

DeepProbLog

Programação Lógica Neuro-Probabilística

Parte 1 de 2

CPS840 – Tópicos Especiais em Inteligência Artificial Professor: Gerson Zaverucha

Cleiton Moya de Almeida

Rio de Janeiro, 26 de agosto de 2020

Parte 1:

- Introdução
 - √ Abordagens em IA
 - ✓ Proposta do DeepProbLog
 - ✓ Exemplo
- Programação em Lógica
 - ✓ Conceitos Básicos
 - ✓ Prolog
- ProbLog
 - ✓ Definição
 - ✓ Inferência
 - ✓ Aprendizado

Parte 2:

- Deep Learning
- DeepProbLog
 - ✓ Definição
 - ✓ Inferência
 - ✓ Aprendizado
- Experimentos
 - ✓ Raciocínio Lógico e Deep Learning
 - ✓ Programação Indutiva
 - ✓ Programação Probabilística e Deep Learning
- Trabalhos correlatos
- Conclusões

Referências

Artigo principal:

- ✓ **Título**: Neural Probabilistic Logic Programming in DeepProbLog
- ✓ **Autores**: Robin Manhaeve^a, Sebastijan Dumančić^a, Angelika Kimmig^b, Thomas Demeester^c, Luc De Raedt^a
 ^aKatholieke Universiteit Lueven (Bélgica), ^bCardiff University (Páis de Gales), ^cGhent University imec (Bélgica)
- ✓ Versão estendida de: *DeepProbLog: Neural Probabilistic Logic Programming*, publicado anterioremente no NeurIPS 2018
- ✓ Disponível em: https://arxiv.org/abs/1907.08194

Outras de ProbLog:

- ✓ Arenstein, Lucas Silva. ProbLog Programação Lógica Probabilística: Um Estudo e Aplicação. Trabalho de Conclusão de Curso. Universidade de São Paulo, 2018.
- ✓ Tutoriais de ProbLog: https://dtai.cs.kuleuven.be/problog/tutorial.html
- ✓ Editor *online* de ProbLog: https://dtai.cs.kuleuven.be/problog/editor.html
- ✓ Publicações em ProbLog: https://dtai.cs.kuleuven.be/problog/publications.html

Abordagens em IA

How should I drive?

Fonte: Robin Manhaeve - DeepProbLog: Neural Probabilistic Logic Programming https://www.youtube.com/watch?v=b-AC428qhdQ&t=56s

Abordagens em IA

Sub-symbolic perception

Fonte: Robin Manhaeve - DeepProbLog: Neural Probabilistic Logic Programming https://www.youtube.com/watch?v=b-AC428qhdQ&t=56s

Deep Learning

Reasoning with knowledge

How should I drive, given:

Stop in front of a red light Obey the speed limit Be in the correct lane

...

Lógica

Abordagens em IA

Sub-symbolic perception

Fonte: Robin Manhaeve - DeepProbLog: Neural Probabilistic Logic Programming https://www.youtube.com/watch?v=b-AC428qhdQ&t=56s

Deep Learning

Reasoning with knowledge under uncertainty

How should I drive, given:

Stop in front of a red light
Obey the speed limit
Be in the correct lane
P(light
P(obj

P(light = red) = 0.9 P(obj1 = car) = 0.8 P(obj1 turn right) = 0.7

Lógica Probabilística

Abordagens em IA

- Integração neuro-simbólica-probabilística:
 - ✓ Objetivo:
 - Flexibilidade do raciocínio lógico e probabilístico +
 - Poder de representação da redes neurais;
- Propriedade desejada:
 - ✓ Os modelos puros neurais, lógicos e probabilísticos devem ser casos especiais do modelo neuro-simbólico-probabilístico.

Proposta do DeepProbLog

DeepProbLog:

- ✓ Estende a linguagem **ProbLog** [1] através de neuro-predicados;
- ✓ Ao invés de integrar capacidade de raciocínio nas redes neurais, faz o caminho inverso;
- ✓ Integra as redes neurais ao modelo de Programação Lógica-Probabilística;
- ✓ **Lógica probabilística**: Expressão atômica $q(t_1, ..., t_N)$ (também conhecida como *tupla* em uma banco de dados relacional) possui uma **probabilidade** p.
- ✓ **Predicado neural**: expressão é rotulada com uma rede neural cujas saídas possam ser consideradas distribuições de probabilidade.

Vantagens da inclusão de probabilidade:

- ✓ Simplifica a integração de redes neurais com lógica:
 - Provê um critério claro de otimização (probabilidade dos exemplares);
 - Valores de probabilidade são adequados para se trabalhar com gradiente descendente.

PESC Programa de Engenharia de Sistemas e Computação

Exemplo

Operação com dígitos da base MNIST:

- \checkmark Ex.: addition(3, \checkmark , 8).
- ✓ Predicado: addition (X, Y, Z)
- ✓ X, Y: Imagens de dígitos
- ✓ Z: número natural correspondente à soma de X e Y;

Solução somente com Redes Neurais:

- ✓ Permite a aprendizagem do predicado;
- ✓ Porém não incorpora o conhecimento prévio.

Solução com DeepProbLog:

- ✓ Conhecimento prévio de adição facilmente modelado através de regra:
 - addition $(I_X, I_Y, N_Z) := digit(I_X, N_X), digit(I_Y, N_Y), N_Z \text{ is } N_X + N_Y$
- ✓ Rede precisa aprender apenas o predicado digit;
- ✓ Rede pode ser re-utilizada com outras tarefas;
- √ Pode ser estendida a múltiplos dígitos sem necessidade de mais treinamento.

Programação em Lógica

Conceitos Básicos

Átomo:

 \checkmark Expressão na forma $q(t_1, ..., t_n)$, onde q é o predicado (de aridade n, ou q/n em notação simplificada) e t_i são os termos;

Literal:

✓ Átomo ou negação $\neg q(t_1, ..., q_n)$ de um átomo;

• Termo:

✓ Uma constante c, uma variável V ou um termo estruturado na forma $f(u_1, ..., u_k)$, onde f é um functor de termos u_i ;

• Regra:

- \checkmark Expressão na forma $h:-b_1, ..., b_n$
 - representa implicação lógica (←);
 - Vírgula (,) representa conjunção (∧);
 - **Fato**: regra com corpo vazio (n = 0).

• Programa lógico:

✓ Conjunto finito de regras.

Programação em Lógica

Conceitos Básicos

• Substituição:

- \checkmark Uma substituição $\theta = \{V_1 = t_1, ..., V_n = t_n\}$ é uma atribuição de termos t_i às variáveis V_i ;
- ✓ Quando aplicamos θ a uma expressão e, substituímos todas as ocorrências de V_i por t_i e denotamos a expressão resultante como $e\theta$.

Ground facts:

✓ Expressões que não contém nenhuma variável são chamadas de ground.

• Inferência:

- ✓ Pergunta: query q é verdadeira no modelo canônico do programa lógico P? Caso sim:
 - $\circ P \vDash q$
 - o q é uma consequência lógica de P

Progamação em Lógica

Prolog

Termos

- ✓ Constantes: a, b, c (minúscula);✓ Variáveis: X, Y, Z (maiúscula);
- $\checkmark f(u_1, ..., u_k);$

• Regra:

 \checkmark Ex.: avô(X,Y) :- pai(X,Z), pai(Z,Y)

Fato:

✓ pai(josé, joão).

Exemplo de programa ProLog:

```
pai(josé, joão).
pai(manoel, josé).
avô(X,Y) :- pai(X,Z), pai(Z,Y).
```

Pergunta:

```
?-avô(X,joão)
```

- ✓ Editor *online* de Prolog:
 - https://swish.swi-prolog.org/

Definição

- ✓ **Programa ProbLog**: Conjunto \mathcal{F} de *fatos probabilísticos* + conjunto \mathcal{R} de *regras*;
- \checkmark p:: f são fatos probabilísticos, onde p é a probabilidade e f um átomo probabilístico.


```
0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X):-alarm,hears_alarm(X).
Exemplo de programa ProbLog
```


Definição

- \checkmark Cada fato probabilístico p :: f corresponde a uma variável aleatória independente;
- ✓ Cada fato probabilístico possui uma decisão atômica, ou seja, podemos incluí-lo com probabilidade p ou descarta-lo com probabilidade (1-p);
- ✓ Definimos como escolha total (ET) uma decisão atômica para cada um dos fatos;

	E	В	H_A(M)	H_A(J)	P(Eti)
	F	F	F	F	0,216
$ET_i \longrightarrow$	F	F	F	V	0,216
·	F	F	V	F	0,144
	F	F	V	V	0,144
	F	V	F	F	0,054
	F	V	F	V	0,054
	F	V	V	F	0,036
	F	V	V	V	0,036
	V	F	F	F	0,024
	V	F	F	V	0,024
	V	F	V	F	0,016
	V	F	V	V	0,016
	V	V	F	F	0,006
	V	V	F	V	0,006
	V	V	V	F	0,004
	V	V	V	V	0,004

```
0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X):-alarm,hears_alarm(X).
Exemplo de programa ProbLog
```


Definição

- ✓ A união de uma escolha total $F \subseteq \mathcal{F}$ conjunto de regras \mathcal{R} define um mundo possível w_F ;
- ✓ Um mundo possível w_F é um modelo de programa lógico.

$$w_{\{\texttt{burglary},\texttt{hears}_\texttt{alarm}(\texttt{mary})\}} = \{\texttt{burglary},\texttt{hears}_\texttt{alarm}(\texttt{mary})\} \cup \{\texttt{alarm},\texttt{calls}(\texttt{mary})\}$$

✓ A probabilidade $P(w_F)$ deste mundo possível é então o produto das probabilidades dos valores verdades dos fatos probabilísticos:

$$P(w_F) = \prod_{f_i \in F} p_i \prod_{f_i \in \mathcal{F} \setminus F} (1 - p_i)$$

$$P(w_{\{\text{burglary}, \text{hears alarm(mary})}\}) = 0.1 \times 0.5 \times (1 - 0.2) \times (1 - 0.4) = 0.024$$

✓ A probabilidade de um fato ground (query q) é então definida como a soma da probabilidade de todos os "mundos" contendo q:

$$P(q) = \sum_{F \subseteq \mathcal{F}: q \in w_F} P(w_F)$$

0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.

alarm :- burglary.

calls(X):-alarm,hears_alarm(X).

В	Е	H_A(J)	H_A(M)	P(Eti)
F	F	F	F	0,216
F	F	F	V	0,216
F	F	V	F	0,144
F	F	V	V	0,144
F	V	F	F	0,054
F	V	F	V	0,054
F	V	V	F	0,036
F	V	V	V	0,036
V	F	F	F	0,024
V	F	F	V	0,024
V	F	V	F	0,016
V	F	V	V	0,016
V	V	F	F	0,006
V	V	F	V	0,006
V	V	V	F	0,004
V	V	V	V	0,004

Inferência

- ✓ Pergunta (query): calls(mary)
- ✓ Passo1: Programa lógico é instanciado

```
0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).
0.4::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X):-alarm,hears_alarm(X).
```


Programa ProbBlog

```
0.2::earthquake.
0.1::burglary.
0.5::hears_alarm(mary).

alarm :- earthquake.
alarm :- burglary.
calls(mary):-alarm,hears_alarm(mary).
```

Programa lógico instanciado

Inferência

✓ Passo2: Determinação da fórmula proposicional:
 calls(mary) ↔ hears_alarm(mary) ∧ (burglary ∨ earthquake)

✓ Podemos aplicar a contagem ponderada dos modelos (WMC) diretamente na fórmula, porém não é eficiente.

$Models \ of \ calls(mary) \leftrightarrow hears_alarm(mary) \land (burglary \lor earthquake)$	
{}	0.36
{hears_alarm(mary)}	
{earthquake}	
{earthquake, hears_alarm(mary),calls(mary)}	
{burglary}	0.04
<pre>{burglary, hears_alarm(mary),calls(mary)}</pre>	0.04
{burglary, earthquake}	0.01
{burglary, earthquake, hears_alarm(mary),calls(mary)}	0.01
$\sum_{\text{calls}(\text{mary}) \in \text{model}}$	0.14

⁽c) The weighted count of the models where calls(mary) is true.

В	Е	H_A(M)	P(Eti)
F	F	F	0,36
F	F	V	0,36
F	V	F	0,09
F	V	V	0,09
V	F	F	0,04
V	F	V	0,04
V	V	F	0,01
V	V	V	0,01

Inferência

- ✓ Passo 3: Compilação do conhecimento [2];
- ✓ Fórmula lógica é transformada em uma representação que permite a contagem ponderada dos modelos (WFC) de uma forma mais eficiente;
- ✓ ProbLog atualmente utiliza modelo SDD Sentential Decision Diagram [3];

Figure 1: Function $f = (A \wedge B) \vee (B \wedge C) \vee (C \wedge D)$.

Exemplo de SDD - Fonte: [2]

[2] A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Artificial Intelligence Research 17 (2002) 229–264

[3] A. Darwiche, SDD: A new canonical representation of propositional knowledge bases, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI-11, 2011, pp. 819–826

PESC Programa de Engenharia de Sistemas e Computação

Inferência

- ✓ **Passo 4**: Circuito aritmético;
- ✓ SDD transformado em um circuito aritmético (AC).
 - Folhas: fatos probabilísticos
 - Nodos "OR": adição;
 - Nodos "AND": multiplicação;
- ✓ Contagem ponderada dos modelos (WMC) é calculada através da avaliação do AC.

Circuito Aritmético

Aprendizado

- ✓ Aprendizagem das probabilidades dos fatos à partir de exemplares;
- ✓ Versão atual: ProbLog utiliza *aprendizado por interpretações* parciais (algoritmo LFI-ProbLog)[4].

Exemplo


```
1 %%% The program:
2 t(0.5)::burglary.
3 0.2::earthquake.
4 t(_)::p_alarm1.
5 t(_)::p_alarm2.
6 t(_)::p_alarm3.
7
8 alarm :- burglary, earthquake, p_alarm1.
9 alarm :- burglary, \+earthquake, p_alarm2.
10 alarm :- \+burglary, earthquake, p_alarm3.
```


Fact▼	Location	Probability
t(0.5)::burglary	2:9	0.33333333
t(_)::p_alarm1	4:7	0.83433737
t(_)::p_alarm2	5:7	1
t(_)::p_alarm3	6:7	0

Aprendizado

- Ideias principais LFI-ProbLog
 - ✓ Estimativa da Máxima Verossimilhança:

Definition 1 (Max-Likelihood Parameter Estimation). Given a ProbLog program $\mathcal{T}(\mathbf{p})$ containing the probabilistic facts \mathcal{F} with unknown parameters $\mathbf{p} = \langle p_1, ..., p_N \rangle$ and background knowledge \mathcal{BK} , and a set of (possibly partial) interpretations $\mathcal{D} = \{I_1, ..., I_M\}$ (the training examples). Find maximum likelihood probabilities $\widehat{\mathbf{p}} = \langle \widehat{p_1}, ..., \widehat{p_N} \rangle$ such that

$$\widehat{\mathbf{p}} = \arg \max_{\mathbf{p}} P(\mathcal{D}|\mathcal{T}(\mathbf{p})) = \arg \max_{\mathbf{p}} \prod_{m=1}^{M} P_w(I_m|\mathcal{T}(\mathbf{p}))$$

✓ Dois casos:

- <u>Interpretações completas (full observability</u>): contagem das true ground instancies para cada interpretação;
- <u>Interpretações parciais</u> (partial observabilitty): esperança do número de true ground instancies para cada interpretação.

Aprendizado

- Outra abordagem: Gradiente descendente com Algebraic Problog aProbLog [5]
 - ✓ Paper [4] mostrou que o último passo da inferência (avaliação do circuito lógico) é válida não somente com probabilidades, mas com qualquer estrutura algébrica do tipo semi-anel cumulativo (cumalative semiring);
 - ✓ Cumulative semiring:
 - ✓ Adição é associativa, comutativa e possui um elemento neutro;
 - ✓ Multiplicação é associativa, comutativa e possui um elemento neutro;
 - ✓ aProbLog:

$$a \oplus b = a + b$$

✓ Define adição;

$$a \otimes b = ab$$

✓ Define multiplicação;

$$e^{\oplus} = 0$$

✓ Define função de rotulagem para literais

$$e^{\otimes} = 1$$

$$\begin{split} L(f) &= p & \text{for } p :: f \\ L(\neg f) &= 1 - p & \text{with } L(f) &= p \end{split}$$

Fonte: https://en.wikipedia.org/wiki/Semiring

Aprendizado

- Outra abordagem: Gradiente descendente com Algebraic Problog aProblog
 - ✓ aProbLog utiliza uma *função de rotulagem* que associa explicitamente valores dos *semirings* com os fatos e suas negações

$$L(f) = p$$
 for $p :: f$
 $L(\neg f) = 1 - p$ with $L(f) = p$

- ✓ semiring gradiente:
 - Elementos são tuplas $\left(p, \frac{\partial p}{\partial \theta}\right)$

$$(a_1,\vec{a_2}) \oplus (b_1,\vec{b_2}) = (a_1+b_1,\vec{a_2}+\vec{b_2}) \qquad L(f) = (p,\vec{0}) \qquad \text{for } p :: f \text{ with fixed } p$$

$$(a_1,\vec{a_2}) \otimes (b_1,\vec{b_2}) = (a_1b_1,b_1\vec{a_2}+a_1\vec{b_2}) \qquad L(f_i) = (p_i,\mathbf{e}_i) \qquad \text{for } t(p_i) :: f_i \text{ with learnable } p_i$$

$$e^{\oplus} = (0,\vec{0}) \qquad L(\neg f) = (1-p,-\nabla p) \qquad \text{with } L(f) = (p,\nabla p)$$

$$e^{\otimes} = (1,\vec{0})$$

- Aprendizado
 - Outra abordagem: Gradiente descendente com Algebraic Problog aProbLog
 - ✓ Exemplo: aprendizado da probabilidade de *earthquake* e *burglary* no exemplo anterior (call(mary)) mantendo a probabilidade dos outros fatos fixas;

Circuito AC avaliado com o gradient semiring

Obrigado Dúvidas?