Data leakage

What is Data Leakage?

Data Leakage occurs when your model accidentally gains access to information during training that it wouldn't have at prediction time.

This results in **unrealistically high performance** during training or testing — but **fails in real-world predictions**.

Why It's Dangerous:

- Makes your model look perfect in testing.
- Fails miserably in production (real unseen data).
- Invalidates your evaluation metrics.

- ✓ Real-World Examples:
- **✓** Target leakage:

Using a feature that contains direct information about the target.

Example:

You are predicting whether a patient has diabetes.

But one feature is: glucose level after diagnosis \rightarrow this happens **after** the diagnosis.

Fix: Only use features that are available before the outcome is known.

✓ Train-Test contamination:

Information from the **test set accidentally leaks** into the training set.

Example:

You do feature scaling (e.g., StandardScaler) **before** splitting data into train/test.

The mean/std is computed using all data, including test!

Fix: Always split the dataset first, then apply transformations **separately** on train and test.

✓ Using future data in time series

Example:

In time series forecasting, using future prices to predict current values.

Fix: Always ensure no data from the future leaks into the past.

Type of Leakage	Description	Solution
Target Leakage	Feature uses future/target info	Drop such features
Preprocessing Leakage	Fit transformation before split	Split first, then transform
Temporal Leakage	Using future time data	Use only past data for training

Golden Rule:

[&]quot;Never use any information during training that would not be available when making predictions.

Real-world Data vs Test Data

- **Test data:** Validate the model by dividing it into 10,000 previous patient reports
- Real-world: A new patient's report came from a completely different hospital

If the format changes in the new report, or there are new types of symptoms — the model may become confused.