# ADAMAS

### ADAMAS UNIVERSITY

#### **END-SEMESTER EXAMINATION: JANUARY 2021**

(Academic Session: 2020 – 21)

| PURSUE EXCELLENCE                                             | (Feddeline Session: 2020 21) |                    |          |
|---------------------------------------------------------------|------------------------------|--------------------|----------|
| Name of the Program:                                          | B.Tech                       | Semester:          | III      |
| Paper Title :                                                 | Electric Circuits            | Paper Code:        | EEE42101 |
| Maximum Marks :                                               | 40                           | Time duration:     | 3 Hrs    |
| Total No of questions:                                        | 8                            | Total No of Pages: | 3        |
| (Any other information for the student may be mentioned here) |                              | •                  |          |

## Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$ 

- **1. a)** Explain independent and dependent sources with examples.
  - **b**) Two voltmeters A and B having resistance of 5.2 k $\Omega$  and 15 k $\Omega$  respectively are connected in series across 240V supply. What are the reading in each voltmeter?
  - c) Find the energy stored in an inductor of value 5 mH, if the current in it varies from 1A to 5A in 10 sec.
  - d) What is Q factor? Find value of Q factor for an inductor.
  - e) What is coefficient coupling?

#### **GROUP-B**

Answer any three of the following

 $3 \times 5 = 15$ 

- 2. A current source in a linear circuit  $has i_z = 8 \cos(500\pi t 25^o) A$ . (a) What is the amplitude of the current? (b) What is the angular frequency? (c) Find the frequency of the current. (d) Calculate  $i_z$  at t=2ms.
- **3.** Determine the admittance Y for the circuit in Figure.



**4.** Determine Vo in the circuit by nodal analysis.



5. Using mesh analysis, obtain  $I_0$  in the circuit shown in Fig.



GROUP -C

Answer any two of the following

 $2 \times 10 = 20$ 

**6.** (a) Find  $i_0$  in the circuit shown in Fig. using superposition.



(b) Find the Thevenin and Norton equivalent circuits at terminals a-b in the circuit.



- 7. (a) Two coils connected in series-aiding fashion have a total inductance of 250 mH. When connected in a series-opposing configuration, the coils have a total inductance of 150 mH. If the inductance of one coil  $(L_1)$  is three times the other, find  $L_1, L_2$  and M. What is the coupling coefficient?
  - (b) Obtain the Fourier transform of the signal shown in Fig.



**8.** (a) Obtain the z parameters for the network in Fig. as functions of s.



(b) For a two-port, let A=4, B=30 $\Omega$ , C=0.1 S and D=1.5. Calculate the input impedance  $Z_{in} = \frac{V_1}{I_1}$ , when: (i) the output terminals are short-circuited, (ii) the output port is open-circuited, (iii) the output port is terminated by a 10- $\Omega$  load.