Algebraische Zahlentheorie II Sommersemester 2022

Dr. Katharina Hübner basierend auf Alexander Schmidts AZT2-Skript von 2014

Inhaltsverzeichnis

1	Koh	nomologie endlicher Gruppen	1
	1.1	Tate-Kohomologiegruppen	1
	1.2	Res, Kores und Cup-Produkt	5
	1.3	Kohomologie der zyklischen Gruppen	7
	1.4	Kohomologische Trivialität	10

1 Kohomologie endlicher Gruppen

Im ganzen Kapitel sei G stets eine endliche Gruppe.

1.1 Tate-Kohomologiegruppen

Lemma 1.1. Ist G eine endliche Gruppe, so ist jeder induzierte Modul koinduziert und jeder koinduzierte Modul induziert. Insbesondere sind koinduzierte Moduln homologisch trivial und induzierte Moduln kohomologisch trivial.

Beweis. Die Abbildung

$$\begin{array}{ccc} \operatorname{Koind}_G A & \longrightarrow & \operatorname{Ind}_G A \\ \parallel & & \parallel \\ \operatorname{Abb}(G,A) & \longrightarrow & \mathbb{Z}[G] \otimes A \\ x & \longmapsto & \sum\limits_{g \in G} g \otimes x(g^{-1}) \end{array}$$

ist ein Isomorphismus von G-Moduln.

Die Normabbildung $N_G:A\to A,\ a\mapsto \sum_{g\in G}a$ induziert eine Abbildung $\bar{N}_G:A_G\to A^G.$

Definition. Die Gruppen

$$\hat{H}_0(G,A) = \ker(\bar{N}_G) \subset H_0(G,A)$$

und $\hat{H}^0(G, A) = H^0(G, A)/\text{im}(\bar{N}_G)$ heißen die **modifizierten (Ko)Homologie-gruppen** in Dimension 0.

Lemma 1.2. Für einen (ko)induzierten Modul A gilt

$$\hat{H}_0(G, A) = 0 = \hat{H}^0(G, A),$$

d.h. $\bar{N}_G: A_G \to A^G$ ist ein Isomorphismus.

Beweis. Sei $A = \mathbb{Z}[G] \otimes B$ mit einer abelschen Gruppe B. Jedes Element in $x \in \mathbb{Z}[G] \otimes B$ hat eine eindeutige Darstellung der Form $x = \sum_{g \in G} g \otimes x_g$. Für $x \in A^G$ folgt, dass alle x_g gleich sind, und somit gilt $x = N_G(1 \otimes x_1)$. Dies zeigt $\hat{H}^0(G, A) = 0$.

Aus
$$N_G(x) = 0$$
 folgt $\sum x_g = 0$, also $x = \sum_{g \in G} (g - 1)(1 \otimes x_g)$, und somit $\hat{H}_0(G, A) = 0$.

Für eine endlich erzeugte freie abelsche Gruppe C setzen wir $C^+ = \operatorname{Hom}(C, \mathbb{Z})$. Ist C ein G-Modul, so auch C^+ und es gilt: $C \stackrel{\sim}{\to} C^{++}$. Für eine abelsche Gruppe A haben wir Isomorphismen

$$C \otimes A \xrightarrow{\sim} \operatorname{Hom}(C^+, A), \ c \otimes a \longmapsto (f \longmapsto f(c) \cdot a)$$

 $C^+ \otimes A \xrightarrow{\sim} \operatorname{Hom}(C, A), \ f \otimes a \longmapsto (c \longmapsto f(c) \cdot a).$

Nun sei C ein endlich erzeugter projektiver G-Modul, insbesondere ist C endlich erzeugt und frei als abelsche Gruppe. Dann ist C direkter Summand in $\operatorname{Ind}_G C$ und somit nach Lemma 1.28 in Kapitel 3.2 für jeden G-Modul A der Modul $\operatorname{Hom}(C,A)$ direkter Summand in einem (ko)induzierten Modul. Nach 1.2 erhalten wir somit Isomorphismen

$$(C^+ \otimes A)_G \xrightarrow{\sim} \operatorname{Hom}(C, A)_G \xrightarrow{\bar{N}_G} \operatorname{Hom}(C, A)^G.$$
 (*)

Sei nun $P_{\bullet} \xrightarrow{\varepsilon} \mathbb{Z}$ eine Auflösung von \mathbb{Z} durch endlich erzeugte projektive G-Moduln. Dann ist $\mathbb{Z} \xrightarrow{\varepsilon^+} P_{\bullet}^+$ eine Auflösung durch kohomologisch triviale Moduln (Lemma 1.28 in Kapitel 3.2). Für $n \leq -1$ setzen wir $P_n := (P_{-n-1})^+$ und kleben die Komplexe zu einem exakten Komplex

$$\longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \xrightarrow{\varepsilon^+ \circ \varepsilon} P_{-1} \longrightarrow P_{-2} \longrightarrow \dots$$

zusammen.

Definition. Für einen G-Modul A setzt man

$$\hat{X}^{\bullet}(G,A) = \operatorname{Hom}(P_{\bullet},A) \text{ und } \hat{C}^{\bullet}(G,A) = \hat{X}^{\bullet}(G,A)^{G}$$

und definiert die n-te Tate-Kohomologiegruppe ($n \in \mathbb{Z}$) durch

$$\hat{H}^n(G,A) = H^n(\hat{C}^{\bullet}(G,A)).$$

Satz 1.3. Es gilt

$$\hat{H}^{n}(G,A) = \begin{cases} H^{n}(G,A) & \text{für } n \ge 1\\ \hat{H}^{0}(G,A) & n = 0\\ \hat{H}_{0}(G,A) & n = -1\\ H_{-n-1}(G,A) & n \le -2. \end{cases}$$

Beweis. Für $n \ge 1$ gilt

$$H^n(\hat{C}(G,A)) = H^n(C^{\bullet}(G,A)) = H^n(G,A).$$

Für $n \le -2$ gilt unter Benutzung von (*)

$$\hat{H}^{n}(\hat{C}(G,A)) = H^{n+1}(\operatorname{Hom}(P_{\bullet}^{+},A)^{G}) \cong H_{-n-1}((P_{\bullet} \otimes A)_{G})
= H_{-n-1}(G,A).$$

Nun schauen wir die Mitte an:

$$\operatorname{Hom}(P_{-2}, A)^{G} \to \operatorname{Hom}(P_{-1}, A)^{G} \stackrel{(\varepsilon^{+} \circ \varepsilon)^{*}}{\to} \operatorname{Hom}(P_{0}, A)^{G} \to \operatorname{Hom}(P_{1}, A)^{G}$$

$$\| \wr \qquad \qquad \| \wr \qquad \nearrow \varphi$$

$$(P_{1} \otimes A)_{G} \to (P_{0} \otimes A)_{G} \qquad .$$

Nach Konstruktion der vertikalen Isomorphismen kommutiert das Diagramm

Daher faktorisiert φ in der Form

$$(P_0 \otimes A)_G \xrightarrow{\varepsilon_*} (\mathbb{Z} \otimes A)_G = A_G \xrightarrow{\bar{N}_G} A^G = \operatorname{Hom}(\mathbb{Z}, A)^G \xrightarrow{\varepsilon^*} \operatorname{Hom}(P_0, A)^G$$
 und wir erhalten $\hat{H}^{-1}(G, A) = \ker(\bar{N}_G) = \hat{H}_0(G, A)$ und $\hat{H}^0(G, A) = \operatorname{coker}(\bar{N}_G)$

Korollar 1.4. Sei A ein (ko)induzierter G-Modul. Dann gilt

$$\hat{H}^n(G, A) = 0 \quad \forall n \in \mathbb{Z}.$$

Satz 1.5. Sei $0 \to A' \to A \to A'' \to 0$ eine exakte Folge von G-Moduln. Dann existiert eine natürliche exakte Folge

$$\cdots \longrightarrow \hat{H}^i(G, A') \longrightarrow \hat{H}^i(G, A) \longrightarrow \hat{H}^i(G, A'') \longrightarrow \cdots$$

Beweis. Die $\hat{X}^n(G, -)$ sind direkte Summanden in induzierten G-Moduln, insbesondere gilt $H^1(G, \hat{X}^n(G, A')) = 0$. Daher erhalten wir aus den kurzen exakten Folgen

$$0 \to \hat{X}^n(G, A') \to \hat{X}^n(G, A) \to \hat{X}^n(G, A'') \to 0$$

die exakte Folge von Komplexen.

$$0 \to \hat{C}^{\bullet}(G, A') \to \hat{C}^{\bullet}(G, A) \to \hat{C}^{\bullet}(G, A'') \to 0.$$

Die assoziierte lange exakte Kohomologiefolge zeigt das gewünschte.

Definiert man wie vorher für einen G-Modul A induktiv für $i \geq 0$:

$$A_0 = A$$
, $A_{i+1} = \operatorname{coker}(A_i \to \operatorname{Koind}_G A_i)$,

und induktiv für $i \leq 0$: $A_0 = A$

$$A_i = \ker(\operatorname{Ind}_G A_{i+1} \longrightarrow A_{i+1})$$

so erhält man Dimensionsverschiebung:

$$\hat{H}^n(G, A_i) = \hat{H}^{n+i}(G, A) \quad \forall n, i \in \mathbb{Z}.$$

Nun betrachten wir den Fall, dass P_{\bullet} der homologische Standardkomplex X_{\bullet} ist, d.h. $X_n = \mathbb{Z}[G^{n+1}]$ mit den vorher definierten Differentialen. Sei für $(g_0, \ldots, g_n) \in G^{n+1}$ das Element $\varphi_{g_0, \ldots, g_n} \in \mathbb{Z}[G^{n+1}]^+$ gegeben durch

$$\varphi_{g_0,\dots,g_n}(\sigma_0,\dots,\sigma_n) = \begin{cases}
1 & \text{falls } (g_0,\dots,g_n) = (\sigma_0,\dots,\sigma_n) \\
0 & \text{sonst.}
\end{cases}$$

Dann bilden die φ_{g_0,\dots,g_n} eine \mathbb{Z} -Basis von $\mathbb{Z}[G^{n+1}]^+$. Wir erhalten einen G-Modulisomorphismus

$$\mathbb{Z}[G^{n+1}]^+ \xrightarrow{\sim} \mathbb{Z}[G^{n+1}],
\varphi_{g_0,\dots,g_n} \longmapsto (g_0^{-1},\dots,g_n^{-1}).$$

Bezüglich dieses Isomorphismus erhalten wir ein kommutatives Diagramm

$$\begin{array}{cccc} \mathbb{Z}[G^{n+1}]^+ & \stackrel{\sim}{\longrightarrow} & \mathbb{Z}[G^{n+1}] \\ \uparrow \partial^+ & & \uparrow \Delta \\ \mathbb{Z}[G^n]^+ & \stackrel{\sim}{\longrightarrow} & \mathbb{Z}[G^n], \end{array}$$

wobei

$$\Delta(g_0, \dots, g_{n-1}) = \sum_{\tau \in G} \sum_{i=0}^n (-1)^i (g_0, \dots, \tau, \dots, g_{n-1})$$

gilt. Wir rechnen das nach:

$$\partial^{+}\varphi_{g_{0},\dots,g_{n-1}}(\sigma_{o},\dots,\sigma_{n}) = \varphi_{g_{0},\dots,g_{n-1}}(\partial(\sigma_{0},\dots,\sigma_{n}))$$

$$= \varphi_{g_{0},\dots,g_{n-1}}\left(\sum_{i=0}^{n}(-1)^{i}(\sigma_{0},\dots,\hat{\sigma}_{i},\dots,\sigma_{n})\right).$$

$$= \sum_{i=0}^{n}(-1)^{i}\sum_{\tau\in G}\varphi_{g_{0},\dots,\tau,\dots,g_{n-1}}(\sigma_{0},\dots,\sigma_{n}).$$

Explizite Rechnungen in der "Mitte" ergeben dann die folgende alternative Definition von Tate-Kohomologie.

Definition. Der Komplex \hat{X}_{\bullet} mit

$$\hat{X}_n = \mathbb{Z}[G^{n+1}]$$
 für $n \ge 0$

und

$$\hat{X}_n = \mathbb{Z}[G^{-n}]$$
 für $n \le -1$

mit den Differentialen:

 $n \ge 1$:

$$\partial_{n}(g_{0}, \dots, g_{n}) = \sum_{i=0}^{n} (-1)^{i}(g_{0}, \dots, \hat{g}_{i}, \dots, g_{n})$$

$$\partial_{-n}(g_{0}, \dots, g_{n-1}) = \sum_{\tau \in G} \sum_{i=0}^{n} (-1)^{i}(g_{0}, \dots, \tau, \dots, g_{n-1})$$

und ∂_0 :

$$\begin{array}{ccc} X_0 & \longrightarrow & X_{-1} \\ \parallel & & \parallel \\ \mathbb{Z}[G] & & \mathbb{Z}[G] \end{array}$$

ist die Abbildung, die jedes $g \in G$ auf $\sum_{\tau \in G} \tau \in \mathbb{Z}[G]$ abbildet, heißt die vollständige Standardauflösung von \mathbb{Z} . Es gilt

$$\hat{H}^n(G,A) = H^n(\text{Hom}(X_{\bullet},A)^G).$$

1.2 Res, Kores und Cup-Produkt

Sei $H \subset G$ eine Untergruppe und A ein G-Modul. Für $n \leq -2, n \geq 1$ haben wir die Abbildung

$$res: \hat{H}^n(G,A) \longrightarrow \hat{H}^n(H,A).$$

Für n=0 ist $res: H^0(G,A) \to H^0(H,A)$ die natürliche Inklusion $A^G \hookrightarrow A^H$. Für $a \in A$ gilt $\sum_{g \in G} ga = \sum_s \sum_{h \in H} h \cdot sa$ wobei s ein Vertretersystem von $H \setminus G$ durchläuft. Daher gilt $N_G(A) \subset N_H(A)$ und res faktorisiert zu einer Abbildung

$$res: \hat{H}^0(G,A) \longrightarrow \hat{H}^0(H,A).$$

Analog: $res: H_0(G, A) \to H_0(H, A)$ ist definiert durch $a \mapsto \sum_{s \in H \setminus G} sa$.

Wegen

$$\sum_{h \in H} h\left(\sum_{s} sa\right) = \sum_{g \in G} ga$$

induziert res eine Abbildung

$$res: \hat{H}^{-1}(G, A) \longrightarrow \hat{H}^{-1}(H, A).$$

Satz 1.6. res ist ein Homomorphismus von δ -Funktoren d.h. für jede exakte Folge $0 \to A' \to A \to A'' \to 0$ von G-Moduln und alle $n \in \mathbb{Z}$ kommutiert das Diagramm

$$\hat{H}^{n}(G, A'') \xrightarrow{\delta} \hat{H}^{n+1}(G, A')$$

$$\stackrel{res}{\downarrow} \qquad \qquad \downarrow \stackrel{res}{\downarrow}$$

$$\hat{H}^{n}(H, A'') \xrightarrow{\delta} \hat{H}^{n+1}(H, A').$$

Beweis.Für $n\neq -1$ klar. n=-1 Übungsaufgabe.

Analog setzt sich die Abbildung

$$cor: \hat{H}^n(H,A) \to \hat{H}^n(H,A),$$

die bereits für $n \leq -2$, $n \geq 1$ definiert, ist auf alle $n \in \mathbb{Z}$ fort und es gilt

Satz 1.7. cor ist ein Homomorphismus von δ -Funktoren.

Satz 1.8. Es gilt

$$cor_G^H \cdot res_H^G = (G:H).$$

Seien A, B G-Moduln. Die natürliche Abbildung

$$A^G \times B^G \longrightarrow (A \otimes B)^G$$

setzt sich fort zu

$$\hat{H}^0(G,A) \times \hat{H}^0(G,B) \longrightarrow \hat{H}^0(G,A \otimes B).$$

Wir definieren (entsprechend Satz 1.21 in Kapitel 3.2) das Cup-Produkt

$$\hat{H}^p(G,A) \times \hat{H}^q(G,B) \longrightarrow \hat{H}^{p+q}(G,A \otimes B)$$

durch das kommutative Diagramm

$$\begin{array}{cccc} \hat{H}^{p}(G,A) & \times & \hat{H}^{q}(G,B) & \stackrel{\cup}{\longrightarrow} & \hat{H}^{p+q}(G,A\otimes B) \\ & |\wr & & |\wr & & |\wr (-1)^{pq} \\ \hat{H}^{0}(G,A_{p}) & \times & \hat{H}^{0}(G,B_{q}) & \stackrel{\cup}{\longrightarrow} & \hat{H}^{p+q}(G,A_{p}\otimes B_{q}). \end{array}$$

Beachte

$$\hat{H}^{p+q}(G, A \otimes B) \cong \hat{H}^p(G, (A \otimes B)_q) \cong \hat{H}^p(G, A \otimes B_q)
\cong \hat{H}^0(G, (A \otimes B_q)_p) \cong \hat{H}^0(G, A_p \otimes B_q).$$

Man kann auch explizite Formeln für das Cup-Produkt auf dem vollständigen Standardkomplex geben.

Schließlich passen auch das homologische und das kohomologische Shapiro-Lemma zusammen, d.h. es gilt

Satz 1.9. Sei $H \subset G$ eine Untergruppe und A ein H-Modul. Dann gilt

$$\hat{H}^n(H,A) \cong \hat{H}^n(G,\operatorname{Ind}_G^H A)$$

für alle $n \in \mathbb{Z}$.

Beweis. Lassen wir weg.

1.3 Kohomologie der zyklischen Gruppen

Sei G eine zyklische Gruppe der Ordnung n und $\sigma \in G$ ein Erzeuger. Setze

$$N_G A = \operatorname{im}(N_G : A \to A),$$

 $N_G A = \ker(N_G : A \longrightarrow A).$

Dann gilt nach Definition:

$$\hat{H}^0(G, A) = A^G/N_G A, \ \hat{H}^{-1}(G, A) = N_G A/I_G A.$$

Wegen

$$\sigma^i - 1 = (\sigma - 1)(\sigma^{i-1} + \dots + 1)$$

gilt
$$I_G A = (\sigma - 1) \cdot A$$
.

Satz 1.10. Sei G eine endliche zyklische Gruppe. Dann ist $\hat{H}^2(G,\mathbb{Z})$ zyklisch von der gleichen Ordnung wie G. Sei $\chi \in H^2(G,\mathbb{Z})$ ein Erzeuger. Dann induziert das Cup-Produkt

$$\chi \cup -: \hat{H}^n(G, A) \xrightarrow{\sim} \hat{H}^{n+2}(G, A)$$

Isomorphismen für alle $n \in \mathbb{Z}$ und jeden G-Modul A. Insbesondere gilt:

$$\hat{H}^{2n}(G,A) \cong \hat{H}^0(G,A)$$

und

$$\hat{H}^{2n-1}(G,A) \cong \hat{H}^{-1}(G,A)$$

für alle $n \in \mathbb{Z}$.

Beweis. Sei $\langle \sigma \rangle = G$ und N = #G. Wir betrachten die exakte Folge

$$(*) 0 \longrightarrow \mathbb{Z} \xrightarrow{\mu} \mathbb{Z}[G] \xrightarrow{\cdot (\sigma - 1)} \mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

wobei ε die Augmentation Σ $a_i \sigma^i \mapsto \Sigma$ a_i und

$$\mu(a) = a(1 + \sigma + \dots + \sigma^{N-1})$$

ist. Wir erhalten (aufbrechen in zwei kurze exakte Folgen) einen Isomorphismus

$$\delta^2: \hat{H}^0(G,\mathbb{Z}) \xrightarrow{\sim} \hat{H}^2(G,\mathbb{Z}).$$

Wegen

$$\hat{H}^0(G, \mathbb{Z}) = \mathbb{Z}/N_G\mathbb{Z}$$

= $\mathbb{Z}/(1 + \dots + \sigma^{N-1})\mathbb{Z} = \mathbb{Z}/N\mathbb{Z}$

erhalten wir die erste Aussage. Außerdem ist jeder Erzeuger χ von der Form

$$\chi = \delta^2(m), \quad m \in (\mathbb{Z}/N\mathbb{Z})^{\times}.$$

Da alle Objekte in (*) Z-frei sind, bleibt (*) nach Tensorieren mit jedem G-Modul A exakt. Daher erhalten wir für jedes A einen Isomorphismus

$$\delta^2: \hat{H}^n(G,A) \xrightarrow{\sim} \hat{H}^{n+2}(G,A),$$

der in ein kommutatives Diagramm

$$\begin{array}{cccc} \hat{H}^n(G,A) & = & & \hat{H}^n(G,A) \\ \downarrow \cdot_m & & & \chi \cup \downarrow \\ \hat{H}^n(G,A) & \stackrel{\sim}{\delta^2} & \hat{H}^{n+2}(G,A) \end{array}$$

passt.

Um zu zeigen, dass $\chi \cup -$ ein Isomorphismus ist, genügt es zu zeigen, dass $\cdot m$ ein Isomorphismus ist. Dies folgt aus $m \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ und weil $\hat{H}^n(G,A)$ ein $\mathbb{Z}/N\mathbb{Z}$ -Modul ist.

Bemerkung. Nach Wahl eines Erzeugers σ von G werden wir stets den Isomorphismus $\delta^2(1) \cup -: \hat{H}^n(G,A) \xrightarrow{\sim} \hat{H}^{n+2}(G,A)$ als "kanonische" Identifikation verwenden.

Korollar 1.11. Sei G endlich zyklisch. Ist $0 \to A \to B \to C \to 0$ eine kurze exakte Folge von G-Moduln, so erhalten wir ein exaktes Hexagon

Beweis. Alle Abbildungen sind die offensichtlichen, bis auf $\hat{H}^0(G,C) \to \hat{H}^{-1}(G,A)$. Dies ist die Komposition von $\hat{H}^0(G,C) \xrightarrow{\delta} \hat{H}^1(G,A)$ mit dem Inversen des Isomorphismus

 $\delta^2(1) \cup -: \hat{H}^{-1}(G, A) \xrightarrow{\sim} \hat{H}^1(G, A)$

aus 1.10. Dieser hängt von der Wahl eines Erzeugers σ von G ab, ist aber kanonisch im Modul. Daher kommutiert das Diagramm:

$$\begin{array}{ccc} \hat{H}^{-1}(G,A) & \longrightarrow & \hat{H}^{-1}(G,B) \\ & \downarrow \wr & & \downarrow \wr \\ \hat{H}^{1}(G,A) & \longrightarrow & \hat{H}^{1}(G,B) \end{array}$$

was die Exaktheit des Hexagons auch bei $\hat{H}^0(G, \mathbb{C})$ zeigt.

Definition. Ist sowohl $\hat{H}^0(G,A)$ als auch $\hat{H}^{-1}(G,A)$ endlich, so heißt

$$h(G, A) := \frac{\# \hat{H}^0(G, A)}{\# \hat{H}^1(G, A)}$$

der $\mathbf{Herbrand}$ - \mathbf{Index} von A.

Sei σ ein Erzeuger von G und $D = \sigma - 1: A \to A$. Dann gilt $D \circ N_G = 0 = N_G \circ D$ und

$$\hat{H}^0(G, A) = \ker(D)/\operatorname{im}(N_G)$$

 $\hat{H}^{-1}(G, A) = \ker(N_G)/\operatorname{im}(D)$

Satz 1.12. Sei 0 \to A \to B \to C \to 0 eine exakte Folge von G-Moduln. Dann gilt

$$h(G,B) = h(G,A) \cdot h(G,C)$$

in dem Sinne: Sind zwei der Indizes definiert, so auch der dritte und Gleichheit gilt.

Beweis. Dies folgt direkt aus dem Hexagon in 1.11.

Satz 1.13. Ist A endlich, so gilt

$$h(G,A) = 1.$$

Beweis. Der Homomorphiesatz liefert

$$\# \ker(D) \cdot \# \operatorname{im}(D) = \# A = \# \ker(N_G) \cdot \# \operatorname{im}(N_G).$$

Dies zeigt

$$\frac{\#\hat{H}^0(G,A)}{\#\hat{H}^1(G,A)} = 1$$

1.4 Kohomologische Trivialität

Erinnerung.

Definition. Ein G-Modul A heißt kohomologisch trivial, wenn $H^n(H, A) = 0$ für alle $n \ge 1$, $H \subseteq G$.

Ist A eine Torsionsgruppe, und p eine Primzahl, so bezeichnet A(p) den p-primären Anteil. Es gilt $A \cong \bigoplus_{p} A(p)$.

Satz 1.14. Sei A ein G-Modul und G_p eine p-Sylowgruppe von G. Dann ist für alle $n \in \mathbb{Z}$

$$res: \hat{H}^n(G,A)(p) \longrightarrow \hat{H}^n(G_p,A)$$

injektiv und

$$cor: \hat{H}^n(G_n, A) \longrightarrow \hat{H}^n(G, A)(p)$$

surjektiv.

Beweis. Es gilt $cor \circ res = (G : G_p)$ und dies ist eine natürliche Zahl prim zu p. Daher ist

$$cor \circ res : \hat{H}^n(G, A)(p) \longrightarrow \hat{H}^n(G, A)(p)$$

ein Isomorphismus.

Korollar 1.15.

- (i) Gilt $\hat{H}^n(G_p, A) = 0$ für alle Primzahlen p dann gilt $\hat{H}^n(G, A) = 0$.
- (ii) Ein G-Modul A ist genau dann kohomologisch trivial, wenn er ein kohomologisch trivialer G_p -Modul für jedes p ist.

Beweis. (i) Nach 1.14 haben wir eine Injektion

$$\hat{H}^n(G,A) \to \bigoplus_p \hat{H}^n(G_p,A).$$

Daher gilt

$$\hat{H}^n(G_p, A) = 0 \quad \forall p \Longrightarrow \hat{H}^n(G, A) = 0.$$

(ii) Aus (i) folgt A kohomologisch trivialer G_p -Modul $\forall p \Longrightarrow A$ kohomologisch trivialer G-Modul.

Die andere Richtung ist trivial, weil eine Untergruppe von G_p auch eine Untergruppe von G ist.

Satz 1.16. Sei G eine p-Gruppe und sei A ein p-primärer G-Modul.

- (i) Gilt $H_0(G, A) = 0$ oder $H^0(G, A) = 0$, so folgt A = 0.
- (ii) Gilt pA = 0 und $\hat{H}^n(G, A) = 0$ für ein $n \in \mathbb{Z}$, dann ist A induziert.

Beweis. Jedes $a \in A$ erzeugt einen endlichen G-Untermodul von A. Daher können wir im Beweis der Implikation $H^0(G, A) = 0 \Longrightarrow A = 0$ annehmen, dass A endlich ist. Das Komplement $A \setminus A^G$ ist disjunkte Vereinigung von nichttrivialen G-Bahnen Ga, $a \in A \setminus A^G$. Es gilt: $\#Ga = \#(G/G_a)$, wobei G_a die Standgruppe von a ist. Daher gilt

$$p \mid \#Ga \quad \forall a \in A \setminus A^G.$$

Daher gilt $p \mid \#(A \setminus A^G)$. Gilt nun $A^G = 0$ so folgt $\#A \equiv 1 \mod p$. Da #A eine p-Potenz ist, folgt #A = 1.

Ist $H_0(G, A) = 0$, so folgt $0 = H_0(G, A)^* = H^0(G, A^*)$. Also $A^* = 0 \Longrightarrow A = 0$. Dies zeigt (i).

(ii) Wegen pA = 0 ist A ein $\mathbb{F}_p[G]$ -Modul. Sei $\Lambda = \mathbb{F}_p[G]$, I eine \mathbb{F}_p -Basis von A^G und $V = \bigoplus_I \Lambda$. Dann ist Hom(A, V) für jeden Modul A ein induzierter Modul, denn

$$\operatorname{Hom}(A, \Lambda) = \operatorname{Hom}(A, \mathbb{F}_p[G]) = \operatorname{Hom}(A, \mathbb{F}_p) \otimes_{\mathbb{Z}} \mathbb{Z}[G].$$

Daher besteht die exakte Folge

$$0 \longrightarrow \operatorname{Hom}(A/A^G, V) \longrightarrow \operatorname{Hom}(A, V) \longrightarrow \operatorname{Hom}(A^G, V) \longrightarrow 0$$

aus induzierten G-Moduln und folglich ist

$$\operatorname{Hom}_G(A, V) \longrightarrow \operatorname{Hom}_G(A^G, V) = \operatorname{Hom}(A^G, V^G)$$

surjektiv. Außerdem gilt $\Lambda^G = \mathbb{F}_p$, also $V^G = \bigoplus_I \mathbb{F}_p$. Daher gibt es einen Isomorphismus $A^G \cong V^G$ der sich wegen der Surjektivität zu einem G-Homomorphismus $j: A \to V$ ausdehnt. j ist injektiv wegen $\ker(j)^G = \ker(j|_{A^G}) = 0$ und (i). Nun setze $C = \operatorname{coker}(j)$. Wir erhalten eine exakte Folge

$$0 \longrightarrow A^G \stackrel{\sim}{\longrightarrow} V^G \longrightarrow C^G \longrightarrow H^1(G,A).$$

Daher gilt:

$$H^1(G,A)=0\Longrightarrow C^G=0\Longrightarrow C=0\Longrightarrow j$$
 ist Isomorphismus

$$\Longrightarrow A \cong V = \bigoplus_{I} \mathbb{F}_p[G] = \operatorname{Ind}_G \left(\bigoplus_{I} \mathbb{F}_p \right).$$

Gilt nun $\hat{H}^n(G, A) = 0$ für ein $n \in \mathbb{Z}$, so folgt $H^1(G, A_{n-1}) = \hat{H}^n(G, A) = 0$, und A_{n-1} ist induziert. Daraus folgt:

$$H^1(G, A) = \hat{H}^{2-n}(G, A_{n-1}) = 0.$$

Daher ist A induziert.

Erinnerung: Ein G-Modul $A \neq 0$ heißt **einfach**, wenn es keinen G-Modul B, mit $0 \subsetneq B \subsetneq A$ gibt.

Lemma 1.17. Ein einfacher G-Modul A ist endlich. Es gibt eine eindeutig bestimmte Primzahl p mit pA = 0.

Beweis. Sei A einfach und $a \in A$, $a \neq 0$. Dann ist A als G-Modul durch a erzeugt, also ist A endlich erzeugte abelsche Gruppe. Dann existiert eine Primzahl p so dass die p-Multiplikation. $A \stackrel{p}{\longrightarrow} A$ nicht surjektiv ist. Daher gilt $pA \subsetneq A$, also pA = 0. Die Eindeutigkeit von p ist klar, da aus qA = 0 für ein $q \neq p$ folgen würde A = 0.

Satz 1.18. Sei G eine p-Gruppe. Dann ist jeder einfache p-primäre G-Modul A isomorph zu $\mathbb{Z}/p\mathbb{Z}$ mit trivialer G-Wirkung.

Beweis. Nach 1.17 gilt pA = 0. Wegen $A \neq 0$ und A einfach folgt $A^G = A$ ($A^G = 0$ würde nach 1.16 A = 0 implizieren). Daher ist A ein \mathbb{F}_p -Vektorraum mit trivialer G-Wirkung. Da A einfach ist, folgt $\dim_{\mathbb{F}_p} A = 1$.

Da jeder endliche G-Modul A eine Kompositionsreihe $0 = A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n = A$ mit A_i/A_{i-1} einfach für $i = 1, \ldots, n$ besitzt (siehe Algebra-Vorlesung) erhalten wir

Korollar 1.19. Ist G eine p-Gruppe, so hat jeder endliche p-primäre G-Modul A eine Kompositionsreihe in der die Graduierten isomorph zu $\mathbb{Z}/p\mathbb{Z}$ mit trivialer G-Wirkung sind.

Satz 1.20. Sei G eine endliche Gruppe und sei A ein G-Modul, so dass für jede Primzahl p ein $n_p \in \mathbb{Z}$ mit

$$\hat{H}^{n_p}(G_p, A) = 0 = \hat{H}^{n_p+1}(G_p, A)$$

existiert. Dann ist A kohomologisch trivial. Ist A \mathbb{Z} -frei, so ist A ein direkter Summand in einem freien $\mathbb{Z}[G]$ -Modul.

Für jeden kohomologisch trivialen Modul A gilt

$$\hat{H}^n(H,A) = 0 \quad \forall n \in \mathbb{Z} \quad \forall H \subseteq G.$$

Beweis. Sei $0 \to R \to F \to A \to 0$ eine exakte Folge mit einem freien $\mathbb{Z}[G]$ -Modul F.

Behauptung: Für jede Primzahl p ist R/pR ein induzierter G_p -Modul.

Beweis der Behauptung. F ist induzierter G_p -Modul. Aus

$$\hat{H}^{n_p}(G_p, A) = 0 = \hat{H}^{n_p+1}(G_p, A), \ \hat{H}^i(G_p, F) = 0 \quad \forall i \in \mathbb{Z}$$

und der langen exakten Folge erhalten wir

$$\hat{H}^{n_p+1}(G_p, R) = 0 = \hat{H}^{n_p+2}(G_p, R). \tag{2}$$

Die exakte Folge

$$0 \longrightarrow R \xrightarrow{\cdot p} R \longrightarrow R/pR \longrightarrow 0 \tag{3}$$

gibt uns

$$\hat{H}^{n_p+1}(G_p, R/pR) = 0.$$

Nach 1.16 (ii) ist R/pR induziert. Dies zeigt die Behauptung.

Wir nehmen nun an, dass A Z-frei ist. Dann ist $\operatorname{Ext}^1(A,A) = 0$ und Anwenden von $\operatorname{Hom}(A,-)$ auf die kurze exakte Folge $0 \to R \to F \to A$ liefert die kurze exakte Folge

$$0 \longrightarrow \operatorname{Hom}(A, R) \longrightarrow \operatorname{Hom}(A, F) \longrightarrow \operatorname{Hom}(A, A) \longrightarrow 0.$$

Wäre $H^1(G, \text{Hom}(A, R)) = 0$, so wäre $\text{Hom}_G(A, F) \to \text{Hom}_G(A, A)$ surjektiv und ein Urbild von id_A in $\text{Hom}_G(A, F)$ realisiert A als direkten Summanden in F.

Daher genügt zu zeigen: $H^1(G, M) = 0$ für M = Hom(A, R). Aus (3) erhalten wir die exakte Folge

$$0 \longrightarrow M \stackrel{\cdot p}{\longrightarrow} M \longrightarrow \operatorname{Hom}(A, R/pR) \longrightarrow 0.$$

Daher ist M/pM = Hom(A, R/pR) ein induzierter G_p -Modul. Dies impliziert, dass

$$H^1(G_p, M) \xrightarrow{\cdot p} H^1(G_p, M)$$

ein Isomorphismus ist, also $H^1(G_p, M) = 0$ für alle p. Nach 1.15 (i) folgt $H^1(G, M) = 0$. Folglich ist A direkter Summand in F.

Nun sei A beliebig. Der erste Teil des Beweises angewendet auf den \mathbb{Z} -freien G-Modul R zeigt, dass R direkter Summand in einem freien $\mathbb{Z}[G]$ -Modul ist. Daher ist R kohomologisch trivial und da F kohomologisch trivial ist, ist auch A kohomologisch trivial.

Sei nun A kohomologisch trivial. Dann ist nach dem eben bewiesenen R direkter Summand in einem freien. Daher gilt für jede Untergruppe H von G

$$\hat{H}^i(H,F) = 0 = \hat{H}^i(H,R) \quad \forall i$$

und deshalb $\hat{H}^i(H,A) = 0 \quad \forall i.$

Korollar 1.21. Sei G eine endliche Gruppe und A, B G-Moduln. Ist A kohomologisch trivial und B teilbar, oder A \mathbb{Z} -frei und B kohomologisch trivial, so ist Hom(A, B) kohomologisch trivial.

Beweis. Sei Akohomologisch trivial und Bteilbar. Wir betrachten eine exakte Folge

$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

mit einem freien G-Modul F. Da F und A kohomologisch trivial sind, gilt dies auch für R. Außerdem ist R \mathbb{Z} -frei, und folglich nach 1.20 direkter Summand in einem freien $\mathbb{Z}[G]$ -Modul F'. Folglich ist $\operatorname{Hom}(R,B)$ direkter Summand im induzierten G-Modul $\operatorname{Hom}(F',B)$ und daher kohomologisch trivial. Da B teilbar ist, ist die Folge

$$0 \longrightarrow \operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(F,B) \longrightarrow \operatorname{Hom}(R,B) \longrightarrow 0$$

exakt und da die letzten beiden Moduln kohomologisch trivial sind, gilt dies auch für $\operatorname{Hom}(A,B)$. Der Fall dass A \mathbb{Z} -frei und B kohomologisch trivial ist wird analog behandelt.