Measure Theory

Lectures by Claudio Landim

Notes by Yao Zhang

Instituto de Matemática Pura e Aplicada, Spring 2018

1 Lecture 1	1	17 Lecture 17	18
2 Lecture 2	3	18 Lecture 18	19
3 Lecture 3	4	19 Lecture 19	20
4 Lecture 4	5	20 Lecture 20	21
5 Lecture 5	6	21 Lecture 21	22
6 Lecture 6	7	22 Lecture 22	23
7 Lecture 7	8	23 Lecture 23	24
8 Lecture 8	9	24 Lecture 24	25
9 Lecture 9	10	25 Lecture 25	26
10 Lecture 10	11	26 Lecture 26	27
11 Lecture 11	12	27 Lecture 27	28
12 Lecture 12	13	28 Lecture 28	29
13 Lecture 13	14	29 Lecture 29	30
14 Lecture 14	15	30 Lecture 30	31
15 Lecture 15	16	31 Lecture 31	32
16 Lecture 16	17	32 Lecture 32	33

Introduction

These lectures are mainly based on the books Introduction to measure and integration by S. J. Taylor published by Cambridge University Press.

There are many other very good books on the subject. Here is a partial list:

These notes were live-TeXed, though I edited for typos and added diagrams requiring the TikZ package separately. I used the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to jaafar_zhang@163.com.

Acknowledgments

Thank you to all of my friends who will send me suggestions and corrections. My notes will be much improved due to your help.

I would like to especially thank the IMPA and Professor Landim who put their courses in website.

Introduction: a Non-measurable Set

 λ satisfies the flowing:

0.
$$\lambda: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_+ \cup \{+\infty\}$$

1.
$$\lambda((a,b]) = b - a$$

2.
$$A \subseteq \mathbb{R}$$
, $A + x = \{x + y : y \in A\}$, $\forall A, A \subseteq \mathbb{R}$, $\forall x \in \mathbb{R}$:

$$\lambda \left(A+x\right) =\lambda \left(A\right) \tag{1.1}$$

3. $A = \bigcup_{j \geqslant 1} A_j$, $A_j \cap A_k = \varnothing$:

$$\lambda\left(A\right) = \sum_{k} \lambda\left(A_{k}\right) \tag{1.2}$$

Definition 1.1. $x \sim y, x, y \in \mathbb{R}$ if $y - x \in \mathbb{Q}$. $[x] = \{y \in \mathbb{R}, y - x \in \mathbb{Q}\}$.

 $\Lambda = \mathbb{R}|_{\sim}$, only one point represents the equivalence class of Ω , like α, β .

 Ω is a class of equivalence class, if $\Omega \subseteq R, \Omega \subseteq (0,1)$

Claim 1.1.
$$\begin{cases} \Omega+q=\Omega+q\\ \Omega+q\cap\Omega+q=\varnothing \end{cases} \quad q,p\in\mathbb{Q}$$

Proof. Assume that $\Omega + q \cap \Omega + q \neq \emptyset$ then, $x = \alpha + p = \beta + q$, $\alpha, \beta \in \Omega \Rightarrow \alpha - \beta = q - p \in \mathbb{Q} \Rightarrow \alpha = \beta \Rightarrow [q \neq p, p, q \in \mathbb{Q} \Rightarrow (\Omega + q) \cap (\Omega + p) = \emptyset]$.

Claim 1.2. $\Omega + q \subseteq (-1, 2)$, if -1 < q < 1.

then we can get

$$\sum_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} (\Omega + q) \subseteq (-1, 2) \tag{1.3}$$

Claim 1.3. $E \subseteq F \Rightarrow \lambda(E) \leqslant \lambda(F)$

Proof. $:: E \subseteq F :: F = E \cup (F \setminus E), E \cap (F \setminus E) = \emptyset$, then $\lambda(F) = \lambda(E) + \lambda((F \setminus E)) \Rightarrow \lambda(F) \geqslant \lambda(E)$.

Then,

$$\lambda \left(\sum_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} (\Omega + q) \right) \leqslant \lambda \left((-1, 2) \right) = 3 \tag{1.4}$$

On the other hand,

$$\lambda\left(\left(\Omega+q\right)\right) = \lambda\left(\Omega\right) = 0 \Rightarrow \lambda\left(\sum_{\substack{q \in \mathbb{Q}\\-1 < q < 1}} \left(\Omega+q\right)\right) = 0 \tag{1.5}$$

Claim 1.4.
$$(0,1) \subseteq \sum_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} (\Omega + q)$$

Proof. \forall fixed $x \in (0,1)$, $\exists \alpha \in [x] \cap \Omega$, $\alpha \in (0,1)$, and we know that $\alpha - x = q \in \mathbb{Q}$, $- < q < 1 \Rightarrow x = \alpha + q$, $x \in \Omega + q$

But, we get that:

$$1 = \lambda ((0,1)) \leqslant \lambda \left(\sum_{q \in \mathbb{Q}} \Omega + q \right) = 0$$
 (1.6)

it is impossible.

Classes of Subsets (Semi-algebras, Algebras and Sigma-algebras) and Set Functions

Set Functions

Caratheodory Theorem

Monotone Classes

The Lebesgue Measure I

The Lebesgue Measure II

Complete Measures

Approximation Theorems

Integration: Measurable and Simple Functions

Measurable Functions

Definition of The Integral

Integral of Simple Functions

Properties of The Integral I

Properties of The Integral II

Theorems on The Convergence of Integrals

Product Measures

Measure On a Countable Product of Spaces

Fubini's Theorem

Hahn-Jordan Theorem

Radon-Nikodym Theorem

Almost Sure and Almost Uniform

Convergence in Measure

 $H^{\ddot{o}}$ elder and Minkowski inequalities

 L_p Spaces

From Convergence in Measure to Convergence in \mathcal{L}_p

Bounded Linear Operators in L_p

Vitali's Covering Lemma

Differentiability of Functions of Bounded Variations

Absolutely Continuous Functions

Decomposition of Distribution

Cantor Ternary Set and Function