Hyperplane

Ling572 Advanced Statistical Methods for NLP February 19, 2019

Points and Vectors

- A point in n-dimensional space is given by an n-tuple
 - E.g., **P=(p_i)**
 - Represents an absolute position in space
- A vector represents a magnitude and direction in space, also given by an n-tuple
 - Vectors do not have a fixed position in space
 - Can be located at any initial base point P
 - A vector from point P to point Q is given by:

$$v = Q - P = (q_i - p_i)$$

Vector Computation

• Vector addition: $v + w = (v_i + w_i)$

• Vector subtraction: $v - w = (v_i - w_i)$

• Length of a vector: $|v| = \sqrt{\sum_{i=1}^{n} v_i^2}$

http://geomalgorithms.com/points_and_vectors.html

Normal Vector

 A normal vector is a vector perpendicular to another object, e.g. a plane

- A unit normal vector is a vector of length 1
 - If N is normal vector, the unit normal vector is

N

Where is |N| is the length of N

Equation for a Hyperplane

 A 3-D plane determined by normal vector N=(A,B,C) and point Q= (x0, y0, z0) is:

$$A(x-x0) + B(y-y0) + C(z-z0) = 0$$

Which can be written as

$$Ax + By + Cz + D = 0$$
, where $D = -Ax0 - By0 - Cz0$

- Hyperplane:, wx + d = 0
 - Where w is a normal vector, x is any point on hyperplane
 - Separates the space into 2 half spaces:

$$wx + d < 0$$
 $wx + d > 0$

Distance from Point to Plane

• Given a plane Ax+By+Cz+D=0 and point $P=(x_1,y_1,z_1)$, the distance from P to the plane is:

$$\frac{\left| Ax_1 + By_1 + Cz_1 + D \right|}{\sqrt{A^2 + B^2 + C^2}}$$

 More generally, distance from point x to hyperplane wx+d=0 is:

$$\frac{\left|wx + d\right|}{\left\|w\right\|}$$

Distance between two parallel planes

- Two planes $A_1x+B_1y+C_1z+D_1=0$ and $A_2x+B_2y+C_2z+D_2=0$ are parallel if:
 - $A_1=kA_2$ and $B_1=kB_2$ and $C_1=kC_2$
- The distance between planes Ax+By+Cz+D1=0 and Ax+By+Cz+D2=0 is equal to the distance between a point (x_1,y_1,z_1) on one plane to the other

$$\frac{\left|Ax_1 + By_1 + Cz_1 + D2\right|}{\sqrt{A^2 + B^2 + C^2}} = \frac{\left|D2 - D1\right|}{\sqrt{A^2 + B^2 + C^2}}$$