Contents

1	I Functions		
	1.1	cubic	root – cubic root, residue, and so on
		1.1.1	$c_root_p - cubic\ root\ mod\ p$
		1.1.2	c_residue – cubic residue mod p
		1.1.3	c_symbol – cubic residue symbol for Eisenstein-integers
		1.1.4	decomposite p – decomposition to Eisenstein-integers
		115	cornacchia – solve $x^2 + dy^2 = n$

Chapter 1

Functions

- 1.1 cubic root cubic root, residue, and so on
- $1.1.1 \quad c \quad root \quad p-cubic \ root \ mod \ p$

```
\texttt{c} \quad \texttt{root} \quad \texttt{p(a:} \ \textit{integer}, \ \texttt{p:} \ \textit{integer}) \rightarrow \textit{list}
```

a 法 p の a の 3 乗根の値を返す。 (すなわち、 $x^3 = a \pmod{p}$).

p は素数。

この関数は a の 3 乗根のすべての値をリストで返す。

1.1.2 c residue – cubic residue mod p

```
c residue(a: integer, p: integer) \rightarrow integer
```

法 p で有理数 a が 3 乗になっているか調べる。

もし $p \mid a$ なら0を返す。また、法pでaが3乗になっているならば1を返す。そうでなければ (3乗になっていいないとき)-1を返す。

p は素数。

1.1.3 c symbol – cubic residue symbol for Eisenstein-integers

二つの Eisenstein 整数である (Jacobi) 立方剰余記号の値を返す。 $\left(\frac{a1+a2\omega}{b1+b2\omega}\right)_3$, ω

は1の3乗根の値である。

もし ${\tt b1+b2}\omega$ が $\mathbb{Z}[\omega]$ に含まれる素数であるならば、 ${\tt a1+a2}\omega$ は立方剰余かわかる。

 $b1 + b2\omega$ は $1 - \omega$ に分けられないと仮定する。.

1.1.4 decomposite p – decomposition to Eisenstein-integers

 $\textbf{decomposite} \quad \textbf{p(p:} \ integer) \rightarrow (integer, \ integer)$

 $\mathbb{Z}[\omega]$ に含まれる素数の一つ p の値を返す。

もし出力が (a, b) なら、 $\frac{p}{a+b\omega}$ は $\mathbb{Z}[\omega]$. に含まれる素数である。すなわち p が $\mathbb{Z}[\omega]$. に含まれる $a+b\omega$ and $p/(a+b\omega)$ の二つの素因数に分解することができる。

p は有理数かつ素数。 $p \equiv 1 \pmod{3}$ と仮定する。

1.1.5 cornacchia – solve $x^2 + dy^2 = p$

 $cornacchia(d: integer, p: integer) \rightarrow (integer, integer)$

$$x^2 + \mathrm{d}y^2 = \mathrm{p}$$
 の値を返す。

この関数は Cornacchia のアルゴリズムを使用。 [1] 参照。

 ${\bf p}$ は有理数かつ素数。 ${\bf d}$ は $0<{\bf d}<{\bf p}$ の関係を充たす。. この関数は $x^2+{\bf d}y^2={\bf p}$ の値として $({\bf x},\,{\bf y})$ を返す。

Examples

```
>>> cubic_root.c_root_p(1, 13)
[1, 3, 9]
>>> cubic_root.c_residue(2, 7)
-1
>>> cubic_root.c_symbol(3, 6, 5, 6)
1
>>> cubic_root.decomposite_p(19)
(2, 5)
>>> cubic_root.cornacchia(5, 29)
(3, 2)
```

Bibliography

[1] Henri Cohen. A Course in Computational Algebraic Number Theory. GTM138. Springer, 1st. edition, 1993.