

Cryptologie & Sécurité

Master 1 informatique

Université Claude Bernard Lyon 1

Fabien LAGUILLAUMIE

fabien.laguillaumie@ens-lyon.fr
http://perso.ens-lyon.fr/fabien.laguillaumie

Cryptologie & Sécurité

Master 1 informatique

Université Claude Bernard Lyon 1

Fabien LAGUILLAUMIE

fabien.laguillaumie@ens-lyon.fr
http://perso.ens-lyon.fr/fabien.laguillaumie

Le chiffrement de Vernam Stream cipher et registres à décalage

Chiffrement par blocs

Chiffrements par blocs modernes
DES
AES

Modes opératoires Stream ciphers from block ciphers Stream ciphers from block ciphers

Message Authentication Codes - MAC

Fonctions de hachage

Le chiffrement de Vernam Stream cipher et registres à décalage

Chiffrement par blocs

Chiffrements par blocs modernes
DES
AES

Modes opératoires Stream ciphers from block ciphers Stream ciphers from block ciphers

Message Authentication Codes - MAC

Fonctions de hachage

Confidentialité

Chiffrement symétrique

$$k_E = k_D$$

- Encryption
- Decryption
- Key Generation

Chiffrement de Vernam

Cryptographie à clé secrète :

$$k_E = k_D$$

Un exemple fondamental : le one-time pad

Chiffrement de Vernam (1917) - masque jetable

Chiffrement de Vernam

Cryptographie à clé secrète :

$$k_E = k_D$$

Un exemple fondamental : le *one-time pad*

Chiffrement de Vernam (1917) - masque jetable

Le message :
$$m \in \{0,1\}^{\ell}$$

$$m = m_1 m_2 ... m_{\ell}$$

avec $m_i \in \{0,1\}$ pour $1 \le i \le \ell$.

Chiffrement de Vernam

Cryptographie à clé secrète :

$$k_E = k_D$$

Un exemple fondamental : le *one-time pad*

Chiffrement de Vernam (1917) - masque jetable

Le message :
$$m \in \{0,1\}^{\ell}$$

$$m = m_1 m_2 ... m_\ell$$

avec $m_i \in \{0,1\}$ pour $1 \le i \le \ell$.

La clé :
$$k \in \mathbb{R} \{0,1\}^{\ell}$$
,

$$k=k_1k_2\dots k_\ell$$
 avec $k_i\in\{0,1\}$ pour $1\leq i\leq\ell.$

Chiffrement de Vernam

Le chiffrement : $c \in \{0,1\}^{\ell}$:

soit

$$c_i = m_i \oplus k_i \quad \forall \ 1 \leq i \leq \ell.$$

Chiffrement de Vernam

Le chiffrement : $c \in \{0,1\}^{\ell}$:

soit

$$c_i = m_i \oplus k_i \quad \forall \ 1 \leq i \leq \ell.$$

Le déchiffrement :

soit

$$m_i = c_i \oplus k_i \quad \forall \ 1 \leq i \leq \ell.$$

Chiffrement de Vernam

En effet :

$$c \oplus k = m \oplus k \oplus k = m$$

Définition

Un chiffrement est dit parfait si l'on a

$$\Pr(M = m_0 \mid C = c_0) = \Pr(M = m_0).$$

Théorème

Si la clé k est tirée aléatoirement et uniformément parmi les chaînes binaires de longueur ℓ et n'est utilisée qu'une seule fois, le chiffrement de Vernam assure une confidentialité parfaite.

Chiffrement de Vernam

Preuve:

 $Id\acute{e}$: bruit blanc + message = bruit blanc

distribution uniforme sur l'espace des clés $\Pr(K = k_0) = \frac{1}{2^{\ell}}$

Chiffrement de Vernam

Preuve:

 $Id\acute{e}$: bruit blanc + message = bruit blanc

distribution uniforme sur l'espace des clés $\Pr(K = k_0) = \frac{1}{2^{\ell}}$

$$\Pr(C = c_0) = \sum_{m_0 \in \mathcal{M}} \Pr(M = m_0 \land K = m_0 \oplus c_0)$$

$$= \frac{1}{2^{\ell}} \sum_{m_0 \in \mathcal{M}} \Pr(M = m_0)$$

Chiffrement de Vernam

Preuve:

 $Id\acute{e}$: bruit blanc + message = bruit blanc

• distribution uniforme sur l'espace des clés $\Pr(K = k_0) = \frac{1}{2^{\ell}}$

$$\mathsf{Pr}(C=c_0) = \sum_{m_0 \in \mathcal{M}} \mathsf{Pr}(M=m_0 \land K=m_0 \oplus c_0)$$
 $= \frac{1}{2^{\ell}} \sum_{m_0 \in \mathcal{M}} \mathsf{Pr}(M=m_0)$
 $= \frac{1}{2^{\ell}}$

$$Pr(M = m_0 \mid C = c_0) = \frac{Pr(M = m_0 \land C = c_0)}{Pr(C = c_0)}$$

Théorème de Bayes :
$$Pr(A|B) = \frac{Pr(A \land B)}{Pr(B)}$$

$$Pr(M = m_0 \mid C = c_0) = \frac{Pr(M = m_0 \land C = c_0)}{Pr(C = c_0)}$$
$$= \frac{Pr(M = m_0 \land K = m_0 \oplus c_0)}{Pr(C = c_0)}$$

Théorème de Bayes :
$$Pr(A|B) = \frac{Pr(A \land B)}{Pr(B)}$$

$$\Pr(M = m_0 \mid C = c_0) = \frac{\Pr(M = m_0 \land C = c_0)}{\Pr(C = c_0)}$$

$$= \frac{\Pr(M = m_0 \land K = m_0 \oplus c_0)}{\Pr(C = c_0)}$$

$$= \Pr(M = m_0) \frac{\Pr(K = m_0 \oplus c_0)}{\Pr(C = c_0)}$$

Théorème de Bayes :
$$Pr(A|B) = \frac{Pr(A \land B)}{Pr(B)}$$

$$Pr(M = m_0 \mid C = c_0) = \frac{Pr(M = m_0 \land C = c_0)}{Pr(C = c_0)}$$

$$= \frac{Pr(M = m_0 \land K = m_0 \oplus c_0)}{Pr(C = c_0)}$$

$$= Pr(M = m_0) \frac{Pr(K = m_0 \oplus c_0)}{Pr(C = c_0)}$$

$$= Pr(M = m_0)$$

Théorème de Bayes :
$$Pr(A|B) = \frac{Pr(A \land B)}{Pr(B)}$$

Registres à décalage à rétroaction linéaire

Idée : faire du Vernam

- ▶ k (la clé secrète) est petite (160 bits) et sert de graine à un **G**énérateur **P**seudo-**A**léatoire
- ▶ la suite produite ("suite chiffrante") $(s_i)_{i \in \mathbb{N}}$ est additionnée bit-à-bit avec le message

Registres à décalage à rétroaction linéaire

Les ingrédients :

des registres à décalage à rétroaction linéaire

$$P(X) = X^{N} + a_1 X^{N-1} + \dots + a_{N-1} X + a_N \in \mathbb{F}_2[X]$$

$$s_{i+N} = \sum_{j=1}^{N} a_j s_{i+N-j}$$

$$\begin{cases}
P(X) = X^{10} + X^9 + X^7 + X^6 + X^3 + 1 \\
IV = 1001001001
\end{cases}$$

$$\begin{cases} P(X) = X^3 + 1 \\ IV = 001 \end{cases}$$

Polynôme primitif :

$$P(X) = x^{18} + x^{17} + x^{16} + x^{13} + 1$$

Definition

La complexité linéaire d'une suite $s = (s_i)_i \in \mathbb{N}$ est la longueur du plus petit LFSR permettant d'engendrer cette suite (noté $\Lambda(s)$).

Jim Massey montre en 1969 que l'algorithme de Berlekamp (décodage des BCH) permet de retrouver le polynôme caractéristique minimal d'une suite à partir de $\Lambda(s)$ bits.

⇒ inutilisables directement en crypto.

d'où un autre ingrédient :

des fonctions booléennes (avec bonnes propriétés)

Remarques:

- très rapides et faciles à mettre en œuvre
- ▶ très répandus : A5/1 GSM, E0 Bluetooth...
- très durs à concevoir (eSTREAM The ECRYPT Stream Cipher Project)

Suite chiffrante de A5/1 (GSM)

Definition

On désigne par chiffrement par blocs un chiffrement symétrique qui traite des blocs de longueur fixe (128 bits par exemple) de façon invariante.

Definition

- n = taille des blocs
- $\triangleright \ell =$ taille de la clé
- ullet recherche exhaustive à partir d'un couple clair/chiffré : $\mathcal{O}(2^\ell)$

Exemple : DES n=64 et $\ell=56 \rightsquigarrow 2^{56}$ déchiffrements

▶ AES, Blowfish, DES, Triple DES, FEAL, Serpent, Twofish...

Les chiffrements par blocs modernes :

Data Encryption Standard :

- ▶ 1972 projet de recherche en crypto d'IBM
- ▶ 15 mai 1973 appel d'offre du National Bureau of Standards US pour le DES
- ▶ 27 août 1974 IBM répond avec un descendant de LUCIFER
- ▶ 15 janvier 1977 négociations entre le NBS, la NSA et IBM : DES fût.

Chiffrement par blocs de 64 bits avec une clé de 64 bits (en fait 56 avec 8 bits de parité).

16 itérations d'un bloc de Feistel.

Le schéma de Feistel

fonction pseudo-aléatoire \rightsquigarrow permutation pseudo-aléatoire.

$$\begin{cases}
L_{i+1} = R_i \\
R_{i+1} = F(k_i, R_i) \oplus L_i
\end{cases}
\iff
\begin{cases}
R_i = L_{i+1} \\
L_i = F(k_i, R_i) \oplus R_{i+1}
\end{cases}$$

La fonction F et ses *boîtes* S ("substitution box").

Les boîtes S contribuent à la confusion (cf. Shannon) et cassent la linéarité.

Entrée : $b_1b_2b_3b_4b_5b_6 \rightsquigarrow b_1b_6$ et $b_2b_3b_4b_5$

$b_2b_3b_4b_5$ b_1b_6	0000	0001	 1110	1111
00	0010	1100		
:	:			
11	1011			

S₅:

S ₅		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
		1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
		0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

Key schedule :

PCi = Permuted Choice i

Remarques:

Pour une clé k fixée, DES définit une permutation de $\{0,1\}^{64}$. Par ailleurs, l'ensemble des 2^{56} permutations n'est pas stable par composition

(chiffrement multiple eq 1 chiffrement)

- ▶ 1ère attaque : en 1993 Matsui découvre la cryptanalyse linéaire (Henri Gilbert) et retrouve la clé avec 2⁴³ couples clair/chiffré.
- ▶ 1998 DES Cracker Electronic Frontier Fondation (250 000 \$) retrouve une clé en 3 jours
- ▶ 1999 Distributed Net 22h avec 10⁵ PC + DES Cracker

Clé trop courte et chiffrement multiple :

Recherche exhaustive naïve : 2^{2k}

Clé trop courte et chiffrement multiple :

- Recherche exhaustive naïve : 2^{2k}
- ► Problème : attaque Man-in-the-Middle

 - ► Calcul de $\alpha_j = E_j(m)$ pour les 2^k clés possibles + stockage (table de hachage)
 - Calcul de $\beta_j = D_j(c)$ pour les 2^k clés possibles + stockage (table de hachage)
 - $\beta_j = \alpha_i \leadsto (i,j)$

- Complexité: $2 \times 2^k + 2^k$ en stockage
- ► 3DES : DES_{k1}(DES_{k2}(DES_{k3}(m))) avec une clé de 168 DES_{k1}(DES⁻¹_{k2}(DES_{k1}(m))) avec une clé de 112 bits

On oppose au *Feistel ciphers* les *product ciphers* : combinaison de substitutions et de transpositions

- ► substitution ⇒ "confusion" (relation en entre clé et chiffré complexe)
- ▶ transposition ⇒ "diffusion" (propagation de la modification d'un bit)

AES

Advanced Encryption Standard

- processus de normalisation lancé par le National Institute of Standards and Technology en 1997
- ▶ 15 candidats, 5 finalistes (3 US, 1 belge, 1 israelo-européen)
- ▶ the winner is... Rijndael (on prononce [rɛindaːl]) Joan Daemen & Vincent Rijmen (KUL - Belgique)

- cahiers des charges : 3 longueurs de clés (128, 192, 256 bits)
 et 3 longueurs de blocs
- Rijndael n'est pas un Feistel (product cipher)
- Succession de 10-12 ou 14 tours dans lesquels 4 opérations (dont 3 linéaires)

AES

Les opérations

- Chiffrement par blocs de message de longueur quelconque.

 multiple de la taille des blocs
- On découpe le message en bloc de la longueur traitée

$$m = m_1 ||m_2|| \dots ||m_{k-1}|| m_k$$

Dernier bloc : padding

- RFC1321 (bit Padding)
 - rajout d'un 1 suivi de 0 dans le dernier bloc
 - rajout éventuel d'un bloc si le message a la bonne taille

- RFC1321 (bit Padding)
 - rajout d'un 1 suivi de 0 dans le dernier bloc
 - rajout éventuel d'un bloc si le message a la bonne taille
- ► ANSI X.923 (byte padding)
 - rajout d'octets à 0
 - dernier octet = nombre d'octets "padding"

- RFC1321 (bit Padding)
 - rajout d'un 1 suivi de 0 dans le dernier bloc
 - rajout éventuel d'un bloc si le message a la bonne taille
- ► ANSI X.923 (byte padding)
 - rajout d'octets à 0
 - dernier octet = nombre d'octets "padding"
- ISO 10126 (byte padding)
 - rajout d'octets aléatoires
 - dernier octet : nombre d'octets "padding"
 - ...| DD 81 A6 23 04 |

- RFC1321 (bit Padding)
 - rajout d'un 1 suivi de 0 dans le dernier bloc
 - rajout éventuel d'un bloc si le message a la bonne taille
- ► ANSI X.923 (byte padding)
 - rajout d'octets à 0
 - dernier octet = nombre d'octets "padding"
- ISO 10126 (byte padding)
 - ► rajout d'octets aléatoires
 - dernier octet : nombre d'octets "padding"
 - ▶ ...| DD B1 A6 23 04 |
- ► ISO 10126 (byte padding)
 - rajout d'octets dont la valeur est le nombre d'octets rajouter :
 - 01 02 02 03 03 03 04 04 04 04

Electronic Code Book

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

$$c_i = E_k(m_i)$$

 $m_i = D_k(m_i)$

- Phantasy Star Online: Blue Burst utilise Blowfish en mode ECB.
 - replay attacks pour gagner des points d'expérience
 - mécanisme d'échange de clé cassé aussi...

Cipher Block Chaining

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

- V: vecteur d'initialisation
 - permet de rendre le chiffrement "aléatoire"
 - ▶ inutile de le garder secret
 - ne jamais le réutiliser avec la même clé

$$c_0 = IV$$

$$c_i = E_k(m_i \oplus c_{i-1})$$

$$IV = c_0$$

$$m_i = D_k(c_i) \oplus c_{i-1}$$

- ► chiffrement séquentiel (non parallélisable)
- mode très utilisé

Les algorithmes de chiffrement par blocs assurent la confidentialité.

En tant que briques cryptographiques, ils permettent de créer :

- des générateurs pseudo-aléatoires
- des algorithmes de chiffrement à flot
- des MAC
- des fonctions de hachage,...

Stream ciphers from block ciphers

Cipher FeedBack

Stream ciphers from block ciphers

Cipher FeedBack

Cipher Feedback (CFB) mode encryption

Cipher Feedback (CFB) mode decryption

Stream ciphers from block ciphers

$$c_0 = IV$$

$$c_i = E_k(c_{i-1}) \oplus m_i$$

$$IV = c_0$$

$$m_i = D_k(c_{i-1}) \oplus c_i$$

Stream ciphers from block ciphers

Counter

Counter (CTR) mode encryption

Stream ciphers from block ciphers

Counter

Counter (CTR) mode encryption

Counter (CTR) mode decryption

$\begin{array}{c} {\sf Message \ Authentication \ Codes} \\ {\sf MAC} \end{array}$

MAC

- "petite" suite binaire permettant
 - d'*authentifier* un message
 - de garantir son intégrité
- calculé grâce à une clé
- contexte symétrique donc
 - ▶ ne convainc *que* la personne avec laquelle on partage la clé
- ce n'est *pas* une signature
 - pas de non-répudiation
 - pas de vérification universelle

MAC

Exemples:

HMAC (keyed-Hash Message Authentication Code)

$$HMAC_k(m) = h(k \oplus opad||h(k \oplus ipad)||m)$$

MAC

Exemples:

HMAC (keyed-Hash Message Authentication Code)

$$HMAC_k(m) = h(k \oplus opad||h(k \oplus ipad)||m)$$

► CBC-MAC (Cipher Block Chaining Message Authentication Code)

Definition Soit ℓ ∈ N

Une fonction $h:\{0,1\}^*\longrightarrow\{0,1\}^\ell$ est une fonction de hachage si

- ▶ h est à sens unique (résistante à la préimage) [étant donné h(x) trouver x' tel que h(x') = h(x) est difficile]
- ▶ h est résistante à la seconde préimage [étant donné x et h(x), trouver $x' \neq x$ tel que h(x') = h(x) est difficile]
- ▶ h est résistante aux collisions [trouver x et x', $x \neq x'$, tels que h(x) = h(x') est difficile]

h crée une "empreinte" (un haché) de m.

Résistance aux collisions :

$$h: \{0,1\}^* \longrightarrow \{0,1\}^\ell$$

Une collision est une paire (m_0, m_1) telle que

$$h(m_0)=h(m_1)$$
 et $m_0\neq m_1$

Pourquoi?

Algorithme de recherche de collisions

- 1. Tirer aléatoirement $2^{\ell/2}$ messages $m_1, m_2, \ldots, m_{2^{\ell/2}}$
- 2. Pour i=1 à $2^{\ell/2}$ calculer $t_i=h(m_i)$
- 3. Chercher une collision $t_i = t_j$, sinon GOTO 1.

Algorithme de recherche de collisions

- 1. Tirer aléatoirement $2^{\ell/2}$ messages $m_1, m_2, \ldots, m_{2^{\ell/2}}$
- 2. Pour i = 1 à $2^{\ell/2}$ calculer $t_i = h(m_i)$
- 3. Chercher une collision $t_i = t_j$, sinon GOTO 1.

Paradoxe des anniversaires :

Soient $r_1, r_2, \dots, r_n \in \llbracket 1, B
rbracket$ tirés uniformément et indépendamment :

si
$$n = 1.2 \times B^{1/2}$$
, alors $\Pr[\exists i \neq j : r_i = r_j] \ge 1/2$.

Algorithme de recherche de collisions

- 1. Tirer aléatoirement $2^{\ell/2}$ messages $m_1, m_2, \ldots, m_{2^{\ell/2}}$
- 2. Pour i=1 à $2^{\ell/2}$ calculer $t_i=h(m_i)$
- 3. Chercher une collision $t_i = t_j$, sinon GOTO 1.

- ightharpoonup Nombres d'itérations avant de trouver : ~ 2
- ▶ Complexité en temps : $O(2^{\ell/2})$
- ▶ Complexité en espace : $O(2^{\ell/2})$

Des exemples :

- MD4 (128) MD5 (128)
- ► SHA-0 (160) SHA-1 (160)
- RIPEMD
- ► SHA-256
- ► Whirlpool
- AES

Des exemples :

- MD4 (128) 🕮 MD5 (128) 🎉
- ► SHA-0 (160) 🥯 SHA-1 (160) théoriquement 🎉
- RIPEMD 🕯
- SHA-256 Sécurité précaire
- Whirlpool
- AES

Des exemples :

- MD4 (128) 🕯 MD5 (128) 🌬
 - 🕨 SHA-0 (160) 🟁 SHA-1 (160) théoriquement 📽
- RIPEMD
- ► SHA-256 Sécurité précaire
- Whirlpool
- AES

Concours SHA-3:

- NIST 2008 : 64 soumissions dont 51 valides
- ▶ juillet 2009 : 14 candidats
- ▶ déc. 2010 : 5 finalistes (Blake, Grøstl, JH, Keccak, Skein)
- ▶ 2 oct. 2012 : vainqueur KECCAK http://keccak.noekeon.org/

Construction de Merkle-Damgard : $m = m_1 m_2 \cdots m_n$

- $f: T \times M \longrightarrow T$ est une fonction de compression
- ▶ Théorème : si f est résistante aux collisions, h l'est aussi

Fonctions de hachage PREUVE

PREUVE

Par contradiction : collision sur $h \Longrightarrow$ collision sur f.

Pour construire de bonnes fonctions de hachage, il faut construire de bonnes fonctions de compression.

Fonction de hachage et block cipher

Davies-Meyer & Matyas-Meyer-Oseas

