Rank-73801 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1498768749

General information

Number of lines	9
Number of points	33
Number of singular points	0
Number of Eckardt points	4
Number of double points	6
Number of single points	21
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	59
Type of lines on points	$3^4, 2^6, 1^{21}, 0^2$

Singular Points

The surface has 0 singular points:

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{13}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 1 & \omega^2 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{274} = \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{274} = \mathbf{Pl}(2, 3, 1, 3, 0, 1)_{169}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & \omega \\ 0 & 1 & 1 & 0 \end{bmatrix}_{190} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{190} = \mathbf{Pl}(3, 2, 1, 2, 0, 1)_{161}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{Pl}(0, 3, 0, 1, 0, 0)_{15}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \omega & \omega^{2} \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{297} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{297} = \mathbf{Pl}(1, 1, 2, 2, 0, 1)_{162}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega & \omega \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{213} = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{213} = \mathbf{Pl}(2, 3, 2, 1, 0, 1)_{154}$$

$$\ell_{6} = \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{Pl}(0, 2, 0, 1, 0, 0)_{14}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega \\ 0 & 1 & \omega & 0 \end{bmatrix}_{233} = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{233} = \mathbf{Pl}(1, 1, 3, 3, 0, 1)_{174}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega^{2} \\ 0 & 1 & \omega & 0 \end{bmatrix}_{317} = \begin{bmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{317} = \mathbf{Pl}(3, 2, 3, 1, 0, 1)_{158}$$

Rank of lines: (345, 274, 190, 355, 297, 213, 350, 233, 317)

Rank of points on Klein quadric: (13, 169, 161, 15, 162, 154, 14, 174, 158)

Eckardt Points

The surface has 4 Eckardt points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1),$$

$$1: P_{11} = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0),$$

$$2: P_{15} = \mathbf{P}(0, \omega, 1, 0) = \mathbf{P}(0, 2, 1, 0),$$

$$3: P_{19} = \mathbf{P}(0, \omega^2, 1, 0) = \mathbf{P}(0, 3, 1, 0).$$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_{51} = (2, 3, 1, 1) = \ell_1 \cap \ell_4$$

$$P_{75} = (2, 1, 3, 1) = \ell_1 \cap \ell_8$$

$$P_{60} = (3, 1, 2, 1) = \ell_2 \cap \ell_5$$

$$P_{48} = (3, 2, 1, 1) = \ell_2 \cap \ell_7$$

$$P_{63} = (2, 2, 2, 1) = \ell_4 \cap \ell_8$$

 $P_{84} = (3, 3, 3, 1) = \ell_5 \cap \ell_7$

Single Points

The surface has 21 single points: The single points on the surface are:

$$\begin{array}{lll} 0: \ P_{28} = (2,1,0,1) \ \text{lies on line} \ \ell_4 \\ 1: \ P_{29} = (3,1,0,1) \ \text{lies on line} \ \ell_7 \\ 2: \ P_{32} = (2,2,0,1) \ \text{lies on line} \ \ell_1 \\ 3: \ P_{33} = (3,2,0,1) \ \text{lies on line} \ \ell_5 \\ 4: \ P_{36} = (2,3,0,1) \ \text{lies on line} \ \ell_8 \\ 5: \ P_{37} = (3,3,0,1) \ \text{lies on line} \ \ell_2 \\ 6: \ P_{40} = (2,0,1,1) \ \text{lies on line} \ \ell_8 \\ 11: \ P_{55} = (2,0,2,1) \ \text{lies on line} \ \ell_7 \\ 12: \ P_{56} = (3,0,2,1) \ \text{lies on line} \ \ell_7 \\ 13: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_8 \\ 13: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_8 \\ \end{array}$$

 $\begin{array}{lll} 14: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_0 \\ 15: \ P_{65} = (0,3,2,1) \ \text{lies on line} \ \ell_3 \\ 16: \ P_{71} = (2,0,3,1) \ \text{lies on line} \ \ell_4 \\ 17: \ P_{72} = (3,0,3,1) \ \text{lies on line} \ \ell_2 \\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

 $0: P_0 = (1, 0, 0, 0)$ $1: P_{23} = (1, 0, 0, 1)$

Line Intersection Graph

	$\begin{array}{c} 012345678 \\ \hline 011100100 \\ 101010001 \\ 110001010 \\ 00011100 \\ 00111001 \\ 00111001 \\ 100100011 \\ 0010001101 \\ 010010101 \\ 010010101 \\ 010010101 \\ \end{array}$
0	011100100
1	101010001
2	110001010
3	100011100
4	010101001
5	001110010
6	100100011
7	001001101
8	010010110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6
in point	P_{11}	P_{11}	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_8
in point	P_{11}	P_{11}	P_{51}	P_{75}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_5	ℓ_7
in point	P_{11}	P_{11}	P_{60}	P_{48}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6
in point	P_3	P_{15}	P_{15}	P_3

Line 4 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_8
in point	P_{51}	P_{15}	P_{15}	P_{63}

 ${\bf Line~5~intersects}$

Line	ℓ_2	ℓ_3	ℓ_4	ℓ_7
in point	P_{60}	P_{15}	P_{15}	P_{84}

Line 6 intersects

Line	ℓ_0	ℓ_3	ℓ_7	ℓ_8
in point	P_3	P_3	P_{19}	P_{19}

Line 7 intersects

Line	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_{48}	P_{84}	P_{19}	P_{19}

Line 8 intersects

Line	ℓ_1	ℓ_4	ℓ_6	ℓ_7
in point	P_{75}	P_{63}	P_{19}	P_{19}

The surface has 33 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$12: P_{40} = (2,0,1,1)$	$24: P_{63} = (2, 2, 2, 1)$
$1: P_3 = (0,0,0,1)$	13: $P_{41} = (3,0,1,1)$	$25: P_{65} = (0, 3, 2, 1)$
$2: P_{11} = (0, 1, 1, 0)$	$14: P_{42} = (0, 1, 1, 1)$	$26: P_{71} = (2, 0, 3, 1)$
$3: P_{15} = (0, 2, 1, 0)$	15: $P_{45} = (0, 2, 1, 1)$	$27: P_{72} = (3, 0, 3, 1)$
$4: P_{19} = (0, 3, 1, 0)$	16: $P_{48} = (3, 2, 1, 1)$	$28: P_{73} = (0, 1, 3, 1)$
$5: P_{23} = (1,0,0,1)$	17: $P_{49} = (0, 3, 1, 1)$	$29: P_{75} = (2, 1, 3, 1)$
$6: P_{28} = (2, 1, 0, 1)$	$18: P_{51} = (2, 3, 1, 1)$	$30: P_{77} = (0, 2, 3, 1)$
$7: P_{29} = (3, 1, 0, 1)$	$19: P_{55} = (2, 0, 2, 1)$	$31: P_{81} = (0, 3, 3, 1)$
$8: P_{32} = (2, 2, 0, 1)$	$20: P_{56} = (3, 0, 2, 1)$	$32: P_{84} = (3, 3, 3, 1)$
9: $P_{33} = (3, 2, 0, 1)$	$21: P_{57} = (0, 1, 2, 1)$	
$10: P_{36} = (2, 3, 0, 1)$	$22: P_{60} = (3, 1, 2, 1)$	
$11: P_{37} = (3, 3, 0, 1)$	$23: P_{61} = (0, 2, 2, 1)$	