Day 9

Outline

- Conditional probability example
 Power analysis example

Please reference the attached sheets for full examples

Conditional Probability Examples

Example 1

In a lecture class of 150 students, 110 students are freshmen, 50 own a dog, and 25 are freshmen who own a dog. Suppose a student is selected at random.

Tree Diagram Version

Root

- Freshman $\left(\frac{110}{150}\right)$
 - Own dog : $\frac{25}{110}$ [Freshman AND own dog = $(\frac{110}{150}\times\frac{25}{110}=\frac{1}{6})]$
 - No dog : $\frac{85}{110}$ [Freshman AND no dog = $(\frac{110}{150}\times\frac{85}{110}=\frac{17}{30})]$
- Not Freshman $(\frac{40}{150})$
 - Own dog : $\frac{25}{40}$ [Not freshman AND own a dog = $(\frac{40}{150}\times\frac{25}{40}=\frac{1}{6})]$
 - No dog : $\frac{15}{40}$ [Not freshman AND not own a dog = $(\frac{40}{150}\times\frac{15}{40}=\frac{1}{10})]$
- a. What is the probability of being a freshman, given that the student owns a dog?

•
$$P(Freshman|Dog) = \frac{P(Freshman AND Dog)}{P(Dog)} = \frac{\frac{25}{150}}{\frac{25}{150} + \frac{25}{150}} = \frac{25}{50} = \frac{1}{2}$$

- b. What is the probability of owning a dog, given that the student is a freshman?
 - $P(Dog|Freshman) = \frac{P(Dog\ AND\ Freshman)}{P(Freshman)} = \frac{\frac{25}{100}}{\frac{110}{150}} = \frac{25}{110} = \frac{5}{22}$
- P(Freshman & Dog) = P(Freshman) P(Dog|Freshman)
- $P(Freshman \& Dog) = P(Freshman) P(Dog) \leftarrow Independence$

Table Diagram Version

	Freshman	Not Fresh.	Total
Dog	25	25	50
No Dog	85	15	100
Total	110	40	150

Figure 1: Freshman Table Example

Power Analysis Examples

Example 1

It is believed that about 10% of the population is left-handed. However, China has claimed that less than one percent of its students are left-handed. Suppose we are interested in evaluating whether there is something special about Chinese people, or whether the Chinese government is lying. Suppose further that we have devised a scientifically perfect test to measure a person's dominant hand. Would a random sample of 50 Chinese students be large enough to detect a population difference of 10% vs. 1%?

We want low α and high power

- $H_0: p = 0.1 [Null]$
- $H_1 : p = 0.01$ [Alternate]
- N:50
- α: 0.05
 - If α is not given, please assume $\alpha = 0.05$
- Define p = proportion of left handed students
- For midterm one, define X = number of (successes) left-handed students in our sample.
- Decision rule:
 - Critical region: $X \leq x$
 - If X is in critical region, accept H_0 , else accept H_1 .
 - Only problem is we do not know what x is.
 - Defining our critical region to be $X \leq 5$
 - * Under the null hypothesis H_0 , $X \sim B(50, 0.1)$
 - $P(X \le 5|p = 0.1) = 0.616$
 - · P(Type 1 Error) = 0.616
 - * Under the alternative hypothesis H_1 , $X \sim B(50, 0.01)$
 - $\beta = P(X > 5|p = 0.01) = 0$
 - Power = $P(X \le 5|p = 0.01) = 1$
 - Defining our critical region to be $X \leq 1$
 - * When p = 0.1
 - · 3.4% false positive
 - · 96.6% true negative
 - · $\alpha = 0.034$
 - * When p = 0.01
 - · 91.1% true positive
 - \cdot 8.9% false negative
 - · Power = 0.911
 - · $\beta = 0.089$

Example 2

Is this sample large enough to detect something \rightarrow power rule!!!!!!

We want low α and high power

- $\bullet \ H_0: \, p=0.26 \; [Null]$
- H_1 : p = 0.52 [Alternate]
- N:14
- α: 0.05
 - If α is not given, please assume $\alpha = 0.05$
- Define p = % of patients progression free after 6 months

Using R:

- Critical region is X > 6 or $X \ge 6$
- lower.tail = TRUE includes \leq
- lower.tail = FALSE includes >
- When P = 0.26
 - 4.7% false positive
 - -95.3% true negative
 - $-\alpha = 0.047$
- When P = 0.52
 - -66.2% true positive
 - 33.8% false negative
 - Power = 0.662
 - $-\beta = 0.338$