Математический анализ Лекция 4

Никитин А.А.

МГУ им. М.В. Ломоносова, факультет ВМК Кафедра общей математики

Онлайн-курс по математике в Data Science 7 ноября, 2020г.

Дифференциальное исчисление

Наводящие соображения

В основе дифференциального исчисления и его практических приложений лежит идея приближённого представления функции $f(x+\Delta x)$ (от приращения Δx) линейной функцией $y=A\Delta x+B$ или, более общо, многочленом от Δx . Для широкого класса функций оказывается возможным разумно определить такие приближения, и на этой основе получить различные важные результаты.

Пусть $f:(a,b)\mapsto \mathbb{R},\ x\in (a,b)$ — произвольная фиксированная точка, а Δx — произвольное число (приращение аргумента) такое, что $x+\Delta x\in (a,b)$.

Дифференцируемость функции

Определение дифференцируемости в точке

 $\overline{\text{ОПРЕДЕЛЕНИЕ}}$: Функция f называется дифференцируемой в точке x, если существует такое $A\in\mathbb{R}$, что приращение функции f в точке x можно представить в виде:

$$\Delta f = f(x + \Delta x) - f(x) = A\Delta x + \overline{o}(\Delta x), \text{ при } \Delta x \to 0.$$
 (*)

$$(*)\Leftrightarrow \Delta f=f(x+\Delta x)-f(x)=A\Delta x+lpha(\Delta x)\cdot\Delta x,$$
 при $lpha(\Delta x) o 0.$

$$\Delta f = f(x + \Delta x) - f(x) = \Delta_x f(\Delta x).$$

ОПРЕДЕЛЕНИЕ: Дифференциалом функции f в точке x называется входящая в равенство (*) линейная однородная функция $A \cdot \Delta x$ от переменного приращения Δx . Обозначение: $d_x f(\Delta x)$.

Дифференцируемость функции

Однозначность дифференциала

ЗАМЕЧАНИЕ: Дифференциал функции в точке определён однозначно, ибо из (*) следует:

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \frac{\overline{o}(\Delta x)}{\Delta x} \right) = A,$$

и однозначность дифференциала следует из единственности предела.

Понятие производной

ОПРЕДЕЛЕНИЕ: Величина $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

называется производной функции f в точке x. Выражение для производной можно переписать в эквивалентной форме:

$$\frac{f(x+\Delta x)-f(x)}{\Delta x}=f'(x)+\alpha(\Delta x),\ \alpha(\Delta x)\to 0.$$

Дифференцируемость функции

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) + \alpha(\Delta x), \ \alpha(\Delta x) \to 0 \Leftrightarrow f(x + \Delta x) - f(x) = f'(x)\Delta x + \overline{o}(\Delta x), \ \Delta x \to 0.$$

Таким образом, дифференцируемость функции равносильна наличию у неё производной в соответствующей точке, а дифференциал записывается в виде:

$$d_X f(\Delta x) = f'(x) \Delta x.$$

Главная линейная часть приращения ФУНКЦИИ

B силу того, что при $f'(x) = A \neq 0$, получаем:

$$\lim_{\Delta x \to 0} \frac{\overline{o}(\Delta x)}{d_x f(\Delta x)} = \frac{\overline{o}(\Delta x)}{f'(x) \cdot \Delta x} = 0,$$

то слагаемое $f'(x)\Delta x$ является главной частью, а $\overline{o}(\Delta x)$ — бесконечно малая по сравнению с ним. На этом основании дифференциал $d_x f(\Delta x)$ определяют как главную часть приращения функции f в точке x, линейную относительно Δx .

Пусть $f(x) \equiv x$. Тогда

$$f'(x) = \lim_{\Delta x \to 0} \frac{x + \Delta x - x}{\Delta x} = 1 \Rightarrow d_x f(\Delta x) = (dx(\Delta x)) = 1 \cdot \Delta x = \Delta x.$$

Откуда,

$$d_x f(\Delta x) = f'(x) dx (\Delta x)$$
 или $f'(x) = \frac{df}{dx}$

Односторонние производные

Определение

ОПРЕДЕЛЕНИЕ: Правой (левой) производной функции f в данной точке x называется правый (левый) предел при $\Delta x \to 0$ разностного отношения $\frac{\Delta_x f(\Delta x)}{\Delta x}$ (при условии, что данный предел существует).

Обозначение: $f'_{+}(x) (f'_{-}(x))$.

Утверждения

- 1) Если функция f имеет в точке x производную f'(x), то $\exists f'_+(x)$ и $f'_-(x)$, причём: $f'(x) = f'_+(x) = f'_-(x)$.
- **2)** Если функция f имеет в точке x односторонние производные $f'_+(x)$ и $f'_-(x)$, равные друг другу, то $\exists f'(x)$ и $f'(x) = f'_+(x) = f'_-(x)$. Если же $f'_+(x) \neq f'_-(x)$, то $\nexists f'(x)$.

Соотношение непрерывности и дифференцируемости

Необходимое условие дифференцируемости

 $\underline{\mathrm{TEOPEMA}}$: Если функция f дифференцируема в точке x, то она и непрерывна в этой точке.

Доказательство.

Если f – дифференцируема в точке x, то

$$f(x+\Delta x)-f(x)=f'(x)\Delta x+\overline{o}(\Delta x) o 0$$
, при $\Delta x o 0$.

(разностная форма непрерывности)

Откуда,

$$\lim_{\Delta x \to 0} f(x + \Delta x) = f(x) \implies f \in C(x).$$

Π РИМЕР 1

Примеры:

$$f(x) = |x|$$
. Тогда

$$f'(0) = \lim_{\Delta x \to 0 \pm 0} \frac{|\Delta x| - 0}{\Delta x} = \pm 1.$$

Следовательно, $\nexists f'(0)$ (из критерия существования предела)

Π РИМЕР 2

Примеры:

$$f(x) = x \cdot \sin \frac{1}{x}$$
. Тогда

$$f'(0) = \lim_{\Delta x \to 0 \pm 0} \frac{\Delta x \cdot \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0 \pm 0} \sin \frac{1}{\Delta x}$$

Следовательно, $\nexists f'(0)$.

ПРИМЕР 3

ПРИМЕРЫ:

Пример всюду непрерывной, но нигде не дифференцируемой функции

WIENER PROCESS

Примеры:

Пример всюду непрерывной, но нигде не дифференцируемой функции

Геометрический смысл производной

Пусть

$$f:(a,b)\mapsto \mathbb{R},\; x_0\in (a,b)\; \text{if}\;\; y_0=f(x_0).$$

Пусть также $f \in C(x_0)$ и $M_0 = (x_0; y_0)$. Возьмём на графике функции f точку $M_1 = (x_1; y_1)$, $(a, b) \ni x_1 \neq x_0$, $y_1 = f(x_1)$. Проведём прямую $M_0 M_1$, которую будем называть секущей.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Уравнение прямой M_0M_1 : $y=y_0+k_{\mathsf{cek}}(x-x_0)$, где $k_{\mathsf{cek}}=\mathsf{tg}\,\alpha_{\mathsf{cek}}$ – угловой коэффициент (tg угла наклона) секущей: $k_{\mathsf{cek}}=\frac{y_1-y_0}{x_1-x_0}$.

При приближении точки M_1 к M_0 секущая поворачивается вокруг точки M_0 . Рассмотрим предельное положение секущей при $M_1 \to M_0$ (или, что тоже самое, при $x_1 \to x_0$).

<u>Определение</u>: Если существует конечный предел $k_{\rm kac} = \lim_{x_1 \to x_0} k_{\rm cek}$, то прямую, проходящую через точку M_0 и имеющую угловой коэффициент $k_{\rm kac}$, называют касательной к графику функции f в точке M_0 .

Вертикальная касательная

Если функция f непрерывна в точке x_0 и предельное значение коэффициента $k_{\text{кас}}=\pm\infty$, то касательной к графику функции f в точке M_0 называют вертикальную прямую $x=x_0$.

Уравнение касательной

По определению существование не вертикальной касательной к графику функции f в точке M_0 (т.е. существование конечного предела $k_{\rm kac}$) равносильно дифференцируемости (существованию производной) f в точке x_0 . При этом,

$$k_{\text{Kac}} = \operatorname{tg} \alpha_{\text{Kac}} = \lim_{x_1 \to x_0} \frac{y_1 - y_0}{x_1 - x_0} = f'(x_0)$$

Поэтому, уравнение не вертикальной касательной к графику функции f в точке M_0 имеет вид:

$$y_{\text{Kac}} = f(x_0) + f'(x_0)(x - x_0).$$

Геометрический смысл производной

$$k_{\text{kac}} = \operatorname{tg} \alpha_{\text{kac}} = \lim_{x_1 \to x_0} \frac{y_1 - y_0}{x_1 - x_0} = f'(x_0)$$

Производная есть угловой коэффициент касательной (tg угла наклона касательной).

$$\Delta f = df + \overline{o}(\Delta x).$$

Дифференциал функции f в точке x_0 равен приращению, которое получает касательная при переходе из точки x_0 в точку $x_0 + \Delta x = x_1$.

Правила дифференцирования

ДИФФЕРЕНЦИРОВАНИЕ И АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

Пусть функции $f,g: X \mapsto \mathbb{R}$ дифференцируемы в точке $x \in X$, а $\alpha,\beta \in \mathbb{R}$ — некоторые константы. Тогда линейная комбинация, произведение и частное этих функций (при условии $g(x) \neq 0$) также дифференцируемы в данной точке. Причём имеют место формулы:

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x);$$

Доказательство.

$$(\alpha f \pm \beta g)'(x) = \lim_{\Delta x \to 0} \frac{(\alpha f(x + \Delta x) \pm \beta g(x + \Delta x)) - (\alpha f(x) \pm \beta g(x))}{\Delta x} =$$

$$= \alpha \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \pm \beta \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = \alpha f'(x) \pm \beta g'(x).$$

$$(f \cdot g)'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x)g(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} g(x + \Delta x) + f(x) \frac{g(x + \Delta x) - g(x)}{\Delta x} \right) =$$

$$= f'(x) \cdot g(x) + f(x) \cdot g'(x);$$

$$\left(\frac{f}{g}\right)'(x) = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x) - g(x + \Delta x)f(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x))} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x)} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x)} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x)} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x)} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)}{(g(x + \Delta x) \cdot g(x)} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x)$$

$$= \lim_{\Delta x \to 0} \frac{1}{g(x + \Delta x) \cdot g(x)} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} g(x) - \frac{g(x + \Delta x) - g(x)}{\Delta x} f(x) \right) =$$

$$=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}.$$

ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ ФУНКЦИИ

Пусть $f:(a,b)\mapsto (c,d)$, $g:(c,d)\mapsto \mathbb{R}$, $x\in (a,b)$. Если функция f дифференцируема в точке x, а g дифференцируема в точке f(x), то их композиция $g\circ f$ дифференцируема в точке x, и

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x).$$

Доказательство.

Придадим аргументу функции f данной точке x приращение $\Delta x \neq 0$. Этому приращению аргумента отвечает приращение $\Delta f = f(x + \Delta x) - f(x)$ функции f. Приращению Δf , в свою очередь, соответствует приращение $\Delta g = g(f + \Delta f) - g(f)$. Т.к. функция g – дифференцируема в точке f, то

$$\Delta g = g'(f)\Delta f + \overline{o}(\Delta f) \Leftrightarrow \frac{\Delta g}{\Delta x} = g'(f)\frac{\Delta f}{\Delta x} + \frac{\overline{o}(\Delta f)}{\Delta x}. \tag{*}$$

$$rac{\overline{o}(\Delta f)}{\Delta x} = lpha(\Delta f) \cdot rac{\Delta f}{\Delta x} o 0$$
, при $\Delta x o 0$.

Переходя к пределу при $\Delta x o 0$ из (*) получаем:

$$g'_x = \left(g(f(x))\right)' = g'(f(x)) \cdot f'(x).$$

ДИФФЕРЕНЦИРОВАНИЕ ОБРАТНОЙ ФУНКЦИИ

Пусть функции $f: X \mapsto Y$ и $f^{-1}: Y \mapsto X$ взаимно обратны и непрерывны в точках $x_0 \in X$ и $f(x_0) = y_0 \in Y$ соответственно. Если функция f дифференцируема в точке x_0 и $f'(x_0) \neq 0$, то f^{-1} дифференцируема в точке y_0 , причём

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

ДИФФЕРЕНЦИРОВАНИЕ ОБРАТНОЙ ФУНКЦИИ

Геометрический смысл теоремы ясен из рисунка (a). Т.к. график f^{-1} получается из графика f симметрией относительно прямой y=x, то

$$(f^{-1})'(f(x_0)) = \operatorname{tg} \beta = \operatorname{tg} (\frac{\pi}{2} - \alpha) = \operatorname{ctg} \alpha = \frac{1}{f'(x_0)}.$$

Производные элементарных функций

$$f(x) = c = const, \ x \in \mathbb{R}. \quad f'(x) = 0;$$

$$f(x) = a^{x}, \ a > 0, \ x \in \mathbb{R}. \quad f'(x) = a^{x} \cdot \ln a;$$

$$f(x) = \log_{a} x, \ 0 < a \neq 1, \ x > 0. \quad f'(x) = \frac{1}{x \cdot \ln a};$$

$$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R}, \ x > 0. \quad f'(x) = \alpha x^{\alpha - 1};$$

$$f(x) = \sin x, \ x \in \mathbb{R}. \quad f'(x) = \cos x;$$

$$f(x) = \cos x, \ x \in \mathbb{R}. \quad f'(x) = -\sin x;$$

$$f(x) = \operatorname{tg} x, \ x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + \pi k, k \in \mathbb{Z} \right\}. \quad f'(x) = \frac{1}{\cos^{2} x};$$

$$f(x) = \operatorname{ctg} x, \ x \in \mathbb{R} \setminus \left\{ \pi k, k \in \mathbb{Z} \right\}. \quad f'(x) = -\frac{1}{\sin^{2} x};$$

$$f(x) = \arcsin x, \ x \in (-1, 1). \quad f'(x) = \frac{1}{\sqrt{1 - x^{2}}};$$

$$f(x) = \operatorname{arccos} x, \ x \in \mathbb{R}. \quad f'(x) = \frac{1}{1 + x^{2}};$$

$$f(x) = \operatorname{arcctg} x, \ x \in \mathbb{R}. \quad f'(x) = -\frac{1}{1 + x^{2}};$$