

UNIVERSIDADE ESTADUAL DE SANTA CRUZ (UESC)

Criada pela Lei 6.344, de 05.12.1991, e reorganizada pela Lei 6.898, de 18.08.1995 e pela Lei 7.176, de 10.09.1997

CET091 – Banco de Dados II

Prof. Dr. Marcelo Ossamu Honda

Departamento de Ciências Exatas e Tecnológicas (DCET) mohonda(at)nbcgib(.)uesc(.)br

Otimização da Consulta

Introdução

- Otimização de Consulta:
 - Processo para determinar o melhor plano de avaliação de consulta dentre as estratégias possíveis, para o processamento de determinada consulta;
 - <u>Não é função do usuário</u> escrever consultas que possam ser processadas de forma eficiente;
 - O sistema construa um plano de avaliação de consulta que reduza o custo da avaliação da consulta;
 - Plano de Avaliação:
 - Define que algoritmo é usado para cada operação;
 - Como a execução das operações são coordenadas;
 - Aspectos da otimização:
 - Álgebra relacional:
 - Determinar a expressão mais eficiente;
 - Seleção da estratégia:
 - Determinar o algoritmo a ser usado;
 - Custo:
 - Diferença substancial (estratégia boa X estratégia ruim);

Introdução

- Etapas da geração de planos de avaliação de consulta:
 - 1 Gerar expressões que sejam logicamente equivalentes a expressão de entrada;
 - Regras de equivalência;
 - 2 Gerar planos de avaliação de consulta alternativos;
 - 3 Estimar custo de cada plano de avaliação;
- Para determinar o plano de custo:
 - Informações estatísticas das relações;
 - Número de tuplas, valores distinto de atributos;
 - Valores estatísticos para determinar resultados intermediários;
 - Custo de expressões complexas;
 - Custo dos algoritmos (valor estatístico);

Introdução

• Exemplo:

Prof. Dr. Marcelo Ossamu Honda

Transformação de Expressões Relacionais

Transformação de Expressões Relacionais

- Consulta pode ser expressa:
 - Maneiras diferentes;
 - Diferentes custo de avaliação;
- Expressões de álgebra relacional equivalentes:
 - As expressões resultam o mesmo conjunto de tuplas;
 - A ordem das tuplas é irrelevante;
- Regras de Equivalência
 - Uma regra de equivalência diz que a expressão de duas formas são equivalentes;
 - O otimizador usa as regras de equivalência para transformar expressões em outras expressões logicamente equivalentes;

Regra 1:

- Operações de seleção conjuntiva podem ser decompostas em um sequência de seleções individuais;
 - Cascata de σ;
 - $-\sigma_{\theta_1} \wedge_{\theta_2} (E) = \sigma_{\theta_1} (\sigma_{\theta_2} (E))$
- Regra 2:
 - Operação de seleção são acumulativas;
 - $-\sigma_{\theta 2}(\sigma_{\theta 1}(E)) = \sigma_{\theta 1}(\sigma_{\theta 2}(E))$

Regra 3:

- Somente as operações finais em uma sequência de operações de projeção são necessárias;
 - As outras podem ser omitidas;
 - $\pi_{L1} (\pi_{L2} (... \pi_{Ln}(E))) = \pi_{L1}(E)$
- Regra 4:
 - Seleções podem ser combinadas com produtos Cartesianos e junções Theta;
 - a) σ_{θ} ($E_1 \times E_2$) = $E_1 \rightarrow \Phi_{\theta} E_2$
 - b) $\sigma_{\theta 1}$ ($E_1 \rightarrow \Phi_{\theta} E_2$) = $E_1 \rightarrow \Phi_{\theta 1^{\circ} \theta 2} E_2$

- Regra 5:
 - Operação de junção theta são acumulativas;
 - As outras podem ser omitidas;

$$- E_1 \blacktriangleright \blacktriangleleft_{\theta} E_2 = E_2 \blacktriangleright \blacktriangleleft_{\theta} E_1$$

- A equivalência não se mantem;
 - Necessário uma operação de projeção para reordenar os atributos corretamente;

- Regra 6:
 - a) Operação de junção natural são associativas;

$$- (E_1 \blacktriangleright \blacktriangleleft E_2) \blacktriangleright \blacktriangleleft E_3 = E_1 \blacktriangleright \blacktriangleleft (E_2 \blacktriangleright \blacktriangleleft E_3)$$

- b) As operações theta são associativas da seguinte maneira;
 - $(E_1 \blacktriangleright \blacktriangleleft_{\theta 1} E_2) \blacktriangleright \blacktriangleleft_{\theta 2 \land \theta 3} E_3 = E_1 \blacktriangleright \blacktriangleleft_{\theta 1 \land \theta 3} (E_2 \blacktriangleright \blacktriangleleft_{\theta 2} E_3)$

• Regra 7:

- A operação de seleção se distribui pela operação de junção sobre theta sob as duas condições:
 - a) Ela se distribui quando todos os atributos na condição de seleção θ2 envolvem apenas os atributos de uma das expressões;
 - $\sigma_{\theta\theta}$ (E1► \bullet_{θ} E2)= ($\sigma_{\theta\theta}$ (E1)) \bullet_{θ} E2

Prof.

2/41

Exemplos de Transformações

• $\pi_{\text{nome_cliente}}(\sigma_{\text{cidade_agencia="Cidade Nova"^saldo>1000}}(ag\hat{e}ncia \sim (conta \sim depositante)))$

Exemplos de Transformações

- Consulta original:
 - π_{nome_cliente}(σ_{cidade_agencia="Cidade Nova"^saldo>1000}(agência▶ ◄(conta▶ ◄depositante)))
- Regra 6a: Associatividade de junção natural;
 - π_{nome_cliente}(σ_{cidade_agencia="Cidade Nova"^saldo>1000}((agência► ∢conta)► ∢depositante))
- Regra 7a: reescrever a consulta
 - π_{nome_cliente}((σ_{cidade_agencia="Cidade Nova"^saldo>1000}(agência▶ ∢conta))▶ ∢depositante)
- Regra 1: dividir a seleção em duas seleções;
 - π_{nome cliente}((σ_{cidade agencia="Cidade Nova"}(σ_{saldo>1000}(agência► ¬conta))) ► ¬depositante)
- Regra 7a: Realizar mais cedo;
 - π_{nome_cliente}((σ_{cidade_agencia="Cidade Nova"}(agência) ► ¬σ_{saldo>1000}(conta)) ► ¬depositante)

Exemplos de Transformações

π_{nome_cliente}((σ_{cidade_agencia="Cidade Nova"}(agência) ► ¬σ_{saldo>1000}(conta)) ► ¬depositante)

Prof. Dr. Marcelo Ossamu Hor

(b) Tree after multiple transformations

15/41

Ordenação de Junção

- É importante para reduzir o tamanho dos resultados temporários;
- A operação de junção natural é associativa;
 - $(r1 \rightarrow r2) \rightarrow r3 = r1 \rightarrow (r2 \rightarrow r3)$
 - Embora as expressões sejam equivalentes, os custos podem diferir;

Ordenação de Junção

Exemplo:

- π_{nome_cliente}((σ_{cidade_agencia="Cidade Nova"}(agência)) ► ¬conta ¬depositante)
- Teste 1:
 - Temp1 = conta► depositante
 - Provavelmente será uma relação grande;
 - Resultado = σ_{cidade agencia="Cidade Nova"} (agência) ► < Temp1
- Teste 2:
 - Temp2 = σ_{cidade_agencia="Cidade Nova"}(agência)► <conta
 - Provavelmente uma relação pequena;
 - Resultado = Temp2► depositante
- Teste 3:
 - − π_{nome_cliente}(((σ_{cidade_agencia="Cidade Nova"}(agência)) ► ¬depositante) ► ¬conta)
 - Não existe relacionamento entre agencia e depositante,

Estimando Estatísticas de Resultados de Expressões

Estimando Estatísticas de Resultados de Expressões

- O custo de uma operação depende do tamanho e de outras estatísticas de suas entradas;
- Estimativas não são muito precisas;
 - Baseadas em suposições;
 - Um plano de avaliação de consulta que possui o menor custo de execução estimado, pode não ter realmente o menor custo de execução;
 - Mesmo com estimativas inexatas, os planos com os menores custos estimados normalmente têm custos de execução reais que são menores ou perto disso;

Informações do Catálogo

Relações:

- Número de tuplas;
- Número de blocos contendo tuplas da relação r;
- Tamanho de uma tupla de relação r em bytes;
- Número de tuplas da relação r que cabem em um bloco (fator de blocagem);
- Número de valores distintos que aparecem na relação r para um determinado atributo;
 - Histograma;

Índices:

- Altura dos índices de árvore B+;
- Número de páginas de folha nos índices;

Defasado:

- Evitar sobrecarga no sistema;
- Atualização é feita em momentos específicos;

Estimativa de Tamanho

- Tamanho da seleção;
- Tamanho da junção;
- Operações de conjunto;
- Valores distintos

Escolhas de Planos de Avaliação

Escolhas de Planos de Avaliação

 Defini exatamente que algoritmo deverá ser usado para cada operação e como a execução das operações devem ser coordenadas;

Interação de Técnicas de Avaliação

- Plano de avaliação para uma expressão de consulta individual;
 - Determinar o algoritmo com menor custo;
- Escolha do melhor algoritmo geral;
 - Considera também algoritmos não ideais para operações individuais;
 - Analisa o resultado de uma operação em relação a entrada da próxima operação;
 - Saídas otimizadas para os próximos passos;

Otimização Baseada em Custo

- Gera uma série de planos de avaliação de consulta a partir de determinada consulta, usando regras de equivalência;
 - Escolhe a com o menor custo;
- Programação dinâmica;
 - Armazena os resultados de cálculos e os reutilizam;
 - Pode reduzir o tempo de processamento;
- Ordem de classificação interessante;
 - Quando uma classificação pode ser útil para a operação posterior;

Otimização Baseada em Custo

- Desvantagens:
 - Custo da própria otimização;
 - Grande número de planos de avaliação;
 - Alto custo computacional;

Heurística na Otimização

- Otimizadores utilizam heurística para reduzir o custo da otimização;
 - Realize operações de seleção o mais cedo possível;
 - Reduzir o número de tuplas das relações;
 - Realize projeções mais cedo;
 - Utilizam índices para acessar as tuplas;
 - Otimizador System R;
 - Considera apenas as ordens de junção em que o operando da direita de cada junção é uma das relações iniciais;
 - Ordens de junção esquerda profundas;

Heurística na Otimização

Ordens de junção esquerda profundas;

Heurística na Otimização

- Otimizam a consulta uma vez;
 - Valores fornecidos para as constantes;
 - Mantém o plano de consulta em cache;
 - Atualizam os valores e reutilizam o plano de consulta;
- Mesmo com o uso de heurísticas, a otimização de consulta baseada em custo impõe uma sobrecarga ao processamento da consulta;

Otimizando Subconsultas Aninhadas

- Conceitualmente (SQL) trata das subconsultas aninhadas na cláusula where como funções que apanham parâmetros e retornam (único ou conjunto) valores;
- Os parâmetros são as variáveis da consulta de nível externo que são usadas na subconsulta aninhada;
 - Chamadas variáveis de correlação;

```
SELECT NOME_CLIENTE

FROM CREDOR

WHERE EXISTS (

SELECT *

FROM DEPOSITANTE

WHERE DEPOSITANTE.NOME_CLIENTE = CREDOR.NOME_CLIENTE)
```

Otimizando Subconsultas Aninhadas

- Avaliação correlacionada;
 - É essa técnica para avaliar uma consulta com uma subconsulta aninhada;
 - Subconsulta é avaliada separadamente para cada tupla na consulta de nível externo;
 - Não é muito eficiente;
 - Pode resultar em um número muito grande de I/O;
- Alternativa;
 - Transformar subconsulta aninhadas em junções;

SELECT NOME_CLIENTE

FROM CREDOR, DEPOSITANTE

WHERE DEPOSITANTE.NOME_CLIENTE = CREDOR.NOME_CLIENTE

Otimizando Subconsultas Aninhadas

- Descorrelação;
 - Processo de substituição de uma consulta aninhada por uma consulta com uma junção;
 - Possivelmente terá uma relação temporária;
 - Complexidade depende do operador;
- É melhor evitar o uso de subconsultas aninhadas complexas;
 - Otimizador pode não usar a técnica de descorrelação;
 - Não ser eficiente;

Views Materializadas

Views Materializadas

- Podem melhorar o desempenho do processamento da consulta;
- Views materializadas precisam ser atualizadas quando os dados usados na definição da view mudarem;
 - Triggers;
 - Manutenção incremental;
 - Modificar apenas as partes afetadas da view materializadas quando as relações básicas forem modificadas;
 - Manutenção imediata da view;
 - Manutenção de view adiada;

Views Materializadas

- Otimizar consultas usando views materializadas disponíveis;
- Selecionar views para serem materializadas;
 - Melhoram o desempenho de consultas mas podem retardar atualizações;
- Uso de ferramentas para administrar índices e views;

Ajuste de Desempenho

Ajuste de Desempenho

- Ajustar vários parâmetros e opções de projeto a fim de melhorar seu desempenho para uma aplicação específica;
 - Aspectos de alto nível;
 - Projeto de esquema e transações;
 - Parâmetros do banco de dados;
 - Aspectos de hardware;
 - Discos;
 - Memória;

Localização dos Gargalos

- Gargalos;
 - Componente, ou conjunto de componentes, limitador;
- Para ajustar um sistema;
 - Descobrir quais são os gargalos;
 - Eliminar os gargalos;
 - Melhorar o desempenho dos componentes;
 - Verificar se algum outro componente se tornou gargalo;
 - Sistema balanceado, nenhum componente isolado é o gargalo;

Localização dos Gargalos

- Características dos sistemas de banco de dados;
 - Sistemas de enfileiramento;
 - Tarefa subdividida em diversos serviços;
 - Maior parte do tempo aguardando em filas;
 - Gargalos;
 - Longas filas;
 - Alta utilização de um serviço em particular;

Parâmetros Ajustáveis

- Três níveis;
 - Hardware;
 - Disco, RAID, Memória, buffer de discos;
 - Sistema de banco de dados;
 - Tamanho do buffer, commits, tablespaces;
 - Ajuste do projeto;
 - Esquemas, índices, transações;
- Os três níveis devem ser considerados para ajustar o sistema;
 - Níveis interagem entre si;

Referências

- Ramez Elmasri e Shamkant B, Navathe, Sistemas de Banco de Dados, Pearson Addison Wesley, 2005;
- Abraham Silverschatz, Henry F. Korth e S. Sudarshan,
 Sistema de Banco de Dados, Editora Campus, 2006;
- PostgreSQL 8.3.6 Documentation, by The PostgreSQL Global Development Group, Copyright © 1996-2008 The PostgreSQL Global Development Group;