1 (i) $(x_{n+1}, y_{n+1}) = (x_n^2 - y_n^2 + 1, 2x_n y_n + 1)$

M1 for setting $x^2 - y^2 + 1 = x$ and 2xy + 1 = y

M1 A1 for identifying y's in each case: $y^2 = x^2 - x + 1$ and $y = \frac{1}{1 - 2x}$

M1 for eliminating y's

M1 for creating a polynomial in x

A1 for correct quartic $4x^4 - 8x^3 + 9x^2 - 5x$

M1 for attempt to factorise (e.g. by factor theorem or long-division etc.) to at least quadratic stage

A1 for $x(x-1)(4x^2-4x+5)=0$

B1 for convincing demonstration that the quadratic factor here has no real roots e.g. by $\Delta = 4^2 - 4.4.5 = -64 < 0$ or $4x^2 - 4x + 5 = (2x - 1)^2 + 4 > 0 \ \forall x$

A1 A1 for each solution-pair: (x, y) = (0, 1) and (1, -1) [N.B. A1 A0 if extras appear]

11

ALTERNATIVE

$$(x_{n+1}, y_{n+1}) = (x_n^2 - y_n^2 + 1, 2x_n y_n + 1)$$

M1 for setting $x^2 - y^2 + 1 = x$ and 2xy + 1 = y

M1 A1 for eliminating y - 1 = 2xy and $x^2 - x = (y + 1)(y - 1)$

to get
$$x^2 - x = 2xy(y+1)$$

M1 A1 for 1^{st} solution-pair: (x, y) = (0, 1)

M1 for other case $x = 1 + 2y + 2y^2$ with x eliminated to give a cubic eqn. in y

A1 for correct cubic eqn. $4y^3 + 4y^2 + y + 1 = 0$

M1 for attempt to factorise

A1 for
$$(y+1)(4y^2+1)=0$$

B1 for convincing demonstration that the quadratic factor here has no real roots e.g. by $\Delta = 0^2 - 4.4.1 = -16 < 0$ or observing that $4y^2 + 1 > 0$ (or ≥ 1) $\forall x$

A1 for 2^{nd} solution-pair: (x, y) = (1, -1) [N.B. A1 A0 if extras appear]

(ii)
$$(x_1, y_1) = (-1, 1) \implies (x_2, y_2) = (a, b)$$
 B1
 $\Rightarrow (x_3, y_3) = (a^2 - b^2 + a, 2ab + b + 2)$ **B1**

M1 for setting both $a^2 - b^2 + a = -1$ and 2ab + b + 2 = 1

M1 A1 for identifying b's in each case: $b^2 = a^2 + a + 1$ and $b = \frac{-1}{1+2a}$

M1 for noting that the algebra is the same as the above, with a = -x and b = -y or via longer approach

A1 A1 for each solution-pair: (a, b) = (0, -1) and (-1, 1)

B1 for rejecting, with reasoning, (-1, 1) since this gives a constant sequence.

2 M1 for use of correct PF form: $\frac{1+x}{(1-x)^2(1+x^2)} = \frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{Cx+D}{1+x^2}$

M1 for $1 + x = A(1 - x)(1 + x^2) + B(1 + x^2) + (Cx + D)(1 - x)^2$ and use of comparing coeffts. and/or susbtn.

A1 A1 A1 A1 for each of
$$A = \frac{1}{2}$$
, $B = 1$, $C = \frac{1}{2}$, $D = -\frac{1}{2}$

M1 for use of $\frac{1+x}{(1-x)^2(1+x^2)} = A(1-x)^{-1} + B(1-x)^{-2} + Cx(1+x^2)^{-1} + D(1+x^2)^{-1}$ with attempt at binomial series and numerical *A*, *B*, *C*, *D* (ft from above work)

$$\equiv \frac{1}{2} \sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} (n+1)x^n + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n x^{2n+1} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

A1 A1 A1 for each series expansion correct (may be in explicit power series form)

M1 for examining cases for $n \pmod{4}$

A1 for
$$n \equiv 0 \pmod{4}$$
, coefft. of x^n is $\frac{1}{2} + n + 1 + 0 - \frac{1}{2} = n + 1$

A1 for
$$n \equiv 1 \pmod{4}$$
, coefft. of x^n is $\frac{1}{2} + n + 1 + \frac{1}{2} - 0 = n + 2$

A1 for
$$n \equiv 2 \pmod{4}$$
, coefft. of x^n is $\frac{1}{2} + n + 1 + 0 + \frac{1}{2} = n + 2$

A1 for
$$n \equiv 3 \pmod{4}$$
, coefft. of x^n is $\frac{1}{2} + n + 1 - \frac{1}{2} + 0 = n + 1$

Withhold the last A mark if these are merely stated without justification

5

5

M1 A1 for
$$\frac{11000}{8181} = \frac{1.1}{0.9^2 \times 1.01}$$
 i.e. $x = 0.1$

M1 for use of series $1 + 3x + 4x^2 + 4x^3 + 5x^4 + 7x^5 + 8x^6 + 8x^7 + 9x^8 + ...$ with some suitable value of x with |x| < 1

A1 for 1.344 578 90 correct to first 6dp A1 for all 8dp correct

3 (i) M1 for finding $\frac{dy}{dx}$ (= $81x^2 - 54x$) A1 A1 for TPs at (0, 4) and $(\frac{2}{3}, 0)$

(Give M1 A1 A0 if both x-coords correct but y's omitted or one/both incorrect)

- **B1** Sketch of a cubic
- **B1** for TPs at x = 0 and $x = \frac{2}{3}$ (ft)
- **B1** for observation that, for all $x \ge 0$, $y \ge 0 \implies x^2(1-x) \le \frac{4}{27}$ clearly shown

6

8

M1 for contrary assumption that all three numbers exceed $\frac{4}{27}$.

- **M1** for use of their product bc(1-a)ca(1-b)ab(1-c)
- M1 for re-arranging this into the form $a^2(1-a)$. $b^2(1-b)$. $c^2(1-c)$ at some stage
- **A1** for consequence of assumption that $a^2(1-a)$. $b^2(1-b)$. $c^2(1-c) > (\frac{4}{27})^3$.
- **M1** for use of previous result $x^2(1-x) \le \frac{4}{27}$ for each of a, b, c to deduce that $a^2(1-a)$. $b^2(1-b)$. $c^2(1-c) \le (\frac{4}{27})^3$

A1 and, hence, by contradiction, at least one of bc(1-a), ca(1-b), $ab(1-c) \le \frac{4}{27}$. **6**

ALTERNATIVELY

Assume w.l.o.g. that (0 <) $a \le b \le c < 1$, for instance.

Then $ab(1-c) \le c^2(1-c) \le \frac{4}{27}$, as required.

NOT a proof by contradiction, but pretty good mathematics.

Give **5** / **6** . (Similarly for other alternative approaches.)

- (ii) M1 for use of the graph of $y = x x^2$ or another suitable choice: e.g. $y = (2x 1)^2$
 - **M1 A1 A1** for diff^g. (or \equiv) and showing max. at $(\frac{1}{2}, \frac{1}{4})$ so that $x(1-x) \le \frac{1}{4}$. [Ignore which x's here, as Qn. restricts later so that x and 1-x both ≥ 0 .]
 - **M1 A1** for assumption that p(1-q), $q(1-p) > \frac{1}{4} \implies p(1-p).q(1-q) > (\frac{1}{4})^2$
 - **M1** for use of previous result $x(1-x) \le \frac{1}{4}$ for each of p, q to deduce that $p(1-p).q(1-q) \le (\frac{1}{4})^2$
 - **A1** and, hence, by contradiction, at least one of p(1-q), $q(1-p) \le \frac{1}{4}$.

4 M1 for use of implicit diffⁿ. including the *Product Rule* on the xy term

A1 for
$$\frac{dy}{dx} = -\frac{x+ay}{ax+y}$$
 legit. (GIVEN ANSWER) from $2\left(x+y\frac{dy}{dx}+ax\frac{dy}{dx}+ay\right) = 0$ 2

B1 for grad. nml. $\frac{dy}{dx} = \frac{ax + y}{x + ay}$

M1 for use of
$$tan(A - B)$$
 on this and $\frac{y}{x}$: $tan \theta = \frac{\frac{y}{x} - \frac{ax + y}{x + ay}}{1 + \frac{y}{x} \times \frac{ax + y}{x + ay}}$

A1 correct unsimplified

3

M1 for mult^g. throughout by
$$x(x + ay)$$
:
$$= \left| \frac{xy + ay^2 - ax^2 - xy}{x^2 + axy + axy + y^2} \right|$$

M1 for use of $x^2 + y^2 + 2axy = 1$ from the curve's eqn.

A1 for tan $\theta = a|y^2 - x^2|$ [Ignore modulus signs until the end]

(i) **M1** for diff^g. wrt
$$x$$
: $\sec^2 \theta \frac{d\theta}{dx} = a \left(2y \frac{dy}{dx} - 2x \right)$

M1 for equating this to 0 and using $\frac{dy}{dx} = -\frac{x+ay}{ax+y}$ from earlier

$$y\frac{x+ay}{ax+y} + x = 0 \implies xy + ay^2 + ax^2 + xy = 0$$

A1 for correctly deducing GIVEN ANSWER $a(x^2 + y^2) + 2xy = 0$

(ii) **M1** for adding
$$x^2 + y^2 + 2axy = 1$$
 and $a(x^2 + y^2) + 2xy = 0$
A1 for $(1 + a)(x + y)^2 = 1$

(iii) M1 for subtracting these two eqns.

A1 for
$$(1-a)(y-x)^2 = 1$$

M1 for mult^g. these two results together

A1 for
$$(1-a^2)(y^2-x^2)^2=1$$

M1 for use of
$$\tan \theta = a|y^2 - x^2| \implies (y^2 - x^2)^2 = \frac{1}{a^2} \tan^2 \theta$$
 subst^d. in this to get

A1 for GIVEN ANSWER tan
$$\theta = \frac{a}{\sqrt{1-a^2}}$$

B1 for explaining that +ve sq.rt. taken since tan θ is | something |, which is ≥ 0 .

7

- 6 -

5 **B1** for
$$\int_{0}^{\pi/2} \frac{\sin 2x}{1 + \sin^2 x} dx = \int_{0}^{\pi/2} \frac{2\sin x \cos x}{1 + \sin^2 x} dx$$

M1 for use of substn. $s = \sin x$ M1 for $ds = \cos x dx$ used to eliminate all x's for s's

A1 for $\int_{0}^{1} \frac{2s}{1+s^2} ds$ [Limits may be dealt with later, so ignore for now]

A1 for $ln(1 + s^2)$ **ft** on constant errors

A1 for ln 2 6

M1 for use of substn. $c = \cos x$ in $\int_{0}^{\pi/2} \frac{\sin x}{1 + \sin^2 x} dx$

M1 for $dc = -\sin x \, dx$ used to eliminate all x's for c's

A1 for $\int_{0}^{1} \frac{1}{2-c^2} dc$ [Limits may be dealt with later, so ignore for now]

M1 for use of
$$k \ln \left| \frac{\sqrt{2} + c}{\sqrt{2} - c} \right|$$
 form from F.Bks.

$$k = \frac{1}{2\sqrt{2}}$$

B1 for sorting out limits correctly at some stage

A1 for
$$\frac{1}{\sqrt{2}} \ln(1 + \sqrt{2})$$
 6

6

M1 A1 for binomial expansion on $(1 + \sqrt{2})^5 = 1 + 5\sqrt{2} + 20 + 20\sqrt{2} + 20 + 4\sqrt{2}$

B1 for correct sensible line of reasoning:

$$41 + 29\sqrt{2} < 99 \Leftrightarrow 29\sqrt{2} < 58 \Leftrightarrow \sqrt{2} < 2$$
 (which I am happy to allow as obvious)

B1 for $1.96 < 2 \implies 1.4 < \sqrt{2}$

M1 for approach such as $2^{1.4} > 1 + \sqrt{2} \iff 2^7 > (1 + \sqrt{2})^5$ $128 > 41 + 29\sqrt{2} \iff 87 > 29\sqrt{2} \iff 3 > \sqrt{2}$

A1 for completely correct reasoning: $2^{\sqrt{2}} > 2^{\frac{7}{5}} > 1 + \sqrt{2}$

M1 for taking logs: $2^{\sqrt{2}} > 1 + \sqrt{2} \implies \sqrt{2} \ln 2 > \ln(1 + \sqrt{2})$

$$\Rightarrow \ln 2 > \frac{1}{\sqrt{2}} \ln \left(1 + \sqrt{2} \right)$$

A1 for correct conclusion legitimately obtained; i.e. $\int_{0}^{\pi/2} \frac{\sin 2x}{1+\sin^{2} x} dx > \int_{0}^{\pi/2} \frac{\sin x}{1+\sin^{2} x} dx$

6 (i) $\cos x$ has period $2\pi \Rightarrow \cos(2x)$ repeats after π , 2π , 3π , 4π , (i.e. period π) $\sin x$ has period $2\pi \Rightarrow \sin\left(\frac{3x}{2}\right)$ repeats after $\frac{4\pi}{3}$, $\frac{8\pi}{3}$, $\frac{12\pi}{3}$, (i.e. period $\frac{4}{3}\pi$)

Thus $f(x) = \cos\left(2x + \frac{\pi}{3}\right) + \sin\left(\frac{3x}{2} - \frac{\pi}{4}\right)$ has period 4π .

B1 for correct answer in either case

M1 for method; $lcm(\pi, \frac{4}{3}\pi)$ – ft their answers

A1 for correct answer of 4π

(ii) M1 for use of $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$ or equivalent to get

A1
$$\cos\left(2x + \frac{\pi}{3}\right) = -\sin\left(\frac{3x}{2} - \frac{\pi}{4}\right) = \cos\left(\frac{3x}{2} + \frac{\pi}{4}\right)$$

M1 A1 for
$$2x + \frac{\pi}{3} = \frac{3x}{2} + \frac{\pi}{4} \implies x = -\frac{\pi}{6}$$

from
$$2x + \frac{\pi}{3} = 2n\pi + \left(\frac{3x}{2} + \frac{\pi}{4}\right)$$
, $n = 0$ only

3

2

M1 for approach at other solutions, i.e. from $2x + \frac{\pi}{3} = 2n\pi - \left(\frac{3x}{2} + \frac{\pi}{4}\right)$

A1 for any one correct answer

A1 A1 for second/third correct answers

+ A1 for all four and no extras (ignore correct answers outside range $[-\pi, \pi]$

$$x = -\frac{31\pi}{42}$$
 (from $n = -1$), $x = -\frac{\pi}{6}$ $(n = 0)$, $x = \frac{17\pi}{42}$ $(n = 1)$, $x = -\frac{41\pi}{42}$ $(n = 2)$

B1 for
$$x = -\frac{\pi}{6}$$

B1 for explanation: it is a double root (i.e. repeated root, order 2)

(iii) **M1** for
$$y = 2$$
 if and only if **both** $\cos\left(2x + \frac{\pi}{3}\right) = 1$ and $\sin\left(\frac{3x}{2} - \frac{\pi}{4}\right) = 1$

M1 for solving
$$\cos\left(2x + \frac{\pi}{3}\right) = 1 \implies 2x + \frac{\pi}{3} = 0$$
, 2π , 4π ,

A1 for
$$x = \frac{5\pi}{6}$$
, $\frac{11\pi}{6}$,

M1 for solving
$$\sin\left(\frac{3x}{2} - \frac{\pi}{4}\right) = 1 \implies \frac{3x}{2} - \frac{\pi}{4} = \frac{\pi}{2}$$
, $\frac{5\pi}{2}$,

A1 for
$$x = \frac{\pi}{2}$$
, $\frac{11\pi}{6}$,

A1 for
$$x = \frac{11\pi}{6}$$

6

9

6 ALTERNATIVE to (ii)

(ii) **B1** for use of $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$ or equivalent to get

$$\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(\frac{3\pi}{4} - \frac{3x}{2}\right) = 0$$

B1 for
$$2\cos\left(\frac{x}{4} + \frac{13\pi}{24}\right)\cos\left(\frac{7x}{4} - \frac{5\pi}{24}\right) = 0$$

M1 A1 for
$$\frac{x}{4} + \frac{13\pi}{24} = \frac{\pi}{2} \implies x = -\frac{\pi}{6}$$
 from $\cos\left(\frac{x}{4} + \frac{13\pi}{24}\right) = 0$

M1 for approach at other solutions, i.e. from $\cos\left(\frac{7x}{4} - \frac{5\pi}{24}\right) = 0$

$$\frac{7x}{4} - \frac{5\pi}{24} = -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$

$$\Rightarrow x = -\frac{31\pi}{42}, \ x = -\frac{\pi}{6}, \ x = \frac{17\pi}{42}, \ x = -\frac{41\pi}{42}$$

A1 for at any one correct answer

A1 A1 for second/third correct answers

+ A1 for all four and no extras (ignore correct answers outside range $[-\pi, \pi]$

7 (i) **M1 A1** for
$$y = u\sqrt{1+x^2} \implies \frac{dy}{dx} = u \cdot \frac{x}{\sqrt{1+x^2}} + \sqrt{1+x^2} \cdot \frac{du}{dx}$$

Then
$$\frac{1}{y} \frac{dy}{dx} = xy + \frac{x}{1+x^2}$$
 becomes

M1 for eliminating y from the given diff. eqn.

$$\frac{1}{u\sqrt{1+x^2}} \left\{ \frac{ux}{\sqrt{1+x^2}} + \sqrt{1+x^2} \cdot \frac{du}{dx} \right\} = xu\sqrt{1+x^2} + \frac{x}{1+x^2}$$

dM1 for simplifying and cancelling one term $\Rightarrow \frac{x}{1+x^2} + \frac{1}{u} \cdot \frac{du}{dx} = xy + \frac{x}{1+x^2}$

A1 for correct diff. eqn. in x and u: $\frac{1}{u} \cdot \frac{du}{dx} = xu\sqrt{1+x^2}$

M1 for sep^g, variables and integrating $\int \frac{1}{u^2} du = \int x \sqrt{1 + x^2} dx$

A1 ft for
$$-\frac{1}{u} = \frac{1}{3} (1 + x^2)^{\frac{3}{2}} (+C)$$

M1 for use of x = 0, y = 1 (u = 1) to find C

M1 for getting
$$y$$
 explicitly in terms of x

A1 for
$$y = \frac{3\sqrt{1+x^2}}{4-(1+x^2)^{\frac{3}{2}}}$$
 10

ALTERNATIVE

B1 for
$$y = u\sqrt{1 + x^2}$$
 \Rightarrow $\ln y = \frac{1}{2}\ln(1 + x^2) + \ln u$

M1 A1 for diff^g. implicitly
$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2} \cdot \frac{2x}{1+x^2} + \frac{1}{u} \cdot \frac{du}{dx}$$

M1 A1 for
$$\frac{1}{y} \frac{dy}{dx} = xy + \frac{x}{1+x^2}$$
 becomes $\frac{1}{u} \cdot \frac{du}{dx} = xu(1+x^2)^{\frac{1}{2}}$

M1 for sep^g, variables and integrating $\int \frac{1}{u^2} du = \int x \sqrt{1 + x^2} dx$

A1 ft for
$$-\frac{1}{u} = \frac{1}{3}(1+x^2)^{\frac{3}{2}} (+C)$$

M1 for use of x = 0, y = 1 (u = 1) to find C

M1 for getting y explicitly in terms of x
$$\mathbf{A1} \text{ for } y = \frac{3\sqrt{1+x^2}}{4-\left(1+x^2\right)^{\frac{3}{2}}}$$
10

(ii) **M1** for choosing $y = u(1 + x^3)^{\frac{1}{3}}$

M1 A1 for
$$\frac{dy}{dx} = u \cdot x^2 (1 + x^3)^{-\frac{2}{3}} + (1 + x^3)^{\frac{1}{3}} \frac{du}{dx}$$

Then
$$\frac{1}{y} \frac{dy}{dx} = x^2 y + \frac{x^2}{1+x^3}$$
 becomes

M1 for eliminating y from the given diff. eqn.

A1 for correct diff. eqn. in x and $u: \frac{1}{u} \cdot \frac{du}{dx} = x^2 u (1 + x^3)^{\frac{1}{3}}$

M1 for sep^g, variables and integrating $\int \frac{1}{u^2} du = \int x^2 (1 + x^3)^{\frac{1}{3}} dx$

A1 ft for
$$-\frac{1}{u} = \frac{1}{4} (1 + x^3)^{\frac{4}{3}} (+ C)$$

M1 for use of x = 0, y = 1 (u = 1) to find C and for getting y explicitly in terms of x

A1 for
$$y = \frac{4(1+x^3)^{\frac{1}{3}}}{5-(1+x^3)^{\frac{1}{3}}}$$

ALTERNATIVE

M1 for choosing $y = u(1 + x^3)^{\frac{1}{3}}$ **B1** for $\ln y = \frac{1}{3} \ln(1 + x^3) + \ln u$

M1 for diff^g. implicitly
$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{3} \cdot \frac{3x^2}{1+x^3} + \frac{1}{u} \cdot \frac{du}{dx}$$

M1 A1 for
$$\frac{1}{y} \frac{dy}{dx} = x^2 y + \frac{x^2}{1+x^3}$$
 becomes $\frac{1}{u} \cdot \frac{du}{dx} = x^2 u (1+x^3)^{\frac{1}{3}}$

M1 for sep^g, variables and integrating $\int \frac{1}{u^2} du = \int x^2 (1 + x^3)^{\frac{1}{3}} dx$

A1 ft for
$$-\frac{1}{u} = \frac{1}{4} (1 + x^3)^{\frac{4}{3}} (+ C)$$

M1 for use of x = 0, y = 1 (u = 1) to find C and for getting y explicitly in terms of x

A1 for
$$y = \frac{4(1+x^3)^{\frac{1}{3}}}{5-(1+x^3)^{\frac{4}{3}}}$$

(iii) **B1** for
$$y = \frac{(n+1)(1+x^n)^{1/n}}{(n+2)-(1+x^n)^{1+1/n}}$$

8 M1 A1 for $AP : PB = 1 - \lambda : \lambda \Rightarrow \mathbf{p} = \lambda \mathbf{a} + (1 - \lambda)\mathbf{b}$

2

M1 for use of the scalar product

M1 A1 A1 for
$$\mathbf{a} \cdot \mathbf{p} = \lambda a^2 + (1 - \lambda)(\mathbf{a} \cdot \mathbf{b})$$
 and $\mathbf{b} \cdot \mathbf{p} = \lambda(\mathbf{a} \cdot \mathbf{b}) + (1 - \lambda)b^2$

M1 for equating these two expressions for $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{p}}{ap} = \frac{\mathbf{b} \cdot \mathbf{p}}{bp}$

A1 for
$$\lambda a^2 b + (1 - \lambda)b$$
 ($\mathbf{a} \bullet \mathbf{b}$) = λa ($\mathbf{a} \bullet \mathbf{b}$) + $(1 - \lambda) ab^2$

M1 A1 for factorising:
$$ab\{\lambda(a+b)-b\}=\mathbf{a}\bullet\mathbf{b}\{\lambda(a+b)-b\}$$

B1 for <u>eliminating</u> the possibility $ab = \mathbf{a} \cdot \mathbf{b}$ since this gives $\cos 2\theta = 1$, $\theta = 0$, A = B (which violates the non-collinearity of O, A & B, for instance) – as opposed to ignoring or "cancelling" it

A1 for
$$\lambda = \frac{b}{a+b}$$
.

B1 for
$$AP : PB = 1 - \lambda : \lambda \implies \mathbf{q} = (1 - \lambda)\mathbf{a} + \lambda\mathbf{b}$$

M1 A1 for
$$OQ^2 = \mathbf{q} \cdot \mathbf{q} = (1 - \lambda)^2 a^2 + \lambda^2 b^2 + 2\lambda(1 - \lambda) \mathbf{a} \cdot \mathbf{b}$$

A1 for
$$OP^2 = \mathbf{p} \cdot \mathbf{p} = (1 - \lambda)^2 b^2 + \lambda^2 a^2 + 2\lambda(1 - \lambda) \mathbf{a} \cdot \mathbf{b}$$

M1 for subtracting:

$$OQ^2 - OP^2 = (b^2 - a^2) \left[\lambda^2 - (1 - \lambda)^2\right] = (b^2 - a^2) (2\lambda - 1)$$

M1 for substn. of their λ in terms of a and b into this expression

$$=(b-a)(b+a)\times \frac{b-a}{b+a}$$
 B1 ft for $2\lambda-1$ correct

A1 for
$$=(b-a)^2$$
 GIVEN ANSWER

8 M1 A1 for $AP : PB = 1 - \lambda : \lambda \Rightarrow \mathbf{p} = \lambda \mathbf{a} + (1 - \lambda)\mathbf{b}$

ALTERNATIVE I

The Angle Bisector Theorem gives

$$\frac{AP}{PB} = \frac{OA}{OB} \implies \frac{(1-\lambda)(AB)}{\lambda(AB)} = \frac{a}{b} \implies b - b\lambda = a\lambda \implies \lambda = \frac{b}{a+b}$$

ALTERNATIVE II

OP is bisector of $\angle AOB$ if $\mathbf{p} = k \left(\frac{\mathbf{a}}{a} + \frac{\mathbf{b}}{b} \right)$

$$\Rightarrow \lambda = \frac{k}{a} \text{ and } 1 - \lambda = \frac{k}{b} \Rightarrow \lambda a = b - \lambda b \Rightarrow \lambda = \frac{b}{a+b}$$

M1 for repeated use of the Cosine Rule

A1 for
$$OQ^2 = OB^2 + BQ^2 - 2(OB)(BQ) \cos B$$

A1 for
$$OP^2 = OA^2 + AP^2 - 2(OA)(AP) \cos A$$

M1 for subtracting **dM1** for use of AP = BQ

$$OO^2 - OP^2 = b^2 - a^2 + 2(AP)(a\cos A - b\cos B)$$

M1 for substn. of their λ in terms of a and b into this expression

$$= b^2 - a^2 + 2\frac{a}{a+b}c(a\cos A - b\cos B) \qquad \text{where } c = AB$$

M1 for use of $2ac \cos A = a^2 + c^2 - b^2$ and $2bc \cos B = b^2 + c^2 - a^2$

$$OQ^{2} - OP^{2} = b^{2} - a^{2} + \frac{a}{a+b}(a^{2} + c^{2} - b^{2} - [b^{2} + c^{2} - a^{2}])$$

$$= b^{2} - a^{2} + \frac{a}{a+b}(2a^{2} - 2b^{2}) = b^{2} - a^{2} + \frac{2a}{a+b}(a-b)(a+b)$$

A1 for $=(b-a)^2$ GIVEN ANSWER

8

9 (i) **M1** for use of the (modified) trajectory eqn. $y = (h) + x \tan \alpha - \frac{gx^2}{2u^2} \sec^2 \alpha$

M1 A1 for subst^g. in g = 10 and u = 40 to get $y = (h) + x \tan \alpha - \frac{gx^2}{320} \sec^2 \alpha$

M1 for setting x = 20 and y = 0 (-h) in their trajectory eqn.

B1 for use of $\sec^2 \alpha = 1 + \tan^2 \alpha$ at some stage

A1 for $0 = h + 20t - \frac{5}{4}(1 + t^2)$

M1 for treating as a quadratic in $t = \tan \alpha$: $5t^2 - 80t - (4h - 5) = 0$

M1 for solving using the quadratic formula: $\tan \alpha = \frac{80 \pm \sqrt{6400 + 80h - 100}}{10}$

A1 for $\tan \alpha = 8 \pm \sqrt{63 + \frac{4}{5}h}$

B1 for rejecting $\tan \alpha = 8 + \sqrt{63 + \frac{4}{5}h}$ (gives a very high angle of projection/greater time for ball to arrive)

M1 A1 for Time of flight = $\frac{x}{u \cos \alpha} = \frac{1}{2 \cos \alpha} \approx \frac{1}{2}$ since α small, $\cos \alpha \approx 1$

(ii) **B1** for
$$h > \frac{5}{4}$$
 for $\tan \alpha < 0 \ (= 8 - \sqrt{64 + \varepsilon})$

(iii) M1 for re-writing into usable form: $h = 2.5 \implies \tan \alpha = 8 - \sqrt{64 + 1} = 8 - 8\left(1 + \frac{1}{64}\right)^{1/2}$

M1 for use of binomial series expansion (1st 2 terms): $\tan \alpha = 8 - 8 \left(1 + \frac{1}{128} + \dots\right)$

A1 for $\tan \alpha \approx -\frac{1}{16}$ [ignore sign]

M1 for small-angle use of $\tan \alpha \approx \alpha$

M1 for converting from radians into degrees

B1 for conversion factor $180/\pi \approx 57.3$

A1 for 3.6°

10

<u>At *X* :</u>

$$CLM \parallel BC$$
 $mu \sin \alpha = mv \cos \beta$

B1

$$eu \cos \alpha = v \sin \beta$$

B1

Dividing
$$\uparrow \Rightarrow \tan \beta = e \cot \alpha$$
 or $\tan \alpha \tan \beta = e$

B1

At Y:
$$CLM \parallel BC \qquad mv \sin \beta = mw \cos \gamma$$

Dividing $\downarrow \Rightarrow \tan \beta = e \cot \gamma$

NEL $ev \cos \beta = w \sin \gamma$

OR "Similarly"
$$\tan \beta \tan \gamma = e$$

B1

Hence
$$\alpha = \gamma$$
 (since all angles acute).

B1 5

(ii) M1 for use of similar Δs (or \equiv): Let BX = x (XN = b - x) and CY = y (DY = a - y)

B1 B1 B1 for
$$\tan \alpha = \frac{x}{a}$$
, $\tan \beta = \frac{y}{2b-x}$, $\tan \gamma = \frac{b}{a-y}$

M1 for use of $\alpha = \gamma$ to find (e.g) y in terms of a, b, x

$$\Rightarrow ax - xy = ab \Rightarrow y = \frac{a(x-b)}{x}$$

M1 for using $\tan \alpha \tan \beta = e$ to get x in terms of a and b

$$\Rightarrow \frac{x}{a} \times \frac{a(x-b)/x}{2b-x} = e \Rightarrow x-b = 2be - ex \Rightarrow x = \frac{b(1+2e)}{1+e}$$

A1 for
$$\tan \alpha = \frac{b(1+2e)}{a(1+e)}$$
 GIVEN ANSWER

M1 for argument such as

$$\tan \alpha = \frac{b(1+2e)}{a(1+e)} = \frac{b}{a} + \frac{be}{a(1+e)} > \frac{b}{a}$$
 and $\tan \alpha = \frac{b(1+2e)}{a(1+e)} = \frac{2b}{a} - \frac{be}{a(1+e)} < \frac{2b}{a}$

A1 so that $\frac{b}{a} < \tan \alpha < \frac{2b}{a}$ and shot is possible,

with ball striking BC between N and C, whatever the value of e

OR

M1 for as
$$e \to 0$$
, $\tan \alpha \to \frac{b}{a}$ and as $e \to 1$, $\tan \alpha \to \frac{3b}{2a}$

A1 so that $\frac{b}{a} < \tan \alpha < \frac{3b}{2a}$ and shot is possible, with ball striking BC between N and the midpoint of NC, whatever the value of e

(iii) SHORT VERSION

At X, \uparrow -component of ball's velocity becomes $e \times \text{initial } \uparrow$ -component **B1** and at Y, \rightarrow -component of ball's velocity becomes $e \times \text{initial } \rightarrow$ -component **B1** Hence final velocity is eu **M2** and fraction of KE lost is

$$\frac{\frac{1}{2}mu^2 - \frac{1}{2}me^2u^2}{\frac{1}{2}mu^2} = 1 - e^2 \qquad \mathbf{M1 A1}$$

LONG VERSION

Squaring and adding eqns. for collision at $X \implies v^2 = u^2(\sin^2\alpha + e^2\cos^2\alpha)$ **B1**

Squaring and adding eqns. for collision at $Y \implies w^2 = v^2(\sin^2\beta + e^2\cos^2\beta)$ **B1**

Initial KE = $\frac{1}{2}mu^2$ and final KE = $\frac{1}{2}mw^2$

Fraction of KE lost is
$$\frac{\frac{1}{2}mu^2 - \frac{1}{2}mw^2}{\frac{1}{2}mu^2} = 1 - \frac{w^2}{u^2}$$
 M1

$$=1-(\sin^2\alpha+e^2\cos^2\alpha)(\sin^2\beta+e^2\cos^2\beta)$$

$$=1-\frac{\tan^2\alpha+e^2}{\sec^2\alpha}\times\frac{\tan^2\beta+e^2}{\sec^2\beta}$$
 dM1

M1 for use of
$$\tan \alpha \tan \beta = e$$

$$= 1 - \frac{t^2 + e^2}{1 + t^2} \times \frac{e^2 / t^2 + e^2}{1 + e^2 / t^2}$$

$$=1-\frac{t^2+e^2}{1+t^2}\times\frac{e^2(1+t^2)/t^2}{(t^2+e^2)/t^2}$$

A1 for
$$= 1 - e^2$$

11

(i) **B1 B1** for the acceleration components of $P: a\cos\theta - b \ (\rightarrow)$ and $a\sin\theta \ (\downarrow)$

B1 for
$$N2L \rightarrow for P$$

$$m(a\cos\theta - b) = R\sin\theta - F\cos\theta$$

B1 for
$$N2L \downarrow for P$$

$$ma \sin \theta = mg - F \sin \theta - R \cos \theta$$

B1 for
$$N2L \leftarrow for \text{ wedge}$$

$$kmb = R \sin \theta - F \cos \theta$$

M1 A1 for
$$a\cos\theta - b = kb \implies b = \frac{a\cos\theta}{k+1}$$
.

ALTERNATIVELY

B1 for P's \rightarrow accln. component

B1 for wedge's accln. \leftarrow

M2 A1 for
$$CLM \leftrightarrow km bt = m (a \cos \theta - b)t$$
 $t = \text{time from release}$

M1 A1 for
$$a\cos\theta - b = kb \implies b = \frac{a\cos\theta}{k+1}$$
.

A1 for $b = a(\cos\theta - \sin\theta)$

M1 for
$$(k+1)(\cos\theta - \sin\theta) = \cos\theta \implies k+1-(k+1)\tan\theta = 1$$

M1 for noting that for P to move at 45° to the horizontal, $a \cos \theta - b = a \sin \theta$

A1 for

$$\Rightarrow \tan \theta = \frac{k}{k+1}$$
.

ALTERNATIVE

M1 for
$$\frac{a}{\sin 45^{\circ}} = \frac{b}{\sin (45^{\circ} - \theta)}$$
 (by the Sine Rule)

given that P moves at 45° to the horizontal

[Ignore other possibility involving $\sin(135^{\circ} - \theta)$]

A1 for $a(k+1)[\sin 45^{\circ} \cos \theta - \cos 45^{\circ} \sin \theta] = a \cos \theta \sin 45^{\circ}$

M1 for dividing by $\cos \theta$ and identifying $\tan \theta$

A1 for legitimately obtaining
$$\tan \theta = \frac{k}{k+1}$$
.

4

B1 for $k=3 \Rightarrow \tan\theta = \frac{3}{4}$, $\sin\theta = \frac{3}{5}$ and $\cos\theta = \frac{4}{5}$ noted or used.

B1 for $b = \frac{1}{5}a$.

M1 for 1st eqn. of motion

M1 for eliminating b

$$\Rightarrow m(\frac{4}{5}a - b) = \frac{3}{5}R - \frac{4}{5}F$$
 or $3R - 4F = m(4a - 5b) = 3ma$

B1 for use of <u>Friction Law (in motion)</u>: $F = \mu R$ at any stage to eliminate $F \Rightarrow R(3 - 4\mu) = 3ma$

M1 for 2nd eqn. of motion

$$\Rightarrow \frac{3}{5}ma = mg - \frac{3}{5}F - \frac{4}{5}R \text{ or } 4R + 3F = m(5g - 3a)$$
$$\Rightarrow R(4 + 3\mu) = 5mg - 3ma$$

M1 for dividing/equating for R:

$$\frac{4+3\mu}{3-4\mu} = \frac{5g-3a}{3a} \implies (12+9\mu)a = 5(3-4\mu)g - (9-12\mu)a$$

A1 for
$$a = \frac{5(3-4\mu)g}{3(7-\mu)}$$
.

8

1

(ii) B1 for If $\tan\theta \le \mu$, then both P and the wedge remain stationary.

- 18 -

B1 for $X \in \{0, 1, 2, 3\}$ recognised somewhere

B1 for $p(X = 0) = (1 - p)(1 - \frac{1}{3}p)(1 - p^2)$ or any equivalent form

B1 for
$$p(X = 1) = p(1 - \frac{1}{3}p)(1 - p^2) + (1 - p)\frac{1}{3}p(1 - p^2) + (1 - p)(1 - \frac{1}{3}p)p^2$$

= $p(1 - p)(\frac{4}{3} + \frac{5}{3}p - p^2)$ or aef

B1 for
$$p(X = 2) = p \cdot \frac{1}{3}p(1-p^2) + p(1-\frac{1}{3}p)p^2 + (1-p)\frac{1}{3}p \cdot p^2$$

= $\frac{1}{3}p^2(1+4p-3p^2)$ or aef

B1 for
$$p(X=3) = \frac{1}{3}p^4$$
 or aef

N.B. This work may be done later, numerically.

M1 A1 for $E(X) = \sum x \cdot p(x) = 0 + p(1-p)(\frac{4}{3} + \frac{5}{3}p - p^2) + \frac{2}{3}p^2(1 + 4p - 3p^2) + p^4$ **A1** $= \frac{4}{3}p + p^2$

ALTERNATIVELY

$$E(X) = \sum E(X_i) = p + \frac{1}{3}p + p^2 = \frac{4}{3}p + p^2$$
 [M2 A1]

5

M1 A1 for equating this to $\frac{4}{3} \implies 0 = 3p^2 + 4p - 4$

M1 A1 for factorising/solving attempt at their quadratic 0 = (3p - 2)(p + 2)

A1 for
$$0$$

Now, either p_0 and p_1 or p_2 and p_3 needed here:

M1 A1 for either
$$p_0 = \frac{35}{243}$$
 and $p_1 = \frac{108}{243}$ or $p_2 = \frac{84}{243}$ and $p_3 = \frac{16}{243}$

M1 A1 for careful statement of cases

 $p(\text{correct pronouncement}) = p(G \text{ and } \ge 2 \text{ judges say } G) + p(NG \text{ and } \le 1 \text{ judges say } G)$

A1 for correct (unsimplified) =
$$t \cdot \frac{100}{243} + (1-t) \cdot \frac{143}{243} = \frac{143 - 43t}{243}$$

M1 for equating this to $\frac{1}{2}$ and solving for $t \Rightarrow 243 = 286 - 86t \Rightarrow 86t = 43$

A1 for
$$t = \frac{1}{2}$$
.

ALTERNATIVE

Let p(King pronounces guilty) = q.

Then "King correct" = "King pronounces guilty and defendant *is* guilty" or "King pronounces not guilty and defendant *is* not guilty" so that p(King correct) = qt + (1 - q)(1 - t)

Setting
$$qt + (1-q)(1-t) = \frac{1}{2} \iff (2q-1)(2t-1) = 0$$

Since
$$q \neq \frac{1}{2}$$
, $t = \frac{1}{2}$.

(i) M1 for correct statement of cases p(B in bag P) = p(B not chosen draw 1) + p(B chosen draw 1) and draw 2)

B1 for
$$\frac{k}{n}$$
 used; **B1** ft for 1 – this; **B1** for $\frac{k}{n+k}$

$$= \left(1 - \frac{k}{n}\right) + \frac{k}{n} \times \frac{k}{n+k} = \frac{1}{n(n+k)} \left((n-k)(n+k) + k^2\right)$$

M1 for mult^g. the probs of 2 independent events

A1 for
$$= \frac{n}{n+k}$$

B1 for k = 0

B1 for explanation that there are no others (e.g. since $p = 1 - \frac{k}{n+k} \le 1$ and for k = 0, p = 1 but k > 0, p < 1)

(ii) M1 for a correct listing of all cases

 $p(Bs \text{ in same bag}) = p(B_1 \text{ chosen on } D_1 \text{ and neither chosen on } D_2)$ + $p(B_1 \text{ chosen on } D_1 \text{ and both chosen on } D_2)$ + $p(B_1 \text{ not chosen on } D_1 \text{ and } B_2 \text{ chosen on } D_2)$

$$= \frac{k}{n} \times \frac{n+k-2}{n+k} \frac{C_k}{C_k} + \frac{k}{n} \times \frac{n+k-2}{n+k} \frac{C_{k-2}}{C_k} + \left(1 - \frac{k}{n}\right) \times \frac{k}{n+k}$$

$$= \frac{k}{n} \times \frac{n(n-1)}{(n+k)(n+k-1)} + \frac{k}{n} \times \frac{k(k-1)}{(n+k)(n+k-1)} + \frac{k(n-k)}{n(n+k)}$$

$$= \frac{k}{n} \left\{ \frac{n^2 - n + k^2 - k + (n^2 + nk - n - nk - k^2 + k)}{(n+k)(n+k-1)} \right\}$$

$$= \frac{2k(n-1)}{(n+k)(n+k-1)}$$

$$\frac{dp}{dk} = \frac{(n^2 + 2nk + k^2 - n - k) \times 2(n - 1) - 2k(n - 1) \times (2n + 2k - 1)}{\left[(n + k)(n + k - 1)\right]^2}$$

$$= 0 \text{ when } n^2 + 2nk + k^2 - n - k = 2nk + 2k^2 - k \quad \text{since } n > 2, \ n - 1 \neq 0$$

$$\Rightarrow k^2 = n(n - 1)$$
Allow $k = \left[\sqrt{n(n - 1)}\right] \text{ or } k = \left[\sqrt{n(n - 1)}\right] + 1 \text{ or both, but must be an integer.}$
In fact, since $n^2 - n = (n - \frac{1}{2})^2 - \frac{1}{4}$, $\left[\sqrt{n^2 - n}\right] = n - 1$ and we find that,

when $k = n - 1$, $p = \frac{2(n - 1)^2}{(2n - 1)2(n - 1)} = \frac{n - 1}{2n - 1}$
and when $k = n$, $p = \frac{2n(n - 1)}{(2n)(2n - 1)} = \frac{n - 1}{2n - 1}$ also