$$R^2$$
 R^3
 R^3

wherein, X represents the residue of a color coupler;

A represents -NR⁴R⁵ or a hydroxyl group;

R⁴ and R⁵ represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;

 B^1 represents = $C(R^6)$ - or = N-;

 B^2 represents $-C(R^7) = \text{ or } -N =$;

 R^2 , R^3 , R^6 , and R^7 represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-SR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, $-NR^{68}COR^{69}$, or $-NR^{70}SO_2R^{71}$;

 R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , and R^{71} represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ optionally may be connected to each other to form rings.

A2

4. (Amended) An ink-jet ink according to claim 1, wherein the hydrophobic high boiling point organic solvent is at least one hydrophobic high boiling point organic solvent selected from the group consisting of hydrophobic high boiling point organic solvents - represented by the following formulae [S-1] to [S-9]:

$$O = R^{-1}$$
 $O = R^{-1}$
 $O = R^{-1}$
 $O = R^{-1}$
 $O = R^{3}$

$$R^{20}$$
—S— R^{21} (O)_j

A2

Application No. <u>09/800,776</u> Attorney's Docket No. <u>003510-081</u> Page 5

wherein: in the formula [S-1], R¹, R² and R³ each independently represents an aliphatic group or an aryl group, and a, b and c each independently represents 0 or 1;

in the formula [S-2], R⁴ and R⁵ each independently represents an aliphatic group or an aryl group, R⁶ represents a fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group, alkoxy group, aryloxy group, alkoxycarbonyl group or aryloxycarbonyl group, d represents an integer from 0 to 3, and, where d is more than 1, one R⁶ may be different from another R⁶:

in the formula [S-3], Ar represents an aryl group, e represents an integer from 1 to 6, and R⁷ represents an e-valent hydrocarbon group or a hydrocarbon group that is mutually bonded by an ether bond;

in the formula [S-4], R⁸ represents an aliphatic group, f represents an integer from 1 to 6, and R⁹ represents an f-valent hydrocarbon group or a hydrocarbon group that is mutually bonded by an ether bond;

in the formula [S-5], g represents an integer from 2 to 6, R^{10} represents a g-valent hydrocarbon group other than an aryl group, and R^{11} represents an aliphatic group or an aryl group;

in the formula [S-6], R^{12} , R^{13} and R^{14} each independently represents a hydrogen atom, aliphatic group or aryl group, X represents -CO- or -SO₂-, and a pair R^{12} and R^{13} or a pair R^{13} and R^{14} optionally may bond together mutually to form a ring;

in the formula [S-7], R¹⁵ represents an aliphatic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylsulfonyl group, arylsulfonyl group, aryl group or cyano

Application No. 09/800,776 Attorney's Docket No. 003510-081

Page 6

group, R^{16} represents a fluorine atom, chlorine atom, bromine atom, iodine atom, aliphatic group, aryl group, alkoxy group or aryloxy group, h represents an integer from 0 to 3, and where h is more than 1, one R^{16} may be different from another R^{16} ;

in the formula [S-8], R¹⁷ and R¹⁸ each independently represents an aliphatic group or an aryl group, R¹⁹ represents a fluorine atom, chlorine atom, bromine atom, iodine atom, aliphatic group, aryl group, alkoxy group or aryloxy group, i represents an integer from 0 to 4, and when i is more than 1, one R¹⁹ may be different from another R¹⁹; and

in the formula [S-9], R^{20} and R^{21} each independently represents an aliphatic group or aryl group, and j represents 1 or 2.

9. (Amended) An ink-jet ink according to claim 1, wherein the oil-soluble dye which is represented in said general formula (I) is a compound which is represented in the following general formula (II):

A3

$$R^{2}$$
 R^{3}
 $B^{2}=B^{1}$
General Formula (II)

wherein, R^2 , R^3 , A, B^1 , and B^2 are synonymous with R^2 , R^3 , A, B^1 , and B^2 in said general formula (I);

Application No. <u>09/800,776</u> Attorney's Docket No. <u>003510-081</u> Page 7

 R^1 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, SR^{12} , $-CO_2R^{13}$, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, COR^{27} , $-NR^{28}COR^{29}$, or $NR^{30}SO_2R^{31}$;

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , and R^{31} represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group;

D represents an atom group which forms a five-membered nitrogen-containing heterocyclic ring or a six-membered nitrogen-containing heterocyclic ring which optionally may be substituted with an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{81}$, $-SR^{82}$, $-CO_2R^{83}$, $-OCOR^{84}$, $-NR^{85}R^{86}$, $-CONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO^2NR^{90}R^{91}$, $-NR^{92}CONR^{93}R^{94}$, $-NR^{95}CO_2R^{96}$, $-COR^{97}$, $-NR^{98}COR^{99}$ or $-NR^{100}SO_2R^{101}$;

the heterocyclic ring optionally may further form a condensed ring with another ring; and

 R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , R^{87} , R^{88} , R^{89} , R^{90} , R^{91} , R^{92} , R^{93} , R^{94} , R^{95} , R^{96} , R^{97} , R^{98} , R^{99} , R^{100} , and R^{101} represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group.

10. (Amended) An ink-jet ink according to claim 9, wherein the compound which is represented in said general formula (II) is a compound which is represented in the following general formula (III).

AB

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{6}
 R^{5}
 R^{7}
 R^{7

wherein, R^1 , R^2 , R^3 , R^4 , R^5 R^6 and R^7 are synonymous with R^1 , R^2 , R^3 , R^4 , R^5 R^6 and R^7 in said formula (II);

 X^1 and Y represent respectively independently -C (R^8) = or -N=; R^8 represents a hydrogen atom, an aliphatic group or an aromatic group; and one of X^1 or Y is always -N=, and X^1 and Y are -N= at different times.

11. (Amended) An ink-jet ink according to claim 1, wherein the oil-soluble dye of formula (I) is at least one of compounds represented in the following general formulas (JV-1) to (IV-4):

A3

(IV-4)

wherein, A, R^2 , R^3 , B^1 , and B^2 are synonymous with A, R^2 , R^3 , B^1 , and B^2 in said general formula (I);

(IV-3)

 R^{201} , R^{202} , and R^{203} represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, -

 $C0_2R^{13}$, $-OC0R^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, - $NR^{25}CO_2R^{26} - COR^{27}$, $-NR^{28}COR^{29}$, or $-NR^{30}SO_2R^{31}$;

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R²⁹, R³⁰, and R³¹ represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group; and

R²⁰¹ and R²⁰² optionally may be combined with each other to form a ring structure.

(Amended) A coloring composition formed by/dispersing coloring 12. particulates in a water-based medium, the coloring particulates containing a nonionic oilsoluble polymer, a hydrophobic high boiling point organic solvent having a boiling point of 150°C or more, and an oil-soluble dye, wherein the oil-soluble dye is represented by the

$$R^2$$
 R^3
 R^3
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3

wherein, X represents the residue of a color coupler;

A represents -NR⁴R⁵ or a hydroxyl group;

R⁴ and R⁵ represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;

$$B^1$$
 represents = $C(R^6)$ - or = N-;

following general formula (I):

$$B^1$$
 represents $=C(R^6)$ - or $=N$ -;
 B^2 represents $-C(R^7)$ $=$ or $-N$ $=$;

Sport of the state of the state

R², R³, R⁶, and R⁷ represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -SR⁵¹, -SR⁵², -CO₂R⁵³, -OCOR⁵⁴, -NR⁵⁵R⁵⁶, -CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹, -

NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, or -NR⁷⁰SO₂R⁷¹;

 R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , and R^{71} represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ optionally may be connected to each other to form rings.

8 B3

14. (Amended) An ink jet recording method, in which recording is carried out using an ink-jet ink which contains a coloring composition, the coloring composition being formed by dispersing coloring particulates in a water-based medium, the coloring particulates containing a nonionic oil-soluble polymer, a hydrophobic high boiling point organic solvent having a boiling point of 150°C or more, and an oil-soluble dye, wherein the oil-soluble dye is represented by the following general formula (I):

$$R^2$$
 R^3
 A
 $B^2 \neq B^1$
 A
General Formula (I)

wherein, X represents the residue of a color coupler;

A represents -NR⁴R⁵/or a hydroxyl group;

Application No. <u>09/800,776</u> Attorney's Docket No. <u>003510-081</u> Page 12

Sp3

R⁴ and R⁵ represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;

 B^1 represents = $C(R^6)$ - or = N-;

 B^2 represents $-C(R^7) = \text{ or } -N = ;$

R², R³, R⁶, and R⁷ represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -SR51, -SR⁵², -CO₂R⁵³, -OCOR⁵⁴, -NR⁵⁵R⁵⁶, -CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹, -NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, or -NR⁷⁰SO₂R⁷¹;

R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸, R⁶⁹, R⁷⁰, and R⁷¹ represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ optionally may be connected to each other to form rings.