

Matemáticas para ciencia de datos

Olivia Gutú

Semana 4
Descomposición en valores singulares y análisis en componentes principales

Descomposición en valores singulares

SVD

Toda matriz (real) tiene la forma:

$$A = U\Sigma V^T$$

U y V son matrices ortogonales y Σ matriz diagonal de valores singulares

SVD y Teorema espectral

La SVD existe para cualquier matriz: ¡no tiene que ser cuadrada!

SVD: idea principal

Sea A una matriz de $m \times n$. La idea es (1) encontrar (recordar que rank $A = \text{rank } A^T$):

- \blacktriangleright un conjunto ortonormal de vectores v_1, v_2, \cdots, v_r de $im(A^T)$
- ▶ un conjunto ortonormal de vectores u_1, u_2, \dots, u_r de im(A)

tal que:

$$A(v_1 \quad v_2 \quad \cdots \quad v_r) = (\sigma_1 u_1 \quad \sigma_2 u_2 \quad \cdots \quad \sigma_r u_r)$$

$$= (u_1 \quad u_2 \quad \cdots \quad u_r) \begin{pmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_r \end{pmatrix}$$

con

$$\sigma_1 > \sigma_2 > \cdots > \sigma_r > 0$$

SVD: idea principal

(2) completar las bases de im(A^T) con el ker(A) y im(A) con el ker(A^T) (se completa la matriz diagonal con ceros). (1) y (2) implican $AV = U\Sigma$:

$$V = \begin{pmatrix} v_1 & v_2 & \cdots & v_r & v_{r+1} & \cdots & v_n \end{pmatrix}$$

$$U = \begin{pmatrix} u_1 & u_2 & \cdots & u_r & u_{r+1} & \cdots & u_m \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & & \\ & & \ddots & & & \\ & & & \sigma_r & & \\ & & & & 0 \end{pmatrix}$$

por tanto:

$$A = U\Sigma V^T$$

SVD: ¿cómo funciona?

Notar que:

$$\operatorname{rank} A^T A = \operatorname{rank} A A^T = \operatorname{rank} A = \operatorname{rank} A^T$$

У

el rango de la matriz A^TA es el número de autovalores distintos de cero (contando multiplicidad)

SVD: ¿cómo funciona?

- $\triangleright \lambda_1, \lambda_2 \dots \lambda_r$ autovalores diferentes de cero de $A^T A$
- $v_1, v_2, \dots v_r$ conjunto ortonormal de autovectores de $A^T A$ correspondientes a los autovalores diferentes de cero.

$$\sigma_i := \sqrt{\lambda_i}$$
 la raíz positiva

Esto existe por el teorema espectral ya que A^TA es simétrica.

SVD: ¿cómo funciona?

Para i = 1, 2, ... r:

- ightharpoonup se tiene $A^T A v_i = \sigma_i^2 v_i$
- ightharpoonup notar que v_i está en $\operatorname{im}(A^T)$
- ▶ se define $u_i := \frac{Av_i}{\sigma_i}$ (luego $AA^Tu_i = \sigma_i^2 u_i$ y por tanto u_i está en im(A))
- ightharpoonup se cumple $u_i \cdot u_j = 0$ si $i \neq j$ y $u_i \cdot u_i = 1$

Después:

- ightharpoonup completamos los últimos n-r vectores v_{r+1} a v_n
- ightharpoonup completamos los últimos m-r vectores u_{r+1} a v_m
- ▶ los nuevos vectores pertenencen al ker A y ker A^T, respectivamente

Forma reducida de la SVD

El corazón de la SVD es $AV_r = U_r \Sigma_r$:

$$A \left(\begin{array}{c} \mathsf{v_1} & \cdots & \mathsf{v_r} \\ \mathsf{base} \ \mathsf{del} \ \mathsf{espacio} \\ \mathsf{rengl\'on} \ \mathsf{de} \ \mathsf{A} \end{array} \right) = \left(\begin{array}{c} \mathsf{u_1} & \cdots & \mathsf{u_r} \\ \mathsf{base} \ \mathsf{del} \ \mathsf{espacio} \\ \mathsf{columna} \ \mathsf{de} \ \mathsf{A} \end{array} \right) \left(\begin{array}{c} \sigma_1 \\ & \sigma_2 \\ & & \ddots \\ & & \sigma_r \end{array} \right)$$

$$imA^T$$
 = span{renglones de A }
 imA = span{columnas de A }

Dato importante para los cientíticos de datos

La matriz de rango k

$$A_k := \sigma_1 \mathbf{u_1} \mathbf{v_1}^T + \cdots + \sigma_k \mathbf{u_k} \mathbf{v_k}^T$$

es la que mejor aproxima a A con rango k:

Eckart-Young

Si B es una matriz de rango k entonces

$$||A-A_k|| \leq ||A-B||.$$

Dato importante para los cientíticos de datos

Norma espectral
$$\|A\|_2 = \max \frac{\|Ax\|}{\|x\|} = \sigma_1$$
 Norma de Frobenius $\|A\|_F = \sqrt{\sigma_1^2 + \cdots \sigma_r^2}$ Norma nuclear $\|A\|_N = \sigma_1 + \sigma_2 + \cdots + \sigma_r$

Análisis en componentes principales (PCA)

PCA resulta de aplicar la SVD a una matriz $A_{centered}$ de datos centrada con n columnas (variables) y m renglones (samples)

Componentes principales

$$\sigma_1 u_1, \sigma_2 u_2, \cdots, \sigma_r u_r \in \mathbb{R}^m$$

Análisis en componentes principales (PCA)

Variación total

$$T = \frac{\sigma_1^2 + \dots + \sigma_r^2}{m - 1}$$

Los σ_i^2 son los autovalores distintos de cero de la matriz de covarianza

 $A_{\text{centered}}^T A_{\text{centered}}$

La componente principal $\sigma_i u_i$ explica la fracción σ_i^2/T de la variación total. Cada valor singular hace su mejor captura: σ_1 explica más que σ_2 y así sucesivamente.