SOLUTIONS TO 18.01 REVIEW PROBLEMS

Unit 1: Differentiation

R1-0.

a)
$$\frac{-\gamma nRT}{V^{\gamma+1}}$$

b)
$$\frac{m_0 v}{c^2 (1 - v^2/c^2)^{3/2}}$$
 c) $\frac{c\omega_0 (2k+1)}{\beta^2}$

c)
$$\frac{c\omega_0(2k+1)}{\beta^2}$$

a)
$$\frac{(x+1)\cos x - \sin x}{(x+1)^2}$$

b)
$$\frac{\sin\sqrt{x}\cos\sqrt{x}}{\sqrt{x}}$$

c)
$$x^{1/3}\sec^2 x + \frac{1}{3}x^{-2/3}\tan x$$

d)
$$\frac{\frac{3x^2}{2} + 2x - 1}{(\sqrt{x+1})^3}$$

e)
$$\frac{-\sin\sqrt{x^2+1} \times x}{\sqrt{x^2+1}}$$

a)
$$\frac{(x+1)\cos x - \sin x}{(x+1)^2}$$
 b) $\frac{\sin\sqrt{x}\cos\sqrt{x}}{\sqrt{x}}$ c) $x^{1/3}\sec^2 x + \frac{1}{3}x^{-2/3}\tan x$ d) $\frac{\frac{3x^2}{2} + 2x - 1}{(\sqrt{x+1})^3}$ e) $\frac{-\sin\sqrt{x^2+1} \times x}{\sqrt{x^2+1}}$ f) $\frac{(3\cos^2\sqrt{x^2+1})(-\sin\sqrt{x^2+1})x}{\sqrt{x^2+1}}$ g) $3x^2\sec^2(x^3)$ h) $\sec^2(3x+1) + 6x\sec^2(3x+1)\tan(3x+1)$

g)
$$3x^2 \sec^2(x^3)$$

h)
$$\sec^2(3x+1) + 6x\sec^2(3x+1)\tan(3x+1)$$

R1-2 (0, -15)

R1-3
$$y = 4x - 10$$

R1-4 Hint: Use addition formula to expand $\sin(x + \Delta x)$.

R1-5 a)
$$x = \pm 1$$
.

b)
$$x = 0$$

R1-6
$$(1,-2)$$
 and $(-1,2)$

R1-8 Hint: Differentiate implicitly the equation $y^5 = x$.

R1-10 a)
$$c + d = 2$$
 b) $c = 2, d = 0$

b)
$$c = 2, d = 0$$

R1-11 a) cf. p. 75, Simmons. b) false;
$$f(x) = |x|$$

b) false:
$$f(x) = |x|$$

R1-12 a)
$$b = -a\pi$$
 b) $a = -1, b = \pi$

b)
$$a = -1, b = \pi$$

R1-13 Let
$$4x = t$$
.

R1-13 Let
$$4x = t$$
.
$$\lim_{x \to 0} \frac{\sin(4x)}{x} = \lim_{\frac{t}{4} \to 0} \frac{4\sin(t)}{t} = 4\lim_{t \to 0} \frac{\sin(t)}{t} = 4$$

Unit 2: Applications of Differentiation

R2-2 a) $20\sqrt{5}$ ft/sec b) $50\sqrt{2}$ ft/sec

b)
$$50\sqrt{2}$$
 ft/sec

R2-3 5

R2-4 a) 1 b) 1 c)
$$\frac{1}{10}$$

c)
$$\frac{1}{10}$$

R2-5 a) false b) cf. p.
$$801-802$$
 (1), (2), (3) Simmons. **R2-6** 1

R2-7
$$r = (2\pi)^{-1/3}, h = (4/\pi)^{1/3}$$

R2-8 b)
$$\frac{6}{5} < f(2) < \frac{3}{2}$$

R2-9 a) This is true, use mean value theorem. b) This is false; try x^3 .

R2-10 a) see graph

b) f(x) must be discontinuous c) f(x) is discontinuous

d) |x|

Unit 3: Integration

R3-1 2,
$$\frac{14}{3}$$
, $\frac{3}{2}$

R3-2 Yes. Hint: Find the time it takes him to reach the bottom of the hill, and find his speed at that instant.

R3-3
$$\frac{8}{3}$$
 R3-4 a) 16 b) $1 + \frac{3\sqrt{2}}{2}$ c) $(36)^{1/3}$

R3-5
$$\frac{\pi}{4}$$
 R3-6 $\leq 75,000,050$ **R3-7** $\frac{9}{2}$ **R3-8** 11.46

R3-10 7.566... **R3-12** 6 **R3-14**
$$4x - 3x^2$$

Unit 4: Applications of Integration

R4-1.
$$\pi \times 197 \frac{11}{15}$$

R4-2.
$$\frac{128}{3}$$

R4-3. 12

R4-6.
$$2a^2$$

R4-7.
$$8\pi$$

R4-8. 8.
$$\pi \times 9.63\dot{6}...$$

R4-10 b) hint: write
$$\int_{1}^{ab} f(t)dt = \int_{1}^{a} f(t)dt + \int_{a}^{ab} f(t)dt$$

Unit 5: Integration Techniques

R5-1
$$x^{1/x}(\frac{1-\ln x}{x^2}), e^{x^2}(\frac{2}{x}+2x\ln(x^2)), \frac{1}{1+x^2}$$

R5-2 a)
$$\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + c$$
 b) $\frac{e^x}{2} (\sin x - \cos x) + c$

R5-3 a)
$$\tan^{-1}(e^x) + c$$
 b) $\frac{1}{3} \ln \frac{(x-1)^2}{|x^2+x+1|} + c$ c) $2x^2 + 8x + 16 \ln(x-2) + c$

R5-4 a)
$$\frac{1}{2}(\tan^{-1}x + \frac{x-1}{1+x^2}) + c$$
 b) $x^2 \sin x + 2x \cos x - 2\sin x + c$

R5-5
$$\frac{5\pi}{32}$$