Operational Amphifiers

- most commonly used analogue building block

- been around since the 1930 s (the original ones were big, heavy + power hungry)

- formed the basis of analogue computers

- designed to have

(1) differential input

(11) very high input menstance (>1090) (11) very low output menstance (2500)

(IV) very high gain. (typ 105)

Classical feedback system

- to understand why the op-amp is designed to have the features outlined above, consider a classical feedback system

If the output voltage is vo, a fraction Hvo is fed back to the input stage where it is subracted from Ui. This leaves (Vi-HUO) at the input of the gain stage G, so Vo = G(Vi-HVo)

or
$$\frac{v_o}{v_i} = \frac{\text{System gain}}{\text{1+GH.}} = \frac{G}{1+GH.}$$

If G is very large, then GH >> 1

and
$$\frac{v_o}{v_i} \approx \frac{G}{GH} = \frac{1}{H}$$
.

This is a very useful result because it tells the designer that if G is made large enough, system gain is dependent only on the feedback fraction H. H is usually defined by well behaved components — R and C — although in this module only R will be used.

The op-amp

- the op-amp integrates two parts of this classical feedback system

- the input resistances must be high so that the v-input does not affect the network that defines H and so that the v+input does not affect the signal source.
- the output resistance must be low so that the system can drive a load without Vo being affected and so that the system can drive the network defining H without being affected.
- the reason for the differential imput and the high gain one obvious from the result 2.

- the op-amp is usually drawn as

- V_s^{\dagger} + V_s^{\dagger} are the power supplies. They are often not included on circuit diagrams but must be connected in the real circuit. Vo cannot go outside the range $V_s^{\dagger} > V_o > V_s^{\dagger}$
- vt is called the "non-inverting" input of the op-amp. It is identified by a "t" next to the input line, inside the op-amp triangle.
- v is called the "inverting input" of the op-amp and is identified by a "-".
- the output, vo, comes from point of the amphifier symbol.
- Av is the voltage gain (equivalent of 6) which relates the output and input by the op-imp equation

$$v_o = A_v(v^+ - v^-)$$

in other words, Av operates on the difference between $v^+ + v^-$ to produce v_o .

Op-Amp Circuits

There are many different circuits that are used with op-amps but there are two that are far more common than any others; the "non-inverting amphifier" and the "inverting amphifier".

Non-Inverting Amphhei

When designing vi to an op-amp circuit of the usual to assume initially that $A_{v} \Rightarrow \infty$. This means that act behaviour is completely controlled by the feedback. If $A_{v} \Rightarrow \infty$, for finite V_{o} , $v^{+} \approx v^{-}$ and this makes working out

evicuit behaviour quite straightforward.... $v = v_0 \frac{R_1}{R_1 + R_2}$ (by potential division)

v = vi (connected by wire)

: if $Av \Rightarrow \infty$, $V^{+} \approx V^{-}$ or $Vi \approx V_{0} \frac{R_{1}}{R_{1}+R_{2}}$ or $\frac{V_{0}}{V_{1}} = \frac{R_{1}+R_{2}}{R_{1}}$ (3)

- notice that the feedback is returned to the v-input.

In the inverting amphifier connection, v^+ is grounded and v_n is applied to R_n . Again if $A_v \Rightarrow \infty$, $v^+ \approx v^-$ and since v^+ is connected to zero. v^- must also be very close to zero. The v^- node in this case is sometimes called a "virtual earth" — the potential is always close to zero but the node is not actually connected to zero. To work out gain, start by summing currents at the v^- node

$$i_{i} + i_{f} = 0 \quad \text{or} \quad \frac{v_{i} - v}{R_{l}} + \frac{v_{o} - v}{R_{L}} = 0$$
but $v^{-} = 0$ so $v_{i} + v_{o} = 0$
or $\frac{v_{o}}{R_{l}} = -\frac{R_{L}}{R_{l}}$

$$\frac{v_{o}}{V_{i}} = -\frac{R_{L}}{R_{l}}$$

- notice the "-" sign. This means that the signal is inverted (se phase shifted by 180°) as well as amplified. Two inverting amphibes in series would give rise to an overall non-inverting amplifier - the first stage would invert the signal and the second would invert it back to its original phase.

Effects of finite gain

Very occasionally it may be necessary for a designer to estimate the effect of finite op-imp gain on the overall circuit gam.

Non-inverting ...

When considering the effects of finite via gam the v+x v- approximation cannot be used. Instead the analysis would proceed as follows:

$$v^- = v_0 \frac{R_1}{R_1 + R_2}$$
 (as before).
 $v^+ = v_i$ (as before).

but now the op-amp requation must be used to relate vt, v + vo ...

$$v_{o} = A_{v}(v^{+}-v^{-}) = A_{v}(v_{i}-v_{o}\frac{R_{i}}{R_{i}+R_{2}})$$
or
$$v_{o}\left[\frac{1}{A_{v}} + \frac{R_{i}}{R_{i}+R_{2}}\right] = v_{i}$$
or
$$\frac{v_{o}}{v_{i}} = \frac{1}{\frac{1}{A_{v}} + \frac{R_{i}}{R_{i}+R_{2}}}$$

$$(5)$$

note that if $A_{V} \ni \infty$, $\frac{1}{A_{V}}$ becomes regligible and 5 becomes the same as 3.

Inverting ...

Start as before by summing currents at the v-

$$i_i + i_f = 0$$
 or $\frac{V_i - V_j}{R_i} + \frac{V_o - V_j}{R_1} = 0$.

which can be rearranged to give

 $v = v_i \frac{R_2}{R_i + R_2} + v_o \frac{R_1}{R_1 + R_2}$.

and v+ = 0.

Using the op-amp equation

$$v_o = Av\left(0 - \left[v_i \frac{R_2}{R_i + R_2} + v_o \frac{R_i}{R_i + R_2}\right]\right)$$

or
$$v_0 \left[\frac{1}{A_v} + \frac{R_1}{R_1 + R_2} \right] = -v_1 \frac{R_2}{R_1 + R_2}$$

or
$$\frac{v_o}{v_i} = -\frac{R_2}{\frac{1}{A_{ir}} + \frac{R_i}{R_i + R_2}}$$

Again, if $A_{\nu} \Rightarrow \infty$, $\frac{v_{o}}{v_{i}}$ reduces to (4).

Circuit input resistance

The input to the non-inverting circuit ques straight into the op-amp so the circuit input resistance is the same as that of the op-amp — is very high.

The inverting circuit is slightly different. Taking the Av = 00 case, an ii of Vile, flows from the source. Input resistance is the ratio of applied signal to current drawn - ie, Vili = R, o This is typically likely to be a few kir which makes inverting amplifiers insuitable as amplifiers of signals derived from sources with a large Thewenin resistance.

Unity Gum Buffer.

- This is really a member of the noninverting amplifier family...

Here v= vo so the op-amp segu. becomes

$$v_o = A_v(v^+ - v^-) = A_v(v_i - v_o)$$

$$or \frac{v_o}{v_i} = \frac{1}{\frac{1}{A_v} + 1} = \frac{A_v}{1 + A_v}$$

If Av is large, Volvi is very close to unity.

The circuit is used to isolate high impedance sources from low impedance loads; it has a high power gain.

Summers

Assume Av > 00 50 U => virtual earth.

(this assumption will always be valid in a practically sensible certaint).

then

or
$$\frac{v_0}{R_F} + \frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} + \dots + \frac{v_n}{R_n} = 0$$
.

or
$$V_0 = -\left[v_1 \frac{R_F}{R_1} + v_2 \frac{R_F}{R_2} + \cdots + v_n \frac{R_F}{R_n}\right]$$

(many analogue audio "mixers" use this circuit shape)

Subtractors

There are a $v_2v_2^{ii}$ R_1 comple of ways of solving a v_1o_1 arcuit like this.

Since Av > av, v+=v-

so here we will work out V+ V and then equate them to get Vo in terms of V, + V2 .

summing currents at v-node ...

$$i_i + i_f = 0$$
 or $\frac{v_1 - v_1}{R_i} + \frac{v_0 - v_2}{R_2} = 0$.

and this can be rearranged to give $V^- = V_2 \frac{R_2}{R_1 + R_2} + V_0 \frac{R_1}{R_1 + R_2}$.

of V_i ... $V^+ = V_i \frac{R_2}{R_1 + R_2}$.

equating
$$V^{\dagger} + V^{\dagger}$$
...

 $V_{2} \frac{R_{2}}{R_{i} + R_{2}} + V_{0} \frac{R_{1}}{R_{i} + R_{2}} = V_{i} \frac{R_{2}}{R_{i} + R_{2}}$

or $V_{0} \frac{R_{i}}{R_{i} + R_{2}} = V_{1} \frac{R_{2}}{R_{i} + R_{2}} - V_{2} \frac{R_{2}}{R_{i} + R_{2}}$

or $V_{0} = R_{2} \left(V_{i} - V_{2} \right)$.

Note that the accuracy of the subtraction depends upon the matching of the two Ris and Ris.

General multiple input circuit

The subtractor circuit can be generalised to allow more than two inputs. Such a circuit could be analysed by finding V^t and V⁻ and requating them, or by using

the principle of superposition. Superposition has the advantage that at each stage the circuit is reduced to a relatively simple single input circuit.

Consider first the output due to v_1 , v_2 , v_3 + v_4 are grounded. The cct becomes:

note - since both $V_3 + V_4$ are zero, v^{\dagger} is zero and v^{\dagger} is a virtual earth. Since v^{\dagger} is a virtual earth, no current flows throng R_2 so it has no effect on the circuit.

By a very similar argument (change of variable names only)

$$v_0 \Big|_{\text{due to } v_1} = v_2 \left(-\frac{R_F}{R_2} \right)$$

Here, V, + V2 are grounded so R, is

effectively in parallel with R2. Ut the non-inventing amphier input is a potentially divided version of V3....

$$\frac{v_0}{v_1} = \frac{R_2 + R_1 || R_2}{R_1 || R_2} \left(\frac{ie non - inv}{amp. gain} \right)$$
and
$$\frac{v_1^+}{v_3} = \frac{R_4}{R_3 + R_4} \left(\frac{by pot. div.}{r} \right)$$

$$\frac{v_0}{v_3} = \frac{v_0}{v_1} \times \frac{v_1^+}{v_3} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_F + R_1 || R_2}{R_1 || R_2}$$
or $v_0 |_{\text{due to } v_3} = v_3 \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_F + R_1 || R_2}{R_1 + R_2}$

By a very similar argument... $V_{older} = V_{4} \frac{R_{3}}{R_{3} + R_{4}} \cdot \frac{R_{F} + R_{i} \parallel R_{2}}{R_{i} \parallel R_{2}}$

And namember that if any of the vs consist of d.c. + simusoid, those two parts can be treated separately.