Санкт-Петербургский государственный университет Прикладная математика и информатика

Отчет по научно-исследовательской работе SSA для временных рядов, варианты Circulant SSA

Выполнил:

Погребников Николай Вадимович группа 21.Б04-мм

Научный руководитель:

д. ф.-м. н., доц.

Голяндина Нина Эдуардовна

Кафедра Статистического Моделирования

Оглавление

1.	Введен	ие
2.	Постан	овка задачи
3.	Описан	ие результатов
	3.1.	Алгоритм метода SSA
	3.2.	Разделимость временных рядов
	3.3.	Пример работы алгоритма SSA на реальных данных 9
4.	Заклю	чение
Список	литер	атуры

1. Введение

Временные ряды представляют собой последовательность данных, собранных или измеренных в хронологическом порядке. Они играют ключевую роль в анализе и прогнозировании в различных областях, таких как экономика, финансы, климатология, медицина. Понимание эволюции явлений во времени является критическим для выявления тенденций, циклов и аномалий.

Сингулярный спектральный анализ (SSA) — метод для разложения временных рядов, который выделяет частотные компоненты, тренды и шум. В данном исследовании рассматривается математическая составляющая базового алгоритма SSA, а также его применение с помощью языка R и библиотеки Rssa.

2. Постановка задачи

Перед началом исследования были поставлены следующие цели:

- 1. Ознакомиться с базовым алгоритмом SSA[1];
- 2. Научиться подбирать параметры метода для наилучшей разделимости;
- 3. Проверить полученные теоретические знания на практике с помощью языка R и библиотеки Rssa[2].

3. Описание результатов

Пусть N>2. Рассмотрим вещественнозначный временной ряд $\mathbb{X}=(x_0,\dots,x_{N-1})$ длины N. Базовый алгоритм состоит из четырёх шагов.

3.1. Алгоритм метода SSA

Шаг 1. Вложение

Пусть L — некоторое целое число (длина окна), 1 < L < N. Строится L-траекторная матрица \mathbf{X} , состоящая K = N - L + 1 векторов вложения:

$$\mathbf{X} = \begin{pmatrix} x_0 & x_1 & x_2 & \dots & x_{K-1} \\ x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{L-1} & x_L & x_{L+1} & \dots & x_{N-1} \end{pmatrix}.$$

Полезным свойством является то, что матрица \mathbf{X} имеет одинаковые элементы на диагоналях. Таким образом, \mathbf{L} -траекторная матрица является ганкелевой.

Шаг 2. Сингулярное разложение (SVD)

Результатом этого шага является сингулярное разложение (**SVD**= Singular Value Decomposition) траекторной матрицы ряда.

Пусть $\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}}, \lambda_{1}, \ldots, \lambda_{L}$ — собственные числа матрицы \mathbf{S} , взятые в неубывающем порядке и U_{1}, \ldots, U_{L} — ортонормированная система собственных векторов соответствующих собственным числам матрицы \mathbf{S} .

Определим $d=\max\left\{i:\lambda_i>0\right\}$ и $V_i=\mathbf{X}^{\mathrm{T}}U_i/\sqrt{\lambda_i}$. Тогда сингулярным разложением называется представление матрицы в виде:

$$\mathbf{X} = \mathbf{X}_1 + \dots + \mathbf{X}_d = \sum_{i=1}^d \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$
 (1)

Набор $(\sqrt{\lambda_i}, U_i, V_i^{\mathrm{T}})$ называется i-й собственной тройкой разложения (1).

Шаг 3. Группировка

На основе разложения (1) производится процедура группировки, которая делит все множество индексов $\{1,\ldots,d\}$ на m непересекающихся подмножеств I_1,\ldots,I_d .

Пусть $I = \{i_1, \dots, i_p\}$, тогда $\mathbf{X}_I = \mathbf{X_{i_1}} + \dots + \mathbf{X_{i_p}}$. Такие матрицы вычисляются для каждого $I = I_1, \dots, I_m$. В результате получаются матрицы $\mathbf{X_{I_1}}, \dots, \mathbf{X_{I_m}}$. Тем самым разложение (1) может быть записано в сгруппированном виде:

$$\mathbf{X} = \mathbf{X}_{I_1} + \cdots + \mathbf{X}_{I_m}.$$

Шаг 4. Диагональное усреднение

Пусть \mathbf{Y} — матрица размерности $L \times K$. Диагональное усреднение переводит матрицу \mathbf{Y} в ряд g_0, \dots, g_{N-1} :

$$g_k = \begin{cases} \frac{1}{k+1} \sum_{m=1}^{k+1} y_{m,k-m+2}^* \text{ для } 0 \le k \le L^* - 1, \\ \frac{1}{L^*} \sum_{m=k-K^*+2}^k y_{m,k-m+2}^* \text{ для } L^* - 1 \le k \le K^*, \\ \frac{1}{N-k} \sum_{m=k-K^*+2}^* y_{m,k-m+2} \text{ для } K^* \le k \le N. \end{cases}$$

Применяя данную операцию к матрицам $\mathbf{X_{I_1}}, \dots, \mathbf{X_{I_m}}$, получаются m новых рядов: $\mathbb{X}_1, \dots, \mathbb{X}_m$. При этом, $\mathbb{X}_1 + \dots + \mathbb{X}_m = \mathbb{X}$.

3.2. Разделимость временных рядов

Пусть временной ряд $\mathbb{X} = \mathbb{X}^{(1)} + \mathbb{X}^{(2)}$ и задачей является нахождение этих слагаемых. В результате базового алгоритма **SSA** также получаем 2 ряда. Возникает вопрос, в каких случаях мы можем так выбрать параметр алгоритма L и так сгруппировать собственные тройки, чтобы получить исходные 2 ряда без смешиваний? При выборе длины окна L, каждый из рядов $\mathbb{X}^{(1)}$, $\mathbb{X}^{(2)}$, \mathbb{X} порождает траекторную матрицу $\mathbf{X}^{(1)}$, $\mathbf{X}^{(2)}$, \mathbf{X} .

Точная разделимость

Определение 1. Будем говорить, что ряды $\mathbb{X}^{(1)}$ и $\mathbb{X}^{(2)}$ слабо L-разделимы, если пространства, порождаемые строками $\mathbf{X}^{(1)}$ и $\mathbf{X}^{(2)}$ соответственно, ортогональны. То же самое должно выполняться для столбцов [1].

Если выполняется условие слабой L-разделимости, тогда существует такое сингулярное разложение траекторной матрицы \mathbf{X} ряда \mathbb{X} , что его можно разбить на две части, являющиеся сингулярными разложениями траекторных матриц рядов $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}$ [1].

Определение 2. Будем говорить, что ряды $\mathbb{X}^{(1)}$, $\mathbb{X}^{(2)}$ сильно L-разделимы, если они слабо L-разделимы и после процедуры **SVD** собственные числа рядов различны [1].

Если выполняется условие сильной L-разделимости, тогда любое сингулярное разложение траекторной матрицы \mathbf{X} ряда \mathbb{X} можно разбить на две части, являющиеся сингулярными разложениями траекторных матриц рядов $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}$ [1].

Примеры точной разделимости

Рассмотрим таблицу, в которой знаком + отмечены пары рядов, для которых существуют параметры функций и параметры метода L и K=N-L+1, при которых они разделимы (точно разделимы). Данная таблица 1 и условия разделимости с доказательствами взяты из книги [1].

	const	cos	\exp	$\exp \cos$	ak+b
const	-	+	-	-	-
\cos	+	+	-	-	-
\exp	-	-	-	+	-
exp cos	-	-	+	+	-
ak+b	_	_	-	-	-

Таблица 1. Точная разделимость

Например, если взять за $\mathbb{X}^{(1)} = 2\cos\left(\frac{2\pi}{24}x + \frac{3\pi}{11}\right)$, $\mathbb{X}^{(2)} = 2\cos\left(\frac{2\pi}{12}x\right)$, N = 143, L = 72, получится рисунок 1.

Рис. 1.
$$\mathbb{X} = \mathbb{X}^{(1)} + \mathbb{X}^{(2)} = 2\cos\left(\frac{2\pi}{24}x + \frac{3\pi}{11}\right) + 2\cos\left(\frac{2\pi}{12}x\right)$$

Reconstructed series First error = 6.62612560995205e-30 Second error = 3.09842079267633e-30 Overall error = 1.04724043423003e-29

Рис. 2.
$$\mathbb{X} = \mathbb{X}^{(1)} + \mathbb{X}^{(2)} = 2\cos\left(\frac{2\pi}{24}x + \frac{3\pi}{11}\right) + 2\cos\left(\frac{2\pi}{12}x\right)$$
 после применения **SSA**

После применения **SSA** ряды были сгруппированы на ряды с названиями first и second. Как можно заметить на рисунке 2, ошибка разделения равна нулю (машинному нулю). Значит, ряды точно разделились.

Однако, по таблице 1 видно, что условия точной разделимости достаточно жесткие и вряд ли выполнимы в реальных задачах. Тогда появляется такое понятие, как асимптотическая разделимость.

Асимптотическая разделимость

Для любого ряда \mathbb{X} длины N определим $\mathbb{X}_{i,j} = (x_{i-1}, \dots, x_{j-1}), \quad 1 \leq i \leq j < N$. Пусть $\mathbb{X}^{(1)} = (x_0^{(1)}, \dots, x_{N-1}^{(1)}), \mathbb{X}^{(2)} = (x_0^{(2)}, \dots, x_{N-1}^{(2)})$. Тогда определим коэффициент корреляции следующим образом:

$$\rho_{i,j}^{(M)} = \frac{\left(\mathbb{X}_{i,i+M-1}^{(1)}, \mathbb{X}_{j,j+M-1}^{(2)}\right)}{\left|\left|\mathbb{X}_{i,i+M-1}^{(1)}\right|\right|\left|\left|\mathbb{X}_{j,j+M-1}^{(2)}\right|\right|}.$$

Определение 3. Pяды $F^{(1)}, F^{(2)}$ называются ε -разделимыми при длине окна L, если

$$\rho^{(L,K)} \stackrel{\text{def}}{=} \max \left(\max_{1 \leq i,j \leq K} |\rho_{i,j}^{(L)}|, \max_{1 \leq i,j \leq L} |\rho_{i,j}^{(K)}| \right) < \varepsilon \text{ [1]}.$$

Определение 4. Если $\rho^{(\mathbb{X}(N),K(N))} \to 0$ при некоторой последовательности L = L(N), $N \to \infty$, то ряды $\mathbb{X}^{(1)}, \mathbb{X}^{(2)}$ называются асимтпотически L(N)-разделимыми [1].

Примеры асимптотической разделимости

Как можно заметить по таблице 2, для гораздо большего класса функций асимптотическая разделимость имеет место.

Таблица 2. Асимптотическая разделимость

	const	cos	exp	exp cos	ak+b
const	-	+	+	+	-
cos	+	+	+	+	+
\exp	+	+	+	+	+
$\exp \cos$	+	+	+	+	+
ak+b	+	+	+	+	-

Так, для $\mathbb{X}^{(1)}=2\cos\left(\frac{2\pi}{24}x+\frac{3\pi}{11}\right)$, $\mathbb{X}^{(2)}=\frac{x}{20}-4$, N=12*8, получится рисунок 3.

Рис. 3.
$$\mathbb{X} = \mathbb{X}^{(1)} + \mathbb{X}^{(2)} = 2\cos\left(\frac{2\pi}{24}x + \frac{3\pi}{11}\right) + \frac{x}{20} - 4$$

Если взять $N=12\times 8,\ L=48,\ {\rm To}\ {\rm c}\ {\rm y}$ величением N ошибки для разложения по первой и второй компонентах будут стремиться к нулю, как на рисунках $4,\ 5.$

Рис. 4. Ошибка для $2\cos\left(\frac{2\pi}{24}x + \frac{3\pi}{11}\right)$

Рис. 5. Ошибка для $\frac{x}{20} - 4$

3.3. Пример работы алгоритма SSA на реальных данных

Есть набор данных, состоящий из объема месячных продаж крепленых вин в Австралии с января 1984 года по июнь 1994 года. Этот пример также подробно разобран в книге [2].

После применения алгоритма с выбором параметров L=84 и определенной группировкой, получается разложение на трендовую, сезонную и шумовую составляющие.

Рис. 6. График продаж вин с 1980 по 1995 года

4. Заключение

В данной работе был исследован базовый алгоритм метода **SSA** и полученные знания были проверены на реальных и смоделированных примерах. Однако данная научно-исследовательская работа на этом не ограничивается.

Дальнейшими действиями является: научиться прогнозировать значения на основе предыдущих, рассмотреть различные модификации метода **SSA**.

Список литературы

- 1. Golyandina Nina, Nekrutkin Vladimir, Zhigljavsky Anatoly. Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC, 2001.
- 2. Golyandina Nina, Korobeynikov Anton, Zhigljavsky Anatoly. Singular Spectrum Analysis with R. Springer, 2018.