MATH 115C: MIDTERM EXAMINATION MAY 7, 2018 DANIEL HALMRAST

Problem 1

Part a. Suppose p is prime, and H is a transitive subgroup of S_p containing a transposition. Prove that $H = S_p$.

Proof. We define a relation \sim on the set $\{1, \dots, p\}$ as

$$i \sim j \iff (ij) \in H$$

First, observe that \sim is an equivalence relation. Trivially, for every $i \in \{1, \dots, p\}$, $i \sim i$, since $(ii) = e \in H$. Furthermore, if $i \sim j$, then $(ij) \in H$, and since (ij) = (ji), it follows that $(ji) \in H$ as well, and so $j \sim i$. Finally, observe that if $i \sim j$ and $j \sim k$, then $(ij), (jk) \in H$, and in particular

$$(ij)(jk)(ij) = (ik)$$

is in H as well. Thus, $i \sim k$. Therefore, \sim is an equivalence relation, and partitions $\{1, \dots, p\}$ into disjoint nonempty equivalence classes.

Next, we show that there is only one equivalence class. Suppose for a contradiction that there is more than one equivalence class in $\{1, \dots, p\}$ under \sim . We show that every equivalence class has the same number of elements. To do so, we will establish a (set-theoretic) bijection between the equivalence classes.

Since H contains a transposition, at least one equivalence class contains more than one element. Let [i] be such an equivalence class. We establish a bijection between the elements of [i] and the elements of [j] for $j \notin [i]$. To do so, let $g \in H$ be such that g(i) = j (which exists since H acts transitively on $\{1, \dots, p\}$). Let $x \in [i]$ with $x \neq i$. Then,

$$g(ix)g^{-1} = (jz)$$

for some $z \in \{1, \dots, p\}$. In particular, since $g, g^{-1}, (ix) \in H$, it follows that $(jz) \in H$ as well, and so $z \in [j]$. We define the bijection to be

$$\Phi:[i]\to[j]$$

$$\Phi(x) = z$$

where z is the element described above. This is indeed a bijection, since it is invertible. In particular, the inverse is given as

$$\Phi^{-1}:[j]\to[i]$$

where $z \in [j]$ gets sent to the $x \in [i]$ for which

$$g^{-1}(jz)g = (ix)$$

This is clearly an inverse, since $\Phi^{-1}\Phi(x)$ is given by

$$g^{-1}g(ix)g^{-1}g = (ix)$$

and so

$$\Phi^{-1}\Phi(x) = x$$

and similarly $\Phi\Phi^{-1}(x)=x$. Thus, Φ has a two-sided inverse, and is a bijection.

Now, since the equivalence classes partition $\{1, \dots, p\}$, and each has the same size (n, say), it follows that n divides p. We have already seen that n > 1 since H contains a transposition, so n = p. Thus, there is only one

equivalence class. Therefore, H contains all transpositions, and since the transpositions generate S_p , $H = S_p$ as desired.

Part b. Suppose $f \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} and has prime degree p. If f has exactly p-2 real roots and 2 complex roots, show the Galois group of f over \mathbb{Q} is S_p .

Proof. Let H be the Galois group of f. Since f has exactly p roots and is irreducible, H permutes the p roots of f, and thus H is a subgroup of S_p . Furthermore, H contains the transposition defined by complex conjugation, which transposes the two complex roots. Finally, since f is irreducible, H acts transitively on the roots of f. Thus, H satisfies the criteria of part f, and f and f are f as desired.

To see that H acts transitively on the roots, let K be the splitting field of f, so that $H = \operatorname{Gal}(K/\mathbb{Q})$, and let α, β be roots of f. Then, there exists a field homomorphism

$$\sigma: \mathbb{Q}(\alpha) \to \mathbb{Q}(\beta)$$

$$\sigma(q) = q \text{ for } q \in \mathbb{Q}$$

$$\sigma(\alpha) = \beta$$

which fixes \mathbb{Q} . Since α and β both have f as their minimal polynomial, $[\mathbb{Q}(\alpha):\mathbb{Q}]=[\mathbb{Q}(\beta):\mathbb{Q}]$ and so this field homomorphism is indeed an isomorphism by problem 2 part i. Furthermore, this extends to an automorphism of K which fixes \mathbb{Q} and sends α to β , as desired.

Part c. Determine the Galois group of $x^5 - 4x + 2$ over \mathbb{Q} .

Proof. Let $f(x) = x^5 - 4x + 2$. Observe that its derivative

$$f'(x) = 5x^4 - 4$$

has exactly two real roots $\alpha_{\pm} = \pm (\frac{4}{5})^{\frac{1}{4}}$. Thus, f has at most 3 real roots.

Now, f(-10) < 0, f(0) > 0, f(1) < 0, and f(100) > 0. By the intermediate value theorem, f has at least 3 real roots. Thus, f has exactly 3 real roots and 2 complex roots.

Furthermore, f is irreducible. This is clear by the Eisenstein criterion at p = 2, since 2 does not divide $a_5 = 1$, but 2 does divide $a_1 = 4$, and $2^2 = 4$ does not divide $a_0 = 2$ (for a_i the coefficient of the *i*th term of f).

Applying the result of part b, we see immediately that the Galois group of f is S_5 , as desired.

Problem 2

Let K be a field.

Part i. Let F and F' be two finite extensions of K. When the degrees of these two extensions are equal, show that every K-homomorphism $F \to F'$ is an isomorphism.

Proof. Let $\sigma: F \to F'$ be a K-homomorphism. That is, σ is a field homomorphism that fixes $K \subset F, F'$. In particular, thinking of F and F' as K-vector spaces, we see that σ is a linear map. This follows immediately, since for $\alpha \in K$, $x, y \in F$,

$$\sigma(\alpha x + y) = \sigma(\alpha)\sigma(x) + \sigma(y) = \alpha\sigma(x) + \sigma(y)$$

as desired.

Since F and F' have the same dimension as K-vector spaces, we just need to show σ is injective, and σ will automatically be bijective with a linear inverse. However, field homomorphisms are always injective, so σ is a linear isomorphism between F and F'. Thus, σ^{-1} is a linear map, and is seen to be a K-homomorphism by observing that

$$\sigma^{-1}(xy) = \sigma^{-1}(x)\sigma^{-1}(y)$$

for all $x, y \in F'$. Indeed, since

$$xy = \sigma(\sigma^{-1}(xy)) = \sigma(\sigma^{-1}(x))\sigma(\sigma^{-1}(y))$$

we have that

$$\sigma(\sigma^{-1}(xy)) = \sigma(\sigma^{-1}(x)\sigma^{-1}(y))$$

and since σ is bijective,

$$\sigma^{-1}(xy) = \sigma^{-1}(x)\sigma^{-1}(y)$$

Thus, σ is an isomorphism that fixes K, as desired.

Part ii. Give an example, with justification, of two finite extensions F and F' of K which have the same degree but are not isomorphic over K.

Proof. Let $K = \mathbb{Q}$, and let $F = \mathbb{Q}(\zeta_3)$ with ζ_3 a primitive 3rd root of unity, and let $F' = \mathbb{Q}(\sqrt[3]{2})$. Then, F is the splitting field of $f(x) = x^3 - 1$, and $Gal(F/K) = \mathbb{Z}/3\mathbb{Z}$. However, F' is not the splitting field of the minimal polynomial of $\sqrt[3]{2}$, and in particular, there are only two K-automorphisms of F': the trivial automorphism, and the automorphism

$$\sigma(\sqrt[3]{2}) = -\sqrt[3]{2}$$

Thus, $\operatorname{Aut}(F) \neq \operatorname{Aut}(F')$, which implies that F is not isomorphic to F'.

To see that $F \ncong F'$, we observe that if $F \cong F'$ via an isomorphism $\sigma: F \to F'$, then $\operatorname{Aut}(F) \cong \operatorname{Aut}(F')$ as groups. This is given by the group homomorphism

$$\Phi: \operatorname{Aut}(F) \to \operatorname{Aut}(F')$$

$$\Phi(g) = \sigma \circ g \circ \sigma^{-1}$$

where we observe that

$$\Phi(gh) = \sigma gh\sigma^{-1} = \sigma g\sigma^{-1}\sigma h\sigma^{-1} = \Phi(g)\Phi(h)$$

Now, this group homomorphism is invertible by

$$\Phi^{-1}: \operatorname{Aut}(F') \to \operatorname{Aut}(F)$$

$$\Phi^{-1}(g) = \sigma^{-1} \circ g \circ \sigma$$

since

$$\Phi^{-1}\Phi(g) = \sigma^{-1}\sigma g\sigma^{-1}\sigma = g$$

and

$$\Phi\Phi^{-1}(g) = \sigma\sigma^{-1}g\sigma\sigma^{-1} = g$$

and thus is an isomorphism.

Thus, since $\operatorname{Aut}(F) = \mathbb{Z}/3\mathbb{Z}$ and $\operatorname{Aut}(F') = \mathbb{Z}/2\mathbb{Z}$, we see that $F \not\cong F'$, as desired.

Part iii. let L be a finite extension of K. Let F and F' be two finite extensions of L. Show that if F and F' are isomorphic as extensions of L, then they are isomorphic as extensions of K.

Proof. Let $\sigma: F \to F'$ be an L-isomorphism of F and F'. In particular, σ fixes $K \subset L$. Thus, σ is a K-isomorphism as well, and $F \cong F'$ as extensions of K, as desired.

Part iv. Prove or disprove the converse.

Proof. We disprove the statement by contradiction.

Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}(\sqrt[4]{2})$, and $F' = \mathbb{Q}(i\sqrt[4]{2})$. Now, these are all intermediate fields of the extension of \mathbb{Q} to the splitting field of $x^4 - 2$,

namely $\mathbb{Q}(i, \sqrt[4]{2})$. In particular, we know what $Gal(\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q})$ looks like: it is the dihedral group D_8 , presented as

$$\operatorname{Gal}(\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q}) = \langle \sigma, \tau \mid \sigma^4 = 1, \tau^2 = 1, \sigma\tau = \tau\sigma^{-1} \rangle$$

where

$$\sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$$

$$\tau(i) = -i$$

In particular, these are all the automorphisms of the splitting field that fix \mathbb{Q} . Thus, any isomorphism from $\mathbb{Q}(\sqrt[4]{2})$ to $\mathbb{Q}(i\sqrt[4]{2})$ must be a restriction of products of these (since any isomorphism of intermediate fields induces an automorphism on the splitting field). In particular, the only ones which send $\mathbb{Q}(\sqrt[4]{2})$ to $\mathbb{Q}(i\sqrt[4]{2})$ are σ , $\tau\sigma$, $\sigma\tau$, and $\tau\sigma^3$. Observe that each of these sends $\sqrt[4]{2}$ to $i\sqrt[4]{2}$. So let σ' be any such isomorphism.

 σ' does not fix $\mathbb{Q}(\sqrt{2})$. This is evident, since

$$\sigma'(\sqrt{2}) = \sigma'(\sqrt[4]{2})\sigma'(\sqrt[4]{2}) = -\sqrt{2}$$

and so $\mathbb{Q}(\sqrt[4]{2})$ and $\mathbb{Q}(i\sqrt[4]{2})$ are \mathbb{Q} -isomorphic, but not $\mathbb{Q}(\sqrt{2})$ -isomorphic. \square

Problem 3

Let $F = \mathbb{C}(x, y)$ be the function field in two variables x and y. Let $n \geq 1$, and let $K = \mathbb{C}(x^n + y^n, xy)$.

Part i. Let $K' = K(x^n)$, which is a subfield of F. Show that K'/K is a quadratic extension.

Proof. Observe that the polynomial

$$f(s) = (s - x^n)(s - y^n) = s^2 - (x^n + y^n)s + (xy)^n$$

is in K[s]. In fact, it is the minimal polynomial for x^n (since neither x^n nor y^n are in K), and is quadratic. Thus, K'/K is quadratic, as desired. \square

Part ii. Show that F/K' is cyclic of order n.

Proof. It is clear that F = K'(x), since $y = (xy)(x)^{-1}$, and so K'(x) contains y. Now, the minimal polynomial for x in K' is

$$f(s) = s^n - x^n = x^n (\frac{s^n}{x^n} - 1) = x^n \prod_{d|n} \Phi_d(\frac{s}{x})$$

where Φ_d is the dth cyclotomic polynomial. This has as its roots $x\zeta_n^k$ where ζ_n is a primitive nth root of unity, and $0 \le k < n$. Clearly, this is irreducible, since if f(s) = g(s)h(s), then

$$g(s) = \prod_{\substack{i \in S \\ 9}} (s - x\zeta_n^i)$$

where $S \subsetneq \{1, \dots, n\}$. However, expanding this shows that each coefficient (except the first and last) contains a power of x less than n, which is not in K'. So, $g(s) \not\in K'[s]$, and f(s) must be irreducible.

Thus, the degree of the extension F/K' is n. Furthermore, the automorphism

$$\sigma: F \to F$$

$$\sigma(x) = x\zeta_n\sigma(y) = y\zeta_n$$

fixes K', since $\sigma(x^n) = (\sigma(x))^n = x$, and has order n. Thus, it exhausts the Galois group of F/K', and so

$$Gal(F/K') = \langle \sigma \rangle$$

as desired. \Box

Part iii. Show F/K is Galois, and determine its Galois group.

Proof. In order to show F/K is Galois, we will show that F splits a polynomial in K[s]. Namely, consider

$$f(s) = (s^{n} - x^{n})(s^{n} - y^{n}) = s^{2n} - (x^{n} + y^{n})s^{n} + (xy)^{n}$$

which is clearly in K[s]. In particular, this splits in F with roots $x\zeta_n^k$ and $y\zeta_n^k$ for $0 \le k < n$. Thus, F/K is Galois of degree at most 2n. By considering the intermediate field $K' \ne F$, we see that $[F:K] = [F:K'][K':K] \ge 2n$. Thus, [F:K] = 2n.

Observe that we have the following K-automorphisms of F

$$\sigma(x) = x\zeta_n$$
$$\sigma(y) = y\zeta_n$$
$$\tau(x) = y$$

$$\tau(y) = x$$

with $\sigma^n = 1$ and $\tau^2 = 1$. This forms an Abelian group, since

$$\sigma \tau(x) = y\zeta_n = \tau \sigma(x)$$

$$\sigma \tau(y) = x \zeta_n = \tau \sigma(y)$$

Clearly, this group is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

1. Problem 4

Let p be a prime number, and let K denote a finite extension of \mathbb{F}_p . Recall that $\operatorname{Gal}(K/\mathbb{F}_p)$ is generated by the Frobenius automorphism $\sigma(t) = t^p$.

Part a. If $h(z) = \frac{-1}{1+z}$, for $z \in K$, $z \neq 0, -1$, show that $h^3(z) = z$. Hence, show that $f(x) = x^{p+1} + x^p + 1$ can only have irreducible factors of degree three or one.

Proof. Observe first that

$$h^{2}(z) = \frac{-1}{1 + \frac{-1}{1+z}}$$

$$= \frac{-1(1+z)}{(1 + \frac{-1}{1+z})(1+z)}$$

$$= \frac{-(1+z)}{z}$$

$$h^{3}(z) = \frac{-1}{1 + \frac{-(1+z)}{z}}$$

$$= \frac{-1(z)}{(1 + \frac{-(1+z)}{z})(z)}$$

$$= \frac{-z}{-1} = z$$

as desired.

Now, we consider $f(x) = x^{p+1} + x^p + 1$. Rewriting this, we see that for $x \neq 0, -1$,

$$f(x) = x\sigma(x) + \sigma(x) + 1$$
$$= (x+1)\sigma(x) + 1$$
$$= (x+1)(\sigma(x) - \frac{-1}{1+x})$$
$$= (x+1)(\sigma(x) - h(x))$$

Thus, if $\alpha \neq 0, -1$ is a root of f, then $\sigma(\alpha) = h(\alpha)$. So, for α not in \mathbb{F}_p , the extension $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ has Galois group generated by $\sigma(t)$. But on the roots of f, $\sigma(t) = h(t)$ has order 3, and so the Galois group of $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ has order 3. Therefore, the minimal polynomial for α has degree 3, and so the irreducible factors of f are either linear (if $\alpha \in \mathbb{F}_p$) or of degree 3 (the minimal polynomial for α).

Part b. Show further that f has at most two linear factors over \mathbb{F}_p , and that if $p \neq 2$, f has such factors if and only if -3 is a square in \mathbb{F}_p .

Proof. We observe that

$$h(z) = \frac{-1}{1+z}$$

is the identity only at $\alpha_{\pm} = \frac{-1 \pm \sqrt{-3}}{2}$ (which is obtained by solving the quadratic $z = \frac{-1}{1+z}$). In particular, this means that if $\beta \neq \alpha_{\pm}$ is a root of f, then the extension $\mathbb{F}_p(\beta)/\mathbb{F}_p$ is strictly a degree three extension with Galois group generated by h. Thus, f can have at most two linear factors, specifically α_{\pm} .

Now, if p = 2, then 2 = 0, and so $\alpha_{\pm} \notin \mathbb{F}_2$, since it would require dividing by zero. However, if $p \neq 2$, and -3 is a square in \mathbb{F}_p , then $\alpha_{\pm} \in \mathbb{F}_p$, and so

$$f(\alpha_{\pm}) = (\alpha_{\pm} + 1)(\sigma(\alpha_{\pm}) - h(\alpha_{\pm}))$$
$$= (\alpha_{\pm} + 1)(\alpha_{\pm} - \alpha_{\pm}) = 0$$

where we have used the fact that $\sigma(\alpha) = \alpha$ for $\alpha \in \mathbb{F}_p$. Thus, f has α_{\pm} as two of its roots, and these roots are in \mathbb{F}_p , so f has two linear factors.

Conversely, if -3 is not a square in \mathbb{F}_p , then $\alpha_{\pm} \notin \mathbb{F}_p$. Therefore, f does not have α_{\pm} as linear factors over \mathbb{F}_p . Since these are the only possible linear factors of f, f must not have any linear factors, as desired.

Part c. Deduce that -3 is a square in \mathbb{F}_p for primes p = 3n + 1 but not for primes p = 3n + 2.

Proof. Clearly, f has degree p + 1. Thus, if p = 3n + 1, f has 3n + 2 roots. Since the irreducible factors of f are of degree 3 or 1, there must be exactly two linear factors of f. Thus, -3 is a square in \mathbb{F}_{3n+1} .

However, for p = 3n + 2, f has degree 3(n + 1), and thus has 3(n + 1) roots. Since the irreducible factors of f are of degree 3 or 1, with at most two factors being linear, all irreducible factors must be of degree 3, and therefore -3 is not a square in \mathbb{F}_{3n+2} .