Documentation of Power for Cross-sectional Studies

Minn M. Soe, MD, MPH, MCTM: msoe@sph.emory.edu Kevin M. Sullivan, PhD, MPH, MHA: cdckms@sph.emory.edu

This module estimates power for Cross-Sectional studies. The data input screen is as follows:

Calculate	Power for Cross-Sectional Studies		
	Confidence Interval (%) {two-sided}	95	Enter between 0 and 100, usually 95%
		Exposed	Non-exposed
	Sample Size	70	70
	Prevalence (or) Coverage (%)	30	10

The input values requested are:

- Two sided confidence intervals (%) that can be chosen are 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98, 99, 99.5, 99.8, 99.9, 99.95, 99.98 & 99.99.
- The available sample size for exposed group and that for non-exposed group are entered.
- The prevalence of disease (or) coverage (eg. vaccination status) among exposed and non-exposed group are entered ranging from 0 to 100%.

The result of the calculation is shown next:

Power for Cross-Sectional Studies				
	Input Data			
Two sided-confidence interval (%)	95			
Number of Exposed	70			
Prevalence/Coverage among Exposed (%)	30			
Number of Non-exposed	70			
Prevalence/Coverage among Non-exposed (%)	10			
Prevalence/Coverage Ratio	3			
Prevalence Difference (%) ¹	20			
Power based on:				
Normal approximation	84.87%			
Normal approximation with continuity correction	78.94%			
1 Prevalence Difference = Prevalence in Exposed - Prevalence in Non-exposed.				
Results from OpenEpi open source calculatorPowerCross				
file:///C:/OpenEpi/July,%202005/Power/PowerCross.htm Source file last modified on 07/11/2005 15:05:06				

The interpretation of power in this cross-sectional study is as follows: If, in truth, exposed group differs from non-exposed group in their prevalence of disease given the above values, this study would have a 67% chance of detecting a difference without continuity correction.

The formulae for the estimation of power are as follows:

• *Power with normal approximation:*

Power =
$$\Phi\left(\frac{\sqrt{(n_1 * \Delta^2)} - z_{1-\alpha/2}\sqrt{(1+1/\kappa)*p*q}}{\sqrt{(p_1 * q_1) + (p_2 * q_2/\kappa)}}\right)$$

• *Power with continuity correction:*

$$Power = \Phi\left(\frac{\sqrt{(n'*\Delta^2)} - z_{1-\alpha/2}\sqrt{(1+1/\kappa)*p*q}}{\sqrt{(p_1*q_1) + (p_2*q_2/\kappa)}}\right)$$

Where
$$\mathbf{n'} = \mathbf{n_1} - [(\kappa + 1) / (\kappa \cdot \Delta)];$$

• Prevalence ratio calculation

$$PR = (p_1/p_2);$$

The notations for the formulae are:

 Δ = difference of prevalence of disease between exposed group and non-exposed group;

 κ = ratio of sample size: non-exposed group / exposed group;

p₁= prevalence of disease (coverage) among exposed group;

p₂= prevalence of disease (coverage) among non-exposed group;

$$p = (p_1*n_1+p_2*n_2) / (n_1+n_2);$$

$$q = 1 - p;$$

n₁= available sample size among exposed group;

References:

- James Schlesselman. Case-control studies: Design, Conduct, Analysis (1982). (Formula 6.9 is used for estimation of power)
- Sahai H and KHurshid A. Formulae and tables for the determination of sample sizes and power in clinical trials for testing differences in proportions for the two-sample design: A review. *Statistics in Medicine*, 1996 vol. 15, 1-21. ((In addition to formula 6.9 mentioned above, formula 23 is used to calculate power with continuity correction)