Judging Models

Situation

- Aligned Models with RLHF and Supervised instruction finetuned are preferred
- Benchmarks like MMLU cannot tell the difference between aligned models and base models
 - Discrepancy between user perception of usefulness and criteria of benchmarks
- Hypothesis: Arises due to benchmarks only measure core capability like (multi choice, retrieval questions) and not open-ended questions

Benchmarks

- Human Rating
 - MT-bench
 - Chatbot-Arena
- MT-bench
 - Series of 80 open-ended ,multi turn questions
 - writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science)
- Chatbot-Arena
 - Anonymous battles between Chatbots
 - Users rate responses of 2 bots
 - Captures wide range of interests of users

Table 1: Sample multi-turn questions in MT-bench.

Now, explain them again like I'm five.

Category

Knowledge

2nd Turn

Writing	1st Turn	Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions.
	2nd Turn	Rewrite your previous response. Start every sentence with the letter A.
Math	1st Turn	Given that $f(x) = 4x^3 - 9x - 14$, find the value of $f(2)$.
	2nd Turn	Find x such that $f(x) = 0$.
Knowledge	1st Turn	Provide insights into the correlation between economic indicators such as GDP,

Sample Questions

inflation, and unemployment rates. Explain how fiscal and monetary policies ...

LLM as a Judge

- Pairwise comparison
 - Two answers: Declare winner or tie
- Single answer grading
 - Assign score to answer
- Reference-guided grading
 - Reference solution provided, e.g. math
- Advantages
 - Fast, without human interaction, provide explanations

Position bias:

Bias towards first/second answer

- Raname: renamed the models in the prompt

Judge	Prompt	Consistency	Biased toward first	Biased toward second	Error
	default	23.8%	75.0%	0.0%	1.2%
Claude-v1	rename	56.2%	11.2%	28.7%	3.8%
	default	46.2%	50.0%	1.2%	2.5%
GPT-3.5	rename	51.2%	38.8%	6.2%	3.8%
	default	65.0%	30.0%	5.0%	0.0%
GPT-4	rename	66.2%	28.7%	5.0%	0.0%

Fix: Swapping positions, only call win if preferred in both orders/assign positions randomly.

Few-Shot-Judge: Enhance consistency (not imply Accuracy, increased API cost)

- Verbosity bias: favors longer, verbose responses, even if they are not as clear
- LLM judges are able to correctly judge identical answers

Table 3: Failure rate under "repetitive list" attack for different LLM judges on 23 answers.

Judge	Claude-v1	GPT-3.5	GPT-4	
Failure rate	91.3%	91.3%	8.7%	

- Self-enhancement bias: LLM judges may favor the answers generated by themselves
 - GPT-4 favors itself with a 10% higher
 - Claude-v1 favors itself with a 25% higher win rate

Figure 3: Average win rate of six models under different judges on MT-bench.

Fix: Fine-tuned judge model: Train on arena data to act as judge -> Promising results

- Limited capability in grading math and reasoning questions
 - Lacks ability to grading math problems it could solve itself

Fix: Chain-of-thought and reference-guided judge

- Often same mistake as is given answer
- Let judge solve the questions itself and then display is as reference in the judge prompt (reduces failure rate from 70% to 15%)

- Check Agreement between LLM judges and humans
 - Among humans too for MT-bench

- MT-Bench
 - Generated answers of all 80 questions for all models
 - 58 expert-level humans (graduate students) to rate 20 answers
 - Roughly 3K votes
- Chatbot arena
 - Randomly 3K selected votes

- High agreement between GPT-4 and human majority
 - Higher when the win rates of the models differ
- 75% of GPT-4 judgement considered reasonable
 - 34% of humans willing to change their choice

Figure 2: Agreement and win rate difference. Each point corresponds to a model pair and counts only the non-tie votes between the two models. The x-axis value is the win rate difference between the two models. The y-axis value is the GPT-4 and human agreement.

- Pair, evaluate two answers at once, Single, evaluate one answer independently

Table 5: Agreement between two types of judges on MT-bench. "G4-Pair" and "G4-Single" denote GPT-4 with pairwise comparison and single-answer grading respectively. The single-answer grading can be converted into pairwise comparison results for calculating the agreement. We report two setups: "S1" includes non-tie, tie, and inconsistent (due to position bias) votes and counts inconsistent as tie; "S2" only includes non-tie votes. The agreement between two random judges under each setup is denoted as "R=". The top value in each cell is the agreement, and the bottom gray value is #votes.

Setup	S1 (R = 33%)		S2 (R = 50%)		Setup	S1 (R = 33%)		S2 (R = 50%)	
Judge	G4-Single	Human	G4-Single	Human	Judge	G4-Single	Human	G4-Single	Human
G4-Pair	70% 1138	66% 1343	97% 662	85% 859	G4-Pair	70% 1161	66% 1325	95% 727	85% 864
G4-Single	2:	60% 1280	2	85% 739	G4-Single	_	59% 1285	2	84% 776
Human	-	63% 721	-	81% 479	Human	-	67% 707	-	82% 474

Table 6: Agreement between two types of judges on Chatbot Arena. "G4-S" denotes GPT-4 with single-answer grading. "G4", "G3.5" and "C" denote GPT-4, GPT-3.5, and Claude with pairwise comparison, respectively. "H" denotes human. The remaining of table follows the same format as Table 5.

Setup Judge	S	(Rando	m = 339	%)	S2 (Random = 50%)				
	G4-S	G3.5	C	Н	G4-S	G3.5	C	Н	
G4	72% 2968	66% 3061	66% 3062	64% 3066	95% 1967	94% 1788	95% 1712	87% 1944	
G4-S	-	60% 2964	62% 2964	60% 2968	-	89% 1593	91% 1538	85% 1761	
G3.5	-	-	68% 3057	54% 3061	-	-	96% 1497	83% 1567	
C	-	-	-	53% 3062	-	-	-	84% 1475	

Figure 4: Average win rate of nine models under different judges on Chatbot Arena.

Human Preference Benchmark and Standardized Benchmark

- Recommended to use both
- No single evaluation method is enough to determine the quality of a model
- Fine-tuning with high-quality dialog improves MMLU
- A small high-quality conversation can teach a model GPT-4s preferred style

