Linear Mixed Effects Models Examples

Biostatistics 653

Applied Statistics III: Longitudinal Data Analysis

 One way to think of the linear mixed effects model is to think of a random coefficient model in which every subject has its own intercept and slope. However, what if the slopes do not vary across units? In this case, we would think of slopes as fixed effects rather than random.

Consider a simple example with only one group. The "full" model with random intercepts and slopes is given by

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + b_{0i} + b_{1i} t_{ij} + \epsilon_{ij}$$

where

$$V(\boldsymbol{b}_i) = \boldsymbol{D} = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix}$$

If the slopes do not vary, then we have the "reduced" model given by

$$Y_{ij} = \beta_0 + \beta_1 t_{ij} + b_{0i} + \epsilon_{ij}$$

where

$$V(b_i) = d_{11}$$

Assume in each model $V(\boldsymbol{\epsilon}_i) = \boldsymbol{R}_i = \sigma^2 \boldsymbol{I}_{n_i}$

- Both models lead to the same specification for the mean $E(Y_i) = X_i \beta$, but they involve different covariance models $\Sigma_i = Z_i D Z_i^T + \sigma^2 I_{n_i}$.
- In the full model, Σ_i is constructed using

$$\mathbf{Z}_i = \begin{pmatrix} 1 & t_{i1} \\ 1 & t_{i2} \\ \vdots & \vdots \\ 1 & t_{in_i} \end{pmatrix}$$

• In the reduced model, $D=d_{11}$, $\pmb{Z}_i=(1,\cdots,1)^T$ and $\pmb{\Sigma}_i$ is compound symmetry

$$\Sigma_{i} = \begin{pmatrix} d_{11} + \sigma^{2} & d_{11} & \cdots & d_{11} \\ d_{11} & d_{11} + \sigma^{2} & \cdots & d_{11} \\ \vdots & \vdots & \ddots & \vdots \\ d_{11} & \cdots & d_{11} & d_{11} + \sigma^{2} \end{pmatrix}$$

 To determine which model is more appropriate, one might rely on information criteria (AIC, BIC) to select between these models.
 In addition, noticing that these are nested models, it would be natural to think about doing a likelihood ratio test!

 We are often interested in comparing two nested models, one with q correlated random effects, and one with q+1 correlated random effects. The difference in covariance parameters between these two models is q+1, as we will need one additional variance and q additional covariances in the larger model. One might think about trying to conduct a likelihood ratio test then with q + 1 degrees of freedom, but there is a problem with this approach.

• Testing for significance of random effects is not a standard hypothesis testing problem because the null H_0 : $\boldsymbol{b}_i = 0$ is on the boundary (0) of the parameter space because variances cannot be negative. Thus the usual χ^2 asymptotic distribution of the LRT is invalid. However, it has been shown that to test whether a single random effect can be removed (e.g., using q random effects instead of q + 1), a mixture of two 2 distributions can be used to obtain pvalues. In this case, one can calculate p-values based on $0.5 \chi_q^2 + 0.5 \chi_{q+1}^2$. Critical values are available in the Fitzmaurice book, Table C.1.

• Thus if one wished to test whether a random intercepts model was sufficient for the dental data, compared to a model with random intercepts and a random slope for a linear term in age, one would conduct a LRT of the difference in the log-likelihoods and use a 50-50 mixture of a χ_1^2 and a χ_2^2 distribution to obtain the critical value.

• In other situations, including more complex comparisons among nested models for covariance in which the null distribution of the LRT is not well understood (for example, comparing a model with q correlated random effects to one with q + k correlated random effects, where k > 1), Fitzmaurice et al. recommend using $\alpha = 0.10$ with the df equal to the difference in number of covariance parameters (not the difference in number of random effects) instead of $\alpha = 0.05$ to prevent selection of a model that is too parsimonious; however you should be aware that they recommend this as an ad-hoc procedure (and that its theoretical properties have not been extensively studied).

Dental Example

- For the dental data, we can fit the random intercepts model and then use the mixture of chi-square distributions to determine if we need the random slope and random intercept, or if the random intercept only is sufficient.
- For the dental data, consider the reduced model

$$Y_{ij} = \beta_{0G} + \beta_{0B} + \beta_{1G}t_{ij} + \beta_{1B}t_{ij} + b_{0i} + \epsilon_{ij}$$

where

$$V(b_i) = d_{11}$$

and

$$V(\boldsymbol{\epsilon}_i) = \sigma_B^2 \boldsymbol{I} \text{ or } \sigma_G^2 \boldsymbol{I}$$

SAS Code

```
title 'INTERCEPTS RANDOM FOR EACH GENDER';
title2 'R_i is diagonal within-child with gender-specific variance';
title3 'D is unstructured and the same for all children';
proc mixed method-ml data-proyuniv;
class newid gender;
model dist-gender gender*time/noint;
random intercept / type-un subject-newid g gcorr v vcorr;
repeated/group-gender subject-newid rcorr;
run;
```

Model	Cov params	$-2 \log \hat{l}_{REML}$	AIC	BIC
Random intercept				
and slope	5	411.5	421.5	428.0
Random intercept	3	415.2	421.2	425.1

Dental Example

• In order to test whether we need the random slope for time, we compare the difference in -2 times the log-likelihoods to a mixture of a χ_1^2 and χ_2^2 distribution. With $\alpha=0.05$, the critical value is 5.14. We calculate the value of the test statistic 415.2-411.5 = 3.7, and we conclude that the random slope for time is not needed. The AIC and BIC criteria also prefer the model with only random intercepts. Although we used ML estimation here, the tests could also be carried out using REML.

 Using the random intercepts and slopes model, we consider various D and Ri structures in the dental data. In particular, we have

$$Y_{ij}=\beta_0+\beta_1t_{ij}+b_{0i}+b_{1i}t_{ij}+\epsilon_{ij}$$
 where $\boldsymbol{b}_i{\sim}N_2(0,\boldsymbol{D})$ and $\boldsymbol{\epsilon}_i{\sim}N_4(0,\boldsymbol{R}_i)$.

• For each model, we will examine the number of parameters estimated, the log-likelihood, AIC, and BIC.

Model 1 is the model fit previously in the slides, for which

$$V(\boldsymbol{b}_i) = \boldsymbol{D} = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix}$$

and

$$V(\epsilon_i) = \mathbf{R}_i = \begin{cases} \sigma_B^2 \mathbf{I}, & for boys \\ \sigma_G^2 \mathbf{I}, & for girls \end{cases}$$

We thus estimated 5 covariance parameters. The model had

$$-2\hat{l}_{REML} = 411.5$$

 $AIC = 421.5$
 $BIC = 428.0$

Model 2 has

$$V(\boldsymbol{b}_i) = \boldsymbol{D} = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix}$$

and

$$V(\boldsymbol{\epsilon}_i) = \boldsymbol{R}_i = \sigma^2 \boldsymbol{I}$$

We thus estimated 4 covariance parameters. The model had

$$-2\hat{l}_{REML} = 432.6$$

 $AIC = 440.6$
 $BIC = 445.8$

SAS Code

```
title 'R_i diagonal, constant var sigma^2 for each gender';
title2 ' this is default R_i so no repeated statement needed ';
title3 'D is 2 x2 unstructured, same for both genders';
proc mixed data-proyuniv method-ml;
class newid gender;
model dist-gender gender*time/noint solution;
random intercept time/type-un subject-newid g gcorr v vcorr;
estimate 'diff in mean slope' gender 0 0 gender*time 1 -1;
contrast 'overall gender difference' gender i -1, gender*time i -i/e chisq;
run;
```

Model 3 has

$$V(\boldsymbol{b}_i) = \boldsymbol{D} = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix}$$

and

$$V(\boldsymbol{\epsilon}_i) = \boldsymbol{R}_i = \sigma^2 \begin{pmatrix} 1 & \rho & \rho^2 \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 \rho^2 & \rho & 1 \end{pmatrix}$$

We thus estimated 5 covariance parameters. The model had

$$-2\hat{l}_{REML} = 428.8$$

 $AIC = 438.8$
 $BIC = 445.3$

SAS Code

```
title 'R_i is AR(1), same var and rho for each gender';
title2 ' const var same for each gender ';
title3 'D is 2 x2 unstructured, same for both genders';
proc mixed data-proyuniv method-m1;
class newid gender;
model dist-gender gender*time/noint solution;
repeated / type-ar(1) subject-newid rcorr;
random intercept time/type-un subject-newid g gcorr v vcorr;
estimate 'diff in mean slope' gender 0 0 gender*time 1 -1;
contrast 'overall gender difference' gender 1 -1,
gender*time 1 -1/ e chisq;
run;
```

Model 4 has

$$V(\boldsymbol{b}_i) = \boldsymbol{D}_{\boldsymbol{h}} = \begin{pmatrix} d_{h11} & d_{h12} \\ d_{h12} & d_{h22} \end{pmatrix}$$

where h=1,2 indicates boys and girls, and

$$V(\epsilon_i) = \mathbf{R}_i = \begin{cases} \sigma_B^2 \mathbf{I}, & for boys \\ \sigma_G^2 \mathbf{I}, & for girls \end{cases}$$

We thus estimated 8 covariance parameters. The model had

$$-2\hat{l}_{REML} = 428.8$$

 $AIC = 438.8$
 $BIC = 445.3$

SAS Code

Model 5 has

$$V(\boldsymbol{b}_i) = \boldsymbol{D} = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & d_{22} \end{pmatrix}$$

and

$$V(\epsilon_i) = \mathbf{R}_i = \sigma_1^2 \mathbf{I} + \sigma^2 \begin{pmatrix} 1 & \rho & \rho^2 \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 \rho^2 & \rho & 1 \end{pmatrix}$$

We thus estimated 6 covariance parameters. The model had

$$-2\hat{l}_{REML} = 428.7$$

 $AIC = 440.7$
 $BIC = 448.5$

SAS Code

```
title 'R_i sum of 2 components; an AR(1) component
   for fluctuations ';
title2 'and diagonal component with var sigma^2
   common across gender';
title3 'local option adds diag component to ar(1) structure';
title4 'D is 2 x2 unstructured, samefor each gender';
proc mixed data-proyuniv method-ml;
class newid gender;
model dist-gender gender*time/noint solution;
repeated / type-ar(1) local subject-newid rcorr;
random intercept time/type-un subject-newid g gcorr v vcorr;
estimate 'diff in mean slope' gender 0 0 gender*time 1 -1;
contrast 'overall gender difference' gender 1 -1,
        gender*time 1 -1/ e chisq;
run;
```

• It is not always possible to find an exact F test for mixed and random effects models. When the sample size is reasonably large with respect to the number of parameters being estimated, we can rely on asymptotic results and base tests on the χ^2 distribution (which has an implicit assumption of infinite denominator degrees of freedom). In small samples, one can argue that the use of the χ^2 test is anti-conservative, as the asymptotic approximation can be bad with small N.

However, using the F can be questionable as well, as in general settings it may also involve approximations. Several approximations have been proposed, with those proposed by Satterthwaite (1946) and Kenward and Roger (1997) preferred. We note that these approximations are not the default in PROC MIXED, though the DDFM option may be used to ask for other approximations (DDFM=SATTERTH or DDFM=KENWARDROGER). With reasonably large N, we do not expect to see big differences in p-values across different approximations.

 The Satterthwaite approximate F test in the mixed-factor ANOVA setting involves developing a linear combination of mean squares that has the same expectation as the mean squares of the factor effect of interest, when H0 is true. This method is computationally intensive and may add substantially to computing time.

• The method developed by Kenward and Roger is based on creating an estimated variance-covariance matrix that better approximates the truth in the small sample setting. In particular, they estimate the amount by which the asymptotic variance-covariance matrix underestimates (in a matrix sense) $V(\hat{b})$. They then inflate the variance-covariance matrix by this amount and compute the degrees of freedom based on this adjustment, using a Satterthwaitetype approach. This method has been shown to have nice properties in a number of simulation studies.

 The default method for calculating degrees of freedom in PROC MIXED depends on the setting but generally takes less time to compute than the above methods. (The defaults are not problematic in certain simple settings, but for complex covariance structures with relatively small N one may wish to consider using the Kenward and Roger method instead.)

Using the random intercepts and slopes model with \boldsymbol{D} unstructured and separate $\boldsymbol{R}_i = \sigma_h^2 \boldsymbol{I}_{n_i}$ for each gender, we now obtain the estimated BLUPs.

```
/* outpred gets BLUPs for individual estimated means */
/* ODS statement in second call produces datasets containing fixed */
/* effect estimates and the BLUPs for individual slopes and intercepts */
title 'R_i separate for each gender and diagonal ';
title2 'D unstructured';
proc mixed data-proyuniv method-ml;
class newid gender;

model dist-gender gender*time/noint solution outpred-pdata;
repeated/group-gender subject-newid;
random intercept time/type-un subject-newid solution;
run;
proc print data-pdata; run;
```

```
title 'R_i separate for each gender and diagonal ';
title2 'D unstructured';
proc mixed data-proyuniv method-ml;
class newid gender;
model dist-gender time+gender/noint solution;
repeated/group-gender subject-newid;
random intercept time/type-un subject-newid solution;
ods listing exclude SolutionF;
ods output SolutionF-fixed1;
ods listing exclude SolutionR;
ods output SolutionR-rand1;
run;
data fixed1; set fixed1;
keep gender effect estimate;
title3 'FIXED EFFECTS data';
proc print data-fixed1; run;
proc sort data-fixed1; by gender; run;
```

```
data fixed12; set fixed1; by gender;
retain fixint fixslope;
if effect-'GENDER' then fixint-estimate;
if effect-'time+GENDER' then fixslope-estimate;
if last.GENDER then do;
output; fixint -.; fixslope -.;
end;
drop effect estimate;
run;
title3 'RECONFIGURED FIXED EFFECTS DATA';
proc print data-fixed12; run;
data randi; set randi;
gender-1; if newid<12 then gender-0;
keep newid gender effect estimate;
run;
title3 'random effects output data';
proc print data-rand1; run;
```

```
proc sort data-rand1; by newid; run;
data rand12; set rand1; by newid;
retain ranint ranslope;
if effect-'Intercept' then ranint-estimate;
if effect-'time' then ranslope-estimate;
if last.newid then do;
output; ranint-.; ranslope-.;
end:
drop effect estimate;
run;
proc sort data-rand12; by gender newid; run;
title3 'reconfigured RE dataset';
proc print data-rand12; run;
data both1; merge fixed12 rand12; by gender;
beta0i-fixint+ranint;
betaii-fixslope+ranslope;
title3 'random intercepts and slopes';
proc print data-both1; run;
```

Model Information

Data Set WORK.PROYUNIV Dependent Variable Covariance Structures Unstructured, Variance Components Subject Effects newid, newid Group Effect GENDER Estimation Method ML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values				
newid	27	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27				
GENDER	2	0 1				
	Dimensi	ons				
Covarianc	e Parameter	rs 5				
Columns i	n X	4				
Columns i	n Z Per Sul	bject 2				
Subjects		27				
Max Obs P	er Subject	4				
Number of Observations						
Number of	Observation	ons Read 108				
Number of	Observation	ons Used 108				
Number of	Observation	ons Not Used 0				

	Iteration	History	
Iteration	Evaluations	-2 Log Like	Criterion
0	1	478.24175986	
1	2	418.92503842	1.16632499
2	1	416.18869903	1.23326209
3	1	407.89638533	0.01954268
4	2	406.88264563	0.00645800
5	1	406.10632159	0.00056866
6	1	406.04318997	0.00000764
7	1	406.04238894	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Subject	Group	Estimate
UN(1,1)	newid		3.1978
UN(2,1)	newid		-0.1103
UN(2,2)	newid		0.01976
Residual	newid	GENDER 0	0.4449
Residual	newid	GENDER 1	2.6294

Fit Statistics

-2 Log Likelihood	406.0
AIC (smaller is better)	424.0
AICC (smaller is better)	425.9
BIC (smaller is better)	435.7

		Ratio	

DF	Chi-Square	Pr > ChiSq
4	72.20	< .0001

Solution for Fixed Effects

Effect	GENDER	Estimate	Error		t Value	Pr > t
GENDER	0	17.3727	0.7386	54	23.52	<.0001
GENDER	1	16.3406	1.1114	54	14.70	<.0001
time*GENDER	0	0.4795	0.06180	54	7.76	<.0001
time*CENDER	4	0.7844	0.09722	54	8 07	< .0001

Solution for Random Effects

			Std Err			
Effect	newid	Estimate	Pred	DF	t Value	Pr > t
Intercept	1	-0.4853	1.1744	54	-0.41	0.6811
time	1	-0.06820	0.1017	54	-0.67	0.5052
Intercept	2	-1.1922	1.1744	54	-1.02	0.3146
time	2	0.1420	0.1017	54	1.40	0.1683
Intercept	3	-0.8535	1.1744	54	-0.73	0.4705
time	3	0.1773	0.1017	54	1.74	0.0869
Intercept	4	1.7024	1.1744	54	1.45	0.1530
time	4	0.04017	0.1017	54	0.40	0.6943
Intercept	5	0.9136	1.1744	54	0.78	0.4400
time	5	-0.08680	0.1017	54	-0.85	0.3970
Intercept	6	-0.6740	1.1744	54	-0.57	0.5684
time	6	-0.07292	0.1017	54	-0.72	0.4763
Intercept	7	-0.05461	1.1744	54	-0.05	0.9631
time	7	0.03641	0.1017	54	0.36	0.7217

Intercept	8	1.9350	1.1744	54	1.65	0.1052
time	8	-0.1149	0.1017	54	-1.13	0.2636
Intercept	9	-0.2190	1.1744	54	-0.19	0.8528
time	9	-0.1151	0.1017	54	-1.13	0.2624
Intercept	10	-2.9974	1.1744	54	-2.55	0.0136
time	10	-0.09085	0.1017	54	-0.89	0.3755
Intercept	11	1.9249	1.1744	54	1.64	0.1070
time	11	0.1530	0.1017	54	1.50	0.1382
Intercept	12	1.3469	1.4342	54	0.94	0.3519
time	12	0.08788	0.1232	54	0.71	0.4786
Intercept	13	-0.8676	1.4342	54	-0.60	0.5478
time	13	-0.04068	0.1232	54	-0.33	0.7424
Intercept	14	-0.3575	1.4342	54	-0.25	0.8041
time	14	-0.02176	0.1232	54	-0.18	0.8605
Intercept	15	1.5946	1.4342	54	1.11	0.2711
time	15	-0.02772	0.1232	54	-0.23	0.8228
Intercept	16	-1.1581	1.4342	54	-0.81	0.4229
time	16	-0.04153	0.1232	54	-0.34	0.7373
Intercept	17	0.8972	1.4342	54	0.63	0.5342
time	17	0.02260	0.1232	54	0.18	0.8551
Intercept	18	-0.6889	1.4342	54	-0.48	0.6329
time	18	-0.02853	0.1232	54	-0.23	0.8177
Intercept	19	-0.1443	1.4342	54	-0.10	0.9202
time	19	-0.07348	0.1232	54	-0.60	0.5533
Intercept	20	-0.1273	1.4342	54	-0.09	0.9296
time	20	0.02544	0.1232	54	0.21	0.8372
Intercept	21	2.5349	1.4342	54	1.77	0.0828
time	21	0.1088	0.1232	54	0.88	0.3811
Intercept	22	-0.2261	1.4342	54	-0.16	0.8753
time	22	-0.08535	0.1232	54	-0.69	0.4913
Intercept	23	-0.6374	1.4342	54	-0.44	0.6585
time	23	0.006510	0.1232	54	0.05	0.9580
Intercept	24	-1.7008	1.4342	54	-1.19	0.2409
time	24	0.1139	0.1232	54	0.92	0.3591
Intercept	25	0.2387	1.4342	54	0.17	0.8684
time	25	-0.03166	0.1232	54	-0.26	0.7981
Intercept	26	0.1180	1.4342	54	0.08	0.9347
time	26	0.06104	0.1232	54	0.50	0.6222
Intercept	27	-0.822 3 ong	itudi nah A	naly si	-0.57	0.5688
time	27	-0.07545	0.1232	54	-0.61	0.5427

Type 3 Tests of Fixed Effects

	E	ffe	ct			1	Num I	Den DF F	Va	lue	Pr > F	,	
	_												
	GI	END	ΒR				2	54	384	.72	<.0001		
	t	ime	•GE	NDE	R		2	54	62	.66	<.0001		
								S					
								t					
								d					
								E					
	G							r					_
	Е		n				_	r		A	L	U	R
_	N		е	t	d	П	P	P		1	0	P	е
0	D	_	W	i	i	a	r	r	_	P	W	P	8
Ъ	Е	Ι	i	Ш	8	1	е	е	D	h	е	е	i
8	R	D	d	е	t	е	d	d	F	a	r	r	d
	_					_	00 4700	0 40744		0.05	10 0010	04.0540	0.00175
	0	1	1										0.82175
2		1											-1.00095
	0	1											-0.32365
4		1	_			-							0.35366
	0	2											-0.15266
6		2											-0.89570
7		2											0.36126
8		2									23.9543		0.61822
9 10		3											
11		3											0.91266
													0.09905
12	U	3	3	14	26.0	U	25.7146	0.46259	54	0.05	24.7871	26.6420	0.28543
• • • •													
• • • •													
• • • •													
• • •													

Model Information

Data Set WORK.PROYUNIV Dependent Variable dist Covariance Structures Unstructured, Variance Components Subject Effects newid, newid GENDER Group Effect ML. Estimation Method Residual Variance Method Fixed Effects SE Method Model-Based Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
newid	27	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
		24 25 26 27
GENDER	2	0 1

Dimensions

Covariance Parameters		5
Columns in	X	4
Columns in	Z Per Subject	2
Subjects		27
Max Obs Per	Subject	4

		Number of Ub	servations	
Number	of	Observations	Read	108
Number	of	Observations	Used	108
Number	of	Observations	Not Used	0

Iteration History				
Iteration	Evaluations	-2 Log Like	Criterion	
0	1	478.24175986		
1	2	418.92503842	1.16632499	
2	1	416.18869903	1.23326209	
3	1	407.89638533	0.01954268	
4	2	406.88264563	0.00645800	
5	1	406.10632159	0.00056866	
6	1	406.04318997	0.00000764	
7	4	406 04238894	0.00000000	

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Subject	Group	Estimate
UN(1,1)	newid		3.1978
UN(2,1)	newid		-0.1103
UN(2,2)	newid		0.01976
Residual	newid	GENDER 0	0.4449
Residual	newid	GENDER 1	2.6294

Fit Statistics

-2 Log Likelihood	406.0
AIC (smaller is better)	424.0
AICC (smaller is better)	425.9
BIC (smaller is better)	435.7

Null Model Likelihood Ratio Test

DF	Chi-Square	Pr > ChiSq
4	72.20	< .0001

Type 3 Tests of Fixed Effects

Effect	Nu Di		-	Pr > F
GENDER time+GE		2 54 2 54		<.0001 <.0001
0bs 1 2 3	FFECTS data Effect GENDER GENDER time*GENDER time*GENDER	GENDE 0 1 0	ER Estimate 17.3727 16.3406 0.4795 0.7844	

RECONFIGURED FIXED EFFECTS DATA

fixslope	fixint	GENDER	Obs
0.47955	17.3727	0	1
0.78438	16.3406	1	2

0bs	Effect	newid	Estimate	gender
1	Intercept	1	-0.4853	0
2	time	1	-0.06820	0
3	Intercept	2	-1.1922	0
4	time	2	0.1420	0
5	Intercept	3	-0.8535	0
6	time	3	0.1773	0
7	Intercept	4	1.7024	0
8	time	4	0.04017	0
9	Intercept	5	0.9136	0
10	time	5	-0.08680	0
11	Intercept	6	-0.6740	0
12	time	6	-0.07292	0
13	Intercept	7	-0.05461	0
14	time	7	0.03641	0
15	Intercept	8	1.9350	0
16	time	8	-0.1149	0
17	Intercept	9	-0.2190	0
18	time	9	-0.1151	0
19	Intercept	10	-2.9974	0
20	time	10	-0.09085	0
21	Intercept	11	1.9249	0
22	time	11	0.1530	0
23	Intercept	12	1.3469	1
24	time	12	0.08788	1
25	Intercept	13	-0.8676	1
26	time	13	-0.04068	1
27	Intercept	14	-0.3575	1
28	time	14	-0.02176	1
29	Intercept	15	1.5946	1
30	time	15	-0.02772	1
31	Intercept	16	-1.1581	1
32	time	16	-0.04153	1
33	Intercept	17	0.8972	1
34	time	17	0.02260	1
35	Intercept	18	-0.6889	1
36	time	18	-0.02853	1
37	Intercept	19	-0.1443	1
38	time	19	-0.07348	1
39	Intercept	20	-0.1273	1
40	time	20	0.02544	1

40

41	Intercept	21	2.5349	1
42	time	21	0.1088	1
43	Intercept	22	-0.2261	1
44	time	22	-0.08535	1
45	Intercept	23	-0.6374	1
46	time	23	0.006510	1
47	Intercept	24	-1.7008	1
48	time	24	0.1139	1
49	Intercept	25	0.2387	1
50	time	25	-0.03166	1
51	Intercept	26	0.1180	1
52	time	26	0.06104	1
53	Intercept	27	-0.8223	1
54	time	27	-0.07545	1

0bs	newid	gender	ranint	ranslope
1	1	0	-0.48526	-0.06820
2	2	0	-1.19224	0.14198
3	3	0	-0.85346	0.17726
4	4	0	1.70243	0.04017
5	5	0	0.91363	-0.08680
6	6	0	-0.67403	-0.07292
7	7	0	-0.05461	0.03641
8	8	0	1.93498	-0.11486
9	9	0	-0.21898	-0.11515
10	10	0	-2.99738	-0.09085
11	11	0	1.92494	0.15297
12	12	1	1.34688	0.08788
13	13	1	-0.86755	-0.04068
14	14	1	-0.35750	-0.02176
15	15	1	1.59462	-0.02772
16	16	1	-1.15811	-0.04153
17	17	1	0.89718	0.02260
18	18	1	-0.68894	-0.02853
19	19	1	-0.14433	-0.07348

```
20
                         -0.12730
                                       0.02544
                   1
                           2.53489
                                        0.10877
                          -0.22609
                   1
                                       -0.08535
23
       23
                          -0.63735
                                        0.00651
                   1
24
        24
                   1
                          -1.70079
                                        0.11392
25
                   1
                           0.23870
                                       -0.03166
                   1
                           0.11799
                                        0.06104
        27
                           -0.82229
                                       -0.07545
```

```
Obs GENDER fixint fixslope newid ranint ranslope beta0i beta1i
          17.3727 0.47955
                            1
                                -0.48526 -0.06820 16.8875 0.41135
          17.3727 0.47955
                                 -1.19224 0.14198 16.1805 0.62152
 3
          17.3727
                  0.47955
                             3
                                 -0.85346 0.17726 16.5193 0.65681
     0
                                  1.70243 0.04017 19.0752 0.51971
     0
          17.3727 0.47955
                             4
 5
                                  0.91363 -0.08680 18.2864 0.39274
          17.3727
                   0.47955
 6
          17.3727
                   0.47955
                                 -0.67403 -0.07292 16.6987 0.40662
     0
          17.3727
                  0.47955
                                 -0.05461 0.03641 17.3181 0.51595
     0
          17.3727
                   0.47955
                             8
                                 1.93498 -0.11486 19.3077 0.36469
 8
 9
          17.3727
                  0.47955
                             9
                                 -0.21898 -0.11515 17.1537 0.36440
 10
                                 -2.99738 -0.09085 14.3753 0.38869
          17.3727 0.47955
 11
          17.3727
                   0.47955
                                  1.92494 0.15297 19.2977 0.63251
12
          16.3406 0.78438
                           12
                                  1.34688 0.08788 17.6875 0.87225
13
     1
          16.3406
                  0.78438
                           13
                                 -0.86755 -0.04068 15.4731 0.74369
14
          16.3406
                  0.78438
                                 -0.35750 -0.02176 15.9831 0.76262
15
          16.3406 0.78438
                                  1.59462 -0.02772 17.9352 0.75665
16
     1
          16.3406
                   0.78438
                           16
                                 -1.15811 -0.04153 15.1825 0.74285
17
     1
          16.3406 0.78438
                           17
                                  0.89718 0.02260 17.2378 0.80697
          16.3406
                  0.78438
                                 -0.68894 -0.02853 15.6517 0.75584
 19
     1
          16.3406
                   0.78438
                           19
                                 -0.14433 -0.07348 16.1963 0.71090
 20
                                  -0.12730 0.02544 16.2133 0.80981
           16.3406
                    0.78438
                             20
            16.3406
                    0.78438
                             21
                                   2.53489 0.10877 18.8755 0.89315
  22
      1
            16.3406 0.78438
                             22
                                  -0.22609 -0.08535 16.1145 0.69903
            16.3406 0.78438
                             23
                                  -0.63735 0.00651 15.7033 0.79088
           16.3406
                    0.78438
                                  -1.70079 0.11392 14.6398 0.89830
  25
           16.3406
                    0.78438
                             25
                                   0.23870 -0.03166 16.5793 0.75272
      1
            16.3406
                    0.78438
                             26
                                   0.11799 0.06104 16.4586 0.84542
            16.3406
                    0.78438
                            27
                                  -0.82229 -0.07545 15.5183 0.70893
```