Introduction to Analysis Collection

Haoming Wang

18 June 2019

This is the collection of lecture notes for the *Introduction to Analysis* class in fall 2019.

Contents

1	Completeness of the real numbers		
	1.1	Real number	3
	1.2	Sequence	5
	1.3	Nested Intervals	8
		Limit superior / inferior	
	1.5	Cauchy seq	12
2	Series		14
	2.1	Positive series	14
	2.2	Alternating series	16

Chapter 1

Completeness of the real numbers

1.1 Real number

Definition 1. Let $S \subseteq \mathbb{R}$ and $r \in \mathbb{R}$, we say that

- 1. *r* is an upper (lower) bound of *S* if $\forall s \in S, r \geq (\leq)s$;
- 2. r is the greatest (least) element of S if r is an upper (lower) bound of S and $r \in S$, denoted by $r = \max S(\min S)$.
- 3. r is the least upper (greatest lower) bound of S if r is the least (greatest) element of the set of upper (lower) bound of S, denoted by $r = \sup S(\inf S)$.

Remark 1. r is a least upper bound of S means any element of S which is smaller than r is not an upper bound of S, that is $\forall \epsilon > 0, \exists s \in S, \text{ s.t. } r - \epsilon < s \leq r.$

We write $\sup S = \infty$ (inf $S = -\infty$) if and only if S has no upper (lower) bound. If this is the case we say $\sup S(\inf S)$ does not exist. We say S is bounded from above (below) iff S has an upper (lower) bound.

Definition 2 (Dedekind Cut). Let $A, B \subseteq \mathbb{R}$, we say that (A, B) is a Dedekind cut if

- 1. $A, B \neq \emptyset$;
- 2. $A \cup B = \mathbb{R}$;
- 3. $\forall a \in A, b \in B, a < b$.

We usually call A(B) the lower (upper) part of (A, B).

We assume that \mathbb{R} has the **Dedekind's Gapless Property**: If (A, B) is a Dedekind cut of \mathbb{R} , then exactly one of the following happens:

- 1. max A exists but min B does not;
- 2. min *B* exists but max *A* does not.

We call max A in 1. (or min B in 2.) the **cutting** of (A, B).

Exercise 1. We may define Dedekind cuts on $\mathbb Q$ and $\mathbb Z$ similarly, does Dedekind Gapless Property hold for $\mathbb Q$ and $\mathbb Z$?

Proof. 1. Let $A := \{q \in \mathbb{Q} | q^2 < 2\}$, $B := \{q \in \mathbb{Q} | q^2 > 2\}$. It is direct to see that $A, B \neq \emptyset$.

If $\exists r \in \mathbb{Q}$, s.t. $r^2 = 2$, then $\exists p, q \in \mathbb{N}$, s.t. r = p/q and p, q are not both even. Then $p^2/q^2 = 2 \Rightarrow p^2 = 2q^2 \Rightarrow p^2$ is even $\Rightarrow p$ is even $\Rightarrow p^2$ can be divided by $4 \Rightarrow q^2$ can be divided by $4 \Rightarrow q^2$ can be divided by $4 \Rightarrow q^2$ is even, which leads to a contradiction. Thus $\forall r \in \mathbb{Q}, r^2 \neq 2$. Thus $A \cup B = \mathbb{Q}$.

Finally $\forall q_a \in A, q_b \in B$ one has $q_a^2 < 2 < q_b^2 \Rightarrow q_a < q_b$. Thus (A, B) is a Dedekind cut of \mathbb{Q} . It is direct to see that (A, B) has no Dedekind's gapless property:

For example, if $p \in A$, then $p \in \mathbb{Q}$ and $p^2 < 2$, put $\epsilon = 2 - p^2$, then we should find a $q \in \mathbb{Q}$ such that $q^2 < 2$ and q > p, which means

$$p^2 < q^2 < 2$$

we consider there exists a function r of p, ϵ , such that r > 0 and $r \in \mathbb{Q}$, and put q = p + r, thus q > p and $q \in \mathbb{Q}$, we now prove that $q^2 < 2$. Since

$$2 - q^2 = 2 - (p^2 + r^2 + 2pr) = \epsilon - r^2 - 2pr$$

We now try to find a suitable structure of r to make $r^2 + 2pr < \epsilon$. Since p > 0 and $\epsilon = 2 - p^2$, $0 < \epsilon < 2$. Consider $r = \epsilon/2$ then

$$r^2 = \frac{\epsilon^2}{4} = \frac{\epsilon}{2} \cdot \frac{\epsilon}{2} < \frac{\epsilon}{2}.$$

Consider $r = \epsilon/((2p+1)2) < \epsilon/2$ and

$$2pr = 2p \cdot \frac{\epsilon}{(2p+1)2} < \frac{\epsilon}{2},$$

then we have $r^2 + 2pr < \epsilon$ and

$$q^2 < 2$$
,

by defining

$$q = p + \frac{\epsilon}{2(2p+1)} = \frac{3p^2 + 2p + 2}{4p + 2},$$

thus there is no maximal element in *A* and correspondingly, there is no minimal element in *B* as well.

Theorem 1 (Weierstrass Theorem). *Let* $\emptyset \neq S \subseteq \mathbb{R}$, *if* S *has an upper bound, then* $\sup S$ *exists.*

Proof. Let *B* be the set of all upper bound of *S*, and define $A := \mathbb{R} \setminus B$. CLAIM 1: (A, B) is a Dedekind cut of \mathbb{R} :

- 1. $S \neq \emptyset \Rightarrow \forall s \in S, s-1 \notin B \Rightarrow s-1 \in A \Rightarrow A \neq \emptyset$; And S has an upper bound $\Rightarrow B \neq \emptyset$;
- 2. $A = \mathbb{R} \backslash R \Rightarrow A \cup B = \mathbb{R}$;
- 3. If $\exists a \in A, b \in B$, s.t. $a \ge b$ where b is an upper bound of S while a is not, thus $\exists s' \in S$, s.t. $a < s' \le b < a$, which leads to a contradiction. Thus $\forall a \in A, b \in B$ one has a < b.

CLAIM 2: min *B* exists:

If min $B \not\exists$, then by Dedekind's gapless property, max $A\exists$, denoted by a_0 . $a_0 \in A \Leftrightarrow a_0 \notin B \Leftrightarrow a_0$ is not an upper bound of $S \Leftrightarrow \exists s_0 \in S$, s.t. $a_0 < s$. Choose $x \in \mathbb{R}$ such that $a_0 < x < s_0$, thus max $A < x \Rightarrow x \in B \Rightarrow x$ is an upper bound of S but $x < s_0$ which leads to a contradiction.

Exercise 2 (Archimedean Property). *Show that* $\forall r \in \mathbb{R}, r > 0 \Rightarrow \exists n \in \mathbb{N}$, s.t. n > r. (or *say* $\exists n \in \mathbb{N}$, s.t. 1/n < r).

Proof. Let $r \in \mathbb{R}$, $S := \{n \in \mathbb{N} | n \le r\}$, since $r > 0, 0 \in S \Rightarrow S \ne \emptyset$. Then $S \subseteq \mathbb{R}$ and S is bounded above (by r), thus S has a least upper bound in \mathbb{R} , let $s = \sup S$.

Now consider the number s-1. Since s is the supremum of S, s-1 cannot be an upper bound of S by definition. Thus $\exists m \in S$ such that

$$m > s - 1 \Rightarrow m + 1 > s$$

But as $m \in \mathbb{N}$, it follows that $m+1 \in \mathbb{N}$. Because m+1 > s, it follows that $m+1 \notin S$ and so m+1 > r. Furthermore, for $\forall r > 0, 1/r > 0$ then $\exists n \in \mathbb{N}$, s.t. $n > 1/r \Rightarrow 1/n < r$.

1.2 Sequence

Definition 3 (Convergence). Let $a_n(n \in \mathbb{N})$ be a sequence in \mathbb{R} and $l \in \mathbb{R}$, we say that a_n converges to l as $n \to \infty$ if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N, |a_n - l| < \epsilon$, denoted by $a_n \to l$ (as $n \to \infty$).

If such l exists, we call it the limit of $\{a_n\}$ and denote is as $\lim_{n\to\infty} a_n = l$, and call $\{a_n\}$ a convergent sequence; otherwise we call it a **divergent** sequence. Furthermore, we say $\lim_{n\to\infty} a_n = \infty$ if $\forall M > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N, a_n \geq M$.

Exercise 3. Show that

- 1. $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = m \Rightarrow l = m$;
- 2. $a_n(n \in \mathbb{N})$ is convergent $\Rightarrow \{a_n | n \in \mathbb{N}\}$ is bounded;
- 3. *if* $a_n < b_n$ *for all* $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = l$, $\lim_{n \to \infty} b_n = m \Rightarrow l \leq m$.

Proof. 1. $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = m \Rightarrow \text{ for } \forall \epsilon > 0, \exists N, M \in \mathbb{N}, \text{ s.t. } \forall n \geq N$

one has $|a_n - l| < \epsilon/2$ and $\forall n \ge M$ has $|a_n - m| < \epsilon/2$, thus for $\forall n \ge \max\{N, M\}$, has

$$|l - m| = |l - a_n + a_n - m| \le |a_n - l| + |a_n - m| < \epsilon$$

holds for $\forall \epsilon > 0 \Rightarrow l = m$.

2. Suppose $a_n \to l$ as $n \to \infty$, then given an $\epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ we have $|a_n - l| < \epsilon \Rightarrow l - \epsilon < a_n < l + \epsilon$, thus a_n has upper bound

$$\max\{a_1,\cdots,a_{n-1},l+\epsilon\},\$$

and lower bound

$$\min\{a_1,\cdots,a_{n-1},l-\epsilon\}.$$

3. if l > m, let $\epsilon = l - m$, then $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ has $|a_n - l| < \epsilon/2$ and $|b_n - m| < \epsilon/2$ thus

$$a_n < \frac{l+m}{2} < b_n,$$

which leads to a contradiction, thus $l \leq m$.

Remark 2. Changing or removing finitely many terms in $a_n(n \in \mathbb{N})$ does not effect a_n 's being convergent (and its limit)/ divergent.

Proposition 1. If $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} b_n = m$ then

- 1. $\lim_{n\to\infty}(a_n\pm b_n)=l\pm m$;
- 2. $\lim_{n\to\infty} a_n b_n = lm$;
- 3. if $m \neq 0$ and $b_n \neq 0$ for all but finitely many n then $\lim_{n \to \infty} a_n/b_n = l/m$.

Proof. 1. For $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N, |a_n - l| \leq \epsilon/2$ and $\exists M \in \mathbb{N}$, s.t. $\forall n \geq M, |b_n - m| \leq \epsilon/2$, thus $\forall n \geq \max\{N, M\}$, one has

$$|(a_n \pm b_n) - (l \pm m)| = |(a_n - l) \pm (b_m - m)|$$

$$\leq |a_n - l| + |b_n - m|$$

$$\leq \epsilon,$$

thus $(a_n \pm b_n) \to l \pm m$ as $n \to \infty$.

2. Since a_n , b_n are convergent, thus they are bounded. Choose C > 0 such that $|b_n| \le C$ for all $n \in \mathbb{N}$ and $|l| \le C$, then for $\forall \epsilon > 0$, $\exists N, M \in \mathbb{N}$, s.t. $\forall n \ge N$ one has $|a_n - l| \le \epsilon/(2C)$ and $\forall n \ge M$ has $|b_n - m| \le \epsilon/(2C)$, thus $\forall n \ge \max\{N, M\}$ one has

$$|a_n b_n - lm| = |a_n b_n - lb_n + lb_n - lm|$$

$$\leq |a_n - l| \cdot |b_n| + |b_n - m| \cdot |l|$$

$$\leq (|a_n - l| + |b_n - m|) \cdot |C|$$

$$\leq \epsilon$$

thus $a_n b_n \to lm$.

3. all we need to show is $\lim_{n\to\infty} 1/b_n = 1/m$ which is trivial.

Exercise 4 (Squeeze theorem). *If* $\lim_{n\to\infty} a_n = l$ *and* $\lim_{n\to\infty} b_n = m$ *and* $a_n \le c_n \le b_n$, *show that* $l = m \Rightarrow \lim_{n\to\infty} c_n = l$.

Proof. Since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = l$, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n \geq N$ has $|a_n - l| < \epsilon/3$ and $|b_n - l| < \epsilon/3$. And since $a_n \leq c_n \leq b_n$, we have that $0 \leq c_n - a_n \leq b_n - a_n$. Thus for $\forall n \geq N$, we have

$$|c_{n} - l| = |c_{n} - a_{n} + a_{n} - l|$$

$$\leq |c_{n} - a_{n}| + |a_{n} - l|$$

$$\leq |b_{n} - a_{n}| + |a_{n} - l|$$

$$= |b_{n} - l + l - a_{n}| + |a_{n} - l|$$

$$\leq |b_{n} - l| + 2|a_{n} - l|$$

$$\leq \varepsilon.$$

thus $\lim_{n\to\infty} c_n = l$.

Exercise 5. *If* a > 1 *show that* $\lim_{n \to \infty} 1/a^n = 0$.

Proof. Since $a > 1 \Rightarrow b := a - 1 > 0$, thus

$$0 \le \frac{1}{a^n} = \frac{1}{(1+b)^n} \le \frac{1}{1+nb} \to 0$$

as $n \to \infty$, thus $\lim_{n \to \infty} 1/a^n = 0$ by Squeeze theorem.

Definition 4. A seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} is

- 1. nondecreasing monotone/increasing if $a_n \leq a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by a_n , nonincreasing monotone/decreasing if $a_n \geq a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by a_n .
- 2. strictly increasing if $a_n < a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by $a_n \nearrow \nearrow$; strictly decreasing if $a_n > a_{n+1}$ for $\forall n \in \mathbb{N}$, denoted by $a_n \searrow \nearrow$.

Theorem 2 (Monotone Seq. Property). *If* $a_n \nearrow and \{a_n | n \in \mathbb{N}\}$ *has an upper bound, then* $\lim_{n\to\infty} a_n = \sup\{a_n | n \in \mathbb{N}\}; a_n \searrow and \{a_n | n \in \mathbb{N}\} \text{ has an lower bound, then } \lim_{n\to\infty} a_n = \inf\{a_n | n \in \mathbb{N}\}.$

Proof. $\{a_n|n\in\mathbb{N}\}$ has an upper bound $\Rightarrow l:=\sup\{a_n|n\in\mathbb{N}\}$ exists by Weierstrass theorem. Thus for $\forall \epsilon>0, l-\epsilon$ is not an upper bound of $\{a_n\}$, then $\exists N\in\mathbb{N}$, s.t. $a_N>l$ and since $a_n\nearrow$, we have that $\forall n\ge N, l-\epsilon< a_n\le l\Rightarrow \lim_{n\to\infty}a_n=l$.

Example 1 (Decimal expression gives real number). Suppose $d_i \in \mathbb{N}$ and $0 \le d_i \le 9$ for $i \in \mathbb{N}$, and define

$$a_n = \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n}$$

for $n \in \mathbb{N}$, then it is direct to see that $a_n \nearrow$ and

$$a_n \le \frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n}$$

$$= \frac{9}{10} \left(\frac{1 - \frac{1}{10^{n+1}}}{1 - \frac{1}{10}} \right)$$

$$< \frac{9}{10} \left(\frac{1}{1 - \frac{1}{10}} \right)$$

$$= 1$$

and hence $\lim_{n\to\infty} a_n$ exists, and we can define a real number by $\lim_{n\to\infty} a_n =: 0.d_1d_2\cdots$

Example 2 (The natural base *e*). Define a seq. $a_n = (1 + 1/n)^n (n \in \mathbb{N})$, then we have

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= \binom{n}{0} + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^{2}} + \dots + \binom{n}{n} \frac{1}{n^{n}}$$

$$= \sum_{j=0}^{n} \binom{n}{j} \frac{1}{n^{j}} = \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \cdot \frac{1}{n^{j}}$$

$$= \sum_{j=0}^{n} \frac{1}{j!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{j-1}{n}\right)$$

$$< \sum_{j=0}^{n+1} \frac{1}{j!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{j-1}{n+1}\right)$$

Thus $a_n \nearrow \nearrow$. On the other hand, for $\forall n \in \mathbb{N}$, we have

$$a_n < \sum_{j=0}^{n+1} \frac{1}{j!} = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

$$< 1 + 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$$

$$= 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$$

$$< 3$$

Thus a_n has an upper bound and hence a_n converges, and we define $\lim_{n\to\infty} a_n =: e$.

1.3 Nested Intervals

Definition 5 (Nested). A seq. of intervals $I_n(n \in \mathbb{N})$ is nested if $I_n \neq \emptyset$ and $I_{n+1} \subseteq I_n$ for $\forall n \in \mathbb{N}$.

Example 3. If we have a seq. of nested intervals $I_n(n \in \mathbb{N})$, do we have $\cap_{n \in \mathbb{N}} I_n \neq \emptyset$? The answer is not sure. For example,

- 1. $I_n = (0, 1/n), n \in \mathbb{N}$, then for any $r \in \mathbb{R}, \exists N \in \mathbb{N}$, s.t. 1/N < r by Archimedean Property, thus $r \notin I_N$, and hence $\cap_{n \in \mathbb{N}} I_n = \emptyset$;
- 2. $I_n = [n, \infty), n \in \mathbb{N}$, then for any $r \in \mathbb{R}, \exists N \in \mathbb{N}$, s.t. r < N by Archimedean Property, thus $r \notin I_N$, and hence $\cap_{n \in \mathbb{N}} I_n = \emptyset$;

Theorem 3 (Theorem of Nested Interval). If $I_n(n \in \mathbb{N})$ is a seq. of bounded closed nested intervals, then $\cap_{n \in \mathbb{N}} I_n \neq \emptyset$. (In the other word, there exists a real number $c \in \mathbb{R}$ such that $c \in \cap_{n \in \mathbb{N}} I_n$)

Proof. Write $I_n = [a_n, b_n] (n \in \mathbb{N})$, then $I_n (n \in \mathbb{N})$ is nested $\Leftrightarrow a_n \leq b_n$ and $a_n \nearrow$ and $b_n \nearrow$. And furthermore, for $\forall n, m \in \mathbb{N}$,

$$a_n \leq a_{\max\{m,n\}} \leq b_{\max\{m,n\}} \leq b_m,$$

in the other word, for $\forall m \in \mathbb{N}$, b_m is an upper bound of $\{a_n | n \in \mathbb{N}\}$, thus seq. a_n converges. Let $c = \lim_{n \to \infty} a_n$, then given $m \in \mathbb{N}$, for $\forall n \in \mathbb{N}$, $a_n \leq b_m$ thus

$$c = \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_m = b_m$$
.

On the other hand, $c = \sup\{a_n | n \in \mathbb{N}\}$, thus for all $m \in \mathbb{N}$, we have

$$a_m \le c \le b_m$$

thus $c \in I_m$ for $\forall m \in \mathbb{N} \Rightarrow c \in \cap_{n \in \mathbb{N}} I_n$.

Exercise 6. *Show that* $\cap_{n\in\mathbb{N}}I_n\neq\emptyset$ *, if*

- 1. $I_n = (a_n, b_n)$, nested and $a_n \nearrow and b_n \nearrow$?
- 2. $I_n = (a_n, \infty)$, nested and $\{a_n | n \in \mathbb{N}\}$ is bounded from above.

Proof. 1. Just as analyzed before, there exist $c \in \mathbb{R}$ such that $c = \lim_{n \to \infty} a_n$, and $c = \sup\{a_n | n \in \mathbb{N}\}$ and hence $a_n \le c \le b_m$ for $\forall n, m \in \mathbb{N}$. Note that $a_n \le c$ implies that $a_n < c$ for $\forall n \in \mathbb{N}$, otherwise if $\exists n' \in \mathbb{N}$, s.t. $a_{n'} = c$ then

$$a_{n'+1} \ge a_{n'} = c,$$

which leads to the contradiction. In the same way $c \leq b_m$ implies that $c < b_m$ for $\forall m \in \mathbb{N}$. Thus there $\exists c \in \mathbb{R}$ such that

$$a_n < c < b_m$$

for $\forall n, m \in \mathbb{N} \Rightarrow c \in \cap_{n \in \mathbb{N}} I_n$.

2. Since $I_n = (a_n, \infty)$ is a nested interval, $a_n \nearrow \Rightarrow a_n$ converges since a_n is upper bounded. That is $\exists c \in \mathbb{R}$, s.t. $c = \lim_{n \to \infty} a_n = \sup\{a_n\}$, thus for $\forall n \in \mathbb{N}, c \geq a_n$, that is

$$c+1>c\geq a_n$$

for $\forall n \in \mathbb{N} \Rightarrow c+1 \in \cap_{n \in \mathbb{N}} I_n$.

Exercise 7. Show that Theorem of Nested Interval implies Dedekind's Gapless Property.

Proof. Let (A, B) be a Dedekind cut of \mathbb{R} , pick a from A and b from B, and form an interval $I_0 = [a, b]$. Then (a + b)/2 lies in the middle of I_0 and must belong to A or B. If (a + b)/2 belongs to A, we let

$$a_1 = \frac{a+b}{2}, \quad b_1 = b$$

and if (a + b)/2 belongs to B, let

$$a_1 = a$$
, $b_1 = \frac{a+b}{2}$

and hence we can form a new interval $I_1 = [a_1, b_1]$ whose length is half of the former I_0 . Repeat this process, we obtain a seq. of nested intervals

$$I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots$$
,

where $I_n = [a_n, b_n], b_n - a_n = (b_{n-1} - a_{n-1})/2$. Thus there exists $s \in \mathbb{R}$ lies in the $\bigcap_{n \in \mathbb{N}} I_n$ by the theorem of nested intervals, and either $s \in A$ or $s \in B$.

Assume that $s \in A$, for any $s' \in \mathbb{R}$, s < s', exists b_n such that $s < b_n < s'$ since $b_n \to s$, thus $s' \in B$. That is $s \in A$ and for any s' > s, $s' \in B$. In the other word, s is the maximal element of A and B has no minimal element in this case, since assume s' is the minimal element of B then $\exists b_n$, s.t. $b_n < s'$ and $b_n \in B$, which is a contradiction.

Remark 3. Summary, we have discussed

- 1) Dedekind's Gapless Property;
- 2) Weierstrass Theorem;
- 3) Monotone Seq. Property;
- 4) Theorem of Nested Interval. which have the relationship:

$$\begin{array}{ccc} 1) & \Longrightarrow 2) \\ \uparrow & & \downarrow \\ 4) & \longleftarrow 3) \end{array}$$

These 5 properties are equivalent and we call the these the **Completeness of the real numbers**.

1.4 Limit superior / inferior

Let $a_n (n \in \mathbb{N})$ be a bounded (upper bdd. and lower bdd.) seq. in \mathbb{R} , we define **upper seq. of** a_n as

$$u_n := \sup\{a_m | m \ge n\},$$

and **lower seq.** of a_n as

$$l_n := \inf\{a_m | m \ge n\},\$$

for $n \in \mathbb{N}$. Thus give $n \in \mathbb{N}$, we have that for $\forall m \ge n$

$$l_n \leq a_m \leq u_n$$
,

We now show that l_n and u_n is monotone. Assume that $\exists n \in \mathbb{N}$, s.t. $u_n < u_{n+1}$, let $\epsilon = (u_{n+1} - u_n)/2$, then

$$u_{n+1} - \epsilon > u_n = \sup\{a_m | m \ge n\},$$

thus for $\forall m \geq n$, $u_{n+1} - \epsilon > a_m$ and hence $u_{n+1} - \epsilon$ is an upper bound of $\{a_m | m \geq n+1\}$, which leads to a contradiction. Thus for $\forall n \in \mathbb{N}, u_n \geq u_{n+1} \Rightarrow u_n$, and l_n in the same way.

Thus we have that for any $n, m \in \mathbb{N}$,

$$l_m \leq l_{\max\{m,n\}} \leq u_{\max\{m,n\}} \leq u_n,$$

thus l_1 is a lower bound for $\{u_n|n \in \mathbb{N}\}$ and u_1 is an upper bound of $\{l_n|n \in \mathbb{N}\}$ and hence $u_n, l_n(n \in \mathbb{N})$ are convergent by Monotone seq. property. We define the **limit superior** of a_n as the limit of u_n :

$$\overline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} u_n = \lim_{n\to\infty} \sup_{m\geq n} a_m = \inf_{n\in\mathbb{N}} \sup_{m\geq n} a_m$$

The last equals sign is because u_n and hence converges to its greatest lower bound by Monotone seq. property. And the **limit inferior** of a_n as the limit of l_n :

$$\underline{\lim}_{n\to\infty} a_n := \lim_{n\to\infty} l_n = \lim_{n\to\infty} \inf_{m\geq n} a_m = \sup_{n\in\mathbb{N}} \inf_{m\geq n} a_m$$

Exercise 8. *Let* $a_n (n \in \mathbb{N})$ *, show that*

$$a_n$$
 converges $\Leftrightarrow \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$

and if any of both sides holds, then

$$\lim_{n\to\infty} a_n = \overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n$$

Proof. \Rightarrow : Suppose that $\lim_{n\to\infty} a_n = s$. Then for any $\epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, $|a_n - s| < \epsilon/2$, thus $s - \epsilon/2 < a_n < s + \epsilon/2$ for $\forall n \ge N$. Thus the upper seq. u_n of a_n has

$$s - \frac{\epsilon}{2} < a_n \le u_n \le s + \frac{\epsilon}{2},$$

for $\forall n \geq N$. The third inequality symbol is because if $\exists n' \geq N$ such that $u_{n'} > s + \epsilon/2$, then there exist a real number q such that $s + \epsilon/2 < q < u_{n'}$ and $q > s + \epsilon/2 > a_n$ for $\forall n \geq N$ and hence $q > a_n$ for $\forall n \geq n'$, and then $u_{n'}$ is not the least upper bound of $\{a_n | n \geq n'\}$ which is contrary. Thus $|u_n - s| \leq \epsilon/2 < \epsilon$, thus

$$\lim_{n\to\infty}u_n=\overline{\lim_{n\to\infty}}a_n=\lim_{n\to\infty}a_n=s,$$

and $\lim_{n\to\infty} l_n = \underline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n = s$ in the same way.

 \Leftarrow : Suppose $\lim_{n\to\infty}u_n=\lim_{n\to\infty}l_n=s$, then for $\forall \epsilon>0, \exists N\in\mathbb{N}$, s.t. $\forall n\geq N$ one has $|u_n-s|<\epsilon/3$ and $|l_n-s|<\epsilon/3$ and $|u_n-l_n|\leq |u_n-s|+|l_n-s|<2\epsilon/3$, since $l_n\leq a_n\leq u_n$ then $0\leq a_n-l_n\leq u_n-l_n$. Then we have that

$$|a_n - s| = |a_n - l_n + l_n - s|$$

$$\leq |a_n - l_n| + |l_n - s|$$

$$\leq |u_n - l_n| + |l_n - s|$$

$$\leq \epsilon$$

for
$$\forall n \geq N \Rightarrow \lim_{n \to \infty} a_n = \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = s$$
.

Exercise 9. Let $a_n, b_n (n \in \mathbb{N})$ be two bdd. seq. show that

- 1. $\overline{\lim}_{n\to\infty}(a_n+b_n)\leq \overline{\lim}_{n\to\infty}a_n+\overline{\lim}_{n\to\infty}b_n$;
- 2. $\underline{\lim}_{n\to\infty} a_n + \underline{\lim}_{n\to\infty} b_n \leq \underline{\lim}_{n\to\infty} (a_n + b_n)$.

1.5 Cauchy seq.

Given a seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} , can we determine whether a_n converges or not without referring a limit candidate l, but concluding according to the mutual behavior of the terms of $a_n (n \in \mathbb{N})$?

Definition 6 (Cauchy Sequence). A seq. $a_n (n \in \mathbb{N})$ in \mathbb{R} is a Cauchy seq. if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n, m \geq N \Rightarrow |a_n - a_m| < \epsilon$.

Exercise 10. Show that

- 1. a_n is convergent $\Rightarrow a_n$ is Cauchy seq.
- 2. a_n is Cauchy seq. $\Rightarrow a_n$ is bounded.

Proof. 1. assume that a_n converges to l, then for any $\epsilon > 0$, $\exists N \in \mathbb{N}, \forall n \geq N$ one has $|a_n - l| < \epsilon/2$, then for any $m, n \geq N$ we have

$$|a_m - a_n| \le |a_m - l| - |a_n - l| < \epsilon$$

thus $a_n (n \in \mathbb{N})$ is Cauchy seq.

2. For $\forall \epsilon > 0, \exists N \in \mathbb{N}$, s.t. $\forall n, m \geq N$ one has $|a_m - a_n| \leq \epsilon$, thus for $\forall m \geq N \Rightarrow |a_N - a_m| \leq \epsilon \Rightarrow a_n - \epsilon \leq a_m \leq a_N + \epsilon$, thus $a_n(n \in N)$ has upper and lower bound

$$\max\{a_1,\cdots,a_N,a_N+\epsilon\}, \quad \min\{a_1,\cdots,a_N,a_N-\epsilon\},$$

thus a_n is bounded.

Theorem 4. Let $a_n (n \in \mathbb{N})$ be a seq. in \mathbb{R} , then a_n is convergent $\Leftrightarrow a_n$ is Cauchy seq.

Proof. \Leftarrow : a_n is Cauchy seq. $\Rightarrow a_n$ is bdd. \Rightarrow the upper/lower seq. u_n, l_n of a_n converges. Thus $\lim_{n\to\infty} u_n - \lim_{n\to\infty} l_n = \lim_{n\to\infty} (u_n - l_n)$. For $\forall \epsilon > 0$, there is some $N \in \mathbb{N}$ s.t. $\forall m, n \geq N, |a_n - a_m| < \epsilon/3$. In particular, $\forall n \geq N \Rightarrow |a_n - a_N| < \epsilon/3$ and hence

$$a_N - \frac{\epsilon}{3} < a_n < a_N + \frac{\epsilon}{3}$$

which means $a_N - \epsilon/3$ is a lower bound of $a_n (n \ge N)$ and is not greater that $\{a_n | n \ge N\}$'s greatest lower bound l_N , and the same to $a_N + \epsilon/3$, thus

$$a_N - \frac{\epsilon}{3} \le l_N \le u_N \le a_N + \frac{\epsilon}{3}$$

and since $l_{n\nearrow}$ and $u_{n\searrow}$, we have that for $\forall n \geq N$

$$0 \le u_n - l_n \le u_N - l_N \le \frac{2\epsilon}{3} < \epsilon$$

thus $\lim_{n\to\infty}(u_n-l_n)=0\Rightarrow \lim_{n\to\infty}u_n=\lim_{n\to\infty}l_n\Rightarrow a_n$ converges.

Exercise 11. Let $S \subseteq \mathbb{R}$, if $|s-s'| \leq 3$ for $\forall s, s' \in S$, show that

- 1. *S* is bdd.;
- 2. $\sup S \inf S \le 3$;
- 3. and how will $\sup S \inf S$ be if |s s'| < 3?

Chapter 2

Series

2.1 Positive series

Definition 7. Let $a_n (n \in \mathbb{N})$ be a seq. in \mathbb{R} , we say that the series $\sum_{n=0}^{\infty} a_n$ (or $\sum_{n=0}^{\infty} a_n$) converges to a real number s if

$$\lim_{n\to\infty} s_n = s,$$

where $s_n := \sum_{j=1}^n a_j$ is called the n - th partial sum of $\sum_n a_n$.

If such s exists (resp. does not exist), we say that the series $\sum_n a_n$ convergent (resp. divergent). For a series $\sum_n a_n$ and $l, m \in \mathbb{N}, l < m$, we let $s_{l,m} := \sum_{j=l}^m a_j$ the (l, m) - tail of $\sum_n a_n$.

Exercise 12. If a series $\sum_n a_n$ converges, show that $\lim_{n\to\infty} a_n = 0$.

 $\sum_n a_n$ converges $\Leftrightarrow s_n$ converges by definition and $\Leftrightarrow s_n$ is Cauchy seq., i.e. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N$, (assume that n > m)

$$|s_n - s_m| = |a_{m+1} + \dots + a_n|$$

= $|a_{m+1} + a_{m+2} + \dots + a_{m+1+(n-1)}|$
 $\leq \epsilon$.

In particular, for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ and for $\forall k > N, \forall l \geq 0$, then $|a_k| + \cdots + |a_{k+l}| < \epsilon \Leftrightarrow \sum_n |a_n|$ convergent $\Leftrightarrow \exists M > 0, \forall n \in \mathbb{N}, s_n = \sum_{j=1}^n a_j \leq M$, since $s_n \nearrow$. Collectively, we have some conclusions:

- 1. series $\sum_n a_n$ converges \Leftrightarrow for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ and for $\forall k > N, \forall l \geq 0, |a_k + \cdots + a_{k+l}| < \epsilon$;
- 2. series $\sum_{n} b_n$, where $b_n \geq 0$, converges $\Leftrightarrow \exists M > 0, \forall n \in \mathbb{N}, \sum_{j=1}^{n} b_j \leq M$.
- 3. series $\sum_{n} |a_n|$ converges $\Rightarrow \sum_{n} a_n$ converges.

Example 4. Given series $\sum_{n} 1/n$. we have that

$$s_1 = 1$$

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 + \frac{2}{2}$$

$$s_8 \ge 1 + \frac{2}{2} + \frac{1}{5} + \dots + \frac{1}{8} \ge 1 + \frac{2}{2} + \frac{4}{8} = 1 + \frac{3}{2}$$

In general, for $\forall m \in \mathbb{N}$, $s_{2^m} \ge 1 + m/2$ which has no upper bound $\Leftrightarrow \sum_n 1/n$ diverges.

Example 5. Given series $\sum_{n} 1/n^2$. we have that $1/n^2 < 1/((n-1)n) = 1/(n-1) - 1/n$. Then

$$s_n = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

$$< 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n}$$

$$= 2 - \frac{1}{n}$$

$$< 2.$$

thus s_n has upper bound $2 \Leftrightarrow \sum_n 1/n^2$ converges.

Definition 8. Given a seq. $a_n (n \in \mathbb{N})$, we say that

- 1. $\sum_{n} a_n$ converges absolutely if $\sum_{n} |a_n|$ converges;
- 2. $\sum_{n} a_n$ converges conditionally if $\sum_{n} |a_n|$ diverges but $\sum_{n} a_n$ converges.

Theorem 5 (Comparison Test). *If* $a_n, b_n \ge 0 (n \in \mathbb{N})$, then $\exists C > 0$ and $N \in \mathbb{N}$, $n \ge N \Rightarrow a_n \le Cb_n \Rightarrow [\sum_n b_n \ converges \Rightarrow \sum_n a_n \ converges]$.

Proof. If $\sum_n b_n$ converges, then for $\forall n \geq N$,

$$a_1 + \dots + a_n = a_1 + \dots + a_N + a_{N+1} + \dots + a_n$$

 $\leq a_1 + \dots + a_N + C \cdot (b_{N+1} + \dots + b_n)$
 $\leq a_1 + \dots + a_N + C \cdot M =: H,$

where M is an upper bound of $\sum_{j=1}^{n} b_j$, thus $\sum_{j=1}^{n} a_j$ as upper bound $H \Leftrightarrow \sum_{j=1}^{n} a_j$ converges.

Theorem 6 (Limit Form of Comparison Test). *If* $a_n, b_n \ge 0 (n \in \mathbb{N})$, and if $\lim_{n\to\infty} a_n/b_n$ exists $\Rightarrow [\sum_n b_n \ converges \Rightarrow \sum_n a_n \ converges]$.

Proof. Let $l = \lim_{n \to \infty} a_n/b_n$, then for $\epsilon = 1, \exists N \in \mathbb{N}$, s.t. $\forall n \ge N, a_n/b_m < l+1 \Rightarrow a_n < (l+1)b_n$, which follows the proof by Comparison test. Furthermore if $l \ne 0$, then

for $\epsilon = 1/2$, $\exists N_l \in \mathbb{N}$, s.t. $\forall n \geq N_l$, s.t.

$$\frac{l}{2} \leq \frac{a_n}{b_n} \leq \frac{3l}{2},$$

and hence $b_n \le a_n \cdot 2/l$ and $a_n \le b_n \cdot 3l/2$, therefore $\sum_n b_n$ converges $\Leftrightarrow \sum_n a_n$ converges.

Exercise 13. If $a_n, b_n \ge 0 (n \in \mathbb{N})$, show that if $\overline{\lim}_{n\to\infty} a_n/b_n$ exists $\Rightarrow [\sum_n b_n \text{ converges}] \Rightarrow \sum_n a_n \text{ converges}]$.

Exercise 14 (Ratio and Root test). *If* $a_n, b_n \ge 0 (n \in \mathbb{N})$, *show that*

- 1. $\lim_{n\to\infty} a_{n+1}/a_n < 1 \Rightarrow \sum_n a_n$ converges; $\lim_{n\to\infty} a_{n+1}/a_n > 1 \Rightarrow \sum_n a_n$ diverges.
- 2. $\lim_{n\to\infty} (a_n)^{1/n} < 1 \Rightarrow \sum_n a_n$ converges; $\lim_{n\to\infty} (a_n)^{1/n} > 1 \Rightarrow \sum_n a_n$ diverges.

2.2 Alternating series

Definition 9. A series $\sum_n a_n$ is called alternating series, if $\exists b_n > 0 (n \in \mathbb{N})$ s.t. $a_n = (-1)^{n-1}b_n (n \in \mathbb{N})$.

Theorem 7 (Leibniz's Criterion). Let $\sum_n a_n$ be an alternating series, and $b_n = |a_n|_{\searrow 0}$ as $n \to \infty$, then $\sum_n a_n$ converges.

Proof. Since $b_n = (-1)^{n-1}a_n$, for any $k, l \in \mathbb{N}$ the tail of $\sum_n a_n$ is

$$|a_k + \dots + a_{k+l}| = (-1)^{k-1} |b_k - b_{k+1} + \dots + (-1)^l b_{k+l}|$$

= $|b_k - b_{k+1} + \dots + (-1)^l b_{k+l}|$

define $\lambda_{k,l} = b_k - b_{k+1} + \cdots + (-1)^l b_{k+l}$. Then if l is even, then

$$\lambda_{k,l} = (b_k - b_{k+1}) + \cdots + (b_{k+l-2} - b_{k+l-1}) + b_{k+l} \ge 0,$$

and if l is odd, then

$$\lambda_{k,l} = (b_k - b_{k+1}) + \dots + (b_{k+l-1} - b_{k+l}) \ge 0,$$

thus $\lambda_{k,l} \geq 0$ for $\forall k, l \in \mathbb{N}$. And hence

$$|a_k + \dots + a_{k+l}| = |\lambda_{k,l}| = \lambda_{k,l}$$

$$= \begin{cases} b_k - (b_{k+1} - b_{k+2}) - \dots - (b_{k+l-1} - b_{k+l}), & l \text{ is even} \\ b_k - (b_{k+1} - b_{k+2}) - \dots - (b_{k+l-2} - b_{k+k-1}) - b_{k+l}, & l \text{ is odd} \end{cases}$$

$$\leq b_k$$

Since $\lim_{n\to\infty} b_n = 0 \Rightarrow \forall \epsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $n \geq N \Rightarrow |b_n| < \epsilon \Rightarrow |a_n + \cdots + a_{n+l}| \leq b_n < \epsilon$ for $\forall l \in \mathbb{N}$, thus $\sum_n a_n$ converges.