Data_visualization

SEED SET PER SPECIES WITH DIFFERENT TREATMENTS

 $\label{light-blue:Brassicaceae, orange: Convolvulaceae, green: Solanaceae, grey: xenogamy, autogamy and controls$

Brassicaceae Focal species

CHOLOROPLAST RBCL PHYLOGENY

POLLEN MIX RATIOS PER FAMILY -3 NEXT PAGES- (N=3)

Each histogram shows the pollen ratio in percentage of the focal and non-focal species. The barplots are organized per family.

TOTAL POLLEN ON STIGMA -NEXT 3 PAGES-

POLLEN PER ANTHER (N=20, I. aquatica N=10)

OVULES (N=15)

POLLEN OVULE RATIO. TOTAL POLLEN PER FLOWER DIVIDED BY NUMBER OF OVULES

reorder(species, pollen_ovule_ratio, colour = cut)

STIGMA AREA. BRASSICACEAE+1 AND SOLANACEAE+1

STIGMA AREA. ALL SPECIES, COLOUR PER SPECIES AND FAMILY

I like this type of density plot and I wanted to show the differences of stigma area of our 3 familys. The x axis shows the area in micrometers (um 2).

