

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2009(1)

MEMORANDUM

MARKS: 150

This memorandum consists of 25 pages.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.1	✓ 522,5
$1.1 \qquad \text{Mean} = \frac{522,5}{12} = 43,5$	✓ answer
12	(2)
ANSWER ONLY: Full marks	No penalty for
	Rounding:
	_
	Accept 43,54; 44
1.2 Ordered Data	√ 9,3
9,3 14,9 15 23,6 26,1 28 32,5 60,9	
65,7 71,9 76,4 98,2	✓ 19,3
	√ 30,3
28 + 32 5	✓ 68,8
Median = $\frac{28+32,5}{2}$ = 30,3	00,0
2	√ 98,2
Lower quartile = $\frac{15 + 23.6}{2}$ = 19.3	
Lower quartile $-\frac{19,3}{2}$	(5)
657 + 710	
Upper quartile = $\frac{65,7+71,9}{2} = 68,8$	If indicated on the
2	box and whisker
. (0.2, 10.2, 20.25, (0.0, 00.2)	diagram in 1.3 –
The five number summary is (9,3; 19,3; 30,25; 68,8; 98,2)	5 marks
OR	Jimarks
If they use the formula:	
Ordered Data	
9,3 14,9 15 23,6 26,1 28 32,5 60,9	
65,7 71,9 76,4 98,2	
$P_{50} = \frac{12+1}{2} = 6.5$	
Position of median:	
$\therefore Q_2 = \frac{28 + 32,5}{2} = 30,3$	
2 2 2 2 2	
Position of lower quartile: $P_{25} = \frac{13}{4}$	
·	
$\therefore Q_1 = 15 + (0.25(23.6 - 15)) = 17.15$	
Position of upper quartile: $P_{75} = 0.75(13) = 9.75$	
$\therefore Q_3 = 65,7 + (0,75(71,9 - 65,7)) = 70,35$	
Min = 9,3	
Max = 98,2	
Accept any one of these five number summaries:	
(9,3; 19,3; 30,3; 68,8; 98,2)	
(9,3; 15; 30,3; 71,9; 98,2)	
(9,3; 17,2; 30,3; 70,4; 98,2)	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.3								
								✓ minimum and
	<u> </u>						-	maximum values
								✓ quartiles and median
	0 10	20 30	40 50	60 70	80	90	100	✓ whiskers with
								median line
		Note:						(3)
			t a box and w	hisker wi	thout ar	ıy		
			ence to the nu			J		
1.4	The data is sl					. 1	1.	✓ ✓ comment about
	This suggests and the maxi							rainfall.
	rainfall in tha		(Some monu	is iiau cac	Сриона	my mg	11	Note: (2)
		··· J ···)·						Skewed to right 1/2
	Die data is sh							
	Dit dui daare	•	0					✓ ✓ verwysing na
	maksimum re gehad gedure		-	iei ongew	oon noe	e reenv	ш	reënval
		riae are juan						(2)
1.5	By using the	calculator, o	$\sigma = 28,19$.	(28	,190582	256)		✓✓✓answer
	OR Pen and	Paner meth	ad (not reco	mmended	4)			Accept: 28; 28,2;
	Mean = 43.54	_	ou (not reco		.541666	667)		28,1
	x	$x-\overline{x}$	$(x-\overline{x})^2$			Í		(-)
	60,9	17,36	301,3696					
	14,9	-28,64	820,2496					
	9,3	-34,24	1172,378					
	28,0	-15,54	241,4916					
	71,9	28,36 32,86	804,2896 1079,78					
	98,2	54,66	2987,716					
	65,7	22,16	491,0656					✓ headings correct
	26,1	-17,44	304,1536					✓ sum of the squares
	32,5	-11,04	121,8816					of the mean
	23,6	-19,94 -28,54	397,6036 814,5316					deviations
		-20,34 Im	9536,509					
			, , , , , , , , , , , , , , , , , , , ,	1				
	$\sigma = \sqrt{\frac{330000}{12}}$	$\frac{609}{}$ = 28,19			(28	,19059)	✓ answer
	12							(3)
								[15]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

2.3	The scatter plot shows an overall decrease in the time taken by the	✓ decrease/afname
2.3	winner since 1972.	(1)
		(1)
	Die spreidiagram dui 'n algehele afname in tye aangeteken deur	
	die wenners vanaf 1972.	
	OR Time Contraction in the contraction of the contr	
	Times are faster. Tye is vinniger.	
	OR	
	Negative correlation between year and time.	
	Negatiewe korrelasie tussen jaar en tyd.	
2.4	The top athletes of the world have turned professional. This	
	allows them to train at the best facilities and receive the best	✓ any acceptable
	coaching available.	reason relating to the
	Also, equipment manufacturers are in competition with each	trend
	other. In this case, manufacturers are designing swimsuits that	(1)
	assist swimmers	
	Swimmers train harder and put in more effort.	
	Die top atlete van die wêreld het professionele atlete geword. Dit	✓ enige aanvaarbare
	laat hulle toe om by die beste fasiliteite te oefen en die beste	rede wat verband hou
	afrigting te ontvang.	met die neiging.
	Vervaardigers van voorraad is in kompetisie met mekaar. Hul	(1)
	onwerp dus swembroeke wat die swemmers help.	, ,
	Swemmers oefen harder en gebruik meer tyd om te oefen.	
2.5	In the context of the times around these two observations, one can	✓✓ acceptable reason
	consider the efforts of 1976 and 1988 to be outliers. This shows	in context
	that these athletes were exceptionally good swimmers at the time.	(2)
	Binne die konteks van tye gedurende hierdie twee waarnemings,	✓✓ aanvaarbare rede
	kan die poging van 1976 and 1988 gesien word as uitskieters. Dit	binne die konteks
	dui daarop dat hierdie atlete uitstekende swemmers was daardie	omine die nomens
	tyd.	(2)
2.6	Winning time of 2008 is expected to be about 47,6 seconds.	✓answer from graph
2.0	Accept answer from candidate's graph.	(1)
	11000pt answer from candidate 5 graph.	[8]
		[0]

3.1	50	✓ answer
		(1)
3.2	Cut-off mark of 56% (37 students)or 58% (38 students) Accept interval: 55% - 60%	✓ answer read off from ogive (1)

Mathematics/P2 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

3.3			
	Marks Fre (out of 100)	(f)	
	0 ≤ marks <10	1	✓ class intervals Accept
	10 ≤ marks <20	3	0-10; $10-20$
	20 ≤ marks <30	4	Or $0 < marks \le 10$
	30 ≤ marks <40	11	Or
	40 ≤ marks <50	12	Between 0 and 10 Or
	50 ≤ marks <60	9	From 0 to 10
	60 ≤ marks < 70	5	If the intervals not in
	70 ≤ marks <80	4	tens, the mark for intervals not given
	80 ≤ marks <90	1	intervals not given
	90 ≤ marks <100	0	✓method
			✓ accuracy of five answers (3) [5]

QUESTION 4

4.1	$\tan 45^{\circ} = m_{AB}$	✓ tan 45°	
	= 1 OR	✓ answer	(2)
	$m_{AB} = \frac{3-0}{1-t} = \frac{3}{1-t}$	Answer only: full marks	
	1-t $1-t$		
4.2	$\frac{3-0}{1-t} = \tan 45^\circ = 1$	✓ equating	
	1-t=3	✓ value	
	t = -2		(2)
	OR		
	y = mx + c		
	3 = (1)(1) + c		
	c=2	✓c=2	
	y = x + 2		
	(t;0) in $y = mx + 2$		
	0 = t + 2		
	t = -2	✓value	
	_		(2)
		Answer only: full marks	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

4.2		/14i4-4i :
4.3	$\sqrt{(1-p)^2 + (3+4)^2} = \sqrt{50}$	✓ substitution into distance formula
	$(1-p)^2 + (3+4)^2 = 50$	
	$1 - 2p + p^2 + 49 = 50$	✓ expansion
	$p^2 - 2p = 0$	· Capansion
	p(p-2)=0	✓ factors
	$p \neq 0$ or $p = 2$	✓ answer Note: If an answer was not
	OR	chosen: 3/4
		✓ substitution into distance (4)
	$(1-p)^2 + (3+4)^2 = 50$	formula
	$(1-p)^2 = 50 - 49$	
	$(1-p)^2 = 1$	✓ expansion
	$ \begin{vmatrix} 1 - p = 1 & 1 - p = -1 \\ p \neq 0 & p = 2 \end{vmatrix} $	✓factors
	$p \neq 0$ $p = 2$	✓ answer
	OR	(4) If gradient of BC assumed as -1
	Let $p = 2$	and p calculated correctly: 0/4
	$AC = \sqrt{(1-2)^2 + (3+4)^2}$	Answer only: 1/4
	$=\sqrt{1+49}$	✓ substitution into distance
	$=\sqrt{50}$	formula
	which is true	
	$\therefore p = 2$	$\sqrt{50}$
		✓ which is true(justification) ✓ answer
		(4)
		If equating to $\sqrt{50}$ from the
4.4	(-2+2,0-4)	start, then $3/4$
	midpoint of BC = $\left(\frac{-2+2}{2}, \frac{0-4}{2}\right)$	$\checkmark x$ -value $(x = \frac{t+p}{2})$
	midpoint of BC = $(0; -2)$	
		\checkmark y-value (2)
4.5	Gradient of line = $m_{AB} = 1$	✓ gradients are equal ✓ substitution of (p;-4)
	Equation of line is: $y + 4 = 1(x - 2)$ y = x - 6	✓ substitution of $(p,-4)$ ✓ equation in any form
		(3)
	OR $y = mx + c$	[13]
	y = x - p - 4	
	1	1

- NSC Memorandum
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.1	Midpoint BD $\left(\frac{0-2}{2}, \frac{8-6}{2}\right)$	✓x-coordinate ✓y-coordinate
	=(-1;1)	(2)
5.2	y = 7(-8) + 58	✓substitution
	= 2	(1)
	∴ A lies on the line.	Substitute both at the same time with justification (1)
5.3	The line $y = 7x + 58$ is a tangent to the circle at A.	✓relationship
	$m_{line} \times m_{AM} = 7 \times -\frac{1}{7} = -1$ $\therefore AM \perp \text{ to the line}$	$\checkmark m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$ $\checkmark m_{line} = 7$ $\checkmark product$ (5)
	OR	

NOTE:

 $m_{line} = 7$ and CA gradient

of AM then no relationship: 4/5

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.3	OR	
contd	$m_{BD} = 7$	$\checkmark \checkmark m_{BD} = 7$
	$m_{line} = 7$	$ \checkmark m_{line} = 7 $
	:. line // diameter	
		✓ conclusion (5) Note: Only lines parallel 4/5
	OR	
	$(x+1)^2 + (y-1)^2 = 50$	✓ circle equation
	$x^{2} + 2x + 1 + y^{2} - 2y + 1 = 50$ $x^{2} + 2x + 1 + (7x + 58)^{2} - 2(7x + 58) + 1 = 50$	✓ substitution of $y = 7x + 58$
	$x^{2} + 2x + 1 + 49x^{2} + 812x + 3364 - 14x - 116 + 1 = 50$ $50x^{2} + 800x + 3200 = 0$ $x^{2} + 16x + 64 = 0$	✓ standard form
	$(x+8)^2 = 0$	✓ answer
	x = -8	✓ tangent
	y=2	(5)
	y = 7x + 58 is a tangent to the circle	
5.4	$AD = \sqrt{(8-2)^2 + (0+8)^2}$	✓ substitution
	$=\sqrt{36+64}$	
	=10	✓ answer
	$AB = \sqrt{(2+6)^2 + (-8+2)^2}$	✓ substitution
	$=\sqrt{64+36}$	
	= 10	✓ answer (4)
		Note: Answers $\sqrt{10}$ then $3/4$

- DoE/November 2009(1)
- Consistent Accuracy will apply as a general rule.

Mathematics/P2

- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.5	$m_{AD} = \frac{8 - (2)}{0 - (-8)}$	
	$m_{AD} = \frac{3}{4}$	✓ gradient of AD
	$m_{AB} = \frac{2 - (-6)}{-8 - (-2)}$	✓ gradient of AB
	$= -\frac{4}{3}$ $m_{AB}.m_{AD} = -\frac{4}{3} \times \frac{3}{4}$	
	$= -1$ $D\hat{A}B = 90^{\circ}$	✓ PRODUCT (3)
	OR BD ² = $(8+6)^2 + (0+2)^2$ = 200	✓ distance formula
	$= AD^2 + AB^2$ $\therefore D \stackrel{\wedge}{A} B = 90^{\circ}$	✓ Pythagoras ✓ conclusion (3)
	OR $a^{2} = b^{2} + d^{2} - 2(b)(d)\cos A$ $200 = 100 + 100 - 2(10)(10)\cos A$	✓ cos rule ✓ substitution
	$0 = -200\cos A$ $A = 90^{\circ}$	✓ conclusion (3)
	$\begin{array}{c} \mathbf{OR} \\ (AD)^2 = 100 \end{array}$	
	$(AB)^{2} = 100$ $BD^{2} = (-2 - 0)^{2} + (-6 - 8)^{2}$	$\checkmark BD^2 = 200$
	$= 4 + 196$ $= 200$ $\therefore BD^2 = AD^2 + AB^2$	$\checkmark BD^2 = AD^2 + AB^2$ $\checkmark \text{ conclusion}$ (3)
	$\therefore D\hat{A}B = 90^{\circ} \qquad \text{(Pyth)}$, , , , , , , , , , , , , , , , , , ,
	OR $\hat{A} = 90^{\circ}$ (angles in semi - circle)	✓ ✓ reason (3)
5.6	$\theta = 45^{\circ}$	✓ answer (1)

Mathematics/P2 11 DoE/November 2009(1) NSC – Memorandum

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.7	Let the radius of circle TNM be <i>r</i>	
3.7	NB = BM (properties of a kite)	✓ NB = BM
	AN = TZ = r (TZNA is a square)	$\checkmark ND - DIVI$ $\checkmark AN = TZ = r$
	NB = 10 - r $NB = 10 - r$	$\checkmark NB = 10 - r$
	BD = 2MB	$\checkmark BD = 10 - 7$ $\checkmark BD = 2MB$
	$\sqrt{(8-(-6))^2+(0-(-2))^2}=2(10-r)$	\checkmark BD = $\sqrt{200}$
	$\sqrt{200} = 2(10 - r)$	
	$10\sqrt{2} = 2(10 - r)$	
	$r = 10 - 5\sqrt{2}$	✓answer
	= 2,93	(6)
	OR	
	$ZMB = 90^{\circ}$	
		✓ tan radius theorem
	$MB = \frac{1}{2}\sqrt{200}$	
	= 7,07	✓✓MB
	$\frac{ZM}{MB} = \tan 22.5^{\circ}$	
	IVID	✓ tan 22,5°
	$ZM = 7.07 \tan 22.5^{\circ}$	
	= 2,93	
		✓answer
	OR	(6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.7 contd	$MB^{2} = (-1+2)^{2} + (1+6)^{2}$ $= 1+49$		
	= 50	✓✓MB	
	$MB = \sqrt{50}$ $\frac{ZM}{MB} = \tan 22.5^{\circ}$	✓ tan 22,5°	
	$ZM = 7.07 \tan 22.5^{\circ}$	✓✓answer	
	= 2,93	(6	5)
	OR		
	By a well known formula		
	Area $\triangle ABD = r \times (\text{semi-perimeter})$ $\frac{1}{2} \times 10 \times 10 = r \times \frac{1}{2} (20 + \sqrt{200})$	✓ formula $\checkmark \sqrt{200}$ $\checkmark \checkmark$ answer	
	$50 = r(10 + 5\sqrt{2})$ $r = 2.93$	(6)
	OR $MB = \sqrt{50}$ (radius of circle) $NB = \sqrt{50}$ (adjacent sides of kite) $AB = 10$	✓MB ✓ NB	
	$AN = 10 - \sqrt{50} = 2,93$	✓✓AN = 2,93	
	But TANZ is a square ∴ AN = ZN	✓ square ✓ answer	
	$\therefore \text{ radius} = 2,93$	v answer (6	5)

Mathematics/P2 13 NSC – Memorandum

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 6

6.1.1	$4\times5=20$ squared units	✓✓answer
		$2^2 \times 5$ 1/2 If $2 \times 5 = 10$ 0/2
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6.1.2	$(x;y) \rightarrow (2x;2y)$	$\sqrt{2x}$
		✓ 2 <i>y</i>
	Note:	(2)
	If candidate state: coordinates times two 2/2	If $(kx; ky):1/2$
		If $2(x; y)$: $2/2$
6.1.3	-	\checkmark coordinates A'
		\checkmark coordinates B'
		\checkmark coordinates C'
	(-2;8)	(3)
		If diagram not
	-	drawn but
		coordinates correctly given: 1/3
	B A	correctly given. 1/3
	- - - - - - - - - - - - -	If coordinates
		correctly plotted but
		not joined: 2/3
	\$ -7 -6 -5 -4 -3 -2 -1 O 2 -3 -4 -5 -5 -7 -8 -9 10 11 -*	
	│ -├ ├ ├ ├ ├ ├ ├ ├ -	
	│	
6.1.4	Not rigid. The shape remains the same, whilst the size is changed /enlarged	✓✓ same shape and
		different size
	Note: Shape remains the same: 1/2	not rigid only 2/2
	Only the shape remains the same: 2/2	just enlarged 0/2
6.2		Mark per coordinate
	Reflection about the line $y = x : (x; y) \rightarrow (y; x)$	✓✓ reflection ✓✓ rotation
	Rotate clockwise about the origin: $(y; x) \rightarrow (x; -y)$ Translate 2 left and 3 down: $(x; -y) \rightarrow (x; -y)$	✓ translation
	Translate 2 left and 3 down: $(x; -y) \rightarrow (x-2; -y-3)$	(6)
	OR	A marrian ar-1
	General rule: $(x; y) \rightarrow (x-2; -y-3)$	Answer only: Full marks
		[15]
L	I .	

- Mathematics/P2 14 NSC – Memorandum
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

The first 2 transformations in the given order is the same as the r in the x-axis i.e. $(x; y) \rightarrow (x; -y)$ Then the translation gives us $(x; y) \rightarrow (x; -y) \rightarrow (x-2; -y-3)$	eflection
NOTE: If just given: $(x; y) \rightarrow (x-2; y-3)$: 2/6 If using $(x; y) \rightarrow (y; x) \checkmark \checkmark$ $(x; y) \rightarrow (y; -x) \checkmark$ $(x; y) \rightarrow (x-2; y-3) \checkmark$ throughout :4/6	If learner starts $(x; y)$ and continuous $(x; y)$ for second and third transformation

$T'(x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	$\checkmark x$ coordinate
	✓ y coordinate
	Clock-wise formula: 0/2
$A^{\prime} (n\cos 135^{\circ} - a\sin 135^{\circ} : a\cos 135^{\circ} + n\sin 135^{\circ})$	$\checkmark x$ coordinate
Tr (peosiss quintiss, qeosiss + punitss)	✓ y coordinate
If clockwise rotation:	(2)
$A'(p\cos 135^{\circ} + q\sin 135^{\circ}; q\cos 135^{\circ} - p\sin 135^{\circ})$	G. 2 - 1
	CA from 7.1
$x' = p\cos(135^\circ) - q\sin(135^\circ)$	
$-1 - \sqrt{2} = -p\cos 45^\circ - q\sin 45^\circ$	✓ equating
$-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$	✓ substitution
$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots (1)$	
and $y' = y\cos(135^\circ) + p\sin(135^\circ)$	✓ equating
$1 - \sqrt{2} = -q\cos 45^\circ + p\sin 45^\circ$	
$1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$	✓ substitution $\frac{\sqrt{2}}{2}$
$1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$	
(1) + (2):	
$-2\sqrt{2} = -\sqrt{2}q$	✓ solving simultaneously
q=2	
	A' $(p\cos 135^{\circ} - q\sin 135^{\circ}; q\cos 135^{\circ} + p\sin 135^{\circ})$ If clockwise rotation: A' $(p\cos 135^{\circ} + q\sin 135^{\circ}; q\cos 135^{\circ} - p\sin 135^{\circ})$ $x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$ $-1 - \sqrt{2} = -p\cos 45^{\circ} - q\sin 45^{\circ}$ $-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$ $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2}p - \frac{\sqrt{2}}{2}q(1)$ and $y' = y\cos(135^{\circ}) + p\sin(135^{\circ})$ $1 - \sqrt{2} = -q\cos 45^{\circ} + p\sin 45^{\circ}$ $1 - \sqrt{2} = q\left(-\frac{\sqrt{2}}{2}\right) + p\left(\frac{\sqrt{2}}{2}\right)$ $1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$ $(1) + (2):$ $-2\sqrt{2} = -\sqrt{2}q$

Mathematics/P2 15 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

 \checkmark answer for qSubstitute q = 2 into(1) $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} (2)$ $-1 = -\frac{\sqrt{2}}{2}p$ Note: If not left in surd form: 6/7 $p = \sqrt{2}$ \checkmark answer for p $\therefore A = (\sqrt{2}; 2)$ (7) OR $x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$ ✓ equating $-1 - \sqrt{2} = -p \cos 45^{\circ} - q \sin 45^{\circ}$ ✓ substitution $-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$ $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots (1)$ and $y' = y \cos(135^\circ) + p \sin(135^\circ)$ ✓ equating $1 - \sqrt{2} = -q \cos 45^{\circ} + p \sin 45^{\circ}$ $1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$ \checkmark substitution $\frac{\sqrt{2}}{2}$ -0.41 = -0.71q + 0.71p...(2) (1) + (2): $-2\sqrt{2} = -\sqrt{2}a$ a = 2✓ solving simultaneously Substitute q = 2 into(1) -2.41 = -0.71p - 0.71q \checkmark answer for q1,42 p = 2p = 1.41 \checkmark answer for pNote: If not left in $\therefore A = (\sqrt{2}; 2)$ surd form: 6/7 (7)OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$$-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$$

$$p+q = -\frac{2}{\sqrt{2}}(-1 - \sqrt{2})$$

$$p+q = \sqrt{2} + 2$$
and

$$\frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$$

$$p-q = \sqrt{2} - 2$$

$$p+q = \sqrt{2} + 2$$

$$2p = 2\sqrt{2}$$

$$p = \sqrt{2}$$

$$q = 2$$

OR

A(p;q) is obtained from A' by a rotation through 135° in a clockwise direction

$$p = (-1 - \sqrt{2})\cos(-135^{\circ}) - (1 - \sqrt{2})\sin(-135^{\circ})$$

$$= (-1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right) - (1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right)$$

$$= \frac{2}{\sqrt{2}}$$

$$= \sqrt{2}$$

$$q = (1 - \sqrt{2})\cos(-135^{\circ}) + (-1 - \sqrt{2})\sin(-135^{\circ})$$

$$= (1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right) + (-1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right)$$

$$= \frac{2\sqrt{2}}{\sqrt{2}}$$

$$= 2$$

$$\therefore A = (\sqrt{2}; 2)$$

 $-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$

✓ substitution

 $\checkmark \frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$

✓ substitution $\frac{\sqrt{2}}{2}$

✓ solving simultaneously

✓ answer for q

 \checkmark answer for p

(7)

✓ substituting $(-1-\sqrt{2})$

 \checkmark substitution $\frac{1}{\sqrt{2}}$

✓ equating

✓ substitution $\frac{1}{\sqrt{2}}$

✓ substituting $(-1-\sqrt{2})$

✓ answer for q

 \checkmark answer for p

(7)

Copyright reserved

Please turn over

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	T	
8.1	$\sin \alpha = \frac{8}{17} \tag{-15;8}$	
	17	
	17	$x = -\sqrt{15}$
	$\sin \alpha > 0$: in second quadrant $y_{\alpha} = 8$ $r_{\alpha} = 17$	✓ answer
	$\begin{vmatrix} y_{\alpha} - 6 & Y_{\alpha} - 1 \\ x_{\alpha} = -15 & \text{(Pythagoras)} \end{vmatrix}$	(3) For drawing the radius
	↓	vector in the correct
	$\tan \alpha = -\frac{8}{15}$	quadrant 1/3
	15	
		Without a sketch but
8.2	$\sin(90^{\circ} + \alpha) = \cos \alpha$	correct values: 3/3 ✓ reduction
0.2		✓ answer
	$=-\frac{15}{17}$	(2)
	1 /	Answer only: full marks
		Cannot accept decimal values
8.3	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	✓ expansion
		The second
	$=1-2\left(\frac{8}{17}\right)^2$	
		✓ substitution
	$=\frac{161}{289}$	✓ any further
	289	calculation or answer
	OR	(3)
	$\cos 2\alpha = 2\cos^2 \alpha - 1$	✓ expansion
	$(-15)^2$	v expansion
	$=2\left(\frac{-15}{17}\right)^2-1$	
	161	✓ substitution
	$=\frac{101}{289}$	✓ any further
	20)	calculation or answer
	OR	(3)
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	
	$(-15)^2 (8)^2$	✓ expansion
	$=\left(\frac{-15}{17}\right)^2 - \left(\frac{8}{17}\right)^2$	
		✓ substitution
	$=\frac{161}{289}$	
		✓ any further
		calculation or answer (3)
		[8]

Mathematics/P2 18 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 9

NOTE: Only penalise once in the question for leaving out the x Penalise once in this question for treating as an equation

9.1	$\sin(90^\circ - x).\cos(180^\circ - x) + \tan x.$	$\cos(-x) \cdot \sin(180^\circ + x)$	
	$= \cos x(-\cos x) + \tan x(\cos x)(-\sin x)$		$\checkmark \sin(90^\circ - x) = \cos x$
	$=-\cos^2 x - \frac{\sin x}{\cos x} \cos x \sin x$,	$\checkmark \cos(180^\circ - x) = -\cos x$
	$=-\cos^2 x - \frac{\cos x \sin x}{\cos x}$		$\checkmark \cos(-x) = \cos x$
	$=-\cos^2 x - \sin^2 x$		$\checkmark \sin(180^\circ + x) = -\sin x$
	$= -(\cos^2 x + \sin^2 x)$		$\checkmark \tan x = \frac{\sin x}{}$
	=-1		$\cos x$ $\checkmark \text{ simplification}$
			✓ answer
			(7)
9.2	sin 190° cos 225° tan 390°		
	cos 100° sin 135°		$\checkmark \sin 190^\circ = -\sin 10^\circ$
	$= \frac{-\sin 10^{\circ}(-\cos 45^{\circ}) \tan 30^{\circ}}{100^{\circ} \cdot 100^{\circ}}$		$\checkmark \cos 225^\circ = -\cos 45^\circ$
	- sin 10° sin 45°		$\checkmark \tan 390^\circ = \tan 30^\circ$
	$-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}$		$\checkmark \cos 100^\circ = -\sin 10^\circ$
	$=\frac{\sqrt{2}\sqrt{3}}{1}$ or $=-\tan 30$		$\sqrt{\sin 135^\circ} = \sin 45^\circ \text{ or } \cos 45^\circ$
	$= \frac{-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} \text{or} = -\tan 30$	If using $-\cos 80^{\circ}$: no penalty	008 43
	1	If the candidate stop at	✓✓ substitution
	$\equiv -\frac{1}{\sqrt{3}}$	1 1	
		$=\frac{-\sqrt{2}\cdot\sqrt{3}}{\sqrt{3}}$	(7)
		<u>1</u>	
		$\sqrt{2}$	
9.3	$\sin x + 2\cos^2 x = 1$, ,
	$\sin x + 2(1 - \sin^2 x) = 1$		✓ substitution of identity
	$-2\sin^2 x + \sin x + 1 = 0$		✓ standard form
	$2\sin^2 x - \sin x - 1 = 0$		✓ factorisation
	$(2\sin x + 1)(\sin x - 1) = 0$ $\sin x = 1$		
	$x = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$		$\checkmark \sin x = 1; \sin x = -\frac{1}{2}$
	Or		_
			$\sqrt{x} = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$
			✓✓ answers (any two
			answers)
			(7)
			If $k \in \mathbb{Z}$ not included: $6/7$
			Also $\pm k.360^{\circ}; k \in N_0 \text{ or } Z$

Please turn over

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$$\sin x = -\frac{1}{2}$$

$$x = 210^{\circ} + k.360^{\circ}; k \in Z \quad OR \quad x = 210^{\circ} + k.360^{\circ}$$
or $x = 330^{\circ} + k.360^{\circ}; k \in Z \quad or \quad x = -30^{\circ} + k.360^{\circ}$
OR
$$x = -150^{\circ} + k.360^{\circ}; k \in Z \quad OR \quad x = -150^{\circ} + k.360^{\circ}; k \in Z$$
or $x = 330^{\circ} + k.360^{\circ}$
or $x = -30^{\circ} + k.360^{\circ}$

OR

$$\sin x + 2\cos^{2} x = 1$$

$$\sin x = 1 - 2\cos^{2} x$$

$$\sin x = -\cos 2x$$

$$\sin x = -\left[\sin(90^{\circ} - 2x)\right]$$

$$x = 180^{\circ} + (90^{\circ} - 2x) + k360^{\circ}$$

$$3x = 270^{\circ} + k360^{\circ}$$

$$x = 90^{\circ} + k120^{\circ}$$

$$k \in Z$$
or
$$x = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}$$

$$x = -270^{\circ} - k360^{\circ}$$

OR

$$\sin x + 2\cos^{2} x = 1$$

$$\sin x = 1 - 2\cos^{2} x$$

$$\sin x = -\cos 2x$$

$$-\cos(90^{\circ} - x) = \cos 2x$$

$$2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}$$

$$x = 90^{\circ} + k360^{\circ}$$

$$x = 30^{\circ} + k120^{\circ}$$

$$k \in Z$$

$$2x = 180^{\circ} + (90^{\circ} - x) + k360^{\circ}$$

$$x = 30^{\circ} + k120^{\circ}$$

✓ manipulation

✓ substitution of identity

✓ co ratios

$$\checkmark x = 180^{\circ} + (90^{\circ} - 2x) + k360^{\circ}$$

 $\checkmark x = 90^{\circ} + k120^{\circ}$
 $\checkmark x = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}$
 $\checkmark x = -270^{\circ} - k360^{\circ}$

If $k \in \mathbb{Z}$ not included: 6/7

✓ manipulation

✓ substitution of identity

✓ co ratios

$$√
2x = 180° - (90° - x) + k360°$$

$$√ x = 90° + k360°$$

$$√ 2x = 180° + (90° - x) + k360°$$

$$√ x = 30° + k120°$$

If $k \in \mathbb{Z}$ not included: 6/7 [20]

Mathematics/P2 20 DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 10

10.1	$\sin(A+B) \sin A \cdot \cos B + \cos A \cdot \sin B$	✓ expansions
	$\frac{1}{\cos(A+B)} = \frac{1}{\cos A \cdot \cos B - \sin A \cdot \sin B}$	
	1	
	$\sin A \cdot \cos B + \cos A \cdot \sin B = \frac{1}{\cos A \cdot \cos B}$	✓ divisions
	$= \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B} \times \frac{\cos A \cdot \cos B}{1}$	V divisions
	$\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$	
	$\frac{\sin A \cdot \cos B}{\sin A} + \frac{\cos A \cdot \sin B}{\sin A}$	
	$\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$	
	$= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} \frac{\cos A \cdot \cos B}{\sin A \cdot \sin B}$	
	$\frac{1}{\cos A \cdot \cos B} - \frac{1}{\cos A \cdot \cos B}$	✓ tanA and tanB
	$=\frac{\tan A + \tan B}{}$	(3)
	$=\frac{1}{1-\tan A \cdot \tan B}$	
	1 with with	
	OR	
	$a = \tan A + \tan B$	
	$RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$	$\sqrt{\frac{\sin A}{}}$
	$\frac{\sin A}{\sin A} + \frac{\sin B}{\sin A}$	$\sqrt{\frac{\sin A}{\cos A}}$
	$= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \frac{\sin B}{\cos A} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}}$	00371
	$-\frac{\sin A \sin B}{\cos A \cos B}$	
	$1 - \frac{1}{\cos A} \frac{1}{\cos B}$	
	$\sin A \cos B + \sin B \cos A$	✓ multiplication
	$=\frac{1}{\cos A\cos B - \sin A\sin B}$	
	sin	
	$\sin(A+R)$	✓ expansions
	$=\frac{\sin(A+B)}{\cos(A+B)}$	(3)
	$= \tan(A+B)$	
10.2	= LHS $ton C + ton(1909 + (A + B))$	✓ C
10.2	$\tan C = \tan(180^\circ - (A+B))$	V C
	$\tan C = -\tan(A+B)$	$\checkmark -\tan(A+B)$
	$\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$	✓ substitution into
	$(1-\tan A. \tan B)$	formula
	$\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$	✓ multiplication with
	$\tan C - \tan A \cdot \tan B \cdot \tan C = -\tan A - \tan B$	LCD
	$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$	
	tan A + tan B + tan C - tan A, tan B, tan C	(4)
	OR	If no conclusion: 3/4

Mathematics/P2 NSC – Memorandum

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$\hat{C} = 180^{\circ} - (\hat{A} + \hat{B})$ (angles in a triangle)	✓ C	
t	$\tan C = \tan(180^\circ - (A+B))$	✓ rearrange angle	
t	$\tan C = \tan((180^\circ - A) + (-B))$	✓ substitution into	
	$\tan C = \frac{\tan(180^\circ - A) + \tan(-B)}{\tan(180^\circ - A) + \tan(-B)}$	formula	
	$1 - \tan(180^\circ - A) \cdot \tan(-B)$	✓ expansion	
t	$\tan C(1 - \tan(180^{\circ} - A) \cdot \tan(-B)) = \tan(180^{\circ} - A) + \tan(-B)$	((4)
t	$\tan C - \tan C \tan A \tan B = -\tan A - \tan B$		(-)
t	$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$		

QUESTION 11

NOTE: Penalty of one for early rounding off once in this question

110	TE. I charty of one for early rounding off once in this question	
11.1.	$1 \mid \hat{BDA} = 208^{\circ} - 67^{\circ}$	✓ BDC = 141°
	=141°	
	sin DBA sin 141°	✓ sine rule ✓ substitution
	${97} = {120}$	Substitution
	$\sin D \hat{B} A = 0,5087006494$	$\checkmark \hat{B} = 30,58^{\circ}$
	$\hat{DBA} = 30,58^{\circ}$	✓ method or
	∴ Bearing of Ship A from Ship B = $180^{\circ} - (360^{\circ} - 208^{\circ}) + 30,58^{\circ}$	MBD = 28° ✓ answer
	= 58,58°	(6)
	OR	
	$\widehat{BDA} = 208^{\circ} - 67^{\circ}$	✓ BÔC = 141°
	= 141°	V BDC = 141°
	$\frac{\sin DBA}{\sin DBA} = \frac{\sin 141^{\circ}}{\cos 141^{\circ}}$	
	97 120	✓ sine rule
	$\sin D\hat{B}A = 0.5087006494$	✓ substitution
	$D\hat{B}A = 30,58^{\circ}$	
	then $360^{\circ} - 208^{\circ} = N\hat{D}B$ (reflex angles)	$\checkmark N\hat{D}B = 152^{\circ}$
	$\therefore N\hat{D}B = 152^{\circ}$	
	but $M\hat{B}D + N\hat{D}B = 180^{\circ}$ (co - interior angles/ angles around a point)	
	$\therefore M\hat{B}D = 28^{\circ}$	$\checkmark \hat{MBD} = 28^{\circ}$
	then $\hat{MBA} = \hat{MBD} + \hat{DBA}$	
	$=30,58^{\circ}+28^{\circ}$	✓ answer
	= 58,58°	(6)
1		

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

Copyright reserved

Please turn over

- Mathematics/P2 23 DoE/November 2009(1) NSC Memorandum
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$\Delta PBQ \equiv \Delta RAQ$ (angle, angle, side)	ratios
	$\therefore BQ = QA = 60 \text{ km}$	/ 51 20 l
	sin58 58° – PQ	✓ 51,20 km
	$\sin 58,58^\circ = \frac{PQ}{60}$	
	$\therefore PQ = 60\sin 58,58^{\circ}$	
	=51,20 km	✓ answer
		(3)
	PR = 2PQ	
	=102,4 km	
	OR	
	A	
	$\frac{BM}{120} = \cos 31,42$ $30,58^{\circ}$ 120	
	1000	
	BM = 120 × 60331, 12	✓
	=102,4	trigonometeric
	$B^{\!$	ratios
		✓ substitution
		✓ answer (3)
11.2	AB = BC = a = c	✓ equal sides
	$b^2 = a^2 + c^2 - 2ac \times \cos B$	✓ cos rule
	$b^2 = a^2 + a^2 - 2a \times a \times \cos B$	✓ substitution
	$b^2 = 2a^2 - 2a^2 \cos B$	• Substitution
	$b^2 = 2a^2(1-\cos B)$	
		✓
	$\frac{b^2}{2a^2} = 1 - \cos B$	simplification
	$\cos \mathbf{B} = 1 - \frac{b^2}{2a^2}$	(4)
	$\cos \mathbf{B} = 1 - \frac{1}{2a^2}$	
	OR	
	$\sin\frac{B}{2} = \frac{b}{2a}$	
	_	$\sqrt{\sin \frac{B}{a}}$
	$\cos B = 1 - 2\sin^2\frac{B}{2}$	$\checkmark \sin \frac{B}{2}$ $\checkmark \sin \frac{B}{2} = \frac{b}{2a}$
		$\sqrt{\sin \frac{B}{a}} = \frac{b}{a}$
	$=1-2\left(\frac{b}{2a}\right)^2$	2 2 <i>a</i> ✓ formula
		✓ substitution
	$=1-\frac{b^2}{2a^2} \qquad b/2 \qquad b/2$	(4)
1	Zu Zu	i l

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

OR	[13]
$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$	
but $a = c$	✓ cos rule ✓ equal sides
$\cos B = \frac{a^2 + a^2 - b^2}{2a \cdot a}$	✓ substitution
$=\frac{2a^2-b^2}{2a^2}$	
$=1-\frac{b^2}{2a^2}$	simplification
	(4)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

12.2	$\cos(x-30^\circ) = \frac{1}{2}$	√ manipulation
	$2\cos(x-30^\circ)=1$	✓ answer
	See points A and B on the graph	(2)
	Note:	A and B in the correct place on the graph: full marks
	If drawn the line $y = \frac{1}{2}$ and put A and B on the graph: $0/2$	
	If A and B on the x-axis: 1/2	
	If $A = -30^{\circ}$ and $B = 90^{\circ}$: $1/2$	
12.3	$\cos(x-30^\circ)=0.5$	✓ 60° (ref angle)
	$x-30^{\circ} = 60^{\circ}$ OR $x-30^{\circ} = -60^{\circ}$ $x = 90^{\circ}$ $x = -30^{\circ}$	√ 90°
	$x = 90^{\circ}$ $x = -30^{\circ}$	✓ - 30°
		(3)
		Answer only: 3/3
12.4	g'(x) = 0 is at maximum and minimum values of graph	$\checkmark \checkmark$ one for each <i>x</i> -value
	$x = 30^{\circ}$; 210°	$(2) \mid$
12.5	$x \in [-90^{\circ}; -60^{\circ}) \cup (120^{\circ}; 270^{\circ}]$	✓ notation
		✓✓ critical values
	OR	(3)
	$-90^{\circ} \le x < -60^{\circ}$ or $120^{\circ} < x \le 270^{\circ}$	
	OR	[12]
	If $x < -60^{\circ} \text{ or } x > 120^{\circ}$ 2/3	