# **People Analytics - Tely**

Nome: Bruno Soares de oliveira Lopes

Curso: Engenharia de Computação - UFPB

Periodo: 4P

Previsão:2023

#### Importanto Pacote Pandas, Matplotlib

# In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
```

### Lendo o conjunto de dados CSV

# In [2]:

```
def read(arquivo):
    leitura = pd.read_csv(arquivo, encoding='utf-8', sep=',')
    return leitura

Case_Analytics = read('Case Analytics.csv')
```

## Visualizar o Head do Dataframe

#### In [3]:

```
Case_Analytics.head()
```

#### Out[3]:

|   | EmployeeID | recorddate_key  | birthdate_key | orighiredate_key | terminationdate_key | age | lenç |
|---|------------|-----------------|---------------|------------------|---------------------|-----|------|
| 0 | 1318       | 12/31/2006 0:00 | 1/3/1954      | 8/28/1989        | 1/1/1900            | 52  |      |
| 1 | 1318       | 12/31/2007 0:00 | 1/3/1954      | 8/28/1989        | 1/1/1900            | 53  |      |
| 2 | 1318       | 12/31/2008 0:00 | 1/3/1954      | 8/28/1989        | 1/1/1900            | 54  |      |
| 3 | 1318       | 12/31/2009 0:00 | 1/3/1954      | 8/28/1989        | 1/1/1900            | 55  |      |
| 4 | 1318       | 12/31/2010 0:00 | 1/3/1954      | 8/28/1989        | 1/1/1900            | 56  |      |
| 4 |            |                 |               |                  |                     |     | •    |

Exibir as colunas do DataFrame para uma melhor analise

```
In [4]:
```

# Remover dados duplicados

```
In [5]:
```

```
Case_Analytics = Case_Analytics.drop_duplicates(subset="EmployeeID",keep='last', inp
lace = False)
```

Selecionar colunas mais relevantes para analisar. Nesse primeiro caso, será analisado fun.

```
In [6]:
```

```
Colunas_Selec = ['EmployeeID','gender_full']
```

### In [7]:

```
Case_Analytics_Selec = Case_Analytics.filter(items = Colunas_Selec)
```

#### Quantidade de colaboradores

#### In [8]:

```
cat_genero = Case_Analytics_Selec["gender_full"].value_counts().index
cat_numer = Case_Analytics_Selec["gender_full"].value_counts().values

m_circ = plt.Circle((0,0),0.7,color='white')

plt.pie(cat_numer,labels = cat_genero,wedgeprops = { 'linewidth' : 7, 'edgecolor' :
'white' })
p= plt.gcf()
plt.title('Numero de colaboradores por gênero')
p.gca().add_artist(m_circ)
plt.show()
```

# Numero de colaboradores por gênero



### In [9]:

```
Colunas_Selec_Gn_Status = ['gender_full','STATUS']
```

#### In [10]:

```
Case_Analytics_Selec_G_Status = Case_Analytics.filter(items = Colunas_Selec_Gn_Status)
```

# In [11]:

Case\_Analytics\_Selec\_G\_Status.head()

# Out[11]:

|    | gender_full | STATUS |  |  |
|----|-------------|--------|--|--|
| 9  | Male        | ACTIVE |  |  |
| 19 | Female      | ACTIVE |  |  |
| 29 | Female      | ACTIVE |  |  |
| 39 | Male        | ACTIVE |  |  |
| 49 | Male        | ACTIVE |  |  |

Quantidade de colaboradores ativos e inativos

#### In [12]:

```
fig = plt.figure(figsize = (20, 8))
plt.subplot(1, 2, 1)
ax = fig.add_axes([0,0,0.5,0.8])
langs = Case_Analytics_Selec_G_Status["STATUS"].value_counts().index
students = Case_Analytics_Selec_G_Status["STATUS"].value_counts().values
ax.bar(langs, students, color =["#9dffb0", "#99322b"])
plt.title('Quantidade de colaboradores com contrato encerrado')
plt.subplot(1, 2, 2)
List_colaboradores = list(students)
list_porcent = []
for i in range(0,len(List_colaboradores)):
    list_porcent.append(float('{:.02f}'.format((List_colaboradores[i]*100)/sum(stude
nts))))
print(list_porcent)
plt.pie(students,
        labels = list_porcent,
        colors =["#9dffb0","#99322b"],
        labeldistance = 1.1,
        explode = [0,.8],
        textprops = {"fontsize": 15},
plt.axis("equal")
plt.title("Quantidade de colaboradores com contrato encerrado")
plt.legend()
```

#### [76.37, 23.63]

#### Out[12]:

## <matplotlib.legend.Legend at 0x12e7c72a488>





#### In [13]:

```
Colunas_Selec_City_Satus = ['city_name','STATUS']
Case_Analytics_Ci_Status = Case_Analytics.filter(items = Colunas_Selec_City_Satus)
```

#### In [15]:

```
N_City_T = Case_Analytics_Ci_Status.query('STATUS=="TERMINATED"')
N_City_A = Case_Analytics_Ci_Status.query('STATUS=="ACTIVE"')
```

# Numero de colaboradores com a situação de Saida/Cidades

#### In [16]:

```
N_City_T['city_name'].value_counts()[::-1].plot(kind='barh', figsize=(6,10))
```

#### Out[16]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d235c48>



Numero de colaboradores com a situação de Ativos/Cidades

# In [17]:

N\_City\_A['city\_name'].value\_counts()[::-1].plot(kind='barh', figsize=(6,10))

# Out[17]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d36de48>



# In [19]:

```
Case_Analytics.head()
```

# Out[19]:

|    | EmployeeID | recorddate_key  | birthdate_key | orighiredate_key | terminationdate_key | age | ler |
|----|------------|-----------------|---------------|------------------|---------------------|-----|-----|
| 9  | 1318       | 12/31/2015 0:00 | 1/3/1954      | 8/28/1989        | 1/1/1900            | 61  |     |
| 19 | 1319       | 12/31/2015 0:00 | 1/3/1957      | 8/28/1989        | 1/1/1900            | 58  |     |
| 29 | 1320       | 12/31/2015 0:00 | 1/2/1955      | 8/28/1989        | 1/1/1900            | 60  |     |
| 39 | 1321       | 12/31/2015 0:00 | 1/2/1959      | 8/28/1989        | 1/1/1900            | 56  |     |
| 49 | 1322       | 12/31/2015 0:00 | 1/9/1958      | 8/31/1989        | 1/1/1900            | 57  |     |

```
→
```

# In [20]:

```
Colunas_Selec_dep_Status = ['department_name', 'STATUS']

Case_Analytics_dep_Status = Case_Analytics.filter(items = Colunas_Selec_dep_Status)

N_Dep_T = Case_Analytics_dep_Status.query('STATUS=="TERMINATED"')
N_Dep_A = Case_Analytics_dep_Status.query('STATUS=="ACTIVE"')
```

# 10 Departamentos que teve mais situação em saida/Departamentos

# In [21]:

N\_Dep\_T['department\_name'].value\_counts().head(10)[::-1].plot(kind='barh', figsize=(6,10))

# Out[21]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d423888>



#### 10 Departamentos que teve mais situação em Ativo/Departamentos

# In [22]:

```
N_Dep_A['department_name'].value_counts().head(10)[::-1].plot(kind='barh', figsize=(6,10))
```

#### Out[22]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d4a5048>



#### In [23]:

```
Colunas_Selec_Age_Status = ['age','STATUS']

Case_Analytics_Age_Status = Case_Analytics.filter(items = Colunas_Selec_Age_Status)

N_Age_T = Case_Analytics_Age_Status.query('STATUS=="TERMINATED"')
N_Age_A = Case_Analytics_Age_Status.query('STATUS=="ACTIVE"')
```

## Colaboradores com situação de Saida/Idade

# In [24]:

```
pd.cut(N_Age_T.age, bins = [0,30,40,60], labels = ['até 30 anos','de 20 a 40','40 at
é 60']).value_counts().plot(kind='bar', figsize=(6,10))
```

# Out[24]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d8fe0c8>



Colaboradores com situação Ativa/Idade

# In [25]:

```
 pd.cut(N\_Age\_A.age, bins = [0,30,40,60], labels = ['até 30 anos','de 20 a 40','40 at é 60']).value\_counts().plot(kind='bar', figsize=(6,10))
```

# Out[25]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d963388>



#### In [26]:

```
Colunas_Selec_Motivo_Status = ['termtype_desc','STATUS','gender_full']

Case_Analytics_Motivo_Status = Case_Analytics.filter(items = Colunas_Selec_Motivo_Status)

N_Motivo_T_M = Case_Analytics_Motivo_Status.query('STATUS=="TERMINATED"').query('gender_full=="Male"')

N_Motivo_T_F = Case_Analytics_Motivo_Status.query('STATUS=="TERMINATED"').query('gender_full=="Female"')
```

# Motivos que levou colaboradores do Gênero Masculino a deixar a empresa

# In [27]:

```
N_Motivo_T_M['termtype_desc'].value_counts()[::-1].plot(kind='barh', figsize=(6,10))
Out[27]:
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7db0c508>



#### In [28]:

```
N_Motivo_T_F['termtype_desc'].value_counts()[::-1].plot(kind='barh', figsize=(6,10))
```

#### Out[28]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x12e7d9df248>



Observando os dados coletados temos:

O numero de funcionarias é maior que o de funcionarios cerca de 23.63% dos funcionarios teve registro de desligamento da função

A maior quantidade de funcionarios com situação de desligamento na Cidade de VancouverPorem o maior numero de colaboradores tambem é em Vancouver

Entre os departamentos que mais ouve saida foi o de Meats, porem foi o segundo com mais contratação

Em relação a idade, após estabelecer uma faixa de idade, é notável que pessoas entre 40 a 60 são os que mais tiveram situação de saida. E que o numero de Funcionarios Ativos na faixa de 40 a 60 anos também ser grande, levantando uma questão de que a idade da maioria da empresa ja é considerada avançada, por um ponto positivo é consideravel um grupo experiente, por outro deve-se analisar contratação de pessoas mais jovens por causa de uma futura aposentadoria.

A Maioria dos motivos que levou para o termino de contrato foi Voluntario entre os dois Gêneros, mas no caso do Sexo Feminino o número foi mais significativo, levantando a questão de haver mais contratação nesse gênero.

Foi Possivel ter Clusters, um deles no agrupamento dos Departamentos com numero de desligamentos dos colaboradores, também no Numero de identificação com o Gênero, gerando a quantidade de pessoas por sexo, entre outras combinações