Activity Selection

- ullet we have a set S of n activities each with start times s_i and finish times f_i
- we'd like to schedule the maximum set of non-overlapping activities

Brute Force Approach

- we could try *all* compatible meeting combinations
- for each meeting, we'd need to chose to schedule it or not
- this gives a binary choice and a total combinations of 2^n

Possible Greedy Approaches

Pick the shortest meeting first

The above depicts a counter example.

Minimize "not in use" time between meetings

The above depicts a counter example.

Pick meetings with the least number of conflicts

The above depicts a counter example. A has the least number of conflicts (2) while the rest have at least 3. If we pick A, at most we can schedule is 3 meetings however, we could schedule B, C, D, E for 4.

Pick the earliest start time first

The above depicts a counter example.

Pick the earliest finish time first

This greedy choice will actual give a global optimal solution to our problem. However how can we prove this?

Proving our greedy choice

- ullet say that an optimal solution to the problem S is A
- ullet assume that A does not have the greedy choice of earliest finish time in S
- ullet take the meeting a with the earliest finish time in A
- because a is not the earliest finish time in S, there exists a meeting s in S that is not in A that has an earlier finish time
- thus, we can replace a with s with no overlap giving us a new optimal solution that has the greedy choice
- therefore, there is *always* an optimal solution for this problem that contains the greedy choice