1)

$$f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \frac{\alpha_n \cos nx}{n} + \sum_{n=1}^{\infty} \frac{b_n \sin nx}{n}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi}$$

$$= 2\pi^2/3$$

$$\alpha_{N} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos nx dx$$

$$= 2 \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{x^2 \cos nx} dx = \frac{2}{\pi} \left(\frac{2\pi(-1)^n}{n^2} \right) = \frac{4(-1)^n}{n^2}$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx - \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin(nx) dx = 0.$$

$$f(x) = \frac{\pi}{3} + \frac{\pi}{3} + \frac{\pi}{100} + \frac$$

of
$$f(x) = |x|, -\pi < x < \pi$$

$$\frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} = \frac{1$$

$$a_0 = \frac{1}{x} \int f(x) dy = \frac{2}{x} \int_{-x}^{x} x dy = x$$

60

Cy-

C.

$$f(x) = \left(\frac{e^{2\pi} - e^{-2\pi}}{4\pi}\right) + \frac{x}{1-1} = \frac{x}{1-1}$$

$$f(x) = e^{2\pi t} - e^{-2\pi t} + \sum_{n=1}^{\infty} (e^{2\pi t} - e^{-2\pi t}) (-1)^n (2\cos nx - ns \sin nx)$$

$$\gamma = 0$$
,

000

9

=

=

3

3

9

9 9 9

9

(9)

99

$$0 = \pi/4 - 2/\pi$$
 $= (2n-1)^{3}$

$$= (N_4)(N_2) = 1 + \frac{1}{3}2 + \frac{1}{5}2 + \cdots$$

$$\times(u0) = \int \times(t) e^{-iut} dx$$

$$\times(\omega) = \int_{e}^{-3} -\int_{e}^{-3} u dt + \int_{e}^{-3} -\int_{e}^{-3} u dt$$

$$\frac{-3}{1} = \frac{1}{3u^{2}} \left(e^{j3u^{2}} - e^{-ju^{2}} + 2(e^{-ju^{2}} - e^{-ju^{2}}) \right)$$

$$\chi(w) = \frac{2}{w} \left(\sin 3w - 2 \sin w \right) = \frac{2 \sin 3w}{w} - 4 \sin w$$

1		
		//_
		1
	- lalt	
70 9) x(t)-	e o u(t).	
×140) -	fact) e - just	
	- X	
	~	
X(49)-		
100/2	(la - ju)	
	$\frac{1}{a+jw} = \frac{1}{(a-jw)}$ $\frac{1}{a+jw} = \frac{1}{(a-jw)}$	
	x (w)= (a)-ju	
	$((a)^2 + w^2)$	
	(a) + w)	
1×(w) =		
(11(00)) =		
	$\sqrt{a^2 + w^2}$	
	0 0	
\(\(\omega\) =	tan (-w)	
	lai).	
Re(x(w)	= a	
1.00 /2(10)		
	$(a)^2 + w^2$	
Im (x(w))	= _w	
	$a^2 + w^2$	
oil xCH.	e (-1+2j)t	
×(°iuo)=	1 xct) e dt	
	-do	
	- 20°	
	1 [2j-wj-1)t]	
(2)	j-jw-1) e	
	V	
	(t j w - 2 j)	
	J	
	•	
		ned with CamScanner

$$||x(w)|| = \frac{1}{(w-2)^{2}}$$

$$||x(w)|| = \frac{1$$

(n	x[n] = (n-1) (ta) (n)
	from the properties,
	\$ x[n] ← x(e) w)
	then nx (n) \ightarrow jd (xe)
	*[n] = (m-1) (a) (m)
	= n(a)m1 - (a)
	4 y(n)= (\frac{1}{a})^{(n)} - 0
	Y(eiw) = 2 y (n) e win & OTFT)
	Y(eiw) = 2 y (n) e jun (DIFT) = 2 (ta) n e jun + 2 (ta) n e jun = 2 (ta) n e jun + 2 (ta) n = 2 (ta) n e jun + 2 (ta) n
	= = 0 (eim) + = 0 (aeim)
	1-ein + 1 (Infinite GP)
	$\frac{a}{(a^{2})^{2}} = \frac{a}{a^{2}} + \frac{ae^{2}}{ae^{2}} \rightarrow \bigcirc$
	$\therefore \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
_	$z(n) = n\left(\frac{1}{a}\right)^{ n } - \left(\frac{1}{a}\right)^{ n }$
_	finding DIFT X(eiv) = jdw (Y(eiv)) - Y(eiv)
	[from eq (1) & property]
	$= \frac{ae^{i\omega}}{(ae^{i\omega})^2} - \frac{ae^{i\omega}}{(a-e^{i\omega})^2} - \frac{a}{a-e^{i\omega}} - \frac{ae^{i\omega}}{ae^{i\omega}-1}$
	$= \frac{2ae^{i\nu} - a^2e^{2i\nu}}{(ae^{i\nu} - 1)^2} - \frac{a^2}{(a-e^{i\nu})^2}$
	$X(e^{i\omega}) = -a^2e^{2i\omega} + aae^{i\omega} - a^2$ $(ae^{i\omega} - 1)^2 \qquad (a-e^{i\omega})^2$