Search Algorithms

Sequential Search (Linear Search)
Binary Search

SEQUENTIAL SEARCH

 A sequential search of a list/array begins at the beginning of the list/array and continues until the item is found or the entire list/array has been searched

SEQUENTIAL SEARCH FUNCTION

```
boolean function LinSearch(int[] x, int item){
    int n=x.length;
    for(int i=0;i<n;i++)
    {
        if(x[i]==item) return true;
    }
    return false;
}</pre>
```

SEARCH ALGORITHMS

Linear Search Tradeoffs

- ◆ Benefits
 - Easy algorithm to understand
 - Array can be in any order
- ◆ Disadvantage
 - Inefficient (slow): for array of N elements, examines N/2 elements on average for value in array, N elements for value not in array

 A binary search looks for an item in a list using a divide-and-conquer strategy

- Binary search algorithm assumes that the items in the array being searched are sorted
- The algorithm begins at the middle of the array in a binary search
- If the item for which we are searching is less than the item in the middle, we know that the item won't be in the second half of the array
- Once again we examine the "middle" element
- The process continues with each comparison cutting in half the portion of the array where the item might be

Search list, list[0]...list[11]

BINARY SEARCH: MIDDLE ELEMENT

BINARY SEARCH: EXAMPLE

Values of first, last, and middle and the Number of Comparisons for Search Item 89

Iteration	first	last	mid	list[mid]
1	0	11	5	39
2	6	11	8	66
3	9	11	10	89

[0]	ant	
[1]	cat	
[2]	chicken	
[3]	cow	
[4]	deer	
[5]	dog	
[6]	fish	
[7]	goat	
[8]	horse	
[9]	camel	
[10]	snake	
[10]	snake	

Searching for cat						
BinarySearch(0, 10)	middle: 5	cat < dog				
BinarySearch(0, 4)	middle: 2	cat < chicken				
BinarySearch(0,1)	middle: O	cat > ant				
BinarySearch(1, 1)	middle: 1	cat = cat Return: true				

Searching for zebra					
BinarySearch(0, 10)	middle: 5	zebra > dog			
BinarySearch(6, 10)	middle: 8	zebra > horse			
BinarySearch(9, 10)	middle: 9	zebra > camel			
BinarySearch(10, 10)	middle: 10	zebra > snake			
BinarySearch(11, 10)		last > first Return: false			

Searching for fish						
BinarySearch(0, 10)	middle: 5	fish > dog				
BinarySearch(6, 10)	middle: 8	fish < horse				
BinarySearch(6, 7)	middle: 6	fish = fish	Return: true			

Binary Search Tradeoffs

Benefit

- Much more efficient than linear search (For array of N elements, performs at most log₂N comparisons)
- Disadvantage
 - Requires that array elements be sorted

EXERCISE-ASSIGNMENT

- Design and code a program to illustrate the process of binary search by reading in the file "ispell.words" and then searching for a word (provided by the user) in the file.
- Make sure your program indicates whether the item to be found is in the array to be searched and if so where it was found and how many iterations it took.
- Post your source and program on your Unit 3 Web Page