- (i) What kinds of factors are contained in *u*? Are these likely to be correlated with level of education?
- (ii) Will a simple regression analysis uncover the ceteris paribus effect of education on fertility? Explain.
- **2.2** In the simple linear regression model $y = \beta_0 + \beta_1 x + u$, suppose that $E(u) \neq 0$. Letting $\alpha_0 = E(u)$, show that the model can always be rewritten with the same slope, but a new intercept and error, where the new error has a zero expected value.
- **2.3** The following table contains the *ACT* scores and the *GPA* (grade point average) for 8 college students. Grade point average is based on a four-point scale and has been rounded to one digit after the decimal.

Student	GPA	ACT
1	2.8	21
2	3.4	24
3	3.0	26
4	3.5	27
5	3.6	29
6	3.0	25
7	2.7	25
8	3.7	30

(i) Estimate the relationship between *GPA* and *ACT* using OLS; that is, obtain the intercept and slope estimates in the equation

$$G\hat{PA} = \hat{\beta}_0 + \hat{\beta}_1 ACT.$$

Comment on the direction of the relationship. Does the intercept have a useful interpretation here? Explain. How much higher is the *GPA* predicted to be, if the *ACT* score is increased by 5 points?

- (ii) Compute the fitted values and residuals for each observation and verify that the residuals (approximately) sum to zero.
- (iii) What is the predicted value of GPA when ACT = 20?
- (iv) How much of the variation in *GPA* for these 8 students is explained by *ACT*? Explain.
- **2.4** The data set BWGHT.RAW contains data on births to women in the United States. Two variables of interest are the dependent variable, infant birth weight in ounces (*bwght*), and an explanatory variable, average number of cigarettes the mother smoked

per day during pregnancy (cigs). The following simple regression was estimated using data on n = 1388 births:

$$bw\hat{g}ht = 119.77 - 0.514 \ cigs$$

- (i) What is the predicted birth weight when cigs = 0? What about when cigs = 20 (one pack per day)? Comment on the difference.
- (ii) Does this simple regression necessarily capture a causal relationship between the child's birth weight and the mother's smoking habits? Explain.
- **2.5** In the linear consumption function

$$c\hat{o}ns = \hat{\beta}_0 + \hat{\beta}_1 inc,$$

the (estimated) marginal propensity to consume (MPC) out of income is simply the slope, $\hat{\beta}_1$, while the average propensity to consume (APC) is $constinc = \hat{\beta}_0/inc + \hat{\beta}_1$. Using observations for 100 families on annual income and consumption (both measured in dollars), the following equation is obtained:

$$c\hat{o}ns = -124.84 + 0.853 inc$$

 $n = 100, R^2 = 0.692$

- (i) Interpret the intercept in this equation and comment on its sign and magnitude.
- (ii) What is predicted consumption when family income is \$30,000?
- (iii) With *inc* on the x-axis, draw a graph of the estimated MPC and APC.
- **2.6** Using data from 1988 for houses sold in Andover, MA, from Kiel and McClain (1995), the following equation relates housing price (*price*) to the distance from a recently built garbage incinerator (*dist*):

$$\log(p\hat{r}ice) = 9.40 + 0.312 \log(dist)$$

$$n = 135, R^2 = 0.162$$

- (i) Interpret the coefficient on log(*dist*). Is the sign of this estimate what you expect it to be?
- (ii) Do you think simple regression provides an unbiased estimator of the ceteris paribus elasticity of *price* with respect to *dist*? (Think about the city's decision on where to put the incinerator.)
- (iii) What other factors about a house affect its price? Might these be correlated with distance from the incinerator?
- **2.7** Consider the savings function

$$sav = \beta_0 + \beta_1 inc + u, u = \sqrt{inc} \cdot e,$$

where e is a random variable with E(e) = 0 and $Var(e) = \sigma_e^2$. Assume that e is independent of *inc*.

(i) Show that E(u|inc) = 0, so that the key zero conditional mean assumption (Assumption SLR.3) is satisfied. [*Hint*: If *e* is independent of *inc*, then E(e|inc) = E(e).]

- (ii) Show that $Var(u|inc) = \sigma_e^2 inc$, so that the homoskedasticity Assumption SLR.5 is violated. In particular, the variance of *sav* increases with *inc*. [*Hint*: Var(e|inc) = Var(e), if *e* and *inc* are independent.]
- (iii) Provide a discussion that supports the assumption that the variance of savings increases with family income.
- **2.8** Consider the standard simple regression model $y = \beta_0 + \beta_1 x + u$ under Assumptions SLR.1 through SLR.4. Thus, the usual OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased for their respective population parameters. Let $\tilde{\beta}_1$ be the estimator of β_1 obtained by assuming the intercept is zero (see Section 2.6).
 - (i) Find $E(\tilde{\beta}_1)$ in terms of the x_i , β_0 , and β_1 . Verify that $\tilde{\beta}_1$ is unbiased for β_1 when the population intercept (β_0) is zero. Are there other cases where $\tilde{\beta}_1$ is unbiased?
 - (ii) Find the variance of $\tilde{\beta}_1$. (*Hint:* The variance does not depend on β_0 .)
 - (iii) Show that $Var(\tilde{\beta}_1) \le Var(\hat{\beta}_1)$. [Hint: For any sample of data, $\sum_{i=1}^{n} x_i^2 \ge \sum_{i=1}^{n} (x_i \bar{x})^2$, with strict inequality unless $\bar{x} = 0$.]
 - (iv) Comment on the tradeoff between bias and variance when choosing between $\hat{\beta}_1$ and $\tilde{\beta}_1$.
- **2.9** (i) Let $\hat{\beta}_0$ and $\hat{\beta}_1$ be the intercept and slope from the regression of y_i on x_i , using n observations. Let c_1 and c_2 , with $c_2 \neq 0$, be constants. Let $\tilde{\beta}_0$ and $\tilde{\beta}_1$ be the intercept and slope from the regression c_1y_i on c_2x_i . Show that $\tilde{\beta}_1 = (c_1/c_2)\hat{\beta}_1$ and $\tilde{\beta}_0 = c_1\hat{\beta}_0$, thereby verifying the claims on units of measurement in Section 2.4. [*Hint:* To obtain $\tilde{\beta}_1$, plug the scaled versions of x and y into (2.19). Then, use (2.17) for $\tilde{\beta}_0$, being sure to plug in the scaled x and y and the correct slope.]
 - (ii) Now let $\tilde{\beta}_0$ and $\tilde{\beta}_1$ be from the regression $(c_1 + y_i)$ on $(c_2 + x_i)$ (with no restriction on c_1 or c_2). Show that $\tilde{\beta}_1 = \hat{\beta}_1$ and $\tilde{\beta}_0 = \hat{\beta}_0 + c_1 c_2\hat{\beta}_1$.

COMPUTER EXERCISES

- **2.10** The data in 401K.RAW are a subset of data analyzed by Papke (1995) to study the relationship between participation in a 401(k) pension plan and the generosity of the plan. The variable *prate* is the percentage of eligible workers with an active account; this is the variable we would like to explain. The measure of generosity is the plan match rate, *mrate*. This variable gives the average amount the firm contributes to each worker's plan for each \$1 contribution by the worker. For example, if mrate = 0.50, then a \$1 contribution by the worker is matched by a 50¢ contribution by the firm.
 - Find the average participation rate and the average match rate in the sample of plans.
 - (ii) Now estimate the simple regression equation

$$pr\hat{a}te = \hat{\beta}_0 + \hat{\beta}_1 mrate,$$

and report the results along with the sample size and R-squared.

- (iii) Interpret the intercept in your equation. Interpret the coefficient on mrate.
- (iv) Find the predicted *prate* when *mrate* = 3.5. Is this a reasonable prediction? Explain what is happening here.

- (v) How much of the variation in *prate* is explained by *mrate*? Is this a lot in your opinion?
- **2.11** The data set in CEOSAL2.RAW contains information on chief executive officers for U.S. corporations. The variable *salary* is annual compensation, in thousands of dollars, and *ceoten* is prior number of years as company CEO.
 - (i) Find the average salary and the average tenure in the sample.
 - (ii) How many CEOs are in their first year as CEO (that is, ceoten = 0)? What is the longest tenure as a CEO?
 - (iii) Estimate the simple regression model

$$\log(salary) = \beta_0 + \beta_1 ceoten + u,$$

and report your results in the usual form. What is the (approximate) predicted percentage increase in salary given one more year as a CEO?

2.12 Use the data in SLEEP75.RAW from Biddle and Hamermesh (1990) to study whether there is a tradeoff between the time spent sleeping per week and the time spent in paid work. We could use either variable as the dependent variable. For concreteness, estimate the model

$$sleep = \beta_0 + \beta_1 totwrk + u,$$

where *sleep* is minutes spent sleeping at night per week and *totwrk* is total minutes worked during the week.

- (i) Report your results in equation form along with the number of observations and R^2 . What does the intercept in this equation mean?
- (ii) If *totwrk* increases by 2 hours, by how much is *sleep* estimated to fall? Do you find this to be a large effect?
- **2.13** Use the data in WAGE2.RAW to estimate a simple regression explaining monthly salary (wage) in terms of IQ score (IQ).
 - (i) Find the average salary and average IQ in the sample. What is the standard deviation of IQ? (IQ scores are standardized so that the average in the population is 100 with a standard deviation equal to 15.)
 - (ii) Estimate a simple regression model where a one-point increase in *IQ* changes *wage* by a constant dollar amount. Use this model to find the predicted increase in wage for an increase in *IQ* of 15 points. Does *IQ* explain most of the variation in *wage*?
 - (iii) Now estimate a model where each one-point increase in *IQ* has the same percentage effect on *wage*. If *IQ* increases by 15 points, what is the approximate percentage increase in predicted *wage*?
- **2.14** For the population of firms in the chemical industry, let *rd* denote annual expenditures on research and development, and let *sales* denote annual sales (both are in millions of dollars).
 - (i) Write down a model (not an estimated equation) that implies a constant elasticity between *rd* and *sales*. Which parameter is the elasticity?
 - (ii) Now estimate the model using the data in RDCHEM.RAW. Write out the estimated equation in the usual form. What is the estimated elasticity of *rd* with respect to *sales*? Explain in words what this elasticity means.