Coordonnés sphérique (r, θ, ϕ)

	$\int x = r \sin \theta \cos \phi$
Les équations	$\begin{cases} y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$
	$z = r \cos \theta$
	$0 \le r$
Les limites	$0 \le \theta \le \pi$
	$0 \le \phi < 2\pi$
	$h_1 = 1$
Facteurs d'échelle	$h_2 = r$
	$h_3 = r \sin \theta$
Élément de déplacement	$d\hat{l} = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$
	$ds_r = r^2 \sin\theta d\theta d\phi$
Élément de surface	$ds_{\theta} = r \sin \theta dr d\phi$
	$ds_{\phi} = rdrd\theta$
Élément de volume	$dV = r^2 \sin\theta dr d\theta d\phi$
Gradient	$\nabla f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\hat{\phi}$
Divergence	$ \overset{\mathbf{r}}{\nabla} \overset{\mathbf{r}}{A} = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} (r^2 \sin \theta A_r) + \frac{\partial}{\partial \theta} (r \sin \theta A_\theta) + \frac{\partial}{\partial \phi} (r A_\phi) \right] $
Rotationnel	$ \overset{\mathbf{r}}{\nabla} \times \overset{\mathbf{r}}{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & r\hat{\theta} & r\sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & rA_{\theta} & r\sin \theta A_{\phi} \end{vmatrix} $
Laplacien	$\nabla^2 \Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}$ $\vec{r} = r \hat{r} \text{ ou bien } \vec{r} = r \hat{r} (\theta, \phi)$
Vecteur position	$\vec{r} = r \hat{r}$ ou bien $\vec{r} = r \hat{r}(\theta, \phi)$
Vecteur position unitaire	$\hat{r} = \hat{r}$ ou bien $\hat{r} = \hat{r}(\theta, \phi)$