

DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING EXAMINATIONS 2004

EEE/ISE PART III/IV: M.Eng., B.Eng. and ACGI

COMMUNICATION SYSTEMS

There are FOUR questions (Q1 to Q4)

Answer question ONE (in separate booklet) and TWO other questions.

Question 1 has 20 multiple choice questions numbered 1 to 20, all carrying equal marks. There is only one correct answer per question.

Distribution of marks

Question-1: 40 marks Question-2: 30 marks Question-3: 30 marks Question-4: 30 marks

 $The \ following \ are \ provided:$

- A table of Fourier Transforms
- A "Gaussian Tail Function" graph

Examiner: Dr A. Manikas

2nd Marker: Dr P. L. Dragotti

Information for candidates:

The following are provided on pages 2 and 3:

- a table of Fourier Transforms;
- a graph of the 'Gaussian Tail Function'.

Question 1 is in a separate coloured booklet which should be handed in at the end of the examination.

You should answer Question 1 on the separate sheet provided. At the end of the exam, please tie this sheet securely into your main answer book(s).

Special instructions for invigilators:

Please ensure that the three items mentioned below are available on each desk.

- the main examination paper;
- the coloured booklet containing Question 1;
- the separate answer sheet for Question 1.

Please remind candidates at the end of the exam that they should tie their Answer Sheet for Question 1 securely into their main answer book, together with supplementary answer books etc.

Please tell candidates they must **NOT** remove the coloured booklet containing Question 1. Collect this booklet in at the end of the exam, along with the standard answer books.

Communication Systems Page 1 of 7

Tail Function Graph

The graph below shows the Tail function $T\{x\}$ which represents the area from x to ∞ of the Gaussian probability density function N(0,1), i.e.

$$\mathbf{T}\{x\} = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{y^{2}}{2}\right) dy$$

Note that if x > 6.5 then $\mathbf{T}\{x\}$ may be approximated by $\mathbf{T}\{x\} \approx \frac{1}{\sqrt{2\pi} \cdot x}.\exp\{-\frac{x^2}{2}\}$

FOURIER TRANSFORMS - TABLES

	DESCRIPTION	FUNCTION	TRANSFORM
1	Definition	g(t)	$G(f) = \int_{-\infty}^{\infty} g(t) \cdot e^{-j2\pi ft} dt$
2	Scaling	$g(\frac{t}{T})$	/T/ . G(fT)
3	Time shift	g(t-T)	$G(f)$. $e^{-j2\pi fT}$
4	Frequency shift	$g(t)$. $e^{j2\pi Ft}$	G(f-F)
5	Complex conjugate	$g^*(t)$	$G^*(-f)$
6	Temporal derivative	$\left rac{d^n}{dt^n} \cdot g(t) ight $	$(j2\pi f)^n$. $G(f)$
7	Spectral derivative	$(-j2\pi t)^n.g(t)$	$rac{d^n}{df^n}$. $G(f)$
8	Reciprocity	G(t)	g(-f)
9	Linearity	$A \cdot g(t) + B \cdot h(t)$	$A \cdot G(f) + B \cdot H(f)$
10	Multiplication	$g(t) \cdot h(t)$	G(f) * H(f)
11	Convolution	g(t) * h(t)	G(f) . $H(f)$
12	Delta function	$\delta(t)$	1
13	Constant	1	$\delta(f)$

	DESCRIPTION	FUNCTION	TRANSFORM
14	Rectangular function	$\mathbf{rect}\{t\} \equiv \begin{cases} 1 & \text{if } t < \frac{1}{2} \\ 0 & otherwise \end{cases}$	$\mathbf{sinc}(f) = \frac{\sin \pi f}{\pi f}$
15	Sinc function	$\mathbf{sinc}(t)$	$\mathbf{rect}(f)$
16	Unit step function	$u(t) = \begin{cases} +1, & t > 0 \\ 0, & t < 0 \end{cases}$	$\frac{1}{2}\delta(f) - \frac{j}{2\pi f}$
17	Signum function	$\mathbf{sgn}(t) = \left\{ \begin{array}{ll} +1, & t > 0 \\ -1, & t < 0 \end{array} \right.$	$-\frac{j}{\pi f}$
18	Decaying exponential (two-sided)	$e^{- t }$	$\frac{2}{1+(2\pi f)^2}$
19	Decaying exponential (one-sided)	$e^{-/t/}.u(t)$	$\frac{1-j2\pi f}{1+(2\pi f)^2}$
20	Gaussian function	$e^{-\pi t^2}$	$e^{-\pi f^2}$
21	Lambda function	$\Lambda\{t\} \equiv \begin{cases} 1 - t & \text{if} 0 \le t \le 1\\ 1 + t & \text{if} -1 \le t \le 0 \end{cases}$	$\mathbf{sinc}^2(f)$
22	Repeated function	$rep_{T}{g(t)} = g(t) * rep_{T}{\delta(t)}$	$/\frac{1}{T}$ /.comb $_{\frac{1}{T}}$ { $G(f)$ }
23	Sampled function	$\mathbf{comb}_{T}\{g(t)\} = g(t).\mathbf{rep}_{T}\{\delta(t)\}$	$/\frac{1}{T}$ /.rep _{$\frac{1}{T}$} { $G(f)$ }

The Questions

You should answer Question 1 on the separate sheet provided.

Circle the answers you think are correct.

There is only one correct answer per question.

There are no negative marks.

Communication Systems Page 4 of 7

2. A signal g(t) having the probability density function (pdf) shown below is bandlimited to $8 \, \mathrm{kHz}$.

The signal is sampled at the Nyquist rate and is fed through a 4-level uniform quantizer.

- a) Calculate the *end points* b_i and the quantizer levels m_i of the quantizer. [5]
- **b**) Calculate the average signal to *quantization* noise power ratio (SNR_q) . [6]
- c) Calculate the average information per quantization level. [3]
- d) Design a prefix source encoder to encode the output levels from the quantizer.[7]
- **e**) Find the average codeword length per symbol, i.e. \overline{l} , at the output of the source encoder. [3]
- f) Calculate the information rate and data rate associated with above single-level source encoding approach.[6]

Communication Systems Page 5 of 7

3. A discrete channel is modelled as follows:

Estimate:

a) The probability of error at the output of the channel. [6]

b) The conditional entropy
$$\mathbf{H}(\underline{\mathbb{R}} \mid \underline{\mathbb{M}})$$
, where
$$\left(\underline{\mathbb{R}},\underline{q}\right) = \left\{ \left(r_1,\Pr(r_1)\right), \left(r_2,\Pr(r_2)\right) \right\}$$
 denotes the ensemble at the channel output. [12]

c) The amount of information delivered at the output of the channel. [12]

Communication Systems Page 6 of 7

4.

For the convolutional encoder shown in the above figure find

a) the code rate and the constraint length	[5]
b) the generator polynomials	[6]
c) the Generator Matrix \mathbb{G}_c	[9]
d) the encoded output sequence for the input sequence 101	110100
where the first (oldest) input bit is on the left	[10]

[END]

Communication Systems Page 7 of 7