CS 325 – Asymptotic Analysis

Week 1 Part 2- Big-Oh, Omega, Theta

Problems vs Algorithms

- For any given problem there are potentially many different types of algorithms to solve it.
- Problem: Sorting a list of integers
- Algorithms: Insertion Sort, Merge Sort, Naive Sort

Plot:

- Running time
 - Insertion Sort is $O(n^2)$
 - Merge Sort is O(nlgn)
 - Naive Sort is O(n³)

How do we compare algorithms?

We need to define a number of <u>objective measures</u>.

(1) Compare execution times?

Not good: times are specific to a particular computer and programming language!!

(2) Count the number of statements executed?

Not good: number of statements vary with the programming language as well as the style of the individual programmer.

Types of Analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest
- Average case = Expected Value
 - Provides a prediction about the running time
 - Assumes that the input is random

Asymptotic Analysis

To compare two algorithms with running times f(n) and g(n), we need a **rough measure** that characterizes **how fast each function grows.**

- Running time of an algorithm as a function of input size *n* for large *n*.
- Compare functions in the limit, that is, **asymptotically!** (i.e., for large values of *n*)
- Worst Case Analysis

Input Size

Express running time as a function of the input size n (i.e., f(n)).

- size of an array
- # of elements in a matrix
- # of bits in the binary representation of the input
- vertices and edges in a graph

Constant factors and domination

Suppose we have two algorithms with exact running times of:

Algorithm 1

 $1,000,000 \cdot n$

versus

Algorithm 2

 $2 \cdot n^2$

Is it reasonable to say that runtime of Algorithm 2 dominates (is worse) than Algorithm1?

NO for small values of n Algorithm 2 is better Yes for large values of n

Asymptotic performance

When n gets large enough, an n^2 algorithm always "beats" a n^3 algorithm.

Asymptotic Notation

- Big-Oh O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: f(n) " \leq " g(n)
- Omega Ω notation: asymptotic "greater than":
 - $f(n) = \Omega(g(n))$ implies: $f(n) \stackrel{\sim}{=} g(n)$
- Theta Θ notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O example, graphically

- Note 30*n*+8 isn't less than *n* anywhere (*n*>0).
- It isn't even less than 31n everywhere.
- But it *is* less than 31*n* everywhere to the right of *n*=8.

30n + 8 is O(n)

Not Unique - Example

Show that 30n+8 is O(n).

Show $\exists c, n_0$: $30n+8 \le cn$, $\forall n \ge n_0$.

Let c=38, $n_0=1$. Assume $n \ge n_0=1$.

Then $cn = 38n = 30n + 8n \ge 30n$

 $30n+8 \le 38n$, when $n \ge 1$

A Simple Code Example

• Consider summing an array of *n* integers.

```
sum = 0; Executes in constant time c_1 (independent of n)

for (i = 0; i < n; i++)

sum += array[i]; Executes in c_2 \cdot n time for for some constant c_2

return sum; Executes in constant time c_3 (independent of n)
```

- Total running time: $c_1 + c_2 n + c_3$
 - But the constants c_1 , c_2 , c_3 depend on hardware, compiler, etc.
- What is the big-Oh runtime? (big-Oh ignores factors)

O(n) also known as <u>linear time</u>

A Simple Example

• Consider summing an array of *n* integers.

```
sum = 0;
for (i = 0; i < n; i++)
    sum += array[i];
return sum;</pre>
O(n)
```

Non-Linear Times

- Consider the Insertion Sort Algorithm
 - Let n be the size of the input list to be sorted
 - Runtime is $O(n^2)$, also known as quadratic time.
- Suppose size doubles, what happens to execution time?

• It goes up by a factor of 4. Why?

Orders of Growth

Big Oh Classes

• Constant O(1)

• Logarithmic O(log (n))

• Linear O(n)

• Quadratic $O(n^2)$

• Cubic $O(n^3)$

• Polynominal $O(n^k)$ for any k>0

• Exponential $O(k^n)$, where k>1

• Factorial O(n!)

Rank the following functions in increasing order of growth

10n, Ig(2ⁿ), 1000, sqrt(n), 3n², n!, logn, 3ⁿ

A polynomial of degree k is $O(n^k)$

Recall: f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Proof:

Suppose
$$f(n) = b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0$$

Let $a_i = |b_i|$
 $f(n) \le a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$
 $f(n) \le n^k \left(a_k + a_{k-1} \frac{n^{k-1}}{n^k} + \dots + a_1 \frac{n^1}{n^k} + a_0 \frac{1}{n^k} \right)$
 $f(n) \le n^k \sum a_i \frac{n^i}{n^k} \le n^k \sum a_i$
 $let \ c = \sum a_i$
 $f(n) \le cn^k \text{ for } n \ge 1$

Therefore all polynomial functions f(n) of degree k are $O(n^k)$.

What does this mean in practice?

Total =
$$O(n) + O(n^2) = O(n + n^2) = O(n^2)$$

Code Example

```
int isPrime (int n) {
  for (int i = 2; i * i <= n; i++) {
    if (0 == n % i) return 0;
  }
  return 1; /* 1 is true */
}</pre>
```

What is the "Big-Oh" running time in terms of n?

$$O(\sqrt{n})$$

Trouble with Big-Oh

Just an upper bound. Factually true but practically meaningless.

- 3n is O(n²)
- 3n is O(n⁴)
- 3n is O(n)

Many times only Big-Oh is reported but it is assumed a "tight" upper bound.

Omega Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Omega Graphically

 Note 30n+8 isn't less than n anywhere (n>0).

Examples

```
5n^2 = \Omega(n)
         \exists c, n_0 such that: 0 \le cn \le 5n^2
         \Rightarrow cn \leq 5n^2
          \Rightarrow c = 5 and n<sub>0</sub> = 1
5n^2 + 10 = \Omega(n^2)
         \exists c, n_0 such that: 0 \le cn^2 \le 5n^2 + 10
         \Rightarrow 5n<sup>2</sup>c \leq 5n<sup>2</sup> +10
         \Rightarrow c = 1 and n_0 = 1
```

Property of Big-Oh and Omega

If f(n) = O(g(n)) then $g(n) = \Omega(f(n))$

By definition of Big-Oh

 $f(n) \le cg(n)$ for all $n \ge n_0$ for some $n_0,c > 0$.

Dividing by c yields

$$\frac{1}{c}$$
 f(n) \leq g(n) or c_2 f(n) \leq g(n) where $c_2 = \frac{1}{c} \geq 0$

If we use the same n_0 this implies that $g(n) = \Omega(f(n))$.

A non-negative polynomial of degree k is $\Omega(n^k)$

Proof:

Suppose
$$f(n) = b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0$$

$$f(n) = n^k \left(b_k + b_{k-1} \frac{n^{k-1}}{n^k} + \dots + b_1 \frac{n^1}{n^k} + b_0 \frac{1}{n^k} \right)$$

$$f(n) = n^k \left(b_k + \frac{b_{k-1}}{n^1} + \dots + \frac{b_1}{n^{k-1}} + \frac{b_0}{n^k} \right)$$

For large n's the fractions go to zero, so if we set n_0 large enough we can ignore all terms except b_k . Thus a value for n_0 must exist.

let
$$c = \frac{b_k}{2}$$
 $cn^k \le f(n)$ for $n \ge n_0$
$$\frac{b_k}{2}n^k \le b_k n^k \text{ for } n \ge n_0$$

Therefore all polynomial functions f(n) of degree k are $\Omega(n^k)$.

Θ-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Big-Theta example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than
 31n everywhere to the right of n=8.

A non-negative polynomial of degree k is $\Theta(n^k)$

Proof: From previous Big-Oh and Omega $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0 is \Theta(n^k)$

Short-cut:

- Drop low-order terms; ignore leading constants.
- Example: $3n^3 + 90n^2 5n + 6046 = \Theta(n^3)$

Relations Between Θ , O, Ω

For the functions $f(n)=\log n$ and $g(n)=\lg n$. Which is true?

- f(n) is O(g(n))
- f(n) is $\Theta(g(n))$
- f(n) is $\Omega(g(n))$
- All of the above

For the functions $f(n)=\log n$ and $g(n)=\lg n$. Which is true?

- f(n) is O(g(n))
- f(n) is $\Theta(g(n))$
- f(n) is $\Omega(g(n))$
- All of the above

$$lgn = log_2 n = \frac{logn}{log2} = c_1 \ logn$$
$$logn = log2(lgn) = c_2 \ lgn$$

Benchmarking

- Algorithmic analysis is the first and best way, but not the final word
- What if two algorithms are both of the same complexity?
- Example: bubble sort and insertion sort are both $O(n^2)$
 - So, which one is the "faster" algorithm?
 - Benchmarking: run both algorithms on the same machine
 - Often indicates the constant multipliers and other "ignored" components
 - Still, different implementations of the same algorithm often exhibit different execution times – due to changes in the constant multiplier or other factors (such as adding an early exit to bubble sort)