

Tópicos I – Morfometria Geométrica

Diego de Almeida da Silva

Aulas 7 e 8

A disposição no morfoespaço pode ser interpretada a partir de uma perspectiva biológica

PC1

A disposição no morfoespaço pode ser interpretada a partir de uma perspectiva biológica

Bastante razoável presumir similaridade relacionada à proximidade filogenética

A B C

Filomorfoespaço: projeção da filogenia sobre o espaço da forma

Bastante razoável presumir similaridade relacionada à proximidade filogenética

Filomorfoespaço: projeção da filogenia sobre o espaço da forma

PC1

Clados bem definidos

→ forma conservada na filogenia

Clados bem definidos

→ forma conservada na filogenia

Sinal Filogenético

Medida da tendência de características ou traços biológicos de espécies relacionadas evolutivamente ser mais semelhantes entre si do que com espécies não relacionadas

K de Blomberg

$$K = \frac{Var_{filogenia}}{Var_{terminais}}$$

Comparação entre os valores para duas espécies

$$K = \frac{\text{Var}_{\text{filogenia}}}{\text{Var}_{\text{terminais}}} = \frac{\sum_{i,j} (x_i - \overline{x})(x_j - \overline{x}) C_{i,j} / n}{\sum_{i} (x_i - \overline{x})^2 / (x_j - \overline{x})}$$

Matriz de covariância filogenética

$$K = \frac{\text{Var}_{\text{filogenia}}}{\text{Var}_{\text{terminais}}} = \frac{\sum_{i,j} (x_i - \overline{x})(x_j - \overline{x}) C_{i,j} / n}{\sum_{i} (x_i - \overline{x})^2 / (x_j - \overline{x})}$$

$$K = \frac{\text{Var}_{\text{filogenia}}}{\text{Var}_{\text{terminais}}} = \frac{\sum_{i,j} (x_i - \overline{x}) (x_j - \overline{x}) C_{i,j} / n}{\sum_{i} (x_i - \overline{x})^2 / (x_j - \overline{x})}$$

Como os valores se relacionam **sem** a ponderação filogenética

Movimento Browniano

Movimento Browniano

Acúmulo de mudanças guiado por processos **estocásticos**

https://doi.org/10.1101/2022.01.21.476612

Movimento Browniano

K < 1
 → baixo sinal filogenético

Exemplo

No pacote phylocurve há uma extensão multivariada para o K, o **K.mult**

Syst. Biol. 63(5):685-697, 2014

© The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com

DOI:10.1093/sysbio/syu030

Advance Access publication April 30, 2014

A Generalized K Statistic for Estimating Phylogenetic Signal from Shape and Other High-Dimensional Multivariate Data

DEAN C. ADAMS*

Department of Ecology, Evolution, and Organismal Biology, and Department of Statistics, Iowa State Universety (2011), USA; *Correspondence to be sent to: Department of Ecology, Evolution, and Organismal Biology, Iowa State Universety (2011), USA; E-mail: dcadams@iastate.edu.

λ de Pagel

$$C'_{i,j} = \lambda \cdot C_{i,j}$$

Matriz de covariância filogenética

$$C'_{i,j} = \lambda \cdot C_{i,j}$$

Matriz de covariância filogenética

$$C'_{i,j} = \lambda \cdot C_{i,j}$$

Valor estimado, para maximizar a verossimilhança

• λ = Aqui é testado se o valor de λ cia encontrado difere de 0 ou 1 ica

 $\bullet \quad \lambda > 1$

restrição evolutiva (lento)

DOI: 10.1002/ece3.6746

dieta 1

dieta 2

dieta 3

DOI: 10.1002/ece3.6746

Convergência na ocupação do morfoespaço

C. Tristan Stayton^{1,2}

¹Department of Biology, Bucknell University, 337 Biology Building, Lewisburg, Pennsylvania 17837 ²E-mail: tstayton@bucknell.edu

Stayton 2015: índices de convergência

0.0

-0.5

Phenotypic axis 1

C. Tristan Stayton^{1,2}

¹Department of Biology, Bucknell University, 337 Biology Building, Lewisburg, Pennsylvania 17837 ²E-mail: tstayton@bucknell.edu

Phenotypic axis 2

-2.0

-1.5

C1: similaridade morfológica entre os táxons convergentes

C. Tristan Stayton^{1,2}

Department of Biology, Bucknell University, 337 Biology Building, Lewisburg, Pennsylvania 17837 ²E-mail: tstayton@bucknell.edu

Phenotypic axis 2

-2.0

-1.5

Phenotypic axis 1

C3: distância percorrida pelos taxa convergentes, em função do tempo do clado

0.0

-0.5

Phenotypic axis 1

C. Tristan Stayton^{1,2}

¹Department of Biology, Bucknell University, 337 Biology Building, Lewisburg, Pennsylvania 17837

²E-mail: tstayton@bucknell.edu

-2.0

-1.5

Atenção: K de Blomberg, λ de Pagel, C3 e C4 de Stayton

Todos levam em consideração os comprimentos de ramos

Atenção: K de Blomberg, λ de Pagel, C3 e C4 de Stayton

Todos levam em consideração os comprimentos de ramos

O tempo é importante

Fenograma*: a mudança da forma ao longo do tempo

Diversificação na ocupação do morfoespaço ao longo do tempo

*Traitgram doi.org/10.3390/ani14101406

A ocupação do morfoespaço permite a exploração de significado biológico em diversos sentidos

A ocupação do morfoespaço permite a exploração de significado biológico em diversos sentidos

Inclusive por consequência estatística

Tendência central

Variação da forma

Além da ocupação do morfoespaço, a variação da forma também pode ser mais ou menos acelerada ao longo do tempo

Taxas evolutivas

Medida da mudança acumulada ao longo dos ramos de uma filogenia

Taxas evolutivas

Pode ser usada para identificar pontos de **quebra**, sugerindo processos evolutivos distintos

- aceleração;
- estase...

Taxas evolutivas

Permitindo **mapear** como variou a mudança morfológica na filogenia

Exemplo

Prática de evolução da forma, aplicando phytools, geiger e diversos outros pacotes do R na morfometria geométrica

Agora, vamos pro

