. Math 53 Final 15.97 Change of Variables in Multiple Integrals
If $f(x,y) dA = \iint_S f(x(u,v), y(u,v)) \left \frac{\partial(x,y)}{\partial(u,v)} \right du dv$
Tacobien: $x = d(x, n)$ $\lambda = y = $
D Find $N=$, $V=$ Suitable (2) Find $X=$, $V=$ (3) Find Jacobian and plug in abs value (4) Plug in to equation
Chapter 16: Vector Calculus
Vector Field assigns to each point (xiy) in D vector F(xiy) Gradient Field \(\text{Tf}(xiy) = \left(\xi_x(xiy)), \xi_y(xiy) \right) Conservation if some \(\xi \) that \(\xi = \text{Tf} \) \(\xi \) potential \(\xi_x(xiy) = \xi_x(xiy) \) \(\xi \) \(\xi_x(xiy) = \xi_x(xiy) \) \(\xi_x(xiy) = \xi_x(xi

[16.2] Line Integrals

Line Integral of Foodlong Com larger

Line Integral of Foodlong Com larger

Line Integral of Foodlong

Lin

[f(x,y) ds =] f(x(+), y(+)) / (2x)2+(2x)2 d+ [163] Fundamental Theorem for Line Integrals Thm: Let C be smooth curve it) a & + & be differentable fine whose IF is continue on C Jost . di = f(r(b)) - f(r(a)) Independent of path if [F.dr = Juz F.dr for [F.dr conservative vector field depends only on intral and termed Thm: F is vector field continues on open (doesn't contain boundary points) connected (any 2 pants can be joined by path) region D. If LEF-dr is independent of path, That is f that TF = F 1) Open simply-connected (no heles) = is conservate region D (2) P and Q have continous first plantals $3) \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} + \text{through out } D$ [Thm:] S.F.dr is independent of path in D if and only if 1 F. dr = 0 for every closed

pam cin D

div F= T.F

[16.6] Parametric Surfaces and their Areas

4

Parameter Surface: $r(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$

Surface of Revolution: X=X $y=f(x)\cos\theta$ $Z=f(x)\sin\theta$ (about x-axis)

Tangent plane contains on and or vectors and Normal vector to targent plane is ruxor

Surface Area: A(s) = SS || ruxrv || dA

A(s)= SI (+ (£)2+(£)2 dA

(16.7) Surface Integrals

Surface Integral of forer surfaces

 $\iint_{S} f(x,y,z) dS = \iint_{\Omega} f(r(u,v)) | r_{u} \times r_{v}| dA$

Sf(x,y,z) dS= Sf(x,y,g(x,y)) (dz)2+(dz)2+1 dA

Surface Integral of F over S

(Flux) of F across S)

SSF. dS = SSF. n ds

SSF.dS = SSF. (ruxri) dA

SSF.dS= SS (-P3) - Q3+ +R) dA

1-16.8 Stokes Theorem

Thm: Conditions:

- OS is piecewise smooth surface
- @ Bounded by simple, closed precenise smooth boundary curve C w/ positive orientation
- (3) (onthous pantal dervatus

Then;

JF.dr = SScurl F. ds

116.9 Divergence Theorem

Thm | Conditions:

- (1) E is a simple solid region
- 2) S be the boundary surface of E positive outword orentation
- (3) continous partial derivaties on an open region contant E

Theni

SF. ds = SS dn F dV