Multi-Scale Zero Order Optimization of Smooth Functions in an RKHS

Introduction

Background Problem Setup

Algorithms

LP-GP-UCB Algorithm Heuristic Algorithm

Main Results

Theoretical Results Empirical Results

Black-box optimization

Consider the problem of finding a maximizer of a function $f: \mathcal{X} \to \mathbb{R}$.

Assumptions:

- ▶ f is not known explicitly; can only be accessed through a Zero
 Order Oracle.
- ▶ The observations of *f* are noisy.
- ▶ The function *f* is expensive to evaluate.

<u>Goal:</u> Design a sequential strategy of selecting query points to quickly reach a global optimizer of f.

Background

- ightharpoonup This problem is intractable without any assumptions on f.
- Two common assumptions in literature are:
 - 1. f is a sample from a Gaussian Process GP(0, K).
 - 2. f belongs to the RKHS of kernel K,
- Under both assumptions, GP can be used as a surrogate model for f.
- Prior work include algorithms such as GP-UCB.
- ► Large gaps between the existing upper and lower bounds on the performance.

Definitions

- ▶ **RKHS.** For a positive-definite kernel $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$, the RKHS of K, denoted by \mathcal{H}_K , is the *completion* of all finite linear combinations of the form $\sum_{j=1}^m c_j K(x_j, \cdot)$ for any $j \in \mathbb{N}$ and $\{x_1, \ldots, x_j\} \subset \mathcal{X}$.
- ▶ Connection to GP. Given some noisy observations $\{(x_i,y_i): 1 \leq i \leq m\}$, computing the posterior mean of a GP using these samples is the same as constructing Kernel Ridge Regression (KRR) estimator of $f \in \mathcal{H}_K$.
- ▶ **Hölder Spaces** $(C^{k,\alpha})$. Space of functions g whose k^{th} derivatives are Hölder continuous with exponent α .

For $\mathcal{X}=\mathbb{R}$, this means $|g^{(k)}(x_1)-g^{(k)}(x_2)|\leq L|x_1-x_2|^{\alpha}$ for all $x_1,x_2\in\mathbb{R}$.

Problem Setup

- We assume that
 - 1. f has bounded norm in RKHS of K, i.e., $||f||_{\mathcal{H}_K} \leq B$
 - 2. f lies in the Hölder Space $C^{k,\alpha}$.
- ▶ Observation model: $y = f(x) + \eta$ with $\eta \sim N(0, \sigma^2)$.
- $ightharpoonup \mathcal{X}$ is a compact subset of \mathbb{R}^D
- ightharpoonup Budget = n evaluations
- ▶ Select queries $\{X_1, X_2, \dots, X_n\}$ sequentially
- Performance measures:
 - ▶ Simple regret: $S_n = f(x^*) f(x_n^*)$
 - Cumulative regret: $\mathcal{R}_n = \sum_{t=1}^n f(x^*) f(x_t)$

LP-GP-UCB Algorithm

Key Idea: Exploit the additional Hölder Smoothness information to augment the GP surrogate with Local Polynomial (LP) estimators to construct tighter UCBs.

Repeat the following steps for all times $t \ge 1$:

- ightharpoonup Maintain a partition $\mathcal{P}_t = \{E_1, E_2, \dots, E_{m_t}\}.$
- Use Local Polynomial (LP) Estimators along with global GP surrogate to construct UCB.
- Select query point $x_t \sim \text{Unif}(E_t)$ where $E_t = \arg \max_{E \in \mathcal{P}_t} UCB(E)$.
- ▶ Update the partition \mathcal{P}_t and the GP posterior.

Heuristic Algorithm

The LP-GP-UCB has some drawbacks in practical applications:

- 1. High memory requirements: $\Omega(2^D)$.
- 2. Works in the large n regime: $n = \Omega((k+2)^D)$.

We propose a Heuristic algorithm to address these issues.

Repeat for $t \geq 1$:

- Fit a Regression Tree to the data observed (local estimates). The leaves form a partition $\mathcal{P}_t = \{E_1, \dots, E_{m_t}\}$ of \mathcal{X} .
- ► Fit a GP to the data observed (global model).
- Combine the two to construct a UCB.
- ightharpoonup Select E_t with largest UCB value.
- Observe $y = f(x_t) + \eta$ at $x_t \sim \text{Unif}(E_t)$.

Theoretical Results

For Matérn kernels with $\nu > 0$, we can show an embedding of the RKHS into the space $\mathcal{C}^{k,\alpha}$ for $k = \lceil \nu - 1 \rceil$ and $\alpha = \nu - k$.

- For Matérn kernels, the LP-GP-UCB algorithms achieves uniformly tighter bounds on both \mathcal{S}_n and \mathcal{R}_n , for all $\nu > 0$.
- In particular, the bounds on S_n (resp. R_n) match the algorithm independent lower bounds for $\nu \leq D(D+1)$ (resp. $\nu \leq 1$).
- Besides Matérn kernels, we also obtain the first explicit in n regret bounds for some other important kernels such as Rational-Quadratic and Gamma-Exponential.

Empirical Results-I

We use the 2-dim Branin function (g_B) to construct an objective function (f) on \mathbb{R}^8 as follows:

$$f(x) = \sum_{i=1}^{4} c_i g_B (x[2i-1:2i]),$$

where $c_1 = 1.0$ and $c_i = 0.1$ for i = 2, 3, 4.

Informally, f has 2 active dimensions and an ambient dimension of 8.

Empirical Results-II

- ► Hyperparameter tuning for a CNN with 2 conv layers and 2 fully-connected layers.
- The tunable parameters are batch_size, learning_rate, kernel_size×2 and hidden_layer_size.
- The objective function value is the training error.

Empirical Results-III

Task Algo.	Branin24	Goldstein24	Hartman6	MNIST
LP-GP-UCB			2.56 ± 0.41	$90.18\% \pm 1.43$
Heuristic	-25.28 ± 2.75	-5.84 ± 2.16	2.47 ± 0.35	$90.82\% \pm 1.71$
π GPUCB			2.29 ± 0.37	$88.74\% \pm 1.98$
IGPUCB	-284.16 ± 70.43	-93.19 ± 68.49	1.90 ± 0.77	$85.03\% \pm 10.98$
GP-EI	-252.80 ± 33.81	-58.07 ± 21.85	3.26 ± 0.23	$88.89\% \pm 1.67$
GP-PI	-265.88 ± 34.77	-66.02 ± 25.31	3.24 ± 0.26	$86.69\% \pm 2.96$

Table: Highest function value found by the optimization algorithms.