CNA: 1. Testatprüfung

Was muss ein Rechner können?

Ein Rechner muss einen Algorithmus ausführen können, dazu braucht er:

- Steuerwerk: Befehle eines Programms der Reihe nach ausführen
- Speicher: Zahlen speichern
- Rechenwerk: Speicherinhalt als Zahl interpretieren und manipulieren (rechnen)
- Ablaufsteuerung: auf Inhalt des Speichers reagieren

Was besagt das Mooresche Gesetz?

- Die Anzahl der Transistoren pro Fläche verdoppelt sich alle 18 Monate.
- Die Anzahl der Transistoren pro Fläche steigt um 60% pro Jahr.

Welche speziellen Arten von Prozessoren gibt es?

- Mikrocontroller: Mikroprozessor, Peripheriefunktionen und Speicher auf einem Chip (SoC: System on a Chip)
- DSP: Digitaler Signalprozessor, bearbeitet digitale Signale, z.B. Audiooder Videosignale
- GPU: Graphics Processing Unit, für rechenintensive 2D- und 3D-Aufgaben
- Krypto-Prozessoren: ver- und entschlüsselt Daten, liegt zwischen CPU und Memory
- Mathematischer Koprozessor, z.B. FPU (Floating Point Unit); heute auf der CPU

Was ist der Unterschied zwischen SRAM und DRAM?

- SRAM: statisches RAM, benötigt 6 Transistoren pro Speicherzelle (Flip-Flop), behält seinen Wert
- DRAM: dynaisches RAM, benötigt 1 Transistor pro Speicherzelle, muss aufgefrischt werden
- PSRAM: DRAM mit eingebauter Auffrischung

Wie sieht die Speicherhierarchie aus?

- 1. Register (SRAM)
- 2. Cache (SRAM)
- 3. Arbeitsspeicher (DRAM)

- 4. Dateisystem (SSD, HD)
- 5. Archiv (HD, optische Medien, Magnetbänder)

Wie funktioniert der Fetch/Decode/Execute-Cycle?

- 1. Fetch: den nächsten Befehl ins Befehlsregister laden; Programmzähler erhöhen
- 2. Decode: den Befehl dekodieren; ermitteln, welcher Befehl auszuführen ist; zusätzliche Datenwörter aus dem Speicher laden, falls der Befehl diese benötigt
- 3. Execute: den Befehl ausführen; das Ergebnis im Speicher abspeichern; weiter bei 1.

Woraus besteht eine Von-Neumann-Maschine?

- 1. Rechenwerk
- 2. Steuerwerk
- 3. Speicher
- 4. Ein- und Ausgabe

Wie können negative Zahlen dargestellt werden?

- 1. Vorzeichenbehafteter Wert: erstes Bit 0 für positive, 1 für negative Zahlen
- 2. 1er-Komplement: alle Bits umkehren
- 3. 2er-Komplement: alle Bits umkehren, eins hinzuaddieren
- 4. Exzesscode: Versatz um +n

Welche Gleitkommazahlen gibt es nach IEEE 754?

- einfache Genauigkeit: 32 Bits (1 Vorzeichen, 8 Exponent, 23 Mantisse)
- doppelte Genauigkeit: 64 Bits (1 Vorzeichen, 11 Exponent, 52 Mantisse)

Wie wird eine Fliesskommazahl in IEEE 754 dargestellt?

- 1. Vorzeichen ermitteln, 1 für negative, 0 für positive Zahl
- 2. die Zahl durch Multiplikation bzw. Division mit 2^n in das Intervall [1;2[bringen (normalisieren)
- 3. den (positiven oder negativen!) Exponenten
n mit Excess 127 normalisieren (127 addieren)
- 4. von der normalisierten Zahl 1 abziehen (redundant, da immer eine 1 vorne steht)

- 5. die Mantisse aus der Summe von $1/2+1/4+\ldots+1/2$ n darstellen und bei den entsprechenden Stellen die Bits auf 1 setzen
- 6. Vorzeichen, Exponent und Mantisse binär auflisten
- 7. die Binärzahlen zu je 4 Bits gruppieren
- 8. die einzelnen Gruppen als hexadezimale Zahl darstellen

Wie ermittelt man eine Fliesskommazahl anhand der IEEE-754-Darstellung?

- 1. jede Ziffer der hexadezimalen Zahl mit vier Bits im Binärcode darstellen
- 2. die Bitreihe aufteilen
 - 1. Erstes Bit: Vorzeichen
 - 2. die nächsten 8 (single) bzw. 11 (double) Bits: Exponent
 - 3. die letzten 23 (single) bzw. 52 (double) Bits: Mantisse
- 3. die Mantisse aufsummieren
 - 1. Erstes Bit = 1/2
 - 2. Zweites Bit = 1/4
 - 3. n-tes Bit = 1/2 n
- 4. die Mantisse mit 1 addieren (bei der Konvertierung weggelassen, da redundant)
- 5. den Exponent bestimmen und 127 davon subtrahieren (Excess127)
- 6. den Wert ausrechnen
 - 1. Mantisse * 2^Exponent
 - 2. Vorzeichen nicht vergessen

Mit welcher Schaltung lassen sich AND, OR und NOT realisieren?

- AND: zwei serielle Schalter
- OR: zwei parallele Schalter
- NOT: ein Öffner

Wie lauten die DeMorganschen Gesetze?

- 1. !(A || B) == !A && !B
- 2. !(A && B) == !A || !B

Wodurch zeichnet sich die Harvard-Architektur aus?

- Separate Speicher für Daten und Befehle
- Separate Busse zu den beiden Speichern
- Vorteil gegenüber Von-Neumann-Architektur

- 1. Befehle und Daten können gleichzeitig gelesen werden: Geschwindigkeit
- 2. Strikte Trennung von Daten und Programmen: Sicherheit
- 3. Datenwortbreite und Befehlswortbreite sind unabhängig voneinander
- 4. Synchrones Laden durch mehrerer Rechenwerke

In der Praxis sind oft Mischformen von Harvard- und Von-Neumann-Rechnern zu finden.

Welche Benchmarkprogramme gibt es?

- Lineare Gleichungssysteme
- SPEC: Standard Performance Evaluation
- Whetstone: Floating-Point- und Integer-Berechnungen
- Dhrystone: Integer-Berechnungen
- Weitere für PC: 3DMark, Windows-Leistungsindex, Geekbench

In welchen Einheiten wird Computerperformance gemessen?

- MIPS: Million Instructions per Second (unspezifisch)
- Flops (MegaFlops, GigaFlops): Floating Point Operations per Second
- Laufzeit spezifischer Programme/Rechenaufgaben

Wie lauten die wichtigsten Kennwerte der aktuell leistungsstärksten Computer (Stand 2016)?

- ca. 10 Millionen Cores
- ca. 100 Petaflops (100 * 10^15 Flops)
- ca. 15 Megawatt Leistung

Was bedeutet Endian?

- In welcher Reihenfolge die Ziffern einer Grösse aufgelistet werden
 - Big Endian: grosse zuerst
 - * Datumsangabe 2016/10/19 (19. Oktober 2016)
 - * Zahlen in Englisch: 122 one hundred twenty two
 - Little Endian: kleine zuerst
 - * Datumsangabe 19.10.2016 (auch 19. Oktober 2016)
 - * Zweistellige Zahlen in Deutsch: 22 zweiundzwanzig
- In der Informatik bezeichnet Endian die Byte-Reihenfolge im Arbeitsspeicher.
 - Big Endian
 - * UNIX

- * Java
- * Motorola
- * Freescale
- Little Endian
 - * Windows
 - * Intel

Welche Levels/Stufen gibt es bei den Rechnerarchitekturen?

- Level 5: Problem-oriented language level
 - Translation (compiler)
- Level 4: Assembly language level
 - Translation (assembler)
- Level 3: Operating system machine level
 - Partial interpretation (operating system)
- Level 2: Instruction set architecture level
 - Interpretation (microprogram) or direct execution
- Level 1: Microarchitecture level
 - Hardware
- Level 0: Digital logic level

Welche Operationsarten gibt es?

- 1. Datentransfer-Operationen
- 2. Arithmetische und logische Operationen
- 3. Programmablaufsteuerung

Welche Informationen enthält ein Befehl?

- durchzuführende Operation
- 0, 1 oder n Operanden: Typ, Länge Adressierungsart und Adressen von:
 - erstem Quellenoperand
 - zweitem Quellenoperand
 - Resultat
- Adresse des nächsten Befehls
 - implizit (durch Befehlslänge)
 - explizit (durch bedingten Sprung)

Welche Adressierungsarten gibt es?

• Absolute oder direkte Adressierung: absolute Adresse

- LDA \$0832 (lade den Wert aus Speicherzelle 832)
- Registeradressierung: Name des Registers
 - LDA R1 (lade den Wert aus dem Register 1)
- Unmittelbare Adressierung: Wertangabe
 - LDA #13 (lade den Wert 13)
- Indirekte Adressierung
 - LDA (IX): lade den Wert aus dem Register, dessen Adresse unter "IX" zu finden ist
- Indizierte Adressierung: absolute Adressierung mit Versatz
 - LDA \$0832, 5 (lade den Wert fünf Speicherzellen nach der Adresse 832)

Welche Arten von Befehlen gibt es?

- Einadressbefehle
 - INC \$001: Erhöhe den Wert auf der Speicherzelle 1 um 1
- Zweiadressbefehle
 - ADD \$001, \$002: Addiere die Werte auf den Speicherzellen 1 und 2 und schreibe das Ergebnis auf die Speicherzelle 1 (oder 2)
- Dreiadressbefehle
 - ADD \$001, \$002, \$003: Addiere die Werte auf den Speicherzellen 1 und 2 und schreibe das Ergebnis auf die Speicherzelle 3

Was macht und woraus besteht ein Steuerwerk?

Das Steuerwerk steuert den Ablauf der Befehlsabarbeitung. Es verfügt über:

- einen Program Counter, der auf die nächste Instruktion zeigt
- einen Instruktionsregister
- einen Adressregister
- einen Stackpointer

Wie funktioniert ein Stack?

- Der Stack ist ein Stapelspeicher, die Daten werden darauf "gestapelt".
- Es kann nur immer auf das zuoberst gespeicherte Datenelement zugegriffen werden.
- FIFO: first in, first out
- LILO: last in, last out
- Der Stack Pointer (Stapelzeiger) zeigt immer auf den obersten Eintrag
- Befehle
 - push: Daten auf den Stack schreiben (obendrauf legen)
 - pop: Daten vom Stack auslesen (wegnehmen)

Wozu wird ein Stack gebraucht?

- Zur Ausführung von Unterprogrammen
 - Parameterübergabe
 - Speicherung der Rücksprungadresse
 - Ablage des Rückgabewertes
- Als Zwischenspeicher
- Zur Interrupt-Behandlung

Was versteht man unter dem Semantic Gap?

- Die Kluft zwischen verschiedenen Sprachen (der Unterschied ihrer Ausdrucksstärken)
 - natürliche Sprache: "die Zahl x um drei Erhöhen und um zwei reduzieren"
 - mathematische Notation: x + 3 2
 - Programmiersprache (Java): x = x + 3 2;
 - Maschinensprache
 - * ADD &x, 3
 - * SUB &x, 2
- Hochsprachen wie Java versuchen den Semantic Gap zu schliessen.

Wie lauten die in der Informatik gebräuchlichsten SI-Vorsätze?

- kleiner als 1:
 - 10^-3: milli, m
 - 10^-6: micro, μ
 - 10^-9: nano, n
- grösser als 1:
 - 10³: kilo, k
 - 10⁶: mega, M
 - 10⁹: giga, G
 - 10¹²: tera, T
 - 10¹⁵: peta, P
 - 10¹⁸: exa, E

Was ist ein PC-Chipsatz?

- Er unterstützt den Prozessor bei seinen Aufgaben.
- Er realisiert die elektrischen Anschlüsse (Pins, Schnittstellen)
- Er besteht aus:

- North-Bridge/MCH (Memory Controller Hub): Steuert Datenfluss zwischen CPU, Speicher und South-Bridge
- South-Bridge/ICH (I/O Controller Hub): Steuert Datenfluss zwischen Peripherie, PCI-Bus, Festplatten und externen Schnittstellen und der North-Bridge

Welche RAM-Busse gibt es?

SDRAM: synchrones DRAMDDR RAM: double data rate

DDR II RAM: vierfach FetchDDR III RAM: achtfach Fetch

Welche RAM-Modul-Bauformen gibt es?

• SIMM: Single Inline Memory Module (ältere RAM-Bausteine)

• DIMM: Dual Inline Memory Module (modernere RAM-Bausteine für PC)

• SO-DIMM: Small Outline DIMM (für Laptops)

Was sind die Vorteile von RAID?

- Redundante Abspeicherung: ermöglicht Datenrettung im Falle kaputter Festplatten
- Ausfallsicherheit: das System läuft weiter im Falle einer kaputten Festplatte
- Realisierung extrem grosser virtueller Laufwerke aus mehreren Festplatten
- Fehlererkennung