Cleaning, Summarizing, and Visualizing Data

Jeroen Mahieu

jeroen.mahieu@vu.nl

Updated 2022-02-14

The Data Science Pipeline

• Quantitative Research is about numeric data

Cleaning (Tidying) Data

- According a to 2014 NYTimes article, "data scientists [...] spend from 50 percent to 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets."
- Luckily we have some powerful tools to help us out.
- Here, we will focus on dplyr which is part of the tidyverse
- (When you work with large datasets (+100k rows with many columns) learn to use data. table which is much faster but has more difficult syntax)

dplyr Overview

- You are *highly encouraged* to read through Hadley Wickham's chapter. It's clear and concise.
- Also check out this great "cheatsheet" here.
- The package is organized around a set of **verbs**, i.e. *actions* to be taken.
- We operate on data.frames or tibbles (nicer looking data.frames.)
- All *verbs* work as follows:

• Alternatively you can (should) use the pipe operator %>%:

Main dplyr Verbs

```
filter(): Choose observations based on a certain condition (i.e. subset)
arrange(): Reorder rows
select(): Select variables by name
mutate(): Create new variables out of existing ones
summarise(): Collapse data to a single summary
group_by(): All the above can be used in conjunction with group_by() to use function on groups rather than entire data
```

Data: Red Wine Quality

... with 1 more variable: `free sulfur dioxide` <dbl>

This dataset contains information about Portuguese "Vinho Verde" wine (more details | download link). Each row represents one wine sample.

```
library(tidyverse)
 wine <- read_csv("data/winequality-red.csv") #import data as dataframe "wine"</pre>
 head(wine[,1:6]) # show first 6 lines of first 6 variables
## # A tibble: 6 x 6
     `fixed acidity` `volatile acidity` `citric acid` `residual sugar` chlorides
               <dbl>
                                  <dbl>
                                                 <dbl>
                                                                  <dbl>
                                                                             <dbl>
##
                 7.4
                                   0.7
                                                                    1.9
                                                                             0.076
## 1
                                                  0
## 2
                 7.8
                                   0.88
                                                                     2.6
                                                                             0.098
                                                  0
## 3
                 7.8
                                   0.76
                                                  0.04
                                                                     2.3
                                                                             0.092
## 4
                11.2
                                   0.28
                                                  0.56
                                                                    1.9
                                                                             0.075
## 5
                 7.4
                                   0.7
                                                                    1.9
                                                                             0.076
## 6
                 7.4
                                   0.66
                                                                    1.8
                                                                             0.075
                                                  0
```

Data: Red Wine Quality

What variables does this dataset contain?

```
str(wine)
## spec_tbl_df [1,599 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
   $ fixed acidity
                         : num [1:1599] 7.4 7.8 7.8 11.2 7.4 7.4 7.9 7.3 7.8 7.5 ...
   $ volatile acidity : num [1:1599] 0.7 0.88 0.76 0.28 0.7 0.66 0.6 0.65 0.58 0.5 ...
   $ citric acid
                        : num [1:1599] 0 0 0.04 0.56 0 0 0.06 0 0.02 0.36 ...
   $ residual sugar : num [1:1599] 1.9 2.6 2.3 1.9 1.9 1.8 1.6 1.2 2 6.1 ...
   $ chlorides
                         : num [1:1599] 0.076 0.098 0.092 0.075 0.076 0.075 0.069 0.065 0.073 0.071 ...
   $ free sulfur dioxide : num [1:1599] 11 25 15 17 11 13 15 15 9 17 ...
   $ total sulfur dioxide: num [1:1599] 34 67 54 60 34 40 59 21 18 102 ...
                         : num [1:1599] 0.998 0.997 0.997 0.998 0.998 ...
   $ density
   Ha &
                         : num [1:1599] 3.51 3.2 3.26 3.16 3.51 3.51 3.3 3.39 3.36 3.35 ...
                         : num [1:1599] 0.56 0.68 0.65 0.58 0.56 0.56 0.46 0.47 0.57 0.8 ...
   $ sulphates
                         : num [1:1599] 9.4 9.8 9.8 9.8 9.4 9.4 9.4 10 9.5 10.5 ...
   $ alcohol
                         : num [1:1599] 5 5 5 6 5 5 5 7 7 5 ...
   $ quality
   - attr(*, "spec")=
##
    .. cols(
##
    .. 'fixed acidity' = col_double(),
     .. `volatile acidity` = col_double(),
##
```

Filtering observations

filter()

Example: Which wines have at least a alchohol percentage of 10?

filter

Example: Which wines have at least a alchohol percentage of 10?

```
wine %>%
   filter(alcohol > 10)
## # A tibble: 852 x 12
      `fixed acidity` `volatile acidity` `citric acid` `residual sugar` chlorides
##
##
                <dbl>
                                   <dbl>
                                                 <dbl>
                                                                  <dbl>
                                                                             <dbl>
                  7.5
                                   0.5
                                                  0.36
                                                                    6.1
                                                                            0.071
## 1
                                   0.5
## 2
                  7.5
                                                  0.36
                                                                    6.1
                                                                            0.071
                  8.5
                                   0.28
                                                  0.56
                                                                            0.092
## 3
                                                                    1.8
## 4
                  6.7
                                   0.675
                                                  0.07
                                                                    2.4
                                                                            0.089
## 5
                  6.9
                                   0.685
                                                                    2.5
                                                                            0.105
                                                  0
## 6
                  7.8
                                   0.6
                                                  0.14
                                                                    2.4
                                                                            0.086
                                                  0.36
## 7
                  7.3
                                   0.45
                                                                    5.9
                                                                            0.074
## 8
                  7.3
                                   0.45
                                                  0.36
                                                                    5.9
                                                                            0.074
## 9
                  7.5
                                   0.49
                                                  0.2
                                                                    2.6
                                                                            0.332
## 10
                  8.1
                                   0.66
                                                  0.22
                                                                    2.2
                                                                             0.069
## # ... with 842 more rows, and 7 more variables: `free sulfur dioxide` <dbl>,
## #
       `total sulfur dioxide` <dbl>, density <dbl>, pH <dbl>, sulphates <dbl>,
## #
       alcohol <dbl>, quality <dbl>
```

9/39

Operators

Standard comparison operators:

- > : greater than,
- < : smaller than,
- >= : greater than or equal to,
- <= : smaller than or equal to,
- != : not equal to,
- == : equal to.

Logical operators:

- 1. x & y : x and y
- 2. x | y: x **or** y
- 3. !y: **not** y

```
R has the convenient x \% in\% y operator (conversely !x %in% y), TRUE if x is a member of y.
 3 %in% 1:3
## [1] TRUE
c(2,5) %in% 2:10 # also vectorized
## [1] TRUE TRUE
 c("V","Uni") %in% c("Vrije","Universiteit") # also strings
## [1] FALSE FALSE
```

filter with a logical operator

Example: Which wines have at least an alchohol percentage of 10 and a quality score < 6?

filter with a logical operator

Example: Which wines have at least an alchohol percentage of 10 and a quality score < 6?

```
wine %>%
   filter(alcohol > 10 & quality < 6)
## # A tibble: 235 x 12
      `fixed acidity` `volatile acidity` `citric acid` `residual sugar` chlorides
##
                <dbl>
                                   <dbl>
                                                 <dbl>
                                                                  <dbl>
                                                                            <dbl>
                  7.5
                                   0.5
                                                                            0.071
## 1
                                                  0.36
                                                                   6.1
## 2
                  7.5
                                   0.5
                                                  0.36
                                                                   6.1
                                                                            0.071
                  6.7
                                   0.675
                                                                            0.089
##
                                                  0.07
                                                                   2.4
## 4
                 7.3
                                   0.45
                                                  0.36
                                                                   5.9
                                                                            0.074
## 5
                  7.3
                                   0.45
                                                  0.36
                                                                   5.9
                                                                            0.074
## 6
                  8.1
                                   0.66
                                                  0.22
                                                                   2.2
                                                                            0.069
##
                  4.6
                                   0.52
                                                  0.15
                                                                   2.1
                                                                            0.054
## 8
                  7.2
                                   0.725
                                                  0.05
                                                                   4.65
                                                                            0.086
## 9
                  7.2
                                   0.725
                                                  0.05
                                                                            0.086
                                                                   4.65
## 10
                  6.6
                                   0.705
                                                  0.07
                                                                   1.6
                                                                            0.076
## # ... with 225 more rows, and 7 more variables: `free sulfur dioxide` <dbl>,
       `total sulfur dioxide` <dbl>, density <dbl>, pH <dbl>, sulphates <dbl>,
## #
```

Creating new variables

mutate()
 Example: What is the total acidity, defined as fixed acidity + volatile acidity?
 Note the use of when you refer to a variable consisting of two or more words. This is quite confusing for inexperienced users. Therefore it is good practice to use one-word variable names (e.g., fixed_acidity)

mutate

Example: What is the total acidity, defined as fixed acidity + volatile acidity ? Save the new dataset as wine2

```
wine2 <- wine %>%
  mutate(`total acidity` = `fixed acidity` + `volatile acidity`)
 print(wine2[, c('fixed acidity', 'volatile acidity', 'total acidity')])
## # A tibble: 1,599 x 3
##
      `fixed acidity` `volatile acidity` `total acidity`
##
                <dbl>
                                  <dbl>
                                                  <dbl>
                                   0.7
                                                   8.1
## 1
                 7.4
                                                   8.68
## 2
                 7.8
                                   0.88
                                                   8.56
## 3
                 7.8
                                   0.76
## 4
                11.2
                                   0.28
                                                  11.5
                                                   8.1
## 5
                 7.4
                                   0.7
## 6
                 7.4
                                   0.66
                                                   8.06
## 7
                 7.9
                                   0.6
                                                   8.5
## 8
                 7.3
                                   0.65
                                                   7.95
## 9
                 7.8
                                   0.58
                                                   8.38
## 10
                 7.5
                                   0.5
                                                   8
## # ... with 1,589 more rows
```

15/39

mutate

Example: Create a new logical variable low_alcohol which is TRUE if the alcohol percentage <= 10

mutate

8

9

10

10 TRUE

9.5 TRUE

10.5 FALSE

Example: Create a new logical variable low_alcohol which is TRUE if the alcohol percentage <= 10. Save the new dataset as wine2

```
wine2 <- wine %>%
  mutate(low_alcohol = (alcohol <= 10))</pre>
print(wine2[, c("alcohol", 'low_alcohol')])
## # A tibble: 1,599 x 2
      alcohol low_alcohol
        <dbl> <lgl>
##
          9.4 TRUE
          9.8 TRUE
          9.8 TRUE
          9.8 TRUE
          9.4 TRUE
## 5
## 6
          9.4 TRUE
          9.4 TRUE
```

Summarising variables

summarise()

Example: What is the mean fixed acidity?

summarise

Example: What is the mean fixed acidity?

Summarising variables by group

```
group_by()
summarise()
```

Example: What is the median fixed acidity per quality score?

summarise with group_by

Example: What is the median fixed acidity per quality score?

```
wine %>%
   group_by(quality) %>%
     summarise(`median acidity`= median(`fixed acidity`))
## # A tibble: 6 x 2
    quality `median acidity`
##
      <dbl>
                        <dbl>
## 1
                        7.5
## 2
                        7.5
## 3
                        7.8
                        7.9
## 4
           6
## 5
                        8.8
                         8.25
## 6
           8
```

Chaining Commands Together

Works for all dplyr verbs:

```
wine %>%
  mutate(`total acidity` = `fixed acidity` + `volatile acidity`) %>%
  filter(`total acidity` > 8)
## # A tibble: 1,024 x 13
##
      `fixed acidity` `volatile acidity` `citric acid` `residual sugar` chlorides
                <dbl>
                                   <dbl>
                                                 <dbl>
                                                                  <dbl>
                                                                            <dbl>
##
## 1
                 7.4
                                    0.7
                                                                    1.9
                                                                            0.076
                                                  0
## 2
                 7.8
                                    0.88
                                                                    2.6
                                                                            0.098
                                                  0
## 3
                 7.8
                                    0.76
                                                  0.04
                                                                    2.3
                                                                            0.092
## 4
                 11.2
                                    0.28
                                                  0.56
                                                                    1.9
                                                                            0.075
## 5
                 7.4
                                    0.7
                                                                            0.076
                                                  0
                                                                    1.9
## 6
                  7.4
                                    0.66
                                                                            0.075
                                                  0
                                                                    1.8
## 7
                 7.9
                                    0.6
                                                  0.06
                                                                            0.069
                                                                    1.6
## 8
                  7.8
                                    0.58
                                                  0.02
                                                                            0.073
## 9
                  7.8
                                    0.61
                                                  0.29
                                                                    1.6
                                                                            0.114
## 10
                  8.9
                                    0.62
                                                  0.18
                                                                    3.8
                                                                            0.176
## # ... with 1,014 more rows, and 8 more variables: `free sulfur dioxide` <dbl>,
     `total sulfur dioxide` <dbl>, density <dbl>, pH <dbl>, sulphates <dbl>,
```

Chaining Commands Together

Works for all dplyr verbs:

```
wine3 <- wine %>%
            mutate(`total acidity` = `fixed acidity` + `volatile acidity`,
                    alcohol_hi = alcohol > 10)
 print(wine3[, c('fixed acidity', 'volatile acidity', 'alcohol', 'total acidity', 'alcohol_hi')])
## # A tibble: 1,599 x 5
      `fixed acidity` `volatile acidity` alcohol `total acidity` alcohol_hi
##
               <dbl>
                                  <dbl>
                                          <dbl>
##
                                                          <dbl> <lgl>
## 1
                 7.4
                                   0.7
                                            9.4
                                                           8.1 FALSE
## 2
                 7.8
                                   0.88
                                            9.8
                                                           8.68 FALSE
## 3
                 7.8
                                   0.76
                                            9.8
                                                           8.56 FALSE
## 4
                11.2
                                   0.28
                                            9.8
                                                          11.5 FALSE
## 5
                 7.4
                                   0.7
                                            9.4
                                                           8.1 FALSE
## 6
                 7.4
                                   0.66
                                            9.4
                                                           8.06 FALSE
## 7
                 7.9
                                   0.6
                                            9.4
                                                           8.5 FALSE
                                                           7.95 FALSE
## 8
                 7.3
                                   0.65
                                           10
## 9
                 7.8
                                   0.58
                                            9.5
                                                           8.38 FALSE
## 10
                 7.5
                                   0.5
                                           10.5
                                                                TRUE
## # ... with 1,589 more rows
```

Missing Values: NA

• Whenever a value is *missing*, we code it as NA.

```
x <- NA
```

• R propagates NA through operations:

```
NA > 5

## [1] NA

NA + 10

## [1] NA
```

• is.na(x) function returns TRUE if x is an NA.

```
is.na(x)
```

[1] TRUE

Task 1: Data wrangling

10:00

Open the session1_exercises.R script

- 1. Which wines have a quality of 3 or 6?
- 2. Create a new variable called hi_sugar which is TRUE if residual sugar >= 2. Save the new dataset again as 'wine'
- 3. Calculate the mean chlorides and maximum density by hi_sugar group. Use mean() and max()

Summary statistics with stargazer

The <u>stargazer</u> package creates well-formattedy summary statistics and regression tables with very little effort in multiple formats.

Using the output table as text (.txt) gives a quick view of results. Printing the output table as .html, produces tables that can be simply copy-pasted in a Word document.

stargazer works only with data.frames not with tibbles (I know...). So you have to make sure that your data is in data.frame format first

Summary statistics with stargazer

##						
##	=======================================	=====	======	======	=====	====
##	Statistic	N	Mean	St. Dev.	Min	Pct
##						
##	fixed acidity	1,599	8.320	1.741	4.600	7.
##	volatile acidity	1,599	0.528	0.179	0.120	0.
##	citric acid	1,599	0.271	0.195	0	0
##	residual sugar	1,599	2.539	1.410	0.900	1.
##	chlorides	1,599	0.087	0.047	0.012	0.
##	free sulfur dioxide	1,599	15.875	10.460	1	
##	total sulfur dioxide	1,599	46.468	32.895	6	
##	density	1,599	0.997	0.002	0.990	0.
##	рН	1,599	3.311	0.154	2.740	3.
##	sulphates	1,599	0.658	0.170	0.330	0.
##	alcohol	1,599	10.423	1.066	8.400	9.
##	quality	1,599	5.636	0.808	3	
##						

Summary statistics with stargazer

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
fixed acidity	1,599	8.320	1.741	4.600	7.100	9.200	15.900
volatile acidity	1,599	0.528	0.179	0.120	0.390	0.640	1.580
citric acid	1,599	0.271	0.195	0	0.1	0.4	1
residual sugar	1,599	2.539	1.410	0.900	1.900	2.600	15.500
chlorides	1,599	0.087	0.047	0.012	0.070	0.090	0.611
free sulfur dioxide	1,599	15.875	10.460	1	7	21	72
total sulfur dioxide	1,599	46.468	32.895	6	22	62	289
density	1,599	0.997	0.002	0.990	0.996	0.998	1.004
pH	1,599	3.311	0.154	2.740	3.210	3.400	4.010
sulphates	1,599	0.658	0.170	0.330	0.550	0.730	2.000
alcohol	1,599	10.423	1.066	8.400	9.500	11.100	14.900
quality	1,599	5.636	0.808	3	5	6	8

Summary statistics with statistics selected statistics

Descriptive Statistics						
Statistic	Mean	Median	Min	Max		
fixed acidity	8.320	7.900	4.600	15.900		
volatile acidity	0.528	0.520	0.120	1.580		
citric acid	0.271	0.3	0	1		
residual sugar	2.539	2.200	0.900	15.500		
chlorides	0.087	0.079	0.012	0.611		
free sulfur dioxide	15.875	14	1	72		
total sulfur dioxide	46.468	38	6	289		
density	0.997	0.997	0.990	1.004		
pH	3.311	3.310	2.740	4.010		
sulphates	0.658	0.620	0.330	2.000		
alcohol	10.423	10.200	8.400	14.900		
quality	5.636	6	3	8		

Summary statistics with stargazer, by group

Although there are other ways, an easy way to obtain statistics by group is to first create a new subset dataframe with filter()

Descriptive Statistics								
Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max	
fixed acidity	852	8.311	1.918	4.600	6.900	9.500	15.900	
volatile acidity	852	0.496	0.188	0.120	0.360	0.600	1.580	
citric acid	852	0.293	0.202	0.000	0.090	0.460	0.790	
residual sugar	852	2.620	1.338	0.900	2.000	2.700	13.900	
chlorides	852	0.079	0.027	0.012	0.065	0.087	0.343	
free sulfur dioxide	852	15.277	10.298	1	6.8	21	72	
total sulfur dioxide	852	39.165	28.872	6	19	51	289	
density	852	0.996	0.002	0.990	0.995	0.997	1.003	
pH	852	3.334	0.157	2.870	3.230	3.420	4.010	
sulphates	852	0.675	0.139	0.370	0.580	0.760	1.360	
alcohol	852	11.210	0.856	10.033	10.500	11.700	14.900	
quality	852	5.934	0.827	3	5	6	8	

Task 2: Summary Statistics

05:00

Open the session1_exercises.R script

1. Calculate the number of number of observations (N), the mean, and standard deviation for all wines with a pH \leq 3.2

Visualising data with ggplot2

One of the strengths of R is its ability to create elegant graphs of your data with little effort.

We will use ggplot2 one of the core members of the tidyverse. I recommend reading the chapter of Hadley Wickham's book to learn more

The basic syntax of ggplot2 looks like this:

```
ggplot(data = <DATA>)+
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

the geom function is the type of layer you want to add (scatter, line, ...)

the mapping argument defines how variables in your dataset are mapped to visual properties. It is always combined with aes()

Making a scatterplot with ggplot2

Making a scatterplot with ggplot2

Making a scatterplot with ggplot2

Making a barplot with ggplot2

```
ggplot(data=wine)+
  geom_bar(mapping=aes(x = quality))
```


Making a barplot with ggplot2

Making a barplot with ggplot2

Task 3: Visualising Data

05:00

Open the session1_exercises.R script

1. Make a scatter plot with residual sugar on the x-axis and alcohol on the y-axis. Title the graph "Residual sugar by alcohol percentage"