Kurvenpunkte

Geometrische Vorbetrachtung

1. Ableitung : Veränderung der Funktion f = Steigung der Kurventangente

 $f'(x_0) > 0$: f wächst beim Durchgang durch Punkt $P(x_0, y_0)$ $f'(x_0) < 0$: f all beim Durchgang durch Punkt $P(x_0, y_0)$

2. Ableitung : Veränderung der 1. Ableitung / Krümmungsverhalten von f

 $f''(x_0) > 0$: Zunahme der Tangentensteigung, f = Linkskrümmung $f''(x_0) < 0$: Abnahme der Tangentensteigung, f = Rechtskrümmung

z.B.

Z.B.

Graph von f⋈ wächst □ wächst f wächst/fällt □ fällt □ fällt ⊠ fällt ⊠ fällt Vorzeichen von f $f'(x) \rightarrow$ f'(x) >f'(x) < f'(x) < 0☑ rechts □ rechts ☑ rechts □ rechts Krümmung von j □ links □ links □ links

⋈ wächst

f' wächst/fällt

□ wächst

⋈ wächst

□ wächst

Relative Extrema

Funktion f an Stelle xo ein relatives Maximum wenn:

• $f(x) \leqslant f(x_0)$ für alle $x \in U$ (Umgebung)

Tangenten an Hoch-/Tiefpunkten sind horizontal (Steigung = 0)

	x_0 heisst	$f(x_0)$ heisst	(x_0, y_0) heisst
Maximum	(relative) Maximalstelle	(relatives) Maximum oder auch Maximalwert	(relativer) Hochpunkt
Minimum	(relative) Minimalstelle	(relatives) Minimum oder auch Minimalwert	((relativer) Tiefpunkt
Oberbegriff	(relative) Extremalstelle	(relatives) Extremum oder auch Extremalwert	(relativer) Extremalpunkt

Randpunkte:

Abaeschlossenes oder halboffenes Intervall

[a,b) : Randpunkt a

(a,b] : Randpunkt b

[a,b] : Randpunkt a,b

Punkte von Intervall, die keine Randpunkte Sind = innere Punkte von 1

Kandidaten für relative Extrema:

1. Innere Punkte xo des Definitions bereichs mit f'(xo) = 0

2. Randpunkte des Definitionsbereichs

Bedingung für relative Extrema:

$$f'(x_0) = 0$$
 and $f''(x_0) < 0$ f an Stelle x_0 ein relatives Haximum $f'(x)$ bei x_0 von $+ \ge u -$ f an Stelle x_0 ein relatives Hinimum $f'(x)$ bei x_0 von $- \ge u +$ f an Stelle x_0 ein relatives Hinimum

Extremstelle von $f(x) = x^2$ f'(x) = 2x 2x = 0 | :2 x = 0 | Kandidat für Extremstelle

$$f''(x) = 2 \rightarrow f''(0) = 2 > 0$$

Relatives Minimum bei x =0

2.B. Hoch-/Tiefpunkte von $f(x) = 2\sqrt{x} - x$,

Definitionsbereich [0,2]

$$f(x) = 2x^{0.5} - x$$

$$f'(x) = x^{-0.5} - 1 = \frac{1}{\sqrt{x}} - 1$$

$$\frac{1}{\sqrt{x}} - 1 = 0 \qquad |+1$$

$$\frac{1}{\sqrt{x}} = 1 \qquad |\sqrt{x}$$

$$1 = \sqrt{x} \qquad |^{2}$$

$$1 = x \quad \text{Kandidat für Extremstelle}$$

Analyse der Randpunkte: $f'(0) = 0^{-0.5} - 1 = -1 \le 0$ monoton fallend $f'(2) = 2^{-0.5} - 1 = -0.13 \le 0$ monoton fallend Relatives Minimum bei x = 0, x = 2Minimum punkt bei (0,0), (2,0.83) $f(0) = 2 \cdot 0^{0.5} - 0 = 0$

Skizze:

Monotonie

1st f'(x) > 0, so wachst f monoton.

f'(x) auf Intervall überall >0 = f ist in Interval monoton steigend

f'(x) auf Intervall überall < 0 = f ist in Interval monoton fallend

$$g(x) = g(x) = g(x)$$

$$f'(x) = 3x^2 - 9$$

$$x = \pm \sqrt{3}$$

Richtungsanderung bei - \square, \square

Monotone Abschnitte:

monotones Wachstum

Wende punkte und Sattel punkte

Punkte an denen sich das Krümmungsverhalten ändert.

· Wende punkte: Linkskurve zu Rechtskurve oder umgekehrt

· Sattelpunkte: Wende punkt mit horizontaler Tangente

Bedingung Wende punk : $f''(x_0) = 0$ und $f'''(x_0) \neq 0$

 $\xi B. f(x) = -\frac{2}{3}x^3 + 2x^2 - 2x + 2$ und $x_0 = 1 = Sattelpunkt$

$$f''(x_0) = 0$$
 (horizontale Tangente)

$$\begin{cases} C_{II}(x^{o}) \neq 0 \\ \vdots \\ C_{II}(x^{o}) = 0 \end{cases}$$
 Mange bough

Sallelpunkt

$$f'(x) = -2x^2 + 4x - 2$$
, $f''(x) = -4x + 4$, $f'''(x) = -4$

einschen ergibt , f'(1)=0

fm(1) = -4 ±0 ⇒ Sattelpunkt bei Xo = 1

Hoch-/Tief- und Wendepunkte

Gegeben ist die Funktion $f(x) = \frac{3x^2 - 4}{x^3}$ sowie ihre Ableitungen

$$f'(x) = \frac{-3x^2 + 12}{x^4}$$

$$f''(x) = \frac{6x^2 - 48}{x^5}$$

$$f'''(x) = \frac{-18x^2 + 240}{x^6}$$

Gesucht sind alle relativen Hoch- und Tiefpunkte und alle Wendepunkte. Zeigen Sie jeweils dass eine hinzeichende Bedingung aufüllt ist

$$f'(x) = (-3x^2 + 12) : x^4 = 0 | \cdot x^4$$

$$-3x^2 = -42$$
 : -3

$$f''(x) = (6x^2 - 48) : x^5 = 0$$

$$6x^2 - 48 = 0$$

$$x = \frac{1}{2} \cdot \sqrt{2} = \frac{1}{2} \cdot \sqrt{8}$$

$$f''(2) = (6.4 - 48) : 2^5 = -24 : 32 = -0.75 < 0$$

$$f(2) = (3 \cdot 2^2 - 4) : 2^5 = 1$$

$$f''(-2) = (6.4 - 48) : -2^5 = -24 : -32 = 0.75 > 0$$

$$f(-5) = (3 \cdot (-5)_5 - 4) : (-5)_2 = -4$$

Wendepunkte:

$$\frac{f(\sqrt{8}) = (3 \cdot \sqrt{8}^2 - 4) : \sqrt{8}^3 = 0.88}{f(-\sqrt{8}) = (3 \cdot (-\sqrt{8})^2 - 4) : (-\sqrt{8})^3 = -0.88}$$

Wende punkte: (18,0.88), (-18,-0.88)

Maximal Höhe und Zeitpunkt

Ein Ball wird senkrecht nach oben geworfen. Die Höhe h (in m) berechnet sich aus der Zeit (in s) nach der Formel

$$h(t) = 5 + 35t - 5t^2$$

Berechnen Sie die maximale Höhe und den Zeitpunkt, zu dem diese erreicht wird

$$P_{r}(t) = 32 - 401$$

$$\frac{1}{2} = 3.5s$$

maximale Hohe: h(3.5) = 66.25m