Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faux
 - ☐ Les porteurs de charge responsables du passage du courant électrique dans les solutions électrolytiques, sont les électrons libres .
 - ☐ La conductance d'une portion d'une solution augment lorsqu'on rapproche les plaques .
 - ☐ La conductivité molaire ionique est un facteur caractérisant le pouvoir de la solution de conduire le courant électrique.
 - ☐ La conductivité d'une solution électrolytique dépend de sa température.
 - ☐ La conductivité est la même pour toutes les solutions de même concentration.
 - ☐ À une température donnée la conductance d'une solution d'hydroxyde de sodium est toujours proportionnelle à sa concentration même si la solution est concentrée

Exercice 2

À l'aide d'une cellule conductimétrique de constante K = 2cm, on mesure la conductance d'une portion d'une solution aqueuse (S) de méthanoate de sodium $(Na^+ + HCOO^-)$ de concentration C, on trouve : G = 22mS

- 1 Calculer la résistance de la portion de la solution contenue entre les deux plaques .
- 2 Calculer la tension électrique efficace aux bornes de la cellule conductimétrique sachant que l'intensité efficace du courant qui la traverse est: I = 12,5mA
- 3 Calculer la conductivité de la solution (S) et déduire sa concentration.

Données: $\lambda_{Na^+}=5,01mS.m^2.mol^{-1}$; $\lambda_{HCOO^-}=5,46mS.m^2.mol^{-1}$

Exercice 3

La mesure de la conductivité d'une solution (S_0) d'iodure de potassium $(K^+ + I^-)$ donne la valeur : $\sigma_0 = 30, 2mS$. m^{-1}

- Calculer la conductance d'une portion de cette solution sachant que la constante de la cellule utilisée est : K = 1,5cm
- 2 Calculer la concentration de la solution.
- $oldsymbol{\mathfrak{S}}$ On prépare une solution $(oldsymbol{S}_1)$ d'iodure de potassium en diluant la solution $(oldsymbol{S}_0)$ cinq fois .
 - a –Exprimer la conductivité σ_1 de la solution (S_1) en fonction de la conductivité σ_0 de la solution (S_0) .
 - **b** Calculer la valeur de σ_1

Données: $\lambda_{K^+} = 7,4mS.m^2.mol^{-1}$; $\lambda_{I^-} = 7,7mS.m^2.mol^{-1}$

Série d'exercices

Exercice 4

On prépare solution (S) de chlorure de sodium $(Na_{(aq)}^+ + Cl_{(aq)}^-)$ de concentration C et de volume V = 50mL, en dissolvant une masse m = 1, 3g du chlorure de sodium $NaCl_{(s)}$ dans l'eau distillée.

- O Calculer la quantité de matière dissoute et déduire la concentration de la solution (S).
- 2 Calculer la conductivité de la solution (S).

Données: $\lambda_{Na^+} = 5,01mS.m^2.mol^{-1}; \lambda_{Cl^-} = 7,63mS.m^2.mol^{-1}; M(NaCl) = 58,44g.mol^{-1}$

Exercice 5

On verse dans un bécher un volume $V=2\times 10^{-4}m^3$ d'une solution d'hydroxyde de sodium $\left(Na^+_{(aq)}+HO^-_{(aq)}\right)$ de concentration $C_1=10mol.\,m^3$; et on lui ajoute à l'instant t=0s une quantité de matière $n_0=2\times 10^{-3}mol$ de méthanoate de méthyle (le volume du mélange reste constant) .

L'équation de la réaction est : $HCO_2CH_{3(aq)} + HO_{(aq)}^- \rightarrow HCO_{2(aq)}^- + CH_3OH_{(aq)}$

- 1 Dresser le tableau d'avancement de cette réaction.
- 2 Déterminer le réactif limitant et l'avancement maximale de cette réaction.
- 3 Exprimer les concentrations effectives des ions $HO_{(aq)}^-$ et $HCO_{2(aq)}^-$ en fonction de l'avancement de la réaction .
- **4** Montrer que la conductivité du mélange à un instant t est : $\sigma = -72, 2. x + 0, 25(Sm^{-1})$
- 5 Calculer la conductivité du mélange à l'état final.

Ion	Na ⁺	HCO ₂	HO ⁻
$\lambda(Sm^2mol^{-1})\times 10^{-3}$	5,01	5,46	19,9

Exercice 6

Pour étudier la cinétique de la réaction de l'acide chlorhydrique avec le zinc, on introduit dans un ballon, une masse m de zinc en poudre $Zn_{(s)}$ et on y verse à l'instant un volume $V_A=80mL$ d'une solution aqueuse d'acide chlorhydrique (le volume du mélange est V_A) $\left(H_3O_{(aq)}^++Cl_{(aq)}^-\right)$ de concentration $C_A=0$, 5mol/L. On donne : M(Zn)=65, 4g. mol^{-1} L'équation de réaction est : $2H_3O_{(aq)}^++Zn_{(s)}\to Zn^{2+}+H_{2(g)}+2H_2O_{(l)}$

- Calculer la quantité de matière initiale de $H_3O^+_{(aq)}$.
- 2 Dresser le tableau d'avancement de cette réaction.
- 3 Montrer que la conductivité du mélange dans un état intermédiaire est : $\sigma = -7,42 \times 10^2 x + 21,30 (Sm^{-1})$
- 4 Calculer la valeur de l'avancement maximal x_{max} de la réaction, et déduire le réactif limitant sachant que la conductivité du mélange à l'état final est : $\sigma_f = 13,88Sm^{-1}$.
- 6 Calculer le bilan de la quantité de matière à l'état final.
- 6 Calculer masse initiale de zinc

Données :Les conductivités molaires ioniques : $\lambda_{H_30^+} = 34$, 98mS. m^2 . mol^{-1} ; $\lambda_{Zn^{2+}} = 10$, 56 mS. m^2 . mol^{-1} ; $\lambda_{Cl^-} = 7$, 63 mS. m^2 . mol^{-1}