MA571 Homework 9

Carlos Salinas

October 23, 2015

PROBLEM 9.1 (MUNKRES §46, Ex. 6)

Show that the compact-open topology, C(X,Y) is Hausdorff if Y is Hausdorff, and regular if Y is regular. [Hint: If $\overline{U} \subset V$, then $\overline{S(C,U)} \subset S(C,V)$.]

Proof. Suppose that Y is regular. We shall proceed by the hint and Lemma 31.1(b). Consider the subbasis element S(C,U). Since Y is regular, there exists a neighborhood $V\supset U$ such that $V\supset \overline{U}$. Let $f\in \overline{S(C,U)}$. Then, we claim that $f\in S(C,V)$. For suppose not, then there exists an element $x_0\in C$ such that $f(x_0)\notin V$. Then, since $\overline{U}\subset V$, by hypothesis, $f(x_0)\notin \overline{U}$. Consider the subbasic neighborhood $S\left(\{x_0\},Y-\overline{U}\right)$ of f. Then, $S\left(\{x_0\},Y-\overline{U}\right)\cap S(C,U)$ is nonempty. Let g be in the aforementioned intersection. Then $g(x_0)\in g(C)\subset U$, but $g(x_0)\in Y-\overline{U}$. This is a contradiction. It follows by Lemma 31.1(b) that C(X,Y) is regular.

MA571 Homework 9

PROBLEM 9.2 (MUNKRES §46, Ex. 9(A,B,C))

Here is a (unexpected) application of Theorem 46.11 to quotient maps. (Compare Exercise 11 of §29.)

Theorem. If $p: A \to B$ is a quotient map and X is locally compact Hausdorff, then $(id_X, p): X \times A \to X \times B$ is a quotient map.

- *Proof.* (a) Let Y be the quotient space induced by (id_X, p) ; let $q: X \times A \to Y$ be the quotient map. Show there is a bijective continuous map $f: Y \to X \times B$ such that $f \circ q = (\mathrm{id}_X, p)$.
- (b) Let $g = f^{-1}$. Let $G: B \to \mathcal{C}(X, Y)$ and $Q: A \to \mathcal{C}(X, Y)$ be the maps induced by g and q, respectively. Show that $Q = G \circ p$.
- (c) Show that Q is continuous; conclude that G is continuous, so that g is continuous.

Proof.

 $MA571\ Homework\ 9$

PROBLEM 9.3 (MUNKRES §52, Ex. 1)

Show that if $h, h' \colon X \to Y$ are homotopic and $k, k' \colon Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Proof.

MA571 Homework 9

PROBLEM 9.4 (MUNKRES §52, Ex. 2)

Given spaces X and Y, let [X,Y] denote the homotopy classes of maps of X into Y

- (a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
- (b) Show that if Y is path connected, the set [I, Y] has a single element.

Proof.

 $MA571\ Homework\ 9$

Problem 9.5 (Munkres $\S52$, Ex. 3(A,B,C,))

A space X is said to be contractible if the identity map $\mathrm{id}_X\colon X\to X$ is nullhomotopic.

- (a) Show that I and \mathbf{R} are contractible.
- (b) Show that a contractible space is path connected.
- (c) Show that if Y is contractible, then for any X, the set [X,Y] has a single element.

Proof.

MA571 Homework 9