# VLSI 기말 프로젝트

JPEG Compression with DCT

2017170989 주동현

#### Overall



- MATLAB-stage optimization
  - Small coefficient bit width & 2<sup>nd</sup> DCT bit width
  - DCT result Simplification
    - Decrease in DCT operations
    - Decrease in TP memory size
- Verilog-stage optimization
  - Reducing DCT area coefficient multiplication overhead
  - Glitch resolution

#### **Overall Dataflow**

$$T = \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 \\ c_2 & c_6 & -c_6 & -c_2 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_4 & -c_4 & -c_4 & c_4 \\ c_5 & -c_1 & c_7 & c_3 \\ c_6 & -c_2 & c_2 & -c_6 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ -c_7 & -c_5 & -c_3 & -c_1 \\ -c_2 & -c_6 & c_6 & c_2 \\ c_5 & c_1 & c_7 & -c_3 \\ c_4 & -c_4 & -c_4 & c_4 \\ -c_3 & -c_7 & c_1 & -c_5 \\ -c_6 & c_2 & -c_2 & c_6 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ c_5 & -c_1 & c_7 & -c_3 \\ -c_6 & c_2 & -c_4 & c_4 \\ c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$

$$c_k = \frac{1}{2} \times \cos \frac{k\pi}{16}$$

**Discrete Cosine Transform** 

#### MATLAB-stage: Optimizations

- C\_quantization\_bit = 9
- Result\_1D\_DCT\_quantization\_bit = 8 (1st DCT&TP1,2 Bit Width)
  - Crucial factor of area for both 1<sup>st</sup> DCT and TP memory 1,2
- lead to the minimal PSNR of 29.5



which lead to further optimization leg room for DCT-result simplification

# DCT Result Simplification



• Inspired by results of naïve DCT - Sensitivity Differences

| 328 | 328 | 312 | 312 | 320 | 320 | 320 | 320 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| -8  | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | -8  | -8  | 0   | -8  | 0   | -8  |
| 0   | 0   | -8  | 0   | 0   | 0   | 0   | 0   |
| -8  | 0   | -8  | 0   | 0   | 0   | 0   | 0   |
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| -8  | 0   | 0   | -8  | 0   | -8  | 0   | -8  |

| 412     | -5.7500  | 17       | -22.7500 | -59.7500 | -34.2500 | -51.2500 | 19.7500 |
|---------|----------|----------|----------|----------|----------|----------|---------|
| 67.5000 | -12.7500 | 2        | -41.5000 | -63.5000 | 8        | 4.2500   | 48.5000 |
| 42.2500 | -3.2500  | -18      | 6        | 3.5000   | 31.2500  | 23.7500  | 18.2500 |
| 45.2500 | 21       | -41      | 7.5000   | 6.2500   | -10      | -8       | 5       |
| -8.7500 | 5.5000   | 17       | -34.2500 | -3       | 11.2500  | -17.2500 | -3      |
| 12      | 23.5000  | -15.7500 | -6.5000  | 1.5000   | 11.7500  | 1.5000   | -5.5000 |
| -8.5000 | 7.2500   | 1.2500   | -14.7500 | 1.5000   | -13      | -16      | 7.5000  |
| 6       | -10.7500 | 2        | -10      | 1.2500   | 9        | 6.5000   | -6      |

c.f. Operation is transposed before calculation

#### DCT Result Simplification

- More aggressive simplification of 2<sup>nd</sup> DCT result
  - 1st DCT result is reused for 2nd DCT
    - High freq. elements of 1<sup>st</sup> DCT result are used for z0,z1 of 2<sup>nd</sup> DCT
  - But 2<sup>nd</sup> DCT result is mere output



- Lead to decrease of DCT operation and TP memory size
  - Operations for deriving z6, z7 is no longer needed
  - TP memory for storing z6, z7 is no longer needed

#### MATLAB Simulation Result

Restored image #1 PSNR : 3.033914e+01



Restored image #2 PSNR: 3.316125e+01



Restored image #3 PSNR: 3.476616e+01



Restored image #4 PSNR: 3.307670e+01



Restored image #5 PSNR: 2.916061e+01



Restored image #6 PSNR: 3.481137e+01



Restored image #7 PSNR: 3.249734e+01



Restored image #8 PSNR: 3.600666e+01



#### Verilog-stage: Control signal and Address

- A global clock with stoppage point 30 to enable each TPs
- Address counter for each SRAM for input & output
- TP control module with reference to global clock



Area of control & addr. unit was relatively small

# Verilog-stage: Reducing DCT Area

- Even & Odd DCT
- Coefficient multiplier as shift operations
- Key Objectives
  - Reduce large-bit additions: Add before shifting

| $a_1 = x_0 + x_7$ | $b_1 = a_1 + a_4$ |                   |
|-------------------|-------------------|-------------------|
| $a_2 = x_1 + x_6$ | $b_2 = a_2 + a_3$ | $c = b_1 + b_2$   |
| $a_3 = x_2 + x_5$ | $b_3 = a_1 - a_4$ | $c_2 = b_1 - b_2$ |
| $a_4 = x_3 + x_4$ | $b_4 = a_2 - a_3$ |                   |

- Operand Sharing
- Omit unused operand and calculation
  - Unnecessary calculation for z6, z7 omitted

### Verilog-stage: Glitch Resolution

- Occurs as a result of overflowing at points (1,2) and (2,1)
- Raise the truncation range of those points by 1-bit
  - controlled by a pixel address counter at 2<sup>nd</sup> DCT module
- Revise the corresponding MATLAB shifting





#### Performance

Restored image PSNR: 3.027380e+01



Restored image PSNR: 3.353156e+01



Restored image PSNR: 3.517250e+01



Restored image PSNR: 3.341888e+01



Restored image PSNR: 2.918190e+01



Restored image PSNR: 3.504731e+01



Restored image PSNR: 3.268067e+01



Restored image PSNR: 3.650700e+01



#### Performance: revised

Restored image PSNR: 3.027646e+01

Restored image PSNR: 3.353445e+01





Restored image PSNR: 2.918370e+01









# Synthesis Result

| Module name | Area (nm^2) | Percentage (%) |
|-------------|-------------|----------------|
| DCT1        | 143144.8594 | 17.3           |
| DCT2        | 163796.8125 | 19.8           |
| TP1         | 108755.5312 | 13.2           |
| TP2         | 108738.9453 | 13.2           |
| TP3         | 124083.5391 | 15.0           |
| TP4         | 124083.5391 | 15.0           |
| etc.        | 53667.0591  | 6.5            |
| Total       | 825647.0625 | 100.0          |

- Small Bit width for DCT2 and TP memory 3,4
- TP Memory 1,2 : Column 6,7 Eliminated
- TP Memory 3,4 : Column, Row 6,7 Eliminated
- DCT: Calculation of z6, z7 Eliminated

# Synthesis Result:final

| Module name | Area (nm^2) | Percentage (%) |
|-------------|-------------|----------------|
| DCT1        | 143518.0938 | 17.3           |
| DCT2        | 166857.3906 | 20.1           |
| TP1         | 108556.4531 | 13.1           |
| TP2         | 108639.3984 | 13.1           |
| TP3         | 124083.5391 | 15.0           |
| TP4         | 124083.5391 | 15.0           |
| etc.        | 53920.3388  | 6.5            |
| Total       | 829266.7500 | 100.0          |

- Small Bit width for DCT2 and TP memory 3,4
- TP Memory 1,2 : Column 6,7 Eliminated
- TP Memory 3,4 : Column, Row 6,7 Eliminated
- DCT: Calculation of z6, z7 Eliminated