

Zmod Scope Configuration 1.0 IP Core User Guide

Revised March 18, 2022; Author Eduard Nită

Introduction

This user guide describes the Digilent **Zmod Scope Configuration** Intellectual Property. It is used in conjunction with the **Zmod Scope Controller IP** to configure the calibration coefficients, gain, coupling and inspect the Zmod Scope's status flags using an AXI-Lite interface.

2 **Features**

- Allows setting the Zmod Scope's calibration coefficients, High/Low gain, and AC/DC coupling of each channel
- Allows monitoring of the Zmod Scope's status flags
- Xilinx interfaces used: AXI4-Lite

3 Designing with the core

The IP has been initially designed for a xc7z020clg400-1 target device with a target clock frequency of 125MHz (8.00 ns).

The IP is compatible with all Zmod Scope variations.

IP quick facts		
Supported device families	Zynq®-7000, 7 series	
Supported user interfaces	Xilinx®: AXI4-Lite	
Provided with core		
Design files	C++ VHDL/Verilog (generated)	
Simulation model	HLS Cosimulation	
Constraints file	XDC	
Software driver	HLS Generated	
Tested design flows		
Design entry	Vitis™ HLS 2021.1	
Synthesis	Vivado Synthesis 2021.1	

3.1 Customization

Changes to the target device and target clock frequency can be done from the project GUI after the project was generated or by modifying the SOLUTION_PART/SOLUTION_CLKP variables found inside the run hls standalone.tcl file and then generating the project, according to the steps found in Generating the HLS Project.

4 Register map

Offset	Register Name	Description
0x00	Control signals	bit 0 - ap_start (Read/Write/COH) bit 1 - ap_done (Read/COR) bit 2 - ap_idle (Read) bit 3 - ap_ready (Read) bit 7 - auto_restart (Read/Write) others - reserved
0x04	Global Interrupt Enable Register	bit 0 - Global Interrupt Enable (Read/Write)
0x08	IP Interrupt Enable Register (Read/Write)	bit 0 - Channel 0 (ap_done) bit 1 - Channel 1 (ap_ready)
0x0C	IP Interrupt Status Register (Read/TOW)	bit 0 - Channel 0 (ap_done) bit 1 - Channel 1 (ap_ready)
0x10	Channel 1 High Gain Multiplicative Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch1HgMultCoef data (Read/Write)
0x18	Channel 1 Low Gain Multiplicative Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch1LgMultCoef data (Read/Write)
0x20	Channel 1 High Gain Additive Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch1HgAddCoef data (Read/Write)
0x28	Channel 1 Low Gain Additive Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch1LgAddCoef data (Read/Write)
0x30	Channel 2 High Gain Multiplicative Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch2HgMultCoef data (Read/Write)
0x38	Channel 2 Low Gain Multiplicative Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch2LgMultCoef data (Read/Write)
0x40	Channel 2 High Gain Additive Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch2HgAddCoef data (Read/Write)
0x48	Channel 2 Low Gain Additive Coefficient Register	bit 31~18 – Unused bit 17~0 – Ch2LgAddCoef data (Read/Write)

Offset	Register Name	Description
0x50	Relay Configuration Register	bit 31~4 – Unused bit 0 – Channel 1 Gain (Read/Write) bit 1 – Channel 2 Gain (Read/Write) bit 2 – Channel 1 Coupling (Read/Write) bit 3 – Channel 2 Coupling (Read/Write)
0x58	Zmod Scope Status Register	bit 31~5 – Unused bit 0 – RstBusy (Read) bit 1 – InitDoneADC (Read) bit 2 – ConfigError (Read) bit 3 – InitDoneRelay (Read) bit 4 – DataOverflow (Read)

// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

Bit 0 of the **control register**, **ap_start**, kicks off the core from software. Writing 1 to this bit **read any inputs grouped into the AXI4-Lite** slave interface.

To set the core in free running mode, bit 7 of this register, auto_restart, must be set to 1.

Details on the **0x00-0x0C registers** can be found in <u>Vitis High-Level Synthesis User Guide</u> (UG1399)^[1].

Details on the Zmod Scope **calibration coefficients**, **gain**, **coupling and status bits** can be found in **Zmod** Scope Controller IP Core User Guide^[2].

5 Generating the HLS Project

Opening the IP in HLS is possible by executing the following command in the Vitis HLS Command Prompt:

```
cd <path_to_IP>/hls_proj
vitis_hls -f run_hls_standalone.tcl
```

Besides creating the project, the script will also **synthesize** the design and **export** the IP as an archive.

The **source files** of the project can be found in the **src** directory.

The **generated project** will be found inside the **ws** directory.

6 References

6.1 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf
6.2 https://github.com/Digilent/vivado-

library/blob/master/ip/Zmods/ZmodScopeController/docs/ZmodScopeController.pdf