Grafo Trivial

Definição: G é chamado de grafo trivial. Seja G = (V, E) um grafo com $V = \{v\}$ e $E = \phi$.

Teoremas de Grafos

Teorema: Seja G=(V,E) um grafo simples não-trivial. Então existem dois vértices de G com o mesmo grau.

Teorema: Se G=(V,E) é um grafo, então $\sum_{v\in V}\delta(v)=2|E|$

Grafo Simples

Definição: É um grafo não direcionado sem laços e sem arestas paralelas

Grafo Regular

Definição: É um grafo onde todos os vértices possuem o mesmo grau

Exemplo: 4-regular

Grafos Dirigidos e Não-Dirigidos

Definição: Um grafo dirigido é um par G=(V,E) onde V é um conjunto não-vazio (de vértices) e E é um conjunto/coleção de elementos de $V\times V$. E é uma coleção de pares ordenados de V. Os elementos de E são chamados de arestas dirigidas.

Definição: Um grafo é não-dirigido (*undirected*) se cada uma de suas arestas é antiparalela alguma outra aresta: para cada arestas v-w, o grafo também tem a aresta w-v. Por exemplo, o conjunto de arestas abaixo define um grafo não-dirigido.

- 1 Grafo dirigido G1(N, A):
 - N = {1,2,3,4,5,6}
 - A = $\{(1,2),(2,2),(2,4),(2,5),(4,1),(4,5),(5,4),(6,3)\}$

- 2 Grafo não-dirigido G2(N,A):
 - N = {1,2,3,4,5,6}
 - $A = \{(1,2),(1,5),(2,5),(3,6)\}$
- Obs: Arcos não ordenados?
 (2,5) == (5,2)

Multi-Grafo

Definição: Dizemos que um grafo dirigido G=(V,E) é um MULTI-GRAFO se E contém duas cópias de um mesmo par ordenado.

Grafo Subjacente

Definição: Dado um grafo dirigido G=(V,E) o *GRAFO SUBJACENTE* de G é o grafo obtido substituindo os pares ordenados de E por pares não-ordenados.

Grafo Completo

Def: O grafo completo de n vértices, denotado com K_n , é o grafo simples n vértices que possui uma aresta unindo todo par de vértices *DISTINTOS*.

Grafo Bipartido

Definição: O grafo G=(V,E) é dito *BIPARTIDO* se existem subconjuntos disjuntos V_1 e V_2 de V, tais que $V_1 \cup V_2 = V$, e tais que toda aresta $e \in E$ é incidente num vértice de V_1 e num vértice de V_2 .

Exemplos:

• K_1 e K_2 são bipartidos. K_n , com $n \ge 3$ não é bipartido.

Grafo Bipartido Completo

Definição: O grafo completo bipartido em m e n, com $m,n\in\mathbb{N}$, denotado com $K_{n,m}$ é o grafo simples com o conjunto de vértices $V=V_1\cup V_2$, com $V_1\cap V_2=\phi$ com $|V_1|=n$ e $|V_2|=m$ e tal que o conjunto de arestas consiste em todos as arestas que ligam um vértice de v_1 e um de v_2 .

Exemplo:

Grafo com Peso

Definição: Um grafo com peso é um grafo no qual cada aresta tem associado um n real chamado de peso.

Exemplo:

Grafo Conexo e Desconexo

Definição: Um grafo é dito conexo se para todo par de vértices existe um caminho entre eles. Definição: É um grafo onde existe pelo menos um vértice que não pode ser conectado a outro por um caminho.