Package 'DebiasInfer'

October 9, 2023

Type Package	
Title Efficient Inference on High-Dimensional Linear Model with Missing Outcomes	
Version 0.2	
Description A statistically and computationally efficient debiasing method for conducting valid inference on the high-dimensional linear regression function with missing outcomes. The reference paper is Zhang, Giessing, and Chen (2023) <arxiv:2309.06429>.</arxiv:2309.06429>	r-
URL https://github.com/zhangyk8/Debias-Infer/	
BugReports https://github.com/zhangyk8/Debias-Infer/issues	
License MIT + file LICENSE	
Encoding UTF-8	
RoxygenNote 7.2.3	
Imports CVXR, caret, stats	
Suggests MASS, glmnet	
Maintainer Yikun Zhang <yikunzhang@foxmail.com></yikunzhang@foxmail.com>	
NeedsCompilation no	
Author Yikun Zhang [aut, cre] (https://orcid.org/0000-0003-3905-6346), Alexander Giessing [aut] (https://orcid.org/0000-0002-6917-0652), Yen-Chi Chen [aut] (https://orcid.org/0000-0002-4485-306X)	
Repository CRAN	
Date/Publication 2023-10-09 19:30:05 UTC	
R topics documented:	
DebiasProg DebiasProgCV DualCD DualObj SoftThres	3
Index	10

2 DebiasProg

_			_	
De	hп	20	Ρr	na
ν	$\mathbf{v}_{\mathbf{I}}$	as		UE

The proposed debiasing (primal) program.

Description

This function implements our proposed debiasing (primal) program that solves for the weights for correcting the Lasso pilot estimate.

Usage

```
DebiasProg(X, x, Pi, gamma_n = 0.1)
```

Arguments

Χ	The input design n*d matrix.
X	The current query point, which is a 1*d array.
Pi	An n*n diagonal matrix with (estimated) propensity scores as its diagonal entries.
gamma_n	The regularization parameter " γ/n ". (Default: gamma_n=0.1.)

Value

The estimated weights by our debiasing program, which is a n-dim vector.

Author(s)

Yikun Zhang, <yikunzhang@foxmail.com>

References

Zhang, Y., Giessing, A. and Chen, Y.-C. (2023) *Efficient Inference on High-Dimensional Linear Model with Missing Outcomes*. https://arxiv.org/abs/2309.06429.

Fu, A., Narasimhan, B. and Boyd, S. (2017) CVXR: An R Package for Disciplined Convex Optimization. Journal of Statistical Software 94 (14): 1–34. doi: 10.18637/jss.v094.i14.

```
require(MASS)
require(glmnet)
d = 1000
n = 900

Sigma = array(0, dim = c(d,d)) + diag(d)
rho = 0.1
for(i in 1:(d-1)){
  for(j in (i+1):d){
```

DebiasProgCV 3

```
if ((j < i+6) | (j > i+d-6)){
      Sigma[i,j] = rho
      Sigma[j,i] = rho
    }
 }
}
sig = 1
## Current query point
x_{cur} = rep(0, d)
x_{cur}[c(1, 2, 3, 7, 8)] = c(1, 1/2, 1/4, 1/2, 1/8)
x_{cur} = array(x_{cur}, dim = c(1,d))
## True regression coefficient
s_beta = 5
beta_0 = rep(0, d)
beta_0[1:s_beta] = sqrt(5)
## Generate the design matrix and outcomes
X_{sim} = mvrnorm(n, mu = rep(0, d), Sigma)
eps_err_sim = sig * rnorm(n)
Y_sim = drop(X_sim %*% beta_0) + eps_err_sim
obs_prob = 1 / (1 + exp(-1 + X_sim[, 7] - X_sim[, 8]))
R_sim = rep(1, n)
R_{sim}[runif(n) >= obs_prob] = 0
## Estimate the propensity scores via the Lasso-type generalized linear model
zeta = 5*sqrt(log(d)/n)/n
lr1 = glmnet(X_sim, R_sim, family = "binomial", alpha = 1, lambda = zeta,
             standardize = TRUE, thresh=1e-6)
prop_score = drop(predict(lr1, newx = X_sim, type = "response"))
## Estimate the debiasing weights
w_obs = DebiasProg(X_sim, x_cur, Pi=diag(prop_score), gamma_n = 0.1)
```

DebiasProgCV

The proposed debiasing (primal) program with cross-validation.

Description

This function implements our proposed debiasing program that selects the tuning parameter " γ/n " by cross-validation and returns the final debiasing weights.

Usage

```
DebiasProgCV(X, x, prop_score, gamma_lst = NULL, cv_fold = 5, cv_rule = "1se")
```

DebiasProgCV

Arguments

Χ	The input design n*d matrix.
x	The current query point, which is a 1*d array.
prop_score	An n-dim numeric vector with (estimated) propensity scores as its entries.
gamma_lst	A numeric vector with candidate values for the regularization parameter " γ/n ". (Default: gamma_lst=NULL. Then, gamma_lst contains 41 equally spacing value between 0.001 and max(abs(x)).)
cv_fold	The number of folds for cross-validation on the dual program. (Default: cv_fold=5.)
cv_rule	The criteria/rules for selecting the final value of the regularization parameter " γ/n " in the dual program. (Default: cv_rule="1se". The candidate choices include "1se", "minfeas", and "mincv".)

Value

A list that contains three elements.

w_obs The final estimated weights by our debiasing program.

11_obs The final value of the solution to our debiasing dual program.

The final value of the tuning parameter " γ/n " selected by cross-validation.

Author(s)

Yikun Zhang, <yikunzhang@foxmail.com>

References

Zhang, Y., Giessing, A. and Chen, Y.-C. (2023) *Efficient Inference on High-Dimensional Linear Model with Missing Outcomes*. https://arxiv.org/abs/2309.06429.

```
require(MASS)
require(glmnet)
d = 1000
n = 900

Sigma = array(0, dim = c(d,d)) + diag(d)
rho = 0.1
for(i in 1:(d-1)){
   for(j in (i+1):d){
      if ((j < i+6) | (j > i+d-6)){
        Sigma[i,j] = rho
        Sigma[j,i] = rho
    }
}
sig = 1
```

DualCD 5

```
## Current query point
x_{cur} = rep(0, d)
x_{cur}[c(1, 2, 3, 7, 8)] = c(1, 1/2, 1/4, 1/2, 1/8)
x_{cur} = array(x_{cur}, dim = c(1,d))
## True regression coefficient
s_beta = 5
beta_0 = rep(0, d)
beta_0[1:s_beta] = sqrt(5)
## Generate the design matrix and outcomes
X_{sim} = mvrnorm(n, mu = rep(0, d), Sigma)
eps_err_sim = sig * rnorm(n)
Y_sim = drop(X_sim %*% beta_0) + eps_err_sim
obs_prob = 1 / (1 + exp(-1 + X_sim[, 7] - X_sim[, 8]))
R_{sim} = rep(1, n)
R_{sim}[runif(n) >= obs_prob] = 0
## Estimate the propensity scores via the Lasso-type generalized linear model
zeta = 5*sqrt(log(d)/n)/n
lr1 = glmnet(X_sim, R_sim, family = "binomial", alpha = 1, lambda = zeta,
             standardize = TRUE, thresh=1e-6)
prop_score = drop(predict(lr1, newx = X_sim, type = "response"))
## Estimate the debiasing weights with the tuning parameter selected by cross-validations.
deb_res = DebiasProgCV(X_sim, x_cur, prop_score, gamma_lst = c(0.1, 0.5, 1),
                       cv_fold = 5, cv_rule = '1se')
```

DualCD

Coordinate descent algorithm for solving the dual form of our debiasing program.

Description

This function implements the coordinate descent algorithm for the debiasing dual program. More details can be found in Appendix A of our paper.

Usage

```
DualCD(
    X,
    x,
    Pi = NULL,
    gamma_n = 0.05,
    11_init = NULL,
```

6 DualCD

```
eps = 1e-09,
max_iter = 5000
)
```

Arguments

X	The input design n*d matrix.
X	The current query point, which is a 1*d array.
Pi	An n*n diagonal matrix with (estimated) propensity scores as its diagonal entries.
gamma_n	The regularization parameter " γ/n ". (Default: gamma_n=0.05.)
ll_init	The initial value of the dual solution vector. (Default: ll_init=NULL. Then, the vector with all-one entries is used.)
eps	The tolerance value for convergence. (Default: eps=1e-9.)
max_iter	The maximum number of coordinate descent iterations. (Default: max_iter=5000.)

Value

The solution vector to our dual debiasing program.

Author(s)

Yikun Zhang, <yikunzhang@foxmail.com>

References

Zhang, Y., Giessing, A. and Chen, Y.-C. (2023) *Efficient Inference on High-Dimensional Linear Model with Missing Outcomes*. https://arxiv.org/abs/2309.06429.

```
require(MASS)
require(glmnet)
d = 1000
n = 900

Sigma = array(0, dim = c(d,d)) + diag(d)
rho = 0.1
for(i in 1:(d-1)){
   for(j in (i+1):d){
      if ((j < i+6) | (j > i+d-6)){
        Sigma[i,j] = rho
        Sigma[j,i] = rho
    }
}
sig = 1
```

DualObj 7

```
## Current query point
x_{cur} = rep(0, d)
x_{cur}[c(1, 2, 3, 7, 8)] = c(1, 1/2, 1/4, 1/2, 1/8)
x_{cur} = array(x_{cur}, dim = c(1,d))
## True regression coefficient
s_beta = 5
beta_0 = rep(0, d)
beta_0[1:s_beta] = sqrt(5)
## Generate the design matrix and outcomes
X_{sim} = mvrnorm(n, mu = rep(0, d), Sigma)
eps_err_sim = sig * rnorm(n)
Y_sim = drop(X_sim %*% beta_0) + eps_err_sim
obs_prob = 1 / (1 + exp(-1 + X_sim[, 7] - X_sim[, 8]))
R_{sim} = rep(1, n)
R_{sim[runif(n) >= obs_prob] = 0}
## Estimate the propensity scores via the Lasso-type generalized linear model
zeta = 5*sqrt(log(d)/n)/n
lr1 = glmnet(X_sim, R_sim, family = "binomial", alpha = 1, lambda = zeta,
             standardize = TRUE, thresh=1e-6)
prop_score = drop(predict(lr1, newx = X_sim, type = "response"))
## Solve the debiasing dual program
ll_cur = DualCD(X_sim, x_cur, Pi = diag(prop_score), gamma_n = 0.1, ll_init = NULL,
                eps=1e-9, max_iter = 5000)
```

DualObj

The objective function of the debiasing dual program.

Description

This function computes the objective function value of the debiasing dual program.

Usage

```
DualObj(X, x, Pi, ll\_cur, gamma\_n = 0.05)
```

Arguments

Χ	The input design n*d matrix.
X	The current query point, which is a 1*d array.
Pi	An n*n diagonal matrix with (estimated) propensity scores as its diagonal entries.
ll_cur	The current value of the dual solution vector.
gamma_n	The regularization parameter " γ/n ". (Default: gamma_n=0.1.)

8 DualObj

Value

The value of the objective function of our dual debiasing program.

Author(s)

Yikun Zhang, <yikunzhang@foxmail.com>

References

Zhang, Y., Giessing, A. and Chen, Y.-C. (2023) *Efficient Inference on High-Dimensional Linear Model with Missing Outcomes*. https://arxiv.org/abs/2309.06429.

```
require(MASS)
require(glmnet)
d = 1000
n = 900
Sigma = array(0, dim = c(d,d)) + diag(d)
rho = 0.1
for(i in 1:(d-1)){
 for(j in (i+1):d){
   if ((j < i+6) | (j > i+d-6)){
      Sigma[i,j] = rho
      Sigma[j,i] = rho
    }
 }
}
sig = 1
## Current query point
x_{cur} = rep(0, d)
x_{cur}[c(1, 2, 3, 7, 8)] = c(1, 1/2, 1/4, 1/2, 1/8)
x_{cur} = array(x_{cur}, dim = c(1,d))
## True regression coefficient
s_beta = 5
beta_0 = rep(0, d)
beta_0[1:s_beta] = sqrt(5)
## Generate the design matrix and outcomes
X_{sim} = mvrnorm(n, mu = rep(0, d), Sigma)
eps_err_sim = sig * rnorm(n)
Y_sim = drop(X_sim %*% beta_0) + eps_err_sim
obs_prob = 1 / (1 + \exp(-1 + X_{sim}[, 7] - X_{sim}[, 8]))
R_{sim} = rep(1, n)
R_sim[runif(n) >= obs_prob] = 0
## Estimate the propensity scores via the Lasso-type generalized linear model
```

SoftThres 9

SoftThres

The soft-thresholding function

Description

This function implements the soft-threshold operator $S_{\lambda}(x) = sign(x) \cdot (x - \lambda)_{+}$.

Usage

```
SoftThres(theta, lamb)
```

Arguments

theta The input numeric vector.

lamb The thresholding parameter.

Value

The resulting vector after soft-thresholding.

Author(s)

Yikun Zhang, <yikunzhang@foxmail.com>

```
a = c(1,2,4,6)
SoftThres(theta=a, lamb=3)
```

Index

```
* CV
     DebiasProgCV, 3
*\ debiasing
     DebiasProg, 2
     DebiasProgCV, 3
     DualCD, 5
* dual
     DualCD, 5
* primal
     {\tt DebiasProg}, \textcolor{red}{2}
* program
     {\tt DebiasProg}, \textcolor{red}{2}
     DebiasProgCV, 3
     DualCD, 5
* utility
     DualObj, 7
     SoftThres, 9
* with
     DebiasProgCV, 3
{\tt DebiasProg}, \textcolor{red}{2}
DebiasProgCV, 3
DualCD, 5
DualObj, 7
SoftThres, 9
```