h e g

Haute école de gestion de Genève Geneva School of Business Administration

Test d'ajustement Test d'indépendance

Dr. Sacha Varone

0	Objectif
O	Objectii

Test d'ajustement

Test d'indépendance Savoir effectuer

- un test d'ajustement
- un test d'indépendance

h e

Rappels

Test d'ajustement

Test d'indépendance

Rappels

Rappels

Test d'ajustement

Test d'indépendance Si la médiane hypothétique de la population est trop éloignée de la médiane de l'échantillon, alors H_0 rejeté.

-> Test des rangs signés de Wilcoxon

La statistique de test W suit la loi tabulée pour le test des rangs signés de Wilcoxon.

- 1. Calculer les différences d_i entre chaque valeur et la médiane postulée $ilde{\mu}$
- 2. Calculer la valeur absolue des différences précédentes : $|d_i|$
- 3. Déterminer le rang pour chacune des valeurs $|d_i|$, en ne tenant pas compte des valeurs nulles. Si des observations ont la même valeur $|d_i|$, alors affecter le rang moyen de ces observations.
- 4. Calculer la statistique W qui est la somme des rangs dont les d_i sont positifs.

Rejet de H_0 si $W > W_{\alpha}$ = valeur critique.

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test

d'indépendance

Test d'ajustement

ຽງ ປtilité

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test

d'indépendance

Supposition nécessaire pour certains tests population suit une loi spécifique (ex loi normale).

Vérification?

Test d'ajustement

Utilité

Principe

Exemple

Test d'indépendance Supposition nécessaire pour certains tests population suit une loi spécifique (ex loi normale).

Vérification ? Test d'ajustement du χ^2

- Adéquation entre distribution hypothétique et empirique -

တ Principe

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test d'indépendance

- 1. Acquisition d'un échantillon de taille suffisamment grande.
- 2. Classement en k différentes catégories des données.
- 3. Calcul des fréquences absolues observées.
- 4. Comparaison des fréquences absolues théoriques e_i et fréquences observées.

Rejet de H_0 = distribution théorique si une trop grande différence existe.

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test

d'indépendance

La statistique à utiliser suit une loi du χ^2 à k-1 degrés de liberté et est calculée ainsi :

$$\chi^2 = \sum_{i=1}^k \frac{(o_i - e_i)^2}{e_i}$$

οù

 o_i = fréquence observée pour la catégorie i

 e_i = fréquence théorique pour la catégorie i

k = nombre de catégories

Supposition suivante : La Taille de l'échantillon est Suffisamment grande

Exemple

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test d'indépendance Un nouveau directeur d'un centre d'appels pour FAI constate que le personnel est réduit de 20% les mercredi, jeudi et dimanche. Son prédécesseur avait procédé ainsi car le nombre d'appels était 20% moins élevé ces jours-là. Afin de savoir si tel est toujours le cas, il fait relever le nombre d'appels sur 1 mois pour chaque jour de la semaine et obtient les données agrégées suivantes :

Jours				Je		.	
Nombre d'appels	1000	1200	900	1000	1200	1100	800

Il souhaite savoir s'il y a effectivement une baisse de 20% les mercredi, jeudi et dimanche, avec un niveau de signification de 0.05.

ත Exemple (suite)

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test d'indépendance 1. Hypothèses nulle et alternative

Test d'ajustement

7

Utilité

Principe

Exemple

Test d'indépendance

1. Hypothèses nulle et alternative

 H_0 La distribution des appels est identique les lu, ma, ve et sa, et 20% moins élevée les me, je et di.

 H_1 La distribution des appels n'est pas celle décrite en H_0

2. Le niveau de signification

Test d'ajustement

7

Utilité

Principe

Exemple

Test d'indépendance

1. Hypothèses nulle et alternative

 H_0 La distribution des appels est identique les lu, ma, ve et sa, et 20% moins élevée les me, je et di.

 H_1 La distribution des appels n'est pas celle décrite en H_0

- 2. Le niveau de signification 0.05
- 3. La valeur critique

Rappels

Test d'ajustement

Utilité

Principe

Test d'indépendance Exemple (suite)

- 1. Hypothèses nulle et alternative
 - La distribution des appels est identique les lu, ma, ve et sa, et 20% moins élevée les me, je et di.
 - H_1 La distribution des appels n'est pas celle décrite en H_0
- 2. Le niveau de signification 0.05
- 3. La valeur critique est celle d'une distribution du χ^2 à 6 degrés de libertés.

$$\chi_{0.05}^2 = 12.5916$$

d'indépendance

4. Le nombre total d'appels sur la période observée est 7200

Jours	Lu	Ma	Me	Je	Ve	Sa	Di
$\overline{o_i}$	1000	1200	900	1000	1200	1100	800
e_i	1125	1125	900	900	1125	1125	900

La statistique est alors

$$\chi^2 = 46.6$$

5.

_

Rappels

Test d'ajustement

Utilité

Principe

Exemple

Test

d'indépendance

4. Le nombre total d'appels sur la période observée est 7200

Jours	Lu	Ma	Me	Je	Ve	Sa	Di
$\overline{O_i}$	1000	1200	900	1000	1200	1100	800
e_i	1125	1125	900	900	1125	1125	900

La statistique est alors

$$\chi^2 = 46.6$$

- 5. Comme 46.6 > 12.5916, l'hypothèse H_0 est rejetée.
- 6 La conclusion est

Rappels

Test d'ajustement

Utilité

Principe

Test

d'indépendance

4. Le nombre total d'appels sur la période observée est 7200

Jours	Lu	Ma	Me	Je	Ve	Sa	Di
$\overline{O_i}$	1000	1200	900	1000	1200	1100	800
e_i	1125	1125	900	900	1125	1125	900

La statistique est alors

$$\chi^2 = 46.6$$

- 5. Comme 46.6 > 12.5916, l'hypothèse H_0 est rejetée.
- 6. La conclusion est que la distribution du nombre d'appels n'est plus telle qu'indiquée par le précédent directeur.

Test d'ajustement

Test d'indépendance

Table contingence
Principe
Statistique
Exemple

Test d'indépendance

ط و و

Rappel

Rappels

Test d'ajustement

Test d'indépendance

Table contingence

Principe Statistique Exemple Table de contingence = tableau croisé = crosstable Principe : 2 variables qualitatives, données groupées

Rappels

Test d'ajustement

Test d'indépendance

Table contingence

Statistique Exemple

But : Tester l'indépendance de deux variables de type catégoriel Moyen : Table de contingence.

Principe du test

Comparaison des fréquences observées avec les fréquences théoriques e_{ij} en cas d'indépendance.

Si une trop grande différence existe, alors l'hypothèse d'indépendance des variables est rejetée.

$$e_{ij} = \frac{(\mathsf{Total\ ligne}\ i)(\ \mathsf{Total\ colonne}\ j)}{\mathsf{Taille\ de\ l'\'echantillon}}$$

Rappels

Test d'ajustement

Test d'indépendance

Table contingence

Principe

Statistique

Exemple

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

οù

 o_{ij} = fréquence observée de la cellule (i, j)

 e_{ij} = fréquence théorique de la cellule (i, j)

r = nombre de lignes

c = nombre de colonnes

Supposition: La Taille de l'échantillon est Suffisamment grande

En pratique, effectif observé par cellule ≥ 5

မ

_

Rappels

Test d'ajustement

Test d'indépendance

Table contingence Principe

Statistique

Exemple

Exemple

Une recherche est effectuée afin de savoir si le nombre de sorties le week-end est indépendant des résultats aux examens, avec un niveau de signification de 0.05. La table de contingence suivante résume les données récoltées :

	Résultat						
	Insuffisant	Acquis	Bien	Excellent	Total		
Sortie WE							
Jamais	84	50	50	16	200		
Occasionnel	82	64	34	20	200		
Fréquent	34	36	16	14	100		
Total	200	150	100	50	500		

ත Exemple (suite)

Rappels

Test d'ajustement

Test d'indépendance

Table contingence

Principe

Statistique

Exemple

1. Hypothèses nulle et alternative

δ Exemple (suite)

Rappels

Test d'ajustement

7

Test
d'indépendance
Table contingence

Principe
Statistique
Exemple

- 1. Hypothèses nulle et alternative
 - H_0 Sorties du week-end indépendantes des résultats aux examens.
 - H_1 Sorties du week-end ne sont PAS indépendantes des résultats aux examens
- 2. Niveau de signification

ත Exemple (suite)

Rappels

Test d'ajustement

Test
d'indépendance
Table contingence
Principe

Statistique Exemple

- 1. Hypothèses nulle et alternative
 - H_0 Sorties du week-end indépendantes des résultats aux examens.
 - H_1 Sorties du week-end ne sont PAS indépendantes des résultats aux examens
- 2. Niveau de signification 0.05
- 3. Valeur critique est

Rappels

Test d'ajustement

Test
d'indépendance
Table contingence
Principe

Statistique Exemple

- 1. Hypothèses nulle et alternative
 - H_0 Sorties du week-end indépendantes des résultats aux examens.
 - H_1 Sorties du week-end ne sont PAS indépendantes des résultats aux examens
- 2. Niveau de signification 0.05
- 3. Valeur critique est celle d'une distribution du χ^2 à (3-1)(4-1)=6 degrés de libertés.

$$\chi_{0.05}^2 = 12.5916$$

ත Exemple (suite)

Rappels

Test d'ajustement

Test d'indépendance

Table contingence

Principe

Statistique

Exemple

4. Les fréquences théoriques de la table de contingence sont

Test d'indépendance
Table contingence

Principe
Statistique
Exemple

4. Les fréquences théoriques de la table de contingence sont

	Résultat					
	Insuffisant	Acquis	Bien	Excellent	Total	
Sortie WE						
Jamais	80	60	40	20	200	
Occasionnel	80	60	40	20	200	
Fréquent	40	30	20	10	100	
Total	200	150	100	50	500	

La statistique est alors

$$\chi^2 = 10.88$$

Test d'ajustement

_

Test d'indépendance

Table contingence

Principe

Statistique

Exemple

- 5. Comme 10.88 < 12.5916, l'hypothèse H_0 ne peut pas être rejetée.
- 6. La conclusion est

Test d'ajustement

7

Test
d'indépendance

Table contingence
Principe
Statistique
Exemple

- 5. Comme 10.88 < 12.5916, l'hypothèse H_0 ne peut pas être rejetée.
- 6. La conclusion est qu'il n'y a pas suffisamment d'évidence pour conclure que les sorties du week-end et le résultat aux examens ne sont pas indépendants.

... et ceci n'est aucunement une incitation à faire la fête le week-end!