

Magyarország, 2024. november 11.

azugand • HU

Azugand (azugand)

Azugand, a Prahovand-völgy híres városa sajátos úthálózatáról ismert: N kereszteződése van, amelyek 1-től N-ig vannak számozva, és mindegyiknek van egy V_i hozzárendelt értéke. Két különböző kereszteződés között akkor és csak akkor van utca, ha értékeik bitenkénti ÉS-e nem nulla.

Formálisan, adott egy N csúcsú gráf, amelynek minden egyes csúcsához egy V_i értéket rendeltünk. Két különböző, i és j csúcs között akkor és csak akkor van él, ha V_i & $V_j \neq 0$.

1. ábra. Üdv Azugand városában!

Egy ismert fiú a völgyből, Andrei egy táblázatot szeretne készíteni bizonyos pontok közötti legrövidebb távolságokról, de a sok számolás túlzottan leterhelhi, ezért a segítségedet kéri! Adott Q lekérdezés, mindegyikben egy-egy cost(X,Y) értékeket kell kiszámítanod. A cost(X,Y) a gráfban az X és Y csúcsok között a legrövidebb úton lévő **élek** száma. Ha az X csúcsból nem tudjuk elérni az Y csúcsot, akkor a cost(X,Y) értéke -1.

Az értékelő rendszerből letölthető csatolmányok közt találhatsz azugand.* nevű fájlokat, melyek a bemeneti adatok beolvasását valósítják meg az egyes programnyelveken. A megoldásodat ezekből a hiányos minta implementációkból kiindulva is elkészítheted.

Bemenet

A bemenet első sorában két egész szám van: N és Q, a gráf csúcsainak száma, illetve a lekérdezések száma.

azugand 1/3. oldal

A második sorban N egész szám van: V_1, V_2, \ldots, V_N , a gráf csúcsaihoz rendelt értékek.

A következő Q sor mindegyike két-két különböző egész számot tartalmaz: X_i -t és Y_i -t, két csúcs azonosítóját, amelyekre ki kell számolni a $cost(X_i,Y_i)$ értéket.

Kimenet

Q egész számot írj ki, mindegyiket külön sorban: a $cost(X_i, Y_i)$ értéket minden egyes lekérdezéshez.

Korlátok

- $1 \le N \le 200\,000$.
- $1 \le Q \le 200\,000$.
- $0 \le V_i < 2^{20}$ minden $i = 1 \dots N$ -re.
- $1 \le X_i \ne Y_i \le N$ minden $i = 1 \dots Q$ -ra.

Pontozás

A megoldásodat sok különböző tesztesetre lefuttatjuk. A tesztesetek részfeladatokba vannak csoportosítva. Egy-egy részfeladatot akkor tekintünk megoldottnak, ha volt legalább egy olyan beadásod, amely az adott részfeladat minden tesztesetére helyes megoldást adott. A feladat összpontszámát a megoldott részfeladatokra kapott pontszámok összege adja.

- **0. Részfeladat** (0 pont) Példák. ■■■■■
- 1. Részfeladat (7 pont) $N \le 500, Q \le 500.$
- 2. Részfeladat (23 pont) $Q \le 1$.
- 3. Részfeladat (21 pont) $V_i < 2^5$ minden $i = 1 \dots N$ -re.
- **4. Részfeladat** (49 pont) Nincsenek további megkötések.

Példák

input	output
4.4	1
4 4	1
9 3 16 6	
1 2	2
2 4	-1
4 1	
2 3	
7 5	5
3072 5120 67584 73728 49152 24576 40960	2
2 5	3
7 3	1
1 6	4
5 6	
7 2	

azugand 2 / 3. oldal

Magyarázat

Az első példa bemenetben:

- Az első lekérdezésben $V_1 = 9$ és $V_2 = 3$, 9&3 = 1, tehát van egy él az 1-es és 2-es csúcs között, tehát a minimális távolság 1.
- A második lekérdezésben $V_2 = 3$ és $V_4 = 6$, 3&6 = 2, tehát van egy él a 2-es és 4-es csúcs között, tehát a minimális távolság 1.
- A harmadik lekérdezésben $V_4 = 6$ és $V_1 = 9$, 6&9 = 0, tehát nincs él a 4-es és 1-es csúcsok között, tehát a minimális távolság legalább 2. A 4, 2, 1 útvonal esetében a csúcsok értékei 6, 3, 9, ami azt jelenti, hogy a 4-es és 2-es csúcs között van egy él, valamint a 2-es és 1-es között is, tehát a 4-es és 1-es csúcs között van egy 2 hosszúságú útvonal.
- A negyedik lekérdezésben $V_1\&V_3=0$, $V_2\&V_3=0$ és $V_4\&V_3=0$, ami azt jelenti, hogy a 3-as csúcsból nem indul ki egy él sem, tehát nincs út a 2-es és 3-as csúcs között.

azugand 3/3. oldal