DOKUMENTATIONPONG

Modul 242 Mikroprozessoranwendung realisieren

21.04.2023

Alexander Siegenthaler

21.04.2023 Seite 1 von 15

Inhaltsverzeichnis

1.	Vor	wort	3
2.	Info	rmieren	3
2	2.1.	Ausgangslage	3
2	2.2.	Vorgaben	4
3.	Plar	nen	6
3	3.1.	Pong	6
3	3.2.	Roomba	7
4.	Ents	scheiden	9
5.	Flus	ssdiagramm	10
5	5.1.	Verwendete Sensoren/Aktoren	11
6.	Rea	ılisieren	11
6	S.1.	Vorarbeit	11
6	5.2.	Umsetzung	11
7.	Kon	trollieren	13
7	7 .1.	Testprotokoll	13
8.	Aus	werten	13
8	3.1.	Reflexion	13
9.	Abb	ildungsverzeichnis	14
10.	. Т	abellenverzeichnis	14
11.		Quellenverzeichnis	14
12	Δ	anhangsverzeichnis	. 15

1. Vorwort

Die Dokumentation gehört zur LB des Moduls 242 von Alexander Siegenthaler und dokumentiert die Umsetzung der LB. Durch die ganze Arbeit hinweg wurde mit der Projektplanungsmethode IPERKA gearbeitet.

2. Informieren

2.1. Ausgangslage

Ziel der LB ist es im Rahmen von 2 Tagen eine Mikroprozessoranwendung mithilfe des Halocodes von Mblock zu realisieren und dokumentieren. Es besteht die Möglichkeit diverse Sensoren innerhalb dieses Projektes zu verwenden

21.04.2023 Seite 3 von 15

2.2. Vorgaben

Für die LB sind folgende Kriterien zu beachten:

Projekttitel	Titel fehlt O Punkte	Falscher Titel 1 Punkte	Minimaler, fehlerhafter Titel 2 Punkte	Titel vorhanden 3 Punkte	Angepasster Titel 4 Punkte	Aussagekräftiger Titel 5 Punkte
Autor, Datum, Projektparameter	keine Beschreibung O Punkte	Minimale, fehlerhafte Angaben 1 Punkte	minimale, unvollständige Angaben 2 Punkte	Minimale Angaben 3 Punkte	Angaben korrekt 4 Punkte	Korrekte, vollständige Angaben 5 Punkte
Kurzbeschreibung	Kurzbeschreibung fehlt <i>O Punkte</i>	Minimale, fehlerhafte Kurzbeschreibung 1 Punkte	Minimale unvollständige Kurzbeschreibung 2 Punkte	Kurzbeschreibung vorhanden 3 Punkte	Korrekte Kurzschbeschreibun g <i>4 Punkt</i> e	Korrekte, vollständige Beschreibung 5 Punkte
Video/Fotodokumentation	Foto/Videodokument ation fehlt <i>O Punkte</i>		Minimale,Foto/Video edokume ntation 2 Punkte	Foto/Videodokument ation vorhanden 3 Punkte	Foto/Videodokument ation vorhanden 4 Punkte	Korrekte, vollständige Videodokumentati on 5 Punkte
Inline-Kommentare Code	Keine Inline Kommentare O Punkte	Minimale, fehlerehafte Kokmentare 1 Punkte	Minimale, unvollständige Kommentare 2 Punkte	Kommentare vorhanden 3 Punkte	Wesentliche Kommentare sind korrekt und vollständig 4 Punkte	Korrekte,vollständi ge Kommentare 5 Punkte
Programmlogik (Flusslaufdiagramm)	Beschreibung der Programmlogik fehlt <i>O Punkte</i>	Minimale, fehlerhafte Beschreibung der Programmlogik 1 Punkte	Minimale, unvollständige Beschreibung der Programmlogik 2 Punkte	Minimale Beschreibung der Programmlogik 3 Punkte	Programmlogik der Kernfunktionen vorhanden <i>4 Punkte</i>	Programmlogik komplett vorhanden 5 Punkte

Abbildung 1: Bewertungskriterien a

21.04.2023 Seite 4 von 15

Projektidee	Kein Projekt (-idee) O Punkte	Projektidee kopiert 1 Punkte	Minimale Anpassung einer Projektidee 2 Punkte	Angepasste Projektidee 3 Punkte	Angepasste Projektidee mit eigenen Ergänzungen 4 Punkte	Eigene Projektidee 5 Punkte
Projektumsetzung	Kein Projekt O Punkte	Projekt ansatzweise umgesetzt 1 Punkte	Einige Punkte des Projektes sind umgesetzt 2 Punkte	Wichtigste Punkte des Projektes sind umgesetzt 3 Punkte	Fast alle Punkte des Projektes sind umgesetzt 4 Punkte	Alle Punkte des Projektes sind umgesetzt. 5 Punkte
Programm-Code	Kein Programmcode O Punkte	Minimaler, fehlerhafter Code 1 Punkte	Minimaler, unvollständiger Code 2 Punkte	Wichtigster Programmcode ist vorhanden und funktioniert 3 Punkte	Programmcode ist vollständig 4 Punkte	Programm-Code ist vollständig und optimiert 5 Punkte
Programm-Komplexität 1 Variablen/Listen	Kein Einsatz von Variablen und Listen <i>O Punkte</i>	Minimaler, fehlerhafter Einsatz von Variablen und Listen 1 Punkte	Minimaler, unvollständiger Einsatz von Variablen und Listen 2 Punkte	Variablen und Listen werden punktuell und korrekt eingesetzt 3 Punkte	Variablen und Listen werden korrekt eingesetzt 4 Punkte	Variablenn und Listen werden optimal eingesetzt 5 Punkte
Programm-Komplexität 2 Funktionen	Kein Einsatz von Funktionen <i>O Punkte</i>	Minimaler, fehlerhafter Einsatz von Funktionen 1 Punkte	Minimaler, unvollständiger Einsatz von Funktionen 2 Punkte	Funktionen werden punktuell und korrekt eingesetzt 3 Punkte	Funktionen werden korrekt eingesetzt 4 Punkte	Funktionen werden optimal eingesetzt 5 Punkte
Programm-Komplexitöt 3 mbuild/Extension	Keine Einsatz von mbuild Elementen oder Extension O Punkte	Minimaler Einsatz von mbuild Elementen oder Extension 1 Punkte	Minimaler, unvollständiger Einsatz von mbuild Elementen oder Extension 2 Punkte	mbuild oder Extension werden punktuell und korrekt eingesetzt 3 Punkte	mbuild oder Extension werden korrekt eingesetzt 4 Punkte	mbuild oder Extension werden optimal eingesetzt 5 Punkte
Debugging/Test	Keine Angaben zum Debugging/Testfälle <i>O Punkte</i>	Minimale, fehlerhafte Angaben zum Debugging/Testfälle 1 Punkte	Minimale, unvollständige Angaben zum Debugging/Testfälle 2 Punkte	Angaben zum Debugging/Testfälle sind vorhanden 3 <i>Punkte</i>	Debugging/Testfälle sind vollständig vorhanden 4 Punkte	Debugging/Test ist vollständig und automatisiert 5 Punkte

Abbildung 2: Bewertungskriterien b

21.04.2023 Seite 5 von 15

3. Planen

Innerhalb der Planung der LB haben sich folgende Projektideen entwickelt:

3.1. Pong

Beschreibung

Die Hardware besteht aus dem Halocode, Joysticks, LED-Driver, 8x16 blue LED Matrizen und einem Speaker. Die Idee ist es ein Spiel zu entwickeln welches sich wie «Pong» verhält. Das Spielfeld verläuft über die beiden LED-Matrizen und beide Mitspieler steuern mit einem eigenen Joystick einen Spieler welcher sich am unteren Ende des jeweiligen Screens befindet. Das Ziel ist es einen Ball am gegnerischen Spieler vorbeizuschlagen. Mithilfe zweier LED-Driver wird der aktuelle Punktestand des jeweiligen Spielers dargestellt und bei einem Punkt wird ein Sound abgespielt.

Testkonzept

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
1	Testen der	Blackbox /	Unit Test /	Wenn der Joystick nach
	Joysticks: Das	Positivtest	optisch	rechts gedrückt wird, bewegt
	Ziel dieses			sich der Spieler bis an den
	Tests ist es, zu			rechten Rand des
	überprüfen, ob			Spielfeldes.
	die			
	Bewegungen			
	der Spieler auf			
	dem Bildschirm			
	korrekt auf die			
	Joysticks			
	reagieren und			
	dass beide			
	Joysticks			
	ordnungsgemäß			
	funktionieren.			

Tabelle 1: Testfall Nr. 1

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
2	Testen des	Blackbox /	Unit Test /	Wenn das Spiel gestartet
	LED-Displays:	Positivtest	optisch	wird, erscheinen auf beiden
	Das Ziel dieses			Displays jeweils ein 1x5 Pixel
	Tests ist es, zu			grosser Spieler.
	überprüfen, ob			
	das LED-			
	Display korrekt			
	funktioniert und			
	die Spielfläche			
	korrekt			
	dargestellt wird.			

Tabelle 2: Testfall-Nr. 2

21.04.2023 Seite 6 von 15

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
3	Testen des	Blackbox /	Unit Test /	Wenn der Spieler einen
	Sound-Effekts:	Positivtest	akustisch	Punkt erzielt, wird ein Sound-
	Das Ziel dieses			Effekt abgespielt.
	Tests ist es, zu			
	überprüfen, ob			
	der Sound-			
	Effekt korrekt			
	abgespielt wird.			

Tabelle 3: Testfall Nr. 3

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
4	Testen des	Blackbox /	Unit Test /	Wenn Spieler 1 den Ball an
	Punktestands:	Positivtest	optisch	Spieler 2 vorbeischiesst und
	Das Ziel dieses			er einen Punkt erzielt,
	Tests ist es, zu			leuchtet bei Spieler 1 exakt 1
	überprüfen, ob			LED.
	der Punktestand			
	korrekt auf			
	beiden LED-			
	Stripes			
	dargestellt wird.			

Tabelle 4: Testfall Nr. 4

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
5	Testen der	Blackbox /	Unit Test /	Wenn ein Spieler den Ball
	Kollisionserkennung:	Positivtest	optisch	zentral berührt, bewegt
	Das Ziel dieses			sich der Ball vertikal in die
	Tests ist es, zu			Richtung des
	überprüfen, ob das			gegenüberliegenden
	Spiel korrekt auf			Spielers.
	Kollisionen zwischen			
	dem Ball und den			
	Spielern reagiert.			

Tabelle 5: Testfall Nr. 5

3.2. Roomba

Beschreibung

Die Hardware besteht aus dem Halocode, Akkus, DC Motor Driver, Ultrasonic Sensor und Servo-Driver. Die Idee ist es mithilfe des Motor Driver und des Servo-Driver ein Gefährt zu bauen welches durch den Ultrasonic Sensors Hindernisse erkennt, diese durch das WLAN-Modul vom Halocode als CloudVariablen an ein Device sendet und diese auf dem Device innerhalb des Mblock Editors als Sprites dargestellt werden.

21.04.2023 Seite 7 von 15

Testkonzept

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
6	Testen der	Blackbox /	Unit Test /	Wenn das Gerät gestartet
	Hinderniserkennung:	Positivtest	optisch	wird und es 5cm vor
	Das Ziel dieses			einem Hindernis ist
	Tests ist es, zu			stoppt es.
	überprüfen, ob das			
	Gerät Hindernisse			
	korrekt erkennt und			
	vermeidet.			

Tabelle 6: Testfall Nr. 6

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
7	Testen der	Blackbox /	Unit Test /	Wenn in der mblock IDE die
	Cloud-	Positivtest	optisch	Space Taste gedrückt wird,
	Kommunikation:			startet das Gerät mit der
	Das Ziel dieses			Hinderniserkennung.
	Tests ist es, zu			
	überprüfen, ob			
	die Daten			
	korrekt an das			
	Device			
	gesendet und			
	korrekt			
	verarbeitet			
	werden.			

Tabelle 7: Testfall-Nr. 7

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
8	Testen der	Blackbox /	Unit Test /	Wenn in der mblock IDE die
	WLAN-	Positivtest	optisch	Space Taste gedrückt wird,
	Verbindung:			blinkt der Halocode 3 mal
	Das Ziel dieses			grün.
	Tests ist es, zu			
	überprüfen, ob			
	die WLAN-			
	Verbindung			
	ordnungsgemäß			
	funktioniert und			
	die Daten			
	erfolgreich an			
	das Device			
	gesendet			
	werden.			

Tabelle 8: Testfall Nr. 8

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
9	Testen der	Blackbox /	Unit Test /	Wenn das Gerät auf ein
	Bewegung: Ziel	Positivtest	optisch	Hindernis stösst, hält es an
	dieses Tests ist			und bewegt sich nach links.
	es, zu			-
	überprüfen, ob			
	sich das Gerät			
	korrekt bewegt.			

Tabelle 9: Testfall Nr. 9

21.04.2023 Seite 8 von 15

Nr.	Zieldefinition	Testmethode	Testumgebung	Testfall
10	Testen der	Blackbox /	Unit Test /	Wenn das Gerät auf ein
	Geschwindigkeit:	Positivtest	optisch	Hindernis stösst, dass sich
	Das Ziel dieses			auf der linken Seite befindet,
	Tests ist es, zu			hält es an und bewegt sich
	überprüfen, ob			nach links. Anschliessend
	das Gerät mit			fährt es zurück und bewegt
	der richtigen			sich nach rechts.
	Geschwindigkeit			
	fährt, um			
	Hindernisse			
	effektiv zu			
	vermeiden.			

Tabelle 10: Testfall Nr. 10

4. Entscheiden

Im Verlauf der Analyse, sind mir Probleme mit der Cloud-Verbindung aufgefallen. Da ich bei der Projektidee Roomba auf eine stabile Datenübertragung zwischen Roomba und Steuerungs-Device angewiesen bin, habe ich mich für die Projektidee Pong entschieden.

21.04.2023 Seite 9 von 15

5. Flussdiagramm

Abbildung 3: Flussdiagramm Pong

21.04.2023 Seite 10 von 15

5.1. Verwendete Sensoren/Aktoren

Folgende Sensoren/Aktoren werden im Verlauf der LB verwendet:

Namen	Beschreibung	Stück
Halocode	Der Halocode enthält diverse Sensoren/Aktoren.	1
	Innerhalb von diesem Projekt wird nur der Zentrale	
	Button verwendet.	
Joystick	Der Joystick wird für die Steuerung des jeweiligen	
	Spielers verwendet.	
LED-Driver	Der LED-Driver wird für die Darstellung der Punkte	2
	des jeweiligen Spielers verwendet.	
LED-Strip	Auf dem LED-Strip wird die effektive Punktzahl des	2
	jeweiligen Spielers dargestellt.	
8x16 blue LED Matrize	Die 8x16 blue LED Matrize wird für die Darstellung	2
	des Spielfeldes verwendet (Spieler/Ball).	
Speaker	Der Speaker wird verwendet, um ein Punkt zu	1
	signalisieren.	

6. Realisieren

6.1. Vorarbeit

Für dieses Projekt wurden keine nennenswerten Vorarbeiten geleistet.

Es wurden einzig zu den beiden Projektideen, Roomba und Pong, stark vereinfachte POC's erstellt, welche hauptsächlich die Hardware und die Kommunikation mit der Cloud von Mblock betreffen.

Ausserdem habe ich das Uploaden von Python Scripts mit «Halocode-Tools» von Bailuk getestet.

6.2. Umsetzung

Hardware

Es wurde eine zweckdienliche Basis gebaut, auf welcher man die einzelnen Komponenten befestigen kann. Die einzelnen Komponenten wurden alle mit Grove-Kabel verbunden. Hierbei wurde darauf geachtet, Komponenten mit einem höheren Energieverbrauch näher am Halocode zu montieren (Halocode -> LED-Matrix ->LED-Driver->Joystick->Speaker).

Software

Da Mblock Halocode eine Python API liefert, habe ich mich für die Entwicklung in Python entschieden. Leider ist es nur möglich ein einzelnes Python Script in den Halocode zu laden, daher sind sämtliche Klassen und Funktionen in einem einzelnen Script definiert.

21.04.2023 Seite 11 von 15

Klassen

Field: Definiert die Grösse des Spielfeldes und instanziert die einzelnen Komponenten (Player, Ball...). Ausserdem enthält es die Funktionen, um den Spieler und den Ball zu bewegen, er kontrolliert die gesamte Kollisionslogik ausserdem ist es für die Darstellung zuständig

Player: Der Spieler definiert die Spielergrösse sowie die Position auf dem Spielfeld als auch die Funktion sich selbst zu bewegen.

Ball: Der Ball definiert die Position von sich selbst auf dem Spielfeld und ist für die Kontrolle der Kollision mit einem Spieler, des Borders und der Wände zuständig.

Wall: Die Wand definiert die Position von sich selbst auf dem Spielfeld. Es stellt ein Hindernis auf dem Spielfeld dar.

Border: Der Border definiert die Position von sich selbst auf dem Spielfeld. Er stellt die Grenze zwischen den beiden Spielfeldern dar.

Goal: Das Goal definiert die Position von sich selbst auf dem Spielfeld. Wenn der Ball mit dem Goal kollidiert, erhält der gegenüberliegende Spieler einen Punkt.

Funktionen

startup(): Ein Endlos-Loop der auf einen Tastendruck wartet um das Spiel zu starten.

game_running(): Ein Endlos-Loop der ein gesamtes Spiel darstellen soll.

round_running(): Ein Endlos-Loop der eine einzelne Runde darstellen soll.

21.04.2023 Seite 12 von 15

7. Kontrollieren

7.1. Testprotokoll

Nr.	Testfall	Durchführungs-	Verantwortliche	Ergebnis
1	Wenn der Joystick nach rechts gedrückt wird, bewegt sich der Spieler bis an den rechten Rand des Spielfeldes.	Datum 21.04.23	Alexander Siegenthaler	Negativ
2	Wenn das Spiel gestartet wird, erscheinen auf beiden Displays jeweils ein 1x5 Pixel grosser Spieler.	21.04.23	Alexander Siegenthaler	Negativ
3	Wenn der Spieler einen Punkt erzielt, wird ein Sound-Effekt abgespielt.	21.04.23	Alexander Siegenthaler	Negativ
4	Wenn Spieler 1 den Ball an Spieler 2 vorbeischiesst und er einen Punkt erzielt, leuchtet bei Spieler 1 exakt 1 LED.	21.04.23	Alexander Siegenthaler	Negativ
5	Wenn ein Spieler den Ball zentral berührt, bewegt sich der Ball vertikal in die Richtung des gegenüberliegenden Spielers.	21.04.23	Alexander Siegenthaler	Negativ

Tabelle 11: Testprotokoll

8. Auswerten

8.1. Reflexion

Leider habe ich mich innerhalb dieses Projektes etwas überschätzt. Aber da ich noch keinerlei Kontakt mit Python hatte und das Projekt aufwändig war, ist dies Gerechtfertigt. Im aktuellen Stand fehlen folgende Funktionen:

- LED-Stripes
- Speaker
- Die korrekte Darstellung des Spielers
- Der Wechsel des Balls von einem Screen zum andern
- Die Unit-Tests der einzelnen Tests

21.04.2023 Seite 13 von 15

9. Abbildungsverzeichnis

Abbildung 1: Bewertungskriterien a	4
Abbildung 2: Bewertungskriterien b	F
Abbildung 3: Flussdiagramm Pong	10
10. Tabellenverzeichnis	
Tabelle 1: Testfall Nr. 1	ε
Tabelle 2: Testfall-Nr. 2	6
Tabelle 3: Testfall Nr. 3	
Tabelle 4: Testfall Nr. 4	
Tabelle 5: Testfall Nr. 5	7
Tabelle 6: Testfall Nr. 6	
Tabelle 7: Testfall-Nr. 7	
Tabelle 8: Testfall Nr. 8	
rapelle o. restiali ivi. o	8

11. Quellenverzeichnis

- https://chat.openai.com/
- https://stackoverflow.com
- https://www.mblock.cc
- https://www.w3schools.com
- https://github.com/bailuk/halocode-tools

12. Anhangsverzeichnis

• Foto

• Source Code: https://github.com/alex92ch/242

21.04.2023 Seite 15 von 15