Aula 17 - NAT, ICMP e IPv6

Diego Passos

Universidade Federal Fluminense

Redes de Computadores I

Material adaptado a partir dos slides originais de J.F Kurose and K.W. Ross.

Revisão da Última Aula...

Protocolos da Camada de Rede:

- Vários contribuem.
- Protocolos de roteamento.
- IP.
- ICMP.

• Protocolo IP:

- Define convenções.
- Formato de datagrama.
- Endereçamento.

• Datagrama IP:

- Checksum apenas do cabeçalho.
- Campo de opções, tamanho variável.
- TTL (time-to-live).

• Fragmentação:

- Quebrar datagramas grandes.
- Adequa a limitações de cada enlace.
- Remontados apenas no destinatário.

• Endereçamento IP:

- 32 bits.
- Associados a interfaces.
- Prefixo identifica a sub-rede.
- CIDR, máscara de sub-rede.

• DHCP:

- Protocolo de auto-configuração.
- Atribuição dinâmica de endereços IP.
- Roteador de primeiro salto.
- E mais configurações.
- Cliente-servidor.
- Roda sobre UDP.
- Mensagens em broadcast.

• Endereçamento hierárquico:

- Sub-redes são divididas.
- Novas sub-redes menores.
- Simplifica anúncio de rotas.

NAT

NAT: Network Address Translation

- **Todos** os datagramas **deixando** a rede local possuem o mesmo único endereço de origem: 138.76.29.7.
 - Diferenciação através do número de porta de origem.
- Datagramas com origem ou destino nesta rede possuem endereços de origem, destino da sub-rede 10.0.0/24.

NAT: Motivação

- Rede local pode utilizar um único endereço, do ponto de vista do mundo externo.
 - Não é necessária uma faixa de endereços do ISP: um único endereço IP para todos os dispositivos.
 - Pode-se alterar os endereços dos dispositivos locais sem notificação ao mundo externo.
 - Pode-se mudar de ISP sem que os endereços dos dispositivos locais sejam alterados.
 - Dispositivos dentro da rede local não são explicitamente endereçáveis, visíveis ao mundo externo.
 - Um (pequeno) benefício de segurança.
- NAT consegue lidar com a escassez de endereços IPv4.

NAT: Implementação

- Um roteador que realiza NAT precisa:
 - Datagramas que saem: substituir (IP de origem, porta de origem) de cada datagrama para (IP do roteador, nova porta de origem).
 - Nó remoto respoderá utilizando (IP roteador, nova porta de origem) como destino.
 - Armazenar (na tabela NAT) todo mapeamento feito entre (IP de origem, porta de origem) e (IP roteador, nova porta de origem).
 - Datagramas que chegam: substituir (IP roteador, nova porta de origem) nos campos de destino do pacote por (IP de origem, porta de origem) armazenado na tabela NAT.

NAT: Exemplo

NAT: Análise

- Campo de número de porta: 16 bits.
 - 65000 conexões simultâneas usando um único endereço IP!
- NAT é controverso:
 - Roteadores só deveriam processar até a camada 3 (camada de rede).
 - NAT viola o argumento fim-a-fim.
 - Muitas vezes, o NAT precisa ser levado em consideração por projetistas de aplicações, e.g., aplicações P2P.
 - Escassez de endereços deve ser resolvida pela adoção do IPv6.

NAT Traversal (I)

- Cliente quer se conectar ao servidor com endereço 10.0.0.1.
 - Endereço 10.0.0.1 local para a LAN (cliente não pode usá-lo como endereço de destino).
 - Apenas um endereço visível externamente: 138.76.29.7.
- Solução 1: configurar NAT estaticamente para encaminhar conexões que chegam para uma dada porta para o servidor.
 - *e.g.*, (138.76.29.7, porta 2500) sempre é traduzido (e encaminhado) para (10.0.0.1, porta 25000).

NAT Traversal (II)

- **Solução 2:** Internet Gateway Device Protocol (IGD).
 - Parte do Universal Plug and Play (UPnP).
- Permite que host atrás de NAT:
 - Aprenda endereço IP público (138.76.29.7).
 - Adicione/remova mapeamentos de porta (com tempos de lease).
- *i.e.*, automatizar configuração estática dos mapeamentos do NAT.

NAT Traversal (III)

- Solução 3: relaying (usado, por exemplo, no Skype).
 - Cliente atrás do NAT estabelece conexão com host intermediário.
 - Cliente externo se conecta ao mesmo host intermediário.
 - Host intermediário (relay) faz a ponte entre pacotes das duas conexões.

ICMP

ICMP: Internet Control Message Protocol

- Usado por hosts e roteadores para comunicar informações no nível de rede.
 - Reportar erros: host, rede, porta, protocolo inalcançáveis.
 - Echo request/reply: usado pelo utilitário ping.
- Protocolo de camada de rede, mas "sobre o IP":
 - Mensagens ICMP transportadas em datagramas IP.
- Mensagem ICMP: tipo, código, além dos primeiros 8 bytes do datagrama IP que causaram o erro.

Tipo	Código	Descrição			
0	0	echo reply			
3	0	Rede de destino inalcançável			
3	1	Host de destino inalcançável			
3	2	Protocolo de destino inalcançável			
3	3	Porta de destino inalcançável			
3	6	Rede de destino desconhecida			
3	7	Host de destino desconhecido			
4		Source quench (controle de			
		congestionamento, não usada)			
8	0	echo request			
9	O	anúncio de rota			
10	0	descoberta de rota			
11	0	TTL expirado			
12	0	Cabeçalho IP com erros			

Traceroute e ICMP

- Origem envia série de segmentos UDP para o destino.
 - Primeiro com TTL = 1.
 - Segundo com TTL = 2, etc.
 - Utiliza porta de destino pouco provável.
- Quando *n*-ésimo conjunto de datagramas chega ao *n*-ésimo roteador:
 - TTL expira, roteador descarta datagrama.
 - Envia mensagem ICMP reportando erro à origem (tipo 11, código 0).
 - Mensagem ICMP inclui nome e endereço IP do roteador.

- Quando mensagem ICMP chega, origem registra o RTT.
- Critério de parada:
 - Segmento UDP eventualmente chega ao destinatário.
 - Destinatário envia mensagem ICMP do tipo "porta inalcançável" (tipo 3, código 3).
 - Origem para.

IPv6

IPv6: Motivação

- Motivação inicial: espaço de endereçamento de 32 bits será esgotado em breve.
 - *i.e.*, todos os endereços serão alocados.
- Motivações adicionais:
 - Formato do cabeçalho facilita e acelera o processamento/encaminhamento.
 - Alterações no cabeçalho para facilitar QoS.
- Formato do datagrama IPv6:
 - Cabeçalho de tamanho fixo, com 40 bytes.
 - Não permite fragmentação.

IPv6: Formato do Datagrama

- pri: identifica prioridade do datagrama em relação a outros gerados pela mesma origem.
- flow label: identifica datagramas pertencentes a um mesmo "fluxo" (conceito de fluxo não é bem definido).
- next header: identifica protocolo para a carga útil do pacote.

ver	pri	flow label					
payload len			next hdr	hop limit			
source address (128 bits)							
destination address (128 bits)							
data							

Outras Mudanças em Relação ao IPv4

- **Checksum:** completamente removido para reduzir tempo de processamento em cada salto.
- Opções: permitidas, mas fora do cabeçalho, indicado pelo valor do campo next header.
- **ICMPv6:** nova versão do ICMP.
 - Tipos de mensagem adicionais, e.g., "Pacote Muito Grande".
 - Funções de gerenciamento de grupos multicast.

Transição do IPv4 para o IPv6

- Impossível atualizar todos os roteadores do mundo simultaneamente.
 - Não existe um "dia oficial de migração".
 - Como a rede pode operar com roteadores IPv4 e IPv6 misturados?
- **Tunelamento:** datagramas IPv6 carregados como carga útil em datagramas IPv4 encaminhados por roteadores IPv4.

Tunelamento

Tunelamento

IPv6: Adoção

- Estimativas do US National Institute of Standards [2013]:
 - ~3% dos roteadores IP da indústria.
 - ~11% dos roteadores do governo americano.
- Tempo (muito!) longo para implantação, uso.
 - 20 anos e contando!
 - Pense nas mudanças no nível de aplicação nos últimos 20 anos: web, facebook, Netflix, ...
 - Por quê?

Resumo da Aula...

- NAT:
 - Tradução de endereços.
 - Rede local vs. rede externa.
 - Endereços privados vs. públicos, roteáveis.
 - Pacote sai: IP e porta de origem alterados.
 - Pacote entra: IP e porta de destino são alterados.
 - Tabela NAT: armazana mapeamentos.
- NAT: Motivação.
 - Escassez de IPs.
 - Independência dos endereços do ISP.
 - Segurança.
- NAT Traversal:
 - Conexão de fora para dentro do NAT.
 - Entradas estáticas na tabela.
 - Protocolo IGD.
 - Relaying (aplicação).

• ICMP:

- Gerência do IP.
- Informações, condições de erro.
- Diversas tipos de mensagens.
- Suporte a algumas ferramentas usuais.
- IPv6: Motivações.
 - Mais endereços.
 - Menor overhead de processamento.
- IPv6: diferenças.
 - Cabeçalho fixo.
 - Fragmentação não permitida.
 - Melhor suporte a QoS.
 - ICMPv6.
- IPv6: Transição.
 - Gradual, coexistência com IPv4.
 - Solução: tunelamento.

Próxima Aula...

- Iniciaremos a última parte da disciplina: roteamento.
- Na aula que vem:
 - Introdução aos protocolos de roteamento.
 - Classificação dos protocolos.
 - Protocolos baseados em estado de enlace.