IGEM WP Model

Summary

Contents

1	Not	ations	1
2	201	2015 KU Model	
	2.1	Basic Ideas	1
	2.2	Transcription and Hill Function	1
	2.3	Translation	2
	2.4	Protein Association and Disassociation	2
	2.5	Ping-Pong Bi-Bi	2
	2.6	Spread	2
	2.7	Reproduction Result and Problems	2
	2.8	What have I gained	2
3	Our	Model	2
	3.1	Baisc View	2
	3.2	Michaelis-Menten Equation	2
	3.3	Hill Function	2
	3.4	Protein Association and Disassociation	2
	3.5	Results and Conclusion	2
	3.6	Evaluation and Further Improvement	2

1 Notations

Here are some conventions about notation.

- 1. words begin with g represent gene(eg., gSos).
- 2. words begin with m represent mRNA(eg., mSos).
- 3. words begin with p represent promoter(eg., pSos).
- 4. other words represent protein(eg., Sos).
- 5. α represents transcription term(eg., α_{Sos}).
- 6. β represents translation term(eg., β_{Sos}).
- 7. d represents decomposition term(eg., d_{Sos}).

2 2015 KU Model

Since it is a model reproduction work, I am not going to show a lot details about model design. Instead, I am going to point out the key to the model and the problems while I try to reproduce the result. Besides, I'd like to share what I gain in this process.

2.1 Basic Ideas

The basic model to describe the amount of chemical substances is **ODE Model**. If we totally figure out the transformation among chemical substances we concerned about, then we can use some submodels to describe their transformation rate, which is $\frac{\text{d}amount}{\text{d}t}$, the derivative of the amount.

In the following, I will show the basic chemical reactions and the submodels to describe them.

2.2 Transcription and Hill Function

According to central dogma, the first step of build a protein is transcription. If the transcription rate is a const, we can describe the process as $\frac{\mathrm{d}mRNA}{\mathrm{d}t} = r \cdot gRNA$ where r is the transcription rate.

Actually, we always need a transcription factor. Only after the factor is binded to DNA, can they begin to transcribe. Hill Function is used to describe such a situation(cf., Fig.)

$$\theta = \frac{[L]^n}{K_d^n + [L]^n} = \frac{1}{1 + (\frac{K_d}{[L]})^n} \tag{1}$$

 θ is the amount of DNA bound by the protein, [L] is the amount of protein, K_d is the dissociation constant and n is the Hill coefficient.

For the repressors, we are interested in how much of the DNA is still unbound and active:

$$\frac{1}{1 + (\frac{[Repressor]}{K_d})^n}$$

For the activators, we are interested in how much of the DNA is bound and active:

$$\frac{1}{1 + (\frac{K_d}{[Activator]})^n}$$

So the ODE is modified as

$$\frac{\mathrm{d}mRNA}{\mathrm{d}t} = r \cdot \left(\frac{1}{1 + \left(\frac{K_d}{[Activator]}\right)^n} gRNA\right)$$

2.3 Translation

Translation is quite easy. We consider translate rate as a const, so the contribution of translation in derivative term is

$$\frac{\mathrm{d}Protein}{\mathrm{d}t} = r_{Translation} \cdot mRNA$$

- 2.4 Protein Association and Disassociation
- 2.5 Ping-Pong Bi-Bi
- 2.6 Spread
- 2.7 Reproduction Result and Problems
- 2.8 What have I gained
- 3 Our Model

3.1 Baisc View

Our design is a feedback system in which the output protein RhoA can detect the amount of input $TGF - \beta$ and change accordingly through a series of pathways.

The sketch of metabolic pathway is shown as following.

- 3.2 Michaelis-Menten Equation
- 3.3 Hill Function
- 3.4 Protein Association and Disassociation
- 3.5 Results and Conclusion
- 3.6 Evaluation and Further Improvement