Yakeen NEET 2.0 2026

Physics by Saleem Sir

Vectors

DPP: 2

- **Q1** If $ec{A}=4\hat{i}\,+2\hat{j}-3\hat{k}$ and $ec{B}=\hat{i}\,+3\hat{j}+2\hat{k}$ then find $ec{A} \cdot ec{B}$
 - (A) 10

(B)4

(C) 3

- (D) 14
- **Q2** If a particle moves from point P(2,3,5) to point Q(3,4,5). Its displacement vector be
 - (A) $\hat{i}+\hat{j}+10\hat{k}$
 - (B) $\hat{i} + \hat{j} + 5\hat{k}$
 - (C) $\hat{i} + \hat{j}$
 - (D) $2\hat{i}+4\hat{j}+6\hat{k}$
- **Q3** In vector diagram shown in figure where (\vec{R}) is the resultant of vectors (\vec{A}) and (\vec{B}) .

If $R=\frac{B}{\sqrt{2}}$, then value of angle θ is:

- (A) 30°
- (B) 45°
- (C) 60°
- (D) 75°
- **Q4** The resultant of two forces 2P and $\sqrt{2}P$ is $\sqrt{10}P$. The angle between the forces is (A) 30°
 - (B) 60°
 - (C) 45°
 - (D) 90° .

If $\left|\overrightarrow{A}\right|=4$ units and $\left|\overrightarrow{B}\right|=3$ units then find $|\overrightarrow{A}-\overrightarrow{B}|=?$

- (A) $\sqrt{15}$
- (B) $\sqrt{18}$
- (C) $\sqrt{13}$
- (D) $\sqrt{37}$
- **Q6** A vector $\vec{A} = 6\hat{i} + 8\hat{j}$ is inclined at angle θ with the x -axis. The angle θ is:
 - (A) 45°
- (B) 60°
- (C) 30°
- (D) 53°
- **Q7** The vector $ec{A}=6\hat{i}-8\hat{j}+10\hat{k}$ makes an angle θ with the positive x -axis. What is the value of $\cos\theta$?
 - (A) $\frac{6}{\sqrt{6^2+8^2+10^2}}$ (B) $\frac{6}{14}$ (C) $\frac{6}{12}$ (D) $\frac{10}{\sqrt{6^2+8^2+10^2}}$
- Q8 An aeroplane is heading north east at a speed of $141.4~\mathrm{ms^{-1}}$. The northward component of its velocity is
 - (A) 141.4 ms^{-1}
 - (B) 100 ms^{-1}

- (C) Zero
- (D) $50 \ ms^{-1}$
- **Q9** The angle made by the vector $ec{A} = \sqrt{3}\,\hat{i}\,+\hat{j}$ with y-axis
 - (A) 60°
 - (B) 30°
 - (C) 45°
 - (D) 160°
- Q10 If the horizontal component of velocity vector \overrightarrow{v} making an angle 60° with the horizontal direction is 5 m/s, then the value of \overrightarrow{v} is:
 - (A) $5\sqrt{3}~\mathrm{ms^{-1}}$
 - (B) $10 \ ms^{-1}$
 - (C) $\frac{10}{\sqrt{3}} \; \mathrm{ms}^{-1}$
 - (D) $5~\mathrm{ms}^{-1}$

Answer Key

Q1	(B)	Q6	(D)
Q2	(C)	Q6 Q7	
Q3	(B)	Q8 Q9	(B)
Q4	(C)	Q9	(A)
Q5	(C)	Q10	(B)

Android App | iOS App | PW Website

