Dynamic Programming Algorithms

Maximum Independent Set

CS 336: Design and Analysis of Algorithms Konstantin Makarychev

Independent Sets in Graphs

 I is an independent set in a graph G if I doesn't contain adjacent vertices.

Independent Sets in Graphs

 I is an independent set in a graph G if I doesn't contain adjacent vertices.

Independent Sets in Graphs

• *I* is an *independent set* in a graph *G* if *I* doesn't contain adjacent vertices.

Maximum Independent Sets

Problem: Given a graph G = (V, E), find a maximum independent set $I \subset V$.

- **Bad news:** The problem is very hard to solve (NP-hard).
- ➤ **Good news:** The problem is easy on trees.

Maximum Independent Set in Trees

Maximum Independent Set in Trees

Greedy Algorithm for Trees

- Sort vertices by depth in decreasing order.
- For each node x: if children of x are not in I, add x. Else: discard x.

Maximum Independent Set in Weighted Trees

- Suppose vertices have weights.
- Goal: Find maximum weight independent set.

Maximum Independent Set in Weighted Trees

- Suppose vertices have weights.
- Goal: Find maximum weight independent set.
- Very expensive vertices must belong to *I*.

Recursive Algorithm for Binary Trees

function Max_Independent_Set (x)

Let y and z be the children of x.

Find optimal solutions for subtrees rooted in y and z.

 $I_y = \text{Max_Independent_Set}(y)$ $I_z = \text{Max_Independent_Set}(z)$

How to combine solutions I_{ν} and I_{z} ? A better subproblem?

Maximum Independent Set in Weighted Trees

- Should we add x to I?
- It depends...

Maximum Independent Set in Weighted Trees

Consider two cases.

• If $x \notin I$, then we can pick arbitrary independent sets I_y and I_z in subtrees T_y and T_z rooted at Y and T_z .

Maximum Independent Set in Weighted Trees

Consider two cases.

• If $x \notin I$, then independent sets I_y and I_z in subtrees T_y and T_z rooted at y and z are not restricted.

Maximum Independent Set in Weighted Trees

Consider two cases.

• If $x \in I$, then independent sets I_y^R and I_z^R in subtrees T_y and T_z rooted at y and z cannot contain y and z.

Two Subproblems

- a. Maximum Independent Set in Subtree T_x :
 - The cost of the maximum weight independent set I_x in T_x .
- b. Restricted Maximum Independent Set in Subtree T_x :
 - The maximum weight independent set I_x^R in T_x that does not contain x.

Maximum Independent Set in T_x

function Max_Independent_Set (x)

Let y and z be children of x:

```
I_y = \text{Max\_Independent\_Set}(y)

I_z = \text{Max\_Independent\_Set}(z)
```

```
I_{\mathcal{Y}}^{R} = \text{Restricted\_Max\_Independent\_Set}\left(\mathcal{Y}\right)
I_{\mathcal{Y}}^{R} = \text{Restricted\_Max\_Independent\_Set}\left(\mathcal{Z}\right)
```

Return the best of two solutions $I_y \cup I_z$ and $\{x\} \cup I_y^R \cup I_z^R$

Restricted Maximum Independent Set

We have $x \notin I_x^R$, hence independent sets I_y and I_z in subtrees T_y and T_z rooted at y and z are not restricted.

Restricted Maximum Independent Set in T_x

function Restricted_Max_Independent_Set (x)

Let y and z be children of x:

$$I_y = \text{Max_Independent_Set }(y)$$

 $I_z = \text{Max_Independent_Set }(z)$

Return set $I_y \cup I_z$

Dynamic Programming

function Max Independent Set (x)

 \triangleright Lookup result for x in the cache or DP table.

Let y and z be children of x:

```
I_y = \text{Max\_Independent\_Set }(y)
I_z = \text{Max\_Independent\_Set }(z)
```

 $I_y^R = \text{Restricted_Max_Independent_Set}\left(y\right) \ I_y^R = \text{Restricted_Max_Independent_Set}\left(z\right)$

Store the result in the cache or DP table.

Return the best of two solutions $I_{\mathcal{Y}} \cup I_{z}$ and $\{x\} \cup I_{\mathcal{Y}}^{R} \cup I_{z}^{R}$

Dynamic Programming

function Restricted_Max_Independent_Set (x)

 \triangleright Lookup result for x in the cache or DP table.

Let y and z be children of x:

$$I_y = \text{Max_Independent_Set}(y)$$

 $I_z = \text{Max_Independent_Set}(z)$

 \triangleright Store the result $(I_y \cup I_z)$ in the cache or DP table.

Return set $I_y \cup I_z$

Filling values in DP Table

We can

Recursively call Max_Independent_Set and Restricted_Max_Independent_Set as discussed above.

or

Fill DP table bottom up.

Bottom-up Approach

Start with values in leaves.

Bottom-up Approach

Start with values in leaves.

Bottom-up Approach

- Start with values in leaves.
- Fill in DP table level by level.
- When Alg needs a result, it is already available.

Which Approach is Better?

- In terms of the running time, both solutions are (about) the same.
- The choice depends on the specific problem and implementation.
- A bottom-up approach lets you avoid recursion. Sometimes, recursion may be expensive.
- However, the top-down approach may eliminate some unnecessary computations.

Running Time

- We perform a constant number of operations for every node in the *binary* tree.
- Hence, the running time is O(n).

Questions?