Resume No.1: Propiedades de los fluidos

Sistemas de unidades

VARIABLE	DIMENSION	S.I	INGLES	CGS
Masa	M	kg	slug	gr
Longitud	brack	m	pie	cm
Tiempo	T	s	s	S
Temperatura	θ	K^{o}	R^o	C^{o}
Fuerza F	$ m M~L~T^{-2}$	$N = kg.m/s^2$	$lb = slug.pie/s^2$	dina

Transformación de unidades

1 m =	3.28 pies
1 pie =	0.3048 m = 30.48 cm
1 pulg =	$2.54~\mathrm{cm}$
1 pie =	12 pulg
1 gal =	3.785 lt
1 kg =	2.2 lb
1 kg =	9.8 N
1 bar =	10^{5} Pa
1 mbar =	100 Pa
1 psi =	1 lb/pulg^2
1 hp =	550 lb.pie/s
1 N =	10^5 dinas
1 Poise =	gr/(cm.s)
1 Stoke =	$\rm cm^2/s$
1 Pa =	$1 \mathrm{\ N/m^2}$
1 Joule =	$1 \mathrm{\ N.m}$
1 Watt =	1 Joule/s
1 slug =	32.2 lb
1 lb =	16 onzas

Propiedades de los fluidos

Peso	W = M.g	
Presion	$P = \frac{F_p}{A}$	
Esfuerzo de corte	$ au=rac{F_f}{A}$	
Densidad	$ ho = \frac{M}{V}$	
Volmen específico	$Vs = \frac{V}{M} = 1/\rho$	
Peso específico	$\gamma = \frac{W}{V} = \rho.g$	
Densidad relativa o gravedad específica	$S = \frac{\gamma}{\gamma_{H_2O}}$	
Modulo de elasticidad volumétrica	$Ev = -V \frac{dP}{dV} = \rho \frac{dP}{d\rho}$	
Viscosidad cinemática o relativa	$ u = \frac{\mu}{ ho}$	

Algunas contantes

VARIABLE	S.I	INGLES	
g	$9.8 \frac{m}{s^2}$	$32.2 \frac{pie}{s^2}$	
$ ho^*$	$1000 \frac{kg}{m^3}$	$1.94 \frac{slug}{pie^3}$	

* En condiciones estandard de presión y temperatura.

Ley de viscosidad de Newton

$$\tau = \mu \frac{di}{di}$$

donde τ es el esfuerzo de corte, u es la velocidad en función de y y μ es la viscosidad dinámica. Frecuentemente en los problemas se asume una distribucion lineal de velocidades por llo que:

$$\tau = \mu \frac{V}{h}$$

donde h es el espesor de la capa de fluido.