GIS.lab

news from development of technology for rapid deployment of complete geospatial infrastructure with supercow capabilities

Ivan Minčík (imincik)

FOSS4G Europe 2015, Como, Italy

The Cow

3 years old, 30 litres of milk for 20 kg of GRASS daily

Introduction

The Problem

We always need more than one app for our GIS work flow

The Problem

Deployment and maintenance of **complex system** is **time consuming** even when things are going flawlessly

The Problem

which usually they are **not** (:

The Idea

Is there any chance to have a system which is working **out-of-box**?

The Super Cow

Instantly in production, no feeding

What is GIS.lab?

What is GIS.lab?

Free technology which can **instantly** turn any computer network in to the **fully equipped geospatial cluster**

What is GIS.lab?

and **back** again

- only single one machine needs to be installed per network
- fully automatic installation
- client machines are working out-of-box
- contains everything from data storage to mobile client interface

▶ instant deployment

- instant deployment
- central management

- instant deployment
- central management
- desktop, web and mobile client interfaces

- instant deployment
- central management
- desktop, web and mobile client interfaces
- automatic clustering and computing power sharing

- instant deployment
- central management
- desktop, web and mobile client interfaces
- automatic clustering and computing power sharing
- no dependencies

GIS.lab Cluster Architecture

GIS.lab Server (Master)

- cluster orchestration
- data storage and sharing
- load balancing

GIS.lab Clients

- initialized from server
- user interfaces for data processing, analysis and collaboration
- computing power for cluster

Desktop, Web and Mobile Client Interfaces

So, what's new?

mostly **everything**

Deployment

Automatic Installation

- no requirements on target machine except SSH
- idempotent modules, templates
- cloud providers AWS, GCE, Digital Ocean, Azure ...

Automatic Installation


```
$ ansible-playbook
--inventory=gislab.inventory
--private-key=~/.ssh/id_rsa
system/gislab.yml
```

Virtual Machine - Development and Testing


```
$ vagrant up
Bringing machine 'gislab_vagrant' up with 'virtualbox'
    provider...
==> gislab_vagrant: Importing base box
    'precise-canonical'...
==> gislab_vagrant: Running provisioner: install
    (ansible)...
```

GIS.lab Unit - End User Deployment

- ▶ Intel Haswell, 16 GB RAM, SSD, tested with 20 clients
- portable, pocket size (11 x 11 x 4 cm)
- plug-and-play
- automatic host network adaptation

Client Interfaces

Client Interfaces Architecture

Publishing to Web and Mobile

Desktop

Desktop Interface

- traditional, customized, low resources environment
- office and geospatial software
- combination of desktop performance with web accessibility

Desktop Interface

Machines Initialization

- initialized from GIS.lab network (PXE, HTTP)
- always clean system, maintenance-free
- no HDD required
- using full hardware potential opposite to thin client

Physical or Virtual Mode

- physical mode: best performance, original OS is temporary lost
- virtual mode: any OS, original OS and GIS.lab are available

Customization

```
$ gislab-client-shell -i  # enter client env

$ apt-get install gedit  # install Gedit
$ exit  # exit client env

$ gislab-client-image  # deploy updated client image
```

- well known tools
- rollback

Booster File System

Test writing of 2 GB file

```
$ dd if=/dev/zero of=/tmp/test.f bs=1M count=2048
2147483648 bytes (2,1 GB) copied, 24,8055 s, 86,6 MB/s
```

Booster

```
$ dd if=/dev/zero of=~/Booster/test.f bs=1M count=2048
2147483648 bytes (2,1 GB) copied, 0,582147 s, 3,7 GB/s
```

- super fast file system in RAM
- ideal for temporary files

Web and Mobile

Web and Mobile Interface

- themes, base and overlay layers
- advanced search forms
- print outputs
- vector features drawing and sharing

Web Interface

Mobile Interface

Cluster

Automatic Cluster Orchestration

- server and client machines
- decentralized cluster membership and failure detection system based on GOSSIP protocol

Basic Information About Machines

Events and Queries

Syntax

```
$ gislab-cluster event <EVENT-NAME>
$ gislab-cluster query <QUERY-NAME>
```

Reboot event

```
$ gislab-cluster event reboot
```

Parallel Commands Execution

Detection of running (alive) client machines

```
$ MACHINES="$(gislab-cluster members
-status=alive
-tag role=client ...
)"
```

Parallel installation of Gedit package

```
$ parallel-ssh -H "$MACHINES"

sudo DEBIAN_FRONTEND=noninteractive
apt-get install -y --no-install-recommends gedit
...
[1] 23:02:57 [SUCCESS] c51
[1] 23:02:57 [SUCCESS] c51
...
```

Stronger With Each Client Machine

OWS load balancing

```
$ while true; do
    curl "http://ms.gis.lab:90/cgi-bin/qgis_mapserv?
    SERVICE=WMS&REQUEST=GetCapabilities"
    done
```

ms.gis.lab													
				Session rate			Sessi <u>ons</u>					Bytes	
	Cur	Max	Limit	Cur	Max	Limit	Cur	Max	Limit	Total	LbTot	In	Out
Frontend				0	61	-	0	1	1 000	2 313		506 547	9 434 72
server	0	0	25	0	13		0	1	25	463	463	101 397	1 888 57
192.168.19.50	0	0	25	0	12		0	1	100	463	463	101 397	1 888 57
192.168.19.51	0	0	25	0	12		0	1	100	463	463	101 397	1 888 57
192.168.19.52	0	0	25	0	12		0	1	100	462	462	101 178	1 884 49
192.168.19.53	0	0	25	0	12		0	1	100	462	462	101 178	1 884 49
Backend	0	0		0	61		0	1	150	2 313	2 313	506 547	9 434 72

Other

Integration Test Suite

```
$ vagrant provision --provision-with test
TASK: [basic-server-configuration-test | Test if ordinary
   test user account exists in PostgreSQL]
TASK: [service-dns-test | Test 'gis.lab' DNS records are
   resolvedl
TASK: [service-mapserver-test | Test WMS GetCapabilies
   request with example GIS.lab project]
. . .
TASK: [service-mapserver-test | Test WMS GetMap request
   with example GIS.lab project]
. . .
```

Where to Use?

- schools: central management, maintenance-free clients
- **small projects**: affordable, complete solution
- poor countries: low system requirements, maintenance-free clients
- crisis management: portable, instant deployment, no dependencies

Future Plans

- web administration interface
- integration of WPS services
- better GRASS integration
- web client rewrite with OL 3
- update to Ubuntu 16.04 and systemd

Summary

Spreading Free Software To the World

http://web.gislab.io wiki:Quick-Start gis.lab@lists.osgeo.org