My Presentation Lab 4 work

XXX, 2051XXXX

March 12, 2023

Outline

Introduction

Example

Application

XXX, 2051XXXX My Presentation

First order derivative

Stationary Point

 x_0 is a stationary point of f(x) if $f'(x_0) = 0$.

3/10

Second order derivative

If x_0 is a stationary point of y = f(x), then f(x) may achieve its maximum/minimum value at $x = x_0$.

4/10

Second order derivative

If x_0 is a stationary point of y = f(x), then f(x) may achieve its maximum/minimum value at $x = x_0$.

Second Derivative Test

- If $f''(x_0) < 0$, then f has maximum value at $x = x_0$.
- If $f''(x_0) > 0$, then f has minimum value at $x = x_0$.

Question

Find the (local) maximum/minimum values of function

$$f(x) = 3x^4 - 20x^3 + 36x^2 - 15$$

XXX, 2051XXXX My Presentation March 12, 2023 5 / 10

Question

Find the (local) maximum/minimum values of function

$$f(x) = 3x^4 - 20x^3 + 36x^2 - 15$$

Solution:

$$f'(x) = 12x^3 - 60x^2 + 72x \tag{1}$$

$$f''(x) = 36x^2 - 120x + 72 (2)$$

 $f'(x) = 0 \Rightarrow x = 0, 2, 3$ are stationary points of f(x).

Cont'd

Below is a table for summarizing the test result:

$(x_0, f(x_0))$	$ f''(x) _{x=x_0}$	classification
(0, -15)	> 0	point of minimum
(2, 17)	< 0	point of maximum
(3, 12)	> 0	point of minimum

Table: Second Derivative Test

6/10

Function plot

Below is a plot of y = f(x) in **GeoGebra**:

Figure: $f(x) = 3x^4 - 20x^3 + 36x^2 - 15$

Use Newton-Raphson Method to find one apporximate root at P (correct to 5 $\frac{\text{Newton-Raphson Method}}{\text{d.p.}}$), with $x_0 = 1$.

XXX, 2051XXXX My Presentation March 12, 2023 8 / 10

Use Newton-Raphson Method to find one apporximate root at P (correct to 5 $\frac{\text{Newton-Raphson Method}}{\text{d.p.}}$), with $x_0 = 1$.

XXX, 2051XXXX My Presentation March 12, 2023 8 / 10

Use Newton-Raphson Method to find one apporximate root at P (correct to 5 $\frac{\text{Newton-Raphson Method}}{\text{d.p.}}$), with $x_0 = 1$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= \cdots$$

$$= \frac{9x_n^4 - 40x_n^3 + 36x_n^2 + 15}{12x_n^3 - 60x_n^2 + 72x_n}$$
 (4)

Use Newton-Raphson Method to find one apporximate root at P (correct to 5 $\overline{\text{d.p.}}$), with $x_0 = 1$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= \cdots$$

$$= \frac{9x_n^4 - 40x_n^3 + 36x_n^2 + 15}{12x_n^3 - 60x_n^2 + 72x_n}$$
 (4)

n	X _n
0	1.0000
1	0.8333
2	0.8384
3	0.8384

8/10

Use Newton-Raphson Method to find one apporximate root at P (correct to 5 $\overline{\text{d.p.}}$), with $x_0 = 1$.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= \cdots$$

$$= \frac{9x_n^4 - 40x_n^3 + 36x_n^2 + 15}{12x_n^3 - 60x_n^2 + 72x_n}$$
 (4)

n	Xn
0	1.0000
1	0.8333
2	0.8384
3	0.8384

 \therefore the desired root $x^* = 0.8384$.

8/10

Remark

The iteration formula in previous frame is typeset by the following command lines:

```
\begin{eqnarray}
x_{n+1}&=& x_n-\frac{f(x_n)}{f'(x_n)}\\[1ex]
&=& \cdots \nonumber\\[1ex]
&=& \frac{9x_n^4-40x_n^3+36x_n^2+15}{12x_n^3-60x_n^2+72x_n}
\end{eqnarray}
```

9/10

Thank you!

Any questions?