

糖酵解知识回顾

输液为什么不直接用果糖

- ❖果糖-1-磷酸醛缩酶:活性有限,果糖浓度过高 ,引起果糖-1-磷酸积累,无机磷酸大量消耗, ATP浓度下降,进而酵解增强,产生大量乳酸, 降低生理pH值;
- ❖果糖不耐症(fructose intolerance)

2

A A THE STREET

其他六碳糖进入糖酵解的途径-自学

生命科学基础I

第三章 物质代谢 糖代谢-TCA循环

孔宇 教授

西安交通大学生命科学与技术学院 2022年9月30日

内容简介- Metabolism of Carbohydrates

Tricarboxylic Acid Cycle

5

≫ 1.TCA过程概览

柠檬酸循环过程总结 8种酶催化 反应类型 缩合1、脱水1、 氧化4、底物水平 磷酸化1、水化1 生成3分子NADH 生成1分子FADH₂ 生成1分子G(A)TP

6

2.TCA详细过程-准备阶段

- ❖丙酮酸的氧化脱羧
- ▶<mark>丙酮酸(跨膜后)在有氧条件下,由丙酮酸脱氢酶系催化生成乙酰-CoA 的不可逆反应;</mark>
- ▶该反应既脱氢又脱羧,故称<u>氧化脱羧</u>;

A STATE OF THE STA

丙酮酸转变成乙酰-CoA的四步反应-课后自学

11

→ 2.TCA详细过程

脱氢:

NAD+/NADP+ FAD/FMN

NADH+H+

FADH₂

酰基载体:

CoA-SH

脱羧:

TPP

羧化: **Biotin**

转氨:

PLP

≫ TCA第一阶段:2.1.柠檬酸生成

≫ 2.2.柠檬酸异构为异柠檬酸

90%柠檬酸-4%顺乌头酸-6%异柠檬酸

▼ TCA第二阶段: 氧化脱羧

2.3.异柠檬酸→α-酮戊二酸

2.4 α-酮戊二酸→琥珀酰辅酶A

相似,由三个酶即α酮戊二 酸脱羧酶(E1), 二氢硫辛酰(酸)琥珀酰转移酶(E2)和二氢硫辛酰(酸) 脱氢酶(E3)组成。也需要TPP、硫辛酸、CoA-SH、FAD和NAD+5种辅助因子。

※ 第三阶段: 草酰乙酸的回补

2.5.琥珀酰辅酶A→琥珀酸

▼TCA中唯一的底物水平磷酸化反应,生成GTP。

≫ 2.6/7.琥珀酸→延胡索酸→苹果酸

- 6. 琥珀酸氧化为延胡索酸
 - 通过琥珀酸脱氢酶催化、辅基FAD
 - -该酶含有1个FAD辅基(该反应自 由能不足以还原NAD+)
 - -2H 从底物移除,产生FADH。

TCA循环中唯一嵌 入线粒体内膜的酶

•琥珀酸脱氢酶是

•生成FADH。

7.延胡索酸水合形成苹果酸

- -- 通过延胡索酸酶催化
- -= 水合作用 (立体专一的加载H和-OH) -OH专一地加载于延胡索酸双键 的--侧而形成L苹果酸

脱氢: NAD+/NADP+ FAD/FMN NADH+H+ FADH₂

※ 2.8.苹果酸→草酰乙酸

脱氢:

NAD+/NADP+ FAD/FMN

NADH+H+

FADH₂

酰基载体:

CoA-SH

脱羧: TPP

羧化:

Biotin

转氨:

PLP

TCA作用-代谢枢纽

- ❖TCA过程(了解)
- ❖学会计算TCA过程中的能量变化
- ❖TCA的调节(了解)

30

【高阶性】CO2来自?

草酰乙酸而不是乙酰CoA

但净结果是氧化了1分子乙酰CoA

进入柠檬酸循环中的

2个碳原子的去向

乙酰CoA中乙酰基与草酰乙酸缩合形成 6 碳的柠檬酸,经过 2次氧化脱羧释放出两分子 CO_2 后,形成 4 碳酸 - 琥珀酸,琥珀酸经过几步反应后又重新转换为草酰乙酸。

由于草酰乙酸可以再生,所以柠檬酸循环可以看作是一个催化多步反应的催化剂,使得乙酰CoA中的二碳单位乙酰基氧化成 2分子CO₂。

几率计算?最快几轮?

