概率论与数理统计

第十四讲 三维随机变量(亚)

4. 联合(概率)密度函数

二维随机变量可用分布函数刻画.

对于离散型随机变量, 有 $F(x,y) = \sum_{x_i \le x} \sum_{y_i \le y} p_{ij}$,

故利用**联合分布律**可更方便地刻画(X, Y).

● 问题 若 (X, Y)不是离散型随机变量, 如何?

仿照一维, 我们有:

章 定义设二维随机变量(*X*, *Y*)的分布函数F(x,y) 满足, 存在一个 $f(x,y) \ge \emptyset$,使 ∀ $(x,y) \in \mathbb{R}^2$,有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

则称 (X, Y)为连续型二维随机变量, f(u,v) 称为是 X, Y的联合(概率)密度函数.

联合密度函数的几何意义

显然,有

- 1) $f(x, y) \ge 0$
- 2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u, v) du dv = F(+\infty, +\infty) = 1$
- 3) 在 f(x,y) 的连续点处,有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$
- 4) 对于任何 R^2 上的区域G,有
- 程示 $P\{(X,Y) \in G\} = \iint_G f(u,v) du dv$
 - 关于4), 主要注意到, 当G为矩形 $(a,b] \times (c,d]$ 时成立即可.
- ●注 对于连续型随机变量, 孤立点或曲线的概率均为0.

例 设随机变量 (X, Y) 的分布函数为

$$F(x,y) = \begin{cases} (1 - e^{-\lambda x})(1 - e^{-\lambda y}), & x > 0, y > 0 \\ 0, & \text{ #x} \end{cases}$$

求(X, Y)的密度函数.

分析: 显然, F(x, y)是连续的, 且除了直线 x=0 和 y=0,

F(x, y)在 R^2 的每点都可导,故有

$$f(x,y) \stackrel{a.e.}{=} \frac{\partial^2}{\partial x \partial y} F(x,y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)}, & x > 0, y > 0 \\ 0, & \text{ } \end{cases}$$

利用密度函数, 容易计算一些随机事件的概率, 计算时要特别注意积分限. 例 设随机变量 (X, Y) 的密度函数为

$$f(x,y) = \begin{cases} cx^2y, & x^2 \le y \le 1\\ 0, & 其他 \end{cases}$$

- a) 确定常数c;
- b) 计算 *P*{*X*>*Y*}.

解:a) 由
$$1 = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy$$

 $= c \int_{0}^{1} y dy \int_{-\sqrt{y}}^{\sqrt{y}} x^{2} dx$
 $= c \int_{0}^{1} \frac{2}{3} y^{\frac{5}{2}} dy = \frac{4}{21} c$
即 $c = \frac{21}{4}$
b) $P\{X > Y\} = \iint_{x > y} f(x, y) dx dy$
 $= \frac{21}{4} \int_{0}^{1} y dy \int_{y}^{\sqrt{y}} x^{2} dx$
 $= \frac{3}{20}$

- - 例 设(X, Y)在[0,2]×[0,2] 中取值,且分布函数在此区域的值如下:

$$F(x,y) = \frac{1}{16}xy(x+y), \quad 0 \le x \le 2, \ 0 \le y \le 2$$

- a) 完整写出F(x, y)的定义;
- b) 求其密度函数;
- d) 对于 $0 \le x \le 2$, $0 \le y \le 2$, 分别求 $P\{X \le x\}$, $P\{Y \le y\}$.

解:a) 由分布函数性质, 得到

$$F(x,y) = \begin{cases} 0 & x < 0 \text{ if } y < 0 \\ \frac{1}{8}x(x+2) & 0 \le x \le 2, y > 2 \\ \frac{1}{8}y(y+2) & 0 \le y \le 2, x > 2 \\ \frac{1}{16}xy(x+y) & 0 \le x \le 2, 0 \le y \le 2 \\ 1 & x > 2 \text{ if } y > 2 \end{cases}$$

c)
$$P{X + Y \le 1} = \iint_{x+y\le 1} f(x, y) dxdy$$

= $\iint_{x+y\le 1} \frac{1}{8} (x+y) dxdy = \frac{1}{24}$

d) 对于
$$0 \le x \le 2$$
,

$$P\{X \le x\} = \lim_{y \to +\infty} P\{X \le x, Y \le y\}$$

= $F(x, +\infty) = F(x, 2) = \frac{1}{8}x(x+2)$

- 同理, 对于 $0 \le y \le 2$, $P\{Y \le y\} = \frac{1}{8}y(y+2)$.
- **注** 今后我们称 $P\{X \leq x\}$, $P\{Y \leq y\}$ 分别为X, Y 的边缘分布.

5. 多维随机变量

统计中常用到,整体考虑随机变量 $X_1, X_2, ..., X_n$,称 $(X_1, X_2, ..., X_n)$ 为n维随机变量.

同样可定义联合分布函数:

$$F(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\}$$

二维的随机变量的性质均可推广如此.

特别, 如果 $(X_1, X_2, ..., X_n)$ 连续型的, 其密度函数记为 $f(x_1, x_2, ..., x_n)$.