What makes a book a betseller?

by Kliton Andrea

Mentor Matt Fornito

Introduction

GOAL:

Predict the features that make a book successful

Client:

Publishing companies

Data sources:

- Open Library dump
- Goodreads

Overview

- Data source and data retrieval
- 2. Data cleaning and data wrangling
- 3. Exploratory Data Analysis
- 4. Hypothesis testing
- 5. Feature selection
- 6. Prediction models
- 7. Conclusion and recommendations

Data Retrieval process

- Open Library dumps (https://openlibrary.org/developers/dumps)
 - Downloable zip files (json format; 29602272 records * 5 files)
 - Contains Book Information
 - Contains Author Information
- Goodreads (<u>https://www.goodreads.com</u>)
 - Developer API (xml format)
 - Book information
 - Information about authors
- Amazon book details and reviews
 - Web scraping with Beautiful Soup based on the identifier from
 - Amazon policy limitation on web pages scraping does not allow to get all the information
 - Not usable

Data Cleaning and Wrangling

- Raw data converted to pandas DataFrame
- Removed most of the columns related to various book identifier, but ISBN
- Merged 4 DataFrames based in ISBN and authors
- Average ratings merged from Goodreads
- Records with no ratings removed
- Filtered out all books that are not related to art literature (Dewey code starting with '8')
- Parsed and normalized date of birth from OL dumps
- Transformed Dewey classification codes to genres

EDA: Book ratings over the years

- This is an histogram of the number of books published every year and that have a rating.
- Peak year is 2003

EDA: Book ratings per months

- There is a periodic sequence of book editions
- The high number of ratings on January actually is an outlier value. It could be a result of miscoded value.

EDA: Average rating by language

- The diameter of a dot is weighted by the number of books in its respective group
- Dataset consist mostly of English books which is the 'heaviest' group in the plot

EDA: Average rating by genres

Grouped the genres as per Dewey classification.

Boxplots show the average rating distribution for each genre book.

EDA: Average rating for each genre group II

Reduced the number of genres to following:

- 1. Educational
- 2. Fiction
- 3. Poetry (best average rating)
- 4. Drama
- 5. Essay
- 6. Classic
- 7. Other

EDA: Distribution of books by number of pages

200-500 pp. is the most popular range.

Hypothesis testing

- There is no statistical significance in average ratings between genders in general.
- Average rating for Drama genre is higher for women, but the difference is not statistically significant.
- Women write more Educational books than men. However men get higher ratings and it does not seem to be a random effect.

Feature Selection

Selected features:

- 1. Fiction genre (categorical: [0, 1])
- 2. Number of pages (log transformed)
- 3. Number of words in the title (log transformed)
- 4. Number of contributors
- 5. Interval in years between the author date of birth and book publication date
- 6. Illustrated or not

Dependent variable: average book rating

Prediction Models: Ordinary linear regression

OLS MSE = 0.11

Prediction Models: Ordinary linear regression

Residuals' histogram

Prediction Models: Various regressor

Model	Interc.	<u>Fiction</u>	<u>Pages</u>	<u>Title</u>	Contr.	<u>Years</u>	<u>Fans</u>	<u>III.</u>	MSE
OLS	3.47	-0.16	0.01	0.14	0.03	0.11	0.03	-0.03	0.11
Ridge	3.49	-0.16	0.01	0.13	0.03	0.10	0.03	-0.03	0.11
BayesRidge	3.5	-0.16	0.01	0.13	0.03	0.10	0.03	-0.03	0.11
SVR	3.42	-0.17	0.02	0.15	0.08	0.14	0.03	-0.02	0.11
XGBoost									0.1075

XGBoost feature importance

Recommendations and conclusions

- 1. Genre is an important feature to predict a success of a book. An author is likely to have a better rating if he chooses a genre different from fiction.
- 2. The popular authors are better positioned for success. Number of fans is the second most important feature according to XGBoost model.
- 3. A collection of literature works is most likely to get a good average rating.

 That is because a collection is compiled on successful past literature works.
- 4. Poetry is one of the highest rated genres in average.

Next steps

- 1. The datasets lacks literature metrics, i.e. number of metaphors, idioms, euphemisms, etc.
- 2. Missing information on the structure of the story, number of persons in the narratives, number of topics in literature work.
- 3. It is possible to retrieve the information above using text analysis. On the other side it is time consuming and beyond the scope of this work.
- More data about authors, their status, psychological metrics about their characters.

