HW6: Due: 18.02.2020

1. Decide whether each of the formulas below makes sense as a double integral. For the formulas that you reject, explain your reasoning in one or two sentences; for the legitimate ones, sketch the region of integration in the plane and perform one step of the integration (that is, do the inside integral).

(a)
$$\int_0^1 \int_0^{3x} (2x+4y) \, dx \, dy$$
,
(b) $\int_0^1 \int_0^{3x} (2x+4y) \, dy \, dx$
(c) $\int_0^{3x} \int_0^1 (2x+4y) \, dx \, dy$,
(d) $\int_0^1 \int_{y-1}^{1-y^2} (2x+4y) \, dx \, dy$
(e) $\int_0^3 \int_{y-1}^{1-y^2} (2x+4y) \, dx \, dy$,
(f) $\int_0^{x^3} \int_{y-1}^{1-y^2} (2x+4y) \, dx \, dy$

2. The following surface is obtained by moving a circle of radius \sqrt{t} along the curve $\mathbf{r}(t) = \langle t\cos(t), t\sin(t), 2t \rangle$ for $0 \le t \le 7\pi$. Find the volume of the "horn". *Hint: Set up an integral from first principles*. Also, state any assumptions you make and discuss how you might be able to justify them.

- 3. Guichard, Section 15.3, exercise 2. Sketch the plate and its center of mass and explain whether or not your solution make sense.
- 4. Find the surface area of the part of the surface $z = x^2 + 2y$ that lies above the triangular region in the xy-plane with vertices (0,0),(1,0) and (1,1).

5. Let E denote the solid bounded by the surfaces

$$z = 0,$$
 $x = 0,$ $y = 2,$ $z = y - 2x.$

- (a) Sketch the solid E.
- (b) Sketch the projections of the solid E on the x-y plane, the y-z plane, and the x-z plane.
- (c) Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in six different ways. Of course, since f is not given, you cannot evaluate these integrals.
- 6. Consider the solid region E that lies below $x^2 + y^2 + z^2 = 4$ and above $z = \sqrt{x^2 + y^2}$ and is in the first octant.
 - (a) Sketch E.
 - (b) Find the volume of E using cylindrical coordinates
 - (c) Find the volume of E using spherical coordinates.
- 7. (Bonus) Completely justify mathematically your answer to question 2.

Extra suggested problems. Guichard, sections 15.3 - 15.6