# Weight Exercise prediction

Reema Singla 29/12/2019

## **Executive Summary**

Based on a dataset provide by HAR http://groupware.les.inf.puc-rio.br/har (http://groupware.les.inf.puc-rio.br/har) we will try to train a predictive model to predict what exercise was performed using a dataset with 159 features

We'll take the following steps:

- Process the data, for use of this project
- · Explore the data, especially focussing on the two paramaters we are interested in
- · Model selection, where we try different models to help us answer our questions
- Model examination, to see wether our best model holds up to our standards
- · A Conclusion where we answer the questions based on the data
- · Predicting the classification of the model on test set

#### **Processing**

```
set.seed(111)
training_data = read.csv("pml-training.csv")
testing_data = read.csv("pml-testing.csv")
```

## Exploratory data analyses

```
#Remove columns with more than 20% missing values
maxNAallowed = ceiling(nrow(training_data)/100 * 20)
removeColumns = which(colSums(is.na(training_data)| training_data=="")>maxNAallowed)
training_data_clean = training_data[,-c(1:7,removeColumns)]
testing_data_clean = testing_data[,-c(1:7,removeColumns)]

#remove time related columns
remove_time = grep("timestamp",names(training_data_clean))
training_without_time = training_data_clean[,-c(1,remove_time)]
testing_without_time = testing_data_clean[,-c(1,remove_time)]

#final data
train_data = training_without_time
testing_data = testing_without_time
```

#### Model selection

```
#split train data into test and train
partition <- createDataPartition(y=train data$classe, p=0.8, list=FALSE)
train_sub_Train <- train_data[partition, ]</pre>
train_sub_Test <- train_data[-partition, ]</pre>
#Decision Tree
system.time(
 modelDT <- rpart(classe ~ ., method = "class", data = train_sub_Train)</pre>
)
##
      user system elapsed
##
     5.34
             0.00
                     5.48
predictDT <- predict(modelDT, train_sub_Test, type = "class")</pre>
cM <- confusionMatrix(predictDT, train_sub_Test$classe)</pre>
cM
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction A B
                      C
                           D
                              Ε
##
           A 990 117 10 23 29
##
           B 30 388 66 46 107
##
           C 22 99 479 80 118
##
           D 58 127 109 459 95
           E 16 28
##
                      20 35 372
##
## Overall Statistics
##
##
                 Accuracy : 0.6852
                   95% CI: (0.6704, 0.6997)
##
      No Information Rate: 0.2845
##
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa: 0.6019
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.8871 0.5112 0.7003
                                                    0.7138 0.51595
                         0.9362 0.9213 0.9015
## Specificity
                                                    0.8814 0.96908
## Pos Pred Value
                         0.8469 0.6091 0.6003
                                                  0.5413 0.78981
## Neg Pred Value
                         0.9542 0.8871
                                           0.9344
                                                    0.9402 0.89890
## Prevalence
                         0.2845 0.1935 0.1744
                                                    0.1639
                                                            0.18379
## Detection Rate
                         0.2524 0.0989 0.1221
                                                    0.1170 0.09483
## Detection Prevalence 0.2980 0.1624
                                           0.2034
                                                    0.2162 0.12006
                         0.9117 0.7163 0.8009
                                                    0.7976 0.74252
## Balanced Accuracy
```

```
round(cM$overall["Accuracy"][[1]], 4) * 100
```

```
## [1] 68.52
```

```
#Random Forest
system.time(
  modelRF <- randomForest(classe ~ ., data = train_sub_Train, ntree = 100)
)</pre>
```

```
## user system elapsed
## 22.05 0.15 22.68
```

```
plot(modelRF)
```

#### modelRF



```
predictRF <- predict(modelRF, train_sub_Test, type = "class")
cM <- confusionMatrix(predictRF, train_sub_Test$classe)
cM</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                Α
                          C
                               D
                                    Ε
##
           A 1116
                     5
                                    0
            В
                   754
                          3
                               0
##
                0
                                    0
           C
##
                0
                     0
                       681
                              10
                                    1
##
           D
                0
                     0
                          0 633
                                    1
                               0 719
##
           Ε
                0
                     0
                          0
##
## Overall Statistics
##
##
                 Accuracy : 0.9949
##
                   95% CI: (0.9921, 0.9969)
      No Information Rate: 0.2845
##
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa: 0.9936
##
   Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         1.0000
                                  0.9934
                                           0.9956
                                                    0.9844
                                                             0.9972
## Specificity
                         0.9982
                                  0.9991
                                           0.9966
                                                    0.9997
                                                             1.0000
## Pos Pred Value
                         0.9955
                                  0.9960
                                           0.9841
                                                    0.9984
                                                             1.0000
## Neg Pred Value
                         1.0000
                                 0.9984
                                           0.9991
                                                    0.9970
                                                             0.9994
## Prevalence
                         0.2845
                                  0.1935
                                           0.1744
                                                    0.1639
                                                             0.1838
## Detection Rate
                         0.2845
                                 0.1922
                                           0.1736
                                                    0.1614
                                                             0.1833
## Detection Prevalence
                         0.2858
                                  0.1930
                                           0.1764
                                                    0.1616
                                                             0.1833
## Balanced Accuracy
                         0.9991 0.9962
                                           0.9961
                                                    0.9921
                                                             0.9986
```

```
round(cM$overall["Accuracy"][[1]], 4) * 100
```

```
## [1] 99.49
```

| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
|----|------|---------------|---------------|----------|---------|
| ## | 1    | 1.6094        | nan           | 0.1000   | 0.1155  |
| ## | 2    | 1.5371        | nan           | 0.1000   | 0.0767  |
| ## | 3    | 1.4874        | nan           | 0.1000   | 0.0608  |
| ## | 4    | 1.4493        | nan           | 0.1000   | 0.0518  |
| ## | 5    | 1.4168        | nan           | 0.1000   | 0.0389  |
| ## | 6    | 1.3923        | nan           | 0.1000   | 0.0425  |
| ## | 7    | 1.3655        | nan           | 0.1000   | 0.0369  |
| ## | 8    | 1.3410        | nan           | 0.1000   | 0.0341  |
| ## | 9    | 1.3182        | nan           | 0.1000   | 0.0326  |
| ## | 10   | 1.2979        | nan           | 0.1000   | 0.0263  |
| ## | 20   | 1.1508        | nan           | 0.1000   | 0.0169  |
| ## | 40   | 0.9747        | nan           | 0.1000   | 0.0105  |
| ## | 60   | 0.8637        | nan           | 0.1000   | 0.0065  |
| ## | 80   | 0.7798        | nan           | 0.1000   | 0.0038  |
| ## | 100  | 0.7133        | nan           | 0.1000   | 0.0037  |
| ## | 120  | 0.6593        | nan           | 0.1000   | 0.0036  |
| ## | 140  | 0.6135        | nan           | 0.1000   | 0.0023  |
| ## | 150  | 0.5937        | nan           | 0.1000   | 0.0024  |
| ## | 130  | 0.3337        | nan           | 0.1000   | 0.0024  |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.6094        | nan           | 0.1000   | 0.1720  |
| ## | 2    | 1.5046        | nan           | 0.1000   | 0.1241  |
| ## | 3    | 1.4266        | nan           | 0.1000   | 0.0953  |
| ## | 4    | 1.3678        | nan           | 0.1000   | 0.0732  |
| ## | 5    | 1.3206        | nan           | 0.1000   | 0.0675  |
| ## | 6    | 1.2771        | nan           | 0.1000   | 0.0730  |
| ## | 7    | 1.2315        | nan           | 0.1000   | 0.0582  |
| ## | 8    | 1.1950        | nan           | 0.1000   | 0.0523  |
| ## | 9    | 1.1626        | nan           | 0.1000   | 0.0463  |
| ## | 10   | 1.1341        | nan           | 0.1000   | 0.0381  |
| ## | 20   | 0.9434        | nan           | 0.1000   | 0.0195  |
| ## | 40   | 0.7059        | nan           | 0.1000   | 0.0155  |
| ## | 60   | 0.5651        | nan           | 0.1000   | 0.0078  |
| ## | 80   | 0.4783        | nan           | 0.1000   | 0.0055  |
| ## | 100  | 0.4144        | nan           | 0.1000   | 0.0047  |
| ## | 120  | 0.3568        | nan           | 0.1000   | 0.0030  |
| ## | 140  | 0.3157        | nan           | 0.1000   | 0.0019  |
| ## | 150  | 0.2981        | nan           | 0.1000   | 0.0018  |
| ## |      |               |               |          |         |
|    | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.6094        | nan           | 0.1000   | 0.2166  |
| ## | 2    | 1.4724        | nan           | 0.1000   | 0.1527  |
| ## | 3    | 1.3790        | nan           | 0.1000   | 0.1165  |
| ## | 4    | 1.3063        | nan           | 0.1000   | 0.0937  |
| ## | 5    | 1.2467        | nan           | 0.1000   | 0.0891  |
| ## | 6    | 1.1915        | nan           | 0.1000   | 0.0718  |
| ## | 7    | 1.1461        | nan           | 0.1000   | 0.0777  |
| ## | 8    | 1.0994        | nan           | 0.1000   | 0.0581  |
| ## | 9    | 1.0633        | nan           | 0.1000   | 0.0568  |
| ## | 10   | 1.0277        | nan           | 0.1000   | 0.0519  |
| ## | 20   | 0.8029        | nan           | 0.1000   | 0.0242  |
| ## | 40   | 0.5531        | nan           | 0.1000   | 0.0165  |
|    |      |               |               |          |         |

| ##    | 60     | 0.4151           | nan           | 0.1000           | 0.0075           |
|-------|--------|------------------|---------------|------------------|------------------|
| ##    | 80     | 0.3306           | nan           | 0.1000           | 0.0051           |
| ##    | 100    | 0.2742           | nan           | 0.1000           | 0.0038           |
| ##    | 120    | 0.2327           | nan           | 0.1000           | 0.0024           |
| ##    | 140    | 0.2001           | nan           | 0.1000           | 0.0019           |
| ##    | 150    | 0.1857           | nan           | 0.1000           | 0.0011           |
| ##    |        |                  |               |                  |                  |
| ##    | Iter   | TrainDeviance    | ValidDeviance | StepSize         | Improve          |
| ##    | 1      | 1.6094           | nan           | 0.1000           | 0.1163           |
| ##    | 2      | 1.5376           | nan           | 0.1000           | 0.0748           |
| ##    | 3      | 1.4903           | nan           | 0.1000           | 0.0609           |
| ##    | 4      | 1.4521           | nan           | 0.1000           | 0.0467           |
| ##    | 5      | 1.4230           | nan           | 0.1000           | 0.0477           |
| ##    | 6      | 1.3933           | nan           | 0.1000           | 0.0380           |
| ##    | 7      | 1.3685           | nan           | 0.1000           | 0.0392           |
| ##    | 8      | 1.3447           | nan           | 0.1000           | 0.0297           |
| ##    | 9      | 1.3247           | nan           | 0.1000           | 0.0298           |
| ##    | 10     | 1.3058           | nan           | 0.1000           | 0.0296           |
| ##    | 20     | 1.1567           | nan           | 0.1000           | 0.0161           |
| ##    | 40     | 0.9821           | nan           | 0.1000           | 0.0092           |
| ##    | 60     | 0.8668           | nan           | 0.1000           | 0.0057           |
| ##    | 80     | 0.7810           | nan           | 0.1000           | 0.0046           |
| ##    | 100    | 0.7148           | nan           | 0.1000           | 0.0035           |
| ##    | 120    | 0.6614           | nan           | 0.1000           | 0.0025           |
| ##    | 140    | 0.6160           | nan           | 0.1000           | 0.0017           |
| ##    | 150    | 0.5959           | nan           | 0.1000           | 0.0024           |
| ##    |        |                  |               |                  | _                |
| ##    |        | TrainDeviance    | ValidDeviance | StepSize         | Improve          |
| ##    | 1      | 1.6094           | nan           | 0.1000           | 0.1679           |
| ##    | 2      | 1.5038           | nan           | 0.1000           | 0.1129           |
| ##    | 3      | 1.4337           | nan           | 0.1000           | 0.0980           |
| ##    | 4      | 1.3734           | nan           | 0.1000           | 0.0830           |
| ##    | 5      | 1.3218           | nan           | 0.1000           | 0.0650           |
| ##    | 6      | 1.2812           | nan           | 0.1000           | 0.0654           |
| ##    | 7<br>8 | 1.2409           | nan           | 0.1000           | 0.0592<br>0.0523 |
| ##    | 9      | 1.2042<br>1.1716 | nan           | 0.1000<br>0.1000 | 0.0468           |
| ##    | 10     | 1.1420           | nan<br>nan    | 0.1000           | 0.0408           |
| ##    | 20     | 0.9354           | nan           | 0.1000           | 0.0194           |
| ##    | 40     | 0.7083           | nan           | 0.1000           | 0.0086           |
| ##    | 60     | 0.5733           | nan           | 0.1000           | 0.0076           |
| ##    | 80     | 0.4847           | nan           | 0.1000           | 0.0043           |
| ##    | 100    | 0.4151           | nan           | 0.1000           | 0.0041           |
| ##    | 120    | 0.3605           | nan           | 0.1000           | 0.0033           |
| ##    | 140    | 0.3171           | nan           | 0.1000           | 0.0038           |
| ##    | 150    | 0.2985           | nan           | 0.1000           | 0.0016           |
| ##    |        |                  |               |                  |                  |
|       | Iter   | TrainDeviance    | ValidDeviance | StepSize         | Improve          |
| ##    | 1      | 1.6094           | nan           | 0.1000           | 0.2175           |
| ##    | 2      | 1.4747           | nan           | 0.1000           | 0.1441           |
| ##    | 3      | 1.3853           | nan           | 0.1000           | 0.1203           |
| ##    | 4      | 1.3104           | nan           | 0.1000           | 0.1025           |
| ##    | 5      | 1.2463           | nan           | 0.1000           | 0.0818           |
| ##    | 6      | 1.1957           | nan           | 0.1000           | 0.0740           |
| 11711 |        |                  |               |                  |                  |

| ## | 7    | 1.1504        | nan           | 0.1000   | 0.0698  |
|----|------|---------------|---------------|----------|---------|
| ## | 8    | 1.1072        | nan           | 0.1000   | 0.0686  |
| ## | 9    | 1.0658        | nan           | 0.1000   | 0.0435  |
| ## | 10   | 1.0374        | nan           | 0.1000   | 0.0538  |
| ## | 20   | 0.7928        | nan           | 0.1000   | 0.0317  |
| ## | 40   | 0.5521        | nan           | 0.1000   | 0.0114  |
| ## | 60   | 0.4127        | nan           | 0.1000   | 0.0063  |
| ## | 80   | 0.3288        | nan           | 0.1000   | 0.0034  |
| ## | 100  | 0.2723        | nan           | 0.1000   | 0.0033  |
| ## | 120  | 0.2277        | nan           | 0.1000   | 0.0024  |
| ## | 140  | 0.1929        | nan           | 0.1000   | 0.0016  |
| ## | 150  | 0.1790        | nan           | 0.1000   | 0.0020  |
| ## |      |               |               |          |         |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.6094        | nan           | 0.1000   | 0.1176  |
| ## | 2    | 1.5363        | nan           | 0.1000   | 0.0791  |
| ## | 3    | 1.4869        | nan           | 0.1000   | 0.0627  |
| ## | 4    | 1.4477        | nan           | 0.1000   | 0.0501  |
| ## | 5    | 1.4163        | nan           | 0.1000   | 0.0447  |
| ## | 6    | 1.3875        | nan           | 0.1000   | 0.0403  |
| ## | 7    | 1.3613        | nan           | 0.1000   | 0.0371  |
| ## | 8    | 1.3377        | nan           | 0.1000   | 0.0320  |
| ## | 9    | 1.3164        | nan           | 0.1000   | 0.0333  |
| ## | 10   | 1.2947        | nan           | 0.1000   | 0.0332  |
| ## | 20   | 1.1464        | nan           | 0.1000   | 0.0151  |
| ## | 40   | 0.9719        | nan           | 0.1000   | 0.0101  |
| ## | 60   | 0.8583        | nan           | 0.1000   | 0.0072  |
| ## | 80   | 0.7745        | nan           | 0.1000   | 0.0043  |
| ## | 100  | 0.7080        | nan           | 0.1000   | 0.0037  |
| ## | 120  | 0.6533        | nan           | 0.1000   | 0.0027  |
| ## | 140  | 0.6074        | nan           | 0.1000   | 0.0025  |
| ## | 150  | 0.5877        | nan           | 0.1000   | 0.0023  |
| ## |      |               |               |          |         |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.6094        | nan           | 0.1000   | 0.1754  |
| ## | 2    | 1.5015        | nan           | 0.1000   | 0.1142  |
| ## | 3    | 1.4282        | nan           | 0.1000   | 0.0995  |
| ## | 4    | 1.3663        | nan           | 0.1000   | 0.0803  |
| ## | 5    | 1.3166        | nan           | 0.1000   | 0.0635  |
| ## | 6    | 1.2765        | nan           | 0.1000   | 0.0727  |
| ## | 7    | 1.2314        | nan           | 0.1000   | 0.0621  |
| ## | 8    | 1.1924        | nan           | 0.1000   | 0.0503  |
| ## | 9    | 1.1606        | nan           | 0.1000   | 0.0469  |
| ## | 10   | 1.1306        | nan           | 0.1000   | 0.0392  |
| ## | 20   | 0.9317        | nan           | 0.1000   | 0.0258  |
| ## | 40   | 0.7113        | nan           | 0.1000   | 0.0123  |
| ## | 60   | 0.5690        | nan           | 0.1000   | 0.0073  |
| ## | 80   | 0.4789        | nan           | 0.1000   | 0.0039  |
| ## | 100  | 0.4103        | nan           | 0.1000   | 0.0048  |
| ## | 120  | 0.3581        | nan           | 0.1000   | 0.0023  |
| ## | 140  | 0.3159        | nan           | 0.1000   | 0.0017  |
| ## | 150  | 0.2957        | nan           | 0.1000   | 0.0025  |
| ## |      |               |               |          |         |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
|    |      |               |               |          |         |

| ## | 1        | 1.6094        | nan           | 0.1000   | 0.2201  |
|----|----------|---------------|---------------|----------|---------|
| ## | 2        | 1.4721        | nan           | 0.1000   | 0.1502  |
| ## | 3        | 1.3797        | nan           | 0.1000   | 0.1283  |
| ## | 4        | 1.3006        | nan           | 0.1000   | 0.1016  |
| ## | 5        | 1.2372        | nan           | 0.1000   | 0.0840  |
| ## | 6        | 1.1851        | nan           | 0.1000   | 0.0752  |
| ## | 7        | 1.1399        | nan           | 0.1000   | 0.0751  |
| ## | 8        | 1.0941        | nan           | 0.1000   | 0.0600  |
| ## | 9        | 1.0573        | nan           | 0.1000   | 0.0492  |
| ## | 10       | 1.0269        | nan           | 0.1000   | 0.0459  |
| ## | 20       | 0.7941        | nan           | 0.1000   | 0.0228  |
| ## | 40       | 0.5473        | nan           | 0.1000   | 0.0153  |
| ## | 60       | 0.4179        | nan           | 0.1000   | 0.0066  |
| ## | 80       | 0.3338        | nan           | 0.1000   | 0.0062  |
| ## | 100      | 0.2772        | nan           | 0.1000   | 0.0026  |
| ## | 120      | 0.2338        | nan           | 0.1000   | 0.0019  |
| ## | 140      | 0.2002        | nan           | 0.1000   | 0.0024  |
| ## | 150      | 0.1854        | nan           | 0.1000   | 0.0006  |
| ## |          |               |               |          |         |
| ## | Iter     | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1        | 1.6094        | nan           | 0.1000   | 0.1141  |
| ## | 2        | 1.5368        | nan           | 0.1000   | 0.0767  |
| ## | 3        | 1.4869        | nan           | 0.1000   | 0.0587  |
| ## | 4        | 1.4493        | nan           | 0.1000   | 0.0475  |
| ## | 5        | 1.4189        | nan           | 0.1000   | 0.0436  |
| ## | 6        | 1.3908        | nan           | 0.1000   | 0.0418  |
| ## | 7        | 1.3644        | nan           | 0.1000   | 0.0411  |
| ## | 8        | 1.3392        | nan           | 0.1000   | 0.0321  |
| ## | 9        | 1.3188        | nan           | 0.1000   | 0.0287  |
| ## | 10       | 1.2994        | nan           | 0.1000   | 0.0307  |
| ## | 20       | 1.1530        | nan           | 0.1000   | 0.0171  |
| ## | 40       | 0.9770        | nan           | 0.1000   | 0.0108  |
| ## | 60       | 0.8650        | nan           | 0.1000   | 0.0077  |
| ## | 80       | 0.7759        | nan           | 0.1000   | 0.0034  |
| ## | 100      | 0.7138        | nan           | 0.1000   | 0.0038  |
| ## | 120      | 0.6589        | nan           | 0.1000   | 0.0033  |
| ## | 140      | 0.6152        | nan           | 0.1000   | 0.0044  |
| ## | 150      | 0.5946        | nan           | 0.1000   | 0.0020  |
| ## |          |               |               |          | _       |
|    | Iter     | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1        | 1.6094        | nan           | 0.1000   | 0.1728  |
| ## | 2        | 1.5032        | nan           | 0.1000   | 0.1185  |
| ## | 3        | 1.4280        | nan           | 0.1000   | 0.0991  |
| ## | 4        | 1.3658        | nan           | 0.1000   | 0.0798  |
| ## | 5        | 1.3170        | nan           | 0.1000   | 0.0656  |
| ## | 6        | 1.2760        | nan           | 0.1000   | 0.0595  |
| ## | 7        | 1.2380        | nan           | 0.1000   | 0.0573  |
| ## | 8        | 1.2029        | nan           | 0.1000   | 0.0496  |
| ## | 9        | 1.1720        | nan           | 0.1000   | 0.0555  |
| ## | 10       | 1.1384        | nan           | 0.1000   | 0.0431  |
| ## | 20       | 0.9315        | nan           | 0.1000   | 0.0219  |
| ## | 40<br>60 | 0.7029        | nan           | 0.1000   | 0.0110  |
| ## | 60<br>80 | 0.5763        | nan           | 0.1000   | 0.0080  |
| ## | 80       | 0.4824        | nan           | 0.1000   | 0.0057  |

| ## | 100    | 0.4096           | nan           | 0.1000           | 0.0028           |
|----|--------|------------------|---------------|------------------|------------------|
| ## | 120    | 0.3581           | nan           | 0.1000           | 0.0029           |
| ## | 140    | 0.3177           | nan           | 0.1000           | 0.0028           |
| ## | 150    | 0.2988           | nan           | 0.1000           | 0.0017           |
| ## |        |                  |               |                  |                  |
| ## | Iter   | TrainDeviance    | ValidDeviance | StepSize         | Improve          |
| ## | 1      | 1.6094           | nan           | 0.1000           | 0.2167           |
| ## | 2      | 1.4744           | nan           | 0.1000           | 0.1489           |
| ## | 3      | 1.3806           | nan           | 0.1000           | 0.1199           |
| ## | 4      | 1.3060           | nan           | 0.1000           | 0.1002           |
| ## | 5      | 1.2448           | nan           | 0.1000           | 0.0824           |
| ## | 6      | 1.1927           | nan           | 0.1000           | 0.0802           |
| ## | 7      | 1.1437           | nan           | 0.1000           | 0.0643           |
| ## | 8      | 1.1030           | nan           | 0.1000           | 0.0546           |
| ## | 9      | 1.0678           | nan           | 0.1000           | 0.0489           |
| ## | 10     | 1.0365           | nan           | 0.1000           | 0.0496           |
| ## | 20     | 0.7997           | nan           | 0.1000           | 0.0211           |
| ## | 40     | 0.5520           | nan           | 0.1000           | 0.0101           |
| ## | 60     | 0.4207           | nan           | 0.1000           | 0.0052           |
| ## | 80     | 0.3351           | nan           | 0.1000           | 0.0044           |
| ## | 100    | 0.2748           | nan           | 0.1000           | 0.0032           |
| ## | 120    | 0.2325           | nan           | 0.1000           | 0.0033           |
| ## | 140    | 0.1994           | nan           | 0.1000           | 0.0015           |
| ## | 150    | 0.1859           | nan           | 0.1000           | 0.0020           |
| ## |        |                  |               |                  |                  |
| ## | Iter   | TrainDeviance    | ValidDeviance | StepSize         | Improve          |
| ## | 1      | 1.6094           | nan           | 0.1000           | 0.1146           |
| ## | 2      | 1.5364           | nan           | 0.1000           | 0.0790           |
| ## | 3      | 1.4867           | nan           | 0.1000           | 0.0628           |
| ## | 4      | 1.4472           | nan           | 0.1000           | 0.0496           |
| ## | 5      | 1.4158           | nan           | 0.1000           | 0.0432           |
| ## | 6      | 1.3895           | nan           | 0.1000           | 0.0418           |
| ## | 7      | 1.3631           | nan           | 0.1000           | 0.0394           |
| ## | 8      | 1.3385           | nan           | 0.1000           | 0.0310           |
| ## | 9      | 1.3189           | nan           | 0.1000           | 0.0314           |
| ## | 10     | 1.2987           | nan           | 0.1000           | 0.0304           |
| ## | 20     | 1.1504           | nan           | 0.1000           | 0.0205           |
| ## | 40     | 0.9755           | nan           | 0.1000           | 0.0092           |
| ## | 60     | 0.8646           | nan           | 0.1000           | 0.0067           |
| ## | 80     | 0.7784           | nan           | 0.1000           | 0.0058           |
| ## | 100    | 0.7127           | nan           | 0.1000           | 0.0040           |
| ## | 120    | 0.6579           | nan           | 0.1000           | 0.0032           |
| ## | 140    | 0.6134           | nan           | 0.1000           | 0.0033           |
| ## | 150    | 0.5935           | nan           | 0.1000           | 0.0030           |
| ## | T4     | T                | V-1: dD       | C+C:             | T                |
|    | Iter   | TrainDeviance    | ValidDeviance | StepSize         | Improve          |
| ## | 1      | 1.6094           | nan           | 0.1000           | 0.1694           |
| ## | 2      | 1.5031<br>1.4272 | nan           | 0.1000           | 0.1197           |
| ## |        |                  | nan           | 0.1000           | 0.0958           |
| ## | 4<br>5 | 1.3665<br>1 3157 | nan           | 0.1000<br>a 1000 | 0.0822           |
| ## | 6      | 1.3157           | nan           | 0.1000<br>0.1000 | 0.0692<br>0.0595 |
| ## | 7      | 1.2732           | nan           | 0.1000           |                  |
| ## | 8      | 1.2361<br>1.2052 | nan           | 0.1000           | 0.0488<br>0.0453 |
| ## | ð      | 1.2032           | nan           | 9.1000           | U.U433           |

| ## | 9    | 1.1755        | nan           | 0.1000   | 0.0475  |
|----|------|---------------|---------------|----------|---------|
| ## | 10   | 1.1448        | nan           | 0.1000   | 0.0428  |
| ## | 20   | 0.9415        | nan           | 0.1000   | 0.0223  |
| ## | 40   | 0.7049        | nan           | 0.1000   | 0.0081  |
| ## | 60   | 0.5687        | nan           | 0.1000   | 0.0067  |
| ## | 80   | 0.4783        | nan           | 0.1000   | 0.0052  |
| ## | 100  | 0.4100        | nan           | 0.1000   | 0.0034  |
| ## | 120  | 0.3584        | nan           | 0.1000   | 0.0037  |
| ## | 140  | 0.3149        | nan           | 0.1000   | 0.0015  |
| ## | 150  | 0.2964        | nan           | 0.1000   | 0.0020  |
| ## |      |               |               |          |         |
| ## | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    | 1.6094        | nan           | 0.1000   | 0.2147  |
| ## | 2    | 1.4747        | nan           | 0.1000   | 0.1493  |
| ## | 3    | 1.3818        | nan           | 0.1000   | 0.1304  |
| ## | 4    | 1.3031        | nan           | 0.1000   | 0.0950  |
| ## | 5    | 1.2426        | nan           | 0.1000   | 0.0897  |
| ## | 6    | 1.1873        | nan           | 0.1000   | 0.0813  |
| ## | 7    | 1.1387        | nan           | 0.1000   | 0.0611  |
| ## | 8    | 1.1002        | nan           | 0.1000   | 0.0702  |
| ## | 9    | 1.0583        | nan           | 0.1000   | 0.0528  |
| ## | 10   | 1.0250        | nan           | 0.1000   | 0.0531  |
| ## | 20   | 0.7882        | nan           | 0.1000   | 0.0315  |
| ## | 40   | 0.5489        | nan           | 0.1000   | 0.0097  |
| ## | 60   | 0.4177        | nan           | 0.1000   | 0.0083  |
| ## | 80   | 0.3346        | nan           | 0.1000   | 0.0043  |
| ## | 100  | 0.2757        | nan           | 0.1000   | 0.0030  |
| ## | 120  | 0.2306        | nan           | 0.1000   | 0.0031  |
| ## | 140  | 0.1975        | nan           | 0.1000   | 0.0016  |
| ## | 150  | 0.1828        | nan           | 0.1000   | 0.0014  |
| ## | 250  | 0.1020        | 11411         | 3.2000   | 5,501   |
|    | Iter | TrainDeviance | ValidDeviance | StepSize | Improve |
| ## | 1    |               | nan           |          | 0.2132  |
| ## | 2    | 1.4775        | nan           | 0.1000   | 0.1544  |
| ## | 3    | 1.3828        | nan           | 0.1000   | 0.1090  |
| ## | 4    | 1.3149        | nan           | 0.1000   | 0.1104  |
| ## | 5    | 1.2484        | nan           | 0.1000   | 0.0759  |
| ## | 6    | 1.2001        | nan           | 0.1000   | 0.0807  |
| ## | 7    | 1.1510        | nan           | 0.1000   | 0.0789  |
| ## | 8    | 1.1045        | nan           | 0.1000   | 0.0582  |
| ## | 9    | 1.0677        | nan           | 0.1000   | 0.0382  |
|    |      |               |               |          |         |
| ## | 10   | 1.0366        | nan           | 0.1000   | 0.0479  |
| ## | 20   | 0.7962        | nan           | 0.1000   | 0.0264  |
| ## | 40   | 0.5474        | nan           | 0.1000   | 0.0101  |
| ## | 60   | 0.4202        | nan           | 0.1000   | 0.0070  |
| ## | 80   | 0.3363        | nan           | 0.1000   | 0.0056  |
| ## | 100  | 0.2783        | nan           | 0.1000   | 0.0032  |
| ## | 120  | 0.2343        | nan           | 0.1000   | 0.0025  |
| ## | 140  | 0.2012        | nan           | 0.1000   | 0.0009  |
| ## | 150  | 0.1878        | nan           | 0.1000   | 0.0021  |
|    |      |               |               |          |         |

## user system elapsed ## 730.75 2.37 746.42

```
predictGBM <- predict(modelGBM, train_sub_Test)
cM <- confusionMatrix(predictGBM, train_sub_Test$classe)
cM</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                          C
                               D
                                    Ε
                Α
           A 1099
                    28
##
                          0
                               2
                                    2
##
           В
               14 701
                         22
                               5
                                   10
           C
                    30 653
                              27
                                    8
##
                1
##
           D
                1
                     0
                          8 601
                                    6
           Ε
                     0
                          1
##
                1
                               8 695
##
## Overall Statistics
##
##
                 Accuracy : 0.9556
                   95% CI : (0.9487, 0.9619)
##
##
      No Information Rate : 0.2845
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                    Kappa: 0.9439
##
   Mcnemar's Test P-Value : 2.972e-05
##
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.9848
                                 0.9236
                                           0.9547
                                                    0.9347
                                                             0.9639
## Specificity
                         0.9886
                                0.9839 0.9796
                                                    0.9954
                                                             0.9969
## Pos Pred Value
                         0.9717
                                 0.9322
                                           0.9082
                                                    0.9756
                                                             0.9858
## Neg Pred Value
                         0.9939
                                 0.9817
                                           0.9903
                                                    0.9873
                                                             0.9919
## Prevalence
                         0.2845
                                 0.1935
                                           0.1744
                                                    0.1639
                                                             0.1838
## Detection Rate
                         0.2801
                                                    0.1532
                                 0.1787
                                           0.1665
                                                             0.1772
## Detection Prevalence
                         0.2883
                                  0.1917
                                           0.1833
                                                    0.1570
                                                             0.1797
## Balanced Accuracy
                         0.9867
                                  0.9537
                                           0.9672
                                                    0.9651
                                                             0.9804
```

```
round(cM$overall["Accuracy"][[1]], 4) * 100
```

```
## [1] 95.56
```

```
## user system elapsed
## 5.02 0.19 5.23
```

```
predictLDA <- predict(modelLDA, train_sub_Test)
cM <- confusionMatrix(predictLDA, train_sub_Test$classe)
cM</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
               Α
                   В
                      C
                               Ε
                           D
           A 908 112 72 32 25
##
##
           B 28 491 51 31 133
           C 101 92 461 87 74
##
##
           D 77 23 84 447 91
               2 41 16 46 398
##
           Ε
##
## Overall Statistics
##
##
                 Accuracy : 0.6895
                   95% CI: (0.6748, 0.704)
##
##
      No Information Rate : 0.2845
      P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                    Kappa : 0.6073
##
##
   Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.8136
                                 0.6469
                                          0.6740
                                                   0.6952
                                                            0.5520
## Specificity
                         0.9141
                                  0.9232
                                          0.8907
                                                   0.9162
                                                            0.9672
## Pos Pred Value
                         0.7903
                                 0.6689
                                          0.5656
                                                   0.6191
                                                            0.7913
## Neg Pred Value
                         0.9250
                                0.9160
                                         0.9282
                                                   0.9388
                                                            0.9056
## Prevalence
                         0.2845
                                 0.1935
                                          0.1744
                                                   0.1639
                                                            0.1838
## Detection Rate
                                                   0.1139
                         0.2315
                                 0.1252
                                          0.1175
                                                            0.1015
## Detection Prevalence
                         0.2929
                                  0.1871
                                           0.2077
                                                   0.1840
                                                            0.1282
## Balanced Accuracy
                                  0.7851
                         0.8639
                                           0.7823
                                                   0.8057
                                                            0.7596
```

```
round(cM$overall["Accuracy"][[1]], 4) * 100
```

```
## [1] 68.95
```

```
## # weights: 290

## initial value 25344.736575

## iter 10 value 23765.751311

## iter 20 value 23495.771752

## iter 30 value 22861.470413

## iter 40 value 22336.941867

## iter 50 value 22025.974366

## iter 60 value 21671.166621

## iter 70 value 21225.465381

## iter 80 value 21139.356477

## iter 90 value 20913.854464

## iter 100 value 20649.707306

## final value 20649.707306

## stopped after 100 iterations
```

```
## user system elapsed
## 22.28 0.00 22.59
```

```
predictDL <- predict(modelDL, train_sub_Test, type = "class")
cM <- confusionMatrix(as.factor(predictDL), train_sub_Test$classe)
cM</pre>
```

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
               Α
                   В
                       C
                               Ε
##
           A 710 66
                     76 23 32
           B 23 116 30 11
##
                             79
##
           C 206 216 514 216 244
##
           D 177 330 56 393 318
##
           Ε
               0 31
                       8
                           0 48
##
## Overall Statistics
##
##
                 Accuracy: 0.454
##
                   95% CI: (0.4383, 0.4697)
      No Information Rate: 0.2845
##
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.3193
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                       Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                         0.6362 0.15283
                                           0.7515
                                                    0.6112 0.06657
## Specificity
                         0.9298 0.95480
                                           0.7277
                                                    0.7314
                                                           0.98782
## Pos Pred Value
                         0.7828 0.44788
                                                    0.3085
                                           0.3682
                                                            0.55172
## Neg Pred Value
                         0.8654 0.82451
                                           0.9327
                                                    0.9056
                                                            0.82456
## Prevalence
                         0.2845 0.19347
                                           0.1744
                                                    0.1639
                                                            0.18379
## Detection Rate
                         0.1810 0.02957
                                           0.1310
                                                    0.1002
                                                            0.01224
## Detection Prevalence 0.2312 0.06602
                                           0.3559
                                                    0.3248
                                                            0.02218
## Balanced Accuracy
                         0.7830 0.55382
                                           0.7396
                                                    0.6713
                                                           0.52720
```

```
round(cM$overall["Accuracy"][[1]], 4) * 100
```

```
## [1] 45.4
```

#using Random Forest because of best accuracy

```
predict(modelRF, testing_data, type = "class")
```

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
```