Study of lifting of 1D adinkras to 2D

Kevin Iga and Yan X Zhang October 8, 2014

1 Definitions

1.1 1-d Adinkras

Let V(A) be the vertices of A.

Recall that a 1-d adinkra A has a rank function $g:V(A)\to \mathbf{Z}$ (making it into a graded poset). Let V(A,r) be the vertices of A with rank r. We will assume 0 to be the lowest rank in the support of g.

Recall that a 1-d adinkra has a code C(A), which is necessarily doubly-even. The code has parameters (n, k), where n is the number of coordinates and k is the dimensions of the code. In this situation, the vertices of A are labeled by cosets $\{0,1\}^n + C(A)$, so $|V(A)| = 2^{n-k}$.

1.2 2-d Adinkras

If I read Tristan's stuff right, we can completely translate the combinatorial rules to: a 2-d adinkra (of dimension n) is a finite simple connected graph A such that:

- It is an 1-d adinkra (with the associated ranking, dashing, etc.).
- It has p+q=n colors, where the first p-colors are called "left-moving" and the second q-colors are called "right-moving."
- A coherence condition: for any cycle, we imagine the following sum: going up (here "up" comes from the grading we have from the engineering dimension in our ranking for the 1-d adinkra) a left-handed edge adds -1, and going up a right-handed edge adds 1; going down the edges give contributions with opposite signs. The sum of this around any cycle must be 0. (in particular, this rules out things like ambidextrous bow-ties)

Assuming I interpreted these rules correctly, now I can do combinatorics without needing any physics.

2 Structure Theorems

2.1 Bigrading

The first structural fact we can impose is a bi-grading that is compatible with the grading we already have from the 1-d adinkra structure, in the sense that the 1-d grading is simply one of the coordinates of our bi-grading.

Proposition 2.1. A 1-d adinkra can be extended to a 2-d adinkra if and only if the 1-d adinkra has a bigrading to \mathbb{Z}^2 . This is a map $g: V \to \mathbb{Z}^2$, such that all left-moving edges correspond to displacements of (0,1) and right-moving edges correspond to displacements of (1,0).

Proof. Proof delayed until talking more with Kevin and Tristan about the easiest way to write things up to avoid reinventing wheels. \Box

This grading allows us to define the notation V(A,(x,y)), which is the set of vertices of A of grading $(x,y) \in \mathbf{Z}^2$. We will also use the notation V(A,r) to similar refer to vertices of A of grading $r \in \mathbf{Z}$ when referring to 1-d adinkras, which will come up in our study. Notice that when we consider a 2-d adinkra as a 1-d adinkra, we have the relation

$$V(A,r) = \bigcup_{x+y=r} V(A,(x,y)).$$

A really important consequence of having a bigrading is that we get to "complete the square" with the following Corollary:

Corollary 2.2. In a 2-d adinkra, suppose we have a path $(x, y \pm_1 1) \rightarrow (x, y) \rightarrow (x\pm_2 1, y)$, where each \pm_i corresponds to a choice of sign, the first and the last vertices are connected to $(x \pm_2 1, y \pm_1 1)$ via the corresponding colors in a square.

Proof. Because we have an (1-d) adinkra, the two edges in this path correspond to two different colors (WLOG 1 and 2 in order) respectively, and if we use the colors 2 and 1 in order we must also reach $(x \pm_2 1, y)$ from $(x, y \pm_1 1)$. Because left-moving colors only correspond to y-axis moves in the \mathbb{Z}^2 bigrading, and right-moving colors only correspond to x-axis moves, the first move must have displacement $(\pm_2 1, 0)$ and the second move must have displacement $(0, \pm_1)$. This is exactly equivalent to the statement.

2.2 Rectangle

Let the *support* of a 2-d adinkra (and/or its bigrading function g) be defined as the range of g, its bigrading function. Now, we show that the support of 2-d adinkra must form a rectangle in \mathbb{Z}^2 . In this and the following sections, it helps to have some standard assumptions:

- Recall that any 1-d adinkra has vertices labeled by equivalence classes of $\{0,1\}$ by some (n,k) doubly-even code L. We will refer to vertices by these equivalence classes (or particular elements of the equivalence classes).
- Recall that we have n = p + q colors. WLOG, let the first p colors be left-moving and the last q colors be right-moving. We will also refer to these colors as elements of $\{1, 2, ..., n\}$, thinking of them as the indices of the vertices labeled as elements of $\{0, 1\}^n$. So an edge of color i moves a vertex $(v_1v_2 \cdots v_n)$ by changing the i-th bit to $(1 v_i)$ and leaving the other vertices intact.
- We will always define $\overline{0}$ to be the vertex corresponding to the equivalence class of $(00\cdots 0)$. We will also assume that $\overline{0}$ has the coordinate (0,0). (to be precise, this means $g(\overline{0}) = (0,0)$).

For every vertex pair (v, w) in our 2-d adinkra, there exist (many) paths from v to w. Ignoring the dashings for now, let the sequence of colors on any path be called a *color sequence* for the path. So, for example, in a chromotopology corresponding to the unique trivial (4,0) code, the path with color sequence (3,2,1,1) carries $\overline{0} = 0000$ to 0010, 0110, 1110, and finally 0110.

Now, define a map s that takes a color sequence and returns an element of $V = \{0,1\}^n$ where the i-th element is the number of times (modulo 2) that color i appears in the sequence. For example, s(3,2,1,1) = 0110. Note that s(d) will return (a member of the equivalence class of) the bitstring obtained by applying the sequence d to $\overline{0}$. In particular that we may permute a sequence from $d = (d_n)$ to $d' = (d'_n)$ without changing the result of s.

The previous work on 1-d adinkras states that if we start at any vertex, following two paths with color sequences d and d' must end up at the same resulting vertex if and only if $s(d) = s(d') \pmod{L}$. Let l(d) be a rearrangement of d that moves all the left-moving colors to the beginning, and let r(d) be a rearrangement of d that moves all the right-moving colors to the beginning. Thus, suppose p = q = 2, we have l(3,2,1,1) = (2,1,1,3) and r(3,2,1,1) = (3,2,1,1). We always have s(l(d)) = s(r(d)) in general, since l(d) and r(d) are just permutations of each other.

Proposition 2.3. Suppose we have any path from (x, y) to (v, w) in a 2-d adinkra A; then the vertices (x, w) and (v, y) are in A's support.

Proof. Let this path take color sequence d. l(d) and r(d) must both end up at (v, w), but l(d) only changes along the y-axis in the first part of moves that only use left-moving colors, so it must end up at coordinate (x, w) to be able to end up at (v, w) (since it can only use right-moving / x-axis colors afterwards). Using the same argument for r(d) shows we must end up in (v, y) at some point in the path. \square

Corollary 2.4. The support of a 2-d adinkra is exactly some $k \times l$ rectangle. In other words, the set of points in \mathbb{Z}^2 in the range of the bigrading map can be taken to the set of points (x, y), $0 \le x < l$, $0 \le y < k$.

Proof. If the support is not a rectangle, then there must be some coordinates (x, y) and (v, w) in the support such that one of the other two diagonal coordinates are missing. This violates Proposition 2.3.

2.3 Factored by the boundary

Now, we show the main classification theorem, which is that a 2-d adinkra is completely controlled by its boundary. Let the *left boundary* A_L and *right boundary* A_R of the rectangle be the subgraphs of A induced by vertices of A that occur at the sets $\{(i,0)|0 \le i < l\}$ and $\{(0,j)|0 \le j < k\}$ respectively. It helps to picture the normal Cartesian plane rotated 45 degrees ounterclockwise, because then adjectives refer to the direction of "movement": this way, the left boundary literally corresponds to the left-most vertices in the support rectangle and vice-versa for the right.

Figure 1: Tensoring the two adinkras here with the following identification gives a non-disconnected adinkra with 16 vertices.

Note that we can have both A_L and A_R be disconnected graphs. An example that we will often return to is displayed in Figure 1. However, we show that the disconnectedness is not really an issue:

Lemma 2.5. All disconnected components in A_L (and respectively A_R) are isomorphic as graded posets.

$$[\star\star\star \text{TODO}\star\star\star]$$

Theorem 2.6. A 2-d adinkra A of type (n,k) is uniquely determined by A_L , A_R , and an identification of $V(A_L, 0)$ and $V(A_R, 0)$.

Here is another way to factor the adinkra:

Theorem 2.7. Pick any vertex $v \in V(A, (0,0))$. Let the connected component of the right boundary that v belongs to be labeled A_R^v ; similarly, let the connected component in the left boundary that v belongs to be labeled A_L^v . The adinkra A is uniquely determined by the vertices and edges of A_R^v and A_L^v .

Proof. Consider the color sequence d of any path from v to a vertex u in A_R^v . Pick any left-moving color c. Examine the sequence cd. Corollary 2.2 will force the cd_1 to end with the same x-axis displacement as d_1 , cd_1d_2 to end with the same x-axis

displacement as d_1d_2 , etc. so inductively any color sequence cd will end with the same x-axis displacement as d. Using induction, we get that for every one of the elements u of A_L^0 , the right-moving (x-axis) colors starting at u forms a copy A_R^v whose x-axis positions are forced by the right boundary.

The key observation is that every element u of the adinkra can be reached starting at v via moving to an element of the left boundary and then using only right-moving moves (i.e. by taking l(d) for any color sequence d that goes from v to u). Because of the discussion in our previous paragraph, A_R^v and A_L^v uniquely tell us how to obtain the coordinates of u.

We will worry less about exact rankings right now with the following construction: for an 1-d adinkra A let Val(A) be the valise form of A. For any 2-d adinkra A with boundary pair (A_L, A_R) , the adinkra defined by the boundary pair $(Val(A_L), Val(A_R))$ is again a 2-d adinkra. We will abuse notation and call this new adinkra Val(A), and call such an adinkra (i.e. where the rectangle is a 2×2 square) a valise (2-d) adinkra. We seek the following theorem, which is very similar to Theorem 2.6

Corollary 2.8. A valise 2-d adinkra A of type (n,k) is uniquely determined by A_L , A_R , and an identification of $V(A_L,0)$ and $V(A_R,0)$. Furthermore, $|A_L| = |A_R| = 2^{n-k-1}$.

Figure 2: This is a tight value which cannot be lifted.

Problem 1. What are all the 2-d adinkras A with the same valise adinkra Val(A)? Not all lifts are possible. For example, the adinkra in Figure 2 cannot be lifted to any non-valise form!

3 Quotienting

Define a even-split doubly-even (ESDE) code to be a doubly-even code isomorphic to a direct sum $C_L \oplus C_R$ of even codes. It was proved [?] that 1-d adinkras are ismorphic to quotienting the hamming cube H^n by a doubly-even code, so any adinkra A has a well-defined associated code C(A) that is uniquely determined by just the graph structure of the adinkra.

Our goal is to show

Theorem 3.1. The image of C of the set of 2-d adinkras are exactly the ESDE codes.

This answers a conjecture of Hübsch [].

To do this we need to show two things:

Proposition 3.2. Any value 2-d adinkra A has C(A) equal to a ESDE code.

Proof. Note that the automorphism group of the adinkra is defined by the basepoint. \Box

Proposition 3.3. Any ESDE code defines a valise 2-d adinkra A.

Proof. TODO

Here are some other problems:

Problem 2. Given two valise 1-d adinkras A_L and A_R of equal size, what identifications of $V(A_L, 0)$ and $V(A_R, 0)$ are possible?

Proof. Data: if we have $\{0,1\} \cup \{2,3\}$ on one side, the other side must be $\{0,2\} \cup \{1,3\}$.

 $[\star \star \star$ There are two kinds of quotienting that we can think of: one quotient is directly quotienting the mega hypercube adinkra by a ESDE code; one quotient is given the valise adinkra with associated A_L , A_R each with 2^{d+1} vertices, the necessary d-dimensional quotienting that occurs when we naively tensor the two parts (which gives 2^{2d} vertices in each corner, for 2^{2d+2} total vertices, when in the end we just want 2^{d+2} vertices. $\star \star \star$

4 ESDE Codes

In this section, we classify all ESDE codes.

 $[\star\star\star \text{TODO!} \star\star\star]$