

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2003年12月18日 (18.12.2003)

PCT

(10)国際公開番号
WO 03/103655 A1

(51)国際特許分類¹: A61K 31/167, 31/18, 31/381,
31/40, 31/404, 31/4164, 31/421, 31/422, 31/426, 31/437,
31/4402, 31/445, 31/451, 31/255, 31/47, 31/505, 31/498,
31/5375, 31/616, A61P 35/00, 35/02, 35/04

MOLECULAR DESIGN, INC.) [JP/JP]; 〒113-0033 東
京都文京区本郷5丁目24番5号角川本郷ビル4F
Tokyo (JP).

(21)国際出願番号: PCT/JP03/07121

(72)発明者; および

(22)国際出願日: 2003年6月5日 (05.06.2003)

(75)発明者/出願人(米国についてのみ): 武藤進
(MUTO,Susumu) [JP/JP]; 〒184-0003 東京都小金井市
緑町1-6-7 メイプルコーポB202 Tokyo (JP).
板井昭子 (ITAI,Akiko) [JP/JP]; 〒113-0033 東京都文
京区本郷5丁目24番5号角川本郷ビル4F 株式
会社医薬分子設計研究所内 Tokyo (JP).

(25)国際出願の言語: 日本語

(74)代理人: 特許業務法人特許事務所サイクス (SIKS &
CO.); 〒104-0031 東京都中央区京橋一丁目8番7号
京橋日殖ビル8階 Tokyo (JP).

(26)国際公開の言語: 日本語

(30)優先権データ:
特願2002-168332 2002年6月10日 (10.06.2002) JP

(71)出願人(米国を除く全ての指定国について): 株式会社
医薬分子設計研究所 (INSTITUTE OF MEDICINAL

[続葉有]

(54) Title: THERAPEUTIC AGENT FOR CANCER

(54)発明の名称: 癌治療剤

(57) Abstract: A medicine for the prevention of and/or treatments for cancers, which contains as an active ingredient a substance selected from the group consisting of a compound represented by the general formula (I): (I) (wherein A represents hydrogen, etc.; E represents 2,5-disubstituted or 3,5-disubstituted phenyl, etc.; and ring Z represents, e.g., arene which may have one or more substituents besides the groups represented by the formulae -O-A and -CONH-E), a pharmacologically acceptable salt of the compound, hydrates of these, and solvates of these.

(57)要約:

一般式 (I) (式中、Aは、水素原子等を表し、Eは、2,5-ジ置換若しくは3,5-ジ置換フェニル基等を表し、環Zは、式-O-A及び式-CO-NH-Eで表される基の他にさらに置換基を有していてよいアレーン等を表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む、癌の予防及び/又は治療のための医薬。

WO 03/103655 A1

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

癌治療剤

技術分野

本発明は、無秩序に増殖する癌細胞の増殖を停止することができ、不死化した癌細胞にアポトーシスを誘発して癌の予防及び／又は治療を可能にする医薬に関する。

背景技術

N-フェニルサリチルアミド誘導体は米国特許第4 3 5 8 4 4 3号明細書に植物成長阻害剤としての開示があり、医薬としては欧州特許第0 2 2 1 2 1 1号明細書、特開昭6 2-9 9 3 2 9号公報、及び米国特許第6 1 1 7 8 5 9号明細書に抗炎症剤としての開示がある。また、国際公開第9 9/6 5 4 9 9号パンフレット、国際公開第0 2/4 9 6 3 2号パンフレット、及び国際公開第0 2/0 7 6 9 1 8号パンフレットにはN F - κ B 阻害剤として開示されている。国際公開第9 9/6 5 4 9 9号パンフレット、国際公開第0 2/4 9 6 3 2号パンフレット、及び国際公開第0 2/0 7 6 9 1 8号パンフレットには、N-フェニルサリチルアミド誘導体について抗癌剤としての示唆があるが、この誘導体が抗がん剤として有用であることを示す直接的なデータは何一つ示されていない。そればかりか、国際公開第9 9/6 5 4 9 9号パンフレットにおいては、実際にN F - κ B 阻害活性を測定している化合物数も少なく、アニリン部分の置換基及びその置換位置も極限られた範囲でしか検討されていない。また、国際公開第0 2/0 5 1 3 9 7号パンフレットにはN-フェニルサリチルアミド誘導体がサイトカイン産生抑制剤として開示されている。

発明の開示

本発明の課題は、有効性に優れ、かつ副作用が軽減された抗癌剤を提供することにある。本発明者らは一般的に毒性の低いと言われているサリチルアミド誘導体の抗癌作用について鋭意研究した結果、N-置換サリチルアミド誘導体、とりわけN-アリールサリチルアミド誘導体が癌細胞をアポトーシスに導く優れた作用を有しており、かつ有効投与量範囲で既存の抗癌剤に見られるような肝障害、腎障害、又は骨髄抑制等の副作用につながる作用を有しないことを見出した。さらに、その類縁体であるヒドロキシアリール誘導体についても同様な検討を行い、本発明を完成するに至った。

すなわち、本発明は

(1) 下記一般式 (I) :

(式中、

Aは、水素原子又はアセチル基を表し、

Eは、2, 5-ジ置換若しくは3, 5-ジ置換基フェニル基、又は置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基（ただし、該ヘテロアリール基が、①式 (I) 中の-CO-NH-基に直結する環がベンゼン環である縮合多環式ヘテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く）を表し、

環Zは、式-O-A（式中、Aは上記定義と同義である）及び式-CO-NH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいアレーン、又は式-O-A（式中、Aは上記定義と同義である）及び式-CO-NH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいヘテロアレーンを表す）で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる

群から選ばれる物質を有効成分として含む、癌の予防及び／又は治療のための医薬を提供するものである。

本発明の好ましい医薬としては、

(2) Aが水素原子である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(3) 環Zが、C₆～C₁₀のアレーン（該アレーンは、式-O-A（式中、Aは一般式（I）における定義と同義である）及び式-CO NH-E（式中、Eは一般式（I）における定義と同義である）で表される基の他にさらに置換基を有していてもよい）、又は5ないし10員のヘテロアレーン（該ヘテロアレーンは、式-O-A（式中、Aは一般式（I）における定義と同義である）及び式-CO NH-E（式中、Eは一般式（I）における定義と同義である）で表される基の他にさらに置換基を有していてもよい）である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(4) 環Zが、式-O-A（式中、Aは一般式（I）における定義と同義である）及び式-CO NH-E（式中、Eは一般式（I）における定義と同義である）で表される基の他にさらに置換基を有していてもよいベンゼン環、又は式-O-A（式中、Aは一般式（I）における定義と同義である）及び式-CO NH-E（式中、Eは一般式（I）における定義と同義である）で表される基の他にさらに置換基を有していてもよいナフタレン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(5) 環Zが、式-O-A（式中、Aは一般式（I）における定義と同義である）及び式-CO NH-E（式中、Eは一般式（I）における定義と同義である）で表される基の他にハロゲン原子をさらに有するベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる

群から選ばれる物質を有効成分として含む上記の医薬、

(6) 環Zが、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-CO NH-E(式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよいナフタレン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(7) Eが、2, 5-ジ置換又は3, 5-ジ置換基フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(8) Eが、2, 5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)、又は3, 5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(9) Eが、3, 5-ビス(トリフルオロメチル)フェニル基である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(10) Eが、置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基(ただし、該ヘテロアリール基が、①式(I)中の-CO NH-基に直結する環がベンゼン環である縮合多環式ヘテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(11) Eが、置換基を有していてもよい5員の単環式ヘテロアリール基(ただし、該ヘテロアリール基が、無置換のチアゾール-2-イル基である場合を除く)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬を挙

げることができる。

別の観点からは、本発明により、上記の(1)～(11)の医薬の製造のための上記の各物質の使用が提供される。また、本発明により、ヒトを含む哺乳類動物において、癌を予防及び／又は治療する方法であって、上記の各物質の予防及び／又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。

図面の簡単な説明

第1図は、本発明の医薬（化合物番号4）の癌細胞（B16 melanoma）に対する増殖阻害作用を示した図である。

第2図は、本発明の医薬（化合物番号4）の癌細胞（HT-1080 fibrosarcoma）に対する増殖阻害作用を示した図である。

第3図は、本発明の医薬（化合物番号4）の癌細胞（NB-1 neuroblastoma）に対する増殖阻害作用を示した図である。

第4図は、本発明の医薬（化合物番号4）の癌細胞（HMC-1-8 breast cancer）に対する増殖阻害作用を示した図である。

第5図は、本発明の医薬（化合物番号4）の腫瘍に対する抗癌作用を示した図である。

発明を実施するための最良の形態

本発明の理解のために「国際公開第02/49632号パンフレット」の開示を参考することは有用である。上記「国際公開第02/49632号パンフレット」の開示の全てを参考として本明細書の開示に含める。

本明細書において用いられる用語の意味は以下の通りである。

「ハロゲン原子」としては、特に言及する場合を除き、弗素原子、塩素原子、臭素原子、又は沃素原子のいずれを用いてもよい。

「炭化水素基」としては、例えば、脂肪族炭化水素基、アリール基、アリーレン

基、アラルキル基、架橋環式炭化水素基、スピロ環式炭化水素基、及びテルペン系炭化水素等が挙げられる。

「脂肪族炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキニル基、アルキレン基、アルケニレン基、アルキリデン基等の直鎖状又は分枝鎖状の1価若しくは2価の非環式炭化水素基；シクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基、シクロアルキルーアルキル基、シクロアルキレン基、シクロアルケニレン基等の飽和又は不飽和の1価若しくは2価の脂環式炭化水素基等が挙げられる。

「アルキル基」としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、2-メチルブチル、1-メチルブチル、ネオペンチル、1,2-ジメチルプロピル、1-エチルプロピル、n-ヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3,3-ジメチルブチル、2,2-ジメチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、1,3-ジメチルブチル、2,3-ジメチルブチル、2-エチルブチル、1-エチルブチル、1-エチル-1-メチルプロピル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル等のC₁～C₁₆の直鎖状又は分枝鎖状のアルキル基が挙げられる。

「アルケニル基」としては、例えば、ビニル、プロパー-1-エン-1-イル、アリル、イソプロペニル、ブター-1-エン-1-イル、ブター-2-エン-1-イル、ブター-3-エン-1-イル、2-メチルプロパー-2-エン-1-イル、1-メチルプロパー-2-エン-1-イル、ペンタ-1-エン-1-イル、ペンタ-2-エン-1-イル、ペンタ-3-エン-1-イル、ペンタ-4-エン-1-イル、3-メチルブター-2-エン-1-イル、3-メチルブター-3-エン-1-イル、ヘキサー-1-エン-1-イル、ヘキサー-2-エン-1-イル、ヘキサー-3-エン-1-イル、ヘキサー-4-エン-1-イル、ヘキサー-5-エン-1-イル、4-メ

チルペンタ-3-エン-1-イル、4-メチルペンタ-3-エン-1-イル、ヘプタ-1-エン-1-イル、ヘプタ-6-エン-1-イル、オクタ-1-エン-1-イル、オクタ-7-エン-1-イル、ノナ-1-エン-1-イル、ノナ-8-エン-1-イル、デカ-1-エン-1-イル、デカ-9-エン-1-イル、ウンデカ-1-エン-1-イル、ウンデカ-10-エン-1-イル、ドデカ-1-エン-1-イル、ドデカ-11-エン-1-イル、トリデカ-1-エン-1-イル、トリデカ-12-エン-1-イル、テトラデカ-1-エン-1-イル、テトラデカ-13-エン-1-イル、ペンタデカ-1-エン-1-イル、ペンタデカ-14-エン-1-イル等のC₂～C₁₅の直鎖状又は分枝鎖状のアルケニル基が挙げられる。

「アルキニル基」としては、例えば、エチニル、プロパー-1-イン-1-イル、プロパー-2-イン-1-イル、ブター-1-イン-1-イル、ブター-3-イン-1-イル、1-メチルプロパー-2-イン-1-イル、ペンタ-1-イン-1-イル、ペンタ-4-イン-1-イル、ヘキサー-1-イン-1-イル、ヘキサー-5-イン-1-イル、ヘプター-1-イン-1-イル、ヘプター-6-イン-1-イル、オクター-1-イン-1-イル、オクター-7-イン-1-イル、ノナ-1-イン-1-イル、ノナ-8-イン-1-イル、デカ-1-イン-1-イル、デカ-9-イン-1-イル、ウンデカ-1-イン-1-イル、ウンデカ-10-イン-1-イル、ドデカ-1-イン-1-イル、ドデカ-11-イン-1-イル、トリデカ-1-イン-1-イル、トリデカ-12-イン-1-イル、テトラデカ-1-イン-1-イル、テトラデカ-13-イン-1-イル、ペンタデカ-1-イン-1-イル、ペンタデカ-14-イン-1-イル等のC₂～C₁₅の直鎖状又は分枝鎖状のアルキニル基が挙げられる。

「アルキレン基」としては、例えば、メチレン、エチレン、エタン-1, 1-ジイル、プロパン-1, 3-ジイル、プロパン-1, 2-ジイル、プロパン-2, 2-ジイル、ブタン-1, 4-ジイル、ペンタン-1, 5-ジイル、ヘキサン-1, 6-ジイル、1, 1, 4, 4-テトラメチルブタン-1, 4-ジイル等のC

$C_1 \sim C_8$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルケニレン基」としては、例えば、エテン-1, 2-ジイル、プロペン-1, 3-ジイル、ブター-1-エン-1, 4-ジイル、ブター-2-エン-1, 4-ジイル、2-メチルプロペン-1, 3-ジイル、ペンタ-2-エン-1, 5-ジイル、ヘキサ-3-エン-1, 6-ジイル等の $C_1 \sim C_6$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルキリデン基」としては、例えば、メチリデン、エチリデン、プロピリデン、イソプロピリデン、ブチリデン、ペンチリデン、ヘキシリデン等の $C_1 \sim C_6$ の直鎖状又は分枝鎖状のアルキリデン基が挙げられる。

「シクロアルキル基」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の $C_3 \sim C_8$ のシクロアルキル基が挙げられる。

なお、上記「シクロアルキル基」は、ベンゼン環、ナフタレン環等と縮環してもよく、例えば、1-インダニル、2-インダニル、1, 2, 3, 4-テトラヒドロナフタレン-1-イル、1, 2, 3, 4-テトラヒドロナフタレン-2-イル等の基が挙げられる。

「シクロアルケニル基」としては、例えば、2-シクロプロペニル-1-イル、2-シクロブテン-1-イル、2-シクロペンテン-1-イル、3-シクロペンテニル-1-イル、2-シクロヘキセン-1-イル、3-シクロヘキセン-1-イル、1-シクロブテン-1-イル、1-シクロペンテン-1-イル等の $C_3 \sim C_6$ のシクロアルケニル基が挙げられる。

なお、上記「シクロアルケニル基」は、ベンゼン環、ナフタレン環等と縮環してもよく、例えば、1-インダニル、2-インダニル、1, 2, 3, 4-テトラヒドロナフタレン-1-イル、1, 2, 3, 4-テトラヒドロナフタレン-2-イル、1-インデニル、2-インデニル等の基が挙げられる。

「シクロアルカンジエニル基」としては、例えば、2, 4-シクロペンタンジエン-1-イル、2, 4-シクロヘキサンジエン-1-イル、2, 5-シクロヘキ

サンジエンー1-イル等のC₅～C₆のシクロアルカンジエニル基が挙げられる。なお、上記「シクロアルカンジエニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1-インデニル、2-インデニル等の基が挙げられる。

「シクロアルキルーアルキル基」としては、「アルキル基」の1つの水素原子が、「シクロアルキル基」で置換された基が挙げられ、例えば、シクロプロピルメチル、1-シクロプロピルエチル、2-シクロプロピルエチル、3-シクロプロピルプロピル、4-シクロプロピルブチル、5-シクロプロピルペンチル、6-シクロプロピルヘキシル、シクロブチルメチル、シクロペンチルメチル、シクロブチルメチル、シクロペンチルメチル、シクロヘキシルメチル、シクロヘキシルプロピル、シクロヘキシルブチル、シクロヘプチルメチル、シクロオクチルメチル、6-シクロオクチルヘキシル等のC₄～C₁₄のシクロアルキルーアルキル基が挙げられる。

「シクロアルキレン基」としては、例えば、シクロプロパン-1, 1-ジイル、シクロプロパン-1, 2-ジイル、シクロブタン-1, 1-ジイル、シクロブタン-1, 2-ジイル、シクロブタン-1, 3-ジイル、シクロペントン-1, 1-ジイル、シクロペントン-1, 2-ジイル、シクロペントン-1, 3-ジイル、シクロヘキサン-1, 1-ジイル、シクロヘキサン-1, 2-ジイル、シクロヘキサン-1, 3-ジイル、シクロヘキサン-1, 4-ジイル、シクロヘプタン-1, 1-ジイル、シクロヘプタン-1, 2-ジイル、シクロオクタン-1, 1-ジイル、シクロオクタン-1, 2-ジイル等のC₃～C₈のシクロアルキレン基が挙げられる。

「シクロアルケニレン基」としては、例えば、2-シクロプロペン-1, 1-ジイル、2-シクロブテン-1, 1-ジイル、2-シクロペンテン-1, 1-ジイル、3-シクロペンテン-1, 1-ジイル、2-シクロヘキセン-1, 2-ジイル、2-シクロヘキセン-1, 4-ジイル、3-シクロヘキセン-1, 1-ジイル、1-シクロブテン-1, 2-ジイル、

1-シクロペンテン-1, 2-ジイル、1-シクロヘキセン-1, 2-ジイル等のC₃～C₆のシクロアルケニレン基が挙げられる。

「アリール基」としては、単環式又は縮合多環式芳香族炭化水素基が挙げられ、例えば、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、アセナフチレニル等のC₆～C₁₄のアリール基が挙げられる。

なお、上記「アリール基」は、上記「C₃～C₈のシクロアルキル基」、「C₃～C₆のシクロアルケニル基」、又は「C₅～C₆のシクロアルカンジエニル基」等と縮環していてもよく、例えば、4-インダニル、5-インダニル、1, 2, 3, 4-テトラヒドロナフタレン-5-イル、1, 2, 3, 4-テトラヒドロナフタレン-6-イル、3-アセナフテニル、4-アセナフテニル、インデン-4-イル、インデン-5-イル、インデン-6-イル、インデン-7-イル、4-フェナレニル、5-フェナレニル、6-フェナレニル、7-フェナレニル、8-フェナレニル、9-フェナレニル等の基が挙げられる。

「アリーレン基」としては、例えば、1, 2-フェニレン、1, 3-フェニレン、1, 4-フェニレン、ナフタレン-1, 2-ジイル、ナフタレン-1, 3-ジイル、ナフタレン-1, 4-ジイル、ナフタレン-1, 5-ジイル、ナフタレン-1, 6-ジイル、ナフタレン-1, 7-ジイル、ナフタレン-1, 8-ジイル、ナフタレン-2, 3-ジイル、ナフタレン-2, 4-ジイル、ナフタレン-2, 5-ジイル、ナフタレン-2, 6-ジイル、ナフタレン-2, 7-ジイル、ナフタレン-2, 8-ジイル、アントラゼン-1, 4-ジイル等のC₆～C₁₄のアリーレン基が挙げられる。

「アラルキル基」としては、「アルキル基」の1つの水素原子が、「アリール基」で置換された基が挙げられ、例えば、ベンジル、1-ナフチルメチル、2-ナフチルメチル、アントラセニルメチル、フェナントレニルメチル、アセナフチレニルメチル、ジフェニルメチル、1-フェネチル、2-フェネチル、1-(1-ナフチル)エチル、1-(2-ナフチル)エチル、2-(1-ナフチル)エチル、2-(2-ナフチル)エチル、3-フェニルプロピル、3-(1-ナフチル)プロ

ロピル、3-(2-ナフチル)プロピル、4-フェニルブチル、4-(1-ナフチル)ブチル、4-(2-ナフチル)ブチル、5-フェニルペンチル、5-(1-ナフチル)ペンチル、5-(2-ナフチル)ペンチル、6-フェニルヘキシル、6-(1-ナフチル)ヘキシル、6-(2-ナフチル)ヘキシル等のC₇~C₁₆のアラルキル基が挙げられる。

「架橋環式炭化水素基」としては、例えば、ビシクロ[2.1.0]ペンチル、ビシクロ[2.2.1]ヘプチル、ビシクロ[2.2.1]オクチル、アダマンチル等の基が挙げられる。

「スピロ環式炭化水素基」としては、例えば、スピロ[3.4]オクチル、スピロ[4.5]デカ-1,6-ジエニル等の基が挙げられる。

「テルペン系炭化水素」としては、例えば、ゲラニル、ネリル、リナリル、フィチル、メンチル、ボルニル等の基が挙げられる。

「ハロゲン化アルキル基」としては、「アルキル基」の1つの水素原子が「ハロゲン原子」で置換された基が挙げられ、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、ジヨードメチル、トリヨードメチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、3,3,3-トリフルオロプロピル、ヘptaフルオロプロピル、ヘptaフルオロイソプロピル、ノナフルオロブチル、パーフルオロヘキシル等の1乃至13個のハロゲン原子で置換されたC₁~C₆の直鎖状又は分枝鎖状のハロゲン化アルキル基が挙げられる。

「ヘテロ環基」としては、例えば、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む单環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む单環式又は縮合多環式非芳香族ヘテロ環基が挙げられる。

「単環式ヘテロアリール基」としては、例えば、2-フリル、3-フリル、2-チエニル、3-チエニル、1-ピロリル、2-ピロリル、3-ピロリル、2-オキサゾリル、4-オキサゾリル、5-オキサゾリル、3-イソオキサゾリル、4-イソオキサゾリル、5-イソオキサゾリル、2-チアゾリル、4-チアゾリル、5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル、1-イミダゾリル、2-イミダゾリル、4-イミダゾリル、5-イミダゾリル、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル、5-ピラゾリル、(1, 2, 3-オキサジアゾール)-4-イル、(1, 2, 3-オキサジアゾール)-5-イル、(1, 2, 4-オキサジアゾール)-3-イル、(1, 2, 4-オキサジアゾール)-5-イル、(1, 2, 5-オキサジアゾール)-4-イル、(1, 3, 4-オキサジアゾール)-2-イル、(1, 3, 4-オキサジアゾール)-5-イル、フラザニル、(1, 2, 3-チアジアゾール)-4-イル、(1, 2, 3-チアジアゾール)-5-イル、(1, 2, 4-チアジアゾール)-3-イル、(1, 2, 4-チアジアゾール)-5-イル、(1, 2, 5-チアジアゾール)-3-イル、(1, 2, 5-チアジアゾール)-4-イル、(1, 3, 4-チアジアゾリル)-2-イル、(1, 3, 4-チアジアゾリル)-5-イル、(1H-1, 2, 3-トリアゾール)-1-イル、(1H-1, 2, 3-トリアゾール)-4-イル、(1H-1, 2, 3-トリアゾール)-5-イル、(2H-1, 2, 3-トリアゾール)-2-イル、(2H-1, 2, 3-トリアゾール)-4-イル、(1H-1, 2, 4-トリアゾール)-1-イル、(1H-1, 2, 4-トリアゾール)-3-イル、(1H-1, 2, 4-トリアゾール)-5-イル、(4H-1, 2, 4-トリアゾール)-3-イル、(4H-1, 2, 4-トリアゾール)-4-イル、(1H-テトラゾール)-1-イル、(1H-テトラゾール)-5-イル、(2H-テトラゾール)-2-イル、(2H-テトラゾール)-5-イル、2-ピリジル、3-ピリジル、4-ピリジル、3-ピリジニル、4-ピリジニル、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル、2-ピラジニル、(1, 2, 3-トリアジン)-4-イル、(1, 2,

3-トリアジン) - 5-イル、(1, 2, 4-トリアジン) - 3-イル、(1, 2, 4-トリアジン) - 5-イル、(1, 2, 4-トリアジン) - 6-イル、(1, 3, 5-トリアジン) - 2-イル、1-アゼピニル、1-アゼピニル、2-アゼピニル、3-アゼピニル、4-アゼピニル、(1, 4-オキサゼピン) - 2-イル、(1, 4-オキサゼピン) - 3-イル、(1, 4-オキサゼピン) - 5-イル、(1, 4-オキサゼピン) - 6-イル、(1, 4-オキサゼピン) - 7-イル、(1, 4-チアゼピン) - 2-イル、(1, 4-チアゼピン) - 3-イル、(1, 4-チアゼピン) - 5-イル、(1, 4-チアゼピン) - 6-イル、(1, 4-チアゼピン) - 7-イル等の5乃至7員の単環式ヘテロアリール基が挙げられる。

「縮合多環式ヘテロアリール基」としては、例えば、2-ベンゾフラニル、3-ベンゾフラニル、4-ベンゾフラニル、5-ベンゾフラニル、6-ベンゾフラニル、7-ベンゾフラニル、1-イソベンゾフラニル、4-イソベンゾフラニル、5-イソベンゾフラニル、2-ベンゾ [b] チエニル、3-ベンゾ [b] チエニル、4-ベンゾ [b] チエニル、5-ベンゾ [b] チエニル、6-ベンゾ [b] チエニル、7-ベンゾ [b] チエニル、1-ベンゾ [c] チエニル、4-ベンゾ [c] チエニル、5-ベンゾ [c] チエニル、1-インドリル、1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル、(2H-イソインドール) - 1-イル、(2H-イソインドール) - 2-イル、(2H-イソインドール) - 4-イル、(2H-イソインドール) - 5-イル、(1H-インダゾール) - 1-イル、(1H-インダゾール) - 3-イル、(1H-インダゾール) - 4-イル、(1H-インダゾール) - 5-イル、(1H-インダゾール) - 6-イル、(1H-インダゾール) - 7-イル、(2H-インダゾール) - 1-イル、(2H-インダゾール) - 2-イル、(2H-インダゾール) - 4-イル、(2H-インダゾール) - 5-イル、2-ベンゾオキサゾリル、2-ベンゾオキサゾリル、4-ベンゾオキサゾリル、5-ベンゾオキサゾリル、6-ベンゾオキサゾリル、7-ベンゾオキサゾリル、(1, 2-ベンゾイソオキサゾール) - 3-イル、(1, 2-ベンゾイソオキサゾール) - 4-イ

ル、(1, 2-ベンゾイソオキサゾール) - 5-イル、(1, 2-ベンゾイソオキサゾール) - 6-イル、(1, 2-ベンゾイソオキサゾール) - 7-イル、(2, 1-ベンゾイソオキサゾール) - 3-イル、(2, 1-ベンゾイソオキサゾール) - 4-イル、(2, 1-ベンゾイソオキサゾール) - 5-イル、(2, 1-ベンゾイソオキサゾール) - 6-イル、(2, 1-ベンゾイソオキサゾール) - 7-イル、2-ベンゾチアゾリル、4-ベンゾチアゾリル、5-ベンゾチアゾリル、6-ベンゾチアゾリル、7-ベンゾチアゾリル、(1, 2-ベンゾイソチアゾール) - 3-イル、(1, 2-ベンゾイソチアゾール) - 4-イル、(1, 2-ベンゾイソチアゾール) - 5-イル、(1, 2-ベンゾイソチアゾール) - 6-イル、(1, 2-ベンゾイソチアゾール) - 7-イル、(2, 1-ベンゾイソチアゾール) - 3-イル、(2, 1-ベンゾイソチアゾール) - 4-イル、(2, 1-ベンゾイソチアゾール) - 5-イル、(2, 1-ベンゾイソチアゾール) - 6-イル、(2, 1-ベンゾイソチアゾール) - 7-イル、(1, 2, 3-ベンゾオキサジアゾール) - 4-イル、(1, 2, 3-ベンゾオキサジアゾール) - 5-イル、(1, 2, 3-ベンゾオキサジアゾール) - 6-イル、(1, 2, 3-ベンゾオキサジアゾール) - 7-イル、(2, 1, 3-ベンゾオキサジアゾール) - 4-イル、(2, 1, 3-ベンゾオキサジアゾール) - 5-イル、(1, 2, 3-ベンゾチアジアゾール) - 4-イル、(1, 2, 3-ベンゾチアジアゾール) - 5-イル、(1, 2, 3-ベンゾチアジアゾール) - 6-イル、(1, 2, 3-ベンゾチアジアゾール) - 7-イル、(2, 1, 3-ベンゾチアジアゾール) - 4-イル、(2, 1, 3-ベンゾチアジアゾール) - 5-イル、(1H-ベンゾトリアゾール) - 1-イル、(1H-ベンゾトリアゾール) - 4-イル、(1H-ベンゾトリアゾール) - 5-イル、(1H-ベンゾトリアゾール) - 6-イル、(1H-ベンゾトリアゾール) - 7-イル、(2H-ベンゾトリアゾール) - 2-イル、(2H-ベンゾトリアゾール) - 4-イル、(2H-ベンゾトリアゾール) - 5-イル、2-キノリル、3-キノリル、4-キノリル、5-キノリル、6-キノリル、7-キノリル、8-キノリル、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリ

ル、6-イソキノリル、7-イソキノリル、8-イソキノリル、3-シンノリニル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニル、8-シンノリニル、2-キナゾリニル、4-キナゾリニル、5-キナゾリニル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル、2-キノキサリニル、5-キノキサリニル、6-キノキサリニル、1-フタラジニル、5-フタラジニル、6-フタラジニル、2-ナフチリジニル、3-ナフチリジニル、4-ナフチリジニル、2-ブリニル、6-ブリニル、7-ブリニル、8-ブリニル、2-ブテリジニル、4-ブテリジニル、6-ブテリジニル、7-ブテリジニル、1-カルバゾリル、2-カルバゾリル、3-カルバゾリル、4-カルバゾリル、9-カルバゾリル、2-(α -カルボリニル)、3-(α -カルボリニル)、4-(α -カルボリニル)、5-(α -カルボリニル)、6-(α -カルボリニル)、7-(α -カルボリニル)、8-(α -カルボリニル)、9-(α -カルボリニル)、1-(β -カルボニリル)、3-(β -カルボニリル)、4-(β -カルボニリル)、5-(β -カルボニリル)、6-(β -カルボニリル)、7-(β -カルボニリル)、8-(β -カルボニリル)、9-(β -カルボニリル)、1-(γ -カルボリニル)、2-(γ -カルボリニル)、4-(γ -カルボリニル)、5-(γ -カルボリニル)、6-(γ -カルボリニル)、7-(γ -カルボリニル)、8-(γ -カルボリニル)、9-(γ -カルボリニル)、1-アクリジニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル、1-フェノキサジニル、2-フェノキサジニル、3-フェノキサジニル、4-フェノキサジニル、10-フェノキサジニル、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニル、4-フェノチアジニル、10-フェノチアジニル、1-フェナジニル、2-フェナジニル、3-フェナントリジニル、4-フェナントリジニル、6-フェナントリジニル、7-フェナントリジニル、8-フェナントリジニル、9-フェナントリジニル、10-フェナントリジニル、2-フェナントロリニル、3-フェナントロリニル、4-フェナントロリニル、5-フェナントロリニル、6-フェナントロリニル、7-フェ

ナントロリニル、8-フェナントロリニル、9-フェナントロリニル、10-フェナントロリニル、1-チアントレニル、2-チアントレニル、1-インドリジニル、2-インドリジニル、3-インドリジニル、5-インドリジニル、6-インドリジニル、7-インドリジニル、8-インドリジニル、1-フェノキサチニル、2-フェノキサチニル、3-フェノキサチニル、4-フェノキサチニル、チエノ[2, 3-b]フリル、ピロロ[1, 2-b]ピリダジニル、ピラゾロ[1, 5-a]ピリジル、イミダゾ[1, 2-a]ピリジル、イミダゾ[1, 5-a]ピリジル、イミダゾ[1, 2-b]ピリダジニル、イミダゾ[1, 2-a]ピリミジニル、1, 2, 4-トリアゾロ[4, 3-a]ピリジル、1, 2, 4-トリアゾロ[4, 3-a]ピリダジニル等の8乃至14員の縮合多環式ヘテロアリール基が挙げられる。

「単環式非芳香族ヘテロ環基」としては、例えば、1-アジリジニル、1-アゼチジニル、1-ピロリジニル、2-ピロリジニル、3-ピロリジニル、2-テトラヒドロフリル、3-テトラヒドロフリル、チオラニル、1-イミダゾリジニル、2-イミダゾリジニル、4-イミダゾリジニル、1-ピラゾリジニル、3-ピラゾリジニル、4-ピラゾリジニル、1-(2-ピロリニル)、1-(2-イミダゾリニル)、2-(2-イミダゾリニル)、1-(2-ピラゾリニル)、3-(2-ピラゾリニル)、ピペリジノ、2-ピペリジニル、3-ピペリジニル、4-ピペリジニル、1-ホモピペリジニル、2-テトラヒドロピラニル、モルホリノ、(チオモルホリン)-4-イル、1-ピペラジニル、1-ホモピペラジニル等の3乃至7員の飽和若しくは不飽和の単環式非芳香族ヘテロ環基が挙げられる。

「縮合多環式非芳香族ヘテロ環基」としては、例えば、2-キヌクリジニル、2-クロマニル、3-クロマニル、4-クロマニル、5-クロマニル、6-クロマニル、7-クロマニル、8-クロマニル、1-イソクロマニル、3-イソクロマニル、4-イソクロマニル、5-イソクロマニル、6-イソクロマニル、7-イソクロマニル、8-イソクロマニル、2-チオクロマニル、3-チオクロマニル、4-チオクロマニル、5-チオクロマニル、6-チオクロマニル、7-チオクロ

マニル、8-チオクロマニル、1-イソチオクロマニル、3-イソチオクロマニル、4-イソチオクロマニル、5-イソチオクロマニル、6-イソチオクロマニル、7-イソチオクロマニル、8-イソチオクロマニル、1-インドリニル、2-インドリニル、3-インドリニル、4-インドリニル、5-インドリニル、6-インドリニル、7-インドリニル、1-イソインドリニル、2-イソインドリニル、4-イソインドリニル、5-イソインドリニル、2-(4H-クロメニル)、3-(4H-クロメニル)、4-(4H-クロメニル)、5-(4H-クロメニル)、6-(4H-クロメニル)、7-(4H-クロメニル)、8-(4H-クロメニル)、1-イソクロメニル、3-イソクロメニル、4-イソクロメニル、5-イソクロメニル、6-イソクロメニル、7-イソクロメニル、8-イソクロメニル、1-(1H-ピロリジニル)、2-(1H-ピロリジニル)、3-(1H-ピロリジニル)、5-(1H-ピロリジニル)、6-(1H-ピロリジニル)、7-(1H-ピロリジニル) 等の8乃至10員の飽和若しくは不飽和の縮合多環式非芳香族ヘテロ環基が挙げられる。

上記「ヘテロ環基」の中で、環系を構成する原子（環原子）として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子（環原子）として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式非芳香族ヘテロ環基を「環状アミノ基」と称し、例えば、1-ピロリジニル、1-イミダゾリジニル、1-ピラゾリジニル、1-オキサゾリジニル、1-チアゾリジニル、ピペリジノ、モルホリノ、1-ピペラジニル、チオモルホリン-4-イル、1-ホモピペリジニル、1-ホモピペラジニル、2-ピロリン-1-イル、2-イミダゾリン-1-イル、2-ピラゾリン-1-イル、1-インドリニル、2-イソインドリニル、1, 2, 3, 4-テトラヒドロキノリン-1-イル、1, 2, 3, 4-テトラヒドロイソキノリン-2-イル、1-ピロリル、1-イミダゾリル、1-ピラゾリル、1-インドリ

ル、1-インダゾリル、2-イソインドリル等の基が挙げられる。

上記「シクロアルキル基」、「シクロアルケニル基」、「シクロアルカンジエニル基」、「アリール基」、「シクロアルキレン基」、「シクロアルケニレン基」、「アリーレン基」、「架橋環式炭化水素基」、「スピロ環式炭化水素基」、及び「ヘテロ環基」を総称して「環式基」と称する。また、該「環式基」の中で、特に「アリール基」、「アリーレン基」、「単環式ヘテロアリール基」、及び「縮合多環式ヘテロアリール基」を総称して「芳香環式基」と称する。

「炭化水素-オキシ基」としては、「ヒドロキシ基」の水素原子が「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素-オキシ基」としては、例えば、アルコキシ基(アルキル-オキシ基)、アルケニル-オキシ基、アルキニル-オキシ基、シクロアルキル-オキシ基、シクロアルキル-アルキル-オキシ基等の脂肪族炭化水素-オキシ基；アリール-オキシ基；アラルキル-オキシ基；アルキレン-ジオキシ基等が挙げられる。

「アルコキシ基(アルキル-オキシ基)」としては、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、2-メチルブトキシ、1-メチルブトキシ、ネオペンチルオキシ、1, 2-ジメチルブロポキシ、1-エチルプロポキシ、n-ヘキシリオキシ、4-メチルペンチルオキシ、3-メチルペンチルオキシ、2-メチルペンチルオキシ、1-メチルペンチルオキシ、3, 3-ジメチルブトキシ、2, 2-ジメチルブトキシ、1, 1-ジメチルブトキシ、1, 2-ジメチルブトキシ、1, 3-ジメチルブトキシ、2, 3-ジメチルブトキシ、2-エチルブトキシ、1-エチルブトキシ、1-エチル-1-メチルプロポキシ、n-ヘプチルオキシ、n-オクチルオキシ、n-ノニルオキシ、n-デシルオキシ、n-ウンデシルオキシ、n-ドデシルオキシ、n-トリデシルオキシ、n-テトラデシルオキシ、n-ペントラデシルオキシ等のC₁～C₁₅の直鎖状又は分枝鎖状のアルコキシ基が挙げられる。

「アルケニルーオキシ基」としては、例えば、ビニルオキシ、(プロパー1-エン-1-イル)オキシ、アリルオキシ、イソプロペニルオキシ、(ブター1-エン-1-イル)オキシ、(ブター2-エン-1-イル)オキシ、(ブター3-エン-1-イル)オキシ、(2-メチルプロパー2-エン-1-イル)オキシ、(1-メチルプロパー2-エン-1-イル)オキシ、(ペンタ-1-エン-1-イル)オキシ、(ペンタ-2-エン-1-イル)オキシ、(ペンタ-3-エン-1-イル)オキシ、(ペンタ-4-エン-1-イル)オキシ、(3-メチルブター2-エン-1-イル)オキシ、(3-メチルブター3-エン-1-イル)オキシ、(ヘキサー1-エン-1-イル)オキシ、(ヘキサー2-エン-1-イル)オキシ、(ヘキサー3-エン-1-イル)オキシ、(ヘキサー4-エン-1-イル)オキシ、(ヘキサー5-エン-1-イル)オキシ、(4-メチルペンタ-3-エン-1-イル)オキシ、(ヘプター1-エン-1-イル)オキシ、(ヘプター6-エン-1-イル)オキシ、(オクター1-エン-1-イル)オキシ、(オクター7-エン-1-イル)オキシ、(ノナー1-エン-1-イル)オキシ、(ノナー8-エン-1-イル)オキシ、(デカ-1-エン-1-イル)オキシ、(デカ-9-エン-1-イル)オキシ、(ウンデカ-1-エン-1-イル)オキシ、(ウンデカ-10-エン-1-イル)オキシ、(ドデカ-1-エン-1-イル)オキシ、(トリデカ-1-エン-1-イル)オキシ、(トリデカ-12-エン-1-イル)オキシ、(テトラデカ-1-エン-1-イル)オキシ、(テトラデカ-13-エン-1-イル)オキシ、(ペンタデカ-1-エン-1-イル)オキシ、(ペンタデカ-14-エン-1-イル)オキシ等のC₂～C₁₅の直鎖状又は分枝鎖状のアルケニルーオキシ基が挙げられる。

「アルキニルーオキシ基」としては、例えば、エチニルオキシ、(プロパー1-イン-1-イル)オキシ、(プロパー2-イン-1-イル)オキシ、(ブター1-イン-1-イル)オキシ、(ブター3-イン-1-イル)オキシ、(1-メチルプロパー2-イン-1-イル)オキシ、(ペンタ-1-イン-1-イル)オキシ、(ペ

ンタ-4-イン-1-イル)オキシ、(ヘキサ-1-イン-1-イル)オキシ、(ヘキサ-5-イン-1-イル)オキシ、(ヘプタ-1-イン-1-イル)オキシ、(ヘプタ-6-イン-1-イル)オキシ、(オクタ-1-イン-1-イル)オキシ、(オクタ-7-イン-1-イル)オキシ、(ノナ-1-イン-1-イル)オキシ、(ノナ-8-イン-1-イル)オキシ、(デカ-1-イン-1-イル)オキシ、(デカ-9-イン-1-イル)オキシ、(ウンデカ-1-イン-1-イル)オキシ、(ウンデカ-10-イン-1-イル)オキシ、(ドデカ-1-イン-1-イル)オキシ、(ドデカ-11-イン-1-イル)オキシ、(トリデカ-1-イン-1-イル)オキシ、(トリデカ-12-イン-1-イル)オキシ、(テトラデカ-1-イン-1-イル)オキシ、(テトラデカ-13-イン-1-イル)オキシ、(ペンタデカ-1-イン-1-イル)オキシ、(ペンタデカ-14-イン-1-イル)オキシ等のC₂～C₁₅の直鎖状又は分枝鎖状のアルキニルーオキシ基が挙げられる。

「シクロアルキルーオキシ基」としては、例えば、シクロプロポキシ、シクロブトキシ、シクロペンチルオキシ、シクロヘキシリオキシ、シクロヘプチルオキシ、シクロオクチルオキシ等のC₃～C₈のシクロアルキルーオキシ基が挙げられる。

「シクロアルキルーアルキルーオキシ基」としては、例えば、シクロプロピルメトキシ、1-シクロプロピルエトキシ、2-シクロプロピルエトキシ、3-シクロプロピルプロポキシ、4-シクロプロピルブトキシ、5-シクロプロピルペンチルオキシ、6-シクロプロピルヘキシリオキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロヘキシリメトキシ、2-シクロヘキシリエトキシ、3-シクロヘキシリプロポキシ、4-シクロヘキシリブトキシ、シクロヘプチルメトキシ、シクロオクチルメトキシ、6-シクロオクチルヘキシリオキシ等のC₄～C₁₄のシクロアルキルーアルキルーオキシ基が挙げられる。

「アリールーオキシ基」としては、例えば、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシ、アントリルオキシ、フェナントリルオキシ、アセナフチレニルオキシ等のC₆～C₁₄のアリールーオキシ基が挙げられる。

「アラルキルーオキシ基」としては、例えば、ベンジルオキシ、1-ナフチルメトキシ、2-ナフチルメトキシ、アントラセニルメトキシ、フェナントレニルメトキシ、アセナフチレニルメトキシ、ジフェニルメトキシ、1-フェネチルオキシ、2-フェネチルオキシ、1-(1-ナフチル)エトキシ、1-(2-ナフチル)エトキシ、2-(1-ナフチル)エトキシ、2-(2-ナフチル)エトキシ、3-フェニルプロポキシ、3-(1-ナフチル)プロポキシ、3-(2-ナフチル)プロポキシ、4-フェニルブトキシ、4-(1-ナフチル)ブトキシ、4-(2-ナフチル)ブトキシ、5-フェニルペンチルオキシ、5-(1-ナフチル)ペンチルオキシ、5-(2-ナフチル)ペンチルオキシ、6-フェニルヘキシルオキシ、6-(1-ナフチル)ヘキシルオキシ、6-(2-ナフチル)ヘキシルオキシ等のC₇~C₁₆のアラルキルーオキシ基が挙げられる。

「アルキレンジオキシ基」としては、例えば、メチレンジオキシ、エチレンジオキシ、1-メチルメチレンジオキシ、1,1-ジメチルメチレンジオキシ等の基が挙げられる。

「ハロゲン化アルコキシ基(ハロゲン化アルキルーオキシ基)」としては、「ヒドロキシ基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、フルオロメトキシ、ジフルオロメトキシ、クロロメトキシ、ブロモメトキシ、ヨードメトキシ、トリフルオロメトキシ、トリクロロメトキシ、2,2,2-トリフルオロエトキシ、ペントフルオロエトキシ、3,3,3-トリフルオロブロキシ、ヘプタフルオロブロキシ、ヘプタフルオロイソブロキシ、ノナフルオロブロキシ、パーフルオロヘキシルオキシ等の1乃至13個のハロゲン原子で置換されたC₁~C₆の直鎖状又は分枝鎖状のハロゲン化アルコキシ基が挙げられる。

「ヘテロ環ーオキシ基」としては、「ヒドロキシ基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ーオキシ基」としては、例えば、単環式ヘテロアリールーオキシ基、縮合多環式ヘテロアリールーオキシ基、単環式非芳香族ヘテロ環

—オキシ基、縮合多環式非芳香族ヘテロ環—オキシ基等が挙げられる。

「単環式ヘテロアリール—オキシ基」としては、例えば、3—チエニルオキシ、(イソキサゾール—3—イル) オキシ、(チアゾール—4—イル) オキシ、2—ピリジルオキシ、3—ピリジルオキシ、4—ピリジルオキシ、(ピリミジン—4—イル) オキシ等の基が挙げられる。

「縮合多環式ヘテロアリール—オキシ基」としては、5—インドリルオキシ、(ベンズイミダゾール—2—イル) オキシ、2—キノリルオキシ、3—キノリルオキシ、4—キノリルオキシ等の基が挙げられる。

「単環式非芳香族ヘテロ環—オキシ基」としては、例えば、3—ピロリジニルオキシ、4—ピペリジニルオキシ等の基が挙げられる。

「縮合多環式非芳香族ヘテロ環—オキシ基」としては、例えば、3—インドリニルオキシ、4—クロマニルオキシ等の基が挙げられる。

「炭化水素—スルファニル基」としては、「スルファニル基」の水素原子が、「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素—スルファニル基」としては、例えば、アルキルスルファニル基、アルケニルスルファニル基、アルキニルスルファニル基、シクロアルキルスルファニル基、シクロアルキル—アルキルスルファニル基等の脂肪族炭化水素—スルファニル基；アリールスルファニル基、アラルキルスルファニル基等が挙げられる。

「アルキルスルファニル基」としては、例えば、メチルスルファニル、エチルスルファニル、n—プロピルスルファニル、イソプロピルスルファニル、n—ブチルスルファニル、イソブチルスルファニル、sec—ブチルスルファニル、tert—ブチルスルファニル、n—ペンチルスルファニル、イソペンチルスルファニル、(2—メチルブチル) スルファニル、(1—メチルブチル) スルファニル、ネオペンチルスルファニル、(1, 2—ジメチルプロピル) スルファニル、(1—エチルプロピル) スルファニル、n—ヘキシルスルファニル、(4—メチルペンチル) スルファニル、(3—メチルペンチル) スルファニル、(2—メチルペンチル)

スルファニル、(1-メチルベンチル)スルファニル、(3, 3-ジメチルブチル)スルファニル、(2, 2-ジメチルブチル)スルファニル、(1, 1-ジメチルブチル)スルファニル、(1, 2-ジメチルブチル)スルファニル、(1, 3-ジメチルブチル)スルファニル、(2, 3-ジメチルブチル)スルファニル、(2-エチルブチル)スルファニル、(1-エチルブチル)スルファニル、(1-エチル-1-メチルプロピル)スルファニル、n-ヘプチルスルファニル、n-オクチルスルファニル、n-ノニルスルファニル、n-デシルスルファニル、n-ウンデシルスルファニル、n-ドデシルスルファニル、n-トリデシルスルファニル、n-テトラデシルスルファニル、n-ペンタデシルスルファニル等のC₁～C₁₅の直鎖状又は分枝鎖状のアルキルスルファニル基が挙げられる。

「アルケニルスルファニル基」としては、例えば、ビニルスルファニル、(プロペー1-エン-1-イル)スルファニル、アリルスルファニル、イソプロペニルスルファニル、(ブター1-エン-1-イル)スルファニル、(ブター2-エン-1-イル)スルファニル、(ブター3-エン-1-イル)スルファニル、(2-メチルプロペー2-エン-1-イル)スルファニル、(1-メチルプロペー2-エン-1-イル)スルファニル、(ペンタ-1-エン-1-イル)スルファニル、(ペンタ-2-エン-1-イル)スルファニル、(ペンタ-3-エン-1-イル)スルファニル、(ペンタ-4-エン-1-イル)スルファニル、(3-メチルブター2-エン-1-イル)スルファニル、(3-メチルブター3-エン-1-イル)スルファニル、(ヘキサ-1-エン-1-イル)スルファニル、(ヘキサ-2-エン-1-イル)スルファニル、(ヘキサ-3-エン-1-イル)スルファニル、(ヘキサ-4-エン-1-イル)スルファニル、(ヘキサ-5-エン-1-イル)スルファニル、(4-メチルペンタ-3-エン-1-イル)スルファニル、(4-メチルペンタ-3-エン-1-イル)スルファニル、(ヘプター1-エン-1-イル)スルファニル、(ヘプター6-エン-1-イル)スルファニル、(オクター1-エン-1-イル)スルファニル、(オクター7-エン-1-イル)スルファニル、(ノナー1-エン-1-イル)スルファニル、(ノナー8-エン-1-イル)スルファ

ニル、(デカ-1-エン-1-イル)スルファニル、(デカ-9-エン-1-イル)スルファニル、(ウンデカ-1-エン-1-イル)スルファニル、(ウンデカ-10-エン-1-イル)スルファニル、(ドデカ-1-エン-1-イル)スルファニル、(ドデカ-11-エン-1-イル)スルファニル、(トリデカ-1-エン-1-イル)スルファニル、(トリデカ-12-エン-1-イル)スルファニル、(テトラデカ-1-エン-1-イル)スルファニル、(テトラデカ-13-エン-1-イル)スルファニル、(ペンタデカ-1-エン-1-イル)スルファニル、(ペンタデカ-14-エン-1-イル)スルファニル等のC₂～C₁₅の直鎖状又は分枝鎖状のアルケニルスルファニル基が挙げられる。

「アルキニルスルファニル基」としては、例えば、エチニルスルファニル、(プロパー-1-イン-1-イル)スルファニル、(プロパー-2-イン-1-イル)スルファニル、(ブター-1-イン-1-イル)スルファニル、(ブター-3-イン-1-イル)スルファニル、(1-メチルプロパー-2-イン-1-イル)スルファニル、(ペンタ-1-イン-1-イル)スルファニル、(ペンタ-4-イン-1-イル)スルファニル、(ヘキサー-1-イン-1-イル)スルファニル、(ヘキサー-5-イン-1-イル)スルファニル、(ヘプター-1-イン-1-イル)スルファニル、(ヘプター-6-イン-1-イル)スルファニル、(オクター-1-イン-1-イル)スルファニル、(オクター-7-イン-1-イル)スルファニル、(ノナ-1-イン-1-イル)スルファニル、(ノナ-8-イン-1-イル)スルファニル、(デカ-1-イシ-1-イル)スルファニル、(デカ-9-イン-1-イル)スルファニル、(ウンデカ-1-イン-1-イル)スルファニル、(ウンデカ-10-イン-1-イル)スルファニル、(ドデカ-1-イン-1-イル)スルファニル、(ドデカ-11-イン-1-イル)スルファニル、(トリデカ-1-イン-1-イル)スルファニル、(トリデカ-12-イン-1-イル)スルファニル、(テトラデカ-1-イン-1-イル)スルファニル、(テトラデカ-13-イン-1-イル)スルファニル、(ペンタデカ-1-イン-1-イル)スルファニル、(ペンタデカ-14-イン-1-イル)スルファニル等のC₂～C₁₅の直鎖状又は分枝鎖状のアルキニルスルファニル

基が挙げられる。

「シクロアルキルスルファニル基」としては、例えば、シクロプロピルスルファニル、シクロブチルスルファニル、シクロペンチルスルファニル、シクロヘキシルスルファニル、シクロヘプチルスルファニル、シクロオクチルスルファニル等のC₃～C₈のシクロアルキルスルファニル基が挙げられる。

「シクロアルキルーアルキルスルファニル基」としては、例えば、(シクロプロピルメチル)スルファニル、(1-シクロプロピルエチル)スルファニル、(2-シクロプロピルエチル)スルファニル、(3-シクロプロピルプロピル)スルファニル、(4-シクロプロピルブチル)スルファニル、(5-シクロプロピルペンチル)スルファニル、(6-シクロプロピルヘキシル)スルファニル、(シクロブチルメチル)スルファニル、(シクロペンチルメチル)スルファニル、(シクロブチルメチル)スルファニル、(シクロペンチルメチル)スルファニル、(シクロヘキシルメチル)スルファニル、(2-シクロヘキシルエチル)スルファニル、(3-シクロヘキシルプロピル)スルファニル、(4-シクロヘキシルブチル)スルファニル、(シクロヘプチルメチル)スルファニル、(シクロオクチルメチル)スルファニル、(6-シクロオクチルヘキシル)スルファニル等のC₄～C₁₄のシクロアルキルーアルキルスルファニル基が挙げられる。

「アリールスルファニル基」としては、例えば、フェニルスルファニル、1-ナフチルスルファニル、2-ナフチルスルファニル、アントリルスルファニル、フェナントリルスルファニル、アセナフチレニルスルファニル等のC₆～C₁₄のアリールスルファニル基が挙げられる。

「アラルキルスルファニル基」としては、例えば、ベンジルスルファニル、(1-ナフチルメチル)スルファニル、(2-ナフチルメチル)スルファニル、(アントラセニルメチル)スルファニル、(フェナントレニルメチル)スルファニル、(アセナフチレニルメチル)スルファニル、(ジフェニルメチル)スルファニル、(1-フェネチル)スルファニル、(2-フェネチル)スルファニル、(1-(1-ナフチル)エチル)スルファニル、(1-(2-ナフチル)エチル)スルファニル、

(2-(1-ナフチル)エチル)スルファニル、(2-(2-ナフチル)エチル)スルファニル、(3-フェニルプロピル)スルファニル、(3-(1-ナフチル)プロピル)スルファニル、(3-(2-ナフチル)プロピル)スルファニル、(4-フェニルブチル)スルファニル、(4-(1-ナフチル)ブチル)スルファニル、(4-(2-ナフチル)ブチル)スルファニル、(5-フェニルペンチル)スルファニル、(5-(1-ナフチル)ペンチル)スルファニル、(5-(2-ナフチル)ペンチル)スルファニル、(6-フェニルヘキシル)スルファニル、(6-(1-ナフチル)ヘキシル)スルファニル、(6-(2-ナフチル)ヘキシル)スルファニル等のC₇～C₁₆のアラルキルスルファニル基が挙げられる。

「ハロゲン化アルキルスルファニル基」としては、「スルファニル基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、(フルオロメチル)スルファニル、(クロロメチル)スルファニル、(プロモメチル)スルファニル、(ヨードメチル)スルファニル、(ジフルオロメチル)スルファニル、(トリフルオロメチル)スルファニル、(トリクロロメチル)スルファニル、(2, 2, 2-トリフルオロエチル)スルファニル、(ペンタフルオロエチル)スルファニル、(3, 3, 3-トリフルオロプロピル)スルファニル、(ヘプタフルオロプロピル)スルファニル、(ヘプタフルオロイソプロピル)スルファニル、(ノナフルオロブチル)スルファニル、(ペーフルオロヘキシル)スルファニル等の1乃至13個のハロゲン原子で置換されたC₁～C₆の直鎖状又は分枝鎖状のハロゲン化アルキルスルファニル基が挙げられる。

「ヘテロ環スルファニル基」としては、「スルファニル基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環スルファニル基」としては、例えば、単環式ヘテロアリールスルファニル基、縮合多環式ヘテロアリールスルファニル基、単環式非芳香族ヘテロ環スルファニル基、縮合多環式非芳香族ヘテロ環スルファニル基等が挙げられる。

「単環式ヘテロアリールスルファニル基」としては、例えば、(イミダゾール-

2-イル) スルファニル、(1, 2, 4-トリアゾール-2-イル) スルファニル、(ピリジン-2-イル) スルファニル、(ピリジン-4-イル) スルファニル、(ピリミジン-2-イル) スルファニル等の基が挙げられる。

「縮合多環式ヘテロアリールースルファニル基」としては、(ベンズイミダゾール-2-イル) スルファニル、(キノリン-2-イル) スルファニル、(キノリン-4-イル) スルファニル等の基が挙げられる。

「単環式非芳香族ヘテロ環ースルファニル基」としては、例えば、(3-ピロリジニル) スルファニル、(4-ピペリジニル) スルファニル等の基が挙げられる。

「縮合多環式非芳香族ヘテロ環ースルファニル基」としては、例えば、(3-インドリニル) スルファニル、(4-クロマニル) スルファニル等の基が挙げられる。

「アシリル基」としては、例えば、ホルミル基、グリオキシロイル基、チオホルミル基、カルバモイル基、チオカルバモイル基、スルファモイル基、スルフィナモイル基、カルボキシ基、スルホ基、ホスホノ基、及び下記式：

(式中、 $R^{\alpha 1}$ 及び R^{b1} は、同一又は異なって、炭化水素基又はヘテロ環基を表すか、あるいは $R^{\alpha 1}$ 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す) で表される基が挙げられる。

上記「アシル基」の定義において、

式 ($\omega - 1 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一カルボニル基」(具体例: アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ラウロイル、ミリストイル、パルミトイyl、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、イソクロトノイル、シクロヘキシルカルボニル、シクロヘキシルメチルカルボニル、ベンゾイル、1-ナフトイル、2-ナフトイル、フェニルアセチル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環一カルボニル基」(具体例: 2-テノイル、3-フロイル、ニコチノイル、イソニコチノイル等の基) と称する。

式 ($\omega - 2 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一オキシカルボニル基」(具体例: メトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環一オキシカルボニル基」(具体例: 3-ピリジルオキシカルボニル等の基) と称する。

式 ($\omega - 3 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一カルボニル一カルボニル基」(具体例: ピルボイル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環一カルボニル一カルボニル基」と称する。

式 ($\omega - 4 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一オキシカルボニル一カルボニル基」(具体例: メトキサリル、エトキサリル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環一オキシカルボニル一カルボニル基」と称する。

式 ($\omega - 5 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一スルファニル一カルボニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環一スルファニル一カルボニル基」と称する。

式 ($\omega - 6 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一チオカルボニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環一チオカルボニル基」と称する。

式 ($\omega - 7 A$) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素一

オキシーチオカルボニル基」、 R^{a_1} がヘテロ環基である基を「ヘテロ環-オキシーチオカルボニル基」と称する。

式(ω-8 A)で表される基の中で、 R^{a_1} が炭化水素基である基を「炭化水素-スルファニルーチオカルボニル基」、 R^{a_1} がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニル基」と称する。

式(ω-9 A)で表される基の中で、 R^{a_1} が炭化水素基である基を「N-炭化水素-カルバモイル基」(具体例:N-メチルカルバモイル等の基)、 R^{a_1} がヘテロ環基である基を「N-ヘテロ環-カルバモイル基」と称する。

式(ω-10 A)で表される基の中で、 R^{a_1} 及び R^{b_1} が炭化水素基である基を「N, N-ジ(炭化水素)-カルバモイル基」(具体例:N, N-ジメチルカルバモイル等の基)、 R^{a_1} 及び R^{b_1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-カルバモイル基」、 R^{a_1} が炭化水素基であり R^{b_1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-置換カルバモイル基」、 R^{a_1} 及び R^{b_1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-カルボニル基」(具体例:モルホリノカルボニル等の基)と称する。

式(ω-11 A)で表される基の中で、 R^{a_1} が炭化水素基である基を「N-炭化水素-チオカルバモイル基」、 R^{a_1} がヘテロ環基である基を「N-ヘテロ環-チオカルバモイル基」と称する。

式(ω-12 A)で表される基の中で、 R^{a_1} 及び R^{b_1} が炭化水素基である基を「N, N-ジ(炭化水素)-チオカルバモイル基」、 R^{a_1} 及び R^{b_1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-チオカルバモイル基」、 R^{a_1} が炭化水素基であり R^{b_1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-チオカルバモイル基」、 R^{a_1} 及び R^{b_1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-チオカルボニル基」と称する。

式(ω-13 A)で表される基の中で、 R^{a_1} が炭化水素基である基を「N-炭化水素-スルファモイル基」、 R^{a_1} がヘテロ環基である基を「N-ヘテロ環-スルファモイル基」と称する。

式($\omega - 1\text{.}4\text{ A}$)で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素)-スルファモイル基」(具体例:N, N-ジメチルスルファモイル等の基)、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)スルファモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルファモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニル基」(具体例:1-ピロリルスルホニル等の基)と称する。

式($\omega - 1\text{.}5\text{ A}$)で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素-スルフィナモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル基」と称する。

式($\omega - 1\text{.}6\text{ A}$)で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニル基」と称する。

式($\omega - 1\text{.}7\text{ A}$)で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素-オキシスルホニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環-オキシスルホニル基」と称する。

式($\omega - 1\text{.}8\text{ A}$)で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素-オキシスルフィニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環-オキシスルフィニル基」と称する。

式($\omega - 1\text{.}9\text{ A}$)で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「O, O'-ジ(炭化水素)-ホスホノ基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「O, O'-ジ(ヘテロ環)-ホスホノ基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「O-炭化水素-O'-(ヘテロ環)-ホスホノ基」と称する。

式($\omega - 2\text{.}0\text{ A}$)で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素

ースルホニル基」(具体例:メタンスルホニル、ベンゼンスルホニル等の基)、R^{a1}がヘテロ環基である基を「ヘテロ環ースルホニル基」と称する。

式(ω-21A)で表される基の中で、R^{a1}が炭化水素基である基を「炭化水素ースルフィニル基」(具体例:メチルスルフィニル、ベンゼンスルフィニル等の基)、R^{a1}がヘテロ環基である基を「ヘテロ環ースルフィニル基」と称する。

上記式(ω-1A)乃至(ω-21A)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式(ω-1A)で表される「炭化水素ーカルボニル基」としては、アルキルーカルボニル基、アルケニルーカルボニル基、アルキニルーカルボニル基、シクロアルキルーカルボニル基、シクロアルケニルーカルボニル基、シクロアルカンジエニルーカルボニル基、シクロアルキルーアルキルーカルボニル基等の脂肪族炭化水素ーカルボニル基;アリールーカルボニル基;アラルキルーカルボニル基;架橋環式炭化水素ーカルボニル基;スピロ環式炭化水素ーカルボニル基;テルペン系炭化水素ーカルボニル基が挙げられる。以下、式(ω-2A)乃至(ω-21A)で表される基も同様である。

上記式(ω-1A)乃至(ω-21A)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式(ω-1A)で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式(ω-2A)乃至(ω-21A)で表される基も同様である。

上記式(ω-10A)乃至(ω-16A)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

本明細書において、ある官能基について「置換基を有していてもよい」という場合には、特に言及する場合を除き、その官能基が、化学的に可能な位置に1個又は2個以上の「置換基」を有する場合があることを意味する。官能基に存在する置換基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換

基が存在する場合には、それらは同一であっても異なっていてもよい。官能基に存在する「置換基」としては、例えば、ハロゲン原子、オキソ基、チオキソ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアナト基、チオシアナト基、イソシアナト基、イソチオシアナト基、ヒドロキシ基、スルファニル基、カルボキシ基、スルファニルカルボニル基、オキサロ基、メソオキサロ基、チオカルボキシ基、ジチオカルボキシ基、カルバモイル基、チオカルバモイル基、スルホ基、スルファモイル基、スルフィノ基、スルフィナモイル基、スルフェノ基、スルフェナモイル基、ホスホノ基、ヒドロキシホスホニル基、炭化水素基、ヘテロ環基、炭化水素-オキシ基、ヘテロ環-オキシ基、炭化水素-スルファニル基、ヘテロ環-スルファニル基、アシル基、アミノ基、ヒドラジノ基、ヒドラゾノ基、ジアゼニル基、ウレイド基、チオウレイド基、グアニジノ基、カルバモイミドイル基(アミジノ基)、アジド基、イミノ基、ヒドロキシアミノ基、ヒドロキシイミノ基、アミノオキシ基、ジアゾ基、セミカルバジノ基、セミカルバゾノ基、アロファニル基、ヒダントイル基、ホスファン基、ホスホロソ基、ホスホ基、ボリル基、シリル基、スタニル基、セラニル基、オキシド基等を挙げることができる。

上記「置換基を有していてもよい」の定義における「置換基」が2個以上存在する場合、該2個以上の置換基は、それらが結合している原子と一緒にになって環式基を形成してもよい。このような環式基には、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種が1個以上含有されていてもよく、該環上には1個以上の置換基が存在していてもよい。該環は、単環式又は縮合多環式のいずれであってもよく、芳香族又は非芳香族のいずれであってもよい。

上記「置換基を有していてもよい」の定義における「置換基」は、該置換基上の化学的に可能な位置で、上記「置換基」によって置換されていてもよい。置換基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換基で置換される場合には、それらは同一であっても異なっていてもよい。そのような例として、例えば、ハロゲン化アルキルカルボニル基(具体例:トリフルオロア

セチル等の基)、ハロゲン化アルキルースルホニル基(具体例:トリフルオロメタノスルホニル等の基)、アシルーオキシ基、アシルースルファニル基、N-炭化水素基-アミノ基、N, N-ジ(炭化水素)-アミノ基、N-ヘテロ環-アミノ基、N-炭化水素-N-ヘテロ環-アミノ基、アシルーアミノ基、ジ(アシル)-アミノ基等の基が挙げられる。また、上記「置換基」上での「置換」は複数次にわたって繰り返されてもよい。

「アシルーオキシ基」としては、「ヒドロキシ基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルオキシ基、グリオキシロイルオキシ基、チオホルミルオキシ基、カルバモイルオキシ基、チオカルバモイルオキシ基、スルファモイルオキシ基、スルフィナモイルオキシ基、カルボキシオキシ基、スルホオキシ基、ホスホノオキシ基、及び下記式:

(式中、 $R^{\alpha 2}$ 及び R^{b2} は、同一又は異なって、炭化水素基、又はヘテロ環基を表すか、あるいは $R^{\alpha 2}$ 及び R^{b2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す) で表される基が挙げられる。

上記「アシルーオキシ基」の定義において、

式（ω-1B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一カルボニルーオキシ基」（具体例：アセトキシ、ベンゾイルオキシ等の基）、R^{a2}がヘテロ環基である基を「ヘテロ環一カルボニルーオキシ基」と称する。

式（ω-2B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一オキシ一カルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一オキシ一カルボニルーオキシ基」と称する。

式（ω-3B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一カルボニル一カルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一カルボニル一カルボニルーオキシ基」と称する。

式（ω-4B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一オキシ一カルボニル一カルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一オキシ一カルボニル一カルボニルーオキシ基」と称する。

式（ω-5B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一スルファニル一カルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一スルファニル一カルボニルーオキシ基」と称する。

式（ω-6B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一チオカルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一チオカルボニルーオキシ基」と称する。

式（ω-7B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一オキシ一チオカルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一オキシ一チオカルボニルーオキシ基」と称する。

式（ω-8B）で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素一スルファニル一チオカルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環一スルファニル一チオカルボニルーオキシ基」と称する。

式（ω-9B）で表される基の中で、R^{a2}が炭化水素基である基を「N-炭化水素一カルバモイルーオキシ基」、R^{a2}がヘテロ環基である基を「N-ヘテロ環一カルバモイルーオキシ基」と称する。

式(ω-10B)で表される基の中で、R^{a2}及びR^{b2}が炭化水素基である基を「N, N-ジ(炭化水素)-カルバモイル-オキシ基」、R^{a2}及びR^{b2}がヘテロ環基である基を「N, N-ジ(ヘテロ環)-カルバモイル-オキシ基」、R^{a2}が炭化水素基でありR^{b2}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-カルバモイル-オキシ基」、R^{a2}及びR^{b2}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-カルボニル-オキシ基」と称する。

式(ω-11B)で表される基の中で、R^{a2}が炭化水素基である基を「N-炭化水素-チオカルバモイル-オキシ基」、R^{a2}がヘテロ環基である基を「N-ヘテロ環-チオカルバモイル-オキシ基」と称する。

式(ω-12B)で表される基の中で、R^{a2}及びR^{b2}が炭化水素基である基を「N, N-ジ(炭化水素)-チオカルバモイル-オキシ基」、R^{a2}及びR^{b2}がヘテロ環基である基を「N, N-ジ(ヘテロ環)-チオカルバモイル-オキシ基」、R^{a2}が炭化水素基でありR^{b2}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-チオカルバモイル-オキシ基」、R^{a2}及びR^{b2}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-チオカルボニル-オキシ基」と称する。

式(ω-13B)で表される基の中で、R^{a2}が炭化水素基である基を「N-炭化水素-スルファモイル-オキシ基」、R^{a2}がヘテロ環基である基を「N-ヘテロ環-スルファモイル-オキシ基」と称する。

式(ω-14B)で表される基の中で、R^{a2}及びR^{b2}が炭化水素基である基を「N, N-ジ(炭化水素)-スルファモイル-オキシ基」、R^{a2}及びR^{b2}がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルファモイル-オキシ基」、R^{a2}が炭化水素基でありR^{b2}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルファモイル-オキシ基」、R^{a2}及びR^{b2}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-スルホニル-オキシ基」と称する。

式(ω-15B)で表される基の中で、R^{a2}が炭化水素基である基を「N-炭化水素-スルフィナモイル-オキシ基」、R^{a2}がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル-オキシ基」と称する。

式(ω-16B)で表される基の中で、R^{a2}及びR^{b2}が炭化水素基である基を「N,N-ジ(炭化水素)-スルフィナモイル-オキシ基」、R^{a2}及びR^{b2}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-スルフィナモイル-オキシ基」、R^{a2}が炭化水素基でありR^{b2}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-オキシ基」、R^{a2}及びR^{b2}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-スルフィニル-オキシ基」と称する。

式(ω-17B)で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素-オキシ-スルホニル-オキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環-オキシ-スルホニル-オキシ基」と称する。

式(ω-18B)で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素-オキシ-スルフィニル-オキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環-オキシ-スルフィニル-オキシ基」と称する。

式(ω-19B)で表される基の中で、R^{a2}及びR^{b2}が炭化水素基である基を「O,O'-ジ(炭化水素)-ホスホノ-オキシ基」、R^{a2}及びR^{b2}がヘテロ環基である基を「O,O'-ジ(ヘテロ環)-ホスホノ-オキシ基」、R^{a2}が炭化水素基でありR^{b2}がヘテロ環基である基を「O-炭化水素置換-O'-ヘテロ環置換ホスホノ-オキシ基」と称する。

式(ω-20B)で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素-スルホニル-オキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環-スルホニル-オキシ基」と称する。

式(ω-21B)で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素-スルフィニル-オキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環-スルフィニル-オキシ基」と称する。

上記式 ($\omega-1B$) 乃至 ($\omega-21B$) で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式 ($\omega-1B$) で表される「炭化水素—カルボニル—オキシ基」としては、アルキル—カルボニル—オキシ基、アルケニル—カルボニル—オキシ基、アルキニル—カルボニル—オキシ基、シクロアルキル—カルボニル—オキシ基、シクロアルケニル—カルボニル—オキシ基、シクロアルカンジエニル—カルボニル—オキシ基、シクロアルキル—アルキル—カルボニル—オキシ基等の脂肪族炭化水素—カルボニル—オキシ基；アリール—カルボニル—オキシ基；アラルキル—カルボニル—オキシ基；架橋環式炭化水素—カルボニル—オキシ基；スピロ環式炭化水素—カルボニル—オキシ基；テルペン系炭化水素—カルボニル—オキシ基が挙げられる。以下、式 ($\omega-2B$) 乃至 ($\omega-21B$) で表される基も同様である。

上記式 ($\omega-1B$) 乃至 ($\omega-21B$) で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 ($\omega-1B$) で表される「ヘテロ環—カルボニル基」としては、例えば、単環式ヘテロアリール—カルボニル基、縮合多環式ヘテロアリール—カルボニル基、単環式非芳香族ヘテロ環—カルボニル基、縮合多環式非芳香族ヘテロ環—カルボニル基が挙げられる。以下、式 ($\omega-2B$) 乃至 ($\omega-21B$) で表される基も同様である。

上記式 ($\omega-10B$) 乃至 ($\omega-16B$) で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシル—オキシ基」、「炭化水素—オキシ基」、及び「ヘテロ環—オキシ基」を総称して、「置換オキシ基」と称する。また、これら「置換オキシ基」と「ヒドロキシ基」を総称して、「置換基を有していてもよいヒドロキシ基」と称する。

「アシル—スルファニル基」としては、「スルファニル基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルスルファニル基、グリオキシロイルスルファニル基、チオホルミルスルファニル基、カルバモイルスルファニル基、チオカルバモイルスルファニル基、スルファモイルスルファニル基、スルフィナモイルスルファニル基、カルボキシスルファニル基、スルホスルファニル

基、ホスホノスルファニル基、及び下記式：

(式中、 $\text{R}^{\alpha 3}$ 及び $\text{R}^{\beta 3}$ は、同一又は異なって、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいは $\text{R}^{\alpha 3}$ 及び $\text{R}^{\beta 3}$ が一緒になって、それらが結合している窒素原子と共に、置換基を有していて

もよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルースルファニル基」の定義において、

式(ω-1C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-カルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-カルボニルースルファニル基」と称する。

式(ω-2C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-オキシカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-オキシカルボニルースルファニル基」と称する。

式(ω-3C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-カルボニルカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-カルボニルカルボニルースルファニル基」と称する。

式(ω-4C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-オキシカルボニルカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-オキシカルボニルカルボニルースルファニル基」と称する。

式(ω-5C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-スルファニルカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-スルファニルカルボニルースルファニル基」と称する。

式(ω-6C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-チオカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-チオカルボニルースルファニル基」と称する。

式(ω-7C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-オキシチオカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-オキシチオカルボニルースルファニル基」と称する。

式(ω-8C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-スルファニルチオカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-スルファニルチオカルボニルースルファニル基」と称する。

式(ω-9C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水

素一カルバモイルースルファニル基」、R^{a3}がヘテロ環基である基を「N—ヘテロ環一カルバモイルースルファニル基」と称する。

式(ω-10C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「N,N-ジ(炭化水素)-カルバモイルースルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-カルバモイルースルファニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-カルバモイルースルファニル基」、R^{a3}及びR^{b3}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノカルボニルースルファモイル基」と称する。

式(ω-11C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水素-チオカルバモイルースルファニル基」、R^{a3}がヘテロ環基である基を「N-ヘテロ環-チオカルバモイルースルファニル基」と称する。

式(ω-12C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「N,N-ジ(炭化水素)-チオカルバモイルースルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-チオカルバモイルースルファニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-チオカルバモイルースルファニル基」、R^{a3}及びR^{b3}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノチオカルボニルースルファニル基」と称する。

式(ω-13C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水素-スルファモイルースルファニル基」、R^{a3}がヘテロ環基である基を「N-ヘテロ環-スルファモイルースルファニル基」と称する。

式(ω-14C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「N,N-ジ(炭化水素)-スルファモイルースルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-スルファモイルースルフィニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環スルファモイルースルファニル基」、R^{a3}及びR^{b3}が一緒になって、それら

が結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルースルファニル基」と称する。

式(ω-15C)で表される基の中で、R^{a3}が炭化水素基である基を「N-炭化水素-スルフィナモイルースルファニル基」、R^{a3}がヘテロ環基である基を「N-ヘテロ環-スルフィナモイルースルファニル基」と称する。

式(ω-16C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「N,N-ジ(炭化水素)-スルフィナモイルースルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-スルフィナモイルースルファニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイルースルファニル基」、R^{a3}及びR^{b3}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルファニルースルファニル基」と称する。

式(ω-17C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-オキシスルホニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-オキシスルホニルースルファニル基」と称する。

式(ω-18C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-オキシスルフィニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-オキシスルフィニルースルファニル基」と称する。

式(ω-19C)で表される基の中で、R^{a3}及びR^{b3}が炭化水素基である基を「O,O'-ジ(炭化水素)-ホスホノースルファニル基」、R^{a3}及びR^{b3}がヘテロ環基である基を「O,O'-ジ(ヘテロ環)-ホスホノースルファニル基」、R^{a3}が炭化水素基でありR^{b3}がヘテロ環基である基を「O-炭化水素-O'-ヘテロ環-ホスホノースルファニル基」と称する。

式(ω-20C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-スルホニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-スルホニルースルファニル基」と称する。

式(ω-21C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素

ースルフィニルースルファニル基」、 R^{a_3} がヘテロ環基である基を「ヘテロ環ー
スルフィニルースルファニル基」と称する。

上記式 ($\omega - 1 C$) 乃至 ($\omega - 21 C$) で表される基における「炭化水素」とし
ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式 ($\omega - 1 C$) で
表される「炭化水素ーカルボニルースルファニル基」としては、アルキルーカル
ボニルースルファニル基、アルケニルーカルボニルースルファニル基、アルキニ
ルーカルボニルースルファニル基、シクロアルキルーカルボニルースルファニル
基、シクロアルケニルーカルボニルースルファニル基、シクロアルカンジエニル
ーカルボニルースルファニル基、シクロアルキルーアルキルーカルボニルースル
ファニル基等の脂肪族炭化水素ーカルボニルースルファニル基；アリールーカル
ボニルースルファニル基；アラルキルーカルボニルースルファニル基；架橋環式
炭化水素ーカルボニルースルファニル基；スピロ環式炭化水素ーカルボニルース
ルファニル基；テルペン系炭化水素ーカルボニルースルファニル基が挙げられる。
以下、式 ($\omega - 2 C$) 乃至 ($\omega - 21 C$) で表される基も同様である。

上記式 ($\omega - 1 C$) 乃至 ($\omega - 21 C$) で表される基における「ヘテロ環」とし
ては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 ($\omega - 1 C$) で
表される「ヘテロ環ーカルボニルースルファニル基」としては、例えば、単環式
ヘテロアリールーカルボニルースルファニル基、縮合多環式ヘテロアリールーカ
ルボニルースルファニル基、単環式非芳香族ヘテロ環ーカルボニルースルファニ
ル基、縮合多環式非芳香族ヘテロ環ーカルボニルースルファニル基が挙げられる。
以下、式 ($\omega - 2 C$) 乃至 ($\omega - 21 C$) で表される基も同様である。

上記式 ($\omega - 10 C$) 乃至 ($\omega - 16 C$) で表される基における「環状アミノ」
としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルースルファニル基」、「炭化水素ースルファニル基」、及び「ヘテロ環
ースルファニル基」を総称して、「置換スルファニル基」と称する。また、これら
「置換スルファニル基」と「スルファニル基」を総称して、「置換基を有していて
もよいスルファニル基」と称する。

「N-炭化水素-アミノ基」としては、「アミノ基」の1つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、N-アルキルアミノ基、N-アルケニルアミノ基、N-アルキニルアミノ基、N-シクロアルキルアミノ基、N-シクロアルキルアルキルアミノ基、N-アリールアミノ基、N-アラルキルアミノ基等が挙げられる。

「N-アルキルアミノ基」としては、例えば、メチルアミノ、エチルアミノ、n-プロピルアミノ、イソプロピルアミノ、n-ブチルアミノ、イソブチルアミノ、sec-ブチルアミノ、tert-ブチルアミノ、n-ペンチルアミノ、イソペンチルアミノ、(2-メチルブチル)アミノ、(1-メチルブチル)アミノ、ネオペンチルアミノ、(1, 2-ジメチルプロピル)アミノ、(1-エチルプロピル)アミノ、n-ヘキシリルアミノ、(4-メチルペンチル)アミノ、(3-メチルペンチル)アミノ、(2-メチルペンチル)アミノ、(1-メチルペンチル)アミノ、(3, 3-ジメチルブチル)アミノ、(2, 2-ジメチルブチル)アミノ、(1, 1-ジメチルブチル)アミノ、(1, 2-ジメチルブチル)アミノ、(1, 3-ジメチルブチル)アミノ、(2, 3-ジメチルブチル)アミノ、(2-エチルブチル)アミノ、(1-エチルブチル)アミノ、(1-エチル-1-メチルプロピル)アミノ、n-ヘプチルアミノ、n-オクチルアミノ、n-ノニルアミノ、n-デシルアミノ、n-ウンデシルアミノ、n-ドデシルアミノ、n-トリデシルアミノ、n-テトラデシルアミノ、n-ペントラデシルアミノ等のC₁~C₁₅の直鎖状又は分枝鎖状のN-アルキルアミノ基が挙げられる。

「N-アルケニルアミノ基」としては、例えば、ビニルアミノ、(プロパー-1-エン-1-イル)アミノ、アリルアミノ、イソプロペニルアミノ、(ブター-1-エン-1-イル)アミノ、(ブター-2-エン-1-イル)アミノ、(ブター-3-エン-1-イル)アミノ、(2-メチルプロパー-2-エン-1-イル)アミノ、(1-メチルプロパー-2-エン-1-イル)アミノ、(ペンタ-1-エン-1-イル)アミノ、(ペンタ-2-エン-1-イル)アミノ、(ペンタ-3-エン-1-イル)アミノ、(ペンタ-4-エン-1-イル)アミノ、(3-メチルブター-2-エン-

1-イル)アミノ、(3-メチルブタ-3-エン-1-イル)アミノ、(ヘキサ-1-エン-1-イル)アミノ、(ヘキサ-2-エン-1-イル)アミノ、(ヘキサ-3-エン-1-イル)アミノ、(ヘキサ-4-エン-1-イル)アミノ、(ヘキサ-5-エン-1-イル)アミノ、(4-メチルペンタ-3-エン-1-イル)アミノ、(4-メチルペンタ-3-エン-1-イル)アミノ、(ヘプタ-1-エン-1-イル)アミノ、(ヘプタ-6-エン-1-イル)アミノ、(オクタ-1-エン-1-イル)アミノ、(オクタ-7-エン-1-イル)アミノ、(ノナ-1-エン-1-イル)アミノ、(ノナ-8-エン-1-イル)アミノ、(デカ-1-エン-1-イル)アミノ、(デカ-9-エン-1-イル)アミノ、(ウンデカ-1-エン-1-イル)アミノ、(ウンデカ-10-エン-1-イル)アミノ、(ドデカ-1-エン-1-イル)アミノ、(ドデカ-11-エン-1-イル)アミノ、(トリデカ-1-エン-1-イル)アミノ、(トリデカ-12-エン-1-イル)アミノ、(テトラデカ-1-エン-1-イル)アミノ、(テトラデカ-13-エン-1-イル)アミノ、(ペンタデカ-14-エン-1-イル)アミノ等のC₂~C₁₅の直鎖状又は分枝鎖状のN-アルケニル-アミノ基が挙げられる。

「N-アルキニル-アミノ基」としては、例えば、エチニルアミノ、(プロパー-1-イン-1-イル)アミノ、(プロパー-2-イン-1-イル)アミノ、(ブタ-1-イン-1-イル)アミノ、(ブタ-3-イン-1-イル)アミノ、(1-メチルプロパー-2-イン-1-イル)アミノ、(ペンタ-1-イン-1-イル)アミノ、(ペンタ-4-イン-1-イル)アミノ、(ヘキサ-1-イン-1-イル)アミノ、(ヘキサ-5-イン-1-イル)アミノ、(ヘプタ-1-イン-1-イル)アミノ、(オクタ-1-イン-1-イル)アミノ、(オクタ-7-イン-1-イル)アミノ、(ノナ-1-イン-1-イル)アミノ、(ノナ-8-イン-1-イル)アミノ、(デカ-1-イン-1-イル)アミノ、(デカ-9-イン-1-イル)アミノ、(ウンデカ-1-イン-1-イル)アミノ、(ウンデカ-10-イン-1-イル)アミノ、(ドデカ-1-イン-1-イル)アミノ、

(ドデカ-11-イン-1-イル)アミノ、(トリデカ-1-イン-1-イル)アミノ、(トリデカ-12-イン-1-イル)アミノ、(テトラデカ-1-イン-1-イル)アミノ、(テトラデカ-13-イン-1-イル)アミノ、(ペンタデカ-1-イン-1-イル)アミノ、(ペンタデカ-14-イン-1-イル)アミノ等のC₂～C₁₅の直鎖状又は分枝鎖状のN-アルキニルーアミノ基が挙げられる。

「N-シクロアルキルーアミノ基」としては、例えば、シクロプロピルアミノ、シクロブチルアミノ、シクロペンチルアミノ、シクロヘキシリルアミノ、シクロヘプチルアミノ、シクロオクチルアミノ等のC₃～C₈のN-シクロアルキルーアミノ基が挙げられる。

「N-シクロアルキルーアルキルーアミノ基」としては、例えば、(シクロプロピルメチル)アミノ、(1-シクロプロピルエチル)アミノ、(2-シクロプロピルエチル)アミノ、(3-シクロプロピルプロピル)アミノ、(4-シクロプロピルブチル)アミノ、(5-シクロプロピルペンチル)アミノ、(6-シクロプロピルヘキシリル)アミノ、(シクロブチルメチル)アミノ、(シクロペンチルメチル)アミノ、(シクロヘキシリルメチル)アミノ、(シクロヘキシリルメチル)アミノ、(2-シクロヘキシリルエチル)アミノ、(3-シクロヘキシリルプロピル)アミノ、(4-シクロヘキシリルブチル)アミノ、(シクロヘプチルメチル)アミノ、(シクロオクチルメチル)アミノ、(6-シクロオクチルヘキシリル)アミノ等のC₄～C₁₄のN-シクロアルキルーアルキルーアミノ基が挙げられる。

「N-アリールーアミノ基」としては、例えば、フェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ、アントリルアミノ、フェナントリルアミノ、アセナフチレニルアミノ等のC₆～C₁₄のN-モノ-アリールーアミノ基が挙げられる。

「N-アラルキルーアミノ基」としては、例えば、ベンジルアミノ、(1-ナフチルメチル)アミノ、(2-ナフチルメチル)アミノ、(アントラセニルメチル)アミノ、(フェナントレニルメチル)アミノ、(アセナフチレニルメチル)アミノ、(ジフェニルメチル)アミノ、(1-フェネチル)アミノ、(2-フェネチル)ア

ミノ、(1-(1-ナフチル)エチル)アミノ、(1-(2-ナフチル)エチル)アミノ、(2-(1-ナフチル)エチル)アミノ、(2-(2-ナフチル)エチル)アミノ、(3-フェニルプロピル)アミノ、(3-(1-ナフチル)プロピル)アミノ、(3-(2-ナフチル)プロピル)アミノ、(4-フェニルブチル)アミノ、(4-(1-ナフチル)ブチル)アミノ、(4-(2-ナフチル)ブチル)アミノ、(5-フェニルペンチル)アミノ、(5-(1-ナフチル)ペンチル)アミノ、(5-(2-ナフチル)ペンチル)アミノ、(6-フェニルヘキシル)アミノ、(6-(1-ナフチル)ヘキシル)アミノ、(6-(2-ナフチル)ヘキシル)アミノ等のC₇～C₁₆のN-アラルキルアミノ基が挙げられる。

「N,N-ジ(炭化水素)-アミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチル-N-メチルアミノ、N,N-ジ-n-ブロピルアミノ、N,N-ジイソプロピルアミノ、N-アリル-N-メチルアミノ、N-(プロパー-2-イン-1-イル)-N-メチルアミノ、N,N-ジシクロヘキシルアミノ、N-シクロヘキシル-N-メチルアミノ、N-シクロヘキシルメチルアミノ-N-メチルアミノ、N,N-ジフェニルアミノ、N-メチル-N-フェニルアミノ、N,N-ジベンジルアミノ、N-ベンジル-N-メチルアミノ等の基が挙げられる。

「N-ヘテロ環-アミノ基」としては、「アミノ基」の1つ水素原子が、「ヘテロ環基」で置換された基が挙げられ、例えば、(3-ピロリジニル)アミノ、(4-ピペリジニル)アミノ、(2-テトラヒドロピラニル)アミノ、(3-インドリニル)アミノ、(4-クロマニル)アミノ、(3-チエニル)アミノ、(3-ピリジル)アミノ、(3-キノリル)アミノ、(5-インドリル)アミノ等の基が挙げられる。

「N-炭化水素-N-ヘテロ環-アミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」及び「ヘテロ環基」で1つずつ置換された基が挙げられ、例えば、N-メチル-N-(4-ピペリジニル)アミノ、N-(4-クロマニル)-N-メチルアミノ、N-メチル-N-(3-チエニル)アミノ、N-メチル-

N-(3-ピリジル)アミノ、N-メチル-N-(3-キノリル)アミノ等の基が挙げられる。

「アシルーアミノ基」としては、「アミノ基」の1つの水素原子が、「アシル基」で置換された基が挙げられ、例えば、ホルミルアミノ基、グリオキシロイルアミノ基、チオホルミルアミノ基、カルバモイルアミノ基、チオカルバモイルアミノ基、スルファモイルアミノ基、スルフィナモイルアミノ基、カルボキシアミノ基、スルホアミノ基、ホスホノアミノ基、及び下記式：

(式中、 $R^{\alpha 4}$ 及び $R^{\beta 4}$ は、同一又は異なって、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいは $R^{\alpha 4}$ 及び $R^{\beta 4}$ が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す) で表される基が挙げられる。

上記「アシルーアミノ基」の定義において、

式（ω-1 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-カルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-カルボニルーアミノ基」と称する。

式（ω-2 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-オキシカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-オキシカルボニルーアミノ基」と称する。

式（ω-3 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-カルボニルーカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-カルボニルーカルボニルーアミノ基」と称する。

式（ω-4 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-オキシカルボニルーカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-オキシカルボニルーカルボニルーアミノ基」と称する。

式（ω-5 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-スルファニルーカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-スルファニルーカルボニルーアミノ基」と称する。

式（ω-6 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-チオカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-チオカルボニルーアミノ基」と称する。

式（ω-7 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-オキシチオカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-オキシチオカルボニルーアミノ基」と称する。

式（ω-8 D）で表される基の中で、R^{a-4}が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーアミノ基」、R^{a-4}がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルーアミノ基」と称する。

式（ω-9 D）で表される基の中で、R^{a-4}が炭化水素基である基を「N-炭化水素-カルバモイル基」、R^{a-4}がヘテロ環基である基を「N-ヘテロ環-カルバモ

イルーアミノ基」と称する。

式(ω-10D)で表される基の中で、R^{a4}及びR^{b4}が炭化水素基である基を「N,N-ジ(炭化水素)-カルバモイルーアミノ基」、R^{a4}及びR^{b4}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-カルバモイルーアミノ基」、R^{a4}が炭化水素基でありR^{b4}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-カルバモイルーアミノ基」、R^{a4}及びR^{b4}が一緒にになって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノカルボニルーアミノ基」と称する。

式(ω-11D)で表される基の中で、R^{a4}が炭化水素基である基を「N-炭化水素-チオカルバモイルーアミノ基」、R^{a4}がヘテロ環基である基を「N-ヘテロ環-チオカルバモイルーアミノ基」と称する。

式(ω-12D)で表される基の中で、R^{a4}及びR^{b4}が炭化水素基である基を「N,N-ジ(炭化水素)-チオカルバモイルーアミノ基」、R^{a4}及びR^{b4}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-チオカルバモイルーアミノ基」、R^{a4}が炭化水素基でありR^{b4}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-チオカルバモイルーアミノ基」、R^{a4}及びR^{b4}が一緒にになって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノチオカルボニルーアミノ基」と称する。

式(ω-13D)で表される基の中で、R^{a4}が炭化水素基である基を「N-炭化水素-スルファモイルーアミノ基」、R^{a4}がヘテロ環基である基を「N-ヘテロ環-スルファモイルーアミノ基」と称する。

式(ω-14D)で表される基の中で、R^{a4}及びR^{b4}が炭化水素基である基を「ジ(炭化水素)スルファモイルーアミノ基」、R^{a4}及びR^{b4}がヘテロ環基である基を「N,N-ジ(ヘテロ環)スルファモイルーアミノ基」、R^{a4}が炭化水素基でありR^{b4}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルファモイルーアミノ基」、R^{a4}及びR^{b4}がと一緒にになって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノスルホニルーアミノ基」と称する。

式(ω-15D)で表される基の中で、R^{a4}が炭化水素基である基を「N-炭化水素-スルフィナモイルーアミノ基」、R^{a4}がヘテロ環基である基を「N-ヘテロ環-スルフィナモイルーアミノ基」と称する。;式(ω-16D)で表される基の中で、R^{a4}及びR^{b4}が炭化水素基である基を「N,N-ジ(炭化水素)-スルフィナモイルーアミノ基」、R^{a4}及びR^{b4}がヘテロ環基である基を「N,N-ジ(ヘテロ環)-スルフィナモイルーアミノ基」、R^{a4}が炭化水素基でありR^{b4}がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイルーアミノ基」、R^{a4}及びR^{b4}が一緒に、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノ-スルフィニルーアミノ基」と称する。

式(ω-17D)で表される基の中で、R^{a4}が炭化水素基である基を「炭化水素-オキシ-スルホニルーアミノ基」、R^{a4}がヘテロ環基である基を「ヘテロ環-オキシ-スルホニルーアミノ基」と称する。

式(ω-18D)で表される基の中で、R^{a4}が炭化水素基である基を「炭化水素-オキシ-スルフィニルーアミノ基」、R^{a4}がヘテロ環基である基を「ヘテロ環-オキシ-スルフィニルーアミノ基」と称する。

式(ω-19D)で表される基の中で、R^{a4}及びR^{b4}が炭化水素基である基を「O,O'-ジ(炭化水素)-ホスホノーアミノ基」、R^{a4}及びR^{b4}がヘテロ環基である基を「O,O'-ジ(ヘテロ環)-ホスホノーアミノ基」、R^{a4}が炭化水素基でありR^{b4}がヘテロ環基である基を「O-炭化水素-O'-ヘテロ環-ホスホノーアミノ基」と称する。

式(ω-20D)で表される基の中で、R^{a4}が炭化水素基である基を「炭化水素-スルホニルーアミノ基」、R^{a4}がヘテロ環基である基を「ヘテロ環-スルホニルーアミノ基」と称する。

式(ω-21D)で表される基の中で、R^{a4}が炭化水素基である基を「炭化水素-スルフィニルーアミノ基」、R^{a4}がヘテロ環基である基を「ヘテロ環-スルフィニルーアミノ基」と称する。

上記式(ω-1D)乃至(ω-21D)で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega - 1D$)で表される「炭化水素カルボニルアミノ基」としては、アルキルカルボニルアミノ基、アルケニルカルボニルアミノ基、アルキニルカルボニルアミノ基、シクロアルキルカルボニルアミノ基、シクロアルケニルカルボニルアミノ基、シクロアルカンジエニルカルボニルアミノ基、シクロアルキルアルキルカルボニルアミノ基等の脂肪族炭化水素カルボニルアミノ基；アリールカルボニルアミノ基；アラルキルカルボニルアミノ基；架橋環式炭化水素カルボニルアミノ基；スピロ環式炭化水素カルボニルアミノ基；テルペニ系炭化水素カルボニルアミノ基が挙げられる。以下、式($\omega - 2D$)乃至($\omega - 21D$)で表される基も同様である。

上記式($\omega - 1D$)乃至($\omega - 21D$)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega - 1D$)で表される「ヘテロ環カルボニルアミノ基」としては、例えば、単環式ヘテロアリールカルボニルアミノ基、縮合多環式ヘテロアリールカルボニルアミノ基、単環式非芳香族ヘテロ環カルボニルアミノ基、縮合多環式非芳香族ヘテロ環カルボニルアミノ基が挙げられる。以下、式($\omega - 2D$)乃至($\omega - 21D$)で表される基も同様である。

上記式($\omega - 10D$)乃至($\omega - 16D$)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

「ジ(アシル)アミノ基」としては、「アミノ基」の2つの水素原子が、上記「置換基を有していてもよい」の「置換基」の定義における「アシル基」で置換された基が挙げられ、例えば、ジ(ホルミル)アミノ基、ジ(グリオキシロイル)アミノ基、ジ(チオホルミル)アミノ基、ジ(カルバモイル)アミノ基、ジ(チオカルバモイル)アミノ基、ジ(スルファモイル)アミノ基、ジ(スルフィナモイル)アミノ基、ジ(カルボキシ)アミノ基、ジ(スルホ)アミノ基、ジ(ホスホノ)アミノ基、及び下記式：

(式中、 $R^{\alpha 5}$ 及び $R^{\beta 5}$ は、同一又は異なって、水素原子、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいは $R^{\alpha 5}$ 及び $R^{\beta 5}$ が一緒にになって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す) で表される基があげられる

上記「ジ(アシル)-アミノ基」の定義において、

式 ($\omega - 1 \text{ E}$) で表される基で、 $R^{\alpha 5}$ が炭化水素基である基を「ビス(炭化水素

一カルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-カルボニル) -アミノ基」と称する。

式(ω-2E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-オキシカルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-オキシカルボニル) -アミノ基」と称する。

式(ω-3E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-カルボニル-カルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-カルボニル-カルボニル) -アミノ基」と称する。

式(ω-4E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-オキシカルボニル-カルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-オキシカルボニル-カルボニル) -アミノ基」と称する。

式(ω-5E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-スルファニル-カルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-スルファニル-カルボニル) -アミノ基」と称する。

式(ω-6E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-チオカルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-チオカルボニル) -アミノ基」と称する。

式(ω-7E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-オキシチオカルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-オキシチオカルボニル) -アミノ基」と称する。

式(ω-8E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-スルファニル-チオカルボニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-スルファニル-チオカルボニル) -アミノ基」と称する。

式(ω-9E)で表される基で、R^{a5}が炭化水素基である基を「ビス(N-炭化水素-カルバモイル)アミノ基」、R^{a5}がヘテロ環基である基を「ビス(N-ヘテロ環-カルバモイル)アミノ基」と称する。

式(ω-10E)で表される基で、R^{a5}及びR^{b5}が炭化水素基である基を「ビス

[N, N-ジ(炭化水素)-カルバモイル]-アミノ基」、R^{a5}及びR^{b5}がヘテロ環基である基を「ビス[N, N-ジ(ヘテロ環)-カルバモイル]-アミノ基」、R^{a5}が炭化水素基でありR^{b5}がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-カルバモイル)-アミノ基」、R^{a5}及びR^{b5}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノ-カルボニル)-アミノ基」と称する。

式(ω-11E)で表される基で、R^{a5}が炭化水素基である基を「ビス(N-炭化水素-チオカルバモイル)-アミノ基」、R^{a5}がヘテロ環基である基を「ビス(N-ヘテロ環-チオカルバモイル)-アミノ基」と称する。

式(ω-12E)で表される基で、R^{a5}及びR^{b5}が炭化水素基である基を「ビス[N, N-ジ(炭化水素)-チオカルバモイル]-アミノ基」、R^{a5}及びR^{b5}がヘテロ環基である基を「ビス[N, N-ジ(ヘテロ環)-チオカルバモイル]-アミノ基」、R^{a5}が炭化水素基でありR^{b5}がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-チオカルバモイル)-アミノ基」、R^{a5}及びR^{b5}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノ-チオカルボニル)-アミノ基」と称する。

式(ω-13E)で表される基で、R^{a5}が炭化水素基である基を「ビス(N-炭化水素-スルファモイル)-アミノ基」、R^{a5}がヘテロ環基である基を「ビス(N-ヘテロ環-スルファモイル)-アミノ基」と称する。

式(ω-14E)で表される基で、R^{a5}及びR^{b5}が炭化水素基である基を「ビス[N, N-ジ(炭化水素)-スルファモイル]-アミノ基」、R^{a5}及びR^{b5}がヘテロ環基である基を「ビス[N, N-ジ(ヘテロ環)-スルファモイル]-アミノ基」、R^{a5}が炭化水素基でありR^{b5}がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-スルファモイル)-アミノ基」、R^{a5}及びR^{b5}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノ-スルホニル)-アミノ基」と称する。

式(ω-15E)で表される基で、R^{a5}が炭化水素基である基を「ビス(N-

化水素ースルフィナモイル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(N-ヘテロ環ースルフィナモイル) -アミノ基」と称する。

式(ω-16E)で表される基で、R^{a5}及びR^{b5}が炭化水素基である基を「ビス[N, N-ジ(炭化水素)ースルフィナモイル] -アミノ基」、R^{a5}及びR^{b5}がヘテロ環基である基を「ビス[N, N-ジ(ヘテロ環)ースルフィナモイル] -アミノ基」、R^{a5}が炭化水素基でありR^{b5}がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環ースルフィナモイル) -アミノ基」、R^{a5}及びR^{b5}が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルフィニル) -アミノ基」と称する。

式(ω-17E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-オキシースルホニル) アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-オキシースルホニル) -アミノ基」と称する。

式(ω-18E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-オキシースルフィニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-オキシースルフィニル) -アミノ基」と称する。

式(ω-19E)で表される基で、R^{a5}及びR^{b5}が炭化水素基である基を「ビス[O, O'-ジ(炭化水素)-ホスホノ] -アミノ基」、R^{a5}及びR^{b5}がヘテロ環基である基を「ビス[O, O'-ジ(ヘテロ環)-ホスホノ] -アミノ基」、R^{a5}が炭化水素基でありR^{b5}がヘテロ環基である基を「ビス(O-炭化水素-O'-ヘテロ環-ホスホノ) -アミノ基」と称する。

式(ω-20E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素ースルホニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環ースルホニル) -アミノ基」と称する。

式(ω-21E)で表される基で、R^{a5}が炭化水素基である基を「ビス(炭化水素-スルフィニル) -アミノ基」、R^{a5}がヘテロ環基である基を「ビス(ヘテロ環-スルフィニル) -アミノ基」と称する。

上記式(ω-1E)乃至(ω-21E)で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式(ω-1E)で表される「ビス(炭化水素カルボニル)-アミノ基」としては、ビス(アルキルカルボニル)-アミノ基、ビス(アルケニルカルボニル)-アミノ基、ビス(アルキニルカルボニル)-アミノ基、ビス(シクロアルキルカルボニル)-アミノ基、ビス(シクロアルケニルカルボニル)-アミノ基、ビス(シクロアルキル-アルキルカルボニル)-アミノ基等のビス(脂肪族炭化水素カルボニル)-アミノ基；ビス(アリールカルボニル)-アミノ基；ビス(アラルキルカルボニル)-アミノ基；ビス(架橋環式炭化水素カルボニル)-アミノ基；ビス(スピロ環式炭化水素カルボニル)-アミノ基；ビス(テルペン系炭化水素カルボニル)-アミノ基が挙げられる。以下、式(ω-2E)乃至(ω-21E)で表される基も同様である。

上記式(ω-1E)乃至(ω-21E)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式(ω-1E)で表される「ビス(ヘテロ環カルボニル)-アミノ基」としては、例えば、ビス(単環式ヘテロアリールカルボニル)-アミノ基、ビス(縮合多環式ヘテロアリールカルボニル)-アミノ基、ビス(単環式非芳香族ヘテロ環カルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環カルボニル)-アミノ基が挙げられる。以下、式(ω-2E)乃至(ω-21E)で表される基も同様である。上記式(ω-10E)乃至(ω-16E)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルアミノ基」及び「ジ(アシル)-アミノ基」を総称して、「アシル置換アミノ基」と称する。また、上記「N-炭化水素アミノ基」、「N,N-ジ(炭化水素)-アミノ基」、「N-ヘテロ環アミノ基」、「N-炭化水素-N-ヘテロ環アミノ基」、「環状アミノ基」、「アシルアミノ基」、及び「ジ(アシル)-アミノ基」を総称して、「置換アミノ基」と称する。

以下、上記一般式(I)で表される化合物について具体的に説明する。

上記一般式（I）において、Aとしては、水素原子又はアセチル基を挙げることができ、好適には水素原子である。

環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいアレーン」の「アレーン」としては、単環式又は縮合多環式芳香族炭化水素が挙げられ、例えば、ベンゼン環、ナフタレン環、アンラセン環、フェナントレン環、アセナフチレン環等が挙げられる。好適には、ベンゼン環、ナフタレン環等のC₆～C₁₀のアレーンであり、さらに好適には、ベンゼン環及びナフタレン環であり、最も好適には、ベンゼン環である。

上記環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のアレーン上での置換位置は特に限定されない。また、該置換基が2個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいアレーン」が「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、好適には、「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他に更に1ないし3個の置換基を有するベンゼン環」であり、更に好適には、「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他に更に1個の置換基を有するベンゼン環」である。このとき、該置換基としては、好適には、下記「置換基群γ-1z」から選択される基であり、更に好適には、ハロゲン原子及びtert-ブチル基[(1,1-ジメチル)エチ

ル基] であり、最も好適には、ハロゲン原子である。

[置換基群 $\gamma - 1 z$] ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、メトキシ基、メチル基、イソプロピル基、*t e r t*-ブチル基、1, 1, 3, 3-テトラメチルブチル基、2-フェニルエテン-1-イル基、2, 2-ジシアノエテノ-1-イル基、2-シアノ-2-(メトキシカルボニル)エテノ-1-イル基、2-カルボキシ-2-シアノエテノ-1-イル基、エチニル基、フェニルエチニル基、(トリメチルシリル)エチニル基、トリフルオロメチル基、ペンタフルオロエチル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェニル基、2, 4-ジフルオロフェニル基、2-フェネチル基、1-ヒドロキシエチル基、1-(メトキシイミノ)エチル基、1-[ベンジルオキシ]イミノ]エチル基、2-チエニル基[チオフェン-2-イル基]、3-チエニル基[チオフェン-3-イル基]、1-ピロリル基[ピロール-1-イル基]、2-メチルチアゾール-4-イル基、イミダゾ[1, 2-a]ピリジン-2-イル基、2-ピリジル基[ピリジン-2-イル基]、アセチル基、イソブチリル基、ピペリジノカルボニル基、4-ベンジルピペリジノカルボニル基、(ピロール-1-イル)スルホニル基、カルボキシ基、メトキシカルボニル基、N-[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル基、N, N-ジメチルカルバモイル基、スルファモイル基、N, N-ジメチルスルファモイル基、アミノ基、N, N-ジメチルアミノ基、アセチルアミノ基、ベンゾイルアミノ基、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基、3-フェニルウレイド基、(3-フェニル)チオウレイド基、(4-ニトロフェニル)ジアゼニル基、{[4-(ピリジン-2-イル)スルファモイル]フェニル}ジアゼニル基

上記環Zの定義における「式-O-A (式中、Aは上記定義と同義である) 及び式-CO NH-E (式中、Eは上記定義と同義である) で表される基の他にさらに置換基を有していてもよいアレーン」が「式-O-A (式中、Aは上記定義と同義である) 及び式-CO NH-E (式中、Eは上記定義と同義である) で表さ

れる基の他にさらに置換基を有していてもよいベンゼン環」である場合、該置換基が1個であり、一般式(I)における環Zを含む下記部分構造式(Iz-1)：

が下記式(Iz-2)：

で表される場合のR^zの位置に存在することが最も好ましい。このとき、該置換基をR^zと定義することができる。R^zとしては、好適には、下記「置換基群γ-2z」から選択される基であり、更に好適には、ハロゲン原子及びtert-ブチル基であり、最も好適には、ハロゲン原子である。

[置換基群γ-2z] ハロゲン原子、ニトロ基、シアノ基、メトキシ基、メチル基、イソプロピル基、tert-ブチル基、1, 1, 3, 3-テトラメチルブチル基、2-フェニルエテン-1-イル基、2, 2-ジシアノエテン-1-イル基、2-カルボキシ-2-シアノエテン-1-イル基、エチニル基、フェニルエチニル基、(トリメチルシリル)エチニル基、トリフルオロメチル基、ペンタフルオロエチル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェニル基、2, 4-ジフルオロフェニル基、2-フェネチル基、1-ヒドロキシエチル基、1-(メトキシイミノ)エチル基、1-[(ベンジルオキシ)イミノ]エチル基、2-チエニル基、3-チエニル基、1-ピロリル基、2-メチルチアゾール-4-イル基、イミダゾ[1, 2-a]ピリジン-2-イル基、2-ピリジル基、アセチル基、イソブチリル基、ピペリジノカルボニル基、4-ベンジルピペリジノカル

ボニル基、(ピロール-1-イル)スルホニル基、カルボキシ基、メトキシカルボニル基、N-[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル基、N, N-ジメチルカルバモイル基、スルファモイル基、N-[3, 5-ビス(トリフルオロメチル)フェニル]スルファモイル基、N, N-ジメチルスルファモイル基、アミノ基、N, N-ジメチルアミノ基、アセチルアミノ基、ベンゾイルアミノ基、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基、3-フェニルウレイド基、(3-フェニル)チオウレイド基、(4-ニトロフェニル)ジアゼニル基、{[4-(ピリジン-2-イル)スルファモイル]フェニル}ジアゼニル基

上記環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他に更に置換基を有していてもよいアレーン」が「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他に更に置換基を有していてもよいナフタレン環」である場合、好適には、ナフタレン環である。

環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-CONH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいヘテロアレーン」の「ヘテロアレーン」としては、環系を構成する原子（環原子）として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種を少なくとも1個含む单環式又は縮合多環式芳香族複素環が挙げられ、例えば、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、1, 2, 3-オキサジアゾール環、1, 2, 3-チアジアゾール環、1, 2, 3-トリアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、1, 2, 3-トリアジン環、1, 2, 4-トリアジン環、1H-アゼピン環、1, 4-オキセピン環、1, 4-チアゼピン環、ベンゾフラン環、イソベンゾフラン環、ベンゾ[b]チオフェン環、ベンゾ[c]チオフェン環、

インドール環、2H-イソインドール環、1H-インダゾール環、2H-インダゾール環、ベンゾオキサゾール環、1, 2-ベンゾイソオキサゾール環、2, 1-ベンゾイソオキサゾール環、ベンゾチアゾール環、1, 2-ベンゾイソチアゾール環、2, 1-ベンゾイソチアゾール環、1, 2, 3-ベンゾオキサジアゾール環、2, 1, 3-ベンゾオキサジアゾール環、1, 2, 3-ベンゾチアジアゾール環、2, 1, 3-ベンゾチアジアゾール環、1H-ベンゾトリアゾール環、2H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、1H-1, 5-ベンゾジアゼピン環、カルバゾール環、 α -カルボリン環、 β -カルボリン環、 γ -カルボリン環、アクリジン環、フェノキサジン環、フェノチアジン環、フェナジン環、フェナントリジン環、フェナントロリン環、チアントレン環、インドリジン環、フェノキサチイン環等の5ないし14員の単環式又は縮合多環式芳香族複素環が挙げられる。好適には、5ないし10員の単環式又は縮合多環式芳香族複素環であり、さらに好適には、チオフェン環、ピリジン環、インドール環、及びキノキサリン環である。

上記環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-C(=O)NH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいヘテロアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアレーン上での置換位置は特に限定されない。また、該置換基が2個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環Zの定義における「式-O-A（式中、Aは上記定義と同義である）及び式-C(=O)NH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいヘテロアレーン」の「置換基」としては、好適には、ハロゲン原子である。

Eの定義における「2, 5-ジ置換フェニル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。

上記Eの定義における「2, 5-ジ置換フェニル基」の好適な基の具体例としては、下記「置換基群 δ-1e」に示す基が挙げられる。

[置換基群 δ-1e] 2, 5-ジメトキシフェニル基、2-クロロ-5-(トリフルオロメチル)フェニル基、2, 5-ビス(トリフルオロメチル)フェニル基、2-フルオロー-5-(トリフルオロメチル)フェニル基、2-ニトロ-5-(トリフルオロメチル)フェニル基、2-メチル-5-(トリフルオロメチル)フェニル基、2-メトキシ-5-(トリフルオロメチル)フェニル基、2-メチルスルファニル-5-(トリフルオロメチル)フェニル基、2-(1-ピロリジニル)-5-(トリフルオロメチル)フェニル基、2-モルホリノ-5-(トリフルオロメチル)フェニル基、2, 5-ジクロロフェニル基、2, 5-ビス[(1, 1-ジメチル)エチル]フェニル基、5-[(1, 1-ジメチル)エチル]-2-メトキシフェニル基、4-メトキシビフェニル-3-イル基、2-ブロモ-5-(トリフルオロメチル)フェニル基、2-(2-ナフチルオキシ)-5-(トリフルオロメチル)フェニル基、2-(2, 4-ジクロロフェノキシ)-5-(トリフルオロメチル)フェニル基、2-[4-(トリフルオロメチル)ピペリジン-1-イル]-5-(トリフルオロメチル)フェニル基、2-(2, 2, 2-トリフルオロエトキシ)-5-(トリフルオロメチル)フェニル基、2-(2-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-クロロー-3, 5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-ピペリジノ-5-(トリフルオロメチル)フェニル基、2-(4-メチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-クロロフェノキシ)-5-(トリフルオロメチル)フェニル基、5-イソプロピル-2-メチルフェニル基、2, 5-ジエトキシフェニル基、2, 5-ジメチルフェニル基、5-クロロー-2-シアノ基、5-ジエチルスルファモイル-2-メトキシフェニル基、2-クロロー-5-ニトロフェニル基、2-メトキシ-5-(フェニルカルバモイル)フェニル基、5-アセチルアミノ-2-メトキシフェニル基、5-メトキシ-2-メチルフェニル基、2, 5-ジブロキシフェニル基、2, 5-ジイソペン

チルオキシ基、5-カルバモイル-2-メトキシフェニル基、5-[(1, 1-ジメチル)プロピル]-2-フェノキシフェニル基、2-ヘキシリオキシ-5-メタンスルホニル基、5-[(2, 2-ジメチル)プロピオニル]-2-メチルフェニル基、5-メトキシ-2-(1-ピロリル)フェニル基、5-クロロ-2-(p-トルエンスルホニル)フェニル基、2-クロロ-5-(p-トルエンスルホニル)フェニル基、2-フルオロー-5-メタンスルホニル基、2-メトキシ-5-フェノキシ基、2-メトキシ-5-(1-メチル-1-フェニルエチル)フェニル基、5-モルホリノ-2-ニトロフェニル基、5-フルオロー-2-(1-イミダゾリル)フェニル基、2-ブチル-5-ニトロフェニル基、5-[(1, 1-ジメチル)プロピル]-2-ヒドロキシフェニル基、2-メトキシ-5-メチルフェニル基、2, 5-ジフルオロフェニル基、2-ベンゾイル-5-メチルフェニル基、2-(4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基
上記Eの定義における「2, 5-ジ置換フェニル基」としては、更に好適には、「2, 5-ジ置換フェニル基（但し、該置換基の少なくとも1個はトリフルオロメチル基である）」であり、特に更に好適には、下記「置換基群δ-2e」から選択される基であり、最も好適には、2, 5-ビス(トリフルオロメチル)フェニル基である。

[置換基群δ-2e] 2-クロロ-5-(トリフルオロメチル)フェニル基、2, 5-ビス(トリフルオロメチル)フェニル基、2-フルオロー-5-(トリフルオロメチル)フェニル基、2-ニトロ-5-(トリフルオロメチル)フェニル基、2-メチル-5-(トリフルオロメチル)フェニル基、2-メトキシ-5-(トリフルオロメチル)フェニル基、2-メチルスルファニル-5-(トリフルオロメチル)フェニル基、2-(1-ピロリジニル)-5-(トリフルオロメチル)フェニル基、2-モルホリノ-5-(トリフルオロメチル)フェニル基、2-ブロモ-5-(トリフルオロメチル)フェニル基、2-(2-ナフチルオキシ)-5-(トリフルオロメチル)フェニル基、2-(2, 4-ジクロロフェノキシ)

—5— (トリフルオロメチル) フェニル基、2-[4-(トリフルオロメチル)
ピペリジン-1-イル]—5-(トリフルオロメチル) フェニル基、2-(2,
2,2-トリフルオロエトキシ)—5-(トリフルオロメチル) フェニル基、2-
(2-メトキシフェノキシ)—5-(トリフルオロメチル) フェニル基、2-
(4-クロロ-3,5-ジメチルフェノキシ)—5-(トリフルオロメチル) フ
ェニル基、2-ピペリジノ-5-(トリフルオロメチル) フェニル基、2-(4-
メチルフェノキシ)—5-(トリフルオロメチル) フェニル基、2-(4-ク
ロロフェノキシ)—5-(トリフルオロメチル) フェニル基、2-(4-シアノ
フェノキシ)—5-(トリフルオロメチル) フェニル基、2-(4-メトキシフ
ェノキシ)—5-(トリフルオロメチル) フェニル基

Eの定義における「3,5-ジ置換フェニル基」の「置換基」としては、上記「置
換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。

上記Eの定義における「3,5-ジ置換フェニル基」の好適な基の具体例として
は、下記「置換基群δ-3e」に示す基が挙げられる。

[置換基群δ-3e] 3,5-ビス(トリフルオロメチル)フェニル基、3,5-
ジクロロフェニル基、3,5-ビス[(1,1-ジメチル)エチル]フェニル基、
3-フルオロ-5-(トリフルオロメチル)フェニル基、3-ブロモ-5-(ト
リフルオロメチル)フェニル基、3-メトキシ-5-(トリフルオロメチル)フ
ェニル基、3,5-ジフルオロフェニル基、3,5-ジニトロフェニル基、3,
5-ジメチルフェニル基、3,5-ジメトキシフェニル基、3,5-ビス(メト
キシカルボニル)フェニル基、3-メトキシカルボニル-5-(トリフルオロメ
チル)フェニル基、3-カルボキシ-5-(トリフルオロメチル)フェニル基、
3,5-ジカルボキシフェニル基

上記Eの定義における「3,5-ジ置換フェニル基」としては、更に好適には、
「3,5-ジ置換フェニル基(但し、該置換基の少なくとも1個はトリフルオロ
メチル基である)」であり、特に更に好適には、下記「置換基群δ-4e」から選
択される基であり、最も好適には、3,5-ビス(トリフルオロメチル)フェニ

ル基である。

[置換基群 δ-4e] 3, 5-ビス(トリフルオロメチル)フェニル基、3-フルオロ-5-(トリフルオロメチル)フェニル基、3-ブロモ-5-(トリフルオロメチル)フェニル基、3-メトキシ-5-(トリフルオロメチル)フェニル基、3-メトキシカルボニル-5-(トリフルオロメチル)フェニル基、3-カルボキシ-5-(トリフルオロメチル)フェニル基

Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基(ただし、該ヘテロアリール基が、①式(I)中の-CO NH-基に直結する環がベンゼン環である縮合多環式ヘテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く)」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアリール基上での置換位置は特に限定されない。また、該置換基が2個以上存在する場合、それらは同一であっても異なっていてもよい。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」の「単環式ヘテロアリール基」としては、上記「ヘテロ環基」の定義における「単環式ヘテロアリール基」と同様の基が挙げられる。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」の「縮合多環式ヘテロアリール基」としては、上記「ヘテロ環基」の定義における「縮合多環式ヘテロアリール基」と同様の基が挙げられる。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」としては、①一般式(I)中の-CO NH-基に直結する環がベンゼン環である縮合多環式ヘテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基は除く。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」の「単環式若しくは縮合多環式ヘテロアリール基」としては、好適には、5ないし10員の単環式若しくは縮合多環式ヘテロアリール基であり、

このとき、好適な基の具体例としては、チアゾリル基、チエニル基、ピラゾリル基、オキサゾリル基、1, 3, 4-チアジアゾリル基、ピリジル基、ピリミジニル基、ピラジニル基、及びキノリル基である。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」の「単環式若しくは縮合多環式ヘテロアリール基」としては、更に好適には、5員の単環式ヘテロアリール基であり、特に更に好適には、チアゾリル基、チエニル基、ピラゾリル基、オキサゾリル基、及び1, 3, 4-チアジアゾリル基であり、最も好適には、チアゾリル基である。

ここで、上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」としては、「無置換のチアゾール-2-イル基は除く」ので、該「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」としては、最も好適には、置換チアゾリル基である。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」が「置換チアゾリル基」である場合、好適には、「モノ置換チアゾール-2-イル基」、及び「ジ置換チアゾール-2-イル基」であり、更に好適には、「ジ置換チアゾール-2-イル基」である。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基」が「ジ置換チアゾール-2-イル基」である場合、特に更に好適には、下記「置換基群 δ-5e」から選択される基であり、最も好適には、4-[(1, 1-ジメチル)エチル]-5-[(2, 2-ジメチル)プロピオニル]チアゾール-2-イル基である。

[置換基群 δ-5e] 5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール-2-イル基、5-ブロモ-4-(トリフルオロメチル)チアゾール-2-イル基、5-シアノ-4-[(1, 1-ジメチル)エチル]チアゾール-2-イル基、5-メチルチアゾール-2-イル基、4, 5-ジメチルチアゾール-2-イル基、5-メチル-4-フェニルチアゾール-2-イル基、5-(4-フルオロフェニル)-4-メチルチアゾール-2-イル基、4-メチル-5-[3-(トリフル

オロメチル) フェニル] チアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5-エチルチアゾール-2-イル基、4-エチル-5-フェニルチアゾール-2-イル基、4-イソプロピル-5-フェニルチアゾール-2-イル基、4-ブチル-5-フェニルチアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5- [(2, 2-ジメチル) プロピオニル] チアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5- (エトキシカルボニル) チアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5-ピペリジノチアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5-モルホリノチアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5- (4-メチルピペラジン-1-イル) チアゾール-2-イル基、4- [(1, 1-ジメチル) エチル] -5- (4-フェニルピペラジン-1-イル) チアゾール-2-イル基、5-カルボキシメチル-4-フェニルチアゾール-2-イル基、4, 5-ジフェニルチアゾール-2-イル基、4-ベンジル-5-フェニルチアゾール-2-イル基、5-フェニル-4- (トリフルオロメチル) チアゾール-2-イル基、5-アセチル-4-フェニルチアゾール-2-イル基、5-ベンゾイル-4-フェニルチアゾール-2-イル基、5-エトキシカルボニル-4- (ペンタフルオロフェニル) チアゾール-2-イル基、5-メチルカルバモイル-4-フェニルチアゾール-2-イル基、5-エチルカルバモイル-4-フェニルチアゾール-2-イル基、5-イソプロピルカルバモイル-4-フェニルチアゾール-2-イル基、5- (2-フェニルエチル) カルバモイル-4-フェニルチアゾール-2-イル基、5-エトキシカルボニル-4- (トリフルオロメチル) チアゾール-2-イル基、5-カルボキシ-4- [(1, 1-ジメチル) エチル] チアゾール-2-イル基、5- (エトキシカルボニル) メチル-4-フェニルチアゾール-2-イル基、5-カルボキシ-4-フェニルチアゾール-2-イル基、5-プロピルカルバモイル-4-フェニルチアゾール-2-イル基

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へ

テロアリール基」が「モノ置換チアゾール-2-イル基」である場合、好適な基の具体例としては、下記「置換基群 δ-6e」に示す基が挙げられる。

[置換基群 δ-6e] 4-[(1, 1-ジメチル)エチル]チアゾール-2-イル基、4-フェニルチアゾール-2-イル基、4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾール-2-イル基、4-(2, 4-ジクロロフェニル)チアゾール-2-イル基、4-(3, 4-ジクロロフェニル)チアゾール-2-イル基、4-[4-(トリフルオロメチル)フェニル]チアゾール-2-イル基、4-(2, 5-ジフルオロフェニル)チアゾール-2-イル基、4-(4-メトキシフェニル)チアゾール-2-イル基、4-[3-(トリフルオロメチル)フェニル]チアゾール-2-イル基、4-(ペンタフルオロフェニル)チアゾール-2-イル基

上記一般式(I)で表される化合物としては、好適には、「下記一般式(X-1)で表される置換安息香酸誘導体」以外の化合物である。

(式中、

R^{1001} は、下記の一般式(X-2)：

または、下記の一般式(X-3)：

(式中、R¹⁰⁰³、R¹⁰⁰⁴およびR¹⁰⁰⁵は各々独立に水素原子、炭素数1～6のアルキル基または炭素数1～6のアルコキシ基であり、R¹⁰⁰⁹およびR¹⁰¹⁰は各々独立に水素原子、炭素数1～6のアルキル基または炭素数2～11のアシル基を示す) であり；

R¹⁰⁰²は、水素原子、置換されていてもよい炭素数1～6の低級アルキル基、置換されていてもよい炭素数6～12のアリール基、置換されていてもよい炭素数4～11のヘテロアリール基、置換されていてもよい炭素数7～14のアラルキル基、置換されていてもよい炭素数5～13のヘテロアリールアルキル基を示すか、あるいは炭素数2～11のアシル基であり；

X¹⁰⁰¹は、エステル化またはアミド化されていてもよいカルボキシル基を示す。)

上記一般式(I)で表される化合物は塩を形成することができる。薬理学的に許容される塩としては、酸性基が存在する場合には、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属塩、又はアンモニウム塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩、ジシクロヘキシルアンモニウム塩等のアンモニウム塩をあげることができ、塩基性基が存在する場合には、例えば、塩酸塩、臭酸塩、硫酸塩、硝酸塩、リン酸塩等の鉱酸塩、あるいはメタンスルホン酸塩、ベンゼンスルホン酸塩、パラトールエンスルホン酸塩、酢酸塩、プロピオノ酸塩、酒石酸塩、フマール酸塩、マレイン酸塩、リンゴ酸塩、シュウ酸塩、コハク酸塩、クエン酸塩、安息香酸塩、マンデル酸塩、ケイ皮酸塩、乳酸塩等の有機酸塩をあげることができる。グリシンなどのアミノ酸と塩を形成する場合もある。本発明の医薬の有効成分としては、薬学的に許容される塩も好適に用いることができる。

上記一般式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存

在する場合もある。本発明の医薬の有効成分としては、上記のいずれの物質を用いてもよい。さらに一般式（I）で表される化合物は1以上の不斉炭素を有する場合があり、光学活性体やジアステレオマーなどの立体異性体として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の立体異性体、光学対掌体又はジアステレオマーの任意の混合物、ラセミ体などを用いてもよい。

また、一般式（I）で表される化合物が例えば2-ヒドロキシピリジン構造を有する場合、その互変異性体（tautomer）である2-ピリドン構造として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の互変異性体又はそれらの混合物を用いてもよい。また、一般式（I）で表される化合物がオレフィン性の二重結合を有する場合には、その配置はZ配置又はE配置のいずれでもよく、本発明の医薬の有効成分としてはいずれかの配置の幾何異性体又はそれらの混合物を用いてもよい。

本発明の医薬の有効成分として一般式（I）に包含される化合物を以下に例示するが、本発明の医薬の有効成分は下記の化合物に限定されることはない。

なお、下記表において用いられる略語の意味は下記の通りである。

M e : メチル基、E t : エチル基。

化合物番号	A O Z	E
1		
2		
3		
4		
5		
6		

7		
8		
9		
10		
11		
12		
13		
14		

1 5		
1 6		
1 7		
1 8		
1 9		
2 0		

2 1		
2 2		
2 3		
2 4		
2 5		
2 6		

27		
28		
29		
30		
31		
32		

3 3		
3 4		
3 5		
3 6		
3 7		
3 8		
3 9		

4 0		
4 1		
4 2		
4 3		
4 4		
4 5		
4 6		

4 7		
4 8		
4 9		
5 0		
5 1		
5 2		

5 3		
5 4		
5 5		
5 6		
5 7		
5 8		
5 9		
6 0		

6 1		
6 2		
6 3		
6 4		
6 5		
6 6		
6 7		
6 8		

6 9		
7 0		
7 1		
7 2		
7 3		
7 4		
7 5		
7 6		

7 7		
7 8		
7 9		
8 0		
8 1		
8 2		
8 3		
8 4		

8 5		
8 6		
8 7		
8 8		
8 9		
9 0		
9 1		
9 2		

9 3		
9 4		
9 5		
9 6		
9 7		
9 8		
9 9		
1 0 0		

101		
102		
103		
104		
105		
106		
107		
108		

109		
110		
111		
112		
113		
114		

115		
116		
117		
118		
119		
120		
121		

122		
123		
124		
125		
126		
127		
128		
129		
130		

131		
132		
133		
134		
135		
136		
137		

138		
139		
140		
141		
142		
143		
144		

145		
146		
147		
148		
149		
150		
151		

152		
153		
154		
155		
156		
157		
158		
159		

160		
161		
162		
163		
164		
165		
166		

167		
168		
169		
170		
171		
172		
173		

174		
175		
176		
177		
178		
179		
180		
181		

182		
183		
184		
185		
186		
187		
188		
189		

190		
191		
192		
193		
194		
195		
196		
197		
198		

199		
200		
201		
202		
203		
204		
205		

206		
207		
208		
209		
210		
211		
212		
213		

214		
215		
216		
217		
218		
219		
220		
221		

222		
223		
224		
225		
226		
227		

228		
229		
230		
231		
232		
233		
234		

235		
236		
237		
238		
239		
240		
241		
242		
243		

244		
245		
246		
247		
248		
249		
250		
251		

252		
253		
254		
255		
256		
257		
258		
259		

260		
261		
262		
263		
264		
265		
266		
267		

268

一般式（I）で表される化合物は、例えば、以下の反応工程式に示した方法によって製造することができる。

反応工程式

(式中、A、環Z及びEは、一般式（I）における定義と同意義であり、 A^{101} は水素原子又はヒドロキシ基の保護基（好ましくは、メチル基等のアルキル基；ベンジル基等のアラルキル基；アセチル基；メトキシメチル基等のアルコキシアリル基；トリメチルシリル基等の置換シリル基）を表し、R及び R^{101} は水素原子、C₁～C₆のアルキル基等を表し、E¹⁰¹は、一般式（I）の定義におけるE又はEの前駆体を表し、Gはヒドロキシ基、ハロゲン原子（好ましくは、塩素原子）、炭化水素-オキシ基（好ましくは、ハロゲン原子で置換されていてもよいアリール-オキシ基）、アシル-オキシ基、イミド-オキシ基等を表す）

（第1工程）

カルボン酸誘導体（1）とアミン（2）とを脱水縮合させることにより、アミド（3）製造することができる。この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、無溶媒又は非プロトン性溶媒中0℃～180℃の反応温度で行われる。

この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、無溶媒又は非プロトン性溶媒中0℃～180℃の反応温度で行われる。

酸ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、塩化スルフリル、オキシ塩化リン、三塩化リン、五塩化リンなどを挙げることができ、 A^{101} が水素原子の場合には三塩化リンが、 A^{101} がアセチル基等の場合にはオキシ塩化リンが好ましい。脱水縮合剤としては、例えば、N, N' -ジシクロヘキシル

カルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジフェニルホスホリルアジドなどを挙げることができる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,N-ジエチルアニリン等の有機塩基が挙げられる。非プロトン性溶媒としてはジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、1,4-ジオキサン、ベンゼン、トルエン、モノクロロベンゼン、o-ジクロロベンゼン、N,N-ジメチルホルムアミド、N-メチルピロリドンなどを挙げることができ、酸ハロゲン化剤の存在下に反応を行う場合には、特に、トルエン、モノクロロベンゼン、o-ジクロロベンゼンが好ましい。

また、例えば、「ジャーナル・オブ・メディシナルケミストリー (Journal of Medicinal Chemistry)」、(米国)、1998年、第41巻、第16号、p. 293-2945に記載の方法及びこれらに準じた方法により、予めカルボン酸から酸塩化物を製造、単離し、次いでE¹⁰¹を有するアミンと反応させることにより目的とするアミドを製造することもできる。

Gがヒドロキシ基である場合の好適な反応条件として、例えば、「アーキブ・デア・ファルマツィー (Archiv der Pharmazie)」、(ドイツ)、1998年、第331巻、第1号、p. 3-6. に記載された反応条件を用いることができる。

カルボン酸誘導体(1)及びアミン(2)の種類は特に限定されず、文献公知の製造方法を適宜参照しつつ新規に合成するか、あるいは市販の試薬を入手して上記反応に用いることができる。

(第2工程)

アミド(3)が保護基を有する場合及び/又は官能基修飾に有利な置換基(例えば、アミノ基及びその保護体若しくは前駆体;カルボキシ基及びその保護体若しくは前駆体;ヒドロキシ基及びその保護体若しくは前駆体など)を有する場合、この工程で脱保護反応及び/又は官能基修飾反応を行うことにより最終目的物である化合物(4)を製造することができる。該反応は、種々の公知の方法を用い

ることができ、脱保護反応及び官能基修飾反応としては、例えば、セオドラ・W. W. グリーン (Theodora W. Green), ピーター・G. M. ブツ (Peter G. M. Wuts) 編「プロテクティブ・グループ・イン・オーガニック・シンセシズ (Protective Groups in Organic Syntheses)」, (米国), 第3版, ジョン・ウィリー・アンド・サンズ・インク (John Wiley & Sons, Inc.), 1999年4月; 「ハンドブック・オブ・リエージェンツ・フォー・オーガニック・シンセシズ (Handbook of Reagents for Organic Synthesis)」, (米国), 全4巻, ジョン・ウィリー・アンド・サンズ・インク (John Wiley & Sons, Inc.), 1999年6月, 等に記載の方法を; 官能基修飾反応としては、例えば、リチャード・F. ヘック (Richard F. Heck) 著「パラジウム・リエージェンツ・イン・オーガニック・シンセシズ (Palladium Reagents in Organic Syntheses)」, (米国), アカデミック・プレス (Academic Press), 1985年; 辻二郎 (J. Tsuji) 著「パラジウム・リエージェンツ・アンド・カタリストス: イノベーションズ・イン・オーガニック・シンセシズ (Palladium Reagents and Catalysts: Innovations in Organic Synthesis)」, (米国), ジョン・ウィリー・アンド・サンズ・インク (John Wiley & Sons, Inc.), 1999年, 等に記載の方法を用いることができる。

以上のような方法で製造された一般式 (I) で表される化合物は、当業者に周知の方法、例えば、抽出、沈殿、分画クロマトグラフィー、分別結晶化、懸濁洗浄、再結晶などにより、単離、精製することができる。また、本発明化合物の薬理学的に許容される塩、並びにそれらの水和物及び溶媒和物も、それぞれ当業者に周知の方法で製造することができる。

本明細書の実施例には、一般式 (I) に包含される代表的化合物の製造方法が具体的に説明されている。従って、当業者は、上記の一般的な製造方法の説明及び実施例の具体的製造方法の説明を参照しつつ、適宜の反応原料、反応試薬、反応条件を選択し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えることによって、一般式 (I) に包含される化合物をいずれも製造可能である。

一般式 (I) で示される化合物は抗癌作用を有しており、該化合物を有効成分と

剤を製造する場合は、主薬に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤などの形態の製剤を調製することができる。用いられる賦形剤としては、例えば、乳糖、蔗糖、白糖、ブドウ糖、コーンスターク、デンプン、タルク、ソルビット、結晶セルロース、デキストリン、カオリン、炭酸カルシウム、二酸化ケイ素などを挙げることができる。結合剤としては、例えば、ポリビニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリン、ペクチンなどを挙げることができる。滑沢剤としては、例えば、ステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化直物油などを挙げることができる。着色剤としては、通常医薬品に添加することが許可されているものであればいずれも使用することができる。矯味矯臭剤としては、ココア末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末などを使用することができる。これらの錠剤、顆粒剤には、糖衣、ゼラチン衣、その他必要により適宜コーティングを付することができる。また、必要に応じて、防腐剤、抗酸化剤等を添加することができる。

経口投与のための液体製剤、例えば、乳剤、シロップ剤、懸濁剤、液剤の製造には、一般的に用いられる不活性な希釈剤、例えば水又は植物油を用いることができる。この製剤には、不活性な希釈剤以外に、補助剤、例えば潤滑剤、懸濁補助剤、甘味剤、芳香剤、着色剤又は保存剤を配合することができる。液体製剤を調製した後、ゼラチンのような吸収されうる物質のカプセル中に充填してもよい。非経口投与用の製剤、例えば注射剤又は坐剤等の製造に用いられる溶剤又は懸濁剤としては、例えば、水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチンを挙げることができる。坐剤の製造に用いられる基剤としては、例えば、カカオ脂、乳化カカオ脂、ラウリン脂、ウイテップゾールを挙げることができる。製剤の調製方法は特に限定されず、当

業界で汎用されている方法はいずれも利用可能である。

注射剤の形態にする場合には、担体として、例えば、水、エチルアルコール、マクロゴール、プロピレングリコール、クエン酸、酢酸、リン酸、乳酸、乳酸ナトリウム、硫酸及び水酸化ナトリウム等の希釈剤；クエン酸ナトリウム、酢酸ナトリウム及びリン酸ナトリウム等のpH調整剤及び緩衝剤；ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸及びチオ乳酸等の安定化剤等が使用できる。なお、この場合、等張性の溶液を調製するために十分な量の食塩、ブドウ糖、マンニトール又はグリセリンを製剤中に配合してもよく、通常の溶解補助剤、無痛化剤又は局所麻酔剤等を使用することもできる。

軟膏剤、例えば、ペースト、クリーム及びゲルの形態にする場合には、通常使用される基剤、安定剤、湿潤剤及び保存剤等を必要に応じて配合することができ、常法により成分を混合して製剤化することができる。基剤としては、白色ワセリン、ポリエチレン、パラフィン、グリセリン、セルロース誘導体、ポリエチレングリコール、シリコン及びベントナイト等を使用することができる。保存剤としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル等を使用することができる。貼付剤の形態にする場合には、通常の支持体に上記軟膏、クリーム、ゲル又はペースト等を常法により塗布することができる。支持体としては、綿、スフ及び化学繊維からなる織布又は不織布；軟質塩化ビニル、ポリエチレン及びポリウレタン等のフィルム又は発泡体シートを好適に使用できる。

本発明の医薬の投与量は特に限定されないが、経口投与の場合には、成人一日あたり有効成分である上記物質の重量として通常0.01～5,000mgである。この投与量を患者の年令、病態、症状に応じて適宜増減することが好ましい。前記一日量は一日に一回、又は適当な間隔をおいて一日に2～3回に分けて投与してもよいし、数日おきに間歇投与してもよい。注射剤として用いる場合には、成人一日あたり有効成分である上記物質の重量として0.001～100mg程度である。

実施例

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。実施例中、化合物番号は上記の表において示した化合物の番号と対応させてある。また、本実施例中には、市販の試薬を購入しそのまま試験に供した化合物が含まれる。そのような化合物については、試薬の販売元及びカタログに記載されているコード番号を示す。

例1：化合物番号1の化合物の製造

O-アセチルサリチロイルクロリド(345mg, 1.7mmol)のベンゼン(10mL)溶液に、氷冷、アルゴン雰囲気下、3,5-ビス(トリフルオロメチル)アニリン(500mg, 2.2mmol)、ピリジン(0.5mL)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色固体(570mg, 84.2%)を得た。

mp 124-125°C.

¹H-NMR(DMSO-d₆) : δ 2.36(3H, s), 7.19(1H, d, J=8.0, 1.2Hz), 7.39(1H, t d, J=7.6, 1.2Hz), 7.57(1H, d dd, J=8.0, 7.6, 1.6Hz), 7.65(1H, s), 7.83(1H, dd, J=8.0, 1.6Hz), 8.11(2H, s), 8.31(1H, s).

例2：化合物番号2の化合物の製造

2-アセトキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(化合物番号1; 100mg, 0.25mmol)のエタノール(5mL)溶液に、2規定水酸化ナトリウム水溶液(0.5mL, 1mmol)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。

酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体(40mg, 45.1%)を得た。

m.p. 179-180°C.

¹H-NMR(DMSO-d₆) : δ 6.96-7.02(2H, m), 7.45(1H, d d d, J=8.0, 7.2, 1.6Hz), 7.81(1H, s), 7.87(1H, d d, J=8.0, 1.6Hz), 8.46(2H, s), 10.80(1H, s), 11.26(1H, s).

例3：化合物番号3の化合物の製造

5-フルオロサリチル酸(156mg, 1mmol)、3,5-ビス(トリフルオロメチル)アニリン(229mg, 1mmol)、三塩化リン(44μL, 0.5mmol)、モノクロロベンゼン(5mL)の混合物を、アルゴン雰囲気下、3時間加熱還流した。反応混合物を室温まで冷却後、酢酸エチル(50mL)で希釈し、水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=6:1)で精製して、標題化合物の白色固体(215mg, 58.7%)を得た。

¹H-NMR(DMSO-d₆) : δ 7.04(1H, d d d, J=9.0, 4.5, 1.2Hz), 7.30-7.37(1H, m), 7.66(1H, d d d, J=9.0, 3.3, 1.2Hz), 7.84(1H, s), 8.46(2H, s), 10.85(1H, s), 11.21(1H, b r s).

以下の実施例において例3の方法が引用されている場合、酸ハロゲン化剤としては、三塩化リンを用いた。また、反応溶媒としては、モノクロロベンゼン、トルエン等の溶媒を用いた。

例4：化合物番号4の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：85.5%

¹H-NMR (DMSO-d₆) : δ 7.05 (1H, d, J=8.7Hz), 7.49 (1H, dd, J=8.7, 2.7Hz), 7.85 (1H, s), 7.87 (1H, d, J=2.7Hz), 8.45 (2H, s), 10.85 (1H, s), 11.39 (1H, s).

例5：化合物番号5の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号4；1.51g, 3mmol)、ピリジン(285mg, 3.6mmol)のテトラヒドロフラン(6mL)溶液に、氷冷下、アセチルクロリド(234mg, 3.3mmol)を加え、室温で1時間攪拌した。溶媒を減圧留去して得られた残渣に2規定塩酸を加え、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体(1.06g, 83.0%)を得た。

¹H-NMR (DMSO-d₆) : δ 2.22 (3H, s), 7.35 (1H, d, J=9.0Hz), 7.71 (1H, dd, J=8.7, 2.7Hz), 7.85 (1H, s), 7.88 (1H, d, J=2.7Hz), 8.37 (2H, s), 11.05 (1H, brs).

以下の実施例において例5の方法が引用されている場合、塩基としては、ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン、ベンゼン等の溶媒を用いた。

例6：化合物番号6の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：88.5%

¹H-NMR (DMSO-d₆) : δ 6.98 (1H, d, J=8.8Hz), 7.59 (1H, dd, J=8.8, 2.8Hz), 7.83 (1H, s), 7.98

(1 H, d, J = 2. 8 Hz), 8. 43 (2 H, s), 10. 82 (1 H, s), 11. 37 (1 H, s).

この化合物は、下記製造法によっても得ることができた。

2-アセトキシ-N-[3, 5-ビス(トリフルオロメチル)]ベンズアミド(化合物番号1; 100 mg, 0. 25 mmol)の四塩化炭素(8 mL)溶液に、鉄粉(30 mg, 0. 54 mmol)、臭素(0. 02 mL, 0. 39 mmol)を添加し、次いで50°Cで4時間攪拌した。反応混合物を室温まで冷却後、NaHSO₄水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して、標題化合物の白色固体(600 mg, 54. 9%)を得た。

例7：化合物番号7の化合物の製造

原料として、5-ヨードサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 62. 2%

¹H-NMR (DMSO-d₆): δ 6. 86 (1 H, d, J = 8. 4 Hz), 7. 74 (1 H, dd, J = 8. 7, 2. 4 Hz), 7. 84 (1 H, s), 8. 13 (1 H, d, J = 2. 1 Hz), 8. 84 (2 H, s), 10. 82 (1 H, s), 11. 41 (1 H, s).

例8：化合物番号8の化合物の製造

原料として、5-ニトロサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 57. 2%

¹H-NMR (DMSO-d₆): δ 7. 18 (1 H, d, J = 9. 0 Hz), 7. 86 (1 H, s), 8. 31 (1 H, dd, J = 9. 0, 3. 0 Hz), 8. 45 (2 H, s), 8. 70 (1 H, d, J = 3. 0 Hz), 11. 12 (1 H, s).

例9：化合物番号9の化合物の製造

(1) 2-ベンジルオキシ-5-ホルミル安息香酸ベンジルエステル
 5-ホルミルサリチル酸 (4.98 g, 30 mmol)、ベンジルプロミド (15.39 g, 90 mmol)、炭酸カリウム (16.59 g, 120 mmol)、メチルエチルケトン (350 mL) の混合物を 8 時間加熱還流した。冷却後、溶媒を減圧留去し、残渣に 2 規定塩酸を加え、酢酸エチルで抽出した。水、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル = 3 : 1) で精製、イソプロピルエーテルで加熱還流下懸濁洗浄して、標題化合物の白色固体 (5.98 g, 57.5%) を得た。

¹H-NMR (CDCl₃) : δ 5.27 (2H, s), 5.37 (2H, s), 7.15 (1H, d, J = 9.0 Hz), 7.26 - 7.46 (10H, m), 7.99 (1H, dd, J = 9.0, 2.4 Hz), 8.36 (1H, d, J = 2.4 Hz), 9.91 (1H, s).

(2) 2-ベンジルオキシ-5-シアノ安息香酸ベンジルエステル
 2-ベンジルオキシ-5-ホルミル安息香酸ベンジルエステル (693 mg, 2 mmol)、塩酸ヒドロキシルアミン (167 mg, 2.4 mmol)、N-メチルピロリドン (3 mL) の混合物を 115°C で 4 時間攪拌した。反応混合物を冷却後、2 規定塩酸 (5 mL)、水 (30 mL) を加え、酢酸エチルで抽出した。有機層を 2 規定水酸化ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をイソプロピルエーテルで加熱還流下懸濁洗浄して、標題化合物の白色固体 (527 mg, 76.7%) を得た。

¹H-NMR (CDCl₃) : δ 5.23 (2H, s), 5.35 (2H, s), 7.08 (1H, d, J = 8.7 Hz), 7.33 - 7.43 (10H, m), 7.70 (1H, dd, J = 8.7, 2.4 Hz), 8.13 (1H, d, J = 2.4 Hz).

(3) 5-シアノサリチル酸

2-ベンジルオキシ-5-シアノ安息香酸ベンジルエステル (446 mg, 1.3 mmol), 5%パラジウム-炭素 (45 mg) にエタノール (10 mL)、テトラヒドロフラン (10 mL) を加え、室温で2時間水素添加した。不溶物を濾別後、溶媒を減圧留去して、標題化合物の白色固体 (212 mg, 100.0%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.02 (1H, d, J = 8.7 Hz), 7.82 (1H, dd, J = 8.7, 2.4 Hz), 8.12 (1H, d, J = 2.1 Hz).

(4) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-シアノ-2-ヒドロキシベンズアミド (化合物番号9)

原料として、5-シアノサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 16.6%

¹H-NMR (DMSO-d₆) : δ 7.15 (1H, d, J = 8.7 Hz), 7.85 (1H, s), 7.86 (1H, dd, J = 8.7, 2.1 Hz), 8.22 (1H, d, J = 2.4 Hz), 8.43 (2H, s), 10.93 (1H, s), 12.00 (1H, brs).

例10：化合物番号10の化合物の製造

原料として、5-メチルサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 54.9%

¹H-NMR (DMSO-d₆) : δ 6.92 (1H, d, J = 8.7 Hz), 7.28 (1H, dd, J = 8.7, 1.8 Hz), 7.71 (1H, d, J = 1.8 Hz), 7.82 (1H, s), 8.47 (2H, s), 10.80 (1H, s), 11.14 (1H, s).

例11：化合物番号11の化合物の製造

(1) 5-[(1, 1-ジメチル)エチル]サリチル酸

5-[(1, 1-ジメチル)エチル]-2-ヒドロキシベンズアルデヒド(2. 15 g, 12. 1 mmol)の1, 4-ジオキサン(100 mL)、水(40 mL)溶液に、スルファミン酸(1. 76 g, 18. 1 mmol)、リン酸一ナトリウム(7. 33 g, 47 mmol)を加えた。この混合物に、氷冷下、亜塩素酸ナトリウム(1. 76 g, 15. 5 mmol)の水溶液(10 mL)を滴下し、1時間攪拌した。次いでこの混合物に、亜硫酸ナトリウム(1. 80 g, 14. 3 mmol)を加え、30分間攪拌した。反応混合物に濃塩酸を加えpHを1とした。1, 4-ジオキサンを減圧留去して得られた残渣を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサンで懸濁洗浄して、標題化合物の白色粉末(1. 81 g, 77. 4%)を得た。

¹H-NMR(DMSO-d₆): δ 1. 26(9H, s), 6. 90(1H, d, J=9. 0 Hz), 7. 58(1H, dd, J=8. 7, 2. 4 Hz), 7. 75(1H, d, J=2. 4 Hz), 11. 07(1H, br s).

(2) N-[(3, 5-ビス(トリフルオロメチル)フェニル]-5-[(1, 1-ジメチル)エチル]-2-ヒドロキシベンズアミド(化合物番号11)原料として、5-[(1, 1-ジメチル)エチル]サリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 53. 8%

¹H-NMR(DMSO-d₆): δ 1. 30(9H, s), 6. 96(1H, d, J=8. 7 Hz), 7. 50(1H, dd, J=8. 7, 2. 4 Hz), 7. 82(1H, d, J=2. 4 Hz), 7. 83(1H, s), 8. 46(2H, s), 10. 80(1H, s) 11. 12(1H, s).

例12: 化合物番号12の化合物の製造

(1) 5-アセチル-2-ベンジルオキシ安息香酸 メチルエステル
5-アセチルサリチル酸 メチルエステル(13. 59 g, 70 mmol)、ベン

ジルプロミド (17.96 g, 105 mmol)、炭酸カリウム (19.35 g, 140 mmol)、メチルエチルケトン (350 mL) の混合物を 8 時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣に 2 規定塩酸を加え、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテルから再結晶して、標題化合物の白色固体 (14.20 g, 71.4%)を得た。

¹H-NMR (CDCl₃) : δ 2.58 (3H, s), 3.93 (3H, s), 5.27 (2H, s), 7.07 (1H, d, J = 8.7 Hz), 7.26–7.43 (3H, m), 7.47–7.50 (2H, m), 8.07 (1H, dd, J = 8.7, 2.4 Hz), 8.44 (1H, d, J = 2.4 Hz).

(2) 5-アセチル-2-ベンジルオキシ安息香酸

5-アセチル-2-ベンジルオキシ安息香酸 メチルエステル (5.69 g, 20 mmol) のメタノール/テトラヒドロフラン (20 mL + 20 mL) 混合溶液に、2 規定水酸化ナトリウム (11 mL) を加え、8 時間攪拌した。溶媒を減圧留去して得られた残渣に 2 規定塩酸を加え、ジクロロメタンで抽出した。ジクロロメタン層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテルで洗浄して、標題化合物の白色固体 (4.92 g, 91.0%)を得た。

¹H-NMR (DMSO-d₆) : δ 2.55 (3H, s), 5.32 (2H, s), 7.30–7.43 (4H, m), 7.49–7.52 (2H, m), 8.09 (1H, dd, J = 9.0, 2.7 Hz), 8.22 (1H, d, J = 2.4 Hz).

(3) 5-アセチル-2-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド

5-アセチル-2-ベンジルオキシ安息香酸 (4.87 g, 18 mmol)、3,5-ビス(トリフルオロメチル)アニリン (4.54 g, 19.8 mmol)、ピリジン (5.70 g, 72 mmol) のテトラヒドロフラン/ジクロルメタン (7

2 mL + 36 mL) 混合溶液に、氷冷下、オキシ塩化リン (1.85 mL, 19.8 mmol) を加え、次いで室温で 12 時間攪拌した。溶媒を減圧留去して得られた残渣に 1 規定塩酸 (100 mL) を加え、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル = 3 : 1 → 2 : 1) で精製して、標題化合物の微黄緑色固体 (5.47 g, 63.1%) を得た。

¹H-NMR (DMSO-d₆) : δ 2.57 (3H, s), 7.11 (1H, d, J = 8.7 Hz), 7.86 (1H, s), 8.05 (1H, dd, J = 8.4, 2.1 Hz), 8.44 (1H, d, J = 2.1 Hz), 8.47 (2H, s), 10.96 (1H, s), 11.97 (1H, br s).

以下の実施例において例 12 (3) の製造法が引用されている場合、酸ハロゲン化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

(4) 5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド (化合物番号 12)

5-アセチル-2-ベンジルオキシー-N-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミド (602 mg, 1.25 mmol)、5%パラジウム炭素 (60 mg) にエタノール (6 mL)、テトラヒドロフラン (72 mL) を加え、水素雰囲気下、室温で 30 分間攪拌した。不溶物を濾別後、溶媒を減圧留去して得られた残渣を n-ヘキサン／酢酸エチルから再結晶して、標題化合物の白色固体 (230 mg, 47.0%) を得た。

¹H-NMR (DMSO-d₆) : δ 2.59 (3H, s), 5.35 (2H, s), 7.32-7.36 (3H, m), 7.43 (1H, d, J = 8.7 Hz), 7.52-7.55 (2H, m), 7.82 (1H, s), 8.16 (1H, dd, J = 8.7, 2.4 Hz), 8.25 (1H, d, J = 2.4 Hz), 8.31 (2

H, s), 10.89 (1 H, s).

例13：化合物番号13の化合物の製造

5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号12; 50.5 mg, 0.13 mmol)のエタノール(2 mL)懸濁液に、水素化ホウ素ナトリウム(23.6 mg, 0.62 mmol)を加え、室温で12時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテル/n-ヘキサンで懸濁洗浄して、標題化合物の白色粉末(39.7 mg, 78.3%)を得た。

¹H-NMR (DMSO-d₆): δ 1.34 (3 H, d, J = 6.3 Hz), 4.71 (1 H, q, J = 6.3 Hz), 5.18 (1 H, br s), 6.97 (1 H, d, J = 8.4 Hz), 7.44 (1 H, dd, J = 8.4, 2.1 Hz), 7.84 (1 H, s), 7.86 (1 H, d, J = 2.1 Hz), 8.48 (2 H, s), 10.85 (1 H, s), 11.32 (1 H, s).

例14：化合物番号14の化合物の製造

5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号12; 100.0 mg, 0.26 mmol)のエタノール(3 mL)溶液に、ピリジン(45 μL, 0.56 mmol)、O-メチルヒドロキシリルアミン塩酸塩(25.8 mg, 0.31 mmol)を加え、1時間加熱還流した。反応混合物を室温まで冷却後、希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して、標題化合物の白色結晶(102.1 mg, 95.3%)を得た。

¹H-NMR (DMSO-d₆): δ 2.19 (3 H, s), 3.91 (3 H, s), 7.05 (1 H, d, J = 8.7 Hz), 7.77 (1 H, dd, J = 8.7, 2.

4 Hz), 7.85 (1H, s), 8.09 (1H, d, J = 2.4 Hz), 8.47 (2H, s), 10.87 (1H, s), 11.48 (1H, s).

例15：化合物番号15の化合物の製造

原料として、5-アセチル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号12)、及びO-ベンジルヒドロキシルアミン塩酸塩を用いて例14と同様の操作を行い、標題化合物を得た。

収率：79.9%

¹H-NMR (DMSO-d₆) : δ 2.24 (3H, s), 5.20 (2H, s), 7.04 (1H, d, J = 8.7 Hz), 7.29-7.47 (5H, m), 7.76 (1H, dd, J = 8.7, 2.4 Hz), 7.85 (1H, s), 8.07 (1H, d, J = 2.1 Hz), 8.46 (2H, s), 10.87 (1H, s), 11.47 (1H, s).

例16：化合物番号16の化合物の製造

(1) 5-(2,2-ジシアノエテン-1-イル)-2-ヒドロキシ安息香酸マロノニトリル(132mg, 2mmol)のエタノール(6mL)溶液に、5-ホルミルサリチル酸(332mg, 2mmol)を加え、氷冷下、ベンジルアミン(0.1mL)を加え、室温で2時間攪拌した。析出した黄色結晶を濾取、エタノールから再結晶して、標題化合物の淡黄色固体(139.9mg, 32.7%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.12 (1H, d, J = 8.7 Hz), 8.09 (1H, dd, J = 8.7, 2.4 Hz), 8.41 (1H, s), 8.50 (1H, d, J = 2.4 Hz).

(2) N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(2,2-ジシアノエテン-1-イル)-2-ヒドロキシベンズアミド(化合物番号16)原料として、5-(2,2-ジシアノエテン-1-イル)-2-ヒドロキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：9. 1 %

¹H-NMR (DMSO-d₆) : δ 7. 13 (1H, d, J = 9. 0 Hz), 7. 83 (1H, s), 8. 04 (1H, dd, J = 9. 0, 2. 4 Hz), 8. 36 (1H, s), 8. 38 (1H, d, J = 2. 4 Hz), 8. 43 (2H, s), 11. 43 (1H, s).

例17：化合物番号17の化合物の製造

(1) 5-[{(2-シアノ-2-メトキシカルボニル)エテン-1-イル]-2-ヒドロキシ安息香酸

5-ホルミルサリチル酸(332mg, 2mmol)、シアノ酢酸メチルエステル(198mg, 2mmol)、酢酸(6mL)、トリエチルアミン(0. 2mL)の混合物を5時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、析出した結晶を濾取、n-ヘキサンから再結晶して、標題化合物の淡黄色固体(327. 7mg, 66. 3%)を得た。

¹H-NMR (DMSO-d₆) : δ 3. 85 (3H, s), 7. 15 (1H, d, J = 8. 7 Hz), 8. 20 (1H, dd, J = 8. 7, 2. 4 Hz), 8. 37 (1H, s), 8. 66 (1H, d, J = 2. 4 Hz).

(2) 3-{[N-[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸メチルエステル(化合物番号17)

原料として、5-[{(2-シアノ-2-メトキシカルボニル)エテン-1-イル]-2-ヒドロキシ安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た

収率 66. 3 %

¹H-NMR (DMSO-d₆) : δ 3. 85 (3H, s), 7. 19 (1H, d, J = 9. 0 Hz), 7. 85 (1H, s), 8. 20 (1H, dd, J = 8. 7, 2. 1 Hz), 8. 33 (1H, s), 8. 45 (2H, s), 8. 50 (1H, d, J = 2. 1 Hz), 11. 00 (1H, s), 11. 03 (1H, s).

例 1 8 : 化合物番号 1 8 の化合物の製造

3- ({N-[3, 5-ビス(トリフルオロメチル)フェニル]カルバモイル}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル(化合物番号 17; 5.0 mg, 0.11 mmol)のエタノール(5 mL)溶液に、2規定水酸化ナトリウム(0.11 ml, 0.22 mmol)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチルから再結晶して、標題化合物の淡黄色固体(13.5 mg, 30.4%)を得た。

¹H-NMR (DMSO-d₆): δ 7.12 (1H, d, J=8.4 Hz), 7.84 (1H, s), 7.94 (1H, dd, J=8.4, 2.1 Hz), 8.38 (1H, d, J=2.1 Hz), 8.45 (2H, s), 9.87 (1H, s), 11.41 (1H, s).

例 1 9 : 化合物番号 1 9 の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号 7; 4.75 mg, 1 mmol)、スチレン(1.30 mg, 1.25 mmol)、酢酸パラジウム(4.5 mg, 0.02 mmol)、トリス(オルトートリル)ホスфин(1.2.2 mg, 0.04 mmol)、ジイソプロピルアミン(3.88 mg, 3 mmol)、N, N-ジメチルホルムアミド(2 mL)の混合物を8時間加熱還流した。反応混合物を室温まで冷却後、水を加え酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:イソプロピルエーテル=2:1→1:1)で精製して、標題化合物の淡黄色固体(1.73 mg, 38.3%)を得た。

¹H-NMR (DMSO-d₆): δ 7.04 (1H, d, J=8.4 Hz), 7.20-7.29 (3H, m), 7.38 (2H, t, J=7.5 Hz), 7.59 (2H, d, J=7.5 Hz), 7.72 (1H, dd, J=8.4, 2.1 Hz),

7. 86 (1H, s), 8. 07 (1H, d, J=2. 1Hz), 8. 49 (2H, s), 10. 89 (1H, s), 11. 33 (1H, br s).

例20：化合物番号20の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7; 950mg, 2mmol)、トリメチルシリルアセチレン(246mg, 2.5mmol)、トリエチルアミン(2mL)のN, N-ジメチルホルムアミド(4mL)溶液に、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(23mg, 0.02mmol)、沃化第一銅(4mg, 0.02mmol)を加え、40°Cで2時間攪拌した。反応混合物を室温まで冷却後、酢酸エチル(100mL)及び1規定クエン酸(100mL)にあけて攪拌し、次いでセライト濾過した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=19:1)で精製、n-ヘキサンで結晶化して、標題化合物の白色結晶(286mg, 32.1%)を得た。

¹H-NMR(DMSO-d₆): δ 0.23 (9H, s), 7.00 (1H, d, J=8.7Hz), 7.54 (1H, dd, J=8.7, 2.4Hz), 7.85 (1H, s), 7.98 (1H, d, J=2.1Hz), 8.46 (2H, s), 10.86 (1H, s), 11.69 (1H, s).

例21：化合物番号21の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-[(トリメチルシリル)エチニル]ベンズアミド(化合物番号20; 233mg, 0.5mmol)のメタノール(1mL)溶液に、2規定水酸化ナトリウム(1mL)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をエタノール/水から再結晶して、標題化合物の灰白色結晶(67mg, 35.9%)を得た。

¹H-NMR (DMSO-d₆) : δ 4.11 (1H, s), 7.02 (1H, d, J = 8.4 Hz), 7.55 (1H, dd, J = 8.4, 2.1 Hz), 7.85 (1H, s), 7.98 (1H, d, J = 2.1 Hz), 8.46 (2H, s), 8.46 (2H, s), 10.86 (1H, s), 11.62 (1H, s).

例22：化合物番号22の化合物の製造

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7)、及びフェニルアセチレンを用いて例20と同様の操作を行い、標題化合物を得た。

収率：40.8%

¹H-NMR (DMSO-d₆) : δ 7.06 (1H, d, J = 8.4 Hz), 7.42 - 7.46 (3H, m), 7.53 - 7.57 (2H, m), 7.64 (1H, dd, J = 8.7, 2.1 Hz), 7.86 (1H, s), 8.06 (1H, d, J = 2.1 Hz), 8.48 (2H, s), 10.94 (1H, s), 11.64 (1H, br s).

例23：化合物番号23の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7; 200mg, 0.42mmol)の1, 2-ジメトキシエタン(3mL)溶液に、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(16mg, 0.0014mmol)を添加し、室温で5分間攪拌した。次いでジヒドロキシフェニルボラン(57mg, 0.47mmol)、1mol/L炭酸ナトリウム水溶液(1.3mL)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=6:1→3:1)で精製して、標題化合物の白色結晶(109mg, 61.1%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.12 (1H, d, J = 8.7 Hz), 7.

33-7. 38 (1H, m), 7. 48 (2H, t, J = 7. 5 Hz), 7. 67
 - 7. 70 (2H, m), 7. 79 (1H, dd, J = 8. 4, 2. 4 Hz), 7.
 87 (1H, s), 8. 17 (1H, d, J = 2. 4 Hz), 8. 49 (2H, s),
 10. 92 (1H, s), 11. 41 (1H, s).

例24：化合物番号24の化合物の製造

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(フェニルエチニル)ベンズアミド(化合物番号22)を用いて例12(4)と同様の操作を行い、標題化合物を得た。

収率：86. 2%

¹H-NMR (DMSO-d₆) : δ 2. 88 (4H, s), 6. 93 (1H, d, J = 8. 1 Hz), 7. 15 - 7. 34 (6H, m), 7. 76 (1H, d, J = 2. 4 Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 79 (1H, s), 11. 15 (1H, s).

例25：化合物番号25の化合物の製造

原料として、2-ヒドロキシ-5-(トリフルオロメチル)安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：44. 7%

¹H-NMR (CDCl₃) : δ 7. 17 (1H, d, J = 9. 0 Hz) 7. 72 - 7. 75 (2H, m), 7. 86 (1H, s), 8. 17 (2H, s), 8. 35 (1H, s) 11. 88 (1H, s).

[2-ヒドロキシ-5-(トリフルオロメチル)安息香酸：「ケミカル・アンド・ファーマシューティカル・ブレティン (Chemical & Pharmaceutical Bulletin)」, 1996年, 第44巻, 第4号, p. 734-745参照]

例26：化合物番号26の化合物の製造

原料として、2-ヒドロキシ-5-(ペンタフルオロエチル)安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標

題化合物を得た。

収率：65.7%

¹H-NMR (CDCl₃) : δ 7.19 (1H, d, J = 9.0 Hz) 7.70 (1H, dd, J = 8.7, 2.1 Hz), 7.81 (1H, d, J = 2.1 Hz), 8.17 (2H, s), 8.37 (1H, s), 11.92 (1H, s).

[2-ヒドロキシ-5-(ペンタフルオロエチル)安息香酸：「ケミカル・アンド・ファーマシューティカル・ブレティン (Chemical & Pharmaceutical Bulletin)」, 1996年, 第44巻, 第4号, p. 734-745参照]

例27：化合物番号27の化合物の製造

原料として、2-ヒドロキシ-5-(ピロール-1-イル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：57.8%

¹H-NMR (DMSO-d₆) : δ 6.27 (2H, dd, J = 2.4, 1.8 Hz), 7.10 (1H, d, J = 9.0 Hz), 7.29 (2H, dd, J = 2.4, 1.8 Hz), 7.66 (1H, dd, J = 9.0, 2.7 Hz), 7.86 (1H, s), 7.98 (1H, d, J = 2.4 Hz), 8.47 (2H, s), 10.89 (1H, s), 11.24 (1H, s).

例28：化合物番号28の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7)、及び2-チオフェンボロン酸を用いて例23と同様の操作を行い、標題化合物を得た。

収率：44.4%

¹H-NMR (DMSO-d₆) : δ 7.08 (1H, d, J = 8.4 Hz), 7.14 (1H, dd, J = 5.4, 3.6 Hz), 7.45 (1H, dd, J = 3.6, 1.2 Hz), 7.51 (1H, dd, J = 5.1, 0.9 Hz), 7.75 (1H, dd, J = 8.4, 2.4 Hz), 7.59 (1H, s), 8.08 (1

H, d, J = 2. 4 Hz), 8. 48 (2H, s), 10. 91 (1H, s), 11. 38 (1H, s).

例29：化合物番号29の化合物の製造

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7)、及び3-チオフェンボロン酸を用いて例23と同様の操作を行い、標題化合物を得た。

収率：38. 7%

¹H-NMR (DMSO-d₆) : δ 7. 06 (1H, d, J = 8. 7 Hz), 7. 57 (1H, dd, J = 4. 8, 1. 5 Hz), 7. 66 (1H, dd, J = 4. 8, 3. 0 Hz), 7. 81 - 7. 84 (2H, m), 7. 86 (1H, s), 8. 18 (1H, d, J = 2. 1 Hz), 8. 49 (2H, s), 10. 90 (1H, s), 11. 33 (1H, s).

例30：化合物番号30の化合物の製造

(1) 2-ベンジルオキシ-5-(2-プロモアセチル)-N-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミド
5-アセチル-2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミド(例12(3)の化合物；4. 81 g, 10 mmol)のテトラヒドロフラン(30 mL)溶液に、フェニルトリメチルアンモニウムトリブロミド(3. 75 g, 10 mmol)を加え、室温で12時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を亜硫酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製、酢酸エチル/n-ヘキサンから再結晶して、標題化合物の白色固体(2. 39 g, 42. 7%)を得た。

¹H-NMR (DMSO-d₆) : δ 4. 91 (2H, s), 5. 36 (2H, s), 7. 32 - 7. 35 (3H, m), 7. 47 (1H, d, J = 9. 0 Hz), 7. 52 - 7. 56 (2H, m), 7. 82 (1H, s), 8. 21 (1H, dd, J

= 8. 7, 2. 4 Hz), 8. 29 (1 H, d, J = 2. 4 Hz), 8. 31 (2 H, s), 10. 91 (1 H, s).

(2) 2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(2-メチルチアゾール4-イル)ベンズアミド
2-ベンジルオキシ-5-(2-ブロモアセチル)-N-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミド (280 mg, 0. 5 mmol)、チオアセタミド (41 mg, 0. 55 mmol)、炭酸水素ナトリウム (50 mg, 0. 60 mmol)、エタノール (15 mL) の混合物を1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、炭酸水素ナトリウムで中和、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル=4:1) で精製して、標題化合物の白色固体 (181 mg, 67. 5%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 72 (3 H, s), 5. 29 (2 H, s), 7. 33-7. 36 (3 H, m), 7. 40 (1 H, d, J = 9. 0 Hz), 7. 54-7. 57 (2 H, m), 7. 81 (1 H, s), 7. 94 (1 H, s), 8. 12 (1 H, dd, J = 8. 7, 2. 1 Hz), 8. 27 (1 H, d, J = 2. 1 Hz), 8. 31 (2 H, s), 10. 86 (1 H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(2-メチルチアゾール4-イル)ベンズアミド (化合物番号30)
2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(2-メチルチアゾール4-イル)ベンズアミド (160 mg, 0. 3 mmol)、10%パラジウム-炭素 (240 mg) にエタノール (10 mL) を加え、水素雰囲気下、3. 5時間攪拌した。反応混合物を濾過し、溶媒を減圧留去して、標題化合物の白色固体 (103. 4 mg, 79. 2%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 72 (3 H, s), 7. 08 (1 H, d, J = 8. 7 Hz), 7. 83 (1 H, s), 7. 85 (1 H, s), 8. 01 (1 H,

d d, $J = 8.7, 2.4\text{ Hz}$, 8.42 (1H, d, $J = 2.1\text{ Hz}$), 8.50 (2H, s), 10.96 (1H, s), 11.40 (1H, s).

例31：化合物番号31の化合物の製造

2-ベンジルオキシ-5-(2-ブロモアセチル)-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(例12(3)の化合物; 280mg, 0.5mmol)、2-アミノピリジン(51.8mg, 0.55mmol)、炭酸水素ナトリウム(50mg, 0.6mmol)、エタノール(10mL)の混合物を2時間加熱還流した。反応混合物を室温まで冷却後、炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:2)で精製して、白色固体(130.3mg)を得た。次いでこの固体(108mg, 0.19mmol)と10%パラジウム-炭素(11mg)、エタノール(8mL)、酢酸エチル(8mL)の混合物を、水素雰囲気下、7時間攪拌した。反応混合物を濾過し、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:3)で精製して、標題化合物の白色固体(18.3mg, 20.2%)を得た。

$^1\text{H-NMR}$ (DMSO-d₆): δ 6.90 (1H, dt, $J = 6.6, 0.9\text{ Hz}$), 7.10 (1H, d, $J = 8.7\text{ Hz}$), 7.25 (1H, m), 7.57 (1H, d, $J = 9.0\text{ Hz}$), 7.86 (1H, s), 8.04 (1H, dd, $J = 8.7, 2.1\text{ Hz}$), 8.35 (1H, s), 8.48-8.56 (4H, m), 11.00 (1H, s), 11.41 (1H, s).

例32：化合物番号32の化合物の製造

(1) N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ヨード-2-メトキシメトキシベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7; 4.75g, 10mmol)、クロロメチル

メチルエーテル (1. 14 mL, 15 mmol)、炭酸カリウム (2. 76 g, 20 mmol)、アセトン (50 mL) の混合物を8時間加熱還流した。反応混合物を室温まで冷却後、希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル = 3 : 1) で精製、n-ヘキサン／酢酸エチルから再結晶して、標題化合物の白色固体 (3. 96 g, 76. 3%) を得た。

¹H-NMR (DMSO-d₆) : δ 3. 38 (3H, s), 5. 28 (2H, s), 7. 12 (1H, d, J = 9. 0 Hz), 7. 81 (1H, s), 7. 82 (1H, dd, J = 8. 7, 2. 4 Hz), 7. 88 (1H, d, J = 2. 4 Hz), 8. 40 (2H, s), 10. 87 (1H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシ-5-(ピリジン-2-イル)ベンズアミド
N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ヨード-2-メトキシメトキシベンズアミド (0. 20 g, 0. 39 mmol) のN, N-ジメチルホルムアミド (8 mL) 溶液に、トリ-n-ブチル(2-ピリジル)スズ (0. 13 mL, 0. 41 mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム (32. 1 mg, 0. 05 mmol) を加え、100°Cで1. 5時間攪拌した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル = 2 : 1 → 1 : 1) で精製して、標題化合物の白色粉末 (37. 9 mg, 20. 8%) を得た。

¹H-NMR (CDCl₃) : δ 3. 64 (3H, s), 5. 53 (2H, s), 7. 23 - 7. 28 (1H, m), 7. 36 (1H, d, J = 8. 7 Hz), 7. 65 (1H, s), 7. 77 - 7. 84 (2H, m), 8. 20 (2H, s), 8. 31 (1H, dd, J = 8. 7, 2. 4 Hz), 8. 68 - 8. 70 (1H, m),

8. 83 (1 H, d, J = 2. 4 Hz), 10. 12 (1 H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピリジン-2-イル)ベンズアミド(化合物番号32)
 N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシ-5-(ピリジン-2-イル)ベンズアミド(37. 9 mg, 0. 08 mmol)
 にメタノール(3 ml)、濃塩酸(0. 5 ml)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の白色粉末(16. 2 mg, 47. 2%)を得た。

¹H-NMR(DMSO-d₆): δ 7. 13 (1 H, d, J = 8. 4 Hz), 7. 33 (1 H, ddd, J = 7. 5, 6. 3, 1. 2 Hz), 7. 86-7. 91 (2 H, m), 7. 97 (1 H, d, J = 7. 8 Hz), 8. 20 (1 H, dd, J = 8. 7, 2. 1 Hz), 8. 50 (2 H, s), 8. 59 (1 H, d, J = 2. 4 Hz), 8. 64-8. 66 (1 H, m), 10. 97 (1 H, s), 11. 53 (1 H, s).

例33：化合物番号33の化合物の製造

原料として、5-メトキシサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：56. 8%

¹H-NMR(DMSO-d₆): δ 3. 77 (3 H, s), 6. 97 (1 H, d, J = 9. 0 Hz), 7. 10 (1 H, dd, J = 9. 0, 3. 0 Hz), 7. 43 (1 H, d, J = 3. 0 Hz), 7. 84 (1 H, s), 8. 47 (2 H, s), 10. 84 (1 H, s), 10. 91 (1 H, s).

例34：化合物番号34の化合物の製造

(1) 5-アセチル-2-メトキシ安息香酸 メチルエステル

5-アセチルサリチル酸 メチルエステル (5.00 g, 25.7 mmol)、炭酸カリウム (7.10 g, 51.4 mmol)、N, N-ジメチルホルムアミド (25 mL) の混合物に、氷冷下、沃化メチル (2.5 mL, 40.1 mmol) を加え、室温で3時間攪拌した。反応混合物を水にあけ、塩酸で中和、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を懸濁洗浄 (イソプロピルエーテル/n-ヘキサン) して、標題化合物の白色結晶 (5.17 g, 96.5%)を得た。
¹H-NMR (CDCl₃) : δ 2.59 (3H, s), 3.92 (3H, s), 3.99 (3H, s), 7.04 (1H, d, J = 8.7 Hz), 8.12 (1H, dd, J = 8.7, 2.4 Hz), 8.41 (1H, d, J = 2.4 Hz).

(2) 5-イソブチリル-2-メトキシ安息香酸 メチルエステル

5-アセチル-2-メトキシ安息香酸 メチルエステル (0.50 g, 2.40 mmol)、tert-ブロキシカリウム (0.81 g, 7.22 mmol)、テトラヒドロフラン (10 mL) の混合物に、氷冷下、沃化メチル (0.5 mL, 8.03 mmol) を加え、室温で1時間攪拌した。反応混合物を水にあけ、塩酸で中和、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル = 3:1 → 2:1) で精製して、標題化合物の薄黄色オイル (143.1 mg, 25.2%)を得た。

¹H-NMR (CDCl₃) : δ 1.22 (6H, d, J = 6.9 Hz), 3.52 (1H, m), 3.92 (3H, s), 3.98 (3H, s), 7.05 (1H, d, J = 8.7 Hz), 8.13 (1H, dd, J = 8.7, 2.4 Hz), 8.42 (1H, d, J = 2.4 Hz).

(3) 5-イソブチリル-2-メトキシ安息香酸

5-イソブチリル-2-メトキシ安息香酸 メチルエステル (143.1 mg, 0.60 mmol) のメタノール (5 mL) 溶液に、2規定水酸化ナトリウム溶液 (1 mL) を加え、1時間加熱還流した。反応混合物を室温まで冷却後、2規

定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して、標題化合物の白色結晶(134mg, 定量的)を得た。

¹H-NMR (CDCl₃) : δ 1.22 (6H, d, J = 6.9Hz), 3.59 (1H, m), 4.15 (3H, s), 7.16 (1H, d, J = 8.7Hz), 8.24 (1H, dd, J = 8.7, 2.4Hz), 8.73 (1H, d, J = 2.1Hz).

(4) 5-イソブチリル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシベンズアミド

原料として、5-イソブチリル-2-メトキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 61.4%

¹H-NMR (CDCl₃) : δ 1.23 (6H, d, J = 6.9Hz), 3.64 (1H, m), 4.20 (3H, s), 7.18 (1H, d, J = 8.7Hz), 7.65 (1H, s), 8.19 (2H, s), 8.22 (1H, dd, J = 8.7, 2.1Hz), 8.88 (1H, d, J = 2.1Hz), 9.98 (1H, s).

(5) N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-イソブチリルベンズアミド(化合物番号34)

5-イソブチリル-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシベンズアミド(143.4mg, 0.33mmol)、2,4,6-コリジン(3ml)、沃化リチウム(53.1mg, 0.40mmol)の混合物を1時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製し、酢酸エチル/イソプロピルエーテルで結晶化して、標題化合物の白色結晶(90.3mg, 65.3%)を得た。

¹H-NMR (DMSO-d₆) : δ 1.12 (6H, d, J = 6.9 Hz), 3.66 (1H, m), 7.12 (1H, d, J = 8.4 Hz), 7.85 (1H, s), 8.07 (1H, dd, J = 8.4, 2.4 Hz), 8.45 (1H, d, J = 2.4 Hz), 8.47 (2H, s), 10.93 (1H, s), 11.95 (1H, br s).

例35：化合物番号35の化合物の製造

原料として、4-ヒドロキシイソフタル酸-1-メチルエステル、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：91.5%

¹H-NMR (DMSO-d₆) : δ 3.85 (3H, s), 7.12 (1H, d, J = 8.4 Hz), 7.86 (1H, s), 8.02 (1H, dd, J = 8.7, 2.4 Hz), 8.46-8.47 (3H, m), 10.96 (1H, s), 12.03 (1H, br s).

[4-ヒドロキシイソフタル酸-1-メチルエステル：「ジャーナル・オブ・ザ・ケミカル・ソサイエティー (Journal of the Chemical Society)」, (英国), 1956年, p. 3099-3107参照]

例36：化合物番号36の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシイソフタラミン酸メチルエステル(化合物番号35; 2.85g, 7mmol)のメタノール/テトラヒドロフラン(14mL+14mL)懸濁液に、2規定水酸化ナトリウム水溶液(14mL)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸(20mL)を加え、析出した固体を濾取、水洗、乾燥して、標題化合物の白色結晶(2.68g, 97.4%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.10 (1H, d, J = 8.7 Hz), 7.82 (1H, s), 7.86 (1H, s), 8.01 (1H, dd, J = 8.7, 2.4 Hz), 8.47 (2H, s), 8.48 (1H, d, J = 2.4 Hz), 1

0. 97 (1 H, s), 11. 98 (1 H, b r s).

以下の実施例において例 3 6 の方法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例 3 7：化合物番号 3 7 の化合物の製造

4-ヒドロキシイソフタル酸 (182 mg, 1 mmol)、3, 5-ビス(トリフルオロメチル)アニリン (687 mg, 3 mmol)、三塩化リン (87 μ L; 1 mmol)、トルエン (10 mL) を用いて例 3 と同様の操作を行い、標題化合物の白色結晶 (151 mg, 25.0%)を得た。

$^1\text{H-NMR}$ (DMSO-d₆) : δ 7.18 (1 H, d, J = 8.7 Hz), 7.82 (1 H, s), 7.86 (1 H, s), 8.11 (1 H, dd, J = 8.7, 2.4 Hz), 8.50 (2 H, s), 8.54 (2 H, s), 8.56 (1 H, d, J = 2.4 Hz), 10.79 (1 H, s), 10.99 (1 H, s), 11.84 (1 H, b r s).

例 3 8：化合物番号 3 8 の化合物の製造

(1) 4-ベンジルオキシー-N-[3, 5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸 メチルエステル

水素化ナトリウム (60%; 1.04 g, 26 mmol) の N, N-ジメチルホルムアミド (100 mL) 懸濁液に、氷冷下、N-[3, 5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシイソフタラミン酸 メチルエステル (化合物番号 3 5; 8.15 g, 20 mmol) の N, N-ジメチルホルムアミド (100 mL) 溶液を加え、室温で 1 時間攪拌した。次いでベンジルプロミド (4.45 g, 26 mmol) の N, N-ジメチルホルムアミド (10 mL) 溶液を加え、60°Cで 3 時間攪拌した。反応混合物を室温まで冷却後、を氷水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチル/n-ヘキサ

ンから再結晶して、標題化合物の白色固体（5. 38 g, 54. 1%）を得た。

¹H-NMR (DMSO-d₆) : δ 3.87 (3H, s), 5.33 (2H, s), 7.33 – 7.36 (3H, m), 7.46 (1H, d, J = 8.7 Hz), 7.53 – 7.56 (2H, m), 7.82 (1H, s), 8.15 (1H, dd, J = 8.7, 2.1 Hz), 8.25 (1H, d, J = 2.1 Hz) 8.28 (2H, s), 10.87 (1H, s).

(2) 4-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸

原料として、4-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸 メチルエステルを用いて例36と同様の操作を行い、標題化合物を得た。

収率：79.7%

¹H-NMR (DMSO-d₆) : δ 5.32 (2H, s), 7.32 – 7.34 (3H, m), 7.43 (1H, d, J = 8.7 Hz), 7.52 – 7.56 (2H, m), 7.81 (1H, s), 8.12 (1H, dd, J = 8.7, 2.1 Hz), 8.22 (1H, d, J = 2.1 Hz), 8.28 (2H, s), 10.85 (1H, s), 13.81 (1H, br s).

(3) 4-ベンジルオキシ-N³-[3, 5-ビス(トリフルオロメチル)フェニル]-N¹-ジメチルイソフタルアミド

4-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸 (242 mg, 0.50 mmol)、ジメチルアミン塩酸塩 (41 mg, 0.50 mmol)、トリエチルアミン (51 mg, 0.50 mmol) のテトラヒドロフラン (5 mL) 溶液に、氷冷下、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (以下、WSC·HClと略す; 95 mg, 0.50 mmol) を加え、室温で3時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を希塩酸、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲル

カラムクロマトグラフィー（ヘキサン：酢酸エチル=1：4）で精製して、標題化合物の白色固体（165mg, 64.9%）を得た。

¹H-NMR (DMSO-d₆) : δ 2.99 (6H, s) 5.29 (2H, s), 7.32-7.38 (4H, m), 7.52-7.56 (2H, m), 7.64 (1H, dd, J=8.7, 2.1Hz), 7.73 (1H, d, J=2.1Hz), 7.80 (1H, s), 8.28 (2H, s), 10.83 (1H, s).

以下の実施例において例38(3)の方法が引用されている場合、塩基としては、ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

(4) N³-[3, 5-ビス(トリフルオロメチル)フェニル]-4-ヒドロキシ-N¹, N¹-ジメチルイソフタルアミド(化合物番号38)

4-ベンジルオキシ-N³-[3, 5-ビス(トリフルオロメチル)フェニル]-N¹, N¹-ジメチルイソフタルアミド(141mg, 0.28mmol)、5%パラジウム-炭素(14mg)、エタノール(5ml)、酢酸エチル(5ml)混合物を、水素雰囲気下、室温で1時間攪拌した。反応混合物を濾過し、濾液を減圧留去して、標題化合物の白色固体(106mg, 91.2%)を得た。

¹H-NMR (DMSO-d₆) : δ 2.98 (6H, s), 7.02 (1H, d, J=8.7Hz), 7.52 (1H, dd, J=8.7, 2.1Hz), 7.84 (1H, s), 7.95 (1H, d, J=2.1Hz), 8.46 (2H, s), 11.10 (1H, brs), 11.63 (1H, brs).

例39：化合物番号39の化合物の製造

(1) 2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(ピペリジン-1-カルボニル)ベンズアミド

原料として、4-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸(例38(2)の化合物)、及びピペリジンを用いて例38(3)と同様の操作を行い、標題化合物を得た。

収率：56.4%

¹H-NMR (CDCl₃) : δ 1.53-1.70 (6H, m), 3.44 (2H, br s), 3.70 (2H, br s), 5.26 (2H, s), 7.24 (1H, d, J = 8.7 Hz), 7.26 (1H, s), 7.52-7.58 (5H, m), 7.66 (2H, s), 7.74 (1H, dd, J = 8.7, 2.4 Hz), 8.37 (1H, d, J = 2.1 Hz), 10.27 (1H, s).

(2) N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピペリジン-1-カルボニル)ベンズアミド(化合物番号39)
原料として、2-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(ピペリジン-1-カルボニル)ベンズアミドを用いて例38
(4)と同様の操作を行い、標題化合物を得た。

収率：96.3% 白色固体

¹H-NMR (DMSO-d₆) : δ 1.51 (4H, br s), 1.60-1.65 (2H, m), 3.47 (4H, br s), 7.04 (1H, d, J = 8.4 Hz), 7.48 (1H, dd, J = 8.4, 2.1 Hz), 7.85 (1H, s), 7.92 (1H, d, J = 2.1 Hz), 8.46 (2H, s), 10.99 (1H, s), 11.64 (1H, br s).

例40：化合物番号40の化合物の製造

(1) 2-ベンジルオキシ-5-(4-ベンジルピペリジン-1-カルボニル)-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド
原料として、4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸(例38(2)の化合物)、及び4-ベンジルピペリジンを用いて例38(3)と同様の操作を行い、標題化合物を得た。

収率：76.7%

¹H-NMR (CD₃OD) : δ 1.18-1.38 (2H, m), 1.67 (1H, br s), 1.74 (1H, br s), 1.84-1.93 (1H, m), 2.60 (2H, d, J = 7.2 Hz), 2.83 (1H, br s), 3.10 (1H, br s), 3.78 (1H, br s), 4.59 (1H, br s), 5.34 (2H,

s), 7. 15 – 7. 18 (3 H, m), 7. 24 – 7. 28 (2 H, m), 7. 40 – 7. 46 (4 H, m), 7. 57 – 7. 63 (3 H, m), 7. 65 (1 H, d d, J = 8. 7, 2. 4 Hz), 7. 96 (2 H, s), 8. 05 (1 H, d, J = 2. 1 Hz).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(4-ベンジルピペリジン-1-カルボニル)ベンズアミド(化合物番号40)

原料として、2-ベンジルオキシ-5-(4-ベンジルピペリジン-1-カルボニル)-N-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミドを用いて例38(4)と同様の操作を行い、標題化合物を得た。

収率 54. 3% 白色固体

¹H-NMR (DMSO-d₆): δ 1. 08 – 1. 22 (2 H, m), 1. 59 – 1. 62 (2 H, m), 1. 77 – 1. 80 (1 H, m), 2. 50 – 2. 55 (2 H, m), 2. 87 (2 H, b r s), 3. 75 (1 H, b r), 4. 39 (1 H, b r), 7. 06 (1 H, d, J = 8. 4 Hz), 7. 17 – 7. 20 (3 H, m), 7. 28 (2 H, t, J = 7. 2 Hz), 7. 49 (1 H, d d, J = 8. 4, 2. 1 Hz), 7. 84 (1 H, s), 7. 93 (1 H, d, J = 2. 1 Hz), 8. 47 (2 H, s), 10. 89 (1 H, s), 11. 65 (1 H, s).

例41：化合物番号41の化合物の製造

(1) 2-メトキシ-5-スルファモイル安息香酸

メチル 2-メトキシ-5-スルファモイルベンゾエート (4. 91 g, 20 mmol) のメタノール (30 mL) 溶液に、2規定水酸化ナトリウム溶液 (30 mL, 60 mmol) を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、析出した固体を濾取して、標題化合物の白色固体 (4. 55 g, 98. 3%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 89 (3 H, s), 7. 30 (1 H, d, J = 8. 7 Hz), 7. 32 (2 H, s), 7. 92 (1 H, d d, J = 8. 7,

2. 7 Hz), 8. 09 (1 H, d, J = 2. 7 Hz), 13. 03 (1 H, b r).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド

原料として、2-メトキシ-5-スルファモイル安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例12(3)と同様の操作を行い、標題化合物を得た。

収率：24. 2%

¹H-NMR (DMSO-d₆) : δ 3. 97 (3 H, s), 7. 38 (2 H, s), 7. 39 (1 H, d, J = 8. 7 Hz), 7. 85 (1 H, s), 7. 96 (1 H, d d, J = 8. 7, 2. 4 Hz), 8. 06 (1 H, d, J = 2. 4 Hz), 8. 43 (2 H, s), 10. 87 (1 H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミド

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド (442 mg, 1. 0 mmol)、沃化メチル (710 mg, 5. 0 mmol)、炭酸カリウム (415 mg, 3. 0 mmol)、アセトニトリル (10 mL) の懸濁液を3時間加熱還流した。反応混合液を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体 (207 mg, 44. 1%)を得た。

¹H-NMR (DMSO-d₆) : δ 2. 62 (6 H, s), 3. 99 (3 H, s), 7. 45 (1 H, d, J = 9. 0 Hz), 7. 85 (1 H, s), 7. 91 (1 H, d d, J = 8. 7, 2. 4 Hz), 7. 95 (1 H, d, J = 2. 4 Hz) 8. 43 (2 H, s), 10. 90 (1 H, s).

(4) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-ヒドロキシベンズアミド (化合物番号41)

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミドを用いて例34(5)と同様の操作を行い、標題化合物を得た。

収率：45.5%

¹H-NMR (DMSO-d₆) : δ 2.61 (6H, s), 7.20 (1H, d, J = 8.7 Hz), 7.77 (1H, dd, J = 8.7, 2.1 Hz), 7.86 (1H, s), 8.14 (1H, d, J = 2.1 Hz) 8.45 (2H, s), 11.16 (1H, s), 12.15 (1H, br).

例42：化合物番号42の化合物の製造

(1) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-(ピロール-1-スルホニル)ベンズアミド

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド(例41(2)の化合物；442mg, 1mmol)、2, 5-ジメトキシテトラヒドロフラン(159mg, 1.2mmol)、酢酸(5mL)の混合物を2時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン：酢酸エチル=3:2)で精製して、標題化合物の白色固体(436.5mg, 88.6%)を得た。

¹H-NMR (DMSO-d₆) : δ 3.96 (3H, s), 6.36 (2H, d, J = 2.4, 2.1 Hz), 7.37 (2H, dd, J = 2.4, 2.1 Hz), 7.42 (1H, d, J = 9.0 Hz), 7.85 (1H, s), 8.80 (1H, dd, J = 9.0, 2.4 Hz) 8.18 (1H, d, J = 2.7 Hz), 8.38 (2H, s), 10.92 (1H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピロール-1-スルホニル)ベンズアミド(化合物番号42)

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-(ピロール-1-スルホニル)ベンズアミドを用いて例34(5)と同様の操作を行い、標題化合物を得た。

収率：79.4%

¹H-NMR (DMSO-d₆) δ 6.36 (2H, dd, J=2.4, 2.1 Hz), 7.18 (1H, d, J=9.0 Hz), 7.34 (2H, dd, J=2.4, 2.1 Hz), 7.86 (1H, s), 7.99 (1H, dd, J=9.0, 2.7 Hz) 8.31 (1H, d, J=2.7 Hz), 8.42 (2H, s), 10.98 (1H, s).

例43：化合物番号43の化合物の製造

原料として、N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ニトロベンズアミド(化合物番号8)を用いて例38(4)と同様の操作を行い、標題化合物を得た。

収率：98.0%

¹H-NMR (DMSO-d₆): δ 4.79 (2H, br s), 6.76 (1H, d, J=2.1 Hz), 6.76 (1H, s), 7.09 (1H, dd, J=2.1, 1.2 Hz), 7.80 (1H, s), 8.45 (2H, s), 10.30 (1H, br), 10.84 (1H, s).

例44：化合物番号44の化合物の製造

原料として、5-ジメチルアミノサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：28.8%

¹H-NMR (DMSO-d₆): δ 2.85 (6H, s), 6.92 (1H, d, J=9.0 Hz), 7.01 (1H, dd, J=8.7, 3.0 Hz), 7.22 (1H, d, J=3.0 Hz), 7.84 (1H, s), 8.47 (2H, s), 10.62 (1H, s), 10.83 (1H, s).

例45：化合物番号45の化合物の製造

アルゴン雰囲気下、5-アミノ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号43; 364mg, 1mmol)、ピリジン(95mg, 1.2mmol)、テトラヒドロフラン(10mL)の混合物に、氷冷下、ベンゾイルクロリド(155mg, 1.1mmol)を加え、1時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して、標題化合物の白色固体(121mg, 25.7%)を得た。

¹H-NMR(DMSO-d₆): δ 7.04(1H, d, J=8.7Hz), 7.51-7.62(3H, m), 7.81(1H, dd, J=8.7, 2.4Hz), 7.83(1H, s), 7.98(2H, d, J=7.2Hz), 8.22(1H, d, J=2.4Hz), 8.49(2H, s), 10.27(1H, s), 10.89(1H, s), 11.07(1H, s).

例46：化合物番号46の化合物の製造

5-アミノ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号43; 100.2mg, 0.28mmol)のアセトニトリル(4mL)溶液に、4-ジメチルアミノピリジン(3mg), フェニルイソシアネート(30μL, 0.28mmol)を加え、60°Cで5分間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製して、標題化合物の薄褐色固体(54.8mg, 41.2%)を得た。

¹H-NMR(DMSO-d₆): δ 6.93-6.98(1H, m), 6.97(1H, d, J=9.3Hz), 7.27(2H, t, J=7.8Hz), 7.34-7.46(2H, m), 7.50(1H, dd, J=9.0, 2.4Hz), 7.83(1H, s), 7.88(1H, s), 8.47(2H, s), 8.56(1H, s), 8.63(1H, s), 10.87(1H, s), 10.89(1H, s).

例4 7：化合物番号4 7の化合物の製造

原料として、5-アミノ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号4 3)、及びフェニルイソチオシアネットを用いて例4 6と同様の操作を行い、標題化合物を得た。

収率：66.3%

¹H-NMR(DMSO-d₆)：δ 7.00(1H, d, J=8.4Hz), 7.13(1H, tt, J=7.5, 1.2Hz), 7.34(2H, t, J=7.8Hz), 7.45-7.51(3H, m), 7.84(1H, s), 7.87(1H, d, J=2.7Hz), 8.47(2H, s), 9.65(1H, s), 9.74(1H, s), 10.84(1H, s), 11.32(1H, s).

例4 8：化合物番号4 8の化合物の製造

原料として、5-[(4-ニトロフェニル)ジアゼニル]サリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：11.3%

¹H-NMR(DMSO-d₆)：δ 7.23(1H, d, J=9.0Hz), 7.87(1H, s), 8.06(2H, d, J=9.0Hz), 8.10(1H, dd, J=9.0, 2.4Hz), 8.44(2H, d, J=9.0Hz), 8.50(2H, s), 8.53(1H, d, J=2.4Hz), 11.13(1H, s), 12.14(1H, br).

例4 9：化合物番号4 9の化合物の製造

原料として、5-({[(4-ピリジン-2-イル)スルファモイル]フェニル}ジアゼニル)サリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：7.9%

¹H-NMR(DMSO-d₆)：δ 6.87(1H, t, J=6.0Hz), 7.22(1H, d, J=8.7Hz), 7.21-7.23(1H, m), 7.77

(1 H, t, J = 8.4 Hz), 7.87 (1 H, s), 7.95 – 7.98 (3 H, m), 8.03 – 8.07 (4 H, m), 8.47 (1 H, d, J = 2.4 Hz), 8.49 (2 H, s), 11.14 (1 H, s), 12.03 (1 H, br).

例50：化合物番号50の化合物の製造

(1) 4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸

原料として、4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸 メチルエステルを用いて例36と同様な操作を行い、標題化合物を得た。

収率：88.0%

¹H-NMR (DMSO-d₆) : δ 2.16 (3 H, s), 3.78 (3 H, s), 7.72 (1 H, s), 7.77 (1 H, s), 9.57 (1 H, s), 12.74 (1 H, s).

(2) 4-アセチルアミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-メトキシベンズアミド

原料として、4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例12(3)と同様な操作を行い、標題化合物を得た。

収率：23.8%

¹H-NMR (DMSO-d₆) : δ 2.17 (3 H, s), 3.89 (3 H, s), 7.77 – 7.82 (3 H, m), 8.45 – 8.49 (2 H, m), 9.66 (1 H, s), 10.68 (1 H, s).

(3) 4-アセチルアミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号50)

原料として、4-アセチルアミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-メトキシベンズアミドを用いて例34(5)と同様の操作を行い、標題化合物を得た。

収率：72.8%

¹H-NMR (DMSO-d₆) : δ 2.17 (3 H, s), 7.75 (1 H, s),

7. 82 (1H, s), 7. 95 (1H, s), 8. 44 (2H, s), 9. 45 (1H, s), 11. 16 (1H, b r s), 11. 63 (1H, b r s).

例51：化合物番号51の化合物の製造

原料として、4-クロロサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：55. 8%

¹H-NMR (DMSO-d₆) : δ 7. 05-7. 08 (2H, m), 7. 84-7. 87 (2H, m), 8. 45 (2H, s), 10. 84 (1H, s) 11. 64 (1H, b r s).

例52：化合物番号52の化合物の製造

原料として、6-ヒドロキシサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：86. 9%

¹H-NMR (DMSO-d₆) : δ 6. 36 (2H, d, J = 8. 4 Hz), 7. 13 (1H, t, J = 8. 4 Hz), 7. 79 (1H, s), 8. 38 (2H, s), 11. 40 (2H, b r s), 11. 96 (1H, b r s).

例53：化合物番号53の化合物の製造

原料として、4-メチルサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：42. 9%

¹H-NMR (DMSO-d₆) : δ 2. 32 (3H, s) 6. 82 (1H, d, J = 6. 6 Hz) 6. 84 (1H, s) 7. 83 (1H, s) 7. 84 (1H, d, J = 8. 5 Hz) 8. 47 (2H, s) 10. 76 (1H, s) 11. 44 (1H, s).

例54：化合物番号54の化合物の製造

原料として、5-ブロモ-4-ヒドロキシサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：82.4%

¹H-NMR (CDCl₃) : δ 5.89 (1H, s) 6.70 (1H, s) 7.69 (2H, s) 7.95 (1H, s) 8.12 (2H, s) 11.62 (1H, s).

例55：化合物番号55の化合物の製造

原料として、4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：29.9%

¹H-NMR (DMSO-d₆) : δ 6.37 (1H, d, J=2.5Hz), 6.42 (1H, dd, J=8.8, 2.5Hz), 7.81 (1H, s), 7.86 (1H, d, J=8.5Hz), 8.44 (2H, s), 10.31 (1H, s), 10.60 (1H, s), 11.77 (1H, s).

例56：化合物番号56の化合物の製造

原料として、3,5-ジクロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：44.8%

¹H-NMR (DMSO-d₆) : δ 7.85 (1H, d, J=2.5Hz), 7.91 (1H, s), 8.01 (1H, d, J=2.5Hz), 8.42 (2H, s), 11.10 (1H, s).

例57：化合物番号57の化合物の製造

原料として、3-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：22.7%

¹H-NMR (DMSO-d₆) : δ 6.81 (1H, t, J=8.0Hz), 7.01 (1H, dd, J=8.0, 1.5Hz), 7.35 (1H, dd, J=8.0, 1.5Hz), 7.84 (1H, s), 8.46 (2H, s), 9.56 (1H, s), 10.79 (1H, s), 10.90 (1H, brs).

例 5 8：化合物番号 5 8 の化合物の製造

原料として、3-メチルサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：54.9%

¹H-NMR (DMSO-d₆) : δ 2.22 (3H, s), 6.94 (1H, t, J = 7.4 Hz), 7.42 (1H, d, J = 7.4 Hz), 7.84 - 7.85 (2H, m), 8.47 (2H, s), 10.87 (1H, s), 11.87 (1H, s).

例 5 9：化合物番号 5 9 の化合物の製造

原料として、3-メトキシサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：34.6%

¹H-NMR (DMSO-d₆) : δ 3.85 (3H, s), 6.94 (1H, t, J = 8.0 Hz), 7.20 (1H, dd, J = 8.0, 1.4 Hz), 7.44 (1H, dd, J = 8.0, 1.4 Hz), 7.84 (1H, s), 8.45 (2H, s), 10.82 (1H, s), 10.94 (1H, br s).

例 6 0：化合物番号 6 0 の化合物の製造

原料として、5-[(1,1,3,3-テトラメチル)ブチル]サリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：64.2%

¹H-NMR (DMSO-d₆) : δ 0.70 (9H, s), 1.35 (6H, s), 1.72 (2H, s), 6.95 (1H, d, J = 8.4 Hz), 7.50 (1H, dd, J = 8.0, 2.1 Hz), 7.83 (1H, s), 7.84 (1H, d, J = 2.1 Hz), 8.46 (1H, s), 10.77 (1H, s), 11.20 (1H, s).

例 6 1：化合物番号 6 1 の化合物の製造

原料として、3, 5, 6-トリクロロサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：26.2%

¹H-NMR (DMSO-d₆) : δ 7.88 (1H, s), 7.93 (1H, s), 8.33 (2H, s), 10.88 (1H, s), 11.36 (1H, s).

例62：化合物番号62の化合物の製造

原料として、3, 5-ビス[(1, 1-ジメチル)エチル]サリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：65.0%

¹H-NMR (DMSO-d₆) : δ 1.34 (9H, s), 1.40 (9H, s), 7.49 (1H, d, J=2.2Hz), 7.82 (1H, d, J=2.2Hz), 7.91 (1H, s), 8.40 (2H, s), 10.82 (1H, s), 12.44 (1H, s).

例63：化合物番号63の化合物の製造

原料として、6-フルオロサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：35.9%

¹H-NMR (DMSO-d₆) : δ 6.73-6.82 (2H, m), 7.32 (1H, ddd, J=1.4, 8.5, 15.3Hz), 7.83 (1H, s), 8.39 (2H, s), 10.50 (1H, d, J=1.4Hz), 11.11 (1H, s).

例64：化合物番号64の化合物の製造

原料として、3-クロロサリチル酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：61.3%

¹H-NMR (DMSO-d₆) : δ 7.05 (1H, dd, J=7.6, 8.

0 Hz), 7. 69 (1 H, dd, J = 1. 4, 13. 3 Hz), 7. 90 (1 H, s), 7. 93 (1 H, dd, J = 1. 4, 8. 0 Hz), 8. 44 (2 H, s), 11. 01 (1 H, s), 11. 92 (1 H, br. s).

例 6 5：化合物番号 6 5 の化合物の製造

原料として、4-メトキシサリチル酸、及び 3, 5-ビス(トリフルオロメチル)アニリンを用いて例 3 と同様な操作を行い、標題化合物を得た。

収率：14. 2%

¹H-NMR (DMSO-d₆) : δ 3. 81 (3 H, s), 6. 54 (1 H, d, J = 2. 5 Hz), 6. 61 (1 H, dd, J = 2. 5, 8. 8 Hz), 7. 83 (1 H, s), 7. 95 (1 H, d, J = 8. 8 Hz), 8. 45 (2 H, s), 10. 69 (1 H, s), 11. 89 (1 H, s).

例 6 6：化合物番号 6 6 の化合物の製造

原料として、6-メトキシサリチル酸、及び 3, 5-ビス(トリフルオロメチル)アニリンを用いて例 3 と同様な操作を行い、標題化合物を得た。

収率：63. 1%

¹H-NMR (DMSO-d₆) : δ 3. 24 (3 H, s), 6. 03 (1 H, d, J = 8. 0 Hz), 6. 05 (1 H, d, J = 8. 5 Hz), 6. 71 (1 H, d, J = 8. 2, 8. 5 Hz), 7. 25 (1 H, s), 7. 88 (2 H, s), 9. 67 (1 H, s), 10. 31 (1 H, s)

例 6 7：化合物番号 6 7 の化合物の製造

原料として、5-アミノ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号 4 3)、及びメタンスルホニルクロリドを用いて例 4 5 と同様な操作を行い、標題化合物を得た。

収率：22. 6%

¹H-NMR (DMSO-d₆) : δ 2. 93 (3 H, s), 7. 02 (1 H, d, J = 8. 4 Hz), 7. 31 (1 H, dd, J = 8. 4, 2. 7 Hz), 7. 68 (1 H, d, J = 2. 7 Hz), 7. 83 (1 H, s), 8. 46 (2 H, s), 9.

4.8 (1H, s), 10.85 (1H, s), 11.15 (1H, s).

例68：化合物番号68の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号43)、及びベンゼンスルホニルクロリドを用いて例45と同様な操作を行い、標題化合物を得た。

収率：45.3%

¹H-NMR (DMSO-d₆) : δ 6.89 (1H, d, J = 8.7 Hz), 7.10 (1H, dd, J = 8.7, 2.7 Hz), 7.51 - 7.64 (4H, m), 7.68 - 7.71 (2H, m), 7.81 (1H, s), 8.42 (2H, s), 10.03 (1H, s), 10.87 (1H, s), 11.13 (1H, br s).

例69：化合物番号69の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号43)、及びアセチルクロリドを用いて例45と同様な操作を行い、標題化合物を得た。

収率：44.8%

¹H-NMR (DMSO-d₆) : δ 2.02 (3H, s), 6.97 (1H, d, J = 8.7 Hz), 7.61 (1H, dd, J = 8.7, 2.7 Hz), 7.82 (1H, s), 7.99 (1H, d, J = 2.7 Hz), 8.46 (2H, s), 9.90 (1H, s), 10.85 (1H, s), 10.94 (1H, s).

例70：化合物番号70の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-アスルファモイルベンズアミド(例41(2)の化合物)を用いて例34(5)と同様な操作を行い、標題化合物を得た。

収率：59.9%

¹H-NMR (DMSO-d₆) : δ 7.17 (1H, d, J = 8.7 Hz), 7.31 (2H, s), 7.85 (1H, s), 7.86 (1H, dd, J = 8.4, 2.4 Hz), 8.26 (1H, d, J = 2.7 Hz), 8.47 (2H, s), 1

0. 95 (1H, s), 11. 90 (1H, s).

例71：化合物番号71の化合物の製造

原料として、1-ヒドロキシナフタレン-2-カルボン酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：65. 5%

¹H-NMR (DMSO-d₆) : δ 7. 51 (1H, d, J = 9. 0 Hz), 7. 60 (1H, t d, J = 7. 8, 0. 9 Hz), 7. 70 (1H, t d, J = 7. 8, 0. 9 Hz), 7. 89 (1H, s), 7. 93 (1H, d, J = 8. 4 Hz), 8. 09 (1H, d, J = 9. 0 Hz), 8. 33 (1H, d, J = 8. 7 Hz), 8. 51 (2H, s), 10. 92 (1H, s), 13. 36 (1H, s).

例72：化合物番号72の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：46. 9%

¹H-NMR (DMSO-d₆) : δ 7. 36 - 7. 41 (2H, m), 7. 50 - 7. 55 (1H, m), 7. 79 (1H, d, J = 8. 2 Hz), 7. 85 (1H, d, J = 0. 6 Hz), 7. 96 (1H, d, J = 8. 0 Hz), 8. 51 (2H, s), 10. 98 (1H, s), 11. 05 (1H, s).

例73：化合物番号73の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：30. 2%

¹H-NMR (DMSO-d₆) : δ 7. 27 (1H, d, J = 8. 8 Hz), 7. 32 - 7. 38 (1H, m), 7. 45 - 7. 50 (1H, m), 7. 72 (1H,

d, $J = 8.5\text{ Hz}$), 7.82–7.93 (3H, m), 8.50 (1H, s), 10.28 (1H, s), 11.07 (1H, brs).

例74：化合物番号74の化合物の製造

(1) 4-ブロモ-3-ヒドロキシチオフェン-2-カルボン酸

4-ブロモ-3-ヒドロキシチオフェン-2-カルボン酸 メチルエステル (5.00 mg, 2.1 mmol)、水酸化ナトリウム (261 mg, 6.3 mmol) のメタノール／水 (2.5 mL + 2.5 mL) 混合溶液を2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸でpHを1とし、酢酸エチル (50 mL) で希釈した。酢酸エチル溶液を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去して、標題化合物の赤褐色粉末 (326 mg, 69.4%) を得た。

$^1\text{H-NMR} (\text{CDCl}_3)$: δ 4.05 (1H, brs), 7.40 (1H, s).

(2) 4-ブロモ-3-ヒドロキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]チオフェン-2-カルボキサミド (化合物番号74)

原料として、4-ブロモ-3-ヒドロキシチオフェン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 82.4%

$^1\text{H-NMR} (\text{CDCl}_3)$: δ 7.42 (1H, s), 7.67 (1H, brs), 7.78 (1H, brs), 8.11 (2H, s), 9.91 (1H, brs).

例75：化合物番号75の化合物の製造

5-クロロ-2-ヒドロキシニコチン酸 (1.74 mg, 1 mmol)、3,5-ビス(トリフルオロメチル)アニリン (275 mg, 1.2 mmol)、ピリジン (316 mg, 4 mmol) のテトラヒドロフラン／ジクロロメタン (20 mL + 10 mL) 溶液に、オキシ塩化リン (0.112 mL, 1.2 mmol) を加え、室温で2時間攪拌した。反応混合物を酢酸エチル (100 mL) 及び0.2規定塩酸 (100 mL) にあけ、30分間攪拌、セライト濾過し、水層を酢酸エチル

で抽出した。合わせた酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (*n*-ヘキサン：酢酸エチル = 2 : 1 → 1 : 1) で精製、エタノールで懸濁洗浄して、標題化合物の白色結晶 (183 mg, 47.6%)を得た。

融点：> 270 °C

¹H-NMR (DMSO-d₆) : δ 7.83 (1H, s), 8.15 (1H, d, J = 3.3 Hz), 8.36 (1H, d, J = 3.0 Hz), 8.40 (2H, s), 12.43 (1H, s).

以下の実施例において例75の製造法が引用されている場合、縮合剤（酸ハロゲン化剤）としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例76：化合物番号76の化合物の製造

原料として、3-ヒドロキシピリジン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例75と同様の操作を行い、標題化合物を得た。

収率：45.0%

¹H-NMR (CDCl₃) : δ 7.40 (1H, dd, J = 8.4, 1.8 Hz), 7.46 (1H, dd, J = 8.4, 4.2 Hz), 7.68 (1H, s), 8.16 (1H, dd, J = 4.2, 1.2 Hz), 8.25 (2H, s), 10.24 (1H, s), 11.42 (1H, s).

例77：化合物番号77の化合物の製造

3,5-ビス(トリフルオロメチル)フェニルイソシアネート (255 mg, 1.0 mmol) のテトラヒドロフラン (5 mL) 溶液に、アルゴン雰囲気下、6-クロロ-オキシインドール (184 mg, 1.1 mmol) のテトラヒドロフラン (5 mL) 溶液、トリエチルアミン (0.3 mL) を加え、室温で4時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、

飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル=4:1) で精製して、標題化合物の桃色固体 (172.2 mg, 40.7%) を得た。

¹H-NMR (DMSO-d₆) : δ 3.97 (2H, s), 7.29 (1H, d, J=8.1, 2.1 Hz), 7.41 (1H, d, J=8.1 Hz), 7.88 (1H, s), 8.04 (1H, d, J=2.1 Hz), 8.38 (2H, s), 10.93 (1H, s).

例78：化合物番号78の化合物の製造

原料として、3, 5-ビス(トリフルオロメチル)フェニルイソシアネート、及びオキシンドールを用いて例77と同様の操作を行い、標題化合物を得た。

収率：44.8%

¹H-NMR (DMSO-d₆) : δ 3.98 (2H, s), 7.22 (1H, t, d, J=7.8, 1.2 Hz), 7.33-7.40 (2H, m), 7.87 (1H, s), 8.02 (1H, d, J=7.8 Hz), 8.38 (2H, s), 11.00 (1H, s).

例79：化合物番号79の化合物の製造

原料として、3, 5-ビス(トリフルオロメチル)フェニルイソシアネート、及び5-クロロオキシンドールを用いて例77と同様の操作を行い、標題化合物を得た。

収率：31.1%

¹H-NMR (DMSO-d₆) : δ 3.99 (2H, s), 7.41 (1H, d, J=8.7, 2.4 Hz), 7.47 (1H, d, J=2.1 Hz), 7.87 (1H, s), 8.01 (1H, d, J=8.4 Hz), 8.38 (2H, s), 10.93 (1H, s).

例80：化合物番号80の化合物の製造

原料として、3-ヒドロキシキノキサリン-2-カルボン酸、及び3, 5-ビス

(トリフルオロメチル) アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率：2. 7 %

¹H-NMR (DMSO-d₆) : δ 7.40-7.45 (2H, m), 7.69
(1H, t d, J = 8.4, 1.5 Hz), 7.90-7.93 (2H, m), 8.
41 (2H, s), 11.64 (1H, s), 13.02 (1H, s).

例 8 1：化合物番号 8 1 の化合物の製造

原料として、5-クロロサリチル酸、及び 2, 5-ビス(トリフルオロメチル)
アニリンを用いて例 3 と同様な操作を行い、標題化合物を得た。

収率：3. 6 %

¹H-NMR (CDCl₃) : δ 7.03 (1H, d, J = 8.7 Hz), 7.4
3-7.48 (2H, m), 6.61 (1H, d, J = 8.1 Hz), 7.85 (1
H, d, J = 8.4 Hz), 8.36 (1H, br s), 8.60 (1H, s), 1
1.31 (1H, s).

例 8 2：化合物番号 8 2 の化合物の製造

原料として、N-[2, 5-ビス(トリフルオロメチル)フェニル]-5-クロ
ロ-2-ヒドロキシベンズアミド(化合物番号 8 1)、及びアセチルクロリドを用
いて例 5 と同様の操作を行い、標題化合物を得た。

収率：6. 6 %

¹H-NMR (CDCl₃) : δ 2.35 (3H, s), 7.17 (1H, d, J
= 8.7 Hz), 7.54 (1H, dd, J = 8.7, 2.4 Hz), 7.55 (1
H, d, J = 8.1 Hz), 7.80 (1H, d, J = 8.1 Hz), 7.95 (1
H, d, J = 2.4 Hz), 8.60 (1H, s), 8.73 (1H, s).

例 8 3：化合物番号 8 3 の化合物の製造

原料として、5-ブロモサリチル酸、及び 2, 5-ビス(トリフルオロメチル)
アニリンを用いて例 3 と同様な操作を行い、標題化合物を得た。

収率：24. 0 %

¹H-NMR (DMSO-d₆) : δ 7.03 (1H, d, J = 8.7 Hz), 7.65 (1H, dd, J = 8.7, 2.7 Hz), 7.76 (1H, d, J = 8.4 Hz), 8.03 (1H, d, J = 8.1 Hz) 8.11 (1H, d, J = 2.7 Hz), 8.74 (1H, s), 11.02 (1H, s), 12.34 (1H, s).

例84：化合物番号84の化合物の製造

原料として、5-メチルサリチル酸、及び2, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率：1.5%

¹H-NMR (CDCl₃) : δ 2.36 (3H, s), 6.97 (1H, d, J = 8.4 Hz), 7.23 (1H, s), 7.32 (1H, dd, J = 8.4, 1.5 Hz), 7.57 (1H, d, J = 8.4 Hz), 7.83 (1H, d, J = 8.4 Hz), 8.46 (1H, s), 8.69 (1H, s), 11.19 (1H, s).

例85：化合物番号85の化合物の製造

原料として、5-クロロサリチル酸、及び3-フルオロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：62.0%

¹H-NMR (DMSO-d₆) : δ 7.04 (1H, d, J = 8.7 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.48 (1H, dd, J = 9.0, 3.0 Hz), 7.85 (1H, d, J = 2.4 Hz), 7.94 (1H, dd, J = 11.4, 2.1 Hz), 7.99 (1H, s), 10.73 (1H, s), 11.46 (1H, s).

例86：化合物番号86の化合物の製造

原料として、5-ブロモサリチル酸、及び3-ブロモ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：73.3%

¹H-NMR (DMSO-d₆) : δ 6.99 (1H, d, J = 9.0 Hz), 7.60 (1H, dd, J = 9.0, 2.4 Hz), 7.72 (1H, s), 7.97

(1 H, d, J = 2. 7 Hz), 8. 16 (1 H, s), 8. 28 (1 H, s), 10. 69 (1 H, s), 11. 45 (1 H, s).

例87：化合物番号87の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：77. 9%

¹H-NMR (DMSO-d₆) : δ 7. 07 (1 H, d, J = 9. 0 Hz), 7. 52 (1 H, dd, J = 9. 0, 2. 7 Hz), 7. 58 - 7. 61 (2 H, m), 7. 95 (1 H, d, J = 2. 7 Hz), 8. 71 (1 H, d, J = 7. 5 Hz), 10. 90 (1 H, s), 12. 23 (1 H, s).

例88：化合物番号88の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：49. 1%

¹H-NMR (DMSO-d₆) : δ 7. 09 (1 H, d, J = 9. 0 Hz), 7. 53 (1 H, dd, J = 9. 0, 3. 0 Hz), 7. 55 (1 H, dd, J = 8. 4, 2. 7 Hz), 7. 83 (1 H, d, J = 8. 4 Hz), 7. 98 (1 H, d, J = 3. 0 Hz), 8. 88 (1 H, d, J = 2. 7 Hz), 11. 14 (1 H, s), 12. 39 (1 H, s).

例89：化合物番号89の化合物の製造

原料として、5-クロロ-N-[2-クロロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号88)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率：34. 0%

¹H-NMR (CDCl₃) : δ 2. 39 (3 H, s), 7. 16 (1 H, d, J = 8. 7 Hz), 7. 37 (1 H,ddd, J = 8. 7, 2. 4, 0. 6 Hz), 7. 51 - 7. 56 (2 H, m), 7. 97 (1 H, d, J = 3. 0 Hz), 8.

8.5 (1H, s), 8.94 (1H, d, J = 1.8 Hz).

例90：化合物番号90の化合物の製造

原料として、5-ブロモサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：34.2%

¹H-NMR (DMSO-d₆) : δ 7.04 (1H, d, J = 8.7 Hz), 7.56 (1H, ddd, J = 8.1, 2.4, 1.2 Hz), 7.64 (1H, dd, J = 8.7, 2.7 Hz), 7.83 (1H, dd, J = 8.1, 1.2 Hz), 8.11 (1H, d, J = 2.7 Hz), 8.87 (1H, d, J = 2.4 Hz), 11.12 (1H, s), 12.42 (1H, s).

例91：化合物番号91の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：8.1%

¹H-NMR (DMSO-d₆) : δ 7.08 (1H, d, J = 9.0 Hz), 7.53 (1H, dd, J = 8.7, 2.7 Hz), 7.73 (1H, dd, J = 8.4, 1.8 Hz), 7.95 (1H, d, J = 3.0 Hz), 8.36 (1H, d, J = 8.7 Hz), 9.01 (1H, d, J = 1.8 Hz), 12.04 (1H, s), 12.20 (1H, s).

例92：化合物番号92の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：73.3%

¹H-NMR (DMSO-d₆) : δ 2.39 (3H, s), 7.07 (1H, d, J = 8.7 Hz), 7.44-7.54 (3H, m), 7.99 (1H, d, J = 3.0 Hz), 8.43 (1H, s), 10.52 (1H, s), 12.17 (1H, br s).

例93：化合物番号93の化合物の製造

原料として、5-ブロモサリチル酸、及び3-メトキシ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：58.8%

¹H-NMR (DMSO-d₆) : δ 3.85 (3H, s), 6.98 (1H, d, J = 8.7 Hz), 7.03 (1H, s), 7.57-7.61 (2H, m), 7.77 (1H, s), 8.00 (1H, d, J = 2.4 Hz), 10.57 (1H, s), 11.56 (1H, s).

例94：化合物番号94の化合物の製造

原料として、5-ブロモサリチル酸、及び2-メトキシ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：71.3%

¹H-NMR (DMSO-d₆) : δ 3.99 (3H, s), 7.03 (1H, d, J = 9.0 Hz), 7.30 (1H, d, J = 8.7 Hz), 7.47-7.51 (1H, m), 7.61 (1H, dd, J = 9.0, 2.4 Hz), 8.10 (1H, d, J = 2.4 Hz), 8.82 (1H, d, J = 2.1 Hz) 11.03 (1H, s), 12.19 (1H, s).

例95：化合物番号95の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：83.4%

¹H-NMR (DMSO-d₆) : δ 4.00 (3H, s), 7.08 (1H, d, J = 9.0 Hz), 7.30 (1H, d, J = 8.7 Hz), 7.47-7.52 (2H, m), 7.97 (1H, d, J = 2.7 Hz), 8.83 (1H, d, J = 2.4 Hz), 11.05 (1H, s), 12.17 (1H, s).

例96：化合物番号96の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチルスルファニル-5-(トリ

フルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：79.2%

¹H-NMR (DMSO-d₆) : δ 2.57 (3H, s), 7.07 (1H, d, J = 8.7 Hz), 7.52 (1H, dd, J = 8.7, 2.4 Hz), 7.55 (1H, dd, J = 8.4, 1.5 Hz), 7.63 (1H, d, J = 8.1 Hz), 8.00 (1H, d, J = 2.4 Hz), 8.48 (1H, d, J = 1.5 Hz), 10.79 (1H, s), 12.26 (1H, s).

例97：化合物番号97の化合物の製造

原料として、5-ブロモサリチル酸、及び2-(1-ピロリジニル)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：44.5%

¹H-NMR (DMSO-d₆) : δ 1.86-1.91 (4H, m), 3.20-3.26 (4H, m), 6.99 (1H, d, J = 8.7 Hz), 7.07 (1H, d, J = 8.7 Hz), 7.43 (1H, dd, J = 8.7, 2.1 Hz), 7.62 (1H, dd, J = 8.7, 2.4 Hz), 7.94 (1H, d, J = 2.1 Hz), 8.17 (1H, d, J = 2.4 Hz), 10.54 (1H, s), 12.21 (1H, s).

例98：化合物番号98の化合物の製造

原料として、5-ブロモサリチル酸、及び2-モルホリノ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：65.9%

¹H-NMR (DMSO-d₆) : δ 2.90 (4H, dd, J = 4.5, 4.2 Hz), 3.84 (4H, dd, J = 4.8, 4.2 Hz), 7.09 (1H, d, J = 8.4 Hz), 7.48 (2H, s), 7.61 (1H, dd, J = 8.4, 2.7 Hz), 8.13 (1H, d, J = 2.7 Hz), 8.90 (1H, s), 11.21 (1H, s), 12.04 (1H, s).

例 9 9：化合物番号 9 9 の化合物の製造

原料として、5-ニトロサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：31.1%

¹H-NMR (DMSO-d₆) : δ 6.98 (1H, d, J = 9.3 Hz), 7.52 (1H, dd, J = 8.4, 2.1 Hz), 7.81 (1H, d, J = 8.4 Hz), 8.21 (1H, dd, J = 9.0, 3.3 Hz), 8.82 (1H, d, J = 3.0 Hz), 8.93 (1H, d, J = 2.4 Hz), 12.18 (1H, s).

例 1 0 0：化合物番号 1 0 0 の化合物の製造

原料として、5-メチルサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：15.8%

¹H-NMR (CDCl₃) : δ 2.36 (3H, s), 6.95 (1H, d, J = 8.1 Hz), 7.26-7.31 (2H, m), 7.37 (1H, dd, J = 8.4, 1.8 Hz), 7.56 (1H, d, J = 8.4 Hz), 8.65 (1H, br s), 8.80 (1H, d, J = 1.8 Hz), 11.33 (1H, br s).

例 1 0 1：化合物番号 1 0 1 の化合物の製造

原料として、5-メトキシサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：56.4%

¹H-NMR (DMSO-d₆) : δ 3.77 (3H, s), 6.91 (1H, d, J = 9.0 Hz), 7.07 (1H, dd, J = 8.7, 3.0 Hz), 7.20 (1H, t, J = 1.8 Hz), 7.52-7.54 (3H, m), 10.33 (1H, s), 11.44 (1H, s).

例 1 0 2：化合物番号 1 0 2 の化合物の製造

原料として、5-メチルサリチル酸、及び2-メチル-5-(トリフルオロメチ

ル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：14.2%、白色固体

¹H-NMR (DMSO-d₆) : δ 2.29 (3H, s), 2.38 (3H, s), 6.94 (1H, d, J=8.4Hz), 7.27 (1H, ddd, J=8.4, 2.4, 0.6Hz), 7.44 (1H, dd, J=8.1, 1.5Hz), 7.52 (1H, d, J=7.8Hz), 7.84 (1H, d, J=2.4Hz), 8.46 (1H, d, J=1.5Hz), 10.55 (1H, s), 11.72 (1H, s).

例103：化合物番号103の化合物の製造

原料として、5-メチルサリチル酸、及び2-メトキシ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：77.9%

¹H-NMR (CDCl₃) : δ 2.35 (3H, s), 4.02 (3H, s), 6.93 (1H, d, J=9.0Hz), 6.98 (1H, d, J=8.4Hz), 7.25-7.28 (2H, m), 7.36 (1H, ddd, J=8.4, 2.1, 0.9Hz), 8.65 (1H, brs), 8.73 (1H, d, J=2.1Hz), 11.69 (1H, s).

例104：化合物番号104の化合物の製造

原料として、5-クロロサリチル酸、及び3-ブロモ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：37.1%

¹H-NMR (DMSO-d₆) : δ 7.03 (1H, d, J=9.3Hz), 7.48 (1H, dd, J=8.7, 2.4Hz), 7.72 (1H, s), 7.84 (1H, d, J=2.7Hz), 8.16 (1H, s), 8.28 (1H, s), 10.69 (1H, s), 11.42 (1H, s).

例105：化合物番号105の化合物の製造

原料として、5-クロロサリチル酸、及び3-メトキシ-5-(トリフルオロメ

チル) アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率： 68. 0 %

¹H-NMR (DMSO-d₆) : δ 3.85 (3H, s), 7.02 (1H, s), 7.03 (1H, d, J=8.7 Hz), 7.48 (1H, dd, J=8.7, 2.7 Hz), 7.61 (1H, s), 7.77 (1H, s), 7.88 (1H, d, J=2.7 Hz), 10.57 (1H, s), 11.53 (1H, s).

例 106：化合物番号 106 の化合物の製造

原料として、5-クロロサリチル酸、及び2-モルホリノー5-(トリフルオロメチル) アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率： 64. 8 %

¹H-NMR (DMSO-d₆) : δ 2.90 (4H, m), 3.84 (4H, m), 7.15 (1H, d, J=9.0 Hz), 7.48 (2H, s), 7.50 (1H, dd, J=9.0, 2.7 Hz), 8.00 (1H, d, J=2.7 Hz), 8.91 (1H, s), 11.24 (1H, s), 12.05 (1H, s).

例 107：化合物番号 107 の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-5-(トリフルオロメチル) アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率： 59. 2 %

¹H-NMR (DMSO-d₆) : δ 7.10 (1H, d, J=8.7 Hz), 7.48 (1H, dd, J=8.4, 2.1 Hz), 7.53 (1H, dd, J=8.7, 3.0 Hz), 7.97-7.99 (2H, m), 8.81 (1H, d, J=2.1 Hz), 11.03 (1H, s), 12.38 (1H, s).

例 108：化合物番号 108 の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-5-トリフルオロメチル安息香酸メチルエステルを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率： 67. 0 %

¹H-NMR (DMSO-d₆) : δ 3.91 (3H, s), 7.02 (1H, d,

$J = 9.3\text{ Hz}$), 7.43 (1H, dd, $J = 9.0, 2.4\text{ Hz}$), 7.57 (1H, d, $J = 2.4\text{ Hz}$), 8.13 (1H, s), 8.23 (1H, s), 8.29 (1H, s), 8.36 (1H, s), 11.52 (1H, s).

例109：化合物番号109の化合物の製造

5-クロロ-2-ヒドロキシ-N-[3-メトキシカルボニル-5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号108; 105mg, 0.281mmol)のメタノール(2.5mL)懸濁液に、2規定水酸化ナトリウム水溶液(0.6mL)を加え、室温で3時間攪拌した。反応液に水を加え、酢酸エチルで洗浄した。水層に希塩酸を加え酸性とした後、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテルで結晶化して、標題化合物の白色固体(100mg, 99.0%)を得た。

$^1\text{H-NMR}$ (DMSO- d_6): δ 7.04 (1H, d, $J = 9.0\text{ Hz}$), 7.49 (1H, dd, $J = 8.7, 2.7\text{ Hz}$), 7.91 (1H, d, $J = 2.7\text{ Hz}$), 7.93 (1H, s), 8.43 (1H, s), 8.59 (1H, s), 10.78 (1H, s), 11.48 (1H, s).

例110：化合物番号110の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-ナフチルオキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 89.6%

$^1\text{H-NMR}$ (CDCl₃): δ 6.94 (1H, d, $J = 9.6\text{ Hz}$), 6.98 (1H, d, $J = 9.2\text{ Hz}$), 7.25-7.41 (4H, m), 7.48-7.57 (3H, m), 7.81 (1H, d, $J = 6.9\text{ Hz}$), 7.88 (1H, d, $J = 6.9\text{ Hz}$), 7.95 (1H, d, $J = 8.9\text{ Hz}$), 8.72 (1H, s), 8.83 (1H, d, $J = 2.0\text{ Hz}$), 11.70 (1H, s).

例111：化合物番号111の化合物の製造

原料として、5—クロロサリチル酸、及び2—(2, 4—ジクロロフェノキシ) —5—(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：4. 7%

¹H-NMR (CDCl₃) : δ 6.78 (1H, d, J = 8.9 Hz), 7.02 (1H, d, J = 8.6 Hz), 7.16 (1H, d, J = 8.6 Hz), 7.33—7.38 (3H, m), 7.42 (1H, dd, J = 8.6, 2.6 Hz), 7.49 (1H, d, J = 2.6 Hz) 7.58 (1H, d, J = 2.3 Hz), 8.66 (1H, br s,), 8.82 (1H, d, J = 2.0 Hz), 11.65 (1H, s).

例112：化合物番号112の化合物の製造

原料として、5—クロロサリチル酸、及び2—[(4—トリフルオロメチル) ピペリジノ] —5—(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：60.5%

¹H-NMR (CDCl₃) : δ 1.85—2.05 (2H, m), 2.15 (2H, d, J = 10.9 Hz), 2.28 (1H, m), 2.82 (2H, t, J = 11.0 Hz), 3.16 (2H, d, J = 12.2 Hz), 7.02 (1H, d, J = 8.9 Hz), 7.31 (1H, d, J = 8.3 Hz), 7.42 (2H, m), 7.50 (1H, d, J = 2.6 Hz), 8.75 (1H, s), 9.60 (1H, s), 11.94 (1H, s)

例113：化合物番号113の化合物の製造

原料として、5—クロロサリチル酸、及び2—(2, 2, 2—トリフルオロエトキシ) —5—(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：94.5%

¹H-NMR (CDCl₃) : δ 4.58 (2H, q, J = 7.9 Hz), 6.9

9 - 7. 05 (2H, m), 7. 41 - 7. 50 (3H, m), 8. 63 (1H, br s), 8. 79 (1H, d, J = 2. 0 Hz), 11. 59 (1H, s).

例114：化合物番号114の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-メトキシフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：80. 6%

¹H-NMR (DMSO-d₆) : δ 3. 74 (3H, s), 6. 70 (1H, d, J = 8. 4 Hz), 7. 02 (1H, d, J = 8. 7 Hz), 7. 07 (1H, d, J = 1. 5, 7. 8 Hz), 7. 24 - 7. 39 (4H, m), 7. 49 (1H, dd, J = 3. 0, 8. 7 Hz), 8. 00 (1H, d, J = 3. 0 Hz), 8. 92 (1H, d, J = 2. 1 Hz), 11. 36 (1H, s), 12. 18 (1H, s).

例115：化合物番号115の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロ-3, 5-ジメチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：91. 5%

¹H-NMR (DMSO-d₆) : δ 2. 34 (6H, s), 7. 03 (1H, d, J = 8. 8 Hz), 7. 05 (1H, d, J = 8. 1 Hz), 7. 11 (2H, s), 7. 43 - 7. 47 (1H, m), 7. 48 (1H, dd, J = 2. 9, 8. 8 Hz), 7. 97 (1H, d, J = 2. 6 Hz), 8. 94 (1H, d, J = 2. 2 Hz), 11. 25 (1H, s), 12. 12 (1H, s).

例116：化合物番号116の化合物の製造

原料として、5-クロロサリチル酸、及び2-ピペリジノ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：73. 7%

¹H-NMR (CDCl₃): δ 1.68-1.72 (2H, m), 1.80-1.88 (4H, m), 2.89 (4H, t, J=5.2Hz), 7.01 (1H, d, J=8.7Hz), 7.31 (1H, d, J=8.4Hz), 7.39-7.43 (2H, m), 7.55 (1H, d, J=2.4Hz), 8.73 (1H, d, J=1.8Hz), 9.71 (1H, s), 12.05 (1H, s)

例117：化合物番号117の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-メチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：67.3%

¹H-NMR (DMSO-d₆): δ 2.33 (3H, s), 6.93 (1H, d, J=8.8Hz), 7.03 (1H, dd, J=0.5, 8.8Hz), 7.12 (2H, d, J=8.2Hz), 7.29 (2H, d, J=8.5Hz), 7.43 (1H, dd, J=2.0, 8.6Hz), 7.48 (1H, ddd, J=0.8, 2.7Hz), 7.98 (1H, dd, J=0.8, 2.7Hz), 8.94 (1H, d, J=2.2Hz), 11.29 (1H, s), 12.15 (1H, s).

例118：化合物番号118の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：74.5%

¹H-NMR (DMSO-d₆): δ 7.01 (1H, d, J=8.8Hz), 7.06 (1H, d, J=8.5Hz), 7.22 (1H, d, J=8.5Hz), 7.43-7.48 (2H, m), 7.50 (2H, d, J=8.2Hz), 7.94 (1H, dd, J=0.5, 2.7Hz), 8.92 (1H, d, J=2.2Hz), 11.20 (1H, s), 12.10 (1H, s).

例119：化合物番号119の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例75と同様の操作を行い、標題化合物を得た。

収率：42.9%

¹H-NMR (DMSO-d₆) : δ 7.52 (1H, d d, J = 8.4, 2.1 Hz), 7.81 (1H, d, J = 8.4 Hz), 8.16 (1H, s), 8.39 (1H, d, J = 2.7 Hz), 8.96 (1H, d, J = 2.1 Hz), 12.76 (1H, s), 13.23 (1H, s).

例120：化合物番号120の化合物の製造

原料として、O-アセチルサリチル酸クロリド、及び3,5-ジクロロアニリンを用いて例1と同様の操作を行い、標題化合物を得た。

収率：73.5%

mp 167-168°C.

¹H-NMR (CDCl₃) : δ 2.35 (3H, s), 7.14-7.18 (2H, m), 7.35-7.40 (1H, m), 7.52-7.57 (3H, m), 7.81 (1H, d d, J = 7.8, 1.8 Hz), 8.05 (1H, b r s).

例121：化合物番号121の化合物の製造

原料として、2-アセトキシ-N-(3,5-ジクロロフェニル)ベンズアミド(化合物番号121)を用いて例2と同様の操作を行い、標題化合物を得た。

収率：60.3%

mp 218-219°C.

¹H-NMR (DMSO-d₆) : δ 6.95-7.02 (2H, m), 7.35-7.36 (1H, m), 7.42-7.47 (1H, m), 7.83-7.87 (3H, m), 10.54 (1H, s), 11.35 (1H, s).

例122：化合物番号122の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジクロロアニリンを用いて例

3と同様の操作を行い、標題化合物を得た。

収率：10. 8%

¹H-NMR (DMSO-d₆) : δ 7.08 (1H, d, J=9.0Hz), 7.24-7.28 (1H, m), 7.50-7.54 (1H, m), 7.61 (1H, dd, J=9.0, 3.0Hz), 7.97 (1H, d, J=2.7Hz), 8.58 (1H, d, J=2.4Hz), 11.02 (1H, s), 12.35 (1H, brs).

例123：化合物番号123の化合物の製造

原料として、5-ブロモサリチル酸、及び3, 5-ジフルオロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：36. 3%

mp 259-261°C.

¹H-NMR (DMSO-d₆) : δ 6.96-7.04 (2H, m), 7.45-7.54 (2H, m), 7.58 (1H, dd, J=8.7, 2.7Hz), 7.94 (1H, d, J=2.7Hz), 10.60 (1H, s) 11.48 (1H, s).

例124：化合物番号124の化合物の製造

原料として、5-フルオロサリチル酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：33. 3%

mp 258-260°C.

¹H-NMR (DMSO-d₆) : δ 7.00-7.05 (1H, m), 7.28-7.37 (2H, m), 7.63 (1H, dd, J=9.3, 3.3Hz), 7.84 (2H, d, J=2.1Hz), 10.56 (1H, s), 11.23 (1H, s).

例125：化合物番号125の化合物の製造

原料として、5-クロロサリチル酸、及び3, 5-ジクロロアニリンを用いて例

3と同様の操作を行い、標題化合物を得た。

収率：41.2%

¹H-NMR (DMSO-d₆) : δ 7.03 (1H, d, J=9.0Hz), 7.36-7.37 (1H, m), 7.48 (1H, dd, J=8.7, 2.7Hz), 7.83-7.84 (3H, m), 10.56 (1H, s), 11.44 (1H, s).

例126：化合物番号126の化合物の製造

原料として、5-ブロモサリチル酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：61.6%

mp 243-244°C.

¹H-NMR (DMSO-d₆) : δ 6.98 (1H, d, J=8.7Hz), 7.36-7.37 (1H, m), 7.59 (1H, dd, J=9.0, 2.4Hz), 7.83 (2H, d, J=1.8Hz), 7.95 (1H, d, J=2.4Hz), 10.56 (1H, s), 11.46 (1H, s).

例127：化合物番号127の化合物の製造

原料として、5-ヨードサリチル酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：65.4%

mp 244-245°C.

¹H-NMR (DMSO-d₆) : δ 6.84 (1H, d, J=9.0Hz), 7.35-7.37 (1H, m), 7.72 (1H, dd, J=9.0, 2.1Hz), 7.83 (2H, d, J=1.8Hz), 8.09 (1H, d, J=2.1Hz), 10.55 (1H, s), 11.45 (1H, s).

例128：化合物番号128の化合物の製造

原料として、3, 5-ジブロモサリチル酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：44.2%

mp 181-182°C.

¹H-NMR (DMSO-d₆) : δ 7.42-7.43 (1H, m), 7.80 (2H, d, J=1.8Hz), 8.03 (1H, d, J=2.1Hz), 8.17 (1H, d, J=2.1Hz), 10.82 (1H, s).

例129：化合物番号129の化合物の製造

原料として、4-クロロサリチル酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：57.2%

mp 255-256°C.

¹H-NMR (DMSO-d₆) : δ 7.03-7.06 (2H, m), 7.34-7.36 (1H, m), 7.82-7.85 (3H, m), 10.51 (1H, s), 11.70 (1H, br s).

例130：化合物番号130の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：83.1%

mp 232-233°C.

¹H-NMR (DMSO-d₆) : δ 7.16 (1H, d, J=9.6Hz), 7.37-7.39 (1H, m), 7.84 (1H, d, J=2.1Hz), 8.29 (1H, dd, J=9.0, 3.0Hz), 8.65 (1H, d, J=3.0Hz), 10.83 (1H, s).

例131：化合物番号131の化合物の製造

原料として、5-メチルサリチル酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：71.0%

mp 216-217°C.

¹H-NMR (DMSO-d₆) : δ 2.28 (3H, s), 6.90 (1H, d, J = 8.4 Hz), 7.26 (1H, dd, J = 8.7, 1.8 Hz), 7.34-7.36 (1H, m), 7.67 (1H, d, J = 1.5 Hz), 7.85 (2H, d, J = 1.8 Hz), 10.52 (1H, s), 11.15 (1H, s).

例132：化合物番号132の化合物の製造

原料として、5-メトキシサリチル酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：29.8%

mp 230-232°C.

¹H-NMR (DMSO-d₆) : δ 3.76 (3H, s), 6.95 (1H, d, J = 8.7 Hz), 7.08 (1H, dd, J = 9.0, 3.0 Hz), 7.35-7.36 (1H, m), 7.40 (1H, d, J = 3.0 Hz), 7.85 (2H, d, J = 1.5 Hz), 10.55 (1H, s), 10.95 (1H, s).

例133：化合物番号133の化合物の製造

原料として、5-ブロモサリチル酸、及び3, 5-ジニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：32.2%

mp 258-260°C.

¹H-NMR (DMSO-d₆) : δ 6.98-7.02 (1H, m), 7.59-7.63 (1H, m), 7.96-7.97 (1H, m), 8.56-8.58 (1H, m), 9.03-9.05 (2H, m), 11.04 (1H, s), 11.39 (1H, brs).

例134：化合物番号134の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ビス[(1, 1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：75.7%

¹H-NMR (DMSO-d₆) : δ 1.27 (9H, s), 1.33 (9H, s),

7. 04 (1H, d, J = 9. 0 Hz), 7. 26 (1H, dd, J = 8. 4, 2. 1 Hz), 7. 35 – 7. 38 (2H, m), 7. 49 (1H, dd, J = 8. 7, 2. 7 Hz), 8. 07 (1H, d, J = 2. 4 Hz), 10. 22 (1H, s), 12. 38 (1H, br s).

例135：化合物番号135の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1, 1-ジメチル)エチル]-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：89. 5%

¹H-NMR (DMSO-d₆) : δ 1. 28 (9H, s), 3. 33 (3H, s), 7. 01 (1H, d, J = 8. 7 Hz), 7. 05 (1H, d, J = 9. 0 Hz), 7. 11 (1H, dd, J = 8. 7, 2. 4 Hz), 7. 47 (1H, dd, J = 9. 0, 3. 0 Hz), 7. 99 (1H, d, J = 3. 0 Hz), 8. 49 (1H, d, J = 2. 4 Hz), 10. 78 (1H, s), 12. 03 (1H, s).

例136：化合物番号136の化合物の製造

原料として、5-クロロ-N-{5-[(1, 1-ジメチル)エチル]-2-メトキシフェニル}-2-ヒドロキシベンズアミド(化合物番号135)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率：87. 5%

¹H-NMR (CDCl₃) : δ 1. 35 (9H, s), 2. 37 (3H, s), 3. 91 (3H, s), 6. 86 (1H, d, J = 8. 7 Hz), 7. 12 (1H, dd, J = 8. 7, 2. 4 Hz), 7. 13 (1H, d, J = 9. 0 Hz), 7. 47 (1H, dd, J = 9. 0, 2. 4 Hz), 8. 02 (1H, d, J = 2. 7 Hz), 8. 66 (1H, d, J = 2. 4 Hz), 8. 93 (1H, s).

例137：化合物番号137の化合物の製造

原料として、5-ブロモサリチル酸、及び3, 5-ジメチルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：58. 1%

mp 188-190°C.

¹H-NMR (DMSO-d₆) : δ 2.28 (6H, s), 6.80 (1H, s), 6.96 (1H, d, J=8.7Hz), 7.33 (2H, s), 7.58 (1H, dd, J=9.0, 2.4Hz), 8.10 (1H, d, J=2.4Hz), 10.29 (1H, s), 11.93 (1H, brs).

例138：化合物番号138の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

收率：34.1%

¹H-NMR (CDCl₃) : δ 1.26 (18H, s), 6.99 (1H, d, J=8.7Hz), 7.29 (1H, t, J=1.8Hz), 7.39 (1, dd, J=9.0, 2.4Hz), 7.41 (2H, d, J=1.5Hz), 7.51 (1H, d, J=2.1Hz), 7.81 (1H, brs), 12.01 (1H, s).

例139：化合物番号139の化合物の製造

原料として、N-{3,5-ビス[(1,1-ジメチル)エチル]フェニル}-5-クロロ-2-ヒドロキシベンズアミド(化合物番号138)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

收率：66.1%

¹H-NMR (CDCl₃) : δ 1.34 (18H, s), 2.36 (3H, s), 7.12 (1H, d, J=8.4Hz), 7.25 (1H, d, J=1.5Hz), 7.44 (2H, d, J=1.2Hz), 7.47 (1H, dd, J=8.7, 2.7Hz), 7.87 (1H, d, J=2.4Hz), 7.98 (1H, s).

例140：化合物番号140の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

收率：45.2%

¹H-NMR (DMSO-d₆) : δ 1.30 (18H, s), 6.95 (1H,

d, J = 8. 7 Hz), 7. 20 (1H, t, J = 1. 5 Hz), 7. 56 (2H, d, J = 1. 5 Hz), 7. 58 (1H, dd, J = 8. 7, 2. 4 Hz), 8. 12 (1H, d, J = 2. 7 Hz), 10. 39 (1H, s), 11. 98 (1H, s).

例141：化合物番号141の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-メトキシビフェニルを用いて例3と同様の操作を行い、標題化合物を得た。

収率：37. 0%

¹H-NMR (DMSO-d₆) : δ 3. 95 (3H, s), 7. 08 (1H, d, J = 8. 7 Hz), 7. 20 (1H, d, J = 8. 4 Hz), 7. 34 (1H, t, J = 7. 2 Hz), 7. 40-7. 50 (4H, m), 7. 62 (1H, d, J = 8. 7 Hz), 8. 00 (1H, d, J = 3. 0 Hz), 8. 77 (1H, d, J = 2. 1 Hz), 10. 92 (1H, s), 12. 09 (1H, s).

例142：化合物番号142の化合物の製造

原料として、5-ブロモサリチル酸、及び2, 5-ジメトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：39. 7%

¹H-NMR (DMSO-d₆) : δ 3. 72 (3H, s), 3. 84 (3H, s), 6. 66 (1H, dd, J = 9. 0, 3. 0, 0. 6 Hz), 6. 99-7. 03 (2H, m), 7. 58 (1H, dd, J = 9. 0, 2. 7, 0. 6 Hz), 8. 10 (1H, dd, J = 2. 4, 0. 6 Hz), 8. 12 (1H, d, J = 3. 0 Hz), 10. 87 (1H, s), 12. 08 (1H, s).

例143：化合物番号143の化合物の製造

原料として、5-ブロモサリチル酸、及び3, 5-ジメトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：40. 3%

mp 207-209°C.

¹H-NMR (DMSO-d₆) : δ 3.75 (6H, s), 6.30-6.32 (1H, m), 6.94-6.97 (3H, m), 7.57 (1H, dd, J=8.7, 2.4 Hz), 8.04 (1H, d, J=2.4 Hz), 10.32 (1H, s), 11.78 (1H, s).

例144：化合物番号144の化合物の製造

原料として、5-プロモサリチル酸、及び5-アミノイソフタル酸ジメチルエステルを用いて例3と同様の操作を行い、標題化合物を得た。

収率：74.1%

m.p. 254-256°C.

¹H-NMR (DMSO-d₆) : δ 3.92 (6H, s), 6.97 (1H, d, J=9.0 Hz), 7.60 (1H, dd, J=9.0, 2.4 Hz), 8.06 (1H, d, J=2.4 Hz), 8.24-8.25 (1H, m), 8.62 (2H, m), 10.71 (1H, s), 11.57 (1H, s).

例145：化合物番号145の化合物の製造

原料として、5-メチルサリチル酸、及び2,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：61.1%

¹H-NMR (DMSO-d₆) : δ 1.27 (9H, s), 1.33 (9H, s), 2.28 (3H, s), 6.89 (1H, d, J=8.1 Hz), 7.24 (1H, d, J=2.1 Hz), 7.27 (1H, d, J=2.1 Hz), 7.32 (1H, d, J=2.4 Hz), 7.37 (1H, d, J=8.4 Hz), 7.88 (1H, d, J=1.5 Hz), 10.15 (1H, s), 11.98 (1H, br s).

例146：化合物番号146の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：46.7%

¹H-NMR (CDCl₃) : δ 1.37 (18H, s), 7.13 (1H, d,

$J = 9.3\text{ Hz}$, 7.32 (1H, t, $J = 1.8\text{ Hz}$), 7.46 (2H, d, $J = 1.8\text{ Hz}$), 8.07 (1H, s), 8.33 (1H, dd, $J = 9.3, 2.1\text{ Hz}$), 8.59 (1H, d, $J = 2.4\text{ Hz}$), 13.14 (1H, s).

例147：化合物番号147の化合物の製造

原料として、5-メチルサリチル酸、及び3, 5-ビス[(1, 1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：16.3%

$^1\text{H-NMR (CDCl}_3)$: δ 1.35 (18H, s), 2.35 (3H, s), 6.94 (1H, d, $H = 8.4\text{ Hz}$), 7.23-7.28 (2H, m), 7.31 (1H, s), 7.42 (1H, d, $J = 1.8\text{ Hz}$), 7.88 (1H, s), 11.86 (1H, s).

例148：化合物番号148の化合物の製造

原料として、5-メトキシサリチル酸、及び3, 5-ビス[(1, 1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：12.7%

$^1\text{H-NMR (DMSO-d}_6)$: δ 1.30 (18H, s), 3.77 (3H, s), 6.91 (1H, d, $J = 9.0\text{ Hz}$), 7.07 (1H, dd, $J = 8.7, 3.0\text{ Hz}$), 7.19-7.20 (1H, m), 7.52-7.54 (3H, m), 10.33 (1H, s), 11.44 (1H, s).

例149：化合物番号149の化合物の製造

原料として、5-メチルサリチル酸、及び5-[(1, 1-ジメチル)エチル]-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：84.7%

$^1\text{H-NMR (CDCl}_3)$: δ 1.35 (9H, s), 2.34 (3H, s), 3.93 (3H, s), 6.86 (1H, d, $J = 8.7\text{ Hz}$), 6.93 (1H, d, $J = 8.4\text{ Hz}$), 7.12 (1H, dd, $J = 8.7, 2.4\text{ Hz}$), 7.24 (1H, dd, $J = 8.4, 1.8\text{ Hz}$), 7.27 (1H, br s), 8.4

8 (1H, d, J=2.4 Hz), 8.61 (1H, br s), 11.95 (1H, s).

例150：化合物番号150の化合物の製造

原料として、5-ブロモ-2-ヒドロキシ-N-[3,5-ビス(メトキシカルボニル)フェニル]ベンズアミド(化合物番号144)を用いて例109と同様の操作を行い、標題化合物を得た。

収率：89.0%

¹H-NMR (DMSO-d₆) : δ 6.98 (1H, d, J=8.7 Hz), 7.60 (1H, dd, J=8.7, 2.4 Hz), 7.24 (1H, dd, J=8.7, 2.7 Hz), 8.08 (1H, d, J=2.7 Hz), 8.24 (1H, t, J=1.5 Hz), 8.57 (2H, d, J=1.2 Hz), 10.67 (1H, s), 11.64 (1H, s).

例151：化合物番号151の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-[(1-メチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：19.1%

¹H-NMR (CDCl₃) : δ 1.26 (6H, d, J=6.9 Hz), 2.30 (3H, s), 2.87-2.96 (1H, m), 7.00 (1H, d, J=8.7 Hz), 7.08 (1H, dd, J=7.8, 1.8 Hz), 7.20 (1H, d, J=7.8 Hz), 7.40 (1H, dd, J=8.7, 2.4 Hz), 7.49 (1H, d, J=2.7 Hz), 7.50 (1H, s), 7.71 (1H, s), 11.99 (1H, s).

例152：化合物番号152の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジエトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：59.2%

¹H-NMR (DMSO-d₆) : δ 1.32 (3H, t, J=6.9 Hz), 1.

4.1 (3H, t, J = 6.9 Hz), 3.97 (2H, q, J = 6.9 Hz), 4.06 (2H, q, J = 6.9 Hz), 6.61 (1H, dd, J = 9.0, 3.0 Hz), 6.98 (1H, d, J = 8.7 Hz), 7.10 (1H, d, J = 8.7 Hz), 7.48 (1H, dd, J = 8.7, 2.7 Hz), 7.97 (1H, d, J = 2.7 Hz), 8.16 (1H, d, J = 3.0 Hz), 10.96 (1H, s), 11.91 (1H, s).

例153：化合物番号153の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメチルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：90.5%

¹H-NMR (CDCl₃) : δ 2.28 (3H, s), 2.35 (3H, s), 6.99 (1H, d, J = 8.8 Hz), 7.02 (1H, brs), 7.15 (1H, d, J = 7.7 Hz), 7.40 (1H, dd, J = 8.8, 2.5 Hz), 7.45 (1H, brs), 7.49 (1H, d, J = 2.5 Hz) 7.70 (1H, br), 11.96 (1H, brs).

例154：化合物番号154の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-シアノアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：90.0%

¹H-NMR (DMSO-d₆) : δ 7.09 (1H, d, J = 9.0 Hz), 7.53 (1H, dd, J = 8.7, 3.0 Hz), 7.82 (1H, dd, J = 8.7, 2.4 Hz), 7.95 (1H, d, J = 3.0 Hz), 8.07 (1H, d, J = 2.4 Hz), 8.36 (1H, d, J = 9.0 Hz), 11.11 (1H, s), 12.36 (1H, s).

例155：化合物番号155の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N,N-ジエチルスルファモイル)-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得

た。

収率：44.8%

¹H-NMR (CDCl₃) : δ 1.17 (6H, t, J = 7.3 Hz), 3.29 (4H, q, J = 7.3 Hz), 4.05 (3H, s), 7.00 (2H, dd, J = 2.3, 8.9 Hz), 7.41 (1H, dd, J = 2.3, 8.9 Hz), 7.48 (1H, d, J = 2.6 Hz), 7.65 (1H, dd, J = 2.3, 8.6 Hz), 8.56 (1H, br. s), 8.84 (1H, d, J = 2.3 Hz), 11.82 (1H, s).

例156：化合物番号156の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-ニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：73.3%

¹H-NMR (CD₃OD) : δ 6.98 (1H, d, J = 8.6 Hz), 7.43 (1H, dd, J = 2.6, 8.6 Hz), 7.74 (1H, d, J = 8.9 Hz), 7.99 (1H, dd, J = 3.0, 8.9 Hz), 8.08 (1H, d, J = 2.6 Hz), 9.51 (1H, d, J = 2.6 Hz)

例157：化合物番号157の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N-フェニルカルバモイル)-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：40.3%

¹H-NMR (DMSO-d₆) : δ 3.99 (3H, s), 7.09 (2H, dd, J = 6.6, 6.9 Hz), 7.24 (1H, d, J = 8.6 Hz), 7.35 (2H, dd, 6.9, 7.3 Hz), 7.49 (1H, d, J = 2.3, 8.9 Hz), 7.77 (3H, d, J = 8.6 Hz), 8.00 (1H, s), 8.97 (1H, s), 10.17 (1H, s), 10.91 (1H, s), 12.11 (1H, s).

例158：化合物番号158の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ジメトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：73. 9%

¹H-NMR (CDCl₃) : δ 3.82 (3H, s), 3.93 (3H, s), 6.66 (1H, dd, J=3.0, 8.9Hz), 6.86 (1H, d, J=8.9Hz), 6.98 (1H, d, J=8.9Hz), 7.39 (1H, dd, J=2.6, 8.9Hz), 7.47 (1H, d, J=2.6Hz), 8.08 (1H, d, J=3.0Hz), 8.60 (1H, br. s), 12.03 (1H, s).

例159：化合物番号159の化合物の製造

原料として、5-クロロサリチル酸、及び5-アセチルアミノ-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：16.9%

¹H-NMR (DMSO-d₆) : δ 2.01 (3H, s), 3.85 (3H, s), 7.03 (2H, t, J=9.6Hz), 7.49 (2H, dd, J=8.9, 9.2Hz), 7.96 (1H, s), 8.51 (1H, s), 9.87 (1H, s), 10.82 (1H, s), 12.03 (1H, d, J=4.0Hz).

例160：化合物番号160の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-メチルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：100%

¹H-NMR (CDCl₃) : δ 2.29 (3H, s), 3.82 (3H, s), 6.75 (1H, dd, J=2.6, 8.2Hz), 7.00 (1H, d, J=8.9Hz), 7.16 (1H, d, J=8.6Hz), 7.38 (1H, d, 2.3Hz), 7.41 (1H, dd, J=2.3, 8.9Hz), 7.48 (1H, d, J=2.3Hz), 7.70 (1H, br. s), 11.92 (1H, s).

例161：化合物番号161の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ジブロキシアニリンを用いて

例3と同様の操作を行い、標題化合物を得た。

収率：73.9%

¹H-NMR (CDCl₃) : δ 0.98 (3H, t, J=7.2Hz), 1.05 (3H, t, J=7.2Hz), 1.44-1.65 (4H, m), 1.72-1.79 (2H, m), 1.81-1.91 (2H, m), 3.97 (2H, t, J=6.3Hz), 4.07 (2H, t, J=6.3Hz), 6.64 (1H, d, J=9.0, 3.0Hz), 6.85 (1H, d, J=9.3Hz), 6.99 (1H, d, J=9.0Hz), 7.39 (1H, dd, J=8.7, 2.4Hz), 7.44 (1H, d, J=2.7Hz), 8.08 (1H, d, J=3.0Hz), 8.76 (1H, s), 12.08 (1H, s).

例162：化合物番号162の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジイソペンチルオキシシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：59.7%

¹H-NMR (CDCl₃) : δ 0.97 (6H, d, J=6.6Hz), 1.03 (6H, d, 6.6Hz), 1.64-1.98 (6H, m), 3.99 (2H, t, J=6.6Hz), 4.09 (2H, t, J=6.3Hz), 6.63 (1H, dd, J=8.7, 3.0Hz), 6.85 (1H, d, J=8.7Hz), 6.98 (1H, d, J=8.7Hz), 7.38 (1H, dd, J=9.0, 2.4Hz), 7.43 (1H, d, J=2.7Hz), 8.09 (1H, d, J=3.0Hz), 8.75 (1H, s), 12.08 (1H, s).

例163：化合物番号163の化合物の製造

原料として、5-クロロサリチル酸、及び5-カルバモイル-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：31.2%

¹H-NMR (CD₃OD) : δ 4.86 (3H, s), 6.93 (1H, d, J=7.6Hz), 7.18 (1H, d, J=8.6Hz), 7.35 (1H, dd,

$J = 3.0, 7.6\text{ Hz}$, 7.47 (1H , d d, $J = 2.0, 8.6\text{ Hz}$), 8.00 (1H , d, $J = 3.0\text{ Hz}$), 8.80 (1H , d, $J = 2.0\text{ Hz}$).

例164：化合物番号164の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1,1-ジメチル)プロピル]-2-フェノキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：65.2%

$^1\text{H-NMR}$ (CDCl_3) : δ 0.69 (3H , t, $J = 7.6\text{ Hz}$), 1.29 (6H , s), 1.64 (2H , q, $J = 7.6\text{ Hz}$), 6.91 (1H , d d, $J = 1.7, 7.6\text{ Hz}$), 6.96 (1H , d, $J = 8.9\text{ Hz}$), 7.03 (2H , d, $J = 8.9\text{ Hz}$), 7.10 (1H , d t, $J = 1.7, 7.6\text{ Hz}$), 7.16 (1H , d t, $J = 1.7, 7.6\text{ Hz}$), $7.31 - 7.40$ (4H , m), 8.42 (1H , d d, $J = 2.0, 7.9\text{ Hz}$), 8.53 (1H , b r. s) 11.94 (1H , s).

例165：化合物番号165の化合物の製造

原料として、5-クロロサリチル酸、及び2-ヘキシルオキシ-5-(メチルスルホニル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：33.0%

$^1\text{H-NMR}$ (CDCl_3) : δ 0.92 (3H , t, $J = 6.9\text{ Hz}$), $1.40 - 1.59$ (6H , m), $1.90 - 2.01$ (2H , m), 3.09 (3H , s), 4.22 (2H , t, $J = 6.3\text{ Hz}$), 7.01 (1H , d, $J = 8.9\text{ Hz}$), 7.06 (1H , d, $J = 8.6\text{ Hz}$), $7.40 - 7.43$ (2H , m), 7.73 (1H , d d, $J = 8.6, 2.3\text{ Hz}$), 8.74 (1H , b r s), 8.99 (1H , d, $J = 2.3\text{ Hz}$), 11.76 (1H , s).

例166：化合物番号163の化合物の製造

原料として、5-クロロサリチル酸、及び3'-アミノ-2,2,4'-トリメチルプロピオフェノンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：44.8%

¹H-NMR (CDCl₃) : δ 1.38 (9H, s), 2.38 (3H, s), 7.01 (1H, d, J = 8.9 Hz), 7.31 (1H, d, J = 7.9 Hz), 7.42 (1H, dd, J = 8.9, 2.6 Hz), 7.53 (1H, d, J = 2.6 Hz), 7.57 (1H, dd, J = 7.9, 2.0 Hz), 7.83 (1H, br s), 8.11 (1H, d, J = 2.0 Hz), 11.82 (1H, s).

例167：化合物番号167の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-(1-ピロリル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：53.4%

¹H-NMR (CDCl₃) : δ 2.46 (3H, s), 6.51-6.52 (2H, m), 6.82-6.85 (3H, m), 6.93 (1H, d, J = 8.9 Hz), 7.06 (1H, d, J = 7.9 Hz), 7.30 (1H, d, J = 7.9 Hz), 7.32 (1H, dd, J = 2.3, 8.9 Hz), 7.61 (1H, s), 8.29 (1H, s), 11.86 (1H, br s).

例168：化合物番号168の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-トルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：8.0%

¹H-NMR (CDCl₃) : δ 2.38 (3H, s), 7.02 (1H, d, J = 8.9 Hz), 7.25-7.31 (3H, m), 7.46 (1H, dd, J = 2.6, 8.9 Hz), 7.68 (2H, d, J = 8.6 Hz), 7.74 (1H, d, J = 2.3 Hz), 7.96 (1H, d, J = 8.6 Hz), 8.56 (1H, d, J = 2.0 Hz), 10.75 (1H, s), 11.70 (1H, s).

例169：化合物番号169の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-トルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：43.5%

¹H-NMR (CDCl₃) : δ 2.38 (3H, s), 7.02 (1H, d, J = 8.9 Hz), 7.27 (1H, d, J = 7.9 Hz), 7.29 (1H, dd, J = 2.0, 6.6 Hz), 7.46 (1H, dd, J = 2.3, 8.9 Hz), 7.68 (2H, d, J = 8.6 Hz), 7.73 (2H, d, J = 2.3 Hz), 7.97 (1H, d, J = 8.6 Hz), 8.56 (1H, d, J = 2.0 Hz), 10.73 (1H, s), 11.71 (1H, s).

例170：化合物番号170の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(メチルスルホニル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：28.8%

¹H-NMR (CDCl₃) : δ 3.12 (3H, s), 7.03 (1H, d, J = 8.9 Hz), 7.38 (1H, dd, J = 8.6, 10.2 Hz), 7.45 (1H, dd, J = 2.3, 8.9 Hz), 7.53 (1H, d, J = 2.3 Hz), 7.80 (1H, ddd, J = 2.3, 4.6, 8.6 Hz), 8.25 (1H, s), 8.98 (1H, dd, J = 2.3, 7.7 Hz), 11.33 (1H, br, s).

例171：化合物番号171の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-フェノキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：77.0%

¹H-NMR (CDCl₃) : δ 3.98 (3H, s), 6.80 (1H, d, J = 8.8 Hz), 6.90 (1H, d, J = 8.8 Hz), 6.95-7.00 (3H, m), 7.04-7.09 (1H, m), 7.29-7.35 (2H, m), 7.38 (1H, dd, J = 8.8, 2.6 Hz), 7.47 (1H, d, J = 2.6 Hz), 8.19 (1H, d, J = 2.9 Hz), 8.61 (1H, br s), 11.92 (1H, s).

例172：化合物番号172の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-メチルビフェニルを用いて例3と同様の操作を行い、標題化合物を得た。

収率：47.7%

¹H-NMR (DMSO-d₆) : δ 2.33 (3H, s), 7.06 (1H, d, J = 8.7 Hz), 7.43-7.52 (4H, m), 7.64-7.67 (2H, m), 8.04 (1H, d, J = 2.7 Hz), 8.19 (1H, d, J = 1.5 Hz), 10.40 (1H, s), 12.22 (1H, s).

例173：化合物番号173の化合物の製造

原料として、5-クロロサリチル酸、及び5-(α , α -ジメチルベンジル)-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：89.0%

¹H-NMR (CDCl₃) : δ 1.72 (6H, s), 3.93 (3H, s), 6.83 (1H, d, J = 8.8 Hz), 6.93 (1H, dd, J = 2.6, 8.8 Hz), 6.96 (1H, d, J = 9.2 Hz), 7.15-7.20 (1H, m), 7.25-7.28 (4H, m), 7.36 (1H, dd, J = 2.6, 8.8 Hz), 7.46 (1H, d, J = 2.6 Hz), 8.35 (1H, d, J = 2.6 Hz), 8.51 (1H, s), 12.04 (1H, s).

例174：化合物番号174の化合物の製造

原料として、5-クロロサリチル酸、及び5-モルホリノ-2-ニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：4.1%

¹H-NMR (DMSO-d₆) : δ 3.46-3.52 (4H, m), 3.85-3.94 (4H, m), 7.03 (1H, d, J = 8.8 Hz), 7.47 (1H, dd, J = 2.9, 8.8 Hz), 7.80 (1H, dd, J = 2.6, 8.8 Hz), 7.82 (1H, d, J = 2.6 Hz), 7.88 (1H, d, J = 8.8 Hz), 8.20 (1H, d, J = 2.2 Hz), 10.70 (1H, s), 11.43 (1H, s)

例175：化合物番号175の化合物の製造

原料として、5-クロロサリチル酸、及び5-フルオロー-2-(1-イミダゾリル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：33.8%

¹H-NMR (DMSO-d₆) : δ 6.99 (1H, d, J = 8.8 Hz), 7.12-7.19 (2H, m), 7.42-7.51 (3H, m), 7.89 (1H, d, J = 2.8 Hz), 7.93 (1H, d, J = 1.1 Hz), 8.34 (1H, dd, J = 11.4, 2.8 Hz), 10.39 (1H, s), 11.76 (1H, br s).

例176：化合物番号176の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブチル-5-ニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：15.3%

¹H-NMR (CDCl₃) : δ 0.99 (3H, t, J = 7.3 Hz), 1.39-1.51 (2H, m), 1.59-1.73 (2H, m), 2.71-2.79 (2H, m), 7.03 (1H, d, J = 8.9 Hz), 7.41-7.49 (3H, m), 7.92 (1H, s), 8.07 (1H, dd, J = 2.3, 8.4 Hz), 8.75 (1H, d, J = 2.4 Hz), 11.51 (1H, s).

例177：化合物番号177の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1,1-ジメチル)プロピル]-2-ヒドロキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：36.0%

¹H-NMR (CDCl₃) : δ 0.70 (3H, t, J = 7.4 Hz), 1.28 (6H, s), 1.63 (2H, q, J = 7.4 Hz), 6.97 (1H, d, J = 6.3 Hz), 7.00 (1H, d, J = 6.6 Hz), 7.08 (1H, s), 7.14 (1H, dd, J = 2.5, 8.6 Hz), 7.36 (1H, d, J = 2.2 Hz), 7.42 (1H, dd, J = 2.5, 8.8 Hz), 7.57 (1H,

d, J = 2. 5 Hz), 8. 28 (1H, s), 11. 44 (1H, s).

例178：化合物番号178の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-メチルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：74. 2%

¹H-NMR (DMSO-d₆) : δ 2. 27 (3H, s), 3. 85 (3H, s), 6. 90 (1H, dd, J = 9. 0, 2. 4 Hz), 6. 98 (1H, d, J = 9. 0 Hz), 7. 05 (1H, d, J = 9. 0 Hz), 7. 47 (1H, dd, J = 9. 0, 3. 0 Hz), 7. 97 (1H, d, J = 3. 0 Hz), 8. 24 (1H, d, J = 2. 4 Hz), 10. 79 (1H, s), 12. 03 (1H, s).

例179：化合物番号179の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ジフルオロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：81. 5%

¹H-NMR (DMSO-d₆) : δ 6. 98 - 7. 07 (1H, m), 7. 07 (1H, d, J = 9. 0 Hz), 7. 37 - 7. 49 (1H, m), 7. 52 (1H, dd, J = 8. 7, 3. 0 Hz), 7. 95 (1H, d, J = 2. 7 Hz), 8. 15 - 8. 22 (1H, m), 10. 83 (1H, s), 12. 25 (1H, s).

例180：化合物番号180の化合物の製造

原料として、5-クロロサリチル酸、及び3, 5-ジフルオロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：82. 0%

¹H-NMR (DMSO-d₆) : δ 7. 00 (1H, tt, J = 9. 3, 2. 1), 7. 03 (1H, d, J = 9. 0 Hz), 7. 47 (1H, dd, J = 7. 5, 2. 7 Hz), 7. 49 (1H, d, J = 2. 7 Hz), 7. 51 (1H, d, J = 2. 1 Hz), 7. 82 (1H, d, J = 3. 0 Hz), 10. 63 (1H,

s), 11.43 (1H, br s).

例181：化合物番号181の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：44.3%

mp 254-255°C.

¹H-NMR (DMSO-d₆) : δ 7.34-7.39 (3H, m), 7.49-7.54 (1H, m), 7.76-7.79 (1H, m), 7.89 (2H, d, J = 1.8 Hz), 7.92 (1H, m), 8.39 (1H, s), 10.75 (1H, s), 11.01 (1H, s).

例182：化合物番号182の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3, 5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：51.2%

mp 246-248°C.

¹H-NMR (DMSO-d₆) : δ 7.26 (1H, d, J = 9.3 Hz), 7.31-7.37 (2H, m), 7.44-7.50 (1H, m), 7.65-7.68 (1H, m), 7.85-7.90 (4H, m), 10.23 (1H, s), 10.74 (1H, s).

例183：化合物番号183の化合物

本化合物は、市販化合物である。

販売元：Sigma-Aldrich社

カタログコード番号：S01361-8

例184：化合物番号184の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び3, 5-ビス[(1, 1-ジメチル)エチル]アニリンを用いて例75と同様の操作を行い、標題化合物を得た。

収率：59.1%

¹H-NMR (DMSO-d₆) : δ 1.29 (18H, s), 7.18 (1H, t, J=1.8Hz), 7.52 (2H, d, J=1.8Hz), 8.07 (1H, d, J=2.4Hz), 8.35 (1H, d, J=3.3Hz), 11.92 (1H, s), 13.10 (1H, s).

例185：化合物番号185の化合物の製造

(1) 2-アミノ-4-[(1,1-ジメチル)エチル]チアゾール
1-ブロモ-3,3-ジメチル-2-ブタノン(5.03g, 28.1mmol)、チオウレア(2.35g, 30.9mmol)、エタノール(30mL)の混合物を1.5時間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1→1:1)で精製して、標題化合物の黄白色粉末(3.99g, 90.9%)を得た。

¹H-NMR (CDCl₃) : δ 1.26 (9H, s), 4.96 (2H, brs), 6.09 (1H, s).

以下の実施例において例185(1)の方法が引用されている場合、反応溶媒としては、エタノール等の溶媒を用いた。

(2) 2-アセトキシ-5-ブロモ-N-{4-[(1,1-ジメチル)エチル]チアゾール-2-イル}ベンズアミド

原料として、2-アセトキシ-5-ブロモ安息香酸、及び2-アミノ-4-[(1,1-ジメチル)エチル]チアゾールを用いて例75と同様の操作を行い、標題化合物を得た。

収率：59.4%

¹H-NMR (CDCl₃) : δ 1.31 (9H, s), 2.44 (3H, s), 6.60 (1H, s), 7.13 (1H, d, J=8.4Hz), 7.68 (1H, dd, J=8.7, 2.4Hz), 8.17 (1H, d, J=2.4Hz), 9.

72 (1H, b r s).

[2-アセトキシ-5-ブロモ安息香酸：「ヨーロピアン・ジャーナル・オブ・メディシナル・ケミストリー (European Journal of Medicinal Chemistry)」, (フランス), 1996年, 第31巻, p. 861-874を参照し、原料として、5-ブロモサリチル酸、及び無水酢酸例を用いて34(1)と同様の操作を行って得た。後述する例244(1)と同様の操作を行って得た。]

(3) 5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]チアゾール-2-イル}-2-ヒドロキシベンズアミド (化合物番号185)

2-アセトキシ-5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]チアゾール-2-イル}ベンズアミド (100. 1mg, 0. 25mmol) のテトラヒドロフラン (3mL) 溶液に、2規定水酸化ナトリウム (0. 2ml) を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテル/n-ヘキサンで結晶化して、標題化合物の白色粉末 (70. 1mg, 78. 9%)を得た。

¹H-NMR (DMSO-d₆) : δ 1. 30 (9H, s), 6. 80 (1H, b r s), 6. 95 (1H, b r s), 7. 57 (1H, b r s), 8. 06 (1H, d, J=2. 4Hz), 11. 82 (1H, b r s), 13. 27 (1H, b r s).

例186：化合物番号186の化合物の製造

(1) 2-アセトキシ-5-ブロモ-N-{5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール-2-イル}ベンズアミド

2-アセトキシ-5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]チアゾール-2-イル}ベンズアミド (例185(2)の化合物; 0. 20g, 0. 50mmol) のアセトニトリル (10mL) 溶液に、N-ブロモコハク酸イミド (97. 9mg, 0. 55mmol) を加え、室温で1時間攪拌した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン: 酢酸エチル=3:1) で精製して、標題化合物を粗生成物として得た。

(2) 5-ブロモ-N-{5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号186)

原料として、2-アセトキシ-5-ブロモ-N-{5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール-2-イル}ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率：90.9% (2工程)

¹H-NMR (DMSO-d₆) : δ 1.42 (9H, s), 6.99 (1H, d, J = 8.7 Hz), 7.61 (1H, dd, J = 8.7, 2.7 Hz), 8.02 (1H, d, J = 2.4 Hz), 11.79 (1H, br s), 12.00 (1H, br s).

例187：化合物番号187の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-ブロモ-4-(トリフルオロメチル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：22.4%

mp 215°C (dec.) .

¹H-NMR (DMSO-d₆) : δ 7.00 (1H, d, J = 8.8 Hz), 7.61 (1H, dd, J = 8.8, 2.8 Hz), 7.97 (1H, d, J = 2.4 Hz).

[2-アミノ-5-ブロモ-4-(トリフルオロメチル)チアゾール：「ジャーナル・オブ・ヘテロサイクリック・ケミストリー (Journal of Heterocyclic Chemistry)」, (米国), 1991年, 第28巻, p. 1017参照]

例188：化合物番号188の化合物の製造

(1) α-ブロモピバロイルアセトニトリル

ピバロイルアセトニトリル (1.00 g, 7.99 mmol) の四塩化炭素 (15 mL) 溶液に、N-ブロモコハク酸イミド (1.42 g, 7.99 mmol) を加え、15分間加熱還流した。反応混合物を室温まで冷却後、不溶物を濾過し

て除去し、濾液を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (*n*-ヘキサン：酢酸エチル = 4 : 1) で精製して、標題化合物の黄褐色オイル (1.43 g, 87.9%)を得た。

¹H-NMR (CDCl₃) : δ 1.33 (9H, s), 5.10 (1H, s).

以下の実施例において例188(1)の方法が引用されている場合、プロモ化剤としては、N-ブロモスクシンイミドを用いた。また、反応溶媒としては、四塩化炭素等の溶媒を用いた。

(2) 2-アミノ-5-シアノ-4-[(1,1-ジメチル)エチル]チアゾール原料として、 α -ブロモピバロイルアセトニトリル、及びチオウレアを用いて例185(1)と同様の操作を行い、標題化合物を得た。

収率：66.3%

¹H-NMR (CDCl₃) : δ 1.41 (9H, s), 5.32 (2H, s).

(3) 5-クロロ-N-{5-シアノ-4-[(1,1-ジメチル)エチル]チアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号188)原料として、5-クロロサリチル酸、及び2-アミノ-5-シアノ-4-[(1,1-ジメチル)エチル]チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：63.4%

¹H-NMR (DMSO-d₆) : δ 1.43 (9H, s), 7.06 (1H, d, J = 8.7 Hz), 7.51 (1H, dd, J = 8.7, 3.0 Hz), 7.85 (1H, d, J = 2.7 Hz), 12.31 (2H, br).

例189：化合物番号189の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-シアノ-4-[(1,1-ジメチル)エチル]チアゾール(例188(2)の化合物)を用いて例3と同様の操作を行い、標題化合物を得た。

収率：61.3%

¹H-NMR (DMSO-d₆) : δ 1.43 (9H, s), 7.00 (1H, d,

$J = 8.7\text{ Hz}$), 7.62 (1H, dd, $J = 8.7, 2.7\text{ Hz}$), 7.97 (1H, d, $J = 2.7\text{ Hz}$), 11.75 (1H, br), 12.43 (1H, br).

例190：化合物番号190の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-メチルチアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：12.9%

$^1\text{H-NMR}$ (DMSO- d_6) : δ 2.33 (3H, s), 6.91 (1H, d, $J = 7.6\text{ Hz}$), 7.26 (1H, s), 7.54 (1H, d, $J = 9.6\text{ Hz}$), 8.03 (1H, d, $J = 2.8\text{ Hz}$).

例191：化合物番号191の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4,5-ジメチルチアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：14.4%

$^1\text{H-NMR}$ (DMSO- d_6) : δ 2.18 (3H, s), 2.22 (3H, s), 6.89 (1H, d, $J = 8.8\text{ Hz}$), 7.51 (1H, d, $J = 6.8\text{ Hz}$), 8.02 (1H, d, $J = 2.8\text{ Hz}$), 13.23 (1H, br s).

例192：化合物番号192の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-メチル-4-フェニルチアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：27.7%

mp 243-244°C.

$^1\text{H-NMR}$ (CD_3OD) : δ 2.47 (3H, s), 6.92 (1H, d, $J = 8.7\text{ Hz}$), 7.36-7.41 (1H, m), 7.44-7.50 (2H, m), 7.53 (1H, dd, $J = 9.0, 2.7\text{ Hz}$), 7.57-7.61 (2H, m), 8.16 (1H, d, $J = 2.7\text{ Hz}$).

[2-アミノ-5-メチル-4-フェニルチアゾール：「薬学雑誌：ジャーナル・

オブ・ザ・ファーマシューティカル・ソサエティ・オブ・ジャパン (Yakugaku Zasshi: Journal of The Pharmaceutical Society of Japan)], 1961年, 第81巻, p. 1456 参照]

例193：化合物番号193の化合物の製造

原料として、(4-フルオロフェニル)アセトンを用いて例188(1)～(3)と同様の操作を行い、標題化合物を得た。

収率: 28.8% (3工程)

(1) α -ブロモ-(4-フルオロフェニル)アセトン

$^1\text{H-NMR}$ (CDCl_3): δ 2.33 (3H, s), 5.41 (1H, s), 7.07 (2H, t, $J=8.7\text{ Hz}$), 7.43 (2H, dd, $J=8.7, 5.1\text{ Hz}$).

(2) 2-アミノ-4-メチル-5-(4-フルオロフェニル)チアゾール

$^1\text{H-NMR}$ (CDCl_3): δ 2.27 (3H, s), 4.88 (2H, s), 7.07 (2H, t, $J=8.7\text{ Hz}$), 7.32 (2H, dd, $J=8.7, 5.4\text{ Hz}$).

(3) 5-ブロモ-N-[4-メチル-5-(4-フルオロフェニル)チアゾール-2-イル]-2-ヒドロキシベンズアミド (化合物番号193)

$^1\text{H-NMR}$ (DMSO-d_6): δ 2.36 (3H, s), 6.95 (1H, d, $J=8.4\text{ Hz}$), 7.33 (2H, t, $J=8.7\text{ Hz}$), 7.52-7.59 (3H, m), 8.06 (1H, d, $J=3.0\text{ Hz}$), 12.01-13.65 (2H, br).

例194：化合物番号194の化合物の製造

原料として、3-(トリフルオロメチル)フェニルアセトンを用いて例188(1)～(3)と同様の操作を行い、標題化合物を得た。

収率: 39.8% (3工程)

(1) α -ブロモ-3-(トリフルオロメチル)フェニルアセトン

$^1\text{H-NMR}$ (CDCl_3): δ 2.38 (3H, s), 5.43 (1H, s),

7. 52 (1H, t, J = 7. 8 Hz), 7. 61 - 7. 66 (2H, m), 7. 69 - 7. 70 (1H, m).

(2) 2-アミノ-4-メチル-5-[3-(トリフルオロメチル)フェニル]チアゾール

¹H-NMR (CDCl₃) : δ 2. 32 (3H, s), 4. 95 (2H, s), 7. 46 - 7. 56 (3H, m), 7. 59 - 7. 61 (1H, m).

(3) 5-ブロモ-N-{4-メチル-5-[3-(トリフルオロメチル)フェニル]チアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号194)

¹H-NMR (DMSO-d₆) : δ 2. 40 (3H, s), 6. 97 (1H, d, J = 8. 7 Hz), 7. 59 (1H, dd, J = 8. 7, 2. 4 Hz), 7. 71 - 7. 84 (4H, m), 8. 06 (1H, d, J = 2. 4 Hz), 12. 09 (1H, br), 12. 91 - 13. 63 (1H, br).

例195：化合物番号195の化合物の製造

原料として、2, 2-ジメチル-3-ヘキサノンを用いて例188(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：17. 0% (3工程)

(2) 2-アミノ-4-[(1, 1-ジメチル)エチル]-5-エチルチアゾール

¹H-NMR (CDCl₃) : δ 1. 21 (3H, t, J = 7. 5 Hz), 1. 32 (9H, s), 2. 79 (2H, q, J = 7. 5 Hz), 4. 63 (2H, br s).

(3) 5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-エチルチアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号195)

¹H-NMR (CDCl₃) : δ 1. 32 (3H, t, J = 7. 5 Hz), 1. 41 (9H, s), 2. 88 (2H, q, J = 7. 5 Hz), 6. 84 (1H, d, J = 9. 0 Hz), 7. 44 (1H, dd, J = 8. 7, 2. 4 Hz), 8. 05 (1H, d, J = 2. 7 Hz), 11. 46 (2H, br).

例196：化合物番号196の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-エチル-5-フェニルチアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：17.4%

mp 224-225°C.

¹H-NMR (DMSO-d₆) : δ 1.24 (3H, t, J=7.6Hz), 2.70 (2H, q, J=7.6Hz), 6.95 (1H, brd, J=7.6Hz), 7.39-7.42 (1H, m), 7.45-7.51 (4H, m), 7.56 (1H, brd, J=8.0Hz), 8.06 (1H, d, J=2.8Hz), 11.98 (1H, brs).

例197：化合物番号197の化合物の製造

原料として、ベンジルイソプロピルケトンを用いて例188(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：4.4%（3工程）

(2) 2-アミノ-4-イソプロピル-5-フェニルチアゾール

¹H-NMR (CDCl₃) : δ 1.23 (6H, d, J=6.6Hz), 3.05 (1H, m), 4.94 (2H, s), 7.28-7.41 (5H, m).

(3) 5-ブロモ-N-(4-イソプロピル-5-フェニルチアゾール-2-イル)-2-ヒドロキシベンズアミド（化合物番号197）

¹H-NMR (DMSO-d₆) : δ 1.26 (6H, d, J=6.0Hz), 3.15 (1H, m), 6.98 (1H, brs), 7.43-7.53 (5H, m), 7.59 (1H, brs), 8.08 (1H, d, J=2.7Hz), 11.90 (1H, brd), 13.33 (1H, brd).

例198：化合物番号198の化合物の製造

原料として、1-フェニル-2-ヘキサンを用いて例188(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：52.6%（3工程）

(1) α -ブロモ-1-フェニル-2-ヘキサノン

$^1\text{H-NMR}$ (CDCl_3) : δ 0.85 (3H, t, $J = 7.2\text{ Hz}$), 1.19-1.32 (2H, m), 1.50-1.60 (2H, m), 2.59 (2H, t d, $J = 7.5, 3.9\text{ Hz}$), 5.44 (1H, s), 7.34-7.45 (5H, m).

(2) 2-アミノ-4-ブチル-5-フェニルチアゾール

$^1\text{H-NMR}$ (CDCl_3) : δ 0.89 (3H, t, $J = 7.5\text{ Hz}$), 1.28-1.41 (2H, m), 1.61-1.71 (2H, m), 2.56-2.61 (2H, m), 4.87 (2H, s), 7.25-7.40 (5H, m).

(3) 5-ブロモ-N-(4-ブチル-5-フェニルチアゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号198)

$^1\text{H-NMR}$ (DMSO-d_6) : δ 0.85 (3H, t, $J = 7.2\text{ Hz}$), 1.23-1.35 (2H, m), 1.59-1.69 (2H, m), 2.70 (2H, t, $J = 7.2\text{ Hz}$), 6.96 (1H, d, $J = 6.9\text{ Hz}$), 7.39-7.59 (6H, m), 8.07 (1H, d, $J = 2.4\text{ Hz}$), 11.93 (1H, b r), 13.18-13.59 (1H, b r).

例199：化合物番号199の化合物の製造

(1) 4-ブロモ-2,2,6,6-テトラメチル-3,5-ヘプタンジオン [α -ブロモジピバロイルメタン]

2,2,6,6-テトラメチル-3,5-ヘプタンジオン(ジピバロイルメタン；1.00g, 5.42mmol)の四塩化炭素(10mL)溶液に、N-ブロモコハク酸イミド(965.8mg, 5.42mmol)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、不溶物を濾過して除去し、濾液を減圧留去して、標題化合物の白色結晶(1.42g, 定量的)を得た。

$^1\text{H-NMR}$ (CDCl_3) : δ 1.27 (18H, s), 5.67 (1H, s).

以下の実施例において例199(1)の方法が引用されている場合、ブロモ化剤としては、N-ブロモコハク酸イミドを用いた。また、反応溶媒としては、四塩

化炭素等の溶媒を用いた。

(2) 2-アミノ-4-[(1, 1-ジメチル)エチル]-5-[(2, 2-ジメチル)プロピオニル]チアゾール

4-ブロモ-2, 2, 6, 6-テトラメチル-3, 5-ヘプタンジオン (α -ブロモ-ジビバロイルメタン; 1. 42 g, 5. 40 mmol)、チオウレア (45 1. 8 mg, 5. 94 mmol)、エタノール (15 mL) の混合物を2時間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をジクロロメタン/n-ヘキサンで結晶化して、標題化合物の白色結晶 (1. 23 g, 94. 5%)を得た。

$^1\text{H-NMR}$ (CDCl₃): δ 1. 26 (9H, s), 1. 29 (9H, s), 5. 03 (2H, s).

(3) 5-クロロ-N-{4-[(1, 1-ジメチル)エチル]-5-[(2, 2-ジメチル)プロピオニル]チアゾール-2-イル}-2-ヒドロキシベンズアミド (化合物番号 199)

5-クロロサリチル酸 (143. 6 mg, 0. 83 mmol)、2-アミノ-4-[(1, 1-ジメチル)エチル]エチル-5-[(2, 2-ジメチル)プロピオニル]チアゾール (200. 0 mg, 0. 83 mmol)、三塩化リン (40 μ L, 0. 46 mmol)、クロロベンゼン (4 mL) の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン: 酢酸エチル = 3 : 1) で精製して、標題化合物の白色粉末 (159. 1 mg, 48. 4%)を得た。

$^1\text{H-NMR}$ (CDCl₃): δ 1. 33 (9H, s), 1. 35 (9H, s), 6. 99 (1H, d, J = 8. 7 Hz), 7. 43 (1H, dd, J = 9. 0, 2. 7 Hz), 7. 70 (1H, d, J = 2. 7 Hz), 10. 52 (2H, br).

以下の実施例において例 199 (3) の方法が引用されている場合、酸バロゲン化剤としては、三塩化リンを用いた。また、反応溶媒としては、モノクロロベン

ゼン、トルエン等の溶媒を用いた。

例200：化合物番号200の化合物の製造

原料として、5-クロロ-N-{4-[(1,1-ジメチル)エチル]-5-[(2,2-ジメチル)プロピオニル]チアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号199)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率：65.3%

¹H-NMR (CDCl₃) : δ 1.32 (9H, s), 1.33 (9H, s), 2.46 (3H, s), 7.22 (1H, d, J = 8.4 Hz), 7.56 (1H, d d, J = 8.7, 2.4 Hz), 8.05 (1H, d, J = 2.7 Hz), 9.82 (1H, b r s).

例201：化合物番号201の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-[(1,1-ジメチル)エチル]-5-[(2,2-ジメチル)プロピオニル]チアゾール(例199(2)の化合物)を用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：23.8%

¹H-NMR (CDCl₃) : δ 1.33 (9H, s), 1.35 (9H, s), 6.94 (1H, d, J = 8.7 Hz), 7.55 (1H, d d, J = 8.7, 2.1 Hz), 7.85 (1H, d, J = 2.1 Hz), 10.51 (2H, b r).

例202：化合物番号202の化合物の製造

原料として、ピバロイル酢酸エチルエステルを用いて例199(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：45.7% (3工程)

(1) α-ブロモ-β-ピバロイル酢酸エチルエステル

¹H-NMR (CDCl₃) : δ 1.28 (9H, s), 1.29 (3H, t, J = 7.2 Hz), 4.26 (2H, q, J = 7.2 Hz), 5.24 (1H, s).

(2) 2-アミノ-4-[(1,1-ジメチル)エチル]チアゾール-5-カルボ

ン酸 エチルエステル

¹H-NMR (CDCl₃) : δ 1.32 (3H, t, J = 7.2 Hz), 1.43 (9H, s), 4.24 (2H, q, J = 7.2 Hz), 5.18 (2H, s).
 (3) 2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-[(1,1-ジメチル)エチル]チアゾール-5-カルボン酸 エチルエステル (化合物番号 202)

¹H-NMR (DMSO-d₆) : δ 1.30 (3H, t, J = 7.2 Hz), 1.44 (9H, s), 4.27 (2H, q, J = 6.9 Hz), 7.00 (1H, d, J = 8.7 Hz), 7.63 (1H, dd, J = 8.7, 2.7 Hz), 8.02 (1H, d, J = 2.4 Hz), 11.80 (1H, br), 12.12 (1H, br).

例203：化合物番号203の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-[(1,1-ジメチル)エチル]チアゾール-5-カルボン酸 エチルエステル (化合物番号 202) を用いて例36と同様の操作を行い、標題化合物を得た。

収率：85.5%

¹H-NMR (DMSO-d₆) : δ 1.44 (9H, s), 7.00 (1H, d, J = 9.0 Hz), 7.62 (1H, dd, J = 9.0, 2.7 Hz), 8.02 (1H, d, J = 2.4 Hz), 11.83 (1H, brs), 12.04 (1H, brs), 12.98 (1H, brs).

例204：化合物番号204の化合物の製造

(1) 2-アミノ-5-ブロモ-4-[(1,1-ジメチル)エチル]チアゾール-2-アミノ-4-[(1,1-ジメチル)エチル]チアゾール (例185(1)の化合物；0.87g, 5.6mmol) の四塩化炭素 (9mL) 溶液に、N-ブロモコハク酸イミド (1.00g, 5.6mmol) を加え、室温で1時間攪拌した。反応混合物にヘキサンを加え、不溶物を濾過して除去し、濾液を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸

エチル=2:1)で精製して、標題化合物の黄灰色粉末(1.23g, 93.7%)を得た。

¹H-NMR(CDCl₃): δ 1.39(9H, s), 4.81(2H, br s).

(2) 2-アミノ-4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾール

2-アミノ-5-ブロモ-4-[(1,1-ジメチル)エチル]チアゾール(0.10g, 0.42mmol)、ピペリジン(0.1mL)、炭酸カリウム(0.20g)、アセトニトリル(4mL)の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の黄色結晶(80.7mg, 79.3%)を得た。

¹H-NMR(CDCl₃): δ 1.32(9H, s), 1.64(4H, t, J=5.7Hz), 1.71-1.77(2H, m), 2.35(2H, br s), 2.99(2H, br s), 4.68(2H, s).

以下の実施例において例204(2)の製造法が引用されている場合、塩基としては、炭酸ナトリウム等の塩基を用いた。また、反応溶媒としては、アセトニトリル等の溶媒を用いた。

(3) 2-アセトキシ-5-ブロモ-N-{4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾール-2-イル}ベンズアミド
アルゴン雰囲気下、2-アセトキシ-5-ブロモ安息香酸(90.3mg, 0.35mmol)、2-アミノ-4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾール(80.7mg, 0.34mmol)、ピリジン(0.1mL)、テトラヒドロフラン(3mL)の混合物にオキシ塩化リン(4.6μL, 0.50mmol)を加え、室温で2時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマト

グラフィー (n-ヘキサン : 酢酸エチル = 3 : 1) で精製して、標題化合物の粗生成物 (84. 3 mg) を得た。

以下の実施例において例 204 (3) の製造法が引用されている場合、酸ハロゲン化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を用いた。

(4) 5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-ピペリジノチアゾール-2-イル}-2-ヒドロキシベンズアミド (化合物番号 204)
2-アセトキシ-5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-ピペリジノチアゾール-2-イル}ベンズアミド (粗生成物, 84. 3 mg) のエタノール (3 mL) 溶液に、2 規定水酸化ナトリウム溶液 (0. 1 mL) を加え、室温で 1 時間攪拌した。反応混合物を 2 規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン : 酢酸エチル = 4 : 1) で精製して、標題化合物の白色粉末 (54. 1 mg, 36. 3% ; 2 工程) を得た。

¹H-NMR (CDCl₃) : δ 1.41 (9H, s), 1.56 (2H, br s), 1.67-1.74 (4H, m), 2.79 (4H, br s), 6.85 (1H, d, J = 9.0 Hz), 7.45 (1H, dd, J = 9.0, 2.4 Hz), 8.06 (1H, d, J = 2.4 Hz), 11.70 (2H, br).

以下の実施例において例 204 (4) の製造法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例 205 : 化合物番号 205 の化合物の製造

原料として、2-アミノ-5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール (例 204 (1) の化合物)、及びモルホリンを用いて例 204 (2) ~ (4)

と同様の操作を行い、標題化合物を得た。

収率：17.1%

(2) 2-アミノ-4-[(1, 1-ジメチル)エチル]-5-モルホリノチアゾール

¹H-NMR (CDCl₃) : δ 1.33 (9H, s), 2.76 (4H, br s), 3.79 (4H, br s), 4.66 (2H, s).

(3) 2-アセトキシ-5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-モルホリノチアゾール-2-イル}ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-モルホリノチアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号205)

¹H-NMR (CDCl₃) : δ 1.24 (9H, s), 2.89 (4H, dd, J=4.8, 4.2Hz), 3.83 (4H, dd, J=4.5, 4.2Hz), 6.89 (1H, d, J=9.0Hz), 7.49 (1H, dd, J=9.0, 2.4Hz), 7.98 (1H, d, J=2.1Hz), 11.20 (2H, br).

例206：化合物番号206の化合物の製造

原料として、2-アミノ-5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール(例204(1)の化合物)、及び4-メチルピペラジンを用いて例204(2)～(4)と同様の操作を行い、標題化合物を得た。

収率：6.9%

(2) 2-アミノ-4-[(1, 1-ジメチル)エチル]-5-(4-メチルピペラジン-1-イル)チアゾール

¹H-NMR (DMSO-d₆) : δ 1.25 (9H, s), 2.12 (2H, br s), 2.19 (3H, s), 2.57 (2H, br s), 2.72 (4H, br s), 6.51 (2H, s).

(3) 2-アセトキシ-N-{4-[(1, 1-ジメチル)エチル]-5-(4-メチルピペラジン-1-イル)チアゾール-2-イル}ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-(4-メチルピペラジン-1-イル)チアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号206)

¹H-NMR (CD₃OD): δ 1.41 (9H, s), 2.55 (3H, s), 2.87 (4H, br s), 3.03 (4H, br s), 6.88 (1H, d, J = 8.7 Hz), 7.49 (1H, dd, J = 8.7, 2.7 Hz), 8.11 (1H, d, J = 2.7 Hz).

例207: 化合物番号207の化合物の製造

原料として、2-アミノ-5-ブロモ-4-[(1, 1-ジメチル)エチル]チアゾール(例204(1)の化合物)、及び4-フェニルピペラジンを用いて例204(2)～(4)と同様の操作を行い、標題化合物を得た。

収率: 6.9%

(2) 2-アミノ-4-[(1, 1-ジメチル)エチル]-5-(4-フェニルピペラジン-1-イル)チアゾール

¹H-NMR (CDCl₃): δ 1.34 (9H, s), 2.80 (2H, br s), 3.03 (4H, br s), 3.55 (2H, br s), 4.69 (2H, s), 6.88 (1H, tt, J = 7.2, 1.2 Hz), 6.95 (2H, dd, J = 9.0, 1.2 Hz), 7.28 (2H, dd, J = 8.7, 7.2 Hz).

(3) 2-アセトキシ-5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-(4-フェニルピペラジン-1-イル)チアゾール-2-イル}ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-ブロモ-N-{4-[(1, 1-ジメチル)エチル]-5-(4-フェニルピペラジン-1-イル)チアゾール-2-イル}-2-ヒドロキシベンズアミド(化合物番号207)

¹H-NMR (DMSO-d₆): δ 1.39 (9H, s), 2.97 (4H, s),

3. 30 (4H, s), 6. 82 (1H, t, J = 7. 5 Hz), 6. 97 (2H, b r s), 6. 99 (2H, t, J = 7. 5 Hz), 7. 58 (1H, b r s), 8. 05 (1H, d, J = 2. 4 Hz), 11. 69 (1H, b r s), 11. 82 (1H, b r s).

例208：化合物番号208の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：16. 0%

mp 239°C (dec.).

¹H-NMR (DMSO-d₆) : δ 7. 02 (1H, d, J = 8. 4 Hz), 7. 34 (1H, t, J = 7. 6 Hz), 7. 44 (2H, t, J = 7. 6 Hz), 7. 62 (1H, dd, J = 8. 4, 2. 8 Hz), 7. 67 (1H, s), 7. 92 (2H, d, J = 7. 2 Hz), 8. 08 (1H, d, J = 2. 8 Hz), 11. 88 (1H, b r s), 12. 05 (1H, b r s).

例209：化合物番号209の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-酢酸メチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：32. 1%

mp 288. 5-229. 5°C.

¹H-NMR (DMSO-d₆) : δ 3. 66 (3H, s), 3. 95 (2H, s), 6. 99 (1H, d, J = 8. 0 Hz), 7. 42 (1H, d, J = 6. 0 Hz), 7. 48 (2H, b r t, J = 7. 6 Hz), 7. 56-7. 61 (3H, m), 8. 07 (1H, d, J = 2. 4 Hz), 11. 85 (1H, b r s), 11. 98 (1H, b r s).

例210：化合物番号210の化合物の製造

{2-[(5-ブロモ-2-ヒドロキシベンゾイル) アミノ]-4-フェニルチアゾ

ールー5-イル}酢酸 メチルエステル(化合物番号209; 75mg, 0.17 mmol)のメタノール(5mL)溶液に、2規定水酸化ナトリウム(0.5mL, 1mmol)を加え、室温で12時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルで懸濁洗浄して、標題化合物の淡黄白色結晶(56mg, 77.3%)を得た。

mp 284-286°C.

¹H-NMR (DMSO-d₆): δ 3.84 (2H, s), 6.98 (1H, d, J=8.8Hz), 7.42 (1H, d, J=6.8Hz), 7.49 (2H, t, J=7.6Hz), 7.58-7.61 (3H, m), 8.07 (1H, d, J=2.8Hz), 12.25 (1H, brs).

例211：化合物番号211の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4,5-ジフェニルチアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：25.9%

mp 262-263°C.

¹H-NMR (DMSO-d₆): δ 7.02 (1H, d, J=8.1Hz), 7.34-7.47 (10H, m), 7.63 (1H, d, J=6.9Hz), 8.08 (1H, d, J=2.4Hz), 11.88 (1H, brs), 12.08 (1H, brs).

[2-アミノ-4,5-ジフェニルチアゾール：「日本化学雑誌(Nihon Kagaku Zasshi)」，1962年，第83巻，p. 209参照]

例212：化合物番号212の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-ベンジル-5-フェニルチアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：28.1%

m.p. 198–200°C.

¹H-NMR (DMSO-d₆) : δ 4.08 (2H, s), 6.95 (1H, d, J = 8.8 Hz), 7.15–7.22 (3H, m), 7.30 (2H, t, J = 7.6 Hz), 7.38–7.43 (1H, m), 7.47 (4H, d, J = 4.4 Hz), 7.57 (1H, b r d, J = 8.8 Hz), 8.05 (1H, d, J = 2.4 Hz), 11.98 (1H, b r s).

[2-アミノ-4-ベンジル-5-フェニルチアゾール：「ケミカル・アンド・ファーマシューティカル・ブレティン (Chemical & Pharmaceutical Bulletin)」, 1962年, 第10巻, p. 376 参照]

例213：化合物番号213の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-フェニル-4-(トリフルオロメチル)チアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：33.2%

m.p. 250°C (dec.). ¹H-NMR (DMSO-d₆) : δ 7.02 (1H, d, J = 8.8 Hz), 7.51 (5H, s), 7.63 (1H, dd, J = 8.8, 2.4 Hz), 8.02 (1H, d, J = 2.8 Hz), 12.38 (1H, b r s).

例214：化合物番号214の化合物の製造

原料として、1-フェニル-1,3-ブタンジオンを用いて例199(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：8.9% (3工程)

(1) α-ブロモ-1-フェニル-1,3-ブタンジオン

¹H-NMR (CDCl₃) : δ 2.46 (3H, s), 5.62 (1H, s), 7.48–7.54 (2H, m), 7.64 (1H, tt, J = 7.5, 2.1 Hz), 7.97–8.01 (2H, m).

(2) 2-アミノ-5-アセチル-4-フェニルチアゾール

¹H-NMR (DMSO-d₆) : δ 2.18 (3H, s), 7.50-7.55 (2H, m), 7.59-7.68 (3H, m), 8.69 (2H, b r s).

(3) 5-ブロモ-N-(5-アセチル-4-フェニルチアゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号214)

¹H-NMR (DMSO-d₆) : δ 2.44 (3H, s), 6.99 (1H, d, J=9.0Hz), 7.55-7.71 (4H, m), 7.76-7.80 (2H, m), 8.01 (1H, d, J=2.4Hz), 12.36 (2H, b r).

例215：化合物番号215の化合物の製造

原料として、1,3-ジフェニル-1,3-プロパンジオンを用いて例199(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：49.7%

(1) α-ブロモ-1,3-ジフェニル-1,3-プロパンジオン

¹H-NMR (CDCl₃) : δ 6.55 (1H, s), 7.45-7.50 (4H, m), 7.61 (2H, t t, J=7.2, 2.1Hz), 7.98-8.01 (4H, m).

(2) 2-アミノ-5-ベンゾイル-4-フェニルチアゾール

¹H-NMR (DMSO-d₆) : δ 7.04-7.18 (5H, m), 7.22-7.32 (3H, m), 7.35-7.38 (2H, m), 8.02 (2H, s).

(3) 5-ブロモ-N-(5-ベンゾイル-4-フェニルチアゾール-2-イル)-2-ヒドロキシベンズアミド(化合物番号215)

¹H-NMR (DMSO-d₆) : δ 7.03 (1H, d, J=8.7Hz), 7.17-7.30 (5H, m), 7.39-7.47 (3H, m), 7.57-7.60 (2H, m), 7.64 (1H, dd, J=8.7, 2.7Hz), 8.05 (1H, d, J=2.4Hz), 11.82 (1H, b r s), 12.35 (1H, b r s).

例216：化合物番号216の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-フェニルチアゾール

—5—カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：28.6%

mp 197–199°C.

¹H-NMR (DMSO-d₆) : δ 1.21 (3H, t, J=6.8Hz), 4.20 (2H, q, J=6.8Hz), 7.01 (1H, d, J=8.8Hz), 7.43–7.48 (3H, m), 7.63 (1H, dd, J=8.8, 2.4Hz), 7.70–7.72 (2H, m), 8.04 (1H, d, J=2.4Hz), 12.33 (1H, brs).

例217：化合物番号217の化合物の製造

2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステル（化合物番号216）を用いて例36と同様の操作を行い、標題化合物を得た。

収率：67.0%

¹H-NMR (DMSO-d₆) : δ 7.00 (1H, d, J=8.8Hz), 7.42–7.44 (3H, m), 7.62 (1H, dd, J=8.8, 2.4Hz), 7.70–7.72 (2H, m), 8.04 (1H, d, J=2.4Hz), 12.31 (1H, brs), 12.99 (1H, brs).

例218：化合物番号218の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：69.4%

¹H-NMR (DMSO-d₆) : δ 1.22 (3H, t, J=7.5Hz), 4.21 (2H, q, J=7.5Hz), 7.07 (1H, d, J=8.7Hz), 7.43–7.47 (3H, m), 7.53 (1H, dd, J=8.7, 2.4Hz), 7.70–7.74 (2H, m), 7.92 (1H, d, J=3.0Hz), 11.

8.8 (1H, b r), 12.29 (1H, b r s).

例219：化合物番号219の化合物の製造

原料として、ペンタフルオロベンゾイル酢酸エチルエステルを用いて例199

(1)～(3)と同様の操作を行い、標題化合物を得た。

収率：40.0%（3工程）

(1) α -ブロモ-ペンタフルオロベンゾイル酢酸 エチルエステル

粗成生物のまま次反応に用いた。

(2) 2-アミノ-4-(ペンタフルオロフェニル)チアゾール-5-カルボン酸 エチルエステル

$^1\text{H-NMR}$ (CDCl₃) : δ 1.23 (3H, t, J = 7.2 Hz), 4.21 (2H, q, J = 7.2 Hz), 5.41 (2H, s).

(3) 2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-(ペンタフルオロフェニル)チアゾール-5-カルボン酸 エチル (化合物番号219)

$^1\text{H-NMR}$ (DMSO-d₆) : δ 1.20 (3H, t, J = 7.2 Hz), 2.51 (2H, q, J = 7.2 Hz), 7.02 (1H, d, J = 8.7 Hz), 7.64 (1H, dd, J = 8.7, 2.7 Hz), 7.90 (1H, d, J = 3.0 Hz), 11.92 (1H, b r), 12.58 (1H, b r).

例220：化合物番号220の化合物の製造

2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸 (化合物番号217; 0.20g, 0.48mmol)、メチルアミン 40%メタノール溶液 (0.2mL)、1-ヒドロキシベンゾトリアゾール 水和物 (96.7mg, 0.72mmol)、WSC·HCl (137.2mg, 0.72mmol)、テトラヒドロフラン (15mL) の混合物を室温で18時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=1:2) で精製、ジクロロメタン/n-ヘキサンで結晶化して、

標題化合物の白色粉末 (87.9 mg, 42.6%) を得た。

¹H-NMR (DMSO-d₆) : δ 2.70 (3H, d, J=4.5 Hz), 7.02 (1H, d, J=9.0 Hz), 7.40-7.48 (3H, m), 7.63 (1H, dd, J=9.0, 2.4 Hz), 7.68-7.71 (2H, m), 8.06 (1H, d, J=2.4 Hz), 8.16 (1H, t, J=4.5 Hz), 11.88 (1H, br), 12.15 (1H, brs).

以下の実施例において例220の方法が引用されている場合、脱水縮合剤としては、WSC・HCl、及び1-ヒドロキシベンゾトリアゾール水和物を用いた。

また、反応溶媒としては、テトラヒドロフラン等の溶媒を用いた。

例221：化合物番号221の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸(化合物番号217)、及びエチルアミンの70%水溶液を用いて例220と同様の操作を行い、標題化合物を得た。

収率：62.5%

¹H-NMR (DMSO-d₆) : δ 1.05 (3H, t, J=6.9 Hz), 3.15-3.24 (2H, m), 7.02 (1H, d, J=8.7 Hz), 7.40-7.47 (3H, m), 7.63 (1H, dd, J=8.7, 3.0 Hz), 7.69-7.72 (2H, m), 8.06 (1H, d, J=2.4 Hz), 8.20 (1H, t, J=5.4 Hz), 11.84 (1H, br), 12.14 (1H, brs).

例222：化合物番号222の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸(化合物番号217)、及びイソプロピルアミンを用いて例220と同様の操作を行い、標題化合物を得た。

収率：23.9%

¹H-NMR (DMSO-d₆) : δ 1.07 (6H, d, J=6.3 Hz), 4.02 (1H, m), 7.02 (1H, d, J=9.0 Hz), 7.40-7.52

(3 H, m), 7. 64 (1 H, d d, J = 8. 7, 2. 7 Hz), 7. 69 - 7. 73 (2 H, m), 8. 06 (1 H, d, J = 2. 7 Hz), 11. 89 (1 H, b r), 12. 14 (1 H, b r s).

例 223：化合物番号 223 の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸(化合物番号 217)、及び2-フェネチルアミンを用いて例 220 と同様の操作を行い、標題化合物を得た。

収率：62. 2%

¹H-NMR (DMSO-d₆) : δ 2. 78 (2 H, t, J = 7. 5 Hz), 3. 43 (2 H, q, J = 7. 5 Hz), 7. 02 (1 H, d, J = 9. 0 Hz), 7. 19 - 7. 24 (3 H, m), 7. 27 - 7. 33 (2 H, m), 7. 39 - 7. 41 (3 H, m), 7. 61 - 7. 65 (3 H, m), 8. 06 (1 H, d, J = 2. 4 Hz), 8. 25 (1 H, t, J = 6. 0 Hz), 11. 85 (1 H, b r s), 12. 15 (1 H, b r s).

例 224：化合物番号 224 の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-(トリフルオロメチル)チアゾール-5-カルボン酸エチルエステルを用いて例 199(3)と同様の操作を行い、標題化合物を得た。

収率：88. 7%

¹H-NMR (DMSO-d₆) : δ 1. 32 (3 H, t, J = 7. 2 Hz), 4. 33 (2 H, q, J = 7. 2 Hz), 7. 01 (1 H, d, J = 8. 7 Hz), 7. 63 (1 H, d d, J = 8. 7, 2. 7 Hz), 7. 98 (1 H, d, J = 2. 4 Hz), 12. 64 (1 H, b r).

例 225：化合物番号 225 の化合物の製造

原料として、4-ヒドロキシビフェニル-3-カルボン酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸エチルエステルを用いて例 199(3)と同様の操作を行い、標題化合物を得た。

収率：61.7%

m.p. 207–208°C.

¹H-NMR (DMSO-d₆) : δ 1.23 (3H, t, J=7.2Hz), 4.22 (2H, q, J=7.2Hz), 7.16 (1H, d, J=8.7Hz), 7.36 (1H, t, J=7.5Hz), 7.45–7.50 (5H, m), 7.69–7.76 (4H, m), 7.85 (1H, dd, J=8.7, 2.4Hz), 8.31 (1H, d, J=2.4Hz), 11.73 (1H, br s), 12.60 (1H, br s).

[4-ヒドロキシビフェニル-3-カルボン酸：「テトラヘドロン(Tetrahedron)」，(米国)，1997年，第53巻，p. 11437参照]

例226：化合物番号226の化合物の製造

原料として、(4'–フルオロー-4–ヒドロキシビフェニル)-3–カルボン酸及び2–アミノ–4–フェニルチアゾール–5–カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：62.7%

m.p. 237–238°C.

¹H-NMR (DMSO-d₆) : δ 1.22 (3H, t, J=7.2Hz), 4.21 (2H, q, J=7.2Hz), 7.13 (1H, d, J=8.4Hz), 7.28 (2H, t, J=8.8Hz), 7.44–7.45 (3H, m), 7.71–7.75 (4H, m), 7.81 (1H, dd, J=8.8, 2.4Hz), 8.27 (1H, d, J=2.4Hz), 11.67 (1H, br s), 12.58 (1H, br s).

[(4'–フルオロー-4–ヒドロキシビフェニル)-3–カルボン酸：「テトラヘドロン(Tetrahedron)」，1997年，第53巻，p. 11437参照]

例227：化合物番号227の化合物の製造

原料として、(2', 4'–ジフルオロー-4–ヒドロキシビフェニル)-3–カルボン酸及び2–アミノ–4–フェニルチアゾール–5–カルボン酸 エチルエス

テルを用いて例 199 (3) と同様の操作を行い、標題化合物を得た。

収率：45.6%

m.p. 206-207°C.

¹H-NMR (DMSO-d₆) : δ 1.22 (3H, t, J=7.2Hz), 4.22 (2H, q, J=7, 2Hz), 7.17 (1H, d, J=9.0Hz), 7.21 (1H, td, J=8.7, 2.4Hz), 7.38 (1H,ddd, J=11.7, 9.3, 2.4Hz), 7.44-7.46 (3H, m), 7.60-7.75 (4H, m), 8.13-8.14 (1H, m), 11.86 (1H, brs), 12.46 (1H, brs).

例 228：化合物番号 228 の化合物の製造

(1) [4-ヒドロキシ-4'-(トリフルオロメチル)ビフェニル]-3-カルボン酸

5-ブロモサリチル酸 (500 mg, 2.30 mmol)、ジヒドロキシ-4-(トリフルオロメチル)フェニルボラン (488 mg, 2.57 mmol)、酢酸パラジウム (10 mg, 0.040 mmol) 及び 1 mol/L 炭酸ナトリウム水溶液 (7 mL) の混合物を 80°C で 1 時間攪拌した。反応混合物を室温まで冷却後、2 規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を、定法に従い、トリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル = 5 : 1) で精製して、無色液体 (563 mg) を得た。この液体のメタノール (10 mL) 溶液に、2 規定水酸化ナトリウム (3 mL) を加え、60°C で 1 時間攪拌した。反応混合物を室温まで冷却後、2 規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣を n-ヘキサン/ジクロルメタンで懸濁洗浄して、標題化合物の白色結晶 (458 mg, 70.4%) を得た。

m.p. 185°C (dec.).

¹H-NMR (DMSO-d₆) : δ 7.09 (1H, d, J = 8.8 Hz), 7.77 (2H, d, J = 8.0 Hz), 7.85 (2H, d, J = 8.0 Hz), 7.90 (1H, dd, J = 8.8, 2.0 Hz), 8.10 (1H, d, J = 2.4 Hz), 11.80 (1H, br s).

(2) 2-{[4-ヒドロキシ-4'-(トリフルオロメチル)ビフェニル]-3-カルボニル}アミノ-4-フェニルチアゾール-5-カルボン酸エチルエステル(化合物番号228)

原料として、[4-ヒドロキシ-4'-(トリフルオロメチル)ビフェニル]-3-カルボン酸及び2-アミノ-4-フェニルチアゾール-5-カルボン酸エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：41.7%

mp 236-237°C.

¹H-NMR (DMSO-d₆) : δ 1.22 (3H, t, J = 7.2 Hz), 4.21 (2H, q, J = 7.2 Hz), 7.18 (1H, d, J = 8.8 Hz), 7.44-7.45 (3H, m), 7.72-7.74 (2H, m), 7.81 (2H, d, J = 8.4 Hz), 7.91 (1H, dd, J = 8.8, 2.4 Hz), 7.93 (2H, d, J = 8.4 Hz), 8.36 (1H, d, J = 2.4 Hz), 11.78 (1H, br s), 12.62 (1H, br s).

例229：化合物番号229の化合物の製造

原料として、2-ヒドロキシ-5-(1-ピロリル)安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率：55.0%

¹H-NMR (DMSO-d₆) : δ 1.22 (3H, t, J = 7.2 Hz), 4.22 (2H, q, J = 7.2 Hz), 6.26 (2H, t, J = 2.1 Hz), 7.13 (1H, d, J = 8.7 Hz), 7.32 (2H, t, J = 2.1 Hz), 7.43-7.47 (3H, m), 7.70-7.75 (3H, m), 8.09 (1H,

d, $J = 2.7\text{ Hz}$), 11.58 (1H, b r s), 12.55 (1H, b r s).

例230：化合物番号230の化合物の製造

(1) 2-ヒドロキシ-5-(2-チエニル)安息香酸

5-ブロモサリチル酸(500mg, 2.30mmol)、の1, 2-ジメトキシエタン(5mL)溶液に、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(80mg, 0.07mmol)を加え、室温で10分間攪拌した。次いで、ジヒドロキシ-2-チエニルボラン(324mg, 2.53mmol)及び1mol/L炭酸ナトリウム水溶液(7mL)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を、定法に従い、トリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いで、シリカゲルカラムクロマトグラフィー(n-ヘキサン：酢酸エチル=5:1)で精製して、黄色液体(277mg)を得た。この液体のメタノール(5mL)溶液に、2規定水酸化ナトリウム(1.5mL)を加え、60°Cで1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/ジクロルメタンで晶析して、標題化合物の白色結晶(58mg, 11.5%)を得た。

$^1\text{H-NMR}$ (DMSO-d₆) : δ 6.95 (1H, d, $J=8.8\text{ Hz}$), 7.09 (1H, dd, $J=4.8, 3.6\text{ Hz}$), 7.37 (1H, dd, $J=4.0, 1.2\text{ Hz}$), 7.45 (1H, dd, $J=5.2, 1.2\text{ Hz}$), 7.74 (1H, dd, $J=8.8, 2.8\text{ Hz}$), 7.96 (1H, d, $J=2.8\text{ Hz}$).

(2) 2-[2-ヒドロキシ-5-(2-チエニル)ベンゾイル]アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステル(化合物番号230)
原料として、2-ヒドロキシ-5-(2-チエニル)安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例199

(3) と同様の操作を行い、標題化合物を得た。

収率：58.2%

mp 213-214°C.

¹H-NMR(DMSO-d₆) : δ 1.22(3H, t, J=7.2Hz), 9, 4.21(2H, q, J=7.2Hz), 7.10(1H, d, J=9.2Hz), 7.12(1H, dd, J=4.8, 3.6Hz), 7.44-7.46(4H, m), 7.50(1H, dd, J=4.8, 1.2Hz), 7.71-7.74(2H, m), 7.79(1H, dd, J=8.8, 2.4Hz), 8.21(1H, d, J=2.4Hz), 11.78(1H, brs), 12.44(1H, brs).

例231：化合物番号231の化合物の製造

(1) 2-アミノ-4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾール

3', 5'-ビス(トリフルオロメチル)アセトフェノン(0.51g, 2.0mmol)のテトラヒドロフラン(5mL)溶液に、フェニルトリメチルアンモニウムトリブロミド(753mg, 2mmol)を加え、室温で5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣にエタノール(5mL)、チオウレア(152mg, 2mmol)を加え、30分間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製、n-ヘキサンで懸濁洗浄して、標題化合物の薄黄白色結晶(520.1mg, 83.3%)を得た。

¹H-NMR(CDCl₃) : δ 5.03(2H, s), 6.93(1H, s), 7.77(1H, s), 8.23(2H, s).

(2) 5-クロロ-2-ヒドロキシ-N-[4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾール-2-イル]ベンズアミド(化合物番号231)

5-クロロサリチル酸 (172.6 mg, 1 mmol)、2-アミノ-4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾール (312.2 mg, 1 mmol)、三塩化リン (44 μL, 0.5 mmol)、モノクロロベンゼン (5 mL) の混合物を4時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル=3:1→2:1) で精製して、標題化合物の淡黄色粉末 (109.8 mg, 23.5%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.08 (1H, d, J=8.7 Hz), 7.53 (1H, dd, J=9.0, 3.0 Hz), 7.94 (1H, d, J=3.0 Hz), 8.07 (1H, s), 8.29 (1H, s), 8.60 (2H, s), 11.77 (1H, s), 12.23 (1H, s).

例232：化合物番号232の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4, 5, 6, 7-テトラヒドロベンゾ[b]チオフェン-3-カルボン酸 エチルエステルを用いて例3と同様の操作を行い、標題化合物を得た。

収率：49.6%

¹H-NMR (DMSO-d₆) : δ 1.32 (3H, t, J=7.2 Hz), 1.74 (4H, br), 2.63 (2H, br), 2.75 (2H, br), 4.30 (2H, q, J=7.2 Hz), 7.05 (1H, d, J=9.0 Hz), 7.50 (1H, dd, J=8.7, 3.0 Hz), 7.92 (1H, d, J=3.0 Hz), 12.23 (1H, s), 13.07 (1H, s).

例233：化合物番号233の化合物の製造

原料として、5-ブロモサリチル酸、及び3-アミノ-5-フェニルピラゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：9.2%

¹H-NMR (DMSO-d₆) : δ 6.98 (1H, d, J=8.8 Hz), 7.

0.1 (1H, s), 7.35 (1H, t, J = 7.6 Hz), 7.46 (2H, t, J = 7.6 Hz), 7.58 (1H, dd, J = 8.8, 2.8 Hz), 7.74 – 7.76 (2H, m), 8.19 (1H, s), 10.86 (1H, s), 12.09 (1H, s), 13.00 (1H, br s).

例234：化合物番号234の化合物の製造

(1) 2-アミノ-4, 5-ジエチルオキサゾール

プロピオイン (1.03 g, 8.87 mmol) のエタノール (15 mL) 溶液に、シアナミド (0.75 g, 17.7 mmol)、ナトリウムエトキシド (1.21 g, 17.7 mmol) を加え、室温で3.5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (ジクロロメタン:メタノール = 9:1) で精製して、標題化合物の黄色アモルファス (369.2 mg, 29.7%)を得た。

¹H-NMR (DMSO-d₆): δ 1.04 (3H, t, J = 7.5 Hz), 1.06 (3H, t, J = 7.5 Hz), 2.20 (2H, q, J = 7.5 Hz), 2.43 (2H, q, J = 7.5 Hz), 6.15 (2H, s).

(2) 2-アセトキシ-5-ブロモ-N-(4, 5-ジエチルオキサゾール2-イル)ベンズアミド

原料として、2-アセトキシ-5-ブロモ安息香酸、及び2-アミノ-4, 5-ジエチルオキサゾールを用いて例5と同様の操作を行い、標題化合物を得た。

収率: 22.0%

¹H-NMR (CDCl₃): δ 1.22 (3H, t, J = 7.5 Hz), 1.23 (3H, t, J = 7.5 Hz), 2.38 (3H, s), 2.48 (2H, q, J = 7.5 Hz), 2.57 (2H, q, J = 7.5 Hz), 6.96 (1H, d, J = 8.7 Hz), 7.58 (1H, dd, J = 8.7, 2.7 Hz), 8.32 (1H, s), 11.40 (1H, br).

(3) 5-ブロモ-N-(4, 5-ジエチルオキサゾール2-イル)-2-ヒド

ロキシベンズアミド（化合物番号 234）

原料として、2-アセトキシ-5-ブロモ-N-(4, 5-ジエチルオキサゾール-2-イル)ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率：70. 2%

¹H-NMR (CDCl₃) δ : 1. 25 (3H, t, J = 7. 5 Hz), 1. 26 (3H, t, J = 7. 5 Hz), 2. 52 (2H, q, J = 7. 5 Hz), 2. 60 (2H, q, J = 7. 5 Hz), 6. 84 (1H, d, J = 8. 7 Hz), 7. 43 (1H, dd, J = 8. 7, 3. 0 Hz), 8. 17 (1H, d, J = 3. 0 Hz), 11. 35 (1H, br), 12. 83 (1H, br).

例235：化合物番号235の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4, 5-ジフェニルオキサゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：32. 6%

mp 188-189°C.

¹H-NMR (DMSO-d₆) : δ 6. 98 (1H, d, J = 8. 7 Hz), 7. 40-7. 49 (6H, m), 7. 53-7. 56 (2H, m), 7. 59-7. 63 (3H, m), 8. 01 (1H, d, J = 2. 4 Hz), 11. 80 (2H, br s).

[2-アミノ-4, 5-ジフェニルオキサゾール：「ツォーナル・オルガニッセスコイ・キミー：ロシアン・ジャーナル・オブ・オーガニック・ケミストリー (Zhournal Organicheskoi Khimii: Russian Journal of Organic Chemistry)」, (ロシア), 1980年, 第16巻, p. 2185参照]

例236：化合物番号236の化合物の製造

(1) 2-アミノ-4, 5-ビス(フラン-2-イル)オキサゾール
フロイン (0. 50 g, 2. 60 mmol) のエタノール (15 ml) 溶液に、
シアナミド (218. 8 mg, 5. 20 mmol)、ナトリウムエトキシド (53

0. 8 mg, 7. 80 mmol) を加え、室温で2時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン：酢酸エチル=1:1→1:2) で精製して、標題化合物の黒褐色結晶 (175.0 mg, 31.1%)を得た。

¹H-NMR (DMSO-d₆) : δ 6.59 (1H, dd, J=3.3, 2.1 Hz), 6.62 (1H, dd, J=3.3, 2.1 Hz), 6.73 (1H, dd, J=3.3, 0.6 Hz), 6.80 (1H, dd, J=3.3, 0.9 Hz), 7.05 (2H, s), 7.75–7.76 (2H, m).

(2) 5-ブロモ-N-[4, 5-ビス(フラン-2-イル)オキサゾール-2-イル]-2-ヒドロキシベンズアミド (化合物番号 236)

原料として、5-ブロモサリチル酸、及び2-アミノ-4, 5-ビス(フラン-2-イル)オキサゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 12.9%

¹H-NMR (DMSO-d₆) : δ 6.65 (1H, dd, J=3.6, 1.8 Hz), 6.68 (1H, dd, J=3.6, 1.8 Hz), 6.75 (1H, d, J=8, 7 Hz), 6.92 (1H, dd, J=3.6, 0.9 Hz), 6.93 (1H, d, J=3.3 Hz), 7.37 (1H, dd, J=8.7, 2.7 Hz), 7.80 (1H, dd, J=1.8, 0.9 Hz), 7.84 (1H, d, J=1.8, 0.9 Hz), 7.92 (1H, d, J=3.0 Hz), 8.8 (2H, br).

例237: 化合物番号237の化合物の製造

(1) 2-アセトキシ-N-(5-トリフルオロメチル-1, 3, 4-チアジアゾール-2-イル)ベンズアミド

原料として、O-アセチルサリチル酸クロリド、及び2-アミノ-5-トリフルオロメチル-1, 3, 4-チアジアゾールを用いて例1と同様の操作を行い、標題化合物を得た。

収率：51.1%

¹H-NMR (DMSO-d₆) : δ 2.23 (3H, s), 7.32 (1H, d, J = 8.0, 1.2Hz), 7.45 (1H, t d, J = 7.6, 1.2Hz), 7.69 (1H, t d, J = 8.0, 2.0Hz), 7.87 (1H, d d, J = 8.0, 2.0Hz), 13.75 (1H, b r s).

(2) 2-ヒドロキシ-N-(5-トリフルオロメチル-1,3,4-チアジアゾール-2-イル)ベンズアミド(化合物番号237)

原料として、2-アセトキシ-N-(5-トリフルオロメチル-1,3,4-チアジアゾール-2-イル)ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率：92.9%

¹H-NMR (DMSO-d₆) : δ 7.00 (1H, t d, J = 8.0, 0.8Hz), 7.06 (1H, d, J = 8.4Hz), 7.51 (1H, d d d, J = 8.4, 7.6, 2.0Hz), 7.92 (1H, d d, J = 8.0, 1.6Hz), 12.16 (1H, b r).

例238：化合物番号238の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-トリフルオロメチル-1,3,4-チアジアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：80.2%

¹H-NMR (DMSO-d₆) : δ 7.01 (1H, d, J = 9.0Hz), 7.63 (1H, d d, J = 8.7, 2.7Hz), 7.97 (1H, d, J = 2.4Hz).

例239：化合物番号239の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノピリジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：23.2%

¹H-NMR (DMSO-d₆) : δ 7.02 (1H, d, J=9.3Hz), 7.42 (1H, ddd, J=9.0, 4.8, 0.6Hz), 7.47 (1H, dd, J=8.7, 5.7Hz), 7.92 (1H, d, J=2.7Hz), 8.15 (1H, ddd, J=8.4, 2.4, 1.5Hz), 8.35 (1H, dd, J=7.8, 1.5Hz), 8.86 (1H, d, J=2.4Hz), 10.70 (1H, s).

例240：化合物番号240の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノ-2-クロロピリジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：12.2%

¹H-NMR (DMSO-d₆) : δ 7.04 (1H, d, J=9.0Hz), 7.49 (1H, ddd, J=9.0, 3.0Hz), 7.54 (1H, d, J=8.4Hz), 7.88 (1H, d, J=2.7Hz), 8.21 (1H, ddd, J=8.7, 2.7Hz), 8.74 (1H, d, J=2.7Hz), 10.62 (1H, s), 11.57 (1H, s).

例241：化合物番号241の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロ-4-メトキシピリミジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：2.2%、白色固体

¹H-NMR (DMSO-d₆) : δ 3.86 (3H, s), 6.85 (1H, s), 7.01 (1H, d, J=9.0Hz), 7.47 (1H, ddd, J=9.0, 3.0Hz), 7.81 (1H, d, J=3.0Hz), 11.08 (1H, s), 11.65 (1H, s).

例242：化合物番号242の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノキノリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：4.3%

¹H-NMR (DMSO-d₆) : δ 7.07 (1H, d, J=8.7Hz), 7.51 (1H, dd, J=9.0, 3.0Hz), 7.61 (1H, dt, J=7.8, 1.2Hz), 7.70 (1H, dt, J=7.8, 1.5Hz), 7.98 (2H, d, J=3.0Hz), 8.01 (1H, s), 8.82 (1H, d, J=2.4Hz), 10.80 (1H, s), 11.74 (1H, s).

例243：化合物番号243の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-ブロモピリジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：12.3%

¹H-NMR (DMSO-d₆) : δ 7.07 (1H, d, J=8.7Hz), 7.42 (1H, d, J=7.8Hz), 7.51 (1H, dd, J=8.7, 2.7Hz), 7.82 (1H, t, J=7.5Hz), 7.94 (1H, d, J=3.0Hz), 8.24 (1H, d, J=7.8Hz), 10.95 (1H, s), 11.97 (1H, s).

例244：化合物番号244の化合物の製造

(1) 2-アセトキシ-5-クロロ安息香酸

5-クロロサリチル酸 (13.35g, 77mmol)、無水酢酸 (20mL) の混合物に濃硫酸 (0.08mL) をゆっくり滴下した。反応混合物が固化した後、冰水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサンで懸濁洗浄して、標題化合物の白色結晶 (15.44g, 93.0%)を得た。

¹H-NMR (DMSO-d₆) : δ 2.25 (3H, s), 7.27 (1H, d, J=8.7Hz), 7.72 (1H, dd, J=8.7, 2.7Hz), 7.89 (1H, d, J=2.7Hz), 13.47 (1H, s).

(2) 2-アセトキシ-5-クロロ-N-(ピリダジン-2-イル)ベンズアミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び2-アミノピリダジン

を用いて例 204 (3) と同様の操作を行い、標題化合物を得た。

収率：19.7%

¹H-NMR (CDCl₃) : δ 2.42 (3H, s), 7.19 (1H, d, J = 8.7 Hz), 7.54 (1H, dd, J = 8.7, 2.7 Hz), 8.01 (1H, d, J = 2.4 Hz), 8.28 (1H, dd, J = 2.4, 1.8 Hz), 8.42 (1H, d, J = 2.4 Hz), 9.09 (1H, s), 9.66 (1H, d, J = 1.8 Hz).

(3) 5-クロロ-2-ヒドロキシ-N-(ピリダジン-2-イル)ベンズアミド (化合物番号 244)

原料として、2-アセトキシ-5-クロロ-N-(ピリダジン-2-イル)ベンズアミドを用いて例 2 と同様の操作を行い、標題化合物を得た。

収率：72.6%

¹H-NMR (DMSO-d₆) : δ 7.09 (1H, d, J = 9.0 Hz), 7.52 (1H, dd, J = 8.7, 2.7 Hz), 7.96 (1H, d, J = 2.7 Hz), 8.44-8.47 (2H, m), 9.49 (1H, s), 10.99 (1H, s), 12.04 (1H, s).

例 245：化合物番号 245 の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-ブロモピリミジンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率：10.3%

¹H-NMR (DMSO-d₆) : δ 6.98 (1H, d, J = 8.8 Hz), 7.59 (1H, dd, J = 8.8, 2.4 Hz), 8.00 (1H, d, J = 2.8 Hz), 8.86 (2H, s), 11.09 (1H, s), 11.79 (1H, s).

例 246：化合物番号 246 の化合物の製造

原料として、2-(5-ブロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール 5-カルボン酸 (化合物番号 217)、及びプロピルアミンを用いて例 220 と同様の操作を行い、標題化合物を得た。

収率：23.1%

¹H-NMR (DMSO-d₆) : δ 0.82 (3H, t, J = 7.5 Hz), 1.39 - 1.51 (2H, m), 3.13 (2H, q, J = 6.6 Hz), 7.02 (1H, d, J = 9.0 Hz), 7.40 - 7.48 (3H, m), 7.63 (1H, dd, J = 8.7, 2.7 Hz), 7.68 - 7.72 (2H, m), 8.06 (1H, d, J = 2.7 Hz), 8.18 (1H, t, J = 5.7 Hz), 11.87 (1H, br s), 12.14 (1H, br s).

例247：化合物番号247の化合物の製造

5-スルフォサリチル酸 (218mg, 1mmol)、3,5-ビス(トリフルオロメチル)アニリン (229mg, 1mmol)、三塩化リン (88μL, 1mmol)、オルトキシレン (5mL) の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=3:1) で精製して、標題化合物の白色固体 (29mg, 9.2%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.15 (1H, d, J = 8.8 Hz), 7.65 (2H, s), 7.73 (1H, s), 7.81 (1H, s), 7.82 (1H, dd, J = 8.7, 2.5 Hz), 8.23 (1H, d, J = 2.5 Hz), 8.38 (2H, s), 10.87 (1H, s), 11.15 (1H, br s).

例248：化合物番号248の化合物の製造

5-クロロサリチル酸 (87mg, 0.5mmol)、2,2-ビス(3-アミノ-4-メチルフェニル)-1,1,3,3,3-ヘキサフルオロプロパン (363mg, 1mmol)、三塩化リン (44μL, 0.5mmol)、トルエン (4mL) の混合物を4時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=5:1) で精製して、標題化合物の白色 (16mg, 4.9%)を得た。(後述する例251、化合物番号251の化合物を副生成物として得た。)

¹H-NMR (DMSO-d₆) : δ 2.34 (6H, s), 7.04 (4H, d,

$J = 8.8\text{ Hz}$, 7.39 (2H, d, $J = 8.4\text{ Hz}$), 7.48 (2H, d, $J = 8.8, 2.9\text{ Hz}$), 7.96 (2H, d, $J = 2.9\text{ Hz}$), 8.19 (2H, s), 10.44 (2H, s), 12.17 (2H, s).

例249：化合物番号249の化合物の製造

原料として、3-フェニルサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：64.6%

$^1\text{H-NMR}$ ($\text{DMSO}-d_6$) : δ 7.12 (1H, t, $J = 8.1\text{ Hz}$), 7.37 (1H, tt, $J = 7.5, 1.5\text{ Hz}$), 7.43–7.48 (2H, m), 7.56–7.60 (3H, m), 7.91 (1H, s), 8.07, (1H, dd, $J = 8.1, 1.5\text{ Hz}$), 8.48 (2H, s), 11.00 (1H, s), 12.16 (1H, s).

例250：化合物番号250の化合物の製造

原料として、4-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：65.7%

$^1\text{H-NMR}$ ($\text{DMSO}-d_6$) : δ 6.81–6.90 (2H, m), 7.84 (1H, s,), 7.93–7.98 (1H, m,), 8.45 (2H, s,), 10.78 (1H, s), 11.81 (1H, s,).

例251：化合物番号251の化合物の製造

前述した例248において、化合物番号248の化合物との混合物を分離して得た。

収率：9.4%

$^1\text{H-NMR}$ (CD_3OD) : δ 2.16 (3H, s), 2.34 (3H, s), 6.69 (1H, d, $J = 8.2\text{ Hz}$), 6.76 (1H, br s) 6.95 (1H, d, $J = 8.8\text{ Hz}$), 7.02 (1H, d, $J = 8.0\text{ Hz}$), 7.15 (1H, d, $J = 8.2\text{ Hz}$), 7.29 (1H, d, $J = 8.2\text{ Hz}$), 7.37 (1

H, d d, J = 8. 8, 2. 6 Hz), 7. 97 (1H, d, J = 2. 6 Hz), 7. 98 (1H, s).

例 252：化合物番号 252 の化合物の製造

原料として、5-クロロサリチル酸、及び4-[2-アミノ-4-(トリフルオロメチル)フェノキシ]ベンゾニトリルを用いて例3と同様の操作を行い、標題化合物を得た。

収率：11. 6%

¹H-NMR (CD₃OD) : δ 6. 88 (1H, d, J = 8. 6 Hz), 7. 19 (2H, d, J = 8. 9 Hz), 7. 24 (1H, d, J = 8. 6 Hz), 7. 33 (1H, d d, J = 8. 8, 2. 8 Hz), 7. 46 (1H, d d, J = 8. 9, 1. 9 Hz), 7. 76 (2H, d, J = 8. 9 Hz), 7. 98 (1H, d, J = 2. 7 Hz), 8. 96 (1H, s).

例 253：化合物番号 253 の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-(4-メトキシフェノキシ)ベンゾトリフルオライドを用いて例3と同様の操作を行い、標題化合物を得た。

収率：88. 1%

¹H-NMR (CDCl₃) : δ 3. 85 (3H, s) 6. 81 (1H, d, J = 8. 5 Hz), 6. 97 - 7. 02 (3H, m), 7. 08 (2H, d, J = 8. 8 Hz), 7. 30 (1H, m), 7. 40 (1H, d d, J = 8. 8, 1. 9 Hz), 7. 45 (1H, d, J = 2. 2 Hz), 8. 70 (1H, s), 8. 78 (1H, d, J = 1. 6 Hz), 11. 76 (1H, s).

例 254：化合物番号 254 の化合物の製造

原料として、サリチル酸、及び2, 5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：47. 8%

¹H-NMR (CD₃OD) : δ 7. 00 - 7. 06 (2H, m), 7. 48 (1

H, d t, J = 1. 5, 7. 5 Hz), 7. 74 (1 H, d, J = 8. 4 Hz), 8. 01 – 8. 08 (2 H, m), 8. 79 (1 H, s), 11. 09 (1 H, s), 12. 03 (1 H, s).

例 255：化合物番号 255 の化合物の製造

(1) 2-アミノ-4-(2, 4-ジクロロフェニル) チアゾール

原料として、2', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例 231 (1) と同様の操作を行い、標題化合物を得た。

収率：9.7. 1%

¹H-NMR (CDCl₃) : δ 5.01 (2 H, s), 7.09 (1 H, s), 7.28 (1 H, dd, J = 8.4, 2.1 Hz), 7.45 (1 H, d, J = 2.1 Hz), 7.82 (1 H, d, J = 8.4 Hz).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(2, 4-ジクロロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号 255)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(2, 4-ジクロロフェニル) チアゾールを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率：8.0%

¹H-NMR (DMSO-d₆) : δ 7.08 (1 H, d, J = 8.7 Hz), 7.50 – 7.55 (2 H, m), 7.72 – 7.76 (2 H, m), 7.91 (1 H, d, J = 8.4 Hz), 7.95 (1 H, d, J = 2.4 Hz), 11.87 (1 H, br s), 12.09 (1 H, br s).

例 256：化合物番号 256 の化合物の製造

原料として、3-イソプロピルサリチル酸、及び3, 5-ビス(トリフルオロメチル) アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率：9.9. 2%

¹H-NMR (CDCl₃) : δ 1.26 (6 H, d, J = 6.9 Hz), 3.44 (1 H, Hept, J = 6.9 Hz), 6.92 (1 H, t, J = 7.8 Hz), 7.38 (1 H, dd, J = 8.1, 1.2 Hz), 7.44 (1 H, d, J = 7.

5 Hz), 7. 69 (1H, s), 8. 13 (3H, s), 11. 88 (1H, s).

例257：化合物番号257の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-イソプロピルベンズアミド(化合物番号256; 100mg, 0.26mmol)の四塩化炭素(5mL)溶液に、アルゴン雰囲気下、臭素(14.4μL, 0.28mmol)及び鉄粉(1.7mg, 0.03mmol)を加え、室温で2時間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色固体(110mg, 91.5%)を得た。

¹H-NMR (CDCl₃): δ 1.25 (6H, d, J=6.9Hz), 3.39 (1H, Hept, J=6.9Hz), 7.49-7.51 (2H, m), 7.71 (1H, brs), 8.11-8.14 (3H, m), 11.81 (1H, brs).

例258：化合物番号258の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-メチルベンズアミド(化合物番号58; 150mg, 0.41mmol)のメタノール/水(3:1)混合溶液(5mL)に、N-ブロモコハク酸イミド(8.2mg, 0.50mmol)を加え、室温で10分間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を10%チオ硫酸ナトリウム水溶液、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色粉末(167mg, 91.5%)を得た。

¹H-NMR (CDCl₃): δ 2.28 (3H, s), 7.47 (1H, s), 7.50 (1H, d, J=2.4Hz), 7.71 (1H, s), 8.08 (1H, brs), 8.13 (2H, s), 11.71 (1H, s).

例259：化合物番号259の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-フェニルベンズアミド(化合物番号249)を用いて例258と同様の操作を行い、標題化合物を得た。

収率：67.5%

¹H-NMR(DMSO-d₆) : δ 7.36-7.50(3H, m), 7.55-7.59(2H, m), 7.71(1H, d, J=2.1Hz), 7.93(1H, br s), 8.28(1H, d, J=2.1Hz), 8.45(2H, s), 11.06(1H, br s), 12.16(1H, br s).

例260：化合物番号260の化合物の製造

(1) 2-アミノ-4-(3, 4-ジクロロフェニル)チアゾール原料として、3', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例231(1)と同様の操作を行い、標題化合物を得た。

収率：77.8%

¹H-NMR(DMSO-d₆) : δ 7.17(2H, s), 7.24(1H, s), 7.62(1H, d, J=8.4Hz), 7.78(1H, dd, J=8.7, 2.7Hz), 8.22(1H, d, J=2.4Hz).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(3, 4-ジクロロフェニル)チアゾール-2-イル]ベンズアミド(化合物番号260)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(3, 4-ジクロロフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：15.1%

¹H-NMR(DMSO-d₆) : δ 7.08(1H, d, J=8.7Hz), 7.52(1H, dd, J=8.7, 2.7Hz), 7.71(1H, d, J=8.4Hz), 7.91(1H, d, J=1.8Hz), 7.94(1H, s), 8.18(1H, d, J=1.5Hz), 12.09(2H, br s).

例261：化合物番号261の化合物の製造

(1) 2-アミノ-4-[4-(トリフルオロメチル)フェニル]チアゾール原料として、4'-(トリフルオロメチル)アセトフェノン、及びチオウレアを用いて例231(1)と同様の操作を行い、標題化合物を得た。

収率：77.5%

¹H-NMR (DMSO-d₆) : δ 7.18 (2H, s), 7.26 (1H, s), 7.72 (2H, d, J=8.4Hz), 8.00 (2H, d, J=8.1Hz).

(2) 5-クロロ-2-ヒドロキシ-N-{4-[4-(トリフルオロメチル)フェニル]チアゾール-2-イル}ベンズアミド(化合物番号261)
原料として、5-クロロサリチル酸、及び2-アミノ-4-[4-(トリフルオロメチル)フェニル]チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：16.0%

¹H-NMR (DMSO-d₆) : δ 7.09 (1H, d, J=9.0Hz), 7.53 (1H, dd, J=8.7, 2.7Hz), 7.81 (2H, d, J=8.4Hz), 7.96 (1H, d, J=2.4Hz), 7.98 (1H, s), 8.16 (2H, d, J=8.1Hz), 11.91 (1H, bs), 12.13 (1H, bs).

例262：化合物番号262の化合物の製造

(1) 2-メトキシ-4-フェニル安息香酸メチル

4-クロロ-2-メトキシ安息香酸メチル(904mg, 4.5mmol)、フェニルボロン酸(500mg, 4.1mmol)、炭酸セシウム(2.7g, 8.2mmol)のN,N-ジメチルホルムアミド(15mL)溶液に、アルゴン雰囲気下、ジクロロビス(トリフェニルホスフィン)パラジウム(29mg, 0.04mmol)を加え、120°Cで8時間攪拌した。反応混合物を室温まで冷却後、酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン：酢酸エチル=10:1)で精製して、標題化合

物の無色油状物 (410 mg, 41.2%) を得た。

¹H-NMR (CDCl₃) : δ 3.91 (3H, s), 3.98 (3H, s), 7.17 (1H, d, J = 1.5 Hz), 7.20 (1H, dd, J = 8.1, 1.5 Hz), 7.31 - 7.50 (3H, m), 7.59 - 7.63 (2H, m), 7.89 (1H, d, J = 8.1 Hz).

(2) 2-メトキシ-4-フェニル安息香酸

2-メトキシ-4-フェニル安息香酸メチル (410 mg, 1.69 mmol) のメタノール (5 mL) 溶液に 2 規定水酸化ナトリウム水溶液 (5 mL) を加え、1 時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去した。得られた残渣に 2 規定塩酸を加え、析出した結晶を濾取して、標題化合物の粗生成物 (371 mg, 96.0%) を得た。

¹H-NMR (DMSO-d₆) : δ 3.93 (3H, s), 7.29 (1H, d, J = 8.1, 1.5 Hz), 7.34 (1H, d, J = 1.5 Hz), 7.40 - 7.53 (3H, m), 7.73 - 7.77 (3H, m), 12.60 (1H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-4-フェニルベンズアミド

原料として、2-メトキシ-4-フェニル安息香酸、及び 3, 5-ビス(トリフルオロメチル)アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率: 97.5%

¹H-NMR (CDCl₃) : δ 4.19 (3H, s), 7.25 (1H, m), 7.38 - 7.53 (4H, m), 7.62 - 7.65 (3H, m), 8.12 (2H, s), 8.35 (1H, d, J = 8.1 Hz), 10.15 (1H, br s).

(4) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-4-フェニルベンズアミド (化合物番号 262)

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-4-フェニルベンズアミド (100 mg, 0.24 mmol) のジクロロメタン (5 m

L) 溶液に 1M 三臭化ホウ素-ジクロロメタン溶液 (0. 71 mL, 0. 71 mmol) を加え、室温で 1 時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン: 酢酸エチル = 5 : 1) で精製して、標題化合物の白色粉末 (69.3 mg, 71.6%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.20 (1H, d d, J = 8.4.1.8 Hz), 7.30 (1H, d, J = 1.8 Hz), 7.39 - 7.51 (3H, m), 7.60 - 7.64 (3H, m), 7.70 (1H, b r s), 8.15 (2H, s), 8.19 (1H, b r s), 11.59 (1H, s).

例 263：化合物番号 263 の化合物の製造

(1) 2-アミノ-4-(2,5-ジフルオロフェニル)チアゾール原料として、2',5'-ジフルオロアセトフェノン、及びチオウレアを用いて例 231 (1) と同様の操作を行い、標題化合物を得た。

収率: 77.8%

¹H-NMR (DMSO-d₆) : δ 7.45 (1H, d, J = 2.7 Hz), 7.11 - 7.17 (1H, m), 7.19 (2H, s), 7.28 - 7.36 (1H, m), 7.65 - 7.71 (1H, m).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(2,5-ジフルオロフェニル)チアゾール-2-イル]ベンズアミド (化合物番号 263)

原料として、5-クロロサリチル酸、及び 2-アミノ-4-(2,5-ジフルオロフェニル)チアゾールを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率: 36.5%

¹H-NMR (DMSO-d₆) : δ 7.09 (1H, d, J = 8.7 Hz), 7.22 - 7.30 (1H, m), 7.37 (1H, m), 7.53 (1H, d d, J = 8.7, 3.0 Hz), 7.72 (1H, d, J = 2.4 Hz), 7.77 - 7.84 (1H, m), 7.94 (1H, d, J = 3.0 Hz), 11.89 (1H,

b s), 12.12 (1H, b s).

例264：化合物番号264の化合物の製造

(1) 2-アミノ-4-(4-メトキシフェニル)チアゾール

原料として、4'-メトキシアセトフェノン、及びチオウレアを用いて例231

(1)と同様の操作を行い、標題化合物を得た。

収率：85.2%

¹H-NMR (DMSO-d₆) : δ 3.76 (3H, s), 6.82 (1H, s), 6.92 (2H, d, J=9.0Hz), 7.01 (2H, s), 7.72 (2H, d, J=8.7Hz).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(4-メトキシフェニル)チアゾール-2-イル]ベンズアミド(化合物番号264)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(4-メトキシフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率：16.4%

¹H-NMR (DMSO-d₆) : δ 3.80 (3H, s), 7.01 (2H, d, J=9.0Hz), 7.07 (1H, d, J=8.7Hz), 7.50-7.55 (2H, m), 7.86 (2H, d, J=9.0Hz), 7.96 (1H, d, J=2.7Hz), 11.90 (1H, b s), 12.04 (1H, b s).

例265：化合物番号265の化合物の製造

(1) 2-アミノ-4-[3-(トリフルオロメチル)フェニル]チアゾール

原料として、3'-(トリフルオロメチル)アセトフェノン、及びチオウレアを用いて例231(1)と同様の操作を行い、標題化合物を得た。

収率：94.1%

¹H-NMR (DMSO-d₆) : δ 7.19 (2H, s), 7.27 (1H, s), 7.61 (2H, dd, J=3.9, 1.5Hz), 8.07-8.13 (2H, m).

(2) 5-クロロ-2-ヒドロキシ-N-{4-[3-(トリフルオロメチル)

フェニル] チアゾール-2-イル} ベンズアミド (化合物番号 265)

原料として、5-クロロサリチル酸、及び2-アミノ-4-[3-(トリフルオロメチル)フェニル]チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 31.0%

¹H-NMR (DMSO-d₆): δ 7.13 (1H, d, J=8.7Hz), 7.53 (1H, dd, J=9.0, 2.7Hz), 7.70 (1H, d, J=2.4Hz), 7.71 (1H, d, J=1.2Hz), 7.95 (1H, d, J=2.7Hz), 8.00 (1H, s), 8.24-8.27 (2H, m), 12.16 (2H, bs).

例266: 化合物番号266の化合物の製造

(1) 2-アミノ-4-(2,3,4,5,6-ペンタフルオロフェニル)チアゾール

原料として、2',3',4',5',6'-ペンタフルオロアセトフェノン、及びチオウレアを用いて例231(1)と同様の操作を行い、標題化合物を得た。

収率: 86.7%

¹H-NMR (CDCl₃): δ 5.19 (2H, s), 6.83 (1H, s).

(2) 5-クロロ-2-ヒドロキシ-N-[4-(2,3,4,5,6-ペンタフルオロフェニル)チアゾール-2-イル]ベンズアミド (化合物番号266)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(2,3,4,5,6-ペンタフルオロフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 23.8%

¹H-NMR (DMSO-d₆): δ 7.08 (1H, d, J=8.7Hz), 7.53 (1H, dd, J=8.7, 2.7Hz), 7.73 (1H, s), 7.93 (1H, d, J=2.7Hz), 11.85 (1H, bs), 12.15 (1H, bs).

例267：化合物番号267の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-4-メチルベンゾフェノンを用いて例3と同様の操作を行い、標題化合物を得た。

収率：8.7%

¹H-NMR (CDCl₃) : δ 2.50 (3H, s), 6.98 (1H, d, J = 8.3 Hz), 6.99 (1H, d, J = 7.3 Hz), 7.39 (1H, dd, J = 2.0, 8.6 Hz), 7.48 - 7.64 (4H, m), 7.72 (2H, d, J = 7.6 Hz), 7.83 (1H, d, J = 2.3 Hz), 8.57 (1H, s), 12.18 (1H, s), 12.34 (1H, br. s).

例268：化合物番号268の化合物の製造

2-ヒドロキシ-N-[2,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(化合物番号254; 175mg, 0.5mmol)の四塩化炭素(5mL)溶液に、鉄(3mg, 0.05mmol)、臭素(129μl, 2.5mmol)を加え、50°Cで12時間攪拌した。反応混合物を室温まで冷却後、飽和重曹水、水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の白色結晶(184.2mg, 72.7%)を得た。

¹H-NMR (DMSO-d₆) : δ 7.92 - 7.98 (1H, m), 8.06 (1H, d, J = 2.1 Hz), 8.09 (1H, d, J = 8.4 Hz), 8.22 (1H, d, J = 2.1 Hz), 8.27 - 8.32 (1H, m), 11.31 (1H, s).

試験例1：癌細胞増殖阻害試験(1)

癌細胞(Jurkat:ヒトT細胞性白血病、MIA PACA-2:ヒト肺癌、RD:ヒト横紋筋腫、HepG2:ヒト肝癌)を10%ウシ胎児血清含有RPMI1640培地もしくは10%FBS入りのDalbecco's Modified Eagle's Mediumを用いて被験物質非存在下または存在下で3日間培養し、MTS法により生細胞数を定量し、細胞増殖量を比較し、

阻害率を測定した。以下に各癌細胞に対する 50%増殖阻害濃度を示す。

化合物番号	IC ₅₀ (μM)			
	Jurkat	MIA PaCa-2	RD	HepG2
4	0.74	0.65	1.03	0.69
6	0.38	0.60	0.74	0.61
11	1.21	0.78	1.96	1.82
19	2.06	1.75	2.84	2.63
23	1.99	1.53	2.01	1.96
27	1.20	1.19	1.26	1.96
29	1.64	1.55	2.20	1.84
51	1.28	1.03	1.31	1.88
90	0.48	0.51	0.49	1.97
93	1.43	0.81	1.87	1.99
140	2.43	1.42	3.19	2.57
199	0.44	0.46	0.57	1.26
201	0.57	0.49	0.59	1.37
205	1.89	1.45	1.94	3.50
207	1.64	1.26	1.52	1.76

試験例 2：癌細胞増殖阻害試験（2）

癌細胞 (B16 melanoma, HT-1080 fibrosarcoma, NB-1 neuroblastoma, HMC-1-8 breast cancer) を 5%ウシ胎児血清を含むフェノールレッド非含有の Modified Eagle's Medium もしくは 5%ウシ胎児血清を含む RPMI1640 培地で被験化合物存在下 (0.1, 1.0, 5.0, 10 μM) または非存在下で培養し、24 時間、48 時間、72 時間経過したところで MTT 法にて生細胞数の定量を行った。以下に上記方法における化合物番号 4 の結果を第 1 図から第 4 図に示す。

試験例 3：B16 melanoma の B16 マウスにおける転移抑制試験

B16 melanoma 細胞 (5×10^5 cells/mouse) を同種の B6 マウスの尾静脈から静脈注射により接種し、接種日より被験物質を腹腔内投与にて一日一回 5 週間投与した。その後被験動物を屠殺、肺を摘出し、肺での melanoma のコロニーの数をコントロール (被験物質投与 0 mg/kg) と比較した。以下にその結果を示す。

化合物番号	投与量 (mg/kg)	5 週間後の生存率 (%)	コロニーの発生
—	0	50	—
4	30	100	++

± : コントロールと変わらず。 + : 抑制 ++ : 顕著に抑制 +++ : 発生せず

試験例 4 : 連続投与による毒性試験

6 週齢の雄 SD ラットに被験化合物 (30mg/kg) を一日一回 4 週間腹腔内投与した。投与終了後尿検査、血液学検査、血液化学検査を行ったところ、毒性を示す所見は認められなかった。この結果は、本発明の医薬が抗癌作用を発揮する有効投与量において、既存の抗癌剤に見られるような肝障害、腎障害、及び骨髄抑制等の副作用につながる毒性作用を有しないことを示している。

試験例 5 : 腫瘍に対する抗癌効果

ヌードマウスに生着し十分増殖したヒト乳癌細胞を分離し、5 mm 角に細切した。この細胞を 4 週齢のメスヌードマウス背部にエーテル麻酔下で移植した。腫瘍移植 2 週間後から被験薬物を一日一回腹腔内投与した。被験薬物投与開始前を 0 日 (day 0) とし、7 日、14 日、21 日、28 日経過後の腫瘍の容量 (Tumor or Volume; 単位: mm^3) をそれぞれ測定した。被験薬物として化合物番号 4 の化合物を 5 mg/kg 及び 10 mg/kg 投与した場合と、コントロール (被験薬物投与量: 0 mg/kg) の場合の結果を第 5 図に示す。尚、第 5 図において、「対照」は被験薬物 0 mg/kg の結果を、「化合物 4」は化合物番号 4 の化合物の結果を表す。

試験例 6：癌細胞増殖阻害試験（3）

癌細胞（HepG2：ヒト肝癌、A549：ヒト肺ガン、MIA PaCa-2：ヒト膵癌）について、試験例1と同様の操作を行った。以下に各癌細胞に対する50%増殖阻害濃度を示す。

化合物番号	IC ₅₀ (μM)		
	HepG2	A549	MIA PaCa-2
4	0.72	4.03	0.82
75	0.79	2.06	0.95
189	1.30	6.47	2.15
192	11.02	23.91	9.42
199	0.59	5.15	0.56
205	4.23	>10	>10
213	3.41	7.43	4.69
215	4.98	8.31	2.76

産業上の利用可能性

本発明の医薬は優れた抗癌性を有しており、かつ副作用及び毒性が軽減されているので、癌の予防及び／又は治療剤として有用である。

請求の範囲

1. 下記一般式 (I) :

(式中、

Aは、水素原子又はアセチル基を表し、

Eは、2, 5-ジ置換若しくは3, 5-ジ置換基フェニル基、又は置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリール基（ただし、該ヘテロアリール基が、①式 (I) 中の-CO NH-基に直結する環がベンゼン環である縮合多環式ヘテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く）を表し、

環Zは、式-O-A（式中、Aは上記定義と同義である）及び式-CO NH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいアレーン、又は式-O-A（式中、Aは上記定義と同義である）及び式-CO NH-E（式中、Eは上記定義と同義である）で表される基の他にさらに置換基を有していてもよいヘテロアレーンを表す）で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む、癌の予防及び／又は治療のための医薬。

2. Aが水素原子である請求の範囲第1項に記載の医薬。

3. 環Zが、C₆～C₁₀のアレーン（該アレーンは、式-O-A（式中、Aは一般式 (I) における定義と同義である）及び式-CO NH-E（式中、Eは一般式 (I) における定義と同義である）で表される基の他にさらに置換基を有していてもよい）、又は5ないし10員のヘテロアレーン（該ヘテロアレーンは、式

-O-A (式中、Aは一般式(I)における定義と同義である)及び式-CO-NH-E (式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)である請求の範囲第1項又は第2項に記載の医薬。

4. 環Zが、式-O-A (式中、Aは一般式(I)における定義と同義である)及び式-CO-NH-E (式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環、又は式-O-A (式中、Aは一般式(I)における定義と同義である)及び式-CO-NH-E (式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよいナフタレン環である請求の範囲第3項に記載の医薬。

5. 環Zが、式-O-A (式中、Aは一般式(I)における定義と同義である)及び式-CO-NH-E (式中、Eは一般式(I)における定義と同義である)で表される基の他にハロゲン原子をさらに有するベンゼン環である請求の範囲第4項に記載の医薬。

6. 環Zが、式-O-A (式中、Aは一般式(I)における定義と同義である)及び式-CO-NH-E (式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよいナフタレン環である請求の範囲第4項に記載の医薬。

7. Eが、2, 5-ジ置換又は3, 5-ジ置換基フェニル基である請求の範囲第1項ないし第6項のいずれか1項に記載の医薬。

8. Eが、2, 5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)、又は3, 5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)である請求の範囲第7項に記載の医薬。

9. Eが、3, 5-ビス(トリフルオロメチル)フェニル基である請求の範囲第8項に記載の医薬。

10. Eが、置換基を有していてもよい単環式若しくは縮合多環式ヘテロアリ

ール基（ただし、該ヘテロアリール基が、①式（I）中の-CO NH-基に直結する環がベンゼン環である縮合多環式ヘテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く）である請求の範囲第1項ないし第6項のいずれか1項に記載の医薬。

11. Eが、置換基を有していてもよい5員の単環式ヘテロアリール基（ただし、該ヘテロアリール基が、無置換のチアゾール-2-イル基である場合を除く）である請求の範囲第10項に記載の医薬。

第1図

第2図

第3図

第4図

第5図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07121

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ A61K31/167, 31/18, 31/381, 31/40, 31/404, 31/4164, 31/421, 31/422, 31/426, 31/437, 31/4402, 31/445, 31/451, 31/455, 31/47, 31/505, 31/498, 31/5375, 31/609, 31/616, A61P35/00, 35/02, 35/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ A61K31/167, 31/18, 31/381, 31/40, 31/404, 31/4164, 31/421, 31/422, 31/426, 31/437, 31/4402, 31/445, 31/451, 31/455, 31/47, 31/505, 31/498, 31/5375, 31/609, 31/616, A61P35/00, 35/02, 35/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAPLUS (STN), REGISTRY (STN), Medline (STN), BIOSIS (STN), EMBASE (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99/65449 A2 (SMITHKLINE BEECHAM CORP.), 23 December, 1999 (23.12.99), Full text & JP 2002-518307 A	1-5, 7
X	WO 99/55663 A1 (VERTEX PHARMACEUTICALS INC.), 04 November, 1999 (04.11.99), Full text & EP 1076641 A1	1-4, 6-9
X	WO 01/98290 A2 (PHARMACIA & UPJOHN S.P.A.), 27 December, 2001 (27.12.01), Full text & EP 1294707 A2 & US 6414013 A	1-6, 10, 11

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
13 August, 2003 (13.08.03)

Date of mailing of the international search report
26 August, 2003 (26.08.03)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07121

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 02/076918 A1 (Suntory Ltd.), 03 October, 2002 (03.10.02), Full text & EP 1314712 A1	1-4, 7-9
P,X	WO 02/49632 A1 (Institute of Medicinal Molecular Design Inc.), 27 June, 2002 (27.06.02), Full text & AU 2002/22683 B	1-11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07121

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 1-11

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
(See extra sheet)

3. Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07121

Continuation of Box No.I-2 of continuation of first sheet(1)

The active ingredient in the medicinal compositions of claims 1-11 involves an extremely wide range of various compounds. It is hence difficult to make a complete search for all of them. On the other hand, the active ingredients which are supported by the description in the meaning of Article 6 of the PCT and are disclosed in the description in the meaning of Article 5 of the PCT are limited to an extremely small part of the active ingredients for medicinal compositions of claims 1-11.

Consequently, claims 1-11 and the description do not comply with the given requirements to such a degree that a meaningful international search can be made.

In this international search report, a search with respect to claims 1-11 was hence made for compounds specified in the description through prior art documents within the range of a reasonable burden.

国際調査報告

国際出願番号 PCT/JP03/07121

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int.Cl' A 61 K 31/167, 31/18, 31/381, 31/40, 31/404, 31/4164, 31/421, 31/422, 31/426, 31/437, 31/4402, 31/445, 31/451, 31/455, 31/47, 31/505, 31/498, 31/5375, 31/609, 31/616, A 61 P 35/00, 35/02, 35/04

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int.Cl' A 61 K 31/167, 31/18, 31/381, 31/40, 31/404, 31/4164, 31/421, 31/422, 31/426, 31/437, 31/4402, 31/445, 31/451, 31/455, 31/47, 31/505, 31/498, 31/5375, 31/609, 31/616, A 61 P 35/00, 35/02, 35/04

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN), Medline (STN), BIOSIS (STN), EMBASE (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 99/65449 A2 (SMITHKLINE BEECHAM CORPORATION) 1999.12.23、全文 & J P 2002-518307 A	1-5, 7
X	WO 99/55663 A1 (VERTEX PHARMACEUTICALS INCORPORATED) 1999.11.04、全文 & E P 1076641 A1	1-4, 6-9

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 13. 08. 03	国際調査報告の発送日 26.08.03
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 伊藤 幸司 電話番号 03-3581-1101 内線 3452

国際調査報告

国際出願番号 PCT/JP03/07121

第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT第17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 _____ は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、

2. 請求の範囲 1-11 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

別紙参照

3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがなかった。

第I欄の2.について

請求の範囲1-11の発明の医薬組成物の有効成分は、極めて広範囲且つ多彩な化合物を包含し、その全てについて完全な調査を行うことは困難である。一方、PCT条約第6条の意味において明細書に裏付けられ、また、PCT条約第5条の意味において明細書に開示されているものは、請求の範囲1-11の発明の医薬組成物の有効成分の中のごく僅かな部分に過ぎない。

したがって、請求の範囲1-11及び明細書は、有意義な国際調査を行うことができる程度まで所定の要件を満たしていない。

そこで、この国際調査報告では、請求の範囲1-11の発明について、明細書に具体的に記載された化合物に基づいて、合理的な負担の範囲内で、先行技術文献調査を行った。