Tutorial Shed 5, Et 302-52 Control Systems, 18 th March 2024. Q-1: Un voot locus technique of Routh Huewitz to find range of k to have closed loop stability for open loop transfuln (a) (s+1)(s+2)(s+3) (b) (s+1)(s+2) (c) $(k \in (-\infty, \infty))$ (s+1) (s+2) (s+2) (s+2) (s+2) (s+2) (s+2)(d) (s+1) (e) (s+2) (s+2) (s+3) (s²+s) (s-p) (d) 1/ (s²+1) (s²+4) Fore, 6: PE (12,-13) all)

12: Find range of k that results in dond loop poles left of s=-1 line?

Constituted line) Q-2: Find range of (a) (g+4) (b) $\frac{1}{s(s+1)(s+2)}$ (restrict line). S(S+2) (Replace S = Z+1 of S=Z-1 2?) (choon appropriately). (ux Routh thumits) (a) Un Routh table to find #OLHP rost, JR rosts, #ORHP (6) If 3 jR noots, comment about maginal stability. Loots. (i) $5^5 - 75^4 + 165^3 - 165^2 + 153 - 9$ (ii) $5^6 + 5^5 + 25^4 + 25^3 + 95^2 + 95$ (iii) $25^3 - 245 + 32$; $(5+1) \cdot (25^3 - 245 + 32)$ (i) 5^{5} 75^{4} + 165^{3} - 165^{2} + 158 - 9 (ii) 5^{6} + 5^{5} + 25^{4} + 25^{3} + 95^{2} + 95^{2} (iii) 25^{3} - 245^{2} + 32^{2} (5 +1) · $(25^{3}$ - 245 + 32^{2} Use both & method & reciprocal method when applicable. b-4: Find range of a such that all roots are in OLHP $s^2 + (3s + c)s + (2-c)$ (c $\in (-\infty, \infty)$). $C(s) = \frac{n_c(s)}{d_c(s)}, G(s) = \frac{n_p(s)}{d_p(s)}, \text{ and } \frac{1}{s} \xrightarrow{g} G \xrightarrow{g} G$ (b) Find cloud loop zees also (from or to y). (c) If there is a pole/zero cancellation in G, then What that be the can for or to y also? (choon C(5)=k)

(d) Same as (c) but I rear pole/zero candition. for this k = IR

Candition. (e) Is it reasonable that in a PI whole (for configuration (1))
the cloud loop pole clon to origin would have small (for step input) residue?

RI RICE RILLE CONTROLL Q-6 Consider the circuit in which R, is to be viewed as connected in feedback and plant is (a) Replace the rest of the circuit by impedance and R in Lorward north & feedback configuration with Ry in forward path of bards feedback path for each (b) Change the rest of the circuit between circuit. load convention of some convention of accordingly use -ve or the feedback. 0-7: Plot/sketch Bode plot for following Q(s): (a) S+2 (b) $2(1+\frac{5}{2})$ (c) $\frac{S+5}{5-5}$ (d) $\frac{S-5}{5+5}$ (s+1) $\frac{3}{5+9}$ (f) $\frac{3}{5}$ (g) $\frac{65}{5+9}$ $\frac{Q-8}{S+0.05}$ justify lead lag (b) $\frac{S+8}{S+20}$ words for these Match the pairs transfu functions. lead conpunction High pass filter Lag conjunction All-pass filter ag: Prove that sinut > J(t) = | a(jw) | sin (wt + L agw) Low pars filter. 0-10: Suppose impedance of a circuit is Z(5). Pelati active pours absorbed by the count, averaged over one period, (Load convention). for some it) = sin wt with

Re Z(jw) (former (t) = V.I.
in time domain).