Aufgabenblatt 8 zur Diskreten Mathematik 2

(Restklassenoperationen)

Aufgabe 8.1

(1) Sei $m \in \mathbb{N}$ mit $m \ge 2$ ein fester Modulus. Zeigen Sie, dass Restklassenpotenzieren nicht unabhängig vom Repräsentanten definiert werden kann, d.h.:

$$[a]_m^{[n]_m} := [a^n]_m \quad (a \in \mathbb{Z}, n \in \mathbb{N}_0)$$

ist keine sinnvolle Definition.

(2) Welche der folgenden Definitionen

$$f([a]_3) := [a]_6, \quad g([a]_3) := [2 \cdot a]_6 \qquad (a \in \mathbb{Z})$$

erklärt eine wohldefinierte Abbildung von \mathbb{Z}_3 nach \mathbb{Z}_6 ?

Aufgabe 8.2

Berechnen Sie folgende Restklassenausdrücke:

$$[4]_5 \oplus [6]_5$$
, $[6999]_7 \oplus [632]_7$, $[4]_{12}^2$, $[10]_{15}^2$, $[12]_{10}^{10}$, $[10]_{12} \otimes [6]_{12}$, $[17]_{15} \otimes [1503]_{15}$.

Aufgabe 8.3

- (a) Zeigen Sie, dass eine Quadratzahl bei Division durch 4 nur den Rest 0 oder 1 haben kann.
- (b) Folgern Sie, dass die Summe zweier ungerader Quadratzahlen niemals eine Quadratzahl sein kann.

Aufgabe 8.4

Auf welche 3 Ziffern endet die Zahl 2^{100} ?

Hinweis: Sie können den NAK-Taschenrechner (TR) zur Hilfe nehmen. Zerlegen Sie dafür 2¹⁰⁰ mithilfe von Potenzrechen-Gesetzen und modulo-Rechnung schrittweise in Zahlen, die der TR berechnen kann.

Aufgabe 8.5

- (a) Erstellen Sie eine Verknüpfungstafel für $(\mathbb{Z}_7 \setminus \{0\}, \otimes)$.
- (b) Gelten Existenz- und Eindeutigkeitssätze in $(\mathbb{Z}_7\backslash\{0\},\otimes)?$
- (c) Lösen Sie die Gleichung $[4]_7 \otimes x = [6]_7$.

Aufgabe 8.6

Es sei $m \in \mathbb{N}$ fest. Zeigen Sie, dass in \mathbb{Z}_m das Distributivgesetz gilt, also dass für alle $a, b, c \in \mathbb{Z}$ gilt

$$[a]_m \otimes ([b]_m \oplus [c]_m) = ([a]_m \otimes [b]_m) \oplus ([a]_m \otimes [c]_m).$$

Die folgenden beiden Aufgabe sollen zeigen, wie ähnliche Definitionen von Verknüpfungen wie bei Restklassen dennoch zu nicht-wohldefinierten Abbildungen führen können.

Aufgabe 8.7

Definiere $M := \mathbb{Z} \times \mathbb{N}$, und auf M definiere die Relation

$$(a,b) \equiv (c,d) :\Leftrightarrow ad = bc \quad ((a,b),(c,d) \in M).$$

- (a) Zeigen Sie, dass \equiv eine Äquivalenzrelation ist.
- (b) Welche der folgenden Definitionen sind unabhängig vom Repräsentanten, definieren also eine Verknüpfung auf $G := M/\equiv$?

$$[(a,b)] \oplus [(c,d)] := [(a+c,b+d)], [(a,b)] \otimes [(c,d)] := [(ac,bd)].$$

Aufgabe 8.8

Auf \mathbb{R} definiere die Relation

$$x \equiv y :\Leftrightarrow xy > 0 \lor x = y = 0$$
 $(x, y \in \mathbb{R}).$

- (a) Zeigen Sie, dass \equiv eine Äquivalenzrelation ist.
- (b) Welche der folgenden Definitionen sind unabhängig vom Repräsentanten, definieren also eine Verknüpfung auf $M := \mathbb{R}/\equiv$?

$$[x] \oplus [y] := [x+y], \quad [x] \otimes [y] := [xy] \quad (x, y \in \mathbb{R}).$$