

Winstar Display Co., LTD 華凌光電股份有限公司

住址: **407** 台中市中清路 **163** 號 No.163 Chung Ching RD., Taichune, Taiwan, R.O.C

CUSTOMER

ISSUED DATE:

WEB: http://www.winstar.com.tw
E-mail: winstar@winstar.com.tw
Tel:886-4-24262208 Fax: 886-4-24262207

SPECIFICATION

MODULE	NO.:	W	G240128	В-Т	FH-VZ
APPROVI					
SALES BY	APPROVE	D BY	CHECKED I	BY	PREPARED BY

Contents

- 1.Module Classification Information
- 2. Precautions in use of LCD Modules
- 3. General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7. Power Supply for LCD Module and Contrast Adjust
- 8. Counter Drawing & Block Diagram
- 9.Interface Pin Function
- 10.Display control instruction
- 11. Timing Characteristics
- 12.Quality Assurance
- 13.Reliability
- 14.Backlight Information

1. Module Classification Information

① Brand: WINSTAR DISPLAY CORPORATION

② Display Type: H→Character Type, G→Graphic Type

③ Display Font: 240 * 128

Model serials no.

⑤ Backlight Type: N→Without backlight

 $B\rightarrow EL$, Blue green $A\rightarrow LED$, Amber

 $D \rightarrow EL$, Green $R \rightarrow LED$, Red

 $W\rightarrow EL$, White $O\rightarrow LED$, Orange

 $F \rightarrow CCFL$, White $G \rightarrow LED$, Green

 $Y \rightarrow LED$, Yellow Green $T \rightarrow LED$, White

© LCD Mode : $B \rightarrow TN$ Positive, Gray $T \rightarrow FSTN$ Negative

N→TN Negative,

G→STN Positive, Gray

Y→STN Positive, Yellow Green

M→STN Negative, Blue

F→FSTN Positive

② LCD Polarize Type/ A→Reflective, N.T, 6:00 H→Transflective, W.T,6:00

Temperature range/ D→Reflective, N.T, 12:00 K→Transflective, W.T,12:00 View direction

G→Reflective, W. T, 6:00 C→Transmissive, N.T,6:00

J→Reflective, W. T, 12:00 F→Transmissive, N.T,12:00

B→Transflective, N.T,6:00 I→Transmissive, W. T, 6:00

E→Transflective, N.T.12:00 L→Transmissive, W.T,12:00

Special Code
V : Build in Negative Voltage

2. Precautions in use of LCD Modules

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3) Don't disassemble the LCM.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.

3. General Specification

ITEM	STANDARD VALUE	UNIT	
Number of Dots:	240 ×128		
Module dimension:	144.0×104.0×14.3(MAX)mm	mm	
View area:	114.0×64.0mm mi		
Active area:	107.98×57.58mm	mm	
Character size:	(L)0.43×(W)0.43 mm		
Character pitch:	(L)0.45×(W)0.45mm mm		
LCD type:	FSTN, Positive, transflective	;	
Duty:	1/128		
View direction:	6 o'clock		
Backlight:	LED ,White		

4. Absolute Maximum Ratings

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Operating Temperature	T_{OP}	-20	_	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature	T_{ST}	-30	_	+80	$^{\circ}\!\mathbb{C}$
Input Voltage	V _I	V_{SS}	_	V_{DD}	V
Supply Voltage For Logic	V _{DD} -V _{SS}	-0.3	_	+7	V
Supply Voltage For LCD	V_{DD} - V_0	0	_	21	V
LED forward current	ILED	_	_	300	mA

5. Electrical Characteristics

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage For Logic	V_{DD} - V_{SS}	_	4.75	_	5.25	V
		Ta=-20°C	_	_	20.0	V
Supply Voltage For LCD	V_{DD} - V_{0}	Ta=25°C	_	18.0	_	V
		Ta=+70°C	16.0	_	_	V
Input High Vol	V _{IH}	_	2.2	_	V_{DD}	V
Input Low Vol	V_{IL}	_	0	_	0.8	V
Output High Vol	V _{OH}	_	2.4	_	V_{DD}	V
Output Low Vol.	V _{OL}	_	0	_	0.4	V
Supply Current	I_{DD}	V _{DD} =5V	_	45	_	mA

6. Optical Characteristics

ITEM	SYMBAL	CONDITION	MIN.	TYP.	MAX.	UNIT
	(V) θ	CR≧2	30		60	deg
View Angle	(H) φ	CR≧2	-45		45	deg
Contrast Ratio	CR	_		5		_
	T rise	_		200	300	ms
Response Time	T fall	_		150	250	ms

6.1 Definitions

■ View Angles

Z (Visual angle direction) X -

■ Contrast Ratio

■Response Time

7. Power Supply for LCD Module and Contrast Adjust

VDD-V0:LCD Operating Voltage

8. Counter Drawing & Block Diagram

9. Interface Pin Function

Pin No.	Symbol	Level	Description
1	Vss		GND
2	Vdd		Power supply (+5 V)
3	Vo		Power supply for LCD driver
4	C/D	H/L	WR=L, C/D=H: Command Write
			RD=L , C/D=H : Status Read
5	RD	L	Data read. Read data from T6963C when RD = L
6	WR	L	Data write. Write data into T6963C when WR = L
7	DB0	H/L	Data bus line
8	DB1	H/L	Data bus line
9	DB2	H/L	Data bus line
10	DB3	H/L	Data bus line
11	DB4	H/L	Data bus line
12	DB5	H/L	Data bus line
13	DB6	H/L	Data bus line
14	DB7	H/L	Data bus line
15	CE	L	L : Chip enable
16	RESET	H/L	H: Normal; L: Initialize T6963C
17	Vee		Negative Voltage output(-16 V)
18	MD2	H/L	H: 32 columns ; L: 40 columns
19	FS	H/L	Pins for selection of font; H: 6 * 8, L: 8 * 8
20	N.C		No connection

10. Display control instruction

The LCD Module has built in a T6963C LSI controller, It has an 8-bit parallel data bus and control lines for writing or reading through an MPU interface, it has a 128-word character generator ROM (refer to Table 1.), which can control an external display RAM of up to 8K bytes. Allocation of text, graphics and external character generator RAM can be made easily and the display window can be moved freely within the allocated memory range.

•RAM Interface

The external RAM is used to store display data(text, graphic and external CG data). It can be freely allocated to the memory area(8 Kbyte max).

Recommend

· Flowchart of communications with MPU

(1)Status Read

A status check must be performed before data is read or written.

Status check

The Status of T6963C can be read from the data lines.

RD	L
$\overline{\mathrm{WR}}$	Н
CE	L
C/D	Н
Do to D7	Н

The T6963C status word format is as follows:

MSB

STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	D0

STA0	Check command execution capability	0:Disable
51710	Check command execution capability	1:Enable
STA1	Check data read/write Capability	0:Disable
SIAI	Check data read/write Capability	1:Enable
STA2	Check Auto mode data read capability	0:Disable
SIAZ	Check Auto mode data read capability	1:Enable
STA3	Check Auto mode data write capability	0:Disable
SIAS	Check Auto mode data write capability	1:Enable
STA4	Not used	
STA5	Check controller operation capability	0:Disable
SIAS	Check controller operation capability	1:Enable
STA6	Error flag. Used for Screen Peek and Screen copy	0:No error
SIAO	commands.	1:Error
CTA7	Charle the blink condition	0:Disable off
STA7	Check the blink condition	1:Normal display

(Note 1) It is necessary to check STA0 and STA1 at the same time.

There is a possibility of erroneous operation due to a hardware interrupt.

(Note 2) For most modes STA0/STA1 are used as a status check.

(Note 3) STA2 and STA3 are valid in Auto mode; STA0 and STA1 are invalid.

Status Checking flow

(Note 4) When using the MSB=0 command, a Status Read must be performed.

If a status check is not carried out, the T6963C cannot operate normally, even after a delay time. The hardware interrupt occurs during the address calculation period (at the end of each line). If a MSB=0 command is sent to the T6963C during this period, the T6963C enters Wait status. If a status check is not carried out in this state before the next command is sent, there is the possibility that the command or data date will not be received.

(2)Setting date

When using the T6963C, first set the data, then set the command.

Procedure for sending a command

(Note) When sending more than two data, the last datum (or last two data)is valid.

· COMMAND DEFINITIONS

COMMAND	CODE	D1	D2	FUNCTION
	00100001	X address	Y address	Set Cursor Pointer
REGISTERS SETTING	00100010	Date	00H	Set Offset Register
	00100100	Low address	High address	Set Address Pointer
	01000000	Low address	High address	Set Text Home Address
GET CONTROL WORD	01000001	Columns	00H	Set Text Area
SET CONTROL WORD	01000010	Low address	High address	Set Graphic Home Address
	01000011	Columns	00H	Set Graphic Area
	1000×000	_	_	OR mode
	1000×001	_	_	EXOR mode
MODE CER	1000×011	_	_	AND mode
MODE SET	1000×100	_	_	Text Attribute mode
	10000×××	_	_	Internal CG ROM mode
	$10001 \times \times \times$	_	_	External CG RAM mode
	10010000	_	_	Display off
	1001××10	_	_	Cursor on, blink off
	$10001 \times \times 11$	_	_	Cursor on, blink on
DISPLAY MODE	100101××	_	_	Text on, graphic off
	100110××	_	_	Text off, graphic on
	100111××	_	_	Text on, graphic on
	10100000			1-line cursor
	10100001	_	_	2-line cursor
	10100010	_	_	3-line cursor
CURSOR PATTERN	10100011	_	_	4-line cursor
SELECT	10100100	_	_	5-line cursor
	10100101	_	_	6-line cursor
	10100110	_	_	7-line cursor
	10100111	_	_	8-line cursor
	10110000	_	_	Set Data Auto Write
DATA AUTO	10110001	_	_	Set Data Auto Read
READ/WRITE	10110010	_	_	Auto Reset
	11000000	Data	_	Data Write and Increment ADP
	11000001	_	_	Data Read and Increment ADP
	11000010	Data	_	Data Write and Decrement ADP
DATA READ/WRITE	11000011	_	_	Data Read and Decrement ADP
	11000100	Data	_	Data Write and Non-variable ADP
	11000101	_	_	Data Read and Non-variable ADP
SCREEN PEEK	11100000	_	_	Screen Peek
SCREEN COPY	11101000			Screen Copy
SCILLET COL 1	11110×××	_	_	Bit Reset
	11111111111111111111111111111111111111	_	_	Bit Set
	11111×000	_	_	Bit 0 (LSB)
	11111×000	_	_	Bit 1
	11111×001 11111×010	_	_	Bit 2
BIT SET/RESET	11111×010	_	_	Bit 3
	11111×011 11111×100	_	_	Bit 4
	11111×100 111111×101	_	_	Bit 5
	11111×101 11111×110	_	_	Bit 6
	11111×110 111111×111	_	_	
	11111 ^ 111			Bit 7 (MSB)

· Setting registers

CODE	HEX.	FUNCTION	D1	D2
00100001	21H	SET CURSOR POINTER	X ADRS	Y ADRS
00100010	23H	SET OFFSET REGISTER	DATA	00H
00100100	24H	SET ADDRESS POINTER	LOW ADRS	HIGH ADRS

(1)Set Cursor Pointer

The position of the cursor is specified by X ADRS and Y ADRS. The cursor position can only be moved by this command. Data read/write from the MPU never changes the cursor pointer. X ADRS and Y ADRS are specified as follows.

X ADRS 00H to 4FH (lower 7 bits are valid)

Y ADRS 00H to 1FH (lower 5 bits are valid)

Single-Scan

X ADRS 00 to 4FH

Y ADRS 00H to 0FH

(2)Set Offset Register

The offset register is used to determine the external character generator RAM area.

The T6963C has a 16-bit address bus as follows.

T6963C assign External character generator, when character code set 80H TO FFH in using internal character generator. Character code 00H to 80H assign External character generator, when External generator mode. The senior five bits define the start address in external memory of the CG RAM area. The next eight bits represent the character code of the character. In internal CG ROM, character codes 00H to 7FH represent the predefined "internal" CG ROM characters, and codes 80H to FFH represent the user's own "external" characters. In external CG ROM mode, all 256 codes from 00H to FFH can be used to represent the user's own characters. The three least significant bits indicate one of the eight rows of eight dots that define the

character's shape.

The relationship between display RAM address and offset register

Offset register data	CG RAM hex. address (start to end)
00000	0000 to 07 FFH
00001	0800 to 0FFFH
00010	1000 to 17FFH
11100	E000 to E7FFH
11101	E800 to EFFFH
11110	F000 to F7FFH
11111	F800 to FFFFH
(Example 1)	
Offset register	02H
Character code	80H
Character generator RAM start address	0001 0100 0000 0000

(address) (data) 00H 1400H 1FH 1401H 04H 1402H 04H 1403II 04H 1404H 04H 1405H 04H 1406H 00H1407H

1

4

0

0

Η

(Example 2) The relationship between display RAM data and display characters

	(RAM DATA)	(Character)
AD ~ DE % CHIIVI M	21H	A
AB γ DE ζ GHIJKLM	22Н	В
	83Н	γ
	24Н	D
	25H	E
D' 1 1	86H	ζ
Display character		

 γ and ζ are displayed by character generator RAM.

(3)Set Address Pointer

The Set Address Pointer command is used to indicate the start address for writing to (or reading from) external RAM.

The Flowchart for Set Address Pointer command

· Set Control Word

CODE	HEX.	FUNCTION	D1	D2
01000000	40H	Set Text Home Address	Low address	High address
01000001	41H	Set Text Area	Columns	00H
01000010	42H	Set Graphic Home Address	Low address	High address
01000011	43H	Set Graphic Area	Columns	00H

The home address and column size are defined by this command.

(1)Set Text Home Address

The starting address in the external display RAM for text display is defined by this command.

The text home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

ТН	TH+CL
TH+TA	TH+TA+CL
(TH+TA)+TA	TH+2TA+CL
(TH+2TA)+TA	TH+3TA+CL
TH+(n-1)TA	TH+(n-1)TA+CL

TH: Text home address

TA: Text area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

Text home address : 0000H
Text area : 0020H

: 32 Columns

: 4 Lines

0000Н	0001H	001EH	001FH
0020H	0021H	003EH	002FH
0040H	0041H	005EH	005FH
0060H	0061H	007EH	007FH

(2)Set Graphic Home Address

The starting address of the external display RAM used for graphic display is defined by this command. The graphic home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

GH	GH+GL
GH+GA	GH+GA+CL
(GH+GA)+GA	GH+2GA+CL
(GH+2GA)+GA	GH+3GA+CL
GH+(n-1)GA	GH+(n-1)GA+CL

GH: Graphic home address

GA: Graphic area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

Graphic home address : 0000H

Graphic area : 0020H

: 32 Columns

: 2 Lines

0000Н	0001H	001EH	001FH
0020Н	0021H	003EH	003FH
0040H	0041H	005EH	005FH
0060Н	0061H	007EH	007FH
0080Н	0081H	009EH	009FH
00A0H	00A1H	00BEH	00BFH
00С0Н	00C1H	00DEH	00DFH
00E0H	00E1H	00FEH	00FFH
0100H	0101H	011EH	011FH
0120H	0121H	013EH	013FH
0140H	0141H	015EH	014FH
0160H	0161H	017EH	017FH
0180H	0181H	109EH	019FH
01A0H	01A1H	01BEH	01BFH
01C0H	01C1H	01DEH	01DFH
01E0H	01E1H	01FEH	01FFH

(3)Set Text Area

The display columns are defined by the hardware Setting. This command can be used to adjust the columns of the display.

(Example)

LCD size 20 columns, 4lines

Text home address 0000H

Text area 0014H

Set 32 columns, 4 Lines

0000	0001		0013	0014		001F
0014	0015	•••••	0027	0028	•••••	0033
0028	0029		003B	003C		0047
003C	003D		004F	0050		005B

(4)Set Graphic Area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the graphic display.

(Example)

LCD size 20 columns, 2lines

Graphic home address : 0000H

Graphic are : 0014H

Set 32 columns, 2 Lines

0000	0001		0013	0014	•••••	001F
0014	0015		0027	0028		0033
0028	0029	•••••	003B	003C		0047
003C	003D	•••••	004F	0050		005B
0050	0051		0063	0064		006F
0064	0065		0077	0078		0083
0078	0079	•••••	008B	008C	•••••	0097
008C	008D		009F	00A0		00AB
00A0	00A1		00B3	00B4		00BF
00B4	00B5		00C7	00C8		00D3
00C8	00C9		00DB	00DC		00E7
00DC	00DD		00EF	00F0		00FD
00F0	00F1		0103	0104	•••••	011F
0104	0105		0127	0128		0123
0128	0129		013B	0013C		00147
013C	013D		014F	0150		015B

→ LCD ←

If the graphic area setting is set to match the desired number of columns on the LCD, the addressing scheme will be automatically modified so that the start address of each line equals the end address of the previous line +1.

· Mode set

CODE	FUNCTION	OPERAND
1000×000	OR Mode	_
1000×001	EXOR Mode	_
1000×011	AND Mode	_
1000×100	TEXT ATTRIBUTE Mode	_
$10000 \times \times \times$	Internal Character Generator Mode	_
$10001 \times \times \times$	External Character Generator Mode	_

X: invalid

The display mode is defined by this command. The display mode does not change until the next command is sent. The logical OR, EXOR, AND of text or graphic display can be displayed. In Internal Character Generator mode, character codes 00H to 7FH are assigned to the built-in character generator ROM. The character codes 80H to FFH are automatically assigned to the external character generator RAM.

(Example)

(Note)Attribute functions can only be applied to text display, since the attribute data is placed in the graphic RAM area.

Attribute function

The attribute operations are Reverse display, Character blink and Inhibit. The attribute data is written into the graphic area which was defined by the Set Control Word command. Only text display is possible in Attribute Function mode; graphic display is automatically disabled. However, the Display Mode command must be used to turn both Text and Graphic on in order for the Attribute function to be available.

The attribute data for each character in the text area is written to the same address in the graphic area. The Attribute function is defined as follows.

\times \times \times	×	d3	d2	d1	d0	
----------------------------	---	----	----	----	----	--

d3	d2	d1	d0	FUNCTION
0	0	0	0	Normal display
0	1	0	1 Reverse display	
0	0	1	1 Inhibit display	
1	0	0	0 Blink of normal displa	
1	1	0	1 Blink of reverse displ	
1	0	1	1 Blink of inhibit display	

X: invalid

· Display mode

CODE	FUNCTION	OPERAND
10010000	Display off	_
$1001 \times \times 10$	Cursor on, blink off	_
1001××11	Cursor on, blink on	_
100101××	Text on, graphic off	_
100110××	Text off, graphic on	_
100111××	Text on, graphic on	_

X: invalid

(Note)It is necessary to turn on "Text display" and "Graphic display" in the following cases.

a)Combination of text/graphic display

b)Attribute function

· Cursor pattern select

CODE	FUNCTION	OPERAND
10100000	1-line cursor	
10100001	2-line cursor	
10100010	3-line cursor	_
10100011	4-line cursor	_

10100100	5-line cursor	_
10100101	6-line cursor	_
10100110	7-line cursor	_
10100111	8-line cursor	_

When cursor display is ON, this command selects the cursor pattern in the range 1 line to 8 lines.

The cursor address is defined by the Cursor Pointer Set command.

8-line cursor

· Data Auto Read/Write

CODE	HEX.	FUNCTION	OPERAND
10110000	ВОН	Set Data Auto Write	_
1011001	B1H	Set Data Auto Read	_
10110010	В2Н	Auto Reset	_

The command is convenient for sending a full screen of data from the external display RAM. After setting Auto mode, a Data Write (or Read) command is need not be sent between each datum. A Data Auto Write (or Read) command must be sent after a Set Address Pointer command. After this command, the address pointer is automatically incremented by 1 after each datum. In Auto mode, the T6963C cannot accept any other commands. The Auto Reset command must be sent to the T69963C after all data has been sent, to clear Auto mode. (Note)A Status check for Auto mode

(STA2, STA3 should be checked between sending of each datum. Auto Reset should be performed after checking STA3=1 (STA2=1.) Refer to the following flowchart.

· Date Read/Write

CODE	HEX.	FUNCTION	OPERAND
11000000	СОН	Data Write and Increment ADP	Data
11000001	C1H	Data Read and Increment ADP	_
11000010	С2Н	Data Write and Decrement ADP	Data
11000011	СЗН	Data Read and Decrement ADP	_
11000100	С4Н	Data Write and Non-variable ADP	Data
11000101	С5Н	Data Read and Non-variable ADP	_

This command is used for writing data from the MPU to external display RAM, and reading data from external display RAM to the MPU. Data Write/Data Read should be executed after setting address using Set Address Pointer command. The address pointer can be automatically incremented or decremented using this command. (Note)This command is necessary for each 1-byte datum.

Refer to the following flowchart.

· Screen Peek

CODE	HEX.	FUNCTION	OPERAND
11100000	ЕОН	Screen Peek	-е

This command is used to transfer 1 byte of displayed data to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by this command.

The status (STA6) should be checked just after the Screen Peek command. If the address determined by the Set Address Pointer command is not in the graphic area, this commands is ignored and a status flag (STA6) is set. Refer to the following flowchart.

· Screen Copy

CODE	HEX.	FUNCTION	OPERAND
11101000	Е8Н	Screen Copy	

This command copies a single raster line of data to the graphic area.

The start point must be set using the Set Address Pointer command.

(Note 1) If the attribute function is being used, this command is not available.

(With Attribute data is graphic area data.)

Refer to the following flowchart.

· Bit Set/Reset

CODE	FUNCTION	OPERAND
11110×××	Bit Reset	_
$111111 \times \times \times$	Bit Set	
1111×000	Bit 0 (LSB)	
1111×001	Bit 1	
1111×010	Bit 2	_
1111×011	Bit 3	
1111×100	Bit 4	
1111×101	Bit 5	_
1111×110	Bit 6	_
1111×111	Bit 7 (MSB)	_

X: invalid

This command use to set or reset a bit of the byte specified by the address pointer.

Only one bit can be set/reset at a time.

Refer to the following flowchart.

第 30 頁, 共 35 頁

CHARACTER CODE MAP

11	I	I						
Upper 4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LННН
LLLL					=:	!		
LLLH	-	1.			-:::	-:::	1	
LLHL	11			:	l:	[-"		
LLHH	-1-1-	:	!		:	::::-	-:::1	::::
LHLL		:::[.		****		[-:::	:::::
LHLH				II		11	-:::	:::::
LHHL		i:::::		I.,.I		11	-:::1	
LHHH	:=				-:::	1,:,1	=====	·
HLLL	i			:-:	···	[:-:]		•!
HLLH				•	1	*::::		
HLHL		**	!	:::::				
нгнн		::	! -::	1	1-::	-:	11.	
HHLL	:=	·:.	I	٠٠	11.		11.	
ннгн					111		1	
нннг	**				·			
нннн					::::			.::-

11. Timing Characteristics

Bus Timing

(Vss = 0 V, VDD = 5 V)

Item	Symbol	Min	Тур	Max	Unit
C/D Set-up Time	tcds	100	_	_	ns
C/D Hold Time	tcdh	10	_	_	ns
CE,RD,WR Pulse Width	tcds,trd,twr	80	_	_	ns
Data Set-up Time	tds	80	_	_	ns
Data Hold Time	tdh	40	_	_	ns
Access Time	tacc	_	_	150	ns
Output Hold Time	toh	10	_	50	ns

12. Quality Assurance Screen Cosmetic Criteria

No.	Defect	Judgement Criterion	Partition
		A)Clear	
		Size: d mm Acceptable Qty in active area	
		d ≦0.1 Disregard	
		0.1 <d≦0.2 6<="" td=""><td></td></d≦0.2>	
		0.2 <d≤0.3 2<="" td=""><td></td></d≤0.3>	
		0.3 <d 0<="" td=""><td></td></d>	
1	Spots	Note: Including pin holes and defective dots which must be within one pixel size.	Minor
		B)Unclear	
		Size: d mm Acceptable Qty in active area	
		d ≦0.2 Disregard	
		$0.2 < d \le 0.5$	
		$0.5 < d \le 0.7$ 2	
		0.7 <d 0<="" td=""><td></td></d>	
		Size: d mm Acceptable Qty in active area	
		d≦0.3 Disregard	
2	Bubbles in Polarizer	0.3 <d≤1.0 3<="" td=""><td>Minor</td></d≤1.0>	Minor
		1.0 <d≤1.5< td=""><td></td></d≤1.5<>	
		1.5 <d 0<="" td=""><td></td></d>	
3	Scratch	In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.	Minor
4	Allowable Density	Above defects should be separated more than 30mm each other.	Minor
5	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels. Back-light type should be judged with back-light on state only.	Minor

13. RELIABILITY

Content of Reliability Test

		Env	ironmental Test	
No.	Test Item	Content of Test	Test Condition	Applicable
				Standard
1	High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C	
	Low Temperature		200hrs -30°C	
2	storage	Endurance test applying the high storage temperature for a long time.	200hrs	
3	High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 200hrs	
4	Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	
5	High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	80°C,90%RH 96hrs	
6	High Temperature/ Humidity Operation			
7	Temperature Cycle	Endurance test applying the low and high temperature cycle. -30°C 25°C 80°C -30min 5min 30min 1 cycle	-30°C/80°C 10 cycles	
	ı	Me	echanical Test	
8	Vibration test	Endurance test applying the vibration during transportation and using.	10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hrs	
9	Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction	
10	Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115mbar 40hrs	
	<u> </u>	Г	Others	T
11	Static electricity test	Endurance test applying the electric stress to the terminal.	VS= 800 V,RS= 1.5 k Ω CS= 100 pF 1 time	

^{***}Supply voltage for logic system=5V. Supply voltage for LCD system = Operating voltage at 25°C

14. Backlight Information

14.1 Specification

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Supply Current	ILED		120	150	mA	V=3.5V
Supply Voltage	V	_	3.5	3.6	V	
Reverse Voltage	VR	_	_	8	V	
Luminous Intensity	IV	_	24	_	CD/M^2	ILED=120mA
Wave Length	λp				nm	ILED=120mA
Life Time		_	50K	_	Hr.	V≦3.5V
Color	White					