--21. (new) A method of use of a softener composition for imparting hydrophilicity to textile fibre materials in domestic applications, which comprises treating washed textile fibre materials with a softener composition which comprises:

- A) a fabric softener;
- B) at least one additive selected from the group consisting of
 - a) a polyethylene, or a mixture thereof,
 - b) a fatty acid alkanolamide, or a mixture thereof,
 - c) a polysilicic acid, or a mixture thereof, and
 - d) a polyurethane, or a mixture thereof; and
- C) a dispersed polyorganosiloxane of formula (1)

(1)
$$R^{1}$$
 CH_{3} CH_{3}

wherein

R1 is OH, OR2 or CH3,

R2 is CH3 or CH2CH3,

R3 is C1-C20alkoxy, CH3, CH2CHR4CH2NHR5, or CH2CHR4CH2N(COCH3)R5,

(2)
$$(CH_2)_3O$$
 NR⁸

or (3) $(CH_2)_3NH$ CH

or (4) $(CH_2)_3$ NR⁸

 R^4 is H or CH₃, R^5 is H, CH₂CH₂NHR⁶, C(=O)-R⁷ or (CH₂)_Z-CH₃, z is 0 to 7, R⁶ is H or C(=O)-R⁷, R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH, R⁸ is H or CH₃, and the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5)

(5)
$$(R^9)_V (R^{10})_W \text{ Si-A-B}$$

wherein

R9 is CH3, CH3CH2 or phenyl,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

 $A = -CH_2CH(R^{11})(CH_2)_K$

 $B = -NR^{12}((CH_2)_1-NH)_mR^{12}$ or

(6)
$$-(R^{13})_{h}$$
 U^{1} U^{2} $-R^{14}$ CH_{2} C R^{15} R^{15}

n is 0 or 1,

when n is 0, U1 is N, when n is 1, U1 is CH,

1 is 2 to 8,

k is 0 to 6,

m is 0 to 3,

R¹¹ is H or CH₃,

R¹² is H, C(=O)-R¹⁶, CH₂(CH₂)_pCH₃ or

p is 0 to 6,

R13 is NH, O, OCH2CH(OH)CH2N(butyl), OOCN(butyl)

R¹⁴ is H, linear or branched C₁-C₄alkyl, phenyl or CH₂CH(OH)CH₃,

R¹⁵ is H or linear or branched C₁-C₄alkyl,

R16 is CH3, CH2CH3 or (CH2)qOH,

q is 1 to 6, and

U2 is N or CH;

or a dispersed polyorganosiloxane of the formula (8)

(8)
$$R^{17} = S_{1} = O$$
 CH_{3}
 CH_{3}

wherein

R3 is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R¹⁸ is CH₃ or CH₂CH₃,

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21} ,

m is 3 to 25,

n is 0 to 10,

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)_oR²³,

p is 1 to 4,

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂,

R²² is H or CH₃,

R²³ is O or NH,

R²⁴ is linear or branched C₁-C₈alkyl or Si(R²⁵)₃,

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,

EO is -CH2CH2O-,

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and the sum of X₁,Y₁ and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9)

$$(9) \quad H_{3}C - \bigcup_{Si = O}^{CH_{3}} \bigcup_{Si = O$$

wherein

R²⁶ is linear or branched C₁-C₂₀alkoxy or CH₂CH(R⁴)R²⁹,

R4 is as previously defined,

R²⁹ is linear or branched C₁-C₂₀alkyl,

 R^{27} is aryl, aryl substituted by linear or branched C_1 - C_{10} alkyl, linear or branched C_1 - C_{20} alkyl substituted by aryl or aryl substituted by linear or branched C_1 - C_{10} alkyl, R^{28} is

(10)
$$(CH_2)_3 - O - CH_2 - CH_2 - CH_2$$
, and

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

22. (new) A method of use according to claim 21 wherein the polyorganosiloxane is of formula (1):

(1)
$$R^{1}$$
 S_{1} C_{1} C_{3} C_{1} C_{3} C_{1} C_{3} C_{1} C_{3} C_{1} C_{3} C_{1} C_{1} C_{2} C_{3} C_{3} C_{4} C_{1} C_{1} C_{2} C_{3} C_{4} C_{4} C_{4}

wherein

R1 is OH, OR2 or CH3

R2 is CH3 or CH2CH3

R3 is C1-C20alkoxy, CH3, CH2CHR4CH2NHR5, or

(2)
$$(CH_2)_3O$$
 NR⁹
or (3) $(CH_2)_3NH$ CH

R⁴ is H or CH₃,
R⁵ is H, CH₂CH₂NHR⁶, C(=O)-R⁷,
R⁶ is H or C(=O)-R⁷,
R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH,
R⁸ is H or CH₃, and
the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5);

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

R9 is CH3 or CH3CH2,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

 $A = -CH_2CH(R^{11})(CH_2)_K$

B =

(6)
$$-(R^{13})_{n}U^{1}$$
 $U^{2}-R^{14}$ $CH_{2}-C$ R^{15} R^{15}

n is 1,
U¹ is CH,
k is 0 to 6,
R¹¹ is H or CH₃,
R¹³ is OOCN(butyl),
R¹⁴ is H, linear C₁-C₄alkyl, phenyl,
R¹⁵ is H or linear C₁-C₄alkyl, and
U² is N;

or a dispersed polyorganosiloxane of the formula (8);

(8)
$$R^{17} - Si - O = Si - O$$

wherein

R³ is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R18 is CH3 or CH2CH3,

 R^{19} is R^{20} -(EO)_m-(PO)₀- R^{21} .

m is 3 to 25,

n is 0 to 10,

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)₀R²³,

p is 1 to 4,

R21 is H, R24, CH2CH(R22)NH2 or CH(R22)CH2NH2,

R²² is H or CH₃.

R²³ is O or NH.

R²⁴ is linear or branched C₁-C₃alkyl or Si(R²⁵)₃,

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,

EO is -CH2CH2O-,

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and

the sum of X₁,Y₁ and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9);

$$(9) \quad H_{3}C - \bigcup_{CH_{3}}^{CH_{3}} - \bigcup_{Si-O}^{CH_{3}} \bigcup_{Si-O}^{CH_{3}} \bigcup_{Si-O}^{CH_{3}} \bigcup_{Si-O}^{CH_{3}} \bigcup_{Y^{2}}^{CH_{3}} \bigcup_{Y^{2}}^{CH_{3$$

wherein

R²⁶ is linear C₁-C₂₀alkoxy,

R4 is as previously defined,

R29 is linear C1-C20alkyl,

R27 is CH2CH(R4)penyl,

R²⁸ is

(10)
$$(CH_2)_3$$
 $- CH_2$ $- CH_2$ $- CH_2$, and

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

23. (new) A method of use according to claim 21 wherein a polyorganosiloxane of formula (1) is used, wherein

R1 is OH or CH3,

R3 is CH3, C10-C20alkoxy or CH2CHR4CH2NHR5,

R4 is H,

R5 is H or CH2CH2NHR6,

 R^6 is H or $C(=0)-R^7$, and

R7 is CH3, CH2CH3 or CH2CH2CH2OH.

24. (new) A method of use according to claim 1 wherein a polyorganosiloxane of formula (8) is used, wherein

R3 is CH3, C10-C20alkoxy or CH2CHR4CH2NHR5,

 R^4 is H, R^5 is H or $CH_2CH_2NHR^6$, R^6 is H or $C(=Q)-R^7$, R^7 is CH_2CH_3 , $CH_2CH_2CH_2OH$ or CH_3 , and R_{17} is CH_3 or OH.

25. (new) A method of use according to claim 21 wherein a polyorganosiloxane of formula (9) is used, wherein

R²⁶ is CH₂CH(R⁴)R²⁹, R⁴ is H, and R²⁷ is 2-phenylpropyl.

- 26. (new) A method of use according to claim 21 wherein the composition is a liquid aqueous composition.
- 27. (new) A method of use according to claim 21 wherein the composition is used in a tumble dryer sheet composition.
- 28. (new) A method of use according to claim 21 in which the polyorganosiloxane is nonionic or cationic.
- 29. (new) A method of use according to claim 21 in which the composition has a solids content of 5 to 70 % at a temperature of 120°C.
- 30. (new) A method of use according to claim 21 in which the composition contains a water content of 25 to 90 % by weight based on the total weight of the composition.
- 31. (new) A method of use according to claim 21 in which the composition has a pH value from 2 to 7.
- 32. (new) A method of use according to claim 21 in which the nitrogen content of the aqueous emulsion due to the polyorganosiloxane is from 0 to 0.25 % with respect to the silicon content.
- 33. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene, a fatty acid alkanolamide or a polyurethane.

- 34. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene or a fatty acid alkanolamide.
- 35. (new) A method of use according to claim 21 wherein the composition comprises a fatty acid alkanolamide.
- 36. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene.
- 37. (new) A method of use according to claim 21 wherein the composition is prepared by mixing a preformulated fabric softener with an emulsion comprising the polyorganosiloxane and the additive.
- 38. (new) A method of use according to claim 21 wherein composition has a clear appearance.
- 39. (new) A method of use according to claim 21 in which the composition comprises:
- a) 0.01 to 70 % by weight, based on the total weight of the composition, of a polyorganosiloxane, or a mixture thereof;
- b) 0.2 to 15 % by weight based on the total weight of an emulsifier, or a mixture thereof;
- c) 0.01 to 15 % by weight based on the total weight of at least one additive selected from the group consisting of a polyethylene, a fatty acid alkanolamide, a polysilicic acid and a polyurethane, and d) water to 100 %.
- 40. (new) A tumble dryer sheet comprising a composition as defined in claim 21.--