Model-Free Prediction (2)

Junni Zou

Institute of Media, Information and Network Dept. of Computer Science and Engineering Shanghai Jiao Tong University http://min.sjtu.edu.cn

Spring, 2024

Outline

- 1 n-Step TD
- **2** Forward View of $TD(\lambda)$
- 3 Backward View of $TD(\lambda)$
- 4 Relationship Between Forward and Backward TD
- 5 Forward and Backward Equivalence

Table of Contents

- 1 n-Step TD
- ② Forward View of $TD(\lambda)$
- 3 Backward View of $TD(\lambda)$
- 4 Relationship Between Forward and Backward TD
- 5 Forward and Backward Equivalence

n-Step Prediction

• Let TD target look *n* steps into the future

Institute of Media, Information, and Network

n-Step Return

• Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$\begin{array}{ll} \textit{n} = 1 & \textit{TD} & \textit{G}_{t}^{(1)} = \textit{R}_{t+1} + \gamma \textit{V}(\textit{S}_{t+1}) \\ \textit{n} = 2 & \textit{G}_{t}^{(2)} = \textit{R}_{t+1} + \gamma \textit{R}_{t+2} + \gamma^{2} \textit{V}(\textit{S}_{t+2}) \\ \vdots & \vdots & \vdots \\ \textit{n} = \infty & \textit{(MC)} & \textit{G}_{t}^{\infty} = \textit{R}_{t+1} + \gamma \textit{R}_{t+2} + \dots + \gamma^{T-1} \textit{R}_{T} \end{array}$$

Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + lpha \left(G_t^{(n)} - V(S_t)\right)$$
 Institute of Media, Information, and Network

Large Random Walk Example

Averaging *n*-Step Returns

- We can average *n*-step returns over different *n*
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines Information from two different time-steps
- Can we efficiently combine information from all time-steps?

Table of Contents

- 1 n-Step TD
- **2** Forward View of $TD(\lambda)$
- 3 Backward View of $TD(\lambda)$
- 4 Relationship Between Forward and Backward TD
- 5 Forward and Backward Equivalence

λ -return

- The λ -return G_t^{λ} combines all n-step returns $G_t^{(n)}$
- Using weight $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

• Forward-view $TD(\lambda)$

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{\lambda} - V(S_t))$$

$TD(\lambda)$ Weighting Function

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Information, and Network

Forward-view $TD(\lambda)$

- ullet Update value function towards the λ -return
- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

Forward-View $TD(\lambda)$ on Large Random Walk

 $\lambda = .975$ OFF-LINE λ-RETURN RMS error, .45 averaged over first 10 episodes .35 0.1 0.2 0.3 α

12 / 28

Table of Contents

- 1 n-Step TD
- ② Forward View of $TD(\lambda)$
- 3 Backward View of $TD(\lambda)$
- 4 Relationship Between Forward and Backward TD
- 5 Forward and Backward Equivalence

Backward View of $TD(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
- Update online, every step, from incomplete sequences

Eligibility Traces

- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

accumulating eligibility trace

times of visits to a state

te of Media, ation, and Network

Prof. Zou (MIN, SJTU)

Reinforcement Learning

Spring, 2024 15 / 28

Backward View of $TD(\lambda)$ (2)

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- In proportion to TD-error δ_t and eligibility trace $E_t(s)$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

Institute of Media, Information, and Network

Table of Contents

- n-Step TD
- 2 Forward View of $TD(\lambda)$
- 3 Backward View of $TD(\lambda)$
- Relationship Between Forward and Backward TD
- 5 Forward and Backward Equivalence

Spring, 2024

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(0)$

• When $\lambda = 0$, only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

• This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

$TD(\lambda)$ and MC

- When $\lambda = 1$, credit is deferred until end of episode
- Consider episodic environments with offline updates
- Over the course of an episode, total update for TD(1) is the same as total update for MC

Theorem

The sum of offline updates is identical for forward-view and backward-view $TD(\lambda)$

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \sum_{t=1}^{T} \alpha \left(G_t^{\lambda} - V(S_t)\right) \mathbf{1}(S_t = s)$$

19 / 28

Table of Contents

- 1 n-Step TD
- 2 Forward View of $TD(\lambda)$
- 3 Backward View of $TD(\lambda)$
- 4 Relationship Between Forward and Backward TD
- 5 Forward and Backward Equivalence

MC and TD(1)

- Consider an episode where s is visited once at time-step k.
- TD(1) eligibility trace discounted time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$= \begin{cases} 0 & \text{if } t < k \\ \gamma^{t-k} & \text{if } t \ge k \end{cases}$$

TD(1) updates accumulate error online

$$\sum_{t=1}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = \alpha (G_t^{\lambda} - V(S_t))$$

By end of episode it accumulates total error

 $\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \dots + \gamma^{T-1-k} \delta_{T-1} \mid \prod_{\text{Informal}} \prod_{I$ 4 D > 4 A > 4 B > 4 B >

Telescoping in TD (1)

When $\lambda = 1$, sum of TD errors telescopes into MC error,

$$G_{t}^{\lambda} - V(S_{t}) = -V(S_{t}) + (1 - \lambda)\lambda^{0} (R_{t+1} + \gamma V(S_{t+1})) + (1 - \lambda)\lambda^{1} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})) + (1 - \lambda)\lambda^{2} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3})) + ...$$

$$= -V(S_{t}) + (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - \gamma \lambda V(S_{t+1})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - \gamma \lambda V(S_{t+2})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - \gamma \lambda V(S_{t+3})) + ...$$

$$= (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - V(S_{t+1})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - V(S_{t+2})) + ...$$

$$= \delta_{t} + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^{2} \delta_{t+2} + ...$$

$\mathsf{TD}(\lambda)$ and $\mathsf{TD}(1)$

- TD(1) is roughly equivalent to every-visit Monte-Carlo
- Error is accumulated online, step-by-step
- If value function is only updated offline at end of episode
- Then total update is exactly the same as MC

Telescoping in TD (λ)

For general λ , TD errors also telescope to λ -error, $G_t^{\lambda} - V(S_t)$

$$G_{t}^{\lambda} - V(S_{t}) = -V(S_{t}) + (1 - \lambda)\lambda^{0} (R_{t+1} + \gamma V(S_{t+1})) + (1 - \lambda)\lambda^{1} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})) + (1 - \lambda)\lambda^{2} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3})) + ...$$

$$= -V(S_{t}) + (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - \gamma \lambda V(S_{t+1})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - \gamma \lambda V(S_{t+2})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - \gamma \lambda V(S_{t+3})) + ...$$

$$= (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - V(S_{t+1})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - V(S_{t+2})) + ...$$

$$= \delta_{t} + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^{2} \delta_{t+2} + ...$$

Forwards and Backwards $TD(\lambda)$

- Consider an episode where s is visited once at time-step k,
- $TD(\lambda)$ eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s)$$

$$= \begin{cases} 0 & \text{if } t < k \\ (\gamma \lambda)^{t-k} & \text{if } t \ge k \end{cases}$$

• Backward $TD(\lambda)$ updates accumulate error *online*

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = \alpha (G_t^{\lambda} - V(S_t))$$

- ullet By end of episode it accumulates total error for λ -return
- For multiple visit to s, $E_t(s)$ accumulates many errors $\prod_{\substack{\text{Information, and Netw}}} \prod_{\substack{\text{Information, and Netw}}}$

Information, and Network

Offline Equivalence of Forward and Backward TD

Offline updates

- Updates are accumulated within episode
- but applied in batch at the end of episode

Offline Equivalence of Forward and Backward TD (2)

Online updates

- $\mathsf{TD}(\lambda)$ updates are applied online at each step within episode
- ullet Forward and backward-view $\mathsf{TD}(\lambda)$ are slightly different
- NEW: Exact online $TD(\lambda)$ achieves perfect equivalence
- By using a slightly different form of eligibility trace
- Sutton and von Seijen, ICML 2014

Summary of Forward and Backward $TD(\lambda)$

Offline updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
Forward view	TD(0)	Forward $TD(\lambda)$	MC
Online updates	$\lambda = 0$	$\lambda \in (0,1)$	$\lambda = 1$
Backward view	TD(0)	$TD(\lambda)$	TD(1)
		*	*
Forward view	TD(0)	Forward $TD(\lambda)$	MC
			II
Exact Online	TD(0)	Exact Online $TD(\lambda)$	Exact Online TD(1)

= here indicates equivalence in total update at end of episode.

