Identifying Hazardous Waste Sites

Tim Mango Flatiron Data Science Fellowship Final Project

Organizations of Interest

Earth Challenge 2020:

A global citizen science initiative that will demonstrate how small digital acts of science can help monitor and improve environmental and human health

Datakind DC:

Project inspiration came from the June Datakind DC datajam

DataKindoc

The Problem

Volunteer Beach Cleanup Team Hazardous Waste Cleanup Team

Tides Volunteer Waste Cleanup Sites

Toxic Release Inventory Sites 2017

Best Discovered Approach

Hazardous waste sites need to be identified and cleaned. At the same time, volunteers need to be protected from dangerous exposure.

Predictive model for Waste Site Prediction: XGBoost

Explanatory Variables: ~200 final variables

Target Variable: ~6,600 of 220,000 Census Block Groups

Target Data

Explanatory Data

IT'S IN OUR HANDS

New 2017 Data

Now Available on Social Explorer

Most Important Features

- 1. Land Area
- 2. Home Value
- 3. Vacant Houses
- 4. Percentage Male
- 5. Education

- 6. Population Age
- 7. Transient Population
- 8. Health Insurance
- 9. Group housing

Model Performance

Sensitivity is the metric of interest for the model.
Sensitivity measures the probability that the model will correctly identify census block groups that contain TRI sites.

Sensitivity: 61.26%

Industrial Waste Prediction Probability Map

Top Unidentified Industrial Waste Dumping Locations

Thank you for your time!

Northeast Prediction Probability Map

Southwest Prediction Probability Map

Southeast Prediction Probability Map

Industrial Waste Prediction Probability Map

