L15_hardware de memória

*Obrigatório

Endereço de e-mail *
bruno.oliveira.duarte.bd@gmail.com
15.1 Explique a diferença entre endereços lógicos e endereços físicos e as 3 pontos razões que justificam o uso de endereços lógicos. Assinale a correta: *
Endereços lógicos são aquelas gerados pelo programa compilado, e os físicos são aqueles explicitamente definidos pelo programador durante a programação
Endereços físicos são aqueles endereços definidos de acordo com espaço de endereçamento do processador, e os lógicos pelo SO
Endereços físicos refletem a quantidade de memória real existente no sistema, já os endereços lógicos são todos os endereços que podem ser gerados pela arquitetura do processador
Endereços físicos refletem a quantidade de memória real existente no sistema, já os endereços lógicos são todos os endereços que podem ser usados, descontando-se algumas áreas reservadas
○ NDA
15.2 O que é uma MMU – Memory Management Unit? Assinale a correta: *
Opção 1

15.3 Seria possível e/ou viável implementar as conversões de endereços 3 pontos realizadas pela MMU em software, ao invés de usar um hardware dedicado? Por que? Assinale a correta *
É possível, porém por questões de desempenho é melhor utilizar um hardware dedicado
É possível, e também seria mais rápido realizar a conversão diretamente na CPU
Não é possível pois a CPU não tem memória suficiente para armazenar as tabelas de tradução
É possível e também viável. Porém por questões de segurança e organização preferiu-se utilizar um hardware separado
○ NDA
15.4 Sobre as afirmações a seguir, relativas ao uso da memória RAM pelos 5 pontos processos, indique quais são incorretas: *
Os endereços físicos gerados pelo processador são convertidos em endereços lógicos através da MMU - Memory Management Unit
lógicos através da MMU - Memory Management Unit O acesso a endereços de memória inválidos é notificado ao processador através de
lógicos através da MMU - Memory Management Unit O acesso a endereços de memória inválidos é notificado ao processador através de interrupções geradas pela MMU A área de memória TEXT contém o código-fonte a ser compilado e executado pelo
lógicos através da MMU - Memory Management Unit O acesso a endereços de memória inválidos é notificado ao processador através de interrupções geradas pela MMU A área de memória TEXT contém o código-fonte a ser compilado e executado pelo processo A área de memória DATA é usada para armazenar todas as variáveis e constantes

15.5 Explique as principais formas de alocação de memória. Assinale as 4 pontos corretas *
Por partições, onde cada partição carrega um processo. Os registradores base e limit devem ser ajustados pelo processador a cada troca de contexto (inserindo os valores base e limit do novo processo)
Por segmentos, onde cada seção do processo pode residir em um local diferente da memória. Não é muito utilizada nos dias atuais
Por segmentos, onde cada seção do processo pode residir em um local diferente da memória. Muito utilizada nos dias atuais
Por paginação endereçamento lógico dos processos é mantido linear e unidimensional. Internamente, de forma transparente para o processador, o espaço de endereçamento lógico é dividido em pequenos blocos de mesmo tamanho, denominados páginas
Por paginação cada página possui uma seção do processo
Por partições cada seção carregará um ponteiro para a partição seguinte
Por paginação endereçamento lógico dos processos é mantido linear e unidimensional. Internamente, de forma transparente para o processador, o espaço de endereçamento lógico é dividido em pequenos blocos de tamanho variável, chamado de seções
15.6 Por que os tamanhos de páginas e quadros são sempre potências de 4 pontos 2? *
Para facilitar a conversão de endereços virtuais em endereços reais
Para facilitar a conversão de endereços reais em endereços virtuais
Para facilitar cálculos pelo programador
Para poder realizar as conversões para hexadecimal de forma mais fácil
Outro:

15.7 Considerando a tabela de segmentos da questão 7 (com valores em 10 pontos decimal), calcule os endereços físicos correspondentes aos endereços lógicos 0:45, 1:100, 2:90, 3:1.900 e 4:200. * 99 300 1400 100 90 1200 0 30 89 1:100 3:1.900 4:200 0:45 2:90 <

15.8 Considerando a tabela de páginas da questão 8, com páginas de 15 pontos 500 bytes, informe os endereços físicos correspondentes aos endereços lógicos 414, 741, 1.995, 4.000 e 6.633, indicados em decimal * 6241 3633 6633 4000 1 1914 1913 645 0 4.000 414 1.995 741 6.633 <

15.9.1 Considere um sistema com endereços físicos e lógicos de 32 bits, 4 pontos que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o tamanho das páginas e quadros, em bytes *

2048

15.9.2 Considere um sistema com endereços físicos e lógicos de 32 bits, que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o tamanho máximo de memória que um processo pode ter, em bytes e páginas *

32MB

15.9.3 Considere um sistema com endereços físicos e lógicos de 32 bits, que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o espaço, em bytes, ocupado pela tabela de páginas para um processo com apenas uma página de código, uma página de dados e uma página de pilha. As páginas de código e de dados se encontram no inicio do espaço de endereçamento lógico, enquanto a pilha se encontra no final do mesmo. *

Sua resposta

(1)

Esta pergunta é obrigatória

5 pontos

15.9.4 Considere um sistema com endereços físicos e lógicos de 32 bits, que usa tabelas de páginas com três níveis. Cada nível de tabela de páginas usa 7 bits do endereço lógico, sendo os restantes usados para o offset. Cada entrada das tabelas de páginas ocupa 32 bits. Calcule o espaço, em bytes, ocupado pela tabela de páginas para um processo caso todas as páginas do processo estejam mapeadas na memória *

Sua resposta

15.10 Explique o que é TLB, qual a sua finalidade e como é seu funcionamento. Assinale a correta: *	2 pontos
Tem por objetivo diminuir o espaço ocupado pela tabela de páginas	
Tem por objetivo manter a tabela de páginas	
É a estrutura principal de controle da memória	
É uma estrutura auxiliar, utilizada com objetivo de diminuir tempo de acesso a memória	
Outro:	

15.11 Sobre as afirmações a seguir, relativas à alocação por páginas, indique quais são incorretas: *	5 pontos
O bit de modificação M associado a cada página é "ligado" pelo núcleo sempro um processo modificar o conteúdo da mesma	e que
O cache TLB deve ser esvaziado a cada troca de contexto entre processos	
O bit de referência R associado a cada página é "ligado" pela MMU sempre que página é acessada	e a
O cache TLB é usado para manter páginas frequentemente usadas na memóri	а
As tabelas de páginas multiníveis permitem mais rapidez na conversão de end lógicos em físicos	lereços
Um endereço lógico com N bits é dividido em P bits para o número de página e bits para o deslocamento em cada página	e N - P
15.12 Por que é necessário limpar o cache TLB após cada troca de contexto entre processos? Por que isso não é necessário nas trocas de contexto entre threads? Assinale as corretas: *	4 pontos
Por threads são apenas instâncias de um um único processo, ou seja, compar a maioria dos dados e código	tilham
✓ A TLB é trocada também a cada troca de contexto de threads	
As threads, apesar de possuírem espaço de endereçamento próprio, ainda	
compartilham a área de TEXT	
compartilham a área de TEXT As threads, apesar de possuírem sua própria pilha, ainda compartilham outras do processo como TEXT e DATA	áreas
As threads, apesar de possuírem sua própria pilha, ainda compartilham outras	áreas

15.13 Um sistema de memória virtual paginada possui tabelas de página com três níveis e tempo de acesso à memória RAM de 100ns. O sistema usa um cache TLB de 64 entradas, com taxa estimada de acerto de 98%, custo de acerto de 10ns e penalidade de erro de 50ns. Qual o tempo médio estimado de acesso à memória pelo processador? *

5 pontos

Sua resposta

Crie um breve resumo do capítulo com suas próprias palavras. Procure 3 pontos destacar os principais conceitos aprendidos. Mínimo de 100 e máximo de 200 palavras, o que equivale entre 10 a 20 linhas aproximadamente. *

O hardware da memória é composto de diferentes partes. Uma delas é a memória física, que representa a quantidade de memória RAM (em bytes) disponível para o computador. Cada byte possui um endereço próprio.

Para que possa haver comunicação entre memória e processador utilizam-se barramentos de dados, endereços e controle. Cada um possui 2ⁿ endereços distintos, em que n é o número de vias disponíveis. O conjunto de endereços é o espaço de endereçamento.

A memória virtual serve para simplificar a utilização de memória pelo sistema. Para isso, existem os endereços físicos da memória e os virtuais.

Processos enxergam somente a memória virtual, por isso a MMU usa estratégias para traduzir de uma para outra.

O uso de partições é uma forma simples. Divide-se a memória em N partições, cada uma recebendo um processo. Estendendo esse conceito tem-se a tradução por segmentos, em que cada seção de memória do processo é armazenada em uma área separada.

Na organização por páginas o endereçamento é linear e unidimensional. O mapeamento se dá através de tabelas, flags de status e controle, tabela multinível (na forma de árvore) e uma memória cache para armazenar consultas recentes.

Página 1 de 1 Enviar

Nunca envie senhas pelo Formulários Google.

Este conteúdo não foi criado nem aprovado pelo Google. <u>Denunciar abuso</u> - <u>Termos de Serviço</u> - <u>Política de Privacidade</u>

Google Formulários