1.
$$Ainh(x) = e^{x} - e^{x}$$
, $cosh(x) = e^{x} + e^{x}$
 $\Rightarrow Ainh(x) + cosh(x) = e^{x} - e^{x} + e^{x} + e^{x} = 4e^{x} = e^{x}$
 $\Rightarrow Ainh(x) + cosh(x) = e^{x}$ where $Ainh(x)$ is old and $cosh(x)$ is even

Let
$$f(x)$$
 and $g(x)$ be periodic functions with period T .
Then $f(x+T) = f(x)$ and $g(x+T) = g(x)$

Claim
$$h(x) = h(x+T)$$
 always.
Proof:
Since $h(x) = f(x) + g(x)$, $h(x+T) = f(x+T) + g(x+T)$
note that $f(x+T) = f(x)$ and $g(x+T) = g(x)$,
 $f(x) = g(x) + f(x) = g(x)$
 $f(x) = h(x+T)$... $f(x) = g(x) + f(x) = h(x)$
 $f(x) = h(x+T)$... $f(x) = g(x) + f(x) = h(x)$

3. \(\lambda \text{ \text{ \lambda} \text{ \text{ \lambda} \text{ \text{ \text{ \lambda} \text{ \text{ \text{ \text{ \text{ \lambda} \text{ \

sin costal is even, Aninto ITTO (-cos(487)+1)=01

case 2 m = n by the trigonometric identity sin(x) cos(y) = 1 (xin(x+y)-sin(x-y)) me get sin (2 TI nt) con (2TI mt) = (sin (2TI mt) - sin(zant-mmt)) } Aride: 2711t + 2711t = 2711t + 2711t = 271t (n+m) 2TINT - 2TIMT = 2TIE (N-M) => sir (211nt) cos (211nt) = { (sir (211t (n+m)) - sir (211t (n-m))) then, $\left(\sin\left(\frac{2\pi nt}{T}\right), \cos\left(\frac{2\pi mt}{T}\right)\right) = \frac{1}{2}\int_{0}^{T} \sin\left(\frac{2\pi t(n+m)}{T}\right) dt$ - 1 1 sin (211+ (n-m)) dt

$$u = \frac{2\pi t (n+m)}{T}$$

$$du = 2\pi (n+m) dt$$

$$\frac{T}{2\pi (n+m)} du = dt$$
Now,

$$W = \frac{2\pi t(n-m)}{T}$$

$$dw = \frac{2\pi(n-m)}{T}dt$$

$$\frac{1}{2\pi(n-m)}dw = dt$$

Now,
$$\frac{1}{2} \int_{0}^{T} \frac{1}{2\pi(n+m)} \left(u\right) \cdot T \, du - \frac{1}{2} \int_{0}^{T} \frac{1}{2\pi(n-m)} \left(u\right) \cdot T \, dw$$

$$= \frac{1}{4\pi(n+m)} - eos \left(\frac{2\pi t(n+m)}{T}\right) \left(\frac{1}{T} + \frac{1}{4\pi(n-m)} + eos \left(\frac{2\pi t(n-m)}{T}\right) - eos \left(\frac{2\pi t(n-m)}{T}\right$$

Nive
$$con(x) = con(-x)$$
, $con(2\pi (n+m)) = con(-2\pi (n+m)) = 1$
= $\frac{1}{4\pi (n+m)} \left(-1+1 \right) + \frac{1}{4\pi (n+m)} \left(1-1 \right) = 0$

If
$$m=0$$
 dways \Rightarrow check $\sin\left(\frac{2\pi nt}{T}\right)$, $\cos(0)=1$

is $\sin\left(\frac{2\pi nt}{T}\right) \perp 1$?

$$\int_{0}^{T} \sin\left(\frac{2\pi nt}{T}\right) dt, \quad w=\frac{2\pi nt}{T} dt \quad \frac{Tdw}{2\pi n} = dt$$

$$\Rightarrow \int_{0}^{T} \sin\left(\frac{2\pi nt}{T}\right) dw = -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} dt \quad \frac{T}{2\pi n} dt$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{T}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{1}{2\pi n} = 0$$

$$= -\frac{\cos\left(\frac{2\pi nt}{T}\right) \cdot T}{2\pi n} + \frac{1}{2\pi n} = 0$$

5. {f, fe, f3} with
$$f_{1}(x)=1$$
 is an athorough at $f_{2}(x)=x$ if $f_{1}, f_{2}=0$ if $f_{1}, f_{3}=0$ is not an athorough at an the intend $f_{1}=0$ if f_{1}, f_{2}, f_{3} is not an athorough at an the intend $f_{1}=0$.

on the intend $(-1,1)^{\circ}$ $\int_{-1}^{1} f_{1} dx = \int_{-1}^{1} dx = \frac{x^{2}}{2} \Big|_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0$ $\int_{-1}^{1} f_{1} \cdot f_{3} dx = \int_{-1}^{1} \frac{1}{2} (3x^{2} - 1) dx = \frac{1}{2} (3x^{3} - x) \Big|_{-1}^{1} = 0$ = 0.5 (1-1) - 0.5 (1-1) = 0 $\int_{-1}^{1} f_{2} \cdot f_{3} dx = \int_{-1}^{1} x \cdot \frac{1}{2} (3x^{2} - 1) dx = \int_{-1}^{1} \frac{3x^{3} - x}{2} dx = \frac{1}{2} \frac{3x^{4}}{4} - \frac{x^{2}}{2} \Big|_{-1}^{1}$ $= 0.5 (2x - \frac{1}{2}) - 0.5 (3x - \frac{1}{2}) = 0$ $\therefore f_{1}, f_{2}, f_{3} \text{ is pan + red on the induced } (-1, 1)$