2.5 Proof by contradiction

2.5.1 Review practice

Question 1

For the statement, "if n%3=1, then $n\%9\neq 5$ ", where % stands for "modulus"...

- a. What is the hypothesis p?
- b. What is the conclusion q?
- c. Using $\neg(p \to q) \equiv p \land \neg q$, write out the negation of this implication in English.

This negation can be used to build the counter-example, which we will use for the proof by contradiction.

There is extra space on the page

2.5.2 Proof by contradiction

Prove by contradiction: If n^2 is even, then n is even

Step 1: Identify the hypothesis and conclusion: Here, our hypothesis is " n^2 is even", and our conclusion is "n is even".

Step 2: Identify the negation: A counter-example of this would be if we have $p \wedge \neg q$, or " n^2 is even and n is odd".

Step 3: Build a counter-example: While the negation of an implication is **not** an implication, we are using this negation in order to build a **new implication**: the contradition.

Counter-example: "If n^2 is even, then n is odd"

Step 4: Write the hypothesis & conclusion symbolically: (For our counter-example implication)

 $n^2 = 2k$ (some even integer) n = 2j + 1 (some odd integer)

Step 5: Write equation: Using the statement, we are going to turn this into an equation. n is odd, and n^2 is even, so if we square the odd n to get the even n^2 , we would have... to get the even n^2 , we would have... $(2j+1)^2 = 2k$

Step 6: Simplify until we have a contradiction:

$$(2j + 1)^{2} = 2k$$

$$\Rightarrow 4j^{2} + 4j + 1 = 2k$$

$$\Rightarrow 1 = 2k - 4j^{2} - 4j$$

$$\Rightarrow \frac{1}{2} = k - 2j^{2} - 2j$$

Since k and j are both integers, through the closure property of integers $(+, -, \text{ and } \times \text{ results in an integer})$, we can show that $k - 2j^2 - 2j$ results in something that is *not an integer* – this is a contradiction. It shows that our counter-example is **false**, and no counter-example can exist.

Question 2

Prove by contradiction: If n^2 is odd, then n is odd.
Step 1: Identify the hypothesis and conclusion: Hypothesis: Conclusion:
Step 2: Identify the negation:
AND
Step 3: Build a counter-example:
IF THEN
Step 4: Write the hypothesis & conclusion symbolically:
$n^2 =$
n =
(Make sure you use different variables for n^2 and n .)
Step 5: Write equation:
Step 6: Simplify until we have a contradiction:
Result:

Question 3

Use proof by contradiction to explain why it is impossible for a number n to be of the form 5k + 3 and of 5j + 1 for integers k and j.

Hint

n = 5k + 3 is one statement, and n = 5j + 1 is the other statement, so 5k + 3 = 5j + 1 is your starting point.

This isn't in an implication form, so we begin at Step 5...

Step 5: Write equation: 5k + 3 = 5j + 1

Step 6: Simplify until we have a contradiction:

Result: