Name: Huize Shi - A92122910

Discussion: A04 Homework: 8

1. Prove that the following polynomials are irreducible.

(a)
$$x^n - 12 \in \mathbb{Q}[x]$$
 if $n \ge 2$.
Observe $x^n - 12 \in \mathbb{Z}[x]$:

$$3 \nmid 1$$
$$3 \mid 12$$
$$3^2 = 9 \nmid 12$$

3 is a prime. By Eisenstine's Irreducibility criterion, $x^n - 12$ is irreducible in $\mathbb{Q}[x]$.

(b)
$$x^3 - 3x^2 + 3x + 4 \in \mathbb{Q}[x]$$

Observe $x^3 - 3x^2 + 3x + 4 \in \mathbb{Z}[x]$. Show irreducibility in \mathbb{Z}_7 :

$$C_7(x^3 - 3x^2 + 3x + 4) = x^3 - 3x^2 + 3x + 4$$

x	$x^3 - 3x^2 + 3x + 4$
0	4
1	5
2	6
3	5
4	4
5	6
6	4

Since $x^3 - 3x^2 + 3x + 4$ is of degree 3, it has no zeros in \mathbb{Z}_7 , hence it is irreducible in \mathbb{Z}_7 . Since it is irreducible in \mathbb{Z}_7 and 7 is a prime, by Eisenstine's Irreducibility Criterion, $x^3 - 3x^2 + 3x + 4$ is irreducible in \mathbb{Q} .

(c) Given $x^p - p + a$ is irreducible in $\mathbb{Z}_p[x]$ if p is prime and $a \in \mathbb{Z}_p \setminus \{0\}$. $x^5 - 10x^3 + 25x^2 - 51x + 2017 \in \mathbb{Q}[x]$ Observe $x^5 - 10x^3 + 25x^2 - 51x + 2017 \in \mathbb{Z}[x]$, show $x^5 - 10x^3 + 25x^2 - 51x + 2017$ is irreducible in \mathbb{Z}_5 :

$$C_5(x^5 - 10x^3 + 25x^2 - 51x + 2017) = x^5 - x + 2$$

Since $2 \in \mathbb{Z}_5 \setminus \{0\}$, by criterion given we know $x^5 - 10x^3 + 25x^2 - 51x + 2017$ is irreducible in $\mathbb{Z}_5[x]$. By Eisenstine's Irreducibility Criterion, $x^5 - 10x^3 + 25x^2 - 51x + 2017$ is irreducible in $\mathbb{Q}[x]$.

(d)
$$x^4 + 3x^3 + 27x - 12 \in \mathbb{Q}[x]$$

Observe $x^4 + 3x^3 + 27x - 12 \in \mathbb{Z}[x]$:

$$3 \nmid 1$$

$$3 \mid 3$$

$$3 \mid 27$$

$$3 \mid -12$$

$$3^{2} = 9 \nmid 12$$

Since 3 is a prime, by Eisenstine's Irreducibility Criterion, $x^4 + 3x^3 + 27x - 12$ is not reducible in $\mathbb{Q}[x]$.

(e)
$$x^5 - x + 1 \in \mathbb{Z}_3[x]$$

$$C_3(x^5 - x + 1) = x^5 - x + 1$$

$$\begin{array}{c|c} x & x^5 - x + 1 \\ \hline 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{array}$$

Hence shown $x^5 - x + 1$ has no zero in \mathbb{Z}_3 . Check if $x^5 - x + 1$ can be factored into degree 2 and degree 3 polynomials. We are given the only monic degree 2 polynomials in $\mathbb{Z}_3[x]$ that do not have a zero in \mathbb{Z}_3 are $x^2 + 1$, $x^2 + x - 1$, $x^2 - x - 1$. By polynomial long divison, we get the following:

$$\frac{x^5 - x + 1}{x^2 + 1} = x^3 - x + \frac{1}{x^2 + 1}$$
$$\frac{x^5 - x + 1}{x^2 + x - 1} = x^3 - x^2 + 2x - 3 + \frac{2(2x - 1)}{x^2 + x - 1}$$
$$\frac{x^5 - x + 1}{x^2 - x - 1} = x^3 + x^2 + 2x + 3 + \frac{4(x + 1)}{x^2 - x - 1}$$

Since none of the non zero degree 2 polynomials cleanly divide $x^5 - x + 1 \in \mathbb{Z}_3[x]$, we know that $x^5 - x + 1$ is irreducible in $\mathbb{Z}_3[x]$.

(f)
$$x^5 + 2x + 4 \in \mathbb{Q}[x]$$

$$C_3(x^5 + 2x + 4) = x^5 - x + 1$$

By part e, $x^5 + 2x + 4$ is irreducible in \mathbb{Z}_3 , since 3 is a prime, we know that $x^5 + 2x + 4$ is irreducible in $\mathbb{Q}[x]$.

2. Prove that $\mathbb{Z}_3[x]/\langle x^5-x+1\rangle$ is a field of order 3^5 . By part e, we know x^5-x+1 is irreducible in \mathbb{Z}_3 , hence we know $\langle x^5-x+1\rangle$ is maximal. Hence the factor ring $\mathbb{Z}_3[x]/\langle x^5-x+1\rangle$ is a field. Since the factor is a field there exist long division for this field. For all $f(x) \in \mathbb{Z}_3[x]$:

$$f(x) = f(x)(x^{5} - x + 1) + r(x)$$

$$f(x) + \langle x^{5} - x + 1 \rangle = f(x)(x^{5} - x + 1) + r(x) + \langle x^{5} - x + 1 \rangle$$

$$f(x) + \langle x^{5} - x + 1 \rangle = r(x) + \langle x^{5} - x + 1 \rangle$$

This is true since $f(x)(x^5-x+1) \in \langle x^5-x+1 \rangle$, the term gets obsorbed. By long division $r(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ for some $a_0, a_1, a_2, a_3, a_4 \in \mathbb{Z}_4$. Hence shown for all $f(x) + \langle x^5 - x + 1 \rangle \in \mathbb{Z}_3[x] / \langle x^5 - x + 1 \rangle$

$$f(x) + \langle x^5 - x + 1 \rangle = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \mid a_0, \ a_1, \ a_2, \ a_3, \ a_4 \in \mathbb{Z}_4$$

Since there are 5 coefficients, each has 3 choices in \mathbb{Z}_3 (0, 1, 2), there are 3^5 possible permutations, the order of the field is therefore 3^5 .