实验流程

• 配置环境

git clone https://github.com/unitreerobotics/unitree rl gym.git

• 激活环境进入目录

conda activate rl-g1 cd unitree-

• 使用默认参数训练

执行以下命令开始**训练**(默认 10000 次迭代):

python legged_gym/scripts/train.py --task=g1 --experiment_name=g1_default -run_name= runl --headless

• 查看训练指标

启动 TensorBoard: tensorboard --logdir logs/g1_default

演示训练效果 Isaac gym:

play python legged_gym/scripts/play.py --task=g1 -experiment name=g1 default --run name=run1

• 导出策略网络

导出路径自动保存为:

logs/g1_default/exported/policies/policy_lstm_1.pt

Sim2Sim 验证(部署到 Mujoco)

配置模型路径:

编辑 deploy/deploy_mujoco/configs/g1.yaml 中:
policy_path: logs/g1_default/exported/policies/policy_lstm_1.pt 启动模拟:
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml

• 结合仿真结果和训练指标分析

• 默认参数 10000 次训练已经能达到稳定行走效果

尝试训练一个新的模型 g1_flex 能否稳定行走的情况下更灵活,接近人类

• 修改训练 reward 参数

修改 G1 的 reward 配置(如 g1_config.py)中的 scales 项

• 使用更新后的参数训练

执行以下命令开始**训练**(节省时间设置 5000 次迭代):

python legged_gym/scripts/train.py --task=g1 --experiment_name=g1_flex-run_name= g1_flex -headless -max_iteration=5000

• 对比两次训练参数指标

创建对比文件夹
mkdir logs_compare
ln -s ../logs/g1_default logs_compare/default
ln -s ../logs/g1_flex logs_compare/flex 启动 TensorBoard:
查看对比图

tensorboard --logdir logs_compare

• 演示新的**训练效果** Isaac gym:

play python legged_gym/scripts/play.py --task=g1 -experiment_name=g1_flex --run_name= g1_flex

• 导出新的策略网络

导出路径自动保存为:

logs/g1_f1ex/exported/policies/policy_lstm_1.pt

• Sim2Sim 验证(部署到 Mujoco)

配置模型路径:

编辑 deploy/deploy_mujoco/configs/g1.yaml 中:
policy_path: logs/g1_flex/exported/policies/policy_lstm_1.pt 启动模拟:
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml

• 对比分析实验结果,录制视频

Discussion

Tensorboard 图表见附录

默认参数模型 g1_default

参数选择

```
# default
class scales( LeggedRobotCfg.rewards.scales ):
    tracking lin vel = 1.0
    tracking_ang_vel = 0.5
    lin vel z = -2.0
    ang_vel_xy = -0.05
    orientation = -1.0
   base_height = -10.0
    dof acc = -2.5e-7
   dof vel = -1e-3
   feet air time = 0.0
    collision = 0.0
    action_rate = -0.01
   dof_pos_limits = -5.0
    alive = 0.15
    hip pos = -1.0
    contact_no_vel = -0.2
    feet_swing_height = -20.0
    contact = 0.18
```

结果分析

共进行了 10000 次迭代,从 TensorBoard 曲线来看,策略在第 4000 步左右开始收敛,reward 趋势稳定,loss 下降良好。rev_contact 稳步提升至 0.35,rev_alive 保持在 0.15,而 rev_action_rate、dof_acc 等指标持续下降,说明控制逐渐平稳。在 4000-8000 步间出现短暂波动,是策略探索更自然步态过程中的正常现象,加之未使用学习率衰减,也可能加剧了 loss 的震荡。整体来看,策略最终稳定,表现良好,并且在 Isaac Gym 和 Mujoco两个平台上均能实现稳定的行走。

但是感觉步态比较僵硬,是否能调整一些参数比如放宽一些限制项,减小惩罚,实现更自然的步态或者是更快收敛。

对训练参数分析:

参数	理解		
tracking_lin_vel	奖 励 线 速度与目 标 一致,鼓励向前 稳 定运 动 。		
tracking_ang_vel	奖 励角速度与目 标 一致,提升 转 向响 应 能力。		
lin_vel_z	惩罚竖 直方向速度,避免机器人跳起或抖 动 。		
ang_vel_xy	惩罚 X/Y 平面角速度,防止 倾 斜翻倒。		
orientation	惩罚身体姿态偏差,鼓励保持平衡。		
base_height	强烈惩罚高度偏离,限制重心控制。		
dof_acc	惩罚关节 加速度 过 大,提升 动 作平滑度。		
dof_vel	惩罚关节 速度 过 高,减少震 荡 与损耗。		
feet_air_time	未启用,用于 奖 励步 态节奏协调 。		
collision	未启用,用于 惩罚 身体与障碍物碰撞。		
action_rate	惩罚动作变化剧 烈,鼓励 输 出 连续 平滑。		
dof_pos_limits	惩罚 接近关 节 极限的行 为 ,保 护结 构。		
alive	奖 励机器人保持站立与存活状 态 。		
hip_pos	惩罚髋 关节位置异常,提升步 态对 称性。		
contact_no_vel	惩罚 脚接触地面但无速度。		
feet_swing_height	惩罚摆腿高度异常,限制脚步自然性。		
contact	奖 励良好的脚步接触,提高步 态稳 定性。		

更新参数模型 g1_flex

参数选择

```
# more flexible
class scales( LeggedRobotCfg.rewards.scales ):
    tracking_lin_vel = 1.0
    tracking_ang_vel = 0.5
    lin_vel_z = -2.0
    ang vel xy = -0.05
    orientation = -1.0
    base height = -3.0
    dof_acc = -2.5e-7
   dof_vel = -1e-3
    feet_air_time = 0.0
    collision = 0.0
    action_rate = -0.01
    dof_pos_limits = -5.0
    alive = 0.15
    hip_pos = -1.0
    contact no vel = -0.2
    feet_swing_height = -5.0
    contact = 0.3
```

参数	default	flex	motivation
base_height	-10.0	-3.0	减弱高度偏差惩罚,避免过度束缚重心
feet_swing_height	-20.0	-5.0	放宽摆腿自由
contact	0.18	0.3	提高接触奖励

结果分析

从 reward 曲线来看, g1_f1ex 的 rev_contact 上升更快,步态接触更充分; rev_contact_no_vel 和 rev_action_rate 下降明显动作更平滑; rev_dof_acc、rev_dof_vel、rev_hip_pos 等控制指标的波动幅度更小,表明整体控制输出更自然,步态更加协调。而 rev_feet_swing_height 的改善也显示出策略摆腿动作更灵活,不再受限。loss 曲线部分 g1_f1ex 的 Loss/value_function 波动范围较大,但整体保持下降趋势,而 Loss/surrogate 在收敛平台后仍有上升空间,说明策略仍在有效探索,但未造成发散。两者 learning rate 都保持在稳定范围内,未出现训练中断或早停。

但是仿真结果没有肉眼可见差别,两个模型都能在两个环境中稳定行走,可能 g1 flex 会多一些轻微抖动。

附录

默认参数模型 gl_default 指标

Reward

Loss

默认参数模型 gl_default (深蓝) 与更新参数模型 gl_flex (浅蓝) 指标对比 (5000 次迭代)

-0.008

0.0014

0.0012

Reward

2,000

3,000

4.000

0.012

0.01

0.008

1,000

2,000

3,000