INF2604 - Geometria Computacional

Waldemar Celes

celes@inf.puc-rio.br

Departamento de Informática, PUC-Rio

Polígonos são empregados para representação de objetos reais

- ► Boa aproximação
- ► Fácil manipulação computacional

Polígonos são empregados para representação de objetos reais

- ▶ Boa aproximação
- ► Fácil manipulação computacional

Definição:

- ▶ Polígono é uma região do plano delimitada por uma sequência de segmentos de reta formando uma curva simples fechada
 - ► Curva simples fechada é homeomorfa a um círculo

Representação:

$$P = \{e_0 = \mathbf{v}_0 \mathbf{v}_1, e_1 = \mathbf{v}_1 \mathbf{v}_2, ..., e_{n-1} = \mathbf{v}_{n-1} \mathbf{v}_0\}$$

$$\operatorname{com} \left\{ \begin{array}{l} e_i \cap e_{i+1} = \mathbf{v}_{i+1} \\ e_i \cap e_j = \emptyset, \quad \text{se} \quad j \neq i+1 \end{array} \right.$$

Teorema de Jordan

ightharpoonup A fronteira ∂P de um polígono P particiona o plano em duas partes: o interior limitado e o exterior ilimitado

Teorema de Jordan

ightharpoonup A fronteira ∂P de um polígono P particiona o plano em duas partes: o interior limitado e o exterior ilimitado

Classificação de ponto: interior ou exterior

Teorema de Jordan

ightharpoonup A fronteira ∂P de um polígono P particiona o plano em duas partes: o interior limitado e o exterior ilimitado

Classificação de ponto: interior ou exterior

- ▶ A partir de um ponto \mathbf{p} , traça-se um raio não paralelo às arestas e conta-se o número n de interseções com ∂P
 - ► Se *n* for par, ponto é exterior ao polígono
 - ► Se *n* for ímpar, ponto é interior ao polígono

Visibilidade

Problema de Klee

- ► Considerando que um polígono representa a planta baixa de um museu, quantos guardas são necessários para vigiar o museu, para que qualquer área do museu seja visível a pelo menos um guarda?
 - ► Considerando:
 - Guardas estacionários
 - Guardas com visão 2π

Visibilidade

Problema de Klee

- ► Considerando que um polígono representa a planta baixa de um museu, quantos guardas são necessários para vigiar o museu, para que qualquer área do museu seja visível a pelo menos um guarda?
 - ► Considerando:
 - Guardas estacionários
 - Guardas com visão 2π

Visibilidade

- ▶ O ponto **y** é **visível** a **x** se:
 - ▶ $\overline{xy} \subseteq P$
- ▶ O ponto y é claramente visível a x se:
 - ▶ $\overline{xy} \subseteq P$
 - ▶ $\overline{xy} \cap \partial P \subseteq \{x, y\}$

Achar uma função g(n) que expressa a quantidade de guardas necessária em função do número de vértices do polígono

▶ Em 2D, claramente $1 \le g(n) \le n$

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ► Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ► Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ▶ Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - Para n=4:
 - Quadrilátero convexo: g(n) = 1
 - ▶ Quadrilátero côncavo ($\exists \theta > \pi$):

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ▶ Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - Quadrilátero côncavo $(\exists \theta > \pi)$: g(n) = 1

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ▶ Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - ▶ Quadrilátero côncavo $(\exists \theta > \pi)$: g(n) = 1
 - ▶ Para n = 5:

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ► Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - ▶ Quadrilátero côncavo $(\exists \theta > \pi)$: g(n) = 1
 - ▶ Para n = 5:
 - ▶ Convexo ou com 1 vértice côncavo: g(n) = 1
 - ► Com 2 vértices consecutivos côncavos:

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ▶ Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - ▶ Quadrilátero côncavo ($\exists \ \theta > \pi$): g(n) = 1
 - ▶ Para n = 5:
 - ▶ Convexo ou com 1 vértice côncavo: g(n) = 1
 - ▶ Com 2 vértices consecutivos côncavos: g(n) = 1
 - ► Com 2 vértices não consecutivos côncavos:

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ▶ Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - ▶ Quadrilátero côncavo ($\exists \ \theta > \pi$): g(n) = 1
 - ▶ Para n = 5:
 - ▶ Convexo ou com 1 vértice côncavo: g(n) = 1
 - ▶ Com 2 vértices consecutivos côncavos: g(n) = 1
 - ▶ Com 2 vértices não consecutivos côncavos: g(n) = 1

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ▶ Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - ▶ Quadrilátero côncavo ($\exists \ \theta > \pi$): g(n) = 1
 - ▶ Para n = 5:
 - ▶ Convexo ou com 1 vértice côncavo: g(n) = 1
 - ▶ Com 2 vértices consecutivos côncavos: g(n) = 1
 - ▶ Com 2 vértices não consecutivos côncavos: g(n) = 1
 - ▶ Para n = 6:

- ▶ Em 2D, claramente $1 \le g(n) \le n$
 - ▶ Basta posicionar um guarda em cada vértice
- ► Por indução:
 - Para n = 3, g(n) = 1 (óbvio!)
 - ▶ Para n = 4:
 - Quadrilátero convexo: g(n) = 1
 - Quadrilátero côncavo $(\exists \ \theta > \pi)$: g(n) = 1
 - ▶ Para n = 5:
 - ▶ Convexo ou com 1 vértice côncavo: g(n) = 1
 - ▶ Com 2 vértices consecutivos côncavos: g(n) = 1
 - ▶ Com 2 vértices não consecutivos côncavos: g(n) = 1
 - ▶ Para n = 6:
 - ► Com formação de 2 aletas: requer g(n) = 2

Número de guardas g(n)

- ▶ Para n > 6:
 - ► Forma-se, no máximo, k aletas com 3k vértices
 - ▶ Logo, pode requerer: g(n) = k; ainda, como para n = 3, 4, 5 tem-se g(n) = 1; então, intuitivamente tem-se $g(n) = \lfloor n/3 \rfloor$

Número de guardas g(n)

- ▶ Para n > 6:
 - ► Forma-se, no máximo, k aletas com 3k vértices
 - ▶ Logo, pode requerer: g(n) = k; ainda, como para n = 3, 4, 5 tem-se g(n) = 1; então, intuitivamente tem-se $g(n) = \lfloor n/3 \rfloor$

Pergunta: $\lfloor n/3 \rfloor$ é suficiente?

Diagonal

Diagonal de P

▶ Segmento de reta que conecta 2 vértices de P, $\overline{\mathbf{v}_i\mathbf{v}_j}$, tal que:

$$\begin{cases}
\overline{\mathbf{v}_i \mathbf{v}_j} \subseteq P \\
\overline{\mathbf{v}_i \mathbf{v}_j} \cap \partial P = {\mathbf{v}_i, \mathbf{v}_j}
\end{cases}$$

Diagonal

Diagonal de P

▶ Segmento de reta que conecta 2 vértices de P, $\overline{\mathbf{v}_i\mathbf{v}_j}$, tal que:

$$\begin{cases}
\overline{\mathbf{v}_i \mathbf{v}_j} \subseteq P \\
\overline{\mathbf{v}_i \mathbf{v}_j} \cap \partial P = {\mathbf{v}_i, \mathbf{v}_j}
\end{cases}$$

- ▶ Diagonais que não se cruzam
- ► Diagonais que se cruzam

Triangulação de P

▶ Decomposição de *P* em triângulos através de um conjunto máximo de diagonais que não se cruzam

Triangulação de P

- ▶ Decomposição de *P* em triângulos através de um conjunto máximo de diagonais que não se cruzam
 - ► P pode ter diferentes triangulações

Triangulação de P

- ▶ Decomposição de *P* em triângulos através de um conjunto máximo de diagonais que não se cruzam
 - ► P pode ter diferentes triangulações

Todo polígono P com n > 3 tem uma diagonal?

Todo polígono $P \operatorname{com} n > 3 \operatorname{tem} \operatorname{uma} \operatorname{diagonal}$?

► Sim!

Todo polígono P com n > 3 tem uma diagonal?

- ► Sim!
 - ▶ Considere o vértice mais abaixo: \mathbf{v}_i tal que $\mathbf{v}_{i_v} = y_{min}$
 - ▶ Vértices vizinhos formam uma diagonal: $\overline{\mathbf{v}_{i-1}\mathbf{v}_{i+1}}$
 - Existe um vértice \mathbf{v}_k interior ao triângulo $\mathbf{v}_{i-1}\hat{\mathbf{v}_i\mathbf{v}_{i+1}}$; nesse caso, $\overline{\mathbf{v}_i\mathbf{v}_k}$ é diagonal

Todo polígono P com n > 3 tem uma diagonal?

- ► Sim!
 - ▶ Considere o vértice mais abaixo: \mathbf{v}_i tal que $\mathbf{v}_{i_v} = y_{min}$
 - ightharpoonup Vértices vizinhos formam uma diagonal: $\overline{\mathbf{v}_{i-1}\mathbf{v}_{i+1}}$
 - Existe um vértice \mathbf{v}_k interior ao triângulo $\mathbf{v}_{i-1}\hat{\mathbf{v}_i\mathbf{v}_{i+1}}$; nesse caso, $\overline{\mathbf{v}_i\mathbf{v}_k}$ é diagonal

Por indução, todo polígono tem uma triangulação

Toda triangulação de P tem:

- ▶ n-3 diagonais
- ▶ n-2 triângulos

Toda triangulação de P tem:

- ▶ n-3 diagonais
- ▶ n-2 triângulos

Prova por indução:

▶ Para n = 3, a dedução é trivial

Toda triangulação de P tem:

- \triangleright n-3 diagonais
- ▶ n-2 triângulos

Prova por inducão:

- ▶ Para n = 3, a deducão é trivial
- ▶ Para n > 3, sabendo que se tem a prova para n 1 vértices:
 - ► Uma diagonal qualquer particiona o polígono em dois subpolígonos P₁ e P₂
 - $ightharpoonup n_1 + n_2 = n + 2$, já que dois vértices são compartilhados
 - ▶ Como por indução P_1 e P_2 têm $n_1 2$ e $n_2 2$ triângulos, respectivamente:

$$(n_1-2)+(n_2-2)=(n_1+n_2)-4=(n+2)-4=n-2$$

Toda triangulação de P tem:

- ▶ n-3 diagonais
- ▶ n-2 triângulos

Prova por indução:

- Para n = 3, a dedução é trivial
- ▶ Para n > 3, sabendo que se tem a prova para n 1 vértices:
 - lacktriangle Uma diagonal qualquer particiona o polígono em dois subpolígonos P_1 e P_2
 - $ightharpoonup n_1 + n_2 = n + 2$, já que dois vértices são compartilhados
 - ightharpoonup Como por indução P_1 e P_2 têm n_1-2 e n_2-2 triângulos, respectivamente:

$$(n_1-2)+(n_2-2)=(n_1+n_2)-4=(n+2)-4=n-2$$

Similarmente, o número de diagonais é:

$$(n_1 - 3) + (n_2 - 3) + 1 = n - 3$$

onde $+ 1$ é devido à diagonal que particiona P

Propriedades da triangulação

A soma dos ângulos internos de um polígono P vale $(n-2)\pi$

Propriedades da triangulação

A soma dos ângulos internos de um polígono P vale $(n-2)\pi$

Prova

► Cada triângulo contribui com π ; como existe n-2 triângulos, tem-se o total de $(n-2)\pi$

Grafo dual da triangulação

Dada uma triangulação, o grafo dual é construído fazendo:

- ► Cada triângulo é um nó do grafo
- ► Cada diagonal compartilhada por dois triângulos é uma aresta ligando os dois nós correspondentes

Grafo dual da triangulação

Dada uma triangulação, o grafo dual é construído fazendo:

- ► Cada triângulo é um nó do grafo
- Cada diagonal compartilhada por dois triângulos é uma aresta ligando os dois nós correspondentes

- ► Grafo dual é uma árvore com grau máximo igual a 3
 - ► Cada triângulo tem no máximo 3 diagonais compartilhadas
 - ► Se tivesse um ciclo, o ciclo envolveria parte externa de P

Polígonos

Grafo dual da triangulação

Dada uma triangulação, o grafo dual é construído fazendo:

- ► Cada triângulo é um nó do grafo
- Cada diagonal compartilhada por dois triângulos é uma aresta ligando os dois nós correspondentes

- ► Grafo dual é uma árvore com grau máximo igual a 3
 - Cada triângulo tem no máximo 3 diagonais compartilhadas
 - ► Se tivesse um ciclo, o ciclo envolveria parte externa de *P*
- ► Se raiz tiver grau 1 ou 2, tem-se árvore binária

"Orelhas" de polígonos

Orelha

▶ Uma sequência de vértices consecutivos **abc** de *P* forma uma **orelha** se **ac** é uma diagonal

"Orelhas" de polígonos

Orelha

▶ Uma sequência de vértices consecutivos **abc** de *P* forma uma **orelha** se **ac** é uma diagonal

Tem-se:

▶ Todo polígono P com n > 3 tem pelo menos duas orelhas

"Orelhas" de polígonos

Orelha

▶ Uma sequência de vértices consecutivos **abc** de *P* forma uma **orelha** se **ac** é uma diagonal

- ▶ Todo polígono P com n > 3 tem pelo menos duas orelhas
 - ▶ Orelhas são folhas na árvore formada pelo grafo dual

Considere o grafo da triangulação

- Vértices da triangulação são nós do grafo
- ► Arestas da triangulação são arestas do grafo

Considere o grafo da triangulação

- ► Vértices da triangulação são nós do grafo
- Arestas da triangulação são arestas do grafo

- ▶ 3 cores são suficientes para colorir o grafo
 - Cada vértice recebe uma cor. e nenhum vizinho direto tem a mesma cor

Considere o grafo da triangulação

- Vértices da triangulação são nós do grafo
- Arestas da triangulação são arestas do grafo

- ▶ 3 cores são suficientes para colorir o grafo
 - Cada vértice recebe uma cor, e nenhum vizinho direto tem a mesma cor
- ► Prova por indução:
 - ▶ Para n = 3: óbvio

Considere o grafo da triangulação

- Vértices da triangulação são nós do grafo
- Arestas da triangulação são arestas do grafo

- 3 cores são suficientes para colorir o grafo
 - Cada vértice recebe uma cor, e nenhum vizinho direto tem a mesma cor
- ► Prova por indução:
 - Para n=3: óbvio
 - Por indução: retire uma orelha, até n=3, acrescente uma orelha por vez, atribuindo ao vértice uma cor diferente dos vértices da diagonal da orelha.

Considere o grafo da triangulação

- Vértices da triangulação são nós do grafo
- Arestas da triangulação são arestas do grafo

Tem-se:

- 3 cores são suficientes para colorir o grafo
 - Cada vértice recebe uma cor, e nenhum vizinho direto tem a mesma cor
- ► Prova por indução:
 - Para n=3: óbvio
 - Por indução: retire uma orelha, até n=3, acrescente uma orelha por vez, atribuindo ao vértice uma cor diferente dos vértices da diagonal da orelha.

Número de guardas:

- Um guarda em cada vértice de uma determinada cor
 - ▶ A cor menos frequente ocorre, no máximo, $\lfloor n/3 \rfloor$ vezes

Por inserção de diagonais

Por inserção de diagonais

- ► Ache uma diagonal de P
 - ▶ Diagonal não intercepta ∂P
 - ► Diagonal deve ser interna
- ▶ Divide P em P_1 e P_2
- ▶ Processe P_1 e P_2 recursivamente até n=3

Por inserção de diagonais

- ► Ache uma diagonal de *P*
 - ightharpoonup Diagonal não intercepta ∂P
 - ▶ Diagonal deve ser interna
- ▶ Divide P em P_1 e P_2
- ▶ Processe P_1 e P_2 recursivamente até n=3

- ▶ Número de diagonais candidatas: $O(n^2)$
- ▶ Determinação se diagonal: $\times O(n)$
- ▶ Repetição da computação para cada n-3 diagonais: $\times O(n)$
- ► Algoritmo completo: $O(n^4)$

Por remoção de orelha

Por remoção de orelha

- ▶ Determine se cada vértice é uma orelha potencial
 - ▶ Verifique se $\overline{\mathbf{v}_{i-1}\mathbf{v}_{i+1}}$ é diagonal
- ► Remova uma orelha
 - ▶ Atualize o estado dos vértices \mathbf{v}_{i-1} e \mathbf{v}_{i+1} , apenas
 - ► A orelha é um dos triângulos resultantes
 - ▶ Repita até n = 3

Por remoção de orelha

- ▶ Determine se cada vértice é uma orelha potencial
 - ▶ Verifique se $\overline{\mathbf{v}_{i-1}\mathbf{v}_{i+1}}$ é diagonal
- ► Remova uma orelha
 - ▶ Atualize o estado dos vértices \mathbf{v}_{i-1} e \mathbf{v}_{i+1} , apenas
 - ► A orelha é um dos triângulos resultantes
 - ► Repita até *n* = 3

- ▶ Computação de orelhas potenciais: $O(n^2)$
 - n vértices
 - ightharpoonup O(n) para testar cada diagonal

Por remoção de orelha

- ▶ Determine se cada vértice é uma orelha potencial
 - ▶ Verifique se $\overline{\mathbf{v}_{i-1}\mathbf{v}_{i+1}}$ é diagonal
- ► Remova uma orelha
 - ▶ Atualize o estado dos vértices \mathbf{v}_{i-1} e \mathbf{v}_{i+1} , apenas
 - ► A orelha é um dos triângulos resultantes
 - ► Repita até *n* = 3

- ▶ Computação de orelhas potenciais: $O(n^2)$
 - n vértices
 - ightharpoonup O(n) para testar cada diagonal
- ▶ Repetição: O(n²)
 - ▶ n − 3 iterações
 - ightharpoonup Em cada iteração, apenas dois vértices são atualizados: O(n)

Por remoção de orelha

- Determine se cada vértice é uma orelha potencial
 - ▶ Verifique se $\overline{\mathbf{v}_{i-1}\mathbf{v}_{i+1}}$ é diagonal
- ► Remova uma orelha
 - ▶ Atualize o estado dos vértices \mathbf{v}_{i-1} e \mathbf{v}_{i+1} , apenas
 - ► A orelha é um dos triângulos resultantes
 - ► Repita até *n* = 3

- ▶ Computação de orelhas potenciais: $O(n^2)$
 - n vértices
 - \triangleright O(n) para testar cada diagonal
- ▶ Repetição: O(n²)
 - ▶ n 3 iterações
 - \blacktriangleright Em cada iteração, apenas dois vértices são atualizados: O(n)
- ▶ Algoritmo completo: $O(n^2)$

(como visto, todo polígono tem uma triangulação)

(como visto, todo polígono tem uma triangulação)

Isso se estende para 3D?

► Todo poliedro tem uma tetraetrização?

Polígonos

(como visto, todo polígono tem uma triangulação)

Isso se estende para 3D?

- ► Todo poliedro tem uma tetraetrização?
 - ► Não!

(como visto, todo polígono tem uma triangulação)

Isso se estende para 3D?

- ► Todo poliedro tem uma tetraetrização?
 - ► Não!
 - ► Menor exemplo: Poliedro de Schönhardt
 - ► Prisma triangular torcido de 30 graus

Particionamento de polígonos

Propriedades e outros particionamentos

- ► Polígono monótono
- ► Triangulação de polígonos monótonos
- ► Particionamento em trapézios

Monoticidade

Função monótona

► Nunca decrescente ou nunca crescente

Polígono monótono (ou monotônico)

Uma poligonal P é monótona em relação a linha L se:

$$P \cap L' = \left\{ egin{array}{ll} \emptyset \ \{\mathbf{p}\} \ , & ext{onde} & L' \perp L \ \{I\} \end{array}
ight.$$

Polígono monótono (ou monotônico)

Uma poligonal P é monótona em relação a linha L se:

$$P \cap L' = \left\{ egin{array}{ll} \emptyset \ \{\mathbf{p}\} \ , & ext{onde} & L' \perp L \ \{I\} \end{array}
ight.$$

Um polígono P é dito monótono se:

 $ightharpoonup \partial P$ pode ser dividido em duas poligonais monótonas

Monoticidade

Propriedades

- ▶ Monoticidade pode ser observada localmente em cada vértice
 - ▶ Detecção de estrutura local de monoticidade
- Vértices podem ser ordenados em relação à linha de monoticidade
 - ightharpoonup Ordenação O(n), basta seguir a cadeia de monoticidade

Triangulação

Triangulação de polígonos monótonos $(O(n \log n))$

Polígonos

Particionamento em trapézios

Varredura de linha/plano

► Tratar eventos discretos; no caso, ocorrência de vértice

Particionamento em trapézios

Varredura de linha/plano

► Tratar eventos discretos; no caso, ocorrência de vértice

▶ Para ser eficiente, mantém-se uma lista de arestas "ativas"

Triangulação de polígonos

Observações finais:

A partir do particionamento em trapézios, pode-se decompor um polígno qualquer em polígonos monótonos

Triangulação de polígonos

Observações finais:

► A partir do particionamento em trapézios, pode-se decompor um polígno qualquer em polígonos monótonos

lacktriangle Chazelle (1991) apresentou um algoritmo O(n) para triangulação de polígonos

