Jumeau numérique dans l'environnement: Microclimat urbain

Hanna CHETOUANE, Narmimane ZAOUACHE October 7, 2025

UFR of Mathematics and Informatics - University of Strasbourg

Comment les jumeaux numériques aident-ils à comprendre les

effets des aménagements urbains sur le micro-climat ?

Plan

Contexte

- L'écologie et le climat sont devenus des enjeux majeurs, surtout dans les villes où se développent des îlots de chaleur
- Solutions: Végétalisation, choix de matériaux adaptés et aménagements urbains repensés
- Les collectiviités locales doivent ainsi prendre des décisions sur les stratégies d'aménagement à adopter et en évaluer l'impact environnemental et sanitaire
- ightarrow Simuler et prédire ces effets de ces choix sur le microclimat urbain et la santé publique \Rightarrow **Jumeau numérique**

Qu'est-ce qu'un jumeau numérique ?

- Réplique virtuelle et dynamique d'un système réel, qui, couplé à des outils de simulation, permet d'analyser et prédire son comportement dans différentes conditions
- S'appuie sur des données réelles (météorologiques et urbaines) issues de capteurs, d'observations ou de modèles physiques

Défi actuel en France: projet JNFT porté par l'IGN, le Cerema et l'Inria, qui vise à créer un jumeau numérique multithématique couvrant le territoire français

Fonctionnement d'un jumeau numérique

Méthodes

Physique:

- Données (météo, propriétés des matériaux, composition de l'air)
- Micro-climat

Numérique:

- Paramètres
- Maquette 3D maillée

Modèles physiques:

- Phénomènes physiques continus: PDEs (Navier-Stockes, chaleur, transport, diffusion)
- Interaction entre batiments, vent, végétation: Fluid-Structure Interaction (NS + Elasticity)
- Ecoulement d'air et échanges thermiques: Computational Fluid Dynamics (NS + Heat; Transport; transfert radiatif)

Utilisation ROM: Réduction de l'ordre des modèles physiques pour accélérer les simulations

- Offline: Préparation du modèle
 - Réduction de la dimension en capturant l'essentiel du système: Proper Orthogonal Decomposition (POD), Reduced Basis Method (RBM)
 - Hyper-réduction: Réduit temps de calcul des termes non-linéaires (DEIM: Discrete Empirical Interpolation Method, gappy POD: gappy Proper Orthogonal Decomposition)
- **Online:** Simulation du modèle réduit pour tester différents scénarios rapidement

Data-Driven Models: basé sur les données, prédiction rapide

 Régression: prédit des phénomènes (température, qualité de l'air, vent) à partir de variables (matériaux, végétation...)

 Gaussian Process: prédit et donne l'incertitude pour des zones avec peu de données

 Réseaux de Neuronnes: capture les relations complexes et non-linéaires entre les variables

 Modèles d'ensembles: amélioration de la précision et de la robustesse des prédictions, en combinant plusieurs modèles Data assimilation: Combinaison des modèles physiques et des données pour corriger les simulations, obtenir un maximum de précision et rendre ces simulations exploitables

- VAR: ajuste le modèle physique pour que les simulations collent aux observations (sur un ou plusieurs pas de temps)
- Filtre de Kalman: Mise à jour des prédictions en temps réel pour un suivi dynamique
- PBDW, GEIM: reconstruction du système avec peu de données, pour une vue d'ensemble
- Capteurs virtuels: estimation de variables où il n'y a pas de mesures, voir l'effet de nouveaux aménagements

Architecture Pipeline

The digital twin architecture is divided into two main phases:

Offline: model construction, calibration, and reduction.

Online: real-time assimilation and decision support.

This structure ensures continuous synchronization between the physical and virtual environments.

Bibliographie