PROFORMA FOR THE APPROVAL PROJECT PROPOSAL

PNR No.:	Roll No:		
1. Name of the Student			
2. Title of the Project			
3. Name of the Guide			
4. Teaching experience of the Guide			
5. Is this your first Submission?	Yes No		
Signature of the Student Date:	Signature of the Guide Date:		
Signature of the Coordinator			
Date:			

HOMEWORK WRITING MACHINE WITH CNC CARVING

A Project Report

Submitted in partial fulfillment of the Requirements for the award of the Degree of

BACHELOR OF SCIENCE (INFORMATION TECHNOLOGY) $_{\mbox{\footnotesize By}}$

Harsh Patel (Seat Number:)

Under the esteemed guidance of

Name of professor

Mr. Tulshiram Kamble

Asst. Professor

DEPARTMENT OF INFORMATION TECHNOLOGY

DNYAN GANGA EDUCATION TRUST'S DEGREE COLLEGE OF ARTS, COMMERCE AND SCIENCE

Affiliated to University of Mumbai THANE, 400615 MAHARASHTRA 2019-2020

DNYAN GANGA EDUCATION TRUST'S DEGREE COLLEGE OF ARTS, COMMERCE AND SCIENCE

Affiliated to University of Mumbai THANE-MAHARASHTRA-400615

DEPARTMENT OF INFORMATION TECHNOLOGY

CERTIFICATE

This is to certify that the project entitled "HOMEWORK WRITING MACHINE WITH CNC CARVING", bonafide work of Harsh Patel bearing Seat No: submitted in partial fulfillment of the requirements for the award of Degree of BACHELOR OF SCIENCE in INFORMATION TECHNOLOGY from University of Mumbai.

Internal Guide		Coordinator
	External Examiner	
Date:		College Seal

ABSTRACT

This project shows how to design and building low cost Arduino plotter machine based on the open source hardware and software. The Arduino plotter machine has been dependent on the principle of Computer Numerical Control with limited area depends on the motion X, Y and Z axes. The objectives of this project are to design the Plotter and to develop open source software for control the machine. Basically, the system of this plotter machine is modelling by solid work software to work with three axes stepper motors (as X, Y and Z axes), these three stepper motors are controlled by shield for movement (X, Y and Z axes). This machine's movement on the X axis is 12 inch and Y axis is 12 inch approx. Length of travel means the linear movement of stepper motors that control for X, Y and Z axes from point to another point. The left and right movement controlled by X axis stepper motor, front-back movement controlled by Y axis stepper motor and the pen is up-down that is controlled by Z axis stepper motor. Industries of the country need automation in different equipment which consumes a plenty of time. One of these systems is CNC carving machine which can provide more output in short span of time. All of the setups in industries regarding carving machines were manually manufactured by road side workshops and there was not a single scientific design regarding this machine.

ACKNOWLEDGEMENT

The goal is best achieved by treading the path of excellence with discipline and deep insight. We would have never succeeded in completing our task without the cooperation, encouragement and help provided to us by various teachers and guides. With deep sense of gratitude, we express our sincere thanks to our esteemed and worthy guide, Mr Tulshiram Kamble, for his valuable guidance in carrying out this project under his/her effective supervision, encouragement, enlightenment and cooperation. We feel indebted to express our deep sense of gratitude towards Dr. Vandana Sharma (Principal), Mrs. Vanita Sabharwal (HOD Information Technology) and Mr. Tulshiram Kamble (Project Coordinator) who have been a constant source of inspiration for us throughout this project. We would also like to thank all faculty members and non-teaching staff for their kind support without vacillation. The acknowledgement would be incomplete if we do not mention the emotional support and blessings provided by our parents and friends. We had a pleasant enjoyable and fruitful company with them. Last but not the least we would like to thank all the people who directly or indirectly helped us in this project.

DECLARATION

I hereby declare that the project entitled, "HOMEWORK WRITING MACHINE WITH CNC CARVING "done at department of information & technology, **Dnyan Ganga Education Trust's Degree College of Arts, Commerce & Science,** University of Mumbai in partial fulfilment of the requirement for the award of degree of **BACHELOR OF SCIENCE (INFORMATION TECHNOLOGY)** is a record of original dissertation work done by me, under the guidance and supervision of Mr. Tulshiram Kamble, and it has not formed the basis for the award of any Degree/Diploma/Associate ship/ Fellowship or other similar title to any candidate of university

Place:	Signature of the Candidate
Date:	

TABLE OF CONTENT

Chapter 1: Introduction	
1.1 Backgrounds	1
1.2 Objectives	3
1.3 Purpose, Scope, and Applicability	4
1.3.1 Purpose	4
1.3.2 Scope	4
1.3.3 Applicability	4
1.3.4 Achievement	4
1.4 Organisation of Report	5
Chapter 2: Survey of Technologies	6
2.1 Existing system	6
2.2 Purpose System	6
2.3 Requirements Specification	6
2.3.1 Requirement Gathering	7
2.3.2 Quick Design	7
2.3.3 Building Prototype	7
2.3.4 Customer Evaluation	8
2.3.5 Refining Prototype	8
2.3.6 Final Product	8
2.4 Hardware Requirements	8
2.5 Software Requirements	9
2.6 justification of Platform	9
2.6.1 Arduino unoR3	9
2.6.2 L293d Motor shield	14
2.6.3 Stepper Motor	16
2.6.4 Servo Motor	17
2.6.5 DC12 volt Motor	18
2.6.6 DC power supply	19
2.6.7 Pen	19
2.6.8 Timing Belt	20
2.6.9 Aluminum profile and Accessories	21

2.7.0.0 Nut and Bolt	22
2.7.0.1 Ball Bearing.	23
2.7.0.2 Arduino IDE	24
2.7.0.3 Inkscape	25
2.7.0.4 MySQL Workbench	26
2.7.0.5 Processing 3.2.1	26
Chapter 3: System design	28
3.1 Module Division	28
3.2 Data Dictionary	30
3.3 Entity Relationship Diagram	31
3.4 Data Flow Diagram	32
3.5 Class Diagram	33
3.6 Component Diagram	34
3.7 Deployment Diagram	35
3.8 User Interface Design	36
3.9 Procedural Design	37
3.4.0 Wring Design	38
3.4.1 Sequence Diagram	39
Chapter 4: Implementation and Testing	40
4.1 Coding	40
4.1.1 Cnc machine Code C++	40
4.1.2 Process3.2.1 Java code	53
4.1.3 G-code	61
4.2 Testing Approach	68
4.2.1 Units Testing	68
4.2.2 Integrated Testing.	68
Chapter 5: Result and Discussion	 70
5.1 Test Reports	70
5.2 User Documentation	70
5.2.1 Screen short	71
Chapter 6: Conclusions	74
6.1 Conclusion	74
6.2 Limitation of the System	74

6.3 Modification and Improvements	75
6.4 Future Scope.	75
Chapter 7: Bibliography	76

LIST OF TABLES

Table 1. Arduino Summary	10
Table 2. information of the file	30
Table 3. Units Testing	68

LIST OF FIGURES

Fig 1. Prototype Model	7
Fig 2. Arduino Uno R3	10
Fig 3. L293DMotor Shield	15
Fig 4. L293D Dual H-Bridge Motor Driver	15
Fig 5. Stepper Motors	16
Fig 6. Servo Motor	17
Fig 7. DC motor	18
Fig 8. Power supply	19
Fig 9. Pen	19
Fig 10.Timing belt	20
Fig 11. Aluminum profile 30H	21
Fig 12. T-nut	21
Fig 13. Aluminum Profile L-Joint	22
Fig 14. Nut and bolt	22
Fig 15. Ball Bering	23
Fig 16. Arduino IDE	24
Fig 17. Inkscape	25
Fig 18. MySQL Workbench	26
Fig 19. Processing IDE	26
Fig 20. Modules Division.	28
Fig 21. Entity Relationship Diagram	31
Fig 22. Data Flow Diagram.	32
Fig 23. Class Diagram	33
Fig 24. Component diagram	34
Fig 25. Deployment diagram	35
Fig 26. User Interface Design	36
Fig 27. Procedural Design	37
Fig 28. Wiring Design.	38
Fig 29. Sequence Diagram	39
Fig 30. Arduino CNC coding and uploading	71

Fig 31. Inscape bitmap tracing	71
Fig 32. Save as the g-code and adjust the pen alignments	72
Fig 33. Connection with machine	72
Fig 34. Run the java code and the selection of the port	73
Fig 35. Machine start working	73