Bi 188, 2011 meeting and lecture 1

Note that a slide has been added to answer questions On our homework policy; course material distribution; expectations concerning literature citations in your paper. Any questions on any aspect of our policies will be answered at the beginning of meeting 2.

Reading in support of lecture 1 is given on slide 5.

BI 188 Human Genetics and Genomics

Meeting time: Fridays 3:00-4:55 in 024 Kerckhoff

General Notes:

Text: Recombinant DNA: Genes and Genomes – A Short Course, 3rd edition 2007 **Authors:** J. Watson, A. Caudy, R. Myers, and J. Witkowski

ISBN: 0-7167-2866-4

Course Website: http://woldlab.caltech.edu/bi188/

T.A.s Katherine Fisher-Aylor kfisher@caltech.edu_ Georgi Marinov Georgi@caltech.edu_

Specific hours determined per doodle-poll [Monday and Tuesday are eligible

- 1. The book and lectures are not highly redundant. The book is intended as background material for which you will be responsible. It is suggested that after the first week you complete the reading before coming to the lecture. Chapters 1-7 are for filling in and brushing up on relevant molecular biology.
- 2. Most lectures have additional reading from the literature. Generally this will include one or two review or summary pieces (which are best to read first) and one primary paper. With the exception of preprints, most papers will be from journals and you will download them using Web of Science etc.
- 3. There will be a midterm, a genome analysis project/paper, and a final exam.

TAs Exams, optional home works, required paper

Katherine Fisher-Aylor x4923 kfisher@caltech.edu Georgi Marinov x4923 georgi@caltech.edu

Office hours – 128 Kerckhoff finalized via doodle poll

Provide your email to the TAs if you are enrolled or auditing

30% midterm

30% final

40% paper/project

18% available as extra credit problems - 6 sets - 3% each Generally due Friday, beginning of class (3:00pm) electronically. First set due Fri 3:00 pm April 8.

Policy on notes, homeworks, use of class materials

It is a Caltech Honor Code violation for students to post BI 188 course materials online or to transmit them outside the Caltech community. Anyone at Caltech who receives BI188 course materials from you is similarly prohibited from posting them or delivering them to anyone outside the community of Caltech students. You are responsible for making this clear to anyone to whom you give materials.

The usual Caltech homework rules apply: Discussions among students are approved, as are discussions with Tas, but you must ultimately do the problem and generate the answers on your own. You must also write it up independently.

For your paper, *concepts* as well as facts and direct quotes must be referenced. I expect you to reference correctly and assiduously the primary published literature from academic journals, reviews, and books you have used. Website summaries like Wikipedia should be used sparingly or not at all (except to locate relevant primary references and the facts in them). Data portals such as the genome browser at UCSC <u>ARE</u> proper sources and they should be referenced as such. The OMIM site is a proper starting point and can be referenced, but you are expected to go beyond it into the published literature.

Reading to support lecture 1

http://www.nature.com/nrg/journal/vaop/ncurrent/full/nrg2958.html

A substantial review on structural variation in the human genome and how we learn about it.

2 part pdf – a light-reading summation of status of human genome by various authors

Sequencing big eukaryotic genomes: How it was first done, basics of structure learned

Human was project impetus - completed 2003 (draft 2001)

2 projects - One clone based hierarchical shotgun by public consortium\

Multiple individuals contribute to aggregate assembly; one individual per BAC region
 Subsequent finishing to <10⁻⁴ error rate multiple individuals

 Some areas remain unfinished still (centromeres, telomeres, and 357 gaps) Build HG19.

Second was the first mammalian whole-genome shotgun (WGS) done by Celera Inc. Largely historic interest

- no finishing
- one individual's genome (Craig Venter)

Mouse genome and other primary model genomes

Differences in method and in starting material compared with human Heterozygosity issues for assembly; reduced for inbred models

Review gene types, functions and genome composition board plus stats below

#BioType	Genes	Transcripts
IG_C_gene	16	18
IG_C_pseudogene	7	7
IG_D_gene	30	30
IG_J_gene	83	83
IG_J_pseudogene	3	3
IG_V_gene	180	181
IG_V_pseudogene	151	151
Mt_rRNA	2	2
Mt_trna	22	22
Mt_tRNA_pseudogene	580	580
TR_C_gene	3	3
TR_J_gene	13	13
TR_V_gene	48	48
TR_V_pseudogene	19	19
lincRNA	1351	1592
miRNA	1756	1756
miRNA_pseudogene	15	15
	1107	1187
misc_RNA	1187	1187
misc_RNA misc_RNA_pseudogene	3	3
		3
misc_RNA_pseudogene	3	3 114
misc_RNA_pseudogene polymorphic_pseudogene	3 18	3 114 16068
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript	3 18 9431	3 114 16068 118763
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding	3 18 9431 20540	3 114 16068 118763 12595
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding pseudogene	3 18 9431 20540 10870	3 114 16068 118763 12595 531
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding pseudogene rRNA	3 18 9431 20540 10870 531	3 114 16068 118763 12595 531 179
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding pseudogene rRNA rRNA_pseudogene	3 18 9431 20540 10870 531 179	3 114 16068 118763 12595 531 179 787
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding pseudogene rRNA rRNA_pseudogene scRNA_pseudogene	3 18 9431 20540 10870 531 179 787	3 114 16068 118763 12595 531 179 787
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding pseudogene rRNA rRNA_pseudogene scRNA_pseudogene snRNA	3 18 9431 20540 10870 531 179 787	3 114 16068 118763 12595 531 179 787 1944
misc_RNA_pseudogene polymorphic_pseudogene processed_transcript protein_coding pseudogene rRNA rRNA_pseudogene scRNA_pseudogene snRNA snRNA_pseudogene	3 18 9431 20540 10870 531 179 787 1944	1187 3 114 16068 118763 12595 531 179 787 1944 73 1521

Note also pseudogenes;

Conceptual significance

Mechanisms of origin

Implications for various assays of gene expression

Table 3 Chromosome arm length and contiguity in draft and reference sequence

Chromosome	Euch. length* (bp)	N50t drafts (bp)	Build 35 N50 refl (bp)	N-average ref§ (b	
		(op)			
1p	121,147,476	81,895	16,783,271	33,566,574	
1q	104,135,370	45,843	56,331,646	36,675,159	
2p	91,748,045	68,853	68,373,980	53,478,029	
2g	148,270,183	50,481	84,213,156	54,482,973	
3p	90,587,544	39,322	66,080,833	54,853,737	
3q	106,018,194	35,734	100,530,261	96,935,077	
4p	49,501,045	36,494	9,040,907	13,797,821	
4g	138,910,172	31,876	92,070,735	66,386,026	
5p	46,441,398	59,470	46,378,398	46,378,398	
5q	131,416,467	81,416	41,199,371	33,564,217	
6p	58,938,125	251,648	48,945,890	42,200,138	
6q	109,037,573	150,424	61,695,806	46,408,435	
7p	57,864,988	399,235	47,497,097	40,050,874	
7g	97,763,150	298,612	64,426,257	46,810,648	
8p	43,958,052	40, 151	9,464,880	9,872,060	
8g	99,316,773	37,528	57,155,273	47,945,192	
9p	46,035,928	87,767	39,435,726	34,619,306	
9g	74,393,339	43,983	40,394,264	29,078,785	
10p	39,244,941	48,121	20,794,160	15,791,760	
10g	93,788,686	47,401	30,112,613	31,833,318	
11p	51,450,781	34,383	49,571,094	48,044,101	
11g	80,001,602	42,527	17,911,127	26,070,918	
12p	34,747,961	197,985	27,615,668	23,435,010	
12g	96,306,849	47,272	32,815,934	29,605,325	
13p	acro arm	n/a	n/a	n/a	
13g	96,274,979	70,497	67,740,325	54,830,719	
14p	acro arm	n/a	n/a	n/a	
14g	88,298,584	1,370,997	88,290,585	88,290,585	
15p	acro arm	n/a	n/a	n/a	
15g	82,078,915	30,303	53,619,965	38,049,097	
16p	35,143,302	160,390	25,336,229	20,462,803	
16q	43,883,952	86,933	42,003,582	40,305,188	
17p	22,187,133	114,901	21,163,833	20,341,190	
17g	56,487,608	82,866	11,472,733	15,591,618	
18p	15,400,898	59,951	15,400,898	15,400,898	
18g	59,352,257	50,087	33,548,238	26,073,241	
19p	26,923,622	82,369	15,825,424	12,506,733	
19g	33,888,028	167,408	31,383,029	31,383,029	
20p	26,267,569	1,436,102	26,259,569	26,259,569	
20g	34,402,734	1,301,134	26,144,333	21,428,992	
21p¶	490,223	n/a	490,223	490,223	
21g	33,684,323	28,515,322	28,617,429	24,743,931	
22p	acro arm	n/a	n/a	n/a	
22g	35,224,709	23,048,103	23,276,302	16,327,958	
Xp	58,465,033	173,718	33.063.353	22,383,515	
Xq	93,359,231	277,548	27,718,692	25,766,623	
Υp	11,237,315	5,778,849	6,265,435	4,331,076	
Yq	15,464,376	1,026,317	10,002,238	8,061,778	
All arms	2,879,539,433	82,663	38,509,590	40,970,092	
*Chromosome arm lengths refer to estimated length of euchromatic portions of each arm. †N50 denotes the contig length x (for a chromosome arm or entire genome) such that half of a					

Useful metric: N50, which is the length in nucleotides at which 50% of the assembled genome is in blocks of the N50 size or longer

[†]N50 denotes the contig length x (for a chromosome arm or entire genome) such that half of all nucleotides reside in contigs of length at least x.

^{‡&#}x27;N50 draft' reports this number for the draft sequence15.

[§]The value for the near-complete reference sequence reported here.

^{||} Average contig length in the near-complete sequence for a randomly chosen nucleotide (or, equivalently, average length contigs weighted by length).

[¶] Chromosome 21p is an exception to the generalization that the acrocentric arms only contain heterochromatin—there is a 281-kb contig within chr 21p11.2.

panned Gaps		Unspanned Gaps				
chr	All Scaffolds	Placed Scaffold s	Unplaced Scaffolds	All Scaffolds	Placed Scaffolds	Unplaced Scaffolds
1	19	19	0	22	22	0
2	3	3	0	15	15	0
3	0	0	0	7	7	0
4	1	1	0	12	12	0
5	1	1	0	6	6	0
6	6	6	0	8	8	0
7	9	9	0	8	8	0
8	1	1	0	9	9	0
9	15	15	0	29	29	0
10	8	8	0	12	12	0
11	4	4	0	11	11	0
12	1	1	0	8	8	0
13	0	0	0	10	10	0
14	0	0	0	5	5	0
15	2	2	0	10	10	0
16	1	1	0	10	10	0
17	2	2	0	5	5	0
18	2	2	0	7	7	0
19	1	1	0	8	8	0
20	2	2	0	9	9	0
21	1	1	0	14	14	0
22	0	0	0	9	9	0
X	5	5	0	21	21	0
Υ	2	2	0	16	16	0
Un	0	na	0	0	na	0
Genome	86	86	0	271	271	0

Background information:

Distribution of GAPs in Current build of the human Genome

Human genome variation - *Much* more than SNPs *Structural Variation* is the general terminology

Deletion

Ref.

Novel sequence insertion

Ref.

Mobile-element insertion

Ref. Mobile

element

Tandem duplication

Interspersed duplication

interspersed duplication

Inversion

Translocation

Copy number variation is a common and important consequence = CNV = differences in number for a gene or other sequence

How is CNV detected experimentally? Multiple ways by now – differing issues of sensitivity, noise, resolution

Evan Eichler and colleagues; data via microarray CGH [Review array hybridization principles – log 2 ratio probe a/b]

Compare CGH with SNP (single nucleotide polymorphism) array data

igure 6. Distribution of CNV clones. High-frequency CNV clones are shown as dots to the right of each chromosome; red, green, and lack dots represent presence in three, four or five, and six or more individuals, respectively. Dots to the left of the chromosomes present locations of CNVs that overlap microRNAs (red dots) and select cancer genes (black dots).

Overall map shows range of sizes; telomeric representataion

Near telomeres > specialized repeats (blue) then Segmental dup events; then single copy Sequence instability together with position effects (damping expression near sub-telomeric repeats).

Candidate biological significance groups consider tumor suppressor genes and oncogenes Table 4. Select Examples of CNVs Associated with Cancer-Related Genes

Chromosome Band	Garins and Losses	Gene(s)b	Product*	Clone(s) in Locus ^d
1p36.33	49	SKI	V-ski sarcoma viral oncogene homolog	RP11-83K22, RP11-181G12
1p36.32	12	TP73	Tumor protein p73	RP11-631K6
1p36.31	16	TNFRSF25	Tumor necrosis factor receptor superfamily,	RP11-58A11
1p32.3	32	RAB3B	RAB3B, member RAS oncogene family	RP11-469M21, RP11-91A18
1p13.3	6	WAV3	Vav 3 oncogene	RP11-480L11
2q14.2	18	RALB	V-ral simian leukemia viral oncogene homolog B	RP11-818M2
2q37.3	6	BOK	BCL2-related ovarian killer	RP11-343P10
3p21.31	20	NAT6, TUSC2, TUSC4	Putative tumor suppressor FUS2, tumor suppressor candidates 2 & 4	RP11-787014, RP13-487A10
4q31.1	3	RAB33B	RAB33B, member RAS oncogene family	RP11-124P22
6q21	3	C6orf210	Candidate tumor suppressor protein	RP11-601012
6q25.1	20	ESR1	Estrogen receptor 1	RP11-655H19
7p22.3	19	MAFK	V-maf musculoaponeurotic fibrosarcoma oncogene	RP11-16P10
7p22.3	6	MAD1L1	MAD1-like 1	RP11-32509
8q24.21	4	MYC	V-myc myelocytomatosis viral oncogene homolog	CTD-2034C18
9q34.2	22	WAV2	Vav 2 oncogene	RP11-352K12, RP11-651E2
10p11.23	11	MAP3K8	Mitogen-activated protein kinase kinase kinase	RP11-350D11
11p15.4	15	CDKN1C	Cyclin-dependent kinase inhibitor 10	RP11-494F4
11p13	3	WT1, WIT-1	Wilms tumor 1 isoform A/B/C/D, Wilms tumor as- sociated protein	RP11-710L2
11p11.2	3	C1QTNF4	C1q and tumor necrosis factor related protein 4	RP11-425G10
11q13.1	3	MEN1	Menin isoform 1	RP11-48509
11q13.3	6	CCND1, ORAOV1	Cyclin D1, oral cancer overexpressed 1	RP11-124K14
12q13.12	4	MLL2	Myeloid/lymphoid or mixed-lineage leukemia 2	RP11-66M13
13q31.1	4	C13orf10	Cutaneous T-cell lymphoma tumor antigen se70-2	RP11-86D5
14q32.32	3	TNFAIP2	Tumor necrosis factor, alpha-induced protein 2	RP11-455L5
16p13.3	19	AXIN1	Axin 1 isoform a/b	RP11-598I20
16q22.3	3	BCAR1	Breast cancer anti-estrogen resistance 1	RP11-109K6
17p13.2	6	TAX1BP3	Tax1 (human T-cell leukemia virus type I)	RP11-753P16
17g11.2	6	NF1	Neurofibromin	RP11-518B17
17g21.32	3	PHB	Prohibitin	RP11-472H5
17q25.3	17	MAFG	V-maf musculoaponeurotic fibrosarcoma oncogene	RP11-634L10, RP11-712H22
17g25.3	6	CIQTNF1	C1q and tumor necrosis factor related protein 1	RP11-167N2
18p11.32	15	YES1	Viral oncogene yes-1 homolog 1	RP11-806L2
18g21.1	8	DCC	Deleted in colorectal carcinoma	RP11-346H17
19p13.3	6	SH3GL1	SH3-domain GRB2-like 1	RP11-406I1
19p13.3	4	TNFSF9, TNFSF7, TNFSF14	Tumor necrosis factor (tigand) superfamily, members	RP11-526C20
19p13.3	4	WAVI	Vav 1 oncogene	CTD-2200016
19p13.11	16	RAB3A	RAB3A, member RAS oncogene family	RP11-512B16
19q13.33	15	PTOV1	Prostate tumor overexpressed gene 1	RP11-59769
19q13.33	7	BAX	BCL2-associated X protein isoform sigma/gamma/ epsilon/delta/beta/alpha	CTD-2017J20
19q13.33	8	RRAS	Related RAS viral (r-ras) oncogene homolog	RP11-264MB, RP11-80834
20q13.13	3	BCAS4	Breast carcinoma amplified sequence 4 isoform a/b	RP11-124P7
22911.21	3	HIC2	Hypermethylated in cancer 2	CTD-2245I11

Sensory genes – early list – concept is the point

Table 3. Sensory-Related Genes Associated with CNVs

Chromosome Band	Gains and Losses ^a	Gene(s) ^b	Product ^c	Diseas e ^c	Clone(s) in Locus ^d
1p36.31	25	TA SIR1	Sweet taste receptor T1r isoform a,b,c,d	44.1	RP11-58A11, RP11-719E21
3p21.31	18	GNAT1	Guarrine nucleotide binding protein, alpha	Night blindness, congenital stationary	RP11-787014
7q32.1	5	IMPDH1	Inosine monophosphate dehydrogenase 1 isoform a.b	Retinitis pigmen- tosa-10	RP11-636E12
7q32.1	3	OPW15W	Opsin 1 (cone pigments), short-wave- sensitive	Colorblindness, tritan	RP11-638M14
7q35	54	ORZA12, ORZA14, ORZA2, ORZA25, ORZA5, ORZA1, ORZA42, ORZA7	Olfactory receptor, family 2, subfamily A		RP11-703N5, RP11-466J6
8p23.3	5	OR4F21, OR4F29	Olfactory receptor, family 4, subfamily F	***	RP11-418021
11q11	8	0R4C6, 0R4P4, 0R4S2, 0R5D13	Olfactory receptor, family 4, subfamily C,P,S,D	***	RP11-626N6
11q12.3	3	ROM1	Retinal outer segment membrane protein 1	Retinitis pigmen- tosa, digenic	RP11-484M5
12p13.2	3	TA S2R14, TA S2R44, TA S2R48, TA S2R49, TA S2R50	Taste receptor, type 2, member 14,44,48,49,50		RP11-202N1
12q13.2	3	OR6C2, OR6C4, OR6C68, OR6C70	Olfactory receptor, family 6, subfamily C	***	RP11-222A15
14q11.2	61	OR4M1, OR4C3, OR4K1, OR4K2, OR4K5, OR4M2, OR4K13, OR4K14, OR4K15	Olfactory receptor, family 4, subfamily M,Q,K,N		RP11-597A11, RP11-490A23, RP11-449I24, CTD-2024K23
15q11.2	26	OR4M2, OR4M4	Olfactory receptor, family 4, subfamily M, N	***	RP11-281J20
16p13.3	7	OR1F1	Olfactory receptor, family 1, subfamily F	***	RP11-680M24
17q25.3	18	ACTG1, FSCN2	Actin, gamma 1 propeptide; fascin 2	Deafness, autosomal dominant 20/26; retinitis pigmen- tosa-30	RP11-730A9, RP13-550B21
10p13.2	62	OR2Z1	Olfactory receptor, family 2, subfamily Z	***	RP11-282G19, RP11-367L15
22q11.1	15	OR11H1	Olfactory receptor, family 11, subfamily H	***	RP11-561P7
22q12.3	5	MYHØ	Myosin, heavy polypeptide 9, nonmuscle	Deafness, autosomal dominant 17	RP11-108P21

¹ Total number of copy-number gains and losses observed for a ONV locus.

Consider what a pedigree looks like with significant CNV

Figure 8. Inheritance of CNVs at five olfactory receptor loci in 14 members of a CEPH pedigree. The five loci (and clones), in the order shown, are OR2A1 (RP11-466J6), OR2Z1 (RP11-367L15 and RP11-282G19), OR4K1 (RP11-449I24 and CTD-2024K23), OR4M1 (RP11-597A11), and OR4Q3 (RP11-490A23). — = Copy-number loss; + = copy-number gain; 0 = no copy-number change; UI = uninformative. Male and female family members are shown as squares and circles, respectively.

SV classes	Reed pair	Read depth	Split read	Assembly
Deletion				Contig/ scaffold Assemble
Novel sequence insertion		Not applicable		Contig/ scaffold———————————————————————————————————
Mobile- element insertion	Annotated transposon	Not applicable	Annotated transposon	Contig/ Align to scaffold Repbase
Inversion	RP 1 RP 2	Not applicable	Inversion	Contig/ scaffold Assemble
Interspersed duplication	Control of the second s			Assemble Contig/
Tandem duplication				Assemble Contig/ scaffold

Consider how and what you can learn about each event class by direct modern sequencing

Board intro to Short Read "Next Gen" DNA sequencing

Technology often rate-limiting

1998 - Audacious goal for DNA sequencing2 million bases/ year/ entire U.S. Project

2009 - 2-4 billion bases/ 3 days/ machine

2011 - 200 billion - 1 terabases / 6 days / machine

As expected, the specifics of different array types Affect resolution and sensitivity of an array CGH expt.

