

UNIVERSITÀ DEGLI STUDI DI URBINO CARLO BO

Dipartimento di Scienze Pure e Applicate Corso di Laurea in Informatica Applicata

Presentazione

Realizzazione di un sistema per la pulizia automatica basato su Internet of Robotic Things

Progetto di Programmazione per l'Internet of Things

Professore: Studente:

Emanuele Lattanzi Andrea De Lorenzis

Anno Accademico 2024/2025

Contents

- 1. Introduction
- 2. Robot Hardware Design
- 3. Robot Software Stack
- 4. ROS2 Internal Communication
- 5. Simulation Software: Gazebo
- 6. Visualization Software: Rviz
- 7. IoT Environmental Sensing

- 8. IoRT System Design
- 9. IoT Infrastructure
- 10. Data Flows & Cleaning Rules
- 11. Web Interface
- 12. Use Cases
- 13. Results
- 14. Conclusions and Future Work

Introduction

Internet of Things (IoT)

- Internet of Things (IoT) devices exchange data with other devices across the Internet or other communication networks.
- Enables monitoring, control and automation of physical systems.

Internet of Robotic Things (IoRT)

- Extension of IoT where robots become active nodes.
- Robots not only sense and communicate, but also act and adapt to the environment.

Introduction

Problem

Commercial cleaning robots (e.g. Roomba) are limited:

- Limited integration with IoT ecosystems.
- Closed platform.

Objective

Modify a cheap cleaning robot in order to:

- Extend its capabilities.
- Integrate it inside an IoRT system.

Robot Hardware Design

Robot Hardware Design

ROS2 Software Stack

- Step controller node: maps continuous velocity commands from Nav2 to discrete directional commands.
- MQTT bridge node: converts MQTT messages to ROS2 messages, and viceversa.
- Coverage node: accepts a CoverageMission message and create a CCP plan.
- Nav2 & Opennav-Coverage: libraries to navigate autonomously and follow a CCP plan.
- SLAM Toolbox: generates and publishes a map and costmap based on the LiDAR scans.

CoverageMission Custom Message

ROS2 Internal Communication

Robot Software Communication

Simulation Software: Gazebo

What the robot sees.

Visualization Software: Rviz

What the robot **thinks**.

IoT Environmental Sensing

IoRT System Design

Docker Containers

Containers

- Node-RED: data flow management.
- 2. Mosquitto: MQTT broker.
- InfluxDB: saves sensor data.
- 4. Grafana: visualizes sensor data.
- 5. MariaDB: save user configurations.
- 6. Nginx: reverse proxy and web server.
- 7. Portainer: containers dashboard.

Node-RED Flows (1)

Save sensor data

Proxy robot manual commands

Node-RED Flows (2)

Check cleaning sessions and rules

JSON Plan Message

```
"type": "plan",
"zones": [
   "zone_id": 2,
   "intensity": 1,
   "frequency": 1,
   "ros_points": [...]
"ros_base_pos": {
  "x": -1.62.
  "y": -5.11
```

Node-RED Flows (3)

CRUD operations

Web Interface: Map Control Page

Web Interface: Sessions Page

Use Cases

- Motion detection: start cleaning when the room is empty (no PIR detections).
- Adapt to weather conditions: use humidity readings to try and predict raining conditions. Increase intensity near entrance.
- Room activity level: increase cleaning intensity if door passages cross over a user defined limit.
- Night mode: use minimum intensity when light goes below a certain threshold to not disturb sleep.

No PIR detections in the time period.

START CLEANING.

First room: Bedroom.

Default intensity and frequency levels.

Second room: Entrance.

Humidity level greater than threshold.

INTENSITY = 3.

Third room: Living room.

Number of passage detections greater than threshold.

INTENSITY = 3. FREQUENCY = 2.

No more rooms.

RETURN TO BASE.

Reached base station.

STOP.

Conclusion and Future Work

Conclusions

- Demonstrated the IoRT paradigm applied to automated cleaning.
- Enhanced a low-cost vacuum robot with additional components and ROS integration.
- Developed a system for event-based cleaning rules.

Future directions

- Machine learning for context-aware cleaning (e.g., RL).
- Multi-robot collaboration.
- Explore more resilient protocols (LoRa, ZigBee, 5G).

Thanks for the attention