Lecture 5 – Identifiers (2)

COSE212: Programming Languages

Jihyeok Park

2023 Fall

- Identifiers
 - Bound identifiers
 - Free identifiers
 - Shadowing
- VAE AE with variables
 - Concrete syntax
 - Abstract syntax
- In this lecture, let's learn **natural semantics** for VAE, and implement an **interpreter** for VAE.

Contents

1. Evaluation with Environments

2. Interpreter and Natural Semantics for VAE

Numbers

Addition and Multiplication

Variable Definition

Variable Lookup

3. Examples

Contents

1. Evaluation with Environments

Interpreter and Natural Semantics for VAE

Numbers

Addition and Multiplication

Variable Definition

Variable Lookup

3. Examples

Let's evaluate the following VAE expressions:

How to evaluate the expression x + y into the value 3?

$$\vdash x + y \Rightarrow 3$$

We need to keep track of the **environment** that maps identifiers to values:

$$[x \mapsto 1, y \mapsto 2] \vdash x + y \Rightarrow 3$$

Evaluation with Environments

$$\vdash e \Rightarrow n$$

Originally, the interpreter takes an expression and returns a value.

Evaluation with Environments

$$\sigma \vdash e \Rightarrow n$$

Now, we extend the interpreter to take an **environment** as well.

For example, we want to evaluate the expression x + y into the value 3 with the environment $[x \mapsto 1, y \mapsto 2]$:

$$[x \mapsto 1, y \mapsto 2] \vdash x + y \Rightarrow 3$$

Evaluation with Environments

For VAE, we need to 1) implement the **interpreter** with **environments**

```
def interp(expr: Expr, env: Env): Value = ???
```

and 2) define the **natural semantics** with **environments**.

$$\sigma \vdash e \Rightarrow n$$

We read it as "the expression e evaluates to the number n with the environment σ ."

We use the following notations:

$$\begin{array}{lll} \mathsf{Expressions} & e & & (\mathsf{Expr}) \\ \mathsf{Environments} & \sigma \in \mathbb{X} \xrightarrow{\mathsf{fin}} \mathbb{Z} & (\mathsf{Env}) \\ \mathsf{Integers} & n \in \mathbb{Z} & (\mathsf{BigInt}) \\ \mathsf{Identifiers} & x \in \mathbb{X} & (\mathsf{String}) \end{array}$$

Contents

1. Evaluation with Environments

2. Interpreter and Natural Semantics for VAE

Numbers Addition and Multiplication Variable Definition Variable Lookup

3. Examples

The **interpreter** for VAE:

The inference rule of each case for the **natural semantics** of VAE:

$$\begin{array}{c|cccc} & \sigma \vdash e \Rightarrow n \end{array}$$
 Expressions $e ::= n & (\text{Num}) \\ & | e + e & (\text{Add}) \\ & | e \times e & (\text{Mul}) \\ & | \text{val } x = e; \ e & (\text{Val}) \\ & | x & (\text{Id}) \end{array}$

Numbers


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Num(n) => ???
    ...
```

$$\sigma \vdash e \Rightarrow n$$

Num
$$\frac{???}{\sigma \vdash n \Rightarrow ???}$$

Numbers


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Num(n) => n
    ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\frac{1}{\sigma \vdash n \Rightarrow n}$$

The **expression** n evaluates to the **number** n with the **environment** σ .

Addition


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Add(1, r) => ???
    ...
```

$$|\sigma \vdash e \Rightarrow n|$$

$$\texttt{ADD} \; \frac{\texttt{???}}{\sigma \vdash e_1 + e_2 \Rightarrow \texttt{???}}$$

Addition


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Add(1, r) => interp(1, env) + interp(r, env)
    ...
```

$$\sigma \vdash e \Rightarrow n$$

ADD
$$\frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 + e_2 \Rightarrow n_1 + n_2}$$

The **expression** $e_1 + e_2$ evaluates to the **number** $n_1 + n_2$ with the **environment** σ when

- **1** The **expression** e_1 evaluates to the **number** n_1 with the **environment** σ .
- **2** The **expression** e_2 evaluates to the **number** n_2 with the **environment** σ .

Multiplication


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Mul(1, r) => interp(1, env) * interp(r, env)
   ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\texttt{MUL} \ \frac{\sigma \vdash e_1 \Rightarrow \textit{n}_1 \qquad \sigma \vdash e_2 \Rightarrow \textit{n}_2}{\sigma \vdash \textit{e}_1 \times \textit{e}_2 \Rightarrow \textit{n}_1 \times \textit{n}_2}$$

The **expression** $e_1 \times e_2$ evaluates to the **number** $n_1 \times n_2$ with the **environment** σ when

- **1** The **expression** e_1 evaluates to the **number** n_1 with the **environment** σ .
- **2** The **expression** e_2 evaluates to the **number** n_2 with the **environment** σ .


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Val(x, e, b) => ???
    ...
```

$$|\sigma \vdash e \Rightarrow n|$$

VAL
$$\frac{\vdots \vdots}{\sigma \vdash \text{val } x = e_1; e_2 \Rightarrow ???}$$


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Val(x, e, b) => ... interp(e, env) ...
   ...
```

$$\sigma \vdash e \Rightarrow n$$

VAL
$$\frac{\sigma \vdash e_1 \Rightarrow n_1 \dots}{\sigma \vdash \text{val } x = e_1; e_2 \Rightarrow ???}$$

The **expression** val $x = e_1$; e_2 evaluates to the **number** ??? with the **environment** σ when

- **1** The **expression** e_1 evaluates to the **number** n_1 with the **environment** σ .
- 2 ...


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Val(x, e, b) => ... env + (x -> interp(e, env)) ...
   ...
```

$$\sigma \vdash e \Rightarrow n$$

VAL
$$\frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \qquad \dots}{\sigma \vdash \text{val } x = e_1; e_2 \Rightarrow ???}$$

The **expression** val $x = e_1$; e_2 evaluates to the **number** ??? with the **environment** σ when

- **1** The **expression** e_1 evaluates to the **number** n_1 with the **environment** σ .
- **2** ... the **environment** $\sigma[x \mapsto n_1]$.


```
def interp(expr: Expr, env: Env): Value = expr match
   ...
   case Val(x, e, b) => interp(b, env + (x -> interp(e, env)))
   ...
```

$$\sigma \vdash e \Rightarrow n$$

$$\mathtt{Val} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \vdash e_2 \Rightarrow n_2}{\sigma \vdash \mathtt{val} \ x = e_1; \ e_2 \Rightarrow n_2}$$

The **expression** val $x = e_1$; e_2 evaluates to the **number** n_2 with the **environment** σ when

- **1** The **expression** e_1 evaluates to the **number** n_1 with the **environment** σ .
- **2** The **expression** e_2 evaluates to the **number** n_2 with the **environment** $\sigma[x \mapsto n_1]$.

Variable Lookup


```
def interp(expr: Expr, env: Env): Value = expr match
    ...
    case Id(x) => ???
    ...
```

$$\sigma \vdash e \Rightarrow n$$

ID
$$\frac{fff}{\sigma \vdash x \Rightarrow ???}$$

Variable Lookup

$$\sigma \vdash e \Rightarrow n$$

ID
$$\frac{x \in \mathsf{Domain}(\sigma)}{\sigma \vdash x \Rightarrow \sigma(x)}$$

The **expression** x evaluates to the **number** $\sigma(x)$ with the **environment** σ when

1 The variable x is in the domain of the environment σ .

Contents

1. Evaluation with Environments

Interpreter and Natural Semantics for VAE

Numbers

Addition and Multiplication

Variable Definition

Variable Lookup

3. Examples

$$\text{Num}_{\text{VAL}} \frac{\text{Id}}{\frac{\varnothing \vdash 1 \Rightarrow 1}{\text{Val}}} \frac{x \in \text{Domain}([x \mapsto 1])}{\frac{[x \mapsto 1] \vdash x \Rightarrow 1}{[x \mapsto 1] \vdash x \Rightarrow 2}} \frac{\text{Num}}{[x \mapsto 1] \vdash 2 \Rightarrow 2} \frac{}{\mathbb{Z}}$$

We can name environments σ_i to make the derivation tree concise.

$$\underset{\text{Val}}{\text{Num}} \frac{\text{Id}}{\frac{\varnothing \vdash 1 \Rightarrow 1}{\text{NDD}}} \frac{x \in \mathsf{Domain}(\sigma_0)}{\frac{\sigma_0 \vdash x \Rightarrow 1}{\sigma_0 \vdash x + 2 \Rightarrow 3}} \underbrace{\text{Num}}_{\sigma_0 \vdash 2 \Rightarrow 2} \frac{\sigma_0 \vdash x + 2 \Rightarrow 3}{}$$

$$\sigma_0 = [x \mapsto 1]$$

$$\begin{array}{c} \text{Num} \\ \text{Num} \\ \text{Val} \end{array} \frac{ \begin{array}{c} \text{Num} \\ \text{Val} \end{array} \frac{x \in \mathsf{Domain}(\sigma_1)}{\sigma_1 \vdash x \Rightarrow 1} & \mathsf{ID} \hspace{0.1cm} \frac{y \in \mathsf{Domain}(\sigma_1)}{\sigma_1 \vdash y \Rightarrow 2} \\ \hline \sigma_0 \vdash 2 \Rightarrow 2 & \sigma_1 \vdash x + y \Rightarrow 3 \\ \hline \sigma_0 \vdash \mathsf{val} \hspace{0.1cm} y = 2; \hspace{0.1cm} x + y \Rightarrow 3 \\ \hline \varnothing \vdash \mathsf{val} \hspace{0.1cm} x = 1; \hspace{0.1cm} \{\mathsf{val} \hspace{0.1cm} y = 2; \hspace{0.1cm} x + y \} \Rightarrow 3 \end{array}$$

$$\begin{array}{rcl}
\sigma_0 & = & [x \mapsto 1] \\
\sigma_1 & = & [x \mapsto 1, y \mapsto 2]
\end{array}$$

$$\begin{array}{c} \text{Num} \\ \text{Val} \\ \text{Val} \\ \hline \text{Val} \\ \hline \\ \text{VAL} \\ \hline \\ \frac{\sigma_0 \vdash 2 \Rightarrow 2}{\sigma_0 \vdash \text{val}} \\ \hline \\ \frac{\sigma_0 \vdash \text{val}}{\sigma_1 \vdash x \Rightarrow 2} \\ \hline \\ \sigma_0 \vdash \text{val} \\ x = 2; \\ x \Rightarrow 2 \\ \hline \\ \sigma_0 \vdash x \Rightarrow 1 \\ \hline \\ \sigma_0 \vdash \text{val} \\ x = 2; \\ x \rbrace + x \Rightarrow 3 \\ \hline \\ \varnothing \vdash \text{val} \\ x = 1; \\ \text{val} \\ x = 2; \\ x \rbrace + x \Rightarrow 3 \\ \hline \end{array}$$

$$\sigma_0 = [x \mapsto 1]$$
 $\sigma_1 = [x \mapsto 2]$

$$\begin{array}{c} \text{Num} \\ \text{Val} \\ \text{Val} \\ \hline \text{Val} \\ \hline \end{array} \underbrace{ \begin{array}{c} \varnothing \vdash 1 \Rightarrow 1 \end{array} \quad \text{ID} \quad \frac{x \in \mathsf{Domain}(\sigma_0)}{\sigma_0 \vdash x \Rightarrow 1}}_{\varnothing \vdash \mathsf{Val} \; x = 1; \; x \Rightarrow 1} \quad \text{ID} \quad \frac{x \not \in \mathsf{Domain}(\varnothing)}{\varnothing \vdash x \Rightarrow \mathsf{FAIL}} \\ \\ \varnothing \vdash \{\mathsf{val} \; x = 1; \; x\} + x \Rightarrow \mathsf{FAIL} \end{array}$$

$$\sigma_0 = [x \mapsto 1]$$

Summary


```
def interp(expr: Expr, env: Env): Value = expr match
  case Num(n) => n
  case Add(1, r) => interp(1, env) + interp(r, env)
  case Mul(1, r) => interp(1, env) * interp(r, env)
  case Val(x, e, b) => interp(b, env + (x -> interp(e, env)))
  case Id(x) => env.getOrElse(x, error(s"unknown variable: $x"))
```

$$\sigma \vdash e \Rightarrow n$$

$$\overline{\sigma \vdash n \Rightarrow n}$$

$$\texttt{ADD} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \quad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 \times e_2 \Rightarrow n_1 \times n_2} \qquad \texttt{MUL} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \quad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 \times e_2 \Rightarrow n_1 \times n_2}$$

$$\text{Val} \ \frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma[x \mapsto n_1] \vdash e_2 \Rightarrow n_2}{\sigma \vdash \text{val} \ x = e_1; \ e_2 \Rightarrow n_2} \qquad \text{ID} \ \frac{x \in \mathsf{Domain}(\sigma)}{\sigma \vdash x \Rightarrow \sigma(x)}$$

Exercise #2

- Please see this document¹ on GitHub.
 - Implement interp function.
 - Implement freeIds function.
 - Implement bindingIds function.
 - Implement boundIds function.
 - Implement shadowedIds function.
- It is just an exercise, and you don't need to submit anything.
- However, some exam questions might be related to this exercise.

¹https://github.com/ku-plrg-classroom/docs/tree/main/cose212/vae.

Next Lecture

First-Order Functions

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr