	<pre>from math import * import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D</pre>
In [2]:	<pre>#w[0]*x[0] + w[1]*x[1] + def calculate_dot_product(v1,v2): dims = v1.shape[0] dot_product = 0 for i in range(dims):</pre>
In [3]:	<pre>dot_product = dot_product + v1[i]*v2[i] return dot_product #w[0]*x[0] + w[1]*x[1] + def vector_len(v1):</pre>
	<pre>dims = v1.shape[0] length = 0 for i in range(dims): length = length + pow(v1[i],2)</pre>
In [4]:	<pre>return length def vector_normalization(v1): v1_len = vector_len(v1) arr = []</pre>
	<pre>for item in v1: arr.append(item/v1_len) return np.array(arr)</pre>
In [5]:	<pre>def shift(v1, theta): dims = v1.shape[0] v1_sum = 0 for i in range(dims):</pre>
	<pre>v1_sum = v1_sum' + pow(v1[i],2) return (theta/sqrt(v1_sum)) * (v1/(sqrt(v1_sum)))</pre> Zadanie - dwa wymiary
In [6]:	theta = 1 w = np.array([4, 2]) x = np.array([1, 3])
	Wektor W $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$
	Wektor X
	Równanie prostej przechodzącej przez wektor W:
	$egin{aligned} y &= ax \ 2 &= 4a \ a &= 1/2 \end{aligned}$
	Równanie prostej wyznaczającej hiperpłaszczyznę: $y = (x*W1-T)/(-W2)$
In [7]:	y=(x*4-1)/(-2) $y=-2x+(1/2)$ # iloczyn skalarny
Out[7]:	<pre>dot_product = calculate_dot_product(w, x) dot_product</pre>
In [8]: Out[8]:	<pre># długość wektora W w_len = vector_len(w) w_len</pre> 20.0
<pre>In [9]: Out[9]:</pre>	<pre># znormalizowany wektor W w_normalized = vector_normalization(w) w_normalized array([0.2, 0.1])</pre>
	<pre># X zrzutowane na W x_proj_w = w_normalized * dot_product x_proj_w array([2., 1.])</pre>
	# różnica wektorów X i [X rzutowane na W] # potem z przesunięciem da punkt projekcji diff = x - x_proj_w diff
000[11]	<pre># przesunięcie theta względem wektora W v_shift = shift(w, theta)</pre>
000[12]	# projekcja
Out[13]: In [14]:	# refleksja
Out[14]:	
ın [15]:	<pre># Select length of axes and the space between tick labels xmin, xmax, ymin, ymax = -5, 5, -5, 5 ticks_frequency = 1 # Plot points fig, ax = plt.subplots(figsize=(10, 10))</pre>
	<pre>lx1 = np.linspace(-5, 5, 1000) #ly1 = -2 * lx1 + 1 ly1 = -2 * lx1 + (1/2) ax.scatter(lx1, ly1, color='#0b4f6c', label='Hiperplaszczyzna -> y = -2x + 1', s=4)</pre>
	<pre>lx2 = np.linspace(-5, 5, 1000) ly2 = 1/2 * lx2 ax.scatter(lx2, ly2, color='#aa7bc3', label='y = 1/2x', s=4) ax.scatter(x[0], x[1], color='green', label='X') ax.scatter(w[0], w[1], color='red', label='W')</pre>
	ax.scatter(w_normalized[0], w_normalized[1], color='blue', label='Znormalizowany wektor W') ax.scatter(x_proj_w[0], x_proj_w[1], color='purple', label='X rzutowany na W') ax.scatter(diff[0], diff[1], color='orange', label='X - X rzutowany na W') ax.scatter(v_shift[0], v_shift[1], color='#9dc3c2', label='Przesuniecie') ax.scatter(projection[0], projection[1], color='#e377c2', label='Projekcja') ax.scatter(reflection[0], reflection[1], color='#17becf', label='Refleksja')
	<pre># Draw lines connecting points to axes #for x, y, c in zip(xs, ys, colors): # ax.plot([x, x], [0, y], c=c, ls='', lw=1.5, alpha=0.5)</pre>
	# ax.plot([0, x], [y, y], c=c, ls='', lw=1.5, alpha=0.5) # Set identical scales for both axes ax.set(xlim=(xmin-1, xmax+1), ylim=(ymin-1, ymax+1), aspect='equal') # Set bottom and left spines as x and y axes of coordinate system
	<pre>ax.spines['bottom'].set_position('zero') ax.spines['left'].set_position('zero') # Remove top and right spines ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)</pre>
	# Create 'x' and 'y' labels placed at the end of the axes ax.set_xlabel('0ś X', size=14, labelpad=-40, x=0.95) ax.set_ylabel('0ś Y', size=14, labelpad=-21, y=1.02, rotation=0) # Create custom major ticks to determine position of tick labels
	<pre>x_ticks = np.arange(xmin, xmax+1, ticks_frequency) y_ticks = np.arange(ymin, ymax+1, ticks_frequency) ax.set_xticks(x_ticks[x_ticks != 0]) ax.set_yticks(y_ticks[y_ticks != 0]) # Create minor ticks placed at each integer to enable drawing of minor grid</pre>
	# lines: note that this has no effect in this example with ticks_frequency=1 ax.set_xticks(np.arange(xmin, xmax+1), minor=True) ax.set_yticks(np.arange(ymin, ymax+1), minor=True) # Draw major and minor grid lines ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
	# Draw arrows arrow_fmt = dict(markersize=4, color='black', clip_on=False) ax.plot((1), (0), marker='>', transform=ax.get_yaxis_transform(), **arrow_fmt) ax.plot((0), (1), marker='^', transform=ax.get_xaxis_transform(), **arrow_fmt)
	plt.legend() plt.show() OŚ Y
	• Hiperpłaszczyzna -> y = -2x + 1 • y = 1/2x • X • W
	Znormalizowany wektor W X zrzutowany na W X - X rzutowany na W Przesunięcie Projekcja
	Refleksja
	Oś X
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	Zadanie - trzy wymiary
In [16]:	theta = 1 w = np.array([1, 3, 2]) x = np.array([2, 3, 1]) Wektor W
	$\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$
	Wektor X $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
In [17]:	# iloczyn skalarny dot_product = calculate_dot_product(w,x)
Out[17]: In [18]:	<pre>dot_product 13 # dlugość wektora W w_len = vector_len(w)</pre>
Out[18]: In [19]:	<pre>w_len 14.0 # znormalizowany wektor W</pre>
Out[19]:	<pre>w_normalized = vector_normalization(w) w_normalized array([0.07142857, 0.21428571, 0.14285714])</pre>
Out[20]:	# X zrzutowane na W x_proj_w = w_normalized * dot_product x_proj_w array([0.92857143, 2.78571429, 1.85714286])
	# różnica wektorów X i [X rzutowane na W] # potem z przesunięciem da punkt projekcji diff = x - x_proj_w diff array([1.07142857, 0.21428571, -0.85714286])
In [22]:	<pre># przesunięcie theta względem wektora W v_shift = shift(w, theta) v_shift</pre>
040[22]	<pre># projekcja projection = diff + v_shift projection</pre>
	<pre># refleksja reflection = x - 2 * (x - projection) reflection</pre>
	<pre>array([0.28571429, -2.14285714, -2.42857143])</pre> xmin, xmax, ymin, ymax, zmin, zmax = -3, 5, -3, 5, -3, 5 ticks_frequency = 1
	<pre>fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(projection='3d') ax.scatter(x[0], x[1], x[2], color='green', label='X') ax.scatter(w[0], w[1], w[2], color='red', label='W') ax.scatter(w_normalized[0], w_normalized[1], w_normalized[2], color='blue', label='Znormalizowany wektor W')</pre>
	ax.scatter(x_proj_w[0], x_proj_w[2], color='purple', label='X zrzutowany na W') ax.scatter(diff[0], diff[1], diff[2], color='orange', label='X - X rzutowany na W') ax.scatter(v_shift[0], v_shift[1], v_shift[2], color='#d62728', label='Przesuniecie') ax.scatter(projection[0], projection[1], projection[2], color='#e377c2', label='Projekcja') ax.scatter(reflection[0], reflection[1], reflection[2], color='#17becf', label='Refleksja')
	# Set identical scales for both axes #ax.set(xlim=(xmin-1, xmax+1), ylim=(ymin-1, ymax+1), zlim=(zmin-1, zmax+1), aspect='equal') ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax), zlim=(zmin, zmax), aspect='equal') # Set bottom and left spines as x and y axes of coordinate system ax.spines['bottom'].set_position('zero')
	<pre>ax.spines['left'].set_position('zero') # Remove top and right spines ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False)</pre>
	# Create custom major ticks to determine position of tick labels x_ticks = np.arange(xmin, xmax+1, ticks_frequency) y_ticks = np.arange(ymin, ymax+1, ticks_frequency) z_ticks = np.arange(zmin, zmax+1, ticks_frequency) ax.set_xticks(x_ticks[x_ticks != 0]) ax.set_yticks(y_ticks[y_ticks != 0])
	<pre>ax.set_zticks(z_ticks[z_ticks != 0]) # Create minor ticks placed at each integer to enable drawing of minor grid # lines: note that this has no effect in this example with ticks_frequency=1 ax.set_xticks(np.arange(xmin, xmax+1), minor=True) ax.set_yticks(np.arange(ymin, ymax+1), minor=True)</pre>
	<pre>ax.set_zticks(np.arange(zmin, zmax+1), minor=True) # Draw major and minor grid lines ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)</pre>
	<pre>ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_title('Wykres 3D') ax.legend(loc='upper left', bbox_to_anchor=(1.2, 1)) plt.show()</pre>
	Wykres 3D X W Znormalizowany wektor W
	 Znormalizowany wektor W X zrzutowany na W X - X rzutowany na W Przesunięcie Projekcja
	A Refleksja
	$\begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$
	5 3
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$