Expression of CHS, CHI, and DFR Genes in Response to Light in Small Radish Seedlings

Song, Ji Young, Jae Sun Lee, and Chung Sun An*

Department of Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

The expression patterns of the genes involved in flavonoid biosynthesis and the changes in anthocyanin content were investigated in small radish (Raphanus sativus L. var sativus) seedlings during light treatment. Anthocyanin content increased until day 4, reaching about 100-fold greater than the control plants, then decreased. CHS (chalcone synthase) mRNA reached a maximum level at 4 h, remained at relatively high levels until day 3, and then decreased rapidly. The CHI (chalcone isomerase) and DFR (dihydrofolate reductase) mRNA levels reached maximum at 6 h and day 2, respectively, but were decreased rapidly thereafter. All the genes were expressed strongly in hypocotyls, but were either expressed weakly in roots or not expressed at all in cotyledons. Genomic hybridization showed that the CHS gene belonged to a small multigene family, while the CHI and DFR genes were present in one copy per haploid genome.

Keywords: anthocyanin CHS, CHI, DFR, light treatment, small radish (Raphanus sativus L. var sativus)

INTRODUCTION

Anthocyanins are the most conspicuous class of flavonoids, widespread plant secondary metabolites, as they are the main pigments in flowers and fruits. They are important to many plant functions, such as insect attraction (Taiz and Zeiger, 1991) and protection against damage from UV irradiation (Hahlbrock and Griesbach, 1979). For example, anthocyanins are thought to protect plants from high intensity light and UV irradiation either by reducing the amount of light that reaches photosynthetic cells (Beggs et al., 1987) or preventing polymerization or decomposition of DNA (Li et al., 1993).

Genes involved in anthocyanin biosynthesis have been extensively studied in many plants such as maize, petunia, and snapdragon. Their studies have revealed that two classes of genes are involved. The first class includes the structural genes encoding phenylalanine ammonialyase (PAL), the first enzyme in the general phenylpropanoid pathway; chalcone synthase (CHS) and chalcone isomerase (CHI), the first and the second enzymes in the flavonoid pathway, respectively; and dihydroflavonol 4-reductase (DFR), the first enzyme leading to the anthocyanin

production. The second class of genes, like the C1 and R gene families in maize, regulates the activity of the structural genes, coordinating the spatial and temporal accumulation of the pigments (Holton and Cornish, 1995).

Structural genes for anthocyanin biosynthesis are regulated developmentally in a tissue specific manner and are induced by a variety of environmental stimuli, including visible light and UV irradiation (Lois, 1994), fungal elicitors (Lamb et al., 1989), and cold treatment (Christie et al., 1994; Leyva et al., 1995).

Although the small radish accumulates a large amount of anthcyanin in its hypocotyl, molecular biological studies on the pigment biosynthesis of this plant have not been carried out so far. Accordingly, we report on the expression patterns of genes for anthocyanin synthesis and changes in anthocyanin content in young seedlings of the small radish plant in response to white light treatment.

MATERIALS AND METHODS

Plant Material

Seeds of small radish (Raphanus sativus L. var sativus) were purchased from TAKII Seed Company (Japan) and stored at 4°C until used. Seeds were sterilized with 30% H₂O₂ for 20 min, and washied and

^{*}Corresponding author: Fax +82-02-872-6881 e-mail ancs@plaza.snu.ac.kr

incubatied for 1 h in distilled water at room temperature. Seeds were planted in a plastic box wrapped with black vinyl on 3 MM filter paper (Whatman) soaked with Hoagland solution (Hoagland and Arnon, 1950) and left at 26°C in the dark for three days. Light treatment consists of exposure to continuous white light (150-160 mol/m²/s) followed by the method of Leyva et al. (1995).

Anthocyanin Determination

Anthocyanins were extracted from seedlings by boiling them in a propanol: HCl: H₂O = 18:1:81 solution for 2 min followed by incubation at 26°C in the dark for 24 h (modified from Lange et al., 1971). Extracts were centrifuged at 15,000 rpm for 10 min, and the supernatant was used to determine the absorbance at 535 nm and 650 nm. Anthocyanin concentrations expressed as absorbance at 530 nm per gram of fresh weight was calculated using the following equation.

Corrected $A_{535}/g FW = (A_{535}-2.2 A_{650})/g FW$

Labelling of Probe DNAs

The probe for CHS was the 747 bp HindIII fragment of pSCHS1, which contains a full length CHS cDNA of mustard (Sinapsis alba L.) (Batschauer et al., 1991). Those for CHI and DFR were the 724 bp and 1153 bp EcoRI/SaII fragments of pCHI.CR and pDFR.CR (Shirley et al., 1992), which contain Arabidopsis CHI and DFR cDNA, respectively. Probe DNAs were labelled with ³²P using the Primea-gene random labeling kit from Promega.

Extraction and Hybridization of Nucleic Acids

Total DNA or RNA was extracted from the seedlings using the method of Doyle and Doyle (1990) and Chomczynski and Sacchi (1987), respectively. A blot for DNA or RNA was prepared following the method of Sambrook et al. (1989) using 20 × SSC (3 M NaCl, 0.3 M sodium citrate, pH 7.0) and Hybond N membrane (Amersham). Hybridization was carried out in a modified Church solution (1 mM EDTA, 0.25 M sodium phosphate, 1% BSA, 7% SDS) at 59°C for 20 h, after which the blot was washed with 0.1 × SSC/0.1% SDS and autoradiographed on an X-ray film at -25°C. Intensity of the hybridization was measured using a microdensitometer. The blot was deprobed by boiling the blot in 0.1% SDS solution and left until cooling and reused for another hybridization.

RESULTS AND DISCUSSION

Accumulation of Anthocyanins

Small radish plants, which were germinated in the dark for three days and then exposed to continuous white light, accumulated anthocyanin pigments in their hypocotyls (Fig. 1). Accumulation of anthocyanin reached a maximum rate at day 4 (0.9 A₅₀₅ per gram fresh weight) and decreased thereafter. The rate of accumulation per day was 0.25 A₅₃₅ per gram fresh weight for the first three days. A similar pattern of anthocyanin accumulation was reported for seedlings of Arabidopsis (Kubasek et al., 1992), suggesting a general nature of anthocyanin accumulation in response to light. However, three varieties of grape produced anthocyanin even in darkness, in which the transcripts of the pigment biosynthesis genes were also found at a low level (Sparvoli et al., 1994).

Genomic Complexity of the Structural Genes

In order to examine the complexity of anthocyanin genes in the genome of small radish, genomic hybridizations were carried out using heterologous probes. By probing with the CHS probe, a complex pattern with multiple hybridizing bands was obtained-10.5 kb, 5 kb, 3.8 kb, and 2.6 kb EcoRI fragments, and 5.1 kb, 4.8 kb, 3.9 kb, and 2.5 kb HindIII fragments, suggesting that the CHS gene in small radish is a member of a small gene family (Fig. 2A). Multiple copies of the CHS gene have been previously reported; 8-10 copies for Petunia (Koes et al., 1989), 3-4 copies for the grape (Sparvoli et al., 1994), and one for both Arabidopsis and parsley (Feibaumand

Fig. 1. Anthocyanin levels in small radish seedlings exposed to continuous white light up to seven days.

3

Fig. 2. Southern blot analysis of small radish genomic DNA for the genes involved in anthocyanin biosynthesis. Genomic DNAs digested with *EcoRI* (E) and *HindIII* (H) were eletrophoresed in a 0.7% agarose gel. After transfer to a nylon membrane, the blot was hybridized with the heterologous probes of *CHS* (A), *CHI* (B), and *DFR* (C), respectively.

and Ausubel, 1988). The hybridization pattern with other probes, however, was much simpler, and only a single band was detected. With the CHI probe, a 3.2 kb EcoRI fragment and a 3 kb HindIII fragment showed strong signals, implying that only a single copy of CHI exists in the small radish genome (Fig. 2B). One copy of CHI has been reported for grape (Sparvoli et al., 1994) and Arabidopsis (Shirley et al., 1992), while one or two for alfalfa (Mckhann and Hirsh, 1994), and two for Petunia (van Tunen et al., 1988).

With the *DFR* probe, a 2.7 kb *EcoRI* fragment and a 2.8 kb *HindIII* fragment hybridized strongly, also suggesting a single copy of *DFR* in the small radish (Fig. 2C). Three copies of the *DFR* gene were reported for *Petunia* (Beld *et al.*, 1989), but only one for *Arabidopsis* (Shirley *et al.*, 1992) and grape (Sparvoli *et al.*, 1994). Based on the number of hybridization bands, it can be concluded that the complexity of anthocyanin biosynthetic genes in the small radish is similar to that of the grape.

Induction of the Structural Genes by Light

In order to determine whether or not the accumulation

of anthocyanin was accompanied by an increase in the mRNA levels of the genes, steady state levels of the CHS, CHI and DFR mRNAs were measured in seedlings exposed to white light up to day 6. All the genes were not expressed in the dark, but the expression was induced by light treatment (Fig. 3A). The CHS transcript was most abundant after 6 h of exposure, remained relatively unchanged until day 3, then started to decrease to about a half of the maximum level at day 6. The CHI mRNA also reached its peak at 6 h, however, thereafter decreased rapidly to 1/10 of the peak level at day 3. Transcripts of DFR, on the other hand, reached a peak at day 2. thereafter decreasing rapidly to about a half of the maximum level at day 3. Since the transcripts of CHS and CHI reached a peak at 6 h, expression patterns of three genes were examined at 1, 2, 4 and 6 h (Fig. 3B). The CHS transcripts started to appear at 1 h reaching a peak at 4 h and decreased a little bit at 6 h. Those of CHI and DFR increased continuously up to 6 h treatment.

Induction of the genes for anthocyanin biosynthesis by light has been reported in many plants. The transcripts were not found in dark-adapted *Arabidopsis*,

Fig. 3. Induction of the genes involved in anthocyanin biosynthesis by white light. Steady state transcript levels of CHS, CHI, and DFR were determined by RNA gel blot analysis in seedlings exposed to white light for 6 h to six days (A) and for 1 h to 6 h (B).

mustard, or cultured parsley cells, but were induced when exposed to light (Chappell and Hahbrock, 1984; Jahnen and Hahlbrock, 1998; Batschauer et al., 1991; Kubasek et al., 1992). Expression patterns of the CHS, CHI and DFR genes in the small radish plant were similar to those of Arabidopsis seedlings, in which all transcripts reached maximum level at 6 h (Kubasek et al., 1992). But mRNA of DFR continued to increase up to day 3 in small radish. We do not know the significance of this difference, which may be the result of difference in either mRNA stability or de novo synthesis.

Patterns of temporal accumulation of anthocyanin and mRNAs of the genes involved in pigment biosynthesis did not coincide each other (Fig. 4). The mRNA of CHS reached a peak first at 4 h, followed by those of CHI at 6 h and DFR at day 3. However, anthocyanin levels reached a peak at day 4, probably reflecting stability of the enzymes involved. On the other hand, anthocyanin biosynthetic genes were induced in the order of biosynthetic steps. Their coordinated induction has been previously demonstrated in snapdragon flowers (Martin et al.,

1991), Arabidopsis seedlings (Kubasek et al., 1992) and Perilla leaves (Gong et al., 1997). This type of induction may suggest that different plants have a common regulation mechanism, in which some

Fig. 4. Accumulation of anthocyanin and expression of anthocyanin biosynthetic genes in response to light. This figure was generated by combining the Fig. 1 with quantified data of Fig. 3 using a microdensitometer.

Fig. 5. Spatial expression of the anthocyanin biosynthetic genes. Seedlings exposed to white light for two days were used. H, hypocotyl; Co, cotyledon; R, root.

regulatory genes coordinately control the expression of groups or subgroups of the genes involved in the anthocyanin synthesis pathway (Gong et al., 1997).

Spatial Expression of the Structural Genes

In order to examine whether the location of anthocyanin accumulation is the same to that of mRNA synthesis, the expression patterns of the anthocyanin biosynthesis genes were examined in different organs of seedlings, which were exposed to light for two days (Fig. 5). As expected, all the genes were expressed strongly in hypocotyls where anthocyanin accumulated, and they were not expressed in cotyledons where the pigment did not accumulate. However, they were expressed weakly in roots where the pigment did not accumulate, suggesting the synthesis of flavonoids other than anthocyanins in the root of the small radish.

In the cotyledons of mustard, the CHS mRNA was not only expressed strongly in the lower epidermis where anthocyanin accumulated, but also expressed weakly in the upper epidermis and cells in the lower epidermis where the pigment did not accumulate (Nick et al., 1993). This result suggested that not all the cells synthesizing the CHS mRNA did accumulate the pigment.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from Seoul National University Research Fund (97-06-2082) to C.S. An. We thank B.M. Shirley and A.

Batschauer for providing the CHI and DFR clones of Arabidopsis and the CHS clone of mustard, respectively.

LITERATURE CITED

Batschauer, A., B. Ehmann and E. Schafer. 1991. Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression. Plant Mol. Boiol. 16: 175-185.

Beggs, C.L., K. Kuhn, R. Bocker and E. Wellmann. 1987. Phytochrome-induced flavonoid biosynthesis in mustard (Sinapsis alba L.) cotyledon: Enzymic control and differential regulation of anthocyanin and quercetin formation. Planta 172: 121-126.

Beld, M., C. Martin, H. Huits, A.R. Stuitje and A.G.M. Gerats. 1989. Flavonoid biosynthesis in *Penunia hybrida*: Partial characterization of dihydroflavonol-4-reductase genes. *Plant Mol. Biol.* 13: 491-502.

Chappell, J. and K. Hahlbrock. 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. *Nature* 311: 76-78.

Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidium thiocyanatephenol-chloroform extraction. *Anal. Biochem.* 162: 156-159.

Christie, P.J., M.R. Alfenito and V. Walbot. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. *Planta* 194: 541-549.

Doyle, J.J. and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

Feinbaum, R.L. and F.M.Ausubel. 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell. Biol. 8: 1985-1992.

Gong, Z., Yamazaki, M., Sugiyama, M., Tanaka, Y., and K. Saito. 1997. Cloning and molecular analysis of structural gene involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol. Biol. 35: 915-927.

Hahlbrock, K. and H. Griebach. 1979. Enzymic controls in the biosynthesis of lignin and flavonoids. Annu. Rev. Plant Physiol. 30: 105-130

Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circular 347, Calif. Agr. Exp. Station, Berkeley.

Holton, T.A. and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. *Plant Cell* 7: 1071-1083.

Jahnen, W. and K. Hahlbrock. 1988. Differential regulation and tissue-specific distribution of enzymes of phenylproranoid pathways in developing parsley seedlings. *Planta* 173: 453-458.

Koes, R.E., C.E. Spelt and J.N. Mol. 1989. The chalcone synthase multigene family of *Petunia hybrida* (V30): Differential, light-regulated expression during flower development and UV light induction. *Plant Mol. Biol.* 12: 213-225.

- Kubasek, W.L., B.W. Shirley, A. Mckillop, H.M. Goodman, W. Briggs and F.M. Ausubel. 1992. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4: 1229-1236.
- Lamb, C.J., Lawton, M.A., Dron, M. and R. A. Dixon. 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. *Cell* 56: 215-224.
- Lange, H., W. Shropshire Jr and H. Mohr. 1971. An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. 47: 649-655.
- Leyva, A., J.A. Jarillo, J. Salinas and J.M. Martine-Zapater. 1995. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNA of Arabidopsis thaliana in a lightdependent manner. Plant Physiol. 108: 39-46.
- Li, J., T.M. Ou-Lee, R. Raba, R.G. Amundson and R. L. Last.' 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171-179.
- Lois, R. 1994. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. I. Mechanisms of UV resistance in Arabidopsis. Planta 194: 498-503.
- Martin, C., Prescott, A., Mackay, S., Bartlett, J and Vrijlandt, E. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1: 37-49.
- Mckhann, H.I. and A.M. Hirsch. 1994. Isolation of chalcone synthase and chalcone isomerase cDNAs from

- alfalfa (Medicago sativa L.): Highest transcript levels occur in young roots and root tips. Plant Mol. Biol. 24: 767-777.
- Nick, P., B. Ehmann, M. Furuya and E. Schafer. 1993.
 Cell communication, stochastic cell responses, and anthocyanin pattern in mustard cotyledons. *Plant Cell* 5: 541-552.
- Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press. New York.
- Shirley, B.W. S. Hanley and H.M. Goodman. 1992. Effects of ionizing radiation on a plant genome: Analysis of two Arabidopsis transparent testa mutations. Plant Cell 4: 333-347.
- Sparvoli, F., C. Martin, A. Scienza, G. Gavazzi and C. Tonelli. 1994. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol. Biol. 24: 743-755.
- Taiz, L. and E. Zeiger. 1991. Plant Physiology. The Benjamin/Cummings Publishing Co, Redwood City, CA.
- van Tunen, A.J., R.E. Koes, A.R. Stuitje and J.N.M. Mol. 1988. Cloning of the two chalcone isomerase genes from *Petunia hybrida*: Coordinate, light-regulated and differential expression of flavonoid genes. *EMBO* J. 7: 1257-1263.

Received August 27, 1998 Accepted September 10, 1998