Electronic Devices Lecture 3 09-08-2018

Crystallographic Notation

Miller Indices

Notation	Interpretation
(hkl)	crystal plane
$\{hkl\}$	equivalent planes
[hkl]	crystal direction
< h k l >	equivalent directions

h: inverse x-intercept of plane

k: inverse y-intercept of plane

l: inverse *z*-intercept of plane

(h, k and l are reduced to 3 integers having the same ratio.)

Sample direction vectors and their corresponding Miller indices.

Crystallographic Planes

Crystallographic Planes

Figure 1.7
Crystal directions in the cubic lattice.

IC Fabrication Steps

Figure 1.10

Pulling of a Si crystal from the melt (Czochralski method): (a) schematic diagram of the crystal growth process; (b) an 8-in. diameter, \langle 100 \rangle oriented Si crystal being pulled from the melt.

(Photograph courtesy of MEMC Electronics Intl.)

Crystal Growth Until Device Fabrication

Metallurgical *grade silicon -* MGS Electronic Grade Silicon - EGS

Crystallographic Planes of Si Wafers

- Silicon wafers are usually cut along a {100} plane with a flat or notch to orient the wafer during integrated-circuit fabrication.
- The facing surface is polished and etched yielding mirror-like finish.

- Impurities are added intentionally to the Si melt to change its electrical properties.
- At the solidifying interface between the melt and the solid, there will be a certain distribution of impurities between two phases.
- This property is measured by distribution coefficient
 k_d,

$$k_d = \frac{C_S}{C_L}$$

Crystallographic Planes of Si Wafers

- Silicon wafers are usually cut along a {100} plane with a flat or notch to orient the wafer during integrated-circuit fabrication.
- The facing surface is polished and etched yielding mirror-like finish.

Identifying flats on Silicon wafers

innovate achieve lead

Clean Room Components

Clean room

HEPA Filter

High-Efficiency Particulate Arrestance (**HEPA**)

Laminar flow

Wafer Contaminations

Environmental Contaminations and precautions:

Air Filters: High Efficiency Particulate Air (HEPA) – made up of perforated fiber sheet.

Clean Room specifications:

Class X, where X denotes the total number of particles in cubic feet.

Nomenclature of Class X means that the 0.5 μ m of particulate size should not be more than X number

- Epi means "upon"
- Taxis means "ordered"
- Epitaxy- A process used to grow a thin crystalline layer on a crystalline substrate
- The substrate wafer acts as a seed crystal
- Epitaxy When a material is grown epitaxially on a substrate of the same material, such as silicon on silicon, the process is called homoepitaxy.
- If the layer and substrate are of different materials, such as Al_xGa_{1-x}As on GaAs, the process is termed as heteroepitaxy. However, in heteroepitaxy the crystal structures of the layer and the substrate should be similar if crystalline growth is to be obtained.

Epitaxial Growth

- Deposition of a layer on a substrate which matches the crystalline order of the substrate
- Homoepitaxy
 - Growth of a layer of the same material as the substrate
 - Si on Si
- Heteroepitaxy
 - Growth of a layer of a different material than the substrate
 - GaAs on Si

Ordered, crystalline growth; NOT epitaxial

Properties of Epitaxial Layer

- Crystallographic structure of film reproduces that of substrate
- Substrate defects reproduced in epi layer
- Electrical parameters of epi layer independent of substrate
- Dopant concentration of substrate cannot be reduced
- Epitaxial layer with less dopant can be deposited
- Epitaxial layer can be chemically purer than substrate
- Abrupt interfaces with appropriate methods

Methods of Epitaxy

- Epitaxial silicon is usually grown using Vapor
 Phase Epitaxy (VPE), a modification of Chemical
 Vapor Deposition
- Molecular-beam and liquid-phase epitaxy (MBE and (LPE) are also used, mainly for compound semiconductors.
- Metal Organic CVD(MOCVD)

What makes a crystal?

- -Crystals possess long-range order,
- -We may have instead poly-crystalline or even amorphous material.

Crystal structure and defects

Crystal Structure: Crystal can be grown on 111, 100, 110 planes

Point Defects:

- Point Defects
- Line Defect (dislocation)
- Area (planar) defects
- Volume Defects

lead

Point Defects:

FIGURE 5

The location and types of point defects in a simple lattice.

Crystal structure and defects

Dislocations:

FIGURE 6

An edge dislocation in a cubic lattice created by an extra plane of atoms. The line of the dislocation is perpendicular to the page.

Crystal structure and defects

Area (planar) Defects: Two area defects are twins and grain boundaries. The defect appears during crystal growth, but such crystals are simply discarded.

Basic Process Steps for Wafer Preparation

