EE655: Computer Vision & Deep Learning

Lecture 10

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

1x1 Convolution

Helps with changing channel-size as we need

Number of Operations: (28X28X32) X (5X5X192) = 120.422 Million Ops

Number of Operations for 1 X 1 Conv Step: $(28X28X16) \times (1X1X192) = 2.4 \text{ Million Ops}$ Number of Operations for 5 X 5 Conv Step: $(28X28X32) \times (5X5X16) = 10 \text{ Million Ops}$ Total Number of Operations = 12.4 Million Ops

GoogleNet Architecture

32 filters, $1 \times 1 \times 192$

Semantic Segmentation

To label *each pixel* of an image with a corresponding *class* of what is being represented

- 1: Person 2: Purse 3: Plants/Grass 4: Sidewalk
- 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

Input Semantic Labels

predict

Person Bicycle Background

Applications: Autonomous Vehicles

Applications: Medical Diagnosis

- 0: Background/Unknown
- 1: Person
- 2: Purse
- 3: Plants/Grass
- 4: Sidewalk
- 5: Building/Structures

Downside: Preserving image dimensions throughout entire network will be computationally expensive.

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Solution: Make network deep and work at a lower spatial resolution for many of the layers.

Upsampling

It's followed by a convolutional layer

Transpose convolutions are by far the most popular approach as they allow for us to develop a learned upsampling

Fully Convolutional Networks for Semantic Segmentation, CVPR'15

Stride 3, Crop 1

2	3
-2	1

2	1	4
-1	-2	-3
-2	1	5

Input

Conv Mask

Stride 2, Crop 0

Steps

- Multiply the transposed convolution filter with every number in the input matrix one-by-one. The multiplication will yield a matrix of same size as the filter. Now we need to arrange these matrices based on the pre-defined stride
- Keep building the output while taking steps as per the pre-defined strides. If there is an overlap at any location, add the values.
- Neglect the boundary values of the output based on the crop parameter.

Input

2 3 -2 1

Filter

2	1	4
-1	-2	-3
-2	1	4

Stride=3,3 Crop=1

4	2	8
-2	-4	-6
-4	2	8

-4	-2	-8
2	4	6
4	-2	-8

6	3	12
-3	-6	-9
-6	3	12

2	1	4
-1	-2	-3
-2	1	4

Matrices

Output

-4	-6	-3	-6
2	8	-6	3
-2	-8	2	1
4	6	-1	-2

Input

2	3
2	1

Filter

2	1	4
-1	-2	-3
-2	1	4

Stride=2,2 Pad=0 Please solve it

6	3	12
-3	-6	-9
-6	3	12
		-

-4	-2	-8
2	4	6
4	-2	-8

Why it's called transposed convolution?

• Let's see an example

A convolution

122	148
126	134

We can achieve the same by matrix multiplication as well.

Let's transpose the filter now

Since we need to transpose the filter matrix to obtain our result, it's called transposed convolution

Fully Convolutional Networks for Semantic Segmentation, CVPR'15

Skip Connections to obtain fine-grained segmentations (reconstruct accurate shapes)

Fully Convolutional Networks for Semantic Segmentation, CVPR'15

Prediction for a selected pixel

Target for the corresponding pixel

Pixel-wise loss is calculated as the log loss, summed over all possible classes

$$-\sum_{classes} y_{true} \log (y_{pred})$$

This scoring is repeated over all **pixels** and averaged

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI'15

For evaluation

- Round off the output probabilities.
- For every class, compute the jaccard similarity score.
- Compute Average jaccard similarity score for a given image.

Intersection over Union Evaluation Metric (Jaccard Similarity)

$$J(A,B) = rac{|A \cap B|}{|A \cup B|}$$

1	1	0	1
1	1	1	1
0	1	1	1
0	0	0	0

0	0	0	0
0	1	1	0
О	1	0	0
0	0	1	0

0	0	0	0
0	1	1	0
O	1	0	0
O	0	0	0
1	1	0	1
1	1	1	1
О	1	1	1
0	0	1	0

3/11=0.27