STA 437/2005: Methods for Multivariate Data Week 7: Principal Component Analysis

Piotr Zwiernik

University of Toronto

Example 1: Decathlon

The columns are 10 different disciplines in decathlon:

```
> data("olympic", package = "ade4")
> athletes = setNames(olympic$tab,
+ c("m100", "long", "weight", "high", "m400", "m110", "disc", "pole", "javel", "m1500"))
> head(athletes)
    m100 long weight high m400 m110 disc pole javel m1500
1 11.25 7.43    15.48 2.27 48.90    15.13 49.28    4.7 61.32 268.95
2 10.87 7.45    14.97    1.97 47.71 14.46 44.36    5.1 61.76 273.02
3 11.18 7.44    14.20    1.97 48.29 14.81 43.66    5.2 64.16 263.20
4 10.62 7.38    15.02 2.03 49.06 14.72 44.80    4.9 64.04 285.11
5 11.02 7.43    12.92 1.97 47.44 14.40 41.20    5.2 57.46 256.64
6 10.83 7.72    13.58 2.12 48.34 14.18 43.06    4.9 52.18 274.07
```

PCA Biplot for Decathlon data

Example 2: Pottery

Chemical analysis data on Romano-British pottery made in three different regions (kiln 1, kilns 2-3, and kilns 4-5):

```
> data("pottery", package = "HSAUR2")
> head(pottery)

Al203 Fe203 Mg0 Ca0 Na20 K20 Ti02 Mn0 Ba0 kiln
1 18.8 9.52 2.00 0.79 0.40 3.20 1.01 0.077 0.015 1
2 16.9 7.33 1.65 0.84 0.40 3.05 0.99 0.067 0.018 1
3 18.2 7.64 1.82 0.77 0.40 3.07 0.98 0.087 0.014 1
4 16.9 7.29 1.56 0.76 0.40 3.05 1.00 0.063 0.019 1
5 17.8 7.24 1.83 0.92 0.43 3.12 0.93 0.061 0.019 1
6 18.8 7.45 2.06 0.87 0.25 3.26 0.98 0.072 0.017 1
```

Question: Do the chemical profiles of each pot suggest different types of pots and if any such types are related to kiln or region.

PCA Biplot for Pottery data

PCA Biplot of Olympic Athletes

Lecture 7: PCA. Zuiki $X = (X_1, ..., X_m) \sim (\mu, \Sigma)$ Problem: find uERM s.t Var(uTX) max. Recall: Var (uTX) = uT I u s.t uru=1 maximizefly=uT I u the Lagrangian: $\lambda = u^{T} \Sigma u - \lambda (u^{T} u - 1)$ $\nabla \lambda = 2 \sum u - 2 \lambda u$ = 0 $\text{stat. points} \qquad \sum u = \lambda u \quad \text{of } \sum \text{ with eigenvalue}$ $\text{there is in Veigenvectors} \quad u_{1}, \dots, u_{n} \quad \text{with eigenv.}$ $\text{at } u_{i} \text{ if } f(u_{i}) = u_{i}^{T} \sum u_{i} = \lambda_{i} u_{i}^{T} u_{i} = \lambda_{i}$ $\lambda_{i} \cdot u_{i} \qquad 1$ if $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m$ then the maximum is U1. Var (u,TX) is the largest, Z, = u,X Publeur 2: Find u, 11411=1 st.

and has the largest variance. $\int_{0}^{\infty} (u^{T}X, u^{T}X) = u^{T} (u^{T}X) u_{1}$ $= u^{T} \sum_{i} u_{i} = \lambda.$ $= u^{T} \sum_{\lambda_{1} u_{1}} u_{1} = \lambda_{1} u^{T} u_{1}$ in other words u L u, Maximize $u^T \Sigma u$ s.t $u^T u = 1$ and $u^T u_1 = 0$ 1 = uTZu - 2 (uTu-1) - v uTu $VL = 2\Sigma u - 2\lambda u - \nu u,$ $\sum u - \lambda u = \frac{\gamma}{2} u_1$ Claim v=0 if uot $u_1^T \Sigma_u - \lambda u_1^T u = \frac{v}{2} u_1^T u_1$ $\lambda_1^T u_1^T u_2^T u_1^T u_2^T u_2^T u_1^T u_2^T u_2^T u_1^T u_2^T u_2^T u_2^T u_1^T u_2^T u$ $(\lambda, -\lambda)_{\mu, \mu} = \frac{\sqrt{2}}{2} \mu_{\mu} \mu_{\mu} = \frac{\sqrt{2}}{2}$

again. -uz with the augest eigenvalue $Z_2 = u_2^T X$ i the solution 15 second largest Zm = um X directions 7/12... > hm Recall: Z = UAUT $U = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \in \mathcal{O}(m)$ $\Sigma u_i = u \Lambda_i u^T u_i = \lambda_i u_i e_i = \lambda_i u_i$ l: ith cononical vec.

DATA X, ..., Xn ERM XERNXM -> standardized (i) HX = X $\left(1 \times - 0^{T} \right)$ (ii) diag (Sn) = (1,..., 1) 1 5 (Xi) = 1 sample correlaction Su Su = UNUT columns of lave the principal directions.

Say we take the first d principal directions up,..., ud X1,...X4 ERM define SCORES 41,..., 4n e Rd $4i = \left(u_i^T X_i, \dots, u_d^T X_i\right)$ biplot If d=2

dec m without removing important infi λ= ui Su ui the corresp. eingenval. $tr(S_n) = tr(U \wedge U^T) = \lambda_1 + \cdots + \lambda_m$ \(\sum_{i=1}^{m} (S_n)_{ii} (= m) \)
\(\sum_{i=1}^{m} (S_n)_{ii} (= ISCRÉE PLOT (explained vaniance) m. 100%. SUBSPACE and AFFINE APPROX.

Assume data centred Approximate the data by a d-dim. affine subspace M + span (W1, ..., Wd) lin. indep. every point x in this subspace 15 of the form x = u + wz ZER W. - Wd - WZ. $\sum_{i=1}^{N} \|x_i - (\mu + Wz_i)\|^2$ MERM, WERMXd

$$||x_{i}-\mu-\omega_{i}||^{2}=||x_{i}-\mu||^{2}+||\omega_{i}||^{2}$$

$$-2(x_{i}-\mu)^{T}Wz_{i}$$

$$||x_{i}-\mu-\omega_{i}||^{2}=||x_{i}-\mu||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\mu-\omega_{i}||^{2}=||x_{i}-\mu||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\mu-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}||^{2}$$

$$||x_{i}-\omega_{i}||^{2}+||\omega_{i}|$$

equiv.

(***) Minim.
$$\sum_{i=1}^{N} |X_i - W_{2i}|$$

Were $\sum_{i=1}^{N} |X_i - W_{2i}|$

Where $\sum_{i=1}^{N} |X_i - W_{2i}|$

Since $X_i = X_i$

Since $X_i =$

Recall:
$$M \in \mathbb{R}^{m \times n}$$
 $\|M\|_F^2 = tr(M^TM) = tr(M^TM)$
 $= \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij}^2$
 $\|X - Z \cdot W^T\|_F^2$
 $= \sum_{i=1}^{n} \sum_{j=1}^{m} (X_{ij} - (Z_iW^T)_{ij})^2$
 $= \sum_{i=1}^{n} \sum_{j=1}^{m} (X_{ij} - (Z_iW^T)_{ij})^2$

 $=\sum_{i=1}^{n} \|x_i - WZ_i\|^2$ (2) ZER^{nxd}, WER^{mxd} ofherwise unvestricted so the only restriction on ZWT is that it hos rank Led. (***) minimize ||X-M||F

c.+ rank (M) < 9 Theorem (Eckart-Young) X = VDUTERUX solution to (***)