

CHEMISTRY ASESORÍA

2nd SECONDARY

TOMO 7

COMPLETAR LOS SIGUIENTES ESPACIOS

Es la fuerza de atracción <u>electrostática</u> que mantiene unidos a un anión y un <u>catión</u> que se forma previa transferencia de electrones de valencia.

Escriba verdadero (V) o falso (F) según corresponda.

a. Los compuestos iónicos están es estado gaseoso.

(**F**)

b. Los compuestos iónicos conducen la electricidad en cualquier estado de agregación.

(**F**)

c. Los elementos metálicos son los aniones .

(**F**)

d. Existe una transferencia de electrones en enlace Electrovalente.

(**V**)

Realice la representación de Lewis del siguiente compuesto iónico : Oxido de magnesio MgO (Mg = IIA, O = VIA)

Determine el número de enlaces covalente polar y covalente apolar de etano.

RESOLUCION

Recordar

Clik

POLAR

= 6

APOLAR

= 1

Determine el tipo de enlace que presentan los siguientes compuestos : NH_3 , K_2Oy HF.

Elemento	K	Н	N	0	F
EN	0,8	2,1	3,0	3,5	4.0

RESOLUCION

Molécula	ΔΕΝ	Tipo de enlace
NH ₃	Δ EN = 3,0 - 2,1 = 0,8	COVALENTE
K ₂ O	Δ EN = 3,5 - 0,8 = 2,7	IÓNICO
HF	Δ EN = 4,0 - 2,1 = 1,9	COVALENTE

Excepcion En el *HF* (fluoruro de hidrógeno)

En la estructura del ácido carbónico (H₂CO₃) Indique el número de :

enlaces polares del tipo π :

2

enlaces del tipo σ :

enlaces dativos :

HO OH

Ácido carbónico

Halle el número de oxidación del fosforo (P) en el siguiente compuesto:

$$H_3PO_3$$

RESOLUCION

TODO COMPUESTO (IÓNICO O MOLECULAR) ES ELÉCTRICAMENTE NEUTRO, POR ELLO SE CUMPLE LO SIGUIENTE:

 $\Sigma E.O.$

Entonces:

$$3 (+1) + 1 (x) + 3 (-2) = 0$$

 $3 + x - 6 = 0$

$$x = +3$$

En el ión $(HSO_4)^{-1}$, determine el estado de oxidación del azufré.

RESOLUCION

EN UN ION POLIATÓMICO SE CUMPLE LO SIGUIENTE:

 Σ E. O. = carga relativa del ion

Entonces:

1 (+1) + 1 (x) + 4 (-2) = -1

1 + x - 8 = -

$$x = +6$$

Determine la valencia del nitrógeno los estados de oxidación del nitrógeno en los siguientes compuestos.

- a) **NO**₂
- b) NO

c) **N**₂

RESOLUCION

POR ESTAR LIBRE SIN COMBINARSE **CON OTRO ELEMENTO**

En la molécula complete :

HCIO₄

- a. pares de electrones libre: _____ b. número de enlaces covalente dativos:
- c. número de enlaces del tipo σ : ___5_
- d. enlaces covalentes polares: ___5___ e. número de enlaces del tipo π : __0____

ENLACE IÓNICO

Fundidos (en estado liquido) o disueltos en agua (solución acuosa) son buenos

Son sólidos con altos puntos de fusión y de ebullición

 Son frágiles y quebradizos(se rompen fácil por acción de fuerzas externas)

Regresar la pregunta 1

A. POR LA POLARIDAD DEL ENLACE

ENLACE COVALENTE NO POLAR

Se forma entre átomos iguales, donde la diferencia de electronegatividades es igual a cero (ΔΕ.Ν.=0).

2. ENLACE COVALENTE POLAR

Se forma entre átomos diferentes, donde la $\Delta E.N. \leq 1,7$ ($0 < \Delta EN < 1,7$)

Regresar la

