Листок №1

Кац Лев

28 октября 2020 г.

В данном документе несколько задач. Они упорядочены, задачи нумеруются, как влистке, и я пошлю этот документ в каждую из задач, которая здесь содержится. Это не должно как-то существенно повлиять на размер документа. Надеюсь, это тоже будет удобно.

$A1 \diamondsuit 1$

Наше множество A состоит из n элементов, каждый из которых можно независимо либо взять, либо не взять (2 варианта), получая различные подмножества. Таким образом получаем $|2^A|=2^n$

$A1 \diamondsuit 2$

 $A \cap B = A \setminus (A \setminus B)$ – элементы A, которые принадлежат обоим множествам; Нельзя, если мы говорим о пересечении или объединении множеств, которые были выражены путем пересечений и дополнений из A и B, так как в результате любое такое множество будет содержать $A \cap B$, что можно доказать например индукцией по количеству членов в таком выражении.

A1 \(\dagger \) 3

Рассмотрим сразу наиболее общий пункт – пункт д. Итак, пусть $\sum \beta_k = n$. Пусть теперь все буквы будут разными. Тогда будет n! вариантов перестановок. В нашем же случае некоторые будут повторяться. Какие? Те, в которых местами меняются местами только одинаковые буквы. Тогда ответ

$$\frac{n!}{\prod \beta_k!} = \frac{(\sum \beta_k)!}{\prod \beta_k!},$$

что вообще говоря не случайно является мультиномиальным коэффициентом

$$\binom{n}{\beta_1, ..., \beta_m}$$

$A1 \diamondsuit 4$

Рассмотрим сразу наиболее общий пункт – пункт г. Какие слагаемые будут в $(a_1 + ... + a_m)^n$, если раскрыть скобки? Там будут все произвения $a_1^{\beta_1} \cdot ... \cdot a_m^{\beta_m}$, что $\beta_1 + ... + \beta_m = n$, $\beta_k \ge 0$. Если привести подобные слагаемые, какой коэффициент будет перед каждым таким слагаемым? Введем обозначение:

$$\binom{n}{\beta_1, \dots, \beta_m} := \frac{n!}{\prod \beta_k!}$$

По пункту $A1 \diamondsuit 3$ д это количество различных слов, полученных путем перестановок букв в слове длины n, где некоторые совпадают. Отождествим слово $a_1a_2...a_m$ и произведение $a_1 \cdot a_2 \cdot ... \cdot a_m$. У нас произведение $(a_1 + ... + a_m) \cdot ... \cdot (a_1 + ... + a_m)$. Нам нужно выбрать из β_k скобок слагаемое a_k . Запишем слово, которое получится, если вместо каждой скобки записать то слагаемое, которое мы выбрали. Это будет какая-то перестановка слова $a_1^{\beta_1}...a_m^{\beta_m}$. Более того, все эти перестановки возможны и каждая будет использоваться ровно один раз. Таким образом,

$$(a_1 + ... + a_m)^n = \sum_{\beta_1 + ... + \beta_k = n, \, \beta_i \geq 0} {n \choose \beta_1, ..., \beta_m}$$

$A1 \diamondsuit 5$

Есть ли у нас коммутативность? Считаются ли одинаковыми одночлены $x_1 \cdot x_2, x_2 \cdot x_1$? Будем считать, что являются.

 \mathbf{a}

Обратимся к задаче A1 \Diamond 9 б. Итак, нам надо подобрать такие степени $m_i \geq 0$, что $m_1 + \ldots + m_n = d$. Это можно сделать $\binom{d+n-1}{n-1}$ способами.

б)

А теперь давайте посмотрим на наш одночлен полной степени $\leq d$ немного иначе:

$$x_1^{m_1} \cdot x_2^{m_2} \cdot \ldots \cdot x_n^{m_n} = 1^{d - \sum m_i} \cdot x_1^{m_1} \cdot x_2^{m_2} \cdot \ldots \cdot x_n^{m_n} := 1^{m_0} \cdot x_2^{m_2} \cdot \ldots \cdot x_n^{m_n}$$

Теперь мы считаем количество способов решить уравнение $m_0+m_1+...+m_n=d$. Это $\binom{d+n}{n}$

A1 \(\delta \) 6

Одним из результатов номера $A1 \lozenge 3$ является то, что это количество различных слов, которые можно получить перестановками букв из слова

$$\underbrace{a_1...a_1}_{100 \text{ раз}} \underbrace{a_2...a_2}_{100 \text{ раз}} ...\underbrace{a_{10}...a_{10}}_{100 \text{ раз}}$$
, а это число является целым.

$A1 \diamondsuit 7$

Выберем k элементов первого множества, которые перейдут в 1 элемент. Остальные перейдут в 2. Запишем количество способов сделать это:

$$\binom{n}{k}$$

Нам нельзя, чтобы k было равно 0, 1, 4, 5, потому что иначе для какого-то из двух элементов не будет прообраза или он будет только один. Останется

$$\sum_{k=2}^{3} {5 \choose k} = 2^5 - 2 \cdot (5+1) = 32 - 12 = 20$$

A1 \(\dagger 8

 \mathbf{a}

 n^m

б)

Должно быть m=n, тогда это количество перестановок, то есть m!

 \mathbf{B}

Выберем для каждого из наших m элементов $\{1,...,m\}$ различные образы, чтобы они возрастали. Для этого достаточно выбрать m-элементное подмножество $\{1,...n\}$. Это можно сделать $\binom{n}{m}$ способами.

г)

Нужно, чтобы $n \ge m$. Выберем m-элементное подмножество и биекцию туда. Это $\binom{n}{m}m!$ способов.

д)

Это число сочетаний с повторениями $\overline{C}_n^m = \binom{n+m-1}{m}$

 $\mathbf{e})$

Закодируем наше неубывающее отображение строкой из n+m-1 элементов: n нулей, разделенные m-1 единицами – перегородками. Элементы до первой перегородки перейдут в 1, до второй – в 2, и т.д. Тогда надо разместить в n-1 возможную позицию m-1 перегородку. Такое отображение будет сюръективным неубывающим. Это можно сделать $\binom{n-1}{m-1}$ способами.

 \mathbf{x}^*

Давайте расмотрим множества отображений $F_i \subseteq \{1..n\}^{\{1..m\}}$, такое, что $\forall f \in F_i \ i \notin E(f)$, где E(f) – множество значений. Заметим, что $|F_i| = (n-1)^m$, $|F_{j_1} \cap F_{j_2} \cap ... \cap F_{j_k}| = (n-k)^m$, если все индексы j_i различны. Обозначим искомое количество как f(m,n). Тогда по формуле включения-исключения:

$$f(m, n) = n^m - \sum_{i=1}^{n-1} (-1)^{i-1} \binom{n}{i} (n-i)^m = \sum_{i=0}^{n-1} (-1)^i \binom{n}{i} (n-i)^m$$

 $A1 \diamondsuit 9$

 \mathbf{a}

$$\underbrace{(1+...+1)+(1+...+1)+(1+...+1)}_{m \text{ скобок}} = n$$

Таким образом, нам нужно для каждой единицы выбрать скобку, а это сюрьективное неубывающее отображение. Таких $\binom{n-1}{m-1}$ штук.

б)

Сведем к пункту а. Для этого сделаем замену $x'_k = x_k + 1$. Теперь мы решаем в натуральных числах уравнение

$$x_1' + \dots + x_m' = n + m$$

 \mathbf{y} этого уравнения $\binom{n+m-1}{m-1}$ решений.

$A1 \diamondsuit 10$

 \mathbf{a}

Нетрудно их просто все перечислить:

1 ((1, 1, 1, 1, 1, 1)	7. (3	3 0	\cap	0)
T. /	(1, 1, 1, 1, 1, 1,	1. (o,	\mathbf{o}, \mathbf{o}	, o,	o, o	,

2.
$$(2, 1, 1, 1, 1, 0)$$
 8. $(4, 1, 1, 0, 0, 0)$

3.
$$(2, 2, 1, 1, 0, 0)$$

9. $(4, 2, 0, 0, 0, 0)$

4.
$$(2, 2, 2, 0, 0, 0)$$

5.
$$(3, 1, 1, 1, 0, 0)$$
 10. $(5, 1, 0, 0, 0, 0)$

6.
$$(3, 2, 1, 0, 0, 0)$$
 11. $(6, 0, 0, 0, 0, 0)$

б)

Аналогично:

- 1. (3, 2, 2) 5. (5, 1, 1) 2. (3, 3, 1) 6. (5, 2, 0) 3. (4, 2, 1) 7. (6, 1, 0) 4. (4, 3, 0) 8. (7, 0, 0)
- **B**)

K сожалению, сегодня я не обладаю инфорацией о точном значении p и q, так что придется искать какое-то другое решение.

Итак, у нас p строк, в каждой из которых число от 0 до q. То есть нам нужно построить какое-то отбражение из номера строки в $\{0,...,q\}$, которое было бы еще и невозрастающим (но необязательно сюрьективным). А это практически задача $A1 \diamondsuit 8$ д. Итак, ответ \overline{C}_{q+1}^p .

$A1 \diamondsuit 11$

Каждый раз мы будем пытаться свести задачу к предыдущим

a)

Это очевидно равносильно количеству отображений $\{1,...,7\} \to \{1,...,4\}$. $\left|\{1,...,4\}^{\{1,...,7\}}\right|=4^7$.

б)

Нам нужно распределить по разным чашкам одинаковый сахар. Пусть в кажой чашке $x_i \geq 0$ кусков сахара. Тогда $x_1 + x_2 + x_3 + x_4 = 10$. Нужно найти количество целых неотрицательных решений. Это по A1 \Diamond 9 б $\binom{10+4-1}{4-1} = \binom{13}{3}$.

B)

Итак, у нас одинаковый сахар который должен весь оказаться в одинаковых стаканах. Поскольку стаканы одинаковые, нам не важна их перестановка. Давайте сделаем так, чтобы в первом стакане оказалось больше всего сахара, во втором — не меньше, чем в первом и т.д. Таким образом получим количество диаграмм Юнга веса 10, в которых не более 4 строк. Их 23:

 1. (3,3,2,2) 5. (4,3,3,0) 9. (5,3,1,1) 13. (6,2,1,1)

 2. (3,3,3,1) 6. (4,4,1,1) 10. (5,3,2,0) 14. (6,2,2,0)

 3. (4,2,2,2) 7. (4,4,2,0) 11. (5,4,1,0) 15. (6,3,1,0)

 4. (4,3,2,1) 8. (5,2,2,1) 12. (5,5,0,0) 16. (6,4,0,0)

17. (7, 1, 1, 1) 19. (7, 3, 0, 0) 21. (8, 2, 0, 0) 23. (10, 0, 0, 0) 18. (7, 2, 1, 0) 20. (8, 1, 1, 0) 22. (9, 1, 0, 0)

г)

Здесь у нас разные соломинки, каждой из которых надо присвоить какой-то из одинаковых стаканов. Пусть у нас m соломинок, которые надо разложить в n стаканов (но некоторые могут быть пустыми). Решим сначала немного другую задачу.

Пусть нам надо сложить m соломинок в k стаканов, но чтобы ни один стакан не оказался пустым. Это можно сделать f(m,k)/k! способами (см A1 \Diamond 8 ж). То есть мы взяли количество сюрьективных отображений и поделили на количество перестановок стаканов.

Тогда искомое количество способов:

$$\sum_{k=1}^{n} \frac{f(m,k)}{k!} = \sum_{k=1}^{n} \frac{\sum_{i=0}^{k-1} (-1)^{i} {k \choose i} (k-i)^{m}}{k!}$$