INDUSTRY SPONSOR

Country Web Intelligence Mining

OVERVIEW

- 1. Business Problem
- 2. Assumptions
- 3. Approach + Decisions Taken
- 4. Code Operations + Outputs
- 5. Processing and Automation
- 6. PowerBI Dashboard Outputs Demo

BUSINESS PROBLEM

Problem Breakdown:

- Business Need: Automate country intelligence gathering to identify key defense activities.
- Analytics Approach: Leverage web scraping, dashboards, and machine learning to extract and rank relevant defense insights.

Potential Solutions?

- Web Scraping: BeautifulSoup, Selenium, or Microsoft's Power Automate
- Visualization: PowerBI or Tableau for dashboards that can be converted to PPT.
- ML Approach: Sentiment analysis for more in depth insights

REQUIREMENTS GATHERING

BIG QUESTIONS WE ASKED OURSELVES?

- Where will our data come from?
 - What websites?
- How will we structure the data?
 - Coding in specific formats for easy-to-read file outputs? Can PowerBl or Tableau understand the outputs?
- Can we script the data to be pulled through one easy push of a button?
 - Automation in the code processes? Making it as easy as possible to use? Army-proof?
- What will our data look like in a visualization tool?
 - Is it easy to use? What insights can be extracted? Are they useful?

PICKING A WAY FORWARDS

We had two paths to choose from at an early stage:

1

2

Utilize and improve upon Python library scraping methods through either BeautifulSoup or Selenium packages	Create a workflow process through an agentic Al process (autonomous task completing intelligence)
PROs: Proven time and time again, easy to use and learn, very VERY flexible	PROs: Straightforwards and easy to build a flow – no real coding experience needed
CONs: Requires some coding understanding to properly use, can be complex depending on websites being scraped	CONs: Microsoft Power Automate poses challenges like a learning curve, issues with GPT scraping defense data, and unreliable data since it's sourced via GPT.

ATTEMPTING AGENTIC AI

Mitchell E. Daniels, Jr. School of Business

MICROSOFT POWER AUTOMATE

MICROSOFT POWER AUTOMATE

Step 3

Create for each loop (same concept as Python For loop), Launch Chrome for scraping.

Step 4

Extract data from window function and store it into a variable (DataFromWindow)

Step 5

Add function and store it into a variable (DataFromWindow). Associate each website link in the Linkslist to an extracted data pull.

MICROSOFT POWER AUTOMATE

ISSUES WITH MICROSOFT POWER AUTOMATE

- Microsoft's GPT not flexible with inputs lots of issues running the flows
- Power Automate's user interface is very specific and requires training to understand fully.
- Time savings are not noticeable enough to warrant a full switch over

OUR CONCLUSION – The MAIN issue is the GPT, it cannot properly process inputs regarding defense data being extracted for CSV outputs.

PYTHON WEB SCRAPING

Mitchell E. Daniels, Jr. School of Business

WEB SCRAPING WITH BEAUTIFULSOUP + SELENIUM

• **FIRST,** we split up to focus on specific sections of data to scrape for each country:

Such as -- Defense/Economics/Demographics/and others...

SECOND, we each created workflow processes and assumptions for our respective sections:

To help reproduce our results

■ THIRD, we combined our codes and dashboards into a centralized location for use:

Easy code script to run from one place/centralized github repository/one dashboard on PowerBI

SOURCES - WEBSITES WE SCRAPED DATA FROM

For our project, we collected data from various reliable public sources, including:

- Economic & Trade Data:
- Trading Economics (<u>https://tradingeconomics.com/countries</u>)
- Macrotrends (https://www.macrotrends.net/global-metrics/countries)
- Military Data:
- •Global Firepower (https://www.globalfirepower.com/)
- •World Directory of Modern Warships (https://www.wdmmw.org/)
- Natural Resources & Geography:
- CIA World Factbook (https://www.cia.gov/the-world-factbook/)
- •UN Environment Programme (https://www.unep.org/)
- Climate Data:
- •NOAA Climate Data (https://www.ncdc.noaa.gov/)
- •World Meteorological Organization (https://public.wmo.int/en)

DATA PROCESSING + AUTOMATION

```
CHROME_DRIVER_PATH = r"C:\Web Driver\chromedriver.exe"

BASE_URL = "https://www.militaryfactory.com/armor/by-country.php?Nation="

country_list = []

"belarus", "uruguay", "jordan", "botswana", "taiwan", "central-african-republic", "niger", "ethiopia", "oman", "algeria", "chad", "south-sudan", "mozambique", "austria", "germany", "nicaragua", "japan", "united-arab-emirates", "belgium", "paraguay", "canada", "peru", "libya", "somalia", "north-macedonia", "tajikistan", "france", "turkey", "venezuela", "romania", "bulgaria", "angola", "kenya", "thailand", "democratic-republic-of-the-congo", "latvia", "saudi-arabia", "denmark", "cuba", "guatemala", "el-salvador", "spain", "mali", "suriname", "india", "vietnam", "israel", "georgia", "philippines", "slovenia", "chile", "ivory-coast", "sweden", "colombia", "republic-of-the-congo", "qatar", "eritrea",
```

Figuring out website URLs to create efficient scrapers

Creating neat CSV outputs

```
# Save to CSV

df = pd.DataFrame(all_armor_data, columns=["Country", "System Name", "Role", "Year", "Image URL"])

df.to_csv(r"C:\Users\arman\OneDrive\Documents\PURDUE\Spring 2025\LOCKHEED IP\armor_images.csv", index=False)

print("✓ Scraping complete! Data saved to 'armor_inventory_with_thumbnails.csv'.")
```


DATA PROCESSING + AUTOMATION

	А	В	С	D	Е
1	Country	Aircraft	Units	Role	
2	Mexico	F-5E	6	Fighter	
3	Mexico	PC-7	33	Light Attack	(
4	Mexico	UH-60M	20	Multi-Missi	on
5	Mexico	Mi-8/-17	18	Transport/0	Gunship
6	Mexico	Bell 407	17	Light Utility	
7	Mexico	H225M	16	SAR/Utility	
8	Mexico	MD530F	13	Light Utility	
9	Mexico	Bell 206	13	Medium Ut	lity
10	Mexico	Bell 412	8	Medium Ut	lity
11	Mexico	UH-1H	1	Medium Ut	lity
12	Mexico	C-295	7	Tactical	
13	Mexico	C-27J	4	Tactical	
14	Mexico	C-130E/K/L	3	Tactical	
15	Mexico	King Air 90/	3	Utility	
16	Mexico	Boeing 737	3	VIP	
17	Mexico	Turbo Com	2	Utility	
18	Mexico	PC-6	1	Utility	
19	Mexico	T-6C+	56	Basic Train	er
20	Mexico	PC-7	33	Basic/Adva	nced Trainer

- GOAL create clean and easily digestible CSV files that can be transferred to visualization tools
- SMOOTH data transfers to decrease time spent debugging and fixing CSV files

DATA PROCESSING + AUTOMATION

We created a script that centralizes the running of code for ease of use

```
#!/bin/bash
 1
 2
      scripts=("Part_1/Overview/scrape_overview_cia.py" "Part_1/Overview/world_bank_scrape.py" "Part_1/Natural
 4
 5
      for script in "${scripts[@]}"; do
           echo "$(date +'%Y-%m-%d %H:%M:%S') - Running: $script..."
 6
          python3 "$script"
 8
          echo "$(date +'%Y-%m-%d %H:%M:%S') - Finished: $script ✓"
 9
10
      done
11
12
      echo "$(date +'%Y-%m-%d %H:%M:%S') - All scripts executed successfully! 🞉"
```


DASHBOARDS

OVERVIEW

Natural Resources

Energy

Mitchell E. Daniels, Jr. School of Business

ECONOMICS - GDP

TRADE BY CATEGORY

TRADE BY COUNTRIES

Climate

GEOGRAPHY

MILITARY - AIR POWER

Country

Venezuela

AIRCRAFT BY ROLE and COUNT

V

MILITARY - NAVAL POWER

Country India 7 6 ... Sum of Unit WARSHIPS by ROLE and COUNT Country Role Ship Vikramaditya Aircraft Carriers India Aircraft Carriers Vikrant India Amphibious Assault Vessels Austin-class 5 (5%) -2 (2%) Amphibious Assault Vessels Magar-class India Amphibious Assault Vessels Shardul-class India India Corvettes Abhay-class 13 (13%) Kamorta-class India Corvettes 29 (29%) India Corvettes Khukri-class Role Kora-class India Corvettes Offshore Patrol Vessels Veer-class India Corvettes Submarines Destroyers Delhi-class India Corvettes Destroyers Kolkata-class India Frigates India Destroyers Rajput-class 14 (14%) -Destroyers Visakhapatnam-class Destroyers India Frigates India Brahmaputra Amphibious Assault Vessels Frigates Nilgiri-class India Aircraft Carriers Frigates India Shivalik-class Frigates India Talwar-class 19 (19%) Offshore Patrol Vessels Bangaram-class Car Nicobar-class Offshore Patrol Vessels India 18 (18%) — Offshore Patrol Vessels India Saryu-class India Offshore Patrol Vessels Sukanya-class Total 10

MILITARY - LAND POWER

MILITARY - MAN POWER

Bahrain

Country

Bahrain

Country	Metric	Sum of Value
Bahrain	Active Personnel	95
Bahrain	Air Force Personnel*	71
Bahrain	Army Personnel*	73
Bahrain	Available Manpower	135
Bahrain	Fit-for-Service	133
Bahrain	Navy Personnel*	69
Bahrain	Paramilitary	50
Bahrain	Reaching Mil Age Annually	136
Bahrain	Reserve Personnel	36
Bahrain	Total Population	138
Bahrain	Yearly Mobilization Potential	17018
Total		17954

SOLDIERS by ROLE and COUNT

Part 2- DEFENSE ARTICLE ANALYSIS

Overview of Libraries & Functions Used

Libraries Used

- Web Scraping & Data Retrieval: requests, BeautifulSoup, newspaper3k, serpapi
- Natural Language Processing: nltk, transformers, VADER, sumy, re
- Data Processing & ML: pandas, numpy, scikit-learn (TfidfVectorizer)
- Will require an API key for google scraping which is free for the most part but if multiple pulls per day are needed it costs around 150USD per month for 15000

Key Functions & Their Role

- Data Collection: fetch_page(), scrape_articles(), search_google_articles() Ensures automated
 & diverse data collection.
- Text Processing: clean_text(), extract_article_content(), summarize_article() Prepares clean, structured text.
- Sentiment & Stance Analysis: analyze_sentiment(), analyze_stance() Determines tone & positioning of articles.
- Categorization & Country Mapping: classify_category(), identify_country() Segments articles by relevance.

Ranking and Importance Scoring

Ranking Method: TF-IDF

Why TF-IDF?

- Relevance-Based: Identifies key terms & informative content.
- Context-Aware: Filters out common words to highlight unique insights.
- Scalable: Efficient for large datasets without manual intervention.

How It Works

- TF (Term Frequency): Measures word occurrence in an article.
- IDF (Inverse Document Frequency): Reduces weight of common words.
- Final Score: Sum of TF-IDF values in the article's summary.

Why Not Sentiment Scores?

- Sentiment ≠ Importance (e.g., neutral news on military conflict could be more critical than a positive minor update).
- TF-IDF focuses on information content, not emotional tone.

ACTIONABLE RESULTS

 Saves 10+ hours per week of laborintensive scraping.

 On average, these improvements will save \$2000 + per month.

This will free up 4-5 data analysts to work on other tasks.

SUMMARY

- 1. Business Problem
- 2. Assumptions
- 3. Approach + Decisions Taken
- 4. Code Operations + Outputs
- 5. Processing and Automation
- 6. PowerBI Dashboard Outputs Demo

THANK YOU

Mitchell E. Daniels, Jr. School of Business

Questions?

