

Школа Data scientist Занятие 6

Анализ данных в Python Tema 3

Disclaimer

Все формулировки далее нестрогие, за более строгими определениями обращайтесь к специализированной литературе

План занятия

- Первичный анализ и очистка данных
- Когортный анализ
- Корреляционный анализ
- Exploratory data analysis

Первичный анализ и очистка данных

Описательная статистика (descriptive statistics) занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.

В отличии от статистического вывода, не делает выводов о генеральной совокупности на основании результатов исследования частных случаев.

data = pd.read_csv("iris.csv")
data["petal.width"].iloc[145:149] = None
data.tail(7)

Index	sepal.length	sepal.width	petal.length	petal.width	variety
143	6.8	3.2	5.9	2.3	Virginica
144	6.7	3.3	5.7	2.5	Virginica
145	6.7	3.0	5.2	NaN	Virginica
146	6.3	2.5	5.0	NaN	Virginica
147	6.5	3.0	5.2	NaN	Virginica
148	6.2	3.4	5.4	NaN	Virginica
149	5.9	3.0	5.1	1.8	Virginica

data info/

variety

memory usage: 6.0+ KB

dtypes: float64(4), object(1)

Описательная статистика

uai	ia.imo()			data.size
Rang Data	eIndex: 150 en columns (tota			750
#	Column	Non-Null Count	Dtype	
0	sepal.length	150 non-null	float64	
1	sepal.width	150 non-null	float64	
2	petal.length	150 non-null	float64	
3	petal.width	146 non-null	float64	

object

150 non-null

data.count()

sepal.length	150
sepal.width	150
petal.length	150
petal.width	146
variety	150
dtype: int64	

data.nunique()

sepal.length	35
sepal.width	23
petal.length	43
petal.width	22
variety	3
dtvpe: int64	

data.isna().sum() data.isnull().sum()

	^
sepal.length	0
sepal.width	0
petal.length	0
petal.width	4
variety	0
dtype: int64	

data.sum()

sepal.length	876.5
sepal.width	458.6
petal.length	563.7
petal.width	171.4
variety	SetosaSetosaSetosaSetosaSetosaSetosaSeto
dtype: object	

data.notna().sum() data.notnull().sum()

sepal.length	150
sepal.width	150
petal.length	150
petal.width	146
variety	150
dtype: int64	

data.mean()		data.media	an()	data.min()	data.max(()
sepal.length sepal.width petal.length petal.width	5.843333 3.057333 3.758000 1.173973	sepal.length sepal.width petal.length petal.width	5.80 3.00 4.35 1.30	sepal.length sepal.width petal.length petal.width	4.3 2 1 0.1	sepal.length sepal.width petal.length petal.width	7.9 4.4 6.9 2.5
dtype: float64		dtype: float64		variety dtype: object	Setosa	variety dtype: object	Virginica

Дисперсия σ^2 data.var()

0.685694
0.189979
3.116278
0.571870

dtype: float64

Стандартное отклонение σ data.std()

 sepal.length
 0.828066

 sepal.width
 0.435866

 petal.length
 1.765298

 petal.width
 0.756221

dtype: float64

Квантили (квартили) data.quantile()

sepal.length 5.80 sepal.width 3.00 petal.length 4.35 petal.width 1.30

Name: 0.5, dtype: float64

data.quantile(q=0.25)

sepal.length 5.1 sepal.width 2.8 petal.length 1.6 petal.width 0.3

Name: 0.25, dtype: float64

data.quantile(q=0.75)

sepal.length 6.4 sepal.width 3.3 petal.length 5.1 petal.width 1.8

Name: 0.75, dtype: float64

data.describe(percentiles=[.25, .5, .75,)

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	146.000000
mean	5.843333	3.057333	3.758000	1.173973
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

data.sem()

 sepal.length
 0.067611

 sepal.width
 0.035588

 petal.length
 0.144136

 petal.width
 0.062585

dtype: float64

data.describe(include='all')

	sepal.length	sepal.width	petal.length	petal.width	variety
count	150.000000	150.000000	150.000000	146.000000	150
unique	NaN	NaN	NaN	NaN	3
top	NaN	NaN	NaN	NaN	Setosa
freq	NaN	NaN	NaN	NaN	50
mean	5.843333	3.057333	3.758000	1.173973	NaN
min	4.300000	2.000000	1.000000	0.100000	NaN
25%	5.100000	2.800000	1.600000	0.300000	NaN
50%	5.800000	3.000000	4.350000	1.300000	NaN
75%	6.400000	3.300000	5.100000	1.800000	NaN
max	7.900000	4.400000	6.900000	2.500000	NaN


```
data. agg(
    {
        "sepal.length": ["min", "max", "median", "sem"],
        "petal.length": ["min", "max", "median", "mean", "sum", "sem"]
})
```

petal.length sepal.length 7.900000 6.900000 max NaN 3.758000 mean median 5.800000 4.350000 4.300000 min 1.000000 0.067611 0.144136 sem 563.700000 NaN sum

Обработка пропусков и выбросов в процессе первичного анализа статистики

- Пропуски: NaN (null), inf, -inf, любая величина
- Выбросы: любая величина

- Способы реагирования:
 - Разбиение на подгруппы: .iloc[a:b]) и т.п.
 - Заполнение: .fillna(), .fillnull(), = и т.п.
 - Удаление: .dropna(), .dropnull, и т.п.

Практика? Практика!

Когортный анализ Корреляционный анализ Exploratory data analysis

Когортный анализ

Когорта — это группа сущностей, имеющих общее свойство.

Например: группа людей, которая совершила нужное действие в определенный промежуток времени.

Когортный анализ — это наблюдение за когортами. Выбираем одну или несколько метрик, измеряем их и делаем выводы.

		sum	count
first_order	order_date		
2014-01-03	2014-01-03	16.448	1
	2014-11-12	153.112	1
2014-01-04	2014-01-04	288.060	1
2014-01-05	2014-01-05	19.536	1
2014-01-06	2014-01-06	4407.100	3

Практика? Практика!

Ковариация

Ковариация — это мера того, как изменения одной переменной связаны с изменениями второй переменной. В частности, ковариация измеряет степень, в которой две переменные связаны линейно. Тем не менее, она также часто используется неформально как общая мера того, насколько монотонно связаны две переменные.

$$cov(X,Y) = \mathbb{E}((X - \mathbb{E}X)(Y - \mathbb{E}Y))$$
 {-1.....1}

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X - \overline{X})(Y - \overline{Y})$$

Ковариация

Ковариация

pd.....cov(...)

Изучение связей между переменными с точки зрения отражения соответствующих причинно-следственных отношений.

Корреляционная зависимость — это согласованные изменения двух (парная корреляционная связь) или большего количества признаков (множественная корреляционная связь). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшение или увеличение) другой(-их) переменной(-ых).

Корреляционный анализ — статистический метод, позволяет определить, существует ли зависимость между переменными и насколько она сильна.

Коэффициент корреляции — двумерная описательная статистика, количественная мера взаимосвязи (совместной изменчивости) двух переменных.

Прямая причинно-следственная связь - переменная Х определяет значение переменной У.

Пример: Высота над поверхностью Земли прямо влияет на концентрацию воздуха.

Обратная причинно-следственная связь - переменная У определяет значение переменной Х.

Пример: Чрезмерное потребление кофе вызывает нервозность. Или, может быть, кофе выпивается, чтобы успокоить свои нервы?

Связь, вызванная третьей (скрытой) переменной

Пример: имеется зависимость между числом утонувших людей и объёмом выпитых безалкогольных напитков летом. Однако, обе переменные связаны с жарой и потребностью людей во влаге?

Связь, вызванная несколькими скрытыми переменными

Пример: Наблюдается значимая связь между оценками студентов в университете и оценками в школе. Но влияют другие переменные: IQ, количество часов занятий, участие родителей, мотивация, квалификация преподавателей.

Связи нет, наблюдаемая зависимость случайна

Пример: Снижение количества пиратов ведет к росту средней температуры Земли.

Коэфф. корреляции по модулю	Интерпретация
до 0.2	очень слабая корреляция
0.20.5	слабая корреляция
0.50.7	средняя корреляция
0.70.9	сильная корреляция
более 0.9	очень сильная корреляция

Корреляция Пирсона

Корреляция Пирсона

- 1. Для переменных с интервальной и номинальной шкалой используется коэффициент корреляции Пирсона.
- 2. Если, по меньшей мере, одна из двух переменных имеет порядковую шкалу, либо не является нормально распределенной, используется ранговая корреляция Спирмана или Кендалла.

Тип шкал		Mona cogar
Переменная 1	Переменная 2	Мера связи
Интервальная Номинальная	Интервальная Номинальная	Коэффициент Пирсона
Ранговая Интервальная Номинальная	Ранговая Интервальная Номинальная	Коэффициент Спирмена
Ранговая	Ранговая	Коэффициент Кендалла

Коэффициент корреляции Пирсона оценивает только **линейную связь** переменных. Нелинейную связь данный коэффициент выявить не может.

Коэффициент корреляции Пирсона очень **чувствителен к выбросам** (outliers).

Корреляция **не подразумевает** наличия **причинно-следственной связи** между переменными.

Нельзя путать коэффициент корреляции Пирсона с критерием Пирсона ХИ-квадрат.

Коэффициент корреляции Пирсона оценивает только **линейную связь** переменных. Нелинейную связь данный коэффициент выявить не может.

Коэффициент корреляции Пирсона очень **чувствителен к выбросам** (outliers).

Корреляция **не подразумевает** наличия **причинно-следственной связи** между переменными.

Коэффициенты корреляции Спирмена и Кендалла используются как меры взаимозависимости между **рядами рангов**, а не как меры связи между самими переменными.

Коэффициенты Спирмена и Кендалла обладают примерно одинаковыми свойствами, но коэффициент Кендалла в случае **многих рангов**, а также при введении **дополнительных объектов** в ходе исследования имеет определенные вычислительные преимущества.

	X2=False	X2=True
X1=False	TN	FP
X1=True	FN	TP

$$MCC = \frac{(TN * TP) - (FN * FP)}{\sqrt{(TN + FT)(TN + FN)(TP + FT)(TP + FP)}}$$

pd.....corr(....)
sklearn.metrics.matthews_corrcoef(X1,X2)

Примеры ложных корреляций

Практика? Практика!

Exploratory data analysis

EDA - анализ основных свойств данных, нахождение в них общих закономерностей, распределений и аномалий, построение начальных моделей, в том числе с использованием инструментов визуализации

Основные цели EDA:

- максимальное «проникновение» в данные
- выявление основных структур
- выбор наиболее важных переменных
- обнаружение отклонений и аномалий
- проверка основных гипотез
- разработка начальных моделей

Exploratory data analysis

EDA основные шаги:

- Получение данных о переменных (Understanding your variables)
 - Описательная статистика
- Очистка данных (Cleaning your dataset)
 - Removing Redundant variables
 - Variable Selection
 - Removing Outliers
- Анализ взаимосвязей между переменными (Analyzing relationships between variables)
 - Correlation Matrix
 - Scatterplot
 - Histogram
 - Boxplot...

Практика? Практика!

Резюме

- Изучили первичный анализ и очистка данных
- Познакомились с когортным анализом
- Прошли корреляционный анализ
- Понимаем, что подразумевает Exploratory data analysis

Полезные ссылки

Примеры ложных корреляций

https://mi3ch.livejournal.com/2559227.html

Функции для работы с распределениями в Pandas:

https://pandas.pydata.org/docs/user_guide/basics.html

Обратная связь

Спасибо за внимание!