Progettazione e sviluppo di applicazioni web

Azienda Speciale di Formazione "Scuola Paolo Borsa" Ing. Masciadri Andrea masciadri.andrea@gmail.com

Basi di dati e sistemi informativi

- Una **base di dati** è un insieme *organizzato* di dati utilizzati per il supporto allo svolgimento delle attività di un ente...
 - O Azienda, ufficio, persona...
- Un sistema informativo è una combinazione di risorse umane, materiali e di procedure per:
 - O la gestione...
 - O la raccolta...
 - O l'archiviazione...
 - O l'elaborazione...
 - O lo scambio...
 - ...delle informazioni necessarie per le attività di un ente.

Archivi tradizionali e basi di dati

- Svantaggi:
 - O Ridondanza
 - Inconsistenza
 - O Privatezza
 - Condivisione
 - O Accesso concorrente
- Database Management System è un sistema software progettato per la creazione e la manipolazione efficiente di basi di dati solitamente da parte di più utenti.

Base di dati e file system

- I DBMS estendono le funzionalità dei file system, fornendo più servizi ed in maniera integrata.
- Nei DBMS, c'è maggiore flessibilità: si può accedere contemporaneamente a record diversi di uno stesso file o addirittura allo stesso record (in lettura).
- I file system prevedono forme di condivisione, permettendo accessi contemporanei in lettura ed esclusivi in scrittura: se è in corso un'operazione di scrittura su un file, altri non possono accedere affatto al file.

DBMS

- Un sistema per la gestione di db gestisce basi di dati:
 - O grandi (oltre i Giga, Tera Byte),
 - O condivise (applicazioni ed utenti diversi),
 - O persistenti (i dati hanno un tempo di vita non limitato a quello delle singole esecuzioni),

assicurando la loro

- affidabilità (conservare integro il contenuto nonostante i malfunzionamenti),
- O privatezza (autorizzazione).
- Un DBMS deve essere efficace ed efficiente.
 - Utilizzo di risorse (temporali e spaziali) accettabili.

Il modello dei dati

- È un insieme di concetti utilizzati per organizzare i dati di interesse e descriverne la struttura di modo che sia comprensibile ad un elaboratore.
- Ogni modello dati fornisce meccanismi di strutturazione (analoghi ai costruttori di tipo dei linguaggi di programmazione) che permettono la definizione di nuovi tipi di dato.
- Ad oggi il modello più diffuso nei prodotti disponibili sul mercato è quello *relazionale*.

Definizione informale

Definizione formale

- Dominio D:
 - un qualunque insieme di valori
- Prodotto cartesiano su n domini D₁ x D₂ x
 ... D_n (non necessariamente distinti):
 - insieme delle n-ple (tuple) $< d_1, d_2, ..., d_n >$, con $d_i \in D_i, 1 \le i \le n$
- Relazione R su D₁ x D₂ x... D_n :
 - un qualunque sottoinsieme di D₁ x D₂ x ... D_n .

Proprieta'

- Grado della relazione:
 - numero di domini (n)
- Cardinalita' della relazione:
 - numero di tuple
- Attributo:
 - nome dato al dominio in una relazione

I nomi degli attributi in una relazione devono essere tutti distinti fra loro

Proprieta'

Schema (di una relazione):

tabella (attributo1,... attributoN)

[I nomi delle relazioni in uno schema devono essere tutti distinti fra loro]

R1(A,B) R2(C,D)

Α	В
а	1
b	3

С	D
С	1
b	3
а	2

Confronto della terminologia

DEFINIZIONE	DEFINIZIONE
FORMALE	INFORMALE
relazione	tabella
attributo	colonna
tupla, n-pla	riga
dominio	tipo di dato
cardinalita'	numero di righe
grado	numero di colonne

Una differenza significativa

DEFINIZIONE FORMALE assenza di duplicati DEFINIZIONE INFORMALE possibili duplicati

Esempio: gestione degli esami universitari

corso

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Мео

esame

MATR	COD- CORSO	DATA	vото
123	1	7-9-03	10
123	2	8-1-03	8
702	2	7-9-03	5

studente

MATR	NOME	CITTA'	INDIR
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

Rappresentazione relazionale (i)

ricevuta

NUMERO	DATA	TOTALE
2369	12/5/1997	41,98
2456	16/5/1997	39,41

dettaglio

NUMERO	QUANTITA'	DESCRIZIONE	IMPORTO
2369	3	coperti	3,15
2369	2	antipasti	6,22
2369	3	primi	12,60
2369	2	bistecche	19,00
2456	2	coperti	2,10
2456	1	antipasti	3,11
2456	2	primi	8,40
2456	2	orate	25,50
2456	2	caffè	1,60

Rappresentazione relazionale (ii)

ricevuta

NUMERO	DATA	TOTALE
2369	12/5/1997	41,98
2456	16/5/1997	39,41

dettaglio

NUMERO	RIGA	QUANTITA'	DESCRIZIONE	IMPORTO
2369		3	coperti	3,15
2369	2	2	antipasti	6,22
2369	3	3	primi	12,60
2369		2	bistecche	19,00
2456		2	coperti	2,10
2456	2	1	antipasti	3,11
2456	3	2	primi	8,40
2456		2	orate	25,50
2456	5	2	caffè	1,60

Come arricchire lo schema

- Vincoli di integrita':
 - escludono alcune istanze in quanto non rappresentano correttamente il mondo applicativo
 - chiavi
 - vincoli sui valori nulli (poi)
 - integrita' referenziale (poi)
 - vincoli generici (poi)

Nozione di chiave

Sottoinsieme degli attributi dello schema che ha la proprieta' di unicita' e minimalita'

Unicita':

non esistono due tuple con chiave uguale

Minimalita':

sottraendo un qualunque attributo alla chiave si perde la proprieta' di unicita'

Chiavi nell'esempio: gestione degli esami universitari

studente

MATR	NOME	CITTA'	INDIR

esame

MATR	COD-CORSO	DATA	vото

corso

COD-CORSO	TITOLO	DOCENTE

Algebra relazionale

Una visione d'insieme

Esempio: gestione degli esami universitari

studente

MATR	NOME	CITTA'	CDip
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	vото
123	1	7-9-03	10
123	2	8-1-03	8
702	2	7-9-03	5

corso

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Мео

Selezione

σ_{Nome='Paola'} STUDENTE

- e' una relazione (priva di nome) con
- schema:
 - lo stesso schema di STUDENTE
- istanza:
 - le tuple di STUDENTE che soddisfano il predicato di selezione

Matr	Nome	Città	CDip
415	Paola	Torino	Inf

Sintassi del predicato di selezione

- espressione booleana di predicati semplici

- operazioni booleane: comparatore:
- AND (P1 AND P2) (∧)
 =, !=, <, <=, >, >=
- OR (P1 OR P2) (∨)
- NOT (P1) (¬)predicati semplici :
- TRUE, FALSE
- termine comparatore termine

termine:

- costante, attributo
- espressione aritmetica di costanti e attributi

Esempio di selezione

σ STUDENTE (Città='Torino') OR

((Città='Roma')
AND NOT (CDip='Log'))

MATR	NOME	CITTA'	CDip	
123	Carlo	Bologna	Inf	1
415	Paola	Torino	Inf	
702	Antonio	Roma	Log	1

Proiezione

$\Pi_{\text{Nome,CDip}}$ STUDENTE

- e' una relazione (priva di nome) con
- schema:
 - gli attributi Nome e CDip
- · istanza:

la restrizione delle tuple sugli attributi
 Nome e CDip

Nome	CDip
Carlo	Inf
Paola	Inf
Antonio	Log

Proiezioni e duplicati

 nel modello formale la proiezione elimina i duplicati

 Π_{CDip} STUDENTE

 nel modello informale (e nei sistemi) la eliminazione dei duplicati va richiesta esplicitamente

Assegnamento

- serve per dare un nome al risultato di una espressione algebrica
- non fa parte delle operazioni algebriche

INFORMATICO =
$$\sigma_{CDIP='Inf'}$$
 STUDENTE

TORINESE =
$$\sigma_{\text{Città='Torino'}}$$
 STUDENTE

Unione

TABELLA1 U TABELLA2

si può fare se TABELLA1 e TABELLA2 sono compatibili

Quindi:

con lo stesso grado oppure (nei sistemi) con domini ordinatamente dello stesso tipo

Unione

- INFORMATICO ∪ TORINESE
- e' una relazione (priva di nome) con
- schema:
 - lo schema di INFORMATICO
- istanza:
 - la unione delle tuple di INFORMATICO e TORINESE

Per quanto riguarda le istanze, è commutativa

Matr	Nome	Città	CDip
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf

Differenza

TABELLA1 - TABELLA2

si può fare se TABELLA1 e TABELLA2 sono compatibili

Differenza

- INFORMATICO TORINESE
- e' una relazione (priva di nome) con
- schema:
 - lo schema di INFORMATICO
- istanza:
 - la differenza delle tuple di INFORMATICO e TORINESE

Per quanto riguarda le istanze, NON è commutativa

Matr	Nome	Città	CDip
123	Carlo	Bologna	Inf

Prodotto cartesiano

- R × S
- è una relazione (priva di nome) con
- schema:
 - gli attributi di R e S
 - grado(RxS)= grado(R)+grado(S)
- istanza:
 - tutte le possibili coppie di tuple di R e S card(RxS)=card(R)*card(S)

Esempio

R1(A,B) R2(C,D)

Α	В
а	1
b	3

С	D
С	1
b	3
а	2

R1xR2 (A,B,C,D)

Α	В	С	D
а	1	С	1
а	1	b	3
а	1	а	2
b	3	С	1
b	3	b	3
b	3	а	2

Intersezione

 TABELLA1 ∩ TABELLA2
 Come gli altri operatori insiemistici, si può fare se TABELLA1 e TABELLA2 sono compatibili

Derivabile tramite la seguente formula:

$$R \cap S = R - (R - S)$$

Intersezione INFORMATICO TORINESE

- e' una relazione (priva di nome) con
- schema:
 - lo schema di INFORMATICO
- istanza:
 - la intersezione delle tuple di INFORMATICO e TORINESE

Per quanto riguarda le istanze, è commutativa

Matr	Nome	Città	CDip	
415	Paola	Torino	Inf	

Join

STUDENTE | > | STUDENTE.Matr=ESAME.Matr ESAME

è equivalente alla seguente espressione (operatore derivato):

 $\sigma_{\text{STUDENTE.Matr}=\text{ESAME.Matr}} \text{ STUDENTE} \times \text{ESAME}$

attributi omonimi sono resi non ambigui usando la notazione "puntata": ESAME.Matr, STUDENTE.Matr

Join

STUDENTE | ▷ ▷ | STUDENTE.Matr=ESAME.Matr ESAME

- · produce una relazione (priva di nome) con
- schema:
 - la concatenazione degli schemi di STUDENTE e ESAME
- istanza:
 - le tuple ottenute concatenando quelle tuple di STUDENTE e di ESAME che soddisfano il predicato

STUDENTE. Matr	Nome	Città	CDip	ESAME. Matr	Cod- Corso	Data	Voto
123	Carlo	Bologna	Inf	123	1	7-9-03	10
123	Carlo	Bologna	Inf	123	2	8-1-03	8
702	Antonio	Roma	Log	702	2	7-9-03	5

Sintassi predicato di join

espressione congiuntiva di predicati semplici:

ATTR1 comp ATTR2

Ove ATTR1 appartiene a TAB1 ATTR2 appartiene a TAB2 comp: =, !=, <, <=, >, >=

EQUI-JOIN: soli confronti di uguaglianza

Join naturale

equi-join di tutti gli attributi omonimi (si omette il predicato, si elimina la colonna ripetuta)

STUDENTE | ⊳⊲ | ESAME

Matr	Nome	Città	CDip	Cod- Corso	Data	Voto
123	Carlo	Bologna	Inf	1	7-9-03	10
123	Carlo	Bologna	Inf	2	8-1-03	8
702	Antonio	Roma	Log	2	7-9-03	5

Join naturale di tre tabelle

STUDENTE | ▷ ▷ | ESAME | ▷ ▷ | CORSO

Matr	Nome	Città	CDip	Cod- Corso	Data	Voto	Titolo	Docente
123	Carlo	Bologna	Inf	1	7-9-03	10	matem	barozzi
123	Carlo	Bologna	Inf	2	8-1-03	8	infor	meo
702	Antonio	Roma	Log	2	7-9-03	5	infor	meo

Semi-join

STUDENTE | > | STUDENTE.Matr=ESAME.Matr ESAME

Π_{Attr(Studente)} STUDENTE

|▷⊲| STUDENTE.Matr=ESAME.Matr ESAME

produce una relazione (priva di nome) con

- schema:
 - lo schema di STUDENTE
- istanza:
 - le tuple ottenute proiettando su STUDENTE il join di STUDENTE e di ESAME, cioe' le tuple di STUDENTE che hanno una tupla corrispondente in ESAMI.

Matr	Nome	Città	CDip
123	Carlo	Bologna	Inf
702	Antonio	Roma	Log

Semi-join naturale

STUDENTE | $\triangleright \triangleleft$ ESAME = $\Pi_{\text{Attr(Studente)}}$ STUDENTE | $\triangleright \triangleleft$ | ESAME

Proietta sulla relazione STUDENTE il join naturale di STUDENTE e ESAME

Matr	Nome	Città	CDip
123	Carlo	Bologna	Inf
702	Antonio	Roma	Log

Equivalenza di espressioni

quali studenti hanno preso 10 in matematica?

```
Π<sub>Nome</sub> (STUDENTE |⊳⊲| (σ<sub>Voto=10</sub> ESAME |⊳⊲| (σ<sub>Titolo='matematica'</sub> CORSO)))
```

equivalente a:

```
Π Nome <sup>O</sup> Voto=10 ∧ Titolo='matematica'

(STUDENTE | ▷⊲ | ESAME | ▷⊲ | CORSO)
```

Equivalenza di espressioni

 quali professori hanno esaminato Antonio?

equivalente a:

$$\Pi_{\text{Docente}} \sigma_{\text{Nome = 'Antonio'}} (\text{STUDENTE } | \triangleright \triangleleft | \text{ESAME } | \triangleright \triangleleft | \text{CORSO})$$

Espressioni complesse

 estrarre il nome degli studenti che non hanno mai preso meno di 8

```
Π Nome STUDENTE | ▷⊲|
(Π Matr ESAME
-
Π Matr σ Voto<8 ESAME)
```

 spiegazione: prima trovo le matricole di tutti gli studenti, poi sottraggo le matricole di coloro che hanno preso meno di 8, poi trovo i loro nomi.

Espressioni complesse

 estrarre il nome degli studenti che non hanno mai preso meno di 8 OPPURE non hanno mai sostenuto un esame

```
\begin{array}{ll} \Pi_{\text{Nome}} \, \text{STUDENTE} \, | \triangleright \triangleleft | \\ & \left( \Pi_{\text{Matr}} \, \, \text{ESAME} - \Pi_{\text{Matr}} \, \sigma_{\text{Voto} < 8} \, \, \text{ESAME} \right) \\ \text{U} \\ & \left( \Pi_{\text{Nome}} \, \text{STUDENTE} - \Pi_{\text{Nome}} \, \text{STUDENTE} \, | \triangleright \triangleleft | \, \, \text{ESAME} \right) \end{array}
```

Esercizi

studente

MATR	NOME	CITTA'	CDip
123	Carlo	Bologna	Inf
415	Paola	Torino	Inf
702	Antonio	Roma	Log

esame

MATR	COD- CORSO	DATA	vото
123	1	7-9-03	10
123	2	8-1-03	8
702	2	7-9-03	5

corso

COD- CORSO	TITOLO	DOCENTE
1	matematica	Barozzi
2	informatica	Мео

- Estrarre il primo esame di ciascun studente;
- estrarre il penultimo esame di ciascuno studente;

Primo esame

- Estrarre il primo esame di ciascuno studente:
 - ESAME1 = ESAME;
 - ESAME2 = ESAME;
 - PRIMOESAME = ESAME

(ESAME1 |⊳⊲ ESAME2

(ESAME1.Matr = ESAME2.Matr) ^

(ESAME1.Data > ESAME2.Data)

Penultimo esame

- Estrarre il penultimo esame di ciascuno studente:
 - estrarre tutti gli esami meno l'ultimo esame di ogni matricola;
 - estrarre l'ultimo esame all'interno del set sopra determinato.

Domande?

masciadri.andrea@gmail.com

Ora provate voi..

References