Estimador de la pendiente *

En el modelo de Regresión Lineal Simple

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2).$$

Calcular el Estimador de Mínimos Cuadrados del parámetro β_1 .

$$\frac{\sum_{i=1}^{n} x_i Y_i - n(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} Y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$\frac{\sum_{i=1}^{n} x_i Y_i - n(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} Y_i)}{\sum_{i=1}^{n} x_i^2 - n(\sum_{i=1}^{n} x_i)^2}$$

O .-

$$\bigcirc$$

$$\frac{n\sum_{i=1}^{n} x_i Y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} Y_i)}{\sum_{i=1}^{n} x_i^2 - n(\sum_{i=1}^{n} x_i)^2}$$

$$\frac{n\sum_{i=1}^{n}x_{i}Y_{i} - (\sum_{i=1}^{n}x_{i})(\sum_{i=1}^{n}Y_{i})}{n\sum_{i=1}^{n}x_{i}^{2} - (\sum_{i=1}^{n}x_{i})^{2}}$$

-

Intento 3 TP= 2[y-(po+B1X)][0-(0+X)]=0 TB1= 2[Y-(B0+B1X][X]=0=) S[(5x)-(10x]+[1,x3])]=0 Z yx - Z BO X + Z B1 X = 0 5 3x = 2 Bo x + 2 Po x = 0 Z xx = 180 19 x + 19 2 x all Zyx=(文-p,文)(至x)+(为至文) => 是女女= 文至(文) - P1至(文) + P1至(文) => TY Ito

Estimador de la constante *

En el modelo de Regresión Lineal Simple

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2).$$

Calcular el Estimador de Mínimos Cuadrados del parámetro $\beta_0.$

$$\frac{1}{n} \sum_{i=1}^{n} Y_i - \widehat{\beta}_1 \sum_{i=1}^{n} x_i$$

$$\widehat{\beta}_1 \sum_{i=1}^n Y_i - \frac{1}{n} \sum_{i=1}^n x_i$$

.

$$\frac{\widehat{\beta}_1}{n} \sum_{i=1}^n Y_i - \frac{1}{n} \sum_{i=1}^n x_i$$

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i}-\frac{\widehat{\beta}_{1}}{n}\sum_{i=1}^{n}x_{i}$$

Código R para EMC *

Considerar el modelo real

$$Y_i = X_i + \varepsilon_i, \quad X_i \sim U(0,1) \quad y \quad \varepsilon_i \sim N(0,1)$$

El modelo tentativo será $Y_i = \beta X_i + \varepsilon_i$.

Utiliza tu código de reproducibilidad set.seed() y n=20 para hacer un código R que genere los datos siguiendo el modelo real y que calcule el EMC de β .

Por lo tanto, el EMC de β es:

El EMC de beta es: 0.7421

```
set.seed(137) # Fijamos la semilla para reproducibilidad
      # Tamaño de la muestra
     n <- 20
      # Generamos los datos según el modelo real
      X \leftarrow runif(n, min = 0, max = 1) \# X \sim U(0,1)
      epsilon <- rnorm(n, mean = 0, sd = 1) # \epsilon ~ N(0,1)
     Y <- X + epsilon
 10
     # Ajustamos el modelo de regresión lineal simple
 11
 12 modelo \leftarrow lm(Y \sim X)
 13
 14
      # Extraemos el coeficiente estimado (EMC de β)
     beta_hat <- coef(modelo)["X"]
 17
      # Imprimimos el resultado
18 cat(("El EMC de beta es:", beta_hat, "\n")
```

	recepto * lé representa el intercepto en el modelo de Regresión Lineal Simple?
•	El valor de la variable dependiente cuando la variable independiente es cero.
\bigcirc	El error estándar del modelo.
\bigcirc	La correlación entre las variables.
\bigcirc	El valor de la variable independiente cuando la dependiente es cero.
\circ	La pendiente de la línea.

Código R*

Completar el siguiente código R con las instrucciones que sean necesarias para poder calcular los Estimadores de Mínimos Cuadrados (EMC) de los parámetros β_0 y β_1 . Es decir, debes incorporar los códigos que necesites para responder. Además, tienes que utilizar el código de reproducibilidad set.seed() que te corresponde de acuerdo al listado enviado para este propósito.

```
set.seed() # Aquí debes poner tu código de reproducibilidad
x<-1:10
n<-length(x)
u<-rnorm(n,0,2)
Y<--2+3*x+u
plot(x,Y,pch=19,col="blue",lwd=3)
abline(-2,3,col="red",lwd=3)</pre>
```

Por lo tanto, los EMC de β_0 y β_1 son, respectivamente:

ta0 es: -0.3662 El EMC de beta1 es: 2.902

```
1 set.seed(137) # Fijamos la semilla para reproducibilidad
3
   # Generamos los datos
    X <- 1:10
   n <- length(x)
   u <- rnorm(n, 0, 2)
6
    Y <- -2 + 3*x + u
   # Visualizamos los datos y la recta teórica
10 plot(x, Y, pch = 19, col = "blue", lwd = 3)
   abline(-2, 3, col = "red", lwd = 3)
11
   # Ajustamos el modelo de regresión lineal
13
14
   modelo <- lm(Y ~ X)
15
16 # Extraemos los coeficientes estimados (EMC)
17 coeficientes <- coef(modelo)
18 beta0_hat <- coeficientes["(Intercept)"]</pre>
19
   beta1_hat <- coeficientes["x"]
21 # Imprimimos los resultados
22 cat("El EMC de beta0 es:", beta0_hat, "\n")
23 cat("El EMC de beta1 es:", beta1_hat, "\n")
```

¿Cu	Residuos ¿Cuál es la interpretación práctica de los residuos en un modelo de Regresión Lineal Simple?					
\bigcirc	Son los puntos donde las variables no son lineales.					
•	Representan el error entre los valores observados y los estimados.					
\bigcirc	Son los coeficientes del modelo.					
\bigcirc	Representan la correlación entre las variables.					
0	Son los valores predichos por el modelo.					

Pendiente de la Recta *

-	pué significa un coeficiente de pendiente β_1 igual a cero en un modelo Regresión Lineal Simple?
0	La variable independiente explica completamente a la dependiente.
0	Todos los puntos caen exactamente sobre la línea.
•	No existe relación entre la variable independiente y la dependiente.
0	La relación entre las variables es no lineal.
0	La varianza del modelo es infinita.

Estimador de la varianza *

El modelo de Regresión Lineal Simple escrito en forma matricial está dado

$$Y = X\beta + \varepsilon$$
, $\varepsilon \sim N_n(0, I_n\sigma^2)$,

donde
$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{pmatrix}$$
, $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$, $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$, $\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ \vdots \\ 1 & x_n \end{pmatrix}$

 ${\cal N}_n$ es la distribución normal multivariada y I_n es la matriz identidad de orden n .

Calcular el Estimador del parámetro σ^2 .

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i + \beta_0 + \beta_1 x_i)^2}{n}$$

$$\hat{\sigma}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \beta_{1} - \beta_{0}x_{i})^{2}}{n}$$

0.

$$\hat{\sigma}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \beta_{0} + \beta_{1} x_{i})^{2}}{n}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}{n}$$

0 .

x = x (V271021) 2. (202 · {E. 83) 7=XB+E => E=Y-XB $f(...) = (\sqrt{2\pi}\sigma^2)^{\frac{1}{2}} \cdot e^{\frac{1}{2}(y-x)} \cdot (y-x)$ f(Y; o; B) => > FR f(ZitiB) >0 PER 5>0 = dog (500) > max = fm (500) > min

7=XB+E => E= Y-XB $f(\cdot \cdot) = (\sqrt{2\pi}\sigma^2)^{\frac{n}{2}} \cdot (2\pi^2)^{\frac{1}{2}} \cdot (2\pi^2)^{\frac{n}{2}} \cdot (2\pi^2)^{\frac{1}{2}} \cdot (2\pi^2)^{\frac{1}{2}}$ f(y; o; B) => > = R f(Y; + i B) > 0 PER J > 0 \$ >0 -> max = Log (\$ >0) -> max = fm (\$ >0) -> max
min min $\int_{\mathbb{R}} \left(\sqrt{2\eta \sigma^{2}} \right)^{\frac{1}{2}} - \frac{1}{2\sigma^{2}} \left(\mathbf{Y} - \mathbf{X} \mathbf{\beta} \right)^{\frac{1}{2}} \left(\mathbf{Y} - \mathbf{X} \mathbf{\beta} \right)$ -n fm (V2110-1) - 1 (Y-XB) (Y-XB)

