波谱学杂志

第34卷第1期2017年03月

Chinese Journal of Magnetic Resonance

Vol. 34 No. 1 Mar. 2017

Chinese J Magn Reson, 2017, 34(1): 35-42

doi:10.11938/cjmr20170105

雷酚内酯的波谱学数据与结构确证

王菲菲^{1,2#}, 张聿梅^{1#}, 何 轶¹, 戴 忠^{1*}, 马双成¹, 刘 斌²

1. 中国食品药品检定研究院,北京 100050; 2. 北京中医药大学 中药学院,北京 100029

摘要:对雷酚内酯对照品的紫外吸收光谱(UV)、红外吸收光谱(IR)、质谱(MS)、核磁共振(NMR)谱(包括 1 H NMR、 13 C NMR、DEPT、 1 H- 1 H COSY、NOE、 1 H- 13 C HSQC 和 1 H- 13 C HMBC 谱图)进行了分析 ,对其 1 H 和 13 C NMR 谱峰进行了全归属 , 纠正了文献[5]的归属错误 , 确证了雷酚内酯对照品的化学结构 .

关键词:核磁共振(NMR);归属;化学位移;雷酚内酯;结构确证

中图分类号: O482.53 文献标识码: A

Spectral Analysis and Structural Elucidation of Triptophnolide

 $\textit{WANG Fei-fei}^{1,2\#}$, $\textit{ZHANG Yu-mei}^{1\#}$, $\textit{HE Yi}^1$, $\textit{DAI Zhong}^{1*}$, $\textit{MA Shuang-cheng}^1$, $\textit{LIU Bin}^2$

1. National Institutes for Food and Drug Control, Beijing 100050, China; 2. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China

Abstract: Ultraviolet (UV) spectrum, infrared (IR) spectrum, mass (MS) spectra and nuclear magnetic resonance (NMR) spectra (i.e., ¹H NMR, ¹³C NMR, DEPT, ¹H-¹H COSY, NOE, ¹H-¹³C HSQC and ¹H-¹³C HMBC) of *Triptophnolide* were collected and interpreted. All ¹H and ¹³C NMR signals were assigned. Base on the data, the structure of reference standard *Triptophnolide* was determined.

Key words: nuclear magnetic resonance (NMR), assignment, chemical shift, Triptophnolide, structural elucidation

收稿日期: 2015-11-21; **收修改稿日期**: 2017-01-04

基金项目:十二五"重大新药创制"专项课题"中药质量安全检测及风险控制平台"资助项目(2014ZX09304307-002).

通讯联系人(Corresponding author):#共同第一作者. *Tel: 010-67095876 , E-mail: daizhong@ nifdc.org.cn.

引言

雷酚内酯(Triptophenolide,化学式为 $C_{20}H_{24}O_3$)由邓福孝等人 $^{[1]}$ 于 1982 年首次从福建泰宁县产雷公藤($Tripterygium\ Wilfordii\ Hook.f.)分离得到,是一种具有较强抑制肿瘤活性的二萜类化合物 [见图 <math>1(a)$] $^{[2]}$. 雷公藤,又称山砒霜、断肠草或南蛇藤,最早记载于《神农本草经》,是卫矛科雷公藤属木质藤本植物,主要分布于我国长江流域以南山区和东北长白山区.雷公藤制剂具有多种药理作用,可用于治疗炎症、癌症、麻风病、慢性肾炎、系统性红斑狼疮等疾病 $^{[3]}$. 雷酚内酯是从雷公藤中分离得到的主要成分之一,中国食品药品检定研究院拟发行雷酚内酯对照品,为日后该类药物检验提供对照品支持.

图 1 已报道的雷酚内酯的结构式

Fig. 1 The structure of Triptophenolide in references

关于雷酚内酯的结构目前已有多篇报道,于东防等人^[4]于 1990 年用 X-ray 单晶衍射的方法修改了雷酚内酯的结构[见图 1(b)],但自此以后再没有相关文献分离得到图 1(b)所示的结构. 樊希望等人^[3]于 2011 年从雷公藤植物提取分离化合物并用 X-ray 单晶衍射方法确定结构,也得到了图 1(a)所示的雷酚内酯结构. 通过文献查阅或利用化学物质登记号(CAS number)对化合物检索,一般也认为雷酚内酯的结构为图 1(a)所示.已经发表的文献中^[1,4,5]仅报道了雷酚内酯的一维核磁共振氢谱(¹H NMR) 和碳谱(¹³C NMR) 数据,对结构中的仲氢信号没有给予归属或归属有误, ¹³C NMR 主要信号的归属也有错误. 我们参照已有文献^[1,4,5],对雷酚内酯对照品的紫外吸收光谱(UV) 红外吸收光谱(IR)质谱(MS)NMR 谱图(包括 ¹H NMR、 ¹³C NMR、 DEPT、 ¹H- ¹H COSY、 NOE、 ¹H- ¹³C HSQC 和 ¹H- ¹³C HMBC 谱图)进行了分析,对其 ¹H NMR 和 ¹³C NMR 数据进行了全归属,确证了雷酚内酯对照品的化学结构。

1 实验部分

雷酚内酯对照品原料由中国食品药品检定研究院提供,经高效液相色谱(HPLC)法测试纯度为 99.92%.实验中其它所有试剂均为分析纯,购自上海国药集团化学试剂有限公司.

紫外光谱采用 Agilent 8453 紫外-可见分光光度计(美国 Agilent)测定 红外光谱采用 Nicolet 8700 傅立叶变换红外光谱仪(美国 Nicolet 公司)测定, KBr 压片. 质谱用 Agilent Technologies 7000C GC/MS Triple Quad (美国 Agilent 公司)测定,配备电子轰击离子源(EI 源).

 1 H NMR、 13 C NMR、DEPT、 1 H- 1 H COSY、NOE、 1 H- 13 C HSQC 和 1 H- 13 C HMBC 谱均用 Bruker AVIII HD 600 型 NMR 谱仪(瑞士 Bruker 公司)测定,配备 5 mm 探头. 1 H NMR 和 13 C NMR 的工作频率分别为 600.25 MHz 和 150.81 MHz,谱宽分别为 12 019.23 Hz 和 36 057.69 Hz.DEPT-135 谱宽与 13 C NMR 谱图相同,NOE 谱宽为 10 775.91 Hz.2D NMR 实验包括 1 H- 1 H COSY、 1 H- 13 C HSQC 和 1 H- 13 C HMBC 实验,均采用标准脉冲程序. 1 H- 1 H COSY 的 F_2 (1 H) 和 F_1 (1 H) 维谱宽均为 5 319.10 Hz,采样数据点阵 $t_2 \times t_1 = 1$ 024×1 024; 1 H- 13 C HSQC 的 F_2 (1 H) 和 F_1 (13 C) 维谱宽分别为 5 319.10 Hz 和 30 154.52 Hz,采样数据点阵 $t_2 \times t_1 = 1$ 024×1 024; 1 H- 13 C HMBC 的 F_2 (1 H) 和 F_1 (13 C) 维谱宽分别为 8 417.51 Hz 和 36 231.91 Hz,采样数据点阵 $t_2 \times t_1 = 1$ 024×1 024: 1 H- 13 C HMBC 的 1 B- 1

2 结果与讨论

2.1 UV 谱图分析

化合物在甲醇中的最大紫外吸收波长 λ_{max}^{MeOH} (nm)/吸收峰强度 (AU)为 203.0/0.85、218.0/0.42、273.0/3.0×10⁻²和 279.0/3.0×10⁻²,分别为 E_2 、 E_2 、B 和 B 吸收带.

2.2 IR 谱图分析

采用 KBr 压片法 , 化合物在 IR 吸收光谱中 ,3 520 cm $^{-1}$ 和 3 483 cm $^{-1}$ 处峰为缔合羟基 O-H 伸缩振动强吸收峰;2 996 cm $^{-1}$ 、2 875 cm $^{-1}$ 、1 453 cm $^{-1}$ 和 1 373 cm $^{-1}$ 处中强峰为甲基 C-H 的吸收峰;

 2 932 cm $^{-1}$ 、726 cm $^{-1}$ 处为亚甲基 C-H 的吸收峰;1 754 cm $^{-1}$ 和 1 739 cm $^{-1}$ 处为酯键 $\overset{\parallel}{-}$ C $\overset{\square}{-}$ O $\overset{\square}{-}$ 的强伸缩振动吸收峰;1 677 cm $^{-1}$ 、1 567 cm $^{-1}$ 、1 489 cm $^{-1}$ 和 801 cm $^{-1}$ 处为苯环的骨架吸收峰.

2.3 MS 谱图分析

化合物质谱采用 EI 电离源,得到本品的分子离子质荷比(m/z)为 312,与理论值(312)一致.

2.4 NMR 谱图分析

化合物的 1 H NMR 谱显示有 13 组质子信号.结合 1 H- 1 H COSY(图 2) 1 H- 13 C HSQC(图 3)和 1 H- 13 C HMBC(图 4)谱图分析和文献 $^{[1,4,5]}$ 比对,可归属高场区的 3 个甲基信号.其中, $\delta_{\rm H}$ 1.27(6H,d,J=7.0 Hz)为与次甲基相连的 2 个甲基质子信号 H-16 和 H-17, $\delta_{\rm H}$ 1.03(3H,s)为与季碳相连的甲基质子信号 H-20.在 HSQC 谱中, $\delta_{\rm C}$ 22.4 与 H-20 相关,被归属为 C-20.在 HMBC 谱中, C-20 与 $\delta_{\rm H}$ 1.70 和 $\delta_{\rm H}$ 2.52 远程相关;而在 HSQC 谱中, $\delta_{\rm H}$ 1.70 和 $\delta_{\rm H}$ 2.52 同时与 $\delta_{\rm C}$ 32.6 相关,因此 $\delta_{\rm H}$ 1.70 和 $\delta_{\rm H}$ 2.52 分别被归属为 H-1a 和 H-1b, $\delta_{\rm C}$ 32.6 被归属为 C-1.在 COSY 谱中, $\delta_{\rm H}$ 2.40与 H-1a、H-1b有偶合关系,被归属为 H-2a.在 HSQC 谱中, $\delta_{\rm H}$ 2.40和 $\delta_{\rm H}$ 2.52同时与 $\delta_{\rm C}$ 18.2 相关,因此 $\delta_{\rm H}$ 2.52被归属为 H-2b、 $\delta_{\rm C}$ 18.2 被归属为 C-2.在 NOE 差谱(图 5)中,当照射 H-1a($\delta_{\rm H}$ 1.70)时, $\delta_{\rm H}$ 2.52(H-1b或 H-2b)和 $\delta_{\rm H}$ 2.70信号增强.在 HMBC 谱中, H-1a与 $\delta_{\rm C}$ 22.4(C-20)、 $\delta_{\rm C}$ 36.2和 $\delta_{\rm C}$ 40.9 远程相关;DEPT 谱中显示 $\delta_{\rm C}$ 36.2为季碳,而且通过和文献 $^{[4,5]}$ 比对,我们判断 $\delta_{\rm C}$ 36.2为 C-10,因此 $\delta_{\rm C}$ 40.9被归属为 C-5.在 HSQC 谱, $\delta_{\rm H}$ 2.70与 C-5相关,被归属为 H-5。在 COSY 谱中, $\delta_{\rm H}$ 1.90和 $\delta_{\rm H}$ 2.01与 H-5相关,被分别归属为 H-6a和 H-6b.在 NOE 谱中,当照射 H-6b时, $\delta_{\rm H}$ 2.70(H-5)、 $\delta_{\rm H}$ 2.93 有偶合关系,因此 $\delta_{\rm H}$ 2.90和 $\delta_{\rm H}$ 2.93 有偶合关系,因此 $\delta_{\rm H}$ 2.90和 $\delta_{\rm H}$ 2.93有偶合关系,因此 $\delta_{\rm H}$ 2.90和 $\delta_{\rm H}$ 2.93有用 $\delta_{\rm H}$ 2.93有用 $\delta_{\rm H}$ 2.90和 $\delta_{\rm H}$ 2.90和 $\delta_{\rm H}$

H-16 和 H-17 相关,被归属为 H-15 . 在 HSQC 谱中, δ_C 27.0 与 δ_H 3.11 直接相关,被归属为 C-15 ,在 HMBC 谱中, δ_H 7.10 (d, J=8.0 Hz) 与 C-15 远程相关,归属为 H-12 . 在 COSY 谱中, δ_H 6.96 (d, J=8.0 Hz)与 H-12 偶合,被归属为 H-11 .

化合物的 13 C NMR 谱显示 20 个信号峰,结合 DEPT 谱(图 6),显示化合物结构中存在 8 个季碳、4 个叔碳、5 个仲碳和 3 个伯碳.其中,上文已归属了 C-1、C-2、C-5、C-10、C-15 和 C-20.在 HSQC 谱(图 3)中, $\delta_{\rm C}$ 22.5 与 $\delta_{\rm H}$ 1.27(H-16,17)相关,被归属为 C-16 和 C-17.DEPT 谱显示 5 个仲碳的化学位移分别为 $\delta_{\rm C}$ 18.2(C-2)。 $\delta_{\rm C}$ 19.6、 $\delta_{\rm C}$ 22.7, $\delta_{\rm C}$ 32.6(C-1)和 $\delta_{\rm C}$ 70.5.在 HSQC 谱中, $\delta_{\rm C}$ 19.6与 $\delta_{\rm H}$ 1.90(H-6a)。 $\delta_{\rm H}$ 2.01(H-6b)相关,被归属为 C-6; $\delta_{\rm C}$ 22.7与 $\delta_{\rm H}$ 2.90(H-7a)。 $\delta_{\rm H}$ 2.93(H-7b)相关,被归属为 C-7;所以剩余的 $\delta_{\rm C}$ 70.5被归属为 C-19.在 $^{\rm 1}$ H NMR 谱中, $\delta_{\rm H}$ 4.8 处有 2 组质子信号,一组与 $\delta_{\rm C}$ 70.5(C-19)直接相关(见 HSQC 谱),归属为 H-19;另一组宽单峰归属于羟基质子(-OH)信号.

在 HMBC 谱中, $\delta_{\rm C}$ 174.2 与 $\delta_{\rm H}$ 2.52 (H-2b) 远程相关,被归属为 C-18,该碳为季碳,表明化合物雷酚内酯的结构与图 1(a)相符.在 HSQC 谱中, $\delta_{\rm C}$ 116.3、 $\delta_{\rm C}$ 123.4 分别与 $\delta_{\rm H}$ 6.96(H-11) $\delta_{\rm H}$ 7.10 (H-12) 相关,被分别归属为 C-11 和 C-12.在 HMBC 谱中, $\delta_{\rm C}$ 120.5(季碳)与 $\delta_{\rm H}$ 4.80(-OH) 和 $\delta_{\rm H}$ 6.96 (H-11) 远程相关,被归属为 C-8; $\delta_{\rm C}$ 131.0(季碳)与 $\delta_{\rm H}$ 1.27 (H-16, 17) $\delta_{\rm H}$ 4.80(-OH) $\delta_{\rm H}$ 6.96 (H-11) 远程相关,被归属为 C-13; $\delta_{\rm C}$ 143.9(季碳)与 $\delta_{\rm H}$ 1.03(H-20) $\delta_{\rm H}$ 2.52 (H-1b) $\delta_{\rm H}$ 2.90 (H-7a) $\delta_{\rm H}$ 2.93 (H-7b) 和 $\delta_{\rm H}$ 7.10 (H-12) 相关,被归属为 C-14; $\delta_{\rm C}$ 150.8(季碳)与 $\delta_{\rm H}$ 2.90 (H-7a) $\delta_{\rm H}$ 2.93 (H-7b) 和 $\delta_{\rm H}$ 7.10 (H-12) 远程相关,被归属为 C-14; $\delta_{\rm C}$ 162.9(季碳)与 $\delta_{\rm H}$ 2.52 (H-1b) 和 $\delta_{\rm H}$ 4.80 (H-19) 远程相关,被归属为 C-3;因此 $\delta_{\rm C}$ 125.2 被归属为 C-4.

图 2 雷酚内酯的 ¹H-¹H COSY 谱 Fig. 2 ¹H-¹H COSY spectrum of *Triptophenolide*

图 3 雷酚内酯的 ¹H-¹³C HSQC 谱

Fig. 3 ¹H-¹³C HSQC spectrum of *Triptophenolide*

图 4 雷酚内酯的 ¹H-¹³C HMBC 谱

Fig. 4 ¹H-¹³C HMBC spectrum of *Triptophenolide*

图 5 雷酚内酯的 NOE 谱 Fig. 5 NOE spectra of *Triptophenolide*

图 6 雷酚内酯的 DEPT-135 谱 Fig. 6 DEPT-135 spectra of *Triptophenolide*

在已发表的有关雷酚内酯结构鉴定的文献中 ,H-1a、H-1b、H-5 和 H-6b 质子信号文献 $^{[1,4,5]}$ 未归属 ,H-2a、H-7a 和 H-7b 文献 $^{[4,5]}$ 归属有误 . C-2、C-4、C-5、C-6、C-7、C-8、C-9、C-13、C-15、C-18 和 C-19 碳原子信号文献 $^{[4,5]}$ 归属有误 . 雷酚内酯的 1 H NMR、 1 H- 1 H COSY 和 NOE 数据归属见表 1 . 13 C NMR、DEPT、HSQC 和 HMBC 数据归属见表 2 .

表 1 雷酚内酯 ¹H NMR 数据分析

Table 1	'H NMR d	lata analysis	of Triptop	henolide

Position	$\delta_{ ext{H}}$	$\delta_{ ext{H}}^{_{[5]}}$	Multiplicity	Proton number	¹ H- ¹ H COSY	NOE
1a*	1.70		m	1H	H-1b, H-2a, H-2b	H-1b, H-2b, H-5
$1b^*$	2.52		m	1H	H-1a, H -2a	
2a**	2.40	2.53	m	1H	H-1a, H-1b, H-2b, H-19	
2b	2.52	2.53	m	1H	H-1a, H-2a, H-19	
5*	2.70		m	1H	H-2a, H-2b, H-6a, H-6b, H-19	
$6a^*$	1.90		m	1H	H-7a, H-7b, H-5	
6b*	2.01		m	1H	H-7a, H-7b, H-5	H-5, H-7a, H-7b, H-19
7a**	2.90	2.86	m	1H	H-6a, H-6b	
7b**	2.93	2.86	m	1H	H-6a, H-6b	
11	6.96	6.96	d, <i>J</i> =8.0 Hz	1H	H-12	
12	7.10	7.07	d, <i>J</i> =8.0 Hz	1H	H-11	
15	3.11	3.10	m	1H	H-16, H-17	
16, 17	1.27	1.27	d, <i>J</i> =7.0 Hz	6H	H-15	
19	4.80	4.80	m	2H	H-2a, H-2b, H-5	
20	1.03	1.03	s	3H		
-ОН	4.80	4.80	m	1H		

^{*}为文献^[5]中未明确归属的质子信号;**为文献^[5]中归属错误的质子信号

表 2 雷酚内酯 ¹³C NMR 数据分析

Table 2 13C NMR data analysis of Triptophenolide

Position	$\delta_{\scriptscriptstyle m C}$	$\delta_{ ext{C}}^{[5]}$	DEPT	HSQC	HMBC
1	32.6	32.7	CH_2	+	H-20
2**	18.2	19.7	CH_2	+	H-1a
3	162.9	162.7	C		H-1b, H-19
4**	125.2	120.5	C		-
5**	40.9	27.0	СН	+	H-1a, H-1b, H-6, H-7, H-20
6**	19.6	22.7	CH_2	+	-
7**	22.7	18.2	CH_2	+	H-5
8**	120.5	143.9	C		Н-11, -ОН
9**	143.9	130.9	C		H-1b, H-7, H-12, H-20
10	36.2	36.2	C		H-1a, H-1b, H-6, H-11, H-20
11	116.3	116.3	CH	+	-
12	123.4	123.4	CH	+	-
13**	131.0	125.2	C		H-16, H-17, H-11, -OH
14	150.8	150.7	C		H-12, H-7
15**	27.0	40.9	CH	+	H-12, H-16, H-17
16	22.5	22.5	CH_3	+	H-15
17	22.5	22.5	CH_3	+	H-15
18**	174.2	70.5	C		H-2b
19**	70.5	174.1	CH_2	+	-
20	22.4	22.3	CH_3	+	H-1a, H-1b, H-11

^{**}为文献[5]中归属错误的 13C NMR 信号

3 结论

参考文献:

- [1] DENG F X, ZHOU B N, SONG G Q, et al. Research from *Tripterygium Wilfordii Hook. F.*[J]. Acta Pharmaceutica Sinica, 1982, 17(2): 146-150.
 - 邓福孝,周炳南,宋国强,等.雷公藤化学成分的研究 . 两种新二萜内酯——雷酚内酯甲醚和雷酚新内酯的分离及结构[J]. 药学学报,1982,17(2): 146-150.
- [2] XU B, DU J O. Study on polarographic catalytic wave of triptophenolide[J]. Chinese Journal of Analysis Laboratory, 2005, 24(4): 49-52. 徐斌,杜俊鸥.雷酚内酯的极谱催化波研究[J].分析试验室, 2005, 24(4): 49-52.
- [4] YUDF, HUBH, CHENGP, et al. Structure cture revision of *Triptophenolide*[J]. Acta Pharmaceutica Sinica, 1990, 25(12): 929-931. 于东防,胡邦豪,陈国平,等. 雷酚内酯的结构修正[J]. 药学学报, 1990, 25(12): 929-931.
- [5] LIU Z Z, ZHAO R H, ZOU Z M. Chemical constituent root bark of *Tripterygium hypoglaucum*[J]. China J Chinese Materia Modica, 2011, 36(18): 2503-2506.
 - 刘珍珍, 赵荣华, 邹忠梅. 昆明山海棠根皮化学成分的研究[J]. 中国中药杂志, 2011, 36(18): 2503-2506.
- [6] XUE J, JIA X B, CHEN Y, et al. Chemical constituents of *Tripterygium wilfordii* Hook.f and its toxicity[J]. China J Traditional Chinese Medicine and Pharmacy, 2010, 25(5): 726-733.
 - 薛璟, 贾晓斌, 陈彦, 等. 雷公藤化学成分及其毒性研究进展[J]. 中华中医药杂志, 2010, 25(5): 726-733.