(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 9. September 2005 (09.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/083717\ A1$

(51) Internationale Patentklassifikation⁷:

G12B 21/22.

10 2004 040 188.8 19. August 2004 (19.08.2004) DE 10 2004 043 191.4

3. September 2004 (03.09.2004) DI

(21) Internationales Aktenzeichen:

PCT/EP2005/001456

(22) Internationales Anmeldedatum:

14. Februar 2005 (14.02.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

10 2004 008 852.7

20. Februar 2004 (20.02.2004) DE

(71) Anmelder und

(72) Erfinder: HUND, Markus [DE/DE]; Schlegelstr. 23, 95447 Bayreuth (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HEROLD, Hans [DE/DE]; Peter-Rosegger-Str. 18, 95447 Bayreuth (DE).

(74) Anwalt: ZECH, Stefan, M.; Meissner, Bolte & Partner, Bankgasse 3, 90402 Nürnberg (DE).

[Fortsetzung auf der nächsten Seite]

(54) Title: SCANNING PROBE MICROSCOPE

(54) Bezeichnung: RASTERSONDENMIKROSKOP

(57) Abstract: The invention relates to a scanning probe microscope comprising a basic frame or basis support to which a probe holder with a probe as well as a probe support are or can be fixed. The probe can be displaced relative to the probe support in the x and y direction in order to obtain information about the surface of a probe by scanning said probe. Furthermore, a reaction chamber inside which the sample support is disposed can be fastened to the basic frame of the scanning probe microscope. The side of the reaction chamber that faces the probe is provided with an opening through which the probe can be immersed into the reaction chamber. The inventive scanning probe microscope makes it possible to treat plasma with the aid of a plasma producing device in addition to treating a plurality of samples.

(57) Zusammenfassung: Die Erfindung betrifft ein Rastersondenmikroskop, welches einen Grundrahmen oder Grundträger umfasst, dem ein Sondenhalter mit einer Sonde sowie ein Probenträger befestigt bzw. befestigbar sind. Die Sonde ist relativ zum Probenträger in x- und y-Richtung verfahrbar, um durch ein Abrastern

WO 2005/083717

WO 2005/083717 A1

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

ZM, ZW.

ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

einer Probe Informationen über die Oberfläche der Probe zu gewinnen. Weiterhin ist vorgesehen, dass eine Reaktionskammer am Grundrahmen des Rastersondenmikroskops befestigbar ist, in der der Probenträger angeordnet ist, wobei die Reaktionskammer an ihrer der Sonde zugewandten Seite eine Öffnung aufweist, durch die die Sonde in die Reaktionskammer eintauchen kann. Neben einer Vielzahl möglicher Probebehandlungen ist eine Plasmabehandlung mit Hilfe einer Plasmaerzeugungseinrichtung möglich.

RASTERSONDENMIKROSKOP

Beschreibung

Die vorliegende Erfindung betrifft ein Rastersondenmikroskop nach dem Oberbegriff von Patentanspruch 1 mit fortgeschrittenen Fähigkeiten zur Probenbehandlung und insbesondere die Verbesserung von Rastersondenmikroskopen und verwandter Vorrichtungen, die beispielsweise die Rastersondentechnologie mit der (Stylus-)Profilometrie vereinen (z.B. Modell Dektak® 8 Advanced Development Profiler, Firma Veeco) und hier im Weiteren als Rastersondenmikroskope bezeichnet werden.

10

15

20

25

30

5

Ein Rastersondenmikroskop umfassend einen Grundrahmen bzw. einen Grundträger, an dem ein Sondenhalter mit einer Sonde sowie ein Probenträger befestigt bzw. befestigbar sind, wobei Sonde und Probenträger relativ zueinander verfahrbar sind. Durch Abrastern bzw. Abtasten einer auf dem Probenträger angeordneten Probe werden Informationen über die Oberfläche der Probe gewonnen. Solche Rastersondenmikroskope sind Stand der Technik und stellen eine wichtige Schlüsseltechnologie in Forschung und Entwicklung dar. Von der Rastersondenmikroskopie profitieren viele Bereiche der Wissenschaft und Industrie wie z.B. der Halbleiterindustrie, der Materialwissenschaften, der Biotechnologie und der Polymerforschung.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Rastersondenmikroskop sowie ein entsprechendes Verfahren zu schaffen, bei dem die Untersuchungsmöglichkeiten noch erweitert bzw. in ihrer Handhabung wesentlich vereinfacht werden.

Diese Aufgabe wird in vorrichtungstechnischer Hinsicht mit einem Rastersondenmikroskop nach den Merkmalen des Anspruchs 1 und in verfahrenstechnischer Hinsicht mit den Merkmalen des Anspruchs 24 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.

Aufgrund der hohen örtlichen Auflösung können mit Rastersondenmikroskopen gezielt sehr kleine Flächen untersucht werden. Normalerweise gilt es,

BESTÄTIGUNGSKOPIE

2

insbesondere in der Rasterkraftmikroskopie (AFM) als Vorteil, dass keine oder nur eine sehr geringe Probenvorbereitung zur Untersuchung notwendig ist und die Untersuchungen normalerweise unter Umgebungsbedingungen durchgeführt werden können. Eine gezielte, wiederholte und wirtschaftliche Einwirkung auf Proben eröffnet jedoch neue Untersuchungsmöglichkeiten in der Rastersondenmikroskopie und verwandter Vorrichtungen und Verfahren und erlaubt das Studium von Einflüssen einer Probenbehandlung mit Daten vor und nach der Probenbehandlung. So basiert beispielsweise das destruktive räumliche Abbildungsverfahren Nanomtomographie (WO 00/39569) auf der sequentiellen Abtragung von Probenmaterial an einer bestimmten Stelle der Probenoberfläche. Unglücklicherweise existieren jedoch mehrere ernsthafte und generelle technische Probleme und Hindernisse in der Anwendung und in der wirtschaftlichen Implementierung von Verfahren allgemein, die auf der Behandlung einer bestimmten Probenoberfläche und der Rastersondenmikroskopie basieren. Wird beispielsweise die Probe einer Niederdruckplasmabehandlung außerhalb des Rastersondenmikroskops unterzogen ("ex situ"), ist eine Umpositionierung der Probe nötig. Nach dem Einbau in das Rastersondenmikroskop ist eine Auffindung der interessierenden kleinen Probenoberfläche notwendig. Verschiedene Methoden und Rezepte zum Auffinden der interessierenden Probenoberfläche (Spot) sind in der Rastersondenmikroskopie bekannt. Sie nutzen meist für die Positionierung der Sonde und der Probe sogenannte Orientierungspunkte wie z.B. Defekte des Materials oder zugefügte Kratzer. Für eine breite Verwendung dieser Verfahren sind die bekannten Methoden jedoch ungeeignet, da sie zeit- und kostenintensiv, umständlich, unsicher und fehleranfällig sind und das Problem des Auffindens der selben Probenstelle nicht lösen. Dieses Problem behindert eine breite wirtschaftliche Nutzung bzw. die effektive Verwendung von Verfahren, die auf der wiederholten Rasterung bzw. Abtastung einer bestimmten Probenoberfläche basieren.

30

5

10

15

20

25

In-situ Untersuchungen im Bereich der Rastersondenmikroskopie im Ultrahochvakuum (UHV) sind bekannt und Stand der Technik (z.B. P. Geng et al, Rev. Sci. Instrum. 71, 504-508, 2000). Diese Verfahren und Vorrichtungen

5

10

15

20

25

30

3

sind technisch aufwendig, da sie auf der UHV-Technologie basieren. Die Handhabung von Proben und Sonden insbesondere der Austausch von Proben und Sonden ist schwieriger als mit Rastersondenmikroskopen, die unter Umgebungsbedingungen arbeiten. Insbesondere ist die Art der Probenbehandlung eingeschränkt und es existiert das Problem, dass die Sonde normalerweise auch eine Behandlung erfährt.

Ein Kerngedanke der vorliegenden Erfindung besteht nun darin, am Rastersondenmikroskop eine Reaktionskammer vorzusehen, innerhalb derer in gewünschter Weise auf die Probe eingewirkt werden kann, wobei vorherige und/oder anschließende Abtastvorgänge an der Oberfläche der Probe mittels der Sonde innerhalb der Reaktionskammer durchgeführt werden, wobei zu diesem Zweck die Reaktionskammer an ihrer der Sonde zugewandten Seite eine Öffnung aufweist, durch die die Sonde in die Reaktionskammer eintauchen kann.

Dabei kann in der im Rastersondenmikroskop integrierbaren Reaktionskammer eine Einwirkung auf die Probe im unterschiedlichster Weise vorgenommen werden. Es ist beispielsweise vorstellbar, von der Probe, insbesondere von deren Oberfläche Material schichtweise abzutragen. Alternativ ist es aber auch denkbar, auf eine Probe bzw. auf eine Grundstruktur Material schichtweise aufwachsen zu lassen, wobei in beliebigen Intervallen Abtastvorgänge zur Ermittlung der Oberflächeneigenschaften der jeweils erreichten Struktur durchgeführt werden können. Anstelle des Aufwachsens oder Abtragens kann auch eine anderweitige gezielte Veränderung der Eigenschaften der Probe bzw. der Probenoberfläche innerhalb der Reaktionskammer herbeigeführt werden und in Intervallen durch rastersondenmikroskopische Abtastung verfolgt werden. Abhängig von der gewählten Art der Probenbehandlung, wie z.B. mit Gasen, kann die Probe auch während der rastermikroskopischen Abtastung behandelt werden (in-situ). Durch die Möglichkeit der Trennung von Probenbehandlung und rastersondenmikroskopischer Untersuchung der Probenoberfläche sind auch Behandlungen der Probe möglich, die sonst die Sonde verändern oder zerstören würden und eine nachteiWO 2005/083717

4

PCT/EP2005/001456

lige Beeinflussung der rastersondenmikroskopischen Untersuchung zur Folge hätten. So wird beispielsweise die Verwendung aggressiver Ätzflüssigkeiten, wie z.B. Säuren, möglich. Die Probe kann auch durch ein elektromagnetisches, elektrisches und/oder magnetisches Feld behandelt werden.

Für die Reaktionskammer kommt in erster Linie eine zylindrische Grundgeometrie in Betracht. Es sind aber auch andere, insbesondere rotationssymmetrische Grundformen, wie beispielsweise eine Ellipsoid- oder eine Kugelform denkbar, wobei in jedem Fall an der Oberseite eine zum Eintritt der
Sonde ausreichend groß bemessene Öffnung vorgesehen sein muss.

10

Die relative Verfahrbarkeit zwischen Sonde und Probenträger kann dadurch erzielt werden, dass die Sonde in einer Untersuchungsebene (x- und y-Richtung) fest gehalten wird und der Probenträger mit Hilfe eines in der Untersuchungsebene (x- und y-Richtung) verfahrbaren Probentisches verfahren wird. Alternativ kann auch der Probenträger ortsfest gehalten werden und die relative Verfahrbarkeit ausschließlich durch ein Verfahren der Sonde erzielt werden. Es ist auch denkbar, dass sowohl Sonde als auch Probenträger gegenüber dem Grundrahmen des Rastersondenmikroskopes nicht ortsfest sind sondern beide verfahrbar bzw. einstellbar ausgestaltet sind.

20

25

30

15

Die relative Verfahrbarkeit zwischen Sonde und Probenträger wird durch geeignete Nanopositioniereinrichtungen bzw. Rastereinrichtungen, wie beispielsweise Piezoröhren und/oder spezielle Rastereinheiten für die quantitative Rastersondenmikroskopie nach dem Stand der Technik bewerkstelligt. Die Rastereinheit (Scanner) ist bei erhältlichen Rastersondenmikroskopen meist an eine Mikropositioniereinrichtung, beispielsweise an einen motorisierten Lineartisch gekoppelt, um zunächst eine grobe Annäherung der Sonde in z-Richtung an die Probenoberfläche zu bewerkstelligen (z.B. Modell DimensionTM 3100 Firma Veeco). Zur groben Positionierung der Probe dienen verfahrbare Messtische (xy-Stage), die zweckmäßigerweise luftgelagert sind, um eine möglichst reibungsfreie Bewegung zu ermöglichen. Beim Annäherungsvorgang, der oft vollautomatisch oder teilweise automatisiert ist, ist der luftgelagerte Tisch mit Hilfe von Vakuum fest auf die Grundplatte

fixiert und bleibt bis zum Zurückziehen der Sonde bzw. bis zur nächsten groben Verfahrung fixiert. Bei Mikroskopen, die z.B. in Kombination mit einem optisch invertierten Mikroskop arbeiten (z.B. Modell MFP 3DTM, Firma Asylum Research), wird die Rastereinheit durch einen xyz-Probenrastertisch (xyz-Sample-Scanning-Stage) gebildet, auf der die Probe gerastert wird. Solche Scanner weisen meist eine Öffnung (Apertur) auf und sind auf einem xy-Messtisch positioniert, der zur Positionierung im Mikrometerbereich (oder teilweise im Sub-Mikrometerbe-reich) dient.

5

Durch bestimmte Design-Eigenschaften wie beispielsweise eine kleine Bauhöhe des Probenhalters, weisen Rastersondenmikroskope insbesondere in der z-Richtung eine enorme mechanische Steifheit auf, die u.a. eine hohe Auflösung in der z-Richtung ermöglicht. Der gegenüber einer am Grundrahmen angeordneten Grundplatte verfahrbare Messtisch kann zur groben Positionierung der Probe zweckmäßigerweise als Luftgleittisch (air bearing table) ausgeführt sein, der aber während der kompletten Datenerfassung mit einer externen Vakuumpumpe fixiert wird.

20

25

30

Nach einem besonderen Aspekt der vorliegenden Erfindung können herkömmliche verfahrbare Messtische (xy-Stages) bzw. bestimmte Teile des Messtisch-Systems verwendet werden. Rastersondenmikroskope können beispielsweise mit Probenhaltern ausgestattet sein, die als Vakuum-Chuck umfassend eine Chuckbase (Luftgleittisch) und eine Chuckplatte ausgeführt sind (z.B. Rastersondenmikroskopmodell Dimension 3100, Firma Veeco). Derartige Chucks sind beispielsweise in der GB 21 22375 A sowie der EP 1276145 A2 beschrieben und dienen der Halterung planarer Untersuchungsobjekte, wie beispielsweise Wafer-Scheiben. Gemäß dem vorteilhaften Aspekt der vorliegenden Erfindung kann bei einem herkömmlichen Rastersondenmikroskop die komplette Chuck-Anordnung aus dem Messtisch (xy-Stage) entnommen und durch ein erfindungsgemäßes Reaktionskammermodul umfassend einen Reaktionskammer-Grundkörper, in der auch die Raktionskammer selbst angeordnet ist, ersetzt werden. Damit ist ein Reaktionskammer-Modul geschaffen, das sich auch zur Nachrüstung herkömmlicher Rastersondenmik-

roskope, die Chucks oder andere Mikroskoptische nach dem Stand der Technik aufweisen, eignet. Das Reaktionskammermodul kann insgesamt aus Metall, insbesondere aus Aluminium oder Edelstahl ausgebildet sein. Alternativ kann der Reaktionskammer-Grundkörper aus Metall, insbesondere Messing und die Reaktionskammer selbst aus Glas bzw. Glaskeramik gebildet sein. Weiter alternativ ist es auch möglich, das gesamte Reaktionskammermodul, umfassend Reaktionskammer-Grundkörper und Reaktionskammer insgesamt aus Glaskeramik herzustellen.

Der Messtisch mit dem Reaktionskammermodul bestehend aus Reaktionskammer und Reaktionskammer-Grundkörper kann auch aus einem monolithischen Glaskeramik-Block gefertigt sein und eine integrale Einheit bilden.

Es versteht sich von selbst, dass auch andere Varianten zur Positionierung bzw. Verstellung der erfindungsgemäßen Reaktionskammer vorgesehen sein können ohne auf herkömmliche Messtische (xy-Stages) zurückzugreifen, beispielsweise kann die Reaktionskammer mittels Klemmvorrichtungen befestigt sein und eine Abrasterung ausschließlich durch Verfahren der Sonde erfolgen.

20

25

30

15

In einer bevorzugten Weiterbildung der vorliegenden Erfindung ist eine Verschließeinrichtung, insbesondere eine Abdeckplatte oder ein Deckel vorgesehen, um die Öffnung nach Verbringung der Sonde aus einer Messposition $P_{\rm M}$ in eine zurückgezogene Probenvorbereitungsposition $P_{\rm V}$ verschließen zu können.

Obwohl in vielen Anwendungen auch eine ausreichende Einwirkung innerhalb der Reaktionskammer auf die Probe bei geöffneter Öffnung erzielbar ist, erscheint es letztlich wünschenswert, diese Öffnung zumindest bedarfsweise auch verschließen zu können. Hierfür kann eine Verschließeinrichtung nach Art einer Abdeckplatte oder eines Deckels über die Öffnung geschoben werden, wobei eine derartige Verschiebung insbesondere in einer translatorischen oder auch rotatorischen Bewegung erfolgen kann.

5

10

15

20

25

30

Nach einem besonders bevorzugten Aspekt der vorliegenden Erfindung sind Sonde und Reaktionskammer derart zueinander angeordnet, dass die zurückgezogene Probenvorbereitungsposition $P_{\rm V}$ ausgehend von einer vorzugsweise beliebigen Messposition durch Verfahren der Sonde oder der Probe ausschließlich in der zur x- und y-Richtung orthogonalen z-Richtung (senkrecht zur Oberfläche) erreichbar ist.

7

Durch diese Maßnahme wird das Problem der Repositionierung gelöst bzw. in erheblicher Weise vermindert. Dadurch, dass eine Trennung von Probe und Sonde vor gezielter Einwirkung auf die Sonde nur durch eine Verfahrung senkrecht zur Oberfläche der Probe über eine kurze Verfahrstrecke erfolgt, ist gewährleistet, dass trotz einer eventuellen Drift von Sondenaktuatoren und/oder Aktuatoren eines Probentisches bei erneuter Annäherung der Sonde an die Probe die ursprüngliche Position relativ exakt wiedergefunden wird.

In einer bevorzugten Ausgestaltung des Rastersondenmikroskops ist die Anordnung so getroffen, dass die Verfahrstrecke der Sonde relativ zur Probe zwischen 1 mm und 15 mm, vorzugsweise zwischen 1 mm und 6 mm, insbesondere zwischen 1 mm und 3 mm beträgt. Die Verfahrstrecke wird bei einer unverschließbaren Reaktionskammer dadurch bestimmt, wieweit die Sonde aus dem Bereich der Öffnung der Reaktionskammer entfernt sein muss, um nicht selbst unerwünschten Einwirkungen ausgesetzt zu sein.

Bei einer Reaktionskammer, an der eine Verschließeinrichtung vorgesehen ist, wird die Verfahrstrecke durch die Stärke einer Abdeckplatte oder eines Deckels einem Sicherheitsabstand zwischen Abdeckplatte bzw. Deckel und Sonde in der Probenvorbereitungsposition P_V und einem Abstand der Oberfläche der Probe hin zur Innenseite der Abdeckplatte bzw. des Deckels bestimmt.

In einer konkreten Ausgestaltung weist die Reaktionskammer weiterhin mindestens einen Einlass auf, um fluide Medien, wie Flüssigkeiten, Gase, PartiWO 2005/083717

kelströme und/oder ein Plasma in die Reaktionskammer einzuleiten. Die Reaktionskammer kann so in gewünschter Weise mit fluiden Medien, wie Flüssigkeiten, Gasen und/oder einem Plasma beschickt werden, um eine gewünschte Veränderung der Probe zu bewirken.

5

10

15

In einer weiter bevorzugten Ausgestaltung ist neben dem mindestens einen Einlass auch ein Auslass vorgesehen, der mit einer Saugeinrichtung in Wirkverbindung steht, um Flüssigkeiten, Gase, Partikelströme und/oder Plasmen über den Einlass durch die Reaktionskammer hindurchzuführen. Durch die Saugeinrichtung wird eine günstige Einströmung der fluiden Medien bzw. eine günstige Steuermöglichkeit des Fluidstromes geschaffen.

In einer konkreten Ausgestaltung kann an oder in der Reaktionskammer eine Plasmaerzeugungseinrichtung angeordnet sein, um innerhalb der Reaktionskammer ein Plasma erzeugen zu können. Ein derartiges Plasma kann insbesondere Verwendung finden, um einen Plasmaätzvorgang an der Oberfläche der Probe zu bewirken. In einer konkreten Weiterbildung ist die Plasmaerzeugungseinrichtung zur Erzeugung eines Plasmas auf induktivem Wege ausgebildet.

20

In einer bevorzugten Ausgestaltung umfasst die Plasmaerzeugungseinrichtung eine Flachspule, bei der alle Wicklungen im wesentlichen in einer Ebene angeordnet sind, sowie einen Kondensator, der radial-symmetrisch oder planar aufgebaut ist.

25

30

In einer weiteren Ausgestaltung der vorliegenden Erfindung sind an der Reaktionskammer mindestens zwei gegenpolige Elektroden vorgesehen, um einen kapazitativen Energieeintrag zu erwirken. Dies kann z. B. beim Reactive-Ion-Etching-Verfahren (RIE), das vor allem in der Halbleiterindustrie verwendet wird, zum Einsatz gelangen. Der kapazitative Energieeintrag kann allein oder in Kombination mit zusätzlichen Einwirkungen auf die Probe erfolgen, wie beispielsweise einer zusätzlichen Energieeinkopplung durch Mikrowellen. Eine Downstream-Plasmaätzwirkung kann dadurch erzielt wer-

PCT/EP2005/001456

den, dass eine perforierte Abschirmelektrode unterhalb der Probe in die Reaktionskammer eingesetzt wird. Der Auslass wird möglichst weit nach oben (Richtung Probe) verschoben.

9

Nach einem bevorzugten Aspekt der vorliegenden Erfindung weist die Reaktionskammer für typische Probengrößen bzw. Probenflächen ein Volumen zwischen 1 cm³ und 10 cm³, vorzugsweise zwischen 2 cm³ und 5 cm³ auf. Für größere Probenflächen von 40 mm x 40 mm beträgt das Volumen bevorzugtermaßen ca. 300 cm³.

10

25

WO 2005/083717

Um die Probe erden bzw. auf ein gewünschtes elektrisches Potential setzen zu können, ist ein Leiter in die Reaktionskammer geführt bzw. in die Reaktionskammer führbar zur Kontaktierung der Probe.

Nach einem weiteren vorteilhaften Aspekt der vorliegenden Erfindung kann die Reaktionskammer noch eine Probenheiz- und/oder Probenkühlvorrichtung umfassen. Eine Probenheizungsvorrichtung innerhalb der Reaktionskammer kann beispielsweise als heizbares miniaturisiertes Platin-Mikroheizelement oder als eine kommerziell erhältliche Heizpatrone ausgebildet sein.

Ein Heiz- und/oder Kühlelement kann auch durch ein Peltier-Element ge-

bildet sein.

Die Temperatur der Probe ist bei einer solchen Ausführungsform einstellbar. Miniaturisierte Probenheizungsvorrichtungen, die z.B. mit integriertem Temperaturfühler ausgerüstet sind, sind Stand der Technik (z.B. NanoScope® Heatersystem, Model HS-1, Firma Veeco). Sie können den Probenträger ganz oder teilweise ersetzen. Alternativ kann z.B. ein Platinmikroheizer oder ein anderer Heizer in den Probenträger integriert werden.

Als erfindungswesentliche Einheit wird auch ein Reaktionskammermodul zum Einbau in ein Rastersondenmikroskop nach der Erfindung unabhängig beansprucht.

5

10

15

20

25

30

Als erfindungswesentliche Einheit wird auch ein Reaktionskammermodul mit einem geeigneten Messtisch zum Einbau in ein Rastersondenmikroskop, insbesondere in Rastersondenmikroskope, angesehen, die es ermöglichen die Umgebungsbedingungen, wie z.B. die Luftfeuchtigkeit und andere Parameter einzustellen (z.B. das Rastersondenmikroskopmodell EnviroScopeTM Firma Veeco).

10

Das Verfahren zur Behandlung und Untersuchung von Oberflächen einer Probe mit Hilfe einer Sonde eines Rastersondenmikroskops und einer in das Rastersondenmikroskop eingebauten Reaktionskammer umfasst die folgenden Schritte:

Durchführen einer ersten rastersondenmäßigen Untersuchung eines Bereiches einer Oberfläche einer in einer geöffneten Reaktionskammer angeordneten Probe, Zurückziehen der Sonde in einer zur Oberfläche senkrechten Richtung um eine definierte Verfahrstrecke S aus ihrer Messposition P_M in eine Probenvorbereitungsposition P_V , Behandlung der Oberfläche innerhalb der Reaktionskammer durch zielgerichtete Einwirkung einer Flüssigkeit, eines Gases, eines Partikelstromes und/oder eines Plasmas über eine vorbestimmte Reaktionszeit, Rückführen der Sonde aus der Probenvorbereitungsposition P_V in die vorhergehende Messposition P_M bzw. in eine neue Ausgangsposition P_Λ in unmittelbarer Nachbarschaft zur vorherigen Messposition.

Dabei ist es erfindungsgemäß unerheblich, ob eine erste rastersondenmäßige Untersuchung eines Bereiches einer Oberfläche der Probe vor Behandlung der Probe in der Reaktionskammer oder erst nach Behandlung der Probe in der Reaktionskammer durchgeführt wird. In jedem Fall lässt sich das Verfahren nach einem bevorzugten Aspekt der Erfindung iterativ wiederholen und so eine sukzesive Abfolge Probenbehandlung-Messung-Probenbehandlung-Messung-etc. durchführen. Es kann hierbei insbesondere ein Schichtabtragen oder auch ein Schichtaufwachsen verfolgt werden.

5

10

15

20

25

30

11

In einer zweckmäßigen Weiterbildung des vorliegenden Verfahrens wird die relative Verfahrung zwischen Sonde und Probe so bewerkstelligt, dass vorhergehende Messposition P_M und neue Ausgangsposition P_A weniger als 600 nm vorzugsweise weniger als 200 nm, insbesondere weniger als 20 nm auseinanderliegen.

In praktischen Versuchen hat sich gezeigt, dass bei einer typischen Probenbehandlung durch ein Niederdruckplasma die vorherige Messposition P_M und die neue Ausgangsposition P_A nach jedem Behandlungsschritt um jeweils etwa 20 nm zunimmt, vorzugsweise sogar nur im Nanometerbereich oder Sub-Nanometerbereich zunimmt.

Nach einem weiteren Aspekt der vorliegenden Erfindung wird die relative Verfahrung zwischen Sonde und Probe so bewerkstelligt, dass die vorhergehende Messposition P_M und die Ausgangsposition P_A weniger als 0.04 ‰, vorzugsweise weniger als 0.004 ‰, insbesondere weniger als 0.0004 ‰ der Verfahrstrecke S beträgt wobei die etwa konstante Zunahme des Abstands zur ursprünglichen Messposition bei weiteren Behandlungsschritten weniger als etwa 0.0035 ‰ vorzugsweise weniger 0.00035 ‰ insbesondere weniger als 0.000035 ‰ der Verfahrstrecke S pro Behandlungsschritt zunimmt.

In einer speziellen Weiterbildung des Verfahrens ist vorgesehen, dass vor Behandlung der Oberfläche die Reaktionskammer verschlossen und vor Rückführung der Sonde erneut geöffnet wird, um das Eintauchen der Sonde in die Reaktionskammer zu ermöglichen.

Nach einem weiteren Aspekt des erfindungsgemäßen Verfahrens wird ein Plasma im Volumen der Reaktionskammer oder in einer Nebenkammer mit vergleichbar großem Volumen, insbesondere in einem Volumen von 1 cm³ bis 10 cm³ gezündet und betrieben. Dies lässt sich beispielsweise mit der bereits beschriebenen Flachspule sowie dem planar bzw. radial symmetrisch aufgebauten Kondensator erreichen.

5

10

15

20

25

12

Derzeit erhältliche Plasmaätzanlagen sind dagegen für den stationären Betrieb und für große Proben (z.B. Silizium-Wafer mit einem Durchmesser von 6 Zoll) und hohen HF-Leistungen (typisch: mehrere 100 W) dimensioniert. Im Gegensatz zu den meist für die Erfordernisse der Halbleiterindustrie beschriebenen Vorrichtungen und Verfahren wird hier vorrichtungs- und verfahrenstechnisch das Zünden und Betreiben von kleinen Plasmen ermöglicht, wie es insbesondere für die hier vorliegenden mikroskopischen Anwendungen zweckmäßig ist.

Die Reaktionskammer wird optional an ein Plasmamonitorsystem nach dem Stand der Technik mit Hilfe eines Lichtwellenleiters und eines Sensors angeschlossen. Solche Systeme analysieren das vom Plasma emittierte Licht. Da insbesondere zum Zünden des kleinen Plasmas eine größere Leistung als zum Betrieb erforderlich ist und nach erfolgter Leistungseinkopplung bis zur eigentlichen Zündung des Plasmas Verzögerungszeiten auftreten können, kann der Lichtpuls beim Zünden genutzt werden, um automatisch auf die Betriebsleistung umzuschalten und definierte Behandlungszeiten zu gewährleisten. Zusätzlich kann mit Hilfe eines Plasmamonitorsystems eine ereignisorientierte, automatisierte Anpassung der Betriebsparameter, insbesondere der eingekoppelten Leistung und eine Fehlerdiagnose bewerkstelligt werden.

Die Erfindung wird nachstehend auch hinsichtlich weiterer Merkmale und Vorteile anhand der Beschreibung von Ausführungsbeispielen und unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert.

5

15

20

25

30

Hierbei zeigen:

FIG 1 eine erste Ausführungsform eines Rastersondenmikroskops mit Reaktionskammer in einer skizzenhaften Schnittansicht

FIG 2 eine perspektivische Prinzipansicht eines Rastersondenmikroskops mit Reaktionskammermodul umfassend eine Reaktionskammer sowie einen Reaktionskammergrundkörper

- 10 FIG 3a bis 3e verschiedene Ausführungsformen einer Reaktionskammer mit Abdeckplatte
 - FIG 4a bis 4g verschiedene Ausführungsformen zur Platzierung eines Probenträgers innerhalb einer Reaktionskammer

FIG 5a und 5b eine mögliche Ausführungsform einer bevorzugten Plasmaerzeugungseinrichtung

In FIG 1 sind schematisch ein Grundrahmen 11 sowie ein Sondenhalter 12 eines Rastersondenmikroskops veranschaulicht. Statt eines Grundrahmens kann alternativ ein Träger dienen an den optional ein vorzugsweise beweglicher Ausleger befestigbar ist. Am Sondenhalter 12 ist eine Sonde 13 angeordnet. Auf dem Grundrahmen 11 ist ein Reaktionskammermodul 29 (Fig. 2), das einen Reaktionskammer-Grundkörper 27 sowie eine Reaktionskammer 16 umfasst, in einer Untersuchungsebene (xy-Ebene) verfahrbar oder stationär angeordnet. Der Reaktionskammer-Grundkörper 27 ist in Fig. 2 als integrale Einheit mit der Reaktionskammer 16 ausgeführt. Alternativ oder zusätzlich ist hier zwischen Sondenhalter 12 und Grundrahmen 11 eine Mikropositioniereinrichtung 42 zur Grobpositionierung vorgesehen. Zwischen Mikropositioniereinrichtung 42 und Sondenhalter 12 ist weiterhin eine Rastereinheit 43 vorgesehen, um eine Abrasterung der Probe vornehmen zu können. Zusätzlich kann zwischen dieser Rasteinheit 43 und der Mikropositioniereinrichtung 42 auch noch ein Aktuator 41, der z.B. als Piezo Aktuator

WO 2005/083717

bzw. Piezo Flexure Stage oder Magnetic xy-Scanner ausgeführt sein kann, vorgesehen, der mit einer typischen Genauigkeit eines piezoelektrischen Aktuatorsystems größere Verstellwege in z-Richtung (bis zu wenigen Millimetern) vornehmen kann.

5

10

15

In FIG 2 ist eine Ausführungsform eines erfindungsgemäßen Rastersondenmikroskops mit einem Reaktionskammermodul 29 in perspektivischer Ansicht schematisch dargestellt. Auf eine mit dem Grundrahmen 11 (nicht gezeigt) verbundene bzw. verbindbare Grundplatte 28 ist, insbesondere luftgelagert, ein verfahrbarer Messtisch 26 (xy-Stage) angeordnet, der mit einem Anschluss 45 mit einer Vakuum- bzw. Pressluftquelle verbunden ist. Der Messtisch 26 besteht bevorzugt aus Messing, Invar® oder einer Eisen-Nickel-Legierung mit einem kleinen Wärmeausdehnungskoeffizienten. Der Messtisch 26 (xy-Stage) umfasst Aktuatoren zur Bewegung in xy-Richtung (nicht gezeigt). In den verfahrbaren Messtisch 26 eingesetzt ist das bereits erwähnte Reaktionskammermodul 29, das hier eine im wesentlichen quaderförmige Gestalt aufweist und in seinen Abmessungen auf die Abmessungen eines ansonsten in den Messtisch 26 einsetzbaren Chuck abgestimmt sein kann.

20

25

30

Das erfindungsgemäße Rastersondenmikroskop könnte optional mit einer Vorrichtung zum automatischen Wechsel der Sonde nach dem Stand der Technik (z.B. WO 97/08733 bzw. EP 0847590) ausgestattet werden.

Im Reaktionskammer-Grundkörper 27 kann eine Reaktionskammer 16 aufgenommen sein oder bildet wie hier, mit ihr eine integrale Einheit. Die Reaktionskammer 16 weist hier eine zylindrische Wand aus Glas, insbesondere aus mechanisch bearbeitbarer Glaskeramik auf. Innerhalb der Reaktionskammer 16 ist ein Probenträger 14 vorgesehen. Der Probenträger kann prinzipiell beliebig geformt sein und kann sogar als Elektrode dienen (nicht gezeigt). Er ist jedoch vorzugsweise zylinderförmig und besteht aus Glaskeramik. Er kann separat innerhalb des zylindrischen Grundgefäßes der Reakti-

15

onskammer befestigt oder integral mit ihr ausgebildet sein (vgl. FIG 4a bis 4g).

Auf dem Reaktionskammermodul 29 und dem Messtisch 26 ist eine Plasmaerzeugungseinrichtung 22 angeordnet. Im einfachsten Fall besteht sie im Wesentlichen aus einer Flachspule 23 sowie einem Kondensator 30 (vgl. FIG 5a und FIG 5b). Die analoge Hochfrequenzschaltung kann auch durch ein miniaturisiertes vorzugsweise planares Hochfrequenzsystem, das mit Frequenzen im Mikrowellenbereich arbeitet (microwave integrated circuits), ersetzt werden.

Über die Plasmaerzeugungseinrichtung 22 kann in der Reaktionskammer 16 ein Plasma erzeugt werden, um die Oberfläche einer Probe in gezielter Weise zu bearbeiten, insbesondere schichtweise abzutragen.

15

20

25

30

10

Um eine gewünschte Substanz, insbesondere zur Erzeugung eines Plasmas in die Reaktionskammer 16 einzuleiten, weist diese einen Einlass 20 auf. Über einen Auslass 21 kann die Substanz ggf. in modifizierter Form, insbesondere nach einem Plasmaprozess ggf. zusammen mit von der Probe abgetragener Substanz abgeführt werden.

Um eine besonders intensive Einwirkung einer Substanz, insbesondere eines Plasmas auf die Probe zu gewährleisten, lässt sich die Reaktionskammer 16 nach einem besonderen Aspekt der vorliegenden Erfindung mittels einer Abdeckplatte 18 verschließen. Die Abdeckplatte schließt die Reaktionskammer 16 möglichst vollständig ab, wobei es auf eine besonders dichtende Verschließung nicht bei allen Reaktionsprozessen in gleicher Weise ankommt.

Gemäß einem wesentlichen Hauptaspekt der vorliegenden Erfindung wird allerdings die am Sondenhalter 12 befestigte Sonde 13 gerade soweit aus der Reaktionskammer 16 zurückgefahren, dass die Abdeckplatte 18 ohne Beschädigung der Sonde 13 die Reaktionskammer 16 verschließen kann. Wird die Abdeckplatte 18 entsprechend schmalbauend ausgeführt und ein nicht zu

5

10

15

20

25

16

hoher Sicherheitsabstand zwischen Abdeckplatte und Sonde 13 gewählt, so lässt sich eine relativ kurze Verfahrstrecke in z-Richtung für die Sonde 13 erzielen. Eine derart geringe Verfahrstrecke bringt den entscheidenden Vorteil mit sich, dass eine Repositionierung der Sonde 13 auf dem zuvor untersuchten Bereich der Probe verlässlich vorgenommen werden kann bzw. Abweichungen bei der Repositionierung äußerst gering sind.

Herkömmlicherweise war das Repositionieren mit erheblichem Aufwand, Fehlerquellen und Unsicherheiten behaftet. Es mussten eine Vielzahl von Aufnahmen in unterschiedliche Maßstabsbereichen zum Teil unter zusätzlicher Nutzung von optischen Mikroskopen vorgenommen werden, um später - oft nach längerem Suchen - aufgrund des Vergleichs ähnlicher Topographieverhältnisse oder anderer Signale den gleichen Spot wieder auffinden zu können. Die vorliegende Erfindung schafft hier auf einfache Weise Abhilfe, nämlich dadurch, dass die Verfahrstrecken äußerst klein und damit resultierende Fehler, Driften etc. ebenfalls äußerst gering sind.

Aufgrund der geringen Fehler kann evtl. auf eine Korrektur (manuell oder automatisch) ganz verzichtet werden, da nach dem Stand der Technik hohe Datendichten selbst bei größeren Rasterflächen möglich sind und somit interessierenden Details zugänglich sind ohne zeitaufwendiges nochmaliges Rastern bei kleineren Rasterflächen (Vergrößern mit Hilfe von Software). Alternativ erlauben Rastereinheiten nach dem Stand der Technik eine einfache Korrektur durch das Bedienpersonal oder automatisiert mit Hilfe von Software. Dies gilt natürlich insbesondere in der quantitativen Rastersondenmikroskopie. Meist interessiert jedoch nur ein Teil der Rasterfläche, so dass Korrekturen in vielen Anwendungen nicht oder nur nach einer bestimmten Anzahl von Probenbehandlungen nötig werden.

Große Rasterflächen zum Auffinden des Spots sind nicht nur zeitaufwendig, sondern sie können die Sonde auch unnötig negativ beeinflussen oder gar beschädigen (z.B. durch das Aufsammeln von Probenmaterial). Es interessieren auch konsistente Datensätze mit der Verwendung einer bestimmten Son-

5

10

15

20

25

30

de. Insbesondere sind auch Verdrehungen/Verkippungen der Probe mit Hilfe der Erfindung stark minimiert.

17

Das Reaktionskammermodul 29 umfasst den im wesentlichen quaderförmigen Reaktionskammer-Grundkörper 27 sowie eine im wesentlichen im Zentrum angeordnete, im wesentlichen zylindrisch ausgestaltete Reaktionskammer 16. Das Reaktionskammermodul 29 wird am Messtisch 26 über eine Klemmvorrichtung (nicht gezeigt) befestigt. Vorzugsweise bildet der Reaktionskammer-Grundkörper 27 und die Reaktionskammer 16 eine integrale Einheit und besteht aus Glaskeramik. Der Messtisch 26 kann mit dem Reaktionskammermodul 29 ebenfalls eine integrale Einheit bilden.

Die Größe des Volumens der Reaktionskammer hängt von der gewünschten maximalen Probengröße bzw. Probenfläche ab. Nach einem bevorzugten Aspekt der Erfindung weist die Reaktionskammer für Proben von einer Fläche von etwa 6 mm x 6 mm ein Volumen von 1 cm³ und 10 cm³, vorzugsweise zwischen 2 cm³ und 5 cm³ auf. Vorteilhaft an der in FIG 1 gezeigten Geometrie ist neben der Möglichkeit der flexiblen Anbringung einer Plasmaerzeugungseinrichtung das relativ große Volumen der Reaktionskammer. Störeinflüsse (Zustandsschwankungen), die die reproduzierbare Probenbehandlung behindern können, wie z.B. Druckänderungen, Flussänderungen oder Änderungen der eingekoppelten Leistung, wirken sich dann weniger stark aus als durch die Wahl von einem extrem kleinen Volumen. Es ergeben sich für eine zylindrisch geformte Reaktorgeometrie und Proben mit einer Fläche von 6 mm x 6 mm bevorzugte Abmessungen. Mit einem Durchmesser von 18 mm und einer Höhe des Zylinders von 22 mm wird bei einem Abstand der Probenoberfläche zur Innenseite der Abdeckplatte bzw. des Deckels von 2 mm ein Volumenverhältnis des sich direkt über der Probe befindlichen Volumens zum restlichen Volumen von ca. 0,1 erreicht. Das Verhältnis des sich direkt über der Probe befindlichen Volumens zur Probenoberfläche beträgt ca. 14, während das Verhältnis des gesamten Volumens zur Probenoberfläche etwa 156 beträgt. Bei der Wahl größerer Proben mit

einer Fläche von etwa 40 mm x 40 mm können diese Verhältnisse durch die Wahl eines größeren Durchmessers von etwa 120 mm bewerkstelligt werden.

18

Die Reaktionskammer 16 kann auch vorteilhaft in Rastereinheiten integriert werden, die eine Öffnung (Apertur) aufweisen (xy- oder xyz-Scanner). Dazu wird das Reaktionskammermodul 29 so angepasst, dass die Reaktionskammer vorzugsweise in die Öffnung hineinreicht, um kleine Bauhöhen u.a. für hohe mechanische Stabilität zu erreichen.

Innerhalb der Reaktionskammer ist, wie bereits anhand von FIG 1 erläutert, der Probenträger 14 angeordnet, der eine Probe 15 trägt. Die Oberfläche der Probe 15 kann durch die im Sondenhalter 12 gehaltene Sonde 13 abgerastert werden.

15

20

25

30

Auf dem Messtisch 26 ist weiterhin eine Verschließeinrichtung 31 angeordnet, die hier konkret einen rotatorisch gelagerten Aktuator 32, einen Hebelarm 33 sowie eine bereits erwähnte Abdeckplatte 18, hier konkret in Gestalt eines Deckels umfasst. Der Aktuator 32 ist so positioniert bzw. der Hebelarm 33 derart bemessen, dass bei Verschwenken in eine gewisse Winkelposition die am Hebelarm 33 angeordnete Abdeckplatte 18 über die Öffnung 17 der Reaktionskammer 16 geschwenkt werden kann und dabei die Reaktionskammer 16 verschließt. Der Aktuator 32 lässt sich dabei schwingungsvermeidend und reibungsarm und mit geringer Haftreibung über einen umlaufenden Faden 44 oder mit zwei Fäden 44, die am Aktuator befestigt sind, betätigen. Die Verschließeinrichtung könnte auch mit Vakuum, Druckluft, hydraulisch oder mechanisch, insbesondere mit einem Zahn- oder Gummiriemen oder mit einem Lamellenverschluss oder ähnlichen Vorrichtungen mit dafür jeweils geeigneten Aktuatoren betrieben werden. Um die Abdichtung zwischen Reaktionskammer und Abdeckplatte 18 zu verbessern, kann am oberen Rand der Reaktionskammer oder in der Abdeckplatte bzw. des Deckels eine Dichtung wie beispielsweise ein O-Ring angelegt bzw. befestigt sein (nicht gezeigt).

WO 2005/083717

5

20

19

PCT/EP2005/001456

Die Reaktionskammer 16 steht mit einer Plasmaerzeugungseinrichtung 22 in Wirkverbindung, die konkret die bereits erwähnte Flachspule 23 sowie einen Kondensator 30, der hier in planarer Ausführung vorliegt, umfasst. Der Messtisch 26 verfügt vorzugsweise über eine Aussparung 46, die in Fig. 2 zylindrisch ausgeformt ist.

In den Figuren 3a bis 3e sind verschiedene Möglichkeiten der Energieeinkopplung (Ein- und Auslass jeweils nicht gezeigt) veranschaulicht.

In FIG 3a ist eine bevorzugte Ausgestaltung für das Reactive-Ion-Etching (RIE) veranschaulicht. Die Abdeckplatte 18 ist hier leitfähig ausgebildet und bildet eine Elektrode 24. Am oberen Ende des Probenträgers 14 kann eine plattenförmige Elektrode 25 als Gegenelektrode ausgebildet sein, auf die die Probe 15 aufgelegt bzw. (z.B. mit einem Haftaufkleber) befestigt ist. Gestrichelt ist angedeutet, dass die Elektrode 25 auch wesentlich größer bemessen oder alternativ auch am Boden der Reaktionskammer 16 vorgesehen werden kann.

In FIG 3b ist eine modifizierte Ausführungsform dargestellt. Hier ist die Elektrode 24 als separates Element in die Abdeckplatte 18 integriert. Die als Gegenelektrode ausgebildete Elektrode 25 kann am Boden der Reaktionskammer 16 wahlweise innerhalb der Reaktionskammer 16 oder außerhalb der Reaktionskammer 16 angeordnet sein.

In FIG 3c ist eine nochmals modifizierte Ausführungsform dargestellt, bei der die beiden Elektroden 24, 25 jeweils an den Wänden der Reaktionskammer, jedoch innerhalb der Reaktionskammer 16 angeordnet sind.

In FIG 3d ist eine nochmals modifizierte Ausführungsform veranschaulicht, in der die Elektroden 24, 25 ebenfalls an den Wänden der Reaktionskammer 16, jedoch außen an den Wänden der Reaktionskammer 16 befestigt sind.

20

WO 2005/083717 PCT/EP2005/001456

In FIG 3e ist eine Ausführungsform zur Einkopplung von Mikrowellen in die Reaktionskammer 16 veranschaulicht. Zu diesem Zweck ist seitlich an die Reaktionskammer 16 ein Hohlleiter 34 angeordnet, an dessen gegenüberliegendem Ende eine Mikrowellenerzeugungseinrichtung 35 angeschlossen ist. Die von der Mikrowellenerzeugungseinrichtung 35 erzeugten Mikrowellen werden über den Hohlleiter 34 - und optional über eine dielektrische Wand - in die Reaktionskammer 16 geführt (nicht gezeigt).

In den Figuren 4a bis 4g sind verschiedene Ausführungsformen der Ausbildung der Reaktionskammer sowie des darin angeordneten Probenträgers beispielhaft veranschaulicht. In FIG 4a ist eine Ausführungsform veranschaulicht, bei der die Wände der Reaktionskammer 16 der zwei gegenüberliegenden Seiten ungleich hoch ausgebildet sind, was das Eintauchen des Sondenhalters 12 mit der Sonde 13 erleichtert.

15

10

Gleichzeitig wird eine Abdeckplatte 18 dargestellt, welche speziell auf diese abgeschrägte Ausbildung der Oberkante der Reaktionskammer 16 abgestimmt ist.

In FIG 4b ist eine Ausführungsform veranschaulicht, bei der die Reaktionskammer 16 entsprechend weit ausgebildet ist, so dass sich ein Problem begrenzter Eintauchtiefe nicht stellt, da der Sondenhalter 12 selbst in die Reaktionskammer 16 eintauchen könnte.

In FIG 4c ist eine Ausführungsform einer Reaktionskammer veranschaulicht, bei der lediglich der obere Bereich der Reaktionskammer eine derartige Erweiterung, die das Eintauchen des Sondenhalters 12 gestatten würde, veranschaulicht. Der Querschnitt der Öffnung 17 der Reaktionskammer 16 ist damit bei beiden Ausführungsformen gemäß FIG 4b und 4c größer bemessen als der Querschnitt des Sondenhalters 12.

In den Figuren 4d bis 4g sind verschiedene Varianten zur Befestigung des Probenträgers 14 in der Reaktionskammer 16 veranschaulicht. In der Aus-

10

15

20

25

30

21

führungsform gemäß FIG 4d wird der generell in der Länge an die jeweilige Probe 15 angepasste Probenträger auf eine konische Anformung 36 am Boden der Reaktionskammer 16 gedrückt und so fixiert.

Bei den Ausführungsformen gemäß den Figuren 4e und 4f sind Klemmeinrichtungen 39 vorgesehen, die den auf einen Zapfen 37 (FIG 4e) aufgesetzten Probenträger 14 klemmend halten bzw. den in eine Muffe 38 (FIG 4f) eingesetzten Probenträger 14 klemmend halten.

In FIG 4g ist eine nochmals alternative Ausführungsform gezeigt, bei der der Probenträger 14 seitlich an den Wänden der Reaktionskammer 16 befestigt wird. Dies kann ebenfalls insbesondere klemmend erfolgen, wobei der Probenträger beispielsweise plattenförmig und mit Aussparungen versehen ausgebildet sein kann. Alternativ könnte auch ein den Querschnitt der Reaktionskammer 16 überspannender Steg vorgesehen sein, der klemmend an den Wänden der Reaktionskammer 16 befestigt wird (nicht gezeigt).

In den Figuren 5a und 5b ist eine mögliche Ausführungsform einer bevorzugten Plasmaerzeugungseinrichtung umfassend eine Flachspule 23 veranschaulicht. FIG 5a zeigt den geometrischen Aufbau der Flachspule. In FIG 5b ist das Schaltdiagramm veranschaulicht, aus dem ersichtlich wird, dass die ersten (äußeren) beiden Spulenwicklungen als Einkoppelspule wirken und die inneren Spulen zusammen mit dem planaren oder koaxialen Kondensator 30 einen Schwingkreis definieren. Selbstverständlich kann diese Plasmaerzeugungseinrichtung auch unabhängig vom Einsatz in einem Rastersondenmikroskop Verwendung finden, was auch als erfindungswesentlich angesehen wird.

Mit einem ersten Prototyp einer Ausführungsform der Erfindung wurden mit Hilfe eines modifizierten Rastersondenmikroskops (DimensionTM 3100, Firma Veeco) bei einer Niederdruckplasmabehandlung (Prozessdruck: 1,5 mbar) einer Probe (dünner Polymerfilm) mit einem jeweils eingestellten Verfahrweg von 6 mm der Sonde 13 in z-Richtung bei insgesamt 17 Probenbehandlungen

22

Abstände zur ursprünglichen Bildmitte (Fehler) von etwa 230 nm bis 600 nm erreicht. Die Abstände nehmen mit einer typischen Rate von etwa 20 nm / Behandlungsschritt zu. Es hat sich darüber hinaus gezeigt, dass die beim Aufbau nach der vorliegenden Erfindung auftretenden äußerst geringen Repositionierungsfehler zum größten Teil aus einer gerichteten Drift resultieren, die sich durch entsprechende Offsets der Rastereinheit leicht kompensieren lassen könnten. Außerdem ist der Fehler einer Kalibration zugänglich und kann automatisch kompensiert werden.

Eine vorteilhafte Weiterentwicklung zur weiteren wesentlichen Verkleinerung der Fehler ist es die Bewegung der Sonde oder der Probe in der z-Richtung nicht mit herkömmlichen Lineartischen (die z.B. mit Kreuzrollenführungen ausgestattet sind) sondern mit einem speziellen Aktuator 41 insbesondere mit einem Piezo Aktuators oder mit einer Piezo Flexure Positionier Vorrichtung oder mit einem speziellen magnetischen xy-Scanner (Vettiger et al, IBM J. Res. Dev. 44 (3), 323-340, 2000 und Pantazi et al, Nanotechnology, 15, 612-621, 2004) beschrieben, zu bewerkstelligen. Verstellwege sind mit solchen Aktuatoren bereits im Millimeterbereich möglich (Model FPA-2000, Verfahrweg 2,3 mm, Firma Dynamic Structures & Materials). Mit entsprechenden Haltern kann beispielsweise der Aktuator 41 auf den Lineartisch eingeklemmt werden. Ein zweiter Halter ermöglicht nun die Befestigung der Rastereinheit am Aktuator 41 (nicht gezeigt). Hiermit könnte sich Repositionierungsfehler auf den Nanometer bzw. den Sub-Nanometerbereich reduzieren.

5

10

15

Bezugszeichenliste

	11	Grundrahmen
	12	Sondenhalter
5	13	Sonde
	14	Probenträger
	15	Probe
	16	Reaktionskammer
	17	Öffnung
10	18	Abdeckplatte
	20	Einlass
	21	Auslass
	22	Plasmaerzeugungseinrichtung
	23	Flachspule
15	24	Elektrode
	25	Elektrode
	26	Messtisch (xy-Stage)
	27	Reaktionskammer-Grundkörper
	28	Grundplatte (Grundrahmen)
20	29	Reaktionskammermodul
	30	Kondensator
	31	Verschließeinrichtung
	32	Aktuator
	33	Hebelarm
25	34	Hohlleiter
	35	Mikrowellenerzeugungseinrichtung
	36	konische Anformung
	37	Zapfen
	38	Muffe
30	39	Klemmeinrichtungen
	41	Aktuator (z.B. als Piezo Aktuator, Piezo Felxure Stage oder Magnetic
		xy-Scanner ausgeführt)
	42	Mikropositioniereinrichtung

43	Rastereinheit
44	Faden (oder alternativ zwei Fäden)
45	Anschluss für Vakuum- bzw. Pressluftquelle
46	Aussparung

Patentansprüche

5

Rastersondenmikroskop umfassend einen Grundrahmen (11), an dem 1. ein Sondenhalter (12) mit einer Sonde (13) sowie ein Probenträger (14) befestigt bzw. befestigbar sind, wobei Sonde (13) und Probenträger (14) relativ zueinander verfahrbar sind, um durch ein Abrastern einer auf dem Probenträger (14) angeordneten Probe (15) Informationen über die Oberfläche der Probe (15) zu gewinnen,

25

PCT/EP2005/001456

- dadurch gekennzeichnet, 10 dass eine Reaktionskammer (16) am Grundrahmen (11) des Rastersondenmikroskops befestigbar ist, in der der Probenträger (14) angeordnet ist,
- wobei die Reaktionskammer (16) an ihrer der Sonde (13) zugewandten Seite eine Öffnung (17) aufweist, durch die die Sonde (13) in die Re-15 aktionskammer (16) eintauchen kann.
- Rastersondenmikroskop nach Anspruch 1, 2. dadurch gekennzeichnet, dass eine Verschließeinrichtung (31), insbesondere eine Abdeckplatte 20 (18) vorgesehen ist, um die Öffnung (17) nach Verbringen der Sonde (13) aus einer Messposition P_M in eine zurückgezogene Probenvorbereitungsposition P_v verschließen zu können.
- Rastersondenmikroskop nach Anspruch 2, 3. 25 dadurch gekennzeichnet, dass die zurückgezogene Probenvorbereitungsposition Pv ausgehend von einer vorzugsweise beliebigen Messposition durch Verfahren der Sonde bzw. Probe ausschließlich in der zur x- und y-Richtung orthogonalen z-Richtung (senkrecht zur Oberfläche) erreichbar ist. 30
 - Rastersondenmikroskop nach einem der Ansprüche 1 bis 3, 4. dadurch gekennzeichnet,

26

WO 2005/083717

25

.

PCT/EP2005/001456

dass die Verfahrstrecke der Sonde (13), relativ zur Probe zwischen 1 mm und 15 mm, vorzugsweise zwischen 1 mm und 6 mm, insbesondere zwischen 1 mm und 3 mm beträgt.

- 5. Rastersondenmikroskop nach einem der Ansprüche 1 bis 4,
 dadurch gekennzeichnet,
 dass die Verfahrstrecke der Sonde (13) relativ zur Probe zwischen 1
 mm und 3 mm beträgt und mit einem Aktuator (41) insbesondere einem piezoelektrischen Aktuator bewerkstelligt wird.
- 6. Rastersondenmikroskop nach Anspruch 5,
 dadurch gekennzeichnet,
 dass der Aktuator (41) als piezoelektrischer Aktuator oder als Piezo
 Flexure Positionier Vorrichtung oder als magnetischer xy-Scanner
 bzw. Positioniervorrichtung ausgebildet und zweckmäßigerweise zwischen einer am Grundrahmen (11) angeordneten Mikropositioniereinrichtung (42) und einer mit dem Sondenhalter (12) verbundenen Rastereinheit (43) angeordnet ist.
- 7. Rastersondenmikroskop nach einem der Ansprüche 1 bis 6,
 dadurch gekennzeichnet,
 dass die Reaktionskammer (16) weiterhin einen Einlass (20) aufweist,
 um fluide Medien, wie Flüssigkeiten, Gase, Partikelströme und/oder
 ein Plasma in die Reaktionskammer (16) einzuleiten.
- 8. Rastersondenmikroskop nach Anspruch 7,
 dadurch gekennzeichnet,
 dass die Reaktionskammer (16) einen Auslass (21) aufweist, der mit
 einer Saugeinrichtung in Wirkverbindung steht, um Flüssigkeiten, Gase, Partikelströme und/oder Plasmen über den Einlass (20) durch die
 Reaktionskammer (16) hindurchzuführen.
 - 9. Rastersondenmikroskop nach einem der Ansprüche 1 bis 8,

WO 2005/083717

dadurch gekennzeichnet,

dass an oder in der Reaktionskammer (16) eine Plasmaerzeugungseinrichtung (22) angeordnet ist, um innerhalb der Reaktionskammer (16) ein Plasma erzeugen zu können.

5

10. Rastersondenmikroskop nach Anspruch 9, dadurch gekennzeichnet, dass die Plasmaerzeugungseinrichtung (22) zur Erzeugung eines Plasmas auf induktivem Wege ausgebildet ist.

10

15

- 11. Rastersondenmikroskop nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Plasmaerzeugungseinrichtung eine Flachspule (23), bei der alle Wicklungen im wesentlichen in einer Ebene angeordnet sind und einen Kondensator (30), der radial-symmetrisch oder planar aufgebaut ist, umfasst.
- 12. Rastersondenmikroskop nach einem der Ansprüche 9 bis 11,
 dadurch gekennzeichnet,

 dass die Plasmaerzeugungseinrichtung (22) in Form einer miniaturisierten, integrierten Hochfrequenzschaltung ausgebildet und insbesondere planar aufgebaut ist.
- 13. Rastersondenmikroskop nach einem der Ansprüche 9 bis 12,
 dadurch gekennzeichnet,
 dass die Plasmaerzeugungseinrichtung (22) mit einem PlasmamonitorSystem in Wirkverbindung steht, mit Hilfe dessen die zum Zünden
 und/oder zum Betrieb der Plasma-Erzeugungseinrichtung (22) erforderliche Leistung gesteuert wird.

30

14. Rastersondenmikroskop nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet,

dass an der Reaktionskammer (16) mindestens zwei gegenpolige Elektroden (24, 25) vorgesehen sind, um einen kapazitiven Energieeintrag zu erwirken.

- 5 15. Rastersondenmikroskop nach einem der Ansprüche 1 bis 14,
 dadurch gekennzeichnet,
 dass die Reaktionskammer (16) ein Volumen zwischen 1 cm³ und 10
 cm³, vorzugsweise zwischen 2 cm³ und 5 cm³ aufweist.
- 16. Rastersondenmikroskop nach einem der Ansprüche 1 bis 14,
 dadurch gekennzeichnet,
 dass die Reaktionskammer (16), insbesondere zur Behandlung größerer Proben mit einer Fläche von beispielsweise 40 mm x 40 mm ein
 Volumen von 10 cm³ bis 300 cm³ aufweist.

15

17. Rastersondenmikroskop nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass ein Leiter (26) in die Reaktionskammer (16) geführt ist oder führbar ist zur Kontaktierung der Probe (15).

20

- 18. Rastersondemikroskop nach einem der Ansprüche 2 bis 17, dadurch gekennzeichnet, dass die Verschließeinrichtung (31) einen hydraulisch, pneumatisch oder mechanisch angetriebenen Aktuator (32) umfasst, der eine reibungsarme und schwingungsvermeidende Bewegung der Abdeckplatte (18) bewirkt.
- 19. Rastersondenmikroskop nach Anspruch 18, dadurch gekennzeichnet,
- dass der Aktuator (32) eine Verschiebung der Abdeckplatte, insbesondere in einer rotatorischen oder translatorischen Bewegung bewirkt.

29

- 20. Reaktionskammermodul zum Einbau in ein Rastersondenmikroskop mit den Merkmalen nach einem der Ansprüche 1 bis 19.
- Reaktionskammermodul nach Anspruch 20,
 dadurch gekennzeichnet,
 dass das Reaktionskammermodul (29) im wesentlichen aus der Reaktionskammer (16) selbst besteht.
- 22. Reaktionskammermodul nach Anspruch 20,
 dadurch gekennzeichnet,
 dass das Reaktionskammermodul (29) einen ReaktionskammerGrundkörper (27) sowie eine Reaktionskammer (16) umfasst.
- 23. Reaktionskammermodul nach Anspruch 22,
 dadurch gekennzeichnet,
 dass das Reaktionskammermodul (29), insbesondere als Austauschmodul für einen Chuck, in einen in Untersuchungsebene (xy-Ebene) verfahrbaren Messtisch (26) einsetzbar ist oder mit dem Messtisch (26) eine integrale Einheit bildet.

20

24. Verfahren zur Behandlung und Untersuchung von Oberflächen mit Hilfe einer Sonde (13) eines Rastersondenmikroskops und einer in das Rastersondenmikroskop eingebauten Reaktionskammer (16) umfassend die folgenden Schritte:

25

- Durchführen einer ersten rastersondenmäßigen Untersuchung eines Bereiches einer Oberfläche einer in einer geöffneten Reaktionskammer (16) angeordneten Probe (15),
- Zurückziehen der Sonde (13) in einer zur Oberfläche senkrechten Richtung um eine definierte Verfahrstrecke S aus ihrer Messposition P_M in eine Probenvorbereitungsposition P_V,
 - Behandlung der Oberfläche innerhalb der Reaktionskammer (16) durch zielgerichtete Einwirkung einer Flüssigkeit, eines Gases, ei-

- nes Partikelstromes und/oder eines Plasmas über eine vorbestimmte Reaktionszeit,
- Rückführen der Sonde (13) aus der Probenvorbereitungsposition P_V in die vorhergehende Messposition P_M bzw. in eine neue Ausgangsposition P_A in unmittelbarer Nachbarschaft zur vorherigen Messposition.
- 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet,
- dass die relative Verfahrung zwischen Sonde (13) und Probe (15) so bewerkstelligt wird, dass vorhergehende Messposition P_M und neue Ausgangsposition P_A weniger als 600 nm, vorzugsweise weniger als 200 nm, insbesondere weniger als 20 nm beabstandet sind.
- Verfahren nach Anspruch 24,
 dadurch gekennzeichnet,
 dass die vorhergehende Messposition P_M und die Ausgangsposition P_A
 weniger als 0.04 ‰, vorzugsweise weniger als 0.004 ‰, insbesondere
 weniger als 0.0004 ‰ der Verfahrstrecke S beträgt, wobei vorzugsweise die etwa konstante Zunahme des Abstands bei weiteren Behandlungsschritten weniger als etwa 0.0035 ‰ vorzugsweise weniger
 0.00035 ‰, insbesondere weniger als 0.000035 ‰ der Verfahrstrecke
 S pro Behandlungsschritt zunimmt.
- 25 27. Verfahren nach einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, dass vor Behandlung der Oberfläche die Reaktionskammer (16) verschlossen und vor Rückführung der Sonde (13) erneut geöffnet wird, um das Eintauchen der Sonde (13) in die Reaktionskammer (16) zu ermöglichen.
 - 28. Verfahren nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet,

31

dass ein Plasma im Volumen der Reaktionskammer oder in einer Nebenkammer mit vergleichbar großem Volumen, insbesondere in einem Volumen von 1 cm³ bis 10 cm³ gezündet und betrieben wird.

5 29. Verfahren nach Anspruch 24,
dadurch gekennzeichnet,
dass die Verfahrensschritte automatisch mit Hilfe einer Rechnersteuerung durchgeführt werden.

Fig. 1

Fig.4e

Fig.4d

Fig.4f

INTERNATIONAL SEARCH REPORT

hal Application No PCT/EP2005/001456

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G12B21/22 G12B21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ G12B$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, BIOSIS, EMBASE

	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of t	he relevant passages	Relevant to claim No
X	EP 0 899 561 A (JAPAN SCIENCE TECHNOLOGY CORPORATION; KONDO, 3 March 1999 (1999-03-03) figures 1,3-6 paragraphs '0007! - '0010!, '0025!, '0027! - '0031!	YUKIHITO)	1-3,5-8, 16-26
A	0025!, 0027! - 0031!		4,9-17, 27-29
		-/	
X Furt	her documents are listed in the continuation of box C.	χ Patent family members are listed	in annex,
	togging of stied decuments	<u>K</u>	
 Special or 	Decores of CIEC COCHMENTS :		
"A" docum consid "E" earlier filing of the citatic "O" docum which citatic "O" docum other "P" docum	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international late ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed	"T" later document published after the int or priority date and not in conflict with cited to understand the principle or the invention of the cannot be considered novel or cannot involve an inventive step when the description of the cannot be considered to involve an inventive step when the description of the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the art. "&" document member of the same patents.	the application but seemy underlying the claimed invention to be considered to coument is taken alone claimed invention eventive step when the ore other such docupius to a person skilled
"A" docum consic "E" earlier filing "L" docum which citatic "O" docum other "P" docum later t	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but	or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an Inventive step when the discument of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art.	the application but secry underlying the claimed invention to be considered to coument is taken alone claimed invention the core other such document is used to a person skilled tamily
"A" docum consic filing of the citatic citatic "O" docum other "P" docum later t	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international late ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed	or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the difference of the cannot be considered to involve an independent of the cannot be considered to involve an independent is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent	the application but secry underlying the claimed invention to be considered to coument is taken alone claimed invention the core other such document is used to a person skilled tamily

INTERNATIONAL SEARCH REPORT

Intern hal Application No
PCT/EP2005/001456

ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
LAEGSGAARD E ET AL: "A high-pressure scanning tunneling microscope" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 72, no. 9, September 2001 (2001-09), pages 3537-3542, XP012039324 ISSN: 0034-6748 figures 1,2 paragraph '00II!	1,4-8, 15-26,29
	2,3, 9-14,27, 28
WILMS M ET AL: "A new and sophisticated electrochemical scanning tunneling microscope design for the investigation of potentiodynamic processes" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 70, no. 9, September 1999 (1999-09), pages 3641-3650, XP012037650 ISSN: 0034-6748 the whole document	1,4-9, 14-17, 20-22
	2,3, 10-13, 18,19, 23-29
GENG PETER ET AL: "A compact ultrahigh-vacuum system for the in situ investigation of III/V semiconductor surfaces" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 71, no. 2, February 2000 (2000-02), pages 504-508, XP012038006 ISSN: 0034-6748 cited in the application figures 1,3 paragraph '00II!	1-29
	scanning tunneling microscope" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 72, no. 9, September 2001 (2001-09), pages 3537-3542, XP012039324 ISSN: 0034-6748 figures 1,2 paragraph '00II! WILMS M ET AL: "A new and sophisticated electrochemical scanning tunneling microscope design for the investigation of potentiodynamic processes" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 70, no. 9, September 1999 (1999-09), pages 3641-3650, XP012037650 ISSN: 0034-6748 the whole document GENG PETER ET AL: "A compact ultrahigh-vacuum system for the in situ investigation of III/V semiconductor surfaces" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 71, no. 2, February 2000 (2000-02), pages 504-508, XP012038006 ISSN: 0034-6748 cited in the application figures 1,3

INTERNATIONAL SEARCH REPORT

imormation on patent lanning members

Intern al Application No
PCT/EP2005/001456

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0899561	A	03-03-1999	JP JP EP US	3407101 B2 11067141 A 0899561 A1 6242737 B1	19-05-2003 09-03-1999 03-03-1999 05-06-2001

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2005/001456

a. Klassifizierung des anmeldungsgegenstandes IPK 7 G12B21/22 G12B21/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ G12B$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, BIOSIS, EMBASE

		NDEX, BIOOTO, ENDINGE	
C ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	EP 0 899 561 A (JAPAN SCIENCE AND TECHNOLOGY CORPORATION; KONDO, YU 3. März 1999 (1999-03-03) Abbildungen 1,3-6 Absätze '0007! - '0010!, '0012! '0027! - '0031!	KIHITO)	1-3,5-8, 16-26
A	0027. 0031.		4,9-17, 27-29
		/	
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu nehmen	X Siehe Anhang Patentfamilie	
* Besonder "A" Veröffe aber i "E" älteres Anme schei schei ander soll o ausgg "O" Veröffe eine I "P" Veröffe	e Kategorien von angegebenen Veröffentlichungen : antlichung, die den allgemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen oldedatum veröffentlicht worden ist entlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- enen zu lassen, oder durch die das Veröffentlichungsdatum einer ren im Recherchenbericht genannten Veröffentlichung belegt werden der die aus einem anderen besonderen Grund angegeben ist (wie eftihrt) entlichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Ausstellung oder andere Maßnahmen bezieht antlichung, die vor dem Internationalen Anmeldedatum, aber nach beanspruchten Prioritätsdatum veröffentlicht worden ist	diese Verbindung für einen Fachman "&" Veröffentlichung, die Mitglied derselbe	nt worden ist und mit der ur zum Verständnis des der us zutung; die beanspruchte Erfindun zutung; die beanspruchte Erfindun zutung; die beanspruchte Erfindun zutung; die beanspruchte Erfindun zutung; die beanspruchte Erfindung keit beruhend betrachtet it einer oder mehreren anderen n Verbindung gebracht wird und n naheliegend ist zu Zustandie zu Patentfamilie ist
dem l	Abschlusses der internationalen Recherche	Absendedatum des internationalen R	echerchenberichts
Datum des		00/00/5555	
Datum des	3. Juni 2005	22/06/2005 Bevollmächtigter Bediensteter	

INTERNATIONALER RECHERCHENBERICHT

Interrepales Aktenzeichen
PCT/EP2005/001456

		FC1/EF2003/001456
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Tally I Date A
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile Betr. Anspruch Nr.
Х	LAEGSGAARD E ET AL: "A high-pressure scanning tunneling microscope" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, Bd. 72, Nr. 9, September 2001 (2001-09), Seiten 3537-3542, XP012039324 ISSN: 0034-6748 Abbildungen 1,2 Absatz '00II!	1,4-8, 15-26,29
Α		2,3, 9-14,27, 28
X	WILMS M ET AL: "A new and sophisticated electrochemical scanning tunneling microscope design for the investigation of potentiodynamic processes" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, Bd. 70, Nr. 9, September 1999 (1999-09), Seiten 3641-3650, XP012037650 ISSN: 0034-6748 das ganze Dokument	1,4-9, 14-17, 20-22
Α		2,3, 10-13, 18,19, 23-29
A	GENG PETER ET AL: "A compact ultrahigh-vacuum system for the in situ investigation of III/V semiconductor surfaces" REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS, US, Bd. 71, Nr. 2, Februar 2000 (2000-02), Seiten 504-508, XP012038006 ISSN: 0034-6748 in der Anmeldung erwähnt Abbildungen 1,3 Absatz '00II!	1-29

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internal ales Aktenzeichen
PCT/EP2005/001456

	m der Mitglied(er) de ntlichung Patentfamilie	
EP 0899561 A 03-	03-1999 JP 340710 JP 1106714 EP 089956 US 624273	1 A 09-03-1999 1 A1 03-03-1999