Problem 1)

The results from manually calculating the mean, variance, skew, and kurtosis in Python is shown under "Part 1." The results from using Pandas DataFrame is shown under "Part 2."

```
Part 1
Mean = 1.0489703904839585
Variance = 5.427220681881726
Skew = 0.8819320922598405
Kurtosis = 23.244253469616186
Part 2
Mean = 1.0489703904839582
Variance = 5.4272206818817255
Skew = 0.8819320922598395
Kurtosis = 23.2442534696162
```

The documentation for Pandas DataFrame states that it returns unbiased estimates of variance, skew, and kurtosis. Given the formulas for unbiased estimators of variance, skew, and kurtosis, we can confirm this by generating a simple dataset, with the number of observations equal to 4.

Consider the dataset [0, 0, 2, 6]. Then, the sample mean is equal to 2.

The results obtained using the package confirms this, and thus are unbiased.

```
Part 3
Mean = 2.0
Variance = 8.0
Skew = 1.414213562373095
Kurtosis = 1.5
```

Problem 2)

1) Fitting the data in problem2.csv using OLS, the following results are obtained.

```
LinregressResult(slope=0.7752740987226117, intercept=-0.08738446427005078, rvalue=0.5878833928295756, pvalue=5.594765259448202e-20, stderr=0.07581425102261538, intercept_stderr=0.07149629062481402)
```

The "stderr" that is reported by stats.linregress is the standard error of the estimate of the slope. To obtain the standard error of the OLS error terms, set

$$\varepsilon_i = y_i - (intercept + slope * x_i)$$

and calculate the biased sample variance of the error terms, which yields 1.003756.

Using MLE (assuming errors are normally distributed), the following results are obtained

```
Estimated Beta coefficients MLE: [-0.08738448 0.77527452]
Estimated std err MLE: 1.0037562314196935
```

where beta_0 = -0.08738 and beta_1 = 0.77527. This is as expected since the MLE of the beta is equal to that under OLS, and the MLE of the standard error of the residuals is equal to the biased sample standard error of the residuals (as proven in extra credit).

2) Using MLE (assuming a T-distibution of errors), the following results are obtained.

```
Estimated coefficients: [-0.09726859 0.6750099 ]
Estimated degrees of freedom (nu): 7.159860005381045
Estimated scale parameter (sigma): 0.8551054189259828
```

Comparing the fitted values, we observe that the intercept is slightly more negative (-0.0972 vs -0.0874) and the slope is slightly less positive (0.675 vs 0.775). It is difficult to conclude whether

the MLE under normal distribution or the MLE under T-distribution better fits the data. While the standard deviation of the errors is lower under the T-distribution than the normal distribution (0.855 vs 1.003), we have also estimated for the degrees of freedom under the T-distribution. Thus, we would need some context behind the data to determine whether the assumption that the errors follow a T-distribution is valid before declaring it to be a better fit.

3) Given problem2_x.csv, we seek to fit the data to a multivariate normal distribution such that $X \sim N(\mu, \Sigma)$, where X is a (2x1) random vector, μ is a (2x1) vector of the expected values, and Σ is the (2x2) covariance matrix. Using Pandas DataFrame, we obtain the following results for sample mean and covariance matrix.

From our notes, we know that given $X_1 = a, X_2 \sim N(\mu', \Sigma')$ for each observation where

$$\mu' = \mu_2 + \Sigma_{12} \Sigma_{11}^{-1} (a - \mu_1)$$

$$\Sigma' = \Sigma_{22} - \Sigma_{12} \Sigma_{11}^{-1} \Sigma_{12}$$

Given our observed values, we arrive at

$$E(X_2) = \mu_2 = \overline{X_2} + \frac{0.540685}{1.069775} (a - \overline{X_1})$$
$$var(X_2) = 0.961473 - \frac{0.530685^2}{1.069775}$$

4) $Y = X\beta + \epsilon$, $\epsilon \times N(0, \sigma^{\epsilon})$.

Since $\epsilon : N(0, \sigma^{\epsilon})$, $f_{\gamma} (Y; (x;) = \sqrt{2\pi\sigma^{\epsilon}})$, $f_{\gamma} (Y; (x;) = \sqrt{2\pi\sigma^{\epsilon}})$, $\epsilon : f_{\gamma} (Y; (x;) = \sqrt{2\sigma^{\epsilon}})$, $\epsilon : f_{\gamma} (Y; (x$

Problem 3)

The ACF and PACF plots seem to show autocorrelation decreasing rapidly following the first timestep, while the partial autocorrelation converges to zero over a longer time in a "cone" shape. Also seeing that the absolute value of the partial autocorrelation is quite strong for the first 3 timesteps, I would hypothesize that a MA(3) model would fit this data best.

AR(1)							
		SAR	IMAX Resul	ts			
Dep. Variable	:		x No.	Observations:	:	 500	
Model:		ARIMA(1, 0,	0) Log	Likelihood		-819.328	
Date:	Sa	t, 14 Sep 2	024 AIC			1644.656	
Time:		11:47	:08 BIC			1657.299	
Sample:			0 HQIC			1649.617	
			500				
Covariance Ty	pe:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1258	0.070	30.473	0.000	1.989	2.263	
ar.L1	0.2019	0.045	4.512	0.000	0.114	0.290	
sigma2	1.5517	0.105	14.743	0.000	1.345	1.758	
====== Ljung-Box (L1	=======) (Q):	=======	2.51	Jarque-Bera	 (JB):		1.4
Prob(Q):			0.11	Prob(JB):			0.4
Heteroskedast	icity (H):		1.37	Skew:			-0.0
Prob(H) (two-	sided):		0.04	Kurtosis:			2.7

AR(2)		SARI	MAX Resul	ts			
Dep. Varial Model: Date: Time: Sample:	Sa	ARIMA(2, 0, t, 14 Sep 20 11:47: – 5	0) Log 24 AIC 08 BIC 0 HQIC	Observations Likelihood	:	500 -786.540 1581.079 1597.938 1587.694	
	coef	std err	z	P> z	[0.025	0.975]	
const ar.L1 ar.L2 sigma2	2.1270 0.2732 -0.3505 1.3603	0.049 0.042 0.043 0.094	43.663 6.486 -8.068 14.455	0.000 0.000 0.000 0.000	2.032 0.191 -0.436 1.176	2.222 0.356 -0.265 1.545	
Ljung-Box Prob(Q): Heterosked: Prob(H) (to	asticity (H):		15.51 0.00 1.20 0.24	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):		3.12 0.21 0.11 2.68

AR(3)							
		SAR	IMAX Resul	ts			
Dep. Variable:			x No.	Observations:		 500	
Model:		ARIMA(3, 0,	0) Log	Likelihood		-713.330	
Date:	Sa	it, 14 Sep 2	024 AIC			1436.660	
Time:		11:47	:08 BIC			1457.733	
Sample:			0 HQIC			1444.929	
			500				
Covariance Type	::		opg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1209	0.085	24.990	0.000	1.955	2.287	
ar.L1	0.4515	0.040	11.179	0.000	0.372	0.531	
ar.L2 -	0.4887	0.037	-13.104	0.000	-0.562	-0.416	
ar.L3	0.5047	0.040	12.769	0.000	0.427	0.582	
sigma2	1.0132	0.068	14.939	0.000	0.880	1.146	
Ljung-Box (L1)	(Q):		 0.02	Jarque-Bera	(JB):		0.84
Prob(Q):			0.90	Prob(JB):			0.6
Heteroskedastic	ity (H):		1.04	Skew:		-	0.03
Prob(H) (two-si	ded):		0.81	Kurtosis:			2.8

MA(1)							
		SARI	MAX Resul	ts			
Dep. Variable:				Observations:		500	
Model:		ARIMA(0, 0,		Likelihood		-780.702	
Date:	San	t , 1 4 Sep 20				1567.404	
Time:		11:47:				1580.047	
Sample:			0 HQIC			1572.365	
		- 5	00				
Covariance Typ	e:	٥	pg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1236	0.085	25.028	0.000	1.957	2.290	
ma.L1	0.6434	0.034	18.847	0.000	0.577	0.710	
sigma2	1.3282	0.090	14.782	0.000	1.152	1.504	
Ljung-Box (L1)	(Q):		11.73	Jarque-Bera	(JB):		1.18
Prob(Q):			0.00	Prob(JB):			0.55
Heteroskedasticity (H):			1.39	Skew:			-0.02
Prob(H) (two-s.			0.04	Kurtosis:			2.77

		SAR	[MAX Resul	ts			
Dep. Variabl	e:		x No.	Observations:		500	
Model:		ARIMA(0, 0,		Likelihood		-764.971	
Date:	Sar	t, 14 Sep 20	324 AIC			1537.941	
Time:		11:47:	:08 BIC			1554.800	
Sample:			0 HQIC			1544.556	
		- !	500				
Covariance T	ype:	(pg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1255	0.060	35.199	0.000	2.007	2.244	
ma.L1	0.4344	0.044	9.775	0.000	0.347	0.522	
ma.L2	-0.2306	0.047	-4.949	0.000	-0.322	-0.139	
sigma2	1.2473	0.086	14.558	0.000	1.079	1.415	
Ljung-Box (L	1) (0):		0.02	Jarque-Bera	(JB):		.67
Prob(Q):			0.88	Prob(JB):		0	. 43
Heteroskedas	ticity (H):		1.28	Skew:		-0	. 0
Prob(H) (two			0.11	Kurtosis:		2	.72

MA(3)							
		SARI	MAX Resul	ts			
Dep. Variab	 le:		x No.	Observations:		500	
Model:		ARIMA(0, 0,	3) Log	Likelihood		-763.434	
Date:	Sa	t, 14 Sep 20	24 AIC			1536.868	
Time:		11:47:	08 BIC			1557.941	
Sample:			0 HQIC			1545.137	
		- 5	00				
Covariance '	Type:	c	pg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2.1259	0.059	35.880	0.000	2.010	2.242	
ma.L1	0.5582	0.045	12.333	0.000	0.469	0.647	
ma.L2	-0.2286	0.053	-4.308	0.000	-0.333	-0.125	
ma.L3	-0.1531	0.048	-3.216	0.001	-0.246	-0.060	
sigma2	1.2394	0.085	14.592	0.000	1.073	1.406	
Ljung-Box (L1) (0):		1.60	Jarque-Bera	(JB):		1.75
Prob(0):			0.21	Prob(JB):			0.42
	sticity (H):		1.25	Skew:			0.06
Prob(H) (tw			0.15	Kurtosis:			2.73

However, the results seem to indicate that the AR(3) model is the best fit, with lower AIC and BIC scores of around 1436 and 1457, compared to that of the other models (which are greater than 1500).