Содержание

- 1 Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям групп
- Длина и натуральная параметризация кривой
 - Длина гладкой кривой

Содержание

- 1 Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям групп
- Длина и натуральная параметризация кривой
 - Длина гладкой кривой

Лекция 2

Формулировка (повтор)

Пусть $p:(Y,y_0)\to (X,x_0)$ — накрытие. Поднятие отображения $f:(Z,z_0)\to (X,x_0)$ в данное накрытие — это такое $\widetilde{f}:(Z,z_0)\to (Y,y_0)$, что $p\circ \widetilde{f}=f$.

Теорема

Пусть Z линейно связно и локально линейно связно.

Поднятие отображения $f:(Z,z_0) o (X,x_0)$ в накрытие $p:(Y,y_0) o (X,x_0)$ существует тогда и только тогда, когда

$$Im(f_*)\subset Im(p_*),$$

где f_* и p_* — индуцированные гомоморфизмы фундаментальных групп.

При этом поднятие единственно.

Замечание

 $Im(p_*)$ — группа накрытия. Она состоит из петель, которые не размыкаются при поднятии.

Bu mueiro chezno:

3 / 45

Лекция 2 9 сентября 2020 г.

Односвязный случай

Следствие

В условиях теоремы, если Z односвязно, то поднятие всегда существует.

Доказательство.

$$Im(f_*) = \{e\}.$$

Содержание

- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям
- - Длина гладкой кривой

Лекция 2

Определения

Соглашение

Далее все пространства предполагаются линейно связными и локально линейно связными.

Определение

Пусть $p: (Y, y_0) \to (X, x_0)$ и $q: (Z, z_0) \to (X, x_0)$ — накрытия (с общей базой).

Морфизм накрытий — такое отображение

 $f:(Y,y_0) o (Z,z_0)$, что $q\circ f=p$.

Изоморфизм накрытий — морфизм накрытий, у которого есть обратный.

M30 mopping m

Y

F

P

A

2

Лекция 2

Накрытие однозначно определяется группой

Пусть $p: (Y, y_0) \to (X, x_0)$ и $q: (Z, z_0) \to (X, x_0)$ — накрытия (как в определении).

Теорема

Морфизм накрытий $f:(Y,y_0)\to (Z,z_0)$ существует тогда и только тогда, когда $Im(p_*)\subset Im(q_*)$. При этом он единственный.

Доказательство.

По теореме о поднятии.

Накрытие однозначно определяется группой

Пусть $p: (Y, y_0) \to (X, x_0)$ и $q: (Z, z_0) \to (X, x_0)$ — накрытия (как в определении).

Теорема

Морфизм накрытий $f:(Y,y_0)\to (Z,z_0)$ существует тогда и только тогда, когда $Im(p_*)\subset Im(q_*)$. При этом он единственный.

Доказательство.

По теореме о поднятии.

Следствие

Если $Im(p_*) = Im(q_*)$, то накрытия изоморфны.

Накрытие однозначно определяется группой

Пусть $p:(Y,y_0)\to (X,x_0)$ и $q:(Z,z_0)\to (X,x_0)$ — накрытия (как в определении).

Теорема

Морфизм накрытий $f:(Y,y_0)\to (Z,z_0)$ существует тогда и только тогда, когда $Im(p_*)\subset Im(q_*)$. При этом он единственный.

Доказательство.

По теореме о поднятии.

Следствие

Eсли $Im(p_*) = Im(q_*)$, то накрытия изоморфны.

Следствие

Универсальное накрытие с базой X единственно с точностью до изоморфизма.

up - 6

◆ロト ◆個ト ◆意ト ◆意ト ・意・ かなぐ

Содержание

- 1 Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям групп
- Длина и натуральная параметризация кривой
 - Длина гладкой кривой

Лекция 2

Определение

Определение

Пусть $p: Y \to X$ — накрытие Автоморфизм этого накрытия — такой гомеоморфизм $f: Y \to Y$, что $p \circ f = p$.

Другие названия: скольжение, deck transformation.

Очевидно, автоморфизмы накрытия $p \colon Y \to X$ образуют группу относительно композиции. Она обозначается $\operatorname{Aut}(p)$.

$$Y \longrightarrow Y$$

$$Y \longrightarrow$$

9 / 45

Лекция 2 9 сентября 2020 г.

Определение

Определение

Пусть $p: Y \to X$ — накрытие Автоморфизм этого накрытия — такой гомеоморфизм $f: Y \to Y$, что $p \circ f = p$.

Другие названия: скольжение, deck transformation.

Очевидно, автоморфизмы накрытия $p \colon Y \to X$ образуют группу относительно композиции. Она обозначается $\operatorname{Aut}(p)$.

Замечание

Условие $p \circ f = p$ равносильно тому, что для каждой точки $x_0 \in X$ отображение f переставляет точки из её прообраза $f^{-1}(x_0)$.

Неформальная терминология: f «переставляет листы накрытия».

$$y = y(f(y)) = y(y)$$

$$y(f(y)) = y(y)$$

$$y(y) = y(y)$$

$$y(y)$$

$$y(y) = y(y)$$

$$y(y)$$

Транзитивность на листах

Рассмотрим случай, когда накрытие универсально.

Теорема

Пусть $p: Y \to X$ — универсальное накрытие, $x_0 \in X$. Тогда для любых $y_1, y_2 \in p^{-1}(x_0)$ существует единственный автоморфизм накрытия $f: Y \to Y$ такой, что $f(y_1) = y_2$.

Доказательство.

По теореме о поднятии для отмеченных точек y_1, y_2 .

$$(Y, y,) \xrightarrow{f} (Y, yz)$$

$$(X, xo))$$

Транзитивность на листах

Рассмотрим случай, когда накрытие универсально.

Теорема

Пусть $p: Y \to X$ — универсальное накрытие, $x_0 \in X$. Тогда для любых $y_1, y_2 \in p^{-1}(x_0)$ существует единственный автоморфизм накрытия $f: Y \to Y$ такой, что $f(y_1) = y_2$.

Доказательство.

По теореме о поднятии для отмеченных точек y_1, y_2 .

Задача

Для не универсального накрытия теорема верна тогда и только тогда, когда группа накрытия $Im(p_*)$ — нормальная подгруппа в $\pi_1(X)$.

Это условие не зависит от выбора отмеченных точек.

Примечание: накрытия, удовлетворяющие этому условию, называются регулярными.

Группа автоморфизмов универсального накрытия

Теорема

Для универсального накрытия $p\colon Y\to X$, группа автомофизмов $\operatorname{Aut}(p)$ изоморфна $\pi_1(X)$.

Доказательство – 1

Зафиксируем отмеченные точки $x_0 \in X$ и $y_0 \in Y$, $p(y_0) = x_0$.

Построим отображение $\Phi \colon \pi_1(X,x_0) \to \operatorname{Aut}(p)$: для $\alpha \in \Omega(X,x_0)$ пусть $\Phi([\alpha])$ — такой $f \in \operatorname{Aut}(p)$, что $f(y_0)$ — конец поднятия α с началом в y_0 .

Из предыдущих теорем Φ корректно определено и биективно.

Осталось доказать, что Φ — гомоморфизм групп.

12 / 45

Лекция 2 9 сентября 2020 г.

Доказательство – 2: гомоморфизм

Пусть $\alpha, \beta \in \Omega(X, x_0)$, докажем, что

$$\Phi([\alpha\beta]) \stackrel{?}{=} \Phi([\alpha]) \circ \Phi([\beta])$$

Пусть $f = \Phi([\alpha])$, $g = \Phi([\beta])$, V $\widetilde{\alpha}, \widetilde{\beta}$ — поднятия α, β с началом y_0 .

Тогда
$$\widetilde{\alpha}(1) = f(y_0), \ \widetilde{\beta}(1) = g(y_0).$$

Рассмотрим путь $\widetilde{\beta}_1 = f \circ \widetilde{\beta}$.

Это поднятие β с началом $f(y_0)$ и концом $f(g(y_0))$.

Рассмотрим путь $\widetilde{\alpha}\widetilde{\beta}_1$ в Y (он определён, так как $\widetilde{\alpha}(1)=f(y_0)=\widetilde{\beta}_1(0)$).

Это поднятие пути $\alpha\beta$ с началом y_0 .

Значит,
$$\Phi([\alpha\beta])(y_0) = f(g(y_0)) = f \circ g(y_0)$$
.

Из единственности такого автоморфизма получаем требуемое: $\Phi([\alpha\beta]) = f \circ g = \Phi([\alpha]) \circ \Phi([\beta])$,

Теорема доказана

13 / 45

Лекция 2 9 сентября 2020 г.

Комментарии: действие фундаментальной группы на универсальном накрывающем

Построенный гомоморфизм

$$\boxed{\Phi \colon \pi_1(X) \to \operatorname{\mathsf{Aut}}(p)}$$

можно интерпретировать как (левое) действие группы $\pi_1(X)$ на Y.

Различие в форме записи: вместо $\Phi(g)(y)$ пишем $g \cdot y$, $(g \in \pi_1(X), y \in Y)$.

Задача

Пусть Y = X построено как в доказательстве теоремы о существовании универсального накрытия.

Т.е. точка из \widetilde{X} — класс гомотопных путей из x_0 .

Тогда действие можно описать как умножение путей:

$$\Phi([\alpha])([s]) = [\alpha s],$$

где $\alpha \in \Omega(X, x_0)$, s — путь из x_0 .

Информация: группа голономии

Пусть $p \colon Y \to X$ — произвольное накрытие (не обязательно универсальное, не обязательно регулярное). Пусть $x_0 \in X$.

Имеется естественное правое действие группы $\pi_1(X, x_0)$ на множестве $p^{-1}(x_0)$:

для $\alpha \in \Omega(X,x_0)$ и $y \in p^{-1}(x_0)$ определяем $y \cdot [\alpha]$ как конец поднятия петли α с началом y.

Легко проверить, что это определение корректно и задает правое действие.

Соответствующая подгруппа группы перестановок множества $p^{-1}(x_0)$ называется группой голономии.

Примечание: термин относится к более общим структурам, чем накрытия.

Содержание

- Поднятие отображений и морфизмы накрытий.
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям групп
- - Длина гладкой кривой

Лекция 2

Действие группы на топологическом пространстве

Пусть X — топологическое пространство, G — дискретная группа.

Обозначение: Homeo(X) — группа гомеоморфизмов из X в себя.

Определение

(Левое) действие G на X — это любое из двух:

- Гомоморфизм групп $\Phi \colon G o \mathsf{Homeo}(X).$ Вместо $\Phi(g)$ обычно пишут $\Phi_g.$
- \bullet Непрерывное отображение из $G \times X$ в X, обычно записываемое как умножение, обладающее свойством:

$$(gh)x = g(hx)$$

для любых $g, h \in G$, $x \in X$.

Два определения отличаются только формой записи: gx во втором — то же, что $\Phi_g(x)$ в первом.

$$(g,x) \rightarrow g.x$$
 $G \times X \qquad X$

Факторпространство по действию группы

Определение

Пусть задано действие G на X. Введем отношение эквивалентности на X: точки $x,y\in X$ эквивалентны, если существует такой $g\in G$, что gx=y.

(Легко проверить, что это отношение эквивалентности. Классы эквивалентности называются орбитами.)

Фактопространство X по этому отношению называется факторпространством по действию группы или пространством орбит.

Обозначение: X/G или $G \backslash X$.

Лекция 2 9 сентября 2020 г.

Факторпространство по действию группы

Определение

Пусть задано действие G на X. Введем отношение эквивалентности на X: точки $x,y\in X$ эквивалентны, если существует такой $g\in G$, что gx=y.

(Легко проверить, что это отношение эквивалентности. Классы эквивалентности называются орбитами.)

Фактопространство X по этому отношению называется факторпространством по действию группы или пространством орбит.

Обозначение: X/G или $G \setminus X$.

Пример

 $\mathbb Z$ естественно действует на $\mathbb R$ параллельными переносами: $\Phi_g(x)=x+g,\ g\in\mathbb Z,\ x\in\mathbb R.$ Факторпространство $\mathbb R/\mathbb Z$ этого действия — окружность.

Лекция 2 9 сентября 2020 г.

Накрывающие действия

Определение

Действие G на X — накрывающее (англ: covering space action), если для любой точки $x \in X$ существует окрестность $U \ni x$ такая, что множества $\{gU\}_{g \in G}$ дизъюнктны.

Лекция 2

Накрывающие действия

Определение

Действие G на X — накрывающее (англ: covering space action), если для любой точки $x \in X$ существует окрестность $U \ni x$ такая, что множества $\{gU\}_{g \in G}$ дизъюнктны.

Свойства:

- ullet Действие группы накрытия $\operatorname{Aut}(p)$ накрывающее. \bigvee
- Если действие группы G накрывающее, то действие любой подгруппы H < G тоже.

Накрывающие действия

Определение

Действие G на X — накрывающее (англ: covering space action), если для любой точки $x \in X$ существует окрестность $U \ni x$ такая, что множества $\{gU\}_{g \in G}$ дизъюнктны.

Свойства:

- ullet Действие группы накрытия $\operatorname{Aut}(p)$ накрывающее.
- Если действие группы G накрывающее, то действие любой подгруппы H < G тоже.

Замечание

Термин «накрывающее действие» — калька с английского, в русскоязычных источниках он редок. Вместо него встречаются термины вполне разрывное действие, собственно разрывное действие (англ: properly discontinuous action). Определения этих терминов в разных местах не эквивалентны.

Лекция 2 9 сентября 2020 г.

Факторизация по накрывающему действию

Теорема

Пусть G действует на X, и это действие накрывающее.

Тогда проекция p:X o X/G — накрытие.

Если X односвязно, то $\pi_1(X/G) \simeq G$.

Факторизация по накрывающему действию

Теорема

Пусть G действует на X, и это действие накрывающее. Тогда проекция $p\colon X\to X/G$ — накрытие. Если X односвязно, то $\pi_1(X/G)\simeq G$.

Доказательство.

1. Если U — окрестность из определения накрывающего действия, то p(U) — правильно накрываемая окрестность в X/G.

Лекция 2

Факторизация по накрывающему действию

Теорема

Пусть G действует на X, и это действие накрывающее. Тогда проекция $p\colon X\to X/G$ — накрытие. Если X односвязно, то $\pi_1(X/G)\simeq G$.

Доказательство.

- 1. Если U окрестность из определения накрывающего действия, то p(U) правильно накрываемая окрестность в X/G.
- 2. Можно считать, что $G \subset \operatorname{Homeo}(X)$, так как действие эффективно $(gx = hx \implies g = h)$. Элементы G автоморфизмы накрытия, так как они переставляют точки в каждой орбите. И это все автоморфизмы, так как автоморфизм накрытия однозначно определяется образом одной точки. Значит, $G \simeq \operatorname{Aut}(p) \simeq \pi_1(X)$

Лекция 2

Любое накрытие имеет такой вид

Факт

Пусть $p: X \to Y$ — накрытие. Тогда Y естественно гомеоморфно X/\sim , где \sim — отношение эквивалентности на X, определяемое условием

$$x_1 \sim x_2 \iff p(x_1) = p(x_2)$$

В частности, если p — универсальное накрытие, то Y естественно гомеоморфно $X/\operatorname{Aut}(p)$.

Доказательство.

Множество $U \subset Y$ открыто $\iff p^{-1}(U)$ открыто. Это следует из определения накрытия.

Построение накрытия с данной группой

Теорема

Пусть X — хорошее пространство (линейно связное, локально линейно связное, полулокально односвязное, как в теореме о существовании универсального накрытия). Пусть $x_0 \in X$.

Тогда для любой подгруппы $H < \pi_1(X,x_0)$ существует накрытие $p:(Y,y_0) \to (X,x_0)$ такое, что $Im(p_*) = H$.

Это накрытие единственно с точностью до изоморфизма накрытий.

Доказательство (план)

Существует универсальное накрытие $p_0 \colon \widetilde{X} \to X$. Отождествим $\pi_1(X, x_0)$ с группой $G = \operatorname{Aut}(p_0)$. Можно считать, что X = X/G (из предыдущего факта).

Положим $Y = \widetilde{X}/H$, и пусть $p_1 : \widetilde{X} \to Y$ соответствующая проекция (отображение факторизации).

Из свойств факторпространств существует непрерывное \vee $p: Y \to X$ такое, что $p_0 = p \circ p_1$.

Это p — искомое накрытие.

= 1 mesur, y some cheffy

coedumeer yo chego, we helly

G = Aut(po) ~ TI(X) - otombeoliens CH up Tucksun

Для записей

Иерархия накрытий

Рассмотрим всевозможные накрытия с фиксированной «хорошей» базой (X,x_0) в категории пространств с отмеченной точкой. Накрытия рассматриваем с точностью до эквивалентности.

Лекция 2

Иерархия накрытий

Рассмотрим всевозможные накрытия с фиксированной «хорошей» базой (X,x_0) в категории пространств с отмеченной точкой. Накрытия рассматриваем с точностью до эквивалентности.

Из предыдущих результатов следует:

• Имеется биекция между накрытиями и подгруппами $\pi_1(X,x_0)$: для каждой подгруппы $H < \pi_1(X,x_0)$ существует единственное накрытие p, для которого $H = Im(p_*)$.

Иерархия накрытий

Рассмотрим всевозможные накрытия с фиксированной «хорошей» базой (X,x_0) в категории пространств с отмеченной точкой. Накрытия рассматриваем с точностью до эквивалентности.

Из предыдущих результатов следует:

- Имеется биекция между накрытиями и подгруппами $\pi_1(X,x_0)$: для каждой подгруппы $H<\pi_1(X,x_0)$ существует единственное накрытие p, для которого $H=Im(p_*)$.
- Отношению включения подгрупп $H_1 < H_2$ при этой биекции соответсвует такое отношение порядка между накрытиями: для соответствующих накрытий $p_1: (Y_1, y_1) \to (X, x_0)$ и $p_2: (Y_2, y_2) \to (X, x_0)$ существует непрерывное $p: (Y_1, y_1) \to (Y_2, y_2)$ такое, что $p_1 = p_2 \circ p$. При этом p тоже накрытие.

Для записей

Содержание

- 🕕 Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям групп
- 💿 Длина и натуральная параметризация кривой
 - Длина гладкой кривой

Начинаем дифференциальную геометрию

Будем изучать дифференциальную геометрию кривых в пространстве \mathbb{R}^n (на самом деле — в n-мерном евклидовом пространстве).

Термины:

ullet Гладкий — класса C^{∞} .

Начинаем дифференциальную геометрию

Будем изучать дифференциальную геометрию кривых в пространстве \mathbb{R}^n (на самом деле — в n-мерном евклидовом пространстве).

Термины:

- ullet Гладкий класса C^{∞} .
- Гладкая кривая в \mathbb{R}^n гладкое отображение $\gamma\colon I\to\mathbb{R}^n$, где $I\subset\mathbb{R}$ интервал.

Чтобы не тонуть в случаях, обычно будем рассматривать только отрезки I=[a,b]. Для других видов интервалов всё аналогично.

$$\chi: [a, t] \rightarrow \mathbb{R}^n$$

$$\chi(t) = (\chi_1(t), ..., \chi_n(t))$$

Лекция 2 9 сентября 2020 г.

Начинаем дифференциальную геометрию

Будем изучать дифференциальную геометрию кривых в пространстве \mathbb{R}^n (на самом деле — в n-мерном евклидовом пространстве).

Термины:

- \bullet Гладкий класса C^{∞} .
- Гладкая кривая в \mathbb{R}^n гладкое отображение $\gamma\colon I\to\mathbb{R}^n$, где $I\subset\mathbb{R}$ интервал.

Чтобы не тонуть в случаях, обычно будем рассматривать только отрезки I = [a, b]. Для других видов интервалов всё аналогично.

Регулярная кривая — такая гладкая кривая $\gamma \colon I \to \mathbb{R}^n$, у которой производная нигде не обращается в ноль $(\forall t \in I \ \gamma'(t) \neq 0)$.

Пример: $\gamma(t)=(t^2,t^3)$ — гладкая, но не регулярная кривая на плоскости. Её изображение не выглядит «гладкой» линией.

$$y(t) = (f, H), -- f_{k}(t)$$

$$y'(t) = \lim_{\epsilon \to 0} y(t+\epsilon) - y(t)$$

$$= (f, H), -- f_{k}(t)$$

$$= (f, H), --$$

4□ > 4□ > 4 = > 4 = > = 90

Лекция 2 9 сентября 2020 г.

Как отличить геометрию от матанализа

К геометрическим свойствам или характеристикам кривых относятся только те, которые

- Сохраняются при движениях (или хотя бы при движениях, сохраняющих ориентацию)
- Сохраняются при заменах параметра (определение будет позже)

Лекция 2

Содержание

- 📵 Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)
 - Накрытия как факторпространства по действиям групп
- 2 Длина и натуральная параметризация кривой
 - Длина гладкой кривой

Лекция 2

Определение

Определение

Длина кладкой кривой $\gamma\colon [a,b] o \mathbb{R}^n$ — это

$$\ell(\gamma) = \int_a^b |\gamma'| = \int_a^b |\gamma'(t)| \, dt$$

Лекция 2

Определение

Определение

Длина кладкой кривой $\gamma\colon [a,b] o \mathbb{R}^n$ — это

$$\ell(\gamma) = \int_a^b |\gamma'| = \int_a^b |\gamma'(t)| \, dt$$

Факт

Длина сохраняется при движениях. Т.е., если $F: \mathbb{R}^n \to \mathbb{R}^n$ — движение, то $\ell(F \circ \gamma) = \ell(\gamma)$.

Лекция 2

Определение

Определение

 $oldsymbol{eta}$ лина кладкой кривой $\gamma\colon [a,b] o \mathbb{R}^n$ — это

$$\underbrace{\ell(\gamma)} = \int_a^b |\gamma'| = \int_a^b |\gamma'(t)| dt$$

Факт

Длина сохраняется при движениях. Т.е., если $F: \mathbb{R}^n \to \mathbb{R}^n$ — движение, то $\ell(F \circ \gamma) = \ell(\gamma)$.

Доказательство.

F — композиция ортогонального преобразования и **№** параллельного переноса.

Для параллельных переносов утверждение очевидно. Для ортогональных пользуемся тем, что дифференцирование коммутирует с линейными отображениями.

$$\forall \gamma: \mathbb{R} \to \mathbb{R}^n$$
 $\forall \text{ number uno } L: \mathbb{R}^n \to \mathbb{R}^m$
 $(L \circ \chi)'(t) = L(\chi'(t))$
 $L \in O(m)$
 $|(L \circ \chi)'(t)| = |\chi'(t)|$

Лекция 2 9 сентября 2020 г.

Кратчайшие в \mathbb{R}^n — отрезки

Теорема

Для любой гладкой кривой $\gamma\colon [\mathsf{a},\mathsf{b}] o \mathbb{R}^n$

$$\ell(\gamma) \ge |\gamma(a) - \gamma(b)|.$$

(Длина не меньше расстояния между концами).

Доказательство.

Проекция на прямую, проходящую через концы, не увеличивает длину \Longrightarrow достаточно доказать для $\gamma\colon [\mathsf{a},\mathsf{b}] \to \mathbb{R}.$

В этом случае, считая, что $\gamma(b) > \gamma(a)$:

$$\int_{a}^{b} |\gamma'| \ge \left| \int_{a}^{b} \gamma' \right| = \gamma(b) - \gamma(a) = |\gamma(b) - \gamma(a)|$$

32 / 45

Лекция 2 9 сентября 2020 г.

Кратчайшие на сфере — дуги больших кругов

Теорема

Для любой гладкой кривой $\gamma:[a,b]\to\mathbb{S}^{n-1}$, где \mathbb{S}^{n-1} — множество единичных векторов в \mathbb{R}^n ,

$$\ell(\gamma) \ge \angle(\gamma(a), \gamma(b)),$$

где 🗸 обозначает угол между векторами.

Доказательство

Зафиксируем малое $\delta>0$ и разобьем [a,b] на отрезки длины меньше δ точками $a=t_0< t_1<\cdots< t_N=b$. Обозначим $\gamma_i=\gamma|_{[t_{i-1},t_i]_{\gamma}}$ для $i=1,\ldots,N$.

Тогда по предыдущей теореме

$$\ell(\gamma) = \sum_{i} \ell(\gamma_i) \geq \sum_{i} |\gamma(t_i) - \gamma(t_{i-1})|.$$

Каждое слагаемое $|\gamma(t_i)-\gamma(t_{i-1})|$ оценивается снизу через угол:

(2)
$$|\gamma(t_i) - \gamma(t_{i-1})| \ge (1-\varepsilon) \cdot \angle(\gamma(t_i), \gamma(t_{i-1}))$$

где arepsilon o 0 при $\delta o 0$. (Это следует из сходимости $\frac{\sin x}{x} o 1$ при x o 0.)

Складывая и применяя неравенство треугольника для углов, получаем $\ell(\gamma) \geq (1-\varepsilon)\angle(\gamma(a),\gamma(b))$.

Это верно для сколь угодно малых $\varepsilon \implies$ теорема доказана.

Лекция 2

9 сентября 2020 г.

Для записей

Topoboue races (1)
$$\geq$$
 (1-2) \geq \leq \leq ($\gamma(t_i), \gamma(t_{i+1})$) \geq Hepby Δ One youb.
 $\forall v_1 u_1, u \in \mathbb{R}^{n-103}$
 \leq $(u_1v) + 2(v_1w) \geq 2(u_1w)$