Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Estudiante: Anderson Brian Flores Suaña

REPOSITORIO: https://github.com/andersonfloress/Trabajos_Est_Computacional

ENLACE APLICACIÓN: https://anderson-fls.shinyapps.io/MiApp/

TAREA 03

Documentación de la Aplicación Shiny para Análisis Estadístico Interactivo

Introducción:

Esta aplicación desarrollada en Shiny permite realizar pruebas estadísticas básicas y visualizar datos de forma interactiva. Los usuarios pueden cargar archivos Excel, seleccionar variables para análisis, y elegir entre diferentes tipos de gráficos para representar los resultados. Es especialmente útil para estudiantes, investigadores y profesionales que requieren un análisis ágil y sencillo.

Características Principales:

• 1. Carga de Datos

Formato de archivo: Se aceptan archivos Excel en formato .xlsx.

Requisitos del dato: Los datos deben ser numéricos si se desea que la tabla sea pivoteada completamente. Caso contrario, se aceptan tipos variados. Cada fila debe representar una observación y cada columna una variable.

Pivoteo automático: Si se detectan varias columnas numéricas, la aplicación las transforma automáticamente para facilitar el análisis.

2. Selección de Prueba Estadística

Prueba t: Comparación de medias entre dos grupos.

Requisito: Debe haber exactamente dos grupos en la variable seleccionada.

ANOVA + **Tukey:** Comparación de medias entre tres o más grupos. Permite identificar diferencias significativas.

Requisito: Al menos tres grupos presentes en la variable de agrupación.

• 3. Selección de Variables

Variable de Agrupación: Define los grupos (por ejemplo: "Tratamiento" con A, B, C).

Variable de Valor: Contiene los valores numéricos a analizar (por ejemplo: "Resultados").

• 4. Filtrado de Grupos (para ANOVA)

Si existen más de tres grupos, se puede elegir cuáles incluir en el análisis ANOVA.

• 5. Tipos de Gráficos

Boxplot: Representa la distribución de los datos por grupo.

Barras con Error Estándar: Muestra las medias por grupo con su error estándar.

 ${\bf Gráfico}$ de ${\bf Puntos:}$ Muestra cada observación como un punto.

Gráfico de Violín: Une la densidad de datos con un boxplot.

Histogramas Agrupados: Histograma por cada grupo con sus respectivas

frecuencias.

• 6. Ejecución de la Prueba

Luego de seleccionar las opciones, hacer clic en .^{Ej}ecutar Prueba" para obtener los resultados.

Modo de Uso:

- 1. Hacer clic en "Subir archivo Excel" y seleccionar el archivo.
- 2. Si existen varias columnas numéricas, estas se pivotearán automáticamente.
- 3. Elegir la prueba deseada: t-test (2 grupos) o ANOVA (más de 2 grupos) + Tukey.
- 4. Seleccionar las variables de **Agrupación** y **Valor**.
- 5. (Opcional) Para ANOVA, elegir los grupos específicos a analizar.
- 6. Escoger el tipo de gráfico.
- 7. Pulsar . Ejecutar Prueba" para visualizar resultados y gráficos.

Resultados:

Pruebas estadísticas:

Se mostrarán los resultados del t-test o ANOVA, incluyendo el test de Tukey si corresponde. El valor-p indicará si las diferencias son estadísticamente significativas.

Gráficos:

Se mostrará el gráfico seleccionado, ayudando a comprender visualmente los datos.

Consideraciones:

- Verificar que se cumplan los requisitos: t-test necesita dos grupos; ANOVA, mínimo tres.
- En caso contrario, la app mostrará un mensaje de advertencia.
- Los datos deben estar correctamente estructurados para un análisis válido.

Ejemplos de Uso

1. Análisis de Experimento Científico

Escenario: Un investigador desea comparar el efecto de dos tratamientos sobre una variable. Puede cargar los datos, elegir la variable de agrupación (Tratamiento A y B) y la variable de valor, y ejecutar un t-test.

Visualización: Boxplot o gráfico de barras con error estándar.

2. Comparación de Grupos en Ciencias Sociales

Escenario: Un estudio social analiza la media de tres o más grupos. Se selecciona ANOVA, se eligen las variables correspondientes y se ejecuta la prueba. Luego, el test de Tukey identifica los pares con diferencias significativas.

Visualización: Gráfico de violín o histogramas agrupados.

Interpretación de Resultados

1. Prueba t

Hipótesis:

H: Las medias de los dos grupos son iguales.

H: Las medias son diferentes.

Interpretación:

- Valor-p:
 - p < 0.05: Se rechaza H hay diferencia significativa.
 - $p \ge 0.05$: No se rechaza H no hay evidencia suficiente.
- Valor-t:
 - Valor alto (positivo o negativo): fuerte evidencia contra H.
 - Valor cercano a cero: diferencias poco significativas.
- Casos posibles:
 - Diferencia significativa (p < 0.05):
 - o t positivo: el primer grupo tiene mayor media.
 - o t negativo: el segundo grupo tiene mayor media.
 - No significativa (p > 0.05): No hay diferencia.

2. ANOVA + Tukey

Hipótesis:

H: Todas las medias son iguales.

H: Al menos una media es diferente.

Interpretación:

- Valor-p de ANOVA:
 - p < 0.05: Rechazar H al menos un grupo difiere.
 - $p \ge 0.05$: No se rechaza H no hay diferencia clara.
- Test de Tukey:

- Pares con p < 0.05: diferencia significativa.
- Pares con p > 0.05: no significativa.

Casos posibles:

- Diferencias significativas (ANOVA p < 0.05): Tukey identifica los pares distintos.
- Sin diferencias (ANOVA $p \ge 0.05$): Todos los grupos son similares.

Limitaciones de la Aplicación

1. Formatos de archivo

Limitación: Solo se aceptan archivos Excel (.xlsx, .xls). No se permiten CSV o JSON. Solución futura: Incluir soporte para otros formatos.

2. Tipos de pruebas estadísticas

Limitación: Solo se incluyen t-test y ANOVA con Tukey. No hay regresión lineal o ANOVA multivariado.

Solución futura: Ampliar con más métodos estadísticos.

3. Tipo de datos

Limitación: Solo se analiza información numérica. No se soportan variables categóricas o mixtas.

Solución futura: Incluir soporte para variables no numéricas.

4. Interfaz de usuario

Limitación: Puede resultar compleja para usuarios sin experiencia en R o estadística. Solución futura: Mejorar la interfaz para mayor usabilidad.

5. Escalabilidad

Limitación: El rendimiento puede verse afectado con datos muy grandes. Solución futura: Optimizar la aplicación para datasets de gran tamaño.

Evidencia:

