

Кейсодержатель

Команда

swæpnet

Организатор

прорыв _____

сезон: ии

НАШ ПОДХОД К РЕШЕНИЮ

- О1 Анализ задачи и данных, EDA, выбор стратегии по решению задачи.
- 02 Подготовка и предварительная обработка данных, разработка baseline модели
- Pазработка и обучение нейронной сети на базе CNN и бустинг модели
- 04) Фич-инжиниринг
- (05) Стекинг двух моделей. Подбор гиперпараметров

ОСНОВА РЕШЕНИЯ

Нейронная сеть для предсказания вектора значений для каждого параметра

Киллер фичи

Уникальность и проработка

EDA

Проведен глубокий анализ задачи и данных, выявлены закономерности (например сезонность), определены связи в данных и стат. метрики данных

Две модели

Использование двух принципиально различных моделей для решения общей задачи: нейронная сеть CNN + бустинг.

Уникальная модель

Нейронная сеть для каждого искомого значения предсказывает не одно значение а вектор допустимых значений, на основе которого рассчитываются итоговые характеристики

ФичИнжиниринг

Реализованы дополнительные временные ряды к существующим. Сгенерировано более 120 дополнительных признаков.

Для каждого параметра своя модель

Для каждого из 15 параметров обучена собственная модель

УНИКАЛЬНОСТЬ РЕШЕНИЯ

1

ДВЕ РАЗНЫЕ МОДЕЛИ

Использование двух

принципиально различных моделей для решения общей задачи.

НЕЙРОННАЯ СЕТЬ

предсказывает допустимый

вектор значений

для расчета итоговых параметров

3

НЕЗАВИСИМЫЕ МОДЕЛИ

Построены независимые модели

для каждого из 15 признаков

Пробовали, но **не пошло**

Ансамбли и бустинг моделей

Применение классических методов (например, байесовский подход)

Аугментация и синтетика данных

Внедрение Attention! блоков

Стэкинг двух моделей

инструменты и фрэймворки

стэкинг моделей

СВЕРТОЧНАЯ НЕЙРОННАЯ СЕТЬ

ГРАДИЕНТНЫЙ БУСТИНГ

СТАНДАРТНЫЕ ИНСТРУМЕНТЫ РҮТНОМ

Jupyter, Numpy, Pandas, Matplotlib, Google Colab и многие другие...

Что можно улучшить?

- НОВЫЕ АРХИТЕКТУРЫ
 - Рекуррентные сети, Генеративные модели и пр.
- ФИЧИНЖИНИРИНГ/АУГМЕНТАЦИЯ

 Генерация агрегированных фичей, создание
 синтетических временных рядов.
- ОБРАТНОЕ ФОРМИРОВАНИЕ РЯДОВ

 Из предиктов пытаемся обратно восстановить ряды и проверяем уровень совпадения рядов (GAN метод).
- КОМБИНАЦИЯ ВСЕХ МЕТОДОВ

 Комплексный подход к решению задачи:

 глубокий анализ данных, новые фичи, ансамблирование

 моделей, применение state of the art (SOTA) практик.

Команда Sweepnet

Пожалуй, лучшая команда на любом хакатоне

@Dimk_88

ИВАН ЧЕРНЫХ **Data Scientist**

@iceman_o_0

РУСЛАН ЧЕРНЕНКО **Аналитик**

@RChernenko

ДАРЬЯ ОРЛОВА **Аналитик**

adarya_or_lo_va

СЕРГЕЙ БОРИСОВСКИЙ **Разработчик**

@CodeDrivenA

Спасибо!

Peшение: https://github.com/DimkKozhem/The-model-of-the-client-s-propensity-to-purchase-a-parking-space

по всем вопросам обращайтесь к капитану

команды Sweepnet

Дмитрий Кожемяко

сезон: мм

