

Ectoine synthase (EctC) - Fe(II) binding site parametrization

MSc Justyna Sonia Andrys supervisor: prof. dr hab. Tomasz Borowski

Outline

- 1. Brief introduction to the enzyme and catalyzed reaction
- 2. Motivation for parameterization
- 3. DFT optimization
- 4. ADMP
- 5. Methods description
- 6. Parameters & their evaluation
- 7. Conclusions

Ectoine synthase and Ectoine

Fig. 1 *P. laucus* EctC crystal structure with catalytic core exposed. Fe(II) ion with ligands (Glu57, Tyr84, His92 and N- γ -acetyl-2,4-diaminobutyrate) are visible inside the pocket. PDB: 50NN^{1,2}

Fig. 2 Pathway of the ectoine biosynthesis. Cyclocondensation reaction of $N-\gamma-ADABA$ marked with red circle³.

Motivation for the parametrization

- Fe L bonds too long
- geometry refinement needed before QM and QM/MM calculations
- reliable parameters necessary for MD simulation

Fig. 3 Model of Fe(II) binding site cut from 50NN¹ crystal structure. Fe - L distances shown in red.

DFT/B3LYP optimization

Fig. 4 Three optimized geometries with Fe(II) in different spin-state: A) singlet, B) triplet i C) quintet. Calculated with DFT: B3LYP-D3/Def2TZVP.

ADMP - quintet model

Fig. 5 Reference trajectory (149 frames out of 23,000)

ADMP - atom-centered density matrix propagation; combination of QM with MD (Gaussian16)

- ADMP trajectory: ~23,000 frames
- 149 frames cut from original trajectory for parameterization purposes (in average 1 frame per 154)
- Each of geometry from the short trajectory optimized (with constraints on Fe - X bonds and X-Fe-Y and X-Y-Fe angles)
- QM energies calculated with UB3LYP-D3 functional and Def2TZVP basis set

SEMINARIO⁴

- the easiest of investigated methods
- uses Hessian matrix projection for MM parameters derivation
- what do we need?
 - *.fchk file generated from *.chk file obtained after freq calculation with use of the formchk program (Gaussian)
 - xyzviewer for force constants reading

Fig. 6 Optimized geometries alignment: **QM** (salmon), **seminario** (yellow)

PARMHESS-1^{5,6}

- PHF partial hessian fitting
- what do we need?
 - python3 environment
 - Gaussian09 (local access)
 - AmberTools (resp, antechamber)
 - *.log file from freq calculations
 - *.fchk file from freq calculations
 - Gaussian MM input that contains geometry, charges, connectivity section and fromod parameters including nonbon and VDW
 - HrmBnd1 Fe OH HO XXXXXX 121.0489
- **tsubasa.py** program from the *parmhess package* automatically generates input for **parmhess.py** program: calculates RESP, MK charges, frequencies
- parmhess.py generates G09 inputs for optimization: ihf, phf, fhf

Fig. 7 Optimized geometries alignment: **QM** (salmon), **phf** (green)

PARMHESS-2^{5,6}

- PHF katachi
- what do we need?
 - parmhess.py-generated input (ihf, fhf or phf*.com)
- katachi.py improves input parameters and generates new G09 input for optimization

Fig. 8 Optimized geometries alignment: **QM** (salmon), **phf-katachi** (blue)

SEMINARIO-KATACHI

- Refinement of seminario-generated parameters with katachi.py software
- what do we need?
 - katachi.py input (as previous), this time with seminario parameters

Fig. 9 Optimized geometries alignment: **QM** (salmon), **seminario-katachi** (orange)

PARAMFIT⁷

- the most time-consuming method
- available in AmberTools package
- what do we need?
 - pdb-cut model and *.in files as input for the tleap program (each amino acid described separately), with resp charges
 - trajectory (149 frames)
 - QM energies for each frame

paramfit

- generates Gaussian inputs (calculated on prometheus),
- generates *.paramfit file that contains data on fitted parameters (Fe-X, X-Fe-Y, X-Y-Fe)
- does parameters fitting on the basis of ADMP trajectory (149 frames long) and QM energies
- user-friendly for tuning purposes

Fig. 10 Optimized geometries alignment: **QM** (salmon), **paramfit** (silver)

PARAMFIT-TUNED

 paramfit parameters with only one K and one the changed (O2-FE-O parameters taken from the seminario method)

Fig. 11 Optimized geometries alignment: **QM** (salmon), **paramfit-tuned** (magenta)

PARAMETERS

Fig. 12 Plots presenting derived parameters for each method: A) K_{bond} , B) R_{eq} , C) K_{angle} , D) Th_{eq}

Quality assessment criteria

quick sander MD simulation was run for each set of parameters in order to obtain angle/bond values distributions and calculate means

- Convergence of the optimized geometry with the referential one (graphics) based on differences between bond/angle values
- 2. QM and AMBER (fitted) energies convergence (R² coefficient) calculated with **paramfit**
- 3. Consistency of mean angle/bond values with means calculated for the **ADMP** (~23,000 frames)

Quality assessment

	SEMINARIO	PARMHESS-1	PARMHESS-2	SEMINARIO-KATA CHI	PARAMFIT	PARAMFIT-TUNED
R ²	0.42	0.46	0.46	0.3	0.94	0.83

Tab. 1 Energy correlation coefficients calculated with paramfit for each method

Fig. 13 Plots E_{Amber} vs E_{OM} generated for A) PARAMFIT-TUNED and B) SEMINARIO-KATACHI

Fig. 14 Histograms for bond Fe-O2 distributions: A) ADMP B) Parmhess-PHF C) Paramfit-TUNED

Fig. 15 Histograms for NB-Fe-O angle distributions: A) ADMP (reference) B) Parmhess-PHF C) Paramfit-TUNED

Conclusions

- Three methods with variations were tested
- 2. One criterion is not enough to assess method's quality properly
- 3. Best optimized geometry was obtained with *parmhess-phf* method
- 4. Best correlation between fitted energy and QM energy (represented by R²) was obtained with *paramfit* method
- 5. Best results for angle/bond means from MD were assigned to the *paramfit_tuned* method (smallest errors)
- 6. Overall, **paramfit_tuned** approach, where parameters describing just one angle were switch with **seminario** parameters, was chosen as the method providing the best results for investigated model

Thank you for the attention:)

Special thanks to Tomek

Calculations financed by IKiFP and group funds.

Sources

- https://www.rcsb.org/structure/50NN
- Czech L. et al. Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis, Scientific Reports, 2019
- 3. Widderich N. et al. Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily, Plos One, 2016
- 4. J. M. Seminario, *Calculation of intramolecular force fields from second-derivative tensors*, Int. J. Quantum Chem, 1996.
- 5. R. Wang et al. Analytical Hessian Fitting Schemes for Efficient Determination of Force-Constant Parameters in Molecular Mechanics, J.Comput. Chem. 2017,
- 6. R. Wang et al *Partial Hessian Fitting for Determining Force Constant Parameters in Molecular Mechanics* J.Comput. Chem. 2016,
- 7. Betz R.M. & Walker R.C, Paramfit: automated optimization of force field parameters for molecular dynamics simulations, Journal of Computational Chemistry, 2014