

UNIVERSITÉ ABDELMALEK ESSAÂDI École Normale Supérieure Tétouan

TD:1 Analyse numérique 1 LE-Math

Semestre 4 2023-2024

Exercice 1. A l'aide d'une méthode numérique, nous avons obtenu le tableau suivant :

n	Erreur	Ordre de CV
8	5.21×10^{-5}	_
16	2.85×10^{-6}	?
32	1.64×10^{-7}	?
64	9.79×10^{-9}	ş
128	5.97×10^{-10}	3

avec Ordre de CV= $\left| \frac{\log \left(\frac{Err_n}{Err_{2n}} \right)}{\log(2)} \right|$ Vibile.

Calculer l'ordre de convergence numérique de cette méthode.

Exercice 2. Soit f(x) une fonction qui vérifie f(2) = 2.9093, f'(2) = 0.583853, f''(2) = -0.909297 et $|f^{(3)}(2)| \le 0.416147$ pour |x-2| < 0.1.

- 1. A l'aide de ces informations (DL), estimer f(2.1).
- 2. On suppose que $f_{exact} = 2.96321$. Donnez l'erreur théorique et numérique associée à l'approximation de f(2.1). Conclure.

Exercice 3.

- 1. Trouver $P(x) \in vect\{x+1, x^2, x^3-1\}$ qui interpole les points (-1,3), (0,1) et (1,3).
- 2. $P(x) \in vect\{1, \sin(x), \cos(x)\}\$ qui interpole les points $(-\pi, \pi)$, (0,0) et (π, π) .
- 3. $P(x) \in vect\{x, \sin(x), \cos(x)\}\$ qui interpole les points $(-\pi, -\pi)$, (0, 0) et (π, π) .
- 4. Posons $\mathcal{A} = \{(x_0, y_0) = (-1, 2), (x_1, y_1) = (0, -1), (x_2, y_2) = (2, 23)\}$
 - (a) Construire le polynôme d'interpolation qui interpole les points de l'ensemble & (Cramer).
 - (b) Construire le polynôme d'interpolation de Lagrange qui interpole les points de l'ensemble A.
 - (c) Construire le polynôme d'interpolation de Newton qui interpole les points de l'ensemble A.
 - (d) Construire le polynôme d'interpolation d'Aitken qui interpole les points de l'ensemble A.
 - (e) Construire le polynôme d'interpolation de Neville qui interpole les points de l'ensemble A.

Exercice 4.

1. Montrer que
$$f[x_0, x_1, ..., x_n] = \sum_{i=0}^n \frac{f(x_i)}{\prod_{j=0, j \neq i}^n (x_i - x_j)}$$

2. Montrer par récurrence que
$$\pi'(x_i) = \prod_{j=0, j \neq i}^n (x_i - x_j)$$
 avec $\pi(x) = \prod_{i=0}^n (x_i - x_i)$

3. Déduire que le polynôme élémentaire de Lagrange
$$L_{i,n}$$
 peut aussi s'écrire $L_{i,n}(x) = \frac{\pi(x)}{(x-x_i)\pi'(x_i)}$

4. Déduire que
$$f[x_0, x_1, ..., x_n] = \sum_{i=0}^{n} \frac{f(x_i)}{\pi'(x_i)}$$

5. Grâce à la question 4. retrouver les expressions de $f(x_0)$, $f(x_0, x_1)$ et $f(x_0, x_1, x_2)$.

Exercice 5.

Soit I = [a, b] et $f \in \mathcal{C}^n([a, b])$. Posons $x_i = a + i \ h$, i = 0, ..., n et $h = \frac{b-a}{n}$

1. Montrer que

$$\forall x \in]a,b[\quad \text{on a} \quad \left| \prod_{i=0}^{n} (x-x_i) \right| \le n! \frac{h^{n+1}}{4}$$
 (1)

Université Abdelmalek Essaâdi École Normale Supérieure Tétouan

TD:1 Analyse numérique 1 LE-Math

Semestre 4 2023-2024

2. Soit L_n l'interpolant de Lagrange de f aux points x_i . Monter que

$$\max_{x \in I} \left| f(x) - L_n(x) \right| \le \frac{\max_{x \in I} |f(\xi_x)^{(n+1)}|}{4(n+1)} h^{n+1} \tag{2}$$

- 3. Si $f(x) = x^n$, calculer l'erreur de l'interpolant de Lagrange. Expliquer le résultat.
- 4. Pour (n+1) points quel est le degré m du polynôme d'interpolation de Lagrange. Oue se passe-t-il si m > n.

Soit p(x) le polynôme d'interpolation de Lagrange qui passe par les points (x_i, y_i) , i = 0, ..., n, avec On rappelle l'expression pour les coefficients binomiaux : $\binom{n}{i} = \frac{n!}{i! (n-i)!}$

- 1. Donner l'expression de p(x), danner P, (x) sans calcule. remarque :
- 2. Montrer que

$$\prod_{j=0, j\neq i}^{n} \frac{1}{i-j} = \frac{(-1)^{n-i}}{(n-i)! \ i!}$$
(3)

3. Simplifier la formule de p(x).

Soit $\{x_i\}$, $i=0,\dots,n$ une subdivision de l'intervalle [a,b] de pas $h=\frac{b-a}{n}$. Pour une fonction fcontinue on note $I(f) = \int_a^b f(x)dx$ et $J(f) = \sum_{i=0}^n w_i f(x_i)$.

- 1. On choisit $w_i = \int_a^b \mathcal{L}_{i,n}(x) dx$, avec $\mathcal{L}_{i,n}$ est les polynôme de la base de Lagrange associée aux points $\{x_i\}, i=0,\cdots,n$ Montrer que I(p) = J(p), $\forall p \in \mathbb{P}_n$.
- 2. On suppose que I(p) = J(p), $\forall p \in \mathbb{P}_n$, montrer que $w_i = \int_a^b \mathcal{L}_{i,n}(x) dx$.
- 3. Si on note par $\{e_0, e_1, \dots, e_n\}$ (avec $e_i(x) = x^i$) la base canonique de \mathbb{P}_n , montrer que

$$I(p) = J(p), \ \forall \ p \in \mathbb{P}_n \iff I(e_i) = J(e_i), \ i = 0, \dots, n.$$

Exercice 8. On considère une fonction f de classe $\mathscr{C}^3(\mathbb{R})$.

- 1. Donner le polynôme d'interpolation de Lagrange P_2 associé à f aux points $x_0 = -\frac{1}{4}$, $x_1 = 0$ et $x_2 = \frac{1}{4}$.
- 2. Donner l'expression de l'erreur $E(x) = f(x) P_2(x)$.
- 3. Montrer que $|E(x)| \le \frac{|f^{(3)}(\xi_x)|}{576\sqrt{3}}$
- Construire la formule de quadrature \(\mathcal{F}_2(f) \) associée \(\mathcal{A} \) \(P_2 \).
- 5. Calculer l'ordre de la formule de quadrature $\mathcal{I}_2(f)$.
- 6. Calculer la dérivée $\mathcal{D}_2 = P_2'(x)$
- 7. Monter que la formule de dérivation \mathfrak{D}_2 est d'ordre 2.

Université Abdelmalek Essaádi École Normale Supérieure Tétouan

TD:2

Analyse numérique 1

LE-Math

Semestre 4 2022–2023

Exercice 1. Soit $g:[0, 1] \to \mathbb{R}$ une fonction de classe \mathscr{C}^3 et P_g sont polynôme d'interpolation de Lagrange aux points $0, \frac{1}{2}$ et 1. Le but de l'exercice est d'approcher la valeur $g''(\frac{1}{2})$.

- 1. Calculer P_g et puis calculer $P_g''(\frac{1}{2})$.
- 2. Posons $D_2g = 4g(0) 8g(\frac{1}{2}) + 4g(1)$
 - (a) Montrer que $\forall Q \in \mathbb{P}_2$ on a $D_2Q = Q''(\frac{1}{2})$.
 - (b) Montrer que $g[0, \frac{1}{2}, 1] = \frac{1}{2}D_2g$.
- 3. On pose pour tout $x \in [0, 1]$, $r(x) = g(x) P_g(x)$
 - (a) Montrer qu'il existe $\xi \in [0, 1]$ tel que $r''(\xi) = 0$
 - (b) Montrer que $g''(\frac{1}{2}) D_2 g = r''(\frac{1}{2})$
 - (c) Écrire r(x) en fonction de l'erreur d'interpolation et en déduire une majoration de $|g''(\frac{1}{2}) D_2 g|$.

Exercice 2.

- 1. A l'aide des développements de Taylor donner l'expression des deux premiers l'erreur liée à la formule de dérivation suivante : $\frac{f(x+ah)-f(x-bh)}{(a+b)h}$
- 2. On considère le θ -schéma $f'_{\theta}(x) = (1 \theta) \left(\frac{f(x+h) f(x)}{h} \right) + \theta \left(\frac{f(x) f(x-h)}{h} \right)$.
 - (a) Montrer que les deux premiers termes de l'erreur associée au θ -schéma sont données par : $\frac{2\theta-1}{2}hf^{(2)}(x)+\frac{h^2}{6}f^{(3)}(x)$, en déduire l'ordre de précision du θ -schéma en fonction de θ .

Exercice 3. Soit $f \in \mathcal{C}^1([0,1])$. On considère la formule de quadrature élémentaire :

$$\int_0^1 f(x)dx \simeq w_0 f(0) + w_1 f(\xi) + w_2 f'(0), \quad \text{où } \xi \in]0,1[\text{ et } w_0, w_1, w_2 \text{ sont des réels.}]$$

- 1. Déterminer les paramètres ξ , w_0 , w_1 et w_2 pour que la formule de quadrature soit exacte si f est un polynôme de degré inférieur ou égal à 3.
- 2. On pose $E(f) = \int_0^1 f(x) dx (w_0 f(0) + w_1 f(\xi) + w_2 f'(0))$. Calculer $E(x^4)$, et en déduire l'ordre.
- 3. A l'aide d'un changement de variable, construire une méthode de quadrature sur un intervalle [a, b].
- 4. $\int_{1}^{2} \frac{1}{x} dx = log(2)$. Donnez une approximation de log(2).

Exercice 4. Déterminer w_1 , w_2 et t_2 de sorte que la formule d'intégration numérique

$$\int_{-1}^{1} f(x)dx = w_1 f(-1) + w_2 f(t_2)$$
 soit de degré de précision le plus élevé possible. Quel est ce degré?

Exercice 5. Soit [p, q] un intervalle sur lequel f est définie, $m = \frac{p+q}{2}$ son milieu et $y = ax^2 + bx + c$ la prabole passant par les 3 points (p, f(p)), (q, f(q)) et (m, f(m)).

- 1. Ecrire les 3 équations traduisant le fait que ces 3 points sont sur la parabole.
- 2. Calculer $I = \int_{p}^{q} (ax^2 + bx + c)dx$, (on mettra $\frac{q-p}{6}$ en facteur).
- 3. Montrer que $I = \frac{q-p}{6} (f(p) + 4f(\frac{p+q}{2}) + f(q)).$
- 4. La formule de quadrature est-elle exacte pour les polynômes de degré 3?
- 5. A l'aide d'un changement de variable, exprimer l'intégral $\int_0^1 f(t)dt$ en fonction de I.

UNIVERSITÉ ABDELMALEK ESSAADI École Normale Supérieure Tétouan

TD:2

Analyse numérique 1

LE-Math

Semestre 4 2022-2023

Exercise 6. Soient $\varepsilon \in]0,1[$ et f une fonction de classe $C^3([0,1])$. On note a=f(0) et b=f(1).

- 1. Déterminer le polynôme de Newton P_{ε} qui interpole f aux points $0, \varepsilon$ et 1.
- 2. Montrer que pour tout x dans l'intervalle [0, 1]:

$$\lim_{\varepsilon \to 0^+} P_{\varepsilon} = (b - a - f'(0))x^2 + f'(0)x + a, \quad \text{on note cette limite} \quad P(x).$$

- 3. Vérifier que P est l'unique polynôme de degré 2 qui vérifie P(0) = f(0), P(1) = f(1) et P'(0) = f'(0).
- 4. Pour $x \in]0,1[$ fixé, on considère la fonction ϕ sur [0,1] définie par : $\phi(t) = f(t) P(t) \frac{f(x) P(x)}{x^2(x-1)}t^2(t-1)$ Vérifier que $\phi(0) = \phi(1) = \phi(x) = \phi'(0) = 0$.
- 5. En déduire qu'il existe $\zeta_x \in]0,1[$ tel que $\phi^{(3)}(\zeta_x) = 0$ et que $f(x) P(x) = \frac{f^{(3)}(\zeta_x)}{6}x^2(x-1)$.
- 6. Déterminer la formule de quadrature associé à P.

Exercice 7. On connaît les valeurs d'une fonction f pour trois abscisses équidistantes x_0 , x_1 et x_2 .

- 1. Former le polynôme de Lagrange P(x) qui interpole f aux points x_0 , x_1 et x_2 .
- 2. Posons $h = x_{i+1} x_i$ et $x = x_0 + mh$. Exprimer P(x) en fonction de m et $f_i = f(x_i)$, i = 0, 1, 2.
- 3. Utilisez le polynôme P pour calculer $J = \int_{x_0}^{x_2} f(x) dx$
- 4. Pour $h = \frac{1}{2}$. Calculer $J_1 = \int_0^2 (x^3) dx$ et $J_2 = \int_0^2 (x^4) dx$. Comparer avec les valeur exactes. Conclure.

Exercice 8.

Étant donnée un fonction f et un constante positive h. Nous définissons la différence latérale par :

$$\Delta f(x) = f(x+h) - f(x) \tag{1}$$

1. Posons $\Delta^0 f \equiv f(x)$. Montrer que

$$\Delta^{p+1} = \Delta^p f(x+h) - \Delta^p f(x) \tag{2}$$

2. Posons $x_i = x_0 + ih$ et notons $f_i = f(x_i)$ et $\Delta f(x_i) = \Delta f_i = f_{i+1} - f_i$. Montrer que

$$f[x_0, x_1, ..., x_k] = \frac{\Delta^k f_0}{k! \ h^k}$$
(3)

- 3. Soit $p_n = a_n x^n$. Notons $a_{n-k}^{(k)}$ le coefficient du terme de plus haut degré du polynôme $\Delta^k p_n(x)$.
 - (a) Montrer que $a_{n-k}^{(k)} = a_n n(n-1)...(n-k+1)h^k$
 - (b) En déduire la valeur du $a_0^{(n)}$
- 4. Montrer que $\Delta^{k} f_{i} = \sum_{j=0}^{k} (-1)^{j} C_{k}^{j} f_{i+j}$

UNIVERSITÉ ABDELMALEK ESSAADI École Normale Supérieure Tétouan

TD:3
Analyse numérique 1

LE-Math

Semestre 4 2023-2024

Exercice 1. On cherche à trouver la solution de l'équation $f(x) = x^3 + 9x - 10 = 0$. (1)

- 1. Faire une étude de la fonction f et en déduire le nombre de solutions de l'équation (1).
- 2. Réaliser trois itérations de la méthode de dichotomie pour la fonction f sur l'intervalle [0, 3].
- 3. Appliquer la méthode de dichotomie pour la fonction f sur l'intervalle [0, 2]. Combien de fois f a été calculée pour atteindre cette solution? Commentez les résultats!
- 4. Réaliser trois itérations de la méthode de Newton pour $x_0 = -1$.
- 5. Appliquer la méthode de Newton pour $x_0 = -\frac{1}{2}$. Commentez les résultats!
- 6. Réaliser trois itérations de la méthode de la sécante pour $x_0 = \frac{2}{3}$ et $x_1 = \frac{3}{4}$.
- 7. Appliquer la méthode de la sécante pour $x_0 = -1$, $x_1 = 0$. Commentez les résultats!
- 8. Réaliser quatre itérations de la méthode de point fixe pour $\phi(x) = \frac{10}{9} \frac{x^3}{9}$ et $x_0 = 1.125$.

Exercice 2. On veut résoudre l'équation $\sin(x) - 4x = 0$, $x \in [-1, 1]$, par la méthode du point fixe. Posons $\psi(x) = \frac{x + \sin(x)}{5}$, $x \in [-1, 1]$.

- 1. Monter que $\phi(x)$: $[-1, 1] \rightarrow [-1, 1]$. Faire une étude de la fonction ϕ' .
- 2. Monter que $\exists k$ tel que 0 < k < 1, $\forall (x, y) \in [-1, 1]^2$, $|\phi(y) \phi(x)| \le k |y x|$.
- 3. En déduire que ϕ possède un unique ponit fixe $\alpha \in [-1, 1]$.
- 4. Utiliser la méthode de point fixe pour calculer α avec une précision de 10^{-2} ($x_0 = \frac{1}{2}$).

Exercice 3. (Facultatif) Soit $f:[a, b] \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 . On suppose f(a) < 0 < f(b) et f'(x) > 0 pour tout $x \in [a, b]$. On considère la suite récurrente $\begin{cases} x_0 \in [a, b], \\ x_{n+1} = F(x_n), & n \neq 0, \end{cases}$ avec $F(x) = x - \frac{f(x)}{f'(x)}$.

- 1. Montrer que f a un unique zero $\alpha \in [a, b]$ et calculer $F'(\alpha)$.
- 2. Montrer que pour tout $x \in [a, b]$, il existe $z \in [x, \alpha]$ tel que : $F(x) \alpha = \frac{\int_{-\infty}^{\infty} (z)}{2 \int_{-\infty}^{\infty} (x \alpha)^2}$
- 3. En déduire qui'il existe C > 0 tel que $|F(x) \alpha| \le C|x \alpha|^2$ pour tout $x \in [a, b]$.
- 4. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge quadratiquement vers α .
- 5. Supposons que $\forall x \in [a, b], f''(x) > 0$. Soit $x_0 \in [\alpha, b]$. Montrer que $(x_n)_{n \in \mathbb{N}}$ est décroissante, minorée par α . En déduire que la suite $(x_n)_{n \in \mathbb{N}}$ converge vers l'unique point fixe α de F.
- 6. Posons $f(x) = x^2 \alpha$ avec $\alpha > 0$. Monter que $x_{n+1}^2 \alpha = \frac{1}{4} \frac{(x_n^2 \alpha)^2}{x_n^2}$.
- 7. Monter que si $n \ge 1$, $x_n \ge \sqrt{\alpha}$ et que $(x_n)_{n \in \mathbb{N}}$ est décroissante. En déduire qu'elle converge vers $\sqrt{\alpha}$.

Exercice 4. On se propose de calculer les zéros de la fonction $f(x) = x - \sin(x) - \frac{1}{4} = 0$.

- 1. Démontrez que cette équation f(x) = 0 admet une solution unique $\alpha \in I =]0, \frac{\pi}{2}[$.
- 2. Vérifiez que f satisfait les hypothèses nécessaires à l'application de la méthode Newton.
- 3. Pour $x_0 = 1.34927$, calculer les 3 premiers termes de (x_n) de la méthode de Newton. Calculer l'ordre de CV.

Exercice 5. Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 + x - 1 = 0$ (1).

- 1. Montrer que la fonction f admet un zéro unique α . Donnez le tableau de variation de f sur [0, 1].
- 2. Écrire la suite $(x_n)_{n \in \mathbb{N}}$ obtenue à partir de la méthode de Newton.
- 3. On suppose que $\alpha \le \frac{3}{4}$, étudier sur [0, 1] le signe de la fonction g(x) définie par : $g(x) = 2x^3 3\alpha x^2 + 1 \alpha$.

Université Abdelmalek Essaádi École Normale Supérieure Tétouan

TD:3

LE-Math Analyse numérique 1

Semestre 4 2023-2024

- 4. Supposons que $\alpha \leq \frac{3}{4}$ et $x_0 \in [\alpha, 1]$, montrer que $x_n \geq \alpha$, $\forall n \geq 1$, et que $(x_n)_{n \in \mathbb{N}}$ est décroissante et conclure.
- 5. En prenant $x_0 = \frac{3}{4}$, donner une valeur approchée de α avec une précision 10^{-2} .
- 6. L'équation (1) est équivalente à l'équation x = g(x), où $g(x) = \{ \cos 1: x^3 + 2x - 1;$ cas 3: $\sqrt[3]{1-x}$; cas 4: $\frac{1}{x^2+1}$; cas 2: $1-x^3$;
 - (a) Étudier la convergence de la suite (x_n) définie par la fonction g pour rechercher α . Dans le cas où il y a convergence, donner un intervalle $I_0 \subset]0$, 1 [tel que la méthode converge pour tout choix $x_0 \in I_0$.
 - (b) Utilisez la méthode du point fixe avec $g(x) = \frac{1}{x^2+1}$ pour calculer une valeur approché x_k a $\varepsilon = 0.01$ près de la racine α de (1) à partir de $x_0 = 0.5$.

Exercice 6. On se propose de résoudre numériquement l'équation : $f(x) = x^5 + x - 1 = 0$. (2)

- 1. Montrer que l'équation (2) admet une solution unique $\alpha \in \mathbb{R}$.
- 2. Donnez le tableau de variation de f sur l'intervalle [0, 1]. Montrer que $\alpha \in]0, 1[$.
- 3. L'équation (2) est équivalente à l'équation x = g(x). où $g(x) = \{ \cos 1 : x^5 + 2x - 1 ;$ cas 2: $1-x^5$; cas 3: $\sqrt[5]{1-x}$ }
 - (a) Étudier dans chacun des trois cas, la convergence de la suite $(x_n)_{n\in\mathbb{N}}$ définie par g pour la recherche de α . Dans le cas où il y a convergence, donner un intervalle $I_0 \subset]0$, 1[tel que la méthode converge $\forall x_0 \in I_0$.
 - (b) Utilisez $g(x) = \sqrt[5]{1-x}$ pour calculer x_1 , x_2 , x_3 et x_4 en partant de $x_0 = 0.649689$.
- 4. Écrire la suite $(x_n)_{n \in \mathbb{N}}$ obtenue à partir de la méthode de Newton.
- 5. On suppose que $\alpha \le \frac{5}{6}$, étudier sur [0, 1] le signe de la fonction g(x) définie par : $g(x) = 4x^5 5\alpha x^4 + 1 \alpha$.
- 6. Supposons que $\alpha \leq \frac{5}{6}$ et $x_0 \in [\alpha, 1]$. Montrer que $x_n \geq \alpha$ pour tout $n \geq 1$. et que $x_{n+1} \in [\alpha, x_n]$. Conclure.
- 7. Pour $x_0 = \frac{5}{6}$, calculer les trois premières itérations de la suite de Newton $(x_n)_{n\geq 1}$ approximant la solution α .

Exercice 7. On se propose de résoudre l'équation $f(x) = x^3 + 6x^2 + 14x + 12 = 0$, en utilisant la suite : $x_{n+1} = g(x_n)$, avec $g(x) = x + \rho f(x)$ et $\rho \in \mathbb{R}$.

- 1. Pour quelles valeur de ρ , -2 est un point douteux.
- 2. Pour quelles valeur de ρ , -2 est un point attractif (resp. répulsif).
- 3. Quel est l'ordre de convergence pour $\rho = \frac{-1}{2}$. Dans ce cas calculer x_1 , x_2 en partant de $x_0 = -1.48766$, puis calculer l'ordre numérique. Commentez les résultats.

Exercice 8. Soient $\rho \in]0, \sqrt{3}[$ et $f(x) = \frac{x^2}{2} + x$.

- 1. Montrer que l'equation f(x) = 0 admet une solution unique $\alpha \in]-1, \frac{2-\rho}{\rho}[$.
- 2. Etudier la convergence de la méthode de point fixe définie par $x_{n+1} = \phi(x_n), x_0 \in]-1, \frac{2-\rho}{\rho}[$, avec $\phi(x) = x \rho f(x)$.
- 3. Que se passe t'il lorsque $\rho = 1$?

Exercice 9. (Facultatif)

Soit $f(x) = h(x)(x-2)^3$ où h(x) est une fonction continue et dérivable sur l'intervalle [1,3] telle que $h(2) \neq 0$.

- 1. Calculez la dérivée f'(x) de la fonction f(x) et la deuxième dérivée f''(x) de la fonction f(x).
- 2. Vérifiez que la racine r = 2 est une racine multiple de f(x) de multiplicité 3.
- 3. Appliquez la méthode de Newton généralisée pour la fonction $f(x): x_{n+1} = x_n 3 \frac{f(x_n)}{f'(x_n)}$
- 4. Montrez que la méthode de Newton-Raphson généralisée converge vers la racine r = 2 de multiplicité 3 pour la fonction f(x) en utilisant le théorème de convergence de la méthode de Newton.
- 5. Déterminez l'ordre numérique de convergence de la méthode de Newton pour cette fonction.