Chapitre 8 Équations simples

Table 8.1 – Objectifs. À fin de ce chapitre 8...

	Pour m'entraîner <u>é</u>		r <u>‰</u>
Je dois connaître/savoir faire	۵	•	Ö
Vocabulaire			
Vérifier si une valeur est solution	1		
Manipuler une équation par addition et multiplication des membres	2, 3, 4	5, 6, 7	8, 9
Méthodes de résolution			
Résolution en une étape, par addition ou multiplication	10, 11, 15		
Résolution en deux étapes, inconnues dans les deux membres		16, 17, 18	
Résolution par développement,		22, 23	
Résolution dans le cas d'inconnues au dénominateur			24
Applications			
Mise en équation à partir de diagrammes, ratios	12, 13, 14		
Mise en équation et géométrie		19, 20, 21	
Mise en équation à partir d'énoncés		25, 26, 27	
Mise en équation à partir de script Scratch		28, 29	
Classiques du Brevet		31, 32	37
Équation et paramètre	30		
Équations quadratiques simples			
Résolution d'équations de la forme $x^2 = a$	33		
Résolution d'équations par produit nul	34	35	36

8.1 Vocabulaire : équation, solution et résolution

Une **équation à une inconnue** est une égalité entre expressions algébriques qui peut être vraie ou fausse.

Une solution de l'équation est une valeur de l'inconnue pour laquelle l'égalité est vraie.

■ Exemple 8.1 — vérifier si une valeur est solution d'une équation.

Soit l'équation 2x + 3 = x - 5 d'inconnue x.

- a) x = 0 n'est pas solution de l'équation car l'égalité $2 \times 0 + 3 = 0 5$ est fausse
- b) x = -8 est une solution de l'équation, car $2 \times (-8) + 3 = (-8) 5$ est vraie.

Définition 8.1 *Résoudre* une équation c'est trouver *toutes* les valeurs des inconnues qui rendent l'égalité vraie.

8.2 Maintenir l'égalité, équations équivalentes

Propriété 8.1 *Ajouter* aux *2 membres* d'une égalité **une même** valeur numérique ou expression algébrique préserve l'égalité :

Pour tout
$$C$$
, si $A = B$ alors $A + C = B + C$

Propriété 8.2 *Multiplier* les *2 membres* d'une égalité par **une même** valeur numérique *non nulle* préserve l'égalité :

Pour tout
$$(C \neq 0)$$
, si $A = B$ alors $CA = CB$

■ Exemple 8.2 — Les règles de balancement. pour maintenir une égalité

■ Exemple 8.3 Les règles de balancement appliquées aux équations préservent les solutions :

$$4x - 3 = 3x + 2$$

$$+1 + 1$$

$$4x - 3 + 1 = 3x + 2 + 1$$

$$4x - 2 = 3x + 3$$

$$5 \text{ est solution de } 4x - 3 = 3x + 2 \text{ et de } 4x - 2 = 3x + 3 :$$

$$4(5) - 3 = 3(5) + 2$$

$$20 - 3 = 15 + 2$$

$$20 - 2 = 15 + 3$$

$$17 = 17$$

$$18 = 18$$

3

Définition 8.2 Deux équations sont dites **équivalentes** si elles ont le même ensemble de solutions c.à.d elles sont vraies pour les mêmes valeurs de x.

Théorème 8.3 — admis. On obtient une équation équivalente si :

- on ajoute aux 2 membres d'une équation une même expression
- multiplie les 2 membres d'une l'équation par une même expression non nulle
- remplace un des deux membres d'une équation par une expression identique (par développement, factorisation, réduction ...) donne une équation équivalente.
- Exemple 8.4 Règles de balancement et équations équivalentes :

■ Exemple 8.5 — Multiplier par des expressions qui peuvent être nulles. modifie les solutions :

$$x=1$$
 $x=1$ 1 et 0 sont solutions de $x^2=x$.
 $x=x$ 1 est solution de $x=1$, mais 0 n'est pas solution de $x=1$.
 $x^2=x$ Les équations $x^2=x$ et $x=1$ ne sont pas équivalentes.

■ Exemple 8.6

Les équations 4x - 3 = 3x + 2, 4x + 1 = 3x + 6, $\frac{4x + 3}{4} = \frac{3x + 2}{4}$, 1 = -x + 6, 3(4x + 3) = 9x + 6, x - 3 = 2 sont des équations équivalentes à x = 5. 5 est l'unique solution de ces équations.

Pour résoudre une équation c'est procéder vers une équation **équivalente** plus simple.

Exercice 1 — Vérifier si une valeur est solution d'une équation à 1 inconnue.

	Vrai	Faux
1/ $x = 7$ est une solution de l'équation $-2x + 14 = 0$ d'inconnue x		
2/ $x=6$ est une solution de l'équation $-2x+14=0$ d'inconnue x		
3/ 2 est une solution de l'équation $2x + 1 = 5$ d'inconnue x		
4/ 3 est une solution de l'équation $x^2 = 3x$ d'inconnue x		
5/ 9 est une solution de l'équation $3x + 9 = 5x - 9$ inconnue x		
6/ -2 est une solution de l'équation $3x + 11 = -3 - 4x$ inconnue x		
7/ -2 est une solution de l'équation $x^2 = -4$ inconnue x		
8/ $x = 4$ est solution de $5x = 20$, $2x = 8$ et $x + 7 = 11$		
9/ $y = 5$ est solution de $3y = 15$, $y - 4 = 9$ et $\frac{10}{y} = 2$		
10/ $p = 7$ est solution de $8p = 56$, $15 - p = 8$ et $2p + 1 = 15$		

Exercice 2

Soit l'équation 2x + 3 = 5x + 1. Écrire les équations obtenues après avoir effectué les opérations suivantes aux deux membres de l'équation.

1. a)
$$+x$$
 b) $+2x$ c) $+3x$

3. a)
$$-x$$
 b) $-2x$ c) $-3x$
4. a) -1 b) -2 c) -3

2. a)
$$+1$$
 b) $+2$ c) $+3$

$$\begin{bmatrix} 4 & a & -1 & b & -2 & c & -3 \end{bmatrix}$$

Exercice 3 Préciser l'opération appliquée aux deux membre de l'équation 5x + 1 = 3x + 8 pour obtenir les équations équivalentes.

Exercice 4 Pour les équations suivantes, une opération a été appliquée à un membre mais à à l'autre. Corriger l'équation obtenue. La première est donnée pour exemple.

On a ajouté -3 au membre de gauche. Il faut faire de même pour le membre de droite. L'équation doit être 3x + 2 = 4 - 2x

2.
$$3x + 5 = 7 - 2x$$
 $3x + 5 = 7 - 2x$ $3x + 5 = 7 - 2x$ $3x + 5 = 7 - 2x$ $5 = 7 - 2x$

Exercice 5 Préciser les opérations successives appliquées aux membre de l'équation x=7 pour obtenir les différentes équations équivalentes.

Exercice 6 Compléter les espaces pour obtenir des équations équivalentes à 4x + 3 = 15.

Exercice 7 Compléter les espaces pour obtenir des équations équivalentes à 5-2x=25.

Exercice 8 a et b sont des constantes à préciser dans chaque cas.

- 1. Ecrire trois équations de la forme x + a = b équivalentes à x + 7 = 12.
- 2. Ecrire trois équations de la forme p-a=b équivalentes à p-6=17.
- 3. Ecrire trois équations de la forme am = b équivalentes à 3m = 15.
- 4. Ecrire trois équations de la forme $\frac{q}{a}=b$ équivalentes à $\frac{q}{4}=\frac{5}{2}$.

Exercice 9 Soit l'équation (E): 2(x+3) = 18

- 1. Écrire trois équations de la forme a(x+3)=b équivalentes à E.
- 2. Écrire trois équations de la forme 2(x+c)=d équivalentes à E.
- 3. Écrire trois équations de la forme 2x + e = f équivalentes à E.
- Exemple 8.7 Isoler l'inconnue en ajoutant l'opposé. Résoudre les équations suivantes.

Exercice $10 - \mathbf{M}$. Résoudre les équations suivantes.

- 3.

- a) x 3 = 5 b) y 7 = 11 c) x + 7 = 15 d) y + 8 = 3a) a 1, 2 = 6, 5 b) $p \frac{1}{2} = \frac{1}{5}$ c) m + 2, 3 = 5, 1 d) $z + \frac{1}{3} = \frac{4}{5}$ a) 5 = m + 2 b) 2, 5 = x + 1 c) 8 = k 9 d) $\frac{3}{4} = y \frac{3}{4}$
- a) $x + 7 = 3 \times 2 + 5$ b) $y 3 = 7 4 \times 2$ c) p 8 = 3(4 + 7) d) $x + 3^2 \times 2 = 13$
- lacktriangle Exemple 8.8 Isoler l'inconnue en multipliant par l'inverse. Résoudre les équations suivantes.

$$5x = 24$$

$$\frac{5}{5}x = \frac{24}{5}$$

$$x = \frac{24}{5}$$

$$x = \frac{24}{5}$$

$$7x = -25$$

$$\frac{7}{7}x = \frac{-25}{7}$$

$$x = \frac{-25}{7}$$

$$\frac{x}{5} = 7$$

$$\frac{5}{5}x = 7 \times 5$$

$$\times 5$$

■ Exemple 8.8 — Isoler l'inconnue en multipliant par l'inverse. Résoudre les équations suivantes.
$$5x = 24 \\ 5x = \frac{24}{5}$$

$$7x = -25 \\ 77x = \frac{-25}{7}$$

$$x = \frac{-25}{7}$$

$$x = \frac{24}{5}$$

$$x = 35$$

$$x = 12$$

Exercice $11 - \mathbf{Z}$. Résoudre les équations suivantes.

- 2.

- a) 2x = 18 b) 4y = 22 c) $\frac{d}{3} = 4.5$ d) $\frac{x}{2} = 7$ a) 1.2m = 4.8 b) $\frac{x}{1.3} = 5$ c) $\frac{3}{5}p = \frac{1}{4}$ d) $-\frac{2}{7}p = \frac{1}{3}$

- a) $2m = 18 4 \times 3$ b) $3d = 2^2 \times 5 8$ c) $\frac{x}{7} = 14 2(4^2 11)$ d) $\frac{q}{4} = 6.3 1.4 \times 5$

Exercice 12 Pour chaque figure écrire une équation vérifiée par x et la résoudre

3x
10

11	x
18	

x	x	x	x	
60				

Exercice 13 Dans ces grilles, la valeur d'une case est égale à la somme des valeurs dans les deux cases situées juste en dessous. Écrire une équation en x dans chaque cas et la résoudre.

■ Exemple 8.9 — approche algébrique des problèmes de ratios.

- 1. Il y a 36 élèves à la fête de fin d'année. Sachant que le ratio des filles pour les garçons est 4: 5. Déterminer le nombre de filles et de garçons.
- 2. Il y a 10 tulipes de plus que de roses. Sachant que le ratio roses pour tulipes est de 2: 3, déterminer le nombre de roses, et de tulipes.

solution.

Nbr de filles + Nbr de garçons = 36

Nbr de filles $= \dots$

$$\dots + \dots = 36$$

$$\dots x = 36$$

Nbr de garçons $= \dots$

$$2. \underbrace{\begin{array}{c|cccc} Roses \\ \hline x & x \\ \hline x & x & x \\ \hline \hline Tulipes \\ \hline \end{array}}_{Roses}$$

Nbr de tulipes - Nbr de roses = 10 $\dots \dots = 10$ Nbr de tulipes $= \dots$

...x = 10

 $x = \dots$

Nbr de roses $= \dots$

Exercice 14 Déterminer les valeurs demandées.

- 1. Le ratio de filles pour garçons est de 3: 5. Il y a 30 garçons. Déterminer le nombre de filles.
- 2. Un cable de 80 m et coupé en deux dans le ratio 11: 5. Déterminer la longueur de chaque.
- 3. Dans un groupe de 35 élèves, le ratio de garçons pour filles est de 4: 3. Déterminer le nombre de garçons.
- 4. Dans un réservoir de 333 L, le ratio huile pour eau est de 33: 78. Déterminer le volume de chaque.

Exercice 15 — mélange, résolution en une étape. Résoudre les équations suivantes d'inconnue x.

$$(E_1) \ 3+x=8$$

$$(E_4) -15 = -4x$$

$$(E_7) -7 = x - 6$$

$$E_{10}$$
) $-\frac{5}{3}x = 21$

$$(E_2) -15 = 3x$$

$$(E_5) 9 = x - 4$$

$$(E_8) 7 + x = 0$$

$$(E_3) \ x - 3 = 8$$

$$|(E_6)| -3x = 21$$

$$(E_9) \ 42x = 0$$

$$(E_{12})$$
 13 = $-x$

Exemple 8.10 — résolution deux étapes. Résoudre dans \mathbb{R} les équations suivantes d'inconnue x:

$$2x + 3 = 8$$

$$-3 - 3$$

$$2x = 5$$

$$\frac{2}{2}x = \frac{5}{2}$$

$$x = \frac{5}{2}$$

$$3x - 5 = 0$$

$$+5 + 5$$

$$-3x = -b$$

$$\frac{-3}{-3}x = \frac{5}{-3}$$

$$x = -\frac{5}{3}$$

R les équations suivantes d'inconnuc
$$\frac{1}{4} - x = \frac{5}{6}$$

$$-\frac{1}{4} \qquad -\frac{1}{4}$$

$$-x = \frac{5}{6} - \frac{1}{4} = \frac{7}{12}$$

$$x = -\frac{7}{12}$$
Année 2023/2

Exercice 16 — \blacksquare . Résoudre les équations suivantes.

1. a)
$$4x + 1 = 7$$

b)
$$-2x + 5 = 2$$

c)
$$3 = 5x - 7$$

a)
$$4x + 1 = 7$$
 b) $-2x + 5 = 21$ c) $3 = 5x - 7$ d) $-5x + 3 = 0$

2. a)
$$6.5 - 4x = 5$$

b)
$$12 + \frac{1}{3}x = 7$$

c)
$$21 - \frac{1}{5}x = 7$$

d)
$$9x - 3,1 = 5$$

3. a)
$$\frac{1}{4}x - 5 = \frac{1}{3}$$

b)
$$\frac{1}{3}y + 4 = 1.7$$

c)
$$4 = \frac{1}{6}x - \frac{3}{4}$$

a)
$$6.5 - 4x = 5$$
 b) $12 + \frac{1}{3}x = 7$ c) $21 - \frac{1}{5}x = 7$ d) $9x - 3.1 = 5$ a) $\frac{1}{4}x - 5 = \frac{1}{3}$ b) $\frac{1}{3}y + 4 = 1.7$ c) $4 = \frac{1}{6}x - \frac{3}{4}$ d) $\frac{3}{7}x - \frac{1}{2} = \frac{1}{4}$

■ Exemple 8.11 — inconnue des deux côtés. On cherche un terme à ajouter une expression pour obtenir une équation de la forme ax = b.

$$-3x = 7x - 5$$

$$-7x - 7x$$

$$-10x = -5$$

$$5x + 1 = 2x + 5$$

$$-3x = 7x - 5$$

$$-7x - 7x$$

$$-10x = -5$$

$$3x + 1 = 5$$

$$-1 - 1$$

$$3x - 4$$

$$5x + 1 = 2x + 5$$

$$-2x$$

$$-2x$$

$$-2x$$

$$-2x$$

$$-2x$$

$$-2x - 1$$

$$+3x + 3$$

$$3 + 3x$$

$$5x = 21$$

$$2x - 3 = 18 - 3x$$

$$+3x + 3 \qquad 3 + 3x$$

$$5x = 21$$

Exercice 17

Sans chercher à résoudre, ajouter une même expression aux deux membre de chaque équation pour obtenir une équation équivalente de la forme ax = b.

$$(E_1)$$
 $x + 11 = 4x$

$$(E_3) 4p + 9 = 6p$$

$$(E_5)$$
 $3x+1=x+6$

$$(E_2) \ 3y = 7 + y$$

$$(E_6)$$
 $2m+11=5m+6$

Exercice 18 — entrainement. Résoudre les équations suivantes.

$$(E_1) 3x - 4 = x + 5$$

$$(E_3)$$
 $17x - 12 = 3x - 54$

$$(E_5)$$
 3,5 - 4x = 7 - 1,2x

$$(E_2) \ 2x - 5 = 5x + 4$$

$$(E_4) 6 - 5x = 13 - 3x$$

$$(E_1) 3x - 4 = x + 5$$

$$(E_2) 2x - 5 = 5x + 4$$

$$(E_3) 17x - 12 = 3x - 54$$

$$(E_4) 6 - 5x = 13 - 3x$$

$$(E_5) 3.5 - 4x = 7 - 1.2x$$

$$(E_6) \frac{3}{7}x + 3 = \frac{2}{3}x - 1$$

Exercice 19

Le périmètre des figures suivantes est 30 cm. Pour chaque figure, écrire une équation en x et déterminer sa valeur.

Exercice 20

- 1. Écrire des équations vérifiées par x et y et les résoudre.
- 2. En déduire que ABC est un triangle rectangle et DEF est un triangle isocèle (non équilatéral).

Exercice 21 Pour chaque figure, les longueurs sont données en cm.

- 1. Écrire une équation vérifiée par x et la résoudre.
- 2. En déduire le périmètre et l'aire de la figure.
- Exemple 8.12 résoudre des équations avec des parenthèses. en développant ou par division.

$$6(x+3) - 3 = 25$$

$$+3 + 3 + 3$$

$$6(x+3) = 28$$

$$\frac{6}{6}(x+3) = \frac{28}{6}$$

$$x+3 = \frac{14}{3}$$

$$-3 - 3$$

$$x = \frac{5}{3}$$

$$5(x+2) = -2(x-4)$$

$$5x+10 = -2x+8$$

$$+2x-10 + 2x-10$$

$$7x = -2$$

$$\frac{7}{7}x = \frac{-2}{7}$$

$$x = \frac{-2}{7}$$

$$x = \frac{-2}{7}$$

Exercice 22 Résoudre les équations suivantes en développant les deux membres.

$$(E_1) \ 3(x+5) = 6x$$

$$(E_2) \ x+5 = 3(x+1)$$

$$(E_3) \ 4(x+1) = x+7$$

$$(E_4) \ 3(x+5) = x+1$$

$$(E_5) \ -3(x+5) = 3(2x+1)$$

$$(E_6) \ 4(x-1) = -7x+5$$

Exercice 23 Résoudre les équations suivantes par division en premier.

$$(E_1) \ 3(x+5) = 18$$
 $| (E_2) \ 4(y-7) = 12$ $| (E_3) \ -4(2x+3) = 12$ $| (E_4) \ -9(3x-8) = 180$

■ Exemple 8.13 — équations avec inconnue au dénominateur. Résoudre les équations suivantes :

$$\frac{28}{x} + 5 = 9$$

$$-5 - 5$$

$$\frac{21}{5x + 3} = 2$$

$$\frac{21}{(5x + 3)} = 2$$

$$\frac{28}{x} = 4$$

$$\frac{28x}{x} = 4x$$

$$\frac{28x}{x} = 4x$$

$$28 = 4x$$

$$28 = 4x$$

$$21 = 2(5x + 3)$$

$$21 = 10x + 6$$

$$21 = 10x + 6$$

$$9 = 9x$$

$$15 = 10x$$

$$1 = x$$

$$1,5 = x$$

Exercice 24 Résoudre les équations suivantes.

$$(E_1) \frac{300}{x} = 10$$

$$(E_2) \frac{20}{x} + 6 = 11$$

$$(E_3) \frac{20}{x+3} + 7 = 11$$

$$(E_4) \frac{30}{x-7} - 4 = 6$$

$$(E_5) 7 = 4 - \frac{12}{5x+16}$$

$$(E_6) \frac{5}{2x-3} = \frac{3}{4x-5}$$

Exercice 25 — mise en équation 1. https://www.geogebra.org/m/fm8avkfs

Tasha, Jadzia et Naomi ont un total de 2266€. Jadzia a 241€ de moins que 8 fois la somme de Tasha. Naomi a 6 fois la somme de Jadzia. Déterminer les parts de chacune d'elles.

Exercice 26 — mise en équation 2. https://www.geogebra.org/m/xsz3wtxt

Mon rectangle a un périmètre de 882 m. Sa longueur mesure 144 m de plus que 8 fois sa largeur. Détermine les dimensions de mon rectangle.

Exercice 27 — mise en équation 3. https://www.geogebra.org/m/uvrzbr5p

Déterminer la valeur de x pour laquelle les aires A(x) et B(x) des rectangles suivants sont égales.

Exercice 28

- 1. Ecrire en fonction de x, le résultat affiché par les programmes A et B ci-dessous.
- 2. Pour quelle(s) valeurs de \(\infty\), le programme A affiche 21?
- 3. Même question pour le programme B.
- 4. Pour quelle(s) valeur(s) de \chi les programmes ci-dessous retournent-ils la même valeur?

Exercice 29

Déterminer les valeurs de 🕟 pour lesquelles ces 2 programmes affichent la même chose.

Exercice 30 5 est solution de l'équation 3(x-2)-2mx=3 d'inconnue x. Déterminer m.

Exercice 31 — Brevet. Amérique du Sud, 2019.

- 1. Calculer $5x^2 3(2x + 1)$ pour x = 4.
- **2.** Montrer que pour tout nombre x on a : $5x^2 3(2x + 1) = 5x^2 6x 3$
- 3. Résoudre l'équation $5x^2 3(2x + 1) = 5x^2 4x + 1$.

Exercice 32 — Brevet. Centres étrangers, 2019.

environ 20 min

On considère les deux figures ci-dessous, un triangle équilatéral et un rectangle, où x représente un nombre positif quelconque. Toutes les longueurs sont exprimées en centimètre.

- 1. Construire le triangle équilatéral pour x = 2.
- 2. a) Démontrer que le périmètre du rectangle en fonction de x peut s'écrire 12x + 3.
 - b) Pour quelle valeur de x le périmètre du rectangle est-il égal à 18 cm?
- 3. Est-il vrai que les deux figures ont le même périmètre pour toutes les valeurs de x? Justifier.
- 4. On a créé les scripts (ci-dessous) sur Scratch qui, après avoir demandé la valeur de x à l'utilisateur, construisent les deux figures. Les lettres A, B, C et D remplacent des nombres. Donner des valeurs à A, B, C et D pour que ces deux scripts permettent de construire les figures de la partie 1 et préciser alors la figure associée à chacun des scripts.

8.3.1 Exercices : résolutions d'équation du second degré

Théorème 8.4 — équation de la forme $x^2 = k$. L'équation $x^2 = k$ admet :

- k > 0 deux solutions \sqrt{k} et $-\sqrt{k}$
- k = 0 une solution x = 0.
- k < 0 aucune solution.
- **Exemple 8.14** résoudre des équations quadratiques simples de la forme $ax^2 + b = c$ en isolant x^2 .

 $x^2 = 5$ $3x^2 - 1 = 8$ $x = \sqrt{5}$ on $x = -\sqrt{5}$ $3x^2 = 9$ $x^2 = 3$ $\mathscr{S} = \left\{ \sqrt{5} \; ; \; -\sqrt{5} \right\}$ $x^2 + 10 = 2$ $x = \sqrt{3}$ ou $x = -\sqrt{3}$ $impossible \\ \mathscr{S} = \varnothing$ $x^2 = -8$ impossible $\mathscr{S} = \left\{ \sqrt{3} \; ; \; -\sqrt{3} \right\}$ $\mathcal{S} = \emptyset$

Exercice 33 Mêmes consignes

Théorème 8.5 — du produit nul. Si AB=0 alors A=0 ou B=0

■ Exemple 8.15 — résoudre des équations produit nul.

 $(3x-2)^2(5x+2)^3 = 0$ (5x-3)(2x+5)=0 $(-2x - 7)^2 = 0$ 3x - 2 = 0 ou 5x + 2 = 05x - 3 = 0 ou 2x + 5 = 0-2x - 7 = 05x = 3 2x = -53x = 2 5x = -2 $x = \frac{2}{3}$ ou $x = \frac{-2}{5}$ -2x = 7 $x = \frac{3}{5}$ ou $x = \frac{-5}{2}$ $\mathscr{S} = \left\{ \frac{-7}{2} \right\}$ $\mathscr{S} = \left\{ \frac{3}{5} \; ; \; \frac{-5}{2} \right\}$ $\mathscr{S} = \left\{ \frac{2}{2} \; ; \; \frac{-2}{\pi} \right\}$

Exercice 34 Entourer les équations produit nul, et les résoudre.

■ Exemple 8.16 — factoriser en produit nul pour résoudre.

 $4x^2 + 7x = 0$ $5x^2 = 36x$ $9x^2 - 36 = 0$ $5x^2 - 36x = 0$ x(4x+7) = 0 $(3x)^2 - 6^2 = 0$ x(5x - 36) = 0x = 0 ou 4x + 7 = 0(3x-6)(3x+6) = 0x = 0 4x = -7x = 0 5x - 36 = 03x - 6 = 0 ou 3x + 6 = 0x = 0 ou $x = \frac{-7}{4}$ $x = 0 \text{ ou } x = \frac{36}{5}$ x = 2 x = -2 $\mathscr{S} = \left\{0 \; ; \; \frac{-7}{4}\right\}$ $\mathscr{S} = \left\{0 \; ; \; \frac{36}{5}\right\}$ $\mathcal{S} = \{2 \; ; \; -2\}$

Exercice 35 Résoudre par une méthode adaptée.

$$(E_1) x^2 + 2x = 0
(E_2) 3x^2 - 2x = 0
(E_3) x^2 - 4 = 0
(E_4) 4x^2 - 9 = 0
(E_5) 9x^2 = 4x
(E_6) 9x^2 = 4x
(E_6) 9x^2 = 4x
(E_7) 9x^2 = 4x
(E_8) 9x^2 = 4x$$

Exercice 36 Factoriser le membre de droite puis résoudre les équations suivantes.

$$(E_1) (8x+3)^2 - 5(8x+3) = 0$$

$$(E_2) (8x+3)^2 - 25 = 0$$

$$(E_3) (8x+3)^2 - (5x+2)(8x+3) = 0$$

$$(E_4) (5x+2)^2 = (5x+2)(2x-7)$$

Exercice 37 — Brevet 2021, centres étrangers.]

Un professeur propose à ses élèves trois programmes de calculs, dont deux sont réalisés avec un logiciel de programmation.

- 1. a) Montrer que si on choisit 1 comme nombre de départ alors le programme A affiche pendant 2 secondes « On obtient 3 ».
 - b) Montrer que si on choisit 2 comme nombre de départ alors le programme B affiche pendant 2 secondes « On obtient -15 ».
- 2. Soit *x* le nombre de départ, quelle expression littérale obtient-on à la fin de l'exécution du programme C?
- 3. Un élève affirme qu'avec un des trois programmes on obtient toujours le triple du nombre choisi. A-t-il raison?
- 4. a) Résoudre l'équation (x+3)(x-5) = 0.
 - b) Pour quelles valeurs de départ le programme B affiche-t-il « On obtient 0 »?
- 5. Pour quelle(s) valeur(s) de départ le programme C affiche-t-il le même résultat que le programme A?

8.4 Exercices : solutions et éléments de réponse

solution de l'exercice 1.

	Vrai	Faux
1/ $x = 7$ est une solution de l'équation $-2x + 14 = 0$ d'inconnue x	\boxtimes	
2/ $x=6$ est une solution de l'équation $-2x+14=0$ d'inconnue x		
3/ 2 est une solution de l'équation $2x + 1 = 5$ d'inconnue x	\boxtimes	
4/ 3 est une solution de l'équation $x^2 = 3x$ d'inconnue x	\boxtimes	
5/ 9 est une solution de l'équation $3x + 9 = 5x - 9$ inconnue x	\boxtimes	
6/ -2 est une solution de l'équation $3x + 11 = -3 - 4x$ inconnue x	\boxtimes	
7/ -2 est une solution de l'équation $x^2 = -4$ inconnue x		\boxtimes
8/ $x = 4$ est solution de $5x = 20$, $2x = 8$ et $x + 7 = 11$	\boxtimes	
9/ $y = 5$ est solution de $3y = 15$, $y - 4 = 9$ et $\frac{10}{y} = 2$		
10/ $p = 7$ est solution de $8p = 56$, $15 - p = 8$ et $2p + 1 = 15$	\boxtimes	

14:	_1 _	1,	0
SOULION	ae.	l'exercice	Z .

solution de l'exercice 10. 1)
$$S_a = \{8\}$$
; $S_b = \{18\}$; $S_c = \{8\}$; $S_d = \{-5\}$; 2) $S_a = \{7.7\}$; $S_b = \{\frac{7}{10}\}$;

$$S_c = \{2.8\}; S_d = \left\{\frac{7}{15}\right\}; 3) S_a = \{3\}; S_b = \{1.5\}; S_c = \{17\}; S_d = \left\{\frac{3}{2}\right\}; 4) S_a = \{4\}; S_b = \{2\}; S_c = \{41\}; S_d = \{-5\};$$

solution de l'exercice 11. 1)
$$S_a = \{9\}$$
; $S_b = \left\{\frac{11}{2}\right\}$; $S_c = \{13.5\}$; $S_d = \{14\}$; 2) $S_a = \{4.0\}$; $S_b = \{6.5\}$;

$$S_c = \left\{\frac{5}{12}\right\}; S_d = \left\{-\frac{7}{6}\right\}; 3) S_a = \{3\}; S_b = \left\{\frac{28}{3}\right\}; S_c = \{28\}; S_d = \{-2.8\};$$

solution de l'exercice 15.
$$S_1 = \{5\}$$
; $S_2 = \{-5\}$; $S_3 = \{11\}$; $S_4 = \left\{\frac{15}{4}\right\}$; $S_5 = \{13\}$; $S_6 = \{-7\}$;

$$S_7 = \{-1\}; S_8 = \{-7\}; S_9 = \{0\}; S_{10} = \left\{-\frac{63}{5}\right\}; S_{11} = \left\{-\frac{18}{5}\right\}; S_{12} = \{-13\};$$

solution de l'exercice 16. 1)
$$S_a = \left\{\frac{3}{2}\right\}$$
; $S_b = \{-8\}$; $S_c = \{2\}$; $S_d = \left\{\frac{3}{5}\right\}$; 2) $S_a = \{0.375\}$; $S_b = \{-15\}$;

$$S_c = \{70\}; S_d = \{0.9\}; 3$$
) $S_a = \left\{\frac{64}{3}\right\}; S_b = \{-6.9\}; S_c = \left\{\frac{57}{2}\right\}; S_d = \left\{\frac{7}{4}\right\};$

solution de l'exercice 17.
$$S_1 = \left\{\frac{11}{3}\right\}$$
; $S_2 = \left\{\frac{7}{2}\right\}$; $S_3 = \left\{\frac{9}{2}\right\}$; $S_4 = \left\{\frac{4}{3}\right\}$; $S_5 = \left\{\frac{5}{2}\right\}$; $S_6 = \left\{\frac{5}{3}\right\}$;

solution de l'exercice 18.
$$S_1 = \left\{\frac{9}{2}\right\}$$
; $S_2 = \{-3\}$; $S_3 = \{-3\}$; $S_4 = \left\{-\frac{7}{2}\right\}$; $S_5 = \{-1.25\}$; $S_6 = \left\{\frac{84}{5}\right\}$;

solution de l'exercice 22.
$$S_1 = \{5\}$$
; $S_2 = \{1\}$; $S_3 = \{1\}$; $S_4 = \{-7\}$; $S_5 = \{-2\}$; $S_6 = \{\frac{9}{11}\}$;

solution de l'exercice 23.
$$S_1 = \{1\}$$
; $S_2 = \{10\}$; $S_3 = \{-3\}$; $S_4 = \{-4\}$;

solution de l'exercice 24.
$$S_1 = \{30\}$$
; $S_2 = \{4\}$; $S_3 = \{2\}$; $S_4 = \{10\}$; $S_5 = \{-4\}$; $S_6 = \left\{\frac{19}{10}\right\}$;

solution de l'exercice 33.
$$S_1 = \{-6,6\}; S_2 = \{-5,5\}; S_3 = \{-\sqrt{5},\sqrt{5}\}; S_4 = \{-\sqrt{3},\sqrt{3}\}; S_5 = \{-5\sqrt{2},5\sqrt{2}\}; S_6 = \{-5,5\}; S_7 = \{-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3}\};$$

solution de l'exercice 34.
$$S_1 = \left\{-\frac{2}{3}, 2\right\}; S_2 = \{-1\}; S_3 = \{-3, 0\}; S_4 = \left\{-\frac{1}{3}\right\}; S_5 = \{-1, 1\};$$
 $S_6 = \left\{-\frac{3}{5}, 2\right\}; S_7 = \left\{-\frac{5}{2}, \frac{3}{4}\right\}; S_8 = \left\{-\frac{1}{2}, 0\right\}; S_9 = \left\{-3, \frac{1}{2}, \frac{5}{3}\right\};$

solution de l'exercice 35.
$$S_1 = \{-2,0\}$$
; $S_2 = \left\{0,\frac{2}{3}\right\}$; $S_3 = \{-2,2\}$; $S_4 = \left\{-\frac{3}{2},\frac{3}{2}\right\}$; $S_5 = \left\{0,\frac{4}{9}\right\}$; $S_6 = \left\{-\frac{2}{3},\frac{2}{3}\right\}$;

solution de l'exercice 36.
$$S_1 = \left\{-\frac{3}{8}, \frac{1}{4}\right\}; S_2 = \left\{-1, \frac{1}{4}\right\}; S_3 = \left\{-\frac{3}{8}, -\frac{1}{3}\right\}; S_4 = \left\{-3, -\frac{2}{5}\right\};$$