Exploring Angle Pairs

Objectives

Two angles are adjacent if they

• Share a common side

Two angles are adjacent if they

- Share a common side
- Share a common vertex

Two angles are adjacent if they

- Share a common side
- Share a common vertex
- Have no common interior points

Two angles are adjacent if they

- Share a common side
- Share a common vertex
- Have no common interior points

Vertical Angles

Vertical angles are formed by 2 intersecting lines.

Complementary Angles

Complementary Angles

Two or more angles that add up to 90°

Complementary Angles

Complementary Angles

Two or more angles that add up to 90°

Supplementary Angles

Supplementary Angles

Two or more angles that add up to 180°

Supplementary Angles

Supplementary Angles

Two or more angles that add up to 180°

Use the diagram to determine if each statement is true.

(a) $\angle BFD$ and $\angle AFB$ are adjacent angles.

Use the diagram to determine if each statement is true.

(a) $\angle BFD$ and $\angle AFB$ are adjacent angles. True

- (a) $\angle BFD$ and $\angle AFB$ are adjacent angles. True
- (b) $\angle AFB$ and $\angle EFD$ are vertical angles.

- (a) $\angle BFD$ and $\angle AFB$ are adjacent angles. True
- (b) $\angle AFB$ and $\angle EFD$ are vertical angles. False

- (a) $\angle BFD$ and $\angle AFB$ are adjacent angles. True
- (b) $\angle AFB$ and $\angle EFD$ are vertical angles. False
- (c) $\angle AFE$ and $\angle BFC$ are complementary.

- (a) $\angle BFD$ and $\angle AFB$ are adjacent angles. True
- (b) $\angle AFB$ and $\angle EFD$ are vertical angles. False
- (c) $\angle AFE$ and $\angle BFC$ are complementary. True

Angle Bisectors

An **angle bisector** is a ray (or segment) that divides an angle into 2 congruent angles.

Angle Bisectors

An **angle bisector** is a ray (or segment) that divides an angle into 2 congruent angles.

$$\overrightarrow{AY}$$
 bisects $\angle XAZ$

Angle Bisectors

An **angle bisector** is a ray (or segment) that divides an angle into 2 congruent angles.

$$\overrightarrow{AY}$$
 bisects $\angle XAZ \longrightarrow \angle XAY \cong \angle ZAY$

$$m\angle DAB = 114^{\circ}$$

$$m \angle JKM = 36^{\circ}$$

$$x + 40 = 3x - 20$$

$$x + 40 = 3x - 20$$
$$40 = 2x - 20$$

$$x + 40 = 3x - 20$$
$$40 = 2x - 20$$
$$60 = 2x$$

$$x + 40 = 3x - 20$$
$$40 = 2x - 20$$
$$60 = 2x$$
$$x = 30$$

$$x + 40 = 3x - 20$$
$$40 = 2x - 20$$
$$60 = 2x$$
$$x = 30$$

(c) In the diagram, RQ bisects anglePRS. Find the value of x.

$$x + 40 = 3x - 20$$
$$40 = 2x - 20$$
$$60 = 2x$$
$$x = 30$$

Check:

$$30 + 40 \stackrel{?}{=} 3(30) - 20?$$

(c) In the diagram, RQ bisects anglePRS. Find the value of x.

Check:

$$30 + 40 \stackrel{?}{=} 3(30) - 20?$$
$$70 = 70$$

Linear Pair

A **linear pair** are two adjacent angles whose non-common sides form a line.

Linear Pair

A **linear pair** are two adjacent angles whose non-common sides form a line.

Linear Pair

A **linear pair** are two adjacent angles whose non-common sides form a line.

Angles 1 and 2 form a linear pair.

Linear Pair

A **linear pair** are two adjacent angles whose non-common sides form a line.

Angles 1 and 2 form a linear pair.

$$m \angle 1 + m \angle 2 = 180^{\circ}$$

$$x + 24 + 4x + 36 = 180$$

$$x + 24 + 4x + 36 = 180$$
$$5x + 60 = 180$$

$$x + 24 + 4x + 36 = 180$$

 $5x + 60 = 180$
 $5x = 120$

$$x + 24 + 4x + 36 = 180$$

 $5x + 60 = 180$
 $5x = 120$
 $x = 24$

Example 3a x = 24

Example 3a x = 24

$$m \angle KPL = 24 + 24$$
 $m \angle JPL = 4(24) + 36$

Example 3a x = 24

$$m\angle KPL = 24 + 24$$
 $m\angle JPL = 4(24) + 36$ $m\angle KPL = 48^{\circ}$ $m\angle JPL = 132^{\circ}$