Chosen Plaintext Attack and Pseudorandom Function

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2018

Outline

1 Chosen-Plaintext Attacks (CPA)

2 Pseudorandom Functions

Content

1 Chosen-Plaintext Attacks (CPA)

2 Pseudorandom Functions

Electronic Code Book (ECB) Mode

• Q: is it indistinguishable in the presence of an eavesdropper?

Attack on ECB mode

Original image

Encrypted using ECB mode

Modes other than ECB result in pseudo-randomness

Chosen-Plaintext Attacks (CPA)

CPA: the adversary has the ability to obtain the encryption of plaintexts of its choice

A story in WWII

- Navy cryptanalysts believe the ciphertext "AF" means "Midway island" in Japanese messages
- But the general did not believe that Midway island would be attacked
- Navy cryptanalysts sent a plaintext that the freshwater supplies at Midway island were low
- Japanese intercepted the plaintext and sent a ciphertext that "AF" was low in water
- The US forces dispatched three aircraft carriers and won

Security Against CPA

The CPA indistinguishability experiment $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n)$:

- 2 \mathcal{A} is given input 1^n and **oracle access** $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ to $\mathsf{Enc}_k(\cdot)$, outputs m_0, m_1 of the same length
- 3 $b \leftarrow \{0,1\}$. Then $c \leftarrow \operatorname{Enc}_k(m_b)$ is given to \mathcal{A}
- **4** \mathcal{A} continues to have oracle access to $\operatorname{Enc}_k(\cdot)$, outputs b'
- If b' = b, \mathcal{A} succeeded $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}} = 1$, otherwise 0

CPA Security

Definition 1

 Π has indistinguishable encryptions under a CPA (CPA-secure) if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Q: Is any cipher we have learned so far CPA-secure? Why?

Content

1 Chosen-Plaintext Attacks (CPA)

2 Pseudorandom Functions

Concepts on Pseudorandom Functions

- Keyed function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ $F_k: \{0,1\}^* \to \{0,1\}^*, F_k(x) \stackrel{\text{def}}{=} F(k,x)$
- Look-up table $f: \{0,1\}^n \to \{0,1\}^n$ with size = ? bits
- Function family Func_n: all functions $\{0,1\}^n \to \{0,1\}^n$. $|\mathsf{Func}_n| = 2^{n \cdot 2^n}$
- Length Preserving: $\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n)$

Definition of Pseudorandom Function

Intuition: A PRF F generates a function F_k that is indistinguishable from truly random selected function f (look-up table) in Func_n.

However, the function has **exponential length**. Give D the deterministic **oracle access** $D^{\mathcal{O}}$ to the functions \mathcal{O} .

Definition 2

An efficient length-preserving, keyed function F is a **pseudorandom function (PRF)** if \forall PPT distinguishers D,

$$\left|\Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1]\right| \le \mathsf{negl}(n),$$

where f is chosen u.a.r from Func_n.

Q: Is the fixed-length OTP a PRF?

Questions

Let $F:\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF. Is G a secure PRF?

- $G((k_1, k_2), x) = F(k_1, x) || F(k_2, x)$
- $\blacksquare \ G(k,x) = F(k,x) \bigoplus F(k,x \oplus 1^n)$

Content

1 Chosen-Plaintext Attacks (CPA)

2 Pseudorandom Functions

CPA-Security from Pseudorandom Function

Construction 3

- \blacksquare Fresh random string r.
- $F_k(r)$: |k| = |m| = |r| = n.
- Gen: $k \in \{0,1\}^n$.
- Enc: $s := F_k(r) \oplus m$, $c := \langle r, s \rangle$.
- Dec: $m := F_k(r) \oplus s$.

Theorem 4

If F is a PRF, this fixed-length encryption scheme Π is CPA-secure.

Proof of CPA-Security from PRF

Idea: First, analyze the security in an idealized world where f is used in $\tilde{\Pi}$; next, claim that if Π is insecure when F_k was used then this would imply F_k is not PRF by reduction.

Proof.

- (1) Analyze $\Pr[\mathsf{Break}]$, Break means $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1$: \mathcal{A} collects $\{\langle r_i, f(r_i) \rangle\}$, $i = 1, \ldots, q(n)$ with q(n) queries; The challenge $c = \langle r_c, f(r_c) \oplus m_b \rangle$.
 - Repeat: $r_c \in \{r_i\}$ with probability $\frac{q(n)}{2^n}$. \mathcal{A} can know m_b .
 - Repeat: As OTP, $Pr[Break] = \frac{1}{2}$

$$\begin{split} \Pr[\mathsf{Break}] &= \Pr[\mathsf{Break} \land \mathsf{Repeat}] + \Pr[\mathsf{Break} \land \overline{\mathsf{Repeat}}] \\ &\leq \Pr[\mathsf{Repeat}] + \Pr[\mathsf{Break} | \overline{\mathsf{Repeat}}] \\ &\leq \frac{q(n)}{2^n} + \frac{1}{2}. \end{split}$$

Proof of CPA-Security from PRF (Cont.)

Proof.

(2) Reduce D to A:

$$\begin{split} &\Pr[D^{F_k(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)=1] = \frac{1}{2} + \varepsilon(n). \\ &\Pr[D^{f(\cdot)}(1^n)=1] = \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n)=1] = \Pr[\mathsf{Break}] \leq \frac{1}{2} + \frac{q(n)}{2^n}. \\ &\Pr[D^{F_k(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1] \geq \varepsilon(n) - \frac{q(n)}{2^n}. \ \varepsilon(n) \ \text{is negligible}. \end{split}$$

Cipher Block Chaining (CBC) Mode

Output Feedback (OFB) Mode

Counter (CTR) Mode

lacksquare ctr is an IV

IV Should Not Be Predictable

If IV is predictable, then CBC/OFB/CTR mode is not CPA-secure. Q: Why? (homework)

Bug in SSL/TLS 1.0

IV for record #i is last CT block of record #(i-1).

API in OpenSSL

```
void AES_cbc_encrypt (
const unsigned char *in,
unsigned char *out,
size_t length,
const AES_KEY *key,
unsigned char *ivec, User supplies IV
AES_ENCRYPT or AES_DECRYPT);
```