ESPACES VECTORIELS

COMBINAISONS LINÉAIRES, CARACTÉRISATION ET INTERSECTION D'ESPACE VECTORIEL

Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Combinaisons linéaires

Définition 1 Soient $n \in \mathbb{N}^*$ et $x_1, x_2, ..., x_n$ des vecteurs de E. On dit que $x \in E$ est **combinaison linéaire** de $x_1, x_2, ..., x_n$ s'il existe $(\lambda_1, \lambda_1, ..., \lambda_n) \in \mathbb{K}^n$ tel que

$$x = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = \sum_{i=1}^{n} \lambda_i x_i.$$

2 Caractérisation d'un espace vectoriel

Théorème 1 Soit F une partie non vide de E. F est un sous-espace vectoriel de E si et seulement si pour tout $(u_1,u_2)\in F^2$ et $(\lambda,\mu)\in \mathbb{K}^2$, on a

$$\lambda u_1 + \mu u_2 \in F$$
.

Autrement dit si et seulement si toute combinaison linéaire de deux éléments de F appartient à F.

3 Intersection de deux sous-espaces vectoriels

Théorème 2 Soient F et G deux sous-espaces vectoriels de E. L'intersection $F \cap G$ est un sous-espace vectoriel de E.

1 IONISX