- 1. Create a spanning tree. If there are multiple neighbors, select the vertex to traverse first with the lesser weight. Assume that the source vertex is A.
 - a. BFS Traversal

la) Breadth first search

b. DFS Traversal

16) Depth First Search

- 2. Find the minimum spanning tree of the graph using the following algorithms:
 - a. Kruskal's Algorithm
 - 2a) Kruskal's Algorithm

- b. Prim's Algorithm
 - 26) Prim's Algorithm

- 3. Find the all-pairs shortest path of the graph using Johnson's Algorithm. Show the following:
 - a. The shortest paths from the (new) source vertex using Bellman-Ford Algorithm.
 - i. Specify the number of iterations doneThe total number of iterations done by the algorithm is 2.
 - ii. You may just show the final table containing the costs / distances from source to each vertex and the previous node

b. Show the reweighted edges after performing the Bellman-Ford Algorithm c. Perform Dijkstra's algorithm on the following vertices:

Reweighted edges:

i. A

ii. G Dijkstra on G F C G A B D E 22 4 00 00 0 00 00 0 C 7 G マモっモナヒュモュモュモ E ∞ 00 œ ∞ アレテレテレテレマレ B 7 27 C 7 B 7 B 7 B 7 B • ८०८०७०७०७ C ∞ 00 0 D /D 7B7B757B B 0 B 10 E o 0 B 10 B 96 D ab 10 G - E - C - B - F G 06 D

iii. F

c. Reweight and compute the original distances.

Vertex A:

Vertex G:

Vertex F:

