Term 4: Probabilidad Condicionada

Definición

Sec. (12, A, P) in expans probabilistics orbitrario y A in success (AeA) to large P(A) > 0. Para coalquier otro success B. A , se define by probabilidad andiairanda de B a A o probabilidad de B condicionada a A como:

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

os la propia definiará:

P(ANB) = P(A)P(B|A) & P(A) >0 0 P(ANB) = P(B)P(AIB) & P(B)>0

Tarena de la propositidad compresso o regle de la multiplicación

Sec. (2, 1, 2) in equals de probabilidad y $A_1, ..., A_n \in A$ can $P[n_{i+1}^{n+1} A_i] > 0$ enforces:

Tecremo de la probabilidad total

Sea (2, 4, P) in expans to probabilities γ sea $\{A_n\}_{n\in\mathbb{N}}$ CA in sidema ampleto de success o partición de 2 can $P(A_n) > 0$, $\forall n\in\mathbb{N}$ sea B in success avalgnment de A_1 entences

$$P(B) = \sum_{n=1}^{\infty} P(A_n) P(B|A_n)$$

Regler de Bayes o de la probabilidad inversa

Independencia de sucesos

Sea (Ω, λ, P) in especies de probabilidad y $A \in A$ can P(A) > 0. La carrencia del sueseo A prede alterar la probabilidad de carrencia de malguer otro sueseo $B \in A \cdot AI$ estudia divers probabilidades , preden darse:

- 1) P(BIA) + P(B), es decir, la courencie del suese A modifica
- la productividad de acurarcolo de B. Diranos artenes que B departe de A.
 - · BI P(BIA) > P(B), enterces A lowered a B
 - · SiP(BIA) < P(B), entances A desponance a B
- 2) 3; P(B|A) = P(B), es dear, la armarcia del suceso A no tiene ninguís efecto sebre B. Direnos entenes que B es independiente a A.

conderisación de la independención

SECU A E A CON P(A) > O

Un succeso 8 es independiente de A => P(ANB)=P(ANB)

Bobosición.

- Si A y B son independiones, enterces:
- 1) A & B son independients.
- 27 Ā y B an independientes.
- 3) À y B ear independiones.

haspendencia dos a dos

Dodo in especial probabilistico (12,14,9) y inci clase de sussessi incirco, dirente que los sussessos san independientes dos a dos sus 144,862,148, 148 san independientes

independencia mutua

Todo a excus probabilishico (.2, A, P) y un dose de suesos $U \in A$ no vacía, divenos que sus acesas en muhamente (completarente o totalmente) independientes o simplemente independientes si para todo establicación finita $\{A_{i,i},...,A_{i,k}\}$ de suesos distintos de U se varificación $\{A_{i,i},...,A_{i,k}\}$ de $\{A_{i,i},...,A_{i,k}\}$ $\{A_{i,i},...,A_{i,k}\}$