## Confusion Matrix

|   | Marvellous                    |
|---|-------------------------------|
|   | TREDSYSTEMS.                  |
| 1 | Drivering for Baller Tomorrow |

| N = 165    | Predicted NO | Predicted YES |     |  |  |
|------------|--------------|---------------|-----|--|--|
| Actual NO  | TN = 50      | FP = 10       | 60  |  |  |
| Actual YES | FN = 5       | TP = 100      | 105 |  |  |
|            | 55           | 110           |     |  |  |

- true positives (TP): These are cases in which we predicted yes (they have the disease), and they do have the disease.
- true negatives (TN): We predicted no, and they don't have the disease.
- false positives (FP): We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")
- · false negatives (FN): We predicted no, but they actually do have the disease. (Also known as a "Type II error.")
- · Accuracy: How often is the classifier correct?
  - (TP+TN)/total = (100+50)/165 = 0.91
- · Misclassification Rate: How often is it wrong?
  - (FP+FN)/total = (10+5)/165 = 0.09
  - equivalent to 1 minus Accuracy
  - also known as "Error Rate"
- . True Positive Rate: When it's actually yes, how often does it predict yes? (Recall)
  - TP/actual yes = 100/105 = 0.95
  - also known as "Sensitivity" or "Recall"
- False Positive Rate: When it's actually no, how often does it predict yes?
  - FP/actual no = 10/60 = 0.17
- . True Negative Rate: When it's actually no, how often does it predict no?
  - TN/actual no = 50/60 = 0.83
  - equivalent to 1 minus False Positive Rate
  - also known as "Specificity"
- Precision: When it predicts yes, how often is it correct?
  - TP/predicted yes = 100/110 = 0.91
- · Prevalence: How often does the yes condition actually occur in our sample?
  - actual yes/total = 105/165 = 0.64

## F1 Score

The F-score, also called the F1-score, is a measure of a model's accuracy on a dataset. It is used to evaluate binary classification systems, which classify examples into 'positive' or 'negative'.

F1 is calculated as follows:

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

where:

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

In "macro" F1 a separate F1 score is calculated for each species value and then averaged.



## Linear Regression

| X (Independent) | Y (Dependent) | X - X_Bar | Y - Y_Bar | (X-X_Bar)^2 | (X - X_Bar) * (Y - Y_Bar) | Yp  | (Yp - Y_Bar) | (Yp - Y_Bar) ^ 2 | (Y - Y_Bar)^2 |
|-----------------|---------------|-----------|-----------|-------------|---------------------------|-----|--------------|------------------|---------------|
| 1               | 3             | -2        | -0.6      | 4           | 1.2                       | 2.8 | -0.8         | 0.64             | 0.36          |
| 2               | 4             | -1        | 0.4       | 1           | -0.4                      | 3.2 | -0.4         | 0.16             | 0.16          |
| 3               | 2             | 0         | -1.6      | 0           | 0                         | 3.6 | 0            | 0                | 2.56          |
| 4               | 4             | 1         | 0.4       | 1           | 0.4                       | 4.0 | 0.4          | 0.16             | 0.16          |
| 5               | 5             | 2         | 1.4       | 4           | 2.8                       | 4.4 | 0.8          | 0.64             | 1.96          |
| X_Bar 3         | Y_Bar. 3.6    |           |           | Sum = 10    | Sum = 4.0                 |     |              | Sum = 1.6        | Sum = 5.2     |

Equation of line: Y = mX + C

Dependent Variable X Independent Variable

Slope of line m

Y intercept of line

R Square method

Distance (predicted - mean) VS

Distance (actual - mean)

 $\Sigma (X - X_Bar)(Y - Y_Bar)$ m =Σ (X - X\_Bar)^ 2

m = 4/10m = 0.4

R\_Square formula

Σ(Yp - Y\_Bar)^2

Σ(Y - Y\_Bar)^2

Y = mX + C3.6 = 0.4 \* 3 + C3.6 = 1.2 + CC = 3.6 - 1.2C = 2.4

 $R^2 = 1.6 / 5.2$  $R^2 = 0.3$ 

