习题六补充讲解(2)

6 解
$$\alpha'_1, \alpha'_2, \alpha'_3$$
 的坐标为 $x_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, x_2 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}, x_3 = \begin{pmatrix} 4 \\ 13 \\ 0 \end{pmatrix}$, 因为 $\begin{pmatrix} 1 & 2 & 4 \\ -2 & 3 & 13 \\ 3 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$, 故极大无关组为 x_1, x_2

于是 $span\{\alpha'_1,\alpha'_2,\alpha'_3\} = span\{\alpha'_1,\alpha'_2\}$

9 解 求交:
$$t_1\xi_1 + t_2\xi_2 + t_3\xi_3 = t_4\eta_1 + t_5\eta_2$$
 即 $(\xi_1, \xi_2, \xi_3, -\eta_1, -\eta_2)$ $\begin{cases} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \end{cases} = \theta$ 解方程组 $\begin{pmatrix} 1 & 3 & -1 & -2 & 1 \\ 2 & 1 & 0 & -5 & -2 \\ -1 & 1 & 1 & 6 & 7 \\ -2 & 1 & -1 & 5 & -3 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$,得解 $x = k$ $\begin{pmatrix} 3 \\ -1 \\ -2 \\ 1 \\ 0 \end{pmatrix}$

故空间向量为 $t_4\eta_1 + t_5\eta_2 = k\eta_1$, 基为 η_1 , 维数 1.

求和: 即空间向量为 $t_1\xi_1+t_2\xi_2+t_3\xi_3+t_4\eta_1+t_5\eta_2$

可知一组基为 ξ_1,ξ_2,ξ_3,η_2 , 维数为 4