Report of Entropy estimates based on NIST SP 800-90B non-IID track

 $2023\text{-}\mathrm{Feb}\text{-}26\ 10\text{:}12\text{:}27.299593$

1 Identification information

1.1 Identification of acquisition data from entropy source

Table 1 $\,$ Identification information of acquisition data from entropy source

acquisition data	https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/bin/truerand_4bit.bin	
	the submitter of the acquisition data : lanation of the acquisition data (or entropy source) :	

1.2 Identification of analysis environment

Table 2 Identification information of analysis environment

Analysis tool	Name	Another entropy estimation tool with extensions
	Versioning information	1.0.43
Analysis environment	Hostname	
	CPU information	AMD Ryzen
	Physical memory size	MB
	OS information	Windows 10 or greater
	Username	

1.3 Identification of analysis conditions

Table 3 Identification information of analysis conditions

Number of samples	1000000
Bits per sample	4
Byte to bit conversion	Most Significant bit (MSb) first

1.4 Identification of analysis method

NIST SP 800-90B [1] 6.3 with corrections [2] is applied

2 Executive summary

2.1 Numerical results of min-entropy estimates based on non-IID track

Table 4 Numerical results

Estimator	$H_{ m original}{}^{ m a}$	$H_{ m bitstring}^{ m \ b}$
	[bit / 4 - bit]	[bit / 1 - bit]
The Most Common Value Estimate	3.97119	0.99773
The Collision Estimate		0.928362
The Markov Estimate	_	0.99947
The Compression Estimate		0.900627
The t-Tuple Estimate	3.68775	0.929434
The Longest Repeated Substring (LRS) Estimate	3.93497	0.986687
Multi Most Common in Window Prediction Estimate	3.99229	0.99808
The Lag Prediction Estimate	3.97627	0.998649
The MultiMMC Prediction Estimate	3.98526	0.998205
The LZ78Y Prediction Estimate	3.98428	0.999355
The intial entropy source estimate [bit / 4 - bit]		3.60251
$H_I = \min(H_{\text{original}}, 4 \times H_{\text{bitstring}})$		

 $[^]a$ Entropy estimate of the sequential dataset [source: NIST SP 800-90B [1] 3.1.3]

 $[^]b$ An additional entropy estimation (per bit) for the non-binary sequential dataset [see NIST SP 800-90B [1] 3.1.3]

2.2 Visual comparison of min-entropy estimates from original samples

Fig. 1 Estimated Min-Entropy using $\S 6.3$ of NIST SP 800-90B

2.3 Visual comparison of min-entropy estimates by interpreting each sample as bitstring

Fig. 2 Estimated Min-Entropy using $\S 6.3$ of NIST SP 800-90B

3 Detailed results of analysis from original samples

3.1 The Most Common Value Estimate (NIST SP 800-90B Section 6.3.1)

3.1.1 Supplemental information for traceability

Table 5 Supplemental information for traceability (NIST SP 800-90B Section 6.3.1)

Symbol	Value
mode	63134
\hat{p}	0.063134
p_u	0.0637605

3.2 The t-tuple Estimate (NIST SP 800-90B Section 6.3.5)

Fig. 3 Intermediate value Q[i] ~ in $\S 6.3.5$ of NIST SP 800-90B

Fig. 4 $P[i]^{1/i}$ in §6.3.5 of NIST SP 800-90B

3.2.1 Supplemental information for traceability

Table 6 Supplemental information for traceability (NIST SP 800-90B Section 6.3.5)

Symbol	Value
t	4
\hat{p}_{max}	0.0769161
p_u	0.0776025

3.3 The LRS Estimate (NIST SP 800-90B Section 6.3.6)

Fig. 5 Estimated W-tuple collision probability in Step 3 of $\S 6.3.6$ of NIST SP 800-90B

 $Fig. \ 6 \quad Estimated \ average \ collision \ probability \ per \ string \ symbol \ in \ Step \ 3 \ of \ \S 6.3.6 \ of \ NIST \ SP \ 800-90B$

3.3.1 Supplemental information for traceability

Table 7 Supplemental information for traceability (NIST SP 800-90B Section 6.3.6)

Symbol	Value
u	5
v	9
\hat{p}	0.064748
p_u	0.0653819

3.4 Multi Most Common in Window Prediction Estimate (NIST SP 800-90B Section 6.3.7)

Fig. 7 Distribution of correct

3.4.1 Supplemental information for traceability

Table 8 Supplemental information for traceability (NIST SP 800-90B Section 6.3.7)

Symbol	Value
N	999937
C	62209
$P_{ m global}$	0.0622129
$P'_{ m global}$	0.0628351
r	6
$P_{ m local}$	0.0468281

3.5 Lag Prediction Estimate (NIST SP 800-90B Section 6.3.8)

Fig. 8 Distribution of correct

3.5.1 Supplemental information for traceability

Table 9 Supplemental information for traceability (NIST SP 800-90B Section 6.3.8)

Symbol	Value
N	999999
C	62911
$P_{ m global}$	0.0629111
$P'_{ m global}$	0.0635365
r	6
$P_{ m local}$	0.0468276

3.6 The MultiMMC Prediction Estimate (NIST SP 800-90B Section 6.3.9)

Fig. 9 Distribution of correct

3.6.1 Supplemental information for traceability

Table 10 Supplemental information for traceability (NIST SP 800-90B Section 6.3.9)

Symbol	Value
N	999998
C	62518
P_{global}	0.0625181
$P'_{ m global}$	0.0631417
r	6
$P_{ m local}$	0.0468276

3.7 The LZ78Y Prediction Estimate (NIST SP 800-90B Section 6.3.10)

Fig. 10 $\,$ Distribution of correct

3.7.1 Supplemental information for traceability

Table 11 Supplemental information for traceability (NIST SP 800-90B Section 6.3.10)

Symbol	Value
N	999983
C	62560
P_{global}	0.0625611
$P'_{ m global}$	0.0631849
r	6
$P_{ m local}$	0.0468277

4 Detailed results of analysis by interpreting each sample as bitstrings

4.1 The Most Common Value Estimate (NIST SP 800-90B Section 6.3.1)

4.1.1 Supplemental information for traceability

Table 12 Supplemental information for traceability (NIST SP 800-90B Section 6.3.1)

Symbol	Value
mode	2000573
\hat{p}	0.500143
p_u	0.500787

4.2 The Collision Estimate (NIST SP 800-90B Section 6.3.2)

Fig. 11 Solution to the equation in step 7

4.2.1 Supplemental information for traceability

Table 13 Supplemental information for traceability (NIST SP 800-90B Section 6.3.2)

Symbol	Value
p	0.525455
\bar{X}	2.49972
$ar{X}'$	2.4987
$\hat{\sigma}$	0.5

4.3 The Markov Estimate (NIST SP 800-90B Section 6.3.3)

Fig. 12 Transition probability $P_{i,j}$ of §6.3.3 of NIST SP 800-90B

Fig. 13 Estimated Min-Entropy using $\S 6.3.3$ of NIST SP 800-90B

4.4 The Compression Estimate (NIST SP 800-90B Section 6.3.4)

4.4.1 Supplemental information for traceability

Table 14 Supplemental information for traceability (NIST SP 800-90B Section 6.3.4)

Symbol	Value
p	0.0236214
$ar{X}$	5.21845
ô	1.01409
\bar{X}'	5.21525

4.5 The t-tuple Estimate (NIST SP 800-90B Section 6.3.5)

Fig. 14 Intermediate value Q[i] in $\S 6.3.5$ of NIST SP 800-90B

Fig. 15 $P[i]^{1/i}$ in §6.3.5 of NIST SP 800-90B

4.5.1 Supplemental information for traceability

Table 15 Supplemental information for traceability (NIST SP 800-90B Section 6.3.5)

Symbol	Value
t	18
\hat{p}_{max}	0.524421
p_u	0.525064

4.6 The LRS Estimate (NIST SP 800-90B Section 6.3.6)

Fig. 16 Estimated W-tuple collision probability in Step 3 of $\S 6.3.6$ of NIST SP 800-90B

Fig. 17 Estimated average collision probability per string symbol in Step 3 of $\S6.3.6$ of NIST SP 800-90B

4.6.1 Supplemental information for traceability

 ${\it Table 16} \ \ {\it Supplemental information for traceability (NIST SP 800-90B Section 6.3.6)}$

Symbol	Value
u	19
v	42
\hat{p}	0.503991
p_u	0.504635

4.7 Multi Most Common in Window Prediction Estimate (NIST SP 800-90B Section 6.3.7)

Fig. 18 Distribution of correct

4.7.1 Supplemental information for traceability

Table 17 Supplemental information for traceability (NIST SP 800-90B Section 6.3.7)

Symbol	Value
N	3999937
C	2000056
$P_{ m global}$	0.500022
$P'_{ m global}$	0.500666
r	23
$P_{ m local}$	0.433329

4.8 Lag Prediction Estimate (NIST SP 800-90B Section 6.3.8)

Fig. 19 Distribution of correct

4.8.1 Supplemental information for traceability

Table 18 Supplemental information for traceability (NIST SP 800-90B Section 6.3.8)

Symbol	Value
N	3999999
C	1999298
$P_{ m global}$	0.499825
$P'_{ m global}$	0.500469
r	22
$P_{ m local}$	0.416615

4.9 The MultiMMC Prediction Estimate (NIST SP 800-90B Section 6.3.9)

Fig. 20 Distribution of correct

4.9.1 Supplemental information for traceability

Table 19 Supplemental information for traceability (NIST SP 800-90B Section 6.3.9)

Symbol	Value
N	3999998
C	1999913
$P_{ m global}$	0.499978
$P'_{ m global}$	0.500622
r	20
$P_{ m local}$	0.380545

4.10 The LZ78Y Prediction Estimate (NIST SP 800-90B Section 6.3.10)

Fig. 21 Distribution of correct

4.10.1 Supplemental information for traceability

Table 20 Supplemental information for traceability (NIST SP 800-90B Section 6.3.10)

Symbol	Value
N	3999983
C	1998310
$P_{ m global}$	0.49958
$P'_{ m global}$	0.500224
r	20
$P_{ m local}$	0.380545

4 References

^[1] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish, Mike Boyle Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publication 800-90B, Jan. 2018

^[2] G. Sakurai, Proposed list of corrections for NIST SP 800-90B 6.3 Estimators, Dec. 2022 https://github.com/g-g-sakura/AnotherEntropyEstimationTool/blob/main/documentation/ProposedListOfCorrections_SP800-90B.pdf