Background Suppression Network for Weakly-supervised Temporal Action Localization

AAAI 2220

(1) Temporal Action Localization?

untrimmed video에서 action을 추출하는 것 중요해짐.

TAL: Temporal Action Localization

- untrimmed video에서 action을 포함하는 frame을 찾는 것을 의미
- **supervised learning**을 이용해 deep network 학습
- 개별 frame은 action/background로 라벨 지정
- 단점: 비싸다. localization에 subjective, error-prone

(2) Weakly Supervised Temporal Action Localization?

WTAL: Weakly supervised temporal action localization

- frame 단위의 라벨을 predict하지만, weak supervision
 - ex) 비디오 레벨의 라벨, 비디오 action의 빈도, action의 시간적 순서 사용
- video 레벨의 라벨은 가장 일반적으로 사용됨
- 비디오는 여러 액션 클래스를 가질 수도 있음
- MIL: WTALC을 label을 bag으로 사용 (개별 instance가 아니라)
 - 개별 frame을 action class로 분류
 - frame 레벨의 점수로 집계하여 비디오의 class 예측
 - → video level의 분류 loss는 frame level의 predict를 할 수 있음
 - 단점: background가 어느 액션 클래스에도 속하지는 않지만 그걸 모델링하지는 않음
 - background frame은 action이 없어도 action class로 분류됨

(3) background에 대한 auxiliary class 제안

- 모든 untrimmed video에는 background가 포함 → positive sample으로 작용
- video에서 모든 frame에 targeting할 올바른 클래스가 있게 된다
- 그러나 / background 클래스에 대한 negative sample이 없음
- network는 background에서 높은 점수를 얻는 방향으로 학습

(4) BaSNet: Background Suppression Network

- Base branch (MIL 구조)
 - frame 별 feature를 input으로 가진다
 - CAS(frame wise class activation sequence)를 생성 : action/background 클래스에 대한 positive sample로 분류
- Suppression branch
 - background frame의 input feature 를 약화
 - base branch를 따르고 가중치를 공유하는 filtering module로 시작
 - 목적: 모든 비디오에서 background class의 점수를 최소화 하는 것. action class를 최적화하는 것

(4) BaSNet: Background Suppression Network

- base branch, suppression branch는 가중치를 공유
 - → 같은 입력 주어지면 대조되는 것에 대해 서로 최적화를 하지는 못함
 - 이를 해결하기 위해 filtering module은 background에서 활성화를 막음
- -> suppression branch는 background로부터 더 자유로워지고 localization을 더 잘함

(5) Contribution

- 기존에 누락된 background를 모델링하기 위해 WTAL에서 보조 클래스 제안
- 2 branch weight 공유 아키텍쳐 제안
- filtering module
 - → backgroudn frame에서 활성화를 억제

02. Related Work

TAL, WTAL

(1) TAL (Fully-supervised Temporal Action Localization)

: action의 시간적 간격을 같이 본다. 이전의 것들은 full supervision에 의존

- SCNN: 슬라이딩 → C개의 액션 + 1 백그라운드 클래스로 분류

- TAL-Net : 객체 감지 알고리즘을 TAL로 생성

- **BSN** : 정교한 proposal generation

- GTAN: 가우시안 시간 모델링

Optical Flow Stream Test Phase: Localization Test Phase: Video Level Weak Labels Multiple Instance Learning Loss Class-wise & Class-wise Total Loss Total Loss Trest Phase: Test Phase: Class-wise & Class-wise Total Loss Total Loss Total Loss Video Level Weak Labels Video Level Weak Labels

(2) WTAL (Weakly-supervised Temporal Action Localization)

- H&S, MAAN, CMCS: CAS가 소수의 프레임에 중점을 두는 문제 해결

- **STPN**: CAS와 함께 class에 구애받지 않는 가중치 사용

- **Autoloc** : threholding대신 regression을 이용해 proposal 생성

- UNT, W-TALC, STAR : MIL사용. 그러나 background class를 고려하지 않아 background는 모두 action class로 분류

03. Method

(1) Background Class

- background class없을 때 background에 대한 activation은 노이즈로 작용
 - → background 나타내는 auxiliary class 제안

그러나

- training에서 background에 대한 positive sample 작용, negative sample 존재 X
- CAS가 항상 높은 경우, data imbalance 문제 발생
- → background class 추가하는 것만으로는 큰 성능향상이 일어나지는 않음

03. Method

(2) Two-branch Architecture (video level score predict 관점에서의 차이)

A. suppression branch은 filtering module을 가짐

- CAS에서 background frame를 필터링하는 것을 학습

B. 학습 목표가 다름

- Base branch: input video를 action class+background class의 positive sample로써 분류하는 것
- Suppression branch: 기존 action class에서 background class score를 최소화하는 것
- 가중치 공유는 2 브랜치에서 같은 인풋이 주어졌을 때 각자의 목표를 이루는 것을 방해
- → **filtering module으로 해결**: background frame으로부터 suppress activation을 학습, localization 성능 향상

Background Suppression Network for Weakly-supervised Temporal Action Localization, AAAI 2020

04. Experiments

Thumos14

C	Mathad	mAP@IoU								
Supervision	Method	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	Richard et al. (2016)	39.7	35.7	30.0	23.2	15.2	-	-	-	_
	S-CNN (2016)	47.7	43.5	36.3	28.7	19.0	10.3	5.3	-	_
	Yeung et al. (2016)	48.9	44.0	36.0	36.0	36.0	26.4	17.1	-	-
	PSDF + T-SVM (2016)	51.4	42.6	33.6	26.1	18.8	-	-	-	-
	CDC (2017)	-	-	40.1	29.4	23.3	13.1	7.9	-	-
	Yuan et al. (2017)	51.0	45.2	36.5	27.8	17.8	-	-	-	-
Full	CBR (2017)	60.1	56.7	50.1	41.3	31.0	19.1	9.9	-	-
	R-C3D (2017)	54.5	51.5	44.8	35.6	28.9	-	-	-	-
	SSN (2017)	66.0	59.4	51.9	41.0	29.8	-	-	-	-
	SSAD (2017)	50.1	47.8	43.0	35.0	24.6	-	-	-	-
	TPC (2018)	-	-	44.1	37.1	28.2	20.6	12.7	-	-
	TAL-Net (2018)	59.8	57.1	53.2	48.5	42.8	33.8	20.8	-	-
	Action Search (2018)	51.8	42.4	30.8	20.2	11.1	-	-		
	BSN (2018)	-	-	53.5	45.0	36.9	28.4	20.0	-	-
	GTAN (2019)	69.1	63.7	57.8	47.2	38.8	-	-	-	-
Weak†	STAR (2019)	68.8	60.0	48.7	34.7	23.0	-	-	-	_
Weak	UntrimmedNet (2017)	44.4	37.7	28.2	21.1	13.7	-	-	-	-
	Hide-and-seek (2017)	36.4	27.8	19.5	12.7	6.8	-	-	-	-
	STPN (UNT) (2018)	45.3	38.8	31.1	23.5	16.2	9.8	5.1	2.0	0.3
	AutoLoc (2018)	-	-	35.8	29.0	21.2	13.4	5.8	-	-
	W-TALC (UNT) (2018)	49.0	42.8	32.0	26.0	18.8	-	6.2	-	-
	Liu et al. (UNT) (2019)	53.5	46.8	37.5	29.1	19.9	12.3	6.0	-	-
	Ours (UNT)	56.2	50.3	42.8	34.7	25.1	17.1	9.3	3.7	0.5
	STPN (I3D) (2018)	52.0	44.7	35.5	25.8	16.9	9.9	4.3	1.2	0.1
	W-TALC (I3D) (2018)	55.2	49.6	40.1	31.1	22.8	-	7.6	-	-
	MAAN (2019)	59.8	50.8	41.1	30.6	20.3	12.0	6.9	2.6	0.2
	Liu et al. (I3D) (2019)	57.4	50.8	41.2	32.1	23.1	15.0	7.0	-	-
	Ours (I3D)	58.2	52.3	44.6	36.0	27.0	18.6	10.4	3.9	0.5

04. Experiments

Thumos14

				mAP@IoU									
	Base branch	background class	Suppression branch	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	AVG
baseline	√			32.3	25.2	19.8	15.9	12.0	8.7	4.7	1.4	0.2	13.4
Base branch	✓	\checkmark		28.5	23.0	18.1	13.7	9.2	5.8	2.7	0.8	0.1	11.3
Suppression branch		\checkmark	\checkmark	49.1	42.5	33.5	26.0	18.6	12.8	6.2	2.0	0.5	21.2
BaS-Net	✓	\checkmark	✓	58.2	52.3	44.6	36.0	27.0	18.6	10.4	3.9	0.5	27.9

Table 5: Performances for detecting background frames on THUMOS'14 (F-measure).

	Base branch	Suppression branch	BaS-Net
F-measure	0.541	0.775	0.846

05. Conclusion

weak supervised temporal action localization

이전의 방법(supervised TAL)은 background가 action class로 잘못 분류된 문제를 다루지는 않음

- (1) background에 대한 auxiliary class 소개
- (2) BasNet 소개 : 비대칭적으로 학습하는 2브랜치 가중치 공유 모델
 - → BasNet은 background frame에서 활성화를 억제하여 localization 성능 향상
- (3) Thumos14, ActivityNet에서 SOTA