Probeklausur - Freitag (Wiederholungsprüfung aus dem März diesen Jahres)

1. Aufgabe:

Die Bestrahlungstärke B (=eingestrahlte Leistung pro Flächeneinheit senkrecht zur Einstrahlrichtung) von der Sonne beträgt am Ort der Erde im Mittel $B=1.35\,\frac{kW}{m^2}$. Das Maximum der spektralen Intensitätsverteilung S_λ liegt bei der Wellenlänge $\lambda_{max}=5\cdot 10^{-7}\,m$, der Abstand Sonne-Erde beträgt $d=1.5\cdot 10^8\,km$.

Betrachten Sie die Sonne als isotrop emittierenden schwarzen Strahler und berechnen Sie den Sonnenradius.

2. Aufgabe:

Weißes Licht (ebene Wellenfront) fällt unter einem Winkel von 45° auf eine Seifenblase (n=1.33). Im reflektierten Licht beobachtet man Farben bis zu einer maximalen Wellenlänge von $\lambda=0.6\,\mu m$. Bestimmen Sie die Dicke der Seifenblase und fertigen Sie eine Skizze dazu an.

3. Aufgabe:

Die Decke eines Saals ist mit schalldämmenden Platten versehen, in denen sich kleine Löcher befinden. Deren Abstand beträgt $6\,mm$.

- a) Aus welcher Entfernung kann man bei einer Lichtwellenlänge von $500\,nm$ die Löcher gerade noch einzeln erkennen? Setzen Sie den Pupillendurchmesser zu $5\,mm$ an und fertigen Sie eine Skizza dazu an.
- b) Kann man die Löcher bei rotem oder violettem Licht aus größerer Entfernung einzeln erkennen?

4. Aufgabe:

Zwischen zwei gekreuzten lineare Polarisatoren wird ein dritter linearer Polarisator gestellt, dessen Durchlassrichtung den Winkel Θ mit der des ersten Polarisators bildet. Bei welchen Winkel Θ wird für einfallendes unpolarisiertes Licht maximale Transmission gemessen? (Herleitung!)

5. Aufgabe:

a) Zeigen Sie, dass bei einer ebenen Welle Rechts- und Linkszirkularpolarisation aufeinander senkrecht stehen, d.h. dass das Amplitudenprodukt $E_R \cdot E_L^*$ Null ergibt.

b) Wie lautet diejenige Welle, die zur elliptisch polarisierten Welle $E_R=\frac{\hat{e}_x-ia\hat{e}_y}{\sqrt{1+a^2}}\cdot e^{i(\omega t-kz)}$ senkrecht polarisiert ist?

Skizzieren sie die Amplitudenprojektion in der xy-Ebene.

6. Aufgabe:

Ein Taucher befindet sich in einer Tiefe von $10\,m$ unter dem Wasserspiegel und schaut nach oben. Wie groß ist die Meeresoberfläche, durch die hindurch er Objekte außerhalb des Wassers sehen kann? Fertigen Sie eine saubere Skizze an!

7. Aufgabe:

Der sphärische konkavspiegel eines Teleskops hat einen Krümmungsradius von $8\,m$. Wo befindet sich das von ihm entworfene Bild des Mondes und welchen Durchmesser hat es?

Der Mond hat einen Durchmesser von ca. $3.5\cdot 10^6\,m$ und ist von der Erde rund $3.8\cdot 10^8\,m$ entfernt.

8. Aufgabe:

Ein dünner Glasstab habe die Länge $l=30\,cm$, die Brechzahl n=1.5 und werde durch ein planes und ein sphärisch konvexes Ende mit Krümmungsradius $r=10\,cm$ abgeschlossen. Außerhalb des Stabes, im Abstand $g=60\,cm$ vor der sphärischen Fläche, befindet sich auf der Symmetrieachse des Stabes eine punktförmige Lichtquelle Q.

- a) Skizzieren Sie sauber den Verlauf der von Q ausgehenden Lichstrahlen. Gibt es einen Punkt, in dem sich die Strahlen wieder treffen? Und wenn ja: wo?
- b) Unter welchem Winkel ξ treffen sich die Strahlen, die bei Q mit einem Winkel α auseinandergelaufen sind?

Wichtige Größen:

Wiensche Verschiebungskonstante $b=2.9\cdot 10^{-3}~Km$ Stefan-Boltzmannkonstante $\sigma_{SB}=5.67\cdot 10^{-8}~Wm^{-2}K^{-4}$ Boltzmannkonstante $k_B=1.38\cdot 10^{-23}~JK^{-1}$ Plancksche Konstante $h=6.63\cdot 10^{-34}~Js$ Lichtgeschwindigkeit $c=3\cdot 10^8ms^{-1}$ Neutronenruhemasse $m_N=1.6749\cdot 10^{-27}~kg=939.57~\frac{MeV}{c^2}$ Elektronenruhemasse $m_e=9.1\cdot 10^{-31}~kg=511~\frac{keV}{c^2}$