עבודה עצמית 3

- שאלה 1 בדקו אם הקבוצות הבאות ביחד עם פעולות הכפל והחיבור המתאימות מהווה שדה. כדי להראות שכן, הוכיחו שכל אקסיומות השדה מתקיימות וכדי להראות שלא, הראו לפחות אקסיומה אחת איננה מתקיימת.
 - א) קבוצת המספרים השלמים $\mathbb Z$ עם פעולות החיבור והכפל הרגילות.
 - $a\cdot b=3ab$ -ו $a+b=rac{a-b}{3}$ עם פעולות $\mathbb Q$ עם הרציונליים פרים הרציונליים
 - :כלומר. החיבור והכפל הרגילות. כלומר ביחס לפעולות החיבור $\left\{a+b\sqrt{2}|a,b\in\mathbb{Z}
 ight\}$

$$(a + b\sqrt{2}) \oplus (c + d\sqrt{2}) = (a + c) + (b + 2)\sqrt{2}$$

 $(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$

- . ביחס הרגילות החיבור הכפל ביחס $\left\{a+b\sqrt{2}|a,b\in\mathbb{Q}
 ight\}$ הקבוצה (ד
 - הקבוצה (ה

$$\mathbb{R}[x] = \left\{ \sum_{i=0}^{k} a_i x^i \middle| k \in \mathbb{N}, a_0, \dots, a_k \in \mathbb{R} \right\}$$

(קבוצת הפולינומים עם מקדמים ממשיים) עם הפעולות - חיבור פולינומים וכפל פולינומים.

שאלה 2

- \mathbb{Z}_7 רשמו את טבלאות הכפל וחיבור של
- \mathbb{Z}_{11} -בו \mathbb{Z}_7 ב- 2,3,4,5,6 ב- וב- וב- ב) וב- רשמו את האיברים ההופכיים של
- הגדירו על הקבוצה $\{0,1,a,b\}$ פעולות כפל וחיבור (ע"י כתיבת טבלאות הכפל והחיבור) כך שזה יהיה שדה.

a+1=b -הדרכה: קבעו

שאלה 3 יהי ${\mathbb F}$ שדה, הוכיחו את הטענות הבאות:

מתקיים $a_1,\dots,a_k,b\in\mathbb{F}$ מתקיים לכל מספר טבעי

$$(a_1 + \ldots + a_k) b = a_1 b + \ldots a_k b.$$

.k רמז: אינדוקציה על

- ab=1 -פרט ל- $b\in\mathbb{F}$ יש $a\in\mathbb{F}$ כך ש- $a\in\mathbb{F}$ לכל
 - .a=0 אז a+a=a אז $.a\in\mathbb{F}$ יהי
 - a=0 או a=0 או a=0 או $a,b\in\mathbb{F}$ אוי

 $a,b\in\mathbb{F}$ מתקיים $a,b\in\mathbb{F}$ לכל

שאלה 4

- -3x=2 (2) 3x=2 (1) מצאו הפתרונות של המשוואות
 - \mathbb{Z}_5 בשדה (1
 - \mathbb{Z}_7 בשדה (2
 - \mathbb{Z}_{97} בשדה (3
- . ישנו פתרון יחיד. ax=b למשוואה $a\neq 0$ ע כך ש $a,b\in \mathbb{F}$ ישנו פתרון יחיד.
- ג. בשדה אותו הגדרתם בשאלה 2 סעיף גx+ay=b בשדה אותו הגדרתם בשאלה 2 סעיף ג.

שאלה 5 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות יש למערכת?

$$x + \bar{3}y + z = \bar{1}$$

$$\bar{3}x + y + \bar{4}z = \bar{2}$$

$$\bar{2}x + \bar{4}y + \bar{4}z = \bar{3}$$

פתרונות

שאלה 1

לא שדה לא

לא שדה משום שלא לכל איבר יש איבר הופכי.

ב) שדה

קשירות וכל האקסיומות נכונות, משום שכל התוצאות שיתקבלו שייכות למספרים הרציונליים.

ג) לא שדה

האם לכל איבר יש הופכי? נחפש איבר נגדי ל- $(a+b\sqrt{2})$.

$$(a+b\sqrt{2})(x+y\sqrt{2}) = 1$$
$$ax + ay\sqrt{2} + bx\sqrt{2} + 2by = 1$$

שימו לב $a,b,x,y\in\mathbb{Z}$ שימו לב

$$\begin{vmatrix} ax + 2by = 1 \\ ay + bx = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} abx + 2b^2y = b \\ -a^2y - abx = 0 \end{vmatrix} \Rightarrow abx + 2b^2y - a^2y - abx = b \Rightarrow 2b^2y - a^2y = b$$

ואז נקבל $y=\dfrac{b}{2b^2-a^2}$, וזה לא בהרכח מספר שלם. ϕ לא לכל איבר קיים איבר נגדי. אינה שדה.

שדה **(ד**

. ביחס הרגילות ביחס לפעולות ביחס $\{a+b\sqrt{2}|a,b\in\mathbb{Q}\}$ הקבוצה

קומוטטיביות, אסוציאטיביות, דיסטריבוטיביות, וקשירות בחיבור נובעות מאותן התכונות ב- $\mathbb Q$. גם איבר נגדי.

קשירות בכפל:

$$(a+b\sqrt{2})(c+d\sqrt{2}) = ac + ad\sqrt{2} + bc\sqrt{2} + 2bd = \underbrace{(ac+2bd)}_{\in \mathbb{Q}} + \underbrace{(ad+bc)}_{\in \mathbb{Q}} \sqrt{2} \in \mathbb{F}$$

איבר הופכי:

$$(a+b\sqrt{2})(x+y\sqrt{2}) = 1$$

$$\begin{aligned} x + y\sqrt{2} &= \frac{1}{a + b\sqrt{2}} \\ &= \frac{a - b\sqrt{2}}{a^2 - 2b^2} \\ &= \underbrace{\frac{a}{a^2 - 2b^2}}_{\in \mathbb{Q}} - \underbrace{\frac{b}{a^2 - 2b^2}}_{\in \mathbb{Q}} \sqrt{2} \in \mathbb{F} \ . \end{aligned}$$

. לכן הקבוצה היא שדה. $a+b\sqrt{2}\neq 0$ לכל הקבוצה היא שדה. \Leftarrow

לא שדה (ה

 $a_0 + b_1 x + b_2 x^2$ נתבונן על $a_0 + a_1 x + a_2 x^2$ ניח לפולינום $a_0 + a_1 x + a_2 x^2$ נתבונן על איבר הופכי

$$(a_0 + a_1x + a_2x^2)(b_0 + b_1x + b_2x^2) = 1$$
$$a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_2b_0 + a_1b_1)x^2 + (a_1b_2 + a_2b_1)x^3 + a_2b_2x^4 = 1$$

לפי השוואת מקדמים:

(1)
$$x^0$$
 $a_0b_0=1$

$$(2) \quad x^1 \qquad a_0 b_1 + a_1 b_0 = 0$$

(3)
$$x^2$$
 $a_0b_2 + aa_1b_a +_2 b_0 = 0$

(4)
$$x^3$$
 $a_1b_2 + a_2b_1 = 0$

(5)
$$x^4$$
 $a_2b_2 = 0$

$$.b_2 = 0$$
 או $a_2 = 0 \Leftarrow$ (5)

$$b_2 \neq 0$$
 , $a_2 = 0$

$$a_1 = 0 \Leftarrow$$
 (4)

$$a_0 = 0 \Leftarrow$$
 (3)

ואז נקבל

$$0 \cdot (b_0 + b_1 x + b_2 x^2) = 1 \implies 0 = 1$$

סתירה!.

$$a_2 \neq 0$$
 , $b_2 = 0$

$$b_1 = 0 \Leftarrow$$
 (4)

$$b_0 = 0 \Leftarrow$$
 (3)

ואז נקבל

$$(a_0 + a_1 x + a_2 x^2) \cdot 0 = 1 \quad \Rightarrow \quad 0 = 1$$

סתירה!.

 $\mathbb{R}[x]$ -ם איבר לכל הופכי הופכי איבר לכן איבר לכן איבר לכן איבר

.לכן $\mathbb{R}[x]$ לא שדה

שאלה 2

(N

	$\bar{0}$	1	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
0	Ō	Ō	$\bar{0}$	Ō	Ō	Ō	Ō
1	Ō	Ī	$\bar{2}$	3	$\bar{4}$	5	<u>-</u> 6
$\bar{2}$	Ō	$\bar{2}$	$\bar{4}$	<u></u> 6	Ī	3	5
<u>-</u> 3	Ō	3	<u>-</u> 6	$\bar{2}$	5	Ī	4
$\bar{4}$	Ō	$\bar{4}$	Ī	5	$\bar{2}$	<u>6</u>	3
<u>-</u> 5	Ō	5	3	Ī	<u></u>	$\bar{4}$	$\bar{2}$
<u>-</u> 6	$\bar{0}$	<u> </u> 6	5	$\bar{4}$	$\bar{3}$	$\bar{2}$	$\bar{1}$

+	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$	$\bar{6}$
<u></u> 0	Ō	1	2	3	$\bar{4}$	5	<u></u> 6
1	Ī	$\bar{2}$	3	$\bar{4}$	$\bar{5}$	<u>-</u> 6	Ō
$\bar{2}$	$\bar{2}$	3	$\bar{4}$	5	<u></u> 6	Ō	Ī
<u>-</u> 3	3	$\bar{4}$	$\bar{5}$	<u>-</u> 6	$\bar{0}$	Ī	$\bar{2}$
$\bar{4}$	$\bar{4}$	5	<u></u> 6	Ō	Ī	$\bar{2}$	3
<u>-</u> 5	5	<u>-</u> 6	Ō	Ī	$\bar{2}$	3	$\bar{4}$
<u></u> 6	<u></u>	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{5}$

 $\underline{\mathbb{Z}_7}$ (2

$$-\bar{2} = \bar{5}$$
, $-\bar{3} = \bar{4}$, $-\bar{4} = \bar{3}$, $-\bar{5} = \bar{2}$, $-\bar{6} = \bar{1}$.

 \mathbb{Z}_{11}

$$-\bar{2} = \bar{9}$$
, $-\bar{3} = \bar{8}$, $-\bar{4} = \bar{7}$, $-\bar{5} = \bar{6}$, $-\bar{6} = \bar{5}$.

שאלה 3

<u>שאלה 4</u>

שאלה 5

$$\begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{2} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R1} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & -\bar{8} & \bar{1} & | & -\bar{1} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R1} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & -\bar{2} & \bar{2} & | & \bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{3} & \bar{2} & | & \bar{1} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_3 - R_2} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & -\bar{3} \\ \bar{0} & \bar{3} & \bar{2} & | & \bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{3} & \bar{2} & | & \bar{1} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 3R_2} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & -\bar{1} & | & -\bar{5} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{4} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{x + \bar{3}y + z = \bar{1}} \\ y + z = \bar{2} \\ \bar{4}z = \bar{0} \end{pmatrix} \Rightarrow \begin{array}{c} x + \bar{3}y + \bar{0} = \bar{1} \\ y + \bar{0} = \bar{2} \\ z = \bar{0} \end{pmatrix} \Rightarrow \begin{array}{c} x + \bar{3}y = \bar{1} \\ y = \bar{2} \\ z = \bar{0} \end{pmatrix} \Rightarrow \begin{array}{c} x + \bar{3} \cdot \bar{2} = \bar{1} \\ y = \bar{2} \\ z = \bar{0} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x + \bar{6} & = \bar{1} \\ y = \bar{2} \\ z = \bar{0} \end{pmatrix} \Rightarrow \begin{array}{c} x = -\bar{5} \\ \bar{0} \\ y = \bar{2} \\ z = \bar{0} \end{pmatrix}$$

תשובה סופית:

$$(x,y,z) = (\bar{0},\bar{2},\bar{0})$$
.