OPENCLASSROOM

Parcours data scientist en alternance (@Synapse-Medicine) Implémentez un modèle de scoring

16 décembre 2022

Livrable 7 Implémentez un modèle de scoring

Introduction

Objectifs

Implémentez un modèle de scoring

Missions	Objectifs
 Construire un modèle de scoring qui donnera une prédiction sur la probabilité de faillite d'un client de façon automatique. Construire un dashboard interactif permettant d'interpréter les prédictions faites par le modèle, et d'améliorer la connaissance client des chargés de relation client. 	 Présenter son travail de modélisation à l'oral Réaliser un dashboard Rédiger une note méthodologique Utiliser un logiciel de version de code Déployer un modèle via une API dans le Web

Introduction BDD

Donnée provient de Home Credit Bank et est hébergée sur Kaggle.

Le but de Home Credit est d'élargir l'inclusion financière de la population non bancarisée.

Ils utilisent une variété de données alternatives, comme des informations sur les télécommunications et les transactions, pour prédire les capacités de remboursement de ses clients.

Introduction

Features selection/engineering

memory usage: 42.2 MB

Automated Feature Engineering Basics

Python - Home Credit Default Risk Feature Tools, Home Credit Default Risk

<class 'pandas.core.frame.DataFrame'>
Int64Index: 307511 entries, 0 to 307510
Data columns (total 17 columns):

Data	columns (total 1/ columns):				
#	Column	Non-Null Count	Dtype		
0	SK_ID_CURR	307511 non-null	int64		
1	EXT_SOURCE_1	307511 non-null	float64		
2	EXT_SOURCE_2	307511 non-null	float64		
3	EXT_SOURCE_3	307511 non-null	float64		
4	DAYS_BIRTH	307511 non-null	int64		
5	AMT_CREDIT	307511 non-null	float64		
6	AMT_ANNUITY	307511 non-null	float64		
7	DAYS_EMPLOYED	307511 non-null	int64		
8	AMT_GOODS_PRICE	307511 non-null	float64		
9	DAYS_ID_PUBLISH	307511 non-null	int64		
10	OWN_CAR_AGE	307511 non-null	float64		
11	BUREAU_MAX_DAYS_CREDIT	307511 non-null	float64		
12	BUREAU_MAX_DAYS_CREDIT_ENDDATE	307511 non-null	float64		
13	BUREAU_MAX_DAYS_ENDDATE_FACT	307511 non-null	float64		
14	PREV_SUM_MIN_AMT_PAYMENT	307511 non-null	float64		
15	PREV_MEAN_MIN_AMT_PAYMENT	307511 non-null	float64		
16	TARGET	307511 non-null	float64		
dtypes: float64(13), int64(4)					

Partie "sous traitée" sur des notebooks déjà réalisés par des data scientist - lien

Obtention d'une BDD composée de :

- 15 colonnes les plus "impactantes" (sélection avec "Feature Tool" et "Deep Feature Synthesis")
- 307 511 observations
- TARGET:
 - 0 = client sans défaut de paiement
 - 1 = client en défaut de paiement

1 - Fonction coût-métier

Problématique et résolution

Prédiction clients non défaut (0)

Clients non défaut (0)

TN

FP

Clients en défaut (1)

FN

TP

Objectifs:

Éviter de se tromper lorsque le client est à défaut de paiement, tout en acceptant le plus de crédits possible.

Métriques sélectionnées :

- recall
- précision

Une métrique existe pour avoir un ratio entre les deux : le F \(\mathbb{G} \) 2 score.

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

Matrice de confusion

Méthodologie

Méthode pour évaluer de manière robuste :

Stratified K fold

Contrebalancer le déséquilibre des classes :

- Oversampling (SMOTE)
- Undersampling (NearMiss)
- Variation threshold

Modèles entraînés:

- Logit
- RandomForestClassifier base
- RandomForestClassifier notebook
- XGBoostClassifier
- LGBMClassifier

Evaluation sur:

- Fß2score
- recall, précision, accuracy

Méthodologie

Résumé

Résultats

Baseline:

- F & 2 = 0.086
- accuracy = 0.85

	F ß2 score	Accuracy
Logit (SMOTE)	0.39	0.68
RandomForestClassifier (finetuné)	0.26	0.33
RandomForestClassifier finetuné notebook	0.399	0.68
LightGBM non finetuné	0.42	0.69
XGBoost finetuné	0.418	0.73

Benchmark

Résultats

Matrice de confusion

Choix du modèle

rand	random_forest_notebook	
f_beta_score_	0.399685	
precision_	0.681218	
recall_	0.661148	
accuracy_	0.681218	

Implémentation du RandomForestClassifier notebook, sans oversampling, undersampling, nouveau finetuning.

Choix sur F ß 2 score et recall

3 - Interprétabilité

Globale

Réalisée avec scikit learn (feature importance)

Locale

Réalisée avec Shap (Force plot)

Descriptif des clients

Box plot afin de visualiser où se situe le client par rapport à la distribution globale

Implémentation

4 - Dashboard

gère la data

gère modèle ML

génère graphique

f [

heroku

Backend → Fastapi

Frontend → Streamlit

Déploiement → Heroku

Versionning → Github

gère affichage

données clients

gère input de

4 - Dashboard

Conclusion

Modélisation:

- Résultats supérieurs à la baseline, mais reste assez faibles pour une utilisation brute
- Axes d'amélioration : réaliser la feature selection/engineering, tester modèle bagging, finetuner sur sample_weight

Dashboard:

- Répond au cahier des charges
- Axes amélioration : performance du site mitigée, graphiques interactifs

Global:

 S'appuyer sur des connaissances métiers et/ou de la donnée afin de réaliser certains choix

Points de difficultés :

- Ne pas avoir fait la feature selection : gain de temps mais mauvaise compréhension de la donnée
- Travail sur mac m1 (puce silicone) : problème de compatibilité (Heroku, xgboost, lgbm)

https://www.cogitime.fr/vis-ma-vie-de-developpeur-web/

Je vous remercie pour votre attention

Dashboard

Versioning

Désolé si le premier livrable ne correspond pas à ce que je présente, je ne comprends pas trop la consigne ... Le site sera "destroy" à la fin de la soutenance pour des raisons évidentes de coût