Control 1: Análisis asintótico

Profesor Yerko Ortiz Tiempo: 45 minutos

Nombre:			

1 Teoría

1.1 Tiempo de ejecución

Caracterice el tiempo de ejecución de las siguientes expresiones utilizando notación $\mathcal{O}(f(n))$. [5 puntos cada respuesta correcta]

a.
$$T(N) = N^2 + N\sqrt{N} + 5$$

b.
$$T(N, K) = N \log N + N^{K}$$

c.
$$T(N) = \sqrt{N} + \log N$$

d.
$$T(N, M) = 5N^4 + 2N^2 + M + 1$$

1.2 Verdadero y falso

Para cada una de las siguientes afirmaciones, denote su veracidad con la letra V o su falsedad con la letra F. Para las respuestas falsas justifique su respuesta. [5 puntos cada respuesta correcta]

- a. ____ La notación $\Omega(f(n))$ es utilizada para caracterizar el caso promedio de ejecución de un algoritmo.
- b. ____ Una ventaja del análisis asintótico es que es dependiente de las características de la maquina en la que el algoritmo es ejecutado, es decir, según la velocidad de la cpu y cantidad de memoria el resultado del análisis será distinto.
- c. ____ La eficiencia de un algoritmo caracteriza el uso de algún recurso computacional(cpu, memoria) respecto el tamaño de entrada del algoritmo.
- d. ____ El siguiente algoritmo calcula el logaritmo base dos de un número entero N:

```
static int f(int n) {
    int l = -1;
    while(n > 0) {
        l++;
        n = n/10;
    }
    return l;
}
```

2 Análisis

Para el siguiente algoritmo[5 puntos cada respuesta correcta]:

- a. Describa el algoritmo en términos de entrada/salida, es decir, las propiedades que definen al conjunto de entrada(tipo de datos), como también las propiedades y restricciones que permiten validar si un valor de salida es correcto o no.
- b. Calcule la salida del algoritmo si la entrada es: $\{n=2\}$
- c. Calcule la salida del algoritmo si la entrada es: $\{n = 5\}$
- d. Describa el tiempo de ejecución utilizando notación $\mathcal{O}(f(n))$