15. Dada una matriz
$$M \in \mathbb{R}^{m \times n}$$
 llamamos $traza$ de M a $tr(M) = \sum_{i=1}^{\min(m,n)} m_{ii}$. Sean $A, B, C \in \mathbb{R}^{n \times n}$:

- a) Probar que tr(A+B) = tr(A) + tr(B).
- b) Dar un contraejemplo para la afirmación tr(AB) = tr(A)tr(B).
- c) Si vale que $\forall D \in \mathbb{R}^{n \times n}$: tr(BD) = tr(CD), entonces B = C.
- d) $tr(B) = tr(ABA^{-1})$ (Sug.: demostrar primero que tr(CD) = tr(DC)).

$$M_{1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in \mathbb{R}^{2 \times 2} \quad M_{2} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in \mathbb{R}^{2 \times 3} \quad M_{3} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$

$$= \begin{bmatrix} 5 & 6 \end{bmatrix}$$

$$+r(M_4) = 1+4=5$$
 $+r(M_2) = 1+5=6$ $+r(M_3) = 1+4=5$

a)

h)

$$+r(A+B) = \sum_{i=1}^{n} (a_{ii} + b_{ii}) = \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = +r(A) + +r(B)$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

$$tr(AB) = 2 \neq 4 = z \cdot z = tr(A) tr(B)$$

c)	
$QVQ: VD \in IR^{n \times n}, tr(BD) = tr(CD) \Rightarrow B = C$	
Supongamos que vale $fr(BD) = fr(CD)$ $\forall D \in \mathbb{R}^{n \times n}$ pero $B \neq C$.	
Existe al menos un elemento en la posición i, j donde difieren	೧ .
bij ≠ cij para algún i, j entre 1 y n.	
La igualdad de las trazas tr(BD) = tr(CD) vale YDEIRn×n.	
En particular vale para una matriz de permutación de	
columnas (porque multiplica a derecha). La idea es	
intercambiar las columnas i, j entre si, moviendo los	
elementos bij y cij a la diagonal.	
Sea DelR ^{n×n} matriz de permutación de columnas.	
Sean ex el?' los rectores canónicos YK=1n.	
Sin pérdida de generalidad, supongamos isj.	
coli colj	_
Definimos D así: D =	
e ₁ ··· e _i ··· e _n	
Al multiplicar BD (ejemplo en 3x3): Swaf	
b ₁₂	
$ \cdot e_2 e_4 e_3 = $	
B B B B B B B B B B B B B B B B B B B	

Luego resulta: bij = (BD)ii y Cij = (CD)ii. Veamos que pasa con las trazas. Por hipótesis tr(BD) = tr(CD) YD = IRnxn Supusimos que ByC difieren en un elemento que la movimos a la diagonal con la Matriz de permutación D. Entonces éste elemento va a aparecer en la sumatoria de la traza (si o si está en la diagonal porque las matrices son cuadradas). tr(BD) = tr(CD) $\iff \sum_{k=1}^{n} (BD)_{kk} = \sum_{k=1}^{n} (CD)_{kk}$ $(=) \sum_{k=1}^{N} (BD)_{kk} + (BD)_{ii} = \sum_{k=1}^{N} (CD)_{kk} + (CD)_{ii}$ <=> (BD)ii = (CD)iii <=> bij = cij Si tr(BD) = tr(CD) YDEIR non puede pasar que bij ≠ cij como habíamos supresto (absurdo). : YDEIR nxn, tr(BD) = tr(CD) => B=C

d)

QVQ:
$$tr(CD) = tr(DC)$$

Primero un ejemplo con matrices de 3x3 para encontrar el potrón de cómo hay que reordenar los términos.

 $tr(CD) = (CD)_{14} + (CD)_{22} + (CD)_{13}$
 $= Ctridit + C12d21 + C13d31 + C21d42 + C22d22 + C23d32 + C31d43 + C32d23 + C32d33 + C32d33 + C32d23 + C32d33 + C32d33 + C32d33 + C32d33 + C32d33 + C32d33 + C32d3 + C32d3$

Q٧	Q:	tr (B) = -	-r(ABP	\ ⁻¹)									
+-(AB	A-1) =	= +r(A-1	AB)	= -	-۲(IB)) =	+r	(B)				
	Ya	probo	20m	que	z ti	- (c	- (Q.	= tr	(DC),_					
	Tor	namo	s c	=AP	5, [>= {	√ −1.								