令和5年度第1学年4組 冬の課題1

取り組みチェック表

提出締め切り日 →

問題	取り組み日	$\bigcirc \cdot \triangle \cdot \times$	コメント	問題	取り組み日	$\bigcirc \cdot \triangle \cdot \times$	コメント
56				71			
57				72			
58				73			
59				74			
60				75			
61				76			
62				77			
63				78			
64				79			
65				80			
66				81			
67				82			
68				83			
69				84			
70				85			

(1) 因数分解せよ.

(a)
$$x^2 + 3xy - 2x + 2y^2 - y - 3$$

(b)
$$(x^2 + 5x)^2 + 10(x^2 + 5x) + 24$$

(2) 展開せよ.

(a)
$$(x+y)^2(x-y)^2$$

(b)
$$(x+y-1)(x+2y-1)$$

(3) 以下の方程式, 不等式を解け.

(a)
$$|x+2|=3$$

(b)
$$|2x - 3| < 5$$

[57]
$$x = \frac{2}{3 - \sqrt{5}}, y = \frac{2}{3 + \sqrt{5}}$$
 とする. (1) x, y を有理化せよ.

(2)
$$x + y, xy$$
 を求めよ.

(3)
$$x^2 + y^2$$
 を求めよ.

(4)
$$x^4 - y^4$$
 を求めよ.

(1)
$$x^2 + \frac{1}{x^2}$$

(2)
$$x^3 + \frac{1}{x^3}$$

(3)
$$x^4 + \frac{1}{x^4}$$

59 a を正の定数とする. 連立不等式 $\left\{ \begin{array}{ccc} 2(x+a)+3 < & 4x-1 \\ 3x-a < & 2x+a+1 \end{array} \right.$ について、以下の問いに答えよ.

- (1) a=3 のとき, 連立不等式を解け.
- (2) 解なしとなる a の値の範囲を求めよ.
- (3) 共通部分に含まれる整数の解の個数がちょうど 3 個となるように, 定数 a の値の範囲を定めよ.

$$A=\{2,4,6,8,10,12,14\}$$

$$B = \{3, 6, 9, 12, 15\}$$

$$C = \{4, 8, 12\}$$

と定める. このとき, 以下の集合を求めよ.

- (1) $A \cap B$
- (2) $A \cup B$
- (3) $\overline{A} \cap C$
- $(4) \ \overline{A \cap B}$
- (5) $\overline{A \cup B}$
- (6) $A \cup B \cup C$
- (7) $A \cap B \cap C$
- (8) $\overline{A} \cap B \cap C$

61 a を正の定数とする. また, $A=\{a-1,5,13,17\},\ B=\{a^2+1,10,5a+3,19\}$ とする. $A\cap B=\{5,13\}$ のとき, a の値を求めよ. また, そのときの $A\cup B$ を求めよ.

62 条件 p,q,r を以下のように定める.

$$p: x^2 - 3x + 2 < 0$$

$$q: x^2 - 3x \geqq 0$$

$$r: 6 > -2x$$

このとき、以下の命題の真偽を述べよ. また、真の場合にはそれを説明し、偽の場合には反例をあげよ.

(1) $p \Longrightarrow q$

 $(2) \ \overline{p} \Longrightarrow q$

(3) \overline{p} かつ $r \Longrightarrow q$

(4) q かつ $r \Longrightarrow \overline{p}$

(5) \overline{p} $\sharp \hbar \lg q \Longrightarrow r$

	_				
63	以下の	に当てはまる	ものを以下から選べ.	ただし, x,y は実数とす	る.

- 選択肢 -

- あ) 必要条件であるが十分条件ではない.
- い) 十分条件であるが必要条件ではない.
- う) 必要十分条件である.
- え) 必要条件でも十分条件でもない.
- (1) \triangle ABC が正三角形であることは、 \triangle ABC が二等辺三角形であるための

(2)
$$x^2 - 3x - 10 = 0$$
 は, $x = -2$ であるための

(3)
$$xy = 0$$
 は, x, y の少なくとも一方は 0 であるための

(4)
$$x^2 - 5x + 6 \le 0$$
 は, $x^2 - 6x + 8 < 0$ であるための

- **64** 以下の命題を証明せよ. ただし, $n \in \mathbb{Z}$ とする.
 - (1) n^2 が偶数ならば n は偶数である.
 - (2) $\sqrt{2}$ は無理数である.
 - (3) $\sqrt{3}$ は無理数である.

- (1) 2 次関数 $y = 2x^2 + 4x + 1$ について、軸と頂点を求めよ. また、グラフを描け.
- (2) $y = -x^2 + 3x 4$ $(-1 \le x \le 1)$ の最大値, 最小値を求めよ.
- (3) 頂点が (1,2) で、点 (-1,-10) を通る放物線の方程式を求めよ.
- (4) 3点 (1,9),(-1,3),(0,4) を通る放物線の方程式を求めよ.
- (5) 放物線 $y = x^2 4x + 5$ を平行移動して $y = x^2 + 4x 1$ に重ねるにはどのように平行移動すればよいか.

- **66** a を定数とする. 2 次関数 $f(x) = x^2 2ax + 3 \ (-1 \le x \le 3)$ について、以下の問いに答えよ.
 - (1) a = 1 のとき, f(x) の最大値を求めよ.
 - (2) f(x) の最大値 M(a) を求めよ.
 - (3) f(x) の最小値 m(a) を求めよ.
 - (4) y = m(a) のグラフを描け.

- **67** a を<u>正の</u>定数とする. 2 次関数 $f(x) = x^2 4x 2 \ (0 \le x \le a)$ について、以下の問いに答えよ.
 - (1) a = 4 のとき, f(x) の最大値を求めよ.
 - (2) f(x) の最大値 M(a) を求めよ.
 - (3) f(x) の最小値 m(a) を求めよ.
 - $(4)\ g(a)=M(a)-m(a)$ とする. g(a)=5となる a の値を求めよ.

- **68** a を定数とする. 2 次関数 $f(x) = -x^2 2x + 5$ $(a \le x \le a + 2)$ について、以下の問いに答えよ.
 - (1) a = 0 のとき, f(x) の最小値を求めよ.
 - (2) f(x) の最小値 m(a) を求めよ.
 - (3) f(x) の最大値 M(a) を求めよ.
 - (4) g(a) = M(a) m(a) とする. y = g(a) のグラフを描け.

- **69** a を正の定数とする. 2 次関数 $f(x) = x^2 4x + 1 \ (-a \le x \le 3a)$ について、以下の問いに答えよ.
 - (1) f(-a) = f(3a) となるような a の値を求めよ.
 - (2) f(x) の最大値 M(a) を求めよ.
 - (3) f(x) の最小値 m(a) を求めよ.

70 小問集合

- (1) 方程式 $2x^2 + 5x 3 = 0$ を解け.
- (2) 方程式 $2x^2 \sqrt{2}x 1 = 0$ を解け.
- (3) 不等式 $x^2 + 3x + 5 > 0$ を解け.
- (4) 不等式 $-x^2 + 2x + 2 \le 0$ を解け.
- (5) 方程式 $x^2 + mx + 1 = 0$ が実数解をもつように定数 m の値の範囲を定めよ.
- (6) 不等式 $ax^2-1<0$ の解が全ての実数となるように定数 a の値の範囲を定めよ. ただし, $a\neq 0$ とする.

71 以下の2つのグラフの共有点の座標を求めよ.

(1)
$$y = x^2$$
, $y = x$

(2)
$$y = 3x^2 + x$$
, $y = x^2 - x + 12$

(3)
$$y = x^2 + 2x - 6$$
, $y = -x^2 + 6$

72 以下の問いに答えよ.

(1) m を定数とする. 以下の方程式の実数解の個数を求めよ.

(a)
$$x^2 + mx + 4 = 0$$

(b)
$$2x^2 - 4x + 3 + m = 0$$

- (2) 以下の問いに答えよ.
 - (a) 放物線 $y=x^2+2x-3$ のグラフが x 軸から切り取る線分の長さを求めよ.
 - (b) 放物線 $y=x^2+2x+a$ のグラフが x 軸から切り取る線分の長さが $4\sqrt{3}$ のとき, 定数 a の値を求めよ.

- **73** m は定数とする. 直線 y = mx + 1 と放物線 $y = x^2 + 4$ について, 以下の問いに答えよ.
 - (1) 2 つの曲線のグラフが接するときの定数 m の値を求めよ.
 - (2) グラフの共有点の個数を求めよ.
 - (3) 2 つの共有点の x 座標の間の距離が 4 となるように定数 m の値を定めよ.
 - (4) m の値を (3) で求めた値とする. 放物線と直線で囲まれた部分に含まれる格子点の数を求めよ. ただし, 直線と放物線の上にある格子点の数も含めるものとする.

- **74** *m* は定数とする. 以下の問いに答えよ.
 - (1) 放物線 $y=x^2-2mx+6+m$ が x 軸の正の部分と異なる 2 点で交わるとき, 定数 m の値の範囲を求めよ.
 - (2) 放物線 $y=x^2-3mx-4+m^2$ が x 軸の正の部分と負の部分で交わるとき, 定数 m の値の範囲を求めよ.
 - (3) 放物線 $y=2x^2-2mx-3$ が x 軸の -1 より小さい部分と 1 より大きい部分で交わるとき, 定数 m の値の範囲を求めよ.

- **75** $y = |x^2 2x 3|$ について、以下の問いに答えよ.
 - (1) グラフを描け.
 - (2) k を定数とする. 方程式 $|x^2-2x-3|=k$ の解の個数を求めよ.

 $oxed{76}$ 以下の方程式, 不等式を解け. ただし, $0 \le \theta < 2\pi$ とする. (1) $\cos \theta = rac{1}{2}$

$$(1) \cos \theta = \frac{1}{2}$$

$$(2) \ 2\sin\theta = -\sqrt{3}$$

(3)
$$3 \tan \theta = \sqrt{3}$$

$$(4) \sin \theta > \frac{1}{2}$$

(5)
$$\tan \theta < 1$$

(6)
$$2\cos\left(\theta - \frac{1}{6}\pi\right) \le \sqrt{3}$$

(7) $2\sin\left(\theta + \frac{1}{3}\pi\right) \ge 1$

(7)
$$2\sin\left(\theta + \frac{1}{3}\pi\right) \ge 1$$

- (1) 2 直線 $y=x+1, y=\sqrt{3}x-3$ のなす角 θ を求めよ. ただし, $0 \le \theta \le \frac{1}{2}\pi$ とする.
- (2) 2 直線 $y=2x+1, y=\frac{1}{3}x-3$ のなす角 θ を求めよ. ただし, $0 \leq \theta \leq \frac{1}{2}\pi$ とする.
- (3) $\sin\theta+\cos\theta=\frac{1}{4}$ のとき、以下の値を求めよ.ただし、 $0\le\theta\le\pi$ とする. (a) $\sin\theta\cos\theta$
 - (b) $\sin^3 \theta + \cos^3 \theta$

| 78 | 小問集合. △ABC について, 以下の問いに答えよ.

- (1) $a=2\sqrt{3}, b=7, C=30^{\circ}$ のとき, c の値を求めよ.
- (2) $a=2,b=\sqrt{5}-1,c=2\sqrt{2}$ のとき, C 及び外接円の半径 R を求めよ.
- (3) a=b=c=3 のとき, $\triangle ABC$ の面積 S を求めよ.
- (4) a=9,b=8,c=7 のとき, $\triangle ABC$ の面積 S を求めよ.
- (5) a=2,b=3,c=4 のとき、 $\triangle ABC$ の内接円の半径 r を求めよ.

79 以下の問いに答えよ.

- (1) $y = \sin^2 \theta 2\sin \theta + 3$ $(0 \le \theta < 2\pi)$ の最大値, 最小値とそのときの θ の値を求めよ.
- (2) $y=2\sin^2\theta+4\cos\theta-1$ $(0\leq\theta<2\pi)$ の最大値, 最小値とそのときの θ の値を求めよ.
- (3) $y=\cos 2\theta 4\sin \theta$ $(0 \le \theta < 2\pi)$ の最大値、最小値とそのときの θ の値を求めよ.

80 円に内接している四角形 ABCD において,

$$AB=2, BC=3, \angle B=120^\circ$$

とする. 以下の問いに答えよ.

- (1) AC の長さを求めよ.
- (2) AD= 2 のとき, 四角形 ABCD の面積を求めよ.
- (3) 点 D は弧 AC のうち, 点 B のない方を動く. このとき, 四角形 ABCD の面積の最大値を求めよ.

- | 81 | 小問集合. 以下の場合の数を求めよ.
 - (1) 5人を1列に並べる.
 - (2) 5人を円形に並べる.
 - (3) 1, 2, 3 の数字を重複を許して用い, 3 桁の数を作る.
 - (4) 異なる8個の石を使ってブレスレットを作る.
 - (5) 9人から3人選ぶ.
 - (6) 8 文字 KATUYAMA を並べ変える.
 - (7) りんご、みかん、なしの3種類の果物を重複を許し計6個選ぶ.ただし、選ばない果物があってもよい.

- **82** 0, 1, 2, 3, 4, 5 の 6 つの数字を並べて数字を作る.
 - (1) 異なる4つの数字を用いて4桁の数字を作る.
 - (a) 何通りの数字ができるか.
 - (b) できる数字を小さい順に並べたとき, 123 番目にくる数字を求めよ.

- (2) 重複を許し、4つの数字を用いて4桁の数字を作る.
 - (a) 何通りの数字ができるか.
 - (b) できる数字を小さい順に並べたとき, 123 番目にくる数字を求めよ.

- (1) サイコロを 2 個投げて、出た目の積が奇数となる確率を求めよ.
- (2) 1から9の9枚のカードから同時に2枚引くとき、奇数と偶数が1枚ずつである確率を求めよ.
- (3) 1 枚のコインを 5 回投げるとき, 3 回表が出る確率を求めよ.
- (4) 大小 2 個のサイコロを投げた. 大のサイコロの目が偶数であったとき, 目の和が偶数である条件付き確率を求め よ.
- (5) サイコロの出る目の期待値を求めよ.

84 サイコロを8回投げる.

- (1) 3の倍数の目が1回でる確率を求めよ.
- (2) 3の倍数の目が2回でる確率を求めよ.
- (3) 3の倍数の目が何回出る確率が最も大きくなるか.

- | 85 | 大小 2 個のサイコロを投げる.
 - (1) 出る目の最大値が2となる確率を求めよ.
 - (2) 出る目の最大値の期待値を求めよ.
 - (3) 出る目の最小値の期待値を求めよ.