עבודה 2: מדעי נתונים- אורן יקואל וגל אלון

1)	α.		العد	S	٧.	rS	۲.	رواء	11	٢.	۶ (1179	,d	6.5	hod		۷.,	X 2.,		/×		
		W	Si),	3	б	6.6	bna I	٠	ار	11,0	JΩ		book	ر	· K	^	الراداد		Χì		
			10		٠.	nGN	الد- ك	٤	Sr.		.10.7	הנ	10	,	-613		. i.	- 2	6	2 6		
		ļ			9	Cx	; , 6	9) =	- (1-	9),	٠٠.	0									
														16	\ ≤	N		11281	ſ.	۲.	S1-	
)(x,	, X 2, .	,	×ĸ	,	e)	E	(1-	Θ)	(T 1	0			(1-	e)'	۲.	0	2.	0°	· (1	- 0) XI).	· W
	lo	g C	PC:	ζ.,	,	××	, 0)) =	le	g()	9°.	(1	(°.	i x	- n.)		1	Fo I	Lg Men	J. 10)
	log €																					
																			0			
								(C)				·lo	9(1	1-0)					: /٢	ره	
£.(0) =	6 N	9	-(2	- X	i)	- W		-	0								:	'07N	/63	رد
			ď			6	5	X;	- 0	(,,,				×								
				740	6	-	1=1 02			7	2	0										
			N=	9 v	C	=	e	2	X	i -	e)v										
								X														
								X;														
				1		115	= 1					2										
1. 5		Χ,	- 1	,	Х	3-	٥,	× 3												- 6		
		+			+	,						800		131	270	,	1.	-175		p.3	ر	
			9	=	-	9	a .		в.	31	5											

חלק 2- תיוג תמונות

נתאר את האלגוריתם במילים:

<u>:'ב+'א</u>

גרף המאתר את הערכים הסינגולריים

ציר ה-X: ככמות הערכים הסינגולריים

ציר ה-Y: ערך הערכים הסינגולריים

תמונה של הספרה המקורית - 5

תמונה של הספרה המשוחזרת - 5

<u>:'ו-'ג</u>

הגענו ל49.6% הצלחה

:'7

הרצנו שוב את המודל 3 פעמים, התוצאות היו כדלהלן:

- 1. 47.19 אחוזי הצלחה
 - 43.5 .2 אחוזי הצלחה
 - 3. 58.8 אחוזי הצלחה

<u>:'n</u>

כאשר השתמשנו במימד קטן יותר (12) התוצאות היו: 45 אחוזי הצלחה.

הורדנו את המימד, ולכן ישנו פחות מידע שמתאר את התמונות, ולכן נצפה לאחוזי הצלחה נמוכים מאשר בסעיפים קודמים.

<u>:'บ</u>

כאשר השתמשנו במרכזים שאנו הרכבנו (ולא רנדומליים כמו בסעיפים קודמים) התוצאות היו: 62 אחוזי הצלחה.

אכן ציפינו לקבל אחוזי הצלחה גבוהים יותר.

להלן הקוד:

בנוסף צירפנו לינק לGITHUB של גל- ובתוכו קבצי הקוד המלאים https://github.com/GalAlon9/DS221_HW2

Main

```
import DigitClassifying
labels.idx1-ubyte')
new_images,Up = DigitClassifying.PCA2(x_train, 20)
DigitClassifying.plot_pics(img , index, Up, new_images, y_train)
centers)
new_images,Up = DigitClassifying.PCA2(x_test, 20)
clusters,centers,changes = DigitClassifying.Kmeans(10, new_images, centers)
#assign each cluster to a digit
clusters labels)
print("test run success rate is:")
print(success rate)
```

```
clusters labels)
print("p=12 success rate is:")
print(success rate)
print("centers with the mean of 10 images per label run success rate is:")
print(success rate)
```

MnistDataloader

```
import inline
from matplotlib import pyplot as plt
import numpy as np # linear algebra
import struct
from array import array
from os.path import join
class MnistDataloader(object):
training labels filepath,
        self.training images filepath = training images filepath
        self.training labels filepath = training labels filepath
        with open(labels filepath, 'rb') as file:
            magic, size = struct.unpack(">II", file.read(8))
2049, got {}'.format(magic))
        with open(images filepath, 'rb') as file:
                raise ValueError('Magic number mismatch, expected
        for i in range(size):
            images.append([0] * rows * cols)
        for i in range(size):
    def load data(self):
self.test labels filepath)
```

DigitClassifying

```
import numpy
from pyparsing.core import Dict
from operator import ne
from numpy.core.fromnumeric import argmin
import numpy as np # linear algebra
def PCA2(pics,p):
   w, v = np.linalg.eig(cov)
   Up = Up.transpose()
   new images = numpy.array([Up@x for x in pics.transpose()])
   return new images, Up.transpose()
   img = img.reshape(28, 28)
   rec img = rec img.reshape(28, 28)
```

```
clusters = np.empty([k],dtype=object)
    while (changed):
        # print(index)
       changed=False
        # update the centers to the mean of every cluster
    cluster by digits = np.empty([10],dtype=object)
    for i in range(10):
cluster by digits[int(images centers[i])].append(real val)
    for i in range(10):
        counter[x] += 1
```

```
def success_tester(cluster_by_digits, clusters_val):
    successes = 0
    counter=0
    for i in range(10):
        for x in (cluster_by_digits[i]):
            counter+=1
            if x == clusters_val[i]:
                  successes += 1
    percentage = (successes / counter) * 100
    return percentage
```