Bases de Dados

PLO5 – Modelação Lógica

Docente: Diana Ferreira

Email: diana.ferreira@algoritmi.uminho.pt

Horário de Atendimento:

4^a feira 10h-11h | DI 1.15

Sumário

1 Revisão do Modelo Conceptual

- Regras de Derivação
- 2 Instalação do MySQL Workbench
- 4 Modelação Lógica

Bibliografia:

- Connolly, T., Begg, C., Database Systems, A Practical Approach to Design, Implementation, and Management, Addison-Wesley, 4a Edição, 2004. (Chapter 17)
- Teorey, T., Database Modeling and Design: The Fundamental Principles, II Ediçao, Morgan Kaufmann, 1994.

Material p/ a aula

MySQL Workbench

https://dev.mysql.com/downloads/workbench/

BRmodelo

http://www.sis4.com/brmodelo/

Ciclo de vida de um SBD

Traduzir o modelo de dados conceptual num modelo de dados lógico e, em seguida, validar o modelo para verificar se este é estruturalmente correto e capaz de suportar as transações necessárias.

Ciclo de vida de um SBD: Modelação Lógica

Fase 2

Validar relações utilizando a normalização

Fase 4

Verificar restrições de integridade

Fase 6

Combinar modelos de dados lógicos no modelo global (opcional)

Fase 1

Derivar relações para o modelo de dados lógico

Fase 3

Validar relações em relação às transações do utilizador

Fase 5

Rever o modelo de dados lógico com o(s) utilizador(s)

Fase 7

Verificar se há crescimento futuro

Modelo Relacional

Modelo lógico para BDs relacionais, baseado no conceito de relação, também designado por tabela.

Modelação Física

O modelo relacional pode depois ser concretizado num SGBD usando a linguagem SQL.

Modelação Lógica

As entidades-tipo e relacionamentos do modelo ER são mapeados em relações/tabelas no modelo relacional.

Modelação Conceptual

- O relacionamento que uma entidade tem com outra entidade é representado pelo mecanismo de chave primária/chave estrangeira.
- Para decidir onde colocar o(s) atributo(s) de chave estrangeira, devemos primeiro identificar as entidades 'pai' e 'filho' envolvidas no relacionamento.
- A entidade **pai** refere-se à entidade que **envia uma cópia da sua chave primária** na relação que representa a entidade **filho**, para atuar como a **chave estrangeira**.

Derivar relações

O processo de derivação passa por descrever como as relações são derivadas para as seguintes estruturas que podem ocorrer num modelo de dados concetual:

- **Entidades Simples**
- **Entidades Fracas**
- Relacionamentos binários de um-para-muitos (1:N)
- Relacionamentos binários de um-para-um (1:1)
- Relacionamentos binários recursivos de um-para-um (1:1)
- Relacionamentos superclasse/subclasse
- Relacionamentos binários de muitos-para-muitos (N:M)
- Relacionamentos complexos
- Atributos multivalor
- Entidade Relacionamento

Entidades Simples

Para cada entidade do modelo de dados, crie **uma relação/tabela** que inclua todos os **atributos simples** dessa entidade. Os <u>atributos derivados</u> não são mapeados e no caso dos <u>atributos compostos</u>, são apenas incluídos os atributos simples constituintes.

Paciente (nr_sequencial, nome, sexo, dta_nascimento, rua, localidade, cod_postal, NIF, nr_utente, estado_civil)
Chave primária nr_sequencial
Chave candidata NIF
Chave candidata nr_utente
Derivado idade(dta_atual – dta_nascimento)

Paciente		
nr_sequencial		
nome		
sexo		
dta_nascimento		
rua		
localidade		
cod_postal		
NIF		
nr_utente		
estado_civil		

Atributos multivalor

Para cada atributo **multivalor** numa entidade, crie uma <u>nova relação</u> para representar o atributo **multi-valor** e inclua a <u>chave primária</u> da entidade na nova relação, para atuar como <u>chave estrangeira</u>.

Paciente (nr_sequencial, nome, sexo, dta_nascimento, rua, localidade, cod_postal, NIF, nr_utente, estado_civil)

Chave primária nr_sequencial

Chave candidata NIF

Chave candidata nr_utente

Derivado idade(dta_atual - dta_nascimento)

Telefone (nr_sequencial, telefone)
Chave primária nr_sequencial, telefone
Chave estrangeira nr_sequencial referencia
Paciente(nr_sequencial)

Entidades Fracas

- Para cada entidade fraca do modelo de dados, crie uma relação que inclua todos os atributos simples dessa entidade.
- Se a entidade fraca não possuir atributos que possam constituir chaves candidatas, o conjunto de atributos que permitem identificar univocamente uma ocorrência da entidade fraca, é a **chave parcial** da entidade fraca;
- A chave primária de uma entidade fraca é sempre uma chave composta da chave primária da entidade identificadora e da sua chave parcial, portanto, a identificação da chave primária de uma entidade fraca não pode ser feita até que todos os relacionamentos com as entidades proprietárias tenham sido mapeados.

Entidades Fracas

Capítulo (id_livro, codigo, título)
Chave primária id_livro, codigo

- Relacionamentos binários de um-para-muitos (1:N)
- Para cada relacionamento binário 1:N, a entidade do lado **'um**' do relacionamento é designada como a **entidade pai** e a entidade do lado **'muitos**' é designada como a **entidade filho**.
- Para representar esse relacionamento, cria-se uma **cópia** do(s) atributo(s) de **chave primária** da **entidade pai** na relação que representa a **entidade filho**, para atuar como **chave estrangeira**.

→ <u>Derivar relações</u>

Relacionamentos binários de um-para-muitos (1:N)

Consulta (<u>nr_episodio</u>, preço, hora_ini, hora_fim, cod_procedimento)
Chave primária nr_episodio
Chave Estrangeira cod_procedimento referencia
Procedimento(cod_procedimento)

Procedimento (cod_procedimento, des_procedimento, preço)
Chave primária cod_procedimento

Relacionamentos binários de um-para-um (1:1)

- Nestes casos, a criação de relações é mais <u>complexa</u>, porque a **cardinalidade** <u>não</u> pode ser usada para identificar as entidades pai e filho num relacionamento.
- Em vez disso, as restrições de **participação** são usadas para decidir se é preferível combinar as entidades <u>numa só relação</u> ou se é mais adequado criar <u>duas relações</u> e colocar uma cópia da chave primária de uma relação na outra:
 - (a) participação obrigatória em ambos os lados do relacionamento 1:1;
 - (b) participação obrigatória num lado do relacionamento 1:1;
 - (c) participação opcional em ambos os lados do relacionamento 1:1.

- Relacionamentos binários de um-para-um (1:1)
 - (a) participação obrigatória em ambos os lados do relacionamento 1:1;
- Combinar as entidades envolvidas **numa só relação** e escolher uma das chaves primárias das entidades originais para ser a chave primária da nova relação, enquanto outra (se existir) é usada como chave candidata.

Consulta (nr_episodio, preço, hora_ini, hora_fim, dta_faturacao, cod_fatura)
Chave primária nr_episodio

- Relacionamentos binários de um-para-um (1:1)
- (b) participação obrigatória num lado do relacionamento 1:1;
- A entidade com **participação opcional** é designada como **entidade-pai** e a entidade com **participação obrigatória** como **entidade-filho**.
- <u>Cópia</u> da <u>chave primária</u> da **entidade pai** colocada na relação que representa a **entidade filho**.

→ <u>Derivar relações</u>

- Relacionamentos binários de um-para-um (1:1)
- (b) participação obrigatória num lado do relacionamento 1:1;
- Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho.

Consulta (<u>nr_episodio</u>, preço, hora_ini, hora_fim)
Chave primária nr_episodio

Prescricao (<u>cod_pres</u>, quantidade, unidade, posologia, PVP, comparticipação, dta_prescrição, dta_validade, nr_episodio)

Chave primária cod_pres

Chave estrangeira nr_episodio referencia Consulta(nr_episodio)

- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Opção 1. Criar uma nova relação para representar o relacionamento.

Opção 2. Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho.

- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Opção 1. Criar uma nova relação para representar o relacionamento.

Homem (<u>id</u>, nome, idade)
Chave primária id

Casamento (id_homem, id_mulher dta_casamento)
Chave primária id_homem, id_mulher

Mulher (<u>id</u>, nome, idade)
Chave primária id

- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Opção 2. Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho. A designação das entidades pai e filho é arbitrária, a menos que se possa descobrir mais sobre o relacionamento.

Suponha que a maioria dos carros, mas não todos, sejam usados pelos funcionários e que apenas uma minoria dos funcionários use carros. A entidade Carro, embora opcional, está mais próxima de ser obrigatória do que a entidade Funcionário. Portanto, neste caso deveríamos designar o Funcionário como entidade-pai e o Carro como entidade-filho.

- Relacionamentos binários de um-para-um (1:1)
- (c) participação opcional em ambos os lados do relacionamento 1:1.

Opção 2. Cópia da chave primária da entidade pai colocada na relação que representa a entidade filho. A designação das entidades pai e filho é arbitrária, a menos que se possa descobrir mais sobre o relacionamento.

EXEMPLO:

Funcionário (<u>num_mecanografico</u>, nome, funcao)
Chave primária num_mecanografico

Carro (id_carro, marca, modelo, matricula, cor, num_mecanografico)

Chave primária id_carro

Chave estrangeira num_mecanografico referencia Funcionário(num_mecanografico)

Relacionamentos binários recursivos de um-para-um (1:1)

Os relacionamentos recursivos de 1:1 seguem as regras de participação de um relacionamento binário de 1:1.

- participação obrigatória de ambos os lados: relação única com duas cópias da chave primária.
- participação obrigatória em apenas um lado: opção de criar uma relação única com duas cópias da chave primária, ou criar uma nova relação para representar o relacionamento. A nova relação teria apenas dois atributos, ambas cópias da chave primária.
- participação opcional de ambos os lados: crie uma nova relação conforme descrito acima.

- Relacionamentos superclasse/subclasse
- Identifique a **superclasse** como **entidade pai** e a **subclasse** como **entidade filho**.
- A representação mais adequada de um relacionamento deste tipo depende do número de:
 - restrições de disjunção e participação no relacionamento superclasse/subclasse;
 - se as subclasses estão envolvidas em relacionamentos distintos;
 - número de participantes no relacionamento superclasse/subclasse.

→ <u>Derivar relações</u>

Restrições de Participação	Restrições de Disjunção	Relações Requeridas
Obrigatória	Não disjunto {And}	Relação única
Opcional	Não disjunto {And}	Duas relações: uma relação para a superclasse e uma relação para todas as subclasses
Obrigatória	Disjunto {Or}	Muitas relações (uma relação para cada combinação superclasse/subclasse)
Opcional	Disjunto {Or}	Muitas relações (uma relação para a superclasse e uma para cada subclasse)

Relacionamentos superclasse/subclasse

Muitas relações (uma relação para a Opcional Disjunto {Or} superclasse e uma para cada subclasse)

Derivar relações

Relacionamentos superclasse/subclasse

Funcionário (nr_mecanografico, dta_ini_servico) Chave primária nr_mecanografico

nr mecanografico

contacto

Funcionário

dta_ini_servico

Médico (nr_mecanografico, cod_especialidade, nome_med)

Chave primária nr_mecanografico

Chave estrangeira nr_mecanografico referencia Funcionario(nr_mecanografico)

Administrador (nr_mecanografico, nome_admin)

Chave primária nr_mecanografico

Chave estrangeira nr_mecanografico referencia Funcionario(nr_mecanografico)

Administrativo (<u>id_administrativo</u>, nome_administrativo)

Chave primária nr_mecanografico

Chave estrangeira nr_mecanografico referencia Funcionario(nr_mecanografico)

- Relacionamentos binários de muitos-para-muitos (N:M)
- Crie <u>uma relação</u> para representar o <u>relacionamento</u> e inclua quaisquer atributos que façam parte do relacionamento.
- Crie uma **cópia** do(s) atributo(s) de **chave primária** das **entidades** que participam no relacionamento na nova relação, para atuar como **chaves estrangeiras**. A **chave primária** da nova relação é sempre uma chave composta pelas chaves estrangeiras, possivelmente em combinação com outros atributos do relacionamento.

Relacionamentos binários de muitos-para-muitos (N:M)

Medicamento (<u>id_med</u>, nome, descrição)
Chave primária id_med

Consulta (<u>nr_episodio</u>, preço, hora_ini, hora_fim)
Chave primária nr_episodio

Prescrição (<u>id_med, nr_episodio</u>, unidade, quantidade, posologia, PVP, comparticipação, data_val, data_pres)
Chave primária id_med, nr_episodio
Chave Estrangeira id_med referencia Medicamento(id_med)
Chave Estrangeira nr_episodio referencia Consulta(nr_episodio)

Relacionamentos complexos

- Para cada <u>relacionamento complexo</u>, criar **uma relação** para representar o **relacionamento** e incluir quaisquer atributos que façam parte do relacionamento.
- Colocamos uma **cópia** da(s) **chave(s) primária(s)** das entidades que participam no relacionamento complexo na nova relação, para atuar como **chaves estrangeiras**.
- A **chave primária** da nova relação passa a ser composta pelas **chaves estrangeiras** das entidades que participam no relacionamento complexo.

→ <u>Derivar relações</u>

Relacionamentos complexos

Aluno (nr_aluno, ...) **Chave primária** nr_aluno

Professor (id_prof, ...)
Chave primária id_prof

Seminário (id_semi, ...)
Chave primária id_semi

Inscrição (id_semi, id_prof, nr_aluno)
Chave primária id_semi, id_prof, nr_aluno
Chave estrangeira id_semi
Chave estrangeira id_prof
Chave estrangeira nr_aluno

Entidade Relacionamento

- Crie <u>uma relação</u> para representar a <u>entidade-relacionamento</u> como se fosse uma entidade independente e inclua todos os atributos que façam parte da entidade-relacionamento.
- Crie uma cópia do(s) atributo(s) de chave primária das entidades que participam na entidaderelacionamento na nova relação, para atuar como chaves estrangeiras. Essas chaves estrangeiras também formarão a chave primária em combinação com a chave primária da entidade-relacionamento.

Entidade Relacionamento

Paciente (nr_sequencial, nome, sexo, dta_nascimento, rua, localidade, cod_postal, NIF, nr_utente, estado_civil)

Chave primária nr_sequencial

Chave candidata NIF
Chave candidata nr_utente
Derivado idade(dta_atual –
dta_nascimento)

Funcionário (nr_mecanografico, nome, dta_ini_servico)

Chave primária nr_mecanografico

Consulta (nr_episodio, nr_sequencial, nr_mecanografico, hora_ini, hora_fim, preco)
Chave primária nr_episodio, nr_sequencial, nr_mecanografico
Chave Estrangeira nr_sequencial referencia Paciente(nr_sequencial)
Chave Estrangeira nr_mecanografico referencia Funcionário(nr_mecanografico)

Questão 1: Crie relações para o modelo de dados lógico de modo a representar as entidades, relacionamentos e atributos que foram identificados.

Questão 2: Assegure que as relações no modelo lógico de dados suportam todas as transações necessárias.

Nota:

- Se conseguirmos assegurar todas as transações, validamos o modelo de dados lógico contra as transações do utilizador.
- No entanto, se não formos capazes de realizar uma transação manualmente, deve haver um problema com o modelo de dados, que tem de ser resolvido. Neste caso, é provável que tenha sido introduzido um erro durante a criação das relações, e devemos voltar atrás e verificar as áreas do modelo de dados a que a transação está a aceder para identificar e resolver o problema

Devem ser considerados os seguintes tipos de restrições de integridade:

- **Dados necessários/obrigatórios**: Alguns atributos devem conter sempre um valor válido, ou seja, não podem conter valores "Null". Estas restrições deveriam ter sido identificadas quando documentamos os atributos no dicionário de dados (Aula 3 Fase 3).
- Restrições de domínio de atributos: Cada atributo tem um domínio, ou seja, um conjunto de valores que são possíveis. Por exemplo, o sexo de uma pessoa ou é 'M' ou 'F' ou 'I'. Estas restrições deveriam ter sido identificadas quando escolhemos os domínios de atributos para o modelo de dados (Aula 3 Fase 4).
- **Multiplicidade**: A multiplicidade representa as restrições que são colocadas nos relacionamentos entre os dados da BD. Estas restrições deveriam ter sido identificadas quando definimos os relacionamentos entre as entidades (Aula 3 Fase 2).

- Integridade de entidade: O valor da chave primária de uma tabela/relação não pode ser "Null" nem igual a outro já existente (caso contrário não conseguiríamos identificar registos). Estas restrições deveriam ter sido consideradas quando identificamos as chaves primárias para cada tipo de entidade (Aula 3 Fase 5).
- Restrições gerais/regras de negócio: As atualizações de entidades podem ser controladas por restrições que regem as transações "do mundo real" que são representadas pelas atualizações. Por exemplo: Uma receita não pode conter mais do que 5 medicamentos.
- Integridade referencial: Um valor definido (diferente de "Null") para um atributo que seja chave estrangeira deve referir-se a uma chave primária da tabela a que a chave estrangeira se refere, ou seja, a uma tupla existente na relação pai. Há duas questões que devem ser abordadas:
 - A primeira considera se os <u>nulos</u> são permitidos para a <u>chave estrangeira</u>. Em geral, se a participação do filho na relação for:
 - obrigatória -> nulos não são permitidos;
 - opcional -> nulos são permitidos.

→ <u>Verificar as restrições de integridade</u>

- A segunda define como garantir a integridade referencial. Para fazer isso, especificamos <u>restrições de</u> <u>existência</u> que definem as condições sob as quais uma chave estrangeira pode ser inserida, atualizada ou excluída.
 - <u>Inserção ou atualização de uma tupla na relação filha</u> Para garantir a integridade referencial, verifique se o atributo de chave estrangeira da nova tupla está definido como nulo ou com um valor de uma tupla existente.
 - <u>Remoção de uma tupla da relação pai</u> Se uma tupla de uma relação pai é excluída, a integridade referencial é perdida se existir uma tupla filho referenciando a tupla pai. Existem várias estratégias que podemos considerar:
 - NO ACTION Impede a remoção da tupla da relação pai se houver alguma tupla filho referenciada.
 - <u>SET NULL</u> Quando uma tupla pai é excluída, os valores de chave estrangeira em todas as tuplas filho correspondentes são automaticamente definidos como nulos. Esta estratégia só pode ser aplicada se os atributos que constituem a chave estrangeira aceitarem nulos.

- <u>SET DEFAULT</u> Quando uma tupla pai é excluída, os valores de chave estrangeira em todas as tuplas filho correspondentes devem ser automaticamente configurados para os seus valores padrão. Esta estratégia só pode ser aplicada se os atributos que constituem a chave estrangeira tiverem valores padrão definidos.
- <u>CASCADE</u> Quando a tupla pai é excluída, exclui automaticamente todas as tuplas filhas referenciadas. Se qualquer tupla filha excluída atuar como pai noutro relacionamento, a operação de exclusão deverá ser aplicada às tuplas nessa relação filha e assim por diante em cascata. No caso do Hospital Portucalense, "Excluir um médico exclui automaticamente todas as consultas realizadas por ele". Nesta situação, esta estratégia não seria sábia.
- <u>NO CHECK</u> Quando uma tupla pai é excluída, nada é feito para garantir a integridade referencial.

→ <u>Verificar as restrições de integridade</u>

Paciente									
nr_sequencial	nome	sexo	dta_nascimento	•••					
323431	Ana Luísa Dias Gomes	F	20/12/1990						
453347	José da Costa Silva	М	03/05/1975						
212423	Maria Leonor Ribeiro Barbosa	Fem	12/07/2000						
	•••	•••		•••					

X Integridade Referencial

X Integridade de Domínio

				Consulta			
nr_episodio	id_pac	id_med	hora_ini	hora_fim	id_agenda	cod_proc	id_sec
12345678	212423	3456	2022-01-23 10:18:17	2022-01-23 10:38:27	123456789	P22	1212
14451643	453347	322.4	2022-01-25 08:35:23	2022-01-25 09:00:12	223212434	P23	1598
14451643	212423	3371	2022-02-02 09:00:33	2022-02-02 09:15:20	345567811	NULL	1479
13415324	123456	3834	2022-02-04 12:34:11	2022-02-04 13:00:00	433212456	P22	1234
NULL	323431	3456	2022-02-12 11:20:23	2022-02-12 11:52:33	387612392	P24	1176
			•••	•••	•••	•••	•••

Integridade de Entidade

Integridade de Entidade

Questão 3: Especifique quais as restrições de integridade necessárias, independentemente da forma como isso possa ser conseguido.

Rever o modelo de dados lógico com o(s) utilizador(s)

Questão 4: Para confirmar a representatividade do seu modelo, a ExIT deve reunir com o conselho de administração do Hospital Portucalense de forma a assegurar que o modelo de dados é uma verdadeira representação dos requisitos.

Questão 5: Determine se existem quaisquer mudanças significativas prováveis num futuro previsível e avalie se o modelo de dados lógico pode acomodar essas mudanças.

Próxima aula: Modelação Conceptual

