2.10.25

AI25BTECH11036-SNEHAMRUDULA

2.10.25. In $\triangle PQR$

, let
$$\mathbf{a} = \overrightarrow{QR}$$
, $\mathbf{b} = \overrightarrow{RP}$, $\mathbf{c} = \overrightarrow{PQ}$.

If $|\mathbf{a}| = 12$, $|\mathbf{b}| = 4\sqrt{3}$, $\mathbf{b} \cdot \mathbf{c} = 24$, then which of the following is (are) true?

(a)
$$\frac{|\mathbf{c}|^2}{2} - |\mathbf{a}| = 12$$

(b)
$$\frac{|\vec{\mathbf{c}}|^2}{2} + |\mathbf{a}| = 30$$

- (c) $|\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a}| = 48 \sqrt{3}$
- (d) $\mathbf{a} \cdot \mathbf{b} = -72$

solution $\|\mathbf{a}\| = 12$, $\|\mathbf{b}\| = 4\sqrt{3}$, $\mathbf{b} \cdot \mathbf{c} = 24$, $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$ Thus, $\mathbf{c} = -(\mathbf{a} + \mathbf{b})$.

- (a) $||\mathbf{c}||^2$
- (b) Check $\frac{\|\mathbf{c}\|^2}{2} \pm \|\mathbf{a}\|$
- (c) $\|\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a}\|$
- (d) $\mathbf{a} \cdot \mathbf{b}$
- (d) Compute $\mathbf{a} \cdot \mathbf{b}$:

$$\mathbf{b} \cdot \mathbf{c} = -\mathbf{a} \cdot \mathbf{b} - ||\mathbf{b}||^2 \quad \Rightarrow \quad 24 = -\mathbf{a} \cdot \mathbf{b} - 48, \tag{0.1}$$

$$\mathbf{a} \cdot \mathbf{b} = -72. \tag{0.2}$$

(a), (b) Compute $\|\mathbf{c}\|^2$:

$$\|\mathbf{c}\|^2 = \|\mathbf{a} + \mathbf{b}\|^2 = 144 + 48 + 2(-72) = 48,$$
 (0.3)

$$\frac{48}{2} - 12 = 12$$
 (True), $\frac{48}{2} + 12 = 36$ (False). (0.4)

(c) Compute $\|\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a}\|$:

$$\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} = 2(\mathbf{a} \times \mathbf{b}),\tag{0.5}$$

$$\cos \theta = \frac{-72}{12 \cdot 4\sqrt{3}} = -\frac{\sqrt{3}}{2}, \quad \sin \theta = \frac{1}{2}, \|\cos \theta\| = 2 \cdot 12 \cdot 4\sqrt{3} \cdot \frac{1}{2} = 48\sqrt{3}$$
 (0.6)

- 1) $\mathbf{a} \cdot \mathbf{b} = -72$
- 2) $||\mathbf{c}||^2 = 48$
- $\begin{array}{ll}
 -7 & ||\mathbf{c}|| & -40 \\
 3) & \frac{||\mathbf{c}||^2}{2} ||\mathbf{a}|| & = 12(True) \\
 4) & \frac{||\mathbf{c}||^2}{2} + ||\mathbf{a}|| & = 36(False) \\
 5) & ||\mathbf{a} \times \mathbf{b} + \mathbf{c}||
 \end{array}$

Fig. 5.1