Examenul de bacalaureat 2010 Proba E - c)

Proba scrisă la matematică

Filiera vocațională, profilul pedagogic, specializarea învățător- educatoare

MODEL

- Toate subiectele (I, II și III) sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați probabilitatea ca, alegând un element din mulțimea $\{0, 1, 2, 3, 4\}$, acesta să fie soluție a ecuației $x^2 4x + 3 = 0$.
- **5p** | **2.** Calculați suma S = 1 + 2 + 3 + ... + 40.
- **5p** | **3.** Determinați valorile parametrului real m astfel încât ecuația $x^2 4mx + 1 = 0$ să aibă soluții reale.
- **5p** | **4.** Calculați distanța de la punctul A(1,2) la dreapta d: x+y+1=0.
- **5p 5.** Rezolvați în \mathbb{R} ecuația $7^{2x} 8 \cdot 7^x + 7 = 0$.
- **5p 6.** Calculați $\frac{1}{2}\cos 135^{\circ} + 3\sin 135^{\circ}$.

SUBIECTUL al II-lea

(30 de puncte)

Pe mulțimea numerelor întregi se definește legea de compoziție x * y = xy + 2x + 2y + a, cu $a \in \mathbb{Z}$.

- **5p** a) Determinați $a \in \mathbb{Z}$ știind că legea "*" admite element neutru.
- **5p b)** Pentru a = 2 demonstrați că legea "*" este asociativă.
- **5p** c) Dacă a=2 arătați că (x+y+2)*z=(x*z)+(y*z)+2, pentru orice $x,y,z\in\mathbb{Z}$.
- **5p** d) Pentru a = 2 determinați mulțimea $M = \{x \in \mathbb{Z} | \text{ există } x' \in \mathbb{Z}, \text{ astfel încât } x * x' = -1\}$.
- **5p** | **e**) Pentru a = 2 determinați $x, y \in \mathbb{Z}$, astfel încât x * y = 3.
- **5p f**) Fie mulțimea $H = \{-3, -1\}$. Determinați $a \in \mathbb{Z}$ astfel încât, pentru oricare $x, y \in H$, să rezulte că $x * y \in H$.

SUBIECTUL al III-lea

(30 de puncte)

Fie numerele reale a,b, c și determinantul $D = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$.

- **5p** a) Pentru a = 1, b = 2 şi c = 3, calculați determinantul D.
- **5p b)** Arătați că dacă a = b, atunci D = 0.
- **5p** | **c**) Pentru b=2 şi c=3, determinați $a \in \mathbb{R}$, astfel încât D=2.
- **5p** d) Demonstrați că $D = (b-a) \cdot (c-a) \cdot (c-b)$.
- **5p** | e) Arătați că dacă D = 0, atunci cel puțin două dintre numerele a, b și c sunt egale.
- **5p** | **f**) Arătați că dacă $a,b,c \in \mathbb{Z}$, atunci D este număr întreg par.