \cdot \text{L}^{-1}$

Le système a atteint l'état d'équilibre thermodynamique

4. Constante d'équilibre

À l'équilibre ($t \ge 20 \text{ min}$):

-
$$[B]_{eq} = 0.039 \text{ mol} \cdot L^{-1}$$

$$-- [A]_{eq} = 0.050 - 0.039 = 0.011 \text{ mol} \cdot L^{-1}$$

D'après la loi d'action des masses : $K^o = Q_r^{eq}$

$$K^o = \frac{[B]_{eq}}{[A]_{eq}} = \frac{0,039}{0,011} = 3,5$$

$$K^{o} = 3.5$$

 $\overline{\text{Vérification}}$: Avec $10^{-4} < K^o = 3.5 < 10^4$, la réaction est bien **équilibrée**.

Le taux d'avancement final est :

$$\tau = \frac{x_{eq}}{x_{max}} = \frac{0,039}{0,050} = 0.78 = 78\%$$

La réaction n'est pas totale, ce qui est cohérent avec une réaction équilibrée.