Modelos de regresión multinivel

para el conteo rápido de las elecciones 2018

Michelle Anzarut, Felipe González, Teresa Ortiz

2018/10/02

Idea general

Objetivo: Estimar resultados de la elección a partir de una muestra aleatoria de casillas.

Inferencia basada en modelos: Modelo de regresión multinivel, en función de covariables asociadas a las casillas, que estima el número de votos a favor del candidato en cada casilla.

Calibración: Evaluamos modelos con remuestreo y datos de elecciones pasadas, revisando cobertura de intervalos de confianza/credibilidad.

Experiencia: Mostramos resultados de elección 2018.

Contexto: Conteo rápido

- En México, las elecciones tienen lugar un domingo, los resultados oficiales del proceso se presentan a la población una semana después. A fin de evitar proclamaciones de victoria injustificadas durante ese período el INE organiza un conteo rápido.
- **Conteo rápido**: Procedimiento para estimar el porcentaje de votos a favor de los candidatos en el día de la elección, consiste en seleccionar una muestra aleatoria de las casillas de votación y analizar sus resultados para presentar intervalos con una probabilidad de al menos 0.95.
- La rapidez y precisión del conteo favorece un ambiente de confianza y sirve como una herramienta contra el fraude.

Documento del conteo rápido de Guanajuato 2018

Estimación de los resultados de la votación para la elección de la Gubernatura del Estado de Guanajuato 2018

Con los datos recibidos a las 21:45 hora del centro, del 1 de julio de 2018, el Comité Técnico Asesor informa lo siguiente:

- De las 500 casillas que integran la muestra, se recibió información de 357 casillas, las cuales representan el 71.4 % de la muestra total.
- De los 22 estratos considerados para definir el diseño muestral, se contó con información de 22 estratos.

Con la información recibida y con un nivel de confianza de al menos 95 % se estima lo siguiente:

- 3. La participación ciudadana se encuentra entre 51.8 % y 54.6 %.
- El porcentaje de votos para cada candidatura a la Gubernatura del estado de Guanajuato se presenta a continuación:

NOMBRE	PARTIDO / COALICIÓN	INTERVALO %	
		LÍMITE INFERIOR	LÍMITE SUPERIOR
Diego Sinhue Rodríguez Vallejo	PAN PRD MC	49.5	51.5
Gerardo Sánchez García	PRI	11.5	12.9
Felipe Arturo Camarena García	PVEM	6.2	7.2
Francisco Ricardo Sheffield Padilla	MORENA_PT_ES	23.2	25.2
María Bertha Solórzano Lujano	NA	2.6	3.5

Atentamente

Comité Técnico Asesor del Conteo Rápido

Dr. Alberto Alonso y Coria

Dra. Michelle Anzarut Chacalo

Dr. Carlos Hernández Garciadiego

Dr. Manual Mandoza Pamí

Dr. Luis Enrique Nieto Barajas

Dr. Gabriel Núñez Antonio

Dr. Carlos Erwin Rodríguez Hernández-Vela Mtra. Patricia Isabel Romero Mares

Dr. Raúl Rueda Díaz del Campo

Elecciones 2018

- La elección del 2018 fue la más grande que se ha vivido en México, con 3,400 puestos en disputa. Se realizaron conteos rápidos para 9 elecciones estatales simultáneas a un conteo rápido para la elección de presidente.
- El día de la elección, el sistema de información comienza a las 6 p.m. y, cada 5 minutos, produce una secuencia de archivos acumulativos. Estas muestras parciales se analizan con los métodos de estimación para rastrear la tendencia de los resultados.
- Las muestras parciales tienen un sesgo potencial asociado al patrón de llegada de la información.

Diseño de la muestra

El diseño de la muestra es probabilístico.

- **Diseño:** es unietápico y estratificado, donde la unidad de observación es la casilla.
 - En Guanajuato son 22 estratos definidos por distrito local.
- Tamaño de muestra: Se eligió el tamaño de muestra para lograr intervalos de 95% confianza con longitud máxima de 2 puntos porcentuales.
 - En Guanajuato el tamaño de muestra se fijó en 500 casillas.
- **Selección de la muestra:** La distribución de la muestra en las casillas se realizó proporcional al número de casillas en cada estrato, y se utilizó muestreo aleatorio simple dentro de cada estrato.
- **Consideraciones adicionales:** Se busco que todos los estratos tuvieran al menos 50 casillas, y que porcentaje de CAEs encargados de más de una casilla fuera menor a 20%.

Diseño de la muestra: Guanajuato 2018

- Tras considerar distintas alternativas de estratificación se decidió utilizar la distritación electoral local.
- Dando lugar a 22 estratos, con un promedio de 300 casillas cada uno.

Datos faltantes

En la práctica la muestra seleccionada no llega completa. Entre las posibles razones de faltantes están:

- El clima en ciertas regiones dificulta la transmisión de los resultados.
- El responsable de reportar los resultados está saturado de trabajo: contando votos a falta de funcionarios de casilla, retrasado por la dificultad de llegar a la casilla por malas condiciones de terreno,...

Usualmente los faltantes **no son completamente aleatorios**, esto es, la probabilidad de que una casilla no se reporte está asociada a la respuesta de la casilla.

Buscamos un modelo con **tratamiento consistente de datos faltantes:** en ausencia de respuesta.

Antecedentes

- Manuel Mendoza, Luis E. Nieto-Barajas, 2016. Quick counts in the Mexican presidential elections: A Bayesian approach.
 - Se ajusta un modelo de manera independiente **para cada candidato** en **cada estrato**.
 - Modelo normal para el total de votos X_k que recibe cada candidato en la k-ésima casilla.

$$X_k \sim Nigg(n_k heta, au/n_kigg)$$

- \circ θ : proporción de gente de la lista nominal a favor del candidato.
- $\circ n_k$: número de personas en la lista nominal de la k-ésima casilla.
- Roderick Little, 2012. Calibrated Bayes, an Alternative Inferential Paradigm for Official Statistics.
- David K Park, Andrew Gelman, and Joseph Bafumi, 2004. Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls.

Inferencia en muestreo

- 1. **Inferencia basada en diseño de muestras.** Los valores poblacionales son una cantidad fija, la inferencia se basa en la distribución de probabilidad asociada a la selección de la muestra.
- 2. **Inferencia basada en modelos.** Las variables provienen de un modelo estadístico:
 - Modelos de superpoblaciones: los valores poblacionales se consideran una muestra aleatoria de una superpoblación, y se les asigna una distribución de probabilidad.
 - Modelos bayesianos: agregamos distribuciones iniciales a los parámetros y se hace inferencia de las cantidades poblacionales y de los parámetros usando la distribución posterior.

Modelos bayesianos

Predecimos la variable de interés para las unidades de la población que **no se incluyeron en la muestra** y para las unidades **que no respondieron**, condicional a la muestra observada y al modelo.

Usamos modelos paramétricos:

$$p(y|x) = \int p(y|x, heta)p(heta|x)p(heta)d heta$$

- $p(y|x,\theta)$: modelo paramétrico de y.
- $p(\theta|x)$: distribución inicial para θ .

Se incluyen en el modelo las variables involucradas en el diseño de la muestra (estratos, conglomerados).

Modelos bayesianos

1. La inferencia de θ se obtiene de la distribución posterior:

$$p(\theta|y_{obs},x) \propto p(\theta|x)L(\theta|y_{obs},x)$$

2. La posterior de θ lleva a inferencia de las cantidades poblacionales no observadas usando la distribución predictiva posterior:

$$p(y_{falta}|y_{obs},x) = \int p(y_{falta}| heta,x) p(heta|y_{obs},x) d heta$$

3. Utilizamos los datos observados y simulaciones de los *datos faltantes* para inferir cantidades poblacionales de interés.

Covariables

- 1. Tipo de sección (rural o urbana/mixta).
- 2. Tipo de casilla (básica/contigua/especial o extraordinaria).
- 3. Tamaño de sección (chica < 1000 votantes, mediana [1000, 5000], grande > 5000).
- 4. Región (oriente u occidente).
- 5. Distrito local.
- 6. Interacción de tipo de sección con tamaño de sección.

Modelo con distribución normal

Sea X_k el número de votos en favor del candidato en la k-ésima casilla:

• Nivel 1

$$X_k \sim \mathsf{N}(n_k heta_k, n_k^{-1} au_k^{ ext{distrito}}) \, \mathcal{I}_{[0,750]},$$

donde n_k es la lista nominal y θ_k la proporción de personas en la lista nominal de la casilla k que votaron por el candidato,

$$\begin{aligned} \theta_k &= \text{logit}^{-1}(\beta^0 + \beta^{\text{rural}} \cdot \text{rural}_k + \beta^{\text{rural-tamañoM}} \cdot \text{rural}_k \cdot \text{tamañoM}_k \\ &+ \beta^{\text{tamañoM}} \cdot \text{tamañoM}_k + \beta^{\text{tamañoL}} \cdot \text{tamañoL}_k + \beta^{\text{tipoSP}} \cdot \text{tipoSP}_k \\ &+ \beta^{\text{distrito}}_{\text{distrito}(k)}), \end{aligned}$$

Nivel 2

$$eta_j^{
m distrito} \sim \mathsf{N}\left(\mu^{
m distrito}, \sigma_{
m distrito}^2
ight).$$

Evaluación de ajuste

A total

La siguientes gráficas muestra la distribución predictiva posterior del total de votos para el PAN (partido ganador) y para Movimiento Ciudadano (partido chico).

La línea roja indica el total de votos observado.

Por estrato

Examinamos otro nivel de desagregación: las distribuciones predictivas posteriores para el total de votos por estrato, mostramos las gráficas para 3 estratos.

PP Normal: total de votos por estrato PAN

PP Normal: total de votos por estrato MC

Modelo con distribución mezcla

• Nivel 1

$$egin{align*} X_k \sim p_k \delta_0(x) + (1-p_k) \mathsf{t}(n_k heta_k, n_k^{-1} au_k^{ ext{distrito}},
u_k^{ ext{distrito}}) \mathcal{I}_{[0,750]}, \ egin{align*} heta_k = \mathrm{logit}^{-1}(eta^0 + eta^{ ext{rural}} \cdot \mathrm{rural}_k + eta^{ ext{rural-tamañoM}} \cdot \mathrm{rural}_k \cdot \mathrm{tamañoM}_k \ + eta^{ ext{tamañoM}} \cdot \mathrm{tamañoM}_k + eta^{ ext{distrito}} \cdot \mathrm{tamañoL}_k + eta^{ ext{distrito}}_{ ext{distrito}(k)} \ + eta^{ ext{tipoSP}} \cdot \mathrm{tipoSP}_k), \ \ p_k = \mathrm{logit}^{-1}(eta_p^0 + eta_p^{ ext{rural}} \cdot \mathrm{rural}_k + eta_p^{ ext{rural-tamañoM}} \cdot \mathrm{rural}_k \cdot \mathrm{tamañoM}_k \ + eta_p^{ ext{tamañoM}} \cdot \mathrm{tamañoM}_k + eta_p^{ ext{tamañoL}} \cdot \mathrm{tamañoL}_k + eta_{ ext{distrito-p}}^{ ext{distrito-p}} \ + eta_p^{ ext{tipoSP}} \cdot \mathrm{tipoSP}_k). \end{aligned}$$

Nivel 2

$$eta_j^{
m distrito} \sim {\sf N}\left(\mu^{
m distrito}, \sigma_{
m distrito}^2
ight)$$
 .

Evaluación de ajuste

A total

La siguientes gráficas muestra la distribución predictiva posterior del total de votos para el PAN (partido ganador) y para Movimiento Ciudadano (partido chico).

La línea roja indica el total de votos observado.

Por estrato

Mostramos las gráficas para los mismos 3 estratos que en el caso normal.

PP Mezcla: total de votos por estrato PAN

PP Mezcla: total de votos por estrato MC

Calibración

Metodología:

- 1. Simulamos *n* muestras.
- 2. Para cada muestra creamos intervalos de 95% de probabilidad.
- 3. Revisamos el porcentaje de intervalos que contienen el valor observado.

Simulamos bajo los siguientes escenarios:

- Muestras completas.
- Censuramos las muestras completas usando patrones observados de la llegada de datos de cada distrito y ámbito (rural/urbano).
- Censuramos las muestras completas eliminando estratos.

Calibración

Estimador de razón combinado

Comparamos el desempeño del modelo a lo largo de las muestras simuladas con el estimador de razón combinado:

$$\hat{p_k} = rac{\hat{X_k}}{\hat{Y}} = rac{\sum_h \hat{X_{kh}}}{\sum_h \hat{Y_h}} = rac{\sum_h rac{N_h}{n_h} \sum_i X_{khi}}{\sum_h rac{N_h}{n_h} \sum_i Y_{hi}}$$

- Utilizamos bootstrap para estimar los errores estándar.
- En el caso de estratos faltantes se debe seleccionar una estrategia para utilizar este estimador.

Calibración

Elección Guanajuato 2018

Se reportaron los intervalos de probabilidad de las 9:45 pm, con 357 casillas.

Intervalos 95%

Implementación

Implementamos en *JAGS*, la estimación se puede consultar y **reproducir completamente** con el paquete de R **quickcountmx** (Ortiz 2018).

- La reproducibilidad es crucial para examinar la **veracidad de las conclusiones** de un trabajo científico.
- La reproducibilidad ayuda a lograr la **transparencia en el procedimiento electoral**, fomenta la **confianza en las instituciones** y da **legitimidad al resultado del conteo rápido**.

Modelo nacional

El modelo multinivel con distribución de probabilidad mezcla resulta *muy lento* para la elección nacional.

- **División de datos:** Se estima un modelo de forma independiente para cada una de 7 regiones geográficas lo que nos permite paralelizar, pero no podemos usar información entre las regiones.
- Se modela utilizando una distribucióin **binomial negativa** (un parámetro menos).
- Se implementó con **Stan** en lugar de **JAGS** (el código está en el paquete de R quickcountmx).

Modelo nacional

Para cada región y para cada candidato:

• Nivel 1

$$X_k \sim \mathsf{NB}(n_k heta_k, n_k heta_k
u_k^{ ext{distrito}}) \mathcal{I}_{[0,750]},$$

donde n_k es la lista nominal y θ_k la proporción de personas en la lista nominal de la casilla k que votaron por el candidato,

$$egin{aligned} heta_k &= ext{logit}^{-1}(eta^0 + eta^{ ext{rural}} \cdot ext{rural}_k + eta^{ ext{rural}} egin{aligned} ext{-tama\~noM} &\cdot ext{rural}_k \cdot ext{tama\~noM}_k \\ &+ eta^{ ext{tama\~noM}} \cdot ext{tama\~noM}_k + eta^{ ext{tama\~noL}} \cdot ext{tama\~noL}_k + eta^{ ext{distrito}}_{ ext{distrito}(k)} \\ &+ eta^{ ext{tipoSP}} \cdot ext{tipoSP}_k), \end{aligned}$$

• Nivel 2

$$eta_j^{
m distrito} \sim \mathsf{N}\left(\mu^{
m distrito}, \sigma_{
m distrito}^2
ight)$$
 .

Elección Presidencial 2018

Se reportaron los intervalos de confianza correspondientes a las 22:30 pm, con 7,787 casillas (67% de la muestra planeada).

Conclusiones

Ventajas de los modelos

Tratamiento consistente de datos faltantes: en ausencia de respuesta, la regresión atrae los parámetros hacia la media grupal,

- Comportamiento más estable de muestras parciales.
- Mejores coberturas ante problemas de sesgo.

Desventajas de los modelos

• Lentos comparado a estimador de razón o modelos más sencillos.