Devoir Maison

BATTISTON Ugo

30 mars 2020

Exercice 1

 $L_0: \{\mathbf{w} \in \sum^* \text{ tel que } |w|_a \equiv (|w|_b + |w|_c) \text{ (mod 2)}\}$

$$L_1: \{\mathbf{w} \in \sum^* \text{ tel que } |w|_a \equiv (|w|_b + |w|_c)\}$$

Supposons que L_1 soit régulier. D'après le lemme de l'étoile \exists N > 0 tel que \forall z \in L_1 avec |z| > N :

Soit $z = uvw \in L_1$:

- $u = a^{|w|_a};$
- $-- \mathbf{v} = b^{|w|_b};$
- $\mathbf{w} = c^{|w|_c};$

D'après le lemme de l'étoile : $uv^i w \in L_1, \forall i \in \mathbb{R}_+^*$; si $|w|_a = (|w|_b + |w|_c)$, alors $|w|_a \neq (|w|_b + 1 + |w|_c)$ Contradiction, on peut en conclure que L_1 n'est pas regulier.

Exercice 2

Question 1:

$$A = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{(q_0, a, q_0), (q_0, b, q_1), (q_1, a, q_1), (q_1, a, q_2), (q_2, b, q_1), (q_2, b, q_0)\})$$

Question 2:

Question 3:

On complete l'automate en ajoutant l'etat poubelle et en renommant les etats.

Ensuite on crée un tableau en les regroupants dans des "classes". La premiere classe est composée des états non finaux et la deuxieme classe des états finaux. On recommence les étapes jusqu'à ce que les classes ne soit pas modifié, on obtiens donc l'automate minimisé.

	q_0	q_1	q_2	q_3	q_4	p
classe	A	В	В	В	В	A
a	A	В	В	В	В	A
b	В	A	В	В	В	A
classe	A	В	С	С	С	D
a	A	C	C	C	С	D
b	В	D	C	В	С	D
classe	A	В	С	D	С	Е
a	A	C	C	C	С	E
b	В	E	D	В	D	E
classe	A	В	С	D	С	Е

On peut ensuite construire l'automate grâce au tableau.

Question 4:

On rajoute des ε transition sur l'automate initial.

On obtient donc : $a^*ba^*.(a^+b + a^+ba^*ba^*)^*$

Question 5:

$$G = (\{a,b\}, \{S,V\}, S, \{(S \Rightarrow a^*ba^*X), (X \Rightarrow \varepsilon), (X \Rightarrow a^+bX), (X \Rightarrow a^+ba^*ba^*X)\})$$

D'après l'expression régulière on obligatoirement a^*ba^* , qu'on affecte à S. Ensuite S appelle une autre variable non terminal X qui vaut soit ε pour terminer la reconaissance du mot par l'automate soit a^+bX ou $a^+ba^*ba^*X$. On a un X à la fin afin de boucler autant de fois qu'on veut sur la variable X jusqu'à avoir ε .