Instrumental Variables

Martin J. Conyon

October 2015

Lancaster University

Readings

- Angrist, J.and Krueger, A. (2001) Instrumental Variables and the Search for Identification, Journal of Economic Perspectives, Fall.
- Angrist, J and Pischke, J.S. (2009) Mostly Harmless econometrics, Princeton University Press.
- See also Steve Pischke's lectures on labor economics for research students – these notes are based on them...

The problem

- The basic problem is to estimate a model with an endogenous variable. The classic example is earnings (y) and education (S) where ability (A) is not observed
- Long form model: $y_i = \alpha + \rho S + \gamma A + \epsilon_i$
- Estimate structural model: $y_i = \alpha + \rho S + e_i$, and so $e_i = \gamma A + \epsilon_i$
- Note: $cov(S, \epsilon) \neq 0$. Estimation leads to OVB.
- IV solution is to find a variable Z_i such that $cov(Z, \epsilon) = 0$ & $cov(Z, S) \neq 0$

Instrument validity

Conditions for a good instrument

- 1. Random assignment of Z_i (at least as good as)
- 2. Exclusion restriction: $cov(Z, \epsilon) = 0$. The instrument is not correlated with the disturbance in the long form model
- 3. Instrument validity: $cov(Z, S) \neq 0$ The instrument is correlated with the endogenous variable.

Numbers 1 and 2 cannot be tested but argued from institutional context. 3 can be tested.

Causal models

Three causal models:

- 1. The effect of Z_i on S_i
- 2. The effect of Z_i on y_i
- 3. The effect of S_i on y_i

Ultimately, we're interested in model 3

Comment

Model estimation:

- 1. Effect of Z_i on $S_i \Rightarrow$ randomization & instrument validity
- 2. Effect of Z_i on $y_i \Rightarrow$ randomization & instrument validity
- 3. Effect of S_i on $y_i \Rightarrow$ randomization, exclusion restriction & instrument validity

Again, model 3 is what we are interested in.

Implementation

The following causal models can be estimated:

1. First stage:
$$S_i = \pi_{10} + \pi_{11}Z_i + \psi_{1i}$$

2. Reduced form:
$$y_i = \pi_{20} + \pi_{21}Z_i + \psi_{1i}$$

3. Structural equation:
$$y_i = \alpha + \rho S_i + \epsilon_{1i}$$

Interested in identifying the causal effect ρ .

Implementation

Substitution of first stage into the structural model:

•
$$y_i = \alpha + \rho S_i + \epsilon_{1i}$$

•
$$y_i = \alpha + \rho[\pi_{10} + \pi_{11}Z_i + \psi_{1i}] + \epsilon_{1i}$$

•
$$y_i = \alpha + \rho \pi_{10} + \rho \pi_{11} Z_i + \rho \psi_{1i} + \epsilon_{1i}$$

•
$$y_i = (\alpha + \rho \pi_{10}) + \rho \pi_{11} Z_i + (\rho \psi_{1i} + \epsilon_{1i})$$

•
$$y_i = \pi_{20} + \pi_{21}Z_i + \epsilon_{2i}$$

• where
$$\pi_{20} = (\alpha + \rho \pi_{10})$$
 and $\pi_{21} = \rho \pi_{11}$

$$\bullet \Rightarrow \frac{\pi_{21}}{\pi_{11}} = \rho$$

 ⇒ causal effect in the structural eq. (ρ) is the ratio of the coefficient on the reduced form model divided by the coefficient from the first stage

7

Example

- Angrist & Krueger (1991) Does compulsory school attendance affect schooling and earnings. QJE.
- How does this work? School districts require children to have turned 6 years of age in the year that they enter the school system. Legal dropout rate is exactly 16.
- So, people born earlier in the year will be older when they enter school.
- They will also have fewer years of formal education
- Birth date therefore can be used as a legitimate instrument for years of schooling which is uncorrelated to earning since it is random....

Schooling and birth-quarter

Completed schooling and birth-quarter

Source: from J. Angrist data

Earnings and birth-quarter

Source: from J. Angrist data

Data

- Angrist & Krueger (1991) use 1980 data from the US census.
- The data set contains information on 329,509 men born between 1930 and 1939.
- The men are in the 40s when the sample is taken
- The data set contains information on 1979 earnings (logged), birth quarter, years of schooling
- Data available from Josh Angrist's data archive....

Birth quarter statistics

birth_quart er	Freq.	Percent	Cum.
1	81,671	24.79	24.79
2	80,138	24.32	49.11
3	86,856	26.36	75.47
4	80,844	24.53	100.00
Total	329,509	100.00	

Schooling and birth quarter

	(1)	(2)		
Variables	school	school		
q2	0.057***			
	(0.016)			
q3	0.117***			
	(0.016)			
q4	0.151***	0.092***		
	(0.016)	(0.013)		
Constant	12.688***	12.747***		
	(0.011)	(0.007)		
Observations	329,509	329,509		
R-squared	0.000	0.000		
Standard errors in parentheses				

Earnings and schooling

	(1)	(2)	(3)
Variables	Iwage (OLS)	Iwage (IV)	Iwage (IV)
school	0.071***	0.074***	0.103***
	(0.000)	(0.028)	(0.020)
Constant	4.995***	4.955***	4.590***
	(0.004)	(0.358)	(0.249)
Observations	329,509	329,509	329,509
R-squared	0.117	0.117	0.094

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Instruments: Col 1: OLS; Col 2: IV using Q4 birth; Col 3: IV using Q3 to Q4 $\,$

15

Wald estimator

Consider the model: $y = \beta_0 + \beta_1 x + u$ and let z be a binary (z = 0, or z = 1) instrumental variable for x. Then the IV estimator is:

$$\hat{\beta}_1 = \hat{\beta}_{1/V} = \frac{\sum_{i=1}^{N} (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^{N} (z_i - \bar{z})(x_i - \bar{x})},$$

The IV estimator $\hat{\beta}_1$ can also be written as:

$$\hat{\beta}_1 = (\bar{y}_1 - \bar{y}_0)/(\bar{x}_1 - \bar{x}_0),$$

where \bar{y}_0 and \bar{x}_0 are the sample averages of y_i over the part of the sample with $z_i=0$, and the terms \bar{y}_1 and \bar{x}_1 are the sample averages of y_i over the part of the sample with $z_i=1$. This is known as the Wald (1940) estimator.

Wald estimator: example

We can use the Angrist data to calculate the Wald estimator. Let y_i be log wages, and S_i years of schooling, and Q4 quarter 4 birth

$$\beta_{Wald} = \frac{Cov(y_i, Q4)}{Cov(S_i, Q4)}$$

$$\beta_{Wald} = \frac{E[y_i|Q4=1] - E[y_i|Q4=0]}{E[S_i|Q4=1] - E[S_i|Q4=0]}$$

Wald estimates

Calculate the Wald estimator from the first stage and reduced form regressions.

$$S_i = \alpha_{10} + \alpha_{14}Q4_i + \theta_{1i} \Rightarrow \text{First Stage regression}$$

$$y_i = \alpha_{20} + \alpha_{24} Q 4_i + \theta_{2i} \Rightarrow \text{Reduced form regression}$$

$$E[y_i|Q4=1]=lpha_{20}+lpha_{24}$$
 and

$$E[y_i|Q4=0]=\alpha_{20}$$

$$\Rightarrow$$
 $E[y_i|Q4=1]$ - $E[y_i|Q4=0]=lpha_{24}$ and

Wald estimates

• The Wald estimate is the ratio of these two:

$$\beta_{\textit{Wald}} = \frac{\alpha_{24}}{\alpha_{14}}$$

 In the case of earnings: the Wald estimator is the difference in average earnings across the two groups divided by the difference in average schooling across the two groups

Reduced form

reg lwage q	4 // regress v	wage on Q	4			
Source	SS	df	MS		Number of obs	
Model Residual	2.83199415 151835.0393		.83199415 460794578		F(1,329507) Prob > F R-squared	= 0.0132 = 0.0000
Total	151837.871	329508 .4	460801774		Adj R-squared Root MSE	= 0.0000 = .67882
lwage	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
q4 _cons	.0068132 5.898272	.002748		0.013 0.000	.0014267 5.895604	.0121996 5.90094

First stage

. reg school d	4 // regress	school o	1 Q 4			
Source	SS	df	MS		Number of obs =	
Model Residual	517.7393 3547149.923	1 329507 10	517.7393 0.7650215		R-squared =	0.0000 0.0001
Total	3547667.663	329508	10.76656		Adj R-squared = Root MSE =	
school	Coef.	Std. Er	r. t	P> t	[95% Conf. I	[nterval]
q4 _cons	.0921209 12.74731	.0132834 .0065796		0.000 0.000	.0660857 12.73441	.118156 12.76021

Wald Estimate

- Difference in mean earnings = 0.0068
- Difference in mean schooling = 0.0921
- Ratio of the difference = 0.0068 / 0.0921 = 0.074
- Compare this quantity to the IV estimate arising from the 2SLS method – they are the same...

IV estimates

```
. ivregress 2sls lwage (school= q4)
Instrumental variables (2SLS) regression
                                                        Number of obs =
                                                                        329509
                                                        Wald chi2(1)
                                                                           6.96
                                                        Prob > chi2
                                                                      = 0.0083
                                                        R-squared
                                                                      = 0.1171
                                                        Root MSE
                                                                         . 63785
       lwage
                            Std. Err.
                                                           [95% Conf. Interval]
                    Coef.
                                           z
                                                 P> | z |
     school
                 .0739589
                            .0280328
                                         2.64
                                                 0.008
                                                           .0190157
                                                                       .1289021
      _cons
                 4.955495
                            .3579775
                                        13.84
                                                 0.000
                                                           4.253872
                                                                       5.657118
Instrumented:
               school
Instruments:
               α4
```