

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

ANÁLISE DE ONDAS NÃO SENOIDAIS - LÂMPADAS (CARGAS NÃO LINEARES)

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Dezembro / 2019

Sumário

1	Obj	etivos		2							
2	Introdução teórica										
3	Preparação										
	3.1	Mater	iais e ferramentas	3							
	3.2	gem	3								
		3.2.1	Lâmpadas (Cargas não lineares)	3							
		3.2.2	Medições em ambiente com $f \neq 60Hz$	5							
4	Dados Experimentais										
		4.0.1	Lâmpadas (Cargas não lineares)	6							
		4.0.2	Medições em ambiente com $f \neq 60Hz$	6							
5	Análise sobre segurança										
6	Análise e discussão										
		6.0.1	Descrição da corrente sobre as lâmpadas em série Fourier	7							
		6.0.2	Comparação do valor RMS obtido com o experimental	7							
		6.0.3	Espectro harmônico da corrente	7							
		6.0.4	Sobre a Distorção Harmônica Total (DHT)	7							
7	Sim	ulação	computacional	7							
8	3. Conclusões										

1 Objetivos

Pretende-se verificar experimentalmente conceitos teóricos de sinais não senoidais, obtendo os coeficientes da série de Fourier pelo método analítico e usando uma rotina computacional (como Matlab, Python). Aqui também é investigada a determinação do valor eficazes (rms) da tensão e corrente, bem como as potências associadas das formas de onda não senoidais.

2 Introdução teórica

Ondas não senoidais na rede são bastante comuns e surgem da presença de cargas não-lineares na rede (proporção tensão e corrente não é constante). Alguns exemplos de cargas geradoras de correntes harmônicas são geradores e motores CA, transformadores, lâmpadas de descarga, retificadores/motores CC controlados, inversores/motores de indução, ciclo-conversores/motores síncronos, cargas de aquecimento controladas por tiristores, reguladores de tensão a núcleo saturado, computadores etc [1].

Na Figura 1 observa-se uma característica importante para ondas com distorção harmônica. A corrente fundamental vai da fonte para a carga, enquanto que as de ordem harmônica vão da carga para a fonte (sentido oposto). Além disso, a Figura 2 ilustra como é feita a análise da onda não senoidal, por meio da descrição em séries de Fourier, para assim poder construir seu espectro de frequências.

Figura 1: Figura ilustrativa de harmônicos na rede [1].

Figura 2: Descrição em série de Fourier e análise espectro de frequências [1].

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60 Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 *Lâmpadas:* Foram utilizadas lâmpadas LED e incandescente, para investigar o carácter não linear dessas cargas e seu efeuto na rede.
- 6 **Reostato:** Carga resistiva para evitar dano na lâmpada LED.

3.2 Montagem

3.2.1 Lâmpadas (Cargas não lineares)

A montagem realizada observa-se na Figura 3, na qual são empregados medidores de tensão e de corrente digitais (*Kron Mult-K Série 2*). A configuração usada no

medidor Kron foi TL=0000 (3 ϕ com Neutro - Carga Desequilibrada) e valor para a resistência medida foi de $R=10.1\Omega$ e foi aplicada uma tensão de fase $V_F=V_{AN}$ que variou de 10 a 100V. Lembrando que as lâmpadas a LED ou fluorescente compacta normalmente acende após certo valor de tensão.

Figura 3: Método do voltímetro, utilizando-se equipamento digital.

3.2.2 Medições em ambiente com $f \neq 60Hz$

A primeira montagem com a fase A aberta resulta na montagem da Figura 4.

Figura 4: Montagem 1 com fase A aberta.

4 Dados Experimentais

4.0.1 Lâmpadas (Cargas não lineares)

Do experimento para análise de tensão e corrente em cargas não lineares tem-se do dados comtemplados na Tabela 1.

Tabela 1: Dados experimentais para o experimento com lâmpadas como carga.

V_F (V)	Fase	V_F (V)	I_L	P (W)	Q (VAr)	S (VA)	FP	DTT (%)	DTI (%)
10.0	A	10,47	0	0	0	0	0	4,73	0
10,0	В	10,67	0,112	1,182	1,156	1,194	0,991	4,09	9,08
20.0	A	20,35	0	0	0	0	0	3,36	0
20,0	В	20,86	0,14	2,907	0,287	2,92	0,995	3,36	6,51
30,0	A	30,84	0	0	0	0	0	2,97	0
30,0	В	31,14	0,164	5,09	0,422	5,118	0,996	2,52	5,94
40,0	A	40,06	0	0	0	0	0	2,85	0
40,0	В	40.64	0,181	7,388	0,555	7,426	0,997	2,63	5,05
50,0	A	50,02	0,127	5,037	3,862	6,338	0,792	2,820	31,29
30,0	В	50,15	0,203	10,15	0,715	10,19	0,998	2,58	4,390
60,0	A	60,01	0,135	5,99	5,436	8,086	0,744	2,56	39,20
00,0	В	60,32	0,223	13,45	0,853	13,45	0,998	2,59	4,340
70,0	A	70,12	0,143	7,097	7,069	10,03	0,704	2,7	46,75
70,0	В	70,09	0,241	16,88	1,030	16,93	0,998	2,62	3,46
80,0	A	80,23	0,148	8,048	8,603	11,75	0,680	2,74	53,49
00,0	В	79,82	0,258	20,60	1,202	20,77	0,998	2,53	3,370
90,0	A	90,32	0,144	8,764	9,454	12,79	0,679	2,51	60,16
90,0	В	89,80	0,275	24,67	1,374	24,65	0,998	2,5	3,17
100,0	A	100,0	0,141	9,478	10,22	13,81	0,680	2,67	66,94
100,0	В	100,1	0,291	29,21	1,540	29,14	0,999	2,33	2,92

4.0.2 Medições em ambiente com $f \neq 60Hz$

5 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito

estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [2]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

6 Análise e discussão

- 6.0.1 Descrição da corrente sobre as lâmpadas em série Fourier
- 6.0.2 Comparação do valor RMS obtido com o experimental
- 6.0.3 Espectro harmônico da corrente
- 6.0.4 Sobre a Distorção Harmônica Total (DHT)

7 Simulação computacional

8 Conclusões

Ter conhecimento sobre a sequência de fases em circuito equilibrado é de extrema importância, uma vez que do desequíbrio pode resultar correntes elevadas em determinada fase e assim danificar algum equipamento, além de ser essencial na determinação da direção de rotação de uma motor de indução conectado à fonte de tensão trifásica. Para isso, tem-se equipamentos como o fasímetro e o sequencímetro. Entretanto, na ausência desses equipamentos sofisticados, o engenheiro deve ser capaz de determinar a sequência de fases utilizando-se de equipamentos de menor custo, como o voltímetro ou visualizando-se a intensidade do brilhar de uma lâmpada.

Assim, neste experimento é tratado o método dos voltímetros, e verificou-se que considera-se sequência de fases ABC, no caso de tensão na fase B $V_{bn'} > V_{ab}$. Enquanto que para $V_{bn'} < V_{ab}$ considera-se sequência de fases CBA. A conclusão do experimento terminou na verificação do mesmo efeito, porém utilizando-se lâmpadas nos terminais V_{ab} e $V_{bn'}$, para visualizar o mesmo efeito na intensidade do brilhar.

Referências

- [1] P. H. O. Rezende, "Ondas Não Senoidais", 2018.
- [2] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.