Attributes Related to Mortality Rate in the US (1960)

MATH 240- Final Project Paper

Instructor: Jane Sharman

Ruturaj Shete

Arkan Odeh

Neha Verma

Attributes Related to Mortality Rate

Contents

Introduction	3
Objectives	3
Data Collection Methodology	4
Assumptions	5
Correlation Analysis	6
Multiple Regression Analysis	7
Coefficient of Multiple Determination-R ²	
Significance F	8
Confidence Level	8
Range	8
Final Multiple Regression Equation	g
Residual Analysis	10
Descriptive Analysis	12
Conclusion	14
REFRENCES	16
Appendix I: Original Dataset	17
Appendix II: Final Dataset	19
Annendix III: Descriptive Analysis and Five Number Summary of Each Attribute	21

Introduction

Mortality rate is defined as number of death in particular population based on the size of that population, per unit of time (It is typically expressed in units of deaths per 1000 individuals per year). Since, Mortality is considered to be one of the key ratio to evaluate any nations well-being and plays a dominant role in determining the growth of that nation. This paper examines the factors that affect mortality rate and how the mortality has changed over the last years.

When we relocated to San Francisco to pursue our graduate studies, we were given a task of selecting a data set for our statistical analysis. We came across with the data set related to the mortality rate in 60 metropolitan cities in the United States during the 1960; we realized that it will be interesting if we can compare the change in the mortality rate over the last fifty years. We also became curious to know about the factor that affects the mortality rate and how the change in environmental conditions has affected the mortality ratio before the 1960 and now.

The Mortality rate has been dependent on many factors in general but the most common factors includes medical facilities, health care, nutrition level, living standard, access to clean drinking water, hygiene levels and social factors such as conflicts and the level of violent crime. However, the data set we are using for our analysis consist of a combination of socio economic and pollution factors. These factors are very different to the ones mentioned above. Also over the last fifty years there has been lot of development in healthcare, bio-technology and overall improvement in standard of living, though the quality of the environment has decreased. So it will be interesting to see the change in the mortality rate due to the improvement in the factors affecting the mortality rate.

Objectives

The main objective of the paper is to determine the significant factor that affects the mortality rate during the 1960. It is very unlikely that only one factor would have influenced the mortality rate in the States. Therefore, it is important to analyze all the potential factors to determine the correlation. By the end of this analysis we will be able to compare the mortality rate before the 1960 and now.

Data Collection Methodology

This data is extracted from a research paper- "Instabilities of regression estimate relating air pollution to mortality", by McDonald G. C and Schwing R.C (1973), Technimetrics, Vol. 15.

The data which have been used to do the analysis have been collected from 60 metropolitan cities in United States in 1960. The original dataset can be seen in Appendix I. The data consist of one dependent variable (Mortality rate, expressed as death per 100,000 population) and 15 independents variables. The independent variables are very diverse as they are a combination of socio-economic factors and air pollution.

	Data Attributes
PREC	Average annual precipitation in inches
JANT	Average January temp. in degrees F
JULT	Average July temp. in degrees F
OVR65	% of 1960 SMSA population aged 65 or older
POPN	Average household size
EDUC	Median school years completed by those over 22
HOUS	% of housing units which are sound & with all facilities
DENS	Population per sq. mile in urbanized areas, 1960
NONW	% non-white population in urbanized area, 1960
WWDRK	% employed in white collar occupations
POOR	% of families with income < \$3000
HC	Relative hydrocarbon pollution potential
NOX	Relative nitric oxides pollution potential
SO ₂	Relative Sulphur dioxide pollution potential
HUMID	Annual average % relative humidity at 1pm
MORT	Total age-adjusted mortality rate per 100,000

Table 1: Data Attributes

After compiling all the required data, we began by running correlation analysis to determine which variables were related to each other. Then we will do a massive regression on all the remaining significant independent variables, using mortality rate as our dependent variable. Then, we will do F test for the P-value in order to determine which variables adds to the model explanatory power or not, we will further eliminate the insignificant variables at 0.05 significant levels. After determining the significant variables, we will do the residual analysis to check for validity of the regression assumptions. Also after conducting the regression analysis and forming the regression equation we further plan to do a descriptive analysis of the significant variables to determine general measures of central tendency.

Assumptions

Since our main objective is to determine the significant factors which affect the mortality rate, we expected that there will be negative correlation between mean January temperatures in degrees of Fahrenheit and mortality rate. The base of our assumption is that human body has a tendency to maintain an inner core temperature of 98.7 degree Fahrenheit, and as temperatures decreases during the colder months, the body starts shutting down due to hyperthermia and human body start experiencing difficulty in breathing. Also people are more exposed to pollution during colder months, thereby increasing the mortality rate.

The second independent variables we expect to have a significant relation are Education (the median school years completed by those over 22 years). We assume mortality rate will have negative correlation with the education, as the educated population will have better income, they will have better affordability, which will affect their rate of survival and thus there will be a decrease in mortality rate.

Third factor that we assume will have a strong positive correlation with the mortality rate is the relative pollution potential of Sulfur Dioxide (SO2). It is believed that the emission of greenhouse gases due to human activities will change the earth's climate, by causing changes in temperature, precipitation levels and weather variability.

The fourth variable which we think it will be significant is the population density. We assume as the population per square mile in the urbanized area will increase, there will be an increase in the level of pollution and hence the mortality rate will also increase accordingly.

Correlation Analysis

In order to check the correlation between our dependent variable and the independent variable we started with our first analysis i.e. the correlation analysis, in which we first did a VIF analysis to check the correlation between Mortality rate and one of the independent variables. Since, we know that if the value of VIF is greater than 5,

Those candidates of independent variables are not significant. We found that the NOX (relative nitric oxides pollution) variable had a VIF value of 104.9. We reran the VIF analysis by eliminating the NOX independent variable under consideration, then POOR (% of families with income <\$3000) variable which had a VIF value of 8.7 and also OVR65 (% of 1960 SMSA population aged over 65 years or older) with VIF value of 6.06. Therefore, we eliminated those 3 variables from our independent variables and went ahead and did Best Sub-set analysis, also called Cp value to see for the significant variables. We found that all the remaining 12 attributes had a Cp value which was less than or equal to the K+1value (where 'k' is the number of independent variables).

$$K+1 => Cp$$

Multiple Regression Analysis

After the correlation analysis we did the Multiple Regression analysis to see which all significant independent variables we have based on their p-value. So we eliminated 8 variables (JULT, POPN, PREC, HOUS, DENS, WWDRK, HC, HUMID), whose p-value was greater than 0.05 level of significance. We again re ran the regression and found these four significant independent variables at 0.05 level of significance; which are: SO2, JANT, EDUC, NONW. The dataset with these four significant independent variables can be seen in Appendix II.

Regression Statistics									
Multiple R	0.82270								
R Square	0.67684								
Adjusted R									
Square	0.65334								
Standard Error	36.62578								
Observations	60.00000								

Table 2: Summary of multiple regression analysis

Coefficient of Multiple Determination-R²

R-squared is the Coefficient of Determination, $R^2 = 67.68\%$ - means 67.68% of variation in the mortality rate can be explained by the variation in the independent variables (ln (Relative Sulphur dioxide pollution potential), Median school years completed by those over 22, Average January temperature and % non-white population in urbanized area, 1960).

ANOVA

					Significance
	Df	SS	MS	$\boldsymbol{\mathit{F}}$	F
Regression	4	154528.01	38632.002	28.7987	6.331E-13
Residual	55	73779.64	1341.448		
Total	59	228307.64			

Table 3: Analysis of variance of multiple regression analysis

Significance F

The above table shows, that the p-value of the F-statistics is 633123-13 which is almost equal to zero and is less than 0.05 level of significance. Therefore, we know that there is a significant relationship between Mortality rate and one of the independent variable.

Now, when we looked closely at these four independent variables we found that individually all the 4 independent variables were significant based on their p-value.

	Standard								
	Coefficients	Error	t Stat	P-value	Lower 95%	95%			
Intercept	1135.730	71.1314	15.9667	2.63E-22	993.1799	1278.2809			
ln(SO2)	8.971	3.5414	2.5333	1.42E-02	1.8743	16.0684			
JANT	-1.414	0.5831	-2.4244	1.86E-02	-2.5822	-0.2451			
EDUC	-21.149	6.0353	-3.5042	9.18E-04	-33.2437	-9.0539			
NONW	4.723	0.6395	7.3855	8.81E-10	3.4412	6.0042			

Figure 4: Multiple regression analysis

The p-value for the coefficient of January temperature is 0.018, which is less than 0.05 so there is a significant relationship between mortality rate and January temperature. The same way Education, Nonwhite population and Relative level of Sulphur dioxide do have a significant relationship with the mortality rate at 95% level of significance.

Confidence Level

The above multiple regression run under 95% confidence level. It means that 95% of all possible samples can be expected to be included in the true population parameter.

Range

The range for each variable is as follows:

1) Ln(SO2): 1.8743 to 16.0684

2) JANT: -2.5822 to -0.2451

3) EDUC: -33.2437 to -9.0539

4) NONW: 3.4412 to 6.0042

All the significant independent variables have a valid range, because they do not contain zero value. As all values are finite positive or negative numbers.

Final Multiple Regression Equation

Mortality rate = 1135.73 + 8.97 *ln (So2) - 21.15*(Education)-1.413*(January Temperature) + 4.72* (Non White population)

Where, Mortality rate is deaths per 100,000 populations

- ➤ Average January temperature is in degrees Fahrenheit
- Nonwhite population in urbanized area is in percentage
- Education is median school years completed by those over 22 population
- ➤ SO2 is relative Sulphur dioxide pollution potential
- Where, if we increase the median school years completed by those over 22 years of populations by one, we expect the mortality rate to decrease by 21.15 per 100,000 populations, on an average, keeping other attributes constant.
- Where, if we increase the relative Sulphur dioxide pollution by one percent, we expect mortality rate to increase by 0.0897 per 100,000 populations, on an average, by keeping other attributes constant.
- Where, if we increase the percentage non-white population in urbanized area by one percent, we expect mortality rate increase by 4.72 per 100,000 populations, on an average, by keeping other attributes constant.
- Where, if we increase the average January temperature by 1 degrees Fahrenheit, we expect mortality rate to decrease by 1.413 per 100,000 populations, on an average, by keeping other attributes constant.
- Y-coefficient is not significant to interpret, because it is not practical to make all the independent attributes zero. So y-coefficient has no practical interpretation.

Residual Analysis

In order to check for the assumptions of regression model, we went ahead and did residual analysis. The residual plots of the four significant variables can be seen below-

Residual Plots:

Figure 1: January Temperature Vs Residual Plots

The JANT vs. Residuals plot can be seen above. It looks random, there do not seem to be any violations of the regression assumptions. These obeys the following assumptions:

- 1) Linearity
- 2) Independence
- 3) Normality
- 4) Equal variance

Figure 2: Nonwhite population Vs Residual Plot

The NONW vs. Residuals plot can be seen above. It looks random, and there do not seem to be any violations of the regression assumptions.

Figure 3: Education Vs Residual Plot

The EDUC vs. Residuals plot can be seen above. It looks random, and there do not seem to be any violations of the regression assumptions.

Figure 4: Sulphur dioxides Vs Residual plot

The SO2 vs. Residuals plot can be seen above. There seem to be a homoscedasticity issue with this plot and had violated the regression assumptions. Therefore, to solve this issue we used a natural log function, which is mentioned below:

Figure 5: Natural logged Sulphur Dioxide Vs Residual plot

Now after using natural log function, the ln(SO2) vs. Residuals plot. It looks normal, and there do not seem to be any violations of the regression assumptions.

Descriptive Analysis

After we did the regression analysis and found the significant attributes we did the descriptive analysis to highlight the social economic factors that affect the mortality rate in 60 metropolitan cities during 1960 in the United States. The total quantitative analysis and five number summary is shown in Appendix III. The table below shows the highlighted attributes related to the social economic factors and pollution:

	Over 65	DENC	EDUC	HOUS	POOR	NONW	SO2	NOX	HC
Minimum	5.6	1441	9	66.8	9.4	0.8	1	1	1
Median	9	3567	11.05	81.15	13.2	10.4	30	9	14.5
Maximum	11.8	9699	12.3	90.7	26.4	38.5	278	319	648
Average	8.80	3876.05	10.97	80.91	14.37	11.87	53.77	22.65	37.85

Table 5: Descriptive analysis of independent variables

As the analysis indicates Atlantic City had recorded the highest density of 9699 populations per square mile comparing the average density in all the 60 metropolitan cities of 3876 populations per square mile. The average of Non-white population was 11.89% and the average of population aged over 65 years was 8.8% from the entire population of the 60 cities.

The average of the median school years completed by population aged over 22 years was 10.97 years but it is more left skewed which means the average population was more towards the lower numbers of years on the median school year completed. Although the average Percentage of poor in the cities was 14.37 % which represent family's income below 3000\$ per annum, the average percentage of the housing units were sound and with full facilities was 80.91%. Which was a good percentage as the minimum was 66.8% recorded in Fresno and the highest percentage was 90.7% recorded in Lansing.

As the regression analysis shows, the pollution indicators were significant as we had expected at the beginning of this paper but do not make a huge impact. This can be explained by the development in the industrial technology today than it was in 1960, which is mainly to meet the huge demand in the market. However, the average of the SO2 level of potentials pollution is 53.77 in the 60 cities with minimum level of 1 and maximum level of 278 which been recorded in Denver.

Figure 6: BOX plots of significant independent variables

Figure 7: Mortality Rate 1960-2013

Figure 8: Life Expectancy 1970-2013

As our main objective in this paper is to identify the significant factors that had affected the mortality rate in the 1960 in the United States by collecting the data from 60 metropolitan cities across the country. From our regression analysis, we got four significant factors (education, Sulfur Dioxide (SO2), nonwhite and January temperature) which affected the mortality rate in 1960. This means that we were correct in our assumptions that there will be a positive correlation for SO2 and a negative correlation for both education and January temperature as significant factors to the mortality rate. However, we were surprised when nonwhite factor was shown significant rather than the population density as assumed.

This finding along with the descriptive analysis we had ran, highlighted some of the social economic factors that had affected the mortality rate in 1960 in the United State. The average education numbers of year completed in the middle school for the population for age under 22 years was 10.97 years, which indicate that most of the population on those cities did not finish their high school. This affected their annual income and the poorness level to an average of 14.37 with an annual income of less than \$ 3000. As also can be seen from the analysis, nonwhite people were less privileged one during that time in terms of education, income, work environment and

health support. This was the reason for increased mortality rate in 1960, as the nonwhite population in the cities was high during that time.

The mortality rate average in the 1960 was 940 deaths for every 100,000 people, whereas the new mortality rate in 2014 was 821 deaths for every 100,000 people according to the Department of Public Health. We had expected to find that the mortality rate will be higher in 2014 mainly due to the air pollution from the huge industrial development, excess use of automobiles, global warming affects and the chemical industry. However, the mortality rate has decreased over the last years and the average age has increased, this can be contributed to the technological development in health sector, education, more investments in clean energy and better income.

REFRENCES

- McDonal, G.C. and Schwing, R.C. (1973). Instabilities of regression estimates relating air pollution to mortality, Technometrics, vol. 15, 463-482.
- Deaths by age and age-specific death rates. (2000-2014). State of California, Department of Public Health, Death Records.
- National Vital Statistics Reports. (2016, February 16). Deaths: Final data for 2013, Volume 64, Number 2.

Appendix I: Original Dataset

Cities	PREC	JANT	JULT	OVR65	POPN	EDUC	HOUS	DENS	NONW	WWDRK	POOR	нс	NOX	SO@	HUMID	MORT
Birmingham	36	27	71	8.1	3.34	11.4	81.5	3243	8.8	42.6	11.7	21	15	59	59	921.87
Mobile	35	23	72	11.1	3.14	11	78.8	4281	3.5	50.7	14.4	8	10	39	57	997.875
Montgomery	44	29	74	10.4	3.21	9.8	81.6	4260	0.8	39.4	12.4	6	6	33	54	962.354
Phoenix	47	45	79	6.5	3.41	11.1	77.5	3125	27.1	50.2	20.6	18	8	24	56	982.291
Little Rock	43	35	77	7.6	3.44	9.6	84.6		24.4	43.7	14.3	43	38	206	55	1071.289
Fresno	53	45	80	7.7	3.45	10.2	66.8	3325	38.5	43.1	25.5	30	32	72	54	1030.38
Los Angeles	43	30	74	10.9	3.23	12.1	83.9	4679	3.5	49.2	11.3	21	32	62	56	934.7
Sacramento	45	30	73	9.3	3.29	10.6	86	2140	5.3	40.4	10.5	6	4	4	56	899.529
San Diego	36	24	70	9	3.31	10.5	83.2	6582	8.1	42.5	12.6	18	12	37	61	1001.902
San Francisco	36	27	72	9.5	3.36	10.7	79.3	4213	6.7	41	13.2	12	7	20	59	912.347
San Jose	52	42	79	7.7	3.39	9.6	69.2	2302	22.2	41.3	24.2	18	8	27	56	1017.613
Denver	33	26	76	8.6	3.2	10.9	83.4	6122	16.3	44.9	10.7	88	63	278	58	1024.885
Bridgeport	40	34	77	9.2	3.21	10.2	77	4101	13	45.7	15.1	26	26	146	57	970.467
Hartford	35	28	71	8.8	3.29	11.1	86.3	3042	14.7	44.6	11.4	31	21	64	60	985.95
New Haven	37	31	75	8	3.26	11.9	78.4	4259	13.1	49.6	13.9	23	9	15	58	958.839
Wilmington	35	46	85	7.1	3.22	11.8	79.9	1441	14.8	51.2	16.1	1	1	1	54	860.101
Washington	36	30	75	7.5	3.35	11.4	81.9	4029	12.4	44	12	6	4	16	58	936.234
Jacksonville	15	30	73	8.2	3.15	12.2	84.2	4824	4.7	53.1	12.7	17	8	28	38	871.766
Miami	31	27	74	7.2	3.44	10.8	87	4834	15.8	43.5	13.6	52	35	124	59	959.221
Orlando	30	24	72	6.5	3.53	10.8	79.5	3694	13.1	33.8	12.4	11	4	11	61	941.181
Tamba	31	45	85	7.3	3.22	11.4	80.7	1844	11.5	48.1	18.5	1	1	1	53	891.708
Atlanta	31	24	72	9	3.37	10.9	82.8	3226	5.1	45.2	12.3	5	3	10	61	871.338
Augusta	42	40	77	6.1	3.45	10.4	71.8	2269	22.7	41.4	19.5	8	3	5	53	971.122
Columbus	43	27	72	9	3.25	11.5	87.1	2909	7.2	51.6	9.5	7	3	10	56	887.466
Macon	46	55	84	5.6	3.35	11.4	79.7	2647	21	46.9	17.9	6	5	1	59	952.529
Savannah	39	29	75	8.7	3.23	11.4	78.6	4412	15.6	46.6	13.2	13	7	33	60	968.665
Chicago	35	31	81	9.2	3.1	12	78.3	3262	12.6	48.6	13.9	7	4	4	55	919.729
Rockford	43	32	74	10.1	3.38	9.5	79.2	3214	2.9	43.7	12	11	7	32	54	844.053
Gary	11	53	68	9.2	2.99	12.1	90.6	4700	7.8	48.9	12.3	648	319	130	47	861.833
Indianapolis	30	35	71	8.3	3.37	9.9	77.4	4474	13.1	42.6	17.7	38	37	193	57	989.265
South Bend	50	42	82	7.3	3.49	10.4	72.5	3497	36.7	43.3	26.4	15	18	34	59	1006.49
Terre Haute	60	67	82	10	2.98	11.5	88.6	4657	13.5	47.3	22.4	3	1	1	60	861.439
Des Moines	30	20	69	8.8	3.26	11.1	85.4	2934	5.8	44	9.4	33	23	125	64	929.15
Topeka	25	12	73	9.2	3.28	12.1	83.1	2095	2	51.9	9.8	20	11	26	58	857.622
Wichita	45	40	80	8.3	3.32	10.1	70.3	2682	21	46.1	24.1	17	14	78	56	961.009
Baton Rouge	46	30	72	10.2	3.16	11.3	83.2		8.8	45.3	12.2	4	3	8	58	923.234
New Orleans	54	54	81	7.4	3.36	9.7	72.8	3172	31.4	45.5	24.2	20	17	1	62	1113.156
Shreveport	42	33	77	9.7	3.03	10.7	83.5	7462	11.3	48.7	12.4	41	26	108	58	994.648
Portland	42	32	76	9.1	3.32	10.5	87.5	6092	17.5	45.3	13.2	29	32	161	54	1015.023
Baltimore	36	29	72	9.5	3.32	10.6	77.6	3437	8.1	45.5	13.8	45	59	263	56	991.29
Boston	37	38	67	11.3	2.99	12		3387	3.6	50.3	13.5	56	21	44	73	893.991
Brockton	42	29	72	10.7	3.19	10.1		3508	2.2	38.8	15.7	6	4	18	56	938.5
Fall River	41	33	77	11.2	3.08	9.6		4843	2.7	38.6	14.1	11	11	89	54	946.185
Springfield	44	39	78	8.2	3.32	11		3768	28.6	49.5	17.5	12	9	48	53	1025.502
Worcester	32	25	72	10.9	3.21	11.1		4355	5	46.4	10.8	7	4	18	60	874.281
Detroit	34	32	79	9.3	3.23	9.7		5160	17.2	45.1	15.3	31	15	68	57	953.56
Flint	10	55	70	7.3	3.11	12.1		3033	5.9	51	14		66	20	61	839.709
Jackson	18	48	63	9.2	2.92	12.2		4253	13.7	51.2	12	311	171	86	71	911.701
Lansing	13	49	68	7	3.36	12.2		2702	3	51.9	9.7		32	3	71	790.733
Saginaw	35	40	64	9.6	3.02	12.2		3626	5.7	54.3	10.1	20	7	20	72	899.264
Duluth	45	28	74	10.6	3.21	11.1		1883	3.4	41.9	12.3	5	4	20	56	904.155
Minneapolis	38	24	72	9.8	3.34	11.4		4923	3.8	50.5	11.1	8	5	25	61	950.672
Jackson	31	26	73	9.3	3.22	10.7	81.3		9.5	43.9	13.6	11	7	25	59	972.464
Kansas City	40	23	71	11.3	3.28	10.3		1671	2.5	47.4	13.5	5	2	11	60	912.202
St. Louis	41	37	78	6.2	3.25	12.3		5308	25.9	59.7	10.3	65	28	102	52	967.803
Omaha	28	32	81	7	3.27	12.1		3665	7.5	51.6	13.2	4	2	1	54	823.764
Las Vegas	45	33	76	7.7	3.39	11.3		3152	12.1	47.3	10.9	14	11	42	56	1003.502
Manchester	45	24	70	11.8	3.25	11.1		3678	1	44.8	14	7	3	8	56	895.696
Atlantic City	42	33	76	9.7	3.22	9		9699	4.8	42.2	14.5	8	8	49	54	911.817
		- 55	, 5	٥.,	J.22		. 0.2	2222	1.5	12.2	_ 1		- 3		_ 	5 - 1.0 - 1

Appendix II: Final Dataset

Cities	MORT	In(SO2)	JANT	EDUC	NONW	
Birmingham	921.87	4.0775374	27	11.4	8.8	
Mobile	997.875	3.6635616	23	11	3.5	
Montgomery	962.354	3.4965076	29	9.8	0.8	
Phoenix	982.291	3.1780538	45	11.1	27.1	
Little Rock	1071.289	5.3278762	35	9.6	24.4	
Fresno	1030.38	4.2766661	45	10.2	38.5	
Los Angeles	934.7	4.1271344	30	12.1	3.5	
Sacramento	899.529	1.3862944	30	10.6	5.3	
San Diego	1001.902	3.6109179	24	10.5	8.1	
San Francisco	912.347	2.9957323	27	10.7	6.7	
San Jose	1017.613	3.2958369	42	9.6	22.2	
Denver	1024.885	5.6276211	26	10.9	16.3	
Bridgeport	970.467	4.9836066	34	10.2	13	
Hartford	985.95	4.1588831	28	11.1	14.7	
New Haven	958.839	2.7080502	31	11.9	13.1	
Wilmington	860.101	0	46	11.8	14.8	
Washington	936.234	2.7725887	30	11.4	12.4	
Jacksonville	871.766	3.3322045	30	12.2	4.7	
Miami	959.221	4.8202816	27	10.8	15.8	
Orlando	941.181	2.3978953	24	10.8	13.1	
Tamba	891.708	0	45	11.4	11.5	
Atlanta	871.338	2.3025851	24	10.9	5.1	
Augusta	971.122	1.6094379	40	10.4	22.7	
Columbus	887.466	2.3025851	27	11.5	7.2	
Macon	952.529	0	55	11.4	21	
Savannah	968.665	3.4965076	29	11.4	15.6	
Chicago	919.729	1.3862944	31	12	12.6	
Rockford	844.053	3.4657359	32	9.5	2.9	
Gary	861.833	4.8675345	53	12.1	7.8	
Indianapolis	989.265	5.2626902	35	9.9	13.1	
South Bend	1006.49	3.5263605	42	10.4	36.7	
Terre Haute	861.439	0	67	11.5	13.5	
Des Moines	929.15	4.8283137	20	11.1	5.8	
Topeka	857.622	3.2580965	12	12.1	2	
Wichita	961.009	4.3567088	40	10.1	21	
Baton Rouge	923.234	2.0794415	30	11.3	8.8	
New Orleans	1113.156	0	54	9.7	31.4	
Shreveport	994.648	4.6821312	33	10.7	11.3	
Portland	1015.023	5.0814044	32	10.5	17.5	
Baltimore	991.29	5.572154	29	10.6	8.1	
Boston	893.991	3.7841896	38	12	3.6	
Brockton	938.5	2.8903718	29	10.1	2.2	
Fall River	946.185	4.4886364	33	9.6	2.7	

1025.502	3.871201011	39	11	28.6	
874.281	2.890371758	25	11.1	5	
953.56	4.219507705	32	9.7	17.2	
839.709	2.995732274	55	12.1	5.9	
911.701	4.454347296	48	12.2	13.7	
790.733	1.098612289	49	12.2	3	
899.264	2.995732274	40	12.2	5.7	
904.155	2.995732274	28	11.1	3.4	
950.672	3.218875825	24	11.4	3.8	
972.464	3.218875825	26	10.7	9.5	
912.202	2.397895273	23	10.3	2.5	
967.803	4.624972813	37	12.3	25.9	
823.764	0	32	12.1	7.5	
1003.502	3.737669618	33	11.3	12.1	
895.696	2.079441542	24	11.1	1	
911.817	3.891820298	33	9	4.8	
954.442	3.663561646	28	10.7	11.7	
	874.281 953.56 839.709 911.701 790.733 899.264 904.155 950.672 972.464 912.202 967.803 823.764 1003.502 895.696 911.817	874.281 2.890371758 953.56 4.219507705 839.709 2.995732274 911.701 4.454347296 790.733 1.098612289 899.264 2.995732274 904.155 2.995732274 950.672 3.218875825 972.464 3.218875825 912.202 2.397895273 967.803 4.624972813 823.764 0 1003.502 3.737669618 895.696 2.079441542 911.817 3.891820298	874.281 2.890371758 25 953.56 4.219507705 32 839.709 2.995732274 55 911.701 4.454347296 48 790.733 1.098612289 49 899.264 2.995732274 40 904.155 2.995732274 28 950.672 3.218875825 24 972.464 3.218875825 26 912.202 2.397895273 23 967.803 4.624972813 37 823.764 0 32 1003.502 3.737669618 33 895.696 2.079441542 24 911.817 3.891820298 33	874.281 2.890371758 25 11.1 953.56 4.219507705 32 9.7 839.709 2.995732274 55 12.1 911.701 4.454347296 48 12.2 790.733 1.098612289 49 12.2 899.264 2.995732274 40 12.2 904.155 2.995732274 28 11.1 950.672 3.218875825 24 11.4 972.464 3.218875825 26 10.7 912.202 2.397895273 23 10.3 967.803 4.624972813 37 12.3 823.764 0 32 12.1 1003.502 3.737669618 33 11.3 895.696 2.079441542 24 11.1 911.817 3.891820298 33 9	874.281 2.890371758 25 11.1 5 953.56 4.219507705 32 9.7 17.2 839.709 2.995732274 55 12.1 5.9 911.701 4.454347296 48 12.2 13.7 790.733 1.098612289 49 12.2 3 899.264 2.995732274 40 12.2 5.7 904.155 2.995732274 28 11.1 3.4 950.672 3.218875825 24 11.4 3.8 972.464 3.218875825 26 10.7 9.5 912.202 2.397895273 23 10.3 2.5 967.803 4.624972813 37 12.3 25.9 823.764 0 32 12.1 7.5 1003.502 3.737669618 33 11.3 12.1 895.696 2.079441542 24 11.1 1 911.817 3.891820298 33 9 4.8

Appendix III: Descriptive Analysis and Five Number Summary of Each Attribute

1) DENS

Five-Number Sur	nmary	Variance	0.7145
Minimum	1441	Standard	
First Quartile	3042	Deviation	0.8453
Median	3567	Coeff. of	
Third Quartile	4657	Variation	7.70%
Maximum	9699	Skewness	-0.2249
Descriptive Sum	mary	Kurtosis	-0.7513
·	•	Count	60
	DENS	Standard Error	0.1091
Mean	3876.05		
Median	3567	3) HC	
Mode	#N/A	,	
Minimum	1441	Five-Number Sum	nmary
Maximum	9699	Minimum	1
Range	8258	First Quartile	7
Variance	2114413.6754	Median	14.5
Standard Deviati	ion 1454.1024	Third Quartile	31
Coeff. of Variation	on 37.52%	Maximum	648
Skewness	1.3795		HC
Kurtosis	3.5910	Mean	37.85
Count	60	Median	14.5
Standard Error	187.7238	Mode	6
		Minimum	1
		Maximum	648
2) EDUC		Range	647
Five-Number Sur	nmarv	Variance	8459.8924
Minimum	9	Standard	
First Quartile	10.4	Deviation	91.9777
Median	11.05	Coeff. of Variation	243.01%
Third Quartile	11.5	Skewness	5.5934
Maximum	12.3	Kurtosis	34.6852
	EDUC	Count	60
Mean	10.97333333	Standard Error	11.8743
Median	11.05	Standard Error	11.0743
Mode	11.4		
Minimum	9		
Maximum	12.3		
Range	3.3	4) HOUS	
	5.5		

Five-Number Summ	•	Standard Deviation	E 2600
Minimum	66.8	Coeff. of Variation	5.3699
First Quartile	78.3		9.31%
	31.15	Skewness	0.2375
Third Quartile	83.9	Kurtosis	4.2895
Maximum	90.7	Count	60
		Standard Error	0.6933
	HOUS		
Mean	80.91333333	6) JANT	
Median	81.15	Five-Number Summ	arv
Mode	79.9	Minimum	12
Minimum	66.8	First Quartile	27
Maximum	90.7		31.5
Range	23.9	Third Quartile	40
Variance	26.4337	Maximum	67
Standard		a	0.
Deviation	5.1414		
Coeff. of Variation	6.35%		JANT
Skewness	-0.4170	Mean	33.98333333
Kurtosis	0.3849	Median	31.5
Count	60	Mode	30
Standard Error	0.6637	Minimum	12
		Maximum	67
		Range	55
5) HUMID		Variance	103.4065
3) HUMID		Standard	
Five-Number Summ	ary	Deviation	10.1689
Minimum	38	Coeff. of Variation	29.92%
First Quartile	55	Skewness	0.9607
Median	57	Kurtosis	1.0878
Third Quartile	60	Count	60
Maximum	73	Standard Error	1.3128
	HUMID	7) JULT	
Mean	57.66666667	- Five-Number Summ	arv
Median	57	Minimum	63
Mode	56	First Quartile	72
Minimum	38	Median	74
Maximum	73	Third Quartile	78
Range	35	Maximum	78 85
Variance	28.8362	ividXIIIIuIII	
			JULT

Mean	74.58333333	Five-Number Sum	ımary	
Median	74	Minimum	0.8	
Mode	72	First Quartile	4.8	
Minimum	63	Median	10.4	
Maximum	85	Third Quartile	15.8	
Range	22	Maximum	38.5	
Variance	22.6879			
Standard Deviation	4.7632			
Coeff. of Variation	6.39%		-	NONW
Skewness	0.1367	Mean		11.87
Kurtosis	0.0109	Median		10.4
Count	60	Mode		13.1
Standard Error	0.6149	Minimum		0.8
		Maximum		38.5
		Range		37.7
8) Ln(SO2)		Variance		79.5869
Five Number Cumma	m.,	Standard		
Five-Number Summa	·	Deviation		8.9211
Minimum	0	Coeff. of Variatio	n	75.16%
First Quartile 2.397		Skewness		1.1311
Median 3.39 Third	1897	Kurtosis		0.9360
Quartile 4.276	3666	Count		60
Maximum 5.627		Standard Error		1.1517
3.027	ozi			
_	In(SO@)	10) NOX		
Mean	3.197212975	Five-Number Sum	mary	
Median	3.398970206	Minimum	1	
Mode	0	First Quartile	4	
Minimum	0	Median	9	
Maximum	5.627621114	Third Quartile	26	
Range	5.627621114	Maximum	319	
Variance	2.2428			
Standard				
Deviation	1.4976			NOX
Coeff. of Variation	46.84%	Mean		22.65
Skewness	-0.7145	Median		9
Kurtosis	0.0164	Mode		4
Count	60	Minimum		1
Standard Error	0.1933	Maximum		319
		Range		318
9) NONW		Variance		2146.7737

Standard			POOR
Deviation	46.3333	Mean	14.37333333
Coeff. of Variation	204.56%	Median	13.2
Skewness	5.1656	Mode	13.2
Kurtosis	30.2637	Minimum	9.4
Count	60	Maximum	26.4
Standard Error	5.9816	Range	17
		Variance	17.3064
11) OVR65		Standard	
11) O V K03		Deviation	4.1601
Five-Number Sumn	nary	Coeff. of Variation	28.94%
Minimum	5.6	Skewness	1.4635
First Quartile	7.6	Kurtosis	1.5314
Median	9	Count	60
Third Quartile	9.7	Standard Error	0.5371
Maximum	11.8		
		13) POPN	
	OVR65	Five-Number Summ	narv
Mean	8.798333333	Minimum	2.92
Median	9	First Quartile	3.21
Mode	9.2		3.265
Minimum	5.6	Third Quartile	3.36
Maximum	11.8	Maximum	3.53
Range	6.2	Waxiiiaii	3.33
Variance	2.1449		
Standard			POPN
Deviation	1.4646	Mean	3.263166667
Coeff. of Variation	16.65%	Median	3.265
Skewness	-0.0341	Mode	3.21
Kurtosis	-0.6037	Minimum	2.92
Count	60	Maximum	3.53
Standard Error	0.1891	Range	0.61
		Variance	0.0183
12) DOOD		Standard	
12) POOR		Deviation	0.1353
Five-Number Sumn	nary	Coeff. of Variation	4.14%
Minimum	9.4	Skewness	-0.4893
First Quartile	12	Kurtosis	0.0438
Median	13.2	Count	60
Third Quartile	15.3	Standard Error	0.0175
N.A	26.4		

26.4

Maximum

14) PREC

Five-Number Summary		
Minimum	10	
First Quartile	32	
Median	38	
Third Quartile	44	
Maximum 60		

Standard	
Deviation	4.6130
Coeff. of Variation	10.01%
Skewness	0.0985
Kurtosis	0.5549
Count	60
Standard Error	0.5955

16) MORT

	PREC
Mean	37.36666667
Median	38
Mode	36
Minimum	10
Maximum	60
Range	50
Variance	99.6938
Standard	
Deviation	9.9847
Coeff. of Variation	26.72%
Skewness	-0.8022
Kurtosis	1.2836
Count	60

1.2890

Five-Number Summary		
Minimum	790.733	
First Quartile	895.696	
Median	943.683	
Third		
Quartile	985.95	
Maximum	1113.156	

	MORT
Mean	940.3584333
Median	943.683
Mode	#N/A
Minimum	790.733
Maximum	1113.156
Range	322.423
Variance	3869.6211
Standard	
Deviation	62.2063
Coeff. of Variation	6.62%
Skewness	0.0984
Kurtosis	0.1633
Count	60
Standard Error	8.0308

15) WWDRK

Standard Error

Five-Number Summary		
Minimum	33.8	
First Quartile	43.1	
Median	45.5	
Third Quartile	49.6	
Maximum	59.7	

	WWDRK
Mean	46.08166667
Median	45.5
Mode	42.6
Minimum	33.8
Maximum	59.7
Range	25.9
Variance	21.2802