Appl. No.

10/522,036

Filed

January 19, 2005

LISTING OF THE CLAIMS

No Claims are currently amended

1. (Original) A chemical amplification type positive photoresist composition prepared by dissolving:

(A) a slightly alkali-soluble or alkali-insoluble novolak resin having a property that solubility in an aqueous alkali-solution is enhanced in the presence of an acid, comprising either or both of a

constituent unit (a1) represented by the following general formula (I):

wherein R^1 represents either an alkylene group having 1 to 10 carbon atoms which may have a substituent or a group represented by the following general formula (II):

(wherein R⁴ represents an alkylene group having 1 to 10 carbon atoms which may have a substituent and m represents 0 or 1), the alkylene group may have an oxygen bond (ether bond) in the main chain, R² and R³ each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 1 to 3, and an intermolecular crosslinked moiety (a2) represented by the following general formula (III):

Appl. No. Filed

10/522,036

: January 19, 2005

$$\begin{array}{c|c} & & & \\ & & &$$

wherein R¹ represents either an alkylene group having 1 to 10 carbon atoms which may have a substituent or a group represented by the above general formula (II) (wherein R⁴ represents an alkylene group having 1 to 10 carbon atoms which may have a substituent and m represents 0 or 1), the alkylene group may have an oxygen bond (ether bond) in the main chain, R² and R³ each independently represents hydrogen atom or alkyl group having 1 to 3 carbon atoms, and n represents an integer of 1 to 3; and

(B) a compound generating an acid under irradiation with radiation, in an organic solvent, wherein the content of an acid component is 10 ppm or less.

2. (Original) A chemical amplification type positive photoresist composition prepared by dissolving:

(A') an slightly alkali-soluble or alkali-insoluble polyhydroxystyrenic resin having a property that solubility in an aqueous alkali solution is enhanced in the presence of an acid, comprising either

Appl. No. Filed 10/522,036

January 19, 2005

7. (Original) The chemical amplification type positive photoresist composition according to any one of claims 1 to 3, which comprises γ -butyrolactone.

- 8. (Original) The chemical amplification type positive photoresist composition according to any one of claims 1 to 3, which is used for a thick-film photolithography process used for forming a resist film having a thickness of about 2 to 7 μ m.
- 9. (Original) The chemical amplification type positive photoresist composition according to claim 8, wherein the thick-film photolithography process is used for forming a resist pattern for implantation.
- 10. (Original) A method for synthesis of the component (A) of claim 1, which comprises reacting a novolak resin with a crosslinking agent represented by the following general formula

$$H_2C = CH - O - R^1 - O - CH = CH_2 \cdots (VI)$$

(VI):

wherein R¹ represents either an alkylene group having 1 to 10 carbon atoms which may have a substituent or a group represented by the above general formula (II) (wherein R⁴ represents an alkylene group having 1 to 10 carbon atoms which may have a substituent and m represents 0 or 1, and the alkylene group may have an oxygen bond (ether bond) in the main chain, in the substantial absence of an acid catalyst.

11. (Original) A method for synthesis of the component (A') of claim 2, which comprises reacting a hydroxystyrenic resin with a crosslinking agent represented by the following general formula (VI):

$$H_2C = CH - 0 - R^1 - 0 - CH = CH_2$$
 ...(VI)

wherein R¹ represents either an alkylene group having 1 to 10 carbon atoms which may have a substituent or a group represented by the above general formula (II) (wherein R⁴ represents an alkylene group having 1 to 10 carbon atoms which may have a substituent and m represents 0 or 1, and the alkylene group may have an oxygen bond (ether bond) in the main chain, in the presence of an acid catalyst.

12. (Original) A method for synthesis of the component (A") of claim 3, which comprises reacting a hydroxystyrenic resin with a crosslinking agent represented by the following general formula (VI):

$$H_2C = CH - O - R^1 - O - CH = CH_2 \cdots (VI)$$

wherein R¹ represents either an alkylene group having 1 to 10 carbon atoms which may have a substituent or a group represented by the above general formula (II) (wherein R⁴ represents an alkylene group having 1 to 10 carbon atoms which may have a substituent and m represents 0 or 1, and the alkylene group may have an oxygen bond (ether bond) in the main chain, in the presence of an acid catalyst.