

Jason & Alister Team 22

Datasets

Goal: Use machine learning techniques to make prediction on housing prices in Ames

- Train.csv: To train the Machine Learning models
- Test.csv: Use the test data to make predictions from the trained Machine Learning Models

SalePrice vs OverallQuality

The higher the OverallQual, the higher the SalesPrice of the houses (a few potential outliers)

SalePrice vs YearBuilt

- The newer the houses, the higher the prices of the house
- Consistent in most years

Steps by Steps

Data Loading and Preprocessing

Read and load the training and testing datasets

CSV Reader

Select only 'useful' columns and clean up any missing values

- Column Filter: Only includes columns (MSZoning, LotArea, OverallQual, OverallCond, YearBuilt, YearRemodAdd, SalePrice)
- Category to Number: Convert all the categorical variables to numerical
- **Missing Value:** Fill up all the null numerical values with the median

How to determine the right columns for training?

Rank Correlation

- Calculate the correlation coefficient for each pair of selected columns
- We selected LotArea, OverallQual, OverallCond, YearBuilt, MsZoning, YearRedData

Rank Correlation

#	RowID	Id Number (dou	MSSubCl Number (dou	MSZoning Number (dou	LotFronta Number (dou	LotArea Number (dou	Street Number (dou
1	Id	1	0.019	-0.023	0.006	-0.005	0.009
2	MSSubClass	0.019	1	0.128	-0.161	-0.27	-0.017
3	MSZoning	-0.023	0.128	1	-0.184	-0.22	0.036
4	LotFrontage	0.006	-0.161	-0.184	1	0.286	0.025
5	LotArea	-0.005	-0.27	-0.22	0.286	1	-0.054
6	Street	0.009	-0.017	0.036	0.025	-0.054	1
7	Alley	-0.003	0.046	-0.336	-0.011	-0.085	-0.002
8	LotShape	0.03	0.07	0.147	-0.23	-0.311	-0.011
9	LandContour	-0.016	-0.003	0.005	0.031	-0.081	0.12
10	Utilities	0.013	-0.03	-0.006	0.037	0.036	0.002
11	LotConfig	0.047	0.045	0.018	-0.118	-0.196	0.012
12	LandSlope	0.019	-0.02	-0.028	0.053	0.117	-0.176
13	Neighborhood	-0.012	-0.009	-0.206	0.056	0.093	-0.01
14	Condition1	-0.012	-0.013	-0.069	0.058	0.088	-0.037
15	Condition2	0.03	-0.03	0.016	0.034	0.047	-0
16	BldgType	0.019	0.654	0.104	-0.25	-0.426	-0.049
17	HouseStyle	0.017	0.533	-0.116	0.095	0.061	0.022
18	OverallQual	-0.029	0.108	-0.212	0.072	0.233	0.059

Split the training and testing

Partitioning

 Split the training dataset by 80/20 ratio for training and testing purposes

Model building and Model Evaluation

 Used Linear Regression, Random Forest, Gradient Boosting learner and then predictor and then scored each model (Accuracy, MSE, etc) using Numeric Scorer

Model Evaluation Results

Linear Regression

Random Forest

Gradient Boost

RowID	Prediction (SalePrice) Number (double)	owID	Prediction (SalePrice) Number (double)	RowID	Prediction (SalePrice) Number (double)
R^2	0.697	^2	0.783	R^2	0.759
mean absolute error	31,505.586	nean absolute error	25,377.376	mean absolute error	26,802.378
mean squared error	1,884,819,759.405	nean squared error	1,353,254,298.268	mean squared error	1,500,698,081.133
root mean squared error	43,414.511	oot mean squared error	36,786.605	root mean squared error	38,738.845
mean signed difference	-1,707.75	nean signed difference	-366.173	mean signed difference	-453.361
mean absolute percentage error	0.181	nean absolute percentage error	0.14	mean absolute percentage error	0.146
adjusted R^2	0.697	djusted R^2	0.783	adjusted R^2	0.759

Conclusion

- Random forest had the best performance

- We selected random forest for our kaggle submission

Future work: Use other models (SVM, Model Ensemble) and perform hyperparameter tuning and adjust the features

Thank You

Question