Page No 98:

Question 4.1:

For the reaction R \rightarrow P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.

Answer:

Average rate of reaction $= -\frac{\Delta[R]}{\Delta t}$

$$=-\frac{\left[\mathbf{R}\right]_{2}-\left[\mathbf{R}\right]_{1}}{t_{2}-t_{1}}$$

$$= -\frac{0.02 - 0.03}{25} \text{ M min}^{-1}$$

$$=-\frac{-0.01}{25}$$
 M min⁻¹

$$= 4 \times 10^{-4} \text{ M min}^{-1}$$

$$= \frac{4 \times 10^{-4}}{60} \ M \ s^{-1}$$

$$= 6.67 \times 10^{-6} \text{ M s}^{-1}$$

Question 4.2:

In a reaction, $2A \rightarrow Products$, the concentration of A decreases from 0.5 mol L^{-1} to 0.4 mol L^{-1} in 10 minutes. Calculate the rate during this interval?

Answer:

Average rate
$$= -\frac{1}{2} \frac{\Delta[A]}{\Delta t}$$

$$= -\frac{1}{2} \frac{\left[A\right]_2 - \left[A\right]_1}{t_2 - t_1}$$

$$=-\frac{1}{2}\frac{0.4-0.5}{10}$$

$$=-\frac{1}{2}\frac{-0.1}{10}$$

$$= 0.005 \text{ mol L}^{-1} \text{ min}^{-1}$$

$$= 5 \times 10^{-3} \text{ M min}^{-1}$$

Page No 103:

Question 4.3:

For a reaction, A + B \rightarrow Product; the rate law is given by, $r = k[A]^{1/2}[B]^2$. What is the order of the reaction?

Answer:

The order of the reaction $=\frac{1}{2}+2$

$$=2\frac{1}{2}$$

Question 4.4:

The conversion of molecules X to Y follows second order kinetics. If concentration of X is increased to three times how will it affect the rate of formation of Y?

Answer:

The reaction $X \rightarrow Y$ follows second order kinetics.

Therefore, the rate equation for this reaction will be:

Rate =
$$k[X]^2$$
 (1)

Let $[X] = a \mod L^{-1}$, then equation (1) can be written as:

Rate₁ =
$$k \cdot (a)^2$$

$$= ka^2$$

If the concentration of X is increased to three times, then $[X] = 3a \text{ mol } L^{-1}$

Now, the rate equation will be:

Rate =
$$k (3a)^2$$

$$= 9(ka^2)$$

Hence, the rate of formation will increase by 9 times.

Page No 111:

Question 4.5:

A first order reaction has a rate constant $1.15 \cdot 10^{-3} \text{ s}^{-1}$. How long will 5 g of this reactant take to reduce to 3 g?

Answer:

From the question, we can write down the following information:

Initial amount = 5 g

Final concentration = 3 g

Rate constant = $1.15 \ 10^{-3} \ s^{-1}$

We know that for a 1st order reaction,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$=\frac{2.303}{1.15\times10^{-3}}\log\frac{5}{3}$$

$$=\frac{2.303}{1.15\times10^{-3}}\times0.2219$$

$$= 444.38 s$$

$$= 444 s (approx)$$

Question 4.6:

Time required to decompose SO_2Cl_2 to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

Answer:

We know that for a 1st order reaction,

$$t_{1/2} = \frac{0.693}{k}$$

It is given that $t_{1/2} = 60$ min

$$k = \frac{0.693}{t_{1/2}}$$

$$=\frac{0.693}{60}$$

Or
$$k = 1.925 \times 10^{-4} \text{ s}^{-1}$$

Page No 116:

Question 4.7:

What will be the effect of temperature on rate constant?

Answer:

The rate constant of a reaction is nearly doubled with a 10° rise in temperature. However, the exact dependence of the rate of a chemical reaction on temperature is given by Arrhenius equation,

$$k = Ae^{-Ea/RT}$$

Where,

A is the Arrhenius factor or the frequency factor

T is the temperature

R is the gas constant

E_a is the activation energy

Question 4.8:

The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate E_a .

Answer:

It is given that $T_1 = 298 \text{ K}$

$$T_2 = (298 + 10) \text{ K}$$

= 308 K

We also know that the rate of the reaction doubles when temperature is increased by 10°.

Therefore, let us take the value of $k_1 = k$ and that of $k_2 = 2k$

Also, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Now, substituting these values in the equation:

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

We get:

$$\log \frac{2k}{k} = \frac{E_{\rm a}}{2.303 \times 8.314} \left[\frac{10}{298 \times 308} \right]$$

$$\Rightarrow \log 2 = \frac{E_{\text{a}}}{2.303 \times 8.314} \left[\frac{10}{298 \times 308} \right]$$

$$\Rightarrow E_{\rm a} = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}$$

 $= 52897.78 \text{ J mol}^{-1}$

 $= 52.9 \text{ kJ mol}^{-1}$

Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Question 4.9:

The activation energy for the reaction

$$2HI_{(g)} \rightarrow H_2 + I_{2(g)}$$

is 209.5 kJ mol⁻¹ at 581K. Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

Answer:

In the given case:

$$E_a = 209.5 \text{ kJ mol}^{-1} = 209500 \text{ J mol}^{-1}$$

T = 581 K

$$R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$$

Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as:

$$x=e-Ea/RT \Rightarrow In \ x=-EaRT \Rightarrow log \ x=-Ea2.303RT \Rightarrow log \ x=-209500 \ J \ mol-12.303 \times 8.314 \ JK-1mol-1 \times 581 = -18.8323 \ Now, \ x = Antilog \ -18.8323 \ = 1.471 \times 10-19$$

Question 4.1:

From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

(i) $3 \text{ NO(g)} \rightarrow \text{N}_2\text{O (g)} \text{ Rate} = \text{k[NO]}^2$

(ii)
$$H_2O_2$$
 (aq) + 3 I^- (aq) + 2 H^+ \rightarrow 2 H_2O (I) + $\frac{I_3^-}{}$ Rate = $k[H_2O_2][I^-]$

(iii)
$$CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$$
 Rate = k $[CH_3CHO]^{3/2}$

(iv)
$$C_2H_5CI(g) \rightarrow C_2H_4(g) + HCI(g)$$
 Rate = k $[C_2H_5CI]$

Answer:

(i) Given rate = $k [NO]^2$

Therefore, order of the reaction = 2

$$k = \frac{\text{Rate}}{\left[\text{NO}\right]^2}$$
 Dimension of

$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\left(\text{mol } L^{-1}\right)^{2}}$$

$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\text{mol}^{2} L^{-2}}$$

$$= L \text{ mol}^{-1} \text{ s}^{-1}$$

(ii) Given rate =
$$k [H_2O_2] [I^-]$$

Therefore, order of the reaction = 2

$$k = \frac{\text{Rate}}{\left[\text{H}_2\text{O}_2\right]\!\!\left[\text{I}^-\right]}$$
 Dimension of

$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\left(\text{mol } L^{-1}\right)\left(\text{mol } L^{-1}\right)}$$
$$= L \text{ mol}^{-1} \text{ s}^{-1}$$

Therefore, order of reaction = $\overline{2}$

$$k = \frac{\text{Rate}}{\left[\text{CH}_3\text{CHO}\right]^{\frac{3}{2}}}$$
 Dimension of

$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\left(\text{mol } L^{-1}\right)^{\frac{3}{2}}}$$

$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\text{mol}^{\frac{3}{2}} L^{\frac{-3}{2}}}$$

$$= L^{\frac{1}{2}} \text{ mol}^{\frac{-1}{2}} \text{ s}^{-1}$$

(iv) Given rate = $k [C_2H_5CI]$

Therefore, order of the reaction = 1

$$k = \frac{\text{Rate}}{\left[\text{C}_2\text{H}_5\text{Cl}\right]}$$
 Dimension of

$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\text{mol } L^{-1}}$$
$$= \text{ s}^{-1}$$

Ouestion 4.2:

For the reaction:

$$2A + B \rightarrow A_2B$$

the rate = $k[A][B]^2$ with $k = 2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$. Calculate the initial rate of the reaction when $[A] = 0.1 \text{ mol L}^{-1}$, $[B] = 0.2 \text{ mol L}^{-1}$. Calculate the rate of reaction after [A] is reduced to 0.06 mol L^{-1} .

Answer:

The initial rate of the reaction is

Rate =
$$k [A][B]^2$$

=
$$(2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}) (0.1 \text{ mol L}^{-1}) (0.2 \text{ mol L}^{-1})^2$$

$$= 8.0 \times 10^{-9} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$$

When [A] is reduced from 0.1 mol L^{-1} to 0.06 mol⁻¹, the concentration of A reacted = (0.1 – 0.06) mol L^{-1} = 0.04 mol L^{-1}

Therefore, concentration of B reacted = $\frac{1}{2} \times 0.04 \text{ mol L}^{-1}$ = 0.02 mol L⁻¹

Then, concentration of B available, [B] = (0.2 - 0.02) mol L⁻¹

$$= 0.18 \text{ mol } L^{-1}$$

After [A] is reduced to $0.06 \text{ mol } L^{-1}$, the rate of the reaction is given by,

Rate =
$$k [A][B]^2$$

=
$$(2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}) (0.06 \text{ mol L}^{-1}) (0.18 \text{ mol L}^{-1})^2$$

= $3.89 \text{ mol L}^{-1} \text{ s}^{-1}$

Question 4.3:

The decomposition of NH₃ on platinum surface is zero order reaction. What are the rates of production of N₂ and H₂ if $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$?

Answer:

The decomposition of NH₃ on platinum surface is represented by the following equation.

$$2 \text{ NH}_{3(g)} \xrightarrow{Pt} N_{2(g)} + 3 \text{ H}_{2(g)}$$

Therefore.

Rate =
$$-\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt}$$

However, it is given that the reaction is of zero order.

Therefore.

$$-\frac{1}{2}\frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = k$$
$$= 2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

Therefore, the rate of production of N_2 is

$$\frac{d[N_2]}{dt} = 2.5 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$$

And, the rate of production of H₂ is

$$\frac{d[H_2]}{dt} = 3 \times 2.5 \times 10^{-4} \text{ mol L}^{-1} \text{s}^{-1}$$
$$= 7.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$$

Ouestion 4.4:

The decomposition of dimethyl ether leads to the formation of CH₄, H₂ and CO and the reaction rate is given by

Rate =
$$k \left[CH_3OCH_3 \right]^{3/2}$$

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

Rate =
$$k \left(p_{\text{CH}_3\text{OCH}_3} \right)^{\frac{3}{2}}$$

If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

Answer:

If pressure is measured in bar and time in minutes, then

Unit of rate = bar min^{-1}

Rate =
$$k \left(p_{\text{CH}_3\text{OCH}_3} \right)^{\frac{3}{2}}$$

$$\Rightarrow k = \frac{\text{Rate}}{\left(p_{\text{CH}_3\text{OCH}_1}\right)^{\frac{3}{2}}}$$

 $(k) = \frac{\text{bar min}^{-}}{\text{bar}^{\frac{3}{2}}}$ Therefore, unit of rate constants

$$= bar^{-1/2} min^{-1}$$

Question 4.5:

Mention the factors that affect the rate of a chemical reaction.

Answer:

The factors that affect the rate of a reaction are as follows.

- (i) Concentration of reactants (pressure in case of gases)
- (ii) Temperature
- (iii) Presence of a catalyst

Page No 118:

Question 4.6:

A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is

(i) doubled (ii) reduced to half?

Answer:

Let the concentration of the reactant be [A] = a

Rate of reaction, $R = k [A]^2$

$$= ka^2$$

(i) If the concentration of the reactant is doubled, i.e. [A] = 2a, then the rate of the reaction would be

$$R' = k (2a)^2$$

$$= 4ka^{2}$$

$$=4R$$

Therefore, the rate of the reaction would increase by 4 times.

(ii) If the concentration of the reactant is reduced to half, i.e. $[A] = \frac{1}{2}a$, then the rate of the reaction would be

$$R' = k(\frac{1}{2}\alpha)^2$$
$$= \frac{1}{4}k\alpha^2$$
$$= \frac{1}{4}R$$

Therefore, the rate of the reaction would be reduced to $\frac{1}{4}$

Ouestion 4.7:

What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on rate constant be represented quantitatively?

Answer:

The rate constant is nearly doubled with a rise in temperature by 10° for a chemical reaction.

The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation,

$$k = Ae^{-E_a/RT}$$

where, k is the rate constant,

A is the Arrhenius factor or the frequency factor,

R is the gas constant,

T is the temperature, and

Ea is the energy of activation for the reaction

Question 4.8:

In a pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s	0	30	60	90	
[Ester]mol L ⁻¹	0.55	0.31	0.17	0.085	

- (i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.
- (ii) Calculate the pseudo first order rate constant for the hydrolysis of ester.

Answer:

(i) Average rate of reaction between the time interval, 30 to 60 seconds, $=\frac{d\left[\text{Ester}\right]}{dt}$

$$= \frac{0.31 - 0.17}{60 - 30}$$
$$= \frac{0.14}{30}$$

$$= 4.67 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$

(ii) For a pseudo first order reaction,

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

For t = 30 s,
$$k_1 = \frac{2.303}{30} \log \frac{0.55}{0.31}$$

$$= 1.911 \times 10^{-2} \text{ s}^{-1}$$

For t = 60 s,
$$k_2 = \frac{2.303}{60} \log \frac{0.55}{0.17}$$

$$= 1.957 \times 10^{-2} \text{ s}^{-1}$$

For t = 90 s,
$$k_3 = \frac{2.303}{90} \log \frac{0.55}{0.085}$$

$$= 2.075 \times 10^{-2} \text{ s}^{-1}$$

Then, average rate constant, $k = \frac{k_1 + k_2 + k_3}{3}$

$$= \frac{\left(1.911 \times 10^{-2}\right) + \left(1.957 \times 10^{-2}\right) + \left(2.075 \times 10^{-2}\right)}{3}$$
$$= 1.98 \times 10^{-2} \text{ s}^{-1}$$

Question 4.9:

A reaction is first order in A and second order in B.

- (i) Write the differential rate equation.
- (ii) How is the rate affected on increasing the concentration of B three times?
- (iii) How is the rate affected when the concentrations of both A and B are doubled?

Answer:

(i) The differential rate equation will be

$$-\frac{d[R]}{dt} = k[A][B]^2$$

(ii) If the concentration of B is increased three times, then

$$-\frac{d[R]}{dt} = k[A][3B]^{2}$$
$$= 9 \cdot k[A][B]^{2}$$

Therefore, the rate of reaction will increase 9 times.

(iii) When the concentrations of both A and B are doubled,

$$-\frac{d[R]}{dt} = k[A][B]^{2}$$
$$= k[2A][2B]^{2}$$
$$= 8 \cdot k[A][B]^{2}$$

Therefore, the rate of reaction will increase 8 times.

Question 4.10:

In a reaction between A and B, the initial rate of reaction (r_0) was measured for different initial concentrations of A and B as given below:

A/ mol L ⁻¹	0.20	0.20	0.40	
B/ mol L ⁻¹	nol L ⁻¹ 0.30		0.05	
r ₀ / mol L ⁻¹ s ⁻¹	5.07 × 10 ⁻⁵	5.07 × 10 ⁻⁵	1.43 × 10 ⁻⁴	

What is the order of the reaction with respect to A and B?

Answer:

Let the order of the reaction with respect to A be x and with respect to B be y.

Therefore,

$$\mathbf{r}_{0} = k \left[\mathbf{A} \right]^{x} \left[\mathbf{B} \right]^{y}$$

$$5.07 \times 10^{-5} = k \left[0.20 \right]^{x} \left[0.30 \right]^{y}$$

$$5.07 \times 10^{-5} = k \left[0.20 \right]^{x} \left[0.10 \right]^{y}$$
(ii)

$$1.43 \times 10^{-4} = k [0.40]^x [0.05]^y$$
 (iii)

Dividing equation (i) by (ii), we obtain

$$\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}} = \frac{k [0.20]^{x} [0.30]^{y}}{k [0.20]^{x} [0.10]^{y}}$$

$$\Rightarrow 1 = \frac{[0.30]^{y}}{[0.10]^{y}}$$

$$\Rightarrow \left(\frac{0.30}{0.10}\right)^{0} = \left(\frac{0.30}{0.10}\right)^{y}$$

$$\Rightarrow y = 0$$

Dividing equation (iii) by (ii), we obtain

$$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{k \left[0.40 \right]^{x} \left[0.05 \right]^{y}}{k \left[0.20 \right]^{x} \left[0.30 \right]^{y}}$$

$$\Rightarrow \frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{\left[0.40 \right]^{x}}{\left[0.20 \right]^{x}} \qquad \begin{bmatrix} \text{Since } y = 0, \\ \left[0.05 \right]^{y} = \left[0.30 \right]^{y} = 1 \end{bmatrix}$$

$$\Rightarrow 2.821 = 2^{x}$$

$$\Rightarrow \log 2.821 = x \log 2 \qquad \text{(Taking log on both sides)}$$

$$\Rightarrow x = \frac{\log 2.821}{\log 2}$$

= 1.496

= 1.5 (approximately)

Hence, the order of the reaction with respect to A is 1.5 and with respect to B is zero.

Question 4.11:

The following results have been obtained during the kinetic studies of the reaction:

$$2A + B \rightarrow C + D$$

Experiment	A/ mol L ⁻¹	A/ mol L ⁻¹ B/ mol L ⁻¹ Initial rate of formation of D/mol			
I	0.1	0.1	6.0×10^{-3}		
II	0.3 0.2 0.3 0.4		7.2×10^{-2}		
III			2.88 × 10 ⁻¹		

Determine the rate law and the rate constant for the reaction.

Answer:

Let the order of the reaction with respect to A be x and with respect to B be y.

Therefore, rate of the reaction is given by,

Rate =
$$k[A]^x[B]^y$$

According to the question,

$$6.0 \times 10^{-3} = k [0.1]^x [0.1]^y$$
 (i)

$$7.2 \times 10^{-2} = k [0.3]^x [0.2]^y$$
 (ii)

$$2.88 \times 10^{-1} = k [0.3]^x [0.4]^y$$
 (iii)

$$2.40 \times 10^{-2} = k [0.4]^{x} [0.1]^{y}$$
 (iv)

Dividing equation (iv) by (i), we obtain

$$\frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}} = \frac{k \left[0.4\right]^{x} \left[0.1\right]^{y}}{k \left[0.1\right]^{x} \left[0.1\right]^{y}}$$

$$\Rightarrow 4 = \frac{\left[0.4\right]^x}{\left[0.1\right]^x}$$

$$\Rightarrow 4 = \left(\frac{0.4}{0.1}\right)^x$$

$$\Rightarrow (4)^1 = 4^x$$

$$\Rightarrow x = 1$$

Dividing equation (iii) by (ii), we obtain

$$\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}} = \frac{k \left[0.3\right]^{x} \left[0.4\right]^{y}}{k \left[0.3\right]^{x} \left[0.2\right]^{y}}$$

$$\Rightarrow 4 = \left(\frac{0.4}{0.2}\right)^y$$

$$\Rightarrow 4 = 2^y$$

$$\Rightarrow 2^2 = 2^y$$

$$\Rightarrow y = 2$$

Therefore, the rate law is

Rate = $k [A] [B]^2$

$$\Rightarrow k = \frac{\text{Rate}}{[A][B]^2}$$

From experiment I, we obtain

$$k = \frac{6.0 \times 10^{-3} \text{ mol } L^{-1} \text{ min}^{-1}}{\left(0.1 \text{ mol } L^{-1}\right) \left(0.1 \text{ mol } L^{-1}\right)^2}$$

$$= 6.0 L^2 mol^{-2} min^{-1}$$

From experiment II, we obtain

$$k = \frac{7.2 \times 10^{-2} \text{ mol } L^{-1} \text{ min}^{-1}}{\left(0.3 \text{ mol } L^{-1}\right) \left(0.2 \text{ mol } L^{-1}\right)^2}$$

$$= 6.0 L^2 mol^{-2} min^{-1}$$

From experiment III, we obtain

$$k = \frac{2.88 \times 10^{-1} \text{ mol L}^{-1} \text{ min}^{-1}}{\left(0.3 \text{ mol L}^{-1}\right) \left(0.4 \text{ mol L}^{-1}\right)^2}$$

$$= 6.0 L^2 mol^{-2} min^{-1}$$

From experiment IV, we obtain

$$k = \frac{2.40 \times 10^{-2} \text{ mol L}^{-1} \text{ min}^{-1}}{\left(0.4 \text{ mol L}^{-1}\right) \left(0.1 \text{ mol L}^{-1}\right)^2}$$

$$= 6.0 L^2 mol^{-2} min^{-1}$$

Therefore, rate constant, $k = 6.0 L^2 mol^{-2} min^{-1}$

Question 4.12:

The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	A/ mol L ⁻¹	B/ mol L ⁻¹	Initial rate/mol L ⁻¹ min ⁻¹
I	0.1	0.1	2.0 × 10 ⁻²
II	_	0.2	4.0 × 10 ⁻²
III	0.4	0.4	_
IV	_	0.2	2.0 × 10 ⁻²

Answer:

The given reaction is of the first order with respect to A and of zero order with respect to B.

Therefore, the rate of the reaction is given by,

Rate =
$$k [A]^1 [B]^0$$

$$\Rightarrow$$
 Rate = k [A]

From experiment I, we obtain

$$2.0 \times 10^{-2} \text{ mol L}^{-1} \text{ min}^{-1} = \text{k } (0.1 \text{ mol L}^{-1})$$

$$\Rightarrow$$
 k = 0.2 min⁻¹

From experiment II, we obtain

$$4.0 \times 10^{-2} \text{ mol L}^{-1} \text{ min}^{-1} = 0.2 \text{ min}^{-1} \text{ [A]}$$

$$\Rightarrow$$
 [A] = 0.2 mol L⁻¹

From experiment III, we obtain

Rate =
$$0.2 \text{ min}^{-1} \times 0.4 \text{ mol L}^{-1}$$

$$= 0.08 \text{ mol L}^{-1} \text{ min}^{-1}$$

From experiment IV, we obtain

$$2.0 \times 10^{-2} \text{ mol L}^{-1} \text{ min}^{-1} = 0.2 \text{ min}^{-1} \text{ [A]}$$

$$\Rightarrow$$
 [A] = 0.1 mol L⁻¹

Page No 119:

Ouestion 4.13:

Calculate the half-life of a first order reaction from their rate constants given below:

(i)
$$200 \text{ s}^{-1}$$
 (ii) 2 min^{-1} (iii) 4 years^{-1}

Answer:

(i) Half life,
$$t_{1/2} = \frac{0.693}{k}$$

$$=\frac{0.693}{2000}$$

$$= 3.47$$

×10⁻³ s (approximately)

(ii) Half life,
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$=\frac{0.693}{2 \, \text{min}^{-1}}$$

= 0.35 min (approximately)

(iii) Half life,
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$=\frac{0.693}{4 \text{ years}^{-1}}$$

= 0.173 years (approximately)

Question 4.14:

The half-life for radioactive decay of ¹⁴C is 5730 years. An archaeological artifact containing wood had only 80% of the ¹⁴C found in a living tree. Estimate the age of the sample.

Answer:

Here,

$$k = \frac{0.693}{t_{\frac{1}{2}}}$$
$$= \frac{0.693}{5730} \text{ years}^{-1}$$

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$
$$= \frac{2.303}{0.693} \log \frac{100}{80}$$
$$= \frac{7.303}{5730} \log \frac{100}{80}$$

= 1845 years (approximately)

Hence, the age of the sample is 1845 years.

Question 4.15:

The experimental data for decomposition of N_2O_5

$$\left[2N_2O_5 \longrightarrow 4NO_2 + O_2\right]$$

in gas phase at 318K are given below:

t(s)	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 \times \left[N_2 O_5 \right] \text{mol } L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

- (i) Plot [N₂O₅] against t.
- (ii) Find the half-life period for the reaction.

- (iii) Draw a graph between $log [N_2O_5]$ and t.
- (iv) What is the rate law?
- (v) Calculate the rate constant.
- (vi) Calculate the half-life period from k and compare it with (ii).

Answer:

1.

(ii) Time corresponding to the concentration, $\frac{1.630\times10^2}{2}\,\text{mol}\,L^{\text{--}\text{1}}=81.5\,\text{mol}\,L^{\text{--}\text{1}},$ is the half life.

From the graph, the half life is obtained as 1450 s.

(iii)

t(s)	$10^2 \times \left[N_2 O_5 \right] / \text{mol L}^{-1}$	$\log \big[\mathbf{N_2O_5} \big]$
0	1.63	- 1.79
400	1.36	- 1.87
800	1.14	- 1.94
1200	0.93	- 2.03
1600	0.78	- 2.11
2000	0.64	- 2.19
2400	0.53	- 2.28
2800	0.43	- 2.37
3200	0.35	- 2.46

(iv) The given reaction is of the first order as the plot, $\log[N_2O_5]$ v/s t, is a straight line. Therefore, the rate law of the reaction is

$$Rate = k[N_2O_5]$$

(v) From the plot, $\log[N_2O_5]$ v/s t, we obtain

Slope =
$$\frac{-2.46 - (-1.79)}{3200 - 0}$$
$$= \frac{-0.67}{3200}$$

Again, slope of the line of the plot $\log[N_2O_5]$ v/s t is given by

$$-\frac{k}{2.303}$$

Therefore, we obtain,

$$-\frac{k}{2.303} = -\frac{0.67}{3200}$$

$$\Rightarrow k = 4.82 \times 10^{-4} \text{ s}^{-1}$$

(vi) Half-life is given by,

$$t_{1/2} = \frac{0.639}{k}$$

$$= \frac{0.693}{4.82 \times 10^{-4}} s$$

$$= 1.438 \times 10^{3} s$$

$$= 1438 s$$

This value, 1438 s, is very close to the value that was obtained from the graph.

The rate constant for a first order reaction is 60 s⁻¹. How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

Answer:

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$= \frac{2.303}{60 \text{ s}^{-1}} \log \frac{1}{1/6}$$

$$= \frac{2.303}{60 \text{ s}^{-1}} \log 16$$

$$= 4.6 \times 10^{-2} \text{ s (approximately)}$$

Hence, the required time is 4.6×10^{-2} s.

Question 4.17:

During nuclear explosion, one of the products is 90 Sr with half-life of 28.1 years. If 1µg of 90 Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Answer:

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{28.1} \text{ y}^{-1}$$

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$\Rightarrow 10 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]}$$

$$\Rightarrow 10 = \frac{2.303}{\frac{0.693}{28.1}} (-\log[R])$$

$$\Rightarrow \log[R] = -\frac{10 \times 0.693}{2.303 \times 28.1}$$

$$\Rightarrow [R] = \text{antilog} (-0.1071)$$

$$= \text{antilog}(\overline{1}.8929)$$

$$= 0.7814 \mu g$$

Therefore, 0.7814 μg of $^{90} Sr$ will remain after 10 years.

Again,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$\Rightarrow 60 = \frac{2.303}{0.693} \log \frac{1}{[R]}$$

$$\Rightarrow \log[R] = -\frac{60 \times 0.693}{2.303 \times 28.1}$$

$$\Rightarrow [R] = \operatorname{antilog}(-0.6425)$$

$$= \operatorname{antilog}(\overline{1}.3575)$$

$$= 0.2278 \mu g$$

Therefore, 0.2278 µg of 90Sr will remain after 60 years.

Question 4.18:

For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

Answer:

For a first order reaction, the time required for 99% completion is

$$t_1 = \frac{2.303}{k} \log \frac{100}{100 - 99}$$
$$= \frac{2.303}{k} \log 100$$
$$= 2 \times \frac{2.303}{k}$$

For a first order reaction, the time required for 90% completion is

$$t_2 = \frac{2.303}{k} \log \frac{100}{100 - 90}$$
$$= \frac{2.303}{k} \log 10$$
$$= \frac{2.303}{k}$$

Therefore, $t_1 = 2t_2$

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

Question 4.19:

A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.

Answer:

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{\left[R\right]_0}{\left[R\right]}$$

$$k = \frac{2.303}{40 \text{ min}} \log \frac{100}{100 - 30}$$
$$= \frac{2.303}{40 \text{ min}} \log \frac{10}{7}$$
$$= 8.918 \times 10^{-3} \text{ min}^{-1}$$

Therefore, $t_{1/2}$ of the decomposition reaction is

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$
$$= \frac{0.693}{8.918 \times 10^{-3}} \min$$

= 77.7 min (approximately)

Question 4.20:

For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained.

t (sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Answer:

The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation.

$$(CH_3)_2 CHN=NCH(CH_3)_{2(g)} \longrightarrow N_{2(g)} + C_6H_{14(g)}$$
At $t=0$ P_0 0 0
At $t=t$ P_0-p p

After time, t, total pressure, $P_t = (P_0 - p) + p + p$

$$\Rightarrow P_{t} = P_{0} + p$$

$$\Rightarrow p = P_{t} - P_{0}$$
Therefore, $P_{o} - p = P_{o} - (P_{t} - P_{o})$

$$= 2P_{0} - P_{t}$$

For a first order reaction,

$$k = \frac{2.303}{t} \log \frac{P_0}{P_0 - p}$$
$$= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$$

When t = 360 s,
$$k = \frac{2.303}{360 \text{ s}} \log \frac{35.0}{2 \times 35.0 - 54.0}$$

$$= 2.175 \times 10^{-3} \text{ s}^{-1}$$

When t = 720 s,
$$k = \frac{2.303}{720 \text{ s}} \log \frac{35.0}{2 \times 35.0 - 63.0}$$

$$= 2.235 \times 10^{-3} \text{ s}^{-1}$$

Hence, the average value of rate constant is

$$k = \frac{\left(2.175 \times 10^{-3}\right) + \left(2.235 \times 10^{-3}\right)}{2} s^{-1}$$

$$= 2.21 \times 10^{-3} \text{ s}^{-1}$$

Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Question 4.21:

The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume.

$$SO_2Cl_2(g) \ \longrightarrow \ SO_2(g) \, + \, Cl_2(g)$$

Experiment	Time/s ⁻¹	Total pressure/atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Answer:

The thermal decomposition of SO₂Cl₂ at a constant volume is represented by the following equation.

$$SO_2Cl_{2(g)} \longrightarrow SO_{2(g)} + Cl_{2(g)}$$
At $t = 0$ P_0 0 0
At $t = t$ $P_0 - p$ p p

After time, t, total pressure, $P_t = (P_0 - p) + p + p$

$$\Rightarrow P_t = P_0 + p$$

$$\Rightarrow p = P_t - P_0$$

Therefore, $P_o - p = P_o - (P_t - P_o)$

$$= 2 P_0 - P_t$$

For a first order reaction,

$$k = \frac{2.303}{t} \log \frac{P_0}{P_0 - p}$$
$$= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$$

When t = 100 s,
$$k = \frac{2.303}{100 \text{ s}} \log \frac{0.5}{2 \times 0.5 - 0.6}$$

$$= 2.231 \times 10^{-3} \text{ s}^{-1}$$

When $P_t = 0.65$ atm,

$$P_0 + p = 0.65$$

$$\Rightarrow$$
 p = 0.65 - P₀

$$= 0.65 - 0.5$$

= 0.15 atm

Therefore, when the total pressure is 0.65 atm, pressure of SOCl₂ is

$$p_{SOCl_2} = P_0 - p$$

$$= 0.5 - 0.15$$

$$= 0.35 atm$$

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,

Rate =
$$k(P_{SOCI_2})$$

$$= (2.23 \times 10^{-3} \text{ s}^{-1}) (0.35 \text{ atm})$$

$$= 7.8 \times 10^{-4} \text{ atm s}^{-1}$$

Page No 120:

Question 4.22:

The rate constant for the decomposition of N₂O₅ at various temperatures is given below:

T/°C	0	20	40	60	80
$10^5 \times k/ \text{ s}^{-1}$	0.0787	1.70	25.7	178	2140

Draw a graph between $\ln k$ and 1/T and calculate the values of A and E_a .

Predict the rate constant at 30° and 50°C.

Answer:

From the given data, we obtain

T/°C	0	20	40	60	80
T/K	273	293	313	333	353
$\frac{1}{T}/\mathrm{K}^{-1}$	3.66×10 ⁻³	3.41×10 ⁻³	3.19×10 ⁻³	3.0×10 ⁻³	2.83 ×10 ⁻³
$10^5 \times k / \text{s}^{-1}$	0.0787	1.70	25.7	178	2140
In k	-7.147	- 4.075	-1.359	-0.577	3.063

Slope of the line,

$$\frac{y_2 - y_1}{x_2 - x_1} = -12.301 \,\mathrm{K}$$

According to Arrhenius equation,

Slope =
$$-\frac{E_a}{R}$$

 $\Rightarrow E_a = -\text{Slope} \times R$
= $-(-12.301 \text{K}) \times (8.314 \text{ J K}^{-1} \text{mol}^{-1})$
= $102.27 \text{ kJ mol}^{-1}$

Again,

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln A = \ln k + \frac{E_a}{RT}$$

When
$$T = 273 \,\mathrm{K}$$
,

$$\ln k = -7.147$$

Then,
$$\ln A = -7.147 + \frac{102.27 \times 10^3}{8.314 \times 273}$$

= 37.911

Therefore, $A = 2.91 \times 10^6$

When
$$T = 30 + 273 \,\mathrm{K} = 303 \,\mathrm{K}$$
,

$$\frac{1}{T} = 0.0033 \,\mathrm{K} = 3.3 \times 10^{-3} \,\mathrm{K}$$

Then, at
$$\frac{1}{T} = 3.3 \times 10^{-3} \, \text{K}$$
,

$$\ln k = -2.8$$

Therefore,
$$k = 6.08 \times 10^{-2} \text{ s}^{-1}$$

Again, when
$$T = 50 + 273 \,\mathrm{K} = 323 \,\mathrm{K}$$

$$\frac{1}{T} = 0.0031 \text{K} = 3.1 \times 10^{-3} \text{ K}$$

$$\frac{1}{T} = 3.1 \times 10^{-3} \, \text{K},$$
 Then, at $\frac{1}{T} = 3.1 \times 10^{-3} \, \text{K},$

In
$$k = -0.5$$

Therefore,
$$k = 0.607 \,\text{s}^{-1}$$

Question 4.23:

The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} \, \text{s}^{-1}$ at 546 K. If the energy of activation is 179.9 kJ/mol, what will be the value of pre-exponential factor.

Answer:

$$k = 2.418 \times 10^{-5} \text{ s}^{-1}$$

$$T = 546 K$$

$$E_a = 179.9 \text{ kJ mol}^{-1} = 179.9 \times 10^3 \text{ J mol}^{-1}$$

According to the Arrhenius equation,

$$k = Ae^{-E_{o}/RT}$$

$$\Rightarrow \ln k = \ln A - \frac{E_{o}}{RT}$$

$$\Rightarrow \log k = \log A - \frac{E_{o}}{2.303 RT}$$

$$\Rightarrow \log A = \log k + \frac{E_{o}}{2.303 RT}$$

$$= \log \left(2.418 \times 10^{-5} \text{ s}^{-1}\right) + \frac{179.9 \times 10^{3} \text{ J mol}^{-1}}{2.303 \times 8.314 \text{ Jk}^{-1} \text{ mol}^{-1} \times 546 \text{ K}}$$

$$= (0.3835 - 5) + 17.2082$$

= 12.5917

Therefore, A = antilog (12.5917)

=
$$3.9 \times 10^{12} \text{ s}^{-1}$$
 (approximately)

Question 4.24:

Consider a certain reaction A \rightarrow Products with k = 2.0 \times 10⁻² s⁻¹. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L⁻¹.

Answer:

$$k = 2.0 \times 10^{-2} \text{ s}^{-1}$$

$$T = 100 s$$

$$[A]_0 = 1.0 \text{ moL}^{-1}$$

Since the unit of k is s^{-1} , the given reaction is a first order reaction.

$$k = \frac{2.303}{t} \log \frac{\text{[A]}_0}{\text{[A]}}$$
 Therefore,

$$\Rightarrow 2.0 \times 10^{-2} \text{ s}^{-1} = \frac{2.303}{100 \text{ s}} \log \frac{1.0}{[A]}$$

$$\Rightarrow 2.0 \times 10^{-2} \text{ s}^{-1} = \frac{2.303}{100 \text{ s}} \left(-\log[A]\right)$$

$$\Rightarrow$$
 $-\log[A] = \frac{2.0 \times 10^{-2} \times 100}{2.303}$

$$\Rightarrow$$
 [A] = anti log $\left(-\frac{2.0 \times 10^{-2} \times 100}{2.303}\right)$

=
$$0.135 \text{ mol L}^{-1}$$
 (approximately)

Hence, the remaining concentration of A is $0.135 \text{ mol } L^{-1}$.

Question 4.25:

Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1/2} = 3.00$ hours. What fraction of sample of sucrose remains after 8 hours?

Answer:

For a first order reaction,

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

It is given that, $t_{1/2} = 3.00$ hours

$$k = \frac{0.693}{t_{\frac{1}{2}}}$$
 Therefore,

$$=\frac{0.693}{3} h^{-1}$$

$$= 0.231 h^{-1}$$

Then, 0.231 h⁻¹ =
$$\frac{2.303}{8 \text{ h}} log \frac{\left[R\right]_0}{\left[R\right]}$$

$$\Rightarrow \log \frac{[R]_0}{[R]} = \frac{0.231 \,\mathrm{h}^{-1} \times 8 \,\mathrm{h}}{2.303}$$

$$\Rightarrow \frac{[R]_0}{[R]} = \mathrm{antilog}(0.8024)$$

$$\Rightarrow \frac{[R]_0}{[R]} = 6.3445$$

$$\Rightarrow \frac{[R]}{[R]} = 0.1576 \,\mathrm{(approx)}$$

$$= 0.158$$

Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158.

Question 4.26:

The decomposition of hydrocarbon follows the equation

$$k = (4.5 \times 10^{11} \text{ s}^{-1}) \text{ e}^{-28000 \text{ K/T}}$$

Calculate E_a.

Answer:

The given equation is

$$k = (4.5 \times 10^{11} \text{ s}^{-1}) \text{ e}^{-28000 \text{ K/T}}$$
 (i)

Arrhenius equation is given by,

$$k = Ae^{-E_{\sigma}/RT}$$
 (ii)

From equation (i) and (ii), we obtain

$$\frac{E_a}{RT} = \frac{28000 \text{ K}}{T}$$

$$\Rightarrow E_a = R \times 28000 \text{ K}$$

$$= 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \times 28000 \text{ K}$$

$$= 232792 \text{ J mol}^{-1}$$

$$= 232.792 \text{ kJ mol}^{-1}$$

Question 4.27:

The rate constant for the first order decomposition of H_2O_2 is given by the following equation:

$$\log k = 14.34 - 1.25 \times 10^4 \text{ K/T}$$

Calculate E_a for this reaction and at what temperature will its half-period be 256 minutes?

Answer:

Arrhenius equation is given by,

$$k = Ae^{-E_{\sigma}/RT}$$

$$\Rightarrow \ln k = \ln A - \frac{E_a}{RT}$$

$$\Rightarrow \ln k = \log A - \frac{E_a}{RT}$$

$$\Rightarrow \log k = \log A - \frac{E_a}{2.303 \text{ RT}}$$
(i)

The given equation is

$$\log k = 14.34 - 1.25 \times 10^4 \text{ K/T}$$
 (ii)

From equation (i) and (ii), we obtain

$$\frac{E_a}{2.303 \text{ R}T} = \frac{1.25 \times 10^4 \text{ K}}{T}$$
$$\Rightarrow E_a = 1.25 \times 10^4 \text{ K} \times 2.303 \times \text{R}$$

$$= 1.25 \times 10^4 \text{ K} \times 2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$= 239339.3 \text{ J mol}^{-1} \text{ (approximately)}$$

$$= 239.34 \text{ kJ mol}^{-1}$$

Also, when $t_{1/2} = 256$ minutes,

$$k = \frac{0.693}{t_{1/2}}$$
$$= \frac{0.693}{256}$$

$$= 2.707 \times 10^{-3} \text{ min}^{-1}$$

$$= 4.51 \times 10^{-5} \text{ s}^{-1}$$

It is also given that, $\log k = 14.34 - 1.25 \times 10^4 \text{ K/T}$

$$\Rightarrow \log(4.51 \times 10^{-5}) = 14.34 - \frac{1.25 \times 10^{4} \text{ K}}{T}$$

$$\Rightarrow \log(0.654 - 05) = 14.34 - \frac{1.25 \times 10^{4} \text{ K}}{T}$$

$$\Rightarrow \frac{1.25 \times 10^{4} \text{ K}}{T} = 18.686$$

$$\Rightarrow T = \frac{1.25 \times 10^{4} \text{ K}}{18.686}$$

= 668.95 K

= 669 K (approximately)

Question 4.28:

The decomposition of A into product has value of k as $4.5 \times 10^3 \text{ s}^{-1}$ at 10°C and energy of activation 60 kJ mol⁻¹. At what temperature would k be $1.5 \times 10^4 \text{ s}^{-1}$?

Answer:

From Arrhenius equation, we obtain

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \,\text{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

Also,
$$k_1 = 4.5 \times 10^3 \text{ s}^{-1}$$

$$T_1 = 273 + 10 = 283 \text{ K}$$

$$k_2 = 1.5 \times 10^4 \text{ s}^{-1}$$

$$E_a = 60 \text{ kJ mol}^{-1} = 6.0 \times 10^4 \text{ J mol}^{-1}$$

Then,

$$\log \frac{1.5 \times 10^{4}}{4.5 \times 10^{3}} = \frac{6.0 \times 10^{4} \text{ J mol}^{-1}}{2.303 \times 8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \left(\frac{T_{2} - 283}{283 T_{2}} \right)$$

$$\Rightarrow 0.5229 = 3133.627 \left(\frac{T_{2} - 283}{283 T_{2}} \right)$$

$$\Rightarrow \frac{0.5229 \times 283 \ T_{2}}{3133.627} = T_{2} - 283$$

$$\Rightarrow 0.0472 T_{2} = T_{2} - 283$$

$$\Rightarrow 0.9528 \ T_{2} = 283$$

$$\Rightarrow T_{2} = 297.019 \text{ K (approximately)}$$

= 297 K

= 24°C

Hence, k would be $1.5 \times 10^4 \text{ s}^{-1}$ at 24°C .

Note: There is a slight variation in this answer and the one given in the NCERT textbook.

Question 4.29:

The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K. If the value of A is $4 \times 10^{10} \, \text{s}^{-1}$. Calculate k at 318 K and E_a .

Answer:

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$
At 298 K,
$$t = \frac{2.303}{k} \log \frac{100}{90}$$

$$= \frac{0.1054}{k}$$

At 308 K,
$$t' = \frac{2.303}{k'} \log \frac{100}{75}$$

= $\frac{2.2877}{k'}$

According to the question,

$$t = t'$$

$$\Rightarrow \frac{0.1054}{k} = \frac{0.2877}{k'}$$

$$\Rightarrow \frac{k'}{k} = 2.7296$$

From Arrhenius equation, we obtain

$$\log \frac{k'}{k} = \frac{E_a}{2.303 \,\text{R}} \left(\frac{T' - T}{TT'} \right)$$

$$\log \left(2.7296 \right) = \frac{E_a}{2.303 \times 8.314} \left(\frac{308 - 298}{298 \times 308} \right)$$

$$E_a = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log \left(2.7296 \right)}{308 - 298}$$

$$= 76640.096 \,\text{J mol}^{-1}$$

$$= 76.64 \,\text{kJ mol}^{-1}$$

To calculate k at 318 K,

It is given that, $A = 4 \times 10^{10} \,\text{s}^{-1}$, $T = 318 \,\text{K}$

Again, from Arrhenius equation, we obtain

$$\log k = \log A - \frac{E_a}{2.303 \,\mathrm{R} \,T}$$

$$= \log \left(4 \times 10^{10}\right) - \frac{76.64 \times 10^3}{2.303 \times 8.314 \times 318}$$

$$= \left(0.6021 + 10\right) - 12.5876$$

$$= -1.9855$$

Therefore,
$$k = \text{Antilog}(-1.9855)$$

= 1.034×10⁻² s⁻¹

Question 4.30:

The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Answer:

From Arrhenius equation, we obtain

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \,\text{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$
It is given that, $k_2 = 4k_1$

$$T_1 = 293 \,\text{K}$$

$$T_2 = 313 \,\text{K}$$
Therefore, $\log \frac{4k_1}{k_2} = \frac{E_a}{2.303 \times 8.314} \left(\frac{313 - 293}{293 \times 313} \right)$

$$\Rightarrow 0.6021 = \frac{20 \times E_a}{2.303 \times 8.314 \times 293 \times 313}$$

$$\Rightarrow E_a = \frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}$$

$$= 52863.33 \,\text{J mol}^{-1}$$

$$= 52.86 \,\text{kJ mol}^{-1}$$

Hence, the required energy of activation is 52.86 kJmol⁻¹.