Question	Scheme	Marks
9	Area under the curve	
	$A_c = \int_{-1}^{0} \left(-2e^{3x} + 4 \right) dx, = \left[\frac{-2e^{3x}}{3} + 4x \right]_{-1}^{0}$	M1M1
	$\Rightarrow \left(\frac{-2e^{3\times 0}}{3} + 4\times 0\right) - \left(\frac{-2e^{3\times -1}}{3} + 4\times -1\right), = \frac{10}{3} + \frac{2e^{-3}}{3}$	M1A1
	Area under trapezium	
	Method 1 [uses formula for the area of a trapezium] $y = 2$ $y = -2e^{-3} + 4$	
	$A_T = \frac{1}{2} \times 1 \times ('2' + ' - 2e^{-3} + 4') = [3 - e^{-3}]$	B1
	Method 2 [finds equation of the line and integrates]	M1
	Equation of the line: $y = (2e^{-3} - 2)x + 2$ (accept $y = -1.9x + 2$)	
	$A_T = \int_{-1}^{0} '((2e^{-3} - 2)x + 2)' dx = \left[\frac{'(2e^{-3} - 2)'x^2}{2} + \frac{'2'x}{2}\right]_{-1}^{0} = \left[3 - e^{-3}\right]$	
	Shaded Area	
	$A_{shaded} = \left(\frac{10}{3} + \frac{2e^{-3}}{3}\right) - \left(3 - e^{-3}\right) = \frac{1 + 5e^{-3}}{3}$	M1A1
		[8]
Total 8 marks		

Mark	Notes		
M1	For a correct statement for the area under the curve with correct limits . This mark can		
	be implied/embedded by later correct work. Condone missing dx		
M1	Attempts to integrate the given curve to a form of $Ae^{3x} + Bx$		
	Ignore limits for this mark.		
M1	or substituting in both of their limits into their integrated expression in the form		
	$Ae^{3x} + Bx$ and subtracts. (A, B are nonzero constants)		
	Correct exact answer $\frac{10}{3} + \frac{2e^{-3}}{3}$ implies the correct substitution.		
	If their answer is not correct and exact, explicit substitution needs to be seen.		
A1	For the correct exact area under the curve. If not seen explicitly, this can be implied by		
	correct exact final answer.		
Method 1 - trapezium			
B1	For both correct exact values of <i>y</i>		
M1	For the correct method of finding area of the trapezium using their values for y		
	Look for $\frac{1}{2} \times 1 \times (sum \ of \ their \ y \ values)$		
Method 2 – equation of line			
B 1	For the correct equation of the line L , must reach $y =$		
	$y = (2e^{-3} - 2)x + 2$ (accept $y = -1.9x + 2$)		
M1	For the correct area under the line L using their line. Check for correct integration of their line and full substitution of -1 if their area is incorrect. (If the terms are equal to		
	zero, substitution of 0 does not need to be seen.)		
	Allow also $A_T = \int_{-1}^{0} (-1.9x + 2)' dx = \left[\frac{-1.9'x^2}{2} + \frac{2'x}{2} \right]_{-1}^{0}$		
Combines the areas			
M1	Correct strategy to find the value of shaded area		
	The integrated area of the curve - the area of trapezium		
A1	For the correct exact area of the shaded region in the required form		
	idates are combining the curve – line in one calculation – mark this as follows.		
• Wherever you see the correct equation of the line, score the 5 th Mark [B mark]			
Mark the work for the curve (which may be embedded in a combined integral) using the first			
4 marks.			
• Mark the area under the line using the 6th mark [M mark – using their equation in the form $y = mx + c$]			
When you see them subtracting the areas – award the penultimate M mark If they add the areas, this is M0			

• Final A mark is for the correct answer only