Лекция 3. Классификация Основы интеллектуального анализа данных

Полузёров Т. Д.

БГУ ФПМИ

- Байесовские методы
 - Оптимальный классификатор
 - Наивный подход
 - Непараметрическое восстановление плотности
 - Параметрическое восстановление плотности

- Пинейные методы
 - Оценка сверху эмперического риска
 - Логистическая регрессия

Вероятностная постановка задачи

```
\mathbb{X} - множество объектов, \mathbb{Y} - множество классов. (\mathbb{X} \times \mathbb{Y}) - вероятностное пространство с совместной плотностью p(x,y) = P(y)p(x|y) P_y := P(y) - априорные вероятности классов (prior) p_y(x) := p(x|y) - функции правдоподобия классов (likelihood)
```

Задачи:

- lacktriangled По выборке $(X,Y)\in (\mathbb{X},\mathbb{Y})$ построить оценки распределений $\hat{P_{_{Y}}}$ и $\hat{p_{_{Y}}}(x)$
- ② По известным распределениям $p_y(x)$ и P_y построить алгоритм $a: \mathbb{X} \to \mathbb{Y}$ минимизирующий вероятность ошибочной классификации

Функционал среднего риска

Алгоритм a(x) разбивает $\mathbb X$ на непересекающиеся области $A_y = \{x \in \mathbb X | a(x) = y\}$

Каждой паре $(y,s)\in (\mathbb{Y}\times\mathbb{Y})$ соответствует величина потери λ_{ys} при классификации объекта класса y к классу s, $\lambda_{yy}=0$ и $\lambda_{ys}>0$ при $y\neq s$

Функционал среднего риска:

$$R(a) = \sum_{y \in \mathbb{Y}} \sum_{s \in \mathbb{Y}} \lambda_{ys} P_y P(A_s | y)$$

где $P(A_s|y) = \int_{A_s} p_y(x) dx$ - вероятность отнесения к классу s объекта класса y.

Теорема о минимуме среднего риска

Если известны априорные вероятности P_y и функции правдоподобия $p_y(x)$, то минимум среднего риска

$$R(a) = \sum_{y \in \mathbb{Y}} \sum_{s \in \mathbb{Y}} \lambda_{ys} P_y P(A_s | y)$$

достигается алгоритмом

$$a(x) = \arg\min_{s \in \mathbb{Y}} \sum_{y \in \mathbb{Y}} \lambda_{ys} P_y \rho_y(x)$$

Байесовское решающее правило

Если предположить что потери от ошибочной классификации зависят только от истинного класса объекта, т.е. $\lambda_{ys}=\lambda_y$, то алгоритм называется **Байесовским решающим правило**:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y P_y p_y(x)$$

Апостериорные вероятности

Вероятность P(y|x) - называется апостериорной вероятностью (posterior).

Зная $p_y(x)$ и P_y , то по формуле Байеса:

$$P(y|x) = \frac{p(x,y)}{p(x)} = \frac{p_y(x)P_y}{\sum_{s \in \mathbb{Y}} p_s(x)P_s}$$

Величина ожидаемых потерь на объекте x:

$$R(x) = \sum_{y \in \mathbb{Y}} \lambda_y P(y|x)$$

Принцип максимума апостериорной вероятности

Оптимальный байесовский классификатор через апостериорные вероятности:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y P(y|x)$$

- Если классы равнозначны $(\lambda_y = \lambda_s \forall y, s \in \mathbb{Y})$, то байесовское решающее правило называют принципом максимума апостериорной вероятности.
- В случае равновероятных (сбалансированных) классов $(P_y = \frac{1}{|\mathbb{Y}|})$, объект x просто относится к классу с наибольшим значением плотности $p_y(x)$.

Получен оптимальный байесовский классификатор

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y P(y|x)$$

Но плотности P(y|x) неизвестны. Чтобы построить итоговый классификатор, ставится задача их оценить.

Основные подходы:

- непараметрическое
- параметрическое оценивание плотности
- наивный подход

Наивный подход

Суть наивного подхода - предположение о независимости признаков между собой. Это позволяет упростить

$$P(x|y) = \prod_{i=1}^{n} P(x_i|y)$$

Для построения итоговой плотности P(x|y) нужно оценить все индивидуальные распределения признаков $P(x_i), i=1,...,n$.

Наивный байесовский классификатор

Оценив априорные плотности и индивидуальные функции правдоподобия, получим наивный байесовский классификатор

$$a(x) = \arg\max_{y \in \mathbb{Y}} \ln \lambda_y \hat{P}(y) + \sum_{i=1}^n \ln \hat{P}(x_i|y)$$

Предположение о независимости признаков является очень сильным, но на практике почти никогда не выполняется.

Одномерный непрерывный случай

Пусть $\mathbb{X}=\mathbb{R}$. Эмпирической оценкой плотности есть доля элементов выборки внутри окна шириной h

$$\hat{p}(x) = \frac{1}{2mh} \sum_{i=1}^{m} [|x - x_i| < h]$$

Результат есть кусочно-постоянная функция. Это приводит к появлению зон неуверенности оптимальном классификаторе. Идея состоит в применении ядра

Ядерная оценка плотности

Функция K(z) называется ядром, если она чётная и нормированная $\int K(z)dz=1$

Тогда ядерная оценка плотности имеет вид:

$$\hat{p}_h(x) = \frac{1}{mh} \sum_{i=1}^m K(\frac{x - x_i}{h})$$

Примеры ядер:

- $K(z) = \frac{1}{2}[|z| < 1]$ прямоугольное
- $K(z)=rac{1}{\sqrt{2\pi}}e^{-rac{1}{2}z^2}$ -гауссово

Многомерный случай

Ядерная оценка плотности для многомерной величины $X \in \mathbb{R}^n$

$$\hat{p}_h(t) = \frac{1}{m} \sum_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{h_j} \, \mathsf{K}(\frac{t - \mathsf{x}_i}{h_j})$$

Метод парзеновского окна

Применяя ядерную оценку плотности в байесовском решающем правиле

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y \sum_{i=1}^{\ell} [y_i = y] K(\frac{\rho(x, x_i)}{h})$$

где $ho(\mathit{z}_1,\mathit{z}_2)$ некоторая функция расстояния между объектами

Параметрический подход

Имеется выборка $X=(x_1,...,x_\ell)\in\mathbb{X}$. Предполагается, что плотность, порождающая данные, известна **с точностью до параметра**, $p(x)=\phi(x;\theta)$. Подбор параметров θ приводится по выборке X с помощью **метода максимального** правдоподобия.

Нормальный дискриминантный анализ - случай байесовской классифицакии в предположении о нормальном распределениии всех классов, $p_{y}(x) \sim N(\mu_{y}, \sigma_{y}^{2}), y \in \mathbb{Y}$.

Теорема о разделяющей поверхности

Если классы имеют n-мерные нормальные плотности распределения

$$p_y(x) = N(x; \mu_y, \Sigma_y), y \in \mathbb{Y}$$

то баейсовский классификатор задаёт квадратичную разделяющую поверхность. Она вырождается в линейную, если ковариационные матрица классов равны $\Sigma_y = \Sigma, y \in \mathbb{Y}$

Байесовский нормальный классификатор

Оценим параметры $\hat{\mu}_y$ и $\hat{\Sigma}_y$ \emph{n} -мерной плотности по имеющимся данным для каждого класса $y \in \mathbb{Y}$.

И воспользуемся идеей оптимального байесовского классификатора

$$a(x) = \arg\max_{y \in \mathbb{Y}} \lambda_y P(y) P(x|y)$$

Такой классификатор называется байесовский нормальный классификатор или подстановочный

Линейный дискриминант Фишера

Предположив, что ковриационные матрицы классов равны $\Sigma_y = \Sigma, y \in \mathbb{Y}$ и применяя подстановочный алгоритм, получим метод линейного дискриминанта Фишера.

В таком случае разделяющая поверхность является линейной (в случае нескольких классов - кусочно линейная) и обладает определенными свойствами устойчивости.

Бинарная классификация

Рассмотрим задачу бинарной классификации,

$$X = (x_1, ..., x_\ell) \in \mathbb{X}, Y \in \mathbb{Y} = \{-1, 1\}$$

Функцию $a(x, \theta) = \text{sign } f(x, \theta)$ будем называть дискриминантной функцией.

Если $f(x,\theta)>0$, то x относится к классу +1, $f(x,\theta)<0$ то -1.

А множество точек $\{x|f(x,\theta)=0\}$ - разделяющая поверхность.

Величина $M_i(\theta) = y_i f(x_i, \theta)$ - **отступ** (margin) классификатора $a(x, \theta) = \text{sign } f(x, \theta)$ относительно объекта x_i .

Если $M_i(\theta) < 0$ то алгоритм a допускает ошибку на объекте x_i . **Чем больше** $M_i(\theta)$ **тем правильнее** и надежнее классификация.

Функция потерь

Требуется подобрать параметры θ при которых классификатор a допускает как можно меньше ошибок:

$$Q(a,X) = rac{1}{\ell} \sum_{i=1}^{\ell} [M_i(\theta) < 0]
ightarrow \min_{ heta}$$

Однако в таком виде Q - кусочно постоянная функция

Идея - мажорирование (оценка сверху) индикатора ошибки $[M_i(heta) < 0]$ с помощью "удобной"функцией потерь $\mathcal{L}(M_i)$:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [M_i(\theta) < 0] <= \widetilde{Q}(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}(M_i(\theta))$$

Популярные функции потерь

- $oldsymbol{0}$ [M < 0] индикатор ошибки
- $(1 M)^2$ квадратичная
- ullet $(1-M)_+$ кусочно линейная

- $oldsymbol{0}$ e^{-M} экспоненциальная

Функция потерь и совместное распределение

Пусть множество ($\mathbb{X} \times \mathbb{Y}$) - вероятностное пространосво. Имея выборку (X,Y) и предполагаемый вид совместной плотности $p(x,y;\theta)$, применим метод максимального правдоподобия

$$L(\theta) = \prod_{i=1}^{\ell} p(x_i, y_i; \theta) \rightarrow \max_{\theta}$$
 $\ln L = \sum_{i=1}^{\ell} \ln p(x_i, y_i; \theta) \rightarrow \max_{\theta}$
 $-\ln p(x_i, y_i; \theta) = \mathcal{L}(y_i f(x_i, \theta))$

По виду плотности $p(x,y;\theta)$ восстанавливается f и \mathcal{L} . И обратно, используя некоторые разделяющую поверхность и функцию потерь - предполагаем определенное распределение в данных.

Линейная модель

Случай $f(x,\omega)=\langle x,\omega \rangle$ - класс линейных моделей классификации.

$$a(x,\omega) = \operatorname{sign}\langle x,\omega\rangle$$

Разделяющая поверхность ${\rm sign}\langle x,\omega\rangle=0$ является гиперплосткостью в \mathbb{R}^n . Причем объекты по одну сторону от гиперплосткости относятся к одному классу, по другую - к другому.

Метод обучения

Метод минимизации мажорированного эмперического риска

$$\widetilde{Q}(a,X) = \sum_{i=1}^{\ell} \mathcal{L}(\langle x_i, \omega \rangle y_i) \to \min_{\omega}$$

Необходимое условие минимума:

$$\frac{\partial Q}{\partial \omega} = \sum_{i=1}^{\ell} x_i y_i \mathcal{L}'(\langle x_i, \omega \rangle y_i) = 0$$

Логистическая регрессия

Логистическая регрессия - линеный алгоритм бинарной классификации.

При достаточно сильных свойствах обладает свойствами:

- оптимальный байесовский классификатор
- однозначно определена функция потерь
- возможность оценивать вероятности классов

Пусть $(\mathbb{X} \times \mathbb{Y}) = (\mathbb{R}^n \times \{-1,1\})$ - вероятностное пространтсво с плотностью p(x,y). Выборка (X,Y) получена из этого распределения.

Экспонентный класс распределений

Плотность $p(x), x \in \mathbb{R}^n$ называется экспонентной, если

$$p(x) = \exp(c(\delta)\langle \theta, x \rangle + b(\delta, \theta) + d(x, \delta))$$

где heta -параметр сдвига, δ - масштаба, b,c,d - произвольные числовые функции.

Принадлежат к классу экспонентных:

- Равномерное, Нормальное, Гамма
- Гипергеометрическое, Пуассоновское, Биномиальное
- и другие

Обоснование линейной модели

$$a(x) = \operatorname{sign}(\lambda_+ P(+1|x) - \lambda_- P(-1|x)) = \operatorname{sign}(\frac{P(+1|x)}{P(-1|x)} - \frac{\lambda_-}{\lambda_+})$$

Если функции правдоподобия p(x|y) принадлежат экспонентному классу, причем параметры d и δ одинаковы, а отличаются только параметры сдвига θ ,

- байесовский классификатор является линейным: $a(x) = \operatorname{sign}\langle \omega, x \rangle$
- ② апостериорная вероятность $p(y|x) = \sigma(\langle \omega, x \rangle y)$

где
$$\sigma(z)=rac{1}{1+e^{-z}}$$
 - сигмоидная функция, $\sigma(-z)=1-\sigma(z)$

Модель оценки вероятностей

Построим модель которая оценивает не сами метки классов, а вероятности принадлежности к ним.

$$a(x,\omega) = P(+1|x) = \sigma(\langle w, x \rangle)$$

Другими словами, в каждой точке x величина $y \sim Bernoulli(\sigma(\langle w, x \rangle))$

Задача классификации решается путем выбора порога $t \in [0,1]$. И тогда итоговый классификатор имеет вид:

$$b(x, t) = sign(a(x, \omega) - t)$$

Метод максимального правдоподобия

С учетом вероятностной постановки задачи, воспользуемся методом максимального правдоподобия:

$$L(\omega) = \prod_{i=1}^{\ell} p(y_i|x_i) = \prod_{i=1}^{\ell} \sigma(\langle w, x_i \rangle y_i) o \max_{\omega}$$
 $\ln L(\omega) = \sum_{i=1}^{\ell} \ln \sigma(\langle w, x_i \rangle y_i) =$
 $= -\sum_{i=1}^{\ell} \ln(1 + e^{-y_i \langle w, x \rangle}) o \max_{\omega}$

-совпадает с логистической функция потерь

$$Q(\omega) = \sum_{i=1}^{\ell} \ln(1 + e^{-M_i}) \to \min_{\omega \in \mathcal{A}}$$

Решение оптимизационной задачи

Имеем

$$Q(\omega) = \sum_{i=1}^\ell \mathsf{In}(1 + e^{-\langle w, x
angle}) o \min_\omega$$

Аналитического решения нет, поэтому применяются градиентные методы

$$\nabla Q(\omega) = \sum_{i=1}^{\ell} x_i y_i \sigma(-\langle w, x_i \rangle)$$