# Group 2 Final Project: Predicting Movies' IMDb Score

Adam Kritz, Sahara Ensley, Josh Ting
December 6th, 2021
George Washington University
Introduction to Data Mining - DATS 6103
<a href="https://github.com/Saharae/Final-Project-Group2">https://github.com/Saharae/Final-Project-Group2</a>

#### Introduction

The Internet Movie Database (IMDb) is a popular website for cataloging movies

Over 600,000 movies recorded on IMDb as of September 2021

Users and critics can vote on movies and leave reviews



## **Research Question**

Movie industry wants to invest in movies that they know will be successful

Is there a way to predict if a movie will be enjoyed before it is even released?

Can we build a model to predict the IMDb score of a movie based on its characteristics?

Our research will shed light on whether a model can predict if a movie will be successful solely based on information about the movie

## Data Description

IMDb Movies Extensive Dataset on Kaggle



Four .csv files initially, narrowed down to Movies and Ratings

Combined the features from Movies and the weighted average vote from Ratings

## Target Variable

Several target variables we were interested in initially: Female average vote, Male average vote, average vote, and weighted average vote

Decided on weighted average vote



Weighted average vote appears on IMDb, aka IMDb Rating

Weighted average vote can prevent drastic changes

Weighted average vote ranges from 1-10, to one decimal place

### Variables That Did Not Make The Cut

- Average vote and metascore
  - Both based on the same factors as weighted average vote, could not not be used as predictors
- # of reviews from critics, # of reviews from users, total votes
  - Were not actually features of movies
  - Confusion on definitions
- Language
  - High correlation with country

#### Variables We Chose

#### Four Numerical Variables

- Duration
- Budget
- USA Gross Income
- Worldwide Gross Income

#### Eight Categorical Variables

- Date Published
- Actors
- Writers
- Directors
- Production Company
- Title
- IMDb Description
- Country
- Genre

## Our Modeling Plans

Create a model that could most accurately predict weighted average vote

Took a set of models from SKlearn to use for modelling

- Linear Regression
- Random Forest
- Gradient Boosting
- Adaptive Boosting
- K-Nearest Neighbors

Planned to improve upon the best performers to create the best model

## **Code Architecture**



## Data Download



## **Preprocessing: Code Architecture**



## **Preprocessing: Initial steps**

Movies

**Ratings** 

Weighted Average Vote

Date Published

Budget

Worldwide Income

Domestic (USA) Income

Genre

Country

Director

Writer

**Actors** 

**Production Company** 

Title

Description

**Duration** 

Names

Actor ID

Title Principals

**Ordering** 

## **Preprocessing: Initial steps**



## Movies

#### **Date Published**

Budget

Worldwide Income

Domestic (USA) Income

Genre

Country

Director

Writer

\*\*\*\*\*

Actors

**Production Company** 

Title

Description



#### **Movies**

Date Published
Budget
Worldwide Income
Domestic (USA) Income

Genre

Country

Director

Writer

Actors

**Production Company** 

Title

Description

- 1. All non-US dollar values dropped
- 2. All remaining values adjusted for inflation based on 2021 CPI



#### **Movies**

Date Published Budget Worldwide Income Domestic (USA) Income

#### Genre

Country Director

Director

Writer

**Actors** 

**Production Company** 

Title

Description

- 1. Genre Combinations Encoded
- 2. Transformed into a binary string
- 3. Binary string expanded into 10 individual columns

#### **Movies**

Date Published
Budget
Worldwide Income
Domestic (USA) Income
Genre

#### Country

Director

Writer

Actors

**Production Company** 

Title

Description

- 1. First listed country taken as primary country
- 2. Primary country mapped to region using UN ISO country/region codes



Names

Title Principals

#### **Movies**

Date Published
Budget
Worldwide Income
Domestic (USA) Income
Genre
Country
Director
Writer

**Production Company** 

Actors

Title

**Description** 

- 1. Popularity calculated by frequency
- 2. Importance calculated by order of mention
- 3. Weighted Popularity calculated

\*Steven Spielberg\* ————— Director Weighted Popularity

\*Output

\*O

Movies

Date Published
Budget
Worldwide Income
Domestic (USA) Income
Genre

Country

Director

Writer

**Actors** 

**Production Company** 

Title

Description

I. Popularity calculated by frequency

**Production Company** 

'Warner Bros.'

**Production Company Popularity** 

0.115

**Movies** 

Date Published
Budget
Worldwide Income
Domestic (USA) Income
Genre
Country
Director
Writer
Actors
Production Company
Title

**Description** 



Movies Ratings

Duration Weighted Average Vote

## **Preprocessing: Final Steps**

- 1. Data set was split into train, test, and validation
- 2. All missing values were imputed using the mean
- 3. All values were scaled

## **Preprocessing: Code Architecture**



## **EDA: Target Variable**



Possible range: 1 - 10

Mean: 5.96

**Standard Deviation: 1.19** 

## **EDA: Vote by Decade of Release**



## **EDA:** Correlation



## **Modeling: Objective**

Create a model that fits well to our dataset and would allow us to predict a satisfiable weighted average IMDb rating.

## Modeling: Code Architecture



## **Modeling: Methodology**



## **Modeling: Scoring**



$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_{actual,i} - y_{predicted,i})^{2}$$

, where n is the number of observations in the dataset and i is the ith observation in n.

## **Modeling: Base Models**



## Modeling: Base Models

| Model Type          | SKlearn's Object                         | Pros                                                                  | Cons                                                                                                |
|---------------------|------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Linear Regression   | SGDRegressor() <sup>6</sup>              | Simple to implement and understand.                                   | Doesn't work well for non-linearly separable dataset.                                               |
| Random Forest       | RandomForestRegressor() <sup>7</sup>     | Less prone to overfitting.                                            | Large number of trees can be slow to use.  Can't extrapolate on data outside range of trained data. |
| Gradient Boosting   | GradientBoostingRegressor() <sup>8</sup> | Fits each subsequent tree on the residuals which can learn very well. | Generally slower to fit than Random Forest and more prone to overfitting.                           |
| Adaptive Boosting   | AdaBoostRegressor() <sup>9</sup>         | Uses many decision stumps and each stump gets a weighted vote.        | Not as robust to outliers as it tries to fit to every datapoint.                                    |
| K-Nearest Neighbors | KNeighborsRegresor() <sup>10</sup>       | Simple to understand and low number of hyperparameters.               | Not as efficient as dataset grows.                                                                  |

## Modeling: Base Models' Results



## Modeling: Base Models' Results



## Modeling: Hyperparameter Tuning I



## Modeling: Hyperparameter Tuning I









#### Best Performing Hyperparameters

 $n_{estimators} = 500$ 

min\_sampes\_leaf = 2

max\_feature = 0.7

max\_depth = 25

### Modeling: Retrain & Test



#### Modeling: Retrain & Test



#### **Results: Test Data**

#### **Testing Results**

MSE = 0.602

MSE (Inverse Scaling) = 0.869

RMSE (Inverse Scaling) = 0.931



\*Not to scale, just to gain some intuition into how big or small our error is compared against the IMDb Rating range

# Results: Model Evaluation



#### **Results: Model Evaluation**

#### Our Model



- (4-0): Beat out 4 other models and many more hyperparameter combinations
- Powered by Random Forest
- Highly trained

#### Random Model



• Is literally just this:

```
test_Y_random = np.random.uniform(1, 10,
size=test_Y.shape)
```

• Thinks he's really good at guessing

#### **Place Your Bets!**

#### Results: Model Evaluation - vs Random Model



| Actual Rating | Our Model Predicted Rating | Random Model Predicted Rating | Smaller Error |
|---------------|----------------------------|-------------------------------|---------------|
| 4.7           | 5.3                        | 5.4                           | RM            |
| 7.2           | 6.2                        | 9.7                           | OM            |
| 6.8           | 6.7                        | 4.5                           | OM            |
| 6.4           | 6.2                        | 1.7                           | OM            |
| 6.5           | 5.6                        | 4.2                           | OM            |
| 6.3           | 6.0                        | 2.5                           | OM            |
| 5.7           | 6.8                        | 9.8                           | OM            |
| 7.2           | 6.0                        | 8.9                           | OM            |
| 4.4           | 6.3                        | 5.4                           | RM            |
| 6.8           | 6.4                        | 4.6                           | OM            |

Our model has smaller error 84% of the time in test data

#### **Results: Model Evaluation - Distributions Are Different?**

# Mann Whitney U Test

| Test                   | H0                            | p-value  | Action    |
|------------------------|-------------------------------|----------|-----------|
| Mann-Whitney<br>U Test | The 2 distributions are equal | 3.80e-29 | Reject H0 |

#### Results: Model Evaluation - vs Random Model



Our Model is statistically different from Random Model and is a better predictor!



#### **Conclusions**

There is a relationship between movies' features and their IMDb score

We were able to successfully create a model that accurately predicts IMDb score based on a movie's features

#### **Areas of Improvement**

Find a dataset on actors w/o missing values

Create a better encoding method for genre

Group movies based on their genres

Reduce the dimensionality of our data

Increase efficiency and speed of modelling



#### **Future Research**

- Different target variables
  - Male versus female votes
  - Gross income
- Titles and description
  - Natural language processing
  - Movie scripts

- Other variables?
  - Screentime
  - Sequel vs non-sequel
  - Release location/method
- Different modeling techniques
  - Voting regressor model
  - Different modeling packages
  - More advanced modeling techniques

#### The Bigger Picture

What does this research mean for the movie industry?

How can predictive analytics be used by movie production companies?

Does this pose any problems?



#### **GUI Demo**



https://github.com/Saharae/Final-Project-Group2









# Questions?

# Appendix: Extra Slides

# **Modeling: Hyperparameters**

| Model Type             | Hyperparameter    | Hyperparameter Meaning                                    | Dtype and Default                                            |
|------------------------|-------------------|-----------------------------------------------------------|--------------------------------------------------------------|
| Random<br>Forest*      | n_estimators      | The number of trees in a forest.                          | int, default = 100                                           |
| i olest                | min_samples_split | Minimum samples required to split an internal node.       | int or float, default = 2                                    |
|                        | min_samples_leaf  | Minimum samples to be at a leaf node.                     | int or float, default = 1                                    |
|                        | max_features      | Number of features to consider for each tree.             | {'auto', 'sqrt', 'log2'} or int or float,<br>default = 'auto |
|                        | max_depth         | Max depth allowed for each tree                           | int, default = None                                          |
| Gradient<br>Boosting   | learning_rate     | Shrinks the contribution of each tree.                    | float, default = 0.1                                         |
|                        | n_estimators      | The number of boosting stages to use.                     | int, default = 100                                           |
|                        | min_samples_split | Minimum samples required to split an internal node.       | int or float, default = 2                                    |
| K-Nearest<br>Neighbors | n_neighbors       | Number of neighbors to use.                               | int, default = 5                                             |
| Neighbors              | p                 | p = 1 (Manhattan Distance),<br>p = 2 (Euclidean Distance) | int, default = 2                                             |

\*Not all listed hyperparameters tested in this first phase Source: SKlearn model documentations.





Possible overfitting







#### Results: Model Evaluation - Distributions Are Independent?

2 Sample T-Test

| Test Type                                        | Test              | H0                        | p-value  | Action    |
|--------------------------------------------------|-------------------|---------------------------|----------|-----------|
| Test for normality<br>on Our Model<br>Ratings    | Shapiro-Wilk Test | Distribution is<br>normal | 4.75e-40 | Reject H0 |
| Test for normality<br>on Random Model<br>Ratings | Shapiro-Wilk Test | Distribution is<br>normal | 0        | Reject H0 |
| Test for equal<br>variance                       | Bartlett Test     | Variances are equal       | 0        | Reject H0 |

#### Results: Model Evaluation - Distributions Are Independent?



Mann Whitney U Test

| Test                | Н0                                              | p-value  | Action    |
|---------------------|-------------------------------------------------|----------|-----------|
| Mann-Whitney U Test | The 2 medians of the distributions are the same | 3.80e-29 | Reject H0 |

#### **IMDb License**

IMDb, IMDb.COM, and the IMDb logo are trademarks of IMDb.com, Inc. or its affiliates.