Nonparametric, Nearest Neighbors

CSci 5525: Machine Learning

Instructor: Nicholas Johnson

October 8, 2020

Announcements

- HW2 is posted (due Oct 15)
- Exam 1 will be posted on Oct 20 (due 48 hours later)
- Course feedback form

Parametric vs Nonparametric

- Parametric models
 - Set of parameters with fixed size
 - Independent of the number of training points
 - Example: Linear regression, Linear classification
 - Great for small amounts of data
 - May miss subtleties if huge amounts of data is available
- Nonparametric models
 - Not "Do not use any parameters"
 - Number of 'parameters' grow with data
 - Example: k-nearest neighbor classifier
 - Good for large datasets with 'subtleties'
 - Care is needed to avoid under- or over-fitting

Density estimation

- True density $p(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^p$, we draw N samples
- Density at a local region R: $P = \int_R p(\mathbf{x}) d\mathbf{x}$
 - Number of samples in the region $K \approx NP$
 - For small region of volume V, density is uniform, $P \approx p(\mathbf{x})V$

$$p(\mathbf{x}) \approx \frac{K}{NV}$$

- Two approaches to estimation
 - ullet Kernel density estimate: Keep V fixed, estimate K from data
 - Nearest neighbor estimate: Keep K fixed, estimate V from data

Kernel Density Estimation

- Consider a kernel $k : \mathbb{R}^p \mapsto \mathbb{R}_+$
 - Need $k(\mathbf{u}) \geq 0, \int k(\mathbf{u}) d\mathbf{u} = 1$
 - Bounded support, e.g., $k(\mathbf{u}) = 1, |\mathbf{u}_i| \le 1/2, 0$ otherwise
- Total number of points inside <u>cube of size h</u> is

Kernel Density Estimation

Nearest Neighbor Density Estimation

- Main idea: Fix K, estimate V from data
- Estimating density p(x) around x
 - Fix K, number of neighbors
 - ullet Grow a sphere around old x, till it includes K points
 - Volume of the sphere is V
- ullet Radius of sphere is distance to the K^{th} nearest neighbor
- Estimate density as: $p(\mathbf{x}) = \frac{K}{NV}$

Nearest Neighbor Density Estimation

Nearest Neighbors: Classification, Regression

- Find $NN_K(\mathbf{x})$, the k nearest neighbors of \mathbf{x}
- Classification: Majority class in $NN_K(\mathbf{x})$
- Regression: Solve linear regression using $NN_K(x)$ $\frac{2*3+4}{3} = \frac{9}{3}$
- Choice of distance metric
 - Suitable L_p norm
 - z-scored metrics, Mahalanobis distance
 - Metrics defined by nonlinear 'kernels'
 - Application domain dependent metrics

Nearest Neighbor Classification

Nearest Neighbor Classification

Over-fitting, Under-fitting

Nonparametric Regression

- 'Connect-the-dots' regression can be 'spiky'
- K-nearest neighbor regression: mean of K points

Nonparametric Regression (Contd.)

- k-nearest neighbor linear regression: best line
- Locally weighted regression: Weighting is done using a kernel

Locally Weighted Regression

- Kernel $k(\cdot)$ is symmetric around 0 and maximum at 0
- The area under the kernel should remain bounded
- Bandwidth of the kernel: Underfitting vs Overfitting
- Locally weighted regression:

$$\mathbf{w}^*(\mathbf{x}) = \operatorname{argmin}_{\mathbf{w}} \sum_{n=1}^{N} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right) (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2$$

$$\Rightarrow y(\mathbf{x}) = (\mathbf{w}^*(\mathbf{x}))^{\top} \mathbf{x}$$