AE. 8A - Produire un son

Objectif:

- Accorder une guitare

I. Le diapason :

Détacher le diapason de sa caisse en bois.

Frapper le diapason et l'approcher de l'oreille.

Frapper à nouveau le diapason et toucher une de ses branches.

Q1. Comment le diapason produit-il du son?

Replacer le diapason sur la caisse en bois.

Frapper le diapason.

Q2. Quel est le rôle de cette caisse en bois, appelée caisse de résonance ?

Q3. Où faut-il placer son oreille pour percevoir le son plus fortement ?

Enregistrer le son du diapason avec Regressi

- Brancher le microphone sur la prise rouge d'enregistrement du PC.Ouvrir le logiciel Regressi.
- Fichier > Nouveau > Son
- Cliquer sur Mode , puis choisir 44100 Hz 16 bits.
- Cliquer sur Enregistrer, puis Stop pour arrêter. Après quelques instants, l'enregistrement apparaît.
- Cliquer sur Traiter

Chapitre 8 – Produire et percevoir un son

Mesurer la période T

- Agrandir la fenêtre Graphe.
- Pour zoomer : cliquer suit, , puis tracer un rectangle de sélection sur une petite portion. Zoomer jusqu'à ce que quelques motifs soient visibles.

Curseur données

✓ Deux curseurs

Curseur 1

Curseur 2

s

X

<u>0</u>K

Abandon

<u>A</u>ide

- Pour mesurer la durée Δt de plusieurs motifs :
- Outils > Réticule données
- Cocher Deux curseurs et Ecart abscisse ?
- Déplacer les carrés noirs sur deux points qui permettent de mesurerla durée Δt de **plusieurs** périodes.

Mesures:

on en déduit la durée d'une seule période $T = \dotss$.

Q5. Compléter : Si un phénomène se reproduit identiquement toutes les $T = \frac{1}{2}$ s, alors il a lieu fois par seconde.

La fréquence est le nombre de fois où le motif se répète en une seconde. Elle s'exprime en Hz

Chapitre 8 – Produire et percevoir un son

La formule liant la période T et la fréquence f :

$$f = \frac{1}{T}$$

Q6. Calculer la fréquence du son produit par le diapason

f =																					
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Q7. Comparer avec le nombre inscrit sur le diapason.

Q8. Décrire le protocole pour accorder une corde de guitare et le réaliser en s'aidant du tableau suivant

Données : fréquence des notes

Note	Ré2	Sol2	Si2	Mi3
Fréquence(Hz)	147	196	247	330

II. Micro:bit: un microcontrôleur pour produire du son:

Relier le microcontrôleur au PC avec la prise USB.

Lancer le logiciel Mu

Commencer par tape P deux lignes

from microbit import *
from music import *

Attention mettre un espace entre import et *

En langage Python, pour faire jouer une note de fréquence f pendant une durée Δt , il faut utiliser l'instruction pitch(\mathbf{f} , $\Delta \mathbf{t}$) où on remplace f par la valeur de la fréquence de la note en Hz, et Δt par la valeur de la durée en millisecondes.

Exemple: pitch (415, 1500)

Données : fréquence des notes

D 01111000 . 1		00 400 .	10100									
Note	Do	Do#	Ré	Ré#	Mi	Fa	Fa#	Sol	Sol#	La	La#	Si 3
Fréquence (Hz)	262	277	294	311	330	349	370	392	415	440	466	493

Q10. Écrire, ci-dessous, la ligne à taper dans le programme pour jouer un La d'une durée de 1 s.

Recopier cette ligne dans le logiciel Mu Flasher le programme.

Chapitre 8 – Produire et percevoir un son

Q11. Modifier le programme pour jouer 2 notes de votre choix.

Recopier, ici, les instructions ajoutées :

Données : fréquence des notes

Note	Do	Do#	Ré	Ré#	Mi	Fa	Fa#	Sol	Sol#	La	La#	Si 3
Fréquence	262	277	294	311	330	349	370	392	415	440	466	493
(Hz)												

Q12. Modifier le programme pour jouer les 2 premières mesures ci-dessous au tempo 1 noire dure 500 ms.

Q13. Flasher le programme. De quel film est extraite cette musique ?

EFFACER VOTRE PROGRAMME

PUIS FERMER LE LOGICIEL MU.