

Office of Defense Nuclear Nonproliferation Research and Development

Neutron Cross-Sections for Medical Radionuclide Production

Principal Investigator: Lee Bernstein

Supporting Investigators: Andrew Voyles

Abstract

A series of experiments are being conducted at UC Berkeley to measure low-energy neutron-induced production cross sections for a range of emerging medical radioisotopes. One potential method for producing these isotopes is the use of the (n,p) reaction at compact D-D neutron generators. However, these cross sections currently have significant uncertainties. Direct neutron activation, using a 2.45-MeV D-D neutron generator, allows for more precise cross section measurements than time-of-flight methods, and potentially offers a proliferation-resistant pathway for radioisotope production.

Results/Technical Challenges

(n,p) production cross sections have successfully been measured to within 7% uncertainty for ⁶⁴Cu and ⁴⁷Sc.

Goals, Objectives, and Deliverables

- **Goal**: To improve existing nuclear data capabilities by expanding cross section libraries for neutron-induced production reactions.
- **Objective**: Measure production cross sections for emerging medical isotopes and radiochemical tracers, via neutron activation. Decay spectroscopy will provide reaction cross sections with lower uncertainty than time-of-flight measurements.
- **Deliverable**: Improved low-energy production cross sections for neutron-induced reactions. Cross section measurements improve the fidelity of reaction modeling codes, used for estimating nuclear data when empirical data is unavailable.

Planned Accomplishments

- Continue measurements of neutron-induced production cross sections for emerging medical radioisotopes.
- Expand production cross section measurements to charged-particle induced reactions.
- Development of an intense, variable quasimonoenergetic neutron source capability, to expand cross section measurements to higher energies,

Research Team

Principal Investigator Contact Information:

- > Dr. Lee Bernstein
- ➤ Lawrence Livermore National Laboratory; University of California, Berkeley
- ➤ bernstein2@llnl.gov
- > (510) 486-4951

Supporting Investigators:

- ➤ Andrew Voyles
- NSSC-Consortium for Nuclear Security

Notes						