Teorema 1 El polinomio interpolador de Lagrange es único.

Demostración:

Por contradicción, sean $p_1(x)$ y $p_2(x)$ dos polinomios interpoladores de grado n para un conjunto soporte de n+1 puntos, para cada unos de los polinomios $p_1(x), p_2(x)$ se tiene que $p_1(x_i) = p_2(x_i) = y_i$, $\forall i \in \{1, \ldots, n\}$. Bastará demostrar que $p_1(x) = p_2(x)$.

Considere el polinomio $p^*(x)$ definido así:

$$p^*(x) = p_1(x) - p_2(x)$$

Entonces, para cada x_i del conjunto soporte se tiene

$$p^*(x_i) = p_1(x_i) - p_2(x_i) = y_i - y_i = 0.$$

Así que cada x_i será una raíz de $p^*(x)$, y por tanto $p^*(x)$ tiene n+1 raíces (en este caso todas reales).

Pero $p^*(x)$ es a lo sumo de grado n, pues es la resta de dos polinomios de grado n, así que por El Teorema Fundamental del Álgebra $p^*(x)$ tiene n raíces. Luego, se tiene que $p^*(x)$ tiene a su vez n y n+1 raíces, y esto solo se corresponde con un polinomio nulo $p^*(x)=0$, por lo tanto se tendrá

$$p^*(x) = 0 = p_1(x) - p_2(x) \Rightarrow p_1(x) = p_2(x).$$