Introduction to Machine Learning, Fall 2023 Homework 2

(Due Tuesday Nov. 14 at 11:59pm (CST))

October 25, 2023

- 1. [10 points] [Convex Optimization Basics]
 - (a) Proof any norm $f: \mathbb{R}^n \to \mathbb{R}$ is convex. [2 points]
 - (b) Determine the convexity (i.e., convex, concave or neither) of $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{>0}$. [2 points]
 - (c) Determine the convexity of $f(x_1, x_2) = x_1/x_2$ on $\mathbb{R}^2_{>0}$. [2 points]
 - (d) Recall Jensen's inequality $f(\mathbb{E}(X)) \leq \mathbb{E}(f(X))$ if f is convex for any random variable X. Proof the log sum inequality:

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}$$

where a_1, \ldots, a_n and b_1, \ldots, b_n are positive numbers. Hints: $f(x) = x \log x$ is strictly convex. [4 points]

Solution:

(a) let
$$X$$
, Y be two points in \mathbb{R}^n and let λ be a scalar in $[0,1]$ the point $\lambda x + (1-\lambda) Y$ hies on the line connecting X and Y by the triangle inequality: $f(\lambda X + (1-\lambda) Y) \in \lambda f(X) + (1-\lambda) f(Y)$ The inequality holds for any norm f because of the properties of norm f only norm $f: \mathbb{R}^n \to \mathbb{R}$ is convex

(b)
$$f_{X1} = \frac{2X_1}{X_1}$$
 $f_{X1} = -\frac{X_1^2}{X_2^2}$ $f_{X1X_1} = \frac{2}{X_2}$ $f_{X1X_2} = \frac{2X_1^2}{X_1^3}$
Since X_1 must be greater than 0

$$\frac{2}{X_1}$$
 is always non-negative and $\frac{2X_1^2}{X_1^3}$ is also non-negative for all X_1 and X_2 in the domain so $f(X_1, X_2) = \frac{X_1^2}{X_2}$ is convex on $R \times R > 0$

(c)
$$f_{X_1} = \frac{1}{X_1}$$
 $f_{X_1} = -\frac{X_1}{X_2^2}$ $f_{X_1X_1} = 0$ $f_{X_1X_1} = \frac{2X_1}{X_2^2}$

Since all (X_1, X_2) are in the clamain $R^2 > 0$
 $\frac{2X_1}{X_2^2}$ is non-negative if X_1 and X_2 have the same sign

0 is always non-negative

So $f(X_1, X_2) = \frac{X_1}{X_2}$ is convex on $R^2 > 0$ if X_1, X_2 are both positive or negative.

(d)
$$f'(x) = |f(ogx)| f''(x) = \frac{1}{x}$$

since $f''(x) = \frac{1}{x} > 0$ for all $x>0$, the function $f(x) = x \log x$ is strictly convex In this case. X takes values a_1, a_1, \cdots, a_n with probabilities $\frac{a_1}{\sum_{i=1}^{n} a_i}$
 $\frac{a_2}{\sum_{i=1}^{n} a_i} \cdots \frac{a_n}{\sum_{i=1}^{n} a_i}$, applying Jensen's Inequality to the function $f(x) = x \log x$. We can get

 $\frac{n}{\sum_{i=1}^{n} a_i} \left(\frac{a_i}{\sum_{i=1}^{n} a_i} \right) \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} \frac{a_i}{a_i} \right) \log \left(\sum_{i=1}^{n} a_i \right)$
 $\Rightarrow \sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i \right) \log \left(\sum_{i=1}^{n} a_i \right)$
 $\Rightarrow \sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i \right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i}$

2. [10 points] [Linear Methods for Classification] Consider the "Multi-class Logistic Regression" algorithm. Given training set $\mathcal{D} = \{(x^i, y^i) \mid i = 1, \dots, n\}$ where $x^i \in \mathbb{R}^{p+1}$ is the feature vector and $y^i \in \mathbb{R}^k$ is a one-hot binary vector indicating k classes. We want to find the parameter $\hat{\beta} = [\hat{\beta}_1, \dots, \hat{\beta}_k] \in \mathbb{R}^{(p+1) \times k}$ that maximize the likelihood for the training set. Introducing the softmax function, we assume our model has the form

$$p(y_c^i = 1 \mid x^i; \beta) = \frac{\exp(\beta_c^\top x^i)}{\sum_{c'} \exp(\beta_{c'}^\top x^i)},$$

where y_c^i is the c-th element of y^i .

(a) Complete the derivation of the conditional log likelihood for our model, which is

$$\ell(\beta) = \ln \prod_{i=1}^n p(y_t^i \mid x^i; \beta) = \sum_{i=1}^n \sum_{c=1}^k \left[y_c^i(\beta_c^\top x^i) - y_c^i \ln \left(\sum_{c'} \exp(\beta_{c'}^\top x^i) \right) \right].$$

For simplicity, we abbreviate $p(y_t^i = 1 \mid x^i; \beta)$ as $p(y_t^i \mid x^i; \beta)$, where t is the true class for x^i . [4 points]

(b) Derive the gradient of $\ell(\beta)$ w.r.t. β_1 , i.e.,

$$\nabla_{\beta_1} \ell(\beta) = \nabla_{\beta_1} \sum_{i=1}^n \sum_{c=1}^k \left[y_c^i(\beta_c^\top x^i) - y_c^i \ln \left(\sum_{c'} \exp(\beta_{c'}^\top x^i) \right) \right].$$

Remark: Log likelihood is always concave; thus, we can optimize our model using gradient ascent. (The gradient of $\ell(\beta)$ w.r.t. β_2, \ldots, β_k is similar, you don't need to write them) [6 points]

Solution:

(a) the likelihood function for
$$(x^{i}, y^{i})$$
 is $p(y_{t}^{i} \mid x^{i}; \beta) = \frac{1}{L} p(y_{c}^{i} \mid x^{i}; \beta)^{y_{c}^{i}}$

Using softmax function: $p(y_{c}^{i} \mid x^{i}; \beta) = \frac{\exp(\beta_{c}^{T} x^{i})}{\frac{k}{L} \exp(\beta_{c}^{T} x^{i})}$

Substitute it to the likelihood function
$$p(y_{t}^{i} \mid x^{i}; \beta) = \prod_{l=1}^{K} \left(\frac{\exp(\beta_{c}^{T} x^{i})}{\frac{k}{L} \exp(\beta_{c}^{T} x^{i})} \right)^{y_{c}^{i}}$$

In $p(y_{t}^{i} \mid x^{i}; \beta) = \sum_{l=1}^{K} \left(y_{c}^{l} \cdot \beta_{c}^{T} x^{i} \right) - y_{c}^{l} \ln\left(\sum_{l=1}^{K} \exp(\beta_{c}^{T} x^{i}) \right)$

Sum all $p(x_{c}^{i} \mid x^{i}; \beta) = \sum_{l=1}^{K} \left(y_{c}^{l} \cdot \beta_{c}^{T} x^{i} \right) - y_{c}^{l} \ln\left(\sum_{l=1}^{K} \exp(\beta_{c}^{T}, x^{i}) \right)$

(b) for $(\beta_1)^T x^i$, treat x^i as constants since we are differentiating with respect to β_1 . So the derivative of $(\beta_1)^T x^i$ with respect to β_1 is just x^i .

Using the chain rule, the clerivative of the second part with respect to $(\beta_1)^T x^i$ is $\frac{\exp(\beta_1^T x^i)}{\sum\limits_{i'=1}^{k} \exp(\beta_c^T x^i)}$

so
$$\frac{\partial l(\beta)}{\partial \beta_{l}} = \sum_{i=1}^{n} \left[\chi^{i} - \frac{\exp(\beta_{i}^{T} \chi^{i})}{\sum_{c'=1}^{k} \exp(\beta_{c'}^{T} \chi^{i})} \chi^{i} \right]$$

3. [10 points] [Probability and Estimation] Suppose $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$ are i.i.d. samples from exponential distribution with parameter $\lambda > 0$, i.e., $X \sim \text{Expo}(\lambda)$. Recall the PDF of exponential distribution is

$$p(x \mid \lambda) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{otherwise} \end{cases}.$$

(a) To derive the posterior distribution of λ , we assume its prior distribution follows gamma distribution with parameters $\alpha, \beta > 0$, i.e., $\lambda \sim \text{Gamma}(\alpha, \beta)$ (since the range of gamma distribution is also $(0, +\infty)$, thus it's a plausible assumption). The PDF of λ is given by

$$p(\lambda \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\lambda \beta},$$

where $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt$, $\alpha > 0$. Show that the posterior distribution $p(\lambda \mid \mathcal{D})$ is also a gamma distribution and identify its parameters. Hints: Feel free to drop constants. [4 points]

- (b) Derive the maximum a posterior (MAP) estimation for λ under Gamma(α, β) prior. [3 points]
- (c) For exponential distribution $\text{Expo}(\lambda)$, $\sum_{i=1}^{n} x_i \sim \text{Gamma}(n,\lambda)$ and the inverse sample mean $\frac{n}{\sum_{i=1}^{n} x_i}$ is the MLE for λ . Argue that whether $\frac{n-1}{n}\hat{\lambda}_{MLE}$ is unbiased $(\mathbb{E}(\frac{n-1}{n}\hat{\lambda}_{MLE}) = \lambda)$. Hints: $\Gamma(z+1) = z\Gamma(z)$,

Solution: (a)
$$p(D|\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda xi} = \lambda^{n} e^{-\lambda \frac{x}{i}} \times i$$

$$p(\lambda|\alpha, \beta) = \frac{\beta}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\lambda \beta}$$

$$p(D|\lambda) p(\lambda|\alpha, \beta) = \lambda^{n+\alpha-1} e^{-\lambda (\frac{x}{i})} \times i + \beta$$

$$p(D|\lambda) p(\lambda|\alpha, \beta) = \lambda^{n+\alpha-1} e^{-\lambda (\frac{x}{i})} \times i + \beta$$

$$So \alpha' = n + \alpha , \beta' = \sum_{i=1}^{n} \chi_{i} + \beta$$
The posterior distribution $p(\lambda|D)$ is also a gamma distribution

with parameters $\alpha' = n + \alpha$ and $\beta' = \sum_{i=1}^{n} X_i + \beta$

(b) Taking the derivative of the log of the posterior distribution with respect to & and setting it to zero

$$\frac{d}{d\lambda} \left[(\alpha' - 1) \log \lambda - \lambda \beta' \right] = 0$$
We can get: $\frac{\alpha' - 1}{\lambda} - \beta' = 0$

So
$$\lambda_{MAP} = \frac{\alpha'-1}{\beta'} = \frac{n+\alpha-1}{\sum_{i=1}^{n} \chi_i + \beta}$$

CI.
$$E\left(\frac{n-r}{n} \stackrel{\wedge}{\lambda}_{ME}\right) = \frac{n-l}{n} E\left(\stackrel{\wedge}{\lambda}_{ME}\right) = \frac{n-l}{n} \cdot E\left(\frac{n}{\sum_{i=1}^{n} x_i}\right)$$

Since $\stackrel{\wedge}{\underset{i=1}{\sum}} X_i \stackrel{\wedge}{\wedge} Gamma\left(n, \lambda\right)$, $E\left(\stackrel{\wedge}{\underset{i=1}{\sum}} X_i\right) = n E(X_i) = n \cdot \frac{l}{\lambda}$

So $E\left(\frac{n-l}{n} \stackrel{\wedge}{\lambda}_{ME}\right) = \frac{n-l}{n} \cdot n \cdot \frac{l}{n} = \frac{n-l}{n} \lambda \neq \lambda$

Thus $\frac{n-l}{n} \stackrel{\wedge}{\lambda}_{ME}$ is not unbiased.

4. [10 points] [Graphical Models] Given the following Bayesian Network,

answer the following questions.

- (a) Factorize the joint distribution of X_1, \dots, X_7 according to the given Bayesian Network. [2 points]
- (b) Justify whether $X_1 \perp X_5 \mid X_2$? [2 points]
- (c) Justify whether $X_5 \perp X_7 \mid X_3, X_4$? [2 points]
- (d) Justify whether $X_5 \perp X_7 \mid X_4$? [2 points]
- (e) Write down the variables that are in the Markov blanket of X_3 . [2 points]

Solution:

 $(OI P(X_1, \dots, X_7) = P(X_1) P(X_2 | X_3) P(X_3 | X_1) P(X_4 | X_3, X_7) P(X_5 | X_6 | X_5) P(X_6 | X_5) P(X_7)$

(b) YES

(C) YES

(d) NO

(C) X1, X2, X4, X7