Couleurs

L'œil est sensible à un très grand nombre de couleurs. Mais quelles sont les couleurs captées par nos appareils électroniques ? Comment sont-elles codées dans nos machines ?

Activité 1 (Perception des couleurs).

La lumière est une onde. La couleur de la lumière dépend de sa longueur d'onde. Les longueurs d'ondes visibles par l'œil humain vont de 400 à 700 nanomètres environ (un nanomètre c'est 0,000 000 001 mètre).

- 1. Quelle couleur a pour longueur d'onde 510 nanomètres? Et pour 600 nanomètres?
- 2. Trouve une longueur d'onde possible pour le rouge, le jaune, le violet, le bleu et le bleu ciel.

Activité 2 (Niveaux de gris).

Une image en « noir et blanc » est en fait souvent composée de différents niveaux de gris.

Il existe plusieurs façons de coder ce niveau de gris :

- par le pourcentage de blanc : 0% c'est le noir, 100% c'est le blanc ;
- par un nombre réel entre 0 et 1 : 0 c'est noir, 1 c'est blanc;
- par un nombre entier entre 0 et 255 : 0 c'est noir, 255 c'est blanc.

Voici un exemple de conversion : $25\% = \frac{25}{100} = 0,25$. Pour la conversion d'une représentation par un réel à une représentation par un entier, on multiplie par 256 (et non par 255!) et on arrondit à l'entier le plus proche. Par exemple $0,25 \times 256 = 64$ (sauf 1 qui devient 255).

Parmi ces niveaux de gris, retenons uniquement le noir, le blanc et 7 niveaux intermédiaires.

0%	12%	25%	37%	50%	62%	75%	87%	100%
0	0,12	0,25	0,37	0,50	0,62	0,75	0,87	1
0	32	64	96	128	160	192	224	255

Colorie le dessin suivant avec le niveau de gris inscrit dans la case. Toutes les cases sans inscription sont à colorier en gris clair (0, 87 ou 87% ou 224).

255	96				1	37%	
0,12	64				32	0,25	
			0				
12%	64	25%	96	64	0,25	32	
	0,37	160	0,75	62%	96		
		0,12	0	32			

Activité 3 (Hexadécimal).

L'écriture hexadécimale est une autre façon de représenter les entiers. Cette écriture utilise 16 symboles :

Pour différencier l'écriture hexadécimale de l'écriture décimale habituelle, on rajoute en indice « hex » à la fin de l'écriture. Le symbole $A_{\rm hex}$ représente 10 en écriture décimale, le symbole $B_{\rm hex}$ c'est $11\ldots$ jusqu'au symbole $F_{\rm hex}$ qui représente 15.

0	0_{hex}	8	8 _{hex}
1	1_{hex}	9	9_{hex}
2	2_{hex}	10	$A_{ m hex}$
3	3_{hex}	11	$B_{ m hex}$
4	4 _{hex}	12	$C_{ m hex}$
5	5 _{hex}	13	$D_{ m hex}$
6	6 _{hex}	14	$E_{ m hex}$
7	$7_{\rm hex}$	15	$F_{ m hex}$

Couleurs 3

Nous allons apprendre à écrire tous les entiers de 0 à 255 en écriture hexadécimale. Tu vas voir que deux symboles suffisent!

1. Hexadécimal vers décimal.

Pour un nombre écrit avec deux symboles, la formule de conversion de l'écriture hexadécimale en écriture décimale est $xy_{hex} = 16 \times x + y$.

Exemples:

- $27_{\text{hex}} = 16 \times 2 + 7 = 39$,
- $A3_{\text{hex}} = 16 \times 10 + 3 = 163$ (car A_{hex} représente 10),
- $2F_{\text{hex}} = 16 \times 2 + 15 = 47$ (car F_{hex} représente 15).

Calcule l'écriture décimale des nombres dont voici l'écriture hexadécimale :

$$A1_{\text{hex}}$$
 $2D_{\text{hex}}$ AC_{hex} CA_{hex} $B0_{\text{hex}}$ 21_{hex} FF_{hex} 80_{hex} 10_{hex} AA_{hex}

2. Décimal vers hexadécimal.

Pour trouver l'écriture hexadécimale d'un entier n compris entre 0 et 255, on effectue la division euclidienne de n par 16 : $n = 16 \times q + r$ avec $0 \le r < 16$. L'écriture hexadécimale de n est alors qr_{hex} : le premier symbole est le quotient, le second le reste.

Exemples:

- n = 55. On divise 55 par 16 : le quotient est 3, le reste est 7. L'écriture hexadécimale de 55 est donc 37_{hex} .
- n = 44. On divise 44 par 16 : le quotient est 2, le reste est 12. L'écriture hexadécimale de 44 est donc $2C_{\text{hex}}$ (car 12 s'écrit C_{hex} .)

Calcule l'écriture hexadécimale des entiers :

Calcule et retiens l'écriture hexadécimale de 16, 32, 64, 128, 192 et 255.

Activité 4.

Le système de couleur RVB décrit une couleur à partir de trois nombres : un pour le niveau de rouge, un pour le niveau de vert et un pour le niveau de bleu. À partir du mélange des trois couleurs rouge, vert et bleu, on obtient les autres couleurs.

Chaque ton de rouge, vert ou bleu sera ici codé par un nombre :

- soit un nombre réel entre 0 et 1, souvent écrit sous la forme d'un pourcentage,
- soit un nombre entier entre 0 et 255, qui peut aussi être écrit en hexadécimal par un nombre entre $0_{\rm hex}$ et $FF_{\rm hex}$.

Voici les couleurs que l'on obtient lorsque l'on se limite aux niveaux 0%, 25%, 50%, 75% et 100% (soit 0, 64, 128, 192 ou 255, ou encore $0_{\rm hex}$, $40_{\rm hex}$, $80_{\rm hex}$, $C0_{\rm hex}$ ou $FF_{\rm hex}$).

1. Colorie le dessin suivant (le code RVB est écrit dans chaque case de haut en bas) :

				255 0				
				0				
				0				
				255 0				
				0				
				0 255				
				0				
				0				
			0	0	255			
			0 255	255 0	0 0			
			128		255			
			255 0		0 128			
		255	128	0	128	128		
		128 0	128 0	0	0 128	0 255		
			0	0	120			
	0 128	128 128				128 128	0	
	0	128				128	128	
128	255						255	255
255 255	255 0						0 255	128 255

2. Complète le tableau suivant :

Couleur	Nom	Niveau de rouge	Niveau de vert	Niveau de bleu	
	de la couleur	de la couleur	de la couleur	de la couleur	
	rouge	100%	0%	0%	
	vert	0	255	0	
	bleu	0 _{hex}	0 _{hex}	$FF_{ m hex}$	
	blanc				
	noir				
	orange			0%	
	gris				
		255	255	0	
		$C0_{ m hex}$	$0_{ m hex}$	$FF_{ m hex}$	
	rose				
		100%	100%	75%	

- 3. Si on a 5 choix de niveaux pour le rouge, 5 choix de niveaux pour le vert, 5 choix de niveaux pour le bleu, combien cela fait-il de couleurs possibles? (Tu peux t'aider des cinq grilles de couleurs présentées précédemment.) Si on a maintenant 256 choix de niveaux pour le rouge, pour le vert et pour le bleu, combien cela fait-il de couleurs possibles?
- 4. Lorsque l'on superpose deux couleurs, on obtient une troisième couleur. La formule est simplement une formule d'addition pour chacun des niveaux (rouge, vert, bleu) : nouveau niveau = niveau couleur 1+ niveau couleur 2. Par contre, on ne peut pas dépasser la valeur limite de 100% (qui s'écrit aussi 1 ou 255 ou $FF_{\rm hex}$ selon l'écriture choisie). La formule exacte est pour les pourcentages :

niveau de la nouvelle couleur = $\min \left(\text{niveau de la couleur 1 + niveau de la couleur 2, 100\%} \right)$

Couleurs 7

La fonction « \min » renvoie le plus petit élément d'une liste : $\min(75, 100) = 75$, $\min(125, 100) = 100$.

Exemple : lorsque l'on ajoute du rouge (code RVB (100%, 0%, 0%)) et du bleu-violet (code RVB (25%, 0%, 50%)) on obtient :

- pour le niveau de rouge : 100% (car si on ajoute 100% et 25%, on dépasse 100%);
- pour le niveau de vert : 0% (car il n'y a pas de vert dans les deux couleurs);
- pour le niveau de bleu : 50% (c'est 0% + 50%).

Le code RVB de la couleur obtenue est donc (100%, 0%, 50%) : c'est du fushia.

Complète le tableau suivant dans lequel les couleurs 1 et 2 s'additionnent pour donner une nouvelle couleur :

Coul. 1	RVB Couleur 1	Coul. 2	RVB Couleur 2	Addition RVB	Couleur
	(100%, 0%, 0%)		(0%, 100%, 0%)		
	(255, 0, 0)		(0,0,255)		
	$(0, FF_{\text{hex}}, 0)$		$(0,0,FF_{\text{hex}})$		
	(25%, 75%, 0%)		(50%, 50%, 50%)		
	(0,64,0)			(255, 192, 0)	
			(0,64,0)	(128, 128, 0)	
	$(0,80_{\text{hex}},C0_{\text{hex}})$		$(FF_{\text{hex}}, C0_{\text{hex}}, 40_{\text{hex}})$		