CSCI 335 Software Design and Analysis III Lecture 5: Analysis of Algorithms

Professor Anita Raja

1

Review: Model of computation

- •algorithm analysis
- average machine; instructions are executed sequentially.
- •one unit of time

1

- •fixed-size (32-bit) integers.
- •infinite memory

Agenda

•HW1 discussion

•Review: Recursion

- •Fibonnaci
- •Maximum Subsequence Problem
- Logarithmic Complexity
 - Binary Search
 - Exponentiation

2

What to analyze

- •Running time (Time complexity)
- Memory usage (Space complexity)
- What kind of input?
- •Size of the input problem, N.

3

Useful Rules for Big-O

•When adding algorithmic complexities, the larger value dominates.

For any **polynomial** $f(x) = a_n x^n + an_{1} x^{n-1} + a_0$, where $a_0, a_1, ..., a_n$ are real numbers, f(x) is $O(x^n)$.

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$ •If $f_1(x)$ is O(g(x)) and $f_2(x)$ is O(g(x)), then $(f_1 + f_2)(x)$ is O(g(x)).

5

Review: Recursion

•Factorial:

```
long Factorial(int n) {
  if (n <= 1)
    return 1;
  else
    return n * Factorial(n - 1);
}</pre>
```

•Running time?

Review: Useful Rules for Big-O

- •Loops:
 - Running time of a for loop is at most the running time of the statements inside the for loop times the number of iterations.
- Nested loops:
 - Analyze inside out. Running time of statement multiplied by the product of the sizes of the loops.
- Consecutive statements:
 - Just add.
- If/Else:
 - Never more than the running time of the test plus the larger of the running times of S1 and S2.

6

Recursion

•Factorial:

- •Running time?
 - Factorial is a thinly veiled loop O(n)

Recursion

```
• Factorial running time:
T(n) = 1 + T(n-1) \text{ for } n > 1, T(1) = 2
T(n) = 1 + T(n-1)
= 1 + (1 + T(n-2)) = \dots =
= 1 + (1 + \dots (1 + T(n-k)) \dots)
=> T(n) = k + T(n-k)
= (n-1) + T(n-(n-1))
= (n-1) + T(1)
= (n-1) + T(1
```

Recursion

•Fibonacci (bad example):

```
// @n: an integer.
// @return the Fibonacci number of n.
long Fibonacci(int n) {
   if (n <= 1)
      return 1;
   else
      return Fibonacci(n - 1) + Fibonacci(n - 2);
}</pre>
```

• Running time?

10

9

Recursion

- •Fibonacci (bad example):
- Running time: T(n) = T(n-1) + T(n-2) + 2, T(0)=T(1)=1
- Since fib(n) = fib(n-1) + fib(n-2), we can prove (by induction) that T(n) >= fib(n)
- Section 1.2.5 proves that $T(n) < (5/3)^n$ => $T(n) = ? ((5/3)^n) O/\Theta/\Omega/o$

Exponential: Really bad result! (Use iteration instead)

0

10

T(n) 1.5^n 1 1.00

1 1.50

2 4 2.25

Fibonacci

3 7 3.38

4 13 5.06

. . .

12

We can see that $T(n) > 1.5^n$ for small values of n

12

11

Maximum Subsequence Problem

- Given (possibly negative) integers $A_1,...,A_N$, find the maximum value of $\sum_{k=i}^j A_j$ for i,j=1,2,...,N, $i\leq j$
- Given a sequence of integers (possibly negative), find the subsequence whose sum is the maximum

-2 11 -4 13 -5 -2

- Many algorithms to solve this simple problem
- When input size is small, brute force works fine.

13

Algorithm 1 (brute force)

```
// @a: a vector of integers.
// @return the maximum positive subsequence sum. If the
// maximum sum is smaller than 0, return 0.

    Check all

// Brute force approach.
                                                              possible
int MaxSubsequenceSum1(const vector<int> &a) {
    int max sum = 0;
                                                              subsequences
    for (size t i = 0; i < a.size(); ++i)</pre>

    O(N<sub>3</sub>).

      for (size_t j = i; j < a.size(); ++j) {</pre>
                                                              Redundant
             int current_sum = 0;
                                                              work.
             for (size_t k = i; k <= j; ++k)</pre>
                                                            For N=1,000,000
                 current sum += a[k];
             if (current_sum > max_sum)
                                                              this is 1018, about
                  max_sum = current_sum;
                                                              58 days at 2Ghz
                                                              (assuming 2billion
    return max_sum;
                                                              operations per
                                                              second)
```

Algorithm 1 (brute force)

```
// @a: a vector of integers.
// @return the maximum positive subsequence sum. If the
// maximum sum is smaller than 0, return 0.
// Brute force approach.
int MaxSubsequenceSuml(const vector<int> &a) {
   int max_sum = 0;
   for (size_t i = 0; i < a.size(); ++i)
      for (size_t j = i; j < a.size(); ++j) {
      int current_sum = 0;
      for (size_t k = i; k <= j; ++k)
            current_sum += a[k];
      if (current_sum > max_sum)
            max_sum = current_sum;
    }
   return max_sum;
}
```

14

Algorithm 2 (brute force)

```
// @a: a vector of integers.
// @return the maximum positive subsequence sum. If the
// maximum sum is smaller than 0, return 0.
// Brute force approach (slightly better).
int MaxSubsequenceSum2(const vector<int> &a) {
   int max_sum = 0;
   for (size_t i = 0; i < a.size(); ++i) {
      int current_sum = 0;
      for (size_t j = i; j < a.size(); ++j) {
        current_sum += a[j];
        if (current_sum > max_sum)
            max_sum = current_sum;
      }
    }
   return max_sum;
}
```

Algorithm 2 (brute force)

```
// @a: a vector of integers.
// @return the maximum positive subsequence sum. If the
      maximum sum is smaller than 0, return 0.
      Brute force approach (slightly better).
int MaxSubsequenceSum2(const vector<int> &a) {
    int max sum = 0;
    for (size t i = 0; i < a.size(); ++i) {</pre>
      int current_sum = 0;
      for (size t j = i; j < a.size(); ++j) {</pre>
          current sum += a[j];
          if (current sum > max sum)
              max sum = current sum;
      }

    Removed one loop

    return max sum;

    O(N<sup>2</sup>).

    About 8 seconds at 2Ghz
```

17

```
// @a: a vector of integers.
// @left: a left index.
// @right: a right index.
// It is assumed that left <= right. It is also assumed that right is not
// outside of the boundaries of the vector.
// @return the maximum positive subsequence sum of items
    a[left], a[left + 1], ..., a[right].
// Recursive solution.
int MaxSubsequenceSum3(const vector<int> &a, size_t left, size_t right) {
   if (left > right) abort(); // Invalid.
   if (right >= a.size()) abort(); // Invalid.
   if (left == right) // Base case.
      return a[left] > 0 ? a[left]: 0;
    const size_t center = (left + right) / 2;
    const int max_left_sum = MaxSubsequenceSum3(a, left, center);
    const int max right sum = MaxSubsequenceSum3(a, center + 1, right);
    // Compute maximum of left part when you always end at center.
    int max_left_border_sum = 0, left_border_sum = 0;
    for (int i = center; i >= left; --i) {
       left border sum += a[i];
       if (left_border_sum > max_left_border_sum)
             max left border sum = left border sum;
    // continues in next page...
```

Algorithm 3 (Recursive)

- The maximum subsequence is either entirely in the first half, entirely in the second half, or it crosses the middle and is in both halves
- Example:

```
First half Second half 4 -3 5 -2 -1 2 6 -2
```

- Best first half: ?
- Best second half: ?
- Best last part of first half: ?
- Best first part of second half: ?
- Result: ?

18

Algorithm 3 Running time analysis

```
    T(1) = 1 (base case)
    T(N) = 2 T(N/2) + O(N) (why?)
    Simpler (note that we always ignore constants)
    T(N) = 2 T(N/2) + N (assume N = 2^k => k= logN)
    T(N) = N*(k+1)
        = NlogN + N
        = O(NlogN)
```

21

Algorithm 4 (Linear Version)

```
// @a: a vector of integers.
// @return the maximum positive subsequence sum. If the
// maximum sum is smaller than 0, return 0.
// Linear version.
int MaxSubsequenceSum4(const vector<int> &a) {
   int max_sum = 0, current_sum = 0;

   for (size_t i = 0; i < a.size(); ++i) {
      current_sum += a[i];

      if (current_sum > max_sum)
      max_sum = current_sum;
      else if (current_sum < 0)
        current_sum = 0;
   }

   return max_sum;
}

// Run on example: -2, 10, 3, -4, -8, -2, 10, 2, -5</pre>
```

Running time analysis (details cont.)

22

Algorithm 4 (Linear Version)

- Why does it work?
- •Running time is obvious, but correctness is not.
- •0.0005 secs on the earlier example

Algorithm 4 (example)

- Consider this sequence:
- -2, 10, 3, -4, -8, -2, 10, 2, -5, ...

Append 3, 20 to the above sequence and continue...

- Algorithm 4 is an example of an **on-line algorithm**
 - Data can be read sequentially with no need to store it in main memory (i.e. you could apply the algorithm to data from a disk, or as it arrives from the internet, or through a sensor)
 - At any point in time the algorithm provides the current best solution to the problem.

25

Four different algorithms

		Algorithm Time			
Input Size	$O(N^3)$	$O(N^2)$	$\frac{3}{O(N\log N)}$	4 O(N)	
N = 10	0.000009	0.000004	0.000006	0.000003	
N = 100	0.002580	0.000109	0.000045	0.000006	
N = 1,000	2.281013	0.010203	0.000485	0.000031	
N = 10,000	NA	1.2329	0.005712	0.000317	
N = 100,000	NA	135	0.064618	0.003206	

Note, that time required to read input is included in the above analysis.

27

Four algorithms (graphs)

26

Logarithms in running time

- •divide and conquer algorithms
- •general rule:
 - An algorithm is O(logN) if it takes constant (O(1)) time to cut the problem size by a fraction (which is usually half).
 - On the other hand, if constant time is required to merely reduce the problem by a constant amount (such as to make the problem smaller by 1), then the problem is O(N)

Binary Search

- Given an integer X and integers A_0, \ldots, A_{N-1} , which are **presorted** and already in memory, find i such that $A_i = X$, or return i = -1 if X is not in the input
- Running time?

29

9

Binary Search Running Time

•Running time?

$$\bullet T(N) = 1 + T(N/2), T(1) = 1$$

 $T(N) = 1 + T\left(\frac{N}{2}\right)$ $= 1 + 1 + T\left(\frac{N}{2^{N}}\right)$ $= 2 + T\left(\frac{N}{2^{N}}\right)$ $= 2 + 1 + T\left(\frac{N}{2^{N}}\right)$ $= 3 + T\left(\frac{N}{2^{N}}\right)$

 $= \cdots = k + T(N/2^k) = \ldots$

If N is a power of 2 (i.e. $N = 2^k$ with $k = \log(N)$) we will have: $T(N) = k + T\left(\frac{N}{2^k}\right) = k + T(1) = \log(N) + 1$ $=> T(N) = O(\log N)$

30

Exponentiation

- •Compute X^N, for positive N
- •Naïve algorithm: (N-1) multiplications
- •Smarter algorithm?
- •How?

Fast Exponentiation

$$X^{0} = 1$$

$$X^{1} = X$$

$$X^{N} = (X^{N/2})^{2}, \text{ if } N \text{ is even}$$

$$X^{N} = X(X^{(N-1)/2})^{2}, \text{ if } N \text{ is odd}$$

$$T(N) = \begin{cases} T\left(\frac{N}{2}\right) + 1, & \text{even } N \\ T\left(\frac{N-1}{2}\right) + 2, \text{ odd } N \end{cases}$$

// @x: a number.
// @n: a positive integer.
// @return x^n.
long Power(long x, unsigned int n) {
 if (n == 0)
 return 1;

 if (n == 1)
 return x;

 if (n % 2 == 0) // even.
 return Power(x * x, n / 2);

 else // odd.
 return x * Power(x * x, n / 2);
}

33

Exponentiation

```
// Can we replace recursive call
// Power(x * x, n / 2)
// by one of the following?
return Power(Power(x, 2), n / 2);
return Power(Power(x, n / 2), 2);
return Power(x, n / 2) * Power(x, n / 2);
```

Exponentiation

34

```
// Endless loop ?
return Power(Power(x, 2), n /2);
return Power(Power(x, n / 2), 2);

// Non-logarithmic runtime. Why?
Return Power(x, n / 2) * Power(x, n / 2);
```

Exercise 2.14

```
2.14 Consider the following algorithm (known as Horner's rule) to evaluate f(x) = ∑<sub>i=0</sub><sup>N</sup> a<sub>i</sub>x<sup>i</sup>:

poly = 0;
for( i = n; i >= 0; --i )
poly = x * poly + a[i];
a. Show how the steps are performed by this algorithm for x = 3, f(x) = 4x<sup>4</sup> + 8x<sup>3</sup> + x + 2.
b. Explain why this algorithm works.
c. What is the running time of this algorithm?
```

Homework Exercises

• Order the following functions by growth rate: N, N^{1/2}, N^{1.5}, N², N log N, N log log N, N log² N, N log(N²), 2/N, 2^N, 2^{N/2}, 37, N² log N, N³

 \bullet Find 2 functions f(N) and g(N) such that neither f(N) = O((g(N)) nor g(N)= O(f(N)

38