JENNIFER KADOWAKI

(714) 726-0579

jkadowaki.github.io

jkadowaki@email.arizona.edu

/in/jennifer-kadowaki

jkadowaki

Skills _____

Operating Systems

· Linux, Mac OS X, Windows

Programming

- (Expert): Python, &TEX, MATLAB, SQL
- (Familiar): git, HTML, R

Software

Mathematica

Technical Knowledge

- Bayesian Statistics
- Computer Vision
- Data Mining
- Data Visualization
- Image Processing & Analysis
- · Machine Learning
- Natural Language Processing
- Neural Networks
- Spectral Processing & Analysis
- Statistical Analysis

Projects _____

Statistical Methods

 Reproduced the 2011 Physics Nobel Prize results of the accelerating expansion of the universe using Bayesian analysis. Tested results for bias due to host galaxy masses.

Big Data & Machine Learning

 Detected dwarf galaxies using kernel density estimation on large imaging surveys. Evaluated the completeness and false detection rates for different kernels.

Neural Networks

• Built an ensemble of bidirectional GRUs for sentiment analysis of tweets.

Education

2015 - 2021 PhD Major, Astronomy & Astrophysics PhD Minor, Information Sciences

2015 - 2018 MS, Astronomy & Astrophysics

2010 - 2014 BS, Physics

University of Arizona

University of Arizona

UCLA

Astronomy Research_____

Graduate Research Assistant

The Formation of Massive Ultra-diffuse Galaxies

University of Arizona Aug 2015 - present

- Conducting exploratory analysis and predictive modeling to discover new ultradiffuse galaxies in imaging and catalog data in TB-sized, deep-imaging surveys
- Developing a distance-predicting algorithm as an inexpensively alternative to obtaining spectroscopic redshifts for UDGs.
- Conducted the largest spectroscopic survey of UDGs to date.
- Used wavelet decomposition to extract UDGs in deep-imaging surveys.
- <u>Tools</u>: Python (keras, scikit-learn, pandas, bokeh, matplotlib), Machine Learning (neural networks, random forest, nearest neighbor, kernel density estimation, regression), SQL, IRAF
- Award: Honorable Mention, NSF Graduate Research Fellowship (2017)

Machine Learning Research _____

Graduate Research Assistant

Automated Model Assembly from Text, Equations, and Software

University of Arizona Jan 2019 - present

- Developing state-of-the-art, deep learning model for equation reading and extraction for research papers on ArXiV.
- Performing training & inference on an high performance computing cluster.
- Tools: High Performance Computing, PyTorch, Python (NumPy, matplotlib),

Temporal Ensembles of Fined-Tuned BERT Models for Offensive Language Identification

- Fine-tuned Bidirectional Encoder Representations from Transformers (BERT) models for offensive language identification.
- Tested various metrics to select optimal epochs for temporal ensembling.
- Tools: BERT, High Performance Computing, Python

Employment_____

Data Science Ambassador

Data Science Institute

University of Arizona Aug 2019 - May 2020

 Designing and administering short courses in the College of Science to increase data science literacy by applying machine learning & data science to research.

NOAO Specialist

The NOAO Data Lab Team

National Optical Astronomy Observatory May 2018 - Aug 2018

- Developed ML-based science cases on open source data to showcase Data Lab products to users.
- <u>Tools</u>: Python (scikit-learn, pandas, bokeh, seaborn), Machine Learning (random forest, nearest neighbor), JupyterLab, SQL

Graduate Teaching Assistant

The Physical Universe (ASTR 170B), Cosmology (ASTR 201)

University of Arizona Jan 2017 - May 2018

1st Author Publications _____

- On the Properties of Ultra-diffuse Galaxies Across Environment Kadowaki, Zaritsky, & Donnerstein. submitted.
- Spectroscopy of Ultra-diffuse Galaxies in the Coma Cluster Kadowaki, Zaritsky, & Donnerstein. 2017, ApJL, 838, L21.