

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2023

PHYSICAL SCIENCES: (CHEMISTRY) P2

MARKS: 150

TIME: 3 hours

This question paper consists of 21 pages, including 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your name and surname in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the correct letter (A–D) next to the question numbers (1.1–1.10) in the ANSWER BOOK, for example 1.11 E.

- 1.1 Which ONE of the following homologous series has members that are SATURATED hydrocarbons?
 - A Alcohols
 - B Alkenes
 - C Alkanes

D Alkynes (2)

- 1.2 When an ALKENE is converted to an ALKANE, the catalyst that is used is ...
 - A Ni or Fe.
 - B Pt or Ni.
 - C H₂SO₄ or Ni.

D H_2SO_4 or Pt. (2)

1.3 The boiling point versus chain length graph below was obtained for straight chain molecules of aldehydes, alkanes, alcohols and carboxylic acids.

The curve for EACH homologous series is labelled as A, B, C or D.

Which ONE of the curves above represents alcohols?

- A Curve A
- B Curve B
- C Curve C

D Curve \mathbf{D} (2)

1.4 Consider the organic reaction below:

Which ONE of the following is CORRECT about reactant **X** and the reaction condition?

	X is	Reaction condition
Α	H ₂ O	Concentrated H ₂ SO ₄ in excess
В	H ₂ O	Small quantity of concentrated H ₂ SO ₄
С	dilute KOH	Mild heat
D	concentrated KOH	Strong heat

(2)

1.5 Consider the reaction between an EXCESS hydrochloric acid (HCl) solution and magnesium powder:

$$Mg(s) + 2 HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$$

Which ONE of the following factors when INCREASED will cause an increase in both the REACTION RATE and the TOTAL VOLUME of H₂ produced?

- A Mass of Mg
- B Volume of HCl
- C Concentration of HCl
- D Temperature of the reaction mixture

(2)

- 1.6 Which ONE of the following will affect BOTH the equilibrium position of a reversible reaction, and its K_c value?
 - A Mass
 - B Pressure
 - C Temperature
 - D Concentration (2)

1.7 The graph below shows how the reaction rate changes with time for the reaction represented by the balanced equation below:

$$2 HI(g) \rightleftharpoons H_2(g) + I_2(g) \Delta H > 0$$

Consider the following changes made to the equilibrium mixture.

- I More HI is added
- II Temperature is increased
- III Pressure is increased by decreasing the volume at constant temperature

Which ONE of the following changes will cause the change at t1?

- A I only
- B II only
- C I and III

1.8 A substance that loses protons in some reactions and gains protons in other reactions is called a/an ...

- A base.
- B acid.
- C ampholyte.
- D acid-base indicator. (2)

1.9 Four titrations are carried out using the pairs of substances shown below.

For which pair of substances when titrated will phenolphthalein be the most suitable indicator?

- A HNO₃ and NaOH
- B CH₃COOH and NaOH
- C Na₂CO₃ and HCl

D
$$H_2SO_4$$
 and NaOH (2)

1.10 The following equilibrium exists in pure water at 25 °C.

$$2 H_2O(\ell) \Rightarrow H_3O^+(aq) + OH^-(aq)$$

How will the addition of NaOH to the pure water affect the concentration of the hydronium ion [H₃O⁺] and pH of water at constant temperature?

	[H ₃ O ⁺]	pH of water
Α	Increases	Decreases
В	Decreases	Increases
С	Increases	Increases
D	Decreases	Decreases

(2)

[20]

QUESTION 2 (Start on a new page.)

Consider the organic compounds **A** to **F** given in the table below.

Α	C ₅ H ₁₂	В	CH ₃ CH ₂ CH ₃
С	Propan-1-ol	D	Methanal
E	CH₃CH(OH)CH₃	F	CH ₃ CH ₂ COOH
G	Propanone	Н	H-C≡C-H

2.1 Write down the LETTER that represents the following compounds:

2.1.1	An alkyne	(1	I)
-------	-----------	----	----

2.1.3 That has the general formula
$$C_nH_{2n+2}$$
 (1)

2.1.4 That has a solution with pH < 7
$$(1)$$

2.2 Compounds **C** and **E** are structural isomers.

2.2.2 What TYPE of structural isomers are compounds **C** and **E**?

2.2.3 Is compound **E** a PRIMARY, SECONDARY or TERTIARY ALCOHOL?

8		PHYSICAL SCIENCES P2 (EC/JU	NE 2023)
2.3	Write o	down the:	
	2.3.1	IUPAC name of compound B	(3)
	2.3.2	CONDENSED STRUCTURAL formula of a FUNCTIONAL isomer of compound \boldsymbol{G}	(2)
2.4	For co	mpound F write down the:	
	2.4.1	Empirical formula	(1)
	2.4.2	Name of its functional group	(1)
2.5	-	bund F reacts with methanol in the presence of concentrated sulphuring produce organic product X .	С
	For co	mpound X write down the:	
	2.5.1	Name of the homologous series to which it belongs	(1)
	2.5.2	IUPAC name and STRUCTURAL formula	(4) [23]

QUESTION 3 (Start on a new page.)

The table below shows a number of organic compounds and their respective melting points.

Study the table below and answer the questions that follow.

	Compound	Melting point (°C)
Α	Propane	-187
В	Butane	-138
С	Pentane	-129
D	2-methyl butane	х
E	Butanal	-96,8
F	Butan-1-ol	-89,8

3.1 Define the term *melting point*.

(2)

3.2 Explain the trend in melting points from compound **A** to **C**.

(3)

3.3 Which compound (**A**, **B** or **C**) will have the highest vapour pressure at a given temperature?

Give a reason for the answer by referring to the data in the table above.

(2)

- 3.4 Consider compounds **C** and **D**. The melting point of compound **D** is indicated by **X**.
 - 3.4.1 Draw the structural formula of compound **D**.

(2)

3.4.2 How does the value of **X** compare to the melting point of compound **C**?

Choose from GREATER THAN -129 °C or LESS THAN -129 °C.

(1)

3.4.3 Is the comparison between compounds C and D a fair comparison?Write only YES or NO.

Give a reason for your answer.

(2)

3.5 Explain the difference in the melting points of compounds **E** and **F** by referring to intermolecular forces present and energy.

(4) [16]

QUESTION 4 (Start on a new page.)

4.1 Consider the flow diagram showing organic reactions given below.

Consider REACTION 1.

Write down:

- 4.1.1 The name of the homologous series to which the compound C_3H_8O belongs (1)
- 4.1.2 ONE reaction condition (1)
- 4.1.3 The formula of the inorganic reactant (1)

Consider **REACTION 2**.

- 4.1.4 Name the type of elimination reaction taking place. (1)
- 4.1.5 Using structural formulae for the organic compounds, write down a balanced equation for the reaction. (6)

Consider **REACTIONS 3** and **4**.

Write down the:

- 4.1.6 Name given to these types of reactions (1)
- 4.1.7 Formula of the inorganic reactant used in **REACTION 4** (1)
- 4.1.8 IUPAC name and structural formula of compound **Q** (4)

4.2 Consider the incomplete equations for reactions I and II.

I	C ₁₅ H ₃₂ → ALKANE P + 2 Q + C _x H ₆
II	CH₃CH₂Br + KOH → Q + KBr + Z

In reaction I, the compound $C_{15}H_{32}$ undergoes cracking. Q is an organic compound while compound Z is an inorganic compound.

The compounds \mathbf{Q} and C_xH_6 have the same FUNCTIONAL GROUP.

- 4.2.1 Define *cracking*. (2)
- 4.2.2 Write down a balanced equation for the complete combustion of ALKANE P. (Show ALL workings.) (6)[24]

QUESTION 5 (Start on a new page.)

A group of learners use the reaction between sodium thiosulphate ($Na_2S_2O_3$) and EXCESS hydrochloric acid (HC ℓ) to investigate one of the factors that affect reaction rate. The balanced equation for the reaction is:

$$Na_2S_2O_3$$
 (aq) + 2 HC ℓ (aq) \longrightarrow 2 NaC ℓ (aq) + S (s) + H₂O (ℓ) + SO₂ (g)

The learners carry out five experiments under the same conditions changing only the factor that is investigated in EACH experiment using the experimental set-up shown below.

They recorded the time taken for the cross to become invisible, when viewed from the top.

The learners' results are shown in the graph below.

5.7 The graph below represents Maxwell-Boltzmann distribution curve for SO₂(g) at 30 °C.

Q is a label on the vertical axis.

Redraw the graph in the ANSWER BOOK. Clearly label the curve as A.

5.7.2 On the same set of axes, sketch the curve that will be obtained for $SO_2(g)$ at 40 °C.

QUESTION 6 (Start on a new page.)

The following reaction reaches equilibrium at a temperature of 200 °C.

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g) \quad \Delta H > 0$$

6.1 State Le Chatelier's principle.

(2)

Two conditions must be met for a chemical reaction to establish equilibrium. One of the conditions is represented by the double arrow "⇌".

State the other condition.

(1)

- 6.3 The reaction is initiated by heating 83,4 grams $PC\ell_5(g)$ in a sealed 2 dm³ container. At equilibrium it is found that the initial concentration of $PC\ell_5$ has changed by **x** mol·dm⁻³.
 - 6.3.1 Show that the equilibrium constant is, $K_c = \mathbf{x}^2 / 0.2 \mathbf{x}$.

(6)

6.3.2 The concentration of PCl₅ at equilibrium is found to be 0.001 mol·dm⁻³.

Show by calculation that the value of K_c is equal to 39,601 at 200 °C. (2)

6.3.3 Is there a LOW or HIGH YIELD at 200 °C?

Give a reason for your answer.

(2)

6.4 What effect will the addition of a suitable catalyst have on the following:

Choose from DECREASES, INCREASES or NO EFFECT.

6.4.1 Percentage decomposition of PCl₅ (g)?

(1)

6.4.2 Time taken to reach equilibrium?

(1)

Copyright reserved

6.5 The graph below shows changes of concentration of reagents PCl₅ and Cl₂ against time.

6.5.1 What does the horizontal section of the graph between $\mathbf{0}$ — \mathbf{t}_1 represent? (1)

At time t₂ the temperature of the equilibrium mixture is changed.

6.5.2 Was the container COOLED or HEATED at time t₂? (1)

6.5.3 Use Le Chatelier's principle to fully explain the answer to QUESTION 6.5.2.

(3) **[20]**

QUESTION 7 (Start on a new page.)

7.1 An investigation is carried out to compare the strengths of TWO acids CH₃COOH(aq) and H₂CO₃(aq).

To determine the strength of EACH acid electrical conductivity of the acid is measured at 25 °C using the experimental set-up shown below.

The concentration of the acids is the same.

- 7.1.1 Define an acid according to the *Arrhenius theory*. (2)
- 7.1.2 State ONE property of the carbon electrodes that make them suitable for this investigation. (1)

The ammeter readings taken for each acid are given in the table below.

FORMULA OF ACID	AMMETER READING (mA)
CH₃COOH	500
H ₂ CO ₃	133

7.1.3 Which ACID (CH₃COOH or H₂CO₃) is stronger?

H₂CO₃ undergoes ionisation in a TWO step process as shown below:

I
$$H_2CO_3 + H_2O \rightleftharpoons HCO_3 + H_3O^+$$
II $HCO_3 + H_2O \rightleftharpoons X + H_3O^+$

Write down the formula of the substance(s) that:

- 7.2 Ammonium chloride (NH₄Cl) undergoes hydrolysis.
 - 7.2.1 Define hydrolysis.

(2)

7.2.2 Is a solution of ammonium chloride ACIDIC, ALKALINE or NEUTRAL?

Explain the answer with the aid of a balanced equation.

(4)

- 7.3 A school laboratory has a hydrochloric acid (HCℓ) solution of concentration 1 mol·dm⁻³.
 - 7.3.1 Calculate the pH of the HCℓ solution.

(3)

250 cm³ of the HCl solution is used to dissolve an eggshell.

7.3.2 Calculate the number of moles of HCl in 250 cm³ of solution

(3)

The eggshell contains 99.3% calcium carbonate (CaCO₃) by mass. The calcium carbonate (CaCO₃) in the eggshell reacts with EXCESS HC ℓ according to the balanced equation below:

$$CaCO_3(s) + 2 HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

The unreacted HCl is neutralised by 103 cm³ of a solution of sodium hydroxide (NaOH) of concentration 0,5 mol·dm⁻³ according to the balanced equation:

NaOH (aq) + HC
$$\ell$$
 (aq) \longrightarrow NaC ℓ (aq) + H₂O (ℓ)

7.3.3 Calculate the mass of the eggshell.

(8) **[29]**

TOTAL: 150

Copyright reserved

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE		
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,013 x 10⁵ Pa		
Molar gas volume at STP Molêre gasvolume teen STD	Vm	22,4 dm ³ ·mol ⁻¹		
Standard temperature Standaardtemperatuur	Τ ^θ	273 K		
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C		
Avogadro's constant Avogadro se konstante	NA	6,02 x 10 ²³ mol ⁻¹		

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$ or/of	$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	pH= -log[H ₃ O ⁺]
$n = \frac{N}{N_A} \text{or/of}$	$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$K_{w =} [H_3O^+][OH^-] = 1x10^{-14}$ at/by 298 K
$n = \frac{1}{V_o}$		

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

1 (I)		2 (II)	3	3	4	5	(7	8 Atoon	9 ngetal	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2, H				KEY/ SLEUTEL Atomic number 29									()	()	()	()		2 He 4		
o, Li 7	1,5	4 Be 9					Elektror Electro		_	္ရ	Su	Simb			2.0 B 11	6 C 12	7 ος Ν 14	8 9 9 16	4.0 4.0 8 19	10 Ne 20
ენ Na 23	1,2	12 Mg 24								derde re	1	1	1	T	13 - Al 27	ω 14 Σ Si 28	15 N P 31	16 8 S 32	17 ວ Cl 35,5	18 Ar 40
80 K 39	1,0	20 Ca 40	1,3	45	دن ۲ T 48	9. 5	1,6	52	25 Mn 55	26 Fe 56	∞ Co 59	` 59	ი Cu 63,5	9 Zn 65	9 Ga 70	∞ Ge 73	33 0 As 75	7. Se 79	85 87 80 80	36 Kr 84
86	1,0	38 Sr 88	1,2	39 Y 89	4. Z	· N	p 2, 1	96	6: Tc	744 77 Ru 101	45 Rh 103	106	108	48 Cd 112	49 In 115	<u>∞</u> Sn 119	51 ල Sb 122	52 7 Te 128	53 5; I 127	54 Xe 131
55 Cs 133	6'0	56 Ba 137		57 La 139	72 9 H 17	f T	a	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	% Tℓ 204	∞ Pb 207	83 6. Bi 209	0. Po	85 At	86 Rn
87 2, Fr	6,0	88 Ra 226		89 Ac		58 Ce	5 P		60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
						90 Th	9 P	1	144 92 U 238	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

TABEL 4A: STANDAARD REDUKSIEPOTENSIALE								
Half-reaction	s/Ha	Ifreaksies	Ε ^θ (V)					
F ₂ (g) + 2e ⁻	#	2F-	+ 2,87					
Co ³⁺ + e ⁻	\Rightarrow	Co ²⁺	+ 1,81					
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H ₂ O	+1,77					
MnO ₄ + 8H ⁺ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51					
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36					
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	$2Cr^{3+} + 7H_2O$	+ 1,33					
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23					
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23					
Pt ²⁺ + 2e ⁻	\Rightarrow	Pt	+ 1,20					
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07					
NO ₃ + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	+ 0,96					
Hg ²⁺ + 2e ⁻	=	$Hg(\ell)$	+ 0,85					
Ag+ + e-	=	Ag	+ 0,80					
NO ₃ + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68					
I ₂ + 2e ⁻	=	2l ⁻	+ 0,54					
Cu+ + e-	=	Cu	+ 0,52					
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45					
2H ₂ O + O ₂ + 4e ⁻	=	40H-	+ 0,40					
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
SO ₄ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	=	Cu+	+ 0,16					
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15					
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14					
2H+ + 2e-	=	H₂(g)	0,00					
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27					
Co ²⁺ + 2e ⁻	=	Co	- 0,28					
Cd ²⁺ + 2e ⁻	. ⇒	Cd	- 0,40					
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,40 - 0,41					
Fe ²⁺ + 2e ⁻	=	Fe	- 0,41 - 0,44					
Cr ³⁺ + 3e ⁻	=	Cr	- 0, 44 - 0, 7 4					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,74 - 0,76					
2H ₂ O + 2e ⁻	=	H₂(g) + 2OH⁻	- 0,76 - 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,83 - 0,91					
Mn ²⁺ + 2e ⁻	=	Mn						
$A\ell^{3+} + 3e^{-}$	=	Αℓ	- 1,18 - 1,66					
Mg ²⁺ + 2e ⁻	=	Mg	- 1,66					
Na+ + e-	=	Na Na	- 2,36 - 2,71					
Na ⁻ + e Ca ²⁺ + 2e ⁻								
	=	Ca Sr	- 2,87 2,80					
Sr ²⁺ + 2e ⁻	≠	Sr	- 2,89 2,00					
Ba ²⁺ + 2e ⁻	=	Ba	- 2,90 2,03					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
K+ + e⁻	=	K	- 2,93					
Li+ + e-	=	Li	- 3,05					

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

TABEL 4B: STANDAARD REDUKSIEPOTENSIALE			
Half-reactions	з/На	Ifreaksies	Ε ^θ (V)
Li+ + e⁻	=	Li	- 3,05
K+ + e⁻	=	K	- 2,93
Cs ⁺ + e ⁻	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Na ⁺ + e ⁻	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
$A\ell^{3+} + 3e^-$	=	Αℓ	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	– 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e⁻	=	$H_2(g) + 2OH^-$	- 0,83
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H+ + 2e-	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14
Sn ⁴⁺ + 2e⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	=	4OH⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
Cu⁺ + e⁻	=	Cu	+ 0,52
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO ₃ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag+ + e-	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
NO 3 + 4H+ + 3e-	=	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^-$	=	2Br	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23
Cr ₂ O ₇ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cl ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36
MnO ₄ + 8H ⁺ + 5e ⁻	=	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë