M 476 - Homework 1

Nathan Stouffer

September 4, 2019

Problem 1

Problem Statement: Give an example of a bijection that is not a homeomorphism.

Solution: Let $A = y \in \mathbb{R} \mid 0 < y \le 1$. Now consider the map $f : \mathbb{R} \to \mathbb{R} \setminus A$ defined by $f(x) = \begin{cases} x & x \le 0 \\ x+1 & x>0 \end{cases}$ f is a bijection because it is one-to-one and onto, but f is discontinuous at x=0 and, therefore, is not a homeomorphism.

Problem 2

Exercise 1.2

Problem statement: Find an explicit formula for a homeomorphism from (0,1) to the real line.

Solution: Let $X = \{x \in \mathbb{R} \mid 0 < x < 1\}$ and $Y = \{y \in \mathbb{R}\}$. A map $f: X \to Y$ exists. More specifically, $f(x) = \log(\frac{1}{x} - 1)$. f is continuous on X so we must now show that the inverse of f is continuous. The inverse of f is $g: Y \to X$ where $g(y) = \frac{1}{10^y + 1}$. The function g is continuous on Y. Therefore, f describes an explicit formula for a homeomorphism from X to Y.

Exercise 1.4

Problem statement: Show that the plane sets $\{(x,y) \mid 0 < x^2 + y^2 < 1\}$ and $\{(x,y) \mid 1 < x^2 + y^2 < 4\}$ are homeomorphic. Let D be the closed disc $\{(x,y) \mid x^2 + y^2 \le 1\}$. Show that the plane with the origin removed is homeomorphic to the plane with the disc D removed.

Solution: First, we will show that the plane sets $\{(x,y) \mid 0 < x^2 + y^2 < 1\}$ and $\{(u,v) \mid 1 < u^2 + v^2 < 4\}$ are homeomorphic. Let X be the first set and U be the second. The map $f: X \to U$ where f(x,y) = (4-3x,4-3y). The inverse of f is $g: U \to X$ where $g(u,v) = (\frac{4-u}{3},\frac{4-v}{3})$. Both f and g are continuous and map to the correct sets, therefore, X and U are homeomorphic.

We now show that the plane with the origin removed is homeomorphic to the plane with the disc D removed. Let X be the plan with the origin removed and U be the plane with the disc D removed. We define $f: X \to U$ where $f(x,y) = (\frac{1}{x}+1,\frac{1}{y}+1)$ and its inverse as $g: U \to X$ where $g(u,v) = (\frac{1}{u-1},\frac{1}{v-1})$. Both f and g are continuous and map to the correct sets, therefore, X and U are homeomorphic.

Exercise 1.5

Problem statement: Show that the cone $\{(x,y,z) \mid x^2+y^2=z^2, z\geq 0\}$ is homeomorphic to the plane.

Solution: Let $X=\{(x,y,z)\mid x^2+y^2=z^2,z\geq 0\}$ and $U=\{(u,v)\mid (u,v)\in\mathbb{R}\}$. We map X to U by projecting the cone X onto the xy-plane. We define $f:X\to U$ by f(x,y,z)=(x,y). The inverse of f is defined as $g:U\to X$ by $g(x,y)=(x,y,\sqrt{x^2+y^2})$. Both f and g are continuous maps to their respective sets and thus it is proved that X is homeomorphic to the plane.

Exercise 1.7

Problem statement: Let C be the cube $\{(x,y,z) \mid 0 < x,y,z < 1\}$ and let B be the ball $\{(x,y,z) \mid x^2 + y^2 + z^2 < 1\}$. Show that B and C are homeomorphic.

Solution: We begin by showing that C is homeomorphic to \mathbb{R}^3 . We define $f:C\to\mathbb{R}^3$ by $f(x,y,z)=(\log(\frac{1}{x}-1),\log(\frac{1}{y}-1),\log(\frac{1}{z}-1))$ with inverse defined as $g:\mathbb{R}^3\to C$ by $g(u,v,w)=(\frac{1}{10^u+1},\frac{1}{10^v+1},\frac{1}{10^w+1})$. Both f and its inverse g are continuous so $C\cong\mathbb{R}^3$.

We now move on to show that $B \cong \mathbb{R}^3$. Begin by converting $\{(x,y,z) \mid x^2+y^2+z^2<1\}$ to spherical coordinates. This gives B as $\{(r,\theta,\phi) \mid r<1,0<\theta<2\pi,0<\phi<\pi\}$. We now define $f:B\to\mathbb{R}^3$ by $f(r,\theta,\phi)=(\frac{r}{1-r},\theta,\phi)$ with inverse defined as $g:\mathbb{R}^3\to B$ by $g(r,\theta,\phi)=(\frac{r}{1+r},\theta,\phi)$. Both f and its inverse g are continuous so $B\cong\mathbb{R}^3$.

So we know that $C \cong \mathbb{R}^3$ and $B \cong \mathbb{R}^3$, therefore, by the transitive property of homeomorphism, $B \cong C$.

Problem 3

Problem statement: Prove that $X = \{(x,y) \mid y - \sin 2\pi x = 0 \text{ and } y = 1\} \subset \mathbb{R}^3 \text{ and } Y = \{(x,y,z) \mid y - 2\pi x = 0\}$ are not homeomorphic.

Solution: First we observe that Y is continuous for all inputs (x, y, z) and has uncountably infinite elements. We then turn to X, where we notice that y = 1. Knowing this, $y - \sin 2\pi x = 1 - \sin 2\pi x = 0$. We then solve for x:

$$1 = \sin 2\pi x \qquad \text{subtract } \sin 2\pi x \text{ from both sides}$$

$$\arcsin(1) = 2\pi x \qquad \text{take the inverse of sine of both sides}$$

$$\frac{\pi}{2} + n\pi = 2\pi x \qquad \text{where } n \in \mathbb{Z}$$

$$x = \frac{1}{4} + \frac{n}{2} \qquad \text{divide both sides by } 2\pi$$

Now note that any value of $x \in X$ is at a discrete interval with another $x_1 \in X$. This means that the number of elements in X is countably infinite. Knowing this, we can say that any map from X to Y cannot be one-to-one since the cardinality of the sets X and Y are not equal. And since no one-to-one mapping exists between the two sets, X and Y cannot be homeomorphic.