Electronic Circuits: Final Examination

2004/1/16

1. (15%) For the circuit shown in Fig. Q1, find i_1 , i_2 , and v_a .

2. (10%) In the circuit shown in Fig. Q2, both op-amps are ideal. Find v_b/v_{in} and $R_{in} = v_{in}/i_{in}$.

Fig. Q2

- 3. The circuit in Fig. Q3 is a phase shift network, where $Z_a = 1/j\omega C$ and $Z_b = R$.
 - (a) (8%) Find $H(j\omega) = \underline{V}_x / \underline{V}$ by assuming $\underline{I}_A = 1A \angle 0^\circ$.
 - (b) (7%) Determine the oscillating frequency $\omega_{\rm osc}$, at which $\angle V_x/V = -180^\circ$.

- 4. (10%) Given a transfer function $H(s) = \frac{20}{s^2 + 4s + 20}$, find the step response.
- 5. (20%) Find $i_L(t)$ for t > 0 in Fig. Q5 when

$$v_s(t) = \begin{cases} -5V & t < 0\\ 10V & t > 0 \end{cases}$$

Let L = 2H, $R = 5\Omega$, and C = 1/50 F.

6. (15%) Construct the asymptotic Bode plot of the gain and phase for

$$H(s) = \frac{8s^2}{(s+50)(s+500)}$$

7. (15%) Let the circuit in Fig. Q7 have $v_s(t) = \begin{cases} 5V & t < 0 \\ (\sin t)V & t > 0 \end{cases}$

Find $V_C(s)$, $v_C(0^+)$, and $v_C'(0^+)$.

