MPCPy User Guide Documentation Release 1

David H. Blum

CONTENTS

1	Introduction	1
2	Getting Started 2.1 Dependencies	3 3 4
3	Units	5
4	Variables	7
5	Utility	9
6	ExoData	11
7	Systems	13
8	Models	15
9	Optimization	17
10	Occupant	19

CHAPTER

ONE

INTRODUCTION

MPCPy facilitates the testing and implementation of Model Predictive Control (MPC) for building systems. The software package focuses on the use of data-driven simplified physical or statistical models to predict building performance and optimize control. Four main modules contain object classes to import data, interact with a real or emulated system, estimate and validate data-driven models, and optimize control inputs. Three other modules contain classes to help track units and provide additional, mainly internal, functionality to MPCPy.

- 1. ExoData classes collect external data and process it for use within MPCPy.
- 2. **System** classes represent real or emulated systems to be controlled, collecting measurements from and providing control inputs to the systems.
- 3. Models classes represent system models for MPC, managing model simulation, estimation, and validation.
- 4. Optimization classes formulate and solve the MPC optimization problems using Models objects.
- 5. Variable and Unit classes together maintain the association of static or timeseries data with units.
- 6. **Utility** classes provide functionality needed across modules and for interactions with external components.

CHAPTER

TWO

GETTING STARTED

Dependencies

MPCPy takes advantage of many third-party software packages, listed below. It has been tested on Ubuntu 16.04.

Python Packages

- matplotlib 1.5.1
- numpy 1.11.0
- pandas 0.17.1
- python-dateutil 2.4.2
- pytz 2014.10
- scikit-learn 0.18.1
- tzwhere 2.3
- sphinx 1.3.6
- estimationpy

Modelica Compiler and Optimizer, FMU Simulator

• JModelica 1.17

Modelica Packages

- Modelica Standard Library 3.2.2
- Modelica Buildings Library 3.0.0

Installation

- 1. Install all dependencies listed above according to their respective processes.
- 2. Create the following environmental variables, where ".../" is replaced by the full directory:
 - JMODELICA_HOME = ".../Jmodelica-1.17"
 - IPOPT_HOME = ".../Ipop-3.12.5"
 - SUNDIALS_HOME = ".../Jmodelica-1.17/ThirdParty/Sundials"
 - CPPAD_HOME = ".../Jmodelica-1.17/ThirdParty/CppAD/"
 - SEPARATE_PROCESS_JVM = ".../jvm/java-8-openjdk-amd64/"

- JAVA_HOME = ".../jvm/java-8-openjdk-amd64/"
- 3. Add the following to the PYTHONPATH environmental variable, where ".../" is replaced by the full directory:
 - ".../Jmodelica-1.17/Python"
 - ".../Jmodelica-1.17/Python/pymodelica"
 - ".../MPCPy"
- 4. Add the Modelica Standard Library and Modelica Buildings Library to the MODELICAPATH environmental variable.
- 5. Test the installation and explore MPCPy use-cases by running the unit tests.

Run Unit Tests

The script bin/runUnitTests.py runs the unit tests of MPCPy. By default, all of the unit tests are run. An optional argument -s [module.class] will run only the specified unit tests module or class.

To run all unit tests from command-line, use the command (shown from the parent directory):

> python bin/runUnitTests

To run only unit tests in the module test_models from command-line, use the command (shown from the parent directory):

> python bin/runUnitTests -s test_models

To run only unit tests in the class Estimate_Jmo from the module test_models from the command-line, use the command (shown from the parent directory):

> python bin/runUnitTests -s test_models.Estimate_Jmo

CHAPTER
THREE

UNITS

6 Chapter 3. Units

CHAPTER FOUR

VARIABLES

CHAPTER FIVE

UTILITY

10 Chapter 5. Utility

CHAPTER

EXODATA

12 Chapter 6. ExoData

CHAPTER SEVEN

SYSTEMS

CHAPTER EIGHT

MODELS

16 Chapter 8. Models

CHAPTER	
NINE	

OPTIMIZATION

CHAPT	ER
TE	:N

OCCUPANT