cd2025 協同產品設計實習 期末專案報告

YouBot 投籃機器人模擬系統

學員代號: kim41223114

專案網址:https://mdecd2025.github.io/hw-kim41223114/content/index.html

課程:cd2025 協同產品設計實習

專案類型: Final 期末專案 (30%)

完成日期: 2025年06月

目錄

- 1. 專案摘要
- 2. 專案目標
- 3. 系統架構設計
- 4. 技術實現
- 5. YouBot 移動控制系統
- 6. 投籃機構設計
- 7. 計分與顯示系統
- 8. 球體管理系統
- 9. 協同操作平台
- 10. 測試與驗證
- 11. 學習心得
- 12. 結論與展望

1. 專案摘要

本專案旨在建立一個基於Webots模擬環境的YouBot投籃機器人系統,整合移動控制、投籃機構、自動計分、球體管理 與協同操作等功能。透過cd2025協同產品設計實習課程的學習,掌握機器人模擬技術、Python程式設計、以及多人協 同開發的實務技能。

專案採用模組化設計理念,將複雜的機器人系統分解為五個主要子系統,每個子系統負責特定功能並相互協作。透過 Webots提供的豐富API與物理引擎,實現了高度真實的機器人模擬環境。

專案重點:本專案不僅是技術學習的成果展現,更是團隊協作與問題解決能力的綜合體現。

2. 專案目標

本專案設定了明確的學習目標,涵蓋技術技能、軟技能以及實務應用等多個面向:

1. 掌握Webots機器人模擬環境的建構與操作

學習場景樹建構、物理參數設定、感測器配置等核心技能

2. 學習YouBot四輪全向移動控制原理與實作

理解Mecanum輪運動學原理,實現前進、後退、側移、旋轉等運動模式

3. 設計並實現多關節投籃機構的運動控制

建立三軸關節系統,實現精確的投籃動作序列控制

4. 開發自動計分系統與七段顯示器控制

整合感測器偵測與視覺顯示,建立即時計分與狀態管理系統

5. 建立球體管理與自動補給機制

設計物理真實的球體模擬與智慧補球流程

6. 整合IPv6網路與WebSocket通訊協定

實現多人協同操作平台,支援即時互動與觀察

7. 培養協同開發與團隊合作能力

學習版本控制、任務分工、溝通協調等軟技能

8. 提升問題解決與系統整合技能

培養分析問題、設計解決方案、除錯優化的綜合能力

3. 系統架構設計

本專案採用模組化設計理念,將整個系統分為五個主要子系統:

子系統名稱	主要功能	核心技術	介面協定
投籃輪車系統	四輪全向移動與投籃發射	YouBot平台、多關節控制	鍵盤輸入、WebSocket指令
籃框架系統	可移動籃框與得分判定	隨機運動控制、TouchSensor	Emitter訊息傳遞
球體控制系統	球體生成、管理與自動補給	物理模擬、機構設計	DistanceSensor偵測
計分顯示系統	七段顯示器控制與遊戲狀態管理	材質動態控制、數字編碼	Receiver訊息接收
通訊系統	多人協同操作與信號傳遞	Emitter/Receiver、WebSocket	JSON格式資料交換

3.1 系統整合架構

各子系統透過標準化的通訊協定進行資料交換與功能協調:

• 控制指令流:鍵盤/WebSocket → YouBot控制器 → 馬達執行

• 得分訊息流:籃框感測器 → Emitter → 計分板 → 七段顯示器

• 補球觸發流: 球體偵測 → 主控制器 → 補球機構執行

• 狀態監控流: 各子系統 → Supervisor → 協同平台

4. 技術實現

4.1 Webots環境設定

使用Webots R2023b版本建立模擬環境,包含以下核心組件:

• WorldInfo節點:設定重力加速度(9.81 m/s²)、基本時間步長(32ms)、物理引擎參數

• Viewpoint節點:配置觀察視角,支援動態追蹤與多角度切換

• TexturedBackground:提供場景背景與環境光源

• RectangleArena:建立標準化競技場環境,包含地板與圍牆

4.2 Python控制器開發

開發多個Python控制器處理不同功能模組,採用物件導向設計確保程式碼可維護性。控制器主要包含YouBot移動控制、 投籃機構控制、計分板管理與WebSocket通訊等功能模組。

4.3 控制器架構設計

採用狀態機模式管理複雜的機器人行為,主要狀態包括:

• IDLE狀態: 待命狀態, 等待控制指令

• MOVING狀態:移動狀態,執行運動控制

• AIMING狀態: 瞄準狀態,調整投籃角度

• SHOOTING狀態: 投籃狀態,執行發射動作

• RELOADING狀態: 補球狀態,等待球體補給

5. YouBot移動控制系統

5.1 四輪Mecanum全向移動原理

YouBot採用四個Mecanum輪實現全向移動能力。每個Mecanum輪配備多個45度角排列的輥子,透過控制四輪的轉向與速度組合,可實現多種運動模式:

運動模式	輪速設定	物理原理	應用場景
前進移動	(1, 1, 1, 1)	四輪同向轉動	直線移動至目標位置
後退移動	(-1, -1, -1, -1)	四輪反向轉動	避障、重新定位
左轉旋轉	(-1, 1, -1, 1)	左右輪相反方向	調整朝向、搜尋目標
右轉旋轉	(1, -1, 1, -1)	左右輪相反方向	調整朝向、搜尋目標
左側移動	(-1, 1, 1, -1)	對角輪同向控制	側向避障、平行停車
右側移動	(1, -1, -1, 1)	對角輪同向控制	側向避障、平行停車

5.2 運動控制實作

實作精確的運動控制需要考慮目標距離計算、方向角度調整、速度控制與路徑規劃等技術要點。系統支援點對點移動、軌跡追蹤與動態避障等功能。

5.3 鍵盤控制介面

實作直觀的鍵盤控制介面,支援即時操作與精確控制:

• W/S鍵:前進/後退控制,支援變速

• A/D鍵:左轉/右轉控制,支援精確角度調整

• Q/E鍵:左側移/右側移,實現橫向移動

• Space鍵:觸發投籃動作,執行完整發射序列

• **R鍵:**重置位置,回到起始點

6. 投籃機構設計

6.1 多關節結構設計

投籃機構採用三關節串接設計,每個關節負責特定的運動功能:

關節名稱	運動功能	旋轉範圍	最大速度	控制精度
基座關節	水平朝向控制	-180°到 +180°	1.0 rad/s	±1°
仰角關節	投射角度調整	0°到 +90°	0.8 rad/s	±0.5°
發射關節	投籃力道控制	-45° 到 +45°	2.0 rad/s	±0.2°

6.2 動作控制邏輯

設計完整的投籃序列動作,確保精確性與一致性。投籃流程包含基座旋轉對準、仰角調整、發射執行與機構重置等階段, 每個階段都有對應的狀態管理與時序控制。

6.3 投籃精度優化

為提升投籃精度,實作以下優化策略:

• 動態軌跡計算: 根據目標距離自動調整發射角度與力道

• 風阻補償:考慮球體阻力係數,修正投射參數

• 機構誤差校正:透過感測器回饋修正關節位置偏差

• 學習型調整:記錄投籃結果,逐步優化參數設定

7. 計分與顯示系統

7.1 七段顯示器控制

採用三位數七段顯示器顯示得分,每個顯示器包含7個區段(a-g)。透過動態修改Material的diffuseColor屬性控制區段亮滅狀態,實現0-9數字的完整顯示功能。

7.2 得分判定機制

在籃框下方設置TouchSensor感測器精確偵測球體通過事件:

• **感測器配置:**籃框下方設置多個TouchSensor,形成偵測網格

• 觸發條件: 球體完全通過籃框且觸發時間超過閾值

• 防重複計分:設定冷卻時間避免單次進球重複計分

• 誤判過濾:結合球體速度與軌跡判斷有效得分

7.3 即時狀態管理

計分系統同時管理多項遊戲狀態資訊:

狀態項目	顯示位置	更新頻率	資料來源
當前得分	主要七段顯示器	即時更新	籃框感測器
投籃次數	輔助顯示器	每次投籃	發射機構
剩餘球數	球數指示器	補球時更新	球體管理系統

8. 球體管理系統

8.1 籃球物理模擬

使用Solid節點結合Sphere幾何體建立真實的籃球模型,關鍵物理參數設定如下:

• **質量:** 0.6 kg (符合標準籃球重量)

• 半徑: 0.12 m (標準籃球尺寸)

• 彈性係數: 0.8 (適度彈跳效果)

• 摩擦係數: 0.4 (真實地面摩擦)

• 阻力係數: 0.02 (空氣阻力影響)

8.2 自動補球機制

設計智慧補球系統確保遊戲連續性。系統持續監控場地內球體數量與位置,當偵測到球體不足時自動觸發補球流程。補球機構包含球體收集區、傳送機構與分發系統。

8.3 球體狀態追蹤

實作完整的球體生命週期管理:

• 生成階段: 在指定位置創建新球體,設定初始物理狀態

• 活動階段: 追蹤球體位置、速度、與其他物體的交互

• 得分階段: 偵測進球事件, 觸發計分與特效

• 回收階段: 球體離開範圍時自動回收,準備重新使用

9. 協同操作平台

9.1 IPv6網路架構

採用IPv6網路技術建立穩定的協同操作環境:

• 位址配置:每位學員分配固定IPv6位址

• DNS對應:提供易記的符號名稱

• 防火牆設定:開放1234埠號供Webots串流使用

• 啟動指令:使用 webotsw --stream 啟動串流服務

9.2 WebSocket通訊協定

開發WebSocket伺服器支援多客戶端即時通訊。伺服器處理客戶端註冊、訊息路由、狀態同步等功能,使用JSON格式進行資料交換,確保通訊協定的標準化與擴展性。

9.3 多人協同控制

實作公平且穩定的多人協同機制:

功能特性	實作方式	優點	應用場景
指令排隊	FIFO佇列管理	避免指令衝突	多人同時操作
權限控制	輪流操作機制	確保公平性	競爭性遊戲
觀察者模式	只讀連線	支援更多觀眾	教學展示

10. 測試與驗證

10.1 功能測試

建立完整的測試案例確保系統各功能正常運作:

1. YouBot移動控制測試

- 。前進/後退功能驗證 (速度精度±5%)
- 。左右旋轉功能驗證 (角度精度±2°)
- 。 側移功能驗證
- 。組合運動測試 (斜向移動、曲線運動)

2. 投籃機構測試

- 。關節運動範圍驗證
- 。 投籃序列動作測試
- 。 投射精度評估 (目標命中率>60%)
- 。 連續投籃穩定性測試

3. 計分系統測試

- 。 進球偵測準確性 (漏檢率<2%)
- 。七段顯示器更新驗證
- 。防重複計分機制測試

10.2 效能評估

監控系統效能指標確保最佳使用體驗:

效能指標	目標值	測量方法	優化策略
模擬幀率	>30 FPS	Webots內建監控	場景複雜度優化
記憶體使用	<512 MB	系統監控工具	資源回收機制
網路延遲	<100 ms	WebSocket ping測試	協定優化、壓縮

10.3 壓力測試

評估系統在極限條件下的穩定性與可靠性:

• 高頻操作測試:每秒10次指令輸入,持續10分鐘

• 多球碰撞測試:同時存在10顆球的碰撞模擬

• 長時間運行測試:連續運行4小時無故障

• 網路波動測試:模擬不穩定網路環境下的運行

11. 學習心得

11.1 技術技能提升

透過本專案的完整開發過程,在多個技術領域獲得顯著提升:

核心技術收獲:

• Webots機器人模擬技術

- 。 掌握場景樹建構與節點配置方法
- 。理解物理引擎參數對模擬真實性的影響
- 。 學會感測器與執行器的整合應用
- 。熟練使用Supervisor API進行高級控制

• Python程式設計能力

- 。物件導向設計模式在機器人控制中的應用
- 。狀態機模式管理複雜系統行為
- 。 異步程式設計處理網路通訊
- 。 例外處理與錯誤恢復機制設計

• 系統整合與架構設計

- 。 模組化設計原則與介面標準化
- 。 多執行緒協調與資源共享管理
- 。實時系統的時序控制與同步機制
- 。 分散式系統的通訊協定設計

11.2 問題解決能力發展

專案開發過程中遇到的技術挑戰培養了系統性問題解決能力。從問題識別、方案分析、實作驗證到最佳化改進,每個階段都提升了獨立解決複雜技術問題的能力。

11.3 團隊協作經驗累積

協同開發過程培養了重要的軟技能:

協作面向	具體實踐	學習收獲	應用價值
版本控制	Git分支管理、合併衝突處理	程式碼協作標準流程	工程團隊必備技能
任務分工	模組化開發、介面標準化	專案管理與進度控制	提升開發效率
溝通協調	定期會議、文件共享	跨領域溝通技巧	減少誤解與衝突

11.4 創新思維培養

專案中的創新實踐培養了跳出框架思考的能力:

• 跨領域整合:結合機械、電控、軟體、網路等多學科知識

• 使用者導向設計:從操作體驗出發設計直觀的控制介面

• 效能最佳化思維:在功能與效能間找到最佳平衡點

• 可擴展性設計:為未來功能擴展預留介面與架構空間

12. 結論與展望

12.1 專案成果總結

本專案成功建立了完整的YouBot投籃機器人模擬系統,達成了所有預設的專案目標:

主要成就:

- / 完成五大子系統的設計與整合
- / 實現穩定的四輪全向移動控制
- / 建立精確的多關節投籃機構
- / 開發智慧計分與顯示系統
- / 實作自動球體管理機制
- / 建立多人協同操作平台

系統展現了良好的擴展性與維護性,為後續的功能增強奠定了堅實基礎。專案證明了Webots在機器人教育與研發方面的強大潛力。

12.2 技術創新與貢獻

專案在多個方面展現了技術創新:

• 整合式設計:將機器人控制、遊戲邏輯、網路協同整合於單一平台

• 智慧補球系統:創新的自動球體管理與補給機制

• **多模式控制:**支援鍵盤、WebSocket、自動化等多種控制方式

• 即時視覺回饋:七段顯示器與狀態管理的創新應用

12.3 未來發展方向

基於現有成果,規劃以下發展方向:

發展方向	技術重點	預期效益	實現難度
人工智慧增強	機器學習、強化學習	自動最佳化投籃策略	高
多機器人協作	分散式控制、協調演算法	團隊競賽、複雜任務	中高
虚擬實境整合	VR/AR技術、沉浸式介面	提升使用者體驗	中
硬體移植	嵌入式系統、實體機器人	真實環境驗證	高

12.4 實用價值與應用前景

本專案所開發的技術與方法具有廣泛的應用價值:

產業應用領域:

• 教育訓練:機器人教學、STEM教育、工程實習

• 工業自動化: 生產線機器人、物料搬運、精密組裝

• 服務機器人:清潔機器人、送餐機器人、導覽機器人

• 智慧製造:數位孿生、預測維護、製程最佳化

• 無人載具:自動駕駛、無人機、水下機器人

12.5 個人成長與未來規劃

通過本專案的完整開發過程,不僅在技術層面獲得顯著提升,更重要的是培養了系統性思考、創新設計、團隊協作等核心能力。這些技能為未來在機器人技術、系統整合、產品開發等領域的發展提供了堅實的基礎。

未來將持續深入學習人工智慧、物聯網、雲端計算等前沿技術,結合機器人領域的專業知識,朝向智慧機器人系統架構師的目標努力。

cd2025 協同產品設計實習 期末專案報告

學員:kim41223114 | 完成日期:2025年06月 | 頁數:12頁

專案網址:https://mdecd2025.github.io/hw-kim41223114/content/index.html