Misure di calorimetria

Gruppo 3

20 Marzo 2023

Data esperienza: 20 Marzo 2023 Gruppo: Marta Arnoldi Giovanni Carminati

Istruttore: Prof. CALVI

Contents

1	Obiettivi:	2										
2	Cenni Teorici	2										
_	2.1 Calore scambiato	2										
	2.2 Massa equivalente	2										
	2.3 Equilibrio termico	2										
	2.4 Costante di Joule	2										
	2.5 Calore latente	2										
3	Svolgimento dell'esperienza	3										
	3.1 Parte A: misura massa equivalente	3										
	3.2 Parte B: determinazione del calore specifico dei solidi	3										
	3.3 Parte C: misura della costante di joule	3										
	3.4 Parte D: Misura del calore latente di fusione del ghiaccio	3										
4	Dati Raccolti	4										
	4.1 Parte A:	4										
	4.2 Parte B:	4										
	4.3 Parte C:	4										
	4.4 Parte D:	4										
5	Analisi Dati	5										
	5.1 Parte A:	5										
	5.2 Parte B:	5										
	5.3 Parte C:	5										
	5.4 PARTE D:	7										
6	Discussione dei risultati ottenuti											
	6.1 Parte A:	7										
	6.2 Parte B:	7										
	6.3 Parte C:	7										
	6.4 PARTE D:	8										

1 Obiettivi:

Primo Obiettivo: Misura della massa equivalente per una certa massa di acqua

Secondo Obiettivo: Determinazione del calore specifico di alcuni materiali

Terzo Obiettivo: Misura della costante di Joule

Quarto Obiettivo: Misura del calore latente di fusione del ghiaccio

l'esperienza è svolta usando il calorimetro delle mescolanze di Regault

2 Cenni Teorici

2.1 Calore scambiato

Due corpi a temperature T_A, T_B ($T_A \ge T_B$) posti a contatto scambiano calore fino a raggiungere la stessa temperatura detta di equilibrio (T_e). Calcoliamo il calore scambiato con:

$$Q_{ceduto} = c_A m_A (T_A - T_e)$$
 $Q_{acquistato} = c_B m_B (T_e - T_B)$

dove c è il calore specifico e m la massa dei corpi.

2.2 Massa equivalente

La massa equivalente m_e è la massa di una certa sostanza che assorbe tanto calore quanto i componenti del calorimetro.

2.3 Equilibrio termico

Se il sistema nel quale avviene lo scambio di calore è isolato allora vale $\mathbf{Q}_{\text{ceduto}} = \mathbf{Q}_{\text{acquistato}}$

$$c_S m_S (T_S - T_e) = c_{acqua} (m_{acqua} + m_e) (T_e T_{acqua})$$
(1)

2.4 Costante di Joule

La costante di Joule è il rapporto tra lavoro compiuto su un sistema e il calore prodotto $J = \frac{W}{Q}$. Nell'apparato a disposizione il lavoro è compiuto dal passaggio della corrente elettrica in un resistore immerso nell'acqua quindi

$$J = \frac{IV\Delta t}{c_{acqua}(m_{acqua} + m_e)\Delta T} \qquad \frac{joule}{cal}$$
 (2)

2.5 Calore latente

I cambiamenti di fase sono accompagnati da scambi di calore, che, per unità di massa, sono detti calori latenti . Nel caso di sostanze pure il calore latente è una quantità ben definita. La quantità di calore nel cambiamento di fase vale $Q = m\lambda$. Nella condizione di equilibrio si ha:

$$c_a(m_a + m_e)(T_a - T_e) = c_g m_g(T_0 - T_g) + m_g \lambda + c_a m_g(T_e - T_0)$$
(3)

3 Svolgimento dell'esperienza

3.1 Parte A: misura massa equivalente

- pesati 100g di acqua a temperatura ambiente
- scaldati altrettanti 100g di acqua a 50°C
- miscelate le due masse d'acqua nel calorimetro e atteso fino al raggiungimento dell'equilibrio termico
- misurata la temperatura di equilibrio T_e
- ripetuto per 5 volte

3.2 Parte B: determinazione del calore specifico dei solidi

- riscaldata l'acqua in un beker a 100°C
- pesati i campioni metallici
- immersi i campioni nell'acqua bollente affinchè raggiungessero 100°C
- versati 200g di acqua nel calorimetro a temperatura ambiente
- immersi i campioni metallici nel calorimetro e atteso fino al raggiungimento della temperatura di equilibrio con l'acqua
- ripetuto 3 volte per ogni campione

3.3 Parte C: misura della costante di joule

Il lavoro è compiuto da una resistenza che si riscalda mantenendo I e V costanti

- versati nel calorimetro 200g di acqua a temperatura ambiente
- immessa nel calorimetro la resistenza
- misurata la temperatura ogni minuto per 15 minuti

3.4 Parte D: Misura del calore latente di fusione del ghiaccio

- pesati 300g di acqua e scaldati
- pesati 50g di ghiaccio
- miscelati acqua e ghiaccio nel calorimetro
- misurata la temperatura di equilibrio termico

4 Dati Raccolti

4.1 Parte A:

temperatura ambiente laboratorio T_a 20 °C 293.16 K massa acqua ambiente m_1 0.1 kg massa acqua calda m_2 0.1 kg temperatura m_1 T_1 20 °C 293.16 K

temperatura m_1 T_1 20 °C 293.16 K temperatura m_2 T_2 50 °C 323.16 K

T_e 34 33 35 34 34

4.2 Parte B:

temperatura ambiente laboratorio 20°C T_a 293.16 K massa acqua $0.2\,\mathrm{kg}$ m_1 massa ottone m_2 $0.122\,\mathrm{kg}$ $0.128 \, \mathrm{kg}$ massa rame m_2 massa alluminio $0.039 \, \mathrm{kg}$ m_2 temperatura campioni 100°C $373.16 \, K$ T_2

4.3 Parte C:

massa acqua m = 0.2 kg delta t $\Delta t = 15 \text{ min}$

temperatura acqua iniziale T_i 21.5 °C 294.66 K temperatura acqua iniziale T_f 35.5 °C 308.6 K

tensione V = 15 V corrente I = 3.5 A

4.4 Parte D:

massa acqua m_a 0.3 kg massa ghiaccio m_g 0.05 kg

temperatura acqua T_a 85.5 °C 358.66 K temperatura ghiaccio T_g -17 °C 256.16 K **temperatura di equilibrio** T_e 57.5 °C 330.66 K

link file excel contenente le misurazioni

5 Analisi Dati

5.1 Parte A:

ricaviamo il valore della massa equivalente con la seguente equazione:

$$m_e = \frac{m_2(T_2 - T_e)}{T_e - T_1} - m_1$$

errore dovuto al termometro σ_T 0.5 °C errore dovuto alla bilancia σ_m 0.001 kg sigma T medio $\sigma_{\bar{T}}$ 0.40 °C massa equivalente σ_e 0.012 kg sigma massa equivalente σ_{m_e} 0.007 kg

5.2 Parte B:

ricaviamo il calore specifico dei metalli dalla seguente equazione:

$$c = c_1 \frac{(T_e - T_a)(m_1 + m_e)}{(T_2 - T_e) * m_2}$$

Calore specifico rame: $354 \pm 66 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{kg}^{-1}$ Calore specifico ottone: $319 \pm 69 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{kg}^{-1}$ Calore specifico alluminio: $843 \pm 214 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{kg}^{-1}$

5.3 Parte C:

Segue il grafico della temperatura in funzione del tempo raccolte in $\Delta t = 15min$:

Possiamo ricavare dall'interpolazione il valore della costante di Joule:

$$T \propto t \Rightarrow T = \frac{IV}{c_{h_2O}J(m+m_e)}t \Rightarrow B = \frac{IV}{c_{h_2O}J(m+m_e)} \Rightarrow J = \frac{IV}{c_{h_2O}B(m+m_e)}$$
 (4)

Costante di joule: $2.86 \pm 0.21 \text{J cal}^{-1}$

Il risultato ottenuto è poco somigliante al valore atteso (4.19 J cal⁻¹) e la retta interpolata aumenta di pendenza progressivamente. Questo fa pensare che ci sia un errore sistematico non trascurabile, proviamo quindi a analizzare come l'errore si evolve nel tempo:

N	3	4	5	6	7	8	9	10	11	12	13	14	15	
$\sigma_{\rm y}$	0.5	0.5	0.5	0.5	0.5	0.5	0.52	0.55	0.6	0.69	0.76	0.85	1.01	
В	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.01	0.01	0.011	0.012	0.013	0.014	
σ_{B}	0.006	0.004	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
Α	295.	295.	295.	295.	295.	295.	295.	294.	294.	294.	294.	294.	293.	
σ_{A}	0.46	0.42	0.39	0.36	0.34	0.32	0.32	0.32	0.34	0.38	0.4	0.43	0.5	
J	4.79	4.79	4.79	4.79	4.79	4.79	4.49	4.16	3.88	3.54	3.32	3.1	2.86	
$\sigma_{ m J}$	3.39	2.14	1.52	1.15	0.91	0.74	0.56	0.44	0.36	0.3	0.26	0.22	0.21	

I dati ottenuti mostrano come all'aumentare dei dati raccolti aumenti σ_y e diminuisca σ_B , per ricavare un valore della costante di joule (J) che tenga conto dell'evoluzione dell'errore sistematico calcoliamo la media pesata dei J ottenuti:

$$w = rac{1}{\sigma_J^2}$$
 $ar{J} = rac{\sum w_i J_i}{\sum w_i}$ $\sigma_{ar{J} = rac{1}{\sqrt{\sum w_i}}}$

Costante di joule: 3.39 ± 0.11 J cal⁻¹

5.4 PARTE D:

ricaviamo il valore del calore latente di fusione del ghiaccio λ considerando gli errori su m_e , T_e , T_a :

$$\lambda = \frac{c_a(m_a + m_e)(T_a - T_e) - c_g m_g (T_0 - T_g) - c_a m_g (T_e - T_0)}{m_g}$$

calore latente λ : 460 ± 25 kJ kg⁻¹

6 Discussione dei risultati ottenuti

6.1 Parte A:

Il calorimetro usato e i suoi componenti assorbono tanto calore quanto 14±7 g di acqua. Possiamo concludere che il calore assorbito dall'equivalente di 14g di acqua (su 200g) non influisca drasticamente sulle misurazioni.

6.2 Parte B:

Di seguito la tabella dei valori dei calori specifici ottenuti comparati ai valori attesi (valori espressi in $JK^{-1}kg^{-1}$):

metallo	misurato	atteso		
rame	354 ± 66	387		
ottone	319 ± 69	377		
alluminio	843 ± 214	880		

Le misure rientrano entro 1σ di errore, i valori ottenuti confermano le ipotesi

6.3 Parte C:

Il valore della costante di Joule ottenuto dall'interpolazione della retta risulta essere $2.86 \pm 0.21 \text{J cal}^{-1}$ e quindi non compatibile con il valore atteso 4.19J cal^{-1} .

I punti non seguono l'andamento di una retta e son meglio approssimati da una parabola, la relazione $T \propto t$ non è verificata.

Causa dell'errore sistematico avvenuto durante la raccolta dati è probabilmente la scarsa miscelazione dell'acqua, è possibile che nella regione più vicina alla restistenza l'acqua si sia riscaldata localmente falsando i dati.

Dobbiamo inoltre escludere che il liquido si sia miscelato spontaneamente tramite moti convettivi in quanto la resistenza non era posta alla base.

Il valore del calore specifico a pressione costante cresce quadraticamente con la temperatura, questo giustifica il valore decrescente della costante di joule.

6.4 PARTE D:

il calore latente di fusione del ghiaccio ottenuto è λ : $460\pm25~kJ~kg^{-1}$. Il valore atteso è $334~kJ~kg^{-1}$ distante più di 2σ dal valore misurato. Possibile causa di un errore sistematico può essere la temperatura del ghiaccio non verificata prima di essere immersa nel calorimetro e di conseguenza una sottostima dell'incertezza.