Let X and Y be compact topological spaces, and consider an open cover $\{W_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of $X\times Y$. For each $\alpha\in\mathcal{A}$, there exist collections $\{U_{\beta}\}_{{\beta}\in\mathcal{B}_{\alpha}}$ and $\{V_{\beta}\}_{{\beta}\in\mathcal{B}_{\alpha}}$ of open sets in X and Y respectively, where

$$W_{\alpha} = \bigcup_{\beta \in \mathcal{B}_{\alpha}} U_{\beta} \times V_{\beta} .$$

In addition, let $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be collections where

$$U_{\alpha} = \bigcup_{\beta \in \mathcal{B}_{\alpha}} U_{\beta}$$
 and $V_{\alpha} = \bigcup_{\beta \in \mathcal{B}_{\alpha}} V_{\beta}$,

thus $W_{\alpha} = U_{\alpha} \times V_{\alpha}$. It is easy to see that U_{α} is open for all α . We can also see that $(x,y) \in W_{\alpha} \implies x \in U_{\alpha}$, so $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an open cover of X. A similar argument shows that $\{V_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an open cover of Y. Now, using the compactness of X and Y, we obtain respective finite subcovers $\{U'_{\alpha}\}_{\alpha \in \mathcal{A}'}$ and $\{V'_{\alpha}\}_{\alpha \in \mathcal{A}'}$, where $\mathcal{A}' \subseteq \mathcal{A}$ and is finite. Finally, let $\{W'_{\alpha}\}_{\alpha \in \mathcal{A}'}$ be a collection where $W'_{\alpha} = U'_{\alpha} \times V'_{\alpha}$. We can see that $(x,y) \in W_{\alpha} \implies (x,y) \in U_{\alpha} \times V_{\alpha}$ $\implies \exists \alpha' \in \mathcal{A}' : (x,y) \in U'_{\alpha'} \times V'_{\alpha'} \implies (x,y) \in W'_{\alpha'}$, thus $\{W'_{\alpha}\}_{\alpha \in \mathcal{A}'}$ is a cover of $X \times Y$, and since $\mathcal{A}' \subseteq \mathcal{A}$ and is finite, we know $\{W'_{\alpha}\}_{\alpha \in \mathcal{A}'}$ is a finite subcover of $\{W_{\alpha}\}_{\alpha \in \mathcal{A}}$, thus $X \times Y$ is compact.