Series

Paolo Bettelini

Contents

1	Divergence and convergence	2
2	Properties	2
3	Covergence theorem	2
4	Divergence test	2
5	Absolute and conditional convergence	2
6	Riemann rearrangement theorem	2

1 Divergence and convergence

An infinite series converges if the limit of its partial sum sequence also converges, otherwise it diverges.

2 Properties

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

3 Covergence theorem

Theorem. If $\sum a_n$ converges then $\lim_{n\to\infty} a_n = 0$

Proof. Consider the partial sum

$$s_n = \sum_{k=1}^n a_k$$

The sequence a_n can now be expressed as

$$a_n = s_n - s_{n-1}$$

Since $\sum a_n$ converges, $\lim_{n\to\infty} s_n = L$ for L finite.

The limit $\lim_{n\to\infty} s_{n-1} = L$ because $n-1\to\infty$ as $n\to\infty$. This implies the following

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1} = L - L = 0$$

4 Divergence test

If $\lim_{n\to\infty} a_n \neq 0$ then $\sum a_n$ diverges.

5 Absolute and conditional convergence

A series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. This is a stronger type of convergence. Every absolutely convergent series is also convergent.

A series that is convergent but not absolutely convergent is called conditionally convergent.

6 Riemann rearrangement theorem

If a series is conditionally convergent, then its terms can be rearranged such that the series converges to any $r \in \mathbb{R}$ or such that it diverges (to infinity or no finite value). If the series is absolutely convergent then any rearrangement of its terms will converge to the same value.