SANTA CLARA UNIVERSITY	ELEN 115 – Spring 2023	S. Krishnan
Homework #8		

1. Assume the MOS transistor in Figure 1 has $V_{TN}\!\!=\!2$ V, $V_{TP}\!\!=\!$ -2 V, λ = 0.

Given $k_{\text{n}'} = 40 \mu A/V^2$ and $k_{\text{p}'} = 20 \mu A/V^2.$ All device dimensions are in μm

Find the value of labeled currents and voltages. [10]

What is the region of operation of the transistor? [10]

Clearly show how you arrive at your answer.

If the value of the resistor is halved will it change the mode of operation of M1? [5]

If the value of the resistor is doubled will it change the mode of operation of M1? [5]

Elen 115 _____ Homework ____

2. The DC biasing circuit in Figure 2 has MOS transistors with

$$V_{TN} = 1.3 \text{ V}, V_{TP} = -1.5 \text{ V}, \lambda = 0, k_n' = 25 \mu A/V^2 \text{ and } k_p' = 15 \mu A/V^2.$$

All device dimensions are in µm.

- (a) Find the value of the DC voltages V_1 , V_2 , and V_3 [20]
 - Find the value of the DC currents I₁, I₂, I₃ and I₄ [20]
 - Clearly identify DC biasing topologies in this circuit [10]
 - Justify any assumptions you make. [10]

Clearly show how you arrive at your answers.

(b) Determine the region of operation of M8? Explain how you arrive at your answer. Clearly show your work. [10]

Elen 115_

Homework