SVHN Notebook

August 28, 2021

1 Image classifier for the SVHN dataset

In this notebook, I will create a neural network that classifies real-world images digits. I will use concepts such as building, training, testing, validating and saving a Tensorflow classifier model.

1.1 Libraries

```
[1]: import tensorflow as tf
     from scipy.io import loadmat
     import random
     import numpy as np
    /Users/tapiatellez/opt/anaconda3/lib/python3.8/site-
    packages/tensorflow/python/framework/dtypes.py:471: FutureWarning: Passing
    (type, 1) or '1type' as a synonym of type is deprecated; in a future version of
    numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint8 = np.dtype([("qint8", np.int8, 1)])
    /Users/tapiatellez/opt/anaconda3/lib/python3.8/site-
    packages/tensorflow/python/framework/dtypes.py:472: FutureWarning: Passing
    (type, 1) or '1type' as a synonym of type is deprecated; in a future version of
    numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
    /Users/tapiatellez/opt/anaconda3/lib/python3.8/site-
    packages/tensorflow/python/framework/dtypes.py:473: FutureWarning: Passing
    (type, 1) or '1type' as a synonym of type is deprecated; in a future version of
    numpy, it will be understood as (type, (1,)) / (1,)type'.
      _np_qint16 = np.dtype([("qint16", np.int16, 1)])
    /Users/tapiatellez/opt/anaconda3/lib/python3.8/site-
    packages/tensorflow/python/framework/dtypes.py:474: FutureWarning: Passing
    (type, 1) or '1type' as a synonym of type is deprecated; in a future version of
    numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
    /Users/tapiatellez/opt/anaconda3/lib/python3.8/site-
    packages/tensorflow/python/framework/dtypes.py:475: FutureWarning: Passing
    (type, 1) or '1type' as a synonym of type is deprecated; in a future version of
    numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint32 = np.dtype([("qint32", np.int32, 1)])
```


The

SVHN dataset is an image dataset of over 600,000 digit images in all, and is a harder dataset than MNIST as the numbers appear in the context of natural scene images. SVHN is obtained from house numbers in Google Street View images.

• Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng. "Reading Digits in Natural Images with Unsupervised Feature Learning". NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

My is to develop an end-to-end workflow for building, training, validating, evaluating and saving a neural network that classifies a real-world image into one of ten classes.

1.2 Loading the dataset

```
[2]: train = loadmat('train_32x32.mat')
test = loadmat('test_32x32.mat')
```

Both train and test are dictionaries with keys X and y for the input images and labels respectively.

1.3 1. Inspect and preprocess the dataset

1.3.1 Extract the training and testing images and labels separately from the train and test dictionaries

```
[87]: X_train = train['X']
y_train = train['y']
X_test = test['X']
y_test = test['y']
y_train[y_train == 10] = 0
y_test[y_test == 10] = 0
X_train.shape
X_test.shape
```

```
[87]: (32, 32, 3, 26032)
```

1.3.2 Select a random sample of images and corresponding labels from the dataset (at least 10), and display them in a figure.

```
[88]: r_indexes = random.sample(range(0, 73257), 16)
from matplotlib import pyplot as plt
fig = plt.figure(figsize = (6,6)) # figure size in inches
fig.subplots_adjust(left = 0, right = 1, bottom = 0, top = 1, hspace = 0.05, wspace = 0.05)

for i in range(len(r_indexes)):
    ax = fig.add_subplot(4, 4, i+1, xticks = [], yticks = [])
    ax.imshow(X_train[:,:,:,r_indexes[i]], interpolation = 'nearest')
    ax.text(0, 7, str(y_train[r_indexes[i]][0]), color = 'red', fontsize = 24)
```


1.3.3 Convert the training and test images to grayscale by taking the average across all colour channels for each pixel. I will retain the channel dimension, which will now have size 1.

```
[89]: X_train_grey = []
      for i in range(73257):
          grey_image = np.mean(X_train[:, :, :, i], axis = 2)
          grey_image = grey_image[..., np.newaxis]
          X train grey.append(grey image)
      X_train_grey = np.array(X_train_grey)
      #X_train_grey = np.moveaxis(X_train_grey, [0], [3])
      X_train_grey.shape
[89]: (73257, 32, 32, 1)
[90]: X_test_grey = []
      for i in range(26032):
          grey_image = np.mean(X_test[:, :, :, i], axis = 2)
          grey_image = grey_image[..., np.newaxis]
          X_test_grey.append(grey_image)
      X_test_grey = np.array(X_test_grey)
      #X_test_grey = np.moveaxis(X_test_grey, [0], [3])
      X_test_grey.shape
[90]: (26032, 32, 32, 1)
```

1.3.4 Select a random sample of the grayscale images and corresponding labels from the dataset and display them in a figure.

```
[92]: r_indexes = random.sample(range(0, 73257), 16)
from matplotlib import pyplot as plt
fig = plt.figure(figsize = (6,6)) # figure size in inches
fig.subplots_adjust(left = 0, right = 1, bottom = 0, top = 1, hspace = 0.05, wspace = 0.05)

for i in range(len(r_indexes)):
    ax = fig.add_subplot(4, 4, i+1, xticks = [], yticks = [])
    ax.imshow(X_train_grey[r_indexes[i], :, :, 0], cmap = plt.cm.binary, winterpolation = 'nearest')
    ax.text(0, 7, str(y_train[r_indexes[i]][0]), color = 'red', fontsize = 24)
```


1.4 2. MLP neural network classifier

- Compile and train the model (we recommend a maximum of 30 epochs), making use of both training and validation sets during the training run.
- Your model should track at least one appropriate metric, and use at least two callbacks during training, one of which should be a ModelCheckpoint callback.
- As a guide, you should aim to achieve a final categorical cross entropy training loss of less than 1.0 (the validation loss might be higher).
- Plot the learning curves for loss vs epoch and accuracy vs epoch for both training and validation sets.
- Compute and display the loss and accuracy of the trained model on the test set.

Build MLP classifier model(We will only utilize Flatten and Dense layers)

Libraries needed for building the model

[100]: from tensorflow.keras.models import Sequential

```
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras import regularizers

[101]:

def get_mlp_model():
    model = Sequential([
        Flatten(input_shape = X_train_grey[0].shape),
        Dense(512, kernel_regularizer = regularizers.l2(1e-5), activation = "relu"),
        Dense(128, kernel_regularizer = regularizers.l2(1e-5), activation = ""relu"),
        Dense(64, kernel_regularizer = regularizers.l2(1e-5), activation = ""relu"),
        Dense(10, activation = "softmax"),
        ])
        return model
```

Model Summary

```
[162]: model = get_mlp_model()
model.summary()
```

Model: "sequential_28"

Layer (type)	Output Shape	Param #
flatten_28 (Flatten)	(None, 1024)	0
dense_96 (Dense)	(None, 512)	524800
dense_97 (Dense)	(None, 128)	65664
dense_98 (Dense)	(None, 64)	8256
dense_99 (Dense)	(None, 10)	650
Total params: 599,370 Trainable params: 599,370 Non-trainable params: 0		

1.4.1 Compilation for the model

```
[163]: def compile models(m):
           m.compile(optimizer = "adam",
                     loss = "sparse_categorical_crossentropy",
                     metrics = ["accuracy"])
[164]: model.compile(optimizer = "adam",
                     loss = "sparse_categorical_crossentropy",
                    metrics = ["accuracy"])
      \#\#\# Defining Callbacks
[165]: def get_checkpoint_every_epoch():
           checkpoint_path = "model_checkpoints/checkpoint_{epoch:03d}"
           checkpoint = ModelCheckpoint(filepath = checkpoint_path,
                                        frequency = "epoch",
                                        save_weights_only = True,
                                        verbose = 1)
           return checkpoint
       def get_checkpoint_best_only():
           checkpoint_path = "checkpoints_best_only/checkpoint"
           return ModelCheckpoint(filepath = checkpoint_path,
                                  save_weights_only= True,
                                  monitor = "val_accuracy",
                                  save_best_only = True)
       def get_checkpoint_best_only_mlp():
           checkpoint_path = "checkpoints_best_only_mlp/checkpoint"
           return ModelCheckpoint(filepath = checkpoint_path,
                                  save_weights_only= True,
                                  monitor = "val_accuracy",
                                  save_best_only = True)
       def get_early_stopping():
           return EarlyStopping(monitor = "loss",
                                patience = 3,
                               verbose = 1)
[166]: checkpoint_every_epoch = get_checkpoint_every_epoch()
       checkpoint_best = get_checkpoint_best_only_mlp()
       early_stopping = get_early_stopping()
```

1.4.2 Training the model

```
[167]: def train models(m, e):
      callbacks = [get_checkpoint_every_epoch(),
              get_checkpoint_best_only(),
               get_early_stopping()]
      history = m.fit(x = X_train_grey,
                   y = y_train,
                   epochs = e,
                   validation_split = 0.15,
                   callbacks = callbacks)
      return history
[168]: callbacks = [checkpoint_every_epoch, checkpoint_best, early_stopping]
    history = model.fit(x = X_train_grey,
          y = y_train,
          epochs = 30,
          validation_split = 0.15,
          callbacks = callbacks)
   Train on 62268 samples, validate on 10989 samples
   Epoch 1/30
   accuracy: 0.1791
   Epoch 00001: saving model to model_checkpoints/checkpoint_001
   accuracy: 0.1792 - val_loss: 2.1655 - val_accuracy: 0.2481
   Epoch 2/30
   accuracy: 0.3406
   Epoch 00002: saving model to model_checkpoints/checkpoint_002
   accuracy: 0.3407 - val_loss: 1.5617 - val_accuracy: 0.5081
   Epoch 3/30
   accuracy: 0.4927
   Epoch 00003: saving model to model_checkpoints/checkpoint_003
   accuracy: 0.4927 - val_loss: 1.5972 - val_accuracy: 0.5022
   Epoch 4/30
   accuracy: 0.5437
   Epoch 00004: saving model to model_checkpoints/checkpoint_004
   accuracy: 0.5438 - val_loss: 1.3652 - val_accuracy: 0.5742
   Epoch 5/30
```

```
accuracy: 0.5745
Epoch 00005: saving model to model_checkpoints/checkpoint_005
62268/62268 [============== ] - 74s 1ms/sample - loss: 1.3763 -
accuracy: 0.5745 - val_loss: 1.3121 - val_accuracy: 0.6030
Epoch 6/30
accuracy: 0.5930
Epoch 00006: saving model to model_checkpoints/checkpoint_006
accuracy: 0.5931 - val_loss: 1.2378 - val_accuracy: 0.6273
Epoch 7/30
accuracy: 0.6066
Epoch 00007: saving model to model_checkpoints/checkpoint_007
accuracy: 0.6067 - val_loss: 1.1788 - val_accuracy: 0.6364
Epoch 8/30
accuracy: 0.6186
Epoch 00008: saving model to model checkpoints/checkpoint 008
accuracy: 0.6186 - val_loss: 1.2501 - val_accuracy: 0.6054
Epoch 9/30
accuracy: 0.6371
Epoch 00009: saving model to model_checkpoints/checkpoint_009
accuracy: 0.6371 - val_loss: 1.1152 - val_accuracy: 0.6551
Epoch 10/30
accuracy: 0.6491
Epoch 00010: saving model to model_checkpoints/checkpoint_010
accuracy: 0.6491 - val_loss: 1.1992 - val_accuracy: 0.6225
Epoch 11/30
accuracy: 0.6573
Epoch 00011: saving model to model_checkpoints/checkpoint_011
accuracy: 0.6574 - val_loss: 1.1486 - val_accuracy: 0.6335
Epoch 12/30
accuracy: 0.6618
Epoch 00012: saving model to model_checkpoints/checkpoint_012
accuracy: 0.6618 - val_loss: 1.0526 - val_accuracy: 0.6820
Epoch 13/30
```

```
accuracy: 0.6688
Epoch 00013: saving model to model_checkpoints/checkpoint_013
62268/62268 [============== ] - 79s 1ms/sample - loss: 1.0888 -
accuracy: 0.6689 - val_loss: 1.0993 - val_accuracy: 0.6646
Epoch 14/30
accuracy: 0.6701 ETA: 0s - loss: 1.0826 - accu
Epoch 00014: saving model to model_checkpoints/checkpoint_014
accuracy: 0.6701 - val_loss: 1.0418 - val_accuracy: 0.6820
Epoch 15/30
accuracy: 0.6749
Epoch 00015: saving model to model_checkpoints/checkpoint_015
accuracy: 0.6749 - val_loss: 0.9936 - val_accuracy: 0.6997
Epoch 16/30
accuracy: 0.6827
Epoch 00016: saving model to model checkpoints/checkpoint 016
accuracy: 0.6827 - val_loss: 1.1800 - val_accuracy: 0.6366
Epoch 17/30
accuracy: 0.6853 ETA: 0s - loss: 1.0407 - accuracy
Epoch 00017: saving model to model_checkpoints/checkpoint_017
accuracy: 0.6853 - val_loss: 1.0458 - val_accuracy: 0.6830
Epoch 18/30
accuracy: 0.6873
Epoch 00018: saving model to model_checkpoints/checkpoint_018
accuracy: 0.6872 - val_loss: 1.1840 - val_accuracy: 0.6429
Epoch 19/30
accuracy: 0.6928
Epoch 00019: saving model to model_checkpoints/checkpoint_019
accuracy: 0.6928 - val_loss: 1.0311 - val_accuracy: 0.6861
Epoch 20/30
accuracy: 0.6943
Epoch 00020: saving model to model_checkpoints/checkpoint_020
62268/62268 [============= ] - 73s 1ms/sample - loss: 1.0090 -
accuracy: 0.6943 - val_loss: 0.9760 - val_accuracy: 0.7060
Epoch 21/30
```

```
accuracy: 0.6933
Epoch 00021: saving model to model_checkpoints/checkpoint_021
accuracy: 0.6934 - val_loss: 1.0370 - val_accuracy: 0.6900
Epoch 22/30
accuracy: 0.6990
Epoch 00022: saving model to model_checkpoints/checkpoint_022
accuracy: 0.6990 - val_loss: 1.1709 - val_accuracy: 0.6436
Epoch 23/30
accuracy: 0.6983
Epoch 00023: saving model to model_checkpoints/checkpoint_023
accuracy: 0.6984 - val_loss: 1.0448 - val_accuracy: 0.6880
Epoch 24/30
accuracy: 0.7009
Epoch 00024: saving model to model checkpoints/checkpoint 024
accuracy: 0.7009 - val_loss: 1.0794 - val_accuracy: 0.6736
Epoch 25/30
accuracy: 0.7006
Epoch 00025: saving model to model_checkpoints/checkpoint_025
accuracy: 0.7006 - val_loss: 1.1738 - val_accuracy: 0.6384
Epoch 26/30
accuracy: 0.7069
Epoch 00026: saving model to model_checkpoints/checkpoint_026
accuracy: 0.7068 - val_loss: 0.9951 - val_accuracy: 0.7052
Epoch 27/30
accuracy: 0.7071
Epoch 00027: saving model to model_checkpoints/checkpoint_027
accuracy: 0.7071 - val_loss: 0.9979 - val_accuracy: 0.7028
Epoch 28/30
accuracy: 0.7071
Epoch 00028: saving model to model_checkpoints/checkpoint_028
62268/62268 [============== ] - 72s 1ms/sample - loss: 0.9832 -
accuracy: 0.7071 - val_loss: 1.0707 - val_accuracy: 0.6760
Epoch 29/30
```

```
accuracy: 0.7056
     Epoch 00029: saving model to model_checkpoints/checkpoint_029
     62268/62268 [============== ] - 74s 1ms/sample - loss: 0.9868 -
     accuracy: 0.7056 - val_loss: 1.0023 - val_accuracy: 0.7014
     Epoch 30/30
     accuracy: 0.7121
     Epoch 00030: saving model to model_checkpoints/checkpoint_030
     accuracy: 0.7121 - val_loss: 1.0092 - val_accuracy: 0.7039
     Model Evaluation
[145]: def evaluate_models(m):
         test_loss, test_accuracy = m.evaluate(X_test_grey, y_test, verbose = 2)
         print("Test loss: {}".format(test_loss))
         print("Test accuracy: {}".format(test_accuracy))
[156]: | test_loss, test_accuracy = model.evaluate(X_test_grey, y_test, verbose = 2)
      print("Test loss: {}".format(test_loss))
      print("Test accuracy: {}".format(test_accuracy))
     26032/1 - 10s - loss: 0.9698 - accuracy: 0.6969
     Test loss: 1.0533421285400086
     Test accuracy: 0.6969115138053894
     Graphs (Check for overfitting)
[147]: import pandas as pd
      frame = pd.DataFrame(history.history)
      frame.head()
[147]:
            loss accuracy val_loss val_accuracy
      0 5.932148 0.160114 2.162475
                                       0.247611
      1 1.927464 0.365324 1.634188
                                       0.471926
      2 1.582403 0.495969 1.462529
                                       0.561016
      3 1.424135 0.559902 1.390332
                                       0.567113
      4 1.325090 0.594206 1.352927
                                       0.585131
[148]: def plot acc(h):
         plt.plot(h.history['accuracy'])
         plt.plot(h.history['val_accuracy'])
         plt.title("Accuracy vs Epochs")
         plt.ylabel('Accuracy')
         plt.xlabel("Epoch")
         plt.legend(['Training', 'Validation'], loc = "lower right")
         plt.show()
```

```
[149]: import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'])
 plt.plot(history.history['val_accuracy'])
 plt.title("Accuracy vs Epochs")
 plt.ylabel('Accuracy')
 plt.xlabel("Epoch")
 plt.legend(['Training', 'Validation'], loc = "lower right")
 plt.show()
```



```
[150]: def plot_loss(h):
        plt.plot(h.history['loss'])
        plt.plot(h.history['val_loss'])
        plt.title("Loss vs Epochs")
        plt.ylabel('Loss')
        plt.xlabel("Epoch")
        plt.legend(['Training', 'Validation'], loc = "upper right")
        plt.show()
[151]: plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.title("Loss vs Epochs")
        plt.ylabel('Loss')
```

```
plt.xlabel("Epoch")
plt.legend(['Training', 'Validation'], loc = "upper right")
plt.show()
```


1.5 3. CNN neural network classifier

- You should design and build the model yourself. Feel free to experiment with different CNN architectures. Hint: to achieve a reasonable accuracy you won't need to use more than 2 or 3 convolutional layers and 2 fully connected layers.)
- The CNN model should use fewer trainable parameters than your MLP model.
- Compile and train the model (we recommend a maximum of 30 epochs), making use of both training and validation sets during the training run.
- Your model should track at least one appropriate metric, and use at least two callbacks during training, one of which should be a ModelCheckpoint callback.
- You should aim to beat the MLP model performance with fewer parameters!
- Plot the learning curves for loss vs epoch and accuracy vs epoch for both training and validation sets.
- Compute and display the loss and accuracy of the trained model on the test set.

1.5.1 CNN Construction (We will only use Conv2D, MaxPool2D, BatchNormalization, Flatten, Dense and Dropout layers.)

Missing libraries

```
[122]: from tensorflow.keras.layers import Conv2D, MaxPooling2D
[123]: def get_cnn_model(input_shape):
         model = Sequential([
            Conv2D(16, (3, 3),
                  padding = "SAME",
                  activation = "relu",
                  input_shape = input_shape),
            Conv2D(8, (3, 3),
                  padding = "SAME",
                  activation = "relu"),
            MaxPooling2D(pool_size = (8, 8)),
            Flatten(),
            Dense(128, activation = "relu", kernel_regularizer = regularizers.
      \rightarrow 12(1e-5)),
            Dense(64, activation = "relu", kernel_regularizer = regularizers.
      \rightarrow 12(1e-5)),
            Dense(10, activation = "softmax")
         ])
         return model
[124]: model_cnn = get_cnn_model(X_train_grey[0].shape)
     model_cnn.summary()
     Model: "sequential 23"
               -----
     Layer (type)
                            Output Shape
     ______
                             (None, 32, 32, 16)
     conv2d_28 (Conv2D)
                                                   160
                       (None, 32, 32, 8) 1160
     conv2d_29 (Conv2D)
     max_pooling2d_14 (MaxPooling (None, 4, 4, 8)
     flatten_23 (Flatten)
                       (None, 128)
     dense_78 (Dense)
                             (None, 128)
                                                   16512
     _____
     dense_79 (Dense)
                             (None, 64)
                                                    8256
     dense_80 (Dense)
                         (None, 10)
                                                   650
     Total params: 26,738
     Trainable params: 26,738
     Non-trainable params: 0
```

1.5.2 Compilation and Training

```
[125]: compile_models(model_cnn)
[126]: history = train_models(model_cnn, 10)
   Train on 62268 samples, validate on 10989 samples
   Epoch 1/10
   accuracy: 0.2531
   Epoch 00001: saving model to model_checkpoints/checkpoint_001
   accuracy: 0.2532 - val_loss: 1.5694 - val_accuracy: 0.4853
   Epoch 2/10
   accuracy: 0.5967
   Epoch 00002: saving model to model_checkpoints/checkpoint_002
   accuracy: 0.5968 - val_loss: 0.8641 - val_accuracy: 0.7284
   Epoch 3/10
   accuracy: 0.7645
   Epoch 00003: saving model to model_checkpoints/checkpoint_003
   accuracy: 0.7646 - val_loss: 0.7011 - val_accuracy: 0.7846
   Epoch 4/10
   accuracy: 0.7964
   Epoch 00004: saving model to model_checkpoints/checkpoint_004
   62268/62268 [============== ] - 346s 6ms/sample - loss: 0.6632 -
   accuracy: 0.7964 - val_loss: 0.6493 - val_accuracy: 0.7974
   Epoch 5/10
   accuracy: 0.8138
   Epoch 00005: saving model to model_checkpoints/checkpoint_005
   accuracy: 0.8138 - val_loss: 0.6465 - val_accuracy: 0.8017
   Epoch 6/10
   accuracy: 0.8282
   Epoch 00006: saving model to model_checkpoints/checkpoint_006
   accuracy: 0.8282 - val_loss: 0.5968 - val_accuracy: 0.8213
   Epoch 7/10
   accuracy: 0.8362
   Epoch 00007: saving model to model_checkpoints/checkpoint_007
```

```
accuracy: 0.8362 - val_loss: 0.5650 - val_accuracy: 0.8299
Epoch 8/10
accuracy: 0.8419
Epoch 00008: saving model to model checkpoints/checkpoint 008
accuracy: 0.8419 - val_loss: 0.6203 - val_accuracy: 0.8155
Epoch 9/10
62240/62268 [=======
              =========>.] - ETA: Os - loss: 0.4959 -
accuracy: 0.8468
Epoch 00009: saving model to model_checkpoints/checkpoint_009
accuracy: 0.8469 - val_loss: 0.5654 - val_accuracy: 0.8317
Epoch 10/10
accuracy: 0.8512
Epoch 00010: saving model to model_checkpoints/checkpoint_010
accuracy: 0.8512 - val_loss: 0.5478 - val_accuracy: 0.8394
```

Graphs

[127]: plot_acc(history)

[128]: plot_loss(history)


```
Evaluation
[129]: evaluate_models(model_cnn)

26032/1 - 38s - loss: 0.5426 - accuracy: 0.8307
Test loss: 0.5858306852343922
Test accuracy: 0.8306699395179749
```

```
[130]: !ls checkpoints_best_only_mlp
```

checkpoint checkpoint.data-00000-of-00001 checkpoint.index

1.6 4. Get model predictions

I will now load the best weights for the MLP and CNN. I will then randomly select 5 images and their corresponding labels from the test set, and display the images with their labels. Alongside the image and label I will show each model's predictive distribution as a bar chart, and the final final model prediction given by the label with maximum probability.

```
def get_model_best_epoch_mlp(m):
    checkpoint_path = "checkpoints_best_only_mlp/checkpoint"
    m.load_weights(checkpoint_path)
    return m
```

Load best models

```
[132]: best_model_cnn = get_model_best_epoch(get_cnn_model(X_train_grey[0].shape))
best_model_mlp = get_model_best_epoch_mlp(get_mlp_model())
```

Random images and figure

```
[135]: num_test_images = X_test_grey.shape[0]
       random_inx = np.random.choice(num_test_images, 5)
       random_test_images = X_test_grey[random_inx, ...]
       random_test_labels = y_test[random_inx, ...]
       predictions_cnn = best_model_cnn.predict(random_test_images)
       predictions_mlp = best_model_mlp.predict(random_test_images)
       fig, axes = plt.subplots(5, 3, figsize = (30, 16))
       fig.subplots_adjust(hspace = 0.4, wspace = 0.1)
       for i, (p_cnn, p_mlp, image, label) in enumerate(zip(predictions_cnn,_
       →predictions_mlp, random_test_images, random_test_labels)):
          axes[i, 0].imshow(np.squeeze(image))
          axes[i, 0].get xaxis().set visible(False)
          axes[i, 0].get_yaxis().set_visible(False)
          axes[i, 0].text(10., -1.5, f'Digit {label}')
          axes[i, 1].bar(np.arange(len(p_cnn)), p_cnn)
          axes[i, 1].set_xticks(np.arange(len(p_cnn)))
          axes[i, 1].set_title(f"Categorical distribution. Model prediction: {np.
       →argmax(p_cnn)}")
          axes[i, 2].bar(np.arange(len(p_mlp)), p_mlp)
           axes[i, 2].set_xticks(np.arange(len(p_mlp)))
          axes[i, 2].set_title(f"Categorical distribution. Model prediction: {np.
        →argmax(p_mlp)}")
```

