

Third party Auto Insurance Claims Analysis

Data Science with R Programming - Course end project1

Student Name – Manohari Wijesooriya

11/10/2023

Swedish Motor Insurance

Contents

1.	Problem Statement	. 3
2.	Data	. 3
3.	Descriptive Analysis	. 4
4.	Total Payments	. 5
5.	Variables impacting insurance payment	. 7
6.	Deciding location for new Branch	. 8
7.	Insurance factors Identification	10

1. Problem Statement

The data gives the details of third party motor insurance claims in Sweden for the year 1977. In Sweden, all motor insurance companies apply identical risk arguments to classify customers, and thus their portfolios and their claims statistics can be combined. The data were compiled by a Swedish Committee on the Analysis of Risk Premium in Motor Insurance. The Committee was asked to look into the problem of analyzing the real influence on the claims of the risk arguments and to compare this structure with the actual tariff.

2. Data

The insurance dataset holds 7 variables and the description of these variables are given below:

Variable	Description				
Kilometres	Distance driven by a vehicle, grouped into five categories.				
	Kilometers travelled per year				
	1: < 1000				
	2: 1000-15000				
	3: 15000-20000				
	4: 20000-25000				
	5: > 25000				
Zone	Geographical zone of a vehicle, grouped into 7 categories.				
	1: Stockholm, Göteborg, and Malmö with surroundings				
	2: Other large cities with surroundings				
	3: Smaller cities with surroundings in southern Sweden				
	4: Rural areas in southern Sweden				
	5: Smaller cities with surroundings in northern Sweden				
	6: Rural areas in northern Sweden				
	7: Gotland				
Bonus	Driver claim experience, grouped into 7 categories.				
	No claims bonus; equal to the number of years, plus one, since the last				
	claim				
Make	1-8 represents eight different common car models. All other models				
	are combined in class 9.				
Insured	Number of insured in policy-years				
Claims	Number of claims				
Payment	Total value of payments in Skr (Swedish Krona)				

3. Descriptive Analysis

This report is to gain basic insights into the data set and to prepare for the further analysis.

4. Total Payments

The total value of payment by an insurance company is an important factor to be monitored. So the committee has decided to find whether this payment is related to number of claims and the number of insured policy years. They also want to visualize the results for better understanding.

Aggregating data by number of insured policy years:

##		Insured_factor	Insured	Claims	Payment	Severity	Frequency	Claim_risk
##		<fct></fct>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0, 20	4256.	326	1741500	5342.	0.0766	409.
##	2	20, 50	11792.	937	4528985	4833.	0.0795	384.
##	3	50, 100	20013.	1570	8286232	5278.	0.0784	414
##	4	100, 500	126385.	8067	40142284	4976.	0.0638	318.
##	5	500, 1500	197563.	11551	56465555	4888.	0.0585	286
##	6	1500,5000	371759.	18742	91331394	4873.	0.0504	246
##	7	5000, 30000	823166.	45381	219915266	4846.	0.0551	267
##	8	30000, 50000	264378.	10077	52537933	5214.	0.0381	199.
##	9	50000, 100000	314879.	10288	52056344	5060.	0.0327	165
##	10	100000, 200000	248980.	6232	33785188	5421.	0.0250	136.

5. Variables impacting insurance payment

The committee wants to figure out the reasons for insurance payment increase and decrease. So they have decided to find whether distance, location, bonus, make, and insured amount or claims are affecting the payment or all or some of these are affecting it.

The most claims are from 1000-15000 km driven vehicles

The least amount of claims are paid in zone 7

Most claims are paid for policies with drivers with bonus = 7; ie 7 years from last claim

6. Deciding location for new Branch

The insurance company is planning to establish a new branch office, so they are interested to find at what location, kilometer, and bonus level their insured amount, claims, and payment get increased.

Summarising values by zone

```
Zone f
              Insured Claims
                                Payment
                                           Severity Frequency Claim_risk
##
## 1
         1 326,394.10 23,174 106,633,468 1,463,024.3 32.61842 161,310.04
         2 387,916.78 21,302 100,775,278 1,347,868.4 25.03624 111,987.36
## 2
## 3
         3 429,331.99 19,938 96,878,519 1,514,008.4 22.74706 112,860.09
         4 847,154.83 31,913 169,177,603 1,655,847.9 18.11293 95,291.90
         5 120,442.99 5,962 29,109,577 1,327,481.7 19.59692 117,149.77
## 5
         6 252,845.64 10,262 55,291,468 1,505,368.0 17.92239 107,957.10
## 6
         7 19,083.75 620 2,924,768 541,679.8 14.83013 58,724.44
## 7
```

Swedish Motor Insurance

- High claim payments and high insured amounts in zones 4, 1 and 2.
- Good driving record in zones 4, 3, 2 and 1.
- High claim frequency in zone 7, 1 and 2.

7. Insurance factors Identification

The committee wants to understand what affects their claim rates so as to decide the right premiums for a certain set of situations. Hence, they need to find whether the insured amount, zone, kilometer, bonus, or make affects the claim rates and to what extent.

Correlation among variables

##		Kilometres	Zone	Bonus	Make	Insured	Claims	Payment
##	Kilometres	1.00	-0.01	0.01	0.00	-0.33	-0.26	-0.24
##	Zone	-0.01	1.00	0.01	-0.01	-0.32	-0.39	-0.36
##	Bonus	0.01	0.01	1.00	0.00	0.35	0.20	0.20
##	Make	0.00	-0.01	0.00	1.00	0.11	0.11	0.12
##	Insured	-0.33	-0.32	0.35	0.11	1.00	0.93	0.90
##	Claims	-0.26	-0.39	0.20	0.11	0.93	1.00	0.96
##	Payment	-0.24	-0.36	0.20	0.12	0.90	0.96	1.00

A linear regression model is fitted to predict Payment.

The regression equation can be written as

Payment = -14704.39 + 16839.78* Kilometres2 + 22285.52* Kilometres3 + 15017.35* Kilometres4 + 22107.93* Kilometres5 + -12761.1* Zone2 + -2312.81* Zone3 + 39940.93* Zone4 + 8851.57* Zone5 + 14551.98* Zone6 + 8405.92* Zone7 + 3778.04* Bonus + -16167.04* Make2 + -19636.57* Make3 + -27087.48* Make4 + -30199.86* Make5 + -19971.42* Make6 + -29646.97* Make7 + -17026.41* Make8 + -54497.24* Make9 + 4939.75* Claims