Computer Vision for Vehicle Panel Gap Inspection

24-678 Final Presentation
Team Philadelphia
Paul Dreyer, Aman Chulawala, Brevin Mixon

The Problem: Car Quality Assurance Inspection -- Panel Gaps --

- Panel Gaps are the thin black gaps between two sheets of metal on a car's exterior
- People generally consider a uniform, clean panel gap as making sure that the car was manufactured correctly.
- We developed a computer vision system that can detect the width of panel gaps for defects using just a camera.

Why does this matter for OEMs?

Uniform panel gaps:

High quality assembly

Sloppy panel gaps:

Other possible issues in manufacturing assembly

Solution

- Our product will use a camera take pictures and depth measurements so that we can analyze the panel gaps of a car using close up images.
- By measuring the width of the panel gap, we can check them versus expected values and check for any manufacturing defects or damage.

Pipeline

Take images of the side view of a car

Run Panel Gap Detection Software on each image or over a Video

Stitch the images of the car together and create a 2D or 3D Model of the car

Technical method overview

Code Design Choices:

- Global thresholding
- Contour method for detection
- Measurements
- Image masking
- Structure from motion
- Point cloud coordinate logging

Engineering Design Choices:

- Lighting Conditions
- Paint Considerations/Limitations

Panel Detection - Thresholding and Contours

Why Contours? ->

Vectors for gap Measurements

- Find the tangent
- Rotate unit vector to normal direction
- Loop increasing vector magnitude until pixel value change
- Associate depth data to find proper units

Pixel width

Color Mapping

 Color Mapping helps to visualize how the width of the measurements change.

 We allow the user to set a predetermined nominal value + bounding quality assurance tolerances

Future technical Goals:

- Active stereo dot projection
- High quality Depth Mapping
- High quality point cloud generation
- Textured Structure from motion
- Part error identification and action procedure generation
- Environment lighting Control

Classification of Panel Gap Defects

When is a Panel Gap acceptable?

~ 1/32 inches

When is the Panel gap out of tolerance?

> 1/16 inches

Raw Input from the RealSense

RGB Module

Stereo Module

Consequences of Panel Gap Defects

Wind Noise

Bad Aesthetics

Why detect Panel Gaps early in the Production Line?

Cost Saving

Pattern Identification

Improving Production
Process

Moving Ahead...

- Use the collection of images to create a 3D Point Cloud of the car that includes the color mapping
- Use disparity data to determine non-planar measurement adjusting
- Use one video camera that can travel around the car and upload images into the program
- Add Classification functionality to safely isolate non-panel gap features within the frame