TURBOMACHINERY COURSE

- What is a turbomachine?
- A piece of machinery driven by a turbine.
- What is a liquid rocket engine turbopump?
- Assembly of a turbine with one or more sdwnd

(Sutton, page 362)

TURBOMACHINERY COURSE

- Why use a turbopump?
- Liquid rocket engines can be pump-fed or pressure-fed.

TYPICAL PRESSURE-FED SYSTEM

TYPICAL PUMP-FED SYSTEM

PRESSURE-FED SYSTEMS

- Advantages
- Less complex
- Less development required
- Best suited for low thrust application
- Reaction control system
- Orbital maneuver systems
- Historically less than 6000 lbf thrust

PUMP-FED SYSTEMS

- Advantages
- Reduced system weight
- High performance
- Best suited for high thrust and system requiring high velocities.
- Boosters
- High performance upper stages

BASIC ELEMENTS OF A TURBOPUMP

回	Element	Function
	Pump	Add energy to propellants via rotation
	Turbine	Derive energy from fluid to power the pump
	Bearings	Transmit loads from rotor assembly to stationary housings
	Seals	Prevent or minimize leakage, internal and external
	Couplings	Transmit torque between rotating elements

Contain all elements and fluids

Casings

ROCKET ENGINE TURBOPUMP

PRINCIPLE OF TURBOMACHIERY OPERATION

- **Energy added or removed from a fluid** by a transfer of angular momentum between the fluid and a rotating element.
- Changes in angular momentum require changes in tangential velocity
- Pump
- Rotating blades increase tangential velocity
- Stationary blades decrease tangential velocity

PRINCIPLE OF TURBOMACHIERY OPERATION

Turbine

- Rotating blades decrease velocity
- Stationary blades increase velocity

Pump flow process

- Diffusion process where kinetic energy is converted to pressure
- Shaft power produces kinetic energy and potential energy.

PRINCIPLE OF TURBOMACHIERY OPERATION

Turbine flow process

- Expansion process where pressure is converted to velocity
- Potential energy is converted kinetic energy and shaft power

EULER PUMP EQUATION

- Pump
- Pump head rise is pressure increase expressed in feet of liquid pumped
- $\Delta H = (P_d Pi)/\rho$
- **Euler equation relates head to changes** in velocities
- Conservation of angular momentum relates shaft torque to fluid velocities

EULER PUMP EQUATION

head which gives head in terms of fluid Power can be related to torque and velocities and efficiency.

- Let T = Torque

M = Mass Flow

 Ω = Rotational Speed

Cu = Tangential Velocity

∆H = Head

 $\eta = Efficiency$

EULER PUMP EQUATION

Angular Momentum: $T = M\{r_2C_{u2} - r_1C_{u1}\}$ $T\Omega = M\Omega\{r_2C_{u2} - r_1C_{u1}\}$ Shaft Power $T\Omega = Mg\Delta H/\eta$

Euler Head Thus

 $\Delta H = \eta \Delta (UCu)/g$

 $\Delta H_E = \Delta(UCu)/g = Ideal Head$

IMPELLER VELOCITY DIAGRAMS

Inlet Velocity Diagram

Outlet Velocity Diagram

²

THERMODYNAMIC PROCESS

Temperature

PUMP PARAMETERS

$$\Delta \mathbf{H} = \mathbf{h}_2 - \mathbf{h}_1$$

$$\Delta \mathbf{H} = (\mathbf{p}_2 - \mathbf{p}_1)/\rho$$

$$\eta = (h_2 - h_1)/(h_3 - h_1)$$
 pump efficiency

$$P = m \Delta H/\eta$$

$$\Psi = \Delta H/(U^2/g)$$

$$\Phi = C_m/U$$

$$N_S = NQ^{1/2}/(\Delta H)^{3/4}$$

head rise across pump, (ft-lb_f/lb_m)

for incompressible fluids

mass flow, (Ib_m/sec.)

Shaft power required, (HP)

Head Coefficient, dimensionless

Volumetric flow, (ft³/sec)

Flow area at impeller tip, (ft³)

Flow Coefficient, $C_m = Q/A$

Shaft speed, (rpm)

Stage specific speed, (rpm,gpm,ft)

PUMP TYPES

Stage Specific Speed Defines Pump Type

TABLE 10-2. Pump Types

-			Impeller type		
İ	Radial	Francis	Mixed flow	Near axial	Axial
Basic shape (half section)	Casing	ller Shaff			
Specific speed N _s U.S. nomenclature SI consistent units	500 -1000 0.2-0.3	10002000 0.4	2000-3000	3000-6000 1.0-2.0	Above 8000 Above 2.5
Efficiency %	50-80	06-09	70-92	76–88	75–82

PUMP EFFICIENCY

Efficiency Related to Stage Specific

Fig. 6-23 Variation of pump efficiency with specific speed.

TYPICAL PUMP PERFORMANCE MAP

Pump Developed Head H, ft Pump Efficiency np. % Pump Required Power, Bhp

Fig. 6-24 H-Q, efficiency, and required power characteristic curves of a typical centrifugal pump.

PUMP SUCTION PERFORMANCE

- Pump performance dependent on pump inlet pressure
- Cavitation develops if static pressure drops below vapor pressure.
- Net Positive Suction Head (ft.) defined as:

Total Head above Vapor Head, ft.

- P_s = Local Static Pressure, psf • NPSH = $P_{s/p} + C^{2}/2g - P_{v/p}$
- C = Local Velocity, fps
- P_v = Vapor Pressure of Fluid, psf
- ρ = Fluid Density, lb_m/ft^3

PUMP SUCTION PERFORMANCE

- Suction Specific Speed is Defined as
- $-N_{SS} = NQ^{1/2}/NPSH^{3/4}$
- N = Shaft Speed, RPM
- Q = Flow Rate, GPM
- NPSH, Net Positive Suction Head, Ft.
- Available pump inlet pressure can significantly affect pump design
- Operation at low inlet pressures required to reduce tank pressures and tank weight
- Low inlet pressure operation (high Nss) often results in addition of an inducer, and/or a separate boost pump.

PUMP SUCTION PERFORMANC $\overline{\mathbb{M}}$

- Effects of cavitation
- Performance
- Head Loss
- Efficiency Loss
- Life
- Can cause structural damage, pitting
- High dynamic loads resulting in fatigue failures.

Fig. 6-21 Typical cavitation characteristics of a pump operated at rated design speed.

- Provide power to drive pumps
- Energy derived from expansion of working fluid
- High pressure, high temperature fluid at inlet
- Low pressure, low temperature fluid at discharge
- Two primary turbine types
- Impulse
- Reaction
- Single and multiple stages
- Single stage has one nozzle and rotor
- Multi stage has multiple nozzles and rotors

- Impulse turbine
- All expansion occurs in the nozzle
- Rotor turns the flow, no fluid acceleration in rotor
- Reaction turbine
- Fluid acceleration in both nozzle and rotor
- Impulse and reaction turbine can have multiple stages
- Impulse
- Velocity compounded
- Pressure compounded

Fig. 6-55 Nozzles, rotor blades, and velocity diagrams of a typical single-stage impulse turbine.

TURBINE PARAMETERS

$$\triangle H = C_p dt$$

$$h_2 - h_1 = C_p(T_2 - T_1)$$

$$\triangle H = h_2 - h_1$$

 $\Delta \mathbf{H} = \mathbf{T_1} \, \mathbf{C_p[1 - (1/P_R)^{(\gamma-1)/\gamma}]}$

Pitchline Velocity, ft/sec

$$U = ND/229$$

$$C_0 = (2Jg \Delta H)^{1/2}$$

$$\eta = (h_3 - h_1)/(h_2 - h_1)$$
 Efficiency (isentropic)

$$ullet$$
 η is a function of the number of stages and U/C $_0$

Temperature

TURBINE EFFICIENCY

- Efficiency is a function of:
- Type
- Number of Stages
- Velocity Ration U/C₀

- In addition to types discussed thus far
- Axial Flow Path
- Radial Flow Path
- Axial Flow Path
- Flow parallel to shaft centerline
- Nozzle and rotor have same mean line
- Radial Flow Path
- Flow enters perpendicular to shaft centerline
- Flow exits parallel to shaft center line

Fig. 6-56 Effect of number of active arcs on partial-admission turbine efficiency.

Can be required for low flowrate turbine

ROCKET ENGINE CYCLES

- Engine cycle defines turbomachinery requirements
- Three basic engine cycles
- Gas Generator
- Staged Combustion
- Expander
- Cycle name relates to the turbine drive source

ROCKET ENGNE CYCLES

- Gas Generator Cycle
- Turbine is in parallel with the combustion Chamber
- chamber pressure and thrust chamber Pump discharge pressure set by thrust injector delta pressure
- Available turbine pressure high
- Turbine flow reduces engine specific impulse
- Turbine inlet temperature maximized to reduce turbine flow

Staged Combustion Cycle

- Turbine and combustion chamber in series
- chamber pressure, thrust chamber injector delta pressure, and turbine pressure ratio Pump discharge pressure set by thrust
- Most of cycle fuel flow and small portion of oxidizer combusted in preburner
- Fuel rich turbine drive
- Increasing turbine inlet temperature decreases pump discharge pressure
- Turbine flow does not affect engine specific impulse

Expander Cycle

- Turbine and combustion chamber in series
- chamber pressure, thrust chamber injector Fuel pump discharge pressure set by thrust delta pressure, and turbine pressure ratio
- Oxidizer pump discharge pressure set by thrust chamber pressure plus chamber injector delta pressure
- Chamber heat transfer limits turbine available energy
- Turbine flow does not affect engine specific impulse

ENGINE CYCLES

FIGURE 6-11. Schematic flow diagram of the RL10B-2 upper stage rocket engine. For data see Table 8-1. (Courtesy of Pratt & Whitney, a division of United Technologies.)

FIGURE 6-12. Flow diagram for the staged combustion cycle of the Space Shuttle Main Engine (SSME) using liquid oxygen and a liquid hydrocarbon fuel. (Courtesy of The Boeing Company, Rocketdyne Propulsion and Power.)

FASTRAC ENGINE

significantly impact turbopump design Propellant type and combination

Propellant	Liquid Fluorine	Hydrazine	Liquid Hydrogen	Methane	Monomethyl-hydrazine
Chemical formula	F_2	N ₂ H ₄	H ₂	. £ .	CH3NHNH2
Molecular mass	38.0	32.05	2.016	16.03	.46.072
Melting or freezing	53.54	274.69	14.0	90.5	220.7
point (K)					
Boiling point (K)	85.02	386,66	20.4	111.6	360.6
Heat of vaporization	166,26 ⁶	44.7	446	510	875
(kJ/kg)		(298.15 K)	•		}
Specific heat	0.368	0.736	1.75^{b}	0.835^{b}	. 869.0
(kcal/kg-K)	(85 K)	(293 K)	(20.4 K)	,	(293 K)
	0.357	0.758	l		0.735
	(69.3 K)	(338 K)	•		(393 K)
Specific gravity ^c	1.636	1.005	0.071	0.424	0.8788
	(66 K)	(293 K)	(20.4 K)	(111.5 K)	(293 K)
	1.440	0.952	0.076		0.857
	(93 K)	(350 K)	(14 K)		(311 K)
Viscosity	0.305	0.97	0.024	0.12	0.855
(centipoise)	(77.6 K)	(298 K)	(14.3 K)	(111.6 K)	(293 K)
	0.397	0.913	0.013	0.22	0.40
	(70 K)	(330 K)	(20.4 K)	(90.5 K)	(344 K)
Vapor pressure	0.0087	0.0014	0.2026	0.033	0.0073
(MPa)	(100 K)	(293 K)	(23 K)	(100 K)	(300 K)
	0.00012	0.016	0.87	0.101	0.638
	(66.5 K)	(340 K)	(30 K)	·(117 K)	(428 K)

significantly impact turbopump design Propellant type and combination

•																						
Water	H ₂ 0	18.02	273.15	373.15	2253 ^b		1.008	(273.15 K)			1.002	(373.15 K.)	1,00	(293.4 K)	0.284	(373.15 K)	1.000	(277 K)	0.00689	(312 K)	0.03447	(345 K)
Dimethyl- hydrazinc (UDMH)	(CH ₃) ₂ NNH ₂	60.10	216	. 336	542	(298 K)	0.672	(298 K)	0.71	(340 K)	0.856	(228 K)	0.784	(244 K)	4.4	(220 K)	0.48	(300 K)	0.0384	(289 K)	0.1093	(339 K)
Rocket Fuel RP-1	Hydrocarbon CH ₁₉	~ 175	225	460-540	246 ^b		0.45	. (298 K)			0.58	(422 K)	0.807	(289 K)	0.75	(289 K)	0.21	(366 K)	0.002	(34 K)	0.023	(422 K)
Liquid Oxygen	⁷ O	32.00	\$4.4	90.0	213		4.0	(65 K)			1.14	(90.4 K)	1.23	(77.6 K)	0.87	(53.7 K)	0.19	(90. 4 K)	0.0052	(88.7 K)		
Nitrogen Tetroxide	N ₂ O ₄	92.016	261.95	294.3	413^{b}		0.374	(290 K)	0.447	(360 K)	1.447	(293 K)	1.38	(322 K)	0.47	(293 K)	0.33	(315 K.)	0.01014	(293 K)	0.2013	(328 K)
Nitric Acid" (99%) pure)	HNO3	63.016	231.6	355.7	480		0.042	(311 K)	0.163	(373 K)	1.549	(273.15 K)	1.476	(313.15 K)	1.45	(273 K)			0.0027	(273.15 K)	0.605	(343 K)
·	-																					

Table 6-2 Operating parameters for turbopumps on the SSME at rated power level.

			HOH T	E
Turbopump	LPOTP 5.7	HPFTP	Red 6-18	Boost
Pump				
	ğ	£	ğ	Š
Inlat density, Ibrita	2.8	4.32	82,62	8 8
Total inlet oressure Dail	1000	×	374.8	<u>후</u>
Total discharme pressure, psia	408.8	6,024.8	4,129.8	6,962.2
Primo daveloned head, ft	625.9	168,920	7,591	5,834
Flow rate libra	890.3	148.5	1,067	191.2 191.2
Volumetric flow at intel goth	5.626	15,436	6,814	564.7
Shaft speed for	196.	33,974	27,039	27,039
Efficiency %	68.6	77.3	67.3	82.5
Straft power, bhp	1,476	58,970	21,882	<u> </u>
Turbinea:				
Fluid	š	Hotgas	Hot gas	
Inlet total pressure, psia	3.961	¥ ,983	78,	
Discharge total pressure, psia	408.8	3,376	3,286	
Isentropic velocity ratio	0.465	0.356	0.286	
Pressure ratio, T-T	;	1.461	1,498	
Inlet temperature, 'H	191.3	1835.9	1 85	
Discharge temperature, 'R	189.7	1698.3	1314.9	
Flow rate Tots	176.9	145.6	9.09	
Horspower	1,476	58,972	23,212	-
Shaft speed, rom	1964	33,974	27,039	
Efficiency, %	<u> </u>	79.6	78.1	

 $^{^{2}\}mbox{The turbine for the LPOTP is a hydraulic turbine, and the two high-pressure turbines are two-stage pressure compounded designs using <math display="inline">\rm O_{2}$ -LH₂ combustion products.

- Other engine driven requirements
- Envelope
- Space/Volume allocation
- Inlet and outlet locations
- Weight allocation
- Life
- Number of cycles
- Total time
- Sea Level and/or altitude start
- Propellant conditioning
- Cost

ROCKET ENGINE TURBOPUMPS

- **Bearings perform three primary functions**
- Radial control of the rotor
- Prevent rubs
- Maintain radial clearance to reduce parasitic flow losses
- Axial control of the rotor
- Maintain control of the rotor during transients
- Pressure and thermal loads
- React residual axial thrust loads during mainstage
- Control of rotordynamics
- Provide adequate radial stiffness
- Provide damping

- Harsh operating environment
- Bearings usually cooled by the pumped fluid
- Pumped fluid provides little of no lubrication
- High operating speeds
- Can be exposed to high transient radial and axial loads
- Two major bearing types used in turbopumps
- Rolling element
- Fluid film

- Rolling element bearings
- Most commonly use bearing
- High direct stiffness
- Minimum damping
- Minimum cross-coupling
- Wear and fatigue common failure mode, limit life
- Can limit maximum operating speed

- Fluid film bearings
- Hydrostatic bearing has potential benefits in rocket engine applications
- Long life
- Have desirable rotordynamic characteristics
- Stiffness and damping
- Do not limit shaft speed
- Transient rubs during start and shutdown have to be controlled
- Rub tolerant materials needed
- Hybrid design that uses rolling elements during transients

ROLLING ELEMENT BEARINGS

Type of Bearing	Advantages	Disadvantages	Primary condition for use
Conrad-type ball	Any combination of radial and thrust direction; large misalignment capability; moment-load capacity	Limited number of balls; two-piece cage necessary	Combined load; two-direction thrust loads
Angular- Contact ball	Thirty percent more capacity than similar-size Conrad; one-piece cage	Predominant thrust required; one-direction capacity; lower misalignment tolerances than Conrad	High speed, high-load single-direction thrust, can be used in duplex pairs for two-direction thrust
Split-ring	Thirty percent more thrust capacity than similar-size Conrad; one-piece cage; two-direction thrust capability; lower axial clearance through use of Gothic arch	Predominant thrust required; lower misalignment tolerance than Conrad	Two-direction thrust
Cylindrical	Much higher radial capacity than ball bearing; provides axial freedom of shaft; higher radial stiffness than ball bearings; one-piece cage	No axial load capacity; roller ends wear in nonlubricating coolants; lower misalignment tolerance than ball bearings; requires negative internal clearance	High radial capacity without axial restraint; higher radial stiffness

Split-Inner-Ring Ball Bearing

Angular-Contact Ball Bearing Fig. 6-66 Typical ball-bearing designs.

TYPICAL ROLLER BEARING DESIGNS

Typical Hydrostatic Bearing

- Difference from simple spring mass system
- Bearing stiffness and damping is speed dependent
 - X and Y motions are coupled
- Rotor whirl can occur at nonsynchronous frequencies
- Rotor whirl can be unstable
- Gyroscopic effects

Rotor Support Stiffness (Lag Scale)

Fig. 6-62 Effect of rotor supports on critical speeds.

Fig. 6-64 Stability of a simple rotor system.

Fig. 6-65 Graphical representation of rotor stability.

- Dynamic seals are those between rotating and stationary parts
- Required to minimize internal parasitic flows
- Separate propellants
- Fuel from oxidizer
- Seal failures can cause catastrophic turbopump failures
- Propellant mixing internal to turbopump
- Rubs in oxidizing environments
- Dynamic seals must not fail

- Dynamic Seal Types
- Labyrinth
- Close clearance seals
- Face contacting
- Axial contact between seal face and a mating ring on shaft
- Shaft contacting
- Radial contact between seal face and shaft
- Floating ring seal
- Utilize hydrostatic forces to maintain close clearance

- Dynamic Seal Types
- Hydrodynamic face seals
- Utilize hydrodynamic forces to maintain small clearances
- Relative leakage

Face contact

Minimum Minimum

- Shaft contact

Low

Floating ring

Hydrostatic/Hydrodynamic

Medium

Labyrinth

High

Fig. 6-76 Labyrinth-seal designs.

Fig. 6-70 Face contact seals.

Fig. 6-72 Floating-ring seal.

Fig. 6-74 Rayleigh-step hydrodynamic face seal.

Segmented 3-Ring Design with Overlapping Joints

Segmented Single Ring Design With Tongue and Groove Joints

Fig. 6-71 Segmented shaft-riding seals.

Fig. 6-78 Typical seal system for separating high-pressure propellants.

- Dynamic seals are critical and have challenging requirements
- Non-lubricating fluids
- Fluid compatibility issues
- Large thermal gradients
- Dynamic loads can be high
- Fluid induced
- Mechanically induced
- High Pressures

- produce large axial forces on rotating elements Delta pressures and axial momentum changes
- bearings are not exposed to excessive axial These axial forces must be managed so that
- Two approached can be used
- less than the axial load capacity of the bearing Reduce the residual axial force such that is
- Use a balance piston to react the residual axial load
- Most high power density turbomachines require a balance piston

- Several techniques are available to manage axial thrust loads
- Locate seals to minimize force
- manage radial pressure profiles between Use rotating and/or stationary ribs to rotating and stationary elements.
- Arrange rotating elements so that forces counteract each other

Fig. 6-45 Balance-piston concept.

- In high pressure and/or large machines axial forces can be in excess of 100,000
- Calculation of internal flows and resulting pressures and pressure profiles is a real challenge
- Requires a thorough understanding of flow path geometry
- deflections resulting from thermal and turbopump operating condition and ullet Flow path geometry is a function $\circ ar{}$ pressure loads

ANALYTICAL INTERFACES

- Axial thrust balance is a critical element of turbomachinery design
- to balance loads at the design and over the Thrust balance system is normally tailored steady state operating range
- Transient axial thrust loads are reacted by bearings or rub stops
- Difficult to meet long life requirements using rub stops

- Must provide the structural integrity to
- Contain internal pressures
- Transmit loads to mounting structure
- aerodynamically efficient flow passages Provide hydrodynamically and
- Pump and turbine casing do not generate head or extract usable energy
- head or loss of energy available to turbines Can contribute substantially to the loss of

Fig. 6-39 Plain-volute and vaned-diffuser-volute centrifugal pump casings.

Fig. 6-43 Typical layout of the diffuser for a pump.

Fig. 6-42 Typical double-tongue and doubledischarge volute configurations.

TURBOMACHINERY DESIGN PROCESS

- turbomachines are a compromise of Like all designs rocket engine many competing factors
- Requirements are set by system needs
- Priorities are often set by program needs and priorities
- Typical examples
- Design Life
- Cost
- Turbomachinery design iterative and requires the interaction on many disciplines.

Turbopump Requirements

Preliminary Design Environment

Turbine sizing Arâ∮Sut studies (1 −D Meanline) Nozzle area/shape, Inlet and exit duct diameters Turbine diameter, Blade height, Efficiency Diffusor diamotors, Blado anglos, Voluto diamotors, Inducer / Impeller diameters, Impeller tip width, Pump sizing / layout studies (1 –D Meanline) Rotational speed trades vs. technology limits Turbine Tip Speed / Centrifugal Stress vs. Temp **Bearing DN Impeller Tip Speed** Turbopump arrangement trades Preliminary Design **Efficiency** Single vs. multiple shaft pumps Inboard vs. outboard bearing Engine system / turbopump trades (# of stages, type of turbine) Seal Rubbing Speed Inducer Cavitation

TURBOMACHINERY DESIGN PROCESS

- Design process generally progresses through several phases
- Conceptual
- A machine concept that may meet requirements is established
- Preliminary
- Represents refinement of concept. May deviate substantially from conceptual design
- Detailed design
- Refined analyses and mechanical design

TURBOMACHINERY DESIGN PROCESS

- verification/validation process initiates As the design matures the
- Testing of components
- H₂0 testing of hydrodynamic element
- Air testing of turbine elements
- Rig testing of bearings
- Testing of the turbopump
- Testing on the engine

- Rocket engine turbopumps are highly complex machines
- Rocket engine turbopumps have several unique features
- Generally very high poweer density machines
- Experience high fluid dynamic loads
- Exposed to severe thermal shocks
- Rapid starts and stops
- Extremely high heat transfer coefficients
- requirements to minimize tank weight Stringent suction performance

- Rocket engine turbopumps have several unique features (continued)
- Working fluids significantly impact the design
- Oxidizers generally explosive
- Afford almost no lubrication for bearings and seals
- Some fuels can degrade material properties
- Cryogenics result in severe thermal gradients
- Life requirements are short relative to other turbomachines I
- Hundreds of cycles and a few hours of

- Rocket engine turbopumps have several unique features (continued)
- Working fluids significantly impact the design
- Oxidizers generally explosive
- Afford almost no lubrication for bearings and
- Some fuels can degrade material properties
- Cryogenics result in severe thermal gradients
- Life requirements are short relative to other turbomachines I
- Hundreds of cycles and a few hours of operation for reusable systems
- Meeting these is a challenge

- Design of rocket engine turbomachines is a systems engineering challenge
- Multiple engineering disciplines must be integrated
- Stress
- Structural dynámics Dynamics
 - Hydrodynamics
- Aerodynamics
- Thermal
- Materials and Processes

- Design of rocket engine turbomachines is a systems engineering challenge
- Multiple engineering disciplines must be integrated (continued)
- Test
- Mechanical Design
- Rotordynamics